Antibacterial activity of *Centaurea pumilio* L. root and aerial part extracts against some multidrug resistant bacteria

Huda Naeim¹,²,³, Amr El-Hawiet⁴, Raoufa A. Abdel Rahman², Ahmed Hussein¹, Maha A. El Demellawy³ and Amira M. Embaby¹*

Abstract
Background: In the context of searching for potent, safe, natural antimicrobial agents to combat the global antimicrobial resistance (AMR) phenomenon, the current study evaluates for the first time ever, the broad-spectrum antimicrobial activity of essential oil (EO) and extracts from the rare wild plant *Centaurea pumilio* L.. It has tremendous ethnomedicinal values; its dried root is used as a fattening agent, a treatment for bad breath and diabetes, and screened for schistosomicidal activity.

Methods: *C. pumilio* EO was extracted by hydrodistillation using a Clevenger apparatus. Chemical constituents of aerial part were extracted using a sequential solvent/solvent procedure employing four solvents with increasing polarities in the following order: petroleum ether, chloroform, ethyl acetate, and n-butanol. The chemical constituents were identified by GC-MS. Fifty-two microbial strains were used; twenty-six multidrug resistant (MDR), sixteen clinical, and ten reference strains. The identification of the microbial strains was performed by MALDI-TOF-MS. The antimicrobial activity of the EO and the aerial part and the root extracts was assessed through disc diffusion assay. A minimum inhibitory concentration (MIC) of the EO and extracts was determined using the broth micro-dilution method.

Results: The growth of reference and clinical strains was inhibited by EO, methanol, chloroform, and ethyl acetate aerial part extracts and chloroform root extract. The MDR strains growth, however, was inhibited only by EO and chloroform aerial part extract. GC-MS identified for the first time eighteen constituents from aerial part EO and chloroform extract each. EO showed antimicrobial activity against the reference, clinical, and MDR strains with MIC values of 31.25–125, 31.25–125, and 62.50–250 μg/mL, respectively. Methanol aerial part extract exhibited high antimicrobial activities with MIC values of 62.50–250 μg/mL against reference and clinical strains. Chloroform root extract displayed strong antimicrobial activity against reference and clinical strains recording MIC values of 62.50–250 μg/mL and 62.50–125 μg/mL, respectively. The chloroform aerial part extract demonstrated potent antimicrobial activity against the reference, clinical, and MDR strains with 31.25, 31.25, and 15.62 μg/mL MIC values, respectively. (Continued on next page)
Background

Antimicrobial resistance (AMR), a life-threatening and multifaceted global phenomenon, is a consequence of improper and/or overuse of antibiotics [1]. The Centre for Disease Control and Prevention (CDC) and the World Health Organization (WHO) report alarming increases in antibiotic resistance rates as a result of infections from various MDR strains [2]. Some of the most life-threatening MDR strains are Staphylococcus aureus, Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumonia [3]. Globally, intensive care units (ICUs) are considered foci for the proliferation and promotion of persistent infection with MDR strains [4]. In Egypt, several studies have been conducted to trace the incidence and prevalence of AMR and its possible reasons, especially in ICUs [5, 6]. Infection with Gram-negative MDR strains (e.g., Acinetobacter sp., Klebsiella sp., and Pseudomonas sp.) with a higher frequency than Gram-positive MDR strains was reported in the ICUs of Alexandria hospitals [4].

Increased health care expenditure for patients infected with MDR strains is one of the burdens imposed by AMR [7]. The Organization for Economic Cooperation and Development (OECD) reported that resistant microbes currently cause 700,000 deaths annually. If the current trends persist, the number of deaths is expected to rise to ten million by 2050, displacing cancer as one of the prime causes of mortality [8].

To combat AMR, innovative approaches must be adopted in the research for novel antimicrobial medicines. As the use of synthetic chemicals to combat MDR strains is highly restricted because of health and environmental considerations [9], turning to natural products is, then, an excellent alternate to control the prevalence of AMR. Centaurea spp. L. are well-known for their bioactive secondary metabolites with antimicrobial potential against Gram-positive, Gram-negative, and MDR bacteria [10–12]. They have been reported to possess medicinally important EOs and large numbers of terpenoids with more than 3000 different structures [12]. The antimicrobial activity of many Centaurea spp. L. (e.g., C. pulcherrima, C. consanguinea, C. ptosomipappa, C. cha-
maerhapticum, C. amanicola, C. sessilis, C. armena, and C. aladagensis) has already received researchers’ attention [12]. Centaurea pumilio, Synonym C. aegialophila is a rare species that can be found scattered on sand dunes along the Egyptian Mediterranean coast [13]. Its dried root is frequently used as a fattening agent in traditional Egyptian medicine [14] and the indigenous people commonly use the peeled root to treat diabetes and bad breath. It has also been screened for efficacy against schistosomiasis and showed antioxidant activity [14]. C. pumilio is regarded as an endangered plant and has been included on the national Red List of the International Union for Conservation of Nature (IUCN) of threatened plants [13].

The objective of the present study was to extract EO and other active volatile constituents from the aerial part and the root of C. pumilio in order to assess the antimicrobial potential against 26 MDR strains collected from ICUs, 10 reference, and 16 clinical strains. To the best of the authors’ knowledge, the current work represents the first study to separate and assess the antimicrobial potential of the active constituents in C. pumilio.

Methods

Reagents and chemicals

The chemicals and reagents used in this study were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Plant materials

The plant was collected from its natural habitats on the Northern coast of Egypt during their flowering season (April and May 2018). It was identified as Centaurea pumilio L. by Prof. Dr. Salama El-Darer (Botany Department, Faculty of Science, Alexandria University, Egypt). A voucher specimen (CP019) was deposited in the herbarium of the Pharmacognosy Department. The fresh plant (Additional file 1) was air-dried, placed in a tightly sealed container, and stored in a cold, dark, dry place until the analyses were carried out. Permission to collect the plant samples was not required.

Preparation of C. pumilio EO and extracts

The EO was extracted in accordance with previously reported procedures [15]. The air-dried aerial part (400 g) was subjected to hydrodistillation using a Clevenger apparatus. The resultant pale yellow oil (Additional file 2) was stored at –20°C. Meanwhile, a solvent/solvent extraction method was employed to extract the active constituents from the aerial part and the root [16]. The
powdered air-dried aerial part and root of *C. pumilio* (700 g) were extracted separately with 4 L methanol (70%) until exhaustion. Both methanol extracts were filtered and concentrated under vacuum. The aqueous solutions were further extracted sequentially using four solvents with increasing polarities in the following order: petroleum ether, chloroform, ethyl acetate, and *n*-butanol. The organic phases of each extract from the aerial part and root, and the remaining aqueous extracts, were evaporated under reduced pressure (Fig. 1a, b).

GC-MS analysis

The gas chromatography-mass spectrometry (GC-MS) analyses of *C. pumilio* EO and chloroform aerial part extract were carried out using a GC-MS instrument with the following specifications: a TRACE GC Ultra Gas Chromatographs (Thermo Scientific Corp., USA) coupled with a Thermo mass spectrometer detector (ISQ Single Quadrupole Mass Spectrometer) [15, 16]. The experimental conditions of the GC-MS system were as follows: TR-5MS capillary standard non-polar column, dimension: 30Mts, ID: 0.25 mm, and film thickness: 0.25 μm. The flow rate of the mobile phase (carrier gas: He) was set at 1.0 ml/min. In the gas chromatography phase, the temperature program (oven temperature) was set at 40 °C and then raised to 250 °C at 5 °C/min and the injection volume was 1 μL. The identification of the chemical constituents was de-

Fig. 1 Yield of bioactive compounds extracted from *C. pumilio* by solvent-solvent extraction method. **a** Aerial part. **b** Root
Pseudomonas aeruginosa ATCC 9027, netobacter baumannii, Staphylococcus aureus ATCC 6538, and Salmonella enterica ATCC 14153, ATCC 29212, coccus faecalis aeruginosa (5 strains), ATCC13048, Klebseilla pneumonia (2 strains), lus cereus were Enterococcus faecalis (unpublished data). The sixteen clinical strains identified time of flight-mass spectrometry (MALDI-TOF-MS) tests and matrix-assisted laser desorption/ionization, conventional biochemical The strains were identified using a three-step protocol: (MDR) strains were obtained from the ICUs Alexandria. Meanwhile, sixteen clinical strains were obtained from MIRCEN Faculty of Agriculture, Ain Shams University, Cairo, Egypt. Twenty-six multidrug resistant the Microbiology DepartmentFaculty of Medicine, Alex- andria University, Egypt. Twenty-six multidrug resistant (MDR) strains were obtained from the ICUs Alexandria. The strains were identified using a three-step protocol: morphological identification, conventional biochemical tests and matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF-MS) (unpublished data). The sixteen clinical strains identified were Enterococcus faecalis, Staphylococcus aureus, Bacil- lus cereus (2 strains), Streptococcus mutans, Bacillus pumilus, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Salmonella enterica serovar Typhi, Stenotrophomonas maltophilia, Proteus mirabilis, Klebsiella pneumonia (2 strains), Enterobacter sp. and Candida albicans. The twenty-six MDR strains were S. aureus MRSA (3 strains), A. baumannii (9 strains), P. aeruginosa (5 strains), E. coli (3 strains), K. variicola (one strain), and K. pneumonia (5 strains).

Determination of antimicrobial activity

Bacterial strains

In the present study, ten reference strains: Acinetobacter baumannii ATCC 1797, E. coli ATCC 8739, Enterococcus faecalis ATCC 29212, Enterobacter aerogenes ATCC13048, Klebsiella pneumonia ATCC 700603, Pseudomonas aeruginosa ATCC 9027, Proteus mirabilis ATCC 14153, Salmonella enterica ATCC 14028, Staphylococcus aureus ATCC 6538, and Candida albicans ATCC 10231 were obtained from MIRCEN Faculty of Agriculture, Ain Shams University, Cairo, Egypt. Meanwhile, sixteen clinical strains were obtained from the Microbiology DepartmentFaculty of Medicine, Alexander University, Egypt. Twenty-six multidrug resistant (MDR) strains were obtained from the ICUs Alexandria. The strains were identified using a three-step protocol: morphological identification, conventional biochemical tests and matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF-MS) (unpublished data). The sixteen clinical strains identified were Enterococcus faecalis, Staphylococcus aureus, Bacilllus cereus (2 strains), Streptococcus mutans, Bacillus pumilus, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Salmonella enterica serovar Typhi, Stenotrophomonas maltophilia, Proteus mirabilis, Klebsiella pneumonia (2 strains), Enterobacter sp. and Candida albicans. The twenty-six MDR strains were S. aureus MRSA (3 strains), A. baumannii (9 strains), P. aeruginosa (5 strains), E. coli (3 strains), K. variicola (one strain), and K. pneumonia (5 strains).

Cultivation conditions

The reference, clinical, and MDR strains were cultured on Müeller Hinton Broth (MHB, HiMedia, Mumbai, India) and Müeller Hinton Agar (MHA, HiMedia) at 37 °C for 18 h. However, C. albicans was cultivated on Sabouraud Dextrose Broth (SDB, HiMedia) and Sabouraud Dextrose Agar (SDA, HiMedia) at 30 °C for 18 h.

Disc diffusion assay

The antibiotic resistance patterns of the MDR strains and the antimicrobial potential of the EO and extracts from C. pumilio against all the strains tested (i.e., reference, clinical, and MDR strains) were determined using the Kirby-Bauer disc diffusion technique [17, 18] as described by CLSI guidelines. An inoculum of 0.5 McFar- land was used to inoculate the MHA and SDA agar plates. The EO or plant extract (20 μL) was loaded onto the sterile filter paper discs at a concentration of 100 mg/ mL (2 mg/disc). Filter discs containing standard antimicrobial agents (ampicillin and fluconazole), EO, and extracts were employed in the pre-inoculated agar plates. The negative control plates were performed using dimethyl sulfoxide (DMSO). The diameters of the inhibition zones were measured and all the experiments were conducted in triplicate.

Determination of minimal inhibitory concentration

The minimum inhibitory concentrations (MIC) of the EO and extracts were determined with the broth micro- dilution method [18]. This was performed with 96-well microtiter plates using resazurin dye [19]. One hundred microliters (100 μL) of cell suspensions (5 × 10^3 CFU/ mL) were used to inoculate 50 μL of MHB containing different concentrations (15, 62, 31.25, 62.5, 125, 250, 500, and 1000 μg/mL) of the EO or extract. The inocu- lated microtiter plates were incubated at 37 °C for 18 h. The MIC values were the lowest concentrations of the EO and plant extracts that suppressed visible growth of each strain tested in the microtitre plate. Experiments were conducted in triplicate.

Statistical analysis

Data were statistically expressed in terms of means (n = 3) ± standard error (SE). Statistical analysis was run by the STATISTICA 10 of StatSoft, Inc. (2011) (Tulsa, Oklahoma, USA) [20]. Data variability was checked by one-way ANOVA at P < 0.05 for plant extracts and a standard antibiotic against strains (indicated with capital letters (A-E) in the same row). Factorial ANOVA was checked at P < 0.05 for each plant extract and the stand- ard antibiotic to examine the factorial interaction be- tween the reference and clinical strains and Gram- positive bacteria and Gram-negative bacteria (indicated with the small letters (a-c) in the same column). The data variability of the chloroform extract from the aerial part was checked by one-way ANOVA at P < 0.05 against the MDR strains; as indicated by the small letters (a-c) in the same column.
Results

Yield and chemical composition of EO and chloroform extracts

The yields of the extracts from the aerial part and the root after performing a solvent/solvent extraction are depicted in Fig. 1a and b. The chloroform extract and hydrodistillation of the aerial part yielded 2.56% (w/w) of brownish residue and 0.17% (v/w) of pale yellow EO, respectively. A TRACE GC Ultra Gas Chromatographs (Thermo Scientific Corp., USA) was used to identify and quantify these components. Eighteen volatile compounds were identified in the EO (Table 1) with sesquiterpene hydrocarbons representing the major class, including β-caryophyllene (29.33%) as the major volatile component, isogermaene D (17.28%), α-cyperene (14.08%), butanoic acid-2-methyl, 2-methyl butyl (11.16%), carpoylpenylene oxide (10.49%), α-humulene (3.58%), α-copaene (2.14%), γ-elemene (1.24%), and T-murolol (1.12%).

The GC-MS analysis of the chloroform extract showed eighteen compounds (Table 2). It contained ten major active compounds including hydrocarbons [pentadecane (17.83%), heptadecane (16.05%), hexadecane (8.89%), nonadecane (7.88%), heneicosane (7.30%), and heptacosenoic acid (6.08%); long-chain alkanes (tetradecane, 9.65%), nonadecane (7.88%), heneicosane (7.30%), and heptacosane (17.83%), heptadecane (16.05%), hexadecane (8.89%), and nonadecane (7.88%).

Table 1. Chemical composition of essential oil (EO) of C. pumilio analyzed by GC-Mass spectrometry

Peaks	Volatile compound	RI	LRI	Content (%)
1	Butyric acid-2-methyl2-methyl butyrate	1105	1106	11.16
2	Hexyl isovalerate	1251	1253	0.99
3	3-Methylhexyl 2-Methylbutanoate	1299	1299	0.72
4	α-copaene	1376	1375	2.14
5	γ-Cyperene	1398	1398	14.08
6	β-Caryophyllene	1419	1419	29.33
7	α-Humulene	1448	1449	3.58
8	Isogermaene D	1710	1708	17.28
9	γ-elemene	1449	1449	1.24
10	α-Murolene	1492	1491	1.05
11	γ-Murolene	1472	1473	0.98
12	Caryophyllene oxide	1571	1570	10.49
13	Caryophylladienol II	1631	1632	0.57
14	T-Murolol	1628	1627	1.12
15	α-Valerenol	1737	1736	0.64
16	Germacr-4 (15),5,10 (14)-trien-1β-ol	1687	1686	3.86
17	Trans-Valereryl isovalerate	2025	2024	0.43
18	Octacosane	444	442	0.32

RI retention index, LRI literature retention index

EO and the chloroform extract from the aerial part of C. pumilio has even been reported.

Antibiogram of MDR strains

The phenotypic profile of the 26 MDR strains against 36 commercial antibiotics is depicted in Additional file 3. There was a discrepancy in the antibiogram profile among the 26 MDR strains belonging either to the same species or different genera in terms of the number and group of the antibiotics. The uppermost MDR strains exhibited resistance against 10–16 antibiotics.

Antimicrobial activity of C. pumilio extracts and EO against reference and clinical strains

The antimicrobial activities of C. pumilio EO and extracts against reference and clinical strains were assessed (Table 3). Using the factorial ANOVA at P < 0.05, the inhibition zone diameters (mm) of the chloroform, the ethyl acetate extracted from the aerial part, and the standard antibiotic showed significant data variability between the reference and clinical strains and between the Gram-positive and Gram-negative bacteria and their interactions (categorical factors). Statistical analysis proved that the highest significant data variability was observed between the Gram-positive and Gram-negative bacterial strains (F = 3.374, P < 0.01) compared to those of the reference and clinical strains (F = 3.744, P < 0.05) and their interactions (F = 2.176, P < 0.05). No significant data variability was observed for the 70% methanol extract from the aerial part, the chloroform root extract, or the EO. The chloroform extract from the aerial part showed the highest inhibition zone diameters compared to the standard antibiotic, other extracts, and the EO. The inhibition zone diameters of the chloroform aerial part extract varied significantly as indicated by the different letters between the reference (mean = 27.11 mm) and clinical strains (mean = 22.42 mm). It also showed significant variance between the Gram-negative (mean = 20.40 mm) and Gram-positive clinical bacterial strains (mean = 26.47 mm). Furthermore, it showed the highest significant variability inferred by one-way ANOVA at P < 0.05 among the other extracts and the standard antibiotic against each strain. The antibacterial activity of the ethyl acetate extract from the aerial part varied significantly between the reference (mean = 16.56 mm) and clinical strains (mean = 15.41 mm), and the Gram-negative (mean = 14.00 mm) and Gram-positive clinical bacterial strains (mean = 18.58 mm).

Antimicrobial activity of C. pumilio extracts and EO against MDR strains

Of the four extracts studied, only the chloroform aerial part extract showed potent antimicrobial activity against all the MDR strains tested (Table 4). Using the one-way
ANOVA, the chloroform aerial part extract showed significant data variability among the MDR strains tested \((F = 3.606, P < 0.05)\), as indicated by the different letters (a-c). A discrepancy in the antimicrobial potential showed by the chloroform aerial part extract was noted among different strains of the same species. Among the nine MDR \(A.\ baumannii\) tested, inhibition zone diameters ranged from 11.33 ± 0.33 mm to 23.33 ± 0.33 mm. Whilst, among the five MDR tested \(K.\ pneumonia\), inhibition zone diameters ranged from 12.00 ± 0.00 mm to 25.00 ± 0.00 mm. For the five MDR tested \(P.\ aeruginosa\) and the three MRSA strains tested, inhibition zone diameters ranged from 17.33 ± 0.33 mm to 27.00 ± 0.00 mm and 20.00 ± 0.00 mm to 28.00 ± 0.00 mm, respectively. Conversely, a negligible discrepancy in the range of the inhibition zone diameter was noted among the three MDR E. coli tested.

The growth of only nine out of the twenty-six tested MDR strains was inhibited by the EO (Table 4). At most, the highest inhibition zone diameter was 12.67 ± 0.33 mm. The antimicrobial activity of the EO was not noticed against the nine MDR \(A.\ baumannii\) tested. EO inhibited the growth of only one out of the three MDR E. coli strains tested and only one out of five MDR K. pneumonia strains tested. In contrast, the growth of all the tested MDR \(P.\ aeruginosa\) strains was negatively influenced except for one strain. For the MRSA strains, only two out of three tested strains were adversely suppressed by EO.

MIC of \(C.\ pumilio\) extracts and EO against reference and clinical strains

At most, the highest antimicrobial activity among the four extracts was evidenced by the lowest MIC values observed (Table 5). With regard to the lowest MIC values, the antimicrobial potential of the extracts was in the following order: chloroform aerial part extract >> chloroform root extract >> methanol aerial part extract = ethyl acetate aerial part extract, when compared to MIC values of standard antibiotics. The chloroform aerial part extract exhibited an MIC value of 31.25 μg/mL against the Gram-negative bacteria, Gram-positive bacteria, and \(C.\ albicans\). Moreover, a four-fold increase in the inhibitory activity of the chloroform aerial part extract was noted against B. pumilus. In contrast, the MIC values of 125–250 μg/mL of the methanol and ethyl acetate aerial part extracts were noticed.

Table 2 Chemical analysis of chloroform aerial part extract of \(C.\ pumilio\) analyzed by GC-Mass spectrometry

Peaks	Volatile compound	Content (%)	M.W.	RI
1	n-tetradecane	9.65	198	1400
2	Carotene, 3,4-dihydro-1,1′,2,2′-teta hydro-1′-hydroxy-1-methoxy-	0.58	584	1593
3	Pentadecane	17.83	212	1502
4	Lochneridine (Curan-17-oic acid,2,16-didehydro-20-hydroxy-19-oxo,methyl ester	0.67	398	2127
5	Hexadecane	8.89	226	1601
6	Heptadecane	16.05	240	1701
7	2a,4a-Epoxymethylphenanthrene-7-methanol,1,1-dimethyl-2-methoxy-8-(1,3-dithiin-2-ylidene) methyl-1,2,3,4,4a,5,6,7,8,8a,9-dodecahydro-, acetate	0.73	490	1933
8	Hydrazinecarboxamide	4.59	75	829
9	7,8-Epoxylanostan-11-ol, 3-acetoxy	0.45	502	1734
10	Nonadecane	7.88	268	1900
11	Octadecamethyl cyclononasiloxane	0.63	666	1871
12	Eicosane	7.10	282	2000
13	Hexadecamethyl Cyclooctasiloxane	0.73	592	1700
14	Heneicosane	7.30	296	2100
15	Octasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13,15,15-hexadecamethyl-	0.91	578	1759
16	Heptacosane	6.08	380	2700
17	Cis-13-eicosenoic acid	5.64	311	2365
18	3-Oxo-10 (14)-epoxyguai-11 (13)-en-6,12-olide	8.45	262	2010

M.W. molecular weight, RI retention index
Table 3: Inhibition zone diameters (mm) of C. pumilio extracts and EO against reference and clinical strains

Strains	Inhibition zone diameter (mm)	70% methanol aerial part extract	Chloroform aerial part extract	Ethyl acetate aerial part extract	Chloroform root extract	EO	Standard antimicrobial agent
Reference strains							
A. baumannii ATCC 1797	10.00 ± 0.58^A	25.00 ± 0.58^BC	16.00 ± 0.00^BC	ND	ND		11.33 ± 0.33^AB
E. coli ATCC 8739	8.67 ± 0.33^A	29.33 ± 0.33^BC	13.00 ± 0.58^BC	10.00 ± 0.00^A	9.33 ± 0.33^A		20.00 ± 0.58^IC
Ent. Faecalis ATCC 29212	11.33 ± 0.33^B	29.67 ± 0.33^BC	11.33 ± 0.33^BC	8.33 ± 0.33^A	8.33 ± 0.33^A		19.00 ± 0.00^IC
Enterobacter aerogenes	7.67 ± 0.33^A	17.67 ± 0.33^BC	9.67 ± 0.33^BC	ND	ND		
ATCC13048							
K. pneumonia ATCC 700603	8.00 ± 0.00^A	22.67 ± 0.33^BC	11.67 ± 0.33^BC	8.67 ± 0.33^A	10.67 ± 0.33^B		
P. aeruginosa ATCC 9027	16.00 ± 0.00^C	29.67 ± 0.33^BC	19.67 ± 0.33^BC	11.00 ± 0.00^A	1467 ± 0.33^B		
P. mirabilis ATCC 14153	8.67 ± 0.33^B	29.33 ± 0.33^BC	15.67 ± 0.33^BC	11.67 ± 0.00^A	13.33 ± 0.33^B		12.00 ± 0.00^AB
S. enterica ATCC 14028	7.33 ± 0.33^A	30.00 ± 0.00^BC	24.00 ± 0.00^BC	7.67 ± 0.33^A	12.33 ± 0.33^B		
S. aureus ATCC 6538	12.76 ± 0.33^B	30.67 ± 0.33^BC	28.00 ± 0.00^BC	14.33 ± 0.33^A	13.33 ± 0.33^A		25.00 ± 0.00^BC
C. albicans ATCC 10231	8.33 ± 0.33^A	27.00 ± 0.58^BC	ND	12.67 ± 0.33^B	ND		30.00 ± 0.00^ID
Clinical strains							
A. baumannii	18.67 ± 0.33^A	10.67 ± 0.33^BC	17.67 ± 0.33^BC	ND	ND		
E. coli	15.00 ± 0.58^B	21.33 ± 0.33^BC	19.33 ± 0.33^BC	10.00 ± 0.58^A	9.33 ± 0.33^A		14.33 ± 0.03^AB
Ent. faecalis	8.67 ± 0.67^B	20.67 ± 0.33^BC	14.33 ± 0.33^BC	11.67 ± 0.33^A	10.00 ± 0.58^A		24.67 ± 0.33^A
Enterobacter sp.	15.67 ± 0.33^B	16.67 ± 0.33^BC	9.33 ± 0.33^BC	ND	ND		8.00 ± 0.00^AB
K. pneumonia strain1	8.33 ± 0.33^A	23.67 ± 0.33^BC	7.33 ± 0.33^BC	8.33 ± 0.33^A	11.33 ± 0.33^B		19.00 ± 0.00^BC
K. pneumonia strain2	15.00 ± 0.58^B	25.00 ± 0.00^BC	18.33 ± 0.33^BC	10.67 ± 0.33^A	11.67 ± 0.33^A		15.33 ± 0.33^AB
P. aeruginosa	11.00 ± 0.58^A	24.00 ± 0.00^BC	14.33 ± 0.33^BC	11.67 ± 0.33^A	13.67 ± 0.33^B		11.00 ± 0.00^AB
P. mirabilis	15.00 ± 0.58^B	28.00 ± 0.00^BC	17.00 ± 0.58^BC	12.33 ± 0.33^C	16.00 ± 0.58^A		9.00 ± 0.00^AB
S. enterica	14.00 ± 0.00^A	25.00 ± 0.00^BC	8.33 ± 0.33^BC	15.33 ± 0.33^D	13.67 ± 0.33^A		11.33 ± 0.33^BC
Stemo. maltophilia	ND	9.00 ± 0.00^BC	ND	13.33 ± 0.33^D	ND		19.33 ± 0.33^BC
B. cereus strain1	8.67 ± 0.67^A	30.00 ± 0.00^BD	17.00 ± 0.58^BC	10.67 ± 0.33^B	10.33 ± 0.33^AB		16.33 ± 0.33^BC
B. cereus strain2	14.00 ± 0.58^A	28.00 ± 0.00^BC	17.33 ± 0.33^BC	12.00 ± 0.00^C	13.67 ± 0.33^A		16.33 ± 0.33^AB
B. pumilus	13.33 ± 0.33^A	30.33 ± 0.33^BC	18.67 ± 0.33^BC	12.33 ± 0.33^A	12.67 ± 0.33^A		7.00 ± 0.00^AB
S. aureus	9.67 ± 0.88^AB	27.67 ± 0.33^BC	21.33 ± 0.33^BC	9.00 ± 0.00^A	10.67 ± 0.33^A		13.00 ± 0.00^BC
Strept. mutans	ND	16.33 ± 0.33^BC	ND	10.33 ± 0.33^A	ND		
C. albicans	7.33 ± 0.33^A	12.00 ± 0.00^BC	ND	10.33 ± 0.33^B	ND		20.00 ± 0.00^BD

Different small letters (a-c) in the same column indicate significant data variability checked by factorial ANOVA at P < 0.05. No letters indicate no significant variability.

Different capital letters (A-E) in the same row indicate significant data variability checked by one-way ANOVA at P < 0.05.

EO: essential oil, ND: not detected.
against Gram-negative bacteria and Gram-positive bacteria. The common MIC values for the EO were 62.50 μg/mL and 125 μg/mL for reference and clinical strains, respectively, against the Gram-negative bacteria and Gram-positive bacteria (Table 5).

MIC of C. pumilio chloroform aerial part extract and EO against MDR strains

The chloroform aerial part extract revealed its strong broad-spectrum antibacterial activity against the MDR strains with MIC values of 15.62 μg/mL (against 2 MDR strains), 31.25 μg/mL (against 7 MDR strains), 62.5 μg/mL (against 14 MDR strains), 125 μg/mL (against 2 MDR strains), and 250 (against one MDR strain). Moreover, these MIC values varied greatly among the strains belonging to the same species and among the strains of different species (Table 6). For instance, among the nine tested MDR A. baumannii, four MIC values of the C. pumilio chloroform aerial part extract were observed: 31.25, 62.5, 125, and 250 μg/mL. For the MIC values of the C. pumilio chloroform aerial part extract against MDR K. pneumonia, three values were noted: 15.62, 31.25, and 62.5 μg/mL, and these very same values were obtained against MDR P. aeruginosa as well. Conversely, only 62.5 and 125 μg/mL MIC values were noted against MRSA.

With regard to the EO MIC values, one fixed MIC value of 62.5 μg/mL was noted against MDR P. aeruginosa. However, two distal MIC values of 62.5 and 250 μg/mL were recorded against MRSA strains (Table 6). It showed antimicrobial activity against MDR E. coli and K. varicola with MIC values of 62.5 and 125 μg/mL, respectively.

Discussion

In the ongoing search for natural antibiotics to treat human MDR infections, the current work focuses on looking for natural antimicrobial agents from C. pumilio extracts and EO. Although the extracts and EOs of the genus Centaurea have been extensively studied and have showed remarkable antimicrobial activity against susceptible and MDR strains [11, 12, 21], the antimicrobial activity of C. pumilio has not been well explored.

The EO from C. pumilio inhibited S. aureus (MIC, 31.52 μg/mL), which is in accordance with C. carthamoides EO [12], and it also showed much higher antimicrobial activity against S. aureus, S. enetrica, and E. coli (with MIC values of 31.25, 62.50, and 125 μg/mL, respectively), when compared to those of C. chamae hantonicum EO [12]. β-caryophyllene, a natural sesquiterpene, has been reported for its strong antimicrobial activity [22] and has previously been detected in the EOs of C. aladagensis, C. amanicola, C. appendicigera, C. cheirolophoides, C. deflexa, C. lanigera, and C. mucronifera [21]. It is worth mentioning that C. pumilio EO has the second-highest percentage of β-caryophyllene (29.33%) after C. deflexa (33.9%) [21]. The EO from C. pumilio demonstrated higher antimicrobial activity as indicated by the MIC values of 125, 125, and 62.5 μg/mL against B. cereus, P. aeruginosa, and K. pneumonia, respectively, when compared to those of C. solstitialis [15], C. appendicigera, and C. helenioides EOs [23]. C. pumilio EO also displayed more potent antibacterial activity than C. aladagensis [24], C. lycopifolia, and C. cheirolopha EOs [25]. Isogermacrene D, a monocyclic sesquiterpene hydrocarbon, has previously been reported in the EOs of C. antochia, C. ptolemapappoides, C. babylonica, C. antitauri, C. balsamita, C.

Table 4 Inhibition zone diameters of chloroform aerial part C. pumilio extract and EO against MDR strains

MDR Strain	Chloroform aerial part extract	EO
A. baumannii strain1	11.67 ± 0.33 abc	–
A. baumannii strain2	22.00 ± 0.00 abc	–
A. baumannii strain3	20.00 ± 0.00 abc	–
A. baumannii strain4	16.00 ± 0.00 abc	–
A. baumannii strain5	11.33 ± 0.33 abc	–
A. baumannii strain6	21.67 ± 0.33 abc	–
A. baumannii strain7	14.67 ± 0.33 abc	–
A. baumannii strain8	20.00 ± 0.00 abc	–
A. baumannii strain9	23.33 ± 0.33 abc	–
E. coli strain1	14.67 ± 0.33 abc	–
E. coli strain2	17.67 ± 0.33 abc	9.00 ± 0.58
E. coli strain3	14.33 ± 0.33 abc	–
K. pneumonia strain1	16.00 ± 0.00 abc	–
K. pneumonia strain2	12.00 ± 0.00 abc	–
K. pneumonia strain3	12.67 ± 0.33 abc	–
K. pneumonia strain4	25.00 ± 0.00 abc	–
K. pneumonia strain5	24.00 ± 0.00 abc	12.67 ± 0.33
K. variicola	12.00 ± 0.00 abc	10.33 ± 0.33
P. aeruginosa strain1	20.00 ± 0.00 f	–
P. aeruginosa strain2	25.00 ± 0.00 f	7.33 ± 0.33
P. aeruginosa strain3	27.00 ± 0.00 f	7.33 ± 0.33
P. aeruginosa strain4	17.33 ± 0.33 f	9.33 ± 0.33
P. aeruginosa strain5	25.00 ± 0.00 f	11.33 ± 0.33
S. aureus MRSA strain1	21.00 ± 0.00 f	4.00 ± 0.00
S. aureus MRSA strain2	20.00 ± 0.00 f	–
S. aureus MRSA strain3	28.00 ± 0.00 f	10.00 ± 0.58

Different small letters (a-c) indicate significant data variability at P < 0.05 checked by one-way ANOVA. No letters indicate no significant variability. MDR multidrug resistant, EO essential oil.
cheirolepidioides, and *C. aladaghensis* [21] and the EOs from *C. helenioides* [23], *C. rupestris* [18], *C. solstitialis* [15], *C. baseri* [26], *C. cinerari*, and *C. napifolia* [27] have been noted for their isogermacrene D content and antimicrobial activity that match with the present findings of *C. pumilio* EO.

The current study deals with the antimicrobial potential of four extracts; methanol, chloroform, and ethyl acetate aerial part extract and chloroform root extract. The methanol extract demonstrated high antibacterial activity against *S. aureus* and *A. baumannii* strains (MIC, 62.50 μg/mL and 250 μg/mL, respectively), whereas in comparison, *C. ragusina* methanol extract shows less antibacterial activity [11]. Additionally, it exhibited the highest antimicrobial potential against *S. aureus*, *B. cereus*, and *E. coli* with MIC of 62.50, 125, and

Table 5 Minimum inhibitory concentration (MIC) of *C. pumilio* extracts and EO against reference and clinical strains
Strains

Reference strains
A. baumannii ATCC 1797
E. coli ATCC 8739
Ent. faecalis ATCC 29212
E. aerogenes ATCC 13048
K. pneumonia ATCC 700603
P. aeruginosa ATCC 9027
Prot. mirabilis ATCC 14153
S. enterica ATCC 14028
S. aureus ATCC 6538
C. albicans ATCC 10231
Clinical strains
A. baumannii
E. coli
Ent. faecalis
Enterobacter sp.
K. pneumonia strain 1
K. pneumonia strain 2
P. aeruginosa
Prot. mirabilis
S. enterica
Steno. maltophilia
B. cereus strain 1
B. cereus strain 2
B. pumilus
S. aureus
Strep. mutans
C. albicans

EO essential oil, ND not detected
activity to that of the standard antibiotic. This anticandidal activity is also seen in *C. thessala* and *C. attica* chloroform aerial part extracts [33], but not in the chloroform extracts of *C. austro-anatolica*, *C. cariensis* subsp. *niveo-tomentosa*, and *C. ensiformis* [17, 30, 34]. *Strep. mutans* and *Steno. maltophilia* were inhibited by chloroform extracts of both the root and aerial part of *C. pumilio* (MIC of 62.50 and 125 μg/mL, respectively). Meanwhile, the *C. pumilio* chloroform aerial part extract exhibited higher antibacterial activity against MRSA (21, 20, and 28 mm) than that of *C. austro-anatolica* [17] and *C. cariensis* [30]. Previous studies demonstrated that the chloroform extracts from the aerial part of *C. austro-anatolica* and *C. cariensis* had antibacterial activity against MDR *Steno. maltophilia* strains [17, 30].

The *C. pumilio* EO inhibited the growth of *Ent. faecalis* (MIC, 125 μg/mL) more than the EO from *C. helenioides* did [23] and MRSA (MIC, 250 μg/mL) more than the *C. baseri* EO [26]. The antibacterial activity of the *C. pumilio* EO against MRSA may be attributed to its 15% isogermaene D content [12]. The antimicrobial activity of the *C. pumilio* EO against the reference, clinical, and MDR strains might be attributed to its high content of sesquiterpenes [12]: β-caryophyllene (29.33%), isogermaene D (17.28%), α-cyperene (14.08%), and carophyllene oxide (10.49%). The literature reviews revealed that EOs containing high percentages of β-caryophyllene augmented antibiotic potency against Gram-negative bacteria [35]. This would suggest that *C. pumilio* EO is a good candidate for new formulations that can contribute to reducing AMR [35]. The current study revealed for the first time the presence of butanoic acid, 2-methyl-, 2-methylbutyl ester which has been reported for its antimicrobial activity as it is the main component in *Ammi visnaga* L. EO [36]. Therefore, it might also contribute to the antimicrobial activity of the *C. pumilio* EO. So far, the findings of the current study concerning the antimicrobial activity of the *C. pumilio* EO against the MDR *P. aeruginosa*, *E. coli*, and *K. variicola* strains can be considered as the first report among the *Centauraea* genus. This would underpin the great potential the *C. pumilio* EO has in the fight against the MDR strains with global health implications the WHO and CDC annual statistical estimates have reported [2]. As a consequence, it represents an excellent natural alternative to the inefficient synthetic anti-MDR agents.

The GC-MS analysis of the *C. pumilio* chloroform aerial part extract reported hydrocarbons as the most abundant constituents and showed antibacterial activity against the clinical and MDR pathogens [37–41]. Pentadecane and heptadecane are the major hydrocarbons and these have been reported for their antimicrobial activity [39–41]. Tetradecane, hexadecane, nonadecane, and heneicosane were recorded as antimicrobial agents.

Table 6 Minimum inhibitory concentration (MIC) of *C. pumilio* chloroform extract and essential oil (EO) against 26 MDR strains
MDR strains
A. baumannii strain1
A. baumannii strain2
A. baumannii strain3
A. baumannii strain4
A. baumannii strain5
A. baumannii strain6
A. baumannii strain7
A. baumannii strain8
A. baumannii strain9
E. coli strain1
E. coli strain2
E. coli strain3
K. pneumonia strain1
K. pneumonia strain2
K. pneumonia strain3
K. pneumonia strain4
K. pneumonia strain5
K. variicola
P. aeruginosa strain1
P. aeruginosa strain2
P. aeruginosa strain3
P. aeruginosa strain4
P. aeruginosa strain5
S. aureus MRSA strain1
S. aureus MRSA strain2
S. aureus MRSA strain3

250 μg/mL, respectively, when compared to the same extract from twelve *Centauraea* spp. [28]. *C. persica*, *C. polyclada*, and *C. consanguinea* methanol extracts also demonstrated anticandidal activity with MIC of 125 μg/mL [29].

Neither the *C. pumilio* methanol nor the ethyl acetate extract showed any activity against *Strep. mutans*, which is in agreement with *C. austro-anatolica* [17] and *C. cariensis* [30]. This discrepancy might be because of species differences. Unlike the *C. cadmea* methanol root extract [31] and *C. montana* root ethyl acetate and *n*-butanol extracts, *C. pumilio* chloroform root extract did show antimicrobial activity [32], and contrary to the *C. montana* root chloroform extract [32], the corresponding *C. pumilio* extract did suppress *C. albicans* growth (MIC, 125 μg/mL).

Interestingly, the *C. pumilio* chloroform aerial part extract exhibited a twofold increase in the anticandidal activity to that of the standard antibiotic. This anticandidal activity is also seen in *C. thessala* and *C. attica* chloroform aerial part extracts [33], but not in the chloroform extracts of *C. austro-anatolica*, *C. cariensis* subsp. *niveo-tomentosa*, and *C. ensiformis* [17, 30, 34]. *Strep. mutans* and *Steno. maltophilia* were inhibited by chloroform extracts of both the root and aerial part of *C. pumilio* (MIC of 62.50 and 125 μg/mL, respectively). Meanwhile, the *C. pumilio* chloroform aerial part extract exhibited higher antibacterial activity against MRSA (21, 20, and 28 mm) than that of *C. austro-anatolica* [17] and *C. cariensis* [30]. Previous studies demonstrated that the chloroform extracts from the aerial part of *C. austro-anatolica* and *C. cariensis* had antibacterial activity against MDR *Steno. maltophilia* strains [17, 30].

The *C. pumilio* EO inhibited the growth of *Ent. faecalis* (MIC, 125 μg/mL) more than the EO from *C. helenioides* did [23] and MRSA (MIC, 250 μg/mL) more than the *C. baseri* EO [26]. The antibacterial activity of the *C. pumilio* EO against MRSA may be attributed to its 15% isogermaene D content [12]. The antimicrobial activity of the *C. pumilio* EO against the reference, clinical, and MDR strains might be attributed to its high content of sesquiterpenes [12]: β-caryophyllene (29.33%), isogermaene D (17.28%), α-cyperene (14.08%), and carophyllene oxide (10.49%). The literature reviews revealed that EOs containing high percentages of β-caryophyllene augmented antibiotic potency against Gram-negative bacteria [35]. This would suggest that *C. pumilio* EO is a good candidate for new formulations that can contribute to reducing AMR [35]. The current study revealed for the first time the presence of butanoic acid, 2-methyl-, 2-methylbutyl ester which has been reported for its antimicrobial activity as it is the main component in *Ammi visnaga* L. EO [36]. Therefore, it might also contribute to the antimicrobial activity of the *C. pumilio* EO. So far, the findings of the current study concerning the antimicrobial activity of the *C. pumilio* EO against the MDR *P. aeruginosa*, *E. coli*, and *K. variicola* strains can be considered as the first report among the *Centauraea* genus. This would underpin the great potential the *C. pumilio* EO has in the fight against the MDR strains with global health implications the WHO and CDC annual statistical estimates have reported [2]. As a consequence, it represents an excellent natural alternative to the inefficient synthetic anti-MDR agents.

The GC-MS analysis of the *C. pumilio* chloroform aerial part extract reported hydrocarbons as the most abundant constituents and showed antibacterial activity against the clinical and MDR pathogens [37–41]. Pentadecane and heptadecane are the major hydrocarbons and these have been reported for their antimicrobial activity [39–41]. Tetradecane, hexadecane, nonadecane, and heneicosane were recorded as antimicrobial agents.
Eicosane, a long-chain fatty acid, has been reported for its antibacterial activity [41]. Pentadecane, tetradecane, hexadecane, nonadecane, heneicosane, eicosane, and heptacosane have previously been detected in C. napifolia, C. iconiensis, C. antiochiae, C. aladaghensis, C. lanigera, C. iconiensis, and C. solstitialis, respectively [15, 21, 27]. The antifungal activity of the C. pumilio chloroform aerial part extract might be accredited to 3-oxo-10(14)-epoxyguai-11(13)-en-6,12-olide and curan-17-oic acid, 2,16-didehydro-20-hydroxy-19-oxo, methylester which have been described as antifungal agents [41, 42]. In addition, Cis-13-eicosenoic acid was detected in Camilla sinesis extract that was described for its antimicrobial activity against MRSA and MDR P. aeruginosa with MIC of 400 μg/mL and 800 μg/mL, respectively [43]. Consequently, the significant antimicrobial activity of the C. pumilio chloroform aerial part extract against the MDR P. aeruginosa and MRSA strains (MIC of 62.5 and 15.62 μg/mL, respectively) may be attributed to its content of cis-13-eicosenoic acid. The antimicrobial activities of the C. pumilio chloroform aerial part extract against the reference, clinical, and MDR pathogens are likely attributed to these bioactive compounds. The presence of these highly synergistic active compounds with high percentages in the chloroform aerial part extract may illustrate its potent antimicrobial activity against susceptible and MDR bacteria [44]. Noticeably, it is the aerial part of C. pumilio that contains more antimicrobial compounds in the EO, methanol, ethyl acetate, and chloroform extract compared to those in the root.

Conclusions
The current study considered the first attempt to extract and assess the antimicrobial activity of the EO and extracts from C. pumilio not only against susceptible bacteria, but also MDR strains. This study does support the usage of C. pumilio as a medicinal plant as it is an extremely rich supplier of potent broad-spectrum antimicrobial bioactive compounds. The results of the research on the antimicrobial activity of C. pumilio showed that the extracts from the plant do exhibit strong activity, which is particularly promising given that antimicrobial resistance has become a major health issue worldwide. There is clear potential for C. pumilio EO and extracts to be exploited in the pharmaceutical industries and in the formulations of food additives for prophylaxis purposes. That said, further studies are mandatory to purify the chemical constituents of the antimicrobial fractions to better illustrate their mode of action. Moreover, the cytotoxicity levels of C. pumilio EO and extracts should also be studied further in vitro and in vivo to develop stable drugs for human/animal use.
2. World Health Organization. Antimicrobial resistance global report on surveillance: 2014 summary. No. WHO/HSE/PEA/NIP/2014.2. World Health Organization: 2014. https://apps.who.int/iris/bitstream/handle/10665/112647/WHO_HSE_PED_A2014_eng.pdf. Accessed 24 Apr 2014.

3. Yu Z, Tang J, Khare T, Kumar V. The alarming antimicrobial resistance in ESCAPE pathogens: can essential oils come to the rescue? Fitoterapia. 2020;104433. https://doi.org/10.1016/j.fitote.2019.104433.

4. El-Nawawy A, Ashraf GA, Antonios MA, Meheissen MA, El-Alfy MM. Activities of three sesquiterpene lactones from Centaurea solstitialis. Microbiol Res. 2009;164:545–50. https://doi.org/10.1016/j.micres.2007.05.006.

5. Wang MX, Akhtar MS, Sinniah UR. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evid Based Complement Alternat Med. 2016;21:301246. https://doi.org/10.1155/2016/301246.

6. Özçelik B, Gürbüz I, Karagöl T, Yegülada E. Antiviral and antimicrobial activities of three sesquiterpene lactones from Centaurea ruprestris L. Front Pharmacol. 2018;9:672. https://doi.org/10.3389/fphar.2018.00672.

7. Abad MJ, Bedoya LM, Bermejo P. Essential oils from the Asteraceae family Rumex. J Essent Oil Bear Plants. 2016;19:762–8. https://doi.org/10.1080/0972060X.2016.1174080.

8. Flaminini G, Tebano M, Cioni PL, Bagni Y, Dural H, Ertugrul K, et al. A multivariate statistical approach to Centaurea classification using essential oil composition data of some species from Turkey. Plant Syst Evol. 2006;261:217–28. https://doi.org/10.1007/s00606-006-0448-3.

9. Da häm S, Tabana Y, Iqbal M, Ahamed M, Ezzat M, Majid A, et al. The antitumor, antioxidant and antimicrobial properties of the sesquiterpene B-caryophyllene from the essential oil of Agarica crisana. Molecules. 2015;20:11808–29. https://doi.org/10.3390/molecules200711808.

10. Alainei P, Ilican G, Demirci B, Basar KC, Celik S. Antimicrobial activity of the essential oil of Centaurea aladagensis. Fitoterapia. 2007;78:253–4. https://doi.org/10.1016/j.fitote.2006.12.002.

11. Bülent Köse Y, Ican G, Demirci B. Antimicrobial activity of the essential oils obtained from flowering aerial parts of Centaurea lycopifolia Boiss et Kotschyi and Centaurea cineolophia (Fenzl) Wagennitz from Turkey. J Essent Oil Bear Plants. 2016;19:248–51. https://doi.org/10.1080/0972060X.2016.1174080.

12. Flaminini G, Tebano M, Cioni PL, Bagni Y, Dural H, Ertugrul K, et al. A multivariate statistical approach to Centaurea classification using essential oil composition data of some species from Turkey. Plant Syst Evol. 2006;261:217–28. https://doi.org/10.1007/s00606-006-0448-3.

13. Yalav N, Yasar A, Yalav N, Albay C, Aşçam Y, Coğkuncelebi K, et al. Chemical composition and antimicrobial activity of essential oils from Centaurea appendiculata and Centaurea heleonoides. Pharm Biol. 2009;47:117–22. https://doi.org/10.1080/147864107018410370.

14. Aelenei P, Miron A, Trifan A, Bujor A, Gille E, Aprotosoaie AC. Essential oils from species of Centaurea collected from Turkey. Asian J Chem. 2013;25:666–70. https://doi.org/10.14233/ajchem.2013.12125.

15. Ugar A, Sarac N, Ceylan O, Ermin DM. Antimicrobial activity and chemical composition of endemic Centaurea caryana subsp. niveotomentosa. Nat Prod Res. 2010;24:861–72. https://doi.org/10.1080/14786410801915770.

16. Uyishá, Ságlam H, Guden K. Antimicrobial and antioxidant activities of some species of Centaurea collected from Turkey. Asian J Chem. 2013;25:666–70. https://doi.org/10.14233/ajchem.2013.12125.

17. Ugar A, Duru ME, Ceylan O, Sarac N, Varol O, Kivrak I. Chemical composition, antimicrobial and antioxidant activities of Centaurea ensiformis huf-Mor. (Asteraeae), a species endemic to Mугla (Turkey). Nat Prod Res. 2009;23:149–57. https://doi.org/10.1080/14786410903315127.

18. Aelenei P, Miron A, Trifan A, Bujor A, Gille E, Aprotosoaie AC. Essential oils and their components as modulators of antiobiotic activity against gram-negative bacteria. Medicines. 2016;3:19. https://doi.org/10.3390/medicin3030019.

19. Feirouz B, Salima KG. Antibacterial activity and chemical composition of Ammi visnaga L. essential oil collected from Boumerdes (Algeria) during three periods of the plant growth. J Essent Oil Bear Plants. 2014;17:1317–28. https://doi.org/10.1080/0972060X.2014.912164.

20. Burt S. Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol. 2004;94:223–53. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022.

21. Boussada O, Ammar S, Saaidana D, Chiria J, Chrafi I, Daamni M, Helal AN, Mighri Z. Chemical composition and antimicrobial activity of volatile components-based essential oil and aerial parts of Rhoponticum occule DC growing wild in Tunisia. Microbiol Res. 2008;163:87–95. https://doi.org/10.1016/j.micres.2009.07.014.
(Boiss.) Hayek. Growing wild in Northwest Iran. J Med Plant Res. 2012;6:2681–5. https://doi.org/10.5897/JMPR11.1768.

40. Girija S, Veeramuthu D, Pandi Suba K, Hariprasad G, Raghuraman R. Chromatographic characterization and GC-MS evaluation of the bioactive constituents with antimicrobial potential from the pigmented ink of Loligo duvauxii. Int Sch Res Notices. 2014;20745. https://doi.org/10.1155/2014/820745.

41. Begum IF, Mohankumar R, Jeevan M, Ramani K. GC-MS analysis of bio-active molecules derived from Paracoccus pantotrophus FMR19 and the antimicrobial activity against bacterial pathogens and MDROs. Indian J Microbiol. 2016;56:426–32. https://doi.org/10.1007/s12088-016-0609-1.

42. Mohammed GJ, Omran AM, Hussein HM. Antibacterial and phytochemical analysis of Piper nigrum using gas chromatography-mass Spectrum and Fourier-transform infrared spectroscopy. Int J Pharmacognosy Phytochem Res. 2016;8(6):977–96.

43. Gupta D, Kumar M. Evaluation of in vitro antimicrobial potential and GC–MS analysis of Camellia sinensis and Terminalia arjuna. Biotechnology Reports. 2017;13:19–25. https://doi.org/10.1016/j.btre.2016.11.002.

44. Zekeya N, Chacha M, Shahada F, Kidukuli A. Analysis of phytochemical composition of Berna abyssinica by gas chromatography-mass spectrometry. J Pharmacogn Phytochem. 2014;3:264–62 http://www.phytojournal.com/vol3Issue4/Issue_nov_2014/29.1.pdf.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.