Analytical and experimental research of nonlinear resonant gas oscillations in a cube

R R Nasyrov, L R Shaidullin and A A Kabirov
Institute of Mechanics and Engineering, FRC Kazan Scientific Center, Russian Academy of Sciences, 2/31, Lobachevsky str., Kazan 420111 Russia
E-mail: nasyrov.ravil@bk.ru

Abstract. The gas pressure in a cubic resonator is studied experimentally and numerically at the first resonant frequency. Lagrange’s approach is used to analytical study of problem. Comparison of the pressure oscillations obtained experimentally and numerically at different amplitudes of piston oscillation is carried out.

Introduction. In the operation of many modern technological equipment, oscillations in limited volumes of various shapes are observed [1-2]. The effect of the wave field on gas in such volumes leads to the formation of high-intensity flows, which can be useful for intensifying the mixing, sedimentation and heat exchange of the media [3-5]. An important practical application is a method for reducing the noise level in resonant-type hardware devices [6]. The flow velocity increasing with the help of such processes in channels and air ducts of rectangular cross section can increase the efficiency of aerosol capturing, which plays an important role in the filtration of harmful emissions [7, 8]. Revealing the features of oscillations in resonators is of great practical interest, since such knowledge will make it possible to reasonably approach the problems of designing industrial devices. The aim of this work is a theoretical and experimental research of nonlinear gas oscillations in a cube at a resonant frequency by piston amplitude variation.

1. Experimental study
Experimental studies were carried out on the installation in figure 1 [9]. The main element is vibration generator 1, brand ES-1-150 from Dongling Vibration. The vibration generator set in motion a flat piston 2 with a diameter of $2R = 0.1$ m. Oscillations were excited in a cube 3 with sides $L = 0.4$ m and $H = 0.4$ m. The gas pressure was measured by a piezoelectric sensor 4, model 8530C-15, from Bruel & Kjaer, located in the lower boundary of the cube. The signal from the sensor was recorded on a DSO 3062A digital oscilloscope (Agilent Technologies).

2. Analytical study
The Lagrange approach was used to analytical study the gas dynamics in a closed cubic resonator. This approach worked well in previous work [10], where it showed good agreement with experimental and numerical methods.
In this paper 1D-resonator \(0 < y < H + l \cos \omega t \) is considered with piston oscillating on the bottom boundary with amplitude \(l \) and angular frequency \(\omega \) \((H – resonators height)\). The previously obtained the nonlinear wave equation [11] for viscous polytropic gas has the form

\[
y_{yt} = \frac{c_0^2}{\rho_0} y_{yy} + \frac{\mu}{\rho_0} \left(\frac{\lambda + 2}{3} \right) \left(\frac{y_{\eta\eta}}{y_{\eta}} \right),
\]

where \(y \) is the Eulerian coordinate of gas particle at time \(t \), \(\eta \) is the Lagrangian coordinate, \(\rho_0 \) is initial gas density, \(c_0 \) is undisturbed sound speed, \(\lambda \) is Lame parameter, \(\mu \) is dynamic viscosity.

The boundary conditions are:
\[
y(0, t) = 0, \quad y(H, t) = H + l \cos \omega t,
\]
initial conditions are:
\[
y(\eta, 0) = \eta, \quad y(\eta, 0) = 0.
\]

3. Results and discussion

Figure 2 depicts oscillograms obtained analytically and experimentally for gas oscillations in time at different excitation amplitudes at the first resonance frequency \(\nu_1 = 432 \) Hz. As can be seen from the presented data, gas oscillations are harmonic and continuous. An insignificant deformation of the pressure waveforms in the gas compression region is observed, which is evident at the maximum considered amplitudes. This deformation is characteristic of the considered resonant frequency.

\(l \), mm	0.015	0.025	0.035	0.045	0.05	0.055	0.065
Lagrange approach							
Experiment							

Figure 2. Oscillograms of gas oscillations in a cube at a resonant frequency \(\nu_1 = 432 \) Hz at various excitation amplitudes.
These plots are in good agreement: the curves have the same shape and deviation from the undisturbed state. It can be seen that the amplitude of the oscillations increases with an increase in the amplitude of the piston.

The results of the dependence of the amplitude of the gas pressure on the intensity of excitation at the resonant frequency of oscillations were obtained (Fig. 3). The experimental data were approximated by a power function of the form, where for theoretical results $a = 0.42$, $b = 0.63$, and for relative experimental results $a = 0.18$, $b = 0.3$. As one can see, the gas oscillations at the measurement point at the bottom boundary of the cube occurred in a shock-free wave mode. A slightly different character of the curves is observed, which may be due to a number of reasons, such as: error of equipment and measurements, nonlinearity of the process, inaccuracy of the theoretical approach, etc.

![Figure 3. Gas pressure versus excitation amplitude at resonance frequency $\nu_1 = 432$ Hz. Solid lines – power-law approximation.](image)

As noted earlier, the amplitude of pressure oscillations increases with increasing piston amplitude. The graphs are in satisfactory agreement: they are approximately linear and they have general growth trend.

4. Conclusion.

Nonlinear resonant oscillations of gas in a cube are investigated. For analytical studies, the proven Lagrange approach was used. A number of experiments have been carried out during which graphs of pressure oscillations near the piston have been obtained. A good agreement is obtained for the analytical and experimental curves of gas pressure oscillations, which have a periodic smooth character with a weakly expressed nonlinearity. The agreement of the experimental resonance frequency and that obtained analytically was found. Satisfactory agreement of the curves nature is observed for the dependence of the gas pressure amplitude on the excitation intensity. It was found that with an increase in the piston amplitude, the pressure deviations from the undisturbed state increase: both for the experimental and analytical cases.

References
[1] R F Ganiev and L E Ukrinsky 2008 Non-Linear Wave Mechanics & Technologies (Moscow: R&C Dynamycs) p 711
[2] L K Zarembo and V A Krasilnikov 1966 Introduction to nonlinear acoustics (Moscow: Nauka) p 519
[3] A A Aganin, V B Kuznetsov, E V Martynov and E T Smirnova 1997 Experimental and numerical
study of acoustic streaming near volume resonators Journal of Applied Mechanics and Technical Physics 38 (6) pp 61-71

[4] U Ingard 1953 On the theory and design of acoustic resonators J. Acoust. Soc. America 25 (6) pp 1037-1061

[5] D A Gubaidullin, R G Zaripov, L A Tkachenko and L R Shaidullin 2017 Experimental study of coagulation and sedimentation of a gas suspension in a closed pipe during the transition to the shock-wave regime High Temperature 55 (3) pp 484–486

[6] E S Fedotov and V V Palchikovskiy 2014 Investigation of the operation of a Helmholtz resonator in a rectangular waveguide PNRPU Bulletin. Aerospace engineering 38 pp 107-126

[7] M R Sippola and W W Nazaroff 2004 Experiments measuring particle deposition from fully developed turbulent flow in ventilation ducts Aerosol Sci. Technol 38(9) pp 914–925

[8] A I Komkin and M A Mironov 2013 Piston radiation impedance on the wall of a rectangular channel Acoustic journal 59 (3) pp 296-300

[9] D A Gubaidullin, R G Zaripov, L A Tkachenko, L R Shaidullin and A A Kabirov 2020 Experimental Investigation of Forced Gas Oscillations in a Cubic Resonator Journal of Physics: Conference Series 1588 012060

[10] D A Gubaidullin, P P Osipov, R R Nasyrov and I M Almakaev 2018 Numerical simulation of the shock wave in the closed resonator using 1D Lagrange’s approach IOP Conf. Series: Journal of Physics: Conf. Series 1058 012064

[11] P P Osipov and R R Nasyrov 2020 Resonance Curve in Rectangular Closed Lobachevskii Journal of Mathematics 41 (7) pp 1283–1288