Continuous ‘stunted’ outbursts detected from the Cataclysmic Variable KIC 9202990 using Kepler data

Gavin Ramsay1, Pasi Hakala2, Matt A. Wood3, Steve B. Howell4 Alan Smale5, Martin Still4,6, Thomas Barclay4,6

1 Armagh Observatory, College Hill, Armagh, BT61 9DG, UK
2 Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 PIKKIO, Finland
3 Department of Physics and Astronomy, Texas A&M University-Commerce, Commerce, TX 75429-3011, USA
4 NASA Ames Research Center, Moffett Field, CA 94035, USA
5 NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA
6 Bay Area Environmental Research Institute, Inc., 560 Third St. West, Sonoma, CA 95476, USA

Accepted 2015 October 26. Received 2015 October 24; in original form 2015 August 1

ABSTRACT
Based on early Kepler data, Østensen et al. (2010) found that KIC 9202990 showed a 4 hr and a two-week photometric period. They suggested the 4 hr period was a signature of an orbital period; the longer period was possibly due to precession of an accretion disk and KIC 9202990 was a cataclysmic variable with an accretion disk which is always in a bright state (a nova-like system). Using the full Kepler dataset on KIC 9202990 which covers 1421 d (Quarter 2–17), and includes 1 min cadence data from the whole of Quarters 5 and 16, we find that the 4 hr period is stable and therefore a signature of the binary orbital period. In contrast, the 10–12 d period is not stable and shows an amplitude between 20–50 percent. This longer period modulation is similar to those nova-like systems which show ‘stunted’ outbursts. We discuss the problems that a precessing disk model has in explaining the observed characteristics and indicate why we favour a stunted outburst model. Although such stunted events are considered to be related to the standard disk instability mechanism, their origin is not well understood. KIC 9202990 shows the lowest amplitude and shortest period of continuous stunted outburst systems, making it an ideal target to better understand stunted outbursts and accretion instabilities in general.

Key words: Stars: individual: KIC 9202990: Stars: binaries – Physical data and processes: accretion and accretion discs – instabilites

1 INTRODUCTION

The Kepler satellite observed the same 115 square degree field of view, just north of the Galactic plane in Cygnus and Lyra, between April 2009 and May 2013. It allowed virtually uninterrupted photometry of more than 150,000 stars with 30 min cadence and 512 stars with 1 min cadence at any one time. Although the prime goal of the Kepler mission was to discover Earth-sized planets orbiting the host stars habitable zone (e.g. Borucki, et al. 2013), it has led to a revolution in the field of asteroseismology across the HR diagram (e.g. Chaplin et al. 2014).

Kepler has also provided a unique opportunity to study accreting sources such as cataclysmic variables (CVs) which show flux variations over timescales ranging from seconds to years or even decades. Early observations such as those of V344 Lyr (Still et al. 2010) showed the potential of Kepler to address key questions regarding the nature of the outbursts seen in CVs. CVs contain a white dwarf which is accreting material through Roche Lobe overflow from a late-type star. The observed characteristics of the system is largely set by the binary orbital period and the strength of the magnetic field of the white dwarf. Kepler has observed dozens of CVs, some of which were known prior to its launch (see Howell, et al. 2013), while others were discovered purely by chance (e.g. Barclay et al. 2012, Brown et al. 2015).

Very early in the mission, Østensen et al. (2010) presented initial results of Kepler observations of a sample of known or suspected compact pulsators. One of these sources, KIC 9202990, showed a strong modulation on a timescale of two weeks together with a second much shorter period (~4 hrs) superimposed. They presented an optical spectrum which showed Balmer lines in absorption but filled in with emission and appeared to be disc-dominated and similar to
nov-like CVs. Østensen et al. (2010) suggested the 4 hr period represented the binary orbital period which would be typical of nov-like CVs which lie predominately above the 2–3 h period gap (see Gansicke et al 2009 for an overview of the orbital period distribution of CVs) and has a high mass transfer rate and an accretion disc in a bright, steady state (see Dhillon 1996 for a review of nov-like CVs and also Aungwerojwit et al. 2005). They suggested that the 4 hr period was the orbital period and the longer period was due to a precessing disc. McNamara, Jackiewicz & McKeever (2012) noted it was a possible pulsating B star based on an analysis of the light curve.

With the Kepler mission now having ended as it was first envisaged, we have taken all the Kepler data on KIC 9202990 and set out to determine if the nov-like CV designation can be supported by the much more extensive dataset than was available to Østensen et al. (2010).

2 KIC 9202990

KIC 9202990 has a position $\alpha = 18^{h}56^{m}08.1^{s}$ $\delta = +45^{\circ}37^{\prime}40.1^{\prime\prime}$ J2000.0 (taken from the Kepler Input Catalog). It was not detected in the ROSAT All-Sky Survey, but does not appear to have been in the field of any pointed XMM-Newton or Chandra observations. It was observed in the Kepler INT Survey (KIS, Greiss et al. 2012a,b) which obtained $UgrH_{\alpha}$ photometry of the majority of sources in the Kepler field. The mean photometry and colours of KIC 9202990 are $g=15.39\pm0.04$, $U - g=-0.62$, $g - r=0.12$, $r - i=0.15$ and $r-H_{\alpha}=0.23$. The latter colour index is consistent with Hα in absorption. The UBV Survey of the Kepler field (Everett, Howell & Kinemuchi 2012) also indicate a very blue source: $B - V=0.09$, $U - B=-0.70$. These colours are consistent with other CVs. KIC 9202990 has also been detected using the Catalina Real-time Transient Survey (Drake et al. 2009). There are 69 photometric data points spread over 8 years showing a mean of $V\sim15.0\pm0.2$ and a range of $V\sim14.6-15.5$.

3 KEPLER PHOTOMETRIC OBSERVATIONS

The vast majority of targets in the Kepler field were observed in long cadence (LC) mode, where the effective exposure is 27.1 min. A very small number of targets (the targets could be changed every month) were observed in short cadence (SC) mode, where the effective exposure is 54.2 s. As the satellite was rotated every 3 months to ensure the solar array was effectively pointed to the Sun, there are short data gaps when data was downloaded from the satellite. KIC 9202990 was observed for 16 ‘Quarters’ (Q2–17), giving almost 4 years of near continuous data between June 2009 and May 2013, and it was observed for 7 months using SC mode (Q2/3, Q5/1–3 and Q16/1–3). After the raw data are corrected for bias, shutterless readout smear, and sky background (see Jenkins et al. 2010), time series are extracted using simple aperture photometry (SAP).

The SAP data were extracted from the data files downloaded from the MAST archive\(^1\) and filtered to remove data from time intervals when the data may have been compromised, for instance by enhanced Solar activity, (we filtered data points so that ‘SAP_QUALITY=0’). We then normalised each quarter of data so that the mean count rate was unity. To remove systematic trends in the data we used the task kepcotrend which is part of the PyKE software (Still & Barclay 2012)\(^2\). We then applied a small offset so that there are no discrete jumps in flux between the different quarters of data. The same steps were applied to the SC data.

3.1 Long Cadence Data

To highlight the photometric variability of KIC 9202990 on a timescale of days, we show 200 d of LC data of KIC 9202990 in Figure 1. As first reported by Østensen et al. (2010) there is a prominent modulation on a timescale of tens of days, we show a light curve covering 200 d (MJD 55872–56072, 2011 Nov 07 – 2012 May 25). Note the presence of two prominent dips at 45 d and 168 d from the start.

Figure 1. As an example of the flux variations of KIC 9202990 on a timescale of tens of days, we show a light curve covering 200 d (MJD 55872–56072, 2011 Nov 07 – 2012 May 25). Note the presence of two prominent dips at 45 d and 168 d from the start.

Figure 2. The Lomb Scargle power spectrum derived using the full LC light curve of KIC 9202990. The many peaks are indicative of the complex nature of the long period (the window function does not show significant side-lobes). In the smaller panel we show the power spectrum centered near the period of the orbital period (3.98 hrs).

\(^{1}\) http://archive.stsci.edu/kepler

\(^{2}\) http://keplergo.arc.nasa.gov/PyKE.shtml
Kepler observations of KIC 9202990

between 10 and 12 d and a full-amplitude which varies between 20 and 50 percent. We also note the presence of two clear ‘dips’ in the light curve. We show the Lomb Scargle power spectrum of the full LC light curve in Figure 2, which covers 1421 d, but has short gaps every 3 months. The power spectrum is complex but shows four prominent peaks corresponding to periods between 13–14 days. This implies the large modulation seen in Figure 1 is not strictly periodic but quasi-periodic (we call this the ‘long’ period).

We also determined the length of each cycle by simply determining the time of maximum flux of each long period cycle. The distribution of the duration of each cycle can be approximated with a Gaussian function with a mean duration of 12.5 d with a FWHM of ~4 d.

We also searched for periodic behaviour on timescales greater than the long period. Since long term trends maybe removed when we normalise the light curve on a quarter basis, we used the light curve which was de-trended but not normalised. There is clear peak in the power spectrum at ∼185 d which is due to a modulation with a full-amplitude of ∼10 percent in the light curve. (This period is not seen in the power spectrum of the normalised light curve). However, we note that this period is half the orbital period of the Kepler satellite. Bánya et al. (2013) and Hartig et al. (2014) present studies of Kepler observations of long period variables and find some evidence that year long periods maybe artifacts in the SAP derived light curve. We therefore add some caution regarding whether the 185 d modulation is intrinsic to KIC 9202990.

3.2 Short Cadence Data

As noted by Østensen et al. (2010), in addition to the long period, high amplitude modulation, there is also a short period, low amplitude modulation present in the light curve of KIC 9202990. Although the cadence of the LC data is much lower than the SC data, the signature of the shorter period is seen in the power spectrum of the LC dataset (Figure 2). However, the SC gives a much higher resolution of the short period modulation. This can be seen in Figure 3 where we show one complete cycle of the long period and the resulting light curve after this modulation has been removed using the PyKE task kepdetrend. We derived the Lomb Scargle power spectrum of each month of SC data: each power spectrum shows a dominant period at 3.98 hrs. We then folded each month of data (and also combined data from each quarter) on the ephemeris:

$$T_0 = BMJD55063.816924 + 0.1659404E$$ (1)

As can be seen from the folded light curves (Figure 4) the shape and phase of the light curves are virtually identical. We fit the LC light curve using a sinusoidal wave with a period of 0.1659404 d and obtained a set of residuals using a 10 cycle fit. Although the LC light curve show a two week quasi-period which is almost certainly the result of the changing shape of the orbital period profile (see §4), there is no systematic change in the O-C residuals over the course of the LC light curve. This strongly suggests that the 0.1659404 d period is extremely stable and must be the signature of the binary orbital period (as suggested by Østensen et al. 2010).

Figure 3. The SC light curve of KIC 9202990, derived from Q5 data, shows one long cycle (top panel). The lower panel shows the light curve after the effects of this long cycle have been removed.

Figure 4. The SC data of KIC 9202990 taken from three separate quarters in time have been folded on the ephemeris shown in eqn 1. The repeatability of the resulting profiles indicates that the 4 h period is a signature of the orbital period.
4 ORBITAL AND LONG PERIOD VARIATIONS

The forest of peaks in the periodogram of KIC 9202990 (Figure 2) suggests that the long period is not stable. In order to investigate this further, we have performed more detailed investigations. The simplest test is to obtain a Lomb Scargle periodogram of relatively short sections of data in a sliding manner. We show the resulting ‘spectrogram’ in Figure 5; it confirms that the long period is not stable and shows other periods that appear to be transient in nature.

We then carried out a more sophisticated analysis using both the Q5 and Q16 SC datasets which are both approximately 90 d in length. We perform the same analysis on each light curve separately, which aims to measure the similarity of the orbital light curve shape as a function of their separation in time. Our analysis proceeds as follows: i) Pick two non-overlapping pieces of light curves, each 2 d (giving 12 orbital cycles) long, separated by a random amount of time (from 2 d up to the length of the dataset); ii) Fold these two subsections of light curves over the 4 h orbital period and bin each of these into 50 orbital phase bins; iii) Compute the sum of squared differences of the binned light curves and iv) repeat this 100,000 times. As a result, we have a measure of the difference between orbital light curve shapes as a function of their separation in time. Finally, we have binned the results in 0.1 d time bins: in both datasets we see a minimum near 10–12 d separation and its multiples (Figure 6). This strongly suggests that the orbital light curve shape is indeed modulated on a 10–12 d period, which corresponds to the 20–50% modulation seen in the light curves (Fig 1).

Last we took the data from Q5 (which has the most complete quarter of data) and split the data up into long cycles. This was done by manually selecting the start and end point of each cycle and splitting this cycle into ten equally phased bins. We then phased the data in the same way as before and show the resulting folded light curves in Figure 7. In the first cycle the light curve folded on the orbital period gradually becomes more structured having a clear peak in brightness and a peak-to-peak amplitude of ~4 percent, before the variation becomes less defined with a lower amplitude of variation. Over the next cycles the process repeats in a similar, but not identical, manner, with the shape of the folded light curve changing over successive orbits. It is clear that the data folded on the orbital period can change significantly in appearance over the long term cycle.

5 DISCUSSION

KIC 9202990 displays optical photometric variability on two distinct timescales: the 4 h orbital period and a quasi-period of 10–12 d which we have termed the long period. As indicated earlier, the 4 h orbital period is typical of nova-like CVs with bright steady state accretion disks, which lie predominantly above the 2–3 h period gap. What makes KIC 9202990 unusual is the amplitude of the long period modulation and its phase dependence which does not resemble classical outbursts seen in CVs.

Østensen et al. (2010) suggested that the long period was due to a precessing disk. However, the disc would need to have a large tilt, or alternatively an extended outer rim of varying height, to account for the large amplitude variation. This would then give rise to negative super-humps since the accretion disk bright spot should sweep first across one face of the disk, and then the other and hence varies in depth in the potential well of the white dwarf (a negative super-hump has a period a few percent shorter than the orbital period, see Thomas & Wood 2015). Positive super-humps show a period longer than the orbital period by a few percent, but are only seen in systems with a mass ratio $q = M_1/M_2 \lesssim 0.35$ (see Wood et al. 2011). For a CV with an orbital of 4 h, q is not likely to be $\lesssim 0.35$ (e.g. Knigge, Baraffe & Patterson 2011) and therefore is not expected to show positive super-humps.

In principal the 4 hr period we observe could be a signature of the negative super-hump but this period is very steady and the O-C residuals are very small with no trends. The precession period is a function of the moment of inertia of the disk, and if the mass distribution changes, then the precession period will change, and as a result the negative super-hump period will change, causing variations in the O-C. These variations are seen in two other CVs observed using Kepler, V344 Lyr and V1504 Cyg, where the residuals can show cyclic changes over the course of the outburst cycle (Osaki & Kato 2013). We also note that the amplitude of the super-hump variation in V344 Lyr is much greater than the amplitude of the orbital variation (c.f. Still et al. 2010). We therefore consider it highly unlikely that the long period modulation is due to a precessing disk.

The profile of the long period modulation (cf Figure 3) shows a relatively slow rise to maximum brightness, whereas dwarf nova outbursts show a much more rapid increases to maximum (and a greater amplitude (>1 mag). There are, however, a small group of nova-like CVs which show ‘stunted’ outbursts with amplitudes up to 1 mag (e.g. Warner 1995, Honeycutt, Robertson & Turner, 1995, 1998). Warner (1995) notes that for a steady state accretion disc to produce a modulation amplitude of 0.7–1.0 mag would require the mass transfer rate to change by a factor of ten over the cycle, implying a changing mass transfer rate was not the cause of the modulation. Honeycutt (2001) observed nova-like and dwarf nova using a small robotic telescope and conclude that the cause of the periodic modulation seen in some nova-like CVs is essentially the same as dwarf nova outbursts.

We show in Figure 8 the relationship between the amplitude of stunted outbursts and their period of modulation using the work of Honeycutt (2001) and add the new value for KIC 9202990. Although there is a clear spread between amplitude and period of the stunted outburst systems, there is a weak trend with short periods giving smaller amplitude variations. KIC 9202990 is at the short period end of the distribution and has the lowest amplitude. There is no correlation between the orbital period and the recurrence time of the outbursts nor the amplitude of the outburst. KIC 9202990 bears some similarity to a CV also in the Kepler field, KIC 9406652 (Gies et al. 2013), which has an orbital period of 6.1 h but also shows outbursts with amplitude ~0.6 mag on a recurrence timescale of 27–84 d.

Another feature of some of these stunted dwarf novae is the presence of ‘dips’ seen in the light curve. Honeycutt, Robertson & Turner (1998) show that multiple dips can be seen in systems which have a depth of 0.2 to >0.5 mag with
a FWHM ranging from 2 to 50 days. Our LC observations of KIC 9202990 indicate two obvious dips (see Figure 2) of depths 0.4 and 0.6 mag with FWHM of 2–3 days. These dips share some resemblance to the dips seen in the nova-like sub-class of CVs the VY Scl stars, although the duration of these dips are typically tens of days and are deeper than seen in KIC 9202990. They are thought to be due to temporary reduction in mass transfer rate which maybe related to activity on the secondary star (see for instance Howell et al. 2000 and Kafka & Honeycutt 2005).

6 CONCLUSIONS

We have explored the photometric properties of KIC 9202990 which was identified as a nova-like CV exhibiting a clear modulation on a 4 h and a 10–12 d quasi-period using Kepler data by Østensen et al. (2010). We find that the 4 h period is stable and must be the orbital period. The longer period is not stable and given the absence of negative super-humps in the light curve, we consider it highly unlikely it is due to the precession of an accretion disk. However, we find that the characteristics of this long period is very similar to the ‘stunted’ outbursts seen in a small number of nova-like systems. KIC 9202990 would be placed on the short period and low amplitude end of the distribution in these sources. Medium resolution optical spectroscopy which could adequately resolve the orbital period over the course of the long period would allow doppler tomograms to be made as a function of the long period which would indicate how the brightness of the disc changes. Another avenue to explore will be to model the brightness changes over the long term using smoothed particle hydrodynamical simulation codes such as described for instance in Larwood et al. (1996), Simpson (1995), Thomas & Wood (2015).

7 ACKNOWLEDGMENTS

The data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other
Figure 7. We have taken the SC data from Q5, removed the trend caused by the long period variation, but split up the data so that each sub-section contains one long period cycle (arranged from left to right). We have then further split these sub-sections into ten bins (and arranged from top to bottom) and folded these data on the orbital period. (One panel has only two points). It is clear that the profile of the folded orbital light curve changes significantly over the long cycle.

grants and contracts. This paper includes data collected by the Kepler mission and is (in part) supported by the National Science Foundation under Grant No. AST-1305799 to Texas A&M University-Commerce and by NASA under grant 11-KEPLER11-0038. Funding for the Kepler mission is provided by the NASA Science Mission directorate. This work made use of PyKE (Still & Barclay 2012), a software package for the reduction and analysis of Kepler data. This open source software project is developed and distributed by the NASA Kepler Guest Observer Office. Armagh Observatory is supported by the Northern Ireland Government through the Dept of Culture, Arts and Leisure. We thank the anonymous referee for a helpful report.

REFERENCES

Aungwerojwit, A., et al., 2005, A&A, 443, 995
Bányai, E., et al., 2013, MNRAS, 436, 1576
Barclay, T., Still, M., Jenkins, J. M., Howell, S. B., Roettenbacher, R. M., 2012, MNRAS, 422, 1219
Borucki, W. J., et al., 2013, Sci, 340, 587
Brown, A., et al., AJ, 149, 67
Chaplin, W. J., 2014, ApJS, 210, 1
Dhillon, V., 1996, In CVs and Related Objects, Proc IAU Coll 158, ed Evans, A., Wood, J. H., p.3
Drake, A.J. et al., 2009, ApJ, 696, 870
Everett, M. E., Howell, S. B., Kinemuchi, K., 2012, PASP, 124, 316
Gänsicke, B. T., et al., 2009, MNRAS, 397, 2170
Gies, D. R., et al., 2013, ApJ, 775, 64
Greiss S., et al., 2012a, AJ, 144, 24
Greiss S., et al., 2012b, arXiv:1212.3613
Hartig, E., Cash, J., Hinkle, K. H., Lethzelter, T., Mighell, K. J., Walter, D. K., 2014, AJ, 148, 123
Honeycutt, R. K., Robertson, J. W., Turner, G. W., 1995, ApJ, 446, 838
Honeycutt, R. K., Robertson, J. W., Turner, G. W., 1998, AJ, 115, 2527
Honeycutt, R. K., 2001, PASP, 113, 473
Howell, S. B., Ciardi, D. R., Dhillon, V. S., Skidmore, W., 2000, ApJ, 530, 904
Howell, S. B., et al., 2013, AJ, 145, 109
Larwood, J. D., Nelson, R. P., Papaloizou, J. C. B., Terquem, S., 1996, MNRAS, 282, 597
Jenkins, J. M., et al., 2010, ApJ, 713, L87
Kafka, S., Honeycutt, R. K., 2005, AJ, 130, 742
Knigge, C., Baraffe, I., Patterson, J., 2011, ApJS, 194, 28
McNamara, B.J., Jackiewicz, J., McKeever, J., 2012, AJ, 143, 101
Osaki, Y., Kato, T., 2013, PASJ, 65, 55
Østensen R. H., et al., 2010, MNRAS, 409, 1470
Simpson, J. C., 1995, ApJ, 448, 822
Still, M., Howell, S. B., Wood, M. A., Cannizzo, J. K., Smale, A. P., 2010, ApJ, 717, L113
Still, M., Barclay, T., 2012, Astrophysics Source Code Library, record ascl:1208.004,
Figure 8. We compare the amplitude and period of the long period found in KIC 9202990 with the amplitude and timescale of the repeating stunted outbursts of nova-like sources (taken from Honeycutt 2001). For comparison KIC 9406652 (Gies et al. 2013) shows ∼0.6 mag outbursts on a timescale between 27–84 d. KIC 9202990 has the shortest timescale for stunted outbursts and the smallest amplitude.

http://adsabs.harvard.edu/abs/2012ascl.soft08004S

Thomas, D. M., Wood, M. A., 2015, ApJ, 803, 55
Warner, B., 1995, Ap&SS, 230, 83
Wood, M. A., Still, M. D., Howell, S. B., Cannizzo, J. K., Smale, A. P., 2011, ApJ, 741, 105