Abstract

Software Reliability is considered to be an essential part of software systems; it involves measuring the system’s probability of having failures; therefore, it is strongly related to Software Quality. Software Reliability Growth Models are used to indicate the expected number of failures encountered after the software has been completed, it is also an indicator of the software readiness to be delivered. This paper presents a study of selecting the best Software Reliability Growth Model according to the dataset at hand. Several Comparison Criteria are used to yield a ranking methodology to be used in pointing out best models. The Social Spider Algorithm (SSA), one of the newly introduced Swarm Intelligent Algorithms, is used for estimating the parameters of the SRGMs for two datasets. Results indicate that the use of SSA was efficient in assisting the process of criteria weighting to find the optimal model and the best overall ranking of employed models.
1. Bidhan, K. and Awasthi, A. 2014. A Review on Parameter Estimation Techniques of Software Reliability Growth Models, International Journal of Computer Applications Technology and Research, Vol.(3), No.(4) pp:267– 272.

2. Kaur, R. and Panwar, P. 2015. Study of Perfect and Imperfect Debugging NHPP SRGMs used for Prediction of Faults in a Software, IJCSC, available online at www.csjournalss.com.Vol. (6), No.(1), pp:73-78.

3. Berkun, S. 2005. The Art of Project Management (Theory in Practice), 1st Ed, O'Reilly Media, PP:488.

4. Al-Rahamneh, Z., Reyalat, M., Sheta, A. F., Bani-Ahmad, S. and Al-Oqeili, S. 2011. A New Software Reliability Growth Model: Genetic-Programming-Based Approach, Journal of Software Engineering and Applications, Vol.(4), No.(8), pp:476-481.

5. Wohlin, C., Höst, M., Runeson, P. and Wesslén, A. 2001. Software Reliability, in Academic Press. Meyers, R. Encyclopedia of Physical Sciences and Technology (3rdEdition), pp:25-39.

6. Alweshah, M., Ahmed, W. and Aldabbas, H. 2015. Evolution of Software Reliability Growth Models: A Comparison of Auto-Regression and Genetic Programming Models, International Journal of Computer Applications. Vol.(125), No.(3), pp:20-25.

7. Anjum, M., Haque, M. A. and Ahmad, N. 2013. Analysis and Ranking of Software Reliability Models Based on Weighted Criteria Value, I.J. Information Technology and Computer Science, Vol.(5), No.(2), pp:1-14.

8. Aggarwal, G. and Gupta, V. K. 2014. Software Reliability Growth Model. International Journal of Advanced Research in Computer Science and Software Engineering, Vol.(4), No.(1), pp:475-479.

9. Weiss, R. M. 2010. GPU-Accelerated Data Mining with Swarm Intelligence, Honors Thesis, Department of Computer Science, Macalester College, pp:1-88.

10. Liu, H., Abraham, A. and Clerc, M. 2007. Chaotic dynamic characteristics in swarm intelligence. Science Direct, Applied Soft Computing, Vol.(7), No.(3), pp:1019–1026.

11. Stringfellow, C. and Andrews, A. A. 2002. An Empirical Method for Selecting Software Reliability Growth Models, Empirical Software Engineering, Vol.(7), No.(4), pp:319-343.

12. Kharchenko, V., Tarasyuk, O., Sklyar, V. and Dubnitsky, V. 2002. The Method of Software Reliability Growth Models Choice Using Assumptions Matrix, Proceedings of the 26th Annual International Computer Software and Applications Conference (COMPSAC’02).

13. Sheta, A. 2006. Reliability Growth Modeling for Software Fault Detection Using Particle Swarm Optimization, IEEE Congress on Evolutionary Computation Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada, pp:3071- 3078.

14. Garg, R., Sharma, K., Kumar, R. and Garg, R. K. 2010. Performance Analysis of Software Reliability Models using Matrix Method. International Journal of Electrical and Computer Engineering, Vol.(5), No.(2), pp:113-120.

15. Sharma, K., Garg, R., Nagpal, C. K. and Garg, R. K. 2010. Selection of Optimal Software Reliability Growth Models Using a Distance Based Approach. IEEE Transactions On Reliability, Vol.(59). No.(2), pp:266-276.

16. Sharma, T. K., Pant, M. and Abraham, A. 2011. Dichotomous Search in ABC and its Application in Parameter Estimation of Software Reliability Growth Models. Nature and Biologically Inspired Computing(NaBIC), Third World Congress, IEEE, pp:207-212.
18. Shanmugam, L. and Florence, L. 2012. A Comparison of Parameter best Estimation Method for Software Reliability Models”. International Journal of Software Engineering & Applications, Vol.(3), No.(5), pp:91-102.
19. Miglani, N. 2014. On the Choice of an Appropriate Software Reliability Growth Model. International Journal of Computer Applications, Vol.(87), No.(9), pp:18-24.
20. Sheta, A. and Abdel-Raouf, A. 2016. Estimating the Parameters of Software Reliability Growth Models Using the Grey Wolf Optimization Algorithm. International Journal of Advanced Computer Science and Applications, Vol.(7), No.(4), pp:499-505.
21. Saxena, S., Choudhary, D. and Gupta, A. 2014. Software Reliability Growth Model with Efficient Debugging Involving Time Dependent Fault Content Function”. I. J. of Computer Applications, Vol.(87), No.(10), pp:56-58.
22. Jelinski, Z. and Moranda, P. 1972. Software reliability research”. in Statistical Computer Performance Evaluation, W. Freiberger, ED., Academic Press, New York, pp:465-484.
23. Yua, J. J. Q. and Lia, V. O. K. 2015. A Social Spider Algorithm for Global Optimization. Elsevier Applied Soft Computing, Vol.(30), pp:614-627.
24. Yua, J. J. Q. and Lia, V. O. K. 2016. A Social Spider Algorithm for Solving the Non-convex Economic Load Dispatch Problem. Elsevier Neurocomputing, Vol. (171), No.(C), pp:955-965.
25. Yua, J. J. Q. and Lia, V. O. K. 2015. Parameter Sensitivity Analysis of Social Spider Algorithm. IEEE Congress on Evolutionary Computation, CEC 2015–Proceedings, pp:3200–3205.
26. Pham, H. 2007. An Imperfect-debugging Fault-detection Dependent-parameter Software. International Journal of Automation and Computing, Vol.(4), No.(4), pp:325-328.
27. Huang, C.-Y, Kuo, S.-Y. and Michael, R. L. 2007. “An Assessment of Testing-Effort Dependent Software Reliability Growth Models”. IEEE Transactions On Reliability, Vol.(56), No.(2), pp:198-211.

Index Terms

Computer Science
Software Engineering

Keywords

Software Reliability, SRGMs, Models Ranking, Weighted Criteria, Social Spider Algorithm.