Downregulation of RKIP promotes radioresistance of nasopharyngeal carcinoma by activating NRF2/NQO1 axis via downregulating miR-450b-5p

Wei Huang1,2, Guangqing Shi1, Zhong Yong1, Jian Li1, Juan Qiu1, Yan Cao1, Yongfeng Zhao3 and Li Yuan1

Abstract
Dysregulation of RKIP and NRF2 has been widely involved in the therapy resistance of multiple malignances, however, their relation and the corresponding mechanisms, especially in radiation response, have not been elucidated. In this study, we revealed that RKIP could negatively regulate the expression of NRF2 in nasopharyngeal carcinoma (NPC) cells. Depletion or ectopic expression of NRF2 countered the pro- or anti-radioresistant effects of RKIP knockdown or overexpression on NPC cells, respectively, both in vitro and in vivo. Furthermore, our results indicated that NQO1 was positively regulated by NRF2 and served as the downstream effector of RKIP/NRF2 axis in regulation of NPC radioresistance. Mechanistically, miR-450b-5p, being positively regulated by RKIP in NPC cells, could sensitize NPC cells to irradiation by directly targeting and suppressing the level of NRF2. Besides, we analyzed the level of aforementioned molecules in NPC tissues. The results indicated that RKIP was significantly downregulated, NRF2 and NQO1 were notably upregulated in NPC tissues compared with the normal nasopharyngeal mucosa (NNM) tissues. Furthermore, RKIP and miR-450b-5p were remarkably lower yet NRF2 and NQO1 were notably higher, in radioresistant NPC tissues relative to in radiosensitive NPC tissues. Consistent with the pattern in NPC cells, the RKIP/miR-450b-5p/NRF2/NQO1 axis was significantly correlated in NPC tissues. Downregulation of RKIP and miR-450b-5p, and upregulation of NRF2 and NQO1, positively correlated to malignant pathological parameters such as primary T stage, Lymph node (N) metastasis, and TNM stage. Finally, RKIP and miR-450b-5p served as favorable prognostic indicators, and NRF2 and NQO1 acted as unfavorable prognostic biomarkers in patients with NPC. Collectively, our outcomes reveal that RKIP downregulation promotes radioresistance of NPC by downregulating miR-450b-5p and subsequently upregulating and activating NRF2 and NQO1, highlighting RKIP/miR-450b-5p/NRF2/NQO1 axis as a potential therapeutic target for improving the radiosensitivity of NPC.

Introduction
Nasopharyngeal carcinoma (NPC) is one of the most prevalent head and neck cancers in the middle and southeast coastal regions of China. Epstein–Barr (EB) virus infection, host genetics, and environment stresses account for the main etiologies of NPC. Surgical resection is not recommended for NPC treatment for its unreachable anatomical location. Nevertheless, NPC is highly sensitive to ionizing radiation, and radiation therapy is the preferred treatment modality for non-metastatic NPC patients1,2. Although most NPC patients have benefited a lot from radiotherapy, a considerable proportion of NPC patients develop radioresistance either at beginning or after a couple of terms of radiation1,3. Therefore, radioresistance stands for the main cause for the failure of NPC treatment and exploring the molecular mechanisms of radioresistance may present candidate targets for radiation sensitization and eventually improve therapeutic efficacy of NPC.
Overwhelming reactive oxidative stress (ROS), induced by irradiation, is one of big challenges for survival of cancer cells\(^4\). Therefore, upregulation of genes/proteins with ROS removal capability seem to be the obliged choice for cancer cells to maintain survival. NRF2 (Nuclear factor erythroid 2-related factor 2), one of basic leucine zipper transcription factors, which serves as an essential activator of genes encoding antioxidant enzymes and phases II detoxifying enzymes such as HO-1 (Heme oxygenase-1), NQO1 (NAD(P)H dehydrogenase, quinone 1), PRDX1 (Peroxiredoxin 1), and GCLC (glutamate-cysteine ligase catalytic subunit)\(^5\), is upregulated or activated in various radioresistant cancer cells, including lung cancer\(^6\), colorectal cancer\(^7\), breast cancer\(^8\), alveolar rhabdomyosarcoma\(^9\), hepatoma\(^9\), and colorectal cancer\(^10\). The activity of NRF2 is regulated by both KEAP1 (Kelch-like ECH-associated protein 1) dependent and independent mechanisms. Under basal conditions, KEAP1 binds and sequesters NRF2 in cytoplasm for proteasome degradation, whereas NRF2 can evade the repression of KEAP1 and translocate into nucleus to initiate the transcription of target genes\(^11\). Apart from KEAP1, NRF2 can be regulated by other factors\(^12,13\), such as WDR23-DDB1-CUL4 regulatory axis\(^14\) and microRNAs-related mechanisms\(^15,16\). Recent study has shown that NRF2 is the main target of radiosensitive agent doxorubicin in NPC cells\(^17\), however, the expression pattern of NRF2, and its activation mechanism in NPC remain unknown.

Raf kinase inhibitor protein (RKIP) is a well-known suppressor in carcinogenesis and malignant progression\(^18\). Downregulation of RKIP has been observed in various cancers such as prostate cancer\(^19\), breast cancer\(^20\), lung cancer\(^21\), colorectal cancer\(^22\), esophageal squamous cell carcinoma\(^23\), and colorectal cancer\(^24\). Reduction of RKIP is almost involved in progression of each malignant characteristics, especially for metastasis and therapy resistance, by activating oncogenic regulators or signaling axes like NF-\(\kappa\)B\(^25\), YY1\(^26\), STAT3\(^27\), MAPK\(^28\), and AKT\(^29\). Moreover, the recent study has indicated that hyperactivation of NRF2 accounts for the chemotherapeutic resistance caused by RKIP downregulation in colorectal cancer cells\(^30,31\). Accordingly, our previous studies also demonstrated that RKIP is downregulated in NPC and RKIP reduction promotes invasion, metastasis, and radioresistance of NPC\(^29,31,32\). These results present the possibility that NRF2 may be involved in RKIP-regulating radioresistance of NPC.

Therefore, to reveal the relation between RKIP and NRF2 in NPC radioresistance, in this study, we explored the effects of RKIP alteration on NRF2, detected the role of NRF2 in RKIP-regulating radioresistance, and investigated the regulatory mechanisms of NRF2 by RKIP in NPC. Our results indicated that NRF2 is downregulated and negatively regulated by RKIP in NPC. NQO1 is the main effector of NRF2 and NRF2/ NQO1 axis mediates the functions of RKIP-regulating radioresistance in NPC. Mechanistically, RKIP could upregulate miR-450b-5p, which is downregulated and can directly target NRF2 in NPC, subsequently suppress the activity of NRF2/NQO1 axis, and eventually improve the radiosensitivity of NPC cells. Taken together, our study presents that RKIP/miR-450b-5p/NRF2/ NQO1 axis play vital roles in radioresistance of NPC and serves as a promising target for improving treatment of radioresistant NPC.

Materials and methods

Cell lines

Radioresistant human NPC cell line CNE2-IR and radiosensitive cell line CNE2 cells were previously established by us\(^29,30\). CNE2 cells were cultured with RPMI-1640 medium containing 10% fetal bovine serum (FBS) (BI, Jerusalem, Israel). Radioresistant CNE2-IR cells were derived from parental CNE2 cells by treating the cells with four rounds of sublethal ionizing radiation\(^33\). Radiosensitive CNE2, used as a control, were treated with the same procedure except sham irradiated. Moreover, stable cell lines, including CNE2 shNC, CNE2 shRKIP, CNE2-IR vector, and CNE2-IR RKIP cells, were successfully established by us in previous studies\(^29,32\), which were also maintained by RPMI-1640 medium plus 10% FBS.

Patients and tissues samples

Ninety-seven NPC patients without distant metastasis (M0 stage) at the time of diagnosis who were treated by radical radiotherapy alone in the Third Xiangya Hospital of Central South University between February 2013 and December 2018 were enrolled in this study. The radiotherapy was administered for a total dose of 60–70 Gy (2 Gy/fraction, 5 days a week). The neck received 60 Gy for patients without lymph node metastasis and 70 Gy for patients with lymph node metastasis. NPC tissue biopsies were obtained at the time of diagnosis before any therapy, fixed in 4% formalin and embedded in paraffin. Thirty cases of formalin-fixed and paraffin-embedded normal nasopharyngeal mucosa (NNM) tissue specimens were also obtained in the same period. All tumors were histopathologically diagnosed as poorly differentiated squamous cell carcinomas (WHO type III) according to the 1978 WHO classification\(^34\). The clinical stage of the patients was classified according to the 2008 NPC staging system of China\(^35\).

The radiotherapy response was evaluated clinically for primary lesions based on nasopharyngeal fiberscope and magnetic resonance imaging 1 month after the initiation of radiotherapy according to the following criteria. Radioresistant NPC patients were defined as ones with persistent disease (incomplete regression of primary
tumor and/or neck lymphonodes) at >3 months or with local recurrent disease at the nasopharynx and/or neck lymphonodes at ≤12 months after completion of radiotherapy. Radiosensitive NPC patients were defined as ones without the local residual lesions (complete regression) at >3 months and without local recurrent disease at >12 months after completion of radiotherapy. On the basis of the above criteria, 97 NPC patients comprised 46 radioresistant (incomplete regression (n = 22) and local recurrence (n = 24)), and 51 radiosensitive ones.

The patients were followed up strictly in outpatient clinics: every 3 month for the first year and then every 6 months for the next 2 years, and finally annually. The patients were followed up for a maximum period of 89 months (median time: 68.08 months). Overall survival (OS) was defined as the interval from the initiation of primary radiotherapy to the date of cancer-related death or when censured at the latest date if patients were still alive.

RNA isolation and qPCR detection

The RNA extraction and qPCR assay were performed as described previously by us. Simply, total RNA was extracted from parafin-embedded tissues and NPC cells using RecoverAll Total Nucleic Acid Isolation Kit (Thermo Fisher, CA, USA) and Trizol reagent (Thermo Fisher, CA, USA), respectively, according to the instructions. Bulge-Loop miRNA qRT-PCR Starter Kit (RiboBio, Guangzhou, China) was applied to reversely transcribe mRNAs into cDNA and detect the relative expression of miR-450b-5p using commercial primers from RiBoBio Inc (Guangzhou, China). FastKing gDNA Dispelling RT SuperMix Kit (TIANGEN, Beijing, China) was used to transcribe mRNAs into cDNA by qPCR detection of NRF2 mRNA and heterogeneous nuclear RNA (hnrRNA) via RealUniversal Color PreMix (SYBR Green) (TIANGEN, Beijing, China), according to the manufacturer’s instructions. The relative quantification of products was analyzed using 2ΔΔCt method with 5 s and GAPDH as internal controls. The primer sequences were summarized in the Supplementary Table S1. All assays were performed under triplicate.

Stable cell lines establishment

Lentivirus particles for expression of NRF2, and short hair RNA (shRNA) of NRF2, which simultaneoulsy express the anti-hygromycin gene, were purchased from Genechem Inc. (Shanghai, China). CNE2 shRKIP and CNE2-IR RKIP cells were infected with shNRF2 and NRF2 lentivirus particles, respectively, and cultured with medium containing hygromycin for 1 week. The survival cells were recognized as CNE2 shRKIP+shNRF2 and CNE2-IR RKIP+NRF2 cell lines whose NRF2 expression level was validated by western blot.

Plasmids, miRNAs, and transient transfection

The expression plasmids, pENTER-NRF2, pENTER-NQO1, and the pENTER-vector, were obtained from Vigenebio Inc. (MD, USA). The siRNAs (small interfering RNAs), siNQO1, siNRF2, and siNC (negative control), and miRNAs, miR-450b-5p mimic, miR-430c-5p inhibitor, and their respective negative controls, were all purchased from Ribobio Inc. (Guangzhou, China). The plasmids, miRNAs and siRNAs, were transcribed alone or co-transfected into cells as mentioned in the result part using Lipofectamine 2000 (Thermo Fisher, CA, USA) according to the manufacturer’s instructions. The sequences of siRNAs and miRNAs were listed in the Supplementary Table S2.

Cell viability assay

The CCK-8 assay was adopted to analyze cell viability under 6 Gy irradiation according to our previous description. The experiments were independently performed for three times in triplicate.

Plate clone survival assay

Plate clone survival assay was applied to analyzed cell survival under 6 Gy irradiation as previously described by us. The experiments were independently repeated in triplicate.

EdU incorporation assay

5-Ethynyl-2‘-deoxyuridine (EdU) incorporation assay was carried out to analyze cell proliferation under 6 Gy irradiation as our previous description. The assay was performed three times in triplicate.

Western blot

The total proteins extraction and western blot were performed as our previous description. In brief, the cells were disrupted by radioimmunoprecipitation assay lysis buffer and the total proteins were collected by centrifugation. The denatured proteins (30 μg per lane) were separated by sodium dodecyl sulfate poly-acrylamide gel electrophoresis and subsequently transmitted into 0.22 μm polyvinylidene difluoride membrane. After blocked with 5% nonfat milk at room temperature for 1 h, the membrane was incubated with rabbit anti-RKIP antibody (D221145, dilution 1:500, BBI, Shanghai, China), rabbit anti-NRF2 antibody (16396-1-AP, dilution 1:50, Proteintech, IL, USA), rabbit anti-NQO1 antibody (D261049, dilution 1:500, BBI, Shanghai, China), rabbit anti-HO-1, rabbit anti-GCLC (D123963, dilution 1:500, Proteintech, IL, USA), rabbit anti-NQO1 antibody (D221145, dilution 1:500, BBI, Shanghai, China), and mouse anti-GAPDH antibody (AC002, dilution 1:1000, Abclonal, Wuhan, China), respectively, overnight at 4 °C. Next, after incubated with anti-rabbit or anti-mouse IgG HRP-conjugated secondary antibodies (D110058 or D110098, dilution 1:3000, BBI, Shanghai, China), rabbit anti-rabbit or anti-mouse IgG HRP-conjugated secondary antibodies (D221145, dilution 1:500, BBI, Shanghai, China), and mouse anti-GAPDH antibody (AC002, dilution 1:1000, Abclonal, Wuhan, China), respectively, overnight at 4 °C. Next, after incubated with anti-rabbit or anti-mouse IgG HRP-conjugated secondary antibodies (D110058 or D110098, dilution 1:3000, BBI, Shanghai, China), rabbit anti-rabbit or anti-mouse IgG HRP-conjugated secondary antibodies (D221145, dilution 1:500, BBI, Shanghai, China), and mouse anti-GAPDH antibody (AC002, dilution 1:1000, Abclonal, Wuhan, China), respectively, overnight at 4 °C. Next, after incubated with anti-rabbit or anti-mouse IgG HRP-conjugated secondary antibodies (D110058 or D110098, dilution 1:3000, BBI, Shanghai, China), rabbit anti-rabbit or anti-mouse IgG HRP-conjugated secondary antibodies (D221145, dilution 1:500, BBI, Shanghai, China), and mouse anti-GAPDH antibody (AC002, dilution 1:1000, Abclonal, Wuhan, China), respectively, overnight at 4 °C. Next, after incubated with anti-rabbit or anti-mouse IgG HRP-conjugated secondary antibodies (D110058 or D110098, dilution 1:3000, BBI, Shanghai, China), rabbit anti-rabbit or anti-mouse IgG HRP-conjugated secondary antibodies (D221145, dilution 1:500, BBI, Shanghai, China), and mouse anti-GAPDH antibody (AC002, dilution 1:1000, Abclonal, Wuhan, China), respectively, overnight at 4 °C. Next, after incubated with anti-rabbit or anti-mouse IgG HRP-conjugated secondary antibodies (D110058 or D110098, dilution 1:3000, BBI, Shanghai, China), rabbit anti-rabbit or anti-mouse IgG HRP-conjugated secondary antibodies (D221145, dilution 1:500, BBI, Shanghai, China), and mouse anti-GAPDH antibody (AC002, dilution 1:1000, Abclonal, Wuhan, China), respectively, overnight at 4 °C.

Official journal of the Cell Death Differentiation Association
Shanghai, China), the protein amounts were visualized by chemiluminescent HRP substrate (EpiZyme, Shanghai, China).

Dual luciferase reporter assay

Dual luciferase reporter assay was performed as previous description by us25,37. In brief, a dual luciferase reporter plasmid expressing NRF2 with wild 3′-UTR (untranslated region) or NRF2 with mutant 3′-UTR was co-transfected with miR-450b-5p mimic or mimic control into CNE2-IR cells using Lipofectamine 2000 (Thermo Fisher, CA, USA), respectively. Forty-eight hours later, the cells were harvested and both firefly luciferase and renilla luciferase activities were measured using the dual luciferase reporter assay system (Promega, WI, USA) according to the manufacturer’s instructions, and luciferase activity was estimated using a luminometer (Promega, WI, USA).

In vivo tumor radioresponse assay

In vivo tumor radioresponse assay was performed according to our previous study29,37. Simply, nude female mice (4 weeks old) were raised under specific pathogen-free circumstances. NPC cells were subcutaneously injected into the right flanks of mice at 2 × 10^6 cells/mouse (n = 5 each group). Tumor volume (in mm^3) was measured by caliper measurements performed every 4 days and calculated by using the modified ellipse formula (volume = length × width^2/2). Seven days after cell implantation, when the volumes of xenograft tumors reached ~50 mm^3, the mice were irradiated at the dose of 8 Gy. Twenty days later, the mice were killed by cervical dislocation, and the xenograft tumors were excised, weighted, and cut in half with one half fixed and embedded in paraffin for immunohistochemical staining, and the remaining half frozen in liquid nitrogen for reserve.

Immunohistochemistry

Immunohistochemical staining of RKIP, NRF2, NQO1, γH2AX (phospho-S139), a marker for DNA double-strand breaks,39,40 and Ki-67, a marker for cell proliferation, were performed on the formalin-fixed and paraffin-embedded tissue sections according to our previous description29. Simply, after antigen retrieval, tissue sections were incubated with rabbit anti-RKIP antibody (D221145, dilution 1:50, BBI, Shanghai, China), rabbit anti-NRF2 antibody (16396-1-AP, dilution 1:50, Proteintech, IL, USA), rabbit anti-NQO1 antibody (D261049, dilution 1:50, BBI, Shanghai, China), anti-γH2AX (ab2893, dilution 1:50, Abcam, MA, USA) or anti-Ki-67 antibody (ab15580, dilution 1:100, Abcam, MA, USA) overnight at 4 ℃, and then were incubated with biotinylated secondary antibody followed by avidin-biotin peroxidase complex (DAKO, Glostrup, Denmark). Finally, tissue sections were incubated with 3′, 3′-diaminobenzidine (Sigma) and counterstained with hematoxylin. Primary antibodies were omitted in negative controls.

Immunohistochemical staining was evaluated and scored by two independent pathologists based on the staining intensity and area. Discrepancies were resolved by consensus. Staining intensity was categorized: absent staining as 0, weak as 1, moderate as 2, and strong as 3. The percentage of stained cells was categorized as no staining = 0, <30% of stained cells = 1, 30–60% = 2, and >60% = 3. The staining score (ranging from 0 to 6) for each tissue was calculated by adding the area score and the intensity score. A combined staining score of ≤3 was considered to be low expression; and a score of >3 was considered to be high expression. Quantitative evaluation of DNA damaged or proliferation cells was done by examining the sections in 10 random microscopic fields and counting the number of γH2AX or Ki-67-positive nuclei among 1000 carcinoma cells under the microscope. The rate of DNA damaged or proliferation cells was expressed as positive cells per 100 cancer cells.

In situ detection of apoptotic cells

Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) was carried out to explore apoptotic cells of formalin-fixed and paraffin-embedded tissue sections of xenografts after irradiation with In Situ Cell Death Detection Kit (Roche, Basel, Switzerland) according to the instruction and our previous description29. Quantitation of apoptotic cells was evaluated by examining the sections in 10 random microscopic fields and counting the number of TUNEL-positive cancer cells among 1000 cells under the microscope. The apoptotic rate was exhibited as positive cells per 100 cancer cells.

Statistical analysis

All experiments were carried out at least three times. Data were presented as the mean±standard deviation (SD). Statistical analysis and charts were processed by IBM SPSS Statistics version 20.0 (IBM, NY, USA) and Prism 8 (GraphPad, CA, USA). The Student t test or Fisher’s exact test were applied to compare statistical significance between two groups. Survival curves were drawn by using Kaplan–Meier method, and comparisons were analyzed by Log-rank test. Univariate and multivariate survival analyses were conducted on all parameters using Cox proportional hazards regression model. The Spearman rank correlation coefficient was used to determine the correlation between two parameters. P values < 0.05 were considered to be statistically significant.
Ethics statement

This study was approved by the Ethics Committee of the Third Xiangya Hospital of Central South University, Hunan, China. Written informed consent was obtained from all participants in the study. All animal experiments were performed following the Guide for the Care and Use of Laboratory Animals of Central South University, with the approval of the Scientific Investigation Board of Central South University.

Results

RKIP could regulate NRF2 expression in dependent with Keap1 in NPC

NRF2 has been reported to mediate the pro-chemosensitivity function of RKIP in colorectal cancer. Therefore, we explored whether NRF2 involved in the regulation of RKIP-associated radioresistance in NPC cells. Western blot and qPCR assays were performed to analyze the expression of NRF2 in NPC cells with RKIP alteration. As Fig. 1a shown, RKIP knockdown increased the protein level of NRF2 in radiosensitive CNE2 cells, whereas, RKIP overexpression suppressed the protein level of NRF2 in radioresistant CNE2-IR cells. Surprisingly, RKIP alteration did not change the level of Keap1, suggesting the regulation NRF2 by RKIP is independent with Keap1 (Fig. 1a). Accordingly, the qPCR results demonstrated that RKIP could negatively regulate the mRNA level of NRF2 as well (Fig. 1b). These results indicated that RKIP could inversely regulate NRF2 level in NPC cells with district radiosensitivity, in an independent manner with Keap1, indicating NRF2 may play an important role in RKIP regulated radioresistance in NPC.

RKIP promotes radiosensitivity of NPC cells by suppressing NRF2 both in vitro and in vivo

To explore the role of NRF2 in RKIP-associated radioresistance regulation in NPC, we successfully knocked down the expression of NRF2 in CNE2 shRKIP cells and overexpressed NRF2 in CNE2-IR RKIP cells by infected cells with respective lentivirus (Fig. 1c). Subsequently, CCK-8, plate clone survival, and EdU incorporation assays were carried out to detect the radiosensitivity of cells with radiation treatment at 6 Gy. Consistent with our previous study, RKIP depletion significantly enhanced the tolerance of CNE2 cells to radiation exposure. However, the pro-radioresistant effects of RKIP knockdown were nearly abolished in CNE2 cells, when NRF2 was simultaneously repressed, reflected by suppressed cell viability (Fig. 1d, left arm), fewer survival clones (Fig. 1e, left arm), and fewer EdU-labeled cells (Fig. 1f, left arm). Accordingly, ectopic expression of NRF2 could rescue the resistance of CNE2-IR RKIP cells to radiation, indicated by improved cell viability (Fig. 1d, right arm), more survival clones (Fig. 1e, right arm), and more EdU-labeled cells (Fig. 1f, right arm). Thus, these results demonstrated that RKIP knockdown could promote radioresistance of NPC cells via upregulation of NRF2 in vitro.

Moreover, the role of NRF2 in RKIP-related regulation of radioresistance was further validated in vivo via nude mice xenograft model. The aforementioned NPC cells were subcutaneously injected into right flanks of nude mice for xenografts formation, respectively. When the volumes of xenografts came into ~50 mm3, the nude mice were subjected to irradiation treatment (total 8 Gy) and subsequently the respective effects were observed in the following days. In line with the outcomes of in vitro, the tumor volume and weight assays turned out that NRF2 knockdown could deplete the pro-radioresistant effects of RKIP reduction in NPC (Fig. 2a–c, left arms), whereas ectopic expression of NRF2 could antagonize the radiosensitive effects of RKIP overexpression in NPC (Fig. 2a–c, right arms), and these notions were further confirmed by results of TUNEL, γH2AX, and Ki-67 staining assays (Fig. 2d). Taken together, our results demonstrated that RKIP could promote radioresensitivity of NPC cells by suppressing NRF2 both in vitro and in vivo.

NQO1 is the downstream effector of RKIP/NRF2 axis in regulation of NPC radioresistance

As a transcription factor, the functions of NRF2 depend on transcriptional regulation of downstream targets. To address the effector of RKIP/NRF2 axis in NPC, we first analyzed the expressions of the known targets, such as HO-1, NQO1, and GCLC, of NRF2 in NPC cells with RKIP alteration by qPCR. The results indicated that NQO1 was significantly upregulated in CNE2 shRKIP cells, whereas was notably downregulated in CNE2-IR RKIP cells (Fig. 3a). Meanwhile, the expression of HO-1 and GCLC was slightly influenced in NPC cells by RKIP (Fig. 3a). Accordingly, the proteins level of NQO1, HO-1, and GCLC were identical with the patterns of their mRNAs level (Fig. 3b), indicating NQO1 may be the target of NRF2 in NPC. Indeed, NRF2 knockdown re-decreased NQO1 in CNE2 shRKIP cells and NRF2 overexpression rescued NQO1 in CNE2-IR RKIP (Fig. 3c). Therefore, these results revealed that NQO1 was regulated by NRF2 in NPC.

Furthermore, we further explored the roles of NQO1 in RKIP/NRF2-related radiation regulation. First, forced expression of NQO1 successfully rescued the level of NQO1 in CNE2 shRKIP cells with NRF2 knockdown (Fig. 3d, left arm), whereas, NQO1 silence notably re-decreased NQO1 in CNE2-IR RKIP cells with NRF2 overexpression (Fig. 3d, right arm). Subsequently, CCK-8, plate clone survival, and EdU incorporation assays indicated that, under 6 Gy irradiation, ectopic expression of NQO1 could recover the radiation tolerance of
Fig. 1 RKIP promotes radiosensitivity of NPC cells by negatively regulating NRF2 in vitro.

a Western blot indicating the levels of NRF2, Keap1, and RKIP in CNE2 shRKIP, CNE2-IR RKIP, and their control cells.

b qPCR assay showing the expression of NRF2 in CNE2 shRKIP, CNE2-IR RKIP, and their control cells.

c Western blot showing the level of NRF2 in CNE2 shRKIP, CNE2 shRKIP + shNRF2, CNE2-IR RKIP, CNE2-IR RKIP + NRF2, and their control cells.

d–e under 6 Gy irradiation, NRF2 silence antagonizes the pro-radioresistant effects of RKIP knockdown in CNE2 cells and NRF2 overexpression counters the anti-radioresistant effects of RKIP overexpression in CNE2-IR cells demonstrating by CCK-8 d, clone survival e, and EdU incorporation f assays. *P < 0.05; **P < 0.01; ***P < 0.001.
Fig. 2 RKIP promotes radiosensitivity of NPC cells by negatively regulating NRF2 in vivo. CNE2 shRKIP, CNE2 shRKIP+shNRF2, CNE2-IR RKIP, CNE2-IR RKIP+NRF2, and their control cells were subcutaneously implanted into nude mice n = 5 each group for xenografts formation, which were irradiated by 8 Gy at 7 day after cell implantation and killed at 20 day after cell implantation. a The photography of mice bearing xenografts and resected xenografts. b The growth curves of xenografts generated by aforementioned cells. c The average weight of xenografts generated by aforementioned cells. d The representative images of TUNEL detection of apoptotic cells in the tumors generated by aforementioned cells (upper). The representative image of immunohistochemical staining of γH2AX in the tumors generated by aforementioned cells (middle). The representative image of immunohistochemical staining of Ki-67 in the tumors generated by aforementioned cells (lower). *P < 0.01, ***P < 0.001. Scale bar, 50 μm.
Fig. 3 NQO1 mediates the effects of RKIP/NRF2 on regulating radioresistance of NPC cells. a qPCR assay showing the expression of HO-1, NQO1, and GCLC in CNE2 shRKIP, CNE2-IR RKIP, and their control cells. b Western blot indicating the levels of HO-1, NQO1, and GCLC in CNE2 shRKIP, CNE2-IR RKIP, and their control cells. c Western blot showing the level of NQO1 in CNE2 shRKIP, CNE2 shRKIP + shNRF2, CNE2-IR RKIP, CNE2-IR RKIP + NRF2, and their control cells. d Western blot showing the level of NQO1 in CNE2 shRKIP, CNE2 shRKIP + shNRF2 transfected with vector plasmids, CNE2 shRKIP + shNRF2 transfected with NQO1 plasmids, CNE2-IR RKIP, CNE2-IR RKIP + NRF2 transfected with siNC, and CNE2-IR RKIP + NRF2 transfected with siNQO1 cells. e-g Under 6 Gy irradiation, ectopic expression of NQO1 antagonizes the antiresistant effects of NRF2 knockdown in CNE2 shRKIP cells and NQO1 knockdown counters the pro-resistant effects of NRF2 overexpression in CNE2-IR RKIP cells, demonstrating by CCK-8, clone survival, and EdU incorporation assays. *P < 0.05; **P < 0.01; ***P < 0.001.
miR-450b-5p inhibitor notably enhanced the level of NRF2. Consequently, the qPCR and western blot results indicated that miR-450b-5p could positively regulate miR-450b-5p in NPC. Subsequently, the expression of NRF2 and NQO1 in CNE2-IR, respectively. The pro-radiosensitive effects of NRF2/NQO1 axis own was confirmed (Supplementary Fig. 1). Thus, these results proved that NQO1 could mediate the function of RKIP/NRF2 in regulation of NPC radiosensitivity.

RKIP suppresses the expression of NRF2 by upregulating miR-450b-5p

Next, we further explored the mechanism accounting for the regulation of NRF2 by RKIP in NPC. As the Fig. 1b demonstrated, RKIP could suppress NRF2 by decreasing its mRNA level. Actually, both transcriptional and post-transcriptional mechanisms may cause alteration of mRNA, which could be distinguished by detection of primary transcription activity. Thus, to address the detail mechanism, we accessed the level of NRF2 hnRNA in NPC cells with RKIP alteration. The qPCR results showed that RKIP alteration did not significantly change the level of NRF2 hnRNA (Fig. 4a), suggesting primary transcriptional mechanisms must explain the regulation of NRF2 by RKIP.

Previous studies have demonstrated that RKIP can exert its functions by regulating miRNAs, which are the most common post-transcriptional regulators. Therefore, the candidate miRNAs of NRF2 and their correlations to NRF2 in cancers were predicted and analyzed by Starbase 2.0. miR-450b-5p was selected for experimental validation owing to its tumor-suppressive function and significantly negative association with NRF2 in head and neck squamous cell carcinoma (data was not shown). Indeed, the qPCR results indicated that the expression of miR-450b-5p was decreased by RKIP depletion in CNE2 cells (Fig. 4b, left arm), whereas, increased by RKIP overexpression in CNE2 cells (Fig. 4b, right arm), suggesting that RKIP could negatively regulate miR-450b-5p in NPC. Subsequently the qPCR and western blot results indicated that miR-450b-5p inhibitor notably enhanced the level of NRF2 mRNA and protein in CNE2 cells (Fig. 4c, d, left arms), whereas, miR-450b-5p mimic remarkably decreased the level of NRF2 mRNA and protein in CNE2-IR cells (Fig. 4c, d, right arms). Furthermore, the dual luciferase reporter assay presented that the inhibitory effects of miR-450b-5p on NRF2 were abolished when the predicted bind site of NRF2 at 3′-UTR was mutated (Fig. 4e). Thus, these results confirmed that miR-450b-5p, being positively regulated by RKIP, could directly target and inhibit NRF2 in NPC.

miR-450b-5p sensitizes NPC cells to irradiation and mediates the radiosensitive functions of RKIP by targeting NRF2 in NPC

We further evaluated the functions of miR-450b-5p itself and its roles in RKIP-regulated radiosensitivity in NPC. CCK-8, plate clone survival, and EdU incorporation assays were carried out to detect the cell viability, survival, and proliferation of NPC cells irradiated at 6 Gy. The results indicated that miR-450b-5p inhibitor significantly reinforced the radiotolerance of CNE2 cells, reflected by improved cell viability (Fig. 4f, left arm), more survival clones (Fig. 4g, left arm), and more EdU-labeled cells (Fig. 4h, left arm), whereas miR-450b-5p mimic notably sensitized the CNE2-IR cells to irradiation demonstrated by impaired cell viability (Fig. 4f, right arm), fewer survival clones (Fig. 4g, right arm), and fewer EdU-labeled cells (Fig. 4h, right arm). These outcomes suggested that miR-450b-5p could promote radiosensitivity in NPC.

Besides, we further assessed the roles of whether miR-450b-5p/NRF2 mediated the radiosensitive roles of RKIP in NPC. The western blot indicated that ectopic expression of NRF2 significantly antagonized the inhibitory effects of miR-450b-5p on NRF2 in CNE2 shRKIP cells (Fig. 5a, left arm). Accordingly, NRF2 knockdown notably counteracted the promotive effects of miR-450b-5p inhibitor on NRF2 in CNE2-IR RKIP (Fig. 5a, right arm). Consistently, the results of CCK-8, plate clone survival, and EdU incorporation assays manifested that, under 6 Gy irradiation, ectopic expression of NRF2 remarkably released the radiosensitive functions of miR-450b-5p in CNE2 shRKIP cells (Fig. 5b–d, left arm), whereas, NRF2 depletion significantly eradicated the radiosensitive roles of miR-450b-5p inhibitor in CNE-IR RKIP cells (Fig. 5b–d, right arm). Thus, these results suggested miR-450b-5p could mediate the radiosensitive roles of RKIP by targeting NRF2 in NPC.

RKIP/miR-450b-5p/NRF2/NQO1 axis is observed in NPC specimens and exhibits significant correlations with NPC progression and prognosis

Finally, we stepped forward to validate whether the RKIP/miR-450b-5p/NRF2/NQO1 axis existed in NPC specimens. At beginning, we detected the level of RKIP, NRF2, and NQO1 in 97 cases of NPC samples, including 46 radioresistant and 51 radiosensitive ones, and 30 cases of NNM samples by immunohistochemistry. Consistent with our previous report, RKIP is significantly downregulated in NPC, particularly in radioresistant NPC (Fig. 6a, Table 1), whereas, the level of NRF2 and NQO1 is remarkably upregulated in NPC specimens (Fig. 6a, Table 1), especially in radioresistant ones (Fig. 6a, Table 1). Subsequently, we detected and compared the relative level of miR-450b-5p between 46 cases of radioresistant and 51 cases of radiosensitive NPC samples by qPCR. Accordingly, miR-450b-5p regulations.

**CNE2 shRKIP cells with NRF2 knockdown (Fig. 3f–g, left arm); whereas NQO1 depletion could re-sensitize the CNE2-IR RKIP cells with NRF2 overexpression to irradiation (Fig. 5f–g, right arm). Besides, to validate the roles of NRF2 and NQO1 in radioresistance regulation of NPC, we overexpressed NRF2 and NQO1 in CNE2 cells and interfered the expression of NRF2 and NQO1 in CNE2-IR, respectively. The pro-radiosensitive effects of NRF2/NQO1 axis own was confirmed (Supplementary Fig. 1). Thus, these results proved that NQO1 could mediate the function of RKIP/NRF2 in regulation of NPC radiosensitivity.
Fig. 4 miR-450b-5p mediates the regulation of NRF2 by RKIP and promotes radiosensitivity in NPC cells.

a. qPCR showing the level of NRF2 hnRNA in CNE2 shRKIP, CNE2-IR RKIP, and their control cells.
b. qPCR showing the level of miR-450b-5p in CNE2 shRKIP, CNE2-IR RKIP, and their control cells.
c. qPCR and d. western blot showing the level of NRF2 in CNE2 cells, respectively, transfected with miR-450b-5p inhibitor and inhibitor NC, and CNE2-IR cells, respectively, transfected with miR-450b-5p mimic and mimic NC.
e. miR-450b-5p: 3' uauagcuuacuanuACGUUUa 5'
Wild NRF2: 5' uauagcuuacuanuAGCCGAAa 3'
Mutant NRF2: 5' uauagcuuacuanuACGUUUAa 3'
f. 3' UTR dual luciferase reporter assay. (top) The predicted miR-450b-5p binding sites in the 3'UTR of wild NRF2 and mutant NRF2 3'-UTR are shown; (bottom) luciferase activity of WT and mutant NRF2 3'UTR dual luciferase reporter vector in the HEK293 cells transfected with miR-450b-5p or mimic NC.
g. – h. miR-450b-5p inhibitors enhances the tolerance of CNE2 cells to irradiation (6 Gy), and miR-450b-5p mimics sensitizes the CNE2-IR cells to irradiation (6 Gy), demonstrating by CCK-8, clone survival, and EdU incorporation assays. *P < 0.05; **P < 0.01; ***P < 0.001; ns, no significance.
was notably downregulated in radioresistant NPC specimens (Fig. 6b). Furthermore, the levels of RKIP, miR-450b-5p, NRF2, and NQO1 were notably associated with clinicopathological characteristics such as primary T stage (except for miR-450b-5p and NQO1), lymph node metastasis, and TNM stage, of NPC patients (Table 2), respectively. Next, we further analyzed the prognostic values of RKIP, miR-450b-5p, NRF2, and NQO1 in NPC. Survival analyses demonstrated that low level of RKIP and miR-450b-5p, and high level of NRF2 and NQO1 remarkably correlated with reduced OS of the patients with NPC (Fig. 6c). Moreover, the univariate Cox proportional hazards regression analysis revealed that primary T stage, TNM stage, and the levels of RKIP, miR-450b-5p, NRF2, and NQO1 were significantly related to the OS of patients with NPC (Table 3). The multivariate Cox proportional hazards regression analysis indicated that low expressions of RKIP and miR-450b-5p, and high expressions of NRF2 and NQO1 severed as an independent predictor for the reduced OS of NPC patients (Table 3), respectively.

Fig. 5 RKIP inhibits NRF2 and promotes radiosensitivity of NPC cells by upregulating miR-450b-5p. a Western blot showing the level of NQO1 and NQO1 in CNE2 shRKIP, CNE2 shRKIP co-transfected with miR-450b-5p and vector plasmids, CNE2 shRKIP co-transfected with miR-450b-5p and NRF2 plasmids, CNE2-IR RKIP, CNE2-IR RKIP co-transfected with miR-450b-5p inhibitor and siNC, and CNE2-IR RKIP co-transfected with miR-450b-5p inhibitor and siNRF2. b–d under 6 Gy irradiation, ectopic expression of NRF2 antagonized the anti-radioresistant effects of miR-450b-5p in CNE2 shRKIP cells and siNRF2 addition counters the pro-radioresistant effects of miR-450b-5p inhibitors in CNE2-IR RKIP cells, demonstrating by CCK-8 b, clone survival c, and EdU incorporation d assays. *P < 0.05; **P < 0.01; ***P < 0.001; ns, no significance.
Furthermore, we investigated the relations of expressions among RKIP, miR-450b-5p, NRF2 and NQO1 in NPC patients by spearman correlation analysis. The level of RKIP was positively correlated to that of miR-450b-5p (Fig. 6d, left arm), whereas negatively associated with that of NRF2 (Fig. 6e, left arm) and NQO1 (Fig. 6e, right). Similarly, the level of miR-450b-5p negatively correlated to that of NRF2 in patients with NPC (Fig. 6d, right arm). At last, the level of NRF2 was positively associated with that of NQO1 in NPC patients (Fig. 6f). Thus, these results demonstrated that RKIP/miR-450b-5p/NRF2/NQO1 axis also exists in NPC specimens and exhibits significant correlation with NPC progression and prognosis.

Discussion

Downregulation of RKIP and its pro-radiosensitive role has been announced in lung cancer and prostate cancer. We also previously demonstrated that loss of RKIP confers additional functions, including regulation of tumor growth, cell cycle, and apoptosis, as well as sensitivity to radiation therapy.

Fig. 6 The expression, prognostic value, and correlations of RKIP/miR-450b/NRF2/NQO1 axis in patients with NPC. a IHC showing the levels of RKIP, NRF2, and NQO1 in the normal nasopharyngeal mucosa (NNM), radiosensitive NPC, and radioresistant NPC tissues, respectively. b qPCR showing the relative level of miR-450b-5p in radiosensitive NPC and radioresistant NPC tissues. c Kaplan–Meier survival analysis of RKIP, NRF2, NQO1, and miR-450b-5p in NPC patients according to their expression levels. NPC patients with high RKIP and miR-450b-5p expression, and low NRF2 and NQO1 expression, show more favorable overall survival outcome. d The correlation of miR-450b-5p to RKIP and NRF2. MiR-450b-5p positively correlates to RKIP (left) and inversely correlates to NRF2 (right) in patients with NPC. e The correlations among RKIP, NRF2, and NQO1. RKIP shows negative association with NRF2 (left) and NQO1 (right) in patients with NPC. f NRF2 positively correlates to NQO1 in patients with NPC. ***P < 0.001; Scale bar, 50 μm.
resistance of NPC cells to irradiation. In this study, we further revealed that RKIP could negatively regulate NRF2/NQO1 activity and consequently enhanced the radiosensitivity of NPC cells. Moreover, miR-450b-5p, which is downregulated in radioresistant NPC and positively regulated by RKIP, could sensitize NPC cells to irradiation by directly targeting and suppressing NRF2. Taken together, we originally reveal that RKIP can sensitize NPC cells to radiation by inhibiting NRF2/NQO1 by raising miR-450b-5p.

The vital roles of NRF2 in radiotherapy resistance have been well announced in a plethora of studies. For example, downregulation of NRF2 is the main reason for the radiosensitive agents, such as cordycepin, valproic acid, and brusatol. The radiosensitive ability of salinomycin also depends on inhibition of NRF2 in NPC cells, suggesting NRF2 involves in regulating of NPC radioresistance. Moreover, RKIP knockdown is capable to activate NRF2 and bestows resistance to chemotherapeutic drugs implying the potential relation between RKIP and NRF2 in regulation of NPC radioresistance. Consistently, our results show that RKIP can inversely regulate the level of NRF2 in NPC, which accounts for the underlying mechanism of regulatory roles of RKIP in radiation.

Table 1 The expressions of proteins in the NNM and NPC tissues with different radiosensitivity.

Protein	NNM	Radioactive NPC	Radioresistant NPC
RKIP			
Low	6	18	36
High	24	33	10
NRF2			
Low	23	33	12
High	7	18	34
NQO1			
Low	22	32	11
High	8	19	35

NNM normal nasopharyngeal mucosa, NPC nasopharyngeal carcinoma; P < 0.01.

Table 2 Correlations between miR-450b-5p/RKIP/NRF2/NQO1 level and clinicopathological characteristics in NPC (N = 97, Fisher’s exact test).

Variables	N	MiR-450b-5p	RKIP	NRF2	NQO1					
		Low	High	P	Low	High	P	Low	High	P
Gender										
Male	74	40	34	0.999	39	35	0.343	36	38	0.479
Female	23	12	11		15	8		9	14	0.153
Age										
≤45	36	18	18	0.675	19	17	0.678	20	16	0.070
>45	61	34	27		35	26		25	36	0.212
Primary T stage										
T1–2	29	11	18	0.049	11	18	0.027	18	11	0.027
T3–4	68	41	27		43	25		27	41	0.433
Lymph node (N) metastasis										
N0	29	11	18	0.049	11	18	0.027	18	11	0.027
N1–3	68	41	27		43	25		27	41	0.433
TNM stage										
I–II	26	8	18	0.011	8	18	0.005	21	5	0.000
III–IV	71	44	27		46	25		24	47	0.253
Radiation response										
Sensitivity	51	15	36	0.000	18	33	0.000	33	18	0.000
Resistance	46	37	9		36	10		12	34	0.000

*P < 0.05.
**P < 0.01.
***P < 0.001.
Multiple factors are involved in the management of NRF2 activity. Keap1 is the most common negative regulator of NRF2. Serving as an adapter, Keap1 can bind NRF2 and recruit Cullin-3, one of E3 ubiquitin ligase, to initiate proteasomal degradation of NRF2 under basal condition. Here, RKIP alteration causes notable fluctuation in NRF2 mRNA, but exerts no significant influence on Keap1, suggesting the regulation of NRF2 by RKIP is independent with Keap1-related protein stability mechanism in NPC. miRNAs are one of the regulators for controlling the level and activity of NRF2. Studies have demonstrated that miRNAs, including miR-101-3p, miR-144-3p, miR-153, miR-340-5p, and miR-140-5p, are capable to directly bind and inhibit NRF2 in distinct cells. For example, miR-144-3p and miR-340-5p could reverse the resistance to cisplatin of lung cancer and hepatocellular carcinoma cells by targeting NRF2, respectively. Importantly, RKIP is able to regulate the level of miRNAs such as let-7a, miR-98, and miR-185, to exert its tumor-suppressive functions in malignances. In this study, inspired by the compared transcription activity of NRF2 before and after RKIP alteration, we predicted and validated the candidate miRNAs targeting NRF2. The results turn out that miR-450b-5p, which is downregulated and positively regulated by RKIP in radioresistant NPC tissues and cells, could directly target NRF2 and sensitize NPC cells to radiation, which not only identifies a new negative regulator of NRF2, but also presents another case for fulfilling regulatory roles of RKIP via miRNAs.

Downregulation of miR-450b-5p and its tumor-suppressive roles have been indicated in several cancer types. For example, loss of miR-450b-5p upregulates SOX2 and subsequently contributes to maintain stemness and chemoresistance of colorectal cancer cells. Downregulation of miR-450b-5p serves as an indicator for poor prognosis of patients with hepatocellular carcinoma (HCC) and promotes malignant progression of HCC cells by activating KIF26B. Accordingly, in current study, we confirm miR-450b-5p is downregulated in radioresistant NPC, positively correlates with favorable prognosis, and exerts pro-radiosensitive roles in NPC. Moreover, we reveal that RKIP is a positive upstream regulator of miR-450b-5p in NPC, however, the underlying mechanisms of how RKIP regulates miR-450b-5p

Table 3 Univariate and multivariate analysis of prognostic factors for overall survival using Cox proportional hazards regression model (N = 97).

Variables	Univariate analysis	Multivariate analysis	Multivariate analysis	Multivariate analysis	Multivariate analysis					
	HR (95%CI)	P	HR (95%CI)	P	HR (95%CI)	P	HR (95%CI)	P	HR (95%CI)	P
Gender										
Male vs female	1.047	0.895	1.132	0.733	1.385	0.356	1.427	0.032	1.835	0.011
Age ≤45 vs >45	0.529	0.557–2.073	0.557–2.300	0.693–2.768	0.040	0.040	0.178	0.100	0.040	0.001
TNM stage	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626
Lymph node (N) metastasis	0.781–3.204	0.781–3.204	0.781–3.204	0.781–3.204	0.781–3.204	0.781–3.204	0.781–3.204	0.781–3.204	0.781–3.204	0.781–3.204
Primary T stage	2.420	0.000d	1.153	0.689	0.965	0.921	1.068	0.132	1.145	0.671
T1–2 vs T3–4	1.296–4.520	1.296–4.520	1.296–4.520	1.296–4.520	1.296–4.520	1.296–4.520	1.296–4.520	1.296–4.520	1.296–4.520	1.296–4.520
NRF2	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626
MiR-450b-5p high vs low	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626
RKIP high vs low	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626
NQO1 high vs low	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626	0.044–0.626

HR hazard ratio, 95% CI, 95% confidence interval.
*P < 0.05.
**P < 0.01.
***P < 0.001.
remains unknown. Based on the existing studies, the suppressive roles of RKIP on transcription factors, like STAT3, YY1, and NF-kB, may involve the regulation of miR-450b-5p in NPC, which needs to be validated in the future work.

As a phase II antioxidant enzyme, NQO1, being regulated by NRF2, is aberrantly upregulated in multiple cancers such as pancreatic cancer, glioblastoma, lung cancer, and breast cancer, and contributes a lot to therapy resistance, especially for radioresistance. β-lapachone, an NQO1-targeting prodrug, are potent to selectively sensitize cancer cells to radiation by aggravating the degree of ROS stress and evoking cell apoptosis in cancers with upregulation of NQO1, including head and neck cancer and non-small cell lung cancer. In this study, in line with head and neck cancer, NQO1 is also upregulated and negatively correlated with RKIP in NPC. RKIP alteration can cause inverse fluctuation of NQO1 in an NRF2-dependent manner. Meanwhile, RKIP alteration shows no significant influence on the expression of other NRF2-regulated antioxidant enzymes, like HO-1 and GCLC, confirming that the mechanism for pro-radioresistant functions of NRF2 is context-dependent.

In summary, our results demonstrate that RKIP could enhance radiosensitivity of NPC cells by suppressing NRF2/NQO1 axis. Mechanistically, we reveal that RKIP exerts its inhibitory effect on NRF2/NQO1 by regulating miR-450b-5p, which directly binds and inhibits NRF2 in NPC. Therefore, RKIP/miR-450b-5p/NRF2/NQO1 axis has vital roles in regulation of radiosensitivity and serves as a promising therapy target for improving the efficacy of clinical treatment in NPC.

Acknowledgements

This study was supported by the New Xiangya Talent Project of the Third Xiangya Hospital, Central South University (nos. JY201722), the National Natural Science Foundation of China (nos. 81602686 and 81702924), and the Natural Science Foundation of Hunan Province of China (nos. 2018JJ3811).

Author details

1. Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China. 2. Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China. 3. Department of Ultrasound, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.

Competing interests

The authors declare no competing interests.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

accompanies this paper at [https://doi.org/10.1038/s41419-020-2695-6].

References

1. Chen, Y. P. et al. Nasopharyngeal carcinoma. *Lancet* **394**, 66–75 (2019).
2. Tsao, S. W., Tsang, C. M. & Lo, K. W. Epstein-Barr virus infection and nasopharyngeal carcinoma. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **372**, 20160170 (2017).
3. Suarez, C. et al. Current treatment options for recurrent nasopharyngeal cancer. *Eur. Arch. Otorhinolaryngol.* **267**, 1811–1824 (2017).
4. Kim, W. et al. Cellular stress responses in radiotherapy. *Cell. Mol. Life Sci.* **70**, 706–715 (2013).
5. Zhou, S., Ye, W., Shao, Q., Zhang, M. & Li, C. NRF2 is a potential therapeutic target in radioresistance in human cancer. *Cytometry B Clin. Cytom.* **88**, 1109–1115 (2014).
6. Jeong, Y. et al. Role of KEAP1/Nrf2 pathway and cell death in lung squamous cell carcinoma development and radiation resistance. *Cancer Discov.* **7**, 86–101 (2017).
7. Singh, A., Bodas, M., Wakabayashi, H., Gehr, F. & Biswal, S. Gain of NRF2 function in non-small-cell lung cancer cells confers radioresistance. *Antioxid. Redox Signal.* **13**, 1614–1637 (2010).
8. Marampoline, F. et al. NRF2 orchestrates the redox regulation induced by radiation therapy, suppressing embryonal and alveolar rhabdomyosarcoma cells radioresistance. *Cancer Res. Clin. Oncol.* **145**, 881–893 (2019).
9. You, X., Chen, J., Liu, Y. Berberine enhances the radiosensitivity of hepatoma cells by NRF2 pathway. *Front. Biosci. (Landmark Ed.)* **24**, 1190–1205 (2019).
10. Xu, P. & Nguyen, T. A mutation of Keap1 found in breast cancer impairs its ability to repress Nrf2 activity. *Biochem. Biophys. Res. Commun.* **386**, 812–821 (2009).
11. Befeeza, I., Giambanco, I., Minelli, A. & Donato, R. NRF2-Keap1 signaling in oxidative and reductive stress. *Biochem. Biophys. Acta Mol. Cell Res.* **1865**, 721–733 (2018).
12. Lu, M. et al. GADD45B-mediated Keap1-independent regulation of NRF2 antioxidant response: a molecular rheostat of acute kidney injury to chronic kidney disease transition. *Redox Biol.* **26**, 101275 (2019).
13. Chatterjee, N., Tian, M., Spirohn, K., Boutros, M. & Bohm, D. Keap1-independent regulation of NRF2 catability by protein acetylation and a BET bromodomain protein. *PLoS Genet.* **12**, e1006072 (2016).
14. Lo, J. Y., Spaltol, B. N. & Curnan, S. P. MDR2 regulates NRF2 independently of KEAP1. *PLoS Genet.* **13**, e1006762 (2017).
15. Temouri, M. et al. Inhibiting miR-27a and miR-142-5p attenuates nonalcoholic fatty liver disease by regulating NRF2 signaling pathway. *JBMB&LM* **72**, 361–372 (2019).
16. Kuninna, S. & Werner, S. NRF2 and microRNAs: new but awaited relations. *Biochem. Soc. Trans.* **43**, 595–601 (2015).
17. Zhang, G. et al. Sialic acid overcomes radiosensitivity in nasopharyngeal carcinoma cells by inhibiting NRF2 level and promoting ROS generation. *Biomed. Pharmacother.* **91**, 147–154 (2017).
18. Zaravinos, A., Bonavida, B., Chatzaki, E. & Bartaki, S. RKIP: a key regulator in tumor metastasis initiation and resistance to apoptosis: therapeutic targeting and impact. *Cancer* **10**, 287 (2016).
19. Zhu, C. X. et al. Tumor suppressor RKIP inhibits prostate cancer cell metastasis and sensitizes prostate cancer cells to docetaxel treatment. *Neoplasma* **65**, 228–233 (2018).
20. Zou, Q. et al. RKIP suppresses the proliferation and metastasis of breast cancer cell lines through up-regulation of miR-185 targeting HMGA2. *Arch. Biochem. Biophys.* **610**, 25–32 (2016).
21. Cao, H., Cao, J., Yang, Y., Lin, M. & Xu, T. MiR-21 contributes to radioresistance in hepatocellular carcinoma cells by targeting NRF2. *Carcinogenesis* **36**, 251–259 (2015).
22. Kim, H. S. et al. Reduced expression of Raf-1 kinase inhibitory protein predicts regional lymph node metastasis and shorter survival in esophageal squamous cell carcinoma. *Pathol. Res. Pract.* **208**, 292–299 (2012).
23. Koelzer, V. H. et al. Geographic analysis of RKIP expression and its clinical relevance in colorectal cancer. *Br. J. Cancer* **108**, 2088–2096 (2013).
24. Jing, S. H., Gao, X., Yu, B. & Qiao, H. Raf kinase inhibitor protein (RKIP) inhibits tumor necrosis factor-alpha (TNF-alpha) induced accleration of ROS generation in vascular smooth muscle cells by suppressing...
26. Wottrich, S. et al. Inverse correlation between the metastasis suppressor RKIP and the metastasis inducer YY1: Contrasting roles in the regulation of chemotherapeutic resistance in cancer. Drug Resist. Updat. 30, 28–38 (2017).

27. Youssif, S. et al. Raf kinase inhibitor protein (RKIP) blocks signal transducer and activator of transcription 3 (STAT3) activation in breast and prostate cancer. PLoS ONE 9, e92478 (2014).

28. Yang, K. et al. KRAS promotes tumor metastasis and chemoresistance by repressing RKIP via the MAPK-ERK pathway in pancreatic cancer. Int. J. Cancer 142, 2323–2334 (2018).

29. Yuan, L. et al. Reduced RKIP enhances nasopharyngeal carcinoma radioresistance by increasing ERK and AKT activity. Oncotarget 7, 11463–11477 (2016).

30. Al-Mulla, F., Bitar, M. S., Feng, J., Park, S. & Yeung, K. C. A new model for raf kinase inhibitory protein induced chemotherapeutic resistance. PLoS ONE 7, e92932 (2012).

31. He, Q. Y. et al. Reduction of RKIP expression promotes nasopharyngeal carcinoma invasion and metastasis by activating Stat3 signaling. Oncotarget 6, 16422–16436 (2015).

32. Huang, W. et al. MiR-181a upregulation promotes radioresistance of nasopharyngeal carcinoma by targeting RKIP. Onco Targets Ther. 12, 10873–10884 (2019).

33. Feng, X. P. et al. Identification of biomarkers for predicting nasopharyngeal carcinoma response to radiotherapy by proteomics. Cancer Res. 70, 3450–3462 (2010).

34. Shanmugaratnam, K. & Sobin, L. H. The World Health Organization histological classification of tumours of the upper respiratory tract and ear. A commentary on the second edition. Cancer 71, 2668–2669 (1993).

35. Pan, J. et al. A comparison between the Chinese 2008 and the 7th edition AJCC staging systems for nasopharyngeal carcinoma. Am. J. Clin. Oncol. 39, 189–196 (2015).

36. Zheng, Z. et al. MiR-125b regulates proliferation and apoptosis of nasopharyngeal carcinoma by targeting A20/NF-kappaB signaling pathway. Cell Death Dis. 8, e28553 (2017).

37. Qu, J. Q. et al. MiRNA-203 reduces nasopharyngeal carcinoma radioresistance by targeting IL6/IL10 signaling. Mol. Cancer Ther. 14, 2653–2664 (2015).

38. Ivashkevich, A., Redon, C. E., Nakamura, A. J., Martin, R. F. & Martin, O. A. Use of the gamma-H2AX assay to monitor DNA damage and repair in translational cancer research. Cancer Lett. 327, 123–133 (2012).

39. Xie, S. Y., Li, G., Han, C., Hu, Y. Y. & Li, N. Reduced expression enhances radiosensitivity by activating the Shh signaling pathway in head and neck cell lung cancer. Oncotarget 10, 5665–5619 (2017).

40. Woods Ignatoski, K. M. et al. Loss of Raf kinase inhibitory protein induces radioresistance in prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 72, 153–160 (2008).

41. Wang, Z. et al. Cordycepin prevents radiation ulcer by inhibiting cell senescence via Nrf2 and AMPK in rodents. Nat. Commun. 10, 2538 (2019).

42. Shen, X. et al. Valproic acid attenuates traumatic brain injury-induced inflammation in vivo: involvement of autophagy and the Nrf2-ARE signaling pathway. Front. Mol. Neurosci. 11, 117 (2018).

43. Xiang, Y. et al. Brusatol enhances the chemotherapeutic efficacy of gemcitabine in pancreatic cancer via the Nrf2 signalling pathway. Oncol. Med. Cell. Longev. 2018, 2369027 (2018).

44. Qin, Z. et al. Zinc-induced protective effect for vascular remodelling injury by promoting antioxidation via miRNA-101-3p/Nrf2 pathway. Aging 11, 9295–9309 (2019).

45. Shin, H. S. et al. MiR-498 regulates the expression of Nrf2 in cervical cancer cells via targeting YY1. Mol. Cancer 18, 1–11 (2019).

46. Zhu, X., Zhao, Y., Hou, W. & Guo, L. MiR-233 regulates cardiomyocyte apoptosis by targeting NLRP3 inflammasome. J. Chromatogr. B, Biomed. Sci. 841, 167–178 (2019).

47. Wu, L. L. et al. Nrf2 regulates cisplatin resistance in hepatocellular carcinoma via miR-19a-3p. J. Cell. Mol. Med. 22, 2057–2066 (2018).

48. Liu, Q. Q. et al. Nrf2 aggravates hypertension and oxidative stress in atherosclerosis via targeting Nrf2 and Sirt2. Int. J. Mol. Med. 43, 839–849 (2019).

49. Dang-Kasing, S. et al. Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J. 28, 347–358 (2009).

50. Chen, Z. et al. Overexpression of RKIP inhibits cell invasion in glioma cell lines through upregulation of miR-98. Biomed. Res. Inter. 2013, 695179 (2013).

51. Jin, J. et al. MiR-4506-5p suppresses stemness and the development of chemo-resistance by targeting SOX2 in colorectal cancer. DNA Cell Biol. 35, 249–256 (2016).

52. Lewis, A. M. et al. Targeting NADPH oxidase 1 (NOX1) in prostate cancer. Mol. Cancer. 56, 1825–1834 (2017).

53. Luo, S., Lei, K., Xiang, D. & Ye, K. NQO1 is regulated by PTEN in glioblastoma, mediating cell proliferation and oxidative stress. Oxid. Med. Cell Longev. 2018, 9146528 (2018).

54. Motea, E. A. et al. NQO1-dependent, tumor-selective radiosensitization of non-small cell lung cancers. Clin. Cancer Res. 25, 2601–2609 (2019).

55. Yang, Y. et al. The NQO1/PKLR axis promotes lymph node metastasis and breast cancer progression by modulating glycolytic reprogramming. Cancer Lett. 453, 170–183 (2019).

56. Li, L. S. et al. NQO1-mediated tumor-selective lethality and radiosensitization for head and neck cancer. Mol. Cancer Ther. 15, 1757–1767 (2016).