TRANSIENT EXTREMELY SOFT X-RAY EMISSION FROM THE UNUSUALLY BRIGHT CATAclySMIC VARIABLE IN THE GLOBULAR CLUSTER M3: A NEW CV X-RAY LUMINOSITY RECORD?

W. S. Stacey1, C. O. Heinke1,4, R. F. Elsner2, P. D. Edmonds3, M. C. Weisskopf2, and J. E. Grindlay3

1 Physics Department, University of Alberta, 11322-89 Avenue, Edmonton, AB T6G 2G7, Canada; heinke@ualberta.ca
2 NASA Marshall Space Flight Center, VP62, Huntsville, AL 35812, USA
3 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

Received 2010 September 23; accepted 2011 February 19; published 2011 April 14

ABSTRACT

We observed the accreting white dwarf (WD) 1E1339.8+2837 (1E1339) in the globular cluster M3 in 2003 November, 2004 May, and 2005 January, using the Chandra ACIS-S detector. The source was observed in 1992 to possess traits of a supersoft X-ray source (SSS), with a 0.1–2.4 keV luminosity as large as 2 × 10^{35} erg s^{-1}, after which its luminosity fell by roughly two orders of magnitude, adopting a hard X-ray spectrum more typical of cataclysmic variables (CVs). Our observations confirm 1E1339’s hard CV-like spectrum, with photon index Γ = 1.3 ± 0.2. We found 1E1339 to be highly variable, with a 0.5–10 keV luminosity ranging from (1.4 ± 0.3) × 10^{34} erg s^{-1} to 8.5^{+4.9}_{−4.6} × 10^{32} erg s^{-1}, with 1E1339’s maximum luminosity being perhaps the highest yet recorded for hard X-ray emission from a WD. In 2005 January, 1E1339 displayed substantial low-energy emission below ~0.3 keV. Although current Chandra responses cannot properly model this emission, its bolometric luminosity appears comparable to or greater than that of the hard spectral component. This raises the possibility that the supersoft X-ray emission seen from 1E1339 in 1992 may have shifted to the far-UV.

Key words: accretion, accretion disks – globular clusters: individual (NGC 5272) – novae, cataclysmic variables – white dwarfs – X-rays: binaries

1. INTRODUCTION

Supersoft X-ray sources (SSSs) were first detected by the Einstein Observatory and were later established as a prominent X-ray binary class on the basis of ROSAT observations (Greiner et al. 1991). SSSs are distinguished from other X-ray sources by their soft spectra (kT ~ 15–80 eV) and high bolometric luminosities, generally ranging from 10^{36} erg s^{-1} to 10^{38} erg s^{-1}. These attributes are most suitably explained by a binary system with a white dwarf (WD) primary in which hydrogen-rich matter is burned upon the surface of the WD, accreting at a rate of ~10^{-7} M_{⊙} yr^{-1} (Kahabka & van den Heuvel 1997).

Systems portraying characteristics of SSSs have been considered as possible progenitors of Type Ia supernovae (Rappaport et al. 1994). Type Ia supernovae are triggered by one of two pathways: the steady accumulation of matter onto an accreting WD, until it passes the Chandrasekhar limit (Whelan & Iben 1973), or the merger of two WDs (Webbink 1984; Iben & Tutukov 1984). During the evolution of single-degenerate binaries, the system undergoes a nuclear burning phase, appearing as an SSS (Rappaport et al. 1994). The second pathway has recently been shown to also give rise to SSS characteristics, as pre-double-degenerate systems undergo a period in which the initial WD accretes and burns matter from the companion’s red giant wind (Di Stefano 2010b). However, for either case, observations show a lack of soft X-ray sources (Gilfanov & Bogdán 2010; Di Stefano 2010a). The majority of observed SSS systems are now understood to be novae in which previously accreted matter is burned on the WD surface (Pietsch et al. 2005), but WDs that burn H in nova eruptions are thought to lose, not gain, mass (Nomoto 1982). It is also clear that the majority of known Galactic non-nova SSSs do not contain red giants as donors, but rather main-sequence stars—with inferred donor masses smaller than expected (Cowley et al. 1998).

Recently, massive (Be?) companions have been inferred for some SSSs in M31 (Orio et al. 2010). It remains possible that a large number of SSSs emit predominantly in the extreme UV, below Chandra detection limits (Southwell et al. 1996; Hachisu et al. 1996; Hachisu & Kato 2003). This possibility makes observations of apparently transient SSSs critical to the understanding of Type Ia progenitors.

Currently, five or six SSSs (besides novae) are known within our galaxy; however, only one has been seen within a globular cluster (Greiner 2000). Located within the M3 cluster, the transient SSS 1E1339.8+2837 (hereafter 1E1339) was first observed with the Einstein Observatory, possessing a 0.5–4.5 keV luminosity of 4 × 10^{33} erg s^{-1} (Hertz & Grindlay 1983). The ROSAT all-sky survey later detected a very soft X-ray source within the M3 globular cluster, with a maximum bolometric luminosity of 2.0 × 10^{35} erg s^{-1} (Verbunt et al. 1995). In 1992 January, the ROSAT High Resolution Imager (HRI) observed 1E1339 to have a soft spectrum (kT ~ 20 eV) and a 0.1–2.4 keV luminosity of 2 × 10^{35} erg s^{-1}; however, within six months the source had faded below HRI detection limits (Hertz et al. 1993). During its peak, 1E1339 was roughly one to two orders of magnitude less luminous than an average SSS (see Kahabka & van den Heuvel 1997).

After the 1992 outburst, 1E1339 fell into a period of relative quiescence, adopting a hard X-ray spectrum more typical of cataclysmic variables (CVs; e.g., Baskill et al. 2005). A follow-up ASCA observation taken in 1997 confirmed the luminosity decrease, and found the spectrum of 1E1339 to be best approximated by a 5 keV bremsstrahlung model, with a 0.5–10 keV luminosity of 1.6 × 10^{33} erg s^{-1} (Dotani et al. 1999). The optical counterpart for 1E1339 was identified by Edmonds et al. (2004) near the subgiant branch in V–I color–magnitude diagrams, but to be extremely bright in the U band, with strong variability. Its X-ray to optical flux ratio (F_{X}/F_{opt} ~ 1) is far too low for X-ray binaries containing neutron stars, high for normal CVs, but consistent with magnetic CVs (Verbunt et al. 1997).
The extremely blue colors of 1E1339’s optical counterpart (Edmonds et al. 2004) allow us to infer a high rate of accretion, which combined with the relatively low-luminosity X-ray emission rules out a neutron star or black hole accretor; we regard a WD accretor as certain. The small inferred radius of the SSS which combined with the relatively low-luminosity X-ray emission allows us to infer a high rate of accretion, and the high F_X/F_{opt} ratio, suggested a magnetic CV nature (Edmonds et al. 2004). In this paper, we report the results of three Chandra ACIS-S observations of 1E1339.

2. DATA REDUCTION

We observed the X-ray source 1E1339 on three separate occasions with the Chandra ACIS-S, using three active CCDs (S2, S3, and S4) with a 1/2 subarray (to reduce pileup in case 1E1339 were to become extremely bright) using the ACIS very faint mode. ObsID 4542 was taken on 2003 November 11 for 10.4 ks, ObsID 4543 on 2004 May 9 for 10.3 ks, and ObsID 4544 on 2005 January 10 for 9.8 ks. In addition, we obtained Hubble Space Telescope (HST) observations of 1E1339 in several bands, from F814W (I) to F220W (near-UV), coincident with the 2004 Chandra observation. An analysis of the HST observations will be published elsewhere.

The data were reduced using CIAO version 4.2\(^5\) as well as FTOOLS.\(^6\) A bad pixel file was created with the CIAO acis_run_hotpix tool. The observations were then reprocessed (using acis_process_events) and further filtered\(^7\) to create new level 2 event files. In order to create a source map, the images upon the S3 chip were adjusted, then merged together. The merged image was then divided by the merged set of exposure maps, taken from each observation (see Figure 1). The position of 1E1339 was determined to be R.A. = 13\(^{h}\)42\(^{m}\)09\(^{s}\), decl. = +28\(^{\circ}\)22\(^{\prime}\)47\(^{\prime\prime}\) (J2000), in agreement with previous HST and ROSAT HRI observations (see Edmonds et al. 2004).

The three observations were found to have notable differences within their average count rates, ranging from a maximum of 6.6×10^{-2} count s\(^{-1}\) seen in the second observation (ObsID 4543) to a minimum of 3.0×10^{-2} count s\(^{-1}\) seen in the first observation (ObsID 4542, see Table 1). We further extracted light curves from each of the three observations of 1E1339.8+2837 with use of the CIAO dmextract tool, using a binning of 500 s (see Figure 2). We then tested the variability for each individual observation, making use of the dither_region tool and the

\(^{5}\) http://cxc.harvard.edu/ciao
\(^{6}\) http://heasarc.gsfc.nasa.gov/docs/software/f tools/f tools_menu. html
\(^{7}\) http://cxc.harvard.edu/ciao/threads/ createL2/

Figure 1. Source map of X-ray sources within the M3 globular cluster (NGC 5272) from the merged data of the three observations. The core and half-mass radii are shown. 1E1339.8+2837 can be seen as the brightest X-ray source.

Figure 2. Light curves extracted from the three Chandra observations (ObsID 4542 top, ObsID 4543 middle, and ObsID 4544 bottom) over the observational period, using a binning of 500 s. Corresponding variability indexes of 7 (variable) for 4542, 6 (variable) for 4543, and 0 (not variable) for 4544 were found using the CIAO glvary tool.

Table 1

Date	ObsID	Exp. Time	Count Rate	
			0.5–10 keV	<0.3 keV
2003 Nov 11	4542	10.4	$2.7_{-0.2}^{+0.2} \times 10^{-2}$	$8.6_{-3.4}^{+0.0} \times 10^{-4}$
2004 May 9	4543	10.3	$6.1_{-0.3}^{+0.3} \times 10^{-2}$	$1.7_{-0.5}^{+0.7} \times 10^{-3}$
2005 Jan 10	4544	9.8	$2.3_{-0.2}^{+0.2} \times 10^{-2}$	$1.0_{-0.1}^{+0.0} \times 10^{-2}$

Notes. A notable low-energy emission is seen in the 2005 observation. Errors are 90% confidence. Exposure times in ks. All count rates in counts s\(^{-1}\).
of 7.7 ± 1.0 × 10^{33} \text{ erg s}^{-1} and 2.4^{+0.6}_{-0.7} \times 10^{33} \text{ erg s}^{-1}. The individual fits can be seen in Figures 3–5. In addition, the observations were fit to an absorbed power-law spectrum. In the case of the first two observations this gave a worse fit; however, for the third observation this gave a slightly better fit and a marginally higher luminosity \((L_X = (2.6 \pm 0.5) \times 10^{33} \text{ erg s}^{-1}) over the 0.5–10 keV range, again see Table 2). We also tested the models leaving the photoelectric absorption as a free parameter; however, the \(N_H\) values were consistent with the cluster value, and an \(F\)-test showed insignificant improvement. Finally, we tested the models with a pileup component. This served to worsen the fit in all three observations and slightly altered the luminosities \((L_X = 3.9^{+0.6}_{-1.0} \times 10^{33} \text{ erg s}^{-1}) for the first observation, \(L_X = 7.4^{+2.2}_{-1.0} \times 10^{33} \text{ erg s}^{-1}\) for the second observation, and \(L_X = (2.4 \pm 0.6) \times 10^{33} \text{ erg s}^{-1}\) for the third observation).

We created light curves for each observation over the 0.5–10 keV range. Assuming a linear relation between the luminosity from the \textit{mekal} models and the count rate, we used the maximum and minimum count rates from the modified light curves to estimate a maximum and minimum luminosity. From this, we found an estimated maximum 0.5–10 keV luminosity of \((1.4 \pm 0.3) \times 10^{34} \text{ erg s}^{-1}\), observed in the second observation, and a minimum luminosity of \(8.5^{+4.0}_{-3.6} \times 10^{32} \text{ erg s}^{-1}\), observed in the third observation, indicating that 1E1339’s hard X-ray flux has varied by roughly an order of magnitude.

We can estimate the mass transfer rate implied using the formulae of Patterson & Raymond (1985b), converting to the 0.5–10 keV band using our power-law fit to get \(L_X(0.5–10\text{ keV})= 1.6 \times 10^{32} M_{16}^{0.7} M_{16}^{2.8} \text{ erg s}^{-1}\), where \(M_{16}\) is the WD mass in units of 0.7 M\(_{\odot}\) and \(M_{16}\) is the mass transfer rate in units of 10\(^6\) g s\(^{-1}\). This gives a peak mass transfer rate of \((2.5–8.8) \times 10^{17} \text{ g s}^{-1}\), or \((3.7–13.3) \times 10^{-9} M_{\odot} \text{ yr}^{-1}\) (for WD masses of 0.7–1.4 M\(_{\odot}\)). Such high-mass transfer rates are typically seen in nova-like CVs, or during the outbursts of dwarf nova CVs. However, the hard X-ray flux of such systems is typically much smaller (Patterson & Raymond 1985b; Wheatley et al. 1996). The CVs with the highest hard X-ray luminosities are typically magnetic systems (Verbunt et al. 1997) since matter flows onto the WD in a stream following the magnetic field (rather than a disk) and loses half of its gravitational potential energy in an optically thin post-shock region (Cropper et al. 1999) rather than an accretion disk which becomes optically thick (Patterson & Raymond 1985b). Thus, the peak hard X-ray luminosity of 1E1339 can be taken as evidence in favor of the magnetic nature of the accretion flow, as suggested by Edmonds et al. (2004).

3. X-RAY SPECTRAL ANALYSIS

We extracted X-ray spectra from each of the three observations of 1E1339 and used XSPEC version 12.5 to model them. The spectra from the first and third observation (ObsID 4542 and 4544, respectively) were binned using the GRPPHA tool so that each bin contained a minimum of 15 counts. The second observation (ObsID 4543) contained significantly more counts and was grouped to contain a minimum of 20 counts per bin. The first two observations displayed hard spectra typical of CVs; however, the third observation contained a large low energy tail (63 counts between 0.2–0.3 keV). Neither of the other observations showed this tail, containing minimal counts over the same range. The sensitivity of the ACIS-S detector, and the accuracy of the Chandra response files, fall off at low energies (below \(-0.5\) keV). This introduces difficulty when trying to fit a spectrum over this range. For this reason, we ignored all counts below 0.5 keV for our primary fits.

We included a photoelectric absorption component within our X-ray analysis, using a hydrogen column density, \(N_H\), frozen at \(5.5 \times 10^{19} \text{ cm}^{-2}\), inferred (Predehl & Schmitt 1995) from the measured color excess \(E(B-V) = 0.01\) (Harris 2010).\(^8\) We used the convolution component cflux to calculate the flux over a range of 0.5–10 keV. Each spectrum was then fit to a hot X-ray plasma emission model (XSPEC model \textit{mekal}). The metal abundance was fixed, using \([\text{Fe}/\text{H}] = -1.57\) (Harris 1996).

The three observations were fit with varying levels of success (see Table 2). From the hot diffuse gas emission model, the largest observed flux \((0.5–10\text{ keV}) = (6.0 \pm 0.8) \times 10^{-13} \text{ erg cm}^{-2} \text{ s}^{-1}\), seen in the second observation, while the smallest flux was \((1.8 \pm 0.4) \times 10^{-13} \text{ erg cm}^{-2} \text{ s}^{-1}\), seen in the third observation. Using a distance of 10.4 kpc to the M3 cluster (Harris 1996)\(^8\), these correspond to luminosities

Table 2

Epoch	\(N_H \times 10^{19}\)	\(\Gamma/kT\)
2003 (5.5)	>1.14	3.8^{+0.5}_{-0.2} \times 10^{33}
2004	22^{+15}_{-10}	7.1^{+0.1}_{-0.0} \times 10^{33}
2005	8^{+10}_{-4}	2.4^{+0.6}_{-0.5} \times 10^{33}

Notes: Spectral fits to 1E1339.8+2837 data from 2003, 2004, and 2005 (ObsID 4542, 4543, and 4544, respectively) to a PHABS * MEKAL model or PHABS * Power-law model. The hydrogen column density \((N_H)\) was held fixed. \(L_X\) in erg s\(^{-1}\) for 0.5–10 keV. The last two columns list the reduced chi-squared value, the degrees of freedom, and the null-hypothesis probability.

8 Updated 2010; http://www.physics.mcmaster.ca/~harris/mwgc.dat

9 http://cxc.harvard.edu/proposer/POG/html/chap6.html#tth_sEc6.3
Stacey et al.

Figure 3. Chandra spectrum of 1E1339.8+2837 (ObsID 4542) with an overplotted best-fit mekal model fit from 0.5 to 10 keV. The ratio of the data to the model is shown below. The fit yields $\chi^2_\nu = 0.47$ and a null hypothesis probability = 0.96.

Figure 4. Chandra spectrum of 1E1339.8+2837 (ObsID 4543) showing an overplotted best-fit mekal model fit from 0.5 to 10 keV. The ratio of the data to the model is shown below. The fit yields $\chi^2_\nu = 1.50$ and a null hypothesis probability = 5×10^{-2}.

a 0.2–10 keV luminosity of 5.0×10^{33} erg s$^{-1}$. However, the fit produced a poor χ^2_ν of 4.41. We are unable to fit with any model the energy distribution of the detected counts using the current ACIS response matrices, which are known to poorly model the ACIS response below 0.3 keV. We may guess that the bolometric luminosity of this low-energy component (mostly in the extreme UV) may exceed the luminosity of the hard component, although we cannot prove this.

Significant blackbody-like luminosity from the boundary layer has long been predicted from CVs (e.g., Patterson & Raymond 1985a). Such blackbody-like luminosity has only been seen in the X-ray regime in magnetic CVs, such as polars (e.g., Ramsay & Cropper 2004). 1E1339’s high extreme UV luminosity is reminiscent of the high far-UV luminosity of the CV AKO9 in 47 Tuc, attributed to a high rate of mass transfer through its accretion disk (Knigge et al. 2003). AKO9 also has a subgiant donor, and its blue far-UV spectrum and presence of He II λ4686 emission suggest a luminous ($\sim 10^{34}$ ergs s$^{-1}$) EUV-bright boundary layer (Knigge et al. 2003). However, if 1E1339’s soft emission is more luminous than its hard emission (which will require observations with better low-energy calibration to determine), then new models may be required. It is possible, for instance, that the very soft emission arises from the same (uncertain) processes that resulted in the 1991–1992 supersoft state, as the luminosity may be similar. If accretion wind models (Hachisu & Kato 2003) are able to shift the photosphere temperature of SSSs in similar ways, they may explain how Type 1a supernova progenitors could hide from X-ray detection (Gilfanov & Bogdán 2010; Di Stefano 2010a, 2010b). We note that it is unclear how an expanding photosphere
driven by an accretion wind could coexist with the luminous, unabsorbed hard X-ray emission seen in 1E1339.

4. COMPARISON TO OTHER RESULTS

4.1. Comparison to Previous Observations

During the 1992 outburst, 1E1339 appeared as an SSS, with a 0.1–2.4 keV luminosity of 2×10^{35} erg s$^{-1}$ (Hertz et al. 1993). Following this, the source fell into a period of relative quiescence. In 1997, a follow-up ASCA observation found 1E1339 to possess a CV-type spectrum, as well as a 0.5–10 keV luminosity of 1.6×10^{33} erg s$^{-1}$ (Dotani et al. 1999). Our inferred maximum luminosity of $(1.4 \pm 0.3) \times 10^{34}$ erg s$^{-1}$ still lies considerably below that of the 1992 outburst; however, it greatly exceeds the 1997 observation. Our minimum inferred 0.5–10 keV luminosity of $8.5_{-4.6}^{+4.9} \times 10^{32}$ erg s$^{-1}$ is seen to be considerably lower than the 1997 observation, again highlighting the variable nature of 1E1339.

4.2. Comparison to GK Persei

GK Persei is generally considered to be the upper limit of observed hard X-ray luminosity for CVs. The system is an intermediate polar with an unusually long orbital period of 2 days (Crampton et al. 1986) and a short WD period of 351 s (Watson et al. 1985). Roughly every three years, the system undergoes outbursts (Simon 2002) during which time it reaches an average 2–10 keV flux of $\sim 2.5 \times 10^{-10}$ erg cm$^{-2}$ s$^{-1}$ (Evans et al. 2009).

Our maximum observed luminosity for 1E1339 ($(1.4 \pm 0.3) \times 10^{34}$ erg s$^{-1}$ over 0.5–10 keV) shows 1E1339 to be exceedingly luminous for a CV, perhaps more luminous than GK Persei. Observations of a recent outburst from GK Persei in 2006 give a maximum 2–10 keV flux of 3.3×10^{-10} erg cm$^{-2}$ s$^{-1}$. However, an uncertainty in the distance to GK Persei, ranging from ~ 340 pc (Warner 1987) to 525 pc (Duerbeck 1981), allows for a wide range of luminosities for the 2006 outburst, from 4.6×10^{33} erg s$^{-1}$ to 1.1×10^{34} erg s$^{-1}$. To compare the luminosity of 1E1339 to GK Persei, we made use of the Chandra PIMMS version 3.9k to estimate our observed luminosity within the 2–10 keV range. Using a thermal bremsstrahlung model with an energy of 2 keV, we found a corresponding 2–10 keV luminosity of $(9.8 \pm 1.4) \times 10^{33}$ erg s$^{-1}$, while a power-law model with photon index of 1.3 resulted in a luminosity of $(1.12 \pm 0.15) \times 10^{34}$ erg s$^{-1}$. Both the temperature and photon index are taken from the best-fit models. Depending upon the true distance to GK Persei, 1E1339 may exceed GK Persei in X-ray luminosity, making 1E1339 the CV with the highest hard X-ray luminosity. As estimates for the distance to GK Persei cover a large range, 1E1339 provides a more accurate estimate of the maximum observed CV hard X-ray luminosity.

4.3. Comparison to Very Faint X-ray Transients

The maximum luminosity falls into the range of very faint X-ray transients (VFXTs), with peak luminosities $10^{34}–10^{36}$ erg s$^{-1}$ (Wijnands et al. 2006), and is comparable to previously studied VFXTs (see Munó et al. 2005). Several explanations have been proposed for VFXTs, including low-mass X-ray binaries (LMXBs) with extremely low-mass companions (King & Wijnands 2006), and classical and recurrent nova outbursts (Mukai et al. 2008). The large peak X-ray luminosity of 1E1339 suggests that the most luminous CV-type systems may also account for some non-nova VFXTs.

5. CONCLUSIONS

From three observations of the X-ray source 1E1339, we found the source to be considerably variable, with a 0.5–10 keV luminosity ranging from $(1.4 \pm 0.3) \times 10^{34}$ erg s$^{-1}$ to $8.5_{-4.6}^{+4.9} \times 10^{32}$ erg s$^{-1}$. The maximum observed X-ray luminosity gives 1E1339 the largest well-measured hard X-ray luminosity for any CV, providing a reliable estimate on the X-ray luminosity achievable by CV-type systems. The peak X-ray luminosity falls into the range of VFXTs, suggesting that the most X-ray luminous CV-type systems may account for some VFXTs.
Above 0.5 keV, we were able to fit each observation to a hot diffuse gas emission model with varying levels of success, showing a typical hard CV spectrum. Our observations over 0.5–10 keV are in agreement with previous observations which have shown 1E1339 to have fallen into a period of relative quiescence after its 1992 SSS period (see Dotani et al. 1999). However, a luminous low-energy component, below 0.3 keV, was seen in the 2005 observation. We were unable to successfully model this component of the observation due to the uncertain calibration of the ACIS-S detector below 0.3 keV. However, it is possible that the bolometric luminosity of the low-energy component may exceed that of the hard component.

1E1339’s unusual behavior raises a number of questions. What is the origin and luminosity of the luminous low-energy component? Is this (largely hidden) low-energy flux due to nuclear burning on (part of?) the WD surface (Edmonds et al. 2004), or to a blackbody-like accretion-powered component, like those seen in magnetic CVs? What is the geometry of the accretion flow? (Can this be tested with longer, continuous X-ray observations?) Was the 1992 outburst an isolated nuclear flash, an increase in the accretion flow, or a change in the photospheric radius? Our near-simultaneous near-UV HST observations may help address these questions. There is also a clear need for XMM observations, as the pn camera has better-calibrated responses down to 0.2 keV to characterize the soft X-ray emission, and a long XMM observation could search for pulsations and a WD spin period, expected for a magnetic CV. Understanding the behavior of low-energy components such as that reported here may play a critical role in understanding the mismatch between observed and predicted numbers of SSSs reported by Gilfanov & Bogdán (2010) and Di Stefano (2010a).

REFERENCES

Baskill, D., Wheatley, P., & Osborne, J. 2005, MNRAS, 357, 626
Cowley, A. P., Schmidtke, P. C., Crampton, D., & Hutchings, J. B. 1998, ApJ, 504, 854
Crampton, D., Fisher, W. A., & Cowley, A. P. 1986, ApJ, 300, 788
Cropper, M., Wu, K., Ramsay, G., & Kocabiyik, A. 1999, MNRAS, 306, 684
Di Stefano, R. 2010a, ApJ, 712, 728
Di Stefano, R. 2010b, ApJ, 719, 474
Dotani, T., Asai, K., & Greiner, J. 1999, PASJ, 51, 519
Duerbeck, H. W. 1981, PASP, 93, 165
Edmonds, P. D., Kahabka, P., & Heinke, C. O. 2004, ApJ, 611, 413
Evans, P. A., Beardmore, A. P., Osborne, J. P., & Wynn, G. A. 2009, MNRAS, 399, 1167
Gilfanov, M., & Bogdán, Á. 2010, Nature, 463, 924
Gregory, P. C., & Loredo, T. J. 1992, ApJ, 398, 146
Greiner, J. 2000, New Astron., 5, 137
Greiner, J., Hasinger, G., & Kahabka, P. 1991, A&A, 246, L17
Hachisu, I., & Kato, M. 2003, ApJ, 590, 445
Hachisu, I., Kato, M., & Nomoto, K. 1996, ApJ, 470, L97
Harris, W. E. 1996, AJ, 112, 1487
Harris, W. E. 2010, arXiv:1012.3224
Hertz, P., & Grindlay, J. E. 1983, ApJ, 267, L83
Hertz, P., Grindlay, J. E., & Bailyn, C. D. 1993, ApJ, 410, L87
Iben, I., Jr., & Tutukov, A. V. 1984, ApJS, 54, 335
Kahabka, P., & van den Heuvel, E. P. J. 1997, ARA&A, 35, 69
King, A. R., & Wijnands, R. 2006, MNRAS, 366, L31
Knigge, C., Zurek, D. R., Shara, M. M., Long, K. S., & Gilliland, R. L. 2003, ApJ, 599, 1320
Mukai, K., Orio, M., & Della Valle, M. 2008, ApJ, 677, 1248
Muno, M. P., Ptahl, E., Baganoff, F. K., Brandt, W. N., Ghez, A., Lu, J., & Morris, M. R. 2005, ApJ, 622, L113
Nomoto, K. 1982, ApJ, 253, 798
Orio, M., Nelson, T., Bianchini, A., Di Mille, F., & Harbeck, D. 2010, ApJ, 717, 739
Patterson, J., & Raymond, J. C. 1985a, ApJ, 292, 550
Patterson, J., & Raymond, J. C. 1985b, ApJ, 292, 535
Pietsch, W., Firi, J., Freyberg, M. J., Greiner, J., Haberl, R., Riffeser, A., & Sala, G. 2005, A&A, 442, 879
Predehl, P., & Schmitt, J. H. M. M. 1995, A&A, 293, 889
Ramsay, G., & Cropper, M. 2004, MNRAS, 347, 497
Rappaport, S., Di Stefano, R., & Smith, J. D. 1994, ApJ, 426, 692
Simon, V. 2002, A&A, 382, 910
Southwell, K. A., Livio, M., Charles, P. A., O’Donoghue, D., & Sutherland, W. J. 1996, ApJ, 470, 1065
Verbunt, F., Bunk, W., Hasinger, G., & Johnston, H. M. 1995, A&A, 300, 732
Verbunt, F., Bunk, W., Ritter, H., & Pfeffermann, E. 1997, A&A, 327, 602
Warner, B. 1987, MNRAS, 227, 23
Watson, M. G., King, A. R., & Osborne, J. 1985, MNRAS, 212, 917
Webbink, R. F. 1984, ApJ, 277, 355
Wheatley, P. J., Verbunt, F., Belloni, T., Watson, M. G., Naylor, T., Ishida, M., Duck, S. R., & Pfeffermann, E. 1996, A&A, 307, 137
Whelan, J., & Iben, I. Jr. 1973, ApJ, 186, 1007
Wijnands, R., et al. 2006, A&A, 449, 1117