Tree-ring oxygen isotopes record a decrease in Amazon dry season rainfall over the past 40 years

Bruno B. L. Cintra1,2 · Manuel Gloor3 · Arnoud Boom3 · Jochen Schöngart4 · Jessica C. A. Baker5 · Francisco W. Cruz6 · Santiago Clerici1 · Roel J. W. Brienen1

Received: 21 April 2021 / Accepted: 7 November 2021 / Published online: 26 November 2021
© The Author(s) 2021

Abstract
Extant climate observations suggest the dry season over large parts of the Amazon Basin has become longer and drier over recent decades. However, such possible intensification of the Amazon dry season and its underlying causes are still a matter of debate. Here we used oxygen isotope ratios in tree rings ($\delta^{18}O_{TR}$) from six floodplain trees from the western Amazon to assess changes in past climate. Our analysis shows that $\delta^{18}O_{TR}$ of these trees is negatively related to inter-annual variability of precipitation during the dry season over large parts of the Amazon Basin, consistent with a Rayleigh rainout model. Furthermore $\delta^{18}O_{TR}$ increases by approximately 2‰ over the last four decades (~1970–2014) providing evidence of an Amazon drying trend independent from satellite and in situ rainfall observations. Using a Rayleigh rainout framework, we estimate basin-wide dry season rainfall to have decreased by up to 30%. The $\delta^{18}O_{TR}$ record further suggests such drying trend may not be unprecedented over the past 80 years. Analysis of $\delta^{18}O_{TR}$ with sea surface temperatures indicates a strong role of a warming Tropical North Atlantic Ocean in driving this long-term increase in $\delta^{18}O_{TR}$ and decrease in dry season rainfall.

Keywords Amazon floodplains · Climate change · Macrolobium acaciifolium · Oxygen isotopes

1 Introduction
The Amazon Basin is the world’s largest watershed and one of the wettest locations on the planet. The region drains over 6 mio. km², contributing ~17% of the global fresh-water discharge to the oceans (Richey et al. 1986; Callède et al. 2010). Most of the region’s precipitation falls during the peak monsoon months in the southern hemisphere summer (Vera et al. 2006; Garreaud et al. 2009; Marengo et al. 2012), with heavy precipitation followed by a steady rise in river levels, often leading to large-scale floods (Marengo and Espinoza 2016; Barichivich et al. 2018). In contrast, during the driest quarter of the year most of the basin undergoes a well-defined dry season, sometimes intense enough to cause severe droughts and wildfires (Tomasella et al. 2011; Aragão et al. 2018; Marengo et al. 2018). These hydroclimatic extremes impact the carbon balance and biodiversity of the largest rainforest area on the globe (Gatti et al. 2014; Esquivel-Muelbert et al. 2018; Aleixo et al. 2019), and also cause severe social and economic hardship (Marengo et al. 2013; Pinho et al. 2015; Brondízio et al. 2016).

Climate extremes in the Amazon region have become more frequent over recent decades, likely driven by changes in sea surface temperatures (SST) of the surrounding ocean basins, affecting convective activity over tropical South America and influencing the moisture inflow into the basin by changing the trade-winds from the Tropical Atlantic Ocean (Jiménez-Muñoz et al. 2016; Li et al. 2016; Barichivich et al. 2018). This has led to increases in wet
season rainfall mainly in the west of the Amazon (Gloor et al. 2013, 2015), with consequent increases in frequency and magnitude of flooding extremes in Amazonian rivers (Espinoza et al. 2014; Ovando et al. 2016; Barichivich et al. 2018; Wang et al. 2018). In parallel, evidence suggests that there have been small reductions in dry season rainfall and an extension of dry season length in the south and eastern parts of the Amazon (Fu et al. 2013; Gloor et al. 2013; Marenco et al. 2018), but also possibly in more western and central regions (Ronchail et al. 2018; Gatti et al. 2021). Nonetheless, available instrumental climate data to assess the magnitude and variability of climate within this vast region are relatively scarce.

Even small reductions in dry season rainfall can exert significant influence on forest structure and biodiversity patterns (Quesada et al. 2012; Souza et al. 2016; Esquivel-Muelbert et al. 2017, 2018), by causing widespread tree mortality (Nepstad et al. 2007; Phillips et al. 2009; Brien et al. 2015; Feldpausch et al. 2016) and increasing the occurrence of large-scale wildfires (Flores et al. 2017; Aragão et al. 2018). Resulting losses in forest area and function could potentially cause further warming and drying (Khanna et al. 2017; Wright et al. 2017; Zemp et al. 2017). However, uncertainties remain regarding how recent climate trends might be expected to unfold over the next century (Boisier et al. 2015; Fernandes et al. 2015; Baker et al. 2021). Addressing these uncertainties through climate model evaluation and development requires longer historical records with better spatial coverage across the Amazon than currently available from instrumental data.

A useful approach to improve our understanding of climate variability is to use natural archives that record oxygen isotope ratios (δ18O) of rainfall water (Vuille 2018). Rainfall δ18O is determined by the temperature of condensation and/or the rate of precipitation of rainfall (Dansgaard 1964; Aragúas-Aragúas et al. 2000; Schubert and Jahren 2015). This climatic signature of rainfall δ18O may be recorded in the isotopic composition of cellulose from tree rings (Libby et al. 1976; McCarroll and Loader 2004; van der Sleen et al. 2017), which can offer valuable proxy records for studying modern climate variability with annual or sub-annual resolution (Rodén et al. 2009; Managave et al. 2011; Schollaen et al. 2013).

In the tropical climate of the Amazon Basin, rainfall δ18O has been shown to closely reflect a Rayleigh distillation of cloud water resulting from accumulated precipitation along airmass trajectories, also referred to as rainout upwind (Salati et al. 1979; Matsui et al. 1983; Vuille and Werner 2005). δ18O in tree rings (δ18O_TR) from Amazon non-flooded terra firme forests have been shown to preserve this climatic signal from rainfall δ18O (Baker et al. 2015, 2016), providing historical records of large-scale precipitation amounts during the wet season, which is their main growing period (Brienen et al. 2012; Baker et al. 2018). In contrast, tree species from Amazon floodplains only grow when flood levels are low, which occurs after the main rainfall season retreats and mainly throughout the dry season (Schöngart et al. 2002; Worbes 2002). If the oxygen isotopic signal in the tree rings of these trees reflects Rayleigh distillation, then a δ18O_TR time-series obtained from floodplain trees are potentially suitable for obtaining records of historical climate conditions during the dry season at large-scale in the Amazon (Cintra et al. 2019).

Here we present a δ18O_TR record obtained from the floodplain tree species Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) with the goal of providing an independent estimate of historical changes in dry season rainfall at the Amazon-wide scale. A prerequisite for using this approach is that δ18O_TR is primarily determined by plant source water δ18O, and that contributions from local climate effects on leaf water enrichment are relatively minor. Previous studies have shown that leaf water enrichment effects are larger under dry compared to humid conditions (Barbour et al. 2004; Kahmen et al. 2011; Cintra et al. 2019). Thus, trees growing in humid conditions are probably a more reliable recorder of the original source water δ18O variation. For this reason, we selected one of the wettest locations in the Amazon, at the western end of the Basin, to produce a 44-year long record of floodplain δ18O_TR of M. acaciifolium trees. As the main trade winds airstream over the Amazon follows an east–west direction, we expected the climatic signal in this δ18O_TR to result from cumulative rainout of air parcels over the larger portion of the Basin from the Atlantic Coast to the sampling site. We evaluate to what extent inter-annual variations in this δ18O_TR record may be interpreted by variations in dry season rainfall, and discuss implications of the trend in the record for recent climate changes observed in the Amazon Basin.

2 Methods
2.1 Species and sampling

We sampled tree cores in 2015 C.E. using 10 mm increment borers at a floodplain site within the catchment of the Marañon River in Peru (74°05′30″ W, 4°29′30″ S) (Fig. 1), where rainfall normally exceeds 3000 mm year−1 and rarely drops below 100 mm mo−1. River records show an annually recurring flood-pulse (Junk et al. 1989). Due to anoxic conditions during flooding, the growth period of trees occurs during the low stage of the river (Schöngart et al. 2002, 2005), which at this site is approximately from May to November, largely coinciding with the dry season in most of the Amazon (Online Resource SIFig. 1).
Cores were taken from the hyperdominant tree species *Macrolobium acaciifolium* (ter Steege et al. 2013), a brevi-deciduous species, i.e. trees which shed their leaves straight after flood levels rise and produce new leaves few days after (Schöngart et al. 2002). Tree-rings of this species have been shown to be annual both by standard dendrochronology and by radiocarbon analysis (Schöngart et al. 2005; Assahira et al. 2017; Batista and Schöngart 2018).

2.2 Isotope analysis

We analysed the isotopic ratio of oxygen in the cellulose extracted from wood cross-sectional laths (Kagawa et al. 2015), using the chemical treatment described in Wieloch et al (2011). The cellulose from individual rings was analysed by pyrolysis over glassy carbon at 1400 °C and an Isotope Ratio Mass Spectrometer (Sercon 20-20 IRMS) in the
Environmental Stable Isotope Laboratory of the University of Leicester. All isotopic ratios are expressed relative to the Vienna Standard Mean Ocean Water, in ‰ units.

2.3 Chronology building and dating

We first assessed the strength of isotopic signals from different tree ring sections (i.e., first, middle and last 1/3 section) for a sequence of 20 rings from three different cores. This initial analysis revealed that $\delta^{18}O_{TR}$ in the middle ring section had the strongest and most significant correlation with basin-wide large-scale precipitation and Amazon River levels (Cintra et al. 2019). We suspect this particular section corresponds most strongly to (upstream) precipitation, as it corresponds to the middle of the growing season when river levels are at their lowest, and trees thus most likely only use precipitation water for growth. We then analysed the $\delta^{18}O_{TR}$ from the middle ring sections of six different trees for approximately 50–90 rings per tree, producing a record that dates back to 1925 (Online Resource SIFig. 2).

The inter-annual variation of the $\delta^{18}O$ from the six individual series agreed well, as indicated by the average of all correlations between each series ($r=0.58$) and the expressed population signal (EPS = 0.89) for the period from 1970 to 2014 (Online Resource SIFig. 2). Estimated years of tree ring formation after cross-dating closely matched the radiocarbon dates of the cellulose in the tree rings (Online Resource SIFig. 3), with few deviations of no more than 2 years and only for dates before 1970 C.E. These analyses confirm that our samples are dated with higher confidence for dates after 1970 C.E. allowing us to perform correlations with climate variables.

2.4 Data analysis

We used Pearson correlations to evaluate the association of the $\delta^{18}O_{TR}$ series with rainfall, temperature and outgoing longwave radiation (OLR) at local and Amazon-wide scales. OLR was used as it is frequently interpreted as an indicator of convective activity and rainfall (Kousky 1988; Liebmann et al. 1998; Garcia and Kayano 2009). As a separate measure of large-scale hydrological variation, we also correlated $\delta^{18}O_{TR}$ with levels of Amazonian rivers that drain rainfall (Cintra et al. 2013). Influences of large-scale climate on $\delta^{18}O_{TR}$ and teleconnections with sea surface temperatures (SSTs) were visualized using spatial correlation maps of the $\delta^{18}O_{TR}$ records with gridded precipitation and temperature from the Climate Research Unit climatology (CRUTS 4.00, Harris et al. 2020), OLR from NOAA (Lee et al. 2007), and SST from HAD-ISST (Rayner et al. 2003). For comparison, we also used the ERA5 precipitation and temperature reanalysis from ECMWF (Copernicus Climate Change Service, Hersbach et al. 2013). All correlations were calculated for periods post 1970, which is the period with higher confidence in the climate records and for which the $\delta^{18}O_{TR}$ record is well replicated and precisely dated.

To determine the possible region of $\delta^{18}O$ rainout during air parcel transport to the study site, we calculated 10-day back trajectories of airmass using a Lagrangian air mass trajectory model (c.f. Baker et al. 2016) starting at five heights above the surface (0.99, 0.90, 0.80, 0.70 and 0.60 hPa) for the period of 2000 to 2014 C.E (Fig. 1e). We accumulated precipitation along all airmass trajectories during the time spent over land for days where precipitation at the site was greater than 0 mm. For this analysis we used daily precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM 3B42, GES DISC 2016) (Huffman et al. 2007). We then calculated 3-monthly averaged cumulated precipitation along all trajectories per year and compared the obtained time series with our $\delta^{18}O_{TR}$ record.

To assess the robustness of the associations between the $\delta^{18}O_{TR}$ and inter-annual variation in climate, we repeated the $\delta^{18}O$—climate analyses using two alternative $\delta^{18}O_{TR}$ time series: one series from which we removed the long-term trend using a linear regression, and one series with first-order autocorrelation removed. We note that first-order autocorrelation was relatively weak ($r=0.3$) and that the raw and autocorrelation-detrended records were nearly identical (Online Resource SIFig. 4) with Pearson’s correlation coefficient $r=0.9$ for the entire record and $r=0.94$ for the period from 1970 to 2014. Results of this analysis are presented in Online Resource SIFigs. 4 and 5.

To aid in the interpretation of trends in the $\delta^{18}O$ record, we estimated the possible contributions of known processes affecting long-term variation in tree ring $\delta^{18}O$ through changes in plant source water $\delta^{18}O$, leaf water enrichment and isotopic exchange with stem water during cellulose synthesis. We used a Rayleigh distillation model to estimate the effect of changes in large-scale precipitation and associated rainout processes on rainfall $\delta^{18}O$. This model is sensitive to changes in rainfall amounts along airmass trajectories and to changes in moisture inflow into the Basin. Considering changes in moisture inflow is important because they indicate how much change in rainfall $\delta^{18}O$ can be expected even if there are no changes in precipitation along rainfall trajectories. Changes in moisture inflow were estimated as in Baker et al. (2016) (Online Resource SIFig. 6a). We then used tree ring isotope models to estimate the possible effects of local climate on leaf water enrichment via leaf transpiration, as in Cintra et al. (2019). These models take into account changes in equilibrium and kinetic fractionation resulting from variations in temperature and vapor pressure deficit, the effects of stomatal conductance (g_s) on the diffusion of enriched water through the leaf lamina (i.e. Péclet Effect), and isotopic equilibration with water during
cellulose synthesis (Barbour and Farquhar 2000; Barbour 2007; Sternberg 2008).

For the estimates of the contributions of different processes to the trend in the δ^{18}O$_{TR}$, we considered possible δ^{18}O$_{TR}$ changes resulting from 20% reductions in rainfall during the dry season, as indicated by climate analysis for the period of 1970–2014 (Fu et al. 2013; Haghtalab et al. 2020; Gloor et al. 2013, 2015), and an estimated increase of 15% in moisture inflow for the same period, both of which may affect plant source water δ^{18}O. We considered an initial δ^{18}O of -11.5‰ for the vapor inflow, estimated from equilibrium with rainfall δ^{18}O (Gat 1996) from Belém/Brazil GNIP station, and -4.5‰ for rainfall at the sampling site during June-October (Iquitos Station, GNIP). For variables that influence δ^{18}O$_{TR}$ via leaf water enrichment, we considered a total 2% increase in VPD since 1970, which is what is observed at our site according to data from CRU TS 4.04 (Online Resource SIFig. 6b). With these tree ring isotope models we also consider how much δ^{18}O$_{TR}$ change may be expected if plants have down-regulated their g_s rates in response to increasing concentrations of atmospheric CO$_2$. Because there might be a lot of variation of this effect for different species, as a conservative measure we consider what would be the maximum possible reduction in g_s. Evidence from sub-fossil leaf material, carbon isotopes in tree rings and free air CO$_2$ fertilization experiments (FACE) (Wullschleger et al. 2002; Ainsworth and Rogers 2007; Cerneck et al. 2011, 2013; Lammertsma et al. 2011) suggest possible g_s reductions of up to 30% per 100 ppm increase in atmospheric [CO$_2$]. Over the period from 1970 to 2014 C.E., atmospheric CO$_2$ has increased approximately by 85 ppm. Thus, we consider here a maximum 25% g_s reduction in response to increases in atmospheric CO$_2$ concentrations over this period.

All analyses and graphs were done in R.

Table 1

Climate Variable	Pearson’s r (detrended)	Season (months)
Local temperature	0.40** (0.24)	Dry (June–October)
Local rainfall	-0.04 (0.08)	Dry (June–October)
Amazon-wide rainfall	-0.57*** (-0.44***)	Dry (June–October)
Amazon River discharge at Óbidos	-0.47* (-0.44*)	Low (August–November)
Amazon-wide OLR	0.58*** (0.55****)	Dry (June–October)
Amazon-wide temperature	0.59*** (0.27)	Dry (June–October)
TNA sea surface temperature	0.49*** (0.34*)	February–June
Nino3.4 sea surface temperature	0.38* (0.45***)	February–June
Partial correlations		
Amazon-wide rainfall, controlled for local T	-0.41***	Dry (June–October)
Local Temperature, controlled for Amazon rainfall	0.15	Dry (June–October)

Pearson correlations, or partial correlations for raw and detrended climate and δ^{18}O$_{TR}$ are shown. Asterisks indicate the significance levels <0.05*, <0.01**, <0.001***
for all trajectories at heights above 900 hPa, with maximum correlations observed at 600 hPa ($r = -0.8, p < 0.001$, Fig. 1j). At this height, accumulated precipitation averaged for the entire growing season is also significantly correlated with δ18O$_{TR}$ ($r = -0.54, p < 0.041$). The air mass trajectories match the regions of influence of rainfall and OLR on δ18O$_{TR}$ (Fig. 1a, c, e).

Associations with large-scale hydrology are also reflected in correlations with SSTs globally, showing a strong positive covariation between Tropical North Atlantic SSTs and the raw δ18O$_{TR}$ record, and a clear relation with El Niño Southern Oscillation (ENSO), especially at inter-annual time-scales (i.e., the detrended record) (Fig. 2). These regions are known to influence Amazon hydrology (Foley et al. 2002; Yoon and Zeng 2010; Barichivich et al. 2018). We furthermore find a strong positive association with SSTs in the Indian Ocean, which is probably the result of teleconnections of this region with ENSO (Stuecker et al. 2017; Zhang et al. 2021). Associations were strongest with SST averaged over the first half of the year—i.e. during the 6 months preceding the trees’ growing season (Table 1). This time lag in correlations between SSTs and our δ18O$_{TR}$ record is similar to the lag observed between Amazon precipitation and SST anomalies (see Fig. 2 and Online Resource SIFigs. 9 and 10) and consistent with other studies (e.g. Yoon and Zeng 2010, their Fig. 4b).

An independent relation of local climate on the δ18O$_{TR}$ record was evident in a positive correlation with local dry season temperature from July to September ($r = 0.43, p < 0.05$, see Online Resource SIFig. 7c), possibly arising by temperature affecting leaf water enrichment. Thus, we investigated the contribution of each of these variables on variation in δ18O$_{TR}$ using partial linear regression analysis (Table 1). In this analysis, the effect of a second climate variable (z) on δ18O$_{TR}$ was removed by using the residuals of the regression between this control variable z and δ18O$_{TR}$ to test for the relationship between δ18O$_{TR}$ and climate variable y. After removing δ18O$_{TR}$ variations associated with local temperature, the strength of the correlations with large-scale precipitation were reduced, but remained significant (from $r = -0.57, p < 0.001$ to $r = -0.41, p < 0.01$). In contrast, the correlation of the δ18O$_{TR}$ variation with local temperature disappeared entirely (from $r = 0.43, p < 0.05$ to $r = 0.15, p = 0.32$) after removing the δ18O$_{TR}$ variation associated with

Fig. 2 a Global spatial correlation maps of δ18O$_{TR}$ with sea surface temperatures (SST). b as in (a) but with long-term trend removed from both SST and δ18O$_{TR}$. c Global spatial correlation maps of Amazon dry season (Jun–Oct) precipitation with SST. d As in (c) but with long term trend removed from the data. The black dot in northwest South America indicates the location of the sampling site. Only correlations with $p < 0.05$ are shown.
large-scale precipitation. These results indicate that local temperature has little direct effect on $\delta^{18}O_{\text{TR}}$ at our site and thus that leaf water enrichment does not strongly affect inter-annual variation in $\delta^{18}O_{\text{TR}}$.

The $\delta^{18}O_{\text{TR}}$ record shows significant long-term variation ($p < 0.01$, $r^2 = 0.31$), with a $\sim 2\%$ increase in $\delta^{18}O_{\text{TR}}$ since 1970 (Online Resource SIFig. 2). This trend was still highly significant ($p < 0.01$) after removing autocorrelation from the data (Online Resource SIFig. 4). We here use the Rayleigh and tree-ring isotope models to estimate the relative influence of changes in precipitation and moisture inflow, VPD and possible change in stomatal conductance on $\delta^{18}O_{\text{TR}}$. We estimate that a 20% decrease in large-scale rainfall, with a simultaneous 15% increase in moisture inflow, would lead to nearly 2‰ increase in the $\delta^{18}O_{\text{TR}}$ record (Fig. 3a). In contrast, VPD and g_s have much smaller effects on tree ring $\delta^{18}O$. A decrease in VPD in the order of 2%, similar to observed changes at the study site, would lead to less than 0.06–0.2‰ change in $\delta^{18}O_{\text{TR}}$ (Fig. 3b). Furthermore, a reduction in g_s of 25% (the maximum realistic change over the study period, see Data Analysis in the “Methods” Section) would lead to additional increases of 0.2–0.33‰ in $\delta^{18}O_{\text{TR}}$ (Fig. 3c).

4 Discussion

We produced a $\delta^{18}O_{\text{TR}}$ record based on M. acaciifolium floodplain trees from one of the wettest locations in the Amazon to test if it was suitable to record past dry season precipitation variability, and to explore whether the Amazon dry season has changed over recent decades.

The primary source of variation of $\delta^{18}O_{\text{TR}}$ is the plant’s source water $\delta^{18}O$, which for most trees comes from recent precipitation. For large catchments such as the Amazon basin, variation in precipitation $\delta^{18}O$ is the result of a Rayleigh distillation type rainout processes, and thus reflects precipitation amount along the airmass trajectories (Salati et al. 1979; Vimeux et al. 2005; Vuille and Werner 2005; Ampuero et al. 2020; Baker et al. 2016; Hurley et al. 2018) travelling from the Atlantic coast to the site. Our results show clear evidence of associations between the $\delta^{18}O_{\text{TR}}$ record and various metrics that can be related to large-scale rainout, including basin-wide precipitation, OLR, and Amazon River level, as well as strong correlations with accumulated rainfall along airmass trajectories (Fig. 1). The record shows strongest correlations within the main growing season of these floodplain trees from June to October. During this period, precipitation at our study site is still relatively high, exceeding 150 mm mo$^{-1}$ (see Online Resource SIFig. 1), but it drops to less than 100 mm mo$^{-1}$ over large parts of the Amazon Basin, and many regions receive even less than 50 mm for some of the months during this period.

Besides the expected influence of precipitation on $\delta^{18}O_{\text{TR}}$, we also found an extensive area of influence of surface temperature on $\delta^{18}O_{\text{TR}}$ (Fig. 1b). As temperature and precipitation are strongly anticorrelated, especially at large-scale due co-variation with ENSO (Jiménez-Muñoz et al. 2013, 2016), the effects of large-scale temperature and rainfall could be confounded. While it is hard to disentangle the individual climate effects on $\delta^{18}O_{\text{TR}}$, several arguments support the
that the δ18OTR record reflects a direct influence of large-scale rainfall from source water δ18O (Cintra et al. 2019). We thus suspect that the rather wet conditions year-round at this site (Online Resource SI Fig. 1a) may limit leaf water enrichment variations, which might otherwise weaken climate signals from source water δ18O (Cintra et al. 2019). This is probably the reason why we did not find consistent correlations with local climate variations. In summary, our analysis indicates that these floodplain trees record variation in precipitation δ18O during the growing periods for these trees, which corresponds to the driest period of the Amazon basin upstream of the study site. These results suggest the δ18OTR record presented here may provide a proxy for Amazon dry season precipitation amount.

4.1 Decadal climate changes inferred from the δ18OTR record

An outstanding feature of the floodplain δ18OTR record is a decadal-scale upward trend of 2‰ from 1970 to 2014. If this trend truthfully reflects changes in rainfall δ18O, it would suggest large-scale rainfall variations during the dry season in the Amazon. We are particularly interested in the increasing δ18OTR values over the period from 1970 to 2014 (Fig. 2), because this period coincides with the start of an intensification of the hydrological cycle in the Amazon Basin (Gloor et al. 2013; Barichivich et al. 2018), and because this is the most well-replicated segment of the record, for which we have the highest dating confidence. We thus considered how much rainfall change can be inferred from this δ18OTR trend, based solely on changes in rainfall δ18O according to a Rayleigh rainout framework.

By simply considering the slope of the linear relationship between inter-annual variation of δ18OTR and large-scale rainfall we infer a dry-season rainfall reduction of ~50 mm over the period from 1970 to 2014, which is equivalent to a 30% reduction in rainfall upstream of the study site during June to October, the Amazon “dry” season. For comparison, a pure Rayleigh distillation model would indicate that nearly 2‰ increase in rainfall δ18O could result from ~20% reduction in accumulated rainfall along airmass trajectories (Fig. 3a), taking into account changes in moisture inflow into the Basin (Online Resource SI Fig. 6a). This estimate is in fair agreement with observations of decreasing rainfall during the dry season in this region (Fu et al. 2013; Haghitalab et al. 2020), which indicate small reductions of up to 20 mm (nearly 20%) per month during the 3 driest months since 1990 (Gloor et al. 2013, 2015). These trends are observed for most of the Amazon region except the north-western portion of the Basin, consistent with what we observe here (Fig. 1). Whether this trend of intensification of the dry season will persist into the future is still uncertain (Boisier et al. 2015). From the decadal-scale fluctuations in our record,
we may infer that the current climate conditions during the Amazon dry season are not unprecedented, as the $\delta^{18}O_{TR}$ record shows a first peak around 1940. This suggests that the observed trends in our $\delta^{18}O_{TR}$ record may result at least partially from long-term natural climate cycles. We note that this should be interpreted with caution as for this period, the record may not be dated with absolute precision and is not well replicated. Nevertheless, this would be in line with another 259-year long tree ring width record, which shows a multimodel pattern of variation in rainfall amounts with a frequency of 35 years (Granato-Souza et al. 2020).

Multidecadal climate fluctuations in the Amazon Basin are driven by fluctuations of SSTs in adjacent ocean basins (Yoon and Zeng 2010). Indeed, our $\delta^{18}O_{TR}$ record shows a clear connection with SST anomalies in the surrounding oceans, that closely resembles the effect of SST anomalies on Amazon dry season rainfall (Fig. 2). In particular, SSTs in the Tropical North Atlantic (TNA) Ocean have been warming since approximately 1970, which coincides with the start of the trend that we see in our $\delta^{18}O_{TR}$ record. The TNA Ocean is source region for Amazon moisture and one of the main drivers of variations in moisture inflow and thus dry season rainfall amounts for large areas of the Basin (Yoon and Zeng 2010). Warming of the TNA Ocean has previously been associated with reductions in dry season rainfall in the Amazon, because it may change the trade winds that bring moisture into the Amazon to a more northern position. Thus, the effect the long-term warming of TNA Ocean SSTs on Amazon dry season rainfall may possibly be one cause to the trend we observe in the $\delta^{18}O_{TR}$ record. These connections support the possibility that the 1970–2014 trend in the $\delta^{18}O_{TR}$ may reflect decadal-scale reductions in dry season rainfall, associated with SST controls on large-scale circulation patterns.

Interestingly, the multidecadal fluctuations in our $\delta^{18}O_{TR}$ record for the period of 1925–2014 (Online Resource S1Figs. 2) do not differ much from the fluctuations in the Atlantic Multidecadal Oscillation (Online Resource SIFig. 6c) (Kerr 2000; Enfield et al. 2001). While this might be coincidental, the AMO is expected to be reflected in the Tropical North Atlantic SST (Kerr 2000; Enfield et al. 2001; Barichivich et al. 2018). Recent studies suggest that global warming may have aggravated the recent warming of SSTs in Northern Atlantic Ocean (Biastoch and Böning 2013; Biastoch et al. 2015; Barichivich et al. 2018), and its reflection in the TNA SSTs may be one of the causes for much of the ongoing climate changes in the Amazon (Gloor et al. 2013, 2015; Barichivich et al. 2018; Wang et al. 2018).

As our record is relatively short, we cannot decisively conclude if the drying trend is a result of natural climate variability only, or if it has been aggravated by anthropogenic climate change. If anthropogenic climate change has contributed to this trend, then intensification of the dry season could persist into the future. This would be in line with CMIP5 model predictions for the next century (Kitoh et al. 2013; Fernandes et al. 2015; Li et al. 2016; Hua et al. 2019), and could have severe consequences for the region with impacts on the local socioeconomic sectors and livelihoods (Marengo et al. 2018), the forest’s carbon balance (Quesada et al. 2012; Johnson et al. 2016) and biodiversity (Esquivel-Muelbert et al. 2017, 2018), and hamper forest regeneration in deforested areas.

Given the far-reaching implications of the long-term drying trend implied by our record for current understanding of climate changes in the Amazon, we also consider whether additional factors may have contributed to the observed trend in the $\delta^{18}O_{TR}$ time-series. A first consideration is that observed long-term increases of approximately 1.0 °C in large-scale temperature may have affected the equilibrium fractionation during the formation of raindrops. However, according to known temperature effects on fractionation processes (Botinga and Craig 1969), this effect would result in only ~0.1 ‰ change in rainfall $\delta^{18}O$. Another hypothesis is that changes in total evapotranspiration from the forest may affect the $\delta^{18}O_{TR}$ record. Forests play an important role by recycling precipitation through evapotranspiration, which contributes to the total amount of precipitation downwind. Removal of forest cover caused by large-scale deforestation could lead to reductions in total evapotranspiration and decreased precipitation amounts, predominantly during the dry season (Spracklen et al. 2012; Spracklen and Garcia-Carreras 2015; Khanna et al. 2017; Pattanayak et al. 2019). While we cannot reject the possibility of deforestation as a possible cause for rainfall reductions during the dry season, changes in evapotranspiration due to deforestation may hardly be reflected in rainfall $\delta^{18}O$ (Pattanayak et al. 2019; Ampuero et al. 2020). Moreover, observations suggest no clear indication of a long-term trend in evapotranspiration during the dry season (Hurley et al. 2015; Zhang et al. 2016; Moura et al. 2019; Sun et al. 2019; Baker et al. 2020, 2021).

Thus, the trend in our $\delta^{18}O_{TR}$ record is likely not driven by large-scale changes in evapotranspiration.

Lastly, we also consider the extent to which the decadal variation in the mean $\delta^{18}O_{TR}$ might be driven by slower, gradual changes in the degree of leaf water enrichment—even if its effects on the inter-annual scale are negligible. For example, gradual increases in VPD could lead to an increasing leaf water enrichment. Further, down-regulations of stomatal conductance (g_s) in response to increasing atmospheric CO$_2$ concentrations (Morison 1985; Franks 2013) could affect transpiration, and thus leaf water enrichment (Cooper and Norby 1994). It is hard to assess to what degree this effect has indeed contributed to the trends in the $\delta^{18}O_{TR}$ record, as g_s responses to CO$_2$ vary widely among different species (Lammerttsma et al 2011; Cernusak et al 2011; Rahman et al 2020; van der Sleen et al 2015). Nonetheless, we
assessed this possible contribution based on the tree-ring models detailed in Cintra et al. (2019)—see details in “Methods” Section—data analyses. Our estimate of the effects of VPD reductions at the sampling site together with possible g_r reductions in response to increases in atmospheric CO$_2$ over 1970–2014 result in a maximum increase in δ^{18}O$_{TR}$ of up to 0.5‰. Furthermore, as VPD has changed very little at our site, no changes in source water δ^{18}O are expected from evaporative enrichment of top soil water. Thus, these effect can only partially explain the observed 2‰ δ^{18}O$_{TR}$ trend, and only by assuming a large g_r response (i.e., 25% decrease) of these trees to CO$_2$ fertilization, which is not known at the moment (see Data Analysis in the “Methods” section for details).

In all, our analyses suggest it is unlikely that the observed long-term trend in the δ^{18}O$_{TR}$ Record can be explained by changes in widespread forest evapotranspiration or by leaf water enrichment related to long-term increases in local dryness or atmospheric CO$_2$ growth. It is more likely that the trend in the δ^{18}O$_{TR}$ record primarily reflects changes in plant source water δ^{18}O driven by large-scale rainfall reductions during the dry season in the Amazon Basin since approximately 1970, in agreement with climate observations for the region.

5 Summary and conclusions

We analysed interannual and long-term variations of oxygen isotope ratios in the tree rings of M. acaciifolium trees from a floodplain site located in the western Amazon. We expected this δ^{18}O$_{TR}$ would reflect large-scale climate signals imprinted in the plant’s source water δ^{18}O via the rainout of heavy isotopes over moisture transport within the basin. As the trees we analysed grow when river flood levels are low, which largely coincides with the Amazon-wide dry season, we also expected that the observed climate signals would correspond to the period of the dry season. As expected, the presented δ^{18}O$_{TR}$ record was associated with Amazon-wide hydro-climatic conditions during the dry season. To our knowledge, this is the first published δ^{18}O$_{TR}$ record to reflect past dry season hydroclimate variation in the Amazon, complementing previous δ^{18}O$_{TR}$ records from the Amazon which reflect wet season climate conditions. The δ^{18}O$_{TR}$ record presented here was mainly negatively associated with large-scale rainfall upwind from the sampling site, with little or no influence of local climate. One of the most distinctive features of the record is a multidecadal increase of up to 2‰ over the last 40 years. Our analyses suggest that this most likely reflects a widespread drying trend during the dry season in the Amazon, which is consistent with current observational studies, and thus deserves further attention. Floodplain trees may achieve ages of up to 400 years (Schöngart et al. 2004, 2005; Resende et al. 2020), which may allow us to extend our knowledge of dry season climate fluctuations further back in time.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00382-021-06046-7.

Acknowledgements This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brazil (MCTI/CNPQ/Universal 14/2014, grant: 457423/2014-5), by Research Councils UK, Natural Environment Research Council (Newton Fund grant NE/M02203X/1 and Amazon Hydrological Cycle grant NE/K01353X/1 and NE/S008659/1), by FAPEAM (Newton Fund grant 146/2015) and by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP, 2017/50085-3). BBLC thanks for support from CNPq (Science Without Borders 207400/2014-8) and FAPESP (2019/25636-1). JS thanks CNPq for support (CNPQ-2017, grant 311874/2017-7). JCAB was supported by funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant agreement no. 771492).

Author contributions All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by BBLC, RB and MG. The first draft of the manuscript was written by BBLC and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brazil (grants 457423/2014-5, 311874/2017-7, 207400/2014-8), by Research Councils UK/Natural Environment Research Council (Newton Fund grant NE/M02203X/1 and Amazon Hydrological Cycle grant NE/K01353X/1 and UK NERC grant NE/S008659/1), by FAPEAM (Newton Fund grant 146/2015) and by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP, 2017/50085-3, 2019/25636-1), by the European Research Council (Grant agreement no. 771492).

Declarations

Conflict of interest The authors declare there are no conflicts of interest.

Data availability The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability The codes used to analyze the data for this study are available from the corresponding author on reasonable request.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

 Springer
References

Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270. https://doi.org/10.1111/j.1365-3040.2007.01641.x

Aleixo I, Norris D, Hemerik L et al (2019) Amazonian rainfall tree mortality driven by climate and functional traits. Nat Clim Chang 9:384–388

Ampuero A, Strikis NM, Apaéstegui J et al (2020) The forest effects on tree mortality driven by climate and functional traits. Nat Clim Chang 10:113–118. https://doi.org/10.1038/s41558-019-0477-0

Barbour MM, Farquhar GD (2000) Stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 23:473–485. https://doi.org/10.1046/j.1365-3040.1990.00044.x

Barbour MM, Farquhar GD, Ehleringer JR (2004) Expressing leaf water and cellulose oxygen isotope ratios as enrichment above source water reveals evidence of a Péclet effect. Oecologia 138:426–435. https://doi.org/10.1007/s00442-003-1449-3

Barichivich J, Gloor E, Peylin P et al (2018) Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Sci Adv 4 eaat8785. https://doi.org/10.1126/sciadv.aat8785

Batoura E, Schöngart J (2018) Dendroecology of Macrolobium acaciifolium (Fabaceae) in Central Amazonian floodplain forests. Acta Amaz 48:311–320. https://doi.org/10.1590/1809-439220180302

Bertrand G, Masini J, Goldscheider N et al (2014) Determination of spatiotemporal variability of tree water uptake using stable isotopes (618O, 62H) in an alluvial system supplied by a high-altitude watershed, Pfyn forest, Switzerland. Ecohydrology 7:319–333. https://doi.org/10.1002/eco.1347

Biastoł A, Bönig CW (2015) Anthropogenic impact on Agulhas leakage. Geophys Res Lett 40:1138–1143. https://doi.org/10.1002/2015GL06243

Biastoł A, Durgadoo JV, Morrison AK et al (2015) Atlantic multidecadal oscillation covaries with Agulhas leakage. Nat Commun 6:1–7. https://doi.org/10.1038/ncomms10082

Bird BW, Abbott MB, Viuille M et al (2011) A 2,300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes. Proc Natl Acad Sci 108:8583–8588. https://doi.org/10.1073/pnas.1003719108

Boisier JP, Ciais P, Ducharme A, Guimberteau M (2015) Projected strengthening of Amazonian dry season by constrained climate model simulations. Nat Clim Chang 5:656–660. https://doi.org/10.1038/nclimate2658

Bottinga Y, Craig H (1969) Oxygen isotope fractionation between CO2 and water, and the isotopic composition of marine atmospheric CO2. Earth Planet Sci Lett 5:285–295. https://doi.org/10.1016/S0012-821X(68)80054-8

Brienen RJW, Helle G, Pons TL et al (2012) Oxygen isotopes in tree rings are a good proxy for Amazon precipitation and El Niño–Southern Oscillation variability. Proc Natl Acad Sci 109:16957–16962. https://doi.org/10.1073/pnas.1205977109

Brienen RJW, Phillips OL, Feldpausch TR et al (2015) Projected responses of legume maximum daily stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 23:473–485. https://doi.org/10.1046/j.1365-3040.2000.00044.x

Callède J, Guyot JL, Ronchail J et al (2004) Evolution of the River Minho’s discharge at Óbidos from 1903 to 1999. Hydrol Sci J 49:85–98. https://doi.org/10.1623/hysj.49.1.85.53992

Cooper LW, Norby RJ (1994) Atmospheric CO2 enrichment can increase the 18O content of leaf water and cellulose: paleoclimatic and ecophysiological implications. Clim Res 4:1–11. https://doi.org/10.3354/cr004001

Cernusak LA, Winter K, Martínez C et al (2011) Responses of legume versus nonlegume tropical tree seedlings to elevated CO2 concentration. Plant Physiol 157:372–385. https://doi.org/10.1104/pp.111.182436

Cernusak LA, Winter K, Dalling JW et al (2013) Tropical forest responses to increasing atmospheric CO2: current knowledge and opportunities for future research. Funct Plant Biol 40:531–551. https://doi.org/10.1071/FP12309

Cooper LW, Norby RJ (1994) Atmospheric CO2 enrichment can increase the 18O content of leaf water and cellulose: paleoclimatic and ecophysiological implications. Clim Res 4:1–11. https://doi.org/10.3354/cr004001

Cernusak LA, Winter K, Martínez C et al (2011) Responses of legume versus nonlegume tropical tree seedlings to elevated CO2 concentration. Plant Physiol 157:372–385. https://doi.org/10.1104/pp.111.182436

Cernusak LA, Winter K, Dalling JW et al (2013) Tropical forest responses to increasing atmospheric CO2: current knowledge and opportunities for future research. Funct Plant Biol 40:531–551. https://doi.org/10.1071/FP12309

Copernicus Climate Change Service Climate Data Store (CDS). https://cds.climate.copernicus.eu/cdsapp#!home. Accessed on 1 Oct 2020

Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468. https://doi.org/10.3402/tellusa.v16i4.8993
Peruvian Andes. Quat Sci Rev 75:1–10. https://doi.org/10.1016/j.quascirev.2013.05.008

Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288(5473):1984–1985

Khanna J, Medvigy D, Fueglistaler S, Walko R (2017) Regional dry-season climate changes due to three centuries of Amazonian deforestation. Nat Clim Chang 7:200–204. https://doi.org/10.1038/nclimate3226

Kitoh A, Endo H, Krishna Kumar K et al (2013) Monsoons in a changing world: a regional perspective in a global context. J Geophys Res Atmos 118:3053–3065. https://doi.org/10.1002/jgrd.50258

Kousky VE (1988) Pentad outgoing longwave radiation climatology for the South American sector. Rev Bras Meteorol 3:217–231

Lammertsma EI, Wagner-Cremer F, Wassen MJ et al (2011) Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2. Proc Natl Acad Sci 108:4041–4046. https://doi.org/10.1073/pnas.1100555108

Lee HT, Gruber A, Ellingson RG, Laszlo I (2007) Development of the HIRS outgoing longwave radiation climate dataset. J Atmos Ocean Technol 24:2029–2047. https://doi.org/10.1175/2007JTECHA989.1

Li X, Xie SP, Gille ST, Yoo C (2016) Atlantic-induced pan-tropical rainfall, outgoing longwave radiation, and divergence over the Amazon Basin. J Clim 111:2898–2909. https://doi.org/10.1175/1520-0442(1998)011%3c2898:ACOROL%3e2.0.CO;2

Managave SR, Sheshshayee MS, Bhattacharyya A, Ramesh R (2011) Intra-annual variations of teak cellulose δ18O in Kerala, India: implications to the reconstruction of past summer and winter monsoon rains. Clim Dyn 37:555–567. https://doi.org/10.1007/s00382-010-0917-9

Marengo JA, Espinoza JC (2016) Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int J Climatol 36:1033–1050. https://doi.org/10.1002/joc.4420

Marengo JA, Liebmann B, Grimm AM et al (2012) Recent developments on the South American monsoon system. Int J Climatol 32:1–21. https://doi.org/10.1002/joc.2254

Marengo JA, Borma LS, Rodriguez DA et al (2013) Recent extremes of drought and flooding in Amazonia: vulnerabilities and human adaptation. Am J Clim Chang 02:87–96. https://doi.org/10.4236/ajcc.2013.22009

Marengo JA, Souza CM Jr, Thonicke K et al (2018) Changes in climate and land use over the Amazon Region: current and future variability and trends. Front Earth Sci 6:228. https://doi.org/10.3389/feart.2018.00228

Matsui E, Salati E, Ribeiro MNG et al (1983) Precipitation in the Central Amazon Basin: the isotopic composition of rain and atmospheric moisture at Belem and Manaus. Acta Amaz 13:307–369

McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801. https://doi.org/10.1016/j.quascirev.2003.06.017

Morison JL (1985) Sensitivity of stomata and water use efficiency to high CO2. Plant Cell Environ 8:467–474. https://doi.org/10.1111/j.1365-3040.1985.tb01682.x

Moura MM, dos Santos AR, Pezzopane JEM et al (2019) Relation of El Niño and La Niña phenomena to precipitation, evapotranspiration and temperature in the Amazon basin. Sci Total Environ 651:1639–1651. https://doi.org/10.1016/j.scitotenv.2018.09.242

Nepstad DC, Tohver IM, Ray D et al (2007) Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88:2259–2269

Ovando A, Tomasella J, Rodríguez DA et al (2016) Extreme flood events in the Bolivian Amazon wetlands. J Hydrol Reg Stud 5:293–308. https://doi.org/10.1016/j.jhr.2015.11.004

Pattnayak KC, Tindall JC, Brienen RJW et al (2019) Can we detect changes in amazon forest structure using measurements of the isotopic composition of precipitation? Geophys Res Lett 46:14807–14816. https://doi.org/10.1029/2019GL084749

Phillips OL, Aragão LEOC, Lewis SL et al (2009) Drought sensitivity of the amazon rainforest. Science (80-) 323:1344–1347. https://doi.org/10.1126/science.116403

Pinho PF, Marengo JA, Smith MS (2015) Complex socio-ecological dynamics driven by extreme events in the Amazon. Reg Environ Chang 15:643–655. https://doi.org/10.1007/s10113-014-0659-z

Quesada CA, Phillips OL, Schwarz M et al (2012) Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9:2203–2246. https://doi.org/10.5194/bg-9-2203-2012

Rahman M, Islam M, Gebrekristos A, Bräuning A (2020) Disentangling the effects of atmospheric CO2 and climate on intrinsic water-use efficiency in South Asian tropical moist forest trees. Tree Physiol 40:904–916. https://doi.org/10.1093/treephys/tpa043

Rayner NA, Parker DE, Horton EB et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108:DI4.1. https://doi.org/10.1029/2002JD002670

Resende AF, Piedade MTF, Feitosa YO et al (2020) Flood-pulse disturbances as a threat for long-living Amazonian trees. New Phytol 227:1790–1803. https://doi.org/10.1111/nph.16665

Richey JE, Meade RH, Salati E et al (1986) Water discharge and suspended sediment concentrations in the Amazon River: 1982–1984. Water Resour Res 22:756–764. https://doi.org/10.1029/WR022i005p00756

Risi C, Bony S, Vimeux F (2008) Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. J Geophys Res Atmos 113:1–12. https://doi.org/10.1029/2008JD009943

Rodin JS, Johnstone JA, Dawson TE (2009) Intra-annual variation in the stable oxygen and carbon isotope ratios of cellulose in tree rings of coast redwood (Sequoia sempervirens). Holocene 19:189–197. https://doi.org/10.1177/0959683608090959

Ronchail J, Espinoza JC, Draper G et al (2018) The flood recession period in Western Amazonia and its variability during the 1985–2015 period. J Hydrol Reg Stud 15:16–30. https://doi.org/10.1016/j.jhr.2017.11.008

Salati E, Dall’Olio A, Matsui E, Gat JR (1979) Recycling of water in the Amazon Basin: an isotopic study. Water Resour Res 15:225–236. https://doi.org/10.1029/JR005i007p00228

Röckmann JA, Liebmann B, Grimm AM et al (2012) Recent developments on the South American monsoon system. Int J Climatol 32:1–21. https://doi.org/10.1002/joc.2254

Rodriguez C, Borma LS, Liebmann B et al (2012) Recent extremes of drought and flooding in Amazonia: vulnerabilities and human adaptation. Am J Clim Chang 02:87–96. https://doi.org/10.4236/ajcc.2013.22009

Schloonnaen K, Heinrich I, Neuwirth B et al (2013) Multiple tree-ring chronologies (ring width, δ13C and δ18O) reveal dry and rainy season signals of rainfall in Indonesia. Quat Sci Rev 73:170–181. https://doi.org/10.1016/j.quascirev.2013.05.018

Schöngart J, Piedade MTF, Ludwigshausen S et al (2002) Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J Trop Ecol 18:581–597. https://doi.org/10.1017/S0266476702002389

Schöngart J, Junk WJ, Piedade MTF et al (2004) Teleconnection between tree growth in the Amazonian floodplains and the El Niño-Southern Oscillation effect. Glob Chang Biol 10:683–692. https://doi.org/10.1111/j.1529-8817.2003.00754.x

Schöngart J, Piedade MTF, Wittmann F et al (2005) Wood growth patterns of Macrolobium acaulifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia 145:454–461. https://doi.org/10.1007/s00442-005-0147-8
Schubert BA, Jahren AH (2015) Seasonal temperature and precipitation recorded in the intra-annual oxygen isotope pattern of meteoric water and tree-ring cellulose. Quat Sci Rev 125:1–14. https://doi.org/10.1016/j.quascirev.2015.07.024

Spracklen DV, García-Carreras L (2015) The impact of Amazonian deforestation on Amazon basin rainfall. Geophys Res Lett 42:9546–9552. https://doi.org/10.1002/2015GL066063

Spracklen DV, Arnold SR, Taylor CM (2012) Observations of increased tropical rainfall preceded by air passage over forests. Nature 489:282–285. https://doi.org/10.1038/nature11390

Sternberg LSLO (2008) Oxygen isotope ratios of tree-ring cellulose: the next phase of understanding. New Phytol 181:553–562. https://doi.org/10.1111/j.1469-8137.2008.02661.x

Stuecker MF, Timmermann A, Jin FF et al (2017) Revisiting ENSO/Indian Ocean Dipole phase relationships. Geophys Res Lett 44:2481–2492. https://doi.org/10.1002/2016GL072308

Sun L, Baker JCA, Gloor E et al (2019) Seasonal and inter-annual variation of evapotranspiration in Amazonia based on precipitation, river discharge and gravity anomaly data. Front Earth Sci 7:1–9. https://doi.org/10.3389/feart.2019.00032

Sun L, Baker JCA, Gloor E et al (2019) Seasonal and inter-annual variation of evapotranspiration in Amazonia based on precipitation, river discharge and gravity anomaly data. Front Earth Sci 7:1–9. https://doi.org/10.3389/feart.2019.00032

Vuille M, Werner M (2005) Stable isotopes in precipitation recording South American summer monsoon and ENSO variability: Observations and model results. Clim Dyn 25:401–413. https://doi.org/10.1007/s00382-005-0049-9

Wang XY, Li X, Zhu J, Tanajura CAS (2018) The strengthening of Amazonian precipitation during the wet season driven by tropical sea surface temperature forcing. Environ Res Lett 13:094015. https://doi.org/10.1088/1748-9326/aadbb9

Wieloch T, Helle G, Heinrich I et al (2011) A novel device for batch-wise isolation of α-cellulose from small-amount wholewood samples. Dendrochronologia 29:115–117. https://doi.org/10.1016/j.dendro.2010.08.008

Worbes M (2002) One hundred years of tree-ring research in the tropics—a brief history and an outlook to future challenges. Dendrochronologia 20:217–231

Wright JS, Fu R, Worden JR et al (2017) Rainforest-initiated wet season onset over the southern Amazon. Proc Natl Acad Sci 114:8481–8486. https://doi.org/10.1073/pnas.1621516114

Wullschleger SD, Gunderson CA, Hanson PJ et al (2002) Sensitivity and canopy conductance to—interacting elevated CO2 concentration variables and of scale perspectives. New Phytol 153:485–496. https://doi.org/10.1046/j.0028-646X.2001.00333.x

Yoon JH, Zeng N (2010) An Atlantic influence on Amazon rainfall. Clim Dyn 34:249–264. https://doi.org/10.1007/s10584-009-951-6

Zemp DC, Schleussner CF, Barbosa HMJ et al (2017) Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat Commun 8:1–10. https://doi.org/10.1038/ncomms14681

Zhang Y, Peña-Arancibia JL, McVicar TR et al (2016) Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci Rep 6:19124. https://doi.org/10.1038/srep19124

Zhang L, Du Y, Tzouka T, Kido S (2021) Revisiting ENSO impacts on the Indian Ocean SST based on a combined linear regression method. Acta Oceanol Sin 40:47–57. https://doi.org/10.1007/s13131-021-1733-2

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.