Crystal Facet Engineering of TiO₂ Nanostructures for Enhancing Photoelectrochemical Water Splitting with BiVO₄ Nanodots

Mi Gyoung Lee¹, Jin Wook Yang¹, Hoonkee Park¹, Cheon Woo Moon², Dinsefa M. Andoshe¹, Jongseong Park¹, Chang-Ki Moon¹, Tae Hyung Lee¹, Kyoung Soon Choi³, Woo Seok Cheon¹, Jang-Joo Kim¹, Ho Won Jang¹,⁴

HIGHLIGHTS

- Two types of BiVO₄/TiO₂ heterostructure photoanodes comprising TiO₂ nanorods (NRs) and TiO₂ nanoflowers (NFs) with different (001) and (110) crystal facets, respectively, were designed.
- The higher photoactivity of BiVO₄/TiO₂ NFs than BiVO₄/TiO₂ NRs was attributed to the improvement of charge separation by the TiO₂ NFs.
- The formation of type II band alignment between BiVO₄ nanodots and TiO₂ NFs expedited electron transport and reduced charge recombination.

ABSTRACT Although bismuth vanadate (BiVO₄) has been promising as photoanode material for photoelectrochemical water splitting, its charge recombination issue by short charge diffusion length has led to various studies about heterostructure photoanodes. As a hole blocking layer of BiVO₄, titanium dioxide (TiO₂) has been considered unsuitable because of its relatively positive valence band edge and low electrical conductivity. Herein, a crystal facet engineering of TiO₂ nanostructures is proposed to control band structures for the hole blocking layer of BiVO₄ nanodots. We design two types of TiO₂ nanostructures, which are nanorods (NRs) and nanoflowers (NFs) with different (001) and (110) crystal facets, respectively, and fabricate BiVO₄/TiO₂ heterostructure photoanodes. The BiVO₄/TiO₂ NFs showed 4.8 times higher photocurrent density than the BiVO₄/TiO₂ NRs. Transient decay time analysis and time-resolved photoluminescence reveal the enhancement is attributed to the reduced charge recombination, which is originated from the formation of type II band alignment between BiVO₄ nanodots and TiO₂ NFs. This work provides not only new insights into the interplay between crystal facets and band structures but also important steps for the design of highly efficient photoelectrodes.

KEYWORDS Crystal facet control; Bismuth vanadate; Titanium dioxide; Heterojunction; Water splitting

Mi Gyoung Lee and Jin Wook Yang have contributed equally to this work.

¹ Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
² Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03693, Republic of Korea
³ National Research Facilities and Equipment Center, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
⁴ Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
1 Introduction

Solar-driven photoelectrochemical (PEC) water splitting is considered a major breakthrough to settle an energy crisis. Despite its promise, the commercialization of PEC water splitting has been limited because of the relatively low efficiency and stability [1]. Although metal oxide-based photoelectrodes such as TiO₂, Fe₂O₃, WO₃, and BiVO₄ can be easily synthesized, major limitations such as charge recombination and short carrier lifetimes of from picosecond (ps) to nanosecond (ns) restrict their photoactivity.

The construction of heterostructure photoelectrodes is an effective approach to improve light absorption, carrier separation, and charge transfer efficiencies [2, 3]. Since it relies on the appropriate band alignment like type II heterojunction, the combination of photoelectrode materials having proper band edge positions is a key for determining their functionality in PEC water splitting. Among various heterostructures such as Fe₂O₃/WO₃ [4], BiVO₄/WO₃ [5–7], Fe₂O₃/SnO₂ [8–10], In₂S₃/In₂O₃ [11], and BiVO₄/SnO₂ [12, 13], BiVO₄-based heterostructure photoanodes have been widely studied since short charge diffusion lengths and lifetimes of BiVO₄ cause severe charge recombination. In a representative BiVO₄/WO₃ heterostructure, WO₃ enhances the charge separation as a hole blocking layer of BiVO₄, forming the type II band alignment. However, it has a relatively positive flat band potential of about 0.4 V versus (vs.) a reversible hydrogen electrode (RHE), which results in potential energy losses for electrons as they are transferred from the WO₃ to the BiVO₄, limiting the photovoltage of the combined system [5–7]. Also, the oxidation of surface hydroxyl groups of WO₃ causes the formation of peroxy-species, which reduces the stability of heterostructure photoanodes [13].

Compared to the WO₃, rutile TiO₂ is highly stable in a wide range of pH and has a relatively negative flat band potential of about 0.2 V versus RHE, which does not significantly limit the photovoltage obtainable from BiVO₄ [14–16]. However, TiO₂ has an intrinsic limitation of low electrical conductivity to be used as the hole blocking layer for BiVO₄ [17]. To resolve the problem, the increment of carrier concentration through doping and nanostructuring is required. In particular, both high surface area and electrical conductivity can be obtained by designing one-dimensional (1D) nanostructures such as nanorods (NRs), nanowires, and nanoflowers (NFs). Ando et al. developed S, N codoped TiO₂ NRs and increased their carrier concentration and electrical conductivity [18]. The second problem is a mismatched band structure between BiVO₄ and TiO₂. A relatively positive valence band edge of TiO₂ makes it difficult to form the type II heterostructure suitable for charge separation. In order to utilize TiO₂ as the hole blocking layer for BiVO₄, the control of band edge position is necessary, and crystal facet engineering has emerged as an emerging strategy. According to the previous works, metal oxides provided various band edge positions depending on their crystal facets [19–21]. For instance, Wang et al. demonstrated that the (111) facet of Cu₂O, with a lower work function than the (100) facet, is unfavorable for the migration of holes from the Cu₂O surface to Pd through a semiconductor–metal junction [22]. It is reasonable to select and control the contact facet for the heterostructure to achieve suitable band structures and efficient charge separation.

In this work, we compare two types of BiVO₄/TiO₂ heterostructure photoanodes with different (001) and (110) crystal facets of TiO₂, which are NRs and NFs, respectively. After BiVO₄ nanodots are conformally electrodeposited on the surface of the TiO₂ nanostructures, the photocurrent density of BiVO₄/TiO₂ NFs increases by about 4.7 times, while that of BiVO₄/TiO₂ NRs decreases. Based on the analysis of charge carrier dynamics, it is revealed that the difference is derived by the charge separation ability of crystal facet-engineered TiO₂. The ultraviolet photoemission spectroscopy (UPS) represents band edge positions of TiO₂ nanostructures are significantly dependent on their crystal facet. Since TiO₂ NFs with (110) facets have relatively negative band edges, as a hole blocking layer they form type II heterojunction with BiVO₄ nanodots. In addition, the initial facet of TiO₂ has a decisive effect on the final architecture of the BiVO₄/TiO₂ due to the difference in the tendency of the BiVO₄ electrodeposition on the nanostructured TiO₂. In a word, crystal facet engineering plays a key role in affecting charge separation and in determining photoactivity. These findings provide a feasible avenue to adjust diverse metal oxides for use as photoelectrodes for desirable solar water splitting.

2 Experimental Section

2.1 Synthesis of TiO₂ NRs and TiO₂ NFs

TiO₂ NRs and TiO₂ NFs were grown on fluorine doped tin oxide (FTO) glass substrates using hydrothermal synthesis.
similar to those in a previously reported paper [18]. Briefly, the precursor solution was prepared with 0.8 mL of titanium (IV) butoxide (C$_{16}$H$_{36}$O$_4$Ti, 97%, Aldrich), 5 mg of sulfamic acid (NH$_2$SO$_3$H, 99.3%, Aldrich), 25 mL of HCl (38%, Dae-jung), and 25 mL of deionized water (dH$_2$O) under magnetic stirring. After vigorous magnetic stirring for another 10 min, the solution was poured into Teflon vessel. The Teflon vessel, which contained the precursor solution and the FTO glass, was inserted into the autoclave and heated for 4 h at 180 °C in an oven and kept inside until the temperature reached room temperature. The synthesized TiO$_2$ NRs were removed from the Teflon vessel and rinsed repeatedly using dH$_2$O. After sufficient rinsing, the TiO$_2$ NRs were annealed at 500 °C for 3 h with 5% H$_2$/95% N$_2$ gas. For the synthesis of the TiO$_2$ NFs, a larger amount of sulfamic acid was added to the precursor solution, and the reaction time was increased over that of the TiO$_2$ NRs. A precursor solution for the growth of TiO$_2$ NFs was prepared with 100 mg of sulfamic acid (NH$_2$SO$_3$H, 99.3%, Aldrich), 0.8 mL of titanium butoxide (C$_{16}$H$_{36}$O$_4$Ti, 97%, Aldrich), and 50 mL of HCl solution (25 mL of dH$_2$O and 25 mL of concentrated HCl (38%, Daejung)). After vigorous stirring until the solution became completely clear, the solution was transferred to the Teflon vessel and moved into an autoclave. The autoclave was sealed and heated to the reaction temperature (180 °C) in an oven for 12 h and maintained until the autoclave was cooled to room temperature. The synthesized TiO$_2$ NFs were washed with dH$_2$O and annealed at 500 °C for 3 h under 5% H$_2$/95% N$_2$ gas.

2.2 Fabrication of BiVO$_4$/TiO$_2$ Heterostructure Photoanodes

BiVO$_4$ was electrodeposited onto the two types of TiO$_2$ nanostructures using previously reported methods [5, 23]. A precursor was prepared by dissolving bismuth nitrate pentahydrate (BiN$_3$O$_9$, 98%, Junsei) in a solution of vanadium oxide sulfate hydrate (VOSO$_4$, 99.99%, Aldrich) at pH < 0.5 with nitric acid (HNO$_3$, 67%, Junsei). Then, sodium acetate (CH$_3$COONa, 99%, Aldrich) was added, raising the pH to ~5.1, which was then adjusted to pH 4.7 using a few drops of concentrated HNO$_3$. This mildly acidic pH condition is necessary because, at pH values > 5, vanadium (IV) precipitates form in the solution. Pulsed anodic electrodeposition was conducted in a standard three-electrode system with a working electrode of nanostructured TiO$_2$, an Ag/AgCl reference electrode, and a platinum counter electrode. The electrodeposition was potentiostatically carried out at 1.95 V versus Ag/AgCl at 80 °C and annealed at 500 °C for 6 h in air at a heating rate of 2 °C per minute to crystallize.

2.3 PEC Measurements

The photocurrent versus potential curves with a scan rate of 10 mV s$^{-1}$ and photocurrent versus time curves were recorded with a solar simulator with an AM 1.5 G filter. The light intensity of the solar simulator was calibrated to 1 sun (100 mW cm$^{-2}$). The incident photon-to-current conversion efficiency (IPCE) was measured at 1.23 V versus RHE. The electrochemical impedance spectroscopy (EIS) was conducted by applying 1.23 V versus RHE. The sweeping frequency ranged from 100 to 0.1 kHz, with an AC amplitude of 10 mV. The measured spectra were fitted using ZSimpWin software. The Mott-Schottky (M-S) plots were plotted by potential scan in AC condition with a frequency of 1 kHz with the light off. The Faradaic efficiency and gas evolution were calculated by the gas chromatography system (7890B, Agilent Technologies) in an air-tight cell at 1.23 V versus RHE.

2.4 Characterization

The morphologies of all photoanodes were characterized by field-emission scanning electron microscopy (FESEM, MERLIN Compact, ZEISS). High-resolution transmission electron microscopic (HR-TEM) images and elemental distributions were obtained with TEM (JEM-2100F, JEOL) equipped energy-dispersive scope (EDS). X-ray diffraction (XRD, D8-Advance, Bruker) characterization was performed to confirm the crystalline phase of the TiO$_2$ NRs, TiO$_2$ NFs, and BiVO$_4$/TiO$_2$ NFs. The absorption spectra of the TiO$_2$ NRs, TiO$_2$ NFs, and BiVO$_4$ were measured by UV–Visible spectroscopy (V-770, JASCO). The band structures of the BiVO$_4$/TiO$_2$ NFs and BiVO$_4$/TiO$_2$ NRs were determined by analyzing the UPS (Ultra DLD) in advanced in-situ surface analysis system (AiSAS). The time-resolved photoluminescence of TiO$_2$ NFs, TiO$_2$ NRs, BiVO$_4$/TiO$_2$ NFs, and BiVO$_4$/TiO$_2$ NRs was measured using...
photoluminescence (PL, FlouTime 300, PicoQuant) with an excitation laser having a wavelength of 405 nm.

2.5 FDTD Simulation

The simulations were performed on the FDTD solutions program (Lumerical Solutions). The dielectric function of rutile TiO$_2$ was adopted from a prominent report [24], and FTO was considered as a perfect dielectric with a constant refractive index of 2.2 based on the analysis of previous literature [25]. The detailed simulation condition is displayed in Fig. S2. The mesh size was 5×5 nm2.

3 Results and Discussion

3.1 Synthesis and FDTD Simulations of TiO$_2$ Nanostructures

To synthesize BiVO$_4$/TiO$_2$ nanostructures, we introduced an all-solution process comprising hydrothermal synthesis and electrodeposition, which is cost-effective and eco-friendly fabrication method for photoelectrode [26]. First, two types of TiO$_2$ nanostructures, which are TiO$_2$ NRs and TiO$_2$ NFs, were prepared by the one-step hydrothermal synthesis method. By controlling the reaction time, precursor concentration, and pH, the morphology and alignment of TiO$_2$ nanostructures were changed into NRs and NFs, as illustrated in Fig. 1a, b. TiO$_2$ NRs and NFs have rutile structures with different lattice plane intensities, i.e., (001) and (110), as shown in XRD analysis (Fig. 1c). In the case of TiO$_2$ NRs, TiO$_2$ preferentially grew to the (001) direction and it makes the vertically aligned 1D structures, as shown in Fig. 1d, whereas TiO$_2$ NFs showing the increased (110) direction peak in XRD have a tendency to grow laterally, as shown in Fig. 1e. The long reaction time of 10 h not only caused new heterogeneous nucleation at the tip of the nanorods, but also led to the growth of nanoflowers. As a result, the morphology of TiO$_2$ NFs formed on the TiO$_2$ NRs was implemented. Also, in the hydrothermal synthesis of TiO$_2$, acids, such as hydrochloric acid, sulfuric acid, sulfonic acid, and sulfamic acid, play highly important roles for the preferential growth as well as stabilization of the rutile phases [27]. We made a more acidic environment by adding sufficient sulfamic acid in order to induce the specific facet growth of nanoflowers. Based on the long reaction time and acidic environment, unlike previous reports for synthesizing the TiO$_2$ NFs, we enable to construct well-maintained rectangular shape of TiO$_2$ NFs without additional process [28, 29].

To compare the photoactivity according to the major facet of TiO$_2$ nanostructures, photocurrent density and IPCE of the TiO$_2$ NRs and NFs are measured, as shown in Figs. 1f and S1. Both photocurrent density and IPCE of the TiO$_2$ NRs were higher than those of the TiO$_2$ NFs. Since the (001) facet possesses the highest surface energy due to the coordinate unsaturated Ti and O atoms on (001) and very large Ti–O–Ti bond angles, the (001) facet of TiO$_2$ was more reactive than the other facets such as (110) and (101) [30]. And vertically aligned 1D TiO$_2$ NRs can make direct and ordered channels for electron transport and enhance light absorption. Furthermore, minority charge diffusion paths can be decoupled to different directions to enhance the photocharge collection efficiency [31].

To clearly understand light-harvesting capacity according to the TiO$_2$ crystal facets, we performed a finite-domain time-difference (FDTD) simulation, as shown in Fig. 1g–i. The electric field ($|E|$) distribution was calculated and visualized using the FDTD method to assist in understanding the light absorption mechanism. The model for the FDTD simulation is shown in Fig. S2. We considered vertical-, 30°-tilted, and 50°-tilted TiO$_2$ NRs by reflecting the SEM images (Fig. 1d, e). The results of the simulated absorption distribution along the z-axis acquired at light wavelengths of 350, 450, and 550 nm. The FDTD results clearly show strong absorption enhancement in the (001)-facet-dominant TiO$_2$ NRs compared to the (110)-facet-dominant TiO$_2$ NFs, especially at the wavelength of 450 nm, indicating that the (001) facet traps the incident light efficiently. As shown in Figs. S3, S4, the real configuration of TiO$_2$ NFs showed a similar tendency with a piece of TiO$_2$. These FDTD simulation results are closely related to the photoactivity of facet-controlled TiO$_2$ nanostructures in linear sweep voltammetry (LSV) (Fig. 1f).

3.2 Characterization and PEC performances of TiO$_2$ NRs and BiVO$_4$/TiO$_2$ NRs

Controlled facets affect not only the photocurrent density of TiO$_2$ nanostructures but also the electrodeposition trend of BiVO$_4$ on the TiO$_2$. First, we constructed heterostructure
photoanodes of BiVO₄/TiO₂ NRs to demonstrate the effect of major facets of TiO₂ on the final architecture of BiVO₄/TiO₂ nanostructures and the following photoactivities. On the TiO₂ NRs, electrodeposited BiVO₄ nanodots agglomerate, and thus the tops of the BiVO₄/TiO₂ NRs are close to each other, as shown in Figs. 2a–c and S5. It is related to the concentration gradient in the solution under the electrodeposition process since ions tend to converge toward the vertex of TiO₂ NRs due to high conductivity. Agglomerated BiVO₄ nanodots block the gaps between the TiO₂ NRs, which might be deteriorating the light absorption and electrolyte permeation for PEC water splitting. As a result, the photocurrent
Density of the BiVO₄/TiO₂ NRs (0.35 mA cm⁻² at 1.23 V vs. RHE) was significantly less than that of pristine TiO₂ NRs (0.91 mA cm⁻² at 1.23 V vs. RHE), as shown in Figs. 2d and S6. Also, as shown in Fig. S7, the IPCE of BiVO₄/TiO₂ NRs was significantly decreased to 22% under the wavelength of 390 nm at 1.23 V versus RHE, which means there are lots of charge recombination after the introduction of BiVO₄ on TiO₂ NRs.

We also analyzed the EIS to compare the charge transfer kinetics between the BiVO₄/TiO₂ NRs and TiO₂ NRs, as shown in Fig. 2e. Considering our architecture, we used the Haman equivalent circuit composed of three resistances and two capacitances since the EIS circuit is closely related to the structure of photoelectrodes [23]. In the EIS circuit, Rₛ is the series resistance, Cₛ and Cᶜᵗ are the constant phase elements (CPE) for the semiconductor interface and the electrolyte/electrode interface, respectively, and Rᶜᵗ₁ and Rᶜᵗ₂ are the charge transfer resistances across the semiconductor interface and electrode/electrolyte interface, respectively. The values of Rₛ, Rᶜᵗ₁, and Rᶜᵗ₂ obtained from the fittings are summarized in Table S1. The high photoactivity is represented by a small semicircle in the Nyquist plot. After the deposition of BiVO₄ nanodots, the charge transfer resistance across the electrode/electrolyte interface increased from 259.89 to 1948.06 Ω cm², showing the larger semicircles of BiVO₄/TiO₂ NRs compared to that of TiO₂ NRs. As shown in SEM images of BiVO₄/TiO₂ NRs (Fig. 2b, c), the agglomerated BiVO₄ reduced the porosity of the TiO₂ NRs, which is a structure interfering with the electrolyte permeation. Therefore, bulky BiVO₄ and reduced porosity of TiO₂ NRs become the main factors that increase the charge transfer resistance of BiVO₄/TiO₂ NRs photoanode. This result was also represented in that BiVO₄/TiO₂ NRs have a lower charge injection efficiency than TiO₂ NRs (Fig. 2f), which led to the deterioration of the PEC performances.

3.3 Characterization and PEC Performances of TiO₂ NFs and BiVO₄/TiO₂ NFs

In order to investigate differences in nanostructures and photoactivities according to the crystal facet, we set up TiO₂ NFs with (110) facets as a bottom layer for BiVO₄ nanodots. Unlike on the TiO₂ NRs, the conformal coating of extremely thin BiVO₄ nanodots across the entire surface of the TiO₂ NFs could be possible through the control of pulse cycles during the electrodeposition, as shown in Fig. S8. According to SEM images in Fig. 3a–d, the surfaces of TiO₂ NFs were totally covered with BiVO₄ nanodots by increasing the pulse cycles of BiVO₄. A cross-sectional SEM image in
Fig. S9 also showed conformally decorated BiVO$_4$ on TiO$_2$ NFs. Through the TEM equipped with EDS, we confirmed the detailed surface morphologies and elemental distributions of BiVO$_4$/TiO$_2$ NFs. The TEM image in NFs region (Fig. 3e) also indicated that BiVO$_4$ nanodots conformally covered on the surface of the TiO$_2$ NFs. The inset shows an enlarged TEM image of BiVO$_4$ nanodots. As shown in EDS mappings (Fig. 3f–k), all the constituent elements were well represented. High-resolution TEM (HR-TEM) images and a fast Fourier transform (FFT) pattern are shown in Fig. 3l–o. According to high-resolution TEM (HR-TEM) images and fast Fourier transform (FFT) patterns, electron diffraction patterns of the selected area showed d-spacing of 0.309 and 0.312 nm (Fig. 3l), corresponding to the (−112) and (103) planes of monoclinic BiVO$_4$, respectively (Fig. 3n), and d-spacing of 0.29 and 0.32 nm (Fig. 3m), which can be assigned to the (001) and (110) planes of rutile TiO$_2$ NFs, respectively (Fig. 3o). These results are well-matched with the XRD analysis (Fig. S10).

PEC measurements of the BiVO$_4$/TiO$_2$ NFs with different coverages of BiVO$_4$ were performed using a standard three-electrode cell with an electrolyte of 0.5M potassium phosphate (K–P) buffer and 1M sodium sulfite (Na$_2$SO$_3$) at a scan rate of 10 mV s$^{-1}$ under a AM 1.5G solar light. Oxidation of sulfite (SO$_3^{2−}$/SO$_3^{−}$, $E^\circ = 0.73$ V vs. NHE; SO$_3^{2−}$/S$_2$O$_6^{2−}$, $E^\circ = 0.026$ V vs. NHE), is thermodynamically and kinetically much more favorable than water oxidation [32]. Therefore, surface recombination losses due to slow interfacial hole transfer kinetics can be assumed to be negligible for the photo-oxidation of sulfite. BiVO$_4$/TiO$_2$ NFs were fabricated by adjusting the electrodeposition cycles of BiVO$_4$ from 0 to 36 (i.e., n BiVO$_4$ = n cycles electrodeposited BiVO$_4$), and

Fig. 3 SEM images of a TiO$_2$ NFs and BiVO$_4$/TiO$_2$ NFs with different deposition cycles of BiVO$_4$: b 6 cycles, c 18 cycles, and d 36 cycles. e TEM image of BiVO$_4$/TiO$_2$ NFs deposited by 18 cycles. Inset shows HR-TEM image of BiVO$_4$/TiO$_2$ NFs. EDS mapping images of f Ti, g O, h Bi, i V, j N, and k S. l Crystalline planes of (−112) and (103) of BiVO$_4$, m Crystalline planes of (001) and (110) of TiO$_2$ NFs. FFT patterns of n BiVO$_4$ and o TiO$_2$ NFs.
their LSV curves were recorded under the chopped (on/off) light condition. As shown in Fig. 4a, the photocurrent densities of the BiVO₄/TiO₂ NFs gradually increase until the number of electrodeposition cycles increases to 18 cycles and then starts to decrease. As the increase in the deposition cycle of BiVO₄, the density of BiVO₄ nanodots covering the TiO₂ NFs increases (Fig. S8b–d), adding the charge transfer sites. However, after the optimized cycles (18 cycles), the agglomeration of BiVO₄ nanodots is observed at the tip of TiO₂ NFs (Fig. S8e–f), interfering with the charge transfer. The highest photocurrent density of 1.7 mA cm⁻² was obtained at 1.23 V versus RHE for the 18 BiVO₄/TiO₂ NFs. This value corresponds to 4.7 and 4.8 times that of the TiO₂ NFs and BiVO₄/TiO₂ NRs, respectively. In addition to the enlarged absorption wavelength range from the ultraviolet (UV) to ultraviolet–visible (UV–Vis) region, improved charge separation is decisive for the cause of PEC performances of BiVO₄/TiO₂ NFs. The electron–hole recombination is structurally reduced because the conformally coated BiVO₄ nanodots on TiO₂ NFs enlarge the depletion layer and shorten the charge diffusion length to the interface [14, 33]. The small size of the BiVO₄ nanodots allows for a high collection efficiency of electrons by the TiO₂ NFs, and the proximity of the semiconductor liquid junction allows holes to reach the surface to perform the water splitting reaction [1, 14, 33, 34]. However, after the optimal deposition cycle, increasing the surface area also has negative effects such as the formation of surface defects and grain boundaries, which degrade PEC performances. In this respect, the design of photoanodes with appropriate active areas is crucial for photoactivity [5, 35, 36].

The PEC water splitting efficiency of photoelectrodes was also quantitatively evaluated using the applied bias photon-to-current conversion efficiency (ABPE) as follows:

\[
\text{ABPE} (\%) = \frac{J_{\text{ph}}(1.23 - V_b) \times 100}{P_{\text{total}}}
\]

where \(V_b \) is the applied bias (vs. RHE), \(J_{\text{ph}} \) is the photocurrent density at the measured potential, and \(P_{\text{total}} \) is the power density of light. The ABPE takes applied potential into account as important factor in the conversion of solar to chemical energy [37]. As shown in Fig. 4c, maximum photoconversion efficiency of 0.65% was achieved for the 18 BiVO₄/TiO₂ NFs at 0.61 V versus RHE, which was 8.1

![Fig. 4](https://example.com/fig4.png)

Fig. 4 a LSV of TiO₂ NFs and BiVO₄/TiO₂ NFs with different deposition cycles of BiVO₄ in 0.5M K-Pi buffer with 1M Na₂SO₃. b Photocurrent density of BiVO₄/TiO₂ NFs with different deposition cycles of BiVO₄ at 1.23 V (vs. RHE). c ABPE of TiO₂ NFs and BiVO₄/TiO₂ NFs with different deposition cycles of BiVO₄. d IPCE at 1.23 V (vs. RHE) of TiO₂ NFs and 18 BiVO₄/TiO₂ NFs. e EIS of TiO₂ NFs and BiVO₄/TiO₂ NFs with different deposition cycles of BiVO₄ at 1.23 V (vs. RHE) in 0.5M K-Pi buffer with 1M Na₂SO₃. Inset shows equivalent circuit. f Charge separation efficiency of TiO₂ NFs and 18 BiVO₄/TiO₂ NFs

© The authors

https://doi.org/10.1007/s40820-022-00795-8
times higher than that of the pristine TiO2 NFs. Also, the maximum photoconversion efficiencies for all BiVO4/TiO2 NFs were obtained at a lower applied potential than the pristine TiO2 NFs. These are associated with the reduction of the hole injection barrier at the interface between the TiO2 NFs and electrolyte by introduction of the BiVO4 nanodots [36]. According to the IPCE spectra (Fig. 4d), the absorption wavelength edge was expanded from 430 (UV region) to 512 nm (UV–Vis region) after the introduction of BiVO4. It also led to a 44% enlargement of maximum IPCE at a wavelength of 350 nm. In the chronoamperometry at 1.23 V versus RHE under 1 sun illumination, the 18 BiVO4/TiO2 NFs showed stable PEC performances for 6 h, as shown in Fig. S8h.

We also analyzed the EIS to figure out the charge transfer kinetics of BiVO4/TiO2 NFs, and the measured data were fitted to the equivalent circuit, as shown in Fig. 4e [23]. Unlike BiVO4/TiO2 NRs, the charge transfer resistance of all BiVO4/TiO2 NFs was drastically decreased compared to pristine TiO2 NFs. These results represent the effective charge transfer at the interfaces of each semiconductor and the semiconductor/electrolyte by suppressing the charge recombination. Of these, the lowest value of charge transfer resistances \(R_{ct1} = 0.84 \, \Omega \, \text{cm}^{-2} \) and \(R_{ct2} = 475.11 \, \Omega \, \text{cm}^{-2} \) were recorded for the 18 BiVO4/TiO2 NFs, which well corresponds to the tendency of photocurrent density (Fig. 4b).

To gain more insight into the crystal facet effect, we investigated the electronic characteristics using Mott–Schottky (M-S) analysis to grasp a flat band potential by using Eq. (2):

\[
C^{-2} = \left(\frac{2}{\epsilon_0 \epsilon \varepsilon_0 N_d} \right) \left[V - V_{FB} - k_B T / e \right]
\]

where \(C \) is the capacitance of the space charge layer, \(e \) is the electron charge \((1.602 \times 10^{-19} \, \text{C})\), \(\varepsilon \) is the dielectric constant, \(\varepsilon_0 \) is the permittivity of vacuum \((8.854 \times 10^{-12} \, \text{F} \, \text{m}^{-1})\), \(V \) (vs. RHE) is the applied potential, \(V_{FB} \) (vs. RHE) is the flat band potential, \(k_B \) is the Boltzmann constant \((1.381 \times 10^{-23} \, \text{J} \, \text{K}^{-1})\), \(T \) is the temperature \((298 \, \text{K})\), \(E \) is the applied potential, and \(N_d \) is the charge carrier (donor) density. The flat band potentials were determined from the intercepts of the \(1/C^2 \) versus \(V \) curve, subtracting \(k_B T / e = 0.025 \, \text{V} \) from the intercept. And the carrier concentration can be calculated from the slope of the M-S curves. As the slope of the M-S plot flattens, the carrier concentration increases. The flat band potential of the TiO2 NFs is more cathodically shifted about 100 mV than the TiO2 NRs, as shown in Fig. S11. It is favorable for the electrons to pass through the circuit to the counter electrode [5]. We analyzed the M-S plot after electrodeposition of BiVO4 onto the TiO2 NFs and TiO2 NRs. As shown in Fig. S11a, the donor density of BiVO4/TiO2 NFs was increased, which means the internal resistance of BiVO4/TiO2 NFs is reduced, allowing the carrier to transport much faster than the pristine TiO2 NFs. On the other hand, as shown in Fig. S11b, the carrier concentration of the BiVO4/TiO2 NRs was drastically reduced, which derives the decrease in photocactivity. These results indicate that the facet and morphology control of the bottom layer could be a significant factor in controlling PEC water splitting kinetics.

We also measured charge separation efficiency (\(\eta_{sep} \)) in the potential from 0 V to 1.6 V versus RHE. As shown in Fig. 4e, the BiVO4/TiO2 NFs exhibited 2.5 times higher \(\eta_{sep} \) than the pristine TiO2 NFs at 1.23 V versus RHE. It directly reveals that the enhanced photocurrent density of BiVO4/TiO2 NFs was mainly originated from the improved charge separation between BiVO4 nanodots and TiO2 NFs. To support this result, we also measured PEC water oxidation performances of TiO2 NFs and 18 BiVO4/TiO2 NFs in 0.5M K–Pi buffer without hole scavenger. As shown in Fig. S12a, BiVO4/TiO2 NFs showed more efficient water oxidation and higher photocurrent density compared to TiO2 NFs at 1.23 V versus RHE. The lower photocurrent density of BiVO4/TiO2 NFs in the lower potential region than that of TiO2 NFs was derived from the sluggish hole transfer of BiVO4. To expedite the hole transfer at the low potential, an additional introduction of oxygen evolution catalyst to BiVO4 is necessary [13]. Also, BiVO4/TiO2 NFs showed a 29% higher maximum IPCE and wider absorption wavelength range than TiO2 NFs as shown in Fig. S12b. We also measured the EIS of TiO2 NFs and 18 BiVO4/TiO2 NFs at 1.23 V versus RHE in K–Pi buffer electrolyte. As shown in Fig. S12c, BiVO4/TiO2 NFs showed a smaller semicircle compared to TiO2 NFs, which represented the smaller charge transfer resistance during the water oxidation. In the chronoamperometry at 1.23 V versus RHE in K–Pi buffer electrolyte, the 18 BiVO4/TiO2 NFs showed stable PEC performances for 2 h, as shown in Fig. S12d. By using gas chromatography, we measured gas evolution and Faradaic efficiency of 18 BiVO4/TiO2 NFs at 1.23 V versus RHE. As shown in Fig. S12e, the 18 BiVO4/TiO2 NFs photoanode and Pt cathode continuously generated oxygen and hydrogen gas. Near-complete Faradaic efficiency was achieved, representing that the photogenerated charge carriers were mostly used for evolving the oxygen and hydrogen gases.
3.4 Studies of Charge Carrier Dynamics and Band Structures

To profoundly understand the effect in the crystal facet of TiO$_2$ nanostructures to the charge transport and recombination behavior, the transient photocurrent decay occurring immediately upon illumination was evaluated. As shown in the chronoamperometry at 1.23 V versus RHE (Fig. 5a), when the light was switched on, a photocurrent spike was observed due to the rapid generation of electron and hole pairs. It would lead to severe charge recombination and cause the decrease in the photoactivity for the water splitting reaction. In general, the charge recombination can be caused by the accumulation of either electrons in the bulk or holes at the surface. The accumulation of holes would cause an equally large cathodic transient when the light is switched off, and electrons in the conduction band react with the accumulated hole. However, cathodic transients can scarcely be observed in Fig. 5a, suggesting the accumulation of holes at the surface of the films is not the main recombination process in both BiVO$_4$/TiO$_2$ NFs and BiVO$_4$/TiO$_2$ NRs. Thus, it is represent that the transient decays were mainly dependent to the accumulation of electrons due to the poor electron transport in the photoanodes. The transient decay time in the photoanodes was calculated from the logarithmic plot of parameter D, given by Eq. (3):

$$D = \frac{(I_t - I_s)}{(I_m - I_s)}$$ \hspace{1cm} (3)

where I_m is the photocurrent spike, I_t is the photocurrent at time t, and I_s is the steady-state photocurrent (i.e., as the recombination and charge generation reaches equilibrium). The transient decay time is defined as the time at which $\ln D = -1$. Based on the photocurrent profiles measured in Fig. 5a, the transient decay time of the TiO$_2$ NFs, BiVO$_4$/TiO$_2$ NFs, TiO$_2$ NRs, and BiVO$_4$/TiO$_2$ NRs is displayed in Fig. 5b. As shown in Table S2, the transient decay time for the BiVO$_4$/TiO$_2$ NFs was 26.35 s, which is approximately 4.15 times longer than that of the TiO$_2$ NFs at about 6.36 s. It represents a lower charge recombination rate of BiVO$_4$/TiO$_2$ NFs compared to the TiO$_2$ NFs. Otherwise, the BiVO$_4$/TiO$_2$ NRs showed a decay time of 1.57 s, which is shorter than that of the TiO$_2$ NRs at about 2.58 s. It is also related to the poor charge separation between BiVO$_4$ nanodots and TiO$_2$ NRs. These results indicate that TiO$_2$ NFs can play a key role as a hole blocking layer, which expedites electron transport and reduces charge recombination.

To gain a deeper insight into charge recombination behaviors according to the TiO$_2$ facet, time-resolved photoluminescence (TRPL) analysis was carried out at a wavelength of 540 nm, as shown in Fig. 5c. TRPL is a powerful technique to gain information about dynamics of the photogenerated electron and hole pairs, reflecting the charge recombination/separation behavior and charge trapping process in defects [38–40]. The TRPL results were fitted with a biexponential decay function, and photoluminescence lifetimes were calculated as represented in Table S3. The nonradiative (τ_1) and radiative recombination lifetimes (τ_2) of the photoexcited electrons and holes can be determined by measuring the luminescence signals resulting from recombination [38, 40]. The nonradiative recombination lifetime is generally determined from the surface recombination by the trap sites. Since, in both heterostructured photoelectrodes, it is the same BiVO$_4$ that is the part in contact with the electrolyte on the band structures, they have similar τ_1 values. However, the electron injection behavior into adjacent layers can be investigated by monitoring the radiative recombination lifetime. If the photoexcited carriers can be effectively transported

![Fig. 5](https://example.com/fig5.png)

Fig. 5 a The transient photocurrent decay that occurs immediately upon illumination at 1.23 V (vs. RHE). b Transient decay times for TiO$_2$ NFs, TiO$_2$ NRs, BiVO$_4$/TiO$_2$ NFs, and BiVO$_4$/TiO$_2$ NRs. c TRPL of TiO$_2$ NFs, TiO$_2$ NRs, BiVO$_4$/TiO$_2$ NFs and BiVO$_4$/TiO$_2$ NRs
into the neighboring layers, the radiative recombination lifetime of the heterostructured photoelectrode decreases. In this regard, the smaller τ_2 value of BiVO$_4$/TiO$_2$ NFs (5.20 ns) than that of BiVO$_4$/TiO$_2$ NRs (6.10 ns) denotes the efficient extraction of photoexcited electrons by TiO$_2$ NFs. It corresponds with the transient decay time analysis in Fig. 5b. Based on the analysis of charge carrier dynamics, we demonstrated that the crystal facet engineering of TiO$_2$ nanostructures is a powerful tool to allow TiO$_2$ to be utilized as the hole blocking layer for BiVO$_4$ by boosting charge separation efficiency.

To investigate the reason for the charge separation difference of TiO$_2$ NRs with (001) facets and TiO$_2$ NFs with (110) facets, we compared the band structures of BiVO$_4$/TiO$_2$ NRs and BiVO$_4$/TiO$_2$ NFs. The UPS measures occupied electronic states, providing information on the Fermi level and valence band maximum (VBM) energy of a material. The conduction band minimum (CBM) energy can be calculated by adding the optical band gap energy (E_g), which is given by the UV–Vis spectroscopy, to the VBM. The band gap can be evaluated from Eq. (4):

$$\alpha(hv) = A(hv - E_g)^{n/2}$$

where α, E_g, and A are the absorption coefficient, band gap energy, and a constant, respectively. Based on the UV–Vis spectra (Fig. S13) and Tauc plots, the optical band gap of the TiO$_2$ NFs and TiO$_2$ NRs was 2.84 and 2.75 eV, respectively (Fig. 6a). These are the smaller values than the band gap in previous reports (~ 3.2 eV). Because co-doped sulfur and nitrogen from the sulfamic acid form S 3p and N 2p states between the conduction band and valence band of TiO$_2$, diminishing the band gap of TiO$_2$ nanostructures [18]. And, a smaller band gap of TiO$_2$ NRs compared to that of TiO$_2$ NFs caused the absorption of the larger wavelength of visible light. Thus, as shown in Fig. 5a, the TiO$_2$ NRs generated a higher photocurrent density at 1.23 V versus RHE than TiO$_2$ NFs. According to Fig. 6b, the band gap of BiVO$_4$ was 2.4 eV, which is similar to the values in previous studies.

The secondary electron emission (SEE) spectra of the TiO$_2$ NFs, TiO$_2$ NRs, BiVO$_4$, BiVO$_4$/TiO$_2$ NFs, and BiVO$_4$/TiO$_2$ NRs were given by the high-binding-energy region in UPS, as shown in Fig. 6c. The work functions of TiO$_2$ NFs (4.46 eV), TiO$_2$ NRs (3.58 eV), BiVO$_4$/TiO$_2$ NFs (4.18 eV), and BiVO$_4$/TiO$_2$ NRs (4.18 eV) could be estimated from the differences between SEE spectra cutoffs and He I photon source energy (21.22 eV), as shown in Fig. S14. According to the valence band (VB) spectra given by the low-binding-energy region in UPS, the energy difference between the Fermi level and the valence band maximum ($E_F - E_{VBM}$) could be calculated, as shown in Fig. 6d. The values of $E_F - E_{VBM}$ for the TiO$_2$ NFs (2.62 eV), TiO$_2$ NRs (2.67 eV), BiVO$_4$/TiO$_2$ NFs (2.39 eV), and BiVO$_4$/TiO$_2$ NRs (2.39 eV) were calculated by the VB spectra cutoffs, as shown in Fig. S15. The values measured by UPS are summarized in Table S4. Since the band edge positions are highly dependent on the change of electrostatic potential in near-surface atoms, the VBM and CBM shifts between TiO$_2$ NRs and TiO$_2$ NFs is derived from the preferential crystal facet [41–43]. The titanium atoms on the (001) surface are tetrahedral-coordinated, and thus their environment is relatively close to the bulk. It causes the splitting of the occupied and unoccupied levels to be large, which leads to the highest CBM value [36, 37, 41]. Therefore, the (110) facet-dominant TiO$_2$ NFs have a more negative CBM than the (001) facet-dominant TiO$_2$ NRs. Based on these results, the energy band diagrams for the BiVO$_4$/TiO$_2$ NRs and BiVO$_4$/TiO$_2$ NFs are illustrated in Fig. 6e, f, respectively. In the case of BiVO$_4$/TiO$_2$ NRs, the CBM of the TiO$_2$ NRs significantly move upward, making the transport of photogenerated electrons from BiVO$_4$ difficult [38, 40, 44, 45]. Also, due to the relatively positive VBM of the TiO$_2$ NRs, photogenerated holes from BiVO$_4$ cannot be effectively blocked, causing the charge recombination, whereas TiO$_2$ NFs having a relatively negative CBM and VBM can be effective electron transport layer and hole-blocking layer for BiVO$_4$. As a result, the BiVO$_4$/TiO$_2$ NFs clearly form the type II band alignment, which is energetically favorable to separate the photogenerated electrons and holes from BiVO$_4$. In the final analysis, it was found that the enhanced photoactivity of BiVO$_4$/TiO$_2$ NFs was originated from the improvement of charge separation according to the band structure of crystal facet-engineered TiO$_2$.

4 Conclusions

In summary, we have demonstrated the effect of crystal facet-controlled TiO$_2$ nanostructures on band structures and charge separation. Two types of BiVO$_4$/TiO$_2$ heterostructure photoanodes having TiO$_2$ NRs with (001) facets and TiO$_2$ NFs with (110) were systematically studied to reveal the role of facets for facile PEC water splitting. We revealed that the improved photoelectrochemical
performances of BiVO$_4$/TiO$_2$ NFs compared with BiVO$_4$/TiO$_2$ NRs were attributed to the prohibition of charge recombination through interface and morphology control. According to the analysis of charge carrier dynamics such as transient decay time and time-resolved photoluminescence, the charge separation effect was supported. Based on the UPS, it was represented that crystal facet engineering affects the band edge position of TiO$_2$. In conclusion, this study not only provides new perspectives in band structure engineering but also opens a promising
avenue in designing heterostructure photoelectrodes for efficient PEC water splitting.

Acknowledgements This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (MSIT) (2021R1A2B5B03001851). This work was also supported by the NRF Grant funded by the Korean government MSIT (2021M3H4A1A03057403). M. G. L. acknowledges the Basic Science Research Program through the NRF funded by the Ministry of Education (2021R1A6A3A13046700). The Inter-University Semiconductor Research Center and Institute of Engineering Research at Seoul National University provided research facilities for this work.

Funding Open access funding provided by Shanghai Jiao Tong University.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s40820-022-00795-8.

References

1. C. Jiang, S.J.A. Moniz, A. Wang, T. Zhang, J. Tang, Photoelectrochemical devices for solar water splitting-materials and challenges. Chem. Soc. Rev. 46, 4645–4660 (2017). https://doi.org/10.1039/c6cs00306k

2. I.S. Cho, Z. Chen, A.J. Forman, D.R. Kim, P.M. Rao et al., Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 11, 4978–4984 (2011). https://doi.org/10.1021/nl2029392

3. J.W. Yang, S.H. Ahn, H.W. Jang, Crucial role of heterostructures in highly advanced water splitting photoelectrodes. Curr. Opin. Green Sustain. Chem. 29, 100454 (2021). https://doi.org/10.1016/j.cogsc.2021.100454

4. K. Sivula, F. le Formal, M. Grätzel, WO3-Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach. Chem. Mater. 21, 2862–2867 (2009). https://doi.org/10.1021/cm900565a

5. M.G. Lee, D.H. Kim, W. Sohn, C.W. Moon, H. Park et al., Conformally coated BiVO4 nanodots on porosity-controlled WO3 nanorods as highly efficient type II heterojunction photoanodes for water oxidation. Nano Energy 28, 250–260 (2016). https://doi.org/10.1016/j.nanoen.2016.08.046

6. J. Su, L. Guo, N. Bao, C.A. Grimes, Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11, 1928–1933 (2011). https://doi.org/10.1021/nl2000743

7. X. Shi, I.Y. Choi, K. Zhang, J. Kwon, D.Y. Kim et al., Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nat. Commun. 5, 4775 (2014). https://doi.org/10.1038/ncomms5775

8. A. Kargar, S.J. Kim, P. Allameh, C. Choi, N. Park et al., p-Si/SnO2/Core/Shell nanowire photocathodes for neutral pH water splitting. Adv. Funct. Mater. 25, 2609–2615 (2015). https://doi.org/10.1002/adfm.201404571

9. L. Wang, A. Palacios-Padrós, R. Kirchgeorg, A. Tighineanu, P. Schmuki, Enhanced photoelectrochemical water splitting efficiency of a hematite-ordered Sb:SnO2 host-guest system. Chemsuschem 7, 421–424 (2014). https://doi.org/10.1002/cssc.201301120

10. S. Shen, S.A. Lindley, X. Chen, J.Z. Zhang, Heterojunctions for photoelectrochemical water splitting: Rational materials design and charge carrier dynamics. Energy Environ. Sci. 9, 2744–2775 (2016). https://doi.org/10.1039/c6ee01845a

11. B.R. Lee, H.W. Jang, β-In2S3 as water splitting photoanodes: promise and challenges. Electron. Mater. Lett. 17, 119–135 (2021). https://doi.org/10.1007/s13391-020-00266-5

12. S. Byun, B. Kim, S. Jeon, B. Shin, Effects of a SnO2 hole blocking layer in a BiVO4-based photoanode on photocatalytic water oxidation. J. Mater. Chem. A 5, 6905–6913 (2017). https://doi.org/10.1039/c7ta00806f

13. J.W. Yang, I.J. Park, S.A. Lee, M.G. Lee, T.H. Lee et al., Near-complete charge separation in tailored BiVO4-based heterostructure photoanodes toward artificial leaf. Appl. Catal. B: Environ. 293, 120217 (2021). https://doi.org/10.1016/j.apcatb.2021.120217

14. J. Resasco, H. Zhang, N. Kornienko, N. Becknell, H. Lee et al., TiO2/BiVO4 nanowire heterostructure photoanodes based on type II band alignment. ACS Cen. Sci. 2, 80–88 (2016). https://doi.org/10.1021/acscentsci.5b00402

15. Z. Yu, H. Liu, M. Zhu, Y. Li, W. Li, Interfacial charge transport in 1D TiO2 based photoelectrodes for photoelectrochemical water splitting. Small 17, 1903378 (2021). https://doi.org/10.1002/smll.201903378

16. O. Monfort, D. Raptis, L. Satrapinsky, T. Roch, G. Plesch et al., Production of hydrogen by water splitting in a photoelectrochemical cell using a BiVO4/TiO2 layered photoanode. Electrochim. Acta 251, 244–249 (2017). https://doi.org/10.1016/j.electacta.2017.08.125
17. X. Zhang, B. Zhang, K. Cao, J. Brillet, J. Chen et al., A perovskite solar cell-TiO2@BiVO4 photoelectrochemical system for direct solar water splitting. J. Mater. Chem. A 3, 21630–21636 (2015). https://doi.org/10.1039/c5ta05838d
18. D.M. Andoshe, K. Yim, W. Sohn, C. Kim, T.L. Kim et al., One-pot synthesis of sulfur and nitrogen codoped titanium dioxide nanorod arrays for superior photoelectrochemical water oxidation. Appl. Catal. B: Environ. 234, 213–222 (2018). https://doi.org/10.1016/j.apcatb.2018.04.045
19. S. Wang, G. Liu, L. Wang, Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem. Rev. 119, 5192–5247 (2019). https://doi.org/10.1021/acs.chemrev.8b00584
20. B. Fu, Z. Wu, S. Cao, K. Guo, L. Piao, Effect of aspect ratios of rutile TiO2 nanorods on overall photocatalytic water splitting performance. Nanoscale 12, 4895–4902 (2020). https://doi.org/10.1039/c9nr10870j
21. C. Phawa, S. Prayoonpokarach, K. Sinthiptharakoon, P. Chakthranont, W. Sangkhun et al., Effects of matching facet pairs of TiO2 on photoelectrochemical water splitting behaviors. ChemCatChem 12, 2116–2124 (2020). https://doi.org/10.1002/cctc.201901857
22. L. Wang, J. Ge, A. Wang, M. Deng, X. Wang et al., Designing p-type semiconductor-metal hybrid structures for improved photocatalysis. Angew. Chem. 126, 5207–5211 (2014). https://doi.org/10.1002/ange.201310635
23. M.G. Lee, K. Jin, K.C. Kwon, W. Sohn, H. Park et al., Efficient water splitting cascade photocathodes with ligand-engineered MnO cocatalysts. Adv. Sci. 5, 1800727 (2018). https://doi.org/10.1002/advs.201800727
24. J.P. Jalava, V.M. Taavitsainen, R.J. Lamminmäki, M. Lindholm, S. Auvinen et al., Modeling TiO2’s refractive index function from bulk to nanoparticles. J. Quant. Spec. Radiat. Transf. 167, 105–118 (2015). https://doi.org/10.1016/j.jqsrt.2015.08.007
25. J.M. Ball, S.D. Stranks, M.T. Hö rantner, S. Hüttner, W. Zhang et al., Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy Environ. Sci. 8, 602–609 (2015). https://doi.org/10.1039/c4ee03224a
26. S.S.M. Bhat, S.A. Lee, T.H. Lee, C. Kim, J. Park et al., All-solution-processed BiVO4/TiO2 photoanode with NiCo2O4 nanofoil cocatalyst for enhanced solar water oxidation. ACS Appl. Energy Mater. 3, 5646–5656 (2020). https://doi.org/10.1021/acsenergylett.7b00834
27. S.P. Hong, J. Park, S.S.M. Bhat, T.H. Lee, S.A. Lee et al., Comprehensive study on the morphology control of TiO2 nanorods on foreign substrates by the hydrothermal method. Cryst. Growth Des. 18, 6504–6512 (2018). https://doi.org/10.1021/acs.cgd.8b00667
28. S.S. Mali, C.A. Betty, P.N. Bhosale, P.S. Patil, C.K. Hong, From nanocorals to nanorods to nanoflowers nanoarchitecture for efficient dye-sensitized solar cells at relatively low film thickness: all hydrothermal process. Sci. Rep. 4, 5451 (2014). https://doi.org/10.1038/srep05451
29. J. Harris, R. Silk, M. Smith, Y. Dong, W.T. Chen et al., Hierarchical TiO2 nanoflower photocatalysts with remarkable activity for aqueous methylene blue photo-oxidation. ACS Omega 5, 18919–18934 (2020). https://doi.org/10.1021/acsom ega.0c02142
30. M. Ge, Q. Li, C. Cao, J. Huang, S. Li et al., One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Adv. Sci. 4, 1600152 (2017). https://doi.org/10.1002/advs.2016010152
31. J.S. Yang, W.P. Liao, J.J. Wu, Morphology and interfacial energetics controls for hierarchical anatase/rutile TiO2 nanostructured array for efficient photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 5, 7425–7431 (2013). https://doi.org/10.1021/am401746b
32. T.W. Kim, K.S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014). https://doi.org/10.1126/science.1246913
33. A.P. Singh, N. Kodan, B.R. Mehta, A. Held, L. Mayrhofer et al., Band edge engineering in BiVO4/TiO2 heterostructures: enhanced photoelectrochemical performance through improved charge transfer. ACS Catal. 6, 5311–5318 (2016). https://doi.org/10.1021/acscatal.6b00956
34. S. Kment, F. Riboni, S. Pausova, L. Wang, L. Wang et al., Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting-superior role of 1D nanoarchitectures and of combined heterostructures. Chem. Soc. Rev. 46, 3716–3769 (2017). https://doi.org/10.1039/c6cs0015k
35. C.X. Kronawitter, L. Vayssieres, S. Shen, L. Guo, D.A. Wheeler et al., A perspective on solar-driven water splitting with all-oxide hetero-nanostructures. Energy Environ. Sci. 4, 3889–3899 (2011). https://doi.org/10.1039/c1ee02186a
36. F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42, 2294–2320 (2013). https://doi.org/10.1039/c2cs35266d
37. B. Lamm, B.J. Trześniewski, H. Döschler, W.A. Smith, M. Stefk, Emerging postsynthetic improvements of BiVO4 photoanodes for solar water splitting. ACS Energy Lett. 3, 112–124 (2018). https://doi.org/10.1021/acsenergylett.7b00834
38. J.K. Kim, Y. Cho, M.J. Jeong, B. Levy-Wendt, D. Shin et al., Rapid formation of a disordered layer on monolclinic BiVO4: co-catalyst-free photoelectrochemical solar water splitting. ChemSusChem 11, 933–940 (2018). https://doi.org/10.1002/cssc.201702173
39. A. Li, X. Chang, Z. Huang, C. Li, Y. Wei et al., Thin heterojunctions and spatially separated cocatalysts to simultaneously reduce bulk and surface recombination in photocatalysts. Angew. Chem. Int. Ed. 55, 13734–13738 (2016). https://doi.org/10.1002/anie.201605666
40. W. Yang, S. Lee, H.C. Kwon, J. Tan, H. Lee et al., Time-resolved observations of photo-generated charge-carrier dynamics in Sb2Se3 photocathodes for photoelectrochemical water splitting. ACS Nano 12, 11088–11097 (2018). https://doi.org/10.1021/acsnano.8b05446
41. G. Liu, H.G. Yang, J. Pan, Y.Q. Yang, G.Q.M. Lu et al., Titanium dioxide crystals with tailored facets. Chem. Rev. 114, 9559–9612 (2014). https://doi.org/10.1021/cr400621z
42. T.R. Esch, T. Bredow, Band positions of Rutile surfaces and the possibility of water splitting. Surf. Sci. 665, 20–27 (2017). https://doi.org/10.1016/j.susc.2017.08.006
43. S. Selcuk, A. Selloni, Facet-dependent trapping and dynamics of excess electrons at anatase TiO₂ surfaces and aqueous interfaces. Nat. Mater. 15, 1107–1112 (2016). https://doi.org/10.1038/nmat4672
44. A.Y. Zhang, W.Y. Wang, J.J. Chen, C. Liu, Q.X. Li et al., Epitaxial facet junctions on TiO₂ single crystals for efficient photocatalytic water splitting. Energy Environ. Sci. 11, 1444–1448 (2018). https://doi.org/10.1039/c7ee03482b
45. L. Lin, Z. Lin, J. Zhang, X. Cai, W. Lin et al., Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nat. Catal. 3, 649–655 (2020). https://doi.org/10.1038/s41929-020-0476-3