On a Hypergraph Approach to Multistage Group Testing Problems

A. G. D’YACHKOV
Lomonosov Moscow State University, Moscow, Russia
agd-msu@yandex.ru

I.V. VOROBYEV
Lomonosov Moscow State University, Moscow, Russia
vorobyev.i.v@yandex.ru

N.A. POLYANSKII
Lomonosov Moscow State University, Moscow, Russia
nikitapolyansky@gmail.com

V.YU. SHCHUKIN
Lomonosov Moscow State University, Moscow, Russia
vpike@mail.ru

Abstract. Group testing is a well known search problem that consists in detecting up to \(s \) defective elements of the set \([t] = \{1, \ldots, t\} \) by carrying out tests on properly chosen subsets of \([t] \). In classical group testing the goal is to find all defective elements by using the minimal possible number of tests. In this paper we consider multistage group testing. We propose a general idea how to use a hypergraph approach to searching defects. For the case \(s = 2 \), we design an explicit construction, which makes use of \(2 \log_2 t (1 + o(1)) \) tests in the worst case and consists of 4 stages.

1 Introduction

Group testing is a very natural combinatorial problem that consists in detecting up to \(s \) defective elements of the set \([t] = \{1, \ldots, t\} \) by carrying out tests on properly chosen subsets (pools) of \([t] \). The test outcome is positive if the tested pool contains one or more defective elements; otherwise, it is negative.

There are two general types of algorithms. In *adaptive* group testing, at each step the algorithm decides which group to test by observing the responses of the previous tests. In *non-adaptive* algorithm, all tests are carried out in parallel. There is a compromise algorithm between these two types, which is called a *multistage* algorithm. For the multistage algorithm all tests are divided into \(p \) sequential stages. The tests inside the same stage are performed simultaneously. The tests of the next stages may depend on the responses of the previous. In this context, a non-adaptive group testing algorithm is referred to as a one stage algorithm.

1The research is supported in part by the Russian Foundation for Basic Research under Grant No. 16-01-00440.
1.1 Previous results

We refer the reader to the monograph [1] for a survey on group testing and its applications. In spite of the fact that the problem of estimating the minimum \textit{average} (the set of defects is chosen randomly) number of tests has been investigated in many papers (for instance, see [2, 3]), in the given paper we concentrate our attention only on the minimal number of test in the \textit{worst case}.

In 1982 [4], Dyachkov and Rykov proved that at least

$$s^2 2 \log_2(e(s + 1)/2) \log_2 t(1 + o(1))$$

tests are needed for non-adaptive group testing algorithm.

If the number of stages is 2, then it was proved that $O(s \log t)$ tests are already sufficient. It was shown by studying random coding bound for disjunctive list-decoding codes [6, 7] and selectors [8]. The recent work [5] has significantly improved the constant factor in the main term of number of tests for two stage group testing procedures. In particular, if $s \to \infty$, then

$$\frac{se}{\log_2 e} \log_2 t(1 + o(1))$$

tests are enough for two stage group testing.

As for adaptive strategies, there exist such ones that attain the information theory lower bound $s \log t(1 + o(1))$. However, for $s > 1$ the number of stages in well-known optimal strategies is a function of t, and grows to infinity as $t \to \infty$.

1.2 Summary of the results

In the given article we present some explicit algorithms, in which we make a restriction on the number of stages. It will be a function of s. We briefly give necessary notations in section 2. Then, in section 3, we present a general idea of searching defects using a hypergraph approach. In section 4, we describe a 4-stage group testing strategy, which detects 2 defects and uses the asymptotically optimal number of tests $2 \log_2 t(1 + o(1))$. As far as we know the best result for such a problem was obtained [9] by Damashke et al. in 2013. They provide an exact two stage group testing strategy and use $2.5 \log_2 t$ tests. For other constructions for the case of 2 defects, we refer to [10, 11].

2 Preliminaries

Throughout the paper we use t, s, p for the number of elements, defectives, and stages, respectively. Let \triangleq denote the equality by definition, $|A|$ – the
cardinality of the set \(A \). The binary entropy function \(h(x) \) is defined as usual

\[h(x) = -x \log_2(x) - (1 - x) \log_2(1 - x). \]

A binary \((N \times t)\)-matrix with \(N \) rows \(\mathbf{x}_1, \ldots, \mathbf{x}_N \) and \(t \) columns \(\mathbf{x}(1), \ldots, \mathbf{x}(t) \) (codewords)

\[X = \|x_i(j)\|, \quad x_i(j) = 0, 1, \quad i \in [N], j \in [t] \]

is called a binary code of length \(N \) and size \(t \). The number of 1’s in the codeword \(x(j) \), i.e., \(|x(j)| \triangleq \sum_{i=1}^{N} x_i(j) = wN \), is called the weight of \(x(j) \), \(j \in [t] \) and parameter \(w \), \(0 < w < 1 \), is the relative weight.

One can see that the binary code \(X \) can be associated with \(N \) tests. A column \(\mathbf{x}(j) \) corresponds to the \(j \)-th sample; a row \(\mathbf{x}_i \) corresponds to the \(i \)-th test. Let \(u \lor v \) denote the disjunctive sum of binary columns \(u, v \in \{0, 1\}^N \).

For any subset \(S \subset [t] \) define the binary vector

\[r(X, S) = \bigvee_{j \in S} x(j), \]

which later will be called the outcome vector.

By \(S_{un}, |S_{un}| \leq s \), denote an unknown set of defects. Suppose there is a \(p \)-stage group testing strategy \(\mathcal{S} \) which finds up to \(s \) defects. It means that for any \(S_{un} \subset [t], |S_{un}| \leq s \), according to \(\mathcal{S} \):

1. we are given with a code \(X_1 \) assigned for the first stage of group testing;

2. we can design a code \(X_{i+1} \) for the \(i \)-th stage of group testing, based on the outcome vectors of the previous stages \(r(X_1, S_{un}), r(X_2, S_{un}), \ldots, r(X_i, S_{un}) \);

3. we can identify all defects \(S_{un} \) using \(r(X_1, S_{un}), r(X_2, S_{un}), \ldots, r(X_p, S_{un}) \).

Let \(N_i \) be the number of test used on the \(i \)-th stage and

\[N_T(\mathcal{S}) = \sum_{i=1}^{p} N_i \]

be the maximal total number of tests used for the strategy \(\mathcal{S} \). We define \(N_p(t, s) \) to be the minimal worst-case total number of tests needed for group testing for \(t \) elements, up to \(s \) defectives, and at most \(p \) stages.
3 Hypergraph approach to searching defects

Let us introduce a hypergraph approach to searching defects. Suppose a set of vertices V is associated with the set of samples $[t]$, i.e., $V = \{1, 2, \ldots, t\}$.

First stage: Let X_1 be the code corresponding to the first stage of group testing. For the outcome vector $r = r(X_1, S_{un})$ let $E(r, s)$ be the set of subsets of $S \subset V$ of size at most s such that $r(X, S) = r(X, S_{un})$. So, the pair $(V, E(r, s))$ forms the hypergraph $H = H(X_1)$. We will call two vertices adjacent if they are included in some hyperedge of H. Suppose there exist a good vertex coloring of H in k colours, i.e., assignment of colours to vertices of H such that no two adjacent vertices share the same colour. By $V_i \subset V$, $1 \leq i \leq k$, denote vertices corresponding to the i-th colour. One can see that all these sets are pairwise disjoint.

Second stage:
Now we can perform k tests to check which of monochromatic sets V_i contain a defect. Here we find the cardinality of set S_{un} and $|S_{un}|$ sets $\{V_i, \ldots, V_i|S_{un}|\}$, each of which contains exactly one defective element.

Third stage:
Carrying out $\lceil \log_2 |V_i| \rceil$ tests we can find a vertex v, corresponding to the defect, in the suspicious set V_i. Observe that actually by performing $\sum_{j=1}^{S_{un}} \lceil \log_2 |V_{ij}| \rceil$ tests we could identify all defects S_{un} on this stage.

Fourth stage:
Consider all hyperedges $e \in E(r, s)$, such that e contains the found vertex v and consists of vertices of $v \cup V_i \cup \ldots \cup V_i|S_{un}|$. At this stage we know that the unknown set of defects coincides with one of this hyperedges. To check if the hyperedge e is the set of defects we need to test the set $[t] \setminus e$. Hence, the number of test at fourth stage is equal to degree of the vertex v.

4 Optimal searching of 2 defects

Now we consider a specific construction of 4-stage group testing. Then we upper bound number of tests N_i at each stage.

First stage:
Let $C = \{0, 1, \ldots, q-1\}^N$ be the q-ary code, consisting of all q-ary words of length N and having size $t = q^N$. Let D be the set of all binary words with length N' such that the weight of each codeword is fixed and equals wN', $0 < w < 1$, and the size of D is at least q, i.e., $q \leq \binom{N'}{wN'}$. On the first stage we use the concatenated binary code X_1 of length $N_1 = N \cdot N'$ and size $t = q^N$, where the inner code is D, and the outer code is C. We will say X_1 consists of N layers. Observe that we can split up the outcome vector $r(X_1, S_{un})$ into N subvectors of lengths N'. So let $r_j(X_1, S_{un})$ correspond to $r(X_1, S_{un})$ restricted
to the \(j \)-th layer. Let \(w_j, j \in [\hat{N}] \), be the relative weight of \(r_j(X_1, S_{un}) \), i.e., \(|r_j(X_1, S_{un})| = w_jN' \) is the weight of the \(j \)-th subvector of \(r(X_1, S_{un}) \).

If \(w_j = w \) for all \(j \in [\hat{N}] \), then we can say that \(S_{un} \) consists of 1 element and easily find it.

If there are at least two defects, then suppose for simplicity that \(S_{un} = \{1, 2\} \). The two corresponding codewords of \(C \) are \(c_1 \) and \(c_2 \). There exists a coordinate \(i, 1 \leq i \leq \hat{N} \), in which they differ, i.e., \(c_1(i) \neq c_2(i) \). Notice that the relative weight \(w_i \) is bigger than \(w \).

For any \(i \in [\hat{N}] \) such that \(w_i > w \), we can colour all vertices \(V \) in \(q \) colours, where the colour of \(j \)-th vertex is determined by the corresponding \(q \)-nary symbol \(c_i(j) \) of code \(C \).

One can check that such a coloring is a good vertex coloring.

Second stage:
We perform \(q \) tests to find which coloured group contain 1 defect.

Third stage:
Let us upper bound the size \(\hat{t} \) of one of such suspicious group:

\[
\hat{t} \leq \left(\frac{w_1N'}{wN'} \right) \cdot \ldots \cdot \left(\frac{w_{\hat{N}}N'}{wN'} \right)
\]

In order to find one defect in the group we may perform \(\lceil \log_2 \hat{t} \rceil \) tests.

Fourth stage:
On the final step, we have to bound the degree of the found vertex \(v \in V \) in the graph. The degree \(\deg(v) \) is bounded as

\[
\deg(v) \leq \left(\frac{wN'}{(2w - w_j)N'} \right) \cdot \ldots \cdot \left(\frac{wN'}{(2w - w_{\hat{N}})N'} \right)
\]

We know that the second defect corresponds to one of the adjacent to \(v \) vertices. Therefore, to identify it we have to make \(\lceil \log_2 \deg(v) \rceil \) tests.

The optimal choice of the parameter \(w \) gives the procedure with total number of tests equals \(2 \log_2 \hat{t}(1 + o(1)) \).
References

[1] Du D.Z., Hwang F.K., Combinatorial Group Testing and Its Applications, 2nd ed., Series on Applied Mathematics, vol. 12, 2000.

[2] Damaschke P., Sheikh Muhammad A., Triesch E., Two new perspectives on multi-stage group testing, Algorithmica, vol. 67, no. 3, pp. 324-354, 2013.

[3] M?zard M., Toninelli, C., Group testing with random pools: Optimal two-stage algorithms, Information Theory, IEEE Transactions on, vol. 57, no. 3, pp. 1736-1745, (2011).

[4] D’yachkov A.G., Rykov V.V., Bounds on the Length of Disjunctive Codes, // Problems of Information Transmission, vol. 18. no 3. pp. 166-171, 1982.

[5] D’yachkov A.G., Vorobyev I.V., Polyanskii N.A., Shchukin V.Yu., Bounds on the Rate of Disjunctive Codes, Problems of Information Transmission, vol. 50, no. 1, pp. 27-56, 2014.

[6] Rashad A.M., Random Coding Bounds on the Rate for List-Decoding Superimposed Codes. Problems of Control and Inform. Theory., vol. 19, no 2, pp. 141-149, 1990.

[7] D’yachkov A.G., Lectures on Designing Screening Experiments, Lecture Note Series 10, Combinatorial and Computational Mathematics Center, Pohang University of Science and Technology (POSTECH), Korea Republic, Feb. 2003, (survey, 112 pages).

[8] De Bonis A., Gasieniec L., Vaccaro U., Optimal two-stage algorithms for group testing problems, SIAM J. Comp., vol. 34, no. 5 pp. 1253-1270, 2005.

[9] Damaschke P., Sheikh Muhammad A., Wiener G. Strict group testing and the set basis problem. Journal of Combinatorial Theory, Series A, vol. 126, pp. 70-91, August 2014.

[10] Macula A.J., Reuter G.R., Simplified searching for two defects, Journal of statistical planning and inference, vol. 66, no. 1, pp 77-82, 1998.

[11] Deppe C., Lebedev V.S., Group testing problem with two defects, Problems of Information Transmission, vol. 49, no. 4, pp. 375-381, 2013.