Preparation, characterization and use of new lignocellulose-based bio nanocomposite as a heterogeneous catalyst for sustainable synthesis of pyrimido benzazoles

Shiva Molaei and Shahrzad Javanshir
Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran

ABSTRACT
A sustainable combinatorial synthesis of densely substituted pyrimido [1,2-b] benzazole derivatives in water under microwave irradiation was performed using a new lignocellulose-based bio nanocomposite (BNC) as heterogeneous catalyst. The lignocellulosic waste peanut shells (LCWPS) were turned into a value-added product, a new BNC PS/ZnO, which was prepared via in situ hydrothermal synthesis. The as-prepared BNC was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction spectrum. PS/ZnO has been successfully used in a sustainable catalytic method for the synthesis of pyrimido [1, 2-b] benzazole derivatives in water under microwave irradiation. The time of this reaction was significantly reduced. This catalytic system has a very high turnover number (TON $\sim 10^3$) and turnover frequency (TOF $\sim 10^5$ h$^{-1}$). This paper presents the benefit of sustainable management of LCWPS, a bio-sourced polymeric carbohydrate for production of new nanocatalyst.

ARTICLE HISTORY
Received 6 November 2017
Accepted 29 May 2018

KEYWORDS
Sustainable chemistry; bio nanocomposite; heterogeneous catalyst; lignocellulose; cellulose

Introduction
Peanut shells (PS), an agro-industrial waste constitute a considerable part of biodegradable lignocellulosic waste (LCW) (1). Every year around 13.7 million tons of PS are discarded in the environment or burned (2–4). In contrast limited value-added uses exist for their removal among which we can mention the preparation of solid acid catalyst for biodiesel production and etherification of glycerol (5–7), natural dye and metal absorbents (8–14), biofilter based on their mechanical and...
thermal properties (15–17), and they are also used in the production of cellulose (18). PS are mainly composed of three biopolymers: lignin, cellulose and hemicellulose. Among the three biopolymers present in PS, cellulose and lignin were the most abundant (19). The existing of many polar functional groups including hydroxyl group (primary, secondary and phenolic), methoxyl and carboxyl groups as well as aromatic ring in PS makes it a potential capping agent (20) for synthesis of nanoparticles (NPs) and might be placed in a class of abundant natural, renewable, nontoxic and very low or no cost environmentally friendly catalyst support. All these made it an attractive candidate for supported catalysis, and might offered important advantages in organic synthesis, such as operational simplicity, environmental compatibility, nontoxic, reusability, low-cost and ease of isolation. Newly, the effectiveness of NPs such as ZnO NPs was reported in several organic reactions (21–23). Raj et al. (20) have synthesized modified ZnO NPs through a sol–gel method, using different aromatic capping agent for the synthesis of pyrimidine derivatives.

This work discusses the in situ hydrothermal production of PS/ZnO, a nanocomposite materials based on LCWPS and examines their catalytic activity in multi-component reactions (MCRs), an appreciated sustainable approach in organic synthesis, which proceed with remarkably high atom economy and accelerate the formation of highly functionalized organic compounds, via a one-pot reaction between three or more reactants (24, 25). The PS could prevent the aggregation of ZnO NPs, which are shaped and distributed over a high surface area.

Polycyclic fused-ring heterocycles containing nitrogen and sulfur atom, are of great importance, especially in the pharmaceutical fields, because of their abundance in nature and their diverse biological properties (26–28). One of these important compounds, the pyrimido benzazole which is synthesized through Biginelli-like reaction (29, 30), was extensively studied for their medicinal applications such as antimicrobial, antifungal, antibacterial, antihypertensive, antiviral and anticancer activities (31–42). They are also potent HIV integrase inhibitors (25, 43), LTD4 receptor antagonists (34), and are also used for the treatment of bronchial asthma and neurodegenerative disease (37, 39, 44). Therefore, synthesis of this compound has attracted notable interest and a number of studies have been conducted on their synthesis methods, hence the great diversity of methods of preparation were described in the literature. Besides some advantages, Biginelli reactions need harsh conditions (40) and according to some reports (31, 45, 46), low yield, long reaction time and harmful organic solvents are some disadvantages of this reaction.

Hence, we applied a combinatorial methodology to synthesis densely substituted pyrimido benzazoles derivatives using PS/ZnO bio nanocatalyst. This new nanocomposite based on PS was prepared via in situ hydrothermal synthesis and its catalytic activity was examined for the synthesis of pyrimido benzenzoles by a one-pot three-components condensation of 2-amino-benzimidazole (3a), 2-aminobenzothiazole (3b) or guanidinium chloride (3c), aldehydes (1a–j) and C–H acidic compounds such as 2-hydroxy-1,4-naphtoquinone (2a), dimedone (2b), malononitrile (2c) and ethyl acetoacetate(2d) under microwave irradiation in water (Scheme 1).

Results and discussion

The catalytic activity of PS/ZnO was investigated in a domino reaction for the synthesis of pyrimidobenzazole derivatives. The reaction of 4-chlorobenzaldehyde (1a), lawson (2a) (2-hydroxy-1,4-naphtoquinone) and 2-aminobenzimidazole (3a) was considered as a model reaction (Scheme 2).

To specify the most efficient catalyst, the model reaction was carried out using different catalysts such as PS, ZnO, PS/ZnO, Fe3O4/PS/ZnO, Chitin/ZnO, Fe3O4/PS/CuO, and also in the absence of catalyst under reflux condition. The results are shown in Table 1. As can be seen, in the absence of the catalyst the yield of the reaction is very low whatever the reaction conditions (entry 1–4). When 20 mg of PS was used as a catalyst in reflux condition, the yield increased moderately (entry 5). The use of ZnO as a catalyst resulted in a modest increase in yield under the same reflux conditions (entry 9). Thus, we decided to study the synergetic effect of PS and ZnO, by preparing PS/ZnO nanocomposite. As could be guessed, the use of this hybrid system shows a higher activity. Consequently, higher yield in a shorter time was obtained even by decreasing the loading of the catalyst, which shows their additive or synergistic effects (entry 13). Next, an attempt was made to prepare a magnetically separable Fe3O4/PS/ZnO nanocomposite. But, surprisingly, the reaction efficiency decreased when this nanocomposite was used as the catalyst (entry 14).

Chitin/ZnO and Fe3O4/PS/CuO were also used (entry 15 and 16) but the results were not satisfactory. So, PS/ZnO was selected as the best catalyst for the model reaction. The catalyst loading and heating conditions were also optimized (entry 13, 17, 18). As a result, the optimum conditions obtained were the use of 20 mg of PS/ZnO under microwave irradiation and a reaction
time of 2 min. To determine the best solvent for this reaction, the effect of various solvents was examined and based on the obtained results, water was selected as the best solvent (see supporting information for details, Figure S1). Microwave, ultrasound, and grinding conditions were also applied for other catalysts (entry 22–28), but none of these catalysts have shown the effectiveness of PS/ZnO.

The proposed mechanism for the model reaction is presented in Scheme 3. In this mechanism, it was suggested that PS/ZnO acts as a bifunctional Lewis acid/base catalyst and facilitates the Knoevenagel condensation between activated 4-chlorobenzaldehyde (1a) and Lawsone anion (2a) followed by Michael addition of 2-aminobenzimidazole (3a) to 3-arylidenedenaphtho-1,2,4-(3H)-trione 1 leading to the desired pyrimidobenzazoles. The addition of 2-aminobenzimidazole (3) to aryldenedenaphtho-1 may proceed by two conceivable mechanistic paths (A or B) contingent on whether the early attack of the 2-aminobenzimidazole is done through the nitrogen of side chain amine or by the ring nitrogen to give the isomeric pyrimido[1,2-a]benzimidazoles 4 or 4'.

To reveal which of the two potential products 4 or 4' are obtained, 1H nuclear Overhauser effect (NOE) experiments were performed. The irradiation of H_a led to an enhancement in the signal of H_b. These results are in accordance with the structure 4 (for details see the

Scheme 1. Synthesis of benzimidazo [2,1-b]quinazolin-1(1 H)-ones and pyrimidobenzazole derivatives.

Scheme 2. Model reaction between 4-chlorobenzaldehyde, 2-aminobenzimidazole and 2-hydroxy-1,4-naphtoquinone.
supporting information Figure S3), which means that anion attack would preferably take place on the N atom of the heterocyclic ring of 2-aminobenzimidazole. These results are in accordance with our previous work (47) which corroborant that the N atom in the heterocyclic ring is more active than other N atom in 2-aminobenzimidazole.

To further extended the scope of this new protocol and to explore the effectiveness of the catalyst PS/ZnO, the reaction between various aromatic aldehydes, C–H acidic compounds and 2-aminobenzazole derivatives, or guanidinium chloride in optimized conditions was realized and led to a series of pyrimidobenzazole with high in a short reaction time yields (Table 2).

To demonstrate the effectiveness of PS/ZnO nano-composite as a catalyst, it has been compared with previously reported and published procedures which shows that PS/ZnO is a good catalyst for synthesis of pyrimido benzazole (Table 3). The results undoubtedly illustrate that this procedure using PS/ZnO bio nanocatalyst is indeed higher than other in terms of product yield, reaction time and workup. As can be seen from the data in Table 3, the time of the reaction was considerably reduced nevertheless, the yield is higher. The TON and TOF for this catalytic system are very high ($\sim 10^3$ and $\sim 10^5$ h$^{-1}$). The SEM image of PS/ZnO (Figure 3(b)) showed that the rod-like ZnO NPs are embedded in the peanut shells network. The PS could prevent the aggregation of ZnO NPs, which are shaped and distributed over a high surface area and provide a good template for the nucleation and growth of NPs. These results revealed that PS could serve as a good capping agent due to its mechanical and thermal properties and the residual PS not only has no unfavorable effect but on the contrary, shows a favorable effect in catalytic applications.

Experimental

Materials

All reagents and materials were purchased from commercial sources and used without purification. All of them

Table 1. The effect of nature of catalyst, catalyst loading and reaction conditions on model reaction in water.

Entry	Catalyst	Loading (mg)	Condition	Time (min)	Yield (%)
1	–	–	Reflux	120	Very low
2	–	–	Microwave	120	–
3	–	–	Ultrasonic	120	–
4	–	–	Ball mill	120	–
5	PS†	20	Reflux	120	32
6	PS†	20	Ball mill	120	–
7	PS†	20	Ultrasonic	120	–
8	PS†	20	Microwave	120	Very low
9	ZnO	20	Reflux	120	47
10	ZnO	20	Microwave	120	40
11	ZnO	20	Ultrasonic	120	33
12	ZnO	20	Ball mill	120	Very low
13	PS/ZnO	20	Reflux	120	63
14	Fe$_3$O$_4$/PS/ZnO	20	Reflux	120	43
15	Chitin/ZnO	20	Reflux	120	51
16	Fe$_3$O$_4$/PS/CuO	20	Reflux	120	39
17	PS/ZnO	15	Reflux	120	52
18	PS/ZnO	25	Reflux	120	65
19	PS/ZnO	20	Ball mill	120	15
20	**PS/ZnO**	**20**	Microwave	**2**	**72*******
21	PS/ZnO	20	Ultrasonic	120	65
22	Fe$_3$O$_4$/PS/ZnO	20	Ultrasonic	120	34
23	Fe$_3$O$_4$/PS/CuO	20	Microwave	120	–
24	Chitin/ZnO	20	Ultrasonic	120	Very low
25	Chitin/ZnO	20	Microwave	20	30
26	Chitin/ZnO	20	Ball mill	120	–
27	Fe$_3$O$_4$/PS/CuO	20	Ultrasonic	120	Very low
28	Fe$_3$O$_4$/PS/CuO	20	Microwave	120	–

**TON $\sim 10^4$ and TOF $\sim 10^5$ h$^{-1}$.

†Treated PS.

Scheme 3. Suggested mechanism for model reaction.
were analytical grade. Peanut shells were purchased from a local farmer market in the north of Iran. All microwave reactions were carried out in a Milestone MicroSYNTH Labstation (power 600 watts). 1H, 13C NMR spectra were recorded on a Bruker Avance DPX500. The chemical shifts (δ) are given in parts per million and referenced to TMS internal standard. IR spectra were recorded in KBr on the Shimadzu FT-IR spectrometer and are reported in wave numbers (cm⁻¹). All melting points were measured on a capillary melting point apparatus. Scanning electron microscopy (SEM) was recorded on a VEG//TESCAN 100EM10C-KV with Gold Coating, transmission electron microscopy (TEM) analyze was performed by Zeiss-EM10C-100 KV device, and energy-dispersive X-ray spectroscopy (EDX) was recorded on a VEG//TESCAN-XMU. Powder X-ray diffraction measurements were performed using Philips analyzer (PANalytical X’Pert Pro X-ray diffractometer with the Cu Kα radiation (λ = 0.15406 nm). Mass spectra were produced by an Agilent Technology (HP) Model: 5973 Network Mass Selective Detector.

Preparation of PS/ZnO

The PS were washed with distilled water several times to remove impurities, dried in an oven at 70°C and ballmilled for 1 h. The ball-milled PS (0.14 g) and 20 mL deionized water were poured into an Erlenmeyer flask and stirred at room temperature. Then, 20 mL of Zn (CH₃COO)₂·2H₂O solution (0.625 M) was added dropwise to the mixture under vigorous stirring. The mixture was ultrasonically irradiated for 10 min to obtain a stable dispersion. The pH was adjusted to 12 using an aqueous solution of sodium hydroxide (1 M) and subjected to further ultrasonic irradiation for 10 min. The solution was then transferred to a 50 mL Teflon-lined stainless steel autoclave, sealed and heated at 70°C in an oven for 3 h. PS/ZnO NPs were centrifuged, filtered and washed with water and dried in vacuum (see supporting information, Figure S1).

Characterization of PS and PS/ZnO nanocomposite

The structures of PS and the as-prepared nanocomposite PS/ZnO were elucidated by FT-IR analysis, EDX and X-ray diffraction spectrum (XRD) (Figure 1) and SEM (Figure 2). FT-IR spectroscopic interpretations allow us to characterize the interaction of PS in the composite structure from different absorption bands (Figure 1(a)). The broad band in the 3600–3100 cm⁻¹ region corresponds to the hydroxyl stretching vibration, while the band at 2920 cm⁻¹ corresponds to a weak C–H stretching vibration in glucose unit. The β-glycosidic linkage between glucose units was characterized by the absorption band at 895 cm⁻¹. The presence of cellulose in nanocomposite samples can be confirmed by the presence of the C–H stretching vibration band at lower wave number, 2904 cm⁻¹, with a strong decrease in the intensity of this

Table 2. One-pot synthesis of pyrimido benzazole derivatives in water under microwave irradiation.

Entry	Aldehyde C–H acidic compounds	Amine Products	Time (min)	Yield (%)	TON	TOF (h⁻¹)	m.p. (°C)	Lit. m.p. (°C)		
1	4-ClC₆H₄ (1a)	2a	3a	4a	2	72	4800	>300	>300 (46)	
2	2,4-Cl₂C₆H₃ (1b)	2a	3a	4b	1	92	6100	>300	>300 (46)	
3	3-HO₂C₆H₄ (1c)	2a	3a	4c	4	59	3900	>300	>300 (46)	
4	4-BrC₆H₄ (1d)	2a	3a	4d	1	70	4700	>300	>300 (46)	
5	4-BrC₆H₄ (1e)	2a	3b	5b	2	93	6200	>300	>300 –	
6	Thiophene-2-carbaldehyde (1e)	2a	3a	4e	2	96	6400	1.9 × 10⁵	>300 –	
7	Thiophene-2-carbaldehyde (1e)	2a	3c	5c	2	87	5800	1.7 × 10⁵	>300 –	
8	2,4-Cl₂C₆H₃ (1b)	2b	3b	6b	5	86	5700	0.7 × 10⁵	>300 >300	
9	3-HO₂C₆H₄ (1c)	2b	3a	6c	3	89	5900	1.2 × 10⁵	>300 >300	
10	4-BrC₆H₄ (1d)	2b	3b	6d	3	74	4900	0.9 × 10⁴	173	176–180 (45)
11	4-BrC₆H₄ (1e)	2c	3a	7b	2	99	6600	1.9 × 10⁴	219	212–214 (48)
12	4-HO₂C₆H₄ (1f)	2c	3a	7f	2	71	4700	1.4 × 10⁵	234–235	234–235 (49)
13	4-NC₆H₄ (1g)	2c	3a	7g	1	93	6200	3.7 × 10⁵	210–215	215 (50)
14	4-CH₂C₆H₄ (1h)	2c	3a	7h	3	89	5900	1.2 × 10⁵	244	238–239 (51)
15	4-(CH₃O)C₆H₄ (1i)	2c	3a	7i	4	85	5700	0.8 × 10⁵	230–234	230–233 (51)
16	2,4-Cl₂C₆H₃ (1b)	2d	3b	8b	2	75	5000	1.5 × 10⁵	128	133–135 (33)
17	4-HO₂C₆H₄ (1f)	2d	3b	8f	8	91	6066	0.4 × 10⁵	215	213–214 (52)
18	4-(CH₃O)C₆H₄ (1i)	2d	3b	8i	6	85	5700	0.6 × 10⁵	140	141–144 (32)

*New derivatives.

Table 3. The comparison of PS/ZnO nanocomposite as catalyst for the synthesis of pyrimidine derivatives with other catalysis.

Entry	Cat. & loading	Solvent	Condition	Time (min)	Yield (%)	TON	TOF (h⁻¹)	m.p. (°C)	Lit. m.p. (°C)	
1	[bmim][BF₄] (2.7 mol %)	–	100°C	11–14	82–86	~30	~3			
2	Amberlyst-15 (10% mol)	Neat	100°C	1.5–3	79–93	~10	~6			
3	ZnO NPs (0.4 mol %)	–	Ballmilling, rt.	40 min	73–87	~10²	~3 × 10⁷			
4	PS/ZnO (0.015 mol %)	H₂O	MW	2 min	72–99	~10³	~10³			This work

[GREEN CHEMISTRY LETTERS AND REVIEWS](#)
Figure 1. (a) IR adsorption of ZnO; PS/ZnO and peanut shell; (b) EDX analysis of PS/ZnO and (c) elements distribution map (EDM); (d) X-Ray diffraction spectrum (XRD).
band in PS/ZnO. The adsorption bands from the 1635–1024 cm\(^{-1}\) region are strongly reduced in intensity, or even absent as in the case of adsorption band in 1635 cm\(^{-1}\) which is accredited to polymer-bound water in PS. As can be seen in Figure 1(a), the absorption peaks observed in the range of 440–550 cm\(^{-1}\) belongs to the stretching vibration band Zn–O and confirmed the presence of Zinc in the PS/ZnO composite.

The EDX analysis revealed that Zn, O, C and N are the main elements present in the bio nanocomposite with Zn being the most abundant with a ratio of Zn/C equal to 59.44/19.48 (Figure 1(b)). The map shows the distribution of these elements and homogenous structure of the catalyst.

Figure 1(d) shows the XRD patterns of PS/ZnO. The peaks at \(2\theta = 31.79^\circ, 34.44^\circ, 36.28^\circ, 47.56^\circ, 56.62^\circ,\)
62.86°, 66.39°, 67.97°, 72.55° and 76.96° were attributed to (100), (002), (101), (102), (110), (103), (200), (112), (201), (004) and (202) of ZnO NPs, indicating that the samples were polycrystalline wurtzite structure (JCPDS card No 36-1451). No characteristic peaks of any impurities were detected, suggesting that high-quality ZnO NPs were synthesized. The average crystallite size (22.40 nm) of ZnO NPs was estimated by Scherrer’s formula. \(D_p = \frac{K \lambda}{\beta \cos 2\theta} \).

PS as the carbon source has an important role in XRD peaks broadening and because of amorphous structures (lignin and hemicellulose) and lower contribution in composite, there were no salient peaks in the 20–30° 2\(\theta \) range but as can be seen, 2\(\theta = 21 \) peak corresponds to the crystallographic plane of cellulose.

SEM was used to investigate the morphology of PS/ZnO prepared by different methods (Figure 2(b,c)). The SEM images revealed that the nanocomposites prepared by the hydrothermal method (Figure 2(b)) have a uniform morphology and size distribution compared to the ultrasonic method (Figure 2(c)). It can also be seen that the rod-like ZnO NPs are embedded in the peanut shells network. The SEM image of rod-like ZnO NPs prepared by the hydrothermal method was shown in Figure 2(d). Magnetic ferroferric oxide nanocomposites based on PS (Fe3O4/PS/CuO and Fe3O4/PS/ZnO) were also synthesized and their SEM images are depicted in Figure 2(e–f) (for experimental details see the supporting information).

To determine the nanostructure of the prepared nanocomposite, TEM analyze was performed by Zeiss-EM10C-100 KV device. As seen in Figure 2(g), the PS/ZnO composite was composed of PS-coated ZnO. From the results of SEM and TEM, it can be spontaneously seen that the QAL/ZnO composites are successfully prepared.

Figure 3. Recyclability of PS/ZnO for five successive run and FT-IR analyze of fresh and recycled catalyst.
General procedure for the synthesis of products 4, 5, 6 and 7

A mixture of aromatic aldehyde (1a–i, 1 mmol), C–H acidic compounds (dimeadone, malononitrile, 2-hydroxy-1,4-naphthoquinone or ethyl acetoacetate, 2a–d, 1 mmol), benzimidazol derivatives (2-aminobenzimidazole or 2-aminobenzothiazole) or guanidinium chloride (3a–c, 1 mmol) and 0.02 g PS/ZnO in 3 ml of deionized water was placed into a round-bottom flask equipped with a reflux condenser and exposed to microwave irradiation. The accomplishment of the reaction was scrutinized by TLC. After completion of the reaction, the mixture was cooled at room temperature. The catalyst was separated by filtration after dissolving the crude product in hot ethanol. Pure product was obtained by recrystallization in hot ethanol.

One of the advantages of heterogeneous catalysts is their reusability. The reusability of PS/ZnO was investigated in the synthesis of 7b and illustrated in Figure 3. To this end, the catalyst was collected from the reaction mixture and washed with ethyl acetate, normal hexane and ethanol, then it was dried at 50°C in a vacuum oven. The recycled catalyst was reused five times in similar reaction conditions. The results show that recyclability has not significantly decreased the catalytic performance.

Selected spectral data for new compounds

4e: (2-thiophenyl)benzo[g]benzimidazo[1,2-b]quinazoline-7,12(6H, 13H)-dione

mp > 300°C; IR (KBr, v, cm⁻¹): 3427, 3010, 1589; 1HNMR (500 MHz, DMSO-d6) (δ, ppm): 5.92 (1H, S, CH), 7.90 (1H, s, CH), 7.23 (1H, s, CH), 7.45 (1H, s, CH), 7.57–7.60 (1H, t, t = 7.3 Hz), 7.66–7.69 (1H, t, t = 7.3 Hz), 7.73–7.78 (2H, dd, d, J = 7.8 Hz), 7.80–7.81 (1H, d, d = 7.5 Hz), 7.86–7.88 (1H, d, J = 8 Hz), 7.97–7.99 (1H, d, d = 7.5 Hz). CHN analysis calcd for C₂₂H₁₃N₃O₂S; C, 68.91; H, 3.42; N, 10.96; found C, 68.54; H, 3.46; N, 10.85.

5d: 2-amino-4-(4-bromophenyl)benzo[g]quinazoline-5,10(1H,4H)-dione

mp > 300°C; IR (KBr, v, cm⁻¹): 3438, 3419, 3388, 3068, 1587; 1HNMR (500 MHz, DMSO-d6) (δ, ppm): 6.68 (1H, s, CH), 6.79–6.81 (1H, t, J = 4.6 Hz), 6.83 (1H, s, NH), 6.91 (2H, s, NH₂), 7.17–7.16 (1H, d, J = 4.6 Hz), 7.71–7.68 (1H, t, J = 7.5 Hz), 7.8–7.77 (1H, t, J = 7.5 Hz), 7.99–7.98 (1H, d, d = 7.5 Hz), 7.91–7.9 (1H, d, J = 7.5 Hz). CHN analysis calcd for C₁₈H₁₂BrN₃O₂S; C, 56.56; H, 3.16; N, 10.99; found C, 56.49; H, 3.21; N, 11.05.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes on contributors

Shiva Molaei was born at 1991 in Tehran, Iran. She received her BS degree in Applied Chemistry from Islamic Azad University, South Tehran Branch in 2013. She obtained her MS degree from Iran University of Science and Technology in 2016 under the supervision of Dr. Shahrzad Javanshir.

Shahrzad Javanshir was born in Tehran, Iran in 1960. She received her BS, MS, and M.Phil. degrees in Chemistry and Organic Chemistry in 1983, 1984, and 1985, respectively, from the University of Claude Bernard Lyon I, France, and her PhD degree in Organic Chemistry, in 2007, from Alzahra University, Tehran, Iran. She is currently Associate Professor of Organic Chemistry at Iran University of Science and Technology, Tehran, Iran. Her research interests include organic synthesis (heterocyclic and medicinal chemistry), heterogeneous catalysis, and green chemistry.

ORCID

Shahrzad Javanshir [http://orcid.org/0000-0002-3161-0456]

References

[1] Kumar, M.; Revathi, K.; Khanna, S. Biodegradation of Cellulosic and Lignocellulosic Waste by Pseudoxanthomonas sp. R-28. *Carbohydr. Polym.* 2015, 134,761–766.

[2] Zhao, X.; Chen, J.; Du, F. Potential Use of Peanut By-Products in Food Processing: A Review. *J. Food Sci. Technol.* 2012, 521, 49521–529.

[3] Ding, J.; Wang, H.; Li, Z.; Cui, K.; Karpuzov, D.; Tan, X., Kohandeeghan, A.; Mitlin D. Peanut Shell Hybrid Sodium Ion Capacitor with Extreme Energy − Power Rivals Lithium Ion Capacitors. *Energy Environ. Sci.* 2015, 8,941–955.

[4] Anike, F.N.; Yusuf, M.; Isikhuemhen, O.S. Co-Substrating of Peanut Shells with Cornstalks Enhances Biodegradation by Pleurotus ostreatus. *J. Bioremed. Biodegrad.* 2016, 7,1.

[5] Pua, F.I.; Tan, C.Y.; Dang, W.H.; Palanisamy, K. Peanut Shells Derived Solid Acid Catalyst for Biodiesel Production. *J. Eng. Appl. Sci.* 2015, 10,7704–7706.
[6] Bharthare, P.; Shrivastava, P.; Singh, P.; Ttewari, A. Peanut Shell as Renewable Energy Source and Their Utility in Production of Ethanol. Int. J. Adv. Res. 2014, 2, 1–2.

[7] Zhao, W.; Yang, B.; Yi, C.; Lei, Z.; Xu, J. Eutherification of Glycerol with Isobutylene to Produce Oxygenate Additive Using Sulfonated Peanut Shell Catalyst. Ind. Eng. Chem. Res. 2010, 49, 12399–12404.

[8] Yang, H.; Yan, C.; Luo, W.; Liu, C.; Zhou, Q. Surface Modification of Peanut Shell by UV-Induced Graft Polymerization for Enriching and Recycling Rare Earth Metals (Ce(III)) from Aqueous Solution. J. Taiwan Inst. Chem. Eng. 2017, 74, 105–112.

[9] Bao, C.; Ma, J.; Zhou, L.; Shao, Y.; Wu, Q.; Wang, F. Self-Template Synthesis of Hierarchical Magnetic Porous Carbon Fibers Derived From Fe(BTC)-Coated Bamboo Fibers for Fast Removal of Methylene Blue. RSC Adv. 2015, 5, 87616–87625.

[10] Zhang, L.; Cheng, Z.; Guo, X.; Jiang, X.; Li, T. Three Novel Biosorbents Based on Modified Peanut Shells for Direct Red 80 Removal: Parameter Optimization, Process Kinetics and Equilibrium. RSC Adv. 2015, 5, 74467–74485.

[11] Li, J.; Zhang, W. Adsorptive Removal of Malachite Green from Aqueous Solution Using Modified Peanut Shell. Desalin. Water Treat. 2013, 51, 5831–5839.

[12] Wilson, K.; Yang, H.; Seo, C.W.; Marshall, W.E. Select Metal Adsorption by Activated Carbon Made from Peanut Shells. Bioreas. Technol. 2006, 97, 2266–2270.

[13] Punjadiyil, R.K.; Sreejith, M.P.; Purushothaman, E. Isolation of Microcrystalline and Nano Cellulose from Peanut Shells. J. Chem. Pharm. Sci. 2016, ISSN, 947 (1), 2115.

[14] Banerjee, M.; Bar, N.; Basu, R.K.; Das, S.K. Comparative Study of Adsorptive Removal of Cr(VI) ion from Aqueous Solution in Fixed Bed Column by Peanut Shell and Almond Shell Using Empirical Models and ANN. Environ. Sci. Pollut. Res. 2017, 24, 10604–10620.

[15] Ramirez-Lopez, E.M.; Corona-Hernandez, J.; Avelar-Gonzalez, F.J.; Omil, F.; Thalasso, F. Biofiltration of Methanol in an Organic Biofilter Using Peanut Shells as Medium. Bioreas. Technol. 2010, 109, 87–91.

[16] Ikladious, N.E.; Shukry, N.; El-Kalyoubi, S.F.; Asaad, J.N.; Mansour, S.H.; Tawfik, S.Y.; Abou-Zeid, R.E. Eco-Friendly Composites Based on Peanut Shell Powder/Unsaturated Polyester Resin. Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 2017, 2, 1–10.

[17] Prabhakar, M.N.; Rehman Shah, A.U.; Chowdajo Rao, K.; Song, J.-I. Mechanical and Thermal Properties of Epoxy Composites Reinforced with Waste Peanut Shell Powder as a Bio-Filler. Fiber. Polym. 2015, 16, 1119–1124.

[18] Liu, X.; Dong, H.; Hou, H. Optimization of Preparation of Cellulose Nanocrystals from Peanut Shells Using Response Surface Methodology. Adv. J. Food Sci. Tech. 2015, 7, 466–473.

[19] Tanyildizi, M.S. Modeling of Adsorption Isotherms and Kinetics of Reactive Dye from Aqueous Solution by Peanut Hull. Chem. Eng. J. 2011, 168, 1234–1240.

[20] Raj, T.; Sharma, H.; Singh, A.; Aree, T.; Kaur, N.; Singh, N.; Jang, D.O. “Solvent-Less” Mechanochemical Approach to the Synthesis of Pyrimidine Derivatives. ACS Sustainable Chem. Eng. 2017, 5, 1468–1475.

[21] MaGe, D.J.; Dabiri, M.; Salehi, P. Highly Efficient One-Pot Three-Component Mannich Reaction Catalyzed by ZnO-Nanoparticles in Water. Arch. Org. Chem. 2011, ii, 156–164.

[22] Bhattattacharya, P.; Pradhan, K.; Paul, S.; Das, A.R. Nano Crystalline ZnO Catalyzed One Pot Multicomponent Reaction for an Easy Access of Fully Decorated 4H-Pyran Scaffolds and its Rearrangement to 2-Pyridone Nucleus in Aqueous Media. Tetrahedron Lett 2012, 53, 4687–4691.

[23] Dömling, A.; Wang, W.; Wang, K. Chemistry and Biology of Multicomponent Reactions. Chem. Rev. 2012, 112, 3083–3135.

[24] Maleki, A.; Movahed, H.; Ravaghi, P. Magnetic Cellulose/Ag as a Novel Eco-Friendly Nanobiocomposite to Catalyze Synthesis of Chromene-Linked Nicotinonitriles. Carbohydr. Polym. 2017, 156, 259–267.

[25] Chen, L.-H.; Chung, T.-W.; Narhe, B.D.; Sun, C.-M. A Novel Mechanistic Study on Ultrasound-Assisted, One-Pot Synthesis of Functionalized Benzimidazo[2,1-b]Quinoxalin-1(1H)-Ones. ACS Comb. Sci. 2016, 18, 162–169.

[26] Baheti, K.G.; Kapratarw, S.B.; Kuberkar, S.V. A Convenient Synthesis of 2,3-Disubstituted Derivatives of 4H-Pyrimido [2,1-b]: Benzoazole-4-One. Synth. Commu. 2002, 32, 2223–2243.

[27] Yao, C.; Lei, S.; Wang, X.; Wang, C.; Yu, C.; Li, T.; Tu, S. Three-Component Synthesis of 4-Aryl-1H-Pyrimido[1,2-a]Benzimidazole Derivatives in Ionic Liquid. J. Heterocycl. Chem. 2010, 47, 26–32.

[28] Shaabani, A.; Rahmati, A.; Naderi, S. A Novel One-Pot Three-Component Reaction: Synthesis of Triheterocyclic 4H-Pyrimido [2,1-b]Benzoazoles Ring Systems. Bioorg. Med. Chem. Lett. 2005, 15, 5553–5557.

[29] de Fátima, A.; Terra, B.S.; da Silva Neto, L.; Braga, T.C. Green Synthetic Approaches for Biologically Relevant Heterocycles, Elsevier: Santiniketan, West Bengal, 2014. chapter 12.

[30] Sayed, S.M.; Khalil, M.A.; Raslan, M.A. A Facile Synthesis of New 3-(1-Methyl Benzimidazol-2-yl) Pyrazolopyrimidine Derivatives. Int. J. Org. Chem. 2012, 298, 291–300.

[31] Chadegani, F.; Darviche, F.; Balalaie, S. A New and Efficient Method for the Synthesis of Pyrimido[2,1b]Benzazoles Derivatives. Int. J. Org. Chem. 2012, 2, 31–37.

[32] Nagarapu, L.; Gaikwad, H.K.; Palem, J.D.; Venkatesh, R.; Bantu, R.; Sridhar, B. Convenient Approach for the One-Pot, Three-Component Synthesis of Triheterocyclic 4H-Pyrimido[2,1-b] Benzimidazole Derivatives Using TBAHS. Synth. Commu. 2013, 43, 93–104.

[33] Azad, S.; Mirjalili, B.B.F. Nano-TiCl2/Cellulose: An Eco-Friendly Bio-Based Catalyst for One-Pot Synthesis of 4H-Pyrimido[2,1-b]Benzimidazole Derivatives. Res. Chem. Intermed. 2017, 43, 1723–1734.

[34] Yildiz-Oren, I.; Yalcin, I.; Aki-Sener, E.; Ucarturk, N. Synthesis and Structure–Activity Relationships of New Antimicrobial Active Multisubstituted Benzazole Derivatives. Eur. J. Med. Chem. 2004, 39, 291–298.

[35] Youssef, A.M.; Noaman, E. Synthesis and Evaluation of Some Novel Benzothiazole Derivatives as Potential Anticancer and Antimicrobial Agents. Arzneim.-Forsch. 2007, 57, 547–553.

[36] Sahu, P.K.; Lal, J.; Sahu, P.K.; Thavaselvam, D.; Agarwal, D.D. A Facile Green Synthesis and In Vitro Antimicrobial
Activity 4H-Pyrimido[2,1-b][1,3]Benzothiazole Derivatives Using Aluminum Trichloride Under Solvent Free Conditions. Med. Chem. Res. 2012, 21,3826–3834.

[37] Nosova, E.V.; Lipunova, G.N.; Mochul’skaya, N.N.; Charushin, V.N.; Kotovskaya, S.K. Fluorinated Benzothiazoles and Benzazines. Heteroatom. Chem. 2006, 17,579–594.

[38] Tran, M.Q.; Ermolenko, L.; Retalleau, P.; Nguyen, T.B.; Al-Mourabit, A. Reaction of Quinones and Guanidine Derivatives: Simple Access to Bis-2-Aminobenzimidazole Moiety of Benzosceptrin and other Benzazole Motifs. Org. Lett. 2014, 16,920–923.

[39] Isambert, N.; Duque, M.M.S.; Plaquevent, J.-C.; Génisson, Y.; Rodriguez, J.; Constantieux, T. Multicomponent Reactions and Ionic Liquids: A Perfect Synergy for Eco-Compatible Heterocyclic Liquids. Chem. Soc. Rev. 2011, 40,1347–1357.

[40] Mizuhara, T. Development of Novel Anti-HIV Pyrimidobenzothiazine Derivatives, Springer: Kyoto, Japan, 2013.

[41] Zangouei, M.; Esmaeili, A.A.; Maque, J.T. One-Pot Three Component Isocyanide-Based Reaction: Synthesis of Novel Tetracyclic Fused Furilo[2′,3′:4,5]Pyrimido[2,1-b][1,3]Benzothiazole. Tetrahedron 2017, 73,2894–2900.

[42] Kumar, M.; Arya, A.K.; George, J.; Arya, K.; Pardasani, R.T. DFT Studied Hetero-Diels–Alder Cycloaddition for the Domino Synthesis of Spiroheterocycles Fused to Benzoazatolite and Chromene/Pyrimidine Rings in Aqueous Media. J. Heterocycl. Chem. 2017, 54,3418–3426.

[43] Sahu, P.K.; Sahu, P.K.; Sharma, Y.; Agarwal, D.D. Synthesis and Mechanistic Study of Triheterocyclic 4H-Pyrimido [2,1-b] Benzothiazole Derivatives, One-Pot Three-Component Reaction Under Solvent-Free Conditions. J. Hetero. Chem. 2014, 51,1193–1198.

[44] Mazaahir, K.; Ritika, C.; Divya, B. Amberlyst-15 in PEG: A Novel Catalytic System for the Facile and Efficient One-Pot Synthesis of Benzothiazolo-[2,3-b]-Quinazolinone Derivatives. Sci. China Chem. 2012, 55,2154–2160.

[45] Li, Y.L.; Cai, G.; Liu, X.J.; Wang, K.; Du, B.X. 1-Benzyl-3-Methylimidazolium Tetrafluoroborate as an Efficient and Green Reaction Medium for the Synthesis of Pyrimido [1, 2-a] Benzimidazoles. J. Chem. Res. 2013, 37,201–204.

[46] Hemmati, B.; Javanshir, S.; Dolatkhah, Z. Hybrid Magnetic Irish Moss/Fe$_2$O$_4$ as a Nano-Biocatalyst for Synthesis of Imidazopyrimidine Derivatives. RSC Adv. 2016, 6,50431–50436.

[47] Kour, M.; Paul, S.; Clark, J.H.; Gupta, V.K.; Kant, R. Preparation and Characterization of Lewis Acid Grafted Sulfonated Carbon@Titania Composites for the Multicomponent Synthesis of 4H-Pyrimido[2,1-b]Benzothiazoles and Benzoxanthenones Under Solvent-Free Conditions. J. Mol. Catal. A: Chem. 2016, 411,299–310.

[48] Sheibani, H.; Babaie, M. Three-Component Synthesis of 4-Amino-2-Aryl-2H-Pyrimido-[1,2-b][1,3]Benzazole-3-Carbonitriles and 4H-Pyrimido-[2,1-b][1,3]Benzazoles in the Presence of Magnesium Oxide and 12-Tungstophosphoric Acid as Catalysts. Russ. Chem. Bull. 2013, 62,2202–2208.

[49] Risley, V.A.; Henry, S.; Kosyrihina, M.V.; Manzanares, M.R.; Payan, J.; Downer, C.D.; Hellmann, C.C.; Van Slambrouck, S.; Frolova, L.V. 4-Amino-2-aryl-3-cyano-1,2-Dihydropyrimido-[1,2-a]benzimidazoles and Their Pyrimidine Analogs as New Anticancer Agents. Chem. Heterocycl. Compd. 2014, 50,185–194.

[50] Liu, G.; Shao, Q.; Tu, S.; Zhou, D.; Cao, L.; Han, B.; Li, C. Green Multicomponent Synthesis of 1,2-Dihydro-Pyrimido-[1,2-a]Benzimidazole-3-Carbonitrile. J. Hetero. Chem. 2008, 45,1127–1130.

[51] Hu, L.; Zhan, Z.; Lei, M.; Hu, L. Facile and Green Method for the Synthesis of 4-Amino-1,2-Dihydrobenzo[4,5]Imidazo[1,2-a]Pyrimidine-3-Carbonitriles Catalyzed by Ammonium Acetate. J. Chem. Res. 2012, 36,738–739.

[52] Moradi, A.; Heydari, R.; Maghsoodlou, M.T.; Agar, A: Novel, Efficient, and Biodegradable Catalyst for the One-Pot Three-Component and Green Synthesis of 2,3-Dihydroquinazolin-4(1H)-one, 4H-Pyrimidobenzothiazole and 2-Aminobenzothiazolomethylnaphthol Derivatives. Res. Chem. Intermed. 2015, 41,7377–7391.