Evidence for the Sr_2RuO_4 intercalations in the $\text{Sr}_3\text{Ru}_2\text{O}_7$ region of the $\text{Sr}_3\text{Ru}_2\text{O}_7$ - Sr_2RuO_4 eutectic system

S. Kittakaa, S. Yonezawaa, H. Yaguchia,b, Y. Maenoa, R. Fittipaldia,c, A. Vecchionea,c, J.-F. Mercured, A. Gibbsd, R. S. Perryd,e, and A. P. Mackenzied

aDepartment of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
bDepartment of Physics, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
cCNR-INFM Regional Laboratory “SuperMat” and Department of Physics, University of Salerno, I-84081 Baronissi (Sa), Italy
dSchool of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, UK
eSchool of Physics, University of Edinburgh, Edinburgh EH9 3JZ, UK

E-mail: kittaka@scphys.kyoto-u.ac.jp

Abstract. Although $\text{Sr}_3\text{Ru}_2\text{O}_7$ has not been reported to exhibit superconductivity so far, ac susceptibility measurements revealed multiple superconducting transitions occurring in the $\text{Sr}_3\text{Ru}_2\text{O}_7$ region cut from $\text{Sr}_3\text{Ru}_2\text{O}_7$ - Sr_2RuO_4 eutectic crystals. Based on various experimental results, some of us proposed the scenario in which Sr_2RuO_4 thin slabs with a few layers of the RuO_2 plane are embedded in the $\text{Sr}_3\text{Ru}_2\text{O}_7$ region as stacking faults and multiple superconducting transitions arise from the distribution of the slab thickness. To examine this scenario, we measured the resistivity along the ab plane (ρ_{ab}) using a $\text{Sr}_3\text{Ru}_2\text{O}_7$-region sample cut from the eutectic crystal, as well as along the c axis (ρ_c) using the same crystal. As a result, we detected resistance drops associated with superconductivity only in ρ_{ab}, but not in ρ_c. These results support the Sr_2RuO_4 thin-slab scenario. In addition, we measured the resistivity of a single crystal of pure $\text{Sr}_3\text{Ru}_2\text{O}_7$ with very high quality and found that pure $\text{Sr}_3\text{Ru}_2\text{O}_7$ does not exhibit superconductivity down to 15 mK.

1. Introduction

The Ruddlesden-Popper series of layered perovskites $\text{Sr}_{n+1}\text{Ru}_n\text{O}_{3n+1}$ is a fascinating research subject because the $n=1$ member Sr_2RuO_4 is now believed to be a spin-triplet superconductor \[1\] \[2\]. The $n=2$ member of this series $\text{Sr}_3\text{Ru}_2\text{O}_7$ is known to exhibit an enhanced Pauli paramagnetism with a metamagnetic transition \[3\] \[4\] \[5\]. Although crystals of $\text{Sr}_3\text{Ru}_2\text{O}_7$ are highly refined, the superconductivity in $\text{Sr}_3\text{Ru}_2\text{O}_7$ has not been discovered so far. Recently, $\text{Sr}_3\text{Ru}_2\text{O}_7$-$\text{Sr}_2\text{RuO}_4$ eutectic crystals were successfully grown \[6\] and surprisingly, multiple superconducting transitions were observed in the ac susceptibility measurements using a $\text{Sr}_3\text{Ru}_2\text{O}_7$-region sample cut from eutectic crystals \[7\], as presented in Fig. 1(a). However, it has been revealed that this superconductivity is not a bulk property of $\text{Sr}_3\text{Ru}_2\text{O}_7$ because these superconducting transitions are easily suppressed by small ac magnetic fields and no anomaly was observed in the specific heat \[7\]. The most plausible scenario of this superconductivity is that Sr_2RuO_4 thin slabs with a few layers of RuO_2 planes are embedded in the $\text{Sr}_3\text{Ru}_2\text{O}_7$ region and the multiple superconducting transitions arise from the distribution of the slab thickness.
In order to obtain additional evidence for the origin of the superconductivity observed in the Sr$_3$Ru$_2$O$_7$ region cut from eutectic crystals, we measured the resistivity along the ab plane (ρ_{ab}) of a Sr$_3$Ru$_2$O$_7$-region sample cut from the eutectic crystal, which we designate below as a eutectic Sr$_3$Ru$_2$O$_7$ sample, as well as along the c axis (ρ_c) of the same sample. In addition, we measured ρ_c of a pure (i.e. non-eutectic) Sr$_3$Ru$_2$O$_7$ sample with very high quality in order to clarify whether or not pure Sr$_3$Ru$_2$O$_7$ exhibits superconductivity at low temperatures.

2. Experimental

Resistivity was measured using a conventional four-probe method with an ac current. Single crystals of the Sr$_3$Ru$_2$O$_7$-Sr$_2$RuO$_4$ eutectic system and those of single-phase Sr$_3$Ru$_2$O$_7$ were grown by a floating-zone method. The size of the eutectic Sr$_3$Ru$_2$O$_7$ sample was approximately 1.5 \times 0.7 mm2 in the ab plane and 0.3 mm along the c axis. The results of ac susceptibility and specific heat measurements using this eutectic Sr$_3$Ru$_2$O$_7$ sample were reported in Ref. [7]. The dimensions of the pure Sr$_3$Ru$_2$O$_7$ sample are 0.44 \times 0.28 mm2 in the ab plane and 1.14 mm along the c axis. The ρ_{ab} measurements on the eutectic Sr$_3$Ru$_2$O$_7$ sample were performed down to 0.3 K with a 3He cryostat (Oxford Instruments, model Heliox VL). After the ρ_{ab} measurements, we removed the electrical leads and attached another set of wires again on the same sample and performed ρ_c measurements down to 0.1 K with an adiabatic demagnetization refrigerator (Cambridge Magnetic Refrigerator, mFridge50). The ρ_c measurements using the pure Sr$_3$Ru$_2$O$_7$ sample were performed with a 3He-4He dilution refrigerator (Cryoconcept, model DR-JT-S-100-10) down to 15 mK. In this study, we used a cylinder of permalloy (Hamamatsu Photonics K.K., E989-28) in order to reduce remanent fields such as the earth field.

3. Results and Discussion

3.1. Resistivity of the eutectic Sr$_3$Ru$_2$O$_7$

Figure 1(b) shows temperature dependence of ρ_{ab} and ρ_c of the eutectic Sr$_3$Ru$_2$O$_7$ sample. The values of ρ_{ab} and ρ_c are approximately 1 $\mu\Omega$cm and 300 $\mu\Omega$cm at 1.5 K, respectively. The in-plane resistivity is nearly the same as those of pure Sr$_3$Ru$_2$O$_7$ crystals with very high quality [5]. This low value of the in-plane resistivity indicates that Sr$_3$Ru$_2$O$_7$ in the eutectic system crystallized with high quality. Also, macroscopic Sr$_2$RuO$_4$ domains in the eutectic system are high quality because its T_c is nearly 1.5 K [7], which is one of the best T_c of Sr$_2$RuO$_4$ reported. It is interesting that both Sr$_2$RuO$_4$ and Sr$_3$Ru$_2$O$_7$ spontaneously crystallize with high quality in this eutectic system.

In ρ_{ab} measurements, two clear resistance drops were observed at 1.05 and 1.32 K. These transition temperatures well coincide with those observed in the ac susceptibility [Fig. 1(a)]. However, in ρ_c measurements, no obvious transition was observed. These results are consistent with the Sr$_2$RuO$_4$ thin-slab scenario because they imply that superconducting inclusions embedded in the eutectic Sr$_3$Ru$_2$O$_7$ are too thin along the c axis to shortcircuit the current path along the interlayer direction. This behavior is in sharp contrast with ρ_c for the Sr$_2$RuO$_4$-Ru eutectic system, in which the emergence of the “3-K” superconductivity in the interface of Ru lamellae results in a large drop in ρ_c. [8]. Although we observed two clear transitions in the ρ_{ab} measurement using the eutectic Sr$_3$Ru$_2$O$_7$ sample, ρ_{ab} does not become zero down to low temperatures. This non-zero resistivity implies that Sr$_2$RuO$_4$ inclusions in this eutectic Sr$_3$Ru$_2$O$_7$ sample do not completely form a path between the voltage contacts. The Sr$_2$RuO$_4$ inclusions are probably well separated in this sample. In some cases, eutectic Sr$_3$Ru$_2$O$_7$ samples exhibit zero resistivity (e. g., Ref. [9]), probably because Sr$_2$RuO$_4$ inclusions in such samples link a path between the voltage contacts. Now, on the basis of various experiments, we believe that the origin of the superconductivity observed in the eutectic Sr$_3$Ru$_2$O$_7$ sample is the presence of several monolayers of RuO$_2$ planes intercalated in Sr$_3$Ru$_2$O$_7$ as stacking faults. For example, two monolayers of RuO$_2$ planes intercalated in Sr$_3$Ru$_2$O$_7$ is schematically drawn in Fig. 1(c). In fact, such stacked monolayers of RuO$_2$ planes have been observed with a transmission electron microscope [9].
Figure 1. (a) Temperature dependence of the real part of the ac susceptibility for a eutectic Sr$_3$Ru$_2$O$_7$ sample with $\mu_0H_{ac}=0.58$ μT and $f=3011$ Hz (sample 1 in Ref. [7]). (b) Temperature dependences of the resistivity along the c axis and that along the ab plane for the eutectic Sr$_3$Ru$_2$O$_7$ sample measured at $f=89.1$ Hz ($I=0.5$ mA-rms for ρ_{ab} and $I=0.1$ mA-rms for ρ_c). (c) A schematic image of two monolayers of RuO$_2$ planes (Sr$_2$RuO$_4$) intercalated in bilayers (Sr$_3$Ru$_2$O$_7$). Oxygens are located at the corner of the octahedra.

3.2. Resistivity of pure Sr$_3$Ru$_2$O$_7$ with high quality

We are also interested in the possibility of superconductivity in pure Sr$_3$Ru$_2$O$_7$. In order to examine the superconductivity in pure Sr$_3$Ru$_2$O$_7$, we consider it important (i) to use single crystals of single-phase Sr$_3$Ru$_2$O$_7$ with very high quality, (ii) to cool down the sample to sufficiently low temperature, and (iii) to perform measurements in zero field by excluding the geomagnetic field. Therefore, we measured ρ_c down to 15 mK using a single crystal of pure Sr$_3$Ru$_2$O$_7$ with the in-plane residual resistivity of 0.4 μΩcm, which is one of the highest-quality Sr$_3$Ru$_2$O$_7$ grown so far. In addition, by placing the sample in a cylinder of permalloy, we reduced the residual field to be lower than 0.1 μT.

Figure 2 shows temperature dependence of ρ_c of the pure Sr$_3$Ru$_2$O$_7$ sample. The ρ_c monotonically decreases with decreasing temperature and no anomaly indicating a superconducting transition was observed down to 15 mK. From this measurement, we conclude that pure Sr$_3$Ru$_2$O$_7$ does not become superconducting down to 15 mK.

4. Conclusion

We measured the resistivity along the c axis as well as along the ab plane of a eutectic Sr$_3$Ru$_2$O$_7$ sample. The resistance drops due to the multiple superconducting transitions were observed only for ρ_{ab}, but not for ρ_c. This result indicates that superconductors with thin thickness along the c axis are embedded in the eutectic Sr$_3$Ru$_2$O$_7$. Now, we are convinced that the origin of the superconductivity observed in the eutectic Sr$_3$Ru$_2$O$_7$ sample is the presence of Sr$_2$RuO$_4$ inclusions embedded in Sr$_3$Ru$_2$O$_7$ as stacking faults. In order to search for superconductivity in pure Sr$_3$Ru$_2$O$_7$, we also measured the resistivity along the c axis using a single crystal of best-quality pure Sr$_3$Ru$_2$O$_7$. However, no resistance anomaly associated with the superconducting transition was observed down to 15 mK. Therefore, we conclude that pure Sr$_3$Ru$_2$O$_7$ does not become superconducting down to 15 mK.
Figure 2. Temperature dependence of the resistivity along the c axis of the pure $\text{Sr}_3\text{Ru}_2\text{O}_7$ sample with very high quality measured at $I=0.01$ mA-rms with $f=7$ Hz without the geomagnetic field. The inset shows the low-temperature region below 0.3 K.

Acknowledgement
This work has been supported by the Grant-in-Aid for the Global COE program “The Next Generation of Physics, Spun from Universality and Emergence” from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan. It is also supported by Grants-in-Aid for Scientific Research from MEXT and from the Japan Society for the Promotion of Science (JSPS). One of the authors (S. K.) is financially supported as a JSPS Research Fellow.

References
[1] Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G and Lichtenberg F 1994 Nature (London) 372 532
[2] Mackenzie A P and Maeno Y 2003 Rev. Mod. Phys. 75 657
[3] Ikeda S I, Maeno Y, Nakatsuji S, Kosaka M and Uwatoko Y 2000 Phys. Rev. B 62 6089
[4] Perry R S, Galvin L M, Grigera S A, Capogna L, Schofield A J, Chiao A P M M, Ikeda S R J S I, Nakatsuji S, Maeno Y and Pfleiderer C 2001 Phys. Rev. Lett. 86 2661
[5] Borzi R A, Grigera S A, Perry R S, Kikugawa N, Kitagawa K, Maeno Y and Mackenzie A P 2004 Phys. Rev. Lett. 92 216403
[6] Fittipaldi R, Vecchione A, Fusunobori S, Takizawa K, Yaguchi H, Hooper J, Perry R S and Maeno Y 2005 J. Cryst. Growth 282 152
[7] Kittaka S, Fusunobori S, Yonezawa S, Yaguchi H, Maeno Y, Fittipaldi R and Vecchione A 2008 Phys. Rev. B 77 214511
[8] Maeno Y, Ando T, Mori Y, Ohmichi E, Ikeda S, NishiZaki S and Nakatsuji S 1998 Phys. Rev. Lett. 81 3765
[9] Fittipaldi R, Vecchione A, Clancio R, Pace S, Cuoco M, Stornaiuolo D, Born D, Tafuri F, Olsson E, Kittaka S, Yaguchi H and Maeno Y 2008 Europhys. Lett. 83 27007