Protein-tyrosine Phosphatase (PTP) Wedge Domain Peptides

A NOVEL APPROACH FOR INHIBITION OF PTP FUNCTION AND AUGMENTATION OF PROTEIN-TYROSINE KINASE FUNCTION*

Received for publication, April 3, 2006, Published, JBC Papers in Press, April 12, 2006, DOI 10.1074/jbc.M603131200

Youmei Xie1, Stephen M. Massa5,*, Sonya E. Ensslen-Craig6, Denice L. Major7, Tao Yang7, Michelle A. Tisi5, Vicki D. Derevyanny5, William O. Runge1, Brijesh P. Mehta9, Laura A. Moore5, Susann M. Brady-Kalnay5,‡ and Frank M. Longo1,2

From the 1Department of Neurology, University of North Carolina, Chapel Hill, North Carolina 27599, 5Department of Neurology and 6Laboratory for Computational Neurochemistry and Drug Discovery, San Francisco Veterans Affairs Medical Center and Dept. of Neurology, University of California, San Francisco, San Francisco, California 94121, and 2Departments of Neurosciences and Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106

Inhibition of protein-tyrosine phosphatases (PTPs) counterbalancing protein-tyrosine kinases (PTKs) offers a strategy for augmenting PTK actions. Conservation of PTP catalytic sites limits development of specific PTP inhibitors. A number of receptor PTPs, including the leukocyte common antigen-related (LAR) receptor and PTPμ, contain a wedge-shaped helix-loop-helix located near the first catalytic domain. Helix-loop-helix domains in other proteins demonstrate homophilic binding and inhibit function; therefore, we tested the hypothesis that LAR wedge domain peptides would exhibit homophilic binding, bind to LAR, and inhibit LAR function. Fluorescent beads coated with LAR or PTPμ wedge peptides demonstrated PTP-specific homophilic binding, and LAR wedge peptide-coated beads precipitated LAR protein. Administration of LAR wedge Tat peptide to PC12 cells resulted in increased proliferation, decreased cell death, increased neurite outgrowth, and augmented Trk PTK-mediated responses to nerve growth factor (NGF), a phenotype matching that found in PC12 cells with reduced LAR levels. PTPμ wedge Tat peptide had no effect on PC12 cells but blocked the PTPμ-dependent phenotype of neurite outgrowth of retinal ganglion neurons on a PTPμ substrate, whereas LAR wedge peptide had no effect. The survival- and neurite-promoting effect of the LAR wedge peptide was blocked by the Trk inhibitor K252a, and reciprocal co-immunoprecipitation demonstrated LAR/TrkA association. The addition of LAR wedge peptide inhibited LAR co-immunoprecipitation with TrkA, augmented NGF-induced activation of TrkA, ERK, and AKT, and in the absence of exogenous NGF, induced activation of TrkA, ERK, and AKT. PTP wedge domain peptides provide a unique PTP inhibition strategy and offer a novel approach for augmenting PTK function.

Within intracellular signaling networks, protein-tyrosine kinases (PTKs) can be counterbalanced by protein-tyrosine phosphatases

* This research was supported in part by National Institutes of Health Grants R01-AG09873 (to F. M. L.) and R01-EY12251 (to S. B.-K.) and by the Veterans Administration (to F. M. L. and S. M. M.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 Supported by NEI, National Institutes of Health Core Grant PO-EY11373 (to the Visual Sciences Research Center of Case Western Reserve University).
2 To whom correspondence should be addressed: Dept. of Neurology and Neurological Sciences, Stanford University, 300 Pasteur Dr., Stanford, CA 94305. Tel.: 650-725-6673; Fax: 650-498-4579; E-mail: longo@stanford.edu.
3 The abbreviations used are: PTK, protein-tyrosine kinase; PTP, protein-tyrosine phosphatase; RPTP, receptor PTP; ERK, extracellular signal-regulated kinase; LAR, leukocyte common antigen; NGF, nerve growth factor; HLH, helix-loop-helix; BSA, bovine serum albumin; DMEM, Dulbecco’s modified Eagle’s medium; HS, horse serum; FBS, fetal bovine serum; Bis-Tris, 2-[bis(2-hydroxyethyl)aminio]-2-(hydroxymethyl)propane-1,3-diol; BrdUrd, bromodeoxyuridine; TUNEL, terminal dUTP nick-end labeling; DAPI, 4′,6-diamidino-2-phenylindole; EGF, epidermal growth factor.
medium and enhanced neurite outgrowth in response to NGF stimulation (19). We hypothesized that LAR wedge peptide treatment of PC12 cells would induce a similar phenotype including augmented signaling via the TrkA PTK receptor. The finding that LAR wedge peptides are capable of inhibiting LAR function would suggest novel approaches for inhibition of PTP-dependent functions and for augmentation of neurotrophin signaling.

EXPERIMENTAL PROCEDURES

Peptides—Peptides containing the residues shown in Fig. 1 were synthesized by Genemed Synthesis Inc. (South San Francisco, CA) in the amide form. Peptides were purified by high performance liquid chromatography, and amino acid content was verified by quantitative amino acid analysis. Peptides were synthesized to include a membrane-penetrant Tat-derived sequence at either the C or N terminus, a well-established strategy for promoting cellular uptake of protein or synthetic peptides (30).

Microsphere Homophilic Binding Assay—Peptides or bovine serum albumin (BSA) in solutions of 300 μg/ml were each linked to microspheres (Polysciences, Warrington, PA) using the manufacturer’s recommended protocol. LAR wedge domain (WLAR-Tat) and scrambled LAR wedge (SLAR-Tat) peptides or BSA were linked to Fluoresbrite Carboxylate NYO (red fluorescing) 1.75-μm microspheres. WPPTµ-Tat and SPTPµ-Tat wedge peptides were linked to Fluoresbrite Carboxylate BB (blue fluorescing) 1.75-μm microspheres. After linkage, microspheres were blocked with 0.25% ethanolamine for 30 min at room temperature and then with BSA (10 mg/ml) in borate buffer for an additional 30 min. After blocking, microspheres were washed 3 times with phosphate-buffered saline, suspended in 50 μl of phosphate-buffered saline, and then incubated in 96-well plates at room temperature for 1 h on a rotary shaker. 10-μl aliquots were removed and examined on microscope slides using fluorescence microscopy at wavelengths of 360 nm (blue) and 590 nm (red).

Cell Culture—PC12 cells (provided by William C. Mobley, Stanford University (31)) were propagated in Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 g/liter glucose (Invitrogen) supplemented with 10% heat-inactivated horse serum (HS), 5% fetal bovine serum (FBS), 100 units/ml penicillin, and 100 μg/ml streptomycin. The PC12 cells used in the present study remain attached to tissue culture plastic (31). After the addition of 100 μg/ml streptomycin, 10% heat-inactivated horse serum (HS), 5% fetal bovine serum (FBS), 100 units/ml penicillin, and 100 μg/ml streptomycin. The PC12 cells stably transfected with the pMEP4b null construct have been described previously (19). We hypothesized that LAR wedge peptide treatment of PC12 cells would induce a similar phenotype including augmented signaling via the TrkA PTK receptor. The finding that LAR wedge peptides are capable of inhibiting LAR function would suggest novel approaches for inhibition of PTP-dependent functions and for augmentation of neurotrophin signaling.

Pull-down Assays—Pull-down assays were conducted as previously described (15). PC12 cells were grown to 80% confluence in 10% HS and 5% FBS and then lysed at 4°C in lysis buffer (20 mM Tris-HCl, pH 7.5, 137 mM NaCl, 1% Nonidet P-40, 10% glycerol, 500 μM sodium orthovanadate, 1 mM phenylmethylsulfonyl fluoride, 10 μg/ml aprotinin) for 30 min. Lysates were centrifuged at 14,000 × g at 4°C for 20 min, and the protein concentrations of the supernatant were determined by the BCA method (Pierce). Lysates aliquots of ~700 μl were incubated for 1 h at room temperature with WLAR-Tat or SLAR-Tat (30 μg) synthesized to include a poly-His tag at the C terminus (WLAR-Tat-H, SLAR-Tat-H). After the addition of 100 μl of Talon Superflow metal affinity resin (Clontech, Palo Alto, CA), lysate mixtures were incubated by end-over-end rotation overnight at 4°C followed by washing 3 times with lysis buffer. Bound resin was resuspended in 60 μl of 2× NuPAGE lithium dodecyl sulfate protein sample buffer (Invitrogen) followed by boiling for 10 min and electrophoresis through NuPAGE 4–12% Bis-Tris gels (Invitrogen). Gels were either silver-stained or used for transfer to polyvinylidene difluoride membranes for Western blotting. Blots were incubated with polyclonal anti-LAR antibody raised against a synthetic peptide corresponding to the LAR membrane proximal domain (RAALEYLGSDHYAT) or with polyclonal anti-LAR antibody raised against a synthetic peptide corresponding to the LAR C terminus (RGFYN-RPISPDLSYQC). Both antibodies would be expected to identify the LAR ~85-kDa intracellular subunit. After LAR antibody, blots were re-probed with polyclonal goat antibody against PTPγ (C18 sc-10871) obtained from Santa Cruz Biotechnology. After incubation with horseradish peroxidase-linked secondary antibody, signal was detected using the ECL chemiluminescence system (Amersham Biosciences).

Co-immunoprecipitation—PC12 cells (1.0 × 10⁶ cells/well) were seeded in a volume of 2 ml of culture medium containing 10% HS and 5% FBS in 6-well plates precoated with poly-l-lysine and incubated overnight. Cells were then washed 3 times with serum-free DMEM and cultured in 2 ml of DMEM containing 0.5% FBS overnight followed by exposure to serum-free DMEM alone or DMEM containing NGF (0.18 nM) or NGF plus peptide (peptide 4 μM) followed by harvesting at 10 min. Aliquots (700–800 μg) of PC12 cell lysates were prepared as described above. Immunoprecipitations were performed by adding preimmune serum (5 μg), polyclonal anti-TrkA antibody (Cell Signaling, Beverly, MA; 1:250 dilution), or polyclonal anti-LAR antibody directed against the LAR C terminus (5 μg) and incubating overnight at 4°C. Immune complexes were captured by adding 100 μl of protein A-agarose (Pierce) followed by incubation with end-over-end rotation overnight at 4°C followed by washing 5 times in lysis buffer. Protein was eluted by boiling for 10 min in 100 μl of 2× NuPAGE lithium dodecyl sulfate sample buffer. Aliquots were submitted to NuPAGE 4–12% Bis-Tris gels and transferred to polyvinylidene difluoride membranes. Western blots were incubated with antibody directed against the LAR C terminus or polyclonal anti-TrkA antibody and then incubated with horseradish peroxidase-linked secondary antibodies. Signal was detected using the ECL chemiluminescence system.

PC12 Cell Proliferation—PC12 cell proliferation was quantitated using protocols described in Tisi et al. (19). Cells were seeded at a density of 1.5 × 10⁵ cells/well in a total volume of 2 ml/well of DMEM containing 10% HS and 5% FBS in 6-well plates (Corning, Corning, NY) precoated with poly-l-lysine (10 μg/ml). Peptides were added at the time of cell seeding. For each of five assays, single or duplicate wells for each peptide condition were assessed. At the indicated times, cells were harvested by adding 0.5 ml of 0.05% trypsin to each well, incubating at 37°C for 2 min, and collecting the entire cell content of each well. After trituration, aliquots of well mixed cells were counted using a hemocytometer. Intact, round, phase-bright cells that exclude trypan blue were counted, and two aliquots per well were measured and then averaged.

A second set of PC12 cell proliferation studies was conducted using BrdUrd incorporation as a measure of proliferation (33). Cells were seeded on poly-l-lysine-coated 12C1R-1D cover glass slips in 24-well plates (Fisher) by adding 0.25 ml of cell suspension (20,000 cells/cm²), 0.25 ml of DMEM containing 10% HS and 5% FBS, and peptide (4 μM) to each well. To label newly synthesized DNA, BrdUrd (10 μM) was added to the culture medium for 5 h before fixing in 4% paraformaldehyde. BrdUrd immunostaining was conducted with mouse anti-BrdUrd antibody (DakoCytomation, Glostrup, Denmark) at 1:200 with fluorescein isothiocyanate donkey anti-mouse (Molecular Probes, Invitrogen) at 1:200 serving as the secondary antibody. Using a fluorescence microscope (Leica DM IRE2), six fields were systematically acquired in each of...
three assays for each condition. For each image, the number of BrdUrd-positive cells per area was counted in a blinded fashion.

PC12 Cell Survival and Neurite Outgrowth—PC12 cell survival and neurite outgrowth were quantitated using protocols described in Tisi et al. (19). 1.5 × 10⁵ cells/well were seeded in a total volume of 2 ml/well of DMEM containing 10% HS and 5% FBS in 6-well plates precoated with poly-l-lysine and allowed to attach for 2 h. After 2 h cells were washed 3 times with serum-free medium, and medium was replaced with serum-free DMEM supplemented with penicillin (100 units/ml) and streptomycin (100 μg/ml). NGF (Invitrogen) or peptides were added to the same medium at concentrations indicated in figure legends. Cells were cultured for durations of 2 or 7 days. In 7-day cultures, on days 2, 4, and 6, 0.5 ml of medium was removed and replaced with 0.5 ml of fresh medium containing NGF or peptide at the original concentration. Cells were fixed with 4% formaldehyde in phosphate-buffered saline, and cell survival was quantitated under phase contrast microscopy by quantitatively in a blinded fashion the number of intact, round, phase-bright cells per area. Prior studies demonstrated that morphological-based assessment of surviving cells provided data equivalent to that provided using Syto-13 and propidium iodide cell death indicators (19). Neurite length quantitation was performed in a blinded fashion using NIH Image analysis software.

In separate assays, PC12 cell survival was assessed using the established strategy of combined TUNEL and DAPI staining to quantitate the ratio of apoptotic (TUNEL-positive) over total (DAPI-positive) cells. Cells were seeded on poly-l-lysine-coated 12CIR-1D cover glass in 24-well plates (Fisher) by adding 0.25 ml of cell suspension (30,000 cells/cm²) and 0.25 ml of DMEM containing 10% HS and 5% FBS. After a 2-h attachment period, cells were washed 3 times with serum-free medium, and medium was replaced with serum-free DMEM supplemented with penicillin (100 units/ml) and streptomycin (100 μg/ml) and containing NGF (5 or 50 ng/ml) or peptides (4 μM). During the 7-day culture period, on days 2, 4, and 6, 0.25 ml of medium was removed and replaced with 0.25 ml of fresh medium containing NGF or peptide at the original concentration. After 7 days in culture, cell apoptosis was assessed using the fluoroscein-12-dUTP, DeadEnd™ Fluorometric TUNEL system (Promega, Madison, WI) and VECTA-SHIELD® plus DAPI (Vector Labs Burlingame, CA). Samples were analyzed under a fluorescence microscope (Leica DMIRE2) using a standard fluorescence filter set to view green (TUNEL) fluorescence at 520 nm and blue (DAPI) at 460 nm. For each assay, 6 fields were systematically photographed, and DAPI-positive cells were counted as either TUNEL-positive or TUNEL-negative in a blinded fashion. A total of three independent assays were conducted.

Bonhoeffer Stripe Assay—Neuralretinas were dissected from embryonic day 8 (stage 32) chick embryos, flattened on concanavalin-coated nitrocellulose filters, and cut into 350-μm wide explants perpendicular to the optic fissure. Explants were placed retinal ganglion side down on substrate-coated dishes and grown in 10% fetal bovine serum (Atlas, Fort Collins, CO), 2% chick serum (Sigma), 2 mM l-glutamine (Invitrogen), 2 units/ml penicillin, 2 μg/ml streptomycin, and 5 mg/ml amphotericin in RPMI 1640 (Invitrogen). The substrate lane assay used was a modified version of the Bonhoeffer method (34), performed as previously described (35). Briefly, tissue culture dishes were coated with nitrocellulose and dried before applying the silicon lane matrix to the dish surface. A PTPμ-Fc chimera, a fusion between the extracellular domain of PTPμ (amino acids 1–621) and the Fc region of immunoglobulin heavy chain (36), was used as the first substrate. PTPμ-Fc chimera (80 ng total) containing a small amount of Texas Red-conjugated BSA (for visualization of the lanes; Molecular Probes) was injected into the channels of the matrix, incubated, aspirated, then replaced with a fresh aliquot of the same substrate. All remaining binding sites within the lanes were blocked with BSA (fraction V; Sigma) and rinsed with calcium-magnesium-free phosphate buffer. The matrix was removed, and 875 ng (total) of laminin (Biomedical Technologies Inc., Stoughton, MA) was spread across the lane area and incubated for 30 min. The entire dish was blocked with BSA and then rinsed with RPMI. Explants were cultured for 48 h before imaging. Representative images from a minimum of three separate experiments are shown.

Quantitation of stripe assays was performed using a rating scale as previously described (37, 38). Neurites that show no preference for either substrate are rated 0, and neurites that grow exclusively on one substrate are rated 3. A rating of 2 indicates that most of the neurites grow on the laminin lanes with an occasional neurite crossing over PTPμ lanes, whereas a rating of 1 is given when there is a significant amount of neurite crossing but a tendency to fasciculate on laminin. Data from a minimum of three experiments were combined (with a minimum sample size of nine explants per condition) to determine the average degree of avoidance for each condition, then analyzed with Fisher’s PLSD (Statview 4.51; Abacus Concepts, Inc., Calabasas, CA) at a 95% confidence level.

TrkA Activation in PC12 LAR Antisense Cells—PC12 cells stably transfected with LAR antisense construct or null vector control have been described previously (19). In LAR antisense-expressing cells (clone LAS-1) LAR protein levels are reduced to ~35% of levels present in null-transfected control cells (clone LC-2). To assess the effects of LAR deficiency on TrkA activation, 1.0 × 10⁶ cells per well were seeded in a total volume of 2 ml of culture medium containing 5% FBS and 10% HS in 6-well plates precoated with poly-l-lysine and incubated until cells reached ~80% confluence. Cells were washed 3 times with serum-free DMEM and cultured in 2 ml of DMEM containing 0.5% FBS overnight at 37 °C. Cells were then cultured in serum-free DMEM for 4 h followed by exposure to either serum-free DMEM alone or DMEM containing NGF or peptide for 10- or 30-min durations followed by harvesting in lysis buffer.

Western Blot Analysis—Aliquots of PC12 cell lysates containing 15 μg of protein were mixed with NuPAGE lithium dodecyl sulfate protein sample buffer and boiled for 10 min. Samples were then run on NuPAGE 4–12% Bis-Tris gels. Proteins were electrophoretically transferred from gels to polyvinylidene difluoride membranes (Amersham Biosciences) for 1 h at 30 V. Filters were blocked in blocking buffer consisting of 5% nonfat dry milk (Bio-Rad) in TBST (20 mM Tris-HCl, pH 7.5, 137 mM, 0.2% Tween 20) for 1 h at room temperature. After 1 h of blocking, membranes were incubated overnight at 4 °C with one of the following antibodies (all from Cell Signaling): polyclonal anti-phospho-TrkA (Y790), monoclonal anti-phospho-ERK1/2 (Y202/Y204), or monoclonal anti-phospho-AKT (S473). Blots were reprobed with polyclonal antibody recognizing total TrkA protein, total ERK1/2 protein, or total AKT protein. Polyclonal goat antibody against PTPr (C19 sc-10871) was obtained from Santa Cruz Biotechnology. One Western blot was performed in each assay for each cell extract derived from each culture condition. In studies of TrkA activation described in Fig. 7D, duplicate Western blots were performed in two of the five assays conducted, and their resulting values were averaged.

RESULTS

Wedge Domain Peptides—The crystal structure of the LAR D1 and D2 catalytic domains and the location of the D1 wedge domain are illustrated in Fig. 1, A and B. Peptides containing a 24-residue segment corresponding to the LAR wedge HLH domain were synthesized. Inclu-
PTP Wedge Domain Peptides Modulate PTP Function

FIGURE 1. PTP wedge domain peptides. A, tandem catalytic domains (D1 and D2) in the LAR intracellular subunit (modeled after the LAR crystal structure (22)). The wedge domain (D1W), located at the N terminus of D1, consists of an HLH structure and is shown in green. B, rotation of the same structure around the vertical axis 90° counterclockwise reveals the D1 catalytic cleft (arrow) adjacent to the wedge domain. C, LAR and PTP\(\mu\) wedge domain peptides were synthesized with an amide substituted for the C terminus: WLAR, wedge sequence without Tat; WLAR-Tat, wedge sequence with the Tat peptide (Tat sequence is underlined) linked to the C terminus; Tat-WLAR, combined with the Tat sequence linked to the C terminus; SLAR-Tat, scrambled wedge sequence with the Tat peptide linked to the C terminus; (SLAR-Tat) or scrambled PTP wedge sequence with the Tat peptide linked to the C terminus (underlined individual residues in the WLAR-Tat and WPTP\(\mu\)-Tat sequences are shared, consistent with PTP\(\mu\) and LAR conserved residues); SPTP\(\mu\)-Tat, scrambled wedge sequence with the Tat peptide linked to the C terminus. All peptides were synthesized with amide groups at the C terminus.

FIGURE 2. Wedge peptides self aggregate and also pull down LAR. A, beads coated with SLAR-Tat (red) or with SPTP\(\mu\)-Tat (blue) were incubated together and show no homophilic or heterophilic binding. B, beads coated with WLAR-Tat (red) or WPTP\(\mu\)-Tat (blue) were incubated together and demonstrated homogenous red versus blue aggregates consistent with homophilic binding and the exclusion of heterophilic binding. C, silver-stained gel derived from PAGE analysis of PC12 cell extracts subjected to pull-down assays using SLAR-Tat or WLAR-Tat, each with a polyhistidine tag linked to the C terminus. An ~85-kDa band consistent with LAR is detected in WLAR-Tat but not SLAR-Tat pull-down samples. D, Western blot analysis of the same gel performed with an antibody directed against the LAR membrane proximal domain detects ~85-kDa LAR in WLAR-Tat pull-down samples but not in SLAR-Tat samples.

Published 2006.
LAR wedge domain in the context of the full-length LAR intracellular subunit protein. The presence of PTPβ and PTPσ protein in PC12 cells (a rat-derived clone) is not well established. The availability of antibody capable of detecting rat PTPσ allowed Western blot assessment of PC12 cell extract and probing of WLAR-Tat-H pull-down samples. PTPσ antibody failed to detect PTP signal while successfully detecting PTPσ in brain extract control blots (data not shown). Further studies will be required to determine whether LAR wedge peptide binds to PTPβ, PTPσ, and other wedge PTPs.

LAR Wedge Peptides Promote a PC12 Cell Phenotype Resembling That Induced by Antisense-mediated LAR Down-regulation—PC12 cells stably transfected with LAR antisense constructs demonstrate a 65% reduction in LAR protein levels and exhibit a phenotype with the following three features: (i) increased proliferation in serum-containing medium; (ii) decreased cell death and increased neurite outgrowth in serum-free medium; (iii) enhanced neurite outgrowth response to NGF (19). In serum-containing PC12 cell cultures, the addition of WLAR-Tat, but not SLAR-Tat or WLAR, led to a small but statistically significant increase in proliferation as determined by counts of surviving cells at 24, 48, and 72 h (Fig. 3). The lack of effect of WLAR suggested that activity is dependent on Tat-mediated access to its intracellular target. In a separate series of confirmatory studies using BrdUrd labeling as an additional measure of proliferation, WLAR-Tat caused a 17% increase in the proportion of BrdUrd-positive cells at 72 h compared with no effect found with SLAR-Tat (p < 0.01, Student’s t test, n = 18 fields, 6 fields from each of 3 independent assays).

In serum-free cultures, the addition of NGF or WLAR-Tat led to significantly increased survival and neurite outgrowth as determined by counts of morphologically intact cells (Fig. 4, A–C). The Trk inhibitor K252a blocked the survival- and neurite-promoting effects of both NGF and WLAR-Tat. SLAR-Tat, WLAR, WPTPμ-Tat, and SPTPμ-Tat had no effect on survival or neurite outgrowth. Promotion of cell survival by WLAR-Tat was confirmed in a separate series of studies using TUNEL/DAPI staining to detect cell death (Fig. 4D). Dose-response studies measuring NGF-dependent promotion of survival in serum-free medium demonstrated that WLAR-Tat, but not SLAR-Tat, enhanced NGF effects at suboptimal NGF doses (Fig. 5). Similarly, dose-response studies measuring NGF-dependent promotion of neurite outgrowth in serum-free medium showed that WLAR-Tat, but not SLAR-Tat, enhanced NGF effects at suboptimal NGF doses (Fig. 5). At an NGF concentration of 0.08 nM, WLAR-Tat induced survival and neurite outgrowth equivalent to that seen at an NGF concentration ~3-fold higher. Thus, whereas the effects of WLAR-Tat on cell proliferation and on augmenting NGF function were modest, this peptide induced a phenotype concordant with all three of the previously established features of the phenotype previously shown to be induced by LAR down-regulation. In addition, WLAR-Tat augmented NGF neurotrophic activity at suboptimal doses but not at maximum doses, and its activity was blocked by K252a, two lines of evidence suggesting that WLAR-Tat augments NGF signaling.

Peptides were tested on proliferation, survival, and neurite outgrowth at varying concentrations, although the mechanism of Tat-mediated intracellular accumulation would not be expected to necessarily yield typical ligand-receptor dose-response curves. At concentrations of 1 μM, peptides had little or no effect on PC12 cells, and at concentrations ≥8–10 μM, PC12 cells demonstrated evidence of toxicity.

PTPμ Wedge Peptide Blocks Retinal Neurite Outgrowth on a PTPμ-coated Substrate—To determine whether the principle of inhibiting PTP function with the application of a wedge peptide could be applied to another PTP, we tested the ability of PTPμ wedge peptide to inhibit a well characterized PTPμ function. One of the best characterized and quantifiable biological functions of PTPμ is its ability to promote neurite outgrowth of chick nasal retinal ganglion cells (35, 40–42). The extracellular domain of PTPμ mediates homophilic cell-cell aggregation (43, 44) and promotes neurite outgrowth of retinal neurons (40, 42). When nasal retinal explants are grown on alternating lanes of PTPμ and laminin, neurites are able to grow and freely cross both the laminin and PTPμ substrate lanes (34). Down-regulation of PTPμ via the expression of PTPμ antisense leads to reduced neurite outgrowth on PTPμ substrate, demonstrating a requirement for neuronal PTPμ function (40). In the same retinal explant assay, application of WPTPμ-Tat wedge peptide markedly inhibited neurite growth and crossing on PTPμ substrate but not laminin substrate, whereas SPTPμ-Tat peptide had no effect on neurite outgrowth on either PTPμ or laminin substrate (Fig. 6, A and B). These findings confirmed that the ability of PTP wedge peptides to inhibit PTP function could be demonstrated in at least two members of the PTP wedge family, LAR and PTPμ. Consistent with its inability to bind to the PTPμ wedge motif, WLAR-Tat had no effect on retinal neurite outgrowth on a PTPμ substrate (Fig. 6C).

To quantify the extent of neurite crossing in the stripe assays, the average degree of avoidance was determined for each condition (see “Experimental Procedures” for explanation). After WPTPμ-Tat wedge peptide addition, the average degree of neurite avoidance changes from 0.75 (little avoidance) for control experiments to 3 (high avoidance, p < 0.0001), indicating that the PTPμ wedge inhibitor peptide blocks neurite outgrowth on a PTPμ substrate. Neither the SPTPμ-Tat peptide...
FIGURE 4. LAR wedge peptide promotes PC12 cell survival and neurite outgrowth. A, PC12 cells were grown in serum-free CM containing NGF, NGF + K252a, SLAR-Tat, WLAR-Tat, WLAR-Tat + K252a (K, 200 nM), WPTP*-Tat, or SPTP*-Tat. In all conditions, NGF was present at 0.18 nM and K252a at 200 nM, and cells were plated in the presence of peptide at 4 μM. Cell survival was assessed after 7 days. B and C, quantitation of the number of cells surviving per area and mean neurite length is shown. Mean ± S.E. For survival data, n = 75 fields counted (25 fields in each of 3 assays). For neurite length data, n = 78–298 neurites were measured per condition; for each cell, the longest neurite present was measured. NGF and WLAR-Tat promoted significantly greater survival and neurite outgrowth than that found at base line (culture medium and indicated by horizontal dashed line), p < 0.001, Student’s t test. Survival and neurite outgrowth promoted by NGF were significantly decreased in the presence of K252a (***, p < 0.001), and survival and neurite outgrowth promoted by WLAR-Tat were entirely blocked by K252a.

nor the WLAR-Tat peptide had any quantifiable effect on the average degree of avoidance on a PTPsubstrate. The findings that PTPμ wedge peptide blocked neurite outgrowth on PTPsubstrate whereas the LAR peptide had no effect provide a third line of evidence that LAR and PTPμ wedge peptides are specific to their corresponding receptor PTP.

LAR Associates with TrkA and LAR Deficiency Promotes TrkA Activation—The findings that the Trk inhibitor K252a blocked the survival and neurite promoting effect of WLAR-Tat and that WLAR-Tat augmented suboptimal but not maximal concentrations of NGF raised the possibility that LAR might associate directly or indirectly with TrkA and that inhibition of LAR may up-regulate TrkA signaling. The identity of RPTPs that associate with Trk receptors remain to be established. To determine whether LAR associates with TrkA, reciprocal co-immunoprecipitation studies were performed. Immunoprecipitation with anti-TrkA antibody captured LAR (Fig. 7A) and immunoprecipitation with anti-LAR antibody captured TrkA (Fig. 7B), indicating that LAR is associated directly or indirectly with TrkA. The addition of NGF did not appear to have a large effect on the ability of LAR immunoprecipitation to capture TrkA (Fig. 7B). Interestingly, the addition of WLAR-Tat, but not SLAR-Tat, blocked the ability of LAR immunoprecipitation to capture TrkA (Fig. 7B). These findings supported the hypothesis that LAR wedge peptide might interfere with the ability of LAR to interact with TrkA or with proteins mediating LAR-TrkA interaction.

To determine whether down-regulation of LAR leads to augmented TrkA signaling, activation of TrkA was monitored by measuring the phosphorylation of the Tyr-490 site; transphosphorylation of Tyr-490 is a well characterized proximal step in TrkA activation and is required for downstream signaling (5). In PC12 cells, NGF induces TrkA activation with peak activation occurring at 5–10 min and is down-regulated by 30 min (45). At the 10-min time point, NGF induced an ~80% increase in TrkA Tyr-490 phosphorylation in null-transfected control cells and an ~140% increase in LAR antisense PC12 cells (Fig. 7, C and D). At the 30-min time point, TrkA Tyr-490 phosphorylation was similar between the two cell types, indicating that LAR down-regulation increased the early peak phase of TrkA activation but did not lead to a sustained augmentation of TrkA activation. The finding of enhanced NGF-induced TrkA activation in LAR-antisense cells along with evidence that LAR wedge peptide interferes with LAR function predicted that a LAR wedge peptide might similarly activate TrkA and/or augment early phase NGF-induced TrkA activation. The addition of WLAR-Tat peptide led to TrkA activation to a level significantly above base line and ~50% of that seen with NGF-induced activation at the 10 min time point, whereas SLAR-Tat had no effect (Fig. 7, E and F). The addition of WLAR-Tat, but not SLAR-Tat, to a submaximal concentration of NGF (0.18 nM) led to an ~2-fold augmentation of NGF-induced TrkA activation at the 10-min time point (Fig. 7, G and H). Taken together, these findings indicate that down-regulation of LAR expression augments TrkA activation and that the LAR wedge peptide, possibly by interfering with LAR function, also promotes and/or augments TrkA activation. The ability of the LAR wedge peptide to trigger TrkA activation in the absence of added NGF could be due to augmentation of the effects of trace levels of endogenous NGF potentially present in cultures or, alternatively, might result from potentiation of otherwise undetectable basal levels of non-ligand-dependent TrkA activation.
The finding that WLAR-Tat activates TrkA predicted that WLAR-Tat would also activate TrkA downstream signaling. Both ERK activation and AKT activation are downstream consequences of TrkA signaling and are readily measured using phospho-specific antibodies to the activated form of the enzyme. Extracts derived from the 10-min time point of the same cultures used for assessment of TrkA activation (Fig. 7) were used to measure activation of ERK and AKT. WLAR-Tat led to ERK activation to a level of \(\frac{1}{H11011} \) 60% that induced by NGF, whereas SLAR-Tat had no effect (Fig. 8, A and B). The addition of WLAR-Tat, but not SLAR-Tat, to a submaximal concentration of NGF (0.18 nM) led to a significant augmentation of NGF-induced ERK activation by \(\frac{1}{H11011} \) 1.6-fold (Fig. 8, C and D). In studies of AKT activation, WLAR-Tat promoted activation to a level \(\frac{1}{H11011} \) 75% that stimulated by NGF, whereas SLAR-Tat had no effect (Fig. 8, E and F). The addition of WLAR-Tat to a submaximal concentration of NGF (0.18 nM) led to a significant 1.4-fold augmentation of NGF-induced AKT activation, whereas SLAR-Tat had no effect (Fig. 8, G and H). These findings demonstrated that the LAR wedge peptide augments (and also potentially promotes) activation of two well characterized signaling components downstream of TrkA known to play roles in survival and differentiation of PC12 cells.
The present study demonstrates that HLH wedge domain peptides corresponding to two members of the RPTP type II family undergo sequence-specific homophilic binding. LAR wedge peptide, but not PTPμ wedge peptide, induces a LAR-deficient phenotype in PC12 cells, whereas PTPμ wedge peptide, but not LAR wedge peptide, promotes a PTPμ-deficient phenotype in retinal ganglion cells. In addition, this work describes the first identification of a RPTP associating with a Trk receptor and reveals that antisense-mediated down-regulation of LAR or use of LAR wedge peptide in PC12 cells leads to increased TrkA activation and increased TrkA downstream signaling. These findings point to two novel potential therapeutic strategies. First, targeting of PTP HLH wedge domains might provide an approach for development of small molecules inhibiting wedge-containing RPTP function. Second, the present work is the first to demonstrate that targeting of a RPTP associated with a Trk receptor can lead to augmentation of receptor activation, downstream signaling, and neurotrophic effects.

The function of the LAR and PTPμ wedge domains remains unknown. In the case of RPTPα and CD45, crystal structure analyses suggest an intermolecular interaction in which receptor dimerization leads to the wedge domain of each monomer, interacting with the D1 catalytic cleft of the adjacent monomer, thereby interfering with catalytic activity (46). In the case of LAR, there is no evidence that an analogous intermolecular interaction inhibits catalytic activity. Crystal structure studies of LAR indicate that steric hindrance by D2 makes an analogous intermolecular interaction unlikely but leaves open the possibility of an intramolecular association between D1 and D2 (22). Similar studies for PTPμ also suggest that an intermolecular inhibitory mechanism is unlikely (47). Yeast two-hybrid screening demonstrated that PTPβ D2 binds in a wedge-dependent manner to PTPα-D1 and inhibits its catalytic activity (48, 49). Co-immunoprecipitation studies suggest that LAR D1 containing the wedge segment interacts with LAR D2, although the role of the wedge domain in this interaction and whether D2 binding inhibits D1 catalytic activity are not known (50). Intramolecular interactions between the membrane-distal tyrosine phosphatase domain and the juxtamembrane domain of PTPμ have been demonstrated to occur, which reduce PTPμ catalytic activity (51). Yeast interaction trap assays have identified proteins that bind to LAR D2 including Trio (52) and the liprin LAR-interacting proteins (53); however, proteins binding to the LAR wedge domain remain to be identified.

The lack of knowledge regarding LAR intra- and intermolecular interactions as well as the identity of LAR enzymatic substrates within PC12 cells and neurons limits the extent to which the molecular mecha-
PTP Wedge Domain Peptides Modulate PTP Function

anisms of action for the wedge peptide can currently be established. There are at least five potential mechanisms by which wedge peptide might interfere with LAR function. First, binding of wedge peptide to the LAR wedge domain might interfere with the ability of LAR to interact with heretofore unidentified adaptors or other functionally important proteins. This possibility is supported by the present finding that LAR wedge peptide blocks LAR-TrkA association either by blocking direct interaction with TrkA or with proteins mediating such interaction. Second, binding of wedge peptide to the LAR wedge domain might interfere with functionally important, activity-promoting, intramolecular interactions between the wedge domain and D2 or other LAR domains. Third, binding of wedge peptide to the wedge domain of LAR might interfere with access of one or more substrates to the D1 enzymatic site. Fourth, wedge peptide might bind to and thereby inhibit adaptors or other proteins normally bound by endogenous LAR via its wedge domain. A fifth and less likely mechanism by which the LAR wedge peptide might inhibit LAR function would involve binding at a non-wedge site located within the LAR catalytic cleft to directly interfere with enzymatic function. This alternative would imply that the wedge peptide is capable of both isologous homophilic binding to the wedge domain and also of binding in a heterologous manner to the LAR catalytic site. The demonstration that a wedge peptide induces a phenotype similar to that achieved by antisense-mediated down-regulation of LAR and enhances signaling of a LAR-associated PTK receptor will provide a rationale for the extensive series of studies that will be required to establish the occurrence of one or more these potential mechanisms. Similar molecular mechanisms could be proposed for the ability of the PTPμ wedge peptide to block known PTPμ-dependent functions. The present work will encourage determination of whether wedge peptides corresponding to other wedge-containing RPTPs will inhibit function.

FIGURE 8. LAR wedge peptide activates ERK and AKT. The same PC12 extracts assessed in Fig. 7E-H were analyzed for activation of ERK and AKT. A, Western blot analysis for phospho-(p)-ERK1 and ERK2 (upper panel) and total ERK1 and ERK2 (lower panel) in PC12 cells treated with CM, NGF (0.18 nM), SLAR-Tat (4 μM), or WLAR-Tat (4 μM). B, quantitative analysis of Western blot signal demonstrates the expected NGF-induced ERK (values of ERK1 and ERK2 are added). WLAR-Tat induces significant ERK activation (***, p < 0.001; n = 6 assays, Student’s t test), whereas SLAR-Tat had no effect. C, Western blot analysis for phospho-ERK1 and ERK2 (upper panel) and total ERK1 and ERK2 protein (lower panel) in PC12 cells treated with CM, NGF (0.18 nM), NGF (0.18 nM) + SLAR-Tat (4 μM), or NGF (0.18 nM) + WLAR-Tat (4 μM). D, quantitative assessment of Western blot signal demonstrates a significant augmentation of NGF-induced ERK activation (***, p < 0.001; n = 6 assays) by WLAR-Tat, whereas SLAR-Tat had no effect. E, Western blot analysis for phospho-AKT (upper panel) and total AKT protein (lower panel) of the same PC12 cell extracts assessed for ERK activation. F, quantitative analysis of Western blot signal demonstrates the expected NGF induction of AKT. WLAR-Tat induced a significant activation of AKT (***, p < 0.001; n = 6 assays), whereas SLAR-Tat had no effect. G, Western blot analysis for phospho-AKT (upper panel) and total AKT protein (lower panel) of the same PC12 cell extracts assessed for ERK activation. H, quantitative assessment of Western blot signal demonstrates a significant augmentation of NGF-induced AKT activation (***, p < 0.001; n = 6 assays) by WLAR-Tat, whereas SLAR-Tat had no effect.
might down-regulate LAR function stems from the precedent that HLH homophilic binding can block protein-protein interactions and lead to loss of function. Members of the Id transcription factor family, containing a HLH domain but lacking a DNA binding domain, bind to intact HLH-containing transcription factors to form inactive complexes incapable of DNA binding and thereby inhibit function (26, 27). In the case of LAR, the existence of intramolecular and intermolecular binding interactions involving the HLH wedge domain remain to be established, but interference with either mode of interaction would have the potential to inhibit LAR function. An important strategic advantage of the empirical approach applied here is that a given domain, such as the LAR wedge segment, can be targeted before elucidation of its functions and intra- and/or intermolecular interactions. Our findings here will stimulate the elucidation of PTP wedge domain function in LAR and other RPTPs.

The findings that LAR wedge peptides do not bind to PTPµ wedge peptides, that WPTPµ-Tat had no effect on LAR-dependent functions in PC12 cells, and that LAR wedge peptide did not inhibit PTPµ function suggest some degree of specificity among wedge peptides and wedge PTPs. However, further studies that include all wedge PTPs and their corresponding wedge peptides and all possible combinations of wedge PTPs and peptides will be necessary to fully evaluate the degree of specificity that can be obtained with this approach.

Before the present studies, no RPTPs were known to associate with Trk receptors and modulate signaling. The SHP-1 non-receptor PTP co-immunoprecipitates with TrkA in PC12 cells and sympathetic neurons and dephosphorylates TrkA (54). Expression of a dominant-negative SHP-1 mutant in PC12 cells led to activation of TrkA and AKT but not ERK and promoted survival but not neurite outgrowth. This pattern was consistent with studies showing that AKT promotes PC12 cell survival, whereas the ERK pathway promotes neurite outgrowth (5, 55). Given these distinct effects of AKT and ERK signaling, it is of particular interest to note that targeting of LAR with the wedge peptide led to activation of Trk along with both AKT and ERK and to promotion of both survival and neurite outgrowth. The present findings of increased Trk phosphorylation in LAR-deficient PC12 cells along with LAR/TrkA association suggest that LAR may directly or indirectly promote the dephosphorylation of Trk tyrosine residues. Augmentation of TrkA, AKT, and ERK activation is likely one important mechanism by which the wedge peptide augments neurotrophic function and a mechanism that is consistent with LAR-TrkA interaction. Additional studies might identify other neurotrophic pathways activated by LAR wedge peptides.

Because LAR has been shown to regulate signaling by a number of PTKs (32), it is possible that wedge-mediated inhibition of LAR function might lead to up-regulation of PTKs in addition to TrkA. The previous finding that down-regulation of LAR leads to increased epidermal growth factor (EGF) signaling (32) and the well established role for EGF in promoting PC12 cell proliferation (56) raise the possibility that the wedge peptide-induced proliferation of PC12 cells found in the present study might be mediated by up-regulated EGF signaling. Interestingly, the degree of increased proliferation induced by the LAR wedge peptide is relatively modest, perhaps consistent with the ability of TrkA activation (also induced by the wedge peptide) to inhibit proliferation and promote differentiation. Moreover, long term exposure of PC12 cells to NGF has been shown to decrease proliferative response to EGF (57). The present studies will encourage efforts to determine whether targeting of the LAR wedge domain in PC12 cells leads to up-regulation of EGF and other PTK receptors.

The possibility that wedge peptides might act via homophilic binding to the LAR and PTPµ wedge domains raises the important prospect that non-peptide small molecules binding to these wedge domains and interfering with their intra- or intermolecular interactions might offer a novel small molecule approach to inhibiting activity of LAR, PTPµ, and other wedge-containing RPTPs. Such compounds might also create a novel small molecule approach for augmentation of Trk and other PTK signaling. The finding that LAR and PTPµ wedge peptides induce homophilic binding of fluorescent beads provides a basis for high throughput screening for such compounds.
PTP Wedge Domain Peptides Modulate PTP Function

40. Ensslen-Craig, S. E., and Brady-Kalnay, S. M. (2005) *Mol. Cell. Neurosci.* **28**, 177–188
41. Ensslen-Craig, S. E., and Brady-Kalnay, S. M. (2004) *Dev. Biol.* **275**, 12–22
42. Burden-Gulley, S., and Brady-Kalnay, S. M. (1999) *J. Cell Biol.* **144**, 1323–1336
43. Brady-Kalnay, S. M., Flint, A. J., and Tonks, N. K. (1993) *J. Cell Biol.* **122**, 961–972
44. Brady-Kalnay, S. M., and Tonks, N. K. (1994) *J. Biol. Chem.* **269**, 28472–28477
45. Zhou, J., Valletta, J. S., Grimes, M. L., and Mobley, W. C. (1995) *J. Neurochem.* **65**, 1146–1156
46. Majeti, R., and Weiss, A. (2001) *Chem. Rev.* **101**, 2441–2448
47. Hoffmann, K. M., Tonks, N. K., and Barford, D. (1997) *J. Biol. Chem.* **272**, 27505–27508
48. Wallace, M. J., Fladd, C., Batt, J., and Rotin, D. A. (1998) *Mol. Cell. Biol.* **18**, 2608–2616
49. Blanchetot, C., and den Hertog, J. (2000) *J. Biol. Chem.* **275**, 12446–12452
50. Blanchetot, C., Tertoolen, L. G., Overvoorde, J., and den Hertog, J. (2002) *J. Biol. Chem.* **277**, 47263–47269
51. Feiken, E., van Etten, I., Gebbink, M. F., Moolenaar, W. H., and Zondag, G. C. (2000) *J. Biol. Chem.* **275**, 15350–15356
52. Debant, A., Serra-Pages, C., Seipel, K., O’Brien, S., Tang, M., Park, S. H., and Streuli, M. (1996) *Proc. Natl. Acad. Sci. U. S. A.* **93**, 5466–5471
53. Serra-Pages, C., Medley, Q. G., Tang, M., Hart, A., and Streuli, M. (1998) *J. Biol. Chem.* **273**, 15611–15620
54. Marsh, H. N., Dubrezil, C. L., Quevedo, C., Lee, A., Majdan, M., Walsh, G. S., Haudorf, S., Said, F. A., Zoueva, O., Kozlowski, M., Siminovitch, K., Neel, B. G., Miller, F. D., and Kaplan, D. R. (2003) *J. Cell Biol.* **163**, 999–1010
55. Klesse, L. J., Meyers, K. A., Marshall, C. J., and Parada, L. F. (1999) *Oncogene* **18**, 2055–2068
56. Vaudry, D., Stork, P. J., Lazarovici, P., and Eiden, L. E. (2002) *Science* **296**, 1648–1649
57. Castellon, R., and Mirkin, B. L. (2003) *J. Neurosci. Res.* **72**, 239–249