Modelling of field emitter surface structure

K A Nikiforov, N V Egorov and M N Lunkovskiy
Saint-Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russia
E-mail: knikiforov@cc.spbu.ru

Abstract. The paper presents a mathematical model of the crystal structure of the emitter, which is the subject of research in atom probe tomography and in the field electron microscopy. Electronic, mechanical and other properties of the sample having the shape of the tip with a radius of curvature at the top of the order of hundred nanometers, these methods are considered on the basis of field desorption and emission (electron or ion). Strong electric field simultaneously performs generating, focusing, accelerating and transport function. Therefore, multi-scale modeling of the properties of the sample, including an approximation of its shape on the micro-, meso- and nanolevel, calculation of atomic packing density and size of crystal faces is a topical applications and is used to interpret the results of field emission experiment.

1. Introduction
Field emission properties of crystals are depended on surface structure. Information about the processes that occur on the metal surface in conditions of influence of strong electric fields, are important from the practical point of view for technologies of manufacture and use of electron and ion emitters, atom probes, field emission and scanning electron microscopy. Studying those phenomena is also useful for theoretical science [1−17] as it allows to obtain the data of mechanisms and properties of diffusion processes, crystal growth, self-organization and phase transitions, to measure such values as surface tension (free surface energy) in solids, energies of interaction of atoms and molecules with the surface and between each other.

The object of study is a metal single crystal emitter tip, which can be made out of metal wires of diameters about 0.1−0.15 mm by the use of anode electric etching.

Emission properties of crystal substances are in a great extent defined by the electron work function. It is usually assumed that this value has both surface and volume parts. Most probably, both of them have a non-negligible influence. The impact of the surface structure can be observed in the fact that faces with different Miller indexes have different work function values. But it's the volume that supplies the electrons to the surface and it's unacceptable to neglect this.

The goal of this research is development of model for surface structure of field emitter, based on its meso-scale shape approximation and atomistic calculation of crystal lattice inside this shape. Subproblem of this modeling is work function map calculation for the surface of emitter.

2. Surface structure calculation
Calculation of the atomic structure of the surface of monocystal emitter tip is a basic step in many models of both electron and ion field emission. As the emission properties are mostly defined by
relatively thin layer below the surface, it is only necessary to take in account the coordinates of atoms that lie up to certain depth and store them in computer memory. The surface atoms are defined as ones having an incomplete set of neighbors of a certain order, which distinguish them from the atoms in volume.

For example Figure 1 shows possible shapes approximating emitter as equipotential surfaces of the electric field [1] generated by charged cone with a sphere at the top (dotted line). As can be seen, the emitter apex shape is close to hemisphere. The model structure of the apex surface is shown in Figure 1c and 1d, where the surface layers of the atoms of different depths (0.2 and 0.4 lattice parameters) and Miller indices for major crystal faces are represented. The model structure of the apex surface is shown in Figure 2, where the surface layers of the atoms of different depths (0.2 and 0.4 lattice parameters) and Miller indices for major crystal faces are represented. Computational algorithm is based on [2, 3] and implemented in the Matlab environment.

![Figure 1](image1.png)
Figure 1. Emitter profile and shape approximation.

![Figure 2](image2.png)
Figure 2. Apex surface structure models with depth 0.2 and 0.4 lattice parameters.
Figure 3. Apex surface structure models with depth 0.6 and 0.8 lattice parameters.

Figure 3 shows surface layer with depth 0.6 lattice parameters, where 5160 atoms (highlighted) have full set of first order neighbours and 0.8 lattice parameters, where only 838 atoms (highlighted) have broken bounds with nearest neighbours of first order.

3. Work function surface map

Although, in principle, work function can be calculated directly (by the DFT method and the cluster model of the surface, but it is practically difficult to implement for whole surface, because of the large numbers of atoms on the surface. Another approach is more practical, although it does not take into account effects such as relaxation and reconstruction of the surface, but also requires an analysis of the coordination numbers that characterize the types of atoms (step, kink, with different binding energy and different local values of the work function.

The results of paper [18] show that the semiempirical model proposed by Surma can be used successfully to predict metal work functions near the crystal faces, experimental data on which are lacking, for example, in the simulation of the phenomenon of field electron emission. The error of such a prediction can be at a level of 0.2 eV. It is important to mention that, in tested cases of tungsten, molybdenum, platinum and iridium the Surma model was assumed to be statistically significant [18].

In this paper work function simulation is based on Surma model and this aspect is new for field emitter surface structure model, applicable to field electron/ion microscopy simulation, as well as for field desorption microscopy and atom probe tomography [4].

The simulation of the work function values nonuniform distribution (due to crystallographic anisotropy) over the surface of the emitter is carried out within the framework of the broken-bounds approach. Figure 4 shows work function map of the emitter surface.
Figure 4. Model map of work function distribution over the tungsten emitter surface (one quarter of the hemispherical apex of emitter).

4. Conclusion
The developed mathematical model describes the surface structure of the field emitter metal tip taking into account the arrangement of different crystallographic faces at the top of the emitter. This study can be associated with the model of patch field effect due to contact potential difference established between areas having different work function values.

Acknowledgments
Financial support has been obtained from RFBR (13-01-00150) and partially from Saint-Petersburg State University (9.38.673.2013). Research was carried out using computational resources provided by Resource Center "Computer Center of SPbU" (http://cc.spbu.ru/en) and using experimental equipment of the Interdisciplinary Resource Center for Nanotechnology of St. Petersburg State University.

[1] Nikiforov K A, Egorov N V, Shen C-C 2009 Surface reconstruction of a field electron emitter Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques 3 833-9
[2] Nikiforov K, Krasnova A 2014 Model of field electron emitter surface structure 2014 Tenth Int. Vacuum Electron Sources Conf. (Saint Petersburg) (Piscataway: IEEE)
[3] Eaton H C, Lee L 1982 The simulation of the images of the field ion microscope: Specimen of arbitrary crystal structure and orientation Journal of Applied Physics 2 988-94
[4] Gault B, Moody M P, Cairney J M, Ringer S P 2012 Atom Probe Microscopy (Berlin: Springer)
[5] Nikiforov K A, Egorov N V and Shen C-C 2009 Surface reconstruction of a field electron emitter Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques 3 833-9
[6] Nikiforov K and Krasnova A 2014 Model of field electron emitter surface structure 2014 Tenth International Vacuum Electron Sources Conference, IVESC (Saint Petersburg) (Piscataway: IEEE) 6892018
[7] Plšek, J, Hrubý P, Nikiforov K and Knor Z 2005 Properties of physisorbed water layers on gold revealed in a FEM study Applied Surface Science 252 1553–60
[8] Nikiforov K A, Antonova L I, Egorov N V, Trofimov V V, Makeev V V and Ogurtsov O F 2012 Non-gated field emission array as low-energy electron source: Experiment and simulation RuPAC 2012 Contributions to the Proc. of 23 Russian Particle Accelerator Conf. (St. Petersburg), (Cern: JACoW) 218–20
[9] Nikiforov K A and Egorov N V 2012 Program complex for vacuum nanoelectronics finite element simulations RuPAC 2012 Contributions to the Proc. of 23 Russian Particle Accelerator Conf. (St. Petersburg), (Cern: JACoW) 409–11

[10] Sayfullin M and Nikiforov K 2014 Fringe field effect study of a field emitter array 2014 Tenth International Vacuum Electron Sources Conference, IVESC (Saint Petersburg) (Piscataway: IEEE) 6892072

[11] Nikiforov K and Andrievskiy D 2014 Comparison of injection algorithms for electron beam simulation by particle-in-cell method 2014 20th International Workshop on Beam Dynamics and Optimization, BDO (Saint Petersburg) (Piscataway: IEEE) 6890057

[12] Nikiforov K 2014 Modelling of emission processes in Matlab International Conference on Computer Technologies in Physical and Engineering Applications, ICCTPEA (Saint Petersburg) (Piscataway: IEEE) 6893317

[13] Sayfullin M F and Nikiforov K A 2014 Studying fringe field effect of a field emitter array Journal of Physics: Conference Series 541 012020

[14] Gallyamov Z R and Nikiforov K A 2014 Model of electron transport in cell of a thin-film vacuum nanotriode Journal of Physics: Conference Series 541 012035

[15] Nikiforov K A and Zartdinov A N 2014 Studying field emission characteristics of point and wedge–shaped surface defects Journal of Physics: Conference Series 541 012009

[16] Nikiforov K 2015 Mathematical model and software complex for computer simulation of field emission electron sources AIP Conf. Proc. 1648 450014

[17] Nikiforov K A and Egorov N V 2015 Simulation of specimen structure in atom probe tomography and field electron microscopy 2015 International Conference on Mechanics – Seventh Polyakhov's Reading (Saint Petersburg) (Piscataway: IEEE)

[18] Egorov N V, Antonov A Y, Gribkova I M Statistical test of a single semiempirical work function model 2014 Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques 8 138–43