Risk analysis of poultry feed production using fuzzy FMEA

Naning Aranti Wessiania*, Satria Oktaufanus Sarwoko b

a,b Department of Industrial Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60119, Indonesia

Abstract

The intensity growth of chicken meat consumption in Indonesia pulls the demand of poultry feed products. Producers of poultry feed try to fulfil this higher demand. The production lines become one of critical process for succeeding the company to meet the demand. Potential failures that threat the stability and continuity of production process should be minimized. All potential failures could be considered as risk. It becomes important for the company to identify the risk that potentially threat their production process. Failure Mode and Effects Analysis (FMEA) is a robust methodology that can be used to identify, classify, and analyze potential risk. This research aims to utilize FMEA methodology to analyze the risk in the poultry production process. Handling the limitation of traditional FMEA in assessing the risk score through expert judgement, this research applies fuzzy FMEA in its methodology. There are 89 potential risks of poultry feed production could be identified by applying Fuzzy FMEA. Mitigation efforts are prioritized on 39 corrective risks. Having accurate risk analysis will enable the company to develop properly mitigation efforts and securing their production process to meet the demand schedule.

1. Introduction

The increasing consumption of chicken meat in Indonesia by the year has a positive effect on the demand of poultry feed products. The high growth of chicken meat demand is attracting new players of poultry feed producers to enter Indonesia market. According to the Indonesia Association of Fodder Producers, poultry feed...
production grew 8.7% to 13.8 million tons in 2013 from 12.7 million tons in the previous year. The total production capacity of the company’s poultry feed mills in Indonesia increased by 16.1% from 3.1 million in tons 2012 to 3.6 million tons in the following year. Existing poultry feed producers are facing higher intensity of competition now. Their production process should be well managed to meet the demand schedule or they could lose their market share. The companies have to secure their production lines from interruption or failure. Failures can take in many forms consider as risk. The existence of risk in many activities of production process should be recognized.

There have been many approach available that can be used to identify risk. Failure Mode and Effect Analysis (FMEA) is one of the methodology that can be used to identify product or process problems before they occur (McDermott et.al., 2009). Many studies have been used FMEA approach to identify risk in their case. Feili et.al (2013) adopted FMEA methodology to determine, classify and analyze common failures in Geothermal Power Plant (GPP) project. Feili et.al. (2013) concludes that FMEA becomes a useful technique to predict possible failure modes and eliminate potential failure during the design and operation of GPPs. Differ with Feili et.al. (2013), Kumru and Kumru (2012) adopted fuzzy FMEA to identify potential failures in the purchasing process of public hospital. Fuzzy FMEA is applied to overcome the limitation of conventional FMEA such as the subjective and qualitative description, in natural language, the relative importance among the risk ratings, the difference of risk representation among the same ratings, and the knowledge shared among FMEA team members (Kumru and Kumru, 2012). Applying fuzzy FMEA resulted in recommendation of some corrective action in order to improve the purchasing process of public hospital (Kumru and Kumru, 2012). Wang et.al. (2009) also proposed fuzzy FMEA in risk evaluation. Wang et.al. (2009) argues that evaluating risk factors such as the occurrence (O), severity (S) and detection (D) required by FMEA methodology precisely may not be realistic in the real application. Thus, Wang et.al. (2009) suggested fuzzy FMEA instead of conventional FMEA for risk evaluation.

This paper focuses on implementing fuzzy FMEA to identify the potential risks that may occur along the poultry feed production process. Fuzzy FMEA is adopted to minimize the subjectivity of experts’ assessment in the risk factors evaluation stage. There is still no published record that applies fuzzy FMEA approach for identifying risk in the poultry feed production process. It is expected that this study could contribute to share knowledge regarding risk profile of poultry feed production process. As the purpose of FMEA approach is preventing product and process problems before they occur, this paper also expected to result some mitigation effort that can be applied to improve poultry feed production process. PT. X is employed as the case study to implement the fuzzy FMEA methodology. Following sections will describe about poultry feed production process at PT. X. Then, next section will explain the research’s method (section 3), the application of fuzzy FMEA for risk analysis of poultry feed production process (section 4), the research’s results (section 5), and the last (section 6) is conclusion.

2. Fuzzy Failure Mode and Effect Analysis (FMEA)

FMEA firstly introduced in the mid 1960’s in the aerospace industry as a tool to prevent safety accident and incident from occurring. It focused more on safety. In the late of twentieth century, the US automotive industry adopted FMEA technique as a quality improvement tool. As required by the ISO/TS 16949 standard, the suppliers of US automotive industry should adopted FMEA technique as an effort to prevent failures before they happen (McDermott et.al., 2009). Further development shows that FMEAs are widely applied outside the safety arena (Kumru and Kumru, 2012; Feili et.al., 2013).

The FMEA methodology also recommended by the international standards as one of the risk analysis techniques. By applying this methodology, the company can have a systematic process to identify potential failures to fulfill the intended function, to identify possible failure causes so the causes can be eliminated, and to locate the failure impacts so the impacts can be reduced (Dyadem Engineering Corporate, 2003). Although this technique do not require complicated statistics as other techniques, still it can yield significant savings for a company while at the same time reducing the potential costly liability of a process or product that does not perform as promised (McDermott et.al., 2009).
FMEA identify the risk of failure and its effects as three factors: severity, occurrence, and detection. Severity (S) conveys the consequence of the failure should it occur. Occurrence (O) reflects the probability or frequency of the failure occurring. While detection (D) is the probability of the failure being detected before the impact of the effect is realized. Each potential failure mode and effect is rated in each of these three factors on a scale ranging from 1 to 10, low to high. Usually an analyst or an expert is asked to assign these scores. Risk level of a component, process, or product is obtained by multiplying S, O, D scores, called as Risk Priority Number (RPN).

\[
RPN = S \times O \times D
\]
(1)

The risk priority number (which will range from 1 to 1,000 for each failure mode) is used to rank the need for corrective actions to eliminate or reduce the potential failure modes. Those failure modes with the highest RPNS should be attended to first, although special attention should be given when the severity ranking is high (9 or 10) regardless of the RPN. Once corrective action has been taken, a new RPN for the failure is determined by reevaluating the severity, occurrence, and detection rankings. This new RPN is called the “resulting RPN.” Improvement and corrective action must continue until the resulting RPN is at an acceptable level for all potential failure modes (McDermott et.al., 2009).

Asking an analyst or an expert to assign scores ranging from 1 to 10 (as requested to obtain RPN) for the different factors considered would produce a false and unrealistic impression. Wang et.al. (2009) also stated that precisely evaluation on S, O, and D scores may not be realistic in real applications. Although this method simplifies the computation, converting the probability into another scoring system, and then finding the multiplication of factor scores are believed to cause problems. The relations between the probabilities and the factors can be different (linear or nonlinear) (Kumru and Kumru, 2012). Directly adopted this methodology can be called as implementing traditional FMEA.

This research attempt to handle the limitation of traditional FMEA as mentioned above by applying fuzzy FMEA. Fuzzy FMEA is used to determine the RPN, or can be called as RP Fuzzy Number (RPFN). Formula 2 will be applied for calculating RPFN.

\[
\text{RP Fuzzy Number (RPFN)}_{ij} = O_{ij} \otimes S_{ij} \otimes D_{ij}
\]
(2)

Based on formula 2, Oij, Sij, and Dij will be the trapezoidal fuzzy numbers that represent the occurrence, severity, and detection evaluations for dimension i and failure mode j. Likelihood, impact, and detection factor can be evaluated by linguistic way. Linguistic term and fuzzy number that is used in evaluating likelihood, impact, and detection is shown on Table 1, 2, and 3 respectively. Importance index of L, I, and D factors can be also assessed by using linguistic term that can be shown in Table 4. The procedures of Fuzzy FMEA assessment conducted through following steps:

a. Determining fuzzy number of L, I, and D based on Table 1 and 2
b. Calculating aggregation of fuzzy assessment for L, I, and D factors which is based equation (3), (4), and (5).
c. Calculating importance index aggregation for L, I, and D which is based on equation (6), (7), and (8).

No	IMPACT	LIKELIHOOD	DETECTION	Fuzzy Number
1	Insignificant	Rare	Almost Certain	1 1 2
2	Minor	Unlikely	High	1 2 3
3	Moderate	Possible	Moderate	2 3 4
4	Major	Likely	Low	3 4 5
5	Catastrophic	Almost Certain	Almost Uncertain	4 5 5

Linguistic Term	0	0.25	0.5
Very Low (VL)	0	0	0.25
Low (L)	0	0.25	0.5
3. Poultry feed production process at PT. X

The description of poultry feed production process will be depicted by using IDEFO. IDEFO represents activity that can be used to analyze function and system performance. There will be input, output, control, and mechanism for each process. IDEFO level 0 and level 1 of poultry feed production process can be show in Fig. 1 and 2 respectively.

![Fig. 1. IDEFO level 0 of poultry feed production process](image1)

![Fig. 2. IDEFO level 1 of poultry feed production process](image2)
Based on Fig. 2, the poultry feed production process consists of eight main processes, namely storage process of raw material, grinding process, mixing process, pelleting process, crumbling process, cooling process, sieving process, and packaging process. Each process entails several activities. As identifying the risk of poultry feed production process lays on each activity, thus it necessary to describe the activities in each process. Fig. 3 depicts the activities in each process respectively, started with raw material storage process and end up with packaging process.

4. Risk identification

Examining the activities in each production process, the risk that may occur, their effects, and their risk drivers were identified by brainstorming technique. The concept of fault tree analysis is used in helping risk identification at brainstorming process. This method generates risk factor by identifying any potential negative event occurred on a business process. Identification of negative event could be done by:

1. Determining the purpose of each activity in each production process.
2. Determining sub system failure.
3. Determining risk driver that causing failures

The finding of risk identification process is shown in Table 3.
Table 3. Risk identification

Code Activity	Risk Code	Risk	Potential Effect	Risk Driver

Naning Aranti Wessiani and Satria Oktafanus Sarwoko / Procedia Manufacturing 4 (2015) 270 – 281
Code Activity	Risk Code	Risk	Potential Effect	Risk Driver
Raw Material Storing Process				
A1-1	R1	Operator do not separate raw materials into two places	Hard and soft material will be mixed	Operator feels fatigue because of repetitive work
A1-2	R2	Trolley cannot work properly	Operator must lift up the sack manually	There is no regular maintenance of company's assets
A1-3	R3	Some of material is spilled out	The raw material amount that will be processed less than required	Operator is careless in filling sack that contains raw material
A1-4	R4	Minibean machine set up time is too long	Delaying the process	Lack of operator’s knowledge
A1-5	R5	Minibean machine stops suddenly in sending raw material process	Production process will be stopped temporarily	There is no regular maintenance of company's assets
A2-1	R6	Minibean machine's valve is opened	Many materials will be spilled out	There is no regular maintenance of company's assets
A2-2	R7	Raw material temporary storage tank is too full	Some materials that can't be accommodated in storage tank	Operator doesn't check the storage tank condition before filling the material
A2-3	R8	Some material are spilled out from minibean machine	The amount of material will be decreased in production process	Minibean valve is opened
Grinding Process				
A2-4	R9	Operator fills additional substances and CPO oil into wrong storage	Additional substances and CPO oil will be mixed	Lack of operator’s knowledge regarding the SOP
A2-5	R10	Mixing happen between additional substances and CPO oil	Additional substances and CPO oil will be mixed	Operator feels exhaustion because repetitive job
Mixing Process				
A3-1	R11	Grinder machine set up time is too long	Delaying the process	Lack of operator’s knowledge
A3-2	R12	Grinder machine can't be set up correctly	Delaying the process	There is no regular maintenance of company's assets
A3-3	R13	Intake machine set up time is too long	Delaying the process	Lack of operator’s knowledge
A3-4	R14	Intake machine can't be set up correctly	Delaying the process	There is no regular maintenance of company's assets
A3-5	R15	Intake machine's valve of hard material is opened	Many materials will be spilled out	There is no regular maintenance of company's assets
A3-6	R16	Intake machine stops suddenly in sending hard raw material	Production process will be stopped temporarily	There is no regular maintenance of company's assets
A3-7	R17	Some of hard material are spilled out from intake machine	The amount of material will be decreased in production process	Intake valve is opened
A3-8	R18	Grinder machine stops suddenly in grinding hard raw material	Production process will be stopped temporarily	There is no regular maintenance of company's assets
A3-9	R19	Hard material is not fully ground	The product quantity will decrease	Operator oversight to arrange the grinding machine velocity
A3-10	R20	Grinder machine's valve is opened	Many materials will be spilled out	There is no regular maintenance of company's assets
A3-11	R21	Some of material are still in hard form	The amount of gross product being not same with the amount material	The grinder velocity doesn’t fit with hard material dimension that is processed
A3-12	R22	Operator doesn't check grinder machine based on SOP	Many products that’s in out of specification or still in hard form	There is less education or sharing knowledge about machine handling
A3-13	R23	Mixer machine set up time is too long	Delaying the process	Lack of operator’s knowledge
A3-14	R24	Mixer machine can’t be set up correctly	Delaying the process	There is no regular maintenance of company's assets
A3-15	R25	Too much additional substances and CPO oil is filled into minibean machine	Some material can't be filled into minibean machine	Operator doesn't check the minibean machine condition before pouring the additional substances and CPO oil
A3-16	R26	Some of additional substances and CPO oil are spilled out	The amount of materials will be decreased in production process	Minibean machine valve is opened
A3-17	R27	Intake machine's valve of smooth material is opened	Many materials will be spilled out	There is no regular maintenance of company's assets
A3-18	R28	Many smoother materials are spilled out	The amount of material will be decreased in production process	Intake machine valve is opened
A3-19	R29	Some of pollutant are mixed with the smoother material	Product will be out of specification	It is done regular cleaning for company asset especially for machine
A3-20	R30	The composition of material mixing in each poultry classification is incorrect	Product will be out of specification	Lack in education or knowledge sharing about product receipt
A3-21	R31	Mixer machine stops suddenly in mixing	Production process will be stopped	There is no regular maintenance of company's assets
Code Activity	Risk Code	Risk	Potential Effect	Risk Driver
A3-5	R32	Mixer machine's valve is opened	Many materials will be spilled out	There is no regular maintenance of company's assets
	R33	All material are not mixed fully on its batch	Product will be out of specification	There is faultiness in setting frequency of mixing from mixer machine
	R34	Operator make mistake in checking mixer machine	Product will be out of specification	Operator doesn't wear safety equipment when entering the workstation
	R35	Operator's accidents	Create loses not only individual level but also in company level	
A3-6	R36	Several gross product are out of composition	Gross product will be out of specification and will be reprocessed	There is pollutant inside mixer machine
	R37	Sample taker equipment are not sterile	Can contaminate or mix into the product	There is no cleaning schedule for sample taker equipment
	R38	Composition checking equipment are not sterile	Can contaminate or mix into the product	There is no cleaning schedule for sample checker equipment
A3	R39	Pellet machine set up time is too long	Delaying the process	Lack of operator’s knowledge
	R40	Pellet machine can't be set up correctly	Delaying the process	There is no regular maintenance of company's assets
A4-1	R41	Some of gross product are spilled out	The amount of product will be decreased in production process	Intake machine valve is opened
A4-2	R42	Some of pollutant substances are mixed with gross product	Product result will be out of specification	It is done regular cleaning for company asset especially for machine
	R43	Some of gross product are still stacked on intake machine surface	The amount of product will be decreased in production process	It is done regular cleaning for company asset especially for machine
A4-3	R44	Pellet machine suddenly stops on pelleting process	Production process will be stopped temporarily	There is no regular maintenance of company's assets
	R45	Pellet machine's valve is opened	Many materials will be spilled out	There is no regular maintenance of company's assets
	R46	Some of pellet products are spilled out when pelleting process is done	The amount of pellet product will be decreased in production process	Pellet machine valve is opened
	R47	Gross products are not fully form becoming pellet	Product result will become out spec	
A4-4	R48	Some pollutants stick on pellet products	The results of product will have a different color and categorized as defect product	There is no regular maintenance of company's assets
	R49	There is color difference on some pellet products' surface	Results of the product is not in accordance with the results of the finished product expectations	Possibility of many impurities that contaminate the finished product
A5	R50	Crumble machine set up time is too long	Delaying the process	Lack of operator’s knowledge
	R51	Crumble machine can't be set up correctly	Delaying the process	There is no regular maintenance of company's assets
A5-1	R52	Several pellet products stick on intake machine's surface	The production process will be slower because of the existence of duct blockage in the engine intake	There is no regular maintenance of company's assets
	R53	Many of pellet products are not castaway intentionally	The amount of pellet product will be decreasing	Intake machine's sieve is opened
A5-2	R54	Crumble machine suddenly stops when crumpling process is running	The production process will be temporarily halted, and will cause losses	Lack of regular maintenance schedule on assets of the company
	R55	Crumble machine's valve is opened	Many pellet products will be spilled out	Lack of regular maintenance schedule on assets of the company
A5-3	R56	Pellet products are not fully formed into ball form	Product result will be out of specification	There is faultiness in inputting of velocity's frequency of Crumble machine
	R57	Many of crumble products are spilled out when crumpling process was done	The number of crumble product will be reduced and resulting less	Crumble machine's valve is opened
A5-4	R58	Many of pollutant substances adhere on crumpling products	Product will have different color and categorized as defect product	Lack of regular maintenance schedule on assets of the company
A6	R59	Cooler machine set up time is too long	Delaying the process	Lack of operator’s knowledge
	R60	Cooler machine can't be set up correctly	Delaying the process	There is no regular maintenance of company's assets
Code Activity	Risk Code	Potential Effect	Risk Driver	
---------------	-----------	------------------	-------------	
A6-2	R61	Many of pellet and crumbling products stick on intake machine's surface	The production process is longer	Lack of regular maintenance schedule on assets of the company
	R62	Leakage exist on intake machine's pipe	The amount of product will be decreasing	Lack of regular maintenance schedule on assets of the company
A6-3	R63	Cooler machine's valve is opened	Many crumble products are spilled out	Lack of regular maintenance schedule on assets of the company
	R64	Cooler machine suddenly stops when cooling process is running	Production process will be stopped temporary	There is no regular maintenance of company's assets
	R65	Cooler machine's fan doesn't operate	Production process will be stopped temporary	There is no regular maintenance of company's assets
	R66	Pellet and crumbling products are not fully becoming colder	Production process is longer	There is faultiness in inputting the velocity's frequency of fan cooler machine
A6-4	R67	Operator makes mistake in inspecting the product	Defect products are processed	Lack of operator’s knowledge
A7		Sieving Process		
A7-1	R68	Sieve machine set up time is too long	Delaying the process	Lack of operator’s knowledge
	R69	Sieve machine can't be set up correctly	Delaying the process	There is no regular maintenance of company's assets
A7-2	R70	Some of pollutants contaminate product result that has been cold	Product will be out of specification	Many pollutants are attached to the engine intake
	R71	Sieve machine's valve is opened	Many WIP material are spilled out	There is no regular maintenance of company's assets
	R72	Sieve machine suddenly stops when sieving process is running	Production process will be stopped temporary	There is no regular maintenance of company's assets
	R73	The quantity resulted doesn’t appropriate	Production process could not fulfill the product demanded	Filters on sieve machines clogged by many impurities or pollutants
	R74	Many impurities that are drifted from the sieve	Product will be out of specification	A leak in the filter of sieve engine
A7-4	R75	Granules settles in the bottom of sieve’ surface and can’t be transferred into material storage	The product quantity less than expected	The intake machine is too moist
A7-5	R76	Operator’s failure in inspecting the product	Product will be out of specification	Lack of operator’s knowledge
A8		Packaging Process		
A8-1	R77	Packaging machine set up time is too long	Delaying the process	Lack of operator’s knowledge
	R78	Packaging machine can't be set up correctly	Delaying the process	There is no regular maintenance of company's assets
	R79	The measurement of weighing machine doesn’t accurate	The products’ weight do not fulfill requirement	The operator made a mistake in resetting the scales
A8-2	R80	Operator miss to reset the weight categories based on the type of packaging sacks	The amount of product that comes out from the faucet valve do not match the sack’s size	Lack of operator’s knowledge
	R81	Product barrier valve doesn't work properly	Production process will be stopped temporary	There is no regular maintenance of company's assets
A8-3	R82	Faucet valve is clogged	Production process will be stopped temporary	There is no regular maintenance of company's assets
A8-4	R83	Sack that is used to wrap the products is broken	Leakage in filling product into the sack	Operators do not check the sack before starting
	R84	Many products are spilled during charging products	The amount of products will be decreased	Operator’s fatigues because of repetitive work
	R85	Sack straps do not function properly	The sacks will fall and the products inside the sack will be spilled out	There is no regular maintenance of company's assets
	R86	Packaging machine suddenly stops when filling process is running	The production process time is longer	There is no regular maintenance of company's assets
A8-5	R87	Sack's product wrapping is leaked	Product volume is reduced	Operators do not check sack before charging
	R88	Operator misplaced finished goods to storage classification in warehouse	Finished goods will be mixed among each sack's class	Operator’s fatigues because of repetitive work
	R89	Hand truck machine suddenly stops when products are transferred into warehouse	Finished goods transfer process will be disturbed	There is no regular maintenance of company's assets
5. Application of fuzzy FMEA

Fuzzy FMEA is applied to calculate Risk Priority Fuzzy Number (RPFN) for each risk that has been identified. Based on the steps and formula given in section 2, the calculation of RPFN for each risk could be shown in Table 4.

Risk Code	Risk	Impact	Likelihood	Detection	RPN
R1	Operator does not separate raw materials into two places	1.517	1.059	1.059	1.701
R2	Trolley cannot work properly	1.517	1.059	1.059	1.701
R3	Many materials are spilled out	1.442	1.442	1.442	3.000
R4	Minibean machine set up time is too long	1.517	1.059	1.059	1.701
R5	Minibean machine stops suddenly in sending raw material process	1.517	1.059	1.059	1.701
R6	Minibean machine's valve is opened	1.517	1.059	1.059	1.701
R7	Raw material temporary storage tank is too full	1.671	1.671	1.671	4.667
R8	Many material are spilled out from minibean machine	1.727	1.727	1.495	4.462
R9	Operator fills additional substances and CPO oil into wrong storage	1.149	1.019	3.096	3.625
R10	Additional substances and CPO oil are mixed	1.149	1.019	3.096	3.625

Grinding Process

Risk Code	Risk	Impact	Likelihood	Detection	RPN
R11	Grinder machine set up time is too long	1.346	1.042	1.346	1.888
R12	Grinder machine can't be set up correctly	1.346	1.042	1.346	1.888
R13	Intake machine set up time is too long	1.346	1.042	1.346	1.888
R14	Intake machine can't be set up correctly	1.346	1.042	1.346	1.888
R15	Intake machine's valve of hard material is opened	1.346	1.042	1.346	1.888
R16	Intake machine stops suddenly in sending hard raw material	3.096	1.019	1.149	3.625
R17	Many hard material are spilled out from intake machine	3.096	1.019	1.149	3.625
R18	Grinder machine stops suddenly in grinding hard raw material	3.096	1.019	1.149	3.625
R19	Hard material is not fully grinded	1.369	1.369	1.811	3.394
R20	Grinder machine's valve is opened	1.369	1.369	1.811	3.394
R21	Some of material are still in hard form	1.369	1.369	1.811	3.394
R22	Operator makes mistake in checking grinder machine	1.369	1.369	1.811	3.394

Mixing Process

Risk Code	Risk	Impact	Likelihood	Detection	RPN
R23	Mixer machine set up time is too long	1.346	1.042	1.346	1.888
R24	Mixer machine can't be set up correctly	1.346	1.042	1.346	1.888
R25	Too much additional substances and CPO oil is filled into minibean machine	1.346	1.042	1.346	1.888
R26	Some of additional substances and CPO oil are spilled out	1.346	1.042	1.346	1.888
R27	Intake machine's valve of smooth material is opened	1.346	1.042	1.346	1.888
R28	Many smoother materials are spilled out	1.346	1.042	1.346	1.888
R29	Some of pollutant are mixed with the smoother material	1.369	1.369	1.811	3.394
R30	The composition of material mixing in each poultry classification is incorrect	1.369	1.369	1.811	3.394
R31	Mixer machine stops suddenly in mixing the material	3.096	1.019	1.149	3.625
R32	Mixer machine's valve is opened	1.442	1.122	2.000	3.238
R33	All material are not mixed fully on its batch	1.442	1.122	2.000	3.238
R34	Operator makes mistake in checking mixer machine	1.369	1.369	1.811	3.394
R35	Operator's accidents	1.346	1.042	1.346	1.888
R36	Some gross product result are out of composition	1.346	1.042	1.346	1.888
R37	Sample taker equipment is not sterile	1.346	1.042	1.346	1.888
R38	Composition checking equipment is not sterile	1.346	1.042	1.346	1.888

Pelleting Process
Risk Code	Risk	Impact	Likelihood	Detection	RPN
R39	Pellet machine set up time is too long	1.346	1.042	1.346	1.888
R40	Pellet machine can't be set up correctly	1.346	1.042	1.346	1.888
R41	Some of gross products are spilled out	1.346	1.042	1.346	1.888
R42	Some of pollutant substances are mixed with gross product	1.442	1.122	2.000	3.238
R43	Some of gross product still stick on intake machine surface	1.442	1.122	2.000	3.238
R44	Pellet machine suddenly stops on pelleting process	3.096	1.019	1.149	3.625
R45	Pellet machine's valve is opened	1.346	1.042	1.346	1.888
R46	Some of pellet products are spilled out when pelleting process is running	1.346	1.042	1.346	1.888
R47	Gross products are not fully form becoming pellet	1.442	1.122	2.000	3.238
R48	Some pollutants stick on pellet products	1.346	1.042	1.346	1.888
R49	There is color difference on some pellet products' surface	1.346	1.042	1.346	1.888

Crumbling Process

Risk Code	Risk	Impact	Likelihood	Detection	RPN
R50	Crumble machine set up time is too long	1.346	1.042	1.346	1.888
R51	Crumble machine can't be set up correctly	1.346	1.042	1.346	1.888
R52	Many pellet products stick on intake machine's surface	1.346	1.042	1.346	1.888
R53	Many pellet products are castaway intentionally	1.346	1.042	1.346	1.888
R54	Crumble machine suddenly stops when crumbling was happening	3.096	1.019	1.149	3.625
R55	Crumble machine's valve is opened	1.346	1.042	1.346	1.888
R56	Pellet products are not fully formed into ball form	1.289	1.616	1.919	3.995
R57	Many crumble products are spilled out when crumbling process is running	1.346	1.042	1.346	1.888
R58	Some of pollutants adhere on crumbling products	1.346	1.042	1.346	1.888

Cooling Process

Risk Code	Risk	Impact	Likelihood	Detection	RPN
R59	Cooler machine set up time is too long	1.346	1.042	1.346	1.888
R60	Cooler machine can't be set up correctly	1.346	1.042	1.346	1.888
R61	Some of pellet and crumbling products stick on intake machine's surface	1.346	1.042	1.346	1.888
R62	The leakage happens on intake machine's pipe	1.346	1.042	1.346	1.888
R63	Cooler machine's valve is opened	1.346	1.042	1.346	1.888
R64	Cooler machine suddenly stops when cooling process was done	3.096	1.019	1.149	3.625
R65	Cooler machine's fan doesn't operate suddenly	3.096	1.019	1.149	3.625
R66	Pellet and crumbling products are not fully becoming colder	1.346	1.042	1.346	1.888
R67	Operator makes mistake in inspecting the product	1.732	1.189	1.189	2.449

Sieving Process

Risk Code	Risk	Impact	Likelihood	Detection	RPN
R68	Sieve machine set up time is too long	1.346	1.042	1.346	1.888
R69	Sieve machine can't be set up correctly	1.346	1.042	1.346	1.888
R70	Some of pollutants contaminate product result that has been cold	1.346	1.042	1.346	1.888
R71	Sieve machine's valve is opened	1.552	1.149	1.552	2.766
R72	Sieve machine suddenly stops when sieving process is running	3.096	1.019	1.149	3.625
R73	The quantity resulted doesn’t appropriate	1.552	1.149	1.552	2.766
R74	Many impurities are drifted from the sieve	1.552	1.149	1.552	2.766
R75	Granules settles in the bottom sieve's surface and can't be transferred into material storage	1.346	1.042	1.346	1.888
R76	Operator makes mistake in checking the sieve machine	1.552	1.149	1.552	2.766

Packaging Process

Risk Code	Risk	Impact	Likelihood	Detection	RPN
R77	Packaging machine set up time is too long	1.346	1.042	1.346	1.888
R78	Packaging machine can't be set up correctly	1.346	1.042	1.346	1.888
R79	The measurement of weighing machine doesn’t accurate	1.552	1.149	1.552	2.766
R80	Operator fail to reset the weight categories based on the type of packaging sacks	1.552	1.149	1.552	2.766
R81	Product barrier valve doesn't work properly	1.346	1.042	1.346	1.888
R82	Faucet valve is clogged	1.346	1.042	1.346	1.888
R83	Sack that is used to wrap the products is broken	1.727	1.727	1.495	4.462
R84	Many products are spilled during charging products	1.552	1.149	1.552	2.766
R85	Sack straps do not function properly	1.369	1.369	1.811	3.394
R86	Packaging machine suddenly stops when filling process is running	1.346	1.042	1.346	1.888
R87	Sack's product wrapping is leaked	1.552	1.149	1.552	2.766
R88	Operator misplaced finished goods to storage classification in warehouse	1.332	1.332	2.089	3.706
R89	Hand truck machine suddenly stops when products are transferred into warehouse	1.671	1.019	1.671	3.625
6. Risk evaluation and mitigation

Observing the RPFN, it can classified the risk into corrective and non-corrective risk. Risk that has RPFN more than 2.449 are categorized as corrective risk. Further, those risks also can be classified as extreme, high, medium, and low risk based on their likelihood and impact. Mitigation efforts are proposed for risks that are classified as corrective risk. Mitigation efforts could be in form of reducing the likelihood and impact, transfer the risk, avoid the risk, and accept the risk. This research found 38 risks from 89 total risk are classified as corrective risks. Based on these 38 risk, mitigation efforts are proposed. Evaluating the existing condition, this research proposed that actually there are 59 ways to reduce the impact and likelihood, 47 ways to avoid the risk, 13 ways to transfer the risk, and 11 ways to accept the risk. Some mitigation efforts to be proposed are setting regular maintenance schedule for production machines, reinforce employee to conduct based on SOP, training for the new employee, etc. The highest proportion of mitigation efforts is reducing the impact and likelihood of the risk. This effort dominates compare to others because of the business process of poultry feed production is already running. It would be difficult for the company to implement avoid mitigation effort in the running process.

7. Conclusion

This research is applying fuzzy FMEA methodology to identify, classify, and evaluate the risk that happen in the poultry feed production process. Fuzzy approach is used to calculate the Risk Priority Fuzzy Number (RPFN). Fuzzy is adopted to handle the limitation of traditional FMEA where it is difficult for the expert to assess the risk likelihood, impact, and its detection precisely. There are 89 operational risk that are successfully identified in the poultry feed production process. Those 38 of the identified risks are classified as corrective risk. These corrective risks are classified based on their RPFN. As the function of FMEA to identify failure (risk) before it happens, this research also proposes some mitigation effort that could be taken to mitigate the risk. Mitigation efforts are dominated by reducing the likelihood and impacts effort compare to others types of mitigation. It because the reducing effort is the most realistic efforts that the company can implement when the business process have been already running. Implementing the mitigation efforts could benefit the company from the losses caused by the occurring risk.

References

[1] Dyadem Engineering Corporation, “Guideline for Failure Mode and Effects Analysis for Automotive, Aerospace, and General Manufacturing Industries,” CRC Press, US, 2003
[2] M. Kumru and P. Y. Kumru, “Fuzzy FMEA Application to Improve Purchasing Process in a Public Hospital,” Applied Soft Computing, Vol. 13, 2013, pp. 721-733
[3] R. E. McDermott, R. J. Mikulak, and M. R. Beauregard, “The Basics of FMEA,” 2nd Edition, CRC Press, Taylor & Francis Group, US, 2009
[4] Y. M. Wang, K. S. Chin, G. K. K. Poon, and J. B. Yang, “Risk Evaluation in Failure Mode and Effect Analysis Using Fuzzy Weighted Geometric Mean,” Expert System with Application, Vol. 36, 2009, pp. 1195-1207
[5] Z. Yang and J. Wang, “Use of Fuzzy Risk Assessment in FMEA of Offshore Engineering Systems,” Ocean Engineering, Vol. 95, 2015, pp. 195-204
[6] H. R. Feili, N. Akar, H. Lotfizadeh, M. Bairampour, and S. Nasiri, “Risk Analysis of Geothermal Power Plants Using Failure Modes and Effects Analysis (FMEA) Technique,” Energy Conversion and Management, Vol. 72, 2013, pp. 69-76