Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

Andersen, Vibeke; Svenningsen, Katrine; Almind Knudsen, Lina; Hansen, Axel Kornerup; Holmskov, Uffe; Stensballe, Allan; Vogel, Ulla

Published in:
World Journal of Gastroenterology

DOI:
10.3748/wjg.v21.i41.11862

Publication date:
2015

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Andersen, V., Svenningsen, K., Almind Knudsen, L., Hansen, A. K., Holmskov, U., Stensballe, A., & Vogel, U. (2015). Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology. World Journal of Gastroenterology, 21(41), 11862-11876. https://doi.org/10.3748/wjg.v21.i41.11862
Novel understanding of ABC transporters ABCB1/MDR/ P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

Vibeke Andersen, Katrine Svenningsen, Lina Almind Knudsen, Axel Kornerup Hansen, Uffe Holmskov, Allan Stensballe, Ulla Vogel

Vibeke Andersen, Katrine Svenningsen, Lina Almind Knudsen, Molecular Diagnostic and Clinical Health Research Unit, Hospital of Southern Jutland, 6200 Aabenraa, Denmark

Vibeke Andersen, Katrine Svenningsen, Lina Almind Knudsen, Institute of Regional Health Research-Centre Sønderjylland, University of Southern Denmark, 5000 Odense, Denmark

Vibeke Andersen, Medical Department, Regional Hospital Viborg, 8800 Viborg, Denmark

Axel Kornerup Hansen, Experimental Animal Models, University of Copenhagen, 1870 Frederiksberg, Denmark

Uffe Holmskov, Department of Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense, Denmark

Allan Stensballe, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark

Ulla Vogel, National Research Centre for the Working Environment, 2100 Copenhagen, Denmark

Author contributions: Andersen V was the guarantor of the article, collected the material and wrote the manuscript; Vogel U critically commented the work; Svenningsen K, Knudsen LA, Hansen AK, Holmskov U, Stensballe A and Vogel U participated in the manuscript writing; all authors have accepted the final version.

Conflict-of-interest statement: Vibeke Andersen is receiving compensation as a consultant for MSD (Merck) and Janssen and advisory board member for MSD (Merck). Katrine Svenningsen, Lina A Knudsen, Axel Kornerup Hansen, Uffe Holmskov, Allan Stensballe, and Ulla Vogel declare no competing interests.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Dr. Vibeke Andersen, Molecular Diagnostic and Clinical Health Research Unit, Hospital of Southern Jutland, 6200 Aabenraa, Denmark. vandersen@health.sdu.dk

Received: June 10, 2015
Peer-review started: June 14, 2015
First decision: July 14, 2015
Revised: August 7, 2015
Accepted: September 30, 2015
Article in press: September 30, 2015
Published online: November 7, 2015

Abstract

AIM: To evaluate ATP-binding cassette (ABC) transporters in colonic pathophysiology as they had recently been related to colorectal cancer (CRC) development.

METHODS: Literature search was conducted on PubMed using combinations of the following terms: ABC transporters, ATP binding cassette transporter proteins, inflammatory bowel disease, ulcerative, colitis, Crohns disease, colorectal cancer, colitis, intestinal inflammation, intestinal carcinogenesis, ABCB1/ P-glycoprotein (P-gp/CD243/MDR1), ABCC2/multidrug resistance protein 2 (MRP2) and ABCG2/breast cancer resistance protein (BCRP), Abcb1/Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function.

RESULTS: Recently, human studies reported that
changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. A link between ABCB1, high fat diet and gut microbes in relation to colitis was suggested by the animal studies. The finding that colitis was preceded by altered gut bacterial composition suggests that deletion of Abcb1 leads to fundamental changes of host-microbiota interaction. Also, high fat diet increases the frequency and severity of colitis in specific pathogen-free Abcb1 KO mice. The Abcb1 KO mice might thus serve as a model in which diet/environmental factors and microbes may be controlled and investigated in relation to intestinal inflammation. Potential molecular mechanisms include defective transport of inflammatory mediators and/or phospholipid translocation from one side to the other of the cell membrane lipid bilayer by ABC transporters affecting inflammatory response and/or function of tight junctions, phagocytosis and vesicle trafficking. Also, diet and microbes give rise to molecules which are potential substrates for the ABC transporters and which may additionally affect ABC transporter function through nuclear receptors and transcriptional regulation. Another critical role of ABCB1 was suggested by the finding that ABCB1 expression identifies a subpopulation of pro-inflammatory Th17 cells which were resistant to treatment with glucocorticoids. The evidence for the involvement of ABCC2 and ABCG2 in colonic pathophysiology was weak.

CONCLUSION: ABCB1, diet, and gut microbes mutually interact in colonic inflammation, a well-known risk factor for CRC. Further insight may be translated into preventive and treatment strategies.

Key words: ATP-binding cassette transporters; Colorectal cancer; Intestinal; Inflammatory bowel disease; Inflammation; Adenoma-carcinoma sequence

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Recently, human studies reported that changes in the levels of ATP-binding cassette (ABC) transporters were early events in the adenoma-carcinoma sequence leading to colorectal cancer. A link between ABCB1, high fat diet and gut microbes in relation to colitis was suggested by the animal studies. The Abcb1 KO mice might thus serve as a model in which diet/environmental factors and microbes may be controlled and investigated in relation to intestinal inflammation. Such strategy may provide insight which can be translated into preventive and treatment strategies to benefit the patients.

Andersen V, Svenningsen K, Knudsen LA, Hansen AK, Holmskov U, Stensballe A, Vogel U. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology. World J Gastroenterol 2015; 21(41): 11862-11876 Available from: URL: http://www.wjgnet.com/1007-9327/full/v21/i41/11862.htm DOI: http://dx.doi.org/10.3748/wjg.v21.i41.11862

INTRODUCTION
Colorectal cancer (CRC) constitutes the third most common cancer in the world and the second leading cause of cancer-related deaths. The number of cases is increasing and has been estimated to raise from 1.4 million cases in 2012 to 2.4 million cases in 2035 worldwide[1]. Early detection of CRC is important as early treatment has been associated with improved outcomes and saved lives[2]. Therefore, population screening programs have been initiated in a number of countries such as the United Kingdom, Australia, Holland and Denmark[3-5]. The fecal occult blood test (FOBT) is the most widely used for population screening[6] and individuals with a positive FOBT are referred for an endoscopic investigation of the colonic mucosa thereby enabling the sampling of biopsies from the colonic mucosa.

Recently, a major part of research had focused on improving prognosis and treatment selection in CRC[7-9]. Another approach could be to prevent the development of cancer in subgroups of patients with high risk, i.e., secondary prevention. Thus, the molecular evaluation of the (unaffected) colonic mucosa from the patients undergoing an endoscopic evaluation could potentially stratify the patients according to their risk of developing CRC. Our recent findings indicate that even healthy looking mucosa as determined by histology may contain a significantly elevated level of immune response proteins[10]. Biomarkers potentially predicting the disease risk among selected patient groups could improve the efficiency of the screening programs and patient care. Furthermore, they have the potential to dramatically alter the established patient care pathways as follow-up of the patients may be tailored according to their individual risk and thereby the organization and use of resources of the health care system.

CRC develops in the colonic mucosa which is highly affected by the metabolic activities in the intestinal lumen. The dietary items reaching the colon are digested by the commensal bacteria giving rise to various substrates which may prevent, initiate or promote colorectal cancer development[11]. Thus, in order to understand the processes leading to CRC we need to take into account the delicate interactions between dietary intake, activity of the commensal bacteria and host factors.

We recently reported that low ABCB1 and ABCG2 gene transcription levels and high ABCC2 levels are early events in the colorectal adenoma-carcinoma sequence[12,13] suggesting that changes in expression levels of the ATP binding cassette (ABC) transporter proteins [EC 3.6.3.44] precede cancer development. In addition, inflammatory bowel disease (IBD) may be
a risk factor for the development of CRC\(^8\). Therefore, we wanted to discuss the current understanding of how these ABC transporters may affect intestinal inflammation and carcinogenesis, how they may potentially interact with the environment such as diet and gut microbes, and whether this knowledge may be utilized for improved treatment care strategies.

MATERIALS AND METHODS

Literature search was conducted on PubMed using combinations of the following terms: ABC transporters, ATP binding cassette transporter proteins, inflammatory bowel disease, ulcerative, colitis, Crohn’s disease, colorectal cancer, colitis, intestinal inflammation, intestinal carcinogenesis, ABCB1/P-glycoprotein (P-gp/CD243/MRD1), ABCC2/multidrug resistance protein 2 (MRP2) and ABCG2/breast cancer resistance protein (BCRP), Abcb1/Mdr1a, Abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function.

RESULTS

ABC family of transporters; ABCB1, ABCC2, and ABCG2

The large family of ABC transporter proteins is highly conserved through evolution and extensive sequence and protein homology is shared between numerous bacterial and eukaryotic ABC transport proteins\(^15\). The ABC proteins are found in the cell membranes and intracellular organelles and the ABC family members exert multiple different functions depending on the cellular context\(^16\).

The ABCB1, ABCC2, and ABCG2 transporters, encoded by \textit{Abcb1}, \textit{Abcc2}, and \textit{Abcg2}, respectively, are located in the apical cell membrane of epithelial and endothelial interfaces within the intestine, testis, kidneys, liver, brain, and placenta\(^17-20\). Thereby, they exert barrier functions influencing absorption, distribution, excretion, and toxicity (ADME-Tox)\(^1\) of exogenous substrates with potential impact on inflammation and carcinogenesis\(^21-25\). ABCB1 and ABCG2 transporters have also been identified on haematological cells\(^20,26,27\). Whereas ABCB1 has been extensively studied in relation to the gastrointestinal system\(^28\), less is known for ABCC2 and ABCG2\(^20\).

No monogenic diseases have been identified involving \textit{Abcb1} and \textit{Abcg2}\(^30,31\), but several different mutations in ABC2 have been observed in patients with Dubin-Johnson syndrome, an autosomal recessive disorder characterized by conjugated hyperbilirubinemia\(^32\).

Nuclear receptors such as aryl hydrocarbon receptor (AHR), pregnane x receptor (PXR, NR12), vitamin D receptor (VDR, NR11), and constitutive androstane/activated receptor (NR13) are activated by a wide variety of exogenous and endogenous factors including diet, heavy metals, gut microbes, carcinogens and inflammation\(^33,34\) (reviewed in\(^35\)). These nuclear receptors may be involved in the transcriptional regulation of ABC transporters\(^34,36-40\) as are the transcription factors nuclear factor kappa B (NF-κB), activator protein 1 (AP-1)\(^41\), and Wnt signaling transcription factor TCF4\(^42\). Furthermore, ABCB1 undergoes several posttranslational modifications (PTMs)\(^43,44\) which have been shown to affect the stability of ABCB1 and/or substrate transport specificities\(^45\). ABCB1 is a 170-180 kDa glycoprotein with N-linked glycosylation at residues Asp\(^9\), Asp\(^15\) and Asp\(^90\). ABCB1 and ABCC2 have two ATP-binding sites and two six-transmembrane domains in a symmetric structure whereas ABCG2 is a half-transporter and have one ATP binding site and one six-transmembrane domain.

ABC transporter substrates include many diverse endogenous and exogenous molecules including amino acids, peptides, metabolites, vitamins, fatty acids, steroids, phospholipids, conjugated organic anions, and dietary and environmental carcinogens, pesticides, metals, metalloids, lipid peroxidation products and drugs\(^22-24\). Substrate overlap has been reported between the ABCB1, ABCC2, ABCG2, and especially between ABCC2 and the basolaterally located ABCC1\(^21,29\). Specific substrates and their potential role in ABC transporter related gut inflammation will be discussed later in this review.

Inflammation is a key factor underlying the development of CRC

CRC is a heterogeneous disease complex with environmental, genetic and host factors involved in the aetiology\(^46,47\). Inflammation is a risk factor for CRC\(^48-50\) and accordingly, a subset of patients with IBD\(^51,52\) (with the two main forms ulcerative colitis (UC) and Crohn’s disease (CD)) characterised by long-term and extensive colitis are at high risk of CRC\(^53,54\). The incidences of both CRC and IBD are rising\(^1,35\), which point to important roles of environment factors.

The intestinal mucosa is by far the body’s largest surface exposed to and interacting with environmental factors. The intestinal epithelium and the mucus form a barrier against luminal antigens and invading microbes\(^55,57\). Microbial sensing by intestinal epithelial cells and local innate lymphoid cells (ILCs) through pattern recognition receptors (PRR) leads to secretion of pro-inflammatory cytokines such as tumour necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin 6 (IL-6), and IL-17\(^58,59\), cytokines which have been related to IBD and CRC\(^60\). Activation of PRR stimulates autophagocytic networks\(^61,62\). Also, activation of the innate immune system may result in activation of the adaptive immune response with T cell involvement; Th1, Th2 and Th17 cells characterised by secretion of their signature cytokines INF-γ, IL-4, IL-17, respectively, whereas Tregs (and to a lesser degree Th2), in contrast, are characterised by their production of the anti-inflammatory cytokines IL-10 and transforming growth factor β (TGF-β)\(^63,64\). The
Gene	Controls Colon	Colon	P value	Rectum	P value	Active disease Colon	P value	Rectum	P value	Ref.
ABCB1	1 (ref)	NA	NA	NA	NA	22%	< 0.001	34%	< 0.01	[72]
ABCB2	1 (ref)	NA	NA	NA	NA	NA	NS	NA	NS	[72]
ABCG2	1 (ref)	NA	NA	NA	NA	11%	< 0.001	16%	< 0.001	[72]
Array	287	-1.5				0.01				[40]
81										[40]
Protein	100 (9/9)	80	(53/67)			24 (13/54)	0.01			[73]

1The $ABCB1$, $ABCC2$ and $ABCG2$ mRNA levels in colon and rectum tissue from patients with ulcerative colitis in remission ($n = 17$) or with active disease ($n = 16$) compared to the levels in colon tissue from healthy controls ($n = 17$). mRNA levels are normalised to the villin mRNA level. P values compared to the expression in the controls; 2Microarray analyses of pooled cRNA from uninflamed colonic tissue from 4 patients with UC and 4 control subjects. Fold change expression in colon tissue compared to controls. Statistically significant expression levels of $ABCR1$ were found in UC patients compared to controls by RT-PCR analyses using 18S RNA as internal control ($P < 0.05$); 3Quantitative immunohistochemistry of formalin-fixed paraffin-embedded (FFPE) colonic biopsies from 9 healthy individuals and 36 patients with ulcerative colitis. The values are n % (samples with positive staining/total number). P value for active colitis compared to controls and inactive colitis, respectively. NA: Not available; NS: Not significant.

The role of the Th17-associated cytokines in animal models of colitis[45, IBD[66] and CRC[67] have been in focus the recent years and it has been suggested that Th17 cells may have evolved to combat bacterial and fungal infections via orchestration of the neutrophil inflammatory response[68]. However, this seems to be a simplistic view[69] and more T cell subsets with as yet unclarified functions in IBD and CRC have been identified these years[69-71].

ABC transporters, IBD and CRC

Englund et al[72] found significantly lower levels of both $ABCB1$ and $ABCG2$ mRNA in colon and rectal biopsies from 16 patients with active UC compared to healthy individuals whereas the levels did not differ between UC patients in remission and healthy controls (Table 1). The authors also reported lower $ABCB1$ and $ABCG2$ levels in colon from patients with active inflammation compared with controls[73]. Langmann et al[74] reported low levels of $ABCB1$ and $ABCC2$ mRNA in biopsies from colon adjacent to inflammation from patients with UC compared to the levels in controls. In contrast, Deuring et al[73] reported similar levels of $ABCG2$ mRNA in intestinal biopsies from healthy individuals, patients in remission and patients with active inflammation but dramatically reduced levels of $ABCG2$ in IB patients with active inflammation when compared to patients in remission or healthy controls using quantitative immunohistochemistry (Table 1). These observations suggest that the low levels of $ABCG2$ observed in inflamed colon were caused by posttranscriptional processes[73]. The study also found inflamed colon to contain high levels of the endoplasmic reticulum (ER)-stress marker GRP78 and in vitro they found nitric oxide induced ER-stress to impair ABCG2 function[73]. The authors therefore suggested that incorrect protein folding caused by inflammation-induced ER dysfunction may lead to low levels of $ABCG2$ in inflamed colon of IBD patients[73,74].

The role of ABC transporters has also been investigated in relation to CRC (Table 2). As previously mentioned, low levels of $ABCB1$ in colon was found to be an early event that preceded malignancy[73]. Similarly, in another study using the same cohort low levels of $ABCG2$ and high levels of $ABCC2$ mRNA were found in both colon adenomas and carcinomas compared to morphological normal tissue surrounding the cancer tissue, and compared to levels in tissue from healthy individuals[74]. Taken together, the studies suggest that changed expression levels of the ABC transport proteins may be early events in the development of IBD and CRC.

Genetically determined variation in ABC transporters has been investigated in relation to risk of developing IBD[75-79] and CRC[80-82] with varying results[83-85]. In particular the polymorphisms $ABCB1$ C1236T, G2877T/A, and C3435T have been investigated. These polymorphisms are in linkage disequilibrium. Haplotype frequencies vary among ethnic groups and the CGC and TTT haplotypes are frequent among Caucasians[86]. The synonymous C3435T polymorphism was reported to cause changes in protein folding due to ribosome stalling caused by impaired interaction between the mRNA and the chaperone protein that aids the folding process at the ribosome[86], which resulted in altered transporter function[87]. A recent meta-analysis found that the $ABCB1$ C3435T polymorphism (rs1045642) was associated with risk of UC, but not with CD[84]. In relation to CRC, a large case-control analysis of a Czech and two German cohorts of 4677 cases in total found no indications of a strong role of $ABCB1$ in CRC[88], which was in accordance with a meta-analysis (not including the above study)[89]. A prospective study based on a Danish cohort found that two $ABCB1$ polymorphisms, including the C3435T polymorphism, were associated with CRC risk[82]. Furthermore, these two polymorphisms were found to interact with meat intake in relation to risk of CRC. Only few studies of $ABCC2$ and $ABCG2$ polymorphisms as risk factors for IBD and CRC have been performed. No strong indications that genetic variation in $ABCC2$ or $ABCG2$ per se is associated with IBD or CRC were
Andersen V et al. ABC transporters in IBD and CRC

Table 2 The ABCB1, ABCC2 and ABCG2 mRNA levels in intestinal tissue from patients with adenomas and colorectal cancer and healthy individuals

	Unaffected tissue	P value⁴	Adenomas/carcinomas	P value⁴	P value⁵	Ref.
ABCB1						
Healthy individuals	0.012 ± 0.008		NS			[13]
Mild/moderate dysplasia cases	0.009 ± 0.004		NS	0.005 ± 0.004	< 0.050	< 0.001
Severe dysplasia cases	0.009 ± 0.030		NS	0.003 ± 0.002	< 0.050	< 0.001
Cancer patients	0.009 ± 0.014 (distant)		< 0.05	0.003 ± 0.005	< 0.001	< 0.001
	0.007 ± 0.009 (adjacent)		< 0.05			
ABCC2						
Healthy individuals	5.35 ± 3.24					[14]
Mild moderate dysplasia cases	4.62 ± 4.79		0.081	6.68 ± 6.77	0.87	0.037
Severe dysplasia cases	6.66 ± 8.47		0.880	10.18 ± 11.52	0.27	0.240
Cancer patients	28.06 ± 68.84 (distant)		0.036	87.50 ± 270.21	0.0046	0.0037
	11.44 ± 25.58 (adjacent)		0.690			
ABCG2						
Healthy individuals	718.06 ± 761.24					[14]
Mild moderate dysplasia cases	732.85 ± 2303.28		0.550	56.02 ± 118.42	< 0.0001	< 0.0001
Severe dysplasia cases	448.02 ± 195.34		0.840	76.31 ± 102.63	< 0.0001	< 0.0001
Cancer patients	6679 ± 58353 (distant)		0.080	98.41 ± 476.36	< 0.0001	< 0.0001
	1302 ± 10090 (adjacent)		0.111			

¹P values for comparison of the expression levels in tissue from healthy individuals adjusted for age and gender. Samples were available for 18 healthy controls, 88-94 patients with mild/moderate dysplasia, 12 with severe dysplasia, and 121-122 patients with CRC; ²P value for the comparison of the expression levels in morphologically unaffected and affected tissue from the same individual using Paired Student’s t-test. All values are mean ± SD. ABCB1 mRNA levels are normalised to the β-actin mRNA level. ABCC2 and ABCG2 mRNA levels are normalised to 18S RNA levels. Matching samples were available from ABCC2: 66-75 cases with mild-moderate dysplasia, 11 cases with severe dysplasia, and 63-80 and 66-99 CRC cases (distant unaffected tissue, and adjacent unaffected tissue, respectively). NS: Not significant.

found[80,81].

ABC transporters and colitis and dysplasia in animal models

The Abcb1/Mdr1a knock-out (Mdr1a KO) mouse, in which the gene corresponding to the human intestinal ABCB1 gene has been deleted[89,90], has been utilized as an animal model of colitis[91-95]. The colitis is characterized by histological changes and high levels of the cytokines INF-γ, TNF-α, IL-1β, IL-6 and IL-17 thus resembling the findings in UC patients. The classical study by Panwala et al[94] reported that a proportion of Mdr1a KO mice developed colitis when exposed to commensal gut bacteria. The development of spontaneous colitis was prevented if the mice were maintained germfree. Also, spontaneous colitis and active inflammation was resolved by oral treatment with a mixture of streptomycin, neomycin, bacitracin, and amphotericin. These findings highlight an important role of bacteria in the initiation and perpetuation of colitis in the Mdr1a KO mouse[91]. Since then, the finding that lack of Mdr1a confers risk of colitis has been replicated by others[94-98]. Furthermore, a proportion of the Mdr1a KO mice dual-infected with Helicobacter species (H. bilis and H. hepaticus) developed dysplasia[99].

One study found reduced in the diversity and total number of bacteria in mdr1a KO mice compared to wildtype mice. These alterations were found to precede and associate with the development of inflammation[95]. Another study reported changes in colonic gene expression which also preceded disease development[98]. High expression of INF-γ was found in histologically normal colonic tissue from Mdr1a KO mice and the change preceded a high expression of the inflammatory cytokines IL-1β, IL-6, TNF-α, increased colonic permeability, and histologically determined colon inflammation[98]. Yet, another study found a high level of the pro-inflammatory cytokine IL-17 in colon from the Mdr1a KO mice model[92]. INF-γ expression has been associated with reduced intestinal barrier function due to effects on tight junction proteins[90]. Also, one study suggested that impaired intestinal barrier function contributed to the development of colitis in Mdr1a KO mice. In this study, high permeability of FITC-dextran (4.4 kDa) and horseradish peroxidase (44 kDa) was found in colon tissue mounted in Ussing chambers and in vivo, high bacterial translocation to lymphoid tissue including increased trabecular infiltrate with neutrophils were found[94]. These changes were observed prior to onset of colitis. Furthermore, decreased phosphorylation of tight junction proteins including occludin was observed[94]. Thus, inflammation and the following high INF-γ expression may contribute to the loss of barrier function which has been observed in the Abcb1 KO mice.

High fat diet-induced obesity increases the frequency and severity of colitis in the mdr1a KO mice[100]. Wildtype mice feeding either high-fat diet or low fat diet did not develop colitis[100]. In contrast, specific pathogen free Mdr1a KO mice fed high fat diet had a higher frequency and more severe colitis compared to those who were fed a low fat diet[100]. Although...
the microbiota was not investigated in this study, the authors concluded that the diet and potential diet-induced changes in microbiota was not sufficient to induce colitis in the mice but that additional host genetic factors are required before the high fat diet is a risk factor for colitis.

Impaired immune system may also be involved in the aetiology of colitis in the Mdr1a KO mice model. In mice, regulatory T cells (Tregs) characterised by the expression of the transcription factor Foxp3 are considered to down-regulate effector T cells that react to microbial or other gastrointestinal antigens. In the study by Tanner et al., they also found that there appeared to be fewer Tregs present in intestine from mdr1a KO mice and that these Tregs were unable to effectively suppress TNF-α induced colitis. These results are in accordance with the notion that inflammation primarily is initiated by the innate immune system.

In contradiction to the findings in the Mdr1a KO mice model, Abcc2/Mrp2 KO and Abcg2/Bcrp1 KO mice were found to be phenotypically normal under standard housing conditions.

The molecular mechanisms of ABC transporters may involve phospholipid transport
Cellular processes such as phagocytosis, apoptosis, cytokine release, vesicle formation and tight junction function require cell membrane budding and curvature and therefore, different composition of the inner and outer side of the lipid bilayer forming the cell membrane. Translocation of phospholipids between the two sides of the lipid bilayer within the cell membrane is therefore important for generating such differences. ABCB1, ABCC2, and ABCG2 have been found to translocate various phospholipid membrane components; cholesterol, sphingomyelin, and other glycosphingolipids suggesting that ABC transporters are important for regulating the budding of the membrane function. Furthermore, the cellular processes also require cell cytoskeleton anchoring through specialised domains. ABCB1 has been...
found to be associated with such domains106,108,109. Other phospholipid transporters such as scramblases, P-ATPases and additional members of the ABC transporter family, are reviewed in105.

In vitro studies of rat kidney and Sertoli cells support the involvement of ABC transporters in tight junction function and apoptosis110,111. At the Sertoli cell blood-testis barrier, ABCB1 was found to co-localise with occluding, claudin-11 and junction adhesion molecule A110. Knockdown of Adbc1 (Adbc1a and Adbc1b) by RNAi in rat Sertoli cell cultures led to a decline of claudin-11, internalisation and degradation of occluding, and disruption of tight junction barrier function110. Another study found that ABCB1 decreased apoptosis by decreasing the availability of a precursor of ceramide113, an intracellular signalling molecule involved in apoptosis induced by TNF-\textgreek{a} and other apoptotic stimuli106,109. However, the functions of the ABC transporters may be tissue specific and therefore the results may not apply for intestinal conditions.

The molecular mechanisms of ABC transporters may be related to the transport of other substrates

Figure 1 shows mechanisms of substrate recognition and transport by ABC transporters16. An in vitro study by Pawlik et al112 on cultured peripheral blood mononuclear cells PBMC from healthy individuals found that stimulation with phytohaemagglutinin (PHA) leads to secretion of IL-2, IL-4, IL-6, IL-10, INF-\textgreek{\alpha}, and TNF-\textgreek{\alpha}(112). Furthermore, secretion of IL-2, IL-4, INF-\textgreek{\gamma}, and TNF-\textgreek{\alpha} was inhibited by anti-MDR1 specific antibody whereas secretion of IL-6 and IL-10 was unaffected. In a similar study, blockade of ABCB1 by anti-MRP1 specific antibodies led to reversible abrogated cytokine secretion of IL-10, TNF-\textgreek{\alpha}, IL-4 and INF-\textgreek{\gamma}(113). However, another study using splenocytes from Mdr1a KO mice found that IL-2, IL-4, IL-10, and INF-\textgreek{\gamma} secretion was independent of ABCB1. The authors suggested that ABCB1 may not be required for secretion of these cytokines because they contain a signal sequence designating the cytokines for secretion from the cells(114). Yet, a further in vitro study by Pawlik et al(115) on cultured PBMC, this time from 72 healthy ABCB1 genotyped individuals was conducted. The cultured cells were stimulated with PHA and cytokines were measured in the supernatant. The authors found significantly lower concentration of IL-2, IL-4, INF-\textgreek{\gamma}, and TNF-\textgreek{\alpha}, and unchanged concentration of IL-6 and IL-10 in cultured cells from individuals with ABCB1 C343ST TT genotypes compared to CC genotypes(115). Also, ABCB1 blockade by the antagonist PSC833 resulted in impaired IL-12 secretion by antigen presenting cells from peripheral blood from healthy human volunteers suggesting that functional ABCB1 is required for IL-12 secretion in these cells(116). As previously mentioned, cytokines and chemokines are important modulators of intestinal inflammation and carcinogenesis(108,117). Additionally, ABCB1, ABCC2, and ABCG2 also transport bioactive lipids(15,16,105). The levels of the ABCB1 substrate platelet-activating factor(117-119) have been found to be high in intestinal mucosa from CD patients(120). PAF has been reported to regulate the function of tight junctions(121) and to activate human neutrophils to extrusion of neutrophil extracellular traps (NETs) mediating extracellular capture and killing of bacteria(122,123). Also, ABCB1 has been reported to transport steroids, mineralocorticoids, androgens and oestrogens(106). Interestingly, the ABC substrate testosterone was found to be a key mediator of autoimmune responses in the non-obese diabetic mouse model of type 1 diabetes(124). Whether a similar phenomenon contributes to the observed male preponderance in Mdr1a KO IBD mouse model has not been studied as far as we know(104). ABCG2 transport the anti-inflammatory butyrate, a product of bacterial digestion of dietary fibres, and phytoestrogen from vegetables(125,126). ABCG2 has been reported to transport the pro-inflammatory signalling molecules leukotriene (LT) B\textgreek{3} and LTC\textgreek{4} involved in dendritic cell migration and CRC, and, furthermore, various diet-and smoke-derived carcinogens(127-131). Sulfasalazine and 5-aminosalicylic acid (5-ASA, mesalazine) are used for treatment and prevention of UC flares(132). ABCG2 is regarded as being the main transporter of sulfasalazine(133,134) and ABCG2 activity has been suggested as having impact on sulfasalazine treatment efficacy in patients with rheumatoid arthritis (RA)(135,136).

ABCB1 expression on T cells may identify pro-inflammatory Th17 cells

One study utilised ABCB1 expression to identify human Th17 cells with a unique pro-inflammatory transcriptional signature(20). This novel subset of Th17 cells, MDR1-positive Th17 cells, was identified by fluorescence activated cell sorting (FACS) analysis of PBMC from healthy individuals. Compared to MDR1-negative Th17 cells, the MDR1-positive Th17 cells were characterized by a high production of pro-inflammatory Th1 (INF-\gamma) and Th17 (IL-17A, IL-17F, and IL-22) cytokines and low levels of anti-inflammatory cytokines such as IL-10 upon stimulation(20). In contrast to the MDR1-negative T cells, the MDR1-positive T cells were resistant to treatment with glucocorticoids. Thus, MDR1-positive T cells from healthy humans were enriched two- to three-fold during culturing of peripheral blood memory T cells in the presence of glucocorticoids(20). Furthermore, in a small study of 3-5 CD patients, MDR1-positive Th17 cells (assessed as percent of the total number of memory cells) were enriched both in non-infamed and inflamed gut tissue compared to blood levels(20). High mRNA levels of IFN-\gamma, IL23R, and TNF were found in MDR1-positive Th17 cells compared to MDR1-negative Th17 cells following FACS-sorting of mononuclear cells from gut tissue from two CD patients(20).
DISCUSSION
The ABC transport proteins may confer a link between the environment and intestinal inflammation and potentially intestinal carcinogenesis via intestinal inflammation[48-50,137,138]. Diet affects risk of CRC[12], the course[139-143] and risk of IBD[144-148] (reviewed in[149-153]). Diet affects gut microbial composition[154,155] and both diet and intestinal microbes affect intestinal inflammation[155,157] and carcinogenesis[12,158-161].

A link between ABCB1, diet and the gut microbes in relation to colitis is suggested by the animal studies. High fat diet increases the frequency and severity of colitis in specific pathogen-free Abcb1 KO mice[100]. Undigested dietary items reaching the colon are digested by commensal bacteria thereby providing the host with valuable energy, essential vitamins, fatty acids etc. Dietary fibre from grains, fruit and vegetables is converted into short-chain fatty acids (SCFA) which represent important key regulators of the immune system[12]. The gut microbiome in active IBD is characterised by decreased microbial diversity with a decreased number of Firmicutes[162]. Low abundance of the Clostridium and Bacteroides species which preferentially produce butyrate and other SCFA may result in low production of SCFA[163]. High intake of meat which is a rich source of sulphur may lead to the formation of hydrogen sulphide by bacterial fermentation[12] which, at least theoretically, may be aggravated by high intake of milk fat which was found to favour the presence of the sulphate-reducing bacteria Bilophila wadsworthia in mice[157]. Also, intake of animal fat may give rise to arachidonic acid which is converted into e.g., prostaglandins and leukotrienes[12]. Some of these molecules are ABC transporter substrates including dietary pro- and anti-inflammatory molecules, bioactive lipids, and bacterial derived molecules[125,126]. Figure 2 shows potential mechanisms of the involvement of ABC transporters in inflammation. In addition, diet and other environmental factors may impact the transcriptional regulation of ABC transporters through effects on nuclear receptors and transcription factors leading to changes of the ABC transporter activity thereby affecting IBD and CRC. The ABC transporters may impact IBD and CRC through their transport of various substrates thereby affecting underlying biological mechanisms involved in intestinal inflammation (Figures 1 and 2).

ABC transporter polymorphisms have been evaluated in relation to development of IBD and CRC with inconsistent results. These studies are based on the hypothesis that genetic variations are associated with functional changes in ABC activity and/or specificity. It has been suggested that genetic diversity of the ABCB1 gene among various ethnicities may contribute to the varying results in candidate gene studies[154,155]. In addition, ABCB1 polymorphisms may only be associated with risk of CRC in populations with a relevant dietary exposure[166]. This aspect may be exemplified by the finding of an interaction between meat intake and the gene NFKB1 encoding NFKB50 in a Danish cohort[137]. This interaction may explain the finding that the NFKB1 polymorphism was associated with risk of CRC in a Swedish cohort but not in a Chinese cohort[167]. Meat intake are higher in Denmark and Sweden compared to China[168]. Therefore, NFKB1 was identified as a risk gene in the Danish and Swedish high meat intake cohorts but not in the Chinese low

Figure 2 Proposed mechanisms for the involvement of ABC transporters in intestinal inflammation.
meat intake cohort. A detailed assessment of the diet seems to be important for assessing the roles of ABC polymorphisms. Thus, future studies should focus on studying large cohorts with well-defined and relevant prospectively sampled environmental exposures in order to identify underlying IBD and CRC disease mechanisms.

Due to the many confounding parameters, potential causality cannot be evaluated through molecular epidemiological studies. Studies using animal models, where a range of parameters can be controlled are therefore needed for establishing causality. Germfree mice do not develop colitis. Although germfree mice are not exposed for living bacteria they will meet dietary derived microbial antigens which could activate PRR in the mucosa and induce inflammation. Inflammation, however, has not been observed in the germfree mice. Moreover, colitis can be prevented by antibiotics in conventionally housed, specific pathogen-free, mice. These findings suggest that microbial derived antigens are not sufficient to trigger colitis but that living microbes are needed and may thus point to potential mechanisms such as microbial derived metabolites, signalling peptides and extracellular vesicles\cite{169,170}. Indeed, gut microbial derived metabolites were found to affect the balance between pro- and anti-inflammatory cells in mice\cite{171}. These metabolites may be absorbed into the blood and thereby affect distant organs. Gut microbes have been reported to affect the immune system, in particular the Th17 pathway, in various autoimmune mouse models\cite{172-176}. Some studies, but not all\cite{177}, indicate a similar mechanism in humans which might also associate with human autoimmunity\cite{178-180}. Also, bacterially derived fatty acids and other relevant metabolites should be investigated in the Abcb1 KO mice like it has been done in male C57BL/6 (B6) mice\cite{181}. The Abcb1 KO mice might provide a model, in which the interplay of environment factors, diet, and microbes can be controlled and investigated. Due to important differences of human and murine immune systems, the translational value of results obtained from the mouse model need also to be evaluated through human data.

The finding that presence of ABCB1 on immune cells could be used to identify pro-inflammatory Th17 cells may have important clinical implications as glucocorticoids are a mainstay in the treatment of serious flares of IBD\cite{181} and since a large proportion (20%-30%) of patients are resistant to glucocorticoid treatment\cite{182}. Thus, high ABCB1 mediated drug efflux may lead to decreased intracellular drug concentrations in target cells \cite{183,184} and thereby confer glucocorticoid treatment resistance. Likewise, ABCG2 activity may affect efficacy of treatment with sulfasalazine. Further evaluation of the roles of ABC transporters in treatment response in IBD is warranted.

In conclusion, results from animal and human studies indicate that ABCB1, diet, and gut microbes mutually interact in colonic inflammation. Diet and microbes may give rise to molecules which are substrates for the ABC transporters and may additionally affect ABC transporter function through e.g., nuclear receptors and transcriptional regulation. The Abcb1 KO mice might provide a model in which these factors can be controlled and investigated. Such strategy may provide insight which can be translated into preventive and treatment strategies to benefit the patients. The evidence for the involvement of ABCC2 and ABCG2 in colitis was weak.

ACKNOWLEDGMENTS

Staff at the Libraries, Regional Hospital Viborg and Hospital of Southern Denmark, are thanked for help.

COMMENTS

Background

Colorectal cancer (CRC) constitutes the third most common cancer in the world and the second leading cause of cancer-related deaths. The number of cases is increasing and has been estimated to raise from 1.4 million cases in 2012 to 2.4 million cases in 2035 worldwide. Early detection of CRC is important as early treatment has been associated with improved outcomes and saved lives. Therefore, population screening programs have been initiated in a number of countries such as the United Kingdom, Australia, Holland and Denmark. The fecal occult blood test (FOBT) is the most widely used for population screening and individuals with a positive FOBT are referred for an endoscopic investigation of the colonic mucosa thereby enabling the sampling of biopsies from the colonic mucosa.

Research frontiers

Recently, a major part of research had focused on improving prognosis and treatment selection in CRC. Another approach could be to prevent the development of cancer in subgroups of patients with high risk, i.e., secondary prevention. Thus, the molecular evaluation of the (unaffected) colonic mucosa from the patients undergoing an endoscopic evaluation could potentially stratify the patients according to their risk of developing CRC. Recently, human studies by authors reported that changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. These findings indicate that even healthy looking mucosa as determined by histology may contain a significantly elevated level of immune response proteins.

Innovations and breakthroughs

The authors recently reported that low ABCB1 and ABCC2 gene transcription levels and high ABCB2 levels are early events in the colorectal adenoma-carcinoma sequence suggesting that changes in expression levels of the ATP binding cassette (ABC) transporter proteins [EC 3.6.3.44] preceed cancer development. In addition, inflammatory bowel disease (IBD) may be a risk factor for the development of CRC. Therefore, the authors wanted to discuss the current understanding of how these ABC transporters may affect intestinal inflammation and carcinogenesis, how they may potentially interact with the environment such as diet and gut microbes, and whether this knowledge may be utilized for improved treatment care strategies. A link between ABCB1, high fat diet and gut microbes in relation to colitis was suggested by the animal studies. The Abcb1 KO mice might thus serve as a model in which diet/environmental factors and microbes may be controlled and investigated in relation to intestinal inflammation. Such strategy may provide insight which can be translated into preventive and treatment strategies to benefit the patients.

Applications

Biomarkers potentially predicting the disease risk among selected patient groups could improve the efficiency of the screening programs and patient care. Furthermore, they have the potential to dramatically alter the established

Compliance with Ethics Guidelines

The authors declare that they have no conflict of interest.

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

All individual data of human participants were obtained with informed consent.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Andersen V et al. ABC transporters in IBD and CRC

Hoffmann MM, Haefeli WE, Weiss J. Expression of the drug transporters MDRI/ABC1, MRPI/ABC1C, MRP2/ABC2C, BCRP/ABCG2, and PXR in peripheral blood mononuclear cells and their relationship with the expression in intestine and liver. Biochem Pharmacol 2005; 70: 949-958 [PMID: 16054595 DOI: 10.1016/j.bcp.2005.06.018]

37 Tachibana S, Yoshinari K, Chikada T, Torigaye T, Nagata K, Yamazoe Y. Involvement of Vitamin D receptor in the intestinal induction of human ABCB1. Drug Metab Dispos 2009; 37: 1604-1610 [PMID: 19460946 DOI: 10.1124/dmd.109.027219]

38 Wang X, Hawkins BT, Miller DS. Aryl hydrocarbon receptor-mediated up-regulation of ATP-driven xenobiotic efflux transporters at the blood-brain barrier. FASEB J 2011; 25: 64-652 [PMID: 21048045 DOI: 10.1096/fj.10.16-19227]

39 Blokzijl H, Vander Borgt S, Bok LI, Libbrecht L, Geukens M, van den Heuvel FA, Dijkstra TM, Roskams TA, Moshage H, Jansen PL, Faber KN. Decreased P-glycoprotein (P-gp/MDR1) expression in inflamed human intestinal epithelium is independent of PXR protein levels. Inflamm Bowel Dis 2007; 13: 710-720 [PMID: 17262809 DOI: 10.1002/ibd.20008]

40 Langmann T, Moehle C, Mauerer R, Scharl M, Liebsch G, Zahn A, Stremler W, Schmitz G. Loss of detoxification in inflammatory bowel disease: dysregulation of pregnane X receptor target genes. Gastroenterology 2004; 127: 26-40 [PMID: 15236169 DOI: 10.1053/j.gastro.2004.04.019]

41 Miller DS. Regulation of P-glycoprotein and other ABC drug transporters at the blood-brain barrier. Trends Pharmacol Sci 2010; 31: 246-254 [PMID: 20417579 DOI: 10.1016/j.tips.2010.03.003]

42 Chakraborty PK, Lee WK, Molitor M, Wolff NA, Thévenod J, Conley BB, Wedebye Schmidt EG, Langmann T, Phillips G, Fardell JW, Volcani B, Hilsenbeck SG, Hawkins BT, Miller DS. Aryl hydrocarbon receptor-driven inflammatory responses. Drug Des Devel Ther 2013; 7: 1-13 [PMID: 23040453 DOI: 10.1016/j.crohns.2012.09.003]

43 Maloodeky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Czerkinsky C, Lammert F, Li S, Staden R, Zou J, Sherman M, Chernoff G, Benchimol EI, Panaccione R, Ghosh S, Barkema HW, Kaplan GG. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012; 142: 46-54.e2; quiz e30 [PMID: 22001864 DOI: 10.1053/j.gastro.2011.10.001]

44 Denson LA. The role of the innate and adaptive immune system in pediatric inflammatory bowel disease. Inflamm Bowel Dis 2013; 19: 2011-2020 [PMID: 23702804 DOI: 10.1038/finmuc.2013.00280]

45 Marchiando AM, Shen L, Graham VW, Edelblum KL, Duckworth CA, Guan Y, Montrose MH, Turner JR, Watson AJ. The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding. Gastroenterology 2011; 140: 1208-1218.e1-2 [PMID: 21237166 DOI: 10.1053/j.gastro.2011.01.004]

46 Maloy KJ. Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 2011; 474: 298-306 [PMID: 21677746 DOI: 10.1038/nature10208]

47 Franchi L, Muñoz-Planillo R, Núñez G. Sensing and reacting to microbes through the immunosomas. Nat Immunol 2012; 13: 325-332 [PMID: 22430785 DOI: 10.1038/ni.2231]

48 Chen GY, Núñez G. Inflammomas in intestinal inflammation and cancer. Gastroenterology 2011; 141: 1986-1999 [PMID: 22005480 DOI: 10.1053/j.gastro.2011.10.002]

49 Delgado M, Singh S, De Haro S, Master S, Ponpuak M, Dinkins C, Omatsowo V, Werge I, Deretic V. Autophagy and pattern recognition receptors in innate immunity. Immunity Rev 2009; 227: 189-202 [PMID: 19120485 DOI: 10.1111/j.1600-065X.2008.00725.x]

50 Delgado ME, Dyck L, Lauermann MA, Rehm M. Modulation of apoptosis sensitivity through the interplay with autophagic and proapoptotic death pathways. Cell Death Dis 2014; 5: e101 [PMID: 24457955 DOI: 10.1038/cddis.2013.520]

51 Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 2009; 9: 799-809 [PMID: 19855405 DOI: 10.1038/nri2012-30395]

52 Macdonald TT, Monteleone I, Fantini MC, Monteleone G. Regulation of homeostasis and inflammation in the intestine. Gastroenterology 2011; 140: 1768-1775 [PMID: 21530743 DOI: 10.1053/j.gastro.2011.02.047]

53 Wedehye Schmidt EG, Larsen HL, Kristensen NN, Poulsen SS, Lyngs Pedersen AM, Claesson MH, Pedersen AE. TH17 cell induction and effects of IL-17A and IL-17F blockade in experimental colitis. Inflamm Bowel Dis 2013; 19: 1567-1576 [PMID: 23689080 DOI: 10.1097/MIB.0b013e3182b6aa1c]

54 Rovedatti L, Kudo T, Biancheri P, Saxena M, Knowles CH, Rampton DS, Corazza GR, Monteleone G, Di Sabatino A, Macdonald TT. Differential regulation of interleukin 17 and interleukin gamma production in inflammatory bowel disease. Gut 2009; 58: 1629-1636 [PMID: 19740775 DOI: 10.1136/gut.2009.182170]

55 Xie Z, Qu Y, Leng Y, Sun W, Ma S, Wei J, Hu J, Zhang X. Human colon carcinogenesis is associated with increased interleukin-17-driven inflammatory responses. Drug Des Devel Ther 2015; 9: 1679-1689 [PMID: 25834404 DOI: 10.2147/DDDT.S79431]

56 Busman-Salay KO, Walrath T, Huber S, O'Conner W. Cytokine
crowdsourcing: multicellular production of TH17-associated cytokines. *J Leukoc Biol* 2015; 97: 499-510 [PMID: 25548251 DOI: 10.1187/jlb.3RU0814-3868]

69 Ueno A, Jijsen H, Chan R, Ford K, Hirota C, Kaplan GG, Beck PL, Iacucci M, Fort Gasia M, Barkema HW, Panaccione R, Ghosh S. Increased prevalence of circulating novel IL-17 secreting Foxp3+ expressing CD4+ T cells and defective suppressive function of circulating Foxp3+ regulatory cells support plasticity between Th17 and regulatory T cells in inflammatory bowel disease patients. *Plos Biol* 2013; 19: 2522-2534 [PMID: 24097272 DOI: 10.1097/MIB.0b013e3182a85709]

70 ten Hove T, Drillenburg P, Wijnholds J, Te Velde AA, van Deventer SJ. Differential susceptibility of multidrug resistance protein-1 deficient mice to DSS and TNBS-induced colitis. *Dig Dis Sci* 2002; 47: 2056-2063 [PMID: 12353855 DOI: 10.1089/jb.1RU014-010RR]

71 Sarrabayrouse G, Bossard C, Chauvin JM, Jarry A, Meurette G, Quévrien E, Bridonneau C, Preissier L, Asehnoune K, Labarrière D, Allaire F, Sokol H, Jotereau F. CD4CD8null lymphocytes, a novel human regulatory T cell subset induced by colonic bacteria and deficient in patients with inflammatory bowel disease. *Plos Biol* 2014; 12: e1001833 [PMID: 24714093 DOI: 10.1371/journal.pbio.1001833]

72 Englund G, Jacobson A, Rorsman F, Artursson P, Kindmark A, Pan J, Ohnuma S, Lund PE, Pixley JN, Kimchi-Arnon I, Egeberg R, Tjønneland A, Vogel U. Polymorphisms in the xenobiotic transporter Multidrug Resistance 1 (MDR1) and interaction with meat intake in relation to risk of colorectal cancer in a Danish prospective case-cohort study. *BMC Cancer* 2009; 9: 407 [PMID: 19930591 DOI: 10.1186/1471-2407-9-407]

73 Anncese V, Valvano MR, Palmieri O, Latiano A, Bossa F, Andriulli A. Multidrug resistance 1 gene in inflammatory bowel disease: a meta-analysis. *World J Gastroenterol* 2006; 12: 3636-3644 [PMID: 16773678 DOI: 10.3748/wjg.v12.i23.3636]

74 Wang LH, Song YB, Zheng WL, Jiang L, Ma WL. The association between polymorphisms in the MDR1 gene and risk of cancer: a systematic review and pooled analysis of 52 case-control studies. *Cancer Cell Int* 2013; 13: 46 [PMID: 23687985 DOI: 10.1002/ibd.21278]

75 He T, Mo A, Zhang K, Liu L. ABCB1/MDR1 gene polymorphism and colorectal cancer risk: a meta-analysis of case-control studies. *Colorectal Dis* 2013; 15: 12-18 [PMID: 23279665 DOI: 10.1111/j.1463-1318.2012.02191.x]

76 Fung KL, Gottesman MM. A synonymous polymorphism in a common MDR1 (ABCB1) haplotype shapes protein function. *Biochim Biophys Acta* 2009; 1786: 860-871 [PMID: 19285158 DOI: 10.1016/j.bbadis.2009.02.014]

77 Fung KL, Pan J, Ohnoura S, Lund PE, Pixley JN, Kimchi-Sarfaty C, Ambudkar SV, Gottesman MM. MDR1 synonymous polymorphisms alter transporter specificity and protein stability in a stable epithelial monolayer. *Cancer Res* 2014; 74: 598-608 [PMID: 24305879 DOI: 10.1186/0008-5472.CAN-13-2064]

78 Campa D, Sainz J, Pardini B, Vodicikova L, Naccarati A, Rudolph A, Novotny J, Förstl A, Buch S, von Schönfels W, Hemminki K, Hampe J, Chang-Claude J, Brenner H, Vodicikova L, Cui YJ, Klaassen CD. Gender-divergent expression, ontogeny, and chemical induction of the multidrug resistance 1a, mdr1a, spontaneously develop colitis. *J Immunol* 2013; 180: 6136-6145 [PMID: 23856354 DOI: 10.1074/jimmunol.112.184062]

79 Ho GT, Ko HK, Cheung YW, Kwan VT, Leung TL, Leung CY, Cheung CM, Tang AK. MDR1 haplotypes of MDR1 deficient C57BL/6J mice influence the expression and stability of MDR1 mRNA and membrane protein during colitis induced by dextran sodium sulfate. *BMC Cancer* 2013; 13: 407 [PMID: 23967973 DOI: 10.1371/journal.pone.0032784]

80 Borchardt RR, Heston WD. The role of ABC transporters in drug-metabolism and drug-action. *Adv Drug Deliv Rev* 2002; 54: 191-221 [PMID: 12067303 DOI: 10.1016/S0169-409X(01)00226-5]

81 Andersen V et al. ABC transporters in IBD and CRC
Andersen V et al. ABC transporters in IBD and CRC

96 Staley EM, D nimitt RA, Schoeb TR, Tanner SM, Lorenz RG. Critical role for P-glycoprotein expression in hematopoietic cells in the FVB.Mdr1a-/- model of colitis. *J Pediatr Gastroenterol Nutr* 2011; 53: 656-673 [PMID: 21681110 DOI: 10.1097/MPG.0b013e31822860f1]

97 Tanner SM, Staley EM, Lorenz RG. Altered generation of induced regulatory T cells in the FVB.mdr1a-/- mouse model of colitis. *Mucosal Immunol* 2013; 6: 309-323 [PMID: 22874899 DOI: 10.1038/mi.2012.73]

98 Low D, Nguyen DD, Mizoguchi E. Animal models of ulcerative colitis and their application in drug research. *Drug Des Devel Ther* 2013; 7: 1341-1357 [PMID: 24230223 DOI: 10.2147/dddt.s20375]

99 Maggio-Price L, Bielefeldt-Olmann H, Treuting P, Iritani BM, Zeng W, Nicks A, Tsang M, Shows D, Morrissey P, Viney JL. Dual infection with Helicobacter bilis and Helicobacter hepaticus in P-glycoprotein-deficient mdr1a-/- mice results in colitis that progresses to dysplasia. *Am J Pathol* 2005; 166: 1793-1806 [PMID: 15920164 DOI: 10.1016/S0002-9440(05)02689-3]

100 Paik J, Fierce T, Treuting PM, Brabh T; Maggio-Price L. High-fat-diet-induced obesity exacerbates inflammatory bowel disease in genetically susceptible Mdr1a-/- male mice. *J Nutr* 2013; 143: 1240-1247 [PMID: 23766144 DOI: 10.3945/jn.113.174615]

101 Ellinghaus D, Zhang H, Zeissig S, Lipinski S, Till A, Jiang T, Stade B, Bromberg Y, Ellinghaus E, Keller A, Rivas MA, Skieceviciene J, Doncheva NT, Liu X, Liu Q, Jiang F, Forster M, Sans M, Wijnenga R, Strachan DP, McArdle WL, Vermeire S, Rutgeerts P, Sanderson JD, Mathew CG, Vatn MH, Wang J, Nöthen MM, Duerr RW, Junqueira AT, Neves JF, Blumberg RS. Immunology. Welcome to the FASEB J

102 Johnstone RW, Ruelfii AA, Smyth MJ. Multiple physiological functions for multidrug transporter P-glycoprotein? *Trends Biochem Sci* 2000; 25: 1-6 [PMID: 10637601 DOI: 10.1016/S0968-0004(99)01493-0]

103 Klappe K, Hummel I, Hoeckstra D, Kok JW. Lipid dependence of ABC transporter localization and function. *Chem Phys Lipids* 2009; 161: 57-64 [PMID: 19651114 DOI: 10.1016/j.chemphys.2009.07.004]

104 Su L, Mruk DD, Lui WY, Lee WM, Cheng CY. P-glycoprotein regulates blood-testis barrier dynamics via its effects on the occludin/zonula occludens 1 (ZO-1) protein complex mediated by focal adhesion kinase (FAK). *Proc Natl Acad Sci USA* 2011; 108: 19623-19628 [PMID: 22106313 DOI: 10.1073/pnas.1111414108]

105 Dimeo S, Frick C, Fischer M, Gusber PM, Razik L, Bantug GR, Ravon M, Langenkamp A, Hess C. Human regulatory T cells lack the cyclophosphamide-extruding transporter ABCB1 and are more susceptible to cyclophosphamide-induced apoptosis. *Eur J Immunol* 2014; 44: 3614-3620 [PMID: 25251877 DOI: 10.1093/toxsci/kdf071]

106 Pawlik A, Basikkiewicz-Masiuk M, Machalinski B, Safranow K, Gawrońska-Szklarz B. Involvement of P-glycoprotein in the release of cytokines from peripheral blood mononuclear cells treated with methotrexate and dexamethasone. *J Pharm Pharmacol* 2005; 57: 1421-1425 [PMID: 16259774 DOI: 10.1211/jpp.57.11.0007]

107 Veldhoen M, Brucklacher-Waldert V. Dietary influences on regulatory T cells in the FVB.mdr1a-/- mouse model of colitis. *Nutr Metab* 2012; 9: 696-708 [PMID: 23005757 DOI: 10.1093/nintm/dhx389]

108 Goellapudi S, Kim C, Gupta S. P-glycoprotein (encoded by multidrug resistance genes) is not required for interleukin-2 secretion in mice and humans. *Genes Immun* 2000; 1: 371-379 [PMID: 11196684 DOI: 10.1038/sj.gene.6363693]

109 Pawlik A, Basikkiewicz-Masiuk M, Machalinski B, Kurzawski M, Gawronska-Szklarz B. Involvement of C3435T and G2677T multidrug resistance gene polymorphisms in release of cytokines from peripheral blood mononuclear cells treated with methotrexate and dexamethasone. *Eur J Pharmacol* 2005; 528: 27-36 [PMID: 16321374 DOI: 10.1016/j.ejphar.2005.10.068]

110 Pende SS, Behjati S, Schatton T, Iwaza A, Sayegh M, Frank MH. P-glycoprotein functions as a differentiation switch in antigen presenting cell maturation. *Am J Transplant* 2006; 6: 2884-2893 [PMID: 17083370 DOI: 10.1111/j.1600-6143.2006.01561.x]

111 Raggers RJ, Vogel I, van Meer G. Multidrug-resistance P-glycoprotein (MDR1) secretes platelet-activating factor. *Biochem J* 2001; 357: 859-865 [PMID: 11463358 DOI: 10.1042/0264-6021.

112 Papafili A, Hill MR, Brull DJ, McAnulty RJ, Marshall RP, Humphries SE, Laurent GJ. Common promoter variant in cyclooxygenase-2 represses gene expression: evidence of role in acute-phase inflammatory response. *Arterioscler Thromb Vasc Biol* 2002; 22: 1631-1636 [PMID: 12377741 DOI: 10.1161/01.ATV.0000030430.82077.C3]

113 Bosch J, Damus-Joannopoulos K, Wu RL, Furlong ST, Croop JR. Phosphatidylinositol and phosphatidylerythritolamine behave as substrates of the human MDR1 P-glycoprotein. *Biochemistry* 1997; 36: 5685-5694 [PMID: 9153408 DOI: 10.1021/bi962728e]

114 Sobhani I, Hohlfar S, Denizot Y, Vissazaine C, Rene E, Benveniste J, Lewin MM, Mignon M. Raised concentrations of platelet activating factor in colonic mucosa of Crohn's disease patients. Gut 1992; 33: 1220-1225 [PMID: 1427375 DOI: 10.1136/gut.33.9.1220]

115 Xu LF, Tong X, Gao J, Sun M. Protective effect of intestinal trefoil factor on injury of intestinal epithelial tight junction induced by platelet activating factor. *Inflammation* 2012; 35: 308-315 [PMID: 21452036 DOI: 10.1007/s10753-011-9320-x]

116 Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. *J Immunol* 2012; 189: 2689-2695 [PMID: 22956760 DOI: 10.1371/journal.pone.0075664]

117 Yost CC, Weyrch AS, Zimmerman GA. The platelet activating factor (PAF) signaling cascade in systemic inflammatory responses. *Biochimie* 2010; 92: 692-697 [PMID: 20167241 DOI: 10.1016/j.bioch.2010.07.171]

118 Flak MB, Neves JF, Blumberg RS. Immunology. Welcome to the microgromeder. *Science* 2013; 339: 1044-1045 [PMID: 23449586 DOI: 10.1126/science.1233521]

119 van de Wetering K, Saptho S. ABCG2 functions as a general phytoestrogen sulfate transporter in vivo. *FASEB J* 2012; 26: 4014-4024 [PMID: 22705764 DOI: 10.1096/fj.12-210039]
Goncalves P, Gregorio I, Martel F. The short-chain fatty acid butyrate is a substrate of breast cancer resistance protein. Am J Physiol Cell Physiol 2011; 301: C984-C994 [PMID: 21775706]

Randolph GJ. Dendritic cell migration to lymph nodes: cytokines, chemokines, and lipid mediators. Semin Immunol 2001; 13: 267-274 [PMID: 11502161 DOI: 10.1016/s0899-1678(01)00232-2]

Dietrich CG, de Waart DR, Ottenhoff R, Bootman MA, van Gennip AH, Elferink RP. Mrp2-deficiency in the rat impairs biliary and intestinal excretion and influences metabolism and disposition of the food-derived carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyrene. Carcinogenesis 2001; 22: 805-811 [PMID: 11323401 DOI: 10.1093/carcin/22.5.805]

Deelely RG, Cole SP. Substrate recognition and transport by multidrug resistance protein 1 (ABCC1). FEBS Lett 2006; 580: 1103-1111 [PMID: 16387301 DOI: 10.1016/j.febslet.2005.12.036]

Jeldscheky G, Keppler D. Transport of leukotriene C4 and prostaglandin E1 across the intestinal epithelium in the rat. Gastroenterology 1989; 96: 808-815 [PMID: 2686138 DOI: 10.1016/0016-5085(89)90405-8]

Zaher H, Khan AA, Palandra J, Brayman TG, Yu L, Ware JA. Breast cancer resistance protein (BCRP) and drug disposition: intestinal expression, polymorphisms and sulfasalazine as an in vivo probe. Pharmacogenet Genomics 2008; 18: 439-448 [PMID: 18408567 DOI: 10.1097/FCP.0b013e3282979d4c]

Zaher H, Khan AA, Palandra J, Brayman TG, Yu L, Ware JA. Breast cancer resistance protein (Bcrp/abcg2) is a major determinant of sulfasalazine absorption and elimination in the mouse. Mol Pharm 2006; 3: 55-61 [PMID: 16686369 DOI: 10.1021/mp050113v]

van der Heijden J, de Jong MC, Dijkman BA, Lems WF, Oerlemans R, Kathmann I, Schalkwijk CG, Scheffer GL, Scheper RJ, Jansen G. Development of sulfasalazine resistance in human T cells induces expression of the multidrug resistance transporter ABCG2 (BCRP) and augmented production of TNFalpha. Ann Rheum Dis 2004; 63: 138-143 [PMID: 14722201 DOI: 10.1136/ard.2002.005249]

Furst DE. Acquired resistance of human T cells to sulfasalazine. Ann Rheum Dis 2004; 63: 115-116 [PMID: 14722196 DOI: 10.1136/ard.2003.014613]

Andersen V, Christiansen J, Overvad K, Tjønneland A, Vogel U. Polymorphisms in NFκB, PXR, LXR and risk of colorectal cancer in a prospective case of Danes. BMC Cancer 2010; 10: 484 [PMID: 20836841 DOI: 10.1186/1471-2407-10-484]

Kopp TI, Andersen V, Tjønneland A, Vogel U. Polymorphisms in NFKB1 and TRL4 and interaction with dietary and lifestyle factors in relation to colorectal cancer in a Danish prospective case-cohort study. PLoS One 2010; 5: e1013693 [PMID: 25705893 DOI: 10.1371/journal.pone.0116394]

Herfarth HH, Martin CF, Sandler RS, Kappelman MD, Long MD. Prevalence of a gluten-free diet and improved clinical symptoms in patients with inflammatory bowel disease. Inflamm Bowel Dis 2014; 20: 1194-1197 [PMID: 24865778 DOI: 10.1097/IBD.0b013e31828b9547]

Cohen AB, Lee D, Long MD, Kappelman MD, Martin CF, Sandler RS, Lewis JD. Dietary patterns and self-reported associations of diet with symptoms of inflammatory bowel disease. Dig Dis Sci 2013; 58: 1322-1328 [PMID: 22923336 DOI: 10.1007/s00410-012-5973-4]

Jowett SL, Seal CJ, Pearce MS, Phillips E, Gregory W, Barton JR, Welfare MR. Influence of dietary factors on the clinical course of ulcerative colitis: a prospective cohort study. Gut 2004; 53: 1479-1484 [PMID: 15361498 DOI: 10.1136/gut.2003.024828]

Geary RB, Irving PM, Barrett JS, Nathan DM, Shepherd SJ, Gibson PR. Reduction of dietary poorly absorbed short-chain carbohydrates (FODMAPs) improves abdominal symptoms in patients with inflammatory bowel disease—a pilot study. J Crohns Colitis 2009; 3: 8-14 [PMID: 21172242 DOI: 10.1016/j.crohns.2008.09.004]

Khan AA, Palandra J, Brayman TG, Yu L, Ware JA. Breast cancer resistance protein (Bcrp/abcg2) is a major determinant of sulfasalazine absorption and elimination in the mouse. Mol Pharm 2006; 3: 55-61 [PMID: 16686369 DOI: 10.1021/mp050113v]

van der Heijden J, de Jong MC, Dijkman BA, Lems WF, Oerlemans R, Kathmann I, Schalkwijk CG, Scheffer GL, Scheper RJ, Jansen G. Development of sulfasalazine resistance in human T cells induces expression of the multidrug resistance transporter ABCG2 (BCRP) and augmented production of TNFalpha. Ann Rheum Dis 2004; 63: 138-143 [PMID: 14722201 DOI: 10.1136/ard.2002.005249]

Furst DE. Acquired resistance of human T cells to sulfasalazine. Ann Rheum Dis 2004; 63: 115-116 [PMID: 14722196 DOI: 10.1136/ard.2003.014613]

Andersen V, Christiansen J, Overvad K, Tjønneland A, Vogel U. Polymorphisms in NFκB, PXR, LXR and risk of colorectal cancer in a prospective case of Danes. BMC Cancer 2010; 10: 484 [PMID: 20836841 DOI: 10.1186/1471-2407-10-484]

Kopp TI, Andersen V, Tjønneland A, Vogel U. Polymorphisms in NFKB1 and TRL4 and interaction with dietary and lifestyle factors in relation to colorectal cancer in a Danish prospective case-cohort study. PLoS One 2010; 5: e1013693 [PMID: 25705893 DOI: 10.1371/journal.pone.0116394]

Herfarth HH, Martin CF, Sandler RS, Kappelman MD, Long MD. Prevalence of a gluten-free diet and improved clinical symptoms in patients with inflammatory bowel disease. Inflamm Bowel Dis 2014; 20: 1194-1197 [PMID: 24865778 DOI: 10.1097/IBD.0b013e31828b9547]

Cohen AB, Lee D, Long MD, Kappelman MD, Martin CF, Sandler RS, Lewis JD. Dietary patterns and self-reported associations of diet with symptoms of inflammatory bowel disease. Dig Dis Sci 2013; 58: 1322-1328 [PMID: 22923336 DOI: 10.1007/s00410-012-5973-4]
induced taurocholic acid promotes pathobiont expansion and colitis in IIB0-/- mice. Nature 2012; 487: 104-108 [PMID: 22722665 DOI: 10.1038/nature11225]

Andersen V, Heier K, Koepf TI, Thommland A, Vogel U. Interactions between diet, lifestyle and IL10, IL1B, and PTG2S2-COX-2 gene polymorphisms in relation to risk of colorectal cancer in a prospective Danish case-control study. PLoS One 2013; 8: e78366 [PMID: 24194923 DOI: 10.1371/journal.pone.0078366]

Arthur JC, Perez-Chanona E, Mullhauer M, Tomkovskis S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B, Rogers AB, Rhodes JM, Stutzi A, Simpson KW, Hansen JJ, Keku TO, Fodor AA, Jobin C. Inflammaton targets cancer-inducing activity of the microbiota. Science 2012; 338: 120-123 [PMID: 22903521 DOI: 10.1126/science.1224820]

Tjalsma H, Boeleij A, Marchesi JR, Dutilh BE. A bacterial driver-passerenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol 2012; 10: 575-582 [PMID: 10.1038/nargastro.2012.172]

Zintzaras E. Is there evidence to claim or deny association between variants of the multidrug resistance gene (MDR1 or ABCB1) and inflammatory bowel disease? Inflamm Bowel Dis 2012; 18: 562-572 [PMID: 21887726 DOI: 10.1007/s10050-007-83718]

Goldsmith JR, Santor RB. The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications. J Gastroenterol 2014; 49: 785-798 [PMID: 24652102 DOI: 10.1007/s00535-014-0953-z]

Woodahl EL, Ho RJ. The role of MDR1 genetic polymorphisms in interindividual variability in P-glycoprotein expression and function. Curr Drug Metab 2004; 5: 11-19 [PMID: 14966248 DOI: 10.2174/138920043489108]

Goldstein DB, Hirschorn JR. In genetic control of disease, does ‘race’ matter? Nat Genet 2004; 36: 1243-1244 [PMID: 15565101 DOI: 10.1038/ng1204-1243]

Andersen V, Holst R, Vogel U. Systematic review: diet-gene interactions and the risk of colorectal cancer. Aliment Pharmacol Ther 2013; 37: 383-391 [PMID: 23216531 DOI: 10.1111/apt.12180]

Lewander A, Butchi AK, Gao J, He LJ, Lindblom A, Arbnam G, Carstensen J, Zhang ZY, Sun F. Polymorphism in the promoter region of MDR1 and inflammatory bowel disease reveals a significant polymorphism in the promoter region of the gene in Swedish patients with Crohn’s disease revealed by a metagenomic approach. Gut 2006; 55: 205-211 [PMID: 16188921 DOI: 10.1136/gut.2005.073817]

Lee WK, Kuhkin VN. Inflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 2011; 108 Suppl 1: 4615-4622 [PMID: 2060719 DOI: 10.1073/pnas.100082107]

Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Koga A, D labor K, Ishizuka A, Yashiro K, Debor A, Kato K, Tajika K, Kimoto K, Itagaki T, Kume M, Umesaki Y, Honda K, Littmann DR. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009; 139: 485-498 [PMID: 19836608 DOI: 10.1016/j.cell.2009.09.033]

Yamada H, Nakashima Y, Okazaki K, Kawata T, Fukiishi JI, Kaibara N, Kori A, Iwamoto Y, Yoshikai Y. Th1 but not Th17 cells predominate in the joints of patients with rheumatoid arthritis. Ann Rheum Dis 2008; 67: 1299-1304 [PMID: 18063670 DOI: 10.1136/ arthro.2007.080341]

Sarkar S, Fox DA. Targeting IL-17 and Th17 cells in rheumatoid arthritis. Rheum Dis Clin North Am 2010; 36: 345-366 [PMID: 20510238 DOI: 10.1016/j.rheum.2010.02.006]

Kempainen AK, Kaprio J, Palotie A, Saarela J. Systematic review of genome-wide expression studies in multiple sclerosis. BMJ Open 2011; 1: e000053 [PMID: 22021740 DOI: 10.1136/bmjopen-2011-000053]

Shen W, Durum SK. Synergy of IL-23 and Th17 cytokines: new light on inflammatory bowel disease. Neurochem Res 2010; 35: 940-946 [PMID: 19915978 DOI: 10.1007/s11064-009-0091-9]

Baumgart DC, Sandborn WJ. Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 2007; 369: 1641-1657 [PMID: 17496966 DOI: 10.1016/S0140-6736(07)61857-X]

Sarkar S, Browning BL, Petermann I, Han DY, Philpott M, Barclay M, Geary R, McCulloch A, Demmers P, Ferguson LR. Genetic analysis of MDR1 and inflammatory bowel disease reveals protective effect of heterozygous variants for ulcerative colitis. Inflamm Bowel Dis 2009; 15: 1784-1793 [PMID: 19685447 DOI: 10.1007/s11066-009-0076-z]

Farrell RJ, Murphy A, Long A, Donnelly S, Cherikuri A, O’Toole D, Mahmud N, Keeling PW, Weir DG, Kelleher D. High multidrug resistance (P-glycoprotein 170) expression in inflammatory bowel disease patients who fail medical therapy. Gastroenterology 2000; 118: 279-288 [PMID: 10648456 DOI: 10.1016/S0016-5085(00)70210-1]

Hirano T, Onida K, Toma T, Miyaoa M, Moriyasu F, Oka K. MDR1 mRNA expressions in peripheral blood mononuclear cells of patients with ulcerative colitis in relation to glucocorticoid administration. J Clin Pharmacol 2004; 44: 481-486 [PMID: 15102868 DOI: 10.1177/0002292404264162]

P-Reviewer: Aytac E, Ciccone MM S-Editor: Yu J L-Editor: A E-Editor: Ma S

Andersen V et al. ABC transporters in IBD and CRC

[Image 499x57 to 539x97]
