Idiopathic central precocious puberty with Prader–Willi syndrome: pubertal development with discontinuation of gonadotropin-releasing hormone analog

Mami Kobayashi¹,², Hideaki Yagasaki¹, Kei Tamaru¹, Yumiko Mitsui¹ and Takeshi Inukai¹
¹Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan and ²Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan

Summary

Prader–Willi syndrome (PWS) is a genetic imprinting disorder that is characterized by obesity, short stature, and hypogonadism. Hypogonadism is characterized by normal luteinizing hormone (LH), high follicle-stimulating hormone (FSH), low testosterone, low inhibin B, and relatively low anti-Müllerian hormone (AMH). Only a few cases of central precocious puberty (CPP) have been reported in PWS, and follow-up for CPP with PWS is not established. Hence, we present a boy with PWS accompanied by CPP. Gonadotropin-releasing hormone analog (GnRHa) therapy was started at 7 years of age, CPP was adequately arrested, and GnRHa therapy was discontinued at 11.3 years of age. Growth hormone (GH) therapy was started at 12 years of age due to inadequate growth. He grew close to his final height, and his testes developed with normal LH, increased FSH, normal testosterone, and reduced AMH corresponding to puberty at 13.5 years of age. The features of 16 patients with PWS with CPP, including our patient, were summarized. Out of seven male patients, five were treated with GnRHa, as well as four out of nine female patients. Out of 16 patients, 6 were assessed with pubertal development over 13 years of age. Pubertal development was considered to be restored in four patients who had GnRHa therapy discontinuation. We should carefully follow-up on pubertal development in CPP. GnRHa therapy is useful for adequate puberty blockage, and pubertal development could be restored with GnRHa therapy discontinuation.

Learning points:

• Pubertal development in Prader–Willi syndrome (PWS) varies from hypogonadism to precocious puberty.
• Pubertal development assessment based on clinical features and hormone levels is needed in central precocious puberty (CPP) treatment with PWS.
• Gonadotropin-releasing hormone analog (GnRHa) therapy is useful for CPP with PWS, and pubertal development can be restored with GnRHa therapy discontinuation.

Background

Prader–Willi syndrome (PWS) is a common obesogenic syndrome caused by the absence of the expression of paternally active genes on chromosome 15q11–q13. Hypogonadism is one of the main clinical features of PWS, which is characterized by normal luteinizing hormone (LH), high follicle-stimulating hormone (FSH),
low testosterone, low inhibin B, and relatively low anti-Müllerian hormone (AMH) levels compared with those in normal males, which suggest both hypothalamic and primary hypogonadism (1). A few cases of central precocious puberty (CPP) with PWS have been reported. Although loss-of-function mutations of the makorin RING finger protein (MKRN3) gene at 15q11–q13 are responsible for familial CPP (2), the pathophysiology of CPP with PWS remains unknown (3). The gonadal function of CPP with PWS who received gonadotropin-releasing hormone analog (GnRHa) therapy has not fully been identified.

This article aims to reveal the pubertal development with GnRHa therapy discontinuation in patients with CPP with PWS.

Case presentation

Our patient was born at 37 weeks of gestation weighing 1944 g to a healthy Portuguese mother and a Brazilian father and displayed poor feeding, poor weight gain, and hypotonia during the neonatal period. He visited our hospital due to obesity and cryptorchidism at 3 years of age. Bilateral orchidopexy was performed. Afterward, he did not visit our hospital for a while.

He was referred to our hospital due to precocious puberty at 7.2 years of age. His height, height SDS, weight, BMI, and BMI SDS were 115.0 cm, −1.4 SDS, 26.0 kg, 19.7 kg/m², and +1.6 SDS, respectively. His hands and feet were relatively small, and his skin color was transparent. His bilateral testicular volume was 6 mL, with Tanner stage 3 pubic hair.

Investigation

His bone age was 12.5 years according to the Greulich and Pyle method. A GnRH test revealed pubertal LH and FSH levels (basal, peak: 0.5, 29.7 mIU/mL and 5, 22.6 mIU/mL, respectively) and testosterone was 0.41 ng/mL. Adrenal hyperplasia was excluded, although 17-hydroxyprogesterone (17-OHP), DHEA sulfate, and urinary pregnanetriolone levels were 2.7 (normal: 0.93 ± 0.81) ng/mL, 1990 (normal: 52–1080) ng/mL, and 0.034 (normal: 0.000–0.038) mg/gCr, respectively. Adrenocorticotrophic hormone test was not be performed for high 17-OHP. Abdominal CT did not detect a tumor in the adrenal gland, liver, or testis. Brain MRI did not reveal an enlarged pituitary gland. He had never been prescribed steroid hormone and had never received radiation. He was diagnosed with idiopathic CPP.

Treatment

The patient was prescribed a GnRHa (leuprorelin acetate of 0.94 mg s.c. injection every 1 month) because his bone age accelerated for his chronological age. During therapy, his testicular volume reduced in size (2 mL), LH and testosterone were suppressed, and bone age stagnated (Fig. 1 and Table 1).

Outcome and follow-up

PWS was suspected because of his history and developmental deficits at 10 years of age. Chromosome 15q11.2 deletion was identified using the fluorescent in situ hybridization analysis. GnRHa therapy was discontinued at 11.3 years of age because pubertal progression could be adequately suppressed and primary hypogonadism was of concern attributable to PWS. His right and left testicular volume was 3 mL and 4 mL, respectively, and bone age was 13.0 years 2 months after discontinuation (Table 1). Additionally, hormonal examination was evaluated 2 months after GnRHa therapy discontinuation and revealed the following: GnRH test demonstrated prepubertal levels of LH and FSH (peak; 6.9 mIU/mL and 7.3 mIU/mL, respectively); human chorionic gonadotropin (hCG) test showed normal testosterone levels (basal and peak; 0.17 ng/mL and 2.98 ng/mL, respectively); and AMH level was slightly low (22 ng/mL) for his prepubertal stage according to his LH level on the GnRH test (Table 1). His pituitary gland was slightly small for his chronological age on brain MRI.

His inadequate growth became remarkable (height: 130.2 cm, −2.0 SDS) at 11.3 years of age. The insulin test suggested growth hormone (GH) deficiency (basal and peak: 0.06 ng/mL and 1.07 ng/mL, respectively) at 11.5 years of age. GH therapy (0.23 mg/kg/week) was started at 12.0 years of age (height: 133.4 cm, −2.1 SDS). He grew close to his final height of 146.5 cm (−3.2 SDS) at 15.1 years of age. The right and left testicular volume was 10 mL and 15 mL, respectively, with Tanner stage 5 pubic hair and LH, FSH, testosterone, and AMH levels were 4.6 mIU/mL, 19.9 mIU/mL, 1.54 ng/mL, and 2.92 ng/mL, respectively (Table 1).

Similar cases were identified in published literature, and the features of 16 patients (7 male patients and 9 female patients) having PWS with CPP, including our patient, were summarized (Table 2) (4, 5, 6, 7, 8, 9, 10, 11, 12, 13). Cases with premature adrenarche were excluded. Molecular pathogenesis was clear only in five patients. LH level was increased in 11 patients (case 1, 4, 5, 8, 10, 11, 12,
Figure 1
Growth chart of the patient on the 2000 Nation Growth Survey on Preschool Children and School Health Statics Research. Black circles represent height and weight and open triangles represent bone age. The first, second, and third arrows indicate the age at the start of GnRHa therapy, discontinuation of GnRHa therapy, and the start of GH therapy, respectively.
Table 1 Anthropometric data, pubertal development, and hormone levels of our patient.

Age (years)	7.2	7.5 (beginning of GnRHa)	8.8	9.5	10.8	11.3 (end of GnRHa)	12.0 (beginning of GH)	12.9	13.5	13.9	15.1
Height (cm)	115.0	115.9	120.7	123.4	128.4	130.2	133.4	140.8	142.9	144.7	146.5
Height SDS	−1.4	−1.3	−1.6	−1.8	−1.9	−2.0	−2.1	−1.9	−2.2	−2.4	−3.2
Weight (kg)	26.0	26.5	32.0	34.2	37.3	38.9	39.7	41.5	47.0	50.3	55.2
BMI (kg/m²)	19.7	19.8	22.0	22.5	22.6	22.9	22.3	20.9	23.0	24.0	25.7
BMI SDS	1.6	1.6	1.7	1.7	1.5	1.5	1.2	0.7	1.1	1.3	1.5
Testicular volume; right/left (mL)	6/5	5/5	5/5	2/2	3/4	5/7	10/15	10/15	10/15		
Pubic hair (Tanner stage)	3	3	3	3	2–3	2–3	3	3–4	4	5	
LH basal (mIU/mL)	0.5	<0.1	0.2	<0.1	0.3	3.3	4.2	4.1	5.0	4.6	
LH peak (mIU/mL)	29.7	6.9									
FSH basal (mIU/mL)	5	0.3	0.4	0.6	1.6	5.4	14.9	16.2	18.3	19.9	
FSH peak (mIU/mL)	22.6	7.3									
Testosterone basal (ng/mL)	0.26	0.15	0.21	0.17	0.74	2.37	2.33	1.99	1.54		
Testosterone peak (ng/mL)	2.98										
AMH (ng/mL)	22	156	2.92	676	624	657					
IGF-I (ng/mL)	(reference range)	(125–557)	(133–579)								
Bone age (years)	12.5	13.0	13.0	14.0	15.0						

SDS according to the calculated chronological age using the Cross-Sectional Growth Chart for Boys (The 2000 National Growth Survey on Preschool Children and School Health Statistics Research). LH basal/peak prepubertal (≥10 years) was 0.04–0.25/2.03–11.8; FSH basal/peak prepubertal (≥10 years) was 0.01–0.25/5.69–16.6; LH basal/peak pubertal was 0.44–3.53/10.9–39.5; FSH basal/peak pubertal was 1.73–8.22/1.68–17.3; testosterone peak pubertal was >3.0 ng/mL; AMH was 5–12 years; Tanner 1 was 72.3 ± 38.5 ng/mL in >10 years; Tanner 2 was 34.9 ± 17.6 ng/mL in >10 years; Tanner 3 was 13.7 ± 9.1 ng/mL; and Tanner 4 and 5 or adult was 5.9 ± 5.3 ng/mL.

AMH, anti-Müllerian hormone; FSH, follicle-stimulating hormone; GH, growth hormone; GnRHa, gonadotropin-releasing hormone analog; IGF-I, insulin-like growth factor I; LH, luteinizing hormone.
Reference	Case Sex	Age of CPP onset (years)	Molecular pathogenesis (diagnostic method)	Clinical features	Growth spurt	BMI (kg/m²)	LH base, peak (mIU/ml)	FSH base, peak (mIU/ml)	Testosterone (ng/mL)	Bone age (chronological age)	MRI findings	GnRHa treatment period (years)	Age at last visit (years)	Pubertal development	GH therapy
Our patient	1 M	7.2	Deletion (RISH)	Increase of testicular volume (maximum 6 mL), pubic hair	Without	19.6	0.5, 29.7	5.0, 22.6	0.41	12.5 (7.2), with	Normal, without	With, 7.5–11.3	15.1	Bone age 15 years at 15.1 years, testicular volume 10 and 15 mL, Tanner stage 5 public hair, LH/FSH 4.6/19.9 mIU/mL, testosterone 1.54 mg/mL	
MacMillan et al. (4)	2 F	6.3	Not mentioned	Breast enlargement, pubic hair	Without	40.2	Not mentioned	11 (6.3), with	Not mentioned	10	Sexual maturation was slow and menstruation has not occurred				
Kauli et al. (5)	3 F	9.5	Not mentioned	Menarche	Not mentioned										
Vanni et al. (6)	4 M	8.5	Not mentioned	Increase of testicular volume (maximum 10 and 12 mL)	With	Not mentioned	25 (peak) 15 (peak)	7.5	9.1 (6.6), with	A flat pituitary gland, without	Without	Not mentioned	13	Testicular volume 10 and 12 mL, Tanner stage 4 public hair, Tanner stage 3 axillary hair	
Linnebur et al. (7)	5 M	6.6	Deletion (G-band)	With	43.8	0.5, 5.0	1.6, 3.6	0.69	9.1 (6.6), with	Testicular volume and pubic hair developed slowly					
Tauber et al. (8)	6 F	7	Deletion or abnormal methylation or uniparental disomy or no molecular anomaly	Not mentioned	Incomplete	With									
7 F	7	Not mentioned	Tanner stage 2	Not mentioned	Not mentioned	LHFSH ratio on GnRH test ≥1	2.8	10.4	Tanner stage 3 breast, Tanner stage 2 pubic hair						
8 M	9	Not mentioned	Tanner stage 2	Not mentioned	Within the pubertal range on GnRH test	With	Empty sella (in one female), not mentioned	With, not mentioned	Tanner stage 3 breast, Tanner stage 2 pubic hair						
9 F	7	Methylated or RISH	Tanner stage 2	Not mentioned	Within the pubertal range	With	Empty sella (in one female), not mentioned	With, not mentioned	Tanner stage 3 breast, Tanner stage 2 pubic hair						
10 F	7.4	Methylated or RISH	Tanner stage 2	Not mentioned	With	Empty sella (in one female), not mentioned	With, not mentioned	Tanner stage 3 breast, Tanner stage 2 pubic hair							
11 F	7.2	Not mentioned	Tanner stage 2	Not mentioned	LHFSH ratio on GnRH test ≥1	2.8	10.4	Tanner stage 3 breast, Tanner stage 2 pubic hair							
12 M	8	24.7	Not mentioned	Tanner stage 2	Not mentioned	LHFSH ratio on GnRH test ≥1	2.8	10.4	Tanner stage 3 breast, Tanner stage 2 pubic hair						
Crino et al. (9)	13 M	8.8	Deletion (methylation and FISH)	Tanner stage 2	With	26.2	0.4, 15.3	5.8, 10.9	2.01	10.6 (8.8), without	With, 8.9–11.3	16.3	Testicular volume 10 mL, Tanner stage 3 male genitalia, Tanner stage 4 pubic hair, UV FSH on GnRH test 31.52±40.3 mIU/mL, testosterone 1.56 ng/mL, inhibin 8.4 ng/mL		
14 F	5	Maternal uniparental disomy	Breast enlargement, pubic hair	With	22.9	4.6 (base) 14.8 (base)	23	136 (9.4), with	Not mentioned	With, 8.8 and still receiving	14.4	With discontinuation of GnRHab menstruation began, Tanner stage 3 breast, Tanner stage 4 pubic hair			
15 F	8.2	Deletion (methylation and FISH)	Breast enlargement, pubic hair	With	17.2	1.0, 10.3	1.7, 9.2	15	10.5 (8.2), without	Not mentioned	With, 8.3 and still receiving	9.5	Tanner stage 2		
16 M	8	Hypermethylation	Tanner stage 2	With	21.3	0.5, 15.8	5.6 (base)	0.13	9.9 (8.0), without	Normal, not mentioned	With, 8.8–13	15.2	Tanner stage 3 male genitalia, testicular volume 3 mL, LH/FSH <0.070.15 mIU/mL, testosterone 0.14 ng/mL at 14.3 years of age, Tanner stage 4 male genitalia, testicular volume 5 and 6 mL		

CPP, central precocious puberty; FSH, follicle-stimulating hormone; GH, growth hormone; GnRHa, gonadotropin-releasing hormone analog; LH, luteinizing hormone; PWS, Prader–Willi syndrome.
Discussion

Here, we presented a rare case of male CPP with PWS confirmed by chromosome 15q11.2 deletion after GnRHa therapy initiation. Our patient fulfilled all CPP diagnostic criteria, that is, testicular enlargement, advanced bone age, high androgen level, and LH pubertal response to GnRH test. He also presented with PWS features, hypotonia, insufficient weight gain, and cryptorchidism in the newborn period and obesity, developmental disability, and learning disability in school age. However, the absence of short stature and delayed puberty, which are characteristic manifestations of PWS, were masked by CPP.

The re-evaluated gonadal function after GnRHa therapy revealed an incomplete gonadotropin response for the GnRH test, while testosterone showed a normal response for the hCG test. However, the gonadal function was well in LH and testosterone levels, and Sertoli cells have been kept active after GnRHa therapy because the AMH level was not significantly low. Patients with PWS commonly do not complete puberty, which may correlate with prolonged AMH activity (1).

Patient with PWS commonly have delayed or incomplete puberty, and premature adrenarche is occasionally reported with increased adrenal androgen secretion, induced by adiposity as well as healthy obese children, but true precocious puberty is extremely rare. Therefore, we identified a case series of patients with PWS who presented with CPP in the published literature and summarized the features of 16 cases, including our patient’s (Table 2) (4, 5, 6, 7, 8, 9, 10, 11, 12, 13). We could not clarify the correlation between the frequency of CPP and molecular pathogenesis because only five cases mentioned molecular pathogenesis. CPP was considered to be caused by hypothalamic-pituitary acceleration by increased LH levels in 11 patients, and 9 patients were treated with GnRHa. Four patients showed external genitalia maturation with discontinuation of GnRHa therapy; it is considered to be restored to pubertal development. And pubertal development without GnRHa therapy was confirmed in 1 patient (case 4). Pubertal development in patients with PWS with CPP is considered to be going well with or without GnRHa therapy. Furthermore, GH therapy probably may help the pubertal development after GnRHa therapy discontinuation (14, 15).

Loss-of-function mutations of the MKRN3 gene, located on chromosome 15q11–q13 in the critical PWS region, are reported as responsible for familial CPP (2). Normally, MKRN3 is thought to prevent the onset of puberty at high levels in the brain before adolescence. A paternally derived MKRN3 allele deletion in PWS can cause puberty to start at an inappropriately young age. Alternatively, 17-hydroxyprogesterone and DHEA sulfate levels were high in our patient at CPP diagnosis, which may indicate increased adrenal androgen levels as previously reported in PWS. Thus, precocious puberty may occur in our patient as a combination of paternally derived MKRN3 allele deletion, basal adrenarche, and hypothalamic-pituitary acceleration. Other findings support the hypothesis that GnRHa therapy showed good clinical and laboratory response, that is, adequate puberty blockage evaluated by decreasing testicular volume, decreasing gonadotropin and testosterone, and bone age stabilization, which was restored after GnRHa discontinuation.

In conclusion, CPP is considered even if the patient was already diagnosed with PWS. GnRHa therapy may be beneficial, especially for male patients, because the male pubertal signs were identifiable due to the increased adrenal androgen levels in PWS as previously reported. Accumulating cases that are examined post-GnRHa gonadal function is desirable to assess the long-term effects of GnRHa therapy for CPP in PWS.
but felt some deal of stress on dietary restrictions. He has been followed up at the pediatric endocrinology department and was followed together with genetic counseling by pediatric psychotherapists. His quality of life is fulfilling because community health workers and school teachers support his activities.

Declaration of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding
This study did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Patient consent
Written informed consent has been obtained from the patient for publication of this article and accompanying images.

Author contribution statement
Mami Kobayashi wrote the manuscript. Hideaki Yagasaki is the primary physician of the patient. Kei Tamaru and Yumiko Mitsui managed the patient's genetic testing and treatment. Takeshi Inukai supervised and all authors approved the final version of the manuscript.

References

1. Hirsch HJ, Eldar-Geva T, Benaroch E, Rubinstein O & Gross-Tsur V. Primary testicular dysfunction is a major contributor to abnormal pubertal development in males with Prader-Willi syndrome. *Journal of Clinical Endocrinology and Metabolism* 2009 94 2262–2268. (https://doi.org/10.1210/jc.2008-2760)
2. Abreu AP, Dauber A, Macedo DB, Noel SD, Brito VN, Gill JC, Cukier P, Thompson IR, Navarro VM, Gagliardi PC, et al. Central precocious puberty caused by mutations in the imprinted gene MKRN3. *New England Journal of Medicine* 2013 368 2467–2475. (https://doi.org/10.1056/NEJMoa1302160)
3. Chong CK. Genetecics of Prader-Willi syndrome and Prader-Willi-Like syndrome. *Annals of Pediatric Endocrinology and Metabolism* 2016 21 126–135. (https://doi.org/10.6065/apem.2016.21.3.126)
4. MacMillan DR, Kim CB & Weisskopf B. Syndrome of growth resistance, obesity, and intellectual impairment with precocious puberty. *Archives of Disease in Childhood* 1972 47 119–121. (https://doi.org/10.1136/adc.47.2.119)
5. Kauli R, Prager-Lewin R & Laron Z. Pubertal development in the Prader-Willi syndrome. *Acta Paediatrica Scandinavica* 1978 67 763–767. (https://doi.org/10.1111/j.1651-2227.1978.tb16258.x)
6. Varelli M, Bernasconi S, Caronna N, Virdis R, Terzi C & Giovannelli G. Precocious puberty in a male with Prader-Willi syndrome. *Heredita Paediatrica Acta* 1984 39 373–377. (https://doi.org/10.1002/apm.13209260333)
7. Linnemann K, Schroeder C, Mix M, Krueger O & Fuchs C. Prader-Labhart-Willi syndrome with central precocious puberty and empty sella syndrome. *Acta Paediatrica* 1999 88 1295–1297. (https://doi.org/10.1080/0803529975030482)
8. Tauber M, Barbeau C, Jouret B, Plenkowski C, Malzac P, Moncla A & Rochiccioli P. Auxological and endocrine evolution of 28 children with Prader-Willi syndrome: effect of GH therapy in 14 children. *Hormone Research* 2000 53 279–287. (https://doi.org/10.1159/000053184)
9. Crino A, Schiaffini R, Ciampalini P, Spera S, Beccaria L, Benzi F, Bosio L, Corrias A, Gargantini L, Salvatoni A, et al. Hypogonadism and pubertal development in Prader-Willi syndrome. *European Journal of Pediatrics* 2003 162 327–333. (https://doi.org/10.1007/s00431-002-1132-4)
10. Crino A, Di Giorgio G, Schiaffini R, Frabbracci A, Spera S, Maggioni A & Gattinara GC. Central precocious puberty and growth hormone deficiency in a boy with Prader-Willi syndrome. *European Journal of Pediatrics* 2008 167 1455–1458. (https://doi.org/10.1007/s00431-008-0679-0)
11. Pusz ER & Rotenstein D. Treatment of precocious puberty in a female with Prader-Willi syndrome. *Journal of Pediatric Endocrinology and Metabolism* 2008 21 495–500. (https://doi.org/10.1515/JPEM.2008.21.5.495)
12. Lee HS & Hwang JS. Central precocious puberty in a girl with Prader-Willi syndrome. *Journal of Pediatric Endocrinology and Metabolism* 2013 26 1201–1204. (https://doi.org/10.1515/jepem-2013-0040)
13. Ludwig NG, Radaelli RE, da Silva MM, Romero CM, Carrilho AJ, Bessa D, Macedo DB, Oliveira ML, Latronico AC & Mazzuco TL. A boy with Prader-Willi syndrome: unmasking precocious puberty during growth hormone replacement therapy. *Archives of Endocrinology and Metabolism* 2016 60 596–600. (https://doi.org/10.1590/2359-39970000000096)
14. Cannarella R, Paganoni AJ, Cicolari S, Oleari R, Condorelli RA, La Vignera S, Cariboni A, Calogero AE & Magni P. Anti-Müllerian hormone, growth hormone, and insulin-like growth factor 1 modulate the migratory and secretory patterns of GnRH neurons. *International Journal of Molecular Sciences* 2021 22 2445. (https://doi.org/10.3390/ijms22052445)
15. Huh K, Nah WH, Xu Y, Park MJ & Gye MC. Effect of recombinant human growth hormone on the onset of puberty, Leidig cell differentiation, spermatogenesis and hypothalamic Kiss1 expression in immature male rats. *World Journal of Men's Health* 2021 39 381–388. (https://doi.org/10.5534/wjmh.200152)

Received in final form 2 July 2022
Accepted 1 August 2022

https://edm.bioscientifica.com/