Electrochemical aromatic C–H hydroxylation in continuous flow

Hao Long1,2,5, Tian-Sheng Chen1,5, Jinshuai Song3, Shaobin Zhu4 & Hai-Chao Xu1,2

The direct hydroxylation of arene C–H bonds is a highly sought-after transformation but remains an unsolved challenge due to the difficulty in efficient and regioselective C–H oxygenation and high reactivity of the phenolic products leading to overoxidation. Herein we report electrochemical C–H hydroxylation of arenes in continuous flow for the synthesis of phenols. The method is characterized by broad scope (compatible with arenes of diverse electronic properties), mild conditions without any catalysts or chemical oxidants, and excellent scalability as demonstrated by the continuous production of 1 mol (204 grams) of one of the phenol products.
Phenols are common structural units in natural products and pharmaceuticals and important synthetic intermediates. Phenol itself is one of the most important bulk chemicals and produced in a multimillion ton scale yearly from benzene through the three-step cumene process. The direct hydroxylation of arene C-H bonds is a straightforward and ideal approach to phenols but remains rather challenging, especially when sustainability is taken into consideration. Established transition metal-catalyzed arene C-H hydroxylation methods usually rely on directing groups to improved reactivity and site-selectivity (Fig. 1a). Non-directed methods have also been reported employing ion catalysis with a special peptide ligand (Fig. 1b, top) or under metal-free conditions with stoichiometric hazardous peroxides as the oxygen source (Fig. 1b, bottom). Oxidant-free conditions are attractive for synthesis because of improved atom economy, reduced cost, and attenuated safety issues associated with the use of stoichiometric chemical oxidants. In this direction, photocatalytic and photoelectrocatalytic methods have been disclosed for the direct hydroxylation of electron-neutral and -deficient arenes (Fig. 1c). In these reactions, a cobalt complex or photoelectrocatalyst is employed to facilitate H2 evolution obviating the need for sacrificial chemical oxidants. Limitations of these photochemical methods include incompatibility with electron-rich arenes, the difficulty for scale-up, and the need for UV light or large excess of LiClO4.

Organic electrosynthesis has long been recognized as a green synthetic tool and received tremendous renewed interest in recent years. A major hurdle for electrochemical C-H hydroxylation is that the phenolic products are much more readily oxidized than the starting arene, leading to overoxidation. However, it has been shown that the electrochemical arene hydroxylation with trifluoroacetic acid (TFA) as the oxygen donor to produce aryl trifluoroacetate intermediates followed by hydrolysis can attenuate the overoxidation issue (Fig. 1d, top). While this approach is promising, the established batch protocols are limited to few examples of electron-neutral and deficient arenes and often require divided cells and highly acidic solvents or co-solvents.

Electrochemical hydroxylation of arenes of diverse electronic properties (electron-rich, -neutral, and -deficient) is feasible and reducible overoxidation because of limited selectivity of our method allows efficient late-stage functionalization of natural products and drug molecules. In addition to its exceptionally broad scope, electrosynthesis requires no catalysts or chemical oxidants and is scalable as demonstrated by the continuous production of 1 mol (204 g) of one of the phenolic products.

Results

Reaction development. 1-Methoxy-4-(trifluoromethyl)benzene was chosen as a model substrate for reaction optimization (Table 1). Under the optimized conditions, the single-pass continuous-flow electrochemical microreactor contained a graphite anode, a Pt cathode, and a spacer with a thickness of 150 µm. A solution of 1 in tBuOMe/MeCN (1:1) containing TFA (2 equiv) and 2,6-lutidine (2 equiv) was pumped at 0.4 mL min−1 through the cell (operated at a constant current of 81 mA, 2.8 F mol−1) to afford the desired 1-methoxy-3-cyano-1-methylquinolinium ion in 98% yield with 98% arene retention.

Fig. 1 C-H hydroxylation of arenes. a Transition metal-catalyzed C-H hydroxylation with directing groups. b C-H hydroxylation employing peroxides. c Photocatalytic/electrophotocatalytic hydroxylation of arenes. d Electrochemical hydroxylation of arenes. e Electrochemical hydroxylation of arenes of in continuous flow (this work). DG directing group, QuCN+ 3-cyano-1-methylquinolinium ion, DDQ 2,3-dichloro-5,6-dicyanobenzoquinone, TFA trifluoroacetic acid.
phenol 2 in 83% yield (entry 1). While the use of pure MeCN as the solvent only caused a slight yield reduction (78% yield, entry 2), reaction in tBuOMe afforded only 8% yield of 2 (entry 3). Subsequent studies on the reaction scope with other substrates revealed that better results were generally obtained by employing the mixed solvent of tBuOMe/MeCN (1:1) than MeCN. Other bases such as pyridine (entry 4), Et3N (entry 5), or iPr2NEt (entry 6) were much less effective in promoting the formation of 2. These bases might compete with trifluoroacetate to react with 1 derived radical cation. In addition, the alkylamines were oxidized more readily than 1 leading to low conversion of 1. These results demonstrated the importance of 2,6-lutidine as a base, which was sterically hindered and oxidized at relatively high potential. Other acids such as MeCO2H (entry 7) and TIOH (entry 8) failed completely because of competitive oxidation of the acid and overoxidation of the aryl acetate product in the case of MeCO2H or low nucleophilicity of TIOH−. HBF4 was also not a suitable acid due to the lack of an oxygen atom donor (entry 9). The increase of the interelectrode distance to 250 μm resulted in dramatic yield loss (35% yield, entry 10). Conducting the reaction of 1 in a batch reactor led to the formation of 2 in 29% yield with 56% of 1 unrecovered after the pass of 2.8 F mol−1 of charge in 3.4 h (entry 11). Increasing the reaction time to 5 h to pass more charge (4.2 F mol−1) through the reaction solution increased the conversion but resulted in a lower yield of 15% (entry 12), indicating overoxidation of the aryl trifluoroacetate intermediate. These results showcased the advantage of electrosynthesis in continuous flow with a low residence time (<2 s).

Evaluation of substrate scope. We next evaluated the substrate scope of the relatively electron-rich arenes (Fig. 2). The electrochemical hydroxylation reaction was compatible with anisoles substituted at the 4-position with functionalities of various electronic properties such as electron-donating OMe (3), halogens (Cl, Br; 4 and 5) and electron-withdrawing COOH (6), CO2Me (7), CONMe (8), CONEt2 (9), and CN (10). In contrast, 1,3-dimethylbenzene failed completely and 4-methoxybenzotriazole afforded a low yield of 20% under Oseka’s conditions. Anisole derivatives bearing a substituent at the 2 or 3 position were also suitable substrates but afforded regioisomers (11–13). Pleasingly, most of the regioisomeric phenols in this study were separated by silica gel chromatography. Several trisubstituted benzenes (14–18) also participated in the electrochemical hydroxylation reaction. Chroman-4-one (19), benzoxynylenezene (20 and 21), and diaryl ethers (22–25) were also tolerated. Biphenyls (26–28), naphthalenes (29–31), 9-bromophenanthrene (32), and pyrene (33) reacted successfully. The reaction of 1,4-dibromo-2,3-dimethylbenzene (Ep2 = 2.13 V vs SCE) afforded the corresponding phenol 34 in 30% yield because of low conversion (46%), which was likely caused by competitive oxidation of 2,6-lutidine and the ether solvent. Benzene, which was oxidized at even higher potential (2.48 V vs SCE), failed to react. Hence these reaction conditions accommodated substrates with oxidation potentials ranging from about 1.3 V to about 2.1 V. Benzoheterocycles such as benzoazoles (36–38), benzimidazoles (39 and 40), benzothiazole (41), indazole (42), and quinolone (43) reacted regioselectively. The regioselectivity of the electrochemical hydroxylation reaction was similar to electrophilic aromatic substitutions and consistent with those observed for the reactions of arene radical cations.

The electrochemical hydroxylation reaction tolerated a host of common functional groups (Fig. 2), including alkene (44), alkyne (45), epoxide (46), free alcohol (47), alkyl tosylate (48), alkyl bromide (49), and Boc-protected aminoester (50). In addition, the method was applicable to the late-stage functionalization of complex nature products and drug molecules (51–58). To accommodate benzene and electron-deficient arenes, the electrolysis conditions were further investigated (Supplementary Table 2). It was found that the electrochemical hydroxylation of these more difficult arenes benefited from the use of a Pt anode under acidic conditions (3.5 equiv of TFA and 1 equiv of 2,6-lutidine) in MeCN. Pt was more resistant to degradation and deactivation than graphite at high potentials. This material is more expensive (about 200 USD for each cell) but is durable and can be reused for years. The acidic conditions helped cathodic H2 evolution to avoid unwanted cathodic reduction of the electron-deficient substrates and intermediates and ensured complete protonation of 2,6-lutidine to reduce its oxidative decomposition. Under these conditions (Fig. 3), the electrochemical method was...
Fig. 2 Reaction scope of electron-rich arenes. Regioisomers were not observed unless otherwise mentioned. Reaction conditions: 0.36 mmol of arene, graphite anode, Pt cathode, 52–98 mA, 0.4 mL min⁻¹. *Regioisomers separated by flash chromatography. Ts tosyl, Boc tert-butyloxycarbonyl, Bn benzyl, Ac acetyl.
Fig. 3 Reaction scope of electron-deficient arenes. Regioisomers were not observed unless otherwise mentioned. Reaction conditions: Pt cathode and anode, constant current = 61–173 mA, 0.3 mL min\(^{-1}\) (for each reactor), 0.5 mL min\(^{-1}\) (for each reactor), 0.1 M, 2.5 F mol\(^{-1}\), rt, 24 h.

Table 1: Reduction of benzene derivatives with equal amount of TFA and 2,6-lutidine added. Under these reaction conditions, 2,6-lutidine (3.5 equiv), 2,6-lutidine (1 equiv) MeCN; H\(_2\)O.

Fig. 4 Reaction scale-up employing 20 parallel reactors. Reaction conditions: graphite anode, Pt cathode, MeCN, constant current = 200 mA (for each reactor), 0.5 mL min\(^{-1}\) (for each reactor), 0.1 M, 2.5 F mol\(^{-1}\), rt, 24 h.

Mechanistic studies. The regioselectivity observed in our study is consistent with that reported for the reactions of arene radical cations with nucleophiles and can be predicted by the computed singly occupied molecular orbital (SOMO) of the corresponding arene radical cation\(^{55,56}\). As shown in Fig. 5a, the distribution of the SOMO of methyl 4-methoxybenzoate derived radical cation on the position ortho to the OMe group is much higher than the meta position, explaining the observed exclusive hydroxylation ortho to the OMe group to give 7. The SOMOs of 2-phenylbenzoxazole and 2-phenylbenzothiazole are delocalized throughout the skeletons with the distributions on C6 atoms being higher than other H-bearing carbon atoms. Experimentally, these heterocycles reacted mainly to give C6 hydroxylation products.

The oxidation potentials of compounds 1, 2, and the corresponding trifluoroacetate 71 were measured in MeCN to be 2.06 V, 1.43 V, 2.32 V (\(E_{p/2}\) vs SCE), respectively (Fig. 5b). The much lower oxidation potential of the phenol product 2 than 1 suggested the challenges in aromatic C–H hydroxylation. The increase of oxidation potential upon trifluoroacetolysis is essential for the success of the electrochemical C–H oxidation. Note that this potential gap did not prevent overoxidation over the hours-long electrolysis in a batch reactor (see Table 1, entries 11 and 12), showcasing the great synthetic potential of continuous-flow electrochemical technology.

A possible mechanism for electrochemical arene hydroxylation is shown in Fig. 5c. Anodic oxidation of the arene generates its corresponding radical cation, which reducts with trifluoroacetate to produce a cyclohexadienyl radical\(^{49,59}\). Further one-electron oxidation followed by proton loss generates the aryl trifluoroacetate intermediate, which has been observed experimentally (Supplementary Fig. 4). The aryl trifluoroacetate is hydrolyzed to give the final phenol product upon treating with H\(_2\)O during the workup. At the cathode, protons are reduced to H\(_2\). Since the electrochemical C–H trifluoroacetolysis process consumes protons, the concentration of free 2,6-lutidine increases with the increasing conversion of the arene under the reaction conditions with equal amount of TFA and 2,6-lutidine added. Under these conditions, 2,6-lutidine (\(E_{p/2} = 2.10 \text{ V vs SCE}\)) likely serves also as an overcharge protectant\(^{60}\).
In summary, we have developed an electrochemical method to achieve C(aryl)–H hydroxylation of arenes with diverse electronic properties without use any catalysts or chemical oxidants. The formation of aryl trifluoracetate intermediate in a continuous-flow electrochemical microreactor contributes to the success of the C–H hydroxylation process.

Methods

Representative procedure for the C–H hydroxylation of electron-rich arenes. The electrolysis was conducted using a flow electrolytic cell equipped with a graphite anode and a Pt cathode with the exposed surface area of 10 cm2 and inter-electrode distance of 150 μm (Supplementary Fig. 1). The solution containing arene substrate (0.045 M), TFA (2.0 equiv), 2,6-lutidine (2.0 equiv) in dry MeCN/BuOMe (1:1) was pushed using a syringe pump to pass through the flow electrolytic cell operated with a constant current in the range of 0.35–8 mA. The outlet solution was collected for 20 min (8 mL) and quenched with saturated NaHCO$_3$ and extracted with ethyl acetate, and concentrated under reduced pressure. The residue was chromatographed through silica gel eluting with ethyl acetate/hexanes or methanol/dichloromethane to give the product.

Representative procedure for C–H hydroxylation of benzene and electron-deficient arenes. The electrolysis was conducted using a flow electrolytic cell equipped with a Pt anode and a Pt cathode with the exposed surface area of 10 cm2 and inter-electrode distance of 150 μm (Supplementary Fig. 2). The solution containing arene substrate (0.06 M), TFA (2.0 equiv), 2,6-lutidine (0.36 mmol, 1.0 equiv) in dry MeCN was pushed using a syringe pump to pass through the flow electrolytic cell operated with a flow rate of 0.40 mL min$^{-1}$ and a constant current in the range of 52–98 mA. Note that a quick screening of the constant current was performed for each substrate to ensure a maximum yield. The outlet solution was collected for 20 min (8 mL) and quenched with saturated NaHCO$_3$ and extracted with ethyl acetate. To remove 2,6-lutidine, the organic extracts were treated with 2 N HCl, extracted with ethyl acetate, and concentrated under reduced pressure. The residue was chromatographed through silica gel eluting with ethyl acetate/hexanes or methanol/dichloromethane to give the product.

Data availability

The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition number 2163855. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. The data supporting the findings of this study are available within the article and its Supplementary Information files. Any further relevant data are available from the authors on request.

Received: 5 April 2022; Accepted: 22 June 2022; Published online: 08 July 2022

References

1. Sterckx, H., Morel, B. & Maes, B. U. W. Catalytic aerobic oxidation of C(sp3)–H bonds. Angew. Chem. Int. Ed. 58, 7946–7970 (2019).
2. Tan, X. et al. Rhoda-electrocatalyzed bimetallic C–H oxygenation by weak O-coordination. Angew. Chem. Int. Ed. 60, 13264–13270 (2021).
3. Masiagian, L. et al. C–H oxygenation reactions enabled by dual catalysis with electrogenerated hypervalent iodine species and ruthenium complexes. Angew. Chem. Int. Ed. 59, 3184–3189 (2020).
4. Thirunavukkarasu, V. S., Hubrich, J. & Ackermann, L. Ruthenium-catalyzed oxidative C(sp2)–H bond hydroxylation: site-selective C–O bond formation on benzamides. Org. Lett. 14, 4210–4213 (2012).
5. Zhang, Y.-H. & Yu, J.-Q. Pd(II)-catalyzed C–H hydroxylation of arenes with 1 atm O$_2$ or air. J. Am. Chem. Soc. 131, 16654–16655 (2009).
6. Li, Z. et al. A tautomer ligand enables directed C–H hydroxylation with molecular oxygen. Science 372, 1452 (2021).
7. Tian, C., Dhawa, U., Struwe, J. & Ackermann, L. Cobaltaelectro-catalyzed C–H acyloxylation. Chin. J. Chem. 37, 552–556 (2019).
8. Cheng, L. et al. Iron-catalyzed arene C–H hydroxylation. Science 374, 77–81 (2021).
9. Yuan, C. et al. Metal-free oxidation of aromatic carbon–hydrogen bonds through a reverse-rebound mechanism. Nature 499, 192–196 (2013).
10. Camello, A. M. et al. Computational and experimental studies of phthaloyl peroxide-mediated hydroxylation of arenes yield a more reactive derivative, 4,5-dichlorophthaloyl peroxide. J. Org. Chem. 80, 8084–8095 (2015).
11. Tanwar, L., Börgel, J. & Ritter, T. Synthesis of benzylic alcohols by C–H oxidation. J. Am. Chem. Soc. 141, 17983–17988 (2019).
12. Caron, S., Dugger, R. W., Ruggeri, S. G., Ragan, J. A. & Ripin, D. H. Large-scale oxidations in the pharmaceutical industry. Chem. Rev. 106, 2943–2989 (2006).
13. Zheng, Y.-W. et al. Photocatalytic hydrogen-evolution cross-couplings: benzene C–H amination and hydroxylation. J. Am. Chem. Soc. 138, 10080–10083 (2016).
14. Huang, H. & Lambert, T. H. Electrophotocatalytic C–H heterofunctionalization of arenes. Angew. Chem. Int. Ed. 60, 11163–11167 (2021).
15. Moeller, K. D. Using physical organic chemistry to shape the course of electrochemical reactions. Chem. Rev. 118, 4817–4833 (2018).
16. Gandeepan, P., Finger, L. H., Meyer, T. H. & Ackermann, L. 3d metallicaelectrocatalysis for resource economical syntheses. Chem. Soc. Rev. 49, 4254–4272 (2020).
Watts, K., Baker, A. & Wirth, T. Electrochemical synthesis in microreactors. Chem. Rev. 118, 4676–4705 (2018).

Ma, C.-y. et al. Redox catalysts in organic electrochemistry employing transition metal complexes as electrocatalysts. Sci. Bull. 66, 2412–2429 (2021).

Xiong, P. & Xu, H.-C. Chemistry with electrochemically generated N-centered radicals. Acc. Chem. Res. 52, 3339–3350 (2019).

Nutting, J. E., Raftere, M. & Stahl, S. Tetramethylpiperidine N-Oxyl (TEMPO), phthalimide N-Oxyl (PINO), and related N-Oxyl species: electrochemical properties and their use in electrocatalytic reactions. Chem. Rev. 118, 4834–4885 (2018).

Novais, L. F. T. et al. Electro-catalysis as an enabling technology for organic synthesis. Chem. Soc. Rev. 50, 7941–8002 (2021).

Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

Yuan, Y., Yang, J. & Lei, A. Recent advances in electrochemical oxidative cross-coupling with hydrogen evolution involving radicals. Chem. Soc. Rev. 50, 10508–10086 (2021).

Jiao, K.-J., Xing, Y.-K., Yang, Q.-L., Qiu, H. & Mei, T.-S. Site-selective C−H functionalization via synergistic use of electrochemistry and transition metal catalysis. Acc. Chem. Res. 53, 300–310 (2020).

Hilt, G. Basic strategies and types of applications in organic electrochemistry. ChemElectroChem 7, 395–405 (2020).

Fuchigami, T. & Inagi, S. Recent advances in electrochemical systems for selective fluorination of organic compounds. Acc. Chem. Res. 53, 322–334 (2020).

Viebe, A. et al. Electropolymerizing organic synthesis. Angew. Chem. Int. Ed. 57, 5594–5619 (2018).

Cheng, X. et al. Recent applications of homogeneous catalysis in electrochemical organic synthesis. CCS Chem. 4, 1120–1152 (2022).

Francke, R. & Little, R. D. Redox catalysis in organic electroosynthesis: basic principles and recent developments. Chem. Soc. Rev. 43, 2492–2521 (2014).

Jiang, Y., Xu, K. & Zeng, C. Use of electrochemistry in the synthesis of heterocyclic structures. Chem. Rev. 118, 4485–4540 (2018).

So, Y.-H., Becker, J. Y. & Miller, L. L. Hydroxylation and amidation of aromatic carboxyl compounds. J. Chem. Soc. Chem. Commun. 7, 262–263 (1975).

Blum, Z., Cederlin, E. & Nyberg, K. Studies on electrolytic substitution reactions. A. anodic trifluoroacetoximation of benzene and deactivated benzenes. Acc. Chem. Res. 29, 715–718 (1975).

Fujimoto, K. et al. Selective and one-pot formation of phenols by anodic oxidation. Tetrahedron 52, 3889–3896 (1996).

Kreß, R. P., Tadros, M. E., Hand, H. M., Cockerham, M. P. & Smith, E. K. Indirect hydroxylation of aromatic rings using electrochemical methods. J. Am. Chem. Soc. 98, 1889–1892 (1976).

Atoe, M., Tateno, H. & Matsumura, Y. Applications of flow microreactors in electrosynthetic processes. Chem. Rev. 118, 4541–4572 (2018).

Pletcher, D., Green, R. A. & Brown, R. C. D. Flow electrolysis cells for the synthetic organic chemistry laboratory. Chem. Rev. 118, 4573–4591 (2018).

Tanzoua, N., Ollievier, T. & Lam, K. Bridging lab and industry with flow electrochemistry. Science 363, 101720 (2020).

Noel, T., Cao, Y. & Laudadio, G. The fundamentals behind the use of flow reactors in electrochemistry. Acc. Chem. Res. 52, 2858–2869 (2019).

Elsherbini, M. & Wirth, T. Electrocyclic organic synthesis under flow conditions. Acc. Chem. Res. 52, 3287–3296 (2019).

Folgueiras-Amador, A. A., Philipps, K., Guilbaud, S., Poelakker, J. & Wirth, T. An easy-to-machine electrochemical flow microreactor: efficient synthesis of isodoinolone and flow functionalization. Angew. Chem. Int. Ed. 56, 15446–15450 (2017).

Laudadio, G. et al. Sulfonamide synthesis through electrochemical oxidative coupling of amines and thiols. J. Am. Chem. Soc. 141, 5664–5668 (2019).

Mo, Y. et al. Microrrodiostatic electrolysis for single-electron transfer redox-neutral reactions. Science 368, 1352 (2020).

Watts, K., Gattrell, W. & Wirth, T. A practical microreactor for electrochemistry in flow. Beilstein J. Org. Chem. 7, 1108–1114 (2011).

Oseka, M. et al. Electrochemical azidination of internal amines with primary amines. Chem. 7, 255–266 (2021).

Gütö, C., Steingrebe, A. & Waldvogel, S. R. Highly modular flow cell for electroorganic synthesis. Org. Process Res. Dev. 21, 771–778 (2017).

Watts, K., Baker, A. & Wirth, T. Electrochemical synthesis in microreactors. J. Flow. Chem. 4, 2–11 (2014).

Maljuric, S., Jud, W., Kappe, C. O. & Cantillo, D. Translating batch electrochemistry to single-pass continuous flow conditions: an organic flow protocol. J. Flow. Chem. 10, 181–190 (2020).

Xu, F., Qian, X.-Y., Li, Y.-J. & Xu, H.-C. Synthesis of 4H-1,3-benzoxazines via metal- and oxidizing reagent-free aromatic C−H oxygenation. Org. Lett. 19, 6332–6335 (2017).