저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.
Association between hemoglobin level and bone mineral density in Korean adults

2014년 7월

서울대학교 대학원
임상의과학전공
오윤환
A thesis of the Master’s degree

Association between hemoglobin level and bone mineral density in Korean adults

한국 성인에서 혈색소 수준과 골밀도 간의 연관성

July 2014

The Department of Clinical medical sciences

Seoul National University

College of Medicine

Yun Hwan Oh
한국 성인에서 혈색소 수준과 골밀도 간의 연관성

지도교수 조비룡

이 논문을 의학석사 학위논문으로 제출함

2014 년 6 월

서울대학교 대학원

임상의과학과

오윤환

오윤환의 의학석사 학위논문을 인준함

2014 년 8 월

위원 장 (인)

부위원장 (인)

위원 (인)
Association between hemoglobin level and bone mineral density
In Korean adults

by

Yun Hwan Oh

A thesis submitted to the Department of Clinical medical sciences in partial fulfillment of the requirements for the Degree of Master of Science in Clinical medical sciences at Seoul National University College of Medicine

August 2014

Approved by Thesis Committee:

Professor____________________Chairman
Professor____________________Vice chairman
Professor____________________
초 록

서론: 골밀도 감소 질환은 많은 사회적 비용을 소비할 수 있으며, 반혈은 그 유병률이 높은 질환이다. 본 연구는 국민건강영양조사 자료를 이용하여 성인에서 혈색소 수치와 골밀도 간의 연관성을 알아보고자 수행되었다.

방법: 국민건강영양조사(2008-2011)에 포함된 20세 이상 성인 중, 골밀도 증가를 위한 약제를 복용하거나 골밀도 감소를 일으키는 병성 질환 및 암에 이환한 사람을 제외하고 최종적으로 14,497명을 최종분석 대상자로 하였다. 복합표본설계자료임을 고려하여 통합 가중치를 포함한 통계적 처리를 하였다. 회귀분석을 이용하여 혈색소와 골밀도 간의 연관성을 확인하였고, 최소자승법을 통해 반혈 여부, 폐경 여부, 반혈 종류에 따른 그룹 간의 평균 골밀도를 비교하였다. 로지스틱 회귀분석을 통해 정상 혈색소 그룹 및 반혈 별 그룹에 따른 골다공증 또는 골감소증의 교차비를 확인하였다.

결과: 남성의 경우 단변량 선형 분석상 골밀도와 혈색소가 양의 상관관계가 있었고, 여성의 경우 음의 상관관계가 있었다. 다변량 분석시 나이, 체질량지수, 혈중 vitamin D 수준, 일일 칼슘 섭취, 섬유면, 소득수준, 교육수준, 수입, 신체활동 수준, 흡연, 음주 수준으로 보정을 하였으며, 여성의 경우 전신 및 요추 골밀도가 혈색소와 음의 상관관계를 보였으나, 남성의 경우는 단변량 분석과 달리 유의미한
상관관계를 보이지 않았다. 최소자승법을 통해 얻은 평균골밀도를
비혈 여부, 정상 혈색소 그룹 및 혈중 페리틴 수치에 따른 비혈 그
룹에 따라 ANCOVA를 통해 비교한 결과 결과 남성에서는 비혈 군
의 경우 정상 혈색소 군에 비해 평균골밀도가 높았고, 여성에서는
비혈군의 경우 정상 혈색소 군에 비교하여 평균골밀도가 높았다.
또한 여성에서 저페리틴 혈중이 동반된 비혈 군의 경우 정상 혈색
소 군 및 저페리틴 혈중 비동반 비혈 군에 비해 평균골밀도가 높
았다. 골 감소 질환의 교차비는 남성에서는 정상 혈색소 군에 비해
저페리틴 혈중 비혈 군이나 저페리틴 혈중 비동반 비혈 군 모두 유
의미한 결과를 보이지 않았으나, 여성에서는 저페리틴 혈중을 동반
한 비혈 군의 경우 정상혈색소 군에 비해 유의미하게 낮았다.

결론: 한국의 대표성 있는 성인 표본에서 남성의 경우 정상 혈색소
수준인 경우 비혈인 군에 비해 평균골밀도가 높았으며, 여성의 경
우 정상혈색소 수준에 비해 비혈인 군이 평균골밀도가 높았다. 또
한 저페리틴 혈중이 동반된 여성 비혈 군의 경우 정상혈색소 군이
나 저페리틴 혈중이 동반되지 않은 비혈 군에 비해 평균골밀도가
높았다.

주요어: 골밀도 혈색소, 비혈, 골다공증, 골감소증, 헤모글로빈
학번: 2012 - 22708
목 차

초록 .. i

목차 ... iii

표 및 그림 목록 .. iv

I. 서론 .. 1

II. 연구 방법 ... 3

1. 연구대상 ... 3

2. 자료 수집 방법 .. 6

3. 통계분석 ... 8

III. 연구 결과 ... 12

1. 연구 대상자의 기본적인 특성 ... 12

2. 혈색소와 골밀도 연관성에 대한 선형회귀 분석 결과 .. 16

3. 혈색소 수준에 따른 부위별 평균 골밀도 비교 .. 19

4. 혈색소 수준 및 골감소 질환과의 관련성 .. 26

IV. 고찰 .. 28

V. 결론 ... 37

참고문헌 ... 38

초록 (영문) .. 42
List of tables

Table 1. Baseline characteristics of study participants ... 14

Table 2. Multivariate regression coefficient between Hb level and BMD 18

Table 3. Least-squares mean of bone mineral density of whole body, femoral neck and lumbar spine in chronic disease population 34
List of figures

Figure1. Flow diagram of inclusion or exclusion of study participants5

Figure2A. Least-squares mean of bone mineral density of whole body,
femoral neck and lumbar spine...20

Figure2B. Least-squares mean of bone mineral density of whole body,
femoral neck and lumbar spine across anemia-serum ferritin categories.....22

Figure2C. Least-squares mean of bone mineral density of whole body,
femoral neck and lumbar spine across anemia-serum ferritin categories
and menopausal status ..25

Figure3. Odds ratios for osteopenia or osteoporosis across anemia-
ferritin categories ..27
I. 서 론

전세계적으로 인구의 고령화가 진행됨에 따라 골절의 가능성은 높이는 골다공증 및 골감소증의 유병률이 증가하고 있는 추세이다. 이는 전세계적으로 주요한 건강 이슈가 되고 있으며 관련한 여러 선행 연구들이 이루어져 골다공증의 발생 위험과 관련된 기본적인 대사 상태 및 다양한 위험 요소들이 알려졌다. 고령, 저체중, 낮은 신체활동, 이상지질혈증이 골밀도 감소와 연관된 요소로 잘 알려져 있으며2-4) 그 이외 스테로이드제의 복용이나 파움, 흡연 등도 골밀도 저하와 연관된 것으로 알려져 있다5). 이러한 위험요소에 따라 골밀도가 감소할 것으로 예상되는 대상 군을 선정하여 예방 및 치료를 하는 것은 골밀도 감소와 그에 따른 골절을 방지하는데 필수적이라 할 수 있다.

빈혈은 그 유병률이 높은 질환으로 2011년도 국민건강영양조사 자료를 이용하여 보건복지부 질병 관리 본부에서 작성한 ‘2011 국민건강통계’6)에 따르면 만 10세 이상 남자의 경우 유병률은 2.4%, 여자의 경우 12.7%였으며 70세 이상 남녀 유병률은 각각 15.3%, 17.8%이었다. 낮은 혈색소 수치는 그 자체가 건강 위해
요소이기도 하며 다양한 질환의 위험요소로 알려져 있다. 이전의 연구에 따르면 저산소증이 골다공증의 위험요소로 알려져 있으며7-9) 검상절혈구 변형증, 만성폐쇄성폐질환, 염증성장질환, 만성 신질환 등 특정한 질환을 가진 환자군에서 혈색소 수치와 골밀도 간에 양의 상관관계가 있다는10-13) 연구 결과도 보고된 바 있다. 또한 최근 고령의 폐경기 여성을 대상으로 한 연구는 빈혈이 낮은 골밀도의 독립적 위험요소라 보고 한 바 있으며14) 실험과 골밀도 감소의 관계에 대한 혈액학적 병인론에 입각한 가설15) 또한 존재한다. 고령자 혹은 특정 질환에 이환된 환자군을 대상으로 혈색소 수치와 골밀도 간의 상관관계를 알고자 했던 연구는 이전에 있었으나16,17) 일반 인구를 대상으로 하여 혈색소 수치와 골밀도 간의 상관관계에 대해서 밝힌 연구는 드물며 또한 이중에너지 X-선 흡수방법(Dual Energy X-ray Absorptionmetry, DXA)을 사용하여 골밀도를 측정하고 연구에 적용한 경우 또한 제한적이다.

이 연구에서 우리는 제4기 및 제5기 국민건강영양조사 자료를 바탕으로 20세 이상 남성과 여성에서 혈색소 수준과 골밀도 간의 상관관계를 다양한 분석 방법을 통해 확인하고자 한다.
Ⅱ. 방법

1. 연구대상

본 연구 대상은 제4기 및 제5기의 국민건강영양조사(2008-2011)의 원시자료를 바탕으로 선정하였다. 국민건강영양조사는 보건복지부 질병관리본부에서 매년 주기로 시행하는 전국 규모의 단면 조사(cross-sectional survey)이다. 전국시도 200여 곳에서 가구 단위를 기본으로 지역, 연령, 성별에 따라 대상자를 계층화하여 확률적으로 선택하도록 고안되어 전국민 표본화가 수행된 자료로, 표본은 전국을 대표할 수 있도록 계층화하여 추출되는데 특히 제4기와 5기에에는 각 연도별로 유사한 표본이 뽑히도록 순환표본설계방식(rolling survey sampling)을 사용하였다. 국민건강영양조사는 전국적인 규모의 건강 및 영양조사로서 건강조사, 영양조사, 검진조사로 구성되어 있으며, 검진조사로서 골밀도 검사가 도입된 것은 제4기 2차년도인 2008년부터이다. 본 연구는 골밀도 조사가 이루어진 제4기 2차년도(2008년 7월부터), 3차년도(2009년), 제5기 1차년도(2010년) 및 2차년도(2011년 5월까지) 조사 참여자를 대상으로 하였다. 최초 선정된
연구대상자는 혈액검사 및 DXA를 통해 골밀도를 측정한 20세 이상인 남성 7576 명과 여성 9806 명이었으며 이 집단으로부터 현재 골다공증 약을 복용 중인 환자 및 여성호르몬을 사용 중인 자 총 1,235 명을 제외하였으며 추가적으로 골 대사에 영향을 미치는 만성 신부전, 간경화, 당뇨, 갑상선 질환, 류마티스성 관절염, 기타 모든 종류의 암에 유병 된 1,650명을 제외하였다. 이에 남녀 총 14,497명이 연구에 포함되었으며 그 중 남성은 6,824명, 여성은 7,673명이었다. (Figure1.)
Figure 1. Flow diagram of inclusion or exclusion of study participants

Total participants in the KNHANES IV, V *

- Age under 20
- Participants who did not receive DXA
- Missing Value (Hb) (n= 797 excluded)

Participans (N= 17,382 Male= 7,576 Female= 9,806)

Exclusion criteria
Using medications for osteoporosis or hormone replacement.
(n= 1,235)
Conditions affecting bone metabolism, including chronic renal failure, liver cirrhosis, diabetes mellitus, thyroid disease, rheumatoid arthritis, and all types of cancer
(n= 1,650)

Final participants (N= 14,497 Male 6,824 Female 7,673)

* 2008-2011 The Fourth & The Fifth Korean National Health and Nutrition Examination.
2. 자료 수집 방법

연구 대상자의 인구학적 요소나 건강행동에 대한 데이터는 숙련된 면담자를 통한 개인 면담을 통해 수집되었다. 인구학적 변수는 연령, 성별, 최종학력, 월수입 등을 포함한다. 최종학력은 초등학교 졸업 이하, 중학교 졸업 또는 고등학교 졸업, 대학교 졸업 이상으로 분류하였다. 월수입은 가구 균등화 소득으로 환산하여 적용하였다. 건강행태 요소는 흡연 여부, 알코올 섭취 정도, 신체 활동 정도로 구성되어 있으며 고위험 음주자는 남성의 경우 주 2회 이상, 흡당 7잔이상 섭취하는 경우, 여성은 흡당 5잔 이상 섭취하는 경우로 정의하였다. 신체활동 정도는 한국어판 International Physical Activity Questionnaire, IPAQ^{18}을 통해 산정하였고 신진대사 해당치 (Metabolic Equivalent of Task - minute per week = MET - min per week) 로 정량화 하였으며 각각 ‘낮음’ (<600 MET - minutes per week), ‘중간 정도’ (≥600 to <3000 MET - minutes per week), ‘높음’ (≥3000 MET - minutes per week)으로 나누어 분류하였다. 칼슘식사섭취량 (mg/day) 을 평가하기 위해서 24시간 회상법이 사용되었다. 신체계측 요소인 신장 (cm) 과 체중 (kg) 은 0.1 cm와 0.1 kg까지
측정되었고, 실측치를 이용하여 체질량지수 (body mass index, BMI)를 산출하였다. BMI는 국민건강영양조사를 바탕으로 하여 아시아 태평양 지역 비만분류 기준에 따라 저체중군 (18.5 kg/m² 미만), 정상군 (18.5 ~ 25 kg/m²), 비만군 (25 kg/m² 이상)의 3가지로 분류하였다.

연구대상자들의 골밀도 (bone mineral density, BMD)는 이중에너지 방사선 측정법 (dual X-ray absorbtionmetry, DXA)으로 측정되었다. 이를 위해 Hologic 모델의 기기 (DISCOVERY QDR4500W, HologicInc, Bedford, MA, USA)가 사용되었다. 골밀도 검사는 요추 (1-4번)와 측추 대퇴골에서 시행하였다. 골밀도 검사 방법은 정확한 데이터를 얻기 위해 DXA법을 사용하였다. 요추의 골밀도는 요추 1번에서 요추 4번까지 골밀도를 측정하여 평균을 내어 산출하였다. 측정 전에 기기 제조사에서 제공된 모형 (phantom)으로 정도 관리를 수행하였고, 기기의 정밀도에 대해서는 무작위로 선정된 30명의 골밀도를 2회 측정하여 최소 오차범위 (요추 1.9%, 대퇴골 전체, 1.8%, 대퇴골 경부 2.5%)를 유지하였다. 골다공증 및 골감소증 여부를 평가하기 위해 WHO의 T-score criteria에 따라 골밀도 검사 상 T-score ≥ -1인 경우 정상, -2.5 < T-score < -1.0 경우
골감소증, T-score ≤ -2.5인 경우 골다공증으로 구분하였다. 세계 임상 골밀도 학회 (International society for clinical densitometry, ISCD)의 권고안에 따라, 세 검진부위 (요추, 대퇴골 전체, 대퇴골 경부) 중 가장 낮은 T-값을 골다공증 진단기준으로 적용하였다. 이 경우 최대 골밀도의 국내 기준치가 정립되지 않아 아시아 (일본)의 최대 골밀도를 기준으로 산출하였다 20).

혈색소 (g/dL) 및 혈중 펌리틴 (ng/mL) 수준은 조사 기간 중 함께 시행 된 혈액검사를 통하여 결과를 얻었다. 분혈은 World Health Organization (WHO) 진단 기준에 따라 남성 혈색소 13g/dL 미만, 여성 12g/dL 미만으로 정의하였다 21). 체내 철분 결핍 상태의 기준은 혈중 펌리틴 수준이 남, 여 모두 15ng/mL 미만인 경우로 정하였으며 정상 상한 측는 남자 200ng/mL, 여자 150ng/mL로 정의하였다 22). 혈중 비타민 D (ng/mL) 농도는 γ -counter (1470 Wizard; PerkinElmer, Turku, Finland) 를 사용하는 radioimmunoassay (RIA) kit (DiaSorin Inc., Stillwater, MN) 에 의해 측정되었다.

3. 통계분석

본 연구에서는 연구 대상자의 일반적 특성을 평균과 표준오차로
제시하였고, 혈색소와 골밀도 간의 산형적인 상관 관계를 확인하기 위해 단변량 분석 및 다변량 산형 회귀분석을 시행하였다. 다변량 분석 시행 시 연령, 체질량지수(Body Mass Index, BMI), 칼슘섭취량, 혈중 비타민 D 농도 등의 연속변수와 교육수준, 수입, 흡연, 음주, 신체활동 등의 범주형 변수들을 보정하여 분석하였다. 또한 여성의 경우 폐경의 영향을 보기 위하여 이를 범주화 변수로 설정하여 보정하였다. 다변량 분석 시 포함되는 변수들간의 다중공선성을 여부를 확인하기 위하여 분산팽창계수(Variance inflation factor, VIF)가 계산되었다.

추가적으로 혈색소를 연속 변수로서가 아닌 임상적으로 유의미한 두 수준의 그룹(비혈 군 및 정상 군)으로 나누어 각각의 군에 해당하는 혈색소 수준에 따라 부위별 평균 골밀도에 유의미한 차이가 있는지를 비교해 보았다. 각 부위의 평균 골밀도는 최소 자승법(Least square means, LSM)을 통해 산출, 비교하였다. 비혈 군과 정상 군 각각의 LSM을 구하였고 이 과정에서 연령, 체질량지수, 칼슘섭취량, 혈중 비타민 D 농도, 교육수준, 수입, 흡연, 음주, 신체활동을 보정하였다. 상기의 분석에 이어 추가적으로 폐경 여부 및 상술한 혈청 페리틴 수치에 따른 영향을 분석하기 위해 하위 그룹을 나누어 LSM을 비교하였다. 각 그룹 간의 평균
골밀도의 차이를 비교하기 위해 t-test 및 ANCOVA를 시행하였다.

마지막으로 상술했던 바와 같이 연구대상자를 혈색소가 임상적 의미를 지니는 수준을 기준으로 두 그룹(빈혈 군 및 정상 혈색소 군)으로 나누어, 임상적으로 주의를 기울여야 할 필요가 있는 골밀도 수준이라 할 수 있는 골다공증 혹은 골감소증 소견의 골밀도 수준과 관련이 있는지 여부를 분석해 보았다. 즉, 임상적으로 빈혈에 해당하는 수준의 낮은 혈색소수준이 골다공증이나 골감소증과 같이 임상적으로 유의미한 수준의 골밀도 감소와 관련이 있는지를 파악하고자 하였다. 이를 위해 다변량 로지스틱 회귀분석법을 이용하여 교차비(odds ratio, OR) 및 해당 교차비의 95% 신뢰구간(confidence Interval, CI)을 확인하였다.

독립변수로서 빈혈 군은 빈혈의 병인에 따라 골대사에 미치는 영향에 차이가 있을 가능성을 고려하여, 혈중 페리틴 수준에 따라 낮은 혈중 페리틴 수치를 지닌 빈혈 군(철결핍성 빈혈 군), 정상이거나 높은 혈중 페리틴 수치를 지닌 빈혈 군(비철결핍성 빈혈 군)으로 나누어 분석하였다.

국민건강영양조사의 자료는 표본의 대표성 및 추정의 정확성을 향상을 위해 복합표본설계방법인 단단계층화집락확률 추출법을
통해 얻어진 자료이다. 이에 단순임의표본설계 자료를 이용한 분석과 달리 분석 과정에 가중치(\text{wt}_{\text{itvex}}, \text{wt}_{\text{ntr}} 등), 층화 변수(\text{kstrata}, 집락 변수(\text{psu})를 지정하는 과정이 포함되었다. 또한 골밀도 검사가 포함된 국민건강영양조사 2008년부터 2011년까지의 자료 통합 시 ‘국민건강영양조사 원시자료 이용지침서’ 에 따라 통합가중치를 산출하여 적용하였다.

모든 통계학적 분석은 STATA 12.1 (Stata Corp., College Station, TX, USA) 프로그램을 통해 수행하였으며 하기 보고된 모든 결과들의 \(P\)-값은 양측성이며 유의수준은 0.05 미만으로 하였다.
Ⅲ. 연구 결과

1. 연구 대상자의 기본적인 특성

총 14,497명이 연구 대상자로 선정되었고 평균연령은 각각 남성 47.7 ± 15.6세, 여성 46.0 ± 15.5세였으며 평균 혈색소 농도는 각각 남성 15.2 ± 1.1g/dL, 여성 12.9 ± 1 g/dL였다. 평균 체질량 지수는 남성 23.9 ± 3.1 kg/m², 여성 23.2 ± 3.4 kg/m² 이었다. 교육 수준은 초등학교 졸업, 중고등학교 졸업, 대졸 이상의 수준에서 남녀 모두 중고등학교 졸업 수준의 비율이 각각 남성 48.3%, 여성 45.3%로 가장 많은 비율을 차지하고 있었다. 흡연자는 남성 43.4%, 여성이 6.1%로 남성이 여성에 비해 월등히 많은 흡연자 비율을 보였다. 음주에 있어서도 고위험 음주에 해당하는 비율이 남성 21.62%, 여성 5.0%로 고위험 음주를 하는 남성의 비율이 여성의 비율에 비해 높게 나타났다. 신체활동 부분에 있어서는 중등도로 신체활동을 하는 비율이 남녀 각각 41.1%, 40.8%로 가장 높은 비율을 나타냈다. 일일 평균 칼슘식사섭취량은 남성 566.8 ± 353.6 mg/day, 여성 446.9 ± 338.2 mg/day이었다. 평균 혈중 비타민 D 농도는 남성 20.0 ± 7.0 ng/mL, 여성 16.9 ± 6.28 ng/mL로 남성이 다소 높게 나타났으며
평균 혈색소는 남성 15.2 ± 1.1mg/dL, 여성 12.9 ± 1.1mg/dL로 확인되었다. 비혈에 유병율은 남성 중 221명 (3.2%), 여성 1253명 (16.3%)로 여성이 더 많은 양상이었으며, 그 중에서도 남성의 경우 저페리틴 혈증이 동반된 비혈은 3.2%중 0.64%에 불과하였으나 여성의 경우 저페리틴 혈증이 동반된 비혈이 16.3% 중 9.34%를 차지하고 있었다. 남성 중 2517명(36.9%) 골감소증, 290명(4.3%)이 골다공증에 이환 되어 있었으며 여성의 2982명(38.8%)이 골감소증, 1104명(14.3%)이 골다공증에 이환 되어 있었다. (Table1)
	Male	Female	Total Population			
	(n = 6824)	(n = 7673)	(n = 14497)			
Age, mean ± SE, years	47.7 ± 15.6	46.0 ± 15.5	46.8 ± 15.5			
Height, mean ± SE, cm	169.9 ± 6.5	157.1 ± 6.4	163.1 ± 9.1			
Weight, mean ± SE, kg	69.3 ± 10.8	57.1 ± 8.9	62.8 ± 11.6			
Body mass index, mean ± SE, kg/m²	23.9 ± 3.1	23.2 ± 3.4	23.5 ± 3.3			
Education, n (%)						
≤ Elementry	1111(16.4)	1997(26.2)	3108 (21.5)			
Middle/High	3274(48.3)	3457(45.3)	6731 (46.7)			
College ≤	2394(35.1)	2173(28.5)	4567 (31.7)			
Household income *, n (%)						
Quartile 1 (low)	1090(16.2)	1375(18.1)	2465 (17.2)			
Quartile 2	1694(25.1)	1908(25.2)	3602 (25.1)			
Quartile 3	2000(29.7)	2189(28.8)	4189 (29.2)			
Quartile 4 (high)	1954(29.0)	2108(27.8)	4062 (28.3)			
Smoking, n (%)						
Never	2365 (34.9)	6889(90.3)	9254 (64.2)			
Past	1484 (21.9)	275(3.6)	1759 (12.2)			
Current	2938 (43.4)	462(6.1)	3400 (23.6)			
Alcohol use, n (%)						
No	339(4.9)	1358 (17.8)	1697 (14.5)			
Moderate	4983(73.39)	5891 (77.2)	10874 (74.2)			
High risk†	1468(21.62)	383 (5.0)	1851 (11.2)			
Physical activity‡, n (%)						
Low	1706(25.1)	2729(35.8)	4435 (30.8)			
Moderate	2789(41.1)	3103(40.8)	5892 (40.9)			
High	2283(33.7)	1779(23.4)	4062 (28.2)			
Dietary Calcium intake, mg/day	566.8 ± 353.6	446.9 ± 338.2	500.2 ± 350.2			
	Plasma vitamin D, mean ± SE, ng/mL	Alkaline phosphatase	Hemoglobin, mean ± SE, mg/dL	Anemia*, n (%)	Bone mineral density (BMD)	BMD category§, n (%)
------------------	-------------------------------------	----------------------	-----------------------------	-----------------	---------------------------	---------------------
	20.0 ± 7.0	232.2 ± 64.7	15.2 ± 1.1	221 (3.2)	Whole body BMD, mean ± SE, g/cm²	Osteopenia
	16.9 ± 6.2	210.9 ± 71.6	12.9 ± 1.1	1253 (16.3)	1.18 ± 0.11	2517 (36.9)
	18.4 ± 6.8	220.9 ± 69.2	13.9 ± 1.5	1474 (10.17)	1.09 ± 0.12	2982 (38.8)
Anemia* with low serum ferritin*	44 (0.64)	220.9 ± 69.2	13.9 ± 1.5	717 (9.34)	0.80 ± 0.13	1104 (14.3)
Anemia* without low serum ferritin	177 (2.59)	220.9 ± 69.2	13.9 ± 1.5	713 (4.92)	0.96 ± 0.13	1394 (9.6)
					0.91 ± 0.15	2833 (36.9)
					0.93 ± 0.15	2833 (36.9)

Data represented as mean ± standard error (SE) or number (%)

* House hold income
† Defined as consuming more than 7 standard alcoholic drinks at one time more than twice a week.
‡ Defined as low (<600 MET-minutes per week), moderate (≥600 to <3000 MET-minutes per week), and high (≥3000 MET-minutes per week) levels of physical activity.
∴ Low serum ferritin: serum ferritin <15 ng/mL
§ Prevalence of osteopenia or osteoporosis were calculated using both WHO T-score of the lumbar spine and femoral neck (−2.5 < T-score < −1 and T-score ≤ −2.5, respectively).
¥ Anemia: male<13mg/dL, female <12mg/dL
2. 혈색소와 골밀도 연관성에 대한 선형회귀 분석

결과

남성과 여성에서 혈색소 수치와 골밀도 간의 관계에 대해 각각을 연속변수로 파악하여 단변량 분석 및 다변량 선형회귀분석을 시행하여 Table2의 결과를 얻을 수 있었다. 다변량 분석 모델의 경우 분석을 시행하기 전 다중공선성을 확인하였으며, 다중공선성은 없는 것으로 확인되었다(VIF=2.3). 남성의 경우 단변량 분석 시 혈색소 수치와 전신 골밀도, 대퇴골두골밀도, 요추 골밀도 수치는 양의 상관관계를 보이고 있으나(\(\beta \pm SE, P\ value: 0.006 \pm 0.001, P<0.001; 0.022 \pm 0.001, P<0.001; 0.015 \pm 0.001, P<0.001\)) 다변량 분석 시에는 통계적으로 유의미한 상관 관계를 보이지 않았다. 여성의 경우 단변량 분석에서 혈색소 수치와 골밀도 수치 간 음의 상관관계를 보였으나(\(\beta \pm SE, P\ value:-0.009 \pm 0.001, P<0.001; -0.002 \pm 0.001, 0.043; -0.008 \pm 0.001, P<0.001\)) 다변량 분석 시에는 전신 골밀도 및 요추 골밀도 만이 통계적으로 유의한 음의 상관관계를 보였다(\(\beta \pm SE, P; -0.005 \pm 0.001, <0.001; -0.003 \pm 0.001, 0.031\). 폐경 여부가 미치는 영향을 확인하기 위해 폐경 군과 비폐경 군의 하위그룹 분석을 시행하였고, 그 결과 다변량 분석 시 전신 골밀도 수치와
혈색소 수치간 유의미한 음의 상관 관계가 존재하는 것을 확인할 수 있었다. (β ± SE, P value; -0.007±0.002, 0.011, -0.005±0.001, 0.001) 페경 전의 경우에는 전신 골밀도(-0.005±0.001, 0.001)와 더불어 요추 골밀도의 경우도 음의 상관관계를 보였다. (−0.004±0.002, 0.021)
Table 2: Multivariate regression coefficient between Hb level and BMD

	Whole body BMD	Femoral neck BMD	Lumbar spine BMD			
	β ± SE*	P-value	β ± SE*	P-value	β ± SE*	P-value
Male						
Model 1'	0.006±0.001	<0.001	0.022±0.001	<0.001	0.015±0.001	<0.001
Model 2	-0.002±0.001	0.150	-0.002±0.001	0.907	0.003±0.001	0.116
Female						
Model 1	-0.009±0.001	<0.001	-0.002±0.001	0.043	-0.008±0.001	<0.001
Model 2	-0.005±0.001	<0.001	-0.000±0.001	0.745	-0.003±0.001	0.031
Postmenopause						
Model 1	0.002±0.003	0.431	0.011±0.002	<0.001	0.001±0.002	0.576
Model 2	-0.007±0.002	0.011	0.001±0.002	0.945	-0.001±0.002	0.645
Premenopause						
Model 1	-0.004±0.001	0.013	0.002±0.001	0.099	-0.001±0.001	0.290
Model 2	-0.005±0.001	0.001	-0.000±0.001	0.620	-0.004±0.001	0.021

Abbreviation: Hb hemoglobin, BMD bone mineral density, β β–coefficient, SE standard error

* β and SE were calculated by using linear regression analysis.

† Model 1: univariate model

‡ Model 2: Adjusted for age, smoking, alcohol, physical activity, income, education, calcium intake, serum vitamin D level, and BMI (in women, additionally adjusted for menopausal status)
3. 혈색소 수준에 따른 부위별 평균 골밀도 비교

혈색소와 골밀도 간의 관계는 다변량 선형 회귀분석을 통해 제한적으로 확인되었으며 이에 추가적인 분석을 시행하기 위해 혈색소를 연속 변수로서가 아닌 구간을 지닌 범주화 변수로 설정해 분석을 시행하였다. 혈색소의 구간을 나누는 기준은 임상적으로 의미가 있는 비혈의 기준을 선택하였으며, 각각의 혈색소 군에 해당하는 연구대상자의 평균 골밀도를 서로 비교해 보았다.

Figure 2A는 비혈 여부에 따른 각 부위의 평균 골밀도를 비교한 그래프이다. 남녀 모두 정상 혈색소 군과 비혈 군 사이에 유의미한 평균 골밀도의 차이를 보였다. 다만 남성의 경우 정상 혈색소 군의 전신, 대퇴골두, 요추의 평균 골밀도가 비혈 군의 평균 골밀도에 비해 통계적으로 유의하게 높았던 반면, 여성의 경우 그와 반대로 전신, 대퇴골두, 요추의 평균 골밀도가 정상 혈색소 군일 때 비혈 군에 비해 통계적으로 유의미하게 낮은 결과를 보였다.
Figure 2A. Least-squares mean of bone mineral density of whole body, femoral neck and lumbar spine

Least-square means were adjusted for age, smoking, alcohol, physical activity, income, education, calcium intake, serum vitamin D level, and BMI.

The bars from left to right are categories of anemia status: normal and anemia.
남성과 여성에서 평혈 여부에 따라 상반되는 골밀도 양상이 확인되어 이에 대한 추가적인 분석을 시행하였다. 평혈의 병인론에 다양한 점을 고려하여 평혈 군을 두 그룹으로 나누었다. 평혈에 해당하는 혈색소 수준과 함께 저페리틴 혈증이 동반된 경우를 철결핍성 평혈 군으로 정의하였고, 평혈에 해당하는 혈색소 수준이면서 저페리틴 혈증이 동반되지 않은 경우를 만성결환으로 인한 평혈 및 그 외의 요인으로 인한 평혈 군으로 정의하였다. 정상 혈색소군, 저페리틴 혈증을 동반한 평혈 군, 저페리틴 혈증을 동반하지 않은 평혈 군으로 구성된 총 세 군에 따른 각 부위별 평균 골밀도를 비교하여 Figure 2B를 작성하였다. 남성의 경우 철결핍성 평혈 군이나 비철결핍성 평혈 군이 정상 혈색소 군에 비해 전신 골밀도, 대퇴골두 골밀도, 요추 골밀도에 있어서 유의미하게 낮은 평균 골밀도를 보였으며, 여성의 경우 철결핍성 평혈 군의 경우 모든 부위의 평균 골밀도가 정상 혈색소 군이나 비철결핍성 평혈 군의 평균 골밀도에 비해 오히려 높은 결과를 보였다.
Figure 2B. Least-squares mean of bone mineral density of whole body, femoral neck and lumbar spine across anemia-serum ferritin categories. Least-square means were adjusted for age, smoking, alcohol, physical activity, income, education, calcium intake, serum vitamin D level, and BMI.
여성의 경우 철결핍성 빈혈이라 할지라도 폐경 전과 폐경 후의 철결핍성 빈혈의 병인이 일반적으로 다른 것을 고려하여 폐경 여부에 따른 하위그룹 분석을 시행하였다. (Figure 2C) 폐경 전 여성들만을 보았을 때 전신의 평균 골밀도에 그룹간 차이가 있었으나 각 그룹 간 골밀도의 차이는 통계적으로 유의미한 정도는 아니었다. 통계적으로 유의미한 정도는 아니었지만 정상 혈색소 군이 가장 낮은 전신 평균 골밀도를 보였고 저페리틴 혈중을 동반하지 않은 빈혈군에서 가장 높은 평균 골밀도를 보였다. 대퇴골두 및 요추 골밀도의 경우 저페리틴 혈증을 동반한 빈혈(철결핍성 빈혈) 군이 가장 높은 평균 골밀도를 보였으나 이 역시 모두 통계적으로 유의미하지는 않았다.

폐경 후 여성들만을 대상으로 하였을 때 정상 혈색소 군과 비철결핍성 빈혈 군 간의 그룹간 평균 골밀도는 전신, 대퇴골두, 요추 골밀도에서 모두 유의미한 차이를 보였다. 이 때 비철결핍성 빈혈의 경우 세 부위의 평균 골밀도가 정상 혈색소 군에 비해 높았다. 그러나 정상 혈색소 군과 철결핍성 빈혈 군, 철결핍성 빈혈 군과 비철결핍성 빈혈 군의 사이에는 뚜렷한 평균 골밀도의 차이가 확인되지 않았다. 폐경 여성 중 철결핍성 빈혈 군의 경우 통계적으로 유의미하지는 않았지만 다른 군에 비해 평균 골밀도가
높은 양상이었으며, 대퇴골두 평균 골밀도는 정상 혈색소 군에 비해 유의미하게 높은 양상을 보였다.
Figure 2C. Least-squares mean of bone mineral density of whole body, femoral neck and lumbar spine across anemia-serum ferritin categories and menopausal status

Least-square means were adjusted for age, smoking, alcohol, physical activity, income, education, calcium intake, serum vitamin D level, and BMI.
4. 혈색소의 임상적 수준과 골감소 질환과의 관련성.

앞서서는 혈색소 수준을 임상적 의미를 지닌 비혈의 기준을 적용하여 그룹화하여 추가 분석하였다. 이에 결과 변수인 골밀도 또한 임상적 기준을 적용하여 골다공중 혹은 골감소증 수준의 골밀도 그룹과 정상 골밀도 수준의 그룹으로 나누어, 혈색소 수준과 혈중 페리틴 수치(저페리틴 혈중이 동반된 비혈 그룹, 저페리틴 혈중이 동반되지 않은 비혈그룹, 정상 그룹)에 따른 골밀도 수준(골다공중 또는 골감소증 그룹 또는 정상 골밀도 그룹)을 다변량 로지스틱 회귀분석을 통해 교차비를 구하여 분석하였다.

Figure 3은 정상 혈색소 군과 낮은 혈중 페리틴 수준이 동반된 비혈군, 혈중 페리틴 수준이 낮지 않은 비혈군의 골다공중 또는 골감소증에 대한 교차비를 보여주는 그래프로 남성의 경우 각각의 비혈 군들에서 정상 혈색소 군에 비해 교차비가 증가하기는 하였으나 통계적으로 유의미하지는 않았다. 여성의 경우 혈중 페리틴 농도가 낮은 비혈 군의 경우 정상 혈색소 군에 비해 통계적으로 유의하게 낮은 교차비를 보였다. (OR, CI: 0.78, 0.63 – 0.97)
Figure 3. Odds ratios for osteopenia or osteoporosis across anemia-ferritin categories

‡ Low serum ferritin: serum ferritin <15 ng/mL

† aOR(95% CI) were calculated by using multivariate logistic regressions after adjusting for age, BMI, smoking, alcohol, physical activity, income, education, calcium intake, and serum vitamin D level (in women, additionally adjusting menopausal status before stratification)
본 연구는 혈색소와 골밀도 간의 상관 관계를 다양한 방법으로
분석하고자 시도하고자 한 연구이다. 혈색소와 골밀도를 각각
연속형 변수로 설정하여 시행한 다변량 선형 분석 하에서는 여성의
전신골밀도와 요추 골밀도가 혈색소와 골밀도 간에 음의 상관
관계가 있음을 보였다.

혈색소와 골밀도 간의 상관 관계를 파악하고자 추가적으로
시행한 분석에서는 혈색소를 임상적 기준에 근거해 빈혈 군과 정상
혈색소 군으로 카테고리화 하여, 각각의 혈색소 군의 DXA 측정
부위(전신, 대퇴골두, 요추) 평균 골밀도를 최소자승법을 통해
추출하여 비교하였다. 해당 분석 하에서 남성의 경우 빈혈에
해당하는 혈색소 수준 그룹의 평균 골밀도가 정상 혈색소 그룹에
비해 상대적으로 낮았고, 여성의 경우 빈혈 그룹의 평균 골밀도가
정상 혈색소 군과 비교해 오히려 높은 결과가 확인 되었다.

결과 변수인 골밀도를 연속 변수가 아닌 임상적 의미를 지닌
카테고리(골감소증 및 골다공증에 합당한 골밀도를 지닌 그룹과
정상 골밀도를 지닌 그룹)로 설정해 시행한 로지스틱 회귀분석
상에서는 저페리틴 혈증이 동반된 여성 빈혈 환자의 경우에만 정상
혈색소군에 비해 유의미하게 골다공증이나 골감소증의 교차비가 감소하는 것으로 확인되었다.

이전의 연구 결과7-9에 따르면 만성 폐질환이나 좌심실 부전 등으로 인한 저산소증이 골대사를 방해할 가능성이 있다. 저산소증 조건 하에서 증가된 산화 스트레스와 세포 외 산성화가 빛의 형성과 재형성의 조절에 영향을 미칠 것으로 생각된다. 또한 신체의 만성 염증성 상태를 유발하는 염증성 관절염, 염증성장절환, 셀리악병, 천식이나 만성폐쇄성 폐질환과 같은 다양한 질환이 전신적인 골량의 감소 및 골다공증과 연관이 있는 것으로 알려져 있다25). 특정 연구에서는 염증유발 세이토카인이 빈혈과 골다공증의 발생에 영향을 미친다는 결과를 제시하고 있다26). 또한 검상적혈구 빈혈증10), 중증혈관17), 판코니 빈혈28) 등 지속적으로 조혈 기능에 영향을 미치는 질환의 경우에도 골감소 경향이 보여지는 것으로 알려져 있는데, 이러한 골감소 경향을 설명하는 명확한 기전은 아직 정립되어 있지 않으나 혈액학적 병인론에 입각한 가설이 존재한다15). 해당 가설에 따르면 실험 시에는 조혈전구세포가 증식하여 혈액형성성장인자 및 파골 세포를 포함한 조혈세포의 숫자가 증가하게 된다. 증가된 파골 세포로 인해 골조직의 흡수가 증가하게 되고, 이와 함께 실험로 인해 혈액량이 감소하면 그
자체로 골형성이 자극되어 뼈모세포가 증식하고 이에 따라 새로운 골형성이 촉진된다. 골형성이 촉진됨에 따라 다시 골대세포의 생성이 증가되어 골흡수가 증가되고 이로 인해 뼈 내에 조혈영역이 증가하게 된다. 여성의 생리와 같이 상기의 과정이 수십 회에 걸쳐 반복된다면 뼈모세포를 포함한 골생성세포의 생성능이 피로하게 되어 결과적으로 골밀도가 감소할 것이라는 것이 가설의 골자이다.

본 연구의 Figure 2A에서 확인할 수 있듯이 남성 대상자로부터 획득된 결과는, 상기의 혈액학적병인론에 입각한 가설 및 기존의 연구들이 시사하는 바와 같이, 혈색소 수준이 낮을 때 평균 골밀도 또한 낮았으나 여성에 있어서는 이와는 반대로 혈색소 수준이 낮은 경우 평균 골밀도가 오히려 높은 양상을 보였다.

이러한 소견이 남녀 빈혈의 병인적 차이에서 기인했을 가능성을 염두에 두고 이에 본 연구에서는 빈혈 그룹을 페리틴수준에 따라 다시 두 그룹으로 나누어 분석을 시행하였다. 저페리틴 혈증 동반 빈혈은 체내 철분 빈토를 시사하며 이 때 유병 된 빈혈은 빈혈 발생의 기전 상 철결핍성 빈혈일 가능성이 높으며, 저페리틴 혈증 비 동반 빈혈의 경우는 만성 질환에 의한 빈혈이거나 만성 질환과 동반된 철결핍성 빈혈, 혹은 약물이나 다른 원인에 의한 빈혈일 가능성이 높다.
본 연구에서는 골밀도 감소 질환(골다공증 혹은 골밀도감소증)과 동반된 비혈의 아형을 분석해 보았을 때, 남성의 경우 저페리틴 혈증을 동반하지 않은 비혈(96명)인 경우가 저페리틴 혈증을 동반한 비혈(26명)보다 더 많은 양상이었고, 여성의 경우에는 전체적으로 보았을 때 저페리틴 혈증 동반 비혈(230명)과 저페리틴 혈증 비동반 비혈(208명)이 비슷한 양이지만, 폐경 여부에 따라 나누어 보면 비페경 그룹의 경우는 저페리틴 혈증 동반 비혈(212명)이 저페리틴 혈증 비동반 비혈(86명)에 비해 많았으며, 폐경 그룹의 경우는 저페리틴 혈증 동반 비혈(18명)이 저페리틴 혈증 비동반 비혈(122명)에 비해 적었다. 이는 폐경을 기준으로 폐경 전 여성들은 철결핍성 비혈에 더 많이 유병 되어 있고, 폐경 후 여성들은 만성질환에 의한 비혈이나 기타 다른 원인에 의한 비혈에 주로 유병 되어 있다는 것을 의미한다.

일반적으로 여성에 있어서 가장 흔한 혈액은 철결핍성 비혈이며 29) 특별한 기저질환이 없이 생리를 하는 약 60kg정도 되는 가임기 여성의 경우 남성이나 생리를 하지 않는 여성에 비해 약 10mg 정도의 철분을 더 소모하는 것으로 알려져 있다 29). 반면 고령자의 비혈은 만성질환에 의한 비혈이 가장 많고, 그 다음으로 철결핍성 비혈이 혼한 것으로 알려져 있다. 하지만 고령자의 철결핍성 비혈은
폐경 전 여성들의 철결핍성 빈혈과는 달리 주기적인 실혈로 인한 것이라기 보다는 철분 섭취량이나 흡수량의 부족으로 인한 것으로 알려져 있다(31). 남성 빈혈의 경우 폐경기 이후 여성과 유사하게 만성질환에 의한 빈혈이나 철분 섭취 부족에 의한 철결핍성 빈혈인 경우가 많으며 실제 연구 대상자들을 분석한 결과(Table 1), 빈혈에 걸린 남성 총 221명 중 177명이 저페리틴 혈증이 동반되어 있지 않은 빈혈이었다.

만성 염증성 상태로 인한 빈혈이나 철분 섭취량이나 흡수량 부족으로 유발된 철결핍성 빈혈의 경우에는 상술한 바 있는 저산소성, 염증성골대사 저해의 기전만이 존재하고 골대사를 촉진시킬 수 있는 요인이 존재하지 않는다. 그러나 실험로 인한 철결핍성 빈혈의 경우는 상술한 혈액학적 가설에 따라 뼈모세포의 종식으로 인한 골생성 자극 기전이 존재한다. 만약 골생성세포의 종식적인 골 생성능력이 저하되기 전까지 실험로 인한 골형성 자극 효과가 골 흡수 효과에 비해 상대적으로 크다면 실험 과정에는 골밀도를 보호하는 효과가 존재할 수도 있을 것이다. Figure 2B의 여성 평균 골밀도 비교 그래프를 보면, 정상 혈색소 군이나 저페리틴 혈증 비등반 빈혈 군에 비해 저페리틴 혈증 동반 빈혈 군, 즉 철결핍성 빈혈 군의 평균 골밀도가 상대적으로 높은 것을 확인
할 수 있다. 이는 상기 혈액학적 명인론에 입각한 골대사 가설에 대한 직접적인 근거라 할 수는 없으나 가설의 기전으로 어느 정도 설명이 가능한 결과라고 볼 수도 있다.

또한 Figure 3에서 볼 수 있듯 철결핍성 빈혈 군에 해당하는 여성들의 골감소 질환에 대한 교차비가 정상 혈색소 군에 비해서 유의미하게 낮다는 것 또한 혈액학적 가설의 기전으로 일부 설명 가능한 측면이 있다.

이에 대해 비폐경 여성에서의 철결핍성 빈혈, 즉 실혈로 인한 빈혈이 골밀도를 보호하는 효과가 실체적으로 있는지 간단한 추가 분석을 시행해 보았다. 본 연구에서는 만성질환에 의한 골대사 장애의 영향을 배제하기 위하여 만성 질환자들을 연구 대상자에서 모두 제외하였으나 현 분석에서는 앞서 배제했던 만성 질환자들(만성 신부전, 간경화, 당뇨, 갑상선 질환, 류마티스성 관절염)만을 대상으로 본 연구에서 시행한 바와 같이 최소자승법을 통해 각 부위 별 평균 골밀도를 구해 보았다. 총 연구 대상자는 여성 1197명, 남성 786명이었다. 여성 중 철결핍성 빈혈 유병자는 82명(폐경 전 57명, 문경 후 25명), 비철결핍성 빈혈 유병자는 140명(폐경 전 20명, 문경 후 120명)이었다. 만성질환에 유병된 여성 평균 골밀도는 하기와 같다. (Table 3)
Table 3. Least-squares mean of bone mineral density of whole body, femoral neck and lumbar spine in chronic disease population (Female)

Hb-serum ferritin categories	Whole body BMD (g/cm²)	SE	Femoral neck BMD (g/cm²)	SE	Lumbar spine BMD (g/cm²)	SE
Normal	1.05	0.00	0.66	0.00	0.86	0.00
Anemia with low serum ferritin	1.07	0.01	0.67	0.01	0.91	0.01
Anemia without low serum ferritin	1.04	0.01	0.64	0.01	0.85	0.01
Premenopause						
Normal	1.14	0.00	0.767	0.00	1.00	0.00
Anemia with low serum ferritin	1.14	0.00	0.769	0.01	1.02	0.00
Anemia without low serum ferritin	1.12	0.01	0.74	0.00	0.97	0.01

Abbreviation: *Hb* hemoglobin, *BMD* bone mineral density, *SE* standard error

*Least-square means were adjusted for age, smoking, alcohol, physical activity, income, education, calcium intake, serum vitamin D level, and BMI.

상기 표에서 확인 할 수 있듯이 만성질환자인 여성의 경우에도 전신, 대퇴골두, 요추의 평균 골밀도는 철결핍성 빈혈 군의 경우가 가장 높은 것을 알 수 있다. 이는 여성 만성 질환자 전체를 보아도 그러하고 만성질환 군 중 폐경 전의 여성들을 보아도 철결핍성 빈혈 군의 경우 정상 혈색소 군이나 비 철결핍성 빈혈 군에 비해서
높은 평균 골밀도를 보이는 것을 알 수 있다.

본 연구의 제한점은 전향적 연구가 아닌 단면연구로서 골밀도와 혈색소와의 관계에 대해 인과관계를 설명할 수 없다는 점이며, 비혈의 병인을 확인하는데 이용 가능한 변수가 혈중 페리틴으로 제한되어 있다는 점을 들 수 있다. 비혈의 약형을 구분 것기 위한 추가적인 데이터가 이용 가능했다면 비혈의 약형에 따라 골밀도에 미치는 영향을 분석할 수 있었을 것으로 생각된다. 국민건강영양조사자료에 혈액검사를 통해 철결합능이 변수로 포함된 것이 5차 자료부터라는 점 및 일반혈액검사가 자료에 포함되어 있지 않아 비혈의 기전을 정확하게 파악하는데 제한이 있었다는 점 또한 아쉬운 점이다. 또한 칼슘과 철분 보충제들을 통한 칼슘 및 철분섭취 정보가 제한되어 있다. 비혈의 유병률을 보았을 때 여성에 비해 남성의 경우 비혈에 이환 된 사람의 숫자가 약 6분의 1정도로 적다는 점이다.

추후 혈색소와 골밀도의 연관성에 대한 연구를 위해서는 골대사에 영향을 미치는 혈액학적 병인론에 입각한 가설을 검증할 수 있는 연구 설계를 위해 연구 대상군의 골형성을 반영하는 표지자 (osteocalcin, bone specific alkaline phosphatase 등)와 골흡수 상태를 반영할 수 있는 표지자 (N-telopeptide of collagen 등)
cross-link, C-telopeptide of collagen cross-link, deoxypyridinoline 등)에 대한 정보를 확보하는 것과 함께
빈혈의 기전에 따른 장기적인 추적 관찰이 동반된 연구가 이루어질 경우 혈색소와 골밀도 간의 상관 관계를 보다 명확하게 이해하는데 도움이 될 것으로 생각된다.
V. 결론

본 연구는 제4기 및 제5기 국민건강영양조사 자료를 이용하여 한국 성인에서 혈색소와 골밀도의 연관성을 알아보고자 하였다.

한국 성인에서 남성의 경우 혈색소 수준이 정상인 군의 평균 골밀도가 빈혈 군에 비해 높았고, 여성의 경우 혈색소 수준이 정상인 군이 빈혈 군에 비해 평균골밀도가 낮았다. 또한 여성에서 저페리틴 혈증이 동반된 빈혈 군의 경우 정상 혈색소 군이나 저페리틴 혈증이 동반되지 않은 빈혈 군에 비해 평균골밀도가 높았다. 또한 저페리틴 혈증이 동반된 빈혈 군의 경우 정상 혈색소 군에 비해 골밀도 감소증이나 골다공증 유병률의 교차비가 유의미하게 더 낮았다 (OR, 95% CI: 0.78, 0.63-0.97).
Reference

1. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 2006;17:1726–33.

2. New SA. Exercise, bone and nutrition. Proc Nutr Soc 2001;60:265–74.

3. Espallargues M, Sampietro-Colom L, Estrada MD, Sola M, del Rio L, Setoain J, et al. Identifying bone-mass-related risk factors for fracture to guide bone densitometry measurements: a systematic review of the literature. Osteoporos Int 2001;12:811–22.

4. Tang YJ, Sheu WH, Liu PH, Lee WJ, Chen YT. Positive associations of bone mineral density with body mass index, physical activity, and blood triglyceride level in men over 70 years old: a TCVGHAGE study. J Bone Miner Metab 2007;25:54–9.

5. Campion JM, Maricic MJ. Osteoporosis in men. Am Fam Physician 2003;67:1521–6.

6. Ministry of Health and Welfare, Korea Centers for Disease Control and Prevention. Korea Health Statistics 2011: Korea National Health and Nutrition Examination Survey (NHANES V-2) 2012

7. Fujimoto H, Fujimoto K, Ueda A, Ohata M. Hypoxemia is a risk factor for bone mass loss. J Bone Miner Metab 1999;17:211–6.

8. Karadag F, Cildag O, Yurekli Y, Gurgey O. Should COPD patients be routinely evaluated for bone mineral density? J Bone Miner Metab 2003;21:242–6.

9. Laudisio A, Marzetti E, Antonica L, Cocchi A, Bernabei R, Zuccala G. Association of left ventricular function with bone mineral density in older women: a population-based study. Calcif Tissue Int 2008;82:27–33.
10. Sarrai M, Duroseau H, D'Augustine J, Moktan S, Bellevue R. Bone mass density in adults with sickle cell disease. Br J Haematol 2007;136:666-72.

11. Gasche C. Complications of inflammatory bowel disease. Hepatogastroenterology 2000;47:49-56.

12. Taal MW, Masud T, Green D, Cassidy MJ. Risk factors for reduced bone density in haemodialysis patients. Nephrol Dial Transplant 1999;14:1922-8.

13. Rutten EP, Franssen FM, Spruit MA, Wouters EF. Anemia is associated with bone mineral density in chronic obstructive pulmonary disease. COPD 2013;10:286-92.

14. Korkmaz U, Korkmaz N, Yazici S, Erkan M, Baki AE, Yazici M, et al. Anemia as a risk factor for low bone mineral density in postmenopausal Turkish women. Eur J Intern Med 2012;23:154-8.

15. Gurevitch O, Slavin S. The hematological etiology of osteoporosis. Med Hypotheses 2006;67:729-35.

16. Cesari M, Pahor M, Lauretani F, Penninx BW, Bartali B, Russo R, et al. Bone density and hemoglobin levels in older persons: results from the InCHIANTI study. Osteoporos Int 2005;16:691-9.

17. Laudisio A, Marzetti E, Pagano F, Bernabei R, Zuccala G. Haemoglobin levels are associated with bone mineral density in the elderly: a population-based study. Clin Rheumatol 2009;28:145-51.

18. Chun MY. Validity and reliability of korean version of international physical activity questionnaire short form in the elderly. Korean J Fam Med 2012;33:144-51.

19. Weisell RC. Body mass index as an indicator of obesity. Asia Pac J Clin Nutr 2002;11 Suppl 8:S681-4.

20. Orimo H, Hayashi Y, Fukunaga M, Sone T, Fujiwara S, Shiraki M, et al. Diagnostic criteria for primary osteoporosis: year 2000 revision. J Bone Miner Metab 2001;19:331-7.
21. Nutritional anaemias. Report of a WHO scientific group. World Health Organ Tech Rep Ser 1968;405:5-37.

22. Organization WH. Serum ferritin concentrations for the assessment of iron status and iron deficiency in populations. 2011.

23. Choi CD, Oh HJ, Joo IW, Lee HJ, Kim SH, Kim SW, et al. The Relationship between Bone Mineral Density and Behavioral Factors in Korean Adult Men using Data from the Korea National Health and Nutrition Examination Survey IV. Osteoporosis 2012;10:67-75.

24. 문선옥, 김지혜, 양윤정. 50 세 이상 폐경 후 여성의 골밀도와 연관성을 보이는 요인: 2008-2010 년 국민건강영양조사 자료를 이용하여. 대한지역사회영양학회지 2013;18:177-86.

25. Hardy R, Cooper MS. Bone loss in inflammatory disorders. J Endocrinol 2009;201:309-20.

26. Leng S, Chaves P, Koenig K, Walston J. Serum interleukin-6 and hemoglobin as physiological correlates in the geriatric syndrome of frailty: a pilot study. J Am Geriatr Soc 2002;50:1268-71.

27. Hamed EA, Mohamed NA, El-Metwally TH, Kamal MM. Iron chelation therapy in Upper Egyptian transfusion-dependent pediatric homozygous beta-thalassemia major: impact on serum L-carnitine/free fatty acids, osteoprotegerin/the soluble receptor activator of nuclear factor-kappabeta ligand systems, and bone mineral density. J Pediatr Hematol Oncol 2010;32:267-73.

28. Giri N, Batista DL, Alter BP, Stratakis CA. Endocrine abnormalities in patients with Fanconi anemia. J Clin Endocrinol Metab 2007;92:2624-31.

29. McLean E, Cogswell M, Egli I, Wojdyla D, de Benoist B. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993-2005. Public Health Nutr 2009;12:444-54.
30. Wintrobe MM, Greer JP. Wintrobe's clinical hematology: Lippincott Williams & Wilkins; 2009.

31. Guralnik JM, Eisenstaedt RS, Ferrucci L, Klein HG, Woodman RC. Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia. Blood 2004; 104: 2263–8.

32. Risteli L, Risteli J. Biochemical markers of bone metabolism. Ann Med 1993; 25: 385–93.
Abstract

Introduction: Diseases with Low bone mineral density (BMD), such as osteoporosis and osteopenia, increase the fracture risk. And anemia is a highly prevalent disease. There was a study that presented anemia as an independent risk factor for osteoporosis. The aim of this study is to evaluate the association between hemoglobin (Hb) levels and bone mineral densities in Korean adults.

Methods: A total of 14,497 participants from the fourth and the fifth Korean National Health and Nutrition Examination Surveys (2008–2011) were included in this study. Participants with chronic diseases accompanied by bone loss, or participants with malignancies were excluded. And participants who have been prescribed drugs for low BMDs were also excluded. Data of all participants were weighted and adjusted to reflect the sampling method and response rate, because data were collected according to stratified multistage probability sampling design. Multiple linear regression analyses were used to evaluate the association between hemoglobin (Hb) levels and BMDs. Least square means of BMDs, adjusted for multiple variables, were compared across three types of group respectively, i.e., anemia status groups, menopausal status groups, and anemia-serum ferritin status groups. Logistic regression analyses were used to evaluate the odds ratios for osteopenia or osteoporosis prevalence between anemia-serum ferritin status groups.

Results: Univariate linear regression analyses showed positive association...
between hemoglobin levels and BMDs of the whole body, femoral neck, and lumbar spine in men, but also showed negative association between Hb levels and BMDs in women. According to multivariate linear regression analyses, whole body and lumbar spine BMDs of women were negatively associated with Hb levels after controlling for age, BMI, serum vit D level, daily calcium intake, income, education, smoking, drinking, and physical activity. Least square means methods, controlling for multiple variables mentioned above, showed that the normal Hb group has lower mean BMD than the anemia group in men. But the anemia group has higher mean BMD than the normal Hb group in women. In case of women, the group of anemia with low serum ferritin level represented higher mean BMD than other groups. Multivariate logistic regression analyses showed that the odds ratio of anemia group with low serum ferritin level is significantly lower than those of the other two groups in women. (OR, 95% CI; 0.78, 0.63-0.97)

Conclusions: This study found that, in case of men, the normal hemoglobin group had higher mean BMDs than the anemia group had whereas in women, the normal Hb group had lower mean BMDs than the anemia group had. Also the group with anemia and low serum ferritin level showed higher mean BMDs than women in the other two groups. The odds ratio of anemia group with low serum ferritin level is significantly lower than the odds ratios of the other two groups in women. (OR, 95% CI; 0.78, 0.63-0.97)
Keywords: hemoglobin, anemia, bone mineral density, osteoporosis

Student number: 2012 – 22708