INTRODUCTION

In a recent years, the pink pigmented facultative methylotrophs (PPFMs) is one of such a bacteria receiving more attention as a plant growth promoting bacteria. They are known to play an important role in increasing crop yields and land fertility. These are physiologically an interesting group of bacteria able to grow on methanol, methylamine as well as on a variety of C₂, C₃ and C₄ compounds as sole sources of carbon and energy (Lidstrom, 1992), potentially dominating the phyllosphere population. They are commonly found in soil as well as on the surfaces of leaves, seeds and in the rhizosphere of a wide variety of plants (Holland & Polacco, 1994; Chanprame et al., 1996; Holland, 1997; & Shepelyakovskaya et al., 1999).

The association of PPFMs with plant possesses an associative symbiotic relationship in which PPFMs utilizes the methanol emitted from leaves of plants as sole carbon and energy source.

Cite this article: Govekar, Y.R., Navale, A.M., Deokar, C.D., & Surve, U.S. (2020). Combine Inoculation Effect of Pink Pigmented facultative Methyloptroths and B. Japonicum on Plant Growth and Yield of Soybean, Ind. J. Pure App. Biosci. 8(5), 348-355. doi: http://dx.doi.org/10.18782/2582-2845.8312
In response, PPFMs produces plant growth promoting substance such as Indole acetic acid (IAA), Gibberlic acid (GA) etc which are known to stimulate plant growth (Ivanova et al., 2001 & Koenig et al., 2002); fix the atmospheric nitrogen (Sy et al., 2001); solubilise mineral phosphate (Jones et al. 2007); induce systemic resistance against plant pathogens (Madhaiyan et al., 2006) and chelation of inorganic compound such as iron. Due to these importance, the PPFMs have received a great deal of attention as bioinoculants for use in agriculture. Combined use of two or three beneficial microorganisms as inoculation have been found to perform better than single inoculations (Alagawadi & Gaur, 1988; Jisha & Alagawadi, 1996; & Prathibha et al., 1995). Therefore the present study was undertaken to study the effect of combined inoculation PPFMs (*Methylobacterium*) and *B. Japonicum* on growth and yield of soybean.

MATERIALS AND METHODS

The PPFM consortium was prepared by using Sterilized Ammonium mineral salt (AMS) broth and base material such as Fe. EDTA, Arabinose, Glycerol, PVP and Trehalose and was inoculated with loopful of efficient isolates of *Methylobacterium* cultures and kept in temperature controlled shaker (150 rpm/min) at 30°C for 5 days. After attaining the full growth (10⁹ cfu/ml) it was diluted to 1:100(1%) and sprayed @ 3.0 lit/ha after 45 days of sowing. The consortium of *B. Japonicum* was obtain from the Department of plant pathology and Agricultural microbiology, MPKV, Rahuri The treatments were as follows.

Treatment No.	Treatment details
T₁	Absolute control
T₂	Seed Treatment of *B. Japonicum*.
T₃	S.T.of *B. Japonicum* + S.T.of Reference strain + F.S. of Reference strain
T₄	S.T.of *B. Japonicum* + S.T.of Reference strain + F.S. of Reference strain + 50% N
T₅	S.T.of *B. Japonicum* + S.T.of Reference strain + F.S. of Reference strain + 75% N
T₆	S.T.of *B. Japonicum* + S.T.of Reference strain of PPFM + F.S. of Reference strain + 100% N
T₇	S.T.of *B. Japonicum* + S.T.of PPFM + F.S. of PPFM
T₈	S.T.of *B. Japonicum* + S.T.of PPFM + F.S. of PPFM + 50% N
T₉	S.T.of *B. Japonicum* + S.T.of PPFM + F.S. of PPFM + 75% N
T₁₀	S.T.of *B. Japonicum* + S.T.of PPFM + F.S. of PPFM + 100% N
T₁₁	Only 100% N

RESULT AND DISCUSSION

The field experiment was conducted on at the research farm of Department of Plant Pathology and Agricultural Microbiology, MPKV, Rahuri, on soil with PH 8.04. The available nitrogen, available phosphorus and available potassium were 170.8, 16.12 and 370.20. There were 11 treatment combinations with three replications for each treatment following the method of Randomized block design (RBD) The observations on plant growth and PPFMs population were taken during flowering and harvesting stage. The population of PPFMs in *phyllosphere* and *rhizosphere* was enumerated by serial dilution plate count method.
In present study, significant differences were observed between various treatments by applications of PPFMs and *Rhizobium* consortium under graded levels of nitrogenous fertilizers on all growth attributing parameters viz, plant height, root and shoot length, fresh and dry weight of shoot and root, number of effective and non-effective nodules, of soybean during both flowering and harvesting stage. The *phyllosphere* as well as *rhizosphere* PPFMs population along with no. of pods per plant, stover yield and grain yield also shows similar trend. All the above growth parameters along with PPFMs population and the no. of pods per plant, stover and grain yield of soybean influenced by the treatment T₁₀ (S.T of *Rhizobium* +S.T of PPFMs +Foliar spray consortium of PPFMs + 100 % N) which was significantly superior over rest of all the treatments and it was at par with treatment T₉ (S.T of *Rhizobium* +S.T of PPFMs +Foliar spray consortium of PPFMs + 75 % N) in respect of their influence on all growth attributing character at flowering and harvesting stage.

It is also found that the treatment T₇ (S.T of *Rhizobium* +S.T of PPFMs+ Foliar spray consortium of PPFMs) recorded all the above parameters which was significantly higher over T₂ (Seed treatment of *Rhizobium* (86.75) treatment).

Table 1: Effect of liquid consortium of PPFMs on plant height and shoot and root length and root length and height of soybean during flowering and harvesting stage

Treatment	Plant height (cm)	Shoot length (cm)	Root length (cm)	
	(F)	(H)	(F)	(H)
T₁ Absolute control	29.63	33.84	9.02	17.66
T₂ Seed treatment of B.Japonicum	30.91	36.70	10.64	18.80
T₃ S.T of B.Japonicum +S.T of R.S+ F.S. of R.S(PPFMs)	32.73	38.26	11.86	20.17
T₄ S.T of B.Japonicum +S.T of R.S+ F.S. of R.S+50%N	37.18	41.25	14.05	21.72
T₅ S.T of B.Japonicum +S.T of R.S + F.S. of R.S +75%N	42.51	47.01	17.97	24.39
T₆ S.T of B.Japonicum +S.T of PPFMs+ F.S. of PPFMs	43.59	48.66	18.02	25.05
T₇ S.T of B.Japonicum +S.T of PPFMs+ F.S. of PPFMs +50%N	36.16	40.49	13.01	21.26
T₈ S.T of B.Japonicum +S.T of PPFMs+ F.S. of PPFMs+75%N	38.77	43.24	15.66	22.83
T₉ S.T of B.Japonicum +S.T of PPFMs+ F.S. of PPFMs+100%N	44.98	51.88	19.57	26.96
T₁₀ Only 100%N	45.71	52.37	20.54	27.94
S.Em ± CD at 5%	0.52, 1.18	0.40, 1.70	0.38, 1.13	0.36, 1.05

F-Flowering stage, H-Harvesting stage, S.T:-Seed Treatment, F.S-Foliar spray

Table 2: Effect of liquid consortium of PPFMs on shoot and root fresh weight of soybean during flowering and harvesting stage

Treatment	Shoot fresh weight	Root fresh weight		
	(F)	(H)	(F)	(H)
T₁ Absolute control	19.18	6.76	4.32	2.01
T₂ Seed treatment of B.Japonicum	20.98	8.20	5.49	2.90
T₃ S.T of B.Japonicum +S.T of R.S+ F.S. of R.S(PPFMs)	22.55	9.58	6.56	3.81
T₄ S.T of B.Japonicum +S.T of R.S+ F.S. of R.S+50%N	25.87	11.09	8.01	5.06
T₅ S.T of B.Japonicum +S.T of R.S + F.S. of R.S +75%N	31.59	15.55	11.35	6.94
T₆ S.T of B.Japonicum +S.T of R.S + F.S. of R.S +100%N	32.50	16.38	11.60	7.01
T₇ S.T of B.Japonicum +S.T of PPFMs+ F.S. of PPFMs	24.65	10.94	7.72	4.73
T₈ S.T of B.Japonicum +S.T of PPFMs+ F.S. of PPFMs +50%N	28.51	12.49	9.39	5.97
T₉ S.T of B.Japonicum +S.T of PPFMs+ F.S. of PPFMs+75%N	34.05	18.77	12.93	8.01
T₁₀ S.T of B.Japonicum +S.T of PPFMs+ F.S. of PPFMs+100%N	34.60	19.89	13.92	8.89
T₁₁ Only 100%N	29.80	13.75	10.31	6.02
S.Em ± CD at 5%	0.51, 1.50	0.45, 1.34	0.34, 1.02	0.29, 0.87

F-Flowering stage, H-Harvesting stage, S.T:-Seed Treatment, F.S-Foliar spray
The superiority of T10 treatment is due to the high dose of nitrogenous fertilizer and combine beneficial effect of both Rhizobium and PPFMs. The increase in growth parameters is due to the as per increase in graded dose nitrogenous fertilizer as reported by Ntambo et al. (2017). The Krushnanjali (2017) reported that combine effect of Rhizobium along with increase in graded doses of nitrogenous fertilizer results in increase in the growth parameters of the plant.

The significant improvement found in the growth parameter such as height of the plant, development of root and shoot, and nodulation and yield parameters of the crop in the treatment inoculated with Rhizobium and PPFMs. This is due to combine beneficial effect of these two organisms. Rao and Dhir, (1993) reported that the presence of Rhizobia in the legume rhizosphere influencing the legume roots to release plant growth promoting substances which, in turn might have enhanced the growth of Methyllobacterium in situ and synergistic effect might have occurred in treatments.

Table 3: Effect of liquid consortium of PPFMs on shoot and root dry weight of soybean during flowering and harvesting stage

Treatment	Shoot dry weight (F)	Root dry weight (H)
T1	1.11	0.36
T2	1.37	0.46
T3	1.57	0.55
T4	2.16	0.67
T5	2.67	1.12
T6	2.70	1.15
T7	2.10	0.64
T8	2.40	0.76
T9	2.84	1.28
T10	2.95	1.31
T11	2.47	0.80
S.Em ±	0.04	0.03
CD at 5%	0.13	0.08

F-Flowering stage, H-Harvesting stage, S.T: Seed Treatment, F.S: Foliar spray

The development of root and shoot is due to the action of plant growth promoting substances such as IAA and GA produced by the PPFMs. This has been supported by Suresh Reddy, 2002 who reported that these growth promoters allows a balanced growth of shoot and root system. When roots become more extensive due to the action of IAA, then the cytokinins of the plant signals the shoot system to form more branches.

The results also supported by some workers such as Senthilkumar, 2003; Madhaiyan et al., 2009. They reported that the plant growth promoters such as IAA and GA also enhanced root growth enabling the plants to absorb more nutrient in soybean ultimately resulting in better growth, dry matter production.
The maximum nodule number may be attributed to the presence of flavonoid compounds taken up by the roots of soybean plants. This has been supported by Subba Rao who reported that the flavonoid compounds secreted by the roots of soybean plants helps to release naringenin, genistein and diadzein (iso flavones). So these flavonoid molecules by legumes can either induce or block the transcription of nod genes in rhizobium and Bradyrhizobium resulting in increased nodulation as well as nitrogen fixation.

Similar results were shown by Radha (2007) and Meenakshi (2009) Radha et al. (2009) reported that the combined inoculation of Methylobacterium sp with Rhizobium sp significantly increased plant growth parameters such as root and shoot development, number of leaves, nodulation, compared with individual inoculation of Rhizobium sp or uninoculated control. While, Meenakshi (2008) reported significantly higher number of leaves, shoot dry weight and root dry weight and nodulation was recorded in the treatments that received Bradyrhizobium and PPFM spray than Bradyrhizobium alone and uninoculated control.

Table 4: Effect of liquid consortium of PPFMs on number of effective and non-effective nodule of soybean during flowering and harvesting stage

Treatment	Number of effective nodule (Plant⁻¹)	Number of non-effective nodule (Plant⁻¹)			
	(F)	(H)	(F)	(H)	
T₁	Absolute control	14.67	4.33	18.00	24.00
T₂	Seed treatment of B. japonicum	16.33	5.67	16.67	22.33
T₃	S.T. of B. japonicum + S.T. of R.S + F.S. of R.S. (PPFMs)	17.67	7.00	15.33	20.67
T₄	S.T. of B. japonicum + S.T. of R.S + F.S. of R.S. + 50% N	19.67	8.67	12.33	18.67
T₅	S.T. of B. japonicum + S.T. of R.S + F.S. of R.S. + 75% N	23.67	12.33	9.00	13.00
T₆	S.T. of B. japonicum + S.T. of R.S + F.S. of R.S. + 100% N	24.67	13.33	8.00	12.67
T₇	S.T. of B. japonicum + S.T. of PPFMs+ F.S. of PPFMs	19.33	8.33	12.67	19.00
T₈	S.T. of B. japonicum + S.T. of PPFMs+ F.S. of PPFMs + 50% N	21.67	10.00	10.67	16.33
T₉	S.T. of B. japonicum + S.T. of PPFMs+ F.S. of PPFMs + 75% N	26.00	16.67	6.33	10.67
T₁₀	S.T. of B. japonicum + S.T. of PPFMs+ F.S. of PPFMs+100% N	27.00	17.00	5.33	9.67
T₁₁	Only 100% N	22.33	10.33	10.33	15.67
	S.E. ±	1.13	1.27	1.09	1.29

F-Flowering stage, H-Harvesting stage, S.T.-Seed Treatment, F.S.-Foliar spray

Table 5: Effect of liquid consortium of PPFMs on PPFM count in phyllosphere and rhizosphere of soybean during flowering and harvesting stage

Treatment	PPFM Count (Phyllosphere)(x10³ cfu/g)	PPFM Count (Rhizosphere)(x10³ cfu/g)			
	(F)	(H)	(F)	(H)	
T₁	Absolute control	85.06	12.01	10.33	3.10
T₂	Seed treatment of B. japonicum	87.77	14.02	11.96	4.17
T₃	S.T. of B. japonicum + S.T. of R.S + F.S. of R.S. (PPFMs)	89.82	15.07	13.56	5.11
T₄	S.T. of B. japonicum + S.T. of R.S + F.S. of R.S. + 50% N	94.46	17.08	15.77	6.11
T₅	S.T. of B. japonicum + S.T. of R.S + F.S. of R.S. + 75% N	99.82	20.19	19.37	7.98
T₆	S.T. of B. japonicum + S.T. of R.S + F.S. of R.S. + 100% N	100.78	21.01	20.05	8.48
T₇	S.T. of B. japonicum + S.T. of PPFMs+ F.S. of PPFMs	92.58	16.46	14.79	6.02
T₈	S.T. of B. japonicum + S.T. of PPFMs+ F.S. of PPFMs + 50% N	96.80	18.23	17.62	7.03
T₉	S.T. of B. japonicum + S.T. of PPFMs+ F.S. of PPFMs+75% N	103.04	22.57	21.86	9.74
T₁₀	S.T. of B. japonicum + S.T. of PPFMs+ F.S. of PPFMs+100% N	105.01	23.52	22.95	10.06
T₁₁	Only 100% N	97.65	19.04	18.14	7.07
	S.E. ±	0.68	0.35	0.38	0.30
	CD at 5%	2.01	1.03	1.13	0.89
In case of *phyllosphere* and *rhizosphere* PPFM population. The results are mainly due to the growth hormone production by *Methylobacterium* sp. especially high cytokinin production in apical plant tissues and *rhizosphere* soil. The another reason behind that the foliar spraying PPFMs which significantly influenced the PPFMs population in the foliar region such as *phyllosphere*. of rice crop as reported by Holland, (1997b).

However, the *phyllosphere* region of the soybean recorded the highest PPFMs load compared to soybean *rhizosphere*. The increased population on the leaves is due to the fact that they utilize the gaseous methanol. This has been supported by Nemecek-marshall et al. 1995 and Daniel et al. (2006). They reported that the PPFMs population utilize gaseous methanol emitted by the stomata of the leaves of the plants during leaf expansion by pectin demethylation as carbon and energy source and promote the growth of their host through the release of metabolites.

Table 6: Effect of liquid consortium of PPFMs on pods, grain and Stover yield of soybean during flowering and harvesting stage

Treatment	No of Pods plant\(^{-1}\)	Grain yield (qha\(^{-1}\))	Stover yield (qha\(^{-1}\))	
T\(_1\)	Absolute control	39.95	13.01	16.27
T\(_2\)	Seed treatment of *B*. *Japonicum*	45.71	15.39	18.60
T\(_3\)	S.T of *B*. *Japonicum* + S.T of R.S + F.S. of R.S (PPFMs)	48.55	16.42	21.07
T\(_4\)	S.T of *B*. *Japonicum* + S.T of R.S + F.S. of R.S + 50\%N	52.41	18.36	23.04
T\(_5\)	S.T of *B*. *Japonicum* + S.T of R.S + F.S. of R.S + 75\%N	60.85	21.57	26.29
T\(_6\)	S.T of *B*. *Japonicum* + S.T of R.S + F.S. of R.S+100\%N	61.18	22.01	27.07
T\(_7\)	S.T of *B*. *Japonicum* + S.T of PPFMs+ F.S. of PPFMs	51.24	16.78	22.45
T\(_8\)	S.T of *B*. *Japonicum* + S.T of PPFMs+ F.S. of PPFMs+50\%N	55.01	19.08	24.35
T\(_9\)	S.T of *B*. *Japonicum* + S.T of PPFMs+ F.S. of PPFMs+75\%N	63.98	23.78	28.12
T\(_10\)	S.T of *B*. *Japonicum* + S.T of PPFMs+ F.S. of PPFMs+100\%N	65.06	24.13	29.22
T\(_11\)	Only 100\%N	57.50	20.50	25.19
S.Em ±	0.87	0.35	0.35	
CD at 5%	2.58	1.03	1.04	

The increase in yield parameters in the treatment containing 100\% N is due to as per graded dose nitrogenous fertilizer reported by Krushnajali (2017).

The Krushnajali (2017) and Ntambo et al 2017 both worker reported that increase in graded doses of nitrogenous fertilizer results in increase in the yield parameters of the plant. The superior performance of the soybean inoculated with PPFMs and *Rhizobium* isolates may be due to the cumulative effect of increased plant growth substances, enhanced nutrient uptake, nitrogen fixation and control of plant pathogen by sidrophore production resulting in higher yield of soybean crop.

This shows that the combination of *Rhizobium* and PPFMs along with 75\%N enhances the all growth parameters, as well as yield of soybean crop concluding that there is a possibility of saving fertilizer nitrogen to an extent of 25\% to soybean crop. It is also found that the PPFMs consortium in combination with *Rhizobium* without any nitrogen dose shows significant improvement in growth attributing characters and yield of soybean as compared to the *Rhizobium* alone indicating the importance of dose of PPFMs consortium along with *Rhizobium* as compared to *Rhizobium* alone.

REFERENCES

Alagawadi, A. R., & Gaur, A.C. (1988). Associative effect of rhizobium and phosphate solubiizing bacteria on the yield and nutrient uptake of
chickpea. Pl. Soil, 105, 241-352.

Chanprame, S., Todd, J. J., & Widholm, J. M. (1996). Prevention of pink pigmented facultative methylotrophic bacteria (Methylobacterium mesophilicum) contamination of plant tissue cultures. Plant Cell Rep., 16, 222-225.

Daniel, T. J., Husband, R., Fitter, A. H., & Young, J. P. W. (2006). Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol. Ecol., 36, 203–209.

Holland, M. A. (1997a). Methylobacterium and plants. Rec. Res. Dev. Plant Physiol., 1, 207–213.

Holland, M. A. (1997b). Occam’s razor applied to hormonology (Are cytokinins produced by plants?). Plant Physiol., 115(3), 865–868.

Holland, M. A., & Polacco, J. C. (1994). PPFSMs and other covert contaminants: Is there more to plant physiology than just plant? Annu. Rev. Plant Physiol. Plant Mol. Biol., 45, 197-209.

Ivanova, E. G., Doronina, N. V., & Trotsenko, Y. A. (2001). Aerobic methylobacteria are capable of synthesizing auxins. Microbiology, 70, 392-397.

Jisha, M. S., & Alagawadi, A. R. (1996). Nutrient uptake and yield of sorghum inoculated with phosphate solubilizing bacteria and cellulolytic fungus in a cotton stalk amended vertisol. Microbiol. Res., 151, 213-217.

Jones nirmalnath, P., Krishnaraj, P. U., Kulkami, J. H., Pranav, C., Alagwadi, A. R., & Vasudev, A. R. (2007). Pink Pigmented Facultative Methylotrophs Solubilize Mineral Phosphates. Paper presented at 48th Annual Conf., AMI, held at IIT, Chennai, between 18-21.

Koenig, R. L., Morris, R. O., & Polacco, J. C. (2002). tRNA is the source of low level trans-zatin production in Methylobacterium spp. J. Bacteriol., 184, 1832-1842.

Krushnajali, A. P. (2017). Studies on salt tolerant Rhizobium in soybean. PhD Thesis, MPKV, Rahuri.

Lidstrom, M. E. (1992). In: The Prokaryotes, (Eds.) Balows, A., Truper, H. G., Dworkin, M., Harder, W., & Schleifer, K. H., Springer Verlag, New York, pp. 431-445.

Madhaiyan, M., Suresh reddy, B. V., Anandam, R., Senthilkumar, M., Poonguzhali, S., & Sundaram, P. (2006). Plant growth promoting Methylobacterium induces defense responses in ground nut (Arachis hypogaea L.) compared with root pathogen. Curr. Microbiol, 53, 270–276.

Madhaiyan, M., Poonguzhali, S., Senthilkumar, M., Sundaram, S., & Sa, T. (2009). Nodulation and plant growth promotion by methylotrophic bacteria isolated from tropical legumes. Microb Res., 164, 114–120.

Meenakshi, B. C. (2008). Performance of Methylotrophs in soybean (Glycine max (L.) Merrill) under field condition. Ph.D. Thesis, UAS, Dharwad.

Meenakshi, B. C., & Savalgi, V. P. (2009). Effect of co-inoculation of Methylobacterium and B. Japonicum on plant growth dry matter content and enzyme activities in Soybean. Karnataka J. Agricultural Sciences., 22(2), 344-348.

Nemecek-marshall, M., MacDonald, R. C., Franzen, J. J., Wojciechowski, C. L., & Fall, R. (1995). Methanol emission from leaves: enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiol., 108, 1359–1368.

Ntambu, M. S., Chilinda, I. S., Taruvinga, A., Hafeez, S., Toheed, A., Sharif, R., Conolatha, C., & Kies, L. (2017). The effect of rhizobium inoculation with nitrogen fertilizer on growth and yield
of soybeans (*Glycine max L*). *International Journal of biosciences.* 10(3), 163-172.

Prathiba, C. K., Alagawadi, A. K., & Sreenivasa, M. N. (1995). Establishment of inoculated organisms in rhizosphere and their influence on nutrient uptake and yield of cotton. *Karnataka J. Agric. Sci.*, 8, 22-27.

Radha, T. K. (2007). Studies on Methyloptrophs and their beneficial effects on soybean (*Glycine max* (L) Merrill). *Msc. Thesis*, UAS, Dharwad.

Radha, T. K., & Savalgi, V. P., & Alagawadi, A. R. (2009). Effect of methylotrophs on growth and yield of Soybean. *Karnataka. J. Agric. Sci.*, 22, 118-121.

Rao, L., & Dhir, K. K. (1993). Some biochemical aspects on nitrogen fixation under salt stress in mungbean seedlings. In New Trends in Plant Physiology. Proceedings of National Symposium on Growth and Differentiation in Plants. 255-258.

Senthilkumar, M. (2003). Evaluating diazotrophic diversity and endophytic colonization ability *Azorhizobium caulindons* and *Methyllobacterium* species in bacterised and biotized rice. *Ph. D Thesis*, Tamil Nadu Agricultural University, Coimbatore (India).

Shepelyakovskaya, A. O., Doronina, N. V., Laman, A. G., Brovko, F. A., & Trotsenko, Y. A. (1999). New data on the ability of aerobic methylotrophic bacteria to synthesize cytokinins. *Dokl. Akad. Nauk*, 368, 555-557.

Subba Rao, N. S. (1999). *Soil Microbiology*, Fourth edition of soil microorganisms and plant growth, Oxford and IBH Publishing, pp. 176-178.

Suresh Reddy, B. V. (2002). Studies on PPFM as anew bioinoculant for groundnut. *M. Sc. (Agri.) Thesis*, TNAU, Coimbatore.

Sy, A., Giraud, E., Jourand, P., Garcia, N., Willems, A., de Lajudie, P., Prin, Y., Gillis, M., Boivin-Masson, C., & Dreyfus, B. (2001). Methylotrophic *Methyllobacterium* bacteria nodulate and fix nitrogen in symbiosis with legumes. *J. Bacteriol.*, 183, 214–220.