A NOTE ON ALGEBRAIC RICCATI EQUATIONS ASSOCIATED
WITH REDUCIBLE SINGULAR M-MATRICES

DI LU AND CHUN-HUA GUO

ABSTRACT. We prove a conjecture about the minimal nonnegative solutions
of algebraic Riccati equations associated with reducible singular M-matrices.
The result enhances our understanding of the behaviour of doubling algorithms
for finding the minimal nonnegative solutions.

1. INTRODUCTION

For the algebraic Riccati equation
\[XCX - XD - AX + B = 0, \]
where \(A, B, C, D \) are real matrices of sizes \(m \times m, m \times n, n \times m, n \times n \), respectively,
a systematic study was done in [1] when
\[K = \begin{bmatrix} D & -C \\ -B & A \end{bmatrix} \]
is a nonsingular M-matrix or an irreducible singular M-matrix. The study was re-
cently extended in [2] to reducible singular M-matrices under suitable assumptions.

A real square matrix \(A \) is called a Z-matrix if all its off-diagonal elements are
nonpositive, so any Z-matrix \(A \) can be written as \(sI - B \) with \(B \geq 0 \). A Z-matrix \(A \)
is called an M-matrix if \(s \geq \rho(B) \), where \(\rho(\cdot) \) is the spectral radius; it is a singular
M-matrix if \(s = \rho(B) \) and a nonsingular M-matrix if \(s > \rho(B) \).

Some regularity assumption is needed to guarantee the existence of a solution of
the equation (1) associated with the M-matrix \(K \). An M-matrix \(A \) is said to be
regular if \(Av \geq 0 \) for some \(v > 0 \).

The following result is proved in [2].

Theorem 1. Suppose the matrix \(K \) in (2) is a regular M-matrix. Then (1) has a
minimal nonnegative solution \(\Phi \) and \(D - C\Phi \) is a regular M-matrix, and the dual
equation
\[YBY - YA - DY + C = 0, \]
has a minimal nonnegative solution \(\Psi \) and \(A - B\Psi \) is a regular M-matrix. Moreover,
\(I_m - \Phi\Psi \) and \(I_n - \Psi\Phi \) are both regular M-matrices.

1991 Mathematics Subject Classification. Primary 15A24; Secondary 65F30.
Key words and phrases. Algebraic Riccati equation; Reducible singular M-matrix; Minimal
nonnegative solution.

This work was supported in part by a grant from the Natural Sciences and Engineering Research
Council of Canada.
Associated with the matrix K in (2) is the matrix

\[
H = \begin{bmatrix} I_n & 0 \\ 0 & -I_m \end{bmatrix} K = \begin{bmatrix} D & -C \\ B & -A \end{bmatrix}.
\]

When the matrix K in (2) is regular singular M-matrix, the following assumption has been introduced in [2].

Assumption 1. The matrix H in (4) has only one linearly independent eigenvector corresponding to the zero eigenvalue of multiplicity $r \geq 1$.

It is known [1] that the assumption is satisfied with $r = 2$ when K is an irreducible singular M-matrix.

Under Assumption [1] there are nonnegative nonzero vectors \(\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \) and \(\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \), where $u_1, v_1 \in \mathbb{R}^n$ and $u_2, v_2 \in \mathbb{R}^m$, such that

\[
K \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0, \quad [u_1^T \ u_2^T]K = 0.
\]

They are each unique up to a scalar multiple [2].

The purpose of this note is to provide an affirmative answer to a conjecture in [2], regarding the matrices $I_m - \Phi \Psi$ and $I_n - \Psi \Phi$.

2. The result

The following result was conjectured to be true in [2], and was proved under the restrictive assumption that at least one of Φ and Ψ is positive.

Theorem 2. Let K be a regular singular M-matrix with Assumption [2]. If $u_1^T v_1 \neq u_2^T v_2$, then $I_m - \Phi \Psi$ and $I_n - \Psi \Phi$ are nonsingular M-matrices.

Proof. By Theorem [1] $I_m - \Phi \Psi$ and $I_n - \Psi \Phi$ are both M-matrices. So we just need to show they are nonsingular when $u_1^T v_1 \neq u_2^T v_2$. Since $I_n - \Psi \Phi$ is nonsingular if and only if $I_m - \Phi \Psi$ is nonsingular, we only need to show $I_n - \Psi \Phi$ is nonsingular.

In view of

\[
\begin{bmatrix} I_n & 0 \\ -\Phi & I_m \end{bmatrix} \begin{bmatrix} I_n & \Psi \\ \Phi & I_m \end{bmatrix} = \begin{bmatrix} I_n & \Psi \\ 0 & I_m - \Phi \Psi \end{bmatrix},
\]

we need to show that the matrix

\[
\begin{bmatrix} I_n & \Psi \\ \Phi & I_m \end{bmatrix}
\]

is nonsingular. Since Φ and Ψ are solutions of (1) and (3), respectively, it is easily verified that [2]

\[
\begin{bmatrix} D & -C \\ B & -A \end{bmatrix} \begin{bmatrix} I_n & \Psi \\ \Phi & I_m \end{bmatrix} = \begin{bmatrix} I_n & \Psi \\ \Phi & I_m \end{bmatrix} \begin{bmatrix} R & 0 \\ 0 & -S \end{bmatrix},
\]

where $R = D - C\Phi$ and $S = A - B\Psi$ are M-matrices. Therefore, the eigenvalues of R and S are all in the closed right half plane, with 0 being the only possible eigenvalue on the imaginary axis. When $u_1^T v_1 \neq u_2^T v_2$, we know from [2] that one of the matrices R and S is singular and the other is nonsingular. It follows that the matrices R and $-S$ have no eigenvalues in common.

Let

\[
W = \text{Ker} \begin{bmatrix} I_n & \Psi \\ \Phi & I_m \end{bmatrix}.
\]
We need to show $W = \{0\}$.

For any $x \in W$, post-multiplying (4) by x shows that $Tx \in W$, where T is the linear transformation from \mathbb{C}^{m+n} to \mathbb{C}^{m+n}, defined by

$$T \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} R & 0 \\ 0 & -S \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix},$$

where $y_1 \in \mathbb{C}^n$ and $y_2 \in \mathbb{C}^m$. Thus W is an invariant subspace of the linear transformation T. Suppose $W \neq \{0\}$. Then we have $0 \neq w \in W$ such that $Tw = \lambda w$ for some $\lambda \in \mathbb{C}$. Write $w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$, where $w_1 \in \mathbb{C}^n$ and $w_2 \in \mathbb{C}^m$. We then have $Rw_1 = \lambda w_1$ and $-Sw_2 = \lambda w_2$. Since R and $-S$ have no eigenvalues in common, one of w_1 and w_2 must be a zero vector. It then follows from

$$\begin{bmatrix} I_n & \Psi \\ \Phi & I_m \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = 0$$

that w_1 and w_2 are both zero vectors. The contradiction shows that $W = \{0\}$. □

It has been explained in [2] that when K is a regular singular M-matrix with Assumption 1 and $u_1^T v_1 \neq u_2^T v_2$, doubling algorithms (such as SDA in [4] and ADDA in [5]) can be used to find the minimal nonnegative solutions Φ and Ψ simultaneously. But before Theorem 2 is proved in this note, there were a few subtle issues associated with the doubling algorithms. We now have the following modification of [2] Theorem 15 about the ADDA, which uses two parameters α and β. The ADDA is reduced to the SDA when $\alpha = \beta$.

Theorem 3. Let K be a regular singular M-matrix with Assumption 1 and $u_1^T v_1 \neq u_2^T v_2$. Assume that $\alpha \geq \max a_{ii} > 0$ and $\beta \geq \max d_{ii} > 0$. Then the ADDA is well defined with $I - G_k H_k$ and $I - H_k G_k$ being nonsingular M-matrices for each $k \geq 0$. Moreover, $E_0 \leq 0$, $F_0 \leq 0$, $E_k \geq 0$, $F_k \geq 0$, $0 \leq H_{k-1} \leq H_k \leq \Phi$, $0 \leq G_{k-1} \leq G_k \leq \Psi$ for all $k \geq 1$, and

$$\limsup_{k \to \infty} \sqrt[k]{\|H_k - \Phi\|} \leq r(\alpha, \beta), \quad \limsup_{k \to \infty} \sqrt[k]{\|G_k - \Psi\|} \leq r(\alpha, \beta),$$

where $r(\alpha, \beta) = \rho \left((R + \alpha I)^{-1} (R - \beta I) \right) \cdot \rho \left((S + \beta I)^{-1} (S - \alpha I) \right) < 1$ with $R = D - C\Phi, S = A - B\Psi$.

Since we have now proved that $I - \Phi\Psi$ and $I - \Psi\Phi$ are nonsingular M-matrices we can use the approach in [3] to prove that the ADDA is well defined with $I - G_k H_k$ and $I - H_k G_k$ being nonsingular M-matrices for each $k \geq 0$ even when $\alpha = \max a_{ii}$ and $\beta = \max d_{ii}$. That $r(\alpha, \beta) < 1$ in Theorem 3 is already known in [2]. Thus, H_k converges to Φ quadratically, and G_k converges to Ψ quadratically.

By [3] Theorem 2.3], the parameters $\alpha = \max a_{ii}$ and $\beta = \max d_{ii}$ minimize $r(\alpha, \beta)$ among all parameters $\alpha \geq \max a_{ii}$ and $\beta \geq \max d_{ii}$. Therefore, we should normally use the optimal values $\alpha = \max a_{ii}$ and $\beta = \max d_{ii}$ for the ADDA. Before Theorem 2 is proved, we avoid using $\alpha = \max a_{ii}$ and $\beta = \max d_{ii}$, to ensure that the ADDA is well defined.

The matrices $(I - G_k H_k)^{-1}$ and $(I - H_k G_k)^{-1}$ appear in the ADDA. With the proof of Theorem 2 we now know that, in Theorem 3 the matrices $I - G_k H_k$ and $I - H_k G_k$ will not converge to singular matrices. This is of course favorable for the ADDA.
References

[1] C.-H. Guo, Nonsymmetric algebraic Riccati equations and Wiener–Hopf factorization for M-matrices, SIAM J. Matrix Anal. Appl. 23 (2001) 225–242.
[2] C.-H. Guo, On algebraic Riccati equations associated with M-matrices, Linear Algebra Appl. 439 (2013) 2800–2814.
[3] C.-H. Guo, B. Iannazzo, B. Meini, On the doubling algorithm for a (shifted) nonsymmetric algebraic Riccati equation, SIAM J. Matrix Anal. Appl. 29 (2007) 1083–1100.
[4] X.-X. Guo, W.-W. Lin, S.-F. Xu, A structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equation, Numer. Math. 103 (2006) 393–412.
[5] W.-G. Wang, W.-C. Wang, R.-C. Li, Alternating-directional doubling algorithm for M-matrix algebraic Riccati equations, SIAM J. Matrix Anal. Appl. 33 (2012) 170–194.

Department of Mathematics and Statistics, University of Regina, Regina, SK S4S 0A2, Canada
E-mail address: ludix203@uregina.ca

Department of Mathematics and Statistics, University of Regina, Regina, SK S4S 0A2, Canada
E-mail address: chun-hua.guo@uregina.ca