Genetic variation in POT1 and risk of thyroid subsequent malignant neoplasm: A report from the Childhood Cancer Survivor Study

Melissa A. Richard¹, Philip J. Lupo¹, Lindsay M. Morton², Yutaka A. Yasui³, Yadav A. Sapkota³, Michael A. Arnold⁴, Geraldine Aubert⁵, Joseph P. Neglia⁶, Lucie M. Turcotte⁶, Wendy M. Leisenring⁷, Joshua N. Sampson⁸, Stephen J. Chanock²,⁸, Melissa M. Hudson⁹, Gregory T. Armstrong³, Leslie L. Robison³, Smita Bhatia¹⁰, Maria Monica Gramatges¹*

¹ Department of Pediatrics, Baylor College of Medicine and Dan L. Duncan Cancer Center, Houston, TX, United States of America, ² Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States of America, ³ Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, United States of America, ⁴ Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America, ⁵ Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada, ⁶ Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States of America, ⁷ Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America, ⁸ Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America, ⁹ Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States of America, ¹⁰ Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, England

* gramatge@bcm.edu

Abstract

Background
Telomere length is associated with risk for thyroid subsequent malignant neoplasm in survivors of childhood cancer. Here, we investigated associations between thyroid subsequent malignant neoplasm and inherited variation in telomere maintenance genes.

Methods
We used RegulomeDB to annotate the functional impact of variants mapping to 14 telomere maintenance genes among 5,066 five-or-more year survivors who participate in the Childhood Cancer Survivor Study (CCSS) and who are longitudinally followed for incidence of subsequent cancers. Hazard ratios for thyroid subsequent malignant neoplasm were calculated for 60 putatively functional variants with minor allele frequency ≥1% in or near telomere maintenance genes. Functional impact was further assessed by measuring telomere length in leukocyte subsets.

Results
The minor allele at Protection of Telomeres-1 (POT1) rs58722976 was associated with increased risk for thyroid subsequent malignant neoplasm (adjusted HR = 6.1, 95% CI: 2.4, 15.5, P = 0.0001; Fisher’s exact P = 0.001). This imputed SNP was present in three out of 110 survivors who developed thyroid cancer vs. 14 out of 4,956 survivors who did not
the development of malignant and non-malignant treatment-related outcomes in cancer survivors. This process is open to investigators through collaboration with CCSS and National Cancer Institute investigators in the use of existing GWAS data and corresponding outcomes-related data to address innovative research questions relating to potential genetic contributions to risk for treatment-related outcomes through submission of an Application of Intent (https://ccss.stjude.org/develop-a-study/gwas-data-resource.html). Genotype data for the CCSS are also available through dbGaP, accession phs001327.v1.p1.

Funding: This work was supported by the National Cancer Institute (NCI) (CA194473: M.M.G., Principal Investigator) and a CCSS Career Development Award to P.J.L. CCSS is supported by the NCI (CA55727: G.T.A., Principal Investigator). Genotyping for CCSS was supported by the Intramural Research Program of the NCI, National Institutes of Health. The sponsors played no role in study design, data collection, analysis, decision to publish, or manuscript preparation.

Competing interests: I have read the journal’s policy and the authors of this manuscript have the following competing interests: Geraldine Aubert is a paid employee of Repeat Diagnostics, Inc., which conducted the telomere length assessment. We can affirm that the employment of Dr. Aubert does not alter our adherence to PLOS ONE policies on sharing data and materials.

Conclusions

Using a functional variant approach, we identified and confirmed an association between a low frequency intronic regulatory POT1 variant and thyroid subsequent malignant neoplasm in survivors of childhood cancer. These results suggest that intronic variation in POT1 may affect key protein binding interactions that impact telomere maintenance and genomic integrity.

Introduction

Over 80% of individuals diagnosed and treated for cancer as children will survive five or more years after completing cancer treatment. An increased risk for subsequent malignant neoplasms (SMN), including SMNs of the thyroid (thyroid SMN), is a known late effect of childhood cancer treatment.[1] Higher risk for thyroid SMN is observed among female survivors, those diagnosed with primary cancer at a younger age, and those exposed to radiation and certain chemotherapeutic agents.[2] However, these clinical risk factors do not fully explain variability in thyroid SMN risk, suggesting a likely role for inherited genetic factors.

Telomeres are repetitive DNA-protein structures localized to chromosome ends, protecting chromosome integrity and loss of proximal terminal coding regions during DNA replication. Telomere length is determined by environmental and hereditary factors, shortens with age, and is maintained by telomerase and associated proteins. The majority of population-based studies have noted an inverse association between cancer risk over time and leukocyte telomere length when measured directly through standard methodologies.[3, 4] However, data from genome wide association studies suggest that longer telomere length may also confer risk for a number of cancers.[5] This apparent paradox is hypothesized to result from multi-stage mechanisms underlying malignant transformation: specifically, accumulation of random mutational events during stem cell replication may lead to an increase in sporadic cancer risk that occurs with physiologic aging, for which telomere shortening is a proxy. Longer telomeres confer a greater capacity for cellular clonal expansion and proliferation, so that individuals with very long telomeres may also be at especially high risk for carcinogenesis.[6]

Exposure to ionizing radiation induces DNA damage and may lead to telomere dysfunction,[7–10] providing rationale to suggest a relationship between telomere length and risk for SMN among radiation-exposed cancer survivors. We previously reported an increased risk for thyroid SMN in radiation-exposed survivors of childhood cancer with reduced leukocyte telomere content.[11] We subsequently observed no association between genotypically-estimated telomere length, determined from variation in nine common telomere length-associated SNPs, and thyroid SMN.[12] These prior works prompted a functional variant approach to further interrogate the relationship between variation in genes related to telomere maintenance and thyroid SMN in the Childhood Cancer Survivor Study (CCSS).

Materials and methods

Subjects

The CCSS is a multi-center cohort of individuals diagnosed <21 years of age with childhood cancer between 1970 and 1986, and who survived five or more years after completion of cancer...
treatment. After enrollment to the CCSS, survivors are prospectively followed through self-report questionnaires to ascertain late effects of cancer treatment. Thyroid SMN was defined as any SMN of the thyroid gland occurring as the first subsequent neoplasm in a CCSS participant, with a diagnosis and date of diagnosis that had been verified from the original pathology report by a CCSS-designated pathologist. All subjects provided written consent to participate in the CCSS, and each of the 26 participating institutions obtained approval to conduct this research through their institutional IRB. Diagnosis and treatment data were initially abstracted from the medical record by the participating treating institution and submitted, fully anonymized, to CCSS. The work described in this study utilized fully anonymized data. The study was conducted in accordance with the Declarations of Helsinki.

Genetic data

This study leveraged genetic data from 5,066 CCSS participants with complete follow-up for SMN. DNA was extracted using standard methods from blood, saliva (Oragene), or buccal cells (mouthwash), collected at least five years from diagnosis and genotyped using the Illumina HumanOmni5Exome array at the Cancer Genomics Research Laboratory of the National Cancer Institute. All survivors were imputed to the 1000 Genomes reference haplotypes.[14] We mapped 3,499 variants to a 100 bp region flanking genes implicated in a telomere biology disorder: \textit{ACD}, \textit{CTC1}, \textit{DKC1}, \textit{NAF1}, \textit{NHP2}, \textit{NOP10}, \textit{PARN}, \textit{POT1}, \textit{RTEL1}, \textit{STN1}, \textit{TERC}, \textit{TERT}, \textit{TINF2}, \textit{WRAP53} (Table 1).[15–31] We restricted our analyses to include only functional SNPs with minor allele frequency (MAF) $\geq 1\%$ in or near these 14 genes that were considered most likely to affect transcriptional factor binding, defined by a RegulomeDB score ≥ 2, which signifies localization to transcriptional factor binding and motifs, DNase footprints and peaks, or identification as a quantitative trait locus for gene expression (eQTL).

Table 1. Genes currently implicated in telomere biology disorders.

Gene name (HGNCa Symbol)	Related telomere biology disorder(s)b	Role in telomere maintenance
\textit{ACD} c	HHS, AA, familial cancers	Part of the shelterin complex
\textit{CTC1} c	DC, Coats Plus, cerebroretinal microangiopathy	Part of the CST complex
\textit{DKC1} c	DC, HHS	Part of the telomerase holoenzyme
\textit{NAF1} c	PF	Part of the telomerase holoenzyme
\textit{NHP2} c	DC	Part of the telomerase holoenzyme
\textit{NOP10} c	DC	Part of the telomerase holoenzyme
\textit{PARN} c	DC, PF, HHS	Ribonuclease interacting with TERC
\textit{POT1} c	Coats Plus, familial cancers	Part of the shelterin complex
\textit{RTEL1} c	DC, PF, HHS	DNA helicase interacting with shelterin
\textit{STN1 (OBFC1)}	Coats Plus	Part of the CST complex
\textit{TERC}	DC, PF, MDS, HHS, AA	Part of the telomerase holoenzyme
\textit{TERT}	DC, PF, AML, MDS, HHS, AA	Part of the telomerase holoenzyme
\textit{TINF2}	DC, HHS, RS, AA	Part of the shelterin complex
\textit{WRAP53}	DC	Protein that binds to TERC

aHUGO Gene Nomenclature Committee

bHHS = Hoyeraal Hreiderson Syndrome, DC = dyskeratosis congenita, PF = pulmonary fibrosis, MDS = myelodysplastic syndrome, AA = aplastic anemia, AML = acute myeloid leukemia, RS = Revesz Syndrome

https://doi.org/10.1371/journal.pone.0228887.t001
across multiple tissues.[32] Genetic variants were coded as imputed genotype dosages and filtered for imputation quality >0.7.

Statistical analysis
We conducted time-to-event Cox regression for thyroid SMN as a first SMN using the `survival` package in R v3.5.2. The at-risk period began with the date of initial cancer diagnosis and ended at the date of thyroid SMN diagnosis, or the earliest first report of other SMN, death, and/or date of last follow up. Relative risk of thyroid SMN was estimated using hazard ratios (HR), adjusted for demographic and clinical factors including sex, birth year before or after 1970, age at primary cancer diagnosis, primary cancer diagnosis, radiation exposure (yes/no), neck radiation exposure (yes/no), alkylating agent exposure (yes/no), and thyroid nodules (yes/no). Genetic ancestry proportions were estimated using three continental ancestries (CEU, AFR, and ASN) in STRUCTURE.[33] We used an 80% threshold to define individuals of a predominant ancestry and performed secondary analyses 1) in the total sample additionally adjusted for estimated European and African proportions and 2) restricted to individuals of European ancestry. Statistical significance for association with risk for thyroid SMN was defined by the Bonferroni correction for the number of variants tested ($\alpha = 0.00083$). For lower frequency variants (MAF 1–5%) that were statistically significant in the Cox regression model, we validated the regression model using a Fisher’s exact test to evaluate differences in allele frequency between those with and without thyroid SMN.[34]

Measurement of telomere length in hematopoietic cells
Viably frozen leukocyte samples were available for 83 CCSS subjects included in this study. Leukocyte telomere length was measured by flow cytometry fluorescence in situ hybridization (flow FISH) following established procedures.[35] Briefly, leukocyte telomere length was assessed against that of control bovine thymocytes after denaturation in formamide at 87°C. Quantitative hybridization with a fluorescein-conjugated (CCCTAA)₃ peptide nucleic acid (PNA) probe specific for telomere repeats (in-house synthesis) was then performed and counterstained with LDS751 DNA dye (Exciton), followed by analysis with flow cytometry. Results were transformed to age-adjusted percentiles based on the date of sample collection. For significant functional variants, we compared the proportions of age-based relative telomere length categories (very low, low, normal, high, or very high) by cell type between carriers and non-carriers of the risk allele using Fisher’s exact test.

Results
We identified 110 CCSS participants who developed thyroid SMN five or more years after completion of cancer treatment and 4,956 survivors without thyroid SMN. Survivors who developed thyroid SMN were more likely to be female (thyroid SMN: 62.7%, non-cases: 51.6%) and to have thyroid nodules (thyroid SMN: 84.5%, non-cases: 10.0%). Thyroid SMN also occurred more frequently for those with older age at childhood cancer diagnosis (thyroid SMN cases: mean 9.0 years, non-cases: mean 7.9 years) and a primary diagnosis of Hodgkin lymphoma (thyroid SMN cases: 32.7%, non-cases: 12.6%). Among primary cancer treatment characteristics, radiation treatment to the neck and exposure to alkylating chemotherapy was also more likely to have occurred among thyroid SMN cases than survivors without thyroid SMN (Table 2).

There were 60 SNPs included in our analyses located in or near telomere candidate genes that had both 1) a RegulomeDB score ≤ 2 signifying high likelihood for affecting transcriptional regulation and 2) a general population MAF <1%. Only one imputed variant
(imputation quality $r^2 = 0.95$) in an intronic region of POT1 (Protection of Telomeres 1), rs58722976, met Bonferroni criteria for statistical significance (adjusted HR = 6.1, 95% CI: 2.4, 15.5, P = 0.0001). The risk-associated G allele was present in three individuals with thyroid SMN and 14 individuals without thyroid SMN (Table 3). Comparing the risk allele frequencies between cases and non-cases also supported association of rs58722976 with thyroid SMN (Fisher’s exact P = 0.001). Estimated allele frequency at rs58722976 in the Genome Aggregation Database (gnomAD) suggests variation at rs58722976 occurs at highest frequency in individuals of African ancestry (AFR f(G) = 4.8%). In secondary analyses, we identified a consistent association of rs58722976 with thyroid SMN both when additionally adjusted for ancestry proportions (ancestry-adjusted HR = 8.0, 95% CI: 2.3, 27.2, p = 0.0009) and when restricted to European ancestry CCSS participants (CEU only HR = 18.9, 95% CI: 3.5, 101.7, p = 0.0006; median CEU proportion = 95.7%).

Table 2. Characteristics of the Childhood Cancer Survivor Study participants by development of subsequent malignant neoplasm of the thyroid.

	Thyroid SMN cases n = 110	Non-cases n = 4,956		
Age at first malignancy, years (mean ± SD)	9.0 ± 5.5	7.9 ± 5.9		
Year of birth				
Before 1970	68	61.8%	2,227	44.9%
After 1970	42	38.2%	2,729	55.1%
Sex				
Male	41	37.3%	2,397	48.4%
Female	69	62.7%	2,559	51.6%
Type of first malignancy				
Leukemia	30	27.3%	1,589	32.1%
Central nervous system	12	10.9%	591	11.9%
Hodgkin lymphoma	36	32.7%	623	12.6%
Non-Hodgkin lymphoma	5	4.5%	397	8.0%
Kidney/Wilms tumor	5	4.5%	486	9.8%
Neuroblastoma	5	4.5%	366	7.4%
Soft tissue sarcoma	6	5.5%	463	9.3%
Bone	11	10.0%	441	8.9%
Alkylating chemotherapy	69	62.7%	2,542	51.3%
Any radiation treatment	94	85.5%	3,144	63.4%
Radiation treatment to the neck	66	60.0%	1,041	21.0%
Thyroid nodules	93	84.5%	498	10.0%

Table 3. Genotype frequencies and Cox regression estimates for POT1 rs58722976 and risk of subsequent malignant neoplasm of the thyroid in the Childhood Cancer Survivor Study.

SNP	Population	Genotypes for thyroid SMN cases	Genotypes for non-cases	Cox regression estimates						
		GG	AG	AA	GG	AG	AA	HR	95% CI	P-value
rs58722976	total sample	1	2	107	0	14	4,942	6.1	(2.4, 15.5)	0.0001
	AFR and CEU adjusted	1	2	107	0	14	4,942	8.0	(2.3, 27.2)	0.0009
	CEU only	0	2	102	0	2	4,621	18.9	(3.5, 101.7)	0.0006

All models are adjusted for sex, age at primary cancer diagnosis, primary cancer diagnosis, decade of birth, and treatment exposures.
Lastly, telomere length was assessed in leukocyte populations in a subset of 83 survivors of childhood cancer enrolled to the CCSS. Only two were heterozygous for the risk allele in our top SNP. Telomere length was increased for the two heterozygous subjects across all leukocyte subsets compared with the median telomere length for subjects without the risk allele, a difference that was statistically significant for B lymphocytes (Fig 1, \(P = 0.004 \)).

Discussion

POT1 is a highly conserved gene encoding a key component of the shelterin complex, which protects telomere ends against DNA damage recognition and facilitates telomerase-mediated telomere maintenance. *POT1* rs58722976 is an intronic variant identified by the ENCODE Consortium as a strong enhancer and DNase I hypersensitive site in multiple tissues, including the hematopoietic compartment, and may affect protein binding in components of the cohesion complex that play key roles in cancer etiology and maintaining genomic integrity.[36] Germline variants in *POT1* have been described in association with various cancer types[37] including familial glioma,[38] familial melanoma,[39–41] colorectal, ovarian, and lung cancer, [42] chronic lymphocytic leukemia,[43] multiple myeloma,[44] and non-*TP53* familial cancer syndromes.[45] Similar to our analyses, many of these genetic association studies note longer leukocyte telomere length among affected individuals compared with those who are unaffected.[38, 40, 41, 45] Recent data suggest that mutation-induced disruptions in the *POT1*-TPP1 complex, both components of shelterin, affect the ability of this complex to bind...
to telomeric DNA, leading to longer and more fragile telomeres that may promote genomic instability and cancer risk.[46]

This study was conducted within the CCSS, the largest genotyped population of survivors of childhood cancer. However, the low frequency of this variant precludes assessment of gene-environment interactions and adequately-sized genotyped survivor populations for replication or stratification among non-white ancestries. For example, all risk allele carriers excluded from CEU-only analysis were of primarily African ancestry (one homozygous individual with thyroid SMN and 12 carriers without thyroid SMN). Although thyroid cancer incidence is highest among individuals of European ancestry,[47] African ancestry confers a higher risk for the follicular variant of papillary thyroid cancer,[48] which was the SMN subtype observed in the survivor with thyroid SMN that was homozygous for the rs58722976 risk allele.

Using an approach that mapped functional variants to candidate genes, we identified an association between a low frequency intronic regulatory variant in \textit{POT1} and risk for thyroid SMN in survivors of childhood cancer. We provide evidence that genetic variation at this locus may related to longer telomere length, in line with prior observations of longer leukocyte telomere length in association with cancers characterized by germline mutations in \textit{POT1}. Our findings support a potential role for genetic variation in \textit{POT1} affecting telomere maintenance and risk for thyroid SMN in survivors, suggesting the need for further study as larger genotyped survivor datasets emerge.

Acknowledgments

The authors would like to thank the survivors and their families who participate in the Childhood Cancer Survivor Study.

Author Contributions

Conceptualization: Philip J. Lupo, Smita Bhatia, Maria Monica Gramatges.

Data curation: Melissa A. Richard, Wendy M. Leisenring, Stephen J. Chanock, Gregory T. Armstrong, Leslie L. Robison, Smita Bhatia.

Formal analysis: Melissa A. Richard, Philip J. Lupo, Lindsay M. Morton, Yutaka A. Yasui, Yadav A. Sapkota, Geraldine Aubert, Wendy M. Leisenring, Joshua N. Sampson, Stephen J. Chanock.

Funding acquisition: Philip J. Lupo, Stephen J. Chanock, Gregory T. Armstrong, Maria Monica Gramatges.

Investigation: Melissa A. Richard, Philip J. Lupo, Lindsay M. Morton, Yutaka A. Yasui, Michael A. Arnold, Geraldine Aubert, Joseph P. Neglia, Lucie M. Turcotte, Wendy M. Leisenring, Joshua N. Sampson, Stephen J. Chanock, Melissa M. Hudson, Gregory T. Armstrong, Leslie L. Robison, Smita Bhatia, Maria Monica Gramatges.

Methodology: Melissa A. Richard, Philip J. Lupo, Lindsay M. Morton, Yutaka A. Yasui, Yadav A. Sapkota, Michael A. Arnold, Geraldine Aubert, Joseph P. Neglia, Lucie M. Turcotte, Joshua N. Sampson, Stephen J. Chanock, Melissa M. Hudson, Gregory T. Armstrong, Leslie L. Robison, Smita Bhatia, Maria Monica Gramatges.

Project administration: Yutaka A. Yasui, Michael A. Arnold, Joseph P. Neglia, Wendy M. Leisenring, Stephen J. Chanock, Melissa M. Hudson, Gregory T. Armstrong, Leslie L. Robison, Smita Bhatia, Maria Monica Gramatges.
Resources: Lindsay M. Morton, Yutaka A. Yasui, Wendy M. Leisenring, Gregory T. Armstrong, Leslie L. Robison, Smita Bhatia.

Supervision: Philip J. Lupo, Yutaka A. Yasui, Joseph P. Neglia, Stephen J. Chanock, Gregory T. Armstrong, Maria Monica Gramatges.

Writing – original draft: Maria Monica Gramatges.

Writing – review & editing: Melissa A. Richard, Philip J. Lupo, Lindsay M. Morton, Yutaka A. Yasui, Yadav A. Sapkota, Michael A. Arnold, Geraldine Aubert, Joseph P. Neglia, Lucie M. Turcotte, Wendy M. Leisenring, Joshua N. Sampson, Stephen J. Chanock, Melissa M. Hudson, Gregory T. Armstrong, Leslie L. Robison, Smita Bhatia, Maria Monica Gramatges.

References

1. Turcotte LM, Liu Q, Yasui Y, Arnold MA, Hammond S, Howell RM, et al. Temporal Trends in Treatment and Subsequent Neoplasm Risk Among 5-Year Survivors of Childhood Cancer, 1970–2015. Jama. 2017; 317(8):814–24. https://doi.org/10.1001/jama.2017.0693 PMID: 28245329

2. Veiga LH, Lubin JH, Anderson H, de Vathaire F, Tucker M, Bhatti P, et al. A pooled analysis of thyroid cancer incidence following radiotherapy for childhood cancer. Radiation research. 2012; 178(4):365–76. https://doi.org/10.1667/rr2889.1 PMID: 22857014

3. Ma H, Zhou Z, Wei S, Liu Z, Pooley KA, Dunning AM, et al. Shortened telomere length is associated with increased risk of cancer: a meta-analysis. PLoS One. 2011; 6(6):e20466. https://doi.org/10.1371/journal.pone.0020466 PMID: 21695195

4. Wentzensen IM, Mirabello L, Pfeiffer RM, Savage SA. The association of telomere length and cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2011; 20(6):1238–50. https://doi.org/10.1158/1055-9965.EPI-11-0005 PMID: 21467229

5. Telomeres Mendelian Randomization C, Haycock PC, Burgess S, Nounu A, Zheng J, Okoli GN, et al. Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases: A Mendelian Randomization Study. JAMA Oncol. 2017; 3(5):636–51. https://doi.org/10.1001/jamaoncol.2016.5945 PMID: 28241208

6. Aviv A, Anderson JJ, Shay JW. Mutations, Cancer and the Telomere Length Paradox. Trends Cancer. 2017; 3(4):253–8. https://doi.org/10.1016/j.trecan.2017.02.005 PMID: 28718437

7. Maeda T, Nakamura K, Atsumi K, Hirakawa M, Ueda Y, Makino N. Radiation-associated changes in the length of telomeres in peripheral leukocytes from inpatients with cancer. International journal of radiation biology. 2013; 89(2):106–9. https://doi.org/10.3109/09553002.2013.734945 PMID: 23920808

8. Fumagalli M, Rosselli F, Clerici M, Barozzi S, Cittaro D, Kaplanov JM, et al. Telomeric DNA damage is irreversible and causes persistent DNA-damage-response activation. Nat Cell Biol. 2012; 14(4):355–65. https://doi.org/10.1038/nclcb2466 PMID: 22426077

9. Li P, Hou M, Lou F, Bjorkholm M, Xu D. Telomere dysfunction induced by chemotherapeutic agents and radiation in normal human cells. Int J Biochem Cell Biol. 2012; 44(8):1351–40. https://doi.org/10.1016/j.biocel.2012.06.020 PMID: 22728163

10. Lustig A, Shterev I, Geyer S, Shi A, Hu Y, Morishita Y, et al. Long term effects of radiation exposure on telomere lengths of leukocytes and its associated biomarkers among atomic-bomb survivors. Oncotarget. 2016; 7(26):26969–78. https://doi.org/10.18632/oncotarget.8801 PMID: 27102155

11. Gramatges MM, Liu Q, Yasui Y, Okcu MF, Neglia JP, Strong LC, et al. Telomere content and risk of second malignant neoplasm in survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. Clinical cancer research: an official journal of the American Association for Cancer Research. 2014; 20(4):904–11.

12. Gramatges MM, Morton LM, Yasui Y, Arnold MA, Neglia JP, Leisenring WM, et al. Telomere Length-Associated Genetic Variants and the Risk of Thyroid Cancer in Survivors of Childhood Cancer: A Report from the Childhood Cancer Survivor Study (CCSS). Cancer Epidemiol Biomarkers Prev. 2019; 28 (2):417–9. https://doi.org/10.1158/1055-9965.EPI-18-0972 PMID: 30377209

13. Robison LL, Armstrong GT, Boice JD, Chow EJ, Davies SM, Donaldson SS, et al. The Childhood Cancer Survivor Study: a National Cancer Institute-supported resource for outcome and intervention research. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2009; 27(14):2308–18.
14. Morton LM, Sampson JN, Armstrong GT, Chen T, Hudson MM, Dagnall CL, et al. Genome-wide association study identifies susceptibility loci that modify radiation-related risk for breast cancer after childhood cancer. J Natl Cancer Inst. 2017; in press (in press).

15. Niewisch MR, Savage SA. An update on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev Hematol. 2019;1–16.

16. Heiss NS, Knight SW, Vulliamy TJ, Klauck SM, Wiemann S, Mason PJ, et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nuclear functions. Nat Genet. 1998; 19(1):32–8. https://doi.org/10.1038/ng0598-32 PMID: 9590285

17. Mitchell JR, Wood E, Collins K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature. 1999; 402(6761):551–5. https://doi.org/10.1038/990141 PMID: 10591218

18. Vulliamy T, Marrone A, Szydlo R, Walne A, Mason PJ, Dokal I. Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat Genet. 2004; 36(5):447–9. https://doi.org/10.1038/ng1346 PMID: 15098033

19. Ballew BJ, Yeager M, Jacobs K, Giri N, Boland J, Burdett L, et al. Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in Dyskeratosis congenita. Hum Genet. 2013; 120(4):473–80. https://doi.org/10.1007/s00439-013-1265-8 PMID: 23329068

20. Walne AJ, Vulliamy T, Kirwan M, Plagnol V, Dokal I. Constitutional mutations in RTEL1 cause severe dyskeratosis congenita. Am J Hum Genet. 2013; 92(3):448–53. https://doi.org/10.1016/j.ajhg.2013.02.001 PMID: 23453664

21. Zhong F, Savage SA, Shkreli M, Giri N, Jessop L, Myers T, et al. Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita. Genes Dev. 2011; 25(11):1–6. https://doi.org/10.1101/gad.2006411 PMID: 21205863

22. Anderson BH, Kasher PR, Mayer J, Szynekiewicz M, Jenkinson EM, Bhaskar SS, et al. Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus. Nat Genet. 2012; 44(3):338–42. https://doi.org/10.1038/ng.1084 PMID: 22267198

23. Tummalia H, Walne A, Collopy L, Cardoso S, de la Fuente J, Lawson S, et al. Poly(A)-specific ribonuclease deficiency impacts telomere biology and causes dyskeratosis congenita. J Clin Invest. 2015; 125(5):2151–60. https://doi.org/10.1172/JCI78963 PMID: 25893599

24. Vulliamy T, Beswick R, Kirwan M, Marrone A, Digweed M, Walne A, et al. Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proc Natl Acad Sci U S A. 2008; 105(23):8073–8. https://doi.org/10.1073/pnas.0800042105 PMID: 18523010

25. Walne AJ, Vulliamy T, Marrone A, Beswick R, Kirwan M, Masunari Y, et al. Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. Hum Mol Genet. 2007; 16(13):1619–29. https://doi.org/10.1093/hmg/ddn111 PMID: 17507419

26. Savage SA, Giri N, Baerlocher GM, Orr N, Lansdorp PM, Alter BP. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am J Hum Genet. 2008; 82(2):501–9. https://doi.org/10.1016/j.ajhg.2007.10.004 PMID: 18252230

27. Guo Y, Kartawinata M, Li J, Pickett HA, Teo J, Kilo T, et al. Inherited bone marrow failure associated with germline mutation of ACD, the gene encoding telomere protein TPP1. Blood. 2014; 124(18):2767–74. https://doi.org/10.1182/blood-2014-08-596445 PMID: 25205116

28. Kocak H, Ballew BJ, Bisht K, Eggbeeen R, Hicks BD, Suman S, et al. Hoyeraal-Hreidarsson syndrome caused by a germline mutation in the TEL patch of the telomere protein TPP1. Genes Dev. 2014; 28(19):2090–102. https://doi.org/10.1101/gad.248567.114 PMID: 25233904

29. Simon AJ, Lev A, Zhang Y, Weiss B, Rylova A, Eyal E, et al. Mutations in STN1 cause Coats plus syndrome and are associated with genomic and telomere defects. J Exp Med. 2016; 213(8):1429–40. https://doi.org/10.1084/jem.20151618 PMID: 27432940

30. Takai H, Jenkinson E, Kabir S, Babul-Hirji R, Najm-Tehrani N, Chitayat DA, et al. A POT1 mutation implicates defective telomere end fill-in and telomere truncations in Coats plus. Genes Dev. 2016; 30(7):812–26. https://doi.org/10.1101/gad.27873.115 PMID: 27013236

31. Stanley SE, Gable DL, Wagner CL, Carllie TM, Hanumanthu VS, Podlevsky JD, et al. Loss-of-function mutations in the RNA biogenesis factor NAF1 predispose to pulmonary fibrosis-emphysema. Sci Transl Med. 2016; 8(351):351ra107. https://doi.org/10.1126/scitranslmed.aaf7837 PMID: 27510903

32. Boyle AP, Hong EL, Harharan M, Cheng Y, Schaub MA, Kasowski M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012; 22(9):1790–7. https://doi.org/10.1101/gr.137323.112 PMID: 2295989

33. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000; 155(2):945–59. PMID: 10835412
34. Derkach A, Lawless JF, Sun L. Robust and powerful tests for rare variants using Fisher's method to combine evidence of association from two or more complementary tests. Genet Epidemiol. 2013; 37 (1):110–21. https://doi.org/10.1002/gepi.21689 PMID: 23032573

35. Baerlocher GM, Vulto I, de Jong G, Lansdorp PM. Flow cytometry and FISH to measure the average length of telomeres (flow FISH). Nat Protoc. 2006; 1(5):2365–76. https://doi.org/10.1038/nprot.2006.268 PMID: 17406480

36. Hill VK, Kim JS, Waldman T. Cohesin mutations in human cancer. Biochimica et biophysica acta. 2016; 1866(1):1–11. https://doi.org/10.1016/j.bbcan.2016.05.002 PMID: 27207471

37. Calvete O, Garcia-Pavia P, Dominguez F, Bougeard G, Kunze K, Braeuninger A, et al. The wide spectrum of POT1 gene variants correlates with multiple cancer types. Eur J Hum Genet. 2017; 25 (11):1278–81. https://doi.org/10.1038/ejhg.2017.134 PMID: 28853721

38. Bainbridge MN, Armstrong GN, Gramatges MM, Bertuch AA, Jhangiani SN, Dodapaneni H, et al. Germline mutations in shelterin complex genes are associated with familial glioma. J Natl Cancer Inst. 2015; 107(1):384. https://doi.org/10.1093/jnci/dju384 PMID: 25482530

39. Wong K, Robles-Espinoza CD, Rodriguez D, Rudat SS, Puig S, Potrony M, et al. Association of the POT1 Germline Missense Variant p.I78T With Familial Melanoma. JAMA dermatology. 2018.

40. Robles-Espinoza CD, Harland M, Ramsay AJ, Aoude LG, Quesada V, Ding Z, et al. POT1 loss-of-function variants predispose to familial melanoma. Nat Genet. 2014; 46(5):478–81. https://doi.org/10.1038/ng.2947 PMID: 24686849

41. Shi J, Yang XR, Ballew B, Rotunno M, Calista D, Fargnoli MC, et al. Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma. Nat Genet. 2014; 46(5):482–6. https://doi.org/10.1038/ng.2941 PMID: 24686846

42. Karami S, Han Y, Pande M, Cheng I, Rudd J, Pierce BL, et al. Telomere structure and maintenance gene variants and risk of five cancer types. Int J Cancer. 2016; 139(12):2655–70. https://doi.org/10.1002/ijc.30288 PMID: 27459707

43. Speedy HE, Di Bernardo MC, Sava GP, Dyer MJ, Holroyd A, Wang Y, et al. A genome-wide association study identifies multiple susceptibility loci for chronic lymphocytic leukemia. Nature genetics. 2014; 46 (1):56–60. https://doi.org/10.1038/ng.2843 PMID: 24292274

44. Went M, Sud A, Forsti A, Halvarsson BM, Weinhold N, Kimber S, et al. Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma. Nat Commun. 2018; 9 (1):3707. https://doi.org/10.1038/s41467-018-04989-w PMID: 30213928

45. Calvete O, Martinez P, Garcia-Pavia P, Benitez-Buelga C, Paumard-Hernandez B, Fernandez V, et al. A mutation in the POT1 gene is responsible for cardiac angiosarcoma in TP53-negative Li-Fraumeni-like families. Nature communications. 2015; 6:8383. https://doi.org/10.1038/ncomms9383 PMID: 26403419

46. Rice C, Shastrula PK, Kossenkov AV, Hills R, Baird DM, Showe LC, et al. Structural and functional analysis of the human POT1-TPP1 telomeric complex. Nat Commun. 2017; 8:14928. https://doi.org/10.1038/ncomms14928 PMID: 28393830

47. Magreni A, Bann DV, Schubart JR, Goldenberg D. The effects of race and ethnicity on thyroid cancer incidence. JAMA Otolaryngol Head Neck Surg. 2015; 141(4):319–23. https://doi.org/10.1001/jamaoto.2014.3740 PMID: 25654447

48. Mehta V, Ow TJ, Kim S, Tharakan T, Schiff B, Smith RV, et al. Significant racial differences in the incidence and behavior of the follicular variant of papillary thyroid carcinoma. Head Neck. 2019; 41 (5):1403–11. https://doi.org/10.1002/hed.25596 PMID: 30652370