Do Zinc Supplements Enhance the Clinical Efficacy of Hydroxychloroquine?: a Randomized, Multicenter Trial

Sherief Abd-Elsalam 1 · Shaimaa Soliman 2 · Eslam Saber Esmail 1 · Mai Khalaf 1 · Ehab F. Mostafa 3 · Mohammed A. Medhat 3 · Osamah Ashraf Ahmed 4 · Mohamed Samir Abd El Ghafar 5 · Mohamed Alborai 6 · Sahar M. Hassany 3

Received: 1 September 2020 / Accepted: 23 November 2020 / Published online: 27 November 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
No specific treatment for COVID-19 infection is available up till now, and there is a great urge for effective treatment to reduce morbidity and mortality during this pandemic. We aimed to evaluate the effect of combining chloroquine/hydroxychloroquine (CQ/HCQ) and zinc in the treatment of COVID-19 patients. This was a randomized clinical trial conducted at three major University hospitals in Egypt. One hundred ninety-one patients with a confirmed diagnosis of COVID-19 infection were randomized into two groups: group I (96) patients received both HCQ and zinc, and group II (95) received HCQ only. The primary endpoints were the recovery within 28 days, the need for mechanical ventilation, and death. The two groups were matched for age and gender. They had no significant difference regarding any of the baseline laboratory parameters or clinical severity grading. Clinical recovery after 28 days was achieved by 79.2% in the zinc group and 77.9% in zinc-free treatment group, without any significant difference ($p = 0.969$). The need for mechanical ventilation and the overall mortality rates did not show any significant difference between the 2 groups either ($p = 0.537$ and 0.986, respectively). The age of the patient and the need for mechanical ventilation were the only risk factors associated with the patients’ mortality by the univariate regression analysis ($p = 0.001$ and < 0.001, respectively). Zinc supplements did not enhance the clinical efficacy of HCQ. More randomized studies are needed to evaluate the value of adding zinc to other therapies for COVID-19. ClinicalTrials.gov Identifier: NCT04447534

Keywords Zinc · Chloroquine · Antioxidants · COVID-19 · Treatment

Introduction

The world has witnessed an increasing number of cases with COVID-19 infection since December 2019, reaching more than 20 million infected people worldwide [1–7]. COVID-19 infection is caused by a highly contagious single-stranded RNA virus called the SARS-CoV-2 virus [1], which is transmitted mainly through droplets, aerosol, and close contact [2–4]. Despite the fact that the respiratory system is the primarily affected organ, SARS-CoV-2 can affect many other organs [5–7].

No specific treatment for COVID-19 infection is available up till now, and there is a great urge for effective treatment to reduce morbidity and mortality during this pandemic. Chloroquine (CQ) and hydroxychloroquine (HCQ) can prevent SARS-CoV-2 infection by changing endosomal pH required for virus/cell fusion, together with altering glycosylation of cellular receptors of SARS-CoV [8]. There is a debate in the literature regarding the efficacy of CQ and HCQ in the treatment of COVID-19 infection [9–12]. Adding azithromycin to CQ and HCQ was reported to reduce the complications and fatality rates, and reduce the viral load in COVID-19 patients [7–22]. These reports resulted in emerged
ideas calling for combining CQ and HCQ with other drugs in the treatment of COVID-19.

Zinc is essential for different cellular and enzymatic activities, as well as being a necessary cofactor for many viral proteins [15–25]. Zinc was also proved to inhibit RNA-dependent RNA polymerase of SARS-CoV in cell culture [17]. Chloroquine is known to increase the intracellular concentrations of zinc, and thus enhance its effect [18].

Dietary plant polyphenols such as the flavonoids quercetin (QCT) and epigallocatechin-gallate act as antioxidants and as signaling molecules. Remarkably, the activities of numerous enzymes that are targeted by polyphenols are dependent on zinc. Husam and his colleagues have previously shown that these polyphenols chelate zinc cations, and they hypothesized that these flavonoids might also be acting as zinc ionophores, transporting zinc cations through the plasma membrane [19].

Eight studies are registered on clinicaltrials.gov to evaluate the efficacy of zinc with hydroxychloroquine either in the treatment of or prophylaxis against COVID-19 infection. Only one study is completed, 4 studies are still recruiting patients, and 2 studies did not start recruitment yet, while one study was withdrawn. None of these registered studies has shown the results up till now.

We aimed to evaluate the effect of combining CQ/HCQ and zinc in the treatment of COVID-19 patients.

Methods

This was a randomized controlled study conducted in three Egyptian tertiary care centers in Assiut, Tanta, and Cairo. A written informed consent was taken from each participant in this trial. Approval of the Institutional ethical committee was taken before starting the trial. The trial was registered on clinicaltrials.gov (ClinicalTrials.gov Identifier: NCT04447534).

This study included patients with a confirmed diagnosis of COVID-19 infection by real-time PCR test during the period between 23 June and 23 August 2020. All the included patients were classified into mild, moderate, severe, and critical according to the WHO case severity classification for COVID-19 infection. Mild cases constituted of patients with symptoms for COVID-19 infection but not complicated with pneumonia or hypoxia. Moderate cases included patients with mild viral pneumonia and SpO2 >90% on room air. Severe cases involved patients with signs of severe pneumonia such as respiratory rate >30 breaths/min, severe respiratory distress, or SpO2 <90% on room air. Finally, critical cases included patients with acute respiratory distress syndrome sepsis and septic shock [26].

One hundred ninety-one patients with a confirmed diagnosis of COVID-19 infection were equally randomized into two groups: group I: zinc group, included 96 patients who received both HCQ and zinc and group II (without zinc group), included 95 who received HCQ only. Patient with hypokalemia or hypomagnesemia, porphyria, neutrophilia, myasthenia gravis, maculopathy or changes in the visual field, heart failure, prolonged QT interval in ECG, liver cirrhosis, psoriasis, epilepsy, anemia from pyruvate kinase and G6PD deficiencies, chronic kidney disease, and pregnant or lactating females were excluded from this study. Collected data included history, clinical examination, laboratory investigation at admission, and follow-up during the hospitalization period. Primary outcome measures included recovery within 28 days, need for mechanical ventilation, and death.

Hydroxychloroquine was given in a dose of 400 mg twice daily on the first day, then 200 mg twice daily for 5 days, while zinc was given in a dose of zinc sulfate 220 mg (50 mg of elemental zinc) twice daily as many clinical trials did. Both groups received the standard of care treatment for COVID-19 infection, according to the Egyptian Ministry of Health guidelines for 15 days. This study was approved by the Ethics Committee of the Faculty of Medicine, Tanta University. The privacy and confidentiality of the data for participated patients were guaranteed.

Statistical Analysis

The normality of the variables was tested by the Shapiro-Wilk test. Statistical Package for Social Sciences (SPSS) V. 23 was used for data analysis. Data were expressed in number (No.), percentage (%), mean (x̅), and standard deviation (SD). Student’s t test was used for normally distributed continuous variables and Mann-Whitney’s t test for not normally distributed ones. Chi-square test (χ²) was used to study the association between qualitative variables, and whenever any of the expected cells were less than five, Fisher’s exact test was used. Binary logistic regression was used to ascertain the effect of the potential risk factors on the patients’ mortality. Two-sided p value < 0.05 was considered statistically significant.

Sample Size Calculation The sample size calculation was based on a previous study by Shah et al. 2012, who studied the effect of zinc on severe pneumonia. The required sample was 86 patients in each group with 0.8 as the probability (power), 0.05 as type I error probability, 3 as the difference in the mean duration of pneumonia between the two groups, and 1:1 ratio of experimental to control subjects. The sample size was inflated by 10% to compensate for the dropouts [27].

Results The two groups were matched for age and gender (p = 0.940 and 0.062, respectively). They had no significant difference
regarding smoking, associated comorbidities, or clinical severity grading ($p = 0.706, 0.384, 0.781$, respectively) (Table 1).

The laboratory investigations did not show any significant difference between the two groups. This is detailed in Table 2.

There was no significant difference between the two groups regarding the clinical course or any of the different outcomes. The mean duration of hospital stay was 13.51 ± 5.34 days in the zinc group and 14.01 ± 6.26 days in the zinc-free group ($p = 0.553$). Seventy-six patients (79.2%) in the zinc group and 74 patients in the zinc-free group showed complete recovery after 28 days ($p = 0.969$). Four patients in the zinc group and 6 patients in the zinc-free group needed mechanical ventilation ($p = 0.537$). The overall mortality did not significantly differ in the two groups either, as 5 patients died in each group with $p = 0.986$ (Table 3).

The univariate analysis revealed that the patients’ age and the need for mechanical ventilation were the only risk factors significantly associated with mortality ($p = 0.001$ and < 0.001, respectively). The addition of zinc to HCQ did not considerably affect the overall COVID-19 mortality in this study ($p = 0.986$) (Table 4).

Discussion

In Egypt, there have been an increasing number of cases with COVID-19 infection since March 2020. Many treatment protocols were updated to treat the coronavirus infection based on the evidence available at this time. The initial protocols were primarily dependent on hydroxychloroquine. In the Egyptian leading university hospitals, we aimed to evaluate the effect of combining CQ/HCQ and zinc in treating COVID-19 patients.

The treatment teams in the Egyptian universities, which incorporated infectious diseases consultants and clinical pharmacists, adopted the importance of integration of zinc into the treatment protocol of treatment. To the best of our knowledge,
Do Zinc Supplements Enhance the Clinical Efficacy of Hydroxychloroquine?: a Randomized, Multicenter Trial

Table 4 Regression analysis of the effect of potential risk factors on the patients’ mortality

Variable	Univariate																							
	p value	OR	95% CI																					
Age	0.001	1.097	1.040	1.157																				
Gender	0.180	0.411	0.112	1.507																				
Smoking																								
ALT	0.842	0.998	0.976	1.020																				
Albumin	0.370	0.303	0.022	4.127																				
Creatinine	0.277	0.856	0.646	1.133																				
Ferritin	0.393	1.001	0.999	1.002																				
CRP	0.785	0.996	0.967	1.026																				
Need for mechanical ventilation	< 0.001	138.44	23.592	812.427																				
DM	0.785	0.996	0.967	1.026																				
Zinc treatment	0.986	0.056	0.277	3.534																				

*ALT, alanine transaminase; CRP, C-reactive protein; n, number; SD, standard deviation; OR, odds ratio; DM, diabetes mellitus

This is the first clinical trial investigating the role of the addition of zinc to hydroxychloroquine in the treatment of COVID 19 patients.

The main hypothesis behind this approach was the fact that zinc was proven to have an inhibitory effect on the RNA-dependent RNA polymerase of SARS-CoV in cell culture [17, 18]. Moreover, CQ and HCQ are known to increase the intracellular concentrations of zinc and thus enhance its effect [18].

Despite these proved benefits of zinc in the literature, this study found that zinc supplements did not enhance the clinical efficacy of HCQ.

There are a lot of questions now about the efficacy of CQ or HCQ in the treatment of COVID 19 patients. A recent randomized study found that adding HCQ to standard care did not add significant benefit, did not decrease the need for ventilation, and did not reduce mortality rates in COVID 19 patients [11]. A recent meta-analysis found that hydroxychloroquine alone did not reduce mortality in hospitalized COVID-19 patients, and even when added to azithromycin, this was significantly associated with increased mortality [28].

This study’s major strength is that being the first randomized study to evaluate the effect of combining hydroxychloroquine (HCQ) and zinc in the treatment of COVID-19 patients.

On the other hand, the study’s limitations may be depending mainly on the patients’ clinical outcomes and not the virologic response. However, this is due to the limited resources in such a developing country. Another limitation is that zinc absorption may be limited with high phytate diet, and other medications and serum zinc were not measured before, during, or after treatment in its clinical trial.

In conclusion, zinc supplements did not add value or enhance the clinical efficacy of HCQ. Zinc supplementation may be studied further with other drug regimens for COVID 19, but it did not add any clinical values when added to HCQ.

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflicts of interest.

References

1. Channappanavar R, Zhao J, Perlman S (2014) T cell-mediated immune response to respiratory coronaviruses. Immunol Res 59:118–128
2. Liu J, Liao X, Qian S et al (2020) Community transmission of severe acute respiratory syndrome coronavirus 2, Shenzhen, China, 2020. Emerg Infect Dis 26(6):1320–1323
3. Chan JF, Yuan S, Kok KH et al (2020) A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 395(10223):514–523
4. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, Xing X, Xiang N, Wu Y, Li C, Chen Q, Li D, Liu J, Zhao J, Liu M, Tu W, Chen C, Jin L, Yang R, Wang Q, Zhou S, Wang R, Liu H, Luo Y, Liu Y, Shao G, Li H, Tao Z, Yang Y, Deng Z, Liu B, Ma Z, Zhang Y, Shi G, Lam TTY, Wu JT, Gao GF, Cowling BJ, Yang B, Leung GM, Feng Z (2020) Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med 382(13):1199–1207
5. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506
6. Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, Fan Y, Zheng C (2020) Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis 20(4):425–434
7. WHO Coronavirus Disease (COVID-19) Dashboard available at: https://covid19.who.int/. Accessed 15 Oct 2020
8. Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG, Nichol ST (2005) Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2:69
9. Gautret P, Lagier JC, Parola P et al (2020) Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 56(1):105949
10. Shen J, Liu D, Liu L, Liu P, Xu Q, Xia L, Ling Y, Huang D, Song S, Zhang D, Qian Z, Li T, Shen Y, Lu H (2020) A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19). Zhejiang Da Xue Xue Bao Yi Xue Ban 49(2):215–219
11. Abd-Elsalam S, Esmail ES, Khalaf M, Abdo EF, Medhat MA, Abd el Ghafar MS, Ahmed OA, Soliman S, Serangawy GN, Alboraei M (2020) Hydroxychloroquine in the treatment of COVID-19: a multicenter randomized controlled study. Am J Trop Med Hyg 103:
12. Magagnoli J, Narendran S, Pereira F et al (2020) Outcomes of Hydroxychloroquine usage in United States veterans hospitalized with COVID-19. Med (N Y). https://doi.org/10.1016/j.medj.2020.06.001 Online ahead of print

13. Sarin SK, Choudhury A, Lau GK et al (2020) Pre-existing liver disease is associated with poor outcome in patients with SARS CoV2 infection; the APCOLIS study (APASL COVID-19 liver injury Spectrum study). Hepatol Int 1–11. https://doi.org/10.1007/s12072-020-10072-8 Online ahead of print

14. Million M, Lagier JC, Gautret P, Colson P, Fournier PE, Amrane S, Hocquart M, Mailhe M, Esteves-Vieira V, Doudier B, Aubry C, Correard F, Giraud-Gatineau A, Rousset Y, Berenger C, Cassir N, Seng P, Zandotti C, Dhiver C, Ravaux I, Tomei C, Eldin C, Tissot-Dupont H, Honoré S, Stein A, Jacquier A, Deharo JC, Chabrière E, Levassuer A, Fenollar F, Rolain JM, Obadia Y, Brouqui P, Drancourt M, la Scola B, Parola P, Raoult D (2020) Early treatment of COVID-19 patients with Hydroxychloroquine and azithromycin: a retrospective analysis of 1061 cases in Marseille, France. Travel Med Infect Dis 35:101738

15. Lazarczyk M, Favre M (2008) Role of Zn2+ ions in host-virus interactions. J Virol 82:11486–11494

16. Frederickson CJ, Koh J-Y, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462

17. te Velthuis AJ, van den Worm SH et al (2010) Zn2+ inhibits corona-ivirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog 6:e1001176

18. Xue J, Moyer A, Peng B, Wu J, Hannafon BN, Ding WQ (2014) Chloroquine is a zinc ionophore. PLoS One 9:e109180

19. Dabbagh-Bazarbachi H, Clergeaud G, Quesada IM et al (2014) Zinc ionophore activity of quercetin and epigallocatechin-gallate: from hepa 1-6 cells to a liposome model. J Agric Food Chem 62(32):8085–8093

20. Marjot T, Moon AM, Cook JA et al (2020) Outcomes following SARS-CoV-2 infection in patients with chronic liver disease: an international registry study. J Hepatol S0168-8278(20)33667–9. https://doi.org/10.1016/j.jhep.2020.09.024

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.