Endoplasmic reticulum stress and the protein degradation system in ophthalmic diseases

Jingyao Song¹, Xue-Guang Wang², Zi-Yuan Zhang¹, Lin Che¹, Bin Fan¹, Guang-Yu Li Corresp.¹

1 Department of Ophthalmology, Second Hospital of Jilin University, ChangChun, China
2 Department of Traumatic Orthopedics, Third People’s Hospital of Jinan, Jinan, China

Corresponding Author: Guang-Yu Li
Email address: liguangyu@163.com

Objective: Endoplasmic reticulum (ER) stress is involved in the pathogenesis of various ophthalmic diseases, and ER stress-mediated degradation systems play an important role in maintaining ER homeostasis during ER stress. The purpose of this review is to explore the potential relationship between them and to find their equilibrium sites. Design: This review illustrates the important role of reasonable regulation of the protein degradation system in ER stress-mediated ophthalmic diseases. There were 128 articles chosen for review in this study, and the keywords used for article research are ER stress, autophagy, UPS, ophthalmic disease, and ocular. Data sources: The data are from Web of Science, PubMed, with no language restrictions from inception until 2019 Jul. Results: The ubiquitin proteasome system (UPS) and autophagy are important degradation systems in ER stress. They can restore ER homeostasis, but if ER stress cannot be relieved in time, cell death may occur. However, they are not independent of each other, and the relationship between them is complementary. Therefore, we propose that ER stability can be achieved by adjusting the balance between them. Conclusion: The degradation system of ER stress, UPS and autophagy are interrelated. Because an imbalance between the UPS and autophagy can cause cell death, regulating that balance may suppress ER stress and protect cells against pathological stress damage.
Endoplasmic reticulum stress and the protein degradation system in ophthalmic diseases

Jing-Yao Song¹, Xue-Guang Wang², Zi-Yuan Zhang¹, Lin Che¹, Bin Fan¹, Guang-Yu Li*

Jing-Yao Song¹, MS, Department of Ophthalmology, Second Hospital of Jilin University, Changchun 130041, China (1694250634@qq.com)

Xue-Guang Wang², MS, Department of Traumatic Orthopedics, Third People’s Hospital of Jinan, Jinan 250113, China (971336377@qq.com)

Zi-Yuan Zhang¹, MS, Department of Ophthalmology, Second Hospital of Jilin University, Changchun 130041, China (ziyuan_zhang96@outlook.com)

Lin Che¹, MS, Department of Ophthalmology, Second Hospital of Jilin University, Changchun 130041, China (245431233@qq.com)

Bin Fan¹, PhD, Department of Ophthalmology, Second Hospital of Jilin University, Changchun 130041, China (fanbins@qq.com)

*Correspondence: Guang-Yu Li, PhD, Department of Ophthalmology, Second Hospital of Jilin University, Changchun 130041, China (e-mail: liguangyu@aliyun.com)
Abstract

Objective: Endoplasmic reticulum (ER) stress is involved in the pathogenesis of various ophthalmic diseases, and ER stress-mediated degradation systems play an important role in maintaining ER homeostasis during ER stress. The purpose of this review is to explore the potential relationship between them and to find their equilibrium sites.

Design: This review illustrates the important role of reasonable regulation of the protein degradation system in ER stress-mediated ophthalmic diseases. There were 128 articles chosen for review in this study, and the keywords used for article research are ER stress, autophagy, UPS, ophthalmic disease, and ocular.

Data sources: The data are from Web of Science, PubMed, with no language restrictions from inception until 2019 Jul.

Results: The ubiquitin proteasome system (UPS) and autophagy are important degradation systems in ER stress. They can restore ER homeostasis, but if ER stress cannot be relieved in time, cell death may occur. However, they are not independent of each other, and the relationship between them is complementary. Therefore, we propose that ER stability can be achieved by adjusting the balance between them.

Conclusion: The degradation system of ER stress, UPS and autophagy are interrelated. Because an imbalance between the UPS and autophagy can cause cell death, regulating that balance may suppress ER stress and protect cells against pathological stress damage.
Introduction

The endoplasmic reticulum (ER) is a highly dynamic and important organelle of eukaryotic cells that has many functions, such as mediating free calcium storage, regulating lipid/sterol synthesis, and participating in the synthesis, processing, and transportation of proteins (Fregno & Molinari 2018). When the internal environment of the ER is destroyed, the accumulation of improperly folded proteins therein eventually leads to ER stress (Li et al. 2017a). In order to inhibit ER stress and coordinate the recovery of ER function, cells have integrated signaling systems, including unfolded protein response (UPR) and the ER-associated degradation (ERAD) pathway (Fujita et al. 2007).

During ER stress, the UPR is activated and performs physiological functions that include enhancement of protein folding ability, stasis of translation of most proteins, and acceleration of protein degradation (Kroeger et al. 2019; Labbadia & Morimoto 2015). Moreover, ERAD pathways composed by ubiquitin (Ub)–proteasome-dependent and autophagy–lysosome-dependent ERAD are also activated to participate in the removal of improperly folded proteins in order to restore the function of the ER (Schroder & Kaufman 2005a).

Although ER stress, autophagy, and the ubiquitin proteasome system (UPS) have been fully studied in ophthalmic diseases, the relationship among them requires further examination. The purpose of this article is to explore the relationship between them in order to find new opportunities for future research directions and treatment of diseases. We suggest that diseases caused by ER stress can be blocked by regulating the balance between autophagy and the UPS, and especially by removing the pathogenic factor that results in ER stress that cannot be
effectively removed.

Survey methodology

This review focuses on the relationship between ER stress, autophagy, and the UPS and their interactions in ocular diseases. Academic articles were searched in journal databases such as Web of Science, PubMed, and ER stress, autophagy, UPS, ophthalmic disease, and ocular were the search terms used for article research. The inclusion criteria for the selected articles required that articles be related to ophthalmic diseases and focused on the relationship between ER stress, autophagy, or the UPS.

ER stress and the UPR

The ER is an important site for protein synthesis, and therefore, if the function of the ER is disrupted by various pathological factors, the excessive accumulation of unfolded or misfolded proteins in the ER may eventually lead to ER stress. Many pathological conditions can lead to ER stress, such as hypoxia, oxidative stress, aging, or metabolic disorders (Lenox et al. 2015; Rozpedek et al. 2016; Rutkowski & Hegde 2010; Zhu et al. 2018). When ER stress happens, the UPR is activated as a protective mechanism to restore the balance of the ER environment. The UPR involves 3 ER transmembrane proteins: activated transcription factor 6 (ATF6), ER to nuclear signaling 1 (ERN1; also known as inositol-requiring enzyme 1 [IRE1]), and eukaryotic translation initiation factor 2–kinase 3 (EIF2AK3; also known as protein kinase R–like endoplasmic- reticulum kinase [PERK]) (Ron & Walter 2007). Under normal physiological conditions, these proteins bind to the 78 kDa glucose regulatory protein (Grp78; also known as binding immunoglobulin protein [BiP]) in the ER with lumen. During ER stress, BiP is separated
from the sensor so that the UPR signals become activated. IRE1 then becomes phosphorylated, which activates endoribonuclease activity, splices the 26-nucleotide (nt) sequence from X-box binding protein (XBP1) messenger ribonucleic acid (mRNA) and produces functional XBP1(S), which is transferred to the nucleus and activates transcription of the genes encoding the ER chaperone and ERAD (Wakabayashi & Yoshida 2013). PERK is phosphorylated and activated, which in turn phosphorylates eukaryotic translation initiation factor 2 (eIF2), thereby inhibiting protein translation and reducing protein synthesis (Dan et al. 2017). ATF6 is transported to the Golgi in the form of vesicles and is then cleaved by protease (site 1 and site 2 protease [S1P and S2P]) to produce a transcriptionally active polypeptide (Chen et al. 2002). Activated ATF6 translocates to the nucleus and activates the gene transcription of proteins such as ER chaperones that increase ER protein folding (Yamamoto et al. 2007).

Interestingly, recent studies have shown that the 3 signaling pathways of the ER transmembrane proteins may interfere with each other. For example, the IRE1α and PERK pathways are not mutually independent, because knocking out IRE1α can alter the PERK pathway and also lead to decreased eIF2α expression (Storniolo et al. 2018). ATF6 is associated with IRE1, and ATF6 knockdown can result in unchecked IRE1 reporter activity that increases the splicing of XBP1 (Franziska et al. 2018).

ER stress and the UPS

The UPS is an important protein degradation pathway in eukaryotic cells. Protease and ubiquitin (Ub) in collaboration are responsible for non-lysosomal protein hydrolysis, which may remove abnormal proteins and prevent the accumulation of nonfunctional and harmful proteins in cells,
therefore maintaining cellular homeostasis (Angele et al. 1999; Coux et al. 1996). The UPS may participate in a variety of biological processes, such as cell cycle, transcription, signaling, trafficking, and protein quality control (Jiang et al. 2018; Rousseau & Bertolotti 2018). Ub, the smallest protein found in all eukaryotic cells (8 kDa), covalently conjugates many proteins to label them for downstream effector recognition (Cohen-Kaplan et al. 2017). Ub plays an important role in cells, including DNA repair, kinase activation, secretion, and protein transport in endocytic pathways (Kostova et al. 2007).

The conjugation of Ub protein with a substrate is a multi-step reaction that requires the participation of many enzymes and consumes energy (Glickman & Ciechanover 2002; Pickart & Eddins 2004). Targeted proteins undergo Ub–proteasome degradation by the 26S proteasome, which is highly conserved as a 2.5-MDa complex responsible for selective ATP-dependent degradation of ubiquitinated proteins in eukaryotic cells (Zwickl et al. 1999). It is composed of 2 large subcomplexes consisting of a 28-subunit 20S protease and a 19-subunit PA700 compound (also called a 19S complex or an S-regulating particle) (Liu & Jacobson 2013). The 20S proteasome is responsible for substrate degradation, and its 19S subunit assists in degradation primarily by recognizing the substrate (Glickman 2000). The 19S complex plays an important role in processing ubiquitinated substrates because it binds, ubiquitinates, and unfolds ubiquitinated protein, which is then transferred to the proteolysis chamber of the 20S proteasome for degradation (Zwickl et al. 1999).

As an important branch of the ERAD pathway, most of the unfolded and misfolded proteins in the ER are degraded by the UPS pathway (Nakatsukasa & Brodsky 2008; Zattas & Hochstrasser...
The UPS plays an important role in maintaining ER homeostasis, and impaired Ub–proteasome function can lead to ER stress (Shruthi et al. 2016). Because the UPS can remove proteins from the ER, it is vital to be able to correctly identify improperly folded proteins in the ER. There are at least two monitoring mechanisms for ER protein folding, consisting of one for the luminal domain (soluble or membrane proteins), and the other for the cytoplasmic domain (membrane proteins) (Vashist & Ng 2004). The UPS removes proteins in the ER through four tightly coupled steps: (1) substrate selection, (2) retro translocation to the cytosol, (3) C-conjugated covalent polyubiquitination, and (4) proteasome degradation (Olzmann et al. 2013).

Substrate degradation begins with molecular chaperones, which identify proteins to be degraded by detecting abnormal disulfide bonds or hydrophobic fragments exposed by unassembled protein complexes (Vembar & Brodsky 2008). In addition, another marker used to identify misfolded proteins is the presence of high mannose (Man5–8GlcNAc2) glycan (Mallinger et al. 2012). The substrates are targeted to the retrotranslocation machinery and then translocated to the cytoplasm through the retrotranslocation channel (Vembar & Brodsky 2008).

In addition, ubiquitination is a complex process that requires the participation of three enzymes: ubiquitin activating enzyme E1 (ubiquitin activating enzyme), ubiquitin binding enzyme E2 (ubiquitin-conjugating enzyme, E2), and E3 (ubiquitin ligase) (Pickart 2001). At first, E1 forms a high-energy thioester bond with ubiquitin in an ATP-dependent manner, activating the ubiquitin molecule. Then, the activated ubiquitin molecule is transported to E2, acquires the function of recognizing the target protein, and finally binds the target protein under the catalysis of E3 (Glickman & Ciechanover 2002). After repeated enzymatic reactions, the polyubiquitin chain
binds to the target protein, which is recognized by the 26S proteasome, and then
degraded (Hershko & Ciechanover 1998; Voges et al. 1999).

There are many types of E2 enzymes involved in ubiquitination, but not all E2 types are involved
in ERAD. The three types involved in ERAD are ubiquitin-conjugating enzymes J1, J2, and G2
(UBE2J1, UBE2J2, and UBE2G2, respectively) (Christianson & Ye 2014). Similarly, not all E3
enzymes are involved in ERAD. In yeast, Doa10p and Hrd1p are E3 ligases, and they have
participated in the degradation of all substrates that have been studied (Cui et al. 2012). However,
E3 ligases found in mammals, such as Hrd1/synoviolin, gp78, TEB4/MARCHVI, RNF5, HRD1,
RNF-12, and RNF185, are involved in protein degradation in the ERAD pathway (Darom et al.
2010; El Khouri et al. 2013; You et al. 2016). It was reported that the UPS is regulated by the
UPR pathway; for example, the PERK signal can increase the expression of RNF-121 to further
enhance the UPS during ER stress (Darom et al. 2010). In addition, XBP1, the downstream factor
of IRE1, is required for Nrf2 expression which is the central regulator of cell-protective genes
ubiquitous expressed in cells, while Nrf2 interacts with the Cullin3-based E3 ubiquitin ligase
adaptor to promote the proteasome (Chen et al. 2018; Ding et al. 2017; Tonelli et al. 2018). This
indicates that the Nrf2 factor may be a link by which the IRE1 pathway regulates the UPS.
Moreover, rapamycin is the core of proteasome assembly regulation, while ATF6 is essential for
mediating ER stress to activate the mammalian target of the rapamycin (mTOR) pathway (Dylan
et al. 2018). Therefore, mTOR may be the intermediate factor for ATF6 to activate UPS.

ER stress and autophagy

Autophagy is another metabolic pathway that regulates the degradation of long-lived proteins,
organelles, and other cellular contents (Liu et al. 2015). Autophagy can be divided into
macroautophagy, microautophagy, and molecular chaperone-mediated autophagy (CMA) (Bejarano
& Cuervo 2010; Mijaljica et al. 2011; Parzych & Klionsky 2014). Macroautophagy is divided
into non-selective and selective autophagy. Non-selective autophagy is usually induced by
nutrient deprivation and often involve the mTORC1 and protein kinase AMP–activated catalytic
subunit alpha (PRKAA)/adenosine monophosphate–activated protein kinase (AMPK)
pathways (Ganley et al. 2009). Selective autophagy targets specific substrates, including protein
aggregates and damaged organelles such as mitochondria and peroxisomes (Lamark & Johansen
2012). Macroautophagy is a continuous process involving the formation of autophagosomes, the
fusion of autophagosomes with lysosomes, and the dynamic process of lysosomal
degradation (Baehrecke 2005). It is an important metabolic pathway in eukaryotic cells that is
often used to resist stress and maintain intracellular homeostasis (Boya et al. 2016; Lin & Kuang
2014; Shi et al. 2013). In the process of microautophagy, the lysosomal membrane acts as a
concave protuberance or membrane, allowing a small portion of the cytoplasmic volume to enter
the lysosomal cavity, which degrades the substrate (Li et al. 2012). Molecular CMA does not
require vacuolar formation and is tightly regulated by chaperone heat shock cognate 71 kDa
protein (Hsc70) and its receptor, and it is associated with the PERK pathway in ER stress (Li et
al. 2017b).
Hence, improperly folded proteins are not only degraded through the UPS pathway, but
autophagy is also involved in protein degradation, and an increasing number of studies have
shown that ER stress may trigger autophagy (Bachar-Wikstrom et al. 2013; Chandrika et al.
Misfolded proteins and protein aggregates are cleared under stress by autophagy, especially when the other cellular repair and cellular clearance processes, namely molecular CMA and the UPS, fail (Libby & Gould 2010; Pandey et al. 2007). In general, ER stress induces autophagy through the IRE1 and PERK signaling pathway (Ogata et al. 2007; Wafa et al. 2013). The downstream factor JNK is activated through the IER1 signaling pathway and further promotes autophagy during ER stress (Gardner & Walter 2011). Phosphorylated IRE1 also activates the MAPK8/JNK1/MAPK9/MAPK10 pathway, thereby upregulating autophagy (Yan et al. 2018). In addition, spliced XBP1 is reported to be involved in the activation of autophagy by upregulating the transcription of BECN1 (Christen & Fent 2012). The PERK signaling pathway is activated during ER stress, and its downstream factor eIF2a phosphorylates, while phosphorylated eIF2a activates deoxyribonucleic acid (DNA) damage-inducible transcript 3 (DDIT3)/ATF4, thereby promoting tribbles pseudokinase 3 (TRIB3) and nuclear protein 1, transcriptional regulator (NUPR1) to induce autophagy by inhibiting Akt1/mTORC1 (Salazar M 2009; Tang et al. 2015). Additionally, ATF4, which is the downstream factor of PERK, may function as a transcription factor regulating the expression of various autophagy-related genes (Wafa et al. 2013) (Fig. 1). Studies have shown that ER stress-related autophagy is mainly mediated by the IRE1a and PERK pathways, while the ATF6 signaling pathway can indirectly regulate autophagy by upregulating the expression of XBP1 and CHOP.

UPR and ophthalmic diseases

The UPR is known to be an adaptive cellular response to ER dysfunction that suppresses ER stress and promotes cell survival. Many studies have found that proper UPR response plays an
important role in maintaining the normal physiological function of cells (Sano & Reed 2013; Schroder & Kaufman 2005b). Insufficient activation of the UPR response to ER stress is the pathogenic factor of age-related retinal neurodegeneration. Thus, the lack of X-box binding protein 1 (XBP1), which is an important component of the UPR, may accelerate age-related retinal neurodegenerative diseases (Mclaughlin et al. 2018). It was also reported that in retinal pigmented epithelium (RPE)-specific XBP1 KO mice showed a 33% reduction in retinal cone cells and reduced the thickness of the outer nuclear layer (ONL), suggesting that XBP1 plays an important role in maintaining ER homeostasis and normal RPE cell function (Zhong et al. 2012). Moreover, it was shown that PERK activation is a protective response that increases the survival of photoreceptors in a P23H-1 transgenic rat model, indicating that UPR plays an important role as the first line of defense against protein-toxic cellular stress (Athanasiou et al. 2017). In addition, the ATF6 pathway is crucial to human color vision, and ATF6 mutation causes autosomal-recessive color blindness (Ansar et al. 2015).

UPR plays an important role in maintaining the normal physiological functions of cells under ER stress; however, if UPR still cannot suppress ER stress, it may result in cell death. Thus, if ER stress cannot be effectively controlled, phosphorylated IRE1α forms a complex with TRAF2 and ASK1 and activates the downstream factor JNK, which may activate caspase-12 to promote apoptosis (Ron & Hubbard 2008). PERK activation further increases the expression of ATF4 and CHOP, promotes transcription of genes involved in oxidative stress and apoptosis, and further leads to cell death (Lu & D. 2004; Rzymski et al. 2009). The activated ATF6 translocates into the nucleus, where it binds the ER stress response elements to activate target genes, including XBP-1.
and CHOP, which directly or indirectly result in cell death (Adachi et al. 2008; Guo et al. 2014; Hirsch et al. 2014).

An increasing number of studies have shown that ER stress is a factor in the pathology of many ophthalmic diseases, such as chronic glaucoma, glucocorticosteroid-induced glaucoma, cataract, DR, optic-nerve (ON) degeneration, and AMD (Doh et al. 2010; Elmasry et al. 2018; Ojino et al. 2015; Palsamy & Shinohara 2017; Salminen et al. 2010; Zhou et al. 2016; Zode et al. 2014). For this reason, suppressing ER stress and quickly restoring the ER homeostasis play vital roles in the treatment of those diseases. For example, a recent study indicated that ER stress is detrimental for retinas in the early stages of DR, and suppressing ER stress may protect retinas against visual deficits caused by hyperglycemia (Raji et al. 2018). Moreover, in a mice model of TON induced by optic nerve crush (ONC), ER stress results in RGC death, however suppressing ER stress through GRP78 overexpression is an effective way to protect RGC from death (Ha et al. 2018). This suggests that reducing the pathological factors that result in ER stress and maintaining cell homeostasis are key factors in sustaining cell physiological functions.

Therefore, UPS and autophagy, as important mechanisms of ERAD, play vital roles in restoring ER homeostasis during ER stress.

UPS and ophthalmic diseases

The UPS is essential for eye health and is involved in organ development and maintenance of lens function (Liu 2015; Wride & A. 2011). In addition, it was reported that the proteasome can accelerate protein renewal and efficiently accelerate the degradation of rhodopsin T17M mutant (Jiang et al. 2014). Inadequate UPS function is involved in the development of ophthalmic
diseases. In glaucoma, decreased ubiquitination in the optic nerve may increase the level of proapoptotic proteins that are normally degraded by proteasomes, leading to axonal degeneration after increased intraocular pressure (IOP) (Dibas et al. 2008). However, overactivation of the UPS also impairs eye health. For example, tumor necrosis factor (TNF) destroys the interstitial connections in human corneal fibroblasts in a manner dependent on the UPS degradation of connexin 43 (Cx43) (Kimura & Nishida 2010). A study reported that UPS participated in the degradation of rhodopsin and impairs visual function during retinal inflammation (Ozawa et al. 2008). Therefore, it was reported that UPS is involved in LPS-induced rat endotoxic uveitis (EIU); intravitreal resolvin D1 (RvD1) can inhibit uveitis by reducing the local level of Ub–proteasome (Rossi et al. 2015).

Given that the UPS is an important part of the ERAD pathway, and that it is involved in removing intracellular proteins, the UPS plays an important role in the inhibition of ER stress-mediated ophthalmic diseases. The importance of the UPS has been demonstrated in a large number of diseases associated with protein misfolding (Guerriero & Brodsky 2012). It was shown that ER stress is the pathogenic factor involved in granular corneal dystrophy type 2 (GCD2), while the UPS activated by melatonin can accelerate the degradation of TGF-β-inducible protein (TGFBI) to suppress ER stress, and thus prevent the death of GCD2 cells (Choi et al. 2017). In addition, a growing number of studies have shown that if the UPS cannot restore the homeostasis of ER during ER stress, many ophthalmic diseases may occur. For example, in pseudo-exfoliation (PEX) disease, ER stress is overactivated, and the UPS is unable to remove harmful substances, resulting in secondary glaucoma (Hayat et al. 2019). Analysis of retinal proteins in
patients with high IOP showed the existence of ER stress, and if the UPS cannot inhibit overactivated ER stress, this could eventually lead to retinal damage (Yang et al. 2015).

Autophagy and ophthalmic diseases

Under normal physiological conditions, autophagy, which plays an important role in maintaining normal cell function, is maintained at a relatively low level. Neuronal cells, for example, control cytoskeleton and organelle turnover through the autophagy process, allowing neurons to survive and regenerate after distal axon dissection or nerve suture (David et al. 2015; Tatiana et al. 2018).

Some studies have shown that autophagy deficiency is a pathological factor leading to many ophthalmic diseases such as corneal opacification, elevated IOP, retinal dystrophy, mucopolysaccharide storage disease type VI, and AMD (Claudepierre et al. 2010; Golestaneh et al. 2017; Karnati et al. 2016; Lőrincz et al. 2016). Moreover, it was reported that exposure of ex-vivo mice retinal explants to high glucose resulted in the death of retinal neuronal cells, while treatment the explants with octreotide may protect neuronal cells against high glucose damage by enhancing autophagy (Amato et al. 2018). Although proper autophagy is beneficial to cell survival under stress, overactivated autophagy may lead to cell death, which is called autophagic cell death (ACD) (Liu & Levine 2015; Vegliante & Ciriolo 2018). A study demonstrated that the over-activated autophagy lead to the death of photoreceptors and inhibition of autophagy with 3MA may protect photoreceptors against photodamage (Zhang et al. 2014). Thus, as a double-edged sword, autophagy may either promote cell survival or lead to cell death, depending on the duration and intensity of pathology.

In general, autophagy, as another component mechanism of the ERAD pathway, is a survival
mechanism to protect cells against stress, and a large number of studies have shown that autophagy can suppress ER stress and attenuate the pathological damage caused by stress. In glaucoma, enhanced ER stress-mediated autophagy may accelerate myosin clearance in trabecular meshwork cells, thus protecting them against damage. Sulforaphane (SFN) reduces the incidence of posterior cataracts by increasing ER stress-mediated autophagy (Liu et al. 2017). It was also reported that neurons in the lesioned cortex undergo apoptosis after traumatic brain injury, however, treatment with sevoflurane may enhance ER stress-mediated autophagy and inhibit neuronal apoptosis (He et al. 2018). However, ER stress-mediated autophagy also acts as a double-edged sword. For example, it has been shown that in diabetic retinopathy ER stress-mediated autophagy caused by a low concentration of oxidized glycosylated low-density lipoprotein (HOG-LDL) may attenuate the loss of peripheral blood cells, while prolonged ER stress-mediated autophagy caused by a higher concentration of HOG-LDL may promote the death of peripheral blood cells (Fu et al. 2016). Hence, excessive ER stress-induced autophagy may also lead to cell death. It was shown that the protective effect of mini-αA on NaIO3-induced retinal degeneration was achieved by inhibiting ER stress and autophagy (Zhang et al. 2015a). A recent study showed that in a mouse model of retinal degeneration induced by a P23H rhodopsin gene mutation, the accumulation of misfolded proteins in retinal photoreceptor cells activated ER stress and excessive autophagy, while inhibition of autophagy via deleting the autophagy-activating gene Atg5 decreased photoreceptor death and improved retinal function (Yao et al. 2018). Therefore, whether ER stress-induced autophagy is protective or damaging depends on disease conditions.
The important role of balance between autophagy and UPS during ER stress

Both the UPS and autophagy play important roles in maintaining the balance of cellular proteins, and each has its own advantages. The UPS is responsible for the degradation of both short-lived proteins and misfolded proteins, while autophagy can degrade misfolded proteins and damaged organelles (Li et al. 2016). It was found that there is a certain relationship between the UPS and autophagy. It is known that sequestosome 1 (SQSTM1) is a multitasking bridging protein that regulates multiple signaling pathways, and the UPS and autophagy are correlated with each other through P62 protein (Jorge et al. 2009; Milan et al. 2015). In addition to p62, other adaptors, such as neighbors of type 1 breast cancer (NBR1), can also recognize ubiquitinated substrates and localize them to autophagosomes (Cohen-Kaplan et al. 2016). In general, Ub ligase E3 is mainly degraded and regulated by proteasomes or by the recycling of its own ubiquitination. However, a recent study demonstrated that etoposide-induced protein 2.4 homolog (EI24) recognizes the RING domain existing in most E3 ligases and degrades them via the autophagic pathway (de Bie & Ciechanover 2011; Nam et al. 2017). In addition, autophagic inhibition impairs the UPS function and leads to ER stress (Zhang et al. 2015b). It was shown that the functions of autophagy and the UPS are complementary in some conditions, and passive regulation of the functions between them is necessary to maintain cell protein homeostasis (Jung et al. 2019)(Fig. 2).

A growing number of studies have shown that the UPS and autophagy may restore cellular homeostasis through mutual regulation. For instance, low levels of proteasome inhibitors in the treatment of oxidative stress injury of RPE cells can inhibit the PI3K/AKT/mTOR pathway and activate autophagy, thus protecting RPE cells against oxidative damage (Tang et al. 2014). In
addition, it was reported that inhibition of autophagy, especially in the case of adequate nutrition, can enhance the activity of proteasomes, which are activated as a compensatory form of protein degradation (Wang et al. 2013). Moreover, Zacks et al. reported that in a mouse model of retinal degeneration caused by a gene mutation in P23H rhodopsin, ER stress-related autophagy led to photoreceptor death, while the treatment of P23H mice with selective phosphodiesterase-4 inhibitor (rolipram) to increase proteosome activity could effectively inhibit ER stress-related autophagy and reduce the rate of retinal degeneration (Qiu et al. 2019). Therefore, the balance between UPS and autophagy is very important, and these two systems have irreplaceable effects on cellular health.

Conclusion

Autophagy and the UPS are normal phenomena that manage the health of the living eukaryotic cell. However, deficiency and excessive activation of both autophagy and proteasomes are not conducive to cellular health. Many diseases are related to ER stress, and the UPS and autophagy play an important role in suppressing ER stress and maintaining ER homeostasis. We should take this information into consideration while also removing pathogenic factors, especially pathogenic factors such as genetic diseases that cannot be removed by current medical treatments. Then, we may be able to inhibit diseases by simultaneously regulating autophagy and the UPS in order to achieve intracellular homeostasis.

Acknowledgments

We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.
Figure legends

Figure 1: ER stress and its degradation pathways.

When ER stress occurs, in order to restore the function of the ER, the UPR is activated, and the UPS and autophagy are activated to suppress ER stress. However, if they still cannot restore the function of the ER, cell death may result.

Figure 2: ER homeostasis can be achieved by balancing the UPS and autophagy pathways during ER stress.

During ER stress, the UPS and autophagy will be activated to remove harmful substrates such as misfolded proteins or protein aggregates to maintain the normal function of the ER. The balance between the UPS and autophagy is extremely important for restoring cell homeostasis.

References

Adachi Y, Yamamoto K, Okada T, Yoshida H, and Mori K. 2008. ATF6 Is a Transcription Factor Specializing in the Regulation of Quality Control Proteins in the Endoplasmic Reticulum. *Cell Structure & Function* 33:75-89.

Amato R, Catalani E, Dal Monte M, Cammalleri M, Di Renzo I, Perrotta C, Cervia D, and Casini G. 2018. Autophagy-mediated neuroprotection induced by octreotide in an ex vivo model of early diabetic retinopathy. *Pharmacol Res* 128:167-178.

Angele MK, Smail N, Ayala A, Cioffi WG, Bland KI, and Chaudry IH. 1999. L-arginine: a unique amino acid for restoring the depressed macrophage functions after trauma-hemorrhage. *J Trauma* 46:34-41.

Ansar M, Santos-Cortez RL, Saqib MA, Zulfiqar F, Lee K, Ashraf NM, Ullah E, Wang X, Sajid S, Khan FS, Amin-ud-Din M; University of Washington Center for Mendelian Genomics, Smith JD, Shendure J, Bannshad MJ, Nickerson DA, Hameed A, Riazuddin S, Ahmed ZM, Ahmad W, Leal SM. 2015. Mutation of ATF6 causes autosomal recessive achromatopsia. *Hum Genet* 134:941-950.

Athanasiou D, Aguila M, Bellingham J, Kanuga N, Adamson P, and Cheetham ME. 2017. The role of the ER stress-response protein PERK in rhodopsin retinitis pigmentosa. *Hum Mol Genet* 26:4896-4905.

Bachar-Wikstrom E, Wikstrom JD, Kaiser N, Cerasi E, and Leibowitz G. 2013. Improvement of ER stress-induced diabetes by stimulating autophagy. *Autophagy* 9:626-628.

Baehrecke EH. 2005. Autophagy: dual roles in life and death? *Nat Rev Mol Cell Biol* 6:505-510.

Bejarano E, and Cuervo AM. 2010. Chaperone-Mediated Autophagy. *Proceedings of the American Thoracic Society* 7:29-39.
Boya P, Esteban-Martinez L, Serrano-Puebla A, Gomez-Sintes R, and Villarejo-Zori B. 2016. Autophagy in the eye: Development, degeneration, and aging. *Prog Retin Eye Res* 55:206-245.

Chandrika BB, Yang C, Ou Y, Feng X, Muhozad D, Holmes AF, Theus S, Deshmukh S, Haun RS, and Kaushal GP. 2015. Endoplasmic Reticulum Stress-Induced Autophagy Provides Cytoprotection from Chemical Hypoxia and Oxidant Injury and Ameliorates Renal Ischemia-Reperfusion Injury. *Plos One* 10:e0140025.

Chen C, Zhong Y, Wang JJ, Yu Q, Pfafker K, Pfafker S, and Zhang SX. 2018. Regulation of Nrf2 by X Box-Binding Protein 1 in Retinal Pigment Epithelium. *Front Genet* 9:658.

Chen X, Shen J, and Prywes R. 2002. The Luminal Domain of ATF6 Senses Endoplasmic Reticulum (ER) Stress and Causes Translocation of ATF6 from the ER to the Golgi. *Journal of Biological Chemistry* 277:13045-13052.

Choi SI, Lee E, Akuzum B, Jeong JB, Maeng YS, Kim TI, and Kim EK. 2017. Melatonin reduces endoplasmic reticulum stress and corneal dystrophy-associated TGFBIp through activation of endoplasmic reticulum-associated protein degradation. *J Pineal Res* 63.

Christen V, and Fent K. 2012. Silica nanoparticles and silver-doped silica nanoparticles induce endoplasmic reticulum stress response and alter cytochrome P4501A activity. *Chemosphere* 87:423-434.

Christianson JC, and Ye Y. 2014. Cleaning up in the endoplasmic reticulum: ubiquitin in charge. *Nat Struct Mol Biol* 21:325-335.

Claudepierre T, Paques M, Simonutti M, Buard I, Sahel J, Maue RA, Picaud S, and Pfrieger FW. 2010. Lack of Niemann-Pick type C1 induces age-related degeneration in the mouse retina. *Mol Cell Neurosci* 43:164-176.

Cohen-Kaplan V, Livneh I. 2017. Stress-induced polyubiquitination of proteasomal ubiquitin receptors targets the proteolytic complex for autophagic degradation. *Autophagy* 13:759-760.

Cohen-Kaplan V, Livneh I, Avni N, Cohen-Rosenzweig C, and Ciechanover A. 2016. The Ubiquitin-Proteasome System and Autophagy: Coordinated and Independent Activities. *International Journal of Biochemistry & Cell Biology*:S1357272516301935.

Coux O, Tanaka K, and Goldberg AL. 1996. Structure and functions of the 20S and 26S proteasomes. *Annu Rev Biochem* 65:801-847.

Cui F, Liu L, Zhao Q, Zhang Z, Li Q, Lin B, Wu Y, Tang S, and Xie Q. 2012. Arabidopsis Ubiquitin Conjugase UBC32 Is an ERAD Component That Functions in Brassinosteroid-Mediated Salt Stress Tolerance. *Plant Cell* 24:233-244.

Dan L, Laura K, Ove E, and Sulev Kk. 2017. Recent Insights into the Role of Unfolded Protein Response in ER Stress in Health and Disease. *Frontiers in Cell & Developmental Biology* 5:48-.

Darom A, Bening-Abu-Shach U, and Broday L. 2010. RNF-121 Is an Endoplasmic Reticulum-Membrane E3 Ubiquitin Ligase Involved in the Regulation of -Integrin. *Molecular Biology of the Cell* 21:1788-1798.

David K, D. CS, and M. ID. 2015. Decreased Energy Capacity and Increased Autophagic Activity in Optic Nerve Axons With Defective Anterograde Transport. *Invest Ophthalmol Vis Sci* 56:8215-.

de Bie P, and Ciechanover A. 2011. Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms. *Cell Death Differ* 18:1393-1402.

Dibas A, Yang MH, He S, Bobich J, and Yorio T. 2008. Changes in ocular aquaporin-4 (AQP4) expression following retinal injury. *Mol Vis* 14:1770-1783.

Ding H, Wang X, Wang H, Zhu L, Wang Q, Jia Y, Wei W, Zhou C, Wu H, and Ding K. 2017. Nrf2-ARE signaling provides neuroprotection in traumatic brain injury via modulation of the ubiquitin proteasome system. *Neurochem Int* 111:32-44.

Doh SH, Kim JH, Lee KM, Park HY, and Park CK. 2010. Retinal ganglion cell death induced by endoplasmic reticulum....
stress in a chronic glaucoma model. *Brain Res* 1308:158-166.

Dylan, Allen, Jin, and Seo. 2018. ER Stress Activates the TOR Pathway through Atf6. *J Mol Signal* 13:1.

El Khouri E, Le Pavec G, Toledano MB, and Delaunay-Moisson A. 2013. RNF185 Is a Novel E3 Ligase of Endoplasmic Reticulum-associated Degradation (ERAD) That Targets Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). *Journal of Biological Chemistry* 288:31177-31191.

Elmasry K, Ibrahim AS, Saleh H, Elsherbiny N, Elshafey S, Hussein KA, and Al-Shabrawey M. 2018. Role of endoplasmic reticulum stress in 12/15-lipoxygenase-induced retinal microvascular dysfunction in a mouse model of diabetic retinopathy. *Diabetologia* 61:1220-1232.

Franziska, Walter, Aisling, O’Brien, Caoimhín, Concannon, Heiko, Düssmann, and Jochen. 2018. ER stress signalling has an activating transcription factor 6α (ATF6)-dependent 'off-switch'. *The Journal of biological chemistry*. 293(47):18270-18284

Fregno I, and Molinari M. 2018. Endoplasmic reticulum turnover: ER-phagy and other flavors in selective and non-selective ER clearance. *F1000Res* 7:454.

Fu D, Yu JY, Yang S, Wu M, Hammad SM, Connell AR, Du M, Chen J, and Lyons TJ. 2016. Survival or death: a dual role for autophagy in stress-induced pericyte loss in diabetic retinopathy. *Diabetologia* 59:2251-2261.

Fujita E, Kouroku Y, Isoai A, Kumagai H, Misutani A, Matsuda C, Hayashi YK, and Momoi T. 2007. Two endoplasmic reticulum-associated degradation (ERAD) systems for the novel variant of the mutant dysferlin: ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD(II). *Hum Mol Genet* 16:618-629.

Ganley IG, Du HL, Wang J, Ding X, Chen S, and Jiang X. 2009.ULK1·ATG13·FIP200 Complex Mediates mTOR Signaling and Is Essential for Autophagy *. *Journal of Biological Chemistry* 284.

Gardner BM, and Walter P. 2011. Unfolded Proteins Are Ire1-Activating Ligands That Directly Induce the Unfolded Protein Response. *Journal of Cell Science* 333:1891-1894.

Glickman MH. 2000. Getting in and out of the proteasome. *Semin Cell Dev Biol* 11:149-158.

Glickman MH, and Ciechanover A. 2002. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. *Physiol Rev* 82:373-428.

Golestaneh N, Chu Y, Xiao YY, Stoleru GL, and Theos AC. 2017. Dysfunctional autophagy in RPE, a contributing factor in age-related macular degeneration. *Cell Death & Disease* 8:e2537.

Guerriero CJ, and Brodsky JL. 2012. The Delicate Balance Between Secreted Protein Folding and Endoplasmic Reticulum-Associated Degradation in Human Physiology. *Physiol Rev* 92:537-576.

Guo FJ, Xiong Z, Lu X, Ye M, Han X, and Jiang R. 2014. ATF6 upregulates XBP1S and inhibits ER stress-mediated apoptosis in osteoarthritis cartilage. *Cell Signal* 26:332-342.

Ha Y, Liu W, Liu H, Zhu S, Xia F, Gerson JE, Azhar NA, Tilton RG, Motamedi M, Kayed R et al. 2018. AAV2-mediated GRP78 Transfer Alleviates Retinal Neuronal Injury by Downregulating ER Stress and Tau Oligomer Formation. *Invest Ophthalmol Vis Sci* 59:4670-4682.

Hayat B, Padhy B, Mohanty PP, and Alone DP. 2019. Altered unfolded protein response and proteasome impairment in pseudoexfoliation pathogenesis. *Exp Eye Res* 181:197-207.

He H, Weifeng L, Yingying Z, Yibin L, Peiqing W, Yasong L, and Huangde F. 2018. Sevoflurane post-conditioning attenuates traumatic brain injury-induced neuronal apoptosis by promoting autophagy via the PI3K/AKT signaling pathway. *Drug Design Development & Therapy* Volume 12:629-638.

Hershko A, and Ciechanover A. 1998. The ubiquitin system. *Annu Rev Biochem* 67:425-479.

Hirsch I, Weiwad M, Prell E, and Ferrari DM. 2014. ERp29 deficiency affects sensitivity to apoptosis via impairment
of the ATF6-CHOP pathway of stress response. *Apoptosis* 19:801-815.

Jiang H, Xiong S, and Xia X. 2014. Retinitis pigmentosa-associated rhodopsin mutant T17M induces endoplasmic reticulum (ER) stress and sensitizes cells to ER stress-induced cell death. *Molecular Medicine Reports* 9:1737—1742.

Jiang TX, Zhao M, and Qiu XB. 2018. Substrate receptors of proteasomes. *Biol Rev Camb Philos Soc* 93:1765-1777.

Jorge, Moscat, and Maria, T., and Diaz-Meco. 2009. p62 at the Crossroads of Autophagy, Apoptosis, and Cancer. *Cell*. 137(6):0-1004.

Jung, Hoon, Lee, Seoyoung, Park, Eunkyoung, Kim, Min, and Jae. 2019. Negative-feedback coordination between proteasomal activity and autophagic flux. *Autophagy* 15(4):726-728.

Jung H, Xiong S, and Xia X. 2014. Retinitis pigmentosa-associated rhodopsin mutant T17M induces endoplasmic reticulum (ER) stress and sensitizes cells to ER stress-induced cell death. *Molecular Medicine Reports* 9:1737—1742.

Karnati R, Talla V, Peterson K, and Laurie GW. 2016. Lacritin and other autophagy associated proteins in ocular surface health. *Exp Eye Res* 144:48-14.

Kimura K, and Nishida T. 2010. Role of the ubiquitin-proteasome pathway in downregulation of the gap-junction protein Connexin43 by TNF-α in human corneal fibroblasts. *Invest Ophthalmol Vis Sci* 51:1943-1947.

Kostova Z, Tsai YC, and Weissman AM. 2007. Ubiquitin ligases, critical mediators of endoplasmic reticulum-associated degradation. *Semin Cell Dev Biol* 18:770-779.

Kroeger H, Chiang WC, Felden J, Nguyen A, and Lin JH. 2019. ER stress and unfolded protein response in ocular health and disease. *FEBS J* 286:399-412.

Labbadia J, and Morimoto RI. 2015. Repression of the Heat Shock Response Is a Programmed Event at the Onset of Reproduction. *Molecular Cell*:S1097276515004992.

Lamark T, and Johansen T. 2012. Aggrephagy: selective disposal of protein aggregates by macroautophagy. *Int J Cell Biol* 2012:736905.

Lenox AR, Bhootada Y, Gorbatyuk O, Fullard R, and Gorbatyuk M. 2015. Unfolded protein response is activated in aged retinas. *Neuroscience Letters* 609:30-35.

Li F, Yang Y, Yang L, Wang K, Zhang X, Zong Y, Ding Y, Wang C, Zhang L, and Ji G. 2017a. Resveratrol alleviates FFA and CCl4 induced apoptosis in HepG2 cells via restoring endoplasmic reticulum stress. *Oncotarget* 8:43799-43809.

Li W, Zhu J, Dou J, She H, Tao K, Xu H, Yang Q, and Mao Z. 2017b. Phosphorylation of LAMP2A by p38 MAPK couples ER stress to chaperone-mediated autophagy. *Nat Commun* 8:1763.

Li WW, Li J, and Bao JK. 2012. Microautophagy: lesser-known self-eating. *Cell Mol Life Sci* 69:1125-1136.

Li X, Zhu F, Jiang J, Sun C, Zhong Q, Shen M, Wang X, Tian R, Shi C, Xu M, Peng F, Guo X, Hu J, Ye D, Wang M, Qin R. 2016. Simultaneous inhibition of the ubiquitin-proteasome system and autophagy enhances apoptosis induced by ER stress aggravators in human pancreatic cancer cells. *Autophagy* 12:1521-1537.

Libby RT, and Gould DB. 2010. Endoplasmic Reticulum Stress as a Primary Pathogenic Mechanism Leading to Age-Related Macular Degeneration. *Advances in Experimental Medicine & Biology* 664:403-409.

Lin WJ, and Kuang HY. 2014. Oxidative stress induces autophagy in response to multiple noxious stimuli in retinal ganglion cells. *Autophagy* 10:1692-1701.

Liu C, DeRoo EP, Stecyk C, Wolsey M, Szuchnicki M, and Hagos EG. 2015. Impaired autophagy in mouse embryonic fibroblasts null for Kruppel-like Factor 4 promotes DNA damage and increases apoptosis upon serum starvation. *Mol Cancer* 14:101.

Liu CW, and Jacobson AD. 2013. Functions of the 19S complex in proteasomal degradation. *Trends Biochem Sci* 38:103-110.
Liu H, Smith AJ, Ball SS, Bao Y, Bowater RP, Wang N, and Michael Wormstone I. 2017. Sulforaphane promotes ER stress, autophagy, and cell death: implications for cataract surgery. J Mol Med (Berl) 95:553-564.

Liu Kea. 2015. Altered ubiquitin causes perturbed calcium homeostasis, hyperactivation of calpain, dysregulated differentiation, and cataract. Proceedings of the National Academy of Sciences of the United States of America 112:1071-1076.

Liu Y, and Levine B. 2015. Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 22:367-376.

Lőrincz P, Takáts S, Kárpáti M, and Juhász G. 2016. IFly: The eye of the fruit fly as a model to study autophagy and related trafficking pathways. Exp Eye Res 144:90-98.

Lu, and D. P. 2004. Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. Journal of Cell Biology 167:27-33.

Mallinger A, Wen HM, Dankle GM, and Glenn KA. 2012. Using a ubiquitin ligase as an unfolded protein sensor. Biochem Biophys Res Commun 418:0-48.

McLaughlin T, Falkowski M, Park JW, Keegan S, and Zhang SX. 2018. Loss of XBP1 accelerates age-related decline in retinal function and neurodegeneration. Molecular Neurodegeneration 13:16.

Mijaljica D, Prescott M, and Devenish RJ. 2011. Microautophagy in mammalian cells: Revisiting a 40-year-old conundrum. Autophagy 7:673-682.

Milan E, Perini T, Resnati M, Orfanelli U, Oliva L, Raimondi A, Cascio P, Bachi A, Marcatti M, Ciceri F et al. 2015. A plastic SQSTM1/p62-dependent autophagic reserve maintains proteostasis and determines proteasome inhibitor susceptibility in multiple myeloma cells. Autophagy 11:1161-1178.

Nakatsukasa K, and Brodsky JL. 2008. The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum. Traffic 9:861-870.

Nam T, Han JH, Devkota S, and Lee HW. 2017. Emerging Paradigm of Crosstalk between Autophagy and the Ubiquitin-Proteasome System. Moleculer Cells 40:897-905.

Ogata M, Hino SI, Saito A, Morikawa K, and Imaizumi K. 2007. Autophagy Is Activated for Cell Survival after Endoplasmic Reticulum Stress. Molecular and Cellular Biology 26:9220-9231.

Ojino K, Shimazawa M, Izawa H, Nakano Y, Tsuruma K, and Hara H. 2015. Involvement of endoplasmic reticulum stress in optic nerve degeneration after chronic high intraocular pressure in DBA/2J mice. J Neurosci Res 93:1675-1683.

Olzmann JA, Kopito RR, and Christianson JC. 2013. The Mammalian Endoplasmic Reticulum-Associated Degradation System. Cold Spring Harbor Perspectives in Biology 5:a013185-a013185.

Ozawa Y, Nakao K, Kurihara T, Shimazaki T, Shimmura S, Ishida S, Yoshimura A, Tsubota K, and Okano H. 2008. Roles of STAT3/SOCS3 pathway in regulating the visual function and ubiquitin-proteasome-dependent degradation of rhodopsin during retinal inflammation. J Biol Chem 283:24561-24570.

Palsamy P, and Shinhara T. 2017. Age-related cataracts: Role of unfolded protein response, Ca 2+ mobilization, epigenetic DNA modifications, and loss of Nrf2/Keap1 dependent cytoprotection. Progress in Retinal & Eye Research:S1350946217300575.

Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, Schwartz SL, DiProspero NA, Knight MA, Schuldiner O , Padmanabhan R, Hild M, Berry DL, Garza D, Hubbert CC, Yao TP, Baehrecke EH, Taylor JP. 2007. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447:859-863.
Parzych KR, and Klionsky DJ. 2014. An overview of autophagy: morphology, mechanism, and regulation.
Antioxid Redox Signal 20:460-473.

Pickart CM. 2001. Mechanisms underlying ubiquitination. *Annu Rev Biochem* 70:503-533.

Pickart CM, and Eddins MJ. 2004. Ubiquitin: structures, functions, mechanisms. *Biochim Biophys Acta* 1695:55-72.

Qiu Y, Yao J, Jia L, Thompson DA, and Zacks DN. 2019. Shifting the balance of autophagy and proteasome activation reduces proteotoxic cell death: a novel therapeutic approach for restoring photoreceptor homeostasis. *Cell Death Dis* 10:547.

Raji L, G. NP, Shanta A, R. RV, A. CM, B. KU, and Rajashekhar G. 2018. Critical role of endoplasmic reticulum stress in chronic endothelial activation?induced visual deficits in tie2-tumor necrosis factor mice. *J Cell Biochem* 119:8460-8471.

Ron D, and Hubbard SR. 2008. How IRE1 Reacts to ER Stress. *Cell* 132:0-26.

Ron D, and Walter P. 2007. Signal integration in the endoplasmic reticulum unfolded protein response. *Nat Rev Mol Cell Biol* 8:519-529.

Rossi S, Di Filippo C, Gesualdo C, Potenza N, Russo A, Trotta MC, Zippo MV, Maisto R, Ferraraccio F, Simonelli F, D'Amico M. 2015. Protection from endotoxic uveitis by intravitreal Resolvin D1: involvement of lymphocytes, miRNAs, ubiquitin-proteasome, and M1/M2 macrophages. *Mediators Inflamm* 2015:149381.

Rousseau A, and Bertolotti A. 2018. Regulation of proteasome assembly and activity in health and disease. *Nat Rev Mol Cell Biol* 19:697-712.

Rozpedek W, Pytel D, Mucha B, Leszczynska H, Diehl JA, and Majsterek I. 2016. The Role of the PERK/eIF2alpha/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress. *Curr Mol Med* 16:533-544.

Rutkowski DT, and Hegde RS. 2010. Regulation of basal cellular physiology by the homeostatic unfolded protein response. *J Cell Biol* 189:783-794.

Rzymski T, Milani M, Singleton DC, and Harris AL. 2009. Role of ATF4 in regulation of autophagy and resistance to drugs and hypoxia. *Cell Cycle* 8:3838-3847.

Salazar MCA, Salanueva JJ, Hernandez-Tiedra S, Lorente M, Egia A, Vazquez P, Blazquez C, Torres S, Garcia S, Nowak J, Fimia GM, Picentini M, Ceconi F, Pandolfi PP, Gonzalez-Feria L, Iovanna JL, Guzmán M, Boya P, Velasco G. 2009. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. *Journal of Clinical Investigation* 119:1359-1372.

Salminen A, Kauppinen A, Hyttinen JM, Toropainen E, and Kaarniranta K. 2010. Endoplasmic reticulum stress in age-related macular degeneration: trigger for neovascularization. *Mol Med* 16:535-542.

Sano R, and Reed JC. 2013. ER stress-induced cell death mechanisms. *Biochim Biophys Acta* 1833:3460-3470.

Schroder M, and Kaufman RJ. 2005a. ER stress and the unfolded protein response. *Mutat Res* 569:29-63.

Schroder M, and Kaufman RJ. 2005b. The mammalian unfolded protein response. *Annu Rev Biochem* 74:739-789.

Shi X, Wu YC, Zhu XY, and Sun XD. 2013. [The latest advance of correlation between autophagy and optic neuritis]. [Zhonghua yan ke za zhi] Chinese journal of ophthalmology 49:956-959.

Shruthi K, Reddy SS, Reddy PY, Shivalingam P, Harishankar N, and Reddy GB. 2016. Amelioration of neuronal cell death in a spontaneous obese rat model by dietary restriction through modulation of ubiquitin proteasome system. *Journal of Nutritional Biochemistry* 33:73-81.

Storniolo A, Alfano V, Carbotta S, Ferretti E, and Di Renzo L. 2018. IRE1α deficiency promotes tumor cell death and eIF2α degradation through PERK dipendent autophagy. *Cell Death Discovery* 4:3.
Tang B, Jingjing C, Lin S, Yiping L, Jia Q, Joy SB, Shengzhou W, and C. RD. 2014. Proteasome Inhibitors Activate Autophagy Involving Inhibition of PI3K-Akt-mTOR Pathway as an Anti-Oxidation Defense in Human RPE Cells. *Plos One* 9:e103364-.

Tang B, Li Q, Zhao XH, Wang HG, Li N, Fang Y, Wang K, Jia YP, Zhu P, Gu J, Li JX, Jiao YJ, Tong WD, Wang M, Zou QM, Zhu FC, Mao XH. 2015. Shiga toxins induce autophagic cell death in intestinal epithelial cells via the endoplasmic reticulum stress pathway. *Autophagy* 11:344-354.

Tatiana LR, David R-G, Sara M-M-A, Mireia H-G, Assumpció B, Joaquim F, and Caty C. 2018. ATG 5 overexpression is neuroprotective and attenuates cytoskeletal and vesicle-trafficking alterations in axotomized motoneurons. *Cell Death & Disease* 9:626-.

Tonelli C, Chio IIC, and Tuveson DA. 2018. Transcriptional Regulation by Nrf2. *Antioxid Redox Signal* 29:1727-1745.

Voges D, Zwickl P, and Baumeister W. 1999. The 26S proteasome: a molecular machine designed for controlled proteolysis. *Annu Rev Biochem* 68:1015-1068.

Wafa Bc, Anne-Catherine M, Valérie C, Julien A, Céline J, Yuki M, Laurent P, Georges S, Pierre F, and Alain B. 2013. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. *Nucleic Acids Research*:16.

Vogel P, and Baumeister W. 1999. The 26S proteasome: a molecular machine designed for controlled proteolysis. *Annu Rev Biochem* 68:1015-1068.

Vogel P, and Baumeister W. 1999. The 26S proteasome: a molecular machine designed for controlled proteolysis. *Annu Rev Biochem* 68:1015-1068.

Vogel P, and Baumeister W. 1999. The 26S proteasome: a molecular machine designed for controlled proteolysis. *Annu Rev Biochem* 68:1015-1068.

Vogel P, and Baumeister W. 1999. The 26S proteasome: a molecular machine designed for controlled proteolysis. *Annu Rev Biochem* 68:1015-1068.

Vogel P, and Baumeister W. 1999. The 26S proteasome: a molecular machine designed for controlled proteolysis. *Annu Rev Biochem* 68:1015-1068.
Zhang J, Zhao X, Cai Y, Li Y, Yu X, and Lu L. 2015a. Protection of Retina by MiniaA in NaIO3-Induced Retinal Pigment Epithelium Degeneration Mice. *International Journal of Molecular Sciences* 16:1644.

Zhang TZ, Fan B, Chen X, Wang W-J, Jiao Y-Y, Su G-F, and Li G-Y. 2014. Suppressing autophagy protects photoreceptor cells from light-induced injury. *Biochem Biophys Res Commun* 450:966-972.

Zhang Y, Ye M, Chen LJ, Li M, Tang Z, and Wang C. 2015b. Role of the ubiquitin-proteasome system and autophagy in regulation of insulin sensitivity in serum-starved 3T3-L1 adipocytes. *Endocrine Journal* 62:673.

Zhong Y, Jingming L, J. WJ, Chen C, A. TJ-T, Anisse S, Qiang Y, Yun-zheng L, A. MMN, and E. AR. 2012. X-Box Binding Protein 1 Is Essential for the Anti-Oxidant Defense and Cell Survival in the Retinal Pigment Epithelium. *Plos One* 7:e38616-.

Zhou Y, Bennett TM, and Shiels A. 2016. Lens ER-stress response during cataract development in Mip-mutant mice. *Biochim Biophys Acta* 1862:1433-1442.

Zhu X, Wang K, Zhou F, and Zhu L. 2018. Paeoniflorin attenuates atRAL-induced oxidative stress, mitochondrial dysfunction and endoplasmic reticulum stress in retinal pigment epithelial cells via triggering Ca(2+)/CaMKII-dependent activation of AMPK. *Arch Pharm Res* 41:1009-1018.

Zode GS, Sharma AB, Lin X, Searby CC, Bugge K, Kim GH, Clark AF, and Sheffield VC. 2014. Ocular-specific ER stress reduction rescues glaucoma in murine glucocorticoid-induced glaucoma. *J Clin Invest* 124:1956-1965.

Zwickl P, Voges D, and Baumeister W. 1999. The proteasome: a macromolecular assembly designed for controlled proteolysis. *Philos Trans R Soc Lond B Biol Sci* 354:1501-1511.
Figure 1

Figure 1: ER stress and its degradation pathways.

When ER stress occurs, in order to restore the function of the ER, the UPR is activated, and the UPS and autophagy are activated to suppress ER stress. However, if they still cannot restore the function of the ER, cell death may result.
Figure 2

ER homeostasis can be achieved by balancing the UPS and autophagy pathways during ER stress.

During ER stress, the UPS and autophagy will be activated to remove harmful substrates such as misfolded proteins or protein aggregates to maintain the normal function of the ER. The balance between the UPS and autophagy is extremely important for restoring cell homeostasis.