Egg Parasitoids of the Leafhoppers *Dalbulus maidis* and *Dalbulus elimatus* (Hemiptera: Cicadellidae) in Two Maize Habitats

Author(s): Gustavo Moya-Raygoza, Isabel Renteria C, Erica Luft Albarracin and Eduardo G. Virla

Source: Florida Entomologist, 97(1):309-312. 2014.

Published By: Florida Entomological Society

URL: http://www.bioone.org/doi/full/10.1896/054.097.0148
EGG PARASITOIDS OF THE LEAFHOPPERS DALBULUS MAIDIS AND DALBULUS ELIMATUS (HEMIPTERA: CICADELLIDAE) IN TWO MAIZE HABITATS

GUSTAVO MOYA-RAYGOZA¹ *, ISABEL RENTERIA C¹, ERICA LUFT ALBARRACIN² AND EDUARDO G. VIRLA²
¹Departamento de Botánica y Zoología, CUCBA, Universidad de Guadalajara, km 15.5 carretera Guadalajara-Nogales, Zapopan, C.P. 45110, Jalisco, Mexico
²PROIMI-Biotecnología, Div. Control Biológico, Av. Belgrano y Pje. Caseros (T4001 MVB), San Miguel de Tucumán, Argentina

*Corresponding author; E-mail: moyaraygoza@gmail.com

Dalbulus maidis (DeLong & Wolcott) and D. elimatus (Ball) (Hemiptera: Cicadellidae) are important pest of maize (Zea mays L. ssp. mays) in Latin America. They are efficient vectors of the corn stunt spiroplasma (Spiroplasma kunkelii Whitcomb), maize bushy stunt phytoplasma (Candidatus Phytoplasma asteris), and Maize rayado fino virus (MRVF) (Nault 1980; Ebbert et al. 2001). Little is known about the natural enemies of these leafhoppers. Eggs of D. maidis are parasitized mainly by Mymaridae and Trichogrammatidae wasps (Moya-Raygoza et al. 2012). Egg parasitoids are considered good tools for biological control because they show higher parasitism rates than parasitoids of other leafhopper stages (Freytag 1985).

It’s unknown whether egg parasitoids that attack D. maidis also attack D. elimatus. These sister leafhopper species belong to different phyletic groups, showing differences in morphology, isoenzymes, molecular characters, oviposition behavior, and allopatric distribution (Heady et al. 1985; Triplehorn & Nault 1985; Triplehorn et al. 1990; Dietrich et al. 1998). During the process of speciation, D. maidis spread mainly in low (< 1,000 m asl) elevation maize habitats and D. elimatus spread mainly in high (> 1,000 m asl) elevation maize habitats (Triplehorn & Nault 1985).

Previous surveys identified 6 egg parasitoid species of D. maidis in Jalisco, Mexico (Virla et al. 2009; Moya-Raygoza et al. 2012). However, no reports of D. elimatus egg parasitoids are available. Moreover, little is known about levels of parasitism and the successful development of parasitoids on the 2 leafhoppers. The objective of this study was to identify the egg parasitoids and the parasitism rates of D. maidis and D. elimatus in low and high elevation maize habitats in Jalisco, Mexico.

Parasitoids were surveyed in 2 sites with contrasting environmental conditions during the 2009 maize growing season. El Grullo (868 m asl; N 19° 47’ W 104° 12’) is a permanent maize habitat where maize is cultivated throughout the year. By contrast in Zapopan (1,650 m asl; N 20° 74’ W 103° 30’) maize is cultivated during the Jun through Sep-Oct season, which is characterized by high rainfall and high temperatures (Larsen et al. 1992). The experiments were conducted in pesticide-free cornfields at each of the 2 sites during the 2009 maize growing season. The presence of D. maidis and D. elimatus adults was confirmed at each sampling date by using a heavy sweep net (38 cm diam net ring) for 20 m over the foliage of maize; adult leafhoppers were identified using the taxonomic keys by Triplehorn & Nault (1985).

Laboratory-reared, 2-week-old females of each Dalbulus species were allowed to oviposit on potted ancho-pozolero maize plants at the 3 leaf stage. Five females of each Dalbulus species were confined separately in a leaf-cage for 72 h under laboratory conditions (25 ± 2 °C; 50% RH; 12:12 h L:D). The leaf-cage size was (4.0 × 5.5 × 2.0 cm with a small hole covered with fine mesh). After the oviposition period, the adult females were removed, the numbers of eggs on each maize leaf were counted, and the plants were immediately transported to the field sites. The transportation time to Zapopan was approximately 1 h and to El Grullo 3 h. A potted plant with eggs was considered a single replicate. On each sampling date 20 plants per Dalbulus species were placed along the edge of one 1.5-2 ha cornfield in each site. New plants with fresh leafhopper eggs were exposed in each site on 29 Jun, 23 Jul, 20 Aug, and 12 Sep. The plants were placed in pairs, each pair having 1 plant infested separately with eggs of each of the Dalbulus species. The distance between each pair of plants was 5 m. The eggs were exposed to parasitoids in the cornfields for 4 days. Then the plants were retrieved and taken to the laboratory, where the sections of the leaves with the egg masses were cut and transferred to Petri dishes lined with wet tissue paper. The dishes were covered with clear plastic food wrap to avoid desiccation and prevent the wasps from escaping. The egg masses were checked daily until emergence of leafhopper nymphs and/or adult wasps. The time from oviposition to egg-hatch at the local temperature is approximately 14-15 days (Nault 1990). Adult parasitoids were counted and preserved in 95% ethanol. The numbers of exposed and para-
sitized eggs of *D. maidis* and *D. elimatus* were compared using chi square goodness of fit tests. The levels of parasitism between *Dalbulus* species and habitats were compared using a Kruskal-Wallis test and SPSS software (SPSS 11.5 for Windows, SPSS, Chicago, Illinois, USA).

The parasitoids were identified using the keys by Triapitsyn (1999 & 2002) and Viggiani (1981), and by comparison with type specimens. Voucher specimens were deposited in the entomological collection of the University of Guadalajara, Mexico, and in the entomological collection of the Instituto y Fundación “Miguel Lillo”, San Miguel de Tucumán, Argentina (IMLA).

Dalbulus maidis eggs were parasitized by *Paracentrobia tapajosae* Viggiani (Hymenoptera: Trichogrammatidae), *Anagrus breviphragma* Soyka (Hymenoptera: Mymaridae), *Aphelinoides semifuscipennis* Girault (Hymenoptera: Trichogrammatidae) Girault, *Pseudoligosita longifranggiata* Viggiani (Hymenoptera: Trichogrammatidae), and *Oligosita desantisi* Viggiani (Hymenoptera: Trichogrammatidae) in El Grullo site, and by *P. tapajosae*, *P. longifranggiata*, and *A. breviphragma* in the Zapopan site (Table 1). This is the first report of *O. desantisi* attacking *D. maidis* eggs in Mexico. In previous studies in the same sites the following parasitoids were found attacking *D. maidis* eggs: *A. breviphragma*, *A. semifuscipennis*, *Oligosita clarimaculosa* (Girault), *P. tapajosae*, *Polynema saga* (Girault), and *P. longifranggiata* in El Grullo and *A. breviphragma*, *A. semifuscipennis*, *O. clarimaculosa*, and *P. tapajosae* in Zapopan (Virla et al. 2009; Moya-Raygoza et al. 2012).

This is the first report of parasitoids attacking *D. elimatus* eggs. Eggs of *D. elimatus* were parasitized by *P. tapajosae*, *A. semifuscipennis*, and *P. longifranggiata* in El Grullo and by *P. tapajosae* and *A. breviphragma* in Zapopan (Table 1).

No evidence of host specificity was observed in the parasitoids as most species parasitized both *D. maidis* and *D. elimatus*. No significant differences in the total number ($\chi^2 = 0.97; df = 1; P = 0.32$) and the percentages of ($\chi^2 = 0.001; df = 1; P = 1.00$) parasitized eggs of *D. maidis* and *D. elimatus* were observed. All parasitoids developed and reached the adult stage on *D. maidis* and *D. elimatus* (Table 1). The overall parasitism level was higher for both *D. maidis* and *D. elimatus* in the permanent maize habitat (El Grullo), compared with seasonal maize habitat (Zapopan) ($H = 40.48; df = 1; P = 0.001$) (Fig. 1). Landis & Menalled (1998) and Landis et al. (2000) also found high levels of parasitism in permanent habitats attributed to the stability and higher diversity of these habitats. Results of this study are consistent with previous studies (Moya-Raygoza et al. 2012) showing low parasitism in *D. maidis* during 2 summer seasons in seasonal maize habitat, where parasitoids are exposed to more variable conditions.

Table 1. Egg Parasitoid Species of Dalbulus maidis and Dalbulus elimatus in Perennial and Seasonal Maize Habitats. Total Number of Emerged Adult Parasitoids are Shown in Parentheses.

Collection Date	Seasonal maize habitat (Zapopan)	Permanent maize habitat (El Grullo)
Month	*D. maidis*	*D. elimatus*
	P. tapajosae (1)	*P. tapajosae* (15)
	A. semifuscipennis (7)	*A. semifuscipennis* (20)
	P. longifranggiata (1)	*P. longifranggiata* (2)
	A. breviphragma (13)	*A. breviphragma* (1)
	O. desantisi (1)	

- **Table 1.** Egg Parasitoid Species of *Dalbulus maidis* and *Dalbulus elimatus* in Perennial and Seasonal Maize Habitats. Total Number of Emerged Adult Parasitoids are Shown in Parentheses.
environmental conditions. A similar pattern of parasitism was found not only for *D. maidis* but also for *D. elimatus*. More studies to determine the specific abiotic factors that influence the parasitism rates in permanent and seasonal maize habitats are needed.

The research was supported by the University of Guadalajara (Project P3e 2009; G. Moya-Raygoza) and by the scientific and technological cooperative agreement (no 0710) between Mexico (CONACYT) and Argentina (MINCYT).

SUMMARY

Maize plants with similar numbers of *Dalbulus maidis* (DeLong & Wolcott) and *Dalbulus elimatus* (Ball) (Hemiptera: Cicadellidae) eggs were exposed to egg parasitoids in seasonal and perennial maize habitats. Both leafhopper species were parasitized by *Paracentrobia tapajosae* Viggiani (Hymenoptera: Trichogrammatidae), *Anagrus breviphragma* Soyka (Hymenoptera: Mymaridae), *Aphelinoidea semifuscipennis* (Hymenoptera: Trichogrammatidae) and *Pseudoligosita longifrangiata* (Viggiani) (Hymenoptera: Trichogrammatidae). All parasitoids that attacked *D. elimatus* eggs are reported for the first time. Both leafhopper species showed similar number of parasitized eggs and similar percentages of parasitism. The parasitoids reached the adult stage. The levels of parasitism varied among the 2 habitats; a higher level of parasitism was observed in the perennial maize habitat compared with the seasonal maize habitat.

Key words: maize pests, egg parasitoids, leafhoppers

REFERENCES CITED

Dietrich, C. H., Fitzgerald, S. J., Holmes, J. L., Black IV, W. C., and Nault, L. R. 1998. Reassessment of *Dalbulus* leafhopper (Homoptera: Cicadellidae) phylogeny based on mitochondrial DNA sequences. Ann. Entomol. Soc. America 91: 590-597.

Ebert, M. A., Jeffers, D. P., Harrison, N. A., and Nault, L. R. 2001. Lack of specificity in the interaction between two maize stunting pathogens and field collected *Dalbulus* leafhoppers. Entomol. Exp. Appl. 101: 49-57.

Freytag, P. H. 1985. The insect parasites of leafhoppers, and related groups, pp. 423-467 In L. R. Nault and J. G. Rodriguez [eds.], The Leafhoppers and Planthoppers. John Wiley and Sons Inc., New York, USA.

Heady, S. E., Madden, L. V., and Nault, L. R. 1985. Oviposition behavior of *Dalbulus* leafhoppers (Homoptera: Cicadellidae). Ann. Entomol. Soc. America 78: 723-727.

Landis, D., and Menalled, F. 1998. Ecological considerations in conservation of parasitoids in agricultural landscapes, pp. 101-121 In P. Barbosa [ed.],
Conservation Biological Control. Academic Press, San Diego, California, USA.

LANDIS, D., STEPHEN, D. W., AND GURR, G. M. 2000. Habitat management to conserve natural enemies of Arthropods pests in Agriculture. Annu. Rev. Entomol. 45: 175-201.

LARSEN, K. J., NAULT, L. R., AND MOYA-RAYGOZA, G. 2000. Habitat management to conserve natural enemies of Arthropods pests in Agriculture. Annu. Rev. Entomol. 45: 175-201.

LARSEN, K. J, NAULT, L. R., AND MOYA-RAYGOZA, G. 1992. Overwintering biology of Dalbulus leafhoppers (Homoptera: Cicadellidae): Adult populations and drought hardiness. Environ. Entomol. 21: 566- 577.

MOYA-RAYGOZA, G., LUFTHALBARACIN, E., AND VIRLA, E. G. 2012. Diversity of egg parasitoids attacking Dalbulus maidis (Hemiptera: Cicadellidae) populations at low and high elevations sites in Mexico and Argentina. Florida Entomol. 95: 105-112.

NAULT, L. R. 1980. Maize bushy stunt and corn stunt: A comparison of disease symptoms, pathogen host range, and vectors. Phytopathology 70: 659-662.

NAULT, L. R. 1990. Evolution of an insect pest: maize and the corn leafhopper, a case study. Maydica 35: 165-175.

TRIAPITSYNS, S. V. 1999. A review of the species of Anagrus Haliday, 1833 (Hymenoptera: Mymaridae) collected by A. A. Obloblin in Argentina. Russian Entomol. J. 8: 213-222.

TRIAPITSYNS, S. V. 2002. Descriptive notes on a new and other little know species of Anagrus Haliday, 1833 (Hymenoptera: Mymaridae) from the new world tropics and subtropics. Entomotropica 17: 213-223.

TRIPLEHORN, B. W., AND NAULT, L. R. 1985. Phylogenetic classification of the genus Dalbulus (Homoptera: Cicadellidae), and notes of the phylogeny of the Macrostelini. Ann. Entomol. Soc. America 78: 291-315.

TRIPLEHORN, B. W., SHAMBAUGH, G. F., HAMILTON, D. F., AND NAULT, L. R. 1990. Isoenzyme analysis of the genus Dalbulus (Homoptera: Cicadellidae). Ann. Entomol. Soc. America 83: 694-704.

VIGIANI, G. 1981. Nearctic and Neotropical species of Oligosita Walker (Hymenoptera: Trichogrammatidae). Boll. Lab. Entomol. Agraria Filippo Silvestri 38: 101-118.

VIRLA, E. G., LUFTHALBARACIN, E., AND MOYA-RAYGOZA, G. 2009. Egg Parasitoids of Dalbulus maidis (Hemiptera: Cicadellidae) in Jalisco State, Mexico. Florida Entomol. 92: 508-510.