Morphology-modulation of SnO₂ Hierarchical Architectures by Zn Doping for Glycol Gas Sensing and Photocatalytic Applications

Qinqin Zhao¹, Dianxing Ju², Xiaolong Deng¹, Jinzhao Huang¹, Bingqiang Cao² & Xijin Xu¹

¹School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, Shandong Province, Peoples Republic of China, ²School of Materials Science and Engineering, University of Jinan.

The morphology of SnO₂ nanospheres was transformed into ultrathin nanosheets assembled architectures after Zn doping by one-step hydrothermal route. The as-prepared samples were characterized in detail by various analytical techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and nitrogen adsorption-desorption technique. The Zn-doped SnO₂ nanostructures proved to be the efficient gas sensing materials for a series of flammable and explosive gases detection, and photocatalysts for the degradation of methyl orange (MO) under UV irradiation. It was observed that both of the undoped and Zn-doped SnO₂ after calcination exhibited tremendous gas sensing performance toward glycol. The response (S = R_a / R_g) of Zn-doped SnO₂ can reach to 90 when the glycol concentration is 100 ppm, which is about 2 times and 3 times higher than that of undoped SnO₂ sensor with and without calcinations, respectively. The result of photocatalytic activities demonstrated that MO dye was almost completely degraded (~92%) by Zn-doped SnO₂ in 150 min, which is higher than that of others (MO without photocatalyst was 23%, undoped SnO₂ without and with calcination were 55% and 75%, respectively).

As one of the most important classes of materials, metal oxide semiconductors are presenting themselves in various areas of science and technology, due to their desirable morphologies and distinct structures. SnO₂, a typical n-type semiconductor with a wide band gap (3.6 ev), has been widely investigated with many applications such as gas sensors, solar cells, lithium batteries, catalysts, and transparent conductive electrodes, because of its unique optical, catalytic, and electrical properties and high chemical stability. It has been reported that the performances of SnO₂ nanomaterials are greatly affected by their morphology, structure and surface area. Therefore, it is believed that their advanced nanostructured materials with different dimensionalities would offer good opportunities to explore new physical and chemical applications including gas sensors and photocatalysis. Recently, Guo et al. reported that the sensor, fabricated by 3D SnO₂ microstructures assembled by porous nanosheets through hydrothermal synthesis, exhibited good response-recovery performance, high sensitivity and excellent long-term stability for ethanol gas. Dai et al. synthesized flower-like SnO₂ microstructures which exhibited higher photoactivity (about 2.2 times) than granular SnO₂ for the degradation of RhB dye. These structural features can improve both the sensing performance and the photocatalytic degradation rate. In this view, the more attention should be paid to the design and synthesis of hierarchical SnO₂ nanomaterials.

In order to satisfy the increasing demands for the photocatalysts or gas sensors working under harsh and complicated conditions, many efforts have been made to improve the performance of SnO₂ materials such as doping, adding catalysts, and constructing the heterojunctions. Among these methods, doping has been proposed to be a facile efficient way to modulate their properties. In particular, the previous reports demonstrated that the morphologies and properties of SnO₂ could be modified by Zn doping. This could be attributed to the facile substitution of Sn ions by Zn ions due to the similar ion radius of Zn²⁺ and Sn⁴⁺ (Zn²⁺: 0.074 nm, Sn⁴⁺: 0.071 nm), which may produce more oxygen vacancies for charge compensation and further enhance the performance of SnO₂. Thus, it is expected that Zn-doped SnO₂ hierarchical nanostructures will provide excellent gas sensing and photocatalytic properties.
Figure 1 | SEM images of undoped (a, b) and Zn-doped SnO$_2$ (c, d). (e) EDS spectra of Zn-doped SnO$_2$ shown in (c, d). (f) XRD patterns of undoped and Zn-doped SnO$_2$. Undoped (S1 600°C) and Zn-doped SnO$_2$ (S2 600°C).
Here, the Zn-doped SnO$_2$ hierarchical nanostructures were synthesized by one-step hydrothermal process, which are composed of a number of nanosheets with the thickness of about 30 nm. The as-prepared samples were applied to the glycol detection and the photocatalytic degradation of methyl orange (MO) under UV irradiation. The results indicated that Zn-doped SnO$_2$ hierarchical nanostructures had better glycol gas response and photocatalytic activity than undoped SnO$_2$ nanostructures.

Methods

Synthesis of undoped and Zn-doped SnO$_2$ hierarchical nanostructures. All chemicals were of analytical grade reagents and used without any further purification. A typical synthesis process was as follows: 6 mM of NH$_4$F was dissolved in 50 ml of deionized water under vigorous magnetic stirring, followed by adding 2 mM of SnCl$_2$·H$_2$O and 2 mM of ZnCl$_2$ into the above solution with the assistance of ultrasonication. The mixed solution was then transferred into a 100 ml Teflon-lined stainless steel autoclave, and kept at 180$^\circ$C for 16 h in order to obtain the precipitates.
Then, the autoclave cooled to room temperature naturally. The obtained products were collected and washed with deionized water and ethanol several times, respectively, and then dried in air at 60°C for 12 h. Finally, the products were annealed at 600°C for 2 h, named as S2. The undoped SnO2 was obtained by the same process except the addition of ZnCl2, named as S1. The undoped SnO2 sample without calcination was named as S0.

Material Characterizations. The compositions and morphologies of the as-prepared samples were characterized by a field emission scanning electron microscope (FESEM, FEI QUANTA FEG250) equipped with an energy dispersive x-ray spectroscopy (EDS, INCA MAX-50) and a high-resolution transmission electron microscope (Tecnai G2 F20). The crystal structures of the samples were analyzed by X-ray diffraction (XRD, D8-Advance, Bruker) with Cu Kα radiation and Raman spectrometer (Renishaw inVia) in the range from 200 cm⁻¹ to 1000 cm⁻¹ at room temperature. The average pore size, pore volume, and specific surface area of the samples were examined through measuring N₂ adsorption-desorption isotherm with a Micromeritics ASAP2020 apparatus.

Fabrication and Gas-Sensing measurements. Gas sensors were fabricated as follows: The as-prepared sample was mixed with the deionized water to form a paste, and then it was coated onto an Al₂O₃ tube by a small brush to form a thick film between two parallel Au electrodes, which had been previously printed on the tube. A heater of Ni-Cr coil was inserted into the Al₂O₃ tube to keep the sensor at the operating temperature. The gas sensor properties were measured by a gas sensing test system (WS-30A, Weisheng Electronics, Zhengzhou, China) with a test voltage of 5 V under laboratory conditions (30% RH, 23°C). The devices were put into an airproof test box and tested by a static process in a test chamber. A given amount of the target gas was injected into the test chamber, when the response reached a constant value, the upper cover of the test chamber was removed and the sensor began to recover in air. The response of the sensor was defined as $S = R_a/R_g$ for target gas, where R_a and R_g are the sensor resistance in air and in target gas, respectively.

Photocatalytic Measurements. The photocatalytic activity of the samples was investigated by measuring the degradation of methyl orange (MO) under UV light (generated by a 500 W high pressure mercury lamp). Typically, 30 mg of as-prepared sample was added to the aqueous solution of MO dye (50 mL, 20 mg/L) with stirring in the dark for 30 min to ensure the absorption/desorption equilibrium. Then, the suspension was exposed to UV light irradiation whilst stirring. At given irradiation time intervals, concentrations of MO were monitored with a TU-1901 UV-vis spectrophotometer by measuring the absorbance at 464 nm during the degradation process.

Results and discussion

Representative morphologies and structures of the as-obtained SnO₂ nanostructures, revealed by field-emission scanning electron microscopy (SEM), are shown in Figure 1. The surface morphologies of undoped SnO₂ (S1) are shown in Figure 1(a, b). It can be seen that the products are mostly spherical-like structures with a relatively rough surface, which is consisted of SnO₂ nanorods. The morphologies of the Zn-doped SnO₂ (S2) are shown in Figure 1(c, d). Compared with the undoped sample, the products are composed of SnO₂ nanosheets, which may be attributed to the induced growth of Zn²⁺ ions, as shown in Figure 1(e). The peak of Zn can be clearly observed in the spectrum and the content ratio of Zn and Sn is about 1.60 : 10.93, shown in the insert table. Figure 1(f) shows the typical XRD patterns of the as-prepared undoped (S1) and Zn-doped SnO₂ (S2) architectures. All the diffraction peaks could be well indexed to the tetragonal rutile structure of SnO₂, which was consistent with the standard data file (JCPDS file no. 41-1445). No obvious characteristic peaks are observed for the impurities. Additionally, the diffraction peaks of the Zn-doped SnO₂ tend to become slightly broader from Figure 1(f), which could be attributed to the size effect of the crystals. The mean grain size of undoped and the Zn-doped SnO₂ were calculated to be 29.3 nm and 22.6 nm, respectively, using the Debye-Scherer formula, $D = 0.89\lambda/(\beta\cos\theta)^{1/2}$, where λ is the X-ray wavelength, θ is the Bragg diffraction angle and β is the peak full-width at half maximum.

The morphologies and microstructures of the samples S1 (SnO₂) and S2 (Zn-doped SnO₂) were further studied by TEM, as shown in Figure 2. From Figure 2(a), we get to know that the undoped SnO₂ (S1) is mainly comprised of spherical-like structures constructed by nanorods with a diameter of 20–30 nm and a length up to one hundred nanometers. This is in consistent with the SEM images in Figure 1(a, b). The micrographs shown in Figure 2(b), in which the interplanar distances are 0.34 nm and 0.27 nm, respectively, matching well with (110) and (101) planes of rutile SnO₂. The selected area electron diffraction (SAED) pattern taken from the corresponding micrographs suggests a polycrystalline structure of as-prepared sample, as shown in Figure 2(c). The peaks of Sn and O can be clearly observed in the spectrum from EDX spectrum (Figure 2(d)) for the undoped SnO₂ revealing a purity phase. The peaks of Cu and C observed in the spectrum are attributed to the carbon-coated copper grids.

Compared with the undoped SnO₂, the Zn-doped SnO₂ are mainly composed of SnO₂ nanosheets, as shown in Figure 2(e). The HRTEM image (Figure 2(f)) shows that the lattice fringes of the Zn-doped SnO₂ nanosheets are 0.34 and 0.27 nm, which correspond to the (110) and (101) lattice planes of SnO₂, respectively, as shown in Figure 2(g). The SAED pattern indicates that the nanosheet is of polycrystalline structure composed of nanoscaled particles. Figure 2(h) shows the EDX spectrum of the Zn-doped SnO₂, in which the peak of Zn can be clearly observed in the spectrum, which is corresponding to the XRD pattern of Zn-doped SnO₂. Furthermore, it can be seen from the SEM and TEM images that SnO₂ nanorods change into nanosheets after the doping of Zn element. This evolution is ascribed to the successfully substitutional doping of Zn²⁺ ions into SnO₂ lattice with modification of local...
calculated to be 51.2 and 61.8 m²g⁻¹ shown in Figure 4. The specific surface area of the samples was determined by

ducts (S1 and S2) were carried out to estimate the properties, as adsorption and desorption measurements of the as-prepared pro-

duction of Zn ions in the precursor solution, the morphology of the products can evolve into nanosheets from the nanorod. Thus, Sn⁺ ions can be substituted when Zn⁺ ions are introduced into the solution, some Sn⁺ ions are substituted, forming the compound nuclei under the hydrothermal conditions. Then, these nuclei grow into nanosheet structures through aggregation mechanism and Ostwald ripening process under the influence of the Zn⁺. Finally, the nanosheets-assembled nanostructures are formed as shown in Figure 5(b).

The gas sensing properties of SnO₂ and Zn-doped SnO₂ sensors were first measured at different working temperature. Figure 6 exhibits the response of the sensors to 100 ppm glycol, as a function of the operating temperature in a range of 220–360 °C. The optimal operating temperature for the sensors is around 240 °C and the response is enhanced gradually after the process of calcination and further doped with Zn element. When the temperature is 220 °C, the sensors
response can reach 50 (Zn-doped SnO2 sensor) to 100 ppm glycol which is higher than that of others. With the increase of working temperature, the response further increases. Until the temperature is up to 240 °C, all the sensors exhibit the maximum response and then decrease as the temperature further increase, which is due to the competing desorption of the chemisorbed oxygen44,46.

Figure 7(a) shows the response curve of undoped SnO2 and Zn-doped SnO2 sensors to glycol of different concentrations from 5 ppm to 100 ppm at 240 °C. It can be found that all the sensors responses increase with the increasing concentration of glycol, especially for the Zn-doped SnO2 sensors. The response increases gradually and can reach to 90 when the glycol concentration is 100 ppm, which is about 2 times higher than that of undoped SnO2 sensor with calcinations and 3 times higher than that of the sensor without calcinations. It also indicates that the detection limit could be down to 5 ppm-level with a response about 5. Compared with the performance of the sensors to ethanol, as shown in Figure 7(b), glycol gas is more active than ethanol, which leads to a higher response than ethanol. To the best of our knowledge, only Zhang et al.7 fabricated porous SnO2 nanotubes sensor to detect glycol while operating at 300 °C. Compared with the above, the optimal operating temperature of our sensor is 240 °C. It can be found that all the sensors responses increase with the increasing concentration of glycol, especially for the Zn-doped SnO2 sensors. The response increases gradually and can reach to 80, which was about four times higher than that of other sensors. The response can reach to 80, which was about four times higher than that of other gases, indicating an excellent selectivity to glycol.

As a typical n-type metal oxide semiconductor, SnO2 based sensor belongs to the surface-controlled type, and the most widely accepted model is the formation of a charge depletion layer in the near-surface region of each grain, relative to the interior parts, due to electron trapping on adsorbed oxygen species54,55. The conductance of the n-type semiconductor is determined by the amount of electrons in its conduction band. This, according to a standard model55, when SnO2 sensor is exposed to air, oxygen molecules will be adsorbed on its surface and further capture electrons from the conduction band to form oxygen ions (O2−, O+, O3−). It will form a depletion region, resulting in the increase of the sensors resistance. When the sensors are exposed to a reducing gas such as glycol or ethanol, the oxygen negative ions will react with the target gas molecules and release the trapped electrons back to the conduction band of SnO2, which reduce the amount of surface adsorbed oxygen species, and lead to an increase of the carrier concentrations of the sensors. Consequently, the depletion layer on the surface of the sensors becomes thin, which exhibit the decrease of sensor resistance54,55. Based on the formula of response (S = Rg/R0), the sensor shows a high response. Moreover, after the doped of Zn, the response of the sensors is enhanced.

![Figure 7](image-url) | Response comparisons of three sensors to (a) glycol and (b) ethanol gas of different concentrations at 240°C and 320°C, respectively.

Sensing materials [preparation]	[ethanol/glycol](ppm)	R0/Rg	Ta(m)(°C)
SnO2-ZnO thin film47	200 (ethanol)	4.69	300
Zn-doped SnO2 nanorods50	200 (ethanol)	17	270
ZnO-doped porous SnO2 nanospheres48	200 (ethanol)	20	150
SnO2/ZnO hierarchical nanostructures49	100 (ethanol)	6.2	400
Porous SnO2 Nanotubes31	200 (ethanol) 20 (glycol)	16.7	17.2 300
Our work	200 (ethanol) 100 (glycol)	33 90	320 240

Table 1 | Sensing properties of Zn-doped SnO2 hierarchical nanostructures and other reported gas sensors working under different operating temperatures.
obviously. The high response of Zn-doped SnO\textsubscript{2} observed here can be attributed to the following factors. Firstly, the grain size of SnO\textsubscript{2} will decrease with the doped of Zn. Due to the above mentioned, the surfaces of the SnO\textsubscript{2} nanosheets become more reactive and absorb more oxygen molecules to form ionized oxygen species32,54. Secondly, the specific surface area of Zn-doped SnO\textsubscript{2} is increased. This means that the amount of oxygen can be absorbed and ionized on the surface of Zn-doped SnO\textsubscript{2}. In addition, according to the solid state chemistry theory, the quantity of oxygen vacancies in Zn-doped SnO\textsubscript{2} nanostructures is also increased due to the substitution of Zn2+ for Sn4+. Thus, owing to the more oxygen species adsorbed on the surface of SnO\textsubscript{2} and more surface oxygen vacancies in the Zn-doped SnO\textsubscript{2} nanostructures, the Zn-doped SnO\textsubscript{2} sensor shows a higher response.

Figure 10(a) shows variations in adsorption spectra of MO organics dye solution in the presence of the Zn-doped SnO\textsubscript{2} (S2) photocatalyst irradiated by a UV lamp for different time. It indicates that the concentration of MO decreases as the irradiation time increasing by measuring the intensity of characteristic absorption peak (465 nm). Different degradation efficiencies for MO, S0, S1 and S2 can be observed directly in Figure 10(b). It can be seen obviously that S2 (Zn-doped SnO\textsubscript{2}) exhibits more excellent photocatalytic activity toward MO with the degradation efficiency of 92% than that of others (MO, 23%; S0, 55%; S1, 75%). Moreover, the photocatalytic performance is also much higher than those reported. For example, Yang et al.55 synthesized ZnO-SnO\textsubscript{2} composite to degrade MO dye, and the degradation efficiency only reached to 60% in 100 min. Kowsari et al.56 also fabricated ZnO/SnO\textsubscript{2} nanocomposites to degrade MO dye, and the degradation time was longer than 200 min. The higher degradation efficiency may be ascribed to the specific morphology of S2, which provides larger specific surface area than others, as shown in Figure 4. Compared with S0, the degradation efficiency of S1 was enhanced to 75% from 55% (S0), which indicates an increase of photocatalytic activity after the process of calcinations, leading to better crystallinity. Generally, the crystallinity of the photocatalysts plays a crucial role in the enhancement of the separation of the e−/h+ pairs.

In general, the specific surface area plays a main role during photocatalytic degradation of dye molecules. On the basis of the photocatalytic mechanism57–59, it is known that the highly reactive \(\cdot \text{OH} \) and \(\text{O}_2^- \) are generated on the surface of photocatalysis under UV radiation1. Therefore, the surface characteristic of nanoparticles will greatly influence its photocatalytic activity. On the basis of the above analysis, the Zn-doped SnO\textsubscript{2} catalyst showed the best photocatalytic activity, this result can be attributed to the special hierarchical structure, and better crystallinity.

Conclusion

In summary, a facile and simple method has been developed for preparing undoped and Zn-doped SnO\textsubscript{2} nanostructures. The as-prepared Zn-doped SnO\textsubscript{2} hierarchical architectures were consisted of interconnected ultrathin nanosheets. It was found that the Zn doping plays an important role in controlling the morphologies and structures of the products. The as-prepared nanostructures were used as the efficient gas sensing materials to detect a series of flammable and explosive gases, and photocatalysts for the degradation of methyl orange (MO) under UV irradiation. The Zn-doped SnO\textsubscript{2} gas sensor exhibits highly sensitive and selective sensing properties to glycol gas. The response can reach to 90 for 100 ppm glycol which is much higher than that of undoped SnO\textsubscript{2}. The as-prepared Zn-doped SnO\textsubscript{2} hierarchical nanostructures were also used as efficient photocatalyst and exhibited excellent degradation for MO. The photocatalytic MO degradation rate of Zn-doped SnO\textsubscript{2} catalyst is much higher than that of undoped SnO\textsubscript{2} at the same UV irradiation time. This work demonstrates that the simply prepared Zn-doped SnO\textsubscript{2}
nanostructures have a potential application in glycol gas sensor or MO photocatalytic degradation.

1. Liu, Y. et al. Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl. Mater. Interfaces 6, 2174–2184 (2014).

2. Wang, H. et al. Engineering of facets, band structure, and gas-sensing properties of hierarchical SnO2 nanosheet architectures. Adv. Funct. Mater. 23, 4847–4853 (2013).

3. Zhang, D. F., Sun, L. D., Yin, J. L. & Yan, C. H. Low-temperature fabrication of highly crystalline SnO2 nanorods. Adv. Mater. 15, 1022–1025 (2003).

4. Hou, X. J. et al. SnO2-microtube-assembled cloth for fully flexible self-powered photodetector nanosystems. Nanoscale 5, 7831–7837 (2013).

5. Wang, L. et al. Synthesis of hierarchical SnO2 nanostructures assembled with nanosheets and their improved gas-sensing performance, Sensor Actuat. B-Chem 188, 85–93 (2013).

6. Ju, D. X., Xu, H. Y., Zhang, J., Guo, J. & Cao, B. Q. Direct hydrothermal growth of ZnO nanosheets on electrode for ethanol sensing. Sensor Actuat. B-Chem 201, 444–451 (2014).

7. Zhang, J., Guo, J., Xu, H. Y. & Cao, B. Q. Reactive-template fabrication of porous SnO2 nanotubes and their remarkable gas-sensing performance. ACS Appl. Mater. Interfaces 5, 7893–7898 (2013).

8. Dai, P. et al. Two-solvent method synthesis of SnO2 nanoparticles embedded in SBA-15: gas-sensing and photocatalytic properties study. Mater. Res. Bull 50, 440–445 (2014).

9. Kim, H. R. et al. The role of NiO doping in reducing the impact of humidity on the performance of SnO2-based gas sensors: synthesis strategies, and phenomenological and spectroscopic studies. Adv. Funct. Mat. 21, 4456–4465 (2011).

10. Yang, R., Zhao, W., Zheng, J., Zhang, X. Z. & Li, X. G. One-step synthesis of carbon-coated tin dioxide nanospheres for high lithium storage. J. Phys. Chem. C 114, 20272–20276 (2010).

11. Yang, R., Gu, Y. G., Lia, Y. Q., Zheng, J. & Lia, X. G. Self-assembled 3D flower-shaped SnO2 nanostructures with improved electrochemical performance for lithium storage. Acta Mater 58, 866–874 (2010).

12. Xu, X. J. et al. Structural transformation, photocatalytic, and field-emission properties of ridge-like TiO2 nanotubes. ACS Appl. Mater. Interfaces 3, 1352–1358 (2011).

13. Dai, Z. R., Gole, J. L., Stout, J. D. & Wang, Z. L. Tin oxide nanowires, nanoribbons, and nanotubes. J. Phys. Chem. B 106, 1274–1279 (2002).

14. Zheng, L. et al. Photocatalytic activity of ZnO/SnO2, ZnO/SnO2-x nanocatalysts: a synergistic effect of doping and heterojunction. Appl. Catal. B: Environ 148, 109–119 (2014).

15. Zhang, S. et al. Controllable synthesis of recyclable core-shell γ-Fe2O3/SnO2 hollow nanoparticles with enhanced photocatalytic and gas sensing properties. Phys. Chem. Chem. Phys. 15, 8228–8236 (2013).

16. Talebian, N. & Jafarinezhad, F. Morphology-controlled synthesis of SnO2 nanostructures using hydrothermal method and their photocatalytic applications. Ceram. Int 39, 8311–8317 (2013).

17. Han, Y. T. et al. Solution growth and cathodoluminescence of novel SnO2 core–Shell homogenous microspheres. J. Phys. Chem. C 114, 8235–8240 (2010).

18. Guo, J., Zhang, J., Ju, D. X., Xu, H. Y. & Cao, B. Q. Three-dimensional SnO2 microstructures assembled by porous nanosheets and their superior performance for gas sensing. Powder Technol 250, 40–45 (2013).

19. Dai, S. & Yao, Z. Synthesis of flower-like SnO2 single crystals and its enhanced photocatalytic activity. Appl. Surf. Sci 258, 5703–5706 (2012).

20. Wang, W. C. et al. Enhanced ethanol sensing properties of Zn-doped SnO2 porous hollow microspheres. Appl. Surf. Sci 261, 890–895 (2012).

21. Cui, S. M. et al. Indium-doped SnO2 nanoparticle graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2. J. Mater. Chem. A 1, 4462–4467 (2013).

22. Mondal, B. et al. ZnO-SnO2 based composite type gas sensor for selective hydrogen sensing. Sensor Actuat. B-Chem 194, 389–396 (2014).

23. Tang, W., Wang, J., Yao, P. & Li, X. Hollow hierarchical SnO2-ZnO composite nanofibers with heterostructure based on electrospinning method for detecting methanol. Sensor Actuat. B-Chem 192, 543–549 (2014).

24. Zhang, J., Liu, X., Wu, S., Xu, H. & Cao, B. Q. One-pot fabrication of uniform polypyrrole/Au nanocomposites and investigation for gas sensing. Sensor Actuat. B-Chem 186, 695–700 (2013).

25. Zhang, J. et al. Au-functionalized hematite hybrid nanospindle: general synthesis, gas sensing and catalytic properties. J. Phys. Chem. C 115, 5352–5357 (2011).

26. Guo, J. et al. High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles. Sensor Actuat. B-Chem 199, 339–345 (2014).

27. Ju, D. X. et al. Highly sensitive and selective triethylamine-sensing properties of nanosheets directly grown on ceramic tube by forming NiO/ZnO PN heterojunction. Sensor Actuat. B-Chem 200, 288–296 (2014).

28. Wang, X., Fan, H. & Ren, P. Self-assembled flower-like SnO2/Ag heterostructures: correlation among composition, structure and photocatalytic activity. Colloid. Surface. A 419, 140–146 (2013).

29. Jia, T. et al. Synthesis, characterization, and photocatalytic activity of Zn-Doped SnO2 hierarchical architectures assembled by nanocones. J. Phys. Chem. C 113, 9071–9077 (2009).

30. Huang, H. et al. Needle-like Zn-doped SnO2 nanorods with enhanced photocatalytic and gas sensing properties. Nanotechnology 23, 105502 (2012).

31. Guan, Y. et al. Hydrothermal preparation and gas sensing properties of Zn-doped SnO2 hierarchical architectures. Sensor Actuat. B-Chem 191, 45–52 (2014).

32. Li, Z., Zhou, Y., Yu, T., Liu, J. & Zou, Z. Unique Zn-doped SnO2 nano-echinus with excellent electron transport and light harvesting properties as photoanode materials for high performance dye-sensitized solar cell. CrystEngComm 14, 6462–6468 (2012).

33. Ahn, H. J., Choe, H. C., Park, K. W., Kim, S. B. & Sung, Y. E. Investigation of the structural and electrochemical properties of size-controlled SnO2 nanoparticles. J. Phys. Chem. B 108, 9815–9820 (2004).

34. Ding, X., Zeng, D. & Xie, C. Controlled growth of SnO2 nanorods clusters via Zn doping and its influence on gas-sensing properties. Sensor Actuat. B-Chem 149, 336–344 (2010).

35. Mathew, X. et al. Structural modifications of SnO2 due to the incorporation of Fe into the lattice. J. Appl. Phys 100, 073907 (2006).

36. Jia, T. et al. Facile synthesis of Zn-doped SnO2 dendrite-built hierarchical cube-like architectures and their application in lithium storage, Mater. Sci. Eng. B 189, 32–37 (2014).

37. Liu, X., Iqbal, J., Wu, Z., He, B. & Yu, R. Structure and room-temperature ferromagnetism of Zn-doped SnO2 nanorods prepared by solvothermal method. J. Phys. Chem. C 114, 4790–4796 (2010).

38. Shek, C. H., Lin, G. M. & Lai, K. L. Effect of oxygen deficiency on the Raman spectra and hyperfine interactions of nanometer SnO2, Nanostruct. Mater. XI, 831 (1999).

39. Cheng, G. et al. Solvothermal controlled growth of Zn-doped SnO2 branched nanorod clusters. Cryst. Growth 309, 53–59 (2007).

40. Zhang, Y. et al. Development of microstructure SnO2 sensor based on hierarchically porous ZnO nanosheet thin films. Sensor Actuat. B-Chem 173, 897–902 (2012).

41. Wang, H. Hydrothermal synthesis of hierarchical SnO2 microspheres for gas sensing and lithium-ion batteries applications: Fluoride-mediated Formation of Solid and Hollow Structures. J. Mater. Chem. 22, 2140–2148 (2012).
42. Li, Z., Li, X., Zhang, X. & Qian, Y. Hydrothermal synthesis and characterization of novel flower-like zinc-doped SnO₂ nanocrystals, J. Cryst. Growth 291, 258–261 (2006).
43. Cheng, G., Wu, K., Zhao, P., Cheng, Y., He, X. & Huang, K. Solvothermal controlled growth of Zn-doped SnO₂ branched nanorod clusters, J. Cryst. Growth 309, 53–59 (2007).
44. Leite, E. R., Giraldi, T. R., Pontes, F. M. & Longo, E. Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature, Appl. Phys. Lett 83, 1566–1568 (2003).
45. Liu, Z. P. et al. Complex-surfactant-assisted hydrothermal route to ferromagnetic nickel nanobelts, Adv. Mater 15, 1946–1948 (2003).
46. Bie, L. J. et al. Nanopillar ZnO gas sensor for hydrogen and ethanol, Sensor Actuat. B-Chem 126, 604–608 (2007).
47. Kim, K.-W. et al. The selective detection of C₃H₆OH using SnO₂-ZnO thin film gas sensors prepared by combinatorial solution deposition, Sensor Actuat. B-Chem 123, 318–324 (2007).
48. Ma, X., Song, H. & Guan, C. Enhanced ethanol sensing properties of ZnO-doped porous SnO₂ hollow nanospheres, Sensor Actuat. B-Chem 188, 193–199 (2013).
49. Khoang, N. D., Trung, D. D., Duy, N. V., Hoa, N. D. & Hieu, N. V. Design of SnO₂/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance, Sensor Actuat. B-Chem 174, 594–601 (2012).
50. Barsan, N. & Weimar, U. Conduction model of metal oxide gas sensors, J. Electroceram 7, 143–167 (2001).
51. Xu, J. Q., Fan, H. & Ren, P. UV Light-assisted synthesis of coral SnO₂: characterization and its enhanced photocatalytic properties, Colloid. Surfaces A 402, 53–59 (2012).

Acknowledgments
Thanks University of Jinan (UJn) for the support on new staff, and the project supported by the Taishan Scholar (No. TSHW20120210), the National Natural Science Foundation of China (Grant No. 11304120, 11174112, 61106059), the Encouragement Foundation for Excellent Middle-aged and Young Scientist of Shandong Province (Grant No. BS2012CL005).

Author contributions
Z.Q.Q. and J.D.X. designed the experiments. Z.Q.Q. performed the experiments. H.J.Z. and D.X.L. performed the SEM observations. C.B.Q. performed TEM observations. Z.Q.Q., J.D.X. and X.X.J. discussed and commented on the experiments and results, and wrote the paper.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Zhao, Q. et al. Morphology-modulation of SnO₂ Hierarchical Architectures by Zn Doping for Glycol Gas Sensing and Photocatalytic Applications. Sci. Rep. 5, 7874; DOI:10.1038/srep07874 (2015).

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/