Heat transfer analysis of Cu and Al\textsubscript{2}O\textsubscript{3} dispersed in ethylene glycol as a base fluid over a stretchable permeable sheet of MHD thin-film flow

Zeeshan1, Ilyas Khan2, Wajaree Weera3,4 & Abdullah Mohamed4

The process of thin films is commonly utilized to improve the surface characteristics of materials. A thin film helps to improve the absorption, depreciation, flexibility, lighting, transport, and electromagnetic efficiency of a bulk material medium. Thin-film treatment can be especially helpful in nanotechnology. As a result, the current study investigates the computational process of heat relocation analysis in a thin-film MHD flow embedded in hybrid nanoparticles, which combines the spherical copper and alumina dispersed in ethylene glycol as the conventional heat transfer Newtonian fluid model over a stretching sheet. Important elements such as thermophoresis and Brownian movement are used to explain the characteristics of heat and mass transfer analysis. Nonlinear higher differential equations (ODEs) were attained by transforming partial differential equations (PDEs) into governing equations when implementing the similarity transformation technique. The resulting nonlinear ODEs have been utilized by using the homotopy analysis method (HAM). The natures of the thin-film flow and heat transfer through the various values of the pertinent parameters: unsteadiness, nanoparticle volume fraction, thin-film thickness, magnetic interaction, and intensity suction/injection are deliberated. The approximate consequences for flow rate and temperature distributions and physical quantities in terms of local skin friction and Nusselt number were obtained and analyzed via graphs and tables. As a consequence, the suction has a more prodigious effect on the hybrid nanofluid than on the injection fluid for all the investigated parameters. It is worth acknowledging that the existence of the nanoparticles and MHD in the viscous hybrid nanofluid tends to enhance the temperature profile but decays the particle movement in the thin-film flow. It is perceived that the velocity and temperature fields decline with increasing unsteadiness, thin-film thickness, and suction/injection parameters. The novel part of the present work is to investigate the hybrid nanofluid including Cu–Al\textsubscript{2}O\textsubscript{3} dispersed in Ethylene glycol as a base fluid in the presence of a magnetic field, which has not been investigated yet. So, in limiting cases the present work is validated with published work and found in excellent agreement as shown in Table 3.

List of symbols

Symbol	Description
\(Pr\)	Prandtl number
\(t\)	Time (s)
\(k\)	Thermal conductivity
\(h(t)\)	Uniform thickness of thin film
\(S\)	Dimensionless unsteadiness parameter
\(u, v\)	Velocities component
\(C_p\)	Specific heat
\(T\)	Temperature (K)

1Department of Mathematics and Statistics, Bacha Khan University Charsadda, Charsadda, KP, Pakistan. 2Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia. 3Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand. 4Research Centre, Future University in Egypt, New Cairo 11835, Egypt. 44email: wajawe@kku.ac.th
In research and manufacturing processes such as wire drawing, injection moulding, deformation, and powder metallurgy, the analysis of fluid stream stretching surfaces is crucial. Crane\(^1\) was the first to analyze and to procure the similarity solution for continuous stream beyond a stretching sheet. In comparison to the elongating case, regrettably, the movement past a shrinking surface has received little attention. According to Goldstein\(^2\), the shrinking module's flow is essentially backward. Miklavi and Wang investigated an accurate clarification of the Navier Stokes equations over a decreasing sheet in their paper\(^3\). Investigators observed that the flow field inside a transition zone is not restricted, and by providing sufficient suction at the edge, a continuous flow may be achieved. A contracting sheet flow exhibits different physical processes than a stretched sheet flow, according to Fang et al.\(^4\).

Recently, the issue of heat transfer improvement has received much attention. Thermoelectric scientists have proposed that nanotube metallic or non-metallic materials be added to the conventional fluids to increase thermal properties since nanoparticles have a better thermal conductivity than to the base liquid. A, Nanofluid is the resultant mixture that has improved physicochemical properties. Aziz\(^5\) developed the terminology of nanofluid for the first time in 1995. Furthermore, a special type of nanofluid known as a hybrid nanofluid is studied to boost the thermal efficiency. Hybrid Nano composites are upgraded nanofluid made up of two unique nanomaterials, whereas ordinary nanofluid are made up of a single nanoparticle that absorbs in conventional fluids. The thermal properties of hybrid nanofluid are improved, which improves the heat transmission performance.

Numerous researchers have investigated the boundary layer convection moment of hybrid nanofluid. For illustration, Devi and Devi\(^6\) studied the dynamics of a hybrid nanofluid across a stretching sheet by contemplating Cu–Al\(_2\)O\(_3\) nanotubes with and without electric field effects. They discovered that hybrid nanofluid outperform consistent nanofluid in terms of heat flux. Countless researchers\(^8\)–\(^14\), have recently investigated the mixed convection flow aspects of hybrid nanofluid by recognising various characteristics in publications.

The thin-film flow problem is an important aspect of the microfluidics industry, as it creates physical items with micrometre to millimetre dimensions. Electrical equipment with ferromagnetic metals that enable electric current to flow and diagnostic implants are using synthetic films to impede bacterial activity are commercial examples of that use thin layers flows. As a result of these practices, researchers were inspired to investigate and examine the different effects of thin film flow through transferring aligned, lateral, and sloped flat sheets on heat exchange. Furthermore, the primary applications of these thin-film flows are drainage, encapsulating, hydrating, microbiological, and photovoltaic cells as pointed out by Bertozzi\(^15\), Roy et al.\(^16\), Dutta et al.\(^17\), Taherzadeh\(^18\), Liu et al.\(^19\), Kreder et al.\(^20\), Girtan\(^21\)–\(^22\) and Thiele\(^23\). It is investigated through the "Thin-Film Decomposition" algorithm, which involves putting a thin-film to a surface to be covered\(^24\).

Wang\(^24\) investigated the first problem of this phenomenon without taking into account heat transmission. This study was conducted for Newtonian fluids, which was prompted by the work of Sakiodis\(^25\), Crane\(^26\), and Carragher and Crane\(^27\), who investigated a conceptual technique for solving heat/mass transfer through elongating surfaces. The study discovered that the Navier–Stokes unsteady problem requires a remarkably precise exact solutions and an examination of integration. As a result, Andersson et al.\(^29\) began an investigation on the basis of Wang's\(^25\) solution towards the hemodynamic heat transport problem and introduced the similarity transformation for the thermal radiation equation.

The demand for characterised gadgets with the finest performances and optimum functionality is rising as science and technology progress. As a result, the researcher explored nanofluid to describe a new category of fluids made up of nanoparticles. Choi\(^30\) hypothesized that in a fluid, metallic or non-metallic atoms with in height current conductivity enhance the quality of heat transport. Because of their unique features, the presence of nanoparticles in a system can increase the efficiency of heat and working fluid parameters. When nanoparticles

\[T_w \quad \text{Surface temperature of the fluid (K)} \]
\[T_0 \quad \text{Initial temperature of the fluid (K)} \]
\[T_{\text{ref}} \quad \text{Reference temperature of the fluid} \]
\[a, b \quad \text{Positive constant} \]
\[f \quad \text{Velocity profile} \]
\[V_w \quad \text{Velocity of the suction} \]
\[\alpha \quad \text{Magnetic parameter} \]
\[C_f \quad \text{Local skin friction} \]
\[Nu_t \quad \text{Nusselt number} \]
\[\alpha_w \quad \text{Heat transfer rate} \]
\[w \quad \text{Dimensionless suction/injection parameter} \]
\[\sigma \quad \text{Electric conductivity} \]
\[\xi \quad \text{Thin film thickness} \]
\[q_w \quad \text{Heat transfer rate} \]
\[\text{Re} \quad \text{Reynolds number} \]
\[\phi \quad \text{Volume friction of nanoparticles} \]
\[\psi_f \quad \text{Physical stream function} \]
\[\eta \quad \text{Similarity variable} \]
\[\theta \quad \text{Dimensionless temperature} \]
\[\nu \quad \text{Kinematics viscosity} \]
\[\rho \quad \text{Density of the liquid} \]
\[\mu \quad \text{Dynamic viscosity} \]
\[\lambda \quad \text{Dimensionless thin film thickness} \]
\[\tau_w \quad \text{Wall shear stress} \]
and base fluid are combined, the simming performance is reduced and deterioration is increased. Most notably, it smooths the surface of nucleate sites, resulting in significant thermophysical coefficient degradation. Khan and Pop, Yirga and Shankar, Pourmehran et al., Jahan et al., Hafidz et al., and Gangadhar et al. are some of the scholars and scientists who have reported the MHD movement and analysis of heat in a steady porous medium under the influence of viscous dissipation and chemical reaction. The similarity equations were solved by implementing the Keller-box scheme.

Krishna and Chamkhâ investigated MHD nanofluid regarding suction/injection effects for various geometries. According to these studies, the suction effect increases the heat transmission of the nanofluid. Hazarika et al. examined the thermal characteristics and viscous dissipation of magnetohydrodynamic nanofluids through a permeable stretched surface. The authors mention the copper, Argentum and ferum (III) oxide as the nanoparticles. Chamkhâ et al. used the numerical method (Control Volume Finite Element Method) to investigate the phenomenon of nanostructures in natural convection flow. Dogonchi et al. used a similar strategy to solve the mathematical modellisation of magnetohydrodynamic nanofluids in permeable media regarding Brownian motion. Furthermore, Dogonchi et al. suggested that enhancing the suction constraint causes a rise in movement but a decrease in nanofluid temperature.

Moreover, while employing the 90:10 ratio concentration of water, the numerical model for thermal conductivity was compared with experimental data reported by Waini et al. Various volume fraction nanoparticles, such as 0.1%, 0.33%, 0.75%, 1%, and 2%, provide excellent agreement with the experimental findings during this research. An increase in the nanoparticle volume fraction from 0.005 to 0.06 improves the temperature field, causing overshoot the heat transfer of the fluid. Whereas, the velocity profile and wall shear stress were both declined. Waini et al. investigated similar combinations of nanoparticles with different effects on stretchable sheets. Furthermore, Hasham and Akbar explored the periodic MHD Casson nanofluid movement past a stretching sheet numerically. Upreti et al. explored the periodic MHD Casson nanofluid movement past a stretching sheet numerically. Upreti et al. investigated the MHD Ag-water nanofluid over stretching sheet.

After examining the literature, we were inspired to use the Tiwari and Das framework to explore the behaviour of hybrid nanofluid heat/mass transfer via a transparent stretching/shrinking surface subject to a uniform thin-film with uniform boundary layer movement of second grade fluid with the permeable channel subjected to a perpendicular stretchable sheet. Tiwari and Das examined the features of heat transmission on magnetic field boundary layer movement of second grade fluid with the permeable channel subjected to a perpendicular stretchable sheet. Tiwari and Das examined the features of heat transmission on magnetic field boundary layer movement of second grade fluid with the permeable channel subjected to a perpendicular stretchable sheet. Tiwari and Das examined the features of heat transmission on magnetic field boundary layer movement of second grade fluid with the permeable channel subjected to a perpendicular stretchable sheet. Tiwari and Das examined the features of heat transmission on magnetic field boundary layer movement of second grade fluid with the permeable channel subjected to a perpendicular stretchable sheet. Tiwari and Das examined the features of heat transmission on magnetic field boundary layer movement of second grade fluid with the permeable channel subjected to a perpendicular stretchable sheet.

The MHD flow of thin-films with hybrid nanofluids over a stretching surface of a laminar boundary layer with porous medium is considered. Two-dimensional flow is considered in this study. The stretching sheet at the x-axis with velocity $U_w = \frac{bx}{1-\alpha}$ and y is normal to the sheet leading to the fluid flow in the thin-film with uniform thin-film thickness $h(t)$. The sheet is supposed to have a mass transport parameter with velocity of the suction/injection velocity $V_w = \frac{V_0 2h_n}{\left(1-\alpha \right)^3}$, and sheet temperature $T_w = T_0 - T_0'f_b \left(\frac{bx}{2\pi} \right) \left(1-\alpha t \right)^{-2}$ fluctuates with length x along with sheet. Here, $\left(V_0, h_n \right)$ it corresponds to the initial velocity suction/injection parameter, T_0 stands for the variable of slit temperature and T_0' is the reference temperature. Furthermore, $\alpha > 0$ and $b > 0$ are taken for the following analyses and are valid only for a time $t < \alpha^{-1}$. The geometry of the present work is portrayed in Fig. 1.

The governing equations for electrically conducting viscous hybrid nanofluids with the breadth of the Tiwari and Das framework for hybrid nanofluids can be stated as

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \quad (1)$$

$$\left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = \frac{\mu_{nf}}{\rho_{nf}} \frac{\partial^2 u}{\partial y^2} + \frac{\sigma_{nf}}{\rho_{nf}} \frac{B^2}{(1)u}, \quad (2)$$

where u and v are the velocity components in the x and y directions, μ_{nf} and ρ_{nf} are the dynamic viscosity and density of the nanofluid, σ_{nf} is the electrical conductivity of the nanofluid, and B is the magnetic field intensity.
Subject to\(^6\):

\[
\begin{align*}
 u &= U_w, \quad v = V_w, \quad T = T_w; \quad \text{at } y = 0, \quad \text{and } \frac{\partial u}{\partial y} = \frac{\partial T}{\partial y} = 0, \quad v = \frac{dh}{dt}, \quad \text{at } y = h. \tag{4}
\end{align*}
\]

Here, \(u\), \(v\) are the velocity components along the \(x\) and \(y\) directions, \(k_{\text{hmq}}\) is the thermal conductivity of the hybrid nanofluid, \(\rho_{\text{hmq}}\) is the density, \((\mathcal{C}_p)_{\text{hmq}}\) is the energy, \(\mu_{\text{hmq}}\) is the dynamic viscosity, \(\sigma_{\text{hmq}}\) is the electrical conductivity of the hybrid nanofluid, and \(T\) and \(t\) explore the temperature and time. The effect of the Lorentz force is negligible. The polarization of charges on an electric field is taken to be zero. The \(B(t)\) for the flow under this investigation will be taken as \(B(t) = B_0 (1 - \alpha t)^{-2}\).

Table 1 is used to estimate the thermophysical properties of nanofluids and hybrid nanofluids as reported by Tiwari and Das\(^5\) and Oztop and Abu-Nada\(^8\). Similarly, as described by Oztop and Abu-Nada\(^8\), Table 2 lists the physical parameters of the nanoparticles and the base fluid with 30% ethylene glycol.

Following Tiwari and Das\(^5\), we look for a similarity solution of Eqs. (1)–(4) by using the following similarity variables:
\[\psi = \left[\nu b (1 - \alpha t)^{-1} \right] \frac{1}{2} x \xi f(\eta), \quad \eta = \left(\frac{y}{b} \right) (1 - \alpha t)^{-\frac{1}{2}} \xi^{-1} y, \]

\[T = T_0 - T_{\text{ref}} \left(\frac{bx^2}{2v} \right) (1 - \alpha t)^{-\frac{1}{2}} \theta(\eta), \] (5)

where the stream function defined by \(\psi \) with \(u = \frac{\partial \psi}{\partial y} \) and \(v = -\frac{\partial \psi}{\partial x} \) satisfies (1) identically, therefore, we have

\[u = \frac{bx}{(1 - \alpha t)^{\frac{1}{2}}}, \quad v = -\left(\frac{vb}{1 - \alpha t} \right)^{\frac{1}{2}} \xi^2. \] (6)

Equation (5) into Eqs. (2) and (3), we obtain similarity equations in ordinary differential form:

\[\frac{1}{(1 - \phi f)} \left(\frac{1}{1 - (\phi f + \phi f^2)} \right) \xi \]

\[+ \lambda \left(\frac{1}{\sigma_3 + 2\sigma_3 - 2\phi \sigma_3 (\sigma_3 - \sigma_3)} \right) \left(\frac{k_3 + 2k_3 - 2\phi (k_3 - k_3)}{k_3 + 2k_3 + \phi (k_3 - k_3)} \right) \right)^{-\frac{1}{2}} \xi^2 \theta'' = 0, \]

Equations (7) and (8) in simple form can be written as:

\[\left(\frac{X_1}{X_2} \right)^{\frac{1}{2}} + \lambda \left[f'' - f'^2 - S \left(f' + \frac{1}{2} \eta f'' \right) - \left(\frac{X_3}{X_4} \right) Mf' \right] = 0, \] (9)

\[\left(\frac{X_5}{X_6} \right) \left(\frac{3}{2} \theta + \frac{1}{2} \eta \theta' \right) - 2f' \theta + f \theta' = 0. \] (10)

Table 2. Thermo-physical properties of the base fluid and nanoparticles.53,54.
\(\chi_1 = \frac{1}{[1 - (\phi_1 + \phi_2)]^{2/3}} \), \(\chi_2 = \left[(1 - \phi_2)\frac{\rho_{31}}{\rho} + \phi_2 \frac{\rho_{32}}{\rho} + (1 - \phi + \phi_1 \phi_2) \right] \),
\[\chi_3 = \left[\frac{\sigma_{s_2} + 2\sigma_{s_2} - 2\phi_2 (\sigma_{s_2} - \sigma_{s_1})}{\sigma_{s_2}} \right] \sigma_{nf}, \text{ where } \sigma_{nf} = \left[\frac{\sigma_{s_2} + 2\sigma_{nf} + \phi_2 (\sigma_{nf} - \sigma_{s_2})}{\sigma_{s_2} + 2\sigma_{nf} + \phi_2(\sigma_{nf} - \sigma_{s_2})} \right], \]
\[\chi_4 = \left[(1 - \phi_2)\frac{(1 - \phi_1)\rho_{bf} + \phi_1 \rho_{s_2}}{\rho_{bf}} \right], \]
\[\chi_5 = \left[\frac{k_{s} + 2k_{nf} - 2\phi_2 (k_{nf} - k_{s})}{k_{s} + 2k_{nf} + \phi_2 (k_{nf} - k_{s})} \right] k_{nf}, \]
\[\chi_6 = \left[(1 - \phi_2)\phi_1 \frac{\rho c_p s_2}{\rho c_p b f} + \phi_2 \frac{\rho c_p s_2}{\rho c_p b f} + (1 - \phi + \phi_1 \phi_2) \right]. \]

Physical quantities. Interestingly, important physical measurements such as surface drag which denotes the wall shear stress and the rate of heat transport which denotes through the Nusselt number are defined as

\[C_f Re^2 = \frac{1}{\delta} \left[\frac{1}{(1 - \phi_1)^{2.5} + (1 - \phi_2)^{2.5}} \right] f''(0), \] \((11) \)

\[Nu_{\tau} Re^{-1/2} = -\frac{1}{\delta} \left(\frac{k_{nf}}{k_f} \right) \theta'(0). \]

where Reynold number, \(Re = \frac{uD}{v} \).

Ham solutions

In several physical problems, the consequent differential equations are significantly nonlinear. It is challenging for investigators and scientists to compute analytical or numerical approaches to such situations. For estimating the series solution of nonlinear partial and ordinary differential equations, the homotopy analysis method (HAM) is one of the most successful computational methods. Without the use of a greater or smaller parameter, this method can be utilized to solve severely nonlinear events. This method allows you to choose and alter the confluence area and estimate rate with a great deal of freedom. The homotopy analysis technique is efficient over typical computational methods in that it avoids the rounded-off errors that are caused by the discretization procedure. This method has been used to solve a variety of nonlinear science and engineering issues\(^{36–43}\). Let us develop some reasonable assumptions about \(f \) and \(\theta \) profiles.

\[f_0(\eta) = \frac{1}{4} \left[4w + 4\eta + (3S - 6w - 6)\eta^2 + (2S + 2w)\eta^3 \right], \theta_0(\eta) = 1. \] \((12) \)

The linear operators \(\sigma_f = \frac{\partial f}{\partial \eta} \) and \(\sigma_0 = \frac{\partial \theta}{\partial \eta} \), are represented in the expanding form as

\[\sigma_f (\omega_1 + \omega_2 \eta + \omega_3 \eta^2) = 0, \quad \sigma_0 (\omega_4 + \omega_5 \eta) = 0, \] \((13) \)

By Taylor’s expansion, we have

\[f(\eta; \rho) = f_0(\eta) + \sum_{x=1}^{\infty} \rho^x f_x(\eta), \] \((14) \)

\[\theta(\eta; \rho) = \theta_0(\eta) + \sum_{x=1}^{\infty} \rho^x \theta_x(\eta), \] \((15) \)

now

\[f_x(\eta) = \frac{1}{\chi} \left. \frac{d^x f(\eta; \rho)}{d \eta} \right|_{\rho=0}, \quad \theta_x(\eta) = \frac{1}{\chi} \left. \frac{d^x \theta(\eta; \rho)}{d \eta} \right|_{\rho=0}. \] \((16) \)

The scheme of equation can be expressed as\(^{42}\)

\[L_f [f_x(\eta) - N_x f_{x-1}(\eta)] = \pi_f R^f_x(\eta), \]
\[L_0 [\theta_x(\eta) - N_x \theta_{x-1}(\eta)] = \pi_0 R^\theta_x(\eta). \] \((17) \)

where, \(N_x = 0 \) if \(\rho \leq 1 \) and if \(\rho > 1 \).

Validation of the results

The mathematical outcomes of the present investigation using Tiwari et al.\(^{53}\) and Devi and Devi\(^{2}\) are used to approve the approach and the computational procedure. Table 3 shows a comparative analysis of the numerical results with prior publications using the following parameters: nanoparticle volume fraction \((\phi_1 = \phi_2 = 0) \),
suction/injection ($w = 0$), Prandtl number ($Pr = 1.0$), and magnetic ($M = 0$) for numerous thin-film thicknesses λ, each of which is exposed to a various values of S. The value of local skin friction $f''(0)$ and $-\theta'(0)$, as shown in the table, is in remarkable agreement with earlier research. As a result, the code confirmation is acceptable. It also grows as λ and Pr are increasing.

Results and discussion

To solve the Eqs. (8)–(10) analytically, the boundary value problem solver 'HAM', which means the homotopy analysis method, is used. To support this research, 0.1 solid volume fraction of Al_2O_3 (i.e. $\phi_1 = 0.1$) is included in the base fluid as recommended by Devi. To create a $Cu-Al_2O_3$ water/ethylene glycol hybrid nanofluid, various solid volume fractions of Cu with 30% ethylene glycol were added to the mixture. We will use the Prandtl number, $Pr = 6.2$, which depicts water as the conventional fluid, as described by Oztop and Abu-Nada, and it will be maintained to achieve semi-numerical results by using HAM.

When a thin-film is stretched, the hybrid nanofluid movement and heat conduction behaviour is separated into two cases: suction ($w > 0$) and injection ($w < 0$) fluid through a transparent porosity sheet. Analytical solutions are derived for a variety of physical model parameters to describe the physical problems in the form of the flow pattern linked to velocity, temperature, local skin friction, and moderated Nusselt number coefficient in greater detail.

In all situations ($w < 0$ or $w > 0$), the fluid velocity decomposes as the M parameter is enhanced, as shown in Fig. 2. The increase in M causes the stunting force uptick in the hybrid nanofluid to boost, resulting in less movement of the hybrid nanoparticles and a thinner momentum boundary layer thickness. As variable M increases, the heat transfer in Fig. 3 shows the reverse pattern. Both Devi and Devi and Upreti et al. documented a striking similarity for both features. When M increases, the magnetic field in the liquid increases, meaning a significant Lorentz force, which causes friction in the hybrid nanofluid. It is shown in the figure that the thermal boundary layer thickens as friction builds up under the influence of magnetism. Furthermore, the injection impacts preserve the magnetic hybrid nanofluid’s lowest velocity profile and maximum heat flux more than the suction consequences. Pal showed a similar pattern in the temperature gradient for suction and injection flow of fluids.

Figures 4 and 5 show the effects of parameter S on the velocity and temperature profiles for both suction and injection instances. It may be deduced that when S increases, the velocity and temperature profiles decrease. Literally, the force to flow the material in the thin-film is reduced as the rate of the original sheet extending from constricted failures increases due to the expansion of the unsteadiness parameter. This situation slows the motion of the substances and prevents the particles from absorbing heat. When S is enhanced, the thickness of the momentum and thermal boundary layers is also decreased. The velocity and temperature curves of the hybrid nanofluid under suction are smaller compared to the injection scenario, as anticipated. In the suction

λ	Devi and Devi	Tiwari and Das	Present	Devi and Devi	Tiwari and Das	Present
1.2	-2.1128	-2.1127	-2.11268	1.0	-0.02	-0.02
1.6	-1.3803	-1.3802	-1.3801	2.2	-0.192061	-0.192002
2.2	-0.958562	-0.958560	-0.958561	2.6	-0.409006	-0.409004
2.6	-0.736267	-0.736265	-0.736266	3.0	-0.603009	-0.603010
3.5	-0.632871	-0.632870	-0.632873	4.5	-0.742955	-0.742950

Table 3. Assessment of $f''(0)$ and $-\theta'(0)$ for regular fluid ($\phi_1 = \phi_2 = 0$) for published data for numerous values of λ and Pr, respectively.

Figure 2. Velocity field by M.
situation, larger amplitude of S is believed to result in more thinning of both boundary layer thicknesses than in the injection case.

Figure 6 depicts the variation in the volume fraction of nanomaterials in relation to the velocity field of the electromagnetic hybrid nanofluid. When the volume fraction of copper nanoparticles is increased from 0.005 to 0.06, the flow rate of the hybrid nanostructured materials decreases. Furthermore, the thickness of the momentum boundary layer is reduced, slowing fluid movement. This is because when the fluid is enriched with nanomaterials, the viscosity of the fluid increases. The particles in the thin-film accelerate faster under the influence of injection amplitude than under the influence of suction. Figure 7 depicts the relationship between...
φ₂ and the altered temperature profiles. As various studies have demonstrated in the literature, increasing the parameter φ₂ increases the fluid’s thermal conductivity.

As a result, the temperature of the electromagnetic hybrid nanofluid rises, increasing the thickness of the thin-film flow thermal boundary layer. It is also worth noting that the temperature and thickness of the thermal boundary layer in the injection scenario are higher than those in the suction situation. The analytical conclusion of Das et al. for the suction/injection of hydromagnetic nanofluids was well supported by the results of our study on velocity and temperature variations.

Figure 8 depicts the changing tendency of the hybrid nanofluid velocity according to thin-film thickness. A thicker thin film thickness is indicated by increasing the dimensionless parameter φ₂. Because the atoms in hybrid nanoparticles move slowly, the momentum barrier layer becomes thinner, resulting in a decrease in the fluid velocity field. The motion in an injection fluid is greater than that in a suction fluid, and the thickness of the momentum barrier layer is also higher.

The ambient temperature of the electromagnetic hybrid nanofluid is reduced by the thin-film thickness, as shown in Fig. 9. It is clear that thicker thin-film thickness permits reduced thermal resistance from the surface sheet into the surrounding fluid, lowering the thickness of the thermal boundary layer. Figure 9 shows that the electromagnetic hybrid nanofluid in the suction situation has a cooling effect compared to the electromagnetic hybrid nanofluid in the injection scenario.

Figures 10 and 11 demonstrate the effect of the velocity and temperature field on the mass transfer parameter, and the suction/injection parameter. By adopting the injection severity, hybrid nanofluid materials are added to the thin-film, shrinking the velocity and temperature characteristics. Furthermore, identical results are produced when the hybrid nanofluid particles are removed from the thin film via suction effects through a permeable stretching surface. The figures show that as the parameter w is increased, the momentum and thermal boundary layer thickness of the fluid decreases. As seen in Figs. 10 and 11, the suction of the solvent leads to reduction in motion, and the heat capacity in the particulate matter is higher than that under the injection fluid.

The inspirations of the innumerable values of the governing constraints M, S, φ₂, and λ on Cᵣ, Re ᵗ, and Nu, Re ᵗ⁻¹ are mapped in Table 4. An addition in the values of magnetic parameter M unveils a slumping effect on Cᵣ, Re ᵗ, an equivalent behaviour in Nu, Re ᵗ⁻¹. Sandeep et al. also noticed this characteristic, who considered an unsteady MHD nanofluid flow embedded with nanoparticles in a thin-film. The increase in the unsteadiness parameter S and λ curtail the local skin friction, thereby decreasing the magnitude of the wall shear stress. However, the heat
transfer rate and the Nusselt number showed greater rates for higher parameters \(S \) and \(\lambda \) respectively. Thus, due to the Nusselt number escalation, the convective heat transfer constantly increased. Furthermore, the wall shear stress and the heat transmission rate slightly decline with the growth of \(\phi_2 \) for the magnetic hybrid nanofluid. Similarly, the impact of the parameter \(w \) is tabulated in Table 5, and the values of \(C_f \Re^{-1} \) is decrease when the volume fraction is improved, but the opposite tendency is observed for \(\text{Nu}_x \Re^{-1} \).
Conclusion

The flow and heat transport of a magnetic hybrid nanofluid via a transparent stretchable surface under initial and boundary conditions were investigated in this article by taking ethylene glycol as a base fluid. Suction/injection has a significant effect on boundary layer flow and heat transfer in the magnetohydrodynamic thin-film hybrid nanofluid, according to the quantitative simulation. When the values of parameters M and ϕ_2 were increased, the velocity and temperature fields exhibited the opposite behaviour. As the dimensionless parameters S, ϕ_2 and $/afii9838$ increase, the molecule movement decreases and the viscous hybrid nanofluid cools down. Due to the

Figure 11. Temperature field by w.

Table 4. Impact of M, S, ϕ_2 and λ on $C_fRe_{\frac{1}{2}}$ and $Nu_{\frac{1}{2}}Re_{\frac{1}{2}}$ for $w > 0$ and $w < 0$.

M	S	ϕ_2	λ	$C_fRe_{\frac{1}{2}}$	$Nu_{\frac{1}{2}}Re_{\frac{1}{2}}$		
0.1	-	-	-	11.2485	5.6177	15.8105	6.7508
0.3	-	-	-	12.2670	6.6768	15.6806	6.7143
0.7	-	-	-	13.1728	7.6204	15.6657	6.5192
1.2	-	-	-	14.0080	8.5810	15.5343	6.3082
2.0	-	-	-	13.4764	5.1252	13.5266	6.7409
2.5	-	-	-	13.5920	5.3760	13.8330	6.9367
3.0	-	-	-	13.4259	5.5617	16.1327	9.6927
3.5	-	-	-	13.5371	5.8854	16.4234	9.8276
0.002	-	-	-	7.6341	3.9383	8.4734	5.9109
0.08	-	-	-	8.4530	5.2385	11.3465	5.5362
0.04	-	-	-	8.8952	5.7368	9.8790	5.3276
0.07	-	-	-	9.4667	6.8428	9.1321	5.1383
0.5	-	-	-	6.4526	4.3754	7.4147	5.9965
1.0	-	-	-	7.3830	6.8525	9.5656	8.6579
1.2	-	-	-	10.0144	7.0254	12.6749	9.8136
2.0	-	-	-	11.1552	7.8153	12.7384	10.7398

Table 5. Impact of w on $C_fRe_{\frac{1}{2}}$ and $Nu_{\frac{1}{2}}Re_{\frac{1}{2}}$.

w	$C_fRe_{\frac{1}{2}}$	$Nu_{\frac{1}{2}}Re_{\frac{1}{2}}$
-0.2	-4.32743	5.20142
-0.1	-5.87231	6.55920
0.0	-8.10927	10.2045
1.2	-10.4563	12.5474
2.0	-15.00917	17.1348

Conclusion

The flow and heat transport of a magnetic hybrid nanofluid via a transparent stretchable surface under initial and boundary conditions were investigated in this article by taking ethylene glycol as a base fluid. Suction/injection has a significant effect on boundary layer flow and heat transfer in the magnetohydrodynamic thin-film hybrid nanofluid, according to the quantitative simulation. When the values of parameters M and ϕ_2 were increased, the velocity and temperature fields exhibited the opposite behaviour. As the dimensionless parameters S, λ and w increase, the molecule movement decreases and the viscous hybrid nanofluid cools down. Due to the
overshoot of the metrics M and φ, the physical quantities Ċ Re^1 and Nu_{Re}^{1/2} decreased. The Nusselt number of the magnetic hybrid nanofluid shows a truncation and retrograde tendency as S, α and w increase.

Received: 18 October 2021; Accepted: 3 May 2022
Published online: 25 May 2022

References
1. Crane, L. J. Flow past a stretching plate. Zeitschrift Für Angewand Math. Und Phys. ZAMP 21, 645–647 (1970).
2. Goldstein, S. On backward boundary layers and flow in converging passages. J. Fluid Mech. 21, 33–45 (1965).
3. Miklavčič, M. & Wang, C. Y. Viscous flow due to a shrinking sheet. Q. Appl. Math. 64, 283–290 (2006).
4. Fang, T. G., Zhang, J. & Yao, S. Viscous flow over an unsteady shrinking sheet with mass transfer. Chin. Phys. Lett. 26, 2–5 (2009).
5. Aziz, A. A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition. Commun. Nonlinear Sci. Numer. Simul. 14, 1064–1068 (2009).
6. Devi, S. P. A. & Devi, S. S. U. Numerical investigation of hydro magnetic hybrid Cu–Al2O3/water nanofluid flow over a permeable stretching sheet with suction. Int. J. Nonlinear Sci. Numer. Simul. 17, 249–257 (2016).
7. Devi, S. S. U. & Devi, S. P. A. Heat transfer enhancement of Cu–Al2O3/water hybrid nanofluid flow over a stretching sheet. J. Niger. Math. Soc. 36, 419–433 (2017).
8. Hayat, T. & Nadeem, S. Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results Phys. 7, 2317–2324 (2017).
9. Yousefi, M., Dinarvand, S., Eftekhari Yazdi, M. & Pop, I. Stagnation-point flow of an aqueous titania-copper hybrid nanofluid. Int. J. Heat Mass Transf. 126, 1347–1356 (2018).
10. Subhani, M. & Nadeem, S. Numerical analysis of micropolar hybrid nanofluid. Appl. Nanosci. 9, 447–459 (2019).
11. Ghadikolaei, S. S., Yassari, M., Sadeghi, H., Hosseinzadeh, K. & Ganji, D. D. Investigation on thermophysical properties of TiO2/Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technol. 322, 428–438 (2017).
12. Usman, M., Hamid, M., Zubair, T., Haq, R. U. & Wang, W. Cu–Al2O3/water hybrid nanofluid through a permeable surface in the presence of the presence of nonlinear radiation and variable thermal conductivity via LSM. Int. J. Heat Mass Transf. 126, 1347–1356 (2018).
13. Rostami, M. N., Dinarvand, S. & Pop, I. Dual solutions for mixed convective stagnation-point flow of an aqueous silica–alumina hybrid nanofluid. Chin. J. Phys. 56, 2465–2478 (2018).
14. Wani, I., Ishak, A. & Pop, I. Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. Int. J. Heat Mass Transf. 136, 288–297 (2019).
15. Bertozzi, A. Lubrication approximations for surface tension driven interfaces: Some open problems. Zeitschrift Für Angewandte Mathematik Und Mechanik 76(37), 3–6 (1996).
16. Roy, R., Roberts, A. & Simpson, M. A. A lubrication model of coating flows over a curved substrate in space. J. Fluid Mech. 454, 235–261 (2002).
17. Dutta, A., Som, S. & Das, P. Film condensation of saturated vapor over horizontal noncircular tubes with progressively increasing radius of curvature drawn in the direction of gravity. J. Heat Transf. 126(90), 6–14 (2004).
18. Taherzadeh, M. J. D. Mechanics and Substrate Transport of Moving Biofilm Structures (Technische Universität München, 2011).
19. Liu, Y., Itoh, M. & Kyotoh, H. Flow of a falling liquid curtain onto a moving substrate. Fluid Dyn. Res. 49, 055501 (2017).
20. Kreder, M. J. et al. Film dynamics and lubrication depletion by droplets moving on lubricated surfaces. Phys. Rev. X 8, 031053 (2018).
21. Girian, M. Future Solar Energy Devices 45–75 (Springer, 2018).
22. Girian, M. On the electrical and photoelectrical properties of CH3NH3PbI3 perovskites thin films. Sol. Energy 195(4), 46–53 (2020).
23. Theile, U. Recent advances in and future challenges for mesoscopic hydrodynamic modelling of complex wetting. Colloids Surf. A 553(4), 87–95 (2020).
24. Seshan, K. Handbook of Thin Film Deposition Processes and Techniques (William Andrew, 2001).
25. Wang, C. Liquid film on an unsteady stretching surface. Q. Appl. Math. 48(60), 1–10 (1990).
26. Sakiadis, B. Boundary-layer behavior on continuous solid surfaces: II. The boundary layer on a continuous flat surface. AciChE J. 7, 221–225 (1961).
27. Crane, L. J. Flow past a stretching plate. Zeitschrift für angewandte Mathematik und Physik ZAMP 21(64), 5–7 (1970).
28. Carragher, P. & Crane, L. Heat transfer on a continuous stretching sheet. ZAMM-Z. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 62(56), 4–5 (1982).
29. Anderson, H. L., Aarseth, J. B. & Dandapat, B. S. Heat transfer in a liquid film on an unsteady stretching surface. Int. J. Heat Mass Transf. 43, 69–74 (2000).
30. Choi, S. Enhancing Thermal Conductivity of Fluids with Nanoparticles Vol. 231, 99–105 (American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, 1995).
31. Khan, W. A. & Pop, I. Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 53(24), 77–83 (2010).
32. Yiga, Y. & Shankar, B. MHD flow and heat transfer of nanofluids through a porous media due to a stretching sheet with viscous dissipation and chemical reaction effects. Int. J. Comput. Methods Eng. Sci. Mech. 10(2), 75–84 (2009).
33. Pourmehran, O., Rahimi-Gorji, M. & Ganji, D. D. Heat transfer and flow analysis of nanofluid flow induced by a stretching sheet in the presence of the presence of external magnetic field. J. Taiwan Inst. Chem. Eng. 65(1), 62–71 (2016).
34. Jahan, S., Sakdin, H., Nazar, R. & Pop, I. Unsteady flow and heat transfer past a permeable stretching/shrinking sheet in a nanofluid: A revised model with stability and regression analyses. J. Mod. Math. Liq. 6(15), 1–6 (2018).
35. Hafidzuddin, M. E. H., Naganthran, K., Nazar, R. & Arifin, N. M. Effect of suction on the MHD fluid flow past a non-linearly stretching/shrinking sheet: Dual solutions. J. Phys. Conf. Ser. 1366(01), 20–27 (2019).
36. Gangadhar, K., Kannan, T., DasaradhaRamaiah, K. & Sakthivel, G. Boundary layer flow of nanofluids to analyse the heat absorption/generation over a stretching sheet with variable suction/injection in the presence of viscous dissipation. Int. J. Ambient Energy 41(9), 69–80 (2020).
37. Krishna, M. V. & Chamkha, A. J. Hall effects on MHD squeezing flow of a water-based nanofluid between two parallel disks. J. Porous Media 22, 209–223 (2019).
38. Krishna, M. V. & Chamkha, A. J. Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium. Results Phys. 15(10), 26–52 (2019).
39. Chamkha, A. J., Mansour, M. A., Rashad, A. M., Karapinar, M. & Armaghani, T. Magnetohydrodynamic mixed convection and entropy analysis of nanofluid in gamma-shaped porous cavity. J. Thermoph. Heat Transf. 34(8), 36–47 (2020).
40. Hazarika, S., Ahmed, S. & Chamkha, A. J. Investigation of nanoparticles Cu, Ag and Fe3O4 on thermophoresis and viscous dissipation of MHD nanofluid over a stretching sheet in a porous: A numerical modeling. Math. Comput. Simul. 182(8), 19–37 (2021).
41. Chamkha, A. J., Dogonchi, A. S. & Ganji, D. D. Magnetohydrodynamic nanofluid natural convection in a cavity under thermal radiation and shape factor of nanoparticles impact: A numerical study using CVFEM. Appl. Sci. 8(23), 96 (2018).
42. Dogonchi, A. S., Seyyedi, S. M., Hashemi-Telehnoee, M., Chamkha, A. J. & Ganji, D. D. Investigation of natural convection of magnetic nanofluid in an enclosure with a porous medium considering Brownian motion. *Case Stud. Therm. Eng.* 14(1005), 02 (2019).

43. Dogonchi, A. S. *et al.* Investigation of magneto-hydrodynamic fluid squeezed between two parallel disks by considering Joule heating, thermal radiation, and adding different nanoparticles. *Int. J. Numer. Methods Heat Fluid Flow* 30(6), 59–80 (2020).

44. Waini, I., Ishak, A. & Pop, I. Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. *Int. J. Heat Mass Transf.* 136(2), 88–97 (2019).

45. Waini, I., Ishak, A. & Pop, I. Flow and heat transfer along a permeable stretching/shrinking curved surface in a hybrid nanofluid. *Phys. Scr.* 94(105), 2–19 (2019).

46. Waini, I., Ishak, A. & Pop, I. Hybrid nanofluid flow and heat transfer over a non-linear permeable stretching/shrinking surface. *Int. J. Numerical Methods Heat Fluid Flow* 29 (2019).

47. Ghalambaz, M., Doostani, A., Izadpanahi, E. & Chamkha, A. J. Conjugate natural convection flow of Ag–MgO/water hybrid nanofluid in a square cavity. *J. Therm. Anal. Calorim.* 139(23), 21–36 (2020).

48. Tayebi, T. & Chamkha, A. J. Magneto-hydrodynamic natural convection heat transfer of hybrid nanofluid in a square enclosure in the presence of a wavy circular conductive cylinder. *J. Therm. Sci. Eng. Appl.* 12, 031009 (2019).

49. VeeraKrishna, M., Subba Reddy, G. & Chamkha, A. Hall effects on unsteady MHD oscillatory free convective flow of second grade fluid through porous medium between two vertical plates. *Phys. Fluids* 30(02), 3106 (2018).

50. VeeraKrishna, M. & Chamkha, A. J. Hall effects on unsteady MHD flow of second grade fluid through porous medium with ramped wall temperature and ramped surface concentration. *Phys. Fluids* 30(053), 101 (2018).

51. Krishna, M. V., Jyothi, K. & Chamkha, A. J. Heat and mass transfer on MHD flow of second-grade fluid through porous medium over a semi-infinite vertical stretching sheet. *J. Porous Media* 23, 751–765 (2020).

52. Veera Krishna, M., Ameer Ahamad, N. & Chamkha, A. J. Hall and ion slip impacts on unsteady MHD convective rotating flow of heat generating/absorbing second grade fluid. *Alex. Eng. J.* 60(8), 45–58 (2021).

53. Tiwari, R. K. & Das, M. K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. *Int. J. Heat Mass Transf.* 50(20), 02–18 (2007).

54. Reza-E-Rabbi, S. *et al.* Numerical simulation of a non-linear nanofluidic model to characterize the MHD chemically reactive flow past an inclined stretching surface. *Partial Differ. Eq. Appl. Math.* 5, 100332 (2020).

55. Reza-E-Rabbi, S., Ahmmed, S. F., Arifuzzaman, S. M., Sarkar, T. & Khan, M. S. Computational modelling of multiphase fluid flow behaviour over a stretching sheet in the presence of nanoparticles. *Eng. Sci. Technol. Int. J.* 23(3), 605–617 (2020).

56. Reza-E-Rabbi, S., Arifuzzaman, S. M., Sarkar, T., Khan, M. S. & Ahmmed, S. F. Explicit finite difference analysis of an unsteady MHD flow of a chemically reacting Casson fluid past a stretching sheet with Brownian motion and thermophoresis effects. *J. King Saud Univ.-Sci.* 32(1), 690–701 (2020).

57. Al-Mamun, A., Arifuzzaman, S. M., Alam, U. S., Islam, S. & Khan, M. Numerical simulation of periodic MHD casson nanofluid flow through porous stretching sheet. *SN Appl. Sci.* 3(2), 1–14 (2021).

58. Oztöp, H. F. & Abu-Nada, E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. *Int. J. Heat Fluid Flow* 29, 1326–1336 (2008).

59. Uperti, H., Pandey, A. K. & Kumar, M. MHD flow of Ag-water nanofluid over a flat porous plate with viscous-Ohmic dissipation, suction/injection and heat generation/absorption. *Alex. Eng. J.* 57(18), 39–47 (2018).

60. Pal, D. Hall current and MHD effects on heat transfer over an unsteady stretching permeable surface with thermal radiation. *Comput. Math. Appl.* 66(11), 61–80 (2013).

61. Sandeep, N., Sharma, R. P. & Ferdows, M. Enhanced heat transfer in unsteady magnetohydrodynamic nanofluid flow embedded with aluminum alloy nanoparticles. *J. Mol. Liq.* 234(4), 37–43 (2017).

62. Saeed, A., Kumam, P., Nasir, S., Gul, T. & Kumam, W. Non-linear convective flow of the thin film nanofluid over an inclined stretching surface. *Sci. Rep.* 11(1), 1–5 (2021).

Acknowledgements

This research received funding support from the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation (grant number B05F640092).

Author contributions

Z.K.: conceptualization, data curation, writing—original draft, methodology, investigation. Z.K. and I.K.: conceptualization, resources, visualization. W.W.: revised the manuscript, corrected the model and provide results that are grid-independent. A.M.: explained the novelty. W.W. and A.M.: developed the code (Wolfram Mathematica 7.0.18.43403, Version 12.0.0, Developed by Wolfram Research, Inc.), made correction with author’s response. Zeeshan., W.W and A.M.: validate writing—review and editing.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to W.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
