Nucleic acids and proteins carried by exosomes of different origins as potential biomarkers for gynecologic cancers

Miaomiao Ye, Jing Wang, Shuya Pan, Lihong Zheng, Zhi-Wei Wang, and Xueqiong Zhu

Exosomes are extracellular vesicles with a diameter of 30–150 nm that function in mediating intercellular communication and intercellular material exchange. The liposomal membrane of exosomes protects the cargo carried by exosomes from degradation and assists in transporting cargo to recipient cells to regulate a variety of physiological and pathological processes. The incidence of gynecologic cancers is increasing annually, which is extremely harmful to the lives and health of women because such cancers are challenging to detect at the early stage. Recently, exosomes have emerged as novel biomarkers for diagnosing and predicting the development of gynecologic cancers. In particular, non-coding RNAs (micro-RNAs [miRNAs], long non-coding RNAs [lncRNAs], and circular RNAs [circRNAs]) carried by exosomes have been extensively investigated in gynecologic cancers. Therefore, the purpose of this review is to focus on the potential roles of exosomes of different origins in ovarian cancer, cervical cancer, and endometrial cancer, which will help to determine the molecular mechanism of carcinogenesis.

INTRODUCTION

Gynecologic cancers, such as ovarian, cervical, and endometrial cancers, significantly contribute to the global cancer burden. For instance, ovarian cancer is one of the leading causes of death in women. At all stages, the 5-year overall survival rate of ovarian cancer patients is approximately 47%, and more than 70% of ovarian cancer patients are diagnosed at advanced stages, and the 5-year overall survival rate is even lower. Cervical cancer is the fourth most common female cancer worldwide and remains a major health problem, especially for women in developing countries. Endometrial cancer is commonly referred to as a type of uterine cancer that develops from the inner lining of the uterus, mainly occurring in postmenopausal women. Advanced and recurrent gynecologic cancers are associated with poor prognosis and lack of effective clinical treatments. Hence, early detection of cancers can contribute to improving the survival rate of gynecologic cancer patients, and the use of novel available technologies to identify promising biomarkers for these cancer patients must be considered.

Extracellular vesicles (EVs) are small particles composed of lipid bilayer membranes that are released by diverse cells in both physiological and pathological states. EVs are primarily classified into three categories, namely, apoptotic bodies (1,000–5,000 nm in diameter), microvesicles (200–1,000 nm in diameter), and exosomes (30–150 nm in diameter), according to their biogenesis. Apoptotic bodies are fragments released from apoptotic cells containing fragmented DNA, and cell organelles from their host cells can be found. Microvesicles bud directly from the plasma membrane of various cells. Exosomes are secreted from multivesicular bodies (MVBs) after fusion with the plasma membrane. Exosomes have a double-membrane structure with an abundance of cargo contents, such as proteins, messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), microRNAs (miRNAs), lipids, and viral particles, and exhibit a dish-like or cup-shaped morphology under electron microscopy. Exosomes can be isolated from body fluids, such as blood plasma or serum, ascites, saliva, urine, ejaculate, and human breast milk, and are released by numerous cell types, including cancer cells, mesenchymal stem cells, and immune cells. At present, ultracentrifugation (UC) is a commonly applied technique to isolate exosomes and can be conducted in one of the two ways: differential based or density gradient based.

Exosomes serve as an important tool for intercellular communication and intercellular material exchange and can transfer informative substances to neighboring cells or even distant cells. The exosome-based cargo delivery system functions in intercellular communication through endocytosis and receptor-ligand interactions, and subsequently participates in regulating a variety of physiological and pathological processes. In particular, compared with healthy cells, the cancer cells release more exosomes, the molecular compositions, cargo, and properties of which differ from those of exosomes secreted by healthy cells. To date, the essential role of exosomes in carcinogenesis and tumor progression has been studied extensively.
Remarkably, cancer-cell-derived exosomes can provide a suitable microenvironment for cancer development via regulation of cell proliferation, angiogenesis and metastasis, immune modulation, and drug resistance. Moreover, exosomes released by primary ovarian cancer serve as coordinators for the establishment of a premetastatic niche by inducing immunosuppression, facilitating angiogenesis, and remodeling stromal cells within the premetastatic niche of ovarian cancer.

The nucleic acids and proteins carried by exosomes are packaged in the liposomal membrane, which protects the cargo from degradation, and potentially provides an essential source of clinical information for research. Non-coding RNAs (ncRNAs) are critical components carried by exosomes, and positively function in diverse biological processes. ncRNAs consist of various RNA transcripts, encompassing miRNAs, lncRNAs, and circular RNAs (circRNAs). Notably, more than 50% of miRNA genes are localized in tumor-related genomic loci or fragile regions, exerting a regulatory effect on carcinogenesis. lncRNAs are characterized by a low expression level, poor conservation between species, and a high coefficient of variation. Additionally, lncRNAs are involved in the regulation of tumor angiogenesis, cancer cell stemness, and acquired resistance to chemotherapy by serving as a competitive endogenous RNAs (ceRNAs) and binding directly to related proteins or miRNAs. CircRNAs are novel ncRNA molecules with a closed-loop structure owing to the covalent linking of 5’ and 3’ termini, and the knowledge of their canonical role remains at a superficial level. Acting as an miRNA sponge is the potential mechanism by which circRNAs are currently believed to promote tumor progression. Therefore, the roles of exosome-carried nucleic acids and proteins in ovarian cancer, cervical cancer, and endometrial cancer have been summarized in this review (Figure 1). The effects of exosomes on cancer biology will contribute to determining the molecular mechanism of carcinogenesis and discovering the potential biomarkers for gynecologic cancers.

THE ROLE OF EXOSOMES IN OVARIAN CANCER

Ovarian cancer is considered the most aggressive gynecologic malignancy and exhibits high genetic complexity and heterogeneity, with epithelial ovarian cancer (EOC) accounting for 85% of all cases. Although serum cancer antigen 125 (CA125) detection and ultrasonography are routine methods for the clinical diagnosis of ovarian cancer, they are not suitable for early detection because of low specificity and sensitivity. In recent years, studies have revealed that exosome-mediated transport of nucleic acids (miRNAs, mRNA, mitochondrial DNA, lncRNAs, and circRNAs) is involved in ovarian carcinogenesis, especially nucleic acids isolated from the plasma or serum of patients.

THE ROLE OF EXOSOME-CARRIED NUCLEIC ACIDS IN OVARIAN CANCER

Role of ovarian cancer-cell-derived exosomes in ovarian cancer

Miharu et al. conducted a study on highly (SKOV-3) and weakly (OVCA-3) invasive ovarian cancer cell lines, and determined that SKOV-3 cells released 2.7-fold more exosomes than OVCA-3 cells. Moreover, SKOV-3-cell-derived exosomes had a higher expression of let-7 family transcripts than that in the OVCA-3-cell-derived exosomes, while the expression of miR-200 family transcripts was detected only in OVCA-3-cell-derived exosomes.

Exosomal miR-99a-5p from EOC cells improved the invasive ability of EOC cells through upregulation of fibronectin and vitronectin in human peritoneal mesothelial cells. Ovarian cancer-cell-secreted exosomal miR-205 accelerated metastasis by promoting angiogenesis by regulating the phosphatase and tensin homolog (PTEN)/Akt pathway. Additionally, SKOV3-cell-derived exosomal miR-205 governed proliferation, migration, invasion, and apoptosis via inhibition of vascular endothelial growth factor A (VEGFA) in ovarian cancer cells. Similarly, exosomes originating from SKOV-3 cells strengthened the metastatic ability of ovarian cancer compared with the exosomes from OVCA-3 cells, which was confirmed in an ovarian cancer cell xenograft mouse model. Furthermore, exosomal circPUM1 derived from CAOV3 ovarian cancer cells promoted tumor metastasis of peritoneal mesothelial cells via upregulation of nuclear factor (NF)-κB and matrix metalloproteinase 2 (MMP2) expression. CircWHSC1 promoted ovarian oncogenesis, and its exosome forms isolated from CAOV3 cells promoted metastasis by acting on peritoneal mesothelium by upregulating mucin 1 (MUC1). Taken together, the nucleic acids carried by exosomes derived from ovarian cancer cells potentially influence the invasive and metastatic abilities of ovarian cancer.

Exosomes derived from ovarian cancer cells promoted angiogenesis in serous ovarian cancers, especially in the high-grade ovarian cancers. Additionally, exosomes originating from SKOV3-DDP
(cisplatin) cells were abundant in miR-130a, which facilitated angiogenesis. Higher miR-940 expression in exosomes isolated from EOC cells was induced by hypoxia, and exosomal miR-940 was also abundant in the ascites of EOC patients. Moreover, tumor-derived exosomal miR-940 exhibited a vital role in promoting the polarization of tumor-associated macrophages in EOC progression. Exosomal miR-1246 was highly expressed in ovarian cancer-cell-derived exosomes, which exerted oncoprogenic properties in the tumor microenvironment by transferring the miR-1246 to the M2-type macrophages and subsequently had the potential to downregulate the expression of caveolin 1 (Cav1). Exosomes derived from human ovarian surface epithelial cells transferred miR-124 to cancer-associated fibroblasts (CAFs), which suppressed the transition from normal fibroblasts to cancer-associated fibroblasts by repressing sphingosine kinase 1 (SPHK1) expression in ovarian cancer. The above studies suggested that nucleic acids carried by exosomes derived from ovarian cancer cells function in the regulation of the tumor microenvironment.

Role of non-tumor-cell-derived exosomes in ovarian cancer

Exosomes purified from primary-cultured omental fibroblasts of ovarian cancer patients were loaded with miR-199a-3p (miR-199a-3p-Exo), and miR-199a-3p-Exo downregulated the expression of c-Met, which subsequently suppressed the proliferation and invasion of ovarian cancer cells. In addition, miR-199a-3p-Exo decreased the peritoneal dissemination in an ovarian cancer mouse model, and reduced the expression of c-Met, extracellular signal-regulated kinase (ERK) phosphorylation, and MMP2 in cancers. Exosomal miR-7 purified from the tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK)-stimulated macrophages (TM)s suppressed the metastatic ability of EOC cells and inhibited the epidermal growth factor receptor (EGFR)/AKT/ERK1/2 signaling pathway. Nevertheless, exosomes isolated from some cell types promoted the progression of ovarian cancer. Plasma cells conferred the mesenchymal identity of ovarian cancers by enhancing the transfer of exosome-derived miR-330-3p. Exosomal miR-98-5p from CAFs facilitated the proliferation and cell cycle entry and inhibited the apoptotic ability of ovarian cancer cells. In summary, the different characteristics of exosomes in ovarian cancer development are predominantly determined by the cell types from which they originate.

Role of exosomes derived from body fluids in ovarian cancer

Xu et al. found that the expression of miR-101 and miR-30a was downregulated, while the expression of miR-21 and miR-210 was upregulated, in ovarian cancer tissues versus the noncancerous tissues. However, only miR-101 expression was significantly downregulated in the serum exosomes from ovarian cancer patients, suggesting that miR-101 potentially serves as a biomarker for ovarian cancer. The expression of miR-146b-5p in exosomes from the serum of EOC patients was higher than that in exosomes from healthy individuals. Zhang et al. documented that plasma exosomal miR-106a-5p was upregulated, while plasma exosomal miR-122-5p and miR-185-5p were downregulated, in ovarian cancer patients compared with healthy individuals. One study using microarrays found that six circRNAs were increased and 37 circRNAs were decreased in serum exosomes from ovarian cancer patients. Among the six circRNAs, higher circ-0001068 expression in the serum exosomes was further confirmed in a large cohort. Circ-0001068 induced programmed death 1 (PD1) expression by targeting miR-28-5p after it was delivered into T cells by exosomes. Different expression levels of nucleic acids in serum or plasma exosomes were found not only between ovarian cancer patients and healthy individuals but also among ovarian cancer patients with different grades. A study revealed that serum exosomal miR-34a expression was elevated in early-stage ovarian cancer cases. Consistently, exosomal miR-34a in serum was downregulated in ovarian cancer patients with lymph node metastasis and recurrence. MiR-214-3p, which is an epigenetic regulator with an oncogenic role in EOC, was highly expressed in serum exosomes from patients with highly malignant EOC and platinum-resistant high-grade serous ovarian cancer (HGSOC). This study also demonstrated that the miR-214-3p and its target gene, LIM homeobox domain 6 (LHX6), in serum exosomes potentially acted as biomarkers for predicting EOC progression. Moreover, Keseru et al. detected the exosome-encapsulated mitochondrial DNA (mtDNA) copy number in the cell-free plasma of serous epithelial ovarian cancer patients, and indicated that the exosomal mtDNA copy number was increased in late-stage (International Federation of Gynecology and Obstetrics [FIGO] stages III and IV) patients compared with the healthy individuals. Elevated expression of miR-1307 and miR-375 was found in serum exosomes from ovarian cancer patients in contrast to that in patients with benign ovarian tumors and healthy individuals, which may improve the diagnostic efficiency of CA125 for ovarian cancer. One study detected miR-93, miR-145, and miR-200c upregulation in exosomes derived from the serum of ovarian cancer patients, and the triple combination of serum exosomal miR-145 and miR-200c and serum CA125 was the most effective biomarker, with a sensitivity of 100% for the differential diagnosis of ovarian masses (benign ovarian cysts/borderline ovarian neoplasms versus ovarian cancers), indicating the strong diagnostic potential of miRNAs carried by exosomes. Lower expression of serum exosomal miR-484 was found in ovarian cancer patients than in healthy individuals, and detection of serum exosomal miR-484 with CA125 exhibited a good diagnostic performance in discriminating ovarian cancer patients and healthy individuals, with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.912. Taken together, the combination of serum CA125 and nucleic acids in blood exosomes of ovarian cancer patients potentially enhances the diagnostic efficiency in ovarian cancer.

Exosomal miR-21, miR-100, miR-200b, and miR-320 were highly expressed, while exosomal miR-16, miR-93, miR-126, and miR-223 were weakly expressed, in the plasma of EOC patients compared with healthy individuals. In particular, the elevated expression of exosomal miR-200b was associated with an increasing value of CA125 and a poor overall survival for EOC patients. Additionally, ovarian cancer patients simultaneously with a low serum exosomal...
miR-484 and a high serum CA125 expressions showed a trend toward worse clinical outcomes.74 The upregulation of serum exosomal lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in EOC patients was associated with an advanced and metastatic phenotype of EOC, which potentially predicted poor overall survival for EOC patients.74 Therefore, the nucleic acids carried by blood exosomes of ovarian cancer patients may act as biomarkers for predicting their clinical outcomes.

Apart from plasma or serum, exosomes in other body fluids have attracted the attention of many researchers. miRNA microarray data revealed that miR-30a-5p expression was upregulated in the urine of serous ovarian adenocarcinoma patients compared with healthy controls and demonstrated that the urinary miR-30a-5p originated from the exosomes excreted by ovarian cancer cells.77 Cappellesso et al.78 confirmed that the mRNA expression of programmed cell death 4 (PDCD4) was upregulated, while miR-21 expression was downregulated, in the cells and exosomes from peritoneal effusions of serous ovarian carcinoma in contrast to nonneoplastic peritoneal effusions. This study also indicated that miR-21 transfer by exosomes could facilitate carcinogenic transformation in target cells far from the primary tumor without direct colonization by cancer cells and can be regarded as a diagnostic tool for ovarian serous carcinoma.78 Exosomes from ascites of ovarian cancer patients transferred miR-6780b-5p to ovarian cancer cells, which facilitated epithelial-mesenchymal transition (EMT) and subsequently promoted ovarian cancer metastasis.79

THE ROLE OF EXOSOME-CARRIED PROTEINS IN OVARIAN CANCER

Exosomes can package and release the unique proteins associated with a disease; therefore, the identification of characteristic proteins in the exosomes originating from ovarian cancer patients holds promise for the diagnosis of ovarian cancer.80 High cluster of differentiation (CD) 24 expression in plasma exosome was reported in serous ovarian cancer patients.81 CD24 and epithelial cell adhesion molecule (EpCAM) proteins were identified in exosomes purified from ascites fluid of ovarian cancer patients.82 Microfluidic technology can realize the rapid separation of blood exosomes; in particular, microfluidic technology can validate significant biomarkers, such as folate receptor alpha (FRα) in plasma exosomes from ovarian cancer patients86 and hepatocyte growth factor (HGF), STAT3, and interleukin 6 (IL-6) in serum exosome samples from early-stage HGSOC patients.87 Zhang et al.88 identified 294 proteins in plasma exosomes from EOC patients and healthy individuals, and demonstrated that the lipopolysaccharide-binding protein (LBP), gelsolin, fibrinogen gamma chain, and fibrinogen alpha chain proteins in plasma exosomes from EOC patients could be used as biomarkers for the diagnosis of ovarian cancer. Furthermore, the plasma of ovarian cancer patients carried higher levels of exosomal proteins, including melanoma-associated antigen 3/6 (MAGE 3/6) and transforming growth factor β 1 (TGF-β1), than that of ovarian benign tumor patients and healthy individuals, which provided a novel strategy to diagnose ovarian cancer patients.89

Studies have demonstrated that exosome-mediated transfer of key proteins plays an essential role in ovarian carcinogenesis.90,91 For instance, the migration and invasion of low-metastatic ovarian cancer cells were enhanced due to exosome-involved transfer of CD44 from high-metastatic ovarian cancer cells.90 Exosomes derived from ovarian cancer cells transported CD44 to human peritoneal mesothelial cells, thus increasing the invasive ability of ovarian cancer.92 Serum exosomal antisense hypoxia inducible factor (aHIF) was highly expressed in EOC patients and was associated with poor overall survival, indicating that exosomal aHIF might be a prognostic predictor for EOC.93

Recently, researchers applied proteomics techniques to identify the promising biomarkers in ovarian cancer. Bebelman et al.94 observed high levels of the proteins glucose-6-phosphate dehydrogenase, transketolase, and transaldolase, which are key regulatory enzymes in the pentose phosphate pathway, in exosomes originating from two late-stage ovarian cancer cell lines, OVCAR429 and HO8910PM. Liang et al.95 conducted a nano liquid chromatography-tandem mass spectrometry (LC-MS/MS) workflow on the exosomes from OVCAR-3 and IGROV1 ovarian cancer cell lines, and identified 2,230 exosomal proteins in these two ovarian cancer cell lines. Moreover, another study used an ExoProfile chip to analyze the circulating exosomes from the plasma of ovarian cancer patients, and revealed that the combinations of multiple markers, including EGRF, human EGRF 2 (HER2), CA125, folate receptor z (FRz), CD24, EpCAM, CD9, and CD63, in circulating exosomes potentially improved the efficacy for differentiating early- and late-stage ovarian cancer, yielding the best diagnostic AUC value.96 In addition, another study revealed that 1,433 proteins and 1,227 lipid species were identified in exosomes from the SKOV3 ovarian cancer cell line and the HOSEPiC ovarian surface epithelial cell line, and demonstrated that the lipids cholesterol ester (ChE) and zymosterol (ZyE) species and collagen type V alpha 2 chain (COL5A2) and lipoprotein lipase (LPL) proteins were more abundant in exosomes derived from SKOV3 ovarian cancer cells than those derived from HOSEPiC ovarian surface epithelial cells.87

THE ROLE OF EXOSOMES IN REGULATING CHEMOTHERAPY OF OVARIAN CANCER

The exosomal tumor suppressor miR-6126 was detected at high levels in both chemosensitive and chemoresistant ovarian cancer cells.98 Higher expression of lncRNA urothelial carcinoma-associated 1 (UCA1) was detected in the serum exosomes of cisplatin-resistant ovarian cancer patients than their cisplatin-sensitive counterparts.99 One study revealed a lower expression of the circRNA Cdr1as in the serum exosomes of cisplatin-resistant ovarian cancer patients than in cisplatin-sensitive patients.100 The above studies indicated that the expression levels of nucleic acids in exosomes differed between chemosensitive and chemoresistant ovarian cancers.

Serum exosomal circular forkhead box protein P1 (circFoxp1) was upregulated in EOC patients, especially in DDP-resistant EOC patients, which conferred cisplatin resistance in EOC cells.101 Exosomal DNA methyltransferase 1 (DNMT1) transcripts were highly expressed in...
exosomes derived from ovarian cancer cells and enhanced the cisplatin resistance of ovarian cancer cells. In addition, miR-21-3p, miR-21-5p, and miR-891-5p were abundant in exosomes derived from ovarian cancer cells, contributing to carboplatin resistance of ovarian cancer cells. In particular, ovarian cancer patients at risk of relapse showed higher miR-891-5p expression of exosomes. Macrophage-derived exosomes transferred miR-223 to EOC cells to trigger chemoresistance via regulation of the PTEN/P13K/Akt pathway, and the circulating exosomal miR-223 expression was linked to EOC recurrence. Exosomal miR-98-5p from CAFs enhanced cisplatin (DDP) resistance via downregulation of cyclin-dependent kinase inhibitor 1A (CDKN1A) in subcutaneous-ovarian-cancer-bearing nude mice. Exosomal plasma gelsolin enhanced the survival of ovarian cancer cells via both autocrine and paracrine mechanisms to enhance chemoresistance. The enhanced expression of exosome-carried plasma gelsolin from ovarian cancer cells weakened the immunosurveillance and promoted the synthesis of glutathione, which subsequently caused chemoresistance in ovarian cancer. Moreover, miR-21 transferred by exosomes isolated from neighboring stromal cells conferred paclitaxel resistance to ovarian cancer cells via regulation of apoptotic peptide activating factor 1 (APAF1).

Exosomal miR-146a derived from human umbilical cord mesenchymal stem cells (hUCMSCs) inhibited the growth and ameliorated the chemoresistance of ovarian cancer cells. Moreover, silencing of miR-146a in hUCMSC-derived exosomes promoted the growth and chemoresistance of ovarian cancer cells through the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway via laminin γ2. Exosomes released by miR-30a-5p mimic-transfected SKOV3/DDP cells inhibited the proliferative ability and enhanced the apoptotic ability of SKOV3 cells, and improved the chemosensitivity of SKOV3 cells to DDP by downregulating the expression of SRY-box 9 (SOX9). Taken together, the different expression levels of nucleic acids and proteins in exosomes potentially contributed to the chemoresistance or chemosensitivity of ovarian cancer, and these biomarkers may become targets for clinical therapy.

Cisplatin-loaded exosomes from umbilical cord blood-originated M1 macrophages exerted a superior inhibitory effect on the growth of the A2780 EOC cell line and cisplatin-resistant A2780/DDP cell line compared with free cisplatin, and ameliorated the cisplatin resistance of ovarian cancer cells. Exosomes derived from SKOV3 cells were loaded with triptolide, and the triptolide-loaded exosomes exerted a stronger inhibitory effect on proliferation and growth and exhibited weaker cytotoxic and apoptotic effects on SKOV3 cells than did free triptolide. The exosome-based drug delivery system showed better therapeutic effects than a single drug in ovarian cancer.

THE ROLE OF EXOSOMES IN CERVICAL CANCER

Cervical cancer can be broadly classified into two categories: cervical squamous cell carcinoma (accounting for 80% of cases) and cervical adenocarcinoma (accounting for 9% of cases). Persistent high-risk human papillomavirus (HPV) infection is considered a leading cause of cervical cancer, and the HPV oncoproteins E6 and E7 play an essential role in this process. However, a few patients with cervical cancer do not show HPV infection; thus, preventing high-grade cervical intraepithelial neoplasia (CIN) from developing into invasive cervical cancer through early screening is crucial.

Role of cervical-cancer-cell-derived exosomes in cervical cancer

One study reported that miR-221-3p in exosomes originating from cervical cancer cells promoted the proliferation, invasion, migration, and angiogenesis of microvascular endothelial cells in cervical cancer by reducing the expression of mitogen-activated protein kinase 10 (MAPK10). Cervical squamous cell carcinoma-cell-derived exosomes delivered miR-221-3p from cancer cells to the human umbilical vein endothelial cells (HUVECs), and the exosomal miR-221-3p promoted angiogenesis via downregulation of Thrombospondin-2 in cervical squamous cell carcinoma. Cervical cancer cells exposed to TGF-β1 tended to secrete more miR-663b-containing exosomes, and exosomal miR-663b could be endocytosed by the adjacent or distant cervical cancer cells. Exosomal miR-663b reduced the expression of mannose acetyl-glucosaminyltransferase 3 (MGAT3), which subsequently facilitated the EMT and enhanced the local and distant metastasis of cervical cancers. One study illustrated that knockdown of HPV E6/E7 expression in cervical cancer cells (HPV18-positive HeLa cells) contributed to elevated release of HeLa-cell-derived exosomes. Exosomal let-7d-5p, miR-20a-5p, miR-378a-3p, miR-423-3p, miR-7-5p, and miR-92a-3p were downregulated, while exosomal miR-21-5p was upregulated in exosomes isolated from HeLa cells with the silencing of E6/E7 silencing. Cervical cancer-cell-secreted exosomes carrying IncRNA HNF1A-AS1 facilitated the proliferation and DDP resistance and weakened the apoptosis of cervical cancer cells via the upregulation of Tufelin1 and downregulation of miR-34b. Cervical cancer cells transfer the hedgehog pathway (Hh)-related proteins (Patched1, Smoothened, Sonic hedgehog, Indian hedgehog) in their exosomes. Exosomal Wnt2B protein from cervical cancer cells promoted the activation of fibroblasts, thereby facilitating the progression of cervical cancer. Taken together, nucleic acids and proteins carried by exosomes released by cervical cancer cells potentially exert a pro-angiogenic effect on cervical cancer.

Role of non-tumor-cell-derived exosomes in cervical cancer

MiR-155-5p in exosomes isolated from HIV-infected T cells facilitated the proliferative, migrative, and invasive abilities of cervical cancer cells, which may be mediated through the AT-rich interaction domain 2 (ARID2)-ERCC5-NF-kB pathway. Furthermore, miR-222-enriched exosomes originating from the pre-miR-22-transfected HEK293 cells improved the sensitivity of cervical cancers to radiotherapy. More research must be carried out to study the effects of non-tumor-cell-derived exosomes in cervical cancer.

Role of exosomes derived from body fluids in cervical cancer

One study indicated that the expression of miR-146a-5p, miR-151a-3p, and miR-2110 was elevated in plasma exosomes derived from cervical cancer patients in contrast to those from healthy individuals. Plasma exosomal miR-125a-5p showed higher expression in cervical cancer.
cancer patients than in the healthy individuals and potentially acted as a marker for the differential diagnosis between cervical cancer patients and healthy individuals.126 Moreover, Zheng et al.127 demonstrated that eight differentially expressed plasma exosomal miRNAs (let-7a-3p, let-7d-3p, miR-30d-5p, miR-144-5p, miR-182-5p, miR-183-5p, miR-215-5p, and miR-4443) could discriminate CIN II+ patients (including advanced CIN II patients) from CIN I patients (including CIN I patients and healthy individuals). However, only let-7d-3p and miR-30d-5p showed significant differences between cervical cancer tissues and adjacent normal tissues,127 indicating that exosomal miRNAs might be selectively secreted by tumor cells.

Higher expression of serum exosomal lncRNA DLX6-AS1 was detected in cervical cancer patients than in the CIN patients and healthy individuals, which was positively correlated with lymph node metastasis, differentiation, and FIGO stage, and predicted relapse and a worse clinical outcome for cervical cancer patients.128 Altogether, the exosomes isolated from the plasma or serum of cervical cancer patients are useful in cervical cancer screening and diagnosis.

One study documented that the expression of PI3k/Akt/mammalian target of rapamycin (mTOR) in cervical cancer tissues and in the exosomes derived from vaginal secretions was higher than that in the adjacent normal cervical tissues, but the expression levels did not significantly differ between cervical cancer tissues and the exosomes derived from vaginal secretions.129 Additionally, exosomal miR-146a and miR-21 separated from cervicovaginal fluid were increased in cervical cancer patients compared with individuals with no (pre)cervical disease (with or without HPV

Table 1. Exosome-carried nucleic acids and proteins as potential biomarkers for ovarian cancer
Type of biomarkers
let-7 family, miR 200 family
miR-99a-5p
miR-205
circPUMI
circWHSC1
miR-940
miR-1246
miR-124
miR-199a-3p
miR-7
miR-330-3p
miR-98-5p
miR-101
miR-146b-5p
miR-106a-5p, miR-122-5p, miR-185-5p
circ-001068
miR-34a
miR-214-3p
MtDNA
miR-1307, miR-375
miR-145, miR-200c
miR-484
miR-200b
lncRNA MALAT1
miR-30a-5p
miR-21
miR-6780b-5p
miR-6126
lncRNA UCA1
circRNA Cdr1as
circFoxp1
miR-891-5p
miR-223
miR-21
miR-146a
miR-30a-5p

Table 1. Continued
Type of biomarkers
FRR
HGF, STAT3, IL-6
LBP, fibrinogen gamma chain, fibrinogen alpha chain
gelsoin
MAGE 3/6, TGF-β1
CD44
aHIF
glucose-6-phosphate dehydrogenase, transketolase, transaldolase
EGF, HER2, CA125, FRα, CD24, EpCAM, CD9, CD63
COL5A2, LPL

(Continued)
infection). Compared with that in cancer-free volunteers (with or without HPV infection), the expression of exosomal lncRNAs hox transcript antisense intergenic RNA (HOTAIR) and metastasis-associated lung carcinoma transcript 1 (MALAT1) was upregulated, whereas the expression of exosomal lncRNA maternally expressed gene 3 (MEG3) was downregulated in the cervicovaginal lavage fluid of cervical cancer patients. Moreover, among the cancer-free volunteers, elevated expression of exosomal lncRNAs HOTAIR and MALAT1 and decreased expression of exosomal lncRNA MEG3 were detected in the cervicovaginal lavage fluid from HPV-positive individuals compared with those in HPV-negative individuals, indicating that lncRNAs HOTAIR, MALAT1, and MEG3 may have an important role in the development of cervical cancer. Additionally, 45 miRNAs were upregulated and 55 miRNAs were downregulated in exosomes purified from the cervicovaginal fluid of HPV16-infected patients versus those in the HPV16-free individuals. The detection and analysis of cervicovaginal lavage samples and vaginal secretions of cervical cancer patients, which are rich in exosomes, provide a new idea for noninvasive cervical cancer screening.

THE ROLE OF EXOSOMES IN ENDOMETRIAL CANCER

Endometrial cancer predominantly occurs in postmenopausal women and can be grouped into two clusters: estrogen dependent (type I) and estrogen independent (type II). miRNAs are aberrantly expressed in endometrial cancer, and dysregulated miRNAs potentially function as pro-oncogenesis factors or tumor suppressors in endometrial cancer progression.

Role of exosomes derived from cells in endometrial cancer

Endometrial cancer cells can deliver small regulatory RNAs to endometrial fibroblasts via exosomes. Exosomal miR-133a was found in the exosomes derived from endometrial cancer cells and could be transferred to the normal endometrial cells. Exosomal IncRNA deleted in lymphocytic leukemia 1 (DLEU1) derived from endometrial cancer cells improved the migrative and invasive abilities of endometrial cancer cells via the regulation of the miR-381-3p/E2F transcription factor 3 (E2F3) axis. Exosomes originating from the CAFs facilitated the invasive ability of endometrial cancer cells compared with the exosomes obtained from the normal fibroblasts (NFs), which was partially attributed to the low expression levels of miR-148b in exosomes of CAFs. Nevertheless, the proliferation of endometrial cancer cells and tube formation of endothelial cells were inhibited in vitro by the exosomal miR-499 derived from the mesenchymal stem cells, and the exosomal miR-499 also suppressed the tumor growth and angiogenesis in vivo. In summary, exosomes secreted by different cell types have diverse effects on endometrial cancer progression.

Role of exosomes derived from body fluids in endometrial cancer

A total of 114 miRNAs were dysregulated in exosomes purified from the peritoneal lavage fluid of endometrial cancer patients in contrast to miRNAs in the exosomes isolated from the ascitic fluid of control patients, and the downregulated expression of peritoneal lavage exosomal miRNA-383-3p, miRNA-10b-3p, miRNA-34c-3p, miRNA-499b-5p, miRNA-34c-5p, miRNA-200b-3p, miRNA-2110, and miRNA-34b-3p potentially served as individual diagnostic biomarkers.

Table 2. Exosome-carried nucleic acids and proteins as potential biomarkers for cervical cancer

Type of biomarkers	Potential biomarkers	Exosome derivation	Reference
Nucleic acids	miR-221-3p	cells	Zhang et al. 115; Wu et al. 116
	miR-663b	cells	You et al. 117
	let-7d-5p, miR-20a-5p, miR-378a-3p, miR-423-3p, miR-7-5p, miR-92a-3p, miR-21-5p	cells	Honegger et al. 119
	IncRNA HNF1A-AS1	cells	Luo et al. 120
	miR-155-5p	cells	Li et al. 121
	miR-22	cells	Konishi et al. 122
	miR-146a-5p, miR-151a-3p, miR-2110	plasma	Ma et al. 123
	miR-125a-5p	plasma	Ly et al. 124
	let-7d-3p, miR-30d-5p	plasma	Zheng et al. 125
	IncRNA DLX6-AS1	serum	Ding et al. 126
	miR-146a, miR-21	cervicovaginal lavages	Liu et al. 127
	IncRNAs HOTAIR, MALAT1, MEG3	cervicovaginal lavages	Zhang et al. 128
Proteins	Patched1, Smoothened, Sonic hedgehog, Indian hedgehog	cells	Bhat et al. 129
	Wnt2B	cells	Liang et al. 130
	PI3K/Akt/mTOR	vaginal secretions	Zhang et al. 131
biomarkers for endometrial cancer. Compared with the exosomes isolated from the urine of patients with symptoms of endometrial cancer, but no diagnosis of endometrial cancer, elevated miRNA-200c expression was discovered in exosomes isolated from the urine of endometrial cancer patients. Increased expression of 209 circRNAs and decreased expression of 66 circRNAs were discovered in exosomes isolated from the serum of stage III endometrial adenocarcinoma patients versus exosomes isolated from the serum of healthy individuals. Thus, nucleic acids carried by exosomes isolated from the peritoneal lavage fluid, urine, and serum of endometrial cancer patients have potential as novel diagnostic biomarkers of endometrial cancer.

CONCLUSIONS AND PERSPECTIVES

The small molecules within exosomes (including nucleic acids and proteins) allowed the identification of potential molecular biomarkers for the diagnosis, disease progression monitoring, and chemotherapy efficiency of ovarian cancer (Table 1; Figure 2), cervical cancer (Table 2; Figure 3), and endometrial cancer (Table 3; Figure 4).

In contrast to other nanoparticles, exosomes present considerable advantages, including low immunogenicity, low toxicity, biological barrier permeability, high stability, excellent biocompatibility, and targetability, which render exosomes strong alternative candidates for clinical treatment. However, several challenges may be encountered during the clinical application of exosomes. First, the extraction and storage processes of exosomes must be optimized, which will benefit large-scale production of exosomes for clinical use. Second, the efficiency of drug loading and drug release of the exosome-based drug delivery system needs to be improved. Third, exosomes derived from various sources exhibit different functions in patients with...
different physiological or pathological statuses, which require further exploration. Therefore, further in-depth understanding of the effects of exosomes derived from different cell types or body fluids on gynecologic cancers can provide a rational theoretical basis for the targeted clinical treatment of ovarian cancer, cervical cancer, and endometrial cancer.

ACKNOWLEDGMENTS
This work was sponsored by the National Natural Science Foundation of China (no. 81671809).

AUTHOR CONTRIBUTIONS
M.Y., J.W., S.P., and L.Z. searched the literature. M.Y. and J.W. wrote the manuscript. M.Y. and S.P. made the figures and tables. Z.W. and X.Z. designed the study and revised the manuscript. All authors read and approved the final manuscript.

DECLARATION OF INTERESTS
The authors declare no competing interests.

REFERENCES
1. Grywalska, E., Sobstyl, M., Putowski, L., and Rolinski, J. (2019). Current possibilities of gynecologic cancer treatment with the use of immune checkpoint inhibitors. Int. J. Mol. Sci. 20, 4705.
2. Bowtell, D.D., Böhm, S., Ahmed, A.A., Aspuria, P.J., Bast, R.C., Jr., Beral, V., Berek, J.S., Birrer, M.J., Blagden, S., Bookman, M.A., et al. (2015). Rethinking ovarian cancer I: reducing mortality from high-grade serous ovarian cancer. Nat. Rev. Cancer 15, 668–679.
3. Siegel, R.L., Miller, K.D., Fuchs, H.E., Jemal, A., Cancer statistics, 2021 CA Cancer J. Clin., 71 (1), 7–33.
4. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., and Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249.
5. Wang, W.-L., Hong, G.-C., Chien, P.-J., Huang, Y.-H., Lee, H.-T., Wang, P.-H., Lee, Y.-C., and Chang, W.-W. (2020). Tribbles pseudokinase 3 contributes to cancer stemness of endometrial cancer cells by regulating β-catenin expression. Cancers 12, 5785.
6. Wan, Y., Liu, B., Lei, H., Zhang, B., Wang, Y., Huang, H., Chen, S., Feng, Y., Zhi, L., Gu, Y., et al. (2018). Nanoscale extracellular vesicle-derived DNA is superior to circulating cell-free DNA for mutation detection in early-stage nonsmall-cell lung cancer. Ann. Oncol. 29, 2379–2383.
7. Dias, M.V., Texeira, B.L., Rodrigues, B.R., Sinigaglia-Coimbra, R., Porto-Carreiro, I., Roffe, M., Haji, G.N., and Martins, V.R. (2016). PRNP/proton protein regulates the secretion of exosomes modulating CAV1/caveolin-1-suppressed autophagy. Autophagy 12, 2113–2128.
8. Diasufo, N., Clark, A.M., Ma, B., Beckwitt, C.H., and Wells, A. (2017). Bi-directional exosome-driven intercommunication between the hepatic niche and cancer cells. Mol. Cancer 16, 172.
9. Shen, Z., Huang, W., Liu, J., Tian, J., Wang, S., and Rui, K. (2021). Effects of mesenchymal stem cell-derived exosomes on autoimmune diseases. Front Immunol. 12, 749192.
10. Kano, S.I., Dohi, E., and Rose, J.V.L. (2019). Extracellular vesicles for research on psychiatric disorders. Schizophr. Bull. 45, 7–16.
11. Tan, A., Rajadas, J., and Seifalian, A.M. (2013). Exosomes as nano-theranostic delivery platforms for gene therapy. Adv. Drug Deliv. Rev. 65, 357–367.
12. Yin, B., Ma, Q., Song, C., Zhao, L., Yu, F., Wang, C., Shi, Y., and Ye, L. (2021). Exosome-derived noncoding RNAs as a promising treatment of bone regeneration. Stem Cells Int. 2021, 6696894.
33. Mikaelian, I., Scicchitano, M., Mendes, O., Thomas, R.A., and Leroy, B.E. (2013). Frontiers in preclinical safety biomarkers: microRNAs and messenger RNAs. Toxicol. Pathol. 41, 18–31.

34. Koga, Y., Yasunaga, M., Moriya, Y., Akasu, T., Fujita, S., Yamamoto, S., and Matsumura, Y. (2011). Exosome can prevent RNase from degrading microRNA in feces. J. Gastrointest. Oncol. 2, 215–222.

35. Cheng, C., Zhang, Z., Cheng, F., and Shao, Z. (2020). Exosomal IncRNA RAMP2-AS1 derived from chondrosarcoma cells promotes angiogenesis through miR-2555-5p/VEGFR2 Axis. Onco Targets Ther. 13, 3291–3301.

36. Li, W., Xu, C., Guo, J., Liu, K., Hu, Y., Wu, D., Fang, H., Zou, Y., Wei, Z., Wang, Z., et al. (2020). Circ- and trans-acting expression quantitative trait loci of long non-coding RNA in 2,549 cancers with potential clinical and therapeutic implications. Front Oncol. 10, 602104.

37. Glund, M., Willerslev-Olsen, A., Gjerdrum, L.M.R., Lindahl, L.M., Buus, T.B., Andersen, M.H., Bonefeld, C.M., Krejsgaard, T., Litvinov, I.V., Jervers, L., et al. (2020). MicroRNAs in the pathogenesis, diagnosis, prognosis and targeted treatment of cutaneous T-cell lymphomas. Cancers (Basel) 12, 1229.

38. Yuan, L., Xu, Z.Y., Ruan, S.M., Mo, S., Qin, J.J., and Cheng, X.D. (2020). Long non-coding RNAs towards precision medicine in gastric cancer: early diagnosis, treatment, and drug resistance. Mol. Cancer 19, 96.

39. He, L., Zhang, A., Xiong, L., Li, Y., Huang, R., Liao, L., ZHU, Z., and Wang, A.Y. (2017). Deep circular RNA sequencing provides insights into the mechanism underlying the laryngeal cancer reovirus infection. Int. J. Mol. Sci. 18, 1977.

40. Wang, Y., Mo, Y., Gong, Z., Yang, X., Yang, M., Zhang, S., Xiong, F., Xiang, B., Zhou, M., Liao, Q., et al. (2017). Circular RNAs in human cancer. Mol. Cancer 16, 25.

41. Nakamura, K., Sawada, K., Kobayashi, M., Miyamoto, M., Shimizu, A., Yamamoto, M., KINSE, Y., and Kimura, T. (2019). Role of the exosome in ovarian cancer progression and its potential as a therapeutic target. Cancers (Basel) 11, 1147.

42. Xiao, Y., Lai, Y., Yu, T., Jiang, P., Li, Y., Wang, C., and Zhang, R. (2021). The exocine differentiation and proliferation factor (EXDFP) gene promotes ovarian cancer tumorigenesis by up-regulating DNA replication pathway. Front. Oncol. 11, 669603.

43. Filipov-Levy, N., Reich, R., and Davidson, B. (2020). The biological and clinical role of the long non-coding RNA LOC642852 in ovarian carcinoma. Int. J. Mol. Sci. 21, 5237.

44. Trinidad, C.V., Tettlow, A.L., Bantsis, L.E., and Godwin, A.K. (2020). Reducing TWEAK-stimulated macrophages inhibit metastasis of ovarian cancer via targeting Cav1/p-gp/M2-type macrophage axis in ovarian cancer. EBioMedicine 38, 100–112.

45. Chen, X., Yang, X., Wang, X., Wu, X., Zhu, Q., and Wang, X. (2017). Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization. Oncol. Rep. 38, 522–528.

46. Kankikicker, P., Bayraktar, R., Denazhi, M., Rashid, M.H., Ivan, C., Aylan, B., Mitra, R., Karagor, K., Bayraktar, E., Zhang, X., et al. (2018). Exosomal miRNA confers chemoresistance via targeting Cav1/p-gp/M2-type macrophage axis in ovarian cancer. Front Cell Exp. Med. 38, 100–112.

47. Zhang, Y., Cai, H., Chen, S., Sun, D., Zhang, D., and He, Y. (2019). Exosomal transfer of miR-124 inhibits normal fibroblasts to cancer-associated fibroblasts transition by targeting sphingosine kinase 1 in ovarian cancer. J. Cell Biochem. 120, 13187–13201.

48. Kobayashi, M., Sawada, K., Miyamoto, M., Shimizu, A., Yamamoto, M., Kinsey, Y., Nakamura, K., Kawano, M., Kodama, M., Hashimoto, K., et al. (2020). Exploring the potential of engineered exosomes as delivery systems for tumor-suppressor microRNA replacement therapy in ovarian cancer. Biomed. Biochem. Res. Commun. 127, 153–161.

49. Hu, Y., Li, D., Wu, A., Qiu, X., Di, W., Huang, L., and Qiu, L. (2017). TWEAK-stimulated macrophages inhibit metastasis of ovarian cancer via exosomal shunting of microRNA. Cancer Lett. 393, 60–67.

50. Yang, Z., Wang, W., Zhao, L., Wang, X., Gimple, R.C., Xu, L., Wang, Y., Rich, J.N., and Zhou, S. (2021). Plasma cells shape the mesenchymal identity of ovarian cancers through transfer of exosome-derived microRNAs. Sci. Adv. 7, eabb0737.

51. Guo, H., Ha, C., Dong, H., Yang, Z., Ma, Y., and Ding, Y. (2019). Cancer-associated fibroblast-derived exosomal microRNA-98-5p promotes cisplatin resistance in ovarian cancer by targeting CDKN1A. Cancer Cell Int. 19, 347.

52. Xu, Y., Xu, L., Zheng, J., Geng, L., and Zhao, S. (2017). miR-101 inhibits ovarian carcinogenesis by repressing the expression of brain-derived neurotrophic factor. FEBS Open Bio. 7, 1258–1266.

53. Wu, Q., Wu, X., Ying, X., Zhu, Q., Wang, X., Jiang, L., Chen, X., Wu, Y., and Wang, X. (2017). Suppression of endothelial cell migration by tumor associated macrophage-derived exosomes is reversed by epithelial ovarian cancer exosomal microRNA. Cancer Cell Int. 17, 62.

54. Zhang, H., Xu, S., and Liu, X. (2019). MicroRNA profiling of plasma exosomes from patients with ovarian cancer using high-throughput sequencing. Oncol. Lett. 17, 5601–5607.

55. Yang, C., Kim, H.S., Park, S.J., Lee, E.J., Kim, S.I., Song, G., and Lim, W. (2019). Inhibition of miR-214-3p aids in preventing epithelial ovarian cancer malignancy by increasing the expression of LHx6. Cancers (Basel) 11, 1917.

56. Keseru, J.S., Soltesz, B., Lukacs, J., Marton, E., Szilagyi-Bonitsz, M., Penyige, A., Poka, R., and Nagy, B. (2019). Detection of cell-free, exosomal and whole blood metastasis in vivo: an effect modulated by the invasiveness capacity of their originating cells. Clin. Sci. (Lond) 133, 1401–1419.

57. Guan, X., Zong, Z.H., Liu, Y., Chen, S., Wang, L.L., and Zhao, Y. (2019). circPUM1 promotes tumorigenesis and progression of ovarian cancer by sponging miR-615-5p and miR-6753-5p. Mol. Ther. Nucleic Acids 18, 882–892.

58. Zong, Z.H., Du, Y.P., Guan, X., Chen, S., and Zhao, Y. (2019). CircWHSCI promotes ovarian cancer progression by regulating MUC1 and hTERT through sponging miR-145 and miR-1182. J. Exp. Clin. Cancer Res. 38, 437.

59. Huan, Y., Ye, J., Yang, X.M., Zhang, L.W., Zhang, Z.G., and Chen, Y.P. (2015). High-grade ovarian cancer secreting effective exosomes in tumor angiogenesis. Int. J. Clin. Exp. Pathol. 8, 5062–5070.

60. Li, Z., Yan-Qing, W., Xiao, Y., Shi-Yi, L., Meng-Qin, Y., Shu, X., Dong-Yong, Y., Yang, Z., and Yan-Xiang, C. (2021). Exosomes secreted by chemoresistant ovarian cancer cells promote angiogenesis. J. Ovarian Res. 14, 7.

61. Chen, X., Ying, X., Wang, X., Wu, X., Zhu, Q., and Wang, X. (2017). Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization. Oncol. Rep. 38, 522–528.
mitochondrial DNA copy number in plasma or whole blood of patients with serous epithelial ovarian cancer. J. Biotechnol. 298, 76–81.

72. Su, Y.Y., Sun, L., Guo, Z.R., Li, J.C., Bai, T.T., Cai, X.X., Li, W.H., and Zhu, Y.F. (2019). Upregulated expression of serum exosomal miR-375 and miR-1307 enhance the diagnostic power of CA125 for ovarian cancer. J. Ovarian Res. 12, 6.

73. Kim, S., Choi, M.C., Jeong, J.Y., Hwang, S., Jung, S.G., Joo, W.D., Park, H., Song, S.H., Lee, C., Kim, T.H., et al. (2019). Serum exosomal miRNA-145 and miRNA-200c as promising biomarkers for preoperative diagnosis of ovarian carcinomas. J. Cancer 10, 1958–1967.

74. Zhang, W., Su, X., Li, S., Liu, Z., Wang, Q., and Zeng, H. (2020). Low serum exosomal miR-484 expression predicts unfavorable prognosis in ovarian cancer. Cancer Biomark 27, 485–491.

75. Pan, C., Stevic, I., Muller, V., Ni, Q., Oliveira-Ferrer, L., Pantel, K., and Schwarzenbach, H. (2018). Exosomal microRNAs as tumor markers in epithelial ovarian cancer. Mol. Oncol. 12, 1935–1948.

76. Qiu, J.J., Lin, X.J., Tang, X.Y., Zheng, T.T., Lin, Y.Y., and Hua, K.Q. (2018). Exosomal metastasis associated lung adenocarcinoma transcript 1 promotes angiogenesis and predicts poor prognosis in epithelial ovarian cancer. Int. J. Biol. Sci. 14, 1960–1973.

77. Zhou, J., Gong, G., Tan, H., Dai, F., Zhu, X., Chen, Y., Wang, J., Liu, Y., Chen, P., Wu, X., et al. (2015). Urinary microRNA-30a-5p is a potential biomarker for ovarian serous adenocarcinoma. Oncol. Rep. 33, 2915–2923.

78. Cappellesso, R., Tinazzi, A., Giurici, T., Simonato, F., Guzzardo, V., Ventura, L., Lightfoot, M.D.S., Gogna, R., Flannery, M.M., Hays, J., Hansford, D.J., et al. (2019). A microfluidic analysis of circulating exosomes in plasma of patients with ovarian carcinoma: potential biomarkers of tumor progression and response to therapy. Gynecol. Obstet. (Sunnyvale) (Suppl 4), 3.

79. Shen, X., Wang, C., Zhu, H., Wang, Y., Wang, X., Cheng, X., Ge, W., and Lu, W. (2021). Exosome-mediated transfer of CD44 from high-metastatic ovarian cancer cells promotes migration and invasion of low-metastatic ovarian cancer cells. J. Ovarian Res. 14, 38.

80. Cao, Y.L., Zhuang, T., Xing, B.H., Li, N., and Li, Q. (2017). Exosomal DNMT1 mediates cisplatin resistance in ovarian cancer cells. Oncol. Rep. 38, 1571–1578.

81. Wu, L., Zhao, Z., Yang, Y., Zeng, Y., and He, M. (2016). Label-free detection and molecular profiling of exosomes from ovarian cancer cells by delivery of miR-6786-5p. Cell Death Dis. 7, e210.

82. Lu, E.S., Kwan, K., Wong, K.K., et al. (2016). Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting of miR-143/FOSTL3-signaling pathway in ovarian cancer. Mol. Ther. Nucleic Acids 17, 92–101.

83. Li, Z., Niu, H., Qin, Q., Yang, S., Wang, Q., Yu, C., Wei, Z., Jin, Z., Wang, X., Yang, A., et al. (2019). IncRNA UCAM1 mediates resistance to cisplatin by regulating the miR-143/FOSTL3-signaling pathway in ovarian cancer. Mol. Ther. Nucleic Acids 18, 24–33.

84. Luo, Y., and Gui, R. (2020). Circulating exosomal circRNA can functions as a novel diagnostic marker for ovarian cancer. J. Gynecol. Oncol. 31, e75.
108. Liu, R., Zhang, Y., Sun, P., and Wang, C. (2020). DDP-resistant ovarian cancer cells-derived exosomal microRNA-30a-5p reduces the resistance of ovarian cancer cells to DDP. Open Biol. 10, 190173.

109. Zhang, X., Liu, L., Tang, M., Li, H., Guo, X., and Yang, X. (2020). The effects of umbilical cord-derived macrophage exosomes loaded with cisplatin on the growth and drug resistance of ovarian cancer cells. Drug Dev. Ind. Pharm. 46, 1150–1162.

110. Liu, H., Shen, M., Zhao, D., Ru, D., Duan, Y., Ding, C., and Li, H. (2019). The effect of triptolide-loaded exosomes on the proliferation and apoptosis of human ovarian cancer SKOV3 cells. Biomed. Res. Int. 2019, 1–14.

111. Huang, X., Wang, B., Chen, R., Zhong, S., Gao, F., Zhang, Y., Niu, Y., Li, C., and Shi, G. (2021). The nuclear Farnesoid X receptor reduces p53 ubiquitination and inhibits cervical cancer cell proliferation. Front. Cell Dev. Biol. 9, 583146.

112. Liu, C., Lu, J., Tian, H., Du, W., Zhao, L., Feng, J., Yuan, D., and Li, Z. (2017). Increased expression of PD-L1 by the human papillomavirus 16 E7 oncoprotein inhibits anticancer immunity. Mol. Med. Rep. 15, 1063–1070.

113. Taguchi, A., Hara, K., Tomio, J., Kawana, K., Tanaka, T., Baba, S., Kawata, A., Eguchi, S., Tsuruga, T., Mori, M., et al. (2020). Multistate Markov model to predict the prognosis of high-risk human papillomavirus-related cervical lesions. Cancers (Basel) 12, 270.

114. Cancer Genome Atlas Research Network, Albert Einstein College of Medicine, Analytical Biological Services, Barretts Cancer Hospital, Baylor College of Medicine, Beckman Research Institute of City of Hope, Buck Institute for Research on Aging, Canada’s Michael Smith Genome Sciences Centre, Harvard Medical School, Helen F. Graham Cancer Center &Research Institute, et al. (2017). Integrated genomic and molecular characterization of cervical cancer. Nature 543, 378–384.

115. Zhang, L., Li, H., Yuan, M., Li, M., and Zhang, S. (2019). Cervical cancer cells-secreted exosomal microRNA-221-3p promotes invasion, migration and angiogenesis of microvascular endothelial cells in cervical cancer by down-regulating MAPK10 expression. Cancer Manag. Res. 11, 10307–10319.

116. Wu, X.G., Zhou, C.F., Zhang, Y.M., Yan, R.M., Wei, W.F., Chen, X.J., Yi, H.Y., Liang, J., Fan, L.S., Liang, L., et al. (2019). Cervical epithelial carcinoma: immune microenvironment and emerging treatments in immunoncology. Biomedicines 9, 632.

117. You, X., Wang, X., Meng, L., Li, W., Li, C., Li, P., and Xu, S. (2020). Changes of miRNA expression profiles from cervical-vaginal fluid-derived exosomes in response to HPV16 infection. Biomed. Res. Int. 2020, 7046894.

118. Healey, G.D., Pan-Castillo, B., Garcia-Parrá, J., Davies, J., Roberts, J., Jones, E., Dhar, K., Kundanad, S., Tofazzal, N., Piggott, L., et al. (2019). Antibody drug conjugates against the receptor for advanced glycation end products (RAGE), a novel therapeutic target in endometrial cancer. J. Immunother. Cancer 7, 280.

119. Roman-Canal, B., Moiola, C.P., Gatius, S., Bonnin, S., Ruiz-Miro, M., Gonzalez, E., Scheffner, M., Hoppe-Seyler, K., and Hoppe-Seyler, F. (2015). Dependence of intra-epithelial cervical cancer on the receptor for advanced glycation end products (RAGE), a novel therapeutic target in endometrial cancer. J. Immunother. Cancer 7, 280.

120. Jing, L., Hua, X., Yuanna, D., Rukun, Z., and Junjun, M. (2020). Exosomal miR-22 promotes cervical cancer progression in vivo by altering sirtuin 1 expression. Arch. Med. Res. 51, 961–968.

121. Zhang, W., Zhou, Q., Wei, Y., Ma, Z., Zeng, Z., Zhang, J., and Gao, L. (2016). Circulating plasma microRNA signature for the diagnosis of cervical cancer. Cancers (Basel) 8, 112.

122. Ma, G., Song, G., Zeou, X., Chen, X., Liu, Q., Xiao, T., Zhou, X., and Zhu, W. (2019). Circulating plasma microRNA signature for the diagnosis of cervical cancer. Cancers (Basel) 24, 491–500.

123. Lv, A., Tu, Z., Huang, Y., Lu, W., and Xie, B. (2021). Circulating exosomal miR-125a-5p as a novel biomarker for cervical cancer. Oncol. Lett. 21, 54.

124. Zheng, M., Hou, L., Ma, Y., Zhou, L., Wang, F., Cheng, B., Wang, W., Lu, B., Liu, P., Lu, W., et al. (2019). Exosomal let-7d-3p and miR-30d-5p as diagnostic biomarkers for non-invasive screening of cervical cancer and its precursors. Mol. Cancer 18, 76.

125. Ding, X.Z., Zhang, S.Q., Deng, X.L., and Qiang, J.H. (2021). Serum exosomal InRNA DLX6-AS1 is a promising biomarker for prognosis prediction of cervical cancer. Technol. Cancer Res. Treat. 20, 1533033821990660.

126. Zhang, W., Zhou, Q., Wei, Y., Ma, Z., Zeng, Z., Zhong, J., Liu, L., and Shen, J. (2019). The exosome-mediated P38/kAkt/mTOR signaling pathway in cervical cancer. Int. J. Clin. Exp. Pathol. 12, 2474–2484.

127. Liu, J., Sun, H., Wang, X., Yu, Q., Li, S., Yu, X., and Gong, W. (2014). Increased exosomal microRNA-21 and microRNA-146a levels in the cervico vaginal lavage specimens of patients with cervical cancer. Int. J. Mol. Sci. 15, 758–773.

128. Zhang, J., Liu, S.C., Luo, X.H., Tao, G.X., Guan, M., Yuan, H., and Hu, D.K. (2016). Exosomal long noncoding RNAs are differentially expressed in the cervico vaginal lavage samples of cervical cancer patients. J. Clin. Lab. Anal. 30, 1116–1121.

129. Wu, Y., Wang, X., Meng, L., Li, W., Li, C., Li, P., and Xu, S. (2020). Changes of miRNA expression profiles from cervical-vaginal fluid-derived exosomes in response to HPV16 infection. Biomed. Res. Int. 2020, 7046894.

130. Healey, G.D., Pan-Castillo, B., Garcia-Parrá, J., Davies, J., Roberts, J., Jones, E., Dhar, K., Kundanad, S., Tofazzal, N., Piggott, L., et al. (2019). Antibody drug conjugates against the receptor for advanced glycation end products (RAGE), a novel therapeutic target in endometrial cancer. J. Immunother. Cancer 7, 280.

131. Roman-Canal, B., Moiola, C.P., Gatius, S., Bonnin, S., Ruiz-Miro, M., Gonzalez, E., Scheffner, M., Hoppe-Seyler, K., and Hoppe-Seyler, F. (2015). Dependence of intra-epithelial cervical cancer on the receptor for advanced glycation end products (RAGE), a novel therapeutic target in endometrial cancer. J. Immunother. Cancer 7, 280.

132. Jing, L., Hua, X., Yuanna, D., Rukun, Z., and Junjun, M. (2020). Exosomal miR-22 promotes cervical cancer progression in vivo by altering sirtuin 1 expression. Arch. Med. Res. 51, 961–968.

133. Shi, S., Tan, Q., Feng, F., Huang, H., Liang, J., Cao, D., and Wang, Z. (2020). Identification of core genes in the progression of endometrial cancer and cancer cell-derived exosomes by an integrative analysis. Sci. Rep. 10, 9862.

134. Jia, J., Guo, S., Zhang, D., Tian, X., and Xie, X. (2020). Exosomal IncRNA DLX1 accelerates the proliferation, migration, and invasion of endometrial carcinoma cells by regulating micro-RNA-21. Oncol Targets Ther. 13, 8651–8663.

135. Li, B.L., Wu, L., Qu, J.J., Ye, L., Da, G.Q., and Wan, X.P. (2019). Loss of exosomal miR-148b from cancer-associated fibroblasts promotes endometrial cancer cell invasion and cancer metastasis. J. Cell. Physiol. 234, 2943–2953.

136. Jing, L., Hua, X., Yanhua, D., Rukun, Z., and Junjun, M. (2020). Exosomal miR-499a-5p inhibits endometrial cancer growth and metastasis via targeting VAV3. Cancer Manag. Res. 12, 1353415–13552.

137. Roman-Canal, B., Moiola, C.P., Gatius, S., Bonnin, S., Ruiz-Miro, M., Gonzalez-Tallada, X., Llordella, I., Hernandez, I., Porcel, J.M., et al. (2019). EV-associated miRNAs from peritoneal lavage are a source of biomarkers in endometrial cancer. Cancers (Basel) 11, 839.

138. Srivastava, A., Moxley, K., Ruskin, R., Dhanakasaran, D.N., Zhao, Y.D., and Ramesh, R. (2018). A non-invasive liquid biopsy screening of urine-derived exosomes for miRNAs as biomarkers in endometrial cancer patients. AAPS J. 20, 82.
144. Hanzi, X., Zhen, G., Shen, Y., Fang, Y., and Zhong, S. (2018). Circular RNA expression in extracellular vesicles isolated from serum of patients with endometrial cancer. Epigenomics 10, 187–197.

145. Xiaoxia, C., Jian, F., Chen, C., Chang, L., Liu, G., and Feng, W. (2020). PCOS serum-derived exosomal miR-27a-5p stimulates endometrial cancer cells migration and invasion. J. Mol. Endocrinol. 64, 1–12.

146. Song, Y., Wang, M., Tong, H., Tan, Y., Hu, X., Wang, K., and Wan, X. (2021). Plasma exosomes from endometrial cancer patients contain LGALS3BP to promote endometrial cancer progression. Oncogene 40, 633–646.

147. Li, M.Y., Liu, L.Z., and Dong, M. (2021). Progress on pivotal role and application of exosome in lung cancer carcinogenesis, diagnosis, therapy and prognosis. Mol. Cancer 20, 22.