Quantitative Bio-imaging of Gadolinium-157 in Tissues
Through Laser-ablation ICP-MS for Neutron Capture Therapy

AYANO KUBOTA*1), TAKEHISA MATSUWAKA*1) 2),
HIRONOBU YANAGIE*3), MASASHI YANAGAWA*4),
TAKAFUMI HIRATA*5), ATSUKO SHINOHARA*1) 6), KAZUHITO YOKOYAMA*1) 7)

*1)Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine, Tokyo, Japan,
*2)Department of Forensic Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan,*3)Department of Nuclear
Engineering and Management, The University of Tokyo, Tokyo, Japan, *4)Department of Veterinary Medicine, Obihiro
University of Agriculture and Veterinary Medicine, Hokkaido, Japan,*5)Geochemical Research Center, The University of
Tokyo, Tokyo, Japan,*6)Research Institute for Cultural Studies, Seisen University, Tokyo, Japan,*7)Department of
Epidemiology and Social Medicine, International University of Health and Welfare Graduate School of Public Health, Tokyo,
Japan

Objective: Gadolinium-157 (157Gd) has attracted interest for its use in the preparation containing metal elements of the neutron
capture therapy (NCT), one of the radiation therapies. The study, however, has not developed because of the difficulty to
quantify the concentration of 157Gd in the tissue. Therefore, we established a quantitative imaging technique for 157Gd in bio-tissue
employing laser-ablation inductively coupled mass spectrometry (LA-ICP-MS).

Materials and Methods: 4 female New Zealand white rabbits, which were inoculated with rabbit VX-2 cells participated in this
study. 157Gd in water-in-oil-in-water (WOW) emulsion was injected via the proper hepatic artery into the rabbits and, after 24
or 72 hours, the rabbits were killed, and the liver tissues were harvested. We also prepared 7 standard tissues which were mixed
with gadoteridol solutions, the final amount of 157Gd was 0, 4.4, 22, 44, 220, 440 and 660 μg/g, respectively. The harvested livers
and standards were sectioned on a cryostat at 5 μm intervals and they were analyzed by LA-ICP-MS.

Result: In an experiment on animal cancer tissue, 157Gd was observed to accumulate around the cancer.

Conclusion: The 157Gd concentration in bio tissue can be quantitatively assessed through LA-ICP-MS imaging and it was
expected to contribute the progress of NCT study.

Key words: gadolinium, laser-ablation inductively coupled mass spectrometry (LA-ICP-MS), neutron capture therapy (NCT), bio-imaging

Introduction

Neutron capture therapy (NCT) uses secondary radiation particles emitted by the nuclear neutron capture reaction to kill cancer cells. Locher intro-
duced NCT soon after the discovery of the neutron 1). For therapeutic application of NCT to
malignant melanoma and gliomas, boron-10 (10B) compounds have been used as short-range alpha-
particle–producing agents2) 3).

Recently, gadolinium-157 (157Gd) has attracted attention as an alternative NCT agent because it
has the largest thermal-neutron capture cross section among all stable nuclides (255,000 barns, 66
times as large as that of 10B) and gamma-rays and Auger electrons are released by the neutron capture reaction $^4\text{He}(n,\gamma)^4\text{Li}$. This property makes it possible to reduce the total neutron fluence needed for the same number of thermal neutron absorptions with 10B. In addition, because gadolinium has been used as a contrast agent of magnetic resonance imaging diagnosis, 157Gd-NCT is expected to be used in combination with magnetic resonance imaging. To increase the therapeutic effect of NCT, it is important to enhance the accumulation of 157Gd in tumor. Although NCT with 157Gd was first established in the 1980s 5, 157Gd-NCT has not progressed in contrast with 10B-NCT, because it is difficult to quantitatively measure the amount of 157Gd accumulated in the tissue.

Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an analytical technology that combines the laser ablation sampling technique and ICP-MS. A laser beam is focused on the sample surface to generate fine particles, which are then transported to the ICP-MS instrument for digestion and ionization. The LA-ICP-MS technique is sensitive enough to determine the abundance of trace elements 6-12. Gadolinium imaging employing LA-ICP-MS has thus been developed recently 13-17. Although Kostiv et al. has reported the quantitative imaging of nanoparticles containing Gd 18, the quantitativity was not enough because they did not match the matrix of trace elements in calibration standards with the samples analyzed.

The present study developed a method of quantitative imaging 157Gd in cancer tissue using the LA-ICP-MS technique, by matching the matrix of trace elements in calibration standards to those of tissue samples.

Materials and Methods

1. **Preparation of standard liver tissue for calibration**

To examine the quantitative relationship between the signal intensity obtained by LA-ICP-MS and the 157Gd concentration in the liver, we prepared a standard tissue in accordance with Hare’s procedure with minor modification 19: Frozen livers of intact New Zealand white rabbit were purchased from Sankyo Labo Service Corporation and defrosted at 4°C and then washed three times with deionized H$_2$O to remove residual blood. Segments of 3–5 cm3 were sectioned, and blood vessels, fluids and connective tissues were removed using surgical scissors. After homogenization of the liver using a handheld blender (TK-210, Tescom, Tokyo), 53.6 μg of gadoteridol standard solution in saline (0, 1.88, 9.35, 18.8, 93.5, 186 and 280 gadoteridol-mg/ml) was added to the homogenate of 1 g each to obtain nominal 157Gd amounts of 0, 4.4, 22, 44, 220, 440 and 660 μg/g in the homogenized tissue, respectively. A portion of the mixture at each gadolinium concentration was packed into a plastic histology mold, frozen in liquid nitrogen, and stored at −80°C for LA-ICP-MS analysis. The different point to Hare’s method was the matching of the matrix (i.e., the composition of substances in samples) for LA-ICP-MS analysis 20.

A portion of the above mixture at each concentration of 157Gd was weighed and put into a perfluoroethylene bottle with 0.4 ml of 68% HNO$_3$, left overnight at room temperature (25°C), and then digested with 0.2 ml of H$_2$O$_2$ in a microwave oven (ETHOS PLUS, Milestone General, Bergamo, Italy). These digested liver samples were stored at room temperature until conventional ICP-MS analysis was performed.

2. **Preparation of VX–2 cancer liver from rabbits administrated with 157Gd**

All animal experiments in this study were conducted in accordance with the guidelines of Meiji Pharmaceutical University’s animal ethics committee (Approval number: 2612) and the Declaration of Helsinki. To examine the distribution in vivo, 157Gd in water–in–oil–in–water (WOW) emulsion was prepared as reported previously 21: gadoteridol solution (1,396.5 mg/5 ml) was filtered using a controlled porous glass membrane and added to 5 ml of iodized poppy-seed oil (lipiodol) containing surfactant to form a water–in–oil (WO) emulsion. The WO emulsion was emulsified again with aqueous phase containing 5 ml of saline and surfactant (to form another WOW emulsion). The 157Gd WOW emulsion was then injected via the proper hepatic artery into female New Zealand white rabbits, which were inoculated with rabbit VX–2 cells (Shope virus induced squamous carcinoma cell line, skin origin) to the left lobe of the liver two weeks before 22. At 24 or 72
hours after injection, the rabbits were killed and the liver tissues harvested, frozen in liquid nitrogen, and stored at −80°C until use.

3. Analysis of standard liver and VX-2 cancer in liver tissues

The standard liver and VX-2 cancer in liver tissues were sectioned on a CM3050S cryostat (Leica Microsystems, Bensheim, Germany) at 5 μm intervals. Cut sections were mounted on glass microscope slides, air-dried and stored at −80°C. The sections were inserted into a cell and ablated line by line using a commercial laser ablation instrument, an NWR213 (ESI New Wave Research, Oregon, USA), coupled to an Agilent 8800 Triple Quad ICP mass spectrometer (Agilent Technologies, Australia). The distribution of 157Gd and 63Cu were visualized using with the iQuant2 software 23). Additionally, 157Gd concentrations in the digested liver samples were measured using the conventional ICP–MS method as previously reported 24)-33).

As evidence has been given that copper concentrations are higher in the liver than in the skin 34)-38), we expected that the distribution of copper could be distinguished between the liver and the VX2 inoculation cells. LA–ICP–MS analysis was thus also conducted on the copper–63 (63Cu) distribution in the VX–2 cancer in the liver sample to visualize the location of cancer tissue. Overlaying the distributions of 63Cu and 157Gd could help confirm the distribution of 157Gd in the liver and cancer tissues, because 157Gd accumulated in tissues is washed out in usual histological techniques, such as hematoxylin and eosin staining. Instrumental parameters and analytical conditions are summarized in Table–1.

4. Chemicals

Stock solution of 0.5% HNO$_3$ was prepared daily from 68% HNO$_3$ (ultrapure grade, Tama Chemicals Co., Kawasaki, Japan) and deionized H$_2$O. Thirty-five percent H$_2$O$_2$ (ultrapure grade, Tama Chemicals Co., Kawasaki, Japan) was used for all digestions. Gadoteridol was purchased from BRACCO–Eisai Co. (ProHance, Tokyo, Japan).

Results

Figure–1 shows the standard curves calculated from the signal intensity of LA–ICP–MS on sections of the standard tissues and 157Gd concentrations in the corresponding digested liver obtained by conventional ICP–MS measurement. The homogeneity of the 157Gd distribution in the standard section was assessed for 10 repeated measurements; the percentage relative standard deviation was less than 30% for concentrations over 5.5 μg/g. The linearity of calibration curve was good, ranging from 0–760 μg/g 157Gd concentration (r^2 = 0.9977). Calculated limits of detection and limits of quantification of 157Gd determined from the blank tissue were respectively 0.0135 and 0.0409 μg/g, which were calculated as Matsukawa et al. 39).

The distribution of 157Gd in the VX–2 cancer in

Table–1 Instrumentation and operational settings
ICP–MS (Agilent 8800)
RF incident power
Plasma gas flow rate
He flow rate
Carrier Ar gas flow rate
Monitored isotope
Date acquisition mode
Number of sweeps

Laser (New Wave Research NWR213)

Parameter	Value
Wavelength	213 nm
Pulse energy	1.8 %
Fluence	2.4 J cm$^{-2}$
Repetition rate	10 Hz
Spot size	100 x 100 μm (square)
Scan speed	80 μm s$^{-1}$

LA: analytical mode for laser ablation, RF: radio frequency
the liver model determined by LA-ICP-MS is shown in Figure-2 (left); the concentration was estimated using the standard curve in Figure-1. The middle panels show that 63Cu accumulated only in the normal tissue and not in the cancer. Right panels show the merged images of distributions of 157Gd and 63Cu. 157Gd was distributed along the boundary between the cancer and normal tissues 24 hours after injection, with the highest concentration being 1,066.3 μg/g. Meanwhile, 72 hours after injection, 157Gd accumulated in the cancer with a maximum concentration of 376.0 μg/g.

Discussion

We showed the linear correlation between the signal intensity of imaging and actual tissue concentration of 157Gd in the liver. Even 24 hours after the injection of 157Gd in WOW emulsion, almost all data points (99.95%) of the 157Gd signal intensity fell within the range of the standard curve. This method can therefore be used to estimate the amount of 157Gd accumulated in the tissue by varying the dose administered for NCT. As expected, the location of cancer tissue was identified by the 63Cu distribution. In this study, we utilized the low concentration of copper in VX-2 cells to distinguish the normal and cancer tissues. This observation, together with those of higher concentration of copper in lymphoma, breast cancer and gastrointestinal tract cancer 40, as well as lower concentration of zinc in liver and pancreatic carcinomas 31, suggests that copper and zinc distributions are available for the determination of the cancer area.

As identified from the imaging results, 157Gd was located at the tumor surface lesion including feeding vessels 24 hours after administration. Meanwhile, gadolinium was found in deeper lesions in the cancer tissue and not only border lesions with the feeding vessels 72 hours after administration. In NCT, differences in 157Gd concentrations between the surrounding normal tissue and cancer tissue were important for the evaluation of the preparation. For a therapeutic option to be viable, the radiation dose delivered to the cancer must exceed the background radiation that normal tissue receives from nonspecific neutron absorption. Generally, the selective tumor/normal tissue concentration ratios must be above unity and preferably 3:1 or higher 42. The results suggest that the concentration of 157Gd can be estimated by considering the distribution over time.
Conclusions

There were two device points in the present study. First, because the matching of the matrix (i.e., the composition of substances in samples) was important for LA-ICP-MS analysis, we prepared standard samples and liver tissue samples following the method of Hare et al. The volume of liquid added was the same for all analyzed samples, providing an excellent decision coefficient. Second, we imaged 63Cu as a marker to determine the area of cancer in the sample, overlaying the 63Cu image on the 157Gd image. The present study thus showed that the 157Gd concentration in bio tissue can be quantitatively assessed through LA-ICP-MS imaging. We thus expect rapid progress in NCT using 157Gd agents.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We thank Ms. Yuriko Sakurai (Meiji Pharmaceutical University) for preparation of liver sections and Mr. Yoshiki Makino (Tokyo University) for helpful advice. We are grateful to Ms. Momoko Kobayashi and Ms. Shizuka Iwasaki for assistance in the preparation of analytical solutions. This work was partly supported by JSPS KAKENHI Grant Number JP19H01081 and JP19K07717. We also thank Glenn Pennycook, MSc, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.
References

1) Locher GL: Biological effects and therapeutic possibilities of neutron. Am J Roentgenol. 1936; 36: 1
2) Barth RF, Soloway AH: Boron neutron capture therapy of primary and metastatic brain tumors. Mol Chem Neuropathol. 1994; 21: 139–154.
3) Mishima Y, Ichihashi M, Hatta S, Honda C, Yamamura K, Nakagawa T: New thermal neutron capture therapy for malignant melanoma: melanogenesis-seeking 10B molecule–melanoma cell interaction from in vitro to first clinical trial. Pigment Cell Res. 1989; 2: 226–234.
4) Greenwood RC, Reich CW, Baader HA, et al: Collective and two-quasiparticle states in 158Gd observed through study of radiative neutron capture in 157Gd. Nucl Phys A. 1978; 304: 327–428.
5) Brugger RM, Shih JA: Evaluation of gadolinium–157 as a neutron capture therapy agent. Strahlenther Onkol. 1989; 165: 153–156.
6) Bianga JI, Boussimani A, Quenet N, et al: Complementarity of MALDI and LA ICP mass spectrometry for platinum anticancer imaging in human tumor. Metallomics, 2014; 2: 1382–1386.
7) Durrant SF: Laser ablation inductively coupled plasma mass spectrometry: achievements, problems, prospects. J Anal At Spectrom. 1999; 14: 1385–1403.
8) Ghazi AM, Wataha JC, O'Dell NL, Singh BB, Simmons R, Shuttleworth S: Quantitative concentration profiling of nickel in tissues around metal implants: a new biomedical application of laser ablation sector field ICP–MS. J Anal At Spectrom. 2002; 17: 1295–1299.
9) Günther D, Frischknecht R, Heinrich CA, Kahlert HJ: Capabilities of an Argon Fluoride 193 nm Excimer Laser for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Microanalysis of Geological Materials. J Anal At Spectrom. 1997; 12: 939–944.
10) Limbeck A, Galler P, Bonta M, Bauer G, Nischkauer W, Vanhaecke F: Recent advances in quantitative LA–ICP–MS analysis: challenges and solutions in the life sciences and environmental chemistry. Anal Bioanal Chem, 2015; 457: 6593–6617.
11) Russo RE, Mao X, Gonzalez JJ, Zorba V, Yoo J: Laser ablation in analytical chemistry. Anal Chem, 2013; 85: 6162–6177.
12) Theiner S, Schreiber–Bryznak E, Jakupec MA, Galanski M, Koellensperger G, Keppler BK: LA–ICP–MS imaging in multicellular tumor spheroids – a novel tool in the preclinical development of metal–based anticancer drugs. Metallomics, 2016; 8: 398–402.
13) Lohrke J, Frisk AL, Frenzel T, et al: Histology and Gadolinium Distribution in the Rodent Brain After the Administration of Cumulative High Doses of Linear and Macrocyclic Gadolinium–Based Contrast Agents. Invest Radiol, 2017; 52: 324–335.
14) Fingerhut S, Sperling M, Holling M, et al: Gadolinium–based contrast agents induce gadolinium deposits in cerebral vessel walls, while the neuropil is not affected: an autopsy study. Acta Neuropathol. 2018; 136: 127–138.
15) Fingerhuta S, Niehoffa AC, Sperling M, et al: Spatially resolved quantification of gadolinium deposited in the brain of a patient treated with gadolinium–based contrast agents. J Trace Elem Med Biol, 2018; 45: 125–130.
16) Roberts DR, Welsh CA, LeBel DP 2nd, Davis WC: Distribution map of gadolinium deposition within the cerebellum following GBCA administration. Neurology, 2017; 88: 1206–1208.
17) Clases D, Fingerhut S, Jeibmann A, Sperling M, Doble P, Karst U: LA–ICP–MS/MS improves limits of detection in elemental bioimaging of gadolinium deposition originating from MRI contrast agents in skin and brain tissues. J Trace Elem Med Biol, 2019; 51: 212–218.
18) Kostiv U, Rajsiglová L, Luptáková D, et al: Biodistribution of upconversion/magnetic silica–coated NaGdF4: Yb3+/Er3+ nanoparticles in mouse models. RSC Advances, 2017; 7: 45997–46006.
19) Hare DJ, Lear J, Bishop D, Beavis A, Doble P: Protocol for production of matrix–matched brain tissue standards for imaging by laser ablation–inductively coupled plasma–mass spectrometry. Anal Methods, 2013; 5: 1915–1921.
20) Ho S, Gao H: Surrogate matrix: opportunities and challenges for tissue sample analysis. Bioanalysis, 2015; 7: 2419–2433.
21) Yanagie H, Kumada H, Nakamura T, et al: Feasibility evaluation of neutron capture therapy for hepatocellular carcinoma using selective enhancement of boron accumulation in tumour with intra–arterial administration of boron–entrapped water–in–oil–in–water emulsion. Appl Radiat Isot, 2011; 69: 1854–1857.
22) Burgener FA: Peripheral hepatic artery embolization in rabbits with VX2 carcinomas of the liver. Cancer, 2006; 107: 56–63.
23) Suzuki T, Sakata S, Makino Y, et al: iQuant2: Software for Rapid and Quantitative Imaging Using Laser Ablation–ICP Mass Spectrometry. Mass Spectrom (Tokyo), 2018; 46: A0065.
24) Matsukawa T, Hasagawa H, Shinohara A, et al: Synthesis of D– and L–selenomethionine double–labeled with deuterium and selenium–82. Chem Pharm Bull (Tokyo), 2010; 58: 1658–1660.
25) Nishioka E, Yokoyama K, Matsukawa T, et al: Evidence that birth weight is decreased by maternal lead levels below 5μg/dl in male newborns. Reprod Toxicol, 2014; 47: 21–26.
26) Vigeh M, Nishioka E, Ohtani K, et al: Prenatal mercury exposure and birth weight. Reprod Toxicol, 2018; 76: 78–83.
27) Vigeh M, Nishioka E, Yokoyama K, Ohtani K, Matsukawa T: Increased prenatal blood manganese may induce gestational blood pressure. Hypertens Pregnancy, 2016; 35: 583–592.
28) Vigeh M, Yokoyama K, Matsukawa T, Shinohara A, Ohtani K: The relation of maternal blood arsenic to anemia during pregnancy. Women Health, 2016; 53: 42–57.
29) Vigeh M, Yokoyama K, Matsukawa T, Shinohara A, Ohtani K: Low level prenatal blood lead adversely affects early childhood mental development. J Child Neurol, 2014; 29: 1305–1311.
30) Vigeh M, Yokoyama K, Matsukawa T, Shinohara A, Shariat M, Ohtani K: Effects of Hair Metals on Body
31) Vigeh M, Yokoyama K, Ohtani K, Shahbazi F, Matsukawa T: Increase in blood manganese induces gestational hypertension during pregnancy. Hypertens Pregnancy, 2013; 32: 214–224.

32) Vigeh M, Yokoyama K, Seyedaghamiri Z, et al: Blood lead at currently acceptable levels may cause preterm labour. Occup Environ Med, 2011; 68: 231–234.

33) Shinohara A, Matsukawa T, Chiba M, et al: Comparative study of behavior of inhaled samarium and cerium in mice. Journal of Rare Earths, 2010; 28: 507–509.

34) Ali R, Agarwala SC: Effect of feeding psoralen on the copper content of different organs in albino rats. Experientia, 1969; 25: 24–25.

35) Bingley JB, Dufty JH: Distribution of copper in the tissues of the bovine neonate and dam. Res Vet Sci, 1972; 13: 8–14.

36) Ishizawa M, Okada KY: Iron, copper, zinc and manganese contents in rat tissues. Med. Biol, 1968; 77: 187–189. (in Japanese)

37) Owen CA Jr: Distribution of copper in the rat. Am J Physiol, 1964; 207: 446–448.

38) Owen CA Jr: Similarity of chronic copper toxicity in rats to copper deposition of Wilson’s disease. Mayo Clin Proc, 1974; 49: 368–375.

39) Matsukawa T, Chiba M, Shinohara A, Matsumoto-Omori Y, Yokoyama K: Changes in thallium distribution in the scalp hair after an intoxication incident. Forensic Sci Int, 2018; 291: 230–233.

40) Gupte A, Mumper RJ: Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev, 2009; 35: 32–46.

41) Costello LC, Franklin RB: Decreased zinc in the development and progression of malignancy: an important common relationship and potential for prevention and treatment of carcinomas. Expert Opin Ther Targets, 2017; 21: 51–66.

42) Luderer MJ, de la Puente P, Azab AK: Advancements in Tumor Targeting Strategies for Boron Neutron Capture Therapy. Pharm Res, 2015; 32: 2824–2836.