Spatial curvature sensitivity to local H_0 from the Cepheid distance ladder

Ella Zuckermana and Luis A. Anchordoquib,c,d

aPacker Collegiate Institute, Brooklyn, NY 11201, USA
bDepartment of Physics and Astronomy, Lehman College, City University of New York, NY 10468, USA
cDepartment of Physics, Graduate Center, City University of New York, NY 10016, USA
dDepartment of Astrophysics, American Museum of Natural History, NY 10024, USA

Abstract

Over the last few years, low- and high-redshift observations set off a tension in the measurement of the present-day expansion rate, H_0. Adding to the riddle, observational data from the Planck mission point to a 3.4σ evidence for a closed universe, further challenging the ΛCDM concordance model of cosmology. Recently, a direct-observational test has been proposed to discriminate effects of the spatial curvature in the cosmological model. The test is based on the fundamental distance–flux–redshift relation of the luminosity distance modulus, $\Delta \mu$. We reexamine the outcomes of this test and show that achieving the required $\Delta \mu$ sensitivity to discriminate among cosmological models is materially far more challenging than previously thought. Armed with supernova type Ia (SN Ia) data, calibrated using Cepheid measured distances, we apply the test to archetypal spatially non-flat models that ameliorate the H_0 tension and show that the 3σ contour of $\Delta \mu$ predicted by these models overlaps the 68% CL SN Ia residuals with respect to ΛCDM. This implies that the spatial curvature remains insensitive to local H_0 measurements from the Cepheid distance ladder.

Keywords: cosmological parameters – distance scale – dark energy – dark matter.

1. Introduction

Almost a century after the expansion of the Universe was established (Hubble 1929), the Hubble constant, which measures its rate ($H_0 \equiv 100 h \text{ km/s/Mpc}$), continues to encounter challenging shortcomings. According to the latest observations, the measured expansion rate (Riess et al. 2020a) is about 9% faster than predicted by observations of the cosmic microwave background (CMB) on the basis of the spatially flat Λ cold dark matter (CDM) cosmological model (Aghanim et al. 2020a). The statistical significance of this discrepancy is about 4.4σ, which gives rise to the so-called H_0 tension (Di Valentino et al. 2021a; Shah et al. 2021).

A plethora of models extending ΛCDM have been proposed to ameliorate the H_0 tension; see e.g. (Di Valentino et al. 2021b) for a recent review. These models either reduce the size of the sound horizon at recombination, modifying the expansion rate in the early-universe, or else shift the matter–dark energy equality to earlier times than it otherwise would in ΛCDM with new physics in the post-recombination universe. Then, to keep the locations of the peaks in the CMB angular power spectrum fixed, H_0 increases, diminishing the tension. A particular class of models of interest herein are those in which the background geometry is not spatially flat. These models are motivated by observational data from the Planck mission (Aghanim et al. 2020a), which point to a 3.4σ evidence for a closed universe (Di Valentino et al. 2019; Handley 2019). Recently, a direct-observational test has been proposed to discriminate effects of the spatial curvature in the cosmological model (Shirokov et al. 2020). The test pivots on variations of the luminosity distance modulus, $\Delta \mu$. In this work we reexamine the outcomes of this test and show that achieving the required $\Delta \mu$ sensitivity to discriminate among cosmological models is more complex than previously thought.

2. Relative luminosity distance as a discriminator of space-curvature

The classical distance-ladder approach to measure H_0 combines Cepheid period-luminosity relations with absolute-distance measurements to local anchors so as to calibrate distances to supernova type Ia (SN Ia) host galaxies in the Hubble flow. For each (homogeneous and isotropic) cosmological model, a key parameter of local H_0 measurements is the predicted distance modulus, which is given by

$$\mu(z; \theta) = 5 \log_{10} \left(\frac{D_L}{10 \text{ Mpc}} \right) + 25,$$

(1)

where θ are the cosmological parameters,

$$D_L(z) = \frac{c}{H_0} \frac{1 + z}{\sqrt{\Omega_k}} \sinh \left(\sqrt{\Omega_k} \int_0^z \frac{dz'}{h(z')} \right),$$

(2)

is the luminosity distance, Ω_k is the present-day value of the curvature density normalized to the critical density, $h(z) = H(z)/H_0$ is the normalized Hubble parameter, and
where \(\sin(x) = \sin(x) \), \(x \), \(\sinh(x) \) for closed (\(\Omega_k < 0 \)), flat (\(\Omega_k = 0 \)), and open (\(\Omega_k > 0 \)) universes (Diwan et al. 2020). For low-redshift probes, the contribution of the radiation density parameter \(\Omega_r \) to \(h(z) \) can be safely neglected, and thus

\[
h(z) = \sqrt{\Omega_m(1+z)^3 + \Omega_D(1+z)^{3(1+w)} + \Omega_k(1+z)^2},
\]

where \(\Omega_m \) is the present day value of the nonrelativistic matter density and \(\Omega_D \) the corresponding dark energy density parameter, with \(\Omega_D + \Omega_m + \Omega_k + \Omega_r = 1 \). The scaling of \(\Omega_D \) is characterized by the “equation-of-state” parameter \(w \equiv p_D/\rho_D \), the ratio of the spatially homogeneous dark energy pressure to its energy density.

In the spirit of (Shirokov et al. 2020), we define the relative luminosity distance, \(D_{\text{rel}} \), as the ratio of the luminosity distance in a given cosmological model to the luminosity distance in the fixed spatially flat ΛCDM model,

\[
D_{\text{rel}}(z) = \frac{D_L(z)}{D_{\Lambda\text{CDM}}(z)} = F(z; \Omega_k, \Omega_m, w),
\]

which is independent of \(H_0 \). To discriminate models featuring \(\Omega_k \neq 0 \) from \(\Omega_k = 0 \), we adopt the relative luminosity distance modulus, given by the difference between a given model of luminosity distance modulus and the spatially flat ΛCDM luminosity distance modulus,

\[
\Delta m(z; \Omega_k, \Omega_m, w) = 5 \log_{10} [F(z; \Omega_k, \Omega_m, w)].
\]

We specify the range of cosmological parameters to scan over using results of Markov chain Monte Carlo analyses, which confront the growth of perturbations and of CMB fluctuations with experimental data. These analyses, which have been carried out elsewhere (Di Valentino et al. 2021c Anchordoqui et al. 2021), use the publicly available Boltzmann solver CAMB (Lewis et al. 2000) in combination with the sampler CosmoMC (Lewis et al. 2002 Lewis 2013), and the following data sets: (i) the CMB temperature and polarization angular power spectra \(p_{TT+EE}+lowl+lowE \) from the Planck 2018 legacy release (Aghanim et al. 2020a); (ii) measurements of baryon acoustic oscillations (BAO) from different galaxy surveys (6dFGS (Beutler et al. 2011), SDSS-MGS (Ross et al. 2015), and BOSS DR12 (Alam et al. 2017)); (iii) the 1048 SN type Ia data points of the Pantheon sample distributed in the redshift interval \(0.01 < z < 2.3 \) (Scolnic et al. 2018); (iv) a gaussian prior on the Hubble constant in agreement with measurements obtained by the SH0ES Collaboration (Riess et al. 2019, 2021).

We consider two representative cosmological models in which particular combinations of data samples provide evidence for \(\Omega_k \neq 0 \), with a statistical significance larger than 3σ and relax the \(H_0 \) tension:

- A ΛCDM extension with three extra free parameters, which are \(\Omega_k \neq 0 \), \(w \neq -1 \), and \(N_{\text{eff}} \); the latter characterizes the number of “equivalent” light neutrino species prior to recombination (Anchordoqui et al. 2021). In the ΛCDM model \(N_{\text{eff}} = 3.046 \) for three families of massless (Standard Model) neutrinos (Mangano et al. 2005). The 9-parameter space is given by

\[
P_1 \equiv \left\{ \Omega_b h^2, \Omega_{\text{CDM}} h^2, 100 \theta_{\text{MC}}, \tau, n_s, \ln[10^9 A_s],
\right.
\]

\[
w, \Omega_k, N_{\text{eff}} \right\},
\]

where \(\Omega_b h^2 \) is the density of baryons, \(\Omega_{\text{CDM}} h^2 \) is the density of CDM, \(\theta_{\text{MC}} \) is the ratio of sound horizon to the angular diameter distance, \(\tau \) denotes the reionization optical depth, \(n_s \) is the scalar spectral index, and \(A_s \) is the amplitude of the primordial scalar power spectrum.

- A ΛCDM extension with four extra free parameters, which are \(\Omega_k \neq 0 \), \(w \neq -1 \), the sum of neutrino masses \(\sum_i m_{\nu_i} \), and the running of the spectral index of inflationary perturbations \(\alpha_s \) (Di Valentino et al. 2021c). In the ΛCDM model a minimal \(\sum_i m_{\nu_i} = 0.06 \text{ eV} \) is assumed (Aghanim et al. 2020a). A 3σ indication for a negative running of \(\alpha_s \) has been observed in the combined analysis of Planck, BAO, and Lyman-α forest data (Palanque-Delabrouille et al. 2020), while a positive value at more than 2.4σ has been measured by the ACT Collaboration (Aiola et al. 2020); see also (Forconi et al. 2021). The 10-parameter space is given by

\[
P_2 \equiv \left\{ \Omega_b h^2, \Omega_{\text{CDM}} h^2, 100 \theta_{\text{MC}}, \tau, n_s, \ln[10^9 A_s],
\right.
\]

\[
w, \Omega_k, \alpha_s, \sum_i m_{\nu_i} \right\}.
\]

To discriminate the models from ΛCDM, we require the
predicted free parameters in the likelihood fit to be 3σ away from the ΛCDM result for any particular combination of the data samples yielding a solution of the H_0 tension. In Fig. 1 we show the Ω_k one-dimensional posterior distributions of P_1. A larger than 3σ evidence of $\Omega_k \neq 0$ is only achieved for the combination of CMB data with the SH0ES gaussian prior on the Hubble constant (dubbed R20). The best-fit values of relevant cosmological parameters to our analysis are: $\Omega_k = -0.020^{+0.0065}_{-0.0075}$, $w = -1.90^{+0.41}_{-0.25}$, and $\Omega_m = 0.264^{+0.010}_{-0.012}$ (Anchordoqui et al. 2021). For P_2, both CMB data alone and the combination of CMB data with the SH0ES prior give a larger than 3σ effect. However, when analyzing the CMB data alone, the best-fit gives a relative small evidence for the curvature density, $\Omega_k = -0.074^{+0.055}_{-0.06}$, which exacerbates the Hubble tension: $H_0 = 53^{+6}_{-16}$ km/s/Mpc (Di Valentino et al. 2021c). Therefore, we only consider for our investigation the results of the likelihood analysis to CMB data with the SH0ES prior. The best-fit values of the relevant parameters are as follows: $\Omega_k = -0.0192^{+0.0036}_{-0.0039}$, $w = -2.11^{+0.35}_{-0.77}$, $\Omega_m = 0.264^{+0.010}_{-0.013}$ (Di Valentino et al. 2021c).

In Fig. 2 we show the predicted relative distance modulus by P_1 and P_2 when varying the relevant parameters between 1σ, 2σ, and 3σ. We can see that for P_1, the predicted lower boundary of the 3σ region (corresponding to $\Omega_m = 0.294$) is consistent with the ΛCDM prediction, whereas for P_2, gives $\Delta \mu \lesssim 10^{-2}$. Altogether, this challenges the feasibility of using the relative luminosity distance modulus to probe the spatial curvature.

For P_2, the predicted $\Delta \mu$ lower boundary of the 3σ region has a maximum around $z \sim 1$, which is currently probed by the Pantheon data sample. As an illustration, in Fig. 3 we show the residuals for the SN Ia data plotted relative to the best fit ΛCDM model (Dhawan et al. 2020).

Now, a direct comparison of Figs. 2 and 3 demonstrates that the 68% CL residuals of SN Ia data relative to the best fit ΛCDM overlap the predicted $\Delta \mu$ contours obtained from the 3σ variation of relevant model parameters. This implies that for the models analyzed herein, the spatial curvature remains insensitive to local H_0 measurements from the Cepheid distance ladder.

3. Conclusions

We have reexamined the idea of using the relative luminosity distance modulus $\Delta \mu$ as a discriminator of space-curvature (Shirokov et al. 2020). We have shown that achieving the required $\Delta \mu$ sensitivity to discriminate among cosmological models will be vastly more complicated than once thought. An improvement in the sensitivity to $\Delta \mu$ of future probes must be accompanied by a reduction of the systematic uncertainties driving the determination of cosmological parameters.
Acknowledgements

We thank Eleonora Di Valentino for valuable discussions. LAA is supported by the U.S. National Science Foundation Grant PHY-2112527.

Data availability

We have used data from standard cosmological probes which are freely available.

References

References

N. Aghanim et al. [Planck Collaboration], Planck 2018 results VI: Cosmological parameters, Astron. Astrophys. 641, A6 (2020) [arXiv:1807.06209].

N. Aghanim et al. [Planck Collaboration], Planck 2018 results V: CMB power spectra and likelihoods, Astron. Astrophys. 641, A5 (2020) [arXiv:1807.06209].

S. Aliotta et al. [ACT Collaboration], The Atacama Cosmology Telescope: DRA maps and cosmological parameters, JCAP 12, 047 (2020) [arXiv:1907.12875].

S. Alam et al. [BOSS Collaboration], The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Mon. Not. Roy. Astron. Soc. 470, 2617 (2017) [arXiv:1607.02355].

G. S. Anand, R. B. Tully, L. Rizzi, A. G. Riess and W. Yuan, Comparing tip of the red giant branch distances: An independent reduction of the Carnegie-Chicago Hubble Program and the value of the Hubble constant, arXiv:2108.00007.

L. A. Anchordoqui, E. Di Valentino, S. Pan and W. Yuan, Dissecting the H₀ and Sₘ tension with Planck + BAO + supernova type Ia in multi-parameter cosmologies, JHEAP 32, 28 (2021) doi:10.1016/j.jheap.2021.08.001 [arXiv:2107.13933].

F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker, W. Saunders and F. Watson, The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant, Mon. Not. Roy. Astron. Soc. 416, 3917 (2011) doi:10.1111/j.1365-2966.2011.19250.x [arXiv:1106.3369].

S. Dhawan, D. Brout, D. Scolnic, A. Goobar, A. G. Riess and V. Miranda, Cosmological model insensitivity of local H₀ from the Cepheid distance ladder, Astrophys. J. 894, 54 (2020) doi:10.3847/1538-4357/ab7b0a [arXiv:2001.09260].

E. Di Valentino, A. Melchiorri and J. Silk, Planck evidence for a closed Universe and a possible crisis for cosmology, Nature Astron. 4, 196 (2019) doi:10.1038/s41550-019-0906-9 [arXiv:1911.02087].

E. Di Valentino et al., Cosmology intertwined II: The Hubble constant tension, Astropart. Phys. 131, 102605 (2021a) doi:10.1016/j.astropartphys.2021.102605 [arXiv:2008.11284].

E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D. F. Mota, A. G. Riess and J. Silk, In the realm of the Hubble tension—a review of solutions, Class. Quant. Grav. 38, 153001 (2021b) doi:10.1088/1361-6370/ac0861 [arXiv:2103.01183].

E. Di Valentino, A. Melchiorri and J. Silk, Investigating cosmic discordance, Astrophys. J. Lett. 908, L9 (2021c) doi:10.3847/2041-8213/abec1c [arXiv:2003.04935].

M. Forconi, W. Giare, E. Di Valentino and A. Melchiorri, Cosmological constraints on slow-roll inflation: an update, arXiv:2110.01695.

W. Hanley, Curvature tension: evidence for a closed universe, Phys. Rev. D 103, L041301 (2021) doi:10.1103/PhysRevD.103.L041301 [arXiv:1908.09139].