A forward electromagnetic and hadronic calorimeter (FoCal) was proposed as an upgrade to the ALICE experiment, to be installed during LS3 for data-taking in 2027–2029 at the LHC. The FoCal extends the scope of ALICE, which was designed for the comprehensive study of hot and dense partonic matter, by adding new capabilities to explore the small-x parton structure of nucleons and nuclei [1].

In particular, the FoCal provides unique capabilities at the LHC to investigate Parton Distribution Functions (PDFs) [2–4] in the as-yet unexplored regime of Bjorken-x down to $x \sim 10^{-6}$ and low momentum transfer $Q \sim 4 \text{ GeV}/c$, where the PDFs are expected to evolve non-linearly [5–8] due to the high gluon densities, perhaps leading to saturation [9–14]. The primary objective of the FoCal is high-precision inclusive measurement of direct photons and jets, as well as coincident gamma-jet and jet-jet measurements, in pp and p–Pb collisions. These measurements by FoCal constitute an essential part of a comprehensive small-x program at the LHC down to $x \sim 10^{-6}$ and over a large range of Q^2 with a broad array of complementary probes, comprising—in addition to the photon measurements by FoCal and LHCb—Drell-Yan and open charm measurements planned by LHCb, as well as photon-induced reactions performed by all LHC experiments [15]. This program will provide by far the most extensive exploration of non-linear
effects at small-x for the foreseeable future (Fig. 13 in [1]). Such effects are a necessary con-
sequence of the non-Abelian nature of QCD, and their observation and characterization would
be a landmark in our understanding of the strong interaction. Recent small-x computations at
next-to-leading order [16–18] will be extended to higher order within the next decade, and will
allow for powerful tests of the universality and process-independence of multi-parton correlators
by comparing p–Pb and e–Au data at the LHC and EIC.

With the addition of FoCal, ALICE will have unique capabilities at the LHC to perform photon-
induced measurements as a function of rapidity gap to ensure exclusivity and to measure inclusive
photo production in a wide variety of processes. Using FoCal and the central ALICE detectors,
angular correlations can be measured to probe EPR-type signals and quantum entanglement in a
kinematic domain unavailable elsewhere [19]. The FoCal also significantly enhances the ALICE
capabilities to study the origin of long range flow-like correlations in pp and p–Pb collisions, and
to quantify jet quenching effects at forward rapidity in Pb–Pb collisions.

The FoCal layout consists of a high-granularity electromagnetic calorimeter backed by a hadron
calorimeter, located outside the ALICE solenoid magnet at a distance of 7 m from the ALICE
interaction point. The electromagnetic part of FoCal is a compact silicon-tungsten (Si+W) sam-
ping electromagnetic calorimeter with longitudinal segmentation. The sampling in the current
FoCal design consists of 18 layers of tungsten and silicon pads with low granularity (∼1 cm²)
and two (or three) layers of tungsten and silicon pixels with high granularity (∼ 30 × 30 µm²).
The pad layers provide the measurement of the shower energy and profile, while the pixel layers
enable two-photon separation with high spatial precision to discriminate between isolated pho-
tons and merged showers of decay photon pairs from neutral pions. The hadronic part of FoCal
is a conventional metal/scintillating calorimeter with high granularity of up to 2.5 × 2.5 cm²,
which provides good hadronic resolution and compensation.

The proposed calorimeter will be unique in its capability to measure the inclusive direct photon
distributions in pp and p–Pb collisions in the forward region for 2 < p_T < 20 GeV/c. An
accuracy of 20% is reached at p_T ≈ 4 GeV/c which improves to about 5% at 10 GeV/c and
above (Fig. 39 in [1]), strongly constraining especially nuclear PDFs below x ∼ 0.001 [20].
In addition, the inclusive π^0 distribution in central Pb–Pb collisions can be measured with a
systematic uncertainty below 10% for p_T > 10 GeV/c (Fig. 46 in [1]), allowing for identified
particle measurements at uniquely forward rapidity in Pb–Pb collisions at the LHC.

Several prototype detectors were constructed and their performance was studied to validate the
design choices for the electromagnetic part of FoCal [21–24]. The results from these tests confirm
the feasibility of the design concept. For the final design, more R&D on the integration of the
system is necessary, while only modest additional R&D is needed to finalize the pad and pixel
sensor readout. In addition, a prototype for clinical application in computer tomography based
on proton tracking with a high-granularity (pixel based) digital tracking calorimeter is being
constructed by members of the FoCal collaboration [25].

References

[1] ALICE Collaboration, “Letter of Intent: A Forward Calorimeter (FoCal) in the ALICE
experiment”, CERN-LHCC-2020-009 (6, 2020) . https://cds.cern.ch/record/2719928

[2] K. Kovarik et al., “nCTEQ15 - Global analysis of nuclear parton distributions with
uncertainties in the CTEQ framework”, Phys. Rev. D93 no. 8, (2016) 085037.
arXiv:1509.00792 [hep-ph].
[3] K. J. Eskola, P. Paakkinen, H. Paukkunen, and C. A. Salgado, “EPPS16: Nuclear parton distributions with LHC data”, *Eur. Phys. J. C*77 no. 3, (2017) 163, arXiv:1612.05741 [hep-ph].

[4] NNPDF Collaboration, R. Abdul Khalek, J. J. Ethier, and J. Rojo, “Nuclear parton distributions from lepton-nucleus scattering and the impact of an electron-ion collider”, *Eur. Phys. J. C*79 no. 6, (2019) 471, arXiv:1904.00018 [hep-ph].

[5] I. Balitsky, “Operator expansion for high-energy scattering”, *Nucl. Phys. B* 463 (1996) 99–160, arXiv:hep-ph/9509348.

[6] Y. V. Kovchegov, “Small x F(2) structure function of a nucleus including multiple pomeron exchanges”, *Phys. Rev. D* 60 (1999) 034008, arXiv:hep-ph/9901281.

[7] A. H. Mueller, “A Simple derivation of the JIMWLK equation”, *Phys. Rev. B* 523 (2001) 243–248, arXiv:hep-ph/0110169 [hep-ph].

[8] T. Lappi and H. Mäntysaari, “Next-to-leading order Balitsky-Kovchegov equation with resummation”, *Phys. Rev. D* 93 no. 9, (2016) 094004, arXiv:1601.06598 [hep-ph].

[9] L. Gribov, E. Levin, and M. Ryskin, “Semihard Processes in QCD”, *Phys. Rept.* 100 (1983) 1–150.

[10] A. H. Mueller and J.-w. Qiu, “Gluon Recombination and Shadowing at Small Values of x”, *Nucl. Phys. B* 268 (1986) 427–452.

[11] A. Ayala, M. Gay Ducati, and E. Levin, “QCD evolution of the gluon density in a nucleus”, *Nucl. Phys. B* 493 (1997) 305–353, arXiv:hep-ph/9604383.

[12] A. Ayala Filho, M. Gay Ducati, and E. Levin, “Parton densities in a nucleon”, *Nucl. Phys. B* 511 (1998) 355–395, arXiv:hep-ph/9706347.

[13] Y. V. Kovchegov, “Unitarization of the BFKL pomeron on a nucleus”, *Phys. Rev. D* 61 (2000) 074018, arXiv:hep-ph/9905214.

[14] E. Iancu and L. D. McLerran, “Saturation and universality in QCD at small x”, *Phys. Lett. B* 510 (2001) 145–154, arXiv:hep-ph/0103032.

[15] Z. Citron et al., “Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams”, in *HL/HE-LHC Workshop: Workshop on the Physics of HL-LHC, and Perspectives at HE-LHC Geneva, Switzerland, June 18-20, 2018*. 2018, arXiv:1812.06772 [hep-ph].

[16] S. Benic, K. Fukushima, O. Garcia-Montero, and R. Venugopalan, “Probing gluon saturation with next-to-leading order photon production at central rapidities in proton-nucleus collisions”, *JHEP* 01 (2017) 115, arXiv:1609.09424 [hep-ph].

[17] S. Benić, K. Fukushima, O. Garcia-Montero, and R. Venugopalan, “Constraining unintegrated gluon distributions from inclusive photon production in proton–proton collisions at the LHC”, *Phys. Lett. B* 791 (2019) 11–16, arXiv:1807.03806 [hep-ph].

[18] K. Roy and R. Venugopalan, “NLO impact factor for inclusive photon+dijet production in $e + A$ DIS at small x”, *Phys. Rev. D* 101 no. 3, (2020) 034028, arXiv:1911.04530 [hep-ph].

3
[19] R. Bellwied et al., “Quantum entanglement in the initial and final state of relativistic heavy ion collisions”, *J. Phys. Conf. Ser.* 1070 no. 1, (2018) 012001, arXiv:1807.04589 [nucl-th].

[20] R. Abdul Khalek, J. J. Ethier, J. Rojo, and G. van Weelden, “nNPDF2.0: Quark Flavor Separation in Nuclei from LHC Data”, arXiv:2006.14629 [hep-ph].

[21] S. Muhuri, S. Mukhopadhyay, V. B. Chandratre, M. Sukhwani, S. Jena, S. A. Khan, T. K. Nayak, J. Saini, and R. N. Singaraju, “Test and characterization of a prototype silicon–tungsten electromagnetic calorimeter”, *Nucl. Instrum. Meth.* A764 (2014) 24–29, arXiv:1407.5724 [physics.ins-det].

[22] de Haas A. P. et al., “The FoCal prototype—an extremely fine-grained electromagnetic calorimeter using CMOS pixel sensors”, *JINST* 13 no. 01, (2018) P01014, arXiv:1708.05164 [physics.ins-det].

[23] S. Muhuri et al., “Fabrication and beam test of a silicon-tungsten electromagnetic calorimeter”, *JINST* 15 no. 03, (2020) P03015, arXiv:1911.00743 [physics.ins-det].

[24] T. Awes et al., “Design and Performance of a Silicon Tungsten Calorimeter Prototype Module and the Associated Readout”, arXiv:1912.11115 [physics.ins-det].

[25] H. E. S. Pettersen et al., “Design optimization of a pixel-based range telescope for proton computed tomography”, *Physica Medica* 63 (2019) 87–97.