A checklist of marine bryozoan taxa in Scottish sea regions

Sally Rouse¹, Jennifer Loxton², Mary E. Spencer Jones³, Joanne S. Porter⁴

¹ Scottish Association for Marine Science, Oban, Argyll, PA37 1QA, UK
² School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FE, UK
³ Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
⁴ International Centre for Island Technology, Heriot Watt University, Orkney, Old Academy, Back Road, Stromness, KW16 3DA, UK

Corresponding author: Joanne S. Porter (j.s.porter@hw.ac.uk)

Academic editor: D. Gordon
Received 23 February 2018 | Accepted 27 August 2018 | Published 3 October 2018

Citation: Rouse S, Loxton J, Jones MES, Porter JS (2018) A checklist of marine bryozoan taxa in Scottish sea regions. ZooKeys 787: 135–149. https://doi.org/10.3897/zookeys.787.24647

Abstract
Contemporary and historical bryozoan records were compiled to provide a comprehensive checklist of species in Scottish waters. The checklist comprises 218 species in 58 families, with representatives from each of the extant bryozoan orders. The fauna was relatively sparse compared to other regions for which bryozoan checklists were available e.g. New Zealand and Australia. Six non-indigenous bryozoan species from the Scottish seas region were included in the checklist. Baseline information on species distributions, such as that presented in this checklist, can be used to monitor and manage the impact of human activities on the marine environment, and ultimately preserve marine biodiversity.

Keywords
Bryozoa, distribution, non-indigenous species, Scotland

Introduction
The phylum Bryozoa comprises approximately 6000 known/described extant species of filter feeding invertebrates that predominantly occur in the marine environment (Gordon and Costello 2016). There are three classes and four orders of extant bryo-
ans (class Gymnolaemata, orders Cheilostomatida and Ctenostomatida; class Phylactolaemata (freshwater), order Phylactolaemata incertae sedis; class Stenolaemata, order Cyclostomatida). The order Cheilostomatida is the most diverse.

All bryozoans are clonal and the colonies can take many different forms including encrusting, erect and arborescent forms (McKinney and Jackson 1991). The majority of bryozoan species have a calcium carbonate skeleton, but there are also a number of chitinous and gelatinous species. Colony growth proceeds via the asexual budding of individual units, called zooids, with sexual reproduction producing free-swimming larvae (McKinney and Jackson 1991). Bryozoan species occur in all major marine habitats, from the Polar regions to the tropics, ranging from the intertidal zone to the deep sea. The vast majority of species live attached to a substrate, which may be rocks, biogenic structures (e.g. coral, shells), algae or man-made debris (Hayward and Ryland 1998).

Bryozoans contribute to ecosystem functioning and services through the provision of three-dimensional structure and habitat for other species, and by serving as a food source for other marine species (Bitschofsky et al. 2011; Lidgard 2008). Bryozoans are also recognized for their potential economic importance due to the pharmaceutical and active compounds that are associated with a number of species. (Narkowicz et al. 2002). Several bryozoan species are recognized as invasive and are potentially harmful to native marine species (O’Brien et al. 2013; Yorke and Metaxas 2011). Despite these ecological and economic roles, knowledge on local bryozoan species and faunistic inventories are often lacking or incomplete (Rouse et al. 2014). Such baseline information on species distributions is required to monitor and manage the impact of human activities on the marine environment, and ultimately preserve marine biodiversity (Powney and Isaac 2015).

Scotland lays claim to one of the largest marine resources in Europe with over 9910 km of mainland coastline, 8092 km of island coastline, and an estimated 88,600 km2 of territorial seas (Baxter et al. 2011). The west coast of Scotland has numerous exposed islands, high sea cliffs, and fjordic inlets, while the east coast is less variable and dominated by low-lying sedimentary shores. Marine spatial planning has been identified as priority by the Scottish Government (Baxter et al. 2011), and there is a drive towards providing reliable information on species occurrences and distribution. Scotland has historically been the focus of much marine biological research and as such a vast back catalogue of bryozoan records exist (e.g. Norman 1869, Hiscock 1996). These records, however, are often disparate, unreliable and/or difficult to locate. Rouse et al. (2014) analysed records of marine bryozoan from Scotland between 1792 and 2010 to assess spatial and temporal trends in bryozoan diversity. Records were compiled from museum collections, professional/academic surveys, consultancy reports and a citizen science scheme consisting of trained amateurs. Records for which the location was uncertain or not provided, and/or the species seemed likely to be wrong based on its generally accepted distribution (e.g. tropical or Antarctic) were discarded. Other records that had only been documented in Scotland by one source, with an unknown or non-expert identified, were also excluded from the analysis. Approximately 8% of these records were museum collections with associated specimens, 60% from a ten-
year expert survey of the British coastline and 16% from the citizen science scheme, with the latter two relying on identification via optical microscopes. The remaining records were compiled from published manuscripts that used a combination of optical and scanning electron microscopy for identification.

Using these records, Rouse et al. (2014) found bryozoan diversity to be higher on the west coast of Scotland than other regions, but this was largely attributed to a sampling bias towards the west coast. The study also highlighted the lack of a bryozoan species list for Scottish waters. The aim of the present study, therefore, is to combine the data collated by Rouse et al. (2014) with recent bryozoan studies in Scotland to provide a comprehensive species checklist of marine bryozoan species in the region.

Methods

Study area

The Scottish sea region was defined according to the ‘Clean Sea Assessment’ in the Scottish Government’s Marine Atlas (Baxter et al. 2011). The region constitutes 15 sub-regions covering coastal and offshore areas (Figure 1). Previous sub-divisions of the Scottish seas (e.g., the MNCR regions used by Rouse et al. (2014)) are restricted to coastal areas, and as such have not been selected for use in this checklist. There is no a priori reason to expect that the Scottish sea region would have a distinct fauna, however the region does support a greater range of habitat types than the adjoining English Sea area (Baxter et al. 2011). The north of Scotland also represents a transitional area between arctic and boreal species (Boulton et al. 1991).

Data sources

Historical and contemporary records of bryozoans were obtained from sources including museum collections, literature, and online databases according to the methods of Rouse et al. (2014). These records were supplemented with records from occasional field surveys carried around Scottish harbours and marinas as part of an on-going invasive species survey programme (Collin et al. 2015; Loxton 2014; Nall et al. 2015; Porter et al. 2015; Wasson and De Blauwe 2014). The checklist represents the species known from Scotland up until 2015.

Organization of the checklist

The checklist is arranged phylogenetically for the higher-level taxa, with the families, genera, and species listed alphabetically. Taxonomy was checked against the World Register of Marine Species (Horton et al. 2016), and names that were currently listed as ‘ac-
Figure 1. Scottish sea regions. The abbreviations given are used in the checklist. BLY (Bailey), CLD (Clyde), ESH (East Shetland), EST (East Scotland), FDN (Fladen), FRT (Forties), FSC (Faroe-Shetland Channel), FTH (Forth), HBD (Hebrides), MMS (Minches and Malin Sea), MRF (Moray Firth), NSC (North Scotland), RK (Rockall), SFN (Solway Firth and North Channel), WSH (West Shetland).
cepted’ are presented. The number in parentheses immediately to the right of the family name indicates the number of associated taxa, and the abbreviations next to each species specify the sub-region from which records originated (see Figure 1 for definitions of abbreviations). Bryozoan non-indigenous species (NIS) are denoted with an asterisk (*) in the checklist. Individual bryozoan records are provided in the Suppl. material 1.

Results

Table 1 shows the checklist of marine Bryozoa from the Scottish sea regions. A total of 218 species are included in the list, belonging to 128 different genera from 58 families. The Scottish records represent approximately 3.7% of the total number of bryozoan species known worldwide (n = 5869) (Bock and Gordon 2013). There are representatives from each of the extant marine bryozoan orders (Cyclostomatida, Ctenostomatida, and Cheilostomatida). The most speciose bryozoan families in Scotland were the Calloporidae (13 species) and the Romancheinidae (13 species), which both contain mainly encrusting species.

Six NIS were identified as part of the Scottish fauna. These were *Bugulina fulva* (Ryland, 1960), *Bugulina simplex* (Hincks, 1886), *Bugula neritina* (Linnaeus, 1758), *Tricellaria inopinata* d’Hondt & Occhipinti Ambrogi, 1985, *Fenestrulina delicia* Winston, Hayward & Craig, 2000, *Schizoporella japonica* Ortmann, 1890. The Clyde sub-region contained the greatest number of NIS (all except *B. fulva*).

Table 1. Checklist of marine bryozoan fauna occurring in the Scottish sea region. Species denoted with an asterisk (*) indicate those considered to be non-indigenous within Scotland.
Scientific Name	Abbreviations
Disporella hispida (Fleming, 1828)	CLD, EST, FTH, HBD, MMS, NCS, WSH
Patinella verrucaria (Linnaeus, 1758)	CLD, EST, FTH, MMS, NCS, WSH
Family Oncousoeciidae (2)	
Oncousoecia diastoporides (Norman, 1869)	MRF, WSH
Oncousoecia dilatans (Johnston, 1847)	ESH, MMS, WSH
Family Plagiocciidae (2)	
Diplosolen obelia (Johnston, 1838)	CLD, ESH, HBD, MMS, WSH
Plagioecia patina (Lamarck, 1816)	CLD, ESH, HBD, MMS, NCS, WSH
Family Stigmatoecchidae (1)	
Stigmatoecchos violacea (M.Sars, 1863)	RK, WSH
Family Stomatoporidae (2)	
Stomatopora gingrina Jullien, 1882	RK
Stomatoporina incurvata (Hincks, 1859)	MMS, MRF
Family Terviidae (1)	
Tervia irregularis (Meneghini, 1844)	RK
Family Tubuliporidae (8)	
Exidmonea atlantica (Forbes in Johnston, 1847)	MMS, RK, WSH
Tubulipora aperta Harmer, 1898	EST, FTH, NCS
Tubulipora flabellaris (O. Fabricius, 1780)	CLD
Tubulipora lilacea (Pallas, 1766)	CLD, EST, FTH, FRT, HBD, MMS, MRF, NCS, RK, WSH
Tubulipora lobifera Hastings, 1963	CLD, MMS, MRF, NCS
Tubulipora penicillata (O. Fabricius, 1780)	MMS, MRF
Tubulipora phalangea Couch, 1844	HBD, MMS, NCS, WSH
Tubulipora plumosa Thompson in Harmer, 1898	EST, FTH, MMS, NCS, WSH

GYMNOLAEMATA (189)

Order Ctenostomatida (27)

Scientific Name	Abbreviations
Family Alcyoniidiidae (8)	
Alcyoniodioides mytili (Dalyell, 1848)	CLD, EST, FTH, HBD, MMS, NCS, SFN, WSH
Alcyonidium albium Alder, 1857	CLD, EST, FTH, MMS, MRF, NCS, WSH
Alcyonidium diaphanum (Hudson, 1778)	CLD, ESH, EST, FTH, FRT, HBD, MMS, MRF, NCS, RK, SFN, WSH
Alcyonidium gelatinosum (Linnaeus, 1761)	CLD, EST, FTH, FRT, HBD, MMS, MRF, NCS, SFN, WSH
Alcyonidium bicornutum (Fleming, 1828)	CLD, ESH, EST, FTH, HBD, MMS, MRF, NCS, SFN, WSH
Alcyonidium mammilatum Alder, 1857	CLD, EST, MMS, MRF, NCS, SFN
Alcyonidium parasiticum (Fleming, 1828)	CLD, EST, FTH, MMS, MRF, NCS, WSH
Alcyonidium polyoun (Hassall, 1841)	HBD
Family Arachnidiiidae (2)	
Arachnidium clavatum Hincks, 1877	CLD, MMS, WSH
Arachnidium fibrosum Hincks, 1880	CLD
Family Buskiidae (1)	
Buskia nitens Alder, 1857	WSH
Family Farrellidae (1)	
Farrellia repens (Farre, 1837)	SFN
Family Flustrellidridae (1)	
Flustrellidra hispida (O. Fabricius, 1780)	CLD, EST, FTH, HBD, MMS, MRF, NCS, SFN, WSH
Family Hypophorellidae (1)	
Hypophorella expansa Ehlers, 1876	CLD
Family Nolellidae (3)	
A checklist of marine bryozoan taxa in Scottish sea regions

Genus and Species	Location Distribution
Nolella dilatata (Hincks, 1860)	CLD, FTH, MMS, NCS, WSH
Nolella pusilla (Hincks, 1880)	CLD
Nolella stipata Gosse, 1855	MMS

Family Spathiporidae (1)

Genus and Species	Location Distribution
Spathipora sertum Fischer, 1866	WSH

Family Triticellidae (2)

Genus and Species	Location Distribution
Triticella flava Dalyell, 1848	CLD, SFN
Triticella pedicellata (Alder, 1857)	CLD

Family Vesiculariidae (6)

Genus and Species	Location Distribution
Amathia gracilis (Leidy, 1855)	CLD, FTH, MMS
Amathia gracillima (Hincks, 1877)	MMS
Amathia imbricata (Adams, 1798)	CLD, EST, FTH, HBD, MMS, NCS, SFN
Amathia lendigera (Linnaeus, 1758)	SFN
Amathia pustulosa (Ellis & Solander, 1786)	CLD, MMS, SFN

Family Walkeriidae (1)

Genus and Species	Location Distribution
Walkeria uva (Linnaeus, 1758)	CLD, ESH, MMS, NCS

Order Cheilostomatida (160)

Family Aeteidae (3)

Genus and Species	Location Distribution
Aetea anguina (Linnaeus, 1758)	EST, FTH, HBD, MMS, NCS, WSH
Aetea sica (Couch, 1844)	CLD, MMS, NCS
Aetea truncata (Landsborough, 1852)	CLD, MMS, NCS

Family Antroporidae (1)

Genus and Species	Location Distribution
Rosselia rouselli (Audouin, 1826)	ESH, WSH

Family Beaniidae (1)

Genus and Species	Location Distribution
Beania mirabilis Johnston, 1840	EST, MMS, NCS

Family Bitectiporidae (7)

Genus and Species	Location Distribution
Hippoporina pertua (Esper, 1796)	CLD, MMS, NCS, SFN, WSH
Pentapora fascialis (Pallas, 1766)	HBD, MMS, SFN
Schizomavella auriculata (Hassall, 1842)	MMS, NCS, SFN, WSH
Schizomavella cornuta (Heller, 1867)	WSH
Schizomavella discoidea (Busk, 1859)	NCS, WSH
Schizomavella hastata (Hincks, 1862)	WSH
Schizomavella linearis (Hassall, 1841)	CLD, EST, FTH, HBD, MMS, MRF, NCS, SFN, WSH

Family Bryocryptellidae (8)

Genus and Species	Location Distribution
Marguetta lorea (Alder, 1864)	ESH, WSH
Palmiskenia skenei (Ellis & Solander, 1786)	CLD, EST, MMS, MRF, RK, WSH
Porella alba Nordgaard, 1906	EST, MRF, NCS
Porella compressa (J. Sowerby, 1805)	CLD, HBD, MMS, MRF, NCS, RK, WSH
Porella concinna (Busk, 1854)	CLD, EST, MMS, MRF, WSH
Porella laevis (Fleming, 1828)	WSH
Porella minuta (Norman, 1868)	MRF, WSH
Porella struma (Norman, 1868)	ESH, WSH

Family Bugulidae (12)

Genus and Species	Location Distribution
Bicellariella ciliata (Linnaeus, 1758)	CLD, ESH, EST, FTH, HBD, MMS, NCS, WSH
Bicellaria alderi (Busk, 1859)	MMS, NCS, WSH
Bugulina avicularia (Linnaeus, 1758)	CLD, HBD, MMS, NCS, SFN, WSH
Bugulina calathus (Norman, 1868)	MMS
Bugulina flabellata (Thompson in Gray, 1848)	CLD, ESH, EST, FTH, HBD, MMS, MRF, NCS, RK, SFN, WSH
Species	Location(s)
-------------------------------	--------------
Bugulina fulva (Ryland, 1960)	MMS, NCS
Bugulina turbinata (Alder, 1857)	CLD, FTH, HBD, MMS, NCS, WSH
Bugulina simplex (Hincks, 1886)	CLD, ESH, MMS, NCS
Bugula neritina (Linnaeus, 1758)	CLD
Crisularia plumea* (Pallas, 1766)	CLD, EST, FTH, HBD, MMS, NCS, SFN
Crisularia paraprotincta* (Norman, 1868)	ESH, EST, FTH, HBD, MMS, NCS, WSH
Dendrobeania murayana* (Bean in Johnston, 1847)	ESH, MMS, NCS, WSH
Family Calloporidae (13)	
Alderina imbellis (Hincks, 1860)	MMS, NCS, WSH
Amphibolestrum auritum (Hincks, 1877)	EST, MMS, NCS, WSH
Amphibolestrum flemingii (Busk, 1854)	CLD, EST, FTH, MMS, MRF, NCS, RK, WSH
Amphibolestrum solidum* (Packard, 1863)	ESH, MMS, MRF, WSH
Callopora craticula* (Alder, 1856)	CLD, MMS, WSH
Callopora dumerili (Australin, 1826)	MMS, MRF, NCS, SFN, WSH
Callopora linata (Linnaeus, 1767)	CLD, EST, FTH, MMS, MRF, NCS, WSH
Callopora rylandii Bobin & Prenant, 1965	EST, FTH, HBD, MMS, NCS
Caulonamphus spiniferus* (Johnston, 1832)	EST, MMS, NCS, WSH
Crisimarginatella solidula* (Hincks, 1860)	EST, WSH
Megapora ringeni (Busk, 1856)	EST, FSC, WSH
Ramphonotus minax (Busk, 1860)	ESH, RK, WSH
Tegella unicornis* (Fleming, 1828)	EST, MRF, NCS, WSH
Family Candidae (9)	
Caberea ellisi (Fleming, 1814)	NCS, WSH
Cradoscrupocellaria reptans* (Linnaeus, 1758)	CLD, ESH, EST, FTH, HBD, MMS, NCS, SFN, WSH
Notoplites harneri Ryland, 1963	WSH
Notoplites jeffreyi* (Norman, 1863)	ESH, MMS, WSH
Pomocellaria inermata* (O’Donoghue & O’Donoghue, 1926)	FTH, MMS, WSH
Scrupocellaria scruposa* (Linnaeus, 1758)	CLD, ESH, EST, FTH, HBD, MMS, NCS, SFN, WSH
*Tricellaria inopinata d’Hondt & Occhipinti, Ambrogi, 1985	CLD, EST, MMS, MRF, NCS
Tricellaria peachi (Busk, 1851)	ESH, EST, MRF, NCS, WSH
Tricellaria ternata* (Ellis & Solander, 1786)	ESH, EST, FTH, FRT, HBD, NCS, WSH
Family Cellariidae (4)	
Cellaria fistulosa (Linnaeus, 1758)	CLD, EST, FTH, HBD, MMS, MRF, NCS, SFN, WSH
Cellaria salicornoides Lamouroux, 1816	CLD, MMS, WSH
Cellaria sinuosa* (Hassall, 1840)	CLD, EST, HBD, MMS, SFN, WSH
Euginoma vermiformis Jullien, 1883	RK
Family Calleporidae (11)	
Buskea dichotoma* (Hincks, 1862)	CLD, EST, MMS, MRF, WSH
Buskea nitida Heller, 1867	CLD, MMS
Callepora pumicosa* (Pallas, 1766)	CLD, ESH, EST, FTH, FRT, HBD, MMS, MRF, NCS, RK, WSH
Calleporina californica* (Lamouroux, 1816)	CLD, ESH, FTH, HBD, MRF, MMS, MRS, NCS, WSH
Calleporina decipiens Hayward, 1976	HBD
Calleporina pygmaea* (Norman, 1868)	FSC, MRF, WSH
Lagenipora lepraloides* (Norman, 1868)	ESH, WSH
Omalosecosa tamulusa* (Linnaeus, 1767)	CLD, ESH, EST, FTH, HBD, MMS, MRF, NCS, WSH
Palmicellaria elegans* Alder, 1864	WSH
Turbicellepora avicularis* (Hincks, 1862)	CLD, EST, FRT, HBD, MMS, MRF
A checklist of marine bryozoan taxa in Scottish sea regions

Taxon	Location	
Turbicellepora boreale Hayward & Hansen, 1999	RK	
Family Chaperiidae (1)		
Larnicicus corniger (Busk, 1859)	FSC, RK, WSH	
Family Chorizoporidae (1)		
Chorizopora bronniartii (Audouin, 1826)	EST, MMS, NCS, SFN, WSH	
Family Cribrilinidae (7)		
Collarina balzaci (Audouin, 1826)	CLD, MMS, WSH	
Cribrilina annulata (O. Fabricius, 1780)	CLD, EST, FTH, MMS, NCS, WSH	
Cribrilina cryptonecium Norman, 1903	EST, MMS, MRF, NCS, WSH	
Cribrilina punctata (Hassall, 1841)	CLD, EST, FTH, MMS, MRF, NCS, WSH	
Membraniporella nitida (Johnston, 1838)	CLD, EST, FTH, HBD, MMS, MRF, NCS, WSH	
Puellina innominata (Couch, 1844)	CLD	
Puellina venusta (Canu & Bassler, 1925)	CLD, WSH	
Family Cryptosulidae (1)		
Cryptosula pallasiiana (Moll, 1803)	CLD, MMS, MRF, NCS, WSH	
Family Doryporellidae (1)		
Doryporellina reticulata (Ryland, 1963)	RK	
Family Electridae (7)		
Aspidelectra melolontha (Landsborough, 1852)	NCS	
Conopeum reticulum (Linnaeus, 1767)	CLD, EST, FTH, FRT, MMS, NCS, MRF	
Conopeum sennii (Canu, 1928)	NCS	
Einhornia crustulenta (Pallas, 1766)	NCS	
Electra monostachys (Busk, 1854)	MMS, NCS, SFN	
Electra pilosa (Linnaeus, 1767)	CLD, ESH, EST, FTH, HBD, MMS, MRF, NCS, RK, SFN, WSH	
Pyripora catenularia (Fleming, 1828)	CLD, FRT, MMS, NCS, SFN, WSH	
Family Escharinidae (5)		
Escharina alderi (Busk, 1856)	FSC, MMS, RK, WSH	
Escharina dutertrei haywardi Zabala, Maluquer & Harmelin, 1993	FSC, WSH	
Escharina johnstoni (Quelch, 1884)	CLD, MMS	
Herentia hyndmanni (Johnston, 1847)	NCS, WSH	
Phaeostachys spinifera (Johnston, 1847)	FTH, MMS, NCS, WSH	
Family Eucrateidae (1)		
Eucratea loricata (Linnaeus, 1758)	CLD, ESH, EST, FTH, HBD, MMS, MRF, NCS, SFN, WSH	
Family Exechonellidae (1)		
Anarthropora monodon (Busk, 1860)	FSC, WSH	
Family Exochellidae (2)		
Escharoides coccinea (Abildgaard, 1806)	CLD, EST, FTH, HBD, MMS, MRF, NCS, WSH	
Escharoides mamillata (Wood, 1844)	EST, MMS, NCS, WSH	
Family Flustridae (7)		
Carbasea carbasea (Ellis & Solander, 1786)	EST, FTH, HBD, WSH	
Chartella barleei (Busk, 1860)	ESH, NCS, WSH	
Chartella papynacea (Ellis & Solander, 1786)	CLD, HBD, MMS	
Flustra foliacea (Linnaeus, 1758)	CLD, ESH, EST, FTH, FRT, HBD, MMS, MRF, NCS, SFN, WSH	
Hincksina flustroides (Hincks, 1877)	HBD	
Sarsiflustra abyssicola (Sars G.O., 1872)	WSH	
Securiflustra securifrons (Pallas, 1766)	CLD, ESH, EST, FTH, FRT, HBD, MMS, MRF, NCS, SFN, WSH	
Family Haploporididae (4)		
Genus	Author and Year	Location Codes
--	-----------------	----------------
Haplopoma graniferum	Johnston, 1847	CLD, FTH, NCS, WSH
Haplopoma impressum	Audouin, 1826	CLD, MMS, NCS, WSH
Haplopoma planum	Ryland, 1963	ESH, WSH
Haplopoma sciaphilum	Silén & Harmelin, 1976	HBD

Family Hippoporidridae (2)

Genus	Author and Year	Location Codes
Haplopoma impressum	Audouin, 1826	CLD, MMS, NCS, WSH
Haplopoma planum	Ryland, 1963	ESH, WSH
Haplopoma sciaphilum	Silén & Harmelin, 1976	HBD

Family Hippothoidae (4)

Genus	Author and Year	Location Codes
Celliporella hyalina	Linnaeus, 1767	CLD, EST, FTH, HBD, MMS, MRF, NCS, WSH
Haiplocephalus clavata	Hincks, 1857	CLD
Hippothoa divaricata	Lamouroux, 1821	CLD, EST, NCS
Hippothoa flagellum	Manzoni, 1870	CLD, MMS, NCS

Family Lacernidae (1)

Genus	Author and Year	Location Codes
Cylindroporella tubulosa	Norman, 1868	HBD, MRF, NCS, WSH

Family Membraniporidae (1)

Genus	Author and Year	Location Codes
Membranipora membranacea	Linnaeus, 1767	ESH, EST, FTH, HBD, MMS, MRF, NCS, RK, SFN, WSH

Family Microporellidae (3)

Genus	Author and Year	Location Codes
Fenestrulina delicia	Winchester, Hayward & Craig, 2000	CLD, WSH
Fenestrulina malusii	Audouin, 1826	CLD, EST, HBD, MMS, MRF, NCS, SFN, WSH
Microporella ciliata	Pallas, 1766	CLD, EST, FTH, MMS, NCS, SFN, WSH

Family Microporidae (3)

Genus	Author and Year	Location Codes
Micropora coriacea	Johnston, 1847	CLD
Micropora normani	Levensin, 1909	WSH
Molle multijuncta	Waters, 1879	WSH

Family Phidoloporidae (5)

Genus	Author and Year	Location Codes
Reteporella braniana	King, 1846	MMS, NCS, RK, WSH
Reteporella incognito	Hayward & Ryland, 1996	RK, WSH
Reteporella watersi	Nordgaard, 1907	WSH
Rhynchozoon bispinosum	Johnston, 1847	WSH
Schizotheca fisa	Busk, 1856	MMS

Family Romancheinidae (13)

Genus	Author and Year	Location Codes
Arctonula arctica	M. Sars, 1851	EST, WSH
Eucharella abyssicola	Norman, 1869	FSC, WSH
Eucharella immersa	Fleming, 1828	CLD, EST, MMS, MRF, NCS, WSH
Eucharella labiosa	Busk, 1856	HBD, MMS
Eucharella laqueata	Norman, 1864	MMS, WSH
Eucharella octodentata	Hincks, 1880	FSC, RK, WSH
Eucharella variolosa	Johnston, 1838	CLD, EST, MMS, MRF, WSH
Eucharella ventricosa	Hassall, 1842	CLD, EST, FTH, MMS, MRF, NCS, WSH
Hemicyclopora polita	Norman, 1864	ESH, MMS, WSH
Neologenipona collaris	Norman, 1867	MMS, MRF, NCS, WSH
Neologenipona exima	Hincks, 1860	WSH
Ragionula rosacea	Busk, 1856	CLD, NCS, WSH
Temachia microtoma	Norman, 1864	ESH, WSH

Family Schizoporellidae (6)

Genus	Author and Year	Location Codes
Schizoporella cornuallii	Hayward & Ryland, 1995	MMS

Note: Location Codes: CLD = Closer to Land, EST = Estuarine, FTH = Further than Haplopoma, MRF = More Remote, NCS = Near Coastal Sea, RK = Remote, SFN = South Farallon Islands, WSH = Water Surface Higher.
Taxa	Localities
Schizoporella dunkeri (Reuss, 1848)	MMS, NCS, WSH
Schizoporella japonica (Ortmann, 1890)	CLD, ESH, EST, MMS, MRF, NCS, WSH
Schizoporella patula (Hayward & Ryland, 1995)	ESH, FSC, NCS, WSH
Schizoporella umbonata O’Donoghue & O’Donoghue, 1926	WSH
Schizoporella unicornis (Johnston in Wood, 1844)	CLD, HBD, MMS, MRF, NCS, WSH
Family Scrupariidae (2)	
Scruparia ambigua (d’Orbigny, 1841)	EST, HBD
Scruparia chelata (Linnaeus, 1758)	CLD, EST, FTH, HBD, MMS, NCS, WSH
Family Setosellidae (1)	
Setosella vulnerata (Busk, 1860)	ESH, WSH
Family Smittinidae (8)	
Paramittina trispinosa (Johnston, 1838)	CLD, ESH, EST, FTH, HBD, MMS, MRF, NCS, RK, SFN, WSH
Phylactella labrosa (Busk, 1854)	MRF, NCS, WSH
Pseudoflustra virgula Hayward, 1994	FSC
Smittina bella (Busk, 1860)	CLD, EST, WSH
Smittina crystallina (Norman, 1867)	MMS, MRF, NCS, WSH
Smittioidea amplissima Hayward, 1979	WSH
Smittioidea marmorata (Hincks, 1877)	EST, FTH, MMS, NCS, WSH
Smittioidea reticulata (MacGillivray, 1842)	CLD, EST, FTH, MMS, MRF, NCS, WSH
Family Stomachetosellidae (3)	
Stomachetosella normani Hayward, 1994	WSH
Stomacrustula cruenta (Busk, 1854)	CLD, ESH, WSH
Stomacrustula sinuosa (Busk, 1860)	CLD, MMS, WSH
Family Tesseradomidae (1)	
Tesseradoma boreale (Busk, 1860)	HBD, RK, WSH
Family Umbonulidae (1)	
Oshurkovia littoralis (Hastings, 1944)	CLD, ESH, EST, FTH, HBD, MMS, MRF, NCS SFN, WSH

Discussion

The Scottish sea regions contain 218 bryozoan species with representatives from each of the extant bryozoan orders. Based on the checklist, it can be concluded that Scotland has fewer bryozoan species than New Zealand (n = 953), Australia (n = 886), and the Mediterranean (n = 556) (Gordon 1999; Gordon et al. 2010; Rosso and Di Martino 2016). Given Scotland’s location within a single biogeographical region, this relative lack of species is as expected (Baxter et al. 2011). When coastline length is accounted for, Scotland has approximately half the number of species per km (0.01) as Australia (0.02 species/km) and approximately six times fewer than New Zealand (0.06 species/km). The proportion of ctenostomes in Scotland (12% of total species) is greater than the global average (~5%) (Bock and Gordon 2013), and greater than the proportion of ctenostomes reported from New Zealand (5%), Australia (4%), Argentina (4%) and the Mediterranean (10%) (Gappa 2000; Gordon 1999; Rosso and Di Martino 2016). Only the bryozoan fauna of Brazil has a greater percentage (26.2%) of ctenostomes. Previously, higher incidences of ctenostomes (and/or cyclostomes) have been attributed to the results
of focused taxonomic efforts in certain regions (Gappa 2000; Rosso 2003). Rosso and Di Martino (2016), however, suggested that the abundance of ctenostomes in the Mediterranean could also reflect the availability of high-energy algal and seagrass dominated habitats, for which the flexible uncalcified ctenostome colony forms are well adapted to exploit. Scotland, and the Scottish west coast in particular, has a high abundance and diversity of algae and algal dominated habitats (Smale et al. 2013), which may explain the high number of ctenostomes found in the study region.

As with other benthic marine invertebrates in Scotland, the bryozoan fauna includes NIS (Nall et al. 2015). The presence of all but one NIS within the Clyde Sea region most likely represents the fact that the area is both a well-studied region and the location of a significant number of ports. As global shipping and aquaculture increase, along with climate change, it is expected that the number of invasive or non-indigenous bryozoans in the Scottish sea regions will increase in the future (Stretaris et al. 2005).

The estimate of bryozoan species number in Scotland, presented here, is likely to be conservative, since much of the offshore shelf areas and seamounts have not been fully explored. Estimates of the global number of bryozoan species yet to be discovered range from 2800–5200 (Appeltans et al. 2012). Given that the Scottish bryozoan fauna currently constitutes 3.7% of global bryozoan species richness, and assuming that this proportion will remain constant, it could be expected that there are approximately 104–192 bryozoan species in Scotland yet to be discovered.

Acknowledgements

This study received funding from the UK research council knowledge exchange fellowship [NE/P006566/2], a NERC MSc bursary and EOL Rubenstein Fellowship. The authors would like to thank the numerous people who collected the bryozoan records used in this study.

References

Appeltans W, Ahyong Shane T, Anderson G, Angel Martin V, Artois T, Bailly N, Bamber R, Barber A, Bartsch I, Berta A, Blażewicz-Paszkwycz M, Bock P, Boxshall G, Boyko Christopher B, Brandão Simone N, Bray Rod A, Bruce Niel L, Cairns Stephen D, Chan T-Y, Cheng L, Collins Allen G, Cribb T, Curini-Galletti M, Dahdouh-Guebas F, Davie Peter JF, Dawson Michael N, De Clerck O, Decock W, De Grave S, de Voogd Nicole J, Domning Daryl P, Emig Christian C, Erséus C, Eschmeyer W, Fauchald K, Fautin Daphne G, Feist Stephen W, Fransen Charles HJM, Furuya H, Garcia-Alvarez O, Gerken S, Gibson D, Gittenberger A, Gofas S, Gómez-Daglio L, Gordon Dennis P, Guiry Michael D, Hernandez F, Hoeksema Bert W, Hopcroft Russell R, Jaume D, Kirk P, Koedam N, Koenemann S, Kolb Jürgen B, Kristensen Reinhardt M, Kroh A, Lambert G, Lazarus David B, Lemaitre R, Longshaw M, Lowry J, Macpherson E, Madin Laurence P, Mah C, Mapstone G, McLaughlin Patsy A, Mees J, Meland K, Messing Charles G, Mills Claudia E, Molodtsova Tina N, Mooi R, Neuhaus B,
A checklist of marine bryozoan taxa in Scottish sea regions

Ng Peter KL, Nielsen C, Norenborg J, Opresko Dennis M, Osawa M, Paulay G, Perrin W, Pilger John F, Poore Gary CB, Pugh P, Read Geoffrey B, Reimer James D, Rius M, Rocha Rosana M, Saiz-Salinas José I, Scarrabino V, Schierwater B, Schmidt-Rhaesa A, Schnabel Karleen E, Schortte M, Schuchert P, Schwabe E, Segers H, Self-Sullivan C, Shenkar N, Siegel V, Sterrer W, Stöhr S, Swalla B, Tasker Mark L, Thuesen Erik V, Timm T, Todaro MA, Turon X, Tyler S, Uetz P, van der Land J, Vanhoorne B, van Ooijen Leen P, van Soest Rob WM, Vanaverbeke J, Walker-Smith G, Walter TC, Warren A, Williams Gary C, Wilson Simon P, Costello Mark J (2012) The magnitude of global marine species diversity. Current Biology 22: 2189–2202. https://doi.org/10.1016/j.cub.2012.09.036

Baxter JM, Boyd IL, Cox M, Donald AE, S.J M, Miles H, Miller B, Moffat CF (2011) Scotland’s Marine Atlas: Information for the National Marine Plan. Marine Scotland, Edinburgh, 191 pp.

Bitschofsky F, Forster S, Scholz J (2011) Regional and temporal changes in epizoobiontic bryozoan-communities of Flustra foliacea (Linnaeus, 1758) and implications for North Sea ecology. Estuarine, Coastal and Shelf Science 91: 423–433. https://doi.org/10.1016/j.ecss.2010.11.004

Bock PE, Gordon DP (2013) Phylum Bryozoa Ehrenberg, 1831. In: Zhang Z-Q (Ed.) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness (Adenda 2013). Zootaxa 3703: 67–74.

Boulton G, Peacock J, Sutherland D (1991) Quaternary. In: Trewin NH (Ed.) Geology of Scotland, 503–543.

Collin SB, Tweddle JF, Shucksmith RJ (2015) Rapid assessment of marine non-native species in the Shetland Islands, Scotland. BioInvasions Records 4: 147–155. https://doi.org/10.3391/bir.2015.4.3.01

Gappa JL (2000) Species richness of marine Bryozoa in the continental shelf and slope off Argentina (south-west Atlantic). Diversity and Distributions 6: 15–27. https://doi.org/10.1046/j.1472-4642.2000.00067.x

Gordon D, Costello MJ (2016) Bryozoa - not a minor phylum. New Zealand Science Review 73: 63–66.

Gordon DP (1999) Bryozoan diversity in New Zealand and Australia. In: Ponder W, Lunney D (Eds) The other 99% The conservation and biodiversity of invertebrates. Transactions of the Royal Zoological Sociert of New South Wales, Mosman. doi: https://doi.org/10.7882/RZSNSW.1999.033 https://doi.org/10.7882/RZSNSW.1999.033

Gordon DP, Beaumont J, MacDiarmid A, Robertson DA, Ahyong ST (2010) Marine Biodiversity of Aotearoa, New Zealand. PLoS ONE 5: e10905. https://doi.org/10.1371/journal.pone.0010905

Hayward P, Ryland J (1998) Cheilostomatous Bryozoa. Part 1. Aeteoidea—Cribrilinoidea. Synopses of the British fauna. Field Studies Council, Shrewsbury, 366 pp.

Hiscock K (1996) Marine nature conservation review: rationale and methods. Joint Nature Conservation Committee, Peterborough, 54 pp.

Horton T, Kroh A, Bailly N, Boury-Esnault N, Nunes Brandão SN, Costello MJ, Gofas S, Hernandez F, Mees J, Paulay G, Poore G, Rosenberg G, Stöhr S, Decock W, Dekeyzer S, Vandepitte L, Vanhoorne B, Vranken S, Adams MJ, Adlard R, Adriaens P, Agatha S, Ahn KJ, Ahyong S, Alvarez B, Anderson G, Angel M, Arango C, Artois T, Atkinson S, Barber A, Bartsch I, Bellan-Santini D, Berta A, Bieler R, Blažewicz M, Bock P, Böttger-Schnack
Lidgard S (2008) Predation on marine bryozoan colonies: taxa, traits and trophic groups. Marine Ecology Progress Series 359: 117–131. https://doi.org/10.3354/meps07322

Loxton JL (2014) Investigations into the Skeletal Mineralogy of Temperate and Polar Bryozoans. PhD Thesis. UK: Heriot Watt University.

McKinney FK, Jackson JBC (1991) Bryozoan Evolution. University of Chicago Press, Chicago, 238 pp.

Nall CR, Guerin AJ, Cook EJ (2015) Rapid assessment of marine non-native species in northern Scotland and a synthesis of existing Scottish records. Aquatic Invasions 10: 107–121. https://doi.org/10.3391/ai.2015.10.1.11

Narkowicz CK, Blackman AJ, Lacey E, Gill JH, Heiland K (2002) Convolutindole A and convolutamine H, new nematocidal brominated alkaloids from the marine bryozoan...
Amathia convoluta. Journal of natural products 65: 938–941. https://doi.org/10.1021/np010574x

Norman AM (1869) Shetland final dredging report. Part II. On the Crustacea, Tunicata, Polyzoa, Echinodermata, Actinozoa, Hydrozoa, and Porifera. Report of the British Association for the Advancement of Science 38: 247–336.

O’Brien JM, Krumhansl KA, Scheibling RE (2013) Invasive bryozoan alters interaction between a native grazer and its algal food. Journal of the Marine Biological Association of the United Kingdom 93: 1393–1400. https://doi.org/10.1017/S0025315412001683

Porter JS, Spencer Jones ME, Kuklinski P, Rouse S (2015) First records of marine invasive non-native Bryozoa in Norwegian coastal waters from Bergen to Trondheim. Bioinvasions Rec 4: 157–169. https://doi.org/10.3391/bir.2015.4.3.02

Powney G, Isaac N (2015) Beyond maps: A review of the applications of biological records. Biological Journal of the Linnean Society 115: 532–542. https://doi.org/10.1111/bij.12517

Rosso A (2003) Bryozoan diversity in the Mediterranean Sea. Biogeographia 24: 219–238. https://doi.org/10.12681/mms.1706

Rosso A, Di Martino E (2016) Bryozoan diversity in the Mediterranean Sea: an update. Mediterranea Marine Science 17: 567–607. https://doi.org/10.12681/mms.1706

Rouse S, Spencer Jones ME, Porter JS (2014) Spatial and temporal patterns of bryozoan distribution and diversity in the Scottish sea regions. Marine Ecology 35: 85–102. https://doi.org/10.1111/maec.12088

Smale DA, Burrows MT, Moore P, O’Connor N, Hawkins SJ (2013) Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecology and Evolution 3: 4016–4038. https://doi.org/10.1002/ece3.774

Stretaris N, Zenetos A, Paphthanssiou E (2005) Globalisation in marine ecosystems: the story of non-indigenous marine species across European seas. Oceanography and Marine Biology: An Annual Review 43: 419–453.

Wasson B, De Blauwe H (2014) Two new records of cheilostome Bryozoa from British waters. Marine Biodiversity Records 7: e123. https://doi.org/10.1017/S1755267214001213

Yorke AF, Metaxas A (2011) Interactions between an invasive and a native bryozoan (Membranipora membranacea and Electra pilosa) species on kelp and Fucus substrates in Nova Scotia, Canada. Marine Biology 158: 2299. https://doi.org/10.1007/s00227-011-1734-3

Supplementary material I

Scottish bryozoan records

Authors: Sally Rouse, Jennifer Loxton, Mary E. Spencer Jones, Joanne S. Porter

Data type: occurrence

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/zookeys.787.24647.suppl1