ORIGINAL ARTICLE

Ventilator-associated Events Surveillance in a Trauma Intensive Care Unit: A Prospective Study of Incidence, Predictive Values, Sensitivity, Specificity, Accuracy, and Concordance with Ventilator-associated Pneumonia

Kulbeer Kaur1, Kajal Jain2, Manisha Biswal3, Surinder Kaur Dayal4

ABSTRACT

Introduction: The Centers for Disease Control and Prevention (CDC) introduced a new definition of ventilator-associated events (VAEs) in 2013 in place of longstanding ventilator-associated pneumonia (VAP) definition. Three entities under VAE, ventilator-associated condition (VAC), infection-related ventilator-associated complication (IVAC), and possible ventilator-associated pneumonia (PVAP), were introduced.

Objectives: To assess the incidence of all VAEs in a tertiary care trauma ICU and to find the predictive value of VAE and sensitivity of VAE definitions for VAP.

Design: Cohort prospective study at trauma intensive care unit (ICU) of PGIMER, Chandigarh, from July 2018 till June 2019.

Materials and methods: Patients admitted in trauma ICU were checked for VAP and VAE criteria defined by CDC.

Results: Four hundred and sixty five patients were observed. Around 378 patients were included in the study with 4046 patient days and 3031 mechanical ventilation (MV) days. Incidence rate of PVAP, IVAC, VAC, and VAP was 2.97, 6.60, 10.23, and 9.24 per 1000 ventilator days, respectively. Sensitivity, specificity, positive predictive value, and negative predictive value (NPV) of diagnosing VAP were 0.61, 0.97, 0.68, and 0.97 for VAC; 0.80, 0.97, 0.57, and 0.99 for IVAC; and 0.78, 0.94, 0.25, and 0.9 for PVAP, respectively. Kendall’s W test showed that there was very poor concordance between VAP and VAE.

Keywords: Infection-related ventilator-associated complication, Possible ventilator-associated pneumonia, Ventilator-associated condition, Ventilator-associated events, Ventilator-associated pneumonia.
Materials and Methods

Design
A prospective study was done at the Trauma ICU of PGIMER, Chandigarh, from July 2018 till June 2019.

Inclusion and Exclusion Criteria
All the patients who were admitted in the Trauma ICU and mechanically ventilated for more than two days were recruited in the study. The patients who were not mechanically ventilated or mechanically ventilated for less than 2 days or organ donors were excluded from the surveillance.

Data Collection
The data collection forms were made and finalized by the study group. One dedicated infection control nursing officer visited the ICU every day at same time of the day for data collection. The denominator data were collected for all the patients present at the Trauma ICU. The patients were prospectively followed up for the development of VAP (NHSN definition) and VAEs (Flowchart 1 and Table 1) based on criteria defined by CDC. Daily monitoring of positive-end expiratory pressure (PEEP), fraction of inspired oxygen (FiO₂), fever, total leukocyte count, mental status deterioration, increase in volume and change in character of secretions, tachypnea, bronchial breath sounds, worsening gas exchange, and progressive or new infiltrates/consolidation/cavitation, along with new antibiotics and positive microbiology cultures. All the patients who fit into the criteria of VAP and VAE were recognized and discussed with the study group and included in numerator data.

Statistical Analysis
Kendall’s coefficient of concordance was calculated using the Statistical Package for Social Sciences software version 20 to find the agreement between VAE (VAC, IVAC, and PVAP) and VAP. MEDCALC statistical software was used to calculate the PPV, NPV, sensitivity, specificity, and accuracy of the VAE (VAC, IVAC, and PVAP) for the diagnosis of VAP.

Results
Five hundred and nine admissions were enrolled over a period of 1 year in the trauma ICU. One hundred and thirty-one patients were excluded from the study. Three hundred and seventy-eight patients who were mechanically ventilated for more than two days were recruited as study population for surveillance of VAP and VAE. The majority of patients were male (76.2%) and around 70% of the patients were less than 40 years of age without any co-morbidity. Most of them (73.3%) were received after average 2–3 days stay in emergency unit and 50% of the patients were intubated either in emergency or outside PGIMER (Table 2). The total patient days in the study were 4046 and mechanical ventilation days were 3031. The MV utilization ratio was 0.75. Out of total study population 40 (10.6%) patients developed VAE and/or VAP-NHSN (Table 3). The incidence of VAC ranged from 0 to 24 in 12 months with a peak in April (20), while that of VAP ranged from 0 to 18.96 with a peak in March (9.48) (Fig. 1). The mortality was 21.4% overall, 66.7% in patients who developed VAP and 73.4% in those with VAC (Table 2).

Discussion
VAE surveillance has not been widely adopted beyond the United States. One of the reasons may be that there exists uncertainty about the overlap between VAP and VAE, thereby with implications of the same on clinical utility. We sought to determine the accuracy of VAC for the diagnosis of VAP and vice versa in a setting of trauma ICU in our tertiary care hospital in India.

As previous studies have also reported,6,7 we found a higher incidence of VAP compared to VAE (10.2 vs 9.2 per 1000 MV days). However, the incidence of VAP was more than IVAC (6.6/1000 MV days) and much higher than PVAP (2.97/1000 MV days). Here was therefore a poor concordance of VAP with VAC (0.005), IVAC (0.095), and PVAP (0.374) in our patients. The PPV of VAC and IVAC for VAP-NHSN was 67.9 and 57.1%, respectively, while that of PVAP for VAP was only 25%. The sensitivity of VAC and IVAC for VAP-NHSN was 61.3 and 80.0%, respectively.

Table 6 lists the previous studies conducted to compare VAP and VAE in different study populations. The results of these studies also show poor relation between both definitions. V-associated event surveillance did not accurately detect cases of traditionally defined VAP in ICUs.

As the study was conducted in trauma intensive care, the majority of the cohort comprised severe head injury. In such patient profile, it may be worth noting that certain trauma-related factors like depressed consciousness, loss of protective reflexes, reduced muscle strength, and delayed presentation may contribute to higher infectivity and mortality.

Comparison of Challenges Faced during VAP and VAE Surveillance
To meet VAP definition, subjective criteria [amount of endotracheal (ET) secretions, change in character of ET secretions, progressive/new and persistent X-ray changes] are applied, which for some patients, clinicians and surveillance team might find difficult to agree on. Ventilator-associated event is more objective, easy to use, and has less chances of disagreement on case definition. However, there is a strict definition for window period in VAE which sometimes excludes some cases if the definition criteria meet ± few days of that period. For example, if a tracheal aspirate (TA) culture has come positive 1–4 days before worsening PEEP/FiO₂, clinicians sometimes do not repeat the TA for surveillance purposes. Our study found a low concordance found between VAP and VAE (including VAC, IVAC, and PVAP). It is possible that the new VAE definitions are missing out on the patients who would fit into VAP criteria.

Klompas and Berra8 found that a screening ventilator setting for VAC captures a similar set of complications to traditional VAP.
Flowchart 1: Ventilator-associated events (VAE) surveillance algorithm

Patient has a baseline period of stability or improvement on the ventilator, defined by ≥ 2 calendar days of stable or decreasing daily minimum* FiO₂ or PEEP values. The baseline period is defined as the 2 calendar days immediately preceding the first day of increased daily minimum PEEP or FiO₂

Daily minimum defined by lowest value of FiO₂ or PEEP during a calendar day that is maintained for > 1 hour.

After a period of stability or improvement on the ventilator, the patient has at least one of the following indicators of worsening oxygenation:
1) Increase in daily minimum *FiO₂ of ≥ 0.20 (20 points) over the daily minimum FiO₂ of the first day in the baseline period, sustained for ≥ 2 calendar days.
2) Increase in daily minimum *PEEP values of ≤ 3 cmH₂O over the daily minimum PEEP of the first day in the baseline period, sustained for ≥ 2 calendar days.

Ventilator-associated condition (VAC)

On or after calendar day 3 of mechanical ventilation and within 2 calendar days before or after the onset of worsening oxygenation, the patient meets both of the following criteria:
1) Temperature > 38°C or <36°C, OR white blood cell count > 12,000 cells/mm³ or <4,000 cells/mm³ And
2) A new antimicrobial agent(s) (see appendix for eligible antimicrobial agents) is started, and is continued for ≥ 4 qualifying antimicrobial days (QAD)

Infection-related ventilator-associated complication (IVAC)

On or after calendar day 3 of mechanical ventilation and within 2 calendar days before or after the onset of worsening oxygenation, ONE of the following criteria is met (taking into account organism exclusions specified in the protocol)
1) Criterion 1: positive culture of one of the following specimens, meeting quantitative or semiquantitative threshold as outlined in protocol, without requirement for purulent respiratory secretions:
 - Endotracheal aspirate, >105 CFU/mL or corresponding semiquantitative result
 - Bronchoalveolar lavage, >104 CFU/mL or corresponding semiquantitative result
 - Lung tissue, >104 CFU/g or corresponding semiquantitative result
 - Protected specimen brush, >103 CFU/mL or corresponding semiquantitative result

2) Criterion 2: purulent respiratory secretions (defined as secretions from the lungs, bronchi, or trachea that contain >25 neutrophils and <10 squamous epithelial cells per low power field [lpf, x100]) PLUS organism identified from one of the following specimens (to include qualitative culture, or quantitative/semiquantitative culture without sufficient growth to meet criterion #1):
 - Sputum
 - Endotracheal aspirate
 - Bronchoalveolar lavage
 - Lung tissue
 - Protected specimen brush

 If the laboratory reports semiquantitative results, those results must correspond to the quantitative thresholds see additional instructions for using the purulent respiratory secretions criterion in the VAE protocol

3) Criterion 3: one of the following positive tests:
 - Organisms identified from pleural fluid (where specimen was obtained during thoracentesis or initial placement of chest tube and NOT from an indwelling chest tube)
 - Lung histopathology, defined as: 1) abscess formation or foci of consolidation with intense neutrophil accumulation in bronchioles and alveoli; 2) evidence of lung parenchyma invasion by fungi (phyphae, pseudophyphae or yeast forms); 3) evidence of infection with the viral pathogens listed below based on results of immunohistochemical assays, cytology, or microscopy performed on lung tissue
 - Diagnostic test for Legionella species
 - Diagnostic test on respiratory secretions for influenza virus, respiratory syncytial virus adenovirus, parainfluenza virus, rhinovirus, human metapneumovirus, coronavirus

Possible ventilator-associated pneumonia (PVAP)
Ventilator-associated Events Surveillance in a Trauma ICU

Table 1: VAP_PNEU1 criteria (CDC)

For ANY PATIENT, at least one of the following:
- Fever (>38.0°C or >100.4°F)
- Leukopenia (≤4,000 WBC/mm³) or leukocytosis (>12,000 WBC/mm³)
- For adults >70 years old, altered mental status with no other recognized cause

And at least two of the following:
- New onset of purulent sputum or change in character of sputum, or increased respiratory secretions, or increased suctioning requirements
- New onset or worsening cough, or dyspnea, or tachypnea
- Rales or bronchial breath sounds
- Worsening gas exchange (for example: O₂ desaturations (for example: PaO₂/FiO₂ <240), increased oxygen requirements, or increased ventilator demand)

Two or more serial chest imaging test results with at least one of the following:
- New and persistent or
- Progressive and persistent
 - Infiltrate
 - Consolidation
 - Cavitation
 - Pneumatoceles, in infants ≤1-year-old

Table 2: Demographic data of study participants

Categories	Number (%)
Admission units	
Neurosurgery	264 (69.8)
Orthopedics	43 (11.4)
Others	71 (18.8)
Gender	
Male	288 (76.2)
Female	90 (23.8)
Age (years)	
<18	84 (22.2)
19–40	183 (48.4)
41–60	76 (20.1)
>61	22 (5.8)
No data	13 (3.4)
Previous unit	
Emergency	277 (73.3)
Ward	76 (20.1)
No data	25 (6.6)
Intubation	
Before ICU admission	189 (50)
Intubated inside ICU	189 (50)
End status	
Expired	81 (21.4)
LAMA*	10 (2.6)
Transferred to another unit	287 (76)
Trauma with head injury	
Yes	231 (61.1)
No	84 (22.2)
No data	63 (16.7)
Comorbidity**	
Present	27 (7.1)
Not present	181 (47.9)
No data	170 (45)

*Left against medical advice
**Diabetes mellitus, hypertension, asthma, alcoholism, coronary artery disease, hypothyroidism, and cerebrovascular accident

Table 3: Incidence of VAP and VAE in trauma ICU from July 2018 till June 2019

Entity	Number (%)	Incidence per 1,000 MV days
VAP	28 (7.41)	9.24
VAC/VAE	31 (8.20)	10.23
IVAC	20 (5.29)	6.60
PVAP	9 (2.38)	2.97
VAP but no VAE	9 (2.38)	2.97
VAC but no VAP	12 (3.17)	3.96
IVAC but no VAP	4 (1.06)	1.32
PVAP but no VAP	2 (0.53)	0.66
Both VAC and VAP	19 (5.02)	6.26

Limitation of the Study and Future Areas of Work

There are many extraneous variables that may have affected the incidence of VAP and VAC. First, the majority of patients in trauma ICU reach ICU after an average 2–3 days stay in emergency. Some of the patients even get initial first aid or sometimes get endotracheal intubation done at the local hospitals. The condition in which the initial intubation done and the care taken post intubation affects the chest status of patients. Second, patients in trauma ICU sometimes have conditions like fracture of ribs, hypoventilation, pneumothorax, aspiration, etc. These patients have higher chances of deteriorating post ventilation. So, it would be worthwhile to conduct studies to evaluate the role of these factors in this patient population in the future.

Conclusion

As a surveillance definition, VAC, IVAC, and PVAP have poor concordance with VAP-NHSN. Many extraneous factors as mentioned in the limitations in the study might have contribution to the change in trends. More studies are needed to study the role of pre ICU intervention factors in this population.
Ventilator-associated Events Surveillance in a Trauma ICU

Fig. 1: Incidence rate of VAC, IVAC, PVAP and VAP from July 2018 to June 2019

Table 4: Test characteristics of VACs for the diagnosis of VAP

	Sensitivity (95% CI)	Specificity (95% CI)	PPV (95% CI)	NPV (95% CI)	Accuracy (95% CI)
VAC for VAP	61.3% (42.2–78.2)	97.4% (95.1–98.8)	67.9% (51.1–81.0)	96.6% (94.8–97.8)	94.4% (91.6–96.5)
IVAC for VAP	80.0% (56.3–94.3)	96.7% (94.2–98.3)	57.1% (42.4–70.8)	98.9% (97.3–99.5)	95.8% (93.2–97.6)
PVAP for VAP	77.8% (40.0–97.2%)	94.31% (91.4–96.4)	25.0% (16.2–36.5)	99.4% (98.1–99.8)	93.9% (91.0–96.1)

Table 5: Antibiogram of pathogens found during VAP and IVAC surveillance in trauma ICU from July 2018 to June 2019

Pathogens	No. of patients	AMK	MINO	CIPRO	CEFOTAX	IMI	PIP	CEFOSULB/CSL	CEFOTAZ/CTZ	DOXY	MERO	ERTA	COL	CEFEP
Acinetobacter baumannii	10	0	3	0	0	0	1	0	0	0	0	0	0	0
Klebsiella pneumoniae	7	4	1	2	1	1	2	2	1	3	1			
Escherichia coli	3	2	1	0	0	1	1	1	0	0	1	0	3	0
Pseudomonas aeruginosa	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Enterobacter Spp.	2	2	1	2	0	0	0	0	0	0	0	0	1	
Methicillin resistant staphylococcus aureus	2													

Pathogens	No. of patients	TIG	GENT	TETRA	LEVO	CHL	VANCO	TEICO	SAM	LNZ	CLIND	OXA	ERYTHRO
Acinetobacter baumannii	10	4	0	2	1								
Klebsiella pneumoniae	7	1											
Escherichia coli	3	2											
Pseudomonas aeruginosa	2												
Enterobacter Spp.	2												
Table 6: List of previous studies conducted to compare VAP and VAE in different study populations

Author, country	Study setting	Incidence of VAP/VAE	Sensitivity (%) of VAE to detect VAP	Specificity (%)	PPV (%)	NPV (%)	Conclusion
Piriyapatsom et al., Massachusetts, USA	Retrospective, single-center, trauma subjects, IVAC compared to VAP	IVAC or VAP 35.6, VAP 29.6% Both 8.3%	IVAC 28.12	91.45	58.06	75.14	IVAC criteria had a low accuracy for identifying VAP-NHSN in subjects with high-risk trauma
Klouwenberg et al., Netherlands	Prospective cohort study in two Dutch academic medical centers	VAC 10/1000 MV days IVAC 4.2 VAE–VAP 32. VAP 8.0/100 MV days	VAC 33% IVAC 17%				Noted much poorer concordance between the novel VAE algorithm and VAP. The incidence rate of VAC, IVAC, VAE-VAP, and VAP in the present study was comparable (10.23, 6.60, 6.26, and 9.24, respectively). Poor concordance noted between VAP and VAE in the present study too
Fan et al., Wuhan, China	Meta-analysis of 18 studies	VAC 10.23 IVAC 6.6	VAE <50%	>80%	<50%	>80%	VAE surveillance missed many cases of VAP, and the population characteristics identified by the two surveillance paradigms differed
Boyer et al., St Louis, Missouri	Prospectively surveyed 1,209 patients ventilated for 2 calendar days at medical surgical ICU	VACs 5.5% (7/1,000 MV days) IVAC 3.6%1,000 MV days VAP 10.0/1,000 MV days	VAC 25.9%				VAC criteria captured a minority of VAP episodes
Meagher et al., USA	Retrospective study, adult trauma patients (2012–2017)	VAE 8.1% VAP 7.4% and Both 4.1% of patients					The proportions of individual entities were found to be comparable to the present study for VAC (8.2%), VAP (7.41%), and VAE + VAP (5.02%)
Younan et al., China	Retrospective study, trauma patients	“New”VAP 6.6% “Old”VAP 30.9% Both 5.8%					The concordance between new and old definitions was poor (kappa 0.22), similar to the present study
Ventilator-associated Events Surveillance in a Trauma ICU

Orcid
Kulbeer Kaur @ https://orcid.org/0000-0002-6502-6530
Kajal Jain @ https://orcid.org/0000-0003-3077-8326
Manisha Biswal @ https://orcid.org/0000-0003-2016-3678
Surinder Kaur Dayal @ https://orcid.org/0000-0002-8810-524X

References

1. Rello J, Olledorf DA, Oster G et al. Epidemiology and outcomes of ventilator-associated pneumonia in a large US database. Chest 2002;122(6):2115–2121. DOI: 10.1378/chest.122.6.2115.
2. Cook A, Norwood S BJ. Ventilator-associated pneumonia is more common and of less consequence in trauma patients compared with other critically ill patients. J Trauma 2010;69(5):1083–1091. DOI: 10.1097/TA.0b013e3181f9fb51.
3. Michetti CP, Fakhry SM, Ferguson PL et al. Ventilator-Associated Pneumonia Investigators. Ventilator-associated pneumonia rates at major trauma centers compared with a national benchmark: a multi-institutional study of the AAST. J Trauma Acute Care Surg 2012;72(5):1165–1173. DOI: 10.1097/TA.0b013e31824d10fa.
4. Magill SS, Li Q, Gross C et al. Incidence and characteristics of ventilator-associated events reported to the National Healthcare Safety Network in 2014. Crit Care Med 2016;44(12):2154–2162. DOI: 10.1097/CCM.0000000000001871.
5. Piriyapatsom A, Lin H, Pirrone M et al. Evaluation of the infection-related ventilator-associated events algorithm for ventilator-associated pneumonia surveillance in a trauma population. Respir Care 2016;61(3):269–276. DOI: 10.4187/respcare.04280.
6. Klouwenberg PMCK, Van Mourik MSM, Ong DSY et al. Electronic implementation of a novel surveillance paradigm for ventilator-associated events feasibility and validation. Am J Respir Crit Care Med 2014;189(8):947–955. DOI: 10.1164/rccm.201307-1376OC.
7. Fan Y, Gao F, Wu Y et al. Does ventilator-associated event surveillance detect ventilator-associated pneumonia in intensive care units? A systematic review and meta-analysis. Crit Care 2016;20(1):338. DOI: 10.1186/s13054-016-1506-z.
8. Boyer A Schoenberg N Babcock H et al. A prospective evaluation of ventilator-associated conditions and infection-related ventilator-associated conditions. Chest 2015;147(1):68–81. DOI: 10.1378/chest.14-0544.
9. Meagher AD, Lind M, Senekjian L et al. Ventilator-associated events, not ventilator-associated pneumonia, is associated with higher mortality in trauma patients. J Trauma Acute Care Surg 2019;87(2):307–314. DOI: 10.1097/TA.0000000000002294.
10. Younan D Griffin R Swain T et al. Disease control and prevention’s definitions for ventilator-associated pneumonia had worse outcomes than those meeting only one. J Surg Res 2017;216:123–128.
11. Klompas M, Berra L. Should ventilator-associated events become a quality indicator for ICUs? Respir Care 2016;61(6):723–736. DOI: 10.4187/respcare.04548.
12. Yu Y, Zhu C, Liu C et al. How to remove the grey area between ventilator-associated pneumonia and ventilator-associated tracheobronchitis? Crit Care 2017;21(1):165. https://doi.org/10.1186/s13054-017-1754-6.