中性子干涉計を用いた量子力学の基礎的研究

本論文は学術論文だが、量子力学の基礎的諸問題に関す る実験事実を理解したいと思っている方々が最初に読む教 材としても掲載できる。本論文に刺激されて、未だにある 量子力学に実験あるいは理論の一節を書きつつあるという 志を立てる方が、読者の中から出てくることを期待したい。

量子力学は実験事実を少しでも整合的に記述しようとな って20世紀初頭から先人たちの作り上げた未定のマニュアル で、解析力学のように原理から出発して現象の記述に至る トップダウンの学問体系とは異なりボトムアップになっている。たとえば桜井氏の教育書 "Modern Quantum Mechanics" では、この点を誠実に説明している。しかし、大学で量子 力学を学んだ人にとっては、光学実験、超伝導、不均一磁 場を通るスピンを持った原子ビーム、電子の干涉実験など など、量子力学のいくつかの実験から結果のグラフまで全部読み確かなのは大変な作業となる。それに思考実 験が加わると、多くの人がすぐにしてしまう心配がある。そこで実験の種類を一つにして、それを使った量子力学の もろもろの基礎的問題についての理解を深めるという取り 上げ方が有効になる。特に中性子の干涉とスピンの実験は、 量子力学で多くの人にとって不思議と受け取られる項目を ほぼ網羅しているので、その目的にはもっともよい。類推 によって他の実験も理解していくことができるのに、初心者 にとって中性子実験が最も有力な素材である、もちろん、歴 史的に重要な実験を知ることは重要だが、それは他の機会 に譲ればよい。

中性子実験の特徴を挙げよう。量子力学では、光子ある いは電子が粒子性と波動性の両方に持つことを理解するこ とが最初のポイントである。光子と違って中性子は静止で きないので、粒子としてイメージしやすく、さらにスピンと いう内部自由度もあるので使いやすい。また、電気的に中 性であるために相互作用が少なさそうな量子力学的なコヒーレン スもよい。Colella, Overhauserと Wernerは中性子干渉計を 用いて、重力とコリオリののある場合の干涉実験を行った（上記の桜井氏の教科書にも述べられている）。これに代表 される中性子の波動性に関する実験を便宜的に第一期の中性 子による量子実験と呼ぶ。図1はシリコン単結晶の中性 子干渉計で、左から中性子が入射し、途中は経路1と2に なり、透過方向 (O波) と反射方向 (H波) の二つの波が後 に重ね合わせて干渉する仕組みになっている。第一期の中性子による量子実験においては、Raučらによる報告があるが、この論文の第3章にはその成果が教科書的に まとめられている。

一方、エンタングルメントというものは量子力学のもう一 つの重要な要素である。1935年のEinstein, Podolskyと Rosenの論文に始まり、最近の量子情報科学の進展の中で 重要性が増している。多数の中性子同士のエンタングルメン トした状態を作るのは収容ダウエロピーに問題があり、 実験に使うには困難が伴う。そこで、中性子の経路の自由 度とスピンの自由度のエンタングルメント、さらにはエネルギー状態とのエンタングルメントに着目してベルの不等 式の破れたなどの実験を著者たちは行ってきた。これを第二 間の中性子による量子実験と呼ぶ（実験には第二期にも第 一期的な実験も行っている）。本論文の第4章以下の内容 は著者たちが行った第二期の中性子による量子実験に該当す るものである。

本論文では、ここで15年間の中性子実験による量子力学 の研究を総合報告している。第2章で、この論文を読むた めに必要な中性子実験の装置と技術を説明している。実験 技術としてシリコン完全結晶干涉計を用いたことで大きな 進歩が得られた。上にも述べたように第3章において、第 一期の中性子による量子実験が多数要約されている。一例 をあげると、中性子によるAharonov-Bohm効果とそれと 類似のAharonov-Casher効果の実験は紹介されている。 第4章で幾何学位相、第5章でエンタングルメントのある実 験で量子力学の非局所性、より一般的にはcontextualityの 実験が説明されている。第6章では、誤差と擬似に関する 不確定性関係に関する実験が記論で説明されている。量子 力学における重要な概念の説明、歴史的なエピソードなど に随所にあり、量子力学についての幅広い理解を助けて いる。

本論文の背景には、量子力学の創設者の一人であるシュ レーディンガーがウィーン市を流れるドウ川からの運河 のとりに創設したAtominsitutの伝統がある。この研究
所は、小型原子炉から引き出される中性子を用いて実験を行い、Zeilinger, Weinfurther, Schmiedmayr等、この分野の世界的な研究者を輩出してきた。スピン1/2を持つ中性子は空間的に2回転すると位相が元に戻るという実験が量子力学の基礎に関する最初の実験であり、それはここで行われた。最後に著者たちを紹介する。長谷川祐司氏は、現在このグループのリーダーであり、Klepp氏とSponar氏は二人とも長谷川氏の学生で今はそれぞれの研究職でボスドクをしている。

**原論文（2014年8月1日公開済み）**

Fundamental Phenomena of Quantum Mechanics Explored with Neutron Interferometer

J. Klepp, S. Spornar and Y. Hasegawa: Prog. Theor. Exp. Phys. 2014, 082A01 (2014)

DOI: 10.1093/ptep/ptu085, [arXiv: 1407.2526 [quant-ph]]

〈情報提供：長谷川祐司 (Atominsttitut, ウィーン工科大学準教授)〉

ここでは日本物理学会が発行しているProgress of Theoretical and Experimental Physics (PTEP) の Invited Papers または Special Sectionsで2014年8月号に掲載されたものを紹介しています。この紹介記事は国内の新総社の科学部、科学雑誌の編集部に電子メールで送っている「紹介文」をこの欄のために少し書き直したものです。専門外の読者を想定し、「何が問題で、何が明らかになったのか」を中心とした読み物であるので、参考文献などはなるべく省いています。内容の詳細は、PTEPのホームページから閲覧・ダウンロードして下さい。PTEPはオープンアクセス誌であり、閲覧・ダウンロードは無料です。PTEP編集委員会では、興味深いトピックスについて、Invited PapersまたはSpecial Sectionsの提案を受けて審議し、採用依頼しています。これによって、PTEPと物理学への関心を高めることを目指しています。物理学会会員からのPTEPへの自信作の投稿を期待します。

| 本誌の複写をご希望の方へ |
|---------------------------|
| 日本物理学会は、本誌掲載著作物の複写に関する権利を(一社)学術著作権協会(以下、学著協)に委託しております。  本誌に掲載された著作物の複写をご希望の方は、学著協より許諾を受けて下さい。  ※企業等法人で、(公社)日本複製権センター(学著協が社内利用目的複写に関する権利を再委託している団体)と包括複写許諾契約を締結している場合は除く(社内外需目的複写については、学著協の許諾が必要です)。  ※複写以外の許諾(著作物の転載等)に関しては、学著協に委託しておりません。  直接、日本物理学会(E-mail: pubpub@jps.or.jp)へお問合せ下さい。  ※日本国外における複写について、学著協が双務協定を締結している国・地域においてはその国・地域のRRO(海外複製権機構)に締結していない国・地域においては学著協に許諾申請して下さい。 |

権利委託先 一般社団法人学術著作権協会  〒107-0052 東京都港区赤坂9-6-41 万代坂ビル3F  Fax: 03-3475-5619  e-mail: info@jaacc.jp

---

PTEPの最近の招待・特集論文から 791