Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The global dynamics for a stochastic SIS epidemic model with isolation

Yiliang Chen, Buyu Wen, Zhidong Teng*

College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, People’s Republic of China

HIGHLIGHTS

• A stochastic SIS epidemic model with isolation and multiple noises perturbation is proposed.
• The criteria on the extinction and persistence in the mean with probability one are obtained.
• The sufficient conditions for the existence of unique stationary distribution are established.

ABSTRACT

In this paper, we investigate the dynamical behavior for a stochastic SIS epidemic model with isolation which is as an important strategy for the elimination of infectious diseases. It is assumed that the stochastic effects manifest themselves mainly as fluctuation in the transmission coefficient, the death rate and the proportional coefficient of the isolation of infective. It is shown that the extinction and persistence in the mean of the model are determined by a threshold value R_0. That is, if $R_0 < 1$, then disease dies out with probability one, and if $R_0 > 1$, then the disease is stochastic persistent in the mean with probability one. Furthermore, the existence of a unique stationary distribution is discussed, and the sufficient conditions are established by using the Lyapunov function method. Finally, some numerical examples are carried out to confirm the analytical results.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

As is well-known, in the theory of epidemiology the quarantine/isolation is an important strategy for the control and elimination of infectious diseases. Such as, in order to control SARS, the Chinese government is the first to use isolation. The various types of classical epidemic models with quarantine/isolation have been investigated in many articles. See, for example [1–15] and the references cited therein.

Particularly, in [1], Herbert et al. studied the following SIS epidemic model with isolation

\[
\begin{align*}
S'(t) &= A - \beta IS - \mu S + \gamma I + \xi Q, \\
I'(t) &= \beta IS - (\mu + \gamma + \delta + \alpha)I, \\
Q'(t) &= \delta I - (\mu + \xi + \alpha)Q.
\end{align*}
\]

(1.1)

where $S(t)$ denotes the number of individuals who are susceptible to an infection, $I(t)$ denotes the number of individuals who are infectious but not isolated, $Q(t)$ is the number of individuals who are isolated. A is the recruitment rate of $S(t)$, β...
is the transmission rate coefficient between compartment \(S(t) \) and \(I(t) \), \(\mu \) is natural death rate of \(S(t), I(t) \) and \(Q(t) \), \(\alpha \) is the disease-related death rate of \(I(t) \), \(\delta \) is the proportional coefficient of isolated for the infection, \(\gamma \) and \(\xi \) are the rates where individuals recover and return to \(S(t) \) from \(I(t) \) and \(Q(t) \), respectively. All parameters are usually assumed to be nonnegative.

In addition, we see that the quarantine/isolation strategies also are introduced and investigated in many practical epidemic model, such as the emerging infectious disease, two-strain avian influenza, childhood diseases, the Middle East respiratory syndrome, Ebola epidemics, Dengue epidemic, H1N1 flu epidemic, Hepatitis B and C, Tuberculosis, etc. See, for example [16–28] and the references cited therein.

As a matter of fact, epidemic systems are inevitably subjected to environmental white noise. Therefore, the studies for the stochastic epidemic models have more practical significance. In recent years, the stochastic epidemic models with the quarantine and isolation have been investigated in articles [29–32]. Particularly, in [29] Zhang et al. investigated the dynamics of the deterministic and stochastic SIQS epidemic model with an isolation and nonlinear incidence. The sufficient conditions on the extinction almost surely of the disease and the existence of stationary distribution of the model are established. Zhanget al. in [30] discussed the threshold of a stochastic SIQ epidemic model. The criteria on the extinction conditionson the extinction almost surely of the disease and the existence of stationary distribution of the model are established. Zhanget al. in [30] discussed the threshold of a stochastic SIQ epidemic model. The criteria on the extinction conditionson the extinction almost surely of the disease and the existence of stationary distribution of the model are established.

Motivated by the works [1,2,4,5,29–32], in this paper as an extension of model (1.1) we firstly assume that the disease-related death rates of isolation and no-isolation are different, respectively, denote by \(\alpha_2 \) and \(\alpha_3 \). Then, we further define \(\mu_1 = \mu, \mu_2 = \mu + \alpha_2 \) and \(\mu_3 = \mu + \alpha_3 \) for the convenience. It is clear that \(\mu_1 \leq \min\{\mu_2, \mu_3\} \). Next, we introduce randomness into model (1.1), by replacing the parameters \(\beta, \mu_i \) \((i = 1, 2, 3) \) and \(\delta \) with \(\beta \to \beta + \sigma_1 W_1(t), \mu_2 \to \mu_2 + \sigma_2 W_2(t), \mu_3 \to \mu_3 + \sigma_3 W_3(t), \delta \to \delta + \sigma_2 W_4(t) \) and \(\mu_1 \to \mu_1 + \sigma_3 W_5(t) \), where \(W_i(t) \) \((i = 1, 2, 3, 4, 5) \) are independent standard Brownian motion defined on some probability space \((\Omega, \mathcal{F}, P)\) and parameter \(\sigma_i \) \(i > 0 \) represents the intensity of \(W_i(t) \). Thus, we establish the following stochastic SIS epidemic model with multi-parameters white noises perturbations and the isolation of infection.

\[
\begin{align*}
\text{d}S &= [A - \beta IS - \mu_1 S + \gamma I + \xi Q] \text{d}t - \sigma_1 S \text{d}W_1(t) + \sigma_3 S \text{d}W_3(t), \\
\text{d}I &= [\beta IS - (\mu_2 + \gamma + \delta)I] \text{d}t + \sigma_1 I \text{d}W_1(t) + \sigma_2 I \text{d}W_2(t) - \sigma_4 I \text{d}W_4(t), \\
\text{d}Q &= [\xi I - (\mu_3 + \xi)Q] \text{d}t + \sigma_3 Q \text{d}W_3(t) + \sigma_4 Q \text{d}W_4(t).
\end{align*}
\]

(1.2)

Our purpose in this paper is to study the stochastic extinction and persistence, and the stationary distribution of model (1.2). We will establish a series of sufficient conditions to assure the extinction and persistence in the mean of the model with probability one, and the existence of unique stationary distribution for model (1.2) by using the theory of stochastic processes, the Ito's formula and the Liapunov function method.

This paper is organized as follows. In Section 2, we introduce the preliminaries and some useful lemmas. In Section 3, the criteria on the extinction and persistence in the mean with probability one for model (1.2) are stated and proved. In Section 4, the criteria on the existence of a unique stationary distribution for model (1.2) are stated and proved. In Section 5, the numerical examples are carried out to illustrate the main theoretical results.

2. Preliminaries

We denote \(\mathbb{R}^3_+ = \{(x_1, x_2, x_3) : x_i > 0, i = 1, 2, 3\} \). For an integrable function \(f(t) \) defined on \([0, \infty)\), denote \(\langle f(t) \rangle = \frac{1}{t} \int_0^t f(s) \text{d}s \).

As the preliminaries, we give the following lemmas.

Lemma 2.1. For deterministic model (1.1), let \(R_0 = \frac{\beta A}{\mu(\delta + \gamma + \mu + \alpha)} \). We have following conclusions.

1. If \(R_0 < 1 \), then model (1.1) has only a disease-free equilibrium \(E_0(\frac{A}{\mu}, 0, 0) \), which is globally asymptotically stable.
2. If \(R_0 > 1 \), then model (1.1) also has an endemic equilibrium \(E^*(S^*, I^*, Q^*) \), which is globally asymptotically stable, where

\[
S^* = \frac{A}{\mu R_0}, \quad I^* = \frac{A(1 - \frac{1}{R_0})}{(\mu + \alpha)(1 + \frac{\delta}{\mu + \xi + \alpha})}, \quad Q^* = \frac{\delta I^*}{\mu + \xi + \alpha}.
\]

The proof of Lemma 2.1 can be found in [1]. We hence omit it here.

Lemma 2.2. For any given initial value \((S(0), I(0), Q(0))\in\mathbb{R}^3_+\), model (1.2) has a unique global positive solution \((S(t), I(t), Q(t))\). That is, solution \((S(t), I(t), Q(t))\) is defined for all \(t \geq 0 \) and remains in \(\mathbb{R}^3_+ \) with probability one.

Lemma 2.2 can be proved by using the similar method given in [29].
Lemma 2.3. Let $(S(t), I(t), Q(t))$ be the solution of model (1.2) with initial value $(S(0), I(0), Q(0)) \in \mathbb{R}^3_+$, then

\[
\limsup_{t \to \infty} (S(t) + I(t) + Q(t)) < \infty \text{ a.s.}
\]

(2.1)

Moreover,

\[
\limsup_{t \to \infty} (S(t) + I(t) + Q(t)) \leq \frac{A}{\mu_1} \text{ a.s.}
\]

(2.2)

Proof. By model (1.2), we have

\[
\begin{align*}
d(S + I + Q) &= [A - \mu_1(S + I + Q) - \alpha_2 I - \alpha_3 Q]dt \\
&\quad + \sigma_1 dW_2(t) + \sigma_2 Q dW_3(t) + \sigma_5 dW_5(t),
\end{align*}
\]

where $\alpha_2 = \mu_2 - \mu_1 \geq 0$ and $\alpha_3 = \mu_3 - \mu_1 \geq 0$. Solving this equation, we further obtain that

\[
\begin{align*}
S(t) + I(t) + Q(t) &= \frac{A}{\mu_1} + \left[(S(0) + I(0) + Q(0)) - \frac{A}{\mu_1} \right] e^{-\mu_1 t} - \alpha_2 \int_0^t e^{-\mu_1 (t-s)} I(s) ds \\
&\quad - \alpha_3 \int_0^t e^{-\mu_1 (t-s)} Q(s) ds + \sigma_2 \int_0^t e^{-\mu_1 (t-s)} I(s) dW_2(s) \\
&\quad + \sigma_3 \int_0^t e^{-\mu_1 (t-s)} Q(s) dW_3(s) + \sigma_5 \int_0^t e^{-\mu_1 (t-s)} S(s) dW_5(s) \\
&\leq \frac{A}{\mu_1} + \left[(S(0) + I(0) + Q(0)) - \frac{A}{\mu_1} \right] e^{-\mu_1 t} + M(t) \text{ a.s.,}
\end{align*}
\]

(2.4)

where

\[
\begin{align*}
M(t) &= \sigma_2 \int_0^t e^{-\mu_1 (t-s)} I(s) dW_2(s) + \sigma_3 \int_0^t e^{-\mu_1 (t-s)} Q(s) dW_3(s) \\
&\quad + \sigma_5 \int_0^t e^{-\mu_1 (t-s)} S(s) dW_5(s).
\end{align*}
\]

Clearly, $M(t)$ is a continuous local martingale with $M(0) = 0$. Define

\[
X(t) = X(0) + A(t) - U(t) + M(t),
\]

where $X(0) = S(0) + I(0) + Q(0)$, $A(t) = \frac{A}{\mu_1} (1 - e^{-\mu_1 t})$ and $U(t) = (S(0) + I(0) + Q(0)) (1 - e^{-\mu_1 t})$. By (2.4) we have

\[
S(t) + I(t) + Q(t) \leq X(t) \text{ a.s. for all } t \geq 0.
\]

It is clear that $A(t)$ and $U(t)$ are continuous adapted increasing processes on $t \geq 0$ with $A(0) = U(0) = 0$. By Theorem 3.9 in [44], we obtain that $\lim_{t \to \infty} X(t) < \infty$ a.s. Thus, conclusion (2.1) is true.

Set

\[
\begin{align*}
M_2(t) &= \int_0^t I(s) dW_2(s), \quad M_2^*(t) = \int_0^t e^{-\mu_1 (t-s)} I(s) dW_2(s), \\
M_3(t) &= \int_0^t Q(s) dW_3(s), \quad M_3^*(t) = \int_0^t e^{-\mu_1 (t-s)} Q(s) dW_3(s), \\
M_5(t) &= \int_0^t S(s) dW_5(s), \quad M_5^*(t) = \int_0^t e^{-\mu_1 (t-s)} S(s) dW_5(s).
\end{align*}
\]

Since the quadratic variations

\[
\begin{align*}
\langle M_2(t), M_2(t) \rangle &= \int_0^t I^2(s) ds \leq (\sup_{t \geq 0} I^2(t)) t, \\
\langle M_2^*(t), M_2^*(t) \rangle &= \int_0^t e^{-2\mu_1 (t-s)} I^2(s) ds \leq (\sup_{t \geq 0} I^2(t)) t,
\end{align*}
\]

by the large number theorem for martingales (See [44,45]), we have

\[
\lim_{t \to \infty} \frac{1}{t} M_2(t) = 0, \quad \lim_{t \to \infty} \frac{1}{t} M_2^*(t) = 0 \text{ a.s.}
\]

(2.5)

Similarly, we also have

\[
\lim_{t \to \infty} \frac{1}{t} M_3(t) = 0, \quad \lim_{t \to \infty} \frac{1}{t} M_3^*(t) = 0, \quad \lim_{t \to \infty} \frac{1}{t} M_5(t) = 0, \quad \lim_{t \to \infty} \frac{1}{t} M_5^*(t) = 0 \text{ a.s.}
\]

(2.6)
Since
\[
(M(t)) = \frac{\sigma_2}{\mu_1} \int_0^t \int_0^t e^{-\mu_1(s-u)}I(u)dW_2(u)ds + \frac{\sigma_3}{\mu_1} \int_0^t \int_0^t e^{-\mu_1(s-u)}Q(u)dW_3(u)ds
\]
+ \frac{\sigma_5}{\mu_1} \int_0^t \int_0^t e^{-\mu_1(s-u)}S(u)dW_5(u)ds
\]
\[= \frac{\sigma_2}{\mu_1} \left(\int_0^t I(u)dW_2(u) - \int_0^t e^{-\mu_1(t-u)}I(u)dW_2(u) \right)
+ \frac{\sigma_3}{\mu_1} \left(\int_0^t Q(u)dW_3(u) - \int_0^t e^{-\mu_1(t-u)}Q(u)dW_3(u) \right)
+ \frac{\sigma_5}{\mu_1} \left(\int_0^t S(u)dW_5(u) - \int_0^t e^{-\mu_1(t-u)}S(u)dW_5(u) \right).
\]
by (2.5) and (2.6), we obtain \(\lim_{t \to \infty} (M(t)) = 0. \) Since
\[
\lim_{t \to \infty} \frac{1}{t} \int_0^t \left[(S(0) + I(0) + Q(0)) - \frac{A}{\mu_1} \right] e^{-\mu_1 s} ds
= \lim_{t \to \infty} \frac{1}{\mu_1 t} \left[(S(0) + I(0) + Q(0)) - \frac{A}{\mu_1} \left(1 - e^{-\mu_1 t} \right) \right] = 0.
\]
form (2.4), it follows that conclusion (2.2) is true. This completes the proof. \(\square \)

Lemma 2.4. Let \((S(t), I(t), R(t))\) be the solution of model (1.2) with initial value \((S(0), I(0), Q(0)) \in \mathbb{R}_+^3\) and \(N(t) = S(t) + I(t) + Q(t).\) Then
\[\langle S(t) \rangle = \frac{A}{\mu_1} - \left[\frac{\mu_2}{\mu_1} + \frac{\delta \mu_3}{\mu_1(\mu_3 + \xi)} \right] \langle I(t) \rangle + K(t) \tag{2.7}\]
and
\[\langle N^2(t) \rangle = \frac{A}{\mu_1} \langle N(t) \rangle - \frac{\alpha_2}{\mu_1} \langle I(t)N(t) \rangle - \frac{\alpha_3}{\mu_1} \langle Q(t)N(t) \rangle + \frac{\alpha_4}{2\mu_1} \langle S^2(t) \rangle + \frac{\alpha_5}{2\mu_1} \langle I^2(t) \rangle + \frac{\alpha_6}{2\mu_1} \langle Q^2(t) \rangle + C(t). \tag{2.8}\]
where
\[C(t) = \frac{\sigma_2}{\mu_1} \frac{1}{t} \int_0^t N(s)I(s)dW_2(s) + \frac{\sigma_3}{\mu_1} \frac{1}{t} \int_0^t N(s)Q(s)dW_3(s)
+ \frac{\sigma_5}{\mu_1} \frac{1}{t} \int_0^t N(s)S(s)dW_5(s) + \frac{1}{2\mu_1 t} \langle N^2(0) - N^2(t) \rangle \tag{2.9}\]
and
\[K(t) = \frac{\alpha_3}{\mu_1(\mu_3 + \xi)t} \int_0^t Q(s)dW_3(s) + \frac{\mu_3}{\mu_1(\mu_3 + \xi)t} \langle Q(t) - Q(0) \rangle
+ \frac{\alpha_4}{\mu_1} \frac{1}{t} \int_0^t I(s)dW_2(s) - \frac{\alpha_4}{\mu_1} \frac{1}{t} \int_0^t I(s)dW_2(s)
+ \frac{\alpha_5}{\mu_1} \frac{1}{t} \int_0^t S(s)dW_5(s)
- \frac{1}{\mu_1 t} [S(t) + I(t) + Q(t) - \langle S(0) + I(0) + Q(0) \rangle]. \tag{2.10}\]

Proof. Using Ito’s formula, by (2.3) we have
\[dN^2(t) =LN^2(t)dt + 2N(t)[\sigma_2 I(t)dW_2(t) + \sigma_3 Q(t)dW_3(t) + \sigma_5 S(t)dW_5(t)], \tag{2.11}\]
where
\[LN^2(t) = 2AN(t) - 2\mu_1 N^2(t) - 2\alpha_2 I(t)N(t) - 2\alpha_3 Q(t)N(t)
+ \alpha_2 I^2(t) + \alpha_3 Q^2(t) + \alpha_5 S^2(t). \]
Integrating (2.11) from 0 to \(t \), we further obtain
\[
\begin{align*}
N^2(t) - N^2(0) &= 2A \int_0^t N(s)ds - 2\mu_1 \int_0^t N^2(s)ds - 2\alpha_2 \int_0^t I(s)N(s)ds \\
&\quad - 2\alpha_3 \int_0^t N(s)Q(s)ds + \alpha_2^2 \int_0^t I^2(s)ds + \alpha_3^2 \int_0^t Q^2(s)ds \\
&\quad + \alpha_3^2 \int_0^t S^2(s)ds + 2\alpha_2 \int_0^t N(s)I(s)W_2(s) \\
&\quad + 2\alpha_3 \int_0^t N(s)Q(s)W_3(s) + 2\alpha_5 \int_0^t N(s)S(s)W_5(s).
\end{align*}
\tag{2.12}
\]

Then, dividing \(t \) on both sides (2.12), it follows that
\[
\langle N^2(t) \rangle = \frac{A}{\mu_1} \langle N(t) \rangle - \frac{\alpha_2}{\mu_1} \langle I(t)N(t) \rangle - \frac{\alpha_3}{\mu_1} \langle Q(t)N(t) \rangle \\
+ \frac{\alpha_3^2}{2\mu_1} \langle S^2(t) \rangle + \frac{\alpha_2^2}{2\mu_1} \langle I^2(t) \rangle + \frac{\alpha_3^2}{2\mu_1} \langle Q^2(t) \rangle + C(t),
\]
where \(C(t) \) is given in (2.9). Thus, we finally obtain (2.8).

Taking the integration for the third equation of model (1.2) yields
\[
\begin{align*}
Q(t) - Q(0) &= \delta \int_0^t I(s)ds - (\mu_3 + \xi) \int_0^t Q(s)ds \\
&\quad + \sigma_3 \int_0^t Q(s)W_3(s) + \sigma_4 \int_0^t I(s)W_4(s).
\end{align*}
\tag{2.13}
\]

Dividing \(t \) on both sides of Eq. (2.13), we have
\[
\langle Q(t) \rangle = \frac{\delta}{\mu_3 + \xi} \langle I(t) \rangle + \frac{\sigma_3}{(\mu_3 + \xi)t} \int_0^t Q(s)W_3(s) \\
+ \frac{\sigma_4}{(\mu_3 + \xi)t} \int_0^t I(s)W_4(s) - \frac{1}{(\mu_3 + \xi)t} \langle Q(t) - Q(0) \rangle.
\tag{2.14}
\]

Integrating (2.3) from 0 to \(t \), and then dividing \(t \) on both sides, we have
\[
\frac{1}{t} (S(t) + I(t) + Q(t) - (S(0) + I(0) + Q(0)) \\
= A - \mu_1 \langle S(t) \rangle - \mu_2 \langle I(t) \rangle - \mu_3 \langle Q(t) \rangle \\
+ \sigma_2 \frac{1}{t} \int_0^t I(s)W_2(s) + \sigma_3 \frac{1}{t} \int_0^t Q(s)W_3(s) + \sigma_5 \frac{1}{t} \int_0^t S(s)W_5(s).
\]

Consequently,
\[
\langle S(t) \rangle = \frac{A}{\mu_1} - \frac{\mu_2}{\mu_1} \langle I(t) \rangle - \frac{\mu_3}{\mu_1} \langle Q(t) \rangle - \frac{\sigma_2}{\mu_1 t} \int_0^t I(s)W_2(s) \\
+ \frac{\sigma_3}{\mu_1 t} \int_0^t Q(s)W_3(s) + \frac{\sigma_5}{\mu_1 t} \int_0^t S(s)W_5(s) \\
- \frac{1}{\mu_1 t} \langle S(t) + I(t) + Q(t) - (S(0) + I(0) + Q(0)) \rangle.
\tag{2.15}
\]

By substituting (2.14) into (2.15), we obtain
\[
\langle S(t) \rangle = \frac{A}{\mu_1} - \left[\frac{\mu_2}{\mu_1} + \frac{\delta \mu_3}{\mu_1 (\mu_3 + \xi)} \right] \langle I(t) \rangle + K(t),
\]
where \(K(t) \) is given in (2.10). Thus, we finally obtain (2.7). This completes the proof. \(\square \)

Lemma 2.5. Assume that functions \(Y \in C(R_+ \times \Omega, R_+) \) and \(Z \in C(R_+ \times \Omega, R_+) \) satisfies \(\lim_{t \to \infty} \frac{Z(t)}{t} = 0 \) a.s. If there are two constants \(v_0 > 0 \) and \(v > 0 \) such that
\[
\ln Y(t) = v_0 t - v \int_0^t Y(s)ds + Z(t) \text{ a.s.}
\]
for all $t \geq 0$, then
\[
\liminf_{t \to \infty} \frac{1}{t} \int_0^t Y(s) ds = \frac{v_0}{v} \quad \text{a.s.}
\]

Lemma 2.5 can be found in Liu et al. [46].

3. Persistence and extinction

Define
\[
R_0^c = \frac{1}{\mu_2 + \delta + \gamma} \left(\frac{A\beta}{\mu_1} - \frac{1}{2} \sigma_2^2 - \frac{1}{2} \sigma_4^2 - \frac{A^2 \sigma_1^2}{2\mu_1^2} \right).
\]

Theorem 3.1. Assume $\sigma_5 = 0$ in model (1.2). Let $(S(t), I(t), Q(t))$ be the solution of system (1.2) with initial value $(S(0), I(0), Q(0)) \in \mathbb{R}_+^3$. If $R_0^c > 1$, then $\liminf_{t \to \infty} (S(t)) > 0$, $\liminf_{t \to \infty} (I(t)) > 0$ and $\liminf_{t \to \infty} (Q(t)) > 0$ a.s. That is, model (1.2) is stochastic persistent in the mean with probability one.

Proof. Applying Ito’s formula, we have
\[
d\ln I(t) = [\beta S - (\mu_2 + \delta + \gamma) - \frac{1}{2} \sigma_2^2 - \frac{1}{2} \sigma_4^2 - \frac{1}{2} \sigma_1^2 \langle S^2(t) \rangle + \frac{1}{2} \sigma_1^2 \langle S^2(t) \rangle]
dt + \sigma_1 S dW_1(t) + \sigma_2 dW_2(t) - \sigma_4 dW_4(t).
\]

Integrating (3.1) from 0 to t and then dividing t on both sides, we have
\[
\frac{\ln I(t) - \ln I(0)}{t} = \beta \langle S(t) \rangle - (\mu_2 + \delta + \gamma) - \frac{1}{2} \sigma_2^2 - \frac{1}{2} \sigma_4^2 - \frac{1}{2} \sigma_1^2 \langle S^2(t) \rangle + \sigma_1^2 \langle S^2(t) \rangle + \frac{1}{t} \sigma_1 \int_0^t S(s) dW_1(s) + \frac{1}{t} \sigma_2 \int_0^t S(s) dW_2(s) - \sigma_4 \int_0^t W_4(s)
\]

From (2.7), we have
\[
\frac{\ln I(t) - \ln I(0)}{t} = \frac{A\beta}{\mu_1} - \beta \left[\frac{\mu_2}{\mu_1} + \frac{\delta \mu_3}{\mu_1 (\mu_3 + \xi)} \right] \langle I(t) \rangle + \beta K(t)
\]
\[
- (\mu_2 + \delta + \gamma) - \frac{1}{2} (\sigma_2^2 + \sigma_4^2) + \frac{1}{2} \sigma_1 \int_0^t S(s) dW_1(s) + \sigma_2 \int_0^t S(s) dW_2(s) - \frac{1}{t} \sigma_4 \int_0^t W_4(s) - \frac{1}{2} \sigma_1^2 \langle S^2(t) \rangle.
\]

From (2.8) in Lemma 2.4, when $\sigma_5 = 0$ we have
\[
\langle N^2(t) \rangle \leq \frac{A}{\mu_1} \langle N(t) \rangle + \frac{\sigma_2^2}{2\mu_1} \langle I^2(t) \rangle + \frac{\sigma_4^2}{2\mu_1} \langle Q^2(t) \rangle + C(t).
\]

From Lemma 2.3, for solution $(S(t), I(t), Q(t))$ of model (1.2), without loss of generality, there is a constant $L > 0$ such that $I(t) \leq L$ and $Q(t) \leq L$ a.s. for all $t \geq 0$. Thus, we further obtain from (3.4),
\[
\langle N^2(t) \rangle \leq \frac{A}{\mu_1} \langle N(t) \rangle + \frac{L \sigma_2^2}{2\mu_1} \langle I(t) \rangle + \frac{L \sigma_4^2}{2\mu_1} \langle Q(t) \rangle + C(t).
\]

On the other hand, from (2.2) in Lemma 2.3 we have that for any enough small $\varepsilon > 0$ there is a $T > 0$ such that
\[
\langle N(t) \rangle < \frac{A}{\mu_1} + \varepsilon \quad \text{a.s.}
\]

for all $t \geq T$.

By substituting (2.14) and (3.6) into (3.5), we obtain for all $t \geq T$
\[
\langle N^2(t) \rangle \leq \frac{A}{\mu_1} \langle N(t) \rangle + \frac{L \sigma_2^2}{2\mu_1} \langle I(t) \rangle + \frac{L \sigma_4^2}{2\mu_1} \langle Q(t) \rangle + C(t) + H(t) + C(t),
\]

where
\[
H(t) = \frac{L \sigma_2^2 \beta}{2\mu_1} \left[\frac{\sigma_3}{\mu_3 + \xi} t \right] \int_0^t Q(s) dW_2(s) + \frac{\sigma_4^2}{\mu_3 + \xi} \int_0^t I(s) dW_4(s)
\]
\[
- \frac{1}{\mu_3 + \xi} \left[\frac{\sigma_3}{\mu_3 + \xi} t \right] \int_0^t Q(s) - Q(0).
\]
Because of $\langle S^2(t) \rangle \leq \langle N^2(t) \rangle$, substituting (3.7) into (3.3) we further have for all $t \geq T$

\[
\lim_{t \to \infty} \frac{\ln I(t) - \ln I(0)}{t} \geq \frac{A\beta}{\mu_1} - \beta \left(\frac{\mu_2}{\mu_1} + \frac{\delta \mu_3}{\mu_1(\mu_2 + \xi)} \right) (I(t)) + \beta K(t) - (\mu_1 + \sigma_1^2 + \delta + \gamma) - \frac{1}{2}(\sigma_2^2 + \sigma_4^2) + \sigma_1 \int_0^t S(s) dW_1(s) - \frac{1}{t} \int_0^t S(s) dW_1(s) - \sigma_4 W_2(t) - \frac{1}{2} \sigma_1^2 \left(\frac{A}{\mu_1} + \epsilon \right) - \frac{1}{2} \sigma_1^2 (H(t) + C(t)).
\]

Consequently, for all $t \geq T$

\[
\frac{1}{t} \left[\beta \left(\frac{\mu_2}{\mu_1} + \frac{\delta \mu_3}{\mu_1(\mu_2 + \xi)} \right) + \frac{\sigma_1^2}{2} \left(\frac{La_2^2}{2\mu_1} + \frac{La_3^2 \xi}{2\mu_1(\mu_3 + \xi)} \right) \right] (I(t))
\geq \frac{A\beta}{\mu_1} + \beta K(t) - (\mu_2 + \delta + \gamma) - \frac{1}{2}(\sigma_2^2 + \sigma_4^2) + \sigma_1 \int_0^t S(s) dW_1(s) + \sigma_1 W_2(t) - \frac{1}{2} \sigma_1^2 A \left(\frac{A}{\mu_1} + \epsilon \right) - \frac{1}{2} \sigma_1^2 (H(t) + C(t))
- \frac{1}{t} \left(\ln I(t) - \ln I(0) \right).
\]

By the large number theorem for martingales, Lemmas 2.3 and 2.4, we have from (2.9), (2.10) and (3.8)

\[
\lim_{t \to \infty} C(t) = 0, \quad \lim_{t \to \infty} K(t) = 0, \quad \lim_{t \to \infty} H(t) = 0, \quad \lim_{t \to \infty} \frac{1}{t} (\ln I(t) - \ln I(0)) = 0
\]

and

\[
\lim_{t \to \infty} \frac{1}{t} \int_0^t S(t) dW_1(s) = 0, \quad \lim_{t \to \infty} \frac{1}{t} W_2(t) = 0, \quad \lim_{t \to \infty} \frac{1}{t} W_4(t) = 0.
\]

Therefore, from (3.9) and the arbitrariness of ϵ we finally obtain

\[
\liminf_{t \to \infty} (I(t)) \geq \frac{1}{B} \left(\frac{A}{\mu_1} - (\mu_2 + \delta + \gamma) - \frac{1}{2}(\sigma_2^2 + \sigma_4^2) - \frac{1}{2} \sigma_1^2 (\frac{A}{\mu_1})^2 \right)
\]

\[
\geq \frac{1}{B} \left(\frac{A}{\mu_1} - (\mu_2 + \delta + \gamma) - \frac{1}{2}(\sigma_2^2 + \sigma_4^2) - \frac{1}{2} \sigma_1^2 (\frac{A}{\mu_1})^2 \right),
\]

\[
\geq \frac{1}{B} \left(\frac{A}{\mu_1} - (\mu_2 + \delta + \gamma) - \frac{1}{2}(\sigma_2^2 + \sigma_4^2) - \frac{1}{2} \sigma_1^2 (\frac{A}{\mu_1})^2 \right),
\]

where

\[
B = \beta \left(\frac{\mu_2}{\mu_1} + \frac{\delta \mu_3}{\mu_1(\mu_2 + \xi)} \right) + \frac{\sigma_1^2}{2} \left(\frac{La_2^2}{2\mu_1} + \frac{La_3^2 \xi}{2\mu_1(\mu_3 + \xi)} \right).
\]

From the first equation of model (1.2), we easily obtain

\[
\frac{S(t) - S(0)}{t} = \frac{1}{t} \int_0^t [A - \beta S(t) - \mu_1 S + \mu_2 + \sigma_1^2 (\frac{A}{\mu_1})^2] ds - \sigma_1 W_2(t) - \frac{1}{t} \int_0^t S(s) dW_1(s)
\geq A - (\beta L + \mu_1) (S(t)) - \sigma_1 M_1(t) a.s.,
\]

where $M_1(t) = \int_0^t S(t) dW_1(s)$. Since the quadratic variation

\[
\langle M_1(t), M_1(t) \rangle = \int_0^t S^2(s) dW_1(s) \leq L^4 t,
\]

by the large number theorem for martingales we have $\lim_{t \to \infty} \frac{1}{t} M_1(t) = 0$. Therefore, by Lemma 2.3 and (3.12) we further have

\[
\lim_{t \to \infty} S(t) \geq \frac{A}{\beta L + \mu_1} > 0 a.s.
\]

From the third equation of model (1.2), we directly have

\[
\frac{Q(t) - Q(0)}{t} = \delta (I(t)) - (\mu_3 + \xi)(Q(t)) + \frac{\sigma_3}{t} \int_0^t Q(s) ds + \frac{\sigma_4}{t} \int_0^t I(s) ds a.s.
\]

Hence, we further have

\[
\lim_{t \to \infty} Q(t) = \frac{\delta}{\mu_3 + \xi} \lim_{t \to \infty} (I(t)) \geq \frac{\delta (\mu_2 + \delta + \gamma)}{B (\mu_2 + \xi)} (R^S_0 - 1) > 0 a.s.
\]
This shows that model (1.2) is persistent in the mean with probability one. This completes the proof. □

Remark 3.1. It is unfortunate that in Theorem 3.1 $\sigma_5 = 0$ is assumed. From the proof of Theorem 3.1 we see that this assumption only is used to deal with the term ($S^2(t)$) in (3.3). Therefore, an interesting open problem is to establish a similar result like Theorem 3.1 for model (1.2) in $\sigma_5 > 0$.

In Theorem 3.1 we only obtain the persistence in the mean of model (1.2). However, as a consequence of Theorem 3.1 we have the following result on the permanence in the mean for the disease in model (1.2).

Corollary 3.1. Assume $\sigma_5 = 0$ in model (1.2). Let $(S(t), I(t), Q(t))$ be the solution of model (1.2) with initial value $(S(0), I(0), Q(0)) \in \mathbb{R}_+^3$. If $R_0^S > 1$, and $\sigma_1 = 0$ or $\sigma_2 = 0$ and $\sigma_3 = 0$, then the disease $I(t)$ is permanent in the mean with probability one.

In fact, when $\sigma_1 = 0$ or $\sigma_2 = 0$ and $\sigma_3 = 0$, from (3.11) we have $B = \beta\left(\frac{\mu_2}{\mu_1} + \frac{\delta\mu_3}{\mu_1(\mu_3 + \xi)}\right)$, which is independent for L. Therefore, by Theorem 3.1, we obtain from (3.10) that

$$\liminf_{t \to \infty} \langle I(t) \rangle \geq \frac{\mu_2 + \delta + \gamma}{B} (R_0^S - 1) \text{ a.s.}$$

which implies that the disease $I(t)$ is permanent in the mean with probability one.

Remark 3.2. From the above Corollary 3.1, we can propose an important open problem. That is, when $R_0^S > 1$, $\sigma_1 > 0$ and $\sigma_2 > 0$ or $\sigma_3 > 0$, whether we can establish the permanence in the mean of the disease I for model (1.2). An example will be given in Section 5 to show that this can hold.

Theorem 3.2. Assume $\sigma_1 = 0$ in model (1.2). Let $(S(t), I(t), Q(t))$ be the solution of system (1.2) with initial value $(S(0), I(0), Q(0)) \in \mathbb{R}_+^3$. If $R_0^S > 1$, then we have

$$\lim_{t \to \infty} \langle I(t) \rangle = \frac{\beta A}{\mu_1} - \frac{(\mu_2 + \delta + \gamma)}{\mu_1} \frac{1}{2}(\sigma_2^2 + \sigma_3^2)$$

with initial value $S(0)$.

Proof. Applying Ito’s formula, directly computing, we have

$$d\left(\ln I(t) + \frac{\beta}{\mu_1} N(t)\right) = \left(\beta S (\mu_2 + \delta + \gamma) - \frac{1}{2}(\sigma_2^2 + \sigma_3^2)\right)dt$$

$$+ \frac{\beta}{\mu_1} \sigma_2 dW_2(t) - \frac{\beta}{\mu_1} \sigma_4 dW_4(t) + \frac{\beta}{\mu_1} \left(A - \mu_1 S - \mu_2 I - \mu_3 Q\right)dt$$

$$+ \frac{\beta}{\mu_1} \sigma_3 dW_3(t) + \frac{\beta}{\mu_1} \sigma_5 dW_5(t) + \frac{\beta}{\mu_1} \sigma_3 dW_3(t) + \frac{\beta}{\mu_1} \sigma_5 dW_5(t)$$

$$+= \left(\beta S (\mu_2 + \delta + \gamma) - \frac{1}{2}(\sigma_2^2 + \sigma_3^2)\right)dt$$

$$- \frac{\beta}{\mu_1} \sigma_3 dW_3(t) + \frac{\beta}{\mu_1} \sigma_5 dW_5(t) + \frac{\beta}{\mu_1} \sigma_3 dW_3(t) + \frac{\beta}{\mu_1} \sigma_5 dW_5(t).$$

Integrating (3.13) and then dividing t yields

$$\frac{1}{t} \left(\ln I(t) + \frac{\beta}{\mu_1} N(t)\right) - \frac{1}{t} \left(\ln I(0) + \frac{\beta}{\mu_1} N(0)\right)$$

$$= \frac{\beta A}{\mu_1} - (\mu_2 + \delta + \gamma) - \frac{1}{2}(\sigma_2^2 + \sigma_3^2) - \frac{\beta}{\mu_1} \mu_1 (I(t))$$

$$- \frac{\beta}{\mu_1} \sigma_3 dW_3(t) - \mu_3 \int_0^t I(s) dW_3(s)$$

$$+ \frac{\beta}{\mu_1} \sigma_5 dW_5(t) + \mu_5 \int_0^t S(s) dW_5(s).$$

From (2.14), we further have

$$\frac{1}{t} \ln I(t) = \frac{\beta A}{\mu_1} - (\mu_2 + \delta + \gamma) - \frac{1}{2}(\sigma_2^2 + \sigma_3^2)$$

$$- \left[\frac{\beta}{\mu_1} \mu_1 (\mu_3 + \xi)\right] (I(t)) + B(t).$$
that for any solution \(S \).

 Remark 3.3. This completes the proof.

 Furthermore, we also have that

\[
\lim_{t \to \infty} \langle S(t) \rangle = \frac{A}{\mu_1} \left[\frac{\mu_2}{\mu_1} + \frac{\delta}{\mu_3 + \xi} \right] \mathbb{I}^* \quad \text{a.s.}
\]

This completes the proof. \(\square \)

Remark 3.3. Particularly, when \(\sigma_i = 0 \), \(i = 1, 2, 3, 4, 5 \) and \(\mu_2 = \mu_3 = \mu_1 + \alpha \), then the stochastic model (1.2) degenerates into the deterministic model (1.1). We also have \(R_0^S = R_0 = \frac{\beta A}{\mu_1(\delta + \gamma + \mu_1 + \alpha)} \). From Theorem 3.2, when \(R_0 > 1 \) we can obtain that for any solution \(S(t), I(t), Q(t) \) of model (1.1) with initial value \((S(0), I(0), Q(0)) \) in \(\mathbb{R}^3_+ \).

\[
\lim_{t \to \infty} \langle S(t) \rangle = \frac{A}{\mu_1} R_0, \quad \lim_{t \to \infty} \langle I(t) \rangle = \frac{A(1 - \frac{1}{R_0})}{(\mu_1 + \alpha)(1 + \frac{\delta}{\mu_1 + \alpha + \xi})}, \quad \lim_{t \to \infty} \langle Q(t) \rangle = \frac{\delta}{\mu_1 + \alpha + \xi} \mathbb{I}^*.
\]

Therefore, Theorem 3.2 can be regarded as an extension of the conclusion (2) of Lemma 2.1 for the deterministic model (1.1) into the corresponding stochastic model (1.2).

Remark 3.4. It is a pity that in Theorem 3.2 \(\sigma_1 = 0 \) is assumed. Therefore, an interesting open problem is to establish a similar result for model (1.2) in \(\sigma_1 > 0 \).

Theorem 3.3. Let \((S(t), I(t), Q(t)) \) be the solution of model (1.2) with initial value \((S(0), I(0), Q(0)) \) in \(\mathbb{R}^3_+ \). Suppose that one of the following two conditions holds:

\(\big(A \big) \quad \frac{\beta^2}{2\sigma_1^2} - \left(\mu_2 + \delta + \gamma + \frac{1}{2}(\sigma_2^2 + \sigma_4^2) \right) < 0, \quad \big(B \big) \quad \beta \geq \frac{A}{\mu_1} \sigma_1^2, \quad R_0^S < 1. \)

Then the disease \(I(t) \) almost surely exponentially dies out. That is

\[
\lim_{t \to \infty} \sup \frac{\ln(I(t))}{t} \leq \frac{\beta^2}{2\sigma_1^2} - \left(\mu_2 + \delta + \gamma + \frac{1}{2}(\sigma_2^2 + \sigma_4^2) \right) < 0 \quad \text{a.s. if} \ (A) \text{ holds} \quad (3.14)
\]

and

\[
\lim_{t \to \infty} \sup \frac{\ln(I(t))}{t} \leq (\mu_2 + \delta + \gamma)(R_0^S - 1) < 0 \quad \text{a.s. if} \ (B) \text{ holds}. \quad (3.15)
\]

Furthermore, we also have that \(\lim_{t \to \infty} \langle S(t) \rangle = \frac{A}{\mu_1} \quad \text{a.s. and} \quad \lim_{t \to \infty} \frac{\ln(Q(t))}{t} \leq -c \quad \text{a.s. for some constant} \ c > 0. \) That is, \(S(t) \) in the mean almost surely converges to \(\frac{A}{\mu_1} \) and \(Q(t) \) almost surely exponentially converges to zero.

Proof. Since for any \(t > 0, (\frac{1}{t} \int_0^t S(s)ds)^2 \leq \frac{1}{t} \int_0^t S^2(s)ds \) from (3.2) we have

\[
\frac{\ln(I(t))}{t} \leq \frac{\ln(I(0))}{t} + \beta \langle S(t) \rangle - (\mu_2 + \delta + \gamma) - \frac{1}{2}(\sigma_2^2 + \sigma_4^2) - \frac{1}{2}(\langle S(t) \rangle)^2 + \sigma_1 \frac{1}{t} \int_0^t S(s)ds + \sigma_2 \frac{1}{t} W_2(t) - 4 \frac{1}{t} W_4(t).
\]

Proof. Since for any \(t > 0, (\frac{1}{t} \int_0^t S(s)ds)^2 \leq \frac{1}{t} \int_0^t S^2(s)ds \) from (3.2) we have
If condition (B) holds, then from (2.7) and (3.16) we have
\[
\frac{\ln I(t)}{t} \leq \beta \frac{A}{\mu_1} - (\mu_2 + \delta + \gamma) - \frac{1}{2}(\sigma^2_2 + \sigma^2_4) - \beta \left[\frac{\mu_2}{\mu_1} + \frac{\delta \mu_3}{\mu_1 (\mu_3 + \xi)} \right] I(t) \\
+ \beta K(t) - \frac{1}{2} \sigma_1^2 \left[\frac{A}{\mu_1} - \left(\frac{\mu_2}{\mu_1} + \frac{\delta \mu_3}{\mu_1 (\mu_3 + \xi)} \right) (I(t)) + K(t) \right]^2 \\
+ \sigma_1 \frac{1}{t} \int_0^t S(s) dW_1(s) + \sigma_2 \frac{1}{t} W_2(t) - \sigma_4 \frac{1}{t} W_4(t) + \frac{\ln I(0)}{t}.
\]

Therefore,
\[
\frac{\ln I(t)}{t} \leq \beta \frac{A}{\mu_1} - (\mu_2 + \delta + \gamma) - \frac{1}{2}(\sigma^2_2 + \sigma^2_4) - \frac{A^2 \sigma^2_2}{2\mu^2_1} \\
- \left[\frac{\mu_2}{\mu_1} + \frac{\delta \mu_3}{\mu_1 (\mu_3 + \xi)} \right] \left(\beta - \frac{A}{\mu_1} \right) I(t)) + \sigma_1 \frac{1}{t} \int_0^t S(s) dW_1(s) \\
- \left[\frac{\mu_2}{\mu_1} + \frac{\delta \mu_3}{\mu_1 (\mu_3 + \xi)} \right] \left(I(t) \right)^2 + \Phi(t) + \frac{\ln I(0)}{t} + \sigma_2 \frac{1}{t} W_2(t) - \sigma_4 \frac{1}{t} W_4(t),
\]
where
\[
\Phi(t) = \beta K(t) - \frac{\sigma^2_1}{2} K^2(t) + \sigma^2_2 \left[\frac{\mu_2}{\mu_1} + \frac{\delta \mu_3}{\mu_1 (\mu_3 + \xi)} \right] (I(t)) K(t) - A^2 I(t).
\]

By the large number theorem for martingales, Lemmas 2.3 and 2.4, we have \(\lim_{t \to \infty} \Phi(t) = 0 \) a.s. Therefore, we finally obtain
\[
\limsup_{t \to \infty} \frac{\ln I(t)}{t} \leq (\mu_2 + \delta + \gamma) (R_0^2 - 1) < 0 \text{ a.s.}
\]

If condition (A) holds, then from (3.2) we have
\[
\frac{\ln I(t)}{t} \leq \frac{\ln I(0)}{t} + \beta (S(t)) - (\mu_2 + \delta + \gamma) - \frac{1}{2}(\sigma^2_2 + \sigma^2_4) \\
- \frac{1}{2} \sigma_1^2 (S(t))^2 + \sigma_1 \frac{1}{t} \int_0^t S(s) dW_1(s) + \sigma_2 \frac{1}{t} W_2(t) - \sigma_4 \frac{1}{t} W_4(t) \\
= \frac{\ln I(0)}{t} + \frac{\beta^2}{2\sigma^2_1} - (\mu_2 + \delta + \gamma) - \frac{1}{2}(\sigma^2_2 + \sigma^2_4) \\
- \frac{1}{2} \sigma_1^2 (S(t)) - \frac{\beta^2}{\sigma^2_1} + \sigma_1 \frac{1}{t} \int_0^t S(s) dW_1(s) + \sigma_2 \frac{1}{t} W_2(t) - \sigma_4 \frac{1}{t} W_4(t) \\
\leq \frac{\ln I(0)}{t} + \frac{\beta^2}{2\sigma^2_1} - (\mu_2 + \delta + \gamma) - \frac{1}{2}(\sigma^2_2 + \sigma^2_4) \\
+ \sigma_1 \frac{1}{t} \int_0^t S(s) dW_1(s) + \sigma_2 \frac{1}{t} W_2(t) - \sigma_4 \frac{1}{t} W_4(t).
\]

Thus, we also have
\[
\limsup_{t \to \infty} \frac{\ln I(t)}{t} \leq \frac{\beta^2}{2\sigma^2_1} - (\mu_2 + \delta + \gamma + \frac{1}{2}(\sigma^2_2 + \sigma^2_4)) < 0 \text{ a.s.}
\]

From (3.14) and (3.15), there is a constant \(m > 0 \) such that for almost all \(\omega \in \Omega \) there exists a \(T_0 = T_0(\omega) > 0 \), when \(t \geq T_0 \) one has \(I(t, \omega) \leq e^{-mt} \). Without loss of generality, we assume that \(I(t, \omega) \leq e^{-mt} \) for all \(t \geq 0 \). It follows that from the third equation of model (1.2)
\[
dQ \leq [\delta e^{-mt} - (\mu_3 + \xi)Q] dt + \sigma_3 Q dW_3(t) + \sigma_4 dW_4(t).
\]

Hence,
\[
Q(t) \leq H_1(t) + H_2(t) + H_3(t), \tag{3.17}
\]
where
\[
H_1(t) = e^{-[\mu_3 + \xi] t + \sigma_3 W_3(t)} Q_0, \\
H_2(t) = e^{-[\mu_3 + \xi] t + \sigma_3 W_3(t)} \int_0^t e^{[\mu_3 + \xi] s - \sigma_3 W_3(s)} d\xi e^{-ms} ds, \\
H_3(t) = e^{-[\mu_3 + \xi] t + \sigma_3 W_3(t)} \int_0^t e^{[\mu_3 + \xi] s - \sigma_3 W_3(t)} \sigma_4 I(s) dW_4(s).
\]
Remark 3.5. Consider $H_3(t)$, choose the constants $\eta_0 > 0$ and $\varepsilon_0 > 0$ such that

\[\mu_3 + \xi - \eta_0 - \sigma_3 \varepsilon_0 > 0, \quad m - \eta - 2\sigma_3 \varepsilon_0 > 0. \]

Since $\lim_{t \to \infty} \frac{W_3(t)}{t} = 0$, without loss of generality, we assume $|W_3(t)| \leq \varepsilon_0 t$ for all $t \geq 0$. Let $H_3^\varepsilon(t) = e^{\varepsilon t} H_3(t)$, then we have

\[\langle H_3^\varepsilon(t), H_3^\varepsilon(t) \rangle = \int_0^t \left(e^{2\varepsilon t} e^{-[(\mu_3 + \xi) t + \sigma_3 W_3(t)]} \sigma_4 I(s)^2 \right) ds \]

\[\leq \int_0^t e^{2\varepsilon t} e^{-2[(\mu_3 + \xi) t + 2\sigma_3 t \varepsilon + \sigma_3^2 t \varepsilon^2] + 2\sigma_3^2 \varepsilon^2} e^{-2m \varepsilon t} ds \]

\[= \sigma_4^2 \int_0^t e^{-2[(\mu_3 + \xi - m) \varepsilon t + \sigma_3^2 \varepsilon^2] + t} e^{-2[m - \eta - 2\sigma_3 \varepsilon \varepsilon_0] \varepsilon t} ds < \infty. \]

By the large number theorem for martingales, we have $\lim_{t \to \infty} \frac{H_3^\varepsilon(t)}{t} = 0$. For any small enough $\varepsilon > 0$, we can obtain

\[\lim_{t \to \infty} e^{-\eta_0 - \varepsilon t} \frac{|H_3(t)|}{t} = \lim_{t \to \infty} \frac{t}{e^{\eta_0 + \varepsilon t}} = 0. \]

Hence, $\lim_{t \to \infty} \frac{\ln H_3(t)}{t} = -\eta_0$. It follows that $\lim_{t \to \infty} \frac{\ln H_3(t)}{t} \leq -\eta_0$. Therefore, from (3.17) we finally have

\[\limsup_{t \to \infty} \frac{\ln Q(t)(s)}{t} \leq -\min\{\eta_0, m, \mu_3 + \xi\} < 0 \text{ a.s.} \]

From the first equation of model (1.2) we have

\[S(t) - S(0) \]

\[= A - \beta(SI) - \mu_1(S) + \gamma(I) + \xi(Q) \]

\[- \sigma_1 \int_0^t S dW_1(s) + \sigma_2 \int_0^t S dW_2(s). \]

By Lemma 2.3, the large number theorem of martingales, $\lim_{t \to \infty} I(t) = 0$ a.s. and $\lim_{t \to \infty} Q(t) = 0$ a.s., we have $\lim_{t \to \infty} S(t) = 0$, $\lim_{t \to \infty} I(t) = 0$, $\lim_{t \to \infty} Q(t) = 0$, $\lim_{t \to \infty} \frac{1}{t} (S(t) - S(0)) = 0$, $\lim_{t \to \infty} \frac{1}{t} \int_0^t S dW_1(s) = 0$ a.s. and $\lim_{t \to \infty} \frac{1}{t} \int_0^t S dW_2(s) = 0$ a.s. Therefore, $\lim_{t \to \infty} S(t) = \frac{A}{\mu_1}$ a.s. This completes the proof. \(\square \)

Remark 3.5. It is easy to see that when the condition (A) holds, then we have $R_0 ^\beta < 1$. Therefore, we can propose the following open problem. That is, when $R_0 > 1$, $\frac{\beta}{2\sigma_1^2} - (\mu_2 + \delta + \gamma + \frac{1}{2} \sigma_2^2 + \frac{1}{2} \sigma_4^2) > 0$ and $\beta < \frac{\Lambda}{\mu_1} \sigma_4^2$, whether we also can obtain the extinction of the disease I with probability one for model (1.2). An example is given in Section 5 to show that the result can hold.

Remark 3.6. Comparing with the conclusion (1) of Lemma 2.1, we easily see that Theorem 3.3 can be regarded as an extension of conclusion (1) of Lemma 2.1 for the deterministic model (1.1) into the corresponding stochastic model (1.2).

In Theorem 3.3, when $\sigma_1 = 0$, then condition (A) does not hold, and condition (B) degenerates into

\[R_0 ^\beta = \frac{1}{\mu_2 + \delta + \gamma} \left(\frac{A \beta}{\mu_1} - \frac{1}{2} \left(\sigma_2^2 + \sigma_4^2 \right) \right) < 1. \] \((3.18) \)

Therefore, as a consequence of Theorem 3.3, we have the following corollary.

Corollary 3.2. Assume that $\sigma_1 = 0$ in model (1.2). Let $(S(t), I(t), Q(t))$ be the solution of model (1.2) with initial value $(S(0), I(0), Q(0)) \in \mathbb{R}_+^3$. If condition (3.18) holds, then $S(t)$ in the mean almost surely converges to $\frac{A}{\mu_1}$, $I(t)$ and $Q(t)$ almost surely exponentially converge to zero.

4. Stationary distribution

In this section, we study the existence of unique stationary distribution of model (1.2). Before giving the main results, we introduce the following lemma.

Let $x(t)$ be a regular temporally homogeneous Markov process in \mathbb{R}^d described by the stochastic differential equation

\[dx(t) = b(x) dt + \sum_{i=1}^k \sigma_i(x) dB_i(t), \] \((4.1) \)
where $b(x) = (b_1(x), b_2(x), \ldots, b_d(x))$, $\sigma_r(x) = (\sigma^1_r(x), \sigma^2_r(x), \ldots, \sigma^d_r(x))$ and $B_r(t) (r = 1, 2, \ldots, k)$ are independent standard Brownian motions defined on some probability space (Ω, F, \mathbb{P}). The diffusion matrix for Eq. (4.1) is defined as follows

$$A(x) = (a_{ij}(x))_{d \times d}, \quad a_{ij}(x) = \sum_{r=1}^{k} \sigma^r_i(x) \sigma^r_j(x).$$

Lemma 4.1. (See [44,45]) Assume that there exists a bounded domain $U \subset \mathbb{R}^d$ with regular boundary, satisfying the following properties.

(i) In the domain U and some neighborhood thereof, the smallest eigenvalue of the diffusion matrix $A(x)$ is bounded away from zero.

(ii) If $x \in \mathbb{R}^d \setminus U$, the mean time τ at which a path issuing from x reaches the set U is finite, and $\sup_{x \in K} E_x \tau < \infty$ for every compact subset $K \subset \mathbb{R}^d$.

Then, the Markov process $x(t)$ of Eq. (4.1) has a stationary distribution $\mu_1(\cdot)$ with density in \mathbb{R}^d such that $\lim_{t \to \infty} P\{x(t) \in B\} = \mu_1(B)$ for any Borel set $B \subset \mathbb{R}^d$, and

$$P\left\{ \lim_{t \to \infty} \frac{1}{T} \int_0^T f(x(t)) dt = \int_{\mathbb{R}^d} f(x) \mu_1(dx) \right\} = 1,$$

where $f(x)$ is a function integrable with respect to the measure μ_1.

Remark 4.1. To verify condition (i), it is sufficient to show that there is a positive number Q such that $\sum_{i=1}^d a_{ij}(x) \xi_i^2 \geq Q |\xi|^2$ for all $x \in U$ and $\xi \in \mathbb{R}^d$ (See [47,48]). To validate condition (ii), it is sufficient to show that there is a nonnegative C^2-function $V(x)$ and a bounded domain $U \subset \mathbb{R}^d$ with regular boundary such that for some constant $k > 0$ one has $LV(x) < -k$ for all $x \in \mathbb{R}^d \setminus U$ (See [49]).

When in model (1.2) there is not any stochastic perturbation, that is $\sigma_i = 0 \ (i = 1, 2, 3, 4, 5)$, then model (1.2) degenerates into the following deterministic model

$$S'(t) = A - \beta S I - \mu_1 S + \gamma I + \alpha Q,$$
$$I'(t) = \beta S I - (\mu_2 + \gamma + \alpha) I,$$
$$Q'(t) = \delta I - (\mu_3 + \xi) Q.$$ \hfill (4.2)

Let $\hat{R}_0 = \frac{\hat{\beta} A}{\mu_1(\hat{\beta} + \gamma + \mu_2)}$. We can prove that when $\hat{R}_0 > 1$ then model (4.2) has a unique endemic equilibrium (S^*, I^*, R^*), where

$$S^* = \frac{A}{\mu_1 \hat{R}_0}, \quad I^* = \frac{A(1 - \frac{1}{\hat{R}_0})}{\mu_2 + \frac{\beta \mu_1}{\mu_3 + \xi}}, \quad Q^* = \frac{\delta I^*}{\mu_3 + \xi}.$$

Define the constants

$$\eta_1 = (a_3 + 1)\mu_1 - a_2 I^* \sigma_1^2 - (a_3 + 1) \sigma_2^2,$$
$$\eta_2 = a_3 (\mu_2 + \delta) + \mu_2 - (a_3 + 1) \sigma_2^2 - (a_1 + a_3) \sigma_4^2,$$
$$\eta_3 = a_1 (\mu_3 + \xi) + \mu_3 - (a_1 + 1) \sigma_3^2,$$
$$F = \frac{a_2 I^*}{2} (\sigma_2^2 + \sigma_4^2) + C_1 S^{*2} + C_2 I^{*2} + C_3 Q^{*2},$$
$$C_1 = a_2 I^* \sigma_1^2 + \sigma_3^2, \quad C_2 = (a_3 + 1) \sigma_2^2 + (a_1 + a_3) \sigma_4^2, \quad C_3 = (a_1 + 1) \sigma_3^2,$$

where

$$a_1 = \frac{\alpha_2}{\delta}, \quad a_2 = \frac{(\mu_1 + \mu_2 + \delta)(\mu_1 + \mu_3) + \xi (\mu_1 + \mu_2)}{\beta \xi}, \quad a_3 = \frac{\mu_1 + \mu_3}{\xi}.$$

Now, on the existence and uniqueness of stationary distribution for model (1.2) we have the following result.

Theorem 4.1. Assume that $\hat{R}_0 = \frac{\beta A}{\mu_1(\hat{\beta} + \gamma + \mu_2)} > 1$. If the conditions

$$\eta_i > 0 \ (i = 1, 2, 3), \quad F < \min\{\eta_1 S^{*2}, \eta_2 I^{*2}, \eta_3 Q^{*2}\}$$ \hfill (4.3)

are satisfied, then model (1.2) has a unique stationary distribution and ergodic property.

Proof. Define the Lyapunov function as follows.

$$V(S, I, Q) = a_1 V_1(Q) + a_2 V_2(I) + a_3 V_3(S, I) + V_4(S, I, Q).$$
where
\[V_1 = \frac{1}{2} (Q - Q^*)^2, \quad V_2 = I - I^* - I^* \ln \frac{I}{I^*}, \]
\[V_3 = \frac{1}{2} (S + I + Q - S^* - I^* - Q^*)^2, \quad V_4 = \frac{1}{2} (S + I + Q - S^* - I^* - Q^*)^2. \]

By computing, we have
\[
LV_1 = (Q - Q^*) \delta I - (\mu_3 + \xi) Q + \frac{1}{2} \sigma_2^2 Q^2 + \frac{1}{2} \sigma_4^2 I^2 \\
\leq \delta (I - I^*) (Q - Q^*) - (\mu_3 + \xi - \sigma_2^2) (Q - Q^*)^2 + \sigma_4^2 (I^*)^2 \\
+ \sigma_4^2 (I - I^*)^2 + \sigma_4^2 (I^*)^2.
\]
\[
LV_2 = (1 - \frac{I^*}{I}) (\beta S I - (\mu_2 + \delta + \gamma) I) + \frac{1}{2} I^* (\sigma_2^2 I^2 + \sigma_4^2 S^2 I^2 + \sigma_4^2 I^2) \\
\leq \beta (I - I^*) (S - S^*) + \frac{1}{2} (\sigma_2^2 + \sigma_4^2) + I^* \sigma_1^2 (S - S^*)^2 + S^* \sigma_2^2 S^2
\]
\[
LV_3 = (S + I + S^* - I^*) (a - \mu_1 S + \xi Q - (\mu_2 + \delta) I) + \frac{1}{2} \sigma_2^2 I^2 + \frac{1}{2} \sigma_4^2 I^2 + \frac{1}{2} \sigma_5^2 S^2 \\
\leq -(\mu_1 - \sigma_2^2) (S - S^*) - (\mu_2 + \delta - \sigma_2^2 - \sigma_5^2) (I - I^*)^2 \\
+ \xi (Q - Q^*) (S - S^*) - (\mu_1 + \mu_2 + \delta) (I - I^*) (S - S^*) \\
+ \xi (Q - Q^*) (I - I^*) + (\sigma_2^2 + \sigma_5^2) I^2 + \sigma_5^2 S^2
\]
and
\[
LV_4 = (S + I + Q - S^* - I^* - Q^*) (a - \mu_1 S - \mu_2 I) \\
- \mu_3 Q + \frac{1}{2} \sigma_2^2 I^2 + \frac{1}{2} \sigma_5^2 Q^2 + \frac{1}{2} \sigma_5^2 S^2 \\
\leq -(\mu_1 - \sigma_2^2) (S - S^*) - (\mu_2 + \delta - \sigma_2^2 - \sigma_5^2) (I - I^*)^2 \\
- (\mu_1 + \mu_2 + \gamma) (S - S^*) - (\mu_1 + \mu_3 + \gamma) (Q - Q^*) \\
+ (\sigma_3^2 I^2 + \sigma_5^2 S^2) + \sigma_5^2 S^2 - (\mu_1 - \sigma_2^2) (S - S^*)^2 \\
+ (\mu_2 - \sigma_2^2) (I - I^*)^2 + (\mu_3 - \sigma_2^2) (Q - Q^*)^2 \\
+ \sigma_5^2 I^2 + \sigma_5^2 Q^2 + \sigma_5^2 S^2
\]

Therefore, we have
\[
LV(S, I, Q) = a_1 LV_1(Q) + a_2 LV_2(I) + a_3 LV_3(S, I) + LV_4(S, I, Q), \\
\leq -a_1 (\mu_3 + \xi - \sigma_2^2) (Q - Q^*)^2 + a_1 \sigma_2^2 (Q^*)^2 + a_1 \sigma_4^2 I^2 \\
+ a_1 \sigma_4 (I - I^*)^2 + \frac{I^*}{2} (\sigma_2^2 + \sigma_4^2) + a_2 (\sigma_2^2 + \sigma_4^2) (S - S^*)^2 + a_2 I^* \sigma_1^2 S^2 \\
- a_3 (\mu_1 - \sigma_2^2) (S - S^*) - a_3 (\mu_2 + \gamma - \sigma_2^2) (I - I^*)^2 \\
+ a_3 (\sigma_2^2 I^2 + \sigma_5^2 S^2) + a_3 \sigma_5^2 S^2 - (\mu_1 - \sigma_2^2) (S - S^*)^2 \\
+ (\mu_2 - \sigma_2^2) (I - I^*)^2 + (\mu_3 - \sigma_2^2) (Q - Q^*)^2 \\
+ \sigma_5^2 I^2 + \sigma_5^2 Q^2 + \sigma_5^2 S^2
\]

If (4.3) holds, then the expression
\[
\eta_1 (S - S^*)^2 + \eta_2 (I - I^*)^2 + \eta_3 (Q - Q^*)^2 = F
\]
lie in the positive zone of \(\mathbb{R}^3_+ \). Hence, there exists a constant \(C > 0 \) and a compact set \(K \subset \mathbb{R}^3_+ \) such that for any
\[
x = (S, I, Q) \in \mathbb{R}^3_+ \setminus K \\
\eta_1 (S - S^*)^2 + \eta_2 (I - I^*)^2 + \eta_3 (Q - Q^*)^2 \geq F + C.
\]

Thus, we finally have
\[
LV(x) \leq -C, \quad x \in \mathbb{R}^3_+ \setminus K.
\]

From Remark 4.1, this shows that condition (ii) in Lemma 4.1 holds.

Next, we show that condition (i) holds in Lemma 4.1. The diffusion matrix associated to model (1.2) is
\[
A(x) = (a_i(x))_{3 \times 3} = \begin{pmatrix}
\sigma_1^2 S^2 I^2 + \sigma_2^2 S^2 & -\sigma_1^2 S^2 I^2 & 0 \\
-\sigma_1^2 S^2 I^2 & \sigma_1^2 S^2 I^2 + \sigma_2^2 I^2 + \sigma_4^2 I^2 & -\sigma_4^2 I^2 \\
0 & -\sigma_4^2 I^2 & \sigma_2^2 Q^2 + \sigma_4^2 I^2
\end{pmatrix},
\] (4.4)
where \(x = (S, I, Q) \). Choose \(M = \min_{(S,I,Q)\in U} \{ \sigma_2^2 I^2, \sigma_3^2 Q^2, \sigma_5^2 S^2 \} \). We have \(M > 0 \). For any \((S, I, Q) \in \overline{U}\) and \((\zeta_1, \zeta_2, \zeta_3) \in \mathbb{R}^3_+\), from (4.4) we have

\[
\sum_{i,j=1}^{3} a_{ij}(x)\zeta_j = \sigma_1^2 S^2 I^2 (\zeta_1 - \zeta_2)^2 + \sigma_2^2 I^2 \zeta_2^2 + \sigma_3^2 Q^2 \zeta_3^2 + \sigma_4^2 I^2 (\zeta_2 - \zeta_3)^2 + \sigma_5^2 S^2 \zeta_4^2 \geq \min_{(S,I,Q)\in U} \{ \sigma_2^2 S^2, \sigma_3^2 I^2, \sigma_5^2 Q^2 \} |\zeta_1 + \zeta_2 + \zeta_3| = M|\zeta|^2,
\]

where \(|\zeta| = (\zeta_1^2 + \zeta_2^2 + \zeta_3^2)^{\frac{1}{2}} \). From Remark 4.1 this shows that condition (i) in Lemma 4.1 is verified. Therefore, model (1.2) has a unique stationary distribution and the ergodic property. This completes the proof. □

Remark 4.2. It is clear that there exists a constant \(\sigma_0 > 0 \) such that when \(0 \leq \sigma_i \leq \sigma_0 (i = 1, 2, 3, 4, 5) \) the condition (4.3) holds. This implies that as long as \(\tilde{R}_0 = \frac{\beta A}{\sigma_1^2 (\gamma + \mu_2)} > 1 \) then the conclusions of Theorem 4.1 hold when the stochastic perturbations in model (1.2) are small enough. However, the condition (4.3) are also very strong. We easily see that along with the increase of \(\sigma_i (i = 1, 2, 3, 4, 5) \) the condition (4.3) will not satisfy. Thus, Theorem 4.1 will not be applicable.

In the following, we consider a special case of model (1.2): \(\sigma_1 = \sigma_4 = 0 \). Here, model (1.2) degenerates into the following form

\[
\begin{align*}
\frac{dS}{t} &= [A - \beta IS - \mu_1 S + \gamma I + \xi Q]dt + \sigma_3 dW_5(t), \\
\frac{dI}{t} &= [\mu_2 I - (\mu_3 + \gamma + \delta) I]dt + \sigma_3 dW_3(t), \\
\frac{dQ}{t} &= [\beta I - (\mu_3 + \xi) Q]dt + \sigma_3 dW_2(t).
\end{align*}
\]

We will give a new conclusion on the existence of unique stationary distribution for model (4.5). Define the constant

\[
\tilde{R}_0 = \frac{\beta A}{(\mu_1 + \frac{1}{2} \sigma_5^2)(\mu_2 + \delta + \gamma + \frac{1}{2} \sigma_5^2)}.
\]

Theorem 4.2. Assume that \(\tilde{R}_0 > 1 \). Then model (4.5) has a unique stationary distribution and the ergodic property.

Proof. Let a \(C^2 \)-function \(H(S, I, Q) \) in the following form

\[
H(S, I, Q) = MV_1 + V_2 - \ln S - \ln Q,
\]

where

\[
V_1 = -c_1 \ln S - c_2 \ln I, \quad V_2 = \frac{1}{\theta + 1} (S + I + Q)^{\theta + 1}
\]

whit \(\theta \) is a constant satisfying \(0 < \theta < \frac{2\mu_3}{\sigma_2^2 \sigma_3^2 \sigma_5^2} \), constant \(M > 0 \) will be determined later, and \(c_1 = \frac{2A}{2\mu_3 + \sigma_5^2} \).

\[
c_2 = \frac{2A}{2\mu_3 + \gamma + \delta + \mu_5}.
\]

It is easy to see that

\[
\lim_{k \to \infty} \inf_{(S,I,Q)\in \mathbb{R}_+^3 \setminus \mathbb{U}_k} H(S, I, Q) = \infty,
\]

where \(\mathbb{U}_k = \left(\frac{1}{k}, k \right) \times \left(\frac{1}{k}, k \right) \times \left(\frac{1}{k}, k \right) \) with integer \(k > 1 \). At the same time, \(H(S, I, Q) \) is a continuous function. Hence, \(H(S, I, Q) \) has a minimum value \(H(S_0, I_0, Q_0) \) in the interior of \(\mathbb{R}_+^3 \). Then, we define a nonnegative \(C^2 \)-function \(V \) in the following form

\[
V(S, I, Q) = H(S, I, Q) - H(S_0, I_0, Q_0)
\]

By the Itô's formula, for any solution \((S(t), I(t), Q(t))\) of model (1.2) we have

\[
\begin{align*}
L(-\ln S) &= -\frac{A}{S} + \beta I + \mu_1 - \frac{\gamma I}{S} - \frac{\xi Q}{S} + \frac{1}{2} \sigma_5^2, \\
L(-\ln Q) &= -\frac{\beta I}{Q} + \mu_1 + \xi + \alpha_3 + \frac{1}{2} \sigma_5^2, \\
LV_1 &= -\frac{c_1 A}{S} + c_1 \beta I + c_1 \mu_1 - c_1 \frac{\gamma I}{S} - c_1 \frac{\xi Q}{S} + c_1 \frac{1}{2} \sigma_5^2 \\
&\quad - c_2 \beta S + c_2 (\mu_1 + \gamma + \delta + \alpha_2) + c_2 \frac{1}{2} \sigma_5^2 \\
&\leq -2[(Ac_1 \beta I)^2 - A] + c_1 \beta I - c_1 \frac{\gamma I}{S} - \frac{\xi Q}{S} \\
&= -2[A(\tilde{R}_0)^2 - 1] + c_1 \beta I - c_1 \frac{\gamma I}{S} - \frac{\xi Q}{S}.
\end{align*}
\]
Therefore, the differential operator L acting on the V yields

$$LV \leq -2AM\eta + c_1 M \beta l - c_1 M \frac{\epsilon Q}{S} - c_1 M \frac{\epsilon Q}{S} - \mu^*(S^{\theta+1} + I^{\theta+1} + Q^{\theta+1}) + C - A \frac{\gamma l}{S} + \beta l + \mu_1 - \gamma l \frac{I}{S} - \frac{\epsilon Q}{S} - \frac{\delta I}{Q} + \mu_1 + \xi + \alpha_3 + \frac{1}{2} \sigma_3^2 + \frac{1}{2} \sigma_5^2 \leq -2AM\eta + C + 2\mu_1 + \xi + \alpha_3 + \frac{1}{2} \sigma_3^2 + \frac{1}{2} \sigma_5^2 - \mu^*(S^{\theta+1} + I^{\theta+1} + Q^{\theta+1})$$

$$- A \frac{\delta I}{Q} + (c_1 M \beta + \beta) l,$$

where $\eta = \left(\overline{R}_0\right)^{\frac{1}{2}} - 1$.

Now, we construct a compact subset D such that the condition (ii) in Lemma 4.1 holds. Define the bounded closed set

$$D = \{(S, I, Q) : \epsilon_1 \leq S \leq \frac{1}{\epsilon_1}, \epsilon_2 \leq I \leq \frac{1}{\epsilon_2}, \epsilon_3 \leq Q \leq \frac{1}{\epsilon_3}\},$$

where $\epsilon_i (i = 1, 2, 3)$ are small enough positive constants, which will be determined later.

For convenience, we divide $\mathbb{R}_+^3 \backslash D$ into six domains.

$$D_1 = \{(S, I, Q) \in \mathbb{R}_+^3, 0 < S < \epsilon_1\}, \ D_2 = \{(S, I, Q) \in \mathbb{R}_+^3, 0 < I < \epsilon_2, S \geq \epsilon_1\},$$

$$D_3 = \{(S, I, Q) \in \mathbb{R}_+^3, 0 < Q < \epsilon_3, S \geq \epsilon_1, I \geq \epsilon_2\}, \ D_4 = \{(S, I, Q) \in \mathbb{R}_+^3, S \geq \epsilon_1\},$$

$$D_5 = \{(S, I, Q) \in \mathbb{R}_+^3, I \geq \epsilon_2\}, \ D_6 = \{(S, I, Q) \in \mathbb{R}_+^3, Q \geq \frac{1}{\epsilon_3}\}.$$

We will prove that $LV(S, I, Q) \leq -1$ on $\mathbb{R}_+^3 \backslash D$, which is equivalent to show it on the above six domains.

Case 1. If $(S, I, Q) \in D_1$, we can obtain

$$LV \leq -A \frac{I}{S} + F_1 = -\frac{A}{\epsilon_1} + F_1,$$

where

$$F_1 = \sup_{(S, I, Q) \in \mathbb{R}_+^3} \left\{ C + 2\mu_1 + \xi + \alpha_3 + \frac{1}{2} \sigma_3^2 + \frac{1}{2} \sigma_5^2 - \frac{1}{2} \mu^*(S^{\theta+1} + I^{\theta+1} + Q^{\theta+1}) + (c_1 M \beta + \beta) l \right\}.$$

We choose a constant $\epsilon_1 > 0$ small enough such that $-\frac{A}{\epsilon_1} + F_1 \leq -1$, then it follows that

$$LV \leq -1 \quad \text{for all} \quad (S, I, Q) \in D_1. \quad (4.6)$$

Case 2. If $(S, I, Q) \in D_2$, we can obtain

$$LV \leq -2AM\eta + (c_1 M \beta + \beta) l + F_2 \leq -2AM\eta + (c_1 M \beta + \beta) \epsilon_2 + F_2,$$

where

$$F_2 = \sup_{(S, I, Q) \in \mathbb{R}_+^3} \left\{ C + 2\mu_1 + \xi + \alpha_3 + \frac{1}{2} \sigma_3^2 + \frac{1}{2} \sigma_5^2 - \mu^*(S^{\theta+1} + Q^{\theta+1}) \right\}.$$
Fig. 1. The numerical simulation of solution (S(t), I(t), Q(t)) with initial value (S(0), I(0), Q(0)) = (3, 2, 3) in Example 5.1. This shows that S(t) is permanent in the mean, I(t) and Q(t) are extinct with probability one.

Choose constants $M > 0$ large enough and $\varepsilon_2 > 0$ small enough such that

$$- 2AM\eta + (c_1 M\beta + \beta)\varepsilon_2 + F_2 \leq -1,$$

then it follows that

$$LV \leq -1 \text{ for all } (S, I, Q) \in D_2.$$ \hspace{1cm} (4.7)

Case 3. If $(S, I, Q) \in D_3$, we can obtain

$$LV \leq -\frac{\delta I}{Q} + F_1 \leq -\frac{\delta \varepsilon_2}{\varepsilon_3} + F_1.$$

Choose a constant $\varepsilon_3 > 0$ small enough such that $-\frac{\delta \varepsilon_2}{\varepsilon_3} + F_1 \leq -1$, then it follows that

$$LV \leq -1 \text{ for all } (S, I, Q) \in D_3.$$ \hspace{1cm} (4.8)

Case 4. If $(S, I, Q) \in D_4$, we can obtain

$$LV \leq -\frac{1}{2} \mu^*\varepsilon_1^{\phi + 1} + F_1 \leq -\frac{1}{2} \mu^*(\frac{1}{\varepsilon_1})^{\phi + 1} + F_1.$$

Choose a constant $\varepsilon_1 > 0$ small enough such that $-\frac{1}{2} \mu^*(\frac{1}{\varepsilon_1})^{\phi + 1} + F_1 \leq -1$, then we have

$$LV \leq -1 \text{ for all } (S, I, Q) \in D_4.$$ \hspace{1cm} (4.9)
Fig. 2. The numerical simulation of solution \((S(t), I(t), Q(t))\) with initial value \((S(0), I(0), Q(0)) = (3, 2, 3)\) in Example 5.2. This shows that \(S(t), I(t)\) and \(Q(t)\) are permanent in the mean.

Case 5. If \((S, I, Q) \in D_5\), we can obtain

\[
LV \leq -\frac{1}{2} \mu^* I^{\theta+1} + F_1 \leq -\frac{1}{2} \mu^* \left(\frac{1}{\varepsilon_2}\right)^{\theta+1} + F_1.
\]

Choose a constant \(\varepsilon_2 > 0\) small enough such that \(-\frac{1}{2} \mu^* \left(\frac{1}{\varepsilon_2}\right)^{\theta+1} + F_1 \leq -1\), then we have

\[
LV \leq -1 \quad \text{for all} \quad (S, I, Q) \in D_5. \tag{4.10}
\]

Case 6. If \((S, I, Q) \in D_6\), we can obtain

\[
LV \leq -\frac{1}{2} \mu^* Q^{\phi+1} + F_1 \leq -\frac{1}{2} \mu^* \left(\frac{1}{\varepsilon_3}\right)^{\phi+1} + F_1.
\]

Choose a constant \(\varepsilon_3 > 0\) small enough such that \(-\frac{1}{2} \mu^* \left(\frac{1}{\varepsilon_3}\right)^{\phi+1} + F_1 \leq -1\), then we get

\[
LV \leq -1 \quad \text{for all} \quad (S, I, Q) \in D_6. \tag{4.11}
\]

Finally, from (4.6)–(4.11) we obtain

\[
LV \leq -1 \quad \text{for all} \quad (S, I, Q) \in \mathbb{R}_+^3 \setminus D.
\]

Therefore, by Remark 4.1 the condition (ii) in Lemma 4.1 is satisfied.
Next, we show that condition (i) holds in Lemma 4.1. In fact, the diffusion matrix associated to model (1.2) is

\[A(x) = (a_{ij})_{3 \times 3} = \begin{pmatrix} \sigma_2 I^2 & 0 & 0 \\ 0 & \sigma_3 Q^2 & 0 \\ 0 & 0 & \sigma_5 I^2 \end{pmatrix}, \]

where \(x = (S, I, Q). \) It is easily proved that by Remark 4.1 condition (i) in Lemma 4.1 hold. Thus, we finally obtain that model (1.2) has a unique stationary distribution and is ergodic. This completes the proof. \(\square \)

Remark 4.3. When \(\sigma_1 > 0 \) or \(\sigma_4 > 0 \) in model (1.2), then whether model (1.2) also is ergodic and has a unique stationary distribution still is an interesting open problem. However, the numerical example given in below Section 5 shows that model (1.2) when \(\sigma_1 > 0 \) or \(\sigma_4 > 0 \) may have not a stationary distribution.

5. Numerical examples

In this section, we further analyze the stochastic model (1.2) by means of the numerical examples.

Example 5.1. In model (1.2) we take the parameters \(A = 2.5, \beta = 0.08, \mu_1 = 0.1, \sigma_1 = 0.06, \sigma_2 = 0.7, \sigma_3 = 0.2, \sigma_4 = 0.6, \sigma_5 = 0.1, \gamma = 0.16, \xi = 0.1, \mu_2 = 0.2, \mu_3 = 0.2 \) and \(\delta = 0.1. \) We obtain by computing \(R_0 = 0.9783 < 1, \) \(\beta = 0.08 < \frac{A}{\mu_1} \sigma_1^2 = 0.09, \frac{\beta^2}{2 \sigma_1} - (\mu_2 + \gamma + \frac{1}{2} (\sigma_2^2 + \sigma_4^2)) = 0.0039 > 0. \) Therefore, Theorem 3.3 is not applicable. However, from the numerical simulations given in Fig. 1, we can see that the infective \(I(t) \) and isolation \(Q(t) \) in model (1.2) are extinct with probability one, and the susceptible \(S(t) \) in model (1.2) is permanent in the mean with probability one.
Example 5.2. In model (1.2), we take the parameters $A = 2$, $\beta = 0.1$, $\mu_1 = 0.1$, $\mu_2 = 0.1$, $\sigma_1 = 0.01$, $\sigma_2 = 0.12$, $\sigma_3 = 0.001$, $\sigma_4 = 0.14$, $\sigma_5 = 0.01$, $\gamma = 0.1$, $\xi = 0.05$, $\mu_3 = 0.11$, $\mu_3 = 0.22$ and $\delta = 0.11$. We obtain $R_0^S = 6.1344 > 1$. From the numerical simulations given in Fig. 2, we can see that the infective $I(t)$, isolation $Q(t)$ and susceptible $S(t)$ in model (1.2) are not only persistent in the mean with probability one, but also permanent in the mean with probability one.

Example 5.3. In model (1.2), we take the parameters $A = 10$, $\beta = 0.6$, $\mu_1 = 1$, $\xi = 0.001$, $\gamma = 0.1$, $\mu_2 = 1.26$, $\mu_3 = 1.01$, $\delta = 0.2$, $\sigma_1 = 0.1$, $\sigma_2 = 0.2$, $\sigma_3 = 0.15$, $\sigma_4 = 0.05$, $\sigma_5 = 0.12$. We obtain the threshold value $R_0^S = 3.5120 > 1$ and the endemic equilibrium of deterministic model (4.2) is $(S^*, I^*, Q^*) = (2.6, 6.4535, 1.2767)$. The conditions in Theorem 4.1 are checked as follows: $R_0 = 3.8462 > 1$, $\eta_1 = 1450 > 0$, $\eta_2 = 2850.4 > 0$, $\eta_3 = 2.2725 > 0$, and $F = 8287.2 > \min\{\eta_1S^*, \eta_2I^*, \eta_3Q^*\} = \min\{9801.8, 1187.1, 3.7039\}$. Hence, the condition (4.3) does not hold. This shows that Theorem 4.1 is not applicable. But, from the numerical simulations given in Fig. 3, we can see that the solution $(S(t), I(t), Q(t))$ of model (1.2) still has a unique stationary distribution.

Example 5.4. In model (1.2), we take the parameters $A = 0.9$, $\beta = 0.1$, $\mu_1 = 0.1$, $\mu_2 = 0.12$, $\alpha_3 = 0.11$, $\sigma_1 = 0.01$, $\sigma_2 = 0.12$, $\sigma_3 = 0.001$, $\sigma_4 = 0.14$, $\sigma_5 = 0.001$, $\sigma_6 = 0.7$, $\gamma = 0.1$, $\xi = 0.05$, and $\delta = 0.11$. We obtain $R_0^S = 2.6932 > 1$, $R_0 = 0.7736 < 1$. This shows that Theorem 4.2 is not applicable. But, from the numerical simulations given in Fig. 4, we can see that the solutions of model (1.2) $(S(t), I(t), Q(t))$ may not exist the stationary distribution.

6. Conclusion

In this paper, we have investigated the global dynamics for a stochastic SIS epidemic model with isolation of the infection. The stochastic effects are assumed as the fluctuations in the transmission coefficient, disease-related rate and the
proportional coefficient of isolated infection. The research given in this paper shows that the extinction and persistence in the mean of the model are determined by a threshold value R_0^S. Concretely, we have proved that if $R_0^S < 1$ then disease dies out with probability one (Theorem 3.3), if $R_0^S > 1$, then the model is stochastic persistent or permanent in the means with probability one (Theorems 3.1 and 3.2). Furthermore, we also established the sufficient conditions for the existence of a unique stationary distribution (Theorems 4.1 and 4.2) by constructing the new suitable Lyapunov function. Particularly, we also see that the researches given in this paper extend the results on the global stability of the disease-free and endemic equilibria for the corresponding deterministic model given in Lemma 2.1.

We see that, in order to deal with the isolation term for the stochastic SIS epidemic model, some novel interesting research techniques are proposed. They are presented in Lemma 2.4 and the proofs of Theorems 3.1–3.3 and 4.2. In addition, we also see that there are still many problems for the considered model. These problems have been shown in Remarks 3.1, 3.2, 3.4, 3.5 and 4.3, which are interesting and valuable to be further investigated in the future.

Acknowledgment

This research is supported by the Natural Science Foundation of Xinjiang (Grant Nos. 2016D03022).

References

[1] H. Herbert, Z. Ma, S. Liao, Effects of quarantine in six endemic models for infectious diseases, Math. Biosci. 180 (2002) 141–160.
[2] C.M. Podder, A.B. Gumel, C.S. Bowman, R.G. McLeod, Mathematical study of the impact of quarantine, isolation and vaccination in curtailing an epidemic, J. Biol. Syst. 15 (2007) 185–202.
[3] J. Arino, R. Jordan, P. van den Driessche, Quarantine in a multi-species epidemic model with spatial dynamics, Math. Biosci. 206 (2007) 46–60.
[4] M.A. Safi, A.B. Gumel, Global asymptotic dynamics of a model for quarantine and isolation, Disc. Cont. Dyn. Syst. Ser. B 14 (2010) 209–231.
[5] C. Sun, W. Yang, Global results for an SIRS model with vaccination and isolation, Nonlinear Anal.: RWA 11 (2010) 4223–4237.
[6] M.A. Safi, A.B. Gumel, Mathematical analysis of a disease transmission model with quarantine, isolation and imperfect vaccine, Comp. Math. Appl. 61 (2011) 2044–2070.
[7] M.A. Safi, A.B. Gumel, The effect of incidence function on the dynamics of a quarantine/isolation model with time delay, Nonlinear Anal.: RWA 12 (2011) 215–235.
[8] M.A. Safi, A.B. Gumel, Qualitative study of a quarantine/isolation model with multiple disease stages, Appl. Math. Comput. 218 (2011) 1941–1961.
[9] M.A. Safi, M. Imran, A.B. Gumel, Threshold dynamics of a non-autonomous SEIRS model with quarantine and isolation, Theory Biosci. 131 (2012) 19–30.
[10] L. Zheng, X. Yang, L. Zhang, On global stability analysis for SEIRS model in epidemiology with nonlinear incidence rate function, Int. J. Biomath. 10 (2017) 1750019.
[11] G.P. Sahu, J. Dhar, Dynamics of an SODEIRS epidemic model with media coverage, quarantine and isolation in a community with pre-existing immunity, J. Math. Anal. Appl. 421 (2015) 1651–1672.
[12] C.M. Silva, A nonautonomous epidemic model with general incidence and isolation, Math. Appl. Sci. 37 (2014) 1974–1991.
[13] E.V. Grigorieva, E.N. Khailov, A. Korobeinikov, Optimal control for a SIR epidemic model with nonlinear incidence rate, Math. Model. Nat. Phenom. 11 (2016) 89–104.
[14] E. Hansen, T. Day, Optimal control of epidemics with limited resources, J. Math. Biol. 62 (2011) 423–451.
[15] Z. Sang, Z. Qu, X. Yan, Y. Zou, Assessing the effect of non-pharmaceutical interventions on containing an emerging disease, Math. Biosci. Engin. 9 (2012) 147–164.
[16] L. Wu, Z. Feng, Homoclinic bifurcation in a SIQR model for childhood diseases, J. Diff. Equations 168 (2000) 150–167.
[17] M. Nuno, Z. Feng, M. Martcheva, C. Castillo-Chavez, Dynamics of two-strain influenza with isolation and partial cross-immunity, SIAM J. Appl. Math. 65 (2005) 964–982.
[18] F.B. Agusto, Optimal isolation control strategies and cost-effectiveness analysis of a two-strain avian influenza model, Biosystems 113 (2013) 155–167.
[19] Y. Zhou, J. Wu, M. Wu, Optimal isolation strategies of emerging infectious diseases with limited resources, Math. Biosci. Engin. 10 (2013) 1691–1701.
[20] B. Adams, Household demographic determinants of Ebola epidemic risk, J. Theor. Biol. 392 (2016) 99–106.
[21] J. Lee, C. Chowell, E. Jung, A dynamic compartmental model for the Middle East respiratory syndrome outbreak in the Republic of Korea: A retrospective analysis on control interventions and superspreading events, J. Theor. Biol. 408 (2016) 118–126.
[22] T. Khan, G. Zaman, M.I. Chohan, The transmission dynamics and optimal control of acute and chronic hepatitis B, J. Biol. Dynam. 11 (2017) 104–113.
[23] N.S. Chong, J.M. Tchuenche, R.J. Smith, A mathematical model of avian influenza with half-saturated incidence, Theory Biosci. 133 (2014) 23–38.
[24] J. Zhang, G. Feng, Global stability for a tuberculosis model with isolation and incomplete treatment, Comp. Appl. Math. 34 (2015) 1237–1249.
[25] R.K. Upadhyay, P. Roy, Deciphering dynamics of recent epidemic spread and outbreak in West Africa: The case of Ebola virus, Int. J. Bifur. Chaos 26 (2016) 1630024.
[26] G.F. Webb, C.J. Browne, A model of the Ebola epidemic in West Africa incorporating age of infection, J. Biol. Dynam. 10 (2016) 18–30.
[27] M. Imran, M. Hassan, M. Dur-E-Ahmad, A. Khan, A comparison of a deterministic and stochastic model for Hepatitis C with an isolation stage, J. Biol. Syst. 15 (2013) 276–301.
[28] X. Yan, Y. Zou, Optimal and sub-optimal quarantine and isolation control in SARS epidemics, Math. Comp. Modelling 47 (2008) 235–245.
[29] X. Zhang, H. Huo, H. Xiang, X. Meng, Dynamics of the deterministic and stochastic SIQS epidemic model with non-linear incidence, Appl. Math. Comput. 243 (2014) 546–558.
[30] X. Zhang, H. Huo, H. Xiang, Q. Shi, D. Li, The threshold of a stochastic SIQS epidemic model, Physica A 482 (2017) 362–374.
[31] F. Wei, F. Chen, Stochastic permanence of an SIQS epidemic model with saturated incidence and independent random perturbations, Physica A 453 (2016) 99–107.
[32] Y. Pan, Y. Han, W. Li, The threshold of a stochastic SIQS epidemic model, Adv. Diff. Equat. 2014 (2014) 320.
[33] J. Yu, M. Liu, Stationary distribution and ergodicity of a stochastic food chain model with levy jumps, Physica A 482 (2017) 14–28.
[34] Y. Zhu, M. Liu, Permanence and extinction in a stochastic service-resource mutualism model, Appl. Math. Letters 69 (2017) 1–7.
[35] M. Liu, M. Fan, Stability in distribution of a three-species stochastic cascade predator–prey system with time delays,IMA J. Appl. Math. 82 (2017) 396–423.
[36] M. Liu, M. Fan, Permanence of stochastic Lotka–Volterra systems, J. Nonl. Sci. 27 (2017) 425–452.
[37] D. Li, J. Cui, M. Liu, S. Liu, The evolutionary dynamics of stochastic epidemic model with nonlinear incidence rate, Bull. Math. Biol. 77 (2015) 1705–1743.
[38] Q. Liu, D. Jiang, T. Hayat, B. Ahmad, Periodic solution and stationary distribution of stochastic SIR epidemic models with higher order perturbation, Physica A 482 (2017) 209–217.
[39] R. Rifhat, L. Wang, Z. Teng, Dynamics for a class of stochastic SIS epidemic models with nonlinear incidence and periodic coefficients, Physica A 481 (2017) 176–190.
[40] A. Lahrouz, A. Settati, A. Akharif, Effects of stochastic perturbation on the SIS epidemic system, J. Math. Biol. 74 (2017) 469–498.
[41] Q. Liu, D. Jiang, N. Shi, Threshold behavior in a stochastic SIQR epidemic model with standard incidence and regime switching, Appl. Math. Comput. 316 (2018) 310–325.
[42] Q. Liu, D. Jiang, Stationary distribution and extinction of a stochastic SIR model with nonlinear perturbation, Appl. Math. Letters 73 (2017) 8–15.
[43] N.H. Du, N.N. Nhu, Permanence and extinction of certain stochastic SIR models perturbed by a complex type of noises, Appl. Math. Letters 64 (2017) 223–230.
[44] X. Mao, Stochastic Differential Equations and Applications, 2nd ed., Horwood, Chichester, UK, 2008.
[45] R.Z. Hasminskii, Stochastic Stability of Differential Equations, Alphen aan den Rijn, The Netherlands, 1980.
[46] M. Liu, K. Wang, Q. Wu, Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle, Bull. Math. Biol. 73 (2011) 1969–2012.
[47] T. Gard, Introduction to Stochastic Differential Equations, New York, 1988.
[48] G. Strang, Linear Algebra and Its Applications, Thomson Learning Inc, 1988.
[49] C. Zhu, C. Yin, Asymptotic properties of hybrid diffusion systems, SIAM J. Control Optim. 46 (2007) 1155–1179.