Almost zip Bezout domain

Bohdan Zabavsky, Oleh Romaniv

Department of Mechanics and Mathematics, Ivan Franko National University
Lviv, 79000, Ukraine
zabavskii@gmail.com, oleh.romaniv@lnu.edu.ua

March, 2019

Abstract: J. Zelmanowitz introduced the concept of ring, which we call zip rings. In this paper we characterize a commutative Bezout domain whose finite homomorphic images are zip rings modulo its nilradical.

Key words and phrases: Bezout ring; elementary divisor ring; zip ring; J-Noetherian domain.

Mathematics Subject Classification: 06F20, 13F99.

1 Introduction

All rings considered will be commutative with identity. A ring is a Bezout ring if every finitely generated ideal is principal. I. Kaplansky [4] defined the class of elementary divisor rings as rings R for which every matrix A over R admits a diagonal reduction, that is there exist invertible matrices P and Q such that PAD is a diagonal matrix $D = (d_i)$ with the property that every d_i is a divisor d_{i+1}. B. Zabavsky defined fractionally regular rings as rings R such that for which every nonzero and nonunit element a from R the classical quotient ring $Q_{\text{cl}}(R/\text{rad}(aR))$ is regular, where $\text{rad}(aR)$ is nilradical of aR [7]. We say that the ring R has stable range 2 if whenever $aR + bR + cR = R$, then there are $\lambda, \mu \in R$ such that $(a + c\lambda)R + (b + c\mu)R = R$. We say R is semi-prime if $\text{rad}(R) = \{0\}$, where $\text{rad}(R)$ is the nilradical of the ring R. Obviously, rings in which nonzero principal ideal has only finitely many minimal prime are examples of fractionally regular rings [1].

An ideal I of a ring R is called a J-radical if it is an intersection of maximal ideals, or, equivalently, if R/I has zero Jacobson radical. We call R
J-Noetherian if it satisfies the ascending chain condition on J-radical ideals.

For every ideal \(I \) in \(R \) we define the annihilator of \(I \) by \(I^\perp = \{ x \in R \mid ix = 0 \ \forall i \in I \} \).

Following C. Faith [3] a ring \(R \) is zip if \(I \) is an ideal and if \(I^\perp = \{ 0 \} \) for a finitely generated ideal \(I_0 \subset I \). An ideal \(I \) of a ring \(R \) is dense if its annihilator is zero. Thus \(I \) is a dense ideal if and only if it is a faithful \(R \)-module. A ring \(R \) is a Kasch ring if \(I^\perp \neq \{ 0 \} \) for any ideal \(I \neq R \).

Let \(R \) be a ring. Then the ring \(R \) has finite Goldie dimension if it contains a direct sum of finite number of nonzero ideals. A ring \(R \) is called a Goldie ring if it has finite Goldie dimension and satisfies the ascending chain condition for annihilators [3 5 8]. By [3] we have the following result.

Theorem 1. [3] Semiprime commutative ring \(R \) is zip if and only if \(R \) is a Goldie ring.

Proposition 1. [3] A commutative Kasch ring is zip.

Proposition 2. [3] If \(Qcl(R) \) is a Kasch ring then \(R \) is zip.

For further research we will need the following results.

Theorem 2. [3] A commutative ring \(R \) is zip if and only if its classical ring of quotients \(Qcl(R) \) is zip.

Theorem 3. Let \(R \) be a commutative Bezout domain and \(0 \neq a \in R \), then \(R/aR \) is a Kasch ring if and only if \(R \) is a ring in which any maximal ideal is principal.

Proof. First we will prove that the annihilator of any principal ideal of \(R/aR \) is a principal ideal.

Suppose \(b \in R \) and \(aR \subseteq bR \). Then \((b:a) = \{ r \in R \mid br \in aR \} = sR \), where \(a = bs \), so \((b:a) = aR \). We can also show that every principal ideal of \(R/aR \) is an annihilator of a principal ideal. Moreover, if \(I_1 = \text{Ann}(J_1) \), \(I_2 = \text{Ann}(J_2) \), where \(I_1, J_i, i = 1,2 \), are principal ideals, then

\[
\text{Ann}(I_1 \cap I_2) = \text{Ann}(\text{Ann}(J_1) \cap \text{Ann}(J_2)) = \\
= \text{Ann}(\text{Ann}(J_1 + J_2)) = J_1 + J_2 = \text{Ann}(J_1) + \text{Ann}(J_2).
\]

Let \(R/aR \) be a Kasch ring. Let \(\overline{M} \) be a maximal ideal in \(R/aR \). Denote \(R/aR = \overline{R} \). Then \(\text{Ann}(\overline{M}) = \overline{H} \), where \(\overline{H} \) is an ideal in \(\overline{R} = R/aR \) and
\(\overline{H} = \{0\} \). Since \(\overline{H} \) annihilates the maximal ideal \(\overline{M} \) then \(\overline{H} \cdot \overline{M} = \{0\} \).

Since the maximal ideal \(\overline{M} \) belongs to \(\text{Ann}(\overline{H}) \), then by maximality of \(\overline{M} \), \(\overline{M} = \text{Ann}(\overline{H}) \neq R/aR \).

Since \(\overline{M} \) is a maximal ideal, then for every element \(\overline{d} \neq 0 \), which belongs to \(\overline{H} \). We have the equality \(\overline{d} \overline{M} = \{0\} \). Thus, the maximal ideal \(\overline{M} \) belongs to \(\text{Ann}(\overline{d}) \), where \(\overline{d} \) is a nonunit.

Hence \(\overline{M} = \text{Ann}(\overline{d}) = \overline{bR} \). Therefore, \(\overline{M} = \overline{bR} \) and \(\overline{M} = bR + aR = cR \), because \(R \) is a commutative Bezout domain for some \(c \in R \). Hence \(M \) is a maximal ideal which is a principal ideal.

Suppose that a maximal \(M \) contains an element \(a \), is a principal one considering its homomorphic image we have \(\overline{M} = \overline{mR} = \text{Ann}(\overline{nR}) \). Since \(\overline{m} \notin U(\overline{R}) \) then we have \(\text{Ann}(\overline{nR}) \neq \overline{R} \) and hence \(\overline{nR} \neq \{0\} \).

As a result \(\text{Ann}(\overline{M}) = \text{Ann}(\text{Ann}(\overline{nR})) = \overline{nR} \neq (0) \). Therefore, \(\text{Ann}(\overline{M}) \) is a nonzero principal ideal. This proves the fact that \(\overline{R} \) is a Kasch ring.

\[\Box \]

2 Our results

Note that

Proposition 3. Let \(R \) be a Bezout ring. Then \(R \) is zip if and only if every dense ideal contains a regular element.

Proof. If \(I \) is a dense ideal of a zip ring, and if \(I \) is principal dense ideal contained in \(I \), hence \(I \) is generated by a regular element. \[\Box \]

Theorem 4. Let \(R \) be a semiprime commutative Bezout ring which is a Goldie ring. Then any minimal prime ideal of \(R \) is principal, generated by an idempotent, and there are only finitely many minimal prime ideals.

Proof. The restrictions on \(R \) imply that the classical quotient ring \(Q_{cl}(R) \) is an Artinian regular ring with finitely many minimal prime ideals. Let \(P \) be a minimal prime ideal of \(R \). Consider the ideal \(P_Q = \{ \frac{p}{x} \mid p \in P \} \). It is obvious that \(P_Q \) is a prime ideal of \(Q_{cl}(R) \). Since \(Q_{cl}(R) \) is an Artinian regular ring, there exists an idempotent \(e \in Q_{cl}(R) \) such that \(P_Q = eQ_{cl}(R) \).

Since \(R \) is arithemical ring, then we have \(e \in R \) \[2 \]. For any \(p \in P \) we obtain that \(p = er \), where \(r \) is a von Neumann regular element, i.e. \(rxr = r \) for some \(x \in R \). Hence \(ep = e^2r = er = p \), we have \(P \subset eR \), \(e \in P \), so \(eR \subset P \) and \(P = eR \). Since any minimal prime ideal of \(R \) is principal by \[1 \], we have that \(R \) have finitely many minimal prime ideals. \[\Box \]
Definition 1. Let R be a commutative Bezout domain. Nonzero and nonunit element $a \in R$ is said to be almost zip element if $R/\text{rad}(aR)$ is a zip ring. Commutative Bezout domain is said to be almost zip ring if any nonzero nonunit element of R is almost zip element.

Theorem 5. Let R be a commutative Bezout domain and a almost zip element of R. Then there are only finitely many prime ideals minimal over aR.

Proof. Since $R/\text{rad}(aR)$ is semiprime zip ring then by Theorem 1 we have that $R/\text{rad}(aR)$ is a Goldie Bezout ring. By Theorem 4 we have that any minimal prime ideal of $R/\text{rad}(aR)$ is principal and is generated by an idempotent. Then there are only finitely many minimal prime ideals. Obvious then aR has finitely many minimal prime ideals. □

Consequently we have the following results.

Theorem 6. Almost zip commutative Bezout domain is J-Noetherian domain (i.e. Noetherian maximal spectrum).

Proof. By Theorem 6 we have that any nonzero and nonunit element has finitely many minimal ideals. By 2 R is a J-Noetherian domain. □

Since a commutative J-Noetherian Bezout domain is an elementary divisor ring by Theorem 6, we have the following results.

Theorem 7. A commutative almost zip Bezout domain is an elementary divisor domain.

Since J-Noetherian Bezout domain is fractionally regular ring. We have the following result.

Theorem 8. Almost zip Bezout domain is fractionally regular domain.

References

[1] D. Anderson, A note on minimal prime ideals, Proc. Amer. Math. Soc. 122 (1994), no. 1, 13–14.

[2] D. Estes and J. Ohm, Stable range in commutative rings, J. Alg. 7 (1967), no. 3, 343–362.
[3] C. Faith, *Rings with zero intersection property on annihilators: zip rings*, Publ. Matem. 33 (1989), no. 2, 329–338.

[4] I. Kaplansky, *Elementary divisors and modules*, Trans. Amer. Math. Soc. 66 (1949), 464–491.

[5] I. Kaplansky, *Commutative rings*, Univ. of Chicago Press, Chicago, IL, 1974.

[6] T. Shores and R. Wiegand, *Decompositions of modules and matrices*, Bull. Amer. Math. Soc. 79 (1973), no. 6, 1277–1280.

[7] B. Zabavsky, *Fractionally regular Bezout rings*, Matem. Stud. 32 (2009), no. 1, 76–80.

[8] J. Zelmanowitz, *The finite intersection property on annihilator right ideals*, Proc. Amer. Math. Soc. 57 (1976), no. 2, 213–216.