The **LDLR**, **APOB**, and **PCSK9** Variants of Index Patients with Familial Hypercholesterolemia in Russia

Alexey Meshkov 1,*, Alexandra Ershova 1, Anna Kiseleva 1, Anna Zotova 2, Evgeniia Sotnikova 1, Anna Petukhova 2, Anastasia Zharikova 1,3, Pavel Malyshve 4, Tatyana Rozhkova 4, Anastasia Blokhina 1, Alena Limonova 1, Vasily Ramensky 1,3, Mikhail Divashuk 1,3, Zukhra Khasanova 4, Anna Bukaeva 2, Olga Kurilova 1, Olga Skirko 1, Maria Pokrovskaya 1, Valeriya Mikova 2, Ekaterina Snigir 2, Alexandra Akinshina 2, Sergey Mitrofanov 2, Daria Kashiantova 2, Valentin Makarov 2, Valeri Kukharchuk 4, Sergey Boytsov 4, Sergey Yudin 2 and Oxana Drapkina 1

1 National Medical Research Center for Therapy and Preventive Medicine, Petrovitsygepsy per., 10, bld. 3, 101000 Moscow, Russia; alersh@mail.ru (A.E.); sanyutabe@gmail.com (A.B.); sotnikova.evgeniya@gmail.com (E.S.); azharikova89@gmail.com (A.Z.); franny349@gmail.com (A.B.); limonova-alena@yandex.ru (A.L.); ramensky@gmail.com (V.R.); divashuk@gmail.com (M.D.); olga_kurilova81@mail.ru (O.K.); ops_70@mail.ru (O.S.); MPokrovskaya@gnicpm.ru (M.P.); drapkina@bk.ru (O.D.)

2 Centre for Strategic Planning of FMB of Russia, Pogodinskaya Street, 10, bld. 1, 119121 Moscow, Russia; Ezotova@cspmz.ru (E.Z.); APetukhova@cspmz.ru (A.P.); annbukaeva@gmail.com (A.B.); VMikova@cspmz.ru (V.M.); ESnigir@cspmz.ru (E.S.); Akinshina@cspmz.ru (A.A.); mitrofanov@cspmz.ru (S.M.); DKashiantova@cspmz.ru (D.K.); makarov@cspmz.ru (V.M.); yudin@cspmz.ru (S.Y.)

3 Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninsky Gory, 1-73, 119991 Moscow, Russia

4 National Medical Research Center for Cardiology, 3-ya Cherepovskaya Street, 15A, 121552 Moscow, Russia; pavel-malyshve@mail.ru (P.M.); rozhkova.ta@mail.ru (T.R.); zukhra@yandex.ru (Z.K.); v_kukharch@mail.ru (V.K.); prof.boytsov@gmail.com (S.B.)

* Correspondence: meshkov@lipidclinic.ru

Abstract: Familial hypercholesterolemia (FH) is a common autosomal codominant disorder, characterized by elevated low-density lipoprotein cholesterol levels causing premature atherosclerotic cardiovascular disease. About 2900 variants of LDLR, APOB, and PCSK9 genes potentially associated with FH have been described earlier. Nevertheless, the genetics of FH in a Russian population is poorly understood. The aim of this study is to present data on the spectrum of LDLR, APOB, and PCSK9 gene variants in a cohort of 595 index Russian patients with FH, as well as an additional systematic analysis of the literature for the period of 1995–2020 on LDLR, APOB and PCSK9 gene variants described in Russian patients with FH. We used targeted and whole genome sequencing to search for variants. Accordingly, when combining our novel data and the data of a systematic literature review, we described 224 variants: 187 variants in LDLR, 14 variants in APOB, and 23 variants in PCSK9. A significant proportion of variants, 81 of 224 (36.1%), were not described earlier in FH patients in other populations and may be specific for Russia. Thus, this study significantly supplements knowledge about the spectrum of variants causing FH in Russia and may contribute to a wider implementation of genetic diagnostics in FH patients in Russia.

Keywords: familial hypercholesterolemia; Russian; whole genome sequencing; LDLR; APOB; PCSK9

1. Introduction

Familial hypercholesterolemia (FH) is a common autosomal codominant disorder, characterized by elevated low-density lipoprotein (LDL) cholesterol levels causing premature atherosclerotic cardiovascular disease [1]. In two meta-analyses of 2020, similar results were obtained on the prevalence of heterozygous FH (HeFH) in the general population: one
in 311 and one in 313, respectively [2,3]. The prevalence of homozygous FH (HoFH) is one in 300,000 [4]. Mutations in one of the three genes (low-density lipoprotein receptor gene (LDLR), apolipoprotein B gene (APOB) and proprotein convertase subtilisin/kexin type 9 gene (PCSK9)) cause both HeFH and HoFH, and these genes account for the vast majority of genetically confirmed cases of FH [1]. For LDLRAP1, LIPA, ABCG5 and ABCG8 genes, two mutant alleles act recessively, producing a severe phenotype consistent with HoFH, but only single families have been described [1]. About 2900 variants in the LDLR, APOB and PCSK9 genes potentially associated with FH have been described by the members of the ClinGen FH Variant Curation Expert Panel from 13 different countries [5]. Nevertheless, the genetics of FH in a Russian population is still poorly understood, with only about 60 variants of LDLR and APOB genes described in single publications [6–10]. The aim of this study is to present data on the spectrum of the LDLR, APOB and PCSK9 gene variants in a cohort of 595 index Russian patients with FH, and to perform an additional systematic analysis of the literature for the period of 1995–2020 on LDLR, APOB and PCSK9 gene variants described in Russian FH patients.

2. Materials and Methods

2.1. Clinical Description of the Patients

The study included index patients (n = 595) with clinically and genetically confirmed diagnosis of HeFH or HoFH examined by researchers at the National Medical Research Center for Therapy and Preventive Medicine (Moscow, Russia) and the National Medical Research Center for Cardiology (Moscow, Russia). HeFH was determined using the Dutch Lipid Clinical Network Criteria (DLCN) including the results of genetic testing [11]. This diagnosis was established when the DLCN score was six points or more. The diagnosis of HoFH was determined using the guidance of the European Atherosclerosis Society [4]. Blood for genetic analysis was stored in the Biobank of the National Medical Research Center for Therapy and Preventive Medicine (Moscow, Russia). Targeted sequencing and Sanger sequencing were performed at the National Medical Research Center for Therapy and Preventive Medicine (Moscow, Russia). Whole genome sequencing was performed at the Center for Strategic Planning of the Federal Medical Biological Agency (Moscow, Russia). This study was performed in accordance with the Declaration of Helsinki and was approved by the Committee on the Ethics issues in clinical cardiology of the National Medical Research Center for Cardiology (Moscow, Russia) and by the Institutional Review Boards of the National Research Center for Therapy and Preventive Medicine (Moscow, Russia) with written informed consent obtained from each participant and/or their legal representative, as appropriate.

2.2. Systematic Review

We performed a systematic review of all relevant peer-reviewed published articles involving patients with FH from Russia. The search strategy was designed to cover all articles published in English using three literature databases (Scopus, Web of Science and PubMed) from 1995 to July 2020. The search terms were: (“Familial hypercholesterolemia” OR “LDLR” OR “APOB” OR “PCSK9”) and (“Russia” OR “Russian”). The eligible articles were screened for both the titles and abstracts.

2.3. Molecular Genetic Analysis

2.3.1. Target Sequencing

DNA was isolated using the QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany). DNA concentration was assessed with a Qubit 4.0 fluorimeter (Thermo Fisher Scientific, Waltham, MA, USA). Target sequencing was performed with two platforms: Ion S5 (Thermo Fisher Scientific, Waltham, MA, USA) and Nextseq550 (Illumina, San Diego, CA, USA). For sequencing on Ion S5, DNA libraries were prepared on an Ion Chef System (Thermo Fisher Scientific, Waltham, MA, USA) using a custom panel designed automatically by Ion AmpliSeq Designer software v7.4.2 (Thermo Fisher Scientific, Waltham, MA,
USA). The panel flanked exonic and adjacent intronic sequences of 25 genes (UTR + CDS + 100 bp padding). VCF files were generated from BAM files on a Torrent Server (Thermo Fisher Scientific, Waltham, MA, USA) with default parameters. VCF files were annotated using Ion Reporter (Thermo Fisher Scientific, Waltham, MA, USA) with Annotate Variants analysis tool. For Nextseq 550, the library preparation was performed using the SeqCap EZ Prime Choice Library kit (Roche, Basel, Switzerland). Two Roche panels were used, consisting of 24 (CDS + 25 bp padding) and 244 (CDS + 25 bp padding) genes. All three panels included the \textit{LDLR}, \textit{APOB} and \textit{PCSK9} genes. All stages of sequencing were carried out according to the manufacturers’ protocols. Reads were aligned to the reference genome (GRCh37). Sequencing analysis resulted in fastq files. Data processing was performed with BWA, Picard, bcftools, GATK3 and generally followed the GATK best practices for variant calling. We applied standard GATK hard filters for single nucleotide substitutions (MQ, QD, FS, SOR, MQRankSum, QUAL, ReadPosRankSum) and for short insertions and deletions (QD, FS, QUAL, ReadPosRankSum). Single nucleotide variants and short indels were annotated with ANNOVAR.

2.3.2. Whole Genome Sequencing and Bioinformatic Analysis

DNA was extracted from whole blood sample using QIAamp® DNA Mini Kit (Qiagen, Hilden, Germany). A WGS library was prepared using Nextera DNA Flex kit (Illumina, San Diego, CA, USA) according to manufacturer instructions. Paired-end sequencing (150 bp) was performed to mean sequencing coverage of 30× or more. Reads were aligned to the reference genome (GRCh38) and small variants were called using Dragen Bio-IT platform (Illumina, San Diego, CA, USA) and joint-called with GLnexus [12].

Structural variant (SV) calling was performed with smoove software [13]. Annotation was performed using an Ensembl Variant Effect Predictor (VEP) [14]. All variants were visually inspected in an Integrative Genomics Viewer (IGV) [15] and breakpoint regions were investigated with PCR and Sanger sequencing. Mobile elements (ME) SVA, LINE1 and Alu were called using MELT software [16] and annotated with VEP [14]. Images were prepared using the R programming language. For Figure 1 a trackViewer package was used [17].

2.3.3. Clinical Interpretation

The following canonical transcripts were used in this work: NM_000527.5 (\textit{LDLR}), NM_000384.3 (\textit{APOB}), and NM_174936.4 (\textit{PCSK9}). For clinical interpretation, short genetic variants with overall frequencies for European (non-Finnish) in the gnomAD database of <0.5%, or missing in the gnomAD, were selected. SV-only variants with frequencies of <0.5% for European (non-Finnish) were left for evaluation. No ME insertions were found for \textit{LDLR}, \textit{APOB} or \textit{PSCK9}. Evaluation of the pathogenicity of the variants was carried out in accordance with the recommendations of the American College of Medical Genetics and Genomics (ACMG) with modifications [18]. The following types of variants are reported in the article: pathogenic (P), likely pathogenic (LP) and variant of unknown significance (VUS). All variants were analyzed for their presence in the databases (LOVD, ClinVar and HGMD) [5,19].
Figure 1. Variants in LDLR, PSCK9, and APOB genes, specific for the Russian population. For the LDLR gene, due to the large quantity, only 30 novel variants found in this study are shown (with the exception of four large structural variants presented in Figure 2). Number of index patient is indicated in the circle (0 is for variants found in other studies), color indicates clinical interpretation: red, orange and yellow for pathogenic (P), likely pathogenic (LP) and variant of uncertain significance (VUS), respectively. Coordinates are given in hg38 assembly.
Figure 2. Exonic structure of the native LDLR gene and its large structural variants found in this study. Exon border shape (flat and right or left pointing) shows the phase of the reading frame (+0; +1; +2); if borders don’t match, a frame shift occurs (deletions exon 9–10 and 16–17). NMD marks a variant that likely leads to the nonsense-mediated decay.

2.3.4. Sanger Sequencing

The validation of NGS results was done by Sanger sequencing. PCRs were performed in 20 µL of a mixture containing 0.2 mM of each nucleotide, 1× PCR buffer, 20 ng of the DNA, 10 ng of each primer, 2.5 U of DNA polymerase. Amplification was performed on a GeneAmp PCR System 9700 thermocycler (Thermo Fisher Scientific, Waltham, MA, USA) with the following parameters: 95 °C—300 s; 30 cycles: 95 °C—30 s, 62 °C—30 s, 72 °C—30 s; 72 °C—600 s. Before the Sanger reaction, the obtained amplicons were purified using ExoSAP-IT (Affymetrix, Santa Clara, CA, USA) according to the manufacturer’s protocol. The nucleotide sequence of PCR products was determined using the ABI PRISM® BigDye™ Terminator reagent kit v. 3.1 followed by analysis of the reaction products on an automated DNA sequencer Applied Biosystem 3500 DNA Analyzer (Thermo Fisher Scientific, Waltham, MA, USA).

3. Results

3.1. Systematic Literature Review

The search strategy described above yielded 665 citations; 474 remained after duplicate removal. After the analysis of the abstracts referring to genetic testing or LDLR, APOB and PCSK9 variants in FH patients, 27 articles were selected, of which 25 contained data on the LDLR, APOB, and PCSK9 variants, including three of previously published articles by our group [6–10,20–39]. These articles describe 91 causal variants of LDLR gene, one variant of APOB, and one variant of PCSK9 (Figure 1, Tables A1–A3 in Appendix A).

3.2. Genetic Test Results

In our study we performed genetic testing of 595 unrelated patients with FH, of which six patients demonstrated the phenotype of HoFH and the rest had clinical features of HeFH. Target sequencing was performed for 401 patients and whole genome sequencing was performed for 405 patients (both methods were performed for 211 patients). In 405 WGS patients we called SNPs, short indels, long SVs and ME insertions.
We identified 122 different potentially causative variants in LDLR, 13 variants in APOB, and 21 variants in PCSK9 in 294 unrelated patients (Figures 1 and 2, Tables A1–A3). No potentially causative variants were found in 301 of 595 patients (50.6%). Out of these 294 patients, one patient was a true homozygote, four compound heterozygotes with two LDLR variants on different chromosomes (in trans), one compound heterozygote with two LDLR variants on the same chromosome (in cis), two compound heterozygotes with two LDLR variants of unknown mutual arrangement of alleles, six double heterozygotes (harboring two variants in two different genes) and one patient with three variants in three genes (Table A4), the rest were simple heterozygotes. A total of 34 variants in LDLR, six variants in APOB and six variants in PCSK9, were found in this study for the first time. Most of these variants were unique but some LDLR variants occurred in several unrelated patients: p.Cys68Phe, p.Pro196Arg, p.Cys318Trp, p.Tyr375Asp and p.Ile566Phe. Of 35 variants previously described in the literature [6–10,20–39] only for the Russian population, six variants were also found in this study. Most of these variants were also unique, except for variant LDLR-p.Cys160Gly, that was found in six unrelated patients. Of all variants (the percentage of all identified potentially causative alleles (310 alleles found in this study)) the most common were: LDLR-p.Gly592Glu—9.4%, LDLR-p.Leu401His—9%, APOB-p.Arg3527Gln—7.4%, LDLR-p.Cys329Tyr—2.6%, LDLR-p.Cys160Gly—1.9%. Most of the variants described above were SNPs and short indels. Only five large SVs were found in this study and all of them in LDLR gene (Figure 2). Four novel deletions were found and a tandem duplication previously described in a patient of Czech origin (ClinVar ID: 251140). No ME insertions were found in any of the studied genes.

3.3. Description of All Variants in Russia

In total, when combining our data (156 LDLR, APOB and PCSK9 variants) and the data of the systematic review (91 LDLR, APOB and PCSK9 variants), we described 224 variants: 187 LDLR variants, 14 APOB variants, and 23 PCSK9 variants (Tables A1–A3). A significant proportion of variants—36.1% (67 LDLR variants, six APOB variants and eight PCSK9 variants)— was not described in FH patients in other populations and may be specific for Russia.

In accordance with the criteria of pathogenicity, 38 LDLR variants were classified as pathogenic (P), 53 as likely pathogenic (LP) and 95 as variant of unknown significance (VUS). In the APOB gene there were four LP and 10 VUS, and in the PCSK9 gene four LP and 19 VUS (Table 1).

Table 1. Variants, found in this study.

Gene	Total (P/LP/VUS)	Possibly Unique including Novel for the Russian Population and Described Earlier (P/LP/VUS)	Novel (P/LP/VUS)	Described in Other World Populations
LDLR	187 (38/53/95) *	67 (11/19/37)	34 (3/10/21)	120 (27/34/58)
APOB	14 (0/4/10)	6 (0/1/5)	6 (0/1/5)	8 (0/3/5)
PCSK9	23 (0/4/19)	8 (0/1/7)	6 (0/1/5)	5 (0/3/12)

Novel: variants found in this study for the first time. Possibly unique for the Russian population: variants found in this study and previously described only for the Russian population. (*)—for one variant it was impossible to determine the category of pathogenicity. However, it was earlier described in the literature as pathogenic.

4. Discussion

This study was based on the largest number of participants of any genetic FH study in Russia to date. Including collected literature data, this study reported 224 variants found in the Russian population, either novel or reported before, with 81 variants described only in Russian FH patients. These data on the spectrum of the LDLR, APOB and PCSK9 variants...
can be useful for clinical interpretation when carrying out a genetic diagnosis of FH in Russia. It also improved knowledge about the genetics of FH in general. Thus, according to the results of this study, Russia is ranked fourth among countries with the largest number of variants described in FH patients, after the United Kingdom, the Netherlands and Italy [18]. In our study, we did not carry out a functional analysis of the identified variants and used ACMG recommendations to assess their pathogenicity. About half of the variants described here were assigned a category of uncertain significance and, possibly, in the future with the advent of new data, their causality may be revised. It would also be desirable to assess the clinical significance of the combined effect of two or more variants identified in patients with HeFH (Table A4).

The WGS-based SV analysis was performed for 405 patients for whom no relevant variants were found by targeted sequencing. The fact that no large SVs were found either in PCSK9 or in APOB may be explained by their gain-of-function pathogenicity model. Taking into account the literature data, nine large rearrangements in LDLR were described for the Russian patients earlier and their proportion of the total number of unique variants (n = 187) of the LDLR gene was 4.8%, which is slightly less than the share of large LDLR rearrangements in the ClinVar database (6.1%) [5]. The presence of large deletions, encompassing exonic LDLR regions, suggests that multiplex ligation-dependent probe amplification could be a useful method in genetic confirmation of FH.

5. Conclusions

This study significantly supplements knowledge about the spectrum of variants causing FH in Russia and may contribute to a wider implementation of genetic diagnostics in Russian FH patients.

Author Contributions: Conceptualization, A.M., A.K. and E.Z.; methodology, A.M., A.E., A.K., E.Z. and A.P.; software, E.Z., A.P., A.Z., V.R., A.B. (Anna Bukaeva) and S.M.; validation, A.K., E.S. (Evgenii Sotnikova), M.D., O.K. and O.S.; investigation, A.M., A.E., A.K., E.Z., E.S. (Evgenii Sotnikova), A.P., A.Z., P.M., T.R., A.B. (Anastasia Blokhina), M.D., Z.K., A.B. (Anna Bukaeva), A.L., V.M. (Valeriya Mikova), E.S. (Ekaterina Snigir), A.A. and D.K.; resources, M.P., S.M. and V.M. (Valentin Makarov); data curation, A.M., A.E., A.K., A.B. (Anna Bukaeva) and E.S. (Evgenii Sotnikova); writing, A.M., A.K. and E.Z.; writing—review and editing, A.E., A.K., V.R. and A.B. (Anna Bukaeva); visualization, A.K. and A.B. (Anna Bukaeva); supervision, V.K., S.B. and O.D.; project administration, A.M.; funding acquisition, S.B., S.Y. and O.D. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by State assignment No AAAA-A18-118041790111-0. V.R. acknowledges support by the RFBR and DFG research project No 20-54-12008.

Institutional Review Board Statement: This study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Ethics Committees in clinical cardiology of the National Medical Research Center for Cardiology (a statement on ethics approval No.144, 27 April 2009) and of the National Research Center for Therapy and Preventive Medicine (a statement on ethics approval №04-04/17, 6 June 2017).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Acknowledgments: The authors are grateful to the patients and their family for their continuous contributions and support of our research.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
Table A1. List of the *LDLR* variants described in Russian patients.

Number of Index Patients	Variant Data	Exon	DNA Change	Protein Change	dbSNP ID (v. 2.1.1)	ACMG Interpretation	ClinVar Interpretation	ClinVar ID	References		
1	1	1i–15i	c.68-366_2312-791del	p.Cys27Trp	rs2228671	P	VUS	P/LP	226304	[30]	
0	6	2	c.85A > T	p.Arg29Ter	rs879554401	P	P	251011	[6,20,30]		
1	1	2	c.97C > T	p.Gln33Ter	rs121908024	0.000007963	P	P	3683	[9]	
0	6	3	c.191_313del	p.Leu64_Pro105delinsSer							
0	5	3	c.193_202delCTCTGTTCAACCTinsGGACTTCA	p.Ser65Glyfs * 64							
1	1	3	c.193T > A	p.Ser65Thr							
0	5	3	c.195dupT	p.Val66Cysfs * 64	rs87954435	P	P	251075	[8,10,25,29]		
2	4	3	c.200C > T	p.Thr67Ile	rs1337448484	0.00001060	P	VUS	629411		
2	1	3	c.203G > T	p.Cys68Phe							
2	2	3	c.230dup	p.Arg78ProfsTer55	rs87954440	P	P	251083	[30,37,39]		
1	4	3	c.241C > T	p.Arg81Cys	rs730882078	0.000007953	VUS	VUS	163083	[10]	
0	6	3	c.245G > C	p.Cys82Ser	rs875989891	P	P	226309	[20,21,30]		
1	4	3	c.246C > A	p.Cys82Ter	rs139400379	P	P	251115	[20,21,30]		
0	6	3i	c.313 + 1G > A	p.Pro106_Val395dup							
1	3	4-8	c.317-1185dup	p.Arg115Cys	rs121908042	0.000003996	LP	P/LP	226319		
0	5	3i	c.313 + 2T > G	p.Arg115Cys	0.000002784	LP	P/LP	3736	[6,20]		
1	3	4	c.347A > C	p.Cys116Ser	rs879254483	LP	LP	251164	[20,23,30]		
1	4	4	c.347G > A	p.Cys116Tyr	rs774723292	0.00002792	LP	P/LP/VUS	251162		
0	6	4	c.420G > C	p.Val140Asp	rs879254520	LP	LP	251216	[20,24,30]		
0	5	4	c.447T > G	p.Cys149Thr	rs87925428	LP	LP	251228	[20,24,30]		
0	6	4	c.451G > C	p.Ala151Pro	rs763233960	0.0000195	LP	VUS	251234	[20,28,30]	
Number of	Index Patients	Variant Data 2	Exon	DNA Change	Protein Change	dbSNP ID	gnomAD MAF (v. 2.1.1)	ACMG Interpretation	ClinVar Interpretation	ClinVar ID	References
-----------	----------------	----------------	------	------------	---------------	----------	-----------------------	---------------------	----------------------	------------	-----------
6	2	6	4	c.478T > G	p.Cys160Gly	rs879254540	LP	LP	251248	[20,24,29,30]	
0	6	4	4	c.499T > C	p.Asp168His	rs879254547	LP	LP	251255	[20,28]	
1	4	5	4	c.502C > G	p.Cys173Glu	rs879254689	LP	LP	251258		
1	4	4	4	c.519C > G	p.Pro171Leu	rs769518035	0.000007958	LP	251277		
0	6	4	4	c.530C > T	p.Asp177Leu	rs1210908026	0.00001592	LP	3686	[9]	
1	3	4	4	c.534T > G	p.Asp178Glu	rs879254566	LP	LP	251287	[36]	
0	6	4	4	c.542C > T	p.Phe181Leu	rs557344672	0.000007958	LP	431512	[9]	
2	4	4	5	c.551C > G	p.Cys184Gly	rs1210908039	0.00009554	LP	3739		
2	1	4	4	c.587C > G	p.Asp196Arg	rs879254595	LP	P/LP	251325	[8,10,25,29]	
5	3	4	4	c.618T > G	p.Asp206Glu	rs87925497	LP	LP	251328	[32]	
0	6	4	4	c.626G > A	p.Glu208Lys	rs879254600	LP	LP	251332	[20,28,30]	
5	3	4	4	c.654_656delTGCG	p.Pro219_221del	rs121908027	P	P/LP	226329	[6,20,23,29,31]	
1	3	4	4	c.658_663delCCCGAC	p.Pro220_224del	rs155803409	LP	P/LP	440589	[9]	
0	5	4-6	Del 5 kb incl. ex. 4-6	Del 5 kb incl. ex. 4-6	Del 5 kb incl. ex. 4-6	Del 5 kb incl. ex. 4-6	Del 5 kb incl. ex. 4-6	Del 5 kb incl. ex. 4-6	Del 5 kb incl. ex. 4-6	Del 5 kb incl. ex. 4-6	Del 5 kb incl. ex. 4-6
3	4	4	4	c.666C > A	p.Asp222Ter	rs756613387	0.000004005	P	251364	[38]	
1	4	4	c.672_686delCAAACTGACGAGGA	p.Asp224, Gln228del	rs155803439	LP	LP	441185	[7]		
0	5	4	4	c.670_671insG	p.Asp224Gly6fsTer4	rs879254629	P	P	251372	[6,20,30]	
1	4	4	4	c.670_678dup	p.Asp224, Ser226dup	rs121908029	0.00001614	LP	3691	[30,37,39]	
3	4	4	c.682G > A	p.Glu228Ser	rs121908029	0.00001074	P	P/LP	226333	[6,20,30]	
0	6	4	2	c.693C > A	p.Cys231Ter	rs121908035	P	P	3730		
1	5	5	5	p.Glu240Ter	P	P	P	P	3730		
0	6	5	5	p.Glu240Lys	VUS	P/LP/VUS	200920	30			
1	4	5	4	c.768C > A	p.Asp256Glu	rs879254671	LP	LP	438322		
0	6	5	5	p.Cys261Phe	VUS	LP	LP	3740	[30]		
0	6	5	4	c.796C > A	p.Asp266Asn	rs87988907	0.00001193	LP	226334	[34,36]	
3	4	5	5	c.798T > A	p.Asp266Glu	rs139043155	0.00003535	VUS	161287		
Number of Index Patients	Variant Data	Exon	DNA Change	Protein Change	dbSNP ID (v. 2.1.1)	ACMG Interpretation	ClinVar Interpretation	ClinVar ID References			
--------------------------	--------------	------	------------	----------------	---------------------	----------------------	-----------------------	------------------------			
2	3	5	c.810C > A	p.Cys270Ter	rs773328511	P	P	251465 [6,20,30]			
1	4	6	c.825_826delCT	p.Cys276ArgfsTer24	rs879254691	P	P	251478			
2	4	6	c.829G > A	p.Glu277Lys	rs148698650	0.0005056 VUS/LB	VUS/LB/B	183097 [30]			
0	6	6	c.905G > T	p.Cys302Phe	rs879254715	LP	P	430768			
0	6	6	c.922G > A	p.Glu308Lys	rs879254721	VUS	LP	251528 [9]			
0	6	6	c.925_931delCCCATCA	p.Pro309LysfsTer59	rs387906304	P	P	3729			
1	1	6	c.921T > A	p.Asp307Glu	rs1380197577	0.000003984 VUS	VUS	251536 [6,20,30]			
0	5	6	c.939_940delCGCGTG	p.Cys313AspfsTer17	rs879254727	P	P	183097 [9]			
3	3	6i	c.940 + 3_940 + 6del	p.Val273_Cys313del	rs112366278	VUS	P/VUS	869390 [9]			
0	5	6i	c.941-3C > G	p.Asp307Glu	rs746634464	0.00005311 VUS	VUS	251567 [52]			
1	4	6	c.949C > G	p.Glu317Lys	rs879254746	0.0002479 VUS	VUS	226344 [6,9,20,30,36]			
1	4	7	c.954C > G	p.Glu318Trp	rs539808792	0.0000935 VUS	VUS	532729			
0	6	7	c.1009G > A	p.Glu337Lys	rs755757866	NA (G > A)	LP (G > A)	251600 [34,36]			
1	4	7	c.1027G > A	p.Gly343Ser	rs730882096	0.00002832 VUS	P	226342			
1	4	7	c.1048C > T	p.Arg350Ter	rs679573796	0.000007977 VUS	P	183106			
3	3	7	c.1054T > C	p.Cys352Arg	rs879254769	VUS	LP	251618 [9,34,36]			
3	4	7	c.1063_6T > C	p.Tyr375Asp	rs72658861	0.005498 VUS	VUS	36451			
0	6	7	c.1123T > G	p.Tyr375Asp	rs777328511	P	P	251465 [6,20,30]			
Number of Exons	Index Patients	Exon	DNA Change	Protein Change	dbSNP ID	gnomAD MAF (v. 2.1.1)	ACMG Interpretation	ClinVar Interpretation	ClinVar ID	References	
----------------	----------------	------	------------	----------------	----------	-----------------------	---------------------	----------------------	-------------	------------	
1	1	8	c.1129_1130insT	p.Cys377LeufsTer1		LP	P	P	226348		
1	4	8	c.1162del	p.His388ThrfsTer25		P	P	P	180403		
1	1	8	c.1168A>G	p.Lys390Glu		P	P	P	226349	[6,20,34,36]	
1	4	8	c.1183delG	p.V396fs	rs730880131	0.00002798	LP	VUS			
1	1	8i	c.1186 + 1G>T	p.Lys390Glu		P	P	P	226349		
1	1	8i-10i	c.1186 + 568_1586 + 1067del	p.His388ThrfsTer25		VUS	P/LP	VUS			
28	3	9	c.1202T>A	p.Leu401His	rs121908038	VUS	P/LP	VUS	3735	[6,20,34,36]	
2	4	9	c.1217G>A	p.Arg406Gln	rs553422789	0.00001593	VUS	P/LP/VUS	228798		
5	3	9	c.1222G>A	p.Glu407Lys	rs137943601	0.00007965	LP	VUS	36453		
0	5	9	c.1246C>T	p.Arg416Trp	rs570942190	0.00002389	LP	VUS			
1	3	9	c.1252G>T	p.Glu418Ter	rs869320651	VUS	P	P	251755	[20,26,30]	
0	5	9	c.1277T>C	p.Leu412Pro	rs879254851	VUS	P/LB	VUS	251763	[25]	
0	6	9	c.1285G>A	p.Val429Met	rs28942078	0.00001194	LP	VUS	3694	[6,20,30]	
0	5	9	c.1291_1331del41	p.Leu431Ter	rs879254851	VUS	P/LP	VUS			
1	4	9	c.1292C>T	p.Leu431Val	rs879254851	VUS	P/LP	VUS			
0	6	9	p.Leu432Arg *	p.Leu432Val	rs778309692	0.00003980	VUS	VUS			
0	5	9	p.Asp433Glu *	p.Asp433Glu	rs778309692	0.00003980	VUS	VUS			
0	6	9	p.Asp433His *	p.Asp433His	rs778309692	0.00003980	VUS	VUS			
0	6	9	p.Asp433Ter *	p.Asp433Ter	rs778309692	0.00003980	VUS	VUS			
0	6	9	c.1302delG	p.Glu435MetTer15		P	P	P	251782	[6,20,30]	
1	4	9	c.1322T>A	p.Ile441Asn	rs879254862	VUS	LP	VUS			
2	2	9	c.1327T>C	p.Trp443Arg	rs773366855	0.00003980	LP	P		[9,10,20,33]	
0	6	9	c.1328G>A	p.Trp443Ter	rs879254866	0.00003980	LP	P	251789	[6,20]	
0	6	9	c.1340C>G	p.Ser447Cys	rs879254870	VUS	LP	VUS	251797	[5,10,25]	

Table A1. Cont.
Table A1. Cont.

Number of Index Patients	Variant Data	Exon	DNA Change	Protein Change	dbSNP ID	gnomAD MAF (v. 2.1.1)	ACMG Interpretation	ClinVar Interpretation	ClinVar ID	References
0	6	9i	c.1358 + 1G > A	p.Asp482Tyr	rs775924658	P	P/LP	251802	[6,20]	
1	1	10	c.1444G > T	p.Tyr489Asn	rs139624145	LP	LP	251845	[30]	
1	2	10	c.1467T > A	p.Thr490Ile	vUS	VUS				
1	4	10	c.1471A > G	p.Thr491Ala	vUS	VUS				
1	4	10	c.1474G > A	p.Asp492Asn	vUS	VUS				
1	4	10	c.1502C > T	p.Ala501Val	vUS	VUS				
1	4	10	c.1523T > C	p.Leu511Ser	rs879254932	LP	LP	251887	[9]	
1	1	11	c.1557C > A	p.Pro519His	vUS	VUS				
1	1	11	c.1586 + 5G > A	rs871362678	0.00003189	VUS	LP/VUS	251909		
1	1	11	c.1618delG	p.Ala540ProfsTer8	vUS	vUS				
1	3	11	c.1633G > A	p.Gly545Arg	vUS	VUS				
0	5	11	c.1655_1672del							
1	1	11	c.1672G > T	p.Glu558Ter	rs879254980	P	P	251964		
0	5	11	c.1686_1693delGGGCGATGinsT	p.Leu568Val1	*	VUS	VUS	251908	[30]	
1	1	11	c.1693G > A	p.Gly565Ser	rs1344561983	0.00003978	VUS	251968	[9,25,33]	
1	1	11	c.1696A > T	p.Ile566Phe	vUS	VUS				
1	1	11	c.1705 + 3delA							
0	6	11	c.1706-10G > A	p.Leu566Val1	*	VUS	VUS	251908	[30]	
0	5	11	c.1741A > C	p.Lys581Ile	vUS	VUS				
0	4	11	c.1747C > T	p.His583Tyr	vUS	VUS				
1	4	11	c.1750T > C	p.Thr584Pro	vUS	VUS				
2	2	11	c.1756C > T	p.Ser586Pro	vUS	VUS				
1	1	12	c.1774G > T	p.Gly592Trp	vUS	VUS				
29	3	12	c.1775G > A	p.Gly592Glu	rs137929307	0.0005656	LP/P/LP	161271	[9,20,21,30]	
Number of Index Patients	Variant Data	Exon	DNA Change	Protein Change	dbSNP ID	gnomAD MAF (v. 2.1.1)	ACMG Interpretation	ClinVar Interpretation	ClinVar ID	References
--------------------------	--------------	------	------------	----------------	----------	----------------------	---------------------	----------------------	------------	------------
2	4	12	c.1784G > A	p.Arg595Cln	rs201102492	0.00003889	VUS	P/LP/VUS	183126	
0	5	12	p.Leu605Val	VUS						[30]
0	5	12	p.Leu605Arg	VUS						[30]
0	5	12	p.Ala627Gly	VUS						[30]
1	2	12i	c.1846-3T > G	p.Phe615TrisTer26	rs879255053	0.00002121	VUS	LP	252092	[6,20,20]
0	5	13	c.1855–1856insA	p.Trp605Val	VUS					
1	3	13	c.1864G > A	p.Asp622Asn	rs879255059	0.00003889	VUS	P	252092	[6,20,20]
2	4	13	p.Arg633Fs	VUS						[9]
0	5	13	c.1936C > A	p.Leu646Ile	rs779940524	0.00003977	VUS	LP	252118	[6,10,25]
1	1	13	c.1945G > T	p.Pro649Ser	rs879255080	0.00003977	VUS	LP	252121	
3	4	13	c.1955T > C	p.Met652Thr	rs879989936	0.00003977	VUS	LP/LP/VUS	226380	
1	4	13	c.1966G > A	p.His656Asn	rs76215611					
0	5	13	p.Trp606Thr	VUS						[20,20,30]
1	1	14	c.1999T > A	p.Cys667Ser	rs150021927	0.00002121	VUS	LP	252162	[6,20,20]
1	4	14	p.c.2001_2002delTG	p.Cys667Glu668delinsTer	rs1600743301	0.00003889	VUS	LP	3699	
1	4	14	p.2043C > A	VUS						[9]
3	4	14	p.Cys681Ter	VUS						
0	6	14i−16i	c.2141-966_2390-330del	p.Cys747Thr	rs776217028	0.00002121	VUS	LP	252213	
1	1	14i−16i	c.2141-799_2311 + 689del	p.Cys747Thr	rs776217028	0.00002121	VUS	LP	[9]	
1	1	15	c.2189A > C	p.Lys730Thr	rs879255161	0.00003977	VUS	P	252253	[6,25,29,33]
0	5	15	c.2191G > A	P						[9]
0	6	15	p.Arg744Gln	P						[9]
1	1	15	p.Arg744Gln	P						[9]
1	1	15i-17i	c.2312-2107_2547 + 620del	p.Arg744Gln	rs137839563	0.00003977	VUS	LP	430795	
1	1	16	c.2324T > C	p.Val775Ala	rs780300776	0.00002121	VUS	LP	440691	[32]
0	5	16	p.Ala776Val	VUS						
1	1	16	p.Ala776Val	VUS						
Table A1. Cont.

Number of Index Patients	Variant Data 1	Exon	DNA Change	Protein Change	dbSNP ID	gnomAD MAF (v. 2.1.1)	ACMG Interpretation	ClinVar Interpretation	ClinVar ID	References
1	4	16	c.2347A > C	p.Lys783Gln	rs765918061	0.000007954	VUS			
1	1	16	c.2374delE	p.Ile792LeufsTer137						
3	3	16	c.2389G > A	p.Val797Met	rs75018671	0.000007957	VUS	P/LP/VUS	226393	[6,20,30]
1	4	16	c.2389G > C	p.Val797Leu	rs75018671		VUS	VUS	565983	
4	1	16	c.2389 + 2T > G		rs879255188		P	LP	252302	
4	3	16	c.2389 + 5G > C		rs879255191		VUS	VUS	661713	[9]
2	4	16	c.2389 + 5G > A		rs879255191		VUS	P/LB	252306	
1	1	17	c.2390T > A	p.Val797Glu			VUS			
2	4	17	c.2416_2417insG		rs773618064		P	P/HP	252330	
0	6	17	c.2416dupG	p.Val806Glu			VUS			
1	1	17	c.2429G > A	p.Trp810Ter	rs765918061					
1	4	17	c.2448G > C	p.Lys816Asn	rs1399689294	0.00003186	VUS			
1	4	17	c.2473A > G	p.Arg827Cys	rs879255215		VUS			
1	3	17	c.2479C > A	p.Val827Leu	rs137539364	0.00009193	VUS			
1	4	17	c.2531G > A	p.Gly844Asp	rs121908037		VUS			

1 Only for variants found in this study a number of index patients is given. Variants from systematic review are labelled with "0". 2 1–described only in this study, 2–described in this study and in other studies in Russia, 3–described in this study, in other studies in Russia and other countries, 4–described in this study and other countries, 5–did not occur in this study, described in other studies in Russia, 6–did not occur in this study, described in other studies in Russia and other countries. * No data on coding sequence alteration in reference.

Table A2. List of the PSCK9 variants described in Russian patients.

Number of Index Patients	Exon	DNA Change	Protein Change	dbSNP ID	gnomAD MAF (v. 2.1.1)	ACMG Interpretation	ClinVar Interpretation	ClinVar ID	References
1	1	c.100G > A	p.Glu34Asp	rs371030381	0.00000526	VUS			
1	1	c.142G > A	p.Glu48Lys	rs1278890129		VUS			
1	1	c.35G > C	p.Gly11Arg	rs763614700	0.00000337	VUS			
1	2	c.302G > A	p.Phe101Ser	rs73557963		VUS			
1	3	c.411G > T	p.Leu137Phe	rs73527863	0.00000369	VUS			
1	3	c.525 + 2T > G				VUS			
1	3	c.829C > T	p.Arg276Cys	rs148195424	0.00000952	VUS			
1	1	c.975C > T	p.Arg325Ser	rs779005471	0.00002809	VUS			
1	1	c.985G > A	p.Arg329Asp	rs148195424		VUS			
1	1	c.1045C > A	p.Lys348Lys	rs148195424		VUS			
1	1	c.1080C > T	p.Arg360Cys	rs149009977	0.0001301	VUS			
1	1	c.1080G > A	p.Arg360Asp	rs148195424	0.0001104	VUS			
1	1	c.1102C > A	p.Arg367Ser	rs157801212	0.0003779	VUS			
1	1	c.1398G > C	p.Phe466Ser	rs77567712	0.0000209	LP			
1	1	c.1483C > T	p.Arg495Ser	rs779900590	0.0000187	LP			
2	9	c.1407G > A	p.Arg496Asp	rs13669954	0.0002583	VUS			
1	1	c.1424C > T	p.Pro475Ser	rs39999997	0.0001256	VUS			
0	1	c.156G > A	p.Glu52Lys	rs13999997					
1	12	c.1897G > C	p.Lys63Arg	rs5320645		VUS			
1	12	c.1930G > C	p.Glu64Lys	rs77900580	0.0000490	VUS			
1	12	c.2043A > G	p.Ser682Glu	rs77900580	0.0000239	VUS			
1	c.413G > A	p.Glu138Arg	rs77900580	0.0001297	VUS				

1 Only for variants found in this study a number of index patients is given. Variants from systematic review are labelled with "0".
Table A3. List of the APOB variants described in Russian patients.

Number of Index Patients	Exon	DNA Change	Protein Change	dbSNP ID	gnomAD MAF (v. 2.1.1)	ACMG Interpretation	ClinVar Interpretation	Clinvar ID	References
	1	26	c.4298C > T	p.Ser1433Leu	rs200708197	7.583 × 10⁻⁵	VUCS	VUS	630306
	1	26	c.4709T > C	p.Leu1570Ser			VUCS		
	1	26	c.7057C > T	p.Gln2353Ter					
	1	26	c.10385A > G	p.Tyr3462Cys					
	23	26	c.10579C > T	p.Arg3527Trp	rs144467873	0.0001595	LP	P/LP	40223
			c.4709T > C	p.Leu1570Ser			VUCS		
			c.7057C > T	p.Gln2353Ter					
			c.10385A > G	p.Tyr3462Cys					
	1	26	c.10579C > T	p.Arg3527Trp	rs5742904	0.0002942	LP	P/LP	17890
			c.4709T > C	p.Leu1570Ser			VUCS		
			c.7057C > T	p.Gln2353Ter					
			c.10385A > G	p.Tyr3462Cys					
	3	26	c.11477C > T	p.Val3826Met	rs6174153	0.001592	VUCS		
			c.11191G > A	p.Glu3971Lys			VUCS		
	0	28	c.12005C > T	p.Ala4002Val	rs36934335	1.195 × 10⁻³	VUCS	VUS	898076
			c.11911G > A	p.Glu3971Lys			VUCS		
	1	29	c.12739C > T	p.Gln4247Ter	rs907126709	0.001592	VUCS		
			c.13175G > A	p.Glu3971Lys			VUCS		
	1	29	c.13480_13482del	p.Gln4494del	rs75654538	0.001592	VUCS		

1 Only for variants found in this study a number of index patients is given. Variants from systematic review are labelled with “0”.

Table A4. Patients with multiple variants.

Patient Numbers	Phenotype	Variant 1 (Gene/Variant/Zygosity)	Variant 2 (Gene/Variant/Zygosity)	Cis/Trans Position (Evidence)
423	HoFH	LDLR:p.Gly592Glu (het)	LDLR:p.Glu418Ter (het)	Trans (genetic test of relatives)
474	Severe HetFH	LDLR:p.Gly592Glu (het)	LDLR:p.Glu418Ter (het)	Trans (long read sequencing)
166	HoFH	LDLR:c.941-3C > G (het)	LDLR:p.Cys3297Tyr (het)	Trans (genetic test of relatives)
722	HoFH	LDLR:c.940 + 3_940 + 6del (het)	LDLR:p.Arg416Trp (het)	Unknown
668	HoFH	LDLR:p.Cys3297Tyr (het)	LDLR:p.Glu592Glu (het)	Trans (genetic test of relatives)
675	HoFH	LDLR:p.Trp577Arg (hom)	LDLR:p.Ile792LeufsTer137 (het)	Unknown
355	HoFH	LDLR:p.Leu400I1His (het)	PCSK9:p.Arg5357Cys (het)	
687	HetFH	LDLR:p.Cys3297Tyr (het)	LDLR:p.Glu592Glu (het)	Cis (genetic test of relatives)
211	Severe HetFH	LDLR:p.Cys3297Tyr (het)	LDLR:p.Glu592Glu (het)	
336	HetFH	LDLR:p.Cys3297Tyr (het)	PCSK9:p.Glu592Glu (het)	
355	HetFH	LDLR:p.Cys3297Tyr (het)	PCSK9:p.Glu592Glu (het)	
355	HetFH	LDLR:p.Cys3297Tyr (het)	PCSK9:p.Glu592Glu (het)	
355	HetFH	LDLR:p.Cys3297Tyr (het)	PCSK9:p.Glu592Glu (het)	
355	HetFH	LDLR:p.Cys3297Tyr (het)	PCSK9:p.Glu592Glu (het)	
References

1. Berberich, A.J.; Hegele, R.A. The complex molecular genetics of familial hypercholesterolaemia. Nat. Rev. Cardiol. 2019, 16, 9–20. [CrossRef] [PubMed]

2. Hu, P.; Dharmyat, K.I.; Stevens, C.A.T.; Sharabiani, M.T.A.; Jones, R.S.; Watts, G.F.; Genest, J.; Ray, K.K.; Vallejo-Vaz, A.J. Prevalence of familial hypercholesterolemia among the general population and patients with atherosclerotic cardiovascular disease. Circulation 2020, 141, 1742–1759. [CrossRef] [PubMed]

3. Beheshti, S.O.; Madsen, C.M.; Varbo, A.; Nordestgaard, B.G. Worldwide prevalence of familial hypercholesterolemia: Meta-analyses of 11 million subjects. J. Am. Coll. Cardiol. 2020, 75, 2533–2566. [CrossRef] [PubMed]

4. Cuchel, M.; Bruckert, E.; Ginsberg, H.N.; Raal, F.J.; Santos, R.D.; Hegele, R.A.; Kuivenhoven, J.A.; Nordestgaard, B.G.; Descamps, O.S.; Steinhagen-Thiessen, E. Homozygous familial hypercholesterolemia: New insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolemia of the European Atherosclerosis Society. Eur. Heart J. 2014, 35, 2146–2157. [CrossRef] [PubMed]

5. Iacocca, M.A.; Chora, J.R.; Carrié, A.; Freiberger, T.; Leigh, S.E.; Defesche, J.C.; Kurtz, C.L.; DiStefano, M.T.; Santos, R.D.; Humphries, S.E.; et al. ClinVar database of global familial hypercholesterolemia-associated DNA variants. Hum. Mutat. 2018, 39, 1631–1640. [CrossRef]

6. Zakharova, F.M.; Damgaard, D.; Mandelshtam, M.Y.; Golubkov, V.I.; Nissen, P.H.; Nilsen, G.G.; Stenderup, A.; Lipovetsky, B.M.; Konstantinov, V.O.; Denisenko, A.D.; et al. Familial hypercholesterolemia in St.-Petersburg: The known and novel mutations found in the low density lipoprotein receptor gene in Russia. BMC Med. Genet. 2005, 6, 6. [CrossRef]

7. Meshkov, A.N.; Malyshve, P.P.; Kukharchuk, V.V. Familial hypercholesterolemia in Russia: Genetic and phenotypic characteristics. Ter. Arkhiv 2009, 81, 23–28. (In Russian)

8. Komarova, T.Y.; Korneva, V.A.; Kuznetsova, T.Y.; Golovina, A.S.; Vasilyev, V.B.; Mandelshtam, M.Y. Familial hypercholesterolemia mutations in Petrozavodsk: No similarity to St. Petersburg mutation spectrum. BMC Med. Genet. 2013, 14, 128. [CrossRef]

9. Semenova, A.E.; Sergienko, I.V.; Garcia-Giustinianini, D.; Monserrat, L.; Popova, A.B.; Nozadze, D.N.; Ezhov, M.V. Verification of underlying genetic cause in a cohort of Russian patients with familial hypercholesterolemia using targeted next generation sequencing. J. Cardiovasc. Dev. Dis. 2020, 7, 16. [CrossRef]

10. Korneva, V.A.; Kuznetsova, T.Y.; Bogoslovskaya, T.Y.; Polyakov, V.B.; Vasilyev, V.B.; Orlov, A.V.; Mandelshtam, M.Y. Cholesterol levels in genetically determined familial hypercholesterolaemia in Russian Karelia. Cholesterol 2017, 2017, 9375818. [CrossRef]

11. Civeira, F. Guidelines for the diagnosis and management of heterozygous familial hypercholesterolaemia. Atherosclerosis 2004, 173, 55–68. [CrossRef]

12. Lin, M.F.; Rodeh, O.; Penn, J.; Bai, X.; Reid, J.G.; Krasheninina, O.; Salerno, W.J. GLnexus: Joint variant calling for large cohort sequencing. bioRxiv 2018, 343970. [CrossRef] [PubMed]

13. Smoove. Available online: https://github.com/brentp/smoove (accessed on 10 December 2020).

14. McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl variant effect predictor. Genome Biol. 2016, 17, 122. [CrossRef]

15. Robinson, J.T.; Thorvaldsdottir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative genomics viewer. Nat. Biotechnol. 2011, 29, 24–26. [CrossRef]

16. Gardner, E.J.; Lam, V.K.; Harris, D.N.; Chuang, N.T.; Scott, E.C.; Pittard, W.S.; Mills, R.E.; 1000 Genomes Project Consortium; Devine, S.E. The Mobile Element Locator Tool (MELT): Population-scale mobile element discovery and biology. Genome Res. 2017, 27, 1916–1929. [CrossRef]

17. Ou, J.; Zhu, L. trackViewer: A Bioconductor package for interactive and integrative visualization of multi-omics data. Nat. Methods 2019, 16, 453–454. [CrossRef]

18. Chora, J.R.; Medeiros, A.M.; Alves, A.C.; Bourbon, M. Analysis of publicly available LDLR, APOB, and PCSK9 variants associated with familial hypercholesterolemia: Application of ACMG guidelines and implications for familial hypercholesterolemia diagnosis. Genet. Med. 2018, 20, 591–598. [CrossRef]

19. Leigh, S.; Futema, M.; Whittall, R.; Taylor-Beadling, A.; Williams, M.; den Dunnen, J.T.; Humphries, S.E. The UCL low-density lipoprotein receptor gene variant database: Pathogenicity update. J. Med. Genet. 2017, 54, 217–223. [CrossRef]

20. Zakharova, F.M.; Tatsischeva, Y.A.; Golubkov, V.I.; Lipovetsky, B.M.; Konstantinov, V.O.; Denisenko, A.D.; Faergeman, O.; Vasilyev, V.B.; Mandelshtam, M.Y. Familial hypercholesterolemia in St. Petersburg: Diversity of mutations argues against a strong founder effect. Russ. J. Genet. 2017, 43, 1046–1052. [CrossRef]

21. Zakharova, F.M.; Golubkov, V.I.; Mandelshtam, M.J.; Lipovetskii, B.M.; Gaitskhoki, V.S. Identification of novel missense mutation G571E, novel silent mutation H229H, nonsense mutation C74X, and four single nucleotide polymorphisms in the Low-Density Lipoprotein Receptor gene in familial hypercholesterolemia from St. Petersburg. Russ. J. Bioorganic Chem. 2001, 27, 349–351. [CrossRef]

22. Komarova, T.Y.; Golovina, A.S.; Grudinina, N.A.; Zakharova, F.M.; Korneva, V.A.; Lipovetskii, B.M.; Serebrenitskaya, M.P.; Konstantinov, V.O.; Vasilyev, V.B.; Mandelshtam, M.Y. “Finnish” mutations in LDL Receptor gene: A rare cause of familial hypercholesterolemia in St. Petersburg and Petrozavodsk. Bull. Exp. Biol. Med. 2013, 155, 380–383. [CrossRef] [PubMed]
23. Durst, R.; Colombo, R.; Shpitzen, S.; Avi, L.B.; Friedlander, Y.; Wexler, R.; Raal, F.J.; Marais, D.A.; Defesche, J.C.; Mandelshtam, M.Y.; et al. Recent origin and spread of a common Lithuanian mutation, G197del LDLR, causing familial hypercholesterolemia: Positive selection is not always necessary to account for disease incidence among Ashkenazi Jews. *Am. J. Hum. Genet.* 2001, 68, 1172–1188. [CrossRef] [PubMed]

24. Chakir, K.; Skobeleva, N.A.; Shvetsov, S.P.; Konstantinov, V.O.; Denisenko, A.D.; Schwartz, E.I. Two Novel Slavic Point Mutations in the Low-Density Lipoprotein Receptor Gene in Patients with Familial Hypercholesterolemia from St. Petersburg, Russia. *Mol. Genet. Metab.* 1998, 63, 31–34. [CrossRef] [PubMed]

25. Korneva, V.A.; Bogoslovskaya, T.I.; Kuznetsova, T.I.; Mandel’shtam, M.I.; Vasil’ev, V.B. Familial hypercholesterolemia due to a new mutation in the low density lipoprotein receptor gene. *Klin. Med.* 2014, 92, 49–53. (In Russian)

26. Chakir, K.; Ju, M.M.; Shvetsov, S.P.; Golubkov, V.I.; Skobeleva, N.A.; Shur, Y.A.; Zakharova, F.M.; Lipovetskyi, B.M.; Konstantinov, V.O.; Denisenko, A.D.; et al. Two Novel Low-Density Lipoprotein Receptor Gene Mutations (E397X and 347delGCC) in St. Petersburg Familial Hypercholesterolemia. *Mol. Genet. Metab.* 1998, 65, 311–314. [CrossRef]

27. Korneva, V.A.; Kuznetsova, T.I.; Komarova, T.I.; Golovina, A.S.; Mandel’shtam, M.I.; Konstantinov, V.O.; Vasil’ev, V.B. A case of familial hypercholesterolemia caused by a novel mutation p. FsS65:129X of human low density lipoprotein receptor gene. *Kardiol.ii* 2013, 53, 50–54. (In Russian)

28. Tatishcheva, Y.A.; Mandelshtam, M.Y.; Golubkov, V.I.; Lipovetsky, B.M.; Gaitskhoki, V.S. Four New Mutations and Two Polymorphic Variants of the Low-Density Lipoprotein Receptor Gene in Familial Hypercholesterolemia Patients from St. Petersburg. *Russ. J. Genet.* 2001, 37, 1082–1087. [CrossRef]

29. Komarova, T.Y.; Golovina, A.S.; Grudinina, N.A.; Zakharova, F.M.; Korneva, V.A.; Lipovetsky, B.M.; Serebrenitskaya, M.P.; Konstantinov, V.O.; Vasilyev, V.B.; Mandelshtam, M.Y. New mutations in low-density lipoprotein receptor gene in familial hypercholesterolemia patients from Petrozavodsk. *Russ. J. Genet.* 2013, 49, 673–676. [CrossRef]

30. Voevoda, M.I.; Kulikov, I.V.; Shakhtshein, E.V.; Maksimov, V.N.; Filipenko, I.V.; Tereshchenko, I.P.; Kobzev, V.F.; Roshmanenko, A.G.; Nikitin, Y.P. The spectrum of mutations in the low-density lipoprotein receptor gene in the Russian population. *Russ. J. Genet.* 2008, 44, 1191–1194. [CrossRef]

31. Mandelshtam, M.; Chakir, K.; Shvetsov, S.; Golubkov, V.; Skobeleva, N.; Lipovetsky, B.; Konstantinov, V.; Denisenko, A.; Gaitskhoki, V.; Schwartz, E. Prevalence of Lithuanian mutation among St. Petersburg Jews with familial hypercholesterolemia. *Hum. Mutat.* 1998, 12, 255–258. [CrossRef]

32. Averkova, A.O.; Brazhnik, V.A.; Speshilov, G.I.; Rogozhina, A.A.; Koroleva, O.S.; Zubova, E.A.; Galyavich, A.S.; Tereshenko, S.N.; Boyeva, O.I.; Zateyshchikov, D.A. Targeted sequencing in patients with clinically diagnosed hereditary lipid metabolism disorder and acute coronary syndrome. *Bull. RSMU* 2018, 5, 80–85. [CrossRef]

33. Korneva, V.A.; Kuznetsova, T.Y.; Murtazina, R.Z.; Didio, A.V.; Bogoslovskaya, T.Y.; Mandelshtam, M.Y.; Vasiliev, V.B. The Familial Hypercholesterolemia caused by a novel human Low Density Lipoprotein Receptor Gene mutation c.1327 T>C (p.W433R). *Kardiol.ii* 2017, 57, 12–16. (In Russian) [PubMed]

34. Shakhtshein, E.; Orlov, P.; Ivanoshchuk, D.; Makarenkova, K.; Ragino, Y.; Voevoda, M. Analysis of the LDLR gene variability in patients with Familial Hypercholesterolemia in Russia using targeted high throughput resequencing. *Atherosclerosis* 2017, 263, e227. [CrossRef]

35. Pogoda, T.; Metelskaya, V.; Perova, N.; Limborska, S. Detection of the apoB-3500 mutation in a Russian family with coronary heart disease. *Hum. Hered.* 1998, 48, 291–292. [CrossRef]

36. Shakhtshein, E.; Ivanoshchuk, D.; Orlov, P.; Timoshchenko, O.; Voevoda, M. Analysis of the LDLR, APOB, PCSK9 and LDLRAP1 genes variability in patients with Familial Hypercholesterolemia in West Siberia using targeted high throughput resequencing. *Atherosclerosis* 2019, 287, e285. [CrossRef]

37. Meshkov, A.N.; Stambol’skiı, D.V.; Krapivner, S.R.; Bochkov, V.N.; Kukharchuk, V.V.; Malyshev, P.P. Low density lipoprotein receptor gene mutations in patients with clinical diagnosis of familial hypercholesterolemia. *Kardiol.ii* 2004, 44, 58–61. (In Russian)

38. Mandelshtam, M.J.; Lipovetskiı, B.M.; Schwartzman, A.L.; Gaitskhoki, V.S. A novel deletion in the low-density lipoprotein receptor gene in a patient with familial hypercholesterolemia from Petersburg. *Hum. Mutat.* 1993, 2, 256–260. [CrossRef]

39. Meshkov, A.N.; Stambol’skiı, D.V.; Nikitina, L.A.; Abdullaev, S.M.; Bochkov, V.N.; Tkachuk, V.A.; Kukharchuk, V.V.; Malyshev, P.P. Genetic factors of risk of ischemic heart disease development in patients with familial hypercholesterolemia. *Kardiol.ii* 2005, 45, 10–14. (In Russian)