Introduction: Diagnosis of Takayasu's arteritis as the cause of stroke is often delayed because of non-specific clinical presentation. F-18-fluorodeoxyglucose positron emission tomography-computed tomography may help to accurately diagnose and monitor Takayasu's arteritis in stroke patients.

Case presentation: We report the case of a left middle cerebral artery stroke in a 39-year-old man. Laboratory data were consistent with an inflammatory reaction. While abdominal contrast-enhanced computed tomography showed an aneurysm of the infrarenal aorta, only F-18-fluorodeoxyglucose positron emission tomography-computed tomography revealed pathology (that is, intense F-18-fluorodeoxyglucose accumulation) in the carotid arteries, ascending aorta and the abdominal aorta cranial to the aneurysm. After treatment with high-dose prednisone followed by cyclophosphamide, the signs of systemic inflammation decreased and F-18-fluorodeoxyglucose uptake was reduced as compared with the initial scan.

Conclusion: F-18-fluorodeoxyglucose positron emission tomography-computed tomography showed inflammatory activity in the aorta and carotid arteries, suggestive of Takayasu's arteritis in a young stroke patient, and follow-up under immunosuppressive therapy indicated reduced F-18-fluorodeoxyglucose uptake. F-18-fluorodeoxyglucose positron emission tomography-computed tomography appears to be useful in detecting and quantifying the extent of vascular wall activity in systemic large-vessel vasculitis.
distinctive phases: a prepulseless (inflammatory or systemic) phase and a pulseless phase. Clinical disease preceding the pulseless phase of TA will not fulfill the diagnostic criteria of the American College of Rheumatologists for TA, which are based on advanced disease [2]. As histological diagnosis is usually impractical, angiography, and, more recently, contrast enhanced computed tomography (CT) and magnetic resonance imaging (MRI) have gained a role in the diagnosis. Laboratory abnormalities may include anemia, leukocytosis, increased erythrocyte sedimentation rate (ESR), elevated C-reactive protein (CRP), and hypergammaglobulinemia. We suggest that abnormal F-18-fluorodeoxyglucose (18F-FDG) accumulation may be useful in diagnosing the early-phase of TA.

Case presentation
A 39-year-old right-handed man had sudden onset of unsteady gait, right-sided hemihypesthesia and failure of speech. His medical history was significant for arterial hypertension for the past 2 years and a past history of smoking. ESR had been noted to be elevated (55 mm/hour) for the past 18 months, without any known reason. His initial examination was remarkable for dysarthria, discrete right hemiplegia and gait ataxia. The National Institutes of Health Stroke Scale score was 3. Also, marked hypertension (170/90 mmHg) was present on both sides without a blood pressure difference. Radial pulses were not diminished. Pulse was 85 beats per minute.

The head CT showed a demarcated infarction in the left middle cerebral artery territory. A subsequent MRI scan also revealed a subacute left-sided pontine infarction. Magnetic resonance angiography demonstrated no abnormalities of the cerebral vessels (Figure 1B). While transcranial and extracranial ultrasound was normal, abdominal CT showed an aneurysm of the infrarenal aorta with a diameter of 4.8 cm and a marginal thrombus (Figure 1C and 1D). CT angiography of the coronary arteries was normal. Transthoracic and transesophageal echocardiography and hypercoagulability state (proteins C and S, factor V Leiden mutation, homocysteine level, and lupus anticoagulant) were unremarkable. Laboratory studies revealed increases in ESR (46 mm/hour), CRP (47 mg/l), C3-complement levels (194 mg/dl) and hypergammaglobulinemia (1.11 g/dl). MPO/P-ANCA, C-ANCA and rheumatoid factors were negative. Cerebrospinal fluid protein level (94 mg/dl) was increased without intrathecal synthesis of immunoglobulins. For suspected arteritis and to detect systemic inflammatory disease, whole body scans in one session on a dual modality positron emission tomography-computed tomography system were performed 60 minutes after intravenous administration of 243MBq 18F-FDG. PET and CT images were reconstructed in coronal, sagittal, and transverse planes (Figures 1A and 2).

The inflammatory vascular lesion was evaluated using the standardized uptake value (SUV) of 18F-FDG accumulation as an index. F-18-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET-CT) revealed intense 18F-FDG accumulation in the carotid arteries, ascending aorta, and the abdominal aorta cranial to the aneurysm (arrows with corresponding maximal standardized uptake values). (B) Magnetic resonance angiography of the cerebral vessels. (C), (D) Infrarenal aortic aneurysm (13 cm × 4.8 cm) with mural thrombus (arrows). (E) Computed tomography and fluorodeoxyglucose positron emission tomography revealing middle cerebral artery stroke (arrows).
Discussion
Vasculitis is reported to be responsible for 3% to 5% of strokes that occur in people under 50 years old. TA typically occurs in patients younger than 50 years old. Central nervous system involvement is seen in up to one-third of cases and is secondary to carotid artery stenosis, cerebral hypoperfusion, and subclavian steal syndrome. We have described the case of a young man in whom stroke was the initial presentation of TA. From a clinical point of view, aortitis most often presents as a vague syndrome of malaise, fever, and weight loss, while blood tests indicate an inflammatory reaction.

18F-FDG PET-CT is an imaging technique that can be used to assess regional differences in glucose metabolism. Inflammatory cells take up increased amounts of glucose, and therefore FDG accumulation on PET-CT scanning has been reported in patients with TA [3-6]. In contrast to other imaging modalities in TA, FDG PET-CT measures inflammation through the metabolic activity in the arterial wall [7]. The cutoff point of maximal SUV for the diagnosis of vascular inflammation was estimated to be 1.3 with a sensitivity for TA of 90.9% and a specificity of 88.8% [8].

Conclusion
To the best of the authors' knowledge, FDG PET-CT findings have not previously been reported in patients with TA and stroke. Coregistration of 18F-FDG PET and CT showed the anatomical distribution of the inflammation in the walls of the aorta and carotid arteries. This method offers the advantages of early detection of disease activity and the global assessment of the arterial system in a single examination.
Follow-up 18F-FDG PET-CT study revealed reduced wall enhancement under immunosuppressive therapy. (A), (B) Resolution of fluorodeoxyglucose uptake after immunosuppressive treatment. (C), (D) T2-weighted images and magnetic resonance angiography appear normal except for infrarenal aorta aneurysm. (E) Improvement of metabolism in the left temporal region.

Abbreviations
18F-FDG: F-18-fluorodeoxyglucose; CRP: C-reactive protein; CT: computed tomography; ESR: erythrocyte sedimentation rate; MRI: magnetic resonance imaging; PET: positron emission tomography; SUV: standardized uptake value; TA: Takayasu's arteritis.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
C–AH and SI contributed to the care of the patient, as well as to writing and reviewing the manuscript. D–AR performed the F-18-fluorodeoxyglucose positron emission tomography-computed tomography. All authors read and approved the final manuscript.

Consent
Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

References
1. Cantu C, Pineda C, Barinagarrementeria F, Salgado P, Gurza A, Paola de P, Espinosa R, Martinez-Lavin M: Noninvasive cerebrovascular assessment of Takayasu arteritis. Stroke 2000, 31:2197-2202.
2. Arend WP, Michel BA, Bloch DA, Hunder GG, Calabrese LH, Edworthy SM, Fauci AS, Leavitt RY, Lie JT, Lightfoot RW Jr, Masi AT, McShane DJ, Mills JA, Stevens MB, Wallace SL, Zvaifler NJ: The American College of Rheumatology 1990 criteria for the
classification of Takayasu arteritis. Arthritis Rheum 1990, 33:1129-1134.
3. Webb M, Chambers A, AL-Nahhas A, Mason JC, Maudlin L, Rahman L, Frank J: The role of 18F-FDG PET in characterising disease activity in Takayasu arteritis. Eur J Nucl Med Mol Imaging 2004, 31:627-634.
4. Hara M, Goodman PC, Leder RA: FDG-PET finding in early-phase Takayasu arteritis. J Comput Assist Tomogr 1999, 23:16-18.
5. Takahashi M, Momose T, Kameyama M, Ohtomo K: Abnormal accumulation of [18F] fluorodeoxyglucose in the aortic wall related to inflammatory changes: three case reports. Ann Nucl Med 2006, 20:361-364.
6. de Leeuw K, Bijl M, Jager PL: Additional value of positron emission tomography in diagnosis and follow-up of patients with large vessel vasculitides. Clin Exp Rheumatol 2004, 22(6 Suppl 36):S21-S26.
7. Kissin EY, Merkel PA: Diagnostic imaging in Takayasu arteritis. Curr Opin Rheumatol 2004, 16:31-37.
8. Kobayashi Y, Ishii K, Oda K, Nariai T, Tanaka Y, Ishiwata K, Numano F: Aortic wall inflammation due to Takayasu arteritis imaged with 18F-FDG PET coregistered with enhanced CT. J Nucl Med 2005, 46:917-922.