Recommended Strategies for Physician Burnout, a Well-Recognized Escalating Global Crisis Among Neurologists

Urvish K. Patel*, Michelle H. Zhang†, Karan Patel‡, Preeti Malik‡, Mansi Shah‡, Bakhtiar M. Rasul‡, Anam Habib‡, Liseth Lavado‡, Tapan Kavi‡, Prasanna Tadi‡, Vishal Jani‡*, Abhishek Lunagariya‡*

*Department of Neurology, Creighton University School of Medicine, Omaha, NE, USA
†Departments of Biology & Psychological and Brain Sciences and *Neuroscience, Johns Hopkins University, Baltimore, MD, USA
‡Department of Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
§Department of Psychiatry, The Wright Center for Graduate Medical Education, Scranton, PA, USA
‡Department of Nursing, Rutgers School of Nursing, Newark, NJ, USA
¶Department of Neurology, Rowan University Cooper Medical School, Camden, NJ, USA

Several indexes are used to classify physician burnout, with the Maslach Burnout Inventory currently being the most widely accepted. This index measures physician burnout based on emotional exhaustion, detachment from work, and lack of personal achievement. The overall percentage of physicians with burnout is estimated to be around 40%, but the proportion varies between specialties. Neurology currently has the second-highest rate of burnout and is projected to eventually take the top position. The purpose of this review is to provide a comprehensive overview focusing on the causes and ramifications of burnout and possible strategies for addressing the crisis. Several factors contribute to burnout among neurologists, including psychological trauma associated with patient care and a lack of respect compared to other specialties. Various interventions have been proposed for reducing burnout, and this article explores the feasibility of some of them. Burnout not only impacts the physician but also has adverse effects on the overall quality of patient care and places a strain on the health-care system. Burnout has only recently been recognized and accepted as a health crisis globally, and hence most of the proposed action plans have not been validated. More studies are needed to evaluate the long-term effects of such interventions.

Key Words: physician burnout, physician stress, suicide, neurology job satisfaction, second-victim syndrome, neurologist burnout.

INTRODUCTION

Physician burnout is defined as a psychological condition in response to chronic interpersonal stressors in the workplace, and its prevalence is growing at an alarming rate in the US. The Maslach Burnout Inventory—Human Services Survey (MBI-HSS) outlines three key aspects to this response: 1) emotional exhaustion, 2) feelings of cynicism and desensitization or depersonalization toward work, and 3) a personal sense of lack of achievement or effectiveness. Relative to the general working US population, physicians not only experience higher rates in all subsections of the MBI (43.2% vs. 24.8% for emotional exhaustion, 23% vs. 14% for depersonalization, and 49% vs. 28% for overall burnout), but also lower rates of job satisfaction (36% vs. 61%).

Physician burnout is unfortunately no longer limited to the US, with it threatening to become a global crisis since it is now affecting countries such as India, UK, and China.

Physician burnout affects not only practicing physicians, but also the standard of patient care, patient safety, and the efficiency of the overall health-care system. Studies have shown that the presence of physician burnout more than doubles the probability of unsafe patient care and significantly reduces patient satisfaction. More than 40% of general physicians...
Recommended Strategies for Burnout Among Neurologists

Factors contributing to burnout

Global and national burdens of neurological disease

According to the WHO, a government should spend at least 5% of the country's GDP on universal health coverage. Many countries with leading economies including India, China, and Russia do not meet this percentage. Neurological diseases are the most-important cause of disability and death worldwide. Neurological conditions such as epilepsy, Alzheimer's disease, Parkinson's disease, and multiple sclerosis account for 6.3% of global disability-adjusted life years (DALYs). Furthermore, neurological disorders ranked as the leading contributor to DALYs in 2015 [250.7 million, 95% uncertainty interval (UI)=229.1–274.7 million, constituting 10.2% of global DALYs] and the second-leading cause of deaths (9.4 million, 95% UI=9.1–9.7 million, constituting 16.8% of global deaths). The number of deaths from neurological disorders increased by 36.7% between 1990 and 2015, while the DALYs increased by 7.4%. The global burden of neurological disorders has increased substantially over the past 25 years, and the DALYs from all neurological disorders combined now surpass those from cardiovascular disease (228.9 million, excluding stroke), injuries (249.8 million), cancer (209.4 million), and mental and substance-use disorders (162.4 million).

There are several health-care implications for patients with neurological conditions. Increasing numbers of neurological patients require careful planning by governments to ensure there are adequate providers and funding for their treatment and rehabilitation services. According to a recent WHO World Federation of Neurology Survey, there are large inequalities in the availability of neurological care across different patient populations, especially those from low- and middle-income families. As a consequence of the shortage of neurologists globally, improving neurological care will require extensive and innovative strategies that include reducing the burnout rates of neurology physicians.

Two-thirds of the neurological disease burden occurs in the developing world. Although neurology originated in Africa, there is nowadays only a minimal African contribution to advancements in this field. Developing countries in Africa have a heavy burden of communicable and noncommunicable diseases, an insufficient number of workers, and poor equipment, and little medical research is performed there. There is now a greater need for neurologists in developing countries such as Africa to address the needs of the local population. International collaborations and help are required to improve the care provided to neurological patients in African countries.

Data collected from 114 responding countries by WHO region indicate that the global median number of neurolo-
gists is 0.43 per 100,000 population. The median number of neurologists is lowest in Africa, at 0.04 per 100,000 population, followed by 0.1, 0.7, 0.8, 1.2, and 6.6 per 100,000 population in Southeast Asia, the Americas, eastern Mediterranean and western Pacific regions, and Europe, respectively. A surprisingly large proportion (42%) of countries have not reported neurological disorder data during the last 2 years, which represent the largest barrier to addressing globally problems in the future.21

National policies
According to the Association of American Medical Colleges, the number of people per active physician by specialty in 2015 was higher in neurology (24,001) than in internal medicine (2,817), family medicine (2,888), emergency medicine (8,121), and radiology (11,679), and is approaching that in the specialties with the highest burnout rates such as urology (32,771) and physical medicine and rehabilitation (35,074).22 The US spends a very high proportion of its GDP (17.9%) on health care,16,17 but the amount is disproportionately low for neurological conditions and for neurologists, according to the Centers for Medicare & Medicaid Services Physician and Other Supplier Public Use File reports for Medicare Part B payments organized by providers who submitted claims in 2012 [1.8% (US$ 1.15 billion) of US$ 64.26 billion].23 Neurology reimbursements are actually decreasing over time.24

Work environment and hospital policies
The shortage of neurologists compared to other specialists exacerbates the current burnout rate. There is a significantly low number of practicing neurologists per patient, which increases their workload and stress levels. These physicians provide care to some of the most-vulnerable populations, but studies show that these patients have insufficient access to medical care. The required number of neurologists was ~18,180 in 2012, and this is projected to increase to 21,440 by 2025, representing an increase in the shortfall from 11% to 19%.25 This includes a demand for 520 more full-time-equivalent neurologists starting in 2014. In 2012, the average wait time for new patients to see a neurologist was 34.8 business days, which was markedly longer than the 28.1 days in 2010.25 Other studies have found average wait times of 24.1, 16.8, 20.3, and 15.5 days for new patient visits to neurosurgery, pediatric orthopedic surgery, family medicine, and cardiology facilities, respectively.25 Furthermore, neurologists averaged 57.1 professional working hours per week in 2010, with 42.3 hours spent performing inpatient care activities.25 A smaller number of neurologists per patient also increases their weekly working hours and the wait time for both new and follow-up patients.

According to the 2010 American Academy of Neurology (AAN) practice profile survey, neurologists on average distributed their time in the following manner: 72.9% to direct patient care, 9.1% to research, 9.7% to administrative responsibilities, 5.2% to teaching, and 3% to other activities. The average numbers of weekly interactions with new and follow-up patients by neurologists were 1) 3.8 and 8.5 attending encounters, respectively, 2) 8.9 and 14.2 inpatient consultations, and 3) 17.4 and 34.2 ambulatory visits.25

Work–life balance
Work–life balance is a crucial aspect of postgraduate training in neurology. A lack of sufficient support staff, increased computer work, and increased patient volumes all lead to neurologists spending less time providing direct patient care. Poor work–life balance caused by additional clerical tasks results in family life suffering and hobbies being neglected.26,27 The leading factors causing physician burnout are described in Table 1.

Impacts of burnout
There are a few prominent reasons for burnout, including emotional exhaustion, work overburden, and psychological trauma.28 While the immediate impact of burnout is on the neurologists themselves, it has widespread repercussions by affecting both their patients and placing burdens on the health-care system.

Impact on personal life
Paradoxically, physicians often deny their symptoms and as a result exacerbate the problems associated with burnout (i.e., emotional exhaustion/detachment). They often resort to maladaptive coping strategies including drug and alcohol abuse, and exhibit suicidal tendencies and detachment from their jobs.29-31 Moreover, burnout is not only a work-related issue, since it also affects their private lives and hence the people closest to them. In neurology, a significantly higher proportion of residents compared to attendings physicians experience burnout, perhaps due to the extra workload and new environment they are placed in.15 In addition, both residents and practicing physicians alike suffer from so-called second-victim syndrome, which refers to psychological trauma and feelings of guilt regarding their patients, typically due to committing a medical error that results in a poor patient outcome.28,32-34

Impact on the patient’s life
Physicians who are experiencing burnout tend to become less interested in their work and often overlook underlying and more-subtle medical causes behind a patient's diagno-
sis. It is therefore not surprising that these physicians are more likely to make medical errors and compromises in the overall care of their patients.35,36 Patient dissatisfaction with a neurologist with burnout will naturally increase due to the neurologist seeming less sympathetic and genuine when dealing with them.37 Burnout also increases the probability of

Table 1. Factors responsible for burnout among neurology residents and practicing physicians

| Factors | Supporting studies |
|---------|-------------------|
| Increased hours worked per week (p=0.003) More nights on call per week (p=0.013) More outpatients (p=0.024) | Busis et al.8 Study aim: to identify the prevalence and factors contributing to burnout, career satisfaction, and well-being in US neurologists Population characteristics: 1,671 US neurologists responded out of 4,127 surveyed by AAN (40.5% response rate) 529 AP neurologists 959 CP neurologists Average age 51 years 65.3% males Nearly equal representation across the US |
| Type of work |  |
| Burnout rate higher in CP neurologists [higher scores for EE (p=0.008) and DP (p=0.014)] than in AP neurologists (63.3% vs. 55.7%, p=0.004) |  |
| Type of compensation/salary |  |
| AP neurologists more likely to get a fixed salary (42.9% vs. 23.7%, p<0.05) or salary bonus (53.3% vs. 32.8%, p<0.05) than CP neurologists |  |
| CP neurologists more likely to receive production-based income (43.6% vs. 3.8%, p<0.05) than AP neurologists |  |
| AP neurologists have higher burnout due to more hours of work (p=0.006) and a higher percentage of clinical time (p=0.043) |  |
| Higher burnout of CP neurologists associated with increased number of outpatients seen each week (p=0.004) |  |

Policies

Neurologists felt that government mandates and regulations reduced direct patient care times and increased practice costs (135 text units)* Insurance mandates result in excessive paperwork and clerical tasks that serve as “pointless busywork” (142 text units) Neurologists felt they received insufficient remuneration and were underpaid compared to other specialties based on the difficulty of their job (203 text units) Neurologists had the 7th-lowest salary in a comparison with 38 other specialties2 Administrators prioritize profits over patient care, increasing patient loads and administrative tasks without providing additional compensation (169 text units)

Workload and work–life balance

Lack of sufficient support staff due to cutbacks or poor remuneration, increased computer work, and increased patient volumes all led to neurologists spending less time performing direct patient care (522 text units) Poor work–life balance caused by additional clerical tasks caused family life to suffer and hobbies to be neglected (169 text units)

Professionalism and work dimensions

Lack of professional treatment by colleagues, policymakers, and the administration (304 text units) Loss of engagement, losing curiosity about neuroscience, enjoying practicing less, and enjoying life less (138 text units)
misdiagnosis, leading to unsafe patient care and longer recovery times for the patient, and sometimes even puts the patient's life in jeopardy. In short, physician burnout significantly compromises the overall quality of patient care.

**Health-care-related impacts**

Physician burnout also strains the health-care system as a whole. Physicians who try to cope with the symptoms of burnout often reduce their hours or leave their jobs in hopes of finding employment that is less emotionally draining. This results in more physicians needing to be hired, trained, and become acclimated to the workforce, which typically takes months to years. Moreover, physicians with burnout tend to make more errors, increasing the number of malpractice lawsuits. This means that money needs to be redistributed from the health-care system to the legal system, further straining the already restricted financial resources available to hospitals/clinics, and placing increasing demands on physicians to be perfect. Table 2 describes the effects of burnout identified in previous studies.

**Resources available to identify the burnout crisis**

**Assessment**

Various scales are available for measuring physician burnout, such as the MBI, Bergen Burnout Inventory, Oldenburg Burnout Inventory, Copenhagen Burnout Inventory (CBI), Professional Quality of Life Compassion, Satisfaction and Fatigue, and Shriom-Melamed Burnout Measure. Table 3 presents strategies for identifying burnout. The MBI is considered the gold standard for measuring physician burnout, and this scale has subtypes such as the MBI–General Survey and MBI-HSS. On all MBI subscales, lower scores for personal accomplishment and higher scores for depersonalization and emotional exhaustion are correlated with higher burnout rates. The CBI was developed to address the perceived limitations of the MBI scale, and it considers core symptoms of burnout such as fatigue and exhaustion, and measures burnout at the personal, work, and client levels.

There is also a significant argument for establishing burnout within a well-established diagnostic category such as a type of depression, rather than as a distinct entity. However,
there are also advantages to considering burnout in its own
diagnostic category; for example, this will allow health-care
practitioners with burnout to underscore environmental and
sociocultural factors that might hinder them from seeking
help in the form of psychotherapy and/or medications.42,43

### Strategies for identifying burnout at the hospital level
While burnout is a result of systemic deficiencies, most
institutions operate under the assumption that physician well-
being and burnout are solely the responsibility of the indi-
vidual physician. This results in organizations implementing
only a narrow list of generally unhelpful resolutions. Studies
have shown that genuine efforts made by health-care organi-
zations can significantly reduce physician burnout and create
a less-stressful working environment. Various strategies that
can be implemented by hospital administrations have been
reported. The first step in improving physician burnout is
recognizing the problem and demonstrating that the organi-
zation cares about the well-being of its health-care pro-
viders. Once the problem is acknowledged, burnout should
be measured as a routine institutional performance metric.
Many organizations routinely assess patient volumes, pa-
tient satisfaction, the payer mix, financial performance, and
quality/safety. In addition to regular burnout evaluations,
hospitals should evaluate factors such as professional fulfill-
ment/satisfaction, emotional health/stress, and fatigue. There
is considerable evidence that physician satisfaction and well-
being are equally important to the success of an organization.
Appropriate steps and resources must therefore be imple-
mented at the organizational level to routinely assess and
improve the root causes of physician burnout.44

### Future recommended strategies
Solutions for combating burnout should not just focus on
the individual, instead being implemented at all levels. Ta-
bles 4 and 5 list the common consensus found in previous
studies that have addressed burnout.

### Individual level
Self-awareness is the biggest step to recognizing burnout at

| Factor | Supporting studies |
|--------|-------------------|
| Compromised patient care by errors made by physicians | Welp et al.49 Physicians lack the energy, motivation, and cognitive function to analyze minor changes/less-pressing medical issues, leading to more medical errors. a. Delaying a correct prognosis of a medical condition. b. Administering unnecessary or even harmful treatment. Increasing burnout leads to higher mortality rates. Motluk Motluk. Physicians who experience burnout are 2.2-fold more likely to make a medical error. |
| Health-care burden and financial losses | Lee et al.39 Burnout leads to physicians leaving their jobs. a. Estimated cost of replacing a physician ranges from US$ 50,000 to US$ 1 million. Pélissier et al.40 a. Constant turnover among physicians increases stress in medical staff. Have to become accustomed to different physician styles. Reduces the efficiency of the medical system. Wright and Katz41 Increased number of malpractice lawsuits. a. 99% of neurologists who have experienced burnout have made at least one major medical error |
| Personal health and mental well-being of neurologists | Oreskovich et al.30 25% higher risk of alcohol/drug use compared to the general population. Center et al.21 Higher risk of suicide compared to the general population. Suicide rate is 40% higher in males and 130% higher in females. Thought that females have higher emotional ties leading to increased depression and emotional exhaustion. Patel et al.29 Physician deny or avoid dealing with job-related stress and symptoms of burnout. a. Will not seek the help of counselors. b. Employ maladaptive coping strategies. |
the individual level. Self-care should be promoted in order to cultivate well-being and resilience, and encourage communication among peers, mentors, and experts.\textsuperscript{45} It is worthwhile to encourage exercise, yoga, mindfulness activity, and frequent get-togethers with peers along with families in order to share experiences and work-related issues, and promote the work–life balance.\textsuperscript{36,46}

**Training level**

Like training programs in the US, training programs in developing countries should establish guidelines for the maximum working hours per week and the maximum numbers being on 24-hour call. In order to mitigate the risk of burnout among resident physicians, residency programs should evaluate and keep track of burnout levels in the same way that they evaluate performance levels.

### Administrative/hospital level

Reducing the administrative workload can reduce burnout and increase satisfaction among neurologists.\textsuperscript{15} Providing

| Strategies | Advantages | Disadvantages |
|------------|------------|---------------|
| MBI; Maslach et al.\textsuperscript{50} | Widely used/known | Items are negatively phrased for EE and DP and positively phrased for PA (measures frequency of positive experiences for professional efficacy as opposed to a sense of inadequacy) |
| Either 22-item or 16-item survey divided into 3 subscales to measure EE, DP, and reduced PA. Items are written as statements about personal feelings/attitudes (e.g., i feel burnout from my work) and answered in terms of the frequency at which respondents experience the feelings, ranging from 0 ("never") to 6 ("every day") | Three dimensions: EE, DP, and reduced PA | Emphasis on emotional aspects (9 items in EE compared to 5 in DP and 8 in PA) |
| Bergen Burnout Inventory; Feldt et al.\textsuperscript{51} | Estimates the inadequacy at work for professional efficacy, taking criticism of MBI-HSS into account; maintains consistency of negative wording across burnout dimensions | Context-specific, only focusing on work |
| 9-item survey measuring burnout in the work context. It measures 3 core dimensions of burnout: EE, cynicism, sense of inadequacy | Measures intensity of burnout dimensions rather than frequency | Evidence for factorial validity is limited to managerial samples |
| Oldenburg Burnout Inventory; Halbesleben and Evangelia\textsuperscript{52} | Items contain a mixture of negative and positive phrases | Two dimensional, does not address professional accomplishment, although many believe this to be the weakest of the three sections |
| 16 items that assess physical, affective, and cognitive exhaustion and disengagement in both work and academic contexts | Covers physical and cognitive aspects of exhaustion | |
| Copenhagen Burnout Inventory; Kristensen et al.\textsuperscript{53} | Assesses work and client aspects of burnout in addition to personal exhaustion | One dimensional, only focuses on EE |
| Assesses personal burnout (6 items), work-related burnout (7 items), and client-related burnout (6 items). | Free to use | |
| Professional Quality of Life Compassion Satisfaction and Fatigue; Stamm et al.\textsuperscript{54} | Looks at both the negative and positive aspects of a helping profession | Does not address DP or desensitization to work |
| 30-item self-reported, frequency-based survey measuring compassion fatigue and compassion satisfaction of helping professions when dealing with traumatic or stressful events. Assesses secondary traumatic stress, burnout, and compassion fatigue | Specific to helping professions such as physicians and nursing | |
| Free to use | Widely used for risk management and intervention planning | |
| Shriom-Melamed Burnout Measure; Shriom\textsuperscript{55} | Widely used in international burnout research | One dimensional, only focusing on EE |
| 14-item survey that characterizes burnout into EE, physical fatigue, and cognitive weariness | Concise and short | |

DP: depersonalization, EE: emotional exhaustion, MBI-HSS: Maslach Burnout Inventory–Human Services Survey, PA: personal accomplishment.
appropriate training on electronic health records (EHRs), user-friendly technology, and additional support from allied health-care and non-health-care personnel will give physicians more time to focus on their patients rather than on patient records. Professional development opportunities, flexible working hours, and distributing job roles might also provide additional relief.

National level
The AAN has published guidelines to address this issue at the national level\(^4^5\) that include training programs for EHRs, creating more funding for new training programs, encouraging advocacy leadership forums to train more neurologists, organizing visits with lawmakers to address unspecified factors that contribute to burnout in neurology, and advocating for physician-friendly national policies, meaningful quality measures, and fair reimbursements.

**Solving the global crisis**
Burnout is recognized as a global phenomenon due to the widespread nature of the imbalance between the global disease burden and available resources. Efforts are being made to increase the number of neurologists and allied health-care providers globally. Increasing the percentage of GDP spent on health care and allocating more funding to training and treatments related to this neurological disorder would signif-

---

**Table 4. Methods adopted for addressing burnout**

| Intervention | Supporting studies |
|--------------|--------------------|
| Use of technological smartphone apps | Yeo et al.\(^1^0\) |
| Design | 7 residents and fellows |
| | Smartphone app that instructed users to immediately perform meditation at random times throughout the day |
| | Randomized 6-months trial where members received 1 mindfulness lecture followed by 6 months of using of a smartphone app |
| Results | Results were analyzed (based on the MBI) at the start of the study and every 3 months after it |
| | Those who used the app exhibited higher resilience and personal achievement |
| | No significant improvement in burnout or psychological distress |
| Conclusion | Smartphone apps may improve overall well-being but do not directly reduce burnout |
| Positive vs. negative reinforcement | Ratliff et al.\(^1^1\) |
| Design | Longitudinal study involving 48 neurology residents |
| | Residents were monitored when being either praised or negatively reinforced by attending/co-residents and patients |
| Results | Originally 63% of the sample experienced high-to-moderate levels of EE |
| | Receiving praise resulted in reduced EE (\(p=0.04\)) |
| | Disapproval resulted in higher levels of EE (\(p=0.08\)) |
| Conclusions | The use of positive/negative reinforcement may reduce one of the factors related to burnout |
| Art-based forms of therapy | King et al.\(^1^2\) |
| Design | 24 resident medical students and staff members in a neurology department |
| | 1-hour art-therapy session |
| | Performed creative arts and crafts task using supplies such as canvass, glue, and scissors |
| Results analyzed using a posttask survey | Results |
| | 21 of 24 participants said the task helped them relax and that they had an overall positive experience |
| | 20 of 24 participants said they would participate again in art-based therapy |
| Conclusions | Art-based therapy may help to reduce overall stress and increase positive feelings in physicians, but more studies are needed to reach a definitive conclusion |

EE: emotional exhaustion, MBI: Maslach Burnout Inventory.
Table 5. Recommended strategies and guidelines

| Strategy | Descriptions of the steps |
|----------|---------------------------|
| Minimize nonessential clerical tasks<sup>15</sup> | “Busywork” (especially that involving EHRs) should either be minimized or delegated to supporting staff to complete. Utilize and develop/perfect new technologies that automatically import conversations into EHRs in order to reduce time spent manually inputting data after every patient visit. |
| Increase the autonomy of neurologists in the workplace | Assert control over professional lives. Increase involvement with professional organizations to support interests. |
| Make EHR technology easier to understand<sup>15</sup> | Implement training programs to teach physicians how to better understand and use EHRs. Work with EHR vendors to make technology more user-friendly and clinically helpful. Adapt technology to practice, not vice versa. Decrease the number of unnecessary clerical tasks. |
| Implementation of and education about better coping skills/mechanisms | Increase the availability of counseling and support groups for neurologists. Encourage open sharing among peers and colleagues in the workplace. |
| AAN recommendations<sup>16</sup> | Individual level: Promote self-care to cultivate well-being and resilience, and increase engagement. Encourage participation in individual courses/consultations. Create a website with tips, tools, and strategies for combating burnout. Encourage exercise, yoga, and talking to peers/colleagues. Organizational level: Implement different ways to use EHRs. Implementation of a daily team huddle to increase communication and smooth the daily flow/coordination<sup>16</sup>. The AAN Live Well, Lead Well Program is a 1- or 2-day leadership program for neurologists<sup>57</sup>. Develop lasting leadership skills to promote positivity in the workplace. National level: Create educational programs about EHRs. The AAN Palatucci Advocacy Leadership Forum trains neurologists to become legislative advocates through coalitions, societies, and other methods. Organize visits with lawmakers to address unspecified factors that contribute to burnout in neurology. Advocate for physician-friendly national policies, meaningful quality measures, and fair reimbursements. Create a registry tool to facilitate meeting regulation requirements. |
| Increase importance of neurology relative to other specialties | Encourage administrators and policymakers to view neurologists (and other physicians alike) as human beings with limitations. |
| Increase effectiveness of support staff | Actively reorganize health-care structures and training so that support staff are more effective and helpful. Move toward team-based medicine/care to alleviate the workload on individual neurologists. Utilize advanced nurse practitioners to reduce the clinical workload. |

AAN: American Academy of Neurology, EHR: electronic health record.

Significantly reduce the burden on physicians. According to the WHO, only 24% of countries report stand-alone neurological health policies, despite there being a major deficit in low- and middle-income countries. More countries need to adopt uniform policies for neurological disorders. The global crisis could be reduced by encouraging collaboration activity and exchange programs, such as those involving training physicians and allied health-care providers (psychologists, neuroradiologists, electroencephalography technicians, physical therapists, occupational therapists, and speech therapists), neurological diseases awareness education partnerships with patients, and the supply of drugs. Only 12% of the surveyed countries report a separate budget for neurological disorders, and so this proportion needs to increased. A consequence of the shortage of neurologists is that neurological care is provided by primary health-care providers in 91% of countries.
with unknown levels of expertise and training for neurological disorders. This problem can be mitigated by increasing budgets to start new residency training programs or to increase the strength of current programs.\(^4\) Moreover, tele-neurology can serve as a powerful tool for increasing global access to health care and alleviating the shortage of neurologists.\(^47\)

**CONCLUSION**

This study has highlighted the global burnout crisis and provided comprehensive information on the responsible factors, ramifications, and identification methods. We applied a multidisciplinary approach to address burnout in neurology. Unfortunately, data on the implementation and postimplementation effects of such approaches are scarce, and so more studies are needed to determine the effectiveness of such strategies in the prevention and treatment of burnout.

**Author Contributions**

Conceptualization: Urvish K. Patel. Data curation: Urvish K. Patel, Michelle H. Zhang, Karan Patel, Preeti Malik. Project administration: Urvish K. Patel. Supervision: Vishal Jani, Abhishek Lunagariya. Validation: Mansi Shah, Bakhtiar M. Rausul, Anam Habib, Liseth Lavado. Visualization: Urvish K. Patel. Writing—original draft: Urvish K. Patel, Michelle H. Zhang, Karan Patel, Preeti Malik, Mansi Shah Writing—review & editing: Tapan Kavi, Prasanna Tadi, Vishal Jani, Abhishek Lunagariya.

**ORCID IDs**

Urvish K. Patel https://orcid.org/0000-0002-6702-298X
Michelle H. Zhang https://orcid.org/0000-0001-9186-6712
Karan Patel https://orcid.org/0000-0003-4133-2143
Preeti Malik https://orcid.org/0000-0002-9427-0225
Mansi Shah https://orcid.org/0000-0001-5269-3636
Bakhtiar M. Rausul https://orcid.org/0000-0003-1347-6393
Liseth Lavado https://orcid.org/0000-0002-2548-0800
Tapan Kavi https://orcid.org/0000-0002-6242-340X
Prasanna Tadi https://orcid.org/0000-0003-3782-6722
Vishal Jani https://orcid.org/0000-0002-4921-3264
Abhishek Lunagariya https://orcid.org/0000-0003-2515-3698

**Conflicts of Interest**

The authors have no potential conflicts of interest to disclose.

**Acknowledgements**

None.

**REFERENCES**

1. Maslach C, Leiter MP. Understanding the burnout experience: recent research and its implications for psychiatry. *World Psychiatry* 2016; 15:103–111.
2. Shanafelt TD, Hasan O, Dyrbye LN, Sinsky C, Satele D, Sloan J, et al. Changes in burnout and satisfaction with work-life balance in physicians and the general US working population between 2011 and 2014. *Mayo Clin Proc* 2015;90:1600–1613.
3. Langade D, Modi PD, Sidiwva YF, Hishikar NA, Gharpure AS, Wankhade K, et al. Burnout syndrome among medical practitioners across India: a questionnaire-based survey. *Careus* 2016;8:e771.
4. General Medical Council. The state of medical education and practice in the UK 2019. London: General Medical Council, 2019.
5. Zhou X, Pu J, Zhong X, Zhu D, Yin D, Yang L, et al. Burnout, psychological morbidity, job stress, and job satisfaction in Chinese neurologists. *Neurology* 2017;88:1727–1735.
6. Panagioti M, Geraghty K, Johnson J, Zhou A, Panagopoulos E, Chew-Graham C, et al. Association between physician burnout and patient safety, professionalism, and patient satisfaction: a systematic review and meta-analysis. *JAMA Intern Med* 2018;178:1317–1330.
7. Kane L. Medscape national physician burnout, depression & suicide report 2019 [Internet]. New York, NY: Medscape; 2019 [Jan 16 [cited 2019 Jul 4]. Available from: https://www.medscape.com/slideshow/2019-lifestyle-burnout-depression-60110692.
8. Buis NA, Shanafelt TD, Keran CM, Levin KH, Schwarz HB, Molano JR, et al. Author response: burnout, career satisfaction, and well-being among US neurologists in 2016. *Neurology* 2017;89:1650–1651.
9. Peckham C, Stekta B. Neurologist lifestyle -- linking to burnout: a Medscape Survey [Internet]. New York, NY: Medscape; 2013 Mar 28 [cited 2019 Jul 4]. Available from: https://www.medscape.com/features/slideshow/lifestyle/2013/neurology.
10. Yeo CJ, Barbieri A, Roman G, Wiesman J, Powell S. Using smartphone mindfulness apps to increase trainee resilience and reduce burnout (P2.9-005). *Neurology* 2019;92(15 Suppl):P2.9-005.
11. Ratliff J, Weissfeld T, Skidmore C, Southerland A, O’Donovan C, Carrera J, et al. Autonomy and praise from co-residents may protect against burnout in neurology residents (P3.008). *Neurology* 2018;90(15 Suppl):P3.008.
12. King J, Walls B, Zauber S, Hildebrandt A, Singhal S, Pascuzzi R. Art therapy in the management of neurology wellness and burnout- a pilot study (P3.9-079). *Neurology* 2019;92(15 Suppl):P3.9-079.
13. Schernhammer ES, Colditz GA. Suicide rates among physicians: a quantitative and gender assessment (meta-analysis). *Am J Psychiatry* 2004;161:2295–2302.
14. Shanafelt TD, Boone S, Tan L, Dyrbye LN, Sotile W, Satele D, et al. Burnout and satisfaction with work-life balance among US physicians relative to the general US population. *Arch Intern Med* 2012;172:1377–1385.
15. Levin KH, Shanafelt TD, Keran CM, Buis NA, Foster LA, Molano JRV, et al. Burnout, career satisfaction, and well-being among US neurology residents and fellows in 2016. *Neurology* 2017;89:492–501.
16. Martin AB, Hartman M, Washington B, Catlin A. National health care spending in 2017: growth slows to post-great recession rates; share of GDP stabilizes. *Health Aff (Millwood)* 2019;38:101377/hlthaff201805085.
17. OECD Stat. Health expenditure and financing [Internet]. Paris: OECD [cited 2019 Jul 4]. Available from: https://stats.oecd.org/Index.aspx? DataSetCode=SHA.
18. The Economic Times. India to increase public health spending to 2.5% of GDP: PM Modi [Internet]. New Delhi: Times Internet Limited; 2018 Dec 12 [cited 2019 Jul 4]. Available from: https://economictimes.indiatimes.com/news/economy/policy/india-to-increase-public-health-spending-to-2-5-of-gdp-pm-modi/articleshow/67055735.cms.
19. GBD 2015 Neurological Disorders Collaborator Group. Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. *Lancet Neurol* 2017;16:877–897.
20. Owolabi MO, Bower JH, Oggunniiyi A. Mapping Africâs way into prominence in the field of neurology. *Arch Neurol* 2007;64:1696–1700.
21. World Health Organization. *Atlas: country resources for neurological disorders*. 2nd ed. Geneva: World Health Organization, 2017.
22. Association of American Medical Colleges. Percentage change in the number of active physicians by specialty, 2010–2015 [Internet]. Washington, DC: Association of American Medical Colleges [cited 2019 Jul 4]. Available from: https://www.aamc.org/data/workforce/reports/458514/1-9-chart.html.
23. Anderson P. Medicare payments: where do neurologists stand? [Inter-
Patel UK et al.

1. Dall TM, Storm MV, Chakrabarti R, Drogan O, Keran CM, Donofrio PD, et al. Supply and demand analysis of the current and future US neurology workforce. Neurology 2013;81:470-478.

2. Miyasaki JM, Rheaume C, Gulya L, Ellenstein A, Schwarz HB, Vidic TR, et al. Qualitative study of burnout, career satisfaction, and well-being among US neurologists in 2016. Neurology 2017;89:1730-1738.

3. Levin KH, Shanafelt TD, Keran CM, Busis NA, Foster LA, Molano JRV, et al. Author response: burnout, career satisfaction, and well-being among US neurology residents and fellows in 2016. Neurology 2018;90:250.

4. Patel RS, Bachu R, Adickey A, Malik M, Shah M. Factors related to physician burnout and its consequences: a review. Behav Sci (Basel) 2018;8:98.

5. Oreskovich MR, Kaups KL, Balch CM, Hanks JB, Satele D, Sloan J, et al. Prevalence of alcohol use disorders among American surgeons. Arch Surg 2012;147:168-174.

6. Center C, Davis M, Detre T, Ford DE, Hansbrough W, Hendin H, et al. Confronting depression and suicide in physicians: a consensus statement. JAMA 2003;289:3161-3166.

7. Coughlan B, Powell D, Higgins MF. The second victim: a review. Eur J Obstet Gynecol Reprod Biol 2017;213:11-16.

8. Tamburri LM. Creating healthy work environments for second victims of adverse events. AACN Adv Crit Care 2017;28:366-374.

9. Gaspin F, Wu AW. Psychological first aid: CPR for mental health crises in healthcare. J Patient Saf Risk Manag 2018;23:51-53.

10. Motlik A. Do doctors experiencing burnout make more errors? CMAJ 2018;190:E1216-E1217.

11. West CP, Tan AD, Habermann TM, Sloan JA, Shanafelt TD. Association of resident fatigue and distress with perceived medical errors. JAMA 2009;302:1294-1300.

12. Shanafelt TD, West CP, Sloan JA, Novotny PJ, Poland GA, Menaker R, et al. Career fit and burnout among academic faculty. Arch Intern Med 2009;169:990-995.

13. Halbesleben JRB, Ratliff C. Linking physician burnout and patient outcomes: exploring the dyadic relationship between physicians and patients. Health Care Manage Rev 2008;33:29-39.

14. Lee RT, Seo B, Hladky S, Lovell BL, Schwartzmann L. Correlates of physician burnout across regions and specialties: a meta-analysis. Hum Resour Health 2013;11:48.

15. Pelissier C, Charbotel B, Fassier JB, Fort E, Fontana L. Nurses' occupational and medical risks factors of leaving the profession in nursing homes. Int J Environ Res Public Health 2018;15:1850.

16. Wright AA, Katz JT. Beyond burnout: redesigning care to restore meaning and sanity for physicians. N Engl J Med 2018;378:309-311.

17. Rotenstein LS, Torre M, Ramos MA, Rosales RC, Guillie C, Sen S, et al. Prevalence of burnout among physicians: a systematic review. JAMA 2018;320:111-115.

18. Messias E, Flynn V. The tired, retired, and recovered physician: professional burnout versus major depressive disorder. Am J Psychiatry 2018;175:716-719.

19. Shanafelt TD, Noseworthy JH. Executive leadership and physician well-being: nine organizational strategies to promote engagement and reduce burnout. Mayo Clin Proc 2017;92:129-146.

20. Berg S. What neurologists are doing to combat high burnout [Internet]. Chicago, IL: American Medical Association; 2018 Nov 5 [cited 2019 Jul 4]. Available from: https://www.ama-assn.org/practice-management/physician-health/what-neurologists-are-doing-combat-high-burnout.

21. Linzer M, Visser MR, Oort FJ, Smets EM, McMurray JE, de Haes HC, et al. Predicting and preventing physician burnout: results from the United States and the Netherlands. Am J Med 2001;111:170-175.

22. Patel UK, Malik P, DeMasi M, Lunagariya A, Jani VB. Multidisciplinary approach and outcomes of tele-neurology: a review. Cureus 2019;11:e4410.

23. Yaghmour NA, Brigham TP, Richter T, Miller RS, Philibert I, Baldwin DC Jr, et al. Causes of death of residents in ACGME-accredited programs 2000 through 2014: implications for the learning environment. Acad Med 2017;92:976-983.

24. Welp A, Meier LL, Manser T. Emotional exhaustion and workload predict clinician-rated and objective patient safety. Front Psychol 2015;5:1573.

25. Maslach C, Jackson SE, Leiter MP. Maslach Burnout Inventory. In: Zalaquett CP, Wood RJ, editors. Evaluating Stress: A Book of Resources. Lanham, MD: The Scarecrow Press, 1997:191-218.

26. Feldt T, Rantanen J, Hyvönen K, Mäkkikangas A, Huhtala M, Philajaari P, et al. The 9-item Bergen Burnout Inventory: factorial validity across organizations and measurements of longitudinal data. Ind Health 2014;52:102-112.

27. Halbesleben JR, Demerouti E. The construct validity of an alternative measure of burnout: investigating the English translation of the Oldenburg Burnout Inventory. Work & Stress 2005;19:208-220.

28. Kristensen TS, Borritz M, Villadsen E, Christensen KB. The Copenhagen Burnout Inventory: a new tool for the assessment of burnout. Work & Stress 2005;19:192-207.

29. Stamm BH. 2010 The Concise ProQOL Manual. 2nd ed. Pocatello, ID: ProQOL, 2010.

30. Shiroam A. Burnout in work organizations. In: Cooper CL, Robertson IT, editors. International Review of Industrial and Organizational Psychology. Oxford: John Wiley & Sons, 1989:25-48.

31. Yu E. Implementing a daily team huddle [Internet]. Chicago, IL: Mayo Clinic; 2019 Jul 4 [cited 2019 Jul 4]. Available from: https://www.mayoclinic.org/的带领下， flooding...