The Importance of Being Majorana: Neutrinos versus Charged Fermions in Flavor Models

Yosef Nir\(^1\) and Yael Shadmi\(^2\)

\(^1\)Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel
\(^2\)Physics Department, Technion-Israel Institute of Technology, Haifa 32000, Israel

We argue that neutrino flavor parameters may exhibit features that are very different from those of quarks and charged leptons. Specifically, within the Froggatt-Nielsen (FN) framework, charged fermion parameters depend on the ratio between two scales, while for neutrinos a third scale—that of lepton number breaking—is involved. Consequently, the selection rules for neutrinos may be different. In particular, if the scale of lepton number breaking is similar to the scale of horizontal symmetry breaking, neutrinos may become flavor-blind even if they carry different horizontal charges. This provides an attractive mechanism for neutrino flavor anarchy.

Introduction. The measured neutrino flavor parameters are neither manifestly small (apart from the overall mass scale) nor manifestly hierarchical. The two measured mixing angles are $O(1)$ and the measured mass ratio is $O(0.2)$ or larger. With the upper bound on the third mixing angle of $O(0.2)$, and with no information on the remaining mass ratio and CP violating phases, it could well be that all neutrino flavor parameters are non-hierarchical, that is, anarchical (see however \[2\]). This is in sharp contrast to the charged fermion flavor parameters. Of these, only two parameters—the top Yukawa—is in sharp contrast to the charged fermion parameters depend on the ratio between two scales, while for neutrinos a third scale—that of lepton number breaking—is involved. Consequently, the selection rules for neutrinos may be different. In particular, if the scale of lepton number breaking is similar to the scale of horizontal symmetry breaking, neutrinos may become flavor-blind even if they carry different horizontal charges. This provides an attractive mechanism for neutrino flavor anarchy.

It is of course possible that yet-unmeasured neutrino parameters (θ_{13} and/or m_1/m_2) are small, and there is hierarchy in all sectors. We assume here that this is not the case. Then, it is interesting to understand the reason for the difference between the flavor structure of neutral and charged fermions. This difference could be accidental. For example, one could imagine that the flavor structure is a result of an approximate symmetry, and it just so happens that all lepton doublets carry the same charge under this symmetry (see, for example, \[3\]). In other words, each of the sectors—up, down, charged lepton and neutrino—could equally well be hierarchical or accidentally anarchical. However, a far more intriguing possibility is that the difference is due to the fact that, of all the standard model fermions, only neutrinos are Majorana fermions. Then the measured parameters reflect the interplay between flavor physics and lepton number violation. It is this interplay that we wish to explore.

In order to relate the flavor structure and the Majorana/Dirac nature of fermions, one must work within a framework that explains the flavor hierarchy of quarks and charged leptons. One of the most attractive such frameworks is the Froggatt-Nielsen (FN) mechanism \[4\]. One assumes an Abelian horizontal symmetry that is broken by a small parameter near some high “flavor scale”, M_F. This implies various selection rules for the flavor parameters of the standard model. We assume that the smallness of the over-all scale of neutrino masses, is not a result of the FN selection rules but rather of the see-saw mechanism \[5, 6\]. Neutrino masses are thus universally small because the mass of singlet Majorana neutrinos or, equivalently, the scale of lepton number violation, M_L, is very high. We will show that the existence of the scale M_L, on top of the FN scale M_F, has a crucial impact on neutrino flavor parameters.

The Supersymmetric Froggatt-Nielsen Framework. We consider supersymmetric Froggatt-Nielsen models \[6\]. We assume the following symmetries:

$$G_{SM} \times U(1)_H \times U(1)_L.$$

(1)

Here G_{SM} is the SM gauge group, spontaneously broken by two Higgs doublets, $\varphi_h(1, 2)_{+1/2}$ and $\varphi_h(1, 2)_{-1/2}$. Supersymmetry is softly broken, but since its breaking is irrelevant to our investigation, we do not specify the breaking mechanism here. The $U(1)_H$ factor is the horizontal symmetry, which we take to be a $U(1)$ for simplicity. To avoid the issue of global symmetry breaking by strong gravity effects, as well as Goldstone bosons, we could choose the horizontal symmetry to be a (gauged) discrete symmetry. We assume that it is broken by the VEV of a single scalar field S_H (more accurately, S_H is the scalar component in a chiral supermultiplet) that is a singlet of $G_{SM} \times U(1)_L$ and carries charge -1 under $U(1)_H$. This choice just sets the overall normalization of H-charges. The $U(1)_L$ symmetry is lepton number. We assume that it is broken by the VEVs of two scalar fields S_L and \bar{S}_L that are singlets of $G_{SM} \times U(1)_H$ and carry $\frac{1}{2}$.

\footnote{Supersymmetry affects our study in three ways: (i) Superpotential flavor parameters are governed by holomorphy in addition to the horizontal symmetry; (ii) The Higgs sector consists of two doublets; (iii) Both the see-saw and FN mechanisms introduce new heavy particles with Yukawa couplings to the Higgs field. In the absence of supersymmetry, severe fine-tuning problems would arise.}
charges +2 and −2, respectively, under $U(1)_L$. The two VEVs are equal in magnitude.²

The symmetries forbid neutrino masses, and, for appropriate choices of the quark and lepton horizontal charges, most of the charged fermion masses. These masses and couplings are generated however when integrating out new heavy fields. These heavy “FN fields” have charges similar to those of the SM quarks and leptons (that is, ±2/3, ±1/3, ±1 and 0), but appear in vector representations of $G_{SM} \times U(1)_H$. If the FN fields are vector-like also under $U(1)_L$—as is always the case for the charged fields—they have masses at a high scale M_F (possibly the Planck scale). Heavy singlet neutrinos may, however, be chiral under $U(1)_L$. In that case, they acquire masses at the scale of lepton number breaking, $M_L \lesssim M_F$. Thus there are four relevant mass scales in our framework:

1. $\langle \phi_{u,d} \rangle$, the electroweak breaking scale;
2. $M_L \equiv \langle S_L \rangle = \langle \bar{S}_L \rangle$, the lepton number breaking scale;
3. $M_H \equiv \langle S_H \rangle$, the horizontal symmetry breaking scale;
4. M_F, the mass scale of Froggatt-Nielsen vector-like quarks and leptons.

Assume the following hierarchies:

$$
\langle \phi_{u,d} \rangle \ll M_L, M_H, M_F, \quad M_L \lesssim M_F, \quad \lambda_H \equiv M_H/M_F \ll 1. \quad (3)
$$

For concreteness, we often use $\lambda_H \sim 0.2$, inspired by the value of the Cabibbo angle which one may attempt to explain as being suppressed by a single power of the ratio $\langle S_H \rangle/M_F$. The precise numerical value is, however, irrelevant for our conclusions.

Note that we do not specify the relative sizes of the lepton-number breaking scale, M_L, and the horizontal symmetry breaking scale M_H. In the following, we will explore the impact of different hierarchies between these scales on neutrino parameters.

Charged Fermion Parameters. To understand the resulting quark flavor structure, it is sufficient to consider a low energy effective theory that includes only the MSSM fields. The theory has a $U(1)_H$ symmetry which is explicitly broken by the spurion $\lambda_H \sim 0.2$ of $U(1)_H$-charge −1. This leads to the following selection rules:

1. Superpotential terms of integer H-charge $n \geq 0$ are suppressed by λ_H^n.
2. Superpotential terms of negative or non-integer H-charge vanish.

These selection rules are sufficient in order to find the parametric suppression (that is, the λ_H dependence) of the flavor parameters. In particular, if holomorphic zeros play no role, the mixing angles and mass ratios are (with $i < j$; $q = u,d$):

$$
V_{ij} \sim \lambda_H^{(Q_i)-(Q_j)}, \quad m_i/m_j \sim \lambda_H^{(Q_i)-(Q_j)+H(\bar{q}_i)-H(\bar{q}_j)}.
$$

(4)

For example, quark parameters are often accounted for by the following set of H-charges:

$$
\phi_u(0), \quad \phi_d(0), \quad Q_1(3), \quad Q_2(2), \quad Q_3(0),
$$

$$
\bar{u}_1(5), \quad \bar{u}_2(2), \quad \bar{u}_3(0), \quad \bar{d}_1(3), \quad \bar{d}_2(2), \quad \bar{d}_3(2),
$$

(5)

which imply

$$
V_{us} \sim \lambda_H, \quad V_{cb} \sim \lambda_H^2, \quad V_{ub} \sim \lambda_H^3,
$$

$$
m_u/m_c \sim \lambda_H^4, \quad m_c/m_t \sim \lambda_H^2, \quad m_t/\langle \phi_u \rangle \sim 1,
$$

$$
m_d/m_s \sim \lambda_H^2, \quad m_s/m_b \sim \lambda_H^3, \quad m_b/\langle \phi_d \rangle \sim \lambda_H^2,
$$

(6)

consistent (for $\tan \beta \equiv \langle \phi_u \rangle/\langle \phi_d \rangle \sim 1$) with the experimental values.

Let us see how this low energy effective theory arises in a full high energy FN model. As an example, we focus on the (c,t) sector. We add the following FN fields:

$$
\bar{U}_{-2} + U_{+2}, \quad \bar{U}_{-1} + U_{+1}, \quad \bar{U}_0 + U_0, \quad \bar{U}_{+1} + U_{-1}.
$$

(7)

Here $U_h(\bar{U}_h)$ is an $SU(2)$-singlet quark (antiquark) of horizontal charge h. The mass matrix for rows corresponding to $(Q_2, Q_3, U_{+2}, U_{+1}, U_0, U_{-1})$ and columns to $(\bar{u}_2, \bar{u}_3, \bar{U}_{-2}, \bar{U}_{-1}, \bar{U}_0, \bar{U}_{+1})$ is given by (up to $O(1)$-coefficients)

$$
\begin{pmatrix}
0 & 0 & \phi_u & 0 & 0 & 0 \\
0 & \phi_u & 0 & 0 & 0 & 0 \\
0 & 0 & M_F & S_H & 0 & 0 \\
0 & S & 0 & M_F & S_H & 0 \\
0 & 0 & 0 & 0 & M_F & S_H \\
S_H & 0 & 0 & 0 & 0 & M_F
\end{pmatrix}.
$$

(8)

When the four heavy FN fields with masses of $O(M_F)$ are integrated out, we obtain

$$
M_u^{(c,t)} \sim \langle \phi_u \rangle \left(\begin{array}{cc}
\lambda_H^4 & \lambda_H^2 \\
\lambda_H^2 & 1
\end{array}\right),
$$

(9)

consistent with $m_c/m_t \sim \lambda_H^4$ and $|V_{cb}| \sim \lambda_H^2$.

Neutrino Parameters. We assume that neutrino masses arise from the see-saw mechanism, that is superpotential terms of the form

$$
\frac{Z_{ij}}{M_L} \phi_u \phi_u L_i L_j.
$$

(10)
Z is a 3×3 matrix of dimensionless Yukawa couplings. We aim to find the selection rules that apply to it and see if they are different in a fundamental way from those of charged fermions. Indeed, even the most naive selection rules have two special features:

1. The matrix is symmetric, $Z_{ij} = Z_{ji}$. Thus, in contrast to the charged fermion case, pairs of entries are related, and we can get a (quasi-)degeneracy.

2. Terms in λ^H that carry a negative H charge, $n < 0$, might be enhanced by λ^H rather than vanish.

The lepton number breaking parameters have, however, an even more profound effect on the selection rules. Specifically, they introduce an additional parameter, on top of λ_H of eq. [3], that breaks the horizontal symmetry and conserves lepton number:

$$\lambda^2_L = \frac{(S_L)^2}{(S_L)(S_L)} = \frac{M^2_H}{M^2_L}$$

(11)

The crucial point is that λ^2_L/λ^2_H is neutral under all the symmetries and therefore can affect the physical observables in a way that depends sensitively on the details of the full high-energy theory. Furthermore, the numerical value of λ_L depends on the hierarchy of scales M_H and M_L. We have $\lambda_L \sim \lambda_H$ or $\lambda_L > \lambda_H$ and even $\lambda_L \gtrsim 1$.

Only in the special case that $\lambda_L \sim \lambda_H$, that is, $M_L \sim M_H$, we expect that neutrinos will have a flavor hierarchy that is related to the one in the charged fermion sectors. Generically, however, the structure of the neutrino flavor parameters depends, in addition to λ_H, on λ_L, and can be very different from that of quarks and charged lepton masses. In the next section we give several examples that demonstrate these statements.

Explicit examples. We consider a simplified framework of two light active neutrinos. As an explicit example, we take the two lepton doublets to be L_{+2} and L_0, where the sub-index denotes the H-charge. We present three different full high-energy models. The various models exhibit several interesting features that may arise in the neutrino sector and demonstrate the sensitivity of low-energy observables to the full high-energy theory.

Each of the models is defined by a set of G_{SM}-singlet fields. To obtain the light-neutrino mass matrix, we start from the full renormalizable superpotential allowed by the symmetries. As above, we omit dimensionless $O(1)$ coefficients and, for the light-neutrino mass matrices, contributions that are subleading in λ_H/λ_L. Leptons (antileptons) of H-charge h are denoted by N_h (\bar{N}_h).

Model I has the following (anti)lepton fields:

$$L_{+2}, L_0, \bar{N}_{-2}, N_{+2}, \bar{N}_{-1}, N_{+1}, \bar{N}_0, \bar{N}_0 \ .$$

(12)

The mass matrix in this basis is:

$$\begin{pmatrix}
0 & 0 & \phi_u & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \phi_u & \phi_u \\
\phi_u & 0 & 0 & \bar{M}_F & 0 & 0 & 0 & 0 \\
0 & \bar{M}_F & 0 & S_H & 0 & 0 & 0 & 0 \\
0 & 0 & S_H & 0 & \bar{M}_F & 0 & 0 & 0 \\
0 & 0 & 0 & \bar{M}_F & 0 & S_H & S_H & 0 \\
0 & \phi_u & 0 & 0 & 0 & S_H & S_L & 0 \\
0 & \phi_u & 0 & 0 & 0 & S_H & 0 & S_L \\
0 & \bar{M}_F & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix} \ .$$

(13)

The light neutrino mass matrix is given by

$$M_l \sim \frac{(\phi_u)^2}{M_L} \begin{pmatrix}
\lambda^2_L & \lambda^2_H \\
\lambda^2_H & 1
\end{pmatrix} \ .$$

(14)

It leads to the ‘naive’ flavor structure, namely the flavor structure that would follow if the selection rules were similar to those of charged fermions $^{10}^{11}$:

$$m_1/m_2 \sim \lambda^4_H, \ \sin \theta \sim \lambda^2_H \ .$$

(15)

Model II has the following (anti)lepton fields:

$$L_{+2}, L_0, \bar{N}_{-2}, N_{+2}, \bar{N}_{-1}, N_{+1}, N_0, \bar{N}_0 \ .$$

(16)

The mass matrix in this basis is:

$$\begin{pmatrix}
0 & 0 & \phi_u & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \phi_u & \phi_u \\
\phi_u & 0 & 0 & \bar{M}_F & 0 & 0 & 0 & 0 \\
0 & \bar{M}_F & 0 & S_H & 0 & 0 & 0 & 0 \\
0 & 0 & S_H & 0 & \bar{M}_F & 0 & 0 & 0 \\
0 & 0 & 0 & \bar{M}_F & 0 & S_H & S_H & 0 \\
0 & \phi_u & 0 & 0 & 0 & S_H & S_L & 0 \\
0 & \phi_u & 0 & 0 & 0 & S_H & 0 & S_L \\
0 & \bar{M}_F & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix} \ .$$

(17)

The light neutrino mass matrix is given by

$$M_l \sim \frac{(\phi_u)^2}{M_L} \begin{pmatrix}
\lambda^2_L & \lambda^2_H \\
\lambda^2_H & 1
\end{pmatrix} \ .$$

(18)

This mass matrix has interesting features:

1. For $\lambda^2_L \sim \lambda^2_H$, the mixing and hierarchy assume their naive values, as in 10.

2. For $\lambda^2_H < \lambda^2_L < 1$, the mixing is larger, $\sin \theta \sim \lambda^2_L$, and the hierarchy is weaker, $m_1/m_2 \sim \lambda^4_L$, than the naive estimates.

3. For $\lambda^2_L > 1$, we have a pseudo-Dirac state.

Since the two spurions, λ_H and λ_L, appear in the light-neutrino mass matrix, the naive selection rules do not necessarily apply, and a flavor structure unique to neutrinos, such as a pseudo-Dirac state, may arise.

Model III has the following (anti)lepton fields:

$$L_{+2}, L_0, \bar{N}_{-2}, N_{+2}, \bar{N}_{-1}, N_{+1}, N_0, \bar{N}_0 \ .$$

(19)
The mass matrix in this basis is:

\[
\begin{pmatrix}
0 & 0 & \phi_u & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \phi_u & \phi_u & 0 \\
\phi_u & 0 & 0 & S_L & 0 & 0 & 0 \\
0 & S_L & 0 & S_H & 0 & 0 & 0 \\
0 & 0 & 0 & S_L & 0 & S_H & S_H \\
0 & \phi_u & 0 & 0 & S_H & \phi_u & 0 \\
0 & \phi_u & 0 & 0 & S_H & 0 & S_L \\
0 & 0 & 0 & 0 & 0 & 0 & S_L \\
\end{pmatrix}.
\]

The light neutrino mass matrix is given by

\[
M_l \sim \frac{\phi_u^2}{M_L} \left(\begin{array}{ccc}
\lambda^4_L & \lambda^2_L & 1 \\
\lambda^2_L & \lambda^4_L & 1 \\
1 & 1 & 1 \\
\end{array} \right),
\]

so that

\[
m_1/m_2 \sim \lambda^4_L, \quad \sin \theta \sim \lambda^2_L. \tag{22}
\]

The following two ranges for \(\lambda_L \) are particularly interesting:

1. For \(\lambda_L > 1 \), we obtain inverted hierarchy: the state with the highest FN-charge is the heaviest, in contrast to charged fermions.

2. For \(\lambda_L \sim 1 \), there is no hierarchy in the masses and mixing angle, i.e. we have neutrino flavor anarchy.

We learn that if \(U(1)_H \) and \(U(1)_L \) are broken at the same scale, it is quite possible that neutrinos will have no special structure at all. This fact may have significant effects on the neutrino sector. Its flavor parameters may have a hierarchy that is very different from the charged fermions. Intriguing features, such as inverted hierarchy or a pseudo-Dirac state, can appear in the neutrino sector.

In particular, the neutrino flavor parameters may have no special structure at all. While there is no inherent motivation for neutrino anarchy in the framework that we investigated, it does arise naturally if the horizontal symmetry and the lepton number symmetry are broken at the same scale.

Thus, if future measurements of neutrino parameters strengthen the case for flavor anarchy (\(|U_{e3}| \) close to the present upper bound and no quasi-degeneracy among the masses), models that relate the two scales will be favored.

The ideas presented in this work can be extended in a straightforward way to realistic, three generation models. It would also be interesting to explore whether, in other mechanisms that explain the hierarchy in the charged fermion parameters, the Majorana nature of neutrinos introduces significant modifications that are particular to this sector.

Acknowledgments. We thank Srubabati Goswami and D. Indumathi for useful and enjoyable discussions. We thank the organizers of the Eighth Workshop on High Energy Physics Phenomenology (WHEPP-8), Mumbai, where this project was initiated. This project was supported by the Albert Einstein Minerva Center for Theoretical Physics. The research of Y.N. is supported by the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities, by a Grant from the G.I.F., the German-Israeli Foundation for Scientific Research and Development, by a grant from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel, and by EEC RTN contract HPRN-CT-00292-2002. The research of Y.S. is supported in part by the Israel Science Foundation (ISF) under grant 29/03, and by the United States-Israel Binational Science Foundation (BSF) under grant 2002020.