Symmetry of singular solutions of degenerate quasilinear elliptic equations

Giovanni Alessandrini, Edi Rosset

In ricordo di Fabio

Summary. - We prove radial symmetry of singular solutions to an overdetermined boundary value problem for a class of degenerate quasilinear elliptic equations.

1. Introduction

We consider solutions \(u \) to
\[
\text{div}(a(|\nabla u|)\nabla u) = 0, \quad \text{in } \Omega \setminus \{O\},
\]
which vanish on \(\partial \Omega \)
\[
u = 0, \quad \text{on } \partial \Omega,
\]
and have a positive singularity at the origin \(O \)
\[
limit_{x \to O} u(x) = M \in (0, +\infty].
\]
We prove that if \(u \) satisfies the overdetermined boundary condition
\[
\frac{\partial u}{\partial \nu} = -c, \quad \text{on } \partial \Omega,
\]

Keywords: Symmetry, singular solutions, moving planes, \(p \)-laplacian
AMS Subject Classification: 35J60, 35J70, 35R35.
Work supported in part by MiUR, PRIN no. 2006014115.
Authors' addresses: Giovanni Alessandrini, Dipartimento di Matematica e Informatica, Università degli Studi di Trieste, Italy, e-mail: alessang@univ.trieste.it
Edi Rosset, Dipartimento di Matematica e Informatica, Università degli Studi di Trieste, Italy, e-mail: rossedi@univ.trieste.it
with $c > 0$ constant, then Ω is a ball centered at O and u is radially symmetric.

To be more specific, we shall assume Ω to be a bounded connected open set in \mathbb{R}^n, $n \geq 2$, containing the origin O, and with $C^{2,\alpha}$-smooth boundary $\partial \Omega$. The nonlinearity a is assumed to be a C^1 function from $(0, +\infty)$ to $(0, +\infty)$ and satisfying the degenerate ellipticity condition

$$0 < \lambda \leq 1 + \frac{sd'(s)}{a(s)} \leq \Lambda, \text{ for every } s > 0,$$

for some positive constants λ, Λ.

Such a class of quasilinear degenerate elliptic equations, which strictly contains the one of p-Laplacian type equations, was introduced by Lieberman [5] and independently, in the two dimensional case, by Alessandrini, Lupo and Rosset [3].

With such assumptions the main result of this note is the following.

Theorem 1.1. Let $u \in C^{1,\alpha}(\overline{\Omega} \setminus \{O\})$ be a weak solution to (1.1), satisfying the conditions (1.2), (1.3). If, in addition, u satisfies (1.4) then Ω is a ball centered at the origin O and u is radially symmetric.

Let us observe that in view of the regularity results by Lieberman [5] it is reasonable to treat solutions in the $C^{1,\alpha}$-class.

Note also that for singular solutions satisfying (1.1)–(1.3) the limit M in (1.3) may be finite or infinite depending on the nonlinearity a. This fact is particularly evident in the special case when $a(t) = t^{p-2}$, $p > 1$. One readily sees that when $p \leq n$ then we have $M = +\infty$, whereas for $p > n$ one must have $M < +\infty$. See in this respect Kichenassamy and Veron [4] and, for a detailed study of singular solutions in two variables we refer to Rosset [6].

Our proof is based on an adaptation of the well-known method of moving planes by Alexandrov and Serrin. The adaptation of the method to degenerate equations was initiated in [2]. Here we refer mostly to arguments introduced in [1], however, the presence of the singularity adds a little further difficulty, since it may appear, at a first glance, that the method of moving planes cannot be used after the moving plane has crossed the singularity. We shall show that
if this is the case for a certain direction ξ, then for the opposite direction $-\xi$ the problem of “hitting the singularity” cannot occur.

Remark 1.2. We take this opportunity to point out that an erratum is in order in [1]. In fact, it is improperly stated there that the nonlinearity a may depend on $|\nabla u|$ and also on u. This is not correct, in fact one should assume $a = a(|\nabla u|)$ and with this proviso all the statements there are correct.

2. Proof of Theorem 1.1

We recall some basic properties of solutions to equation (1.1) that we shall use repeatedly in our arguments. Local solutions to the equation

$$\text{div}(a(|\nabla u|)\nabla u) = 0,$$ \hspace{1cm} (2.1)

are obtained as limits in $C^{1,\alpha}$ of solutions u_{ϵ} to regularized equations

$$\text{div}(a_{\epsilon}(|\nabla u_{\epsilon}|)\nabla u_{\epsilon}) = 0,$$ \hspace{1cm} (2.2)

where a_{ϵ} satisfies the same conditions as a and in addition is C^∞ and $a_{\epsilon} \geq \epsilon > 0$ everywhere. Consequently u_{ϵ} can also be seen as a strong solution to the non-divergence uniformly elliptic equation

$$\sum_{i,j} \left(\delta_{ij} + \frac{a_{\epsilon}'(|\nabla u_{\epsilon}|)}{|\nabla u_{\epsilon}|^2 a_{\epsilon}(|\nabla u_{\epsilon}|)} \frac{\partial u_{\epsilon}}{\partial x_i} \frac{\partial u_{\epsilon}}{\partial x_j} \right) \frac{\partial^2 u_{\epsilon}}{\partial x_i \partial x_j} = 0.$$ \hspace{1cm} (2.3)

Consequently solutions to (2.1) inherit some properties of strong solutions to uniformly elliptic equations.

We quote, in particular, the Harnack inequality, that is, there exists $C = C(\lambda, \Lambda)$ such that: if u solves (2.1) in $B_R(x_0)$ and $u \geq 0$ then

$$\max_{B_{R/2}(x_0)} u \leq C \min_{B_{R/2}(x_0)} u.$$ \hspace{1cm} (2.4)

A further consequence of the use of the regularized solutions is that solutions to (2.1) satisfy the comparison principle in the weak form. That is, if v, u solve (2.1) in a domain G and $v \leq u$ on ∂G then $v \leq u$ also inside. In addition, if $|\nabla u| + |\nabla v| > 0$ in \overline{G} then the strong version of the comparison principle holds, that is if $v \leq u$ on ∂G then either $v \equiv u$ or $v < u$ in G.

Let us also observe that, if \(u \) is a solution to (2.1), then for every constant \(C \), also \(C - u \) is a solution. Hence, by the Harnack inequality, one readily obtains that the solution to (1.1)–(1.3) satisfies
\[
0 < u(x) < M, \quad \text{for every } x \in \Omega \setminus \{O\}. \tag{2.5}
\]

Let us now introduce the moving plane apparatus. For any direction \(\xi \in \mathbb{R}^n, |\xi| = 1 \), and for any \(t \in \mathbb{R} \), we define the hyperplane
\[
\Pi_t^\xi = \{ x \in \mathbb{R}^n \mid x \cdot \xi = t \}.
\]
We denote by \(R_t^\xi \) the reflection in \(\Pi_t^\xi \), that is
\[
R_t^\xi x = 2(t - x \cdot \xi)\xi + x.
\]
We shall denote
\[
(R_t^\xi u)(x) = u(R_t^\xi x).
\]
If we agree to say that if \(x \cdot \xi < t \), \(x \) is on the left hand side of \(\Pi_t^\xi \), and conversely \(x \) is on the right hand side of \(\Pi_t^\xi \) if \(x \cdot \xi > t \), we denote by \(R_t^\xi \Omega \) the reflection of the part of \(\Omega \) which is on the left hand side of \(\Pi_t^\xi \), that is
\[
R_t^\xi \Omega = \{ x \in \mathbb{R}^n \mid x \cdot \xi > t, R_t^\xi x \in \Omega \}.
\]
Given \(\xi \), we fix \(\overline{t} \) such that \(R_{\overline{t}}^\xi \Omega = \emptyset \). Letting \(t > \overline{t} \) increase, we denote by \(t(\xi) \) the largest number such that
\[
R_t^\xi \Omega \subset \Omega, \quad \text{for every } t \in (\overline{t}, t(\xi)).
\]
As is well-known since Serrin [7], when \(t = t(\xi) \) one of the following two cases is satisfied
\[
\begin{align*}
\text{I) } & \partial(R_t^\xi \Omega) \text{ is tangent to } \partial \Omega \text{ at a point } P \notin \Pi_t^\xi, \\
\text{II) } & \partial(R_t^\xi \Omega) \text{ is tangent to } \partial \Omega \text{ at a point } P \in \Pi_t^\xi.
\end{align*}
\]
Let us consider the family of moving planes associated to the opposite direction \(-\xi \) and the corresponding reflections. One can easily verify that
\[
\Pi_t^\xi = \Pi_{-t}^{-\xi}, \quad \text{for every } t,
\]
and also
\[R_t^\xi = R_{-t}^\xi, \quad \text{for every } t. \]

Now we observe that for every \(s < t(\xi) \) we also have \(-s > t(-\xi)\). In fact
\[R_s^\xi \Omega \subsetneq \Omega \cap \{x \cdot \xi > s\} \]
and therefore, applying \(R_{-s}^{\xi} \) to both sides,
\[\Omega \cap \{x \cdot \xi < s\} \not\subsetneq R_{-s}^{\xi} \Omega, \]
that is \(R_{-s}^{-\xi} \Omega \) is not contained in \(\Omega \) and hence \(-s > t(-\xi)\).

Hence, letting \(s \) increase to \(t(\xi) \), we obtain
\[t(\xi) + t(-\xi) \leq 0 \quad (2.6) \]

Consequently either \(t(\xi) = t(-\xi) = 0 \) or one of the two numbers \(t(\xi), t(-\xi) \) is strictly negative.

If \(t(\xi) = t(-\xi) = 0 \) then, obviously, \(\Omega \) is symmetric in \(\Pi_0^\xi = \Pi_0^{-\xi} \).

Assume now \(t(\xi) < 0 \) (the other case \(t(-\xi) < 0 \) being equivalent).

We simplify our notation by posing
\[\Pi = \Pi_{t(\xi)}^\xi, \quad R = R_{t(\xi)}^\xi, \quad G = R_{t(\xi)}^\xi \Omega, \quad v = R_{t(\xi)}^\xi u. \]

Since the origin \(O \) is on the right hand side of \(\Pi \), by (2.5), we have that there exists \(N, 0 < N < M \) such that the level set
\[E = \{x \in \Omega \setminus \{O\} | u(x) \geq N\} \]
is strictly on the right hand side of \(\Pi \).

Consequently, on \(\overline{G} \), \(v = R_{t(\xi)}^\xi u < N \). Now we observe that on \(\partial(G \setminus E) \) we have \(v \leq u \), in fact \(\partial(G \setminus E) \) can be decomposed as
\[\partial(G \setminus E) = (\partial G \cap \Pi) \cup (\partial G \setminus (E \cup \Pi)) \cup (\partial E \cap G) \]
and we have
\[\begin{align*}
v &= u, \quad \text{on } \partial G \cap \Pi, \\
v &= 0 \leq u, \quad \text{on } \partial G \setminus (E \cup \Pi), \\
v &< N \leq u, \quad \text{on } \partial E \cap G.
\end{align*} \]
Hence, by the weak comparison principle,

\[v \leq u, \quad \text{in } G \setminus E, \]

and also, trivially,

\[v < N \leq u, \quad \text{in } G \cap E. \]

Consequently

\[v \leq u \quad \text{in } G. \quad (2.7) \]

From now on we rephrase arguments in [1] to prove that \(\Pi \) is a plane of symmetry for \(\Omega \).

Let \(U \) be an \(\epsilon \)-neighborhood of \(\partial \Omega \) in \(\Omega \), with \(\epsilon \) small enough to have \(|\nabla u| > 0 \) in \(U \) and \(O \notin U \). Let \(A \) be the connected component of \((RU) \cap U \) such that \(P \in \partial A \). In view of the boundary conditions (1.2), (1.4), we have

\[(u - v)(P) = 0, \quad \nabla(u - v)(P) = 0. \]

Moreover, when case II) occurs, by applying the arguments in [7] to equation (2.1) we also have that

\[\frac{\partial^2}{\partial \eta^2}(u - v)(P) = 0, \]

for every direction \(\eta \). Since \(A \subset G \cap U \), \(u - v \) is a non-negative solution of a uniformly elliptic equation in \(A \). By using the Hopf lemma when case I) occurs and its variant due to Serrin [7, Lemma 2] when case II) occurs and by the strong comparison principle, it follows that

\[u = v, \quad \text{in } A. \quad (2.8) \]

Now, let us prove that \(R(\partial \Omega) \subset \partial \Omega \), obtaining that \(\Pi \) is a plane of symmetry of \(\Omega \). Assume, by contradiction, that there exists a point \(Q \in R(\partial \Omega) \setminus \partial \Omega \). Let \(\gamma \) be an arc in \(R(\partial \Omega) \) joining \(Q \) with \(P \). One can find a subarc \(\gamma' \) in \(\gamma \cap (U \cup \partial \Omega) \) having as endpoints \(P \) and a point \(R \in U \). Since in any neighborhood of \(\gamma' \) one can find points of \(RU \cap U \), which can be joined to \(P \) through paths inside \(RU \cap U \), it follows that \(\gamma' \subset \partial A \). Therefore the set \(R(\partial \Omega) \cap U \cap \partial A \) is non-empty and on such a set \(v = 0 < u \), contradicting (2.8).
We have therefore proved that for any direction ξ there exists a plane Π orthogonal to ξ which is a plane of symmetry for Ω. Hence Ω is a ball $B_R(x_0)$. It remains to prove that $x_0 = O$ and that u is radially symmetric.

Let $b = b(s)$ be the inverse function to $ta(t)$, let $K = R^{n-1}c a(c)$ and set

$$v(r) = \int_r^R b(K \rho^{1-n}) d\rho, \quad 0 < r \leq R.$$

One can easily verify that $v(|x - x_0|)$ solves

$$\begin{cases}
\text{div}(a(|\nabla v|) \nabla v) = 0, & \text{in } B_R(x_0) \setminus \{x_0\}, \\
v = 0, & \text{on } \partial B_R(x_0), \\
\frac{\partial v}{\partial \nu} = -c, & \text{on } \partial B_R(x_0).
\end{cases}$$

Now, in $B_R(x_0) \setminus \{O, x_0\}$, $u(x)$ and $v(|x - x_0|)$ satisfy the same elliptic equation and have the same Cauchy data on $\partial B_R(x_0)$.

We recall that for such an equation the unique continuation property holds as long as one of the two solutions has non-vanishing gradient. It follows from a standard continuity argument that $u(x) = v(|x - x_0|)$ for every $x \neq O, x_0$.

Consequently u and v must have the same singular point, that is $x_0 = O$ and finally $u(x) = v(|x|)$. We conclude the proof observing that the singular value M can be computed as follows

$$M = \int_0^R b \left(\frac{R}{\rho} \right)^{n-1} c a(c) \, d\rho.$$

References

[1] G. Alessandrini, A symmetry theorem for condensers, Math. Methods Appl. Sci. 15 (1992), no. 5, 315–320.

[2] G. Alessandrini and N. Garofalo, Symmetry for degenerate parabolic equations, Arch. Rational Mech. Anal. 108 (1989), no. 2, 161–174.

[3] G. Alessandrini, D. Lupo and E. Rosset, Local behavior and geometric properties of solutions to degenerate quasilinear elliptic equations in the plane, Appl. Anal. 50 (1993), no. 3-4, 191–215.
[4] S. Kichenassamy and L. Véron, *Singular solutions of the p-Laplace equation*, Math. Ann. **275** (1986), no. 4, 599–615.

[5] G. M. Lieberman, *The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations*, Comm. Partial Differential Equations **16** (1991), no. 2-3, 311–361.

[6] E. Rosset, *Isolated singularities of solutions to the equation* \(\text{div}(a(|Du|)Du) = 0\) *in the plane*, Complex Variables Theory Appl. **25** (1994), no. 1, 69–96.

[7] J. Serrin, *A symmetry problem in potential theory*, Arch. Rational Mech. Anal. **43** (1971), 304–318.