Learning from Comparisons and Choices

Sahand Negahban∗, Sewoong Oh†, Kiran K. Thekumparampil‡ and Jiaming Xu§

Abstract

When tracking user-specific online activities, each user’s preference is revealed in the form of choices and comparisons. For example, a user’s purchase history tracks her choices, i.e. which item was chosen among a subset of offerings. A user’s comparisons are observed either explicitly as in movie ratings or implicitly as in viewing times of news articles. Given such individualized ordinal data, we address the problem of collaboratively learning representations of the users and the items. The learned features can be used to predict a user’s preference of an unseen item to be used in recommendation systems. This also allows one to compute similarities among users and items to be used for categorization and search. Motivated by the empirical successes of the MultiNomial Logit (MNL) model in marketing and transportation, and also more recent successes in word embedding and crowdsourced image embedding, we pose this problem as learning the MNL model parameters that best explains the data. We propose a convex optimization for learning the MNL model, and show that it is minimax optimal up to a logarithmic factor by comparing its performance to a fundamental lower bound. This characterizes the minimax sample complexity of the problem, and proves that the proposed estimator cannot be improved upon other than by a logarithmic factor. Further, the analysis identifies how the accuracy depends on the topology of sampling via the spectrum of the sampling graph. This provides a guideline for designing surveys when one can choose which items are to be compared. This is accompanies by numerical simulations on synthetic and real datasets confirming our theoretical predictions.

1 Introduction

Given data on how users compared subsets of items, we address the fundamental problem of learning a representation of users and items. Such data can be observed in the form of choices (e.g. which item was bought) or in the form of comparisons (e.g. which items are rated higher). From such ordinal data on the items, we want to find lower dimensional features that explains crucial aspects of the users’ choices. These features can be used to predict each user’s preference over items that the user has not seen yet, which can be used in recommendation systems and revenue management. These learned features also provides an embedding of the users and items on the same Euclidean space that allows us to directly quantify similarities via distances, that can be used to categorize and cluster. These embeddings can bring order to unstructured data such as images. This allows for a new search engine where users are asked to compare which image best resembles the one she is searching. Such an embedding of a discrete set of objects based on ordinal data has recently gained tremendous attraction mainly due to word embeddings based on co-occurrence data and their successes in numerous downstream natural language processing tasks [35].

The fundamental question in such a representation learning is: what makes one representation better than the others? Our guiding principle is that a good representation is the one that defines a generative model that best explains the given data in the maximum likelihood sense. To this end, we focus on a parametric generative model known as MultiNomial Logit (MNL) model, widely used and studied in revenue management. The MNL model has a natural interpretation of human choices as an outcome of maximizing a utility by agents with noisy perception of the utility, also known as random utility models in [57, 50] defined as follows. Each user and item has a latent low-dimensional feature $u_i \in \mathbb{R}^r$ and $v_j \in \mathbb{R}^r$ respectively. The

∗Statistics Department, Yale, sahand.negahban@yale.edu
†Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana-Champaign, swoh@illinois.edu
‡Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, thekump2@illinois.edu
§Krannert School of Management, Purdue University, xu972@purdue.edu
true utility of an item is the inner product of these two features $\Theta_{ij} \triangleq \langle u_i, v_j \rangle$. The inherent low-rank structure of $\Theta = [\Theta_{ij}]$ captures the collaborative nature of the problem, where users with similar preferences in the past are likely to prefer similar items in the future.

When presented with a set of items, a user reveals a noisy ordering of the items sorted according to her perceived utility, each of which is perturbed by an i.i.d. noise added to the true utility Θ_{ij}. The MNL model is a special case where the noise follows the standard Gumbel distribution, and is one of the most popular models in choice theory for its simplicity and empirical success [31, 33]. The MNL model has several important properties, making this model realistic in various domains, including marketing [16], transportation [32, 5], biology [49], and natural language processing [34]. The MNL model (1) satisfies the ‘independence of irrelevant alternatives’ in social choice theory [44]; (2) has a maximum likelihood estimator (MLE) which is a convex program in Θ; and (3) has a simple characterization as sequential (random) choices as follows. Let $\mathbb{P}\{a > \{b, c, d\}\}$ denote the probability a was chosen as the best alternative among the set $\{a, b, c, d\}$. Then, the probability that user i reveals a linear order $(a > b > c > d)$ is $\mathbb{P}\{a > \{b, c, d\}\} \mathbb{P}\{b > \{c, d\}\} \mathbb{P}\{c > d\}$, where $\mathbb{P}\{a > \{b, c, d\}\} = e^{\Theta_{ia}}/(e^{\Theta_{ia}} + e^{\Theta_{ib}} + e^{\Theta_{ic}} + e^{\Theta_{id}})$. Essentially the user is modeled as making a sequence of choices, choosing the best alternative first and then making choices on the remaining ones.

We give the precise definition of the MNL model in Section 2 for pairwise comparisons and in Section 4 for higher order comparisons and choices. Beyond its success in classical applications such as transportation and marketing, the MNL model and its variants are being rediscovered and successfully applied in more modern applications such as embedding images using crowdsourcing [31] and word embedding [35], whose connections we make precise in Section 6.

Motivated by recent advances in learning low-rank models, e.g. [38, 13], we ask the fundamental question of learning the MNL model from data on comparisons and choices. We provide a general framework using convex relaxations for learning the model. As data is collected in various forms on modern social computing systems, we consider the following four canonical scenarios:

- **Pairwise comparisons.** The most simple and canonical piece of ordinal data one can collect from a user at a time is a pairwise comparison; given two options, we ask which one is better. Such data is prevalent in the real world and is the most popular scenario studied in ranking literature, e.g. [47]. However, one significant aspect of the real data that has not been addressed in the literature is irregularities in the sampling. Consider an online seller with various products, say cars and watches. It does not make sense to ask a user to compare a car and a watch; one cannot sample an outcome of a comparison between a watch and a car. However, knowing a user’s preference on cars can help in learning the same user’s preference on watches. We want to propose a model and design an inference algorithm that can take into account such complex variations. We further want to quantify the gain in using all such data together in inference, as opposed to running inference in each category separately. To this end, we propose a new model for sampling that we call graph sampling. This model explains such irregularities in the real world data. We propose a novel inference algorithm tailored for the given sampling pattern. Our analysis captures precisely how the accuracy depends on the different topologies of sampling.

- **Higher order comparisons.** Consider an online market that collects each of its user’s preference as a ranking over a subset of items that is ‘seen’ by the user. Such data can be obtained by directly asking to compare some items, or by indirectly tracking online activities on which items are viewed, how much time is spent on the page, or how the user rated the items. However, collecting such comparisons over multiple items might come at a cost. We, therefore, want to quantify the gain in the accuracy of the inference when higher order comparison outcomes are collected. We characterize the optimal tradeoff between accuracy and the number of items compared, and show that our proposed algorithm seamlessly generalizes to this setting and also achieves the optimal tradeoff.

- **Customer choices.** One of the most widely applicable data collection scenario is customer purchase history. Online and offline service providers can track each customer on which subset of items is offered and which one item is chosen. Given historical data on such choices on best-out-of-a-subset, we extract features on the users and items that best explains the collected data.

- **Bundled choices.** Another data collection scenario that is gaining interest recently is bundled choices [12]. Typical choice models assume the willingness to buy an item is independent of what else the user bought. In many cases, however, we make ‘bundled’ purchases: we buy particular ingredients together.
for one recipe or we buy two connecting flights. One choice (the first flight) has a significant impact on the other (the connecting flight). In order to optimize the assortment (which flight schedules to offer) for maximum expected revenue, it is crucial to accurately predict the willingness of the consumers to purchase bundled items, based on past history. We propose a model that can capture such interacting preferences for bundled items (e.g., jeans and shirts), and use this model to extract the features of the items in each category from historical bundled purchase data. Both our inference algorithm and the analyses extends to this setting, achieving the optimal tradeoff between sample size and accuracy.

Contribution. We first study the canonical scenario of pairwise comparisons from the MNL model in Section 3. Our contribution in the modeling is a new sampling scenario we call graph sampling that captures how different pairs of items have varying likelihood of being compared together. Our algorithmic contribution is a convex relaxation with a new regularizer using a variation of the standard nuclear norm tailored for the graph sampling topology. Our theoretical contribution is in the analysis of the proposed estimator and a matching fundamental lower bound (up to a poly-logarithmic factor). This (a) characterizes the minimax sample complexity of the problem; (b) proves that the proposed estimator cannot be improved upon; and (c) identifies how the accuracy depends on the topology of sampling. This in turn provides a guideline for designing surveys when one has a choice on which pairs are to be compared. This is accompanied by numerical simulations on synthetic datasets confirming our theoretical predictions.

This framework is extended to higher order comparisons in Section 4. We establish minimax optimality (up to a poly-logarithmic factor) of our estimator and identify the fundamental tradeoff between accuracy and sample size. When each user provides a total linear ordering among k items, we show that the required sample size effectively is reduced by a factor of k. When the user provides her best choice (as in purchase history) instead of the total linear ordering, we extend our framework and establish minimax optimality in Section 5.2. We also consider a bundled purchase scenario in Section 5 where customers buy pairs of items from each of the two categories. We extend out framework and establish minimax optimality under the bundled purchase setting. We present experimental results on both synthetic and real-world datasets confirming our theoretical predictions and showing the improvement of the proposed approach in predicting users’ choices.

Technically, we borrow analysis tools from 1-bit matrix completion [13], matrix completion [37], and restricted strong convexity [38], and crucially utilize the Random Utility Model (RUM) [22] interpretation (outlined in Section 2.1) of the MNL model to prove both the upper bound and the fundamental limit. This could be of interest to analyzing more general class of RUMs.

Notations. We use $\|A\|_p$ and $\|A\|_\infty$ to denote the Frobenius norm and the ℓ_∞ norm; $\|A\|_{\text{nuc}} = \sum_i \sigma_i(A)$ to denote the nuclear norm where $\sigma_i(A)$ denote the i-th singular value, and $\|A\|_2 = \sigma_1(A)$ for the spectral norm. We use $\langle u, v \rangle = \sum_i u_i v_i$ and $\|u\|$ to denote the inner product and the Euclidean norm. All ones vector is denoted by $\mathbf{1}$ and $\mathbb{I}(A)$ is the indicator function of the event A. The set of the fist N integers are denoted by $[N] = \{1, \ldots, N\}$.

1.1 Related Work

Bradley-Terry and Plackett-Luce models. The simplest form of the MNL model is when all users are sharing the same feature vector such that each item is parametrized by a scalar value. This is known as Bradley-Terry (BT) model when pairwise comparisons are concerned and Plackett-Luce (PL) model when higher order comparisons are concerned. This has been proposed and rediscovered several times in the last century [58, 52, 9, 28, 41, 31, 32] in the context of ranking teams in sports games, ranking items based on surveys, and ranking routes in transportation systems. Unlike the general MNL model, maximum likelihood estimator for the BT and PL models are naturally convex programs. However, learning the BT model has first been addressed in [22] where the convergence of the iterative algorithm is analyzed, without explicitly relying on the convexity of the problem. A new algorithm based on Majorize-Minimization was proposed in [18]. First sample complexity of learning BT model was provided in [30] where a novel estimator, called Rank Centrality, of the BT parameters was proposed. The authors construct a random walk over a graph where the nodes are the items and the transition probability is constructed from the comparisons outcomes. This spectral approach is proven to achieve a minimax optimal sample complexity. This has been a building
block for several ranking algorithms, which further process the Rank Centrality to get better accuracy at the top \[11,21\]. For higher order comparisons, the sample complexity of learning PL model was provided in \[17,47\], where the Maximum Likelihood (ML) estimator is shown to achieve the minimax optimality. Later, \[30\] made the connection between the spectral approach of rank centrality and the ML estimator precise by providing a unifying random walk view to the problem. Recently, \[7\] treat the learning problem as solving a noisy linear system, and propose an algorithm that is amenable to on-line, distributed and asynchronous variants.

Beyond BT and PL models. As studied in \[43\], the BT model covers a subset of probabilistic models over comparisons. There is a hierarchy of models in increasing complexity and descriptive power. One popular extension is the mixture of BT or PL models. It is known that any choice model can be approximated arbitrarily close with a mixed PL model with sufficient number of mixtures \[33\]. The sample complexity of learning a mixed PL model was analyzed in \[39\] where a tensor decomposition for learning a mixture model was proposed and analyzed. A different approach that tackles the problem by learning to cluster the users based the pairwise comparisons is proposed in \[46\]. The MNL model studied in this paper can be thought of as an ultimate generalization of the mixed PL models, where each user has her own preference. To make learning feasible, we inherently impose similarities among users via low-rank condition. Note that a mixed PL model with r mixture is a special case of the MNL model with rank r, where each user’s membership is encoded as a r-dimensional feature in standard basis. In the context of collaborative ranking, algorithms for learning the MNL model from pairwise comparisons have been proposed in \[40\]. Instead of nuclear norm regularization as we propose in this paper, \[40\] proposes solving a convex relaxation of maximizing the likelihood over matrices with bounded nuclear norm. Under the standard assumption of uniformly chosen pairs, it is shown that this approach achieves statistically optimal generalization error rate, instead of Frobenius norm error that we analyze. The guarantees in Frobenius norm error imply that of generalization error and thus are stronger.

Modeling choice is an important problem where the ultimate goal is to find the right parametric model to capture human choices. Two interesting novel approaches in this direction has used Markov chains to model choices with the parameters in the transition matrix defining the probability model in \[42,6\]. Novel nonparametric models have also been proposed to model human choices, for example \[48\] uses strong stochastic transitivity to model pairwise choices and \[14\] uses distribution over all permutations with sparse support to model higher order choices.

2 Model and Approach for Pairwise Comparisons

The MultiNomial Logit (MNL) model is one of the most popular model that explains how people make choices when given multiple options, widely used in behavioral psychology and revenue management. For brevity, we focus our discussion on data collected in the form of pairwise comparisons in Sections 2 and 3 and defer the discussion of the MNL model in its full generality to Sections 4, 4.4, and 5. We give a precise definition of the model for paired comparisons and provide a novel algorithmic solution to learn this model from samples.

2.1 MultiNomial Logit (MNL) model for pairwise comparisons

Let Θ^* be a $d_1 \times d_2$ dimensional matrix capturing preferences of d_1 users on d_2 items. Then probability with which a user, $i \subseteq [d_2]$, when presented with two items j_1, j_2, prefers item j_1 over item j_2 is,

$$
\mathbb{P}\{j_1 > j_2\} = \frac{e^{\Theta^*_{i,j_1}}}{e^{\Theta^*_{i,j_1}} + e^{\Theta^*_{i,j_2}}}.
$$

(1)

This implies that more preferred items (as per the ordering of $\Theta^*_{i,j}$) are more likely to be ranked higher, with the randomness in choices captured by the probabilistic model.

If we do not impose any further constraints on Θ^*, one entry of Θ^* is not related in any way to any other entries. This implies that one user’s preference is completely independent of others’ and no efficient learning is possible. Each user’s preference has to be learned separately. On the other hand, in real applications, it
is reasonable to say that preferences of users depend only on a handful of factors for example, quality, price, and aesthetics. We do not know which features affect users’ choices, but we can safely assume that there are \(r \)-dimensional latent features of users and items that govern such choices, and that \(r \ll d_1, d_2 \). This assumption mathematically captures the conventional belief that when two people have similar preferences over a subset of items, the users tend to have similar tastes on other items as well. Formally, MNL model assumes that \(\Theta^* \) is a rank \(r \) matrix with \(r \ll d_1, d_2 \). In this paper, we do not impose a hard constraint on the rank and provide general results for matrices of any rank. In this case, we identify how the accuracy depends on the rate of decay of the singular values.

This MNL model has many roots. In revenue management, this has been proposed as a special case of Random Utility Model (RUM). RUM explains choices that a person makes as the result of maximizing perceived random utilities associated with the set of alternatives presented. In the case of MNL, each decision maker and each alternative are associated with an \(r \)-dimensional vector, \(u_i \) and \(v_j \), resulting in a low-rank \(\Theta^* \) is \(\Theta^*_{ij} = \langle u_i, v_j \rangle \). Utility of the item \(j \) for decision maker \(i \) is,

\[
U_{ij} = \langle u_i, v_j \rangle + \xi_{ij},
\]

where \(\xi_{ij} \)'s are i.i.d. following a standard Gumbel distribution. Different choices of distributions give different variants of RUMs. In our analyses, we utilize this RUM interpretation of the MNL model to prove a particular concentration in Section C.4 for example. The model in Equation. (1) has also been re-discovered several times in the literature [59, 52, 28, 9] in several domains.

2.2 Low-rank regularization using nuclear norm minimization

Given the low-rank structure of the model, a natural but inefficient approach is to minimize the negative likelihood regularized by the rank:

\[
\hat{\Theta} \in \arg \min_{\Theta \in \mathbb{R}^{d_1 \times d_2}} -L(\Theta) + \lambda \text{rank}(\Theta),
\]

for some parameter \(\lambda > 0 \). As this rank minimization is a notoriously challenging problem, we instead solve a convex relaxation. We know that nuclear norm ball is the convex hull of rank-1 matrices. Analogous to \(l_1 \)-norm in the case of sparse solutions, nuclear norm is a tight convex surrogate for low-rank solutions. We propose the following nuclear norm regularized optimization problem,

\[
\hat{\Theta} \in \arg \min_{\Theta \in \Omega} -L(\Theta) + \lambda \|\Theta\|_{\text{nuc}},
\]

where \(\Omega \) is a convex constraint which takes care of identifiability and Lipschitz smoothness conditions. Nuclear norm regularization has been widely used [45] for rank minimization, however provable guarantees typically exists only for quadratic loss function \(L(\Theta) \) [10, 37]. Our analyses extends such results to a convex loss, by first proving that \(-L(\cdot) \) satisfies restricted strong convexity property with high probability. In a similar way (non-collaborative) rank aggregation has been generalized to any strongly log-concave distributions in [47], our analysis can naturally extend to a general class of strongly log-concave distributions. We give the expression for the likelihood in Equation. (8) for pairwise comparisons.

3 Learning MNL model from Pairwise Comparisons under Graph Sampling

Probabilistic model for sampling. In order to provide performance guarantees on the proposed approach, we need to specify how we sample which pairs are to be compared by each user. We provide a novel sampling model, which we call graph sampling with respect to a weighted graph \(G \). This naturally generalizes Bernoulli sampling typically studied under matrix completion literature [10, 23, 37, 19], and the resulting analysis captures how the performance depends on the topology of the samples.

Precisely, we have a weighted undirected graph \(G = (d_2, E, \{P_{j_1,j_2}\}_{j_1,j_2 \in E}) \) with \(d_2 \) nodes, which represent items, a set of edges \(E \) and the edge weight \(P_{j_1,j_2} \) between nodes \(j_1 \) and \(j_2 \). The weights can be written in a symmetric matrix \(P \in \mathbb{R}^{d_2 \times d_2} \), and \(P_{j_1,j_2} + P_{j_2,j_1} = 2P_{j_1,j_2} \) represent the probability with which
the pair \((j_1, j_2)\) is chosen for comparison. Note that \(P_{j,j} = 0\ \forall j \in [d_2] \), \(P_{j_1,j_2} = P_{j_2,j_1}\) and \(\sum_{j_1,j_2 \in [d_2]} P_{j_1,j_2} = 1\). We assume we get i.i.d. samples from first choosing a random user among \([d_1]\) users, and then choosing a pair \((j_1, j_2)\) of items at random from \(P\), and finally getting a random comparison from the MNL model, i.e. the probability with which user \(i\) prefers item \(j_1\) over item \(j_2\) is \(\exp \Theta^*_{i,j_1}/(\exp \Theta^*_{i,j_1} + \exp \Theta^*_{i,j_2})\).

One of the most important aspects of real-world data that is captured by this graph sampling model is grouping. Consider two groups of items, say, cars and phones. It does not make sense to ask an individual to compare a phone with a brand of a car (i.e. direct comparison is not feasible), but knowing an individual’s preference on cars can help in learning an individual’s preference in phones. In graph sampling terms, we are sampling from a graph \(G\) consisting of two disjoint cliques: one for cars and another for phones. By analyzing such sampling scenario, we want to characterize the gain in using the data from both groups of items together, although there are no inter-group comparisons.

In the preference matrix \(\Theta^*\), the set of columns corresponding to each connected component in the sampling graph can be arbitrarily shifted, without changing the pairwise comparisons outcome distributions. This is because adding the same constant to those items that are compared does not change the probability (for those items within the same group), i.e.

\[
P\{j_1 > j_2\} = \frac{e^{\Theta^*_{j_1}}}{e^{\Theta^*_{j_1}} + e^{\Theta^*_{j_2}}} = \frac{e^{\Theta^*_{j_1} + c}}{e^{\Theta^*_{j_1} + c} + e^{\Theta^*_{j_2} + c}},
\]

and adding different constants to those items that are not in the same group does not change the probability of the outcome as those items are never compared. Hence, to handle this unidentifiability, we let a centered version of \(\Theta^*\) represent all those shifted versions defining the same probability distribution. Formally, let a centered matrix satisfying

\[
\sum_{i,j} (\Theta^* - \mu)_{ij} = 0
\]

for those items within the same group, i.e.

\[
\frac{e^{\Theta^*_{ij}}}{e^{\Theta^*_{ij}} + e^{\Theta^*_{ji}}}
\]

where \(\mu\) is the mean of the entries of \(\Theta^*\). This captures the dynamic range of the underlying preference matrix. For a related problem of matrix completion, where the loss \(L(\theta)\) is quadratic, either a similar condition on \(\ell_\infty\) norm is required or another condition on incoherence is required.

Graph Laplacian. The performance of our approach depends on the sampling graph \(P\) via its graph Laplacian defined as

\[
L = \text{diag}(P\mathbf{1}) - P
\]

where \(\text{diag}(P\mathbf{1})\) is a diagonal matrix with \(\sum_u P_{u,u}\) in the diagonals. Notice that, \(L\) is singular and the nullspace is spanned by vectors \(\{g_i\}_{i=1}^G\). Let \(\sigma_{\text{max}}(L) = \|L\|_2\) and \(\sigma_{\text{min}}(L)\) be the smallest eigenvalue of \(L\) discounting the \(G\) zero-valued eigenvalues. Since the graph has \(G\) disconnected maximal components and \(L\) is real symmetric, by spectral theorem, \(L = U\Sigma U^T\), where \(U\) is a matrix of size \(d_2 \times (d_2 - G)\) and its \(d_2 - G\) columns form an orthonormal set, and \(\Sigma\) is a diagonal matrix such that its diagonal elements are the singular values of \(L\). Let \(L^+ := L^{-1} := U\Sigma^{-1}U^T\) and \(L^2 := U\Sigma^2U^T\) for all \(x \in \mathbb{R}\). We also define the Laplacian induced norms of matrices,

\[
\|\Theta\|_L := \|\Theta L^{1/2}\|_F, \text{ and } \|\Theta\|_{L\text{-nuc}} := \|\Theta L^{1/2}\|_{\text{nuc}}.
\]

These Laplacian induced norm are more appropriate to analyze and quantify the distance between the estimated matrix \(\hat{\Theta}\) and \(\Theta^*\).
When items \(k(i), l(i) \) are chosen for comparison by user \(j(i) \) as the \(i \)-th pair of items, we capture this choice with the matrix \(X^{(i)} = e_{j(i)}(e_{k(i)} - e_{l(i)})^T \). The outcome of the comparison is represented by \(y_i \), with \(y_i = 1 \) when item \(k(i) \) wins over item \(l(i) \) and \(y_i = 0 \) if otherwise. The log-likelihood of the comparison outcomes w.r.t. to a parameter matrix \(\Theta \) is,

\[
\mathcal{L}(\Theta) = \frac{1}{n} \sum_{i=1}^{n} y_i \langle \Theta, X^{(i)} \rangle - \log \left(1 + \exp \left(\langle \Theta, X^{(i)} \rangle \right) \right).
\] (8)

We propose and analyze the following convex optimization problem,

\[
\hat{\Theta} \in \arg \min_{\Theta \in \Omega_{\alpha}} -\mathcal{L}(\Theta) + \lambda \|\Theta\|_{\text{L-nuc}},
\] (9)

where,

\[
\Omega_{\alpha} = \{ \Theta \in \mathbb{R}^{d_1 \times d_2} \|\Theta\|_{\infty} \leq \alpha, \Theta g_i = 0, \forall i \in [G] \},
\] (10)

with an appropriately chosen \(\lambda = 2\sqrt{32} \max \left\{ \sqrt{\frac{\sigma \log(2d)}{n}}, \frac{\sigma_{\min(L)}^{-1/2} \log(2d)}{n} \right\} \) with \(\sigma = \max\{(d_2 - G)/d_1, 1\} \), where \(d = (d_1 + d_2)/2 \).

3.1 Performance guarantee

We consider the graph sampling scenario where each sample is i.i.d. with the \(\ell \)-th sample consists of user \(i_\ell \) chosen uniformly at random, pair of items \((j_1, j_\ell, j_2, j_\ell) \) chosen according to the sampling graph \(G = ([d_2], E, P) \), and the resulting outcome \(y_\ell \) distributed as the MNL model with parameter \(\Theta^* \).

Theorem 1. Under the graph sampling with respect to \(G = ([d_2], E, P) \) with a graph Laplacian \(L \) and under the MNL preference model with preference matrix \(\Theta^* \), solving the optimization problem in (9) with \(n \) i.i.d. samples achieves with probability greater than \(1 - 2/(2d)^3 \),

\[
\frac{1}{d_1} \left\| (\Theta^* - \hat{\Theta}) L^{1/2} \right\|_F^2 \leq 36 \alpha \left(\alpha + \frac{1}{\psi(2\alpha)} \right) \left(\sqrt{2r} \left\| (\Theta^* - \hat{\Theta}) L^{1/2} \right\|_F + \sum_{j=r+1}^{\min\{d_1, d_2 - G\}} \sigma_j (\Theta^* L^{1/2}) \right),
\] (11)

for any \(\lambda \geq 2\sqrt{32} \max \left\{ \sqrt{\frac{\sigma \log(2d)}{n}}, \frac{\sigma_{\min(L)}^{-1/2} \log(2d)}{n} \right\} \) where \(\sigma = \max\{(d_2 - G)/d_1, 1\} \) and \(d = (d_1 + d_2)/2 \), any \(r \in \{1, 2, \ldots, \min\{d_1, d_2 - G\}\} \), \(\psi(x) = e^x/(1 + e^x)^2 \), and for \(n \leq \min\{2^6 d_1^2 \sigma^2, 2^2 (d_1 \sigma_{\min(L)}^{-1})^{2/3} \} \log(2d) \).

We provide a proof in Appendix A. The above bound holds for any \(r \), where \(r \) allows us to trade off the two types of errors: the estimation error and the approximation error. Concretely, the above bound shows a natural splitting of the error into two terms, the first term corresponding to the estimation error for the top rank-\(r \) component of \(\Theta^* \) and the second term corresponding to the approximation error for how well one can approximate \(\Theta^* \) with a rank-\(r \) matrix. If we know the singular values of \(\Theta^* \), we can optimize over \(r \) to get the tightest bound. If \(\Theta^* \) is exactly low-rank then applying a matching rank in the bound gives the following guarantee.

Corollary 3.1 (Exact rank-\(r \) matrix). Under the same hypothesis as in Theorem 1 with a choice of \(\lambda = c_0 \max \left\{ \sqrt{\frac{\sigma \log(2d)}{n}}, \frac{\sigma_{\min(L)}^{-1/2} \log(2d)}{n} \right\} \) for some \(c_0 > 0 \), if \(\Theta^* \) is exactly rank \(r \), there exists a positive constant \(c_1 \) such that the proposed estimator achieves,

\[
\frac{1}{\sqrt{d_1}} \left\| (\Theta^* - \hat{\Theta}) L^{1/2} \right\|_F \leq c_1 \left(\alpha + \frac{1}{\psi(2\alpha)} \right) \sqrt{r} \max \left\{ \sqrt{\frac{\sigma d_1 \log(2d)}{n}}, \sqrt{\frac{\sigma_{\min(L)}^{-1} d_1}{n}} \log(2d) \right\},
\] (12)

with probability at least \(1 - 2/(2d)^3 \) and \(\sigma = \max\{(d_2 - G)/d_1, 1\} \).
The second term in the maximization is an artifact of the weakness of current analysis technique and does not reflect the actual error. This is confirmed in our simulation results on graphs with very small spectral gap in Figures 1(b), (d), and (f), where the error in L-norm does not decrease with spectral gap of L as the line graph has a much smaller spectral gap compared to a complete graph, for example. In fact, for special Θ* in Figure 1(d) it is the other way, which we do not have a theoretical explanation for.

The number of entries in Θ* is d1d2 and we want to rescale the Frobenius norm error appropriately by 1/√d1d2. As a typical scaling of L1/2 is 1/√d2 in spectral norm, we only need to rescale the L-norm error by 1/√d1 in the left-hand side of the above bound. For a rank-r Θ*, the degrees of freedom in describing it is r(d1 + d2) − r2 = O(r(d1 + d2)). The above theorem shows that the total number of samples n needs to scale as O(r(d1 + d2) log d) in order to achieve an arbitrarily small error. This is only a poly-logarithmic factor larger than the degrees of freedom. In Section 3.2 we provide a lower bound that matches the upper bound up to a logarithmic factor.

The dependence on the dynamic range α, however, is sub-optimal. It is expected that the error increases with α, since the Θ* scales as α, but the exponential dependence in the bound seems to be a weakness of the analysis (for example as seen from numerical experiments in the right panel of Figure 3). Although the error increase with α, numerical experiments suggests that it only increases at most linearly. However, tightening the scaling with respect to α is a challenging problem, and such sub-optimal dependence is also present in existing literature for learning even simpler models, such as the Bradley-Terry model [36] or the Plackett-Luce model [17], which are special cases of the MNL model studied in this paper.

Another issue is that the underlying matrix might not be exactly low rank. It is more realistic to assume that it is approximately low rank. Following [37] we formalize this notion with “ℓq-ball” of matrices defined as

\[B_q(\rho_q) \equiv \{ \Theta \in \mathbb{R}^{d_1 \times d_2} | \sum_{j \in [\min\{d_1,d_2\}]} |\sigma_j(\Theta^*)|^q \leq \rho_q \} . \]

When q = 0, this is a set of rank-ρ0 matrices. For q ∈ (0, 1], this is set of matrices whose singular values decay relatively fast. Optimizing the choice of r in Theorem 1 we get the following result.

Corollary 3.2 (Approximately low-rank matrices). Suppose Θ* ∈ B_q(ρ_q) for some q ∈ (0, 1] and ρ_q > 0. Under the hypotheses of Theorem 1 with a choice of \(\lambda = c_0 \max \left\{ \frac{\sigma \log(2d)}{n}, \frac{\sigma_{\min}(L)^{-1/2} \log(2d)}{n} \right\} \)

for some constant c0 > 0 there exists a constant c1 > 0 such that solving the optimization (9) achieves with probability at least 1 − 2/(2d)^3,

\[\frac{1}{\sqrt{d_1}} \left\| \hat{\Theta} - \Theta^* \right\|_L \leq c_1 \frac{\sqrt{\rho_q}}{\sqrt{d_1}} \left(\alpha + \frac{1}{\phi(2\alpha)} \right) \sqrt{d_2 (d_1 \log(2d))} \frac{2-q}{2} , \]

provided n ≥ σ \log(2d)/σ_{\min}(L).

This is a strict generalization of Corollary 3.1. For q = 0 and ρ0 = r, this recovers the exact low-rank estimation bound up to a factor of two. For approximate low-rank matrices in an ℓq-ball, we lose in the error exponent, which reduces from one to (2 − q)/2.

3.2 Information-theoretic lower bound

For a polynomial-time algorithm of convex relaxation, we gave in the previous section a bound on the achievable error. We next compare this to the fundamental limit of this problem, by giving a lower bound on the achievable error by any algorithm (efficient or not). A simple parameter counting argument indicates that it requires the number of samples to scale as the degrees of freedom i.e., n ∝ r(d1 + d2), to estimate a d1 × d2 dimensional matrix of rank r. We construct an appropriate packing over the set of low-rank matrices with bounded entries in Ωatr defined as [10], and show that no algorithm can accurately estimate the true matrix with high probability using the generalized Fano’s inequality. This provides a constructive argument to lower bound the minimax error rate, which in turn establishes that the bounds in Theorem 1 is sharp up to a logarithmic factor, and proves no other algorithm can significantly improve over the nuclear norm minimization.
Theorem 2. Suppose \(\Theta^* \) has a rank \(r \). Under the previously described graph based sampling model, there exists a constant \(c > 0 \) such that

\[
\inf_{\hat{\Theta}} \sup_{\Theta \in \Omega^n} E \left[\frac{1}{\sqrt{d_1}} \left\| \Theta - \Theta^* \right\|_F \right] \geq c \min \left\{ e^{-\alpha} \sqrt{\frac{r d_1}{n}}, \frac{\alpha \sqrt{r}}{\sqrt{\text{tr} \left(L_1^r \right)}} \right\},
\]

(15)

where the infimum is taken over all measurable functions over the observed comparison results and \(L_1^r \) is the pseudo inverse of the rank \(r \) approximation of the graph Laplacian.

A proof of this theorem is provided in Appendix [3]. The term of primary interest in this bound is the first one, which shows the scaling of the (rescaled) minimax rate as \(n \) up to a logarithmic factor. It is the dominant term in the bound whenever the number of samples is larger than \(d_1 \text{tr} \left(L_1^r \right) \). As suggested in numerical simulations on graphs with very small spectral gap in Figures [3](b), (d), and (f), the dependence in \(\text{tr} \left(L_1^r \right) \) is an artifact of the weakness of the current analysis technique.

3.3 Performance guarantee and lower bound for complete graph

It follows from a simple relation \(\left\| (\Theta^* - \hat{\Theta}) L^{1/2} \right\|_F \geq \sigma_{\min}^{1/2} \left\| \Theta^* - \hat{\Theta} \right\|_F \) that the above upper bounds automatically give the error bound in the Frobenius norm. When the sampling graph is uniform, i.e. a complete graph with equal weights \(P_{j_1,j_2} = 2 / d_2 (d_2 - 1) \), Frobenius norm is the right metric and we show matching upper and lower bounds.

Corollary 3.3 (Complete graph \(G \) upper-bound). Under the same hypothesis as in Theorem [1] if \(G \) is a complete graph, we get,

\[
\frac{1}{d_1 \sqrt{d_2 - 1}} \left\| \Theta^* - \hat{\Theta} \right\|_F^2 \leq 36 \lambda \left(\alpha + \frac{1}{\psi(2 \alpha)} \right) \left(\sqrt{2r} \left\| \Theta^* - \hat{\Theta} \right\|_F + \min_{j=r+1} \sigma_j(\Theta^*) \right)
\]

with probability greater than \(1 - 2/(2d)^3 \), where \(\sigma = \max \{d_2 - 1, 1\} \).

Corollary 3.4 (Complete graph \(G \) lower-bound). Suppose \(\Theta^* \) has rank \(r \). Under the previously described graph based sampling model with graph being a complete graph, there is a universal numerical constant \(c > 0 \) such that

\[
\inf_{\hat{\Theta}} \sup_{\Theta^* \in \Omega^n} E \left[\frac{1}{\sqrt{d_1 (d_2 - 1)}} \left\| \Theta - \Theta^* \right\|_F \right] \geq c \min \left\{ e^{-\alpha} \sqrt{\frac{r d_1}{n}}, \frac{\alpha}{\sqrt{d_2 - 1}} \right\},
\]

(16)

where the infimum is taken over all measurable functions over the observed comparison results.

3.4 Simulation results

We present two experimental results. One of the major challenges while implementing the solution of convex optimization problem [1] is non-differentiable rank norm regularizer. We solve the issue by following the proximal gradient method as given in [1]. Another constraint, of zero row sum, is forced by adding a Frobenious norm regularizer to the objective function. We won’t worry about the \(\alpha \) constraint as it would be automatically sorted out by the algorithm. Another issue was that convergence rate of different graph structures were widely different. The star graph especially had very slow convergence. To overcome this we implemented a modified Barzilai-Borwein (BB) rule based algorithm for accelerating the proximal gradient descent [1].
Figure 1: Graphs with small spectral gap achieve significantly larger Frobenius norm error, whereas the l-norm error is not sensitive to the spectral gap.
3.4.1 The role of the topology of the sampling pattern

In figure 1, we plot the error of our nuclear norm minimization based algorithm versus number of samples (in log-scale), \(n \) for \(d_1 = d_2 = 300, r = 4, \alpha = 5.0, G = 1 \). We consider two errors here; root mean squared error (RMSE) = \(\| \Theta - \hat{\Theta} \|_F / \sqrt{d_1d_2} \) and Laplacian induced RMSE (L-RMSE)= \(\| (\Theta - \hat{\Theta}) L^{1/2} \|_F / \sqrt{d_1} \). We plot these errors for four topologies of varying spectral gaps: 1) a complete graph, 2) a star graph, 3) a line graph, and 4) a barbell graph. As discussed Section 3.1, we do not expect the L-error to change much as we change the topology of sampling. However, as seen from the simple relation \(||(\Theta^* - \hat{\Theta})L^{1/2}||_F \geq \sigma_{\min}^{1/2}||\Theta^* - \hat{\Theta}||_F \) Frobenius norm error is more sensitive to the topology of the sampling pattern, captured via the spectral gap, i.e. \(\sigma_{\min}(L) \).

- **Complete graph.** We first consider a uniform sampling over a complete graph where \(P_{j_1j_2} = 1/d_2(d_2 - 1) \) for all \(j_1,j_2 \in [d_2] \). The resulting spectral gap is \(1/(d_2 - 1) \), which is the maximum possible value. Hence, complete graphs are optimal for learning MNL models, compared in the error metric of the Frobenius norm for fairness.

- **Star graph.** We choose one item to be the center, and every other items can only be compared to this center item uniformly at random. Let item 1 be the center one, then \(P_{j_1,1} = 1/(d_2 - 1) \). Standard spectral analysis shows that the spectral gap is \(\Theta(1/d_2) \), and star graphs are near-optimal for learning MNL models.

- **Line graph.** We consider a line graph with \(d_2 - 1 \) edges where \(P_{j,j+1} = 1/(d_2 - 1) \). The spectral gap is \(\Theta(1/d_2^2) \), and line graphs are strictly sub-optimal for learning MNL models.

- **Barbell graph.** We consider two equal sized groups of items. Within each group it is a complete graph, and between groups there is a single edge connecting one of the node from group one and one of the node from group two. Each edge is chosen uniformly at random for comparisons. The resulting spectral gap is \(\Theta(1/d_2^2) \), and barbell graphs are strictly sub-optimal for learning MNL models.

First in sub-figures 1a, 1b, we plot RMSE and L-RMSE errors for different graphs using randomly generated \(\Theta_{ij}^* \). We see that L-RMSE curves for different graphs are the same (and slopes in log-scale are as expected approaches \(-1/2\) with more samples). Further, we do not see any significant difference w.r.t the graph topology even when error is measured in Frobenius norm. The reason is that the randomness in \(\Theta \) cancels out the effect of spectral gap. To illustrate the role of the topology of the graph, we choose specific \(\Theta^* \) with respect to the topology of the graph as guided by our analysis on the lower bound (Theorem 2) in sub-figures 1c, 1d. The items are divided into two sets (corresponding to each side of barbell graph), such that corresponding \(\Theta_{ij}^* \) are i.i.d. inside a set but have similar but shifted means across the sets. We call this type of preference data as barbell biased. As expected from theoretical analyses, L-RMSE behave similar to the i.i.d. case. However, we see the Frobenius norm error significantly worse in the case of line and barbell shaped graphs, as expected from the Frobenius error bound. In sub-figures 1e, 1f we simulate line biased preference data \(\Theta^* \). Items are ordered (in the order of the line graph), such that \(\Theta_{ij}^* \)’s have similar distributions but their means get shifted in an arithmetic progression as you go down the ordering. Again, Frobenius norm error is significantly larger for line and barbell graphs as spectral gaps are small.

3.4.2 The gain in inference over multiple groups of items

Consider \(G \) groups of items within which are uniformly likely to be sampled to be compared, but are never compared across groups. As a baseline, one can run inference on each group separately. On the other hand, we propose running inference on all the \(G \) groups jointly. The hope is that what a user preferred in a group of "cars" might help us in inferring what the same user prefers in a group of "phones". We illustrate this gain of joint inference in Figure 2. Concretely, the sampling graph \(G \) has \(G \) groups where each component is a complete graph and \(d_1 = d_2 = 360, r = 4, \alpha = 5.0, n = 2^{14} \). Figure 2 plots the errors vs. \(G \), when all the groups are solved together (labelled as LMSE and MSE) or separately (labelled as LMSE Alone and MSE Alone) using our algorithm. We see that solving the components together keep the error relatively similar as the number of groups increase, but if we are solving the groups separately the error increases with number of groups.
Figure 2: As the number of groups increase, the gain in joint inference increases.

4 Learning the MNL Model under Higher Order Comparisons

Higher order comparisons, where a subset of k items are offered to a user who then provides a complete ranking (total linear ordering) of those items, is a natural generalization of pairwise comparisons that captures some aspect of heterogeneous and complex modern datasets. We refer to such scenarios as k-wise comparisons or k-wise rankings. The MNL model generalizes to such comparisons. Let Θ^\ast be the $d_1 \times d_2$ dimensional matrix capturing the preference of d_1 users on d_2 items, where the rows and columns correspond to users and items, respectively. In this k-wise ranking set up, when a user i is presented with a set of k alternatives, $S_i \subseteq [d_2]$, she reveals her preferences as a ranked list over those items. To simplify the notations we assume all users compare the same number k of items, but the analysis naturally generalizes to the case when the size might differ from a user to a user. Let $v_{i,\ell} \in S_i$ denote the (random) ℓ-th best choice of user i. Each user gives a ranking, independent of other users’ rankings, from

$$
P\{v_{i,1}, \ldots, v_{i,k} | S_i \text{ is presented to user } i\} = \prod_{\ell=1}^{k} \frac{e^{\Theta^\ast_{i,v_{i,\ell}}}}{\sum_{j \in S_i, \ell} e^{\Theta^\ast_{i,j}}}, \quad (17)$$

where with $S_{i,\ell} \equiv S_i \setminus \{v_{i,1}, \ldots, v_{i,\ell-1}\}$ and $S_{i,1} \equiv S_i$. For a user i, the i-th row of Θ^\ast represents the underlying preference vector of the user, and the more preferred items are more likely to be ranked higher.

Similar to the pairwise comparisons, the distribution (17) is independent of shifting each row of Θ^\ast by a constant. Since we can only estimate Θ^\ast up to this equivalent class, we search for the one whose rows sum to zero, i.e. $\sum_{j \in [d_2]} \Theta^\ast_{i,j} = 0$ for all $i \in [d_1]$. Let $\alpha \equiv \max_{i,j_1,j_2} |\Theta^\ast_{ij_1} - \Theta^\ast_{ij_2}|$ denote the dynamic range of the underlying Θ^\ast, such that when k items are compared, we always have

$$
\frac{1}{k} e^{-\alpha} \leq \frac{1}{1 + (k-1)e^{\alpha}} \leq P\{v_{i,1} = j\} \leq \frac{1}{1 + (k-1)e^{-\alpha}} \leq \frac{1}{k} e^{\alpha}, \quad (18)
$$

for all $j \in S_i$, all $S_i \subseteq [d_2]$ satisfying $|S_i| = k$ and all $i \in [d_1]$. We do not make any assumptions on α other than that $\alpha = O(1)$ with respect to d_1 and d_2. The purpose of defining the dynamic range in this way is that we seek to characterize how the error scales with α. Given this definition, we solve the following
optimization
\[
\hat{\Theta} \in \arg\min_{\Theta \in \Omega} -\mathcal{L}(\Theta) + \lambda \|\Theta\|_{\text{nuc}},
\]
where,
\[
\mathcal{L}(\Theta) = \frac{1}{kd_1} \sum_{i=1}^{d_1} \sum_{i=1}^{k} \left(\langle \Theta, e_i e_{v_{i,t_i}}^T \rangle - \log \left(\sum_{j \in S_i, t} \exp \left(\langle \Theta, e_i e_j^T \rangle \right) \right) \right),
\]
over
\[
\Omega_\alpha = \left\{ A \in \mathbb{R}^{d_1 \times d_2} \mid \|A\|_{\infty} \leq \alpha, \text{ and } \forall i \in [d_1] \text{ we have } \sum_{j \in [d_2]} A_{ij} = 0 \right\}.
\]

Note that unlike graph sampling for pairwise comparisons, we assume that each user is presented a subset of \(k\) items and provides a complete ranking over those \(k\) items. This choice of sampling scenario, together with independent choices of the items in subset \(S_i\)’s, is crucial for getting a bound that is tight in its scaling with respect to not only \(d_1, d_2,\) and \(r,\) but also \(k,\) as a certain independence is required to apply the symmetrization technique (in Lemma C.3) which gives us the desired tight bound on the error.

4.1 Performance guarantee

We provide an upper bound on the resulting error of our convex relaxation, when a multi-set of items \(S_i\) presented to user \(i\) is drawn uniformly at random with replacement. Precisely, for a given \(k, S_i = \{j_{i,1}, \ldots, j_{i,k}\}\) where \(j_{i,t}\)’s are independently drawn uniformly at random over the \(d_2\) items. Further, if an item is sampled more than once, i.e. if there exists \(j_{i,t_1} = j_{i,t_2}\) for some \(i\) and \(t_1 \neq t_2,\) then we assume that the user treats these two items as if they are two distinct items with the same MNL weights \(\Theta^{*}.\)

Let \(\mathcal{L}(\Theta)\equiv\) (19) which case the resulting ranking can be \((v_{i,1} = j_{i,1}, v_{i,2} = j_{i,3}, v_{i,3} = j_{i,2})\) with probability \((e^\Theta)/((e^\Theta_1 + e^\Theta_2 - e^\Theta_1 e^\Theta_2)).\) Such sampling with replacement is necessary for the analysis, where we require independence in the choice of the items in \(S_i\) in order to apply the symmetrization technique (e.g. [8]) to bound the expectation of the deviation (cf. Appendix C.4). Similar sampling assumptions have been made in existing analyses on learning low-rank models from noisy observations, e.g. [37]. Let \(d \equiv (d_1 + d_2)/2,\) and let \(\sigma_j(\Theta^{*})\) denote the \(j\)-th singular value of the matrix \(\Theta^{*}.\)

Define
\[
\lambda_0 \equiv e^{2\alpha} \sqrt{\frac{d_1 \log d + d_2 (2 \log d)^2 \log 2d}{kd_1^2 d_2^2}}.
\]

Theorem 3. Under the described sampling model, assume \(24 \leq k \leq \min\{d_1 \log d, (d_1^2 + d_2^2)/(2d_1) \log d, (1/e) d_2 (4 \log d_2 + 2 \log d_1)\},\) and \(\lambda \in [480\lambda_0, c_0 \lambda_0]\) with any constant \(c_0 = O(1)\) larger than \(480.\) Then, solving the optimization (19) achieves
\[
\frac{1}{d_1 d_2} \|\hat{\Theta} - \Theta^{*}\|_F \leq 288 \sqrt{2} e^{4\alpha} c_0 \lambda_0 \sqrt{r} \|\hat{\Theta} - \Theta^{*}\|_F + 288 e^{4\alpha} c_0 \lambda_0 \sum_{j=r+1}^{\min\{d_1, d_2\}} \sigma_j(\Theta^{*}),
\]
for any \(r \in \{1, \ldots, \min\{d_1, d_2\}\}\) with probability at least \(1 - 2d^{-3} - d_2^{-3}\) where \(d = (d_1 + d_2)/2.\)

A proof is provided in Appendix C. This bound holds for all values of \(r\) and one could potentially optimize over \(r.\) We show such results in the following corollaries.

Corollary 4.1 (Exact low-rank matrices). Suppose \(\Theta^{*}\) has rank at most \(r.\) Under the hypotheses of Theorem 3 solving the optimization (1) with the choice of the regularization parameter \(\lambda \in [480\lambda_0, c_0 \lambda_0]\) achieves with probability at least \(1 - 2d^{-3} - d_2^{-3},\)
\[
\frac{1}{kd_1 d_2} \|\hat{\Theta} - \Theta^{*}\|_F \leq 288 \sqrt{2} e^{6\alpha} c_0 \sqrt{r(d_1 \log d + d_2 (2 \log d)^2 \log 2d)}/kd_1.
\]
The number of entries is $d_1 d_2$ and we rescale the Frobenius norm error appropriately by $1/\sqrt{d_1 d_2}$. For a rank-r matrix Θ^* with the degrees of freedom $r(d_1 + d_2) - r^2 = O(r(d_1 + d_2))$, the above theorem shows that the total number of samples, which is $(k d_1)$, needs to scale as $O(rd_1 \log d + rd_2 (\log d)^2 (\log 2d)^4)$ in order to achieve an arbitrarily small error. This is only poly-logarithmic factor larger than the degrees of freedom. In Section 4.3 we provide a lower bound on the error directly, that matches the upper bound up to a logarithmic factor. The dependence on the dynamic range α is sub-optimal. The exponential dependence in the bound seems to be a weakness of the analysis, as seen from numerical experiments in the right panel of Figure 3. Although the error increase with α, numerical experiments suggests that it only increases at most linearly. A practical issue in achieving the above rate is the choice of λ, since the dynamic range α is not known in advance. Figure 3 illustrates that the error is not sensitive to the choice of λ for a wide range.

For approximately low-rank matrices in ℓ_q-ball defined in (13), optimizing the choice of r in Theorem 3, we get the following result. This is a strict generalization of Corollary 4.1 and a proof of this Corollary is provided in Appendix D.

Corollary 4.2 (Approximately low-rank matrices). Suppose $\Theta^* \in B_q(\rho_q)$ for some $q \in (0,1]$ and $\rho_q > 0$. Under the hypotheses of Theorem 3, solving the optimization (19) with the choice of the regularization parameter $\lambda \in [480\lambda_0, c_\Theta \lambda_0]$ achieves with probability at least $1 - 2d^{-r}$,

$$
\frac{1}{\sqrt{d_1 d_2}} \| \hat{\Theta} - \Theta^* \|_F \leq \frac{2\sqrt{\rho_q}}{\sqrt{d_1 d_2}} \left(288 \sqrt{2} e^{6\alpha} \sqrt{d_1 d_2 \log d + d_2 \log d^2 (\log 2d)^4} \right) \frac{2 q^2}{q^2}.
$$

(24)

4.2 Information-theoretic lower bound for low-rank matrices

A simple parameter counting argument indicates that it requires the number of samples to scale as the degrees of freedom i.e., $kd_1 \propto r(d_1 + d_2)$, to estimate a $d_1 \times d_2$ dimensional matrix of rank r. By applying Fano’s inequality with appropriately chosen hypotheses, the following lower bound establishes that the bounds in Theorem 3 is sharp up to a logarithmic factor.

Theorem 4. Suppose Θ^* has rank r. Under the described sampling model, for large enough d_1 and $d_2 \geq d_1$, there is a universal numerical constant $c > 0$ such that

$$
\inf_{\hat{\Theta}} \sup_{\Theta^* \in \Omega_n} \mathbb{E} \left[\frac{1}{\sqrt{d_1 d_2}} \| \hat{\Theta} - \Theta^* \|_F \right] \geq c \min \left\{ \alpha e^{-\alpha}, \frac{\alpha d_2}{kd_1 \sqrt{d_1 d_2 \log d}} \right\},
$$

(25)

where the infimum is taken over all measurable functions over the observed ranked lists $\{(v_{i,1}, \ldots, v_{i,k})\}_{i \in [d_1]}$.

A proof of this theorem is provided in Appendix E. The term of primary interest in this bound is the first one, which shows the scaling of the (rescaled) minimax rate as $\sqrt{r(d_1 + d_2) / (kd_1)}$ (when $d_2 \geq d_1$), and matches the upper bound in (22). It is the dominant term in the bound whenever the number of samples is larger than the degrees of freedom by a logarithmic factor, i.e., $kd_1 > r(d_1 + d_2) \log d$, ignoring the dependence on α. This is a typical regime of interest, where the sample size is comparable to the latent dimension of the problem. In this regime, Theorem 4 establishes that the upper bound in Theorem 3 is minimax-optimal up to a logarithmic factor in the dimension d.

4.3 Experiments

We provide results from numerical experiments on both synthetic and real datasets.

4.3.1 Simulation results

The left panel of Figure 3 confirms the scaling of the error rate as predicted by Corollary 4.1. The lines merge to a single line when the sample size is rescaled appropriately. We make a choice of $\lambda = (1/2) \sqrt{(\log d)/ (kd^2)}$. This choice is independent of α and is smaller than proposed in Theorem 3. We generate random rank-r
matrices of dimension $d \times d$, where $\Theta^* = UV^T$ with $U \in \mathbb{R}^{d \times r}$ and $V \in \mathbb{R}^{d \times r}$ entries generated i.i.d from uniform distribution over $[0, 1]$. Then the row-mean is subtracted form each row, and then the whole matrix is scaled such that the largest entry is $\alpha = 5$. Note that this operation does not increase the rank of the matrix Θ. This is because this de-meaning can be written as $\Theta - \Theta \mathbf{1}_d \mathbf{1}_d^T / d_2$ and both terms in the operation are of the same column space as Θ which is of rank r. The root mean squared error (RMSE) is plotted where RMSE $= (1/d)\|\Theta - \hat{\Theta}\|_F$. We implement and solve the convex optimization \([13]\) using proximal gradient descent method as analyzed in \([1]\). The right panel in Figure 3 illustrates that the actual error is insensitive to the choice of λ for a broad range of $\lambda \in [\sqrt{\log d}/(kd^2), 2\sqrt{\log d}/(kd^2)]$, after which it increases with λ.

4.3.2 Real data: Jester dataset

Jester dataset has 73×10^3 users who rate subsets of 100 jokes on continuous scale of $[-10, 10]$. Since the scale is continuous we can directly generate ordinal data from the scores. Only the users who rated all the jokes were used. For each user, k jokes were randomly selected in a biased manner, such that some jokes are more likely to get selected than others. Then Convex Relaxation algorithm and Borda count, a simple rank aggregator for learning a single ranking of the population, were used to predict outcomes of comparison among the remaining $100 - k$ jokes. Average error rate of the predictions for both methods are plotted for different values of k in Fig. 4. Convex Relaxation performs better.

4.4 Rank Breaking for Higher Order Comparisons

A common approach in practice to handling higher order comparisons is rank breaking, which refers to the practice of breaking the higher order comparisons into a set of pairwise comparisons and applying an estimator tailored for pairwise comparisons treating each pair as independent \([2, 3]\). When the higher order comparison is given as partial rankings (as opposed to total linear ordering as we assume) then rank breaking can be inconsistent, and special algorithms are needed for weighted rank breaking \([26, 25]\). However, when k-wise rankings (also called total linear orderings) are observed as we assume, simple and standard rank breaking achieves a similar performance as the higher order estimator in \([10]\). Assume that $u_{i,m}$, $i \in [d_1]$, $m \in [k]$, denotes the m-th element observed by the i-th user. Concretely, in rank breaking, we convert the k-wise ranking data into pairwise ranking data and then we solve the following optimization problem:

$$
\mathcal{L}(\Theta) = \frac{1}{d_1 \binom{k}{2}} \sum_{i \in [d_1]} \sum_{(m_1,m_2) \in P_0} \left(\Theta_{i,h_{i,m_1,m_2}} - \log \left(\exp \left(\Theta_{i,u_{i,m_1}} \right) + \exp \left(\Theta_{i,u_{i,m_2}} \right) \right) \right),
$$

(26)
where \(P_0 = \{(i,j) : 1 \leq i < j \leq k\} \), and \(h_i(m_1, m_2) \) and \(l_i(m_1, m_2) \) is defined as the higher and lower ranked index among \(u_{i,m_1} \) and \(u_{i,m_2} \) respectively. Then modified optimization problem becomes,

\[
\hat{\Theta} \in \arg\min_{\Theta \in \Omega} -\mathcal{L}(\Theta) + \lambda \|\Theta\|_{\text{nuc}} \tag{27}
\]

Let \(d \equiv (d_1 + d_2)/2 \), and let \(\sigma_j(\Theta^*) \) denote the \(j \)-th singular value of the matrix \(\Theta^* \). Define

\[
\lambda_0 \equiv \sqrt{\frac{d \log d}{k d^2_1 d^2_2}}. \tag{28}
\]

With this choice of regularization coefficient, we get the following upper bounds on the rank breaking estimator (27) that are comparable to the upper bounds of \(k \)-wise ranking estimator in Theorem 3 and Corollary 4.1.

Theorem 5. Under the described sampling model, assume \(2(c+4) \log d \leq k \leq \max\{d_1, d_2^2/d_1\} \log d, \ d_1 \geq 4, \) and \(\lambda \in [2\sqrt{32(c+4)}\lambda_0, c\lambda_0] \) with any constant \(c = O(1) \) larger than \(2\sqrt{32(c+4)} \). Then, solving the optimization (27) achieves

\[
\frac{1}{d_1 d_2} \left\| \hat{\Theta} - \Theta^* \right\|_F^2 \leq 144\sqrt{2} e^{2\alpha} c \lambda \sqrt{r} \left\| \hat{\Theta} - \Theta^* \right\|_F + 144e^{2\alpha} c \lambda \sum_{j=r+1}^{\min\{d_1,d_2\}} \sigma_j(\Theta^*) , \tag{29}
\]

for any \(r \in \{1, \ldots, \min\{d_1, d_2\}\} \) with probability at least \(1 - 2d^{-c} - 2d^{-13} \) where \(d = (d_1 + d_2)/2 \).

A proof of this theorem is provided in Appendix F and the following corollary follows for rank-\(r \) matrices.

Corollary 4.3 (Exact low-rank matrices). Suppose \(\Theta^* \) has rank at most \(r \). Under the hypotheses of Theorem 3, there exists a constant \(c_1 > 0 \) such that solving the optimization (27) with the choice of the regularization parameter \(\lambda \in [2\sqrt{32(c+4)}\lambda_0, c\lambda_0] \) achieves with probability at least \(1 - 2d^{-c} - 2d^{-13} \),

\[
\frac{1}{\sqrt{d_1 d_2}} \left\| \hat{\Theta} - \Theta^* \right\|_F \leq 144\sqrt{2} e^{2\alpha} c_1 \sqrt{r d \log d}/k d_1. \tag{30}
\]
5 Learning the MNL Model from Choices

Choice modeling has had widespread success in numerous application domains such as transportation and marketing [53, 16]. Choice models stem from revenue management to tackle the fundamental problem of maximizing expected revenue where the expectation is taken over a probabilistic choice model that is learned from historical purchase data. Revenue management has focused on designing efficient solvers for the optimization problem with exact or approximation guarantees, and has less to do with learning the parameters of probabilistic choice model of interest.

In this section, we tackle this unexplored domain of learning choice models from samples with provable guarantees on the sample complexity. In particular, we study learning the MNL model from choices. We study two types of choices under the MNL model that together include all practical scenarios of interest: bundled choice and consumer choice.

Bundled choice. We consider a novel scenario of significant practical interest: choice modeling from bundled purchase history. In this setting, we assume that we have bundled purchase history data from \(n\) users. Precisely, there are two categories of interest with \(d_1\) and \(d_2\) alternatives in each category respectively. For example, there are \(d_1\) tooth pastes to choose from and \(d_2\) tooth brushes to choose from. For the \(i\)-th user, a subset \(S_i \subset [d_1]\) of alternatives from the first category is presented along with a subset \(T_i \subset [d_2]\) of alternatives from the second category. We use \(k_1\) and \(k_2\) to denote the number of alternatives presented to a single user, i.e. \(k_1 = |S_i|\) and \(k_2 = |T_i|\), and we assume that the number of alternatives presented to each user is fixed, to simplify notations. However, the analysis naturally generalizes if the number differs from a user to another user. Given these sets of alternatives, each user makes a \'bundled\' purchase and we use \((u_i, v_i)\) to denote the bundled pair of alternatives (e.g. a tooth brush and a tooth paste) purchased by the \(i\)-th user. Each user makes a choice of the best alternative, independent of other users\’s choices, according to the MNL model as

\[
\Pr \{ (u_i, v_i) = (j_1, j_2) \} = \frac{e^{\Theta^*_{j_1, j_2}}}{\sum_{j'_1 \in S_i, j'_2 \in T_i} e^{\Theta^*_{j'_1, j'_2}}},
\]

for all \(j_1 \in S_i\) and \(j_2 \in T_i\). We emphasize here that the preference matrix is indexed by items of type one (in the rows) and items of type two (in the columns). We are taking the existing standard MNL model over user-item pairs to propose a novel choice model for bundled purchases over two types of items. One could go beyond paired bundled choices and include the user identity as another dimension, or add other types of items and consider higher order bundled purchases. This would require MNL model over higher order tensors, which is outside the scope of this paper, but are interesting generalizations. The main challenge in learning such tensor MNL models is that nuclear norm of a higher order tensor is not a computable quantity and hence minimizing the nuclear norm is not algorithmically feasible [58]. Efficient methods exist based on alternating minimizations, but existing analysis tools can handle only quadratic losses [20].

The distribution [31] is independent of shifting all the values of \(\Theta^*\) by a constant. Hence, there is an equivalent class of \(\Theta^*\) that gives the same distribution for the choices: \([\Theta^*] = \{ A \in \mathbb{R}^{d_1 \times d_2} \mid A = \Theta^* + c11^T \} \) for some \(c \in \mathbb{R}\) . Since we can only estimate \(\Theta^*\) up to this equivalent class, we search for the one that sum to zero, i.e. \(\sum_{j_1 \in [d_1], j_2 \in [d_2]} \Theta^*_{j_1, j_2} = 0\). Let \(\alpha = \max_{j_1, j_2} |\Theta^*_{j_1, j_2}|\), denote the dynamic range of the underlying \(\Theta^\ast\), such that when \(k_1 \times k_2\) alternatives are presented, we always have

\[
\frac{1}{k_1 k_2} e^{-\alpha} \leq \Pr \{ (u_i, v_i) = (j_1, j_2) \} \leq \frac{1}{k_1 k_2} e^{\alpha},
\]

for all \((j_1, j_2) \in S_i \times T_i\) and for all \(S_i \subset [d_1]\) and \(T_i \subset [d_2]\) such that \(|S_i| = k_1\) and \(|T_i| = k_2\). We do not make any assumptions on \(\alpha\) other than that \(\alpha = O(1)\) with respect to \(d_1\) and \(d_2\). Assuming \(\Theta^\ast\) is well approximate by a low-rank matrix, we solve the following convex relaxation, given the observed bundled purchase history \(\{(u_i, v_i, S_i, T_i)\}_{i \in [n]}\):

\[
\hat{\Theta} \in \arg \min_{\Theta \in \Omega_\alpha} \mathcal{L}(\Theta) + \lambda \|\Theta\|_{\text{nuc}},
\]

\[
\frac{1}{k_1 k_2} e^{-\alpha} \leq \Pr \{ (u_i, v_i) = (j_1, j_2) \} \leq \frac{1}{k_1 k_2} e^{\alpha},
\]
where the (negative) log likelihood function according to (31) is

\[\mathcal{L}(\Theta) = -\frac{1}{n} \sum_{i=1}^{n} \left(\langle \Theta, e_{u_i} e_{v_i}^T \rangle - \log \left(\sum_{j_1 \in S_i, j_2 \in T_i} \exp \left(\langle \Theta, e_{j_1} e_{j_2}^T \rangle \right) \right) \right), \quad \text{and} \]

\[\Omega_\alpha = \left\{ A \in \mathbb{R}^{d_1 \times d_2} \mid \|A\|_\infty \leq \alpha, \text{ and } \sum_{j_1 \in [d_1], j_2 \in [d_2]} A_{j_1, j_2} = 0 \right\}. \]

Compared to collaborative ranking, (a) rows and columns of \(\Theta^* \) correspond to an alternative from the first and second category, respectively; (b) each sample corresponds to the purchase choice of a user which follow the MNL model with \(\Theta^* \); (c) each person is presented subsets \(S_i \) and \(T_i \) of items from each category; (d) each sampled data represents the most preferred bundled pair of alternatives.

Customer choice. The standard customer choice can be thought of as either a special case of bundled choice or as a special case of higher order comparisons. We consider the standard customer choice data from purchase history. In this setting, we assume that we have purchase history data from \(d_1 \) users over \(d_2 \) alternatives. The \(i \)-th sample is i.i.d. with user chosen uniformly at random and a subset \(S_i \subseteq [d_2] \) of alternatives of size \(k \). We fix \(k \) in order to be efficient in the notations and any variable size offerings can be handled seamlessly. We assume \(S_i \) is chosen uniformly at random with replacement, in a similar way as bundled choice and higher order comparisons.

Given these sets of alternatives, the user \(u \) makes a ‘choice’ and we use \(v \) to denote the purchased alternative by the \(i \)-th (sampled) user. Each user makes a choice of the best alternative, independent of other users’ choices, according to the MNL model as

\[P \{ v_i = j_2 | u_i = j_1 \} = \frac{e^{\Theta^*_{j_1, j_2}}}{\sum_{j'_2 \in S_i} e^{\Theta^*_{j_1, j'_2}}}, \]

for all \(j_2 \in S_i \). Up to the fact that we index rows by users and not items of one category, this is a special case of the bundled choice model where we fix \(k_1 = 1 \). Mathematically, all of our results under consumer choices are derived as corollaries from our results under bundled choices, but given the prevalent interest in customer choice models, we emphasize the implications or our framework under customer choice models in a separate section (see Section 5.2).

5.1 Learning the MNL model from Bundled Choices

We provide an upper bound on the error achieved by our convex relaxation, when the multi-set of alternatives \(S_i \) from the first category and \(T_i \) from the second category are drawn uniformly at random with replacement from \([d_1] \) and \([d_2] \) respectively. Precisely, for given \(k_1 \) and \(k_2 \), we let \(S_i = \{ j_{1,i}^{(i)}, \ldots, j_{1,k_1}^{(i)} \} \) and \(T_i = \{ j_{2,1}^{(i)}, \ldots, j_{2,k_2}^{(i)} \} \), where \(j_{1,i}^{(i)} \)'s and \(j_{2,i}^{(i)} \)'s are independently drawn uniformly at random over the \(d_1 \) and \(d_2 \) alternatives, respectively. Similar to the previous section, this sampling with replacement is necessary for the analysis. Define

\[\lambda = \sqrt{\frac{e^{2\alpha} \max\{d_1, d_2\} \log d}{nd_1 d_2}}. \]

Theorem 6. Under the described sampling model, assume \(16e^{2\alpha} \min\{d_1, d_2\} \log d \leq n \) and \(n \leq \min\{d^5, k_1 k_2 \max\{d_1^2, d_2^2\}\} \log d \), and \(\lambda \in [8\lambda, c_1 \lambda] \) with any constant \(c_1 = O(1) \) larger than \(\max\{8, 128/\sqrt{\min\{k_1, k_2\}}\} \). Then, solving the optimization (33) achieves

\[\frac{1}{d_1 d_2} \| \hat{\Theta} - \Theta^* \|_F^2 \leq 48\sqrt{2} e^{2\alpha} c_1 \lambda \sqrt{n} \left\| \hat{\Theta} - \Theta^* \right\|_F + 48e^{2\alpha} c_1 \lambda \sum_{j=r+1}^{\min\{d_1, d_2\}} \sigma_j(\Theta^*), \tag{38} \]

for any \(r \in \{1, \ldots, \min\{d_1, d_2\}\} \) with probability at least \(1 - 2d^{-3} \) where \(d = (d_1 + d_2)/2 \).
A proof is provided in Appendix C. Optimizing over \(r \) gives the following corollaries.

Corollary 5.1 (Exact low-rank matrices). Suppose \(\Theta^* \) has rank at most \(r \). Under the hypotheses of Theorem 6 solving the optimization \((33)\) with the choice of the regularization parameter \(\lambda \in [8\lambda, c_1\lambda] \) achieves with probability at least \(1 - 2d^{-3} \),

\[
\frac{1}{\sqrt{d_1 d_2}} \left\| \Theta - \Theta^* \right\|_F \leq 48\sqrt{2e^{3\alpha}}c_1 \sqrt{\frac{r(d_1 + d_2)\log d}{n}}. \tag{39}
\]

This corollary shows that the number of samples \(n \) needs to scale as \(\Theta r(d_1 + d_2)\log d \) in order to achieve an arbitrarily small error. This is only a logarithmic factor larger than the degrees of freedom. We provide a fundamental lower bound on the error, that matches the upper bound up to a logarithmic factor. For approximately low-rank matrices in an \(\ell_1 \)-ball as defined in (13), we show an upper bound on the error, whose error exponent reduces from one to \((2 - q)/2 \).

Corollary 5.2 (Approximately low-rank matrices). Suppose \(\Theta^* \in B_q(\rho_q) \) for some \(q \in (0, 1] \) and \(\rho_q > 0 \). Under the hypotheses of Theorem 6 solving the optimization \((33)\) with the choice of the regularization parameter \(\lambda \in [8\lambda, c_1\lambda] \) achieves with probability at least \(1 - 2d^{-3} \),

\[
\frac{1}{\sqrt{d_1 d_2}} \left\| \Theta - \Theta^* \right\|_F \leq \frac{2\sqrt{d_1 d_2}}{\sqrt{d_1 d_2}} \left(48\sqrt{2e^{3\alpha}}d_1 d_2 \right)^{\frac{2 - q}{2}}. \tag{40}
\]

This follows from the same line of proof as in the proof of Corollary 1.2 in Appendix D.

Theorem 7. Suppose \(\Theta^* \) has rank \(r \). Under the described sampling model, there is a universal constant \(c > 0 \) such that the minimax rate where the infimum is taken over all measurable functions over the observed purchase history \(\{(u_i, v_i, S_i, T_i)\}_{i \in [n]} \) is lower bounded by

\[
\inf_{\hat{\Theta}} \sup_{\Theta \in \Omega_n} \mathbb{E} \left[\frac{1}{\sqrt{d_1 d_2}} \left\| \hat{\Theta} - \Theta^* \right\|_F \right] \geq c \min \left\{ \sqrt{\frac{e^{-5\alpha} r (d_1 + d_2)}{n}}, \frac{\alpha d_1 d_2}{\sqrt{d_1 d_2} \log d} \right\}. \tag{41}
\]

See Appendix D for the proof. The first term is dominant, and when the sample size is comparable to the latent dimension of the problem, Theorem 6 is minimax optimal up to a logarithmic factor. We emphasize here that the bound in (39) and the matching lower bound in (41) do not depend on the size of the offerings \(k_1 \) and \(k_2 \). It is because independent of how large \(k_1 \) and \(k_2 \) are, we only observe one choice, and intuitively the information we get scales at best by a factor of \(\log(k_1 k_2) \). The theorems prove that there is no essential gain in learning for large offerings. One might be tempted to stop at proving an upper bounds that scale as \(O(\sqrt{k_1 k_2 r(d_1 + d_2)\log d}) \), which are larger than (39) by a factor of \(\sqrt{k_1 k_2} \). Such a loose bound follows if one ignores the tight concentration analysis that we do using the symmetrization technique (e.g. in Lemma C.3). Getting the tight dependency in \(k_1 \) and \(k_2 \) is one of the crucial technical challenges we overcome in this paper.

5.2 Learning the MNL model from Customer Choices

The results for the customer choice model follows immediately from the results in bundled choice model by simply setting \(k_1 = 1 \), and we explicitly write those corollaries in this section for completeness. The proposed estimator is minimax optimal up to a logarithmic factor under the standard customer choice model of sampling.

Corollary 5.3. Under the described sampling model, assume \(16e^{2\alpha} \min\{d_1, d_2\} \log d \leq n \leq \min\{d^5, k \max\{d_1^2, d_2^2\}\} \log d \), and \(\lambda \in [8\lambda, c_1\lambda] \) with any constant \(c_1 = O(1) \) larger than 128. Then, solving the optimization \((33)\) achieves

\[
\frac{1}{d_1 d_2} \left\| \Theta - \Theta^* \right\|_F^2 \leq 48\sqrt{2e^{2\alpha} c_1 \sqrt{r}} \left\| \Theta - \Theta^* \right\|_F + 48e^{2\alpha} c_1 \lambda \sum_{j=r+1}^{\min\{d_1, d_2\}} \sigma_j(\Theta^*), \tag{42}
\]

for any \(r \in \{1, \ldots, \min\{d_1, d_2\}\} \) with probability at least \(1 - 2d^{-3} \) where \(d = (d_1 + d_2)/2 \).
Corollary 5.4 (Exact low-rank matrices). Suppose Θ^* has rank at most r. Under the hypotheses of Theorem 5.3 solving the optimization (33) with the choice of the regularization parameter $\lambda \in [8\lambda, c_1\lambda]$ achieves with probability at least $1 - 2d^{-3}$,

$$\frac{1}{\sqrt{d_1d_2}} \left\| \hat{\Theta} - \Theta^* \right\|_F \leq 48\sqrt{2}e^{3\alpha}c_1 \sqrt{\frac{r(d_1 + d_2)}{n}}. \quad (43)$$

Corollary 5.5 (Approximately low-rank matrices). Suppose $\Theta^* \in \mathbb{B}_q(\rho_q)$ for some $q \in (0,1]$ and $\rho_q > 0$. Under the hypotheses of Theorem 5.3 solving the optimization (33) with the choice of the regularization parameter $\lambda \in [8\lambda, c_1\lambda]$ achieves with probability at least $1 - 2d^{-3}$,

$$\frac{1}{\sqrt{d_1d_2}} \left\| \hat{\Theta} - \Theta^* \right\|_F \leq 2\sqrt{2}\rho_q \left(48\sqrt{2}e^{3\alpha} \sqrt{\frac{d_1d_2(d_1 + d_2)}{n}} \right)^{\frac{2}{2q}}. \quad (44)$$

We emphasize again that the bound in (43) does not depend on the size of the offerings k. It is significantly easier to stop at proving an upper bounds that scale as $O(\sqrt{k}r(d_1 + d_2)\log d/n)$, which are larger than (43) by a factor of \sqrt{k}. Such a loose bound follows if one ignores the tight concentration analysis that we do using the symmetrization technique (e.g. in Lemma C.3). Getting the tight dependency in k is one of the crucial technical challenges we overcome in this paper.

6 Conclusion

The sample complexity of learning one of the most popular choice model known as MultiNominal Logit model has not been addressed in the literature. The main challenge is in the inherent low-rank structure of the parameter to be learned, which leads to a non-convex likelihood function to be maximized. Thanks to recent advances in learning low-rank matrices, in particular in 1-bit matrix completion [13], matrix completion [37], and restricted strong convexity [38], we have a polynomial time algorithm and the technical tools to characterize the fundamental sample complexity of learning MNL from samples. This provides a novel algorithm to learn a low-dimensional representation of users and items from users’ historical comparisons and choices. We study three types of data, pairwise comparison, higher order comparison, and choices, and take the first principle approach of identifying the fundamental limits and also developing efficient algorithms matching those fundamental trade offs. We provide a unifying framework to learn the latent preferences by solving a convex program. For each of the data types, accompanied by natural sampling scenarios, we show that our framework achieves a minimax optimal performance, and hence cannot be improved upon other than a small logarithmic factor. This opens a new door to learn representations from comparisons and choices, and we propose new research directions and challenges below.

Efficient implementations via non-convex optimization. Nuclear norm minimization, while polynomial-time, is still slow. We want first-order methods that are efficient with provable guarantees. Two main challenges are providing a good initialization to start such non-convex approaches and analyzing gradient descent on the likelihood maximization which is non-convex.

Recent advances in non-convex optimization with rank-constraints have developed via a sequence of innovations that can be summarized as follows, in a number of example problems including matrix completion, robust PCA, matrix sensing, phase retrieval. First, a convex relaxation of nuclear norm minimization is analyzed, e.g. [10]. Then, a more efficient two-step non-convex optimization approach is proposed with provable guarantees where a global initialization step is follows by a first-order method e.g. [23] [24]. Next, first-order methods starting at any initialization is analyzed via understanding the geometry and checking the stationary points of the objective function e.g [13]. This recipe, spurred by the advances in the matrix completion problem, has been repeated for several interesting problems involving low rank matrices, over the last decade and over numerous publications by collective effort of the machine learning community.

For the problem of learning MNL, we are at the first stage of this progression where we propose a convex relaxation and provide minimax optimal guarantees. We currently do not have the analysis tools to follow up
in analyzing an efficient non-convex optimization problem, although writing the algorithm and implementing it is straightforward, and also has been proposed in [10]. It is a promising research direction to overcome the challenges in analyzing non-convex optimization methods for the MNL likelihood objective function.

Assumption on sampling with replacement. As mentioned earlier, we assume sampling with replacement, where we can ask a user to compare the same pair more than once, and also we can ask a user to compare two copies of the identical item. Although such sampling replacement does not happen in practice, the chance of such collision is also very low under the proposed model. Further, such assumption is critical for getting an upper bound that is tight not only in \(r, d_1 \) and \(d_2 \), but also in \(k \) for higher order comparisons and choices. If, instead, one is interested in sampling without replacement, then one can resort to either proving a loose bound that is weaker in its dependence in \(k \) (and follows trivially as a corollary of the proof of our results) or need to invent new innovative concentration bounds that do not rely on the powerful symmetrization. The first option is trivial, so we do not provide such corollaries in this paper, and the second option provides an interesting but technically challenging question of resolving between sampling with replacement and sampling without replacement. This we believe is outside the scope of this paper.

Modern data analysis applications. As learning representation from ordinal data is of fundamental interest, there are numerous exciting applications that both the algorithmic framework and also the analysis techniques we develop could be naturally extended to. We present two such examples. First is a recent application of embedding objects with crowdsourced similarity measures, first proposed in [51]. Consider a crowdsourcing setting where you have \(d \) images and want to learn similarities among those images such that one can embed those images in a lower dimensional Euclidean space. One can show to a person a triplet of images \((i_1, i_2, i_3)\) and ask whether the image in the middle is more similar to the one in the left or the right. A natural model proposed in [51] is to assume that exists a similarity parameter matrix \(
abla \in \mathbb{R}^{d \times d}\) such that

\[
P\{i_1 \text{ is more similar to } i_2 \text{ than } i_3 \text{ is to } i_2\} = \frac{e^{\Theta_{12}i_1}}{e^{\Theta_{12}i_1} + e^{\Theta_{12}i_3}}.
\]

A heuristic algorithm is proposed to learn a low-rank \(\Theta \) without guarantees. Given the similarity of this model to MNL in [1], both our algorithm and also the analysis will go through to provide a tight characterization of the sample complexity of this problem.

The second application is in word embedding [35], where the goal is to find embeddings for English words in a lower dimensional Euclidean space. The most successful word embedding has been based on fitting a low-rank matrix \(\Theta \in \mathbb{R}^{d \times d} \) where \(d \) is the size of the vocabulary, over a MNL-type model:

\[
P\{\text{word } i \text{ and word } j \text{ appear within distance ten} | \text{word } j \text{ appear in a sentence}\} = \frac{e^{\Theta_{ij}}}{\sum_{i'} e^{\Theta_{i'j}}}.
\]

As the denominator involves summation over millions of words in the vocabulary, efficient heuristics are proposed to learn such a model from skip-grams; a skip-gram is the count matrix counting how many words appear in the same sentence within a predefined distance. There are several challenges in applying our framework directly to such a setting mainly due to the size of the problem, but nevertheless our analysis can be applied directly to identify the fundamental minimax sample complexity of learning a word embedding from skip-grams.

Acknowledgments

This research is supported in part by NSF awards MES-1450848, CNS-1527754, and CCF-1553452, and GOOGLE Faculty Research Award.

References

[1] A. Agarwal, S. Negahban, and M. Wainwright. Fast global convergence rates of gradient methods for high-dimensional statistical recovery. In In NIPS, pages 37–45, 2010.
[2] H. Azari Soufiani, W. Chen, D. C Parkes, and L. Xia. Generalized method-of-moments for rank aggregation. In Advances in Neural Information Processing Systems 26, pages 2706–2714, 2013.

[3] H. Azari Soufiani, D. Parkes, and L. Xia. Computing parametric ranking models via rank-breaking. In Proceedings of The 31st International Conference on Machine Learning, pages 360–368, 2014.

[4] Jonathan Barzilai and Jonathan M Borwein. Two-point step size gradient methods. IMA journal of numerical analysis, 8(1):141–148, 1988.

[5] M. E. Ben-Akiva and S. R. Lerman. Discrete choice analysis: theory and application to travel demand, volume 9. MIT press, 1985.

[6] J. Blanchet, G. Gallego, and V. Goyal. A markov chain approximation to choice modeling. In EC, pages 103–104, 2013.

[7] V. S. Borkar, N. Karamchandani, and S. Mirani. Randomized kaczmarz for rank aggregation from pairwise comparisons. In Information Theory Workshop (ITW), 2016 IEEE, pages 389–393. IEEE, 2016.

[8] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymptotic theory of independence. Oxford University Press, 2013.

[9] R. A. Bradley and M. E. Terry. Rank analysis of incomplete block designs: I. the method of paired comparisons. Biometrika, 39(3/4):324–345, 1955.

[10] E. J. Candès and B. Recht. Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 9(6):717–772, 2009.

[11] Y. Chen and C. Suh. Spectral mle: Top-k rank aggregation from pairwise comparisons. In International Conference on Machine Learning, pages 371–380, 2015.

[12] C. Chu, P. Leslie, and A. Sorensen. Bundle-size pricing as an approximation to mixed bundling. The American Economic Review, pages 263–303, 2011.

[13] Mark A Davenport, Yaniv Plan, Ewout van den Berg, and Mary Wootters. 1-bit matrix completion. Information and Inference, 3(3):189–223, 2014.

[14] V. F. Farias, S. Jagabathula, and D. Shah. A data-driven approach to modeling choice. In NIPS, pages 504–512, 2009.

[15] R. Ge, J. D. Lee, and T. Ma. Matrix completion has no spurious local minimum. In Advances in Neural Information Processing Systems, pages 2973–2981, 2016.

[16] P. M. Guadagni and J. D. Little. A logit model of brand choice calibrated on scanner data. Marketing science, 2(3):203–238, 1983.

[17] B. Hajek, S. Oh, and J. Xu. Minimax-optimal inference from partial rankings. In Advances in Neural Information Processing Systems, pages 1475–1483, 2014.

[18] D. R. Hunter. Mm algorithms for generalized bradley-terry models. Annals of Statistics, pages 384–406, 2004.

[19] P. Jain, P. Netrapalli, and S. Sanghavi. Low-rank matrix completion using alternating minimization. In STOC, pages 665–674, 2013.

[20] P. Jain and S. Oh. Provable tensor factorization with missing data. preprint arXiv:1406.2784, 2014.

[21] M. Jang, S. Kim, C. Suh, and S. Oh. Top-k ranking from pairwise comparisons: When spectral ranking is optimal. arXiv preprint arXiv:1603.04153, 2016.

[22] L. R. Ford Jr. Solution of a ranking problem from binary comparisons. The American Mathematical Monthly, 64(8):28–33, 1957.

[23] R. H. Keshavan, A. Montanari, and S. Oh. Matrix completion from a few entries. Information Theory, IEEE Transactions on, 56(6):2980–2998, 2010.

[24] R. H Keshavan, A. Montanari, and S. Oh. Matrix completion from noisy entries. Journal of Machine Learning Research, 11(2057-2078):1, 2010.

[25] A. Khetan and S. Oh. Computational and statistical tradeoffs in learning to rank. In Advances in Neural Information Processing Systems 29, pages 739–747, 2016.

[26] A. Khetan and S. Oh. Data-driven rank breaking for efficient rank aggregation. In Proceedings of the 33rd International Conference on Machine Learning, volume 48, 2016.

[27] M. Ledoux. The concentration of measure phenomenon. American Mathematical Soc., 2005.

[28] D. R. Luce. Individual Choice Behavior. Wiley, New York, 1959.
[29] Jacob Marschak. Binary-choice constraints and random utility indicators. In *Proceedings of a symposium on mathematical methods in the social sciences*, volume 7, pages 19–38, 1960.

[30] L. Maystre and M. Grossglauser. Fast and accurate inference of plackett–luce models. In *Advances in Neural Information Processing Systems*, pages 172–180, 2015.

[31] D. McFadden. Conditional logit analysis of qualitative choice behavior. *Frontiers in Econometrics*, pages 105–142, 1973.

[32] D. McFadden. Econometric models for probabilistic choice among products. *Journal of Business*, 53(3):S13–S29, 1980.

[33] D. McFadden and K. Train. Mixed mnl models for discrete response. *Journal of applied Econometrics*, 15(5):447–470, 2000.

[34] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector space. *arXiv preprint arXiv:1301.3781*, 2013.

[35] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In *Advances in neural information processing systems*, pages 3111–3119, 2013.

[36] S. Negahban, S. Oh, and D. Shah. Iterative ranking from pair-wise comparisons. In *NIPS*, pages 2483–2491, 2012.

[37] S. Negahban and M. J. Wainwright. Restricted strong convexity and (weighted) matrix completion: Optimal bounds with noise. *Journal of Machine Learning Research*, 2012.

[38] Sahand Negahban, Bin Yu, Martin J Wainwright, and Pradeep K Ravikumar. A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers. In *Advances in Neural Information Processing Systems*, pages 1348–1356, 2009.

[39] S. Oh and D. Shah. Learning mixed multinomial logit model from ordinal data. In *Advances in Neural Information Processing Systems*, pages 595–603, 2014.

[40] Dohyung Park, Joe Neeman, Jin Zhang, Sujay Sanghavi, and Inderjit S Dhillon. Preference completion: Large-scale collaborative ranking from pairwise comparisons. *Proceedings of The 32nd International Conference on Machine Learning*, 2015.

[41] R. L. Plackett. The analysis of permutations. *Applied Statistics*, pages 193–202, 1975.

[42] S. Ragain and J. Ugander. Pairwise choice markov chains. In *Advances in Neural Information Processing Systems*, pages 3198–3206, 2016.

[43] A. Rajkumar and S. Agarwal. A statistical convergence perspective of algorithms for rank aggregation from pairwise data. In *Proceedings of The 31st International Conference on Machine Learning*, pages 118–126, 2014.

[44] Paramesh Ray. Independence of irrelevant alternatives. *Econometrica: Journal of the Econometric Society*, pages 987–991, 1973.

[45] B. Recht, M. Fazel, and P. Parrilo. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. *SIAM review*, 52(3):471–501, 2010.

[46] W. Rui, J. Xu, S. Rayadurgam, M. Lelarge, L. Massoulié, and B. Hajek. Clustering and inference from pairwise comparisons. In *SIGMETRICS’15 Proceedings of the 2015 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems*, volume 43, page 2, 2015.

[47] Nihar B Shah, Sivaraman Balakrishnan, Joseph Bradley, Abhay Parekh, Kannan Ramchandran, and Martin Wainwright. When is it better to compare than to score? *arXiv preprint arXiv:1406.6618*, 2014.

[48] Nihar B Shah, Sivaraman Balakrishnan, Adityanand Guntuboyina, and Martin J Wainwright. Stochastically transitive models for pairwise comparisons: Statistical and computational issues. In *International Conference on Machine Learning*, 2016.

[49] P. Sham and D. Curtis. An extended transmission/disequilibrium test (tdt) for multi-allele marker loci. *Annals of human genetics*, 59(3):323–336, 1995.

[50] H. A. Souffian, D. C. Parkes, and L. Xia. Random utility theory for social choice. In *NIPS*, pages 126–134, 2012.

[51] O. Tamuz, C. Liu, S. Belongie, O. Shamir, and A. T. Kalai. Adaptively learning the crowd kernel. *arXiv preprint arXiv:1105.1033*, 2011.

[52] Louis L Thurstone. A law of comparative judgment. *Psychological review*, 34(4):273, 1927.

[53] K. Train. *Qualitative choice analysis: Theory, econometrics, and an application to automobile demand*, volume 10. MIT press, 1986.
[54] J. Tropp. User-friendly tail bounds for sums of random matrices. *Foundations of Comput. Math.*, 2011.
[55] Joel A Tropp. An introduction to matrix concentration inequalities. *arXiv preprint arXiv:1501.01571*, 2015.
[56] S. Van De Geer. *Empirical Processes in M-estimation*, volume 6. Cambridge university press, 2000.
[57] Joan Walker and Moshe Ben-Akiva. Generalized random utility model. *Mathematical Social Sciences*, 43:303–343, 2002.
[58] M. Yuan and C. Zhang. On tensor completion via nuclear norm minimization. *arXiv preprint arXiv:1405.1773*, 2014.
[59] E. Zermelo. Die berechnung der turnier-ergebnisse als ein maximumproblem der wahrscheinlichkeitsrechnung. *Mathematische Zeitschrift*, 29(1):436–460, 1929.
A Proof of the upper bound for Graph Sampling Theorem

The proof of the theorem relies on the following two lemmas. First lemma shows that the negative of the log-likelihood satisfies Restricted Strong Convexity with high probability.

Lemma A.1. (Restricted Strong Convexity) Let \(R = \max \left\{ \sqrt{\frac{\sigma \log (2d)}{n}}, \frac{\sigma_{\min} (L)^{-1/2} \log (2d)}{n} \right\} \) and the set \(\mathcal{A} (\alpha) = \left\{ \Theta \in \mathbb{R}^{d_1 \times d_2}, \|\Theta\|_{\infty} \leq \alpha, \|\Theta\|_{L, \text{nuc}} \leq \frac{\|\Theta L^{1/2}\|^2}{16d_1 R} \right\} \). When we have,

\[
\frac{1}{n} \sum_{i=1}^{n} (\langle \Theta, X_i \rangle)^2 \geq \frac{1}{3d_1} \|\Theta\|^2_{L}, \quad \forall \Theta \in \mathcal{A} (\alpha),
\]

with probability at least \(1 - \frac{n}{2d} \), provided that \(n \leq \min \{2^6 d_1 \sigma^2, 2^2 (d_1 \sigma_{\min} (L)^{-1})^{2/3} \log (2d)\} \).

Here the upper bound on \(n \) may not be necessary, it is present due to a technical difficulty in using the peeling argument. The intuition behind the above Lemma is that the empirical average uniformly concentrates around its expectation. Proof is in Section A.1. The next lemma says that the gradient of the log-likelihood at the actual parameter matrix, \(\Theta^* \) is controllably small.

Lemma A.2. (Bounded Gradient) Let \(R = \max \left\{ \sqrt{\frac{\sigma \log (2d)}{n}}, \frac{\sigma_{\min} (L)^{-1/2} \log (2d)}{n} \right\} \). The spectral norm of gradient of the log-likelihood at the actual parameter matrix, \(\nabla L (\Theta^*) \), can be upper-bounded with high probability as follows,

\[
\mathbb{P} \left\{ \left\| \nabla L (\Theta^*) L^{-1/2} \right\|_2 \geq \sqrt{32 R} \right\} \leq \frac{1}{(d_1 + d_2)^3}
\]

Proof the above lemma is in Section A.4. Let \(\Delta = \hat{\Theta} - \Theta^* \).

Case 1: \(\Delta \notin \mathcal{A} (2\alpha) \) Then,

\[
\|\Delta\|_L \leq 32\alpha d_1 R \|\Delta\|_{L, \text{nuc}}
\]

Case 2: \(\Delta \in \mathcal{A} (2\alpha) \) We first write down the second order Taylor series expansion of \(L (\hat{\Theta}) \) at around \(\Theta = \Theta^* \).

\[
-L (\hat{\Theta}) = -L (\Theta^*) + \langle -\nabla L (\Theta^*), \Delta \rangle + \frac{1}{2n} \sum_{i=1}^{n} \psi \left(\langle \Theta^*, X^{(i)} \rangle + s \langle \Delta, X^{(i)} \rangle \right) \langle \Delta, X^{(i)} \rangle^2,
\]

where \(\psi (x) = e^{x}/(1 + e^{x})^2, \quad x \in [-2\alpha, 2\alpha] \) and \(s \in [0, 1] \). Next using Lemma A.1 and the fact that \(\psi (x) \) attains minimum at \(x = 2\alpha \) we get,

\[
-L (\hat{\Theta}) + L (\Theta^*) + \langle \nabla L (\Theta^*), \Delta \rangle \geq \frac{1}{2n} \sum_{i=1}^{n} \psi (2\alpha) \langle \Delta, X^{(i)} \rangle^2 \geq \frac{\psi (2\alpha)}{6d_1} \|\Delta\|^2_{L},
\]

with probability at least \(1 - 1/(d_1 + d_2)^3 \). Since \(\hat{\Theta} \) is the minimizer for the objective function \(\Theta \) we have,

\[
-L (\hat{\Theta}) + \lambda \|\hat{\Theta}\|_{L, \text{nuc}} \leq -L (\Theta^*) + \lambda \|\Theta^*\|_{L, \text{nuc}},
\]

which in-turn gives us,

\[
\frac{\psi (2\alpha)}{6d_1} \|\Delta\|^2_{L} \leq -L (\hat{\Theta}) + L (\Theta^*) + \langle \nabla L (\Theta^*), \Delta \rangle \leq \lambda \left(\|\Theta^*\|_{L, \text{nuc}} - \|\hat{\Theta}\|_{L, \text{nuc}} \right) + \langle \nabla L (\Theta^*), \Delta \rangle
\]

\[
\leq \lambda \left(\|\Delta\|_{L, \text{nuc}} + \langle \nabla L (\Theta^*) L^{-1/2}, \Delta L^{1/2} \rangle \right)
\]

\[
\leq \lambda \|\Delta\|_{L, \text{nuc}} + \left\| \nabla L (\Theta^*) L^{-1/2} \right\|_2 \|\Delta\|_{L, \text{nuc}},
\]

as desired.
where last two inequalities follow from the triangle inequality for nuclear norm and generalized Hölder’s inequality. Now we put \(\lambda = 2\sqrt{32}R \) and use Lemma A.2 to get,
\[
\|\Delta\|_L^2 \leq \frac{6d_1}{\psi(2\alpha)} \left(\lambda + \frac{\lambda}{2} \right) \|\Delta\|_{L-*} \leq \frac{9d_1 \lambda}{\psi(2\alpha)} \|\Delta\|_{L-nuc},
\]
with probability at least \(1 - 1/(d_1 + d_2)^3 \). Combining Case 1 and 2 we get,
\[
\|\Delta\|_L^2 \leq 9 \left(\alpha + \frac{1}{\psi(2\alpha)} \right) d_1 \lambda \|\Delta\|_{L-nuc}
\]

Lemma A.3. If \(\lambda \geq 2\|\nabla L(\Theta^*)\|_2 \), then we have
\[
\|\Delta\|_{L-nuc} \leq 4\sqrt{2R}\|\Delta\|_L + 4 \sum_{j=\rho+1}^{\min\{d_1, d_2 - G\}} \sigma_j(\Theta^* L^{1/2}),
\]
for all \(\rho \in [\min\{d_1, d_2 - G\}] \). (*Proof in Section A.5*)

Finally, utilizing the above Lemma, we get,
\[
\frac{1}{d_1} \|\Delta\|_L^2 \leq 36\lambda \left(\alpha + \frac{1}{\psi(2\alpha)} \right) \left(4\sqrt{2R}\|\Delta\|_L + \sum_{j=\rho+1}^{\min\{d_1, d_2 - G\}} \sigma_j(\Theta^* L^{1/2}) \right)
\]

A.1 Proof of Lemma A.1

\[
\mathbb{P}\left\{ \frac{1}{n} \sum_{i=1}^{n} \left(\langle \Theta, X^{(i)} \rangle \right)^2 \geq \frac{1}{3d_1} \|\Theta\|_L^2, \forall \Theta \in \mathcal{A} \right\} = 1 - \mathbb{P}\left\{ \exists \Theta \in \mathcal{A} \exists \frac{1}{n} \sum_{i=1}^{n} \left(\langle \Theta, X^{(i)} \rangle \right)^2 < \frac{1}{3d_1} \|\Theta\|_L^2 \right\}
\]

When \(\Theta \in \mathcal{A} \),
\[
\|\Theta\|_L^2 \geq 16\alpha d_1 R \|\Theta\|_{L-nuc} \geq 16\alpha d_1 R \|\Theta\|_L \implies \|\Theta\|_L \geq 16\alpha d_1 R := \mu.
\]

Lemma A.4. Let \(B(D) := \{ \Theta \in \mathbb{R}^{d_1 \times d_2} \|\Theta\|_\infty \leq \alpha, \|\Theta\|_L \leq D, \|\Theta\|_{L-nuc} \leq \frac{D^2}{16\alpha d_1 R} \} \), and,
\[
Z_D := \sup_{\Theta \in B(D)} \left(-\frac{1}{n} \sum_{i=1}^{n} \left(\langle \Theta, X^{(i)} \rangle \right)^2 + \frac{4}{d_1} \|\Theta\|_L^2 \right), \quad \text{then,}
\]
\[
\mathbb{P}\left\{ Z_D \geq \frac{3}{2d_1} D^2 \right\} \leq \exp \left(-\frac{nD^4}{32\alpha^4 d_1^2} \right).
\]

Above lemma is proved in Section A.2. Let \(\beta = \sqrt{\frac{10}{9}} \), then the sets,
\[
\mathcal{S}_\ell = \left\{ \Theta \in \mathbb{R}^{d_1 \times d_2} \|\Theta\|_\infty \leq \alpha, \beta^{\ell-1} \mu \leq \|\Theta\|_L \leq \beta^\ell \mu, \|\Theta\|_{L-nuc} \leq \frac{(\beta^\ell \mu)^2}{16\alpha d_1 R} \right\}, \quad \ell = 1, 2, 3, \ldots,
\]
cover the set \(\mathcal{A} \), that is \(\mathcal{A} \subset \cup_{\ell=1}^\infty \mathcal{S}_\ell \) and \(\mathcal{S}_\ell \subset B(\beta^\ell \mu) \). This gives us,
\[
\mathbb{P}\left\{ \exists \Theta \in \mathcal{A} \exists \frac{1}{n} \sum_{i=1}^{n} \left(\langle \Theta, X^{(i)} \rangle \right)^2 < \frac{1}{3d_1} \|\Theta\|_L^2 \right\} \leq \sum_{\ell=1}^\infty \mathbb{P}\left\{ \exists \Theta \in \mathcal{S}_\ell \exists \frac{1}{n} \sum_{i=1}^{n} \left(\langle \Theta, X^{(i)} \rangle \right)^2 < \frac{1}{3d_1} \|\Theta\|_L^2 \right\}
\]
\[
\leq \sum_{\ell=1}^\infty \mathbb{P}\left\{ \exists \Theta \in B(\beta^\ell \mu) \exists \frac{1}{n} \sum_{i=1}^{n} \left(\langle \Theta, X^{(i)} \rangle \right)^2 < \frac{1}{3d_1} \|\Theta\|_L^2 \right\}
\]

(57)
If there exists a $\Theta \in \mathcal{B}(\beta' \mu)$ such that \(\frac{\beta'}{2} n \sum_{i=1}^{n} \left(\langle \Theta, X^{(i)} \rangle \right)^2 < \frac{1}{3d_1} \| \Theta \|_{L}^2 \) then,

\[
Z_{\beta' \mu} \geq - \frac{1}{n} \sum_{i=1}^{n} \left(\langle \Theta, X^{(i)} \rangle \right)^2 + \frac{2}{d_1} \| \Theta \|_{L}^2 > \frac{5}{3d_1} \| \Theta \|_{L}^2 \geq \frac{5}{3d_1} \beta^{2\ell-2} \mu^2 = \frac{3}{2d_1} (\beta' \mu)^2,
\]

which gives us,

\[
\mathbb{P} \left\{ \exists \Theta \in A \exists \frac{1}{n} \sum_{i=1}^{n} \left(\langle \Theta, X^{(i)} \rangle \right)^2 < \frac{1}{3d_1} \| \Theta \|_{L}^2 \right\} \leq \sum_{\ell=1}^{\infty} \mathbb{P} \left\{ Z_{\beta' \mu} > \frac{3}{2d_1} (\beta' \mu)^2 \right\}
\]

\[
\leq \sum_{\ell=1}^{\infty} \exp \left(\frac{n(\beta' \mu)^4}{32\alpha^4d_1^2} \right)
\]

\[
\leq \sum_{\ell=1}^{\infty} \exp \left(\frac{4\ell(\beta - 1)n\mu^4}{32\alpha^4d_1^2} \right)
\]

\[
\leq 2 \exp \left(\frac{4(\beta - 1)n\mu^4}{32\alpha^4d_1^2} \right)
\]

\[
(58)
\]

where (a) is from Lemma \[A.4\] (b) is true since $\beta^{4\ell} \geq 4\ell(\beta - 1)$ when $\beta \geq 1$ and (c) is obtained by summing the geometric series in previous inequality. Finally if we assume that $n \leq 2^{9}(d_1\sigma_{\min}(L)^{-1})^{2/3} \log (2d)$ and $n \leq 2^{2}(d_1\sigma_{\min}(L)^{-1})^{2/3} \log (2d)$, then we have $2^{2}\log (2d) \leq 4(\beta - 1)n\mu^4/32\alpha^4d_1^2$ as follows

\[
\frac{4(\beta - 1)n\mu^4}{32\alpha^4d_1^2} = \frac{4(\beta - 1)n(16d_1R)^4}{32\alpha^4d_1^2} = 2^{13}(\beta - 1)d_1^2 \max \left\{ \frac{\sigma^2 \log^2(2d)}{n}, \frac{\sigma_{\min}(L)^{-2}\log^4(2d)}{n^3} \right\} \leq 2^{2}\log (2d)
\]

\[
(59)
\]

A.2 Proof of Lemma \[A.4\]

Notice that the $\frac{2}{d_1} \| \Theta \|_{L}^2$ is the mean of $\frac{1}{n} \sum_{i=1}^{n} \langle \Theta, X^{(i)} \rangle^2$,

\[
\mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} \langle \Theta, X^{(i)} \rangle^2 \right] = \frac{1}{d_1} \sum_{j \in [d_1]} \sum_{k,l \in [d_2]} (\Theta_{j,k} - \Theta_{j,l})^2 P_{k,l}
\]

\[
= \frac{2}{d_1} \sum_{j} \sum_{k,l} \Theta_{j,k}^2 \sum_{l} P_{k,l} - 2 \sum_{k,l} \Theta_{j,k} \Theta_{j,l} P_{k,l}
\]

\[
= \frac{2}{d_1} \sum_{j} \left\langle \Theta_{j} \Theta_{j}^T, \text{diag}(P_k) \right\rangle - 2 \left\langle \Theta_{j} \Theta_{j}^T, P \right\rangle
\]

\[
= \frac{2}{d_1} \sum_{j} \left\langle \Theta_{j} \Theta_{j}^T, L \right\rangle = \frac{2}{d_1} \left\| \Theta L^{1/2} \right\|_{F}^2
\]

where, in (a) $P_{k} = \sum_{l \in [d_2]} P_{k,l}$ and Θ_{j} is the j-th row of Θ. Therefore we use the following standard technique to get a handle on supremum of deviation from mean.

First, we use bounded differences property of differences to prove that Z_D concentrates around its mean.

We write $Z_D(X^{(1)}, \ldots, X^{(n)})$ to represent Z_D as a function of n independent random variables. Now, let $X^{(i)}$ and $X^{(i)}$ be two realization of the i-th ($1 \leq i \leq n$) random parameter of Z_D, then,

\[
\left| Z_D(X^{(1)}, \ldots, X^{(i)}, \ldots, X^{(n)}) - Z_D(X^{(1)}, \ldots, X^{(i)}, \ldots, X^{(n)}) \right|
\]

\[
= \sup_{\Theta \in \mathcal{B}(D)} \left(- \frac{1}{n} \sum_{i=1}^{n} \langle \Theta, X^{(i)} \rangle^2 + \frac{2}{d_1} \| \Theta \|_{L}^2 \right) - \sup_{\Theta' \in \mathcal{B}(D)} \left(- \frac{1}{n} \sum_{i=1}^{n} \langle \Theta', X^{(i)} \rangle^2 + \langle \Theta', \tilde{X}^{(i)} \rangle^2 + \frac{2}{d_1} \| \Theta' \|_{L}^2 \right)
\]

\[
(60)
\]
where the last inequality is true since, for any $\Theta \in B(D) \subseteq \Omega_\alpha$ has $\|\Theta\|_\infty \leq \alpha$. Now we upper bound $\mathbb{E}[Z_D]$ as follows.

\[
\mathbb{E}[Z_D] \leq 2\mathbb{E}\left[\sup_{\Theta \in B(D)} \frac{1}{n} \sum_{i=1}^n \varepsilon_i \|\Theta, X^{(i)}\|_2^2\right]
\leq 4\alpha \mathbb{E}\left[\sup_{\Theta \in B(D)} \frac{1}{n} \sum_{i=1}^n \varepsilon_i \|\Theta L^{1/2}, X^{(i)} L^{-1/2}\|_2\right]
\leq 4\alpha \mathbb{E}\left[\sup_{\Theta \in B(D)} \|\Theta\|_{L\text{-nuc}} \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^n \varepsilon_i X^{(i)} L^{-1/2}\right]_2\right],
\]

where (a) is standard symmetrization argument using i.i.d. Rademacher variables $\{\varepsilon_i\}_{i=1}^n$ and since $\|\Theta, X^{(i)}\|_2 \leq 2\alpha$ we use Ledoux-Talagrand contraction to obtain (b).

\textbf{Lemma A.5.} For $\{X^{(i)}\}_{i=1}^n$ as defined in the graph sampling and for a binary random variable ε_i such that $\mathbb{E}[\varepsilon_i X^{(i)}] = 0$ and $|\varepsilon_i| \leq 1$, we have,

\[
\mathbb{P}\left\{\left\|\frac{1}{n} \sum_{i=1}^n \varepsilon_i X^{(i)} L^{-1/2}\right\|_2 \geq \sqrt{32} \max \left\{\frac{\sigma \log(d_1 + d_2)}{n}, \frac{\sigma_{\min}(L)^{-1/2} \log(d_1 + d_2)}{n}\right\}\right\} \leq \frac{1}{(d_1 + d_2)^3}, \quad \text{and,}
\]

\[
\mathbb{E}\left[\left\|\frac{1}{n} \sum_{i=1}^n \varepsilon_i X^{(i)} L^{-1/2}\right\|_2^2\right] \leq 4 \max \left\{\frac{\sigma \log(d_1 + d_2)}{n}, \frac{\sigma_{\min}(L)^{-1/2} \log(d_1 + d_2)}{n}\right\}. \quad (63)
\]

Proof of the lemma is in Section A.3. Now using Lemma A.5 we have $\mathbb{E}[Z_D] \leq 16 R \alpha \sup_{\Theta \in B(D)} \|\Theta\|_{L\text{-nuc}} \leq \frac{D^2}{d_1}$. Now using the bounded differences property and the upper bound on the mean, we get the McDiarmid’s concentration,

\[
\mathbb{P}\{Z_D - d_2/d_1 \geq t\} \leq \mathbb{P}\{Z_D - \mathbb{E}[Z_D] \geq t\} \leq \exp\left(-\frac{nt^2}{8\alpha^2}\right), \quad (64)
\]

and putting $t = d^2/2d_1$ gives use the theorem.
A.3 Proof of Lemma A.5

Let $W_i := \frac{1}{n} \varepsilon_i X^{(i)} L^{-1/2}$ and pseudo-inverse of L be $L^\dagger = L^{-1}$, then, $\|W_i\|_2 \leq \sigma_{\text{min}}(L)^{-1/2} \sqrt{2}/n$,

$$
E[W_i W_i^T] \preceq E\left[\frac{1}{n^2} \sum_{i=1}^n e_{j(i)} (e_{k(i)} - e_{l(i)})^T L^{-1/2} L^{-1/2} (e_{k(i)} - e_{l(i)}) e_{j(i)}^T\right]
= E\left[\frac{1}{n^2} e_{j(i)} e_{j(i)}^T\right] E\left[(e_{k(i)} - e_{l(i)})^T L^\dagger (e_{k(i)} - e_{l(i)})\right]
= \frac{1}{n^2 d_1} I_{d_1 \times d_1} \times 2 \left(E\left[e_{j(i)}^T L^\dagger e_{k(i)}\right] - E\left[e_{j(i)}^T L^\dagger e_{l(i)}\right]\right)
= \frac{2}{n^2 d_1} \left(\sum_{u \in [d_1]} P_u L^\dagger u - \sum_{u, v \in [d_1]} P_{u, v} L^\dagger u, v\right) I_{d_1 \times d_1}
\leq \frac{2d_2}{n^2 d_1} I_{d_1 \times d_1},
$$

(65)

$$
E[W_i^T W_i] \leq L^{-1/2} E\left[\frac{1}{n^2} (e_{k(i)} - e_{l(i)}) (e_{k(i)} - e_{l(i)})^T\right] L^{-1/2}
= \frac{1}{n^2} L^{-1/2} \left(\sum_{u, v = 1}^{d_2} (e_u - e_v) (e_u - e_v)^T P_{u, v}\right) L^{-1/2}
= \frac{1}{n^2} L^{-1/2} (2L) L^{-1/2}
= \frac{2}{n^2} UU^T,
$$

(66)

$$
\max\left\{\|E\left[\sum_{i=1}^n W_i W_i^T\right]\|_2, \|E\left[\sum_{i=1}^n W_i^T W_i\right]\|_2\right\} \leq \sum_{i=1}^n \max\{\|E\left[W_i W_i^T\right]\|_2, \|E\left[W_i^T W_i\right]\|_2\}
\leq \frac{2}{n} \sigma.
$$

(67)

(68)

where $\sigma = \max\left\{\frac{d_2 - G}{d_1}, 1\right\}$.

Now by Matrix Bernstein concentration theorem [55] we have,

$$
\Pr\left\{\left\|\frac{1}{n} \sum_{i=1}^n \varepsilon_i X^{(i)}\right\|_2 \geq t\right\} \leq \exp\left(-n t^2/2 \frac{-n t^2/2}{2\sigma + \sqrt{2}\sigma_{\text{min}}(L)^{-1/2} t/3}\right),
$$

(69)

$$
E\left[\left\|\frac{1}{n} \sum_{i=1}^n \varepsilon_i X^{(i)}\right\|_2\right] \leq \sqrt{4\sigma \log(d_1 + d_2) \over n} + \sqrt{2\sigma_{\text{min}}(L)^{-1}} \log(d_1 + d_2) / 3n.
$$

(70)

Choosing $t = \max\left\{\frac{\sqrt{24\sigma \log(d_1 + d_2)}}{n}, \frac{16\sqrt{2}\sigma_{\text{min}}(L)^{-1} \log(d_1 + d_2)}{3n}\right\}$ produces the desired result.
A.4 Proof of Lemma A.2

The gradient can be written down as,
\[\nabla \mathcal{L}(\Theta^*) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \frac{\exp(\langle \Theta^*, X^{(i)} \rangle)}{1 + \exp(\langle \Theta^*, X^{(i)} \rangle)} \right) X^{(i)}. \] (71)

Then Lemma A.5 directly gives the result because,
\[\mathbb{E} \left[y_i - \frac{\exp(\langle \Theta^*, X^{(i)} \rangle)}{1 + \exp(\langle \Theta^*, X^{(i)} \rangle)} \right] X^{(i)} = 0 \quad \text{and} \quad y_i \frac{\exp(\langle \Theta^*, X^{(i)} \rangle)}{1 + \exp(\langle \Theta^*, X^{(i)} \rangle)} \leq 1. \]

A.5 Proof of Lemma A.3

Denote the singular value decomposition of \(\Theta^* L^{1/2} \) by \(\Theta^* L^{1/2} = U \Sigma V^T \), where \(U \in \mathbb{R}^{d_1 \times d_1} \) and \(V \in \mathbb{R}^{d_2 \times d_2} \) are orthogonal matrices. For a given \(T \)

Let \(\Delta = P_T(M) = U_r U_r^T M + MV_r V_r^T - U_r U_r^T M V_r V_r^T \). The projection of \(M \) onto the complement space \(T^\perp \) is \(P_{T^\perp}(M) = (I - U_r U_r^T) M (I - V_r V_r^T) \). The subspace \(T \) and the respective projections onto \(T \) and \(T^\perp \) play crucial a role in the analysis of nuclear norm minimization, since they define the sub-gradient of the nuclear norm at \(\Theta^* \). We refer to [10] for more detailed treatment of this topic.

Let \(\Delta' = P_T(\Delta L^{1/2}) \) and \(\Delta'' = P_{T^\perp}(\Delta L^{1/2}) \). Notice that \(P_T(\Theta^* L^{1/2}) = U_r \Sigma_r V_r^T \), where \(\Sigma_r \in \mathbb{R}^{r \times r} \) is the diagonal matrix formed by the top \(r \) singular values. Since \(P_T(\Theta^* L^{1/2}) \) and \(\Delta'' \) have row and column spaces that are orthogonal, it follows from Lemma 2.3 in [35] that
\[\|P_T(\Theta^* L^{1/2}) - \Delta''\|_{\text{nuc}} = \|P_T(\Theta^* L^{1/2})\|_{\text{nuc}} + \|\Delta''\|_{\text{nuc}}. \]

Hence, in view of the triangle inequality,
\[\|\hat{\Theta} L^{1/2}\|_{\text{nuc}} = \|P_T(\Theta^* L^{1/2}) + P_{T^\perp}(\Theta^* L^{1/2}) - \Delta' - \Delta''\|_{\text{nuc}} \]
\[\geq \|P_T(\Theta^* L^{1/2}) - \Delta''\|_{\text{nuc}} - \|P_{T^\perp}(\Theta^* L^{1/2}) - \Delta'\|_{\text{nuc}} \]
\[= \|P_T(\Theta^* L^{1/2})\|_{\text{nuc}} + \|\Delta''\|_{\text{nuc}} - \|P_{T^\perp}(\Theta^* L^{1/2})\|_{\text{nuc}} - \|\Delta'\|_{\text{nuc}} \]
\[\geq \|P_T(\Theta^* L^{1/2})\|_{\text{nuc}} + \|\Delta''\|_{\text{nuc}} - 2 \|P_{T^\perp}(\Theta^* L^{1/2})\|_{\text{nuc}} - \|\Delta'\|_{\text{nuc}}. \] (72)

Because \(\hat{\Theta} \) is an optimal solution, we have
\[\lambda \left(\|\hat{\Theta} L^{1/2}\|_{\text{nuc}} - \|\Theta^* L^{1/2}\|_{\text{nuc}} \right) \leq -\mathcal{L}(\Theta^*) + \mathcal{L}(\hat{\Theta}) \]
\[\overset{(a)}{\leq} \langle \Delta L^{1/2}, \nabla \mathcal{L}(\Theta^*) L^{-1/2} \rangle \]
\[\overset{(b)}{\leq} \|\Delta\|_{L_{\text{nuc}}} \|\nabla \mathcal{L}(\Theta^*) L^{-1/2}\|_2 \leq \frac{\lambda}{2} \|\Delta\|_{L_{\text{nuc}}}, \] (73)

where (a) holds due to the convexity of \(-\mathcal{L} \); (b) follows from the Cauchy-Schwarz inequality; the last inequality holds due to the assumption that \(\lambda \geq 2 \|\nabla \mathcal{L}(\Theta^*)\|_2 \). Combining (72) and (73) yields
\[2 \left(\|\Delta''\|_{\text{nuc}} - 2 \|P_{T^\perp}(\Theta^* L^{1/2})\|_{\text{nuc}} - \|\Delta'\|_{\text{nuc}} \right) \leq \|\Delta\|_{L_{\text{nuc}}} \leq \|\Delta'\|_{\text{nuc}} + \|\Delta''\|_{\text{nuc}}. \]
Thus \(\|\Delta''\|_{\text{nuc}} \leq 3\|\Delta'\|_{L,\text{nuc}} + 4\|P_{T^\perp}(\Theta^*L'^{1/2})\|_{\text{nuc}} \). By triangle inequality,

\[
\|\Delta\|_{\text{nuc}} \leq 4\|\Delta'\|_{\text{nuc}} + 4\|P_{T^\perp}(\Theta^*L'^{1/2})\|_{\text{nuc}}.
\]

Notice that \(\Delta' = U_rU_r^T\Delta L'^{1/2} + (I - U_rU_r^T)\Delta L'^{1/2}V_rV_r^T \) has rank at most \(r \). Thus \(\Delta' \) has rank at most \(2r \). Hence, \(\|\Delta'\|_{\text{nuc}} \leq \sqrt{2r}\|\Delta'\|_F \leq \sqrt{2r}\|\Delta L'^{1/2}\|_F \leq \sqrt{2r}\|\Delta\|_L \).

Then the theorem follows because \(\|P_{T^\perp}(\Theta^*L'^{1/2})\|_{\text{nuc}} = \sum_{j=r+1}^N \sigma_j(\Theta^*L'^{1/2}) \).

B Proof of the information-theoretic Graph Sampling lower bound, Theorem 2

The proof uses Fano Inequality based packing set argument to get an lower bound on the error of any (measurable) estimator. We will construct a packing set in \(\Omega_\alpha \) with a minimum distance of \(\delta \) between any pair of elements in the packing.

Let \(\{\Theta^{(1)}, \Theta^{(2)}, \ldots, \Theta^{(M)}\} \) be a set of \(M \) matrices within the set \(\Omega_\alpha \), satisfying \(\|\Theta^{(\ell_1)} - \Theta^{(\ell_2)}\|_L \geq \delta \) for all \(\ell_1, \ell_2 \in [M] \). Now, \(\Theta^{(N)} \) is uniformly drawn from this set and then the comparison results (according to MNL model) of \(n \) randomly chosen pairs of items, each drawn according to the probability matrix \(P \) and each compared by uniformly chosen user. Let \(\hat{N} \) be the best estimator of \(N \) from the observations. Then we can show that,

\[
\sup_{\Theta^* \in \Omega_\alpha} \mathbb{P}\left\{\left\|\hat{\Theta} - \Theta^*\right\|_L^2 \geq \frac{\delta^2}{2}\right\} \geq \mathbb{P}\left\{\hat{N} \neq N\right\}, \tag{74}
\]

Now we have converted the problem of finding the minimum estimation error, into finding the minimum probability error of a \(M \)-ary hypothesis testing problem. If we can prove that the above RHS is lower bounded by \(1/2 \), we are done.

The generalized Fano’s inequality along with data processing inequality gives us,

\[
\mathbb{P}\left\{\hat{N} \neq N\right\} \geq 1 - \frac{\mathbb{E}[I(\hat{N}; N)] + \log 2}{\log M} \tag{75}
\]

\[
\geq 1 - \frac{(M/2)^{-1}\sum_{\ell_1, \ell_2 \in [M]} D_{\text{KL}}(\Theta^{(\ell_1)} \| \Theta^{(\ell_2)}) + \log 2}{\log M}, \tag{76}
\]

where \(D_{\text{KL}}(\Theta^{(\ell_1)} \| \Theta^{(\ell_2)}) \) denotes the *expected* Kullback-Leibler divergence between the probability distributions of the comparison results of the observed \(nd_1 \) pairs, for \(N = \ell_1 \) and \(N = \ell_2 \). The expectation is taken over different choices for the selected pairs for comparison.

\[
D_{\text{KL}}(\Theta^{(\ell_1)} \| \Theta^{(\ell_2)}) = n \sum_{i \in [d_1]} \frac{1}{d_1} \sum_{\{j, j'\} \subset [d_2]} 2P_{u,w} \left[\frac{e^{\Theta^{(\ell_1)}_{ij}}}{e^{\Theta^{(\ell_1)}_{ij}} + e^{\Theta^{(\ell_2)}_{ij}}} \log \left(\frac{e^{\Theta^{(\ell_1)}_{ij}}}{e^{\Theta^{(\ell_1)}_{ij}} + e^{\Theta^{(\ell_2)}_{ij}}} \right) + \frac{e^{\Theta^{(\ell_2)}_{ij}}}{e^{\Theta^{(\ell_2)}_{ij}} + e^{\Theta^{(\ell_1)}_{ij}}} \log \left(\frac{e^{\Theta^{(\ell_2)}_{ij}}}{e^{\Theta^{(\ell_2)}_{ij}} + e^{\Theta^{(\ell_1)}_{ij}}} \right) \right] \tag{77}
\]

\[
+ \frac{e^{\Theta^{(\ell_1)}_{ij'}}}{e^{\Theta^{(\ell_1)}_{ij'}} + e^{\Theta^{(\ell_2)}_{ij'}}} \log \left(\frac{e^{\Theta^{(\ell_1)}_{ij'}}}{e^{\Theta^{(\ell_1)}_{ij'}} + e^{\Theta^{(\ell_2)}_{ij'}}} \right) \tag{78}
\]

where \(n \) is the number of pairs of items selected and compared by one random user each, \(P_{ij,j'} \) is half the probability with which item pair \(\{j, j'\} \) is selected and the observation probabilities come from the standard MNL model. Let \(x_{ij,ij'} = e^{\Theta^{(\ell_1)}_{ij}}/(e^{\Theta^{(\ell_1)}_{ij}} + e^{\Theta^{(\ell_2)}_{ij}}) \) and \(y_{ij,ij'} = e^{\Theta^{(\ell_2)}_{ij}}/(e^{\Theta^{(\ell_2)}_{ij}} + e^{\Theta^{(\ell_2)}_{ij}}) \).
\[D_{\text{KL}}(\Theta^{(\ell_1)}\|\Theta^{(\ell_2)}) \leq n \sum_{i \in [d_1]} \frac{1}{d_1} \sum_{\{j,j'\} \subset [d_2]} 2P_{u,v} \left[x_{ijj'} \log \frac{x_{ijj'}}{y_{ijj'}} + (1 - x_{ijj'}) \log \frac{1 - x_{ijj'}}{1 - y_{ijj'}} \right] \] (79)

\[\leq n \sum_{i \in [d_1]} \frac{1}{d_1} \sum_{\{j,j'\} \subset [d_2]} 2P_{u,v} \left[\frac{x_{ijj'} - y_{ijj'}}{y_{ijj'}} + \frac{(1 - x_{ijj'}) - y_{ijj'}}{1 - y_{ijj'}} \right] \] (80)

\[= 2n \sum_{i \in [d_1]} \frac{1}{d_1} \sum_{\{j,j'\} \subset [d_2]} \left(x_{ijj'} - y_{ijj'} \right) P_{u,v} (x_{ijj'} - y_{ijj'}) \] (81)

\[\leq 8n^{2a} \sum_{i \in [d_1]} \frac{1}{d_1} \sum_{\{j,j'\} \subset [d_2]} (x_{ijj'} - y_{ijj'}) P_{u,v} (x_{ijj'} - y_{ijj'}) , \] (82)

where (a) is due to the fact that \(\log(x/y) \leq (x - y)/y \leq (x - y)/y \) for \(x/y \geq 0 \) and (b) is true because \(|\Theta_{ij}^{(\ell_2)}| \leq \alpha \) implies, \(y_{ijj'} = e^{\Theta_{ij}^{(\ell_2)}} / (e^{\Theta_{ij}^{(\ell_2)}} + e^{\Theta_{ij}^{(\ell_2)}}) \geq e^{-2a}/2 \) which in turn implies, \(y_{ijj'} (1 - y_{ijj'}) \geq e^{-2a/2} - e^{-2a}/4 \). Let \(f(z) = 1/(1 + e^{-z}) \), a 1-Lipschitz function, it can be seen that \((x_{ijj'} - y_{ijj'})^2 \leq (f(\Theta_{ij}^{(\ell_1)} - \Theta_{ij}^{(\ell_2)}))) - (f(\Theta_{ij}^{(\ell_1)} - \Theta_{ij}^{(\ell_2)})))^2 \leq (\Theta_{ij}^{(\ell_1)} - \Theta_{ij}^{(\ell_2)}))) - (\Theta_{ij}^{(\ell_1)} - \Theta_{ij}^{(\ell_2)})))^2 \). This gives us,

\[D_{\text{KL}}(\Theta^{(\ell_1)}\|\Theta^{(\ell_2)}) \leq \frac{8n^{2a}}{d_1} \sum_{i \in [d_1]} \sum_{\{j,j'\} \subset [d_2]} P_{u,v} (\Theta_{ij}^{(\ell_1)} - \Theta_{ij}^{(\ell_2)}))) - (\Theta_{ij}^{(\ell_1)} - \Theta_{ij}^{(\ell_2)})))^2 , \] (83)

\[\leq \frac{8n^{2a}}{d_1} \sum_{i \in [d_1]} (\Theta_{ij}^{(\ell_1)} - \Theta_{ij}^{(\ell_2)})) \times L(\Theta_{ij}^{(\ell_1)} - \Theta_{ij}^{(\ell_2)}))^2 , \] (84)

\[= \frac{8n^{2a}}{d_1} \sum_{i \in [d_1]} (\Theta_{ij}^{(\ell_1)} - \Theta_{ij}^{(\ell_2)})) \times L(\Theta_{ij}^{(\ell_1)} - \Theta_{ij}^{(\ell_2)}))^2 , \] (85)

\[= \frac{8n^{2a}}{d_1} \left\| (\Theta_{ij}^{(\ell_1)} - \Theta_{ij}^{(\ell_2)}) \right\|^2 \text{F} \] (86)

\[= \frac{8n^{2a}}{d_1} \left\| (\Theta_{ij}^{(\ell_1)} - \Theta_{ij}^{(\ell_2)}) \right\|^2 \text{L} ; \] (87)

\[\text{(88)} \]

where (a) is due to the fact that \(L = \text{diag}(P_u) \) is the Laplacian of the probability matrix \(P_u \) and \(\Theta_i \) denotes the i-th row of matrix \(\Theta \). Combining the above with (76) we get,

\[P\left\{ \hat{N} \neq N \right\} \geq 1 - \frac{(M/2)^{-1} \sum_{\ell_1,\ell_2 \in [M]} \left\| (\Theta^{(\ell_1)} - \Theta^{(\ell_2)}) \right\|^2 \text{L}}{\log M} . \] (89)

The remainder of the proof relies on the following probabilistic packing.

Lemma B.1. For each \(r \in \{1, \ldots, d_1\} \), and for any positive \(\delta > 0 \) there exists a family of \(d_1 \times d_2 \) dimensional matrices \(\Theta^{(1)} \ldots, \Theta^{(M(\delta))} \) with cardinality \(M(\delta) = \lfloor \exp(rd_1/256) \rfloor \) such that each matrix is rank \(r \) and the following bounds hold:

\[\left\| \Theta^{(\ell)} \right\| \text{L} \leq \delta , \text{ for all } \ell \in [M] \] (90)

\[\left\| (\Theta^{(\ell_1)} - \Theta^{(\ell_2)}) \right\| \text{L} \geq \delta , \text{ for all } \ell_1, \ell_2 \in [M] \] (91)

\[\Theta^{(\ell)} \in \Omega_{\tilde{\alpha}} , \text{ for all } \ell \in [M] , \] (92)

with \(\tilde{\alpha} = \delta \sqrt{\text{tr}(A_{\ell})}/\sqrt{rd_1} \).
Now if we assume $\delta \leq \alpha \sqrt{rd_1} / \text{tr} \left(\sqrt{\Lambda^T} \right)$, we get $\|\Theta^{(t)}\|_\infty$ for $t \in [M]$. The above lemma also implies that $\|\Theta^{(t)} - \Theta^{(t)}\|_F^2 \leq 4\delta^2$ which implies,

$$
P \left\{ \hat{N} \neq N \right\} \geq 1 - \frac{32n\gamma 2^2 \delta^2 / d_1 + \log 2}{rd_1 / 256} \geq \frac{1}{2},
$$

(93)

where the last inequality holds when $\delta \leq (e^{-\alpha} / 128) \sqrt{rd_1 / n}$. Along with (74), this proves that,

$$
\inf \sup E \left[\|\hat{\Theta} - \Theta^*\|_L \right] \geq \frac{\delta}{2},
$$

(94)

for all $\delta \leq \min \{ \alpha \sqrt{rd_1} / \text{tr} \left(\sqrt{\Lambda^T} \right), (e^{-\alpha} / 128) \sqrt{rd_1 / n} \}$. Now maximizing the RHS proves the theorem.

B.1 Proof of Lemma B.1

Inspired from the construction in [27], we furnish the following probabilistic argument for the existence of the desired family. For the choice of $M = \lfloor e^{rd_1 / 256} \rfloor$, and for each $\ell \in [M]$, generate a rank-r matrix $\Theta^{(t)} \in \mathbb{R}^{d_1 \times d_2}$ as follows:

$$
\Theta^{(t)} = \frac{\delta}{\sqrt{rd_1}} V^{(t)} \sqrt{\Lambda^T} U^T_r,
$$

(95)

where the columns of $U_r \in \mathbb{R}^{d_2 \times r}$ are the top r singular vectors of $L = U \Lambda U^T$, Λ_r is a diagonal matrix in $\mathbb{R}^{r \times r}$ and its diagonal elements are the top r singular values of L corresponding to columns of U_r, \dagger represents the Moore-Penrose pseudo inverse, and $V^{(t)}$ is a random matrix with each entry $V_{ij}^{(t)} \in \{-1, +1\}$ chosen independently and uniformly at random. First by definition, $\|\Theta^{(t)}\|_L = (\delta / \sqrt{rd_1}) \|V^{(t)}\|_F \leq \delta$, since $\|V^{(t)}\|_F = \sqrt{rd_1}$.

Define f as $f(V^{(t)}_1, V^{(t)}_2) = \|\Theta^{(t)}_1 - \Theta^{(t)}_2\|_L^2 = (\delta^2 / (rd_1)) \|V^{(t)}_1 - V^{(t)}_2\|_F^2$ which is a function of $2rd_1$ i.i.d. random Rademacher variables. Now we can apply McDiarmid’s concentration inequality since f is Lipschitz as follows. For all $(V^{(t)}_1, V^{(t)}_2)$ and $(\bar{V}^{(t)}_1, \bar{V}^{(t)}_2)$ that differ in only one variable, say $\bar{V}^{(t)}_1 = V^{(t)}_1 + 2e_{ij}$, for some standard basis matrix e_{ij}, we have

$$
|f(V^{(t)}_1, V^{(t)}_2) - f(\bar{V}^{(t)}_1, \bar{V}^{(t)}_2)| = \left| \frac{\delta^2}{r d_2} \|V^{(t)}_1 - V^{(t)}_2\|_F^2 - \frac{\delta^2}{r d_2} \|V^{(t)}_1 - V^{(t)}_2 + 2e_{ij}\|_F^2 \right|
$$

$$
= \left| \frac{\delta^2}{r d_2} \|2e_{ij}\|_F^2 + \frac{\delta^2}{r d_2} \|\langle (V^{(t)}_1 - V^{(t)}_2), 2e_{ij} \rangle \| \right|
$$

$$
\leq \frac{4\delta^2}{r d_1} + \frac{\delta^2}{r d_1} \|V^{(t)}_1 - V^{(t)}_2\|_\infty \|2e_{ij}\|_1
$$

$$
\leq \frac{8\delta^2}{r d_1},
$$

(96)

where the penultimate step is true since $(V^{(t)}_1 - V^{(t)}_2)$ is entry-wise bounded by 2. The expectation $E[f(V^{(t)}_1, V^{(t)}_2)]$ is

$$
\frac{\delta^2}{r d_1} E \left[\|V^{(t)}_1 - V^{(t)}_2\|_F^2 \right] = \frac{2\delta^2}{r d_1} E \left[\|V^{(t)}_1\|_F^2 \right]
$$

$$
= 2\delta^2.
$$

(97)

Now applying McDiarmid’s inequality on the function f, we get that

$$
P \left\{ f(V^{(t)}_1, V^{(t)}_2) \leq 2\delta^2 - t \right\} \leq \exp \left\{ - \frac{t^2 r d_1}{64 \delta^4} \right\},
$$

(98)

33
Setting \(t = \delta^2 \) and applying the union bound gives us,

\[
P \left\{ \min_{t_1, t_2 \in [M]} \| \Theta^{(t)}_1 - \Theta^{(t)}_2 \|_F \geq \delta^2 \right\} \geq 1 - \exp \left\{ - \frac{r d_1}{64} + 2 \log M \right\} > 0 .
\]

In the last step, we used \(M = \lfloor \exp \{ r d_1 / 256 \} \rfloor \).

At last we prove that \(\Theta^{(t)} \)'s are in \(\Omega(\delta \sqrt{\mathrm{tr}(\Lambda)} / r d_1) \) as defined in (10). Since we know that \(g_i \) belongs to the kernel of \(L \) for all \(i \in [G] \), \(\Theta^{(t)} g = 0 \) by construction (6). From (95), consider \((V \sqrt{\Lambda_i^T U}^T)_{ij} = \langle v_i, \sqrt{\Lambda_i^T (u_r)_j} \rangle \), where \((u_r)_j \in \mathbb{R}^r\) is the vector of \(i \)-th entries of the top \(r \) singular vectors of \(L \), and \(v_i \in \mathbb{R}^r \) is drawn uniformly at random from \(\{-1, +1\}^r \).

\[
\| \langle v_i, \sqrt{\Lambda_i^T (u_r)_j} \rangle \| \leq \| v_i \|_\infty \| \sqrt{\Lambda_i^T (u_r)_j} \|_1 \leq \sqrt{\mathrm{tr}(\Lambda_i^T)} .
\]

The above proves that \(\| \Theta^{(t)} \|_\infty \) is upper bounded as desired.

C Proof of Theorem 3

We first introduce some additional notations used in the proof. Recall that \(L(\Theta) \) is the log likelihood function. Let \(\nabla L(\Theta) \in \mathbb{R}^{d_1 \times d_2} \) denote its gradient such that \(\nabla_{ij} L(\Theta) = \frac{\partial L(\Theta)}{\partial \Theta_{ij}} \). Let \(\nabla^2 L(\Theta) \in \mathbb{R}^{d_1 d_2 \times d_1 d_2} \) denote its Hessian matrix such that \(\nabla^2_{ij,ij'} L(\Theta) = \frac{\partial^2 L(\Theta)}{\partial \Theta_{ij} \partial \Theta_{ij'}} \). By the definition of \(L(\Theta) \) in (20), we have

\[
\nabla L(\Theta^*) = -\frac{1}{kd_1} \sum_{i=1}^{d_1} \sum_{\ell=1}^{d_2} e_i \left(p_{i,\ell} - p_{i,\ell}^* \right)^T ,
\]

where \(p_{i,\ell} \) denotes the conditional choice probability at \(\ell \)-th position. Precisely, \(p_{i,\ell} = \sum_{j \in S_i, \ell} p_{j,(i,\ell)} e_j \) where \(p_{j,(i,\ell)} \) is the probability that item \(j \) is chosen at \(\ell \)-th position from the top by the user \(i \) conditioned on the top \(\ell - 1 \) choices such that \(p_{j,(i,\ell)} = \mathbb{P} \{ v_{i,\ell} = j | v_{i,1}, \ldots, v_{i,\ell-1}, S_i \} = e^{\Theta_{ij}} / (\sum_{j' \in S_i, \ell} e^{\Theta_{ij'}}) \) and \(S_{i,\ell} \equiv S_i \setminus \{ v_{i,1}, \ldots, v_{i,\ell-1} \} \), where \(S_i \) is the set of alternatives presented to the \(i \)-th user and \(v_{i,\ell} \) is the item ranked at the \(\ell \)-th position by the user \(i \). Notice that for \(i \neq i' \), \(\frac{\partial^2 L(\Theta)}{\partial \Theta_{ij} \partial \Theta_{ij'}} = 0 \) and the Hessian is

\[
\frac{\partial^2 L(\Theta)}{\partial \Theta_{ij} \partial \Theta_{ij'}} = \frac{1}{kd_1} \sum_{\ell=1}^{kd_2} \mathbb{1}(j \in S_i, \ell) \frac{\partial p_{j,(i,\ell)}}{\partial \Theta_{ij'}} = \frac{1}{kd_1} \sum_{\ell=1}^{kd_2} \mathbb{1}(j, j' \in S_i, \ell) \left(p_{j,(i,\ell)} \mathbb{1}(j = j') - p_{j,(i,\ell)} p_{j',(i,\ell)} \right) .
\]

This Hessian matrix is a block-diagonal matrix \(\nabla^2 L(\Theta) = \text{diag}(H^{(1)}(\Theta), \ldots, H^{(d_1)}(\Theta)) \) with

\[
H^{(i)}(\Theta) = \frac{1}{kd_1} \sum_{\ell=1}^{kd_2} (\text{diag}(p_{i,\ell}) - p_{i,\ell} p_{i,\ell}^T) .
\]

Let \(\Delta = \Theta^* - \Theta \) where \(\Theta \) is the optimal solution of the convex program in (19). We first introduce three key technical lemmas. The first lemma follows from Lemma 1 of (37), and shows that \(\Delta \) is approximately low-rank.

Lemma C.1. If \(\lambda \geq 2 \| \nabla L(\Theta^*) \|_2 \), then we have

\[
\| \Delta \|_{\text{nuc}} \leq 4 \sqrt{2r} \| \Delta \|_F + 4 \sum_{j=p+1}^{\min\{d_1, d_2\}} \sigma_j(\Theta^*) ,
\]

for all \(\rho \in [\min\{d_1, d_2\}] \).
Proof of the above lemma is omitted because of its similarity to that of Lemma A.3. The following lemma provides a bound on the gradient using the concentration of measure for sum of independent random matrices \[\text{Lemma C.3} \]

\[\| \nabla \mathcal{L}(\Theta^*) \|_2 \leq \sqrt{\frac{4(1 + c) \log d}{k d^2}} \max \left\{ \sqrt{d_1/d_2}, \ e^{2\alpha} \sqrt{4(1 + c) \log(d)(8 \log d_2 + 2 \log d_1) \log k} \right\} . \tag{105} \]

Since we are typically interested in the regime where the number of samples is much smaller than the dimension \(d_1 \times d_2 \) of the problem, the Hessian is typically not positive definite. However, when we restrict our attention to the vectorized \(\Delta \) with relatively small nuclear norm, then we can prove restricted strong convexity, which gives the following bound.

\[\text{Lemma C.2. For any positive constant } c \geq 1 \text{ and } k \leq (1/e) d_2(4 \log d_2 + \log d_1), \text{ with probability at least } 1 - 2d^{-c} - d_2^{-3}, \]

\[\| \nabla \mathcal{L}(\Theta^*) \|_2 \leq \sqrt{\frac{4(1 + c) \log d}{k d^2}} \max \left\{ \sqrt{d_1/d_2}, \ e^{2\alpha} \sqrt{4(1 + c) \log(d)(8 \log d_2 + 2 \log d_1) \log k} \right\} . \tag{105} \]

Building on these lemmas, the proof of Theorem 3 is divided into the following two cases. In both cases, we will show that

\[\| \Delta \|_F^2 \leq 72 e^{4\alpha c_0} \alpha_0 d_1 d_2 \| \Delta \|_	ext{nuc} \tag{106} \]

with high probability. Applying Lemma C.1 proves the desired theorem. We are left to show Eq. (109) holds.

Case 1: Suppose \(\| \Delta \|_F^2 \geq \mu \| \Delta \|_	ext{nuc} \). With \(\Delta = \Theta^* - \hat{\Theta} \), the Taylor expansion yields

\[\mathcal{L}(\hat{\Theta}) = \mathcal{L}(\Theta^*) - \langle \nabla \mathcal{L}(\Theta^*), \Delta \rangle + \frac{1}{2} \text{Vec}(\Delta) \nabla^2 \mathcal{L}(\Theta) \text{Vec}^T(\Delta), \tag{110} \]

where \(\Theta = a\hat{\Theta} + (1 - a) \Theta^* \) for some \(a \in [0, 1] \). It follows from Lemma C.3 that with probability at least \(1 - 2d^{-218} \),

\[\mathcal{L}(\hat{\Theta}) - \mathcal{L}(\Theta^*) \geq -\langle \nabla \mathcal{L}(\Theta^*), \Delta \rangle + \frac{e^{-4\alpha}}{48 d_1 d_2} \| \Delta \|_F^2 \]

\[\geq -\| \nabla \mathcal{L}(\Theta^*) \|_2 \| \Delta \|_{\text{nuc}} + \frac{e^{-4\alpha}}{48 d_1 d_2} \| \Delta \|_F^2 . \]

From the definition of \(\hat{\Theta} \) as an optimal solution of the minimization, we have

\[\mathcal{L}(\hat{\Theta}) - \mathcal{L}(\Theta^*) \leq \lambda \left(\| \Theta^* \|_{\text{nuc}} - \| \hat{\Theta} \|_{\text{nuc}} \right) \leq \lambda \| \Delta \|_{\text{nuc}} . \]
By the assumption, we choose $\lambda \geq 480\lambda_0$. In view of Lemma C.2, this implies that $\lambda \geq 2\|\nabla L(\Theta^*)\|_2$ with probability at least $1 - 2d^{-3}$. It follows that with probability at least $1 - 2d^{-3} - 2d^{-2.5}$,

$$\frac{e^{-4\alpha}}{48d_1d_2} \|\Delta\|_F^2 \leq (\lambda + \|\nabla L(\Theta^*)\|_2) \|\Delta\|_{\text{nuc}} \leq \frac{3\lambda}{2} \|\Delta\|_{\text{nuc}}.$$

By our assumption on $\lambda \leq c_0\lambda_0$, this proves the desired bound in Eq. (109).

Case 2: Suppose $\|\Delta\|_F^2 \leq \mu \|\Delta\|_{\text{nuc}}$. By the definition of μ and the fact that $c_0 \geq 480$, it follows that $\mu \leq 72e^{4\alpha}c_0\lambda_0d_1d_2$, and we get the same bound as in Eq. (109).

C.1 Proof of Lemma C.2

Define $X_i = -e_i \sum_{\ell=1}^k (e_{v_{i,\ell}} - p_{i,\ell})^T$ such that $\nabla L(\Theta^*) = \frac{1}{k \ell} \sum_{i=1}^{d_1} X_i$, which is a sum of d_1 independent random matrices. Although $\|X_i\|_2$ can be as large as $O(k)$, this occurs with very low probability. We make this precise in the following lemma and focus on the case where $\|X_i\|_2 = O(\sqrt{k})$ for all $i \in [d_1]$.

Lemma C.4. For a fixed $i \in [d_1]$ and $j \in [d_2]$, if $k \leq (1/c) d_2 (4\log d_2 + \log d_1)$, then the number of times the item j is observed by the user i is at most $8(\log d_2) + 2(\log d_1)$ with probability larger than $1 - 1/(d_2^3 d_1)$.

Proof is given in the end of this Section. Applying union bound over the d_1 items and d_2 users, we have the multiplicity in sampling for any item for all users is bounded by $8(\log d_2) + 2(\log d_1)$ with probability at least $1 - d_2^{-3}$. We denote this event by \mathcal{A} and let $\mathbb{I}(\mathcal{A})$ be the indicator function that all the multiplicities in sampling are bounded. We first upper bound $\|\sum_i X_i \mathbb{I}(\mathcal{A})\|_2$ using the Matrix Bernstein inequality [24].

$$\|X_i\|_2 = \|\mathbb{I}(\mathcal{A}) \sum_{\ell=1}^k (e_{v_{i,\ell}} - p_{i,\ell})\|_2$$

$$\leq \|\mathbb{I}(\mathcal{A}) \sum_{\ell=1}^k e_{v_{i,\ell}}\|_2 + \|\mathbb{I}(\mathcal{A}) \sum_{\ell=1}^k p_{i,\ell}\|_2$$

$$(b) \leq (8(\log d_2) + 2(\log d_1)) \sqrt{\min\{k, d_2\}} \left(1 + \left(\sum_{\ell=1}^k \frac{e^{2\alpha}}{\ell}\right)\right)$$

$$(c) \leq \sqrt{k}(8(\log d_2) + 2(\log d_1))(1 + 2e^{2\alpha} \log k)$$

$$\leq 3\sqrt{k}(8(\log d_2) + 2(\log d_1))e^{2\alpha} \log k,$$

where (a) is by triangle inequality, (b) is because under the given event \mathcal{A} each term in $\sum_{\ell} e_{v_{i,\ell}}$ and $\sum_{\ell} p_{i,\ell}$ are upper bounded by $\log d_2$ and $\left(\sum_{\ell=1}^k \frac{e^{2\alpha}}{\ell}\right)$ log d_2 respectively and because there can be at most $\min\{\sqrt{d_2/k}\}$ non-zero entries in the two vectors $\sum_{\ell} e_{v_{i,\ell}}$ and $\sum_{\ell} p_{i,\ell}$ and, (c) is due to the fact that k-th harmonic number $\sum_{\ell=1}^k \frac{1}{\ell}$ is upper bounded by $\log k$. We also have,

$$\left\|\sum_i \mathbb{E} [X_iX_i^T \mathbb{I}(\mathcal{A})]\right\|_2 \leq \left\|\sum_i \mathbb{E} [X_iX_i^T]\right\|_2 \leq \left\|\sum_{i=1}^{d_1} e_i e_i^T \mathbb{E} \left[\sum_{\ell=1}^k (e_{v_{i,\ell}} - p_{i,\ell})^T (e_{v_{i,\ell}} - p_{i,\ell})\right]\right\|_2$$

$$= \left\|\sum_{i=1}^{d_1} e_i e_i^T \mathbb{E} \left[\sum_{\ell=1}^k (e_{v_{i,\ell}} - p_{i,\ell})^T (e_{v_{i,\ell}} - p_{i,\ell})\right]\right\|_2$$

$$= \sum_{i=1}^{d_1} e_i e_i^T \left[\sum_{\ell=1}^k (e_{v_{i,\ell}} - p_{i,\ell})^T e_{v_{i,\ell}} - p_{i,\ell}^T p_{i,\ell}\right]$$

$$\leq \sum_{i=1}^{d_1} e_i e_i^T \left[\sum_{\ell=1}^k (e_{v_{i,\ell}} - p_{i,\ell})^T e_{v_{i,\ell}}\right]$$

$$= k\|I_{d_1 \times d_1}\|_2 = k,$$
Recall that the Hessian matrix is a block-diagonal matrix with the i-th block $H^{(i)}(\Theta)$ given by (103). We use the following remark from [17] to bound the Hessian.

\[
\| \sum_{i=1}^{d_1} \mathbb{E} [X_i^T X_i \| (A) \|] \|_2 \leq \| \sum_{i=1}^{d_1} \mathbb{E} [X_i^T X_i] \|_2
\]

By matrix Bernstein inequality [54],

\[
P\left(\| \nabla \mathcal{L}(\Theta^*) \| (A) \|_2 > t \right) \leq (d_1 + d_2) \exp \left(\frac{-k^2 d_*^2 t^2/2}{(d_1 k \min\{d_2, d_1\}) + (3e^{2\alpha}k^{3/2}d_1(8\log d_2 + 2\log d_1)) \log k t/3} \right),
\]

which gives the tail probability of $2d^{-c}$ for the choice of

\[
t = \max \left\{ \sqrt{\frac{4(1+c) \log d}{kd_1 \min\{d_2, d_1\}}} \frac{4(1+c)e^{2\alpha} \log(d) (8\log d_2 + 2\log d_1)) \log k}{k^{1/2} d_1} \right\}
\]

\[
= \frac{\sqrt{4(1+c) \log d}}{k^{1/2} d_1} \max \left\{ \sqrt{d_1/d_2}, e^{2\alpha} \sqrt{4(1+c) \log(d)} (8\log d_2 + 2\log d_1)) \log k \right\}.
\]

Now with a high probability of $1 - \frac{2}{d^c} - \frac{1}{d_2^2}$ the desired bound is true.

C.2 Proof of Lemma [C.1]

In a classical balls-in-bins setting, we consider k as the number of balls and d_2 as the number of bins. We can consider the number of balls in a particular bin as the number of times the user i observes item j. Let the event that this number is at least δ be denoted by the event A_j^i. Then, $\mathbb{P} \{ A_j^i \} \leq \left(\frac{k}{d_2} \right) \delta \leq \left(\frac{ke}{d_2^2} \right) \delta$.

Using the fact that $(1/x)^a \leq a$ for any $x \geq (2 \log(1/a))/(\log\log(1/a))$, we let $x = d_2 \delta/(ke)$ to get

\[
\left(\frac{ke}{d_2^2} \right) \delta \leq a^{\frac{ke}{d_2^2}},
\]

for $\delta \geq (ke/d_2)(2 \log(1/a))/(\log\log(1/a))$. Choosing $a = (1/d_2^2 d_1)^{d_2/ke}$, we have $\mathbb{P} \{ A_j^i \} \leq 1/(d_1 d_2^2)$, for a choice of $\delta = 2 \log(d_2/d_1) \geq 2 \log((d_2/ke) \log(d_2^2 d_1))$.

C.3 Proof of Lemma [C.3]

Recall that the Hessian matrix is a block-diagonal matrix with the i-th block $H^{(i)}(\Theta)$ given by (103). We use the following remark from [17] to bound the Hessian.
Remark C.5. \cite[Claim 1]{17} Given \(\theta \in \mathbb{R}^r \), let \(p \) be the column probability vector with \(p_i = e^{\theta_i}/(e^{\theta_1} + \dots + e^{\theta_r}) \) for each \(i \in [\rho] \) and for any positive integer \(\rho \). If \(|\theta_i| \leq \alpha \), for all \(i \in [\rho] \), then

\[
e^{2\alpha} (\text{diag}(p) - pp^T) \geq \frac{1}{\rho} \text{diag}(1) - \frac{1}{\rho^2} 11^T.
\]

By letting \(1_{S,i,\ell} = \sum_{j \in S,i,\ell} e_j \) and applying the above claim, we have

\[
e^{2\alpha} H^{(i)}(\Theta) \geq \frac{1}{k d_1} \sum_{\ell=1}^{k} \left(\frac{1}{k - \ell + 1} \text{diag}(1_{S,i,\ell}) - \frac{1}{(k - \ell + 1)^2} 1_{S,i,\ell} 1_{S,i,\ell}^T \right)
\]

\[
= \frac{1}{2 k d_1} \sum_{\ell=1}^{k} \frac{1}{(k - \ell + 1)^2} \sum_{j,j' \in S,i,\ell} (e_j - e_{j'})(e_j - e_{j'})^T
\]

\[
\geq \frac{1}{2 k d_1} \sum_{\ell=1}^{k} \sum_{j,j' \in S,i,\ell} (e_j - e_{j'})(e_j - e_{j'})^T.
\]

Hence,

\[
\text{Vec}(\Delta) \mathbf{v}^2 \mathcal{L}(\Theta) \text{Vec}^T(\Delta) = \sum_{i=1}^{d_i} (\Delta^T e_i)^T H^{(i)}(\Theta)(\Delta^T e_i)
\]

\[
\geq \frac{e^{-2\alpha}}{2 k d_1} \sum_{i=1}^{d_i} \sum_{\ell=1}^{k} \sum_{j,j' \in S,i,\ell} \left\| e_i^T \Delta(e_j - e_{j'}) \right\|_2^2.
\]

By changing the order of the summation, we get that

\[
\sum_{\ell=1}^{k} \sum_{j,j' \in S,i,\ell} \left\| e_i^T \Delta(e_j - e_{j'}) \right\|_2^2 = \sum_{i=1}^{d_i} \sum_{\ell,\ell' = 1}^{k} \langle \Delta, e_{i,j_i,\ell} - e_{i,j_i,\ell'} \rangle^2 \sum_{\ell'' = 1}^{k} 1(\sigma_i(j_i,\ell'') \leq \min\{\sigma_i(j_i,\ell), \sigma_i(j_i,\ell')\}).
\]

Define

\[
\chi_{i,\ell,\ell',\ell''} \equiv 1(\sigma_i(j_i,\ell'') \leq \min\{\sigma_i(j_i,\ell), \sigma_i(j_i,\ell')\}),
\]

and let

\[
H(\Delta) = \frac{e^{-2\alpha}}{2 k d_1} \sum_{i=1}^{d_i} \sum_{\ell,\ell' = 1}^{k} \langle \Delta, e_{i,j_i,\ell} - e_{i,j_i,\ell'} \rangle^2 \sum_{\ell'' = 1}^{k} \chi_{i,\ell,\ell',\ell''}.
\]

Then we have \(\text{Vec}^T(\Delta) \mathbf{v}^2 \mathcal{L}(\Theta) \text{Vec}(\Delta) \geq H(\Delta) \). To prove the theorem, it suffices to bound \(H(\Delta) \) from the below. First, we prove a lower bound on the expectation \(\mathbb{E}[H(\Delta)] \). Notice that for \(\ell \neq \ell' \), the conditional expectation of \(\chi_{i,\ell,\ell',\ell''} \)'s, given the set of alternatives presented to user \(i \) is

\[
\mathbb{E} \left[\sum_{\ell''=1}^{k} \chi_{i,\ell,\ell',\ell''} \mid j_{i,1}, \ldots, j_{i,k} \right] = 1 + \sum_{\ell,\ell' \neq \ell''} \frac{\exp(\theta_{i,j_i,\ell''})}{\exp(\theta_{i,j_i,\ell'}) + \exp(\theta_{i,j_i,\ell''}) + \exp(\theta_{i,j_i,\ell'})} \geq 1 + \frac{k - 2}{1 + 2e^{2\alpha}} \geq \frac{k}{3e^{2\alpha}}.
\]
Then,

\[
\mathbb{E}[H(\Delta)] = \frac{e^{-2\alpha}}{2k^3d_1} \sum_{i,\ell,\ell'} \mathbb{E} \left[\langle \Delta, e_{i,j,i,\ell} - e_{i,j,i,\ell'} \rangle \right] ^2 \mathbb{E} \left[\sum_{\ell' = 1}^k \chi_{i,\ell,\ell',\ell''} |j_i,1,\ldots,j_i,k| \right]
\]

\[
\geq \frac{6k^2d_1}{e^{-4\alpha}} \sum_{i,\ell,\ell' \in [k]} \mathbb{E} \left[\langle \Delta, e_{i,j,i,\ell} - e_{i,j,i,\ell'} \rangle \right] ^2
\]

\[
= \frac{e^{-4\alpha}}{6k^2d_1} \sum_{i,\ell,\ell' \in [k]} \left(\sum_{j = 1}^{d_2} \Delta^2 - \frac{2}{d_2} \sum_{j \neq j' \in [k]} \Delta_{ij} \Delta_{ij'} \right)
\]

\[
= \frac{e^{-4\alpha}(k-1)}{3k^2d_1d_2} \|\Delta\|_F^2,
\]

(116)

where the last equality holds because \(\sum_{j \in [d_2]} \Delta_{ij} = 0 \) for \(\Delta \in \Omega_{2\alpha} \) and for all \(i \in [d_1] \).

We are left to prove that \(H(\Delta) \) cannot deviate from its mean too much. Suppose there exists a \(\Delta \in \mathcal{A} \) such that Eq. (106) is violated, i.e. \(H(\Delta) < (e^{-4\alpha}/(24d_1d_2)) \|\Delta\|_F^2 \). We will show this happens with a small probability. From Eq. (116), we get that for \(k \geq 24 \),

\[
\mathbb{E}[H(\Delta)] - H(\Delta) \geq \frac{(7k-8)e^{-4\alpha}}{24k} \frac{d_1d_2\|\Delta\|_F^2}{d_1d_2} \geq \frac{(20/3)e^{-4\alpha}}{24d_1d_2} \|\Delta\|_F^2.
\]

(117)

We use a peeling argument as in [37 Lemma 3], [56] to upper bound the probability that Eq. (117) is true. We first construct the following family of subsets to cover \(\mathcal{A} \) such that \(\Delta \subseteq \bigcup_{\ell = 1}^{\infty} \mathcal{S}_\ell \). Recall \(\mu = 2^{10\varepsilon^{2\alpha}d_2(\log d)/k\min\{d_1,d_2\}) \), define in (108). Notice that since for any \(\Delta \in \mathcal{A} \), \(\|\Delta\|_F^2 \geq \mu\|\Delta\|_{\text{nuc}} \geq \mu\|\Delta\|_F \), it follows that \(\|\Delta\|_F \geq \mu \). Then, we can cover \(\mathcal{A} \) with the family of sets

\[
\mathcal{S}_\ell = \left\{ \Delta \in \mathbb{R}^{d_1 \times d_2} \left| \|\Delta\|_\infty \leq 2\alpha, \beta^{\ell-1} \mu \leq \|\Delta\|_F \leq \beta^\ell \mu, \sum_{j \in [d_2]} \Delta_{ij} = 0 \text{ for all } i \in [d_1], \text{ and } \|\Delta\|_{\text{nuc}} \leq \beta^\ell \mu \right\},
\]

where \(\beta = \sqrt{10/9} \) and for \(\ell \in \{1, 2, 3, \ldots\} \). This implies that when there exists a \(\Delta \in \mathcal{A} \) such that (117) holds, then there exists an \(\ell \in \mathbb{Z}_+ \) such that \(\Delta \in \mathcal{S}_\ell \) and

\[
\mathbb{E}[H(\Delta)] - H(\Delta) \geq \frac{(20/3)e^{-4\alpha}}{24d_1d_2} \beta^{2(\ell-1)} \mu^2 \geq \frac{e^{-4\alpha}}{4d_1d_2} \beta^{2\ell} \mu^2.
\]

(118)

Applying the union bound over \(\ell \in \mathbb{Z}_+ \), we get from (117) and (118) that

\[
P\left\{ \exists \Delta \in \mathcal{A}, H(\Delta) < \frac{e^{-4\alpha}}{24d_1d_2} \|\Delta\|_F^2 \right\} \leq \sum_{\ell = 1}^{\infty} P\left\{ \sup_{\Delta \in \mathcal{S}_\ell} \left(\mathbb{E}[H(\Delta)] - H(\Delta) \right) > \frac{e^{-4\alpha}}{4d_1d_2} \beta^\ell \mu^2 \right\}
\]

\[
\leq \sum_{\ell = 1}^{\infty} P\left\{ \sup_{\Delta \in \mathcal{B}(\beta;\mu)} \left(\mathbb{E}[H(\Delta)] - H(\Delta) \right) > \frac{e^{-4\alpha}}{4d_1d_2} \beta^\ell \mu^2 \right\},
\]

(119)

where we define a new set \(\mathcal{B}(D) \) such that \(\mathcal{S}_\ell \subseteq \mathcal{B}(\beta;\mu) \):

\[
\mathcal{B}(D) = \left\{ \Delta \in \mathbb{R}^{d_1 \times d_2} \left| \|\Delta\|_\infty \leq 2\alpha, \|\Delta\|_F \leq D, \sum_{j \in [d_2]} \Delta_{ij} = 0 \text{ for all } i \in [d_1], \mu\|\Delta\|_{\text{nuc}} \leq D^2 \right\}.
\]

(120)

The following key lemma provides the upper bound on this probability.
Lemma C.6. For $(16 \min\{d_1, d_2\} \log d)/(3d_1) \leq k \leq d^2 \log d$,
\[
\mathbb{P}\left\{ \sup_{\Delta \in B(D)} \left(\mathbb{E}[H(\Delta)] - H(\Delta) \right) \geq \frac{e^{-4\alpha}}{4d_1d_2} \right\} \leq \exp \left\{ -\frac{e^{-4\alpha} k D^4}{2^{19}\alpha^4 d_1 d_2^2} \right\}. \tag{121}
\]

Let $\eta = \exp \left(-\frac{e^{-4\alpha} 4k(\beta - 1.002) \mu^4}{2^{19} \alpha^4 d_1 d_2^2} \right)$. Applying the tail bound to (119), we get
\[
\mathbb{P}\left\{ \exists \Delta \in A, \ H(\Delta) < \frac{e^{-4\alpha}}{24d_1d_2} \|\Delta\|^2 \right\} \leq \sum_{\ell = 1}^\infty \exp \left\{ -\frac{e^{-4\alpha} k (\beta^\ell \mu)^4}{2^{19} \alpha^4 d_1 d_2^2} \right\} \leq \sum_{\ell = 1}^\infty \exp \left\{ -\frac{e^{-4\alpha} 4k(-\beta + 1.002) \mu^4}{2^{19} \alpha^4 d_1 d_2^2} \right\} \leq \frac{\eta}{1 - \eta},
\]
where (a) holds because $\beta^x \geq x \log \beta \geq x(\beta - 1.002)$ for the choice of $\beta = \sqrt{10}/9$. By the definition of μ, $\eta = \exp \left\{ -\frac{2^{23} e^{4\alpha} d_2^2 d_1 (\log d)^2 (\beta - 1.002)}{k(\min\{d_1, d_2\})^2} \right\} \leq \exp \{-2^{18} \log d\}$,

where the last inequality follows from the assumption that $k \leq \max\{d_1, d_2^2/d_1\} \log d = (d_2^2 d_1 \log d)/(\min\{d_1, d_2\})^2$, and $\beta - 1.002 \geq 2^{-5}$. Since for $d \geq 2$, $\exp\{-2^{18} \log d\} \leq 1/2$ and thus $\eta \leq 1/2$, the lemma follows by assembling the last two displayed inequalities.

C.4 Proof of Lemma [C.6]

Recall that
\[
H(\Delta) = \frac{e^{-2\alpha}}{2 k^3 d_1} \sum_{i = 1}^{d_1} \sum_{\ell, \ell' = 1}^k \langle \Delta, e_{i,j_i,\ell} - e_{i,j_i,\ell'} \rangle^2 \sum_{\ell'' = 1}^k \chi_{i,\ell,\ell',\ell''},
\]

with $\chi_{i,\ell,\ell',\ell''} = \mathbb{I} \left(\sigma_i(j_i,\ell') \leq \min\{\sigma_i(j_i,\ell), \sigma_i(j_i,\ell')\} \right)$. Let $Z = \sup_{\Delta \in B(D)} \mathbb{E}[H(\Delta)] - H(\Delta)$ be the worst-case random deviation of $H(\Delta)$ form its mean. We prove an upper bound on Z by showing that $Z - \mathbb{E}[Z] \leq e^{-4\alpha} D^2/(64d_1d_2)$ with high probability, and $\mathbb{E}[Z] \leq 9e^{-4\alpha} D^2/(40d_1d_2)$. This proves the desired claim in Lemma [C.6].

To prove the concentration of Z, we utilize the random utility model (RUM) theoretic interpretation of the MNL model. The random variable Z depends on the random choice of alternatives $\{j_{i,\ell}\}_{i \in [d_1], \ell \in [k]}$ and the random k-wise ranking outcomes $\{\sigma_i\}_{i \in [d_1]}$. The random utility theory, pioneered by [52, 29, 28], tells us that the k-wise ranking from the MNL model has the same distribution as first drawing independent (unobserved) utilities $u_{i,\ell'}$'s of the item $j_{i,\ell}$ for user i according to the standard Gumbel Cumulative Distribution Function (CDF) $F(c - \Theta_{i,j_{i,\ell}})$ with $F(c) = e^{-e^{-c}}$, and then ranking the k items for user i according to their respective utilities. Given this definition of the MNL model, we have $\chi_{i,\ell,\ell',\ell''} = \mathbb{I} \left(u_{i,\ell''} \geq \max\{u_{i,\ell,\ell'}, u_{i,\ell}\} \right)$. Thus Z is a function of independent choices of the items and their (unobserved) utilities, i.e. $Z = f(\{(j_{i,\ell}, u_{i,\ell})\}_{i \in [d_1], \ell \in [k]})$. Let $x_{i,\ell} = (j_{i,\ell}, u_{i,\ell})$ and write $H(\Delta)$ as $H(\Delta, \{x_{i,\ell}\}_{i \in [d_1], \ell \in [k]})$. This allows us to bound the difference and apply McDiarmid's tail bound. Note that for any $i \in [d_1], \ell \in [k]$,
where the randomness is in the choice of alternatives j, and for any i, j, u, v, w, we have
\[
\mathbb{P} \{ Z - \mathbb{E}[Z] \geq t \} \leq \exp \left(-\frac{k^2 d_1^2 t^2}{2^{19} \alpha^4 e^{-4\alpha} d_1 k} \right).
\]

It follows that for the choice of $t = e^{-4\alpha} D^2 / (64d_1 d_2)$,
\[
\mathbb{P} \{ Z - \mathbb{E}[Z] \geq \frac{e^{-4\alpha} D^2}{64d_1 d_2} \} \leq \exp \left(-\frac{e^{-4\alpha} kD^4}{2^{19} \alpha^4 d_1 d_2} \right).
\]

We are left to prove the upper bound on $\mathbb{E}[Z]$ using symmetrization and contraction. Define random variables
\[
Y_{i,\ell,\ell',\ell''}(\Delta) = (\Delta_{i,j_i,\ell} - \Delta_{i,j_i,\ell'})^2 \chi_{i,\ell,\ell',\ell''},
\]
where the randomness is in the choice of alternatives j_i, j_i, ℓ, and j_i, and the outcome of the comparisons of those three alternatives.

The main challenge in applying the symmetrization to $\sum_{\ell,\ell',\ell'' \in [k]} Y_{i,\ell,\ell',\ell''}(\Delta)$ is that we need to partition the summation over the set $[k] \times [k] \times [k]$ into sub-sets of independent random variables, such that we can apply the standard symmetrization argument. To this end, we prove in the following lemma a generalization of the well-known problem of scheduling a round robin tournament to a tournament of matches involving three teams each. No teams are present in more than one triple in a single round, and we want to minimize the number of rounds to cover all combination of triples are matched. For example, when there are $k = 6$ teams, there is a simple construction of such a tournament: $T_1 = \{1, 2, 3\}, (4, 5, 6\}$, $T_2 = \{1, 2, 4\}, (3, 5, 6\}$, $T_3 = \{1, 2, 5\}, (3, 4, 6\}$, $T_4 = \{1, 2, 6\}, (3, 4, 5\}$, $T_5 = \{1, 3, 4\}, (2, 5, 6\}$, $T_6 = \{1, 3, 5\}, (2, 4, 6\}$, $T_7 = \{1, 3, 6\}, (2, 4, 5\}$, $T_8 = \{1, 4, 5\}, (2, 3, 6\}$, $T_9 = \{1, 4, 6\}, (2, 3, 5\}$, $T_{10} = \{1, 5, 6\}, (2, 3, 4\}$. This is a perfect scheduling of a tournament with three teams in each match. For a general k, the following lemma provides a construction with $O(k^2)$ rounds.

Lemma C.7. There exists a partition (T_1, \ldots, T_N) of $[k] \times [k] \times [k]$ for some $N \leq 24k^2$ such that T_a’s are disjoint subsets of $[k] \times [k] \times [k]$, $\bigcup_{a \in [N]} T_a = [k] \times [k] \times [k]$, $|T_a| \leq \lfloor k/3 \rfloor$ and for any $a \in [N]$ the set of random variables in T_a satisfy
\[
\{Y_{i,\ell,\ell',\ell''} \}_{i \in [d], (\ell,\ell',\ell'') \in T_a} \text{ are mutually independent}.
\]
Now, we are ready to partition the summation.

\[
E[Z] = \frac{e^{-2\alpha}}{2k^3d_1} \mathbb{E}\left[\sup_{\Delta \in B(D)} \sum_{i \in [d_1]} \sum_{\ell, \ell', \ell''} \left\{ \mathbb{E}[Y_{i, \ell, \ell', \ell''}(\Delta)] - Y_{i, \ell, \ell', \ell''}(\Delta) \right\} \right] \\
= \frac{e^{-2\alpha}}{2k^3d_1} \mathbb{E}\left[\sup_{\Delta \in B(D)} \sum_{i \in [d_1]} \sum_{a \in [N]} \sum_{(\ell, \ell', \ell'')} \left\{ \mathbb{E}[Y_{i, \ell, \ell', \ell''}(\Delta)] - Y_{i, \ell, \ell', \ell''}(\Delta) \right\} \right] \\
\leq \frac{e^{-2\alpha}}{2k^3d_1} \sum_{a \in [N]} \mathbb{E}\left[\sup_{\Delta \in B(D)} \sum_{i \in [d_1]} \sum_{(\ell, \ell', \ell'')} \left\{ \mathbb{E}[Y_{i, \ell, \ell', \ell''}(\Delta)] - Y_{i, \ell, \ell', \ell''}(\Delta) \right\} \right] \\
\leq \frac{e^{-2\alpha}}{k^3d_1} \sum_{a \in [N]} \mathbb{E}\left[\sup_{\Delta \in B(D)} \sum_{i \in [d_1]} \sum_{(\ell, \ell', \ell'')} \xi_{i, \ell, \ell', \ell''} Y_{i, \ell, \ell', \ell''}(\Delta) \right] \\
= \frac{e^{-2\alpha}}{k^3d_1} \sum_{a \in [N]} \mathbb{E}\left[\sup_{\Delta \in B(D)} \sum_{i \in [d_1]} \sum_{(\ell, \ell', \ell'')} \xi_{i, \ell, \ell', \ell''} (\Delta_{i,j_{i,\ell}} - \Delta_{i,j_{i,\ell'}})^2 \chi_{i, \ell, \ell', \ell''} \right], \quad (123)
\]

where the first inequality follows from the fact that sum of the supremum if no less than the supremum of the sum, and the second inequality follows from standard symmetrization argument applied to independent random variables \(\{Y_{i, \ell, \ell', \ell''}(\Delta)\}_{i \in [d_1], (\ell, \ell', \ell'') \in T_a} \) with i.i.d. Rademacher random variables \(\xi_{i, \ell, \ell', \ell''} \)'s. Since \((\Delta_{i,j_{i,\ell}} - \Delta_{i,j_{i,\ell'}})^2 \chi_{i, \ell, \ell', \ell''} \leq 4\alpha |\Delta_{i,j_{i,\ell}} - \Delta_{i,j_{i,\ell'}}| \chi_{i, \ell, \ell', \ell''} \), we have by the Ledoux-Talagrand contraction inequality that

\[
E\left[\sup_{\Delta \in B(D)} \sum_{i \in [d_1]} \sum_{(\ell, \ell', \ell'')} \xi_{i, \ell, \ell', \ell''} (\Delta_{i,j_{i,\ell}} - \Delta_{i,j_{i,\ell'}})^2 \chi_{i, \ell, \ell', \ell''} \right] \\
\leq 8\alpha E\left[\sup_{\Delta \in B(D)} \sum_{i \in [d_1]} \sum_{(\ell, \ell', \ell'')} \xi_{i, \ell, \ell', \ell''} (\Delta_{i,j_{i,\ell}} - \Delta_{i,j_{i,\ell'}})^2 \chi_{i, \ell, \ell', \ell''} (\Delta, e_i(e_{j_{i,\ell}} - e_{j_{i,\ell'}})^T) \right] \quad (124)
\]

Applying Hölder’s inequality, we get that

\[
\left| \sum_{i \in [d_1]} \sum_{(\ell, \ell', \ell'')} \xi_{i, \ell, \ell', \ell''} (\Delta, e_i(e_{j_{i,\ell}} - e_{j_{i,\ell'}})^T) \chi_{i, \ell, \ell', \ell''} \right| \\
\leq \|\Delta\|_{\text{nuc}} \left\| \sum_{i \in [d_1]} \sum_{(\ell, \ell', \ell'')} \xi_{i, \ell, \ell', \ell''} \chi_{i, \ell, \ell', \ell''} (e_i(e_{j_{i,\ell}} - e_{j_{i,\ell'}})^T) \right\|_2. \quad (125)
\]

We are left to prove that the expected value of the right-hand side of the above inequality is bounded by \(C\|\Delta\|_{\text{nuc}} \sqrt{kd_1 \log d / \min\{d_1, d_2\}} \) for some numerical constant \(C \). For \(i \in [d_1] \) and \((\ell, \ell', \ell'') \in T_a \), let \(W_{i, \ell, \ell', \ell''} = \xi_{i, \ell, \ell', \ell''} \chi_{i, \ell, \ell', \ell''} (e_i(e_{j_{i,\ell}} - e_{j_{i,\ell'}})^T) \) be independent zero-mean random matrices, such that

\[
\left\| W_{i, \ell, \ell', \ell''} \right\|_2 = \left\| \xi_{i, \ell, \ell', \ell''} \chi_{i, \ell, \ell', \ell''} (e_i(e_{j_{i,\ell}} - e_{j_{i,\ell'}})^T) \right\|_2 \leq \sqrt{2},
\]

almost surely, and

\[
E[W_{i, \ell, \ell', \ell''} W_{i, \ell, \ell', \ell''}^T] = E[(e_i(e_{j_{i,\ell}} - e_{j_{i,\ell'}})^T e_i(e_{j_{i,\ell}} - e_{j_{i,\ell'}})^T) \chi_{i, \ell, \ell', \ell''}] \\
= 2E[\chi_{i, \ell, \ell', \ell''}] e_i e_i^T \\
\leq 2e_i e_i^T,
\]

and

\[
E[W_{i, \ell, \ell', \ell''}^T W_{i, \ell, \ell', \ell''}] = E[(e_i(e_{j_{i,\ell}} - e_{j_{i,\ell'}})^T e_i(e_{j_{i,\ell}} - e_{j_{i,\ell'}})^T) \chi_{i, \ell, \ell', \ell''}] \\
\leq E[(e_i(e_{j_{i,\ell}} - e_{j_{i,\ell'}})^T e_i(e_{j_{i,\ell}} - e_{j_{i,\ell'}})^T] \\
= \frac{2}{d_2} I_{d_2} \otimes I_{d_2} - \frac{2}{d_2^2} \mathbf{1}_{d_2} \mathbf{1}_{d_2}^T.
\]

42
This gives

\[
\sigma^2 = \max \left\{ \left\| \sum_{i \in [d]} \sum_{(t, t', t'') \in T_d} E[W_{i, t, t', t''} W_{i, t, t', t''}^T] \right\|_2, \right. \\
\left. \left\| \sum_{i \in [d]} \sum_{(t, t', t'') \in T_d} E[W_{i, t, t', t''} W_{i, t, t', t''}^T] \right\|_2 \right\}
\]

\[
\leq \max \left\{ 2 |T_a|, \frac{2d_1 |T_a|}{d_2} \right\} = \frac{2d_1 |T_a|}{\min\{d_1, d_2\}} \leq \frac{2d_1 k}{3 \min\{d_1, d_2\}},
\]

since we have designed \(T_a \)'s such that \(|T_a| \leq k/3 \). Applying matrix Bernstein inequality \([54]\) yields the tail bound

\[
P\left\{ \left\| \sum_{i \in [d]} \sum_{(t, t', t'') \in T_d} W_{i, t, t', t''} \right\|_2 \geq t \right\} \leq (d_1 + d_2) \exp \left(\frac{-t^2/2}{\sigma^2 + 2t/3} \right).
\]

Choosing \(t = \max \{ \sqrt{32k d_1 \log d}/(3 \min\{d_1, d_2\}), (16\sqrt{2}/3) \log d \} \), we obtain with probability at least 1 – 2\(d^{-3}\)

\[
\left\| \sum_{i \in [d]} \sum_{(t, t', t'') \in T_d} W_{i, t, t', t''} \right\|_2 \leq \max \left\{ \sqrt{32k d_1 \log d}/(3 \min\{d_1, d_2\}), \frac{16\sqrt{2} \log d}{3} \right\}.
\]

It follows from the fact \(\left\| \sum_{i \in [d]} \sum_{(t, t', t'') \in T_d} W_{i, t, t', t''} \right\|_2 \leq \sum_{(t, t', t'') \in T_d} \left\| W_{i, t, t', t''} \right\|_2 \leq \sqrt{2d_1 k/3} \) that

\[
E \left[\left\| \sum_{i \in [d]} \sum_{(t, t', t'') \in T_d} W_{i, t, t', t''} \right\|_2 \right] \leq \max \left\{ \sqrt{32k d_1 \log d}/(3 \min\{d_1, d_2\}), \frac{16\sqrt{2} \log d}{3} \right\} + 2\sqrt{2d_1 k/3d^3}
\]

\[
\leq 2 \sqrt{32k d_1 \log d}/(3 \min\{d_1, d_2\}),
\]

where the last inequality follows from the assumption that \((16 \min\{d_1, d_2\} \log d)/(3d_1) \leq k \leq d_1^2 \log d \).

Substituting this in the RHS of Eq. \([125]\), and then together with Eqs. \([124]\) and \([123]\), this gives the following desired bound:

\[
E[Z] \leq \sum_{a \in [N]} \sup_{\Delta \in B(D)} \frac{16 \alpha e^{-2\alpha}}{k^3 d_1} \frac{32k d_1 \log d}{3 \min\{d_1, d_2\}} \left\| \Delta \right\|_{\text{nuc}}
\]

\[
\leq \sum_{a \in [N]} \frac{e^{-4\alpha} \sqrt{2}}{16\sqrt{3k^2 d_1 d_2}} \left(\frac{d_1 \log d}{\sqrt{k \min\{d_1, d_2\}} \mu} \right) \left\| \Delta \right\|_{\text{nuc}}
\]

\[
\leq \frac{9e^{-4\alpha} D^2}{40d_1 d_2},
\]

where the last inequality holds because \(N \leq 4k^2 \) and \(\mu \left\| \Delta \right\|_{\text{nuc}} \leq D^2 \).

C.5 Proof of Lemma \([C.7]\)

Recall that \(Y_{i, t, t', t''}(\Delta) = (\Delta_{i,j,t} - \Delta_{i,j,t'})^2 X_{i, t, t', t''} \), as defined in \([122]\). From the random utility model (RUM) interpretation of the MNL model presented in Section \([1]\) it is not difficult to show that \(Y_{i, t, t', t''} \) and \(Y_{i, t', t''} \) are mutually independent if the two triples \((t, t', t'')\) and \((t', t''\)) do not overlap, i.e., no index is present in both triples.

Now, borrowing the terminologies from round robin tournaments, we construct a schedule for a tournament with \(k \) teams where each match involve three teams. Let \(T_{a,b} \) denote a set of triples playing at the
same round, indexed by two integers \(a \in \{3, \ldots, 2k - 3\} \) and \(b \in \{5, \ldots, 2k - 1\} \). Hence, there are total \(N = (2k - 5)^2 \) rounds.

Each round \((a, b)\) consists of disjoint triples and is defined as
\[
T_{a,b} = \left\{ (\ell, \ell', \ell'') \in [k] \times [k] \times [k] \mid \ell < \ell' < \ell'', \ell + \ell' = a, \text{ and } \ell' + \ell'' = b \right\}.
\]

We need to prove that \((a)\) there is no missing triple; and \((b)\) no team plays twice in a single round. First, for any ordered triple \((\ell, \ell', \ell'')\), there exists \(a \in \{3, \ldots, 2k - 3\} \) and \(b \in \{5, \ldots, 2k - 1\} \) such that \(\ell + \ell' = a\) and \(\ell' + \ell'' = b\). This proves that all ordered triples are covered by the above construction. Next, given a pair \((a, b)\), no two triples in \(T_{a,b}\) can share the same team. Suppose there exists two distinct ordered triples \((\ell, \ell', \ell'')\) and \((\tilde{\ell}, \tilde{\ell}', \tilde{\ell}'')\) both in \(T_{a,b}\), and one of the triples are shared. Then, from the two equations \(\ell + \ell' = \tilde{\ell} + \tilde{\ell}' = a\) and \(\ell' + \ell'' = \tilde{\ell}' + \tilde{\ell}'' = b\), it follows that all three indices must be the same, which is a contradiction. This proves the desired claim for ordered triples.

One caveat is that we wanted to cover the whole \([k] \times [k] \times [k]\), and not just the ordered triples. In the above construction, for example, a triple \((3, 2, 1)\) does not appear. This can be resolved by simply taking all \(T_{a,b}\)'s from the above construction, and make 6 copies of each round, and permuting all the triples in each copy according to the same permutation over \([1, 2, 3]\). This increases the total rounds to \(N = 6(2k - 5)^2 \leq 24k^2\). Note that \(|T_{a,b}| \leq |k/3|\) since no item can be in more than one triple.

D Proof of estimating approximate low-rank matrices in Corollary 4.2

We follow closely the proof of a similar corollary in [37]. First fix a threshold \(\tau > 0\), and set \(r = \max\{j|\sigma_j(\Theta^*) > \tau\}\). With this choice of \(r\), we have
\[
\min\{d_1, \ldots, d_r\} \sigma_j(\Theta^*) = \tau \sum_{j=r+1} \frac{\sigma_j(\Theta^*)}{\tau} \leq \tau \sum_{j=r+1} \left(\frac{\sigma_j(\Theta^*)}{\tau}\right)^q \leq \tau^{1-q} \rho_q.
\]

Also, since \(rr^q \leq \sum_{j=1} \sigma_j(\Theta^*)^q \leq \rho_q\), it follows that \(\sqrt{r} \leq \sqrt[2q]{\rho_q \tau^{-q/2}}\). Using these bounds, Eq. (22) is now
\[
\|\hat{\Theta} - \Theta\|_F^2 \leq 288\sqrt{2c_0 \epsilon^{4n} d_1 d_2 \lambda_0} \left(\sqrt{\rho_q \tau^{-q/2}}\|\hat{\Theta} - \Theta\|_F + \tau^{1-q} \rho_q\right).
\]

With the choice of \(\tau = A\) and due to the fact that \(x^2 \leq bx + c\) implies \(x \leq (b + \sqrt{b^2 + 4c})/2\) we have,
\[
\|\hat{\Theta} - \Theta\|_F \leq 2\sqrt{\rho_q} A^{(2-q)/2}.
\]

E Proof of the information-theoretic lower bound in Theorem 4

The proof uses information-theoretic methods which reduces the estimation problem to a multiway hypothesis testing problem. To prove a lower bound on the expected error, it suffices to prove
\[
\sup_{\Theta^* \in \Omega_a} \mathbb{P}\left\{\|\hat{\Theta} - \Theta^*\|_F^2 \geq \frac{\delta^2}{4}\right\} \geq \frac{1}{2}.
\]

To prove the above claim, we follow the standard recipe of constructing a packing in \(\Omega_a\). Consider a family \(\{\Theta^{(1)}, \ldots, \Theta^{(M(\delta))}\}\) of \(d_1 \times d_2\) dimensional matrices contained in \(\Omega_a\) satisfying \(\|\Theta^{(\ell_1)} - \Theta^{(\ell_2)}\|_F \geq \delta\) for all \(\ell_1, \ell_2, \in [M(\delta)]\). We will use \(M\) to refer to \(M(\delta)\) for simplify the notation. Suppose we draw an index \(L \in [M(\delta)]\) uniformly at random, and we are given direct observations \(\sigma_i\) as per MNL model with \(\Theta^* = \Theta^{(L)}\) on a randomly chosen set of \(k\) items \(S_i\) for each user \(i \in [d_1]\). It follows from triangular inequality that
\[
\sup_{\Theta^* \in \Omega_a} \mathbb{P}\left\{\|\hat{\Theta} - \Theta^*\|_F^2 \geq \frac{\delta^2}{4}\right\} \geq \mathbb{P}\left\{\hat{L} \neq L\right\},
\]
\[\text{(127)}\]
where \hat{L} is the resulting best estimate of the multiway hypothesis testing on L. The generalized Fano's inequality gives

$$
\Pr \left\{ \hat{L} \neq L \mid S(1), \ldots, S(d_1) \right\} \geq 1 - \frac{I(\hat{L}; L) + \log 2}{\log M}
$$

(128)

$$
\geq 1 - \frac{(M/2)^{-1} \sum_{\ell_1, \ell_2 \in [M]} D_{\text{KL}}(\Theta^{(\ell_1)} \| \Theta^{(\ell_2)}) + \log 2}{\log M},
$$

(129)

where $D_{\text{KL}}(\Theta^{(\ell_1)} \| \Theta^{(\ell_2)})$ denotes the Kullback-Leibler divergence between the distributions of the partial rankings $\Pr \{ \sigma_1, \ldots, \sigma_{d_1} \mid \Theta^{(\ell_1)}, S(1), \ldots, S(d_1) \}$ and $\Pr \{ \sigma_1, \ldots, \sigma_{d_1} \mid \Theta^{(\ell_2)}, S(1), \ldots, S(d_1) \}$. The second inequality follows from a standard technique, which we repeat here for completeness. Let $\Sigma = \{ \sigma_1, \ldots, \sigma_{d_1} \}$ denote the observed outcome of comparisons. Since $L - \Theta^{(L)} \cdot \Sigma - \hat{L}$ form a Markov chain, the data processing inequality gives $I(\hat{L}; L) \leq I(\Sigma; L)$. For simplicity, we drop the conditioning on the set of alternatives $\{S(1), \ldots, S(d_1)\}$, and let $p(\cdot)$ denotes joint, marginal, and conditional distribution of respective random variables. It follows that

$$
I(\Sigma; L) = \sum_{\ell \in [M], \Sigma} p(\Sigma | \ell) \frac{1}{M} \log \frac{p(\ell, \Sigma)}{p(\ell) p(\Sigma)}
$$

$$
= \frac{1}{M} \sum_{\ell \in [M]} \sum_{\Sigma} p(\Sigma | \ell) \log \frac{p(\Sigma | \ell)}{p(\ell) p(\Sigma)}
$$

$$
\leq \frac{1}{M^2} \sum_{\ell, \ell' \in [M]} \sum_{\Sigma} p(\Sigma | \ell) \log \frac{p(\Sigma | \ell)}{p(\Sigma | \ell')}
$$

$$
= \frac{1}{M^2} \sum_{\ell, \ell' \in [M]} D_{\text{KL}}(\Theta^{(\ell_1)} \| \Theta^{(\ell_2)})
$$

(130)

where the first inequality follows from Jensen's inequality. To compute the KL-divergence, recall that from the RUM interpretation of the MNL model (see Section 1), one can generate sample rankings Σ by drawing random variables with exponential distributions with mean $e^{\Theta_{ij}}$'s. Precisely, let $X^{(\ell)} = \{X_{ij}^{(\ell)}\}_{i \in [d_1], j \in S_i}$ denote the set of random variables, where $X_{ij}^{(\ell)}$ is drawn from the exponential distribution with mean $e^{-\Theta_{ij}}$.

The MNL ranking follows by ordering the alternatives in each S_i according to this $\{X_{ij}^{(\ell)}\}_{j \in S_i}$, by ranking the smaller ones on the top. This forms a Markov chain $L - X^{(L)} - \Sigma$, and the standard data processing inequality gives

$$
D_{\text{KL}}(\Theta^{(\ell_1)} \| \Theta^{(\ell_2)}) \leq D_{\text{KL}}(X^{(\ell_1)} \| X^{(\ell_2)})
$$

(131)

$$
= \sum_{i \in [d_1], j \in S_i} \left\{ e^{\Theta_{ij}^{(\ell_1)}} - e^{\Theta_{ij}^{(\ell_2)}} - (\Theta_{ij}^{(\ell_1)} - \Theta_{ij}^{(\ell_2)}) - 1 \right\}
$$

(132)

$$
\leq \frac{e^{2\alpha}}{4\alpha^2} \sum_{i \in [d_1], j \in S_i} (\Theta_{ij}^{(\ell_1)} - \Theta_{ij}^{(\ell_2)})^2,
$$

(133)

where the last inequality follows from the fact that $e^x - x - 1 \leq (e^{2\alpha}/(4\alpha^2))x^2$ for any $x \in [-2\alpha, 2\alpha]$. Taking expectation over the randomly chosen set of alternatives, $E_{S(1), \ldots, S(d_1)}[D_{\text{KL}}(\Theta^{(\ell_1)} \| \Theta^{(\ell_2)})] \leq \frac{e^{2\alpha} k}{4\alpha^2 d_2} \| \Theta^{(\ell_1)} - \Theta^{(\ell_2)} \|_F^2$.

(134)

Combined with (129), we get that

$$
\Pr \{ \hat{L} \neq L \} = \Pr_{S(1), \ldots, S(d_1)} \left\{ \hat{L} \neq L \mid S(1), \ldots, S(d_1) \right\}
$$

(135)

$$
\geq 1 - \frac{(M/2)^{-1} \sum_{\ell_1, \ell_2 \in [M]} (e^{2\alpha} k/(4\alpha^2 d_2)) \| \Theta^{(\ell_1)} - \Theta^{(\ell_2)} \|_F^2 + \log 2}{\log M}
$$

(136)

The remainder of the proof relies on the following probabilistic packing.
Lemma E.1. Let $d_2 \geq d_1 \geq 607$ be positive integers. Then for each $r \in \{1, \ldots, d_1\}$, and for any positive $\delta > 0$ there exists a family of $d_1 \times d_2$ dimensional matrices $\{\Theta^{(1)}, \ldots, \Theta^{(M(\delta))}\}$ with cardinality $M(\delta) = \lceil(1/4)\exp(rd_2/576)\rceil$ such that each matrix is rank r and the following bounds hold:

$$\|\Theta^{(\ell)}\|_F \leq \delta, \text{ for all } \ell \in [M]$$

$$\|\Theta^{(\ell_1)} - \Theta^{(\ell_2)}\|_F \geq \delta, \text{ for all } \ell_1, \ell_2 \in [M]$$

$$\Theta^{(\ell)} \in \Omega_{\bar{\alpha}}, \text{ for all } \ell \in [M],$$

with $\bar{\alpha} = (8\delta/d_2)\sqrt{2\log d}$ for $d = (d_1 + d_2)/2$.

Suppose $\delta \leq \alpha d_2/(8\sqrt{2\log d})$ such that the matrices in the packing set are entry-wise bounded by α, then the above lemma implies that $\|\Theta^{(\ell_1)} - \Theta^{(\ell_2)}\|_F^2 \leq 4\delta^2$, which gives

$$\mathbb{P}\left\{\hat{L} \neq L\right\} \geq 1 - \frac{e^{2\alpha^2/rd_2^2} + \log 2}{rd_2/576 - 2\log 2} \geq \frac{1}{2},$$

where the last inequality holds for $\delta^2 \leq (\alpha^2 d_2/(e^{2\alpha^2}))((rd/1152) - 2\log 2)$. If we assume $rd \geq 3195$ for simplicity, this bound on δ can be simplified to $\delta \leq \alpha e^{-\alpha}\sqrt{r d_2 d/(2304 k)}$. Together with (126) and (127), this proves that for all $\delta \leq \min\{\alpha d_2/(8\sqrt{2\log d}), \alpha e^{-\alpha}\sqrt{r d_2 d/(2304 k)}\}$,

$$\inf_{\Theta} \sup_{\Theta^* \in \Theta_\alpha} \mathbb{E}\left[\|\Theta - \Theta^*\|_F\right] \geq \frac{\delta}{4}.$$

Choosing δ appropriately to maximize the right-hand side finishes the proof of the desired claim.

E.1 Proof of Lemma [E.1]

Following the construction in [37], we use probabilistic method to prove the existence of the desired family. We will show that the following procedure succeeds in producing the desired family with probability at least half, which proves its existence. Let $d = (d_1 + d_2)/2$, and suppose $d_2 \geq d_1$ without loss of generality. For the choice of $M' = e^{rd_2/576}$, and for each $\ell \in [M']$, generate a rank-r matrix $\Theta^{(\ell)} \in \mathbb{R}^{d_1 \times d_2}$ as follows:

$$\Theta^{(\ell)} = \frac{\delta}{\sqrt{rd_2}} U(V^{(\ell)}T(1_{d_2 \times d_2} - \frac{1}{d_2} \mathbf{11}^T),$$

where $U \in \mathbb{R}^{d_1 \times r}$ is a random orthogonal basis such that $UTU = I_{r \times r}$, and $V^{(\ell)} \in \mathbb{R}^{d_2 \times r}$ is a random matrix with each entry $V^{(\ell)}_{ij} \in \{-1, +1\}$ chosen independently and uniformly at random.

By construction, notice that $\|\Theta^{(\ell)}\|_F = (\delta/\sqrt{rd_2})(\|V^{(\ell)}T(I - (1/d_2) \mathbf{11}^T)||_F \leq \delta,$ since $\|V^{(\ell)}\|_F = \sqrt{rd_2}$ and $(I - (1/d_2) \mathbf{11}^T)$ is a projection which can only decrease the norm.

Now, consider $\|\Theta^{(\ell_1)} - \Theta^{(\ell_2)}\|_F^2 = (\delta^2/(rd_2)) \|I - (1/d_2) \mathbf{11}^T\|_F^2 \equiv f(V^{(\ell_1)}, V^{(\ell_2)})$ which is a function over $2rd_2$ i.i.d. random Rademacher variables $V^{(\ell_1)}$ and $V^{(\ell_2)}$ which define $\Theta^{(\ell_1)}$ and $\Theta^{(\ell_2)}$ respectively. Since f is Lipschitz in the following sense, we can apply McDiarmid’s concentration inequality. For all $(V^{(\ell_1)}, V^{(\ell_2)})$ and $(\tilde{V}^{(\ell_1)}, \tilde{V}^{(\ell_2)})$ that differ in only one variable, say $\tilde{V}^{(\ell_1)} = V^{(\ell_1)} + 2e_{ij}$, for some standard basis matrix e_{ij}, we have

$$|f(V^{(\ell_1)}, V^{(\ell_2)}) - f(\tilde{V}^{(\ell_1)}, \tilde{V}^{(\ell_2)})| =$$

$$\left|\frac{\delta^2}{rd_2} \|I - (1/d_2) \mathbf{11}^T\|_F^2 (V^{(\ell_1)} - V^{(\ell_2)})\|_F^2 - \frac{\delta^2}{rd_2} \|I - (1/d_2) \mathbf{11}^T\|_F^2 (V^{(\ell_1)} - V^{(\ell_2)} + 2e_{ij})\|_F^2\right|$$

$$\leq \frac{\delta^2}{rd_2} \|2(I - (1/d_2) \mathbf{11}^T)e_{ij}\|_F^2 + \frac{\delta^2}{rd_2} \|((I - (1/d_2) \mathbf{11}^T)(V^{(\ell_1)} - V^{(\ell_2)}), 2e_{ij})\|_F^2$$

$$\leq \frac{4\delta^2}{rd_2} + \frac{\delta^2}{rd_2} \|I - (1/d_2) \mathbf{11}^T\|_\infty \|2e_{ij}\|_1$$

$$\leq \frac{12\delta^2}{rd_2},$$

(144)
where we used the fact that \((I - \frac{1}{d_2}I)\) is entry-wise bounded by four. The expectation
\[E[f(V^{(t)})] = \begin{cases}
\frac{\delta^2}{r d_2} E\left\|\left(I - \frac{1}{d_2}I\right)(V^{(t)} - V^{(t)})\right\|_F^2
\end{cases} \]

\[
= \frac{2\delta^2}{r d_2} E\left\|\left(I - \frac{1}{d_2}I\right)V^{(t)}\right\|_F^2 = \frac{2\delta^2}{r d_2} E\left\|V^{(t)}\right\|_F^2 - \frac{2\delta^2}{r d_2} E\left\|\left(I\right)V^{(t)}\right\|_F^2 = \frac{2\delta^2}{r d_2} (d_2 - 1) .
\]

Applying McDiarmid’s inequality with bounded difference \(12\delta^2/(rd_2)\), we get that

\[P\{f(V^{(t)}), V^{(t)} \leq 2\delta^2(1 - 1/d_2) - t\} \leq \exp\left\{- \frac{t^2 r d_2}{144 \delta^4}\right\}, \]

Since there is less than \((M')^2\) pairs of \((\ell_1, \ell_2)\), setting \(t = (1 - 2/d_2)\delta^2\) and applying the union bound gives

\[P\left\{ \min_{\ell_1, \ell_2 \in [M']} \left\|\Theta^{(\ell_1)} - \Theta^{(\ell_2)}\right\|_2^2 \geq \delta^2 \right\} \geq 1 - \exp\left\{- \frac{r d_2}{144} \left(1 - \frac{2}{d_2}\right)^2 + 2 \log M' \right\} \geq \frac{7}{8}, \]

where we used \(M' = \exp\{rd_2/576\}\) and \(d_2 \geq 607\).

We are left to prove that \(\Theta^{(\ell)}\)'s are in \(\Omega(8\delta/d_2 \sqrt{2 \log d_2})\) as defined in [21]. Since we removed the mean such that \(\hat{\Theta} = 0\) by construction, we only need to show that the maximum entry is bounded by \((8\delta/d_2 \sqrt{2 \log d_2})\). We first prove an upper bound in \((151)\) for a fixed \(\ell \in [M']\), and use this to show that there exists a large enough subset of matrices satisfying this bound. From \((140)\), consider \((UV^T)_{ij} = \langle u_i, v_j \rangle\), where \(u_i \in \mathbb{R}^r\) is the first \(r\) entries of a random vector drawn uniformly from the \(d_2\)-dimensional sphere, and \(v_j \in \mathbb{R}^r\) is drawn uniformly at random from \([-1, +1]^r\) with \(\|v_j\| = \sqrt{r}\). Using Levy’s theorem for concentration on the sphere [27], we have

\[P\{\|\langle u_i, v_j \rangle\| \geq t\} \leq 2 \exp\left\{- \frac{d_2 t^2}{8 r}\right\}. \]

Notice that by the definition \((140)\), \(\max_{i,j} |\Theta^{(\ell)}_{ij}| \leq (2\delta/\sqrt{rd_2}) \max_{i,j} |\langle u_i, v_j \rangle|\). Setting \(t = (\sqrt{32 r/d_2} \log d_2)\) and taking the union bound over all \(d_1 d_2\) indices, we get

\[P\left\{ \max_{i,j} |\Theta^{(\ell)}_{ij}| \leq \frac{2\delta \sqrt{32 \log d_2}}{d_2} \right\} \geq 1 - 2d_1 d_2 \exp\left\{- 4 \log d_2 \right\} \geq \frac{1}{2}, \]

for a fixed \(\ell \in [M']\). Consider the event that there exists a subset \(S \subset [M']\) of cardinality \(M = (1/4)M'\) with the same bound on maximum entry, then from \((151)\) we get

\[P\left\{ \exists S \subset [M'] \text{ such that } \left\|\Theta^{(\ell)}\right\|_\infty \leq \frac{2\delta \sqrt{32 \log d_2}}{d_2} \text{ for all } \ell \in S \right\} \geq \sum_{m=M}^{M'} \left(\frac{M'}{m}\right) \left(\frac{1}{2}\right)^m, \]

which is larger than half for our choice of \(M < M'/2\).

F Proof of Pairwise Rank Breaking in Theorem [5]

Analogous to Section [C], we define the gradient \(\nabla L(\Theta)\) as \(\nabla_{ij} L = \frac{\partial L}{\partial \Theta_{ij}}\) and \(\Delta \equiv \hat{\Theta} - \Theta^*\), and provide two main technical lemmas.

Lemma F.1. If \(\lambda \geq 2\|\nabla L(\Theta^*)\|_2\), then we have,

\[\|\Delta\|_\text{nuc} \leq 4\sqrt{2\pi}\|\Delta\|_F + 4 \sum_{j=\rho+1}^{\min\{d_1, d_2\}} \sigma_j(\Theta^*), \]

for all \(\rho \in \{\min\{d_1, d_2\}\} \}. \]

47
Proof. This follows from the proof of Lemma C.1, which only depends on the convexity of \(\mathcal{L}(\Theta) \).

Lemma F.2. For any positive constant \(c \geq 1 \), if \(k \leq \max\{d_1, d_2^2/d_1\} \log d \) and \(d_1 \geq 4 \) then with probability at least \(1 - 2d^{-c} \),

\[
\|\nabla \mathcal{L}(\Theta^*)\|_2 \leq \sqrt{\frac{16(c+4) \log d}{kd_1^2}} \max \left\{ \frac{1}{4}, \frac{d_1}{d_2} \right\} \left(\frac{2(c+4) \log d}{k} \right). \tag{154}
\]

The proof of this lemma is provided in Section F.1. We will simplify the above lemma by assuming, \(2(c+4) \log d \leq k \) which implies the last term in RHS is less than equal to first term,

\[
\frac{2}{3} \sqrt{\frac{2(c+4) \log d}{k}} \leq \sqrt{\frac{1}{4}}. \tag{155}
\]

(155) simplifies (154) as,

\[
\|\nabla \mathcal{L}(\Theta^*)\|_2 \leq \sqrt{\frac{16(c+4) \log d}{kd_1^2}} \max \left\{ \frac{1}{4}, \frac{d_1}{d_2} \right\} \leq \sqrt{\frac{32d(c+4) \log d}{kd_1^2d_2}} \leq \sqrt{32(c+4)\lambda}, \tag{156}
\]

where \((a) \) is due to (28).

For Lemma F.1 and further proof of Theorem 5, we want \(\lambda \geq 2\|\nabla \mathcal{L}(\Theta)\|_2 \), therefore we assume that,

\[
\lambda \in [2\sqrt{32(c+4)}\lambda, c_p \lambda], \text{ for some } c_p \geq 2\sqrt{32(c+4)} \tag{157}
\]

Similar to the k-wise ranking, we will divide the proof into two cases and each part we will prove that \(\|\Delta\|_F^2 \leq 36e^{2\alpha}c \lambda d_1d_2 \|\Delta\|_{\text{nuc}} \) with probability at least \(1 - 2/d^2 - 2/d^{2\alpha} \). We define a new constant \(\mu \) as,

\[
\mu = 16\alpha \sqrt{\frac{48d_1d_2^2 \log d}{k \min\{d_1, d_2\}}}. \tag{158}
\]

Case 1: Assume \(\mu \|\Delta\|_{\text{nuc}} \leq \|\Delta\|_F^2 \).

Since \(\mathcal{L} \) is a sum of a linear function of \(\Theta \) and log-sum-exponential functions, which are convex, we know that \(\mathcal{L} \) is a convex function of \(\Theta \). Therefore, by convexity and Taylor expansion we get,

\[
\mathcal{L}(\hat{\Theta}) = \mathcal{L}(\Theta^*) - \langle \nabla \mathcal{L}(\Theta^*), \Delta \rangle + \frac{1}{2!} \frac{d_1}{\binom{k}{2}} \sum_{i=1}^{d_1} \sum_{(m_1, m_2) \in \mathcal{P}_0} \frac{e^{\Theta_{i,u,m_1} e^{-\alpha} + e^{\Theta_{i,u,m_2}}}}{e^{\Theta_{i,u,m_1} + e^{\Theta_{i,u,m_2}}}^2} \left(\Delta_{i,u,m_1} - \Delta_{i,u,m_2} \right)^2, \tag{159}
\]

where \(\Theta = a\Theta^* + (1-a)\hat{\Theta} \) for some \(a \in [0,1] \) and \(\mathcal{P}_0 = \{(i,j)| \ 1 \leq i < j \leq k\} \). We lower bound the final term in (159) as,

\[
\frac{1}{2!} \frac{d_1}{\binom{k}{2}} \sum_{i=1}^{d_1} \sum_{(m_1, m_2) \in \mathcal{P}_0} \frac{e^{\Theta_{i,u,m_1} e^{-\alpha} + e^{\Theta_{i,u,m_2}}}}{e^{\Theta_{i,u,m_1} + e^{\Theta_{i,u,m_2}}}^2} \left(\Delta_{i,u,m_1} - \Delta_{i,u,m_2} \right)^2 \geq \frac{1}{2} \frac{d_1}{\binom{k}{2}} \sum_{i=1}^{d_1} \sum_{(m_1, m_2) \in \mathcal{P}_0} \frac{e^{-\alpha}e^\alpha}{(e^{-\alpha} + e^\alpha)^2} \left(\Delta_{i,u,m_1} - \Delta_{i,u,m_2} \right)^2 \geq \frac{1}{2} \frac{d_1}{\binom{k}{2}} \sum_{i=1}^{d_1} \sum_{(m_1, m_2) \in \mathcal{P}_0} \frac{e^{-2\alpha}}{4} \left(\Delta_{i,u,m_1} - \Delta_{i,u,m_2} \right)^2, \tag{160}
\]
where \((a)\) is due to the fact that \(\Delta_{ij}\)'s are upper and lower bounded by \(\alpha\) and \(-\alpha\) respectively. We can bound this term further according to the following Lemma.

Lemma F.3. For \((4 \log d)/9 \leq k \leq \max\{d_1, d_2^2/d_1\} \log d\), with probability at least \(1 - 2d^{-2^{1.3}}\),

\[
\frac{1}{d_1(d_2^2)} \sum_{i=1}^{d_1} \sum_{(m, n) \in \mathcal{P}_0} \left(\Delta_{i, u_{i, m}} - \Delta_{i, u_{i, n}} \right)^2 \geq \frac{1}{3d_1 d_2} \|\Delta\|_F^2 ,
\]

for all \(\Delta \in \mathcal{A}_p\) where,

\[
\mathcal{A} = \left\{ \Delta \in \mathbb{R}^{d_1 \times d_2} \mid \|\Delta\|_\infty \leq 2\alpha, \sum_{j \in [d_2]} \Delta_{ij} = 0, \text{ for all } i \in [d_2] \right. \}.
\]

The proof is given in Section F.2. Now using Lemma F.3 and (160) with high probability we get,

\[
\frac{1}{2! \, d_1 (d_2^2)} \sum_{i=1}^{d_1} \sum_{(m, n) \in \mathcal{P}_0} (e^{\Theta_{i, u_{i, m}}} - e^{\Theta_{i, u_{i, n}}} + e^{\Theta_{i, u_{i, m}}} - e^{\Theta_{i, u_{i, n}}})^2 \left(\Delta_{i, u_{i, m}} - \Delta_{i, u_{i, n}} \right)^2 \geq \frac{e^{-2\alpha}}{24 \, d_1 \, d_2} \|\Delta\|_F^2 .
\]

Incorporating the above inequality in (159) we obtain,

\[
\frac{e^{-2\alpha}}{24 \, d_1 \, d_2} \|\Delta\|_F^2 \leq \mathcal{L}(\hat{\Theta}) - \mathcal{L}(\Theta^*) + \langle \nabla \mathcal{L}(\Theta^*), \Delta \rangle .
\]

From the definition of \(\hat{\Theta}\) we have \(\mathcal{L}(\hat{\Theta}) - \mathcal{L}(\Theta^*) \leq \lambda \left(\|\Theta^*\|_{\text{nuc}} - \|\hat{\Theta}\|_{\text{nuc}} \right) \leq \lambda \|\Delta\|_{\text{nuc}}\), and we assume that \(\lambda \geq 2\sqrt{32(c+1)}\), so that \(\lambda \geq 2\|\nabla \mathcal{L}(\Theta^*)\|_2\) is true with a probability of at least \(1 - 2d^{-c}\) from Lemma F.2. These give us the following with at least probability \(1 - 2d^{-c} - 2d^{-2^{1.3}}\),

\[
\frac{e^{-2\alpha}}{24 \, d_1 \, d_2} \|\Delta\|_F^2 \leq \lambda \|\Delta\|_{\text{nuc}} + \|\nabla \mathcal{L}(\Theta^*)\|_2 \|\Delta\|_{\text{nuc}}
\]

\[
\leq \frac{3\lambda}{2} \|\Delta\|_{\text{nuc}}
\]

which gives us,

\[
\|\Delta\|^2_F \leq 36e^{2\alpha} \lambda d_1 d_2 \|\Delta\|_{\text{nuc}}
\]

\[
\leq 36e^{2\alpha} c_p \lambda d_1 d_2 \|\Delta\|_{\text{nuc}},
\]

where \((a)\) is due to the fact that \(\lambda \leq c_p \lambda\).

Case 2: Assume \(\|\Delta\|_F^2 \leq \mu \|\Delta\|_{\text{nuc}}\). Here we prove that \(\mu \leq 36e^{2\alpha} c_p \lambda d_1 d_2\).

\[
\frac{\mu}{36e^{2\alpha} c_p \lambda d_1 d_2} \leq \frac{\alpha}{e^{2\alpha}} \times \frac{16\sqrt{48}}{72\sqrt{32(c+1)}} \times \sqrt{\frac{d_1 d_2}{\min\{d_1, d_2\} d}}
\]

\[
\leq 1 \times \frac{16\sqrt{48}}{72\sqrt{32 \times 4}} \times \sqrt{\frac{\max\{d_1, d_2\}}{d}}
\]

\[
\leq \sqrt{\frac{\max\{d_1, d_2\}}{2d}}
\]

\[
\leq 1,
\]

where \((a)\) is by substituting \(\mu, \lambda\) and \(c_p\) from (158), (28) and (157) respectively, \((b)\) is because \(x \leq e^x\), \((c)\) is because \(d = (\max\{d_1, d_2\} + \min\{d_1, d_2\})/2\).

Now combining the above result with (153) we get with probability at least \(1 - 2d^{-c} - 2d^{-2^{1.3}}\),

\[
\frac{1}{d_1 d_2} \|\Delta\|_F^2 \leq 144\sqrt{2} e^{2\alpha} c_p \lambda \sqrt{\mathcal{P}} \|\Delta\|_F + 144e^{2\alpha} c_p \lambda \sum_{j=p+1}^{\min\{d_1, d_2\}} \sigma_j(\Theta^*) .
\]

(168)
F.1 Proof of Lemma F.2

From definition of $L(\Theta)$ in (26) we get,

$$
\nabla L_p(\Theta^*) = \frac{1}{d_1(k_2)} \sum_{i=1}^{d_1} \sum_{(m_1,m_2) \in \mathcal{P}_0} \exp \left(\Theta_{i,l,(m_1,m_2)}^* \right) e_i \left(e_{i,(m_1,m_2)} - e_{h_i,(m_1,m_2)} \right)^T ,
$$

(169)

where $\mathcal{P}_0 = \{(i,j) \mid 1 \leq i < j \leq k\}$. We use the matrix Bernstein inequality [54] for the sum of independent matrices. Similar to Lemma G.4, we can partition the set of all pairs \mathcal{P}_0 into $(k-1)$ sets $\{\mathcal{P}_a\}_{a \in [k-1]}$ of $k/2$ disjoint pairs each. Define $Y_a = \sum_{i=1}^{d_1} \sum_{(m_1,m_2) \in \mathcal{P}_a} \tilde{X}_{i,m_1,m_2}$, and

$$
\tilde{X}_{i,m_1,m_2} = \frac{\exp \left(\Theta_{i,l,(m_1,m_2)}^* \right)}{\exp \left(\Theta_{i,h_i,(m_1,m_2)}^* \right) + \exp \left(\Theta_{i,l,(m_1,m_2)}^* \right)} e_i \left(e_{i,(m_1,m_2)} - e_{h_i,(m_1,m_2)} \right)^T ,
$$

such that

$$
\nabla L_p(\Theta^*) = \frac{1}{d_1(k_2)} \sum_{a=1}^{k-1} Y_a .
$$

(170)

For a fixed value of a, it is easy to see that \tilde{X}_{i,m_1,m_2}'s are independent. Further, we can easily show that $E \left[\tilde{X}_{i,m_1,m_2} \right] = 0$, and $\|\tilde{X}_{i,m_1,m_2}\|_2 \leq \sqrt{2}$. We also have,

$$
E \left[\tilde{X}_{i,m_1,m_2} \tilde{X}_{i,m_1,m_2}^T \right] \preceq 2 e_i e_i^T E \left[\left[\frac{\exp \left(\Theta_{i,l,(m_1,m_2)}^* \right)}{\exp \left(\Theta_{i,u_i,m_1}^* \right) + \exp \left(\Theta_{i,u_i,m_2}^* \right)} \right]^2 \left[u_{i,m_1}, u_{i,m_1} \right] \right] \nonumber
$$

(a)

$$
\leq 2 e_i e_i^T E \left[\frac{\exp \left(\Theta_{i,u_i,m_1}^* \right) \exp \left(\Theta_{i,u_i,m_2}^* \right)}{\exp \left(\Theta_{i,u_i,m_1}^* \right) + \exp \left(\Theta_{i,u_i,m_2}^* \right)} \right] \nonumber
$$

(b)

$$
\leq \frac{1}{2} e_i e_i^T ,
$$

(171)

where we get (a) from the MNL model for the random choice of $l_i(m_1,m_2)$, (b) is due to the fact that $xy/(x+y)^2 \leq 1/4$ for all $x, y > 0$. Define $p_{i,m_1,m_2} \equiv \exp \left(\Theta_{i,u_i,m_1}^* \right) e_{u_i,m_1} + \exp \left(\Theta_{i,u_i,m_2}^* \right) e_{u_i,m_2} / \left(\exp \left(\Theta_{i,u_i,m_1}^* \right) + \exp \left(\Theta_{i,u_i,m_2}^* \right) \right)$ to get,

$$
E \left[\tilde{X}_{i,m_1,m_2} \tilde{X}_{i,m_1,m_2}^T \right] = E \left[\left(e_{h_i,(m_1,m_2)} - p_{i,m_1,m_2} \right) \left(e_{h_i,(m_1,m_2)} - p_{i,m_1,m_2} \right)^T \right] \nonumber
$$

(a)

$$
\leq E \left[e_{h_i,(m_1,m_2)} e_{h_i,(m_1,m_2)}^T - E \left[p_{i,m_1,m_2} \right] \right] \nonumber
$$

$$
= \frac{2}{d_2} I_{d_2 \times d_2} ,
$$

(172)

where (a) comes from the fact that $p_{i,m_1,m_2} e_{h_i,(m_1,m_2)}^T$ is a positive semi-definite matrix. Therefore using (171) and (172), we get
\[
\sigma^2 \equiv \sum_{i \in [d_1], (m_1, m_2) \in \mathcal{P}_0} \mathbb{E} \left[\tilde{X}_{i, m_1, m_2} \tilde{X}^T_{i, m_1, m_2} \right], \quad \sum_{i \in [d_1], (m_1, m_2) \in \mathcal{P}_0} \mathbb{E} \left[\tilde{X}^T_{i, m_1, m_2} \tilde{X}_{i, m_1, m_2} \right]_2 \right) \\
\leq k \max \left\{ \frac{1}{t^2}, \frac{d_1}{4 \cdot d_2} \right\}.
\]

Define \(\rho \equiv \max \{1/4, d_1/d_2\} \), then by the matrix Bernstein inequality [54], \(\forall \ a \in [k-1] \),

\[
\mathbb{P} \left(\left\| \tilde{Y}_a \right\|_2 > t \right) \leq (d_1 + d_2) \exp \left(\frac{-t^2/2}{k\rho + \sqrt{2t/3}} \right),
\]

which gives a tail probability of \(2d^{-c}/(k-1) \) for the choice of

\[
t = \max \left\{ \sqrt{4k\rho ((1+c) \log d + \log(k-1))}, \frac{4\sqrt{2}(1+c) \log d + \log(k-1))}{3} \right\}.
\]

For this choice of \(t \), using union bound we can get the probabilistic bound on the derivative of log likelihood as,

\[
\mathbb{P} \left(\left\| \nabla \mathcal{L}_\rho(\Theta^*) \right\|_2 \geq \frac{k-1}{d_1 \left(\frac{k}{2} \right)} t \right) \leq \mathbb{P} \left(\sum_{a=1}^{k-1} \left\| \tilde{Y}_a \right\|_2 \geq (k-1)t \right) \\
\leq \mathbb{P} \left(\max_{a \in \{k-1\}} \left\| \tilde{Y}_a \right\|_2 \geq t \right) \\
\leq \sum_{a=1}^{k-1} \mathbb{P} \left(\left\| \tilde{Y}_a \right\|_2 \geq t \right) \\
= 2d^{-c},
\]

where we obtain (a) by pigeon-hole principle which implies that among a set of numbers, there should be, at the very least one number greater or equal to the average of the set of numbers and (b) by union-bound. Assuming \(k \leq \max\{d_1, d_2^2/d_1\} \log d \) and \(d_1 \geq 4 \), we have,

\[
(c+1) \log d + \log(k-1) \leq (c+4) \log d,
\]

from \(\log(k-1) \leq \log \left(\max\{d_1, d_2^2/d_1\} \log d \right) \leq \log((d_2^2 + d_2) \log d)/d_1) \leq \log \left((4 \ d^2 \log d)/d_1 \right) \leq 3 \log d. \)

This proves the desired lemma.

F.2 Proof of Lemma F.3

With a slight abuse of notation, we define \(\bar{H} \) as

\[
\bar{H}(\Delta) \equiv \frac{1}{d_1 \left(\frac{k}{2} \right)} \sum_{i=1}^{d_1} \sum_{(m_1, m_2) \in \mathcal{P}_0} \left(\Delta_{i, \xi_i, m_1} - \Delta_{i, \xi_i, m_2} \right)^2,
\]

and provide a lower bound. The mean is easily computed as

\[
\mathbb{E} \left[\bar{H}(\Delta) \right] = \frac{1}{d_1 \left(\frac{k}{2} \right)} \sum_{i=1}^{d_1} \sum_{(m_1, m_2) \in \mathcal{P}_0} \left[\frac{2}{d_2} \sum_{j \in [d_2]} \Delta_{ij}^2 - \frac{2}{d_2^2} \sum_{j \in [d_2]} \Delta_{ij} \sum_{j' \in [d_2]} \Delta_{ij'} \right] \\
= \frac{2}{d_1 d_2} \left\| \Delta \right\|_F^2,
\]

51
where we used the fact that $\sum_{j} \Delta_{ij} = 0$. We want to upper bound the probability that $\tilde{H}(\Delta) \leq \frac{1}{3d_1 d_2} \|\Delta\|_F^2$ for some $\Delta \in A$. As in the case of k-wise ranking we using the following peeling argument used in Lemma 3, [37]. The strategy is to split this above event as union of many event as follows. We construct the following family of subsets \{\mathcal{S}_\ell\} such that $A \subseteq \bigcup_{\ell=1}^{\infty} \mathcal{S}_\ell$ and,

$$\mathcal{S}_\ell = \left\{ \Delta \in \mathbb{R}^{d_1 \times d_2} \mid \|\Delta\|_\infty \leq 2\alpha, \beta^{\ell-1}\mu \leq \|\Delta\|_F \leq \beta^\ell \mu, \sum_{j \in [d_2]} \Delta_{ij} = 0 \text{ for all } i \in [d_2], \text{ and } \|\Delta\|_{\text{nuc}} \leq \beta^{2\ell} \mu \right\},$$

(179)

where $\beta = \sqrt{10/9}$ and $\ell \in \{1, 2, 3, \ldots\}$. This is true since, for any $\Delta \in A$, $\|\Delta\|_F^2 \geq \mu \|\Delta\|_{\text{nuc}}$ and this implies $\|\Delta\|_F^2 \geq \mu \|\Delta\|_F$ (or, $\|\Delta\|_F \geq \mu$). Also note that,

$$\tilde{H}(\Delta) \leq \frac{1}{3d_1 d_2} \|\Delta\|_F^2 \implies \frac{2}{d_1 d_2} \|\Delta\|_F^2 - \hat{H}(\Delta) \geq \frac{5}{3d_1 d_2} \|\Delta\|_F^2 \implies \left(\mathbb{E} \left[\tilde{H}(\Delta) \right] - \tilde{H}(\Delta) \right) \geq \frac{5}{3d_1 d_2} \|\Delta\|_F^2.$$

(180)

Therefore using union bound we get,

$$\mathbb{P}\left(\exists \Delta \in A \text{ s.t. } \tilde{H}(\Delta) \leq \frac{1}{3d_1 d_2} \|\Delta\|_F^2 \right) \leq \sum_{\ell=1}^{\infty} \mathbb{P}\left(\sup_{\Delta \in \mathcal{S}_\ell} \left(\mathbb{E} \left[\tilde{H}(\Delta) \right] - \tilde{H}(\Delta) \right) \geq \frac{5}{3d_1 d_2} \|\Delta\|_F^2 \right) \leq \sum_{\ell=1}^{\infty} \mathbb{P}\left(\sup_{\Delta \in \mathcal{B}(\beta^\ell \mu)} \left(\mathbb{E} \left[\tilde{H}(\Delta) \right] - \tilde{H}(\Delta) \right) \geq \frac{3}{2d_1 d_2} (\beta^\ell \mu)^2 \right),$$

(181)

where $\mathcal{B}(D)$ is defined as,

$$\mathcal{B}(D) = \left\{ \Delta \in \mathbb{R}^{d_1 \times d_2} \mid \|\Delta\|_\infty \leq 2\alpha, \|\Delta\|_F \leq D, \sum_{j \in [d_2]} \Delta_{ij} = 0 \text{ for all } i \in [d_2], \text{ and } \mu \|\Delta\|_{\text{nuc}} \leq D^2 \right\},$$

(182)

and (a) is true because for $\Delta \in \mathcal{S}_1$,

$$\frac{5}{3d_1 d_2} \|\Delta\|_F^2 \geq \frac{5}{3d_1 d_2} (\beta^{\ell-1} \mu)^2 = \frac{3}{2d_1 d_2} (\beta^\ell \mu)^2,$$

(183)

and (b) is true because $\mathcal{S}_\ell \subset \mathcal{B}(\beta^\ell \mu)$.

Now we use following lemma to upper bound (181).

Lemma F.4. For $4(\log d)/3 \leq k \leq d^2 \log d$,

$$\mathbb{P}\left(\sup_{\Delta \in \mathcal{B}(D)} \left(\mathbb{E} \left[\tilde{H}(\Delta) \right] - \tilde{H}(\Delta) \right) \geq \frac{3}{2d_1 d_2} D^2 \right) \leq \exp \left(\frac{-kD^4}{2048 \alpha^4 d_1 d_2} \right)$$

(184)

52
Proof has been relegated to Section F.3. Now by (181) and Lemma F.4 we get,

\[
\mathbb{P}\left(\exists \Delta \in \mathcal{A} \text{ s.t. } \bar{H}(\Delta) \leq \frac{1}{3d_1d_2} \|\Delta\|_F^2 \right) \leq \sum_{\ell=1}^{\infty} \exp \left(\frac{-k (\beta^\ell \mu)^4}{2048 \alpha^4 d_1d_2} \right)
\]

where we get (a) by substituting \(\mu \) from (158), (b) by the fact that for \(\beta = \sqrt{10/9} \) and \(x \geq 1, \beta^x \geq x \log \beta \geq x(\beta - 1) \geq x/32 \), (c) is obtained by assuming \(k \leq \max\{d_1, d_2^2 / d_1\} \log d \), we get (d) because we are summing an infinite geometric sequence with common ratio of \(1/d^{213} \) and (e) is because for \(d \geq 2, 1/d^{213} \) is less than \(1/2 \).

F.3 Proof of Lemma F.4

With a slight abuse of notations, let \(\tilde{Z} \equiv \sup_{\Delta \in \mathcal{B}(D)} \left(\mathbb{E} \left[\bar{H}(\Delta) \right] - \bar{H}(\Delta) \right) \). Notice that \(\tilde{Z} \) is a function of \(d_1k \) random variables, \{\(u_{i,t} \)\}_{i \in [d_1], t \in [k]} \). We apply the McDiarmid’s bounded differences inequality. Let \(\tilde{Z}_1 \) and \(\tilde{Z}_2 \) be two realizations of \(\tilde{Z} \) where value of only one random variable \(u_{i',t'} \) is changed to \(u_{i',t'}' \). Also with a little more abuse of notation the two realizations of \(\bar{H}(\Delta) \) are written as \(\bar{H}(\Delta', u_{1,1}, \ldots, u_{i',t'}, \ldots, u_{d_1,k}) \) and \(\bar{H}(\Delta', u_{1,1}, \ldots, u_{i',t'}, \ldots, u_{d_1,k}) \). We let \(\Delta^* \) be the maximizer of \(\max\{\tilde{Z}_1, \tilde{Z}_2\} \). Maximum absolute difference between them is upper bounded as follows,

\[
|\tilde{Z}_1 - \tilde{Z}_2| = \left| \max_{\Delta \in \mathcal{B}(D)} \left(\mathbb{E} \left[\bar{H}(\Delta) \right] - \bar{H}(\Delta, u_{1,1}, \ldots, u_{i',t'}, \ldots, u_{d_1,k}) \right) \right| - \\
\sup_{\Delta' \in \mathcal{B}(D)} \left(\mathbb{E} \left[\bar{H}(\Delta') \right] - \bar{H}(\Delta', u_{1,1}, \ldots, u_{i',t'}, \ldots, u_{d_1,k}) \right) \right| \\
\leq \left(\mathbb{E} \left[\bar{H}(\Delta^*) \right] - \bar{H}(\Delta^*, u_{1,1}, \ldots, u_{i',t'}, \ldots, u_{d_1,k}) \right) - \left(\mathbb{E} \left[\bar{H}(\Delta^*) \right] - \bar{H}(\Delta^*, u_{1,1}, \ldots, u_{i',t'}, \ldots, u_{d_1,k}) \right) \\
\leq \sup_{\Delta \in \mathcal{B}(D)} \left(\bar{H}(\Delta, u_{1,1}, \ldots, u_{i',t'}, \ldots, u_{d_1,k}) - \bar{H}(\Delta, u_{1,1}, \ldots, u_{i',t'}, \ldots, u_{d_1,k}) \right) \\
\leq \sup_{\Delta \in \mathcal{B}(D)} \left(\frac{1}{d_1k^2} \sum_{\ell \neq t'} \left(\Delta'_{u_{\ell,t}} - \Delta'_{u_{\ell',t'}} \right)^2 \right) \\
\leq \frac{1}{d_1k} (k-1) (4\alpha)^2 = \frac{32\alpha^2}{d_1k}. \quad (186)
\]
where (a) follows from the fact that Δ^* is maximizer of $\max\{\tilde{Z}_1, \tilde{Z}_2\}$, (b) is due to the fact that the terms which change because of $u_{i',t'}$ are the $k-1$ difference square terms between $\Delta_{u_{i',t'},\tilde{z}}$ and $\Delta_{i, u_{i,t}}$ and (c) is because maximum and minimum value of difference square terms are $(4\alpha)^2$ and 0 respectively. Using McDiarmid’s bounded differences inequality we get,

$$
P\{\tilde{Z} - E[\tilde{Z}] \geq \epsilon\} \leq \exp\left(-\frac{2\epsilon^2}{d_1k \frac{2\alpha^2}{dk}} \right) ,$$

(187)

because of (186) and the fact that there are d_1k random variables. We upper bound $E[\tilde{Z}]$ as follows.

$$
E[\tilde{Z}] = E \sup_{\Delta \in B(D)} \frac{1}{d_1(\frac{k}{2})} \sum_{i=1}^{d_1} \sum_{(m_1, m_2) \in P_a} E \left[(\Delta_{i, u_{i,m_1}} - \Delta_{i, u_{i,m_2}})^2 \right] - (\Delta_{i, u_{i,m_1}} - \Delta_{i, u_{i,m_2}})^2
$$

(a)

$$
\leq E \sup_{\Delta \in B(D)} \frac{1}{d_1(\frac{k}{2})} \sum_{i=1}^{d_1} \sum_{(m_1, m_2) \in P_a} 2\tilde{\xi}_{i,m_1,m_2} (\Delta_{i, u_{i,m_1}} - \Delta_{i, u_{i,m_2}})^2
$$

(b)

$$
\leq \sum_{a=1}^{k-1} E \sup_{\Delta \in B(D)} \frac{1}{d_1(\frac{k}{2})} \sum_{i=1}^{d_1} \sum_{(m_1, m_2) \in P_a} 2\tilde{\xi}_{i,m_1,m_2} (\Delta_{i, u_{i,m_1}} - \Delta_{i, u_{i,m_2}})^2 ,
$$

(188)

where (a) is by standard symmetrization technique as used in k-wise ranking and $\{\xi_{i,m_1,m_2}\}_{i \in [d_1], m_1, m_2 \in [k]}$ are i.i.d Rademacher variables, (b) is due to the fact that we can partition set of all pairs into $k-1$ independent sets as in (170) and (c) is because of fact that supremum of sum is less than or equal to sum of supremum and the linearity of expectation. Since $|\Delta_{i, u_{i,m_1}} - \Delta_{i, u_{i,m_2}}| \leq 4\alpha$, we can use Ledoux-Talagrand contraction inequality on (188) to get,

$$
E[\tilde{Z}] \leq \sum_{a=1}^{k-1} E \sup_{\Delta \in B(D)} \frac{1}{d_1(\frac{k}{2})} \sum_{i=1}^{d_1} \sum_{(m_1, m_2) \in P_a} 2\tilde{\xi}_{i,m_1,m_2} (\Delta_{i, u_{i,m_1}} - \Delta_{i, u_{i,m_2}})^2
$$

(a)

$$
\leq \sum_{a=1}^{k-1} E \sup_{\Delta \in B(D)} \frac{1}{d_1(\frac{k}{2})} \sum_{i=1}^{d_1} \sum_{(m_1, m_2) \in P_a} 4\alpha 2\tilde{\xi}_{i,m_1,m_2} (\Delta_{i, u_{i,m_1}} - \Delta_{i, u_{i,m_2}})
$$

(b)

$$
\leq \sum_{a=1}^{k-1} \frac{8\alpha}{d_1(\frac{k}{2})} \|\tilde{\xi}_{i,m_1,m_2}\|_{\text{nuc}} \leq \sqrt{2}
$$

(190)

where we get (a) by putting $\tilde{W}_{i,m_1,m_2} = \tilde{\xi}_{i,m_1,m_2} e_i (e_{u_{i,m_1}} - e_{u_{i,m_2}})^T$ and (b) is due to Hölder’s inequality ($\langle x, y \rangle \leq \|x\|_2 \|y\|_{\text{nuc}}$). Now we use Bernstein’s inequality [54] to upperbound the above expectation terms. First fix a to value in $[k-1]$. We can easily show that \tilde{W}_{i,m_1,m_2} is zero mean and,

$$
\|\tilde{W}_{i,m_1,m_2}\|_2 \leq \sqrt{2}
$$

(191)

We also get,

$$
E \left[\tilde{W}_{i,m_1,m_2} \tilde{W}_{i,m_1,m_2}^T \right] = 2e_i e^T \left[1 - e^T_{u_{i,m_1}} e_{u_{i,m_2}} \right]
$$

$$
\leq e_i e^T \left(2 - \frac{2}{d_2} \right)
$$

$$
\leq 2e_i e^T ,
$$

(191)
\[
\mathbb{E} \left[\sum_{i=1}^{d_1} \sum_{(m_1, m_2) \in P_a} \tilde{W}_{i, m_1, m_2} \bigg| \sum_{i=1}^{d_1} \sum_{(m_1, m_2) \in P_a} \tilde{W}_{i, m_1, m_2} \right] \leq \sqrt{\frac{8k d_1 ((1 + c_1) \log d)}{d_1 \log d}} + \frac{2 \sqrt{2} k d_1}{d_1 ^2}.
\]
(195)

Because from (190) we get
\[
\mathbb{E} \left[\sum_{i=1}^{d_1} \sum_{(m_1, m_2) \in P_a} \tilde{W}_{i, m_1, m_2} \bigg| \sum_{i=1}^{d_1} \sum_{(m_1, m_2) \in P_a} \tilde{W}_{i, m_1, m_2} \right] \leq \sqrt{\frac{8k d_1 ((1 + c_1) \log d)}{d_1 \log d}} + \frac{2 \sqrt{2} k d_1}{d_1 ^2}.
\]
(195)

From (189) and (195), putting \(c_1 = 2 \), we get,
\[
\mathbb{E} \left[\tilde{Z} \right] \leq \sum_{a=1}^{k-1} \frac{8 \alpha}{d_1 \log d} \left(\sqrt{\frac{24 k d_1 \log d}{d_1 \log d}} + \frac{\sqrt{2} d_1 k}{d_1 ^2} \right) \sup_{\Delta \in B(D)} \| \Delta \|_{\text{nuc}}
\]
(196)
where \((a) \) is obtained because of \(\text{[182]} \) which gives \(\sup_{D \in \mathcal{B}(D)} \| \Delta \|_{\text{trace}} \leq D^2/\mu \) and \((b) \) can be got by assuming \(k \leq d^2 \log d \). Using the above bound in \(\text{[187]} \) we get,

\[
P\{ \mathcal{Z} - \mathcal{D}^2/(d_1 d_2) \geq \epsilon \} \leq P\{ \mathcal{Z} - E[\mathcal{Z}] \geq \epsilon \} \leq \exp \left(-\left(\frac{2\epsilon^2}{d_1 k \left(\frac{32\alpha^2}{d_1 k} \right)^2} \right) \right),
\]

and using \(\epsilon = D^2/(2d_1 d_2) \) will get us the required bound.

\section*{G Proof of Bundled Choices Theorem 6}

We use similar notations and techniques as the proof of Theorem 3 in Appendix C. From the definition of \(\mathcal{L}(\Theta) \) in Eq. \(\text{[35]} \), we have for the true parameter \(\Theta^* \), the gradient evaluated at the true parameter is

\[
\nabla \mathcal{L}(\Theta^*) = -\frac{1}{n} \sum_{i=1}^{n} (e_{u_i} e_{v_i}^T - p_i),
\]

where \(p_i \) denotes the conditional probability of the MNL choice for the \(i \)-th sample. Precisely, \(p_i = \sum_{j_1 \in S} \sum_{j_2 \in T} p_{j_1,j_2|S,T} e_{j_1} e_{j_2}^T \), where \(p_{j_1,j_2|S,T} \) is the probability that the pair of items \((j_1, j_2)\) is chosen at the \(i \)-th sample such that \(p_{j_1,j_2|S,T} = \mathbb{P}\left((u_i, v_i) = (j_1, j_2) | S_i, T_i \right) = e^{\Theta_{j_1,j_2}} / \left(\sum_{j_1',j_2'\in S,T} e^{\Theta_{j_1',j_2'}} \right) \), where \((u_i, v_i)\) is the pair of items selected by the \(i \)-th user among the set of pairs of alternatives \(S_i \times T_i \). The Hessian can be computed as

\[
\frac{\partial^2 \mathcal{L}(\Theta)}{\partial \Theta_{j_1,j_2} \partial \Theta_{j'_1,j'_2}} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}((j_1, j_2) \in S_i \times T_i) \frac{\partial p_{j_1,j_2|S,T}}{\partial \Theta_{j_1,j_2}}
\]

\[
-\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}((j_1, j_2) \in S_i \times T_i) \left(p_{j_1,j_2|S,T} \mathbb{I}((j_1', j_2') \in (S_i \times T_i)) - p_{j_1,j_2|S,T} p_{j_1',j_2'|S,T} \right),
\]

We use \(\nabla^2 \mathcal{L}(\Theta) \in \mathbb{R}^{d_1 d_2 \times d_1 d_2} \) to denote this Hessian. Let \(\Delta = \Theta^* - \hat{\Theta} \) where \(\hat{\Theta} \) is an optimal solution to the convex optimization in \(\text{[33]} \). We introduce the following key technical lemmas.

\begin{lemma}
For any positive constant \(c \geq 1 \) and \(n \geq \frac{(4(1 + c)e^{2\alpha} d_1 d_2 \log d)}{\max\{d_1, d_2\}} \), with probability at least \(1 - 2d^{-c} \),

\[
\| \nabla \mathcal{L}(\Theta^*) \|_2 \leq \sqrt{\frac{4(1 + c)e^{2\alpha} \max\{d_1, d_2\} \log d}{d_1 d_2 n}}.
\]
\end{lemma}

Since we are typically interested in the regime where the number of samples is much smaller than the dimension \(d_1 \times d_2 \) of the problem, the Hessian is typically not positive definite. However, when we restrict our attention to the vectorized \(\Delta \) with relatively small nuclear norm, then we can prove restricted strong convexity, which gives the following bound.

\begin{lemma}[Restricted Strong Convexity for bundled choice modeling]
Fix any \(\Theta \in \Omega_\alpha \) and assume \(\{ \min\{d_1, d_2\} / \min\{k_1, k_2\} \} \log d \leq n \leq \min\{d_1 \log d, k_1 k_2 \max\{d_1^2, d_2^2\} \log d\} \). Under the random sampling model of the alternatives \(\{ j_{ia} \}_{i \in [n], a \in [k_1]} \) from the first set of items \(\{d_1\} \), \(\{ j_{ib} \}_{i \in [n], b \in [k_2]} \) from the second set of items \(\{d_2\} \), and the random outcome of the comparisons described in section 7 with probability larger than \(1 - 2d^{-2^{25}} \),

\[
\text{Vec}(\Delta)^T \nabla^2 \mathcal{L}(\Theta) \text{Vec}(\Delta) \geq \frac{e^{-2\alpha}}{8d_1 d_2} \| \Delta \|_F^2,
\]
\end{lemma}
for all \(\Delta \) in \(\mathcal{A} \) where
\[
\mathcal{A} = \left\{ \Delta \in \mathbb{R}^{d_1 \times d_2} \mid \|\Delta\|_\infty \leq 2\alpha, \sum_{j_1, j_2} \Delta_{j_1, j_2} = 0 \text{ and } \|\Delta\|_F^2 \geq \mu' \|\Delta\|_{\text{nuc}} \right\}.
\] (203)

with
\[
\mu' = 2^{10} \alpha d_1 d_2 \left(\frac{\log d}{n \min\{d_1, d_2\} \min\{k_1, k_2\}} \right) .
\] (204)

Building on these lemmas, the proof of Theorem [G.1] is divided into the following two cases. In both cases, we will show that
\[
\|\Delta\|_F^2 \leq 12 e^{2\alpha} c_1 \lambda d_1 d_2 \|\Delta\|_{\text{nuc}},
\] (205)

with high probability. Applying Lemma [G.1] proves the desired theorem. We are left to show Eq. (205) holds.

Case 1: Suppose \(\|\Delta\|_F^2 \geq \mu' \|\Delta\|_{\text{nuc}} \). With \(\Delta = \Theta^* - \hat{\Theta} \), the Taylor expansion yields
\[
\mathcal{L}(\hat{\Theta}) = \mathcal{L}(\Theta^*) - \langle \nabla \mathcal{L}(\Theta^*), \Delta \rangle + \frac{1}{2} \text{Vec}(\Delta)^T \mathcal{L}(\Theta^* \Theta) \text{Vec}(\Delta),
\] (206)

where \(\Theta = a\hat{\Theta} + (1 - a)\Theta^* \) for some \(a \in [0, 1] \). It follows from Lemma [G.2] that with probability at least \(1 - 2d^{-25} \),
\[
\mathcal{L}(\hat{\Theta}) - \mathcal{L}(\Theta^*) \geq -\|\nabla \mathcal{L}(\Theta^*)\|_2 \|\Delta\|_{\text{nuc}} + \frac{e^{-2\alpha}}{8 d_1 d_2} \|\Delta\|_F^2 .
\]

From the definition of \(\hat{\Theta} \) as an optimal solution of the minimization, we have
\[
\mathcal{L}(\hat{\Theta}) - \mathcal{L}(\Theta^*) \leq \lambda \left(\|\Theta^*\|_{\text{nuc}} - \|\hat{\Theta}\|_{\text{nuc}} \right) \leq \lambda \|\Delta\|_{\text{nuc}} .
\]

By the assumption, we choose \(\lambda \geq 8\lambda \). In view of Lemma [G.1], this implies that \(\lambda \geq 2 \|\nabla \mathcal{L}(\Theta^*)\|_2 \) with probability at least \(1 - 2d^{-3} \). It follows that with probability at least \(1 - 2d^{-3} - 2d^{-25} \),
\[
\frac{e^{-2\alpha}}{8 d_1 d_2} \|\Delta\|_F^2 \leq (\lambda + \|\nabla \mathcal{L}(\Theta^*)\|_2) \|\Delta\|_{\text{nuc}} \leq \frac{3\lambda}{2} \|\Delta\|_{\text{nuc}} .
\]

By our assumption on \(\lambda \leq c_1 \lambda \), this proves the desired bound in Eq. (205).

Case 2: Suppose \(\|\Delta\|_F^2 \leq \mu' \|\Delta\|_{\text{nuc}} \). By the definition of \(\mu \) and the fact that \(c_1 \geq 128/\sqrt{\min\{k_1, k_2\}} \), it follows that \(\mu' \leq 12 e^{2\alpha} c_1 \lambda d_1 d_2 \), and we get the same bound as in Eq. (205).

G.1 Proof of Lemma [G.1]

Define \(X_i = -(e_{u_i} e_{v_i}^T - p_i) \) such that \(\nabla \mathcal{L}(\Theta^*) = (1/n) \sum_{i=1}^n X_i \), which is a sum of \(n \) independent random matrices. Note that since \(p_i \) is entry-wise bounded by \(e^{2\alpha}/(k_1 k_2) \),
\[
\|X_i\|_2 \leq 1 + \frac{e^{2\alpha}}{\sqrt{k_1 k_2}} ,
\]

and
\[
\sum_{i=1}^n \mathbb{E}[X_i X_i^T] = \sum_{i=1}^n (\mathbb{E}[e_{u_i} e_{v_i}^T] - p_i p_i^T)
\]
\[
\leq \sum_{i=1}^n \mathbb{E}[e_{u_i} e_{v_i}^T]
\]
\[
\leq \frac{e^{2\alpha} n}{d_1} I_{d_1 \times d_1} ,
\] (207) (208) (209)
where the last inequality follows from the fact that for any given \(S_i, u_i\) will be chosen with probability at most \(e^{2\alpha}/k_1\), if it is in the set \(S_i\) which happens with probability \(k_1/d_1\). Therefore,

\[
\|\sum_{i=1}^n \mathbb{E}[X_iX_i^T]\|_2 \leq \frac{e^{2\alpha} n}{d_1} .
\]

(210)

Similarly,

\[
\|\sum_{i=1}^n \mathbb{E}[X_i^TX_j]\|_2 \leq \frac{e^{2\alpha} n}{d_2} .
\]

(211)

Applying matrix Bernstein inequality \([54]\), we get

\[
P\{\|\nabla \mathcal{L} (\Theta^*)\|_2 > t\} \leq (d_1 + d_2) \exp \left\{ \frac{-n^2 t^2 / 2}{(e^{2\alpha} n \max\{d_1, d_2\}/(d_1 d_2)) + ((1 + (e^{2\alpha}/\sqrt{k_1 k_2}) nt/3)} \right\} ,
\]

(212)

which gives the desired tail probability of \(2d^{-\epsilon}\) for the choice of

\[
t = \max \left\{ \frac{4(1 + c) e^{2\alpha} \max\{d_1, d_2\} \log d}{d_1 d_2 n}, \frac{4(1 + c)(1 + \frac{e^{2\alpha}}{\sqrt{k_1 k_2}}) \log d}{3 n} \right\}
\]

\[
= \sqrt{\frac{4(1 + c) e^{2\alpha} \max\{d_1, d_2\} \log d}{d_1 d_2 n}},
\]

where the last equality follows from the assumption that \(n \geq (4(1 + c) e^{2\alpha} d_1 d_2 \log d)/\max\{d_1, d_2\}\).

G.2 Proof of Lemma G.2

The quadratic form of the Hessian defined in \((200)\) can be lower bounded by

\[
\text{Vec}(\Delta)^T \nabla^2 \mathcal{L}(\Theta) \text{Vec}(\Delta) \geq \frac{e^{-2\alpha}}{2 k_1^2 k_2^2 n} \sum_{i=1}^n \sum_{j_1,j_2' \in S_i,j_2,j_2' \in T_i} (\Delta_{j_1,j_2} - \Delta_{j_1',j_2'})^2,
\]

\((213)\)

which follows from Remark C.5. To lower bound \(H(\Delta)\), we first compute the mean:

\[
\mathbb{E}[H(\Delta)] = \frac{e^{-2\alpha}}{d_1 d_2} \|\Delta\|_
u^2 ,
\]

(215)

where we used the fact that \(\mathbb{E}[\sum_{j_1 \in S_i,j_2 \in T_i} \Delta_{j_1,j_2}] = (k_1 k_2/(d_1 d_2)) \sum_{j_1',j_2' \in [d_1,j_2'] \Delta_{j_1',j_2'} = 0} \) for \(\Delta \in \Omega_{2\alpha}\) in \([35]\).

We now prove that \(H(\Delta)\) does not deviate from its mean too much. Suppose there exists a \(\Delta \in \mathcal{A}\) defined in \((203)\) such that Eq. \((202)\) is violated, i.e. \(H(\Delta) < (e^{-2\alpha}/(8k_1 k_2 d_1 d_2))\|\Delta\|_
u^2\). In this case,

\[
\mathbb{E}[H(\Delta)] - H(\Delta) \geq \frac{7 e^{-2\alpha}}{8 d_1 d_2} \|\Delta\|_
u^2.
\]

(216)

We will show that this happens with a small probability. We use the same peeling argument as in Appendix C with

\[
S_\ell = \left\{ \Delta \in \mathbb{R}^{d_1 \times d_2} \mid \|\Delta\|_{\nu} \leq 2\alpha, \beta^{\ell-1} \mu' \leq \|\Delta\|_F \leq \beta^\ell \mu', \sum_{j_1 \in [d_1], j_2 \in [d_2]} \Delta_{j_1,j_2} = 0, \text{ and } \|\Delta\|_{\nu} \leq \beta^\ell \mu' \right\} .
\]

58
where $\beta = \sqrt{10/9}$ and for $\ell \in \{1, 2, 3, \ldots\}$, and μ' is defined in \[204\]. By the peeling argument, there exists an $\ell \in \mathbb{Z}_+$ such that $\Delta \in \mathcal{S}_\ell$ and

$$
\mathbb{E}[H(\Delta)] - H(\Delta) \geq \frac{7e^{-2\alpha}}{8d_1d_2} \beta^{2\ell-2}(\mu')^2 \geq \frac{7e^{-2\alpha}}{9d_1d_2} \beta^{2\ell}(\mu')^2.
$$

(217)

Applying the union bound over $\ell \in \mathbb{Z}_+$,

$$
\mathbb{P} \left\{ \exists \Delta \in \mathcal{A}, H(\Delta) < \frac{e^{-2\alpha}}{8d_1d_2} \|\Delta\|_F^2 \right\} \leq \sum_{\ell=1}^{\infty} \mathbb{P} \left\{ \sup_{\Delta \in \mathcal{S}_\ell} (\mathbb{E}[H(\Delta)] - H(\Delta)) > \frac{7e^{-2\alpha}}{9d_1d_2} (\beta^\ell \mu')^2 \right\}
$$

(218)

where we define the set $\mathcal{B}(\ell)\mu'$ such that $\mathcal{S}_\ell \subseteq \mathcal{B}(\ell)\mu'$:

$$
\mathcal{B}(\ell)\mu' = \left\{ \Delta \in \mathbb{R}^{d_1 \times d_2} \mid \|\Delta\|_\infty \leq 2\alpha, \|\Delta\|_F \leq D, \sum_{j_1 \in [d_1], j_2 \in [d_2]} \Delta_{j_1j_2} = 0, \mu' \|\Delta\|_{\text{nucl}} \leq D^2 \right\}.
$$

(219)

The following key lemma provides the upper bound on this probability.

Lemma G.3. For $(\min\{d_1, d_2\}/\min\{k_1, k_2\}) \log d \leq n \leq d^5 \log d$,

$$
\mathbb{P} \left\{ \sup_{\Delta \in \mathcal{B}(\ell)\mu'} (\mathbb{E}[H(\Delta)] - H(\Delta)) \geq \frac{e^{-2\alpha}D^2}{2d_1d_2} \right\} \leq \exp \left\{ - \frac{n \min\{k_1^2, k_2^2\} k_1k_2D^4}{2 \alpha^2 d_1^2 d_2^2} \right\}.
$$

(220)

Let $\eta = \exp \left(- \frac{nk_1k_2\min\{k_1^2, k_2^2\}(\beta - 1.002)(\mu')^4}{2 \alpha^2 d_1^2 d_2^2} \right)$. Applying the tail bound to (218), we get

$$
\mathbb{P} \left\{ \exists \Delta \in \mathcal{A}, H(\Delta) < \frac{e^{-2\alpha}}{8d_1d_2} \|\Delta\|_F^2 \right\} \leq \sum_{\ell=1}^{\infty} \exp \left\{ - \frac{nk_1k_2\min\{k_1^2, k_2^2\}(\beta^\ell \mu')^4}{2 \alpha^2 d_1^2 d_2^2} \right\}
$$

(221)

where (a) holds because $\beta^x \geq x \log \beta \geq x(\beta - 1.002)$ for the choice of $\beta = \sqrt{10/9}$. By the definition of μ',

$$
\eta = \exp \left\{ - \frac{2^{20} k_1k_2 \max\{d_1^2, d_2^2\}(\log d)^2(\beta - 1.002)}{n} \right\} \leq \exp\left\{ - 2^{25} \log d \right\},
$$

where the last inequality follows from the assumption that $n \leq k_1k_2 \max\{d_1^2, d_2^2\} \log d$, and $\beta - 1.002 \geq 2^{-5}$. Since for $d \geq 2$, $\exp\{-2^{25} \log d\} \leq 1/2$ and thus $\eta \leq 1/2$, the lemma follows by assembling the last two displayed inequalities.

G.3 Proof of Lemma G.3

Let $Z \equiv \sup_{\Delta \in \mathcal{B}(\ell)\mu'} [\mathbb{E}[H(\Delta)] - H(\Delta)]$ and consider the tail bound using McDiarmid’s inequality. Note that Z has a bounded difference of $(8\alpha e^{-2\alpha} \max\{k_1, k_2\})/(k_1^2k_2^2n)$ when one of the k_1k_2n independent random variables is changed, which gives

$$
\mathbb{P} \{ Z - \mathbb{E}[Z] \geq t \} \leq \exp \left(- \frac{k_1^4k_2\log n}{64\alpha^4 e^{-4\alpha} \max\{k_1^2, k_2^2\} k_1k_2n} \right).
$$

(221)
With the choice of $t = D^2/(4e^{2\alpha}d_1d_2)$, this gives
\[
\mathbb{P}\left\{ |Z - \mathbb{E}[Z]| \geq \frac{e^{-2\alpha}}{4d_1d_2} D^2 \right\} \leq \exp \left(-\frac{k_1^3k_2^3 n D^4}{2^{10}\alpha^4 d_1^2 d_2^2 \max\{k_1^2, k_2^2\}}\right). \tag{222}
\]

We first construct a partition of the space similar to Lemma C.7. Let \(k = \min\{k_1, k_2\} \). \tag{223}

Lemma G.4. There exists a partition \((\mathcal{T}_1, \ldots, \mathcal{T}_N)\) of \(\{[k_1] \times [k_2]\} \times \{[k_1] \times [k_2]\}\) for some \(N \leq 2k_1^2k_2^2/k \) such that \(\mathcal{T}_t\)'s are disjoint subsets, \(\bigcup_{t \in [N]} \mathcal{T}_t = \{[k_1] \times [k_2]\} \times \{[k_1] \times [k_2]\}\), \(|\mathcal{T}_t| \leq k\) and for any \(\ell \in [N] \) the set of random variables in \(\mathcal{T}_\ell\) satisfy
\[
\{(\Delta_{i,a,j,b} - \Delta_{i,a',j,b'})^2\}_{i \in [n], (a,b),(a',b') \in \mathcal{T}_\ell} \text{ are mutually independent.}
\]
where \(j_{i,a}\) for \(i \in [n]\) and \(a \in [k_1]\) denote the \(a\)-th chosen item to be included in the set \(S_i\).

Now we prove an upper bound on \(\mathbb{E}[Z]\) using the symmetrization technique. Recall that \(j_{i,a}\) is independently and uniformly chosen from \([d_1]\) for \(i \in [n]\) and \(a \in [k_1]\). Similarly, \(j_{i,b}\) is independently and uniformly chosen from \([d_2]\) for \(i \in [n]\) and \(b \in [k_2]\).

\[
\mathbb{E}[Z] = \frac{e^{-2\alpha}}{2k_1^2k_2^2 n} \mathbb{E}\left[\sup_{\Delta \in B^D(\mathcal{D})} \sum_{i=1}^{n} \sum_{a,a' \in [k_1]} \sum_{b,b' \in [k_2]} \mathbb{E}\left[(\Delta_{i,a,j,b} - \Delta_{i,a',j,b'})^2 \right] \right] \tag{224}
\]
\[
\leq \frac{e^{-2\alpha}}{2k_1^2k_2^2 n} \sum_{t \in [N]} \mathbb{E}\left[\sup_{\Delta \in B^D(\mathcal{D})} \sum_{i=1}^{n} \sum_{(j_{i,j}, j_{i,j}')} \mathbb{E}\left[(\Delta_{i,j} - \Delta_{i,j'})^2 \right] \right] \tag{225}
\]
\[
\leq \frac{e^{-2\alpha}}{k_1^2 k_2^2 n} \sum_{t \in [N]} \mathbb{E}\left[\sup_{\Delta \in B^D(\mathcal{D})} \sum_{i=1}^{n} \sum_{(j_{i,j}, j_{i,j}')} \xi_{i,j,j,j'} \left(\Delta_{i,j} - \Delta_{i,j'}\right)^2 \right], \tag{226}
\]
where the first inequality follows for the fact that the supremum of the sum is smaller than the sum of supremum, and the second inequality follows from standard symmetrization with i.i.d. Rademacher random variables \(\xi_{i,j,j,j'}\)'s. It follows from Ledoux-Talagrand contraction inequality that
\[
\mathbb{E}\left[\sup_{\Delta \in B^D(\mathcal{D})} \sum_{i=1}^{n} \sum_{(j_{i,j}, j_{i,j}')} \xi_{i,j,j,j'} \left(\Delta_{i,j} - \Delta_{i,j'}\right)^2 \right] \tag{227}
\]
\[
\leq 8\alpha \mathbb{E}\left[\sup_{\Delta \in B^D(\mathcal{D})} \sum_{i=1}^{n} \sum_{(j_{i,j}, j_{i,j}')} \xi_{i,j,j,j'} \left(\Delta_{i,j} - \Delta_{i,j'}\right)^2 \right] \tag{228}
\]
\[
\leq 8\alpha \mathbb{E}\left[\sup_{\Delta \in B^D(\mathcal{D})} \left\|\Delta\right\|_{\text{nuc}} \sum_{i=1}^{n} \sum_{(j_{i,j}, j_{i,j}')} \xi_{i,j,j,j'} \left(e_{i,j} - e_{i,j'}\right)^2 \right] \tag{229}
\]
\[
\leq 8\alpha D^2 \mathbb{E}\left[\sum_{i=1}^{n} \sum_{(j_{i,j}, j_{i,j}')} \xi_{i,j,j,j'} \left(e_{i,j} - e_{i,j'}\right)^2 \right], \tag{230}
\]
where the second inequality follows for the Hölder’s inequality and the last inequality follows from \(\mu^2 ||\Delta||_{\text{nuc}} \leq D^2\) for all \(\Delta \in B^D(\mathcal{D})\). To bound the expected spectral norm of the random matrix, we use matrix Bernstein’s inequality. Note that \(\left\|\xi_{i,j,j,j'} e\right\|_2 \leq \sqrt{2}\) almost surely, \(\mathbb{E}[|e_{i,j} - e_{i,j'}|^2] \leq (2/d_1) I_{d_1 \times d_1}\), and \(\mathbb{E}[|e_{i,j} - e_{i,j'}|^T (e_{i,j} - e_{i,j'})] \leq (2/d_2) I_{d_2 \times d_2}\). It follows that \(\sigma^2 = 2n|\mathcal{T}_t|/\min\{d_1, d_2\}\), where \(|\mathcal{T}_t| \leq \min\{k_1, k_2\}\). It follows that
\[
\mathbb{P}\left\{ \left\|\sum_{i=1}^{n} \sum_{(j_{i,j}, j_{i,j}')} \xi_{i,j,j,j'} (e_{i,j} - e_{i,j'})\right\|_2 > t \right\} \leq (d_1 + d_2) \exp\left\{ \frac{-t^2/2}{2n \min\{d_1, d_2\}} + \sqrt{\frac{2n}{d_1 d_2}} \right\},
\]
60
Choosing \(t = \max\{\sqrt{64n(\min\{k_1, k_2\}/\min\{d_1, d_2\})\log d}, (16\sqrt{2}/3)\log d\} \), we obtain a bound on the spectral norm of \(t \) with probability at least \(1 - 2d^{-7} \). From the fact that \(\left\| \sum_{i=1}^n \sum_{(j_1, j_2, j_1', j_2') \in T_c} \xi_{i,j_1,j_2,j_1',j_2'} (e_{j_1,j_2} - e_{j_1',j_2'}) \right\|_2 \leq (n/\sqrt{2}) \min\{k_1, k_2\} \), it follows that

\[
\mathbb{E}\left[\left\| \sum_{i=1}^n \sum_{(j_1, j_2, j_1', j_2') \in T_c} \xi_{i,j_1,j_2,j_1',j_2'} (e_{j_1,j_2} - e_{j_1',j_2'}) \right\|_2 \right]
\leq \max\left\{\sqrt{64n \min\{k_1, k_2\} \log d / \min\{d_1, d_2\}}, (16\sqrt{2}/3)\log d \right\} + \frac{2n \min\{k_1, k_2\}}{\sqrt{2d^7}}
\leq \sqrt{66n \min\{k_1, k_2\} \log d / \min\{d_1, d_2\}}
\] (233)

which follows from the assumption that \(n \min\{k_1, k_2\} \geq \min\{d_1, d_2\} \log d \) and \(n \leq d^6 \log d \). Substituting this bound in (226), and (230), we get that

\[
\mathbb{E}[Z] \leq \frac{16e^{-2\alpha D^2}}{\mu'} \sqrt{\frac{66 \log d}{n \min\{k_1, k_2\} \min\{d_1, d_2\}}}
\leq \frac{e^{-2\alpha D^2}}{4d_1d_2}.
\] (235)

H Proof of the information-theoretic lower bound in Theorem 7

This proof follow closely the proof of Theorem 4 in Appendix E. We apply the generalized Fano’s inequality in the same way to get Eq. (129)

\[
P\{\hat{L} \neq L\} \geq 1 - \frac{(M^2)^{-1} \sum_{\ell_1, \ell_2 \in [M]} D_{KL}(\Theta^{(\ell_1)}||\Theta^{(\ell_2)}) + \log 2}{\log M},
\] (236)
chosen in one of the \(n\) sampling be \(S \subset [d_1]\) and \(T \subset [d_2]\) respectively. Then,

\[
D_{\text{KL}}(\Theta^{(\ell_1)}\|\Theta^{(\ell_2)}) \overset{\text{(a)}}{=} \frac{n}{(k_1k_2)(d_1 d_2)} \sum_{S,T} \sum_{j \in S} \sum_{j' \in T} \sum_{j \in T} \sum_{j' \in T} \ell_{ij} \log \left(\frac{\sum_{i' \in S} \ell_{ij'} \Theta_{ij}^{(\ell_1)}}{\sum_{i' \in S} \ell_{ij'} \Theta_{ij}^{(\ell_2)}} \right) \]

\[
\overset{\text{(b)}}{\leq} \frac{n}{(k_1k_2)(d_1 d_2)} \sum_{S,T} \sum_{i,j} \sum_{i',j'} \left(\Theta_{ij}^{(\ell_1)} - \Theta_{ij}^{(\ell_2)} - \Theta_{ij}^{(\ell_1)} \Theta_{ij}^{(\ell_2)} + \Theta_{ij}^{(\ell_1)} \Theta_{ij}^{(\ell_2)} \right) \]

\[
\overset{\text{(c)}}{=} \frac{n}{k_1k_2(d_1d_2)(d_1 d_2)} \sum_{S,T} \sum_{i,j} \left(\sum_{i',j'} \left(\Theta_{ij}^{(\ell_1)} - \Theta_{ij}^{(\ell_2)} \right)^2 \right) \]

\[
\overset{\text{(d)}}{\leq} \frac{n}{k_1k_2(d_1d_2)(d_1 d_2)} \sum_{S,T} \sum_{i,j} \left(\sum_{i',j'} \left(\Theta_{ij}^{(\ell_1)} - \Theta_{ij}^{(\ell_2)} \right)^2 \right) \]

\[
\overset{\text{(e)}}{=} \frac{n}{k_1k_2(d_1d_2)(d_1 d_2)} \sum_{S,T} \sum_{i,j} \left(\Theta_{ij}^{(\ell_1)} - \Theta_{ij}^{(\ell_2)} \right)^2 \]

\[
\overset{\text{(f)}}{=} \frac{n}{d_1d_2} \left\| \Theta_{ij}^{(\ell_1)} - \Theta_{ij}^{(\ell_2)} \right\|_F^2 \]

Here (a) is by definition of KL-distance and the fact that \(S, T\) are chosen uniformly from all possible such sets and (b) is due to the fact that \(\log(x) \leq x - 1\) with \(x = (\Theta_{ij}^{(\ell_1)} \sum_{i' \in S} \sum_{j' \in T} \ell_{ij'} e^{\Theta_{ij}^{(\ell_2)}}) / (\Theta_{ij}^{(\ell_2)} \sum_{i' \in S} \sum_{j' \in T} e^{\Theta_{ij}^{(\ell_1)}})\).

The constants at (c) is due to the fact that each element of \(\Theta^{(\ell_1)}\) is upper bounded by \(\alpha\) and lower bounded by \(-\alpha\). We can get (d) by removing the second term which is always negative, and using the bond of \(\alpha\). (e) is obtained because \(e^x\) where \(-\alpha \leq x \leq \alpha\) is Lipschitz continuous with Lipschitz constant \(e^\alpha\). At last (f) is obtained by simple counting of the occurrences of each \(ij\). Thus we have,

\[
\mathbb{P}\{\hat{L} \neq L\} \geq 1 - \left(\frac{M}{2} \right)^{-1} \sum_{\ell_1, \ell_2 \in [M]} \frac{n}{d_1d_2} \left\| \Theta_{ij}^{(\ell_2)} - \Theta_{ij}^{(\ell_2)} \right\|_F^2 + \log 2 \]

The remainder of the proof relies on the following probabilistic packing.

Lemma H.1. Let \(d_2 \geq d_1\) be sufficiently large positive integers. Then for each \(r \in \{1, \ldots, d_1\}\), and for any positive \(\delta > 0\) there exists a family of \(d_1 \times d_2\) dimensional matrices \(\{\Theta^{(1)}, \ldots, \Theta^{(M(\delta))}\}\) with cardinality \(M(\delta) = [\{1/4\} \exp(r d_2 / 576)]\) such that each matrix is rank \(r\) and the following bounds hold:

\[
\left\| \Theta^{(\ell)} \right\|_F \leq \delta, \text{ for all } \ell \in [M] \]

\[
\left\| \Theta^{(\ell_1)} - \Theta^{(\ell_2)} \right\|_F \geq \frac{1}{2} \delta, \text{ for all } \ell_1, \ell_2 \in [M] \]

\[
\Theta^{(\ell)} \in \Omega_\delta, \text{ for all } \ell \in [M], \]

with \(\delta = (8 \delta / d_2)^{\sqrt{2 \log d}}\) for \(d = (d_1 + d_2) / 2\).

Suppose \(\delta \leq 2d_2(8d_2 / 2 \log d)\) such that the matrices in the packing set are entry-wise bounded by \(\alpha\), then the above lemma implies that \(\left\| \Theta^{(\ell_1)} - \Theta^{(\ell_2)} \right\|_F^2 \leq 4 \delta^2\), which gives

\[
\mathbb{P}\{\hat{L} \neq L\} \geq 1 - \frac{\frac{n}{d_1d_2} \log 2}{\frac{d_1d_2}{576} - 2 \log 2} \geq \frac{1}{2}, \]

62
where the last inequality holds for $\delta^2 \leq \left(rd_1 d_2^2 / (1152 e^{5a} n) \right)$ and assuming $rd_2 \geq 1600$. Together with (249) and (247), this proves that for all $\delta \leq \min \{ ad_2 / (8 \sqrt{2 \log d}), \sqrt{rd_1 d_2^2 / (9216 e^{5a} n)} \}$,

$$\inf_{\Theta} \sup_{\Theta^* \in \Omega_d} \mathbb{E} \left[\| \Theta - \Theta^* \|_F \right] \geq \delta / 4 .$$

Choosing δ appropriately to maximize the right-hand side finishes the proof of the desired claim. Also by symmetry, we can apply the same argument to get similar bound with d_1 and d_2 interchanged.

H.1 Proof of Lemma H.1

We show that the following procedure succeeds in producing the desired family with probability at least half, which proves its existence. Let $d = (d_1 + d_2) / 2$, and suppose $d_2 \geq d_1$ without loss of generality. For the choice of $M' = e^{rd_2/576}$, and for each $\ell \in [M']$, generate a rank-r matrix $\Theta^{(\ell)} \in \mathbb{R}^{d_1 \times d_2}$ as follows:

$$\Theta^{(\ell)} = \frac{\delta}{\sqrt{rd_2}} U (V^{(\ell)})^T \left(I_{d_2} - \frac{1}{d_1 d_2} \mathbb{1}^{T} \mathbb{1}^T \right) ,$$

where $U \in \mathbb{R}^{d_1 \times r}$ is a random orthogonal basis such that $U^T U = I_r$ and $V^{(\ell)} \in \mathbb{R}^{d_2 \times r}$ is a random matrix with each entry $V_{ij}^{(\ell)} \in \{-1, +1\}$ chosen independently and uniformly at random. By construction, notice that $\| \Theta^{(\ell)} \|_F \leq (\delta / \sqrt{rd_2}) \| U (V^{(\ell)})^T \|_F = \delta$.

Now, by triangular inequality, we have

$$\| \Theta^{(\ell_1)} - \Theta^{(\ell_2)} \|_F \geq \frac{\delta}{\sqrt{rd_2}} \| U (V^{(\ell_1)}) - U (V^{(\ell_2)}) \|_F - \frac{\delta}{d_1 d_2 \sqrt{rd_2}} \left(\| U (V^{(\ell_1)})^T \|_F + \| U (V^{(\ell_2)})^T \|_F \right) .$$

We will prove that the first term is bounded by $A \geq \sqrt{rd_2}$ with probability at least $7/8$ for all M' matrices, and we will show that we can find M matrices such that the second term is bounded by $B \leq 8 \sqrt{2rd_2 \log (32r) \log (32d)}$ with probability at least $7/8$. Together, this proves that with probability at least $3/4$, there exists M matrices such that

$$\| \Theta^{(\ell_1)} - \Theta^{(\ell_2)} \|_F \geq \delta \left(1 - \frac{27 \log (32r) \log (32d)}{d_1 d_2} \right) \geq \frac{1}{2} \delta ,$$

for all $\ell_1, \ell_2 \in [M]$ and for sufficiently large d_1 and d_2.

Applying similar McDiarmid’s inequality as Eq. (149) in Appendix E, it follows that $A^2 \geq rd_2$ with probability at least $7/8$ for $M' = e^{rd_2/576}$ and a sufficiently large d_2.

To prove a bound on B, we will show that for a given ℓ,

$$\mathbb{P} \left\{ \| U (V^{(\ell)})^T \|_F \leq 8 \sqrt{2rd_2 \log (32r) \log (32d)} \right\} \geq \frac{7}{8} .$$

Then using the similar technique as in (152), it follows that we can find $M = (1/4)M'$ matrices all satisfying this bound and also the bound on the max-entry in (252). We are left to prove (251). We apply a series of concentration inequalities. Let H_1 be the event that $\{ \| V^{(\ell)} \| \leq \sqrt{2d_2 \log (32r)} \}$ for all $\ell \in [r]$. Then, applying the standard Hoeffding’s inequality, we get that $\mathbb{P} \{ H_1 \} \geq 15/16$, where $V^{(\ell)}$ is the i-th column of $V^{(\ell)}$. We next change the variables and represent $U^T U$ as $\sqrt{d_1} u^T U$, where u is drawn uniformly at random from the unit sphere and U is a r dimensional subspace drawn uniformly at random. By symmetry, $\sqrt{d_1} u^T U$ have the same distribution as $1^T U$. Let H_2 be the event that $\{ \| U_i \| \leq \sqrt{16r(d_2/d_1) \log (32r) \log (32d)} \}$ for all $i \in [d_1]$, where U_i is the i-th row of U. Then, applying Levy’s theorem for concentration on the sphere [27], we have $\mathbb{P} \{ H_2 | H_1 \} \geq 15/16$. Finally, let H_3 be the event that $\{ \| U_i \| \leq \sqrt{16r(\log (32r) \log (32d))} \}$. Then, again applying Levy’s concentration, we get
\(\Pr \{ H_3 | H_1, H_2 \} \geq 15/16 \). Collecting all three concentration inequalities, we get that with probability at least 13/16, \(|1^T U (V^{(e)})^T 1| \leq 8 \sqrt{2r d_2 \log(32r) \log(32d)} \), which proves Eq. (251).

We are left to prove that \(\Theta^{(e)} \)'s are in \(\Omega(\delta d_2 \sqrt{\log d_2}) \) as defined in (35). Similar to Eq. (151), applying Levy’s concentration gives

\[
\Pr \left\{ \max_{i,j} |\Theta_{i,j}^{(e)}| \leq \frac{2 \delta \sqrt{32 \log d_2}}{d_2} \right\} \geq 1 - 2 \exp \left\{ -2 \log d_2 \right\} \geq \frac{1}{2},
\]

(252)

for a fixed \(\ell \in [M'] \). Then using the similar technique as in (152), it follows that there exists \(M = (1/4) M' \) matrices all satisfying this bound and also the bound on \(B \) in Eq. (251).