Search for the CP-violating decays $\Upsilon(4S) \to B^0 \bar{B}^0 \to J/\psi K^0_S + J/\psi (\eta_c) K^0_S$

O. Tajima,9 M. Hazumi,9 I. Adachi,9 H. Aihara,15 V. Aulchenko,1 T. Aushev,14,14 A. M. Bakich,40 E. Barberio,22
A. Bay, I. Bedny,1 V. Bhardwaj,34 U. Bitenc,15 A. Bozek,28 M. Braćko,21,15 T. E. Browder,8 M.-C. Chang,4
P. Chang,27 A. Chen,25 K.-F. Chen,27 W. T. Chen,25 B. G. Cheon,7 C.-C. Chiang,27 R. Chistov,14 I.-S. Cho,50
Y. Choi,39 Y. K. Choi,39 J. Dalseno,22 M. Danilov,14 M. Dash,49 A. Drutskoy,3 S. Edelman,3 D. Epifanov,1
A. Go,25 G. Gokhroo,41 B. Golob,20,15 J. Haba,9 K. Hayasaka,23 H. Hayashii,24 D. Heffernan,23 T. Hokune,23
Y. Hoshi,43 W.-S. Hou,27 Y. B. Hsiung,27 H. J. Hyun,18 T. Iijima,23 K. Ikado,23 K. Inami,23 A. Ishikawa,36
H. Ishino,46 R. Itoh,9 M. Iwasaki,45 Y. Iwasaki,9 N. J. Joshi,41 D. H. Kah,18 H. Kaji,23 J. H. Kang,50
S. U. Kataoka,24 H. Kawai,2 T. Kawasaki,30 H. Kichimi,9 H. J. Kim,18 H. O. Kim,39 S. K. Kim,38 Y. J. Kim,6
K. Kinoshita,3 S. Korpar,21,15 P. Križan,20,15 P. Krokovny,9 R. Kumar,34 C. C. Kuo,25 Y.-J. Kwon,50 J. S. Lange,5
J. S. Lee,39 M. J. Lee,38 S. E. Lee,38 T. Lesiak,28 J. Li,8 S.-W. Lin,27 D. Liventsev,14 F. Mandl,12 D. Marlow,35
S. McOnie,40 T. Medvedeva,14 W. Mitaroff,12 K. Miyabayashi,24 H. Miyake,33 H. Miyata,30 R. Mizuk,14
D. Mohapatra,49 Y. Nagasaka,10 E. Nakano,32 M. Nakao,9 S. Nishida,9 O. Nitho,48 S. Noguchi,24 T. Nozaki,9
S. Ogawa,42 T. Ohshima,23 S. Okuno,16 H. Ozaki,9 P. Pakhlov,14 G. Pakhlova,14 C. C. Kuo,25 Y. Park,39 H. Park,18
R. Pestotnik,15 L. E. Piilonen,49 H. Sahoo,8 Y. Sakai,9 O. Schneider,19 A. Sekiya,24 K. Senyo,23 M. E. Sevior,22
M. Shapkin,13 C. P. Shen,11 H. Shibuya,42 J.-G. Shi,27 B. Shwartz,1 J. B. Singh,34 A. Sokolov,13 A. Somov,3
S. Stanič,15 M. Starič,15 K. Sumisawa,9 T. Sumiyoshi,47 F. Takasaki,9 M. Tanaka,9 G. N. Taylor,22 Y. Teramoto,32
K. Trabelsi,9 S. Uehara,9 K. Ueno,27 T. Uglow,14 Y. Unno,7 S. Uno,9 P. Urquijo,22 Y. Usov,1 G. Varner,8
K. E. Varvell,40 K. Vervink,19 S. Villa,19 A. Vinokurova,3 C. C. Wang,27 C. H. Wang,26 M.-Z. Wang,27 P. Wang,11
Y. Watanabe,16 R. Wedd,22 E. Won,17 B. D. Yabsley,40 A. Yamaguchi,44 Y. Yamashita,29 M. Yamauchi,9
C. Z. Yuan,11 Y. Yusa,49 C. C. Zhang,11 Z. P. Zhang,37 V. Zhilich,1 V. Zhulanov,1 and A. Zupanc15

(The Belle Collaboration)

1 Budker Institute of Nuclear Physics, Novosibirsk
2 Chiba University, Chiba
3 University of Cincinnati, Cincinnati, Ohio 45221
4 Department of Physics, Fu Jen Catholic University, Taipei
5 Justus-Liebig-Universität Gießen, Gießen
6 The Graduate University for Advanced Studies, Hayama
7 Hangang University, Seoul
8 University of Hawaii, Honolulu, Hawaii 96822
9 High Energy Accelerator Research Organization (KEK), Tsukuba
10 Hiroshima Institute of Technology, Hiroshima
11 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
12 Institute of High Energy Physics, Vienna
13 Institute of High Energy Physics, Protvino
14 Institute for Theoretical and Experimental Physics, Moscow
15 J. Stefan Institute, Ljubljana
16 Kanagawa University, Yokohama
17 Korea University, Seoul
18 Kyungpook National University, Taegu
19 Ecole Polytechnique Fédérale Lausanne, ÉPFL, Lausanne
20 University of Ljubljana, Ljubljana
21 University of Maribor, Maribor
22 University of Melbourne, School of Physics, Victoria 3010
23 Nagoya University, Nagoya
24 Nara Women’s University, Nara
25 National Central University, Chung-li
26 National United University, Miao Li
27 Department of Physics, National Taiwan University, Taipei
28 H. Niewodniczanski Institute of Nuclear Physics, Krakow
29 Nippon Dental University, Niigata
30 Niigata University, Niigata
31 University of Nova Gorica, Nova Gorica
CP violation has been established in the neutral kaon system [1] and the neutral B meson system [2]. In the standard model (SM) Kobayashi-Maskawa theory, it arises from an irreducible phase in the weak interaction quark-mixing matrix [3]. This theory predicts that CP violation in the $Y(4S)$ system should also exist.

In the decay $Y(4S) \rightarrow B^0\bar{B}^0 \rightarrow f_1f_2$, where f_1 and f_2 are CP eigenstates, the CP eigenvalue of the final state f_1f_2 is $\xi = -\xi_1\xi_2$. Here the minus sign corresponds to odd parity from the angular momentum between f_1 and f_2. If f_1 and f_2 have the same CP eigenvalue, i.e. $(\xi_1,\xi_2) = (+1,+1)$ or $(-1,-1)$, ξ is equal to -1. Such decays, for example $(f_1,f_2) = (J/\psi K_0^0, J/\psi K_0^0)$, violate CP conservation since the $Y(4S)$ meson has $J_{PC} = 1^{--}$ and thus has $\xi_{Y(4S)} = +1$. The branching fraction within the SM is

$$B(Y(4S) \rightarrow B^0\bar{B}^0 \rightarrow f_1f_2) = F \cdot B(Y(4S) \rightarrow B^0\bar{B}^0)B(B^0 \rightarrow f_1)B(\bar{B}^0 \rightarrow f_2),$$

where F is a suppression factor due to CP violation. The factor F can be calculated in terms of mixing and CP violating parameters [4],

$$F \simeq \frac{x^2}{1+x^2}(2\sin 2\phi_1)^2$$

$$= 0.68 \pm 0.05,$$

where $x = \Delta m_d/\Gamma = 0.776 \pm 0.008$ [5], Δm_d is the B^0 mixing parameter, Γ is the average decay width of the neutral B meson. The angle ϕ_1 is one of the three interior angles of the unitarity triangle of the quark-mixing matrix, and $\sin 2\phi_1 = 0.675 \pm 0.026$ [6]. The effect of direct CP violation is neglected in this formula. The same expression also holds for the case in which f_1 and f_2 are different final states both of which are governed by $b \rightarrow c\bar{c}\bar{s}$ transitions; examples include $\eta_s K_0^0$, $\psi(2S)K_0^0$ and $\chi_{c1}K_0^0$.

In this Letter, we present the first search for CP violating decays of the $Y(4S)$. The data sample used contains 535 million $Y(4S)$ mesons collected with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. A partial reconstruction technique is employed to enhance the signal sensitivity. No significant signals were observed. We obtain an upper limit of 4×10^{-7} at the 90% confidence level for the branching fractions of the CP violating modes, $Y(4S) \rightarrow B^0\bar{B}^0 \rightarrow J/\psi K_0^0 + J/\psi(\eta_s)K_0^0$. Extrapolating the result, we find that an observation with 5σ significance is expected with a 30 ab$^{-1}$ data sample, which is within the reach of a future super B factory.

PACS numbers: 11.30.Er, 12.15.Hh, 13.25.Gv, 13.25.Hw
The identity of each charged track is determined by a sequence of likelihood ratios that best matches the available information. Tracks are identified as pions or kaons based on their specific ionization in the CDC as well as the TOF and ACC responses. This classification is superseded if the track is identified as a lepton: electrons are identified by the presence of a matching ECL cluster with energy and transverse profile consistent with an electromagnetic shower; muons are identified by their range and transverse scattering in the KLM.

We use 2.68×10^5 Monte Carlo (MC) simulation events for each signal category. For background MC events, we use a sample of 3.9×10^{10} generic BB decays in which one of the B mesons decays to a known $J/\psi(\mu^+\mu^- \text{ or } e^+e^-)X$ final state. For the dataset used in the present analysis, the MC simulation predicts a small signal yield, 0.04 events, when we choose the combination $(f_1, f_2) = (J/\psi K^0_S, J/\psi K^0_S)$ and fully reconstruct both $J/\psi K^0_S$ final states. Here we use the $J/\psi \rightarrow e^+e^-, \mu^+\mu^-$ and $K^0_S \rightarrow \pi^+\pi^-$ modes. In order to increase the signal yield, we instead adopt a partial reconstruction method. We fully reconstruct one $B^0 \rightarrow J/\psi K^0_S$ decay (called $f_1 J/\psi K^0_S$ hereafter) and find another K^0_S (called $\text{tag} K^0_S$ hereafter) from the remaining particles. Then we reconstruct the recoil mass (M_{recoil}) using $J/\psi K^0_S$ and $\text{tag} K^0_S$. The recoil mass distribution should in principle include peaks that correspond to the $\eta_c, J/\psi, \chi_{c1}$, or $\psi(2S)$. We choose two of the possible combinations, $(f_1, f_2) = (f_1 J/\psi K^0_S, J/\psi \text{tag} K^0_S)$ and $(f_1 J/\psi K^0_S, \eta_c \text{tag} K^0_S)$. In the following, these are referred to as inclusive-J/ψ combinations and an inclusive-η_c combinations, respectively. Based on a MC study, we expect that the signal yield will increase by a factor of 40 compared to full reconstruction while maintaining a reasonable signal to background ratio (S/B) of about $1/7$ for these two combinations. We do not use other combinations because the S/B ratio is less than $1/100$.

We use oppositely charged track pairs to reconstruct $J/\psi \rightarrow e^+e^-, \mu^+\mu^-$ decays, where at least one track is positively identified as a lepton. Photons within 50 mrad of the e^+ and e^- tracks are included in the invariant mass calculation (denoted as $e^+e^-(\gamma)$). The invariant mass is required to lie in the range $-0.15 \text{ GeV/c}^2 < M_{ee(\gamma)} - m_{J/\psi} < 0.036 \text{ GeV/c}^2$ and $-0.06 \text{ GeV/c}^2 < M_{\mu\mu} - m_{J/\psi} < 0.036 \text{ GeV/c}^2$, where $m_{J/\psi}$ denotes the nominal mass of J/ψ, $M_{ee(\gamma)}$ and $M_{\mu\mu}$ are the reconstructed invariant masses from $e^+e^-(\gamma)$ and $\mu^+\mu^-$, respectively. Asymmetric intervals are used to include part of the radiative tails. Candidate $K^0_S \rightarrow \pi^+\pi^-$ decays are oppositely charged track pairs that have an invariant mass within $\pm 0.016 \text{ GeV/c}^2 (\pm \sigma)$ of the nominal K^0 mass. The $\pi^+\pi^-$ vertex is required to be displaced from the interaction point in the direction of the pion pair momentum for $\text{tag} K^0_S$.

![FIG. 1: M_{bc} (left) and ΔE (right) distributions for $B^0 \rightarrow J/\psi(\ell^+\ell^-)K^0_S(\pi^+\pi^-)$ decay ($\ell = e, \mu$. The solid curves show the fit to signal plus background distributions, and the dashed curves show the background distributions.](image-url)

For the full reconstruction of a B decay, we use the energy difference $\Delta E \equiv E_{\text{beam}} - E_{\text{CMS}}$ and the beam-energy constrained mass $M_{bc} \equiv \sqrt{(E_{\text{beam}})^2 - (p_{B}^{\text{CMS}})^2}$, where E_{CMS} is the beam energy in the center-of-mass system (cms) of the $\Upsilon(4S)$ resonance, and p_{B}^{CMS} and E_{beam} are the cms energy and momentum of the reconstructed B candidate, respectively. The M_{bc} and ΔE distributions are shown in Fig. 1. The signal is extracted from an unbinned extended maximum likelihood fit to the M_{bc}-\$Delta E$ distribution. The signal shape is modeled with a single (double) Gaussian while the background shape is modeled with an ARGUS function [9] (a first order polynomial) for the M_{bc} (\$Delta E$) distribution. We obtain $8283 \pm 94 f_{J/\psi K^0_S}$ events when we do not require a $\text{tag} K^0_S$.

We require $5.27 \text{ GeV/c}^2 \leq M_{bc} \leq 5.29 \text{ GeV/c}^2$ and $|\Delta E| \leq 0.04 \text{ GeV}$ for $f_{J/\psi K^0_S}$. The recoil mass is calculated by combining a $f_{J/\psi K^0_S}$ candidate and a $\text{tag} K^0_S$ candidate. The expected number of signal events estimated from MC is $1.1 (0.6)$ with a reconstruction efficiency of $28.8 (26.8)$ % for the inclusive-J/ψ (η_c) combination where branching fractions of sub-decays are not included. With the partial reconstruction technique, the number of $J/\psi \rightarrow e^+e^-, \mu^+\mu^-$ decays in the $(J/\psi K^0_S, J/\psi K^0_S)$ combination is about twice as large as that for the $(J/\psi K^0_S, \eta_c K^0_S)$ combination. A total of 1.7 signal events are then expected in our dataset.

The dominant source of background is generic B^0 decays. A partially reconstructed B candidate should be flavor non-specific if it is a signal event. On the other hand, about a half of the generic B^0 decays that survive the selection are flavor specific. In order to distinguish between the signal and the background, we therefore identify the flavor of the partially-reconstructed accompanying B meson using leptons, charged pions and kaons that are not associated with the fully reconstructed B meson. The procedure for flavor tagging is described in Ref. 10. We use an event-by-event flavor-tagging dilution factor, r, which ranges from $r = 0$ for no flavor.
discrimination to $r = 1$ for perfect flavor assignment.

We determine the signal yield by performing an unbinned extended maximum-likelihood fit to the candidate events. The likelihood function is

$$
\mathcal{L} = \frac{1}{N!} \exp \left(- \sum_k n_k \right) \prod_{i=1}^{N} \left[\sum_k n_k f_k (M_i^{\text{recoil}}, r_i) \right],
$$

where N is the total number of candidate events, n_k is the number of events and f_k is the probability density function (PDF) for each event category k, which is inclusive-J/ψ, inclusive-η_c or background. The parameters M_i^{recoil} and r_i are the recoil mass and r value for the i-th event. The PDFs are obtained from the MC simulation. The recoil mass distributions are modeled with a triple Gaussian for each signal mode and an exponential shape for background. We do not find any peaking background in either the MC samples or in the M_{bc} sideband data. The PDFs for the r distributions are histograms with 10 bins obtained from MC. The ratio between the inclusive-J/ψ and η_c signals is fixed from the MC.

We check the method using charged B decay control samples, $\Upsilon(4S) \rightarrow B^+ B^- \rightarrow (f_{B^+}, J/\psi \pi \pi K^+ \eta_c)$, where f_{B^+} stands for $J/\psi(e^+ e^- , \mu^+ \mu^-)K^+$ and $D^0(K^{+}\pi^-, K^{+}\pi^-\pi^+\pi^-)\pi^+$ decays [11]. Figure 2 shows the recoil mass distribution for the charged B control samples. The fit yields 206\pm57 signal events, which is in good agreement with the MC expectation (183 events). If we float the ratio between the inclusive-J/ψ and η_c modes, we obtain 96\pm23 and 109\pm25 events for the inclusive-J/ψ and η_c modes, respectively. These results are also consistent with the MC expectation, 90 (93) events for inclusive-J/ψ (η_c) mode. We obtain correction factors, the mean and width for the signal peaks and the slope for background, by fitting these samples.

We adopted a blind analysis method and estimated systematic uncertainties before obtaining the final result. The systematic uncertainties for the combined branching fraction, $B (\Upsilon(4S) \rightarrow B^0 \bar{B}^0 \rightarrow J/\psi \eta_c K^0_S)$, are summarized in Table 1. The dominant source of systematics is due to the uncertainties in the correction factors for the recoil mass distribution; we assign 20.5\%, which is the sum in quadrature of 19.7\% from the signal shapes and 5.5\% from the background shape.

Table 1: Systematic uncertainties in the branching fraction measurement

Source	(%)
Recoil mass distribution	20.5
r distribution	4.2
Reconstruction efficiency	5.7
Number of BB pairs	1.3
Branching fractions of sub-decays	10.9
Total	**24.3**

Possible differences between data and the MC in the r distributions are also studied. We use neutral B decay control samples, $\Upsilon(4S) \rightarrow B^0 \bar{B}^0 \rightarrow (f_{B^0} , (J/\psi, \eta_c) \pi \pi K^0_S)$, decays, where f_{B^0} represents $B^0 \rightarrow D^{(*)-} \pi^+$ and $D^{*-} \pi^+$ followed by the decays $D^{*-} \rightarrow \bar{D}^0 \pi^-, \bar{D}^0 \rightarrow K^+ \pi^-, K^+ \pi^- \pi^0, K^+ \pi^- \pi^+ \pi^-$, $D^+ \rightarrow K^+ \pi^+ \pi^-, \rho^+ \rightarrow \pi^+ \pi^0$ and $\pi^0 \rightarrow \gamma \gamma$. We obtain 35\pm16 signal events for these samples, which is consistent with the MC prediction (64 events) within two standard deviations. There is no discrepancy between data and fit results either in recoil mass or in the r distributions, as shown in Fig 2. We repeat the fit using the background r PDF determined from the data in the recoil mass sideband regions $M^{\text{recoil}} \in (2.40, 2.85)$ and $(3.20, 3.30)$ GeV/c2. The difference between the two fit results
at the 90% confidence level, where the SM prediction is 1.4×10^{-7}. This corresponds to $F < 2$ at the 90% confidence level. We also search for $(J/\psi K_S^0, J/\psi K_S^0)$ combinations by fully reconstructing both B mesons. No candidates are observed.

In summary, a search for CP violation in $\Upsilon(4S)$ decays was performed. In a data sample of 535 million $B\bar{B}$ pairs obtained via decays of the $\Upsilon(4S)$ resonance, no significant signals were observed. We obtain an upper limit of 4×10^{-7} at the 90% confidence level for the branching fraction of the CP violating modes, $\Upsilon(4S) \rightarrow B^0\bar{B}^0 \rightarrow J/\psi K_S^0 + (J/\psi, \eta_c)K_S^0$. Assuming the SM, with an integrated luminosity of 30 ab$^{-1}$ that is expected to be available in a future B factory, these decays can be observed with 5σ significance.

We thank the KEKB group for excellent operation of the accelerator, the KEK cryogenics group for efficient solenoid operations, and the KEK computer group and the NII for valuable computing and Super-SINET network support. We acknowledge support from MEXT and JSPS (Japan); ARC and DEST (Australia); NSFC and KIP of CAS (China); DST (India); MOEHRD, KOSEF and KRF (Korea); KBN (Poland); MES and RFFAEE (Russia); ARRS (Slovenia); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE (USA).

[1] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Phys. Rev. Lett. 13, 138 (1964).
[2] K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 87, 091802 (2001); B. Aubert et al. (Babar Collaboration), Phys. Rev. Lett. 87, 091801 (2001).
[3] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[4] L. Wolfenstein, Nucl. Phys. B246, 45 (1984); M. B. Gavela et al., Phys. Lett. B162, 197 (1985); I. Bigi and A. Sanda, Phys. Lett. B194, 307 (1987); I. Bigi, V. Khoze, N. Uraltsev and A. Sanda, “CP Violation” (ed. Jarlskog), p.175.
[5] W.-M. Yao et al. (Particle Data Group), Journal of Phys. G 33, 1 (2006).
[6] S. Kurokawa and E. Kikutani, Nucl. Instr. and Meth. A499, 1 (2003), and other papers included in this volume.
[7] A. Abashian et al. (Belle Collaboration), Nucl. Instr. and Meth. A 479, 117 (2002).
[8] Z. Natkaniec et al. (Belle SVD2 Group), Nucl. Instr. and Meth. A 560, 1(2006).
[9] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B241, 278 (1990).
[10] H. Kakuno et al., Nucl. Instr. and Meth. A 533, 516 (2004).
[11] Throughout this paper, the inclusion of the charge conjugate mode decay is implied unless otherwise stated.
[12] G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998).