Low contrast enhancement technique for color images using interval-valued intuitionistic fuzzy sets with contrast limited adaptive histogram equalization

J. Reegan Jebadass · P. Balasubramaniam

Accepted: 4 November 2021 / Published online: 15 January 2022 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
This work introduces a program to enhance images taken in low-light. Fuzzy set theory is creating a significant shift in image processing. Interval-valued intuitionistic fuzzy sets (IVIFS) based on intuitionistic fuzzy sets constructed from fuzzy sets are used to enhance images taken in low-light. In the proposed method, first the given low-light image is fuzzified by normal fuzzification. Then the fuzzified image is converted to an interval-valued intuitionistic fuzzy image. This image will be proposed enhanced image after applying the contrast limited adaptive histogram equalization (CLAHE). The experimental results reveal that the proposed method gives better results when compared with other existing methods like histogram equalization (HE), CLAHE, brightness preserving dynamic fuzzy histogram equalization (BPDFHE), histogram specification approach (HSA). Based on the performance analysis like entropy and correlation coefficient (CC), the proposed method gives better results.

Keywords Histogram equalization · Image enhancement · Interval-valued intuitionistic fuzzy sets.

1 Introduction
Image processing in the field of study in which algorithms operate on input images to produce output images. Image enhancement involves transforming an input image into another image to improve its visual appearance. An example of enhancement is to brighten an originally dark image or increase the contrast of an image to make the details more visible. Another example is detecting the intensity edges of an image to highlight the boundaries of objects or to colorize a grayscale image to make the different data values more distinguishable to a human observer.

Low illumination/low contrast images are enhanced by computer vision and pattern recognition. Over the past few decades, histogram equalization (HE), fuzzy logic-based methods, etc., have played a significant role in improving images taken in low-light. To enhance the quality of an image for better visual perception, many HE-based methods (Abubakar 2012; Kim 1997; Chen and Ramli 2003; Ibrahim and Kong 2007; Kapoor and Arora 2015; Chen 2004; Puer et al. 1986; Jianga et al. 2015) have been proposed. Puer et al. (1986) introduced adaptive histogram equalization (AHE), which is an excellent contrast enhancement method for both natural images and medical and other initially nonvisual images. Jianga et al. (2015) introduced an approach to specifying the correct histogram profile, which means that the intensity values of the image are adjusted accordingly, and the output brightness is maintained close to the input image. In particular, the equilibrium profile is designed by finding the equilibrium control threshold by integrating the rectangular and triangular sections. Patia and Ogate (2016) proposed the technique of image enhancement based on a statistical analysis of DCT coefficients. This method would arrive at the DC coefficient and AC coefficients of a DCT module separately for two different measurement factors. Pisano et al. (1998) introduced a method to improve the detection of simulated speculations on dense mammograms. The purpose of this project is to determine whether CLAHE enhances the detection of bogus beliefs on dense mammograms. In 2003, Reza (2004) introduced a system-level realization of CLAHE, which is suitable for very-large-scale integrated (VLSI) implementation. Sasi (2003) established an efficient
color space for contrast enhancement of heartbeat scent images. In this conclusion, the effects of the histogram equation and the differently defined adaptive histogram equation were explored, and these good development results extended to the appropriate color space. Yussof et al. (2013) used the CLAHE technique to obtain an enhanced image from a combination of releases performed on the RGB color model and the HSV color model, which was done by Euclidean regulation. Bhairannawar et al. (2017) proposed the technique of color image enhancement using the Laplacian filter and the AHE. Yadav et al. (2014) used the CLAHE enhancement method for improving the video quality in a real-time system. Chang et al. (2018) proposed an automatic CLAHE for image contrast enhancement. Kang and Jung (2021) proposed a novel variational model for the joint enhancement and restoration of low-light images corrupted by blurring and noise.

Fuzzy set theory has the best ability to deal with uncertain areas in digital image processing. Zadeh (1965) proposed this theory in 1965, after which it has been widely used in various fields, especially in digital image processing. Hanmandlu and Jha (2006) introduced the Global Variation Extension Operator, which includes three variables, intensification parameter, fuzzifier, and the crossover point to improve color images. In 2009, Nair et al. (2009) evaluated the conventional contrast enhancement techniques and the recent Gray-level ensemble method and fuzzy logic method to find out what is suitable for automatic variation enhancement for ocean satellite images obtained from various sensors. In 2013, Raju and Nair (2014) proposed a fuzzy and histogram-based approach to improving low-intensity color images. The algorithm is faster compared to standard and other new development algorithms. It is based on two critical variables. One is M, and the other is Q, where M is the mean extreme value of a given image, calculated from the histogram, and k is the contrast amplitude variable. Furthermore, current methods for image enhancement are based on transformational domain methods that may introduce color artifacts and reduce the intensity of input remote sensing images. To overcome this problem, Sharma and Bhatia (2015) introduced a modified approach, which has the potential to effectively enhance the contrast in digital images using a modified fuzzy-based development algorithm. Sometimes the membership function of fuzzy sets cannot simultaneously represent evidence of support, opposition, and hesitation. To overcome this problem, Atanassov (1986) introduced the higher version of fuzzy sets known as intuitionistic fuzzy sets (IFSs). In 1996, Burillo and Bustince (1996) defined the distance between intuitionistic fuzzy sets, and they gave a definitive definition of intuitionistic fuzzy entropy and a theorem that characterizes it. Nowadays, several intuitionistic fuzzy c-means clustering algorithm methods were introduced in Chaira (2011); Balasubramaniam and Ananthi (2015) using intuitionistic fuzzy entropy.

The low-light enhancement methods mentioned above may go well for some low contrast images. However, a consistent approach to contrast enhancement for all types of low-light images has not been implemented. This manuscript introduces a new approach for color image enhancement algorithm for low-light images by using interval-valued intuitionistic fuzzy sets. Here, the fuzzy gray level difference is used to capture the uncertainty in low illumination images. In particular, the normal fuzzy image is transformed into the intuitionistic fuzzy image (IFI), and the (IFI) is transformed into an interval-valued intuitionistic fuzzy image (IVIFI). The value of the hesitation degree of the (IVIFI) will vary for various images. The highlight of this proposed method is to scale the hesitation value of the low illumination image and improve the contrast and quality of the given image by using the entropy formula.

This manuscript is arranged as follows. Section 2 outlines the initial stages of the interval-valued intuitionistic fuzzy set. Section 3 discusses how to create an interval-valued intuitionistic fuzzy image using Yager’s intuitionistic fuzzy generator and provides different development techniques for low illumination images. Flowchart of the proposed algorithm is given in Fig. 1, generation of the proposed image is discussed in Fig. 2, and schematic of the proposed method is given in Fig. 3. Section 4 provides results and discussions, including performance analysis using entropy and correlation coefficient. Finally, the decision is made in Sect. 5. Images were taken from the low-light paired dataset (LoL) for testing.

2 Preliminaries

2.1 Fuzzy sets (FSs)

Let \(S = \{s_1, s_2, ..., s_n\} \) be a non-empty set. Define a fuzzy set \(B \) of \(S \) as

\[
B = \{(s, \mu_B(s)) | s \in S\}
\]

(1)

where \(\mu_B(s) : S \rightarrow [0, 1] \) represent the degree of belongingness of \(s \) in \(S \) and we can write the degree of non-belongingness of \(s \) in \(S \) using the equation \(1 - \mu_B(s) \).

2.2 Intuitionistic fuzzy sets (IFSs)

An intuitionistic fuzzy set \(A \) in \(S \) can be expressed as:

\[
A = \{(s, \mu_A(s), \nu_A(s)) | s \in S\}
\]

(2)

\(\mu_A(s) \) and \(\nu_A(s) \) represent the degree of membership and non-membership of \(s \) in \(A \), respectively.
where \(\mu_A(s) \rightarrow [0, 1], \nu_A(s) \rightarrow [0, 1] \) are the belongingness and non-belongingness degrees of an element \(s \) in \(A \) with the condition \(0 \leq \mu_A(s) + \nu_A(s) \leq 1 \) when \(\nu_A(s) = 1 - \mu_A(s) \) for every \(s \) in \(A \), then the set \(A \) is said to be an intuitionistic fuzzy set.

Also consider a degree of hesitation \(\pi_A(s) \) for all \(IFS \) and it is expressed as

\[
\pi_A(s) = 1 - \mu_A(s) - \nu_A(s)
\]

(3)

Here because of the hesitation degree,

\[
\mu_A(s) = 1 - \pi_A(s) - \nu_A(s)
\]

(4)

\[
\nu_A(s) = 1 - \mu_A(s) - \pi_A(s)
\]

(5)

clearly \(0 \leq \pi_A(s) \leq 1 \). So the membership values are in between \([\mu_A(s), \mu_A(s) + \pi_A(s)]\).

2.3 Construction of intuitionistic fuzzy sets

A function \(\Psi(s) : [0, 1] \rightarrow [0, 1] \) is called intuitionistic fuzzy generator (Bustince et al. 2000; Ananthi et al. 2016; Balasubramaniam and Ananthi 2014) if:

\[
\Psi(s) \leq (1 - s) \text{ for all } s \in [0, 1] \text{ and } \Psi(0) \leq 1 \text{ and } \Psi(1) \leq 0
\]

In this manuscript, an intuitionistic fuzzy generator is constructed from Yager’s generating function (Chaira 2011). The fuzzy generator function is expressed as

\[
(\mu_A(s)) = \tau^{-1}(\tau(1) - \tau(\mu_A(s)))
\]

(6)

where \(\tau(\cdot) \) is an increasing function and \(\tau : [0, 1] \rightarrow [0, 1] \), Yager’s class can be generated by using the following function in Equation (6):

\[
\tau(s) = s^\beta
\]

(7)

So, Yager’s intuitionistic fuzzy generator can be expressed as:

\[
\mathbb{N}(s) = (1 - s^\beta)^{1/\beta}, \beta > 0 \text{ where } \mathbb{N}(1) = 0, \mathbb{N}(0) = 1.
\]

Here \(s \) are calculated by Yager’s generating function. So \(IFS \) will becomes:

\[
\bar{A}^{IFS} = \{s, \mu_A(s), (1 - \mu_A(s)^\beta)^{1/\beta} \mid s \in S\}
\]

(8)

and the hesitation degree is

\[
\pi_A(s) = 1 - \mu_A(s) - (1 - \mu_A(s)^\beta)^{1/\beta}
\]

(9)

2.4 Interval-valued intuitionistic fuzzy sets (IVIFSs)

An IVIFS \(\tilde{A} \) over \(S \) can be expressed as

\[
\tilde{A} = \{\mathcal{N}, M_A(s), N_A(s) \mid s \in S\}
\]

(10)

where \(M_A(s) \) and \(N_A(s) \subset [0, 1] \) are both member and non-member intervals, respectively, and \(sup M_A(s) + sup N_A(s) \leq 1 \), for all \(s \in S \).

2.5 Construction of interval-valued intuitionistic fuzzy sets

Let us consider the mapping (Ananthi et al. 2016)

\[
\varphi : IFS \rightarrow IVIFS
\]

defined as

\[
\varphi(A) = \{s, M_{\varphi(A)}(s), N_{\varphi(A)}(s) \mid s \in S\} = \tilde{A}
\]

where \(M_{\varphi(A)} \) and \(N_{\varphi(A)} \) are subdivided into the following lower and upper intuitionistic fuzzy interval components.

1. \(M_{\varphi(A)L}(s) = M_{\tilde{A}L}(s) = \mu_A(s) - t\pi_A(s), \quad 0 \leq t \leq \frac{\mu_A(s)}{\pi_A(s)} \)
2. \(M_{\phi(A)}(s) = M_{\tilde{A}}(s) = \mu_A(s) + \gamma \pi_A(s), \ 0 \leq \gamma \leq 1. \)

3. \(N_{\tilde{A}}(s) = \nu_A(s) - u \pi_A(s), \ 0 \leq u \leq \frac{\nu_A(s)}{\pi_A(s)}. \)

4. \(M_{\tilde{A}}(s) = \nu_A(s) + \delta \pi_A(s), \ 0 \leq \delta \leq 1. \)

with \(0 \leq \gamma + \delta \leq 1, \ 0 < \gamma + t \leq 1 \) and \(0 < \delta + u \leq 1. \)

Now define

\[
H_M = M_{\tilde{A}}(s) - M_{\tilde{A}}(s) = (\gamma + t) \pi_A(s) \quad (11)
\]

and

\[
H_N = N_{\tilde{A}}(s) - N_{\tilde{A}}(s) = (\delta + u) \pi_A(s) \quad (12)
\]

then it is obvious that IVIFS is structured so that the width of the member and non-member gap does not exceed its intuitionistic fuzzy index \((\pi_A). \) Here if \(A \in FS, \) then

\[
\phi(A) = \{(s, M_{\phi(A)}(s), N_{\phi(A)}(s)) \mid s \in S \} \text{ with } \pi_A(s) = 0,
\]

which implies

\[
M_{\tilde{A}}(s) = M_{\tilde{A}}(s) = \mu_A(s)
\]
\[
N_{\tilde{A}}(s) = N_{\tilde{A}}(s) = \nu_A(s)
\]

and hence \(\phi(A) = A. \) Therefore, if \(A \in FS \) then \(\phi(A) = A. \)

2.6 Histogram equalization (HE)

The histogram is a graphical representation of any data. Image processing is used to represent the data related to digital images. The histogram is the representation of the relative frequency of occurrence of various gray levels. So it means how many times the gray-level value has occurred in a given digital image. Histogram equalization (HE) is a simple and effective image enhancement technique. The image’s gray level is based on the overall density function that revisits the grayscale of an image. Because of this, it stretches the dynamic range of an image and enhances image contrast. However, it also tries to change the brightness of an image with an unnatural contrast magnification; for further details, see (Abubakar 2012). An algorithm proposed in this paper is known as adaptive histogram equalization for an enhancement process. It is applied over a specific region of any image and adjusts contrast according to its neighbor pixels.

2.7 Adaptive histogram equalization (AHE)

The adaptive histogram equalization (Puer et al. 1986) is a modified part of the histogram equalization system. In this method, magnification processes are applied to a specific area of an image and adjust the contrast according to their
Fig. 3 Schematic diagram of the proposed method
neighboring pixels. This method is only used for uniform fog correction. Here the histogram is divided into some frontal parts. Then adjust the intensity of the area and distribute it evenly over a grayscale image.

2.8 Contrast limited adaptive histogram equalization (CLAHE)

Contrast limited adaptive equalization (Yadav et al. 2014) is the modified part of the adaptive histogram equalization. In this mode, the expansion function is used on all neighboring pixels, and the transformation function is obtained. It differs from AHE in that it controls variation. The algorithm of CLAHE is given as follows

Algorithm 1

Input: Low contrast color image \(I(i, j)\)

Output: Contrast limited adaptive histogram-equalized enhanced image \(I_1(i, j)\) with increased contrast

Step 1: Acquisition process of a low illumination image.

Step 2: Obtain individually all input values used in expansion processes, such as the number of segments in a row and column orientation, the dynamic range (number of pins used in the histogram transformation process), the clip range, and the distribution parameter type.

Step 3: The original image is subdivided and these entries are processed in advance.

Step 4: The process is applied to the tile (contextual region).

Step 5: Create gray-level mapping and clipped histogram. At each gray level, the environmental region numbers are evenly distributed in pixels, so the average number of pixels in the gray state is described as follows:

\[
N_{\text{avg}} = \frac{N_{\text{CR-X}} \times N_{\text{CR-Y}}}{N_{\text{gray}}}
\]

where

\(N_{\text{avg}} = \text{average number of pixels.}\)
\(N_{\text{CR-X}} = \text{number of pixels in X direction of contextual region.}\)
\(N_{\text{CR-Y}} = \text{number of pixels in Y direction of contextual region.}\)
\(N_{\text{gray}} = \text{number of gray-level contextual region.}\)

After that calculate the actual clip limit

\[
N_{\text{CL}} = N_{\text{CLIP}} \times N_{\text{avg}}
\]

Step 6: Interrupt gray-level mapping to create an enhanced image. Use the four-pixel cluster and apply mapping process in this process, then each mapping tile will be somewhat overlaid on the image area, after which one pixel will be extracted, and then four maps per pixel will be applied. Merge between those results, enhance the pixels, and repeat an image.

3 Proposed fuzzy-based method

3.1 Interval-valued intuitionistic fuzzy image (IVIFI)

Consider an image \(I\) of \(M \times N\) dimension as an array of fuzzy singletons. A crisp image can be modified as a fuzzy image (Balasubramaniam and Ananthi 2014) by considering its intensity values as membership values by using the following expression

\[
\mu(I(i, j)) = \frac{\xi_{ij} - \xi_{min}}{\xi_{max} - \xi_{min}}
\]

where \(\xi_{ij}\) is the pixel value of \((i, j)\)th intensity value. \(\xi_{max}\) and \(\xi_{min}\) denote the maximum and minimum pixel value of the image \(I\), respectively.

By using equation (13), one can obtain \(\nu(I(i, j))\) as follows

\[
\nu(I(i, j)) = 1 - \frac{\xi_{ij} - \xi_{min}}{\xi_{max} - \xi_{min}}
\]

It is usually tricky when selecting membership values in the fuzzy set. The main goal of the proposed technique is to enhance the given image by eliminating the low illumination values of the member function to the pixels of the uncertain source images. To get rid of them here, the fuzzy set is again transformed into the intuitionistic fuzzy set with the third degree (hesitation)

Using Yager’s intuitionistic fuzzy generator, \(\pi_A(s)\) is constructed using equation (9). From (9) and (13), we can build an intuitionistic fuzzy image as

\[
IFI = \frac{\xi_{ij} - \xi_{min}}{\xi_{max} - \xi_{min}} + \pi_A(s)
\]

i.e

\[
IFI = \mu(I(i, j)) + \pi_A(s)
\]

for all \(i = 1, 2, ..., m\) and \(j = 1, 2, ..., n\)

Even though IFS has removed some uncertainties, several factors make the image as uncertain again. The value of the selected uncertainty is still uncertain. To overcome this problem, IVIFS is used in IFS.

From the expressions of (11) and (12), it is clear that IVIFSs are built so that the width of the member and non-member spaces does not exceed its intuitionistic fuzzy index \(\pi_A(s)\):
Low contrast enhancement technique...

Table 1 The enhanced output of the low light images comparing with various methods

Original Image	HE	CLAHE	BPDFHE	HSA	IFI	IVIFI	Proposed Method
![Image](image1)	![Image](image2)	![Image](image3)	![Image](image4)	![Image](image5)	![Image](image6)	![Image](image7)	![Image](image8)

Suppose if \(IFI = I \), then \(IVIFI = I \). Finally, \(IVIFI \) is produced as below

\[
IVIFI = \mu(I(i, j)) + (\gamma + t) A(s)
\]

where \(0 < \gamma + t \leq 1 \),

\[
i.e., \quad IVIFI = \mu(I(i, j)) + HM
\]

(17)

3.2 Estimation of (\(\beta \)) and hesitation degrees (\(H_M \))

As shown in Fig. 2, the \(\beta \) and hesitation degrees (\(H_M \)) of equations (9) and (11) are calculated from 0.1 to 1, by employing entropy values which are described in Sect. 4.1. Also, the amount of \(\beta \) and \(H_M \) are combined, which gives the most entropy after applying the CLAHE to them, i.e., the maximum entropy value is taken as the optimal image. Here we obtain different \(\beta \) and \(H_M \) values for different images.

The proposed technique automatically generates these combinations of \(\beta \) and \(H_M \) values after completing 100 iterations.

3.3 Defuzzification

Defuzzification is the process of representing a fuzzy set with a crisp number. The same argument is suitable for fuzzified images also. For further information to defuzzification refer (Mittal 2018) and (Radhika and Parvathi 2016). For defuzzification of intuitionistic fuzzy sets and the crisp image which is got from fuzzified image will become the following expression

\[
\xi_{ij} = \mu(I(i, j)) \cdot (\xi_{max} - \xi_{min}) + \xi_{min}
\]

(18)

hence to defuzzify the interval-valued intuitionistic fuzzy image, the expression will become

\[
\xi_{ij} = (IVIFI) \cdot (\xi_{max} - \xi_{min}) + \xi_{min} - H_M \cdot (\xi_{max} - \xi_{min})
\]

(19)

where \(H_M = (\gamma + t) \cdot A(s) \)

3.4 Proposed algorithm

Input: Low contrast color image
Output: Contrast-enhanced color image

Step 1: Take a color image \(I \) which is taken in low illumination of size \(n = M \times N \).

Step 2: Find fuzzy image \(\mu(I(i, j)) \) for the given original image \(I \) by using the expression (13)
Step 3: Find non-membership degree \(\nu_B(s) \) for \(\mu(I(i, j)) \) by using equation (14).

Step 4: By applying Yager’s method as described in Sect. 2.3, one can find \(HM_1 \) (hesitation) value by taking \(\beta \) value as 0.1.

Step 5: Calculate \(HM_{11} \) by multiplying 0.1 with \(HM_1 \), the obtained \(HM_{11} \) is adding with Step 2, and then one can get \(IVIFI_1 \).

Step 6: Construct an enhanced image \(E_1 \) by applying Algorithm 1 in Step 5 and find entropy value for \(E_1 \).

Step 7: Repeat the process from Step 4 to 6 to get \(E_2, E_3, \ldots, E_{100} \).

Step 8: Choose maximum entropy value of image from \(E_1 \) to \(E_{100} \) which is called our proposed enhanced image after defuzzification as in Sect. 3.3.

4 Experiment and result analysis

The experimentation is performed in the environment as follows: The machine CPU is an Intel (R) Core (TM) i7-9700 processor that works with a fundamental frequency of 3.00GHz Quad-Core technology. The hard disk is 2TB, and RAM is 16 GB installed with the Windows 10 Pro operating system’s ultimate version. The experimental setup is run over the MATLAB R2018b using the image processing toolbox.

Tests are implemented on 150 images taken from Low Light paired dataset (LoL), seven of which are shown in the first column of Table 1. The second column represents the low-light images tested by the HE method, the third column indicates the images enhanced by CLAHE, the fourth one is enhanced by BPDFHE Sheet and Suveer (2010), fifth one
Table 2 Performance measures using entropy for images in Table 1

S.No	Original image	HE	CLAHE	BPDFHE	HSA	IFI	IVIFI	Proposed method
1	7.2662	7.4902	7.6149	7.2405	7.5819	7.0170	7.0170	**7.8029**
2	6.7521	7.1033	7.4047	6.7321	7.5014	6.2245	6.4361	**7.6177**
3	6.0550	6.9248	7.1319	5.9435	7.4615	5.8573	5.8573	**7.6434**
4	6.1372	7.0432	7.1447	5.9295	7.4559	5.9085	5.9085	**7.6476**
5	5.8645	6.7964	6.8424	5.6919	7.5346	5.6317	5.6317	**7.4458**
6	7.3287	7.4547	7.6141	7.2801	7.5312	6.7042	6.8351	**7.7828**
7	7.1763	7.3367	7.7524	7.3240	7.4630	7.0288	7.0836	**7.7639**

represents the HSA, the sixth column is tested by IFI, seventh is IVIFI, and finally the eighth one is proposed method, respectively. From Table 1, we can identify that the proposed method gives better results than other existing literature.

Figure 4 illustrates the original images and their corresponding enhanced images with its β and H_M values. It is easy to identify that the β and H_M values are different for different images from Fig. 4.

The entropy values for the given enhanced methods are discussed in Table 4, and their corresponding histogram outputs are discussed in Fig. 5. The highest performance measure is indicated bold value in different methods. We know that the images with high entropy have the best quality of the image. It shows that the proposed method gives good quality in images. Similarly, the correlation coefficient (CC) values for the given enhanced methods are discussed in Table 3, and their corresponding histogram output values are discussed in Fig. 6. We know that the correlation coefficient (Somvanshi et al. 2017) is used to measure the size of the correlation between the enhanced and original images. The correlation coefficient has a value of $r = 1$ if the two images are completely identical, $r = 0$ if they are completely unrelated and $r = -1$ if they are completely anti-correlated.

4.1 Performance analysis

The quality of an image can be objectively measured using mathematical functions. There are several mathematical functions or measures to evaluate the quality of advanced images, such as entropy and correlation coefficients. The method proposed in each performance analysis yields good results. The time complexity for processing each image, as well as other information between the original and enhanced images, are discussed in Table 4. From Table 4, it is known that the proposed method improves the quality of the given image and, in most places, reduces the size of the enhanced image. So it also serves as a suitable image compression method.

4.1.1 Entropy

Here Shannon entropy (Somvanshi et al. 2017) with maximum information is used to measure the quality of an image. Expression of entropy value is

$$E = -\sum_{i=1}^{m} \sum_{j=1}^{n} P(i, j) \log P(i, j)$$

where i and j represent two different gray-level of the images, P refers the number of co-appearance of gray-levels i and j.

4.1.2 Correlation coefficient (CC)

$$CC = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$
where \(x_i, y_i\) are the grey values of homologous pixel-synthesized image and real high-resolution image and \(\bar{x}, \bar{y}\) are mean values of corresponding homologous pixel-synthesized image and real high-resolution image.

If the CC values between the original and enhanced images are close to 1, then there will be little change to the enhanced image from the original image. Suppose if the CC values between them are close to 0, then there will be huge changes to the enhanced image, which may damage the proposed image’s structural information. In this work, it is clear that the given images are well upgraded as they have neither maximum nor minimum CC values. So the proposed method will change the structural information of the original images but does not damage them.

4.2 Applications

One can improve medical images (MRI, CT Scan, etc.) by using the proposed method. One can identify the parts of the disease clearly through the enhanced images and used in the next stage of image processing methods such as edge detection, image fusion, image segmentation, etc., to get better results. In the field of crime, one can enhance the surveillance footages which are taken at night. Improving images in surveillance displays we can identify objects clearly that can’t be acquired due to low illumination with standard surveillance equipment. The proposed algorithm can be used

Original Image	Size of Original Image (kb)	Pixel Size (for both images)	Enhanced Image	Size of Enhanced Image (kb)	Time Complexity (Sec)
![Image](image1)	273	640 × 960	![Image](image2)	85	6.1746
![Image](image3)	226	341 × 512	![Image](image4)	25	2.3114
![Image](image5)	172	476 × 750	![Image](image6)	82	4.0505
![Image](image7)	205	480 × 640	![Image](image8)	74	3.3251
![Image](image9)	220	480 × 640	![Image](image10)	79	3.3381
![Image](image11)	644	1728 × 2304	![Image](image12)	685	33.1016
![Image](image13)	101	450 × 600	![Image](image14)	66	3.2553
![Image](image15)	101	480 × 640	![Image](image16)	58	3.3273
as a filter to enhance the image taken by DSLR cameras and Mobile cameras. With the help of the proposed method, one can improve satellite images. Occasionally there is a chance of satellite imagery dimming due to snow and rain. The proposed method helps to enhance and display those types of images more clearly.

5 Conclusion and future direction

An efficient interval-valued intuitionistic fuzzy-based color image enhancement method has been proposed. During the test section, the proposed method has been compared with other existing methods such as HE, CLAHE, BPDFHE, and
HSA. In comparative analysis such as entropy and CC, it is revealed that the proposed method is the best based on quantitative and qualitative improvements. Also, it is more suitable for low-light/illumination enhancement for color images than other existing methods. In the future, the same argument will be utilized in video enhancement techniques.

Acknowledgements This work was supported by University Grants Commission - Special Assistance Program (Department of Special Assistance - I), New Delhi, India, File No. F. 510/7/DSA-1/2015 (SAP-I).

Declarations
The authors declare that they have no conflict of interest.

References
Abubakar FM (2012) Image enhancement using histogram equalization and spatial filtering. Int J Sci Res 1:15–20
Ananthi VP, Balasubramaniam P, Kalaiselvi T (2016) A new fuzzy clustering algorithm for the segmentation of brain tumor. Soft Comput. Methodol Appl 20:4859–4879
Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets and Syst 20:8796
Balasubramaniam P, Ananthi VP (2014) Image fusion using intuitionistic fuzzy sets. Inform Fusion 20:21–30
Balasubramaniam P, Ananthi VP (2015) Segmentation of nutrient deficiency in incomplete crop images using intuitionistic fuzzy c-means clustering algorithm. Nonlinear Dynam 83:849–866
Bhairanawar S, Patil A, Janmane A, H uigol M (2017) Color image enhancement using laplacian filter and contrast limited adaptive histogram equalization. IEEE Exp, Int Conf Innovat Power and Adv Comput Technol 978:5682–8
Burillo P, Bustince H (1996) Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets and Syst 78:305–316
Bustince H, Kacprzyk J, Mohedano V (2000) Intuitionistic fuzzy generators: application to intuitionistic fuzzy complementation. Fuzzy Sets and Syst 114:485–504
Chaira T (2011) A novel intuitionistic fuzzy C-means clustering algorithm and its application to medical images. Appl Soft Comput 11:1711–1717
Chang Y, Jung C, Ke P (2018) H Song and J Hwang Automatic contrast limited adaptive histogram equalization with dual gamma correction. IEEE, Access 6:11782–11792
Chen SD (2004) A R Ramli, Preserving brightness in histogram equalization based contrast enhancement techniques. Digit Sig Process 14:413–428
Chen SD, Ramli AR (2003) Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans Electron 49:1310–1319
Hammandlu M, Jha D (2006) An optimal fuzzy system for color image enhancement. IEEE Trans Image Process 15:2956–2966
Ibrahim H, Kong NSP (2007) Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Trans Consum Electron 53:1752-1758
Jianga G, Lina SCH, Gong CY, Rahmana MA, Rena TR, Kwoka N, Shi H, Yu YH, Wu T (2015) Color image enhancement with brightness preservation using a histogram specification approach. Optik 126:5656–5664
Kang M, Jung M (2021) Simultaneous image enhancement and restoration with non-convex total variation. J Sci Comput 83:1–46
Kapoor K, Arora S (2015) Color image enhancement based on histogram equalization. Electric Comput Eng 4:73–82
Kim YT (1997) Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans Consum Electron 43:1–8
Mittal P, Saini RK and Jain NK (2018). Image enhancement using fuzzy logic techniques. Softcomputing: Theories and Applications 742:537–546
Nair MS, Lakshmanan R, Wilscy M, Tatavarti R (2009) Fuzzy logic-based automatic contrast enhancement of satellite images of ocean. Springer-Verlag, London Limit 5:69–80
Patia J, Ogate M (2016) A novel image enhancement technique based on statistical analysis of DCT coefficients for JPEG compressed images. IEEE Explore. Twenty-Second Natl Conf Commun (NCC) 978:2361–5
Pisano ED, Zong S, Hemminger BM, Deluca M, Johnston RE, Muller K, Braeuning MP, Pizer SM (1998) Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms. J Digit Imag 11:193–200
Puer SM, Amburn EP, Austin JD, Cromptart R, Geselwot A, Greer T, Romeny BTH, Zimmerman JB, Zuiderveld K (1986) Adaptive histogram equalization and its variations. Comput Vis Graph Image Process 39:1–22
Radhika C, Parvathi R (2016) Defuzzification of intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets 22:19–26
Raju G, Nair MS (2014) A fast and efficient color image enhancement method based on fuzzy-logic and histogram. Int J Electron Commun 68:237–243
Reza AM (2004) Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J VLSI Sig Process 38:35–44
Sasi NM, Jayasree VK (2003), Contrast limited adaptive histogram equalization for qualitative enhancement of myocardial perfusion images. Sci Res 5:326–331
Sharma S, Bhatia A (2015) Contrast enhancement of an image using fuzzy logic. Int J Comput Appl 111:0975–8887
Sheet D, Suveer A (2010) Brightness preserving dynamic fuzzy histogram equalization. IEEE Trans Consum Electron 56:2475–2480
Somvanshi SS, Kunwar P, Tomar S, Singh M (2017) Comparative statistical analysis of the quality of image enhancement techniques. Int J Image and Data Fusion 9:131–151
Yadav G, Maheshwari S, AgarwalContrast A (2014) limited adaptive histogram equalization based enhancement for real-time video system. IEEE Exp, Int Conf Adv Comput, Commun Inform 978:3080–7
Yussof WN, Hitam MS, Awalludin EA, Bachok Z (2013) Performing contrast limited adaptive histogram equalization technique on combined color models for underwater image enhancement. Int Interact Digit Media 1:2289–4101
Zadeh A (1965) Fuzzy sets. Inform Control 8:338–353

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.