CYP2C19 Plays a Major Role in the Hepatic N-Oxidation of Cotinine

Yadira X. Perez-Paramo, Christy J.W. Watson, Gang Chen, and Philip Lazarus

Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington

Received July 23, 2021; accepted February 14, 2022

ABSTRACT

The primary mode of metabolism of nicotine is via the formation of cotinine by the enzyme CYP2A6. Cotinine undergoes further CYP2A6-mediated metabolism by hydroxylation to 3-hydroxycotinine and norcotinine, but can also form cotinine-N-glucuronide and cotinine-N-oxide (COX). The goal of this study was to investigate the enzymes that catalyze COX formation and determine whether genetic variation in these enzymes may affect this pathway. Specific inhibitors of major hepatic cytochrome P450 (P450) enzymes were used in cotinine-N-oxidation reactions using pooled human liver microsomes (HLMs). COX formation was monitored by ultrahigh-pressure liquid chromatography–tandem mass spectrometry and enzyme kinetic analysis was performed using microsomes from P450-overexpressing human embryonic kidney 293 (HEK293) cell lines. Genotype-phenotype analysis was performed in a panel of 113 human liver specimens. Inhibition of COX formation was only observed in HLMs when using inhibitors of CYP2A6, CYP2B6, CYP2C19, CYP2E1, and CYP3A4. Microsomes from cells overexpressing CYP2A6 or CYP2C19 exhibited similar N-oxidation activity against cotinine, with maximum reaction rate over Michaelis constant values (intrinsic clearance) of 4.4 and 4.2 nL/min/mg, respectively. CYP2B6-, CYP2E1-, and CYP3A4-overexpressing microsomes were also active in COX formation. Significant associations ($P < 0.05$) were observed between COX formation and genetic variants in CYP2C19 (*2 and *17 alleles) in HLMs. These results demonstrate that genetic variants in CYP2C19 are associated with decreased COX formation, potentially affecting the relative levels of cotinine in the plasma or urine of smokers and ultimately affecting recommended smoking cessation therapies.

SIGNIFICANCE STATEMENT

This study is the first to elucidate the enzymes responsible for cotinine-N-oxidation formation and genetic variants that affect this biological pathway. Genetic variants in CYP2C19 have the potential to modify nicotine metabolic ratio in smokers and could affect pharmacotherapeutic decisions for smoking cessation treatments.

Introduction

The major mode of metabolism of nicotine in smokers (~70%) is via the formation of cotinine (COT) by the CYP2A6 enzyme. COT is slowly eliminated from plasma with a half-life of 10–27 hours (Jarvis et al., 1988), undergoing metabolism by hydroxylation to 3-hydroxycotinine (3HC) (Nakajima et al., 1996a) and N-(hydroxymethyl) norcotinine (Brown et al., 2005), glucuronidation to cotinine-N-glucuronide (COT-Gluc) (Chen et al., 2007), and oxidation to COT-N-oxide (COX), accounting for an average of 63%, 4%, 24%, and 9% of cotinine metabolites, respectively, in the urine of Caucasian smokers (Fig. 1) (Rangiah et al., 2011). While extensive studies have been performed examining the enzymes responsible for the formation of COT (Nakajima et al., 1996b), N-(hydroxymethyl)-norcotinine (Brown et al., 2005), and COT-Gluc (Chen et al., 2010), no studies have identified the enzymes responsible for COX formation (Yamanaka et al., 2004; Yildiz, 2004).

A potentially important role for COX may be as a factor that affects the nicotine metabolic ratio (NMR), which describes the ratio of plasma 3HC to COT in individual smokers (Dempsey et al., 2004), as a biomarker of nicotine addiction. This ratio is highly correlated with nicotine clearance in humans and has been generally accepted as an in vivo marker for CYP2A6 activity (Dempsey et al., 2004). The NMR is widely used to assess nicotine dependence and smoking behavior (Falcone et al., 2011), and to aid clinicians in determining the most efficacious pharmacotherapy for smoking cessation (Lerman et al., 2006, 2015; Malaiyandi et al., 2006; Chen et al., 2018). It has been shown that the NMR is highly variable among different demographic groups and that these differences could be affecting smoking cessation rates at the population level (Baurley et al., 2016; Fix et al., 2017). It has also been widely reported that nicotine metabolism varies among patients and that some of this variation can be

ABBREVIATIONS: COT, cotinine; COT-Gluc, cotinine-N-glucuronide; COX, cotinine-N-oxide; EM, extensive metabolizer; 3HC, 3-hydroxy cotinine; HEK293, human embryonic kidney 293; HLM, human liver microsome; HRP, horseradish peroxidase; IM, intermediate metabolizer; Km, Michaelis constant; m_{z}, mass-to-charge ratio; MAF, minor allele frequency; NMR, nicotine metabolic ratio; P450, cytochrome P450; PM, poor metabolizer; SNP, single nucleotide polymorphism; UGT, uridine 5’-diphosphoglucuronosyltransferase; UM, ultrarapid metabolizers; UHPLC-MS/MS, ultrahigh-pressure liquid chromatography–tandem mass spectrometry; V_{max}, maximum reaction rate.
explained by genetic variation in genes involved in the nicotine metabolism pathway (Hukkanen et al., 2005; Chenoweth et al., 2014). While alterations in the levels of 3HC-Gluc did not affect the NMR in African American subjects regardless of uridine 5’-diphospho-glucuronosyltransferase (UGT) 2B17 genotype (Zhu et al., 2013), it was reported that the NMR is influenced by the levels of COT-Gluc formation in both Caucasian and African American smokers (Berg et al., 2010; Jacobson and Ferguson, 2014; Murphy et al., 2014, 2017), and variability in NMR due to differences in COT-Gluc formation were suggested to be of particular importance in populations with a high prevalence of functional UGT2B10 genetic variants (e.g., African Americans) (Murphy, 2017).

The presence of COX was first reported by Dagne et al. in male rhesus monkey urine in 1972 (Dagne and Castagnoli, 1972). Recent evidence has suggested that urinary COX is an effective biomarker of the effects of environmental or secondhand tobacco smoking on skin autofluorescence, a tool used to predict diabetes-related cardiovascular complications (Van Waateringe et al., 2017). COX has also been used as a biomarker for active nicotine consumption in athletes (Marclay et al., 2011) and as a biomarker of nicotine exposure in breast milk (Pellegrini et al., 2007). Studies examining the potential role of the flavin monoxygenase enzymes demonstrated that none of these enzymes exhibited COX formation activity (Gorrod and Peyton, 1999; Tsai and Gorrod, 1999). Additional studies using cytochrome P450 (P450) inhibitors demonstrated that COX is formed from COT in hamster and guinea pig liver microsomes, potentially by P450 enzymes (Jenner et al., 1971). This validated in further studies where phenobarbital (a strong P450 inducer) pretreatment in rat liver increased COX production eightfold, an effect that was negated when cotreated with the P450 inhibitor metyrapone (Foth et al., 1992). The goal of this study was to identify the human P450 enzymes responsible for COX formation and to determine whether genetic variations in these enzymes affect the levels of COX formation in a panel of human liver specimens.

Fig. 1. Schematic of the cotinine metabolism pathway. (1) Nicotine, (2) COT, (3) 3HC, (4) COX, (5) COT-glucuronide, and (6) nornicotine. Percentages [taken from (Rangiah et al., 2011)] indicate the levels of each metabolite as a percentage of total cotinine metabolites in the urine from smokers.

Materials and Methods

Chemicals and Materials. Dulbecco’s Modified Eagles Medium, Dulbecco’s phosphate-buffered saline, fetal bovine serum, and geneticin (G418) were purchased from Gibco (Grand Island, New York). Anti–V5-horseadish peroxidase (HRP) antibody was obtained from Invitrogen (Carlsbad, California) while the anti-calnexin-HRP antibody was purchased from Abcam (Cambridge, UK). The BCA protein assays used for total protein quantification were purchased from Pierce (Rockford, Illinois) and the NADPH regeneration system was purchased from Corning (Corning, New York). The following chemicals used for in vitro N-oxidation activity assays were purchased from Sigma Aldrich (St. Louis, Missouri): phenacetin, bupropion, amodiaquine, diclofenac, omeprazole, dextromethorphan, chloroxazone, midazolam, furafylline, clopidogrel, montelukast, sulfaphenazole, tranlycypromine, quinidine, clofazimide, ketoconazole, and cotinine. Pooled human liver microsomes (HLMs) were purchased from Sekisui XenoTech (Kansas City, Kansas) while pooled human liver RNA was purchased from Biochain (Newark, CA). SuperScript VILO synthesis kit was purchased from Thermo Fisher Scientific (Waltham, MA) and TaqMan probes were purchased from AB Applied Biosystems (Foster City, CA). High-performance liquid chromatography-grade ammonium acetate and acetonitrile were purchased from Fisher Scientific (Pittsburgh, Pennsylvania) while the ACQUITY UPLC BEH-HILIC (1.7μm 2.1 × 100 mm) column was purchased from Waters (Milford, Massachusetts). Cotinine, COX, 3HC, and the internal standards D3-COX and D3-3HC were purchased from Toronto Research Chemicals (Ontario, Canada).

Biological Specimens. Normal human liver specimens and matching genomic DNA samples from 113 subjects were provided by the Tissue Procurement Facility at the H. Lee Moffitt Cancer Center (Tampa, FL) as previously described (Chen et al., 2012). All subjects were Caucasian, 42% (n = 48) were female, and the mean age of the subjects was 64 years. Microsomes were prepared as described previously and were stored at −80°C (Couchtine et al., 1987; Yokota et al., 1989). All protocols involving tissue specimens were approved by the institutional review board at the H. Lee Moffitt Cancer Center and in accordance with assurances filed with and approved by the United States Department of Health and Human Services.

P450 Inhibition Assays in HLMs. Inhibition reactions (final volume = 25 μL) contained 25 μg of total pooled HLM protein, 50 mM potassium phosphate, NADPH-regenerating system (1.55 mmol/L NADP+, 3.3 mmol/L glucose-6-phosphate, 3.3 mmol/L MgCl2, and 0.5 U of 40 U/mL glucose-6-phosphate dehydrogenase), and 500 μM COT. Specific P450 inhibitors were added at concentrations of 1 or 10 μM: furafylline [CYP1A2 (Sesaridic et al., 1990)],
CYP2C19 Variants and Cotinine-N-Oxide Metabolism

tranylcypromine [CYP2A6 and CYP2C19 (Draper et al., 1997; Taavitsainen et al., 2001)], clopidogrel [CYP2B6 (Richter et al., 2004)], montelukast [CYP2Cs (Walsky et al., 2005)], sulfaphenazole [CYP2C9 (Miners et al., 1988)], quinidine [CYP2D6 (von Bahr et al., 1985)], clofazimine [CYP2E1 (Stresser et al., 2016)], or ketoconazole [CYP3A4 (Maurice et al., 1992)] (see Supplemental Table 1). All reactions were incubated for 30 minutes at 37°C, with reactions terminated by the addition of 25 μL ice-cold acetonitrile containing 0.001 ppm internal standard (D2-COX). Supernatants were collected after centrifugation at 16,100 g for 10 minutes at 4°C for subsequent ultra-high-pressure liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) analysis. Pooled HLMs without the inhibitor was used as the reference reaction, and all assays were performed in triplicate.

Enzyme Kinetic Assays. Human embryonic kidney 293 HEK293 cells individually overexpressing V5-tagged CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 were previously described and used in the present kinetic analyses (Peterson et al., 2017a). Microsomal membrane fractions of P450-overexpressing cell lines were prepared by differential centrifugation as previously described (Dellingler et al., 2006; Petersen et al., 2017b). For the determination of relative P450 quantification of each microsomal preparation, equal amounts of microsomal protein (20 μg) were loaded on 10% SDS-polyacrylamide gels, with P450 protein quantity determined by western blot analysis using the anti–V5-HRP antibody at a 1:2,500 dilution. As a loading control for microsomal fractions, the anti–calnexin-HRP antibody was used at a 1:5,000 dilution for all western blots. Image J software was used to perform densitometry analysis, and the relative expression of each P450-containing microsomal preparation was used for normalization in N-oxydation activity assays.

-N-oxydation reactions (final volume = 125 μL) contained 50 μg of total microsomal protein, 50 mM potassium phosphate, an NADPH-regenerating system (1.55 mM NADP+, 3.3 mM glucose-6-phosphate, 3.3 mM MgCl2, 0.5 of 40 U/mL glucose-6-phosphate dehydrogenase) and varying concentrations of COT (0.05–1.00 μM). All incubations were performed for 30 minutes at 37°C, with reactions terminated by the addition of ice-cold acetonitrile to a final volume of 125 μL. Supernatants were collected after centrifugation at 16,100g for 10 minutes at 4°C and 0.001 ppm internal standard (D2-COX) was added prior to subsequent UHPLC-MS/MS analysis. Pooled commercial HLMs with an untransfected parent HEK293 cell microsomal protein preparation was used for normalization in N-oxydation activity assays.

COT N-Oxidation Assays in HLMs. Microsomes from the 113 individual human liver specimens obtained from the H. Lee Moffitt Cancer Center were used for these studies. Assays were performed as described above using 25 μg of total microsomal protein and 500 μM of cotinine as substrate. D2-COX and D2-COX (0.001 ppm each) were added to the reaction immediately prior to UHPLC-MS/MS analysis. In addition to the detection of COX, D2-COX, and COT, 3HC and D2-3HC formation were also monitored in the same reaction. The same UHPLC-MS/MS method described above was utilized with the addition of the following MS/MS mass transitions: m/z 193.1–80.0 and 196.1–80.0, to monitor 3HC and D2-3HC, respectively. The cone voltage and collision energy were optimized at 20 V for both 3HC and D2-3HC. Metabolite retention times observed in the enzymatic incubations were compared with retention times of their corresponding D3 internal standard metabolites. Tissue activity assays were performed in triplicate.

Genotyping of CYP2A6, CYP2B6, and CYP2C19 in Human Liver Specimens. The potential impact of genetic variation in CYP2A6, CYP2B6, and CYP2C19 on COT-N-oxygenation activity was examined by genotyping the same 113 liver specimens used for microsomal activity assays described above for allelic variants that have been associated with altered enzyme expression and/or function and that have a minor allele frequency (MAF) > 0.10 in Caucasians [CYP2A6: *2, *9, and *14; CYP2B6: *2, *5, *9, Int1, and Int2; CYP2C19: *2 and *17; (Fernandez-Salgueiro et al., 1995; Pianezza et al., 1998; Gervot et al., 1999; Pitarrue et al., 2001; Desta et al., 2002; Halot et al., 2006; Sim et al., 2006; Binnington et al., 2012; Bloom et al., 2013a; Bloom et al., 2013b; Ahmad et al., 2017; Bloom et al., 2019; Wang et al., 2019)]. High-prevalence functional alleles (MAF > 0.05) are not observed for CYP3A4 (Eiselt et al., 2001; Zhou et al., 2017). While high-prevalence alleles are observed for CYP2E1, their functional role has not been clearly established (Hu et al., 1997; Zhou et al., 2017). The nonfunctional CYP2A6*4 and CYP2A6*7 alleles were not analyzed in this group since all liver donors were from Caucasian subjects, who have a low MAF (< 0.03) for these alleles (López-Flores et al., 2017). Genomic DNA from the 113 liver specimens was genotyped using TaqMan probes following manufacturer’s suggested protocols. Dilutions of 5 ng DNA/μL were used to perform all genotyping analysis. The following alleles were examined in the liver specimens using Taqman probes: CYP2A6 [*2 (rs1801272; C_27861808), *9 (rs28399433; C_30634332_10) and *14 (rs rs28399435; C_30634324_10), CYP2B6 [*2 (rs1892709; C_28181620_20), *5 (rs321371; C_30634324_40), *9 (rs7349274; C_7817675_60), Int1 (rs4803419; C_7817674_10) and Int2 (rs10495525; C_28181571_10), and CYP2C19 [*2 (rs2442825; C_25986767_70) and *17 (rs12248580; C_462598677_70)]. All genotyping reactions were performed in quadruplicate. As the CYP2B6 intron variants 1 and 2 (Int 1 and Int 2) exhibited high linkage disequilibrium in this population (R2 = 0.773), they were considered as a single variant (termed ‘Int’) for CYP2B6 genotyping analysis.

Statistical Analyses. Kinetic parameters were determined from the Michaelis-Menten equation using GraphPad Prism version 6.01 (GraphPad Software, San Diego). Relative maximum reaction rates (V_{max}) were calculated as:

$$\text{pmol COX} \cdot \text{L}^{-1} \cdot \text{min}^{-1} \cdot \text{mg microsomal protein}^{-1}$$

(1) with values normalized to the relative expression of each P450-overexpressed HEK293 cell microsomal protein preparation as determined by western blot analysis using the anti-V5 antibody and Image J software as described above.

Downloaded from dmd.aspetjournals.org on September 17, 2023.
All reported values represent the results [e.g., mean ± S.D.] of three independent experiments. The inhibition of each P450 enzyme in HLMs was compared with the reaction without any specific inhibitor using a two-tailed Student’s t test. One-way ANOVA followed by a Kruskal-Wallis H test was used to analyze different metabolism phenotype groups within the panel of liver specimens; P values from ANOVA are reported unless indicated otherwise. A P value of less than 0.05 was considered the threshold for statistical significance.

Results

Inhibition Assays of COX Formation in HLMs. The effects of enzyme-specific P450 inhibitors in HLM-mediated conversion of COT to COX was examined using UHPLC-MS/MS. As shown in Fig. 2A, a COX peak was observed at a retention time of 1.80 minutes (middle panel), while the COT substrate peak was observed at 1.06 minutes (top panel). The retention time of the COX peak was identical to those of D$_3$-labeled COX standard (bottom panel). In incubations using 10 µM specific inhibitors for enzymes CYP2B6, CYP2E1, and CYP3A4, significant decreases in COX formation of 21% ($P = 0.033$), 16% ($P = 0.026$), and 33% ($P = 0.013$), respectively, were observed compared with control assays without inhibitor. No significant inhibition was observed when using these inhibitors at 1 µM (Fig. 2B). When tranylcypromine was used to inhibit both CYP2A6 and CYP2C19 in HLMs, significant decreases in COX formation of 15% ($P = 0.004$) and 54% ($P = 0.002$) were observed using 1 µM and 10 µM, respectively. No significant decrease in COX formation was observed when using inhibitors for CYP1A2, CYP2C8, CYP2C9, or CYP2D6 at both 1 µM and 10 µM.

Kinetic Analysis of COT-N-Oxide Formation. The P450 enzymes that showed significant inhibition for COX formation in HLMs when using enzyme-specific inhibitors (CYP2A6, CYP2B6, CYP2C19, CYP2E1, and 3A4) were further analyzed for kinetic parameters of COX formation using microsomes from HEK293 cell lines overexpressing these V5-tagged P450 enzymes (Peterson et al., 2017a), with the relative V_{max} values of COX formation calculated based on the relative expression of each P450 enzyme, measured by densitometry analysis of the V5 antibody signal in western blots (Supplemental Fig. 1). The chosen incubation times and protein concentrations were within the linear range of COT-N-oxidation velocity curves for each P450 enzyme tested (data not shown). Representative kinetic plots for COX formation in microsomes from P450-overexpressing cell lines and in HLMs are shown in Fig. 3. The highest COX formation activities were observed for microsomes from the CYP2A6- and CYP2C19-overexpressing cell lines (V_{max}/K_M = 44 and 42 nM•min$^{-1}$•mg$^{-1}$, respectively; Table 1). CYP2A6 and CYP2C19 also exhibited similar K_M values of 390 µM and 405 µM, respectively; CYP2B6 exhibited a somewhat higher K_M of 810 µM. The average K_M values observed for these three enzymes for COX formation was very similar to the K_M observed for HLMs (K_M = 550 µM). In contrast, low affinities for COX formation were observed for CYP2E1 and CYP3A4, with K_M values > 10 mM.

COX Formation Versus P450 Genotypes in Human Liver Specimens. In vitro COX formation was measured in a panel of 113 HLMs by UHPLC-MS/MS as described in the Methods and Materials. The mean rate of COX formation observed for these specimens was 11.8 ± 6.4 pmol•min$^{-1}$•mg microsomal protein$^{-1}$, ranging from 0.71 to 31.2 pmol•min$^{-1}$•mg microsomal protein$^{-1}$ (Table 2). As a measure of CYP2A6 activity, levels of 3HC formation were also quantified in the same specimens. The mean rate of 3HC formation for the same HLM specimens was 28.1 ± 14.9 pmol•min$^{-1}$•mg microsomal protein$^{-1}$ of 3HC with a range of 3.4 to 101 pmol•min$^{-1}$•mg microsomal protein$^{-1}$.

Informative genotyping data were obtained for 113, 109, and 102 subjects tested for polymorphisms in CYP2C19, CYP2A6, and CYP2B6, respectively, with informative genotypes obtained for each of the 113 subjects for all CYP2C19 single nucleotide polymorphisms (SNPs) examined, each of the 109 subjects for all CYP2A6 SNPs examined, and each of the 102 subjects for all CYP2B6 SNPs examined. The MAF observed for each allele in the genotyped specimens is similar to those reported for the Northern Europeans from Utah population in the 1000 Genomes Project (Supplemental Table 3; http://uswest.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000255974;r=19:40850447).

![Fig. 2. COX detection by MS/MS and inhibition in pooled HLMs.](https://example.com/fig2.png)
CYP2C19 Variants and Cotinine-N-Oxide Metabolism

The impact of CYP2C19 variants on COX formation was assessed with CYP2C19 genotype categorized according to the recommendations of the Clinical Pharmacogenetics Implementation Consortium (Scott et al., 2013), with ultrarapid metabolizers of 2C19 (UM2C19) containing the (*17/*17) and (*17/*1) genotypes, extensive metabolizers of CYP2C19 (EM2C19) consisting of the (*1/*1) wild-type genotype, intermediate metabolizers of 2C19 (IM2C19) containing the (*2/*17) or (*2/*1) genotypes, and poor metabolizers of 2C19 (PM2C19) consisting of the (*2/*2) genotype. The rate (mean ± S.D., expressed as pmol•min⁻¹•mg⁻¹ of microsomal protein) of COX formation in the different metabolizing groups were as follows: UM2C19 (12.6 ± 5.3; n = 26), EM2C19 (11.9 ± 6.5; n = 62), IM2C19 (10.7 ± 5.4; n = 21), and PM2C19 (8.4 ± 4.0; n = 4; Fig. 4A). While the decreases observed in the different CYP2C19 metabolizing groups were not significant (p<0.05, described below; Supplemental Fig. 2A) or only in the CYP2B6 EM group (p<0.01; Fig. 4D). To minimize CYP2C19 genotype-mediated effects, the effect of CYP2A6 genotype was analyzed using specimens that were categorized according to previously reported EM and IM CYP2A6 groups as follows; the EM2A6 group included specimens exhibiting the (*1/*1), (*1/*2), (*1/*9), or (*1/*14) genotypes, while the IM2A6 group

![Graphs showing COX formation rates](image)

Fig. 3. Kinetic analysis of COX formation in P450-overexpressing cell lines. Michaelis-Menten curves for microsomes of HEK293 cells overexpressing CYP2A6 (A), CYP2B6 (B), CYP2C19 (C), CYP2E1 (D), and CYP3A4 (E) and HLMs (F). Each curve is representative of one of three different experiments. For cell line microsomes, the rate of COX formation was adjusted per milligram of microsomal protein normalized based on V5 expression (determined using a V5 antibody) and on calnexin expression as determined by western blot as described in Materials and Methods.

TABLE 1

Kinetic analysis of cotinine-N-oxide formation by P450 enzymes.

P450 Enzyme	K_M (uM)	V_max (pmol • min⁻¹ • mg⁻¹)	V_max/K_M (nl • min⁻¹ • mg⁻¹)
2A6	390 ± 87	17 ± 1.5	44 ± 7.6
2B6	810 ± 24	16 ± 0.01	22 ± 6.9
2C19	405 ± 19	15 ± 1.6	42 ± 19
2E1	>10 mM	ND	ND
3A4	>10 mM	587 ± 26	1070 ± 8.4
HLMb	550 ± 49		

ND, not determined.

*V_max was calculated per total microsomal protein levels after normalization based on microsomal P450 expression levels as determined by western blot analysis.

*Pooled human liver microsomes from 20 individuals.
included the ($^2/^2$), ($^9/^9$), ($^2/^9$), ($^2/^{14}$), and ($^9/^{14}$) genotypes [no subjects were ($^{14}/^{14}$)] (Benowitz et al., 2006). Slow metabolizers for CYP2A6 were not screened in this study since the low-prevalence (4 or 7 alleles were not examined in this population). No significant differences ($P < 0.017$) in the rate (mean ± S.D. expressed as pmol\cdotmin$^{-1}$$\cdotmg^{-1}$ microsomal protein) of COX formation were observed in the different CYP2A6 metabolism phenotype groups [EM$_{2A6}$ (12.48 ± 5.32) versus IM$_{2A6}$ (10.13 ± 6.28) versus PM$_{2A6}$ (9.45 ± 7.41); $p = 0.14$; results not shown]. The COX/3HC ratios of 0.46 ($n = 7$) for the EM$_{2A6}$ group, 0.50 ($n = 20$) for the IM$_{2B6}$ group and 0.40 ($n = 23$) for the PM$_{2B6}$ group were also not significantly different ($P = 0.51$; Supplemental Fig. 2D). In addition, no significant differences in COX formation or COX/3HC ratio were observed when comparing the PM$_{2B6}$ versus EM$_{2B6}$ + IM$_{2B6}$ groups (results not shown).

Discussion

The involvement of CYP2A6 in the formation of COT from nicotine (Nakajima et al., 1996b), and 3HC from COT is well-established (Nakajima et al., 1996a). Studies examining the enzymology of cotinine metabolite formation have also been previously performed for COT-glucuronide and norcotinine (Brown et al., 2005; G. Chen et al., 2007). The present study is the first to examine the major hepatic enzymes in the formation of COX, which accounts for up to 9% of total cotinine metabolites in the urine of smokers (Rangiah et al., 2011). This pathway may be particularly important for COT excretion in individuals with functionally deficient CYP2A6 and/or UGT2B10 genotypes where urinary COT levels may be altered, an effect similar to that observed for nicotine-N'-oxide formation in subjects with altered CYP2A6 activities (Yamanaka et al., 2004; Perez-Paramo et al., 2019). In the present studies, experiments using HLMs demonstrated that up to 54% of COX formation was inhibited using tramicypramine, an inhibitor of both CYP2A6 and CYP2C19, while COX formation increased by 21% in...
CYP2C19 Variants and Cotinine-N-Oxide Metabolism

Using microsomes from P450-overexpressing cell lines demonstrated microsomes and marginal activity in inhibition studies, no other hepatic P450 enzyme screened in this study (CYP1A2, CYP2C8, CYP2C9, and CYP2D6) exhibited detectable COX formation activity. Kinetic analysis using microsomes from P450-overexpressing cell lines demonstrated similar Km values for CYP2A6 (390 μM) and CYP2C19 (405 μM) for COX formation; a nearly two-fold higher Km was observed for microsomes from CYP2B6-overexpressing cells (810 μM). The Km values of these three P450 enzymes were similar to that observed for pooled HLMs (Km = 550 μM), suggesting that potentially all three of these P450 enzymes could contribute to COX formation in smokers.

This is the first study demonstrating the importance of CYP2C19 in nicotine metabolism. The intrinsic clearance of COX formation by microsomes from CYP2C19-overexpressing cells in the present study was very similar to that observed for CYP2A6 (4.2 versus 4.4 nmol·mg microsomal protein⁻¹, normalized to P450 enzyme expression as determined by western blotting). Previous studies have suggested that CYP2C19 protein expression is at least three times that of CYP2A6 in human livers (Shimada et al., 1994; Achour et al., 2014), suggesting that CYP2C19 may play a more important role than CYP2A6 in COX formation.

CYP2B6 has been previously reported to be involved in nicotine metabolism, including in the formation of Cot from nicotine, where it exhibits a Km (550 μM) (Yamanaka et al., 2005) approximately 5.8 times higher than that observed for CYP2A6 (95 μM) (Yamanaka et al., 2005). CYP2B6 was also suggested to be involved in the formation of (S)-nicotine-iminium and (S)-nicotine, with Km values ranging from 184 to 269 μM (Bloom et al., 2019). This contrasts with the higher Km observed for CYP2B6 for COX formation (810 μM). CYP2B6 was shown in previous studies to exhibit lower levels of hepatic expression than CYP2C19 and to be expressed at levels similar to those observed for CYP2A6 (Shimada et al., 1994; Achour et al., 2014). Together these data suggest that, of the three enzymes, CYP2B6 may be playing the least significant role in COX formation.

Most interestingly, COX formation in HLMs was significantly associated with CYP2C19 genotypes in the present study. CYP2C19 variants significantly modified COX formation by up to 35% when comparing the UM2C19 group and PM2C19 groups, and 25% when comparing the UM2C19 and IM2C19 groups. These results are consistent with those observed previously for CYP2C19 genotypes on drug metabolism, including agents like clopidogrel, omeprazole, and voriconazole, which show increased enzyme efficacy by up to 35%–40% in the UM2C19/EM2C19 genotype groups when compared with the PM2C19 genotype group (Li-Wan-Po et al., 2010).

While CYP2A6 showed similar activity as CYP2C19 in the kinetics analysis, CYP2A6 genetic variants were not significantly associated with an altered COX formation phenotype. This pattern is consistent with the lower level of expression of CYP2A6 as compared with CYP2C19 in human livers (Shimada et al., 1994; Achour et al., 2014). However, since CYP2A6 is the enzyme responsible for 3HC conversion (Nakajima et al., 1996a), the COX/3HC ratio could not be used in this case to correct for differences in enzyme quality between specimens. Additionally, CYP2A6 alleles that would correspond with poor metabolizer subjects (carriers of the CYP2A6 *4 or *7 alleles) were not included in this study due to low allelic frequency in the studied population.

No differences in the levels of observed COX formation or as COX expressed as a ratio with 3HC were observed for CYP2B6 genotypes in the present study. Previous studies have suggested that CYP2B6 may be more important in nicotine metabolism than CYP2A6 function is impaired (Dicke et al., 2005; Al Koudsi and Tyndale, 2010). Additionally, an effect by variant CYP2B6 genotypes on COX formation could not be adequately tested in subjects with CYP2A6-deficient genotypes given the small sample number of specimens from subjects who were IM2A6 (n = 5) and the fact that poor metabolizers of CYP2A6 were not assessed in this population. Further analysis of a larger sample size of intermediate and poor CYP2A6 metabolizer subjects will be required to better determine the extent of the influence of CYP2B6 and CYP2A6 on COX formation.

In summary, this is the first study to report on the major hepatic enzymes important in COX formation, with CYP2C19 playing an important role. This study also demonstrates CYP2C19-mediated genetic effects on COX formation in a panel of human liver specimens, an effect that could potentially modify the NMR in smokers and could affect pharmacotherapeutic decisions for smoking cessation treatment. Further population-based studies involving genotype-phenotype associations should be performed to better assess the effect of CYP2C19 on COX formation and the NMR.

Acknowledgments
The authors thank Dr. Senthil Natesan in the Department of Pharmaceutical Sciences at the Washington State University College of Pharmacy and Pharmaceutical Sciences for his helpful suggestions and discussion. The authors also thank the Mass Spectrometry Core facility at Washington State University Spokane for their help with UHPLC/MS.

Authorship Contributions
Participated in research design: Perez-Paramo, Watson, Chen, Lazarus.
Conducted experiments: Perez-Paramo.
Performed data analysis: Perez-Paramo, Watson, Chen, Lazarus.
Wrote or contributed to the writing of the manuscript: Perez-Paramo, Watson, Lazarus.

References
Achour B, Barber J, and Rostami-Hodjegan A (2014) Expression of hepatic drug-metabolizing cytochrome p450 enzymes and their intercorrelations: a meta-analysis. Drug Metab Dispos 42:1349–1356.10.1124/dmd.114.058834.
Ahmad T, Sabet S, Primerano DA, Richards-Waugh LL, and Rankin GO (2017) Tell-Tale SNPs: The Role of CYP2B6 in Methadone Fatalities. J Anal Toxicol 41:325–333.10.1093/jat/ Bkw135.
Al Koudsi N and Tyndale RF (2010) Hepatic CYP2B6 is altered by genetic, physiologic, and envi- ronmental factors but plays little role in nicotine metabolism. Xenobiotica 40:381–392.10.3109/ 0309825100371958.
Bailey JW, Eddulf CK, Pardamean CI, Conti DV, Krasnow R, Javitz HS, Hops H, Swan GE, Benowitz NL, and Bergren AW (2016) Genome-Wide Association of the Laboratory-Based Nicotine Metabolite Ratio in Three Ancestries. Nicotine Tob Res 18:1837–1844.10.1093/ntr/ ntw117.
Benowitz NL, Swan GE, Jacob 3rd P, Lessov-Schlaggar CN, and Tyndale RF (2006) CYP2A6 genotype and the metabolism and disposition kinetics of nicotine. Clin Pharmacol Ther 80:457–467.10.1002/cpt.200608.041.
Berg JZ, von Weymann LB, Thompson EA, Wickham KM, Weisensel NA, Hatsumaki DK, and Murphy SE (2010) UGT2B10 genotype influences nicotine glucuronidation, oxidation, and consump- tion. Cancer Epidemiol Biomarkers Prev 19:1423–1431.10.1158/1055-9966.EPI-09-0599.
Binnington MJ, Zhu AXZ, Renner CC, Lanier AP, Hatsumaki DK, Benowitz NL, and Tyndale RF (2012) CYP2A6 and CYP2B6 genetic variation and its association with nicotine metabolism in South Western Alaska Native people. Pharmacogenet Genomics 22:429–440.10.1097/ FPC.0b013e3283527c1c.CYP2A6.
Bloom AJ, Harari O, Martinez M, Zhang X, McDonald SA, Murphy SE, and Goate A (2013a) A compensatory effect upon splicing results in normal function of the CYP2A6 isoform. Proc Natl Acad Sci U S A 110:429.10.1073/pnas. 1210690110.
Bloom AJ, Harari O, Martinez M, Chen LS, Bierut LJ, Murphy SE, and Goate A (2013b) CYP2A6 non- coding variation associated with smoking cessation is also associated with differences in allelic expression, splicing, and nicotine metabolism independent of common amino-acid changes. PLoS One 8:e79700. DOI: 10.1371/journal.pone.0079700.

Downloaded from dmd.aspetjournals.org at ASPET Journals on September 17, 2023
Bloom AJ, Wang PF, and Kharasch ED (2019) Nicotine oxidation by genetic variants of CYP2B6 and in human brain microsomes. Pharmacol Res Perspect 7:e00468. DOI: 10.1002/prp2.468

Brown KM, von Weymarn LB, and Murphy SE (2005) Identification of N-(hydroxyethyl) nicotine as a major product of cytochrome P450 2A6, but not cytochrome P450 2A13-catalyzed nicotine oxidation in human liver microsomes. J Pharmacol Exp Ther 314:1792–1798. DOI: 10.1124/jpet.105.091216

Chen G, Blevins-Primeau AS, Dellinger RW, Muscat JE, and Lazarus P (2007) Glucuronidation of nicotine and cotinine by UGT2B10: loss of function by the UGT2B10 Codon 67 (Asp>Tyr) substitution. Neurosci Lett 420:183–190. DOI: 10.1016/j.neulet.2007.03.050

Chen G, Giambra Jr NE, Dluzen DF, Muscat JE, Berg A, Gallagher CJ, and Lazarus P (2010) Glucuronidation genotypes and nicotine metabolic phenotypes: Importance of UGT2B10 and UGT2B17 knock-out polymorphs. Clin Pharmacol Ther 87:753–755. DOI: 10.1038/clpt.2009.320. CAN-09-4582.Glucuronidation.

Chen L-S, Horton A, and Bierut L (2018) Pathways to precision medicine in smoking cessation treatments. Curr Pharm Biotechnol 19:131–139. DOI: 10.2174/138920101982666042

Chen L, Novalen M, Hawk Jr LW, Schnall RA, George TP, and Benowitz NL (2004) Absorption, distribution and metabolism of nicotine in humans. Drug Metab Rev 36:217–259. DOI: 10.1080/00122490490270235

Dagné E and Castagnoli Jr N (1972) Cotinine N-oxide, a new metabolite of nicotine. J Pharmacol Exp Ther 180:196–202. DOI: 10.1124/jpet.1.3.196

Findings From ITC Surveys in Five Countries. Nicotine Tob Res 27:795–799. DOI: 10.1093/ntr/ntx083.

Fernandez-Salguero P, Hoffman SMG, Cholerton S, Mohrenweiser H, Raunio H, Rautio A, Pelkonen O, Maurice M, Sun Q, Yue QY, Dahl ML, Tabone M, Arinc O, Gervot L, Rochat B, Gautier JC, Bohnenstengel F, Kroemer H, de Berardinis V, Martin H, Beaune P, Lerman C, Schnoll RA, Hawk Jr LW, Cinciripini P, George TP, Wileyto EP, Swan GE, Benowitz NL, Desta Z, Zhao X, Shin JG, and Flockhart DA (2002) Clinical significance of the cytochrome P450 2C19*2 allele in smoking cessation: a randomised, double-blind placebo-controlled trial. Clin Pharmacol Ther 71:696–703. DOI: 10.1067/cpt.2002.121717.

Maurice M, Pichard L, Dauguet M, Fabre J, Joyeux D, Jouve M, and Maurel P (1997) Effect of imatinib mesylate on drug metabolism and its potential clinical implications. Cancer Epidemiol Biomarkers Prev 6:791–799. DOI: 10.1158/1055-9965.EPI-1597-06.
von Bahr C, Spina E, Birgersson C, Ericsson O, Göransson M, Henthorn T, and Sjöqvist F (1985) Inhibition of desmethylimipramine 2-hydroxylation by drugs in human liver microsomes. Biochem Pharmacol 34:2501–2505 10.1016/0006-2952(85)90533-7.

Walsky RL, Obach RS, Gaman EA, Gleeson JP, and Proctor WR (2005) Selective inhibition of human cytochrome P4502C8 by montelukast. Drug Metab Dispos 33:413–418.

Wang P-F, Neuner A, and Khurash ED (2019) Efavirenz Metabolism: Influence of Polymorphic CYP2B6 Variants and Stereochemistry. Drug Metab Dispos 47:1195–1205 10.1124/DMD.119.086348.

Yamanaka H, Nakajima M, Fukami T, Sakai H, Nakamura A, Katsuh M, Takamiya M, Aoki Y, and Yokoi T (2005) CYP2A6 AND CYP2B6 are involved in nornicotine formation from nicotine in humans: interindividual differences in these contributions. Drug Metab Dispos 33:1811–1818 10.1124/dmd.105.006254.

Yamanaka H, Nakajima M, Nishimura K, Yoshida R, Fukami T, Katoh M, and Yokoi T (2004) Metabolic profile of nicotine in subjects whose CYP2A6 gene is deleted. Eur J Pharm Sci 22:419–425 10.1016/j.ejps.2004.04.012.

Zhou Y, Ingelman-Sundberg M, and Lauschke VM (2017) Worldwide Distribution of Cytochrome P450 Alleles: A Meta-analysis of Population-scale Sequencing Projects. Clin Pharmacol Ther 102:688–700 10.1002/cpt.690.

Zhu AZX, Zhou Q, Cox LS, Ashriwala JS, Benowitz NL, and Tyndale RF (2013) Variation in trans-3' hydroxycotinine glucuronidation does not alter the nicotine metabolite ratio or nicotine intake. PLoS One 8:e70938 10.1371/journal.pone.0070938.

Address correspondence to: Dr. Philip Lazarus, Pharmaceutical Sciences, PBS 431, PO Box 1495, Spokane WA 99210-1495. E-mail: phil.lazarus@wsu.edu