Helicobacter pylori infection and liver diseases: Epidemiology and insights into pathogenesis

Kazuya Okushin, Takeya Tsutsumi, Kazuhiko Ikeuchi, Akira Kado, Kenichiro Enooku, Hidetaka Fujinaga, Kyoji Moriya, Hiroshi Yotsuyanagi, Kazuhiko Koike

Kazuya Okushin, Akira Kado, Kenichiro Enooku, Hidetaka Fujinaga, Kazuhiko Koike, Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan

Kazuya Okushin, Kyoji Moriya, Department of Infection Control and Prevention, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan

Kazuhiko Ikeuchi, Kyoji Moriya, Department of Infectious Diseases, The University of Tokyo, Tokyo 113-8655, Japan

Takeya Tsutsumi, Kazuhiko Ikeuchi, Hiroshi Yotsuyanagi, Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan

ORCID number: Kazuya Okushin (0000-0001-9584-043X); Takeya Tsutsumi (0000-0003-0851-1887); Kazuhiko Ikeuchi (0000-0003-1677-3369); Akira Kado (0000-0003-4477-6858); Kenichiro Enooku (0000-0001-5319-8864); Hidetaka Fujinaga (0000-0003-4170-5923); Kyoji Moriya (0000-0001-9628-2724); Hiroshi Yotsuyanagi (0000-0001-7882-5262); Kazuhiko Koike (0000-0002-9739-9243).

Author contributions: Okushin K and Tsutsumi T contributed to selecting references and drafting the manuscript; Ikeuchi K, Kado A, Enooku K, Fujinaga H, Moriya K, and Yotsuyanagi H participated in the critical revision of the manuscript to ensure that the intellectual content achieved a high standard; Koike K participated in selecting the references, drafting, and critically revising the manuscript to ensure that the intellectual content achieved a high standard; all authors have reviewed and approved the final version of the manuscript.

Conflict-of-interest statement: No author has any relevant conflicts of interest.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Takeya Tsutsumi, MD, PhD, Associate Professor, Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shiroganedai, Minato-ku, Tokyo 108-8639, Japan. tsutsumi@ims.u-tokyo.ac.jp
Telephone: +81-3-34438111
Fax: +81-3-54495427

Received: April 26, 2018
Peer-review started: April 26, 2018
First decision: May 24, 2018
Revised: May 30, 2018
Accepted: June 27, 2018
Article in press: June 27, 2018
Published online: August 28, 2018

Abstract

Both Helicobacter pylori (H. pylori) infection and liver diseases, including nonalcoholic fatty liver disease (NAFLD), viral hepatitis, and hepatocellular carcinoma (HCC), have high prevalences worldwide, and the relationship between H. pylori infection and liver disease has been discussed for many years. Although positive correlations between H. pylori and NAFLD have been identified in some clinical and experimental studies, negative correlations have also been obtained in high-quality clinical studies. Associations between H. pylori and the pathogenesis of chronic viral hepatitis, mainly disease progression with fibrosis, have also been suggested in some clinical studies. Concerning HCC, a possible role for H. pylori in hepatocarcinogenesis has been identified since H. pylori genes have frequently been detected in resected HCC specimens. However, no study has...
revealed the direct involvement of *H. pylori* in promoting the development of HCC. Although findings regarding the correlations between *H. pylori* and liver disease pathogenesis have been accumulating, the existing data do not completely lead to an unequivocal conclusion. Further high-quality clinical and experimental analyses are necessary to evaluate the efficacy of *H. pylori* eradication in ameliorating the histopathological changes observed in each liver disease.

Key words: *Helicobacter pylori*; Nonalcoholic fatty liver disease; Nonalcoholic steatohepatitis; Hepatitis C virus; Hepatitis B virus; Viral hepatitis; Hepatocellular carcinoma

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Both *Helicobacter pylori* (*H. pylori*) infection and liver diseases have high prevalences worldwide, and their relationship has been discussed for a long time. In this review, we comprehensively summarize positive and negative correlations suggested in clinical and experimental studies, and conclude that existing data cannot fully lead us to make a decision. We also point out the necessity of further analyses evaluating the efficacy of *H. pylori* eradication on histopathological changes in each liver disease. We believe this paper would help readers to gain a better understanding of the relationship between *H. pylori* and liver diseases.

Okushin K, Tsutsumi T, Ikeuchi K, Kado A, Enooku K, Fujinaga H, Moriya K, Yotsuyanagi H, Koike K. *Helicobacter pylori* infection and liver diseases: Epidemiology and insights into pathogenesis. *World J Gastroenterol* 2018; 24(32): 3617-3625
Available from: URL: http://www.wjgnet.com/1007-9327/full/v24/i32/3617.htm DOI: http://dx.doi.org/10.3748/wjg.v24.i32.3617

INTRODUCTION

Helicobacter pylori (*H. pylori*) is one of the most well-known microbes in the world. Warren and Marshall reported the possible virulence of *H. pylori* in patients with gastritis, gastric ulcer, and duodenal ulcer in 1984[1]. Approximately 50% of the global population is estimated to be infected with *H. pylori*[2], and chronic infection with *H. pylori* is one cause of chronic atrophic gastritis, peptic ulcer diseases, and gastric cancer[3,4]. Recently, findings concerning the influence of *H. pylori* on various extra-alimentary organs have accumulated[5-12]. Among these putative extra-alimentary disorders caused by *H. pylori*, the relationship with metabolic disorders remains controversial[13-23].

Liver diseases, including nonalcoholic fatty liver disease (NAFLD), chronic viral hepatitis, and hepatocellular carcinoma (HCC), also have high prevalences worldwide. Consequently, the relationship between *H. pylori* and liver diseases has been discussed and still remains controversial[15]. Although the presence of *H. pylori* or *Helicobacter* species has been observed in liver samples from patients with various liver diseases[24-30] and findings regarding possible roles for *H. pylori* in the pathogenesis of liver diseases have been accumulating, few studies have reported a direct contribution of *H. pylori* to the pathogenesis of liver diseases. Additionally, negative correlations have been identified in high-quality clinical studies[31-34].

Currently, *H. pylori* is efficiently eradicated by various short-term treatments with combinations of antibiotics[35]. On the other hand, despite the remarkable progress in research and therapy, curative treatments have not yet been established for almost all liver diseases. Therefore, a discussion of whether *H. pylori* has a possible role in the pathogenesis of liver diseases and a clarification of the efficacy of *H. pylori* eradication in treating liver diseases are important. In this review, we present current insights into the relationship between *H. pylori* and liver diseases, such as NAFLD, chronic viral hepatitis, and HCC.

H. PYLORI AND NAFLD

NAFLD is an emerging liver disease worldwide, including in Asian countries[31,36,37]. NAFLD is a spectrum of diseases ranging from simple steatosis to nonalcoholic steatohepatitis (NASH). The latter is progressive and considered a causative factor of cirrhosis, HCC, and systemic metabolic disorders[38-40].

The initial description of NASH pathogenesis, which was previously defined as the “two-hit” theory, was presented by Day et al[41] in 1998 and has been discussed by other researchers. In addition to a “first-hit” of hepatic steatosis, a “second-hit,” such as gut-derived endotoxins, proinflammatory cytokines, dysregulation of adipokines, oxidative stress, endoplasmic reticulum stress, and lipotoxicity, is necessary for NASH development. Considering the complicated mechanisms of NAFLD, however, the “two-hit” theory had been thought to be insufficient, and instead, the “multiple-parallel hits” hypothesis was proposed by Tilg et al[42]. According to this hypothesis, inflammatory mediators derived from various tissues, including the gut and adipose tissue, play a central role in the inflammatory cascade. However, the detailed pathogenesis largely remains unclear.

The relationship between *H. pylori* and NAFLD in the context of gastrointestinal tract inflammation has been long discussed but remains controversial (Table 1)[30,31,34,43-51]. Some cross-sectional or retrospective studies have not identified correlations between NAFLD and *H. pylori*[31-34]. Previously, we examined the associations of causative background factors with NAFLD by analyzing 13737 subjects in a cross-sectional study in Japan, but no correlations were observed between NAFLD and *H. pylori*, regardless of gender[33]. On the other hand, opposite results have also been reported[45-48]. In a meta-analysis, Wijampreecha et al[49] found a significantly increased risk of NAFLD among patients with *H. pylori* infection, with pooled odds ratios
Table 1 Summary of relevant studies between Helicobacter pylori and nonalcoholic fatty liver disease

Ref.	Year	Country	Study design	Number of subjects	Conclusion
Okushin et al[51]	2015	Japan	Cross-sectional study	13727	Negative
Baeg et al[52]	2016	South Korea	Cross-sectional study	3663	Negative
Fan et al[53]	2018	China	Cross-sectional study	21456	Negative
Cai et al[54]	2018	China	Cross-sectional study	2051	Negative
Polyzos et al[55]	2013	Greece	Cross-sectional study	53	Positive
Doğan et al[56]	2013	Turkey	Cross-sectional study	174	Positive
Kim et al[57]	2017	South Korea	Retrospective study	17028	Positive
Chen et al[58]	2017	China	Cross-sectional study	2263	Positive
Wijarnpreecha et al[59]	2016	Various countries	Meta-analysis	38622	Positive
Jamali et al[60]	2013	Iran	Prospective study (RCT)	49	Negative
Polyzos et al[61]	2014	Greece	Prospective study	12	Negative

RCT: Randomized controlled trial.

of 1.21 (95%CI: 1.07-1.37).

To the best of our knowledge, only two randomized prospective studies have attempted to reveal the direct correlation between H. pylori eradication and NAFLD. As shown in the study by Jamali et al[60], eradication does not exert significant effects on the liver fat content, liver function tests, lipid profiles, and homeostasis model assessment of insulin resistance (HOMA-IR) index in patients with NAFLD, although one limitation of this study was that it was conducted on dyspeptic patients with NAFLD. Polyzos et al[61] performed a small-scale prospective study of H. pylori eradication in patients with biopsy-proven NASH. In this study, eradication had no long-term effect on hepatic steatosis but showed a trend toward improving the noninvasive NAFLD fibrosis score[62]. Namely, in the H. pylori-eradicated group, the fibrosis scores decreased from -0.34 at baseline to -0.24 at month 12 (P = 0.116), whereas the scores increased in the control group from -0.38 at baseline to -0.56 at month 12 (P = 0.249). Larger-scale randomized prospective studies focusing on H. pylori eradication are needed.

NAFLD is closely related to metabolic syndrome. The relationship between H. pylori and metabolic syndrome has also been discussed for many years. Recently, Refaeli et al[63] analyzed 147936 individuals aged 25-95 years who performed the urea breath test during 2002-2012 using a large computerized database of a health maintenance organization in Israel. In this study, the prevalences of H. pylori infection and metabolic syndrome were 52.0% and 11.4%, respectively. Compared to noninfected patients, H. pylori-infected patients exhibited an increased likelihood of developing metabolic syndrome (adjusted OR: 1.15, 95%CI: 1.10-1.19). Similar results have been obtained in a meta-analysis[54], middle-sized community-based studies[55,56], and hospital-based studies[17,57,58]. On the other hand, Takeoka et al[69] reported unique controversial results focusing on the quantification of H. pylori-specific IgG concentrations. Namely, the subjects were stratified into 4 groups according to the concentration of H. pylori-specific IgG as follows: H. pylori seronegative (< 10 U/mL), low H. pylori-specific IgG levels (10-30 U/mL), moderate H. pylori-specific IgG levels (30-50 U/mL), or high H. pylori-specific IgG levels (> 50 U/mL). After stratification, patients with low IgG levels had the lowest risk of metabolic syndrome, after adjusting for age, sex, smoking, drinking, and physical activity status. Using patients with the low IgG levels as the reference, patients with negative, moderate, and high IgG levels had ORs (95%CIs) of 2.15 (1.06-4.16), 3.69 (1.12-16.7), and 4.05 (1.05-26.8), respectively. Indeed, H. pylori-specific IgG levels do not always reflect disease severity; further discussion is needed to determine why the group with low IgG levels, but negative for IgG, exhibited the lowest risk of metabolic syndrome. Another cross-sectional study in Japan, which analyzed 7394 cases, evaluated the correlations between H. pylori infection with the development of metabolic syndrome and each parameter[17]. In this study, H. pylori seropositivity was a significant and independent predictor of metabolic syndrome (OR: 1.39, 95%CI: 1.18-1.62, P < 0.001), as determined by a multivariate logistic regression analysis. Furthermore, according to the multivariate linear regression analysis, H. pylori seropositivity was significantly correlated with metabolic syndrome-related variables, such as higher systolic blood pressure (β coefficient = 1.03, P = 0.014), a lower high-density lipoprotein (HDL) cholesterol level (β coefficient = -2.00, P < 0.001), and a higher LDL cholesterol level (β coefficient = 2.21, P = 0.005). In addition, successful eradication of H. pylori significantly improves disturbances in these metabolic parameters[60-63]. However, some reports contradict an association between H. pylori and these metabolic risk factors[64-68]. Therefore, we are not able to reach a definitive conclusion, and the effect of H. pylori on metabolic factors may depend on the subjects examined, due to differences in factors such as country of residence, dietary habits, culture, and fitness habits.

Since obesity is closely linked to NAFLD, a relationship between H. pylori and obesity has also been hypothesized. A meta-analysis by Lender et al[69] concluded that the rates of obesity and overweight were inversely and significantly correlated with the prevalence of H. pylori infection (r = 0.29, P < 0.001). However, this meta-analysis only selected studies conducted in developed countries [GDP > 25000 USD/(person-year)].
Contradictory results were obtained in rather large-scale studies performed in other countries, such as China\(^{70,71}\). The reason for this discrepancy remains to be elucidated, but the difference in dietary habits and culture is probably responsible. In addition, the subjects’ appetites and actual food intake levels will presumably be changed after successful eradication of *H. pylori* and may affect body weight. To determine whether the presence of *H. pylori* itself triggers body weight gain, detailed studies without exogenous factors are necessary to determine whether an *H. pylori* infection itself triggers body weight gain. Nwokolo et al\(^{72}\) presented interesting data in a study examining this point. In a small-scale pilot trial, plasma ghrelin, leptin, and gastrin levels were measured before and after the cure of *H. pylori* in 10 subjects. After *H. pylori* cure, plasma ghrelin levels increased significantly by 75% (*P* = 0.002). On the other hand, leptin and gastrin levels have decreased by 11% and 30%, respectively, although the differences were not significant. Ghrelin is known to stimulate appetite and induce a positive energy balance, leading to body weight gain\(^{72}\); therefore, an increase in plasma ghrelin levels might be associated with the development of obesity following the eradication of *H. pylori*.

One of the important manifestations of NAFLD is insulin resistance (IR)\(^{74}\). Higher HOMA-IR scores were recorded for *H. pylori*-infected patients\(^{55,75-78}\), while opposite results have also been obtained in other studies\(^{19,79}\). Cytokine production was suggested as a mechanism by which *H. pylori* induced IR. *H. pylori* infection stimulates the release of proinflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6 and IL-8\(^{80,81}\). TNF-α induces IR by suppressing insulin-induced tyrosine phosphorylation of insulin receptor and its substrate, insulin receptor substrate (IRS)-1, in a hepatoma cell line\(^{82}\). In fact, neutralization of increased TNF-α levels in obese fa/fa rats significantly increases the peripheral uptake of glucose in response to insulin\(^{83}\). Adiponectin and fetuin-A are also regarded as key factors contributing to IR. Adiponectin, an adipocyte-derived hormone, antagonizes excess lipid storage in the liver and protects against inflammation and fibrosis\(^{84}\). According to Ando et al\(^{85}\), successful eradication of *H. pylori* significantly increases total adiponectin levels from 5.61 μg/mL to 6.16 μg/mL (*P < 0.0001*) as well as the levels of each multimer form (high-, middle-, and low-molecular-weight) of adiponectin. Fetuin-A, a glycoprotein produced by the liver, is correlated with impaired insulin sensitivity, glucose metabolism, and the onset of diabetes mellitus\(^{86,87}\). *H. pylori*-positive subjects have higher fetuin-A levels and HOMA-IR scores than *H. pylori*-negative subjects. In a cross-sectional study, the mean fetuin-A values were 0.77 g/L and 0.58 g/L in *H. pylori*-positive and *H. pylori*-negative subjects, respectively. Mean HOMA-IR scores were 3.1 and 2.2 in *H. pylori*-positive and *H. pylori*-negative subjects, respectively. In addition, a significant positive correlation between fetuin-A and HOMA-IR was observed after adjusting for other factors (adjusted coefficient β = 0.23, *P < 0.01*)\(^{88}\).

Based on these results, levels of inflammatory cytokines, adiponectin and fetuin-A may be associated with *H. pylori*-related IR, although that relationship has not been completely acknowledged.

Recently, the gut microbiota has been the focus of studies on the pathogenesis of various diseases and has also been suggested to play key roles in NAFLD pathogenesis\(^{89,90}\). Cytotoxin-associated gene A antigen (CagA), the known virulence factor of *H. pylori*, has been reported to alter the gut microbiota, resulting in the exacerbation of cell proliferation and immune phenotypes\(^{91}\). Furthermore, increased mucosal permeability of the intestine induced by *H. pylori* infection was reported\(^{92}\). These alterations in the gut environment, such as the microbiota and mucosal barrier, by *H. pylori* may influence the pathogenesis of NAFLD.

In summary, positive correlations between *H. pylori* and NAFLD have been reported in some clinical and experimental studies, but other studies have presented contradictory data. Further analyses focusing on the effect of *H. pylori* eradication on histopathological changes in patients with biopsy-proven NAFLD are necessary.

H. pylori and Chronic Viral Hepatitis or Cirrhosis

The involvement of *H. pylori* in the pathogenesis of chronic viral hepatitis has been speculated (Table 2). Esmat et al\(^{93}\) evaluated the presence of the *H. pylori* CagA gene in liver samples from patients with hepatitis C virus (HCV)-related chronic hepatitis or cirrhosis by the polymerase chain reaction (PCR). In this study, the *H. pylori* gene was detected in 28.2% cases of late fibrosis (F3 + F4) and 5.9% cases of early fibrosis (F1 + F2) (*P = 0.0001*) by PCR. The influence of *H. pylori* on the progression of HCV-related liver diseases has also been examined. Anti-*H. pylori* antibody positivity was significantly and independently associated with cirrhosis in patients with HCV-related chronic hepatitis or cirrhosis in multivariate analyses (OR: 2.42, 95%CI: 1.06-5.53, *P = 0.037*)\(^{92}\).

Rocha et al\(^{94}\) examined liver tissues from *H. pylori*-infected patients and revealed that the *Helicobacter* 16S rDNA was only detected in 4.2% of liver samples from control patients and in 3.5% of samples from patients with noncirrhotic chronic hepatitis C. The *Helicobacter* 16S rDNA was detected in 68.0% of liver samples from patients with HCV-positive cirrhosis without HCC as well as in 61.3% of patients with HCC. In a meta-analysis, Wang et al\(^{95}\) analyzed the prevalence of *H. pylori* infection in a total of 1449 patients with chronic hepatitis C and 2377 control cases. The prevalence of *H. pylori* was significantly higher in patients with chronic hepatitis C than in those without chronic hepatitis C (pooled odds ratio 2.93). In a subgroup analysis, the odds ratios were 4.48 for HCV-related cirrhosis and 5.45 for HCC. These results suggest an association between *Helicobacter* species and HCV-related disease progression, but these findings only show the presence of *H. pylori*, not its pathogenicity.
in the liver. *H. pylori* may putatively flow into the liver via the portal vein and be caught and eliminated by intrahepatic immune cells such as Kupffer cells in the normal liver. Since the number of these cells decreases with the progression of fibrosis, *H. pylori* is speculated to be present in the liver as a result of immune escape. Accordingly, the prevalence of *H. pylori* might simply be high in patients with cirrhosis compared with that in control or noncirrhotic patients. Additional in-depth studies are required to confirm the actual involvement of *H. pylori* in the progression of liver fibrosis.

Clinical findings suggesting relationships between *H. pylori* and hepatitis B virus (HBV)-related liver diseases have also been reported\(^ {96-100} \). A higher prevalence of *H. pylori* infection in HBV-infected patients has been reported in several studies\(^ {96-98} \), but these findings may just reflect the hygienic environments in childhood. Actually, Wang *et al.*\(^ {99} \) reported that the prevalence of *H. pylori* infection in asymptomatic HBV carriers was 38.67% in Shandong Province, China, which was not different than that in the normal adult population recruited from the same region (35.94%, \(P = 0.352 \)). Possible associations between the progression of HBV-related liver disease and liver-related complications, such as variceal bleeding, ascites, and encephalopathy, have also been reported\(^ {100} \). In a meta-analysis of a Chinese population, the prevalence of *H. pylori* infection among patients with HBV-related liver diseases increased as the disease severity increased\(^ {100} \). Namely, the *H. pylori*-positive rate in patients with chronic hepatitis B patients but not cirrhosis or HCC was 2.44-fold higher than that in healthy controls (pooled OR: 2.44, 95%CI: 1.85-3.24; \(P < 0.01 \)). Furthermore, the *H. pylori*-positive rate in patients with HBV-induced cirrhosis was 4.28-fold higher (pooled OR: 4.28, 95%CI: 2.99-6.13, \(P < 0.01 \)) than that in healthy controls, while it was 6.02-fold higher (pooled OR: 6.02, 95%CI: 4.33-8.37, \(P = 0.821 \)) in patients with HBV-related HCC. Therefore, the presence of *H. pylori* may accelerate the progression of HBV-related liver pathogenesis, but the precise pathogenicity in the liver remains to be elucidated.

In summary, although *H. pylori* infection and chronic viral hepatitis seem to be associated in limited situations, further studies are necessary to obtain a final conclusion since researchers have not yet clearly determined whether *H. pylori* itself directly contributes to the progression of viral hepatitis.

H. pylori and Hepatocarcinogenesis

Several clinical studies have reported an association between *H. pylori* and HCC (Table 2). *H. pylori* and similar species were detected in liver samples from patients with HCC\(^ {24-27} \). Additionally, a positive association between *H. pylori* and the risk of HCC was reported in a meta-analysis\(^ {101} \). The overall prevalence of *H. pylori* in the liver was 53.3% (129 of 242) in patients with HCC and 10.4% (29 of 280) in controls, and the odds ratio for the association between *H. pylori* infection and the risk of HCC was 13.63 (95%CI: 7.90-23.49). These observations, however, only showed the presence of *H. pylori* in liver tissues. HCC is usually accompanied by liver fibrosis, and in these circumstances, the intrahepatic immune status and hemodynamics may be changed to permit the inflow of *H. pylori* and escape from immunity in the liver, as noted above. Therefore, the presence of *H. pylori* only in HCC tissues does not provide strong support for an association with HCC.

Some *in vitro* studies have presented the possible mechanism underlying the association between *H. pylori* and hepatocarcinogenesis. As shown in the study by Zhang *et al.*\(^ {102} \), *H. pylori* causes pathological effects on HepG2 hepatoma cells by upregulating the expression of some proteins related to gene transcription and signal transduction. Virulent type *H. pylori* cause cell cycle arrest and apoptosis of Huh7 cells, another hepatoma cell line\(^ {103} \). According to Liu *et al.*\(^ {104} \), histidine-rich protein

Table 2: Summary of relevant studies between Helicobacter pylori and chronic viral hepatitis, cirrhosis, and hepatocellular carcinoma

Ref.	Year	Country	Study design	Number of subjects	Conclusion
Esmat *et al.*\(^ {99} \)	2012	Egypt	Cross-sectional study	85	Positive
Queiroz *et al.*\(^ {96} \)	2006	Argentina	Cross-sectional study	106	Positive
Rocha *et al.*\(^ {96} \)	2005	France	Cross-sectional study	109	Positive
Wang *et al.*\(^ {96} \)	2016	Various countries	Meta-analysis	3826	Positive
HCC	2001	Sweden	Cross-sectional study	36	Positive
Pellicano *et al.*\(^ {96} \)	2004	Italy	Cross-sectional study	26	Positive
Huang *et al.*\(^ {96} \)	2004	China	Cross-sectional study	36	Positive
Xuan *et al.*\(^ {96} \)	2006	China	Cross-sectional study	50	Positive
Xuan *et al.*\(^ {96} \)	2008	Various countries	Meta-analysis	522	Positive

HCV: Hepatitis C virus; HBV: Hepatitis B virus; HCC: Hepatocellular carcinoma.
Okushin K et al. *H. pylori* and liver diseases

(Hpn), a small histidine-rich cytoplasmic protein from *H. pylori*, induces apoptosis by suppressing ubiquitin-specific peptidase 5 (USP5) expressions and activating the PI4-P53 signaling pathway. However, these data are only indirect findings obtained from in vitro studies using cancer cell lines. Indeed, to the best of our knowledge, direct evidence for the tumorigenic effect of *H. pylori* on the liver has not been obtained. Ki et al. postulated that *H. pylori* infection might promote the transforming growth factor (TGF)-β1-dependent oncogenic pathway, disturbing the balance between hepatocyte apoptosis and proliferation in a murine model of CCl₄-induced fibrosis, but in this study, the development of HCC itself was not observed. Furthermore, in transgenic mice expressing HCV proteins, *H. pylori* infection did not promote the development of HCC. Based on these findings, *H. pylori* infection is currently presumed to be unlikely to contribute to HCC development.

In summary, although *H. pylori* genes are frequently detected in HCC samples, possible correlations between *H. pylori* and hepatocarcinogenesis seem to be doubtful. Further studies showing the direct contribution in vivo using infectious animal models or mice transgenic for *H. pylori* genes are necessary to confirm this relationship.

CONCLUSION

H. pylori have a high prevalence, and its roles in liver diseases, as well as its well-known contribution to the pathogenesis of gastric disorders, have been discussed. As described in this review, several correlations between *H. pylori* and liver diseases, particularly NAFLD, have been reported in some clinical and experimental studies, but these correlations remain controversial. Further analyses are required to elucidate the associations. In addition, since only a few studies have examined the effect of *H. pylori* eradication on the pathogenesis of NAFLD, histopathological confirmation that *H. pylori* eradication specifically prevents or improves disease progression is necessary. Concerning chronic viral hepatitis and HCC, some observational studies suggested positive correlations. But, we have to recognize possibilities of the publication bias and confounding factors such as hygienic environments and contaminations resulting from the presence of cirrhosis. Actually, few studies have definitively confirmed the pathogenic contribution of *H. pylori* to increase of inflammation, progression of fibrosis, or acceleration of hepatocarcinogenesis. *H. pylori* infection and liver diseases still have high prevalences worldwide and significant impact on patients’ prognosis. There is a room to discuss whether *H. pylori* are really involved in pathogenesis of each liver disease. To demonstrate the actual involvement of *H. pylori* in these processes, *H. pylori* itself or its gene product must be shown to accelerate the pathogenesis of these diseases using well-established animal models.

ACKNOWLEDGMENTS

We thank Ms. Shinzawa S (Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo) for her kind advice on this research.

REFERENCES

1. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. *Lancet* 1984; I: 1311-1315 [PMID: 6145023 DOI: 10.1016/S0140-6736(84)91816-6]
2. Cover TL, Blaser MJ. Helicobacter pylori in health and disease. *Gastroenterology* 2009; 136: 1863-1873 [PMID: 19457415 DOI: 10.1053/j.gastro.2009.01.073]
3. Malfertheiner P, Megraud F, O’Morin CA, Ahlertson I, Axon AT, Bazzoli F, Gensini GF, Gisbert JP, Graham DY, Rokkas T, El-Omar EM, Kuipers EJ. European Helicobacter Study Group. Management of Helicobacter pylori infection—the Maastricht IV/Florence Consensus Report. *Gut* 2012; 61: 646-664 [DOI: 10.1136/gutjnl-2012-302084]
4. Matsuishi T, Aftab H. Observation of gastric mucosa in Bangladesh, the country with the lowest incidence of gastric cancer, and Japan, the country with the highest incidence. *Helicobacter* 2012; 17: 396–401 [PMID: 22967124 DOI: 10.1111/j.1532-5428.2012.00967.x]
5. Patel P, Mendall MA, Carrington D, Strachan DP, Leatham E, Molinaues N, Levy J, Blakeston C, Seymour CA, Cann AM. Association of Helicobacter pylori and Chlamydia pneumoniae infections with coronary heart disease and cardiovascular risk factors. *BMJ* 1995; 311: 711-714 [DOI: 10.1136/bmj.311.7007.711]
6. Federman DG, Kirsner RS, Mioriarty JF, Conaco J. The effect of antibiostherapy for patients infected with Helicobacter pylori who have chronic urticaria. *J Am Acad Dermatol* 2003; 49: 861-864 [PMID: 14576665 DOI: 10.1016/S0190-9622(03)00846-6]
7. Maurer KJ, Ihrig MM, Rogers AB, Ng V, Bouchard G, Leonard MR, Carey MC, Fox JG. Identification of cholelitigenic enterohpatic helicobacter species and their role in murine cholesterol gallstone formation. *Gastroenterology* 2005; 128: 1023-1033 [PMID: 15825083 DOI: 10.1053/j.gastro.2005.01.000]
8. Takahashi Y, Yamamichi N, Shhamamoto T, Mochizuki S, Fujishiro M, Takeuchi C, Sakauguchi Y, Niimi K, Ono S, Kodashima S, Mitsushima T, Tokie K. Helicobacter pylori infection is positively associated with gallstones: a large-scale cross-sectional study in Japan. *J Gastroenterol* 2014; 49: 882-889 [PMID: 23736795 DOI: 10.1007/s00535-013-0852-z]
9. Franceschi F, Zucaglì G, Roccardina D, Gasbarrini A. Clinical effects of Helicobacter pylori outside the stomach. *Nat Rev Gastroenterol Hepatol* 2014; 11: 234-242 [PMID: 24345888 DOI: 10.1038/nrgastro.2013.243]
10. Waluga M, Kukla M, Zorniak M, Bacić A, Kotulski R. From the stomach to other organs: Helicobacter pylori and the liver. *World J Hepatol* 2015; 7: 2136-2146 [PMID: 26328025 DOI: 10.4254/wjh.v7.i18.2136]
11. Rabelo-Gonçalves EM, Roesler BM, Zeitune JM. Extragastric manifestations of Helicobacter pylori infection: Possible role of bacterium in liver and pancreas diseases. *World J Hepatol* 2015; 7: 2968-2979 [PMID: 26730276 DOI: 10.4254/wjh.v7.i30.2968]
12. de Korwin JD, Iaino G, Gibiino G, Gasbarrini A. Helicobacter pylori infection and extragastric diseases in 2017. *Helicobacter* 2017; 22 Suppl 1 [PMID: 28891133 DOI: 10.1111/hel.12411]
13. Pietroiuisti A, Diomedei M, Silvestrini M, Cupini LM, Luzzi I, Gomez-Miguél MJ, Bergamaschi A, Magrini A, Carrabbi T, Ve N, Galante A. Cytotoxin-associated gene-A–positive Helicobacter pylori strains are associated with atherosclerotic stroke. *Circulation* 2002; 106: 580–584 [PMID: 12147540 DOI: 10.1161/01.180010391839.10871.2F]
14. Diomedei M, Pietroiuisti A, Silvestrini M, Rizzato B, Cupini LM, Ferrante F, Magrini A, Bergamaschi A, Galante A, Bernardi G. CagA-positive Helicobacter pylori strains may influence the natural history of atherosclerotic stroke. *Neurology* 2004; 63: 800-804 [PMID: 15356126 DOI: 10.1212/01.WNL.0000138025.82419.80]
15. Cho I, Blaser MJ, Francois F, Mathew JP, Ye XX, Goldberg JD, Bini EJ. Helicobacter pylori and overweight status in the United States: data from the Third National Health and Nutrition Examination Survey. *Am J Med Genet. WJG | www.wjgnet.com 3622 August 28, 2018 | Volume 24 | Issue 32 |
Helicobacter pylori in patients with HCV-related chronic hepatitis

Esmat G

method.

Detection of Helicobacter pylori in paraffin-embedded specimens

Pirouz T

with various etiologies of benign liver diseases.

i15.2335

Xuan SY

primary hepatocellular carcinoma.

of helicobacter species in human liver samples from patients with

World J Gastroenterol, 2012; 22: 2592-2600 [PMID: 26937147 DOI: 10.3748/wjg.v22.i8.2592]

Fan N, Peng L, Xia Z, Zhang L, Wang Y, Peng Y. Helicobacter pylori infection is not associated with Non-alcoholic fatty liver disease: A Cross-Sectional Study in China. Front Microbiol 2018; 9: 73 [PMID: 29445363 DOI: 10.3389/fmicb.2018.00073]

Cai Q, Huang Z, Li M, Zhang C, Xi F, Tan S. Association between Helicobacter pylori infection and Nonalcoholic Fatty Liver Disease: A Single-Center Clinical Study. Gastroenterol Res Pract 2018; 2018: 8040262 [PMID: 29252224 DOI: 10.1155/2018/8040262]

Suzuki H, Mori H. World trends for H. pylori eradication therapy and gastric cancer prevention strategy by H. pylori test-and-treat. J Gastroenterol 2018; 53: 354-361 [PMID: 29138921 DOI: 10.1007/s00535-017-1407-1]

Kojima S, Watanabe N, Numata M, Ogawa T, Matsuzaki S. Increase in the prevalence of fatty liver in Japan over the past 12 years: analysis of clinical background. J Gastroenterol 2003; 38: 954-961 [PMID: 14614602 DOI: 10.1007/s00535-003-1178-8]

Sapatathik S, Sanyal AJ. Epidemiology and Natural History of Nonalcoholic Fatty Liver Disease. Semin Liver Dis 2015; 35: 221-235 [PMID: 26378640 DOI: 10.1055/s-0035-1562943]

Marrero JA, Fontana RJ, Su GL, Conjeevaram HS, Emick DM, Lok AS. NAFLD may be a common underlying liver disease in patients with hepatocellular carcinoma in the United States. Hepatology 2002; 36: 1349-1354 [PMID: 12447858 DOI: 10.1001/jhep.2002.36939]

Rubinstein E, Lavine JE, Schwimmer JB. Hepatic, cardiovascular, and endocrine outcomes of the histological subphenotypes of nonalcoholic fatty liver disease. Semin Liver Dis 2008; 28: 380-385 [PMID: 18956294 DOI: 10.1055/s-0035-1291982]

Bafy G, Brunt EM, Caldwell SH. Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace. J Hepatol 2012; 56: 1384-1391 [PMID: 22326465 DOI: 10.1016/j.jhep.2011.10.027]

Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology 1998; 114: 842-845 [PMID: 9547102 DOI: 10.1016/S0016-5085(97)05092-9]

Tig H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 2010; 52: 1836-1846 [PMID: 21038418 DOI: 10.1002/hep.24001]

Tang DM, Kumar S. The Association Between Helicobacter pylori Infection and Nonalcoholic Fatty Liver Disease. Curr Gastroenterol Rep 2017; 19: 5 [PMID: 28150087 DOI: 10.1007/s11894-017-0454-1]

Cheng DD, He C, Ai HH, Huang Y, Lu NH. The Possible Role of Helicobacter pylori Infection in Non-alcoholic Fatty Liver Disease. Front Microbiol 2017; 8: 743 [PMID: 28539915 DOI: 10.3389/fmicb.2017.00743]

Polyzos SA, Kountouras J, Papatheodorou A, Patissiaou K, Katsiki E, Zeleiriadou E, Zavos C, Anastasiadou K, Terpos E. Helicobacter pylori infection in patients with nonalcoholic fatty liver disease. Metabolism 2013; 62: 121-126 [PMID: 22841522 DOI: 10.1016/j.metabol.2012.06.007]

Doğan Z, Filik L, Ergil B, Sarıkaya M, Akbal E. Association between Helicobacter pylori and liver-to-spleen ratio: a randomized-controlled single-blind study. Eur J Gastroenterol Hepatol 2013; 25: 107-110 [PMID: 23013624 DOI: 10.1097/MEG.0b013e3283590c10]

Kim TJ, Sinn DH, Min YW, Son HJ, Kim JJ, Chang Y, Baek SY, Ahn SH, Lee H, Ryu S. A cohort study on Helicobacter pylori infection associated with nonalcoholic fatty liver disease. J Gastroenterol 2017; 52: 1201-1210 [PMID: 28382402 DOI: 10.1007/s00535-017-1337-y]
Chen CX, Yao YS, Foster P, Zhu ZW, Du J, Guo CY. Possible association between Helicobacter pylori infection and nonalcoholic fatty liver disease. *Appl Physiol Nutr Metab* 2017; **42**: 295-301 [PMID: 29117774 DOI: 10.1139/apnm-2016-0909]

Wijayaratna K, Thongprayoon C, Panjovatan P, Manatsathit W, Jaruvongvanich V, UngnrasP. Helicobacter pylori and Risk of Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-analysis. *J Clin Gastroenterol* 2018; **52**: 386-391 [PMID: 28098578 DOI: 10.1097/MCG.0000000000000784]

Jamil R, Mofid A, Vahed H, Farzaneh R, Dowlatshahi S. The effect of helicobacter pylori eradication on liver fat content in subjects with non-alcoholic Fatty liver disease: a randomized open-label clinical trial. *Hepat Mon* 2013; **13**: e16479 [PMID: 24358044 DOI: 10.5812/ hepatoen.14679]

Polyzos SA, Nikolopoulos P, Stogianni A, Romipoulos I, Katsinelos P, Kountouras J. Effect of Helicobacter pylori infection on hepatic steatosis, NAFLD fibrosis score and HSENsI in patients with nonalcoholic steatohepatitis: a MR imaging-based pilot open-label study. *Am J Gastroenterol* 2014; **109**: 261-268 [PMID: 25296089 DOI: 10.1038/ajg.2014.189]

Angulo P, Hui JM, Marchesini G, Bugianesi E, George J, Farrell GC, Enders F, Saksena S, Burt A, Bida JP, Lindor K, Sanderson SO, Lenzi M, Adams LA, Kench J, Therneau TM, Day CP. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. *Hepatology* 2007; **45**: 846-854 [PMID: 17393502 DOI: 10.1002/hep.21496]

Refaeli R, Chodick G, Haj S, Goren S, Shalev V, Muhsein K. Relationships of H. pylori infection and its related gastroduodenal morbidity with metabolic syndrome: a large cross-sectional study. *Sci Rep* 2018; **8**: 4088 [PMID: 29511278 DOI: 10.1038/s41598-018-22199-8]

Upala S, Jaruvongvanich V, Riangwiat T, Jaruvongvanich S, Sanguaneeko A. Association between Helicobacter pylori infection and metabolic syndrome: a systematic review and meta-analysis. *J Dig Dis* 2016; **17**: 433-440 [PMID: 27234788 DOI: 10.1111/1751-2790.12367]

Chen LW, Chien CY, Yang JK, Kuo SF, Chen CH, Chien RN. Helicobacter pylori Infection Increases Insulin Resistance and Metabolic Syndrome in Residents Younger than 50 Years Old: A Community-Based Study. *PLoS One* 2015; **10**: e0128671 [PMID: 26020514 DOI: 10.1371/journal.pone.0128671]

Chen LW, Chien CY, Hsieh CW, Chang LC, Huang MH, Huang WY, Kuo SF, Chien CH, Lin CL, Chien RN. The Associations Between Helicobacter pylori Infection, Serum Vitamin D, and Metabolic Syndrome: A Community-Based Study. *Medicine* (Baltimore) 2016; **95**: e56614 [PMID: 27149497 DOI: 10.1097/MD.0000000000000536]

Chen TP, Huang HF, Chen MK, Lai HH, Hsu WF, Huang KC, Yang KJ, Kuo SF, Chien CH, Chien RN. The Associations Between Helicobacter pylori Infection, Serum Vitamin D, and Metabolic Syndrome in Residents Younger than 50 Years Old: A Community-Based Study. *J Diabetes Complications* 2015; **274**: 1515-1520 [PMID: 26183673 DOI: 10.1016/j.jdiacomp.2017.05.015]

Zhang Y, Du T, Chen X, Yu X, Tu L, Zhang C. Association between Helicobacter pylori infection and overweight or obesity in a Chinese population. *J Infect Dev Ctries* 2015; **9**: 945-953 [PMID: 26409735 DOI: 10.3855/jidc.6035]

Lender N, Talley NJ, Enck P, Haag S, Zipfel S, Morrison M, Holtmann GJ. Review article: Associations between Helicobacter pylori infection and obesity--an ecological study. *Aliment Pharmacol Ther* 2014; **40**: 24-31 [PMID: 24832176 DOI: 10.1111/apt.12970]

Xu C, Yan M, Sun Y, Joo Y, Wan X, Yu C, Wang Q, Chen C, Pin L, Y, Coleman WG Jr. Prevalence of Helicobacter pylori infection and its relation with body mass index in a Chinese population. *Helicobacter* 2014; **19**: 437-442 [PMID: 25256639 DOI: 10.1111/hel.12153]

Zhang Y, Du T, Chen X, Yu X, Tu L, Zhang C. Association between Helicobacter pylori infection and overweight or obesity in a Chinese population. *J Infect Dev Ctries* 2015; **9**: 945-953 [PMID: 26409735 DOI: 10.3855/jidc.6035]

Chitturi S, Aybaygunasekera S, Farrell GC, Holmes-Walker J, Hui JM, Fung C, Karim R, Lin R, Samarasinghe D, Liddle C, Weltman C, George J. NAS and insulin resistance: Insulin hyperscreetion and specific association with the insulin resistance syndrome. *Hepatology* 2002; **35**: 373-379 [PMID: 11826411 DOI: 10.1001/jhep.2002.30692]

Eshraghian A, Hashemi SA, Hamidian Jahromi A, Eshraghian H, Masoumopour SM, Davarpanah MA, Eshraghian H, Taghavi SA. Helicobacter pylori infection as a risk factor for insulin resistance. *Dig Dis Sci* 2009; **54**: 1966-1970 [PMID: 19009348 DOI: 10.1007/s10620-008-0557-7]

Gunji T, Matsuhashi N, Sato H, Fujibayashi K, Okumura M, Sasabe N, Urabe A. Helicobacter pylori infection significantly increases insulin resistance in the asymptomatic Japanese population. *Helicobacter* 2009; **14**: 144-150 [PMID: 19751440 DOI: 10.1111/j.1523-5378.2009.00705.x]

Polyzos SA, Kountouras J, Zavos C, Deretzi G. The association between Helicobacter pylori infection and insulin resistance: a systematic review. *Helicobacter* 2011; **16**: 79-88 [PMID: 21435084 DOI: 10.1111/j.1523-5378.2011.00822.x]

Polyzos SA, Kountouras J, Zavos C, Deretzi G. Helicobacter pylori Infection and insulin resistance. *Helicobacter* 2013; **18**: 165-166 [PMID: 23066701 DOI: 10.1111/hel.12019]
89 Sumida Y, Kanemasa K, Inai S, Mori K, Tanaka S, Shimokobe H, Kitamura Y, Fujimoto K, Kakutani A, Ohno T, Taketani H, Seko Y, Ishiba H, Hara T, Okajima A, Yamaguchi K, Moriguchi M, Mitsuishi H, Yasui K, Minami M, Itoh Y. Helicobacter pylori infection might have a potential role in hepatic ballooning in nonalcoholic fatty liver disease. *J Gastroenterol* 2015; 50: 996-1004 [PMID: 25622927 DOI: 10.1007/s00535-015-1039-2]

90 Peek RM Jr, Blaser MJ. Helicobacter pylori and gastrointestinal tract adenocarcinomas. *Nat Rev Cancer* 2002; 2: 28-37 [PMID: 11905833 DOI: 10.1038/nrc7073]

91 Basso D, Plebani M, Kusters JG. Pathogenesis of Helicobacter pylori infection. *Helicobacter* 2010; 15 Suppl 1: 14-20 [PMID: 21054648 DOI: 10.1111/j.1523-5378.2010.00791.x]

92 Feinstein B, Kanety H, Papa MZ, Lunenfeld B, Karasik A. Tumor necrosis factor-alpha suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. *J Biol Chem* 1993; 268: 26055-26058 [PMID: 8523716]

93 Hotamisligil GS, Shargil NS, Speigelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. *Science* 1993; 259: 87-91 [PMID: 7678813 DOI: 10.1126/science.7678813]

94 Buechler C, Wanninger J, Neumeier M. Adiponectin, a key adipokine in obesity related liver diseases. *World J Gastroenterol* 2011; 17: 2801-2811 [PMID: 21734877]

95 Ando T, Ishikawa T, Takagi T, Immato E, Kishimoto E, Okajima A, Uchiyama K, Haneda O, Yagi N, Kourka S, Naito Y, Mizuno S, Asakawa A, Inui A, Yoshikawa T. Impact of Helicobacter pylori eradication on circulating adiponectin in humans. *Helicobacter* 2013; 18: 158-164 [PMID: 23167259 DOI: 10.1111/hel.12028]

96 Stefan N, Fritsche A, Weikert C, Boeing H, Joost HG, Häring HU, Schulze MB. Plasma fetuin-A levels and the risk of type 2 diabetes. *Diabetes* 2008; 57: 2762-2767 [PMID: 18633113 DOI: 10.2337/db08-0538]

97 Kantartzis K, Machann J, Schick F, Fritsche A, Häring HU, Stefan N. The impact of liver fat vs visceral fat in determining categories of prediabetes. *Diabetologia* 2010; 53: 882-889 [PMID: 20099057 DOI: 10.1007/s00125-010-1663-6]

98 Manolakis AC, Tiaka EK, Kapsoritakis AN, Georgoulia P, Tsipooulos F, Valotasissio V, Potamianos SP. Increased fetuin A levels in Helicobacter pylori infection: a missing link between H. pylori and insulin resistance? *Diabetologia* 2011; 54: 472-474 [PMID: 21166603 DOI: 10.1007/s00125-010-1995-2]

99 Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Xie SY, Li C, Kim AY, Park SJ, Lee HJ, Kim SY, Jeong KS. Helicobacter pylori specific peptidase 5 mediates Histidine-rich protein Hpn induced lesion in Egyptian Patients with Hepatitis B Virus infection. *World J Gastroenterol* 2011; 17: 15948260 DOI: 10.3748/wjg.v11.i22.3485

100 Xuan SY, Chen AJ, Dong QJ, Xiang X, Li N, Zheng MH, Guo HL, Shang J, Pan J, Zhao SY, Xiong JX, Zhou ST, Wu XX. Comparative proteome analysis of untreated and Helicobacter pylori-treated HepG2. *World J Gastroenterol* 2005; 11: 3485-3489 [PMID: 15948260 DOI: 10.3748/wjg.v11.i22.3485]

101 Ito K, Yamaoka Y, Yoffe B, Graham DY. Disturbance of apoptosis and DNA synthesis by Helicobacter pylori infection of hepatocytes. *Dig Dis Sci* 2008; 53: 2525-2540 [PMID: 18253829 DOI: 10.1007/s10620-007-0163-0]

102 Liu Y, Wang WM, Zou LY, Li L, Feng L, Pan MZ, Lv MY, Cao Y, Wang H, Kung HF, Pang JX, Fu WM, Zhang JF. Ubiquitin specific peptidase 5 mediates Histidine-rich protein Hpn induced cell apoptosis in hepatocellular carcinoma through P14-P53 signaling. *Proteomics* 2017; 17: 28523650 DOI: 10.1002/pmic.201606350

103 Ki MR, Goo MJ, Park JK, Hong IH, Ji AR, Han SY, You SY, Kim AE, Park SJ, Lee JJ, Kim SY, Jeong KS. Helicobacter pylori accelerates hepatic fibrosis by sensitizing transforming growth factor-β1-induced inflammatory signaling. *Lab Invest* 2010; 90: 1507-1516 [PMID: 20531291 DOI: 10.1038/lab.2010.109]

104 García A, Feng Y, Parry NM, McCabe A, Mobley MW, Lertpiriyapong K, Whary MT, Fox JG. Helicobacter pylori infection does not promote hepatocellular cancer in a transgenic mouse model of hepatitis C virus pathogenesis. *Gut Microbes* 2013; 4: 577-590 [PMID: 23929035 DOI: 10.4161/gmic.28462]
