Biological and Biochemical Characterization of Mice Expressing Prion Protein Devoid of the Octapeptide Repeat Region after Infection with Prions

Yoshitaka Yamaguchi1,2, Hironori Miyata3, Keiji Uchiyama1, Akira Ootsuyama4, Sachiko Inubushi1, Tsuyoshi Mori1, Naomi Muramatsu1, Shigeru Katamine2, Suehiro Sakaguchi1,2*

1 Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), The University of Tokushima, Tokushima, Japan, 2 Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan, 3 Animal Research Center, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan, 4 Department of Radiation Biology and Health, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan

Abstract

Accumulating lines of evidence indicate that the N-terminal domain of prion protein (PrP) is involved in prion susceptibility in mice. In this study, to investigate the role of the octapeptide repeat (OR) region alone in the N-terminal domain for the susceptibility and pathogenesis of prion disease, we intracerebrally inoculated RML scrapie prions into tg(PrPΔOR)/Prnp0/0 mice, which express mouse PrP missing only the OR region on the PrP-null background. Incubation times of these mice were not extended. Prion titers were abundant and astrogliosis was as strong as in control wild-type mice. Consistently, prion titers were slightly lower and astrogliosis was milder in their brains. However, in their spinal cords, PrPΔOR and prion titers were abundant and astrogliosis was as strong as in control wild-type mice. These results indicate that the role of the OR region in the brain is limited. We also found that the PrPΔOR, including the pre-OR residues 23–50, was unusually protease-resistant, indicating that deletion of the OR region could cause structural changes to the pre-OR region upon prion infection, leading to formation of a protease-resistant structure for the pre-OR region.

Introduction

Transmissible spongiform encephalopathies or prion diseases, which include Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy in animals, are neurodegenerative disorders caused by prions [1,2]. Prions consist mainly of the abnormally folded, protease K (PK)-resistant isoform of prion protein, designated PrPSc [3]. Structural conversion of the normal cellular isoform, designated PrPc, into PrPSc is a key event in prion propagation. Indeed, mice devoid of PrPSc (Prnp0/0) are resistant to the disease without PrPSc accumulation and prion propagation in the brain, even after inoculation with prions [4,5,6,7]. However, the exact conversion mechanism remains largely unknown.

PrPSc is a glycoprotein tethered to the outer cell membrane via a glycosylphosphatidylinositol anchor moiety and expressed most abundantly in the brain, particularly by neurons [8]. Reduction in susceptibility to RML scrapie prions was reported in Prnp0/0 as well as PrnpΔ23–88/mice, which express mouse (mo) PrP lacking residues 32–93 or 23–88 on the Prnp0/0 background, respectively [9,10]. The incubation times of these mice were accordingly extended [9,10]. The incubation times of experimental prion diseases in mice are usually inversely correlated to the expression level of PrPSc in the brain. Indeed, tgmPrPΔ/mice, which express mouse wild-type PrPSc in the brains at 8 fold higher levels than control wild-type mice, showed a shorter incubation time of 50±2 days post-inoculation (dpi) with RML prions, while the wild-type mice became sick at 127±1 dpi [10,11]. Tg(PrPΔ23–88)/Prnp0/0 mice were shown to express PrPΔ23–88 in their brains two fold higher than moPrPΔ in tgmPrPΔ/mice [10]. However, tgmPrPΔ23–88/Prnp0/0 mice developed the disease with a longer incubation time of 161±4 dpi than tgmPrPΔ/mice with 50±2 dpi [10]. Tg(PrPΔ32–93)/Prnp0/0 mice also developed the disease with longer incubation times of 232 to 313 dpi than control wild-type mice with 158±1 dpi, although tgmPrPΔ32–93/mice expressed PrPΔ32–93 in the brains 4 fold higher than PrPSc in the control mice [9]. These results indicate that the N-terminal residues of PrP affect susceptibility to RML prions in mice. It was also reported that the MHM2Δ23–88 molecule, a mouse–hamster chimeric PrP deletion mutant carrying hamster PrP-derived methionine residues at 108 and 111 substituted for leucine...
and valine residues in mouse PrPA23–88, completely failed to restore susceptibility to RML prions in PrP\(^{0/0}\) mice [10,11]. These results indicate that the chimeric region, corresponding to residues 108 through 111, also influences the susceptibility to RML prions in mice.

The so-called octapeptide repeat (OR) region, which comprises 5 copies of an octapeptide sequence, is located in the unstructured N-terminal domain of PrP. PrPA23–93 lacks the entire OR region (residues 51–90) and most of the OR region is missing in PrPA23–88. It is thus suggested that the OR region might be involved in the susceptibility to RML prions in mice. However, PrPA23–93 and PrPA23–88 lack not only the OR region but also other regions. Therefore, it still remains unclear whether the decreased susceptibility in tg[PrPA23–93]/PrP\(^{0/0}\) and tg[PrPA23–88]/PrP\(^{0/0}\) mice could be due to the deletion of the OR region either alone or together with other regions.

Unusual phenotypes were reported in infected tg[PrPA32–93]/PrP\(^{0/0}\) mice. PrP\(^{86-93}\)A32–93 was hardly detectable in the brains of terminally ill tg[PrPA32–93]/PrP\(^{0/0}\) mice [9]. Prion infectivity was accordingly reduced and disease-specific vacuolation and astroglia were undetectable in their brains [9]. However, in the spinal cord, prion infectivity and the pathological changes were similarly observed between tg[PrPA32–93]/PrP\(^{0/0}\) and control mice [9]. Infected tg[PrPA32–93]/PrP\(^{0/0}\) mice also displayed the unusual symptom of foreleg paresis [9]. In contrast, no such unusual phenotypes were detected in infected tg[PrPA23–88]/PrP\(^{0/0}\) mice. Residues 89–93 are missing in PrPA32–93, but not in PrPA23–88. Therefore, deletion of these residues might be involved in development of the unusual phenotypes, as observed in infected tg[PrPA32–93]/PrP\(^{0/0}\) mice. However, this possibility still remains to be clarified.

We previously established a tg mouse line, designated tg[PrPAO]/PrP\(^{0/0}\), which expresses mouse PrP with a deletion of the OR region alone on the PrP\(^{0/0}\) background [12]. In the present study, to investigate the role of the OR region alone in prion susceptibility and the pathogenesis of prion disease, we intracerebrally inoculated RML prions into tg[PrPAO]/PrP\(^{0/0}\) mice.

Materials and Methods

Ethics Statement

The Ethics Committee of Animal Care and Experimentation of University of Occupational and Environmental Health, Kitakyushu, Japan approved this study (approval number AE-080-13). Animals were cared for in accordance with The Guiding Principle for Animal Care and Experimentation of University of Occupational and Environmental Health and Japanese Law for Animal Welfare and Care.

Animals

C57BL/6 mice were purchased from CLEA Japan, Tokyo, Japan and ddY mice were from Kyudo, Tosu, Japan. ddY mice are outbred albino mice maintained in a closed colony. Tg[PrPAO]/PrP\(^{0/0}\) mice with the C57BL/6×129Sv×FVB mixed background were produced elsewhere [12]. In this study, tg[PrPAO]/PrP\(^{0/0}\) mice (C57BL/6×129Sv×FVB) were crossed at least more than twice with Zic1 PrP\(^{0/0}\) mice, which had been backcrossed to C57BL/6 mice more than 9 times.

Prion Inoculation

Brains were removed from terminally ill wild-type C57BL/6 mice infected with RML prions. A single brain was homogenized (10%, w/v) in phosphate-buffered saline (PBS) by passing it through 18 to 26 gauge needles and then diluted to 1% with PBS. Four to five week-old mice were intracerebrally inoculated with a 20 μl- aliquot of the homogenates.

Western Blotting

Tissue homogenates (10%, w/v) were prepared in lysis buffer containing 150 mM NaCl, 50 mM Tris-HCl (pH 7.5), 0.5% Triton X-100, 0.5% sodium deoxycholate, 1 mM EDTA, and protease inhibitor mixture (Nakalai Tesque Co., Kyoto, Japan) by passing them through 18 to 26 gauge needles and centrifugation at low speed to remove debris. Protein concentrations of the resulting supernatant were determined using the BCA protein assay kit (Pierce, Rockford, USA.). Total proteins treated with or without PK (Wako Pure Chemical Industries, Ltd., Osaka, Japan) at 20 μg/ml for 30 min at 37°C were electrophoresed through a 12% SDS-polyacrylamide gel and electrically transferred to an Immobilon-P PVDF membrane (Millipore Corp., MA, USA). The membrane was immersed in 5% non-fat dry milk-containing TBST (0.1% Tween-20, 100 mM NaCl, 10 mM Tris-HCl, pH 7.6) for 1 h at room temperature (RT), and incubated with SAF32 and SAF61 monoclonal antibodies (SPI-BIO, Montigny le Bretonneux, France), M20 goat polyclonal antibodies (Santa Cruz Biotechnology, Inc., Santa Cruz, CA), IBL-N rabbit polyclonal antibodies (Immuno Biological Laboratories, Gunma, Japan), 3F4 monoclonal antibody (Signet Laboratories Inc., Dedham, MA), anti-human glial fibrillary acidic protein (GFAP) IgG rabbit polyclonal antibodies (SHIMA Laboratories Co., LTD, Tokyo, Japan) or anti-β-actin monoclonal antibody (Sigma-Aldrich, Inc., St. Louis, MO) for 2 h at RT or overnight at 4°C in 1% non-fat dry milk-containing TBST. The membrane was washed in TBST for 15 min once and for 5 min three times. Signals were visualized using horseradish peroxidase (HRP)-conjugated anti-mouse IgG antibodies (Amersham Biosciences Inc., Piscataway, NJ), anti-rabbit IgG antibodies (Amersham Biosciences Inc.), and anti-goat IgG antibodies (CHEMICON International, Inc., Temecula, CA) and Immobilon™ Western Chemiluminescent HRP substrate (Millipore) and detected using a chemiluminescence image analyzer, LAS-4000 mini (Fujifilm Co., Tokyo, Japan).

Immunohistochemistry

Paraffin embedded samples were sectioned, deparaffinized, rehydrated and treated with L.A.B. Solution (Polysciences, Inc., U.S.A.) for 10 min. Nonspecific endogenous peroxidase activity was quenched by incubating the specimens with 3% H₂O₂ for 10 min and then the specimens were blocked with 5% normal rabbit serum for 10 min at RT. For detection of PrP\(^{86-93}\) or PrP\(^{86-93}\)AOR, the specimens were treated with formic acid for 1 min before the blocking step. The specimens were then incubated with 1/500 polyclonal rabbit anti-GFAP antibodies (DAKO Cytomation, Denmark) or 1/100 polyclonal rabbit IBL-N anti-PrP antibodies (Immuno Biological Laboratories) for 2 h at RT. After washing in PBS, the specimens were incubated with HRP-labeled polymer anti-rabbit (EnVision™ System, DAKO Cytomation, Denmark) for 1 h at RT, washed in PBS, and then visualized using the avidin-biotin complex method (Vector Labs, U.S.A.). The nuclei were counterstained with Mayer’s hematoxylin.

PNGase F Digestion

PNGase F digestion was performed according to the manufacturer’s protocol (New England Biolabs, Inc., Ipswich, MA). Briefly, the PK-treated homogenates were denatured by boiling for 10 min in the presence of 0.5% SDS and 1% mercaptoethanol.
and then treated with PNGase F (500 units/L) in 1% Nonidet P-40 and 0.05 M sodium phosphate (pH 7.5) for 60 min at 37°C.

Standard Curve and Prion Titer Determination

To create a standard curve between prion titers and incubation times, 10% (w/v) brain homogenate of RML-infected ddY mice were serially diluted 10-fold with PBS, ranging from 10⁻¹ to 10⁻⁸ in PBS, and a 20 µl-aliquot of each dilution was intracerebrally inoculated into ddY mice aged 4–5 weeks. The mice were observed until 1 year after inoculation. The ID₅₀/gram of the tissue was determined according to the method of Reed and Muench and then a standard curve was created. Prions titers (ID₅₀/gram) in tissues of interest were determined as follows: A 20 µl-aliquot of the tissue homogenate was intracerebrally inoculated into 5 or 6 ddY mice aged 4–5 weeks and their incubation times were determined. Thereafter, prion titers in the homogenates were calculated using the standard curve.

Expression Vectors

To construct an expression vector encoding mouse PrP tagged with the 3F4 epitope designated moPrP(3F4), the 5' fragment of mouse PrP cDNA was amplified by polymerase chain reaction (PCR) using a mouse PrP cDNA as a template with a BamHI-PrP(ATG)-S sense primer (Table S1) and a moPrP-3F4 anti-sense primer (Table S1). Then, full-length PrP cDNA was amplified by PCR using a mouse PrP cDNA as a template with the amplified 5' fragment as a sense primer and a PrP(stop)-XbaI-AS anti-sense primer (Table S1). After sequence confirmation, the amplified fragment was inserted into BamHI/ XbaI-digested pcDNA3.1(+) (Invitrogen, Carlsbad, CA), resulting in pcDNA3.1-moPrP(3F4).

To construct an expression vector encoding the 3F4-tagged mouse PrP with a deletion of residues 32–88, designated moPrP(3F4)Δ32–88, the 5' fragment of moPrP(3F4)Δ32–88 cDNA was amplified by PCR using pcDNA3.1-moPrP(3F4) as a template with a BamHI-PrP(ATG)-S sense primer and a PrP32–88 anti-sense primer (Table S1). Then, full-length moPrP(3F4)Δ32–88 cDNA was amplified by PCR using pcDNA3.1-moPrP(3F4) as a template with the amplified 5' fragment as a sense primer and a PrP(stop)-XbaI-AS anti-sense primer. After sequence confirmation, the amplified fragment was inserted into BamHI/ XbaI-digested pcDNA3.1(+) (Invitrogen, Carlsbad, CA), resulting in pcDNA3.1-moPrP(3F4)Δ32–88.

To construct expression vectors encoding moPrP(3F4)Δ32–88(3K3A), moPrP(3F4)Δ32–88(2P2A), and moPrP(3F4)Δ32–88(2P2G) and moPrP(3F4)Δ32–88(2P2W), the 5' fragment of the moPrP(3F4)Δ32–88 vector was amplified by PCR using a vector-derived T7 sense primer (Table S1) and an antisense primer (Table S1) of PrP(3K3A)-AS, PrP(K23A)-AS, PrP(K24A)-AS, PrP(K27A)-AS, PrP(K23/24A)-AS, PrP(K23/24/27A)-AS, PrP(K3S3R)-AS, PrP(2P2A)-AS, PrP(2P2G)-AS, or PrP(2P2W)-AS, respectively. The amplified fragments were then used as sense primers for amplification of full-length cDNAs encoding each mutant PrP with a vector-derived BGH reverse primer (Table S1) as an antisense primer using the moPrP(3F4)Δ32–88 vector as a template. After sequence confirmation, each amplified fragment was inserted into BamHI/ XbaI-digested pcDNA3.1(+) (Invitrogen).

Transfection

Mouse neuroblastoma N2a cells persistently infected with 22L prions, designated N2aC24L1-3 [13], were transiently transfected with expression vectors using Lipofectamine 2000 reagent (Invitrogen). The cells were lysed in a buffer (150 mM NaCl, 0.5% Triton X-100, 0.5% sodium deoxycholate, 50 mM Tris-HCl, pH 7.5) 2 days after transfection and subjected to Western blotting.

Statistical Analysis

Log-rank test was used for analysis of the incubation times of infected mice.

Results

Incubation Times and Foreleg Paresis in tg(PrPΔOR)/Pmp⁺/⁻ Mice after Infection with RML Prions

We intracerebrally inoculated RML prions into tg(PrPΔOR)/Pmp⁺/⁻ mice and control C57BL/6 wild-type mice. Uninfected tg(PrPΔOR)/Pmp⁺/⁻ mice remained healthy for more than 500 days. Wild-type mice developed disease-specific symptoms, such as weight loss, decreased locomotive activity, ruffled hair coat and hunched back, at 165 ± 4 days post-inoculation (dpi) (Table 1). Tg(PrPΔOR)/Pmp⁺/⁻ mice succumbed to the disease with slightly shorter incubation times of 147 ± 9 dpi (Table 1). This is probably due to higher expression of PrPΔOR in the brains of tg(PrPΔOR)/Pmp⁺/⁻ mice than in that of PrPΔ in wild-type mice. PrPΔOR was detected in the brain and spinal cord about 2–3 fold more than PrPΔ in wild-type mice on Western blotting using SAF61 anti-PrP antibodies, which recognize residues 142–160 (human PrP numbering) (Fig. 1). Lack of the OR region in PrPΔOR was confirmed by Western blotting using SAF32 anti-OR region antibody (Fig. 1). Tg(PrPΔOR)/Pmp⁺/⁻ mice also displayed the additional unusual symptom of foreleg paresis at early stages of the disease.

Astrogliosis in tg(PrPΔOR)/Pmp⁺/⁻ Mice Infected with RML Prions

We investigated brain and cervical cord sections from terminally ill tg(PrPΔOR)/Pmp⁺/⁻ and wild-type mice for astrogliosis, a pathological hallmark of prion diseases, by immunohistochemical analysis using anti-GFAP antibodies. Astrogliosis was stronger in the brain and cervical cord sections from infected tg(PrPΔOR)/Pmp⁺/⁻ and wild-type mice, compared to that in uninfected tg(PrPΔOR)/Pmp⁺/⁻ and wild-type mice (Fig. 2, A and B). However, brain astrogliosis in infected tg(PrPΔOR)/Pmp⁺/⁻ mice was slightly milder than in infected wild-type mice (Fig. 2A). In contrast, in the cervical cord sections, astrogliosis was as strong in infected tg(PrPΔOR)/Pmp⁺/⁻ mice, as in infected wild-type mice (Fig. 2B). Western blotting showed consistent results. Compared to the GFAP expression in infected wild-type mice, it was mildly decreased in the brains of infected tg(PrPΔOR)/Pmp⁺/⁻ mice, but not in their spinal cords (Fig. 2, C and D). We also investigated the brain sections of terminally ill tg(PrPΔOR)/Pmp⁺/⁻ mice, but not in their spinal cords (Fig. 2, C and D). Western blotting showed consistent results. Compared to the GFAP expression in infected wild-type mice, it was mildly decreased in the brains of infected tg(PrPΔOR)/Pmp⁺/⁻ mice, but not in their spinal cords (Fig. 2C). We also investigated the brain sections of terminally ill tg(PrPΔOR)/Pmp⁺/⁻ mice, but not in their spinal cords (Fig. 2C). We also investigated the brain sections of terminally ill tg(PrPΔOR)/Pmp⁺/⁻ mice, but not in their spinal cords (Fig. 2C). We also investigated the brain sections of terminally ill tg(PrPΔOR)/Pmp⁺/⁻ mice, but not in their spinal cords (Fig. 2C).
PK-resistant PrP, or PrP$^{\text{Sc}}$ΔOR, in tg(PrPΔOR)/Prnp0/0 Mice Infected with RML Prions

We investigated the brains and spinal cords of terminally ill tg(PrPΔOR)/Prnp0/0 mice and wild-type mice for PK-resistant isoforms, PrP$^{\text{Sc}}$ΔOR and wild-type PrP$^{\text{Sc}}$, respectively, using Western blotting with SAF61 antibodies. PrP$^{\text{Sc}}$ΔOR was easily detectable in the brains and spinal cords of two individual tg(PrPΔOR)/Prnp0/0 mice (Fig. 3, A and B). However, compared to wild-type PrP$^{\text{Sc}}$ in infected wild-type mice, a reduced amount of PrP$^{\text{Sc}}$ΔOR was detected in the brains of infected tg(PrPΔOR)/Prnp0/0 mice (Fig. 3A). Western blotting of the brains showed that total PrPs were more abundant in infected wild-type mice than in infected tg(PrPΔOR)/Prnp0/0 mice (Fig. 3A), despite PrPΔOR being expressed in the brains of uninfected tg(PrPΔOR)/Prnp0/0 mice more than PrP$^{\text{Sc}}$ in uninfected wild-type mice (Fig. 1A). This is probably due to different amounts of wild-type PrP$^{\text{Sc}}$ and PrP$^{\text{Sc}}$ΔOR accumulating in the brains. In the spinal cords, the amount of PrP$^{\text{Sc}}$ΔOR in infected tg(PrPΔOR)/Prnp0/0 mice was similar to that of wild-type PrP$^{\text{Sc}}$ in infected wild-type mice (Fig. 3B).

Prion Propagation in tg(PrPΔOR)/Prnp0/0 Mice Infected with RML Prions

We also determined prion titers (LD$_{50}$/gram of tissue) in the brains and spinal cords of terminally ill tg(PrPΔOR)/Prnp0/0 and wild-type mice. To do this, we first created a standard curve between prion titers and incubation times by intracerebral inoculation of serially diluted brain homogenates of RML prion-affected mice into indicator mice. Table 1 lists the prion titers and incubation times of the indicator mice. The mortalities and incubation times of the indicator mice are shown in Table 2. According to the method of Reed and Muench [14], prion titers of the homogenates were calculated as 10$^{3.5}$ LD$_{50}$/g. The standard curve was given by Log$_{10}$LD$_{50}$/g = 14.08−0.05X, where X is incubation time (days), 131<X<215. We thereafter intracerebrally inoculated the homogenates of 2 pooled brains and 2 pooled spinal cords from the terminally ill wild-type and tg(PrPΔOR)/Prnp0/0 mice into indicator mice. The brain and spinal cord used were from the same mouse. The inoculation of wild-type brain homogenate caused the disease in indicator mice at 112±1 dpi, whereas prion titers in the homogenate were calculated as 7.5 Log(LD$_{50}$/g) (Table 3). However, after inoculation with tg(PrPΔOR)/Prnp0/0 brain homogenate, the indicator mice succumbed to the disease with significantly longer incubation times of 150±8 dpi (Log-rank test, $p = 0.0455$), indicating that prion titers in the brains of terminally ill tg(PrPΔOR)/Prnp0/0 mice were 6.7 Log(LD$_{50}$/g) (Table 2). In contrast, in the spinal cords of infected tg(PrPΔOR)/Prnp0/0 mice, prion titers were not reduced (Table 3). The spinal cord homogenates from terminally ill wild-type and tg(PrPΔOR)/Prnp0/0 mice rendered the indicator mice ill at 159±2 and 142±3 dpi (Log-rank test, $p = 0.3321$), with prion titers in the homogenates being calculated as 6.3 and 7.0 Log(LD$_{50}$/g), respectively (Table 3).

The Pre-OR Region is Unusually PK-resistant in PrP$^{\text{Sc}}$ΔOR

We recognized that the PK-resistant fragments of PrP$^{\text{Sc}}$ΔOR in the brains and spinal cords appeared to migrate slightly slower than those of wild-type PrP$^{\text{Sc}}$ on Western blotting (Fig. 3, A and B). This suggests that the PK-resistant core of PrP$^{\text{Sc}}$ΔOR is higher in molecular weight than that of wild-type PrP$^{\text{Sc}}$. To confirm this, we treated the PK-digested brain homogenates from terminally ill tg(PrPΔOR)/Prnp0/0 and wild-type mice with PNGase F before subjecting them to Western blotting. The molecular size of the deglycosylated PK-resistant fragment of PrP$^{\text{Sc}}$ΔOR in infected tg(PrPΔOR)/Prnp0/0 was clearly higher than that of wild-type PrP$^{\text{Sc}}$ (Fig. 4A). We also performed Western blotting of the brain homogenates with IBL-N antibodies raised against the N-
Terminal residues 24–37 of PrP. The antibody reacted with the PK-resistant fragments from PrPScΔOR but not from wild-type PrPSc (Fig. 4B). We detected no PK-resistant fragments with molecular size >2 kDa in the brains of terminally ill wild-type mice on Western blotting using IBL-N antibodies (data not shown). Taken together, these results suggest that the entire PrPScΔOR, including the pre-OR residues is PK-resistant, while only the C-terminal part is PK-resistant in wild-type PrPSc.

Deletion of OR Residues 51–88 Renders the Pre-OR Residues PK-resistant in Prion-infected N2a Cells

Since PrPΔ32–93 in tg(PrPΔ32–93)/Prnp0/0 mice lacks the entire OR region [9], we asked whether or not the remaining pre-OR residues could become PK-resistant upon conversion. In addition, since PrPΔ23–88 in tg(PrPΔ23–88)/Prnp0/0 mice has 2 residues intact in the OR region [10], we also asked whether the 2 remaining OR residues in PrPΔ23–88 could potentially block the

Figure 2. Astroglisis in the brains and cervical cords of tg(PrPΔOR)/Prnp0/0 mice infected with RML prions. The cerebral cortices (A) and cervical cords (B) of uninfected or terminally ill wild-type and tg(PrPΔOR)/Prnp0/0 mice were immunohistochemically stained with anti-GFAP antibodies. The signals were milder in the brains of terminally ill tg(PrPΔOR)/Prnp0/0 mice, compared to those in control wild-type mice. No decrease in the signals was observed in the cervical cords of terminally ill tg(PrPΔOR)/Prnp0/0 mice. Immunoblots of the homogenates of brains (C) and spinal cords (D) of uninfected and terminally ill wild-type and tg(PrPΔOR)/Prnp0/0 mice using anti-GFAP antibodies are shown. Terminally ill tg(PrPΔOR)/Prnp0/0 mice expressed GFAP in their brains less than control wild-type mice. No reduction in the GFAP expression was detected in the spinal cords of terminally ill tg(PrPΔOR)/Prnp0/0 mice.

doi:10.1371/journal.pone.0043540.g002
Figure 3. PK-resistant PrP accumulated in the brains and spinal cords of terminally ill tg(PrPΔOR)/Prnp^{0/0} mice. Immunoblots of the two PK-treated individual brains (A) and spinal cords (B) from terminally ill wild-type and tg(PrPΔOR)/Prnp^{0/0} mice using SAF61 anti-PrP antibodies. doi:10.1371/journal.pone.0043540.g003

Table 2. Incidence rate and incubation times in wild-type ddY indicator mice inoculated with serial 10-fold dilutions of RML prions.

Dilution of inoculum (log₁₀ dilution)	Incidence rate (Symptomatic mice/Total mice)	Incubation times (Mean± SD, days)
−1	6/6	131±3
−2	6/6	158±3
−3	6/6	177±6
−4	6/6	190±6
−5	6/6	215±33
−6	2/6	243, 285
−7	1/6	229
−8	0/6	
−9	0/6	
−10	0/6	

doi:10.1371/journal.pone.0043540.t002
pre-OR residues from becoming PK-resistant upon conversion. To address these questions, we constructed expression vectors encoding the 3F4-tagged mouse PrP with or without a deletion of residues 32–88, designated moPrP(3F4) and moPrP(3F4) Δ32–88, respectively (Fig. 5A), and transiently transfected them into 22L prion-infected N2a cells, designated N2aC24L1-3 cells. Using 3F4 anti-PrP antibodies, moPrP(3F4) and moPrP(3F4) Δ32–88 can be distinguished from the endogenously expressed moPrP in N2a cells. The 3F4 antibody displayed strong signals on Western blotting. The OR region of moPrP(3F4) Sc was single (Fig. 5B). However, they around 20 kDa while that of moPrP(3F4) Sc in moPrP(3F4) was 17–18 kDa (Fig. 5, B and C). This is probably because the deletion in moPrP(3F4) Δ32–88 can be distinguished from the endogenously expressed moPrP in N2a cells. The 3F4 antibody displayed strong signals on Western blotting (compare Fig. 4, A and B to Fig. 5, A and B). The proline residues in moPrP(3F4) Sc were deleted (Fig. 5B). Each band of non-glycosylated and monoglycosylated moPrP(3F4) Sc was single (Fig. 5B). However, they were doublet in moPrP(3F4) Sc Δ32–88 (Fig. 5B), suggesting that each upper band of non-glycosylated and mono-glycosylated signals could be moPrP(3F4) Sc Δ32–88 with the PK-resistant pre-OR region. Indeed, IBL-N antibodies reacted only with the PK-resistant fragment from moPrP(3F4) Sc Δ32–88, but not from moPrP(3F4) Sc Δ32–88 (Fig. 5C). The non-glycosylated band of moPrP(3F4) Sc Δ32–88 seemed smaller in molecular size to that of PrP Sc ΔOR on Western blotting (compare Fig. 4, A and B to Fig. 5, A and B). The non-glycosylated band of PrP Sc ΔOR was detected around 20 kDa while that of moPrP(3F4) Sc Δ32–88 was around 17–18 kDa (Fig. 5, B and C). This is probably because the deletion in moPrP(3F4) Sc Δ32–88 is larger than in PrP Sc ΔOR. Taken together, these results clearly indicate that the entire pre-OR region of some moPrP(3F4) Sc Δ32–88 molecules are PK-resistant, and that the remaining 2 OR residues have no potential to block the pre-OR residues from becoming PK-resistant.

Lysine Residues Are Important for the Pre-OR Residues of moPrP(3F4) Δ32–88 to form a PK-resistant Structure upon Conversion in Prion-infected N2a Cells

The pre-OR residues 23–31 include a very conserved positively charged region consisting of 3 lysine residues and 2 proline residues (Fig. 6A). To gain insights into the mechanism for the pre-OR residues 23–31 to be converted into a PK-resistant structure, we also constructed expression vectors encoding moPrP(3F4) Δ32–88 with a substitution of all the lysine residues or all the proline residues by alanine residues, designated moPrP(3F4) Δ32–88(3K3A) and moPrP(3F4) Δ32–88(2P2A), respectively (Fig. 6A). Western blotting with 3F4 anti-PrP antibodies revealed that both mutant proteins were converted into PK-resistant isoforms in N2aC24L1-3 cells (Fig. 6B). Non-glycosylated and mono-glycosylated bands of moPrP(3F4) ScΔ32–88(2P2A) and moPrP(3F4) ScΔ32–88(3K3A) were doublet (Fig. 6B). However, the upper band of the doublet was different in molecular size between moPrP(3F4) ScΔ32–88(2P2A) and moPrP(3F4) ScΔ32–88(3K3A). MoPrP(3F4) ScΔ32–88(2P2A) gave rise to the upper band with similar molecular size to that of moPrP(3F4) ScΔ32–88 (Fig. 6B). In contrast, the upper band of moPrP(3F4) ScΔ32–88(3K3A) was reduced in its molecular size and migrated very closely to the lower band (Fig. 6B). The upper band of the doublet is indicative of the PK-resistant PrP molecule with the PK-resistant pre-OR residues. Thus, these results indicate that, while the pre-OR residues 23–31 are PK-resistant in moPrP(3F4) ScΔ32–88(2P2A), most of them are PK-sensitive in moPrP(3F4) ScΔ32–88(3K3A), suggesting that the lysine residues play an important role for the pre-OR region of moPrP(3F4) ScΔ32–88 to become PK-resistant in N2aC24L1-3 cells. The substitution disrupted the IBL-N epitope, resulting in loss of the immunoreactivities with IBL-N antibodies (Fig. 6C). Therefore, IBL-N antibodies were not available to detect the PK-resistant pre-OR region of moPrP(3F4) ScΔ32–88(3K3A) and moPrP(3F4) ScΔ32–88(2P2A) (Fig. 6C).

The proline residues in moPrP(3F4) ScΔ32–88 were further substituted for tryptophan or glycine residues in moPrP(3F4) ScΔ32–88(2P2W) and moPrP(3F4) ScΔ32–88(2P2G), respectively (Fig. 7A). Western blotting with 3F4 antibodies showed that these mutant proteins were converted into PK-resistant isoforms, moPrP(3F4) ScΔ32–88(2W2G), and moPrP(3F4) ScΔ32–88(2P2G), in N2aC24L1-3 cells (Fig. 7B). These PK-resistant isoforms gave rise to doublet non-glycosylated and mono-glycosylated bands that were very similar to those of moPrP(3F4) ScΔ32–88 (Fig. 7B), further indicating that the proline residues are not essential for the pre-OR region to form a PK-resistant structure in N2aC24L1-3 cells. IBL-N antibodies failed to detect these mutant proteins on Western blotting since the substitutions disrupted the IBL-N epitope (Fig. 7C).

Positively Charged Lysine Residues, Particularly those Located at Codons 24 and 27, Are Important for the Pre-OR Residues in Prion-infected N2a Cells

To gain insights into the role of the lysine residues for the pre-OR residues 23–31 to form a PK-resistant structure, one or two of the lysine residues were changed into alanine residues in moPrP(3F4) ScΔ32–88(K23,24A), moPrP(3F4) ScΔ32–88(K24,27A), moPrP(3F4) ScΔ32–88(K23,24A), and moPrP(3F4) ScΔ32–88(K23,27A) (Fig. 8A). Western blotting with 3F4 antibodies showed that all the mutant proteins were converted into PK-resistant isoforms in N2aC24L1-3 cells, and that all the mutant isoforms gave rise to doublet non-glycosylated and mono-glycosylated bands (Fig. 8B). MoPrP(3F4) ScΔ32–88(K23A),

Table 3. Prion titers in the brains and spinal cords of terminally ill tg(PrPΔOR)/Prnp0/0 and wild-type mice inoculated with RML prions.

Inoculum	Donor mouse line	Incubation times (mean ± SD, days) in indicator mice	Log-rank test p value	Incidence rate in indicator mice (Symptomatic/Total)	Prion titers (Log10/gram of tissue)
Brains (2 pooled)	Wild-type	112±1	6/6	>7.5	
Spinal cords (2 pooled)	Wild-type	150±8	0.046	6/6	6.6
Spinal cords (2 pooled)	Tg(PrPΔOR)/Prnp0/0	159±8	5/5	6.3	
Brains (2 pooled)	Tg(PrPΔOR)/Prnp0/0	142±13	0.332	6/6	7.0

doi: 10.1371/journal.pone.0043540.t003

Prion-Infected Mice with PrP Devoid of the OR

Inoculum	Donor mouse line	Incubation times (mean ± SD, days) in indicator mice	Log-rank test p value	Incidence rate in indicator mice (Symptomatic/Total)	Prion titers (Log10/gram of tissue)
Brains (2 pooled)	Wild-type	112±1	6/6	>7.5	
Spinal cords (2 pooled)	Wild-type	150±8	0.046	6/6	6.6
Spinal cords (2 pooled)	Tg(PrPΔOR)/Prnp0/0	159±8	5/5	6.3	
Brains (2 pooled)	Tg(PrPΔOR)/Prnp0/0	142±13	0.332	6/6	7.0
of the doublet from moPrP(3F4)Δ32–88(K24,27A) was reduced in its molecular size and migrated very closely to the lower band (Fig. 8B). MoPrP(3F4)Δ32–88(K23,24A) and moPrP(3F4)Δ32–88(K23,27A) showed the upper band with an intermediate molecular size (Fig. 8B). These results suggest that the number and position of the lysine residues might be important for the pre-OR region of moPrP(3F4) Δ32–88 to become PK-resistant in N2aC24L1-3 cells. In particular, the substitution of two lysine residues located at codons 24 and 27 affected the ability of the pre-OR region in moPrP(3F4) Δ32–88 to form a PK-resistant structure in N2aC24L1-3 cells as strongly as the substitution of all of the three lysine residues did. IBL-N antibodies recognized the upper band of the doublets from all the mutant isoforms except for moPrP(3F4)Δ32–88(K24,27A), probably because the IBL-N epitope was disrupted in moPrP(3F4) Δ32–88(K24,27A), as in moPrP(3F4) Δ32–88(3K3A) (Fig. 8C).

We also replaced all of the lysine residues with positively charged arginine residues in moPrP(3F4) Δ32–88(3K3R) (Fig. 8A). This mutant protein was converted into moPrP(3F4)Δ32–88(3K3R) in N2aC24L1-3 cells and the isoform gave rise to doublet non-glycosylated and mono-glycosylated bands with similar molecular size to those of moPrP(3F4)Δ32–88 with the PK-resistant pre-OR residues (Fig. 8B). The upper band of the doublet was weakly detected by IBL-N antibodies (Fig. 8C). These results indicate that positive charges might play an important role for the pre-OR region of moPrP(3F4) Δ32–88 to become PK-resistant in N2aC24L1-3 cells.

Discussion

Lines of evidence indicate that the N-terminal region of PrP is involved in the susceptibility of mice to prions. Tg(PrPΔPA32–93)/Prnp0/0 and tg(PrPΔPA23–88)/Prnp0/0 mice, which lack the N-terminal residues 32–93 or 23–88, respectively, developed the disease with markedly elongated incubation times after infection with RML prions [9,10]. Moreover, Prnp0/0 mice expressing PrP with further deletion in the N-terminal domain up to residue 106 from residue 32, or PrPAΔ32–106, were free of the disease even after inoculation with RML prions [15]. In contrast, no extended incubation times were observed in tg(PrPΔPA32–80)/Prnp0/0 mice infected with RML prions [16]. PrPAΔ32–93 and PrPAΔ32–88 lack all or most of the OR region, respectively. However, PrPAΔ32–80 still contains one intact octapeptide sequence in the OR region. This suggested that lack of the OR region from PrP could result in the decreased susceptibility to RML prions in the mice. However, in the present study, we observed no extended incubation times in tg(PrPΔPAOΔ)/Prnp0/0 mice, which express PrP lacking only the OR region, after infection with RML prions. The expression level of PrPAOΔ in the brain was lower than the reported level of PrPAΔ32–93 or PrPAΔ23–88 [9,10]. Taken together, these results indicate that, although deletion of the OR region alone from PrP barely affects the susceptibility to RML prions, a large deletion including the OR region in the N-terminal domain could result in remarkable reduction in the susceptibility of mice to RML prions.

We observed different pathogenesis between the brains and spinal cords of terminally ill tg(PrPΔPAOΔ)/Prnp0/0 mice. PrPΔΔOR and prion infectivity in the brains were lower than those in control wild-type mice. Astroglisis in the brains was also milder than that in control wild-type mice. However, in the spinal cords, PrPΔΔOR, prion infectivity and astroglisis were observed similarly to control wild-type mice. These results clearly indicate that, while the OR region is not essential for conversion; its deletion affects conversion taking place in the brain. Moreover, infected tg(PrPΔPAOΔ)/Prnp0/0 mice developed an unusual symp-
tom of foreleg paresis, indicating that deletion of the OR region also modifies clinical signs. These unusual phenotypes were also reported in infected tg(PrP^D32–93)/Prnp^{0/0} mice. This indicates that lack of the OR region from PrP induces such unusual phenotypes in mice after infection with RML prions, as observed in infected tg(PrP^DOR)/Prnp^{0/0} and tg(PrP^{ΔOR})/Prnp^{0/0} mice. However, compared to the levels of PrP^{OR} and prion infectivity in the brains of tg(PrP^DOR)/Prnp^{0/0} mice, the reported

Figure 5. PK-resistant pre-OR residues 23–31 of PrP^{Sc}Δ32–88 generated in prion-infected N2a cells. (A) Schematic diagrams of moPrP^{3F4} and moPrP^{3F4}Δ32–88. Arabic numbers represent the codon numbers. SP, signal peptide; OR, octapeptide repeat; GPI, GPI anchor signal; α, α-helix; β, β-strand. (B, C) Western blotting of N2aC24L1-3 cells transfected with control pcDNA3.1(+), pcDNA3.1-moPrP(3F4), and pcDNA3.1-moPrP^{3F4}Δ32–88 using 3F4 (B) or IBL-N anti-PrP antibodies (C). The cell lysates were treated with PK at 5 µg/ml and then subjected to Western blotting. Both moPrP^{3F4} and moPrP^{3F4}Δ32–88 were converted to the PK-resistant isoforms, moPrP^{Sc}Δ32–88 and moPrP^{Sc}Δ32–88, respectively. However, IBL-N anti-PrP antibody reacted only with the PK-resistant fragments of moPrP^{Sc}Δ32–88.

doi:10.1371/journal.pone.0043540.g005

PLOS ONE | www.plosone.org 9 August 2012 | Volume 7 | Issue 8 | e43540
levels of PrPΔ32-93 and prion infectivity are lower in

tg(PrPΔ32-93)/Pnp0/0 mice [9]. Astrogliosis was easily
detectable in the brains of tg(PrPΔOR)/Pnp0/0 mice, but
undetectable in
tg(PrPΔ32-93)/Pnp0/0 mice [9]. The foreleg paresis was
developed at early stages in
tg(PrPΔOR)/Pnp0/0 mice, but only at late stages in
tg(PrPΔ32-93)/Pnp0/0 mice [9]. These results

Figure 6. Lysine residues are important for the pre-OR residues 23–31 to form a PK-resistant structure in prion-infected N2a cells.

(A) Amino acid sequences of the pre-OR residues 23–31 in moPrP(3F4)Δ32–88, moPrP(3F4)Δ32–88(3K3A) and moPrP(3F4)Δ32–88(2P2A). Bold residues indicate substituted alanine residues. (B) Western blotting of N2aC24L1-3 cells transfected with control pcDNA3.1(+) and expression vectors encoding moPrP(3F4), moPrP(3F4)Δ32–88, moPrP(3F4)Δ32–88(3K3A) and moPrP(3F4)Δ32–88(2P2A) using 3F4 anti-PrP antibodies. The cell lysates were treated with PK at 5 μg/ml. All mutant proteins were converted into PK-resistant isoforms in N2aC24L1-3 cells. The PK treatment revealed doublet non-glycosylated and mono-glycosylated bands in moPrP(3F4)Δ32–88 (arrows), indicating that the pre-OR region of some moPrP(3F4)Δ32–88 molecules is PK-resistant. Similar doublet bands were observed in moPrP(3F4)Δ32–88(2P2A) (arrows). However, moPrP(3F4)Δ32–88(3K3A) gave rise to doublet bands with the upper band migrating very closely to the lower band (arrowheads). (C) Since substitution of proline residues into alanine residues disrupted the IBL-N epitope, the PK-resistant pre-OR residues in moPrP(3F4)Δ32–88(2P2A) failed to be visualized by IBL-N anti-PrP antibodies.

doi:10.1371/journal.pone.0043540.g006
suggest that the effects of deletion of the OR region alone on conversion are limited, compared to those of deletion of residues 32–93 including the OR region. Therefore, the levels of PK-resistant PrP and prion infectivity were higher in the brains of tg(PrPD OR)/\textit{Prnp}0/0 mice than in tg(PrPD 32–93)/\textit{Prnp}0/0 mice. Consequently, astroglial glosis was detectable in tg(PrPD OR)/\textit{Prnp}0/0 mice but not in tg(PrPA32–93)/\textit{Prnp}0/0 mice. The onset of foreleg paresis could be associated with the amounts of PrP\textsuperscript{\textit{D \textit{OR}}} or PrP\textsuperscript{\textit{A32–93}} in the brain or in the spinal cord. However, the exact mechanism underlying the foreleg paresis remains unknown.

Figure 7. The pre-OR residues 23–31 with a substitution of the proline residues by tryptophan or glycine residues form a PK-resistant structure in prion-infected N2a cells. (A) Amino acid sequences of the pre-OR residues 23–31 in mutant proteins. Bold residues indicate substituted residues. (B) Western blotting of N2aC24L1-3 cells transfected with control pcDNA3.1(+) and expression vectors encoding each mutant protein using 3F4 anti-PrP antibodies. The cell lysates were treated with PK at 5 μg/ml. All of the mutant proteins were converted into PK-resistant isoforms in N2aC24L1-3 cells, and all of the mutant isoforms, moPrP(3F4)32–88(2P2A), moPrP(3F4)32–88(2P2W) and moPrP(3F4)32–88(2P2G) gave rise to similar doublet non-glycosylated and mono-glycosylated bands. (C) Since substitution of proline residues into alanine, tryptophan or glycine residues disrupted the IBL-N epitope, the PK-resistant pre-OR residues in these mutant proteins failed to be visualized by IBL-N anti-PrP antibodies. doi:10.1371/journal.pone.0043540.g007

A

\[
\begin{align*}
\text{moPrP(3F4)A32-88} & \quad 23 \ldots 31 \quad \text{KKRPKP} \ldots \\
\text{moPrP(3F4)A32-88(2P2A)} & \quad \text{KKRAKAG} \ldots \\
\text{moPrP(3F4)A32-88(2P2W)} & \quad \text{KKRKWWG} \ldots \\
\text{moPrP(3F4)A32-88(2P2G)} & \quad \text{KKRGKGG} \ldots
\end{align*}
\]
A

moPrP(3F4)Δ32-88 23............ 31
moPrP(3F4)Δ32-88(3K3A) KKRPKPGW......
moPrP(3F4)Δ32-88(K23A) AARPAWG.........
moPrP(3F4)Δ32-88(K24A) AKRPKPGW......
moPrP(3F4)Δ32-88(K27A) KKRPAWG......
moPrP(3F4)Δ32-88(K23,24A) AARPKPGW......
moPrP(3F4)Δ32-88(K23,27A) AKRPAWG......
moPrP(3F4)Δ32-88(K24,27A) KRPAPWG......
moPrP(3F4)Δ32-88(3K3R) RRPRPAPG......

B

C

(kDa)

PBS

PK(-)

3F4

IBL-N

(kDa)

PBS

PK(-)

PBS

PK(+)

IBL-N
Upon the conversion of PrPSc into PrPSc, only the 2/3 C-terminal part of PrPSc undergoes profound conformational changes to form the PK-resistant core of PrPSc [1]. In contrast, the N-terminal part of PrPSc remains PK-sensitive [1]. Consistent with this, we failed to detect any PK-resistant fragments with molecular size >2 kDa in the brains of terminally ill wild-type mice on Western blotting with IBL-N anti-N-terminus antibodies (data not shown). However, we found here that the entire PrPScΔOR, including the pre-OR residues 23–30, appeared unusually PK-resistant. No data were available whether the pre-OR region of PrPScΔ2–93 was PK-resistant [9]. However, it is very likely that the region could be PK-resistant in PrPScΔ32–93 because the OR region was completely deleted in PrPΔ32–93. Indeed, we found that the entire PrPA32–93, including the pre-OR residues 23–31, was converted to be PK-resistant in infected N2a cells. These results indicate that the pre-OR region has a potential to undergo conformational changes to become PK-resistant upon conversion, and that the OR region usually prevents the pre-OR region from undergoing such conformational changes. We also showed that the conversion activity of the pre-OR region in PrPΔ32–93 was diminished by substitution of either all of the positively charged lysine residues or of lysine residues 24 and 27 with uncharged alanine residues, but not affected by a substitution of all the lysine residues with positively charged arginine residues. These results suggest that the positive charge at 24 and 27 residues might be important for the pre-OR region to form a PK-resistant structure when the OR region is deleted. Deletion of the authentic PK-accessible pre-OR region in PrPScΔ32–93 does not, however, result in PK-resistant core of PrPSc [1]. Since changes in the protein conformation would cause changes in PK-accessibility, PrPScs with different PK cleavage sites [21,22]. Since changes in the protein conformation would cause changes in PK-accessibility, PrPScs with different PK cleavage sites [23]. However, inoculation of the brain or spinal cord homogenates from terminally ill tg[PrPAOR]/PnpA0/0 mice did not induce such unusual phenotypes in wild-type mice (data not shown). Moreover, tg[PrPAΔ32–88]/PnpA0/0 mice were reported to show no such unusual phenotypes despite PrPAΔ32–88 lacking most of the OR region [10]. These results suggest the unlikelihood of this possibility. Another possibility is that the overexpression of PrPAOR or PrPA32–93 in the spinal cords might cause high accumulation of PrPScΔOR in the spinal cords, resulting in development of the unusual phenotypes in these infected mice. However, PrPScΔOR was accumulated in the spinal cords of infected mice with a similar level to that of wild-type PrPSc in infected wild-type mice. Moreover, no foreleg paresis was reported in infected mice with PrPΔ32–93/PnpA0/0 and tgmPrP/PnpA0/0 mice [10]. Tg[PrPA52–93] and tgmPrP mice were generated using the same cos.HaTet expression vector system as in tgmPrPAOR mice [10,12], indicating that, similarly to PrPAOR in tg[PrPAOR]/PnpA0/0 mice, PrPA52–93 and tgmPrP are overexpressed in the brains and spinal cords of these mice. Therefore, this possibility is also unlikely. Alternatively, the unusual phenotypes in infected mice with PrPScΔOR and PrPScΔ32–93 might be associated with the unusual phenotypes in tgmPrPAOR mice [10,12] and in tgmPrP mice, which are caused by deletion of the OR region, but not due to direct effects of deletion of the OR region. PrPAOR and PrPA32–93 include the pre-OR residues 23–31 intact, whereas PrPΔ32–93 does not, suggesting that the pre-OR residues in PrPScΔOR and PrPScΔ32–93 might be associated with the unusual phenotypes in tgmPrPAOR mice [10,12]. The binding of PrP to proteoglycans is important for the binding affinity to a yet unidentified proteoglycan(s) important for conversion in the brain, resulting in disturbance of conversion in the brain. These results suggest that the overexpression of PrPAOR or PrPA32–93 in the spinal cords might cause high accumulation of PrPScΔOR in the spinal cords, resulting in unusual phenotypes in these infected mice. However, PrPScΔOR was accumulated in the spinal cords of infected mice with a similar level to that of wild-type PrPSc in infected wild-type mice. Moreover, no foreleg paresis was reported in infected mice with PrPΔ32–93/PnpA0/0 and tgmPrP/PnpA0/0 mice [10]. Tg[PrPA52–93] and tgmPrP mice were generated using the same cos.HaTet expression vector system as in tgmPrPAOR mice [10,12], indicating that, similarly to PrPAOR in tg[PrPAOR]/PnpA0/0 mice, PrPA52–93 and tgmPrP are overexpressed in the brains and spinal cords of these mice. Therefore, this possibility is also unlikely. Alternatively, the unusual phenotypes in infected mice with PrPScΔOR and PrPScΔ32–93 might be associated with the unusual phenotypes in tgmPrPAOR mice [10,12] and in tgmPrP mice, which are caused by deletion of the OR region, but not due to direct effects of deletion of the OR region. PrPAOR and PrPA32–93 include the pre-OR residues 23–31 intact, whereas PrPΔ32–93 does not, suggesting that the pre-OR residues in PrPScΔOR and PrPScΔ32–93 might be associated with the unusual phenotypes in tgmPrPAOR mice [10,12]. The binding of PrP to proteoglycans is important for the binding affinity to a yet unidentified proteoglycan(s) important for conversion in the brain, resulting in disturbance of conversion in the brain. These results suggest that the overexpression of PrPAOR or PrPA32–93 in the spinal cords might cause high accumulation of PrPScΔOR in the spinal cords, resulting in unusual phenotypes in these infected mice. However, PrPScΔOR was accumulated in the spinal cords of infected mice with a similar level to that of wild-type PrPSc in infected wild-type mice. Moreover, no foreleg paresis was reported in infected mice with PrPΔ32–93/PnpA0/0 and tgmPrP/PnpA0/0 mice [10]. Tg[PrPA52–93] and tgmPrP mice were generated using the same cos.HaTet expression vector system as in tgmPrPAOR mice [10,12], indicating that, similarly to PrPAOR in tg[PrPAOR]/PnpA0/0 mice, PrPA52–93 and tgmPrP are overexpressed in the brains and spinal cords of these mice. Therefore, this possibility is also unlikely. Alternatively, the unusual phenotypes in infected mice with PrPScΔOR and PrPScΔ32–93 might be associated with the unusual phenotypes in tgmPrPAOR mice [10,12]. The binding of PrP to proteoglycans is important for the binding affinity to a yet unidentified proteoglycan(s) important for conversion in the brain, resulting in disturbance of conversion in the brain. These results suggest that the overexpression of PrPAOR or PrPA32–93 in the spinal cords might cause high accumulation of PrPScΔOR in the spinal cords, resulting in unusual phenotypes in these infected mice.
Supporting Information

Figure S1 Similar spongiiform change in the brains of infected wild-type and tg(PrPΔOR)/Prnp0/0 mice. The brains of uninfected or terminally ill wild-type and tg(PrPΔOR)/Prnp0/0 mice were subjected to HE staining. Vacuoles were scant in the cerebral cortex (A) but common in the hippocampus (B), and cerebellum (C). No specific vacuoles were observed in the brains of uninfected mice.

Figure S2 Similar distribution of PrPSc and PrPScΔOR in the brains of infected wild-type and tg(PrPΔOR)/Prnp0/0 mice. The brains of uninfected or terminally ill wild-type and tg(PrPΔOR)/Prnp0/0 mice were subjected to immunohistochemistry with IBL-N anti-PrP antibodies after treatment with formic acid. The immunoreactive signals were similarly observed in the brains of both types of infected mice, but not in control uninfected mice. (A), cerebral cortex; (B), hippocampus; (C), cerebellum.

References

1. Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95: 13363–13363.
2. Weissmann C, Enari M, Klohn PC, Rossi D, Flechsig E (2002) Molecular biology of prions. Acta Neurobiol Exp (Wars) 62: 153–166.
3. Prusiner SB (1992) Novel proteinaceous infectious particles cause scrapie. Science 216: 136–144.
4. Buehler H, Aghazi A, Sailer A, Greiner RA, Autenried P, et al. (1993) Mice devoid of PrP are resistant to scrapie. Cell 73: 1339–1347.
5. Prusiner SB, Groth D, Serban A, Koehler F, D, et al. (1993) Ablation of the prion protein (PrP) gene in mice prevents scrapie and facilitates production of anti-PrP antibodies. Proc Natl Acad Sci U S A 90: 10608–10612.
6. Mannion JC, Clarke AR, McBride PA, McConnell I, Hope J (1994) PrP gene dosage determines the timing but not the final intensity or distribution of lesions in scrapie pathology. Neurodegeneration 3: 331–340.
7. Sakaguchi S, Katamine S, Shigematsu K, Nakatani A, Moriuchi R, et al. (1995) Accumulation of proteinase K-resistant prion protein (PrP) is restricted by the Creutzfeldt-Jakob disease agent. J Virol 69: 7586–7592.
8. Stahl N, Borchuk DR, Hsiao K, Prusiner SB (1987) Scapie prion protein contains a phosphatidylinositol glycolipid. Cell 31: 229–240.
9. Flechsig E, Shmerling D, Hegyi I, Raeber AJ, Fischer M, et al. (2000) Identification of the heparan sulfate binding sites in the cellular prion protein. J Biol Chem 275: 18421–18428.
10. Supattapone S, Muramoto T, Legname G, Mehlhorn I, Cohen FE, et al. (2001) Identification of two prion protein regions that modify scrapie incubation time. J Virol 75: 1408–1413.
11. Supattapone S, Bosque P, Muramoto T, Willi H, Aagaard C, et al. (1999) Prion protein of 106 residues creates an artificial transmission barrier for prion replication in transgenic mice. Cell 96: 869–878.
12. Yoshikawa D, Yamaguchi N, Ishibashi D, Yamanaka H, Okimura N, et al. (2000) Dominant-negative effects of the N-terminal half of prion protein on neurotoxicity of prion protein-like/doppel in mice. J Biol Chem 275: 24202–24211.
13. Fujita K, Yamaguchi Y, Mori T, Muramatsu N, Miyamoto T, et al. (2011) Effects of a Brain-Engraftable Microglial Cell Line Expressing Anti-Prion scFv Antibodies on Survival Times of Mice Infected with Scrapie Prions. Cellular and Molecular Neurobiology 31: 999–1008.
14. Reed J, Muench H (1938) A simple method of estimating fifty per cent endpoints. American Journal of Hygiene 27: 493–497.
15. Weissmann C, Flechsig E (2003) PrP knock-out and PrP transgenic mice in prion research. British Medical Bulletin 66: 43–60.
16. Fischer M, Rulicke T, Sailer A, Naterer AF, M, et al. (1996) Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J 15: 1233–1240.
17. Brown DR, Qin K, Herms JW, Madlang A, Manson J, et al. (1997) The cellular prion protein binds copper in vivo. Nature 390: 684–687.
18. Warner RG, Hanful C, Weiss S, Turnbull JE (2002) Identification of the heparan sulfate binding sites in the cellular prion protein. J Biol Chem 277: 10421–10430.
19. Priola SA, Caughey B (1994) Inhibition of scrapie-associated PrP accumulation. Probing the role of glycosaminoglycans in amyloidogenesis. Mol Neurobiol 8: 113–120.
20. Bruce ME, Fraser H (1991) Scrapie strain variation and its implications. Current topics in Microbiology and Immunology 172: 125–130.
21. Chien P, Weissman JS (2001) Conformational diversity in a yeast prion dictates its seeding specificity. Nature 410: 223–227.
22. Gambetti P, Cali I, Notari S, Kong Q, Zou WQ, et al. (2011) Molecular biology and pathology of prion strains in sporadic human prion diseases. Acta neuropathologica 121: 79–90.
23. Bessen RA, Marsh RF (1992) Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. Journal of Virology 66: 2096–2101.
24. Bessen RA, Marsh RF (1994) Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy. Journal of Virology 68: 7859–7866.

Author Contributions

We thank Stanley B. Prusiner for providing Zrch 1 Prnp0/0 mice.

Acknowledgments

Conceived and designed the experiments: SS SK. Performed the experiments: YY HM KU AO SI TM NM. Analyzed the data: SS HM. Wrote the paper: SS.