Flood Waste Management Preparedness Indicators: Learning from Semarang Flood 1990s

M Maryono¹ and F Harningtyas¹,

¹Department of Urban and Regional Planning, Diponegoro University, Semarang 50275, Indonesia,

Email: m.maryono@undip.ac.id

Abstract. Flood waste such as waste generating after flood, see inundation, high rains must be handling quickly and proper. The acceleration of management is one of key point in the following respond and reconstruction. Since Flood waste treatment, need more than 30 % of emergency budget, the performance should be improved. This research proposed a method to set indicators in disaster waste management preparedness. By using GIS and SPPS statistical tools this research examine some basic indicator for independent variable namely normal waste generation, number of temporary waste collection, number of informal waste picker, demography, waste infrastructure, and governmental program and the dependent variable is waste treated and recycle. Semarang 1990s flood is selected study to examine the model. model result shown that all indicators are possible to set as basic indicators for flood waste management preparedness.

Keywords: Flood waste, Preparedness Indicators, Semarang Floods 1990s, GIS

1. Introduction

Disaster waste management is a process to manage any waste generate by disaster [1]. Such as other planning, disaster waste preparedness need to evaluate regularly. The evaluation of preparedness is need to assess the indicators for increasing the quality of disaster waste management [1]. Controlling damage natural and manmade infrastructure such as disaster waste is one of the significant role in the evacuation and safety life of disaster management. Affected people face unpredictable infrastructure loss and damage when they try to safe their life. Rescue, search and volunteer teams in process of safety life, also facing many infrastructure damage. Since that in the emergency respond, disaster waste handling need more than 27 % of budget allocation, the indicator of process should be improve and evaluate to reduce the cost [2]. Moreover, in developing countries, evaluation of preparedness is very needed not only for increasing their planning but also for increasing their intention to handling disaster waste [3].

This study proposed basic indicator for flood waste management preparedness. Flooding is very common disaster both for developed and developing countries. Flood waste management preparedness is very importance since this is often attach worldwide. Depending on the type of flood disaster, such as flood, inundation, high rains, flash flood, the characteristic of flood waste generation may different. Learning from the huge flood in Bangkok Thailand 2011, that government and stakeholder found many difficulties to overcome the problem of flood waste generation, the preparedness of flood waste
also need to evaluate and improve regularly [4]. This indicator is very important not only for disaster itself but also for climate hazard in coastal region.

The goal of this study is to examine several indicators for disaster waste management preparedness evaluation. The indicator selected refers to importance factor of waste management both in normal condition and in disaster event, especially for flooding condition [3, 4]. The indicators that will be examine namely: normal waste generation, number of temporary waste collection, number of informal waste picker, demography, waste infrastructure, and governmental program. All the independent variable will be examined to detect the dependent variable namely waste treated.

2. Methods

2.1 Disaster of waste management preparedness Indicators

The indicator of disaster waste management preparedness is examined by using basic element of linear regression by using formula: \(Y = aX + b \). If the indicators can be perform within the basic formula mean that the indicator selected is accepted, while when the statistical criteria is not achieved, mean that the indicator is rejected. Table 1 describes the indicator selected in this study for flood disaster waste preparedness.

Flood Waste Management Preparedness Indicator	Code	Criteria	Score	Value reference
Waste Treated and Recycled	Y	Low	3	0-150
Waste Generation in normal Condition	X1	Low	3	150-200
		Moderate	2	>200
		High	1	
Number of Temporarily station	X2	Low	3	99%-146%
		Moderate	2	49%-98%
		High	1	0-48%
Number of Informal Recycle Worker	X3	Low	3	<0.5%
		Moderate	2	0.5%-5%
		High	1	>5%
Population Dencity	X4	Low	3	<150 person/ha
		Moderate	2	150-400 person/ha
		High	1	>400 person/ha
Waste Management Collection and Transport Infrastructure	X5	High	3	>88
		Moderate	2	45-88
		Low	1	0 - 44
Land Use Change	X6	safe	3	50-72
		Moderate	2	73-95
		Dangerous	1	96-115
Governmental Program	X7	High	3	>3
		Moderate	2	3
		Low	1	<3

2.2 Study Area

This study select Semarang’s flood 1990s as basic event to set indicators in preparedness of disaster waste management. Today, Semarang is one of the 100 resilience cities network concerning to the climate change hazard, that facing and inundation hazard. This hazard have been detected since more than many decade ago. Recently, the climate hazard influx have been detected in Semarang Up town due to the climate change migration [5].

2.3 Data Collection

This study using statistical data from Board of Development and Planning Semarang City and the statistical data of Semarang in 1990 [6, 7]. Table 2 describes the data concerning to the waste treated, waste generation, temporary facility, informal waste picker and population in Semarang 1990.
Table 2. Data for Flood Waste Management Preparedness Indicator in Semarang 1990

Sub distric	Y (waste treated m³)	X1 (Waste Generation m³)	X2 (Temporary Facility unit)	X3 (Informal waste picker person)	X4 (Population Density Person/ha)
Semarang Tengah	218,81	225,57	41	147	0,25
Semarang Utara	288,00	514,28	16	335	0,13
Semarang Timur	549,11	653,71	17	425	0,07
Semarang Selatan	399,16	654,37	75	426	0,03
Semarang Barat	420,77	809,18	20	526	0,08
Semarang Genak	186,76	321,99	8	209	0,02
Semarang Gn. Pati	8,99	128,48	-	84	0,01
Semarang Mijen	12,65	115,04	-	75	0,01
Semarang Tugu	99,68	158,22	5	103	0,01

Table 3 describes data for flood waste preparedness indicator for infrastructure, land use change, and program developed to fostering the service of waste management. Both in Table 2 and Table 3, the condition of the data is selected based on the condition for normal waste service and management.

Table 3. Data for Flood Waste Management Preparedness Indicator in Semarang 1990

Sub distric	X5 (truck)	X6 (Bin)	X7 (Depo)	X8 (Container)	X9 (Total Infrastructure sarpras)	Land use change	Program
Semarang Tengah	4	8	3	8	23	40	1
Semarang Utara	9	16	16	47	88	65	1
Semarang Timur	7	0	20	33	60	110	1
Semarang Selatan	7	0	15	31	53	95	1
Semarang Barat	20	120	96	131	367	95	1
Semarang Genak	7	0	24	37	68	50	1
Semarang Gn. Pati	8	0	20	30	58	87,5	1
Semarang Mijen	3	7	29	19	0	107.5	1
Semarang Tugu	0	0	0	0	0	115	1

3. Result and discussion
3.1 Statistical Assessment of Waste Management Preparedness Indicator in Semarang 1990

Table 4 shows the result of the statistical assessment for each indicator. Refers to the table the indicator accepted for the model are: temporary facility, Informal Waste picker, Infrastructure of waste management and land use change. The indicator that rejected namely waste generation, population density and program of government. Refers to the statistical assessment, the model of flood waste management preparedness can be formulated as follow:

\[Y = -153.750 + 5.231 X2 + 4.118 X4 − 1.015 X6 + 1.184 X7 \]
The constant of (X6) is negative, mean that if the infrastructure is increases, it is not associated with the increasing for waste treated.

Table 4. SPSS Result of Waste Management Preparedness Indicator in Semarang 1990

Model Indicator	Unstandardized Coefficients	Standardized Coefficients	t	Sig.	Collinearity Statistics
(Constant)	-153.750	.667	.541	.541	Tolerance
Temporary Facility	5.231	.741	1.153	.313	0.083
Informal waste picker	4.118	-0.595	.359	.085	1.696
Infrastructure	-1.015	-0.939	-1.035	.085	11.759
Land use change	1.184	.136	.578	.594	1.966

Dependent Variable: Waste Treated

3.2 **Preparedness Degree for Flood Waste Management for Each Sub District in Semarang 1990.**

Refers to the Table 1, the analysis of the preparedness degree for flood waste management for each sub district in Semarang 1990 is shown in Figure 1.

![Figure 1. Preparedness Degree in Flood Waste Management in Semarang 1990](image)

By using the criteria, score as shown in table 1, the study result shown that in 1990, subdistrict with high preparedness degree are Semarang Utara, Semarang Timur and Semarang Barat. The other sub district condition describe in Table 5 below.
Table 5. Preparedness Degree in Flood Waste Management in Semarang 1990.

Sub Distric of Semarang	Preparedness Degree for Flood Waste Management
Semarang Tengah	Moderate
Semarang Utara	High
Semarang Timur	High
Semarang Selatan	Moderate
Semarang Barat	High
Semarang Genuk	Moderate
Semarang Gn. Pati	Low
Semarang Mijen	Low
Semarang Tugu	Low

3.3 Indicator Missing, why?

As shown in part 3.1, this study using statistical tools and criteria to evaluate the indicator that influence degree of flood waste management. From the 7 indicator proposed, 4 indicator accepted and 3 indicator rejected. The missing of the indicator is probably the data is not consistent and comparing to the other data. There are four data in basic statistical analysis, first is nominal data, second ordinal data, third interval data, and the last is ratio data. According to the Table 2 and Table 3, type of the data is ratio, so that the there is no error in data classification, so that the indicator missing is purely statistical assessment. Waste generation in normal condition is indicator for waste management in peace time not for disaster waste generation so this indicator is rejected. However this indicator is very importance for flood waste preparedness [8]. since the data concerning to the government program similar so the indicators is also rejected. Even though the indicator is also importance in disaster waste management process [8].

4. Conclusion

Flood waste management preparedness should be evaluate to get more advance and quick respond during the event. The indicator that should be improving and evaluate for flood waste management are; Waste Generation, Temporary Station, Population Density, Waste Infrastructure, Land Use Change, Informal Waste Picker, and governmental program.

5. Acknowledgment

This research is funded by the Directorate of Research and Community Services, Ministry of Research, Technology and Higher Education for year 2018 with contract number 101-147/UN7.P4.3/PP/2018. This research also funded by annual program of strategic research of Faculty Engineering, Diponegoro University year 2018. Author would like to thank to Mr. Anang Wahyu concerning to many information this research. Author would like to thank to Intan Hapsari Hasmatika, Dhita Mey Diana, Viona, Aji Uhfatun Muzdalifah, Nabila from Center for Infrastructure Resilience and Development (C-Griende), and Mr. Lutfi Nugroho, Mr. Pangi for helping in collecting data, Arc GIS utilization.

6. References

[1] Brown C, Milke M and Seville E 2011 Disaster waste management: A review article Waste Manag. 31 1085–98
[2] Fetter G and Rakes T 2012 Incorporating recycling into post-disaster debris disposal Socioecon. Plann. Sci. 46 14–22
[3] Nakayama H, Shimaoka T and others 2015 Identification of factors affecting stakeholders’ intentions to promote preparedness in disaster waste management: A structural equation modeling approach Mem. Fac. Eng. Kyushu Univ. 74 79–98

[4] Nakayama H, Shimaoka T, Omine K, Patsaraporn P, Siriratpiriya O and others 2013 Solidwaste management in Bangkok at 2011 Thailand floods J. Disaster Res. 8 456–64

[5] Buchori I, Pramitasari A, Sugiri A, Maryono M, Basuki Y and Sejati A W 2018 Adaptation to coastal flooding and inundation: Mitigations and migration pattern in Semarang City, Indonesia Ocean Coast. Manag. 163 445–55

[6] Board of Development and Planning Semarang City 1990 No

[7] Board of Statistical Data Semarang City No Title

[8] Neuhold C and Nachtnebel H P 2011 Assessing flood risk associated with waste disposals: methodology, application and uncertainties Nat. hazards 56 359–70