Non-supersymmetric heterotic model building

Stefan Groot Nibbelink

Arnold Sommerfeld Center, Ludwig-Maximilians-University, Munich

EPS HEP2015, Vienna, July 25, 2015
This talk is based on collaborations with:

Michael Blaszczyk

Orestis Loukas

Ramos-Sanchez

Fabian Ruehle
and publications:

- JHEP 1410 (2014) 119 [arXiv:1407.6362]
- DISCRETE’14 proceedings [arXiv:1502.03604]
- arXiv:1507.06147
- arXiv:1507.soon!
Main motivation: Where is Supersymmetry?

ATLAS SUSY Searches - 95% CL Lower Limits

Status: Feb 2015

ATLAS Preliminary

\[\sqrt{s} = 7, 8 \text{ TeV} \]

- **Motivation**
 - Main motivation: Where is Supersymmetry?

- **Stefan Groot Nibbelink (ASC, LMU)**
- EPS, Vienna, July 25, 2015

3rd gen. squarks, gluinos

- **Direct production**
 - \(\tilde{g}\)\(\tilde{g}\), \(\tilde{b}_L\)\(\tilde{t}_L\)
 - \(\tilde{b}_L\)\(\tilde{b}_L\), \(\tilde{t}_L\)\(\tilde{t}_L\), \(\tilde{q}\)\(\tilde{q}\)

- **EW direct**
 - \(\tilde{t}_R\)\(\tilde{t}_R\), \(\tilde{b}_R\)\(\tilde{b}_R\), \(\tilde{t}_R\)\(\tilde{t}_R\)

- **Long-lived particles**
 - \(\tilde{\chi}_{1}^{0}\) prod., long-lived \(\tilde{\chi}_{1}^{0}\)
 - Stable, stopped \(\tilde{g}\) R-hadron
 - Stable \(\tilde{g}\) R-hadron

- **RPV**
 - LFV \(p\bar{p}\rightarrow\nu\bar{\nu}+X\)\(\nu\rightarrow\nu+\mu\)
 - Bilinear RPV CMSSM

- **Other**
 - Scalar charm, \(\tilde{c}\rightarrow\tilde{c}\)

Models

- **MSUGRA/CMSSM**
- **GMSB (NLSP)**
- **GGM (higgsino-bino NLSP)**
- **Gravitino LSP**
- **Non-SUSY string models**

Mass limits

- **Reference**
- **\(m_{\tilde{q}}\)**
- **\(m_{\tilde{\chi}^0_1}\)**
- **\(m_{\tilde{g}}\)**
- **\(m_{\tilde{t}}\)**
- **\(m_{\tilde{b}}\)**

Table

- **Model**
- **\(e, \mu, \tau, \gamma, J_{\text{ets}}\)**
- **\(E_{\text{miss}}^{T}\)**
- **Mass limit [TeV]**
- **Reference**

Graph

- **\(\sqrt{s} = 7, 8 \text{ TeV} \)**
- **\(\sqrt{s} = 8 \text{ TeV} \)**
- **\(\sqrt{s} = 8 \text{ TeV} \)**

Stefan Groot Nibbelink (ASC, LMU)

Non-SUSY string models

EPS, Vienna, July 25, 2015

3 / 23
Main motivating questions:

- So far no supersymmetry found, what if this stays this way?
- Can string theory exist without supersymmetry?
- What is the supersymmetry breaking mechanism in string theory?
Major issues without supersymmetry

- Hierarchy problem
- Cosmological constant problem
- Dilaton tadpole
- Tachyons
Past works on non-supersymmetric strings

- Non-supersymmetric (orbifolds of) heterotic theories
 Dixon, Harvey’86, Alvarez-Gaume, Ginsparg, Moore, Vafa’86, Itoyahama, Taylor’87
 Chamseddine, Derendinger, Quiros’88, Taylor’88, Toon’90, Sasada’95,
 Font, Hernandez’02

- Free fermionic construction with non-supersymmetric boundary conditions
 Dienes’94, ’06, Faraggi, Tsulaia’07

- Non-supersymmetric orientifold type II theories
 Sagnotti’95, Angelantonj’98, Blumenhagen, Font, Luest’99,
 Aldazabal, Ibanez, Quevedo’99

- Non-supersymmetric RCFTs
 Gato-Rivera, Schellekens’07
Motivation

Recent renewed heterotic interest

- Non-supersymmetric heterotic model building
 Blaszczyk, SGN, Loukas, Ramos-Sanchez’14

- Towards a non-supersymmetric string phenomenology
 Abel, Dienses, Mavroudi’15

- Heterotic moduli stabilisation and non-supersymmetric vacua
 Lukas, Lalak, Svanes’15

- Non-tachyonic semi-realistic non-supersymmetric heterotic string vacua
 Ashfaque, Athanasopoulos, Faraggi, Sonmez’15

- Calabi-Yau compactifications of non-supersymmetric heterotic string theory
 Blaszczyk, SGN, Loukas, Ruehle’15
Overview of this talk

1. Motivation
2. The non-supersymmetric heterotic string
3. Non-supersymmetric five branes?
4. Smooth compactifications
5. Orbifold compactifications
Well-known 10D string theories

The M-theory cartoon displays the modular invariant, anomaly- and tachyon-free 10D string theories:

However, it disregards various non-supersymmetric strings...
10D tachyon-free (non-)supersymmetric strings

- **Motivation**
 - 10D tachyon-free (non-)supersymmetric strings
 - **N = 0**
 - Heterotic
 - SO(16) x SO(16)
 - **N = 1**
 - Heterotic E_8 x E_8
 - **N = 2**
 - 11D SUGRA

- **Types**
 - Type IIA
 - Type IIB
 - Type 0’ USp(32)
 - Type 0’ U(32)
 - Type I SO(32)

- **EPS, Vienna, July 25, 2015**
- Stefan Groot Nibbelink (ASC, LMU)
10D tachyon-free (non-)supersymmetric strings

Motivation

11D SUGRA

- Type 0’ USp(32)
- Heterotic SO(32) × SO(16)
- Type I SO(32)
- Type IIA
- Type IIB

N = 0
- Heterotic
- N = 1
- Heterotic E_8 × E_8
- N = 2

Stefan Groot Nibbelink (ASC, LMU)

Non-SUSY string models

EPS, Vienna, July 25, 2015
The non-supersymmetric heterotic string

The low-energy spectrum of the non-supersymmetric SO(16) × SO(16) heterotic string reads: Dixon, Harvey’86, Alvarez-Gaume, Ginsparg, Moore, Vafa’86

Fields	10D space-time interpretation
Bosons	
G_{MN}, B_{MN}, ϕ	Graviton, Kalb-Ramond 2-form, Dilaton
A_M	SO(16) × SO(16) Gauge fields
Fermions	
ψ_+	Spinors in the $(128, 1) + (1, 128)$
ψ_-	Cospinors in the $(16, 16)$

This theory is also modular invariant, anomaly- and tachyon-free but obviously not supersymmetric.
Constructions of the $SO(16) \times SO(16)$ string

The $SO(16) \times SO(16)$ theory can be obtained by: Dixon, Harvey’86, Alvarez-Gaume, Ginsparg, Moore, Vafa’86

- **I.** SUSY breaking orbifolding of the $E_8 \times E_8$ string
- **II.** SUSY breaking orbifolding of the $SO(32)$ string
Untwisted sectors of the SUSY breaking twists:

I. supersymmetric \(E_8 \times E_8 \) string

Graviton, B-field, Dilaton
\(E_8 \times E_8 \) Gauge fields
Gravitino, Dilatino
\(E_8 \times E_8 \) Gauginos

non-supersymmetric \(SO(16) \times SO(16) \) string

Graviton, B-field, Dilaton
\(SO(16) \times SO(16) \) Gauge fields

\((128, 1)_+ + (1, 128)_+ \)

II. supersymmetric \(SO(32) \) strings

Graviton, B-field, Dilaton
\(SO(32) \) Gauge fields
Gravitino, Dilatino
\(SO(32) \) Gauginos

non-supersymmetric \(SO(16) \times SO(16) \) strings

Graviton, B-field, Dilaton
\(SO(16) \times SO(16) \) Gauge fields

\((16, 16)_- \)

All states of the \(SO(16) \times SO(16) \) theory can be understood as untwisted states of either the \(E_8 \times E_8 \) or \(SO(32) \) theory.
Non-supersymmetric five branes?

Five branes for the SO(16) × SO(16) theory

Recall: All SO(16) × SO(16) states can be understood as untwisted SUSY-twist sectors of the $E_8 \times E_8$ or SO(32) theory.
When one does K3 compactifications, that violate the Bianchi identity, one has to introduce NS5-branes...
Five branes for both the $E_8 \times E_8$ and $SO(32)$ are known; by the SUSY breaking twist we can infer the $SO(16) \times SO(16)$-branes.
Five branes for both the $E_8 \times E_8$ and $SO(32)$ are known; by the SUSY breaking twist we can infer the $SO(16) \times SO(16)$-branes
Non-supersymmetric five branes?

Five branes for the SO(16) × SO(16) theory

This analysis seems to suggest that there are two type of NS5-branes in the SO(16) × SO(16) theory

But only with at most a single combination of one $E_8 \times E_8$- and one SO(32)-type NS5-brane full anomaly cancellation and factorization seems to work
Compactifications of the $\text{SO}(16) \times \text{SO}(16)$ string

10D $\text{SO}(16) \times \text{SO}(16)$ string

\[\text{Smooth CY compactification} \]

\[X: 6D \text{ Calabi-Yau} \]

\[V: \text{ Hol. vector bundle} \]

\[\text{SM–like models} \]
Why consider CY backgrounds for non-SUSY strings?

- **Target space: Avoid tachyons**
 Blaszczyk, SGN, Loukas, Ramos-Sanchez’14

- **Worldsheet: U(1)$_R$ symmetry and (2,0) SUSY**
 Hull, Witten’85

- **We can recycle many computational techniques**
SM-like model scans on smooth Calabi-Yaus

h_{11}	Geometry (Name / CICY #)	Upstairs picture	Downstairs picture		
		GUT-like	Chiral exact	SM-like	Chiral exact
4	Tetra-Quadric (7862)	63,768	2	235,232	9
4	7491, 7522	1	0	7	0
5	7447, 7487	10,553	3	56,474	25
5	6770	204	0	1,279	0
5	6715, 6788, 6836, 6927	68	0	143	0
5	6732, 6802, 6834, 6896	15	0	86	0
5	6225	0	0	0	0
6	5302	173	0	431	0
19	Schoen	305,661	0	2,207,125	0

SGN,Loukas,Ruehle’15

(CICY classifications Candelas,Dale,Lutken,Schimmrigk’88, Braun’10)
Orbifold compactifications

$\text{SO}(16) \times \text{SO}(16)$ orbifolds

- 10D $\text{SO}(16) \times \text{SO}(16)$ string

 - 6D orbifold compactification
 - ν: \mathbb{Z}_N orbifold twist
 - \mathcal{V}: \mathbb{Z}_N gauge shift

 - SM–like models
Orbifold compactifications

SO(16) × SO(16) orbifolds

- **10D supersymmetric**
 - $E_8 \times E_8$ string

- **10D non-supersymmetric**
 - $SO(16) \times SO(16)$ string

- **4D supersymmetric**
 - $E_8 \times E_8$ string

- **4D non-supersymmetric**
 - $SO(16) \times SO(16)$ string

SUSY breaking \mathbb{Z}_2 twist: $v_0 = (0, 1^3)$, $V_0 = (1, 0^7)(-1, 0^7)$
Orbifold compactifications

SO(16) \times SO(16) orbifolds

10D supersymmetric
E_8 \times E_8 string

4D supersymmetric
E_8 \times E_8 string

10D non-supersymmetric
SO(16) \times SO(16) string

4D non-supersymmetric
SO(16) \times SO(16) string

Orbifold
(v, V)

SUSY
(v_0, V_0)

SUSY orbifold
(v_0, V_0), (v, V)

Orbifold
(v, V)

But then one can do a \mathbb{Z}_2 \times \mathbb{Z}_N orbifold directly...
Orbifold compactifications

SO(16) \times SO(16) orbifolds

10D supersymmetric
E_8 \times E_8 string

\text{SUSY orbifold}
(n_0, V_0), (n, V)

4D non-supersymmetric
SO(16) \times SO(16) string

implemented in the "Orbifolder"

Nilles, Ramos-Sanchez, Vaudrevange, Wingerter'11
Twisted tachyons

Tachyons are possible in some twisted sectors of many orbifolds:

Blaszczyk,SGN,Loukas,Ramos-Sanchez’14

Orbifold	Twist	Tachyons	Orbifold	Twists	Tachyons
T^6/\mathbb{Z}_3	$\frac{1}{3}(1,1,-2)$	forbidden	$T^6/\mathbb{Z}_2 \times \mathbb{Z}_2$	$\frac{1}{2}(1,-1,0)$; $\frac{1}{2}(0,1,-1)$	forbidden
T^6/\mathbb{Z}_4	$\frac{1}{4}(1,1,-2)$	forbidden	$T^6/\mathbb{Z}_2 \times \mathbb{Z}_4$	$\frac{1}{2}(1,-1,0)$; $\frac{1}{4}(0,1,-1)$	possible
T^6/\mathbb{Z}_6	$\frac{1}{6}(1,1,-2)$	possible	$T^6/\mathbb{Z}_2 \times \mathbb{Z}_6$	$\frac{1}{2}(1,-1,0)$; $\frac{1}{6}(1,1,-2)$	possible
T^6/\mathbb{Z}_6	$\frac{1}{6}(1,2,-3)$	possible	$T^6/\mathbb{Z}_2 \times \mathbb{Z}_6$	$\frac{1}{2}(1,-1,0)$; $\frac{1}{6}(0,1,-1)$	possible
T^6/\mathbb{Z}_7	$\frac{1}{7}(1,2,-3)$	possible	$T^6/\mathbb{Z}_3 \times \mathbb{Z}_3$	$\frac{1}{3}(1,-1,0)$; $\frac{1}{3}(0,1,-1)$	possible
T^6/\mathbb{Z}_8	$\frac{1}{8}(1,2,-3)$	possible	$T^6/\mathbb{Z}_3 \times \mathbb{Z}_6$	$\frac{1}{3}(1,-1,0)$; $\frac{1}{6}(0,1,-1)$	possible
T^6/\mathbb{Z}_8	$\frac{1}{8}(1,3,-4)$	possible	$T^6/\mathbb{Z}_4 \times \mathbb{Z}_4$	$\frac{1}{4}(1,-1,0)$; $\frac{1}{4}(0,1,-1)$	possible
T^6/\mathbb{Z}_{12}	$\frac{1}{12}(1,4,-5)$	possible	$T^6/\mathbb{Z}_6 \times \mathbb{Z}_6$	$\frac{1}{6}(1,-1,0)$; $\frac{1}{6}(0,1,-1)$	possible

Comments:

- when tachyons are possible, they do not necessarily appear
- and tachyons are lifted in full blow-up...
SM-like models scans on CY orbifolds

Orbifold twist	#(geom)	Inequivalent scanned models	Tachyon-free percentage	SM-like tachyon-free models total	one-Higgs	two-Higgs
Z_3	(1)	74,958	100%	128	0	0
Z_4	(3)	1,100,336	100%	12	0	0
Z_{6-I}	(2)	148,950	55%	59	18	0
Z_{6-II}	(4)	15,036,790	57%	109	0	1
Z_{8-I}	(3)	2,751,085	51%	24	0	0
Z_{8-II}	(2)	4,397,555	71%	187	1	1
$Z_2 \times Z_2$	(12)	9,546,081	100%	1,562	0	5
$Z_2 \times Z_4$	(10)	17,054,154	67%	7,958	0	89
$Z_3 \times Z_3$	(5)	11,411,739	52%	284	0	1
$Z_4 \times Z_4$	(5)	15,361,570	64%	2,460	0	6

Blaszczyk, SGN, Loukas, Ramos-Sanchez’14

On orbifolds we can construct single Higgs-doublet models, like the SM (not MSSM)!
We have seen that studying non-supersymmetric models in string theory is interesting both theoretically and phenomenologically.

But there are still many open difficult and fundamental questions here to be addressed...

Thank you!