City based analysis of MSW to energy generation in India, calculation of state-wise potential and tariff comparison with EU

Samir Saini*, Prakash Rao, Yogesh Patil

Department of Energy and Environment, Symbiosis Institute of International Business (SIIB),
Symbiosis International University (SIU), Rajiv Gandhi Infotech Park, G. No. 174/1, Hinjewadi, Pune – 411057, India

Abstract

Techno-economic feasibility of the best available Waste to Energy (WTE) technologies across the world were studied for 75 Indian cities. Secondary data on Municipal Solid Waste (MSW) characteristics for all cities were compiled from three well-known authentic databases, viz. NEERI (National Environmental Engineering Research Institute, Nagpur), NSWAI (National Solid Waste Association of India) and CPCB (Central Pollution Control Board, New Delhi). We observed a definite relationship between the calorific value of waste generated and the biodegradable and paper fractions present in waste. The authors made an attempt to calculate WTE potential from MSW for a majority of Indian cities, along with the state-wise potential. Tariff charged by EU countries were compared with some states and operating plants in India. The authors also recommend what needs to be done in terms of policy modifications and rules that need to be adhered to for MSW management in order to make WTE a success for India.

© 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Symbiosis Institute of International Business (SIIB)

Keywords: Municipal Solid Waste (MSW); Techno-Economic feasibility; Waste-to-Energy (WTE)

1. Introduction

Municipal Solid Waste (MSW) in India is firstly defined as the non-industrial, non-hazardous solid waste. As per the Municipal Solid Wastes (Management and Handling) Rules, 2000, “Land-filling shall...
be restricted to non-biodegradable, inert waste and other waste that are not suitable either for recycling or for biological processing”. This is factual in an emerging economy like India because of two important reasons: (a) Unavailability of land for disposal of MSW due to rapid growing population; and (b) Disorganized way of MSW disposal which results into generation of greenhouse gases (mainly methane). Since energy is the key for any sustainable economic development, India is losing prospective organic resource by way of improper MSW disposal. It is therefore necessary to harness the locked energy resource from the organic fraction of MSW. Adoption of environment-friendly waste-to-energy (WTE) technologies is one such effective alternative which will help in reducing the space required and will allow treatment and processing of wastes before their disposal.

The Indian municipal solid waste to energy market could be growing at a compound annual growth rate of 9.7% by 2013, according to a report by market analysts Frost and Sullivan (Indian WTE market 2011). Hence there is a need to find out which is the appropriate technology/technologies to be used and how the calorific value content of the fuel varies with from the city source that it originates.

Some of the reasons why the MSW to energy route makes a lot of sense in India are due to the fact that there are huge volume reductions (80-90%) that can be achieved, the consumption of the waste can happen on a daily basis, all the processes are pathogen free, various technologies can be used for different types or MSW, these WTE technologies are capable to treat non-putreciable organic matters such as wood, rubber, plastic, etc, and finally there is a ready market for energy which makes WTE from MSW commercially viable (Pillai, 2005).

2. Methodology

Data pertaining to the physical and chemical composition of the MSW has been compiled for 75 cities from various renowned databases. An attempt has been made to establish a relation between the Calorific Value and the biodegradable and paper fractions of the MSW generated in various cities. The cities have been classified on the basis of population, i.e. cities having a population of over 20,00,000 are classified as Tier 1 cities, between 5,00,000 to 20,00,000 as Tier 2 cities, between 1,00,000 to 5,00,000 as Tier 3 cities and less than 1,00,000 as Tier 4 cities. Also, the state wise potential of MSW to Energy has been calculated using values of various MSW to WTE technologies taken from literature reviews of several papers. Using the projected population figures (Census) for the years 2011, 2015 & 2020 along with the scenarios stating which types of technologies could be used for waste generation to energy conversion as proposed by the authors, the projected MSW to Waste potential for India for the given years has been calculated.

3. MSW to energy technologies

3.1. Energy recovery potential from various technologies

3.1.1. Biomethanation / Anaerobic Digestion (AD)

In biomethanation, organic biodegradable fraction is decomposed (enzymatically) by microbial action and this method is very useful for wastes containing high percentage of organic biodegradable matter (>35%) and high level of moisture (>45%) along with C/N ratio of 20-30%. The power produced from MSW by biomethanation method can be determined by using mathematical relationship given below in equation 1 (Rao et al 2000):

Net Power Generation Potential (kW) = P x Q

(1)
Where, \[P = X \times Y \times Z \times L \times W_1 \times 10^3 \] (2)

\[Q = W_2 \times CV \times h \] (3)

\(X = \) Biogas produced (m\(^3\) per kg of volatile solids per day)
\(Y = \) Digester efficiency (%)
\(Z = \) Total organic fraction (%)
\(L = \) Organic biodegradable fraction (%)
\(W_1 = \) Total Waste generated everyday (tones)
\(h = \) Conversion efficiency (%)
\(CV = \) Calorific Value of MSW (kcal/m\(^3\))

Operating parameters shown in Table 1 are required for the determination of the power generation potential of the MSW. The average of values of these parameters reported in the literature by various researchers have been compiled in this table and the power generation potential has been calculated for various operating conditions using equations (1), (2)& (3) (Rao et al 2000).

Table 1: Power Generation Potential of MSW (for one ton) with given range of operating parameters (Rao et al 2000)

Sr. No	X	Y	Z	L	CV	h	POWER
Minimum	0.2	45%	40%	35%	3,500	25%	5.34 kW
Maximum	0.8	70%	60%	60%	5,000	35%	17.09 kW

In general, 100 tonnes of raw MSW with 40-60% organic matter can generate about 0.534-1.71 MW power depending on the waste characteristics.

3.1.2. Incineration based technologies:

The various Incineration based technologies can be broadly classified as Mass Burn/RDF incineration technology, Gasification technology, pyrolysis technology and plasma arc gasification technology. The first three mentioned have been around for quite some time and are in an evolved state of employment in various locations in Europe and the U.S. Plasma arc gasification technology is a revolutionary new WTE technology that can generate energy from MSW and is in its pilot stage of development. [Plasma arc gasification is a high-temperature pyrolysis process whereby the organics of waste solids (carbon-based materials) are converted into syngas and inorganic materials and minerals of the waste solids produce a rock like glassy by-product called vitrified slag. (Gary.C.Young 2010)]

The thermal efficiency of each thermal process technology was determined by URS Corporation U.S, which reported the net energy production of electricity to the Grid per ton of MSW (see Table 2)

Table 2: Thermal Process Technology and Net Energy to Grid

Type of Thermal Process Technology	Net Energy Production to Grid (calculated)	Net Energy Capacity to Grid (calculated)
Mass burn (Incineration)	544 kWh/ton MSW	2.267 MW/100 ton MSW
Pyrolysis	571 kWh/ton MSW	2.379 MW/100 ton MSW
Conventional Gasification	685 kWh/ton MSW	2.854 MW/100 ton MSW
Plasma Arc Gasification	816 kWh/ton MSW	3.40 MW/100 ton MSW

3.2. Comparison of MSW to energy Technologies-Scenario for India:

From the data presented in Table 3 we can see that it is there is sufficient energy generation potential per 100Tons Per Day (TPD) of MSW as calculated by Lal& Reddy (Lal & Reddy 2009). This helps us
have a more meaningful comparison as to which technology is more suitable for recovering energy from
the MSW generated in India. It is also evident that the preferred technology at the present moment in
India would be Mass Burn Incineration where there is no need for source separated waste at all and which
also has a low capital cost requirement per MW of energy generation followed by Biомethanation.

Table 3. Comparison of WTE technologies in India (Lal & Reddy 2009; *MSW Manual 2000; **Matt Crowe et al
2002)

Description	Plasma Gas Vitrification	Biомethanation	Mass Incineration	Gasification / Pyrolysis
MSW Treatment Capacity (TPD)	500	300	500	500
Quantity of Final MSW treated (TPD)	165	300	160	500
Land Requirement (acres)	24.71 for 22.7 MW High	-	9-10 / MW Moderate	10 / MW Moderate
Level of Automation	22.7MW (4.5)	5.6MW (1.9)	6MW (1.2)	11MW (2)
Power Generation Capacity (MW/100TPD)				
PLF %	90%	-	70%	90%
Capital Cost in crores (million Rs/MW)	187 (82.3)	76 (135.71)	25 (141.6)	11 (10)
Cost of Power Generation (Rs/kWh)	4.11	-	2.6 – 2.8	-
Land Required for 300TPD plant*	2 hectares	0.8 hectares	0.8 hectares	0.8 hectares
Waste Acceptance**	All waste is acceptable	Source separated waste only	All Waste since air cleaning technology is good	Source separated dry waste only unless combined with better cleaning technology
Water Requirement**	High	High	Medium-High	Medium-High

4. Global tariff comparison for energy generation from MSW:

As seen in Table 4 below, the tariff, subsidies, taxes and capital costs for MSW to Energy Plants for
several European Union Countries has been listed. The conversion rate used for calculation purposes has
been 1Euro = 65.53 INR (as of 10 June 2011).

In comparison to the EU, M/S Solapur Bioenergy Systems Pvt. Ltd. (SBSPL) in Solapur, Maharashtra
had a tariff of Rs.4.88/unit calculated for their Biомethanation plant (MERC 2009) which is comparable
to the average tariff of several EU countries as shown in Table 4.

5. MSW characteristics of selected Indian cities

Tables 5 to 8 give the physical & chemical composition of 75 Indian cities. The Sources of data for this
database are as listed: [NSWAI (National Solid Waste Association of India) & NEERI 1996
database], (* Data taken from CPCB Report (1999) - Characteristics of MSW by Metro Cities), (#:Data
taken from combined NEERI & CPCB Report (2004-05) - Characteristics of MSW by Metro Cities].

The variation in values seen on a city to city basis is very large. On sorting all the cities based on ascending values of Calorific value, Table 9 has been prepared to find if there is a correlation between calorific value of the waste and the value of biodegradable fraction and paper content in the waste
Table 4. Tariff, Subsidies and investment cost for WTE plants in 14 EU countries & the US (prices in INR)

Country	Market Price (Rs/kWh)	Subsidy or Market Instrument	Price including subsidy or market instrument (Rs/kWh)	Investment for Flue Gas Treatment Cost (% of Total Cost)	Avg Investment Cost (Rs Cr/MW)
Belgium**	3.604	Green Certificate – Rs.3931 per certificate	4.58 to 8.51	25	34.73
Denmark	2.883	Depends on Spot price or market price	Subsidy disappears when market price exceeds Rs.2.75	20	-
Finland	3.735	NA	NA	10 – 20	8.51
France	3.227	Feed-in-tariff	3.27 + 20 paise (Energy Efficiency Premium)	NA	NA
Germany	5.242	NA	NA	NA	NA
Hungary*	3.604	Feed-in-tariff	5.24	NA	NA
Italy	5.898	Green Certificate	NA	NA	7.86
Netherlands* ***	9.173	Subsidy	NA	50	NA

Country	Market Price (Rs/kWh)	Subsidy or Market Instrument	Price including subsidy or market instrument (Rs/kWh)	Investment for Flue Gas Treatment Cost (% of Total Cost)	Avg Investment Cost (Rs Cr/MW)
Portugal***	4.16	Feed in Tariff	4.914/kWh – average value of all plants operating	NA	NA
Spain	3.512	NA	NA	15	NA
Sweden	3.047	Green Certificate	1.96	NA	NA

Note: Sources of data taken are as follows – Confederation of European Waste to Energy Plants, * Hungary Country Report on Electricity produced from RES, **Belgium Country Report on Electricity produced from RES, *** Portugal Country Report on Electricity produced from RES, **** Netherlands Country Report on Electricity produced from RES, Data compiled by authors

Table 5. Quantity of MSW generated from Tier 1 cities along with physical & chemical characteristics

Sr. No	City/Town	Total MSW (T/day)	Physical Characteristics (in % composition)	Calorific Value (Kcal/kg)	C/N Ratio	Moisture %		
			Biodegradable/Compostable	Recyclables	Inert, ash, debris			
1	Hyderabad*#	2187	40	10	50	1969	25.9	46
2	Delhi*#	5922	31.78	16	51.82	1802	34.87	49
3	Ahmedabad*#	1683	40	10	50	1180	29.64	32
4	Surat*#	1000	40	15	45	990	42.16	51
5	Bangalore*#	1669	45	28	27	2386	35.12	55
6	Mumbai*#	5320	40	16	44	1786	39.04	54
7	Nagpur#	504	30.4	16	53.4	2632	26.37	41
8	Pune*#	1175	55	20	25	2531	35.54	63
9	Jaipur#	904	42	11	47	834	43.29	21
10	Chennai#	3036	49.06	14	36.9	2594	29.25	47
11	Lucknow*#	1010	40	11	49	1557	21.41	60
12	Kanpur*#	1100	40	13	47.5	1571	27.64	46
13	Kolkata*#	2653	40	25	35	1201	31.81	46

Average Values | 2166 | 41 | 16 | 43 | 1772 | 32 | 47 |
Table 6. Quantity of MSW generated from Tier 2 cities along with physical & chemical characteristics

Sr. No	City/Town	Total MSW (T/day)	Physical Characteristics (in % composition)	Calorific Value (Kcal/kg)	C/N Ratio	Moisture %		
			Biodegradable/Compostable	Recyclables	Inert, ash, debris			
14	Vijaywada#	374	59.43	17	23.17	1910	33.9	46
15	Vishakapatnam*#	584	35	15	50	1602	41.7	53
16	Guwahati#	166	53.69	23	23.03	1519	17.71	61
17	Patna*#	511	45	20	35	819	18.62	36
18	Raipur#	184	51.4	16	32.29	1273	22.35	29
19	Rajkot#	207	41.5	11	47.3	687	52.56	17
20	Vadodara*#	357	40	11	49	1781	40.34	25
21	Faridabad#	448	42.06	23	34.63	1319	18.58	34
22	Srinagar#	428	61.77	18	20.47	1264	22.46	61
23	Ranchi#	208	51.49	10	38.65	1060	20.23	49
24	Jamshedpur#	338	43.36	16	40.95	1099	19.69	48
25	Mangalore	220	60	0	40	NA	NA	NA
26	Kochi#	400	57.34	19	23.3	591	18.22	50
27	Bhopal*#	574	45	20	35	1421	21.58	43
28	Jabalpur#	216	58.07	17	25.32	2051	28.22	35
29	Indore*#	557	43	8	49	1437	29.3	31
30	Aurangabad	300	60	22	18	NA	NA	NA
31	Bhiwandi	320	40	23	37.39	626.8	NA	NA
32	Nashik#	200	42.62	31	26.28	2762	37.2	62
33	Navi Mumbai	520	40	44	15.95	NA	NA	NA
34	Pimpri	310	32	28	40	NA	NA	NA
35	Solapur	350	78	6	16.5	NA	NA	NA
36	Bhubaneswar#	234	49.81	13	37.5	742	20.57	59
37	Amritsar#	438	65.02	14	20.98	1836	30.69	61
38	Ludhiana*#	735	40	11	49	2559	52.17	65
39	Chandigarh#	326	57.18	11	31.91	1408	20.52	64
40	Coimbatore*#	530	35	15	50	2381	45.83	54
41	Madurai*#	275	45	9	46	1813	32.69	46
42	Tiruvanantapuram#	171	72.96	14	12.68	2378	35.19	60
43	Agra#	654	46.38	16	37.62	520	21.56	28
44	Allahabad#	509	35.49	19	45.29	1180	19	18
45	Meerut#	490	54.54	11	34.5	1089	19.24	32
46	Varanasi*#	425	48	17	35	804	19.4	44
	Average Values	381	49	17	34	1426	28	45
Table 7. Quantity of MSW generated from Tier 3 cities along with physical & chemical characteristics

Sr. No	City/Town	Total MSW (T/day)	Physical Characteristics (in % composition)	Calorific Value (Kcal/kg)	C/N Ratio	Moisture %		
			Biodegradable/ Compostable Recyclables Inert, ash, debris					
47	Gandhinagar#	44	34.3	13	52.5	698	36.05	24
48	Shimla#	39	43.02	37	20.34	2572	23.76	60
49	Jammu#	215	51.51	21	27.41	1782	26.79	40
50	Dhanbad#	77	46.93	16	36.91	591	18.22	50
51	Achalpur	25	42.3	5	52.49	NA	NA	NA
52	Akola	120	29	57	14	NA	NA	NA
53	Barsi	30	63	6	31	NA	NA	NA
54	Kolhapur	165	45	16	39.5	NA	NA	NA
55	Malegaon	65	40	36	24	NA	NA	NA
56	Navghar	35	32.1	11	56.8	NA	NA	NA
57	Ulhasnagar	236	45	11	43.7	NA	NA	NA
58	Yavatmal	24	49.23	6	45.07	NA	NA	NA
59	Imphal#	43	60	19	21.49	3766	22.34	40
60	Shillong#	45	62.54	17	20.19	2736	28.86	63
61	Aizwal#	57	54.24	21	24.79	3766	27.45	43
62	Pondicherry#	130	49.96	24	25.75	1846	36.86	54
63	Ajmer	131.16	48.18	7	44.495	NA	NA	NA
64	Agartala#	77	58.57	14	27.75	2427	30.02	60
65	Dehradun#	131	51.37	20	29.05	2445	25.9	60
66	Asansol#	207	50.33	14	35.46	1156	14.08	54
	Average Values	95	48	19	34	2162	26	50

Table 8. Quantity of MSW generated from Tier 4 cities along with physical & chemical characteristics

Sr. No	City/Town	Total MSW (T/day)	Physical Characteristics (in % composition)	Calorific Value (Kcal/kg)	C/N Ratio	Moisture %		
			Biodegradable/ Compostable Recyclables Inert, ash, debris					
67	Port Blair#	76	48.25	28	24.09	1474	35.88	63
68	Itanagar#	12	52.02	21	27.42	3414	17.68	50
69	Silvassa#	16	71.67	14	14.36	1281	35.24	42
70	Daman#	15	29.6	22	48.4	2588	22.34	53
71	Panjin#	32	61.75	17	20.81	2211	23.77	47
72	Kavaratti#	3	46.01	27	26.79	2242	18.04	25
73	Alibaug	50.55	50.7	18	31.78	NA	NA	NA
74	Kohima#	13	57.48	23	19.85	2844	30.87	65
75	Gangtok#	13	46.52	16	37	1234	25.61	44
It can be seen from the data presented in the tables 5-8 that the average biodegradable matter varies from 41-52% for all types of cities, but there is huge variation in data seen on a city to city basis. Similarly the average calorific value for Tier 3 & 4 cities is seen to be higher than Tier 1 & Tier 2 cities.

Table 9. Calorific Value vs Average Biodegradable fraction & Paper content (calculated by author)

Range of Calorific Values (kcal/kg)	500-999	1000-1499	1500-1999	2000-2499	2500-2999	>3000
Average Value of Biodegradable Fraction (as % of total waste)	44.66	48.84	45.49	53.59	45.52	51.57
Average Value of Paper Content (as % of total waste)	10.18	13.45	11.13	15.23	13.23	17.76

From the graph shown in Fig 1, we can see that there is some relation between the calorific values of the MSW waste generated in the cities and the amount of biodegradable fraction and paper content in the waste. This could prove to be decisive in choosing the right technology for MSW to energy generation along with the moisture content of the waste. However detailed city wise analysis has to be carried out.

5.1. State wise calculation of MSW to energy generation potential in India

The basis of calculating the WTE generation potential of each state is done on the basis of projected MSW generation figures given in Table 11 and the energy generation potential for the technology mix in Table 10. For Biomethanation the energy generation potential is 1.9 MW/100TPD, for Mass Burn Incineration 1.2MW/100TPD, for RDF plants 3MW/100TPD, for Gasification and Pyrolysis plants it is 2MW/100TPD and for Plasma Arc Gasification it is 4.5 MW/100TPD. The projections made for waste generation have been done on the basis of the waste generated per person per day as of 2001 and the census projections for 2011-20 given by the census of India website (Census)

Table 10. Combination of Technologies predicted to be used for waste to energy generation

Scenario for 2011 & 2015 - 50% Bio + 20% Mass Burn + 20% RDF + 5% from Gasification + 5% Pyrolysis
Scenario for 2020 - 25% Mass Burn + 35% Bio + 20% RDF + 8% Gasification + 7% Pyrolysis + 5% Plasma Arc Gasification

Table 11. State wise MSW generation & Energy Generation from 2011(p) to 2020(p) (NEERI 1996; NSWAI; Census website 2011)

State/Union Territory	Total MSW(T/day) (2011) p	Total MSW(T/day) (2015) p	Total MSW(T/day) (2020) p	Energy Potential 2011 (p) (MW)	Energy Potential 2015 (p) (MW)	Energy Potential 2020 (p) (MW)
Maharashtra	22434.35	23627.56	25033.24	446.44	470.19	523.19
Uttar Pradesh	13651.39	14597.03	15736.25	271.66	290.48	328.89
West Bengal	12069.24	12504.27	13031.28	240.18	248.84	272.35
Tamil Nadu	9501.77	9725.21	9948.80	189.09	193.53	207.93
Andhra Pradesh	9998.97	10344.37	10732.24	198.98	205.85	224.30
Karnataka	8296.02	8628.03	8992.86	165.09	171.70	187.95
Delhi	11873.06	13304.83	15326.68	236.27	264.77	320.33
Gujarat	7930.91	8342.24	8805.97	157.83	166.01	184.04
Madhya Pradesh	4633.63	4925.32	5271.18	92.21	98.01	110.17
Punjab	4645.00	4841.02	5051.64	92.44	96.34	105.58
Rajasthan	4671.89	4957.24	5286.89	92.97	98.65	110.50
Haryana	2184.78	2325.63	2490.78	43.48	46.28	52.06
Bihar	1956.78	2057.14	2170.08	38.94	40.94	45.35
Kerela	1689.02	1733.49	1779.28	33.61	34.50	37.19
Chhattisgarh	1077.02	1134.61	1201.69	21.43	22.58	25.12
Jharkhand	942.55	994.39	1056.53	18.76	19.79	22.08
Orissa	839.25	867.83	901.28	16.70	17.27	18.84
Jammu & Kashmir	746.24	782.60	820.75	14.85	15.57	17.15
Uttarakhand	424.00	447.71	474.58	8.44	8.91	9.92
Assam	341.73	358.51	378.49	6.80	7.13	7.91
Goa	221.92	245.28	272.54	4.42	4.88	5.70
Pondicherry	185.66	217.02	259.47	3.69	4.32	5.42
Tripura	137.90	144.31	151.90	2.74	2.87	3.17
Andaman & Nicobar Islands	105.46	115.92	128.30	2.10	2.31	2.68
Himachal Pradesh	71.53	74.10	76.98	1.42	1.47	1.61
Mizoram	64.37	67.39	70.91	1.28	1.34	1.48
Manipur	61.03	63.87	67.23	1.21	1.27	1.41
Meghalaya	54.25	56.78	59.76	1.08	1.13	1.25
Dadar & Nagar Havelli	25.75	30.11	35.35	0.51	0.60	0.74
Daman & Diu	25.63	30.09	37.12	0.51	0.60	0.78
Nagaland	14.52	15.38	16.18	0.29	0.31	0.34
Sikkim	14.71	15.38	16.17	0.29	0.31	0.34
6. Conclusion:

From the data presented in the above paper, we have seen that there is potential to generate close to over 3000MW of energy from MSW in India by 2020. There is also an indication that there is some correlation between the calorific value of the MSW and the paper and biodegradable fraction content present in the waste. This shows that the presence of these two fractions have a direct impact on the calorific value of the waste and a more detailed analysis on a city wise basis will enable generators who are willing to enter this business, to make more informed choices regarding the selection of appropriate WTE technologies. The country also urgently needs a separate policy that lays down the roadmap for WTE from MSW and there has to be a much stricter enforcement of existing MSW segregation rules.

Acknowledgements

The authors wish to thank Mr. Surendra Pimparkhedkar (Head of Center for Regulations & Policy – WISE, Pune), for their guidance and valuable suggestions. My sincere gratitude to Dr. Rajani Gupte (Director, SIIB) for giving intern opportunity at WISE, Pune. Samir Saini wishes to thank Ms. Vanashree Thorat for her belief and family for their support.

References

Census of India,(2011),www.censusindia.gov.in, last accessed on 5th Jan, 2012
G.M.Pillai,(2005),’The New Energy Economy- The power of Waste’, WISE (World Institute of Sustainable Energy) Publications, Pune,pg 72-73
Gary C Young, (2010), ‘Municipal Solid Waste to Energy Conversion Process (Economic, Technical and Renewable Comparison)’, Wiley Publications, Pages 221-226, 230-231
‘Indian Waste to Energy Market Set for Stella Growth’, (2011), http://www.waste-management-world.com/ index/display/article-display.articles.waste-management-world.waste-to-energy.2011.04. Indian_Waste_to_Energy_Market_Set_for_Stella_Growth.QP129867.dcmp=rss.page=1.html, last accessed on 4th April 2011
Lal Banwari & M.R.V.P Reddy, (2009), ‘Wealth from Waste’, TERI publications, Chapter 4, pages 160-161 (Table 7)
Matt Crowe, Kirsty Nolan, Catriona Collins, Gerry Carty, Brian Donlon, Merete Kristoffersen, European Topic Centre on Waste and Morten Brøgger, Morten Carlsbæk, Reto Michael Hummelshøj, Claus Dahl Thomsen (Consultants), (Jan 2002), ’Biodegradable Municipal Waste Management in Europe’, European Environment Agency
MERC Order (Case 65 of 2009), MERC Order for SBSPL for Determination of Tariff for the Power generated from Municipal Solid Waste, Pages 40 to 52
‘Municipal Solid Wastes (Management and Handling) Rules’, (2000), Ministry of Environment & Forest, Schedule II & IV
NEERI, (1996), Background material for Manual on MSW
Rao M.S et al, (2000), ‘Bioenergy Conversion studies of the organic fraction of MSW-Assessment of ultimate bioenergy production potential of municipal garbage’, Applied energy, 66(1): pg 75-87.