Testing exchangeability with martingale for change-point detection

Liang Dai, Mohamed-Rafik Bouguelia
Lab for Intelligent Systems, Halmstad University, Sweden
{liadai, mohbou}@hh.se

Abstract
This work studies the exchangeability test for a random sequence through a martingale based approach. Its main contributions include: 1) an additive martingale is introduced, which is more amenable for designing exchangeability tests by exploiting the Hoeffding-Azuma lemma; 2) different betting functions for constructing the additive martingale are studied. By choosing the underlying probability density function of p-values as betting function, it can be shown that, when change-point appears, a satisfying trade-off between the smoothness and expected one-step increment of the martingale sequence can be obtained. An online algorithm based on Beta distribution parametrization for constructing this betting function is discussed in detail as well.

1 Introduction
This paper discusses the exchangeability test for a given random sequence using the martingale based approach. The results can be applied for detecting change-point in streaming data including cases for abrupt change and concept drifting, i.e. changes happen in a smooth and incremental manner.

In real-world applications, systems often exhibit complex behaviour and the data distribution is unknown. The martingale based approach is well suited in these scenarios for change-point detection since it does not rely on any distributional knowledge about the data, which is in contrast to the traditional sequential change-point detection methods such as Sequential Probability Ratio Test [Wald, 1945], and the Cumulative SUM control chart [Page, 1954].

The idea of using martingale for exchangeability test dates back to the work in [Vovk et al., 2003], building on the theory of Transductive Confidence Machine [Vovk et al., 2005], where the concept of 'exchangeability martingales' was introduced for implementing the test which works in an online manner. Later on, it was further established that [Fedorova et al., 2012] to maximize the logarithmic growth rate of the multiplicative martingale, the betting function used for constructing the martingale should be chosen as the empirical probability density function (p.d.f.) of the p-values. The way to construct this empirical p.d.f. suggested therein was to use a modified kernel density estimator. In [Ho and Wechsler, 2005] and [Ho, 2005], the authors applied various concentration inequalities on the multiplicative martingale sequence to design tests for detecting change in data streams. However, due to the high variability of the multiplicative martingale sequence, it is hard to design the test based on concentration inequalities. In addition, the multiplicative martingale values in the log scale will exhibit an undesirable behaviour that a decreasing trend even when no change happens (which will be illustrated by an example in the Evaluation section).

In order to address these shortcomings as stated before, we propose a new type of martingale – we will call it the additive martingale approach – for developing the exchangeability test, which can also be implemented in an online fashion. Different betting functions for constructing the additive martingale are discussed as well. Interestingly, similar to the multiplicative martingale case, it is shown that by choosing the betting function as the underlying p.d.f. of the p-values, when change-point appears (then the generated p-values are not uniformly distributed), a satisfied balance between the smoothness and expected one-step increment in the martingale sequence will be obtained. Based on Beta distribution parametrization, a computationally efficient way for constructing this betting function is discussed. And we also discuss how to design tests for change-point detection based on different concentration inequalities.

2 Background
Definition 1 (Martingale). A sequence of random variables
\(\{S_n\}_{n=1}^{\infty} \) is a martingale if for any \(n \geq 1 \), it satisfies that
\[
\mathbb{E}(S_{n+1}|S_n, S_{n-1}, \ldots, S_1) = S_n
\]

Definition 2 (Exchangeability). A set of random variables \(Z_1, Z_2, \ldots, Z_n \) are exchangeable if it holds that
\[
P(Z_1, Z_2, \ldots, Z_n) = P(Z_{\sigma(1)}, Z_{\sigma(2)}, \ldots, Z_{\sigma(n)}),
\]
in which \(\sigma(\cdot) \) denotes any permutation of \([1, 2, \ldots, n] \). A series of random variables \((Z_1, Z_2, \ldots, Z_n) \) is exchangeable if \((Z_1, Z_2, \ldots, Z_n) \) is exchangeable for any natural number \(n \).

Let \((z_1, z_2, \ldots) \) denote a sequence of data samples. For each sample \(z_i \), the 'nonconformity measure' quantifies the strangeness of \(z_i \) with respect to the other data samples:
\[
\alpha_i = A(z_i, \{z_1, z_2, \ldots, z_n\}).
\]
The operator $A(\cdot, \cdot)$ in eq. (3) represents certain algorithm which takes z_i and the other data samples as inputs, and returns a value α_i reflecting the 'nonconformity' of z_i with respect to the other data samples. For example, one way to obtain the nonconformity measure is based on the Nearest Neighbour algorithm as follows:

$$\alpha_i = \min_{j \neq i, j \in [1:n]} d(z_i, z_j),$$

where $d(\cdot, \cdot)$ denotes the Euclidean distance.

Once the nonconformity measures of all data samples are calculated, the sequence of p-values can be calculated using Algorithm 1 [Fedorova et al., 2012], in which θ_i denotes a random number uniformly distributed in $[0, 1]$ and $|A|$ denotes the cardinality of set A.

Algorithm 1 p-value calculation for data samples

Input: sequence of data (z_1, z_2, \cdots)
Output: sequence of p-values (p_1, p_2, \cdots)
for $i = 1, 2, \cdots$
 Obtain sample z_i
 for $j = 1, \cdots, i$
 $$\alpha_j = A(z_j, \{z_1, \cdots, z_i\})$$
 end for
 $$p_i = \frac{|\{j : \alpha_j > \alpha_i\}| + \theta_i|\{j : \alpha_j = \alpha_i\}|}{i}$$
end for

The following Theorem 1 from [Vovk et al., 2003; Fedorova et al., 2012] plays a pivotal role for developing the martingale based test for exchangeability.

Theorem 1. If the data samples $\{z_1, z_2, \cdots\}$ satisfy the exchangeability assumption, Algorithm 1 will produce p-values $\{p_1, p_2, \cdots\}$ that are independent and uniformly distributed in $[0, 1]$.

In Theorem 1, the p values reflect the strangeness of the corresponding data points – a smaller p means a larger strangeness of the corresponding data sample. Note that computing p-values according to Algorithm 1 is heavily time consuming: whenever a new sample is obtained, the nonconformity measures for all the previous data samples have to be recalculated. To avoid this expensive computations, we will apply its 'inductive' version to compute the p-values, as given in Algorithm 2. In the 'inductive' version, there assumes a prefixed training set, and based on this fixed training set, the nonconformity values for all the samples only need to be calculated once [Vovk et al., 2005; Denis et al., 2017], hence it is much more computationally efficient.

To prepare for the next few sections, the main idea of the martingale based approach for exchangeability test is briefly summarized here. When the p-value sequence is obtained by running Algorithm 1, and based on which, a new sequence can be constructed through a proper 'betting function' (which satisfy some special properties). When no change happens, the newly constructed sequence will be very likely to stay in a bounded region since it is a valid martingale; otherwise the sequence will have a growing or decreasing trend for the reason that the p-values are not uniformly distributed in $[0, 1]$ anymore (As implied by Theorem 1, lack of exchangeability will give non-uniformly distributed p-values), and will start concentrating around a small region.

2.1 Multiplicative martingale

In [Vovk et al., 2003; Ho, 2005; Fedorova et al., 2012], the authors proposed the exchangeable martingale (which we will refer to as multiplicative martingale in this work) for the exchangeability test. The idea is summarized as follows. For the sequence $\{p_1, p_2, \cdots\}$ generated by Algorithm 1, consider the following random sequence

$$S_n = \prod_{i=1}^{n} f_i(p_i), \ n = 1, 2, \cdots, \quad (4)$$

where $f_i(p) : [0, 1] \rightarrow [0, \infty)$ is called betting function, which satisfies

$$\int_{0}^{1} f_i(p_i) dp_i = 1.$$

From which, it follows that

$$\mathbb{E}\{S_{n+1}|S_n, S_{n-1}, \cdots, S_1\} = S_n. \quad (5)$$

Therefore $\{S_n\}_{n=1}^\infty$ is a valid martingale sequence according to definition. Different betting functions have been suggested for multiplicative martingales – three typical ones are summarized as follows.

Power Martingale. It uses a fixed power function as betting function

$$f(p) = \epsilon p^{\epsilon-1},$$

where $\epsilon \in [0, 1]$. Therefore, the power martingale for a given ϵ is written as

$$S_n^{(\epsilon)} = \prod_{i=1}^{n} \epsilon p_i^{\epsilon-1}. \quad (6)$$

Mixture Power Martingale. It uses a mixture of power martingales based on different $\epsilon \in [0, 1]$ values.

$$S_n = \int_{0}^{1} S_n^{(\epsilon)} d\epsilon. \quad (7)$$
Plug-In Martingale. It uses an empirical p.d.f. of the p-values as betting function. In addition, it has been justified in [Fedorova et al., 2012] that the plug-in martingale is more efficient in terms of rapid change in the martingale value when change-point happens. To construct the empirical p.d.f., a modified kernel density estimator is used therein.

Due to the unboundness of the power function and the multiplicative construction, it is found inconvenient for the multiplicative martingale to adapt the Hoffding-Azuma type concentration inequalities to design tests for detecting change in data streams, see the discussions in [Ho and Wechsler, 2005] and [Ho, 2005]. These shortcoming of the multiplicative martingale motivates us to consider the 'additive martingale' as an alternative, which will be elaborated further in next section.

3 Additive martingale

As pointed out in [Denis et al., 2017] ‘it is interesting whether there are any other test exchangeability martingales apart from the conformal martingales (i.e. the one defined in eq. (4))’. In this section, we will present the additive martingale, which will address some of the issues of multiplicative martingale.

3.1 Basic idea

The additive martingale is inherently related to the multiplicative martingale, and their connection can be elucidated through the following reasoning. Suppose that we take the logarithm operation on both sides of eq. (4), we will get

$$\log(S_n) = \sum_{i=1}^{n} \log(f_i(p_i)), \ n = 1, 2, \cdots. \quad (8)$$

What we hope to get is that \(\{\log(S_n)\}_{n=1}^{\infty}\) will be a valid martingale (since we want to obtain a martingale in the 'additive' sense) sequence, or equivalently, it satisfies that

$$\int_{0}^{1} \log(f_i(p)) \, dp = 0, \ i = 1, 2, \cdots. \quad (9)$$

However, in the multiplicative martingale case, the betting function is chosen to satisfy

$$\int_{0}^{1} f_i(p) \, dp = 1, \ i = 1, 2, \cdots, \quad (10)$$

and \(f_i(p) \geq 0\). Note that the log function is concave, we will get

$$\int_{0}^{1} \log(f_i(p)) \, dp \leq \log \int_{0}^{1} f_i(p) \, dp = 0,$$

which gives that eq. (10) will not be able imply eq. (9).

Remark. The previous reasoning proves that, instead of being a martingale, the sequence \(\{\log(S_n)\}_{n=1}^{\infty}\) is actually a supermartingale. This justifies the decreasing trend of the multiplicative martingale value (in the log scale), as illustrated in Figure 2d.

To mitigate this problem (i.e. to get a valid martingale), we can directly enforce the betting functions \(f_i(p)\) to integrate to zero, that is, for \(n = 1, 2, \cdots\), let \(S_n\) be defined as

$$S_n = \sum_{i=1}^{n} f_i(p_i) \ \text{with} \ \int_{0}^{1} f_i(p) \, dp = 0. \quad (11)$$

Then we have:

$$\mathbb{E}\{S_{n+1}|S_n, \cdots, S_1\}$$

$$= \int_{0}^{1} \left(\sum_{i=1}^{n} f_i(p_i) + f_{n+1}(p_{n+1}) \right) \, dp_{n+1}$$

$$= \sum_{i=1}^{n} f_i(p_i) + \int_{0}^{1} f_{n+1}(p) \, dp = \sum_{i=1}^{n} f_i(p_i) = S_n,$$

therefore \(S_n\) becomes a valid martingale.

3.2 Betting functions for additive martingale

In what follows, we will give two betting function constructions to get valid additive martingales.

Shifted odd functions

By definition, any odd function \(g(p) : [-1/2, 1/2] \to \mathbb{R}\) will satisfy

$$\int_{-1/2}^{1/2} g(p) \, dp = 0,$$

from which, it follows that

$$\int_{0}^{1} g(p - 1/2) \, dp = 0.$$

This simple fact implies that \(f(p) = g(p - 1/2)\) will be a valid betting function for any odd function \(g(p)\). One example is to let \(g(p) = -p\), more betting functions can easily be constructed by picking different odd functions.

Shifted empirical probability density function

From the p-values calculated by Algorithm 1, an empirical probability density function of the p-values can be obtained (one computational efficient way will be discussed later on), which we denote as \(\hat{\rho}_t(p)\) at time \(t\). Based on which, it can be readily checked that a valid betting function can be formulated as

$$f_i(p) = \hat{\rho}_t(p) - 1. \quad (12)$$

This construction is not only valid, and in fact, it will give a rapid and smooth change in the martingale sequence when change-point happens (see the experiment result in Figure 2b) in the data sequence. Next we will explain this observation. To this end, we first define the following optimization problem.

$$\max_{g(p)} \left(\int_{0}^{1} g(p) \rho(p) \, dp \right)^2 - \lambda \int_{0}^{1} g^2(p) \, dp$$

s.t. \(\int_{0}^{1} g(p) \, dp = 1\) and \(g(p) \geq 0. \quad (13)$$
The objective function in eq. (13) consists of two parts: the first part represents the expected increment of the martingale sequence value at each step, when betting function \(g(p) - 1 \) is used, and given the underlying p.d.f. of p-values as \(\rho(p) \); the second term represents the ‘flatness’ (or ‘regularness’) of the betting function.

To make better sense of the optimization problem, we analyze the following two extreme cases: when \(\lambda = 0 \) and \(\lambda = \infty \).

When \(\lambda = 0 \), since \(g(p) \) and \(\rho(p) \) are both non-negative functions, problem in eq. (13) can be reduced to

\[
\begin{align*}
\max_{g(p)} & \quad \int_0^1 g(p)\rho(p)dp \\
\text{s.t.} & \quad \int_0^1 g(p)dp = 1 \text{ and } g(p) \geq 0.
\end{align*}
\]

(14)

Assume that \(\rho(p) \) is upper-bounded by \(M \) and at point \(p_0 \) we have \(\rho(p_0) = M \), then it follows that

\[
\int_0^1 g(p)\rho(p)dp \leq \int_0^1 Mg(p)dp = M,
\]

and the maximum value \(M \) can be obtained when \(g(p) \) is set to be \(\delta(p-p_0) \), where \(\delta(.) \) denotes the Dirac delta function which is an extremely peaky. More concretely, when \(g(p) = \delta(p-p_0) \), we have

\[
\int_0^1 g(p)\rho(p)dp = \int_0^1 \rho(p)\delta(p-p_0)dp = \rho(p_0) = M.
\]

Figure 1 illustrates how the martingale \(S_t \) changes over time, when the betting function is a Dirac delta function (a Gaussian pdf with a very small variance). As shown on Figure 1 (b), the martingale can reach very high values when p-values are not uniformly distributed. However, even when p-values are uniformly distributed, the martingale sequence still have a high variation and may end up far from its initial point, as can be observed from Figure 1 (a). This is not ideal for change-point detection, since it may increase the possibilities of false-alarms.

Let’s discuss the case when \(\lambda = \infty \). In this situation, the problem in eq. (13) reduces to

\[
\begin{align*}
\min_{g(p)} & \quad \int_0^1 g^2(p)dp \\
\text{s.t.} & \quad \int_0^1 g(p)dp = 1 \text{ and } g(p) \geq 0.
\end{align*}
\]

(16)

Given by Cauchy-Schwarz inequality, we have that

\[
1 = \left(\int_0^1 g(p)dp \right)^2 \leq \int_0^1 1^2 dp \int_0^1 g^2(p)dp = \int_0^1 g^2(p)dp,
\]

where the equality holds when \(g(p) = 1 \), \(p \in [0,1] \). Given by these calculations, in the case when \(\lambda = \infty \), the optimal solution to eq. (13) is given by a uniform distribution function within the interval \([0,1]\) - which is the most ‘regular’ function.

The previous discussion implies that a proper choice of \(\lambda \) will give a satisfied balance between the one-step increment and the ‘regularness’ (by which we mean that the sequence does not include big jumps) of the martingale sequence. Next, we show that, when choosing

\[
\lambda = \int_0^1 \rho^2(p)dp,
\]

the optimal solution to eq. (13) is given by \(\rho(p) \), which gives that the corresponding betting function is \(\rho(p) - 1 \).

Note that when \(\lambda \) is chosen as \(\int_0^1 \rho^2(p)dp \), again by the Cauchy-Schwarz inequality, we will have

\[
\left(\int_0^1 g(p)\rho(p)dp \right)^2 \leq \int_0^1 \rho^2(p)dp \int_0^1 g^2(p)dp,
\]

(17)

where the equality holds when \(g(p) = c\rho(p) \) and \(c \) is a constant. When the equality holds, the maximum of the objective (which is zero) in eq. (13) is achieved. Given the fact that both \(g(p) \) and \(\rho(p) \) integrate to 1 in \([0,1]\), we get \(c = 1 \), and it implies that the optimum to the optimization problem in eq. (13) is \(\rho(p) \).

4 Estimating p-value distribution with Beta distribution

Given the importance of the p-value density function in constructing efficient additive martingales, in what follows, we
will discuss a computationally efficient way to build up an approximation of the p-value density function.

According to Theorem 1, we know that when change-point happens, the p-values will not be uniformly distributed within [0, 1]. Typical cases are that the distribution will be skewed with a single mode. This observation inspires us to model the p-value density function with a Beta distribution, which is defined as follows.

4.1 Beta distribution

Definition 3 (Beta distribution). The beta distribution $B_{\alpha, \beta}(x)$, parametrized by two positive shape parameters α and β, defines a family of continuous probability distributions on $[0, 1]$, given as

$$B_{\alpha, \beta}(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{\text{Beta}(\alpha, \beta)},$$

where $\text{Beta}(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$ and $\Gamma(\cdot)$ denotes the Gamma function.

Note that when $\alpha = \beta = 1$, it gives the uniform distribution on $[0, 1]$. When both α and β are greater than one, an imbalanced choice of α, β will give a skewed density function, which is of particular interest to us since it will be useful to model the skewed p-value distribution with a single mode.

Remark. There exist non-parametric approaches [Tsybakov, 2009] for estimating density functions, for example the histogram and kernel based density estimators. For these estimators, optimal choice for the number of bins or the kernel bandwidth will depend on knowledge of the underlying p.d.f. which is often unknown. The Beta parametric approach presents an alternative for the case when single mode appears in the p-value distribution. The parameters are easy to estimate and estimation can be done in an online fashion and will be explained in next part.

4.2 Parameter estimation

In [Bain and Engelhardt, 1992], a moment-matching based method for the shape parameters (α and β) estimation was proposed. A notable feature of this approach is that it only involves the calculation of the sample mean and variance.

More concretely, assume we are given a set of p-values as p_1, \ldots, p_n, then according to Bain and Engelhardt, $\hat{\alpha}$ and $\hat{\beta}$ (the estimated parameters) can be calculated as follows:

$$\hat{\alpha}_n = \frac{\bar{p}_n(1 - \bar{p}_n)}{s_n} - 1,$$

$$\hat{\beta}_n = (1 - \bar{p}_n) \left(\frac{\bar{p}_n(1 - \bar{p}_n)}{s_n} - 1 \right),$$

in which \bar{p}_n and s_n denote the sample mean and variance respectively, which are defined as

$$\bar{p}_n = \frac{1}{n} \sum_{i=1}^{n} p_i$$

$$s_n = \frac{1}{n-1} \sum_{i=1}^{n} (p_i - \bar{p}_n)^2.$$

Online calculation of \bar{p}_n and s_n can be found in [Welford, 1962]. Concretely,

$$\bar{p}_n = \bar{p}_{n-1} + \frac{p_n - \bar{p}_{n-1}}{n}.$$

And for updating the sample variance, we can first update $M_n = \sum_{i=1}^{n} (p_i - \bar{p}_n)^2$ recursively as follows

$$M_n = M_{n-1} + (p_n - \bar{p}_{n-1})(p_n - \bar{p}_n),$$

with which we get $s_n = \frac{M_n}{n-1}$.

Remark. Note that when sliding window (with size W) is introduced, the sample mean \bar{p}_n and sample variance s_n, defined as

$$\bar{p}_n = \frac{1}{W} \sum_{i=n-W+1}^{n} p_i$$

and

$$s_n = \frac{1}{W-1} M_n$$

in which $M_n \triangleq \sum_{i=n-W+1}^{n} (p_i - \bar{p}_n)^2$, can similarly be calculated in an online manner, and main steps can be found in the Appendix.

5 Designing tests for change-point detection

In this section, we will apply Hoeffding-Azuma inequality and Doob-Kolmogorov’s inequality to the additive martingale sequence to develop statistical tests for change-point detection. The general idea is that, when no change-point appears, the martingale sequence will be bounded in certain region with high probability. However, when the sequence exceeds the specific region, it is very likely that a change-point has occurred, hence an alarm needs to be triggered.

Theorem 2 (Hoeffding-Azuma inequality). Let c_1, \ldots, c_m be constants and let Y_1, \ldots, Y_m be a martingale difference sequence with $a_k \leq Y_k \leq b_k$ for each k. Then for any $t \geq 0$, we have

$$P \left(\left| \sum_{k=1}^{m} Y_k \right| \geq t \right) \leq 2 \exp \left(- \frac{t^2}{2 \sum_{k=1}^{m} (b_k - a_k)^2} \right)$$

In the additive martingale case, when the betting function is chosen as a shifted odd function $f(p)$ with $|f(p)| \leq 1$, eq. (21) reduces to

$$P \left(\left| S_m \right| \geq t \right) \leq 2 \exp \left(- \frac{t^2}{2m} \right),$$

where $S_m = f(p_1) + \cdots + f(p_m)$.

This fact can be used to design statistical tests for H_0 (H_0: p-values follow a uniform distribution in $[0, 1]$, i.e. no change-point appearing). More specifically, given the significance level α, when

$$|S_m| > \sqrt{2m \ln \left(\frac{2}{\alpha} \right)},$$

we reject the hypothesis H_0 and trigger an alarm.

In practice, sliding window (assume the window size is W) can be introduced to track the change more rapidly. Given the significance level α and after similar calculations as done before, we can have that when

$$|S_m - S_{m-W}| > \sqrt{2W \ln \left(\frac{2}{\alpha} \right)},$$

the hypothesis H_0 will be rejected with the significance level α.

Remark. It can be observed that, due to the additive structure of the constructed martingale (in contrast to the multiplicative martingale case), it becomes more convenient to apply the Hoeffding-Azuma inequality for the test design.

Inspired by [Ho, 2005], we can also design tests based on the following inequality.

Theorem 3 (Doob-Kolmogorov inequality). Let Y_1, Y_2, \ldots, Y_n be a martingale difference sequence, and $S_k = Y_1 + \cdots + Y_k$ for $k = 1, \ldots, n$. Then it follows that

$$P \left(\max_{1 \leq k \leq n} |S_k| \geq t \right) \leq \frac{E[S_n^2]}{t^2}. \quad (23)$$

Notice the facts in Theorem 1 that the p-values generated from Algorithm 1 are independent from each other, therefore if the betting function $f_i(p)$ is chosen independent from p_j, where $j \neq i$, for instance when $f(p) = -p + 1/2$, by calculating out $E[S_n^2]$, the inequality in eq. (23) can be reduced to (assuming a sliding window with size W is used):

$$P \left(\max_{n-W+1 \leq k \leq n} |S_k| \geq t \right) \leq \frac{W}{12\alpha},$$

which gives that H_0 will be rejected (with significance level α) when

$$\max_{n-W+1 \leq k \leq n} |S_k| \geq \sqrt{\frac{W}{12\alpha}}.$$

6 Evaluation

To showcase properties of the proposed method, we will conduct an experiment to illustrate how both martingale sequences behave in the exchangeable and non-exchangeable cases. The setup is given as follows: data in the first part (before the vertical dashed line in Figure 2) of the sequence are i.i.d. drawn from a Gaussian distribution with zero mean and unit variance; data in the second part is also drawn from a Gaussian distribution, but with a different mean from the first Gaussian. The second part of the sequence models the data when change has happened. Distance to nearest neighbour is used as the non-conformity measure, and the Algorithm 2 is used for p-value calculation.

The results are reported in Figure 2. In all these figures, x-axis represents time and y-axis represents the martingale values (in multiplicative martingale case, it’s the martingale values in the log scale). Comparing subfigures (a) and (b), we can observe that the curves obtained with the estimated p.d.f. as the betting function can achieve higher martingale value (which will make the change-point detection more confident) than the one with shifted odd function as the betting function. Again, the reason is that, the approach based on the estimated p.d.f. can adapt to the change, and gain a higher one-step increment in the curve. In subfigure (b), we can also observe that, when change-point just appears, the curve will increase slowly in the initial time steps, during which the algorithm is trying to gain knowledge of the changed p.d.f. of the p-values, but after this phase, the curves increase very rapidly. In the subfigures (c) and (d) obtained using the multiplicative martingales, the curves will exhibit decreasing trend in the period of no change-point; after change-point appears, the curves start to increase and will take significant time to return to high value. Though it is possible to post-process the curve, for example by applying a one-step finite difference filter to transform the ‘v’-shape curve into a step-alike curve similar to the ones in subfigures (a) and (b), or to use another trick introduced in [Denis et al., 2017], however these post-processing will introduce additional complications for designing tests (for example, consider applying the Hoeffding-Azuma type inequalities on the transformed sequence). In addition, in the period of no deviation, the curves in subfigure (b) have small variations as compared to the curves in other subfigures, which will make it less prone to trigger false alarms.

7 Future work

The proposed framework gives an alternative way for change-point detection, with some advantages over existing ones. There are still many questions left open for further research: 1) as discussed in previous section, the change of martingale sequence in subfigure (b) of Figure 2 is slow in the initial time steps when the size of sliding window is large. However, as can be observed from the same figure, when the sliding window size is smaller, the curve changes more rapidly in response to the deviation. This observation leads us to consider designing adaptive strategies, for example by using a smaller-size sliding window in the initial steps to increase the response speed to change, and gradually increasing the window size to gain more accurate information about the changed distribution in order to have a larger one-step increment; 2) there exist improvements over the basic Hoeffding-Azuma inequality, for example some are presented in chapter 2 of [Maxim and Sason, 2015]. It will be interesting to see whether these more advanced concentration inequalities can give tighter bounds than the one in eq. (21) for a given significance level.

8 Appendix

The update rule for the sample mean is given as

$$\hat{p}_n^w = \frac{1}{W}(p_n - p_{n-W}).$$

For sample variance, we have

$$M_n^w = \sum_{i=n-W+1}^n p_i^2 - W(\hat{p}_n^w)^2, \quad M_{n-1}^w = \sum_{i=n-W}^{n-1} p_i^2 - W(\hat{p}_{n-1}^w)^2,$$

which gives that

$$W \left(M_n^w - M_{n-1}^w - (p_n^2 - p_{n-M}^2) \right) = - \left(\sum_{i=n-M+1}^{n-1} p_i \right) (p_n - p_{n-W}) - (\hat{p}_n^2 - \hat{p}_{n-W}^2)$$

$$= - W(\hat{p}_n^w + \hat{p}_{n-1}^w)(p_n - p_{n-W}),$$

with which we can conclude that

$$M_n^w = M_{n-1}^w + (p_n + p_{n-M} - \hat{p}_n^w - \hat{p}_{n-1}^w)(p_n - p_{n-W}).$$
(a) Additive martingale values over time with shifted odd function as betting function.

(b) Additive martingale values over time with estimated p.d.f. as betting function.

(c) Multiplicative martingale values (in log scale) over time with mixture of powers as betting function.

(d) Multiplicative martingale values (in log scale) over time with power function as betting function.

Figure 2: Experiment results on a data sequence with one change point. More discussions can be found in the main text.

References

[Bain and Engelhardt, 1992] Lee J. Bain and Max Engelhardt. *Introduction to Probability and Mathematical Statistics*. Duxbury Press, California, 1992.

[Denis et al., 2017] Volkonskiy Denis, Ilia Nouretdinov, Alexander Gammerman, Vladimir Vovk, and Evgeny Burnaev. Inductive conformal martingales for change-point detection. In *Proceedings of Machine Learning Research - Conformal and Probabilistic Prediction and Applications*, pages 60:1–22, 2017.

[Fedorova et al., 2012] Valentina Fedorova, Alex Gammerman, Ilia Nouretdinov, and Vladimir Vovk. Plug-in martingales for testing exchangeability on-line. In *Proceedings of the 29th International Conference on International Conference on Machine Learning*, pages 923–930, 2012.

[Ho and Wechsler, 2005] Shen-Shyang Ho and Harry Wechsler. On the detection of concept changes in time-varying data stream by testing exchangeability. In *Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence*, pages 267–274. AUAI Press, 2005.

[Ho, 2005] Shen-Shyang Ho. A martingale framework for concept change detection in time-varying data streams. In *Proceedings of the 22nd international conference on Machine learning*, pages 321–327. ACM, 2005.

[Maxim and Sason, 2015] Raginsky Maxim and Igal Sason. *Concentration of measure inequalities in information theory*. Now Publishers, 2015.

[Page, 1954] E.S. Page. Continuous inspection scheme. *Biometrika*, 41(1/2):100–115, 1954.

[Tsybakov, 2009] Alexandre B. Tsybakov. *Introduction to Nonparametric Estimation*. Springer, New York, 2009.

[Vovk et al., 2003] Vladimir Vovk, Ilia Nouretdinov, and Alexander Gammerman. Testing exchangeability on-line. In *Proceedings of the 20th International Conference on Machine Learning*, pages 768–775, 2003.

[Vovk et al., 2005] Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic learning in a random world*. Springer, New York, 2005.

[Wald, 1945] Abraham Wald. Sequential tests of statistical hypotheses. *Annals of Mathematical Statistics*, 16(2):117–186, 1945.

[Welford, 1962] B. P. Welford. Note on a method for calculating corrected sums of squares and products. *Technometrics*, 4(3):419–420, 1962.