Complete mitochondrial genome of the hybrid grouper *Hyporthodus septemfasciatus* (♀) × *Epinephelus moara* (♂) (Perciformes, Serranidae) and results of a phylogenetic analysis

Yong Hwi Kim, Jong Yeon Park, Duc Tam Huynh, Kang Rae Kim and In-Chul Bang

Department of Life Science and Biotechnology, Soonchunhyang University, Asan, Republic of Korea; Aqua Biotech Co., Ltd., Daejeon, Republic of Korea

CONTACT In-Chul Bang, incbang@gmail.com

ABSTRACT

The complete mitochondrial genome of the hybrid grouper *Hyporthodus septemfasciatus* (♀) × *Epinephelus moara* (♂) was obtained by next-generation sequencing. The mitochondrial genome was 16,499 bp long, consisting of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and a control region (D-loop). The overall base composition is 28.62% A, 28.27% C, 16.27% G, and 26.84% T with 55.46% A+T. In the maximum-likelihood (ML) phylogenetic analysis, the hybrid grouper belonged to the same clade as *H. septemfasciatus* (maternal inheritance).

ARTICLE HISTORY

Received 23 December 2020
Accepted 21 January 2021

KEYWORDS

Serranidae; *Hyporthodus septemfasciatus*; *Epinephelus moara*; hybrid; mitogenome
the genera \textit{Hyporthodus} and \textit{Epinephelus}. GTR + I + G was confirmed to be the best-fitting evolutionary model based on the corrected Akaike information criterion (AICc), obtained using jModelTest 2.1.10 (Guindon and Gascuel 2003; Darriba et al. 2012). The GTR + I + G model was used for maximum-likelihood (ML) estimation, based on an analysis conducted in RAxML 8.0.11 (Stamatakis 2014) with 1000 bootstrap replicates. In addition, Bayesian inference (BI) tree was run for 1,000,000 generations using MrBayes 3.2.7 (Ronquist et al. 2012). Three species of \textit{Cephalopholis} and \textit{Variola} in the subfamily \textit{Epinephelinae} were used as outgroups (Figure 1).

In the phylogenetic tree of the subfamily \textit{Epinephelinae}, the genera \textit{Epinephelus}, \textit{Hyporthodus}, \textit{Cephalopholis}, and \textit{Variola} each formed a clade, supporting the current taxonomy. The mitochondrial genome of the hybrid grouper \textit{H. septemfasciatus} (♀)×\textit{E. moara} (♂) obtained here was in the same clade as that of \textit{H. septemfasciatus} (maternal inheritance), in accordance with maternal inheritance of mitochondrial DNA in eukaryotes, similar to other hybrid groupers (Sato and Sato 2012). This mitochondrial genome will improve the database for the subfamily \textit{Epinephelinae}, and sheds light on the molecular phylogeny and taxonomy.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This study was supported by the Korea Institute for Advancement of Technology (KIAT) Grant funded by the Ministry of Trade, Industry, and Energy (MOTIE), Korea (S2910150), funded by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry and Fisheries (IPET) through the Golden Seed Project, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) [213008-05-4-SB410], and the Soonchunhyang University Research Fund, Korea.

ORCID

Yong Hwi Kim http://orcid.org/0000-0001-9901-5445
Jong Yeon Park http://orcid.org/0000-0001-6538-4103
Kang Rae Kim http://orcid.org/0000-0002-1006-3123
In-Chul Bang http://orcid.org/0000-0003-4584-5384

Data availability statement

The data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov, reference number MW151226. The associated BioProject, SRA and Bio-Sample numbers are PRJNA686885, SRR13279997, and SAMN17126625, respectively.

References

Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 9(8):772.
Donath A, Jühling F, Al-Arab M, Bernhart SH, Reinhardt F, Stadler PF, Middendorf M, Bernt M. 2019. Improved annotation of protein-coding

Figure 1. The phylogenetic tree of the genus \textit{Hyporthodus}, obtained from maximum likelihood (ML) and Bayesian inference (BI) analyses of 13 protein-coding genes (PCGs). Bootstrap values above 70% in the ML analysis and posterior probabilities above 0.90 in the BI analysis are shown at the base of each node. The best-fitting evolutionary model was the GTR + I + G model. The GenBank accession numbers follow the scientific names.
genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Res. 47(20):10543–10552.
Guindon S, Gascuel O. 2003. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol. 52(5):696–704.
Katoh K, Misawa K, Kuma KI, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30(14):3059–3066.
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28(12):1647–1649.
Kiriyakit A, Gallardo WG, Bart AN. 2011. Successful hybridization of groupers (Epinephelus coioides × Epinephelus lanceolatus) using cryopreserved sperm. Aquaculture. 320(1–2):106–112.
Li Y, Chen C, Wu L, Song Z, Lin L, Zhai J. 2016. Analysis of nutritional composition in muscles of Epinephelus moara, Epinephelus septemfasciatus and their hybrid F1. Open J Fish Res. 3(2):11–18.
Noh CH, Yoon NJ. 2019. Embryonic development of fertilized eggs of convict grouper (Hyporthodus septemfasciatus) × giant grouper (Epinephelus lanceolatus). Korean J Ichthyol. 31(1):23–29.
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 61(3):539–542.
Sabate S, Sakakura Y, Shiozaki M, Hagiwara A. 2009. Onset and development of aggressive behaviour in the early life stages of the seven-band grouper Epinephelus septemfasciatus. Aquaculture. 290:97–103.
Saccone C, De Giorgi C, Gissi C, Pesole G, Reyes A. 1999. Evolutionary genomics in metazoa: the mitochondrial DNA as a model system. Gene. 238(1):195–209.
Sato M, Sato K. 2012. Maternal inheritance of mitochondrial DNA: degradation of paternal mitochondria by allogeneic organelle autophagy, allogenome. Autophagy. 8(3):424–425.
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30(9):1312–1313.
Temminck CJ, Schlegel H. 1842. Pisces, In: von Siebold, P. F. (Ed.). Fauna Japonica, sive descriptio animalium quae in itinere per Japoniam suscepto annis 1823–1830 collegit, notis observationibus et adumbrationibus illustravit P. F. de Siebold. Lugduni Batavorum [Leiden] (A. Arntz et soc.). Part 2: p. 10.
Thunberg C. 1793. Beskrifning på 2: ne nya fiskar af abborrläget ifrån Japan. Vol. 14. Stockholm: Kongliga Vetenskaps Akademiens nya Handlingar; p. 55–56.
Tian Y, Qi W, Jiang J, Wang N, Wang D, Zhai J, Chen C, Chen S. 2013. Sperm cryopreservation of sex-reversed seven-band grouper, Epinephelus septemfasciatus. Anim Reprod Sci. 137(3–4):230–236.