Towards an Arabic Sign Language (ArSL) corpus for deaf drivers

Samah Abbas¹, Hassanin Al-Barhamtoshy² and Fahad Alotaibi³

¹ Management Information Systems Department, Faculty of Economics and Administration, King Abdul Aziz University, Jeddah, Mecca, Saudi Arabia
² Information Technology Department, Faculty of Computing & Information Technology, King Abdul Aziz University, Jeddah, Mecca, Saudi Arabia
³ Information System Department, Faculty of Computing & Information Technology, King Abdul Aziz University, Jeddah, Mecca, Saudi Arabia

ABSTRACT

Sign language is a common language that deaf people around the world use to communicate with others. However, normal people are generally not familiar with sign language (SL) and they do not need to learn their language to communicate with them in everyday life. Several technologies offer possibilities for overcoming these barriers to assisting deaf people and facilitating their active lives, including natural language processing (NLP), text understanding, machine translation, and sign language simulation. In this paper, we mainly focus on the problem faced by the deaf community in Saudi Arabia as an important member of the society that needs assistance in communicating with others, especially in the field of work as a driver. Therefore, this community needs a system that facilitates the mechanism of communication with the users using NLP that allows translating Arabic Sign Language (ArSL) into voice and vice versa. Thus, this paper aims to purplish our created dataset dictionary and ArSL corpus videos that were done in our previous work. Furthermore, we illustrate our corpus, data determination (deaf driver terminologies), dataset creation and processing in order to implement the proposed future system. Therefore, the evaluation of the dataset will be presented and simulated using two methods. First, using the evaluation of four expert signers, where the result was 10.23% WER. The second method, using Cohen’s Kappa in order to evaluate the corpus of ArSL videos that was made by three signers from different regions of Saudi Arabia. We found that the agreement between signer 2 and signer 3 is 61%, which is a good agreement. In our future direction, we will use the ArSL video corpus of signer 2 and signer 3 to implement ML techniques for our deaf driver system.

INTRODUCTION

Deaf people use sign language to communicate with their peers and normal people who know their sign language. Therefore, sign language is the only way to communicate with deaf people, although it receives even less attention from normal people.

Furthermore, sign language is not a unified language among deaf people around the world,
as each country has its own sign language. For example, American Sign Language (ASL), British Sign Language (BSL), Australian Sign Language (Auslan), Indian Sign Language (ISL) and Arabic Sign Language (ArSL). In particular, the Arab countries that use ArSL, such as the Gulf, Al-Sham, and some North African Arab countries, have similarities and differences in sign language. The reason for this is the differences between in dialects. As a result, deaf people face problems communicating with the community in many aspects while they are working or practicing their daily lives, such as health, education, and transportation. One of the solutions to these problems is the use of a sign language interpreter, a person who knows sign language and can interpret it to normal people. However, this solution is not optimal because of loss of privacy and professional independence (Forestal, 2001; Broecker, 1986). Researchers have therefore developed certain technologies that allow for the provision of a computer interpreter instead of a human. For example, sign language recognition technology, machine translation (MT). In addition, some Arab researchers and organizations, such as the Arab League Educational, Cultural and Scientific Organization (ALECSO), have made efforts to unify ArSL by introducing the first dictionary in 1999 (Al-Binali & Samareen, 2009).

In Saudi Arabia, deaf people have some difficulty communicating with others. In particular, when deaf people are driving a vehicle and non-deaf people are sitting as passengers. The non-deaf passenger cannot understand the deaf driver. Also, a non-deaf passenger cannot describe the location needed by the deaf driver. However, there are many mobile applications that can be used to facilitate communication, such as Tawasol and Turjuman, but they still do not provide real-time translation (Team Mind Rockets, 2017; Al-Nafjan, Al-Arif & Al-Wabil, 2015). In addition, non-deaf passengers or drivers do not necessarily download the sign language translation application and use it only once. In the area of deaf drivers, Saudi Arabia faces a lack of technology that can improve communication between deaf drivers and non-deaf passengers. To our knowledge, no research has yet been conducted to introduce a solution in the area of deaf drivers in Saudi Arabia. In addition, there is a lack of corpus of ArSL videos being constructed in the transportation domain, especially for deaf drivers.

The purpose of this research is to publish our dataset as a continuation of previous work (Abbas, 2020). Also, we aim to publish our corpus in order to implement ML as future work. This paper is organized as follows: The second section illustrates some research work done to create videos and images of the standard corpus of sign language in each country as a database. In order to conduct their experiments to implement some systems that help deaf people in specific areas. We have also mentioned some research done in the Arab countries. In order to create an ArSL corpus by focusing on certain areas. The third section illustrates the linguistic background of ArSL, speech recognition and machine translation (MT) systems, while the fourth section focuses on the design architecture of ArSL. In the fifth section, we discuss the processing and data collection modules and evaluation videos of the deaf driver corpus that necessitated the implementation of ArSL in the deaf driving context. Finally, we illustrate future research directions.
RESEARCH QUESTION

Our research aims to answer these two questions:

1. Can we create a data corpus and video corpus for deaf drivers?
2. Can we evaluate the video corpus created of deaf drivers?

LITERATURE REVIEW OF ARSL RECOGNITION AND MT SYSTEM

This literature review illustrates various standard sign language corpora for some countries of the world. In fact, when we start designing and developing a system for deaf people, we need the essential corpora of videos or images. In addition, these corpora are considered as a reference database that must be rich with a large and complete volume of standard sign language. They will help researchers to implement machine learning techniques and develop specific systems for deaf people.

Starting with ASL, researchers developed approximately 2,576 videos that included movements, hand shapes, and sentences (Martinez et al., 2002). Another researcher collected and annotated videos around a corpus of 843 sentences from Boston University and RWTH Aachen University (Dreuw et al., 2008). In Britain, approximately 249 participants completed a conversational dataset of the BSL video corpus (Schembri et al., 2013). In Indian sign language, researchers implement 1,440 gestural videos of IPSL by nine Indian signers (Kishore et al., 2011). In Brazil, they have created the LIBRAS-HCRGBDS database of the Libras video corpus which has approximately 610 videos by five signers (Porfirio et al., 2013). In Korean Sign Language (KSL), the researchers developed 6,000 vocabulary words in the KSL corpus database (Kim, Jang & Bien, 1996). In Arabic Sign Language (ArSL), 80 Arabic signers implemented a sensor-based dataset for 40 sentences (Assaleh, Shanableh & Zourob, 2012). In addition, some researchers have produced a corpus of 500 videos and images. It contains hand shapes, facial expressions, alphabet, numbers. In addition, the movement in simple signs, continuous sentences, and sentences with lip movement were performed by 10 signers. These corpora are called SignsWorld Atlas. However, the performed corpus still does not cover all words and phrases as a database (Shohieb, Elminir & Riad, 2015). Recently, the researchers led their efforts to build the KArSL database as a comprehensive ArSL reference database for numbers, letters, and words. They used Kinect devices to make these ArSL videos available to all researchers (Sidig et al., 2021).

Specifically, in ArSL, researchers are dedicating their efforts to improving the focus of accuracy in a specific domain, such as medicine and education. Some researchers used 150 video signs from the Java programming domain in their experiment (Al-Barhamtoshy, Abuzinadah & Allinjawi, 2019). In the same educational field, two researchers introduced an intelligent system for deaf students based on the image. This system helped the deaf student in the educational environment. Therefore, they created the dictionary that needs it in life activities and academic environments (Mohammdi & Elbourhamy, 2021). Some of them performed some sentences in Arabic language without
focusing on a specific field. Some focused on the jurisprudence of prayer and their symbols as datasets (Almasoud & Al-Khalifa, 2012). Other researchers used 600 phrases in the health domain (Luqman & Mahmoud, 2019). Similarly, some researchers have implemented their research using the data created in the field of education (Alfi, Basuony & Atawy, 2014; Almohimeed, Wald & Damper, 2011). In our research, we focus on a different domain that can help deaf people in the work environment, such as driving a cab. The corpus we created will help deaf drivers to communicate with non-deaf passengers while deaf people drive their cars.

ARSL AND LINGUISTIC BACKGROUND

ArSL shows huge complexities in phonology, morphology, and structure, which is not the case for other sign languages. These complexities are explained below.

Phonology of ArSL

Phonemes are mental representations, which are just a way to empty what is inside the brain. Phonemes are made up of four elements: (1) The shape of the hand. (2) Orientation of the hand. (3) Position of the hand. (4) Direction of the hand in motion (Schechter, 2014). In phonology, these four elements are known as hand features (MFs). In particular, in Sign Language, there are MFs and also Non-Manual Features (NMFs) are involved. NMFs refer to emotional parts of the body, for example, lip motion, facial expression, shoulder movement, head movement, eyelids, and eyebrows. In general, in ArSL, we use both MFs and NMFs to give the correct meaning, called essential NMFs. On the other hand, if the signer uses just only the MFs, the meaning will turn into another meaning that the signer did not mean to express (Johnston & Schembri, 2007).

Morphology and structure of ArSL

The rules of grammar in ArSL are not the same as those in Arabic. The differences are: verb tenses, differences between singular and plural, rules for prepositional and adverb and gender signs. Regarding sentence structure, ArSL uses only the Subject-Verb-Object (SVO) structure instead of the SVO, OVS and VOS structures (Luqman & Mahmoud, 2019).

ARSL AND DESIGN ARCHITECTURE

New technologies that support communication have a significant impact on human life. For deaf people, the developers and researchers have tried to use some new technologies to make the life of deaf people easier by developing automated systems that can help them to communicate in various aspects of their life with others. In this section, we will illustrate a brief explanation of some of the techniques used in order to implement the automated system for better communication between the community and among themselves.

Machine translation

Machine Translation (MT) is a standardized name for the system that relies on computer analysis to translate between two languages. It is used for text and speech using artificial intelligence (AI) and natural language processing (NLP). For example, translating from
source “English” to target “Arabic” (Pradhan, Mishra & Nayak, 2020; Verma, Srivastava & Kumar, 2015). MT is also used to translate text or speech into video sign language or avatar. There are several approaches to MT that can be used depending on what we need to translate and what constitutes a better translation. One of these approaches is a direct translation, without regard to grammar rules. To improve the quality of MT, the rule-based approach was introduced, which consists of parsing the source and target language. Another approach is corpus-based, which deals with massive data containing sentences. There are also knowledge-based approaches, which take into account the understanding of the source and target text in the context of linguistic and semantic knowledge. Finally, there is google translation which is developed by Google (Verma, Srivastava & Kumar, 2015).

Arabic speech recognition
Speech Recognition (SR) is a computerized system that converts speech into text or signs. This system is used to communicate between humans and machines. It is also known as automatic speech recognition. Machine-based SR is a complicated task due to differences in dialects, contexts, and speech styles. To reduce this complexity in SR, the system can exploit the repetition and structure of the token speech signal as multiple sources of knowledge. SR sources are constructed based on knowledge of phonology, syntax, phonemes, grammar, and phrases (Katyal, Kaur & Gill, 2014; Chow et al., 1987). In addition, the SR system has several classifiers. (1) The speech utterance, which is composed of separate, connected, continuous and spontaneous speech. (2) The speaker model, which contains one of two dependents that was designed for a specific speaker or independently for different speakers. (3) The size of vocabulary (Vimala & Radha, 2012).

In terms of the SR process, there are four steps in which SR can be implemented. Analyze the speech signal, then extract the feature using different techniques to identify the vector, such as MFCC (Mel-frequency cepstral coefficient). Then, we build a model using different techniques like HMMs with the training dataset. In the last step, we test the model in the matching setting, taking the dissection and measuring the performance based on the error rate (Saksamudre & Deshmukh, 2015; Yankayiş, Ensari & Aydin, 2018) as shown in Fig. 1.

ArSL gestures recognitions
Gesture recognition is defined as the ability of the computer to understand gestures and execute commands based on the gestures made. The first gesture recognition system was introduced in 1993 as a kind of user interface for perceptual computing that helps capture human gestures and transfer them into commands using a computerized system. It is used with many technologies, especially in the field of games, such as X-box, PlayStation, and Wii Fit. These games use Just Dance and Kinect Sports, which recognizes the hand and certain body parts (Schechter, 2014; Darrell & Pentland, 1993).

In the sign language domain, the gesture recognition system uses the following processes: (1) Recognize the deaf signs. (2) Analyze the sign. (3) Converting that sign into meaningful text (words or phrases), voice, or expressions that non-deaf can understand.
In addition, there are two main methods for gesture recognition in ArSL, namely vision-based devices (video or image) and wearable-based devices. Each of them has advantages and disadvantages. One advantage of wearable devices is that there is no need to search for background and lighting. The disadvantage is that they interfere with movement. On the other hand, the advantage of vision-based technology is the ease of movement, while the disadvantage is the effect of changing the background and lighting (Ambar et al., 2018; Paudyal et al., 2017).

In addition, each has different processes and techniques. In the vision-based process, one or more cameras are the main tools that must be available to use this method. On the other hand, the wearable-based method depends on certain types of equipment and computers mainly. In terms of process, the wearable-based method spells the alphabet by reading the specific information in each sensor of the finger or glove joint. However, the vision-based method has certain steps, which are the follows:

- **Image capture**, which consists in using a camera to collect data (building the corpus) and analyze the collected images.
- **Pre-processing**, which consists of preparing the images and identifying the information according to color (segmentation).
- **Feature extraction** uses some techniques like root mean square (RMS) to identify the feature vector.
- **Classification** that classifies based on the feature vector to build the model (Mahmood & Abdulazeez, 2019; Derpanis, 2004). The vision-based gesture recognition process is shown in the Fig. 2.

DEAF DRIVER CORPUS

For creating a deaf driver corpus, we divided the processes that we will use for this creation into four modules. The four modules are preprocessing, recording, assessment, and validation modules. These high-level and low-level approaches are represented in (Figs. 3 and 4).
Data collection, creation and annotation

In this section, we explain our data collection, data determination (deaf driver terminologies) and data set creation and processing to create our video corpus through the preprocessing and recording module.
In the preprocessing module, we first collected data at two levels: a word or phrase level dataset and a sentence level dataset to create a small Arabic dictionary. This dictionary is divided into eight sections (categories). (1) Welcoming “Salam Alaikum and How are you?”. (2) Directions “Left and Right”. (3) Place “School and Deaf Association”. (4) Traffic and Transportation “Driver’s license and Traffic lights”. (5) Sentences used by deaf drivers when they need to talk with their passengers, e.g., “We have arrived”. (6) Sentences used by passengers when they need to talk with their deaf drivers, e.g., “I do not have cash to pay the amount”. (7) General Words “No and Yes and In and On”. (8) Amount “Dollar, Riyal and 2 Riyals until 100 Riyals” (Abbas, 2020).

The total number of words and phrases (sentences) is 215. Some of these words and sentences fall under the general communication, collected from the Saudi Sign Language Dictionary, 2018 edition (Saudi Association for Hearing Impairment, 2018). Some of them are collected in the contextual domain of the normal conversation that was done between Saudi cab drivers and passengers. We mean in the contextual domain is each country has its own contextual domain in the payment process. For example, Saudi Arabia has its own curranty which is Riyal. Table 1 shows a part of the Arabic dictionary we created.

In the recording module, we made our videos at a rate of about 30 FPS (frames per second), by a camera for our ArSL corpus. These videos were taken by one of the ArSL expert signers who is not deaf. Figure 5 shows an ArSL corpus captured by a non-deaf expert signer. In addition to that, we made video captures with three expert signers from different occasions in Saudi Arabia. Two of them are totally deaf, while the third is hard of hearing. Figure 6 represents an ArSL corpus captured for each deaf expert. To record 215 words containing simple phrases and signs, we took about 45 min continuously with the non-deaf expert signer. However, the three deaf expert signers took approximately 50 min. The expert signers used only one hand if it was appropriate for the context of the
deaf driver, unless the sign required the use of both hands. Next, we segmented the video using VEGAS (VEGAS, 2022) video editing software (we segmented each sign containing words or phrases that matched our dictionary into a single video, with a total number of 215 videos). To support future work, we added Arabic audio to each video and labeled it with Arabic text that refers to the same recorded ArSL.

Dataset evaluation

These collected and created data will be used for the evaluation and validation of our ArSL corpus. In this section, we have explained the evaluation module while the validation will be done in the future work.

In the evaluation module, we evaluated the video of each corpus generated based on our created dictionary using two techniques. First, we used a human expert evaluation technique. Second, we used a statistical method of measuring the agreement between three deaf experts signing in ArSL that we recorded.

In the first technique, which is a human expert evaluation, we made the evaluation based on the views of four participants who are experts in ArSL. One of them is completely deaf and the second is hard of hearing. Two other participants are not deaf, they work in a deaf club and are experts. We used the quantitative approach (questionnaire) and divided
it into two sections. The first section was a demographic questionnaire (gender-age-
education level-whether he/she is deaf or not). In the second section, we introduced an
evaluation of the video based on the word (phrase) or related sentence. We attached each
video to each related phrase or word. Participants were asked to evaluate the 215 sign
videos to see if the video recorded for each word or phrase was correct or not. If not
correct, it meant that the video was not related to that particular word or phrase. We asked
the four participants to choose one of the types of correction they had to make for each
video (add-replace-delete). The evaluation method is explained in (Table 2) using some
videos evaluated by one of the experts.

Section one: Welcome	Video evaluation based on the related word (phrase) or sentences.	Word/phrase/sentences
Deleting	Replacing	Adding
√	√	x
1-Salam aleikum	2-Waleikum salam	3-Good morning

The evaluation results of the deaf experts based on the word error rate (WER) for each
category (section) such as welcome, directions, and place are explained in Fig. 7. This
means that for each category, the evaluation result of these videos was wrong. Also, they
should be replaced with correct videos.

As can be seen in Fig. 7, first, the hospitality category has a high percentage of WERs, at
50%. Second, the location category has a percentage of about 36%. Thus, we need to
reduce the WER in our video corpus that is related to these two categories (sections) in
order to improve the communication between drivers and deaf passengers and also to
describe the correct location for the passenger’s destination.

The total WER of our video corpus was 10.23% as shown in Table 3.
To resolve the corpus of erroneous ArSL videos, we again captured these videos based on the corrected signs that the raters explained to us.

In the second technique of measuring the agreement between the signs of each of the two deaf experts, we used Cohen’s Kappa criterion using Eq. (1).

\[
K = \frac{P_0 - P_e}{1 - P_e}
\]

(1)

whereas \(P_0\) represent the number of observed proportional agreement between two variables by using Eq. (2).

\[
P_0 = \frac{1}{n} \sum_{i=1}^{g} fii
\]

(2)

Number of agreements that expected by chance represented by \(P_e\) and the formula represents as Eq. (3).

\[
P_e = \frac{1}{n^2} \sum_{i=1}^{g} fi + f + i
\]

(3)

where \((fi+)\) is the total of row, and \((f + i)\) is the total of column (Viera & Garrett, 2005).

When we use Cohen’s Kappa \((K)\), we can achieve one of the six types that represents in Table 4.

For more details, the evaluation was done by a non-deaf coder who annotated each of the two ArSL video corpora on the basis of true and false independently. First, we measured the agreement between signer 1 and signer 2. Next, we measured the agreement between signer 1 and signer 3. Finally, we measured the agreement between signer 2 and signer 3. Therefore, by applying Cohen’s Kappa statistical method to measure the agreement between each of the two videos in the ArSL corpus, we found the result represented in Table 5.

Table 3: Total word correct and error rate for our created video Corpus (Abbas, 2020).

	Correct (%)	Wrong (%)
Signs’ videos corpus	89.8	10.2

Table 4: Categories of Cohen's Kappa interpretation (Viera & Garrett, 2005).

Type of agreement	Kappa (K)
No agreement	\(K \leq 0\)
Poor agreement	\(0.01 \leq K \leq 0.20\)
Fair agreement	\(0.21 \leq K \leq 0.40\)
Moderate agreement	\(0.41 \leq K \leq 0.60\)
Good agreement	\(0.61 \leq K \leq 0.80\)
Perfect agreement	\(0.81 \leq K \leq 1.00\)

To resolve the corpus of erroneous ArSL videos, we again captured these videos based on the corrected signs that the raters explained to us.

In the second technique of measuring the agreement between the signs of each of the two deaf experts, we used Cohen’s Kappa criterion using Eq. (1).

\[
K = \frac{P_0 - P_e}{1 - P_e}
\]

(1)

whereas \(P_0\) represent the number of observed proportional agreement between two variables by using Eq. (2).

\[
P_0 = \frac{1}{n} \sum_{i=1}^{g} fii
\]

(2)

Number of agreements that expected by chance represented by \(P_e\) and the formula represents as Eq. (3).

\[
P_e = \frac{1}{n^2} \sum_{i=1}^{g} fi + f + i
\]

(3)

where \((fi+)\) is the total of row, and \((f + i)\) is the total of column (Viera & Garrett, 2005).

When we use Cohen’s Kappa \((K)\), we can achieve one of the six types that represents in Table 4.

For more details, the evaluation was done by a non-deaf coder who annotated each of the two ArSL video corpora on the basis of true and false independently. First, we measured the agreement between signer 1 and signer 2. Next, we measured the agreement between signer 1 and signer 3. Finally, we measured the agreement between signer 2 and signer 3. Therefore, by applying Cohen’s Kappa statistical method to measure the agreement between each of the two videos in the ArSL corpus, we found the result represented in Table 5.
As we can see in (Table 5) The agreement between signer 2 and signer 3 reached about 60%, which is better than the others. The reason is that they are from the same school, the Deaf Association. However, signatory 1 is a volunteer who is not from their school. It should be noted that the first two are completely deaf, while the second is hard of hearing. In the validation module, in the future work, we will implement the ML technique using python as a programming language. To do this, we will use the ArSL video corpus that was made by signer 2 or signer 3. Which one got the best agreement based on Cohen’s Kappa method for evaluation. Next, we will divide our data into training and testing datasets to measure accuracy and error rate.

CONCLUSIONS AND FUTURE WORK

Through this research, we have reviewed the previous studies that have been conducted in the field of ArSL corpus generation as a standard sign language used by different countries. We have also illustrated the different areas in which researchers are conducting their efforts to create a data dictionary and annotated ArSL corpus, especially in Saudi Arabia. We have clarified the difficulties encountered in translating ArSL from a grammatical, semantic and syntactic perspective. How they affect the accuracy of translation and recognition. Finally, we described the ArSL dictionary for deaf drivers and explained the data collection processes to construct the videos in our corpus. These were recorded using a single camera and then verified using two methods. First, using the evaluation of four participants, experts in ArSL, two of whom were deaf. Second, by using Cohen’s Kappa statistical method to measure the agreement between each of the two videos in the ArSL corpus recorded by three signers.

The created ArSL corpus provides opportunities to test various feature extraction methods and recognition techniques. Extending and validating the dataset using machine learning (ML) will be the focus of future work. In addition, this corpus will be used to design our proposed system to facilitate communication with deaf drivers.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received no funding for this work.

Competing Interests

The authors declare that they have no competing interests.
Author Contributions
- Samah Abbas conceived and designed the experiments, performed the experiments, analyzed the data, performed the computation work, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.
- Hassanin Al-Barhamtoshy analyzed the data, performed the computation work, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.
- Fahad Alotaibi performed the experiments, analyzed the data, authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:
The raw data (videos) are available at Github:
- https://github.com/sabbas123/ArSL-video-corpus-1.git
- https://github.com/sabbas123/ArSL-video-corpus-2.git
- https://github.com/sabbas123/ArSL-video-corpus-3.git
- https://github.com/sabbas123/ArSL-video-corpus-4.git
- https://github.com/sabbas123/ArSL-video-corpus-5.git
- https://github.com/sabbas123/ArSL-video-corpus-6.git
- https://github.com/sabbas123/ArSL-video-corpus-7.git
- https://github.com/sabbas123/ArSL-video-corpus-8.git
- https://github.com/sabbas123/3-signer-evaluation_corpus1-welcome-.git
- https://github.com/sabbas123/3-signer-evaluation_corpus2-Directions-.git
- https://github.com/sabbas123/3-signer-evaluation_corpus3-Places-.git
- https://github.com/sabbas123/3-signer-evaluation_corpus4-Traf
- https://github.com/sabbas123/3-signer-evaluation_corpus5-Driver-.git
- https://github.com/sabbas123/3-signer-evaluation_corpus6-Passenger-.git
- https://github.com/sabbas123/-sabbas123-3-signer-evaluation_corpus7-General-Words-.git
- https://github.com/sabbas123/3-signer-evaluation_corpus8-Amount-.git.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/peerj-cs.741#supplemental-information.

REFERENCES
Abbas SA. 2020. Improving Arabic Sign Language to support communication between vehicle drivers and passengers from deaf people. King Abdulaziz University, Saudi Arabia: Scientific Publishing Centre.
Al-Barhamtoshy HM, Abuzinadah NE, Allinjawi AA. 2019. Development of an intelligent arabic text translation model for deaf students using state of the art information technology. Bioscience Biotechnology Research Communications 12:338–345 DOI 10.21786/bbrc/12.2/17.
Al-Binali M, Samareen S. 2009. *Grammar of the unified Qatari Arabic Sign Language*. Doha, Qatar: Dar Al-Sharq (in Arabic).

Al-Nafjan A, Al-Arif B, Al-Wabil A. 2015. Design and development of an educational Arabic Sign Language mobile application: collective impact with Tawasol. In: Antona M, Stephanidis C, eds. *Universal Access in Human-Computer Interaction. Access to Interaction. Lecture Notes in Computer Science*. Cham: Springer International Publishing, 319–326.

Alfi AEEE, Basuony MMRE, Atawy SME. 2014. Intelligent arabic text to Arabic Sign Language translation for easy deaf communication. *International Journal of Computer Applications*. 92(8):22–29 DOI 10.5120/16030-5126.

Almasoud AM, Al-Khalifa HS. 2012. SemSignWriting: a proposed semantic system for arabic text-to-signwriting translation. *Journal of Software Engineering and Applications* 5(8):604–612 DOI 10.4236/jsea.2012.58069. 2012.

Almohimeed A, Wald M, Damper RI. 2011. Arabic text to Arabic Sign Language translation system for the deaf and hearing-impaired community. In: *Proceedings of the Second Workshop on Speech and Language Processing for Assistive Technologies*. Edinburgh, Scotland, UK: Association for Computational Linguistics, 101–109.

Ambar R, Fai CK, Wahab MHA, Jamil MMA, Ma’radzi AA. 2018. Development of a wearable device for Sign Language recognition. *Journal of Physics: Conference Series* 1019:012017 DOI 10.1088/1742-6596/1019/1/012017.

Assaleh K, Shanableh T, Zourob M. 2012. Low complexity classification system for glove-based Arabic Sign Language recognition. In: Huang T, Zeng Z, Li C, Leung CS, eds. *Neural Information Processing*. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 262–268.

Broecker B. 1986. Speaking the language of sign: the art and science of signing (review). *American Annals of the Deaf* 131(3):199–200 DOI 10.1353/aad.2012.0792.

Chow Y, Dunham M, Kimball O, Krasner M, Kubala G, Makhoul J, Price P, Roucos S, Schwartz R. 1987. BYBLOS: the BBN continuous speech recognition system. In: *ICASSP ’87. IEEE International Conference on Acoustics, Speech, and Signal Processing*. Piscataway: IEEE, 89–92.

Darrell T, Pentland A. 1993. Space-time gestures. In: *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition*. 335–340 DOI 10.1109/CVPR.1993.341109.

Derpanis K. 2004. A review of vision-based hand gestures. Toronto: Department of Computer Science York University.

Dreuw P, Neidle C, Athitos V, Sclaroff S, Ney H. 2008. Benchmark databases for video-based automatic sign language recognition. In: *Proceedings of the International Conference on Language Resources and Evaluation, LREC 2008*. 6.

Forestal LH. 2001. A study of deaf leaders’ attitudes towards sign language interpreters and interpreting. Ph.D. Thesis. United States–New York: New York University.

Johnston T, Schembri A. 2007. *Australian Sign Language (Auslan): An introduction to sign language linguistics*. Cambridge University Press.

Katyal A, Kaur A, Gill J. 2014. Automatic speech recognition: a review. *Automatic Speech Recognition* 3:71–74.

Kim J-S, Jang W, Bien Z. 1996. A dynamic gesture recognition system for the Korean Sign Language (KSL). *IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)* 26(2):354–359 DOI 10.1109/3477.485888.

Kishore PVV, Kumar PR, Kumar EK, Kishore SRC. 2011. Video audio interface for recognizing gestures of Indian Sign Language. *International Journal of Image Processing (IJIP)* 5(4):479.
Luqman H, Mahmoud SA. 2019. Automatic translation of Arabic text-to-Arabic Sign Language. *Universal Access in the Information Society* 18(4):939–951 DOI 10.1007/s10209-018-0622-8.

Mahmood MR, Abdulazeez AM. 2019. Different model for hand gesture recognition with a novel line feature extraction. In: 2019 International Conference on Advanced Science and Engineering (ICOASE). 52–57.

Martinez AM, Wilbur RB, Shay R, Kak AC. 2002. Purdue RVL-SLL ASL database for automatic recognition of American Sign Language. In: *Proceedings. Fourth IEEE International Conference on Multimodal Interfaces*. Piscataway: IEEE, 167–172.

Mohammdi H, Elbourhamy D. 2021. An intelligent system to help deaf students learn Arabic Sign Language. *Interactive Learning Environments* 8(4):1–16 DOI 10.1080/10494820.2021.1920431.

Paudyal P, Lee J, Banerjee A, Gupta SKS. 2017. DyFAV: dynamic feature selection and voting for real-time recognition of fingerspelled alphabet using wearables. In: *Proceedings of the 22nd International Conference on Intelligent User Interfaces*. Limassol Cyprus: ACM, 457–467 DOI 10.1145/3025171.3025216.

Porfiri AJ, Wiggers KL, Oliveira LES, Weingaertner D. 2013. LIBRAS Sign Language hand configuration recognition based on 3D meshes. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 1588–1593.

Pradhan I, Mishra SP, Nayak AK. 2020. A collation of machine translation approaches with exemplified comparison of Google and Bing translators. In: Gunjan VK, Garcia Diaz V, Cardona M, Solanki VK, Sunita KVN, eds. *ICICCT, 2019—System Reliability, Quality Control, Safety, Maintenance and Management*. Singapore: Springer, 854–860.

Saksamudre S, Deshmukh R. 2015. Isolated word recognition system for Hindi Language. *International Journal of Computer Sciences and Engineering* 3(7):110–114.

Saudi Association For Hearing Impairment. 2018. *Saudi Sign Language dictionary*. Riyadh: Saudi Association For Hearing Impairment.

Schechter S. 2014. What is gesture recognition? Gesture recognition defined. Available at https://www.marxentlabs.com/what-is-gesture-recognition-defined/ (accessed 4 August 2021).

Schembri A, Fenlon J, Rentelis R, Reynolds S, Cormier K. 2013. Building the British Sign Language corpus. *Language Documentation & Conservation* 7:136–154.

Shohieb SM, Elminir HK, Riad AM. 2015. SignsWorld Atlas; a benchmark Arabic Sign Language database. *Journal of King Saud University-Computer and Information Sciences* 27(1):68–76 DOI 10.1016/j.jksuci.2014.03.011.

Sidig AAI, Luqman H, Mahmoud S, Mohandes M. 2021. KArSL: Arabic Sign Language database. *ACM Transactions on Asian and Low-Resource Language Information Processing* 20:1–19 DOI 10.1145/3423420.

Team Mind Rockets. 2017. Mind Rockets Inc, assistive technologies for the deaf. Available at http://mindrocketsinc.com (accessed 08 Nov 2018).

VEGAS. 2022. VEGAS Creative Software. Available at https://www.vegascreativesoftware.com/au/?AffiliateID=152&phash=1CwYydNHuMFgYKgKFCHUTxcNc9eZjkoAgZENGvBd26E9EAZBoCV-8QAvD_BwE (accessed 28 July 2021).

Verma VK, Srivastava S, Kumar N. 2015. A comprehensive review on automation of Indian sign language. In: 2015 International Conference on Advances in Computer Engineering and Applications. 138–142 DOI 10.1109/ICACEA.2015.7164682.
Viera AJ, Garrett JM. 2005. Understanding interobserver agreement: the Kappa statistic. *Family Medicine* 37(5):360–363.

Vimala C, Radha V. 2012. A review on speech recognition challenges and approaches. *doaj. org* 2(1):1–7.

Yankayış M, Ensari T, Aydin N. 2018. Performance evaluation of feature extraction and modeling methods for speaker recognition. *4*(3):555639.