HOMOGENEOUS BETA-TYPE FUNCTIONS

MARTIN HIMMEL AND JANUSZ MATKOWSKI

Abstract. All beta-type functions, i.e. the functions $B_f : (0, \infty)^2 \to (0, \infty)$ of the form

$$B_f (x, y) = \frac{f (x) f (y)}{f (x + y)}, \quad x, y > 0,$$

for some $f : (0, \infty) \to (0, \infty)$, which are p-homogeneous, are determined. Applying this result, we show that a beta-type function is a homogeneous mean iff it is the harmonic one. A reformulation of a result due to Heuvers in terms of a Cauchy difference and the harmonic mean is given.

1. Introduction

For a given $f : (0, \infty) \to (0, \infty)$, the function $B_f : (0, \infty)^2 \to (0, \infty)$ defined by

$$B_f (x, y) = \frac{f (x) f (y)}{f (x + y)}, \quad x, y > 0,$$

is called the beta-type function, and f is called its generator (2). The notion the beta-type function arises from the well-known relation between the Euler Beta function $B : (0, \infty)^2 \to (0, \infty)$ and the Euler Gamma function $\Gamma : (0, \infty) \to (0, \infty)$

$$B (x, y) = \frac{\Gamma (x) \Gamma (y)}{\Gamma (x + y)}, \quad x, y > 0.$$

Given $p \in \mathbb{R}$, we examine when the beta-type function B_f is p-homogeneous, i.e. when

$$B_f (tx, ty) = t^p B_f (x, y), \quad x, y > 0.$$

Theorem 1, the main result, says that, under some regularity assumptions of the generator f, the beta-type function is p-homogeneous if, and only if, there exist $a, b > 0$ such that $f (x) = b x a^x$ for all $x > 0$. As a corollary we obtain that a beta-type function is a homogeneous pre-mean if, and only if, there exists $a > 0$ such that $f (x) = 2 x a^x$ for all $x > 0$, or, equivalently, that B_f is the harmonic mean, that is $B_f = H$, where

$$H (x, y) = \frac{2xy}{x+y}, \quad x, y > 0.$$

A related companion of the beta-type function is the Cauchy difference $C_g : (0, \infty)^2 \to \mathbb{R}$ defined by

$$C_g (x, y) = g (x + y) - g (x) - g (y).$$

2010 Mathematics Subject Classification. Primary: 33B15, 26B25, 39B22.

Keywords and phrases: Beta function, Gamma function, beta-type function, pre-mean, mean, homogeneity, functional equation.
for a function $g : (0, \infty) \to \mathbb{R}$. The relationship

$$B_f = \exp \circ (-C_{\log f})$$

allows to reformulate Theorem 1 in terms of logarithmical homogeneity of the Cauchy difference (Corollary 3).

At the end we remark that Heuvers result [4] on a characterization of logarithmic functions can be reformulated in terms of the Cauchy difference and the harmonic mean.

2. Main result

Theorem 1. Let a function $f : (0, \infty) \to (0, \infty)$ be continuous or Lebesgue measurable. Then the following conditions are equivalent:

(i) the beta-type function B_f is p-homogeneous, i.e.

$$B_f (tx, ty) = t^p B_f (x, y), \quad x, y, t > 0;$$

(ii) there exist $a, b \in (0, \infty)$ such that

$$f(x) = bxa^x, \quad x > 0$$

and

$$B_f (x, y) = b \left(\frac{xy}{x+y} \right)^p, \quad x, y > 0.$$

Proof. Assume (i) holds. Hence, by the definition of B_f, we have

$$\frac{f(tx) f(ty)}{f(t(x+y))} = t^p f(x) f(y), \quad x, y, t > 0,$$

which can be written in the form

$$\frac{f(t(x+y))}{t^p f(x+y)} = \frac{f(tx)}{t^p f(x)} \frac{f(ty)}{t^p f(y)}, \quad x, y, t > 0.$$

For every fixed $t > 0$ define $\varphi_t : (0, \infty) \to (0, \infty)$ by

$$\varphi_t (x) := \frac{f(tx)}{t^p f(x)}, \quad x > 0.$$

Thus, from (2.2), for arbitrary fixed $t > 0$, it holds

$$\varphi_t (x+y) = \varphi_t (x) \varphi_t (y), \quad x, y > 0,$$

stating that φ_t is an exponential function. Hence (see, for instance, [1] p. 39), for every $t > 0$, there exists a unique additive function $\alpha_t : \mathbb{R} \to \mathbb{R}$ such that

$$\varphi_t (x) = e^{\alpha_t(x)}, \quad x > 0.$$

From the definition of φ_t, we have

$$e^{\alpha_t(x)} t^p f(x) = f(tx), \quad x > 0.$$

Since the right hand side is symmetric in x and t, so is the left hand side; thus

$$e^{\alpha_t(x)} x^p f(t) = f(xt) = f(tx) = e^{\alpha_t(x)} t^p f(x), \quad x, t > 0.$$

Setting here $t = 1$ gives

$$e^{\alpha_1(x)} f(x) = f(x) = e^{\alpha_1(1)} x^p f(1), \quad x > 0,$$

and as, by assumption, f is positive, it follows that

$$\alpha_1 (x) = 0, \quad x > 0.$$
and, consequently,

\[f(x) = f(1) x^p e^{\alpha(1)}, \quad x > 0. \]

Putting, for convenience, \(\lambda : (0, \infty) \to \mathbb{R}, \)

\[\lambda(x) := \alpha_x(1), \quad x > 0, \]

we have

(2.3) \[f(x) = f(1) x^p e^{\lambda(x)}, \quad x > 0. \]

Inserting this into (2.1), we obtain,

\[
\begin{align*}
\frac{f(1)(tx)^p e^{\lambda(tx)} f(1)(ty)^p e^{\lambda(ty)}}{f(1)(t(x+y))^p e^{\lambda(t(x+y))}} &= t^p \frac{f(1)x^p e^{\lambda(x)} f(1)y^p e^{\lambda(y)}}{f(1)(x+y)^p e^{\lambda(x+y)}}, \quad x, y, t > 0,
\end{align*}
\]

that reduces to

\[e^{\lambda(tx) + \lambda(ty) - \lambda(t(x+y))} = e^{\lambda(x) + \lambda(y) - \lambda(x+y)}, \quad x, y, t > 0, \]

whence

\[\lambda(tx) + \lambda(ty) - \lambda(t(x+y)) = \lambda(x) + \lambda(y) - \lambda(x+y), \quad x, y, t > 0. \]

Writing this in the form

\[\lambda(t(x+y)) - \lambda(x+y) = [\lambda(tx) - \lambda(x)] + [\lambda(ty) - \lambda(y)], \quad x, y, t > 0, \]

we conclude that, for any \(t > 0, \) the function \(\omega = \omega_t : (0, \infty) \to \mathbb{R}, \) defined by

(2.4) \[\omega(x) := \lambda(tx) - \lambda(x), \quad x > 0, \]

is additive. From (2.3) and the assumed regularity of \(f \) we get that \(\omega \) is continuous or Lebesgue measurable. Thus, \(\omega, \) being additive and continuous or measurable, is of the form \([6], \) p. 129, see also [4]

\[\omega(x) = \omega(1)x, \quad x > 0, \]

and hence, by (2.4),

\[\lambda(tx) - \lambda(x) = (\lambda(t) - \lambda(1))x, \quad x, t > 0, \]

whence

\[\lambda(tx) = \lambda(x) + (\lambda(t) - \lambda(1))x, \quad x, t > 0. \]

The symmetry in \(t \) and \(x \) of the left hand side implies that

\[\lambda(x) + (\lambda(t) - \lambda(1))x = \lambda(t) + (\lambda(x) - \lambda(1))t, \quad x, t > 0, \]

whence

\[\lambda(x)(1-t) + \lambda(1)t = \lambda(t)(1-x) + \lambda(1)x, \quad x, t > 0. \]

Subtracting \(\lambda(1) \) from both sides yields

\[\lambda(x)(1-t) + \lambda(1)t - \lambda(1) = \lambda(t)(1-x) + \lambda(1)x - \lambda(1), \quad x, t > 0, \]

whence

\[\lambda(x)(1-t) - \lambda(1)(1-t) = \lambda(t)(1-x) - \lambda(1)(1-x), \quad x, t > 0, \]

and, consequently,

\[
\frac{\lambda(x) - \lambda(1)}{1-x} = \frac{\lambda(t) - \lambda(1)}{1-t}, \quad x, t > 0, \quad x \neq 1 \neq y.
\]
It follows that there exists $c \in \mathbb{R}$ such that
\[
\frac{\lambda(x) - \lambda(1)}{1 - x} = -c, \quad x > 0, x \neq 1,
\]
whence,
\[
\lambda(x) = c(x - 1) + \lambda(1), \quad x > 0,
\]
and we obtain
\[
\lambda(x) = cx + d, \quad x > 0,
\]
where $d := \lambda(1) - c$. Inserting this function λ into (2.3), we obtain
\[
f(x) = f(1) e^{dx} (e^{c})^x, \quad x > 0,
\]
whence, setting
\[
a := e^c, \quad b := f(1) e^d,
\]
we get
\[
f(x) = bx^a, \quad x > 0,
\]
and
\[
B_f(x, y) = b \left(\frac{xy}{x + y} \right)^p, \quad x, y > 0,
\]
which proves (ii). The implication (ii) \implies (i) is obvious.

3. Applications to pre-means

Definition 1. Let $I \subseteq \mathbb{R}$ be an interval and $M : I^2 \to \mathbb{R}$. The M is reflexive, if
\[
M(x, x) = x, \quad x \in I;
\]
M is called a pre-mean in I (\mathbb{R}), if it is reflexive and $M(I^2) \subseteq I$;
M is called a mean in I, if
\[
\min(x, y) \leq M(x, y) \leq \max(x, y), \quad x, y \in I.
\]

Remark 1. If $M : I^2 \to \mathbb{R}$ is reflexive, then $I \subseteq M(I^2)$; so a reflexive function is a pre-mean if, and only if, $M(I^2) = I$.

Remark 2. Obviously, every mean is a pre-mean, but, in general, not vice versa. Indeed, the function $M : (0, \infty)^2 \to (0, \infty)$ defined by
\[
M(x, y) = \frac{2x^2 + y^2}{x + 2y}
\]
is a pre-mean. Since $M(2, 1) = 3 \notin [2, 1]$ the function is not a mean. So M is not increasing in both variables because, otherwise, it would be a mean.

Remark 3. If $M : (0, \infty)^2 \to \mathbb{R}$ is reflexive and, for some $p \in \mathbb{R}$, p-homogenous, then $p = 1$.

Corollary 1. Let $f : (0, \infty) \to (0, \infty)$ be a continuous function. Then the following conditions are equivalent:
(i) the beta-type function B_f is a homogeneous pre-mean;
(ii) there exists $a \in (0, \infty)$ such that
\[
(3.1) \quad f(x) = 2xa^x, \quad x > 0;
\]
(iii) the beta-type function coincides with the harmonic mean, i.e.
\[
B_f(x, y) = \frac{2xy}{x + y}, \quad x, y > 0.
\]
Proof. Assume (i). By Theorem 1 and remark 3 its generator f is of the form

$$f(x) = bxa^x, \quad x > 0,$$

for some $a, b \in (0, \infty)$. Since $B_f(x, x) = x$ for all $x \in (0, \infty)$.

Substituting here $x = 2$ and using Theorem 1 (ii), yields

$$2 = B_f(2, 2) = \frac{f(2)f(2)}{f(2+2)} = \frac{b \cdot 2}{2+2} = b,$$

whence we get (3.1), which proves (ii).

Assume (ii). From (3.1) and the definition of B_f we get (iii).

The implication (iii) \implies (i) is obvious.

Because every homogeneous quasi-arithmetic mean is a power mean (2, p. 249), our result implies the following

Corollary 2. A homogeneous beta-type function is a quasi-arithmetic mean if, and only if, it is the harmonic mean.

For another result connecting harmonic mean and the Euler Gamma function see [3].

4. Cauchy Differences and a Corollary

Applying our main result, we obtain the following

Corollary 3. Let $g : (0, \infty) \to \mathbb{R}$ be an arbitrary continuous function and let $p \in \mathbb{R}$. The following conditions are equivalent:

(i) the Cauchy difference is $p \log t$-homogeneous, that is

$$C_g(tx, ty) = C_g(x, y) + p \log t, \quad x, y, t > 0;$$

(ii) there exist $c, d \in \mathbb{R}$ such that

$$g(x) = cx + d - p \log t, \quad x > 0$$

and

$$C_g(x, y) = \log \left(\frac{xy}{x+y} \right)^p - d, \quad x, y > 0.$$

Proof. Setting $f := \exp \circ g$, we observe that condition (i) is equivalent to

$$B_f(tx, ty) = t^{-p}B_f(x, y), \quad x, y, t > 0,$$

since, using the definition of beta-type function, we have, for all $x, y > 0$,

$$e^{g(tx)+g(ty)-g(t(x+y))} = t^{-p}e^{g(x)+g(y)-g(x+y)}.$$

Taking the logarithm of both sides, we indeed obtain

$$-C_g(tx, ty) = \log t^{-p} - C_g(x, y), \quad x, y > 0,$$

and thus g satisfies (4.1).

By Theorem 1, there exist $a, b > 0$

$$f(x) = bx^{-p}a^x, \quad x > 0.$$

Thus, by the definition of f, we get, for all $x > 0$,

$$g(x) = \log b + p \log x + x \log a;$$

HOMOGENEOUS BETA-TYPE FUNCTIONS 5

Proof. Assume (i). By Theorem 1 and remark 3 its generator f is of the form

$$f(x) = bxa^x, \quad x > 0,$$

for some $a, b \in (0, \infty)$. Since $B_f(x, x) = x$ for all $x \in (0, \infty)$.

Substituting here $x = 2$ and using Theorem 1 (ii), yields

$$2 = B_f(2, 2) = \frac{f(2)f(2)}{f(2+2)} = \frac{b \cdot 2}{2+2} = b,$$

whence we get (3.1), which proves (ii).

Assume (ii). From (3.1) and the definition of B_f we get (iii).

The implication (iii) \implies (i) is obvious.

Because every homogeneous quasi-arithmetic mean is a power mean (2, p. 249), our result implies the following

Corollary 2. A homogeneous beta-type function is a quasi-arithmetic mean if, and only if, it is the harmonic mean.

For another result connecting harmonic mean and the Euler Gamma function see [3].

4. Cauchy Differences and a Corollary

Applying our main result, we obtain the following

Corollary 3. Let $g : (0, \infty) \to \mathbb{R}$ be an arbitrary continuous function and let $p \in \mathbb{R}$. The following conditions are equivalent:

(i) the Cauchy difference is $p \log t$-homogeneous, that is

$$C_g(tx, ty) = C_g(x, y) + p \log t, \quad x, y, t > 0;$$

(ii) there exist $c, d \in \mathbb{R}$ such that

$$g(x) = cx + d - p \log t, \quad x > 0$$

and

$$C_g(x, y) = \log \left(\frac{xy}{x+y} \right)^p - d, \quad x, y > 0.$$

Proof. Setting $f := \exp \circ g$, we observe that condition (i) is equivalent to

$$B_f(tx, ty) = t^{-p}B_f(x, y), \quad x, y, t > 0,$$

since, using the definition of beta-type function, we have, for all $x, y > 0$,

$$e^{g(tx)+g(ty)-g(t(x+y))} = t^{-p}e^{g(x)+g(y)-g(x+y)}.$$

Taking the logarithm of both sides, we indeed obtain

$$-C_g(tx, ty) = \log t^{-p} - C_g(x, y), \quad x, y > 0,$$

and thus g satisfies (4.1).

By Theorem 1, there exist $a, b > 0$

$$f(x) = bx^{-p}a^x, \quad x > 0.$$

Thus, by the definition of f, we get, for all $x > 0$,

$$g(x) = \log b + p \log x + x \log a;$$
whence, putting $c := \log a$ and $d := \log b$, we obtain,

$$g(x) = cx + d + p \log x, \quad x > 0,$$

and consequently, for all $x, y > 0$,

$$C_g(x, y) = g(x + y) - g(x) - g(y)$$

$$= \log \left(\frac{xy}{x + y}\right)^p - d,$$

which proves the implication $(i) \implies (ii)$.

The second implication is easy to verify. □

In connection with Cauchy differences and harmonic mean, let us note that Heuvers result [4] (see also Kannappan [5], p. 31) can be reformulated as

Remark 4. The Cauchy difference of a function $f : (0, \infty) \to \mathbb{R}$ satisfies the functional equation

$$C_f(x, y) = f \left(\frac{2}{H(x, y)}\right), \quad x, y > 0$$

if, and only if, f is a logarithmic function, i.e.

$$f(xy) = f(x) + f(y), \quad x, y > 0.$$

References

[1] J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New York and London, 1966.

[2] J. Aczél, J. G. Dhombres, Functional Equations in Several Variables, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1989.

[3] H. Alzer, A harmonic mean inequality for the Gamma function, J. Comput. Appl. Math. 87 (1997), 195-198.

[4] K. J. Heuvers, Another logarithmic functional equation, Aeq. Math., 58 (1999), 260-264.

[5] Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, Springer, New York, 2009.

[6] M. Kuczma, A. Gilányi, An Introduction to the Theory of Functional Equations and Inequalities, 2009, Birkhäuser Verlag AG, Basel – Boston – Berlin.

[7] M. Himmel, J. Matkowski, Directional convexity and characterizations of Beta and Gamma functions (submitted).

[8] J. Matkowski, Convergence of iterates of pre-mean type mappings, ESAIM: Proceedings and Surveys, ECTT 2012. Witold Jarczyk, Daniele Fournier-Prunaret, João Manuel Gonçalves Cabral, November 2014, Vol. 46, 196-228.

Current address: Faculty of Mathematics, Computer Science and Econometrics University of Zielona Góra, Szafrana 4A, PL 65-516 Zielona Góra, Poland
E-mail address: himmel@mathematik.uni-mainz.de

Current address: Faculty of Mathematics, Computer Science and Econometrics University of Zielona Góra, Szafrana 4A, PL 65-516 Zielona Góra, Poland
E-mail address: J.Matkowski@wmie.uz.zgora.pl