SOME PROPERTIES OF GENERALIZED LOCAL COHOMOLOGY MODULES WITH RESPECT TO A PAIR OF IDEALS

TRAN TUAN NAM AND NGUYEN MINH TRI

Abstract. We introduce a notion of generalized local cohomology modules with respect to a pair of ideals \((I, J)\) which is a generalization of the concept of local cohomology modules with respect to \((I, J)\). We show that generalized local cohomology modules \(H^i_{I,J}(M, N)\) can be computed by the Čech cohomology modules. We also study the artinianness of generalized local cohomology modules \(H^i_{I,J}(M, N)\).

Key words: generalized local cohomology, artinianness.
2000 Mathematics subject classification: 13D45.

1. Introduction

Throughout this paper, \(R\) is a noetherian commutative (non-zero identity) ring. In [10], Takahashi, Yoshino and Yoshizawa introduced the local cohomology modules with respect to a pair of ideals \((I, J)\). For an \(R\)-module \(M\), the \((I, J)\)-torsion submodule of \(M\) is \(\Gamma_{I,J}(M) = \{x \in M | I^n x \subseteq Jx \text{ for some positive integer } n\}\). \(\Gamma_{I,J}\) is a covariant functor from the category of \(R\)-modules to itself. The \(i\)-th local cohomology functor \(H^i_{I,J}\) with respect to \((I, J)\) is defined to be the \(i\)-th right derived functor of \(\Gamma_{I,J}\). When \(J = 0\), the \(H^i_{I,J}\) coincides with the usual local cohomology functor \(H^i_I\).

For two \(R\)-modules \(M\) and \(N\), we define \(\Gamma_{I,J}(M, N)\) to be the \((I, J)\)-torsion submodule of \(\text{Hom}_R(M, N)\). For each \(R\)-module \(M\), there is a covariant functor \(\Gamma_{I,J}(M, -)\) from the category of \(R\)-modules to itself. The \(i\)-th generalized local cohomology functor \(H^i_{I,J}(M, -)\) with the respect to pair of ideals \((I, J)\) is the \(i\)-th right derived functor of \(\Gamma_{I,J}(M, -)\). This definition is really a generalization of the local cohomology functors \(H^i_{I,J}\) with respect to \((I, J)\).

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED).
The organization of the paper is as follows. In the next section, we study some elementary properties of generalized local cohomology modules with respect to a pair of ideals \((I, J)\). We also show that generalized local cohomology modules \(H^i_{I,J}(M, N)\) can be computed by Čech cohomology modules (Theorem 2.8).

The last section is devoted to study the artinianness of local cohomology modules \(H^i_{I,J}(M, N)\). In Theorem 3.1 we prove that if \(M, N\) are two finitely generated \(R\)-modules with \(p = \text{pd}(M)\) and \(d = \dim(N)\), then \(H^{p+d}_{I,J}(M, N) \cong \text{Ext}^p_R(M, H^d_{I,J}(N))\) and \(H^{p+d}_{I,J}(M, N)\) is an artinian \(R\)-module. Theorem 3.2 shows that if \(M\) is a finitely generated \(R\)-module and \(H^i_{I,J}(N)\) is artinian for all \(i < t\), then \(H^i_{I,J}(M, N)\) is artinian for all \(i < t\). On the other hand, \(\text{Ext}^i_R(R/\mathfrak{a}, N)\) is also artinian for all \(i < t\) and for all \(\mathfrak{a} \in \tilde{W}(I, J)\).

Let \(I, J\) be two ideals of the local ring \((R, \mathfrak{m})\) such that \(\sqrt{I+J} = \mathfrak{m}\) and \(M, N\) are two finitely generated \(R\)-modules with \(\dim(N) < \infty\). If \(H^i_{I,J}(M, N)\) is an artinian \(R\)-module for all \(i > t\), then \(H^i_{I,J}(M, N)/JH^i_{I,J}(M, N)\) is also an artinian \(R\)-module (Theorem 3.4). This section is closed by Theorem 3.7 which says that \(H^i_{I,J}(M, N)\) is artinian for all \(i \geq 0\) provided \(M\) is a finitely generated \(R\)-module and \(N\) is an artinian \(R\)-module.

2. Some basic properties of generalized local cohomology modules with respect to a pair of ideals

Let \(I, J\) be two ideals of \(R\). For an \(R\)-module \(M\), the \((I, J)\)-torsion submodule of \(M\) is

\[\Gamma_{I,J}(M) = \{ x \in M | I^n x \subset Jx \text{ for some positive integer } n \} \]

We introduce the following definition.

Definition 2.1. For two \(R\)-modules \(M, N\) we denote by \(\Gamma_{I,J}(M, N)\) the following module

\[\Gamma_{I,J}(M, N) = \Gamma_{I,J}(\text{Hom}_R(M, N)). \]

In the special case \(M = R\), \(\Gamma_{I,J}(R, N) = \Gamma_{I,J}(N)\) the \((I, J)\)-torsion submodule of \(N\). Note that an element \(f \in \Gamma_{I,J}(M, N)\) if and only if there is an integer \(n > 0\) such that \(I^n f(x) \subset Jf(x)\) for all \(x \in M\).

For each \(R\)-module \(M\), \(\Gamma_{I,J}(M, -)\) is a left exact covariant functor from the category of \(R\)-modules to itself.

Let us denote by \(H^i_{I,J}(M, -)\) the \(i\)-th right derived functor of \(\Gamma_{I,J}(M, -)\) and call the \(i\)-th generalized local cohomology functor with the respect to pair of ideals \((I, J)\).
Theorem 2.2. Let M be a finitely generated R-module and N an R-module. Then

$$\Gamma_{I,J}(M,N) = \text{Hom}_R(M, \Gamma_{I,J}(N)).$$

Proof. If $f \in \Gamma_{I,J}(M,N)$, there exists an integer $n > 0$ such that $I^n f(x) \subset Jf(x)$ for all $x \in M$. Since $f(x) \in N$, we get $f(x) \in \Gamma_{I,J}(N)$ for all $x \in M$ and then $f \in \text{Hom}_R(M, \Gamma_{I,J}(N))$.

Let $f \in \text{Hom}_R(M, \Gamma_{I,J}(N))$. Assume that x_1, x_2, \ldots, x_m are generators of M.

Since $f(x_i) \in \Gamma_{I,J}(N)$, there exist an integer n_i such that $I^{n_i} f(x_i) \subset Jf(x_i)$ for $i = 1, 2, \ldots, m$.

Set $n = n_1n_2 \ldots n_m$, then $I^n f(x_i) \subset Jf(x_i)$ for all $i = 1, 2, \ldots, m$.

It follows $I^n f(x) \subset Jf(x)$ for all $x \in M$. So $I^n f \subset Jf$ and then $f \in \Gamma_{I,J}(\text{Hom}_R(M,N)) = \Gamma_{I,J}(M,N)$. \qed

Note that in [11] Zamani introduced another definition of local cohomology functors $H_{I,J}$ as follow

$$H_{I,J}^i(M,N) = H^i(\text{Hom}_R(M, \Gamma_{I,J}(E^\bullet)))$$

for all $i \geq 0$, where E^\bullet is an injective resolution of R-module N. Thus from 2.2 we see that our definition is coincident with Zamani’s one.

We have a property of the set of associated primes of $\Gamma_{I,J}(M,N)$.

Corollary 2.3. Let M be a finitely generated R-module and N an R-module. Then

$$\text{Ass}(\Gamma_{I,J}(M,N)) = \text{Supp}(M) \cap \text{Ass}(N) \cap W(I, J).$$

Proof. Since M is a finitely generated R-module, $\text{Ass}(\text{Hom}_R(M,K)) = \text{Supp}(M) \cap \text{Ass}(K)$ for all R-modules K. By [2.2] we have

$$\text{Ass}(\Gamma_{I,J}(M,N)) = \text{Ass}(\Gamma_{I,J}(\text{Hom}_R(M,N)))$$

$$= \text{Ass}(\text{Hom}_R(M, \Gamma_{I,J}(N)))$$

$$= \text{Supp}(M) \cap \text{Ass}(\Gamma_{I,J}(N))$$

$$= \text{Supp}(M) \cap \text{Ass}(N) \cap W(I, J)$$

as required. \qed

The following proposition is an extension of [10, 1.4].

Proposition 2.4. Let M be a finitely generated R-module and N an R-module. Let I, I', J, J' be ideals of R. Then

(i) $\Gamma_{I,J}(\Gamma_{I',J'}(M,N)) = \Gamma_{I',J'}(\Gamma_{I,J}(M,N))$.

(ii) If $I \subseteq I'$, then $\Gamma_{I,J}(M,N) \supseteq \Gamma_{I',J}(M,N)$.

(iii) If \(J \subseteq J' \), then \(\Gamma_{I,J}(M, N) \subseteq \Gamma_{I,J'}(M, N) \).

(iv) \(\Gamma_{I,J} (\Gamma_{I',J'}(M, N)) = \Gamma_{I+I',J'}(M, N) \).

(v) \(\Gamma_{I,J} (\Gamma_{I,J'}(M, N)) = \Gamma_{I,J\cap J'}(M, N) \). Moreover, \(H^i_{I,J'}(M, N) = H^i_{I,J}(M, N) \) for all \(i \).

(vi) If \(J' \subseteq J \), then \(\Gamma_{I+J',J}(M, N) = \Gamma_{I,J}(M, N) \). Moreover, \(\Gamma_{I+J,J}(M, N) = \Gamma_{I,J}(M, N) \) and \(H^i_{I+J,J}(M, N) = H^i_{I,J}(M, N) \) for all \(i \).

(vii) If \(\sqrt{I} = \sqrt{I'} \), then \(H^i_{I,J}(M, N) = H^i_{I,J'}(M, N) \) for all \(i \). In particular, \(H^i_{I,J}(M, N) = H^i_{\sqrt{I},J}(M, N) \) for all \(i \).

(viii) If \(\sqrt{J} = \sqrt{J'} \), then \(H^i_{I,J}(M, N) = H^i_{I,J'}(M, N) \) for all \(i \).

Proof. We only prove (i), the others are similar.

Combining [10, 1.4] and [22] we have

\[
\Gamma_{I,J} (\Gamma_{I',J'}(M, N)) = \Gamma_{I,J} (\text{Hom}_R(M, \Gamma_{I',J'}(N)))
= \text{Hom}_R(M, \Gamma_{I,J}(\Gamma_{I',J'}(N)))
= \text{Hom}_R(M, \Gamma_{I,J'}(\Gamma_{I,J}(N)))
= \Gamma_{I',J'}(\Gamma_{I,J}(M, N))
\]

as required. \(\square \)

Lemma 2.5. If \(E \) is an injective \(R \)-module, then \(\Gamma_{I,J}(E) \) is also injective.

Proof. From [10, 3.2] we have

\[
\Gamma_{I,J}(E) \cong \lim_{a \in \tilde{W}(I,J)} \Gamma_a(E),
\]

where \(\tilde{W}(I,J) \) is the set of ideals \(a \) of \(R \) such that \(I^n \subseteq a + J \) for some integer \(n \).

Since \(E \) is an injective \(R \)-module, \(\Gamma_a(E) \) is also injective. Moreover, \(R \) is a Noetherian ring, then the direct limit of injective modules is injective. Therefore we have the conclusion. \(\square \)

It is well-known that \(H^i_I(M, N) \cong \text{Ext}^i_R(M, N) \), where \(N \) is an \(I \)-torsion \(R \)-module. The following proposition gives a similar result when \(N \) is \((I,J)\)-torsion.

Proposition 2.6. Let \(N \) be an \((I,J)\)-torsion \(R \)-module. Then

\[
H^i_{I,J}(M, N) \cong \text{Ext}_R^i(M, N)
\]

for all \(i \geq 0 \).
Proof. From \cite[1.12]{10} there exists an injective resolution E^\bullet of N such that each term is an (I, J)-torsion R-module. Then we have by \ref{7.2}

$$H^i_{I, J}(M, N) \cong H^i(\text{Hom}_R(M, \Gamma_{I, J}(E^\bullet)))$$

$$\cong H^i(\text{Hom}_R(M, E^\bullet))$$

$$= \text{Ext}^i_R(M, N)$$

for all $i \geq 0$. \hfill \square

When N is a J-torsion R-module, we have the following proposition.

Proposition 2.7. If N is a J-torsion R-module, then

$$H^i_{I, J}(M, N) \cong H^i_I(M, N)$$

for all $i \geq 0$.

Proof. It is obvious that $\Gamma_I(N) \subset \Gamma_{I, J}(N)$. Let $x \in \Gamma_{I, J}(N)$, there exist integers n, k such that $I^n x \subset Jx$ and $J^k x = 0$. Hence $I^{nk} x = 0$ and then $x \in \Gamma_I(N)$. Thus $\Gamma_{I, J}(N) = \Gamma_I(N)$.

It remains to prove that $\Gamma_{I, J}(M, N) \cong \Gamma_I(M, N)$. From \ref{2.2} we have

$$\Gamma_{I, J}(M, N) = \text{Hom}_R(M, \Gamma_{I, J}(N))$$

$$= \text{Hom}_R(M, \Gamma_I(N))$$

$$\cong \Gamma_I(M, N).$$

By the property of derived functors, we obtain $H^i_{I, J}(M, N) \cong H^i_I(M, N)$ for all $i \geq 0$. \hfill \square

Let J be an ideal of R. For an element $a \in R$ the set

$$S_{a,J} = \{a^n + j \mid n \in \mathbb{N}, j \in J\}$$

is a multiplicatively closed subset of R \cite[2.1]{10}. Let M be a finitely generated R-module. Denote by $M_{a,J}$ the module of fractions of the R-module M with respect to $S_{a,J}$. The complex $C_{a,J}^\bullet$ was given by

$$C_{a,J}^\bullet : 0 \to R \to R_{a,J} \to 0.$$

For a sequence $a = \{a_1, a_2, \ldots, a_r\}$ of elements of R, the Čech complex $C_{a,J}^\bullet$ was defined as

$$C_{a,J}^\bullet = \bigotimes_{i=1}^r C_{a_i,J}^\bullet$$

$$= \left(0 \to R \to \prod_{i=1}^r R_{a_i,J} \to \prod_{i<j} (R_{a_i,J})_{a_j,J} \to \cdots \to (\cdots (R_{a_2,J}) \cdots)_{a_r,J} \to 0\right).$$
In [10, 2.4], there is a natural isomorphism $H^i_{I,J}(M) \cong H^i(C^\bullet_{a,J} \otimes_R M)$, where $a = \{a_1, a_2, \ldots, a_r\}$ is a sequence of elements of R that generates I.

Let

$$F_\bullet : \cdots \rightarrow F_2 \rightarrow F_1 \rightarrow F_0 \rightarrow M \rightarrow 0$$

be a free resolution of M with the finitely generated free modules.

Apply the functor $\text{Hom}_R(-, N)$ to above resolution, we have a complex

$$\text{Hom}_R(F_\bullet, N) : 0 \rightarrow \text{Hom}_R(M, N) \rightarrow \text{Hom}_R(F_0, N) \rightarrow \text{Hom}_R(F_1, N) \rightarrow \cdots$$

Then there is a bicomplex $C^\bullet_{a,J} \otimes_R \text{Hom}_R(F_\bullet, N) = \{C^p_{a,J} \otimes_R \text{Hom}_R(F_q, N)\}$, where $C^p_{a,J}$ is the p-th position in the Čech complex $C^\bullet_{a,J}$. Thus we get a total complex $\text{Tot}(M, N)$ of bicomplex $C^\bullet_{a,J} \otimes_R \text{Hom}_R(F_\bullet, N)$ where

$$\text{Tot}(M, N)^n = \bigoplus_{p+q=n} C^p_{a,J} \otimes_R \text{Hom}_R(F_q, N).$$

Theorem 2.8. Let M be a finitely generated R-module. Then for all R-modules N and $n \geq 0$,

$$H^n_{I,J}(M, N) \cong H^n(\text{Tot}(M, N)).$$

Proof. It is clear that $\{H^n(\text{Tot}(M, -))\}_n$ and $\{H^n_{I,J}(M, -)\}_n$ are exact connected right sequences of functors.

We next prove that $H^0(\text{Tot}(M, N)) \cong H^0_{I,J}(M, N)$. Consider the homomorphism $d^0 : \text{Tot}(M, N)^0 \rightarrow \text{Tot}(M, N)^1$. As $C^0_{a,J} = R$, we get

$$H^0(\text{Tot}(M, N)) \cong \text{Ker}(\text{Hom}_R(F_0, N) \xrightarrow{d^0} \text{Hom}_R(F_1, N) \oplus (C^1_{a,J} \otimes_R \text{Hom}_R(F_0, N))).$$

Thus

$$H^0(\text{Tot}(M, N)) = \text{Hom}_R(M, N) \bigcap \Gamma_{I,J}(\text{Hom}_R(F_0, N))$$

$$= \Gamma_{I,J}(\text{Hom}_R(M, N)) = H^0_{I,J}(M, N)$$

by [10, 2.3(5)].

The proof is completed by showing that $H^n(\text{Tot}(M, E)) = 0$ for all $n > 0$ and for any injective R-module E. It follows from [8, 10.18] a spectral sequence

$$E^{p,q}_2 = H^p H^q(C^\bullet_{a,J} \otimes_R \text{Hom}_R(F_\bullet, E)) \Rightarrow H^n(\text{Tot}(M, E)).$$

Note that

$$E^{p,q}_1 = H^q(C^\bullet_{a,J} \otimes \text{Hom}_R(F_p, E)).$$
From the proof of [10, 2.4], $H^i(C^a_{\alpha J} \otimes_R E) = 0$ for all $i > 0$ and for any injective R–module E. Note that $\text{Hom}_R(F_q, E)$ is also an injective R-module for all $q \geq 0$. Hence

$$E_{p,q}^1 = \begin{cases}
0, & q > 0 \\
\text{Ker}(\text{Hom}_R(F_p, E) \rightarrow \prod_{i=1}^r \text{Hom}_R(F_p, E)_{a_i,j}), & q = 0.
\end{cases}$$

Combining [10, 2.3(5)] with 2.2 yields

$$\text{Ker}(\text{Hom}_R(F_p, E) \rightarrow \prod_{i=1}^r \text{Hom}_R(F_p, E)_{a_i,j}) \cong \Gamma_{I,J}(\text{Hom}_R(F_p, E)) \cong \text{Hom}_R(F_p, \Gamma_{I,J}(E)).$$

It follows

$$E_{p,q}^2 = \begin{cases}
0, & q > 0 \\
H^n(\text{Hom}_R(F_\bullet, \Gamma_{I,J}(E))), & q = 0.
\end{cases}$$

As $\Gamma_{I,J}(E)$ is an injective R–module, the following sequence is exact

$$\text{Hom}_R(F_\bullet, \Gamma_{I,J}(E)) : 0 \rightarrow \text{Hom}_R(M, \Gamma_{I,J}(E)) \rightarrow \text{Hom}_R(F_0, \Gamma_{I,J}(E)) \rightarrow \text{Hom}_R(F_1, \Gamma_{I,J}(E)) \rightarrow \ldots.$$

Thus $E_{p,0}^2 = 0$ for all $p > 0$. From [8, 10.21 (ii)] we get

$$H^n(\text{Tot}(M, E)) \cong E_{2,n,0}^n = 0$$

for all $n > 0$. The proof is complete. \qed

3. On artinianness of generalized local cohomology modules with respect to a pair of ideals

We have the following theorem.

Theorem 3.1. Assume that (R, m) is a local ring. Let M, N be two finitely generated R–modules with $r = \text{pd}(M)$ and $d = \text{dim}(N)$. Then

$$H^{r+d}_{I,J}(M, N) \cong \text{Ext}^r_R(M, H^d_{I,J}(N)).$$

Moreover $H^{r+d}_{I,J}(M, N)$ is an artinian R–module.
Proof. Let $G(-) = \Gamma_{I,J}(-)$ and $F(-) = \text{Hom}_R(M,-)$ be functors from category of R-modules to itself. Then $FG = \Gamma_{I,J}(M,-)$ and F is left exact. For any injective module E

$$R^i F(G(E)) = R^i \text{Hom}_R(M, \Gamma_{I,J}(E)) = 0$$

for all $i > 0$, as $\Gamma_{I,J}(E)$ is an injective R-module. By [8, 10.47] there is a Grothendieck spectral sequence

$$E^{pq}_2 = \text{Ext}^p_R(M, H^q_{I,J}(N)) \Rightarrow H^{p+q}_{I,J}(M, N).$$

We now consider the homomorphisms of the spectral

$$E^r_k = E^{r-k,d+k-1}_k \rightarrow E^r_d \rightarrow E^{r+k,d+1-k}_k.$$

We have $H^q_{I,J}(N) = 0$ for all $q > d$ by [10, 4.7]. Then $E^{pq}_2 = 0$ for all $p > r$ or $q > d$. Thus $E^{r-k,d+k-1}_k = E^{r+k,d+1-k}_k = 0$ for all $k \geq 2$, so

$$E^{r_2}_2 = E^{r_3}_3 = \ldots = E^{r_\infty}_\infty.$$

It remains to prove that $E^{r_\infty}_\infty \cong H^{r+d}_{I,J}(M, N)$. Indeed, there is a filtration Φ of $H^{r+d} = H^{r+d}_{I,J}(M, N)$ such that

$$0 = \Phi^{r+d+1} H^{r+d} \subseteq \Phi^{r+d} H^{r+d} \subseteq \ldots \subseteq \Phi^1 H^{r+d} \subseteq \Phi^0 H^{r+d} = H^{r+d}_{I,J}(M, N)$$

and

$$E^{i,r+d-i}_\infty = \Phi^i H^{r+d}/\Phi^{i+1} H^{r+d}, \quad 0 \leq i \leq r + d.$$

From the above proof we have $E^{i,r+d-i}_2 = \text{Ext}^i_R(M, H^{r+d-i}_{I,J}(N)) = 0$ for all $i \neq r$. Hence

$$\Phi^{r+1} H^{r+d} = \Phi^{r+2} H^{r+d} = \ldots = \Phi^{r+d+1} H^{r+d} = 0$$

and

$$\Phi^r H^{r+d} = \Phi^{r-1} H^{r+d} = \ldots = \Phi^0 H^{r+d} = H^{r+d}_{I,J}(M, N).$$

This gives

$$E^{r}_\infty \cong \Phi^r H^{r+d}/\Phi^{r+1} H^{r+d} \cong H^{r+d}_{I,J}(M, N).$$

Thus $\text{Ext}^r_R(M, H^{r}_{I,J}(N)) \cong H^{r+d}_{I,J}(M, N)$. It follows from [2, 2.1] that $H^{r}_{I,J}(N)$ is an artinian R-module. Therefore $H^{r+d}_{I,J}(M, N)$ is also an artinian R-module. \hfill \square

Next theorem, we show the connection between the artinnianness of $H^{r}_{I,J}(N)$ and $H^{r+d}_{I,J}(M, N)$.

Theorem 3.2. Let M be a finitely generated R-modules and N an R-module. Let t be a positive integer. If $H^{r}_{I,J}(N)$ is artinian for all $i < t$, then
Some properties of generalized local cohomology modules...

(i) $H^i_{I,J}(M, N)$ is artinian for all $i < t$.

(ii) $\text{Ext}_R^i(R/\mathfrak{a}, N)$ is artinian for all $i < t$ and for all $\mathfrak{a} \in \tilde{W}(I, J)$.

Proof. (i) We use induction on t. When $t = 1$, by 2.2 we have

$$\Gamma_{I,J}(M, N) = \text{Hom}_R(M, \Gamma_{I,J}(N)).$$

Since $\Gamma_{I,J}(N)$ is artinian, the statement is true in this case.

Let $t > 1$ and we assume that the statement is true for $t - 1$ and for any R-module N. Denote by $E(N)$ the injective hull of N. Applying the functors $\Gamma_{I,J}(\cdot)$ and $\Gamma_{I,J}(M, \cdot)$ to the following short exact sequence

$$0 \to N \to E(N) \to E(N)/N \to 0$$

we get isomorphisms

$$H^i_{I,J}(E(N)/N) \cong H^{i+1}_{I,J}(N)$$

and

$$H^i_{I,J}(M, E(N)/N) \cong H^{i+1}_{I,J}(M, N)$$

for all $i > 0$. From the hypothesis, $H^i_{I,J}(N)$ is artinian for all $i < t$. It follows that $H^i_{I,J}(E(N)/N)$ is also artinian for all $i < t - 1$. By the inductive hypothesis on $E(N)/N$, $H^i_{I,J}(M, E(N)/N)$ is artinian for all $i < t - 1$. We conclude from the second isomorphism that $H^i_{I,J}(M, N)$ is artinian for all $i < t$.

(ii) The proof is by induction on t. When $t = 1$, the short exact sequence

$$0 \to \Gamma_{\mathfrak{a}}(N) \to N \to N/\Gamma_{\mathfrak{a}}(N) \to 0.$$

deduces an exact sequence

$$0 \to \text{Hom}_R(R/\mathfrak{a}, \Gamma_{\mathfrak{a}}(N)) \to \text{Hom}_R(R/\mathfrak{a}, N) \to \text{Hom}_R(R/\mathfrak{a}, N/\Gamma_{\mathfrak{a}}(N)) \to \cdots$$

As $N/\Gamma_{\mathfrak{a}}(N)$ is \mathfrak{a}-torsion-free, we have $\text{Hom}_R(R/\mathfrak{a}, N/\Gamma_{\mathfrak{a}}(N)) = 0$ and then $\text{Hom}_R(R/\mathfrak{a}, N) \cong \text{Hom}_R(R/\mathfrak{a}, \Gamma_{\mathfrak{a}}(N))$. Note that $\Gamma_{\mathfrak{a}}(N) \subset \Gamma_{I,J}(N)$. By the hypothesis, $\Gamma_{\mathfrak{a}}(N)$ is an artinian R-module and then $\text{Hom}_R(R/\mathfrak{a}, \Gamma_{\mathfrak{a}}(N))$ is also an artinian R-module.

The proof for $t > 1$ is similar to (i). \qed

In [2, 2.4], when (R, \mathfrak{m}) is a local ring and N is a finitely generated R-module, there is an equality

$$\inf\{i \mid H^i_{I,J}(N) \text{ is not artinian}\} = \inf\{\text{depth}\mathfrak{p} \mid \mathfrak{p} \in W(I, J) \setminus \{\mathfrak{m}\}\}.$$

We have the following consequence.
Corollary 3.3. Let \((R, \mathfrak{m})\) be a local ring. If \(M\) and \(N\) are two finitely generated \(R\)-modules, then
\[
\inf \{\text{depth}_p N | p \in W(I, J) \backslash \{\mathfrak{m}\}\} \leq \inf \{i | H^i_{I, J}(M, N) \text{ is not artinian}\}.
\]
Proof. From 3.2, we have the following inequality
\[
\inf \{i | H^i_{I, J}(N) \text{ is not artinian}\} \leq \inf \{i | H^i_{I, J}(M, N) \text{ is not artinian}\}.
\]
Thus the conclusion follows from [2, 2.4]. □

Theorem 3.4. Let \(I, J\) be two ideals of the local ring \((R, \mathfrak{m})\) such that \(\sqrt{I + J} = \mathfrak{m}\). Assume that \(M, N\) are two finitely generated \(R\)-modules with \(\dim(N) < \infty\) and \(t\) is a non-negative integer. If \(H^i_{I, J}(M, N)\) is an artinian \(R\)-module for all \(i > t\), then \(H^t_{I, J}(M, N)/JH^t_{I, J}(M, N)\) is also an artinian \(R\)-module.

Proof. Combining 2.4(vi) with 2.4(vii) we conclude that \(H^i_{I, J}(M, N) = H^i_{\mathfrak{m}, J}(M, N)\) for all \(i \geq 0\), as \(\sqrt{I + J} = \mathfrak{m}\). Thus, without loss of generality we can assume that \(I = \mathfrak{m}\).

We now use induction on \(\dim(N) = d\). When \(d = 0\), \(N\) is \(\mathfrak{m}\)-torsion and then \(N\) is \((\mathfrak{m}, J)\)-torsion. From 2.6, there is an isomorphism \(H^i_{\mathfrak{m}, J}(M, N) \cong \text{Ext}^i_R(M, N)\) for all \(i \geq 0\). Since \(N\) is artinian, it follows that \(H^i_{\mathfrak{m}, J}(M, N)\) is an artinian \(R\)-module for all \(i \geq 0\). Therefore the statement is true in this case.

Let \(d > 0\). The short exact sequence
\[
0 \to \Gamma_J(N) \to N \to N/\Gamma_J(N) \to 0.
\]
induces a long exact sequence
\[
H^t_{\mathfrak{m}, J}(M, \Gamma_J(N)) \to H^t_{\mathfrak{m}, J}(M, N) \to H^t_{\mathfrak{m}, J}(M, N/\Gamma_J(N)) \to \cdots
\]
Since \(\Gamma_J(N)\) is a \(J\)-torsion \(R\)-module, there is an isomorphism
\[
H^i_{\mathfrak{m}, J}(M, \Gamma_J(N)) \cong H^i_{\mathfrak{m}}(M, \Gamma_J(N))
\]
by 2.7. From [4, 2.2] \(H^i_{\mathfrak{m}, J}(M, \Gamma_J(N))\) is artinian for all \(i\).

From the long exact sequence, we get two short exact sequences
\[
0 \to \text{Im} \alpha \to H^t_{\mathfrak{m}, J}(M, N) \to \text{Im} \beta \to 0
\]
and
\[
0 \to \text{Im} \beta \to H^t_{\mathfrak{m}, J}(M, N/\Gamma_J(N)) \to \text{Im} \gamma \to 0.
\]
Two above exact sequences deduce long exact sequences
\[
\cdots \to \text{Im} \alpha/J \text{Im} \alpha \to H^t_{\mathfrak{m}, J}(M, N)/JH^t_{\mathfrak{m}, J}(M, N) \to \text{Im} \beta/J \text{Im} \beta \to 0
\]
and
\[
\cdots \to \text{Tor}^R_1(R/J, \text{Im} \gamma) \to \text{Im} \beta/J \text{Im} \beta \to \cdots
\]
Some properties of generalized local cohomology modules...

\[\rightarrow H_{m,J}^t(M, N/\Gamma_J(N))/JH_{m,J}^t(M, N/\Gamma_J(N)) \rightarrow \text{Im}\gamma/J\text{Im}\gamma \rightarrow 0. \]

Note that Im\(\alpha\) and Im\(\gamma\) are artinian \(R\)-modules. The proof is completed by showing that \(H^t_{m,J}(M, N/\Gamma_J(N))/JH^t_{m,J}(M, N/\Gamma_J(N))\) is an artinian \(R\)-module.

Let \(\overline{N} = N/\Gamma_J(N)\), then \(\overline{N}\) is \(J\)-torsion-free. Thus there exists an element \(x \in J\) that is a non-zerodivisor on \(\overline{N}\).

The short exact sequence
\[0 \rightarrow \overline{N} \xrightarrow{\cdot x} N \rightarrow N/\overline{N} \rightarrow 0 \]
implies the following long exact sequence
\[\cdots \rightarrow H^t_{m,J}(M, \overline{N}) \xrightarrow{f} H^t_{m,J}(M, N/\overline{N}) \xrightarrow{g} H^{t+1}_{m,J}(M, \overline{N}) \rightarrow \cdots \]
From the hypothesis, we get that \(H^i_{m,J}(M, \overline{N}/x\overline{N})\) is artinian for all \(i > t\). As \(\dim(\overline{N}/x\overline{N}) \leq d - 1\), \(H^t_{m,J}(M, \overline{N}/x\overline{N})/JH^t_{m,J}(M, \overline{N}/x\overline{N})\) is artinian by the inductive hypothesis.

We now consider two exact sequences
\[0 \rightarrow \text{Im}\ f \rightarrow H^t_{m,J}(M, \overline{N}/x\overline{N}) \rightarrow \text{Im}\ g \rightarrow 0 \]
and
\[H^t_{m,J}(M, \overline{N}) \xrightarrow{\cdot x} H^t_{m,J}(M, \overline{N}) \rightarrow \text{Im}\ f \rightarrow 0. \]
They give two long exact sequences
\[\text{Tor}^R_1(R/J, \text{Im}\ g) \rightarrow \text{Im}\ f/J\text{Im}\ f \rightarrow H^t_{m,J}(M, \overline{N}/x\overline{N})/JH^t_{m,J}(M, \overline{N}/x\overline{N}) \rightarrow \text{Im}\ g/J\text{Im}\ g \rightarrow 0 \]
and
\[H^t_{m,J}(M, \overline{N})/JH^t_{m,J}(M, \overline{N}) \xrightarrow{\cdot x} H^t_{m,J}(M, \overline{N})/JH^t_{m,J}(M, \overline{N}) \rightarrow \text{Im}\ f/J\text{Im}\ f \rightarrow 0. \]
Since \(x \in J\), we obtain from the exact sequence that
\[H^t_{m,J}(M, \overline{N})/JH^t_{m,J}(M, \overline{N}) \cong \text{Im}\ f/J\text{Im}\ f. \]

On other hand, \(\text{Tor}^R_1(R/J, \text{Im}\ g)\) is artinian, as \(\text{Im}\ g \subset H^{t+1}_{m,J}(M, \overline{N})\) an artinian \(R\)-module. Hence \(\text{Im}\ f/J\text{Im}\ f\) is an artinian \(R\)-module and the proof is complete. \(\square\)

Theorem 3.5. Let \(M, N\) be two finitely generated \(R\)-modules and \(t\) a positive integer such that \(H^t_{I,J}(M, R/p)\) is artinian for all \(p \in \text{Supp}(N)\). Then \(H^t_{I,J}(M, N)\) is also artinian.
Proof. As N is finitely generated, there is a chain of submodules of N

$$0 = N_0 \subset N_1 \subset N_2 \subset \ldots \subset N_k = N$$

such that $N_i/N_{i-1} \cong R/p_i$ for some $p_i \in \text{Supp}(N)$.

For each $1 \leq i \leq k$, the short exact sequence

$$0 \rightarrow N_{i-1} \rightarrow N_i \rightarrow R/p_i \rightarrow 0$$

duces a long exact sequence

$$\cdots \rightarrow H^i_{I,J}(M, N_{i-1}) \rightarrow H^i_{I,J}(M, N_i) \rightarrow H^i_{I,J}(M, R/p_i) \rightarrow \cdots$$

In particular, $H^i_{I,J}(M, N_1) \cong H^i_{I,J}(M, R/p_1)$. From the exact sequence, it follows that $H^i_{I,J}(M, N_i)$ is artinian for all $1 \leq i \leq k$. This finishes the proof. \(\square\)

From Theorem 3.5 we have the following immediate consequence.

Corollary 3.6. Let M, N be finitely generated R-modules and t a positive integer. Assume that $H^i_{I,J}(M, R/p)$ is artinian for all $p \in \text{Supp}(N)$.

(i) If L is a finitely generated R-module such that $\text{Supp}(L) \subset \text{Supp}(N)$, then $H^i_{I,J}(M, L)$ is artinian.

(ii) If a is an ideal of R such that $V(a) \subset \text{Supp}(N)$, then $H^i_{I,J}(M, R/a)$ is artinian.

In the following theorem, we study the artinianness of $H^i_{I,J}(M, N)$ when N is artinian.

Theorem 3.7. Let M be a finitely generated R-module and N an artinian R-module. Then $H^i_{I,J}(M, N)$ is artinian for all $i \geq 0$.

Proof. We use induction on i. When $i = 0$, we have $\Gamma_{I,J}(M, N) = \text{Hom}_R(M, \Gamma_{I,J}(N))$ is artinian, as $\Gamma_{I,J}(N) \subset N$.

Let $i > 0$, denote by $E(N)$ the injective hull of N. Note that, if $N \subset K$ is an essential submodule, then N is artinian if and only if K is artinian. Hence $E(N)$ is also artinian.

Now the short exact sequence

$$0 \rightarrow N \rightarrow E(N) \rightarrow E(N)/N \rightarrow 0$$

duces a long exact sequence

$$\cdots \rightarrow H^{i-1}_{I,J}(M, E(N)/N) \rightarrow H^i_{I,J}(M, N) \rightarrow H^i_{I,J}(M, E(N)) \rightarrow \cdots$$

Since $H^i_{I,J}(M, E(N)) = 0$ for all $i > 0$, there are isomorphims

$$H^{i-1}_{I,J}(M, E(N)/N) \cong H^i_{I,J}(M, N)$$
for all $i > 1$.

$H_{I,J}^{i-1}(M, E(N)/N)$ is artinian by inductive hypothesis. Therefore $H_{I,J}^{i}(M, N)$ is also artinian. □

REFERENCES

[1] M. P. Brodmann, R. Y. Sharp, *Local cohomology: an algebraic introduction with geometric applications*, Cambridge University Press, 1998.

[2] L. Chu, Q. Wang, "Some results on local cohomology modules defined by a pair of ideals", *J. Math. Kyoto Univ.*, 49:193-200, 2009.

[3] N. T. Cuong, N. V. Hoang, "On the vanishing and the finiteness of supports of generalized local cohomological modules," *Manuscripta Math.* 126(2008), 59-72.

[4] Divaani-Aazar, Sazeedeh, Tousi, "On the vanishing of generalized local cohomology modules", *Algebra Colloquium*, Vol. 12, No. 2 (2005) 213-218.

[5] S. H. Hassanzadeh, A. Vahidi, "On vanishing and cofiniteness of generalized local cohomology modules", *Communication of Algebra*, 37: 2290-2299, 2009.

[6] L. Melkersson, "On asymptotic stability for sets of prime ideals connected with the powers of an ideal," *Math. Proc. Camb. Phil. Soc.*, 107 (1990), 267-271.

[7] T. T. Nam, "On the non-vanishing and the artinianness of generalized local cohomology modules", *Journal of Algebra and Its Applications* (to appear).

[8] J. Rotman, *An introduction to homological algebra, 2nd edition*, Springer, 2009.

[9] N. Suzuki, "On the generalized local cohomology and its duality," *J. Math. Kyoto Univ. (JAKYAZ)*, 18-1 (1978), 71-85.

[10] R. Takahashi, Y. Yoshino, T. Yoshizawa, "Local cohomology based on a non-closed support defined by a pair of ideals", *J. Pure Appl. Algebra*, 213: 582-600, 2009.

[11] N. Zamani, "Generalized local cohomology relative to (I,J)", *Southeast Asian Bulletin of Mathematics*, 35: 1045-1050, 2011.

DEPARTMENT OF MATHEMATICS-INFORMATICS, HO CHI MINH UNIVERSITY OF PEDAGOGY, HO CHI MINH CITY, VIET NAM.

E-mail address: namtuantran@gmail.com

DEPARTMENT OF NATURAL SCIENCE EDUCATION, DONG NAI UNIVERSITY, DONG NAI, VIET NAM.

E-mail address: triminhng@gmail.com