Diversity and distribution of the Caddisflies (Insecta: Trichoptera) of Ecuador

Blanca Ríos-Touma¹, Ralph W. Holzenthal², Jolanda Huisman², Robin Thomson² and Ernesto Rázuri-Gonzales²,³

¹ Facultad de Ingenierías y Ciencias Agropecuarias, Ingeniería Ambiental/Unidad de Biotecnología y Medio Ambiente -BIOMA-, Universidad de las Américas, Campus Queri, Calle José Queri, Quito, Ecuador
² Department of Entomology, University of Minnesota—Twin Cities Campus, Saint Paul, MN, United States
³ Departamento de Entomología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru

ABSTRACT

Background. Aquatic insects and other freshwater animals are some of the most threatened forms of life on Earth. Caddisflies (Trichoptera) are highly biodiverse in the Neotropics and occupy a wide variety of freshwater habitats. In Andean countries, including Ecuador, knowledge of the aquatic biota is limited, and there is a great need for baseline data on the species found in these countries. Here we present the first list of Trichoptera known from Ecuador, a country that harbors two global biodiversity “hotspots.”

Methods. We conducted a literature review of species previously reported from Ecuador and supplemented these data with material we collected during five recent field inventories from about 40 localities spanning both hotspots. Using species presence data for each Ecuadorian province, we calculated the CHAO 2 species estimator to obtain the minimum species richness for the country.

Results. We recorded 310 species, including 48 new records from our own field inventories for the country. CHAO 2 calculations showed that only 54% of the species have been found. Hydroptilidae and Hydropsychidae were the most species rich families. We report the family Xiphocentronidae for the first time from Ecuador as well as several new records of genera from different families.

Discussion. As in the neighboring Andean countries of Colombia and Peru, it is common to find undescribed species of caddisflies. There are vast areas of Ecuador and the northern Andes that are completely unexplored, and we expect that hundreds of new species are yet to be discovered.

INTRODUCTION

Aquatic ecosystems are among the most threatened on Earth, and the biodiversity they contain, particularly insects, is still largely undiscovered in many parts of the world (Vörösmarty et al., 2010). For example, according to species estimators we only know about 30% of the caddisfly species from the northern Andean region of South America.
(Venezuela, Colombia, Ecuador, Peru) (RW Holzenthal & B Ríos-Touma, unpublished data). The lack of information on the diversity of species, and their distribution and functional role in aquatic ecosystems, makes predictions of the effects of climate change on these ecosystems and their biota difficult, if not impossible (Holzenthal, Thomson & Ríos-Touma, 2015).

Trichoptera, or caddisflies, are exclusively aquatic in the larval and pupal stages except for a very few terrestrial or semi-terrestrial and brackish-water species and one family whose members are marine (Holzenthal, Thomson & Ríos-Touma, 2015). The members of this order are considered to be biological indicators of good to excellent water quality and are highly sensitive to human disturbance to running waters worldwide (Chang et al., 2014). Currently, there are about 15,000 species described, making Trichoptera the second most diverse monophyletic group of aquatic animals, surpassed only by the clade Diptera: Culicomorpha/Psychodomorpha (Malm, Johanson & Wahlberg, 2013). In Trichoptera, the Neotropical region is the 3rd most species rich in the world with 2100 species recorded as of 2008 after the Oriental and Palearctic regions (De Moor & Ivanov, 2008). In terms of endemism of genera, the Neotropics (115 endemic genera) are second only to the Australasian region (120 endemic genera) (De Moor & Ivanov, 2008).

The Neotropical country of Ecuador hosts an amazing diversity of species, many of them threatened, in two biodiversity “hotspots;” the Tropical Andes and the Tumbes-Choco-Magdalena (Myers et al., 2000). The designation of these hotspots did not include insects or any aquatic biota other than fish. However, the diversity and endemicity of aquatic insects are probably much greater in terms of species numbers than the vertebrate fauna. Considering the importance and sensitivity of aquatic invertebrate biota to changes in habitat, spanning across the watershed, increased knowledge of their taxonomy and biology is urgently needed. Trichoptera are probably one of the best known aquatic groups from the Andes of Ecuador, with some available catalogues of species and their distributions (Flint, Holzenthal & Harris, 1999; Holzenthal & Calor, in press). These baseline data, in addition to the wide range of trophic relationships and microhabitats caddisflies exploit, makes this group ideal for biodiversity and biogeographic studies (Holzenthal, Thomson & Ríos-Touma, 2015). The neighboring countries of Colombia and Peru, have full country or regional Trichoptera checklists (Flint & Reyes, 1991; Flint, 1991; Flint, 1996a; Medellín, Ramírez & Rincón, 2004; Muñoz-Quesada, 2000; Rincón-Hernández, 1999). However, there is no checklist or review of species or their distributions for any aquatic insect order for Ecuador. For these reasons the objectives in this study are to: (1) compile the first list of species of the caddisflies of Ecuador with in-country distribution data from the literature and from our own recent collections; and (2) estimate the total species richness of Ecuadorian caddisflies and define priority areas for future surveys.

MATERIALS & METHODS

To gather species information, we referred to the latest version of the Catalog of Neotropical Trichoptera (Holzenthal & Calor, in press). We then searched in the original sources to find more detailed locality information and, especially, the Ecuadorian provinces where
the species were recorded. Collections of specimens are recorded in the literature from as early as 1899 (*Ulmer, 1905*), followed by collections in the early 1900s by Paul Rivet (*Navás, 1913*) with a large set of collections not appearing until the 1970s by Jeffrey Cohen and Andrea Langley under the Ecuador Peace Corps-Smithsonian Institution Aquatic Insect Survey project which are deposited in the National Museum of Natural History, Smithsonian Institution, Washington, DC, (NMNH). The main taxonomic work on this material was done by O.S. Flint, Jr. (NMNH) during the 1980–90s.

During the period covered by the literature (1899 until present), several new provinces were created in Ecuador, including Morona Santiago (1952), Napo (1959), Orellana (1998), Santa Elena (2007), Santo Domingo (2007), Sucumbios (1989), and Zamora Chinchipe (1953). Since the historical records do not reflect these new political subdivisions, we tried to relate the locality descriptions to the current province. However, the majority of records did not have exact coordinates and others lacked sufficient locality information to allow us to be certain about the collection site. With the literature information at hand, we made a first list of species (Table 1) that we then compared with our own recent collections from Ecuador from 2010 to 2015 (Table S1). Collection methods used ranged from sweep netting (mainly in páramo locations) to collecting at black lights during the early evening (at all sites). See *Blahnik & Holzenthal (2004)* and *Blahnik, Holzenthal & Prather (2007)* for a review of collecting methods, field techniques, and genitalia preparation for adult Trichoptera. We made at least two different collections in each of Chimborazo, Imbabura, Morona Santiago, Napo, Pichincha, and Santo Domingo provinces (for exact locations refer to Table S1 and Fig. 1). Specimens collected in our own research are deposited in the University of Minnesota Insect Collection, St. Paul, Minnesota, USA (UMSP), the Museo Ecuatoriano de Ciencias Naturales, Quito, Ecuador (MECN), the Museo de Ecología Acuática de la Universidad San Francisco de Quito, Ecuador (MUEA-USFQ), and the Museo de Zoología de la Universidad Tecnológica Indoamérica, Quito, Ecuador (MZUTI).

From the final list of species (Table 1), we calculated both country richness and province richness. We used the presence of the species per province to calculate an incidence based richness estimator (CHAO 2). This nonparametric species estimator allows for estimation of the potential richness based on the number of observed species, species that are found only in one location, and species that are observed in two locations. Despite its simplicity, a rigorous body of statistical theory demonstrates that CHAO 2 is a robust estimator of minimum richness (*Shen, Chao & Lin, 2003*) and is more rigorous and performs better in benchmark surveys than extrapolated asymptotic functions or other parametric species richness estimators (*Gotelli & Colwell, 2011*) with the kind of data used in this study.

RESULTS

We recorded 310 species of Trichoptera in Ecuador, belonging to 15 families and 52 genera. Literature records contained 264 species for the country (Table 1). Of these, 15 did not have specific locality data, although for nine of them we were able to collect additional specimens representing new locality records. We found 48 species that were
Table 1 *Trichoptera of Ecuador*. Caddisfly species found in Ecuador with their distribution, based on literature records as well as recent collections. Endemic species and new records are indicated.

Species	Province	Endemic	Altitude	Source
Anomalopsychidae				
Contulma				
bacula Holzenthal & Flint, 1995	Napo, Morona Santiago	E	2,770	Holzenthal & Flint (1995)
cataracta Holzenthal & Flint, 1995	Napo, Morona Santiago	E	1,800–3,516	Holzenthal & Flint (1995)
echinata Holzenthal & Flint, 1995	Napo	E	3,690	Holzenthal & Flint (1995)
ecuadorensis Holzenthal & Flint, 1995	Imbabura	E	2,200	Holzenthal & Flint (1995)
lancoylata Holzenthal & Flint, 1995	Napo	E	1,260	Holzenthal & Flint (1995)
paluguillensis Holzenthal & Ríos-Touma, 2012	Pichincha	E	3,848	Holzenthal & Ríos-Touma (2012)
pappallacta Holzenthal & Flint, 1995	Tungurahua, Zamora Chinchipe	E	1,539–2,000	Holzenthal & Flint (1995)
penai Holzenthal & Flint, 1995	Azuay, Pichincha, Zamora Chinchipe	E	1,600–3,700	Holzenthal & Flint (1995)
spinosa Holzenthal & Flint, in Flint, 1991				
Atriplectididae				
Neoatriplectides sp. (larval record only)	Not known (probable in Ecuador)			Holzenthal (1997)
Calamoceratidae				
Banyallarga				
loxana (Navás), 1934	Azuay, Loja, Zamora Chinchipe		2,000–3,100	Prather (2004)
penai Prather, 2004	Loja		2,750	Prather (2004)
villosa (Navás), 1934	Loja	E	2,500–2,750	Prather (2004)
Phylloicus				
cressae Prather, 2003	Napo, Pichincha	E	950–1,250	Prather (2003)
elegans Hogue & Denning, in Denning et al., 1983	Santo Domingo		229	Prather (2003)
ephippium Prather, 2003	Tungurahua	E	15,50	Prather (2003)
fenestratus Flint, 1974	Napo, Pastaza			Prather (2003)
lituratus Banks, 1920	Napo, Pastaza, Santo Domingo		229–1,200	Prather (2003)
llaviuco Prather, 2003	Azuay		3,010	Prather (2003)
paucartamo Prather, 2003	Napo		1,750	Prather (2003)
trichothyax Prather, 2003	Cotopaxi		1,372	Prather (2003)
Ecnomidae				
Austrotinodes				
ancylus Flint & Denning, 1989	Pastaza			Flint & Denning (1989b)
Glossosomatidae				
Mortoniella				
angulata Flint, 1963	Napo, Pichincha	E	3,810	Flint (1963)
apiculata Flint, 1963	Napo, Pichincha	E	2,600	Flint (1963)
aries (Flint), 1963	Napo, Pastaza, Pichincha	E	2,440	Flint (1963); this paper
ateruata (Flint), 1963	Napo		543	NEW RECORD

(continued on next page)
Species	Province	Endemic	Altitude	Source
bilineata Ulmer, 1906	Chimborazo, Pichincha, Morona Santiago	E	550–1,370	Flint (1963)
chicana Sykora, 1999	Chimborazo, Pastaza, Napo, Morona Chinchipe	E	880	Sykora (1999)
hodgesi Flint, 1963	Napo, Pichincha	E	4,115	Flint (1963)
leei (Flint) 1974	Pichincha	E	570	NEW RECORD
paralineata Sykora, 1999	Chimborazo, Morona Santiago	E	1,340–1,531	Sykora (1999)
quinuas Harper & Turcotte, 1985	Azuay	E	3,300	Harper & Turcotte (1985)
roldani Flint 1991	Pichincha		570–700	NEW RECORD
santiaga Sykora, 1999	Morona Santiago	E	2,200	Sykora (1999)
similis Sykora, 1999	Santo Domingo	E	1,900	Sykora (1999)
squamata Sykora, 1999	Napo	E	1,900	Sykora (1999)
wygodzinskii (Schmid), 1958	Morona Chinchipe			Sykora (1999)
Protoptila disticha Flint 1971	Orellana		240–250	NEW RECORD

Helicopsychidae

Species	Province	Endemic	Altitude	Source
angulata (Feropsycha) Flint, 1981	Napo		1,312–1,587	NEW RECORD
blahniki (Cochliopsyche) Johanson, 2003	Pastaza, Napo, Sucumbios		300	Johanson (2003)
breviterga (Feropsycha) Flint 1991	Imbabura, Pichincha		1,646	NEW RECORD
clara (Cochliopsyche) (Ulmer), 1905	Pastaza		400	Johanson (2003)
cochleura (Feropsycha) Johanson, 1999	Pastaza		E	Johanson (2003)
cotopaxi (Feropsycha) Botosaneanu & Flint, 1982	Cotopaxi		3,500	Johanson (2002)
fistulata (Feropsycha) Flint 1991	Morona Santiago		1,646	NEW RECORD
napoa (Cochliopsyche) Johanson, 2003	Napo (Sucumbios), Pastaza		1,646	Johanson (2003)
opallescens (Cochliopsyche) Flint, 1972	Pastaza, Orellana, Sucumbios			Johanson (2003)
puyoa (Cochliopsyche) Johanson, 2003	Pastaza, Orellana, Sucumbios			Johanson (2003)
vazquezae (Cochliopsyche) Flint, 1986	Napo, Morona Chinchipe		950–1,340	Johanson (2003)
vergelana (Feropsycha) Ross 1956	Pichincha		570	NEW RECORD
woytkowskii (Feropsycha) Ross 1956	Morona Santiago. Santo Domingo		1,646	NEW RECORD

Hydrobiosidae

Species	Province	Endemic	Altitude	Source
banksi (Atopsyche) Ross, 1953	Chimonbarazo		2,800	Sykora (1991)
cajas (unplaced) Harper & Turcotte, 1985	Azuay		E	Harper & Turcotte (1985)
callosa (Atopsaura) (Navás), 1924	Azuay, Pichincha, Loja, Santo Domingo, Zamora Chinchipe		550–570, 1,860	Sykora (1991); this paper
catherinae (Atopsyche) Harper & Turcotte, 1985	Azuay		3,300	Harper & Turcotte (1985)
chirihuana (Atopsyche) Schmid, 1989	Pichincha		E	Schmid (1989)

(continued on next page)
Table 1 (continued)

Species	Province	Endemic	Altitude	Source
chirimachaya (unplaced)	Azuay		3,300	Harper & Turcotte (1985)
clarkei (Atopsaura)	Morona Santiago		2,200	Sykora (1991)
copayapu (Atopsyche)	Pichincha, Loja	E	1,780–1,860	Sykora (1991); this paper
davidsoni (unplaced)	Bolivar	E	3,420	Sykora (1991)
flinti (unplaced)	Chimbaborazo	E	3,500	Sykora (1991)
incattapac (Atopsyche)	Cotopaxi, El Oro	E	1,780–1,860	Sykora (1991)
janethae (Atopsyche)	Azuay		3,300	Harper & Turcotte (1985)
lobosa (Atopsaura)	Pichincha		2,807	NEW RECORD
maitacapac (Atopsyche)	Napo		2,000	Sykora (1991)
mancocapac (Atopsyche)	Pastaza		1,600–2,500	Sykora (1991)
milestone (unplaced)	Bolivar	E	3,200	Sykora (1991)
neolobosa (Atopsaura)	Napo, Loja	E	3,200	Sykora (1991)
onorei (unplaced)	Loja		3,200	Sykora (1991)
pachacutec (Atopsyche)	Cotopaxi, El Oro	E	2,200	Sykora (1991)
pularcocha (Atopsaura)	Morona Santiago		2,200	Sykora (1991)
rawlinsi (Atopsaura)	Loja	E	3,130	Sykora (1991)
sinchicurac (Atopsaura)	Loja, Zamora Chinchipe	E	1,600–2,500	Schmid (1989)
tampurina (Atopsyche)	Napo, Zamora Chinchipe		1,420	Schmid (1989) and Sykora (1991)
tlapac (Atopsyche)	Azuay	E	2,200–2,400	Schmid (1989) and Sykora (1991)
vatucra (Atopsyche)	Morona Santiago		1,076	NEW RECORD
youngi (unplaced)	Azuay	E	2,600	Sykora (1991)

Cailloma

Species	Province	Endemic	Altitude	Source
lucidula (Ulmer)	Chimborazo, Pichincha		3,500–3,850	Sykora (1991); this paper.

Hydropsychidae

Centromacronema

Species	Province	Endemic	Altitude	Source
excisum (Ulmer)	Pichincha		700	Ulmer (1905); this paper
obscurum (Ulmer)	Imbabura		1,312	NEW RECORD

Leptonema

Species	Province	Endemic	Altitude	Source
album Mosely, 1933:49	Santo Domingo	E	1,420	Oláh & Johanson (2012)
andrea Flint, McAlpine & Ross, 1987	Pastaza	E	700–1,180	Flint, McAlpine & Ross (1987)

Species	Province	Endemic	Altitude	Source
cheesmanae Mosely 1933	Pichincha		570–570	NEW RECORD
cinctum Ulmer, 1905	Bolivar		570–570	NEW RECORD
coheni Flint, McAlpine & Ross, 1987	Cotopaxi	E	570–570	NEW RECORD
divaricatrum Flint, McAlpine & Ross, 1987	Pichincha		570–570	NEW RECORD
forficulum Mosely 1933	Pichincha		570–570	NEW RECORD

(continued on next page)
Species	Province	Endemic	Altitude	Source
intermedium	Mosely, 1933			
	Bolivar, Santo Domingo	E	600–2,500	Oláh & Johanson (2012)
janolah	Oláh & Johanson, 2012			
	Pichincha	E		Oláh & Johanson (2012)
lojaense	Flint, McAlpine & Ross, 1987			
	Loja	E		Flint, McAlpine & Ross (1987)
mexibulatum	Flint, McAlpine & Ross, 1987			
	Pastaza, Orellana, Sucumbios			Flint, McAlpine & Ross (1987)
mastigion	Flint, McAlpine & Ross, 1987			
	Los Rios, Santo Domingo	E	229–600	Flint, McAlpine & Ross (1987); Oláh & Johanson (2012)
olmos	Oláh & Johanson, 2012			
	Morona Santiago		1,646	NEW RECORD
pseudocinctum	Flint, McAlpine & Ross, 1987			
	Tungurahua	E	1,280	Flint, McAlpine & Ross (1987)
rosenbergi	Mosely, 1933			
	Loja	E		Flint, McAlpine & Ross (1987)
simplex	Mosely, 1933			
	Loja	E		Flint, McAlpine & Ross (1987)
sociale	Flint, 2008			
sparsum	Ulmer, 1905			
spirillum	Flint, McAlpine & Ross, 1987			
	Tungurahua, Pastaza, Napo, Morona Santiago			
stigmus	Ulmer, 1905			
trifidum	Flint, McAlpine & Ross, 1987			
viridianum	Navás, 1916			
	Napo		300–400	Oláh & Johanson (2012)

Macronema

Species	Province	Endemic	Altitude	Source
burmeisteri	Banks, 1924			
fratrum	Banks, 1910			
hageni	Banks, 1924			
variipenne	Flint & Bueno-Soria, 1979			

Macrostemum

Species	Province	Endemic	Altitude	Source
ulmeri	(Banks), 1913			

Smicridea

Species	Province	Endemic	Altitude	Source
acuminata	(Rhyacophylax) Flint, 1974			
andicola	(Rhyacophylax) Flint, 1991			
bogorba	(Rhyacophylax) Oláh & Johanson, 2012			
bidactyla	(Rhyacophylax) Flint & Reyes, 1991			
biserrellata	(Rhyacophylax) Flint, 1991			
bivittata	(Smicridea) (Hagen) 1861			
curvipes	(Smicridea) Flint, 1991			

(continued on next page)
Species	Province	Endemic	Altitude	Source
------------------	-------------------------------	---------	----------	
felsa (Rhyacophylax) Oláh & Johanson, 2012	Napo	E	400	Oláh & Johanson (2012)
fogasa (Rhyacophylax) Oláh & Johanson, 2012	Napo	E	1,660	Oláh & Johanson (2012)
furesa (Rhyacophylax) Oláh & Johanson, 2012	Napo		1,100	Oláh & Johanson (2012)
gemina (Smicridea) Blahnik, 1995	Cotopaxi, Santo Domingo, Pichincha, Guayas, Esmeraldas, Los Ríos		220–600	Blahnik (1995); this paper
hajla (Rhyacophylax) Oláh & Johanson, 2012	Napo	E	400	Oláh & Johanson (2012)
homora (Rhyacophylax) Oláh & Johanson, 2012	Napo		400	Oláh & Johanson (2012)
horga (Smicridea) Oláh & Johanson, 2012	Pichincha, Santo Domingo	E	550–600	Oláh & Johanson (2012)
kapara (Rhyacophylax) Oláh & Johanson, 2012	Morona Santiago		1,076	NEW RECORD
lebena (Rhyacophylax) Oláh & Johanson, 2012	Napo		1,966	NEW RECORD
medena (Rhyacophylax) Oláh & Johanson, 2012	Imbabura, Morona Santiago		1,312–1,587	NEW RECORD
murina (Rhyacophylax) McLachlan, 1871	Pichincha, Napo		570	Flint (1991); Flint (1981a); this paper
nemtompa (Rhyacophylax) Oláh & Johanson, 2012	Napo		400	Oláh & Johanson (2012)
nigricans (Smicridea) Flint, 1991	Tungurahua		1,780	Flint (1991); Flint (1991)
petasata (Rhyacophylax) Flint, 1981	Pastaza		1,312	Flint (1981a); Flint (1991)
polyfasciata (Smicridea) Martynov, 1912	unspecified locality			
probolophora (Rhyacophylax) Flint, 1991	Morona Santiago		1,531	NEW RECORD
radula (Rhyacophylax) Flint, 1974	Imbabura		1,312	NEW RECORD
sarkoska (Rhyacophylax) Oláh & Johanson, 2012	Pichincha, Santo Domingo		1,600	Oláh & Johanson (2012)
sudara (Rhyacophylax) Oláh & Johanson, 2012	Pichincha, Santo Domingo		600	Oláh & Johanson (2012)
tavola (Rhyacophylax) Oláh & Johanson, 2012	Napo	E	400	Oláh & Johanson (2012)
tina Oláh & Johanson, 2012	Santo Domingo		600	Oláh & Johanson (2012)
truncata (Smicridea) Flint, 1974	Orellana		240–250	NEW RECORD
varia (Smicridea) (Banks), 1913	Esmeraldas, Los Ríos, Pichincha, Manabi, Santo Domingo		0–580	Blahnik (1995)
ventridenticulata (Rhyacophylax) Flint, 1991	Morona Santiago, Chimborazo, Cotopaxi, Imbabura		800–2,200	Flint (1991); Flint (1981a)
Synoestropsis punctipennis Ulmer, 1905	unspecified locality			
Species	Province	Endemic	Altitude	Source
Hydroptilidae				
	Acostatrichia			
Acostatrichia cerna Oláh & Flint, 2012	Los Ríos	E	250	Oláh & Flint (2012)
Acostatrichia hosulaba Oláh & Flint, 2012	Pastaza	E	250	Oláh & Flint (2012)
Acostatrichia kihara Oláh & Flint, 2012	Napo	E	580	Oláh & Flint (2012)
Acostatrichia pika Oláh & Flint, 2012	Pichincha, Santo Domingo	E		Oláh & Flint (2012)
Acostatrichia ujasà Oláh & Flint, 2012	Pastaza	E	250	Oláh & Flint (2012)
	Anchitrichia			
Anchitrichia agaboga Oláh & Flint, 2012	Cotopaxi	E	1,080	Oláh & Flint (2012)
Anchitrichia holzenthali Oláh & Flint, 2012	Napo	E	950	Oláh & Flint (2012)
Anchitrichia palmatiloba Flint, 1991	Pichincha, Pastaza, Cotopaxi	E	330–575	Oláh & Flint (2012); this paper
	Betrichia			
Betrichia rovatka Oláh & Johanson, 2011	Pastaza, Napo, Orellana, Sucumbios	E		Oláh & Flint (2012)
	Bredinia			
Bredinia dominicensis Flint, 1968	Esmeraldas, Pichincha	E		Harris, Holzenthal & Flint (2002)
Byrsopteryx loja Harris, Holzenthal & Flint, 2002	Zamora Chinchipe	E	2,000	Harris, Holzenthal & Flint (2002)
Byrsopteryx rayada Harris & Holzenthal, 1994	Cañar	E	2,910	Harris, Holzenthal & Flint (1994)
	Ceratotrichia			
Ceratotrichia felgorba Oláh & Flint, 2012	Napo	E	580	Oláh & Flint (2012)
Ceratotrichia flavicoma Flint, 1992	Pastaza, Napo, El Oro, Cotopaxi	E	335	Oláh & Flint (1992a)
Ceratotrichia jobbra Oláh & Flint, 2012	Manabi, Esmeraldas	E	1,100	Oláh & Flint (2012)
	Costatrichia			
Costatrichia noite Angrisano, 1995	Napo, Sucumbios	E		Oláh & Flint (2012)
	Flintiella			
Flintiella astilla Harris, Flint & Holzenthal, 2002	Napo	E		Harris, Flint & Holzenthal (2002)
Flintiella heredia Harris, Flint & Holzenthal, 2002	Pastaza	E		Harris, Flint & Holzenthal (2002)
Flintiella pizotensis Harris, Flint & Holzenthal, 2002	Esmeraldas, Cotopaxi, Napo, Los Rios, Pichincha	E	340	Harris, Flint & Holzenthal (2002)
	Hydroptila			
Hydroptila ditalea Flint, 1968	unspecified locality	E		Flint & Reyes (1991)

(continued on next page)
Species	Province, Province	Endemic	Altitude	Source
grenadensis Flint, 1968	Napo, Pichincha		400	Oláh & Johanson (2011)
paschia Mosely, 1937				
spada Flint, 1991	Morona Santiago, Pichincha		1,646	NEW RECORD
venezuelensis Flint, 1981	Napo, Morona Santiago		400	Oláh & Johanson (2011)

Leucotrichia

Species	Province	Endemic	Altitude	Source
fairchildi Flint, 1970	Los Rios		250	Thomson & Holzenthal (2015)
forrota Oláh & Johanson, 2011	Napo, Pastaza			
fulminea Thomson & Holzenthal, 2015	Cañar		2,910	Thomson & Holzenthal (2015)
inops Flint, 1991	Pichincha		1,800	Thomson & Holzenthal (2015)
pectinata Thomson & Holzenthal, 2015	Tungurahua		1,550	Thomson & Holzenthal (2015)

Mayatrichia

Species	Province	Endemic	Altitude	Source
illobia Harris & Holzenthal, 1990	Pastaza			Harris & Holzenthal (1990)

Metrichia

Species	Province	Endemic	Altitude	Source
argentinica (Schmid, 1958)	Pichincha		2,807	NEW RECORD
cuenca (Harper & Turcotte), 1985	Azuay		3,300	Harper & Turcotte (1985)
patagonica (Flint), 1983	Pichincha, Morona Santiago		3,848	NEW RECORD
spica Bueno-Soria & Holzenthal, 2003	Pichincha			NEW RECORD

Neotrichia

Species	Province	Endemic	Altitude	Source
biuncifera Flint, 1974	Morona Santiago		1,076	NEW RECORD
delgadeza Harris, in Harris & Davenport, 1992	Pastaza			Harris & Davenport (1992)
napoensis Harris, in Harris & Davenport, 1992	Napo		E	Harris & Davenport (1992)

Ochrotrichia

Species	Province	Endemic	Altitude	Source
ecuatoriana Bueno-Soria & Santiago-Fragoso, 1992	Pastaza			Bueno-Soria & Santiago-Fragoso (1992)
puyana Bueno-Soria & Santiago-Fragoso, 1992	Pastaza		E	Bueno-Soria & Santiago-Fragoso (1992)
raposa Bueno-Soria & Santiago-Fragoso, 1992	Esmeraldas, Los Ríos			Bueno-Soria & Santiago-Fragoso (1992)
yanayacuana Bueno-Soria & Santiago-Fragoso, 1992	Tungurahua		E	Bueno-Soria & Santiago-Fragoso (1992)

Oxyethira

Species	Province	Endemic	Altitude	Source
azteca (Loxotrichia) (Mosely), 1937	unspecified locality		700	Flint (1996b)
apinolada (Oxytrichia) Holzenthal & Harris, 1992	Pichincha			NEW RECORD
circaverna (Dampfitrichia) Kelley, 1983	Napo			Kelley (1983)

(continued on next page)
Species	Province	Endemic	Altitude	Source
colombiensis (*Tanytrichia*) Kelley, 1983	Los Ríos			Kelley (1983)
matadero (*Dactylotrichia*) Harper & Turcotte, 1985	Azuay	E	3,300	Harper & Turcotte (1985)
parazteca (*Loxotrichia*) Kelley, 1983	Cotopaxi			Kelley (1983)
parce (*Loxotrichia*) (Edwards & Arnold), 1961	Pichincha, Morona Santiago			Flint (1996b); this paper
quinquaginta (*incertae sedis*) Kelley, 1983	Pastaza	E		Kelley (1983)
scaecodactyla (*Dactylotrichia*) Kelley, 1983	Pastaza	E		Kelley (1983)
simanka (unplaced) Oláh & Johanson, 2011	Napo	E		Oláh & Johanson (2011)
tica (*Loxotrichia*) Holzenthal & Harris, 1992	unknown			Flint (1996b)
Rhyacopsyche				
benna Wasmund & Holzenthal, 2007	Napo		580	Wasmund & Holzenthal (2007)
bunkotala Oláh & Johanson, 2011	Napo	E		Oláh & Johanson (2011)
colubrinosa Wasmund & Holzenthal, 2007	Cotopaxi, Pastaza, Pichincha, Zamora Chinchipe		330–1,250	Wasmund & Holzenthal (2007)
hajtoka Oláh & Johanson, 2011	Pichincha	E		Oláh & Johanson (2011)
peruviana Flint, 1975	Pastaza, Zamora Chinchipe			Wasmund & Holzenthal (2007)
tanylobosa Wasmund & Holzenthal, 2007	Morona Santiago, Napo, Pastaza, Pichincha, Santo Domingo, Zamora Chinchipe		950–1,531	Wasmund & Holzenthal (2007); this paper
Zumatrichia				
antilliensis Flint, 1968	Napo		600	Oláh & Flint (2012)
bevagota Oláh & Flint, 2012	Cotopaxi	E	1,100	Oláh & Flint (2012)
corosa Oláh & Flint, 2012	Cotopaxi	E	1,101	Oláh & Flint (2012)
jesuka Oláh & Flint, 2012	Napo	E	580	Oláh & Flint (2012)
gorba Oláh & Flint, 2012	Zamora Chinchipe	E	880	Oláh & Flint (2012)
kerekeda Oláh & Flint, 2012	Santo Domingo, Pichincha, Cotopaxi, Napo, Manabi, Loja, El Oro, Los Ríos		300–425	Oláh & Flint (2012); this paper
kisgula Oláh & Flint, 2012	Napo	E		Oláh & Flint (2012)
kislaba Oláh & Flint, 2012	Pastaza	E		Oláh & Flint (2012)
lapa Oláh & Flint, 2012	Pastaza	E		Oláh & Flint (2012)
masa Oláh & Flint, 2012	Pastaza	E		Oláh & Flint (2012)
palmara Flint, 1970	unknown			Flint & Reyes (1991)
picigula Oláh & Flint, 2012	Napo, Cotopaxi	E	330–950	Oláh & Flint (2012)
sima Oláh & Flint, 2012	Pichincha	E		Oláh & Flint (2012)
Species	Province	Endemic	Altitude	Source
-------------------------	--------------------------------	---------	----------------	---
Leptoceridae				
Achoropsyche				
duodecimpunctata (Navás), 1916	Orellana		250	This paper, locality previously unspecified
Amphoropsyche				
napo Holzenthal, 1985	Napo	E	1,800	Holzenthal (1985)
tayapa Holzenthal & Rázuri-Gonzales, 2011	Pichincha	E	2,500–3,650	Holzenthal & Rázuri-Gonzales (2011)
Atanatolica				
acuminata Holzenthal, 1988	Zamora Chinchipe	E	820–1,800	Holzenthal (1988b)
cotopaxi Holzenthal, 1988	Cotopaxi, Morona Santiago, Pichincha	E	2,500–3,650	Holzenthal (1988b)
manabi Holzenthal, 1988	Manabi, Pichincha	E	2,772	NEW RECORD
Grumichella				
flaveola (Ulmer), 1911	Loja, Napo, Pastaza, Morona Santiago, Zamora Chinchipe			Holzenthal (1988b)
trujilloi Calor & Holzenthal, 2015	Morona Santiago			NEW RECORD
Nectopsyche				
argentata Flint, 1991	Imbabura, Pichincha		1,180–1,587	Flint (1991)
gemma (Müller), 1880	Loja		1,076	Navás (1913)
gemmoides Flint, 1981	Morona Santiago			This paper, locality previously unspecified
maculipennis Flint 1983	Orellana		240–250	NEW RECORD
muhni (Navás), 1916	unspecified locality			Flint (1974)
onyx Holzenthal 1995	Pichincha		570–700	NEW RECORD
pavida (Hagen) 1861	Morona Santiago		1,076	NEW RECORD
punctata (Ulmer), 1905	Pichincha, Napo		570	This paper, locality previously unspecified
quattuorguttata (Navas) 1922	Orellana		240–250	NEW RECORD
spiloma (Ross), 1944	unspecified locality			Flint & Reyes (1991)
splendida (Navás), 1917	Orellana		240	Flint (1992b) (unspecified locality); this paper
Oecetis				
acciprīna Blahnik & Holzenthal, 2014	Los Ríos, Pichincha		550–750	Blahnik & Holzenthal (2014)
angulāris Blahnik & Holzenthal, 2014	Cotopaxi, Loja, Pichincha, Santo Domingo		300–1,080	Blahnik & Holzenthal (2014)
campana Blahnik & Holzenthal, 2014	Zamora Chinchipe, Napo, Pastaza		580–980	Blahnik & Holzenthal (2014)
constricta Blahnik & Holzenthal, 2014	Cotopaxi, Guayas, Napo		305–580	Blahnik & Holzenthal (2014)
excīsa Ulmer, 1907	Orellana, Morona Santiago		240–1,076	NEW RECORD
mexicana Blahnik & Holzenthal, 2014	Los Ríos		250	Blahnik & Holzenthal (2014)

(continued on next page)
Table 1 (continued)

Species	Province	Endemic	Altitude	Source
protrusa Blahnik & Holzenthal, 2014	Loja, Pichincha		300–570	Blahnik & Holzenthal (2014); this paper
pseudoinconspicua Bueno 1981	Orellana		240–250	NEW RECORD
punctata (Navás) 1924	Pichincha		570–700	NEW RECORD
punctipennis (Ulmer), 1905	Orellana		240–250	Quinteiro & Calor (2015) (unspecified locality); this paper
tumida Blahnik & Holzenthal 2014	Pichincha		550–575	NEW RECORD

Triaenodes

| hodgesi Holzenthal & Andersen, 2004 | Pichincha, Esmeraldas | E | 152 | Holzenthal & Andersen (2004) |
| peruanus Flint & Reyes, 1991 | Santo Domingo | | 229 | Holzenthal & Andersen (2004) |

Triplectides

| flintorum Holzenthal, 1988 | Loja | 2,000 | Holzenthal (1988a) |

Limnephilidae

Anomalocosmoecus

| illiesi (Marlier), 1962 | Pichincha | 3,848 | Flint (1991) |

Odontoceridae

Marilia

| gigas Flint, 1991 | Pastaza | | Flint (1991) |

Philopotamidae

Chimarra

acinaciformis (Curgia) Flint, 1998	Pastaza			
centralis (Curgia) Ross, 1959	Pichincha			
coheni (Chimarra) Blahnik, 1998	Pichincha			
creagra (Chimarra) Flint, 1981	Morona Santiago, Napo	E	335	Blahnik (1998)
decimlobata (Chimarra) Flint, 1991	Imbabura		1,076	Blahnik (1998)
didyma (Curgia) Flint, 1998	Pichincha, Cotopaxi		1,312–1,587	NEW RECORD
dolabrifera (Chimarra) Flint & Reyes, 1991	Pichincha, Cotopaxi, Esmeraldas, Los Rios		335	Blahnik (1998)

duckworthi (Chimarra) Flint, 1967	Pastaza			
emima (Chimarra) Ross, 1959	Pichincha, Cotopaxi, Loja, Los Rios, Santo Domingo		220–550	Blahnik (1998)
geranoides (Curgia) Flint, 1998	Pichincha, Pastaza, Tungurahua, Zamora Chinchipe		980–4,200	Blahnik (1998); this paper

immaculata (Curgia) Ulmer, 1911	Napo, Pastaza, Sucumbios			
inflata (Chimarra) Blahnik, 1998	Napo (Sucumbios)	E		Blahnik (1998)
langleyae (Chimarra) Blahnik, 1998	Napo (Sucumbios)	E	2,000	Blahnik (1998)
lojaensis (Curgia) Flint, 1998	Zamora Chinchipe	E		Blahnik (1998)
longiterga (Chimarra) Blahnik & Holzenthal, 1992	Manabi, Pichincha (Santo Domingo)		220	Blahnik (1998)
macara (Curgia) Flint, 1998	Loja	E	650	Blahnik (1998)
margaritae (Curgia) Flint, 1991:26	Tungurahua		1,550	Blahnik (1998)

(continued on next page)
Species	Province	Endemic	Altitude	Source
munozii (Chimarra) Blahnik & Holzenthal 1992	Pichincha		570–700	NEW RECORD
onina (Chimarra) Flint 1991	Pichincha, Santo Domingo		700	NEW RECORD
otuzcoensis (Curgia) Flint & Reyes, 1991	Pichincha		2,000	Flint (1998)
pablito (Curgia) Flint, 1998	Pichincha		570	Flint (1998)
paracazara (Chimarra) Blahnik, 1998	Pastaza, Morona Santiago, Tungurahua		1,280–1,531	Flint (1998)
peineta (Chimarra) Blahnik & Holzenthal, 1992	Los Rios, Santo Domingo, Pichincha		220–550	Blahnik (1998); this paper
persimilis (Curgia) Banks, 1920	Los Rios, Esmeraldas, Pichincha, Loja, Cotopaxi, Manabi		225–600	Flint (1998)
peruviana (Curgia) Flint, 1998	Napo, Pastaza		950	Flint (1998)
prolata (Chimarrrita) Blahnik, 1997	Pastaza	E	1,000	Blahnik (1998)
pumila (Chimarra) (Banks), 1920	Los Rios	E	1,100	Blahnik (1998)
paya (Curgia) Flint, 1998	Pastaza	E	980–1,340	Blahnik (1998)
quadratiterga (Chimarra) Blahnik, 1998	Zamora Chinchipe	E		Blahnik (1998)
rafita (Chimarra) Blahnik, 1998	Pastaza	E	1,076	Blahnik (1998); this paper
strongyla (Chimarra) Blahnik, 1998	Pichincha	E		Blahnik (1998)
utra (Chimarra) Blahnik, 1998	Pastaza, Morona Santiago	E		Blahnik (1998); this paper
xus (Chimarra) Blahnik, 1998	Pastaza, Napo			Blahnik (1998)
zamora (Chimarra) Blahnik, 1998	Zamora Chinchipe,			Blahnik (1998)

Chimarrhodella

aequatoria (Navás), 1934	Loja	E	1,600	Navás (1934)
ornata Blahnik, 2004	Tungurahua	E		Blahnik (2004)
ulmeri (Ross), 1956	Morona Santiago, Pastaza, Tungurahua	E	1,076–1,280	Blahnik (2004)

Wormaldia

andreia Muñoz-Quesada & Holzenthal, 2015	Tungurahua	E	1,550	Muñoz-Quesada & Holzenthal (2015)
araujoi Muñoz-Quesada & Holzenthal, 2015	Napo	E	640	Muñoz-Quesada & Holzenthal (2015)
planae Ross & King, in Ross, 1956	Los Rios, Pichincha, Santo Domingo		250–1,250	Muñoz-Quesada & Holzenthal (2015); this paper

Polycentropodidae

Cernotina

| cegne Flint 1971 | Orellana | | 240–250 | NEW RECORD |
| lobismen Santos & Nessimian 2008 | Orellana | | 240–250 | NEW RECORD |

Cynellus

| fraternus (Banks), 1905 | unspecified locality | | | Flint (1982) |
| mammillatus Flint, 1971 | Orellana | | 240–250 | Flint (1982) (unspecified locality); this paper |

Polycentropus

| altmani Yamamoto, 1967 | unspecified locality | | | Flint (1981a) |

(continued on next page)
Table 1 (continued)

Species	Province	Endemic	Altitude	Source
ceciiae Flint 1991	Imbabura, Pichincha, Pastaza		1,180–1,587	NEW RECORD
cuspidatus Flint, 1981	Flint, 1981			
exsertus Flint, 1981	Pastaza			NEW RECORD
joergensenii Ulmer, 1909b:75	Napo, Morona Santiago		1,646–2,772	
quadricuspidis Hamilton & Holzenthal, 2005	Zamora Chinchipe		2,000	Hamilton & Holzenthal (2005)
silex Hamilton & Holzenthal, 2005	Pichincha		1,400	Hamilton & Holzenthal (2005)
Polyplectopus				
buborichorum Chamorro & Holzenthal, 2010	Pastaza			Chamorro & Holzenthal (2010)
buchwaldi (Ulmer), 1911	unspecified locality			Chamorro & Holzenthal (2010)
ecuadoriensis Chamorro & Holzenthal, 2010	Sucumbios, Napo, Pastaza, Cotopaxi			Chamorro & Holzenthal (2010)
inarmatus Flint, 1971	Pastaza, Sucumbios, Orellana		240–1,200	Chamorro & Holzenthal (2010)
laminatus (Yamamoto), 1966	El Oro, Pichincha		250–570	Chamorro & Holzenthal (2010)
puyoensis Chamorro & Holzenthal, 2010	Pastaza			Chamorro & Holzenthal (2010)
recurvatus (Yamamoto), 1966	Cotopaxi, Los Rios		250–330	Chamorro & Holzenthal (2010)
Xiphocentronidae				
Machairocentron				
echinatum (Flint) 1981	Orellana		240–250	NEW RECORD
Xiphocentron				
sp. (undetermined females only)	Napo		1,966	NEW RECORD

not previously reported (Table 1 and Table S1). Pichincha (n = 78), Napo (n = 75), and Pastaza (n = 70) were the provinces with the most species recorded in total. However, since these provinces have been divided into new provinces (see Methods), we could not update all records accurately by province because of incomplete locality descriptions in the historical literature. Accordingly, records for Santo Domingo, Sucumbíos, and Orellana provinces could be diminished. On the other hand, Cañar, Guayas, Bolivar, Chimborazo, El Oro, Manabí, and Esmeraldas provinces have less than 10 species recorded (Fig. 1). Carchi, Santa Elena (which was previously part of Guayas) and Galápagos have no species recorded.

A total of 188 species are only known from one province, and 66 species from three or more provinces. According to the species estimator CHAO 2, the estimated caddisfly richness for the country is 578 species, indicating that only 54% of the Ecuadorian caddisfly fauna is known.
Figure 1 Trichoptera species richness in Ecuador. Caddisfly species per province. Number of species indicated by color intensity. Localities for recent collections indicated by circles.

Family overview

Anomalopsychidae

This Neotropical endemic family contains two genera, *Anomalopsyche* and *Contulma*, the latter with 27 species distributed from Costa Rica to Chile and southeastern Brazil. Only *Contulma* is found in Ecuador, where nine species occur (Table 1), of which one is newly recorded from the country.

Atriplectididae

This is a very rare family known from only a few widely separated regions (*Holzenthal, 1997*). The genus is known from Ecuador, but only from one published larval record (Table 1, *Holzenthal, 1997*) The larvae are unique among all Trichoptera. The head and pronotum are very small and narrow and the anterior portions of the mesothorax are narrow, very elongate, and retractile. Like the adults, they are very rarely collected.

Calamoceratidae

This family is cosmopolitan, but most of its 180 species distributed in six genera occur in tropical regions. Two genera, *Banyallarga* and *Phylloicus*, are known for Ecuador with three and eight species respectively (Table 1).
Ecnomidae
Only a single genus, *Austrotinodes*, occurs in Ecuador with one recorded species found only in one province (Table 1). In the New World *Austrotinodes* species occur from southern Texas to Chile, with 43 species recorded in the Neotropics (Holzenthal & Calor, in press).

Glossosomatidae
The family is cosmopolitan, but only members of the New World, subfamily Protoptilinae occur in the Neotropics. Only the genus *Mortoniella*, with 15 species (Table 1), has been recorded from Ecuador (Holzenthal & Calor, in press). Here we are adding *Protoptila* to the country list with one species (Table 1).

Helicopsychidae
All of the species in this cosmopolitan family except one are placed in the genus *Helicopsyche*. Johanson (1998) placed all the Neotropical species in two subgenera, *Feropsyche* and *Cochliopsyche*, both present in Ecuador. Thirteen species of *Helicopsyche* are recorded in Ecuador (with four new records provided in the present study), seven belonging to *Feropsyche* and six to *Cochliopsyche*.

Hydrobiosidae
Most of the 52 genera placed in this family occur in the Australian and southern Neotropical regions (Chile and Argentina), a few species are found in the Oriental, Nearctic, and Palearctic regions. Two genera occur in Ecuador (Table 1), *Atopsyche* with 26 species (two new records) and *Cailloma* with 1 species. The genus *Cailloma* occurs only at high altitudes (Sykora, 1991).

Hydropsychidae
This is a taxonomically diverse, cosmopolitan family. Five of the six genera known from Ecuador belong to the subfamily Macronematinae (*Centromacronema, Leptonema, Macronema, Macrostemum*, and *Synoestropsis*). *Smicridea* is in the subfamily Smicridiinae. There are 61 species in the family in Ecuador (Table 1) of which we are providing 11 new records. *Smicridea* is by far the most diverse, with 31 species, followed by *Leptonema* with 22. On the other hand, *Macrostemum* and *Synoestropsis* are only known from one species each, both from records with unspecified localities. Adult males of many of the Ecuador species of *Centromacronema, Macronema*, and *Macrostemum* swarm during the daytime and do not readily come to lights. After Hydroptilidae, this is the second most species rich family in the country.

Hydroptilidae
Microtrichoptera are found around the world and appear to be very diverse in the Neotropics. It is the most diverse family of Trichoptera found in Ecuador, and the most diverse family in the Neotropics. Seven genera and 78 species are recorded for the country, but certainly many more genera and species are yet to be collected. *Zumatrichia* and *Oxyethira* are the most species rich genera in Ecuador. *Betrichia, Costatrichia*, and *Mayatrichia* are only known from one species each in the country.
Leptoceridae
This is a large, cosmopolitan family of about 50 genera and more than 2,000 species. Eight genera and 33 species are known from Ecuador. The genera present in the country include *Achoropsyche, Amphoropsyche, Atanatolica, Grumichella, Nectopsyche, Oecetis, Trianodes,* and *Triplectides*. *Nectopsyche* and *Oecetis* are the most species rich genera in the country and *Achoropsyche* and *Triplectides* are each only known from one species.

Limnephilidae
This is a large and taxonomically diverse family. Most of its 100 genera and almost 900 species occur in cool lakes and rivers of the northern hemisphere. In the Neotropics they are known only from the higher elevations of Mexico and Central America, the northern and central Andes, and from temperate, southern South America. In Ecuador, the family is known from one species in the genus *Anomalocosmoecus*, from small streams in the high páramo (Table 1).

Odontoceridae
About 160 species in 18 genera occur in all faunal regions except the Afrotropical. There are 3 genera in the Neotropics, *Anastomoneura, Barypenthus,* and *Marilia*. Only *Marilia* occurs in Ecuador, with one recorded species (Table 1) in the Amazonian region.

Philopotamidae
Philopotamids occur in all faunal regions. The Ecuadorian fauna is dominated, both in terms of species diversity and abundance of individuals appearing at lights, by the genus *Chimarra*. Thirty-four *Chimarra* species are known from Ecuador (only 23 have been reported from all of North America). *Chimarrhodella* and *Wormaldia*, with three species each, are also known from Ecuador.

Polycentropodidae
Approximately 900 species are known from all faunal regions. Only three genera *Cyrnellus, Polycentropus,* and *Polyplectropus* were previously recorded from Ecuador. We are adding the genus *Cernotina* to the species list with two new records from the Tiputini Biological Research Station. Currently, 18 species in the family are known from Ecuador.

Xiphocentronidae
About 170 species are known from the Oriental, Ethiopian, and Neotropical regions (one species extends northward into southern Texas in North America). In the current catalog of Neotropical caddisflies (*Holzenthal & Calor, in press*) none of the species in this family are recorded from Ecuador. We have collected only three specimens in this family in Ecuador, one of *Machairocentron echinatum* and two unidentifiable female specimens of *Xiphocentron*. This may be because many species are day active and do not come to lights; nevertheless, they are not at all common in the field or in collections.

DISCUSSION
Hydroptilidae, Hydropsychidae, and Philopotamidae accounted for 58% of the diversity of all Ecuadorian caddisfly species. This pattern is similar to other neotropical countries.
Forty-eight new records were added to those that are listed for the country in the current Catalog of Neotropical Caddisflies (Holzenthal & Calor, in press), yet the species estimator suggests that 46% of the species present in the country are yet to be discovered. This does not seem far from reality since, for example, Costa Rica has around 460 species recorded (Holzenthal & Calor, in press). Colombia, a country 22 times as large as Costa Rica and four times the size of Ecuador has only 210 species known (Muñoz-Quesada, 2000). Panama, on the other hand has 300 species recorded (Armitage & Cornejo, 2016). The differences between the published records are clearly related to the number of studies and surveys performed in these countries, with Costa Rica and Panama having a long tradition of biodiversity surveys. Considering the diversity of Ecuadorian ecosystems and the fact that some provinces have less than ten records, we are confident that future surveys will find more species. Most of the coastal provinces, including the Ecuadorian Chocó, are understudied and probably harbor species not known from the Amazon or the Andes. These unexplored provinces are priority areas to conduct future collections and surveys. It is important to emphasize that most of the species recorded and added through our own surveys are represented by one or a few individuals.

The land cover loss in the country is high (Sarmiento, 2002; Eva et al., 2004), especially in the Andean and coastal regions. Since several groups of Trichoptera are known to be highly regionally endemic (Previsic et al., 2009), probably some undescribed species are already lost. Also, climate change might play an important role affecting specialist species, such as those found in glacier-fed streams (Jacobsen et al., 2012). Many protected areas in the Andean and coastal regions are located in mountainous areas, protecting only certain species. We have seen that there is an altitudinal segregation for several groups (Helicopsychidae, Mortoniella), and altitudinal stratification of caddisfly assemblages has been noted (Rincón-Hernández, 1999; Blinn & Ruiter, 2009). This is also a consideration to take into account for future surveys, and the establishment of protected areas should also address altitudinal zonation.

Many new species of Neotropical caddisflies have been described in recent decades. For example, the number of described species increased from 2,214 in 1999 (Flint et al. 1999) to almost 3,260 species today (Holzenthal & Calor, in press) or an increase of more than 1,000 species in 16 years. Currently, in the material we have collected since 2010 we have tentatively identified around 80 new species and some dozens of species known from unidentifiable females. The description of these new species and the identification of others will increase the number of Ecuadorian species to around 400 with material already in hand.

A list of species is a first step in the chain of knowledge of this diverse and sensitive group of insects. However, other important factors in the protection of species diversity is an understanding of their life history and habitat requirements. Currently, we only have these data for one Ecuadorian caddisfly species, Contulma paluguillensis (Holzenthal & Ríos-Touma, 2012). Worldwide, there is a tremendous lack of information on natural history of the world’s biota (Able, 2016). Even in Europe, where almost all the species are described, life-cycle duration, reproduction, and distribution are known for <10% of
However, this information is crucial to protect and forecast the effects of climate and land use change on populations and their distributions of this fascinating group of aquatic insects.

ACKNOWLEDGEMENTS

Special thanks to Andrea Encalada, Andrés Morabowen, Karina Hernández, Xavier Amigo, Lina Pita, Carlos Morochz and Raúl Acosta for field and lab assistance. Laboratorio de Ecología Acuática of Universidad San Francisco de Quito, Centro de Investigación en Biodiversidad y Cambio Climático of Universidad Tecnológica Indoamérica provided lab facilities during field work. Silvana Gallegos kindly made the map. Dr. Roger J. Blahnik helped sort and identify some of the material. We would also like to thank the following preserves for hosting us during our field trips: Reserva Los Cedros, Reserva Mashpi, Reserva Intillacta, Reserva Mashpishungo, Reserva Pambiliño, Estación de Biodiversidad Tiputini and Finca Upano. This manuscript was greatly improved by generous comments of Steve Harris, Brian Armitage and Karl Kjer.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by Minnesota Agricultural Experiment Station projects MIN-17-017 and 17-029. ERG was funded through the Walter H. Judd Fellowship, University of Minnesota, and a doctoral fellowship from Cienciactiva, Consejo Nacional de Ciencia, Tecnología, e Innovación Tecnológica Peru (contract 277-2015-FONDECYT). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

Minnesota Agricultural Experiment Station projects: MIN-17-017, 17-029.

Walter H. Judd Fellowship, University of Minnesota.

Cienciactiva, Consejo Nacional de Ciencia, Tecnología, e Innovación Tecnológica Peru: 277-2015-FONDECYT.

Competing Interests

The authors declare there are no competing interests.

Author Contributions

- Blanca Ríos-Touma conceived and designed the study, performed the study, analyzed the data, contributed reagents/materials/analysis tools, wrote the paper, prepared figures and/or tables, reviewed drafts of the paper, was also in charge of all the collecting permits.

- Ralph W. Holzenthal conceived and designed the study, performed the study, analyzed the data, contributed reagents/materials/analysis tools, wrote the paper, prepared figures and/or tables, reviewed drafts of the paper.
Jolanda Huisman, Robin Thomson and Ernesto Rázuri-Gonzalez performed the study, analyzed the data, contributed reagents/materials/analysis tools, wrote the paper, reviewed drafts of the paper.

Field Study Permissions
The following information was supplied relating to field study approvals (i.e., approving body and any reference numbers):

All the collections were performed under the Ecuadorian research permits: 36-2010-IC-FLO/FAU-DPAP-MA; 0032-FAU-MAE-PNY; 06-2011-ICFAU-DPAI/MA; 005-15-IC-FAU-FLO-DNB/MA issued by the Ministerio del Ambiente de Ecuador.

Data Availability
The following information was supplied regarding data availability:

The raw data has been supplied as a Table S1.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/peerj.2851#supplemental-information.

REFERENCES

Able KW. 2016. Natural history: an approach whose time has come, passed, and needs to be resurrected. ICES Journal of Marine Science: Journal Du Conseil 73(9):2150–2155 DOI 10.1093/icesjms/fsw049.

Armitage BJ, Cornejo A. 2016. Orden Trichoptera (Insecta) en Panamá: Listas de especies y su distribución por cuencas y unidades administrativas. Puente Biológico 7:175–199.

Blahnik RJ. 1995. New species of Smicridea (subgenus Smicridea) from Costa Rica, with a revision of the fasciatella complex (Trichoptera: Hydropsychidae). Journal of the North American Benthological Society 14:84–107 DOI 10.2307/1467726.

Blahnik RJ. 1997. Systematics of Chimarrita, a new subgenus of Chimarra (Trichoptera: Philopotamidae). Systematic Entomology 22:199–243 DOI 10.1046/j.1365-3113.1997.d01-39.x.

Blahnik RJ. 1998. A revision of the Neotropical species of the genus Chimarra, subgenus Chimarra (Trichoptera: Philopotamidae). Memoirs of the American Entomological Institute 59: vi+1-318.

Blahnik RJ. 2004. New species of Chimarrhodella from Venezuela and Ecuador (Trichoptera: Philopotamidae). Zootaxa 552:1–7 DOI 10.11646/zootaxa.552.1.1.

Blahnik RJ, Holzenthal RW. 2004. Collection and curation of Trichoptera, with an emphasis on pinned material. Nectopsyche, Neotropical Trichoptera Newsletter 1:8–20.

Blahnik RJ, Holzenthal RW. 2014. Review and redescription of species in the Oecetis avara group, with the description of 15 new species (Trichoptera, Leptoceridae). ZooKeys 376:1–83 DOI 10.3897/zookeys.376.6047.
Blahnik RJ, Holzenthal RW, Prather AL. 2007. The lactic acid method for clearing Trichoptera genitalia. In: Bueno-Soria J, Barba-Álvarez R, Armitage BJ, eds. Proceedings of the 12th international symposium on Trichoptera. Columbus: The Caddis Press, 9–14.

Blinn DW, Ruiter DE. 2009. Caddisfly (Trichoptera) assemblages along major river drainages in Arizona. Western North American Naturalist 69:299–308 DOI 10.3398/064.069.0303.

Bueno-Soria J, Santiago-Fragoso S. 1992. Studies in aquatic insects, XI: seven new species of the genus Ochrotrichia (Ochrotrichia) from South America (Trichoptera: Hydroptilidae). Proceedings of the Entomological Society of Washington 94:439–446.

Chamorro ML, Holzenthal RW. 2010. Taxonomy and phylogeny of New World Polypectropus Ulmer, 1905 (Trichoptera: Psychomyioidea: Polycerotspodidae) with the description of 39 new species. Zootaxa 2582:1–252.

Chang FH, Lawrence JE, Rios-Touma B, Resh VH. 2014. Tolerance values of benthic macroinvertebrates for stream biomonitoring: assessment of assumptions underlying scoring systems worldwide. Environmental Monitoring and Assessment 186(4):2135–2149 DOI 10.1007/s10661-013-3523-6.

De Moor FC, Ivanov VD. 2008. Global diversity of caddisflies (Trichoptera: Insecta) in freshwater. Hydrobiologia 595:393–407 DOI 10.1007/s10750-007-9113-2.

Eva HD, Belward AS, De Miranda EE, Di Bella CM, Gond V, Huber O, Jones S, Sgrenzaroli M, Fritz S. 2004. A land cover map of South America. Global Change Biology 10(5):731–744 DOI 10.1111/j.1529-8817.2003.00774.x.

Flint Jr OS. 1963. Studies of Neotropical caddis flies, I: Rhyacophilidae and Glossosomatidae (Trichoptera). Proceedings of the United States National Museum 114:453–478 DOI 10.5479/si.00963801.114-3473.453.

Flint Jr OS. 1974. The Trichoptera of Surinam. Studies of Neotropical caddisflies, XV. Studies on the Fauna of Suriname and other Guyanas 14:1–151.

Flint Jr OS. 1978. Studies of Neotropical Caddisflies, XXII: Hydropsychidae of the Amazon Basin (Trichoptera). Amazoniana 6:373–421.

Flint Jr OS. 1981a. Studies of Neotropical caddisflies, XXVIII: the Trichoptera of the Río Limón Basin, Venezuela. Smithsonian Contributions to Zoology 330:1–61.

Flint Jr OS. 1981b. Studies of Neotropical caddisflies, XXIX: the genus Polycerotspodus (Trichoptera: Psychomyiidae). Journal of the Washington Academy of Sciences 70(1980):148–160.

Flint Jr OS. 1982. Trichoptera of the area platense. Biologia Aquatica 2:1–70.

Flint Jr OS. 1991. Studies of Neotropical caddisflies, XLV: the taxonomy, phenology, and faunistics of the Trichoptera of Antioquia, Colombia. Smithsonian Contributions to Zoology 520:1–113.

Flint Jr OS. 1992a. Studies of Neotropical caddisflies, XXXVIII: a review of the classification and biology of the Neotropical microcaddisflies, with the description of a new genus (Trichoptera: Hydroptilidae: Leucotrichiini). In: Quintero D, Aiello A, eds. Insects of Panama and Mesoamerica: selected studies. Oxford: Oxford University Press, 525–531.
Flint Jr OS. 1992b. Studies of Neotropical caddisflies, XLIV: on a collection from Ilha de Maraca, Brazil. *Acta Amazonica* **21**(1991):63–83.

Flint Jr OS. 1996a. The Trichoptera collected on the expeditions to Parque Manu, Madre de Dios, Peru. In: MANU: the biodiversity of Southeastern Peru. Washington, D.C.: Smithsonian Institution Press, 369–430.

Flint Jr OS. 1996b. Studies of Neotropical caddisflies LV: Trichoptera of Trinidad and Tobago. *Transactions of the American Entomological Society* **122**:67–113.

Flint Jr OS. 1998. Studies of Neotropical caddisflies, LIII: a taxonomic revision of the subgenus *Curgia* of the genus *Chimarra* (Trichoptera: Philopotamidae). *Smithsonian Contributions to Zoology* **594**:1–131.

Flint Jr OS. 2008. Studies of Neotropical caddisflies, LXI: new species of *Leptonema* Guerin (Trichoptera: Hydropsychidae). *Proceedings of the Entomological Society of Washington* **110**:456–469 DOI 10.4289/07-042.1.

Flint Jr OS, Bueno-Soria J. 1979. Studies of Neotropical caddisflies, XXIV: the genus *Macronema* in Mesoamerica (Trichoptera: Hydropsychidae). *Proceedings of the Entomological Society of Washington* **81**:522–535.

Flint Jr OS, Denning DG. 1989a. Studies of Neotropical caddisflies, XL: new species of *Smicridea* (Smicridea) from Middle America and the West Indies (Trichoptera: Hydropsychidae). *Proceedings of the Biological Society of Washington* **102**:418–433.

Flint Jr OS, Denning DG. 1989b. Studies of Neotropical caddisflies, XLI: new species and records of *Austrotinodes* (Trichoptera: Psychomyiidae). *Pan-Pacific Entomologist* **65**:108–122.

Flint Jr OS, Holzenthal RW, Harris SC. 1999. *Catalog of the Neotropical caddisflies (Trichoptera).* Columbus: Special Publication, Ohio Biological Survey.

Flint Jr OS, McAlpine JF, Ross HH. 1987. A revision of the genus *Leptonema* Guerin (Trichoptera: Hydropsychidae: Macronematinae). *Smithsonian Contributions to Zoology* **450**:1–193.

Flint Jr OS, Reyes L. 1991. Studies of Neotropical caddisflies, XLVI: the Trichoptera of the Río Moche Basin, Department of La Libertad, Peru. *Proceedings of the Biological Society of Washington* **104**:474–492.

França D, Paprocki H, Calor AR. 2013. The genus *Macrostemum* Kolenati 1859 (Trichoptera: Hydropsychidae) in the Neotropical Region: description of two new species, taxonomic notes, distributional records and key to males. *Zootaxa* **3716**:301–335 DOI 10.11646/zootaxa.3716.3.1.

Gotelli NJ, Colwell RK. 2011. Estimating species richness. *Biological Diversity: Frontiers in Measurement and Assessment* **12**:39–54.

Hamilton SW, Holzenthal RW. 2005. Five new species of Polycentropodidae (Trichoptera) from Ecuador and Venezuela. *Zootaxa* **810**:1–14.

Harper PP, Turcotte P. 1985. New Ecuadorian Trichoptera. *Aquatic Insects* **7**:133–140 DOI 10.1080/01650428509361212.

Harris SC, Davenport LJ. 1992. New species of microcaddisflies from the Amazon region, with especial reference to northeastern Peru (Trichoptera: Hydropsychidae). *Proceedings of the Entomological Society of Washington* **94**:454–470.
Harris SC, Flint Jr OS, Holzenthal RW. 2002. Review of the Neotropical genus *Flintiella* (Trichoptera: Hydroptilidae: Stactobiini). *Journal of the New York Entomological Society* **110**:65–90 DOI 10.1664/0028-7199(2002)110[0065:ROTNGF]2.0.CO;2.

Harris SC, Holzenthal RW. 1990. Hydroptilidae (Trichoptera) from Costa Rica: the genus *Mayatrichia* Mosely. *Journal of the New York Entomological Society* **98**:453–460.

Harris SC, Holzenthal RW. 1994. Hydroptilidae (Trichoptera) of Costa Rica and the Neotropics: systematics of the genus *Byrsopteryx* Flint (Stactobiini). *Journal of the New York Entomological Society* **102**:154–192.

Harris SC, Holzenthal RW, Flint Jr OS. 2002. Review of the Neotropical genus *Bredinia* (Trichoptera: Hydroptilidae: Stactobiini). *Annals of Carnegie Museum* **71**:13–45.

Hering D, Schmidt-Kloiber A, Murphy J, Luecke S, Zamora-Munoz C, Lopez-Rodriguez MJ, Huber T, Graf W. 2009. Potential impact of climate change on aquatic insects: a sensitivity analysis for European caddisflies (Trichoptera) based on distribution patterns and ecological preferences. *Aquatic Sciences* **71**:3–14 DOI 10.1007/s00027-009-9159-5.

Holzenthal RW. 1985. Studies in Neotropical Leptoceridae (Trichoptera) II: *Amphoropsyche*, a new genus and species of Leptocerinae from northern South America. *International Journal of Entomology* **27**:255–269.

Holzenthal RW. 1988a. Systematics of Neotropical *Triplectides* (Trichoptera: Leptoceridae). *Annals of the Entomological Society of America* **81**:187–208 DOI 10.1093/aesa/81.2.187.

Holzenthal RW. 1988b. Studies in Neotropical Leptoceridae (Trichoptera), VIII: the genera *Atanatolica* Mosely and *Grumichella* Müller (Triplectidinae: Grumichellini). *Transactions of the American Entomological Society* **114**:71–128.

Holzenthal RW. 1997. The caddisfly (Trichoptera) family Atriplectididae in the Neotropics. In: Holzenthal RW, Flint Jr OS, eds. *Proceedings of the 8th international symposium on Trichoptera*. Columbus: Ohio Biological Survey, 157–165.

Holzenthal RW, Andersen T. 2004. The caddisfly genus *Triaenodes* in the Neotropics (Trichoptera: Leptoceridae). *Zootaxa* **511**:1–80 DOI 10.11646/zootaxa.511.1.1.

Holzenthal RW, Calor A. Catalog of the Neotropical Trichoptera (Caddisflies). *Zookeys* In Press.

Holzenthal RW, Flint Jr OS. 1995. Studies of Neotropical caddisflies, I: systematics of the Neotropical caddisfly genus *Contulma* (Trichoptera: Anomalopsychidae). *Smithsonian Contributions to Zoology* **575**:1–59.

Holzenthal RW, Rázuri-Gonzales LE. 2011. A new species of *Amphoropsyche* (Trichoptera, Leptoceridae) from Ecuador, with a key to the species in the genus. *ZooKeys* **211**:59–65.

Holzenthal RW, Ríos-Touma B. 2012. *Contulma paluguillensis* (Trichoptera: Anomalopsychidae), a new caddisfly from the high Andes of Ecuador, and its natural history. *Freshwater Science* **31**:442–450 DOI 10.1899/11-067.1.

Holzenthal RW, Thomson RE, Ríos-Touma B. 2015. Order Trichoptera. In: Thorp JH, Rogers DC, eds. *Ecology and general biology, vol I: Thorp and Covich’s Freshwater Invertebrates*. 4th edition. Amsterdam: Academic Press, 965–1002.
Jacobsen D, Milner AM, Brown LE, Dangles O. 2012. Biodiversity under threat in glacier-fed river systems. Nature Climate Change 2(5):361–364 DOI 10.1038/nclimate1435.

Johanson KA. 1998. Phylogenetic and biogeographic analysis of the family Helicopsychidae (Insecta: Trichoptera). Entomologica Scandinavica 53(Supplement):1–172.

Johanson KA. 2002. Systematic revision of American Helicopsyche of the subgenus Feropsycha (Trichoptera, Helicopsychidae). Insect Systematics & Evolution 60(Supplement):1–147.

Johanson KA. 2003. The Helicopsyche (Feropsycha) (Insecta, Trichoptera, Helicopsychidae) from Barro Colorado Island, Panama. Zootaxa 283:1–12 DOI 10.11646/zootaxa.283.1.1.

Kelley RW. 1983. New Neotropical species of Oxyethira (Trichoptera: Hydroptilidae). Proceedings of the Entomological Society of Washington 85:41–54.

Malm T, Johanson KA, Wahlberg N. 2013. The evolutionary history of Trichoptera (Insecta): a case of successful adaptation to life in freshwater. Systematic Entomology 38:459–473 DOI 10.1111/syen.12016.

Medellín F, Ramírez M, Rincón ME. 2004. Trichoptera del Santuario de Iguáque (Boyacá, Colombia) y su relación con la calidad del agua. Revista Colombiana de Entomología 30:197–203.

Muñoz-Quesada F. 2000. Especies del orden Trichoptera (Insecta) en Colombia. Biota Colombiana 1:267–288.

Muñoz-Quesada FJ, Holzenthal RW. 2015. Revision of the Neotropical species of the caddisfly genus Wormaldia McLachlan (Trichoptera: Philopotamidae). Zootaxa 3998:1–138 DOI 10.11646/zootaxa.3998.1.1.

Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858 DOI 10.1038/35002501.

Navás L. 1913. Névroptères. In: Mission du Service Geographique de l’Armee pur la mesure d’un arc de meridien equatorial en Amerique de Sud (1899–1910) vol 10. Paris: Gauthier-Villars, 69–77.

Navás L. 1934. Insectos Suramericanos. Novena serie. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales de Madrid 31:155–184.

Oláh J, Flint Jr OS. 2012. Description of new species in the Leucotrichiini tribe (Trichoptera: Hydroptilidae). Annales Historico-Naturales Musei Nationalis Hungarici 104:131–213.

Oláh J, Johanson KA. 2011. New Neotropical Hydroptilidae (Trichoptera). Annales Historico-Naturales Musei Nationalis Hungarici 103:117–255.

Oláh J, Johanson KA. 2012. New species and records of Neotropical Macronematinae and Smicrideinae (Trichoptera: Hydropsychidae). Annales Historico-Naturales Musei Nationalis Hungarici 104:215–297.

Prather AL. 2003. Revision of the Neotropical caddisfly genus Phylloicus (Trichoptera: Calamoceratidae). Zootaxa 275:1–214 DOI 10.11646/zootaxa.275.1.1.
Prather AL. 2004. Revision of the Neotropical caddisfly genus Banyallarga (Trichoptera: Calamoceratidae). *Zootaxa* **435**:1–76 DOI 10.11646/zootaxa.435.1.1.

Previsic A, Walton C, Kucinic M, Mitrikeski PT, Kerovec M. 2009. Pleistocene divergence of Dinaric Drusus endemics (Trichoptera, Limnephilidae) in multiple microrefugia within the Balkan Peninsula. *Molecular Ecology* **18**:634–647 DOI 10.1111/j.1365-294X.2008.04046.x.

Quinteiro FB, Calor AR. 2015. A review of the genus Oecetis (Trichoptera: Leptoceridae) in the Northeastern Region of Brazil with the description of 5 new species. *PLOS ONE* **10**(6):e0127357 DOI 10.1371/journal.pone.0127357.

Rincón-Hernández ME. 1999. Estudio preliminar de la distribución altitudinal y espacial de los Tricópteros en la Cordillera Oriental (Colombia). In: Amat G, Andrade M, Fernández F, eds. *Insectos de Colombia*. Santa Fe de Bogota, Colombia: Academia Colombiana de Ciencias Exactas, Fisicas Y Naturas, 267–284.

Sarmiento FO. 2002. Anthropogenic change in the landscapes of highland Ecuador. *Geographical Review* **92**(2):213–234 DOI 10.2307/4140971.

Schmid F. 1989. Les Hydrobiosides (Trichoptera, Annulipalpia). *Bulletin de l’institut Royal des Sciences Naturelles de Belgique, Entomologie* **59**(Supplement):1–154.

Shen TJ, Chao A, Lin CF. 2003. Predicting the number of new species in further taxonomic sampling. *Ecology* **84**(3):798–804 DOI 10.1890/0012-9658(2003)084[0798:PTNONS]2.0.CO;2.

Sykora JL. 1991. New species of Hydrobiosidae from Ecuador (Insecta: Trichoptera: Hydrobiosidae). *Annals of Carnegie Museum* **60**:243–251.

Sykora JL. 1999. Genus Mortoniella and its distribution in South America (Trichoptera, Glossosomatidae, Prooptilinae). In: Malicky H, Chantaramongkol P, eds. *Proceedings of the 9th international symposium on Trichoptera*. Chiang Mai: Faculty of Science, Chiang Mai University, 377–387.

Thomson RE, Holzenthal RW. 2015. A revision of the Neotropical caddisfly genus Leucotrichia Mosely, 1934 (Hydroptilidae, Leucotrichiinae). *ZooKeys* **499**:1–100 DOI 10.3897/zookeys.499.8360.

Ulmer G. 1905. Zur Kenntniss aussereuropäischer Trichopteren. (Neue Trichoptern des Hamburger und Stettiner Museums und des Zoologischen Instituts in Halle, nebst Beschreibungen einiger Typen Kolenati’s und Burmeister’s.). *Stettiner Entomologische Zeitung* **66**:1–119.

Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR, Davies PM. 2010. Global threats to human water security and river biodiversity. *Nature* **467**(7315):555–561 DOI 10.1038/nature09440.

Wasmund AM, Holzenthal RW. 2007. A revision of the Neotropical caddisfly genus Rhyacopsyche, with the description of 13 new species (Trichoptera: Hydroptilidae). *Zootaxa* **1634**:1–59.