Quantum oscillations in antiferromagnetic conductors with small carrier pockets

Revaz Ramazashvili

Laboratoire de Physique Théorique – IRSAMC, CNRS and Université de Toulouse, UPS, F-31062 Toulouse, France

(Dated: November 17, 2010)

I study magnetic quantum oscillations in antiferromagnetic conductors with small carrier pockets and show, that combining the oscillation data with symmetry arguments and with the knowledge of the possible positions of the band extrema may allow to greatly constrain or even uniquely determine the location of a detected carrier pocket in the Brillouin zone.

PACS numbers: 71.18.+y,74.72.-h,75.50.Ee

For over fifty years, magnetic quantum oscillations have been used as a direct and precise probe of the Fermi surface physics in metals [1]. The scope of the quantum oscillation experiments has been ever expanding to new materials such as layered and chain compounds, magnetically ordered metals and superconductors.

Recently, quantum oscillations were successfully observed in YBa$_2$Cu$_3$O$_{6+x}$ (YBCO) cuprate superconductors [2–7], prominent members of the family of doped antiferromagnetic insulators. In the underdoped region of the phase diagram, well-defined charged quasiparticles with a small-pocket Fermi surface were the key finding, whose further systematic study has only begun.

The small size of the carrier pockets points to an electron ordering and a concomitant Fermi surface reconnection – and several types of order, including the ortho-II chain structure [8], stripe-like spin density wave [9, 10] and field-induced antiferromagnetism [11] were evoked to account for the observed area of the pockets. Distinguishing between these possibilities purely theoretically appears problematic: to reach agreement with quantum oscillation data, band structure calculations often require rigid shifts in the relative positions of the bands [8] and fitting renormalization factors [9]. These ad hoc adjustments may become substantial for small carrier pockets, let alone the unidentified nature of the electron order likely affecting the band structure in an unknown way. Given that probing the YBCO Fermi surface by angle-resolved photoemission remains a challenge, it is desirable to distinguish between the various ordering scenarios by means of only the quantum oscillations. Which invites a question, relevant far beyond the physics of the cuprates: how do various types of order manifest themselves in the quantum oscillations – and how much can one possibly learn about a given type of order from a quantum oscillation measurement alone?

An important step in this direction has been undertaken recently by Kabanov and Alexandrov [12], who studied the effect of the Zeeman splitting on the quantum oscillations in a weakly-doped two-dimensional insulator of square symmetry with the Néel antiferromagnetic order. The authors studied the reduction factor R_s, modulating the n-th harmonic amplitude due to interference of the contributions from the two Zeeman-split branches of the spectrum [11]

$$R_s = \cos \left(\frac{\pi n \delta E}{\Omega_0} \right), \quad (1)$$

where δE is the Zeeman splitting of the Landau levels, and Ω_0 the cyclotron energy. They showed, that the R_s depends on the orientation of the field relative not only to the conducting plane, but also to the staggered magnetization (Fig. 1). Moreover, in a spin-flop configuration, where the staggered magnetization reorients itself transversely to the field, the Landau levels undergo no Zeeman splitting [13, 14], and the R_s equals unity as long as the field \mathbf{H} exceeds the spin-flop threshold [12]. This behavior is in stark contrast to that of a two-dimensional paramagnetic conductor with isotropic Zeeman term $\mathbf{H}_Z = -\frac{1}{2} \mu_B g(\mathbf{H} \cdot \mathbf{\sigma})$, where the R_s reads

$$R_s = \cos \left(\frac{\pi n g \mu_B m c}{\hbar e \cos \theta} \right), \quad (2)$$

with $\mu_B = \frac{1}{2} \frac{|e|}{m_e}$ being the Bohr magneton, m the cyclotron mass, and θ the inclination angle, sketched in the Fig. 1 regardless of the value of g, the R_s in the Eqn. (2) has infinitely many ‘spin-zeros’ as a function of θ.

The peculiar behavior of the R_s, predicted in the Ref. [12], stems from anisotropic spin-orbit character of the
Zeeman coupling \mathcal{H}_Z in an antiferromagnet [15][17]. The energy scale E_{SO} of the relativistic spin-orbit coupling tends to be negligible compared with the antiferromagnetic gap Δ in the electron spectrum. Therefore, in a wide range of magnetic fields $E_{SO} \ll \langle \mathcal{H}_Z \rangle \ll \Delta$ considered hereafter, the Zeeman term is sensitive to the orientation of the field relative to the staggered magnetization, but not to the crystal axes. Hence, in this range of fields, the gyromagnetic factor g in the Zeeman term turns into a tensor with two distinct eigenvalues, g_\parallel and g_\perp, for the longitudinal (\mathbf{H}_\parallel) and the transverse (\mathbf{H}_\perp) components of the magnetic field \mathbf{H} with respect to the staggered magnetization. The g_\parallel is constant up to small relativistic corrections. By contrast, in d dimensions, the g_\perp must vanish on a $(d-1)$-dimensional manifold $\{\mathbf{p}^*\}$ in the Brillouin zone, due to a conspiracy of the crystal symmetry with that of the antiferromagnetic order [16][17]. Thus, the g_\parallel must depend substantially on the quasiparticle momentum \mathbf{p}:

$$\mathcal{H}_Z = -\frac{1}{2} \mu_B \left[g_\parallel (\mathbf{H}_\parallel \cdot \mathbf{\sigma}) + g_\perp (\mathbf{H}_\perp \cdot \mathbf{\sigma}) \right]. \quad (3)$$

Whenever a small carrier pocket is centered within the $\{\mathbf{p}^*\}$, the Zeeman splitting in a purely transverse field vanishes [12][14], leading to a peculiar dependence of the R_\parallel on the field direction [12]. No spin-zeros appear beyond the spin-flop threshold, and such a behavior of the R_\parallel may serve as a signature of antiferromagnetic order.

A number of new developments suggest, that the antiferromagnetism in the underdoped YBCO may be weakly-incommensurate rather than commensurate, thus calling for an extension of the above results. Recent neutron scattering data [18] have shown evidence of incommensurate antiferromagnetism, induced by a magnetic field in the underdoped YBa$_2$Cu$_3$O$_{6.45}$ of very close composition to the samples of the Refs. [2][4]. At the same time, a weakly-incommensurate stripe-like spin density wave with an ordering wave vector $\mathbf{Q} = \left(\frac{\pi}{a}, \frac{1}{2}, \frac{1}{2} \right)$ with an integer N (a being the lattice spacing) was found to yield [9][10], in a broad parameter range, small electron pockets, consistent not only with the quantum oscillation data [2][4], but also with the observed negative low-temperature Hall coefficient [19].

How could such a weakly-incommensurate antiferromagnetism manifest itself in quantum oscillations? The answer depends on the location of the carrier pocket in the Brillouin zone. Pockets, centered within the $\{\mathbf{p}^*\}$, were described above. Weak incommensurability opens a new possibility: pockets, centered outside the $\{\mathbf{p}^*\}$.

For $\mathbf{Q} = \left(\frac{\pi}{a}, \frac{\pi}{a}, \frac{\pi}{a} \right)$ and generic values of the density wave parameters, the Ref. [9] found such pockets, centered at the points B in the Fig. 2(a), while the Ref. [10] found analogous pockets for $\mathbf{Q} = \left(\frac{\pi}{a}, \frac{\pi}{a}, \frac{\pi}{a} \right)$. These pockets are about $\frac{\pi}{a}$ away from the nearest point S, where the line $g_\parallel (\mathbf{p}) = 0$ is pinned by symmetry. In the simplest case, the line $g_\parallel (\mathbf{p}) = 0$ is singly-connected and pinned at the points S: the $g_\parallel (\mathbf{p})$ is suppressed only within momentum deviations $|\mathbf{p} - \mathbf{p}_1| \leq \xi^{-1} \ll \frac{\pi}{a}$ from this line [17]. In such a case, the g-tensor at the B-pockets is isotropic up to vanishingly small corrections of the order of $(a/\xi)^2 \ll 1$, which can be read off the Eqn. (11) of the Ref. [17] for the $\mathbf{Q} = \left(\frac{\pi}{a}, \frac{\pi}{a}, \frac{\pi}{a} \right)$ Néel order.

However, a very recent study [20] found the $g_\parallel (\mathbf{p}) = 0$ line numerically for a $\mathbf{Q} = \left(\frac{\pi}{a}, \frac{\pi}{a}, \frac{\pi}{a} \right)$ spin density wave, and discovered that this line may be multiply-connected, with components, disconnected from symmetry-enforced degeneracy points. Some of these components were found to pass close to the B-points. In such cases, the $g_\parallel (\mathbf{p})$ for the B-pockets is non-zero yet reduced, and thus the g-tensor is strongly anisotropic [20]. By contrast with the pockets, centered on the line $g_\parallel (\mathbf{p}) = 0$, the Zeeman splitting of the B-pocket Landau levels does not vanish, and the spin-zeros do appear even in the spin-flop configuration, albeit at greater inclination angles θ.

Do the above observations open any diagnostic opportunities? Of course, spin-zeros are no proof of antiferromagnetism. However, having experimental knowledge of the presence and periodicity of the antiferromagnetism in the sample greatly restricts the allowed possibilities: for instance, in $\mathbf{Q} = \left(\frac{\pi}{a}, \frac{\pi}{a}, \frac{\pi}{a} \right)$ and $\mathbf{Q} = \left(\frac{\pi}{a}, \frac{\pi}{a}, \frac{\pi}{a} \right)$ spin density wave states, the B points in the Fig. 2(a) were the only band extrema outside the $\{\mathbf{p}^*\}$, found by the Refs. [9][10] for generic parameter values. Thus, observation of spin-zeros in such an antiferromagnet constrains the detected carrier pocket uniquely to the center point B of the magnetic Brillouin zone.

By contrast, in a $\mathbf{Q} = \left(\frac{\pi}{a}, \frac{\pi}{a} \right)$ antiferromagnet, in the relevant parameter range the calculated band minima

FIG. 2: (color online). (a) The first quadrant of the paramagnetic Brillouin zone of a $\mathbf{Q} = \left(\frac{\pi}{a}, \frac{\pi}{a}, \frac{\pi}{a} \right)$ antiferromagnet [9]. The dashed (blue) lines denote the antiferromagnetic Brillouin zone boundaries. The thick (red) curve shows a typical line, where $g_\parallel (\mathbf{p}) = 0$: this line is pinned by symmetry at the points S at the momenta $\mathbf{p}_1 = \left(\frac{n}{a}, \frac{2}{a}, \frac{2}{a} \right)$. The band extrema were found [9] at the points B, shown by the open circles, and, in a narrower parameter range, at the points S, shown by dark circles. (b) The same, for a $\mathbf{Q} = \left(\frac{\pi}{a}, \frac{\pi}{a} \right)$ Néel antiferromagnet on a lattice of square symmetry. The thick (red) line shows the antiferromagnetic Brillouin zone boundary, where $g_\parallel (\mathbf{p}) = 0$. The band extrema were found at the points Σ (black circles) and X (open circles).
were found only on the magnetic Brillouin zone boundary \[17\], where \(g_{\perp}(p) = 0 \). For such carrier pockets, no spin-zeros appear in a purely transverse field; thus, observation of spin-zeros is essentially incompatible with \(Q = (\frac{x}{2}, \frac{y}{2}) \) Néel antiferromagnetism.

The experiments have not yet reached a consensus. Measurements of the underdoped \(\text{YBa}_2\text{Cu}_3\text{O}_{6.54} \) have found no spin-zeros within the expected angular range \[21\]. By contrast, the Ref. \[22\] studied the underdoped \(\text{YBa}_2\text{Cu}_3\text{O}_{6.59} \), and did find spin-zeros, consistent with isotropic \(g \)-tensor, within the range of the Ref. \[21\].

While settling this disagreement is beyond the scope of the present work, eventually finding no spin-zeros at all would be consistent with antiferromagnetism and the pockets centered within the \(\{p^*\} \). By contrast, between the \(Q = (\frac{x}{2}, \frac{y}{2}) \) and \(Q = (\frac{x}{2}, 1 - \frac{x}{2N}) \) \(\frac{x}{2} \) spin density waves, detecting spin-zeros would be consistent only with the latter periodicity and with the detected pockets centered uniquely at the \(B \) points in the Fig. 2(a).

I will now demonstrate the symmetry underpinnings of the above results \[17\]. In a \(Q = (\frac{x}{2}, 1 - \frac{x}{2N}) \) and \(\frac{x}{2} \) spin density wave state with an integer \(N \) and possible charge modulations at multiples of the \(Q \), the conduction electron spin \(\sigma \) is subject to the exchange coupling \(\Delta(r) \cdot \sigma \), changing sign upon translation \(T_b \) by a single lattice spacing along the \(y \) axis, or by \(2N \) spacings along the \(x \) axis: \(\Delta(r + b) = -\Delta(r) \). Hence, in a transverse magnetic field, \(\theta T_b U_n(\pi) \) is an anti-unitary symmetry of the Hamiltonian, where \(\theta \) is time reversal, and \(U_n(\pi) \) is a spin rotation by \(\pi \) around the unit vector \(n \) of the staggered magnetization. Retracing the derivation of the Eqn. (5) in the Ref. \[17\], one finds

\[
\langle p | \theta T_b U_n(\pi) | p \rangle = e^{-2i p \cdot b} \langle p | \theta T_b U_n(\pi) | p \rangle.
\]

Thus, a Bloch eigenstate \(| p \rangle \) at a momentum \(p \) is orthogonal to its partner \(\theta T_b U_n(\pi) | p \rangle \) at the momentum \(-p \) \[23\]. In the folded Brillouin zone, defined by the periodicity of the \(\Delta(r) \), the momenta \(p^* = (\frac{x}{2N}[2k + 1], \frac{y}{N}) \) and \(-p^* \) are equivalent for an integer \(k \). Hence, the Eqn. \[4\] proves the Kramers degeneracy of the Bloch eigenstates at \(p = p^* \) in a transverse magnetic field. In two dimensions, the equation \(g_{\perp}(p) = 0 \) defines a line in the Brillouin zone, and the Eqn. \[4\] pins this line at the above symmetry-enforced degeneracy points \(S \), as shown in the Fig. 2(a) for \(Q = (\frac{x}{2}, \frac{y}{2}) \).

The \(S \) points do tend to host a band extremum \[9, 10\]. The leading term of the momentum expansion of the \(g_{\perp}(p) \) around these points is linear, and the Landau levels and their Zeeman splitting have been described in the Refs. \[12, 14\]. A carrier pocket may also be centered at a point, where the line \(g_{\perp}(p) = 0 \) intersects itself, as it does at the point \(X \) in the Fig. 2(b). The leading term of the momentum expansion of the \(g_{\perp}(p) \) around the point \(X \) is quadratic \[14, 17\], and the carrier Hamiltonian near the point \(X \) takes the form

\[
\mathcal{H} = \frac{p^2}{2m} - (\Omega_{\parallel} \cdot \sigma) - \frac{p^2}{2m\Delta} \equiv \frac{1}{2} g_{\parallel} \mu_B \mathbf{H}.
\]

where \(\Omega = \frac{1}{2} \mu_B \mathbf{H} \). The small pocket size implies, that \(\frac{m}{\Delta} \ll \frac{1}{\mu} \), where \(\mu \) is the chemical potential, counted from the bottom of the pocket.

According to the Hamiltonian \[5\], in a transverse field \((\Omega_{\parallel} = 0) \) the Landau levels undergo no Zeeman splitting, while the effective mass tensor becomes anisotropic and dependent on the spin projection onto \(\Omega_{\parallel} \) as per \(m_{x/y}^{-1} = m^{-1} \left[1 \pm \frac{(\Omega_{\parallel} \cdot \sigma)}{\Delta} \right] \), as shown in the Fig. 3. Beyond the spin-flop threshold, the staggered magnetization re-orients itself transversely to the field; thus, the Landau levels undergo no Zeeman splitting, and no spin-zeros are to be found at any field direction.

Near spin-flop but with \(\Omega_{\parallel} \not= 0 \) in the Hamiltonian \[5\], the Zeeman splitting \(\delta \mathcal{E} \) of the Landau levels is simply \(\delta \mathcal{E} = 2H_{\parallel} \) \[14\], while small corrections of the order of \([\mu/\Delta]^2 \ll 1 \): at a low enough doping, \(\delta \mathcal{E} \) behaves as if the last term in the Eqn. \[5\] simply vanished.

Hence, according to the Eqn. \[5\], for a small pocket at the point \(X \), the field direction of the \(l \)-th spin-zero in the main harmonic \((k = 1) \) satisfies the equation

\[
\frac{\delta \mathcal{E}}{\Omega_0} = \eta \frac{H_{\parallel}}{H_0} = \eta \cdot \tan \theta \cdot \cos \varphi = l + \frac{1}{2},
\]

where \(\eta = g_{\parallel} \mu_B \frac{m_{x/y}}{\Delta} \) \[14\] \(\frac{m}{\Delta} \), \(l \) is an integer, \(H_0 = H \cos \theta \) is defined in the Fig. 2(b) and \(H_{\parallel} = H \sin \theta \cos \varphi \) is the longitudinal component of the field with respect to the staggered magnetization.
The distinction between the above spin-zeros and those of the S- and Σ-pockets stems from the leading term of the momentum expansion of the $g_1(p)$ around the points S and Σ being linear rather than quadratic:

$$\mathcal{H} = \frac{p_x^2}{2m_x} + \frac{p_y^2}{2m_y} - (\Omega_1 \cdot \sigma) - \frac{\xi p_y}{\hbar} (\Omega_2 \cdot \sigma), \quad (7)$$

where p_y is the transverse component of the momentum with respect to the magnetic Brillouin zone boundary in the Fig. 3. Here, as at the point X, the carrier pocket is assumed small enough to be described by the Eqn. (7): $\frac{\xi p_y}{v_F} \ll \sqrt{p_x} \ll 1$, where $\epsilon^* = \frac{\mu^2}{2m_y} \sim \frac{\Delta^2}{\epsilon_F^2}$, and μ is the chemical potential, counted from the bottom of the pocket. The length scale ξ is of the order of the antiferromagnetic coherence length $\hbar v_F/\Delta$ [17]. The spin-zeros for such a pocket, encapsulated in the Eqn. (11) of the Ref. [24], differ from those given by the Eqn. [6] only via the small parameter $\sqrt{p_x} \ll 1$. This quantitative and, for most field orientations, numerically small difference is likely to render experimentally distinguishing the Σ counterparts rather difficult, especially on the background of the Fermi surface corrugation [24] and bilayer splitting [7]. These effects also modify the oscillation amplitude in a material-specific way [7, 24].

To conclude, I have shown that, in an antiferromagnet, a combination of symmetry arguments with the knowledge of the possible positions of the band extrema [25] allows either to constrain the possible locations of a small carrier pocket, or even to pinpoint it in the Brillouin zone by mapping the spin-zeros of the quantum oscillation amplitude. This opportunity arises due to the anisotropic spin-orbit character of the Zeeman coupling in an antiferromagnet, and does not exist in a paramagnetic conductor. While I use the $Q = \left(\frac{x}{a}, \frac{y}{a} \right)$ spin density waves as an illustration, possibly relevant to cuprate superconductors, the method is applicable to many other antiferromagnets such as iron pnictides, organic and heavy fermion materials.

I am grateful to the Condensed Matter Theory groups of the ICTP in Trieste and MPI PKS in Dresden, where parts of this work were done, for the kind hospitality. I thank C. Capan, B. Vignolle, D. Vignolles, and especially C. Proust for the helpful comments, and M. R. Norman and A. J. Millis for extended discussions.

[1] D. Shoenberg, Magnetic Oscillations in Metals (Cambridge University Press, Cambridge, 1984).
[2] N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J.-B. Bonnemaison, R. Liang, D. A. Bonn, W. N. Hardy & L. Taillefer, Nature 447, 565 (2007).
[3] E. A. Yelland, J. Singleton, C. H. Mielke, N. Harrison, F. F. Balakirev, B. Dabrowski, and J. R. Cooper, Phys. Rev. Lett. 100, 047003 (2008).
[4] A. F. Bangura, J. D. Fletcher, A. Carrington, J. Levallois, M. Nardone, B. Vignolle, P. J. Heard, N. Doiron-Leyraud, D. LeBoeuf, L. Taillefer, S. Adachi, C. Proust, and N. E. Hussey, Phys. Rev. Lett. 100, 047004 (2008).
[5] C. Jaudet, D. Vignolles, A. Audouard, J. Levallois, D. LeBoeuf, N. Doiron-Leyraud, B. Vignolle, M. Nardone, A. Zitouni, R. Liang, D. A. Bonn, W. N. Hardy, L. Taillefer, and C. Proust, Phys. Rev. Lett. 100, 187005 (2008).
[6] S. E. Sebastian, N. Harrison, E. Palm, T. P. Murphy, C. H. Mielke, R. Liang, D. A. Bonn, W. N. Hardy & G. G. Lonzarich, Nature 454, 290 (2008).
[7] A. Audouard, C. Jaudet, D. Vignolles, R. Liang, D. A. Bonn, W. N. Hardy, L. Taillefer, and C. Proust, Phys. Rev. Lett. 103, 157003 (2009).
[8] A. Carrington, E. A. Yelland, Phys. Rev. B 76, 140508(R) (2007); I. S. Ellîmov, G. A. Sawatzky, and A. Damascelli, Phys. Rev. B 77, 060504(R) (2008).
[9] A. J. Millis, M. R. Norman, Phys. Rev. B 77, 220503(R) (2008).
[10] N. Harrison, Phys. Rev. Lett. 102, 206405 (2009).
[11] W.-Q. Chen, K.-Y. Yang, T. M. Rice, F. C. Zhang, Europhys. Lett. 82, 17004, (2008).
[12] V. V. Kabanov, A. S. Alexandrov, Phys. Rev. B 77, 132403 (2008); Phys. Rev. B 81, 099907(E) (2010).
[13] R. Ramazashvili, Phys. Rev. B 80, 054405 (2009).
[14] R. Ramazashvili, Zh. Eksp. Teor. Fiz. 100, 915 (1991) [Sov. Phys. JETP 73, 505 (1991)].
[15] S. A. Brazovskii and I. A. Luk'yanchuk, Zh. Eksp. Teor. Fiz. 96, 2088 (1989) [Sov. Phys. JETP 69, 1180 (1989)].
[16] R. Ramazashvili, Phys. Rev. Lett. 101, 137202 (2008).
[17] R. Ramazashvili, Phys. Rev. B 79, 184432 (2009).
[18] D. Haug, V. Hinkov, A. Suchanek, D. S. Inosov, N. B. Christensen, Ch. Niedermayer, P. Bourges, Y. Sidis, J. T. Park, A. Ivanov, C. T. Lin, J. Mesot, B. Keimer, Phys. Rev. Lett. 103, 017001 (2009).
[19] D. LeBoeuf, N. Doiron-Leyraud, R. Daou, J.-B. Bonnemaison, J. Levallois, N. E. Hussey, C. Proust, L. Balicas, B. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, S. Adachi, and L. Taillefer, Nature (London) 450, 533 (2007).
[20] M. R. Norman and Jie Lin, Phys. Rev. B 82, 060509(R) (2010).
[21] Suchitra E. Sebastian, N. Harrison, C. H. Mielke, Ruixing Liang, D. A. Bonn, W. N. Hardy, and G. G. Lonzarich, Phys. Rev. Lett. 103, 256405 (2009).
[22] B. J. Ramshaw, B. Vignolle, J. Day, R. Liang, W. N. Hardy, C. Proust, D. A. Bonn, preprint arXiv:1004.0260 (2010).
[23] On the lines $p_x = k_x \xi$ and $p_y = k_y \xi$, with $k = 0, \pm 1, \pm 2, \ldots$, the exponent in the r.h.s. of the Eqn. [4] equals unity, and the degeneracy is not protected.
[24] N. Harrison, R. D. McDonald, J. Phys.: Condens. Matter 21, 192201 (2009).
[25] The band extrema tend to fall at the high-symmetry points in the Brillouin zone, and are readily identified by relatively simple calculations such as those cited above.