Comparative genomic analyses reveal diverse virulence factors and antimicrobial resistance mechanisms in clinical *Elizabethkingia meningoseptica* strains

Shicheng Chen¹*, Marty Soehnlen², Jochen Blom³, Nicolas Terrapon⁴, ⁵, Bernard Henrissat⁴, ⁵, ⁶, Edward D. Walker¹

1 Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States of America, 2 Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI, United States of America, 3 Bioinformatics and Systems Biology, Justus-Liebig-University, Giessen, Germany, 4 Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université (AMU), UMR 7257, Marseille, France, 5 Institut National de la Recherche Agronomique (INRA), USC 1408 AFMB, Marseille, France, 6 Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia

* shicheng@msu.edu

Abstract

Three human clinical isolates of bacteria (designated strains Em1, Em2 and Em3) had high average nucleotide identity (ANI) to *Elizabethkingia meningoseptica*. Their genome sizes (3.89, 4.04 and 4.04 Mb) were comparable to those of other *Elizabethkingia* species and strains, and exhibited open pan-genome characteristics, with two strains being nearly identical and the third divergent. These strains were susceptible only to trimethoprim/sulfamethoxazole and ciprofloxacin amongst 16 antibiotics in minimum inhibitory tests. The resistome exhibited a high diversity of resistance genes, including 5 different lactamase- and 18 efflux protein- encoding genes. Forty-four genes encoding virulence factors were conserved among the strains. Sialic acid transporters and curli synthesis genes were well conserved in *E. meningoseptica* but absent in *E. anophelis* and *E. miricola*.

E. meningoseptica carried several genes contributing to biofilm formation. 58 glycoside hydrolases (GH) and 25 putative polysaccharide utilization loci (PULs) were found. The strains carried numerous genes encoding two-component system proteins (56), transcription factor proteins (187~191), and DNA-binding proteins (6~7). Several prophages and CRISPR/Cas elements were uniquely present in the genomes.

Introduction

Elizabethkingia meningoseptica is a Gram-negative, non-fermenting, aerobic bacterium occurring in soil, water, plants and animals [1]. *E. meningoseptica* normally does not cause infection and disease in healthy humans, but it is a serious causative agent of nosocomial pneumonia, neonatal meningitis, bacteremia, and endocarditis in immuno-compromised patient...
populations [2–4]. Infections are mostly acquired in hospitals as bacteria are often recovered from medical apparatus and reagents including tap water, disinfection fluid, ventilators, hemodialysis equipment and catheters; however, sporadic, community-acquired infections were also reported [3–6]. Direct transmission pathways for *E. meningoseptica* remain largely unknown [7].

Clinical manifestations of *E. meningoseptica* infections are similar to those of other *Elizabethkingia* species or other bacteria though some variations exist [8, 9]. *Elizabethkingia* infections in neonates or immuno-compromised patients are usually associated with a poor outcome [2, 3]. One of the most challenging issues is that routine morphological, biochemical, and molecular tests cannot accurately identify *Elizabethkingia* species [10]. Sequencing of the 16S rRNA gene often fails to provide sufficient resolution to differentiate various *Elizabethkingia* species which may show different antibiotic resistance properties [10, 11]. For example, recent studies have demonstrated that *E. anophelis* or *E. meningoseptica* were frequently misidentified; it is not surprising that some *E. meningoseptica* infections were actually reported to be caused by *E. anophelis* [12]. Thus, accurate and complementary diagnostic methods need to be developed such as MALDI-ToF or genome sequencing.

Elizabethkingia are typically highly resistant to antimicrobials including extended-spectrum beta-lactams, tetracycline, aminoglycosides, and chloramphenicol [13]. Nevertheless, *E. meningoseptica*-infections are empirically treated with antibiotics used for Gram-positive bacteria [14]. A growing number of studies demonstrate that *Elizabethkingia* species (even the same species) isolated from different geographical regions have different antibiotic susceptibilities, showing that there is a complex antimicrobial resistance spectrum in *Elizabethkingia* [3, 13, 15]. Consequently, the high mortality rates (up to 50%) reported for immunosuppressed patients may, at least partially, be the result of a delay in identifying the appropriate antibiotic therapy [3, 10, 13]. Thanks to next generation sequencing technology, the studies on the antimicrobial resistance mechanisms have significantly progressed. Recently, comparative genome analysis in *Elizabethkingia* has been conducted to discover the breadth of antibiotic susceptibility and epidemiological features [16–18]. However, most of the studies are limited to *E. anophelis* and focused on clinical cases, antimicrobial susceptibility patterns, or characterization of epidemic outbreaks [16–18]. Genome analyses and physiological studies have not been conducted in depth for *E. meningoseptica*.

The aim of this study was to analyze virulence, antibiotic resistance, environmental survival, and adaption mechanisms through genomic, resistome, and antibiotic susceptibility analyses. With the completion of genome sequencing, assembly, and annotation of *E. meningoseptica* strains, we examined gene repertoire and genetic diversity in comparison with other *Elizabethkingia* species. Further, the regulatory systems, sugar utilization systems, virulence factors and antibiotic resistance genes were analyzed and compared to those in the selected *Elizabethkingia*. Collectively, our study offers the opportunity to explore their virulence, antibiotic resistance, environmental survival, and adaptation mechanisms.

Materials and methods

Strain background and culture conditions

E. meningoseptica strains, designated here Em1, Em2 and Em3, were isolated from patients in Michigan between 2015 and 2016 when the *Elizabethkingia* outbreak occurred in the Midwest regions (Table 1). The three strains were chosen for studying because they were reported to Michigan Department of Health and Human Services. *E. meningoseptica* Em1 was isolated from tracheal secretions in a female patient on March 6th, 2016. Em2 was isolated from whole blood in a male patient on November 10th, 2015. Em3 was isolated from sputum in a male
patient on February 6th, 2016. The three separate patients living in different counties in Michigan visited different clinics during the treatments. The representative *E. anophelis* and *E. miricola* strains were selected in this study due to diverse geography and isolation origin. The genome *E. meningoseptica* strains were grown aerobically in tryptic soy broth (TSB) broth at 30°C. Bacto agar (Difco, Detroit, MI) was added to a final concentration of 20 g/liter. The sheep blood agar (SBA) was purchased from Thermo Scientific (Waltham, MA).

Antimicrobial susceptibility testing (AST)

Cultures were freshly grown on SBA overnight at 37°C and cell suspensions adjusted in saline solution (0.9%) to a turbidity equivalent of 0.5 McFarland standard. The VITEK 2 microbial ID/AST testing system (version 07.01) with the GNP 70 antibiotic susceptibility cards (bioMerieux) was used to determine the minimum inhibitory concentration (MIC) and classification into resistance phenotypes. MIC results were interpreted according to Clinical and Laboratory Standards Institute criteria (CLSI) [19].

Genomic DNA preparation, sequencing and assembly

DNA was isolated using a Wizard Genomic DNA Purification Kit (Promega, Madison). The concentration of genomic DNA was measured using a Nanodrop2000 UV-Vis Spectrophotometer (Thermo scientific) and Qubit DNA assay kit. DNA integrity was evaluated by agarose gel assay (1.5%, w/v).

NGS libraries were prepared using the Illumina TruSeq Nano DNA Library Preparation Kit. Completed libraries were evaluated using a combination of Qubit dsDNA HS, Caliper LabChipGX HS DNA and Kapa Illumina Library Quantification qPCR assays. Libraries were combined in a single pool for multiplex sequencing and the pool was loaded on one standard

Strain	Region	Specimen	Size (Mb)	GC %	Protein	Gene	Pseudogene
E. meningoseptica							
EM1	USA	Tracheal exudate	4.04	36.4	3,557	3,656	44
EM2	USA	Whole blood	3.89	36.4	3,403	3,483	27
EM3	USA	Sputum	4.04	36.4	3,556	3,656	45
G4120	France	Urine	4.00	36.4	3,519	3,630	47
NBRC 12535	USA	Spinal fluid	3.84	36.4	3,396	3,459	20
61421 PRCM	China	NA	3.96	36.4	3,466	3,546	31
G4076	UK	NA	3.87	36.5	3,406	3,483	14
CSID_3000516977	USA	NA	3.91	36.4	3,421	3,492	26
58–80	Israel	Tracheal exudate	3.84	36.6	3,359	3,484	76
E. anophelis							
CSID_3015183678	USA	NA	3.93	35.8	3,473	3,578	35
NUHP1	Singapore	NA	4.37	35.6	3,912	4,039	58
Ag1	USA	Mosquito	4.09	35.5	3,676	3,780	34
E. miricola							
BM10	Korea	Termite	4.24	35.7	3,728	3,728	89
CSID_3000517120	USA	NA	4.43	35.9	3,932	4,028	45

* a, b The information about specimen and sources used for these selected isolates was obtained from BioSample (https://www.ncbi.nlm.nih.gov/genome/genomes/14625). NA, not available.

https://doi.org/10.1371/journal.pone.0222648.t001
MiSeq flow cell (v2) and sequencing performed in a 2x250 bp, paired end format using a v2, 500 cycle reagent cartridge. Base calling was done by Illumina Real Time Analysis (RTA) v1.18.54 and output of RTA was demultiplexed and converted to FastQ format with Illumina Bcl2fastq v1.8.4. The genomes were assembled into contiguous sequences using SPAdes version 3.9 following the manual as described previously [20], then short and low-coverage contigs were filtered out.

Genome annotation

Annotation of the assembled genome sequences for Em1, Em2 and Em3 was submitted to the NCBI Prokaryotic Genome Automatic Annotation Pipeline (PGAAP). The predicted CDSs were translated and analyzed against the NCBI non-redundant database, Pfam, TIGRFam, InterPro, KEGG and COG. Additional gene prediction and manual revision was performed by using the Integrated Microbial Genomes and Microbiome Samples Expert Review (IMG/MER) platform.

Bioinformatics

Functional categorization and classification for predicted ORFs were performed by RAST server-based SEED viewer [21]. Multi-drug resistance genes were predicted in the Comprehensive Antibiotic Resistance Database [22]. Prophage prediction was done with PHAST [23] and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) were predicted by CRISPRfinder [24]. For genome similarity assessment, average nucleotide identity (ANI) was computed using ANI calculator (https://www.ezbiocloud.net/tools/ani).

The pan genome, core genome, singletons and specific genes of Em1, Em2 and Em3 were characterized by comparing the representative *Elizabethkingia* genomes using EDGAR 2.0 [25]. The development of pan genome and core genome sizes was approximated using the methods proposed by Tettelin et al [26]. The core genome calculated by EDGAR 2.0 was the reference used to infer a phylogeny. The 27,144 amino acid sequences (2,088 per genome) of the core genome were aligned set-wise using MUSCLE v3.8.31 [27], resulting in a large multiple alignment with 9,015,188 amino acid residues in total (693,476 per genome). This large alignment was used to construct a phylogenetic tree using the neighbor-joining method as implemented in the PHYLIP package [28].

The regulatory elements were predicted using p2rp with default settings (http://www.p2rp.org). Bacterial protein localization prediction was conducted with tool PSORTb version 3.0.2 (http://www.psort.org/psortb/). Carbohydrate active enzyme families, including enzymes of glycan assembly (glycosyltransferases, GT) and deconstruction (glycoside hydrolases, GH, polysaccharide lyases, PL, carbohydrate esterases, CE), were semi-manually annotated using the Carbohydrate Active Enzyme (CAZy) database curation pipelines [29]. Polysaccharide-utilization loci (PUL) was predicted as described in the PULDB database (www.cazy.org/PULDB/).

Biofilm formation

Biofilm formation was evaluated using a standard assay with crystal violet staining as previously described, [30] with modifications as follows. Em1, Em2 and Em3 were grown in TSB broth to the mid-exponential phase. The cultures were diluted in TSB broth, and 100 μL were deposited in wells of 96-well microtiter polystyrene plates with flat bottoms. The negative controls were TSB medium without inoculum. The plate was incubated at 28°C under static condition for 24 h. The supernatants were discarded, the wells were washed twice with 200 μL of sterile distilled water and then 150 μL of 1% (w/v) crystal violet was added to each well. After
30 min, excess stain was removed by washing the wells four times with 200 μL of sterile distilled water and the stain bound to adherent cells was subsequently released by adding 100 μL of absolute ethanol. The biofilm formation was determined by measuring the OD595 nm using the plate reader.

Accession of the genome sequences

The data from these Whole Genome Shotgun projects have been deposited at DDBJ/ENA/GenBank under accession numbers MCJH00000000, MDTZ00000000 and MDTY00000000 for Em1, Em2 and Em3, respectively. The BioProject designations for this project are PRJNA336273, PRJNA339645 and PRJNA338129, and BioSample accession numbers are SAMN05507161, SAMN05601445 and SAMN05521514 for Em1, Em2 and Em3, respectively.

Statistical analyses

Statistical analyses were performed using SAS (version 9.2; SAS Institute, Cary, NC).

Results

Genome features and phylogenetic inferences

The assembly of strain Em1, Em2 and Em3 contained 10, 14 and 11 contigs with a size of 4.04, 3.89 and 4.04 Mbp, respectively (Table 1), which is congruent with the genome size (ranging from 3.84 to 4.04 Mbp) among the selected E. meningoseptica strains. The Em1, Em2 and Em3 genomes included 3,656, 3,483 and 3,656 coding sequences (CDS) and 55, 53 and 55 RNA genes, respectively. The GC content in the three E. meningoseptica strains (Table 1) was ca. 36.4%, consistent with other E. meningoseptica isolates (36.2~36.6%); collectively, the average GC content in E. meningoseptica genomes (36.4%, n = 26) was slightly higher than that in E. anophelis (average 35.6%, n = 64) or E. miricola (35.9%, n = 17) (S1 Fig). The gene rearrangement comparisons among the Em1, Em2 and Em3 were shown in the synteny plots (S2 Fig).

ANI values indicated that the three isolates belonged to E. meningoseptica species as they were more than 99% identical to the type strain E. meningoseptica ATCC 13253 (Table 2). However, ANI values were low (<80%) in comparisons with E. anophelis or E. miricola (Table 2). The difference in overall genome features between Em1 and Em3 was negligible (Table 1). Phylogenetic trees (S3 Fig) showed that Em1 and Em3 were clustered more closely to E. meningoseptica CSID 3000516335 and G58-80. However, the phylogenetic placement of Em2 was closer to E. meningoseptica CSID 3000516465, which formed a different clade from the other two strains (S3 Fig).

Gene repertoire of E. meningoseptica

The core genome and pan-genome were sorted and used for gene repertoire analysis in selected E. meningoseptica genomes (Fig 1A and 1B). Core genome analysis showed that the number of shared genes decreased with addition of the input genomes (see Fig 1B). Overall, E. meningoseptica displayed an open pan-genome feature because new genes appeared when more sequenced genomes were added to the analysis (Fig 1A). E. meningoseptica Em1 and Em3 shared at least 3556 genes; only 3 and 5 genes were uniquely present in strains Em1 and Em3, respectively, supporting that Em1 and Em2 are very similar (S4 Fig). Isolate Em2 shared 3280 and 3278 genes with Em1 and Em3, respectively, while there were 125 and 127 unique genes in Em2 (S4 Fig). Moreover, E. meningoseptica Em2 shared 3,184, 3,326, 3,106, 3,322, 3,173 and 3,788 common genes with strains G4076, G4120, NBRC 12535, and 61421 PRCM, respectively (Fig 2A). These genes shared in common accounted for approximately 93.5%,
Table 2. Average nucleotide identity dendrogram for the selected *Elizabethkingia* spp.

ANI matrix was generated using ANI calculator (https://www.ezbiocloud.net/tools/ani).

https://doi.org/10.1371/journal.pone.0222648.t002

	Em2	61421 PRCM	G4120	58–80	Em1	Em3	CSID_3000515919	CSID_3000516977	KC1913	Ag1	NUHP1	CSID_3015183678	BM10	CSID_3000517120			
E. meningoseptica																	
Em2		100															
61421 PRCM	99.76	100															
G4120	99.75	99.89	100														
58–80	99.37	99.31	99.35	100													
Em1	99.18	99.17	99.32	99.36	100												
Em3	99.17	99.16	99.3	99.36	99.98	100											
CSID_3000515919	98.54	98.38	98.6	98.67	98.52	98.51	100										
CSID_3000516977	98.22	98.21	98.29	98.36	98.28	98.24	98.25	100									
KC1913	98.27	98.3	98.3	98.39	98.25	98.24	98.3	99.09	100								
E. anophelis																	
Ag1	79.67	79.71	79.7	79.91	79.66	79.67	79.97	79.81	79.82	100							
NUHP1	79.76	80.08	79.74	79.77	79.69	79.77	79.9	79.74	79.78	97.83	100						
CSID_3015183678	79.76	79.86	79.81	79.92	79.7	79.82	79.78	79.79	79.86	98.19	97.99	100					
E. miricola																	
BM10	79.84	79.83	79.77	80.01	79.78	79.8	79.97	79.78	79.78	90.93	90.41	90.93	100				
CSID_3000517120	79.67	79.97	79.63	80.29	79.6	79.58	79.66	79.67	79.74	91.33	90.73	91.27	92.37	100			
Fig 1. Pan, core, and singleton genome evolution according to the number of selected *Elizabethkingia* genomes. (A) Number of genes (pan-genome) for a given number of genomes sequentially added. The pan development plot was generated for the following genomes: *E. meningoseptica* EM2 (NZ_MDTZ01000014), *E. meningoseptica* NV2016 (NZ_FRFB01000021), *E. meningoseptica* G4120 (NZ_CP016378), *E. meningoseptica* CSID3000516359 (NZ_MAHC01000017), *E. meningoseptica* CCUG214 (NZ_FLSV01000010), *E. meningoseptica* CSID_3000515919 (NZ_MAGZ01000024), *E. meningoseptica* CSID_3000516535 (NZ_MAHP01000020), *E. meningoseptica* ATCC13253 (NBRC_12535), *E. meningoseptica* EM3 (NZ_MDTY01000011), *E. meningoseptica* CIP111048 (NZ_FTPF01000022), *E. meningoseptica* 61421PRCM (NZ_MPOG01000010), *E. meningoseptica* EM1 (NZ_MCJH01000010), *E. meningoseptica* 58_80 (NZ_FTRA01000043). (B)
97.7%, 91.2%, and 97.5% of the encoding genes of Em2, respectively; taken together, Em2 and these four strains shared 3,076 genes (Fig 2A). However, *E. meningoseptica* Em2 shared far fewer genes with *E. anophelis* strains (2,772 to 2,823) and *E. miricola* (2,789 to 2,890), accounting for less than 86% of the total encoding genes (Fig 2B).

Antimicrobial susceptibility and antibiotic resistance gene analysis

Susceptibilities of the *E. meningoseptica* isolates and ATCC13253 with corresponding MICs to tested antibiotics showed very similar antibiotic susceptibility spectra with minor discrepancies across strains (Table 3). The strains were highly resistant to 13 of 16 antimicrobial reagents, showing that they were multi-drug resistance strains (Table 3).

Twenty-two genes encoding enzymes/proteins conferring resistance to antimicrobial reagents were found by CARD and RAST SEED subsystem (Table 4). Up to 5 lactamase genes encoding β-lactamases (EC 3.5.2.6), metal-dependent hydrolases (superfamily I), class C β-lactamases/penicillin binding protein and other β-lactamases were predicted in Em2, which possibly contributed to the intrinsic resistance to six β-lactam drugs tested in this study (Table 3). One fluoroquinolone resistance gene (*gyrB*) and three genes (*otrA*, *tetO* and *tetBP*) by RAST analysis possibly involved in tetracycline resistance were discovered. Moreover, 18 multidrug resistance efflux pumps (Table 4) were revealed, which may confer non-specific resistance (Table 3).

Fig 2. Venn diagram of shared and unique genes in selected *Elizabethkingia*. The unique and shared genome among the selected strains was determined by a dual cutoff of 30% or greater amino acid identity and sequence length coverage of more than 70%. EDGAR was used for Venn diagrams. A) 1: *E. anophelis* CSID_3015183678, 2: *E. meningoseptica* Em2 and 3: *E. miricola* BM10. B) 1: *E. meningoseptica* ATCC 13253, 2: *E. meningoseptica* 61421 PRCM, 3: *E. meningoseptica* Em2, *E. meningoseptica* G4076, and *E. meningoseptica* G4120.
Virulence factors predicted in *E. meningoseptica* in comparison to other *Elizabethkingia* spp.

The pathogenesis mechanisms in *Elizabethkingia* species remain largely unknown. When PathogenFinder was used to predict the probability of acting as a pathogen for strains Em1, Em2 and Em3, *E. meningoseptica* showed a “negative” result according to the calculated probability values (~0.162) [31]. Instead, *Elizabethkingia* genomes only matched 5 non-pathogenic families, which was possibly due to the lack of similar flavobacterial genomes in the PathogenFinder database. However, 766 putative virulence factors in Em2 were successfully predicted by VFDB (cutoff value set to E^{-10}). Forty-four of them in the bacterial virulence database also showed high identity to the selected *Elizabethkingia*, although there were some minor variations (S1 Table). Many virulence genes were predicted to be involved in CME-1 formation, capsule polysaccharide synthesis, lipooligosaccharide (LOS) synthesis, “attacking” enzymes (proteases), superoxide dismutase, catalases, peroxidase, heat shock protein, two-component regulatory system and many others (see S1 Table).

E. meningoseptica EM2 carried at least 6 genes involved in sialic acid metabolism predicted by RAST while Em1 and Em2 only possessed 4 of them (Table 5). Three genes encoded glucosamine-6-phosphate deaminase (*nagB*), glucosamine-fructose-6-phosphate aminotransferase (*glmS*) and phosphogluconosamine mutase (*glmB*), which were involved in the *de novo* synthesis pathway of sialic acid. Gene products for sialic acid synthesis were highly conserved (identity > 93%) among the three selected *Elizabethkingia* spp (Table 5). Two copies of sialic acid transporter genes (*neuCl* and *neuC2*, encoding UDP-N-acetylgalactosamine 2-epimerase) were found in strains Em2, G4120 and 61421 PRCM; CSID_3000515919 only carried only one copy (*neuC2*). An *nanH* gene, encoding a candidate sialidase, was predicted as the virulence factor (Table 5). Among the selected *Elizabethkingia*, only *E. meningoseptica* carries *nanH.*
Table 4. Comparison of similarity (% nucleotide sequence) of antimicrobial resistance genes in various *Elizabethkingia*.

Antibiotics	Genes	E. meningoseptica	E. anophelis	E. miricola									
		Em2	Em1	EM3	5880	CSID 3000516977	G4120	6124	NBRC 12535	Ag1	NUHP1	BM10	CSID 300051712
Aminoglycoside	*laj*	100	100	98	100	100	99	99	99	61	61	100	59
Beta-lactam	*BlaB* (cm)	100	99	99	99	100	100	99	100	87	87	99	87
	GOB-1	100	99	99	100	100	100	81	81	99	99		90
	TLA-1	100	98	98	97	100	100	75	75	98	75		
	Bla2	100	97	97	97	100	100	74	74	100	75		
Streptogramin	*vatA*	100	100	100	100	100	100	91	91	100	100		
	vatH	100	73	73	73	100	100						
Aminosalicylate	*thyA*	100	99	99	99	100	99	99	99	94	94	100	93
Fluoroquinolone	*gyrB*	100	99	99	99	100	100	98	98	100	98		
Isoniazid	*katG*	100	100	99	100	100	100	90	90	100	90	99	89
Macrolide	*ErmB*	100	100	100	100	100	100	95	95	100	95		
Tetracycline	*otr(A)*	100	100	100	100	100	100	99	99	100	98		
	tetO	100	100	100	100	100	100	97	97	100	98		
Diaminopyrimidine	*dfrA3*	100	100	100	100	100	100	90	90	100	99		
Phenicol	*catB2*	100	98	97	98	97	100	86	86	97	87		
	cat	100	52	52	52	100	100						
Glycopeptide	*vanXYL*	100	100	99	99	99	100	78	78	96	78		
	vanRF	100	100	100	100	100	100	98	98	100	99		
Peptide	*bacA*	100	100	100	100	100	100	94	94	100	94		
Rifamycin	*rpoB*	100	100	100	100	100	100	99	99	100	99		
Efflux pump	*abeS*	100	99	99	99	99	100	54	54	98	98		
	msrB-1	100	99	97	99	97	100	81	81	97	81		
	msrB-2	100	99	100	99	100	100	90	90	100	90	99	89
	msrB-2	100	100	100	99	100	99	75	75	99	78		
	macB	100	100	100	100	100	100	97	97	100	97		
	macB-2	100	99	99	99	100	100	94	94	99	93		
	csoB	100	100	99	99	99	100	96	96	99	96		
	mdsB	100	99	99	99	99	100	97	97	99	97		
	tacA	100	100	99	99	100	100	91	91	99	91		
	adeG-1	100	99	99	99	99	100	97	97	99	96		
	adeG-2	100	99	100	99	100	99	96	96	99	96		
	tet(41)	100	99	100	100	100	100	90	90	100	90		
	tetB	100	100	100	100	100	100	99	99	100	98		
	sdiA	100	99	100	100	100	100	75	75	99	77		
	gadW	100	98	100	100	98	100	50	50	98	52		
	ariR	100	100	98	99	100	100	91	91	100	92		
	cmrR	100	100	100	100	100	100	73	73	100	77		
	sdiA	100	98	99	99	100	100	90	90	99	90		

* The protein sequences from *E. meningoseptica* Em2 were used to blast (BLASTP) against those in the other selected *Elizabethkingia* species. The gene product is regarded as absence if the identity is below 50% compared to those in Em2.

https://doi.org/10.1371/journal.pone.0222648.t004
Moreover, neither \textit{E. miricola} (except strain CSID_3000517120) nor \textit{E. anophelis} had genes encoding sialidase A (\textit{nanH}) or sialic acid transporter genes (\textit{neuC1} and \textit{C2}).

The selected \textit{E. meningoseptica} species produced biofilm on plastic surfaces (S5 Fig). Compared to those in strain Em2, gene clusters for capsular polysaccharide synthesis consisting of \textit{cap8E}, \textit{cap8G}, \textit{cap8O}, \textit{cap8D}, \textit{cap4F}, \textit{cap8F}, \textit{cps4D}, \textit{Cj1137c}, \textit{capD} and \textit{cap4D} were only conserved in strains G4120, 61421 PRCM as well as \textit{E. miricola} CSID_3000516977 (S2 Table). Further, the gene products responsive for curli biosynthesis and assembly were highly conserved in \textit{E. meningoseptica} species while they were absent in other \textit{Elizabethkingia} species (S2 Table). On the other hand, the flagellin biosynthesis protein FlgD and flagellar motor protein MotB were found in all of \textit{Elizabethkingia} species (S2 Table). However, \textit{Elizabethkingia} may not produce functional flagella because they lack of most of the flagellin structure proteins, which is congruent with the fact that bacteria \textit{Elizabethkingia} are non-motile.

Polysaccharide utilization loci and carbohydrate active enzymes

\textit{E. meningoseptica} carried 107 (Em2) or 109 (Em1, Em3) CAZyme-encoding genes occupying ca. 3\% of the bacterial genome (S3 Table). The predicted CAZyme repertoires in the three \textit{E. meningoseptica} genomes were similar, with 58 glycoside hydrolases (GHS) and two polysaccharide lyases (PLs) distributed across the same families. The main distinction between Em2 and Em1/Em3 was absence of GT2 and GT32 sequences (S3 Table). The CAZyme repertoires of Em1, Em2 and Em3 strains were similar to other \textit{E. meningoseptica} strains and showed the same features which distinguished \textit{E. meningoseptica} from other \textit{Elizabethkingia} species (S3 Table).
Notably, *E. meningoseptica* strains did not encode single copies of GH1 (β-glycosidase), GH5 (subfamily 46) and CBM6 (β-glucan binding) genes systematically found in other species, and had a reduced number of genes encoding enzymes from families GH95 and GH130 (S3 Table). However, *E. meningoseptica* strains specifically encoded a GH33 (sialidase) and an extra GH13 protein. Analysis revealed that *E. meningoseptica* utilized a battery of carbon sources, including D-maltose, D-trehalose, D-gentibiose, D-melibiose, D-glucose, D-mannose, D-fructose, D-fucose, D-mannitol and D-glycerol[11]. Strains Em1, Em2 and Em3 contained 25 loci encoding SusC-SusD homologs in their respective genomes [32], with only four PULs containing GHs. These numbers were similar to those found in other *E. meningoseptica* (23–24 SusCD loci; 5 PULs with GHs) and *E. anophelis* (25 SusCD loci and 4–5 PULs with GHs per genome; n = 17) strains. The three clinical strains did not exhibit the PUL that contains the gene encoding the GH13_5 enzyme (α-amylase; conserved but translocated elsewhere in the genome), that was conserved in all *Elizabethkingia* genomes analyzed, including other *E. meningoseptica* strains. However, all six *E. meningoseptica* strains exhibited a specific PUL encoding a GH30_3 enzyme (β-1,6-glucanase) not present in other *Elizabethkingia* genomes (S4 Table). They also harbor an additional GH13 gene in the *Elizabethkingia*-conserved PUL with GH63-GH97 which likely targets storage polysaccharides like glycogen and starch, as in the prototypic starch utilization system [33], and an additional GH16 gene in the *Elizabethkingia*-conserved PUL that encodes a GH29 appended to a CBM32 (S4 Table). Interestingly, the only GH-containing PUL conserved in all *Elizabethkingia* genomes was also widely distributed across the Bacteroidetes phylum, and encoded enzymes from families GH3 (various β-glycosidases) and GH144 (β-1,2-glucanase) which suggests action on bacterial β-1,2-glucans.

Regulatory systems in Elizabethkingia spp.

The Em1 genome encoded 56 two-component system proteins, 191 transcription factor proteins, and 7 other DNA-binding proteins (Table 6). Em3 had the same regulatory systems as those in Em1 (Table 6). The Em2 genome encoded 56 predicted two-component system proteins, 187 transcription factor proteins, and 6 other DNA-binding proteins. It seemed that strain Em1 or Em3 had more regulatory capacity than strain Em2 primarily due to the number of transcriptional regulators (TRs), one-component systems (OCS), and DNA-binding proteins (ODP) proteins. Most *E. meningoseptica* strains possessed similar numbers of total regulatory protein (ranging from 246 to 254) and components (Table 6). Comparable regulatory systems occurred in *E. anophelis*, although there were more ODPs in *E. anophelis* CSID_30151 83678 and Ag1. Remarkably, the total number of TRs (>140) in *E. miricola* was much higher than those in *E. meningoseptica* and *E. anophelis* (Table 6). Particularly, the TRs mostly accounted for the higher regulatory systems due to increasing AraC family transcription factors (Table 6). AraC family regulators control a variety of cellular processes including carbon metabolism, stress responses and virulence. Moreover, the two component systems and DNA-binding proteins were more abundant in the three selected *E. miricola* strains than those in *E. meningoseptica*.

CRISPR-Cas systems and prophages

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) system was predicted in the Em1 and Em3 genome; no such sequences were found in the Em2 chromosome and the other 5 *E. meningoseptica* strains (S5 Table). The analyses unveiled that Em1 had a directed repeat (47-bp, GTTGTCAGTTACAAAATATAC TGTAAAAATGAAAGCCGTTTCACACAC) and had 40 spacers (S5 Table). CRISPR sequences were completely conserved in Em3 (coverage 100%, identity 100%). By scanning the other selected
E. meningoseptica genomes in the NCBI database, *E. meningoseptica* strain 4076 (CP016376) and NBRC 12535 had a predicted CRISPR (DR length: 47, number of spacers: 21). Em1 and Em3 genomes carried only one cas gene (type II CRISPR RNA-guided endonuclease Cas9) flanking the CRISPR regions. The amino acid sequences of Cas9 in Em1 showed the highest identity (68%) to that in *Capnocytophaga* spp. Only incomplete prophage elements were found in Em1 (2), Em2 (1), and Em3 (2). Moreover, most of these *E. meningoseptica* strains did not have the complete prophages except strain CSID_3000515919 (S6 Table).

Discussion

E. meningoseptica isolated from hospitalized patients in Michigan carried many virulence factors participating in biofilm formation, proteases, lipoooligosaccharide (LOS) synthesis, iron uptake and transportation, heat shock proteins, and capsule formation, highlighting that they have great potential to invade and colonize animal hosts. Further, our results also showed that these *E. meningoseptica* strains had several uncommon features including multi-drug resistance, sialic acid synthesis and transportation, and curli formation. Comparative genome analysis also showed that *E. meningoseptica* differed from *E. anophelis* or *E. miricola* in many ways. For example, the average GC content in *E. meningoseptica* was higher than in *E. anophelis* or *E. miricola* (Table 1), highlighting that *E. meningoseptica* evolves differently from *E. anophelis* or *E. miricola*. The predicted functional genes indicated that representative *E. meningoseptica* (Em2) shared less than 86% of the total encoding genes with *E. anophelis* strains and *E. miricola*. In particular, the divergence of *E. meningoseptica* from the other *Elizabethkingia* species was revealed by the different prophages, virulence factors and CRISPR-Cas systems.
By studying how pan-genome size increases as a function of the number of genomes sampled, we can gain insight into a species’ genetic repertoire [25]. Regression analysis of the pan genomes of *E. meningoseptica* showed that the pan-genome of *E. meningoseptica* is evolving through the loss or gain of a range of genes since their divergence as those reported in many pathogens including *E. anophelis*, *Flavobacterium psychrophilum* and *F. spartansii* [16, 34–36]. It is not surprising that *E. meningoseptica* has an open pan-genome because it lives in diverse ecological niches (both aquatic and terrestrial environments), and colonizes and multiplies in animal and plant hosts [1, 37, 38].

E. meningoseptica harbored an extensive array of specialized CAZymes (up to 117) for the metabolism of glucans with up to 58 GHs, congruent with metabolic capacity to utilize various carbon sources. Some of the GH genes are organized like the typical PULs that are widely found in Bacteroidetes [39–41]. Differing from aquatic bacteria, terrestrial flavobacteria always carry diverse CAZymes with a large potential for the breakdown of polysaccharides from plants or animals [41–43]. Instead, less CAZyme genes are expected in the genomes of marine flavobacteria because they usually utilize peptides (rhodopsins) and/or harvesting light under the nutrient stressing environment [41, 44, 45]. The CAZyme components and assembly patterns are important properties that reveal *Elizabethkingia* may utilize a variety of carbon sources [4, 46–49]. These results further support the notion that *Elizabethkingia* can adapt to environmental variations between the terrestrial and aquatic native habitats they colonize [16, 18, 46]. Besides soil and water, *Elizabethkingia* are often associated with the amphibious animals such as frogs and insects (i.e. mosquitoes) living in both aquatic and terrestrial environments [49, 50].

The detailed mechanisms for *Elizabethkingia* transmission from the environment to healthcare facilities and to patients remain unclear [18]. However, infection by *Elizabethkingia* can be mediated by multiple pathways of exposure [18]. Regardless of the transmission pathways, the genes in *E. meningoseptica* strains involved in biofilm on the abiotic material are one of the most important virulence factors [1]. The biofilm allows bacteria to persist on the surface of the medical utilities and resist against disinfection reagents [1]. Moreover, attachment/adhesion to the external surfaces and/or tissues of animal hosts is critical in the course of *E. meningoseptica* infection [1, 36, 51]. Many virulence factor genes including liposaccharide, hemagglutinin, capsule, and curli formation are conserved in *E. meningoseptica* (S1 Table). Capsule components are well known to play a vital role in the adhesion and/or biofilm formation [16]. A previous study has shown that expression of hemagglutinin adhesins allowed bacterial attachment and subsequent cell accumulation on target substrates [52]. Curli fibers not only participate in biofilm formation but also contribute to bacterial adhesion to animal cells [52]. *E. meningoseptica* Em1, Em2 and Em3 had hydrophilic cell surfaces. However, it remains unclear if such features affect bacterial adhesion ability [1]. Jacobs and Chenia (2011) investigated biofilm formation and adherence characteristics of *E. meningoseptica* isolated from freshwater tilapia [1]. The results showed that *E. meningoseptica* displayed better biofilm formation in nutrient-rich medium than that in nutrient-limited one at both low and high temperature [1].

Sialic acid is generally found at the terminal position(s) within glycan molecules covering animal cell surfaces [53]. Sialic acid is involved in various cellular processes including intercellular adhesion, cell signaling and immune system invasion [54]. In bacteria, sialic acid molecules participate in many pathogenesis processes [54–56]. For instance, it can be integrated into cell components (i.e. the membrane lipopolysaccharide and capsule) that mimic the surface molecules of the host cell (called molecular mimicry), and thereby assist pathogens to escape the host innate immune response [56]. Moreover, sialic acid is also a good carbon as well as nitrogen source when environmental nutrients are limited [57]. Sialic acid enters
bacteria through transporters and is next converted into fructose-6-phosphate; thus, it enters the central metabolism pathway [57, 58]. Additionally, sialic acid-rich glycolipids, glycoproteins and proteoglycans maintain water molecules at the bacterial surface, contributing to the uptake of polar molecules [56]. The detailed physiological roles of sialic acid remain unknown in flavobacteria. However, some *E. meningoseptica* strains (G4120, PRCM and CSID_3000 515919) potentially acquire sialic acid by either uptake or the *de novo* synthesis pathway (Table 5). Other *Elizabethkingia* may only utilize sialic acid by *de novo* synthesis because they lack the exosialidase and sialic acid uptake machinery (Table 5). Other strains (G4120, PRCM and CSID_3000 515919) potentially acquire sialic acid by either uptake or the *de novo* synthesis pathway (Table 5). *G. vaginalis* carrying the putative sialidase A gene (*nanH*) was associated with the presence of vaginal biofilms, indicating that sialidase A is an important virulence factor for bacterial vaginosis (BV) [59]. *G. vaginalis* mutant showed that sialidase A was critical for pathogens to acquire nutrient source [60]. The same study further suggested that sialidase inhibitors might be useful adjuncts in periodontal therapy. In this study, genes encoding sialidase A (*nanH*) or sialic acid transporter genes (*neuC1 and C2*) were absent from *E. miricola* (except strain CSID_30005 17120) and *E. anophelis*, indicating that different *Elizabethkingia* may display different pathogenesis mechanisms.

Antimicrobial susceptibility pattern for *Elizabethkingia* is often controversial [3, 18, 61]. Therefore, the selection of appropriate empiric therapy early in the course of bacterial infection can be very challenging. For example, Han et al [13] reported that 100% of *E. meningoseptica* isolates from South Korea were susceptible to piperacillin-tazobactam and less susceptible to ciprofloxacin (23% of isolates). However, *E. meningoseptica* clinical isolates from Taiwan were resistant to piperacillin/tazobactam while 74.4% of the strains were susceptible to trimethoprim/sulfamethoxaz [7]. The antibiotic susceptibility patterns in Michigan isolates mimic those isolates from Taiwan. Such discrepancies indicate that *E. meningoseptica* from different geographical regions may evolve different antibiotic resistance mechanisms [62]. Thus, the investigation of the molecular mechanisms involving in antibiotic-resistance is required, which could directly contribute to the empirical treatment of *E. meningoseptica* infections [62, 63]. Remarkably, the genomes of *E. meningoseptica* carried intrinsic class A extended-spectrum β-lactamases (ESBLs) and inherent class B metallo-β-lactamases (MBLs) [15]. These genes are likely to confer resistance to these β-lactam antibiotics including the combination drug piperacillin/tazobactam (Table 3). *E. meningoseptica* genomes shared many antibiotic-resistance genes with those from other *Elizabethkingia* species while there was minor differences [14, 64]. Besides those antibiotic-inactivating enzymes/proteins, *Elizabethkingia* may utilize the multidrug efflux pumps to excrete a wide range of antibiotics [65], including *abeS*, *msrB*, *maCB*, *ceoB*, *adeG* and many others (Table 4). For example, CeoB, a component of RND multidrug efflux system, pumps out chloramphenicol and ciprofloxacin [65, 66]. MsrB, as an ABC-efflux pump, was reported in *Staphylococcus* species to confer resistance to erythromycin and streptogramin B antibiotics [67]. Genes involving in tetracycline and vancomycin resistance were detected in *Elizabethkingia* in our study and others [64], which may explain why these drugs are not very effective in eliminating *Elizabethkingia* infections. Analysis of the antibiotic resistance in *E. meningoseptica* showed that they carried genes conferring to drug resistance including aminoglycosides, isoniazid, streptogramin, aminosalicylate, fluoroquinolone, macrolide, tetracycline, diaminopyrimidine, phenico, glycopeptide and rifamycin. Instead, we did not detect genes involving in resistance of sulfonamide (folic acid pathway inhibitors) in the genomes of Michigan isolates, which agrees with their susceptibility to trimethoprim/sulfamethoxazole. Mutation of the *gyrB* gene encoding the DNA gyrase subunit B in strains Em1, Em2 and Em3 was predicted to contribute to fluoroquinolones’ resistance (such as ciprofloxacin) in this study.
Prophages are known to modulate virulence and antibiotic resistance gene expression, which alters the production and/or secretion of toxins during the infection course [68, 69]. Further, they are one of the important contributors to genetic diversification by transferring the functional genes among the different strains [70]. The rare occurrence of complete prophages in *E. meningoseptica* remains unclear. Our analysis revealed only few of the selected genomes (Em1 and Em3) had “confirmed” CRISPRs (Supplementary S5 Table). The similar observations were reported in *E. anophelis* genomes [16]. The defense of the invasions of foreign genetic elements such as plasmids, transposons or phages may require both restriction modification systems (RMs) and Clustered Regularly Interspaced Short Palindromic repeat sequences (CRISPRs) in *Elizabethkingia* [71]. However, the detailed mechanisms need to be further investigated.

Supporting information

S1 Fig. Comparisons of the GC contents in *E. meningoseptica*, *E. anophelis* and *E. miricola*. The selected *E. meningoseptica* strains are those listed on the NCBI database (cutoff date 11/15/2018): https://www.ncbi.nlm.nih.gov/genome/?term=Elizabethkingia.

S2 Fig. Synteny plots show the conservation of gene order among the selected *Elizabethkingia* genomes.

S3 Fig. Phylogenetic relationship among the selected *Elizabethkingia*. Tree was constructed for 32 genomes with a core of 1170 genes per genome, 37440 in total. The core has 405494 AA-residues/bp per genome, 12975808 in total.

S4 Fig. The shared genes among the selected *E. meningoseptica* Em1, Em2 and Em3. EDGAR was used for Venn diagrams.

S5 Fig. *In vitro* biofilm assay in the selected *E. meningoseptica*. The cells were cultured by shaking in TSB at 37°C to obtain the initial inocula and the cell density was adjusted to the same OD at 600 nm (0.1). 200 μl were inoculated on 96-well plates for at least 24 hours. The biofilm assay was carried out using crystal blue staining.

S1 Table. Comparisons of the predicted virulence factors among selected *Elizabethkingia* spp.

S2 Table. Comparative analysis of the putative biofilm formation in *Elizabethkingia* spp.

S3 Table. Carbohydrate-Active Enzymes (CAZyme) analysis in selected *Elizabethkingia* spp.

S4 Table. Polysaccharide Utilization Loci (PULs) in the selected *Elizabethkingia* spp.

S5 Table. Predicted CRISPR-Cas systems in *Elizabethkingia* spp.
S6 Table. PHAST in *Elizabethkingia* spp. (XLSX)

Author Contributions

Conceptualization: Shicheng Chen.

Data curation: Shicheng Chen.

Investigation: Shicheng Chen, Jochen Blom, Nicolas Terrapon, Bernard Henrissat, Edward D. Walker.

Methodology: Jochen Blom.

Supervision: Shicheng Chen, Marty Soehnlen, Edward D. Walker.

Validation: Shicheng Chen.

Visualization: Nicolas Terrapon.

Writing – original draft: Shicheng Chen.

Writing – review & editing: Shicheng Chen, Marty Soehnlen, Nicolas Terrapon, Bernard Henrissat, Edward D. Walker.

References

1. Jacobs A, Chenia HY. Biofilm formation and adherence characteristics of an *Elizabethkingia meningoseptica* isolate from *Oreochromis mossambicus*. Ann Clin Microbiol Antimicrob. 2011; 10:16–. https://doi.org/10.1186/1476-0711-10-16 PMC3112384. PMID: 21545730

2. Luke SPM, Daniel SO, Annette J, Jane FT, Simon A, Hugo D, et al. Waterborne *Elizabethkingia meningoseptica* in adult critical care. Emerg Infect Diseases. 2016; 22(1):9. https://doi.org/10.3201/eid2201.150139 PMID: 26690562

3. Hsu M-S, Liao C-H, Huang Y-T, Liu C-Y, Yang C-J, Kao K-L, et al. Clinical features, antimicrobial susceptibilities, and outcomes of *Elizabethkingia meningoseptica* (Chryseobacterium meningosepticum) bacteremia at a medical center in Taiwan, 1999–2006. Eur J Clin Microbiol Infect Dis 2011; 30(10):1271–8. https://doi.org/10.1007/s10096-011-1223-0 PMID: 21461847

4. Jean SS, Lee WS, Chen FL, Ou TY, Hsueh PR. *Elizabethkingia meningoseptica*: an important emerging pathogen causing healthcare-associated infections. J Hosp Infect. 2014; 86(4):244–9. https://doi.org/10.1016/j.jhin.2014.01.009 PMID: 24680187

5. Balm MND, Salmon S, Jureen R, Teo C, Mahdi R, Seetoh T, et al. Bad design, bad practices, bad bugs: frustrations in controlling an outbreak of *Elizabethkingia meningoseptica* in intensive care units. J Hosp Infect 2013; 85(2):134–40. https://doi.org/10.1016/j.jhin.2013.05.012 PMID: 23958153

6. Chawla K, Gopinathan A, Varma M, Mukhopadhyay C. *Elizabethkingia meningoseptica* outbreak in intensive care unit. J Global Infect Dis. 2015; 7(1):43–4. https://doi.org/10.4103/0974-777X.150890 PMID: 25722622.

7. Chang Y-C, Lo H-H, Hsieh H-Y, Chang S-M. Identification and epidemiological relatedness of clinical *Elizabethkingia meningoseptica* isolates from central Taiwan. J Microbiol Immunol Infect 2014; 47(4):318–23. https://doi.org/10.1016/j.jmi.2013.03.007 PMID: 23726463

8. de Carvalho Filho EB, Marson FAL, Levy CE. Challenges in the identification of Chryseobacterium indologenes and *Elizabethkingia meningoseptica* in cases of nosocomial infections and patients with cystic fibrosis. New Microbes New Infect. 2017; 20:27–33. https://doi.org/10.1016/j.nmni.2017.09.002 PMID: 29062487.

9. Cenk MH, Özlem T, Serpil Ö, Burçin Ş, Dilşə TG, Uğur Ö, et al. Clinical strains of *Chryseobacterium* and *Elizabethkingia* spp. isolated from pediatric patients in a university hospital: performance of MALDI-TOF MS-based identification, antimicrobial susceptibilities, and baseline patient characteristics. Microbial Drug Resistance. 2018; 24(6):816–21. https://doi.org/10.1016/j.mdr.2017.02.006 PMID: 29227188.

10. Lau SKP, Chow W-N, Foo C-H, Curreem SOT, Lo GC-S, Teng JLL, et al. *Elizabethkingia anophelis* bacteremia is associated with clinically significant infections and high mortality. Sci Rep. 2016; 6:26045. https://doi.org/10.1038/srep26045 PMC4868968. PMID: 27185741
11. Kim KK, Kim MK, Lim JH, Park HY, Lee S-T. Transfer of Chryseobacterium meningosepticum and Chryseobacterium miraculae to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miraculae comb. nov. Int J Syst Evol Microbiol. 2005; 55(3):1287–93. https://doi.org/10.1099/ijs.0.63541–0

12. Chew KL, Cheng B, Lin RTP, Teo JWP. Elizabethkingia anophelis is the dominant Elizabethkingia species found in blood cultures in Singapore. J Clin Microbiol. 2018; 56(3):e01445–17. https://doi.org/10.1128/JCM.01445-17 PMID: 29237782

13. Han M-S, Kim H, Lee Y, Kim M, Ku NS, Choi JY, et al. Relative prevalence and antimicrobial susceptibility of clinical isolates of Elizabethkingia species based on 16S rRNA gene sequencing. J Clin Microbiol. 2017; 55(1):274–80. https://doi.org/10.1128/JCM.01637-16 PMID: 27847376

14. Opota O, Diene SM, Bertelli C, Prod’hom G, Eckert P, Greub G. Genome of the carbapenemase-producing clinical isolate Elizabethkingia miraculae EM_CHUV and comparative genomics with Elizabethkingia meningoseptica and Elizabethkingia anophelis: evidence for intrinsic multidrug resistance trait of emerging pathogens. Int J Antimicrob Agents. 2017; 49(1):93–7. https://doi.org/10.1016/j.ijantimicag.2016.09.031 PMID: 27919093

15. González LJ, Vila AJ. Carbapenem resistance in Elizabethkingia meningoseptica is mediated by metallo-β-lactamase BlaB. Antimicrob Agents and Chemotherapy. 2012; 56(4):1686–92. https://doi.org/10.1128/aac.05835-11 PMID: 22290979

16. Perrin A, Larsonneur E, Nicholson AC, Edwards DJ, Gundlach KM, Davis JJ, Disz T, et al. The SEED and the rapid annotation assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012; 19(5):455–77. https://doi.org/10.1089/cmb.2012.0021 PMC3342519. PMID: 22506599

17. Lin J-N, Lai C-H, Yang C-H, Huang Y-H, Lin H-H. Genomic features, phylogenetic relationships, and comparative genomics of Elizabethkingia anophelis strain EM361-97 isolated in Taiwan. Sci Rep. 2017; 7(1):14317. https://doi.org/10.1038/s41598-017-14841-8 PMID: 29085032

18. Michael Janda J., Lopez DL. Mini review: New pathogen profiles. Elizabethkingia anophelis. Diagn Microbiol Infect Dis 2017; 88(2):201–5. https://doi.org/10.1016/j.diagmicrobio.2017.03.007 PMID: 28342565

19. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 26th ed. CLSI supplement M100S. Wayne PCaLSI.

20. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012; 19(5):455–77. https://doi.org/10.1089/cmb.2012.0021 PMC3342519. PMID: 22290979

21. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the rapid annotation assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012; 19(5):455–77. https://doi.org/10.1089/cmb.2012.0021 PMC3342519. PMID: 22290979

22. Montaner B, Navarro S, Piqué M, Vilaseca M, Martínell M, Giralt E, et al. Prodigiosin from the supernatant of Serratia marcescens induces apoptosis in haematopoietic cancer cell lines. Br J Pharmacol. 2000; 131(3):585–93. https://doi.org/10.1038/sj.bjp.0703614 PMC1572367. PMID: 11015311

23. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: A Fast Phage Search Tool. Nucleic Acids Research. 2011. https://doi.org/10.1093/nar/gkq485 PMID: 21672955

24. Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 2007; 35(suppl 2):W52–W7. https://doi.org/10.1093/nar/gkm360 PMID: 17537822

25. Blom J, Kreis J, Spänig S, Juhrte B, Bertelli C, Ernst C, et al. EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res. 2016:W22–W8. https://doi.org/10.1093/nar/gkw255 PMID: 27098043

26. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome”. PNAS USA. 2005; 102(39):13950–5. https://doi.org/10.1073/pnas.0506758102 PMID: 16172379

27. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. 2004; 32(5):1792–7. https://doi.org/10.1093/nar/gkh940 PMID: 15034147

28. Felsenstein J. PHYLIP—phylogeny inference package (Version 3.2). Cladistics. 1989; 5:164–6.

29. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014; 42(D1):D490–D5. https://doi.org/10.1093/nar/gkt1178 PMID: 24270786

30. Chen S, Blom J, Walker ED. Genomic, physiologic, and symbiotic characterization of Serratia marcescens strains isolated from the mosquito Anopheles stephensi. Front Microbiol. 2017; 8(1483). https://doi.org/10.3389/fmicb.2017.01483 PMID: 28861046
31. Cosentino S, Voidby Larsen M, Meller Aarestrup F, Lund O. PathogenFinder—distinguishing friend from foe using bacterial whole genome sequence data. PLOS ONE. 2013; 8(10):e77302. https://doi.org/10.1371/journal.pone.0077302 PMID: 24204795

32. Terrapon N, Lombard V, Drula É, Lapèbie P, Al-Masaudi S, Gilbert HJ, et al. PULDB: the expanded database of polysaccharide utilization loci. Nucleic Acids Res. 2018; 46(D1):D677–D83. https://doi.org/10.1093/nar/gkx1022 PMID: 29088389

33. Foley MH, Cockburn DW, Koropatkine NM. The Sus operon: a model system for starch uptake by the terrestrial Flavobacterium psychrophilum. Frontiers in Microbiology. 2018. 9(138). https://doi.org/10.3389/fmicb.2018.00138 PMID: 29467746

34. Duchaud E, Rochat T, Habib C, Barbier P, Loux V, Guérin C, et al. Genomic Diversity and Evolution of the Fish Pathogen Flavobacterium psychrophilum. Front Microbiol. 2017; 8(2339). https://doi.org/10.3389/fmicb.2017.02339 PMID: 29250046

35. Chen S, Blom J, Loch TP, Faisal M, Walker ED. The emerging fish pathogen Flavobacterium spartansii isolated from chinook salmon: comparative genome analysis and molecular manipulation. Front Microbiol. 2017; 8(2339). https://doi.org/10.3389/fmicb.2017.02339 PMID: 29250046

36. Chen S, Zhao J, Joshi D, Xi Z, Norman B, Walker ED. Persisten t infection by Wolbachia wAlbB has no effect on composition of the gut microbiota in adult female Anopheles stephensi. Front Microbiol. 2016. 7(1485). https://doi.org/10.3389/fmicb.2016.01485 PMID: 27708633

37. Akhouayri IG, Habtewold T, Christophides GK. Melanotic pathology and vertical transmission of the gut commensal Elizabethkingia meningoseptica in the major malaria vector Anopheles gambiae. PLoS ONE. 2013; 8(10):e77619. https://doi.org/10.1371/journal.pone.0077619 PMID: 24098592

38. Dodd D, Moon YH, Swaminathan K, Mackie RI, Cann IK. Transcriptomic analyses of xylan degradation by Prevotella bryantii and insights into energy acquisition by xylanolytic Bacteroidetes. J Biol Chem. 2010; 285(39):30261–73. Epub 2010/07/14. https://doi.org/10.1074/jbc.M110.141788 PMID: 20622018; PubMed Central PMCID: PMC2943253.

39. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 2012; 3(4):289–306. https://doi.org/10.4161/gmic.19897 PMC3463488. PMID: 22572875

40. Kolton M, Sela N, Elad Y, Cytryn E. Comparative genomic analysis indicates that niche adaptation of terrestrial Flavobacteria is strongly linked to plant glycogen metabolism. PLoS ONE. 2013; 8(9):e76704. https://doi.org/10.1371/journal.pone.0076704 PMC3784431. PMID: 24086761

41. Colgan S, Kuningas O, Mülle JS, Förster BA, Berndt V. Comparative genomic and transcriptional analysis of Flavobacterium columnare strain ATCC 49512. Front Microbiol. 2017; 8 (588). https://doi.org/10.3389/fmicb.2017.00588 PMID: 28469601

42. Yoshizawa S, Kumagai Y, Kim H, Ogura Y, Hayashi T, Iwasaki W, et al. Functional characterization of flavobacterial rhodopsins reveals a unique class of light-driven chloride pump in bacteria. Proc Natl Acad Sci U S A 2014; 111(18):6732–7. https://doi.org/10.1073/pnas.1403051111 PMID: 24706784

43. Yoon MC, Heo HS, Park Y, Kim S, Lee Y, Cho JH, et al. Comparative genomics of Elizabethkingia meningoseptica strain KB042 (MTCC KB042) in submerged fermentation. Indian J Microbiol. 2010; 50(1):2670–5. https://doi.org/10.1007/s12088-010-0014-0 PMID: 22815570

44. Tekedat HC, Karsa A, Reddy JS, Nho SW, Kalindamar S, Lawrence ML. Comparative genomics and transcriptional analysis of Flavobacterium columnare strain ATCC 49512. Front Microbiol. 2017; 8 (588). https://doi.org/10.3389/fmicb.2017.00588 PMID: 28469601

45. Kukutla P, Lindberg BG, Pei D, Rayl M, Yu W, Steritz M, et al. Insights from the genome annotation of Elizabethkingia anophelis from the malaria vector Anopheles gambiae. Front Microbiol. 2015; 6(1):2670–5. https://doi.org/10.3389/fmicb.2015.002673–6

46. Kämpfer P, Busse H-J, McInroy JA, Glaeser SP, Elizabethkingia endophytica sp. nov., isolated from Zea mays and emended description of Elizabethkingia anophelis Kämpfer et al. 2011. Int J Syst Evol Microbiol. 2015; 65(7):2187–93. https://doi.org/10.1099/ijsem.0.002363 PMID: 25858248

47. Kämpfer P, Matthes H, Glaeser SP, Martin K, Lodders N, Faye I. Elizabethkingia anophelis sp. nov., isolated from the midgut of the mosquito Anopheles gambiae. Int J Syst Evol Microbiol. 2011; 61 (11):2670–5. https://doi.org/10.1099/ijsem.0.026393–0

48. Chen S, Bagdasarian M, Walker ED. Elizabethkingia anophelis: molecular manipulation and interactions with mosquito hosts. Appl Environ Microbiol. 2015. https://doi.org/10.1128/aem.03733-14 PMID: 25595771
50. Ruixue H, Junfa Y, Yin M, Zhe W, Zema G. Pathogenic Elizabethkingia miricola infection in cultured black-spotted frogs, China. 2016. Emerg Infect Diseases. 2017; 23(12):2055. https://doi.org/10.3201/ eid2312.170942 PMID: 2914374

51. Chen S, Soehnlen M, Downes FP, Walker ED. Insights from the draft genome into the pathogenicity of a clinical isolate of Elizabethkingia meningoseptica Em3. Stand Genomic Sci. 2017; 12:56. https://doi.org/10.1186/s40793-017-0269-8 PMC5602931. PMID: 28932346

52. Darvish Alipour Astaneh S, Rasooli I, Mossavi Gargari SL. The role of filamentous hemagglutinin adhesion in adherence and biofilm formation in Acinetobacter baumannii ATCC19606(T). Microb Pathog. 2014; 74:42–9. https://doi.org/10.1016/j.micpath.2014.07.007 PMID: 25086432.

53. Cioffi DL, Pandey S, Alvarez DF, Cioffi EA. Terminal sialic acids are an important determinant of pulmonary endothelial barrier integrity. Am J Physiol Lung Cell Mol Physiol. 2012; 302(10):L1067–L77. https://doi.org/10.1152/ajplung.00190.2011 PMC3362258. PMID: 22387293

54. Reutter W, Stäße R, Stehling P, Baum O. The biology of sialic acids: insights into their structure, metabolism and function in particular during viral infection. Glycosciences.

55. Opal SM. Significance of sialic acid in Klebsiella pneumoniae K1 capsules. Virulence. 2014; 5(6):648–9. https://doi.org/10.4161/viru.34349 PMC4139404. PMID: 25105481

56. Anderson GG, Goller CC, Justice S, Hultgren SJ, Seed PC. Polysaccharide capsule and sialic acid-mediated regulation promote biofilm-like intracellular bacterial communities during cystitis. Infect Immun. 2010; 78(3):963–75. https://doi.org/10.1128/IAI.00925-09 PMID: 20086090

57. McDonald ND, Lubin J-B, Nicolau DP. Antimicrobial resistance: impact on clinical and economic outcomes and the need for new antimicrobials. Expert Opin Pharmacother. 2015; 16(2):159–77. https://doi.org/10.1517/14656566.2015.993381 PMID: 25496207

58. Severi E, Hood DW, Thomas GH. Sialic acid utilization by bacterial pathogens. Microbiol. 2007; 153(9):2817–22. https://doi.org/10.1099/m.0.2007/009480-0 PMID: 17768226

59. Hardy L, Jespers V, Van den Bulck M, Buyze J, Mwambangwe L, Musengama V, et al. The presence of the putative Gardnerella vaginalis sialidase A gene in vaginal specimens is associated with bacterial vaginosis biofilm. PLOS ONE. 2017; 12(2):e0172522. https://doi.org/10.1371/journal.pone.0172522 PMID: 28241058

60. Honma K, Mishima E, Sharma A. Role of Tannerella forsythia NanH sialidase in epithelial cell attachment. Infect Immun. 2011; 79(1):393–401. https://doi.org/10.1128/IAI.00169-10 PMID: 21078857

61. Leclercq R, Cantón R, Brown DFJ, Giske CG, Heisig P, MacGowan AP, et al. EUCAST expert rules in antimicrobial susceptibility testing. Clin Microbiol Infect. 2013; 19(2):141–60. https://doi.org/10.1111/j.1469-0691.2011.03703.x PMID: 22117544

62. Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol Spectr. 2016; 4(2):10.1128/microbiolspec.VMBF-0016-2015. PMID: 27227291

63. Thabit AK, Crandon JL, Nicolau DP. Antimicrobial resistance: impact on clinical and economic outcomes and the need for new antimicrobials. Expert Opin Pharmacother. 2015; 16(2):159–77. https://doi.org/10.1517/14656566.2015.993381 PMID: 25496207

64. Lin J-N, Lai C-H, Yang C-H, Huang Y-H, Lin H-H. Genomic features, phylogenetic relationships, and comparative genomics of Elizabethkingia anophelis strain EM361-97 isolated in Taiwan. Scientific Reports. 2017; 7(1):14317. https://doi.org/10.1038/s41598-017-14841-8 PMID: 29085032

65. Li X-Z, Plištiová P, Nikolaï H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28(2):337–418. https://doi.org/10.1128/CMR.00117-14 PMID: 25788514

66. Burns JL, Hedin LA, Lien DM. Chloramphenicol resistance in Pseudomonas cepacia because of decreased permeability. Antimicrob Agents Chemother. 1989; 33(2):136–41. https://doi.org/10.1128/AAC.33.2.136 PMID: 219457

67. Leclercq R. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis. 2002; 34(4):482–92. https://doi.org/10.1086/324626 PMID: 11797157

68. Casas V, Miyake J, Balsley H, Roark J, Telles S, Leeds S, et al. Widespread occurrence of phage-encoded exotoxin genes in terrestrial and aquatic environments in Southern California. FEMS Microbiol Lett. 2006; 261(1):141–9. https://doi.org/10.1111/j.1574-6968.2006.00345.x PMID: 16842371

69. Wagner PL, Waldor MK. Bacteriophage control of bacterial virulence. Infect Immun. 2002; 70(8):3985–93. https://doi.org/10.1128/IAI.70.8.3985-3993.2002 PMC128183. PMID: 1217903

70. Waldor MK, Friedman DI. Phage regulatory circuits and virulence gene expression. Curr Opin Microbiol. 2005; 8(4):459–65. https://doi.org/10.1016/j.mib.2005.06.001 PMID: 15979389
71. Dupuis M-É, Villion M, Magadán AH, Moineau S. CRISPR-Cas and restriction–modification systems are compatible and increase phage resistance. Nat Commun. 2013; 4:2087. https://doi.org/10.1038/ncomms3087 PMID: 23820428