Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replication in vitro

Rocío Meneses*1,2, Raquel E Ocazionez1,2, Jairo R Martínez1,3 and Elena E Stashenko1,3

Address: 1Centro Nacional de Investigaciones para la Agroindustrialización de Especies Vegetales Aromáticas y Medicinales Tropicales, CENIVAM. Universidad Industrial de Santander, Bucaramanga, Colombia, 2Centro de Investigaciones en Enfermedades Tropicales, CINTROP, Laboratorio de Arbovirus, Piedecuesta, Colombia and 3Centro de Investigación en Biomoléculas, CIBIMOL, Bucaramanga, Colombia

Email: Rocío Meneses* - rocio.meneses@gmail.com; Raquel E Ocazionez - relocaz@uis.edu.co; Jairo R Martínez - rene@tucan.uis.edu.co; Elena E Stashenko - elena@tucan.uis.edu.co

* Corresponding author

Abstract

Background: An antiviral drug is needed for the treatment of patients suffering from yellow fever. Several compounds present in plants can inactive in vitro a wide spectrum of animal viruses.

Aim: In the present study the inhibitory effect of essential oils of *Lippia alba, Lippia origanoides, Oreganum vulgare* and *Artemisia vulgaris* on yellow fever virus (YFV) replication was investigated.

Methods: The cytotoxicity (CC50) on Vero cells was evaluated by the MTT reduction method. The minimum concentration of the essential oil that inhibited virus titer by more than 50% (MIC) was determined by virus yield reduction assay. YFV was incubated 24 h at 4°C with essential oil before adsorption on Vero cell, and viral replication was carried out in the absence or presence of essential oil. Vero cells were exposed to essential oil 24 h at 37°C before the adsorption of untreated-virus.

Results: The CC50 values were less than 100 μg/mL and the MIC values were 3.7 and 11.1 μg/mL. The CC50/MIC ratio was of 22.9, 26.4, 26.5 and 8.8 for *L. alba, L origanoides, O. vulgare* and *A. vulgaris*, respectively. The presence of essential oil in the culture medium enhances the antiviral effect: *L. origanoides* oil at 11.1 μg/mL produced a 100% reduction of virus yield, and the same result was observed with *L. alba, O. vulgare* and *A. vulgaris* oils at 100 μg/mL. No reduction of virus yield was observed when Vero cells were treated with essential oil before the adsorption of untreated-virus.

Conclusion: The essential oils evaluated in the study showed antiviral activities against YFV. The mode of action seems to be direct virus inactivation.

Background

Yellow fever (YF) is a viral hemorrhagic fever endemic in South America and sub-Saharan Africa. It is caused by the yellow fever virus (YFV) that is transmitted to humans through the bite of the *Aedes* or *Haemagogus* mosquitoes [1]. YFV, belonging to the *Flavivirus* genus, is a single-stranded RNA genome virus that possess a spherical nucleo-capsid surrounded by a lipid envelop in which the
effect of essential oils obtained from

The objective of this study was to evaluate the inhibitory effect of essential oils against YFV have not been reported.

Flavivirus

14]. Nonetheless, little is known about antiviral effect on

plants on enveloped viruses that cause human disease. [8-

spread, of essential oils obtained from a varied number of

constrated direct inactivation and prevention of cell-to-cell

their ethno-medicinal use [7]. Several reports have dem-

viral drugs, and they are selected frequently on the basis of

include, chemical compounds focused at virus replication

interruption or at inhibition of a specific host pathway

critical to virus replication without undue toxicity; and

strategies aimed at modulation of host immune response

using passive antibodies, immunomodulators and corti-

costeroids [6]. Although some of those approaches have

shown promising results, any of them has yet to be

approved for use in humans.

Numerous studies have been conducted exploring differ-

ent approaches to antiviral compounds against YFV. These

include, chemical compounds focused at virus replication

and/or inhibition of a specific host pathway

critical to virus replication without undue toxicity; and

strategies aimed at modulation of host immune response

using passive antibodies, immunomodulators and corti-

costeroids [6]. Although some of those approaches have

shown promising results, any of them has yet to be

approved for use in humans.

Natural products are an important source to develop anti-

viral drugs, and they are selected frequently on the basis of

their ethno-medicinal use [7]. Several reports have demon-

strated direct inactivation and prevention of cell-to-cell

spread, of essential oils obtained from a varied number of

plants on enveloped viruses that cause human disease. [8-

14]. Nonetheless, little is known about antiviral effect on

Flavivirus. To our knowledge, studies evaluating antiviral effect of essential oils against YFV have not been reported.

The objective of this study was to evaluate the inhibitory effect of essential oils obtained from Lippia alba, Lippia

origanoides, Origanum vulgare and Artemisia vulgaris grown in Colombia on YFV replication in vitro. Plants are widely used all over the world to cure almost any disease. Infusions are recommended against liver diseases; digestive, spasmodic and relieve stomach-ache; kidney pains; and respiratory disorders. It is speculated that some of the mentioned medicinal properties could be related to the plant’s essential oil compounds [15,16].

Methods

Essential oil

Propagation cuttings were obtained from L. alba and L.

origanoides growing wild in the surroundings of the Jordán

Sube township (Department of Santander). The cuttings

were used in establishing experimental contiguous plots

in the CENIVAM Agroindustrial Pilot Complex, located at

the main campus of Universidad Industrial de Santander

(Bucaramanga, Colombia). O. vulgare and A. vulgaris were

collected in Marinilla (Department of Antioquia) and

Armenia (Department of Quindio), respectively. Voucher

specimens from each plant were deposited at the Colombica National Herbarium (COL), and the taxonomic

identifications were performed by Dr José Luis Fernández

(National Herbarium, UN, Bogotá, Colombia).

For all oils, the dried plant material was submitted to

microwave-assisted hydrodistillation in a Cleverstype

apparatus, as described elsewhere [17]. Compound iden-

ification was based on chromatographic (retention times,

retention indices, standards) and spectroscopic (spectral

interpretation, comparison with databases and standards)

criteria [17,18]. Two GC-MS systems were employed, an

Agilent Technologies 6890 Plus gas chromatograph (Palo

Alto, CA, U.S.A.), equipped with an Agilent Technologies

5973N mass selective detector, and an Agilent Technolo-

gies 6890 gas chromatograph coupled to an Agilent Techni-

ologies 5975 mass selective detector. Both systems were

equipped with a split/splitless injector (split ratio 1:50), a

7863 automatic injector and an MS-ChemStation G1701-

DA data system that included the spectral libraries WILEY

138K, NIST 2002 and QUADLIB 2004. A fused silica cap-

illary column DB-5MS (J&W Scientific, Folsom, CA,

U.S.A.) of 60 m × 0.25 mm I.D. × 0.25 μm, dₜ, and a fused

silica DB-WAX (J&W Scientific, Folsom, CA, U.S.A.) 60 m

× 0.25 mm, D.I × 0.25 μm, dₜ column were employed. The

temperature was programmed from 45 °C (5 min) to

150 °C (2 min) at 4 °C min⁻¹, then to 250 °C (5 min) at

5 °C min⁻¹, and finally, to 275 °C (15 min) at 10 °C min⁻¹.

The ionization chamber and transfer line temperatures

were kept at 230 °C and 285 °C, respectively.

Plant local names, voucher numbers and the main essen-

tial oil components are shown in Table 1. For the antiviral

assays, the essential oil was dissolved in a solution of 1%

dimethyl sulfoxide (DMSO) in test medium.

Cell culture and virus

African green monkey kidney cells (Vero) were main-

tained in minimum essential medium (M-199) supple-

mented with 10% fetal calf serum (FCS) and 0.07%

NaHCO₃ at 37 °C in a humidified 5%-CO₂ atmosphere.

The vaccine strain 17D of YFV was provided by the state

Secretariat of Health. Virus stocks were prepared by infect-
ing Vero cell cultures; the supernatant was collected 2–3 days post infection and stored at -70°C in aliquots.

Plaque assay
Virus titers were determined by plaque assays in Vero cells growing in 24-well plates. Briefly, serial tenfold dilutions of the viral suspension were added (0.1 mL/well) in duplicate, and the cells were incubated for 1 h at 37°C. Subsequently, M-199 medium containing 5% FCS and 3% carboxymethyl-cellulose (Sigma; 0.5 mL/well plates) was added, and the plate was incubated for 72 h at 37°C. The viral plaques were visualized after 10% formaldehyde fixation (1 h at room temperature) and by staining (15 to 30 s) with a 1% crystal violet solution. The titer was estimated by counting the number of plaques observed in each well and expressed as plaque-formation unit per milliliter (PFU/mL).

Cytotoxicity
Cell viability was measured on the basis of the mitochondrial-dependent reduction of MTT to formazan [19]. Vero cells grown in a 96-well plate were treated with the essential oil at concentrations of 100, 33.3, 11.1 and 3.7 μg/mL for 72 h at 37°C. Then, the culture medium was removed and MTT solution (10 μL, 5 mg/mL, Sigma Co.) was added to each well. The plate was incubated for 4 h at 37°C and DMSO (100 μL) was added to the wells to dissolve the MTT crystals. Each essential oil was tested in triplicate. The extent of MTT reduction to formazan within the cells was quantified by measuring absorbance at 595 nm (OD₅₉₅) on a multiwell spectrophotometer (Sensident Scan Merck). The 50% cytotoxic concentration (CC₅₀) was defined as the concentration that reduces the OD₅₉₅ of treated cells to 50% with respect to untreated cells. The CC₅₀ values were calculated using the MSx/fitTM; ID Business Solution, Guildford, UK software.

Viral inhibitory effect
The direct inactivation of YFV by the selected essential oils was tested by using a virus yield reduction assay. The virus (9.5 × 10⁴ PFU) was incubated with concentrations of the essential oil (100, 33.3, 11.1 and 3.7 μg/mL) for 24 h at 4°C in M-199 medium with 2% FCS. Treated-YFV was used to infect monolayers of Vero cell grown in 24-well plates at a multiplicity of infection of 1 PFU per cell (MOI = 1). After a 1 h period at 37°C, the cells were washed twice and then incubated at 37°C in M-199 medium containing 5% FCS. Some experiments were also performed incubating the virus-infected cells in M-199 medium containing essential oil at concentrations described above. In all assays, the supernatant, consisting of culture medium, was collected and cleared by centrifugation at 400 × g at 4°C to determine the virus titer by the plaque assay method 48 h after incubation of the plates. The results were expressed as the lowest concentration of the essential oil at which reduction of virus titer by more than 50% (compared with control) was observed, and it was considered as the minimum inhibitory concentration (MIC).

Table 1: Plants used in the study and their main essential oil components

Specie (voucher)	Local name	Main essential oil components (%)	Extraction yield (% p/p)
Lippia alba (CO 480750)*	Pronto alivio	Carvone (51) Limonene (33)	0.4
		bicyclosesquiphellandrene (7)	
Lippia origanoides (CO 512075)*	Orégano de monte	Carvacrol (44) Thymol (15)	3.5
		γ-terpine (10)	
Origanum vulgare (CO 523701)†	Orégano	trans-Sabinene hydrate (21)	0.3
		Thymol (11) γ-Terpinene (5.2)	
		p-Cimene (4.5)	
		l,8-Cineole (8.8)	
		trans-Cardveol (3.1)	
Artemisia vulgaris (CO 517002)†	Ajenjo	α-Thujone (38.1) β-Thujone (10.6)	0.1
		1,8-Cineole (8.8)	
		trans-Carveol (3.1)	
		Sabineno (2.8)	

Source: *; Ref. 17 and 18; †, this study.
centrifugation at 400 × g at 4°C to determine the virus titer by the plaque assay method.

Results

Essential oils were tested for their cytotoxicity on Vero cell prior to the determination of their inhibitory effect against YFV. All essential oils were not cytotoxic. The CC₅₀ for *L. alba*, *L. origanoides*, *O. vulgare* and *A. vulgaris* were 90 ± 15, 98 ± 3.8, 98 ± 2.8 and 98 ± 2.9 μg/mL, respectively.

The abilities of the selected essential oils to directly inactivate YFV (virucidal activities) were evaluated. Pre-incubation of virus with selected essential oil for 24 h at 4°C before adsorption on Vero cell inhibited the subsequent extracellular virus titer. The MIC for *L. alba*, *L. origanoides* and *O. vulgare* oils was 3.7 μg/mL whereas for *A. vulgaris* was 11.1 μg/mL (Figure 1). The MIC was lower than the CC₅₀ for Vero cells, resulting a CC₅₀/MIC ratio of 22.9, 26.4, 26.5 and 8.8 for *L. alba*, *L. origanoides*, *O. vulgare* and *A. vulgaris*, respectively. A noted increased virucidal effect was observed with *O. vulgare* at concentrations higher than the MIC (> 3.7 μg/mL), but the same was not observed with the others essential oils. A poor (r = 0.72, linear regression) concentration-dependent reduction was observed with all essential oils.

The presence of essential oil in culture medium for 48 h after the adsorption of treated-YFV on Vero cell monolayers enhances the antiviral effect (Figure 2). Virus titer was completely reduced in the presence of *L. origanoides* oil at concentration of 11.1 μg/mL, or of *L. alba*, *O. vulgare* or *A. vulgaris* oils at 100 μg/mL. This is, viral plaques were not recovered from undiluted media, and viral antigen was not detected on infected cells analyzed by microscopy-immunofluorescence.

No inhibition was observed when cells were pre-incubated with essential oil for 24 h at 37°C before the adsorption of untreated-YFV. A significant reduction of viral progeny was not observed with none of the tested essential oils at concentration of 3.7, 11.1, 33.3 or 100 μg/mL (Figure 3). The virus titer in supernatants of cell cultures exposed to the essential oils did not show any difference with respect to the controls of untreated cells (p > 0.05, multiple regression).

Taken together, the results suggest that the action of essential oils as inhibitor agents of YFV infectivity is due to direct virus inactivation, preventing the adsorption and subsequent cellular infection.

Discussion and conclusion

The antiviral or virucidal effect is generally expressed as IC₅₀ (inhibitory concentration 50%). This is calculated by regression analyses of the dose response curve generated from the data. The IC₅₀ value for all essential oils tested in this study could not be determined. This is because of concentrations lower than 3.7 or 11.1 μg/mL were not tested in order to investigate inhibition of virus titer by less than 50%. Consequently, we expressed virucidal activity as the lowest concentration of essential oil at which inhibition of virus titer by more than 50% was observed (MIC). On
the other hand, definite essential oil concentration-dependent reduction was not observed (Figure 1). We could speculate that this result could be due to the strength of binding between virus and components of the essential oil which determines the fraction of molecules on the virus particle occupied by the oil. Even complete occupancy by using higher concentrations of the oil it could not be sufficient to increase the virus inhibition.

One method commonly used for evaluation of in vitro antiviral effect involves titration of residual virus infectivity after extracellular action of the test substance using a plaque reduction assay. Generally, this assay is run 1 h at 37°C or room temperature, and when the assay is performed at 4°C it is assumed that the inhibition may be lower [20]. Sadii et al. [10] found that the antiviral effect of essential oil obtained from Artemisia arborescens against enveloped Herpes Simplex virus type 1 was higher when the mixture virus-oil was incubated at 37°C than at 4°C. We evaluated the direct inactivation on YFV by essential oils from plants grown in Colombia in assays run at 4°C, using titration of residual virus in stored supernatant by using plaque assay method instead of direct reduction of viral plaque. Even with these limitations, the essential oils screened showed direct inactivation on YFV at MIC values as low as 3.7 and 11.1 μg/mL (Figure 2).

In this study, the direct YFV inactivation by selected essential oils was tested without any virus-oil mixture dilution to eliminate the oil. On the other hand, essential oil was added to culture medium after adsorption of treated-YFV. Consequently, the assays might not allow to precisely discriminate between antiviral and virucidal action because the oil could enter into the cells and interfere with intracellular steps of the viral cycle. As shown in Figure 3, we did not observe decrease of viral progeny when the cells were exposed 24 h to high concentration (100 μg/mL) of the essential oil and then were infected with untreated-YFV. This result suggests that changes on the plasmatic membrane cell or intracellular environment that could interfere with the adsorption or intracellular steps of the viral cycle were not induced. It was demonstrated that the presence of tested essential oils in culture medium during replication of treated-YFV enhances the inhibitory effect. This enhancement could be more probably due to direct inactivation of virus released from infected cells than inhibition of the penetration or protein synthesis steps of the viral cycle. Our results are in agreement with studies with other enveloped virus. The in vitro replication abilities of HSV [8-11,21-24], Human Immune Deficiency virus [12] and Hepatitis B virus [13] were suppressed by previous exposition to essential oils obtained from plants from various countries, but antiviral activity was not observed by treatment of the cell with essential oil before the adsorption of the virus.

Supported studies of antiviral effect of essential oils on YFV were not found. Concerning antiviral activity on others members of the Flaviviridae family, two studies with dengue virus (DENV) have been reported. Duschatzky et al. [14] and Garcia et al. [25] did not observe significant antiviral effect on DENV-2 by essential oils obtained from eight species of aromatic plants from Argentina. Only A. douglasiana and E. patens had any discernible virucidal effect. We have carried out experiments for evaluation of direct inactivation on DENV-2 by essential oils from six plants grown in Colombia. L. orgonoides and Hyptis sp showed a 50% reduction of the virus titer at concentration of 100 μg/mL, whereas Piper auritum, Piper ottonifolium, L. alba and Thymus vulgaris did not show activity (unpublished data).

It is speculated that direct virus inactivation by the essential oils can be due to disruption of the viral membrane by lipophilic compounds [24], but the precise mechanism of the antiviral action is still not fully understood. The major components in the essential oil extracted from plants are terpenes and terpenoids. Several kinds of these compounds have been shown to inhibit HIV, and it was demonstrated that their anti-HIV activity involves inhibition of virus adsorption to target cell, and causing inactivation of HIV reverse transcriptase [26-29]. The major components of the essential oils tested in this study were carvone, carvacrol, limonene and thymol, and the presence of these compounds could in part explain the virucidal effect on YFV. More studies should be conducted to explore the mechanism of interference with viral intracellular process of the compounds present in the essential oils.
The present study has demonstrated the inhibitory effect of the essential oils obtained from *L. origanoides*, *O. vulgare*, *L. alba*, and *A. vulgaris* cultivated in Colombian YFV. The results obtained stimulate further investigation in order to know the antiviral activity of each compound present in the essential oil, and to determine whether or not synergism between them is responsible for that activity.

The topical use of essential oil might be explored for prevention of virus infection through the bite of the mosquito-vees vectors.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
RML carried out the design of the study, performed the assays and edited of manuscript. REO conceived of the study, participated in it design and drafted the manuscript. JRM contributed to the identification of essential oils and to determine whether or not synergism between them is responsible for that activity.

Acknowledgements
To Dr Luis Carlos Orozco and Dr Patricia Escobar (Universidad Industrial de Santander, Bucaramanga, Colombia), for their comments and suggestions. This research was carried out thanks to financial support from the Colombian Institute of Science and Technology, Colciencias (Grant RC-432-2004).

References
1. Monath TP, Barrett AD: *Pathogenesis and pathophysiology of yellow fever*. Adv Virus Res 2003, 60:343-395.
2. Lindenbach B, Rice C: *Flaviviridae: the viruses and their replication*. In Fields virology 4th edition. Lippincott Williams & Wilkins, Philadelphia; 2007:991-1041.
3. Pan American Health Organization (PAHO): *Yellow fever situation in Africa and South America*. WKy Epidemiol Rec 2004:18-33.
4. Monath TP: *Yellow fever vaccine*. Expert Rev Vaccines 2005, 4:553-574.
5. Hayes NB: *Acute viscerotropic disease following vaccination against yellow fever*. Trans Roy Soc Trop Med Hyg 2007, 101:967-971.
6. Monath TP: *Treatment of yellow fever*. Antiviral Res 2008, 78:116-124.
7. Martin K, Ernst E: *Antiviral agents from plants and herbs: a systematic review*. Antivir Ther 2003, 8(2):77-90.
8. Allahverdiyev A, Duran N, Ozguven M, Koltas S: *Antiviral activity of the volatile oils of Melissa officinalis L. against Herpes simplex virus type-2*. Phytotherapy 2004, 11:657-661.
9. Reichling J, Koch C, Stahl-Biskup E, Stahl-Biskup E, Sojka C, Schnitzler P: *Virucidal activity of a beta-triketone-rich essential oil of *Leptospermum scoparium* (manuka oil) against HSV-1 and HSV-2 in cell culture*. Planta Med 2005, 71:1123-1127.
10. Sato K, Chida H, Tanioka Y, Fujimoto T, Nakano Y, Imami B: *Antiviral activity of a betatricotone-rich essential oil of *Leptospermum scoparium* (manuka oil) against HSV-1 and HSV-2 in cell culture*. Plant Med 2005, 71:1123-1127.
11. Minami M, Kita M, Nakaya T, Yamamoto T, Kuriyama H, Imani B: *The inhibitory effect of essential oils on herpes simplex virus type-1 replication in vitro*. Microbiol Immunol 2003, 47:681-684.
12. Yamashita K, Nakano M, Watanohata T, Mori H, Otake T, Ueba N, Oishi I, Inami R, Yamane M, Namamura M, Murata R, Nakanishi T: *Antiviral activity of herbs in Labiates*. Biol Pharm Bull 1998, 21(8):829-833.
13. Zhang B, Chen J, Li H, Xu X: *Study on the Rheum palmatum volatile oil against HBV in cell culture in vitro*. Zhong Yao Cai 1998, 21:524-526.
14. Duschatzky C, Possetto ML, Talarico LB, Garcia CC, Michis F, Almeida NV, de Lampasona MF, Schuff C, Damonte EB: *Evaluation of chemical and antiviral properties of essential oils from South American plants*. Antivir Chem Chemother 2005, 16(4):247-251.
15. Pascual ME, Slowing K, Carretero E, Sánchez-Mata D, Villar A: *Lippia: traditional uses, chemistry and pharmacology: a review*. J Ethnopharmacol 2001, 76:201-214.
16. Mueller MS, Karagomba IB, Hirt HM, Wemakor E: *The potential of Artemisia annua L. as a locally produced remedy for malaria in the tropics: agricultural, chemical and clinical aspects*. J Ethnopharmacol 2000, 73(3):487-493.
17. Sashenko E, Jaramillo M, Martinez R: *Comparison of different extraction methods for the analysis of volatile secondary metabolites of *Lippia alba* (Mill).* N. E. Brown, grown in Colombia and evaluation of its in vitro antioxidant activity*. J Chromatogr A 2004, 1025(1):93-103.
18. Sashenko E, Ruiz C, Muñoz A, Castrillón M, Martínez J: *Composition and antioxidant activity of essential oils of *Lippia origanoides* H.B.K. grown in Colombia*. Nat Product Commun 2008, 3:563-566.
19. Mosmann T: *Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytototoxicity assays*. J Immunol Methods 1983, 65(1&2):55-63.
20. Cos P, Vlietinck AJ, Bergho DW, Maes L: *Antifreeze activity of *Lippia origanoides*: application to proliferation and cytotoxicity assays*. J Immunol Methods 1983, 65(1&2):55-63.
21. Schnitzler P, Schon K, Reichling J: *Antiviral activity of Australian tea tree oil and eucalyptus oil against herpes simplex virus in cell culture*. Pharmacol 2001, 56:234-347.
22. Schuhmacher A, Reichling J, Schnitzler P: *Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro*. Phytomedicine 2003, 10:504-510.
23. Koch C, Reichling J, Schneeke J, Schnitzler P: *Inhibitory effect of essential oils against herpes simplex virus type 2*. Phytomedicine 2008, 15:71-78.
24. Cowan M: *Plant products as antimicrobial agents*. Clin Microbiol Rev 1999, 12:564-582.
25. Garcia C, Talarico L, Almeida N, Colombes D, Duschatzky C, Damonte E: *Virucidal activity of essential oils from aromatic plants of *San Luis*, Argentina*. Phytother Res 2003, 17(9):1073-1075.
26. Hasegawa H, Matsuyama S, Uchiyama M, Kurokawa T, Inouye Y, Kasai R, Ishibashi S, Yamakoshi K: *Inhibitory effect of some triterpenoid saponins on glucose transport in tumor cells and its application to in vitro cytotoxic and antiviral activities*. Planta Med 2001, 67:420-423.
27. Xu H, Zeng F, Wan M, Sim K: *Antiviral activity of *Herba asari* and *Herba salsatia* against HSV-1 in cell culture*. Chin Med J 2004, 117:1015-1018.
28. Pengsuparp T, Cai H, Fong S, Kinghorn A, Pezzuto J, Wani M, Wall M: *Pentacyclic triterpenes derived from *Mangifera indica* a potent inhibitor of HIV-1 reverse transcriptase*. J Nat Prod 1998, 61:145-148.
29. Sun H, Qiu S, Lin L, Wang Z, Lin Z, Pengsuparp T, Pezzuto J, Cai H, Cordell G, Farnsworth N: *Nigranolic acid, a triterpenoid from *Schisandra sphenanandra* that inhibits HIV-1 reverse transcriptase*. J Nat Prod 1996, 59:525-527.