Effect of normal and saline water irrigation on yield and yield attributes of maize cultivar district Kannauj, Uttar Pradesh

Vinod Kumar, Ravindra Kumar, Devendra Singh, KN Singh, Yogesh Mishra, Varun Kumar and Om Pal Singh

DOI: https://doi.org/10.22271/chemi.2020.v8.i1y.8516

Abstract
The field experiment was conducted during the year 2016 and 2017 at village Jasaura district Kannauj, Uttar Pradesh. Grain yield was ranged from 43.85-70.32 q ha\(^{-1}\) and 40.50-73.92 q ha\(^{-1}\). Stover yield was ranged from 116.65-142.87 q ha\(^{-1}\) and 114.25-143.15 q ha\(^{-1}\). Biological yield was ranged from 178.00-230.57 q ha\(^{-1}\) and 171.82-233.57 q ha\(^{-1}\). The weight of 100 seeds was ranged from 20.88-28.40 gram and 20.75-29.78 gram. Shelling percentage was ranged from 71.15-80.22\% and 70.20-80.44\%. Harvest Index was ranged from 0.24-0.30\% and 0.23-0.30\%. Gross returns or output, net return and benefit cost ratio were ranged from Rs. 69766-107461, Rs. 3342-41037 and 0.05-0.62 and Rs. 67849-116647, Rs. (+) 1222-47576 and (-) 0.02-0.69. The highest and lowest growth and reduction on grain and stover yield was achieved from T:\(+\) 4.87\% to (+) 0.19\% and T:\(-\) 7.64\% to (-) 2.06\%. All the parameters were obtained from 2016 to 2017 year respectively.

Keywords: Longitude, latitude, benefit cost ratio, maize, GPS, harvest index, shelling percentage

Introduction
Maize (Zea mays L) or corn is a cereal grain belonging to the family gramineae/poaceae and is known as 'Queen of Cereals' because of its several uses. In addition to staple food for human being and quality feed for animals, maize serves as a basic raw material as an ingredient to thousands of industrial products that includes starch, oil, protein, alcoholic beverages, food sweeteners, pharmaceutical, cosmetic, film, textile, gum, package and paper industries etc. It is used worldwide for about 3500 products of different uses as feed (61\%), food (17\%) and also serves as a source of basic raw material of number of industries (22\%) viz., starch, ethanol, oil, alcoholic beverages, food sweeteners, pharma, cosmetics etc. No other cereal can be used in such many ways as maize. Every part of the maize plant has economic value the grains, leaves, stalk, tassel, and cob can all be used to produce a variety of food and non-food products. In India not only production and consumption of maize have been rising consistently, the consumption pattern has also changed over the years Kumar et al. (2012a) [8].

Materials and Methods
Location of study area
The field experiment was conducted in Jasaura village of Jalalabad block, Kannauj district situated in the western region of Uttar Pradesh with latitude of 270 05’ North and longitude of 0790 49’ East.

Survey of ground irrigation water
First of all 10 surveys were conducted within the Kannauj district. The 10 water samples were randomly collected with the help of Global Positioning System from surveyed area in labeled plastic bottle within the district. The collected water samples brought in laboratory for further desired chemical constituents examination.
Selection of study area
After chemical analysis of water samples the Jasaura village was found good and saline water. The most dominant crop in summer season was maize of this village. Therefore, Jasaura village was selected for conducted experiment purpose.

Fig 1: Map of study area

Table 1: Description of treatments combination with irrigations application.

Treatments	Irrigations pattern
T1-Normal Water (GW)	Regular
T2-Saline Water (SW)	Regular
T3-NW: SW	3 NW: 3 SW
T4-SW: NW	3SW: 3 NW
T5-NW: SW	4 NW: 2 SW
T6-SW: NW	4SW: 2 NW
T7-NW:SW	5 NW: 1 SW
T8-SW: NW	5SW: 1 NW

Table 2: Description of experimental layout

S. No.	Particulars	Descriptions
1.	Year of commencement	5 March 2016 and 5 March 2017
2.	Location	Village: Jasaura district Kannauj
3.	Recommended dose of fertilizers	150: 60:40 (N: P: K) Kg ha\(^{-1}\) + 20Kg ZnSO\(_4\) 7H\(_2\)O + 10 tonne FYM
4.	Variety	Hybrid Maize variety DeKalb 9108 plus
5.	Spacing	60 x 30cm
6.	No. of irrigations-	6
7.	Design	RBD
8.	Replication:	4
9.	Plot size	2.5 x 2=5 M\(^2\)
10.	Net area	160 M\(^2\)

Result and Discussion

Grain yield
As depicted in Table 1.3 the maximum and minimum grain yield was found in treatment T\(_1\)-73.92q ha\(^{-1}\) and T\(_2\)-40.50q ha\(^{-1}\). The grain yield increasing in T\(_1\)-87.45 to 91.82q ha\(^{-1}\) and reducing trends were observed in remaining treatments from previous year 2016 to final year 2017. Similar trends were observed by Aechra (2017)\(^{[1]}\), Chaudhary, (2017)\(^{[2]}\), Feng et al., (2017)\(^{[3]}\), Leogrande et al., (2016)\(^{[4]}\), Liu et al., (2016)\(^{[5]}\), Wang et al., (2016)\(^{[6]}\), Zhang et al., (2016)\(^{[7]}\), Awad et al., (2014)\(^{[8]}\), Faria and Mansouri (2014)\(^{[9]}\), Azizian and Sepaskhah (2014)\(^{[10]}\), Mojid (2013)\(^{[11]}\).

Table 3: Grain yield (q ha\(^{-1}\)) at harvest of maize crop in 2016 and 2017

Treatments	Grain yield (q ha\(^{-1}\))	
	Mean	Mean
T\(_1\)	70.32	73.92
T\(_2\)	43.85	40.50
T\(_3\)	52.87	51.45
T\(_4\)	51.90	50.52
T\(_5\)	56.97	53.82
T\(_6\)	53.55	50.25
T\(_7\)	69.80	69.77
T\(_8\)	44.97	41.95
S. Ed (±)	1.420	1.122
C.D at 5%	4.178	3.299
Stover yield

As depicted in Table 1.4 the maximum and minimum stover yield was found in treatment T₁-143.15 q ha⁻¹ and T₂-114.25 q ha⁻¹. The stover yield increasing in T₁-142.87 to 143.15 q ha⁻¹ and reducing trends were observed in remaining treatments from previous year 2016 to final year 2017. Similar trends were reported by Aechra (2017) [1], Chaudhary, (2017) [4], Feng et al., (2017) [6], Liu et al., (2016) [10], Zhang et al., (2016) [13], Awad et al., (2014) [2], Mojid (2013) [11].

Table 4: Stover yield (q ha⁻¹) at harvest of maize crop in 2016 and 2017

Treatments	Mean	Mean
T₁	142.87	143.15
T₂	116.65	114.25
T₃	119.35	118.57
T₄	118.17	118.05
T₅	120.47	120.42
T₆	118.00	117.72
T₇	142.42	140.50
T₈	116.57	116.30
S. Ed (±)	1.296	1.212
C.D at 5%	3.811	3.563

Biological Yield

As depicted in Table 1.5 the highest and lowest biological yield was found in treatment T₁-233.57 q ha⁻¹ and T₂-171.82 q ha⁻¹. The biological yield increasing in T₁-230.57 to 233.57q ha⁻¹ and reducing trends were observed in remaining treatments from previous year 2016 to final year 2017. Similar trends were investigated by Aechra (2017) [1], Chaudhary, (2017) [4], Feng et al., (2017) [6], Liu et al., (2016) [10], Zhang et al., (2016) [13], Awad et al., (2014) [2], Mojid (2013) [11].

Table 5: Biological yield (q ha⁻¹) at harvest of maize crop in 2016 and 2017

Treatments	Stover yield (q ha⁻¹)
T₁	Mean 230.57, Mean 233.57
T₂	Mean 178.00, Mean 171.82
T₃	Mean 190.02, Mean 187.47
T₄	Mean 188.50, Mean 186.92
T₅	Mean 194.97, Mean 193.87
T₆	Mean 189.65, Mean 185.60
T₇	Mean 229.37, Mean 227.75
T₈	Mean 179.02, Mean 174.95
S. Ed (±)	Mean 2.170, Mean 2.063
C.D at 5%	Mean 6.383, Mean 6.066
Graph 3: Biological yield (q ha⁻¹) of maize crop in 2016 and 2017

Weight of 100 seeds

As depicted in Table 1.6 the highest and lowest weight of 100 seeds was found in treatment T₁-29.78 gram and T₂-20.75 gram. The weight of 100 seeds increasing in T₁-28.40 to 29.78 gram and reducing trends were observed in remaining treatments from previous year 2016 to final year 2017. Similar trends were examined by Aechra (2017) [1], Chaudhary, (2017) [4], Feng et al., (2017) [6], Liu et al., (2016) [10], Zhang et al., (2016) [13], Awad et al., (2014) [2], Mojid (2013) [11].

Table 6: Weight of 100 seeds (gram) of maize crop in 2016 and 2017

Treatments	Weight of 100 seeds (gram)	Mean	Mean
T₁	28.40	29.78	
T₂	20.88	20.75	
T₃	21.81	21.29	
T₄	21.43	21.19	
T₅	21.75	21.58	
T₆	21.60	21.07	
T₇	27.84	27.97	
T₈	21.39	21.15	
S. Ed (±)	0.265	0.226	
C.D at 5%	0.780	0.664	

Shelling percentage

As depicted in Table 1.7 the highest and lowest shelling percentage was found in treatment T₁-80.44% and T₂-70.20%. The shelling percentage increasing in T₁-79.98 to 80.44% and reducing trends were observed in remaining treatments from previous year 2016 to final year 2017. Similar trends were determined by Aechra (2017) [1], Chaudhary, (2017) [4], Feng et al., (2017) [6], Liu et al., (2016) [10], Zhang et al., (2016) [13], Awad et al., (2014) [2], Mojid (2013) [11].

Table 7: Shelling percentage of maize crop in 2016 and 2017

Treatments	Shelling percentage	Mean	Mean
T₁	79.98	80.44	
T₂	71.15	70.20	
T₃	74.81	74.21	
T₄	73.98	73.28	
T₅	76.46	74.05	
T₆	74.74	74.01	
T₇	80.22	80.26	
T₈	71.67	71.33	
S. Ed (±)	0.515	0.322	
C.D at 5%	1.516	0.946	

Harvest index (H.I)

As depicted in Table 1.8 the highest and lowest harvest index was found in treatment T₁-0.30% T₇-0.2% and T₆-0.23% T₈-0.23% The harvest index increasing in T₁-0.29 to 0.30%, invariability in treatments T₅,T₇ and reducing trends were observed in remaining treatments from previous year 2016 to final year 2017. Similar trends were determined by Aechra (2017) [1], Chaudhary, (2017) [4], Feng et al., (2017) [6], Liu et al., (2016) [10], Zhang et al., (2016) [13], Awad et al., (2014) [2], Mojid (2013) [11].

Table 8: Harvest index of maize crop in 2016 and 2017

Treatments	Harvest index	Mean	Mean
T₁	0.29	0.30	
T₂	0.24	0.23	
T₃	0.28	0.27	
T₄	0.27	0.26	
T₅	0.27	0.27	
T₆	0.28	0.27	
T₇	0.30	0.30	
T₈	0.24	0.23	
S. Ed (±)	0.005	0.003	
C.D at 5%	0.016	0.010	

Gross returns or output

As depicted in Table 1.9 and 1.10 the highest gross return was obtained from
from previous year to final year due to percentage growth and reduction in these treatments gross return was decreased. The lowest gross return was achieved from treatment T2 in previous year whereas; negatively gross return was obtained during second year from treatment T3. Similar trends were observed by Faria and Mansouri (2014) [5].

Input, net return and benefit cost ratio
As depicted in Table 1.11 and 1.12 the input was change Rs. 66424=00 to 69071 from previous year to final year due to increasing cost of input components. The highest net return and B.C Ratio were achieved from treatment T7 followed by T5, T3, T4, T6, T8, T2 in previous year 2016 and final year 2017 respectively. The gross return was increased from previous to final year except treatments T2, T3, T6 and T4 in these treatments gross return was decreased.

The gross returns or output in 2016

Treatments	Gross return or Output (Grain @ Rs. 1325 and Stover @ Rs. 100 per quintal)	Gross return or Output (Grain @ Rs. 1325 and Stover @ Rs. 100 per quintal)
T1	70.32	93174
T2	43.85	58101
T3	52.87	70053
T4	51.90	68767
T5	56.97	75485
T6	53.55	70954
T7	69.80	92485
T8	44.97	59585

Table 10: Gross returns or output in 2017

Treatments	Gross return or Output (Grain @ Rs. 1325 and Stover @ Rs. 100 per quintal)	Gross return or Output (Grain @ Rs. 1325 and Stover @ Rs. 100 per quintal)
T1	73.92	100901
T2	40.50	55282
T3	51.45	70229
T4	50.52	68960
T5	53.82	73464
T6	50.25	68591
T7	69.77	95236
T8	41.95	57262

Treatment T1 followed by T7, T3, T5, T6, T8, T2 in previous year 2016 and second year 2017 respectively. The gross return was increased from previous to final year except treatments T2, T3, T6 and T4 in these treatments gross return was decreased. The lowest gross return was achieved from treatment T2 in previous year whereas; negatively gross return was obtained during second year from treatment T3. Similar trends were observed by Faria and Mansouri (2014) [5].

Table 9: Gross returns or output in 2016

Table 12: Input, Gross return, Net return and Benefit Cost Ratio in 2017

Treatments	Input (Rs.)	Gross return (Rs.)	Net return (Rs.)	B.C Ratio
T1	69071	116647	(-) 47576	(+) 0.69
T2	69071	67849	(-) 1222	(-) 0.02
T3	69071	83272	(+) 14201	(+) 0.20
T4	69071	81945	(+) 12874	(+) 0.19
T5	69071	86710	(+) 17639	(+) 0.25
T6	69071	81540	(+) 12469	(+) 0.18
T7	69071	110740	(+) 41669	(+) 0.00
T8	69071	70055	(+) 984	(+) 0.01

The lowest net return and B.C Ratio were achieved from treatment T2 in previous year whereas; negatively net return and B.C Ratio were obtained during second year from treatment T3. Similar trends were reported by Faria and Mansouri (2014) [5].

Growth and reduction on grain and Stover yield
As depicted in Table 1.13 the highest and lowest growth and reduction on grain and Stover yield was received from T1-(+) 4.87% to (+) 0.19% and T2(-) 7.64% to (-) 2.06% from previous year 2016 to final year 2017 respectively. The stability was not found in any treatments previous to final year. Similar trends were observed by Azizian and Sepaskhah (2014) [5].

Table 11: Input, gross return, net return and benefit cost ratio in 2016

Treatments	Input (Rs.)	Gross return (Rs.)	Net return (Rs.)	B.C Ratio
T1	66424	107461	(+) 41037	(+) 0.62
T2	66424	69766	(+) 3342	(+) 0.05
T3	66424	81988	(+) 15564	(+) 0.23
T4	66424	80584	(+) 14160	(+) 0.21
T5	66424	87532	(+) 21108	(+) 0.32
T6	66424	82754	(+) 16330	(+) 0.24
T7	66424	106727	(+) 40303	(+) 0.61
T8	66424	71242	(+) 4818	(+) 0.07

Table 13: Growth and reduction on grain and stover yield from 2016 to 2017

Treatments	Grain yield (q ha⁻¹)	Stover yield (q ha⁻¹)	% age growth and reduction			
2016	2017	2016	2017			
T1	70.32	73.92	(+) 4.87	142.87	143.15	(+) 0.19
T2	43.85	40.50	(-) 7.64	116.65	114.25	(-) 2.06
T3	52.87	51.45	(-) 2.68	119.35	118.57	(-) 0.65
T4	51.90	50.52	(-) 2.66	118.17	118.05	(-) 0.10
T5	56.97	53.82	(-) 5.53	120.47	120.42	(-) 0.04
T6	53.55	50.25	(-) 6.16	118.00	117.72	(-) 0.24
T7	69.80	69.77	(-) 0.04	142.42	140.95	(-) 1.03
T8	44.97	41.95	(-) 6.71	116.57	116.30	(-) 0.23
Conclusion
Among the various studies was found that treatment first superior over all treatments. When number of saline irrigation water increasing and normal water irrigation applied in decreasing manner maize growth and yield was found reduced and physico-chemical properties of soil were going increasing order. The soil application of gypsum and phospho-gypsum will be best amendments for management practices to sustain productivity and avoid soil from degradation losses.

References
1. Aechra S, Yadav BL, Ghosalya BD, Bamboriya JS. Effect of soil salinity, phosphorus and biofertilizers on physical properties of soil, yield attributes and yield of cowpea [Vigna unguiculata (L.) Wilczek], Journal of Pharmacognosy and Phytochemistry. 2017; 6(4):1691-1695.
2. Awad MS, Solaimani GAI, Fathy S, Nakhlawy El. Effect of soil salinity at germination and early growth stages of two maize (Zea mays L.) cultivars in Saudi Arabia Journal of Bioscience and Agriculture Research. 2014; 1(1):47-53.
3. Azizian A, Sepaskhah AR. Maize response to different water, salinity and nitrogen levels: agronomic behavior. International Journal of Plant Production. 2014; 8(1):107-130.
4. Chaudhary OP. Long-term impact of cyclic use of sodic and canal water for irrigation on soil properties and crop yields in cotton-wheat rotation in a semiarid Climate, Agric. Res. 2017; 6(3):267-272.
5. Farnia A, Mansouri M. Effect of Plant density to Yield and Yield components of Maize (Zea mays L.) Cultivars. Bulletin of Environment, Pharmacology and Life Sciences, [Special Issue VI]. 2014; 3:123-127.
6. Feng G, Zhang Z, Wan C, Lu P, Bakour A. Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system. Agricultural Water Management. 2017; 193:205-213.
7. Heidari M, Jamshid P. Interaction between salinity and potassium on grain yield, carbohydrate content and nutrient uptake in pearl millet. ARPN J Agric Bio Sci. 2010; 5:25-32.
8. Kumar RS, Kumar B, Kaul J, Karjagi CG, Jat SL, Parihar CM et al. Maize research in India–Historical prospective and future challenges. Maize Journal. 2012a; 1(1):1-6.
9. Leogrande R, Vitti C, Lopedota O, Ventrella D, Montemurro F. Effects of irrigation volume and saline water on maize yield and soil in southern Italy. Irrigation and Drainage. 2016; 65(3):243-253.
10. Liu XW, Feike T, Chen S, Shao L, Zhang X. Effect of saline irrigation on salt accumulation and grain yield in the winter-summer maize double cropping system in low plain of North China, Journal of Integrative Agriculture. 2016; 15(12):2886-2898.
11. Mojid MA, Zahid Hussain ABM. Conjunctive Use of Saline and Fresh Water for Irrigating Wheat (Triticum aestivum L.) at Different Growth Stages. A Scientific Journal of Krishi Foundation. 2013; 11(1):15-23.
12. Wang Q, Huo Z, Zang L, Wang J, Zhao Y. Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China, Agricultural Water Management. 2016; 163:125-138.
13. Zhang P, Senge M, Dai Y. Effect of salinity stress on growth, yield, fruit quality and water use efficiency of tomato under hydroponics system. Reviews in Agricultural Sciences. 2016; 4:46-55.