REPLICA METHOD FOR WIDE CORRELATORS IN GAUSSIAN ORTHOGONAL, UNITARY AND SYMPLECTIC RANDOM MATRIX ENSEMBLES

Chigak Itoia, 1

Hisamitsu Mukaidab, 2

and

Yoshinori Sakamotoa, 3

a Department of Physics, College of Science and Technology, Nihon University, Kanda Surugadai, Chiyoda-ku, Tokyo 101, Japan

b Department of Physics, Saitama Medical College, Kawakado, Moroyama, Saitama, 350-91, Japan

Abstract

We calculate connected correlators in Gaussian orthogonal, unitary and symplectic random matrix ensembles by the replica method in the $1/N$-expansion. We obtain averaged one-point Green’s functions up to the next-to-leading order $O(1/N)$, wide two-level correlators up to the first nontrivial order $O(1/N^2)$ and wide three-level correlators up to the first nontrivial order $O(1/N^4)$ by carefully treating fluctuations in saddle-point evaluation.

PACS: 05.40.+j; 05.45+b

Keywords: Random matrix; Disordered system; Replica method; Universal correlator

1e-mail: itoi@phys.cst.nihon-u.ac.jp
2e-mail: mukaida@thaxp1.ins.u-tokyo.ac.jp
3e-mail: yossi@phys.cst.nihon-u.ac.jp
1 Introduction

Recently, the universality of the wide distance two level connected correlator in random matrix theories is shown by Ambjørn, Jurkiewicz and Makeenko [1]. Brézin and Zee regarded this universality as importance from the viewpoint of physics in disordered systems [2]. Since the correlator does not depend on the probability distribution of a matrix ensemble, we may use the correlator calculated in the corresponding simple Gaussian ensemble with the same symmetry for the non-trivial disordered system in concern. Compared to the short distance correlator which is already well-known as a universal quantity [3], the wide correlators are able to be calculated explicitly in extensive types of ensembles in various ways [1, 3]. Actually, one observes the strongly universal properties which random matrix theories have themselves in the wide connected correlators. Their universality classification is also done in [3]. These mathematical studies of random matrix theories themselves enable us to recognize the real universal nature of level statistics.

In this paper, we examine the replica method to calculate the wide connected two level correlator in gaussian orthogonal (GOE), unitary (GUE) and symplectic (GSE) ensembles. These simple ensembles GOE, GUE and GSE can describe a time reversal system without spin, a general system and a time reversal system with spin, respectively [3]. The replica method is well-known as a convenient scheme to calculate two body Green’s function in some models of the Anderson localization [7]. Even though this method cannot work well to calculate the short distance correlator [8], here we show this method is useful to calculate the wide two level correlator in the $1/N$ expansion. This method is much simpler than the supersymmetry method which enables us to calculate both the wide and short distance correlators [8, 9]. Here, we remark the reason why the replica method is not good for the short distance correlator. We are going to calculate the explicit form of the two-level and three-level correlators in GOE, GUE and GSE, which are identical to those calculated by solving functional equations [4, 11] or by diagrammatic method [12]. Here we study a matrix theory defined by the following probability distribution

$$P(H) = \frac{1}{Z_H} \exp \left(-\frac{N}{2} \text{Tr} H^2 \right), \quad Z_H \equiv \int \mathcal{D}H \exp \left(-\frac{N}{2} \text{Tr} H^2 \right), \quad (1)$$

where H is an $N \times N$ matrix. The explicit form of the measure $\mathcal{D}H$ depends on a type of an ensemble of H. Our interest is focused on computing averaged Green’s functions by the replica method. We show their calculation method explicitly for GOE in section 2, for GUE in section 3 and GSE in section 4.
2 Gaussian orthogonal ensemble

To begin with, we explore the case of the GOE which is defined by the ensemble of real symmetric matrices obeying the probability distribution (1). The measure \(DH \) is explicitly written as
\[
DH = \prod_{k=1}^{N} dH_{kk} \prod_{i<j} dH_{ij}.
\]

2.1 One-point function

We calculate the averaged one-point function
\[
G(z) \equiv \langle \frac{1}{N} \text{Tr} \left(\frac{1}{z - H - i\epsilon} \right) \rangle \equiv \int DHP (H) \frac{1}{N} \text{Tr} \left(\frac{1}{z - H - i\epsilon} \right).
\]
Note that \(-i\epsilon (\epsilon > 0)\) means that \(G(z) \) considered here is the advanced Green’s function. We assume
\[
|z| > \sqrt{2}
\]
in the case of the GOE. The meaning of this assumption will be clarified later. Results for \(|z| < \sqrt{2}\) will be extracted employing the analytic continuation that is uniquely determined by \(-i\epsilon\).

In order to apply the replica method, we first introduce the \(n\)-flavor real vectors having \(N\) component \((\phi_i^a)_{1 \leq i \leq N}\), where the superscript \(a\), which runs from 1 to \(n\), specifies the flavor. Let us consider the following integration over \(\phi\) for constructing a generating function of \(G(z)\):
\[
\Gamma[z,H] \equiv \frac{1}{Z_\phi} \int D\phi \exp\left\{ -\frac{i}{2} t\phi^a (z - H - i\epsilon) \phi^a \right\}, \quad Z_\phi = \int D\phi \exp\left(-\frac{1}{2} t\phi^a \phi^a \right),
\]
where \(t\) means transposition and the summation over the repeated indices are implicitly taken. The measure is defined by
\[
D\phi \equiv \prod_{a=1}^{n} \prod_{i=1}^{N} d\phi^a_i.
\]
Note that the integration over \(\phi\) for \(\Gamma\) converges owing to \(-i\epsilon\). Hereafter we do not explicitly write \(-i\epsilon\) for brevity.

Taking the derivative with respect to \(z\), we have
\[
\frac{\partial \Gamma[z,H]}{\partial z} = \frac{\partial}{\partial z} \det^{-n/2}(i(z - H)) = -\frac{n}{2} \text{Tr} \frac{1}{z - H} \det^{-n/2}(i(z - H)).
\]
We define \(W(z)\) as the average of \(\Gamma\) over \(H\):
\[
W(z) \equiv \langle \Gamma[z,H] \rangle.
\]
It follows from eq. (7) that
\[G(z) = \lim_{n \to 0} \left(\frac{-2}{nN} \right) \frac{d}{dz} W(z), \] (9)
which indicates that \(W(z) \) plays a role of a generating function of \(G(z) \). Note that we need to take the limit \(n \to 0 \) in order to eliminate the determinant factor in eq. (7).

Let us compute \(W(z) \). The average over \(H \) in eq. (8) is explicitly carried out and we have
\[W(z) = \frac{1}{Z_\phi} \int D\phi \exp \left(-\frac{i}{2} \phi^a(z \phi^a - \frac{1}{8N} (\phi^a \phi^b)^2) \right). \] (10)
The quartic interaction can be represented as
\[\exp \left(-\frac{1}{8N} (\phi^a \phi^b)^2 \right) = \frac{1}{Z_Q} \int DQ \exp \left(-\frac{N}{2} Q_{ab}Q_{ba} + \frac{i}{2} \phi^a \phi^b Q_{ab} \right), \] (11)
where \((Q)_{ab} \) is the real symmetric \(n \times n \) matrix and the normalization factor is defined by
\[Z_Q \equiv \int DQ \exp \left(-\frac{N}{2} Q_{ab}Q_{ba} \right). \] (12)

Using the representation (11) we get
\[W(z) = \frac{1}{Z_\phi Z_Q} \int DQ D\phi \exp \left(-\frac{N}{2} \text{Tr} Q^2 - \frac{i}{2} \phi_i(z - Q)\phi_i \right). \] (13)

Note that indices \(a \) and \(b \) are implicitly summed in the above notation: we regard \(\phi_i \) as an \(n \)-component vector.

The \(\phi \)-integral becomes Gaussian and we find
\[W(z) = \frac{1}{Z_Q} \int DQ \exp \left\{ -\frac{N}{2} \text{Tr} (\log i(z - Q) + Q^2) \right\}. \] (14)

It can be written as integration over eigenvalues
\[W(z) = \frac{C_n}{Z_Q} \int \prod_{a=1}^n du_a \ |\Delta(u)| \ \exp \left\{ -N \sum_{a=1}^n g(u_a) \right\}, \] (15)
where \(C_n \) is a constant that depends on \(n \) and \(\Delta(u) \) is the Van der Monde determinant
\[\Delta(u) \equiv \prod_{a < b} (u_a - u_b). \] (16)
The function \(g \) appeared in the exponent is defined by
\[g(x) \equiv \frac{1}{2} (\log i(z - x) + x^2). \] (17)
Now we compute $W(z)$ by the $1/N$-expansion. Let us first compute it in the leading order. Since the contribution from the Van der Monde determinant in eq. (13) is neglected in the leading order, u_a’s are completely decoupled each other and $W(z)$ is evaluated by a single-variable integration. i.e.,

$$W(z) \sim \text{const. } \left(\int du \exp \{-Ng(u)\} \right)^n \quad (18)$$

in the leading order. We can evaluate the right-hand side of (18) by the saddle-point method. The saddle-point equation is

$$g'(u) = -\frac{1}{2(z-u)} + u = 0. \quad (19)$$

We have the two solutions u_{\pm}, where

$$u_{\pm} = \frac{1}{2} (z \pm \sqrt{z^2 - 2}). \quad (20)$$

We find that contribution to the integral (18) from $u \sim u_-$ dominates over that from $u \sim u_+$. In fact, a straightforward calculation gives

$$\text{Re } g(u_-) < \text{Re } g(u_+), \quad \text{if } z > \sqrt{2}. \quad (21)$$

Therefore we get

$$W(z) \sim \text{const. } e^{-Ng(u_-)} \quad (22)$$

in the leading order. Inserting the above result into eq. (13), we obtain the well-known result

$$G(z) = z - \sqrt{z^2 - 2}, \quad (23)$$

where the overall constant in eq. (22) is chosen such that $G(z)$ should satisfy the boundary condition $G(z) \to 1/z$ as $z \to \infty$.

We can compute higher-order corrections by expanding $g(u_a)$ in eq. (13) around $u = u_-$.

$$g(u_a) = g(u_-) + \frac{1}{2N} g''(u_-) y_a^2 + \sum_{n=3}^{\infty} \frac{N^{-n/2}}{n!} g^{(n)}(u_-) y_a^n, \quad (24)$$

where we denote

$$u_a - u_- = N^{-1/2} y_a. \quad (25)$$

Here we shall calculate up to the first-order correction, which is sufficient for determining the connected two-point function, as we will see below. To this end, we can neglect the cubic and the higher terms in eq. (24). Then we find

$$W(z) \sim C_n e^{-Ng(u_-)} \int \prod_a dy_a |\Delta(y)| \exp\{-\frac{1}{2} \sum_{a=1}^{n} g''(u_-) y_a^2\} \quad (26)$$
up to the next-to-leading order. Note that
\[g''(u-) = 1 - 2u_-^2 = \sqrt{z^2 - 2} \left(z - \sqrt{z^2 - 2} \right), \]
which is real and positive under the assumption (4). Therefore the integration over \(y_a \) is easily performed going back to representation of an integration over real symmetric matrices. Since there are \(n(n + 1)/2 \) independent variables in a real symmetric matrix, we get
\[\frac{C_n}{Z_\mathcal{Q}} \int \prod_a dy_a |\Delta(y)| \exp \left\{ -\frac{1}{2} \sum_{a=1}^n g''(u_-) y_a^2 \right\} = \frac{1}{Z_\mathcal{Q}} \int Dq \exp \left\{ -\frac{1}{2} g''(u_-) \sum_{a,b} q_{a,b}^2 \right\} = \left(\frac{1}{g''(u_-)} \right)^{n(n+1)/4}. \]
(28)
Thus we conclude
\[W(z) \sim e^{-Ngg(u_-)} \left(\frac{1}{g''(u_-)} \right)^{n(n+1)/4} \]
up to the next-to-leading order. Using eqs. (9) and (27), we obtain \(G(z) \) including the first-order correction:
\[G(z) = \left(z - \sqrt{z^2 - 2} \right) \left(1 + \frac{1}{2N} \frac{1}{z^2 - 2} \right) + O(1/N^2). \]
(30)
This result is identical to that obtained in [11].

Here we comment on the validity of the saddle point method in eq. (28). The saddle point evaluation in the \(1/N \) expansion holds only in the region where \(g''(u_-) \) is \(O(N^0) \). This approximation becomes incorrect for \(z = \pm \sqrt{2} + O(1/N) \) which yields \(g''(u_-) = O(1/N) \).

2.2 Two-point function

Now we turn to the two-point function
\[G(z_1, z_2) \equiv \left\langle \frac{1}{N} \text{Tr} \frac{1}{z_1 - H} \frac{1}{N} \text{Tr} \frac{1}{z_2 - H} \right\rangle. \]
(31)
We shall show how to compute wide correlation by the replica method. i.e., we assume \(z_1 - z_2 \sim O(N^0) \) as well as the condition (4).

As is the case of the one-point function, we start with the following integral
\[\Gamma[z_1, z_2, H] \equiv \frac{1}{Z_{\phi_1} Z_{\phi_2}} \int D\phi_1 D\phi_2 \exp \left\{ -\frac{i}{2} \phi_1^a (z_1 - H) \phi_1^a - \frac{i}{2} \phi_2^b (z_2 - H) \phi_2^b \right\}. \]
(32)
Here we have introduced the two species of vectors labeled by 1 and 2. The two species respectively have \(n- \) and \(m- \) flavor, which means that \(1 \leq a \leq n \) and that \(1 \leq p \leq m \). We average \(Z[z_1, z_2, H] \) over \(H \) and define \(W(z_1, z_2) \), a generating function of \(G(z_1, z_2) \).
\[W(z_1, z_2) \equiv \langle \Gamma[z_1, z_2, H] \rangle. \]
(33)
The two-point function is derived from \(W(z_1, z_2) \) in the following formula:

\[
G(z_1, z_2) = \lim_{n,m \to 0} \left(\frac{-2}{N m} \right) \left(\frac{-2}{N n} \right) \frac{\partial^2}{\partial z_1 \partial z_2} W(z_1, z_2). \tag{34}
\]

Our strategy for computing \(W(z_1, z_2) \) is the same as in the case of the one-point function. Namely, we first perform the integration over \(H \) of \(W(z_1, z_2) \). Second, we introduce the auxiliary matrix \(Q \) in order to carry out the integration over \(\phi_1 \) and \(\phi_2 \). The integration over the vector variables bring us the theory described by \(Q \), which can be investigated by the saddle-point method for large \(N \).

The first step is easily performed. We have

\[
W(z_1, z_2) = \frac{1}{Z_{\phi_1} Z_{\phi_2}} \int D\phi_1 D\phi_2 \exp \left\{ -\frac{i}{2} \left(t \phi_1^a z_1 \phi_1^a + t \phi_2^p z_2 \phi_2^p \right) - \frac{1}{8N} \left(t \phi_1^a \phi_1^b + t \phi_2^p \phi_2^q \right)^2 \right\}. \tag{35}
\]

Next, let us introduce the \((n+m) \times (n+m)\) real symmetric matrix \(Q \) using the following expression:

\[
Q = \begin{pmatrix} Q^{11} & Q^{12} \\ Q^{21} & Q^{22} \end{pmatrix}, \tag{36}
\]

where \(Q^{11} \) and \(Q^{22} \) are \(n \times n \) and \(m \times m \) real symmetric matrices respectively. Since \(Q \) is real-symmetric, \(Q^{12} \), which is an \(n \times m \) matrix, satisfies \(Q^{12} = iQ^{21} \). In order to write down a formula corresponding to \((33)\), we employ the following notations:

\[
\Phi_i \equiv \begin{pmatrix} \phi_{1i} \\ \phi_{2i} \end{pmatrix}, \tag{37}
\]

which is \((n+m)\)-component vectors, and

\[
z = \begin{pmatrix} z_1 I_n & 0 \\ 0 & z_2 I_m \end{pmatrix}, \tag{38}
\]

where \(I_n \) is the unit \(n \times n \) matrix. We can check that the right-hand side of eq. \((35)\) is identical with

\[
\frac{1}{Z_Q Z_{\phi_1} Z_{\phi_2}} \int DQ D\phi_1 D\phi_2 \exp \left\{ -\frac{N}{2} \text{Tr} \left(Q^2 \right) - \frac{i}{2} \Phi_i (z - Q) \Phi_i \right\}. \tag{39}
\]

After integrating the vector variables, we acquire

\[
W(z_1, z_2) = \frac{1}{Z_Q} \int DQ \exp \left\{ -\frac{N}{2} \text{Tr} \left(\log i(z - Q) + Q^2 \right) \right\}. \tag{40}
\]

We analyze the above integral formula by the saddle-point method. The saddle-point equation is

\[
(z - Q)^{-1} = 2Q. \tag{41}
\]
Or equivalently,
\[
2Q^{11}(z_1 - Q^{11}) - 2Q^{12}Q^{21} = 1
\]
\[
-2Q^{11}Q^{12} + 2Q^{12}(z_2 - Q^{22}) = 0
\]
\[
2Q^{21}(z_1 - Q^{11}) - 2Q^{22}Q^{21} = 0
\]
\[
-2Q^{21}Q^{12} + 2Q^{22}(z_2 - Q^{22}) = 1.
\]
(42)

After transposing the third equation and subtracting it from the second equation, we find
\[
Q^{12} = Q^{21} = 0.
\]
(43)

The remaining equations containing Q^{11} and Q^{22} are solved by diagonalization. Suppose that Q^{11} and Q^{22} are respectively diagonalized by O_1 and O_2. Explicitly,
\[
t^tO_1Q^{11}O_1 = \text{diag}(u_1, \ldots, u_n), \quad t^tO_2Q^{22}O_2 = \text{diag}(v_1, \ldots, v_m).
\]
(44)

Then the equations to be solved are
\[
u_a = \frac{1}{2(z_1 - u_a)},
\]
\[
v_p = \frac{1}{2(z_2 - v_p)},
\]
(45)

which are the same form as the saddle-point equation appeared in the previous subsection. Following the argument on the most dominant saddle-point that is carried out in the one-point function, we should choose the saddle point
\[
u_a = u_-, \quad \text{for all } a,
\]
\[
v_p = v_-, \quad \text{for all } p.
\]
(46)

Performing the inverse transformation of eq. (44), we obtain the most dominant saddle point \bar{Q} in the original basis:
\[
\bar{Q} = \begin{pmatrix} u_0 & 0 \\ 0 & v_0 \end{pmatrix}.
\]
(47)

Next we consider fluctuations around the saddle point \bar{Q}. Using the identity
\[
\text{Tr} \log(A + \delta A) = \text{Tr} \log A + \text{Tr} A^{-1} \delta A - \frac{1}{2} \text{Tr} A^{-1} \delta A A^{-1} \delta A + \cdots,
\]
(48)

and the saddle point equation (11), we have
\[
\text{Tr} \left(\log \left(z - \bar{Q} \frac{\delta \bar{Q}}{\sqrt{N}} \right) + (\bar{Q} + \frac{\delta \bar{Q}}{\sqrt{N}})^2 \right) = \text{Tr} \left(\log \left(z - \bar{Q} + \bar{Q}^2 \right) + \frac{1}{N} \text{Tr} (\delta \bar{Q}^2 - 2\delta \bar{Q} \bar{Q} \delta \bar{Q} \bar{Q}) + \cdots. \right.
\]
(49)
Inserting the explicit form (47) into the above, we see that the generating function becomes

\[
W(z_1, z_2) \sim \frac{1}{Z_Q} e^{-N g(u_\cdot)} \int D(\delta Q^{11}) \exp\left\{ -\frac{1}{2} (1 - 2u_\cdot^2) \text{Tr} \left[\delta Q^{11} \right]^2 \right\} \times
\]

\[
e^{-N g(v_\cdot)} \int D(\delta Q^{22}) \exp\left\{ -\frac{1}{2} (1 - 2v_{\cdot}^2) \text{Tr} \left[\delta Q^{22} \right]^2 \right\} \times
\]

\[
\int D(\delta Q^{12}) \exp\left\{ - (1 - 2u_\cdot v_{\cdot}) \text{Tr} \left[\delta Q^{12} \right]^2 \right\}
\]

up to the next-to-leading order. Remembering that \(g''(u_\cdot) = 1 - 2u_\cdot^2 \), we get

\[
W(z_1, z_2) = e^{-N g(u_\cdot)} \left(\frac{1}{g''(u_\cdot)} \right)^{n(n+1)/4} e^{-N g(v_\cdot)} \left(\frac{1}{g''(v_\cdot)} \right)^{m(m+1)/4} \left(\frac{1}{1 - 2u_\cdot v_{\cdot}} \right)^{nm/2}
\]

(51)

Inserting the above formula into eq. (34), we can derive the two-point function. Differentiating \(W(z_1) \) and \(W(z_2) \) brings about the disconnected part, \(G(z_1) G(z_2) \), while the last factor contributes to the connected part. Thus we obtain

\[
G(z_1, z_2) = G(z_1) G(z_2) - \frac{2}{N^2} \frac{\partial^2}{\partial z_1 \partial z_2} \log \left(1 - \frac{1}{2} G(z_1) G(z_2) \right),
\]

(52)

where we have used eq. (9) and \(2u_\cdot = G(z_1) + O(1/N) \). This result with respect to the connected part agrees with that obtained by solving functional equations [4, 11] and by a diagrammatic method [12]. Especially the disconnected part up to \(1/N^2 \) order in eq. (52) is consistent with [11].

The saddle point evaluation holds only in the case of \(1 - 2u_\cdot v_{\cdot} = O(N^0) \), as pointed out in the calculation of the one-point Green’s function. When we compute the following two level correlators:

\[
\left\langle \frac{1}{N} \text{Tr} \frac{1}{z_1 - H + i\epsilon} \frac{1}{N} \text{Tr} \frac{1}{z_2 - H - i\epsilon} \right\rangle,
\]

(53)

the coefficient of Gaussian fluctuations become \(1 - 2u_\pm v_{\cdot} \). The result of the saddle-point method should be trusted only for \(z_1 - z_2 = O(N^0) \) indicated by the definition of \(u_\pm \) eq. (20). Therefore, the short-distance two-level correlators should be calculated in other method instead of the saddle point evaluation.

3 Gaussian unitary ensemble

We turn to the case of the GUE, which means the ensemble of Hermitian matrices following the Gaussian distribution [11]. The measure \(DH \) is explicitly written as

\[
DH \equiv \prod_{i \leq j} d(\text{Re} \, H_{ij}) \prod_{i < j} d(\text{Im} \, H_{ij}).
\]

(54)

8
We can proceed computation along the way in the case of GOE. We assume
\[|z| > 2 \] (55)
in the case of the GUE, which corresponds to the assumption (4). We can construct a generating function \(W(z) \) by employing complex vector variables as follows:

\[
W(z) \equiv \frac{1}{Z_{\phi}} \int D\phi \exp \left\{ -\frac{i}{2} \phi^a (z - H) \phi^a \right\},
\] (56)

where
\[
D\phi \equiv \prod_{a=1}^{n} \prod_{i=1}^{N} d(\text{Re} \phi_i^a) d(\text{Im} \phi_i^a).
\] (57)

We can readily show that
\[
G(z) = \lim_{n \to 0} \left(-\frac{1}{nN} \right) \frac{d}{dz} W(z)
\] (58)
in a similar way to the derivation of (9). Difference between eq. (9) and eq. (58) arises because the complex vector variables contribute twice comparing to the case of real vector variables. We first take the average over \(H \) in (56) and we introduce a Hermitian auxiliary matrix \(Q_{ab} \) along the line with the case of the GOE. See eq. (10) to eq. (13). Then the integration over the complex vector variables gives

\[
W(z) = \frac{1}{Z_{Q}} \int DQ \exp \left\{ -\frac{N}{2} \text{Tr} \left(2 \log i(z - Q) + Q^2 \right) \right\}
\]
\[
= \frac{C_n}{Z_{Q}} \int \prod_{a=1}^{n} d(w_a) \Delta(w)^2 \exp \left\{ -\frac{N}{2} \sum_{a=1}^{n} \left(2 \log i(z - w_a) + w_a^2 \right) \right\}.
\] (59)

Diagonalizing \(Q \) and we get the saddle-point equation corresponding to eq. (19)

\[- \frac{1}{z - w} + w = 0.\] (60)

The most dominant saddle-point is \(w_{-}I_n \), in which
\[
w_{-} \equiv \frac{1}{2}(z - \sqrt{z^2 - 4}).
\] (61)

We expand the exponent of (59) around \(w_{-}I_n \) and ignore the cubic and higher terms of the fluctuation as in the same way of GOE. The Gaussian integration of the fluctuation is easily performed, from which we derive

\[
W(z) \sim \exp \left\{ -\frac{Nn}{2} \left(2 \log(z - w_{-}) + w_{-}^2 \right) \right\} \left(\frac{1}{1 - w_{-}^2} \right)^{n^2/2}
\] (62)

up to the next-to-leading order. Using this result and eq. (58), we get

\[
G(z) = \frac{1}{2}(z - \sqrt{z^2 - 4}) + O(1/N^2).
\] (63)
Note that first-order corrections vanish in this case.

The two-point function defined in eq. (31) is also calculated following the case of GOE. Using complex vectors, we define the generating function

\[W(z_1, z_2) \equiv \frac{1}{Z_{\phi_1} Z_{\phi_2}} \int D\phi_1 D\phi_2 \exp \left\{ -\frac{i}{2} \phi_1^\dagger (z_1 - H) \phi_1 - \frac{i}{2} \phi_2^\dagger (z_2 - H) \phi_2 \right\}. \]

(64)

The two-point function \(G(z_1, z_2) \) is derived from \(W(z_1, z_2) \) as

\[G(z_1, z_2) = \lim_{n,m \to 0} \left(\frac{-1}{Nn} \right) \left(\frac{-1}{Nn} \right) \frac{\partial^2}{\partial z_1 \partial z_2} W(z_1, z_2). \]

(65)

We can write \(W(z_1, z_2) \) in terms of an integration over Hermitian \((n+m) \times (n+m)\) matrices, which corresponds to eq (40) for the GOE case. The result is

\[W(z_1, z_2) = \frac{1}{Z_Q} \int DQ \exp \left\{ -\frac{N}{2} \text{Tr} \left(2 \log i(z - Q) + Q^2 \right) \right\}. \]

(66)

The most dominant saddle point \(\bar{Q} \) is

\[\bar{Q} = \begin{pmatrix} w_1 I_n & 0 \\ 0 & w_2 I_m \end{pmatrix}, \]

(67)

where

\[w_i \equiv \frac{1}{2} \left(z_i - \sqrt{z_i^2 - 4} \right), \quad i = 1, 2. \]

(68)

Since the connected part of the two-point function is the order \(O(1/N^2) \), we must take in the effect of fluctuations around \(\bar{Q} \). As we explained in the GOE case, we can regard the fluctuations as Gaussian for the leading order of the connected part. Following the step to derive eq. (65), we get

\[W(z_1, z_2) = W(z_1)W(z_2) \left(\frac{1}{1 - w_1 w_2} \right)^{nm}. \]

(69)

Employing eq. (65), the above result is translated to the language of the Green’s function :

\[G(z_1, z_2) = G(z_1)G(z_2) - \frac{1}{N^2} \frac{\partial^2}{\partial z_1 \partial z_2} \log (1 - G(z_1)G(z_2)). \]

(70)

This agrees with the well-known result obtained by several other methods [1, 2, 4, 11, 12].

4 Gaussian symplectic ensemble

4.1 Definition

The Gaussian symplectic ensemble(GSE) is the ensemble of quaternion real Hermitian matrices with the distribution (1). We shall first recall the definition of a quaternion real Hermitian matrix.
Let us write

\[
H = \begin{pmatrix}
H_{11} & \cdots & H_{1N} \\
H_{21} & \cdots & H_{2N} \\
\vdots & \ddots & \vdots \\
H_{N1} & \cdots & H_{NN}
\end{pmatrix},
\]

(71)

where each entry \(H_{ij}\) is a quaternion number, which can be represented as a \(2 \times 2\) matrix. We choose the set of the Pauli matrices \(\sigma^k\) and the unit matrix \(I_2\) as a basis of \(2 \times 2\) matrices. Then \(H_{ij}\) is written as

\[
H_{ij} = H_{ij}^{(0)} I_2 + i \sum_{k=1}^{3} H_{ij}^{(k)} \sigma^k
\]

\[
\equiv \begin{pmatrix}
H_{ij}^{11} & H_{ij}^{12} \\
H_{ij}^{21} & H_{ij}^{22}
\end{pmatrix}.
\]

(72)

In our notation, \(i, j = 1, \cdots, N\) and \(\alpha, \beta = 1, 2\) in \(H_{ij}^{\alpha\beta}\). The matrix \(H\) is called a quaternion real Hermitian matrix if and only if \(H_{ij}^{(0)}\) forms a real symmetric matrix whereas \(H_{ij}^{(k)} (k = 1, 2, 3)\) form real antisymmetric matrices. These conditions are alternatively expressed as

\[
\begin{align*}
H_{ij}^{11*} &= H_{ij}^{22} \\
H_{ij}^{12*} &= -H_{ij}^{21} \\
H_{ij}^{\dagger} &= H_{ji}.
\end{align*}
\]

(73)

Note that \(\dagger\) in the last equation means the Hermitian conjugation when we regard \(H_{ij}\) as a \(2 \times 2\) matrix.

The trace of \(H^2\) in eq.(71) reads

\[
\text{Tr} H^2 = H_{ij}^{(0)} H_{ji}^{\beta\alpha},
\]

(74)

where \(\alpha, \beta = 1, 2\). Using \(H_{ij}^{(\mu)} (\mu = 1, \cdots 4)\), the measure \(DH\) in this case is written as

\[
DH = \prod_{i \leq j} dH_{ij}^{(0)} \prod_{k=1}^{3} \prod_{i < j} dH_{ij}^{(k)}.
\]

(75)

Here, for later convenience, we consider how to construct a quaternion real Hermitian matrix from a complex vector with an even-number component. Let \(\phi_i^{a\alpha} (1 \leq i \leq N, 1 \leq a \leq n, \alpha = 1, 2)\) be a complex number. We regard \(\phi^a\)'s as the \(2n\)-component vectors. The diad

\[
\bar{k}(\phi^a) \equiv \phi^a \phi^a \dagger \quad \text{or} \quad \bar{k}_{ji}^{\alpha\beta} \equiv \phi_j^{\alpha\beta} \phi_i^{\alpha\beta*}
\]

(76)

defines the \(2N \times 2N\) Hermitian matrix. For constructing a quaternion real Hermitian matrix, we need to “symmetrize” \(\bar{k}(\phi^a)\) in the following way:

\[
\bar{k}_{ji}^{11} \rightarrow \frac{1}{2} \left(\bar{k}_{ji}^{11} + \bar{k}_{ij}^{22} \right) \equiv \kappa_{ji}^{11}
\]
The matrix $\kappa(\phi^a)$ defined above is a quaternion real Hermitian matrix since it satisfies the condition

$$
\kappa_{ij}^{11*} = \kappa_{ij}^{22}
$$

$$
\kappa_{ij}^{12*} = -\kappa_{ij}^{21}
$$

$$
\kappa_{ij}^\dagger = \kappa_{ji}.
$$

Another useful quaternion real Hermitian matrix is constructed as follows: we define

$$
\psi_i^{a1} \equiv \phi_i^{a1}, \quad \psi_i^{a2} \equiv \phi_i^{a2*},
$$

and make the diad $\psi_i^{a1} \psi_i^{a1\dagger}$. By the same symmetrization as eq. (77), we get the $2n \times 2n$ quaternion real Hermitian matrix. We shall denote the resultant matrix by $\lambda(\phi_i)$. A straightforward calculation gives

$$
\text{Tr} \kappa(\phi^a)^2 = \text{Tr} \lambda(\phi_i)^2.
$$

4.2 One-point function

Let us compute the one-point function $G(z)$ averaged over GSE

$$
G(z) \equiv \left(\frac{1}{2N} \text{Tr} \frac{1}{z - H} \right). \quad (81)
$$

Since H is a $2N \times 2N$ matrix, $G(z)$ tends to $1/z$ as $z \to \infty$. We assume (55) as in the case of the GUE. The generating function $W(z)$ is defined by

$$
W(z) \equiv \left\langle \frac{1}{Z_\phi} \int D\phi \exp\left\{ -\frac{i}{2} \phi^a \phi^a \right\} \right\rangle. \quad (82)
$$

Note that ϕ^a is a $2N$-component vector, which implies

$$
\phi^a \phi^a \equiv \phi_i^{a\dagger} H^{a\alpha} \phi_j^{a\beta} \phi_j^{a\dagger} \phi_i^{a\alpha*}
$$

in eq. (82). The one-point function is derived from $W(z)$ as

$$
G(z) = \lim_{n \to 0} \left(-\frac{1}{2nN} \right) \frac{d}{dz} W(z). \quad (84)
$$

Let us take the average over H in eq. (82). We first notice that

$$
\phi^a \phi^a = \text{Tr} \tilde{\kappa}(\phi^a) H.
$$
We can symmetrize \(\tilde{\kappa}(\phi^a) \) using the following relations

\[
H_{ij}^{11} = H_{ji}^{22}, \quad H_{ij}^{12} = -H_{ji}^{12}.
\]

which are derived from eqs. (73). For example, the coupling with the diagonal part of \(H_{ij} \) in eq. (85) becomes

\[
\tilde{\kappa}_{ji}^{11} H_{ij}^{11} + \tilde{\kappa}_{ji}^{22} H_{ij}^{22} = \frac{1}{2} \left(\tilde{\kappa}_{ji}^{11} + \tilde{\kappa}_{ji}^{22} \right) H_{ij}^{11} + \frac{1}{2} \left(\tilde{\kappa}_{ji}^{11} + \tilde{\kappa}_{ji}^{22} \right) H_{ij}^{22}
\]

\[
\left(\frac{1}{8N} \text{Tr} \lambda(\phi^a)^2 \right).
\]

After a similar procedure is performed to \(H_{12}^{ij} \) and \(H_{21}^{ij} \), it turns out that the matrix \(\kappa(\phi^a) \) defined in eq. (77) can replace \(\tilde{\kappa}(\phi^a) \) in eq. (85).

We are ready to take the average over \(H \) in eq. (82). That is,

\[
-\frac{N}{2} \text{Tr} H^2 + \frac{i}{2} \phi^a \dagger H \phi^a = -\frac{N}{2} \text{Tr} \left(H - \frac{i}{2N} \kappa(\phi^a) \right)^2 - \frac{1}{8N} \text{Tr} \kappa(\phi^a)^2
\]

The change \(H \to H + \frac{i}{2N} \kappa(\phi^a) \) can be performed by shifting the integration variables \(H_{ij}^{(\alpha)} \) because \(\kappa(\phi^a) \) is a quaternion real Hermitian matrix. It leads to

\[
W(z) = \frac{1}{Z} \int D\phi \exp \left(-\frac{i}{2} \phi^a \dagger z \phi^a - \frac{1}{8N} \text{Tr} \kappa(\phi^a)^2 \right).
\]

Next, for the sake of integration over \(\phi \), we introduce the auxiliary matrix \(Q \) that is a \(2n \times 2n \) quaternion real Hermitian matrix. Let us consider the following integration

\[
\frac{1}{Z_Q} \int DQ \exp \left(-\frac{N}{2} Q_{\alpha\beta} Q_{\beta\alpha} + \frac{i}{2} \psi_{\alpha}^{\dagger} Q_{\alpha\beta} \psi_{\beta} \right),
\]

where \(\psi_i \)'s \((i = 1, \cdots n) \) are defined in eq. (83).

The \(Q \)-integral in eq. (90) is carried out in the same way as the \(H \)-integral of eq. (82). The result is

\[
\frac{1}{Z_Q} \int DQ \exp \left(-\frac{N}{2} Q_{\alpha\beta} Q_{\beta\alpha} + \frac{i}{2} \psi_{\alpha}^{\dagger} Q_{\alpha\beta} \psi_{\beta} \right) = \exp \left(-\frac{1}{8N} \text{Tr} \lambda(\phi^a)^2 \right).
\]

Thus, from eqs. (79),(80),(89) and (91), we conclude

\[
W(z) = \frac{1}{Z_\phi Z_Q} \int DQ D\phi \left(-\frac{N}{2} \text{Tr} Q^2 - \frac{i}{2} \psi_{i}^{\dagger} (z - Q) \psi_{i} \right).
\]

Performing the integration over \(\phi \), we get

\[
W(z) = \frac{1}{Z_Q} \int DQ \exp \left\{ -\frac{N}{2} \text{Tr} \left(2 \log i(z - Q) + Q^2 \right) \right\}.
\]
Since any eigenvalue of Q has two-fold degeneracy \[3\], the eigenvalue representation of the above integration becomes

$$W(z) = \frac{1}{Z_Q} \int \prod_{a=1}^{n} dw_a \Delta(w)^4 \exp \left\{ -N \sum_{a=1}^{n} \left(2 \log i(z - w_a) + w_a^2 \right) \right\} \tag{94}$$

Repeating the same argument as in the case of GUE, we obtain the result up to the next-to-leading order:

$$W(z) \sim \exp \left\{ -Nn \left(2 \log(z - w_-) + w_-^2 \right) \right\} \left(\frac{1}{1 - w_-^2} \right)^{n^2 - n/2}, \tag{95}$$

where w_- is defined in eq. (11). The exponent of $(1 - w_-^2)$ is different from the result of GUE because the degree of freedom of fluctuations in the case of the GUE is given by n^2 while $2n^2 - n$ in the case of the GSE. That affects the non-vanishing first-order correction to $G(z)$. Namely, from eq. (84), we obtain

$$G(z) = \frac{1}{2} \left(z - \sqrt{z^2 - 4} \right) \left(1 - \frac{1}{2N} \frac{1}{z^2 - 4} \right) + O(1/N^2). \tag{96}$$

4.3 Two-point function

Next we compute the two-point function $G(z_1, z_2)$ defined by

$$G(z_1, z_2) \equiv \left\langle \frac{1}{2N} \text{Tr} \frac{1}{z_1 - H} \frac{1}{2N} \text{Tr} \frac{1}{z_2 - H} \right\rangle. \tag{97}$$

The generating function $W(z_1, z_2)$ has the same form as the GUE case:

$$W(z_1, z_2) \equiv \left\langle \frac{1}{Z_{\phi_1} Z_{\phi_2}} \int D\phi_1 D\phi_2 \exp \left\{ -i \frac{\phi_1^+ (z_1 - H) \phi_1^a - i \frac{\phi_2^+ (z_2 - H) \phi_2^a}{2} \right\} \right\rangle. \tag{98}$$

The two-point function $G(z_1, z_2)$ is related to $W(z_1, z_2)$ as follows:

$$G(z_1, z_2) = \lim_{n,m \to 0} \left(\frac{-1}{2Nm} \right) \left(\frac{-1}{2Nn} \right) \frac{\partial^2}{\partial z_1 \partial z_2} W(z_1, z_2). \tag{99}$$

In order to perform the integration over H, we introduce the notation $\Phi^{A\alpha}_i$ as

$$\Phi^{A\alpha}_i \equiv \begin{cases} \phi^{A\alpha}_i & 1 \leq A \leq n \\ \phi^{A-n\alpha}_{2i} & n + 1 \leq A \leq n + m \end{cases}. \tag{100}$$

Then, since the coupling to H can be rewritten as $\Phi^A H \Phi^A$, we get the following result as the integration over H:

$$W(z_1, z_2) = \frac{1}{Z_{\phi_1} Z_{\phi_2}} \int D\phi_1 D\phi_2 \exp \left\{ -i \frac{\Phi^{A\dagger} \Phi^A}{8N} \text{Tr} (\Phi^A)^2 \right\}, \tag{101}$$
where \(z \) is the following \(2(n + m) \times 2(n + m) \) matrix

\[
\begin{pmatrix}
 z_1 I_{2m} & 0 \\
 0 & z_1 I_{2m}
\end{pmatrix}.
\]

(102)

According to the formulae (80) and (91), we can express \(W(z_1 z_2) \) by \(2(n + m) \times 2(n + m) \) matrix \(Q \):

\[
\begin{align*}
 W(z_1, z_2) &= \frac{1}{Z_{\phi_1} Z_{\phi_2} Z_Q} \int D\phi_1 D\phi_2 DQ \exp\{-\frac{i}{2} \Phi_i \dagger z \Phi_i - \frac{N}{2} \text{Tr} Q^2 + \frac{i}{2} \Psi_i \dagger Q \Psi_i \} \\
 &= \frac{1}{Z_{\phi_1} Z_{\phi_2} Z_Q} \int D\phi_1 D\phi_2 DQ \exp\{-\frac{N}{2} \text{Tr} Q^2 - \frac{i}{2} \Psi_i \dagger (z - Q) \Psi_i \},
\end{align*}
\]

(103)

where \(\Psi \) is defined in the same way as eq. (79):

\[
\begin{align*}
 \Psi_i^{A_1} &\equiv \phi_i^{A_1}, \\
 \Psi_i^{A_2} &\equiv \phi_i^{A_2*},
\end{align*}
\]

(104)

After the integration over the vector variables, we get

\[
W(z_1, z_2) = \frac{1}{Z_Q} \int DQ \exp \left\{-\frac{N}{2} \text{Tr} \left(2 \log i(z - Q) + Q^2\right)\right\}.
\]

(105)

The most dominant saddle point \(\tilde{Q} \) is

\[
\tilde{Q} = \begin{pmatrix}
 w_1 I_{2n} & 0 \\
 0 & w_2 I_{2m}
\end{pmatrix}.
\]

(106)

Next we compute effects of fluctuations around \(\tilde{Q} \).

\[
W(z_1, z_2) = W(z_1)W(z_2) \left(\frac{1}{1 - w_1 w_2}\right)^{2nm}.
\]

(107)

Employing eq. (83), the above result is translated to the language of the Green’s function :

\[
G(z_1, z_2) = G(z_1)G(z_2) - \frac{1}{2N^2} \frac{\partial^2}{\partial z_1 \partial z_2} \log (1 - G(z_1)G(z_2)).
\]

(108)

This result with respect to the connected part agrees with that obtained by solving functional equations [4, 11] and by a diagrammatic method [12]. Especially the disconnected part up to \(1/N^2 \) order in eq. (108) is consistent with [11].

5 Three-point function

Finally, we calculate the connected three-point function in each Gaussian ensemble. That in the GOE case is defined by

\[
G(z_1, z_2, z_3) \equiv \frac{1}{N} \text{Tr} \frac{1}{z_1 - H} \frac{1}{z_2 - H} \frac{1}{z_3 - H}.
\]

(109)

15
As is the case of one and two-point function, we construct the generating function of \(G(z_1, z_2, z_3) \) using three \(n \)-flavor real vectors:

\[
W(z_1, z_2, z_3) = \frac{1}{Z_{\phi_1} Z_{\phi_2} Z_{\phi_3}} \int \prod_{i=1}^{3} D\phi_i \exp\left\{-\sum_{j=1}^{3} \int \phi^a_j (z_j - H) \phi^a_j \right\}.
\] (110)

The three-point function \(G(z_1, z_2, z_3) \) is derived from \(W(z_1, z_2, z_3) \) as

\[
G(z_1, z_2, z_3) = \lim_{n \to 0} \left(-\frac{2}{N n}\right)^3 \frac{\partial^3}{\partial z_1 \partial z_2 \partial z_3} W(z_1, z_2, z_3).
\] (111)

We can write \(W(z_1, z_2, z_3) \) in the term of an integration over \(3n \times 3n \) real symmetric matrix. The result is

\[
W(z_1, z_2, z_3) = \frac{1}{Z_Q} \int DQ \exp\{ -\frac{N}{2} \text{Tr}(\log(z - Q) + Q^2) \}.
\] (112)

The most dominant saddle point \(\bar{Q} \) is

\[
\bar{Q} = \begin{pmatrix} w_1 I_n & 0 & 0 \\ 0 & w_2 I_n & 0 \\ 0 & 0 & w_3 I_n \end{pmatrix},
\] (113)

where

\[
w_i \equiv \frac{1}{2}(z_i - \sqrt{z_i^2 - 2}), \quad i = 1, 2, 3.
\] (114)

Next we consider fluctuations around the saddle point \(\bar{Q} \).

\[
W(z_1, z_2, z_3) = \frac{e^{-S_0}}{Z_Q} \int D(\delta Q) e^{-S_2 - \sum_{i=3}^{\infty} S_i},
\] (115)

where

\[
S_0 = \frac{N}{2} \text{Tr}(\log(z - \bar{Q}) + \bar{Q}^2),
\] (116)
\[
S_2 = \frac{1}{2} \text{Tr}((\delta Q)^2 - (\bar{Q} \delta Q)^2),
\] (117)
\[
S_l = \frac{1}{l^{N_l/2-1}} \text{Tr}(\bar{Q} \delta Q)^l, \quad l > 3.
\] (118)

Since the connected part of three-point function is in the order \(1/N^4 \), we must calculate the following Gaussian integral with \(S_4 \) and \(S_3^2 \) terms:

\[
W(z_1, z_2, z_3) = \frac{e^{-S_0}}{Z_Q} \int D(\delta Q) e^{-S_2 - \sum_{l=3}^{\infty} S_l + \frac{1}{2!} (\sum_{i=3}^{\infty} S_i)^2 - \cdots},
\]
\[
= e^{-S_0} \left\{ 1 - \langle\langle S_4 \rangle\rangle + \frac{1}{2!} \langle\langle S_3^2 \rangle\rangle + O(1/N^5) \right\},
\] (119)
\begin{equation}
\langle \cdots \rangle = \frac{1}{Z_Q} \int D(\delta Q)(\cdots)e^{-S_2}.
\end{equation}

Calculating eq. (119), we have
\begin{equation}
W(z_1, z_2, z_3) = \frac{n^3}{2N} F(z_1, z_2, z_3),
\end{equation}
where
\begin{equation}
F(z_1, z_2, z_3) = \frac{X_{12}}{1-X_{12}} \frac{X_{23}}{1-X_{23}} \frac{X_{31}}{1-X_{31}} + \frac{X_{31}}{1-X_{31}} \frac{X_{12}}{1-X_{12}} \frac{1}{1-X_{11}} + \frac{X_{23}}{1-X_{23}} \frac{1}{1-X_{22}} + \frac{X_{23}}{1-X_{23}} \frac{X_{31}}{1-X_{31}} \frac{1}{1-X_{33}},
\end{equation}
\begin{equation}
X_{ij} = 2w_i w_j = \frac{1}{2} G(z_i)G(z_j).
\end{equation}

Substituting the above formula into eq. (111), we can derive the three-point function
\begin{equation}
G(z_1, z_2, z_3) = -\frac{4}{N^4} \frac{\partial^3}{\partial z_1 \partial z_2 \partial z_3} F(z_1, z_2, z_3).
\end{equation}

The connected part in this result agrees with that obtained by other methods [10, 11, 12].

Next we turn to the connected three-point function in the GUE case along the way in the case of GOE. We construct a generating function \(W(z_1, z_2, z_3) \) by employing three complex vectors as follows:
\begin{equation}
W(z_1, z_2, z_3) = \frac{1}{Z_{\phi_1, \phi_2, \phi_3}} \int \prod_{i=1}^{3} D\phi_i \exp\{-\sum_{j=1}^{3} \frac{i}{2} \phi_j^a(z_j - H)\phi_j^a\}.
\end{equation}

The three-point function is derived from \(W(z_1, z_2, z_3) \) in the following formula:
\begin{equation}
G(z_1, z_2, z_3) = \lim_{n \to 0} \left(\frac{-1}{Nn} \right)^3 \frac{\partial^3}{\partial z_1 \partial z_2 \partial z_3} W(z_1, z_2, z_3).
\end{equation}
\(W(z_1, z_2, z_3) \) is written in the form of \(Q \)-integral
\begin{equation}
W(z_1, z_2, z_3) = \frac{1}{Z_Q} \int DQ \exp\{-\frac{N}{2} \text{Tr}(2log i(z - Q) + Q^2)\},
\end{equation}
where \(Q \) means \(3n \times 3n \) hermitian matrix. The most dominant saddle point \(\bar{Q} \) is
\begin{equation}
\bar{Q} = \begin{pmatrix}
w_1 I_n & 0 & 0 \\0 & w_2 I_n & 0 \\0 & 0 & w_3 I_n
\end{pmatrix},
\end{equation}

\begin{equation}
\bar{Q} = \begin{pmatrix}
w_1 I_n & 0 & 0 \\0 & w_2 I_n & 0 \\0 & 0 & w_3 I_n
\end{pmatrix},
\end{equation}
where
\[w_i \equiv \frac{1}{2} (z_i - \sqrt{z_i^2 - 4}), \quad i = 1, 2, 3. \] (129)

The dominant contributions to \(W(z_1, z_2, z_3) \) becomes
\[W(z_1, z_2, z_3) = n^3 F(z_1, z_2, z_3), \] (130)
where
\[F(z_1, z_2, z_3) = \frac{X_{12} X_{23} X_{31}}{1 - X_{12} 1 - X_{23} 1 - X_{31}} + \frac{X_{31} X_{12} 1}{1 - X_{31} 1 - X_{12} 1 - X_{11}} + \frac{X_{12} X_{23} 1}{1 - X_{12} 1 - X_{23} 1 - X_{22}} + \frac{X_{23} X_{31} 1}{1 - X_{23} 1 - X_{31} 1 - X_{33}}, \] (131)
\[X_{ij} = w_i w_j = G(z_i)G(z_j). \] (132)

Thus, the three-point function in GUE is
\[G_C(z_1, z_2, z_3) = -\frac{1}{N^4} \frac{\partial^3}{\partial z_1 \partial z_2 \partial z_3} F(z_1, z_2, z_3). \] (133)

The connected part in this result agrees with that obtained by other methods [1, 10, 11, 12].

To end with, we calculate the connected three-point function in GSE case. That in this case is defined by
\[G(z_1, z_2, z_3) \equiv \left(\frac{1}{2N} \text{Tr} \frac{1}{z_1 - H} \frac{1}{2N} \text{Tr} \frac{1}{z_2 - H} \frac{1}{2N} \text{Tr} \frac{1}{z_3 - H} \right). \] (134)

The three-point function derived from generating function is as follows:
\[G(z_1, z_2, z_3) = \lim_{n \to 0} \left(\frac{-1}{2N} \right)^3 \frac{\partial^3}{\partial z_1 \partial z_2 \partial z_3} W(z_1, z_2, z_3). \] (135)

And the generating function is calculated as
\[W(z_1, z_2, z_3) = \frac{1}{Z_Q} \int DQ \exp \left\{ -\frac{N}{2} \text{Tr} (2i(z - Q) + Q^2) \right\}, \] (136)
where \(Q \) means \(6n \times 6n \) quaternion real hermitian matrix. The most dominant saddle point \(\bar{Q} \) is
\[\bar{Q} = \begin{pmatrix} w_1 I_{2n} & 0 & 0 \\ 0 & w_2 I_{2n} & 0 \\ 0 & 0 & w_3 I_{2n} \end{pmatrix}, \] (137)
where
\[w_i \equiv \frac{1}{2} (z_i - \sqrt{z_i^2 - 4}), \quad i = 1, 2, 3. \] (138)
Performing $1/N$-expansion for $W(z_1, z_2, z_3)$,

$$W(z_1, z_2, z_3) = \frac{4n^3}{N} F(z_1, z_2, z_3)$$ (139)

where

$$F(z_1, z_2, z_3) = \frac{4X_{12}}{1 - X_{12}} \frac{X_{23}}{1 - X_{23}} \frac{X_{31}}{1 - X_{31}} + \frac{X_{31}}{1 - X_{31}} \frac{X_{12}}{1 - X_{12}} \frac{1}{1 - X_{11}} + \frac{X_{12}}{1 - X_{12}} \frac{X_{23}}{1 - X_{23}} \frac{1}{1 - X_{22}} + \frac{X_{23}}{1 - X_{23}} \frac{X_{31}}{1 - X_{31}} \frac{1}{1 - X_{33}},$$ (140)

$$X_{ij} = w_i w_j = G(z_i)G(z_j).$$ (141)

The three-point function becomes

$$G_C(z_1, z_2, z_3) = -\frac{1}{2N^4} \frac{\partial^3}{\partial z_1 \partial z_2 \partial z_3} F(z_1, z_2, z_3).$$ (142)

The connected part in this result agrees with that obtained by other methods [11, 12].

6 Concluding remarks

We have calculated the averaged one point Green’s functions, the wide connected two-level and three-level correlators in Gaussian orthogonal, unitary and symplectic random matrix ensembles by the replica method. The one-point Green’s functions have been calculated to the next-to-leading order in the $1/N$ expansion in GOE and GSE. Our results are consistent with those by other methods [4, 11, 12]. We have notified that there are some regions of the spectral parameter z where the employed saddle point evaluation cannot work well for averaged Green’s functions. In those regions, the fluctuation of the auxiliary variable Q becomes large and the higher orders in the saddle point expansion give the same contribution with the order $O(N^0)$. To calculate the short distance correlator we have to employ other method for the integration instead of the saddle point evaluation.
References

[1] J. Ambjørn, J. Jurkiewicz and Y.M. Makeenko, Phys.Lett. B251 (1990) 517.

[2] E. Brézin and A. Zee, Nucl.Phys. B402 (1993) 613.

[3] M. L. Mehta, Random Matrices (Academic, New York, 1991).

[4] C. W. J. Beenakker Nucl.Phys B422 (1994) 515;
 A. M. S. Macêdo and J. T. Chalker, Physical Review B 49 (1994) 4695.

[5] J. Ambjørn, C. F. Kristjansen and Yu. Makeenko, Mod.Phys. A7 (1992) 3187;
 E. Brézin and A. Zee, Nucl.Phys. B441 (1995) 409;
 J. D’anna, E. Brézin and A. Zee, Nucl. Phys. B443 (1995) 443;
 E. Brézin and S. Hikami, Nucl. Phys. B479 (1996) 697

[6] J. Ambjørn and G. Akemann, J.Phys. A29 (1996) L555
 G. Akemann, Nucl. Phys. B482 (1996) 403

[7] S. F. Edwards and P. W. Anderson, J. Phys. F5 (1975) 965;
 A. J. MaKane and M. Stone, Ann.Phys. 131 (1981) 36.

[8] J. J. M. Verbaarschot and M. R. Zirnbauer, J. Phys. A18 (1985) 1093.

[9] T. Guhr, J. Math.Phys. 32 (1991) 336.

[10] J. J. M. Verbaarschot, H. A. Weidenmüller and M. Zirnbauer, Ann. Phys. (NY) 153 (1984) 367;

[11] C. Itoi, to appear in Nucl. Phys. B, “Universal wide correlators in non-Gaussian orthogonal, unitary and symplectic random matrix ensembles” cond-mat/9611214, NUP-A-96-15.

[12] C. Itoi and Y. Sakamoto, “Diagrammatic method for wide two level correlators in Gaussian orthogonal, symplectic random matrix ensembles” cond-mat/9702156, NUP-A-97-5.