NOTE ON TAUPOLOGICAL CLASSES
OF MODULI OF K3 SURFACES

GERARD VAN DER GEER AND TOSHIYUKI KATSURA

Abstract. In this note we prove some cycle class relations on moduli of K3 surfaces.

1. Introduction

This note deals with a few properties of tautological classes on moduli spaces of K3 surfaces. Let M_{2d} denote a moduli stack of K3 surfaces over an algebraically closed field with a polarization of degree $2d$ prime to the characteristic of the field. The Chern classes of the relative cotangent bundle $\Omega^1_{X/M}$ of the universal K3 surface X define classes t_1 and t_2 in the Chow groups $\text{CH}_i(X_{2d})$ of the universal K3 surface over M_{2d}. The class t_1 is the pull back from M_{2d} of the first Chern class $c_1(V)$ of the Hodge line bundle $V = \pi_*(\Omega^2_{X/M})$. We use Grothendieck-Riemann-Roch to determine the push forwards of the powers of t_2. These are powers of v. We then prove that $v^{18} = 0$ in the Chow group with rational coefficients of M_{2d}. We show that this implies that a complete subvariety of M_{2d} has dimension at most 17 and that this bound is sharp. These results are in line with those for moduli of abelian varieties. There the top Chern class λ_g of the Hodge bundle vanishes in the Chow group with rational coefficients. The idea is that if the boundary of the Baily-Borel compactification has co-dimension r then some tautological class of co-dimension r vanishes. Our result means that v^{18} is a torsion class. It would be very interesting to determine the order of this class as well as explicit representations of this class as a cycle on the boundary, cf., [2, 3].

2. The Moduli Space M_{2d}

Let k be an algebraically closed field. We consider the moduli space M_{2d} of polarized K3 surfaces over k with a primitive polarization of degree $2d$. This is a 19-dimensional algebraic space. Over the complex numbers we can describe it as an orbifold quotient $\Gamma_{2d}\backslash \Omega_{2d}$, where Ω_{2d} is a bounded symmetric domain and Γ_{2d} an arithmetic subgroup of $SO(3, 19)$ obtained as follows. Consider the lattice $U^3 \oplus E_8^2$, where U denotes a hyperbolic plane and E_8 the usual rank 8 lattice. Let h be an element of this lattice with $\langle h, h \rangle = 2d$. Then $L_{2d} = h^\perp \cong U \perp E_8^2 \perp Zu$ with $\langle u, u \rangle = -2d$ is a lattice of signature $(2, 19)$ and we put

$$\Omega_{2d} = \{[\omega] \in \mathbb{P}(L_{2d} \otimes \mathbb{C}) : \langle \omega, \omega \rangle = 0, \langle \omega, \bar{\omega} \rangle > 0 \}.$$

The group Γ_{2d} is the automorphism group of L_{2d}. It acts on Ω_{2d} and the quotient (an orbifold) is the analytic space of M_{2d}. It is well-known by Baily-Borel that
the sections of a sufficiently high power of V give an embedding of $\Gamma_{2d}\setminus \Omega_{2d}$ as a quasi-projective variety.

3. GRR APPLIED TO THE SHEAF $\Omega^1_{X/M}$

In order to determine the push forward $\pi_*(t^n_2)$ under $\pi : X_{2d} \to M := M_{2d}$ we apply Grothendieck-Riemann-Roch to the structure sheaf of the universal (polarized) K3-surface $\pi : X \to M$. We work in the Chow ring with rational coefficients.

We have

$$\text{ch}(\pi_*\mathcal{O}_X) = \pi_*(\text{ch}(\mathcal{O}_X) \text{Td}^\vee(\Omega^1_{X/M})) = \pi_*(\text{Td}^\vee(\Omega^1_{X/M})).$$

As to the left-hand-side we have $\pi_\ast \mathcal{O}_X = 1 + V^\vee$, where $V = R^0\pi_\ast \mathcal{O}^2_{X/M}$ is the line bundle with fibre $H^0(X, \Omega^2_X)$ over $[X]$. We write v for the first Chern class of this bundle on M. So the left hand side is $1 + e^{-v}$. For the right hand side, remark that $\Omega^1_{X/M}$ has as determinant a line bundle that is trivial on each K3-surface that is a fibre of π. Therefore, this line bundle is a pull back from M and we can identify it with $\pi^\ast(V)$. If we denote by $t_i = c_i(\Omega^1_{X/M})$ the Chern classes of $\Omega^1_{X/M}$, the right hand side has the following form

$$\pi_*(1 - t_1/2 + (t_1^2 + t_2)/12 - t_1 t_2/24 + ...).$$

Comparing the terms of degree 0 gives $1+1 = 24/12$ since $c_1^2(X) = 0$ and $c_2(X) = 24$ for a K3 surface. For the terms of degree 1 we find: $-v = \pi_*(t_1 t_2)/24 = -v \cdot (\pi_*(t_2)/24)$ and this is in agreement. Degree 2 terms yield $\pi_*(t_2^2) = 88 t_1^2$. This checks with the next term:

$$v^3/6 = \frac{1}{1440} \pi_*(3t_2^2 t_1 - t_2 t_1^3).$$

Continuing this way we can determine $\pi_*(t^n_2)$ for all $j \geq 1$. More precisely, put $B(x) = x/(1 - e^{-x})$ and write γ_1, γ_2 for the Chern roots of $\Omega^1_{X/M}$. Then

$$\text{Td}^\vee(\Omega^1_{X/M}) = B(\gamma_1) B(\gamma_2) = \sum_{n,j : 0 \leq j \leq n} c(n,j)(\gamma_1 + \gamma_2)^{n-j}(\gamma_1 \gamma_2)^j$$

with $t_1 = \gamma_1 + \gamma_2$ and $t_2 = \gamma_1 \gamma_2$ and the Riemann-Roch identity says that if $\pi_*(t_2^{n+1}) = a_n v^{2n}$ the a_n satisfy the relation:

$$\sum_{j \geq 0} a_j c_{n,j} = \begin{cases} 1/(n-2)! & \text{for } n \equiv 0(\mod 2), \, n \geq 2, \\ 2 & \text{for } n = 2. \end{cases}$$

Denoting $\pi_*(t_2^{n+1}) = a_n v^{2n}$ we find the following values for a_n.

n	$\pi_*(t_2^{n+1})/v^{2n}$
0	24
1	88
2	184
3	352
4	736
5	1295488/691
6	4292224/691
7	68418650624/2499347
8	171412311922527744/109638854849
9	22654813560476770158592/19144150084038739
Proposition 3.1. Write $\pi_*(t^{n+1}) = a_n v^n$ for $n \geq 0$. The generating function

$$A(t) = \sum_{n=0}^{\infty} a_n t^n = 24 + 88 t + 184 t^2 + \ldots$$

is characterised uniquely by the property that for every $n > 0$ the coefficient of t^{2n-1} in

$$\frac{2 - t}{1 - t} A \left(\frac{-t^2}{1 - t} \right)$$

is equal to $4n/B_{2n}$. Here B_m denotes the m-th Bernoulli number.

Although the numbers a_n are defined for all $n \geq 0$ they have a geometric interpretation for $n \leq 9$ only, apparently.

We now apply Grothendieck-Riemann-Roch to the sheaf $\Omega^1_{X/\mathcal{M}}$, or equivalently, to its dual $\Theta_{X/\mathcal{M}}$. It says

$$\text{ch}(\pi_*(\Theta_{X/\mathcal{M}})) = \pi_*\left(\text{ch}(\Theta_{X/\mathcal{M}}) \text{Td}^\vee(\Omega^1_{X/\mathcal{M}})\right).$$

Note that in the left hand side $\pi_*(\Theta_{X/\mathcal{M}}) = R^1\pi_*\Theta_{X/\mathcal{M}}$ since a K3 surface has no non-zero vector fields, \emptyset. Since the push forward of powers of v and $t_1 = \pi^*(v)$ we see that $\text{ch}(\pi_*(\Theta_{X/\mathcal{M}}))$ is a polynomial in v. This can be determined by looking at cohomology once we show that the tautological ring of \mathcal{M}_{2d} is $\mathbb{Q}[v]/v^{18}$.

Note that the fibre of $R^1\pi_*\Theta_{X/\mathcal{M}}$ is $H^1(X, \Theta_X)$, the space of infinitesimal deformations of X. The tangent space to \mathcal{M} at $[X]$ can be identified with the orthogonal complement of h, the hyperplane class in $H^1(X, \Omega^1_X) = H^1(X, \Theta_X)$. On the other hand we know that by Hodge theory the following description for this tangent space. Let

$$0 \subset F^2 \subset F^1 = (F^2) \perp \subset H^2_{\text{DR}}$$

be the Hodge filtration on $H^2_{\text{DR}}(X)$ and let h be the hyperplane class which gives a section of $H^2_{\text{DR}} \otimes O_{\mathcal{M}}$. Then the tangent space to \mathcal{M} can be identified with $\text{Hom}(F^2, (F^1/h) \perp / F^2)$. Using the cup product we can identify $(F^2)^\vee$ with H^2_{DR}/F^1, i.e., in the Grothendieck group we have $[H^2_{\text{DR}}] = V^\vee + V^\perp$, where we identify F^2 with V. We now restrict to the orthogonal subbundle h^\perp of the hyperplane class h whose class in the Grothendieck group is $[H^2_{\text{DR}}] - 1$. Therefore we find $[\Theta_{\mathcal{M}}] = [H^2_{\text{DR}} - 1 - V - V^{-1}] \otimes V^{-1}$.

Proposition 3.2. In the Grothendieck group of \mathcal{M} we have the relation $[\Theta_{\mathcal{M}}] = [H^2_{\text{DR}} - 1] \otimes V^{-1} - 1 - V^{-2}$.

In view of the Gauss-Manin connection on H^2_{DR} we see that the Chern classes vanish in cohomology and that the total Chern class of the bundle F^1 on \mathcal{M} is $1/(1 - v)$ and $\text{ch}(\Theta_{\mathcal{M}}) = -1 + 21e^{-v} - e^{-2v}$ and in particular we find $c_1^1(\Theta_{X/\mathcal{M}}) = -19v$. We already saw that the total Chern class of $R^1\pi_*\Omega^1_{X/\mathcal{M}}$ is $1/(1 - v^2)$ and so its first Chern class vanishes. This checks with global duality $(R^1\pi_*\Omega^1_{X/\mathcal{M}})^\vee \cong (R^1\pi_*\Omega^1_{X/\mathcal{M}}) \otimes V$.
4. Vanishing of tautological classes in characteristic zero

Let \(II_{3,19} \) be the unique even unimodular lattice of signature \((3, 19)\) and let \(S \) be some Lorentzian sublattice of \(II_{3,19} \), say of signature \((1, m)\). Recall that an \(S \)-K3 surface \(X \) is a K3 surface with a fixed primitive embedding of \(S \) into the Picard group such that the image of \(S \) contains a semi-ample class, i.e., a class \(D \) such that \(D^2 > 0 \) and \(D \cdot C \geq 0 \) for all curves \(C \) on the K3 surface \(X \), cf., [1]. The period space \(Y \) of marked \(S \)-K3 surfaces is an orbifold which is a quotient of a hermitean symmetric domain of dimension \(19 - m \) by an arithmetic subgroup of \(\text{Aut}(S^\perp) \).

Theorem 4.1. For \(m \leq 16 \) the cycle class \(v^{18-m} \) vanishes in the Chow group \(CH^\perp_{Q}(Y) \) with rational coefficients.

Proof. By imposing a level structure we can replace our period space by a finite cover and assume that we are working with a fine moduli space.

The proof is by descending induction on \(m \). For \(m = 16 \) the period domain can be identified with the Siegel upper half space \(\mathcal{H}_2 \) and the orbifold \(Y \) can be viewed as a moduli space of abelian surfaces. It thus carries a natural vector bundle, the Hodge bundle \(\pi^* (\Omega^1_X/Y) \) with Chern classes \(\lambda_1 \) and \(\lambda_2 \). One shows that \(\lambda_1 = v \) by comparing the factors of automorphy or by noticing that \(H^0(X, \Omega^2_X) \cong \wedge^2 H^1(\Omega^1_X) \) for an abelian surface. Furthermore, it is known that \(\lambda_2 \) vanishes by [4], Prop. 2.2. We conclude that \(v \) vanishes.

The induction step is now provided by Theorem 1.2 of [1]. There exists a modular form \(\Phi \) of weight \(k \geq 12 \) whose zero-divisor is of the form \(\sum m_i W_i \) with \(m_i \in \mathbb{Z}_{>0} \) with orbifolds \(W_i \) that are images in \(Y \) of quotients \(\Gamma_{L_i} \backslash \Omega_{L_i} \) under finite maps. Here \(\Omega_{L_i} \) is a hermitean symmetric domain of dimension one less than the original domain \(\Omega \) and the quotient parametrizes a family of \(S' \)-K3-surfaces with \(S' \supset S \) of signature \((1, m + 1)\). By induction we know that on each of the orbifolds \(\Gamma_{L_i} \backslash \Omega_{L_i} \) the class \(v^{17-m} \) vanishes. The zero-divisor of \(\Phi \) represents the class \(k v \). We thus find that a non-zero multiple of \(v^{18-m} = v \cdot v^{17-m} \) vanishes. \(\square \)

In characteristic 0 we can use the existence of the Satake compactification whose boundary is 1-dimensional to conclude that intersecting twice with a sufficiently general hyperplane yields a complete 17-dimensional subvariety of \(\mathcal{M} \). Since by Baily-Borel the class \(v \) is ample this shows that \(v^{17} \neq 0 \).

Corollary 4.2. The tautological ring of \(\mathcal{M}_{2d} \) is \(\mathbb{Q}[v]/(v^{18}) \).

Corollary 4.3. The maximal dimension of a complete subvariety of \(\mathcal{M}_{2d} \) is 17.

In positive characteristic the locus of K3-surfaces with height \(\geq 3 \) defines a complete subvariety of dimension 17, cf. [5].

If \(\mathcal{M}^* \) is the Baily-Borel compactification of \(\mathcal{M} \) then the ‘boundary’ is a 1-dimensional cycle. In the Chow group \(CH^\perp_{Q}(\mathcal{M}^*) \) the class \(v^{18} \) is represented by a 1-cycle with support on the boundary.

References

[1] R. Borcherds, L. Katzarkov, T. Pantev, N. Shepherd-Barron: Families of K3 surfaces. J. Algebraic Geom. 7 (1998), p. 183–193.

[2] T. Ekedahl, G. van der Geer: The order of the top Chern class of the Hodge bundle on the moduli space of abelian varieties. Acta Math. 192 (2004), p. 95–109.
[3] T. Ekedahl, G. van der Geer: Cycles Representing the Top Chern Class of the Hodge Bundle on the Moduli Space of Abelian Varieties. math.AG/0402274 To appear in Duke Math. Journal.

[4] G. van der Geer: Cycles on the Moduli Space of Abelian Varieties In: Moduli of Curves and Abelian Varieties (The Dutch Intercity Seminar on Moduli), p. 65-89 (Carel Faber and Eduard Looijenga, editors), Aspects of Mathematics, Vieweg, Wiesbaden 1999.

[5] G. van der Geer, T. Katsura: On a stratification of the moduli of $K3$ surfaces. J. Eur. Math. Soc. 2 (2000), p. 259–290.

[6] A.N. Rudakov, I.R. Shafarevich: Surfaces of type $K3$ over fields of finite characteristic. Current problems in mathematics 18, pp. 115–207. In: Collected Mathematical Papers, Springer-Verlag, Berlin, 1989.

Korteweg-de Vries Instituut, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands
E-mail address: geer@science.uva.nl

Graduate School of Mathematical Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8914 Japan
E-mail address: tkatsura@ms.u-tokyo.ac.jp