The Inductive Kernels of Graphs.

Abstract. It is well known that kernels in graphs are powerful and useful structures, for instance in the theory of games. However, a kernel does not always exist and Chvátal proved in 1973 that it is an NP-Complete problem to decide its existence. We present here an alternative definition of kernels that uses an inductive machinery: the inductive kernels. We prove that inductive kernels always exist and a particular one can be constructed in quadratic time. However, it is an NP-Complete problem to decide the existence of an inductive kernel including (resp. excluding) some fixed vertex.

Introduction.

First, let us recall the notion of kernel. A kernel K of a directed graph $G = (V, E)$ is a stable set of vertices (i.e., no pair of vertices in K is linked by an arc) and such that every vertex $x \in V$ belongs to K or is at distance one of K. Here, we will adopt the signification that there is an arc going from K to x. Such a kernel does not always exist. For example, a directed cycle of odd length cannot have a kernel. In [1], Chvátal proved that deciding the existence of a kernel is an NP Complete problem. Nevertheless, when a directed graph G has a kernel, one can easily define some strategy for the games related to G. Another application is the axiomatization of theories: kernels represent independent propositions that enable to prove all the ones. We are interested in this context to extend the notion of kernels in a way that guarantees their existence and still enable to define an axiomatization. A natural method consists in the introduction of a recursion scheme. The initial lacks of kernels are compensated by an inductive machinery.

Definition. (Inductive Kernel). Let $G = (V, E)$ be a directed graph where V is an ordered set $(x_0, x_1, \ldots, x_{n-1})$. An inductive kernel of G is a set $K \subseteq V$ such that

a. K is stable, i.e., $x \neq y$ and $x \in K$ and $y \in K \implies (x, y) \notin E$

b. the following algorithm will color every vertex x of V:

0. Color every vertex $x \in K$

1. For i from 0 to $n - 1$ do if x_i is colored then

 color each y such that $(x_i, y) \in E$

Let us give an example. An inductive kernel for the following graph is $K = \{x_1, x_5\}$. The coloring process is represented by marking vertices x_i for $i = 0, 1, 2, 3, 4, 5$ and coloring y when x_i is colored and (x_i, y) is an arc:
Observe that if a graph G admits a kernel K, then K is also an inductive kernel of G. The converse is not true. For example:

This example also gives a justification for the terminology "inductive kernel" which can remind the recurrence scheme: in order to prove a property P for every $n \in \mathbb{N}$, just prove $P(0)$ and implications $P(i) \implies P(i+1)$. In a more general way, an inductive kernel corresponds to an independent set of axioms in a theory where propositions are represented by vertices and logical implications are represented by arcs. Now, the generalized recursive scheme is: prove $P(x)$ for every x in the inductive kernel and for $i = 0, 1, \ldots$, if $P(i)$ is proved then deduce all possible $P(j)$ where $P(i) \implies P(j)$, otherwise skip $P(i)$ that will be proved latter.

Now we prove the existence of these inductive kernels.

Theorem 1. (Existence). For every $n \geq 0$, every directed graph $G = (V, E)$ with $V = (x_0, x_1, \ldots, x_{n-1})$ has an inductive kernel K.

Proof. First, one can assume that G is irreflexive since arcs (x, x) do not appear in the conditions. We use an induction on $e = |E|$.

0. For $e = 0$ then $K = V$ is an obvious solution.

1. Assume $e > 0$ and there is an arc (x_a, x_b) with $a < b$. Removing this arc, one obtains a new graph G' and by induction hypothesis, G' has an inductive kernel K'.

1.1. If \(x_a \notin K' \) or \(x_b \notin K' \), then \(K = K' \) is also an inductive kernel for \(G \).

1.2. If \(x_a \in K' \) and \(x_b \in K' \), then take \(K = K' \setminus \{x_b\} \). During the process for \(G \), at step \(i = a \), the vertex \(x_b \) will be colored via the arc \((x_a, x_b)\). Since \(a < b \), the process for \(G \) will color every vertices.

2. Assume \(e > 0 \) and there is no arc \((x_a, x_b)\) with \(a < b \). Hence, every arc has the form \((x_b, x_a)\) with \(b > a \). Remove an arc \((x_b, x_a)\) where \(a \) is taken minimal. Hence, there is no arc \((x_a, y)\). One obtains by induction hypothesis a graph \(G' \) with an inductive kernel \(K' \).

2.1. If \(x_a \notin K' \) or \(x_b \notin K' \), then \(K = K' \) is also an inductive kernel for \(G \).

2.2 If \(x_a \in K' \) and \(x_b \in K' \), then take \(K = K' \setminus \{x_a\} \). During the process for \(G \), at step \(i = b \), the vertex \(x_a \) will be colored. During the process for \(G' \), the colored vertex \(x_a \in K' \) contributed to no other coloring. Hence, the process for \(G \) will also color every vertices.

\[\text{\begin{center}
\begin{tikzpicture}
 \node[shape=circle,draw=red] (A) at (2,0) {\text{YES}};
 \node[shape=circle] (B) at (0,0) {\text{NO}};
 \node[shape=circle] (C) at (4,0) {\text{YES}};
 \node[shape=circle] (D) at (0,2) {\text{YES}};
 \node[shape=circle] (E) at (2,2) {\text{YES}};
 \node[shape=circle] (F) at (4,2) {\text{YES}};

 \draw[blue, thick, ->] (A) to (B);
 \draw[blue, thick, ->] (B) to (C);
 \draw[blue, thick, ->] (C) to (D);
 \draw[blue, thick, ->] (D) to (E);
 \draw[blue, thick, ->] (E) to (F);
\end{tikzpicture}
\end{center} \]

Observe that an inductive kernel \(K \) of \(G \) may be not one for \(G' \) obtained by a permutation of vertices : if one reverses the order of vertices in the previous example, \(K = \{x_0\} \) is not an inductive kernel anymore. However when \(K \) is a kernel, it is an inductive kernel for every reordering of vertices.

\textbf{Computational Complexities.}

First, we are going to show how to construct a particular inductive kernel in polynomial time.

\textbf{Theorem 2.} (generic). There exists a polynomial time algorithm that constructs an inductive kernel \(K \) of a given directed graph \(G = (V, E) \).

\textbf{Proof.} The method is directly based on the proof of existence.

0. Begin with \(K = V \)

1. For \(j = n, n - 1, \ldots, 1 \) do for \(i = n, n - 1, \ldots, j + 1 \) do

if \((x_i, x_j) \in E \) and \(x_i \in K \) and \(x_j \in K \) then remove \(x_j \) from \(K \)
2. For $i = 1, 2, \ldots, n$ do for $j = i + 1, i + 2, \ldots, n$ do
 if $(x_i, x_j) \in E$ and $x_i \in K$ and $x_j \in K$ then remove x_j from K
Return K

Hence, it is easy to compute an inductive kernel of a given graph G. However, the problem becomes NP-Complete if one expects some vertex to be or not to be in the inductive kernel. In order to prove this result, we begin to introduce some tool.

Definition. (gadget). Given three vertices x, x', x'', the *gadget* $g(x, x', x'')$ is the directed graph:

```
X  X'  X''
```

Let us make several remarks that will be useful for the next proof:

- every inductive kernel K of a directed graph G that contains such a gadget $g(x, x', x'')$ as a subgraph can contain at most one of the vertices (x, x', x'') because these vertices are pairwise linked.
- if $x \in K$, then x will color x'' that will color x'.
- if $x' \in K$, then x' will color x and x''.
- if $x'' \in K$, then x'' will color x' but not x. Hence x must receive another arc.

Theorem 3. (include). The problem to decide if a directed graph G has an inductive kernel K including x_0 is NP-complete.

Proof.

Obviously, this problem is in NP: chose a subset $K \subseteq V$ with $x_0 \in K$ and check the conditions (in polynomial time).

To prove that it is an NP-Hard problem, we reduce the SAT problem to it. Let Φ be a conjunction of m clauses C_1, \ldots, C_m on n variables z_1, \ldots, z_n. Construct a directed graph $G = (V, E)$ with $V = (x_0, C_1, \ldots, C_m, z_1, z'_1, z''_1, \ldots, z_n, z'_n, z''_n)$ and the arcs are for every $i \in \{1, \ldots, n\}$ and $j \in \{1, \ldots, m\}$:

\[
\begin{align*}
&\{(C_j, x_0)\} \\
&\{(z_i, z''_i), (z'_i, z''_i), (z''_i, z_i), (z'_i, z_i)\} \quad \text{arcs of the gadget } g(z_i, z'_i, z''_i) \\
&\{(z_i, C_j)\} \quad \text{if } z_i \in C_j \\
&\{(z'_i, C_j)\} \quad \text{if } z'_i \in C_j
\end{align*}
\]

We claim that Φ is satisfiable if and only if G has an inductive kernel K with $x_0 \in K$.

4
First, given a truth assignment \(T \) of the variables for the satisfaction of \(\Phi \), the set
\[
K = \{ x_0 \} \cup \{ z_i : T(z_i) = \text{true} \} \cup \{ z'_i : T(z_i) = \text{false} \}
\]
is an inductive kernel of \(G \) : by the properties of gadgets, each \(z_i \in K \) will color \(z''_i \) and after \(z''_i \) will color \(z'_i \). Moreover, \(z_i \) will color the clauses \(C_j \) that contain \(z_i \). Conversely, each \(z'_i \in K \) will color \(z_i \) and \(z''_i \) and the clauses \(C_j \) that contain \(\overline{z_i} \). By definition of \(T \), all the vertices will be colored.

For the other direction, assume there is an inductive kernel \(K \) with \(x_0 \in K \). By stability, no \(C_j \) can belong to \(K \). Hence, one must take in \(K \) some vertex \(z_i \) or \(z'_i \) that enables to color \(C_j \). Moreover, one must have exactly one of the vertices \(z_i \) or \(z'_i \) or \(z''_i \) in \(K \). Since \(z_i \) receives no other arc than \((z'_i, z_i) \), the third case \(z''_i \in K \) is not possible. That defines a truth assignment for the satisfaction of \(\Phi \) : if \(z_i \in K \) then \(T(z_i) = \text{true} \), if \(z'_i \in K \) then \(T(z_i) = \text{false} \).

One could think that the previous problem is difficult because \(x_0 \) is the first vertex in \(G \) in the ordering of vertices. However, the dual problem is still difficult.

Theorem 4. (exclude). The problem to decide if a directed graph \(G \) has an inductive kernel \(K \) excluding \(x_0 \) is NP-complete.

Proof.

Obviously, this problem is in NP : chose a subset \(K \subseteq V \) with \(x_0 \notin K \) and check the conditions (in polynomial time).

To prove that it is an NP-Hard problem, we reduce the previous problem to it.

Given a graph \(G \) with vertices \((X_0, \ldots, X_{p-1}) \), we construct a graph \(G' \) with vertices \((x_0, X_0, \ldots, X_{p-1}) \) such that \(G \) has an inductive kernel \(K \) with \(X_0 \in K \) if and only if \(G' \) has an inductive kernel \(K' \) with \(x_0 \notin K' \). The construction just consists in adding to \(G \) a new vertex \(x_0 \) and a new arc \((X_0, x_0) \).

If \(G \) has an inductive kernel \(K \) that contains \(X_0 \), then \(K \) is also an inductive kernel for \(G' \) that does not contain \(x_0 \) (by stability).

If \(G' \) has an inductive kernel \(K' \) that does not contain \(x_0 \), then \(K' \) must contain \(X_0 \) since the only possibility to color \(x_0 \) is via the arc \((X_0, x_0) \). Hence, \(K' \) is also an inductive kernel for \(G \) that contains \(X_0 \).

Conclusion.

There are other variants of kernels that always exist. For instance, a semi-kernel is a stable set of vertices such that every vertex \(x \in V \) is at distance at most two of \(K \). In 1974, V. Chvátal and L. Lovász proved that such a semi-kernel always exist [2]. Perhaps they defined this variant of kernels with the same motivations than in this paper. However, the notion of semi-kernel is
different of inductive kernels. For example, here is an inductive kernel which is not a semi-kernel:

[Diagram of an inductive kernel]

and here is a semi-kernel which is not an inductive kernel:

[Diagram of a semi-kernel]

However, like for a kernel (when it exists), one can find an ordering of vertices such that a semi-kernel K becomes an inductive kernel. Just take an ordering \prec such that $x \prec y$ when the distance of x from K is strictly smaller than the distance of y from K.

At last, we must point out that an inductive kernel is not intrinsically a graph but depends on the chosen order of vertices. We conjecture that a subset of vertices is an inductive kernel for every possible orders if and only if it is also a kernel.

References.

[1] V. Chvátal, *On the computational complexity of finding a kernel*, Report No. CRM-300 (1973), Centre de Recherches Mathématiques, Université de Montréal.

[2] V. Chvátal and L. Lovász, *Every directed graph has a semi-kernel*, edts C. Berge and D.K. Ray-Chaudhuri, Lecture Notes in Math, Springer-Verlag (1974).

Serge Burckel.
INRIA-LORIA,
Campus Scientifique
BP 239
54506 Vandoeuvre-lès-Nancy Cedex
serge.burckel@loria.fr