GLOBAL STABILITY OF A DIFFUSIVE AND DELAYED HBV INFECTION MODEL WITH HBV DNA-CONTAINING CAPSIDS AND GENERAL INCIDENCE RATE

TING GUO
Department of Mathematics, Yunnan Normal University
Kunming 650092, China
and
School of Science, Nanjing University of Science and Technology
Nanjing 210094, China

HAIHONG LIU*, CHENGLIN XU AND FANG YAN
Department of Mathematics, Yunnan Normal University
Kunming 650092, China

(Communicated by Yang Kuang)

ABSTRACT. The aim of this paper is to study the dynamics of a new chronic HBV infection model that includes spatial diffusion, three time delays and a general incidence function. First, we analyze the well-posedness of the initial value problem of the model in the bounded domain. Then, we define a threshold parameter R_0 called the basic reproduction number and show that our model admits two possible equilibria, namely the infection-free equilibrium E_1 as well as the chronic infection equilibrium E_2. Further, by constructing two appropriate Lyapunov functionals, we prove that E_1 is globally asymptotically stable when $R_0 < 1$, corresponding to the viruses are cleared and the disease dies out; if $R_0 > 1$, then E_1 becomes unstable and the equilibrium point E_2 appears and is globally asymptotically stable, which means that the viruses persist in the host and the infection becomes chronic. An application is provided to confirm the main theoretical results. Additionally, it is worth saying that, our results suggest theoretically useful method to control HBV infection and these results can be applied to a variety of possible incidence functions presented in a series of other papers.

1. Introduction. As one of the top three infectious diseases in China, Hepatitis B can result in acute or chronic liver diseases and put people at high risk of death from cirrhosis of the liver and liver cancer. Nowadays, it is a major global health problem and is carrying an enormous economic and social burdens. According to World Health Organization (WHO), roughly 0.24 billion people are chronically infected with hepatitis B. Besides, more than 0.78 million people die every year due to complications of hepatitis B, including fatty liver, liver cirrhosis and hepatocellular carcinoma (HCC) [1].

2010 Mathematics Subject Classification. Primary: 92D30, 35K57; Secondary: 34K20.
Key words and phrases. HBV infection, delays, diffusion, general incidence rate, Lyapunov functionals.

* Corresponding author: Hailong Liu.
Hepatitis B is liver infection caused by the hepatitis B virus (HBV), which is an enveloped hepatotropic virus containing a 3.2 kilobase (kb) relaxed circular partially double-stranded (ds) open DNA genome \([32, 41, 21]\). During the replication of HBV, DNA genome is transformed to covalently closed circular DNA (cccDNA) firstly \([19, 9]\). Whereafter, cccDNA can be transcribed into at least four major viral RNAs \([18, 30]\). One of them (pgRNA) and polymerase (P) are encapsidated into the viral nucleocapsid, which means the initiation of genome replication \([18, 17]\). Next, pgRNA convert to a double-stranded HBV DNA through the process of reverse transcription \([19, 26]\). Finally, a part of newly produced core particle is further packed by HBsAg to produce the complete virion \([31]\), another part of core particle is reused for the next cycle of the replication. The life cycle of HBV is schematically outlined in Fig. 1.

Figure 1. Schematic view of the replication process of HBV.

In the last decades, a number of dynamic models with respect to HBV infection have been introduced \([21, 8, 3, 34, 16, 4, 29]\), and these models have been proved to be of use in understanding pathogenesis and designing better treatments protocols. A basic HBV infection model, containing uninfected target cells (presumably hepatocytes, the same as below), infected cells and free viruses, has been analyzed quantificationally by Nowak et al. \([27]\). To accurately determine the dynamics of infection and clearance in three acutely infected chimpanzees, Murray et al. \([26]\) proposed the mathematical model with all intracellular components of HBV infection. In the literature \([25]\), Murray et al. researched a simplified version of the HBV infection model described in \([26]\) and found that the half-life of HBV virions is approximately 4 hours. These models however do not incorporate the uninfected cells and the intracellular HBV DNA-containing capsids simultaneously. For this purpose, Manna and Chakrabarty \([22]\) was the first to contain both uninfected cells and intracellular HBV DNA-containing capsids aside from infected cells and free viruses. The corresponding mathematical model is as follows:

\[
\begin{align*}
\frac{dH(t)}{dt} &= s - \mu H(t) - kH(t)V(t), \\
\frac{dI(t)}{dt} &= kH(t)V(t) - \delta I(t), \\
\frac{dD(t)}{dt} &= aI(t) - \beta D(t) - \delta D(t), \\
\frac{dV(t)}{dt} &= \beta D(t) - cV(t),
\end{align*}
\] (1)
in which state variables H, I, D and V are the concentrations of uninfected (susceptible) hepatocytes, infected hepatocytes, intracellular HBV DNA-containing capsids and free HBVs, respectively. In the first state equation in (1), healthy hepatocytes are created at a constant rate s, either from differentiation of progenitor cells or by direct proliferation of mature hepatocytes [29]. Furthermore, μ is the death rate of healthy hepatocytes and k is a constant infection rate characterized by the infection efficiency. In the second state equation in (1), δ represents the natural death rate of infected hepatocytes. In the third state equation in (1), the parameter a indicates the production rate of intracellular HBV DNA-containing capsids per infected hepatocyte, β denotes the rate at which these capsids are transmitted to blood which then lead to the growth of free virions, and δ is per capita death rate for infected hepatocytes. The parameter c that appears in the last state equation in (1) stands for the clearance rate of virions in plasma. It is assumed that all parameters in (1) are strictly positive and $\mu \leq \delta$ [22]. Fig. 2 expounds the connection between four compartments and model parameters.

Note that the forenamed model (1) assumed that the uninfected hepatocytes which are exposed to free HBVs immediately become infected and the maturation process of the capsids is instantaneous despite the fact that this two delays actually exist [21, 22, 36, 13]. To make model (1) much closer to reality, Manna and Chakrabarty [21] incorporated the eclipse phase and capsids maturation period, which are denoted as τ_1 and τ_2 respectively. More specifically, they assumed that the uninfected hepatocytes become actively infected at time t but are infected by free HBVs at time $t - \tau_1$, and the infected cells create new intracellular HBV DNA-containing capsids at time t but are penetrated by viruses at time $t - \tau_2$. Therefore, in the document [21], they considered the following refined model with two time delays:

\[
\begin{align*}
\frac{dH(t)}{dt} &= s - \mu H(t) - kH(t)V(t), \\
\frac{dI(t)}{dt} &= kH(t - \tau_1)V(t - \tau_1) - \delta I(t), \\
\frac{dD(t)}{dt} &= aI(t - \tau_2) - \beta D(t) - \delta D(t), \\
\frac{dV(t)}{dt} &= \beta D(t) - cV(t),
\end{align*}
\]

obtained the equilibrium solutions of system (2) and proved their global stability by constructing Liapunov functionals.
In model (2), the key assumptions are that cells and viruses are well mixed in space at all times, and the mobility of cells and viruses are ignored. Several models [37, 23, 11, 35, 40] have corrected this problem by including a spatial component and adding Fickian diffusion for the virus while assuming that hepatocytes cannot move under normal conditions. Another important feature is the fact that there is a lag between the maturation time of the intracellular HBV DNA-containing capsids and the time of the mature capsids producing free viruses, and some researchers have incorporated the exponentially decay functions during the delays into the viral dynamic models [13, 23, 11, 40, 12]. Besides, the viral infection rate in model (2) is assumed to be bilinear in the free viruses and uninfected cells, which is not very appropriate. As pointed out by Min et al. [24] and Chen et al. [2], the bilinear incidence rate is replaced by standard incidence in [2], by Holling type II functional response in [38], by Beddington-DeAngelis incidence in [5], by Crowley-Martin incidence in [20], by general functional response in [13]. Motivated by above three biological facts, we establish the following diffused HBV model with three time delays and a general incidence rate (excluding bilinear incidence and saturation incidence):

\[
\begin{align*}
\frac{dH}{dt} &= s - \mu H(x,t) - f(H(x,t), I(x,t), V(x,t))V(x,t), \\
\frac{dI}{dt} &= e^{-\alpha_1 s}f(H(x,t - \tau_1), I(x,t - \tau_1), V(x,t - \tau_1))V(x,t - \tau_1) - \delta I(x,t), \\
\frac{dD}{dt} &= a e^{-\alpha_2 s}I(x,t - \tau_2) - \beta D(x,t) - \delta D(x,t), \\
\frac{dV}{dt} &= d_v \Delta V + \beta e^{-\alpha_3 s}D(x,t - \tau_3) - cV(x,t) \\
\end{align*}
\]

for \(t > 0, \ x \in \Omega \), with initial conditions

\[
\begin{align*}
H(x, \theta) &= \varphi_1(x, \theta) \geq 0, \quad I(x, \theta) = \varphi_2(x, \theta) \geq 0, \quad D(x, \theta) = \varphi_3(x, \theta) \geq 0, \\
V(x, \theta) &= \varphi_4(x, \theta) \geq 0, \quad (x, \theta) \in \Omega \times [-\tau, 0], \\
\tau &= \max \{\tau_1, \tau_2, \tau_3\},
\end{align*}
\]

and homogeneous Neumann boundary conditions

\[
\frac{\partial V}{\partial \mathbf{n}} = 0, \quad \text{on} \quad \partial \Omega \times (0, +\infty),
\]

where \(\Omega \) is a connected, bounded open set in \(\mathbb{R}^n \) with smooth boundary \(\partial \Omega \) and \(\frac{\partial}{\partial \mathbf{n}} \) denotes the outward normal derivative on \(\partial \Omega \). The boundary conditions in (5) imply that the virus populations do not move across the boundary \(\partial \Omega \). In biological terms, \(H(x,t), I(x,t), D(x,t) \) and \(V(x,t) \) denote the densities of uninfected cells, infected cells, intracellular HBV DNA-containing capsids and free viruses at position \(x \) and time \(t \), respectively. The diffusion coefficient is indicated by \(d_v \) and \(\Delta = \frac{\partial^2}{\partial x^2} \) is the Laplacian operator. The third delay \(\tau_3 \) represents the time necessary for the newly produced HBV DNA-containing capsids to become free viruses and we assume the surviving rates for the infected cells from time \(t - \tau_1 \) to time \(t \), the immature capsids from time \(t - \tau_2 \) to time \(t \), as well as the immature free viruses from time \(t - \tau_3 \) to time \(t \) obey exponentially decay functions. The biological meanings of all other parameters are the same as those given in (2). As in [23, 11, 14], the general incidence function \(f(H, I, V) \) is assumed to be continuously differentiable in the interior of \(\mathbb{R}^3_+ \) and satisfies the following conditions:
Theorem 2.1. For each $C(\bar{\Omega})$ this solution remains bounded for all t.

Proof. For any $u = (\phi_1, \phi_2, \phi_3, \phi_4)^T \in \mathbb{C}$, we define $F = (F_1, F_2, F_3, F_4) : \mathbb{C} \to \mathbb{R}^4$ as follows:

$$F_1(\phi)(x) = s - \mu \phi_1(x, 0) - f(\phi_1(x, 0), \phi_2(x, 0), \phi_4(x, 0)) \phi_4(x, 0),$$
\[F_2(\phi)(x) = e^{-\alpha_1 \tau_1} f (\phi_1(x, -\tau_1), \phi_2(x, -\tau_1), \phi_4(x, -\tau_1)) \phi_4(x, -\tau_1) - \delta \phi_2(x, 0), \]
\[F_3(\phi)(x) = a e^{-\alpha_2 \tau_2} \phi_2(x, -\tau_2) - \beta \phi_3(x, 0) - \delta \phi_3(x, 0), \]
\[F_4(\phi)(x) = \beta e^{-\alpha_3 \tau_3} \phi_3(x, -\tau_3) - c \phi_4(x, 0). \]

It is easy to see that \(F \) is locally Lipschitz in \(\mathbb{C} \). Then we reformulate model (3)-(5) as the following abstract functional differential equation:

\[
\dot{u}(t) = Au + F(u_t), \quad t \geq 0, \quad u_t \in \mathbb{C},
\]

where \(u = (H, I, D, V)^T, \varphi = (\varphi_1, \varphi_2, \varphi_3, \varphi_4)^T \) and \(Au = (0, 0, 0, d_v \Delta V)^T \). According to standard existence theory [33, 6], it is not hard to deduce that there exists a unique local solution for model (6) on \([0, T_{\text{max}}] \), where \(T_{\text{max}} \) is the maximal existence time for solutions of model (6). In addition, the inequalities \(H(x, t) \geq 0, I(x, t) \geq 0, D(x, t) \geq 0 \) and \(V(x, t) \geq 0 \) are established because the sub-solution of each equation of model (3) are 0.

Next, we show that the solutions of (3)-(5) are bounded. Firstly, we define a new variable:

\[G(x, t) = e^{-\alpha_1 \tau_1 - \alpha_2 \tau_2} H(x, t - \tau_1 - \tau_2) + e^{-\alpha_2 \tau_2} I(x, t - \tau_2) + \frac{\delta}{2a} D(x, t). \]

From the first three equations of (3), we get

\[
\frac{\partial G(x, t)}{\partial t} = se^{-\alpha_1 \tau_1 - \alpha_2 \tau_2} - \mu e^{-\alpha_1 \tau_1 - \alpha_2 \tau_2} H(x, t - \tau_1 - \tau_2) - \frac{\delta}{2a} e^{-\alpha_2 \tau_2} I(x, t - \tau_2)
\]

\[\leq se^{-\alpha_1 \tau_1 - \alpha_2 \tau_2} - mG(x, t) \]

\[\leq s - mG(x, t), \quad \text{since} \quad 0 < e^{-\alpha_1 \tau_1 - \alpha_2 \tau_2} \leq 1, \]

where \(m = \min \{ \mu, \frac{s}{2}, \beta + \delta \} \). Let \(M = \max \{ \frac{\alpha_1}{m}, \max_{x \in \Omega} \{ e^{-\alpha_1 \tau_1 - \alpha_2 \tau_2} \phi_1(x, -\tau_1), e^{-\alpha_2 \tau_2} \phi_2(x, -\tau_2) + \frac{\delta}{2a} \phi_3(x, 0) \} \} \), and thus \(G(x, t) \leq M \), which implies that \(G(x, t) \) is bounded and so are \(H, I \) and \(D \).

Then we can prove that \(V(x, t) \) is bounded. Using the boundedness of \(D \) and model (3)-(5), we obtain the following system

\[
\begin{aligned}
\frac{\partial V}{\partial t} - d_v \Delta V &\leq \beta M e^{-\alpha_3 \tau_3} - cV, \\
\frac{\partial V}{\partial n} &\bigg|_{x \in \partial \Omega} = 0, \\
V(x, 0) &= \varphi_4(x, 0) \geq 0.
\end{aligned}
\]

If \(\tilde{V}(t) \) is a solution to the ordinary differential equation

\[
\begin{aligned}
\frac{d \tilde{V}}{dt} &= \beta M e^{-\alpha_3 \tau_3} - cV, \\
\tilde{V}(0) &= \max_{x \in \Omega} \varphi_4(x, 0).
\end{aligned}
\]

Then for any \(t \in [0, T_{\text{max}}] \), we have \(\tilde{V}(t) \leq \max \{ \frac{\beta M e^{-\alpha_3 \tau_3}}{c}, \max_{x \in \Omega} \varphi_4(x, 0) \} \).

By the comparison principle [28], we get \(V(x, t) \leq \tilde{V}(t) \). Hence,

\[V(x, t) \leq \max \left\{ \frac{\beta M e^{-\alpha_3 \tau_3}}{c}, \max_{x \in \Omega} \varphi_4(x, 0) \right\}, \quad \forall (x, t) \in \Omega \times [0, T_{\text{max}}]. \]

The above analysis supports the conclusion that \(H(x, t), I(x, t), D(x, t) \) and \(V(x, t) \) are bounded on \(\Omega \times [0, T_{\text{max}}] \). Therefore, we deduce that \(T_{\text{max}} = +\infty \) from the standard theory for semilinear parabolic systems [15]. This completes the proof. \(\square \)
2.2. Basic reproduction number and existence of positive equilibria. In this subsection, we show that model (3)-(5) has two possible equilibria. Moreover, existence of these equilibria is determined by a threshold parameter R_0, which is given by

$$
R_0 = \frac{\beta e^{-\alpha_3 \tau_3}}{c} \cdot \frac{ae^{-\alpha_2 \tau_2}}{\beta + \delta} \cdot \frac{f \left(\frac{s}{\mu}, 0, 0 \right) e^{-\alpha_1 \tau_1}}{\delta} = \frac{a\beta e^{-\alpha_1 \tau_1 - \alpha_2 \tau_2 - \alpha_3 \tau_3}}{c\delta (\beta + \delta)} f \left(\frac{s}{\mu}, 0, 0 \right).
$$

Here, R_0 is called the basic reproduction number and describes the average number of new infected cells derived from one infected cell when the free HBVs have just entered the body.

In the expression (7), $\frac{s}{\mu}$ is the average survival time of an infectious cell. During this period a virus-producing cell generates a intracellular HBV DNA-containing capsids per unit time. $\frac{\beta e^{-\alpha_3 \tau_3}}{c}$ gives the amount of free viruses produced from an intracellular HBV DNA-containing capsid during its survival period. $e^{-\alpha_1 \tau_1}, e^{-\alpha_2 \tau_2}$ and $e^{-\alpha_3 \tau_3}$ denote the probabilities of surviving the infected cells from time $t - \tau_1$ to time t, the immature capsids from time $t - \tau_2$ to time t, as well as the immature free viruses from time $t - \tau_3$ to time t, respectively. $\frac{1}{c}$ represents the average life expectancy of a virus and $f \left(\frac{s}{\mu}, 0, 0 \right)$ represents the value of the function f at the beginning of the infection process. By multiplying the above quantities together, we get the expected number of newly infected cells generated by one infected cell, beginning of the infection process. By multiplying the above quantities together, we get the expected number of newly infected cells generated by one infected cell, that is R_0. Furthermore, it is important to note the following remark.

Remark 1. If no delays are considered ($\tau_1 = \tau_2 = \tau_3 = 0$) or the mortalities during the three delays are ignored ($\alpha_1 = \alpha_2 = \alpha_3 = 0$), our R_0 coincides with the basic reproduction number of model (2). Whereas, in presence of the three delays, R_0 is a decreasing function of the mortalities. This implies that, any one of the mortalities during the three delays can decrease R_0. Hence, ignoring the mortality during the delay in a viral model will overestimate R_0. In other words, our R_0 is biologically well defined.

To simplify the analysis, we show only the existence conditions of positive homogeneous equilibria of model (3)-(5) and have the following theorem:

Theorem 2.2. When $R_0 \leq 1$, the system (3)-(5) admits only an infection-free equilibrium $E_1 = \left(\frac{s}{\mu}, 0, 0, 0 \right)$. When $R_0 > 1$, there is an unique chronic infection equilibrium $E_2 = (H_2, I_2, D_2, V_2)$ with $H_2 \in \left(0, \frac{s}{\mu} \right)$ and $I_2, D_2, V_2 > 0$, except for E_1.

Proof. Obviously, model (3)-(5) always has an infection-free equilibrium E_1, which represents the state that the cellular infection initiated by HBVs will ultimately die out. To find the positive equilibrium, we study the following system:

$$
\begin{align*}
 s - \mu H - f(H, I, V) V &= 0, \\
 e^{-\alpha_1 \tau_1} f(H, I, V) V - \delta I &= 0, \\
 a e^{-\alpha_2 \tau_2} I - \beta D - \delta D &= 0, \\
 \beta e^{-\alpha_3 \tau_3} D - cV &= 0. \\
\end{align*}
$$

A short calculation gives

$$
V = \frac{\beta e^{-\alpha_3 \tau_3}}{c} D, \quad D = \frac{a e^{-\alpha_2 \tau_2} I}{\beta + \delta} \quad \text{and} \quad s - \mu H - \delta e^{-\alpha_1 \tau_1} I = 0.
$$
This means that we can get the following equation:

\[
 f \left(H, \frac{s - \mu H}{\delta e^{\alpha_1}}, \frac{a\beta e^{-\alpha_1 t - \alpha_2 t_2 - \alpha_3 t_3} (s - \mu H)}{c\delta (\beta + \delta)} \right) = \frac{c\delta (\beta + \delta) e^{\alpha_1 t + \alpha_2 t_2 + \alpha_3 t_3}}{a\beta}.
\]

In order to guarantee \(I = \frac{s - \mu H}{\delta e^{\alpha_1}} \geq 0 \), we must have \(H \leq \frac{s}{\mu} \). Thus there is not equilibrium point if \(H > \frac{s}{\mu} \).

Now, we redefine the function \(g \) on interval \([0, \frac{s}{\mu}]\) as follows:

\[
 g(H) = f \left(H, \frac{s - \mu H}{\delta e^{\alpha_1}}, \frac{a\beta e^{-\alpha_1 t - \alpha_2 t_2 - \alpha_3 t_3} (s - \mu H)}{c\delta (\beta + \delta)} \right) - \frac{c\delta (\beta + \delta) e^{\alpha_1 t + \alpha_2 t_2 + \alpha_3 t_3}}{a\beta}.
\]

From (9), it is easy to show that

\[
 g(0) = -\frac{c\delta (\beta + \delta) e^{\alpha_1 t + \alpha_2 t_2 + \alpha_3 t_3}}{a\beta} < 0 \tag{10}
\]

and

\[
 g \left(\frac{s}{\mu} \right) = f \left(\frac{s}{\mu}, 0, 0 \right) - \frac{c\delta (\beta + \delta) e^{\alpha_1 t + \alpha_2 t_2 + \alpha_3 t_3}}{a\beta}
\]

\[
 = \frac{c\delta (\beta + \delta) e^{\alpha_1 t + \alpha_2 t_2 + \alpha_3 t_3}}{a\beta} (R_0 - 1) > 0, \quad \text{if} \quad R_0 > 1. \tag{11}
\]

Thus, when \(R_0 > 1 \), there exists at least one positive equilibrium point \(E_2 = (H_2, I_2, D_2, V_2) \in \mathbb{R}^4 > 0 \). Next, we show that \(E_2 \) is the unique chronic infection equilibrium of system (3)-(5). Using hypothesis (T1), we have

\[
 g'(H) = \frac{\partial f}{\partial H} - \frac{\mu}{\delta e^{\alpha_1}} \frac{\partial f}{\partial I} - \frac{a\beta \mu e^{-\alpha_1 t - \alpha_2 t_2 - \alpha_3 t_3} \partial f}{c\delta (\beta + \delta)} \frac{\partial f}{\partial V} > 0.
\]

This implies \(g \) is strictly increasing in the interior of the feasible region. Combining (10) and (11), it follows that if \(R_0 > 1 \), there exists a unique chronic infection equilibrium \(E_2 \) with \(H_2 \in \left(0, \frac{s}{\mu} \right) \) and \(I_2, D_2, V_2 > 0 \). \(\square \)

3. **Stability of the infection-free equilibrium** \(E_1 \). The purpose of this section is to give a rigorous investigation for the local and global stability of the infection-free equilibrium \(E_1 \). First, we analyze the local asymptotic stability of \(E_1 \). To do so, we need to determine the characteristic equation about this point.

Let \(0 = \eta_1 < \eta_2 < \cdots < \eta_n < \cdots \) be the eigenvalues of the operator \(-\Delta\) on \(\Omega \) with homogeneous Neumann boundary conditions, and denote the eigenfunction space corresponding to \(\eta_i \) in \(C^1(\Omega) \) by \(E(\eta_i) \) for \(i = 1, 2, \ldots \). Let \(X = [C^1(\Omega)]^4 \), \(\{\phi_{ij} : j = 1, \ldots, \dim E(\eta_i)\} \) be an orthonormal basis of \(E(\eta_i) \) and \(X_{ij} = \{c\phi_{ij} : c \in \mathbb{R}^4\} \). Then

\[
 X = \bigotimes_{i=1}^{\infty} X_i, \quad X_i = \bigotimes_{j=1}^{\dim E(\eta_i)} X_{ij}.
\]

Suppose \(E^* = (H^*, I^*, D^*, V^*) \) be any feasible steady state of system (3)-(5), \(E_1 \) or \(E_2 \), and consider the following change of variables:

\[
 Z_1(x, t) = H(x, t) - H^*, \quad Z_2(x, t) = I(x, t) - I^*.
\]
Then by substituting $Z_1(x,t), Z_2(x,t), Z_3(x,t)$ and $Z_4(x,t)$ into model (3) and linearizing, we obtain a new system of the form

\[
\frac{\partial Z_1}{\partial t} = -\left(\mu + \frac{\partial f}{\partial H} V^*\right) Z_1(x,t) - \frac{\partial f}{\partial I} V^* Z_2(x,t)
\]

\[
- \left(\frac{\partial f}{\partial V} V^* + f(H^*, I^*, V^*)\right) Z_2(x,t),
\]

\[
\frac{\partial Z_2}{\partial t} = \frac{\partial f}{\partial H} e^{-\alpha_1 \tau_1} V^* Z_1(x,t) - \frac{\partial f}{\partial I} e^{-\alpha_1 \tau_1} V^* Z_2(x,t) + e^{-\alpha_1 \tau_1} Z_4(x,t - \tau_1)
\]

\[
\cdot \left(\frac{\partial f}{\partial V} V^* + f(H^*, I^*, V^*)\right) - \delta Z_2(x,t),
\]

\[
\frac{\partial Z_3}{\partial t} = a e^{-\alpha_3 \tau_3} Z_2(x,t) - \beta Z_3(x,t) - \delta Z_3(x,t),
\]

\[
\frac{\partial Z_4}{\partial t} = d_0 \Delta Z_4 + \beta e^{-\alpha_3 \tau_3} Z_3(x,t - \tau_3) - c Z_4(x,t).
\]

This new system can be equivalently expressed by

\[
\frac{\partial Z}{\partial t} = Q \Delta Z + B Z(x,t) + C Z(x,t - \tau_1) + L Z(x,t - \tau_2) + N Z(x,t - \tau_3),
\]

where

\[
Q = \text{diag}(0, 0, 0, d_0), \quad B = \begin{pmatrix}
-\mu & \frac{\partial f}{\partial H} V^* & -\frac{\partial f}{\partial I} V^* & 0 \\
0 & 0 & -\delta & 0 \\
0 & 0 & -(\beta + \delta) & 0 \\
0 & 0 & 0 & -c
\end{pmatrix},
\]

\[
C = \begin{pmatrix}
\frac{\partial f}{\partial H} e^{-\alpha_1 \tau_1} V^* \\
\frac{\partial f}{\partial I} e^{-\alpha_1 \tau_1} V^* \\
\frac{\partial f}{\partial H} e^{-\alpha_1 \tau_1} V^* \\
\frac{\partial f}{\partial I} e^{-\alpha_1 \tau_1} V^* + f(H^*, I^*, V^*) e^{-\alpha_1 \tau_1}
\end{pmatrix}, \quad L = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

and

\[
N = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}.
\]

Thus, λ is an eigenvalue if and only if the matrix $-\lambda I - Q \eta \delta + B + C e^{-\lambda \tau_1} + L e^{-\lambda \tau_2} + N e^{-\lambda \tau_3}$ has determinant zero for all $i \geq 1$, here I denotes 4×4 identity matrix. In addition, we get the characteristic equation at equilibrium point E^* as follow:

\[
\begin{vmatrix}
\lambda + \mu & \frac{\partial f}{\partial H} V^* \\
0 & -\mu e^{-\tau_1 \lambda_1} V^* - \alpha_1 \frac{\partial f}{\partial I} V^* + \delta & 0 & 0 \\
0 & 0 & 0 & -\frac{\partial f}{\partial I} V^* + f(H^*, I^*, V^*) e^{-\alpha_1 \tau_1} + \lambda + \beta + \delta - \mu
\end{vmatrix} = 0.
\]

The infection free equilibrium E_1 is locally asymptotically stable for any time delays $\tau_1, \tau_2, \tau_3 \geq 0$ if $R_0 < 1$ and unstable if $R_0 > 1$.
Proof. Let \((H^*, I^*, D^*, V^*) = \left(\frac{s}{\mu}, 0, 0, 0 \right)\) in (12). It follows that
\[
(\lambda + \mu) \left(\lambda^3 + (2\delta + \beta + d_v\eta_i + c)\lambda^2 + \left((2\delta + \beta)(d_v\eta_i + c) + \delta\beta + \delta^2 \right)\lambda + (\delta^2 + \delta\beta)(d_v\eta_i + c) - a\beta f \left(\frac{s}{\mu}, 0, 0 \right) e^{-\left(\lambda + \alpha_1 \right)\tau_1 - \left(\lambda + \alpha_2 \right)\tau_2 - \left(\lambda + \alpha_3 \right)\tau_3} \right) = 0.
\]
(13)

Clearly, \(\lambda = -\mu < 0\) is a real root of Eq. (13) for any \(\eta_i\). Then the remaining eigenvalues are determined from the following transcendental equation

\[
\lambda^3 + q_2\lambda^2 + q_1\lambda + q_0 = 0,
\]
where
\[
q_2 = 2\delta + \beta + d_v\eta_i + c, \quad q_1 = (2\delta + \beta)(d_v\eta_i + c) + \delta(\beta + \delta),
\]
\[
q_0 = (\delta^2 + \delta\beta)(d_v\eta_i + c) - a\beta f \left(\frac{s}{\mu}, 0, 0 \right) e^{-\left(\lambda + \alpha_1 \right)\tau_1 - \left(\lambda + \alpha_2 \right)\tau_2 - \left(\lambda + \alpha_3 \right)\tau_3}.
\]
(15)

First we consider the case \(R_0 > 1\). In this case, it’s easy to show that (14) has a positive real root. Indeed, we put

\[
\sigma_1(\lambda) = \lambda^3 + q_2\lambda^2 + q_1\lambda + q_0,
\]
then we have \(\lim_{\lambda \to +\infty} \sigma_1(\lambda) = +\infty\). Since \(\eta_i = 0\) when \(i = 1\), we get \(\sigma_1(0) = c\delta(\beta + \delta)(1 - R_0) < 0\). Therefore, the infection-free equilibrium \(E_1\) is unstable for \(R_0 > 1\).

Now consider the case \(R_0 < 1\). If the condition \(\tau_1 = \tau_2 = \tau_3 = 0\) is also satisfied, the third equation of (15) will be rewritten as
\[
q_0 = (\delta^2 + \delta\beta)(d_v\eta_i + c) - a\beta f \left(\frac{s}{\mu}, 0, 0 \right) = (\delta^2 + \delta\beta) \left[d_v\eta_i + c(1 - R_0) \right].
\]

It is clear that \(q_2, q_1, q_0 > 0\) due to all parameters of model (3) are positive and \(R_0 < 1\). Additionally,
\[
\begin{vmatrix}
q_2 & 1 \\
q_0 & q_1
\end{vmatrix} = (\beta + \delta)(4\delta d_v\eta_i + 4\delta c + 2\delta^2 + \beta\delta + \lambda^2 + \delta c R_0 + d_v^2 \eta_i^2 + 2d_v\eta_i c) + c(2\delta + c\delta + d_v\eta_i)(\beta^2 + \lambda^2 + d_v\eta_i \delta) + 2d_v\eta_i \delta c > 0.
\]

From the well-known Routh-Hurwitz criterion given in [7], we see that all roots of (14) have negative real parts. Hence, the equilibrium point \(E_1\) is locally asymptotically stable when \(\tau_1 = \tau_2 = \tau_3 = 0\).

Next, let us consider the distribution of the roots of (14) when \(\tau_1, \tau_2, \tau_3 > 0\). Considering the root of Eq. (14) as a purely imaginary number given by \(\lambda = i\omega (\omega > 0)\), plugging into Eq. (14), and separating the real and imaginary parts, we derive that
\[
\begin{cases}
-2(2\delta + \beta + d_v\eta_i + c)\omega^2 + (\beta + \delta)(\delta d_v\eta_i + c\delta) = c\delta(\beta + \delta)R_0 \cos(\omega \tau_1 + \tau_2 + \tau_3), \\
\omega^3 - \left((d_v\eta_i + c)(\beta + \delta) + \delta(\beta + \delta) \right)\omega = c\delta(\beta + \delta)R_0 \sin(\omega \tau_1 + \tau_2 + \tau_3).
\end{cases}
\]
(16)
Squaring and adding the two equations of (16) gives
\[\omega^6 + p_1 \omega^4 + p_2 \omega^2 + p_3 = 0, \]
here
\[p_1 = (d_v \eta + c)^2 + (\beta + \delta)^2 + \delta^2 > 0, \]
\[p_2 = 2(d_v \eta \delta + c\delta)^2 + 2\delta \beta (d_v \eta + c)^2 + (c\beta + \beta d_v \eta)^2 + (\delta^2 + \delta \beta)^2 > 0, \]
\[p_3 = (\delta \beta d_v \eta + \delta^2 d_v \eta)^2 + 2c\delta^2 d_v \eta (\beta + \delta)^2 + \epsilon^2 \delta^2 (\beta + \delta)^2 (1 - R_0^2) > 0. \]
Letting \(\psi = \omega^2 \) yields
\[\psi^3 + p_1 \psi^2 + p_2 \psi + p_3 = 0. \] (17)
Clearly, all real roots of (17) are negative provided \(R_0 < 1 \). Therefore, we conclude that \(E_1 \) is locally asymptotically stable for any time delay \(\tau_1, \tau_2, \tau_3 \geq 0 \) when \(R_0 < 1 \), completing the proof. \(\square \)

Theorem 3.1 only establishes local stability of infection-free equilibrium \(E_1 \). However, the global stability of equilibrium is very useful in researching the fundamental question of whether this equilibrium be induced ultimately. So, in the next content, we focus on the mathematical analysis of the global dynamics of \(E_1 \). Moreover, for the global stability of \(E_1 \), we have the following theorem:

Theorem 3.2. If \(R_0 < 1 \), then the infection-free equilibrium \(E_1 \) of model (3)-(5) is globally asymptotically stable.

Proof. Define the following Lyapunov functional:
\[
U = \int_\Omega \left\{ H(x,t) - H_1 - \int_{H_1}^{H(x,t)} \frac{f(H_1,0,0)}{f(\xi,0,0)} d\xi + e^{\alpha_1 \tau_1} I(x,t) + \frac{\delta}{a} e^{\alpha_1 \tau_1 + \alpha_2 \tau_2} D(x,t) \right. \\
+ \frac{\delta (\beta + \delta)}{a \beta} V(x,t) e^{\alpha_1 \tau_1 + \alpha_2 \tau_2 + \alpha_3 \tau_3} + \int_{t-\tau_1}^{t} f(H(x,\xi), I(x,\xi), V(x,\xi)) V(x,\xi) d\xi \right. \\
+ \delta e^{\alpha_1 \tau_1} \int_{t-\tau_2}^{t} I(x,\xi) d\xi + \frac{\delta (\beta + \delta)}{a} e^{\alpha_1 \tau_1 + \alpha_2 \tau_2} \int_{t-\tau_3}^{t} D(x,\xi) d\xi \left\} dx,
\] (18)
where \(H_1 = \frac{2}{p} \). Obviously, the summation of the first three terms in the right-hand side of \(U \) is a non-negative number. Indeed, if \(H(x,t) \geq H_1 \), then
\[
\int_{H_1}^{H(x,t)} \frac{f(H_1,0,0)}{f(\xi,0,0)} d\xi \leq \int_{H_1}^{H(x,t)} \frac{f(H_1,0,0)}{f(H_1,0,0)} d\xi = H(x,t) - H_1
\]
with the aid of hypothesis \((T1) \). If \(H(x,t) < H_1 \) holds, apply similar reasoning to the above formula, we have the same conclusion that the functional \(U \) is non-negative.

For convenience, we will use the following notations: \(w = w(x,t) \) and \(w_{x_i} = w(x,t-\tau_i), i = 1, 2, 3 \) for any \(w \in \{ H, I, D, V \} \). Calculating the time derivative of \(U \) along solutions of system (3)-(5), we obtain
\[
\frac{dU}{dt} = \int_\Omega \left\{ -e^{\alpha_1 \tau_1 + \alpha_2 \tau_2 + \alpha_3 \tau_3} f(H,I,V) - f(H_{\tau_1}, I_{\tau_1}, V_{\tau_1}) V_{\tau_1} + \delta e^{\alpha_1 \tau_1} (I - I_{\tau_2}) \right. \\
+ \left. \frac{\delta (\beta + \delta)}{a} e^{\alpha_1 \tau_1 + \alpha_2 \tau_2} \partial V \right\} dx.
\]
According to the Divergence theorem and the homogeneous Neumann boundary condition (5), we have

$$\int_{\Omega} \Delta V \, dx = \int_{\partial \Omega} \frac{\partial V}{\partial n} \, dx = 0.$$

Besides, we use hypothesis (T1) again to note that since the function $f(H,I,V)$ is strictly monotonically increasing with respect to H, it follows that

$$\left(1 - \frac{H}{H_1}\right) \left(1 - \frac{f(H_1,0,0)}{f(H,0,0)}\right) \leq 0.$$

Thus, we have that if $R_0 < 1$, $\frac{dV}{dt} \leq 0$ for all $H, I, D, V \geq 0$. Furthermore, it is easy to see that for $\frac{dV}{dt} = 0$, then $V = 0$ and $H = \frac{z}{\mu}$ hold. When the conditions $V = 0$ and $H = \frac{z}{\mu}$ are satisfied, combined with system (3)-(5), we have $D = I = 0$.

That is to say, the largest compact invariant set in $\{(H, I, D, V) \in \mathbb{R}_+^4 : \frac{dV}{dt} = 0\}$ is the singleton E_1. From LaSalle invariance principle [39], we conclude that the infection-free equilibrium E_1 of system (3)-(5) is globally asymptotically stable when $R_0 < 1$.

\[\square \]

4. **Global stability of the chronic infection equilibrium E_2.** According to the above analysis, we know E_1 becomes unstable and the chronic infection equilibrium E_2 emerges when $R_0 > 1$. Thus, in this section, we discuss the global stability of E_2 by constructing a Lyapunov functional based on the Volterra function

$$R(z) = z - 1 - \ln z.$$

It is obvious that the function R attains its strict global minimum at 1 and satisfies $R(1) = 0$. And in the next theorem, we will make use of the following further assumption about f:

(T2) \(1 - \frac{f(H,I,V)}{f(H,I_2,V_2)}\) \(\frac{f(H,I_2,V_2)}{f(H,I,V)} - \frac{V}{V_2}\) ≤ 0, for all $H, I, V > 0$.

Theorem 4.1. If $R_0 > 1$ and (T2) hold, then the chronic infection equilibrium E_2 of model (3)-(5) is globally asymptotically stable.

Proof. Consider the following Lyapunov functional:

$$L(x, t) = \int_{\Omega} \left(L_1(x, t) + L_2(x, t) \right) \, dx,$$
where
\[L_1(x, t) = H - H_2 - \int_{H_2}^{H} f(H, I_2, V_2) \, d\xi + e^{\alpha_1} R \left(\frac{I_2}{I_2} \right) + \delta e^{\alpha_1} \left(\frac{D_2}{D_2} \right) + \frac{\delta(\beta + \delta)}{\alpha} \left(\frac{V}{V_2} \right) V_2 e^{\alpha_1 + \alpha_2 + \alpha_3} \]
and
\[L_2(x, t) = f(H, I_2, V_2) V_2 \int_{t-t}^{t} R \left(\frac{f(H, I_2, V_2)}{I_2} \right) d\xi + \delta e^{\alpha_1} \]
Clearly, \(L(x, t) \geq 0 \) with equality holds if and only if \(H = H_2, I = I_2, D = D_2 \) and \(V = V_2 \), showing that \(E_2 \) is the unique global minimum of Lyapunov functional.
Calculating the time derivative of \(L_1(x, t) \) and \(L_2(x, t) \) along solutions of model (3)-(5), we get
\[
\frac{\partial L_1}{\partial t} = \left(1 - \frac{f(H, I_2, V_2)}{f(H, I_2, V_2)} \right) \frac{\partial H}{\partial t} + e^{\alpha_1} \left(1 - \frac{I_2}{I_2} \right) \frac{\partial I}{\partial t} + \frac{\delta(\beta + \delta)}{\alpha} \left(\frac{V}{V_2} \right) V_2 e^{\alpha_1 + \alpha_2 + \alpha_3} \left(1 - \frac{D_2}{D_2} \right) \frac{\partial D}{\partial t} + \frac{\delta(\beta + \delta)}{\alpha} \left(\frac{V}{V_2} \right) V_2 e^{\alpha_1 + \alpha_2 + \alpha_3} \left(1 - \frac{V_2}{V_2} \right) d\xi \]
(19)
Here, the identities \(s = \mu H_2 + f(H_2, I_2, V_2) V_2 \), \(f(H_2, I_2, V_2) V_2 = \delta e^{\alpha_{1} I_2} \), \(a e^{-\alpha_2 I_2} I_2 = \beta D_2 + \delta D_2 \) and \(\beta e^{-\alpha_2 I} D_2 = c V_2 \) have been used. Consequently, adding (19) and (20), we obtain

\[
\frac{dL}{dt} = \int_\Omega \left(\frac{\partial L_1}{\partial t} + \frac{\partial L_2}{\partial t} \right) d\Omega
\]

where

\[
\frac{dL}{dt} = \int_\Omega \left(\mu H_2 \left(1 - \frac{H}{H_2} \right) \left(1 - \frac{f(H_2, I_2, V_2)}{f(H, I, V)} \right) + \delta \frac{(\beta + \delta)}{a} e^{\alpha_1 I_2 + \alpha_2 I_2 + \alpha_3 I_3} \left(1 - \frac{V}{V_2} \right) \right) d\Omega
\]

and

\[
\frac{dL}{dt} = \int_\Omega \left(\mu H_2 \left(1 - \frac{H}{H_2} \right) \left(1 - \frac{f(H_2, I_2, V_2)}{f(H, I, V)} \right) + \delta \frac{(\beta + \delta)}{a} e^{\alpha_1 I_2 + \alpha_2 + \alpha_2 I_2 + \alpha_3 I_3} \left(1 - \frac{V}{V_2} \right) \right) d\Omega
\]

The hypothesis (T1) implies the function \(f(H, I, V) \) is strictly increasing in \(H \), and so

\[
\left(1 - \frac{H}{H_2} \right) \left(1 - \frac{f(H_2, I_2, V_2)}{f(H, I, V)} \right) \leq 0.
\]
On the basis of the assumption (T2), we have
\[-1 - \frac{V}{V_2} \div \frac{f(H, I_2, V_2)}{f(H, I, V)} + \frac{V}{V_2} \div \frac{f(H, I, V)}{f(H, I, V)} = \left(1 - \frac{f(H, I, V)}{f(H, I_2, V_2)}\right) \left(\frac{f(H, I_2, V_2)}{f(H, I, V)} - \frac{V}{V_2}\right) \leq 0. \]

Using the Neumann boundary condition (5) and the Divergence theorem, we obtain
\[\int_{\Omega} \Delta V dx = 0 \quad \text{and} \quad \int_{\Omega} \frac{\Delta V}{V} dx = \int_{\Omega} \frac{\|\nabla V\|^2}{V^2} dx \geq 0. \]

Further \(R(z) \geq 0 \) for any \(z > 0 \) implies that \(\frac{dL}{dt} \leq 0 \) with equality if and only if \(H = H_2, I = I_2, D = D_2 \) and \(V = V_2 \). Thus, the largest compact invariant set in \(\{(H, I, D, V) | \frac{dL}{dt} = 0\} \) is the singleton \(E_2 \). By LaSalle invariance principle [10], we show that the chronic infection equilibrium \(E_2 \) is globally asymptotically stable when \(R_0 > 1 \).

5. Numerical simulations. In this section, our object is to apply theoretical results obtained in the Section 3 and 4 to the following delayed reaction-diffusion system:

\[
\begin{align*}
\frac{\partial H}{\partial t} &= s - \mu H(x, t) - \frac{kH(x, t)V(x, t)}{1 + b_1 H(x, t) + b_2 V(x, t)}, \\
\frac{\partial I}{\partial t} &= e^{-\alpha_1 \tau_1} \frac{kH(x, t - \tau_1)V(x, t - \tau_1)}{1 + b_1 H(x, t - \tau_1) + b_2 V(x, t - \tau_1)} - \delta I(x, t), \\
\frac{\partial D}{\partial t} &= a e^{-\alpha_2 \tau_2} I(x, t - \tau_2) - \beta D(x, t) - \delta D(x, t), \\
\frac{\partial V}{\partial t} &= d e \Delta V + \beta e^{-\alpha_3 \tau_3} D(x, t - \tau_3) - c V(x, t),
\end{align*}
\]

with initial conditions
\[H(x, \theta) = 5 \times 10^8, I(x, \theta) = 1.3 \times 10^7, D(x, \theta) = 2 \times 10^9, V(x, \theta) = 3.6 \times 10^8, \]

for \(x \in [0, 1] \) and \(\theta \in [-\tau, 0] \)

and homogeneous Neumann boundary conditions
\[\frac{\partial V}{\partial n} = 0, \quad t > 0, \quad x = 0, 1. \]

Obviously, the model (21)-(23), a particular case of model (3)-(5), contains the Beddington-DeAngelis incidence \(\frac{kH}{1 + b_1 H + b_2 V} \) that was used by Yang and Xu [39] in order to study the global stability of viral model with diffusion and delay. In addition, when \(f(H, I, V) = \frac{kH}{1 + b_1 H + b_2 V} \), it is easy to see that the hypotheses (T1) and (T2) are verified. It is worth saying that, from the biological point of view, the basic reproduction number \(R_0 = \frac{a \beta e^{-\alpha_1 \tau_1 - \alpha_2 \tau_2 - \alpha_3 \tau_3}}{c b (\beta + \delta)} \left(\frac{ks}{\mu + \delta h_1}\right) \) of model (21)-(23) is not proportional to \(\frac{s}{n} \), whereas the basic reproduction number \(R_0 = \frac{a \beta s}{\mu c (\beta + \delta)} \) presented in model (2) is proportional to \(\frac{s}{n} \) which denotes the number of all cells in the liver. Thus, compared to system (2), our system describes more realistically the dynamics of HBV infection.

Now, we perform some numerical simulations to illustrate the above main results. First, based on experimental data and literatures [21, 22, 11, 40, 39], we set \(s = \)
Then by the direct computation, we get a unique infection-free equilibrium E_1:

$$(H_1, I_1, D_1, V_1) = (2.6 \times 10^9, 0, 0, 0)$$

and $R_0 = 0.285 < 1$. Numerical simulations for E_1 are shown in Fig. 3 which show that E_1 is asymptotically stable. This confirms the result in Theorem 3.2.

Next, we choose $k = 1.67 \times 10^{-4}$ and do not change the other parameter values. It follows from the direct calculation that $R_0 = 1.587 > 1$. In this case, model (21)-(23) has an infection-free equilibrium $E_1 : (H_1, I_1, D_1, V_1) = (2.6 \times 10^9, 0, 0, 0)$ and a chronic infection equilibrium $E_2 : (H_2, I_2, D_2, V_2) = (1.61 \times 10^9, 2.53 \times 10^7, 4.12 \times 10^9, 9.43 \times 10^8)$. As shown in Fig. 4, E_2 is asymptotically stable which confirms our results in Theorem 4.1.

Based upon the above analysis, we know that the extinction and persistence of viral infections crucially depend on the basic reproduction number R_0. What is more, it is evident that R_0 is a decreasing function on death rates α_1, α_2 and α_3. Hence, the neglect of death rates must result in increase in size of R_0, as shown in model (2). In Fig. 5, we remark that R_0 becomes large enough when death rates α_1, α_2 and α_3 tend to 0, which confirms the result in Remark 1.

On the other hand, when the basic reproduction number R_0 is less than one, the viruses are cleared and the infection dies out (the case when E_1 is globally asymptotically stable). Moreover, by the precise expression of R_0, we find that we can reduce R_0 to below one by increasing delays τ_1, τ_2 and τ_3. Thus, a good strategy to control the HBV should focus on any drugs that can prolong the values of three delays. Numerical simulation for the relationship between R_0 and three delays are shown in Fig. 6.
Figure 4. The numerical approximations of system (21)-(23) with parameters $s = 2.6 \times 10^7$, $\mu = 0.01$, $\delta = 0.053$, $a = 150$, $\beta = 0.87$, $c = 3.8$, $d_v = 0.01$, $b_1 = b_2 = 0.01$, $\alpha_1 = 0.2$, $\alpha_2 = 0.28$, $\alpha_3 = 0.1$, $\tau_1 = 10$, $\tau_2 = 0$, $\tau_3 = 0$ and $k = 1.67 \times 10^{-4}$, showing that solution trajectories converge to the chronic infection equilibrium $E_2 : (H_2, I_2, D_2, V_2) = (1.61 \times 10^9, 2.53 \times 10^7, 4.12 \times 10^3, 9.43 \times 10^8)$.

Figure 5. The graphs of the basic reproduction number R_0 in terms of some parameters: (a) R_0 in terms of α_1 and α_2, (b) R_0 as a function of α_1 and α_3, and (c) R_0 in terms of α_2 and α_3. Here, $s = 2.6 \times 10^7$, $\mu = 0.01$, $\delta = 0.053$, $a = 150$, $\beta = 0.87$, $c = 3.8$, $b_1 = 0.01$, $\tau_1 = 5.8$, $\tau_2 = 6$, $\tau_3 = 4$ and $k = 2.4 \times 10^{-3}$.

6. Conclusion and discussion. In this paper, based on the fact of HBV infection [19, 25, 22] and motivated by the works [13, 23, 24, 2], we assume that only the viruses move freely in liver, and then establish a 4-dimensional diffusion HBV model with three delays and a general incidence rate. For this mathematical model, we define the basic reproduction number R_0 that acts as a threshold to predict whether the disease persist in the host. When the general incidence function f is assumed to meet biologically reasonable conditions (T1) and (T2), we discussed the global stability of the infection-free equilibrium E_1 and the chronic infection equilibrium E_2 by constructing suitable Lyapunov functionals and using LaSalle invariance principle. More precisely, we have shown that E_1 is globally asymptotically stable whenever $R_0 < 1$. In this case, all positive solutions converge to E_1.
and the disease can be eradicated ultimately. When $R_0 > 1$, E_1 becomes unstable and there appears a chronic infection equilibrium E_2 which is globally asymptotically stable. In this case, all positive solutions converge to E_2 and the disease will be persistent in the host. Compared with model (2), these results imply that the diffusion of free viruses and time delays have no effect on the global stability of the HBV infection model under homogeneous Neumann boundary conditions. On the other hand, notice that R_0 is a decreasing function of the three delays. Hence, we can reduce the value of R_0 to a level lower than one by increasing three delays in an effort to prevent the viruses. Moreover, ignoring the mortalities during the three delays and the third delay in model (3) will overestimate R_0. Thus, this study is more realistic and may help to analyze the dynamical behavior of other models including commonly used incidence rates [2, 20, 5, 38].

Acknowledgments. The authors express gratitude to the anonymous referee for his/her helpful suggestions and the partial supports of the National Natural Science Foundations of China (11562021/11572278/11671206/11762022) and the Science Foundations (2015FB140) of Yunnan Province.

REFERENCES

[1] WHO, Hepatitis B: Fact sheet: No. 204. 2015. Available from: http://www.who.int/mediacentre/factsheets/fs204/en/.

[2] X. Chen, L. Min, Y. Zheng, Y. Kuang and Y. Ye, Dynamics of acute hepatitis B virus infection in chimpanzees, Mathematics and Computers in Simulation, 96 (2014), 157–170.

[3] S. M. Ciupe, R. M. Ribeiro, P. W. Nelson and A. S. Perelson, Modeling the mechanisms of acute hepatitis B virus infection, J. Theor. Biol., 247 (2007), 23–35.

[4] A. Elaiw and N. AlShamrani, Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal, Nonlinear Anal. RWA, 26 (2015), 161–190.

[5] A. Elaiw and S. Azoz, Global properties of a class of HIV infection models with Beddington-DeAngelis functional response, Math. Methods Appl. Sci, 36 (2013), 383–394.

[6] W. Fitzgibbon, Semilinear functional differential equations in Banach spaces, J. Diff. Equa., 29 (1978), 1–14.

[7] I. Gradshteyn and I. Ryzhik, Tables of Integrals, Series, and Products, Academic Press, CA, 2000.

[8] F. L. Guerhier, A. Thermet, S. Guerret, M. Chevallier, C. Jamard, C. S. Gibbs, C. Trépo, L. Cova and F. Zoulim, Antiviral effect of adefovir in combination with a DNA vaccine in the duck hepatitis B virus infection model, J. Hepatol., 38 (2003), 328–334.

[9] H. Guo, D. Jiang, T. Zhou, A. Cucunati, T. M. Block and J. T. Guo, Characterization of the intracellular deproteinized relaxed circular DNA of hepatitis B virus: An intermediate of covalently closed circular DNA formation, Journal of Virology, 81 (2007), 12472–12484.
[10] J. Hale and S. V. Lunel, *Introduction to Functional Differential Equations*, Springer-Verlag, New York, 1993.

[11] K. Hattaf and N. Yousfi, A generalized HBV model with diffusion and two delays, *Comput. Math. Appl.*, 69 (2015), 31–40.

[12] K. Hattaf and N. Yousfi, Global dynamics of a delay reaction-diffusion model for viral infection with specific functional response, *Comp. Appl. Math.*, 34 (2015), 807–818.

[13] K. Hattaf, N. Yousfi and A. Tridane, A delay virus dynamics model with general incidence rate, *Differ. Equ. Dyn. Syst.*, 22 (2014), 181–190.

[14] K. Hattaf, N. Yousfi and A. Tridane, Mathematical analysis of a virus dynamics model with general incidence rate and cure rate, *Nonlinear Anal. RWA*, 13 (2012), 1866–1872.

[15] D. Henry, *Geometric Theory of Semilinear Parabolic Equations*, Springer-Verlag, New York, 1993.

[16] S. Hews, S. Eikenberry, J. D. Nagy and Y. Kuang, Rich dynamics of a hepatitis B viral infection model with logistic hepatocyte growth, *J. Math. Biol.*, 60 (2010), 573–590.

[17] R. Hirsch, D. Loeb, J. Pollack and D. Ganem, Cis-acting sequences required for encapsidation of duck hepatitis B virus pregenomic RNA, *J. Virol.*, 65 (1991), 3309–3316.

[18] T. B. Lentz and D. D. Loeb, Development of cell cultures that express hepatitis B virus to high levels and accumulate cccDNA, *J. Virol. Methods*, 169 (2010), 52–60.

[19] S. Lewin, T. Walters and S. Locarnini, Hepatitis B treatment: rational combination chemotherapy based on viral kinetic and animal model studies, *Antiviral Research*, 55 (2002), 381–396.

[20] D. Li and W. Ma, Asymptotic properties of an HIV-1 infection model with time delay, *J. Math. Anal. Appl.*, 335 (2007), 683–691.

[21] K. Manna and S. Chakrabarty, Global stability of one and two discrete delay models for chronic hepatitis B infection with HBV DNA-containing capsids, *Comp. Appl. Math.*, (2015), 1–12.

[22] K. Manna and S. Chakrabarty, Chronic hepatitis B infection and HBV DNA-containing capsids: Modeling and analysis, *Commun. Nonlinear Sci. Numer. Simul.*, 22 (2015), 383–395.

[23] C. McCluskey and Y. Yang, Global stability of a diffusive virus dynamics model with general incidence function and time delay, *Nonlinear Anal. RWA*, 25 (2015), 64–78.

[24] L. Min, Y. Su and Y. Kuang, Mathematical analysis of a basic model of virus infection with application to HBV infection, *Rocky Mountain J. Math.*, 38 (2008), 1573–1585.

[25] J. Murray, R. Purcell and S. Wieland, The half-life of hepatitis B virions, *Hepatology*, 44 (2006), 1117–1121.

[26] J. Murray, S. Wieland, R. Purcell and F. Chisari, Dynamics of hepatitis B virus clearance in chimpanzees, *Proc. Natl. Acad. Sci.*, 102 (2005), 17780–17785.

[27] M. A. Nowak, S. Bonhoeffer, A. M. Hill, R. Boehme, H. C. Thomas and H. McDade, Viral dynamics in hepatitis B virus infection, *Proc. Natl. Acad. Sci.*, 93 (1996), 4398–4402.

[28] M. Protter and H. Weinberger, *Maximum Principles in Differential Equations*, Prentice Hall, Englewood Cliffs, 1967.

[29] R. M. Ribeirom, A. Lo and A. S. Perelson, Dynamics of hepatitis B virus infection, *Microb. Infect.*, 4 (2002), 829–835.

[30] C. Seeger and W. Mason, Hepatitis B virus biology, *Microbiol. Mol. Biol. Rev.*, 64 (2000), 51–68.

[31] K. Simon, V. Lingappa and D. Ganem, Secreted hepatitis B surface antigen polypeptides are derived from a transmembrane precursor, *J. Cell Biol.*, 107 (1988), 2163–2168.

[32] J. Summers, A. Connell and I. Millman, Genome of hepatitis B virus: Restriction enzyme cleavage and structure of DNA extracted from Dane particles, *Proc. Natl. Acad. Sci.*, 72 (1975), 4597–4601.

[33] C. Travis and G. Webb, Existence and stability for partial functional differential equations, *Trans. Amer. Math. Soc.*, 200 (1974), 395–418.

[34] K. Wang, A. Fan and A. Torres, Global properties of an improved hepatitis B virus model, *Nonlinear Anal. RWA*, 11 (2010), 3131–3138.

[35] F. Wang, Y. Huang and X. Zou, Global dynamics of a PDE in-host viral model, *Appl. Anal.*, 93 (2014), 2312–2329.

[36] Y. Wang and X. Liu, Dynamical behaviors of a delayed HBV infection model with logistic hepatocyte growth, cure rate and CTL immune response, *JPN J. Ind. Appl. Math.*, 32 (2015), 575–593.
[37] K. Wang and W. Wang, Propagation of HBV with spatial dependence, *Math. Biosci.* **210** (2007), 78–95.

[38] S. Xu, Global stability of the virus dynamics model with Crowley-Martin functional response, *Electron. J. Qual. Theory Differ. Equ.* **9** (2012), 1–9.

[39] Y. Yang and Y. Xu, Global stability of a diffusive and delayed virus dynamics model with Beddington-DeAngelis incidence function and CTL immune response, *Comput. Math. Appl.* **71** (2016), 922–930.

[40] Y. Zhang and Z. Xu, Dynamics of a diffusive HBV model with delayed Beddington-DeAngelis response, *Nonlinear Anal. RWA* **15** (2014), 118–139.

[41] L. Zou, W. Zhang and S. Ruan, Modeling the transmission dynamics and control of hepatitis B virus in China, *J. Theor. Biol.* **262** (2010), 330–338.

Received September 2017; revised December 2017.

E-mail address: 1249574934@qq.com
E-mail address: lhh_math@163.com
E-mail address: xcl815@163.com
E-mail address: fangyanynu@aliyun.com