Abstract. α-rhamnrtin-3-α-rhamnoside (ARR) is the principal compound extracted from Loranthus tanakae Franch. & Sav. However, its underlying pharmacological properties remain undetermined. Inflammation is a defense mechanism of the body; however, the excessive activation of the inflammatory response can result in physical injury. The present study aimed to investigate the effects of ARR on lipopolysaccharide (LPS)-induced RAW264.7 macrophages and to determine the underlying molecular mechanism. A Cell Counting Kit-8 assay was performed to assess cytotoxicity. Nitric oxide (NO) production was measured via a NO colorimetric kit. Levels of prostaglandin E2 (PGE2) and proinflammatory cytokines, IL-1β and IL-6, were detected using ELISAs. Reverse transcription-quantitative (RT-q)PCR analysis was performed to detect the mRNA expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), IL-6 and IL-1β in LPS-induced RAW264.7 cells. Western blotting, immunofluorescence and immunohistochemistry analyses were performed to measure the expression levels of NF-κB and nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway-related proteins to elucidate the molecular mechanisms of the inflammatory response. The results of the cytotoxicity assay revealed that doses of ARR ≤200 µg/ml exhibited no significant effect on the viability of RAW264.7 cells. The results of the Griess assay demonstrated that ARR inhibited the production of NO. In addition, the results of the ELISAs and RT-qPCR analysis discovered that ARR reduced the production of the proinflammatory cytokines, IL-1β and IL-6, as well as the proinflammatory mediators, PGE2, iNOS and COX-2, in LPS-induced RAW264.7 cells. Immunohistochemical analysis demonstrated that ARR inhibited LPS-induced activation of TNF-associated factor 6 (TRAF6) and NF-κB p65 signaling molecules, while reversing the downregulation of the NOD-like receptor family CARD domain containing 3 (NLRC3) signaling molecule, which was consistent with the results of the western blotting analysis. Immunofluorescence results indicated that ARR reduced the increase of NF-κB p65 nuclear expression induced by LPS. Furthermore, the results of the western blotting experiments also revealed that ARR upregulated heme oxygenase-1, NAD(P)H quinone dehydrogenase 1 and Nrf2 pathway molecules. In conclusion, the results of the present study suggested that ARR may exert anti-inflammatory effects by downregulating NF-κB and activating Nrf2-mediated inflammatory responses, suggesting that ARR may be an attractive anti-inflammatory candidate drug.

Introduction

Inflammation is the body’s defense response against various damage factors, including bacteria, viruses and tissue damage, and regulated inflammatory responses play a vital role in coping with pathogens and preventing tissue damage (1). However, abnormal inflammatory responses can facilitate the progression of a wide range of types of disease, including rheumatoid arthritis, chronic hepatitis, Alzheimer’s disease, inflammatory bowel disease and cancer (2,3). Thus, effective control of inflammatory responses is pivotal for the prevention and treatment of several diseases, including cancer (3). Inflammatory diseases are complex and difficult to cure, thus inflammatory models are used to screen for anti-inflammatory drugs. For example, the lipopolysaccharide (LPS)-induced inflammatory response model is widely used in inflammation research (4-6).

NF-κB is an important, multi-directional, functional regulator of the anti-inflammatory response (7). The main method for preventing chronic inflammation-mediated disorders is to regulate the secretion of proinflammatory cytokines (8). The production or secretion of proinflammatory cytokines results
in the activation of NF-κB, which in turn stimulates several transcription factors that control the gene expression of proinflammatory cytokines, including ILs, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) (9). The activation of NF-κB also plays an indispensable role in the development of several types of disease, including rheumatoid arthritis, inflammatory bowel disease and autoimmunity, as well as diseases comprising a significant inflammatory component, such as cancer and atherosclerosis (10).

TNF-associated factor 6 (TRAF6) is a key regulator of NF-κB and plays an important regulatory role in inflammation (11). NOD-like receptor family CARD domain containing 3 (NLRC3) has been found to exert inhibitory effects on proinflammatory signaling transduction, the ubiquitination of TRAF6 and nuclear translocation of NF-κB p65 (12). In addition, NLRC3 was discovered to inhibit a major inflammatory pathway controlled by NF-κB, which directly interacts with TRAF6 and forms a new protein complex called the ‘TRAFasome’ (13).

Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a pivotal and significant transcription factor, which controls several antioxidant enzymes including heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1) (14). HO-1 plays a key role in the antioxidant processes and suppressing the immune response (15). Nrf2, coupled with its target genes to act as an inflammation regulatory system, has been reported to downregulate the expression levels of several proinflammatory cytokines, which could antagonize NF-κB activation (16,17).

Loranthus tanakae Franch. & Sav, which grows on the trees of Quercus L. and Betula, has been found to have various biological properties, including anti-microbial, anti-tumor and antioxidant effects (18). It has been reported that its methanol extracts possess various anti-tumor activities (19). Natural products represent novel compounds that have been shown to prevent different types of disease, such as cancer, infectious diseases and cardiovascular diseases (20). Epigallocatechin, curcumin and other natural phenolic compounds have been established to possess anti-inflammatory and anti-oxidant activities (21-23). α-rhamnitrin-3-α-rhamnoside (ARR; Fig. 1A), a phenolic flavonoid compound, is the main active ingredient of Loranthus tanakae Franch. & Sav (24). However, to the best of our knowledge, the pharmacological activities and anti-inflammatory molecular mechanisms of ARR remain unknown. Thus, the present study aimed to investigate the anti-inflammatory effect of ARR in RAW264.7 cells to determine whether it occurred via the NF-κB and Nrf2 signaling pathway. In addition, the study sought to elucidate its underlying molecular mechanism of action to provide a preliminary basis for the development of ARR into an anti-inflammatory drug.

Materials and methods

Reagents and chemicals. ARR (purity >95%) was isolated from Loranthus tanakae Franch. & Sav. in our laboratory, as previously described (21). The structure of ARR was elucidated by nuclear magnetic resonance. LPS and indomethacin (Indo) were purchased from Sigma-Aldrich; Merck KGaA. DMEM, FBS and penicillin-streptomycin were purchased from Gibco; Thermo Fisher Scientific, Inc. Primary rabbit monoclonal antibodies, including NF-κB p65 (cat. no. ab16502), phosphorylated-(p)-NF-κB-p65 (cat. no. ab76302), Nrf2 (cat. no. ab92946), NQO1 (cat. no. ab80588), HO-1 (cat. no. ab13243), TRAF6 (cat. no. ab137452), β-actin (cat. no. ab8227) and Histone H3 (cat. no. ab1791) were purchased from Abcam and the NLRC3 antibody (cat. no. DF13411) was obtained from Affinity Biosciences. The nitric oxide (NO) colorimetric kit (cat. no. E-BC-K035-M) and the cytokine mouse ELISA kits specific for prostaglandin E2 (PGE2; cat. no. E-EL-0034c), IL-6 (cat. no. E-EL-M0044c) and IL-1β (cat. no. E-EL-M0037c) were purchased from Elabscience.

Cell lines and culture. Leukemia cells from mouse mononuclear macrophages (RAW264.7; cat. no. CL-0190) were obtained from Procell Life Science & Technology Co. Ltd., and cultured in DMEM supplemented with 10% heat-inactivated FBS and 1% penicillin-streptomycin, at 37°C with 5% CO2.

Cell viability assay. A Cell Counting Kit-8 (CCK-8) assay (which uses WST-8 for the colorimetric reaction) was performed to assess cell viability. Briefly, RAW264.7 macrophages (4x10⁴ cells/ml) were seeded into 96-well plates (100 µl/well) and treated with different concentrations of ARR (5, 10, 20, 40, 80, 100 or 200 µg/ml) for 24 h at 37°C. Following the incubation, 10 µl CCK-8 reagent (Sigma-Aldrich; Merck KGaA) was added to each well and incubated for an additional 2 h at 37°C. In the presence of the electronic coupling reagent, 1-Methoxy PMS, WST-8 was transformed to orange-yellow water-soluble formazan. The optical density was determined using a microplate reader at a wavelength of 450 nm.

NO assay. For the NO assay, 1x10⁶/ml RAW264.7 macrophages were seeded into 6-well plates. Following incubation for 24 h with different concentrations of ARR (0, 25, 50 and 100 µg/ml) or the positive control drug, Indo (8 µg/ml; commonly used to treat inflammation) for 2 h, LPS (100 ng/ml) was added, and cells were incubated for an additional 24 h. According to the manufacturer's instructions, reagents were added into each well and cells were incubated at 37°C for 30 min in the dark. The absorbance was measured using a microplate reader at a wavelength of 550 nm. The dosage of ARR used was determined according to the preliminary experiments (data not shown), and the dosage of LPS was selected based on our previous study (25).

ELISA. The levels of the cytokines, IL-6, IL-1β and PGE2, in the macrophage supernatants (obtained by centrifugation at 1,000 x g at room temperature for 5 min) from each group were determined using IL-6, IL-1β and PGE2 ELISA kits, according to the manufacturer's instructions. The absorbance was measured using a microplate reader at a wavelength of 450 nm.

Reverse transcription-quantitative (RT-q)PCR. Total RNA was extracted from RAW264.7 cells using TRIzol® reagent (Invitrogen; Thermo Fisher Scientific, Inc.), and the quality and concentration of the isolated RNA were determined using a Nanodrop 1000 spectrophotometer (Thermo Fisher Scientific, Inc.). First-strand cDNA was synthesized using an RT-qPCR synthesis kit (cat. no. AT311; Beijing TransGen Biotech Co., Ltd.), according to the manufacturer's protocol. Relative
expression levels of IL-6, IL-1β, COX-2, iNOS and GAPDH were determined using a PerfectStart™ Green qPCR SuperMix (Beijing TransGen Biotech Co., Ltd.). The following thermocycling conditions were used for the qPCR: Initial denaturation at 94˚C for 30 sec; followed by 45 cycles at 94˚C for 5 sec and 60˚C for 30 sec. The mRNA expression levels of IL-6, IL-1β, COX-2 and iNOS were calculated using the 2-ΔΔCq method (26) and normalized to GAPDH. The primer sequences used for the qPCR are listed in Table I.

Western blotting. Total protein was extracted from RAW264.7 cells using a Whole Cell Lysis assay (Nanjing KeyGen Biotech Co., Ltd.). Total nuclear and cytoplasmic proteins were extracted using the Nuclear and Cytoplasmic Protein Extraction kit (Nanjing KeyGen Biotech Co., Ltd.). Protein concentration was measured using a BCA protein assay kit (Nanjing KeyGen Biotech Co., Ltd.) and 20 µg protein/lane was separated via 10% SDS-PAGE. The separated proteins were subsequently transferred onto PVDF membranes and blocked with 5% BSA (Thermo Fisher Scientific, Inc.) at room temperature for 1 h. The membranes were then incubated overnight at 4˚C with primary antibodies against NF-κB p65 (1:1,000), p-NF-κB p65 (1:1,000), NrF2 (1:1,000), HO-1 (1:1,000), NQO1 (1:1,000), NLRC3 (1:1,000), TRAF6 (1:1,000), β-actin (1:2,000) or Histone H3 (1:2,000). Following the primary antibody incubation, the membranes were incubated with an HRP-conjugated anti-rabbit secondary antibody (Abcam; cat. no. ab6721; 1:2,000) or Histone H3 (1:2,000). Following the primary antibody incubation, the membranes were incubated with an HRP-conjugated anti-rabbit secondary antibody (Abcam; cat. no. ab6721; 1:5,000) at room temperature for 1 h. The membranes were washed multiple times with TBS-Tween-20 buffer and the protein bands were visualized using enhanced chemiluminescence reagent (cat. no. G2020; Wuhan Servicebio Technology Co., Ltd.) and a chemiluminescence imaging system (Bio-Rad Laboratories, Inc.). Densiometric analysis was performed using Image Lab software (version 6.0; Bio-Rad Laboratories, Inc.).

Immunofluorescence staining. RAW264.7 cells (1x10^5/ml) were seeded onto glass coverslips, plated into the bottom of 6-well plates and fixed with 4% paraformaldehyde at room temperature for 15 min. Cells were subsequently permeabilized with 0.1% Triton X-100 and blocked with 10% goat serum (Elabscience) at room temperature for 30 min. Cells were then incubated with a rabbit anti-NF-κB p65 antibody (1:1,000) at 37˚C for 1 h and Cy3-conjugated goat anti-rabbit IgG (H+L) secondary antibody (Elabscience; cat. no. E-IR-R321; 1:5,000) at 37˚C for 1 h. Nuclei were stained with DAPI (Pierce; Thermo Fisher Scientific, Inc.) at 37˚C for 5 min, and a drop of anti-fluorescence quenching mounting solution was added prior to visualization using a fluorescence microscope (magnification, x400). Analysis was performed using ImageJ software (version 1.80; National Institutes of Health).

Immunohistochemistry staining. Immunohistochemistry analysis was performed as previously described (22). The primary antibodies used were as follows: Anti-NLRC3 (1:500), anti-TRAF6 (1:500) and anti-NF-κB p65 (1:500), and an
Effect of ARR on the Nrf2 signaling pathway in LPS-stimulated RAW264.7 cells. The effect of ARR on the Nrf2 signaling pathway in LPS-stimulated RAW264.7 cells was also investigated. The western blotting results demonstrated that, compared with the control group, LPS significantly upregulated the expression levels of NQO1, while the expression levels of Nrf2 and HO-1 were not significantly altered. Treatment with ARR notably induced the expression levels of Nrf2 protein and its target molecule, HO-1, compared with the LPS group (Fig. 3D-F). Taken together, these results suggest that ARR may exert an anti-inflammatory effect via inhibiting the expression of several inflammatory factors at both the mRNA and protein levels.

Effect of ARR on the gene transcription of proinflammatory factors in LPS-stimulated RAW264.7 cells. To determine whether the regulation of inflammatory factors by ARR occurred at the mRNA level, the expression levels of various inflammatory factors were detected via RT-qPCR analysis. As presented in Fig. 2A-D, LPS significantly upregulated the mRNA expression levels of iNOS, IL-6, IL-1β and COX-2 compared with the control group. Compared with the LPS group, the mRNA levels of inflammatory factors, iNOS, IL-6, IL-1β and COX-2 (except 25 µg/ml ARR treatment), were significantly downregulated following the addition of ARR, whereby the effects of ARR were most notable at 100 µg/ml. These findings are consistent with the ELISA results, suggesting that ARR may exert an anti-inflammatory effect by inhibiting the expression of several inflammatory factors in LPS-stimulated RAW264.7 cells.
NF-κB p65 nuclear translocation compared with the control group (Fig. 4). Notably, ARR markedly suppressed the nuclear translocation of NF-κB p65 compared with the LPS group. Taken together, these results suggested that ARR may exert anti-inflammatory effects by inhibiting NF-κB p65 translocation.

Effect of ARR on NLRC3, TRAF6 and NF-κB p65 protein expression in LPS-stimulated RAW264.7 cells. To further investigate the effect of ARR on the NF-κB signaling pathway, immunohistochemistry staining and western blotting were performed to determine the expression levels of NLRC3, TRAF6 and NF-κB p65 in RAW264.7 cells. Treatment with LPS did not significantly affect NLRC3 expression, while the expression levels of TRAF6 and NF-κB p65 were upregulated compared with the control group (Fig. 5A-D). However, NLRC3 expression was markedly upregulated following the addition of ARR, while the expression levels of TRAF6 and NF-κB p65 were downregulated compared with the LPS group. Taken together, these results suggested that ARR may significantly upregulate NLRC3 and downregulate TRAF6 and NF-κB p65 expression levels in the inflammatory response.

Discussion

Inflammation is a natural host defense reaction process, which is divided into acute and chronic inflammation according to the duration (29). The main symptoms of acute inflammation include redness, swelling and pain (30,31). Chronic inflammation is caused by the persistence of inflammatory factors and damage to the tissues, which is manifested by the degeneration, exudation and proliferation of local tissues (32,33). ARR is a flavonoid compound extracted from the Loranthus tanakae Franch. & Sav (19). Flavonoids have been reported to exert anti-inflammatory (34), anticancer (35) and cardioprotective effects (36). However, the effect of ARR on inflammation and its underlying molecular mechanism remain unclear.

When macrophages are activated, they produce various inflammatory cytokines that cause inflammation (9). LPS is a macrophage stimulus, which can cause macrophages to secrete proinflammatory factors, including NO, PGE_2, IL-6 and IL-1β (37). The present study established an LPS-induced inflammatory response in vitro model to evaluate the anti-inflammatory effect of ARR on RAW264.7 cells. The use of an LPS-induced macrophage line is a well-established anti-inflammatory in vitro model, which is widely deemed as a standard and reliable model to determine the potential of novel anti-inflammatory drug candidates, and therefore predominantly adopted by researchers of this field (38-41). Exposure to high levels of NO can cause an innate immune response and result in tissue disruption or cell injury (42). The cytokines, IL-6 and IL-1β, cause tissue damage and play an essential role in mediating various types of inflammatory disease (43). The results of the present study demonstrated that ARR notably suppressed the secretion of the proinflammatory factors, IL-6 and IL-1β.

Inflammatory responses are accompanied by the systematic activation of several signaling pathways (44). NF-κB is crucial to inflammatory responses as it releases
proinflammatory cytokines and p65 translocation plays a key role in the activation of NF-κB (45), which was also discovered to be the main signaling pathway for LPS to induce inflammation in macrophages (46,47). Suppression of NF-κB activation has been found to represent a promising anti-inflammatory strategy (48). NF-κB downregulates the expression levels of iNOS, COX-2 and other inflammatory-related genes by activating transcription (49). NO is a free gaseous signaling molecule synthesized by iNOS, and excess production of NO mediated by iNOS induces an inflammatory response (50). COX-2 is known to generate proinflammatory prostaglandins, such as PGE₂, which induce inflammation (51). A variety of natural compounds, including flavonoids, quercetin, genistein and kaempferol have been considered as natural COX-2 inhibitors (52,53). Kim et al (54) demonstrated that formononetin-7-O-phosphate inhibited COX-2 expression by inhibiting NF-κB nuclear translocation.

The present study also investigated whether ARR exerts anti-inflammatory effects via the NF-κB signaling pathway. As expected, the results demonstrated that ARR not only downregulated iNOS and COX-2 mRNA expression levels, but also suppressed NO and PGE₂ content, in a dose-dependent manner. In addition, ARR markedly blocked NF-κB p65 translocation. To the best of our knowledge, the present study was the first to demonstrate that ARR can inhibit the inflammatory response via the NF-κB signaling pathway in LPS-induced RAW264.7 cells.

NLRC3 serves as a checkpoint to prevent dysregulated inflammation. Following stimulation of RAW264.7 cells with LPS, NLRC3 was observed to serve as a de-ubiquitinating enzyme to remove the ubiquitination of TRAF6 and inhibited the nuclear translocation of the NF-κB p65 subunit to reduce the release of IL-1β (55). The results of the present study demonstrated that ARR upregulated NLRC3 expression to inhibit the activation of the NF-κB pathway, which is consistent with previous findings (55,56).

The Nrf2 signaling pathway is another important regulator of inflammation. The activation of Nrf2 and its target

Figure 3. ARR inhibits the NF-κB signaling pathway and activates the Nrf2 signaling pathway. RAW264.7 cells were treated with ARR (100 µg/ml) or Indo (positive control, 8 µg/ml) at 37˚C for 24 h, with or without LPS (100 ng/ml). The protein expression levels of (A) total NF-κB p65 and p-NF-kB p65, (B) NF-kB p65 in the nucleus, (C) NF-kB p65 in the cytosol, (D) Nrf2, (E) HO-1 and (F) NQO1 were detected using western blotting and semi-quantified using Image Lab software. LPS represents proteins from the 100 ng/ml LPS-treated group. Data are presented as the mean ± SD. *P<0.01 vs. control group; **P<0.05, ***P<0.01 vs. LPS group. ARR, α-rhamnrtin-3-α-rhamnoside; Nrf2, nuclear factor-erythroid 2-related factor 2; Indo, indomethacin; LPS, lipopolysaccharide; HO-1, heme oxygenase-1; NQO1, NAD(P)H quinone dehydrogenase 1; p-, phosphorylated.
molecules, such as HO-1 and NQO1, is considered an intracellular protective mechanism against oxidative stress and inflammatory responses (57). It has been reported that the activation of Nrf2 could disrupt the crosstalk between NF-κB and its target molecules, thereby controlling the inflammatory response (58). In addition, HO-1 and NQO1 were discovered to inhibit the transcription of inflammatory adhesive molecules mediated by NF-κB (41). Moreover, previous studies have revealed that the regulation of NF-κB may be associated with the Nrf2 signaling pathway, and it was reported that Nrf2 knockdown promoted the transcriptional activity of NF-κB (59-61). The results of the present study demonstrated that ARR upregulated Nrf2 expression and inhibited the nuclear translocation of NF-κB. Therefore, it was suggested that ARR-induced Nrf2 activation may prevent the increase of inflammatory cytokines mediated by NF-κB. However, the underlying molecular mechanism by which ARR affects the crosstalk between Nrf2 and NF-κB requires further investigation.

The aim of the present study was to explore the effects of ARR on LPS-induced RAW264.7 macrophages and to investigate the potential underlying mechanism. The western blotting, immunofluorescence and immunohistochemistry experimental results indicated that ARR inhibited the LPS-induced activation of TRAF6 and NF-κB p65 signaling molecules. Furthermore, ARR could upregulate NLRC3, HO-1, NQO1 and Nrf2 expression. The experiments performed and parameters evaluated in the present work suggested that ARR may exert anti-inflammatory effects, at least in part, by downregulating NF-κB and activating Nrf2-mediated inflammatory responses. In future studies, more in-depth investigations on the anti-inflammatory effect of ARR, and the specific relationship between NLRC3, NLRC3 and NF-κB should be performed.

In conclusion, the results of the present study demonstrated that ARR exerted anti-inflammatory effects in LPS-stimulated RAW264.7 cells, at least partially through the modulation of NF-κB- and Nrf2-mediated inflammatory responses. These results suggested that ARR may be an attractive candidate for the treatment of inflammation-related diseases. However, as this study was only performed using one macrophage cell line, future studies should be conducted on a wider variety of cells to verify the current study findings. Currently, numerous studies have evaluated the biological activities and mechanisms of tested compounds by comparing the treatment group (tested compound plus challenge) with the model group (only challenge), seldom employing a group treated with the sole test compound without challenge (62-66). Following this experimental setup, this type of grouping was employed for the LPS-stimulated RAW264.7 cell model in the present work. Hence, in future studies, more in-depth investigations on the anti-inflammatory effects of ARR, including the involvement of an ARR group without LPS challenge and in vivo animal models, should be conducted to gain further insight into the mechanism of action. These future studies should broaden the current understanding of the anti-inflammatory mechanism and highlight the potential of ARR as anti-inflammatory candidate drug.

Acknowledgements

Not applicable.
Figure 5. ARR downregulates the protein expression of TRAF6 and NF-κB p65 by increasing the content of NLRC3 protein molecules. (A) Expression levels of NLRC3, TRAF6 and NF-κB p65 in LPS-stimulated RAW264.7 cells were detected using immunohistochemistry staining (magnification, x400; scale bar, 200-μm). The mean optical density values of (B) NLRC3, (C) TRAF6 and (D) NF-κB p65 were quantified using ImageJ software. The protein expression levels of (E) NLRC3 and (F) TRAF6 were detected using western blotting and semi-quantified using Image Lab software. LPS represents protein from the 100 ng/ml LPS-treated group; Indo represents protein from the 8 μg/ml Indo and 100 ng/ml LPS-treated group; ARR represents protein from the 100 μg/ml ARR and 100 ng/ml LPS-treated group. Data are presented as the mean ± SD (n=3). **P<0.01 vs. control group; *P<0.05, ***P<0.01 vs. LPS group. ARR, α-rhamnatin-3-α-rhamnoside; TRAF6, tumor necrosis factor-associated factor 6; NLRC3, NOD-like receptor family CARD domain containing 3; LPS, lipopolysaccharide; Indo, indomethacin.
Funding
The present study was funded by the Central Government Guides Local Scientific and Technological Development Fund Projects (grant no. YDZX2020140001443), Shaxi International Science and Technology Cooperation Project (grant no. 201803D421065), the National Natural Science Foundation of China (grant nos. 30672621 and 81173473) and the Taiyuan City Science and Technology Project Special Talents Star Project (grant no. 120247-08).

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors’ contributions
JTZ and GY conceived and designed the experiments. KDR, JC and JH performed the experiments and analyzed the data. JTZ and GY confirmed the authenticity of all the raw data. JTZ and KDR drafted the initial manuscript and prepared the figures. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Patient consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References
1. Yang SH, Le B, Androutsopoulos VP, Tsukamoto C, Shin TS, Tsatsakis AM and Chung G: Anti-inflammatory effects of soyasapogenol I-α via downregulation of the MAPK signaling pathway in LPS-induced RAW 264.7 macrophages. Food Chem Toxicol 113: 211-217, 2018.
2. Venkatesan T, Park EJ, Choi YW, Lee J and Kim YK: Anti-inflammatory activity of Ternstroemia gymnanthera stem bark extracts in bacterial lipopolysaccharide-stimulated RAW264.7 murine macrophage cells. Pharm Biol 55: 837-846, 2017.
3. Venkatesan T, Choi YW, Lee J and Kim YK: Falcarioidil inhibits LPS-induced inflammation via attenuating MAPK and JAK-STAT signaling pathways in murine macrophage RAW 264.7 cells. Mol Cell Biochem 445: 169-178, 2018.
4. Vašiček O, Lojek A and Číž M: Serotonin and its metabolites reduce oxidative stress in murine RAW264.7 macrophages and prevent inflammation. J Physiol Biochem 76: 49-60, 2020.
5. Park SM, Lee TH, Zhao R, Kim YS, Jung JY, Park CA, Jegal KH, Ku SK, Kim JK, Lee CW, et al: Amelioration of inflammation responses by Socheongryong-Tang, a traditional herbal medicine, in RAW 264.7 cells and rats. Int J Mol Med 41: 2771-2783, 2018.
6. Novilla A, Djamhuri DS, Nurhayati B, Rihibiba DD, Afiah E and Widowati W: Anti-inflammatory properties of oolong tea (Camellia sinensis) ethanol extract and epigallocatechin gallate in LPS-induced RAW 264.7 cells. Asian Pacific J Tropical Biomed 7: 1005-1009, 2017.
7. Liang N, Sang Y, Liu W, Yu W and Wang X: Anti-inflammatory effects of gingerol on lipopolysaccharide-stimulated RAW 264.7 cells by inhibiting NF-κB signaling pathway. Inflammation 41: 835-845, 2018.
8. Shim SY, Sung SH and Lee M: Anti-inflammatory activity of mulberrofuran K isolated from the bark of Morus bombycis. Int Immunopharmacol 58: 117-124, 2018.
9. Alam MB, Ju MK, Kwon YG and Lee SH: Proteoglycan attenuates inflammation stimulated by carrageenan and LPS via the MAPK/NF-κB pathway. Food Chem Toxicol 131: 110883, 2019.
10. Olajide OA, Akande IS, Filho C, Lepiaz-Raba I and de Sousa DP: Methyl 3,4,5-trimethoxycinnamate suppresses inflammation in RAW264.7 macrophages and blocks macrophage-adiocyte interaction. Inflammopharmacol 28: 1315-1326, 2020.
11. Gündelik Y, Eren E and Özoğuz N: Overexpressed NLRC3 acts as an anti-inflammatory cytosolic protein. J Innate Immun 7: 25-36, 2014.
12. Schneider M, Zimmermann AG, Roberts RA, Zhang L, Swanson KV, Wen H, Davis BK, Allen IC, Holl EK, Ye Z, et al: The innate immune sensor NLR3 attenuates toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-κB. Nat Immunol 13: 823-831, 2012.
13. Zhang L, Mo J, Swanson KV, Wen H, Petruccelli A, Gregory SM, Zhang Z, Schneider M, Jiang Y, Fitzgerald KA, et al: NLR3, a member of the NLR family of proteins, is a negative regulator of innate immune signaling induced by the DNA sensor STING. Immunity 40: 329-341, 2014.
14. Wu A, Yang Z, Huang Y, Yuan H, Lin C, Wang T, Zhao Z, Zhou Y and Zhu C: Natural phenylethanoid glycosides isolated from Callicarpa kwangtungensis suppressed lipopolysaccharide-mediated inflammatory response via activating Keap1/Nrf2/HO-1 pathway in RAW 264.7 macrophages cell. J Ethnopharmacol 258: 112857, 2020.
15. Younis NS and Mohamed ME: Protective effects of myrrh essential oil on isoproterenol-induced myocardial infarction in rats through antioxidant, anti-inflammatory, Nrf2/HO-1 and apoptotic pathways. J Ethnopharmacol 270: 113793, 2021.
16. Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, Tanaka N, Moriguchi T, Motohashi H, Nakayama K and Yamamoto M: Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun 7: 11624, 2016.
17. Kim HK, Kim JD, Park SB, Son HJ, Park GH, Oh HJ, Kim HS and Jeong JB: Anti-inflammatory activity of the extracts from Rodgersia podophylla leaves through activation of Nrf2/HC-1 pathway, and inhibition of NF-κB and MAPKs pathway in mouse macrophage cells. Inflamm Res 69: 233-244, 2020.
18. Qiu HX and Lin YR: Loranthaceae Juss. In: Flora of China. Editorial Committee of Flora of China, Chinese Academy of Sciences (eds). Vol. 24. Science Press, Beijing, p101, 1988.
19. Kim YK, Kim YM, Choi SU and Ryu SY: Isolation of flavonol rhamnosides from Loranthus tanakae and cytotoxic effect of them on human tumor cell lines. Arch Pharm Res 27: 44-47, 2004.
20. Chen Y, Lin Y, Li Y and Li C: Total flavonoids of Hedystis diffusa wild inhibit inflammatory responses in LPS-activated macrophages via suppression of the NF-κappaB and MAPK signaling pathways. Exp Ther Med 11: 1116-1122, 2016.
21. Feng H, He Y, La L, Hou C, Song L, Yang Q, Wu F, Liu W, Hou L, Li Y, et al: The flavonoid-enriched extract from the root of Smlax China L., inhibits inflammatory responses via the TLR-4-mediated signaling pathway. J Ethnopharmacol 256: 112785, 2020.
22. Cho BO, Che DN, Kim JS, Kim JH, Shin JY, Kang HJ and Jung SI: In vitro anti-inflammatory and anti-oxidative stress activities of Kushnerol C isolated from the roots of sophora flavescens. Molecules 25: 1768, 2020.
23. Chiu YH, Wu YW, Hung JI and Chen MC: Epigallocatechin gallate/L-ascorbic acid-loaded polyglycolic acid microspheres with antioxidant, anti-inflammatory, and immunomodulatory effects for the treatment of atopic dermatitis. Acta Biomater 130: 223-233, 2021.
24. Zhong Z, Xue B, Qiangqang X, Shouyuan Z and Guane Y: Preliminary experiments on the chemical constituents of the parasitic mulberry. Chinese Medicines and Clinics 12: 762-763, 2012 (In Chinese).
25. Zhou J, Wang T, Dou Y, Huang Y, Qu C, Gao J, Huang Z, Xu Y, Huang P, Liu Z, Lin P, Su Z, Bao Y, et al: Ameliorates 2,4,6-trinitrobenzenesulfonic acid-induced experimental colitis in rats: Involvement of NF-κB pathway and NLRP3 inflammatory. Int Immunopharmacol 64: 264-274, 2018.
Arr Exerts Anti-Inflammatory Effects on LPS-Stimulated RAW264.7 Cells

26. Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402-408, 2001.

27. Kim MS, Park JS, Chung YC, Jang S, Hyun CG and Kim SY: Anti-inflammatory effects of formononetin 7-O-phosphate, a novel biorenovation product, on LPS-stimulated RAW 264.7 cells. J Med Food 18: 83-94, 2015.

28. Son ES, Park JW, Kim SH, Park HR, Han W, Kwon OC, Nam JY, Jeong SH and Lee CS: Anti-inflammatory activity of 3,5,6,7,3',4'-hexamethoxyflavone via repression of the NF-κB and MAPK signaling pathways in LPS-stimulated RAW264.7 cells. Mol Med Rep 22: 1985-1993, 2020.

29. Li, Q.Q, Song AX, Yin JY, Siu KC, Wong WT and Wu JY: Anti-inflammation activity of exopolysaccharides produced by a medicinal fungus Cordyceps sinensis Cs-HK1 in cell and animal models. Int J Biol Macromol 149: 1042-1050, 2020.

30. Lee M, Hong S, Park C, Han MH, Kim SO, Hong SH, Kim GY and Choi YH: Anti-inflammatory effects of DUCHANGMDGOKDANGT, a traditional herbal formulation, in lipopolysaccharide-stimulated RAW 264.7 macrophages. Exp Ther Med 14: 587-596, 2017.

31. Leal NRF, Vigliano MV, Pinto FA, de Sousa TV, Velozo LSM, Sabino KC, da Graça Justo M and Coelho MG: Anti-inflammatory activity of diterpenes-enriched fractions from Pterodon polygalaeiflorus through inhibition of macrophage migration and cytokine production. J Pharm Pharmacol 70: 3176, 2018.

32. Kim YJ: Rhamnetin attenuates melanogenesis by suppressing oxidative stress and pro-inflammatory mediators. Biol Pharm Bull 36: 1341-1347, 2013.

33. Jiang NN, Lee J, Jeon HG, Shin JS, Park JH and Lee YS: Anti-inflammatory activity of rhizoma in and a model of its binding to c-Jun NH2-terminal kinase 1 and p38 MAPK. J Nat Prod 77: 258-263, 2014.

34. Ren J, Su D, Li L, Cai H, Zhang M, Zhai J, Li M, Wu X and Hu K: Potential anti-inflammatory activity of aristolochic acid and Nrf2. Biochem Pharmacol 87: 173052, 2020.

35. Song TY, Lee SG, Brownmiller CR, Lee SO and Kang HW: Anti-inflammatory and antioxidant effects of anthocyanins of trifolium pratense (Red Clover) in lipopolysaccharide-stimulated RAW 264.7 macrophages. Nutrients 12: 1089, 2020.

36. Kim MS, Park JS, Chung YC, Jang S, Hyun CG and Kim SY: Anti-inflammatory effects of formononetin 7-O-phosphate, a novel biorenovation product, on LPS-stimulated RAW 264.7 cells. J Med Food 18: 83-94, 2015.

37. Li ZT, Liu H and Zhang WQ: NLRC3 alleviates hypoxia/reoxygenation-induced inflammation in RAW264.7 cells by inhibiting K67-linked ubiquitination of TRAF6. Hepatobiliary Pancreat Dis Int 19: 455-460, 2020.

38. Buitkuk M, Senol SP, Temiz-Resitoglu M, Guden DS, Horat MF, Sahan-Firat S, Sevim S and Tuncan B: Pharmacological inhibition of soluble epoxide hydrolase attenuates chronic experimental autoimmune encephalomyelitis by modulating inflammatory and anti-inflammatory pathways in an inflammasome-dependent and -independent manner. Inflammopharmacology 28: 1509-1524, 2020.

39. Park JH, Nightingale AD, Jang SK, Young GY and Lee JH: Anti-inflammatory effects of Luteolin-7-O-glucuronide in LPS-stimulated murine Macrophage BV2 microglial cells. Cell Death Dis 19: 455-460, 2020.

40. Li LQ, Song AX, Yin JY, Siu KC, Wong WT and Wu JY: Anti-inflammation activity of exopolysaccharides produced by a medicinal fungus Cordyceps sinensis Cs-HK1 in cell and animal models. Int J Biol Macromol 149: 1042-1050, 2020.

41. Lee M, Hong S, Park C, Han MH, Kim SO, Hong SH, Kim GY and Choi YH: Anti-inflammatory effects of DUCHANGMDGOKDANGT, a traditional herbal formulation, in lipopolysaccharide-stimulated RAW 264.7 macrophages. Exp Ther Med 14: 587-596, 2017.

42. Leal NRF, Vigliano MV, Pinto FA, de Sousa TV, Velozo LSM, Sabino KC, da Graça Justo M and Coelho MG: Anti-inflammatory activity of diterpenes-enriched fractions from Pterodon polygalaeiflorus through inhibition of macrophage migration and cytokine production. J Pharm Pharmacol 70: 3176, 2018.

43. Kim YJ: Rhamnetin attenuates melanogenesis by suppressing oxidative stress and pro-inflammatory mediators. Biol Pharm Bull 36: 1341-1347, 2013.

44. Jiang NN, Lee J, Jeon HG, Shin JS, Park JH and Lee YS: Anti-inflammatory activity of rhizoma in and a model of its binding to c-Jun NH2-terminal kinase 1 and p38 MAPK. J Nat Prod 77: 258-263, 2014.

45. Ren J, Su D, Li L, Cai H, Zhang M, Zhai J, Li M, Wu X and Hu K: Potential anti-inflammatory activity of aristolochic acid and Nrf2. Biochem Pharmacol 87: 173052, 2020.

46. Li ZT, Liu H and Zhang WQ: NLRC3 alleviates hypoxia/reoxygenation-induced inflammation in RAW264.7 cells by inhibiting K67-linked ubiquitination of TRAF6. Hepatobiliary Pancreat Dis Int 19: 455-460, 2020.

47. Buitkuk M, Senol SP, Temiz-Resitoglu M, Guden DS, Horat MF, Sahan-Firat S, Sevim S and Tuncan B: Pharmacological inhibition of soluble epoxide hydrolase attenuates chronic experimental autoimmune encephalomyelitis by modulating inflammatory and anti-inflammatory pathways in an inflammasome-dependent and -independent manner. Inflammopharmacology 28: 1509-1524, 2020.

48. Park JH, Nightingale AD, Jang SK, Young GY and Lee JH: Anti-inflammatory effects of Luteolin-7-O-glucuronide in LPS-stimulated murine Macrophage BV2 microglial cells. Cell Death Dis 19: 455-460, 2020.
62. Zheng Y, Tian C, Fan C, Xu N, Xiao J, Zhao X, Lu Z, Cao H, Liu J and Yu L: Sheng‑Mai Yin exerts anti‑inflammatory effects on RAW 264.7 cells and zebrafish. J Ethnopharmacol 267: 113497, 2020.

63. Park YJ, Cheon SY, Lee DS, Cominguez DC, Zhang Z, Lee S and An HJ: Anti‑inflammatory and antioxidant effects of carpesium cernuum L. Methanolic extract in LPS‑stimulated RAW 264.7 macrophages. Mediators Inflammation 2020: 3164239, 2020.

64. Baek SH, Park T, Kang MG and Park D: Anti‑inflammatory activity and ROS regulation effect of sinapaldehyde in LPS‑stimulated RAW 264.7 macrophages. Molecules 25: 4089, 2020.

65. Kumar A, Sawhney G, Nagar RK, Chauhan N, Gupta N, Kaul A, Ahmed Z, Sangwan PL, Kumar PS and Yadav G: Evaluation of the immunomodulatory and anti‑inflammatory activity of Bakuchiol using RAW 264.7 macrophage cell lines and in animal models stimulated by lipopolysaccharide (LPS). Int Immunopharmacol 91: 107264, 2021.

66. Sewwandi S, Dissanayake CY, Natraj P, Lee YJ and Han CH: Anti‑inflammatory effect of sulforaphane on LPS‑stimulated RAW 264.7 cells and ob/ob mice. J Vet Sci 21: e91, 2020.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.