A GENERALIZATION OF THE DENSITY ZERO IDEAL

SUMIT SOM

Abstract. Let $\mathcal{F} = (F_n)$ be a sequence of nonempty finite subsets of ω such that $\lim_n |F_n| = \infty$ and define the ideal

$$I(\mathcal{F}) := \{ A \subseteq \omega : |A \cap F_n|/|F_n| \to 0 \text{ as } n \to \infty \}.$$

The case $F_n = \{1, \ldots, n\}$ corresponds to the classical case of density zero ideal. We show that $I(\mathcal{F})$ is an analytic P-ideal. As a consequence, we show that the set of real bounded sequences which are $I(\mathcal{F})$-convergent to 0 is not complemented in ℓ_∞. We also present a second proof that $I(\mathcal{F})$ is an analytic P-ideal by using a classical result of Solecky.

1. Introduction

Let \mathcal{I} be an ideal on the nonnegative integers ω, that is, a collection of subsets of ω closed under subsets and finite unions. It is also assume, unless otherwise stated, that \mathcal{I} is proper (i.e., $\omega \notin \mathcal{I}$) and admissible (i.e., \mathcal{I} contains that ideal Fin of finite sets). \mathcal{I} is said to be a P-ideal if it is σ-directed modulo finite sets. Moreover, \mathcal{I} is said to be a density ideal if there exists a sequence (μ_n) of finitely additive measures $\mathcal{P}(\omega) \to \mathbb{R}$ supported on disjoint finite sets such that $\mathcal{I} = \{ A \subseteq \omega : \lim_n \mu_n(A) = 0 \}$, cf. [2]. Lastly, we endow $\mathcal{P}(\omega)$ with the Cantor-space-topology, hence we may speak about analytic ideals, F_σ-ideals, etc.

At this point, let $\mathcal{F} = (F_n)$ be a sequence of nonempty finite subsets of ω such that $\lim_n |F_n| = \infty$ and define the ideal

$$I(\mathcal{F}) := \{ A \subseteq \omega : |A \cap F_n|/|F_n| \to 0 \text{ as } n \to \infty \}.$$

(1.1)

This extends the classical density zero ideal \mathcal{Z}, which corresponds to the sequence (F_n) defined by $F_n = \{1, \ldots, n\}$ for all $n \in \omega$. Similar ideals were considered in the literature, see e.g. [3, 4].

It is easy to see that the function

$$d^*_\mathcal{P} : \mathcal{P}(\omega) \to \mathbb{R} : A \mapsto \limsup_{n \to \infty} |A \cap F_n|/|F_n|.$$

is a monotone subadditive function, cf. also [6, Example 4] and the notion of abstract upper density given in [1]. It is not difficult to show that there exists a sequence \mathcal{F} such that $I(\mathcal{F}) \neq \mathcal{Z}$: let $F_n := [n!, n! + n] \cap \omega$ for all n and $A := \bigcup_n F_n$. Then $A \in \mathcal{Z} \setminus I(\mathcal{F})$. Our main result follows.

2. Main Results

Theorem 2.1. $I(\mathcal{F})$ is a density ideal.

Key words and phrases. Ideal convergence, density ideal.

2010 Mathematics Subject Classification. 40A35; 54A20; 03E15.
Proof. It follows by (1.1) that the ideal $\mathcal{I}(\mathcal{F})$ corresponds to
\[
\{ A \subseteq \omega : \lim_{n \to \infty} \mu_n(A) = 0 \},
\]
where, for each $n \in \omega$, $\mu_n : \mathcal{P}(\omega) \to \mathbb{R}$ is the finitely additive probability measure defined by
\[
\forall A \subseteq \omega, \quad \mu_n(A) = \frac{|A \cap F_n|}{|F_n|}.
\]
This concludes the proof. \qed

It is worth noticing that every density ideal is an analytic P-ideal, cf. [2]. It is known that every density ideal is also meager. Hence Theorem 2.1 implies, thanks to [5, Corollary 1.3], the following consequence:

Corollary 2.2. The set of bounded real sequences which are $\mathcal{I}(\mathcal{F})$-convergent to 0 is not complemented in ℓ_∞.

By a classical result of Solecky, an (not necessarily proper or admissible) ideal \mathcal{I} is an analytic P-ideal if and only if
\[
\mathcal{I} = \{ A \subseteq \omega : \lim_{n \to \infty} \varphi(A \setminus [0, n]) = 0 \} = \text{Exh}(\varphi)
\]
for some lower semicontinuous submeasure $\varphi : \mathcal{P}(\omega) \to [0, \infty]$, cf. [2]. In our case, the associated lower semicontinuous submeasure associated with $\mathcal{I}(\mathcal{F})$ is
\[
\forall A \subseteq \omega, \quad \varphi(A) := \sup_{n \in \omega} |A \cap F_n|/|F_n|
\]
which we will prove in our next theorem. Next, by using this theorem we will give a second proof that $\mathcal{I}(\mathcal{F})$ is an analytic P-ideal.

Theorem 2.3. Let $\mathcal{F} = (F_n)$ be a sequence of nonempty finite subsets of ω such that $\lim_n |F_n| = \infty$. Then $\varphi : \mathcal{P}(\omega) \to [0, \infty]$, defined by
\[
\forall A \subseteq \omega, \quad \varphi(A) := \sup_{n \in \omega} |A \cap F_n|/|F_n|
\]
is a lower semicontinuous submeasure.

Proof. \begin{align*}
\varphi(A) &:= \sup_{n \in \omega} |A \cap F_n|/|F_n|, \quad A \subset \omega \\
\text{It is easy to check that } \varphi \text{ is a submeasure on } \omega. \text{ We will show that } \varphi \text{ is a lower semicontinuous submeasure on } \omega. \text{ Let } A \subset \omega. \text{ We will show that}\\n\varphi(A) &= \lim_{n \to \infty} \varphi(A \cap [0, n]) \\
\Rightarrow A \cap [0, n] &\subset A \\
\Rightarrow \varphi(A \cap [0, n]) &\leq \varphi(A \cap [0, n + 1]) \leq \varphi(A) \\
\Rightarrow \lim_{n \to \infty} \varphi(A \cap [0, n]) &= \sup_{n \in \omega} \varphi(A \cap [0, n]) \leq \varphi(A). \\
\text{Now we will show that } \varphi(A) &\leq \lim_{n \to \infty} \varphi(A \cap [0, n]). \\
\text{Let us choose } n_0 &\in \omega \text{ such that } F_n \subset [0, n_0]. \text{ Then we have} \\
A \cap F_n &\subset A \cap F_n \cap [0, n_0] \\
\Rightarrow \frac{|A \cap F_n|}{|F_n|} &\leq \frac{|A \cap F_n \cap [0, n_0]|}{|F_n|} \leq \sup_{n \in \omega} \frac{|A \cap [0, n_0] \cap F_n|}{|F_n|} \\
\end{align*}
⇒ \left| \frac{A \cap F_n}{|F_n|} \right| \leq \varphi(A \cap [0, n]) \leq \lim_{n \to \infty} \varphi(A \cap [0, n])

⇒ \varphi(A) \leq \lim_{n \to \infty} \varphi(A \cap [0, n])

So we have \(\varphi(A) = \lim_{n \to \infty} \varphi(A \cap [0, n]) \). This shows that \(\varphi \) is a lower semicontinuous submeasure on \(\omega \).

\[\square \]

In our next theorem we show that \(I(\mathcal{F}) \), actually equal to the Exhaustive ideal generated by the lower semicontinuous submeasure \(\varphi \) defined in Theorem 2.3.

Theorem 2.4. \(I(\mathcal{F}) = \text{Exh}(\varphi) \) where \(\varphi : \mathcal{P}(\omega) \to [0, \infty] \) is defined in Theorem 2.3. Hence \(I(\mathcal{F}) \) is an analytic \(\mathcal{P} \)-ideal.

Proof. First of all suppose that \(A \subset \omega \) and \(A \in \text{Exh}(\varphi) \). So \(\lim_{n \to \infty} \varphi(A \setminus [0, n]) = 0 \). Let \(\varepsilon > 0 \). Then there exists \(m_0 \in \omega \) such that \(\varphi(A \setminus [0, m]) < \frac{\varepsilon}{2} \forall n \geq m_0 \).

⇒ \(\varphi(A \setminus [0, m_0]) < \frac{\varepsilon}{2} \)

⇒ \(\sup_{m \in \omega} \frac{|A \cap F_n \setminus [0, m_0]|}{|F_n|} < \frac{\varepsilon}{2} \).

On the other hand since \(|F_n| \to \infty \) as \(n \to \infty \), so choose \(n_0 \in \omega \) with \(n_0 \geq m_0 \) such that

\[|F_n| > \frac{2}{\varepsilon} |A \cap [0, m_0]| \forall n \geq n_0. \]

⇒ \(\frac{|A \cap [0, m_0]|}{|F_n|} < \frac{\varepsilon}{2} \forall n \geq n_0 \).

Here we take \(m_0 \in \omega \) sufficiently large such that \(A \cap [0, m_0] \neq \phi \). Now

\[\frac{|A \cap F_n|}{|F_n|} \leq \frac{|A \cap [0, m_0]|}{|F_n|} + \frac{|(A \cap F_n) \setminus [0, m_0]|}{|F_n|} < \varepsilon \forall n \geq n_0. \]

⇒ \(\lim_{n \to \infty} \frac{|A \cap F_n|}{|F_n|} = 0. \)

⇒ \(A \in I(\mathcal{F}) \).

Now we will show that \(I(\mathcal{F}) \subset \text{Exh}(\varphi) \). It is easy to show that the sequence \(\left\{ \varphi(A \setminus [0, m]) \right\}_{m \in \omega} \) is a decreasing sequence of positive real numbers. Now suppose that \(A \notin \text{Exh}(\varphi) \). So there exists \(\delta > 0 \) such that

\[\varphi(A \setminus [0, m]) \geq \delta \forall m \in \omega \]

⇒ \(\sup_{m \in \omega} \frac{|A \cap F_n \setminus [0, m]|}{|F_n|} \geq \delta \forall m \in \omega \)

If \(A \in I(\mathcal{F}) \) then for \(\frac{\delta}{2} > 0 \) there exists \(n_0 \in \omega \) such that

\[\frac{|A \cap F_n|}{|F_n|} < \frac{\delta}{2} \forall n \geq n_0. \]
Now choose \(p \in \omega \) such that
\[
\bigcup_{i=1}^{n_0-1} F_i \subset [0, p].
\]

Now
\[
\frac{|A \cap F_n \setminus [0, p]|}{|F_n|} \leq \frac{|A \cap F_n|}{|F_n|} < \frac{\delta}{2} \quad \forall \ n \geq n_0.
\]

and
\[
\frac{|A \cap F_i \setminus [0, p]|}{|F_i|} = 0 < \frac{\delta}{2} \quad \forall \ i = 1, 2, \ldots, n_0 - 1.
\]

which means
\[
\sup_{n \in \omega} \frac{|A \cap F_n \setminus [0, p]|}{|F_n|} \leq \frac{\delta}{2} < \delta
\]

which contradicts the fact that
\[
\Rightarrow \sup_{n \in \omega} \frac{|A \cap F_n \setminus [0, m]|}{|F_n|} \geq \delta \quad \forall \ m \in \omega.
\]

So our assumption is wrong. That means \(A \notin I(\mathcal{F}) \). Which proves that \(I(\mathcal{F}) = \text{Exh}(\varphi) \). \(\square \)

Now from [7], we recall
\[
\text{Fin}(\varphi) = \{ A \subset \omega : \varphi(A) < \infty \}.
\]

The lower semicontinuous submeasure \(\varphi \) is called Exhaustive if \(\text{Exh}(\varphi) = \text{Fin}(\varphi) \). So immediately we have the following theorem.

Theorem 2.5. The lower semicontinuous submeasure \(\varphi : \mathcal{P}(\omega) \to [0, \infty] \) defined in Theorem 2.3 is not Exhaustive.

Proof. It is easy to show that \(\text{Fin}(\varphi) = 2^\omega \) for lower semicontinuous submeasure \(\varphi : \mathcal{P}(\omega) \to [0, \infty] \) defined in Theorem 2.3. Also, \(\text{Exh}(\varphi) = I(\mathcal{F}) \). But we know that \(\omega \notin I(\mathcal{F}) \). This implies that \(\omega \notin \text{Exh}(\varphi) \). So \(\text{Exh}(\varphi) \neq \text{Fin}(\varphi) \). This proves that the lower semicontinuous submeasure defined in Theorem 2.3 is not Exhaustive. \(\square \)

Acknowledgments. The author is greatful to Paolo Leonetti (Universit Bocconi, Italy) for useful discussions.

References

[1] M. Di Nasso, R. Jin; *Abstract densities and ideals of sets*, Acta Arith. **185** (2018) 301-313.
[2] I. Farah; *Analytic quotients: theory of liftings for quotients over analytic ideals on the integers*, Mem. Amer. Math. Soc. **148** (2000).
[3] A. Kwela; *Erdős–Ulam ideals vs. simple density ideals*, J. Math. Anal. Appl. **462** (2018) 114-130.
[4] A. Kwela, M. Poplawski, J. Swaczyna, J. Tryba; *Properties of simple density ideals*, J. Math. Anal. Appl. **477** (2019) 551-575.
[5] P. Leonetti; *Continuous projections onto ideal convergent sequences*, Results in Math. **73** (114) (2018).
[6] P. Leonetti, S. Tringali; *On the notions of upper and lower density*, Proc. Edinb. Math. Soc. DOI= doi.org/10.1017/S0013091519000208.
[7] S. Solecki; *Analytic ideals*, Bull. Symbolic Logic **2** (1996) 339-348.
Research Associate, National Institute of Technology Durgapur, Department of Mathematics, West Bengal, Pin- 713209, Durgapur, India.

E-mail address: sumitsom733p@gmail.com