Proteomic insights into intra- and intercellular plant–bacteria symbiotic association during root nodule formation

Afshin Salavati1,*, Alireza Shafeinia1, Katarina Klubicova2, Ali A. S. Bushehri3 and Setsuko Komatsu4,*

1 Department of Plant Breeding and Biotechnology, Ramin University of Agriculture and Natural Resources, Ahwaz, Iran
2 Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
3 Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
4 National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan

*Correspondence:
e-mail: asalavati@ramin.ac.ir

Over the last several decades, there have been a large number of studies done on the all aspects of legumes and bacteria which participate in nitrogen-fixing symbiosis. The analysis of legume–bacteria interaction is not just a matter of numerical complex of the terms of variants of gene products that can arise from a single gene. Bacteria regulate their quorum-sensing genes to enhance their ability to induce conjugation of plasmids and symbiotic islands, and various protein secretion mechanisms; that can stimulate a collection of chain reactions including species-specific combinations of plant-secretion isoflavonoids, complicated calcium signaling pathways and autoregulation of nodulation mechanisms. Quorum-sensing systems are introduced by the intra- and intercellular organization of gene products lead to protein–protein interactions or targeting of proteins to specific cellular structures. In this study, an attempt has been made to review significant contributions related to nodule formation and development and their impacts on cell proteome for better understanding of plant–bacterium interaction mechanism at protein level. This review would not only provide new insights into the plant–bacteria symbiosis response mechanisms but would also highlights the importance of studying changes in protein abundance inside and outside of cells in response to symbiosis. Furthermore, the application to agriculture program of plant–bacteria interaction will be discussed.

Keywords: proteomics, legumes, bacteria, symbiosis, nodule development

INTRODUCTION

Mutualistic symbiosis includes a wide range of interactions among a diverse set of organisms. The symbiosis between legumes and rhizobia is a classic mutualistic relationship and nitrogen fixation process is one of the most important biological processes on the earth. The symbiosis culminates in the creation of a highly specialized plant organ, the root nodule, with plant cells invaded by bacteria. More than a century ago, Hellriegel and Wilfarth (1888) identified rhizobia as a source of nitrogen fixation. Rhizobia, Gram-negative soil bacteria, induce the formation of nodules in many, but not all, leguminous plants (Gualtieri and Bisseling, 2000). The nitrogen fixing nodule is a model for plant developmental processes and plant–microbe interactions. The nodule forms an anaerobic niche for nitrogen fixation, protecting the bacterial nitrogenase from inactivation by O2. In exchange for carbohydrates provided by the host legume, fixed nitrogen would be supplied by bacteria to the legume.

Establishment of symbiosis between host plants and symbiotic bacteria is a multistage process covering signal perception, transduction, and responses (Broughton et al., 2009). These processes depend on the precise spatial and temporal regulation of nod- and other symbiotic genes (Schlaman et al., 1998). Synchronized expression of symbiotic loci in legumes and their bacterial partner involves the exchange of a series of molecular signals allowing rhizobia to invade the plant roots. Rhizobia produce various molecular signals that influence the host plants at various steps along the symbiotic pathway (Perret et al., 2000). Symbiosis is initiated when accumulated flavonoids in the rhizosphere of the host plant prompt the cascade of rhizobial signal transduction by interacting with transcriptional activators of nodulation genes. This flavonoid-modulated signal transduction cascade regulates expression of genes that act during nodule development. Most nodulation genes including nol, noe, and nod, are involved in the synthesis of host-specific lipochitooligosaccharides (Nod factors), which are essential for the initial infection of root hairs (Perret et al., 2000). Nod factors provoke root curling, creation of nodule primordia, early nodulin (ENOD) genes expression, and finally allow the bacteria to enter the root hairs (Broughton et al., 2000; Geurts and Bisseling, 2002). Thus, flavonoids and Nod factors correspond to the primary sets of signal transduction by the symbiotic partners.

Further, already differentiated cortical cells have to be reactivated and enter the cell cycle from their arrested state, so that a
nodule primordium is formed. Release of the bacteria into the primordium cells results in its differentiation into a nodule (Gage, 2004; Oldroyd and Downie, 2004). The infection process as well as the induction of cortical cell divisions is caused by nod factors that are secreted by rhizobia when they colonize the roots of their host. In legumes, the infection process starts in epidermal root hair cells (Brewin, 2004). Nod factor-secreting rhizobia induce deformations in most of the root hairs in a region of the root that is susceptible to the interaction (Heidstra et al., 1994). In this way, the bacterium becomes entrapped within a three-dimensional cavity of curl and a small colony of rhizobia is formed. Subsequently, these rhizobia induce local weakening of the cell wall and, by invagination of the plasma membrane of the root hair, a tube-like structure is formed. This is the so-called infection thread (IT) that allows the rhizobia to penetrate the root hair cell. Each root cortical cell that traversed to make an IT and ultimately the rhizobia reach the nodule primordium (Brewin, 2004). Cortical roots taken up in the nodule primordium cells in an endodermis-like manner forming organelle-like structures (symbiosomes) that contain one or more bacteria, which upon differentiation start to fix nitrogen (Brewin, 2004).

Proteomics is a high-throughput technology that has been used to investigate a wide range of biological aspects including phylogenetic and molecular divergence studies (Bushler et al., 2008, 2011), plant responses to different stresses (Larraínzar et al., 2007, 2010; Klubicová et al., 2012; Mohammadi et al., 2012; Salavati et al., 2012b) detailed studies on the structural components, and biochemical pathways involved in symbiotic nitrogen fixation (SNF; Broughammer et al., 2012; Navascués et al., 2012; Rose et al., 2012). Approaches such as transcriptome, proteome, and metabolome analysis in both symbiosomes, promise to reveal much more about the metabolic flows in the nitrogen fixing nodule or even to description the novel unknown aspects (Delmotte et al., 1995). Although a single-step process for root attachment, the principal aspects of root attachment, including close contiguity to root hairs, clonal events, and root hair curling, have crucial importance. These steps ensure a supply of nutrients that enable the bacteria to grow on and around the root.

As technical view, sample preparation is an important step in proteomics research. This step is principally difficult in studies with plants. Many plant tissues are often rich in proteases contaminants such as polysaccharides, lipids, and phenols (Carpenter et al., 2002). Furthermore, it is necessary to acquire high-quality gels showing reproducible protein patterns (Hurkmans and Tanaka, 1986). The extraction method must conserve the quality and quantity of the extracted proteins (Hurkmans and Tanaka, 1986; Wetermeier and Naven, 2002). Although a single-step process for protein extraction would be highly desirable, no unique sample preparation method can be used to 2-DE analysis (Deakin and Broughton, 2009). Therefore, many researchers developed and optimized some efficient methods such as a phenol/SDS-based method (Wang et al., 2006; Rodríguez et al., 2012) and non-phenol-based methods (Guerrero et al., 1997; Natera et al., 2000) to find a simple method that could be applied regularly to proteomics studies of symbioses interactions.

OVERVIEW OF RHIZOBIUM–LEGUME INTERACTIONS

ROOT ATTACHMENT

Among root-derived compounds, some phenolic-based compounds act as chemotactic attractants and, on the other hand, the secreted and surface proteins are involved in rhizobia attachment to root hairs in the initiation step of the symbiosis (Peters and Verma, 1999; Deakin and Broughton, 2009). Although being in the right place at the right time is critical to the instigation of nodulation, the principal aspects of root attachment, including close contiguity to root hairs, clonal events, and root hair curling, have crucial importance. These steps ensure a supply of nutrients that enable the bacteria to grow on and around the root.
Whereas, bacterial mutants lacking specific nod genes can induce entry gives rise to the potential for non-symbiotic bacteria to try to nodulate. Therefore, it has been accepted that the different biovars and species of rhizobia generate a diverse range of Nod factors.

INFECTION INITIATION

Nodule organogenesis begins by an exchange of signals between plant and bacteria, resulting in the curling and colonization of root hairs by rhizobia. Plant-derived membranes then form a tubular structure, called the “infection thread,” which guides bacteria to the site of meristematic activity in the root cortex and acts as an effective barrier to confine the bacteria. To analyze the first step of this series of events at the protein level in a time-course study with soybean over the first 48 h, Salavati et al. (2012a) combined 2-D gel electrophoresis coupled with quantitative RT-PCR to analyze iso- electric focusing of 56 proteins at different time points from infected soybean root hairs. Proteomics techniques were demonstrated that Nod factors can induce nodule morphogenesis, and this appears to occur as a consequence of modifying existing plant hormonal signaling systems, such as the cytokinin pathway (Smit et al., 1992) via a transcription factor (TF), which typically encoded by nodD. Perret et al. (2000) demonstrated that these Nod factors are primary determinants that decide which legumes will be able to nodulate. It seems that producing the correct type of Nod factor by bacteria to nodulate. Therefore, it has been accepted that the different biovars and species of rhizobia generate a diverse range of Nod factors.

ATTACHMENT AND SECRETED PROTEINS

Secreted proteins are essential for attachment. For example, the role of rhicadhesin in attachment to root hairs has been described by Simit et al. (1992) and Laut et al. (2006). Rhizobium-adhering proteins (RAPs), which are encoded by the psrD and psrE genes (Russo et al., 2006), are secreted across the inner and outer membranes by means of a Type I secretion system. Different rhizobia have the potential to secrete proteins into the periplasm via the general export pathway and the twin-arginine translocation (TAT) secretion system and also type I, III, IV, and VI secretion systems that can manipulate the symbiosis (Dakin and Broughton, 2009; Figure 1, Table 1).

Many proteins of a typical N-terminal transit peptide are secreted via the general export pathway and many of these are expressed throughout infection and other steps of symbiosis. Cellulase (CelC2) is one of the particular symbiotic enzymes which is predicted to be exported through the general export pathway with a typical transit peptide (Downie, 2010). This cellulase can erode the non-crystalline cellulose in the cell wall of root hairs and is thought to allow penetration of rhizobia during the initial stage of infection in root hair curls (Robledo et al., 2008). Proteomic-based studies have demonstrated that proteins partake in the TAT pathway are secreted in their folded form, some containing cofactors, and have a signal peptide usually containing a distinctive pair of consecutive twin arginine residues in the motif RRXXF where X is any residue and F a hydrophobic residue (Antelmann et al., 2001; Bendisen et al., 2005).

TYPE I, III, IV, V, and VI SECRETION PATHWAYS

Proteins secreted via type I, III, IV, V, and VI secretion pathways, which translocated across the inner and outer membranes without a periplasmic intermediate stage (Hurec, 1998; Koronakis et al., 2004), are derived from the bacterial flagellar secretion system and have evolved into a mechanism that can deliver proteins from the bacterial cytoplasm into the cytoplasm of eukaryotic cells (Sauer, 2004). Secreted proteins insert into the outer membrane,
where it catalyses the translocation of the N-terminal region into the extracellular medium (Henderson et al., 2004) and mediates the translocation of proteins across the bacterial envelope (Bingle et al., 2008).

A cation selective channel protein, which is present in some rhizobia and can extend the ability to nodulate, is a calcium-binding protein called NodO (Economou et al., 1990; Sutton et al., 1994). NodO was found to insert into liposomes and form cation-selective channels in lipid bilayers (Miwa et al., 2006), and could therefore enhance the calcium spiking that is observed in root hairs upon Nod factor binding. Three possible roles for NodO have been suggested. The NodO protein may amplify the perceived Nod factor signal, facilitate Nod factor uptake by the host, or bypass the host’s Nod factor receptor altogether (Sutton et al., 1994; Walker and Downie, 2000).

The type III secreted proteins as well as the effector proteins delivered into the plant cell have been called nodulation outer protein (Nop; Viprey et al., 1998; Marie et al., 2003). By comparing plant defense responses against bacteria, Bent and Mackey (2007) showed that the manipulation of symbiotic efficiency might lead to effector recognition by legumes and subsequently, increasing at defense response. And some other effectors have been identified such as NopJ, NopM, NopL, NopP, NopT and ImpK. Some of which are required for optimal nodulation in legumes (Bladergroen et al., 2003; Marie et al., 2003). NopL and NopP are phosphorylated by plant kinases (Bartsev et al., 2003, 2004; Ausmees et al., 2004; Skorpil et al., 2005). This process could point to a function in modulating host signaling pathways. Specifically for NopL, a role in the down-regulation of host plant defenses is proposed (Bartsev et al., 2004). NopT is a functional cysteine protease of the YopT family with a predicted myristoylation site (Dai et al., 2008). Some type III secretory proteins such as NopT have protease activities (Kambara et al., 2009), and some proteins such as NopJ and NopM have negative effects.

Secretion signal	Substrates	Reference	
GEP	N-terminal signal peptide	Unfolded proteins	Paetzel et al. (2000)
TAT	N-terminal signal peptide with conserved twin-arginine motif	Fully folded proteins	Berks et al. (2003)
Type I	Structural	Unfolded proteins	Wagner et al. (1993)
Type II	N-terminal signal peptide	Folded proteins or multimers	Pugsley (1999)
Type III	N-terminal signal	Unfolded proteins	Michels et al. (1990)
Type IV	Chaperone dependent	Folded or unfolded proteins or DNA	Berger and Christie (1994)
Type V	N-proximal secretion domain	Partially unfolded proteins	Henderson et al. (1998)
NODULINS AND LEGHEMOGLOBIN

Nodulins are organ-specific plant proteins induced during SNF. Nodulins play both structural and developmental roles within infected and uninfected nodule cells. Nodulins are involved in the structure, development, maintenance, and general metabolism of nodules and are targeted to host cell nuclei and were interfere with the regulation of differentiation of bacterial and host–bacterium signal (Bassler, 2002). However, we are not quite familiar with the regulatory mechanisms. The symbiotic relationships are the result of a complicated signaling network between the host and symbionts. Rhizobia populations regulate gene expression by autoinducers, diffusable signal molecules, which are interact specially with a receptor protein. Autoinducers production occurs at specific stages of development or in response to environmental changes. These diffusable signals commonly induce gene expression in response to bacterial cell density in symbiosis and often referred as quorum-sensing. Rhizobium species should reach a threshold level (Caetano-Anollés and Gresshoff, 1991). Therefore, quorum-sensing probably plays a crucial function in regulation of symbiosis. In addition, some rhizobial strains are able to synthesize rhizopines, opine-like compounds reminiscent of those produced by Agrobacterium species, the major nitrogen products are amides including glutamine and asparagine, whereas in determining nodulation forms legumes, the major nitrogen products are ureides. This process occurs in plasids of both infected and uninfected nodule cell types (Streeter, 1991; Vance, 2008). Enzymes concerned may be "nodule-stimulated" proteins. A group of enzymes for the oxidation of purines into allantoin and allantoic acid are specifically induced during symbiosis. Xanthine dehydrogenase is a nodulin present in infected nodule cells (Montalbini et al., 1997; Todd et al., 2006) and can catalyze these purine oxidation steps in the infected nodule cell. The product is postulated to be transported to uninfected cells as uric acid. The oxidation of uric acid to allantoin is mediated by the oxygen-dependent enzyme uricase II (nodulin-35).

TRANSCRIPTION FACTORS

It is already obvious that TFs play fundamental roles in important processes in legumes and are involved in the control of mutualistic symbiosis such as SNF between plant root and rhizobia (Samac and Graham, 2007). More recently, TFs involved in the rhizobial infection process have been identified. Among them nodulation signaling pathway 1 (NSP1) and NSF2, GRAS-family proteins, are putative TFs that transduce the bacterial nod factor signal and induce expression of plant nodulin genes and are required for nodule development (Kalo et al., 2005; Smit et al., 2005). In addition, other TFs crucial to the nodulation process were also identified by direct screening for nodulation-defective mutants. For example, NIN is the member of a novel family of putative TFs in higher plants, which are called the NIN-like family (Libault et al., 2009). Forward-genetics approaches have subsequently identified three other TFs (Nishimura et al., 2002; Mitra et al., 2004; Kalo et al., 2005; Smit et al., 2005) that are essential for nodule development, one of which is a Kruppel-like TFs of the C2H2 (Zn) family that was found to be crucial for differentiation of the nitrogen-fixing zone of nodules (Frouxier et al., 2006). RNA interference (RNAi) method revealed a key role in nodule development for a member of the CCAAT-binding family of TFs (Combier et al., 2006).

QUORUM-SENSING

The rhizobia are excellent quorum-sensing model systems for such studies. The symbiotic relationships are the result of a complicated signaling network between the host and symbiont. Rhizobia populations regulate gene expression by autoinducers, diffusable signal molecules, which are interact specially with a receptor protein. Autoinducers production occurs at specific stages of development or in response to environmental changes. These diffusable signals commonly induce gene expression in response to bacterial cell density in symbiosis and often referred as quorum-sensing (Bassler, 2002). However, we are not quite familiar with the regulation of differentiation of bacterial and host-bacterium signal exchange. It is believed that nodule invasion requires the gathering of bacteria around the hair roots and the cell density of Rhizobium species should reach a threshold level (Caetano-Anollés and Gresshoff, 1991). Therefore, quorum-sensing probably plays a crucial function in regulation of symbiosis. In addition, some rhizobial strains are able to synthesize rhizopines, opine-like compounds reminiscent of those produced by Agrobacterium species, on the nodulation (Marie et al., 2003). YopJ family-like proteins acts as-acetyltransferases and inactivate MAP kinases and contain protein-protein interacting leucine-rich repeats (Deakin and Broughton, 2009, Masson-Bovin et al., 2009). XopD and YopM are targeted to host cell nuclei and were interfere with the regulation of host proteins during infection (Szkrypek et al., 1998; Hotson et al., 2001). XopD, a cysteine protease, achieves this through hydrolysis of small ubiquitin-like modifier-conjugated proteins (Hotson et al., 2003), while YopM probably acts as a scaffold for recruiting and stimulating other proteins (McDonald et al., 2003).

Autotransporter proteins (type V) are secreted via the general export pathway into the periplasm using an N-terminal transit peptide and then a C-terminal domain inserts into the outer membrane, where it catalyzes the translocation of the N-terminal region into the extracellular medium (Henderson et al., 2004). Recently, type VI secretion system has been recognized, mediating the translocation of proteins across the bacterial envelope (Mougous et al., 2006; Pukatzki et al., 2006). Proteins translocated by this system were identified and showed similarity to ribose-binding proteins from other bacteria (Filloux et al., 2008; Pukatzki et al., 2009). Some bacterial substrates and their roles were summarized in Table 2.

NODULINS AND LEGHEMOGLOBIN

Nodulins are organ-specific plant proteins induced during SNF. Nodulins play both structural and developmental roles within infected and uninfected nodule cells. Nodulins are involved in the structure, development, maintenance, and general metabolism of nodule (Oaks and Hirle, 1993) and have been characterized from soybean (Shayam-Caspi et al., 1993), pea (van de Wiel et al., 1990), and alfalfa (Hirsch et al., 1989). Although characterized prior to other nodulins, the leghemoglobin (Lhb) should be considered as major nodulins. Soybean contains four major leghemoglobins, Lba, Lbd, Lbc2, and Lbc3, differing slightly in amino acid sequence (Lee and Verma, 1984).

The nodulin-24, a protein which is part of the peribacteroid membrane (Katimakis and Verma, 1983) and nodulin-23, along with Lh, are induced in the infected cells. The nodulin-35, the subunit of the tissue-specific laccase II (a tetrameric enzyme) and one of the most abundant proteins in soybean nodules (Takane et al., 1997), is found only in the specialized uninfected cells. Formation of the effective root nodule requires expression of symbiotic genes in the host plant and the microsymbiont (Verma et al., 1986) whose products are nodulins and bacteroids, respectively. Nodulin-24 is a nodule-specific and nodule-enhanced phm-bound protein (Cheon et al., 1994), which has a transport function. The genes coding for Lh, nodulin-23 and -24, whose transcription begin at about the same time, provide a rationale for the possible existence of 5’ cis sequences capable of binding trans-activator molecules. During nodule development, some products elaborated from the microsymbiont infection that may produce a trans-activator molecule. The presence of short sequences common to the flanking region of the genes concerned may provide the structural basis for induction. In view of a potential cis-repressor site upstream of nodulin genes, it is possible that these genes are positively regulated by a common transactivator molecule.

In indeterminating nodule-forming legumes, the leading nitrogen transport compounds are amidides including glutamine and asparagine, whereas in determining nodule-forming legumes, the major nitrogen products are ureides. This process occurs in plasids of both infected and uninfected nodule cell types (Streeter, 1991; Vance, 2008). Enzymes concerned may be "nodule-stimulated" proteins. A group of enzymes for the oxidation of purines into allantoin and allantoic acid are specifically induced during symbiosis. Xanthine dehydrogenase is a nodulin present in infected nodule cells (Montalbini et al., 1997; Todd et al., 2006) and can catalyze these purine oxidation steps in the infected nodule cell. The product is postulated to be transported to uninfected cells as uric acid. The oxidation of uric acid to allantoin is mediated by the oxygen-dependent enzyme uricase II (nodulin-35).

TRANSCRIPTION FACTORS

It is already obvious that TFs play fundamental roles in important processes in legumes and are involved in the control of mutualistic symbiosis such as SNF between plant root and rhizobia (Samac and Graham, 2007). More recently, TFs involved in the rhizobial infection process have been identified. Among them nodulation signaling pathway 1 (NSP1) and NSF2, GRAS-family proteins, are putative TFs that transduce the bacterial Nod factor signal and induce expression of plant nodulin genes and are required for nodule development (Kalo et al., 2005; Smit et al., 2005). In addition, other TFs crucial to the nodulation process were also identified by direct screening for nodulation-defective mutants. For example, NIN is the member of a novel family of putative TFs in higher plants, which are called the NIN-like family (Libault et al., 2009). Forward-genetics approaches have subsequently identified three other TFs (Nishimura et al., 2002; Mitra et al., 2004; Kalo et al., 2005; Smit et al., 2005) that are essential for nodule development, one of which is a Kruppel-like TFs of the C2H2 (Zn) family that was found to be crucial for differentiation of the nitrogen-fixing zone of nodules (Frouxier et al., 2006). RNA interference (RNAi) method revealed a key role in nodule development for a member of the CCAAT-binding family of TFs (Combier et al., 2006).
Bacterial species	Substrate	Role	Secretion pathways
Agrobacterium rhizogenes	GALLS	Integration of T-DNA into plant genome	IV
Agrobacterium tumefaciens	VirG2	Nuclear localization and integration of T-DNA	IV
Bordetella pertussis	AB5 toxin	Interacts with αβγ heterotrimeric Gi/o proteins	IV
Bordetella spp.	SphB1	Proteolytic processing of secreted proteins	V
E. coli	AIDA-1	Adherence	V
	AG43	Biofilm formation	V
	Tsh	Haemoglobinase activity	V
	EspP	Cytotoxic activity	V
	Wel	Vacuolating cytotoxicity	V
	HyA	Haemolysin	I
Erwinia spp.	Phb/C	Metalloproteases	I
	DispA/E	Suppresses cell wall defense responses	III
Haemophilus spp.	HMV1	Adhesin	V
	HuA	Haem-haemopexin binding protein	V
	LspA1	Adhesin	V
Helicobacter spp.	CagA	Leads to dephosphorylation of host cell proteins	N
Legionella spp.	LeF	Exchange factor for ADP ribosylation factor	IV
	LspA	Docking of vesicles to the membrane of phagosome	IV
	DotA	Membrane pore in host	IV
	LspB	Alter exocytic pathway in protozoa	IV
	Y1A	Facilitate binding and fusion of Legionella-containing vacuole	N
	Y1B	Facilitate binding and fusion of Legionella-containing vacuole	N
	VipD	Interferes with multivesicular body formation	IV
	VipF	inhibits lyosomal protein trafficking	IV
Mesorhizobium spp.	Msi059	Deconjugates proteins stabilized by S-layer	N
Pasteurella spp.	LhaA/C	Leukotoxin	I
Pseudomonas syringae	HmpA	Cytolysin	V
	AvePsa	Inhibits hypersensitive response (HR)	III
	AvePspQ	Cysteine protease	III
	AvePsp1	Induces RhlA phosphorylation	III
	HopPtoM	Suppresses salicylic acid-dependent callose deposition	III
	AvePspHC	Blocks AvePsp-Helical HR	III
Rhizobium spp.	NodP/PL	Suppress plant defense reactions	III
	PylB	Glycosyl processing extracellular poly saccharide	I
	NodD	Facilitates nodulation	I
	. Rzc-1	Bacteriocin activity	I
Salmonella spp.	SpaA/C	Enhance actin polymerization and bundling	III
	SpaB/E2	Activate G-binding proteins	III

(Continued)
Table 2 | Continued

Bacterial species	Substrate	Role	Secretion pathways
Serratia marcescens	SopB	Phosphatidylinositol phosphatase	III
Shiga spp.	ShlA	Cytolysin V	
	SlaA	S Layer protein I	
	LipA	Lipase I	
	PrnA	Metalloprotease I	
	HasA	Haem-binding I	
Shigella flexneri	IcsA	Intracellular motility	V
	SigA	Cytopathic activity V	
Xanthomonas spp.	AvrXo4	Cleaves SU1/2MO from sumoylated proteins	III
	XopD	Cleaves free and protein-bound SUMO	III
Yersinia spp.	YopH	Dephosphorylates Cas	III
	YopE	Activates signaling GTPases	III
	YopT	Cysteine protease	III
	YopQ	Exhibits serine/threonine kinase activity	III
	YopJ	Cysteine protease	III
	YopM	Forms a complex with and activates kinases RSK1 and PRK2	III

Type I secretion is completely independent of the general export pathway (GEP) and transports proteins directly from the cytoplasm across both membranes to the extracellular space. Type II secretion systems translocate proteins from the periplasm and are thus dependent on the GEP or TAT pathways. Type III systems translocate proteins across both membranes using ATP. Type IV systems is capable of transporting both DNA and proteins. This system is used to introduce the T-DNA portion of the Ti plasmid into the plant host. Type V secretion or autotransporters, is a simple system in which the secreted protein translocates across the outer membrane after being transported to the periplasm by the GEP.

which are produced by the bacteroids and can be catabolized by the free-living associated rhizobia as a nutrient source (Murphy et al., 1987). These strains could putatively affect the dynamics of soil rhizobial populations.

In R. leguminosarum and R. etli, quorum-sensing probably is involved in restricting the number of nodules and in symbiosome development (Rosenmeyer et al., 1998; Dansids et al., 2002; Wunierski-Dye and Dowsie, 2002), and in S. meliloti, quorum-sensing controls the production of EPS II, an exopolysaccharide involved in the nodule invasion process (Marketon and González, 2000; Marketon et al., 2003). In different Rhizobium species, genes related to biosynthesis of exopolysaccharide, nodulation, and nitrogen fixation are located on one or more megaplasmids known as symbiotic (Sym) plasmids (Beynon et al., 1980; Banfalvi et al., 1985). Most of the nitrogen-fixing rhizobia regulate plasmid transfer via quorum-sensing systems, as in A. tumefaciens. While these systems do not seem to be essential for nodulation, they may play a role in rhizosphere survival (He et al., 2003). Although many aspects of the signal transduction are still an ambiguity, quorum-sensing has been intricate as an essential factor in the symbiotic process.

CONCLUDING REMARKS AND FUTURE PERSPECTIVE

A considerable branch of the genome is devoted to the synthesis of the various proteins and the regulation of the interaction with their complex environment. While remarkable progress in proteomic study of symbiosis has been made in model plants, a quite advancement in developing proteomic approaches in other crops has been reached. The biggest obstruction to these proteomic applications is the scarcity of well-annotated protein databases and sequences of proteins. Although some techniques such as de novo sequencing and proteogenomics recompense this paucity, there is still an urgent need to expand and curate plant protein databases. Many existing databases, including Soybean, M. truncatula and rice proteome database should be expanded and integrated in the future (Komatsu et al., 2004; Sun et al., 2009). In addition, most proteomic studies lead to protein identification and functional predictions yet the majority do not test their results using genetic approaches. A combination of proteomic analysis with genetics and other omics approaches would intensify the biological significance of many studies (Kint et al., 2010; Salavati et al., 2012a). Furthermore, transcriptomics and analysis of strains carrying multiple mutations will help in future research. A more systematic integration of interdependent techniques would provide valuable information and leads to better prediction and management of plant responses to symbiotic bacteria.

On the one hand, up to 20% of net photosynthetic production would be used for production and maintenance of root nodules (Pate and Givnish, 1986). Therefore, legume can invest in nodules if a decrease in net photosynthesis is compensated by the nitrogen fixation (Bettlenlahay et al., 1978). On the other hand, there is no guarantee that all inoculated rhizobia strains will ensure a net benefit because rhizobia strains have been demonstrated to vary considerably in the advantages that they provide to the
 colegue (Thrall et al., 2007). If legumes could be able to discriminate between slightly and highly effective bacterial strains at the time of infection, there would be slight loss; carbon dioxide loss to non-effective strains. Because the nitrogen fixation begins a few days after inoculation, pre-infection recognition and exclusion of non-effective strains is inefficient.

Moreover, practical problems such as high cost of performing field trials on Nod factor effects on nodulation, low stability of Nod factors in the soil due to quickly hydrolysis in the rhizosphere by plant enzymes (Stachelin et al., 1991) and subsequently low biological activity of hydrolyzed derivatives (Heidstra et al., 1994) and mechanism of auto-regulation of nodulation (Caetano-Anollés and Gresshoff, 1991; Salavati et al., 2012a), lead to encountering logical activity of hydrolyzed derivatives (Heidstra et al., 1994) and non-effective strains is inefficient.

In conclusion, we would like to thank Mrs A. Jamdar for her useful and insightful comments and suggestions.
Mitra, R. M., Shaw, S. L., and McDonald, C., Vracratsis, P. O., Bliska, Muneer, S., Ahmad, J., Bashir, H., and Frontiers in Plant Science Mohammadi, P. P., Moieni, A., and Michiels, T., Wattiau, P., Brasseur, R., Matthysse, A. G., and Kijne, J. W. (1997). “Attachment of Rhizobiaceae to plant cells,” in The Rhizobium, eds H. P. Spohn, A. Kondorosi, and P. J. J. Hopwood (Dorset: Kluwer Academic Publishers), 135–149.

McDonald, C., Vacaru, P. G., Bliska, J. B., and Divon, J. E. (2001). The flagella-virulence factor YopH forms a novel protein complex with two cellular kinases. J. Biol. Chem. 276, 10014–10023.

Menoux, N., Mendez-Hernandez, G., and Encarnación, S. (2010). The extracellular proteomes of *Azorhizobium* *eii* CE3 in exponential and stationary growth phases. Proteomics 10, 51–65.

Münch, S., Hansen, F., Friborg, M., Malgein, E., Fuchs, H. M., and Hennig, H. (2008). Comprehensive assessment of the regulators controlled by the FeoE-FekD2-FekC1 cascade in Bradyrhizobium japonicum. J. Bacteriol. 190, 6588–6597.

Michiels, T., Wattiau, P., Brasseur, R., Matteucci, A., and Cornella, G. (1995). Secretion of Yop proteins by *Yersinia* enterocolitica. J. Enzyme Inhib. 10, 284–289.

Mitra, R. M., Shaw, S. L., and Long, R. K. (2006). Six modularizing plant mutants defective for nod-factor-induced transcriptional changes associated with the legume–rhizobia symbiosis. Proc. Natl. Acad. Sci. U.S.A. 103, 1526–1531.

Morita, H., Sun, J., Oldroyd, G. E. D., and Downes, J. A. (2004). Calcium, hormones and nodulation signaling in legumes. Annu. Rev. Plant Biol. 55, 519–548.

Oldroyd, G. E. D., and Downes, J. A. (2004). Calcium, hormones and nodulation signaling in legumes. Annu. Rev. Plant Biol. 55, 519–548.

Oka, A., and Hied, R. (1985). Nitrogen metabolism in roots. Annu. Rev. Plant Physiol. 36, 185–205.

Pineiro, J. L., Ramirez-Bahena, M. A., and Encarnación, S. (2010). The Rhizobiaceae *eii* biovar *eii* sp. strain NGR234, is a major factor in nodulation of *Arabidopsis* in symbiosis with *A. thaliana* lines. Bacteriol. 192, 6568–6575.

Robledo, M., Jimenez-Zurdo, J. I., and Kondorosi, E. (2000). The structure and mechanism of bacterial type I signal peptidases. A novel antibacterial target. Pharmacol. Ther. 87, 271–299.

Rutten, J. S., and Govers, T. J. (1986). “The process of symbiotic nitrogen fixation,” in *The Economy of Plant Nitrogen Metabolism in Roots*, ed. T. J. Givnish (Cambridge University Press), 299–325.

Santos, A., Resendis-Antonio, O., Hernández, M., and Encarnación, S. (2010). The Rhizobiaceae *eii* biovar *eii* sp. strain NGR234, is a major factor in nodulation of *Arabidopsis* in symbiosis with *A. thaliana* lines. Bacteriol. 192, 6568–6575.

Santos, A., Resendis-Antonio, O., Hernández, M., and Encarnación, S. (2010). The Rhizobiaceae *eii* biovar *eii* sp. strain NGR234, is a major factor in nodulation of *Arabidopsis* in symbiosis with *A. thaliana* lines. Bacteriol. 192, 6568–6575.

Sarkar, K. R., and Sarkar, S.-C. (2010). “Identification of a novel defense response in the plant legume *Phaseolus vulgaris* L. roots inoculated with *Rhizobium* *eii* strain NGR234,” in *Proteomics and Transcriptomics of Rhizobium and Leguminous Root Nitrogen Fixation*, eds J. J. Mariño, J. M. Franklin, and E. Z. Cutler (Dordrecht: Springer), 399–406.

Sauze, M. H. J. (2004). Evolution of bacterial type III protein secretion systems. Trends Microbiol. 12, 115–119.

Schaap, A., Boubah, A. A. S., Talei, A., Hirta, M., and Komatsu, S. (2012a). Comparative proteomic analysis of the early response to compatible symbiotic bacteria in the roots of a supersymbiotic soybean variety. J. Proteomics 75, 828–832.

Schaap, A., Boubah, A. A. S., Talei, A., Hirta, M., and Komatsu, S. (2012b). Analysis of proteomic changes in roots of soybean seedlings during nodulation and nodulation-induced freezing. J. Proteomics 75, 878–893.

Scheren, T., Talei, A., Boubah, A. A. S., and Komatsu, S. (2012a). Proteomic analysis of common bean (*Phaseo- lus vulgaris*) root nodulation and its association with *Rhizobium* *eii*. Proteomics 12, 889–891.

Schenk, D. A., and Graham, M. A. (2007). Recent advances in legume–rhizobial interaction, recognition, defense response, and symbiosis from a genomic perspective. Physiol. Plant. 144, 582–587.

Serrano, B., Bihorean, D. P., and Tourat, D. (2006). Critical protective role of bacterial superoxide dimu- tase in *Azorhizobium* *eii*–legume symbiosis. Microbiol. Mol. Biol. Rev. 50, 750–779.

Shirazian, F. R. M., Phillips, D. A., and Komendova, E. (1998). “Genetic orga- nization and transcriptional regulation of rhizobial nodulation genes,” in The Rhizobacteria, eds H. P. Spohn, A. Kondorosi, and P. J. J. Hopwood (Dorset: Kluwer Academic Publishers), 361–386.

Skripnik, P., Sand, M. M., Boudou, N. M., Koharky, H., Aron-Opped, P., Broussin, W. J., et al. (2003). Nod: a phosphorylated effecter of *Rhizobium* sp. strain NBG234, is a major
determination of nodulation of the tropical legumes *Feuveria cegonia* and *Tephrosia vogelii*. *Med. Microbiol.* **35**, 1304–1317.

Smykup, E., Corwin, C., and Wodry, S. C. (1998). Targeting of the *Sinorhizobium* proteome to Hela cells and intracellular trafficking to the nucleus. *Med. Microbiol.* **36**, 1051–1055.

Smit, G., Sway, S., Lateganberg, B. J., and Kjene, J. W. (1992). Molecular mechanisms of attachment of *Rhizobium* bacteria to plant roots. *Med. Microbiol.* **36**, 1057–1065.

Streeter, J. G. (1991). Transport and metabolism of carbon and nitrogen in legume nodules. *Adv. Bot. Res.* **18**, 129–187.

Spaink, H. P. (2000). Root nodulation and infection factors produced by rhizobial bacteria. *Atmos. Rev. Microbiol.* **54**, 257–288.

Staudlin, C., Schulte, M., Kondorosi, E., Molter, R. B., Bolles, T., and Kondorosi, A. (1994). Structural modifications in *Rhizobium meliloti* Nod-factor influence their stability against hydrolysis by root chitinases. *Plant J.* **5**, 319–330.

Streiten, J. G. (1991). Transport and metabolism of carbon and nitrogen in legume nodules. *Adv. Bot. Res.* **18**, 129–187.

Svensson, T. (2002). *Rapeseed proteomics during nodule formation*. *In Plant Proteomics, a specialty of Frontiers in Plant Science*. Copyright © 2013 Salavati, Shafeinia, Kluwe, Buncher AAS and Komatsu S (2013) Proteomic insights into intracellular plant–bacteria symbiotic association during root nodulation. Front. Plant Sci. 4:289. doi: 10.3389/fpls.2013.00028. This article was submitted to Frontiers in Plant Proteomics, a specialty of Frontiers in Plant Science. Copyright © 2013 Salavati, Shafeinia, Kluwe, Buncher AAS and Komatsu S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided that the original authors and source are credited and subject to any copyright notices concerning any third-party graphics or code.