Total body computed tomography scan in the initial work-up of Binet stage A chronic lymphocytic leukemia patients: results of the prospective, multicenter O-CLL1-GISL study

Massimo Gentile,1 Giovanni Cutrona,2 Sonia Fabris,3 Emanuela Anna Pesce,4 Luca Baldini,5 Francesco Di Raimondo,6 Caterina Musolino,7 Paolo Di Tonno,8 Nicola Di Renzo,9 Stefano Molica,10 Maura Brugiatelli,11 Fiorella Iliarucci,12 Simona Zupo,2 Serena Matis,13 Francesco Maura,5 Ernesto Vigna,4 Francesco Angrilli,14 Anna Grazia Recchia,1 Giovanni Quarta,15 Emilio Iannitto,16 Alberto Fragasso,17 Pellegrino Musto,18 Mauro Spriano,19 Iolanda Vincelli,20 Daniele Vallisa,21 Agostino Cortelezz,3,5 Francesca Romana Mauro,22 Robin Foà,22 Massimo Federico,23 Antonino Neri,3,5 Manlio Ferrarini,13 and Fortunato Morabito1*

Total body computed tomography (TB-CT) scan is not mandatory in the diagnostic/staging algorithm of chronic lymphocytic leukemia (CLL). The aim of this study was to determine the value and prognostic significance of TB-CT scan in early stage CLL patients. Baseline TB-CT scan was performed in 240 Binet stage A CLL patients (179 Rai low- and 61 Rai intermediate-risk) included in a prospective multicenter observational study (clinicaltrials.gov ID:NCT00917549). The cohort included 69 clinical monoclonal B lymphocytosis (cMBLs). Patients were restaged considering only radiological data. Following TB-CT scans, 20% of cases reclassified as radiologic Binet (r-Binet) stage B. r-Binet B patients showed a higher incidence of unfavorable cytogenetic abnormalities (P = 0.027), as well as a shorter PFS (P = 0.001). At multivariate analysis, r-Binet stage [HR = 2.48; P = 0.004] and IGHV mutational status [HR = 3.01; P = 0.046] retained an independent predictive value for PFS. Among 179 Rai low-risk cases, 100 were redefined as r-Rai intermediate-risk based upon TB-CT scan data, showing a higher rate of cases with higher ZAP-70 (P = 0.033) and CD38 expression (P = 0.029) and β2-microglobulin levels (P<0.0001), as well as a shorter PFS than those with r-Rai low-risk (P = 0.008). r-Rai stage [HR = 2.78; P = 0.046] and IGHV mutational status [HR = 4.25; P = 0.009] retained a significant predictive value for PFS at multivariate analysis. Forty-two percent of cMBL patients were reclassified as r-small lymphocytic lymphomas (r-SLLs) by TB-CT scan. TB-CT scan appears to provide relevant information in early stage CLL related to the potential and the timing of patients to progress towards the more advanced disease stages. Am. J. Hematol. 88:539–544, 2013. © 2013 Wiley Periodicals, Inc.

Introduction
Chronic lymphocytic leukemia (CLL) patients show a variable clinical course with some cases having an almost normal progression-free life span and others requiring therapy shortly after diagnosis [1]. Rai et al. and Binet et al. staging systems, which consider the extent of lymphadenopathy, organomegaly, and cytopenias, are useful for assessing prognosis [2,3]. However, for early stage patients it is virtually impossible to predict clinical course. The use of serum indicators, i.e., β2-microglobulin [4] and free-light chains [5], along with molecular and cytogenetic markers [6] may provide valuable information, although most of these markers are not routinely employed in clinical practice.

Additional Supporting Information may be found in the online version of this article.

1U.O.C. di Ematologia, Azienda Ospedaliera di Cosenza, Italy; 2SS di Diagnostica Molecolare IRCCS S. Martino-IST, Genova, Italy; 3Dipartimento Scienze Mediche, Centro di Ricerca per lo Studio delle Leucemie, Università di Milano, Fondazione IRCCS Policlinico, Milano, Italy; 4GISL Trial Office, Modena, Italy; 5U.O. di Ematologia, Fondazione IRCCS Ca Granda OM Policlinico, Dipartimento Scienze Cliniche e di Comunità dell’Università degli Studi, Milano, Italy; 6Divisione di Ematologia, Dipartimento di Scienze Biomediche, Università di Catania & A.O.P. Ospedale Ferrarotto, Catania, Italy; 7Divisione di Ematologia, Università di Messina, Messina, Italy; 8Ematologia Ospedale di Venere, Bari, Italy; 9Unità di Ematologia, Ospedale Vito Fazzi, Lecce, Italy; 10U.O.C. di Ematologia, Azienda Ospedaliera “Pugliese-Ciaccio”, Catanzaro, Italy; 11Divisione di Ematologia, Azienda Ospedaliera Papardo, Messina, Italy; 12Unità Operativa di Ematologia, A.O.S. Maria Nuova, Reggio Emilia, Italy; 13Direzione Scientifica, IRCCS S. Martino-IST, Genova, Italy; 14Dipartimento di Ematologia, Ospedale Santo Spirito, Pescara, Italy; 15Divisione di Ematologia, Presidio Ospedaliero “A. Perrino”, Brindisi, Italy; 16Divisione di Ematologia e Trapianto di Midollo Osseo, Policlinico P. Giaccone, Palermo, Italy; 17Unità Operativa di Medicina Interna, Presidio Ospedaliero di Matera, Italy; 18Unità di Ematologia e Trapianto di Cellule Stamminali, IRCCS-CROB, Rionero in Vulture, L’Aquila, Italy; 19Ematologia, A.O. San Martino, Genova, Italy; 20Divisione di Ematologia, Azienda Ospedaliera, Reggio Calabria, Italy; 21Divisione di Ematologia, Ospedale Civile, Piacenza, Italy; 22Divisione di Ematologia, Università La Sapienza, Roma, Italy; 23Dipartimento di Oncologia ed Ematologia Università di Modena Centro Oncologico Modenese, Policlinico Modena, Italy

Conflict of interest: Nothing to report

Correspondence to: Fortunato Morabito or Massimo Gentile, UOC Ematologia, Azienda Ospedaliera di Cosenza, viale della Repubblica snc, 87100 Cosenza, Italy. E-mail: fortunato.morabito@tin.it or massim.gentile@tiscali.it

Contract grant sponsor: Associazione Italiana Ricerca sul Cancro; Contract grant numbers: AN-IIG4699; MF-IG10492; FM-RG6432.

Contract grant sponsor: AIRC–Special Program Molecular Clinical Oncology; Contract grant numbers: 9980; 2010-15.

Contract grant sponsor: Ricerca Finalizzata from the Italian Ministry of Health 2006 and 2007.

Received for publication 20 March 2013; Revised 24 March 2013; Accepted 26 March 2013

Am. J. Hematol. 88:539–544, 2013.

Published online 4 April 2013 in Wiley Online Library (wileyonlinelibrary.com).

DOI: 10.1002/ajh.23448

© 2013 Wiley Periodicals, Inc.
The current staging systems are based on clinical examination and blood counts, an approach maintained by the National Cancer Institute CLL Working Group (NCI/WG) guidelines, which do not recommend computed tomography (CT) scan at diagnosis [7,8]. For this reason, abdominal and thoracic lymphadenopathies are not incorporated in the staging procedures. Moreover, certain liver or spleen enlargements may go undetected at clinical examination and hence not be computed into the staging determination. This is in contrast with the staging procedure of nearly all other lymphoid malignancies, where CT and often PET scans are highly recommended or mandatory [9,10]. Nonetheless, Muntanola et al. have shown that among Rai 0 patients abdominal lymphadenopathy or splenomegaly detected by CT scan predict disease progression [11]. Despite this, there have been no further studies addressing the issue systematically.

In the present study, we investigated the value of TB-CT scans in a cohort of Binet A patients participating in a prospective multicenter observational study. Subanalyses have also been performed in the setting of Rai low-risk and of cMBL cases, included in this cohort given the particular study design.

Methods

Patients

Newly diagnosed CLL patients from several Italian Institutions were prospectively enrolled into the O-CLL1-GISL protocol (clinicaltrials.gov identifier: NCT00917540). The inclusion criteria for CLL diagnosis, employed at the time of study start, followed the NCI/WG guidelines established in 1996 requiring >5,000 lymphocytes/μl in the peripheral blood [7]. Exclusion criteria were the following: (i) diagnosis >12 months before registration; (ii) CD5– and/or CD23– B-lymphoproliferative disorders; (iii) clinical Binet stage B or C; (iv) need of therapy according to NCI/WG guidelines; and (v) age >70 years. CLL cell phenotype, CD38 and ZAP-70 expression, and IGHV mutational status was assessed on cDNA specimens [6]. Sequences were aligned to the IMGT directory and analyzed using IMGT/VOQUEST software. Sequences differing more than 2% from the corresponding germ-line gene were considered IGHV-M [13].

Integration of TB-CT scans in the Binet and Rai staging systems

CT scans of the head-neck, chest, abdomen, and pelvis were performed in craniocaudal direction, with a 5- to 8-mm collimation. The scans were routinely acquired 70 s after the injection of 100–200 ml of iodinated contrast material, at a rate of 3 ml/s by powered injection.

Radiologists evaluated TB-CT scans according to the following shared criteria. The assessment of nodal groups status was based on size [14], the maximum short-axis diameter of lymph nodes was taken as the most reliable parameter to determine lymph node size according to standard criteria [15]. Lymph nodes >10 mm in diameter were considered abnormal according to the Binet staging system.3. Furthermore, lymph nodes were also considered abnormal if multiple nodes measuring <10 mm in the short-axis diameter were seen in a single region [16]. Splenomegaly and hepatomegaly were defined based upon the changes that an enlarged spleen and liver caused in relation to the other abdominal visceras; liver and spleen volume were calculated according to standard diagnostic criteria [17]. The normal volume for the spleen was <375 cm³ for males and <309.55 cm³ for females, for the liver <2275.47 cm³ for males and <1927.46 cm³ for females [17]. Based only on TB-CT scan data, all patients were reclassified.
according to Binet classification and assigned to radiologic Binet (r-Binet) A (patients with <3 areas of nodal or organ enlargement) or r-Binet B (patients with >3 areas of nodal or organ enlargement). In this modified restaging, we considered as areas of involvement: (1) head and neck lymph nodes (including Waldeyer’s ring (uni-/bilateral), (2) axillary lymph nodes (uni-/bilateral), (3) inguinal lymph nodes (uni-/bilateral), (4) thoracic lymph nodes (uni-/bilateral), (5) abdominal lymph nodes (uni-/bilateral), (6) splenomegaly, (7) hepatomegaly. Likewise, 179 clinical Rai low-risk patients within this cohort were reclassified as r-Rai low-risk (patients without lymphadenopathies and organomegaly) and r-Rai intermediate-risk groups (patients with lymphadenopathies at any site, and/or splenomegaly and/or hepatomegaly). Finally, 69 cMBL patients were divided into r-cMBL and r-SLL cases. Since, for SLL cases the staging should be carried out according to lymphoma guidelines, only cases with lymph nodes >15 mm in diameter and/or splenomegaly were considered as r-SLL [18,19].

Statistical analysis

SPSS for Windows, v13.0, 2004 software (SPSS, UK) was used for all analyses. For categorical variables, statistical comparisons were performed using two-way tables for the Fisher’s exact test and multivariable tests for the Fisher’s exact test and multiple Cox regression analysis. Data are expressed as hazard ratio (HR) and 95% confidence interval (CI). A value of $p < 0.05$ was considered significant.

Results

Clinical versus radiologic staging

This cohort included 240 Binet A patients (179 Rai low- and 61 Rai intermediate-risk). Of these, 69 met the diagnostic criteria of cMBL. Baseline patient features are listed in (Supporting Information Table II). Median age was 60 years (range, 33–70) and 137 (57.1%) were male; roughly two-thirds of cases showed elevated β2-microglobulin level, 41.7% were IGHV-UM, 45.8% were ZAP-70-positive, and 19.2% CD38-positive. FISH data, available in 226/240 cases, identified del(13q14) as the most frequent abnormality followed by trisomy 12, while there was a low incidence of del(11q22.3) cases and an even lower percentage of del(17p13) cases.

Sixty-one out of 240 (25.4%) patients showed clinical lymphadenopathies and/or organomegaly. Thirty-two patients showed involvement of only one lymph node area, 13 of two lymph node areas, 2 of one lymph node area and splenomegaly and 14 splenomegaly and/or hepatomegaly. Thirty-one out of 240 cases (12.9%) showed head and neck lymphadenopathies, 28 (11.7%) axillary lymphadenopathies and 1 (0.4%) inguinal lymphadenopathy. Ten cases (4.2%) had splenomegaly and 8 (3.3%) hepatomegaly (Supporting Information Table II).

At TB-CT scan, 84/240 patients showed no organomegaly or lymphadenopathies; head and neck lymph nodes were enlarged in 62 cases (25.8%), axillary lymph nodes in 88 (36.7%), inguinal lymph nodes in 33 (13.8%), thoracic lymph nodes in 22 (9.2%), and abdominal lymph nodes in 59 (24.6%). Lymphadenopathies had diameters between 15 and 30 mm. Moreover, 35 (14.6%) cases presented splenomegaly, and 22 (9.2%) hepatomegaly (Supporting Information Table II).

There was discordance between radiological and clinical examination in 53/240 (22.1%) cases for head and neck lymph node involvement; in 42 cases, TB-CT scans revealed lymphadenopathies not seen at clinical assessment, while in 11 cases lymphadenopathy was not confirmed radiologically (Table I). There was discordance for axillary lymph node involvement in 70/240 (29.2%) patients; TB-CT scans did not confirm lymphadenopathy in 5 cases, while in 65 cases negative at clinical level radiological examination revealed lymphadenopathy. TB-CT scans demonstrated inguinal lymphadenopathy not observed at physical examination in 32/240 (13.3%) patients. There were discrepancies regarding splenomegaly in 31 (12.9%) cases; the TB-CT scans did not confirm the presence of clinical splenomegaly in three cases, while they revealed splenomegaly not identified on clinical examination in 28 cases. There was discordance regarding hepatomegaly in 24 (10%) cases; TB-CT scan identified 19 cases with hepatomegaly undetected at clinical examination, and did not confirm the presence of clinical hepatomegaly in 5 cases.

Restaging of patients: Binet A cases

Forty-eight out of 240 Binet A patients (20%) were converted into r-Binet stage B. Among these reclassified patients 64.6% were male, 35.9% showed elevated β2-microglobulin level, 50% had a high ZAP-70 expression, 27.1% were CD38-positive, and 15.9% showed high-risk FISH lesions (Table II). r-Binet B patients showed a statistically higher rate of high-risk cytogenetic cases than r-Binet A patients (15.9% vs. 5.5%; $P = 0.027$).

The distribution of the remaining parameters were not statistically significant (Table II).

After a median follow-up of 31 months, 56/230 (24.3%) evaluable cases showed disease progression. r-Binet B patients showed a significantly shorter PFS than those with r-Binet A (2-year PFS probability, 71.2% vs. 87.4%; $P = 0.001$) (Fig. 2). At Cox univariate analysis, r-Binet stage [HR = 2.55, 95%CI (1.38–4.71); $P = 0.003$], CD38 [HR = 3.19, 95%CI (1.8–5.79); $P < 0.0001$] and IGHV mutational status [HR = 4.16, 95%CI (2.37–7.31); $P < 0.0001$] showed a statistically significant impact on PFS (Table III). At Cox multivariate analysis, only r-Binet stage [HR = 2.48, 95%CI (1.33–4.62); $P = 0.004$] and IGHV mutational status [HR = 3.01, 95%CI (1.48–6.15); $P = 0.002$] maintained an independent prognostic impact (Table III).

Moreover, 22 cases with thoracic lymphadenopathies showed a nonstatistically different PFS as compared to 208 cases without pathologic thoracic lymph nodes (2-year PFS probability, 76.5% vs. 85.8%; $P = 0.16$); while 59 cases with abdominal lymphadenopathies had a significantly shorter PFS than 161 cases with a normal abdominal CT scan (2-year PFS probability, 74.4% vs. 88.2%, $P < 0.0001$).

Finally, TB-CT scan allowed the early identification of a second neoplasm in 2 cases (lung cancer and renal cell carcinoma).

TABLE I. Discrepancies Between Radiological and Clinical Examination for Lymph Node Involvement and Organomegalies

Clinical examination	Radiological examination	Discordance	CT scan +/-	Clinical grounds	CT scan +/-
Head-neck adenopathy	31 (12.9)	62 (25.8)	53 (22.1)	42 (17.5)	11 (4.6)
Axillary adenopathy	28 (11.7)	88 (36.7)	70 (29.2)	65 (27.1)	5 (2.1)
Inguinal adenopathy	1 (0.4)	33 (13.7)	32 (13.3)	32 (13.3)	0 (0)
Splenomegaly	10 (4.1)	35 (14.6)	31 (12.8)	28 (11.7)	3 (1.2)
Hepatomegaly	8 (3.3)	22 (9.2)	24 (10)	19 (7.9)	5 (2.1)

Note: Numbers in parentheses indicate the number of cases.
Discussion

CT scan is not routinely recommended for CLL patient work-up in contrast with other low-grade lymphoproliferative disorders [20]. Moreover, the studies investigating the clinical significance of TB-CT scan in CLL are scanty.

Herein, we investigated whether early stage CLL can be upstaged using TB-CT scan and whether these upstaged patients have clinical and biological characteristics and PFS (determined by need for therapy) differing from those who are not upstaged. A similar evaluation was performed in cMBL patients. This category of patients was included in the O-CLL1 protocol when enrollment began in 2006 since the investigators followed the 1996 NCI/WG guidelines for CLL diagnosis [7]. cMBL was later recognized as a separate entity by 2008 NCI/WG guidelines [8]. Finally, we evaluated the prognostic impact of thoracic and abdominal lymphadenopathies.

In our series, 25% of 240 Binet A patients presented clinical lymphadenopathy and/or organomegaly; this percentage reached 85% following TB-CT scan, mainly due to the identification of thoracic and abdominal lymphadenopathies in 9% and in 24% of the cases, respectively. Studies

Restaging of patients: Rai low-risk cases

There were 179 Rai low-risk and 61 Rai intermediate-risk cases among Binet A patients. On the basis of CT scan data, 100/179 (55.9%) low-risk patients were redefined as r-Rai low-risk. This subset of patients showed a statistically higher rate of cases with higher ZAP-70 (52.5%) in the r-Rai intermediate-risk patients than in the r-Rai low-risk patients (2-year PFS probability, 85% vs. 97.2%; P = 0.008) (Fig. 3). At Cox univariate analysis, only r-Rai stage [HR = 2.78, 95%CI (1.02–7.59); P = 0.046] and IGHV mutational status [HR = 4.25, 95%CI (1.43–12.6); P = 0.009] maintained an independent prognostic impact (Table III).

Furthermore, thoracic CT scans failed to significantly separate the clinical outcome of those 13 cases with thoracic lymphadenopathies from 159 radiologically negative cases (2-year PFS probability, 90.4% vs. 90.9%, P = 0.2), while 34 cases with abdominal lymphadenopathies showed a statistically shorter PFS than 138 cases without pathological abdominal lymph nodes (2-years PFS probability, 82.5% vs. 92.3%, P < 0.0001).

Restaging of patients: cMBL cases

On the basis of TB-CT scan data, 29/69 (42%) cMBL patients were redefined as r-SLLs. Of note, no statistically different distribution of clinical and biological parameters was observed between cMBL and r-SLL patients (Table II). After a median follow-up of 35 months, 5/66 cases evaluable presented progression (3 c-MBLs and 2 r-SLLs). Considering all clinical Rai low-risk patients, no statistical difference in PFS was observed between those reclassified as r-cMBL, r-SLL, or r-Rai low-risk patients, while r-Rai intermediate-risk cases showed a statistically shorter PFS (2-years PFS probability, r-cMBL 97%, r-SLL 92.3%, r-Rai low-risk 97.2%, r-Rai intermediate-risk 81.9%, P < 0.0001).

TABLE II. Correlation Among Main Initial Characteristics and Staging Systems Integrated with TB-CT Scan

Clinical staging	Binet stage A (n = 240)	Rai low-risk stage (n = 179)	cMBL (n = 69)						
% of Binet stage	% of Binet stage	% of Rai low-risk stage	% of Rai intermediate-risk stage	% of cMBL pts	% of SLL pts				
A pts (n = 192)	B pts (n = 48)	stage B pts (n = 79)	stage B pts (n = 100)	pts (n = 40)	pts (n = 29)				
Sex Male/Female	55.2/44.8	64.6/35.4	ns	46.8/53.2	60/40	ns	45.7/52.5	51.7/48.3	ns
Age <60/60 yr	46.4/53.6	56.3/43.7	ns	45.6/54.4	49/51	ns	45/55	37.8/62.1	ns
Lymphocyte count	90.6/9.4	93.6/6.2	ns	97.5/2.5	90/10	ns	89.4/10	37.8/62.1	ns
<30, >30 × 10^9/L	75/25	64.1/35.9	ns	86.9/11.1	61.8/32.2	<0.0001	83.9/16.1	62.5/37.5	ns
CD38 expression	92.5/7.5	95.3/4.7	ns	95.6/4.4	91.6/8.4	ns	91.7/8.3	92.6/7.4	ns
ZAP-70 expression	82.8/17.2	72.9/27.1	ns	89.8/10.1	77/23	0.029	90/10	75.9/24.1	ns
<30/30%	55.3/44.7	50/50	ns	64.1/35.9	47.5/52.5	0.033	62.5/37.5	44.8/55.2	ns
2-microglobulin levels	92/78	95.3/4.7	ns	95.6/4.4	91.6/8.4	ns	91.7/8.3	92.6/7.4	ns
IGHV mutational status	69.1/30.9	58.3/41.7	ns	74.4/25.6	66/34	ns	82.1/17.9	62.1/37.9	ns
Lymphocyte count	94.5/5.5	84.1/15.9	ns	94.4/5.6	92.9/7.1	ns	97.1/2.9	92.9/7.1	ns

ns, not significant.

Figure 2. PFS according r-Binet stage. Taking into consideration only radiological data 48/240 Binet A patients (20%) were converted into r-Binet stage B. r-Binet B patients showed a significantly shorter time to progression than those with r-Binet A (2-year PFS probability, 71.2% vs. 87.4%; P = 0.001).
investigating thoracic lymph node involvement in a large cohort of CLLs are unavailable, although thoracic lymphadenopathies are traditionally considered infrequent [21]. We found a more common involvement of abdominal lymph nodes at a rate comparable with that reported by Muntanola et al., who demonstrated abdominal lymphadenopathies in 27% of 140 Rai 0 cases by CT scans [11].

Moreover, we observed an important discrepancy between radiological and clinical examinations concerning superficial lymphadenopathies (see Table II), possibly due to the relatively small lymph node diameter in numerous patients. Moreover, spleno-/hepatomegaly were more easily detected radiologically. Together the findings indicate a greater sensitivity of the imaging techniques. Does this greater sensitivity translate into clinically relevant information? Indeed, PFS was shorter for r-Binet B than for r-Binet A patients. Interestingly, multivariate analysis demonstrated that IGHV mutational status and r-Binet stage were the only two variables independently associated with progression. In connection with this it is of note that r-Binet B patients also showed a higher rate of high-risk cytogenetics. These data are in line with the reported frequent association between lymphadenopathies and certain high-risk cytogenetic alterations such as del11q [22,23]. Importantly, our study revealed that the presence of abdominal lymphadenopathies negatively impacted on PFS. The low number of cases presenting thoracic lymphadenopathies precluded a statistically sound evaluation.

Binet A patients were subclassified into Rai low- and intermediate-risk cases. About 56% of low-risk patients showed lymphadenopathy and/or organomegaly using TB-CT scans and could be classified as r-Rai intermediate-risk. r-Rai intermediate-risk patients had a significant shorter time to progression than those with r-Rai low-risk (2-year PFS probability, 85% vs. 97.2%; P = 0.008).

Figure 3. PFS according r-Rai stage in clinical Rai stage 0 patients. Based upon CT scan data, 100/179 (55.9%) Rai low-risk patients were redefined as r-Rai intermediate-risk. r-Rai intermediate-risk patients had a significant shorter time to progression than those with r-Rai low-risk (2-year PFS probability, 85% vs. 97.2%; P = 0.008).

Table III. Univariate and Multivariate Analyses (Cox Model) of Progression-Free Survival

No of pts	(No of events)	Univariate analysis	Multivariate analysis
		HR	P
		HR	95% CI

r-Binet stage A/B 184/46 (38/18) 2.55 1.38–4.71 0.003 2.48 1.33–4.62 0.004
r-Rai stage low-/intermediate-risk – – – – – – – 77/95 (72/20) 3.86 1.46–10.26 0.007 2.54 1.44–4.48 0.001
CD38 expression negative/positive 187/43 (34/22) 3.19 1.8–5.79 <0.0001 1.54 0.79–3.02 0.2
ZAP-70 expression negative/positive 124/105 (22/34) 2.29 1.3–4.02 0.004 1.25 0.64–2.44 0.51
IGHV mutational status mutated/germline 154/75 (21/35) 4.16 2.37–7.31 0.001 1.25 0.64–2.44 0.51
Cytogenetic risk low - intermediate/high 202/16 (48/7) 1.76 0.75–4.13 0.19

Binet A patients were subclassified into Rai low- and intermediate-risk cases. About 56% of low-risk patients showed lymphadenopathy and/or organomegaly using TB-CT scans and could be classified as r-Rai intermediate-risk patients. The latter comprised a significantly higher rate of cases with high CD38 and ZAP-70 expression and elevated β2-microglobulin levels. The higher β2-microglobulin levels likely reflects the CLL tumor burden [24]. Moreover, within the clinical Rai low-risk group, those reclassified as r-Rai intermediate-risk had a significantly shorter PFS. Also, r-Rai stage and IGHV mutational status remained independently associated with progression reaffirming the value of radiological data. Again in this subgroup the presence of abdominal lymphadenopathies was a predictor of progression, confirming data by Muntanola et al. [11].
We observed a high rate of cases (more than 40%) with lymphadenopathy and/or organomegaly at TB-CT scan within the cMBL group; these patients should not be considered as having true cMBL but SLL according to IWCLL guidelines [8]. In fact, the definition of SLL requires the presence of lymphadenopathy and/or splenomegaly (as defined by physical examination or CT scan) associated with \(<5.0 \times 10^9 \) lymphocytes fulfilling the phenotypic features of CLL/SLL [8]. Likewise, the presence of lymphadenopathy and/or splenomegaly represent exclusion criteria for cMBL [8]. Accordingly, Rossi et al. reported that 15% of cMBLs progressed to SLLs, suggesting that some cMBLs are SLLs with a very low tumor burden at diagnosis [25]. Scarfo et al. found lymphadenopathy and/or hepato-/splenomegaly in only 6% of cMBL by radiologic evaluation, although the criteria utilized for defining lymphadenopathies were not clearly outlined in the study [26]. Overall, our and other data support the notion that TB-CT scan could correctly distinguish between cMBLs and SLLs. Unfortunately, the relatively low number of cases and events in our series does not allow to definitively establish whether r-cMBLs and r-SLLs have a different prognosis.

Finally, TB-CT scan allowed the early diagnosis of a concomitant neoplasm in 2 cases. It is known that patients with CLL have a high risk of developing a second cancer and an increased frequency of certain cancer types [27]. Nonetheless, there are no studies investigating the use of TB-CT scans in routine screening or follow-up to precociously detect cancer in CLL.

Overall, these results indicate that TB-CT scan, through a more accurate evaluation of tumor burden than clinical examination, allows the identification of a subset of cases with a more aggressive disease in early stage CLL patients. Moreover, in patients with \(<5 \times 10^9 \) lymphocytes/l, TB-CT scan can differentiate between true cMBL and SLL cases. On the basis of our results it may be premature to recommend the routine use of TB-CT scan in all early stage CLL patients, as this recommendation should also consider obvious economic constraints. Nevertheless, our data provide groundwork for performing a larger study to verify the prognostic significance of TB-CT scan along with other new prognostic parameters in CLL patients.

Acknowledgments
In addition to the listed Authors, the following Investigators were involved in this study as part of the GISL—Gruppo Italiano Studio Linfomi: Gianni Quintana, Divisione di Ematologia, Presidio Ospedaliero “A. Perrino”, Brindisi; Giovanni Bertoldero, Dipartimento di Oncologia, Ospedale Civile, Noale, Venezia; Paolo Di Tonno, Dipartimento di Ematologia, Venere, Bari; Maria Cristina Cox, Ematologia, A.O. Sant’Andrea, Università La Sapienza, Roma; Attilio Guarini, Unità di Ematologia e Trapianto di Cellule Staminali, Istituto di Oncologia “Giovanni Paolo II”, Bari; Antonio Abbadesa, U.O.C. di Oncoematologia Ospedale “S. Anna e S. Sebastian”, Case- ria; Francesco Iuliano, U.O.C. di Oncologia, Ospedale Gian- gia “G. Di Cristina”, Catania; Francesco Merli, Unità di Ematologia, Ospedale di Bosa, Sassari; Massimo Pinotti, U.O. di Ematologia, Ospedale di Torino, Torino; Monica Crugnola, U.O. di Ematologia, Ospedale della Ricerca, Roma; Francesco Iuliano, U.O. di Ematologia, Ospedale di Bosa, Sassari; Nicolo’ Accornero, U.O. di Ematologia, Ospedale Universitario di Modena, Modena; Antonio Ponzoni, U.O. di Ematologia e Trapianto di Cellule Staminali, IRCSS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo; Giuseppe Longo, Unità di Ematologia, Ospedale San Vincenzo, Taormina; Lucia Ciufreda, Unità di Ematologia, Ospedale San Nicola Pellegrino, Palermo; Antonio Abbadessa, Unità di Ematologia e Trapianto di Cellule Staminali, Istituto di Oncologia, Università di Catania, Catania; Maria Grazia Zichella, Divisione di Ematologia, Ospedale Policlinico, Palermo; Franco Merli, Unità Operativa di Ematologia, A.O.S. Maria Nuova, Reggio Emilia. The authors thank Fondazione ‘Amelia Scorza’ onlus, Cosenza, Italy and Brigida Gulino for precious secretarial assistance.

References
1. Rozman C, Montserret E. Chronic lymphocytic leukemia. N Engl J Med 1995;333:1052–1057.
2. Rai KR, Sawitsky A, Cronkite EP, et al. Clinical staging of chronic lymphocytic leukemia. Blood 1975;46:219–234.
3. Binet JL, Auquier A, Dighiero G, et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer 1981;48:198–206.
4. Gentile M, Cutrona G, Neri A, et al. Predictive value of beta2-microglobulin (beta2-m) levels in chronic lymphocytic leukemia since Binet A stages. Haematologica 2009;94:887–888.
5. Morabito F, De Filippi R, Laurenti L, et al. The cumulative amount of serum-free light chain is a strong prognosticator in chronic lymphocytic leukemia. Blood 2011;118:6353–6361.
6. Morabito F, Cutrona G, Gentile M, et al. Definition of progression risk based on combinations of cellular and molecular markers in patients with 7. Binet stage A chronic lymphocytic leukemia. Br J Haematol 2009;146:44–53.
7. Cheson BD, Bennett JM, Grever M, et al. National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: Revised guidelines for diagnosis and treatment. Blood 1996;87:4990–4997.
8. Haensel M, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 2008;111:5446–5456.
9. Mayevomali BH, Cheson BD, Pre- and post-treatment evaluation of non-Hodgkin’s lymphoma. Best Pract Clin Haemato 2002;15:429–447.
10. Issai CR, Lu P, Blaufox MD. A metaanalysis of 18F–2-deoxy-2-fluoro-glucose positron emission tomography in the staging and restaging of patients with lymphoma. Cancer 2005;104:1066–1074.
11. Muntanola A, Bosch F, Arguis P, et al. Abdominal computed tomography predicts progression in patients with Rai stage 0 chronic lymphocytic leukaemia. J Clin Oncol 2007;25:1576–1580.
12. Rai KR. A critical analysis of staging in CLL. In: Gale RP, Rai KR, editors. Chronic Lymphocytic Leukemia: Recent Progress and Future Directions. New York, NY: Liss; 1987. pp 253–284.
13. Cutrona G, Colombo M, Matis S, et al. Clonal heterogeneity in chronic lymphocytic leukemia cells: superior response to surface IgM cross-linking in CD38, ZAP-70-positive cells. Haematologica 2008;93:413–422.
14. Feldman BH, et al. Upper abdominal lymph nodes: Criteria for normal size determined with CT. Radiology 1991;180:319–322.
15. Vinnicombe SJ, Reznick RH. Computerised tomography in the staging of Hodgkin’s disease and non-Hodgkin’s lymphoma. Eur J Nucl Med Mol Imaging 2003;30(Suppl 1):S42–S55.
16. Sutinen E, Jyrkkio S, Varpula M, et al. Nodal staging of lymphoma with whole-body PET: Comparison of. J Nucl Med 2001;41:1980–1988.
17. Geraghty EM, Boone JM, Mcgahan JP, et al. Normal organ volume assessment from abdominal CT. Abdom Imaging 2004;29:482–490.
18. Lister TA, Crowther D, Sultcliffe SB, et al. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cots-wolds Meeting. J Clin Oncol 1989;7:1630–1636.
19. Armitage JO. Staging non-Hodgkin’s lymphoma. CA Cancer J Clin 2005;55:368–376.
20. Berkman N, Pollack A, Breuer R, et al. Pulmonary involvement as the major manifestation of chronic lymphocytic leukemia. Leuk Lymphoma 1992;8:495–499.
21. Austen B, Powell JE, Ahi A, et al. Mutations in the ATM gene lead to impaired overall and treatment-free survival that is independent of IGVH mutation status in patients with B-CLL. Blood 2005;106:3175–3182.
22. Neusser J, Auer R, Ruland J, et al. Deletions at 11q11 identify a subset of patients with typical CLL who show consistent disease progression and reduced survival. Leukemia 1997;11:1929–1932.
23. Dohner H, Stilgenbauer S, James NR, et al. 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. Blood 1997;89:2516–2522.
24. Simonsson B, Wibell L, Nilsson K. k2-microglobulin in chronic lymphocytic leukaemia. Scand J Haematol 1980;24:174–178.
25. Scarfo A, Di Sozzi E, Puma A, et al. The prognostic value of clinical monoclonal B cell lymphocytosis differs from prognosis of Rai 0 chronic lymphocytic leukemia and is recapitulated by biological risk factors. Br J Haematol 2009;146:64–75.
26. Scarfo A, Zibellini S, Tedeschi A, et al. Impact of B-cell count and imaging screening in cMBL: Any need to revise the current guidelines? Leukemia 2012;26:1703–1707.
27. Tsimeridou AM, Wens M, McLaughlin P, et al. Other malignancies in chronic lymphocytic leukemia/small lymphocytic lymphoma. J Clin Oncol 2009;27:904–910.