Facile one-pot synthesis of water-soluble fcc FePt$_3$ alloy nanostructures

Melek Kızaloğlu Akbulut1 · Christina Harreiß2 · Mario Lößfler3,4 · Karl J. J. Mayrhofer3,4 · Michael Schöbitz5 · Julien Bachmann5 · Erdmann Spiecker2 · Rainer Hock6 · Carola Kryschi1

Received: 22 June 2020 / Accepted: 17 September 2020 / Published online: 28 September 2020
© The Author(s) 2020 OPEN

Abstract

Processible FePt$_3$ alloy nanoparticles with sizes smaller than 50 nm open the avenue to novel magnetic sensor, catalytic and biomedical applications. Our research objective was to establish a highly scalable synthesis technique for production of single-crystalline FePt$_3$ alloy nanoparticles. We have elaborated a one-pot thermal decomposition technique for the synthesis of superparamagnetic FePt$_3$ nanoparticles (FePt$_3$ NPs) with mean sizes of 10 nm. Subsequent tiron coating provided water solubility of the FePt$_3$ NPs and further processibility as bidental ligands enable binding to catalyst surfaces, smart substrates or biosensors. The chemical composition, structure, morphology, magnetic, optical and crystallographic properties of the FePt$_3$ NPs were examined using high resolution transmission electron microscopy, high-angle annular dark field-scanning transmission electron microscopy, scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy mapping, Fourier transform infrared-attenuated total reflection, X-ray powder diffraction, X-ray photoelectron spectroscopy, vibrating sample magnetometry and UV–Vis absorption spectroscopy.

Keywords Iron-platinum alloy · FePt$_3$ nanoparticles · XPS · XRD analysis · Thermal decomposition route

1 Introduction

In recent years, bimetallic nanocrystals have received significant attention for nanoengineering, nanoelectronics and nanomedicine because of their particularly physical and chemical properties. Iron platinum alloy nanostructures in the L$_1^0$, L$_1^1$ and L$_1^2$ phases were engineered for applications as being magnetic sensors, catalysts, drug delivery tools, and biomedical imaging [6, 14, 21, 27, 32, 39]. Highly ordered FePt alloy nanocomposites exhibit an encouraging potential for ultrahigh density magnetic recording media and high-performance permanent magnets due to their uniaxial magnetocrystalline anisotropy, whereas chemically disordered FePt alloy nanoparticles promise applications in medical diagnostics (e.g. MPI, CT and MRI) [4, 14, 23]. FePt and FePt$_3$ alloys may crystallize in three different crystal structures: FePt$_3$ (L$_1^2$, AuCu$_3$-type cubic), FePt (L$_1^0$, AuCu-type tetragonal) and Fe$_3$Pt (L$_1^2$, AuCu$_3$-type cubic), the magnetic properties of which depend on the synthesis procedure [2, 8, 9, 14]. On the other hand, in the respective chemically disordered high-temperature FePt phase, the Fe and Pt atoms are randomly...
distributed over the lattice sites and thus, exhibit isotropic magnetic behavior [27, 35]. The most common synthesis routes for preparing FePt, Fe₃Pt or FePt₃ nanoparticles are the thermal decomposition technique and the polyol synthesis [21, 23]. The face centered cubic (fcc) FePt phase can be transformed into the face centered tetragonal (fct) phase by high temperature annealing. Unfortunately, thermal annealing gives rise to agglomeration of FePt alloy nanocrystals which is accompanied by the emergence of undesired shapes and broad size distributions [13, 21]. The formation of FePt alloy nanocrystals depend on the growth from two different metals (Fe and Pt) at distinct reaction temperatures [21]. Sun et al. synthesized FePt alloy nanocrystals by thermally decomposing Fe(CO)₅ and Pt(acac)₂ in the presence of the reducing agent oleyl amine and the surfactant oleic acid. Cytotoxic Fe(CO)₅ can be substituted by iron(III) acetylacetonate or iron(III) oleate. Moreover high-boiling temperature solvents such as di-n-octyl ether or 1-octadecene are required for thermal decomposition synthesis routes. Polyol synthesis techniques are based on solvents such as tetraethyleneglycol (TEG) and ethylene glycol (EG) which simultaneously serve as solvent and reducing agent for the metallic precursor [23, 33]. One major drawback of these demanding synthesis techniques is the impossibility to adjust the growth of FePt alloy nanoparticles within a uniform crystal phase (fcc or fct).

In the present work, we have elaborated a straightforward synthesis route for chemically disordered fcc FePt₃ nanocrystals. This one-pot synthesis is highly scalable for the preparation of superparamagnetic FePt₃ nanoparticles (FePt₃ NPs) for future electronic and biomedical applications. The one-pot synthesis technique comprises the preparation of a Pt(II) precursor solution and subsequent formation of FePt₃ NPs. Subsequent ligand exchange with tiron provided dispersion stability and water solubility of the FePt₃ NPs and moreover, facilitates their processing to thin magnetic films and their application as MRT/CT contrast agents in biomedical imaging. The tiron-coated FePt₃ NPs were characterized by determining the average size, size distribution, morphology, crystallographic properties, colloidal stability, magnetic and optical properties. High resolution transmission electron microscopy (HRTEM), high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy (STEM-EDX) mapping, Fourier transform infrared-attenuated total reflection (FTIR-ATR), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–Vis absorption spectroscopies were employed as microscopy and spectroscopy characterization techniques. The magnetic properties were examined using vibrating sample magnetometry.

2 Experimental

2.1 Materials

Dihydrogenhexachloroplatinate hexahydrate \((\text{H}_2\text{Cl}_6\text{Pt} \times 6\text{H}_2\text{O}, \geq 99.9\%, \text{Alfa Aesar}) \), ethanol (≥ 99.8%, Carl-Roth), oleic acid (90%, Sigma-Aldrich), 1-octadecene (90%, Sigma-Aldrich), tert-butylamine borane (TBAB, 97%, Sigma-Aldrich), chloroform (≥ 99.9%, Sigma-Aldrich), isopropanol (≥ 98%, Sigma-Aldrich), tiron (97%, Sigma-Aldrich), oleylamine (80–90%, Acros Organics), n-hexane (95%, VWR), iron(III) acetylacetonate (Fe(acac)₃, 97%, Fluka) were used for the synthesis of the FePt₃ NPs. All chemicals are commercially available and were used without further purification. In all syntheses, ultrapure milli-Q water (18 Ω) was used.

2.2 Preparation of the Pt(II) precursor solution

40.0 mg \(\text{H}_2\text{Cl}_6\text{Pt} \times 6\text{H}_2\text{O} \) (0.077 mmol) were dissolved in 4.00 mL chloroform and 4.00 mL oleylamine (12.2 mmol) were added. The precursor solution was stirred for 10 min under ambient conditions. 70.0 mg TBAB (0.804 mmol) and 1000 μL oleylamine (1.22 mmol) in 1000 μL chloroform were mixed by sonication and added to the precursor solution. The mixture was stirred for 1 h at room temperature.

2.3 Synthesis of FePt₃ NPs

Under argon atmosphere, the Pt(II) precursor solution in chloroform was added to a solution containing 15.0 mL 1-octadecene, 1.00 mL oleic acid (3.15 mmol) and 1.00 mL oleylamine (3.04 mmol). The reaction mixture was stirred for 30 min at 120 °C. Then 90.0 mg Fe(acac)₃ (0.255 mmol) dissolved in 5.00 mL 1-octadecene were injected into the hot solution. The reaction mixture was heated to 320 °C and boiled under reflux over 2 h. After cooling down to room temperature the reaction mixture was exposed to air for 1 h. The FePt₃ NPs were precipitated by the addition of 60 mL isopropanol and collected by centrifugation (11,000 rpm, 10 min). Afterwards the FePt₃ NPs were washed with ethanol and centrifugation and redispersed in 10 mL n-hexane for storage.

2.4 Tiron-coating of the FePt₃ NPs

100 mg tiron (0.302 mmol) in 1.50 mL milli-Q water were added to a dispersion of 10 mg FePt₃ NPs in 2.50 mL n-hexane. This biphasic n-hexane/water NP mixture was sonicated for 1 h. Then n-hexane was removed using a
rotary evaporator. The tiron-coated FePt₃ NP dispersion formed a stable aqueous solution.

2.5 Microscopic and spectroscopic characterization

HRTEM images were obtained using a Titan3 Themis 300 (FEI Company, Netherlands) equipped with a high-brightness field-emission gun (X-FEG), a monochromator system and two Cs-correctors (probe and image side) (CEOS GmbH, Germany). The microscope operates at an acceleration voltage of 200 kV. The morphology and elemental composition of the FePt₃ NPs were examined by means HAADF-STEM using the Z-contrast. The STEM-EDX mappings were obtained using a Super-X detector for EDX spectroscopy. The HRTEM images were recorded using a FEI Ceta 16 M 4 K CMOS (complementary metal-oxide semiconductor) camera. HRTEM samples were prepared by dropping the FePt₃ NP dispersions on Cu grids coated with an ultrathin carbon film layer.

XRD patterns of FePt₃ NPs powder samples were measured at room temperature using a Philips/Panalytical X-Pert Pro equipped with a copper radiation, (Kₒₐ₁ = 0.154056 nm and Kₒ₂ = 0.154439 nm). The XRD measurements were repeated 10 times. In addition, the Rietveld profile fitting of the XRD pattern of the FePt₃ NP sample was recorded by mounting in a silicon wafer to the XRD instrument at room temperature. Rietveld fitting was obtained by means of MAUD (Materials Analysis Using Diffraction) [15–18].

FTIR transmission spectra of the FePt₃ NPs were recorded on an IR Prestige-21 spectrometer (Shimadzu, Japan) equipped with an attenuated ATR setup with a diamond/ZnSe crystal plate (Miracle ATR, Pike Technologies, U.S.A.).

XPS was conducted on a Quantera II microprobe (Physical Electronics Inc., Chanhassen, MN, USA) under ultrahigh vacuum conditions. The powder samples were mounted on a double-sided sticky tape to the sample holder. Monochromated Al Kα x-rays (1486.6 eV, source at 15 kV and 50 W) were focused on 200 × 200 µm² homogeneously covered spots of the powder samples. The mostly non-conducting samples were neutralized by Ar⁺ ions and electrons. The pure Pt and pure Fe reference samples were presputtered to clean the surface. Photoelectrons were detected at an analyzer pass energy of 280 eV and 140 eV and the number of sweeps for signal averaging were 3 and 25 for survey and high-resolution spectra, respectively. A peak at 284.8 eV associated with C 1s core-level was taken as a reference for the binding energy scale of the FePt₃ NP samples.

The magnetic properties of the FePt₃ NPs were analyzed using a Quantum Design VSM-MPMS SQUID magnetometer at room temperature under an external magnetic field varied between −5T and +5T.

3 Results and discussions

3.1 HRTEM/HAADF-STEM/STEM-EDX analysis

According to the HRTEM image in Fig. 1a the FePt₃ NPs are single crystalline and flower-like nanostructures with a mean size of 10 nm. Furthermore, the HRTEM image (Fig. 1a, insert) exhibits lattice fringe spacings with 0.194 nm which identifies the (200) lattice plane of the face centered cubic (fcc) phase. Figure 1b shows the HAADF-STEM image of the FePt₃ NPs. The STEM-EDX mapping images visualize the homogeneous elemental distribution of Pt (green) and Fe (red) in the FePt₃ NPs, and thereupon revealing their quasi-alloy FePt₃ composition (Fig. 1c–e).

3.2 XRD analysis

The crystal structure of the FePt₃ NPs was elucidated by performing a powder XRD analysis. The XRD pattern in Fig. 2 displays prominent reflection peaks at 40.25, 46.75, 68.41, and 82.34 which are assigned to the (111), (200), (220), (311) planes of the disordered fcc FePt₃ phase with the space group Fm3m (ICDD Ref: 001-089-2050) [29]. The Rietveld fit of the XRD data (Fig. 3) was obtained for the fcc phase of FePt₃ and yielded the lattice constant a = 0.3852 nm [15–18]. The superlattice reflections (001) and (110) indicate a partially L1₂-ordered phase of FePt₃. The average NP diameter was calculated to be 10 nm using the Debye–Scherrer equation [11], which agrees with the HRTEM analysis.

3.3 FTIR-ATR spectra

Oleic acid and oleylamine were used as stabilizing agents for the high-temperature synthesis of the FePt₃ NPs. In the FTIR-ATR spectrum of the FePt₃ NPs (Fig. 4, black solid line) the peaks at 2853 cm⁻¹ and 2925 cm⁻¹ were assigned to the symmetric and asymmetric CH₂ stretching modes of oleic acid and oleylamine [5]. Water solubility and further processability of the FePt₃ NPs were achieved by tiron coating through ligand exchange. The binding modus of tiron was elucidated by analyzing the FTIR-ATR spectrum of tiron-coated FePt₃ NPs (Fig. 4, red solid line). This FTIR-ATR spectrum exhibits the characteristic vibrational bands of tiron being bound via the catechol group at the FePt₃ NP surface (Fig. 5). The broad band in the region of 3100–3600 cm⁻¹ arose from the symmetric O–H stretching vibrations of water. The vibrational peak at 1250 cm⁻¹ and 1190 cm⁻¹ are assigned to...
the asymmetric S=O stretching vibration, and the band at 1031 cm⁻¹ is ascribed to the symmetric O=S=O stretch of tiron [28]. The peak at 630 cm⁻¹ identifies the C–S stretching vibration. The peaks at 1596 cm⁻¹, 1459 cm⁻¹ and 1426 cm⁻¹ refer to the carbon–carbon stretching vibrations in the aromatic ring of the tiron [28].

3.4 XPS analysis

Figure 6 exhibits the Fe 2p spectral region, namely the Fe 2p3/2 and Fe 2p1/2 multiplet for the FePt₃ NPs and a pure metal Fe. The Fe 2p spectral region consists of two peaks at approximately 712.8 eV and 726.8 eV. The higher binding energy of the multiplet as compared to the metal reference (707.0 eV and 720.0 eV) and relatively high full width at half maximum of approximately 7 eV for the peak at lower binding energy is often assigned to the presence of a multitude of different iron species in positive oxidation states such as iron oxides [19, 22, 25, 26, 36, 37]. Qualitatively, the low binding energy tail of the NPs Fe 2p3/2 component overlaps with the respective signal of the pure metal Fe at 707.0 eV. This effect is assigned to the presence of iron species that show only slightly higher binding energy as compared to metal Fe like for example Fe–Pt alloys [20, 30].

Figure 7 shows the Pt 4f region comprising the Pt 4f 7/2 and Pt 4f 5/2 multiplet. The Pt 4f 7/2 peak for the NPs is evidenced at 0.2 eV towards lower binding energies as compared to the pure metal Pt at 71.2 eV. The effect,
which is just of the order of the uncertainty from the peak referencing of the spectrum, points to the formation of an interfacial Fe–Pt alloy and electron transfer at the interface towards the more electronegative Pt [20, 30]. The peak at higher binding energies (75–78 eV) is assigned to the presence of precursor ions in the spectrum of the FePt3 NPs.

3.5 UV–Vis absorption spectroscopy

Figure 8 depicts the UV–Vis absorption spectrum of tiron-coated FePt3 NPs in water.

The UV–Vis absorption spectrum of tiron-coated FePt3 NPs displays a broad absorption band around 650 nm (Fig. 8) which is due to electron transfer from Pt to the antibonding π-molecular orbitals of tiron [3, 10, 31, 38]. Valence tautomerization of tiron (OH to =O) of tiron may also contribute to the emergence of these broad absorption band (Fig. 9) [1, 3, 7, 10, 12, 24, 31, 34, 38].

Figure 10 presents the magnetization curve of a powder sample of tiron-coated FePt3 NPs at room temperature under an external magnetic field varied between −5T and +5T. The lack of any hysteresis loop verifies superparamagnetism of the FePt3 NPs [29]. The M_s value of the FePt3 NPs is 35.90 emu/g. The observed superparamagnetism reflects the chemical disorder of the FePt3 NPs.
3.6 Formation of FePt$_3$ alloy nanoparticles

The FePt$_3$ alloy nanoparticles were synthesized via the thermal decomposition route at 320 °C using Fe(acac)$_3$ and oleylamine stabilized Pt$^{2+}$ cations as Pt source. The formation of the chemically disordered FePt$_3$ nanoparticles requires the co-reduction of Fe$^{3+}$ and Pt$^{2+}$ cations. Since Pt is a noble metal and Fe is a transition metal, the Pt$^{2+}$ cations are faster reduced to Pt0 which sparks Pt nucleation. The Pt nuclei presumably catalyze the oleylamine-induced reduction of Fe$^{3+}$ to Fe0 [2]. Subsequent nanoparticle growth occurs via the incorporation of Fe atoms into the Pt rich nuclei. The final size and stabilization are adjusted by the precursor/oleyl acid (oleylamine) ratio. The final stoichiometric composition and structure of the FePt$_3$ alloy nanoparticles follow from the reaction temperature as well as from the Fe and Pt precursor concentrations.

4 Conclusions

Our objective was to develop a highly scalable wet-chemistry technique for the synthesis of processible, superparamagnetic FePt$_3$ NPs for versatile applications in electronics, catalysis and medicine. We elaborated a facile one-pot thermal decomposition procedure for the preparation of 10 nm-sized FePt$_3$ nanocrystals which exhibit superparamagnetism. A straightforward subsequent ligand exchange procedure yielded watersoluble tiron-coated FePt$_3$ NPs suited for processing to thin magnetic films or for application as CT/MRI contrast agents.

The stoichiometry and structural properties of the FePt$_3$ NPs were elucidated using HRTEM, HAADF, STEM-EDX, XPS and XRD. We could unambiguously show that FePt$_3$ NPs with a mean size of 10 nm crystallize in the chemically disordered fcc phase with the space group Fm$\overline{3}$m. The chemical disorder substantiated the superparamagnetism of the FePt$_3$ NPs as being evident from the hysteresis-less magnetization curve. The optical properties and ligand binding modi of tiron-coated FePt$_3$ NPs were examined using UV–Vis absorption and FTIR transmission spectroscopy. The aqueous FePt$_3$ NPs solution exhibits a broad absorption band around 650 nm,
which is ascribed to an electron transfer from the Pt atoms to antibonding π-molecular orbitals of tiron which binds through its catechol moiety to the FePt$_3$ surface. This particular optical property of tiron-coated FePt$_3$ NPs demonstrates the high catalytic potential of FePt$_3$.

Acknowledgements The authors thank Dr. Sebastian Bochmann (Chair of Chemistry of Thin Film Materials, Friedrich-Alexander University of Erlangen-Nürnberg) and M.Sc. Julian Hümmer (Inorganic and General Chemistry, Friedrich-Alexander University of Erlangen-Nürnberg) for supporting the VSM-SQUID measurement. C. H. and E. S. acknowledge financial support from the DFG through the Collaborative Research Center CRC953.

Funding Open Access funding enabled and organized by Projekt DEAL.

Compliance with ethical standards

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Angelomé PC, Soler-Illia GJDA (2005) Organically modified transition-metal oxide mesoporous thin films and xerogels. Chem Mater 17:322–331
2. Chen S, Andre P (2012) Colloidal syntheses of FePt nanoparticles. Int J Nanotechnol 9:39–68
3. Chen Y, Zhang H (2013) Complexation facilitated reduction of aromatic N-oxides by aqueous Fe(II)-tiron com plex: reaction kinetics and mechanisms. Environ Sci Technol 47:11023–11031

4. Chou S-W, Yu-Hong Shau Y-H, Wu P-C, Yang Y-S, Shieh D-B, Chen C-C (2010) In vitro and in vivo studies of FePt nanoparticles for dualmodal CT/MRI molecular imaging. J Am Chem Soc 132:13271

5. De Berti IP, Cagnoli MV, Cecchi G, Alessandrini JL, Stewart SJ, Bengoa JF, Marchetti SG (2013) Alternative low-cost approach to the synthesis of magnetic iron oxide nanoparticles by thermal decomposition of organic precursors. Nanotechnology 24:175601

6. Fukuda K, Fujieda S, Shirnoda K, Suzuki S, Jeyadevan B (2012) Low temperature synthesis of FePt alloy nano-particles by pol-yol process. J Phys: Conf Ser 352:012020

7. Gardner RR, Gerdes AL, Seeley JS (2013) Tiron-containing detergents having acceptable color. U.S. Patent No. 8, 399, 396. U.S. Patent and Trademark Office, Washington, DC

8. Green LA, Thuy TT, Mott DM, Maenosono S, Thanh NTK (2014) Multicore magnetic FePt nanoparticles: controlled formation and properties. RSC Adv 4:1039–1044

9. Heitsch AT, Lee DC, Korgel BA (2010) Antiferromagnetic single domain L12, FePt3 nanocrystals. J Phys Chem C 114:2512–2518

10. Horii M, Pagnoux C, Baumard JF, Nogami M (2007) Preparation of gold nanoparticles (GNP) aqueous suspensions by a new method involving tiron. J Mater Sci 42:80–86

11. Hossain AA, Rahman ML (2011) Enhancement of micro-structure and initial permeability due to Cu substitution in Ni50.5Cu20Zn19.5Fe15O42 ferrites. J Magn Magn Mater 323:1954–1962

12. Koch S, Ackermann G, Scholze V (1981) Untersuchungen zur Anwendung ternärer Komplexe in der Photometrie-II Die Bestimmung des Titania (IV) mit Tiron in Gegenwart von Imidazol. Chromatographia 13:477–479

13. Lee Y, Garcia MA, Frey Huls NA, Sun S (2010) Synthetic tuning of the catalytic properties of Au-FePt3 nano-particles. Angew Chem 122:1293–1296

14. Liu Y, Jiang Y, Zhang X, Wang Y, Zhang Y, Liu H, Zhai H, Liu Y, Yang J, Yan Y (2014) Structural and magnetic properties of the ordered FePt3, FePt and FePt3 nanoparticles. J Solid State Chem 209:69–73

15. Lutterotti L (2010) Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction. Nucl Instrum Methods Phys B Beam Interact Mater At 268:334–340. https://doi.org/10.1016/j.nimb.2009.09.053

16. Lutterotti L, Matthies S, Wenk HR, Schultz AJ, Richardson J (1997) Combined texture and structure analysis of deformed limestone from neutron diffraction spectra. J Appl Phys 81:594–600

17. Lutterotti L, Chateignier D, Ferrari S, Ricote J (2004) Texture, residual stress and structural analysis of thin films using a combined X-ray analysis. Thin Solid Films 450:34–41

18. Lutterotti L, Bortolotti M, Ischia G, Lonardelli I, Wenk HR (2007) Rietveld texture analysis from diffraction images. Z Kristallogr Suppl 26:125–130

19. McIntyre NS, Zetaruk DG (1977) X-ray photoelectron spectroscopic studies of iron oxides. Anal Chem 49:1521–1529

20. Medwall R, Sehdev N, Annapornorn S (2012) Electronic states of self-stabilized L12 FePt alloy nanoparticles. Appl Phys A 109:403–408

21. Meng Z, Li G, Ng SM, Wong HF, Yiu SC, Ho CL, Leung CW, Wong WY (2016) Nanopatterned L12 FePt nanoparticles from single-source metallopolymer precursors for potential application in ferromagnetic bit-patterned media magnetic recording. Polym Chem 7:4467–4475

22. Mills P, Sullivan JL (1983) A study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy. J Phys D Appl Phys 16:723

23. Nguyen HL, Howard LEM, Stinton GW, Giblin SR, Tanner BK, Terry I, Hughes AK, Ross IM, Serres A, Evans JSO (2006) Synthesis of size-controlled fcc and fct FePt nanoparticles. Chem Mater 18:6414–6424

24. Ozutsumi K, Uchima Y, Kawashima T (1990) Structure of iron(III)-Tiron complexes in aqueous solution. Anal Sci 6:573–577

25. Pana O, Leostean C, Soran ML, Stefan M, Macavei S, Gutoiu S, Pop V, Chauvet O (2013) Synthesis and characterization of Fe–Pt based multishell magnetic nanoparticles. J Alloys Compd 574:477–485

26. Poulin S, Franca R, Moreau-Bélanger L, Sacher E (2010) Confirmation of X-ray photoelectron spectroscopy peak attributions of nanoparticulate iron oxides, using symmetric peak component line shapes. J Phys Chem C 114:10711–10718

27. Preller T, Knickmeier S, Menzel D, Temel B, Garnwein K (2020) Exchange bias in FePt–FePt3 thin films by controlled phase transition of blended nanoparticle building blocks. Langmuir 36:2093–2101

28. Santos LRB, Chartier T, Pagnoux C, Baumard JF, Santillii CV, Pulcini SH, Larbot A (2004) Tin oxide nano particle formation using a surface modifying agent. J Eur Ceram Soc 24:3713–3721

29. Sarmphim P, Soontaranon S, Sirisathitkul C, Harding P, Kijamjuk S, Chayasombat B, Pinitsoontorn S, Chingunpik J (2017) FePt nanoparticles suspension synthesized from different precursors—a morphological comparison by SAXS, DLS and TEM. Bull Pol Acad Sci Tech 65:79–84

30. Sham TK, Yiu YM, Kuhn M, Tan KH (1990) Electronic structure of ordered and disordered Cu50.5Au: the behavior of the Au 5d bands. Phys Rev B 41:11881

31. Simaan A, Boillot ML, Carrasco R, Cano J, Giredd JJ, Mattioli TA, Ensling J, Spiering H, Gültich P (2005) Electronic, vibrational, and structural properties of a spin–crossover catecholate–iron system in the solid state: theoretical study of the electronic nature of the doublet and sextet states. Chem Eur J 11:1779–1793

32. Suber L, Imperatori P, Bauer EM, Porwal R, Peddis D, Cannas C, Ardu A, Mezzi A, Kacicis S, Notargiaccio A, Pilloni L (2016) Tuning hard and soft magnetic FePt nanocomposites. J Alloys Compd 665:601–609

33. Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992

34. Taher MA, Asadollahazadeh H, Fazeliard H (2015) Determination of trace amounts of iron by a simple fluore-scence quenching method. Anal Methods 7:6726–6731

35. Vlia P, Burzo E (2010) Magnetic behavior of iron-platinum alloys. J Optoelectro Adv Mater 12:1114–1124

36. Wilson D, Langell MA (2014) XPS analysis of oleumylic acid capped FePt3 nanoparticles as a function of temperature. Appl Surf Sci 303:6–13

37. Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2449

38. Yao B, Peng C, Lu P, He Y, Zhang W, Zhang Q (2016) Fabrication of Tiron-TiO2 charge-transfer complex with excellent visible-light photocatalytic performance. Mater Chem Phys 184:298–305

39. Zheng Q, Zhang ZR, Du J, Lin LL, Xia WX, Zhang J, Bian BR, Liu JP (2013) A novel direct reduction method to synthesize ordered Fe–Pt alloy nanoparticles. J Mater Sci Technol 35:560–567

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.