Do Not Forget:
Full Memory in Memory-Based Learning of Word Pronunciation *

Antal van den Bosch and Walter Daelemans
Tilburg University, ILK
P.O. Box 90153, NL-5000 LE Tilburg
The Netherlands
{antalb, walter}@kub.nl

Abstract

Memory-based learning, keeping full memory of learning material, appears a viable approach to learning NLP tasks, and is often superior in generalisation accuracy to eager learning approaches that abstract from learning material. Here we investigate three partial memory-based learning approaches which remove from memory specific task instance types estimated to be exceptional. The three approaches each implement one heuristic function for estimating exceptionality of instance types: (i) typicality, (ii) class prediction strength, and (iii) friendly-neighbourhood size. Experiments are performed with the memory-based learning algorithm IB1-IG trained on English word pronunciation. We find that removing instance types with low prediction strength (ii) is the only tested method which does not seriously harm generalisation accuracy. We conclude that keeping full memory of types rather than tokens, and excluding minority ambiguities appear to be the only performance-preserving optimisations of memory-based learning.

1 Introduction

Memory-based learning of classification tasks is a branch of supervised machine learning in which the learning phase consists simply of storing all encountered instances from a training set in memory (Aha, 1997). Memory-based learning algorithms do not invest effort during learning in abstracting from the training data, such as eager-learning (e.g., decision-tree algorithms, rule-induction, or connectionist-learning algorithms, Quinlan, 1993; Mitchell, 1997)) do. Rather, they defer investing effort until new instances are presented. On being presented with an instance, a memory-based learning algorithm searches for a best-matching instance, or, more generically, a set of the k best-matching instances in memory. Having found such a set of k best-matching instances, the algorithm takes the (majority) class with which the instances in the set are labeled to be the class of the new instance. Pure memory-based learning algorithms implement the classic k-nearest neighbour algorithm (Cover and Hart, 1967; Devijver and Kittler, 1982; Aha, Kibler, and Albert, 1991); in different contexts, memory-based learning algorithms have also been named lazy, instance-based, exemplar-based, memory-based, case-based learning or reasoning (Stanfill and Waltz, 1986; Kolodner, 1993; Aha, Kibler, and Albert, 1991; Aha, 1997).

Memory-based learning has been demonstrated to yield accurate models of various natural language tasks such as grapheme-phoneme conversion, word stress assignment, part-of-speech tagging, and PP-attachment (Daelemans, Weijters, and Van den Bosch, 1997). For example, the memory-based learning algorithm IB1-IG (Daelemans and Van den Bosch, 1992; Daelemans, Van den Bosch, and Weijters, 1997), which extends the well-known IB1 algorithm (Aha, Kibler, and Albert, 1991) with an information-gain weighted similarity metric, has been demonstrated to perform adequately and, moreover, consistently and significantly better than eager-learning algorithms which do invest effort in abstraction during learning (e.g., decision-tree learning (Daelemans, Van den Bosch, and Weijters, 1997), Quinlan, 1993), and connectionist learning (Rumelhart, Hinton, and Williams, 1986) when trained and tested on a range of morphophonological tasks (e.g., morphological segmentation, grapheme-phoneme conversion, syllabification, and word stress assignment) (Daelemans, Gillis, and Durieux, 1994; Van den Bosch, Daelemans, and Wei-
Thus, when learning NLP tasks, the abstraction occurring in decision trees (i.e., the explicit *forgetting* of information considered to be redundant) and in connectionist networks (i.e., a non-symbolic encoding and decoding in relatively small numbers of connection weights) both hamper accurate generalisation of the learned knowledge to new material.

These findings appear to contrast with the general assumption behind eager learning, that data representing real-world classification tasks tends to contain (i) redundancy and (ii) exceptions: redundant data can be removed, yielding smaller descriptions of the original data; some exceptions (e.g., low-frequency exceptions) can (or should) be discarded since they are expected to be bad predictors for classifying new (test) material. However, both redundancy and exceptionality cannot be computed trivially; heuristic functions are generally used to estimate them (e.g., functions from information theory (Quinlan, 1993)). The lower generalisation accuracies of both decision-tree and connectionist learning, compared to memory-based learning, on the above-mentioned NLP tasks, suggest that these heuristic estimates may not hold for data representing NLP tasks. It appears that in order to learn such tasks successfully, a learning algorithm should not forget (i.e., explicitly remove from memory) any information contained in the learning material: it should not abstract from the individual instances.

An obvious type of abstraction that is not harmful for generalisation accuracy (but that is not always acknowledged in implementations of memory-based learning) is the straightforward abstraction from tokens to types with frequency information. In general, data sets representing natural language tasks, when large enough, tend to contain considerable numbers of duplicate sequences mapping to the same output or class. For example, in data representing word pronunciations, some sequences of letters such as *ing* at the end of English words, occur hundreds of times, while each of the sequences is pronounced identically, viz. /ɪŋ/. Instead of storing all individual sequence tokens in memory, each set of identical tokens can be safely stored in memory as a single sequence type with frequency information, without loss of generalisation accuracy (Daelemans and Van den Bosch, 1992; Daelemans, Van den Bosch, and Weijters, 1997). Thus, forgetting instance tokens and replacing them by instance types may lead to considerable computational optimisations of memory-based learning, since the memory that needs to be searched may become considerably smaller.

Given the safe, performance-preserving optimisation of replacing sets of instance tokens by instance types with frequency information, a next step of investigation into optimising memory-based learning is to measure the effects of *forgetting instance types* on grounds of their exceptionality, the underlying idea being that the more exceptional a task instance type is, the more likely it is that it is a bad predictor for new instances. Thus, exceptionality should in some way express the unsuitability of a task instance type to be a best match (nearest neighbour) to new instances: it would be unwise to copy its associated classification to best-matching new instances. In this paper, we investigate three criteria for estimating an instance type’s exceptionality, and removing instance types estimated to be the most exceptional by each of these criteria. The criteria investigated are

1. typicality of instance types;
2. class prediction strength of instance types;
3. friendly-neighbourhood size of instance types;
4. random (to provide a baseline experiment).

We base our experiments on a large data set of English word pronunciation. We briefly describe this data set, and the way it is converted into an instance base fit for memory-based learning, in Section 3. In Section 4 we describe the settings of our experiments and the memory-based learning algorithm IB1-1G with which the experiments are performed. We then turn to describing the notions of typicality, class-prediction strength, and friendly-neighbourhood size, and the functions to estimate them, in Section 5. Section 6 provides the experimental results. In Section 7 we discuss the obtained results and formulate our conclusions.

2 The word-pronunciation data

Converting written words to stressed phonemic transcription, i.e., word pronunciation, is a well-known benchmark task in machine learning (Stanfill and Waltz, 1986; Sejnowski and Rosenberg, 1987; Dietterich, Hild, and Bakiri, 1990; Wolpert, 1990). We define the task as the conversion of fixed-sized instances representing parts of words to a class representing the phoneme and the stress marker of the instance’s middle letter. To generate the instances, windowing is used (Sejnowski and Rosenberg, 1987). Table 1 displays example instances and their classifications generated on the basis of the sample word *booking*. Classifications, i.e., phonemes with stress
markers (henceforth PSs), are denoted by composite labels. For example, the first instance in Table 3_book, maps to class label /b/1, denoting a /b/ which is the first phoneme of a syllable receiving primary stress. In this study, we chose a fixed window width of seven letters, which offers sufficient context information for adequate performance, though extension of the window decreases ambiguity within the data set (Van den Bosch, 1997).

The task, henceforth referred to as GS (Grapheme-phoneme conversion and stress assignment) is similar to the nettalk task presented by Sejnowski and Rosenberg (1986), but is performed on a larger corpus of 77,565 English word-pronunciation pairs, extracted from the CELEX lexical data base (Daelemans, Van den Bosch, and Weijters, 1997). Converted into fixed-sized instance, the full instance base representing the GS task contains 675,745 instances. The task features 159 classes (combined phonemes and stress markers).

3 Algorithm and experimental setup

3.1 Memory-based learning in IB1-IG

In the experiments reported here, we employ IB1-IG (Daelemans and Van den Bosch, 1992; Daelemans, Van den Bosch, and Weijters, 1997), which has been demonstrated to perform adequately, and better than eager-learning algorithms on the GS task (Van den Bosch, 1997). IB1-IG constructs an instance base during learning. An instance in the instance base consists of a fixed-length vector of n feature-value pairs (here, n = 7), an information field containing the classification of that particular feature-value vector, and an information field containing the occurrences of the instance with its classification in the full training set. The latter information field thus enables the storage of instance types rather than the more extensive storage of identical instance tokens. After the instance base is built, new (test) instances are classified by matching them to all instance types in the instance base, and by calculating with each match the distance between the new instance X and the memory instance type Y, Δ(X, Y), using the function given in Eq. 1:

\[\Delta(X, Y) = \sum_{i=1}^{n} W(f_i)\delta(x_i, y_i), \]

where \(W(f_i) \) is the weight of the \(i \)th feature, and \(\delta(x_i, y_i) \) is the distance between the values of the \(i \)th feature in the instances \(X \) and \(Y \). When the values of the instance features are symbolic, as with the GS task (i.e., feature values are letters), a simple distance function is used (Eq. 2):

\[\delta(x_i, y_i) = 0 \text{ if } x_i = y_i \text{ else } 1. \]

The classification of the memory instance type \(Y \) with the smallest \(\Delta(X, Y) \) is then taken as the classification of \(X \). This procedure is also known as 1-NN, i.e., a search for the single nearest neighbour, the simplest variant of k-NN (Devijver and Kittler, 1982).

The weighting function of IB1-IG, \(W(f_i) \), represents the information gain of feature \(f_i \). Weighting features in k-NN classifiers such as IB1-IG is an active field of research (cf. Wettsschebeck, 1995; Wettsschebeck, Aha, and Mohri, 1997), for comprehensive overviews and discussion). Information gain is a function from information theory also used in ID3 (Quinlan, 1986) and c4.5 (Quinlan, 1993). The information gain of a feature expresses its relative relevance compared to the other features when performing the mapping from input to classification.

The idea behind computing the information gain of features is to interpret the training set as an information source capable of generating a number of messages (i.e., classifications) with a certain probability. The information entropy \(H \) of such an information source can be compared in turn for each of the features characterising the instances (let \(n \) equal the number of features), to the average information entropy of the information source when the value of those features are known.

Data-base information entropy \(H(D) \) is equal to the number of bits of information needed to know the classification given an instance. It is computed by equation 3, where \(p_i \) (the probability of classification \(i \)) is estimated by its relative frequency in the training set.

\[H(D) = -\sum_i p_i \log_2 p_i \]

To determine the information gain of each of the \(n \) features \(f_1 \ldots f_n \), we compute the average information entropy for each feature and subtract it from the information entropy of the data base. To compute the average information entropy for a feature \(f_i \), given in equation 3, we take the average information entropy of the data base restricted to each possible value for the feature. The expression \(D_{\{f_i=v_j\}} \) refers to those patterns in the data base that have value \(v_j \) for feature \(f_i \), \(j \) is the number of possible values for \(f_i \), and \(V \) is the set of possible values for feature \(f_i \). Finally, \(|D| \) is the number of patterns in the (sub) data base.

\[H(D_{\{f_i=v_j\}}) = \sum_{v_j \in V} H(D_{\{f_i=v_j\}}) \frac{|D_{\{f_i=v_j\}}|}{|D|} \]

Information gain of feature \(f_i \) is then obtained by
Table 1: Example of instances generated for the word-pronunciation task from the word *booking*.

instance number	left context	focus letter	right context	classification
1	- - -	b	o o k	/b/1
2	- b b o	o	o k i	/u/0
3	- b o o	k i n	- -	/-/0
4	b o o k	i n g	- -	/k/0
5	o o k i n	g - -	- -	/i/0
6	o k i n g	- -	- -	/i/0

\[G(f_i) = H(D) - H(D_{f_i}) \] (5)

Using the weighting function \(W(f_i) \) acknowledges the fact that for some tasks, such as the current G\$ task, some features are far more relevant (important) than other features. Using it, instances that match on a feature with a relatively high information gain are regarded as less distant (more alike) than instances that match on a feature with a lower information gain.

Finding a nearest neighbour to a test instance may result in two or more candidate nearest-neighbour instance types at an identical distance to the test instance, yet associated with different classes. The implementation of IB1-IG used here handles such cases in the following way. First, when two or more best-matching instance types are found associated to different classes, IB1-IG selects the class of the instance type with the highest occurrence in the set of best-matching instance types. In case of occurrence ties, the classification of one of the set of best-matching instance types is selected that has the highest overall occurrence in the training set (Daelemans, Van den Bosch, and Weijters, 1997).

3.2 Setup

We performed a series of experiments in which IB1-IG is applied to the G\$ data set, systematically edited according to each of the three tested criteria (plus the baseline random criterion) described in the next section. We performed the following global procedure:

1. We partitioned the full G\$ data set into a training set of 608,228 instances (90\% of the full data set) and a test set of 67,517 instances (10\%). For use with IB1-IG, which stores instance types rather than instance tokens, the data set was reduced to contain 222,601 instance types (i.e., unique combinations of feature-value vectors and their classifications), with frequency information.

2. For each exceptionality criterion (i.e., typicality, class prediction strength, friendly-neighbourhood size, and random selection),

 (a) we created four edited instance bases by removing 1\%, 2\%, 5\%, and 10\% of the most exceptional instance types (according to the criterion) from the training set, respectively.

 (b) For each of these increasingly edited training sets, we performed one experiment in which IB1-IG was trained on the edited training set, and tested on the original unedited test set.

4 Three estimations of exceptionality

We investigate three methods for estimating the (degree of) exceptionality of instance types: typicality, class prediction strength, and friendly-neighbourhood size.

4.1 Typicality

In its common meaning, “typicality” denotes roughly the opposite of exceptionality; atypicality can be said to be a synonym of exceptionality. We adopt a definition from Zhang (1992), who proposes a function to this end. Zhang computes typicalities of instance types by taking both their feature values and their classifications into account. He adopts the notions of *intra-concept similarity* and *inter-concept similarity* (Rosch and Mervis, 1975) to do this. First, Zhang introduces a distance function similar to Equation 1, in which \(W(f_i) = 1.0 \) for all features (i.e., flat Euclidean distance rather than information-gain weighted distance), in which the distance between two instances \(X \) and \(Y \) is normalised by dividing the summed squared distance by
n, the number of features, and in which \(\delta(x_i, y_i) \) is given as Equation 3. The normalised distance function used by Zhang is given in Equation 4.

\[
\Delta(X, Y) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (W(f_i)\delta(x_i, y_i))^2}
\] (6)

The intra-concept similarity of instance \(X \) with classification \(C \) is its similarity (i.e., 1–distance) with all instances in the data set with the same classification \(C \): this subset is referred to as \(X \)'s family, \(\text{Fam}(X) \). Equation 7 gives the intra-concept similarity function \(\text{Intra}(X) \) (\(|\text{Fam}(X)|\) being the number of instances in \(X \)'s family, and \(\text{Fam}(X)^i \) the \(i \)th instance in that family).

\[
\text{Intra}(X) = \frac{1}{|\text{Fam}(X)|} \sum_{i=1}^{|\text{Fam}(X)|} 1.0 - \Delta(X, \text{Fam}(X)^i)
\] (7)

All remaining instances belong to the subset of unrelated instances, \(\text{Unr}(X) \). The inter-concept similarity of an instance \(X \), \(\text{Inter}(X) \), is given in Equation 8 (with \(|\text{Unr}(X)|\) being the number of instances unrelated to \(X \), and \(\text{Unr}(X)^i \) the \(i \)th instance in that subset).

\[
\text{Inter}(X) = \frac{1}{|\text{Unr}(X)|} \sum_{i=1}^{|\text{Unr}(X)|} 1.0 - \Delta(X, \text{Unr}(X)^i)
\] (8)

The typicality of an instance \(X \), \(\text{Typ}(X) \), is the quotient of \(X \)'s intra-concept similarity and \(X \)'s inter-concept similarity, as given in Equation 9.

\[
\text{Typ}(X) = \frac{\text{Intra}(X)}{\text{Inter}(X)}
\] (9)

An instance type is typical when its intra-concept similarity is larger than its inter-concept similarity, which results in a typicality larger than 1. An instance type is atypical when its intra-concept similarity is smaller than its inter-concept similarity, which results in a typicality between 0 and 1. Around typicality value 1, instances cannot be sensibly called typical or atypical; (Zhang, 1992) refers to such instances as boundary instances.

In our experiments, we compute the typicality of all instance types in the training set, order them on their typicality, and remove 1%, 2%, 5%, and 10% of the instance types with the lowest typicality, i.e., the most atypical instance types. In addition to these four experiments, we performed an additional eight experiments using the same percentages, and editing on the basis of (i) instance types’ typicality (by ordering them in reverse order) and (ii) their indifference towards typicality or atypicality (i.e., the closeness of their typicality to 1.0, by ordering them in order of the absolute value of their typicality subtracted by 1.0). The experiments with removing typical and boundary instance types provide interesting comparisons with the more intuitive editing of atypical instance types.

Table 2 provides examples of four atypical, boundary, and typical instance types found in the training set. Globally speaking, (i) the set of atypical instances tend to contain foreign spellings of loan words; (ii) there is no clear characteristic of boundary instances; and (iii) instance types with high typicality values often involve instance types of which the middle letters are at the beginning of words or immediately following a hyphen, or high-frequency instance types, or instance types mapping to a low-frequency class that always occurs with a certain spelling (class frequency is not accounted for in Zhang’s metric).

4.2 Class-prediction strength

A second estimate of exceptionality is to measure how well an instance type predicts the class of all instance types within the training set (including itself). Several functions for computing class-prediction strength have been proposed, e.g., as a criterion for removing instances in memory-based \((k\text{-nn})\) learning algorithms, such as \(1b3 \) (Aha, Kibler, and Albert, 1991) (cf. earlier work on edited \((k\text{-nn})\) learning algorithms). We chose to implement the straightforward class-prediction strength function as proposed in (Salzberg, 1999) in two steps. First, we count (a) the number of times that the instance type is the nearest neighbour of another instance type, and (b) the number of occurrences that when the instance type is a nearest neighbour of another instance type, the classes of the two instances match. Second, the instance’s class-prediction strength is computed by taking the ratio of (b) over (a). An instance type with class-prediction strength 1.0 is a perfect predictor of its own class; a class-prediction strength of 0.0 indicates that the instance type is a bad predictor of classes of other instances, presumably indicating that the instance type is exceptional.

We computed the class-prediction strength of all instance types in the training set, ordered the instance types according to their strengths, and created edited training sets with 1%, 2%, 5%, and 10% of the instance types with the lowest class predic-
Table 2: Examples of atypical (left), boundary (middle), and typical (left) instance types in the training set. For each instance (seven letters and a class mapping to the middle letter), its typicality value is given.

Table 3: Examples of instance types with the lowest possible class prediction strength (cps) 0.0.

4.3 Friendly-neighbourhood size

A third estimate for the exceptionality of instance types is counting by how many nearest neighbours of the same class an instance type is surrounded in instance space. Given a training set of instance types, for each instance type a ranking can be made of all of its nearest neighbours, ordered by their distance to the instance type. The number of nearest-neighbour instance types in this ranking with the same class, henceforth referred to as the friendly-neighbourhood size, may range between 0 and the total number of instance types of the same class. When the friendly neighbourhood is empty, the instance type only has nearest neighbours of different classes. The argumentation to regard a small friendly neighbourhood as an indication of an instance type’s exceptionality, follows from the same argumentation as used with class-prediction strength: when an instance type has nearest neighbours of different classes, it is vice versa a bad predictor for those classes. Thus, the smaller an instance type’s friendly neighbourhood, the more it could be regarded exceptional.

Friendly-neighbourhood size and class-prediction strength are related functions, but differ in their treatment of class ambiguity. As stated above, instance types may receive a class-prediction strength of 0.0 when they are minority ambiguities. Counting a friendly neighbourhood does not take class ambiguity into account; each of a set of ambiguous types necessarily has no friendly neighbours, since they are each other’s nearest neighbours with different classes. Thus, friendly-neighbourhood size does not discriminate between minority and majority ambiguities. In Table 3 four sample instance types are listed with friendly-neighbourhood size 0. While some of these instance types without friendly neighbours in the training set (perhaps with friendly neighbours in the test set) are minority ambiguities (e.g., _edib 2ae), others are majority ambiguities (e.g., _edib 1e), while others are not ambiguous at all but simply have a nearest neighbour at some distance with a different class (e.g., soirée_ 0r).

5 Results

Figure 1 displays the generalisation accuracies in terms of incorrectly classified test instances obtained with all performed experiments. The leftmost point in the Figure, from which all lines originate, indicates the performance of IB1-IG when trained on the full data set of 222,601 types, viz. 6.42% incorrectly classified test instances (when computed in terms of incorrectly pronounced test words, IB1-IG
2. Removing instance types that are minority ambiguities on top of the type/token-reduction accounts only for an additional memory reduction of 2%, i.e., for a total memory reduction of 65%; 56% with two-byte frequency information stored per instance.

6 Discussion and future research
As previous research has suggested (Daelemans, 1996; Daelemans, Weijters, and Van den Bosch, 1997; Van den Bosch, 1992), keeping full memory in memory-based learning of word pronunciation strongly appears to yield optimal generalisation accuracy. The experiments in this paper show that optimisation of memory use in memory-based learning while preserving generalisation accuracy can only be performed by (i) replacing instance tokens by instance types with frequency information, and (ii) removing minority ambiguities. Both optimisations can be performed straightforwardly; minority ambiguities can be traced with less effort than by using class-prediction strength. Our implementation of IB1-IG described in (Daelemans and Van den Bosch, 1992; Daelemans, Van den Bosch, and Weijters, 1997) already makes use of this knowledge, albeit partially (it stores class distributions with letter-window types). We note that with $k > 2$ (in our tested implementation of IB1-IG, $k = 1$), removing minority ambiguities may distort performance, since taking more than single nearest neighbours into account may allow for minority ambiguities to play a constructive role in classification.

Our results also show that atypicality, non-typicality, and typicality (Zhang, 1992), and friendly-neighbourhood size are all estimates of exceptionality that indicate the importance of instance types for classification, rather than their removability. As far as these estimates of exceptionality are viable, our results suggest that exceptions should be kept.

Table 4: Examples of instance types with the lowest possible friendly-neighbourhood size (fns) 0, i.e., no friendly neighbours.

feature values	class	fns
_edib	2e	0
_edib	1e	0
echnocr	1n	0
soirée	0r	0

pronounces 64.61 of all test words flawlessly.

The line graph representing the four experiments in which instance types are removed randomly can be seen as the baseline graph. It can be expected that removing instances randomly leads to a degradation of generalisation performance. The upward curve of the line graph denoting the experiments with random selection indeed shows degrading performance with increasing numbers of left-out instance types. The relative decrease in generalisation accuracy is 2.0% when 1% of the training material is removed randomly, 3.8% with 2% random removal, 10.7% with 5% random removal, and 20.7% with 10% random removal.

Surprisingly, the only experiments showing lower performance degradation than removal by random selection are those with class-prediction strength; the other criteria for removing exceptional instances lead to worse degradations. It does not matter whether instance types are removed on grounds of their typicality: apparently, a markedly low, neutral, or high typicality value indicates that the instance type is (on average) important, rather than removable. The same applies to friendly-neighbourhood size: instances with small neighbourhood sizes appear to contribute significantly to performance on test material. It is remarkable that the largest errors with 1% and 2% removal are obtained with the friendly-neighbourhood size criterion: it appears that on average, the instances with few or no nearest neighbours are important in the classification of test material.

When using class-prediction strength as removal criterion, performance does not degrade until about 5% of the instance types with the lowest strength are removed from memory. The reason is that class-prediction strength is the only criterion that detects minority ambiguities, i.e., instance types with prediction strength 0.0, that cannot contribute to classification since they are always overshadowed by their counterpart instance types with majority classes, even for their own classification. In the training set, 9,443 instance types are minority ambiguities, i.e., 4.2% of the instance types (accounting for 3.8% of the instance tokens in the original token set).

Thus, among the tested methods for reducing the memory needed for storing an instance base in memory-based learning, only two are performance-preserving while accounting for a substantial reduction in the amount of memory needed by IB1-IG:

1. Replacing instance tokens by instance types accounts for a reduction of about 63% of memory needed to store instances, excluding the memory needed to store frequency information. When frequency information is stored in two bytes per instance type, the memory reduction is about 54%.

2. Removing instance types that are minority ambiguities on top of the type/token-reduction accounts only for an additional memory reduction of 2%, i.e., for a total memory reduction of 65%; 56% with two-byte frequency information stored per instance.
in memory and not be thrown away.

The results of the present study suggest that the following questions be investigated in future research:

- The tested criteria can be employed as instance weights as in EACH (Salzberg, 1990) and PEBL (Cost and Salzberg, 1993), rather than as criteria for instance removal. Instance weighting may add relevant information to similarity matching, and may improve IB1-IG’s performance rather than just preserving it.

- The tested implementation of IB1-IG performs a \(k \)-nn search through instance space with \(k = 1 \). When \(k > 1 \), IB1-IG’s performance may change, as well as the effect of applying the instance-removal techniques tested here. Removing instances from memory may have a less drastic effect when more instance types at more distances are allowed to match a new instance.

Acknowledgements

We thank the members of the ILK group, Ton Weijters, and Eric Postma for fruitful discussions.

References

[Aha1997] Aha, D. W., editor. 1997. Lazy learning. Dordrecht: Kluwer Academic Publishers. reprinted from: Artificial Intelligence Review, 11:1–5.

[Aha, Kibler, and Albert1991] Aha, D. W., D. Kibler, and M. Albert. 1991. Instance-based learning algorithms. Machine Learning, 7:37–66.

[Burnage1990] Burnage, G., 1990. celex: A guide for users. Centre for Lexical Information, Nijmegen.

[Cost and Salzberg1993] Cost, S. and S. Salzberg, 1993. A weighted nearest neighbor algorithm for learning with symbolic features. Machine Learning, 10:57–78.

[Cover and Hart1967] Cover, T. M. and P. E. Hart. 1967. Nearest neighbor pattern classification. Institute of Electrical and Electronics Engineers Transactions on Information Theory, 13:21–27.

[Daelemans1996] Daelemans, W., 1996. Abstraction considered harmful: lazy learning of language processing. In H. J. Van den Herik and A. Weijters, editors, Proceedings of the Sixth Belgian–Dutch Conference on Machine Learning, pages 3–12, Maastricht, The Netherlands. Matriks.
clusters

friendly NN cluster size

![Graph showing the relationship between friendly NN cluster size and number of clusters.](image)
The graph shows the generalisation error (%) for different methods: BP, IB1, IGTREE, and IB1-IG. The errors are: 12.14% for BP, 7.55% for IB1, 7.41% for IGTREE, and 6.82% for IB1-IG.
