Creating a Coreference Resolution System for Polish

Mateusz Kopeć, Maciej Ogrodniczuk

Institute of Computer Science
Polish Academy of Sciences
ul. Jana Kazimierza 5, Warsaw, Poland
mateusz.kopec@ipipan.waw.pl, maciej.ogrodniczuk@ipipan.waw.pl

Abstract

Although the availability of the natural language processing tools and the development of metrics to evaluate them increases, there is a certain gap to fill in that field for the less-resourced languages, such as Polish. Therefore the projects which are designed to extend the existing tools for diverse languages are the best starting point for making these languages more and more covered. This paper presents the results of the first attempt of the coreference resolution for Polish using statistical methods. It presents the conclusions from the process of adapting the Beautiful Anaphora Resolution Toolkit (BART; a system primarily designed for the English language) for Polish and collates its evaluation results with those of the previously implemented rule-based system. Finally, we describe our plans for the future usage of the tool and highlight the upcoming research to be conducted, such as the experiments of a larger scale and the comparison with other machine learning tools.

Keywords: coreference resolution, BART, anaphora resolution, machine learning

1. Introduction

The statistical methods are well-known to be very successful for many natural language processing tasks, including the coreference resolution. Nevertheless such attempt has so far never been made for Polish, mostly because of lack of the coreference annotation methodology and the evaluation data. The process targeted at changing this situation has already been started with the Computer-based methods for coreference resolution in Polish texts project which aims at creating the coreferential corpus of Polish manually annotated with various types of identity of reference with near-identity relations, similarly to (Recasens et al., 2010a)). First experiments on the rule-based coreference resolution of Polish (Ogrodniczuk and Kopeć, 2011a; Ogrodniczuk and Kopeć, 2011b), apart from Mitkov et al.’s work on multilingual anaphora resolution which also included Polish (Mitkov et al., 1998), have already shown their usefulness in gathering experience for the next phases of the project and resulted in creating the first set of Polish data manually annotated with mentions and coreferential chains. The present attempt at using a well-known statistical system – BART: Beautiful Anaphora Resolution Toolkit (Versley et al., 2008) – allows to initially compare these two approaches and provides valuable experience for the multilingual users of BART.

2. BART and the Polish Language Plugin

Beautiful Anaphora Resolution Toolkit is a system for performing automatic coreference resolution, including necessary preprocessing steps. It allows to test various machine learning approaches, such as the algorithms from Weka (Witten et al., 1999) or the Maximum Entropy model (Berger et al., 1996). As an open-source tool with a modular design it proves to be easily adaptable for languages other than English to create a statistical baseline system for coreference resolution.

BART’s modularity (see Fig. 1) involves separation of two tasks: the preprocessing of texts, resulting in mention detection, and the automatic coreference resolution, understood as a machine learning task. As preprocessing tools included in the toolkit are designed specifically for English, preprocessing for the Polish texts for the experiments was carried out outside BART.

The machine learning approach requires training examples to be annotated with features and mention chains. BART offers 64 feature extractors to transform the training examples into features, however using them out-of-the-box for languages other than English is problematic due to their language-specific settings. Although some of them are extracted into the Language Plugins, which are supposed to increase the modularity of the toolkit by discriminating the non-language-agnostic parts of BART, a large number of the feature extractors still contain the settings specific for English. For example, a feature extractor may take into consideration a specific (English) substring of the mention or the English definite article, not to mention obvious cross-lingual tagset incompatibilities. Another difficulty, this time objective, arises from the lack of certain types of language processing tools for Polish. Taking these into account, only 13 pair feature extractors were selected for the experiments:

- **FirstMention** – extracting information, whether given mention is the first one in its mention chain
- **FirstSecondPerson** – checking if mentions are first or second person
- **Gender.Number** – extracting compatibility of gender/number of two mentions

Cf. Example system configuration in (Versley et al., 2008), Fig. 2.

The work reported here was carried out within the Computer-based methods for coreference resolution in Polish texts (CORE) project financed by the Polish National Science Centre (contract number 6505/B/T02/2011/40).
Figure 1: BART architecture

- **HeadMatch** – comparing heads of mentions
- **MentionType. MentionType_Anaphor. MentionType_Salience** – providing a number of features based on mention types (for example if they are pronouns or reflexive pronouns)
- **DistDiscrete, SentenceDistance** – providing information about text distance between mentions in terms of sentences
- **StringKernel, StringMatch, LeftRightMatch** – feature extractors based on orthographic similarity of mentions.

For the purpose of described experiments the **Polish Language Plugin** has been implemented to transform tagset and morphological information into BART features. It was based on similar plugins available for German and Italian.

3. Data Set and Evaluation

Data Source The texts for BART experiments have been extracted from the National Corpus of Polish (Przepiórkowski et al., 2008) and automatically pre-processed with the noun phrase chunker Spejd (Przepiórkowski and Buczyński, 2007). Its findings have in turn been verified and corrected by the linguists who were instructed to adjust the mention borders, detected heads and morphosyntactic descriptions.

The data set consisted of 15 texts, about 20 sentences each. All texts contained 5722 tokens, 1644 mentions and 1256 mention chains (including singletons). The major difference from the test set used in the previous, rule-based attempt is the exclusion of zero anaphora: all artificially added zero anaphora tokens were removed. To the needs of the statistical experiment, the training and evaluation data have been encoded in MMAX (Müller and Strube, 2006) format\(^2\) and featured 3 layers: the segmentation layer, the markable layer and the coreference layer.

\(^2\)MMAX2-based environment is currently used in annotation process, see Fig. 4.
ures than the only currently (as of October 2011) supported MUC metric, a converter to the SemEval (Recasens et al., 2010b) format has been implemented and the SemEval scorer was used to calculate the remaining values.

MUC (Vilain et al., November 1995) is the metric developed for the Sixth Message Understanding Conference, B^3 (Bagga and Baldwin, 1998) is the B-CUBED metric. CEAFM and CEAFE are both variations of the CEAF (Luo, 2005) metric. CEAFM stands for the mention-based version of it, while CEAFE is the entity-based type. Last metric – BLANC – is the BiLateral Assessment of Noun-Phrase Coreference (Recasens and Hovy, 2010).

The rule-based system achieves higher F1 scores regarding all the measures, but BART comes very close, even having sometimes higher precision, as for BLANC and B^3 measures.

4. Conclusions and Further Work

The next obvious direction and prerequisite for further experiments is preparation of larger amounts of data since the current size of the evaluation corpus does not allow to capture all features of complex phenomenon of coreference relations. Due to the externally funded CORE project, the annotation of large corpus of Polish coreference is under way.

The current size of the annotated part of the corpus is over 20000 running words, in which already more than 8000 mentions were found. Not only the size, but also the quality of data is going to be better than in the previous experiments, because the annotation guidelines are more precise than at the beginning of the annotation. The diversity of text types is also better in the corpus under annotation, because it maintains their proportion as in the balanced part of the National Corpus of Polish.

However, what needs to be stressed, the sheer large number of training examples would not necessarily improve the score of the system. As results achieved by BART are slightly lower than results of a simple rule-based coreference resolution tool, further language-specific tuning is required, as out-of-the-box solution is not satisfactory. The simplest way would be to change English-specific feature extractors into more generic ones, if possible.

4.1. Preprocessing integration

Another useful task would be to incorporate existing preprocessing tools for Polish into BART, as it would allow to improve the usability of the toolkit and also should increase the language-agnosticism of its core modules. Present conclusions should encourage researchers to implement coreference resolution pipelines for more languages.
as it is much simpler to build on an existing system than to
develop a standalone solution.

4.2. Evaluation in vivo

There is no agreement in the community about the best met-
ric for measuring the performance of the coreference re-
solvers. Because of that, most systems provide their results
in terms of multiple metrics. This problem exists because of
in vitro (intrinsic) evaluation of coreference resolution
and it can be tackled by finding an application of such sys-
tems as an inner module to solve a different task, which has
better established performance metrics.

In context of the international co-operation, the creation of
the statistical coreference resolver for Polish, which is the
main goal of described work, is intended to create synergy
with ATLAS project\(^3\) where an anaphora resolution mod-
ule is planned to be integrated in the summarization com-
ponent.

The change of quality of the summaries produced automati-
cally with the different coreference resolution tools would
provide a meaningful comparison of them. The tools which
are going to be used for that purpose include the adapted
version of BART and our simple rule-based system, both
described in this paper, but also RARE (Cristea et al., 2002)
and Reconcile (Stoyanov et al., 2010) tools, adapted for
Polish. The question still exists, how to meaningfully eval-
uate the quality of automatically created text summaries.

5. References

Amit Bagga and Breck Baldwin. 1998. Algorithms for
scoring coreference chains. In The First International
Conference on Language Resources and Evaluation
Workshop on Linguistics Coreference, pages 563–566.

Adam L. Berger, Stephen A. Della Pietra, and Vincent
J. Della Pietra. 1996. A Maximum Entropy approach to
Natural Language Processing. Computational Linguis-
tics, 22:39–71.

Dan Cristea, Oana diana Postolache, Gabriela-Eugenia
Dima, and Catàlina Barbu. 2002. AR-Engine – a fram-
work for unrestricted coreference resolution. In Pro-
cedings of the Third International Conference on
Language Resources and Evaluation, LREC 2002, page
2000, Las Palmas, Canary Islands, Spain. Benjami
n Publishing Books.

Xiaoqiang Luo. 2005. On Coreference Resolution Perfor-
mance Metrics. pages 25–32.

Ruslan Mitkov, Lamia Belguith, and Małgorzata Styś.
1998. Multilingual Robust Anaphora Resolution. In
Proceedings of the Third International Conference on
Empirical Methods in Natural Language Processing
(EMNLP 1998), pages 7–16, Granada, Spain.

Christoph Müller and Michael Strube. 2006. Multi-level
annotation of linguistic data with MMAX2. In Sabine
Braun, Kurt Kohn, and Joybrato Mukherjee, editors,

\(^3\)Applied Technology for Language-Aided CMS co-funded by
the European Commission under the Information and Com-
munications Technologies (ICT) Policy Support Programme (Grant
Agreement No 250467).

Corpus Technology and Language Pedagogy: New Re-
sources, New Tools, New Methods, pages 197–214. Peter
Lang, Frankfurt a.M., Germany.

Maciej Ogrodniczuk and Mateusz Kopeć. 2011a. End-to-
end coreference resolution baseline system for Polish. In
Proceedings of the 5th Language & Technology Confer-
ence (LTC 2011), Poznań, Poland.

Maciej Ogrodniczuk and Mateusz Kopeć. 2011b. Rule-
based coreference resolution module for Polish. In Pro-
cedings of the 8th Discourse Anaphora and Anaphor
Resolution Colloquium (DAARC 2011), pages 191–200,
Faro, Portugal.

Adam Przepiórkowski and Aleksander Buczyński. 2007.
Spejd: Shallow parsing and disambiguation engine. In
Proceedings of the 3rd Language & Technology Confer-
ence, Poznań.

Adam Przepiórkowski, Rafal L. Górski, Barbara
Lewandowska-Tomaszczyk, and Marek Łaziński.
2008. Towards the National Corpus of Polish. In
Proceedings of the Sixth International Conference on
Language Resources and Evaluation, LREC 2008,
Marrakech, Morocco. ELRA.

Marta Recasens and Eduard Hovy. 2010. BLANC: Imple-
menting the Rand index for coreference evaluation. Nat-
ural Language Engineering, pages 1–26.

Marta Recasens, Eduard Hovy, and M. Antonia Marti.
2010a. A Typology of Near-Identity Relations for
Coreference (NIDENT). In Nicoletta Calzolari, Khalid
Choukri, Bente Maegaard, Joseph Mariani, Jan Odiżyk,
Stelios Piperidis, Mike Rosner, and Daniel Tapias, edi-
tors, Proceedings of the 7th Conference on Internation-
al Language Resources and Evaluation (LREC’10), Val-
letta, Malta. European Language Resources Association
(ELRA).

Marta Recasens, Lluís Marquez, Mariona Taulé, M A
Martí, Véronique Hoste, Massimo Poesio, and Yannick
Versley, 2010b. SemEval-2010 Task 1: Coreference Res-
olution in Multiple Languages, pages 70–75. Associa-
tion for Computational Linguistics.

Veselin Stoyanov, Claire Cardie, Nathan Gilbert, Ellen
Riloff, David Buttler, and David Hyams. 2010. Coref-
ERENCE resolution with reconcile. In Proceedings of the
ACL 2010 Conference Short Papers, ACLShort’10,
pages 156–161, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Yannick Versley, Simone Paolo Ponzetto, Massimo Poesio,
Vladimir Eidelman, Alan Jern, Jason Smith, Xiaofeng
Yang, and Alessandro Moschitti. 2008. BART: A modu-
lar toolkit for coreference resolution. In Association for
Computational Linguistics (ACL) Demo Session.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. November 1995. A
Model-Theoretic Coreference Scoring Scheme. In Pro-
cedings of the 6th Message Understanding Conference
(MUC-6), pages 45–52.

Ian H. Witten, Eibe Frank, Len Trigg, Mark Hall, Geoffrey
Holmes, and Sally Jo Cunningham. 1999. WEKA: Prac-
tical Machine Learning Tools and Techniques with Java
Implementations.