Parents’ uptake of human papillomavirus vaccines for their children: a systematic review and meta-analysis of observational studies

Peter A Newman,1 Carmen H Logie,1 Ashley Lacombe-Duncan,1 Philip Baiden,2 Suchon Tepjan,1 Clara Rubincam,1 Nick Doukas,1 Farid Asey1

ABSTRACT

Objective To examine factors associated with parents’ uptake of human papillomavirus (HPV) vaccines for their children.

Design Systematic review and meta-analysis.

Data sources Cochrane Library, AIDSLINE, CINAHL, EMBASE, PsycINFO, Social Sciences Abstracts, Ovid MEDLINE, Scholars Portal, Social Sciences Citation Index and Dissertation Abstracts International from inception through November 2017.

Methods We included studies that sampled parents and assessed uptake of HPV vaccines for their children (<18 years) and/or sociodemographics, knowledge, attitudes or other factors associated with uptake. Study risk of bias was assessed using the Effective Public Health Practice Project tool. We pooled data using random-effects meta-analysis and conducted moderation analyses to examine variance in uptake by sex of child and parent.

Results Seventy-nine studies on 840 838 parents across 15 countries were included. The pooled proportion of parents’ uptake of HPV vaccines for their children was 41.5% (range: 0.7%–92.8%), twofold higher for girls (46.5%) than for boys (20.3%). In the meta-analysis of 62 studies, physician recommendation (r=0.46 (95% CI 0.34 to 0.56)) had the greatest influence on parents’ uptake, followed by HPV vaccine safety concerns (r=−0.31 (95% CI −0.41 to −0.16)), routine child preventive check-up, past 12 months (r=0.22 (95% CI 0.11 to 0.33)) and parents’ belief in vaccines (r=0.19 (95% CI 0.08 to 0.29)). Health insurance-covered HPV vaccination (r=0.16 (95% CI 0.04 to 0.29)) and lower out-of-pocket cost (r=−0.15 (95% CI −0.22 to −0.07)) had significant effects on uptake. We found significant moderator effects for sex of child.

Conclusions Findings indicate suboptimal levels of HPV vaccine uptake, twofold lower among boys, that may be improved by increasing physician recommendations, addressing parental safety concerns and promoting parents’ positive beliefs about vaccines, in addition to expanding insurance coverage and reducing out-of-pocket costs. Limitations of this meta-analysis include the lack of intervention studies and high risk of bias in most studies reviewed. Further studies should disaggregate HPV vaccine uptake by sex of child and parent.

INTRODUCTION

Human papillomavirus (HPV) is the most prevalent sexually transmitted infection in the world. HPV infection accounts for the majority of cervical and vaginal cancers among women, and of oropharyngeal and anal cancers among men and women.1 HPV infection also accounts for nearly half of vulvar cancer among women and penile cancer among men.1 The bivalent (2vHPV) and quadrivalent HPV vaccine (4vHPV) were licensed in the USA in 2006 for girls and 4vHPV was licensed in 2009 for boys. The nine-valent HPV vaccine (9vHPV) was licensed for girls and boys in 2014. 4vHPV or

To cite: Newman PA, Logie CH, Lacombe-Duncan AC, Baiden P, Tepjan S, Rubincam C, Doukas N, Asey F. BMJ Open 2018;8:e019206. doi:10.1136/bmjopen-2017-019206

Strengths and limitations of this study

▸ This is the first systematic review and meta-analysis to focus on parents’ uptake of human papillomavirus (HPV) vaccines for their children, more than 10 years after initial licensure of an HPV vaccine.

▸ Our findings provide pooled estimates of HPV vaccine uptake across 79 studies (n=840838) conducted in 15 countries, indicating modest (41.5%) overall uptake with twofold higher uptake for girls than for boys.

▸ The majority of studies had a high or moderate risk of bias; however, moderation analysis by risk of bias revealed no significant differences in HPV vaccine uptake.

▸ Some meta-analyses of correlates of parents’ uptake of HPV vaccines for their children were based on relatively few studies, but we used random-effects models to compensate for clinical and methodological diversity among studies, and the majority of correlates were based on six or more primary studies.

▸ The risk of publication bias cannot be excluded as 79 studies met the inclusion criteria, but 62 provided sufficient data for meta-analysis; however, there was no significant difference in uptake between studies included and excluded.
HPV vaccination of boys as well as girls, and the substantia and factors that influence parents' uptake. In light of these considerations, we aimed to (1) quantify the levels of parents' HPV vaccine uptake for their children; (2) examine factors correlated with parents' uptake of HPV vaccines for their children; and (3) identify possible moderating influences of sex of child and parent on uptake.

Objectives
The purpose of this meta-analysis was to synthesise results from quantitative correlational investigations of parents' uptake of HPV vaccines for their children. Specifically, we aimed to (1) quantify the levels of parents' HPV vaccine uptake for their children; (2) examine factors correlated with parents' uptake of HPV vaccines for their children; and (3) identify possible moderating influences of sex of child and parent on uptake.

Methods
We conducted a systematic search of the scientific literature and performed random-effects meta-analysis to examine factors associated with parents' uptake of HPV vaccines for their children. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and Meta-Analysis of Observational Studies in Epidemiology (MOOSE) guidelines.

Selection criteria
We specified eligibility criteria for the search and meta-analyses using the population, intervention (or exposure), comparison, outcome and study design (PICOS) framework. We defined the following key question to be explored: What are the factors associated with parents' uptake of ≥1 dose of HPV vaccines for their children?

The primary outcome of analysis was parents' uptake of ≥1 dose of HPV vaccine for their children. The secondary outcomes were factors associated with parents' HPV vaccine uptake for their children, including parents' sociodemographic characteristics, HPV risk history (eg, genital warts), HPV vaccine and HPV-related disease knowledge and awareness (eg, HPV vaccine awareness), vaccine attitudes and beliefs (eg, safety concerns, perceived benefits), child preventive healthcare utilisation (eg, routine check-up), healthcare provider factors (eg, healthcare provider recommendation), and structural factors (eg, health insurance coverage of HPV vaccination).

We included randomised controlled trials (RCTs), cluster RCTs, non-RCTs, longitudinal studies, cohort studies and cross-sectional studies that explored parents' uptake of HPV vaccines for their children. There were no language, geographical or time restrictions. Studies were excluded that did not report original data (eg, reviews, editorials) or examine parents' uptake of HPV vaccines for their children (eg, acceptability or intention to vaccinate).

Search strategy
We conducted a comprehensive search across multiple electronic databases from inception to locate studies...
meeting the inclusion criteria: Cochrane Library, Cochrane Central Register of Controlled Trials, AIDSLINE, CINAHL, EMBASE, PsycINFO, Social Sciences Abstracts, Ovid MEDLINE, Scholars Portal, Social Sciences Citation Index, Dissertation Abstracts International, Applied Social Sciences Index and Abstracts, CSA Sociological Abstracts, ProQuest Research Library, CSA Social Services Abstracts, and AgeLine. The last search date was November 2017. Search terms were developed in consultation with a research librarian and chosen to draw on the broadest pool of potential studies. A sample of the search string and keywords used is listed in online supplementary file 1. We also searched for additional relevant studies by reviewing references from the included articles (ie, ‘snowballing’).

Data extraction

Two authors (ND and AL-D, or AL-D and PB) independently screened all titles and abstracts for inclusion. When the first reviewer determined the study might meet the inclusion criteria based on the study objectives, the full text was obtained. Two reviewers (ND and AL-D, or AL-D and PB) then independently assessed each study for inclusion based on study type and outcome measures, documenting reasons for exclusion. A consensus approach with input from the senior investigator (PAN) was used to resolve disagreements.

We developed a data extraction form using Microsoft Excel. Two of the five reviewers (ND, AL-D, PB, ST and FA) independently extracted the following data: study information (ie, year of publication, author and journal); descriptive data (ie, sample size, country and participant demographics); study aims, design and methods; outcomes/key findings; and study funding sources and reported conflicts of interest (COIs). Reviewers explored data regarding any variables examined as possible correlates of parents’ HPV vaccine uptake for their children. All members of the research team then developed a list of themes related to HPV vaccine uptake based on a review of the included studies.

Risk of bias

Reviewers independently assessed the risk of bias in individual studies using the Effective Public Health Practice Project (EPHPP) ‘Quality Assessment Tool for Quantitative Studies’.[17] The EPHPP tool has been applied in numerous systematic reviews and has demonstrated inter-rater reliability for both individual domains and overall score.[17] We modified the EPHPP for use with cross-sectional studies and examined selection bias (representativeness of sample, participation rate), data collection method (validity, reliability) and study design.[18] Reviewers followed the EPHPP rubric to assess whether each component had low, moderate or high risk of bias, with any disagreements resolved by consensus with the senior investigator (PAN).[17] For the purpose of moderation analysis, studies with low and moderate risk of bias were grouped together and compared with studies with high risk of bias. No studies were excluded on the basis of risk of bias.

We assessed each study as to whether commercial entities were declared as providing support for the work reported in the study. Additionally, we indicated potential COIs on the part of study authors, including associations with commercial entities that could be viewed as having an interest in the general area of vaccines (in the 3 years before manuscript submission), per International Committee of Medical Journal Editors guidelines.[19]

Data synthesis and analysis

We calculated the pooled proportion of HPV vaccine uptake using the proportion of HPV vaccine uptake reported in each included study. We then conducted meta-analysis to critically evaluate and quantitatively synthesise evidence across studies that examined similar correlates of parents’ HPV vaccine uptake for their children. Combining the results of multiple studies increases statistical power to improve estimates of effects in a larger population. We used the Comprehensive Meta-Analysis Software V.2 (Englewood, New Jersey, 2004) to calculate effect sizes for each variable, with a random-effects model to compensate for clinical and methodological diversity among studies. Random-effects models are more conservative than fixed-effect models. Rather than presuming one true effect size, in random-effects models it is assumed that the heterogeneity of studies will contribute to differences in effects between studies, and that there is a distribution of true effect sizes across similar but not identical studies.[20] Random-effects models account for the fact that the studies included were conducted by different investigators in different locations at different times, rather than by the same investigator with the same population at a given time point. To derive a global estimate of the correlation of each variable with HPV vaccine uptake, we combined coefficients across studies, and present a summary effect that estimates that distribution’s mean. We calculated the Q statistic to assess homogeneity of correlations across studies and the I² index to assess the degree of heterogeneity between studies using Higgins and Thompson’s guidelines,[21] which indicate that I² values of 25% represent low, 50% medium and 75% high heterogeneity.

Given disparities in HPV vaccine uptake for boys and girls, we assessed both sex of child and sex of parent as moderator variables in meta-analysis. Moderation analysis allows for evaluating the impact of a covariate on the outcome variable while holding other covariates constant, and helps to explain heterogeneity in effect sizes in meta-analysis.[20] The Comprehensive Meta-Analysis V.2 software enables testing of categorical variables as moderators in order to compare effect sizes between two groups.

All studies that provided sufficient data regarding correlates of parents’ HPV vaccine uptake for their children were included in the meta-analysis. For studies that did not report sufficient information to enable inclusion
in meta-analysis, we contacted study investigators to provide missing and unreported data. We did not conduct meta-analysis on dichotomous (intervention vs control group) data as the vast majority of studies did not evaluate interventions to increase HPV vaccine uptake. However, if an intervention was implemented as part of the study design and baseline/preintervention uptake data were provided, this uptake percentage was used in calculating the pooled proportion of parents’ HPV vaccine uptake for their children.

Patient and public involvement

No patients were involved in the development of the research question, development of outcome measures, design or conduct of this study. No patients were asked to advise on interpretation or writing up of results. There are no plans to involve patients in the dissemination of the results of this study.

RESULTS

Study selection

The literature search yielded 1345 studies with 100% agreement among reviewers (ND, AL-D and PB) in selecting 271 relevant studies, 79 of which met the inclusion criteria. Of the relevant studies, 192 full-text articles were excluded based on the following reasons: 96 assessed intention to vaccinate rather than uptake, 69 did not focus on parents’ HPV vaccine uptake for children, 12 were not quantitative studies, 6 were reviews, 5 contained insufficient data and 4 studies were duplicates (figure 1).

Study characteristics

The 79 included studies22–100 were all published in English. The majority (69.6%; n=55) were conducted in the USA23 24 27 28 34–41 43 45–54 56–62 64 65 67–69 71–77 80–94 97–99 with four conducted in Canada (5.1%),24 28 36 37 four in the Netherlands (5.1%),26 33 35 55 two in Denmark,22 29 two in Norway,30 31 two in Puerto Rico,63 79 and one each in Austria,33 Fiji,44 Hong Kong,86 Italy,47 Kenya,66 South Africa,45 Tanzania,32 Turkey,40 United Arab Emirates30 and Vietnam.25

The majority (57.0%; n=45) of studies assessed parents’ uptake of HPV vaccines for girls only,22–26 29–39 42 44 45 48 54 56–58 61 65–68 71–73 75 76 77 80 81 83 85 86 88 92–96 99 100 30.4% (n=24) for both boys and girls,27 28 40 41 45 46–49 51 53 54 56 59 62 64 65 78 79 82 87–91 100 and 12.7% (n=10) for boys only.28

In terms of the sex of the parents/caregivers surveyed, 55.7% (n=44) of studies included mothers and fathers,23 26 30–32 35–37 40–44 46 47 50–54 56–62 64 65 67–69 71–77 80–94 97–99 while 30.4% (n=24) only mothers,22 25 29 33 39 45 49 50 55 58 62 66 68 71 73 77 79 80 84 90 95 99 100 and 13.9% (n=11) did not specify parent’s/caregiver’s sex.22–24 27 28 34–37 45–54 56 57 59–62 84 85 86–92 The majority of studies (92.4%; n=73) used HPV vaccine initiation (≥1 dose) as the primary outcome,22–24 26–43 45–54 56 57 59–62 84 85 87–100 while 7.6% (n=6) specified only three-dose series completion.25 44 55 58 83 86 Individual study aims and recruitment methods are reported in online supplementary file 2.

Pooled proportion of HPV vaccine uptake

All studies (n=79) quantified parents’ (n=840833) uptake of HPV vaccines for their children. Table 1 lists the study characteristics and mean uptake of HPV vaccines. Most studies were cross-sectional in design, with seven longitudinal studies,26 33 40 41 48 52 72 98 one retrospective cohort study,29 one case–control study,32 one quasi-experimental (single-group, pre-post design) study,39 one clustered, non-randomised controlled pragmatic trial45 and one cluster randomised trial.45 Sample sizes ranged from 43 to 2544899 (median (M)=617.0), with 88.6% (n=70) ranging from 43 to 865250 (M=519.5) and 11.4% (n=9) ranging from 1504934 to 2544899 (M=65926).

The pooled proportion of parents’ uptake of HPV vaccines for their children ranged from 0.7%100 to 92.8%22 across studies, with overall mean uptake of 41.5% (SD=24.2). The pooled proportion of uptake of HPV vaccines for girls (46.5%) was significantly greater than uptake for girls and boys combined (39.8%) and uptake for boys (20.3%; F(2, 76)=4.92, P=0.010). The average uptake of HPV vaccines among six low-income and middle-income countries25 32 42 44 66 100 was 51.6% compared with 40.6% in 73 high-income countries22–24 26–31 33–41 43–45 56–65 67–99; however, this difference failed to achieve statistical significance (F(1, 77)=1.13, P=0.292). Comparison of uptake of HPV vaccines between studies with sample sizes ranging from 43 to 9554 (x=39.8%)...
HPV vaccine uptake, x̅ (%)	Number of doses	Source of uptake report	Author(s), year	Sex of parent (female/ male) (%)	Parent's age, years x±SD (range)	Sex of child vaccinated	HPV vaccine uptake by sex of child	Child age, years x (range)	Sample size of parents†	Country	Included in meta-analysis	Risk of bias	Commercial sponsorship of study	COI‡	
92.8 1 Admin	Stållåttel Schreiber et al, 2015	F: 100	NS	F	12	65 938†	Denmark	Y	High	N	Y				
89.0 1 Parent	Perkins et al, 2010	F: 95	M: 5	43.2 (31–62)	F	–	76	USA	N	Low/Moderate	Y	N			
88.2 1 Parent	Krawczyk et al, 2015	NS	40.2±6.0 (26–58)	F	–	9–10	774	Canada	Y	High	N	Y			
86.8 3 Parent	Paul et al, 2014	F: 100	NS	F	–	11	536	Vietnam	Y	High	N	N			
82.0 1 Parent	Alberts et al, 2017	F: 88	M: 12	M=45	F	–	13	The Netherlands	Y	Low	N	Y			
82.0 1 Parent	Brown et al, 2017	NS	NS	F, M	F: 71.4 M: 88.6	M=12 (10–17)	200	USA	N	High	N	N			
81.9 1 Admin	McClure et al, 2019	NS	NS	F, M	F: 84.9 M: 79.0	11–12	1440†	Canada	Y	High	N	N			
80.0 1 Admin	Widgren et al, 2015	F: 100	NS	F	–	NS	33839†	Denmark	Y	Low/Moderate	NS	NS			
78.3 1 Parent	Feiring et al, 2015	F: NS	M: NS	F	–	12	84319†	Norway	Y	Low	N	N			
78.2 1 Admin	Hansen et al, 2015	F: NS	M: NS	NS	–	12–13	90842†	Norway	Y	High	N	Y			
74.3 1 Parent	Watson-Jones et al, 2012	F: 78.0	M: 22.0	38.2	F	–	404	Tanzania	Y	Low/Moderate	N	Y			
73.0 1 Admin	Pot et al, 2017	F: 100	44±4.3	F	–	12–18	8026	The Netherlands	Y	High	NS	N			
66.7 1 Parent	Hofstetter et al, 2014	NS	NS	F	–	15.6 (11–19)	15049	USA	Y	High	Y	Y			
66.0 1 Parent	Gefen et al, 2012	F: NS	M: NS	44 (35–55)	F	–	469	The Netherlands	Y	High	N	N			
65.1 1 Parent	Oghrie et al, 2010	F: 84.9	M: 14.9	M=40–49	F	–	11	2025	Canada	Y	Low/Moderate	N	Y		
65.0 1 Parent	Buchan et al, 2011	F: 84.6	M: 15.4	NS	–	13	208	Canada	Y	Low	NS	NS			
64.0 1 Parent	Stara et al, 2014	NS	NS	F	–	9–19	2422	USA	Y	High	N	N			
61.0 1 Parent	Morales-Campos and Para-Medina, 2017	F: 100	38±7.8	F	–	11–17	317	USA	Y	High	N	N			
60.0 1 Parent	VanWormer et al, 2017	F: 83	M: 17	43.7±6.1	F, M	–	221	USA	Y	High	N	N			
59.0§ 1 Parent	Rand et al, 2011	F: 81.0	M: 19.0	≤40: 37 % ≥41: 63 %	F, M	NS	430	USA	Y	High	N	Y			
58.6 1 Admin	Botha et al, 2014	F: NS	M: NS	F	–	9–12	3465	South Africa	N	High	Y**	N			
58.6 1 Parent	Borena et al, 2016	F: 90	M: 9.6	40.8±5.7	F, M	F: 59.0 M: 51.8	9	449	Austria	Y	High	NS	N		
58.0 3 Parent	La Vincente et al, 2015	F: 80.2	M: 13.3	NS: 4.8	F	9–12	293	Fiji	N	High	N	Y			
56.0 1 Parent	Winer et al, 2016	F: 100	41±10	F	–	9–12	43	USA	N	Low	N	N			

Continued
HPV vaccine uptake, x (%)	Number of doses	Source of uptake report	Author(s), year	Sex of parent (female/male) (%)	Sex of child vaccinated	Parent’s age, years x±SD (range)	Sex of parent	Parent’s age, years x±SD (range)	HPV vaccine uptake by sex of child	Child age, years x (range)	Sample size of parents†	Country	Included in meta-analysis	Risk of bias	Commercial sponsorship of study COI‡
54.8 1		Admin Fu et al, 2017		F: 93.5 M: 6.5	F, M	37.9±7.7	F, M	NS	10–12	400	USA	Y	High	N	Y
53.7 ≥1 Parent		Bianco et al, 2014		F: NS M: NS	M	42.9 (NS)	–	12–18	566	Italy	N	High	NS N	N	
50.9 ≥1 Parent		Cuff et al, 2016		NS	F	–	11–12	908	USA	Y	High	N N	N		
50.0 ≥1 Parent		Donahue et al, 2015		NS	F, M	F: 60.3 M: 39.7	9–13	2185	USA	Y	High	N Y	N		
49.9 1 Parent		Dorell et al, 2016		F: 100	NS	F, M	15 (13–17)	8652	USA	Y	High	N N	N		
49.0 ≥1 Parent		Moss et al, 2016		Mo: ≥45	F, M	–	13–17	9021	USA	Y	High	N N	Y		
48.0 ≥1 Parent		Nonzee et al, 2018		Mo: 40–49	F	–	13–17	1779	USA	Y	High	N N	N		
47.3 ≥1 Parent		Gilkey et al, 2017		NS	F, M	–	11–17	1484	USA	Y	High	Y Y	Y		
47.0 ≥1 Parent		Garend et al, 2009		NS	F, M	NS	<18	82	USA	Y	High	NS NS	NS		
45.0 3 Parent		van Keulen et al, 2013		F: 100	43.4±4.6	–	13–14	932	The Netherlands	N	Low/Moderate	N N	N		
42.0 1 Parent		Reiter et al, 2011		F: 94	M: 6	Mo: 40+	–	11–20	647	USA	Y	High	N Y	Y	
41.0 3 Parent		Chao et al, 2009		F: 100	42.1±6.4	F	–	9–17	18275	USA	Y	Low/Moderate	NS NS	N	
36.3 ≥1 Parent		Kepka et al, 2015		F: 89.6	M: 10.4	42.9±7.8 (9–67)	F, M	11–17	67	USA	Y	High	N N	N	
34.6 ≥1 Parent		Lu et al, 2015		NS	M	–	13–17	9554	USA	Y	High	N N	N		
33.1 ≥1 Parent		Reynolds, 2014		F: 94.7	M: 5.3	43.8 (24–65)	F	–	9–18	323	USA	N	High	NS NS	N
32.9 1 Parent		Sanderson et al, 2017		F: 100	Mo: 30–39	F, M	9–18	408†	USA	Y	Low	N N	N		
31.7 ≥1 Parent		Colón-López et al, 2015		F: 91.7	M: 8.3	38.6±7.2	M	9–17	60	Puerto Rico†	N	High	N NS	NS	
31.7 ≥1 Parent		Kepka et al, 2015		F: 84.4	M: 15.7	Mo: 40–69	F, M	11–17	118	USA	Y	High	N N	N	
31.3 ≥1 Parent		Reiter et al, 2017		F: 94	M: 6	Mo: 40–49	–	10–17	617	USA	Y	High	N N	N	
31.1 ≥1 Parent		Vermandere et al, 2014		F: 100	M=36 (IQR 32–40)	F	–	8–18	256	Kenya	Y	High	Y N	N	
31.0 ≥1 Parent		Cates et al, 2010		F: 81.5	M: 18.5	NS	–	10–17	696	USA	Y	High	N NS	N	
31.0 1 Parent		Kadis et al, 2011		F: 100	Mo: 40–49	F	–	11–14	496	USA	N	Low/Moderate	N Y	N	
30.0 ≥1 Parent		Perkins et al, 2013		F: 80.0	M: 20.0	43.5±8.3	M	11–17	120	USA	Y	High	N Y	N	
29.3 ≥1 Parent		Colón-López et al, 2016		F: 88.5	M: 11.5	37.7±7.2	M	9–17	200	Puerto Rico††	Y	High	N NS	N	

Table 1 Continued
Source of uptake report	Number of doses	Author(s), year	Sex of parent (female/ male) (%)	Sex of child vaccinated	HPV vaccine uptake by sex of child (range)	Child age, years x±SD (range)	Sample size of parents†	Country	Included in meta-analysis	Risk of bias	Commercial sponsor-ship of study COI‡				
Parent	29.0	≥1	Taylor et al, 2014	F: 100	M: ≥45	F	–	9–17	86	USA	Y	High	N	NS	
Parent	28.9	≥1	Admin	F: 90.5	M: 9.5	41.2±9.2 (23–71)	F	–	13–18	149	USA	Y	High	N	N
Parent	28.3	1	Price, 2013	F: 100	M: 0	F	–	9–18	106	USA	Y	High	N	NS	
Parent	28.0	≥1	Rickert et al, 2014	F: 85.9	M: 14.1	41.6	M	–	11–15	249	USA	Y	High	Y	Y
Parent	27.7	≥1	Brewer et al, 2011	F: 100	M: 30–39	F, M	NS	9–17	350	USA	N	High	N	N	
Parent	27.0†	≥1	Fishman et al, 2016	F: 67.8	M: 5.7	F: 400	M: 18.6	41 (range)	119	USA	Y	Low/Moderate	Y	N	
Parent	26.0	≥1	Lee et al, 2016	F: 100	M: 0	F, M	F: 32.6	M: 18.6	12–17	130	USA	Y	High	N	N
Parent	25.8	≥1	Fuchs et al, 2016	F: 24.0	M: 0	F, M	F: 13.5	M: 18.6	12–17	130	USA	Y	Low/Moderate	Y	NS
Parent	25.6	≥1	Guerry et al, 2011	F: 23.1	M: 0	F, M	F: 13.5	M: 18.6	12–17	130	USA	Y	Low/Moderate	Y	NS
Parent	22.5	1	Wong et al, 2011	F: 22.0	M: 0	F, M	F: 13.5	M: 18.6	12–17	130	USA	Y	Low/Moderate	Y	N
Parent	21.4	1	Clark et al, 2016	F: 21.4	M: 0	F, M	F: 13.5	M: 18.6	12–17	130	USA	Y	Low/Moderate	Y	N
Parent	19.4	≥1	Taylor et al, 2014	F: 19.4	M: 0	F, M	F: 13.5	M: 18.6	12–17	130	USA	Y	Low/Moderate	Y	N
Parent	19.0	3	Allen et al, 2010	F: 19.0	M: 0	F, M	F: 13.5	M: 18.6	12–17	130	USA	Y	Low/Moderate	Y	N
Parent	17.0	≥1	Berenson et al, 2017	F: 17.0	M: 0	F, M	F: 13.5	M: 18.6	12–17	130	USA	Y	Low/Moderate	Y	N
Parent	16.5	≥1	Thompson et al, 2012	F: 16.5	M: 0	F, M	F: 13.5	M: 18.6	12–17	130	USA	Y	Low/Moderate	Y	N
Parent	15.8	≥1	Gross et al, 2015	F: 15.8	M: 0	F, M	F: 13.5	M: 18.6	12–17	130	USA	Y	Low/Moderate	Y	N
Parent	14.9	≥1	Berenson et al, 2014	F: 14.9	M: 0	F, M	F: 13.5	M: 18.6	12–17	130	USA	Y	Low/Moderate	Y	N
Parent	13.0	≥1	Horn et al, 2010	F: 13.0	M: 0	F, M	F: 13.5	M: 18.6	12–17	130	USA	Y	Low/Moderate	Y	N
Parent	12.0	≥1	Saak, 2011	F: 12.0	M: 0	F, M	F: 13.5	M: 18.6	12–17	130	USA	Y	Low/Moderate	Y	N
Parent	10.3†	≥1	Reiter et al, 2009	F: 10.3†	M: 0	F, M	F: 13.5	M: 18.6	12–17	130	USA	Y	Low/Moderate	Y	N
Parent	9.8	1	Ortashi et al, 2014	F: 9.8	M: 0	F, M	F: 13.5	M: 18.6	12–17	130	USA	Y	Low/Moderate	Y	N

Continued
and those ranging from 15,049 to 254,489 (x²=54.2%) revealed a non-significant trend of studies with sample sizes of 215,000 reporting higher uptake than studies with sample sizes <15,000 (F(1, 77)=2.89, P=0.095).

Study quality
We assessed risk of bias for all studies: the majority (75.9%, n=60) had a high risk of bias,22 24 25 27 28 30 31 33–35 37–44 46–54 56 57 59–61 63–67 69–76 78 79 82–84 87–90 92 94 95 97 99 100 19.0% (n=15) low/moderate risk of bias23 29 32 36 55 58 68 78 80 81 85 86 91 93 98 and 5.1% (n=4) low risk of bias.26 45 62 96 No significant difference in parents’ uptake of HPV vaccines for their children was identified between studies with low/moderate risk of bias (x²=41.3%) and studies with high risk of bias (x²=41.5%; F(1, 77)=0.002, P=0.967).

Funding and COI
Overall, 11 studies (13.9%) declared funding from commercial entities (all pharmaceutical companies),23 34 42 53 66 69 74 77 80 84 90 56 (70.9%) declared funding not including commercial entities.22 24–28 30–32 35 36 38–41 44–46 48–52 55–57 59 60 62–65 67 68 70–76 78 79 81–83 85–90 93 94 96 97 99 and 12 (15.2%) did not specify funding.29 33 37 43 47 54 58 61 91 92 95 100 Twenty-five studies (31.6%)22 24 26 31 32 34 36 41 44 46 49 51 53 57 68 74 76 81 84 88 93 94 96 97 98 declared or were assessed (ie, if author/coauthor declared a COI in another study included in the review within the stipulated time frame) as having a potential COI.38 (48.1%) declared no COI,23 25 27 29 30 33 35 38–40 42 43 45 47 48 50 52 53 55 56 59–62 64–66 69 72 75 78 82 83 and 16 (20.3%) did not specify COI.29 37 54 58 63 67 70 71 73 77 80 91 92 95 99 100 We found no significant difference in uptake of HPV vaccines between studies that declared any funding from commercial entities (x²=38.5%) versus studies that did not declare any commercial funding (x²=42.2%; F(1, 77)=0.19, P=0.668). Similarly, there was no statistically significant difference in HPV vaccine uptake between studies with a potential COI (x²=41.6%) versus those with no COI (x²=44.5%; F(1, 77)=0.62, P=0.435).

Correlates of parents’ uptake of HPV vaccines for children
Sixty-two original studies22 24–26 28–36 38–41 43 45 46 48–54 56–59 62 64–67 69–74 76–88 90 92–94 96 98 99 (n=654,100) measured similar correlates of parents’ uptake of HPV vaccines for their children and were included in the meta-analysis (as indicated in table 1). An examination of the pooled proportion of HPV vaccine uptake found no statistically significant difference between studies included in the meta-analysis (n=62; x²=42.0% uptake) and those not included due to insufficient data (n=17; x²=39.6% uptake). Based on the available data, we examined correlations between HPV vaccine uptake and 19 factors, organised thematically in eight domains. Table 2 indicates the weighted mean correlational effect sizes (r) measuring associations with HPV vaccine uptake, 95% CI, the Q test of homogeneity and I² index of between-study variability.

Factors positively associated with parents’ uptake of HPV vaccines for their children were identified...
Table 2 Meta-analysis of correlates of parents’ HPV vaccine uptake for their children (n=62 studies; sample size=654100)

Domain	Factor	Studies (n)	Random-effect size (95% CI)	Homogeneity index, Q	Between-study variability, I²
Healthcare provider-related	Physician recommendation	21	0.46 (0.34 to 0.56), P<0.000	690.356, P<0.000	97.103
	Parents’ trust in healthcare provider	40	0.11 (0.01 to 0.21), P=0.026	3.975, P=0.264	24.528
Parental HPV vaccine decision-maker	Mother as HPV vaccine decision-maker (vs both parents)	207	0.34 (0.23 to 0.44), P=0.001	0.05, P=0.83	0.000
Parents’ vaccine attitudes, beliefs and intentions	Intention to vaccinate child for HPV	423	0.31 (0.17 to 0.43), P=0.000	41.288, P=0.000	92.734
	HPV vaccine safety concerns	1289	−0.23 (−0.35 to 0.11), P<0.000	254.017, P=0.000	95.670
	Belief in vaccines in general	1422	0.17 (0.10 to 0.24), P<0.000	78.43, P=0.000	88.525
	Perceived HPV vaccine benefits	1029	0.14 (0.11 to 0.17), P<0.000	0.11 (0.74)	0.000
	Preventive healthcare utilisation for child	8199	0.22 (0.11 to 0.33), P=0.001	61.472, P=0.000	88.613
Health insurance/cost	Routine childhood preventive check-up, past 12 months	1529	0.16 (0.04 to 0.29), P=0.011	49.642, P=0.001	81.870
	Health insurance coverage of HPV vaccination	392	−0.15 (−0.22 to 0.07), P<0.000	1.013, P=0.603	0.000
Parents’ HPV risk history	Parent history of HPV	313	0.16 (0.06 to 0.25), P<0.002	0.737, P=0.692	0.000
	Parent history of receiving a Pap smear	3159	0.06 (0.004 to 0.107), P=0.036	65.712, P<0.000	95.435
	Parent history of genital warts	328	0.05 (0.03 to 0.07), P=0.001	0.79, P=0.67	0.000
	Parent or family history of abnormal Pap smear	4189	0.02 (0.01 to 0.04), P=0.012	4.191, P=0.242	28.425
Parents’ HPV knowledge and awareness	HPV vaccine knowledge/awareness	995	0.14 (0.05 to 0.23), P=0.002	65.889, P<0.000	87.858
	Cervical cancer/HPV knowledge	1425	0.04 (0.04 to 0.13), P=0.001	58.999, P<0.000	77.966
	Sociodemographics	6215	0.10 (0.06 to 0.14), P<0.000	2.110, P=0.834	0.000
	Child age	1523	0.07 (0.01 to 0.13), P=0.029	127.178, P<0.001	88.206

*Reported outcomes for two different subsamples.

HPV, human papillomavirus.
in the following domains: (1) healthcare provider—physician recommendation (r=0.46 (95% CI 0.34 to 0.56)) and parents’ trust in healthcare providers (r=0.11 (95% CI 0.01 to 0.21)); (2) parental HPV vaccine decision-maker—mother as HPV vaccine decision-maker (vs both parents) (r=0.34 (95% CI 0.23 to 0.44)); (3) parent’s vaccine beliefs, attitudes and intentions—intention to vaccinate child for HPV (r=0.31 (95% CI 0.17 to 0.43)), belief in vaccines in general (r=0.19 (95% CI 0.08 to 0.29)), perceived HPV vaccine benefits (r=0.17 (95% CI 0.10 to 0.24)) and anticipatory regret if child is not vaccinated (r=0.14 (95% CI 0.11 to 0.17)); (4) preventive healthcare utilisation for child—routine child preventive check-up, past 12 months (r=0.22 (95% CI 0.11 to 0.33)); (5) insurance/cost—health insurance coverage of HPV vaccination (r=0.16 (95% CI 0.04 to 0.29)); (6) parents’ HPV risk history—parent history of HPV (r=0.16 (95% CI 0.06 to 0.25)), mother’s history of having a Pap test (r=0.06 (95% CI 0.00 to 0.107)), parent history of genital warts (r=0.05 (95% CI 0.03 to 0.07)), parent or family member history of abnormal Pap smear (r=0.02 (95% CI 0.01 to 0.04)); (7) parents’ HPV-related knowledge and awareness—HPV vaccine knowledge and awareness (r=0.14 (95% CI 0.05 to 0.23)) and cervical cancer/HPV knowledge (r=0.04 (95% CI 0.04 to 0.13)); and (8) sociodemographic factors—urban versus rural location (r=0.10 (95% CI 0.06 to 0.14)) and child’s age (r=0.07 (95% CI 0.01 to 0.13)). Factors negatively associated with parents’ uptake of HPV vaccines for their children were parents’ vaccine attitudes—HPV vaccine safety concerns (r=−0.31 (95% CI −0.41 to −0.16)); and insurance/cost—out-of-pocket cost (r=−0.15 (95% CI −0.22 to −0.07)).

Between-study variability

The small number of studies examining some of the factors precluded us from conducting subanalyses to assess the impact of risk of bias on the findings for those outcomes; therefore, we examined individual results to identify potential reasons for between-study variability. We found high heterogeneity in the reported correlations between parents’ HPV vaccine uptake for their children and the following factors: physician recommendation, intention to vaccinate child for HPV, HPV vaccine safety concerns, belief in vaccines in general, perceived HPV vaccine benefits, routine child preventive check-up, health insurance coverage of HPV vaccination, mother’s history of receiving a Pap test, HPV vaccine knowledge and awareness, and child age. We found medium heterogeneity in cervical cancer/HPV knowledge, and low heterogeneity in parents’ trust in healthcare provider, mother as HPV vaccine decision-maker (vs both parents), anticipatory regret, out-of-pocket cost for HPV vaccination, parent history of HPV, parent history of genital warts, parent or family history of abnormal Pap smear, and urban versus rural location.

Moderating factors of parents’ uptake of HPV vaccines for children

We conducted moderation analyses to examine whether the variance in HPV vaccine uptake could be explained by three covariates—sex of child, sex of parent and study risk of bias—after adjusting for other factors (eg, physician recommendation, health insurance coverage, HPV vaccine safety concerns and others). We found that the omnibus test for the effect of sex of parent on uptake of HPV vaccines yielded Q=10.41, df=2 (P=0.006); thus, controlling for sex of child and risk of bias, there is some evidence that effect size for parents’ uptake of HPV vaccines for their children may be related to the sex of the parent. More specifically, mothers/female guardians had a coefficient of −0.018, suggesting that uptake may be greater in studies that included mothers/female guardians as opposed to studies that included both mothers/female guardians and fathers/male guardians, controlling for sex of child and risk of bias. However, this model was not statistically significant (P=0.653).

The omnibus test for the effect of sex of child indicated Q=10.37, df=3 (P=0.016); therefore, controlling for sex of parent and risk of bias, there is some evidence that effect size for parents’ uptake of HPV vaccines for their children is related to the sex of the child. More specifically, we found a significant effect for preadolescent and adolescent girls and HPV vaccine uptake. The coefficient for girls of 0.096 (P=0.036) indicates that parents’ uptake of HPV vaccines for their children is greater in studies that included preadolescent and adolescent girls, as opposed to studies that included both preadolescent and adolescent girls and boys, controlling for sex of parent and risk of bias.

We found no significant moderating effect of study risk of bias on HPV vaccine uptake. The proportion of variance in uptake that is explained by all three covariates is 28%. The results of the various sensitivity analyses and examination of a funnel plot of the 62 studies included in the meta-analysis showed no publication bias (Begg and Mazumdar rank correlation, P=0.945).

DISCUSSION

This systematic review and meta-analysis is among the first to assess correlates of parents’ HPV vaccine uptake for their children, rather than proxies such as HPV vaccine acceptability or intention to vaccinate. Results from 79 studies in 15 countries including over 840,000 parents indicate overall suboptimal parental uptake (41.5%) of one or more doses of HPV vaccines for their children. Notably, parents’ HPV vaccine uptake differed significantly by sex of the child: uptake for girls (46.5%) and in mixed samples of girls and boys (39.8%) was higher than uptake for boys (20.3%), indicating substantial sex disparities in uptake. Parents’ overall modest levels of HPV vaccine uptake for their children more than a decade after the initial licensure of an HPV vaccine indicate the importance of
synthesising evidence to support effective programmes to accelerate uptake. The disparities in uptake by sex of child are consistent with the later approval and recommendation of HPV vaccination for boys than girls in the USA, where the majority of studies were conducted, and the lack of coverage of HPV vaccination for boys in many other national insurance programmes. However, our findings also suggest a number of enduring factors that may contribute to sex disparities in HPV vaccine uptake. A predominant policy focus in many national public health strategies and funding mechanisms on increasing HPV vaccine coverage among girls and young women in order to achieve herd protection may contribute to a lack of perceived benefits of HPV vaccination for men on the part of parents, healthcare providers and boys/young men themselves—despite the documented effectiveness and substantial health benefits of HPV vaccination for boys.

In line with previous descriptive reviews largely focused on uptake for girls, physician recommendation had the single greatest effect on parents’ uptake of HPV vaccines for their children, supported by evidence from over 20 studies. As the first meta-analysis of HPV vaccine uptake, to our knowledge, to test for the moderating influence of child’s sex—and based on previous studies that suggest a tendency on the part of healthcare providers to offer HPV vaccine recommendations to those they perceive to be more likely to benefit from and to accept vaccination (ie, girls, patients with health insurance)—this highlights the importance of physicians making recommendations for boys as well as girls in order to increase parents’ HPV vaccine uptake for their children. The vital role of physician recommendation of HPV vaccination for boys is further supported by the significant association (with evidence from 10 studies) of parents’ perceived HPV vaccine benefits with their uptake of HPV vaccines for their children, in the context of the enduring perception that HPV is a woman’s concern.

Results from meta-analyses indicate a substantial negative effect of parents’ concerns about HPV vaccine safety on HPV vaccine uptake for their children, as well as positive effects of belief in vaccines in general and perceived HPV vaccine benefits; each of these factors is supported by findings from 10 or more studies. These parental attitudes and beliefs about vaccines in general, and HPV vaccines in particular, may be strategic targets for both physician engagement with parents and for public health education campaigns in accelerating HPV vaccine uptake. Nevertheless, the broader phenomenon of vaccine hesitancy, evidenced in the USA and other countries, has resulted in parental resistance to childhood vaccinations, with a subsequent re-emergence of vaccine-preventable diseases in the USA. In the context of even greater scrutiny that may be applied to an adolescent vaccine for a sexually transmitted infection, the significant effects of parents’ attitudes and beliefs support the importance of careful and respectful healthcare provider engagement with parents and their concerns as a facilitator of HPV vaccine uptake. The positive impact of parents’ trust in healthcare providers on their uptake of HPV vaccines for their children, as similarly identified in regard to childhood vaccines, provides evidence to support the importance of the process of physician engagement in effectively communicating with parents. Findings from this review suggest a substantive focus on addressing parents’ HPV vaccine safety concerns and supporting their positive beliefs in the health benefits of vaccines in general, as well as explaining the particular benefits of HPV vaccines for their children, including boys and girls.

Routine child preventive check-up was identified across eight studies as being positively associated with parents’ HPV vaccine uptake for their children. It may be that the public health focus on routine gynaecological cancer screening in preventive care for women, with no analogously effective screening mechanism available for anal or oropharyngeal cancer among men, may thereby contribute to sex disparities in HPV vaccine uptake. This supports the importance of reducing missed opportunities in encounters with healthcare providers to promote HPV vaccine uptake for boys.

Beyond healthcare provider-related factors and parents’ attitudes and beliefs about vaccines, the significant impact of health insurance coverage of HPV vaccination and out-of-pocket cost on parents’ uptake of HPV vaccines for their children supports the important role of healthcare policy and funding in promoting HPV vaccine uptake. We also identified a small but significant effect of urban versus rural location on HPV vaccine uptake. These correlates of uptake underscore the importance of structural interventions, such as the US Vaccines for Children programme which provides vaccines at no cost to low-income children, and school-based HPV vaccine delivery programmes, such as in Australia (including boys and girls), which have helped to reduce disparities in uptake by children’s race/ethnicity, sex and socioeconomic status. They also suggest addressing rurality as a sociodemographic factor that may contribute to disparities in HPV vaccine uptake.

Methodological considerations

Several methodological issues pose limitations to this review, including the dearth of intervention studies, high risk of bias in the majority of studies reviewed and heterogeneity due to between-study variability. Some variables were meta-analysed across relatively few studies precluding subanalyses of moderator variables, or meta-regression, to assess the impact of risk of bias on the findings. However, we used random-effects models to account for methodological variability, assessed each study for risk of bias, assessed risk of bias as a moderator and calculated accepted statistical indices to assess heterogeneity, in accordance with PRISMA and MOOSE guidelines. Additionally, 10 of the 19 factors in meta-analyses were supported by findings from at least six or more studies, with six factors supported by findings from 10 or more studies.
An additional limitation is that the vast majority of studies focused on mothers, with very few studies assessing fathers’ HPV vaccine uptake for their children, and several failing to indicate the sex of the parent surveyed. Future studies should examine fathers’ uptake of HPV vaccines for their children, with parents’ uptake disaggregated by sex, and assess whether fathers’ support for HPV vaccination of their daughters and/or sons differs from that of mothers. Similarly, while nearly all studies reported ages of the children vaccinated, over a quarter did not report parents’ age(s) and many studies failed to include basic descriptive statistics on parents’ age (ie, mean or median, range). As many studies did not identify the type of physician who recommended HPV vaccination, future investigations should specify physician and healthcare provider type to assess differences among providers and specific practice implications. Understandably, some of the missing demographic data may be a result of limitations in national and regional immunisation registries; augmenting the information collected in these databases may provide further evidence to inform tailored interventions to increase parents’ HPV vaccine uptake for their children.

Finally, parents’ uptake of HPV vaccines for their children may be affected by a reduction in the required number of doses to achieve full protection, as well as broad structural and social factors, including high-income versus low-income countries, public funding of HPV vaccination for girls and for boys, school-based versus clinic-based vaccination, HPV prevalence, and cultural differences. As we used HPV vaccine initiation as the primary outcome based on data reported in more than 90% of the studies reviewed, the same factors are likely to be associated with initiation of a two-dose regimen; the latter may help to mitigate to an extent the negative effects of out-of-pocket costs and perhaps parents’ safety concerns on uptake. We compared uptake in high-income versus low-income and middle-income countries; however, the paucity of studies in the latter context, including demonstration projects that may overestimate broader population uptake, may have limited statistical power to detect differences, and we were unable to systematically model other social-structural factors in this meta-analysis. Nevertheless, the significant effects of health insurance coverage and out-of-pocket cost on parents’ uptake of HPV vaccines for their children indicate the impact of national policies and funding mechanisms in the USA—where 9vHPV is now largely a standard of care for insurance companies—and other countries (with only 6% including HPV vaccines for boys in national immunisation programmes vs 37% for girls only). It is also crucial to expand investigations in low-income and middle-income countries, with the highest morbidity due to HPV-related cancers and the lowest access to and uptake of HPV vaccines.

This systematic review and meta-analysis indicates overall suboptimal parental uptake of HPV vaccines for their children across 79 studies conducted in 15 countries, along with significant correlates of uptake at the level of healthcare providers, parental attitudes, beliefs and knowledge, and structural factors such as insurance coverage and out-of-pocket cost. Given the vital role of parents in HPV vaccine uptake for their children, public health strategies should address modifiable factors across multilevel domains that influence parents’ uptake. In particular, a focus on increasing provider, especially family physician, recommendation of HPV vaccines to parents of boys as well as girls, including during routine healthcare visits, may reduce sex disparities in HPV vaccine uptake and contribute to accelerating uptake overall. Further research including intervention studies and longitudinal designs, with results disaggregated by sex of children and parents, and by HPV vaccine initiation versus series (now two-dose) completion, is needed to advance evidence of factors associated with parents’ uptake of HPV vaccines for their children. Evidence-informed strategies that contribute to accelerating HPV vaccine uptake are critical to realising the full public health potential of HPV vaccines on cancer prevention.

Acknowledgements We would like to thank Jenaya Webb, MA, MI, Public Services Librarian at the Ontario Institute for Studies in Education, University of Toronto, for her assistance with developing and conducting the electronic searches.

Contributors PAN had full access to all of the data in the study and takes full responsibility for the integrity of the data and the accuracy of the data analysis. PAN conceptualised and designed the study, contributed to data analysis and interpretation, drafted the initial and final manuscript, provided funding support and supervised study implementation. CHL contributed to study conceptualisation and design, led and supervised statistical analysis, and critically reviewed the manuscript. AL-D led article screening, data extraction and assessment of risk of bias, contributed to data analysis and drafting the manuscript, and provided administrative support. PB contributed to article screening, data extraction, risk of bias assessment, statistical analysis and revision of the manuscript. ST, CR, ND and FA contributed to article screening, data extraction and risk of bias assessment, and reviewed the manuscript.

Funding This work was supported in part by the Canadian Institutes of Health Research (THA-118570), the Canada Research Chairs Program (Canada Research Chair in Health and Social Justice) and the Canada Foundation for Innovation.

Competing interests None declared.

Patient consent Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement There are no additional data available.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

REFERENCES

1. Saraiya M, Unger ER, Thompson TD, et al. US assessment of HPV types in cancers: implications for current and 9-valent HPV vaccines. *JNCI: Journal of the National Cancer Institute* 2015;107:djv086.

2. Petrovsky E, Bocchini JA, Jr, Hariri S, et al. Use of 9-valent human papillomavirus (HPV) vaccine: updated HPV vaccination recommendations of the advisory committee on immunization practices. *MMWR Morb Mortal Wkly Rep* 2015;64:300–4.
3. Drolet M, Bénard Etodie, Boily M-C, et al. Population-level impact and herd effects following human papillomavirus vaccination programmes: a systematic review and meta-analysis. *Lancet Infect Dis* 2015;15:565–80.

4. WHO. Immunization Coverage. Fact Sheet. 2016 http://www.who.int/medicinedocs/factsheets/fs378/en/ (accessed 5 Jan 2018).

5. Brotherton JML, Zuber PLF, Bloom PJN. Primary prevention of HPV through vaccination: update on the current global status. *Curr Obstet Gynecol Rep* 2016;5:210–24.

6. Bruni L, Diaz M, Barrionuevo-Rosas L, et al. Global estimates of human papillomavirus vaccination coverage by region and income level: a pooled analysis. *Lancet Glob Health* 2016;4:e453–63.

7. Chesson HW, Markowitz LE, Hariri S, et al. The impact and cost-effectiveness of nonavatal HPV vaccination in the United States: estimates from a simplified transmission model. *Hum Vaccin Immunother* 2011;7:1363–72.

8. Bloem P, Ogbaru I. Vaccination to prevent human papillomavirus infections: from promise to practice. *PLoS Med* 2017;14:e1002325.

9. WHO. Human papillomavirus vaccines: WHO position paper. May 2017. *Wkly Epidemiol Rec* 2017;92:241–68.

10. Zimet GD. Improving adolescent health: focus on HPV vaccine acceptance. *J Adolesc Health* 2005;37:S17–S25.

11. McRee A-L, Reiter PL, Brewer NT. Vaccinating adolescent girls against human papillomavirus—Who decides? *Prev Med* 2010;50:213–4.

12. Hendy M, Lewis R, Clements A, et al. “HPV? Never heard of it!”: A systematic review of girls’ and parents’ information needs, views and preferences about human papillomavirus vaccination. *Vaccine* 2013;31:5152–67.

13. Trim K, Nagi N, Eilt L, et al. Parental knowledge, attitudes, and behaviours towards human papillomavirus vaccination for their children: a systematic review from 2001 to 2011. *Obstet Gynecol Int* 2012:2012:1–12.

14. Daniel-Ulloa J, Gilbert PA, Parker EA. Human papillomavirus vaccination in the United States: Uneven uptake by gender, race/ethnicity, and sexual orientation. *Am J Public Health* 2016;106:746–51.

15. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analysis: the PRISMA statement. *PLoS Med* 2009;6:e1000097.

16. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. *JAMA* 2000;283:2008–12.

17. National Collaborating Centre for Methods and Tools. Quality assessment tool for quantitative studies. 2012 http://www.ncbi.nlm.nih.gov/products/nccmt/ (accessed 5 Jan 2018).

18. Deeks JJ, Dinnes J, D’Amico R, et al. Evaluating non-randomised intervention studies. *Health Technol Assess* 2003;7:1–173.

19. International Committee of Medical Journal Editors (ICMJE). Conflicts of Interest. 2018 http://www.icmje.org/conflicts-of-interest/ (accessed 5 Jan 2018).

20. Borenstein M, Hedges LV, Higgins JPT, et al. Regression in Meta-analysis. 2015 https://www.meta-analysis.com/downloads/ MRManual.pdf (accessed 5 Jan 2018).

21. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. *Stat Med* 2002;21:1539–58.

22. Slättelid Schreiber SM, Juul KE, Dehliendorf C, et al. Socioeconomic predictors of human papillomavirus vaccination among girls in the Danish childhood immunization program. *J Adolesc Health* 2015;66:402–7.

23. Perkins PB, Pierre-Joseph N, Marquez C, et al. Why do low-income minority parents choose human papillomavirus vaccination for their daughters? *J Gen Intern Med* 2013;28:617–22.

24. Krawczyk A, Knäuper B, Gilca V, et al. Parents’ decision-making about the human papillomavirus vaccine for their daughters: I. quantitative results. *Hum Vaccin Immunother* 2015;11:322–9.

25. Paul P, Tanner AE, Gravitt PE, et al. Acceptability of HPV vaccine implementation among parents in India. *Health Care Women Int* 2014;35:1148–61.

26. Alberts CJ, van der Loef MF, Hazevedo Y, et al. A longitudinal study on determinants of HPV vaccination uptake in parents/guardians from different ethnic backgrounds in Amsterdam, the Netherlands. *Vaccine* 2017;35:224–8.

27. Brown B, Gaba M, Pellman H. Reasons for acceptance or refusal of Human Papillomavirus Vaccine in a California pediatric practice. *Papillomavirus Res* 2017;3:42–5.

28. McClure CA, MacSwain M-A, Morrison H, et al. Human papillomavirus vaccine uptake in boys and girls in a school-based vaccine delivery program in Prince Edward Island, Canada. *Vaccine* 2015;33:1786–90.

29. Widgren K, Simonsen J, Valenti-Branth P, et al. Uptake of the human papillomavirus-vaccination within the free-of-charge childhood vaccination programme in Denmark. *Vaccine* 2011;29:9663–7.

30. Feiring B, Laake J, Molden T, et al. Do parental education and income matter? A nationwide register-based study on HPV vaccine uptake in the school-based immunisation programme in Norway. *BMJ Open* 2015;5:e006422.

31. Hansen BT, Campbell S, Burger E, et al. Correlates of HPV vaccine uptake in school-based routine vaccination of preadolescent girls in Norway: A register-based study of 90,000 girls and their parents. *Prev Med* 2015;77:4–10.

32. Watson-Jones D, Tomlin K, Remes P, et al. Reasons for receiving or not receiving HPV vaccination in primary schoolgirls in Tanzania: a case control study. *PLoS One* 2012;7:e45231.

33. Pot M, van Keulen HM, Ruiters R, et al. Motivational and contextual determinants of HPV-vaccination uptake: a longitudinal study among mothers of girls invited for the HPV-vaccination. *Prev Med* 2017;100:41–9.

34. Hofstetter AM, Stockwell MS, Al-Husayni N, et al. HPV vaccination: are we initiating too late? *Vaccine* 2014;32:1393–45.

35. Gofinaite G, Smit M, Nijman HW, et al. Comparatively low attendance during Human Papillomavirus catch-up vaccination among teenage girls in the Netherlands: insights from a behavioral survey among parents. *BMC Public Health* 2012;12:498.

36. Oglivie G, Anderson M, Marra F, et al. A population-based evaluation of a publicly funded, school-based HPV vaccine program in British Columbia, Canada: parental factors associated with HPV vaccine receipt. *PLoS Med* 2010;7:e1000270.

37. Buchan A, Sergio M. Factors influencing parental decisions about HPV immunization for their Grade 8 daughters in the Kingston, Frontenac and Lennox & Addington Area. *Can J Public Health* 2011;102:476.

38. Steras SAS, Vadaparampalit ST, Patel RP, et al. Parent perceptions important for HPV vaccine initiation among low income adolescent girls. *Vaccine* 2014;32:6163–9.

39. Morales-Campos DY, Parra-Medina D. Predictors of human papillomavirus vaccine initiation and completion among Latino mothers of 11- to 17-year-old daughters living along the Texas-Mexico border. *Fam Community Health* 2017;40:139–49.

40. VanWormer JL, Bendixsen CG, Vickers ER, et al. Association between parent attitudes and receipt of human papillomavirus vaccine in adolescents. *BMC Public Health* 2017;17:766.

41. Rand CM, Schaffer SJ, Humiston SG, et al. Patient-provider communication and human papillomavirus vaccine acceptance. *Clin Pediatr* 2011;50:106–13.

42. Botha MH, Van der Merwe FH, Snyman LC, et al. The Vaccine and Cervical Cancer Screen (VACCS) project: acceptance of human papillomavirus vaccination in a school-based programme in two provinces of South Africa. *S Afr Med J* 2014;105:40.

43. Borena W, Luckner-Hornischer A, Katzgraber F, et al. Factors affecting HPV vaccination acceptance in west Austria: do we need to revise the current immunization scheme? *Papillomavirus Res* 2016;2:173–7.

44. La Vincente SF, Melnick D, Jenkins K, et al. Implementation of a national school-based Human Papillomavirus (HPV) vaccine campaign in Fiji: knowledge, vaccine acceptability and information needs of parents. *BMC Public Health* 2015;15:1257.

45. Winer RL, Gonzales AA, Noonan CJ, et al. A cluster-randomized trial to evaluate a mother-daughter dyadic educational intervention for increasing HPV vaccination coverage in American Indian girls. *J Community Health* 2010;35:617–22.

46. Fu LY, Zimet GD, Latkin CA, et al. Associations of trust and healthcare provider advice with HPV vaccine acceptance among African American parents. *Vaccine* 2017;35:802–7.

47. Bianco A, Pileggi C, Izzo F, et al. Vaccination against human papillomavirus virus infection in male adolescents: knowledge, attitudes, and acceptability among parents in Italy. *Hum Vaccin Immunother* 2014;10:2536–42.

48. Cuff RD, Buchanan T, Pelkoski E, et al. Rates of human papillomavirus vaccine uptake amongst girls five years after introduction of statewide mandate in Virginia. *Am J Obstet Gynecol* 2016;214:752.e1–6.

49. Donahue KL, Hendrix KS, Sturm LA, et al. Human papillomavirus vaccine initiation among 9–13-year-olds in the United States. *Prev Med Rep* 2015;2:892–8.

50. Doreli C, Yankeley D, Kennedy A, et al. Factors that influence parental vaccination decisions for adolescents, 13 to 17 years old: National Immunization Survey-Teen. 2010. *Clinical Pediatr* 2013;52:162–70.
communication and uptake of adolescent vaccines. Moss JL, Reiter PL, Rimer BK, et al. Vaccine 2018;36:1243–7.

60. papillomavirus (HPV) vaccine awareness and uptake among adolescents. Gilkey MB, Calo WA, Marciniak MW, et al. Parents who refuse or delay HPV vaccine: differences in vaccination behavior, beliefs, and clinical communication preferences. Hum Vaccin Immunother 2017;13:680–6.

62. Variation in human papillomavirus vaccine uptake and acceptability between female and male adolescents and their caregivers. J Community Health 2017;42:522–32.

63. Reiter PL, McRee A-L, Gottlieb SL, et al. Correlates of receiving recommended adolescent vaccines among adolescent females in North Carolina. Hum Vaccin 2011;7:67–73.

64. Chao C, Slezak JM, Coleman KJ, et al. Papanicolaou screening behavior in mothers and human papillomavirus vaccine uptake in adolescent girls. Am J Public Health 2009;99:1137–42.

66. Kepka D, Warner EL, Kinney AY, et al. Low human papillomavirus (HPV) vaccine knowledge among Latino parents in Utah. J Immigr Minor Health 2015;17:125–31.

68. Lu PJ, Yank MD, Iyer S, et al. HPV vaccination coverage of male adolescents in the United States. Pediatr 2015;136:839–40.

70. Reynolds D. Religiosity and parental acceptance of human papillomavirus (HPV) vaccine in 9–18 year-old girls. J Christ Nurs 2014;31:172–7.

72. Sanderson M, Canedo JR, Khabele D, et al. Pragmatic trial of an intervention to increase human papillomavirus vaccination in safety-net clinics. BMC Public Health 2017;17:158.

74. Colón-López V, Quiñones V, Del Toro-Mejías LM, et al. HPV awareness and vaccine willingness among Dominican immigrant parent–adolescent pairs: results of a qualitative study. J Immigr Minor Health 2015;17:1086–90.

76. Kepka D, Ding Q, Bodson J, et al. Latino parents’ awareness and receipt of the HPV vaccine for sons and daughters in a state with low three-dose completion. J Cancer Educ 2015;30:808–12.

78. Reiter PL, Cates JR, McRee A-L, et al. Statewide HPV vaccine initiation among adolescent females in North Carolina. Sex Transm Dis 2010;37:549–56.

80. Vermandere H, Naanyu V, Mabeya H, et al. Determinants of acceptance and subsequent uptake of the HPV vaccine in a cohort in rural Tanzania. PLoS One 2014;9:e105353.

82. Cates JR, Shafer A, Carpentier FD, et al. How parents hear about human papillomavirus vaccine: implications for uptake. J Adolesc Health 2010;47:305–8.

84. Kadis JA, McRee A-L, Gottlieb SL, et al. Mothers’ support for voluntary provision of HPV vaccine in schools. Vaccine 2011;29:2542–7.

86. Perkins RB, Apte G, Marquez C, et al. Factors affecting human papillomavirus vaccine use among White, Black and Latino parents of Sons. Pediatr Infect Dis J 2013;32:e63–e44.

88. Colón-López V, Toro-Mejías LMD, Conde-Toro A, et al. Views on HPV and HPV Vaccination: the experience at a federal qualified clinic in Puerto Rico. J Health Care Poor Underserved 2016;27:1411–26.

90. Taylor VL, Bunch NJ, Ko LK, et al. Understanding HPV vaccine uptake among Cambodian American girls. J Community Health 2014;39:857–62.

92. Fishman J, Taylor L, Frank I. Awareness of HPV and uptake of vaccination in a high-risk population. Pediatrics 2016;138:355–61.

94. Price K. A preliminary study of mothers’ social support, spirituality, knowledge, and acceptability of the HPV vaccine for daughters: University of Cincinnati [Thesis], 2013.

96. Rickert VI, Auslander BA, Cox DS, et al. School-based vaccination of young US males: impact of health beliefs on intent and first dose acceptability. Vaccine 2014;32:1982–7.

98. Fuchs EL, Rahman M, Berenson AB, Examining maternal beliefs and human papillomavirus vaccine uptake among male and female children in low-income families. Papillomavirus Res 2016;2:38–40.

100. Reiter NT, Gottlieb SL, Reiter PL, et al. Prognostic factors of human papillomavirus vaccine initiation among adolescent girls in a high-risk geographic area. Sex Transm Dis 2011;38:197–204.

102. Rosenthal SL, Rupp R, Zimet GD, et al. Uptake of HPV vaccine: demographics, sexual history and values, parenting style, and vaccine attitudes. J Adolesc Health 2008;43:239–45.

104. McRee A-L, Maslow GR, Reiter PL. Receipt of recommended adolescent vaccines among youth with special health care needs. Clin Pediatr 2017;56:451–60.

106. Lee H, Kim M, Kang P, et al. Factors associated with HPV vaccination among Cambodian American teenagers. Public Health Nurs 2016;33:493–501.

108. Hertweck SP, Lalooi AS, Pinto MD, et al. Health care decision making by mothers for their adolescent daughters regarding the quadrivalent HPV vaccine. J Pediatr Adolesc Gynecol 2013;26:96–101.

110. Guerry SL, De Rosa CJ, Markowitz LE, et al. Human papillomavirus vaccine initiation among adolescent girls in high-risk communities. Vaccine 2011;29:2235–41.

112. Wong CA, Berkowitz Z, Dorell CG, et al. Human papillomavirus vaccine uptake among 9- to 17-year-old girls: National Health Interview Survey, 2006. Cancer 2011;17:5612–20.

114. Clark SJ, Cowan AF, Filipow SL, et al. Parental permission of provider interactions influences HPV vaccination status of adolescent females. Clin Pediatr 2016;55:701–6.

116. Taylor JL, Zimet GD, Donahue KL, et al. Vaccinating sons against HPV: results from a U.S. National survey of parents. PLoS One 2014;9:e115154.

118. Tiro JA, Tsui J, Bauer HM, et al. Human papillomavirus vaccine use among adolescent girls and young adult women: an analysis of the 2007 California Health Interview Survey. J Womens Health 2012;21:656–65.

120. Allen JD, Othus MKD, Shelton RC, et al. Parental decision making about the HPV vaccine. Cancer Epidemiol Biomarkers Prev 2010;19:218–97.

122. Berenson AB, Brown VG, Fuchs EL, et al. Relationship between maternal experiences and adolescent HPV vaccination. Hum Vaccin Immunother 2017;13:219–24.

124. Thompson VLS, Arnold LD, Notaro SR. African American parents’ attitudes toward HPV vaccination. Ethn Dis 2012;21:335–41.

126. Gross TT, Laz TH, Rahman M, et al. Association between mother-child sexual communication and HPV vaccine uptake. Prev Med 2015;74:83–6.

128. Berenson AB, Laz TH, Hirth JM, et al. Effect of the decision-making process in the family on HPV vaccination rates among adolescents 9–17 years of age. Hum Vaccin Immunother 2014;10:1807–11.

130. Horn L, Howard C, Waller J, et al. Opinions of parents about school-entry mandates for human papillomavirus vaccine. J Low Genit Tract Dis 2010;14:43–8.

132. Saak B. Factors associated with parental decisions to vaccinate girls against human papillomavirus. California State University, Long Beach [Dissertation] 2011;45:150435.

134. Reiter PL, Brewer NT, Gottlieb SL, et al. Parents’ health beliefs and HPV vaccination of their adolescent daughters. Soc Sci Med 2009;69:675–80.

136. Gottlieb SL, Brewer NT, Sternberg MR, et al. Human papillomavirus vaccine initiation in an area with elevated rates of cervical cancer. J Pediatr Adolesc Gynecol 2009;24:30–7.

138. Ortaşi O, Raheel H, Shalal M. Acceptability of human papillomavirus vaccination among women in the United Arab Emirates. Asian Pac J Cancer Prev 2014;15:2007–11.

140. Wang LD-L, Lam WWT, Ng TH, et al. Determinants of human papillomavirus vaccination uptake among adolescent girls: A theory-based longitudinal study among Hong Kong Chinese parents. Prev Med 2017;102:24–30.

142. Cates JR, Diehl SJ, Crandell JL, et al. Intervention effects from a social marketing campaign to promote HPV vaccination in preteen boys. Vaccine 2014;32:4171–8.

144. Reiter PL, McRee A-L, Pepper JK, et al. Longitudinal predictors of human papillomavirus vaccination among a national sample of adolescent males. Am J Public Health 2013;103:1419–27.

146. Hechter RG, Chao C, Sy LS, et al. Quadrivalent human papillomavirus vaccine uptake in adolescent boys and maternal utilization of preventive care and history of sexually transmitted infections. J Public Health 2013;103:63–68.

148. Gottlieb SL, Brewer NT, Sternberg MR, et al. Human papillomavirus vaccine initiation in a high-risk geographic area. Sex Transm Dis 2013;39:568–74.
103. Holman DM, Benard V, Roland KB, et al. Barriers to human papillomavirus vaccination among US adolescents: a systematic review of the literature. JAMA Pediatr. 2014;168:76–82.

104. Gerend MA, Shepherd MA, Lustria ML, et al. Predictors of provider recommendation for HPV vaccine among young adult men and women: findings from a cross-sectional survey. Sex Transm Infect 2016;92:104–7.

105. Gilkey MB, McRee AL. Provider communication about HPV vaccination: a systematic review. Hum Vaccin Immunother 2016;12:1454–68.

106. Phadke VK, Bednarczyk RA, Salmon DA, et al. Association between vaccine refusal and vaccine-preventable diseases in the United States: a review of measles and pertussis. JAMA 2016;315:1149–58.

107. Politi MC, Jones KM, Philpott SE. The role of patient engagement in addressing parents’ perceptions about immunizations. JAMA 2017;318:237–8.

108. Benin AL, Wisler-Scher DJ, Colson E, et al. Qualitative analysis of mothers’ decision-making about vaccines for infants: the importance of trust. Pediatrics 2006;117:1532–41.

109. Lacombe-Duncan A, Newman PA, Baiden P. Human papillomavirus vaccine acceptability and decision-making among adolescent boys and parents: A meta-ethnography of qualitative studies. Vaccine 2018. doi: 10.1016/j.vaccine.2018.02.079. [Epub ahead of print].

110. Walker AT, Smith PJ, Kolasa M; Centers for Disease Control and Prevention (CDC). Reduction of racial/ethnic disparities in vaccination coverage, 1995-2011. MMWR Suppl 2014;63:7–12.