Lambda-conductors for group rings

F. J.-B. J. Clauwens

April 7, 2010

1 Introduction.

This paper is part of a project which aims to provide a method for computing the Nil groups of the group rings of finite abelian groups, by refining some of the techniques used in [1] and [2] in such a way that the allowed coefficient rings include polynomial rings. For the refinement of the p-adic logarithm discussed in [3] and [4] it is assumed that the rings involved have a structure of λ-ring; we refer to these papers for generalities about λ-rings. Thus it is useful to extend as much as possible of the other techniques to the context of λ-rings. In this paper we investigate how to describe a group ring of a finite abelian group as a pull back of a diagram of rings which are more accessible to calculations in algebraic K-theory.

Let be given a commutative ring S and subring R. For each ideal I of S which is contained in R one has a cartesian square

\[
\begin{array}{ccc}
R & \longrightarrow & S \\
\downarrow & & \downarrow \\
R/I & \longrightarrow & S/I
\end{array}
\]

thus describing R as a pull back of rings for which the K-theory is hopefully better understood. By taking for I the sum of all such ideals one finds a diagram where the rings on the bottom row are as small as possible.

We modify this construction by assuming that R has a structure of λ-ring and considering only ideals I stable under the λ-operations. We call the resulting ideal the λ-conductor of S into R. In particular we are interested in the case that R is the group ring $\mathbb{Z}[G]$ of a finite abelian group, and S is its normal closure in $R \otimes \mathbb{Q}$, which splits as a direct sum of rings $S_i = \mathbb{Z}[\chi_i]$ associated to equivalence classes of characters $\chi_i : G \rightarrow \mathbb{C}$.

In this situation R is a λ-ring such that $\psi^n(g) = g^n$ for every $n \in \mathbb{N}$ and $g \in G$. In general S is not stable under the λ-operations on $R \otimes \mathbb{Q}$, but it is stable under the associated Adams operations ψ^n since they are ring homomorphisms.

We will prove that in case G is a primary group its λ-conductor is precisely the intersection of the classical conductor and the augmentation ideal. We do this by exhibiting generators of the classical conductor and examining their behavior under the fundamental λ-operations.
2 The primary case

Throughout this section G is a group of order $n = p^e$, where p is prime. We consider representations $\rho: G \to \mathbb{C}^*$. We say that ρ is of level k if the image of ρ has p^k elements.

Two representations τ_1 and τ_2 are called equivalent if they have the same kernel. That means that there must be some $m \in \mathbb{Z}$ prime to p such that $\tau_2(x) = \tau_1(x)^m$ for all $x \in G$. Obviously equivalent representations have the same level.

Given a representation τ of level $k > 0$ one gets a representation ψ_τ of level $k - 1$ by the formula $(\psi_\tau)(x) = \tau(x^p)$ for $x \in G$. If ψ_τ_1 and ψ_τ_2 are equivalent then we may replace τ_2 by an equivalent representation τ_2' so that $\psi_\tau_2' = \psi_\tau_1$. So we may choose a representation in each class in such a way that ψ_τ and ρ coincide if they are equivalent.

Let ρ be a representation of level $k > 0$ and write $\omega = \exp(2\pi i/p)$. We define an element $b_\rho \in \mathbb{Z}[G]$ by the formula

$$b_\rho = \sum_{\rho x=1} x - \sum_{\rho \xi = \omega} \xi.$$

If we choose $y_\rho \in G$ such that $\rho(y) = \omega$ then we get

$$b_\rho = \left(\sum_{\rho x=1} x\right)(1 - y_\rho).$$

The only representation of level 0 is the trivial representation, which we denote by 1, and it gives rise to $b_1 = \sum_{x \in G} x$.

Proposition 1. If ρ and τ are not equivalent then $b_\rho b_\tau = 0$. Furthermore $b_\rho^2 = p^{e-k}(1 - y_\rho) b_\rho$ for ρ of level $k > 0$.

Proof. If $\ker(\rho) \neq \ker(\tau)$ we may assume that there is $g \in G$ with $\rho(g) = 1$ but $\tau(g) = \omega$. If g has order m then $\sum_{\rho(x)=1} x$ and thus b_ρ is a multiple of $\sum_{j=0}^{m-1} g^j$, whereas b_τ is a multiple of $1 - g$. The product of these two factors is 0.

The second part follows from $(\sum_{\rho(\xi)=1} \xi)(\sum_{\rho(x)=1} x) = p^{n-k} \sum_{\rho(x)=1} x$ which is true because each ξ gives the same contribution and there are p^{e-k} of them.

Every representation ρ of level k gives rise to a homomorphism j_ρ from $\mathbb{Z}[G]$ to $S_\rho = \mathbb{Z}[\omega_k]$, where $\omega_k = \exp(2\pi i/p^k)$.

Proposition 2. If ρ and τ are not equivalent then $j_\rho(b_\tau) = 0$. Furthermore $j_1(b_1) = p^e$, and $j_\rho(b_\rho) = p^{e-k}(1 - \omega)$ if ρ is of level $k > 0$.

Proof. The second part is obvious since every x in the definition of b_ρ maps to 1, and y_ρ maps to ω. The first part follows since $j_\rho(b_\rho) j_\rho(b_\tau) = 0$ by Proposition 1 and S_ρ is a domain.

It is well known that the maps \(j_\rho \) (one from each equivalence class) combine to an embedding from \(R \) into its integral closure \(S = \oplus_\rho S_\rho \).

Proposition 3. The \(b_\rho \) generate the conductor ideal \(I \) of \(S \) into \(R \).

Proof. By the theorem of Jacobinski (Theorem 27.8 in [5]) the conductor is \(\oplus_\rho nD_\rho^{-1} \subset \oplus_\rho S_\rho = S \), where \(D_\rho^{-1} \) is the lattice in \(\mathbb{Q}[\omega_k] \) dual to \(\mathbb{Z}[\omega_k] \) under the trace form. It is a simple exercise that this fractional ideal is in fact generated by \(nD_\rho^{-1} \), which means that \(nD_\rho^{-1} = j(b_\rho)S = j(B_\rho)S_\rho = j(b_\rho R) \).

We remind the reader that in particular \(nS \) is contained in the conductor.

The \(\lambda \)-conductor \(I_\lambda \) from \(S \) into \(R \) is defined as the largest ideal of \(S \) contained in \(R \) which is stable under the fundamental \(\lambda \)-operations \(\theta_\ell \). It is of course a subset of the largest ideal of \(S \) contained in \(R \), which is the ordinary conductor \(I \) described above. Thus we have to investigate the behaviour of the operations \(\theta_\ell \) on the generators \(b_\rho \).

Lemma 1. If \(\rho \) is of level \(k > 0 \) and there is no \(\tau \) with \(\psi\tau = \rho \) then \(\psi^p b_\rho = 0 \).

Proof. Write \(G \) as a direct product of cyclic groups, with generators \(g_i \). If the order of \(\rho(g_i) \) is strictly smaller than the order of \(g_i \) for all \(i \) then one can find a suitable \(\tau \) by taking for each \(\tau(g_i) \) a \(p \)-th root of \(\rho(g_i) \). If however the orders are the same for some \(i \) then there is certainly some \(h \in G \) such that \(h^p = 1 \) and \(\rho(h) = \omega \). By definition of \(b_\rho \) we have

\[
\psi^p b_\rho = \sum_{\rho \xi = 1} \xi^p - \sum_{\rho \eta = \omega} \eta^p
\]

Here the term in the second sum associated to \(\eta = h\xi \) cancels the term in the first sum associated to \(\xi \).

Proposition 4. If \(\rho \) is of level \(k > 0 \) then

\[
\psi^p(b_\rho) = \sum_{\psi\tau = \rho} pb_\tau
\]

Proof. By definition we have

\[
\sum_{\psi\tau = \rho} b_\tau = \sum_{\psi\tau = \rho} \sum_{x = 1} x - \sum_{\psi\tau' = \rho} \sum_{\tau' \omega = \omega} x
\]

We claim that all terms with \(x \notin G^p \) cancel. To prove this assume that the class of \(x \) in \(G/G^p \) is nontrivial. Then there exists a homomorphism \(\sigma : G/G^p \to \mathbb{C}^* \) such that \(\sigma(x) = \omega \). Now the term associated to \(\tau \) in the first sum equals the term associated to \(\tau' = \tau \cdot \sigma \) in the second sum.

So we only have to consider terms of the form \(x = \xi^p \) with \(\xi \in G \). The condition \(\tau(x) = 1 \) is then independent of \(\tau \) (since it is equivalent to \(\rho(\xi) = 1 \)) and the sum over all \(\tau \) with \(\psi\tau = \rho \) reduces to a multiplication with the number
of equivalence classes of such τ. By the Lemma we may assume that this number is nonzero. Now τ_1 and τ_2 with $\psi\tau_1 = \rho = \psi\tau_2$ are equivalent iff $\tau_2 = \tau_1^{1 + mp^k}$ for some m with $0 \leq m < p$. So this number is $1/p$ times the number of homomorphisms $\sigma : G/G^p \to \mathbb{C}^*$, hence equals p^{r-1}, where r denotes the rank of G.

On the other hand we have

$$\psi^p \rho = \sum_{\rho \neq 1} \xi^p - \sum_{\rho \neq \omega} \eta^p$$

Here the first sum is a certain factor times the sum over all $x \in G$ for which there exists $\xi \in G$ with $x = \xi^p$ and which satisfy $\tau(x) = 1$ for any (and thus all) τ with $\psi\tau = \rho$. The factor is the number of ξ which satisfy these conditions, which equals p^r.

We write h for the polynomial of degree $p-2$ given by

$$h(t) = \frac{1}{1-t} \left(\frac{p - 1 - t^p}{1-t} \right)$$

Proposition 5.

$$\psi^p(b_1) = b_1 + \sum_{\tau \neq 1, \psi\tau = 1} h(y_{\tau}) b_{\tau}$$

Proof. We have

$$b_{\tau} = \left(\sum_{x=1}^r x \right) (1 - y_{\tau})$$

and thus

$$h(y_{\tau}) b_{\tau} = \left(\sum_{x=1}^r x \right) \left(p - \sum_{j=0}^{p-1} y_{\tau}^j \right) = p \left(\sum_{x=1}^r x \right) - \left(\sum_{x \in G} x \right)$$

We must take the sum of $\sum_{x=1}^r x$ over all equivalence classes of $\tau \neq 1$ with $\psi\tau = 1$. Interchange the sum over x and the sum over τ. There are two cases:

- If $x \in G^p$ then $\tau x = 1$ for all τ, and we must simply count the number of equivalence class of τ. There are $p^r - 1$ of them, with $p-1$ in each class.
- If $x \not\in G^p$ then the number of τ such that $\tau x = 1$ is $p^{r-1} - 1$, with again $p-1$ in each class.

So we get

$$\sum_{\tau \neq 1, \psi\tau = 1} h(y_{\tau}) b_{\tau} = \left(\frac{p^r - 1}{p-1} \sum_{x \in G^p} x + \frac{p^{r-1} - 1}{p-1} \sum_{x \not\in G^p} x \right)$$

$$- \left(\frac{p^r - 1}{p-1} \sum_{x \in G^p} x + \frac{p^{r-1} - 1}{p-1} \sum_{x \not\in G^p} x \right)$$

$$= p^r \sum_{x \in G^p} x - \sum_{x \in G} x = \sum_{\xi \in G} \xi^p - \sum_{x \in G} x = \psi^p b_1 - b_1$$
Now we consider the effect of Adams operations ψ^q for primes $q \neq p$. For any prime q we write f_q and g_q for the polynomials given by

$$f_q(t) = \frac{1 - t^q}{1 - t}, \quad g_q(t) = \frac{(1 - t)^{q-1} - f_q(t)}{q}$$

Proposition 6. If ρ is of level $k > 0$ then

$$\psi^q(b_\rho) = f_q(y_\rho)b_\rho$$

and $\psi^q(b_1) = b_1$.

Proof. We have

$$\psi^q(b_1) = \psi^q \left(\sum_{x \in G} x \right) = \sum_{\xi \in G} \xi = b_1$$

and

$$\psi^q(b_\rho) = \psi^q \left(\left(\sum_{\rho x = 1} x \right) (1 - y_\rho) \right) = \left(\sum_{\rho x = 1} a^q \right) (1 - y_\rho^q)$$

$$= \left(\sum_{\rho \xi = 1} \xi \right) (1 - y_\rho)f_q(y_\rho) = b_\rho f_q(y_\rho)$$

Corollary 1. For the idempotents $e_\rho \in S_\rho$ one has

$$\psi^p(e_\rho) = \sum_{\psi_\tau = p} e_\rho \quad \text{if } \rho \neq 1,$$

$$\psi^p(e_1) = e_1 + \sum_{\tau \neq 1, \psi_\tau = p} e_\tau$$

$$\psi^q(e_\rho) = e_\rho \quad \text{if } q \neq p$$

Since R has no \mathbb{Z}-torsion the Adams operations ψ^q determine the operations θ^q and we find

Proposition 7. If ρ has level $k > 0$ then

$$\theta^p(b_\rho) = p^{e-k}(p-1)^{-1}(1 - y_\rho)^{p-1}b_\rho - \sum_{\psi_\tau = p} b_\tau \quad \text{if } k < e$$

$$\theta^p(b_1) = g_p(y_\rho)b_\rho \quad \text{if } k = e$$

$$\theta^q(b_\rho) = \left(\frac{p^{e-k}(q-1) - 1}{q} (1 - y_\rho)^{q-1} + g_q(y_\rho) \right) b_\rho \quad \text{for } q \neq p$$

Moreover

$$\theta^p(b_1) = p^{e(p-1)}b_1 - p^{-1}b_1 - p^{-1} \sum_{\tau \neq 1, \psi_\tau = 1} h(y_\tau)b_\tau$$

$$\theta^q(b_1) = \frac{p^{e(q-1)} - 1}{q} b_1 \quad \text{for } q \neq p$$
Proof. This is just a matter of combining the last three Propositions with the formula $\ell \theta^b(a) = a^\ell - \psi^\ell a$. Note that $k = e$ can only happen if G is cyclic, in which case $y^a = 1$, which implies that $b^\ell = (1 - y^a)^\ell = p(1 - y^a)g_p(y^a)$. \qed

Theorem 1. The b_p with $\rho \neq 1$ generate the λ-conductor ideal I_λ. In other words I_λ is the intersection of the augmentation ideal and the ordinary conductor ideal I.

Proof. Write J for the R-ideal generated by the b_p with $\rho \neq 1$. From Proposition 7 one reads of that $\theta^\ell(b_p) \in J$ for $\rho \neq 1$ and for every prim ℓ. From the identity

$$\theta^\ell(ab) = \theta^\ell(a)b^\ell + \psi^\ell(a)\theta^\ell(b)$$

it then follows that $\theta^\ell(Rb_p) \subset J$ for $\rho \neq 1$ and all ℓ. Finally from

$$\theta^\ell(u + v) = \theta^\ell(u) + \theta^\ell(v) + \sum_{i=1}^{\ell-1} \frac{1}{\ell} \binom{\ell}{i} u^i v^{\ell-i}$$

it follows that $\theta^\ell(J) \subset J$ for every ℓ. Since $J \subset I$ by Proposition 8 this shows that $J \subset I_\lambda$.

Suppose that $x \in I_\lambda$ and $x \notin J$. Then $x \in I$, so by Proposition 9 there are $x_p \in R$ such that $x = \sum x_p b_p$. Since $\sum_{\rho \neq 1} x_p b_p \in J \subset I_\lambda$ by the first half of the proof, it follows that $x_1 b_1 \in I_\lambda$. Since $y b_1 = b_1$ for every $g \in G$ we may assume that $x_1 \in Z$. Moreover $x_1 \neq 0$ which means that its p-valuation $v_p(x_1)$ is a natural number. We may assume that x is chosen in such a way that $v_p(x_1)$ is minimal. Now I_λ must also contain

$$\theta^p(x_1 b_1) = p^{-1} \left(x_1^p b^{p(p-1)} - x_1 (b_1 + \sum_{\tau \neq 1, \psi^{\tau} = 1} b_\tau) \right)$$

However the valuation of the coefficient of b_1 is $v_p(x_1^p b^{p(p-1)} - x_1) - 1 = v_p(x_1) - 1$, in contradiction with the way x was chosen. Thus $I_\lambda \subset J$. \qed

3 Direct products of relatively prime order

Let G_1 be a group of order $n_1 = p^e$, and let G_2 a group of order $n_2 = q^f$, where p and q are different primes. We write $R_1 = \mathbb{Z}[G_1]$ and $R_2 = \mathbb{Z}[G_2]$, and denote their normal closures by S_1 and S_2 respectively. Finally we write I_1 for the conductor of S_1 into R_1 and I_2 for the conductor of S_2 into R_2. Since the S_i are free abelian groups, the same is true for the other additive groups involved, and we can view $I_1 \otimes I_2$ as a subgroup of $R_1 \otimes I_2$ and of $R_1 \otimes R_2$.

Lemma 2.

$$I_1 \otimes I_2 = (R_1 \otimes I_2) \cap (I_1 \otimes R_2)$$
Proof. There are $m_1, m_2 \in \mathbb{Z}$ such that $m_1n_1 + m_2n_2 = 1$. If x is an element of the left hand side then $x \in R_1 \otimes I_2$, so $n_1x \in n_1R_1 \otimes I_2 \subset n_1S_1 \otimes I_2 \subset I_1 \otimes I_2$ and therefore $m_1n_1x \in I_1 \otimes I_2$. Similarly $m_2n_2x \in I_1 \otimes I_2$ and thus $x = m_1n_1x + m_2n_2x \in I_1 \otimes I_2$. The other implication is obvious.

Proposition 8. The conductor I of $S_1 \otimes S_2$ into $R_1 \otimes R_2$ is $I_1 \otimes I_2$.

Proof. Suppose that $x \in I$, so that $x(S_1 \otimes S_2) \subset R_1 \otimes R_2$. We write $x \in R_1 \otimes R_2$ as $\sum x_g \otimes g$, where g runs trough G_2. For any $a \in S_1$ we have $\sum(x_ga) \otimes g = (\sum x_g \otimes g)(a \otimes 1) = x(a \otimes 1) \in R_1 \otimes R_2$. Therefore $x_ga \in I_1$ for any $a \in S_1$, which means that $a_g \in I_1$ for all $g \in G_1$. Thus $x \in I_1 \otimes I_2$. Similarly $x \in R_1 \otimes I_2$. Thus $x \in I_1 \otimes I_2$ by the Lemma. The other inclusion is obvious.

We show now that for the λ-conductor a similar theorem holds:

Theorem 2. The λ-conductor I_λ of $S_1 \otimes S_2$ into $R_1 \otimes R_2$ is the tensor product of the λ-conductors $I_{\lambda 1}$ of S_1 into R_1 and $I_{\lambda 2}$ of S_2 into R_2.

Proof. The λ-conductor I_λ is a subset of the classical conductor I, which is $I_1 \otimes I_2$. However I_1 is the direct sum $\mathbb{Z}b_1 \oplus I_{\lambda 1}$ by theorem $[1]$ and similarly for I_2. Thus any $x \in I_\lambda$ can uniquely be written as

$$x = x_0(b_1 \otimes b_1) \oplus (x_1 \otimes b_1) \oplus (b_1 \otimes x_2) \oplus y$$

with $x_0 \in \mathbb{Z}$, $x_1 \in I_{\lambda 1}$, $x_2 \in I_{\lambda 2}$, $y \in I_{\lambda 1} \otimes I_{\lambda 2}$. Since $I_{\lambda 1}$ is an ideal of $S_1 \otimes S_2$, each of these four summands must be in $I_{\lambda 1}$.

Therefore we consider the intersection of $I_{\lambda 1}$ with $b_1 \otimes I_{\lambda 2}$. Suppose that a is an element of this intersection, say $a = b_1 \otimes x$ with $x \in I_{\lambda 2}$. Then $\theta^p(a) \in I_{\lambda 1}$ too. We have

$$\theta^p(a) = p^{-1}(a^p - \psi^p a) = p^{-1}(p^{e(p-1)}b_1 \otimes x^p - (b_1 + \sum_{\tau \neq 1, \psi^\tau = 1} b_\tau) \otimes \psi^p x)$$

and thus $p^{e(p-1)}b_1 \otimes x^p - p^{-1}b_1 \otimes \psi^p x$ should be in $I_{\lambda 1}$. Now the first term is a multiple of a and thus in $I_{\lambda 1}$. So the other term $p^{-1}b_1 \otimes \psi^p x$ is in the aforementioned intersection. Since ψ^p is an automorphism (of finite order) of R_2 this shows that the intersection is p-divisible. Since the intersection is a finitely generated abelian group this can only happen if it vanishes.

The same argument applies to the first and second summand of x. Thus $x = y \in I_{\lambda 1} \otimes I_{\lambda 2}$ and we have shown that $I_{\lambda 1} \subset I_{\lambda 1} \otimes I_{\lambda 2}$. The other inclusion is obvious.

References

[1] R.C. Alperin, R.K. Dennis, M.R. Stein, SK_1 of finite abelian groups I, Invent. Math. 82 (1985), 1–18.

[2] R.C. Alperin, R.K. Dennis, R. Oliver, M.R. Stein, SK_1 of finite abelian groups II, Invent. Math. 87 (1987), 253–302.
[3] F.J.-B.J. Clauwens, The K-groups of \(\lambda\)-rings. Part I. Construction of the logarithmic invariant, Compos. Math. 61 (1987), 295–328.

[4] F.J.-B.J. Clauwens, The K-groups of \(\lambda\)-rings. Part II. Invertibility of the logarithmic map, Compos. Math. 92 (1994), 205–225.

[5] C.W. Curtis, I. Reiner, Methods of Representation Theory, John Wiley and Sons, New York, 1981.