Iran’s Drone Supply to Russia and Changing Dynamics of the Ukraine War

Mohammad Eslami

Department of Political Science, Universidade do Minho, Braga, Portugal

ABSTRACT

The Ukraine war has brought into sharper prominence the importance of drones in modern conflicts. In February 2022, Russia invaded Ukraine, which, contrary to Russia’s expectations, was neither short nor effortless. Relying on Unmanned Combat Aerial Vehicles (UCAV), Ukraine managed to repel many attacks and even destroy Russian armaments in the initial stages of the war. Russia has revealed a certain weakness in the field of unmanned technology, namely drones, and therefore, displaying the urgent need to enlarge its UCAVs fleet increasingly indispensable to Russia’s military operations. In the summer of 2022, Iran transferred hundreds of military drones to Russia in an attempt to ameliorate its lackluster drone capability. The present paper, while describing the role of combat drones in the Ukraine war, elucidates how Iranian UCAVs have been influencing the dynamics of the war in Ukraine.

“The disgusting sound of Iranian drones is heard in our skies every night” (President Zelenskyy)

Introduction

The development of emerging technologies (Cyber, AI, and Neuroscience) in the last couple of decades has significantly changed the concept of conflict and war. The increased use of information and communications as a weapon itself and the exponential growth of AI systems, have shifted both the scope and speed of a conflict. As an example of such technologies, drones (used at the military level) have shown their efficiency in long-range-high-precision guided attacks, spatial control, intelligence warfare, and air support in recent decades (Can and Vieira 2022).

The war in Ukraine has demonstrated that not all countries have the same technological capability, best illustrated by Russia’s underperforming military, especially in the field of combat drones (Dijkstra et al. 2022). While the Russian indigenous drone fleet is mainly based on “light and small” drones with low range and limited flight capacity,
Russia is currently in dire need of various types of drones, including bombers, suicide (kamikaze) and surveillance drones. Together, these types of UCAVs enable Russia to destroy Ukraine’s artillery power (mainly Western HIMARS and HOWITZER cannons), thus allowing Russia to mitigate the shortcomings of the more traditional military branches (regular army, infantry, air force, etc.).

At the end of February 2022, a few days after the start of the Russian military invasion of Ukraine, Russia asked China for military assistance, including advanced drones. However, the Chinese leadership ignored Russia’s request (Kai and Wanyuan 2022), mainly owing to its own geopolitical and economic stand-off with the United States (Papageorgiou and Vieira 2021). Amongst the many countries capable of producing UCAVs is Iran, which manufactures armed drones and has several models of UCAVs in use that complement its ballistic missile program, a factor that allows it to compensate for its relatively weak and antiquated air forces. While Iran’s UCAV program expansion has always been a contributing factor to an increasingly volatile regional situation in the Middle East, Iran’s advanced weapons program was additionally stepped up in the context of its collaboration in fighting against ISIS, as well as in Iran’s aspiration to strengthen its military presence in Lebanon, Yemen, Syria, and Iraq. Eventually, the combination of recent events and longstanding tendencies of Iran’s strategic and military policies has allowed Iran to feature itself as a weapons supplier to one of the world’s military powers, namely Russia (Eslami and Vieira 2020, 2022).

In July 2022, at the White House, US National Security Adviser Jake Sullivan claimed that Iran was selling hundreds of drones to Russia and would train Russian forces to use and deploy these UCAVs in its “special operation” in Ukraine (Sullivan 2022). A day after, Nasser Kanani, the Spokesman of the Ministry of Foreign Affairs of the Islamic Republic of Iran, implicitly confirmed the authenticity of the sale of Iranian drones to Russia while emphasizing that: “the history of cooperation between the Islamic Republic of Iran and Russia in the field of modern technologies dates back to before the war in Ukraine” (Kanani 2022).

The arms embargo against Iran was lifted by the United Nations in October 2020, thus eliminating any obstacle to the selling and acquiring of weapons between Russia and Iran (Eslami 2021). In addition, Iran also sees itself as a military power and considers itself as an important player in the global arms trade market. All of these factors reinforce the importance of a deal struck with a major power such as Russia, which is hugely beneficial and crucial for Iran both in what concerns the increase of its international status and a potential boost in demand for its weapon systems in the international arms market. However, the particularity of Ukraine resides in the fact that most countries have sided with Ukraine and condemned Russia’s invasion, and they consider that any country

---

2 Iran’s UCAVs exercise in the Persian Gulf under the name of “heading toward Jerusalem” in 2019 is one of the most provocative actions during recent years. The designation Iranian officials gave to this military exercise conveys the idea that “confronting Israel” is one of the most important roles Iran gave to its UCAV program. In addition, Iran employed its military drones in the “Great Prophet” (Payambar Azam) military exercise to simulate attacks on Israel’s Dimona nuclear reactors in December 2021. The published videos and pictures from Iran’s 2021 drone tests also confirm the precision and destruction power of different types of Iranian military drones. Something that opens a new room of maneuver for UCAVs in Iran’s military doctrine and allows Iran and its regional allies and proxies to rely on them in war and military operations.

3 Before the war in Ukraine, there were talks between Iran and Russia about the development of cooperation in the field of designing and exporting drones to Russia, including in August 2016, when the aviation industry of the armed forces said that Russia wanted drones from Iran.
aligned with Russia is perceived as an accomplice. While the United States and European Union countries have been trying to subjugate any arms supply to Russia from abroad as much as possible, Iran’s weapon supply to Russia is in line with Russo-Persian’s strategic ties, which have recently been strengthened (Grajewski 2020).

While attributing special importance to emerging technologies such as drones in modern conflicts, and looking into the Ukraine-Russia war, the present contribution demonstrates that Russian military elites have been forced to attest to their ineptitude within the field of UCAVs, demonstrating an eagerness to shift that paradigm through the importing of Iranian-made surveillance, bomber, and suicide drones.

The Place of UCAVs in the Ukraine War

The war between Russia and Ukraine did not go as expected. The general perception was that Russia could quickly inflict a crushing defeat on Ukraine. Still, many factors conspired against such an outcome, preventing the war from going as the Russian leadership and President Vladimir Putin (along with many analysts) had predicted. The resistance of the Ukrainians, the support of the West to Ukraine, the reluctance to use air force in the part of Russia, and the disruption in the logistical network of the Russian military have been among the most significant factors for the slow progress of the Russians in Ukraine (Connelly 2022).

Meanwhile, the use of military drones by the Ukrainian army caused interruption in the advancement and the destruction of the Russian military forces, at least in some operations. The effectiveness of drones in the war in Ukraine is yet another stepping stone for the trend that has been taking shape in recent years related to the incremental use of drones in military operations, from Yemen to Lebanon, Ethiopia, Libya, and now Ukraine itself (Frantzman 2021).

It is notable that UCAVs used by Ukraine against Russia were mainly imported from other countries. The United States was among the first countries to supply UCAV to Kyiv, transferring hundreds of Switchblade tactical unmanned systems. The mentioned drones are classified as “loitering munition” (or suicide drone), with a range of 10 km and an endurance of 15 minutes, with the larger type possessing a flying range of over 40 km, for a period of more than 40 minutes. The United States also delivered a number of Puma drones for intelligence, surveillance and reconnaissance (ISR) purposes as well as Phoenix Ghost drones, another type of loitering munition (Yousif 2022).

While the United States has made hundreds of these systems available to Ukraine, the most publicized of Kyiv’s drone arsenal has been the Turkish TB2 Bayraktar. The TB2 Bayraktar is a small and lightweight drone with a 12-meter wingspan that can fly for about 30 hours. These drones can have a payload of laser missiles, thus becoming capable of sending a load and being refitted with a fresh set for the next mission. Through their use, the Ukrainian army has managed to destroy fuel tanks, several Russian surface-to-air missile systems, whilst also targeting and destroying Russian infantry and armored vehicles, including tanks and military convoys (Tingle 2022).

---

4While the relationship between Iran and the United States is still overshadowed due to the US withdrawal from Joint Comprehensive Plan of Action (JCPOA) and the assassination of General Qasem Soleimani, the relations between Iran and Russia are improving.
The main role of the UCAVs in the Ukraine war has been to slow down the advance of the Russian forces, while unexpectedly revealing the frailty of the Russian air forces. In fact, Russia’s weakness in providing security for its military convoys against air attacks has been astonishing and a heated topic of discussion among experts on Russia’s aerial strategy.

The success of Ukrainian UCAVs during the first months of the war has been widely acknowledged\(^5\) However, there has not been a comprehensive discussion on Russian UCAVs, because Russia has not relied on its drone capability in practical terms. Russian drones such as the *Eleron-3* and the *Orlan-10* – both tactical drones used for intelligence gathering, surveillance, target acquisition and reconnaissance – were destroyed by Ukrainian electronic warfare systems. Meanwhile, Russia has only a few advanced drones, such as its *Inokhodets* combat drone, and has used them sparingly with mediocre results. Russia’s indigenous *Zala KYB* drones, capable of carrying a 3-kilogram explosive payload and hitting targets at ranges of 40 kilometers – appear to have a high failure rate (Anonymous 2022). Russia also has other types of drones in use. The most important ones are LANCELT-3, commonly referred to as the “flying Kalashnikov” and the KUB-BLA drone, both of which are classified as suicide drones. Although Russia has, for several times, employed these drones (capable of reaching speeds up to 110 km/h speed, with ranges of around 80 km and three-kilogram warhead payloads), they are not regarded as advanced nor efficient type of weapon systems.

Russia can quickly replace models like the *Orlan-10* and *Eleron-3*, but it cannot do so with advanced attack platforms that have high-tech components and that take longer to build – a problem that will most likely increase as soon as Western sanctions limit Russia’s access to foreign-made components and technology.

The Russian military is now in desperate need of expendable combat drones, similar to the Turkish TB2 drones Ukraine currently deploys, that can go deep enough into enemy territory to disable Ukrainian systems. This is exactly the right opportunity for Iran to step up. In the following section, I provide more detailed information about Iran’s UCAV program and discuss the type of drones that Russia is most eager to buy and develop, in the near future.

**Iran’s UCAV Program: What Can Be Offered?**

Since the mid-1980s, Iran has adopted a defensive doctrine characterized by the development of ballistic missiles as means of deterrence and defense, mainly by implementing irregular forces through an asymmetric warfare concept. Assimilating the hard lessons from its eight-year-long war with Iraq during the 1980s (1980–1988), Iran has shaped the concept of asymmetric warfare to bolster its own strengths (Murray and Woods 2014). During the aforementioned conflict (in 1984), Iran’s leadership started a methodical investigation into its own missile and drone technology, as two overlapping and complementing projects. Over the years, the emergence of terrorist groups in the region as well as insecurity at its borders led to the reshape of Iran’s military doctrine. The

---

\(^5\)Russia is trying to counter the growing number of long-range precision artillery systems that Ukraine is receiving from its Western partners, such as HIMARS and M270s – which the Ukrainian military has used to destroy dozens of Russian ammunition depots and command centers in July 2022 alone.
“forward defense” doctrine implies that Iran should fight its enemies outside its borders to prevent insecurity in its territory (Eslami 2021). This explains the involvement of the IRGC forces in Syria, Iraq, Yemen, Lebanon, Afghanistan, Armenia, and other states of the region (Akbarzadeh, Gourlay, and Ehteshami 2022). More recently, Iran has supported its non-Middle Eastern allies such as Venezuela, Tajikistan, and Russia with military drones. Due to their capability in military, surveillance, and intelligence operations, UCAVs are the most important element in Iran’s so-called “forward defense” (Ostovar 2016).

Iran’s strategic environment is influenced by the realities of Central Asia, the South Caucasus, the Middle East, the situation in Afghanistan and Iraq, the political situation of some Islamic countries, Israel and, most importantly, the confrontation with the United States. To deal with any national insecurity while maintaining sufficient regional influence within its neighborhood, Iran has placed a crucial role in its UCAV program (Ajili and Rouhi 2019).

A closer look at Iran’s UCAV program allows us to conclude that Iran’s UCAV program is versatile and dynamic, capable of adjusting to an array of scenarios and objectives. Iran’s drones possess a number of capabilities and unique features that made them a key asset in Iran’s deterrence and defense structure (Salami 2019). These features include the precision and accuracy, the importance of their capability for crisis management operations, intelligence warfare, counter-accessibility challenges as well as their use in urban contexts, along with their potential to complement the Iranian ballistic missiles programme (mainly in what concerns identifying targets), thus making UCAVs are a vital component for Iran’s contemporary military doctrine.

Following the trend of military technology in the world, UCAVs revolutionized Iran’s military sector, giving an edge to a relatively outdated air force (Hajizadeh 2019). The development of several types of UCAVs by Iran’s different military organizations, including the Iranian Revolutionary Guard Corps (IRGC), the Army (Artesh), and the Ministry of Defense and Armed Force Logistics (MDAFL), provides the country with the most complex drone program in the world, making Iran a major player in the development and deployment of drones (Table 1). Moreover, Iranian drones are generally cheaper than other existing similar types. Their variety, affordability and proven efficiency in the previous deployments are the key factors that support Russia’s decision for purchasing Iranian drones. Not to mention that there is no other weapon supplier willing to provide Russia with military equipment due to the Western countries’ pressures.

---

6“Forward defense” is the Iranian narration of extended deterrence which includes the support of allies and anti-American actors.

7Apart from regular surveillance and intelligence operations that almost take place every day by the IRGC, Army, and even Iranian police troops, Iran has used its UCAVs for military means several times. On 24 August 2017, IRGC attacked ISIS’s headquarters in Syria. In the second attack, IRGC used UCAV to target the headquarters of the Kurdistan Democratic Party (PKK) led by Mustafa Moloudi in Iraq on 5 September 2018 (times of Israel). Nest attack of the Iranian Revolutionary Guards announced on Friday, 12 July 2019, that the Iraqi Army’s corps of rockets, artillery, and UCAVs bombed the positions of the Kurdish forces in Iraqi Kurdistan and killed “a large number” of them. This attack was an immediate retaliation against the PKK attack to the North West on 9 July and Killed 3 officers of IRGC. More recently, Iran employed a drone to attack a terrorist group in the southeast of Baluchestan that assassinated two IRGC officers in December 2021. Iran’s increasing use of military drones demonstrates its central role in Iran’s military doctrine and strategic culture. That is why the country has focused on the development of different types and models of UCAVs and nowadays has one of the most advanced UCAV programs around the globe.
Following Iran’s drone supply to Russia, more than 20 countries have shown interest in acquiring Iran-made drones (Safavi 2022). Although there is no detailed information on Iran’s drone production capacity, Tehran has made efforts to expand its drone arsenal production levels and their respective exportation in the past few years. The economy of Iran has, for many decades, dealt with crippling sanctions imposed by the United States (especially the Trump administration and its ever more intrusive and wide range sanctions, both affecting institutions, organizations and singular individuals), the post-Covid economic crisis and the global inflation instigated by the war in Ukraine. This is translated into an economy that is highly resilient to adverse conditions and capable of thriving under unfavorable conditions. This is demonstrated by Iran’s advancement of military hardware to foreign markets, specifically drones. Nonetheless, despite this tendency, the Iranian regime has not shown much interest in selling its most advanced drones, fearing that its adversaries may reverse-engineer their technology and, therefore, Iran would lose their current edge in the UAV-field. To this end, Gaza, Fotros, Kaman and Karrar have never been advertised in the global market.

Table 1. Most relevant Iranian UCAVs.

| Name           | Range | Endurance | Speed     | Armament          | Type                  | Organization |
|----------------|-------|-----------|-----------|-------------------|-----------------------|--------------|
| Gaza           | 3500 km | 35 hours   | 200 km/h  | 500 kg            | Combat/ Surveillance  | IRGC         |
| Kaman 22       | 1750 km | 24 hours   | 150 km/h  | 300 kg            | Combat/ Electronic war | Artesh       |
| Kaman 12       | 1000 km | 10 hours   | 200 km/h  | 100 kg            | Combat/ Electronic war | MDAFL        |
| Sayeh          | 100 km  | 20 hours   | NA        | NA                | Surveillance/ Intelligence | IRGC        |
| Arash 2        | 2000 km | NA         | NA        | NA                | Suicide/ Electronic war | Artesh       |
| Pelikan        | 100 km  | 5 hours    | NA        | NA                | Surveillance/ Intelligence | Artesh       |
| Kian           | 2750 km | 12 hours   | 480 km/h  | 30 kg             | Combat/ Surveillance  | Artesh       |
| Kalaagh        | 90 km   | 2 hours    | 60 km/h   | 0.5 kg            | Surveillance          | IRGC         |
| Shahed 129     | 1711 km | 24 hours   | 200 km/h  | 400 kg            | Combat/ Surveillance  | IRGC         |
| Shahed 191     | 1500 km | 24 hours   | NA        | 200 kg            | Combat/ Surveillance  | IRGC         |
| Shahed 136     | 2000 km | NA         | 185 km/h  | 45 kg             | Suicide/ Electronic war | IRGC        |
| Shahed 131     | 900 km  | NA         | 185 km/h  | 35 kg             | Suicide/ Electronic war | IRGC        |
| Karrar         | 1000 km | NA         | 900 km/h  | 250 kg            | Air combat/ Suicide   | MDAFL        |
| Fotros         | 2000 km | 30 hours   | 250 km/h  | NA                | Combat/ Surveillance  | MDAFL        |
| Sadegh         | 200 km  | 6 hours    | 200 km/h  | 30 kg             | Combat/ Surveillance  | MDAFL        |
| Mohajer 1–2    | 150 km  | 2 hours    | 200 km/h  | 30 kg             | Combat/ Surveillance  | IRGC-Artesh  |
| Mohajer 5–6    | 2000 km | 12 hours   | 200 km/h  | 40 kg             | Combat/ Surveillance  | IRGC-Artesh  |
| Mohajer 3–4    | 200 km  | 6 hours    | 200 km/h  | NA                | Mapping/ Intelligence | Police       |
| Simorgh        | 1500 km | 24 hours   | NA        | 300 kg            | Combat/ Surveillance  | Artesh       |
| Saeghe         | 50 km   | 1 hour     | 250 km/h  | 30 kg             | Combat/ Electronic war | IRGC        |
| Meraj 521      | 5 km    | ¼ hour     | 180 km/h  | 3 kg              | Suicide/ Electronic war | IRGC        |
| RQ 170         | 4400 km | 10 hours   | NA        | 300 kg            | Combat/ Stealth       | IRGC         |
| Hamaseh        | 200 km  | 11 hours   | 190 km/h  | 200 kg            | Combat/ Surveillance  | MDAFL        |
| Sarir          | NA      | 12 hours   | NA        | 23 kg             | Air combat/ Stealth   | IRGC         |
| Abab           | 120 km  | 3 hours    | 370 km/h  | 40 kg             | Combat/ Electronic war | Artesh       |
| Yosir          | 200 km  | 10 hours   | 120 km/h  | NA                | Surveillance/ Intelligence | IRGC        |
| Hazem          | 100 km  | 1 hour     | 140 km/h  | NA                | Combat/ Electronic war | IRGC         |
| Mobin          | 150 km  | 1 hour     | NA        | NA                | Suicide/ Electronic war | IRGC         |
| Mohajem        | 500 km  | 6 hours    | 200 km/h  | 80 kg             | Combat/ Surveillance  | Artesh       |
| Yaser          | 500 km  | 10 hours   | 120 km/h  | NA                | Surveillance/ Intelligence | Artesh   |
| Tufan          | 400 km  | 2 hours    | 250 km/h  | NA                | Suicide/ Electronic war | IRGC-Artesh  |
| Farshad        | 20 km   | 1 hour     | NA        | NA                | Light UCAV/Combat     | Artesh       |
| Sine Sorkh     | 100 km  | 2–3 hours  | 170 km/h  | 2 kg              | Light UCAV/ Stealth   | MDAFL        |
| Ra’ad 85       | 100 km  | NA         | 450 km/h  | 10 kg             | Suicide/ Electronic war | Artesh       |
| Shahin         | 150 km  | NA         | 200 km/h  | NA                | Surveillance/ Intelligence | Artesh       |

Source: Author’s compilation
Iran’s UCAV Supply to Russia: Tactical and Strategic Impacts

During the past decade, Iran has exported its drones to countries such as Ethiopia and Venezuela. It has also provided a large number of these drones to its proxies across the Middle East – from Hezbollah in Lebanon to the Houthis in Yemen, who have used them against targets in Israel, Saudi Arabia, and the United Arab Emirates, respectively. Iran has also established a drone production factory in Tajikistan, strengthening the country’s position as a major regional (drone) power in the region. Therefore, Tehran can respond to Moscow’s needs by providing combat drones with proven field capabilities.

Between June and July of 2022, a Russian delegation visited the Kashan Air Base in the South of Tehran, with the goal of assessing some of Iran’s combat drones, specifically the Shahed-129, Shahed-191 and Mohajer-6. The former two, the Shahed-191 and 129 drones, can carry up to two 400 kg guided bombs, based on the stealth technology of the US RQ-170 drone, one of which was downed in Iran in 2011. The latter, Mohajer-6 is a long-range (2000 km) UCAV that is capable of carrying 40 kg armaments. The main role of Mohajer-6 is to destroy air-defense systems and pave the way for Shahed series to go further into enemy territory. Russia’s interest in acquiring such combat drones resides in its potential to allow Russia to gain the upper hand in its war against Ukraine and simultaneously reduce its rate of losses by conducting accurate and long-range attacks to the depth of Ukraine. However, the Shahed series is also capable of mapping and spying. Gathering accurate information about the position of Ukrainian troops, controlling the logistics of the Ukrainian army, and above all, guiding Russia’s long-range arsenal operations are the main capabilities of both the Shahed-191 and Shahed-129 (Nadimi 2022).

Russia’s most relevant weapon purchase from Iran was the suicide (kamikaze) drones, a system that has been used extensively by Russian forces in the ongoing conflict. Iran has delivered several types of suicide drones, including Shahed-136 and Shahed-131, to Russia. The Shahed-136 is a 3.5-meter-long drone that shares many attributes of a cruise missile. Its average range is around 2000 km, and it can conduct attacks against targets at a distance of up to 2500 km. The other model, the Shahed-131, is the smaller and cheaper version of Shahed-136, which is applied to short-range attacks, especially against air defense systems, military equipment warehouses, fuel reserves, military bases, moving armament convoys, and warships.

Russia conducted more than 100 drone operations in Odesa, Mykolaiv, and Dnipropetrovsk, using Iran-made suicide drones (Shahed-136 and 131) and most of them were successful. Nevertheless, despite the high hit-rate enacted by these systems, there are several accounts (published images and videos) demonstrating the destruction of these drones by Ukraine’s air defense systems (which are being provided by Western forces). Notwithstanding this fact, Ukraine’s air defense capabilities are still evolving, as proven by the successful hits on October 5th and 9th by Russia on the city of Kiev. Launched from Crimea and Kherson (Ukrainian parts occupied by Russia), these drones flew over 500 km into Ukraine’s territory, passing over several air defense layers and reaching their targets. This could be viewed as a confirmation to the stealth quality of

---

8The Biden administration released satellite images showing that Russian officials visited Kashan Airport on June 8 and July 5 to inspect Iranian drones.
9In September 2022 Ukrainian forces captured a Mohajer-6 which had fallen to the sea due to technical problems.
these drones and as proof that destroying them is a strenuous task for the current air defense systems, especially at night and where these drones are employed as a part of a “hybrid attack” along with ballistic and cruise missiles (Appendix 1). The air defenses may be completely overwhelmed by the array of targets that are in the field of combat. Other contributing factors to Russia’s success rate of attacks include the number of existing air defense systems, the type and model of air defense systems, the location of targeted bases, the number of launched drones, and most importantly, the proficiency of operators.

Efficiency, affordability and, most importantly, the accessibility of Iranian drones has prompted Russia to increase their purchase from Iran. On 27 September 2022, the same strategic airlifter (Ilyushin IL-76) that transported Iranian drones to Russia in July 2022, moved back to Iran to deliver another shipment of drones to Russia. According to President Zelenskyy, Russia had ordered 2400 Kamikaze drones from Iran (Zelenskyy 2022), whereas Ukraine’s Minister of Defense, in a news program broadcasted on October 15th stated that “Russia still has 300 Shahed-136 ready to launch” (Reznikov 2022).

Except for the Shahed and Mohajer series, Russia’s other purchase options include the allegedly Ababil drones, used for offensive purposes and artillery surveillance. In offensive operations, the Ababil-3 can launch two Qaim-guided bombs (40 kg) with a range of 8 km or Almas-guided rockets. Ababil-3 has a maximum range of 250 km and up to 8 hours of continuous flight capability (Vahedi and Birghadar 2022). Finally, the Arash-2, a kamikaze drone that is significantly faster, more accurate and more destructive than Shahed-136 and it carries a bigger warhead. The importance of this drone resides in the fact that Russia has used approximately two-thirds of its ballistic and cruise missiles and has allegedly ordered missiles from Iran, including Fateh-110 with a range of 300 km and Zolfaghar with a range of 700 km (Warrick, Nakashima, and Harris 2022). Employing suicide drones would allow Russia to curtail the use of its depleted ballistic missile reserves, possibly necessary in future operations.

Apart from the tactical utilities which can influence the outcome of the war in Ukraine, Iran’s weapon supply to Russia has several strategic impacts on regional and international security, with the far-reaching capability of shifting the international geopolitical balance.

Military cooperation is one of the highest levels of cooperation possible between two governments, nations, countries, or between two political units. Currently, such cooperation is being established between Russia and Iran. The first achievement of Iran’s weapon supply to Russia is that it is supplying a major actor the new international order. It is notable that Iran has an outdated and antiquated air force and that it has attempted, several times, to buy SU-35 Combat fighters from Russia, with every attempt ending in failure, under different circumstances (Vahedi 2022). There are discussions within Iran’s political and military circles that Russia has finally approved the purchase of SU-35 fighters to Iran. This establishes Iran’s place among the top 10 military powers across the globe, changing the geopolitics of the region and, by extension, the world.

Iran and Russia have a common goal of opposing the US unipolarity (Ward 2005), something that includes confronting the US’s so-called “interference” in the domestic affairs

---

10 This flight was registered with RA-78816 and left Iran one day after its arrival.
11 According to Iranian officials, Arash-2 “has been designed to destroy Israel” (Fazeli 2022).
of other countries (Tabatabai and Samuel 2017). Tehran has repeatedly announced that NATO’s expansion in Eastern Europe is the cause of the war in Ukraine. At the same time, Iran and Russia have a lot of conflicting priorities, a factor that makes their rapprochement over the war on Ukraine especially important. Iran’s contribution to the Ukraine-Russia war has influenced other Middle Eastern actors and brought them to the forefront of the war. Israel (Russia’s traditional ally in the Middle East and Iran’s number one enemy), has extended ambitious support towards Ukraine, announcing the delivery of military equipment to Kyiv immediately after Iran announced the delivery of military equipment (drones) to Russia. However, Israel hesitated to provide air defense systems to Ukraine (Degtyarev 2022). Saudi Arabia also provided 400 million dollars to Ukraine (Reuters 2022) in order to have a place among the countries that are supporting Ukraine’s war effort and, specifically, to oppose the influence of Iran. However, both Iran and Saudi Arabia cooperated with Russia in OPEC plus and decreased the global oil production in September 2022. Something that is in line with Russia’s plan is to use energy as security leverage to put pressure on the United States and European countries.

Iran’s strengthening role as a military power and its emergence as one of the international weapon suppliers, provides an important source of income and political influence for an isolated country, such as Iran, currently struggling with financial restrictions imposed by the United States and the aftermath of the COVID-19 pandemic. The generated income will allow for further investment in the development and production of new advanced weapons, paving the way for Iran to compete with other regional arms suppliers such as Turkey and Israel, in the international arms market.

Finally, although US officials and Western leaders claim that the campaign of “maximum pressure” and the policy of isolating Iran has been successful to control Iran during the past years, evidence demonstrates that the results are, at best, mixed: Iran has come out of the 2018 crisis stronger after the US withdrew from JCPOA and imposed a new round of sanctions on Iran. It could be argued that the “maximum pressure” only pushed Iran towards cooperation and coalition with other great powers such as Russia and China. Through such coalitions, Iran is strengthening its ability to survive within the international system. It is worth noting that White House officials had warned that the Iranian establishment should choose one option between arms transfer to Russia and revival of the nuclear deal with the western countries, namely with the United States. It can be argued that, Iran’s weapon supply to Russia has affected the outcome of the nuclear negotiations to reinstate the JCPOA, which culminated in the suspension of said talks, following Iran’s military cooperation with Russia in August 2022.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notes on Contributor

Mohammad Eslami is a research fellow of the Arms Control Negotiation Academy (ACONA) at the Davis Center for Russian and Eurasian Studies at Harvard University. He is also a researcher at the Research Centre for Political Science (CICP) at the University of Minho in Portugal, where he
investigates Iran’s Ballistic Missile and Unmanned Combat Aerial Vehicle Programs. His research interests primarily relate to International Security, Arms control, Nuclear Proliferation, and Middle East Studies. He is also the leading editor of the project “The Arms Race in the Middle East”, which addresses the proliferation of conventional and unconventional weapons in the Middle East. He has published in International Affairs, Third World Quarterly, and Spanish Journal of Political Science and contributed with chapters to several edited volumes published by Springer and Palgrave Macmillan, among others.

ORCID
Mohammad Eslami (http://orcid.org/0000-0003-0283-1839

References
Ajili, H., and M. Rouhi. 2019. “Iran’s Military Strategy.” Survival 61 (6): 139–152. doi:10.1080/00396338.2019.1688575.
Akbarzadeh, S., W. Gourlay, and A. Ehteshami. 2022. “Iranian Proxies in the Syrian Conflict: Tehran’s ‘forward-defence’in Action.” Journal of Strategic Studies 1–24. doi:10.1080/01402390.2021.2023014.
Anonymous. 2022. “Which Iranian Drones are Useful for Russia?” Bahar News Agency. https://www.baharnews.ir/news/348331/
Can, M., and A. Vieira. 2022. “The Chinese Military–Civil Fusion Strategy: A State Action Theory Perspective.” The International Spectator 1–18.
Connelly, E. 2022. “Ukraine Repels Russian Attacks in East; Counterattack Continues in South.” New York Post. https://nypost.com/2022/09/03/ukraine-repels-russian-attacks-in-east-counterattack-continues-in-south/
Degtyarev, N. 2022. Interview about the Role of Middle Eastern States in the Ukraine War. Conducted in 21st October 2022. Moscow-Russia.
Dijkstra, H., M. D. Cavelty, N. Jenne, and Y. Reykers. 2022. “War in Ukraine.” Contemporary Security Policy 43 (3): 464–465. doi:10.1080/13523260.2022.2099085.
Eslami, M. 2021. “Iran’s Ballistic Missile Program and Its Foreign and Security Policy Towards the United States under the Trump Administration.” Revista española de ciencia política 55: 37–62. doi:10.21308/recp.55.02.
Eslami, M., and A. V. G. Vieira. 2020. “Iran’s Strategic Culture: The ‘Revolutionary’ and ‘Moderation’ Narratives on the Ballistic Missile Programme.” Third World Quarterly 42 (2): 312–328. doi:10.1080/01436597.2020.1813562.
Eslami, M., and A. V. G. Vieira. 2022. “Shi’a Principles and Iran’s Strategic Culture Towards Ballistic Missile Deployment.” International Affairs 98 (2): 675–688. doi:10.1093/ia/iib234.
Fazeli, Y. 2022.” Iran Has Designed Arash-2, Specifically for Targeting the Israeli Cities of Tel Aviv and Haifa.” Al-Arabia News Agency. https://english.alarabiya.net/News/middle-east/2022/09/12-Iran-says-it-has-developed-Arash-2-drone-designed-to-hit-Israel-s-Tel-Aviv-Haifa
Frantzman, S. J. 2021. The Drone Wars: Pioneers, Killing Machines, Artificial Intelligence, and the Battle for the Future. New York, The United States: Bombardier Books.
Grajewski, N. 2020. “Russia and Iran in Greater Eurasia.” Insights: Iran’s Bilateral Relations in the New Eurasian Context 27–39.
Hajizadeh, A. 2019. “Because Our UCAV Technology Is More Advanced than Enemies.” Official website of national defense and strategic studies. http://www.sndu.ac.ir/
Kai, W., and S. Wanyuan. 2022. Ukraine War: What Support Is China Offering Russia? The BBC. https://www.bbc.com/news/60571253
Kanani, N. 2022. “The History of Iran’s Military Cooperation Dates Back to before the War in Ukraine.” Fars News. https://www.farsnews.ir/news/14010421000668/
Murray, W., and K. M. Woods. 2014. *The Iran-Iraq War: A Military and Strategic History*. Cambridge, The United Kingdom: Cambridge University Press.

Nadimi, F. 2022. *Iranian Drones to Russia: Capabilities and Limitations*, 1–7. Washington, The United States: Washington Institute for Near East Policy.

Ostovar, A. 2016. “Sectarian Dilemmas in Iranian Foreign Policy: When Strategy and Identity Politics Collide.” *Carnegie* 9–41.

Papageorgiou, M. M., and A. Vieira. 2021. “Mapping the Literature on China and Russia in IR and Area Studies: A Bibliometric Analysis (1990–2019).” *Journal of Chinese Political Science* 1–27.

Reuters. 2022. “Saudi Arabia Announces $400 Millions Humanitarian Aid to Ukraine.” *Reuters*. https://www.reuters.com/world/saudi-arabia-announces-400-mln-humanitarian-aid-ukraine-2022-10-14/

Reznikov, O. 2022. “Russia Has 300 Iranian Drones Left, Wants To Buy Several Thousand More.” *Ukraine News*. https://ukranews.com/en/amp/news/888164-russia-has-300-iranian-drones-left-wants-to-buy-several-thousand-more-reznikov

Safavi, Y. 2022. “Twenty-two Countries Asked to Buy Iranian Drones.” *Tabnak news*. https://www.tabnak.ir/fa/news/1145783

Salami, H. 2019. “We Have Increased the Power of Producing Unknown Dangers for Our Enemies.” *Official website of national defense and strategic studies*. http://www.sndu.ac.ir

Sullivan, J. 2022. “Russia Is Seeking Surveillance Drones from Iran, a Top Biden Aide Says.” *New York Times*. https://www.nytimes.com/2022/07/11/world/europe/iran-russia-drones.html

Tabatabai, A. M., and A. T. Samuel. 2017. “What the Iran-Iraq War Tells Us about the Future of the Iran Nuclear Deal.” *International Security* 42 (1): 152–185. doi:10.1162/ISEC_a_00286.

Tingle, S. 2022. “How Drones are Being Used in the Russian-Ukraine War.” *Tech Report*. https://techreport.com/news/3476962/drones-russian-ukraine-war/

Vahedi, M. 2022. “The Purchase of the Russian SU-35 Is at the Top of Our Agenda.” *Irna News*. https://www.irna.ir/news/84596772/

Vahedi, M., and F. Birghadar. 2022. “About Iran’s Drone Transfer to Russia.” *Iranian Diplomacy*. http://irdiplomacy.ir/fa/news/2013245/

Ward, S. R. 2005. “The Continuing Evolution of Iran’s Military Doctrine.” *The Middle East Journal* 59 (4): 559–576. doi:10.3751/59.4.12.

Warrick, J., E. Nakashima, and S. Harris. 2022. “Iran Plans to Send Missiles, and Drones to Russia for the Ukraine War, Officials Say.” *The Washington Post*. https://www.washingtonpost.com/national-security/2022/10/16/iran-russia-missiles-ukraine/

Yousif, E. 2022. “Drone Warfare in Ukraine: Understanding the Landscape.” *Stimson Center*. https://www.stimson.org/2022/drone-warfare-in-ukraine-understanding-the-landscape/

Zelenkyy, V. 2022. “Russia Orders 2,400 Shahed Kamikaze Drones.” *Yahoo News*. https://news.yahoo.com/russia-orders-2-400-shahed-140457098.html?fr=sycsrp_catchall
Appendix 1  *Shahid-136 (Geran-2) and Ukraine War in Autumn 2022*

| Date        | Attack time | Attack type                                      | Number of drones | Alleged Success and Failure Rate |
|-------------|-------------|--------------------------------------------------|-------------------|----------------------------------|
| 13th Sept.  | Day         | Multiple drone attack                            | 12 Drones         | 66% (8) – 33% (4)                |
| 27th Sep.   | Day         | Stand-alone attack by drones                    | 18 Drones         | 61% (11) – 39% (7)              |
| 9th Oct.    | Night       | Multiple drone attack                            | 7 Drones          | 100% (7) – 0% (0)               |
| 10th Oct.   | Night       | Mass drone attack                                | 49 Drones         | 84% (41) – 16% (8)              |
| 13th Oct.   | Night       | Hybrid attack by drones and missiles             | 20 Drones         | 90% (18) – 10% (2)              |
| 15th Oct.   | Night       | Multiple drone attack                            | 9 Drones          | 78% (7) – 22% (2)               |
| 17th Oct.   | Night       | Multiple drone attack                            | 11 Drones         | 81% (9)– 19% (2)               |
| 18th Oct.   | Night       | Stand-alone attack by drones                    | 5 Drones          | 100% (5) – 0% (0)               |
| 20th Oct    | Day         | Multiple drone attack                            | 13 Drones         | 61% (8) – 39% (5)               |
| 21st Oct    | Night       | Multiple drone attack                            | 18 Drones         | 44% (8)– 56% (10)              |

Source: Authors compilation from Russian, Ukrainian, American, British, Israeli and Iranian news agencies (mainly Sputnik, Ukrainform, BBC, Independent, Time Magazine, Washington Post, Keyhan and Tasnim)