5S Ribosomal DNA of Genus Solanum: Molecular Organization, Evolution, and Taxonomy

Yurij O. Tynkevich1†, Antonina Y. Shelyfist1†, Liudmyla V. Kozub1†, Vera Hemleben2†, Irina I. Panchuk1,2† and Roman A. Volkov1*†

1 Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine, 2 Center of Plant Molecular Biology (ZMBP), Eberhard Karls University of Tübingen, Tübingen, Germany

The Solanum genus, being one of the largest among high plants, is distributed worldwide and comprises about 1,200 species. The genus includes numerous agronomically important species such as Solanum tuberosum (potato), Solanum lycopersicum (tomato), and Solanum melongena (eggplant) as well as medical and ornamental plants. The huge Solanum genus is a convenient model for research in the field of molecular evolution and structural and functional genomics. Clear knowledge of evolutionary relationships in the Solanum genus is required to increase the effectiveness of breeding programs, but the phylogeny of the genus is still not fully understood. The rapidly evolving intergenic spacer region (IGS) of 5S rDNA has been successfully used for inferring interspecific relationships in several groups of angiosperms. Here, combining cloning and sequencing with bioinformatic analysis of genomic data available in the SRA database, we evaluate the molecular organization and diversity of IGS for 184 accessions, representing 137 species of the Solanum genus. It was found that the main mechanisms of IGS molecular evolution was step-wise accumulation of single base substitution or short indels, and that long indels and multiple base substitutions, which arose repeatedly during evolution, were mostly not conserved and eliminated. The reason for this negative selection seems to be association between indels/multiple base substitutions and pseudogenization of 5S rDNA. Comparison of IGS sequences allowed us to reconstruct the phylogeny of the Solanum genus. The obtained dendrograms are mainly congruent with published data: same major and minor clades were found. However, relationships between these clades and position of some species (S. cochoae, S. clivorum, S. macrocarpon, and S. spirale) were different from those of previous results and require further clarification. Our results show that 5S IGS represents a convenient molecular marker for phylogenetic studies on the Solanum genus. In particular, the simultaneous presence of several structural variants of rDNA in the genome enables the detection of reticular evolution, especially in the largest and economically most important sect. Petota. The origin of several polyploid species should be reconsidered.

Keywords: 5S rDNA, genomics, molecular evolution, hybridization, polyploidy, taxonomy, Solanum
INTRODUCTION

Regions coding for 5S rRNA (rDNA) are present in genomes of all cellular organisms. In eukaryotes, 5S rDNA belongs to the class of moderately repeated sequences and is represented by hundreds or thousands of copies of tandemly arranged repeated units (repeats). 5S rDNA clusters are mostly located in one or two chromosomes, although multiple loci are also found (Volkov et al., 2004; Hasterok et al., 2006; Garcia et al., 2012; Bustos et al., 2020; Vozárová et al., 2021). In contrast to majority of repeated sequences whose functions largely remain uncertain, the activity of 5S rDNA is vital for cells, providing rRNA indispensable for assembly of functional ribosomes. The copy number of rDNA repeats is higher than what is required for rRNA synthesis, and redundant copies of rDNA are transcriptionally silenced (Volkov et al., 2004; Tucker et al., 2010; Layat et al., 2012; Matyasek et al., 2016).

Each 5S rDNA repeat consists of an evolutionarily conserved region encoding 5S rRNA (coding sequence, CDS) and a rapidly evolving intergenic spacer (IGS) (Volkov et al., 2001; Ishchenko et al., 2018; Simon et al., 2018; Qin et al., 2019). The high evolutionary stability of the CDS is the result of purifying selection to maintain the function of 5S rRNA as a component of a large ribosome subunit (Vizoso et al., 2011; Mahelka et al., 2013).

Transcription of 5S rDNA is provided by RNA polymerase III (Pol III) and corresponding transcription factors (TFs). The Pol III promoter consists of internal and external elements. The internal elements of the promoter, A-Box, IE, and C-Box, are located in the CDS and represent targets for TFs, which are necessary for the recruitment of Pol III to the transcription initiation complex (Douet and Tourmente, 2007; Layat et al., 2012). Respectively, mutations in internal elements of the promoter should not only disturb the structure of 5S RNA and ribosome but also affect binding of TFs to the promoter and, thus, the expression of 5S rDNA.

In contrast to the CDS, the main part of the IGS is not transcribed and probably does not have any function. Accordingly, it is believed that any mutation in the IGS is selectively neutral; therefore, this region evolves with a high rate. However, it was found that the IGS of Arabidopsis thaliana contains short-sequence motifs involved in initiation (external elements of the promoter) and termination (terminator) of 5S rDNA transcription (Douet and Tourmente, 2007; de Souza et al., 2020). Thus, one would expect that these regions are to be relatively conserved, as has been demonstrated in several taxonomic groups (Falistocco et al., 2007; Tynkevich and Volkov, 2014; Tynkevich et al., 2015; Mlinarec et al., 2016; Ishchenko et al., 2018; Alexandrov et al., 2021). However, the existing knowledge of the organization of external promoter elements and their molecular evolution is still incomplete.

In many diploid species, numerous copies of rDNA repeats in the same genome tend to be nearly identical because of sequence homogenization (Volkov et al., 1999b, 2001, 2003), i.e., individual copies of repeated elements do not evolve independently but in a concerted manner (Arnheim et al., 1980; Coen et al., 1982). To explain the high intragenomic similarity of 5S rDNA repeats, the “concerted evolution” and “birth and death” hypotheses were proposed. The mechanisms and intensity of homogenization may differ in different taxa and for different groups of repeated sequences, e.g., for 5S and 35S rDNA (Pinhal et al., 2011; Vizoso et al., 2011; Song et al., 2012; Mahelka et al., 2013; Galián et al., 2014; Barman et al., 2016; Volkov et al., 2007, 2017; Chen et al., 2021).

Additive inheritance of both parent variants of 5S and 35S rDNA is usually observed in the first generation of interspecific hybrids/allopolyploids. However, in ancient allopolyploids, 35S rDNA can be the subject of interlocus sequence conversion (Volkov et al., 1999a,b, 2007; Vizoso et al., 2011), while different variants of 5S rDNA can coexist in a plant genome for a long time without being homogenized (Fulnecek et al., 2002; Song et al., 2012; Mahelka et al., 2013; Mlinarec et al., 2016; Volkov et al., 2017; Ishchenko et al., 2018). Especially, a significant sequence divergence was found for spatially distant 5S rDNA variants that are located in different loci of the same chromosome set (Cronn et al., 1996; Vozárová et al., 2021) and for different parent loci in genomes of hybrid origin (Fulnecek et al., 2002; Matyasek et al., 2002), while repeats from the same locus appeared to be highly homogenized. Accordingly, 5S rDNA became an attractive focus for investigation of molecular evolution of repeated sequences, identification of hybrids, and phylogenetic studies on angiosperms (Blöch et al., 2009; Baum et al., 2012; Simeone et al., 2018; Tynkevich and Volkov, 2019; Ishchenko et al., 2020, 2021; Cardoni et al., 2021; Vozárová et al., 2021). However, 5S rDNA is still poorly characterized in many important plant groups such as the Solanum L. genus.

The Solanum (nightshade) genus is an attractive model for comparative genomics and investigation of molecular evolution of repeated sequences. With around 1,200 species, it belongs to the so-called “giant genera” and is the fifth largest genus of flowering plants (Frodin, 2004; Echeverría-Londoño et al., 2020). Solanum species are distributed worldwide from tropical to temperate areas and grow under diverse ecological conditions. Most Solanum species inhabit the New World, although secondary centers of diversity have been found in Africa, Asia, and Australia (D’Arcy, 1991). Overall, the Solanum genus is an example of unusual hyperdiversity in life forms, morphological features, and ecological preferences, representing a unique system for studying the diversification of plants (Knapp et al., 2004; Echeverría-Londoño et al., 2020). The genus includes important crops such as S. tuberosum L. (potato), S. lycopersicum L. (tomato), and S. melongena L. (brinjal eggplant, aubergine), about 20 cultivated species of local significance like S. aethiopicum L. (Ethiopian eggplant), S. betaceum Cav. (tamarillo), S. muricatum Aiton (pepino), and S. quitoense Lam. (Iulo), as well as several medicinal and ornamental plants (S. marginatum L.f., S. aviculare L.f., S. pseudocapsicum L., S. aethiopicum L., S. melongena L. (brinjal eggplant, aubergine), about 20 cultivated species of local significance like S. aethiopicum L. (Ethiopian eggplant), S. betaceum Cav. (tamarillo), S. muricatum Aiton (pepino), and S. quitoense Lam. (Iulo), as well as several medicinal and ornamental plants (S. marginatum L.f., S. aviculare L.f., S. pseudocapsicum L., S. aethiopicum L., S. melongena L., S. melongena L.).

In the Solanaceae family, the Solanum genus belongs to the strongly supported large “x = 12” clade (Olmeat et al., 2008). The most common chromosome number in Solanum is x = 12, which occurs in 97% of species examined, such as diploids (77%), tetraploids (14%), hexaploids (4%), triploids (2%), and...
octoploids (0.2%). Application of in situ hybridization showed that 55 out of 64 (85.9%) diploid species possess only one 5S locus per chromosome set (Chiarini et al., 2018). Up to now, the molecular organization and evolution of the 5S rDNA in the genus *Solanum* have only been analyzed in about 35 species and breeding lines (Volkov et al., 2001; Davidjuk et al., 2010; Sun et al., 2014). In this study, combining cloning and sequencing with analysis of available genomic data in the Sequence Read Archive (SRA) public database, we evaluate the molecular organization, diversity, and evolution of the IGS for 184 plant accessions, representing 137 species across the *Solanum* genus. Especially, our results shed a new light on the phylogeny of the genus and reticulate evolution of the largest and economically most important sect. *Petota*.

MATERIALS AND METHODS

Plant Material and DNA Extraction

A plant material of the *Solanum* species was obtained from several collections (see Tables 1, 2). A plant material of out-group species, *Lycianthes lycioides* (L.) Hassl. and *Physalis peruviana* L. (acc. no. NK-03), was obtained from Orto Botanico di Padova (Italy) and National Botanical Garden of National Academy of Sciences of Ukraine (Kyiv, Ukraine), respectively.

Total genomic DNA was isolated from herbarium specimens according to the CTAB method of DNA extraction (Porebski et al., 1997). In addition, DNA was treated with Proteinase K (Sigma-Aldrich, United States).

Amplification, Cloning, and Sequencing of 5S rDNA Repeats

Repeated units of 5S rDNA were amplified using the primers Pr5S-L and Pr5S-R, complementary to the 5S rRNA CDS. These primers provide amplification of complete 5S IGS and flanking regions of the CDS (Volkov et al., 2001). PCR amplification was performed as described previously (Tynkevich and Volkov, 2019). PCR products were ligated into plasmid vector pJET 1.2/blunt using CloneJET PCR Cloning Kit (Thermo Fisher Scientific, United States). Screening of recombinant clones and size selection of inserts were performed by colony PCR with pJET 1.2 forward and reverse primers. Two to eight clones per plant accession were Sanger-sequenced by LGC Genomics (Germany). Primary processing of nucleotide sequences and calculation of sequence similarity levels were performed using the Chromas software and the DNASTAR software package. The obtained sequences were deposited in the GenBank database under the accession numbers listed in Table 3.

Assembly of 5S rDNA Repeats From Illumina Short Reads

De novo assembly of 5S rDNA repeats was performed using libraries of pre-filtered paired or single Illumina reads from raw data of *Solanum* species genomes available in SRA (Tables 3, 4). Read filtering was carried out using the built-in tool on the sequence download page: https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=search_seq_name. To filter reads containing 5S rDNA fragments, 20-bp long fragments of CDS were used for matching. *De novo* assembly was conducted using SeqMan NGen 14 (DNASTAR Lasergene suite). Libraries of filtered reads were automatically trimmed for quality, and the following assembly parameters were used: mer size 31, minimum match percentage 100%, and coverage threshold 100 reads. In the obtained contigs with highest coverage from 2 to 12, 5S rDNA repeats that contain one full IGS flanked by two fragments of CDS were identified and collected.

Prediction of 5S rDNA Secondary Structure

Hypothetical secondary structures of potential 5S rRNA transcripts were predicted using the Fold online tool in the RNAstructure server (Reuter and Mathews, 2010). 1 Lowest free energy structures were calculated using the following default parameters: temperature (in K) 310.15; maximum loop size 30; minimum helix length 3.

Median-Joining Network and Phylogenetic Analysis

Relationships among IGS sequences of the *Solanum* species were analyzed applying the median-joining network approach implemented in SplitsTree 5 (Huson and Bryant, 2006). Alignments of the IGS sequences were performed in the MAFFT server using the G-INS-I method, which is most suitable for sequences with global homology (Katoh et al., 2019).

For alignment of the IGS sequences of *Solanum* species belonging to different taxonomic groups in the genus, we applied the E-INS-I method implemented in the MAFFT server (Katoh et al., 2019). The generated alignment was checked and adjusted manually with the UGENE software.

The best-fit nucleotide substitution model was estimated with the lowest value of Bayesian Information Criterion (BIC) using the Find Best-Fit Substitution Model tool in Mega X (Kumar et al., 2018). A maximum likelihood (ML) phylogenetic tree was generated with the PhyML plugin for Geneious Prime 2021.0.3. 2 The IGS sequences of *L. lycioides* and *Ph. peruviana* produced in this study (acc. nos. OM100793-4 and OM744711-3) as well as those of four *Capsicum* species available in GenBank (C. *baccatum* L.: AF217951, *C. frutescens* L.: AF217952, *C. chinense* Jacq.: AF217953, and *C. pubescens* Ruiz and Pav.: AF217954) were used as outgroups. Branch support was calculated by approximate likelihood ratio tests, aLRT-Chi2 (Anisimova and Gascuel, 2006), and bootstrap analysis with 1,000 resampling replicates. Phylogenetic analysis was also performed by Bayesian inference using the MrBayes 2.2.4 plugin for Geneious Prime 2021.0.3. Four independent Monte Carlo Markov Chains (MCMCs) of 1,000,000 iterations each were run to generate phylogenetic trees with Bayesian posterior probabilities. Trees were sampled every 500 generations. The resulting trees were exported in Newick format and annotated using “Interactive tree of life” (iTOL v6).

1https://rna.urmc.rochester.edu/RNAstructureWeb/

2www.geneious.com
TABLE 1 | List of Solanum species analyzed (excluding sect. Petota).

Species name	Taxonomy	Chromosome number, 2n	Abbreviation	Accession No	Source
S. abutiloides (Griseb.) Bitter and Lillo	Leptostemonum-Brevantherum	24	abu	19682363	MBG
S. aculeatissimum Jacq.	Leptostemonum-Acanthophora	24	acu	79p515	WABG
S. aethiopicum L.	Leptostemonum-Melongena	24	aet	SAMN 10986202	PRJNA 523664
S. aibostellatum R.W. Davis and P.J.H. Hurter	Old World			SAMN 10969051	PRJNA 522689
S. americanum Mill.	Morelloid	24	ame1	SAMEA 3486921	PRJEB 9916
S. anguivi Lam.	Leptostemonum-Solanum	24	ang	SAMN 16746499	PRJNA 676007
S. anomalostemon S. Knapp and M. Nee	Old World			SAMEA 7820352	PRJEB 42506
S. appendiculatum Dunal	Potato-Anarrhichomenum	24	ape1	SAMEA 12623209	PRJNA 561636
S. aviculare G. Forst.	Archaesolanum	46	avi	19771009	MBG
S. betaceum	Leptostemonum-Cyphomandra	24	bet	–	BGUT
S. chrysotrichum Schidtl.				SAMN 08770449	PRJNA 438407
S. clarkiae Symon	Leptostemonum-Solanum	24	chr	SAMEA 12161630	PRJNA 551615
S. cleistogamum Symon	Leptostemonum-Melongena	24	cle	SAMEA 10969163	PRJNA 522689
S. clivorum S. Knapp	Leptostemonum-Holophylla	24	cli	SAMEA 7820346	PRJEB 42506
S. cochoae G.J. Anderson and Bernardello	Old World			SAMEA 7820347	PRJEB 42506
S. crinitum Lam.	Leptostemonum-Crinum	24	cri	74s1231	WABG
S. dimorphandrum S. Knapp	Not indicated	24	dim	SAMEA 7820348	PRJEB 42506
S. diversiflorum F. Muell.	Leptostemonum-Melongena	24	div	SAMEA 10969025	PRJNA 522689
S. dulcamara L.	Dulcamaroid	24	dul	96065	BGUT
S. eliatus A.R. Bean	Not indicated	24	ela	SAMEA 10969339	PRJNA 522689
S. erianthum D. Don	Leptostemonum-Brevantherum	24	eri	SAMEA 08770591	PRJNA 438407
S. esuriale Lindl.	Leptostemonum-Old World	24, 48	esu	SAMEA 10969026	PRJNA 522689
S. ferocissimum Lindl.	Leptostemonum-Melongena	24, 48	fer	SAMEA 10969027	PRJNA 522689
S. guamense Merr.	Not indicated	24	gua	81s39	WABG
S. hindsvianum Benth.	Leptostemonum-Elaeagnifolium	24	hin	–	LDZG
S. hortum Dunal ex Poir.	Leptostemonum-Old World	24	hor	SAMEA 10969028	PRJNA 522689
S. incanum L.	Leptostemonum-Old World	24	inc	SAMEA 07303451	PRJNA 392603

(Continued)
TABLE 1 | (Continued)

Species name	Taxonomy	Chromosome number, 2 n	Abbreviation	Plant material	
Nee, 1999 (Subgenus-Section)	**Särkinen et al., 2013 (Clades)**		Accession No	Source	
S. laciniatum Aiton	Solanum-Archaesolanum	92	lac	SAMEA 7820351	PRJEB 42506
S. lasiophyllum Humb. and Bonpl. ex Dunal	Not indicated	24, 48	las	SAMN 10969030	PRJNA 522689
S. linnaeanum Hepper and P.-M. L. Jaeger	Leptostemonum-Melongena	24	mac	SAMIN 16746492	PRJNA 676007
S. mammosum L.	Leptostemonum-Acanthophora	22	mam	–	BGUT
S. medicagineum A.R. Bean	Not indicated	24	mel1	SAMEN 12096241	PRJNA 533457
S. melongena L.	Leptostemonum-Melongena	24	mel2	SAMIN 13023228	PRJNA 577305
S. muricatum Aiton	Solanum-Basarthurm	24	mur	SAMEN 17035829	PRJNA 683719
S. nigrum L.	Solanum-Solanum	24, 48, 72	nig	SAMIN 12161629	PRJNA 533451
S. officinale Martine and J. Cantley	Leptostemonum-Geminata	24	pse	SAMEN 07303456	PRJNA 392603
S. pachyandrum Bitter	Leptostemonum-Herposolanum	24	pac	SAMEN 7820344	PRJEB 42506
S. papasanum Phil.	Not indicated	24	pap	SAMEN 7820349	PRJEB 42506
S. phlomoides A. Cunn. ex Benth.	Leptostemonum-Old World	24, 48	phl	SAMEN 10969029	PRJNA 522689
S. pseudolulo Heiser	Leptostemonum-Moreloido	24	ps1	XX-GZU-88100737	BGUG
S. quitense Lam.	Leptostemonum-Lasiocarpa	24	qui	XX-GZU-00120822	BGUG
S. segoense Lam.	Leptostemonum-Lasiocarpa	24	–	BGChNU	
S. scabrum Mill.	Solanum-Solanum	72	sca	SAMN 08458262	PRJNA 432637
S. secothrithum Andrews	Solanum-Dulcamara	24, 48	sea	74p1254	WABG
S. sejunctum Brennan, Martine and Symon	Leptostemonum-Old World	24	sej	SAMN 12161632	PRJNA 551616
S. sisymbriifolium L.	Leptostemonum-Sisymbriifolium	24	sis	SAMN 16746501	PRJNA 676007
S. spirale Roxb.	Not indicated	48	spi	SAMN 06770592	PRJNA 438407
S. torvum Sw.	Leptostemonum-Torva	24, 48	trv	SAMN 16746498	PRJNA 676007
S. valdiviensis Dunal	Not indicated	24	val	SAMEN 7820350	PRJEB 42506
S. vespertilio ssp. *vespertilio* Aiton	Leptostemonum-Old World	24	ves	–	BGUT
S. villosum Mill.	Solanum-Solanum	48	vil	–	BGChNU
S. wendlandii Hook.f.	Leptostemonum-Androceras/Acanthophora	24	wen	77c37	WABG

Taxonomy is shown according to Nee (1999) and Särkinen et al. (2013). Chromosome numbers are presented according to the Chromosome Counts Database (CCDB; http://ccdb.tau.ac.il/). Plant material sources: BGChNU, Botanical Garden of the Chernivtsi National University, Ukraine; BGUG, Botanical Garden of the University of Graz, Austria; BGUT, Botanical Garden of the University of Tübingen, Germany; LDZG, Living Desert Zoo and Gardens, California, United States; MBG, Meise Botanical Garden, Belgium; WABG, Waimea Arboretum and Botanical Garden, Hawaii, United States. PRJNA and PRJEB are the BioProject accession numbers in GenBank (https://www.ncbi.nlm.nih.gov/bioproject/).
**TABLE 2 | List of analyzed *Solanum* species of sect. *Petota*.

Species name	Taxonomy	Chromosome number, 2n	Abbreviation	Accession No	Source
S. abancayense Ochoa	Potatoe-Tuberosa (ii)	Clade 4 north	abn	SAMN 07540430	PRJNA 394943
S. acaule Bitter	Potatoe-Acaulia	Not indicated	acl	–	CIP
S. achacachense Cardenas	Potatoe-Tuberosa (iii)	Clade 4 north	ach	SAMN 07540512	PRJNA 394943
S. acroglossum Juz.	Potatoe-Plurana	Clade 3	acg	SAMN 07540377	PRJNA 394943
S. acroscopicum Ochoa	Potatoe-Tuberosa (ii)	Clade 3	acs	SAMN 07540369	PRJNA 394943
S. ahanhuiri Juz. and Bukasov	Potatoe-Tuberosa (cult.)	Not indicated	ah	SAMN 12684889	PRJNA 556263
S. albomozzi Correll	Potatoe-Plurana	Clade 3	abz	SAMN 07540378	PRJNA 394943
S. ambosinum Ochoa	Potatoe-Tuberosa (ii)	Clade 4 north	amb1	SAMN 07540480	PRJNA 394943
S. andreanum Baker	Potatoe-Tuberosa (i)	Clade 3	adr	SAMN 07540482	PRJNA 394943
S. arcanum Peralta Estolonifera-Neolycopersicon	Not indicated	24	arc	SAMEA 2353233	PRJEB 5226
S. avilesii Hawkes and Hjert.	Potatoe-Tuberosa (iii)	Clade 4 south	avl	SAMN 07540476	PRJNA 394943
S. berthaaulti Hawkes	Potatoe-Tuberosa (ii)	Clade 4 south	avl1	BGRC 18548	GDC
S. blanco-galdossi Ochoa	Potatoe-Plurana	Clade 3	blg	SAMN 07540519	PRJNA 394943
S. brevicaule Bitter	Potatoe-Megistacroloba	Not indicated	blv	SAMN 06666703	PRJNA 394943
S. bukasovii Juz. ex Rybin	Potatoe-Tuberosa (ii)	Clade 4 north	brc	SAMN 07540508	PRJNA 394943
S. bukasovii f. multidissectum (Hawkes) Ochoa	Potatoe-Tuberosa (ii)	Clade 4 north	bukm1	SAMN 07540390	PRJNA 394943
S. bulbocastanum Dunal	Potatoe-Bulbocastana	Clade 1 + 2	blb1	BGRC N 08006	GDC
S. cajamarquense Ochoa	Potatoe-Tuberosa (ii)	Clade 4 south	cjm	SAMN 07540364	PRJNA 394943
S. canasense Hawkes	Potatoe-Tuberosa (ii)	Clade 4 north	can	SAMN 07540552	PRJNA 394943
S. candelleanum P. Berthault	Potatoe-Tuberosa (iii)	Not indicated	cnd	SAMN 06666692	PRJNA 394943
S. cardiophyllum Lindl.	Potatoe-Pinnatisecta	Clade 1 + 2	cph	SAMN 07540547	PRJNA 394943
S. charcoense Bitter	Potatoe-Yungasensa	Clade 4 south	chc1	MPI	–
S. chaucha Juz. and Bukasov	Potatoe-Tuberosa (cult.)	Not indicated	cha	SAMN 12684891	PRJNA 556263
S. cheesmaniae (L. Riley) Fosberg	Estololifera-Neolycopersicon	Not indicated	che	SAMEA 2340812	PRJEB 5235
S. chilense (Dunal) Reiche	Estololifera-Neolycopersicon	Not indicated	chi	SAMEA 2340822	PRJEB 5235
S. chinielewskii (C.M. Rick et al.) D.M. Spooner et al.	Estololifera-Neolycopersicon	Not indicated	cml	SAMEA 2340812	PRJEB 5235
S. chomatischii Bitter	Potatoe-Conicibaccata	Clade 3	chm	SAMN 07540374	PRJNA 394943
S. cirraceifolium subsp. quimenense Hawkes and Hjert.	Potatoe-Cirraceifolia	Not indicated	cnc	BGRC N 27036	GDC
S. commersonii Dunal	Potatoe-Commersoniana	Not indicated	cmm1	SAMN 17654	GDC

(Continued)
Species name	Taxonomy	Chromosome number, 2n	Abbreviation	Accession No	Source
S. cornelomuelleri J.F. Macbr.	Estolonifera-Neolycopersicon	Not indicated	24	crm	SAMEA 2340786 PRJEB 5235
S. curtibbum Juz. and Bukasov	Potatoe-Tuberosa (cult.)	Not indicated	60	cur	SAMN 12684896 PRUNA 556263
S. demissum Lindl.	Potatoe-Demissa	Not indicated	72	dms	– CIP
S. ehrenbergi (Bitter) Rydb.	Potatoe-Pinnatisecta	Not indicated	24	ehr	SAMN 06664745 PRUNA 378971
S. etuberosusum Lindl.	Estolonifera-Etuberosa	Outgroup	24	etb	SAMN 07540542 PRUNA 394943
S. galapagense S.C. Darwin and Peralta	Estolonifera-Neolycopersicon	Not indicated	24	gal	SAMEA 2340846 PRJEB 5235
S. gournayi Hawkes	Potatoe-Tuberosa (iii)	Clade 4 south	24	gr1	5.6 GFP
S. habrochaites S. Knapp and D.M. Spooner	Estolonifera-Neolycopersicon	Not indicated	24	hab	SAMEA 2340830 PRJEB 5235
S. hondemannii Hawkes and Hjert.	Potatoe-Tuberosa (iii)	Clade 4 south	24	hdm	SAMN 07540500 PRUNA 394943
S. huaylasense Peralta	Estolonifera-Neolycopersicon	Not indicated	24	hua	SAMEA 2340821 PRJEB 5235
S. hypacarphilum Bitter	Potatoe-Plurana	Clade 3	24	hcr	SAMN 07540375 PRUNA 394943
S. incarnayoense K.A. Okada and A.M. Clausen	Potatoe-Tuberosa (iii)	Clade 4 south	24	inm	SAMN 07540492 PRUNA 394943
S. infundibuliforme Phil.	Potatoe-Cunealata	Not indicated	24	ifd	SAMN 06664699 PRUNA 378971
S. iopetalum (Bitter) Hawkes and Wittm.	Potatoe-Demissa	Not indicated	72	iop	GLSK 161 IPK
S. jamesii Tor.	Potatoe-Pinnatisecta	Clade 1+2	24	jam1	BGRC N 10054 GDC
S. juzepczuki Bukasov	Potatoe-Tuberosa (cult.)	Not indicated	36	juz	SAMN 12684892 PRUNA 556263
S. kurtzianum Bitter and Wittm.	Potatoe-Tuberosa (iii)	Clade 4 south	24	ktz	SAMN 07540435 PRUNA 394943
S. laxissimum Bitter	Potatoe-Conicibaccata	Clade 4 north	24	bs1	GLKS 154.3 IPK
S. leptophyes Bitter	Potatoe-Tuberosa (ii)	Clade 4 north	24	lph	SAMN 07540550 PRUNA 394943
S. limbaniense Ochoa	Potatoe-Conicibaccata	Clade 4 north	24	lmb	SAMN 07540465 PRUNA 394943
S. lycopersicoides Dunal	Estolonifera-Juglandifolia	Not indicated	24	lpd	SAMN 10606628 PRUNA 516877
S. lycopersicum L.	Estolonifera-Neolycopersicon	Outgroup	24	lyc1	- -
S. lycopersicum var. cerasiforme (Dunal) D.M. Spooner et al.	Estolonifera-Neolycopersicon	Not indicated	24	lyc1	SAMN 15097861 PRUNA 637170
S. maglia Schtl.	Potatoe-Maglia	Clade 4 south	36	mag	BGRC N032571 GDC
S. marinense Vargas	Potatoe-Tuberosa (ii)	Clade 4 north	24	mm	SAMN 07540408 PRUNA 394943
S. medians Bitter	Potatoe-Tuberosa (ii)	Clade 4 north	24, 36	med	SAMN 07540469 PRUNA 394943
S. megistacrolobum Bitter	Potatoe-Megistacroloba	Clade 4 south	24	mga	SAMN 07540385 PRUNA 394943
S. microdontum Bitter	Potatoe-Tuberosa (ii)	Clade 4 south	24	mcd1	BGRC 27551 GDC
S. multinturnuptum Bitter	Potatoe-Tuberosa (ii)	Clade 3	24	mtp	SAMN 07540388 PRUNA 394943
S. neoickii D.M. Spooner, G.J. Anderson and R.K. Jansen	Estolonifera-Neolycopersicon	Not indicated	24	neo	SAMEA 2340816 PRJEB 5235
S. neorossii Hawkes and Hjert.	Potatoe-Tuberosa (iii)	Not Indicated	24	nrs	11.42 GFP

(Continued)
Species name	Taxonomy	Chromosome number, 2n	Plant material			
TABLE 2 (Continued)						
Hawkes, 1990,	Huang et al., 2019	**Abbreviation**	**Accession No**	**Source**		
Nee, 1999	(Clade)					
(Subsection-Series)		**Source**				
S. okadae Hawkes and Hjert.	Potatoe-	Not indicated	24	oka1	BGRC 17550	GDC
	Tuberosa (iii)			oka2	BGRC 24719	GDC
				oka3	SAMN 06564702	PRJNA 378971
S. palustre Poepp. ex Schltdl.	Estolonifera-	Outgroup	24	pal1	BGRC N 17441	GDC
	Tuberosa			pal2	SAMN 07540543	PRJNA 394943
S. pampasense Hawkes	Potatoe-	Clade 4 north	24	pam	SAMN 07540427	PRJNA 394943
	Tuberosa (ii)					
S. paucisectum Ochoa	Potatoe-	Clade 3	24	pcs	SAMN 07540376	PRJNA 394943
	Piurana					
S. pennelli Correll	Estolonifera-	Not indicated	24	pen	SAMN 14984469	PRJNA 557253
	Neolykopersicon					
S. peruvianum L.	Estolonifera-	Not indicated	24	per	SAMEA 2340809	PRJEB5235
	Neolykopersicon					
S. phureja Juz. and Bukasov	Potatoe-	Cultivated	24	phu1	IVP 101	CPBR
	Tuberosa (cult.)			phu2	SAMN 07540523	PRJNA 394943
S. pimpinellifolium L.	Estolonifera-	Not indicated	24	pim	SAMN 09229654	PRJNA 454805
	Neolykopersicon					
S. pinnatisectum Dunal	Potatoe-Pinnatisecta	Clade 1+2	24	pnt1	BGRC N 08168	GDC
				pnt2	SAMN 07540354	PRJNA 394943
S. polyadenium Greenm.	Potatoe-Polyadenia	Clade 1+2	24	pld1	BGRC N 08176	GDC
				pld2	SAMN 07540357	PRJNA 394943
S. raphanfolium Cardenas	Potatoe-Megistacroloba	Not indicated	24	rap1	BGRC N 07207	GDC
and Hawkes				rap2	BGRC N 08189	GDC
S. sitiens I.M. Johnst.	Estolonifera-	Not indicated	24	sit	SAMN 14932980	PRJNA 633104
	Juglandifolia					
S. sargaraindum Ochoa	Potatoe-Megistacroloba	Clade 3	24	sgr1	SAMN 07540395	PRJNA 394943
				sgr2	SAMN 07540416	PRJNA 394943
S. sparsipilum (Bitter) Juz.	Potatoe-	Clade 4 south	24, 48	spl1	14.9	GFP
and Bukasov	Tuberosa (ii)			spl2	SAMN 07540479	PRJNA 394943
S. spegazzinii Bitter	Potatoe-	Clade 4 south	24	spg1	17.45	GFP
	Tuberosa (iii)			spg2	SAMN 07540411	PRJNA 394943
S. stenophyllium Bitter	Potatoe-Pinnatisecta	Clade 1+2	24	ste	SAMN 07540355	PRJNA 394943
S. stenotomum Juz. and Bukasov	Potatoe-	Cultivated	24	str1	–	CIP
	Tuberosa (cult.)			str2	SAMN 07540540	PRJNA 394943
S. stenotomum subsp.	Potatoe-Tuberosea (cult.)	Cultivated	24	gon	SAMN 07540541	PRJNA 394943
gonioclay (Juz. and						
Bukasov) Hawkes						
S. stoloniferum Schidtdl. and	Potatoe-Longipedicellata	Not indicated	48	sto	SAMEA 4949197	PRJEB 28862
C.D.Bouché						
S. tarjense Hawkes	Potatoe-Yungasensa	Clade 4 south	24	trj	SAMN 07540392	PRJNA 394943
				trbr1	B15	BLBP
				trbr2	R1	RAGIS
				trbr3	BP1076	Bio
				trbr4	B1	BLBP
S. tuberosum subsp. andigena	Potatoe-Tuberosea (iii)	Not indicated	24, 36, 48	tbrA1	SAMN 06564721	PRJNA 378971
andigena (Juz. and				tbrA2	SAMN 06564717	PRJNA 378971
Bukasov) Hawkes						
(Continued)						
TABLE 2 | (Continued)

Species name	Taxonomy	Chromosome number, 2n	Plant material			
	Hawkes, 1990, Nee, 1999 (Subsection-Series)	Huang et al., 2019 (Clade)	Abbreviation	Accession No	Source	
S. venturi' Hawkes and Hjert.	Potatoe-Tuberosa (iii)	Clade 4 south	24	vnt	SAMN 07540366	PRJNA 394943
S. venumusum Schltdl.	Potatoe-Tuberosa (ii)	Clade 4 south	24, 36, 48	vrn1	–	GDC
S. violaceimarmoratum Bitter	Potatoe-Conicibaccata	Clade 4 north	24	vrn2	SAMN 07540493	PRJNA 394943
S. wendlandii				vrn3	SAMN 07540514	PRJNA 394943
S. violaceimarmoratum				vcr	SAMN 07540496	PRJNA 394943
S. violaceimarmoratum				vio	SAMN 07540551	PRJNA 394943

Taxonomy and species name abbreviations are shown according to Hawkes (1990), Nee (1999), and Huang et al. (2019). Chromosome numbers are presented according to the Chromosome Counts Database (CCDB; http://ccdb.tau.ac.il/). Plant material sources: IPK, the Institut für Pflanzengenetik und Kulturpflanzenforschung, Gatersleben, Germany; GDC, German-Dutch Curatorium for Plant Genetic Resources, Braunschweig, Germany; MPI, Max-Planck-Institute für Züchtungsforschung, Köln; GFP, Gesellschaft zur Förderung der Pflanzenzüchtung, Bonn, Germany; CPBR, Center for Plant Breeding and Reproduction Research CPRO, Wageningen, The Netherlands; CIIR, Centro Internacional de la Papa, Lima Peru; BLBP, Bayerische Landesanstalt für Bodenkultur und Pflanzenbau, Freising, Germany. PRJNA and PRJEB are the BioProject accession numbers in GenBank (https://www.ncbi.nlm.nih.gov/bioproject/).

RESULTS

Cloning of 5S rDNA Repeats

5S rDNA repeats of 17 Solanum species representing different taxonomic groups were amplified by PCR using primers complementary to the coding region, cloned, and sequenced (Table 3 and Supplementary Material). Analysis of the obtained sequences showed that majority of the clones contained IGS flanked on both sides by fragments of the coding region including the primers used for PCR. Besides, we obtained 5S rDNA clones of S. vespertilio and S. pseudocapsicum that contain rDNA dimers, i.e., two adjacent copies of IGS, and the whole sequence of the CDS between them. Also, two clones containing 5S rDNA dimers and one clone containing a trimer were sequenced for S. wendlandii.

Intragenomic Diversity of Intergenic Spacer: In-Depth Analysis of Sequence Read Archive Data

In order to assess the intragenomic variability of 5S rDNA, we evaluated how many different types/variants of repeated units (ribotypes) are present in genomes of the Solanum species. Genomes of three diploid species, S. lycopersicum-3 (SRX5538725), S. stenotomum-2 (SRX4645231) of sect. Petota, and S. melongena-2 (SRX6995029) of sect. Melongena, were selected for detailed analysis. For these genomes, we assembled de novo 5S rDNA repeats composed of complete IGS and two flanking fragments of CDS. If the CDS contained indels or several SNP, the repeat was considered a pseudogene and excluded from further analysis. Variants of IGS that differed in at least one SNP were considered as distinct ribotypes. The total number of IGS ribotypes was 45, 177, and 31 in S. lycopersicum-3, S. stenotomum-2, and S. melongena-2, respectively. In order to visualize the intragenomic diversity of the ribotypes found in the three species, median-joining networks were constructed (Figure 1).

After that, we mapped the reads of complete genomic libraries to the reference sequences of all collected ribotypes in order to estimate their relative content in the genomes. The obtained results showed that the IGS ribotypes differ significantly in this parameter. Accordingly, we classified the ribotypes as major (≥10% of all IGS copies present in the genome), minor (<10 but ≥5%), or rare (<5%). The number of major, minor, and rare ribotypes is 5, 6, and 40 in S. lycopersicum-3: 5, 5 and 169 in S. stenotomum-2; 2, 5, and 24 in S. melongena-2 (Figure 1).

Altogether, the major and minor ribotypes represent 93, 68, and 78% of all rDNA repeats present in the genomes of these three species. Based on the results obtained, in the further analysis of 5S rDNA in other species, we considered only major and minor ribotypes. The variability of IGS sequences in each examined sample is given in Supplementary Material.

Length and GC Content of the 5S rDNA Repeated Units

Using sequences of clones and major + minor ribotypes, we determined GC content in the IGS of the Solanum species (Tables 3, 4) and found that this value ranges from 40.5% in S. seaforthisianum to 63.9% in S. pseudocapsicum. In 90% of the species, intragenomic difference in GC content between individual ribotypes and clones was less than 4%. A greater difference was observed in repeats that were subjected to deletions, particularly in the AT-rich region of the IGS. No significant changes in GC content were found for taxonomic groups in the Solanum genus, suggesting that this parameter remained relatively constant during evolution.

The typical length of IGS in members of the Solanum genus is about 190–220 bp (Tables 3, 4). The shortest IGS were found in S. cochoae, 155–158 bp, and in S. aethiopicum, 162–175 bp. In S. lasiophyllum, however, one ribotype (las-C2R1) is even shorter, 115 bp, although five other ribotypes in this species are 180 bp in length. The longest IGSs were found in S. melongena, 344–360 bp, and in S. lycopersicum, 234–235 bp. The extremely long IGS length in S. melongena is associated with large duplication of the spacer sequence. There is no significant difference in IGS length among the taxonomic groups in the Solanum genus. In general,
TABLE 3 | Characteristics of the 5S intergenic spacer region (IGS) of *Solanum* species analyzed (excluding sect. Petota).

Species name	Abbreviation	Clade—Figure 7	Sequencing	TNS	SRA/clone No	GC content, %	IGS length, bp	SIM, %
S. abutiloides	abu	2.1	CS	2	OM100771-2	54.7	214	96.7
S. aculeatissimum	acu	2.3.1	CS	5	OM100773-7	48.24	189	96.8–100
S. aethiopicum	aet	2.3.3D	GA	4	SRX5438534	48.25	165	90.3–98.9
S. abrostelatum	als	2.3.3B	GA	3	SRX5462807	55.37	193	92.4–94.4
S. americanum	ame1	1.1	GA	7	ERX1043111	49.41	225	93.4–98.2
S. anguivi	ang	2.3.3D	GA	8	SRX9473543	49.3	189	89.6–99
S. anomalostemon	ano	2.1	GA	5	ERX4907182	57.02	215	96.7–99.5
S. appendiculatum	ape1	1.4.1	GA	3	SRX5462807	48.25	165	90.3–98.9
S. aviculare	avi	1.3	CS	3	OM100778-80	42.13	208	98.6–99.5
S. betaceum	bet	2.2	CS	2	OM100795-6	53.2	187	98.4
S. chrysotrichum	chr	2.3.2	GA	3	SRX4034085	49	185	94.1–97.8
S. clarkiae	cla	2.3.3A	GA	5	SRX6376308	56.14	199	97.5–99
S. cleistogamum	cle	2.3.3C	GA	4	SRX5462725	52.48	174	78.8–95
S. clivorum	cli	1.4.1	GA	4	ERX4907176	43.75	209	98.6–99.5
S. cochoae	coc	2.2	GA	5	ERX4907177	61.28	156	96.2–99.4
S. dimorphandrum	dim	1.2	GA	4	SRX5462955	56.1	198	97–98.5
S. diversiflorum	div	2.3.3A	GA	4	SRX5462955	56.1	198	97–98.5
S. dulcamara	dul	1.2	CS	5	AJ260626-30	57.68	221	96–99.6
S. erianthum	eri	2.1	GA	6	SRX4043227	53.18	213	94.8–98.1
S. elatius	ela	2.3.3B	GA	4	SRX5462442	53.6	199	93.5–99
S. esuriale	esu	2.3.3B	GA	4	SRX5462952	55.9	184	96.2–98.4
S. erianthum	eri	2.1	GA	6	SRX4043227	53.18	213	94.8–98.1
S. esuriale	esu	2.3.3B	GA	4	SRX5462952	55.9	184	96.2–98.4
S. erianthum	eri	2.1	GA	6	SRX4043227	53.18	213	94.8–98.1
S. esuriale	esu	2.3.3B	GA	4	SRX5462952	55.9	184	96.2–98.4
S. euphrasiorum	eup	1.4.1	GA	3	SRX5462953	49.73	203	98.5–99
S. guamense	gua	2.3.2	CS	4	OM100797-800	48.35	185	93–96.8
S. indica	ind	2.3.3	CS	2	OM100783, OM744710	55.45	258	99
S. horridum	hor	2.3.3C	GA	6	SRX5462950	51.38	175	82.5–97.8
S. incanum	inc	2.3.3D	GA	5	SRX2977430	50.78	206	96.6–99
S. lasiophyllum	las	2.3.3C	GA	6	SRX5462948	48	169	59.4–98.9
S. linnaeanum	lin	2.3.3D	GA	3	SRX5465030	49.03	226	97.8–99.6
S. macrocarpon	mac	2.3.3B	GA	6	SRX4373554	46.42	177	91.6–97.8
S. mammosum	mam	2.3.1	CS	2	OM100801-2	54.45	203	99.5
S. medicagineum	med	2.3.3C	GA	6	SRX5462953	49.73	203	98.5–99
S. melongena	mel	2.3.2D	CS	3	SRX942870-1, OM100803	49.37	198	56–99.6
S. muricatum	mur	1.4.1	CS	2	OM100804-5	45.5	349	95.4–99.4
S. nigrum	nig	1.1	GA	4	SRX6554460	49.68	226	97.8–99.6
S. ossecentum	oss	2.3.3B	GA	6	SRX6376307	52.82	193	85.4–98
S. pachyandrum	pac	2.2	GA	6	ERX4907174	48.58	210	83.4–98.6
S. paposanum	pap	1	GA	4	ERX4907179	53.23	226	97.8–99.1
S. phlomoides	phi	2.3.3A	GA	4	SRX5462951	53.7	179	87.4–98.4
S. pseudocapsicum	pse	2.2	CS	3	OM100784-5	63.9	173	95.3–97.1
S. pseudokolokol	psk	2.3.1	CS	3	OM100806-8	49.87	219	81.2–98.3
S. ptychores	qui	2.3.1	CS	4	OM100809-12	49.6	198	71.4–99.6
S. scabrum	sca	1.1	GA	4	SRX3641602	46.85	227	92.5–96
S. sexforthianum	sea	1	CS	3	OM100813-5	40.47	230	89.6–93
S. sejunctum	sej	2.3.3A	GA	4	SRX6376309	53.63	202	97–99
S. sisymbriifolium	sis	2.3	GA	2	SRX9473545	54.75	211	99.5

(Continued)
our data show that the length remained largely unchanged during the evolution of the *Solanum* genus.

Long Duplication in the Intergenic Spacer of *S. melongena*

Two structural variants of IGS, long (~350 bp) and short (~200 bp) were identified in *S. melongena*-2 (mel2). The long variant was found in three accessions, mel1 (analyzed by cloning and sequencing) and in mel2 and mel3 (extracted from SRA), while the short variant was only detected in mel1 and mel2. In mel2, all major and minor as well as majority of rare ribotypes belong to the long variant, while the short variant is only represented by two rare ribotypes, M17 and M29 (Figure 1B), whose relative content in the genome is below 1%.

Numerous single nucleotide polymorphisms (SNPs) and two oligonucleotide indels are present in the M29 sequence, so this ribotype appears to be a pseudogene. The ribotype M17 (mel2-C17R1, see Supplementary Material) also contains several SNPs compared to other ribotypes of *S. melongena*. Interestingly, this ribotype is identical to the most common ribotype of a closely related species, *S. linnaeanum*.

A detailed sequence analysis showed that the long variant contains a 146-bp-long tandem duplication in the central part of the IGS (Figure 2). The duplicated region consists of a 32-bp-long 3′-fragment of the coding region and an adjacent 114-bp fragment of the IGS. Two copies of the duplicated segment differ by 6 SNPs and one 8-bp-long indel. All mutations are localized in the fragment of the IGS, not in the coding region.

High Diversity of 5S rDNA in *S. wendlandii*

For the 5S rDNA of *S. wendlandii*, we sequenced four clones, pSowen-3, 13, 14, and 18, which bore inserts of different lengths, 732, 912, 319, and 657 bp, respectively. Sequence analysis showed that the shortest insert contains one copy of IGS flanked by CDS fragments. The longer inserts represent two dimers and a trimer composed of adjacent copies of 5S rDNA repeats (Figure 3A).

The sequence alignment revealed an obvious difference among IGS sequences of the adjacent 5S rDNA copies (Figure 3B), which is due to numerous nucleotide substitutions and insertions of different lengths of 1–82 bp. The 82-bp-long insertion harbors three tandem copies of the adjacent sequence, which is normally present once in the IGS. The level of sequence similarity among the compared IGS copies ranges from 58.4 to 96.9%, which indicates high intragenomic heterogeneity of the IGS in *S. wendlandii*.

Comparison of the 5S rRNA CDS of *S. wendlandii* and several *Solanum* species representing different intragenic clades revealed that the CDS is, as expected, highly conserved in the genus. Analysis of the 5S rDNA clones/ribotypes of several *Solanum* species showed that a single CDS usually contains no more than two mutations compared to the respective consensus sequence (data not shown), which agrees well with the observation on other plant taxa (Park et al., 2000; Mahelka et al., 2013). In contrast, the complete CDS sequences of *S. wendlandii* contain 5–16 base substitutions (Figure 4A).

The presence of numerous mutations in the CDS suggests its transformation into a pseudogene. To test this possibility, we calculated the secondary structure for transcripts of the complete CDS from the clones pSowen-3, -13, and -18. For comparison, the secondary structure was also calculated for (i) the total consensus CDS of the *Solanum* genus, (ii) consensus CDS of *S. melongena*, which differs from the total consensus by one base substitution, and (iii) CDS of *S. pseudocapsicum* (dimer clone pSpse-5S7), which contains two base substitutions (Figure 4B). The sequences examined formed a secondary structure typical for 5S rRNA (Sun and Caetano-Anollés, 2009), with the exception of the CDS of *S. wendlandii*, which appeared to be significantly changed, suggesting that the transcripts cannot fulfill their function in the ribosome.

Hence, the 5S rDNA of *S. wendlandii* appears to be very heterogeneous in both the IGS and CDS regions and likely contains numerous pseudogenes. Unfortunately, the complete genome sequence of *S. wendlandii* is currently not presented in the GeneBank and cannot, therefore, be used to further elucidate the unusual organization of 5S rDNA in this species.

Intergenic Spacer Organization in Distantly Related *Solanum* Species

To reveal the molecular organization and evolution of IGS in *Solanum*, we compared the IGS sequences of 37 species representing distantly related groups (D’Arcy, 1991; Nee, 1999; Bohs, 2005; Särkinen et al., 2013) of the genus (Figure 5). The total length of the alignment obtained is 287 bp. Only 9
TABLE 4 | Characteristics of the 5S IGS of Solanum species of sect. Petota.

Species name	Abbreviation	Cluster—Figure	Sequencing	TNS	SRA/clone No	GC content, %	Length, bp	SIM, %
S. abancayense	abn	A3	GA	7	SRX4645060	49.09	222	96–99.6
S. acaule	acl	D10	CS	4	AJ226031-34	49.43	219	97.3–99.5
S. achacachense	ach	D1, D7	GA	5	SRX4645061	51.06	208	87.1–99.1
S. acroglossum	acg	A5	GA	7	SRX4645064	51.04	223	96.4–99.6
S. acroscopicum	acs	A4	GA	11	SRX4645063	50.76	224	95.6–99.6
S. ahanhuri	ahn	D10	GA	4	SRX6963077	49.2	219	95.9–99.5
S. albornozii	abz	A1	GA	5	SRX4645065	46.92	195	94.1–99.9
S. amboshnurn	amb	D1	GA	4	SRX4645068	49.18	207	89.2–98.6
S. ahanhuri	ahn	D10	GA	12	SRX4645070	49.25	218	94.1–99.5
S. andreanum	adr	A4	GA	3	SRX4645073	48.83	214	97.7–98.6
S. arcanum	arc	A6	GA	3	ERX376595	45.37	231	97.4–98.3
S. avlesi	avl	D1	GA	7	SRX4645077	52.07	203	72.5–99.1
S. berthaulti	ber	D5	CS	5	AJ226037-41	50.9	213	98.1–100
S. blanco-galdosii	big	A5	GA	5	SRX4645082	50.28	220	96.4–99.5
S. boliviense	blv	D6	GA	4	SRX2646030	50.4	214	96.3–98.1
S. brevicale	brc	D6	GA	4	SRX4645091	50.13	211	93.4–99.1
S. bukasovii	buk1	A3	Ds	1	AF332130	48.2	222	nd
S. bukasovii	buk2	A3	GA	4	SRX4645092	48.3	222	98.6–99.5
S. bulbocastanum	blb1	nd	CS	3	SRX4645010	51.93	188	97.9–98.4
S. caimamarquense	cjm	D2	GA	4	SRX4645010	50.9	223	96–99.6
S. canasense	can	D1, D7	GA	4	SRX4645113	51.83	205	90.6–99.1
S. candolleaurn	cnd	D3, D6	GA	4	SRX2646047	50.1	213	94.4–98.6
S. cardiophyllum	cph	A1	GA	5	SRX4645116	51.86	224	96.4–99.1
S. chacoense	chc1	D3	DS	1	AF331055	50.7	213	nd
S. chaucha	cha	A3, D8, D10	GA	10	SRX6966567	49.02	217	83.4–99.6
S. cheesmaniae	che	A6	GA	4	ERX384387	46.08	232	97.4–99.1
S. chilense	chi	A6	GA	4	ERX384397	46.7	230	97–99.6
S. chmenlewskii	cml	A6	GA	5	ERX384385	44.95	232	95.3–97
S. chomatophilum	chm	A5	GA	5	SRX4645123	51.32	223	96.4–99.6
S. circaseifolium subsp. quimense	cqc	A4	CS	8	AJ226015-22	49.73	227	94.3–100
S. commersonii	cmm1	A5	DS	1	AF331056	51.3	224	nd
S. corneliomueller	crn	A6	GA	3	ERX384361	46.87	222	89.5–96.1
S. curtibum	cur	A2, D1, D2, D9, D10	GA	8	SRX6966568	50.09	218	83.3–99.6
S. demissum	dms	D10	CS	3	AJ226023-25	49.03	219	98.6–99.5
S. ehrenbergii	ehr	A2	GA	5	SRX645991	50.08	208	83.1–99.1
S. etuberum	etb	A1	GA	7	SRX4645124	48.21	223	94.6–99.1
S. galapagense	gal	A6	GA	1	ERX384421	46.4	233	100
S. gourlayi	grl1	D6	DS	1	AF331057	51.8	213	nd
S. habrochaites	hab	A6	GA	3	SRX4645138	50.7	214	97.2–99.5
S. hondelemanni	hdm	D6	GA	5	SRX4645145	50.56	217	90.1–98.3

(Continued)
TABLE 4 (Continued)

Species name	Abbreviation	Cluster—Figure 8	Sequencing	TNS	SRA/clone No	GC content, %	Length, bp	SIM, %
S. huaylasense	hua	A6	GA	1	EFX384396	46.7	229	100
S. hypacarthurum	hcr	A1	GA	5	SFX4645148	45.96	202	89.3–99.5
S. incamayoense	infr	D3, D6	GA	4	SFX4645153	49.43	215	90.4–99.1
S. infundibiforme	idf	D6	GA	4	SFX2646040	49.9	213	97.2–99.5
S. ipetatum	iop	D6	CS	4	AJ226042-45	49.0	212	96.2–99.1
S. jamesii	jam1	B	DS	1	AF331058	50.2	213	nd
S. jamesii	jam2	B	GA	2	SFX4645155	50.0	212	99.1
S. juzepeczukii	juz	A2, D2	GA	8	SFX6966566	51.68	221	82.9–99.6
S. kurzianum	kzt	D3	GA	6	SFX4645157	51.28	214	78.2–99.1
S. laxissimum	lx1	A6	CS	1	X55697	46	235	nd
S. lycopersicoides	lyc1	A6	CS	1	X55697	46	234	100
S. lycopersicoides	lyc2	A6	GA	5	SFX8467710	45.3	233	93.6–98.7
S. lycopersicum var. cerasiforme	lyc1	A6	GA	4	SFX418310	46.05	234	97.4–99.6
S. lycopersicum var. cerasiforme	lyc2	A6	GA	1	SFX4183171	45.7	234	100
S. maglia	mag	D3	CS	8	AF304319	47.35	189	72.1–100
S. marinasense	mm	D9, D10	GA	4	SFX4645173	46.35	201	66.7–98.2
S. medians	med	A2, D1	GA	11	SFX4645178	49.6	216	73.9–99.6
S. megistacolobum	mga	D2	GA	9	SFX4645179	51.3	213	88.2–99.5
S. microdontum	md1	D3	CS	9	AJ226051-59	50.27	210	91.2–100
S. multitenureptum	mtp	A3	GA	4	SFX4645183	48.63	222	97.3–99.1
S. neorickei	neo	A6	GA	5	EFX384391	45.5	230	95.7–98.7
S. neorossii	nrs	D3	DS	1	AF301060	50.2	213	nd
S. okadeae	oka1	D4	CS	3	AJ226060-62	50.33	220	96.4–99.5
S. palustre	pal1	A1	CS	6	AJ226035-83	53.57	174	66.4–100
S. pampasense	pam	D1, D8	GA	5	SFX4645197	50.36	210	85.5–96.7
S. paucissection	pcs	A5	GA	5	SFX4645198	49.26	210	69.1–99.1
S. pennellii	pen	A6	GA	4	SFX371122	47.05	229	96.9–99.1
S. peruvianum	per	A6	GA	4	EFX384384	46.88	230	98.3–99.6
S. phureja	phu1	D1	DS	1	AF331061	50.0	212	nd
S. pipiens	phu2	D1, D8	GA	6	SFX4645199	49.55	213	96.2–99.5
S. pimpinelliformum	pim	A6	GA	4	SFX4645193	47.95	224	73.9–99.1
S. pinnatisectum	pnt1	B	CS	5	X82779, AJ226008-11	49.24	210	92.4–96.2
S. polyadenium	pld1	A1	CS	3	AF301044-6	49.97	197	86.9–96.6
S. raphanifolium	rap1	C	DS	1	AF302131	50.0	172	nd
S. raphanifolium	rap2	A3	DS	2	AF302132-3	50.45	201	73.5
S. raphanifolium	rap3	C	GA	8	SFX4645183	50.76	176	88.8–98.9
S. sitiens	sit	A6	GA	5	SFX537919	45.4	229	97.4–99.6
S. sogaardinum	sgr1	A1	GA	10	SFX4645211	51.15	212	54.9–99.1
S. sparsipilum	spl1	D6	DS	1	AF331062	49.1	216	nd
S. speciosum	spl2	D6	GA	5	SFX4645216	50.8	206	87.3–98.6
S. spegazzinii	spg1	D3	DS	1	AF331063	52.2	205	nd
identical nucleotides were found in the compared sequences, and average pairwise identity value was 55.1%, indicating significant divergence of the IGS in the genus. Multiple base substitutions and indels of various lengths are scattered along the entire IGS in the species studied compared to the consensus sequence. The largest 31-bp-long indel is located in the central part of the IGS between the positions 144 and 174 bp. Despite numerous species-specific mutations, the sequence of the central indel shows an obvious sequence similarity in the species compared. Analysis of the phylogenetic dendrogram obtained by comparing IGS sequences (Figure 6, see also below) revealed that the central indel is present in the species belonging to major clade 1 (with the exception of S. muricatum) but is partially or completely absent in members of clade 2 (with the exception of S. anomalostemon). Hence, the central indel was present in the common ancestor of the Solanum genus and was later lost in some species during the course of evolution.

Intergenic Spacer Organization in Sect. Petota

Analysis of IGS molecular organization in the species-rich sect. Petota was performed separately. By sequence comparison, numerous base substitutions and indels were detected, which appear to be randomly distributed along the IGS (Figure 7), except for the presumptive external promoter region just upstream of the CDS (see section “Discussion”).

The alignment of the sequences revealed that in the central part of the IGS there are two group-specific indels, I and II. Also, a lot of species contain a GC-duplication (GC-DUP) in the IGS (Figure 7). It is likely that these structural rearrangements occurred in different stages during the evolution of sect. Petota. With regard to the presence/absence of these molecular features, four structural variants (SVs) of the IGS can be distinguished. The evolutionary ancestral SV-A contains both specific indels, while independent deletions of indels II and I resulted in the formation of the derived SV-B and –C/D, respectively. SV-D additionally contains a GC-DUP.

Phylogenetic Analysis

The IGS sequences obtained by cloning as well as major and minor ribotypes extracted from SRA were used to reconstruct the phylogenetic relationships among Solanum species representing different taxonomic groups of the genus. For sect. Petota, seven species were selected whose IGS sequences belong to different structural classes (see section “Discussion”).

Multiple sequence alignment for the whole genus Solanum phylogeny was generated with the Mafft E-INS-I method and then manually corrected. The final 609-bp length alignment presented only one identical site, with an average pairwise identity of 54.7%. The best-fit phylogenetic model was estimated using Mega X to be general time-reversible (GTR) + gamma (G) (Kumar et al., 2018). The obtained maximum likelihood (ML) phylogenetic tree has 302 leaves, which correspond to the IGS sequences of 65 Solanum species (Figure 6). Calculating the statistical support applying the aLRT-Chi2 method and bootstrap analysis showed that majority of the tree’s nodes have a high or moderate support. The ML tree mostly matched the dendrogram generated by Bayesian inference.
FIGURE 1 | Analysis of 5S rDNA intragenomic diversity in diploid Solanum species. (A) Median joining networks for IGS types/variants (ribotypes) of S. lycopersicum-3, S. stenotomum-2, and S. melongena-2. Ribotypes are designated by the first letter of corresponding species name with index numbers. The size of the circles is proportional to the relative content (in %) of each ribotype in the genome. (B) Relative content (in %) of ribotypes.

species are divided into two major clades, 1 and 2, with high statistical support. In the clades, several well-supported minor clades were found. The monophyly of the Solanum genus and clade 1 is also confirmed by Bayesian inference. In contrast, clade 2 is represented by polytomy in the Bayesian dendrogram.

DISCUSSION

Phylogeny of the Solanum Genus
Since the nineteenth century, the Solanum genus has been traditionally divided into two main groups, the so-called spiny and non-spiny solanums (Dunal, 1852; Seithe, 1962), which were further subdivided into sections, subsections, and series using morphological characters (D’Arcy, 1991; Nee, 1999). However, application of molecular methods shed a new light on the phylogeny of Solanum, demonstrating that these groups are mainly not monophyletic, and that the genus can be divided into 13 clades (Bohs, 2005; Weese and Bohs, 2007; Särkinen et al., 2013). Some of these clades have high statistical support, while the taxonomic placement and composition of the others are uncertain.

Analysis of several chloroplast genes and nuclear regions (e.g., ITS1/2 and waxy) is often performed in molecular phylogenetics.
However, incongruence of results obtained by application of different markers is a well-known problem. Respectively, other genomic regions, particularly the 5S rDNA IGS, can additionally be used to clarify the phylogeny of lower-ranking taxa (Bloch et al., 2009; Tynkevich and Volkov, 2019; Cardoni et al., 2021; Ishchenko et al., 2021), including sect. Petota of the Solanum genus (Volkov et al., 2001). To evaluate the possibility of using this region to reconstruct phylogenetic relationships in the Solanum genus, we constructed an ML dendrogram that embraces 68 accessions from 63 species.

The ML dendrogram includes two major clades (Figure 6). Similar to our data, two clades in the Solanum genus were found by comparing sequences of plastid, nuclear ribosomal ITS and low-copy nuclear (waxy) genes (Säarkinien et al., 2013, 2015). Particularly, four species, S. abutiloides, S. erianthum, S. cochoa, and S. pseudocapsicum, are included in Clade 2 of our dendrogram, which is in agreement with recent molecular data (Särkinien et al., 2013, 2015) but in contrast to the previous taxonomy of Nee (1999), who placed the species in the sections Brevantherum, Basarthrum, and Holophylly (see Table 1).

Clade 1 is composed of four smaller clades. Clade 1.1 contains four species of the Morellloid clade, S. americanum, S. nigrum, S. scabrum, and S. villosum (Särkinien et al., 2013, 2015). Two other species, S. anomalostemon and S. valdiviense previously associated with Morelloids are placed outside Clade 1.1, further supporting the phylogeny of the group proposed by Särkinien et al. (2015).

Clades 1.2–1.4 are combined in a polytomy. S. dimorphandrum of the Thelopodium clade (Bohs, 2005) and S. dulcamara of the Dulcamaroid clade (Bohs, 2005; Särkinien et al., 2013) belong to Clade 1.2, while another member of the Dulcamaroid clade, S. seaforthianum, occupies a basal position in Clade 1. S. valdiviense is included in Clade 1.3, which also comprises two species of sect. Archaesolanum, S. aviculare and S. laciniatum. The taxonomic position of S. valdiviense found in our analysis is fully consistent with previous data.
FIGURE 3 | Molecular organization of 5S rDNA repeats in *S. wendlandii* (wen). (A) General organization of 5S rDNA clones. Pr1 and Pr2, position of primers Pr5S-L and Pr5S-R used for PCR/cloning. (B) Sequences alignment of IGS and flanking fragments of CDS. The consensus sequence of CDS of the genus Solanum (Solanum CDS) is shown for comparison. The arrows indicate the location of repeated motifs.

(Särkinen et al., 2015). *S. aviculare* and *S. laciniatum* are closely related (Figure 6): There are several ribotypes in the genome of *S. aviculare* that are very similar and even identical to those of *S. laciniatum*. These data indicate incomplete lineage sorting during speciation or subsequent hybridization among these species. The close relationship between *S. aviculare* and *S. laciniatum* confirms the taxonomy derived from sequencing of three chloroplast and two nuclear regions in which these two species represent sister taxa (Poczai et al., 2011; Särkinen et al., 2015).

Clade 1.4.1 comprises Central American *S. appendiculatum* and South American *S. clivorum*, which were previously assigned, respectively, to sect. *Anarrichomenum* and *Holophylla* (Nee, 1999) as well as *S. muricatum* of sect. *Basarthurum* (Nee, 1999; Särkinen et al., 2013), while Clade 1.4.2 embraces numerous species of sect. *Petota* (including tomato) (Hawkes, 1990; Nee, 1999; Komarova et al., 2008). According to a recent analysis (Särkinen et al., 2015; Gagnon et al., 2021), *S. appendiculatum* and *S. muricatum*, similar to our results, belong to the potato clade, in contrast to *S. clivorum*, which was placed outside clade I.

Clade 1 also includes the South American species *S. paposanum*, which represents the Regmandra clade (Bohs, 2005; Särkinen et al., 2013). It was found that this clade was resolved in different positions in three data sets used for comparison (Särkinen et al., 2015; Gagnon et al., 2021).

Clade 2 consists of three smaller clades, 2.1ñ2.3. Clade 2.1 comprises two closely related species, *S. abutiloides* and *S. erianthum*, which were assigned by Nee (1999) to sect. *Brevantherum* of the Solanum subgenus. Later, sect. *Brevantherum* was transferred to clade II consisting of predominantly spiny and shrubby species (Särkinen et al., 2013, 2015; Gagnon et al., 2021). Similarly, the third member of Clade 2.1, *S. anomalostemon*, was assigned to the Morelloid clade (Bohs, 2005) but later transferred to clade II (Särkinen et al., 2015; Gagnon et al., 2021). Accordingly, the inclusion of *S. abutiloides*, *S. erianthum*, and *S. anomalostemon* in clade II is further supported by our results.

Clade 2.2 contains five species, which were previously assigned to different taxonomic groups. According to Nee (1999), two Central/South American species, *S. wendlandii*...
FIGURE 4 | Comparison of Solanum 5S rRNA CDS. (A) Alignment of the CDS of distantly related Solanum species and 5S rDNA clones of S. wendlandii. (B) Predicted secondary structures of 5S rRNA transcripts. Abbreviations of species names are given in Table 1.
and S. pachyandrum, are members of sect. Herposolanum. Later, it was shown that S. wendlandii belongs to clade Wendlandii/Allophyllum, while the position of S. pachyandrum appeared unclear (Bohs, 2005; Särkinen et al., 2013, 2015). Thereafter, both species were assigned to sect. Aculeigerum (Clark et al., 2015). Our data also confirm the phylogenetic affinity of S. wendlandii and S. pachyandrum.

The next two species, South American S. cochoae and S. pseudocapsicum, have been previously assigned to different sections, Basarthrum and Holophylla (Anderson and Bernardello, 1991; Nee, 1999). In contrast, S. cochoae and S. pseudocapsicum are combined in a well-supported clade in our ML dendrogram. Originally, S. cochoae was included in sect. Basarthrum on the basis of morphological analyses and crossing experiments, although all crosses with related wild species were unsuccessful. Surprisingly, the only species crossed with S. cochoae was cultivated S. muricatum, despite large differences in karyotypes of these two species (Anderson and Bernardello, 1991). However, the possibility of obtaining hybrids cannot be seen as a decisive argument for the close relationship between these two species, as it is sometimes possible to successfully cross distant Solanum species (Daunay et al., 2019). The close relationship between S. cochoae and S. muricatum is also supported by recent molecular data (Gagnon et al., 2021). In our dendrogram, however, S. cochoae does not appear to be related to S. muricatum but to S. pseudocapsicum, a member of the Geminata clade (Gagnon et al., 2021).

It should be noted that the common feature of the 5S rDNA repeats of S. cochoae and S. pseudocapsicum is short length due to deletion in the central part of the IGS. In addition, each species possesses specific deletions in other IGS regions (Figure 5). Altogether, these structural features can affect the position of the species in the dendrogram. Accordingly, we believe that the taxonomic position of S. cochoae close to S. pseudocapsicum should be interpreted with appropriate reservation in this stage, and that further studies should be carried out in order to finally clarify the question.

The last member of Clade 2.2 is S. betaceum, which has been previously treated as a member of separate genus Cyphomandra (D’Arcy, 1991) and then later placed to Solanum (Bohs, 1995) and assigned to sect. Pachyphylla of the Bassovia subgenus (Nee, 1999) or clade Cyphomandra in clade II (Särkinen et al., 2013, 2015; Gagnon et al., 2021). In our dendrogram, S. betaceum is a sister taxon for the other members of Clade 2.2.

Clade 2.3 includes three clades of lower ranks, 2.3.1–2.3.3. Clade 2.3.1 comprises two pairs of species, the South American S. aculeatissimum and S. mammosum of the section/clade Acanthophora as well as Andean cultivated species S. quitoense.
(naranjilla or lulo) and its wild relative *S. pseudolulo* of clade *Lasiocarpa* (Nee, 1999; Bohs, 2005; Levin et al., 2006; Särkinen et al., 2013). According to a molecular analysis, the clades *Acanthophora* and *Lasiocarpa* represent sister taxa (Särkinen et al., 2013; Gagnon et al., 2021). In the genome of *S. quitensis*, a ribotype similar to that of *S. pseudolulo* was detected, which could be due to hybridization between these species (Fory Sánchez et al., 2010).

Clade 2.3.2 comprises two Central/South American species, *S. chrysotrichum* and *S. torvum* of the section/clade *Torva*, as well as *S. guamense*, an endangered endemic species in Northern Mariana Islands (Stone, 1970) whose taxonomic status remains unclear (Nee, 1999; Bohs, 2005; Särkinen et al., 2013; Aubriot et al., 2016). Our analysis revealed that the three species share common ribotypes and are, therefore, unresolved in the dendrogram. The high genetic affinity of *S. chrysotrichum* and *S. torvum* agrees well with their morphological similarity. *S. guamense* also appeared to be closely related to these species.

Clade 2.3.3 includes *S. hindsianum* (clade *Elaeagnifolium*, Bohs, 2005; Särkinen et al., 2013), an endemic to the Sonoran Desert region of southern Arizona and northern Mexico (Knapp et al., 2017), and a well-supported monophyletic clade of 21 species, most of which have been assigned to sect. *Melongena* (Nee, 1999) or the Old World clade (Levin et al., 2006; Särkinen et al., 2013; Aubriot et al., 2016) of the *Leptostemonum* subgenus.

However, the taxonomic position of five species (*S. albostellatum, S. elatius, S. lasiophyllum, S. medicagineum*, and *S. spirale*) has not yet been clarified, especially with molecular methods. In the Old World clade, there are four groups, A–D, of closely related species.

Clade 2.3.3A comprises members of “Dioicium Complex,” a set of several dioecious species (Whalen, 1984; Bean, 2004) from tropical Australia. Our data show that *S. diversiflorum* and *S. phlomoides* are closely related, and that *S. clarkiae* is a more distant species. *S. sejunctum* is placed outside clade 2.3.3A. This result agrees with the phylogeny based on the analysis of *trnK–matK* and ITS data sets (Martine et al., 2006, 2009).

Four other Australian species, *S. albostellatum, S. esuriale, S. elatius, S. osiricentum*, as well as *S. macrocarpon* (African eggplant), belong to the next clade, 2.3.3B, although with a moderate statistical support. The West African species *S. macrocarpon* was previously assigned to Anguivi Grade (Aubriot et al., 2016, 2018; Gagnon et al., 2021), a group of Old
World *Leptostemonum* species closely related to *S. melongena* (see our clade 2.3.3D below). Respectively, the phylogenetic affinity of *S. macrocarpon* to the Australian species seems somewhat unexpected and can be explained by the presumptive hybrid origin of *S. macrocarpon* (Daunay et al., 2019).

According to our data, *S. albostellatum* and *S. esuriale* from Western Australia show the closest relationship in Clade 2.3.3B, which is in good agreement with the high morphological similarity of these species (Davis and Hurter, 2012). *S. elatius* is also a member of the *S. esuriale* group (Bean, 2013).

S. ossicruentum represents a functionally dioecious bush tomato from northwestern Australia. Earlier, it was recognized as a variant of *S. dioicum*, a member of “Dioicum Complex.” However, later molecular analysis shows that *S. ossicruentum* is either a sister taxon to the rest of this group or represents an independent dioecious lineage (Martine et al., 2016). Our data further supported the second opinion and indicate a phylogenetic affinity between *S. ossicruentum* and members of the *S. esuriale* group.

Clade 2.3.3C comprises five Australian species. Two species, *S. cleistogamum* and *S. horridum*, contain very similar sets of ribotypes in their genomes and appear unresolved in the dendrogram. A sister taxon to them is *S. medicagineum*, while *S. lasiophyllum* and *S. ferocissimum* are more distantly related species. A close relationship among *S. cleistogamum*, *S. horridum*, and *S. medicagineum* has been shown earlier (Bean, 2004, 2012; Levin et al., 2006).

Hence, the Australian *Solanum* species studied here belong to three clades, 2.3.3A, B, and C. Similarly, monophyly of the Australian species was not supported by the analysis of seven nuclear genes (Martine et al., 2019).

Clade 2.3.3D comprises seven species naturally distributed in Africa and Asia. In particular, this clade includes two very morphologically and genetically similar domesticated plants, *S. aethiopicum* (bitter tomato, Ethiopian eggplant) and *S. melongena* as well as their presumptive wild ancestors, *S. anguivi* and *S. incanum*. The second species is very similar and can even be confused with *S. linnaeanum* (Daunay et al., 2001; Doganlar et al., 2002; Prohens et al., 2012). *S. vespertilio*, a species endemic to the Canary Islands, appears to be closely related to the other members of clade 2.3.3D.

Previously, the phylogeny of Old World “spiny solanums” was clarified using plastid and nuclear markers (Aubriot et al., 2016, 2018; Vorontsova and Knapp, 2016; Knapp et al., 2019; Gagnon et al., 2021). It was demonstrated that *S. incanum*, *S. linnaeanum*, and *S. melongena* are closely related and belong to the Eggplant clade, and that *S. aethiopicum*, *S. anguivi*, *S. vespertilio* (and *S. macrocarpon*, which is placed to clade 2.3.3B in our dendrogram) are included in Anguivi Grade outside the Eggplant clade. Hence, our novel data mainly confirm these results.

Surprisingly, *S. anguivi* and morphologically different *S. spirale*, a tetraploid (Randell and Symon, 1976) species from East Asia, are not resolved in the dendrogram (see...
A possible explanation for this result could be the allopolyploid origin of *S. spirale*. In this case, the 5S rDNA inherited from the parent related to *S. anguivi* could be retained in the genome, while the DNA of the other parent was lost. The uniparental inheritance of 5S rDNA in allopolyploids, both young and old, has been reported for several taxonomic groups including Solanaceae (Pontes et al., 2004; Volkov et al., 2017).
Clade 2.3 also comprises three species that do not belong to clades 2.3.1–2.3.3 presented above. Two species, S. crinimum and S. wrightii, represent the clade Androceras/Crinitum, while S. sisymbrifolium belongs to the clade Sisymbriifolium (Levin et al., 2006; Särkinen et al., 2013; Gagnon et al., 2021). The taxonomic position of these species in our dendrogram agrees well with previous results of molecular phylogenetics studies.

Majority of the clades identified in the ML tree was also recognized in the Bayesian dendrogram (Figure 6). However, the monophyly of Clade 2 was not confirmed by Bayesian inference: Clades 2.1, 2.2, and 2.3 are not combined with each other but belong to a basal polytomy in the Solanum genus.

Thus, in this study, we present the phylogeny of the Solanum genus derived from the analysis of SS IGS sequences. Six species (S. albostellatum, S. elatus, S. guamense, S. lasiophyllum, S. mediagineum, and S. spirale) were characterized here for the first time using molecular taxonomy methods. The obtained dendrograms are mainly congruent with the published data for other regions of nuclear and plastid genomes: same major and minor clades were found for the species examined. However, taxonomic relationships between these clades and position of some species (e.g., S. cochoae, S. clivorum, S. macrocarpon, S. spirale) differ from previous results and require further clarification. Taken together, our results show that the SS IGS represents a convenient molecular marker for phylogenetic studies on the Solanum genus. In particular, the simultaneous presence of several variants of rDNA in the genome enables the detection of cases of reticulate evolution such as incomplete lineage sorting and interspecific hybridization.

Molecular Evolution and IGS Diversity in Sect. Petota

One of the species-rich groups in genus Solanum is sect. Petota, which has about 250 members (Hawkes, 1990; Nee, 1999). In our ML dendrogram (Figure 6), sect. Petota belongs to Clade 1.4.2.

To analyze the molecular evolution of SS rDNA in this section and in more details, we assembled IGS ribotypes for 125 accessions representing 83 species (Table 4) and compared the results with our previous data, obtained by cloning and sequencing of SS rDNA of 32 wild species and breeding lines of sect. Petota (Volkov et al., 2001).

Analysis of the IGS sequences revealed that they differ in base substitutions and indels (Figure 7). Same indels mostly occur in a single or some closely related species and, therefore, represent convenient molecular markers for their identification. For example, non-tuber-bearing species S. etuberosum and S. palustre (series Etuberosa; Hawkes, 1990) possess a common specific deletion at the beginning of the IGS, or S. laxissimum and S. violaceimarmoratum (series Conicibaccata) have a deletion in the central part of it (Figure 7). Several species-specific indels in the IGS of the Solanum species have already been described (Volkov et al., 2001), and our actual analysis additionally identifies new ones for the novel species. This finding further confirms our earlier assumption that indels are a characteristic feature of IGS evolution in sect. Petota. We have also argued that because of the high frequency of indels compared to base substitutions, IGS cannot be used for phylogenetic reconstruction of this section applying standard algorithms. However, the indels represent unique evolutionary events that should be considered in taxonomic studies.

Considering the location of group-specific indels I and II as well as GC-duplication (Figure 7), four major structural variants of the IGS were identified. Accordingly, members of sect. Petota can be divided into four groups, A–D.

Group A comprises species that belong to the subsection Estolonifera including the tomato group, and to the series Pinatissecta, Polyadenia, Commersoniana, Circaeofolia, Megistacroloba, Conicibaccata, and Piurana of the subsection Potatoes (Hawkes, 1990; Nee, 1999), or to clades 1+2 and 3 (Spooner et al., 2014; Huang et al., 2019). Also, SV-A was found in four species (S. acroscopicum, S. andeanum, S. abancayense, S. multiinterruptum) that were assigned to ser. Tuberosa (Hawkes, 1990; Nee, 1999) or clade 4 (Spooner et al., 2014; Huang et al., 2019). Group B includes only two species, S. jamesii and S. pinatissectum of ser. Pinatissecta (Hawkes, 1990; Nee, 1999) or clade 1+2 (Huang et al., 2019). This means that the SR-B arose relatively recently during speciation in clade 1+2, just before the divergence of S. jamesii and S. pinatissectum but after their separation from the sister taxon, which was similar to S. stenophyllidium.

Group C includes accessions of three species, S. raphanifolium, S. laxissimum, and S. violaceimarmoratum, which belong to the series Megistacroloba and Conicibaccata (Hawkes, 1990) or clade 4 (Spooner et al., 2014; Huang et al., 2019). Group D embraces numerous species that belong to the series Yungasensa, Megistacroloba, Cuneoalata, Maglia, and Tuberosa (Hawkes, 1990) or clade 4 (Spooner et al., 2014; Huang et al., 2019). SV-C and D were not found outside of clade 4, which, however, also includes four species possessing SV-A. Therefore, SV-C and D arose from SV-A after separation of clades 3 and 4.

Interestingly, in some cases, rDNA repeats representing different structural variants were found in the same plant accession (see below).

We have also found that the central part of the IGS is completely deleted in S. bulbocastanum of the series Bulbocastana (Hawkes, 1990) or clade 1+2 (Huang et al., 2019). Accordingly, the structural organization of ITS characteristic of this species cannot be assessed and used for phylogenetic reconstruction.

Analysis of our data showed that the most common IGS variants are SV-A and-D, and SV-B and-C were found only in four and three species, respectively. In order to assess the molecular diversity of SV-A and-D, we constructed median-joining networks for these two IGS variants using 204 and 353 sequences (Figure 8). In the median-joining networks, the sequences of SV-A and-D are distributed between the six and ten main clusters according to their similarity. In the vast majority of cases, each node corresponds to only one sequence, with the exception of one node in median-joining network A and seven nodes in median-joining network D. These nodes include two to nine ribotypes that mainly represent genomes of different species. Therefore, identical IGS sequence variants can be present in genomes of different species or plant accessions, suggesting their common origin.

SV-D sequences are distributed among ten clusters, D1-D10 (Figure 8). The largest clusters, D1, D3, D6, and D10, contain 50, 56, 68, and 51 sequences, respectively. The sequences included
in cluster D1 are nearly identical to SV-D consensus sequence and, therefore, represent evolutionary ancestral ribotypes, while the other clusters comprise derived sequences containing specific base substitution and indels. Starting from cluster D1, five evolutionary lineages can be distinguished.

Taken together, our data agree well with modern taxonomy, which is based on the application of molecular methods (Spooner et al., 2014; Huang et al., 2019) but are less consistent with the traditional classification of Hawkes (1990). In particular, the sections proposed by Hawkes (1990) are not confirmed, because species from different sections are mixed up and belong to different clusters in the median-joining network. In contrast, our results agree well with the molecular data, since clades 4 North and 4 South (Spooner et al., 2014; Huang et al., 2019) can also be recognized in our median-joining network: members of the North and South clades belong to clusters D1, D7-D10, and D2-D6.

Conserved Sequence Motifs in the Intergenic Spacer of Solanum Species

Comparative sequence analysis revealed that the most conservative regions of the IGS in Solanum species are the 7- and 40-bp-long fragments at the 5′ and 3′ ends (Figure 5). The evolutionary conservation of these regions has already been observed in other plants (Hemleben and Werts, 1988; Crisp et al., 1999; Tynkevich and Volkov, 2019; Ishchenko et al., 2020, 2021), and a possible reason for this seems to be their involvement in the transcription of 5S rDNA by RNA polymerase III (Pol III).

External elements of the Pol III promoter have been previously characterized in Arabidopsis thaliana (Douet and Tourmente, 2007; Vaillant et al., 2007; Layat et al., 2012; Simon et al., 2018). These signals include the TATA motif (so-called TATA-box), GC-dinucleotide, and C nucleotide in positions-28,-13, and-1 bp, respectively. Similar sequences were also found in other plants (Tynkevich and Volkov, 2014; Tynkevich et al., 2015; Ishchenko et al., 2018, 2021). In representatives of the Solanum genus, as well as in Quercus (Tynkevich and Volkov, 2019) and Rosa (Tynkevich and Volkov, 2014), the TATA-box has a length of 7 bp and begins in position-30. Its sequence (TTTAATA) in Solanum is slightly different from that in other groups of plants.

Another external element of the Pol III promoter, the GC-dinucleotide (Douet and Tourmente, 2007) is duplicated in several Solanum species and is located, respectively, both in the typical position-12 and, additionally, in position-14. Similar to Solanum, duplication of this presumptive external promoter element was also found in the Quercus species (Tynkevich and Volkov, 2019).

The third conservative promoter element, cytosine, in position-1 (Douet and Tourmente, 2007; Simon et al., 2018), has been replaced by thymine in more than half of the Solanum species. In addition, we found that the dinucleotide GA in position-3 in the IGS is highly conserved, indicating its possible involvement in transcription initiation.

At the beginning of the IGS in Solanum, like in other genera, the oligo-T motif TTTTTT was found, which probably represents a transcription termination site (Hemleben and Werts, 1988; Simon et al., 2018; de Souza et al., 2020).

The most variable central region of the IGS can be subdivided into (i) AT-rich and (ii) subrepeated regions. Previously, AT-rich regions were found in the IGS of Fabaceae (Hemleben and Werts, 1988) and Poaceae (Röser et al., 2001). AT-rich regions demonstrate a similarity to amplification-promoting sequences (Borisjuk et al., 2000), which may be involved in amplification of 5S rDNA repeats. Also, regions composed of subrepeats were described for the IGS of several plant taxa, e.g., Rosaceae (Tynkevich and Volkov, 2014) and Poaceae (Ishchenko et al., 2018, 2021). Previously, we have demonstrated that structural rearrangements of the variable central region of the IGS in Solanum species of sect. Petota as well as in distantly related S. melongena and S. betaceum are preferentially associated with four classes (A–D) of short direct subrepeats: the IGS evolved mainly by duplications of some sequence motifs, resulting in formation of several variants of subrepeats, which were independently amplified in different sections of the genus after radiation from a common ancestor (Volkov et al., 2001; Davidjuk et al., 2010, 2013).

Intragenomic Heterogeneity and Molecular Evolution of 5S rDNA

It is widely believed that 5S rDNA repeats present in the same genome (at least in diploid species) should be nearly identical because of concerted evolution (Coen et al., 1982; Tynkevich and Volkov, 2014; Barman et al., 2016). In our study, we performed a detailed analysis of 5S rDNA intragenomic sequence diversity and found several ribotypes in all the species studied. Comparative analysis of all available sequences showed that the IGS sequence similarity in Solanum species ranges from 51.4 to 100%. The highest levels were found in S. wrightii and four representatives of the tomato group, namely lycoopersicum var. cerasiforme-2, S. galapagensis, and S. huylasense; each of which had only one ribotype detected. The high intragenomic homogeneity of IGS (over 95%) is also characteristic of other representatives of the tomato group with the exception of S. lycoopersicum-2 and S. corneilomuelleri. The relatively low IGS similarity in S. corneilomuelleri (89.5%) is due to the presence of 10-bp deletion in one ribotype, while no further indels are found in any of the other members of the tomato group. Hence, deletions are very rare during the evolution of IGS in the tomato group, which is in obvious contrast to other Solanum groups, especially to closely related tuber-bearing species of Petota.

Our calculations indicated that the lowest level of intragenomic IGS sequence similarity is demonstrated by S. melongena-1 and -2 (56 and 51.4%), S. sagaradinum (54.9%), S. wendlandii (58.4%), and S. lasiophyllum (59.4%). In S. melongena-1 and -2, it is due to simultaneous existence of short and long (containing extra-long duplication, see Figure 2 and Supplementary Material) repeats in the genome, while in S. melongena-3, which possesses only long repeats, the similarity amounts to 95.2–99.4%. Similarly, in S. lasiophyllum, three adjacent deletions (65 bp in total) present in one of six ribotypes is the main reason for the low level of intragenomic similarity. In contrast, two mechanisms contribute to the low similarity of
IGS in *S. sogarandinum*: (i) a long deletion in one ribotype and (ii) multiple base substitutions in another. In the second case, 33 of 210 bp in the same ribotype was changed compared to the consensus sequence. Notably, these mutations are present in the 3′ IGS region, which likely contains external promoter elements, suggesting putative pseudogenization of the ribotype. Putative 5S rDNA-related pseudogenes have already been described for members of *Solanum* and other genera of Solanaceae (Volkov et al., 2001, 2017).

In *S. wendlandii*, similar to *S. sogarandinum*, two mechanisms, an insertion and a large number of base substitutions, cause increased heterogeneity of IGS sequences (Figure 3). Accordingly, we excluded long (more than 5 bp) deletions and multiple base substitutions from our calculations and found that in this case the minimum level of intragenomic similarity of the IGS in *Solanum* species is around 85–90%.

In general, our results indicate that there are two mechanisms, long indels and multiple base substitutions, that significantly affect the heterogeneity of the IGS in *Solanum* species. Multiple base substitutions are rare events: out of about 900 analyzed sequences, only five ribotypes bearing multiple base substitutions were identified in four plant accessions (*S. kurtzianum*, *S. pinnatisection-2*, *S. sogarandinum-1*, and *S. vernei-3*), while long indels are much more common.

The question, “what can be the source of the IGS intragenomic polymorphism?” arises. There are at least two possible options: (i) new variants emerge in the genome itself by accumulation of mutations and (ii) new variants appear in the genome as a result of introgression of genetic material due to interspecific hybridization. It is well known that in sect. Petota, especially in the *S. brevicaule* complex, interspecific hybridization is widespread at both the diploid and polyploid levels (Hawkes, 1990; Spooner et al., 2014). Among the 125 examined accessions representing sect. Petota, two or more structural variants of the IGS were found in 25 cases, and interspecific hybridization seems to be a plausible explanation for this polymorphism, especially when structurally different IGS variants (e.g., A and D) occur in the same genome. However, further research is needed to confirm this option.

Our data suggest that long indels and multiple base substitutions appeared repeatedly during the molecular evolution of IGS in the *Solanum* genus. However, it seems that they were mostly not conserved and eliminated. Accordingly, the length of IGS and contents of GC pairs did not change significantly during the course of speciation (see above). The likely reason for this negative selection could be the association between indels/multiple base substitutions and pseudogenization of 5S rDNA. Accordingly, it looks that the main road of the IGS molecular evolution seems to be step-wise accumulation of single base substitution or short indels.

Intraspecific 5S rDNA Heterogeneity

It could be anticipated that different accessions of same species possess identical/similar sets of ribotypes. To check this assumption, we examined two to three accessions for 25 diploid species (Tables 1, 2 and Supplementary Material), and in most cases, only one IGS variant was actually found. However, in seven species (*S. ambosinum*, *S. commersonii*, *S. microdontum*, *S. okadae*, *S. phureja*, *S. raphanifolium*, and *S. stenotomum*; Figure 8 and Supplementary Material), one or two structural variants were detected in different accessions, indicating presumptive interspecific hybridization.

Among the species studied, we examined the highest number of accessions in *S. bukasovii*, which was considered one of the ancestors of cultivated potato (Ugent, 1970; Hawkes, 1990; Hosaka, 1995; Spooner et al., 2005; Hardigan et al., 2015). This close relationship was also confirmed in our previous study by analyzing the 5′-external transcribed spacer (ETS) region of nuclear 35S rDNA (Volkov et al., 2003). According to the comparison of whole plastid genomes, the species belongs to clade 4 North (Huang et al., 2019). Respectively, based on its taxonomic position, it might be expected that *S. bukasovii* should possess the IGS variant D. However, SV-A3 was previously found in the buk1 accession (Volkov et al., 2001), which indicates incongruence among different phylogenetic markers. To further clarify the issue, we analyzed ten accessions of *S. bukasovii* in this study and found an extreme variability of the 5S IGS set. Two accessions (buk1 and buk2) contain only SV-A3 in the genome, while six others (buk3, buk4, buk5, buk7, bukm2, and bukm3) possess different D variants, SV-D1,-D4,-D7,-D8,-D9, and -D10 (see Table 4). Two remaining accessions (buk6 and bukm1) have both SV-A3 and -D4 or-D10. The D variants detected in accessions of *S. bukasovii* belong to different clusters in the median-joining network (Figure 8) and are identical or very similar to the D variants of several species (e.g., *S. achacachense*, *S. ambosinum*, *S. canasense*, *S. marinasense*, *S. phureja*, *S. stenotomum*, etc.) belonging to clade 4 North + cultivated (*Huang et al., 2019*). Similarly, the SV-A3 found in *S. bukasovii* is identical/similar to that of *S. abancayense*, *S. multiinterruptum*, *S. raphanifolium*, and *S. chaucha*. This unusual diversity of IGS might indicate a complex hybridogenic origin: i.e., some of the examined accessions could represent natural hybrids between *S. bukasovii* and different Petota species. The genetic heterogeneity of *S. bukasovii* accessions and the putative hybrid origin of some of them by crossing with *S. sparsipilum* or *S. raphanifolium* have recently been demonstrated using plastid and mitochondrial markers (Achakkagari et al., 2020, 2021; Bozan, 2021).

Origin of Polyploid Species

There are several polyploids among the studied species. Two of them, *S. chaucha* and *S. juzepczukii*, are triploids. It was originally postulated that *S. chaucha* arose as a result of hybridization between diploid *S. phureja* and tetraploid *S. tuberosum* ssp. *andigena* (Bukasov, 1939), but later, *S. chaucha* was recognized as the autotriploid of *S. phureja* (Bukasov, 1978). In contrast, Hawkes (1962, 1990) suggested that *S. chaucha* originated from hybridization between *S. tuberosum* ssp. *andigena* and diploid species *S. stenotomum*. Our analysis indicates an allotriploid origin of *S. chaucha*, as three structural variants of IGS, SV-A3,-D8, and-D10, are found in its genome (Table 4 and Figure 8). The molecular data confirm the close relationship among *S. chaucha*, *S. phureja* (accession phu2
but not phu1), *S. tuberosum* ssp. *andigena*, and a diploid species, *S. stenotomum* subsp. *goniocalyx*; all of which have SV-D8. However, the origin of *S. chaucha* appeared to be more complicated, because other structural variants of the IGS had to be inherited from species belonging to clusters A3 and D10.

It is widely believed that the triploid species *S. jusepczukii* originated from a natural cross between a cultivated diploid, *S. stenotomum*, and the wild tetraploid species *S. acaule* (maternal form), and pentaploid species *S. curtulorum* arose from a combination of non-reduced gamete of *S. jusepczukii* (3×, maternal form) with a reduced (2×) gamete of tetraploid *S. tuberosum* ssp. *andigena* (Bukasov, 1939; Hawkes, 1962, 1990; Schmiediche et al., 1980). The application of nuclear molecular markers confirmed this scenario (Rodriguez et al., 2010), but an alternative origin of *S. curtulorum* by hybridization of triploid species of the Andigenum group (non-reduced gamete, maternal form) and *S. acaule* was later proposed (Gavrilenko et al., 2013; Spooner et al., 2014). We found that the above-mentioned species contain the following IGS variants: *S. acaule*: SV-D10, *S. jusepczukii*: SV-A2 and -D2; *S. tuberosum* ssp. *andigena*: SV-D6,-D8, and -D9; *S. curtulorum*: SV-A2,-D1,-D2,-D9, and -D10. Three sets of IGS variants were identified for three accessions of *S. stenotomum* (stn1: SV-D1,-D9; stn2: SV-D4; gon: SV-D8). Remarkably, five IGS structural variants have been identified for pentaploid *S. curtulorum* that demonstrate the complex hybrid nature of this species. The analysis of the results showed that several common IGS structural variants are present in genomes of the examined species, which are correspondingly co-localized in the median-joining network (see Figure 8).

However, no expected additivity of IGS structural variants from the presumptive parents in the derived allopolyploid progeny was found. It looks probable that the origin of *S. jusepczukii* and *S. curtulorum* may involve more parental diploids and requires further clarification using more plant accessions and additional molecular markers.

Two structural variants of IGS, SV-A2, and -D1, are present in the genome of *S. medians*, indicating its origin from a cross between potato species included in clusters A2 and D1. For *S. medians*, diploid and triploid populations were reported (Hijmans et al., 2007). Unfortunately, we could not find in SRA information about the ploidy level of the plant accession analyzed here.

According to a GISH analysis of meiotic preparations, *S. stoloniferum* appears to be an allotetraploidy with a genomic constitution of AABB. It has been suggested that the species originated from *S. verrucosum* as the A genome donor and another North or Central American diploid species (e.g., *S. cardophyllum*, *S. ehrenbergii*, or *S. jamesii*) as the B genome donor (Hijmans et al., 2007). In that case, regarding our data (Table 4 and Figure 8), it is expected that *S. stoloniferum* inherited SV-A1, -A2, or -B from *S. cardophyllum*, *S. ehrenbergii*, or *S. jamesii*, respectively, as well as SV-D4 from *S. verrucosum*. However, *S. stoloniferum* possesses only D-variants of IGS, namely, SV-D1 and SV-D3, that could be inherited from *S. amboiimum* and from one of the species that belong to cluster D3.

Previously, we have discussed the presumptive origin of a tetraploid, *S. acaule*, and *S. tuberosum* as well as hexaploids *S. demissum* and *S. iopetalum* (Volkov et al., 2001). The new data confirm the close relationship between *S. demissum* and *S. acaule* (cluster D10) and more distant position of *S. iopetalum* (cluster D6), and provide new information on putative diploid ancestors of the polyploid species. Our novel data also show that the IGS variants of two accessions of *S. tuberosum* ssp. *andigena* belong to different clusters (tbrA1: clusters D4, D8, and D9, and tbrA2: clusters D3 and D10), indicating that these accessions have an independent hybrid origin from different parental diploids.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.

AUTHOR CONTRIBUTIONS

RV, YT, and IP conceived and designed the study. YT, AS, and LK performed the experiments and collected the material. YT, RV, AS, IP, and VH analyzed the data. RV and VH wrote the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This study was supported by the Ministry of Education and Science of Ukraine (Grant No. 0121U111109), Alexander v. Humboldt Foundation (Bonn, Germany) Fellowship for RV, and DAAD (German Academic Exchange Service) Research Fellowships for IP and YT.

ACKNOWLEDGMENTS

We are thankful to Frank van Caekenberghe (Meise Botanical Garden, Belgium), Tatiana Derevenko (Botanical Garden of the Chernivtsi National University, Ukraine), David Orr (Waimea Arboretum and Botanical Garden, Hawaii, United States), and Edith Stabentheiner (University of Graz, Austria) for providing the plant material. We are particularly grateful to the staff at Frontiers for exempting our article from paying the publication fee. We decided to donate this money to support the Ukrainian army and the needs of refugees from Russian aggression.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2022.852406/full#supplementary-material
Gagnon, E., Hilgenhof, R., Orejuela, A., McDonnell, A., Sablok, G., Aubriot, X., et al. (2021). Phylogenomic data reveal hard polytomies across the backbone of the large genus Solanum (Solanaceae). bioRxiv [Preprint] doi: 10.1101/2021.03.25.436973

Gálán, J. A., Rosato, M., and Rosselló, J. A. (2014). Partial sequence homogenization in the SS multigene families may generate sequence chimeras and spurious results in phylogenetic reconstructions. Syst. Biol. 63, 219–230. doi: 10.1093/sysbio/syt101

Garcia, S., Garnatje, T., and Kovarik, A. (2012). Plant DNA database: ribosomal DNA loci information goes online. Chromosoma 121, 389–394. doi: 10.1007/s00412-012-0368-7

Gavrilenko, T., Antonova, O., Shuvalova, A., Krylova, E., Alpatyeva, N., Spooner, D. M., et al. (2016). Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Ann. Bot. 97, 205–216. doi: 10.1093/abo/mct031

Hawkes, J. G. (1962). The origin of Gagnon, E., Hilgenhof, R., Orejuela, A., McDonnell, A., Sablok, G., Aubriot, X., Hemleben, V., and Werts, D. (1988). Sequence organization and putative functions of plant genome. vol. 4275, pp. 131–142.

Hijmans, R. J., Gavrilenko, T., Antonova, O., Shuvalova, A., Krylova, E., Alpatyeva, N., Spooner, D. M., et al. (2016). Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Ann. Bot. 97, 205–216. doi: 10.1093/abo/mct031

Hosaka, K. (1995). Successive domestication and evolution of the Andean potatoes revealed by chloroplast DNA restriction endonuclease analysis. Theor. Appl. Genet. 90, 350–363. doi: 10.1007/BF00221977

Huang, B., Rues, H., Liang, Q., Colleoni, C., and Spooner, D. M. (2019). Analyses of 202 plastid genomes elucidate the phylogeny of Solanum section Petota. Sci. Rep. 9:4454. doi: 10.1038/s41598-019-40790-5

Huson, D. H., Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267. doi: 10.1093/molbev/msj030

Ishchenko, O. O., Bednarska, I. O., and Panchuk, I. I. (2021). Comparative analysis of 5S ribosomal DNA distribution in plant genome. vol. 375, pp. 31–40.

Ishchenko, O. O., Panchuk, I. I. (2021). Application of 5S ribosomal DNA of the large genus Solanum sect. Solanum. Plant Syst. Evol. 305, 21–30. doi: 10.1007/s00606-008-0991-2

Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. doi: 10.1093/molbev/msy996

Layat, B., Sáez-Vásquez, I., and Tourturmé, S. (2012). Regulation of Pol I-transcribed 45S rDNA and Pol III-transcribed 5S rDNA in Arabidopsis. Plant Cell Physiol. 53, 267–276. doi: 10.1093/pcp/pcr177

Levin, R. A., Myers, N. R., and Bohnsack, J. F. (2006). Phylogenetic relationships among the “spiny Solanums” (Solanum subgenus Leptostemonum, Solanaceae). Am. J. Bot. 93, 157–169. doi: 10.1093/abqar.93.1.157

Mahelka, V., Kopecký, D., and Baum, B. R. (2013). Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome organization of the agronomically important grass Thinopyrum intermedium (Triticaceae). Mol. Biol. Evol. 30, 2065–2086. doi: 10.1093/molbev/mst106

Martine, C. T., Anderson, G. J., and Les, D. H. (2009). Gender-bending subgenomes: molecular phylogenetics of cryptically dioecious Solanum in Australia. Aust. Syst. Bot. 22, 107–120. doi: 10.1071/SB07039

Matyasek, R., Podzimek, J., Franjević, D., Bockor, L., and Besendorfer, V. (2016). Diverse plastid DNA loci information goes online. Chromosoma 125, 537–549. doi: 10.1007/s00412-016-0600-1

Mlinarček, J., Franjević, D., Bockor, L., and Besendorfer, V. (2016). New functionally dioecious bush tomato from Northwestern Australia, Solanum osircuum var. may utilize “trample burr” dispersal. PhytoKeys 63, 1–9. doi: 10.3897/phytokeys.63.77754

Mol. Biol. Evol. 30, 2065–2086. doi: 10.1093/molbev/mst106

Mol. Biol. Evol. 30, 2065–2086. doi: 10.1093/molbev/mst106
Tynkevich, Y. O., and Volkov, R. A. (2019). SS ribosomal DNA of distantly related Quercus species: molecular organization and taxonomic application. Cytol. Genet. 53, 459–466. doi: 10.3103/S0095452719060100

Ugent, D. (1970). The potato. Science 170, 1161–1166.

Vaillant, L., Tuitois, S., Cuvillier, C., Schubert, L., and Tourmente, S. (2007). Regulation of Arabidopsis thaliana SS rRNA genes. Plant Cell Physiol. 48, 745–752. doi: 10.1093/pcp/pcm043

Vizoso, M., Vierna, J., González-Tizón, A. M., and Martínez-Lage, A. (2011). The SS rDNA gene family in mollusks: characterization of transcriptional regulatory regions, prediction of secondary structures, and long-term evolution, with special attention to mytilidaceae mussels. J. Heredity 102, 433–447. doi: 10.1093/jhered/esr046

Volkov, R. A., Borisjuk, N. V., Panchuk, I. L., Schweizer, D., and Hemleben, V. (1999b). Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum. Mol. Biol. Evol. 16, 311–320. doi: 10.1093/oxfordjournals.molbev.a002612

Volkov, R. A., Bachmair, A., Panchuk, I. L., Kostyshyn, S. S., and Schweizer, D. (1999a). 255-185 rDNA intergenic spacer of Nicotiana sylvestris (Solanaceae): primary and secondary structure analysis. Plant Syst. Evol. 218, 89–97. doi: 10.1007/bf01087037

Volkov, R. A., Komarova, N. Y., and Hemleben, V. (2007). Ribosomal DNA in plant hybrids: inheritance, rearrangement, expression. Syst. Biodivers. 5, 261–276. doi: 10.1017/S1474576407000247

Volkov, R. A., Komarova, N. Y., Panchuk, I. L., and Hemleben, V. (2003). Molecular evolution of rDNA external transcribed spacer and phylogeny of sect. Petota (genus Solanum). Mol. Phylogenet. Evol. 29, 187–202. doi: 10.1016/S1055-7903(03)00092-7

Volkov, R. A., Medina, F. J., Zentgraf, U., and Hemleben, V. (2004). Molecular cell biology: organization and molecular evolution of rDNA, nuclear dominance, and nucleolus structure. Prog. Bot. 65, 106–146. doi: 10.1007/978-3-642-18191-0_5

Volkov, R. A., Panchuk, I. L., Borisjuk, N. V., Hosiaawa-Baranska, M., Maluszynska, J., and Hemleben, V. (2017). Evolutional dynamics of 45S and SS ribosomal DNA in ancient allohexaploid Atropa belladonna. BMC Plant Biol. 17:21. doi: 10.1186/s12870-017-0978-6

Volkov, R. A., Zanke, C., Panchuk, I. L., and Hemleben, V. (2001). Molecular evolution of 5S rDNA of Solanum species (sect. Petota): application for molecular phylogeny and breeding. Theor. Appl. Genet. 103, 1273–1282. doi: 10.1007/s0012200100670

Vorontsova, M. S., and Knapp, S. (2016). A revision of the “spiny Solanums”, Solanum subgenus Leptostemonum (Solanaceae) in Africa and Madagascar. Syst. Bot. Monogr. 99, 1–436. doi: 10.3897/phytokeys.145.48531

Vozárová, R., Herklots, V., Kovařík, A., Tynkevich, Y. O., Volkov, R. A., Ritz, C. M., et al. (2021). Ancient origin of two 5S rDNA families dominating in the genus Rosa and their behavior in the Canina-type meiosis. Front. Plant Sci. 12:643548. doi: 10.3389/fpls.2021.643548

Weese, T. L., and Bohs, L. (2007). A three-gene phylogeny of the genus Solanum (Solanaceae). Syst. Bot. 32, 445–463. doi: 10.1600/036344007x1179671

Wesley, M. D. (1984). Conspicuous species of groups in Solanum subgenus Leptostemonum. Genet. Herb. 12, 179–282. doi: 10.2307/3391723

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Tynkevich, Shefylist, Kozub, Hemleben, Panchuk and Volkov. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.