The Fekete-Szegö Problem for Subclasses of Analytic Functions Associated With Touchard Polynomials

Khalifa AlShaqsi
Department of Information Technology Nizwa College of Technology Ministry of Manpower, Oman
E-mail: khalifa.alshaqsi@nct.edu.om

Abstract. In this paper, we solve the Fekete-Szegö problem for a new subclasses of analytic functions defined by the integral operator $I(n,m)(f)$.

1. Introduction
Let A be the family of all analytic functions f defined on $U = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$ and A_0 be the family of functions $f \in A$ normalized by the conditions $f(0) = 0, f'(0) = 1$. Such functions $f \in A_0$ have the Taylor series expansion given by

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \quad (z \in U). \quad (1)$$

Also, let A be the family of functions $f \in A_0$ which are univalent and $\phi(z)$ be an analytic function with positive real part on A with $\phi(0) = 1, \phi'(0) > 0$ which maps the unit disk U onto a region starlike with respect to 1 which is symmetric with respect to the real axis.

In 1994, Ma and Minda [1] introduced and studied the following classes:

Let $S^*(\phi)$ be the class of functions in $f \in A$ for which

$$\frac{zf'(z)}{f(z)} < \phi(z) \quad (z \in U),$$

and $C(\phi)$ be the class of functions in $f \in A$ for which

$$1 + \frac{zf''(z)}{f'(z)} < \phi(z) \quad (z \in U),$$

where \prec denotes the subordination between analytic functions. They have obtained the Fekete-Szegö inequality for the functions in the class $C(\phi)$. Since $f \in C(\phi)$ if and only if $zf'(z) \in S^*(\phi)$, we get the Fekete-Szegö inequality for functions in the class $S^*(\phi)$. For a brief history of the Fekete-Szegö problem for class of starlike, convex, and close-to convex functions, see the paper by Srivastava et al. [2].

Recently, the author [3] introduce a series with Touchard polynomials coefficients after the second force as following:
\[F_n(z, m) = z + \sum_{k=2}^{\infty} \frac{m^{k-1}(k-1)^n}{(k-1)!} e^{-m z^k}, \quad (m > 0, n \geq 0). \] (2)

It can be easily by ratio test showed that the above series is convergent and the radius of convergence is infinity.

The Hadamard product (or convolution) of \(f \) given by (1) and \(g = z + \sum_{k=2}^{\infty} b_k z^k \), given by

\[f(z) \ast g(z) = (f \ast g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k. \]

Now, for \(m > 0 \) and \(n \geq 0 \), we introduce the operator \(I(n, m) : \mathcal{A} \rightarrow \mathcal{A} \) as following:

\[I f(z) = I(n, m) f(z) = z + \sum_{k=2}^{\infty} \frac{m^{k-1}(k-1)^n}{(k-1)!} e^{-m z^k}, \quad (m > 0, n \geq 0). \]

Definition 1. Let \(\phi(z) \) be a univalent starlike function with respect to 1 which maps the unit disc \(U \) onto a region in the right half plane which is symmetric with respect to the real axis, \(\phi(0) = 1 \) and \(\phi'(0) > 0 \). For \(m > 0, n \geq 0 \) the class \(\mathcal{M}_n^m(\phi) \) consists of all functions \(f(z) \in \mathcal{A} \) satisfying the following subordination:

\[\frac{z(I f(z))'}{I f(z)} \prec \phi(z), \quad (z \in U). \] (3)

A classical problem in geometric function theory of complex analysis, which was settled by Fekete and Szegö [4], is to find for each \(\nu \in [0, 1] \) the maximum value of the coefficient functional \(\Phi_\nu(f) \) given by

\[\Phi_\nu(f) = |c_2 - \nu c_1^2| \]

over the class \(\mathcal{S} \) of univalent functions \(f \) in the open unit disk \(U \) (see, for details,[5], [6],[7]).

To prove our main result, we need the following:

Lemma 1. [1] If \(p_1(z) = 1 + c_1 z + c_2 z^2 + \ldots \) is an analytic function with positive real part in \(U \), then

\[|c_2 - \nu c_1^2| \leq \begin{cases}
-4\nu + 2 & \text{if } \nu \leq 0, \\
2 & \text{if } 0 \leq \nu \leq 1, \\
4\nu - 2 & \text{if } \nu \geq 1.
\end{cases} \]

When \(\nu < 0 \) or \(\nu > 1 \), the equality holds if and only if

\[p_1(z) = \frac{(1+z)/(1-z)}{(1+z)/(1-z)} \]

or one of its rotations. If \(0 < \nu < 1 \), then equality holds if and only if

\[p_1(z) = \frac{(1+z^2)/(1-z^2)}{(1+z^2)/(1-z^2)} \]

or one of its rotations. If \(\nu = 0 \), the equality holds if and only if

\[p_1(z) = \left(\frac{1}{2} + \frac{1}{2} \gamma \right) \frac{1+z}{1-z} + \left(\frac{1}{2} \gamma - \frac{1}{2} \right) \frac{1-z}{1+z} \quad (0 \leq \gamma \leq 1), \]
or one of its rotations. If \(\nu = 1 \), the equality holds if and only if
\[
\frac{1}{p_1(z)} = \left(\frac{1}{2} + \frac{1}{2} \gamma \right) \frac{1 + z}{1 - z} + \left(\frac{1}{2} + \frac{1}{2} \gamma \right) \frac{1 - z}{1 + z} \quad (0 \leq \gamma \leq 1).
\]

Also the above upper bound is sharp, it can be improved as follows when \(0 < \nu < 1 \):
\[
|c_2 - \nu c_1^2| + \nu |c_1|^2 \leq 2 \quad (0 < \nu \leq 1/2)
\]
and
\[
|c_2 - \nu c_1^2| + (1 - \nu) |c_1|^2 \leq 2 \quad (1/2 < \nu \leq 1).
\]

2. Main results

We first consider the functional \(|a_3 - \mu a_2^2| \) for \(\mu \in \mathbb{C} \).

Theorem 1. Let \(\phi(z) = 1 + B_1 z + B_2 z^2 + ... \) where \(\phi(z) \in \mathcal{A} \) and \(\phi(0) > 0 \). If \(f(z) \) given by (1) belongs to the class \(M_n^m(\phi) \) and if \(\mu \in \mathbb{C} \), then
\[
|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{B_3}{2^{m+1}e^{-m}} - \frac{B_1}{2^{m}e^{-m}} + \frac{B_1^2}{2^{2m}e^{-m}} & \text{if } \mu \leq \sigma_1; \\
\frac{B_3}{2^{m+1}e^{-m}} + \frac{B_1}{2^{m}e^{-m}} - \frac{B_1^2}{2^{2m}e^{-m}} & \text{if } \sigma_1 \leq \mu \leq \sigma_2; \\
\frac{B_3}{2^{m+1}e^{-m}} + \frac{B_1}{2^{m}e^{-m}} - \frac{B_1^2}{2^{2m}e^{-m}} & \text{if } \mu \geq \sigma_2.
\end{cases}
\]

where
\[
\sigma_1 := \frac{m^2 e^{-2m} \{ (B_2 - B_1) + B_1^2 \}}{2^m m^2 e^{-m} B_1^2},
\]
\[
\sigma_2 := \frac{m^2 e^{-2m} \{ (B_2 + B_1) + B_1^2 \}}{2^m m^2 e^{-m} B_1^2}.
\]

The result is sharp.

Proof. If \(f(z) \in M_n^m(\phi) \), then there exists a Schwarz function \(w(z) \) which is analytic in \(U \) with \(w(0) = 0 \) and \(|w(z)| < 1 \) in \(U \) and such that
\[
\frac{z(I f(z))^\prime}{I f(z)} = \phi(w(z)).
\]

Define the function \(p_1(z) \) by
\[
p_1(z) = \frac{1 + w(z)}{1 - w(z)} = \phi(w(z)) = 1 + c_1 z + c_2 z^2 +
\]

Since \(w(z) \) is a Schwarz function, we see that \(\Re p_1(z) > 0 \) and \(p_1(0) = 1 \). Define the function \(p(z) \) by:
\[
p(z) = \frac{z(I f(z))^\prime}{I f(z)} = 1 + b_1 z + b_2 z^2 +
\]

In view of the equations (5), (6) and (7), we have
\[p(z) = \phi \left(\frac{p_1(z) - 1}{p_1(z) + 1} \right) = \phi \left(\frac{c_1z + c_2z^2 + \ldots}{2 + c_1z + c_2z^2 + \ldots} \right) \]

\[1 + b_1z + b_2z^2 + \ldots = \phi \left(\frac{1}{2}c_1z + \frac{1}{2}(c_2 - \frac{1}{2}c_1^2)z^2 + \ldots \right) = 1 + B_1 \frac{1}{2}c_1z + B_1 \frac{1}{2}(c_2 - \frac{1}{2}c_1^2)z^2 + \ldots + B_2 \frac{1}{4}c_1^2z^2 + \ldots \]

Thus

\[b_1 = \frac{1}{2}B_1c_1 \text{ and } b_2 = \frac{1}{2}B_1(c_2 - \frac{1}{2}c_1^2) + \frac{1}{4}B_2c_1^2. \]

Therefore we have

\[a_3 - \mu a_2^2 = \frac{B_1}{2^{n+1}m^2e^{-m}} \left\{ c_2 - c_1^2 \left[\frac{1}{2} \left(1 - \frac{B_2}{B_1} \right) + \frac{2^n m^2 e^{-m} \mu - m^2 e^{-2m}}{m^2 e^{-2m} B_1} \right] \right\} \]

\[= \frac{B_1}{2^{n+1}m^2e^{-m}} [c_2 - \nu c_1^2] \]

where

\[\nu = \frac{1}{2} \left(1 - \frac{B_2}{B_1} + \frac{2^n m^2 e^{-m} \mu - m^2 e^{-2m}}{m^2 e^{-2m} B_1} \right). \]

If \(\mu \leq \sigma_1 \), then by applying Lemma 1, we get

\[|a_3 - \mu a_2^2| \leq \frac{B_2}{2^n m^2 e^{-m}} - \frac{\mu B_1^2}{m^2 e^{-2m}} + \frac{B_1^2}{2^n m^2 e^{-m}}, \]

which is the first part of assertion (4).

Similarly, if \(\mu \geq \sigma_2 \), we get

\[|a_3 - \mu a_2^2| \leq -\frac{B_2}{2^n m^2 e^{-m}} + \frac{\mu B_1^2}{m^2 e^{-2m}} - \frac{B_1^2}{2^n m^2 e^{-m}}, \]

If \(\mu = \sigma_1 \), then equality holds if and only if

\[p_1(z) = \left(\frac{1 + \gamma}{2} \right) \frac{1 + z}{1 - z} + \left(\frac{1 - \gamma}{2} \right) \frac{1 - z}{1 + z} \quad (0 \leq \gamma \leq 1; z \in U) \]

or one of its rotations.

Also, if \(\mu = \sigma_2 \), then

\[\frac{1}{2} \left(1 - \frac{B_2}{B_1} + \frac{2^n m^2 e^{-m} \mu - m^2 e^{-2m}}{m^2 e^{-2m} B_1} \right) = 0. \]

Therefore,

\[\frac{1}{p_1(z)} = \left(\frac{1 + \gamma}{2} \right) \frac{1 + z}{1 - z} + \left(\frac{1 - \gamma}{2} \right) \frac{1 - z}{1 + z} \quad (0 < \gamma < 1; z \in U) \]
Finally, we see that

\[|a_3 - \mu a_2^2| = \frac{B_1}{22n^2m^2e^{-m}} \left| c_2 - c_1^2 \left[\frac{1}{2} \left(1 - \frac{B_2}{B_1} \right) + \frac{2n^2m^2e^{-m}\mu - m^2e^{-2m}}{m^2e^{-2m}B_1} \right] \right| \]

and

\[\max \left| \frac{1}{2} \left(1 - \frac{B_2}{B_1} + \frac{2n^2m^2e^{-m}\mu - m^2e^{-2m}}{m^2e^{-2m}B_1} \right) \right| \quad (\sigma_1 \leq \mu \leq \sigma_2). \]

Therefore using Lemma 1, we get

\[|a_3 - \mu a_2^2| = \frac{B_1 |c_1|}{22n^2m^2e^{-m}} \leq \frac{B_1}{2n^2m^2e^{-m}}, \quad (\sigma_1 \leq \mu \leq \sigma_2). \]

If \(\sigma_1 < \mu < \sigma_2 \), then we have

\[p_1(z) = \frac{1 + \lambda z^2}{1 - \lambda z^2}, \quad (0 \leq \lambda < 1). \]

Our result now follows by an application of Lemma 1. To show that these bounds are sharp, we define the functions \(K^\phi_\delta (\delta = 2, 3, ...) \) by

\[\frac{z(IK^\phi_\delta(z))'}{IK^\phi_\delta(z)} = \phi(\delta^{-1}), \quad K^\phi_\delta(0) = 0 = (K^\phi_\delta(0))' - 1 \]

and the function \(F_\gamma \) and \(G_\gamma \) \((0 \leq \gamma \leq 1) \) by

\[\frac{z(IF_\gamma(z))'}{IF_\gamma(z)} = \phi \left(\frac{z(z + \gamma)}{1 + \gamma z} \right), \quad F_\gamma(0) = 0 = (F_\gamma(0))' - 1 \]

and

\[\frac{z(IG_\gamma(z))'}{IG_\gamma(z)} = \phi \left(-\frac{z(z + \gamma)}{1 + \gamma z} \right), \quad G_\gamma(0) = 0 = (G_\gamma(0))' - 1 \]

Clearly the functions \(K^\phi_\delta, F_\gamma, G_\gamma \in I(\phi) \). Also we write \(K^\phi := K^\phi_2 \). If \(\mu < \sigma_1 \) or \(\mu > \sigma_2 \), then the equality holds if and only if \(f \) is \(K^\phi \) or one of its rotations. When \(\sigma_1 < \mu < \sigma_2 \), the equality holds if and only if \(f \) is \(K^\phi \) or one of its rotations. If \(\mu = \sigma_1 \) then the equality holds if and only if \(f \) is \(F_\gamma \) or one of its rotations. If \(\mu = \sigma_2 \) then the equality holds if and only if \(f \) is \(G_\gamma \) or one of its rotations. \(\square \)

Remark 1. If \(\sigma_1 \leq \mu \leq \sigma_2 \), then in view of Lemma 1, Theorem 1 can be improved. Let \(\sigma_3 \) be given by

\[\sigma_3 := \frac{m^2e^{-2m}(B_1^2 + B_2^2)}{2n^2m^2e^{-m}B_1^2} \]

If \(\sigma_1 \leq \mu \leq \sigma_3 \), then

\[|a_3 - \mu a_2^2| + \frac{m^2e^{-2m}}{2n^2m^2e^{-m}B_1^2} \left[B_1 - B_2 + \frac{2n^2m^2e^{-m}\mu - m^2e^{-2m}}{m^2e^{-2m}B_1} \right] |a_2|^2 \leq \frac{B_1}{2n^2m^2e^{-m}}. \]

If \(\sigma_3 \leq \mu \leq \sigma_2 \), then

\[|a_3 - \mu a_2^2| + \frac{m^2e^{-2m}}{2n^2m^2e^{-m}B_1^2} \left[B_1 + B_2 - \frac{2n^2m^2e^{-m}\mu - m^2e^{-2m}}{m^2e^{-2m}B_1} \right] |a_2|^2 \leq \frac{B_1}{2n^2m^2e^{-m}}. \]
Proof. For the values of \(\sigma_1 \leq \mu \leq \sigma_3 \), we have

\[
|a_3 - \mu a_2^2| + (\mu - \sigma_1)|a_2|^2 = \frac{B_1}{2n+1} \left(c_2 - \nu c_1^2 \right) + (\mu - \sigma_1) \frac{B_1^2}{4m^2 e^{-2m}} |c_1|^2
\]

\[
= \frac{B_1}{2n+1} \left(c_2 - \nu c_1^2 \right) + \left(\mu - \frac{m^2 e^{-2m} (B_2 - B_1 + B_1^2)}{2n^2 e^{-m} B_1^2} \right) \frac{B_1^2}{4m^2 e^{-2m}} |c_1|^2
\]

\[
= \frac{B_1}{(n+2)(n+2)(1+2\lambda)} \left\{ \frac{1}{2} \left[|c_2 - \nu c_1^2| + \nu |c_1|^2 \right] \right\}
\]

Similarly, for the values of \(\sigma_3 \leq \mu \leq \sigma_2 \), we write

\[
|a_3 - \mu a_2^2| + (\sigma_2 - \mu)|a_2|^2 = \frac{B_1}{2n+1} \left(c_2 - \nu c_1^2 \right) + (\sigma_2 - \mu) \frac{B_1^2}{4m^2 e^{-2m}} |c_1|^2
\]

\[
= \frac{B_1}{2n+1} \left(c_2 - \nu c_1^2 \right) + \left(\mu - \frac{m^2 e^{-2m} (B_2 + B_1 + B_1^2)}{2n^2 e^{-m} B_1^2} \right) - \mu \right) \frac{B_1^2}{4m^2 e^{-2m}} |c_1|^2
\]

\[
= \frac{B_1}{(n+2)(n+2)(1+2\lambda)} \left\{ \frac{1}{2} \left[|c_2 - \nu c_1^2| + (1 - \nu |c_1|^2) \right] \right\}
\]

\[
\leq \frac{B_1}{(n+2)(n+2)(1+2\lambda)}
\]

Thus, the proof of Remark 1 is evidently completed. \(\square \)

Acknowledgement

The work here is supported by TRC-Oman research grant: BFP/RGP/CBS/18/054.

References

[1] W. Ma and D. Minda 1994 Proc. Conf. Com. Ana. Z. Li, F. Ren, L. Yang, and S. Zhang(Eds.) Int. Press 157-169
[2] H. M. Srivastava and S. Owa 1984 Math. Japon. 49 383-389
[3] K. AlShaqsi 2017 AIP Conf. Proc. Vol. 1830
[4] M. Fekete and G. Szego 1933 J. Lond. Math. Soc. 8 85âŠ’89
[5] A. W. Goodman 1983 (Mariner, Tampa, Florida)
[6] Ch. Pommerenke 1975 (Vandenhoek and Ruprecht, GÃ¶ttingen)
[7] H. M. Srivastava and S. Owa 1922 World Scientific (Singapore, New Jersey, London and Hong Kong)