Open String on Symmetric Product

東京大学大学院理学系研究科物理学専攻
藤 博之

1 Introduction

近年の弦理論の発展において、弦理論と duality によって結び付けられる M 理論の存在が提唱された。この M 理論の非摂動的定式化として、Matrix Theory[1]や Matrix String Theory[2]がある。特に Matrix String Theory は、1+1次元の超対称ゲージ理論によって定式化を行う。このゲージ理論は赤外極限において対称積空間 $S^N \mathbb{R}^8$ 上の共形場理論になることが知られており、さらに対称積空間上の共形場理論は、その spectrum を調べると第二量子化された弦理論と等価であることが分かれる。こうした研究は主に closed string の理論に対して行われているので、本研究[3]ではそれを open string の理論へ拡張する為に対称積空間上の open string の分配関数を計算し、その spectrum を考察した。

2 Open String on $S^N M$

通常の open string はその両端で

$$ \langle X_R(\sigma^0, \sigma^1) \pm X_L(\sigma^0, \sigma^1) \rangle |_{\sigma^1 = 0, \pi} = 0 $$

といった境界条件に従う。定義により、σ に関する微分は略す。この際、+ の場合は Neumann 型の境界条件を表し、−の場合は Dirichlet 型の境界条件を表す。一方 target space が orbifold M / Γ である場合の境界条件は、

$$ \langle X_R(\sigma^0, \sigma^1) \pm f^J X^J_L(\sigma^0, \sigma^1) \rangle |_{\sigma^1 = 0, \pi} = 0 $$

と一般化される。但し Γ は離散群を表し、$f \in \Gamma$ である。ここで左右対称な境界条件を得る為に、f に対し条件 $f^2 = 1$ を課すことになる。対称積空間 $S^N M (= M^N / S_N)$ の場合には、この条件により f は対称群 S_N の共役類 $\{1\}$, $\{2\}$ に属さなければならない。この共役類は $[f] = \{1\}$ の場合、long open string の端を表し、ここでは Neumann 型に選ぶことにする。一方 $[f] = \{2\}$ の場合は、例えば $f = (12)$ とするとき

$$ \langle X_R(\sigma^0, \sigma^1) \pm X_L(\sigma^0, \sigma^1) \rangle |_{\sigma^1 = 0, \pi} = 0 $$

となることから分かるように、f の open string の端を繋ぐ条件を表し、さらに繋ぐ為に Dirichlet 型の境界条件を選ぶ。こうした境界条件を持つ open string の Hilbert 空間は、$\sigma^1 = 0, \pi$ での boundary twist $f_1, f_2 \in \Gamma$ によって H_{f_1, f_2} と決定される。

以下、対称積空間 $S^N \mathbb{R}^{24}$ 上の open string に対する分配関数を求めることにすること。各 twist の間の関係は、以下のようにある。時間方向に沿って境界条件が不変であることから $g \cdot f_1 = f_1 \cdot g, g \cdot f_2 = f_2 \cdot g$ が要請され、left-mover と right-mover の world-sheet を consistent に貼り合わせる為には $g = f_2^{-1} f_1$ が要請される。これらの条件を用いて、annulus diagram に対する分配関数 Z^A_N は、

$$ Z^A_N = \frac{1}{|S_N|} \sum_{h, g, f_1, f_2 \in S_N} \text{Tr}_{H_{f_1, f_2}} (g q^{L_0}) $$

と表される。但し、$|S_N|$ は対称群の位数を表す。

この分配関数 Z^A_N は、既約分解を行って各既約成分に対する分配関数を求め、最後にそれらに組合せによる重みを付けて足し上げることによって計算される。既約分解に現れる open string の既約成分を具体的に $n = 2, m = 1$ の場合に見ると、図 1(A), (B), (C), (D) の様に open string の world-sheet の貼り合わせによって表現される。これらの図を見てみると、図 1(A) は $f_1 = (1)(2), f_2 = (12), g = 1$ であり、long string の立場から見ると world-sheet は annulus の topology を持つことが分かる。同様に図 1(B) は $f_1 = f_2 = (12), g = 1$ で torus の topology を持ち、図 1(C) は $f_1 = (1)(2), f_2 = (12), g = 12$ で Mōbius strip の topology を持つ、図 1(D) は $f_1 = f_2 = (12), g = 12$ で Klein bottle の topology を持つ様子を表している。このように、$S^N \mathbb{R}^{24}$ 上の open string の spectrum には world-sheet が annulus, Mōbius strip, Klein bottle, torus の topology を持つ open string が現れることが分かる。
3 Summary and Future Works

以上の結果を要約すると、対称根空間 $S^N \mathbb{R}^{24}$ 上の open string 理論の spectrum を知る為に分配関数の生成関数 \(Z^A(\zeta|\tau) \) を以下の様に求める。

\[
Z^A(\zeta|\tau) = \sum_{N=0}^{\infty} \zeta^N Z_N^A(\tau)
\]

\[
= \exp\left[\sum_{n,m=1}^{\infty} \frac{\zeta^{nm}}{m} Z_1^A(\tau_{n,m}, 0) + \sum_{n,m=1}^{\infty} \frac{\zeta^{2nm}}{m} Z_1^{MS}(\tau_{n,m}, 0) + \frac{\zeta^{2nm}}{2m} Z_1^{KB}(\tau_{n,m}, 0) + \sum_{n,m=1}^{\infty} \frac{\zeta^{nm}}{2m} Z_1^{\Gamma}(\tau_{n,m,p}, \tau_{n,m,p}) \right]
\]

図 1: Annulus of short strings

以上の考察の結果、分配関数の生成関数 \(Z^A(\zeta|\tau) \) は以下の様に求まる。

以下の考察の結果、分配関数の生成関数 \(Z^A(\zeta|\tau) \) は以下の様に求まる。

\[
Z^A(\zeta|\tau) = \sum_{N=0}^{\infty} \zeta^N Z_N^A(\tau)
\]

\[
= \frac{\exp[\sum_{n,m=1}^{\infty} \frac{\zeta^{nm}}{m} Z_1^A(\tau_{n,m}, 0) + \sum_{n,m=1}^{\infty} \frac{\zeta^{2nm}}{m} Z_1^{MS}(\tau_{n,m}, 0) + \frac{\zeta^{2nm}}{2m} Z_1^{KB}(\tau_{n,m}, 0) + \sum_{n,m=1}^{\infty} \frac{\zeta^{nm}}{2m} Z_1^{\Gamma}(\tau_{n,m,p}, \tau_{n,m,p})]}{1 - \zeta}
\]

但し、\(Z_1^A(\tau), Z_1^{MS}(\tau), Z_1^{KB}(\tau), Z_1^{\Gamma}(\tau) \) は、world-sheet がそれぞれ annulus,Möbius strip,Klein bottle,torus の topology を持つ通常の一体系に対する分配関数を表し、さらに \(\tau_{n,m,p} \equiv \frac{mz-p}{mz-p} \) と定義し、\(\tau \) は純虚数とする。ここで、指数の層に現れる和は \(N \) を大きくする極限で、弦の場の理論に必要な world-sheet の moduli の積分となる。

さらに、ここに現れる annulus,Möbius strip,Klein bottle の分配関数の間の tadpole 相殺条件を求めると、Chan-Paton ゲージ群が通常の bosonic string と同じ \(SO(2^{13}) \) であることが分かる。

参考文献

[1] T.Banks, W.Fischler, S.H.Shenker and L.Susskind, “M Theory As A Matrix Model: A Conjecture”, Phys.Rev. D 55 (1997) 5112-5128, hep-th/9610043.

[2] R.Dijkgraaf, G.Moore, E.Verlinde and H.Verlinde, “Elliptic Genera of Symmetric Products and Second Quantized Strings”, Commun. Math. Phys. 185 (1997) 197-209, hep-th/9608096; R.Dijkgraaf, E.Verlinde and H.Verlinde, “Matrix String Theory”, Nucl. Phys. B 500 (1997) 43-61, hep-th/9703030.

[3] H.Fuji and Y.Matsuo, “Open String on Symmetric Product”, hep-th/0005111.