Abstract
Recent studies investigating the genetic susceptibility of systemic lupus erythematosus, rheumatoid arthritis and psoriasis have revealed a potential role for the RUNX proteins in the development of autoimmune disease. A new pathway of disease pathogenesis opens new avenues of research with thousands of questions that remain to be answered. In this review I attempt to propose how the RUNX proteins might be involved in these diseases and review current knowledge on this very interesting trio of transcription factors that was previously only suspected to be involved in cancer.

Keywords: autoimmunity, repression, runt-domain, susceptibility, transcription

Introduction
The study of the genetics of complex diseases is now advancing rapidly as new genes are being discovered that are involved in susceptibility for a variety of diseases. However, more impressive is the fact that the identification of the genes and the polymorphisms involved in susceptibility is opening new avenues of study. The best example at hand is the recent identification of a polymorphism in the *PDCD1* (programmed cell death 1) gene as a susceptibility factor for systemic lupus erythematosus, coding for the immunoreceptor PD-1 [1]. The polymorphism identified, named PD1.3 and whose allele A is strongly associated with the disease, is so far the only polymorphism within the *PDCD1* gene that can provide a functional explanation for the susceptibility related to this gene. Furthermore, the same allele A was associated to diabetes type 1 [2]. Association was also identified with rheumatoid arthritis [3].

The PD1.3 polymorphism is located in the fourth intron of the *PDCD1* gene [1]. Within the fourth intron there is a sequence of 160 base pairs enriched in binding sites for various transcription factors important in hematopoiesis, suggesting that this element might act as a regulatory enhancer. Importantly, the regulator element is not conserved in the mouse (ME Alarcón-Riquelme and L Prokunina, unpublished data), suggesting that the regulation of PD-1 is different in both species. The polymorphism associated with human lupus changed a common G nucleotide to an A nucleotide, thereby disrupting a binding site for what seemed to be the *RUNX1* transcription factor. The binding was tested on a simple band-shift assay (electrophoretic mobility-shift assay) with specific antibodies, experiments that supported the notion that the associated allelic variant did not allow binding of a protein complex and that the complex included, among other proteins, RUNX1 [1], thereby providing a functional explanation for the genetic association.

The potential role of *RUNX1* was underscored by the recent finding by two groups describing polymorphisms strongly associated with psoriasis and rheumatoid arthritis [4,5], both of which, even if present in completely different genes, also disrupted binding sites for what seemed to be *RUNX1*. For rheumatoid arthritis [5], the authors investigated a complete 3-centimorgan genomic segment from human chromosome 5q31 that included the cytokine...
The runt-domain family

Generally, the runt-domain transcription factors are considered to be repressors. Most of the studies performed so far in humans include the RUNX1 protein previously known as AML1a. AML1a was originally identified because it is frequently involved in mutations and translocations associated with acute myeloid leukemia [13]. The Aml1a-related translocations have provided an important source of study for the function of RUNX1 as a repressor as well as the proteins that have been found to be forming a fusion protein in various of the translocations. The t(8;21) translocation results in a fusion protein between RUNX1 and ETO, a zinc-finger protein that is most probably a transcription factor acting as a nuclear repressor [14–16]. Further translocations have been identified, including the t(12;21) translocation resulting in the fusion of RUNX1 with TEL [17–19], also a transcription factor, and a t(16;21) translocation in which RUNX1 fuses with MTG16 (myeloid transforming gene-related protein 1) or the t(3;21) translocation involving the Evi-1 gene [20,21].

Thus, studies on the translocations and the resulting fusion proteins that disrupt RUNX1 or the fusion partner suggest a dominant-negative effect for RUNX1. Indeed, mice made deficient for RUNX1 lack development of their hematopoietic system in a dominant fashion [22]. In humans, haploinsufficiency due to structural mutations in RUNX1 leads to familial thrombocytopenia and a greatly increased risk for the development of acute myeloid leukemia [13,23,24]. As an observation, within a family described for RUNX1 haploinsufficiency, an individual with the mutation had rheumatoid arthritis [23].

Deficiency in RUNX2 (also called AML3) leads to bone malformation and boneless mice; RUNX2 is therefore of
major importance in skeletal development and in osteoblast and chondrocyte development [25,26], although recent evidence shows that RUNX1 might also be involved in skeletal development [27] and has been found expressed in the skin and other epithelial tissues [27]. Mice made deficient for RUNX3 develop gastric cancer, and these studies have also shown that RUNX3 is involved in the development of basal root ganglia [28,29].

However, there has never been any previous evidence that the RUNX proteins are involved in autoimmunity, either in mouse models or in human studies. The main reasons for this lack of evidence are that the recently produced deficiency models have strong dominant loss-of-function effects, and that RUNX1, the only one of the three to have been studied extensively in humans, has been related to leukemias.

This suggests that the effects of the RUNX proteins in autoimmunity are much more subtle and are possibly readable only at the level of specific cellular compartments; this is in line with what is expected for complex diseases.

The RUNX proteins in immune development

Interestingly, conditional cellular models and the use of retroviral vectors have permitted the study of the RUNX proteins in more detail, although still in the mouse, and have provided evidence for the importance of the RUNX proteins in the immune system.

Both RUNX1 and RUNX3 are required in T cell development. It has recently been reported that RUNX1 is required for active repression in CD4+CD8+ thymocytes, whereas RUNX3 is required for establishing epigenetic silencing in cytotoxic lineage thymocytes [30]. RUNX3-deficient cytotoxic T cells, but not T helper (Th) cells, were reported to have defective responses to antigen, suggesting that RUNX proteins could have critical functions in lineage specification and in homeostasis of CD8-lineage T lymphocytes. In addition, RUNX1 and RUNX3 have been found to regulate the expression of CD4 during CD8 lineage commitment [31].

It has also been observed that RUNX1 inhibits the differentiation of naive CD4+ T cells into the Th2 lineage [32]. This is done through direct influence on the main transcription factor regulating Th2 development, GATA-3.

Another interesting and recent finding is that the lack of RUNX3 in a mouse model results in eosinophilic airway inflammation. Interestingly, RUNX3 was found to be expressed in mouse mature dendritic cells and to mediate dendritic cell responses to transforming growth factor (TGF)-β [33]. The authors observed that in the RUNX3 knockout mice, maturation of dendritic cells was accelerated when induced with lipopolysaccharide or without induction, and showed an increased efficiency in stimulating T cells. It is also interesting that the skin epidermis of the RUNX3 knockout mice lacked epidermal Langerhans cells but not dendritic epidermal T cells.

RUNX3 is known to mediate lymphoid and myeloid activity of CD11a through direct interaction with its promoter, and the RUNX3 knockout mice showed aberrant expression of CD11a, CD11b and CD11c, the β2-integrins.

The findings revealed by the RUNX3 knockout mouse might provide us with some ideas about how the involvement of the RUNX proteins could be explained in systemic lupus erythematosus, rheumatoid arthritis and psoriasis. It would be interesting to investigate the effect of the RUNX3 deficiency in another genetic background, to test whether a ‘permissible’ background would allow the development of an autoimmune phenotype.

Regulation of targets of the RUNX proteins

As mentioned previously, the RUNX proteins are transcription factors or repressors for various target genes, and their action might be modulated through many different signaling pathways exerting their affect at various cellular levels as well as at various developmental levels.

For example, RUNX2 is essential for skeletal development. It has been shown that RUNX2 is essential in osteoblast differentiation. RUNX2 regulates osteocalcin, osteoprotegerin, TGF-β receptor 1, osteopontin and collagenase 3, among others, in osteoblasts [8,34,35]. Furthermore, RUNX2 is known to regulate the expression of osteopontin, collagenase 3 and vascular endothelial growth factor (VEGF) in chondrocytes [7,36–38].

A possibility exists that susceptibility to rheumatoid arthritis and part of the development of the disease might be related to the activity of RUNX2 in these tissues and its effect on some of the target genes, many of which, such as osteopontin [34,35], collagenase 3 [39] and VEGF [37], have been shown to have altered expression or have been otherwise implicated in rheumatoid arthritis. VEGF, a mediator of angiogenesis, has been correlated with disease severity and has also been found to be involved with psoriasis [40].

Both RUNX1 and RUNX3 have mainly been found to regulate genes expressed in lymphoid and myeloid cells. Among the targets of RUNX1 are the B cell-specific tyrosine kinase BLK, the T-cell antigen receptor α, β, γ and δ chains, CD3 and granulocyte/macrophage colony-stimulating factor in lymphoid cells. The genes encoding myeloperoxidase, complement receptor 1 and p21Waf1/Cip1 have been shown to be among the target genes for RUNX1 in myeloid cells. Of these, p21 has been found to have a role in systemic lupus erythematosus [41] in animal
models, and there is extensive literature on the role of complement receptor 1 (previously known as the C3b receptor or CD35) in lupus and even in drug-induced systemic lupus erythematosus [42,43]. No targets have been thoroughly investigated for RUNX3. A more extensive list of target genes can be found in [8].

Regulation of the RUNX proteins

Little is known about the regulation of the RUNX proteins and the pathways in which they are controlled. Most of our knowledge comes from studies of RUNX2.

Structurally, the RUNX genes are very similar. In mammals, it seems that the gene encoding RUNX3 might have been the one from which the other two evolved [11]. Each of the RUNX genes is transcribed from two promoters [8]. For instance, RUNX2 is regulated distinctively in different tissues. Activator protein 1 regulates RUNX2 through binding to FosB in osteoblasts, whereas non-fimbrial adhesion (NFA)-1 regulates RUNX2 in non-osseous cells [44–46].

RUNX2 is also regulated by TGF-β, and regulation by TGF-β is dependent on the cellular compartment [47]. TGF-β represses RUNX2 in an osteosarcoma cell line, whereas it induces RUNX2 in a myoblast precursor cell line. The effects of TGF-β on RUNX2 seem to be mediated by the Smad factors [48]. Other proteins that regulate RUNX2 are the bone morphogenetic proteins, members of the TGF-β superfamily [47]. These are also known to exert their effects through recruitment of the Smad proteins, in which case other Smads are involved. Tumor necrosis factor-α and FGF have also been shown to regulate RUNX2 [49]. In particular, tumor necrosis factor-α inhibits RUNX2.

It is interesting that retinoids bring about increased expression of the three RUNX proteins. Similarly, vitamin D3 also augmented the expression of the RUNX proteins in myeloid leukemia cells. It has recently been shown that estrogen (estradiol) enhances RUNX2 activity without changing RUNX2 expression or DNA binding affinity but through direct interaction with estrogen receptor α. Glucocorticoids have been found to inhibit RUNX2 activity. All previous work suggests that RUNX2 might be very important in bone regeneration, bone formation and repair, and it is of particular interest when considering the susceptibility to response to treatment of patients with rheumatoid arthritis or to disease severity and damage.

Very little is known about the regulation of the other RUNX proteins, and it is evident that these have profound effects at numerous levels of cellular activities.

At present it is unclear how the RUNX proteins exert their effects and how their aberrant function leads to autoimmunity and inflammation. However, a new chapter of investigation has now been opened that might lead to many surprises [50].

Competing interests

MEA-R is a shareholder or Everygene AB.

References

1. Prokunina L, Castillo-Lopez C, Oberg F, Gunnarsson I, Berg L, Magnusson V, Brookes AJ, Tentler D, Kristjansdottir H, Grondal G, et al.: A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. *Nat Genet* 2002, 32:686-689.
2. Nielsen C, Hansen D, Husby S, Jacobsen BB, Lillevang SK: Association of a putative regulatory polymorphism in the PD-1 gene with susceptibility to type 1 diabetes. *Tissue Antigens* 2003, 62:492-497.
3. Prokunina L, Padyukov L, Bennett A, De Faire U, Wiman B, Prince J, Alfredsson L, Klareskog L, Alarcón-Riquelme ME: Association of the PD1.3 A allele of the PDCD1 gene in patients with rheumatoid arthritis negative for rheumatoid factor and the shared epitope. *Arthritis Rheum* 2004, 50:1770-1773.
4. Helms C, Cao L, Krueger JG, Wijisman EM, Chaman F, Gordon D, Heffeman M, Daw JA, Robarge J, Ott J, et al.: A putative RUNX1 binding site variant between SLC9A3R1 and NAT8 is associated with susceptibility to psoriasis. *Nat Genet* 2003.
5. Tokuhiro S, Yamada R, Chang X, Suzuki A, Kocy, Y, Sawada T, Suzuki M, Nagasaki M, Ohmsuki M, Ono M, et al.: An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. *Nat Genet* 2003, 35:341-348.
6. John S, Eyre S, Myerscough A, Barrett J, Silman A, Ollier W, Worthington J: Linkage and association analysis of candidate genes in rheumatoid arthritis. *J Rheumatol* 2001, 28:1752-1755.
7. Rioux JD, Daly MJ, Silverberg MS, Lindblad K, Steinhart H, Cohen Z, Delmonte T, Kocher K, Miller K, Guschwang S, et al.: Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. *Nat Genet* 2001, 28:223-228.
8. Otto F, Lubbert M, Stock M: Upstream and downstream targets of RUNX proteins. *J Cell Biochem* 2003, 89:9-18.
9. Tahirov TH, Inoue-Bungo T, Morii H, Fujikawa A, Sasaki M, Kimura K, Shina M, Sato K, Kumakasa T, Yamamoto M, et al.: Structural analyses of DNA recognition by the AML1/Run-1 Run domain and its allosteric control by CBFbeta. *Cell* 2001, 104:755-767.
10. Backstrom S, Huang SH, Wolf-Watz M, Xie XQ, Hard T, Grundstrom T, Sauer UH: Crystallization and preliminary studies of the DNA-binding runt domain of AML1. *Acta Crystallogr D Biol Crystallogr* 2001, 57:269-271.
11. Rennert J, Coffman JA, Mushegian AR, Robertson AJ: The evolution of Runx genes I. A comparative study of sequences from phylogenetically diverse model organisms. *BMC Evol Biol* 2003, 3:34.
12. Coffman JA: Runx transcription factors and the developmental balance between cell proliferation and differentiation. *Cell Biol Int* 2003, 27:315-324.
13. Barton K, Nucifora G: AML1 haploinsufficiency, gene dosage, and the predisposition to acute leukemia. *BioEssays* 2000, 22:214-218.
14. Erickson P, Gao J, Chang KS, Look T, Whisenant E, Raimondi S, Lawer D, Trujillo J, Drabkin H: Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, similarity to *Drosophila* segmentation gene, runt. *Blood* 1992, 80:1825-1831.
15. Guerraoso A, Rosso C, Martinelli G, Lo Coco F, Pampinella M, Santoro A, Lanza C, Allione B, Resegotti L, Savio G: Polyclonal haemopoiesis associated with long-term persistence of the AML1-ETO transcript in patients with FAB M2 acute myeloid leukaemia in continuous clinical remission. *Br J Haematol* 1995, 90:364-368.
16. Kozu T, Miyoshi H, Shimizu K, Maseki N, Kaneko Y, Asou H, Kamada N, Ohki M: Junctions of the AML1/MTG8(ETO) fusion are constant in t(8;21) acute myeloid leukaemia detected by
reverse transcription polymerase chain reaction. Blood 1993, 82:1270-1276.

17. Uchida H, Downing JR, Miyazaki Y, Frank R, Zhang J, Nimer SD: Three distinct domains in TEL-AML1 are required for transcriptional repression of the IL-3 promoter. Oncogene 1999, 18:1015-1022.

18. Song H, Kim JH, Rho JK, Park SY, Kim CG, Choe SY: Functional characterization of TEL/AML1 fusion protein in the regulation of hematopoietic gene promoters. Mol Cells 1999, 9:560-563.

19. Romana SP, Mauchaffe M, Le Coniat M, Chumakov I, Le Paslier D, Berger R, Bernard OA: The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood 1995, 85: 3662-3670.

20. Taniuchi I, Osato M, Tanaka T, Mitani K, Yazaki Y, Witte ON, Hira H: The AML1/Evi-1 fusion protein in the t(3;21) translocation exhibits transforming activity on Rat1 fibroblasts with dependence on the Evi-1 sequence. Oncogene 1995, 11:833-840.

21. Kurokawa M, Ogawa S, Tanaka T, Mitani K, Yazaki Y, Witte ON, Hiebert SW: requisite roles of Runx2 and Cbfb in skeletal development. J Bone Miner Metab 2001, 19:45-50.

22. Uchida H, Downing JR, Miyazaki Y, Frank R, Zhang J, Nimer SD: Three distinct domains in TEL-AML1 are required for transcriptional repression of the IL-3 promoter. Oncogene 1999, 18:1015-1022.

23. Song H, Kim JH, Rho JK, Park SY, Kim CG, Choe SY: Functional characterization of TEL/AML1 fusion protein in the regulation of hematopoietic gene promoters. Mol Cells 1999, 9:560-563.

24. Romana SP, Mauchaffe M, Le Coniat M, Chumakov I, Le Paslier D, Berger R, Bernard OA: The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood 1995, 85: 3662-3670.

25. Taniuchi I, Osato M, Tanaka T, Mitani K, Yazaki Y, Witte ON, Hira H: The AML1/Evi-1 fusion protein in the t(3;21) translocation exhibits transforming activity on Rat1 fibroblasts with dependence on the Evi-1 sequence. Oncogene 1995, 11:833-840.

26. Taniuchi I: The AML1/Evi-1 fusion protein in the t(3;21) translocation exhibits transforming activity on Rat1 fibroblasts with dependence on the Evi-1 sequence. Oncogene 1995, 11:833-840.

27. Okuda T, Nishimura M, Nakao M, Fujita Y: RUNX1/AML1: a central player in hematopoiesis. Int J Hematol 2001, 74:252-257.

28. Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufin D, Ratajczak J, Resende IC, Haworth C, Hock R, et al.: Haploinsufficiency of CBFA2 causes familial thombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 1999, 23:186-175.

29. Michaud J, Wu F, Osato M, Cottles GM, Yanagida M, Asou N, Shigesada K, Ito Y, Benson KF, Raskind WH, et al.: in vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukaemia: implications for mechanisms of pathogenesis. Blood 2002, 99:1364-1372.

30. Komori T: Requisite roles of Runx2 and Cbfb in skeletal development. J Bone Miner Metab 2003, 21:193-197.

31. Kurokawa M, Javed A, Jeon JP, Horner A, Shum I, Eckhaus M, Muenke M, Liu JB, Yang Y, Nuckolls GH, et al.: Cbfb interacts with Runx2 and has a critical role in bone development. Nat Genet 2002, 32:639-644.

32. Iida K, Mornaghi R, Raffelzweig V: Complement receptor (CR1) deficiency in erythrocytes from patients with systemic lupus erythematosus. J Exp Med 1982, 155:1427-1438.

33. Hoffman HM, Beumer TL, Rahman S, McCabe LR, Banerjee C, Aslam F, Tjo JA, van Wijnen AJ, Stein JL, Stein GS, et al.: Bone tissue-specific transcription of the osteoclastic gene: role of an activator osteoblast-specific complex and suppressor box proteins that bind the OC box. J Cell Biochem 1996, 61:310-324.

34. Leboy P, Grasso-Knight G, D’Angelo M, Volk SW, Lian JV, Drissi H: Structural polymorphisms of complement receptor 1 (CR1) in systemic lupus erythematosus (SLE) patients and normal controls of three ethnic groups. Clin Exp Immunol 1996, 105:302-305.

35. Banerjee C, Hiebert SW, Stein JL, Stein RB, Stein GS: An AML-1 continuous sequence binds an osteoblast-specific complex and transcriptionally activates the osteocalcin gene. Proc Natl Acad Sci USA 1996, 93:4968-4973.

36. Hoffmann HM, Beumer TL, Rahman S, McCabe LR, Banerjee C, Aslam F, Tjo JA, van Wijnen AJ, Stein JL, Stein GS, et al.: Bone tissue-specific transcription of the osteoclastic gene: role of an activator osteoblast-specific complex and suppressor box proteins that bind the OC box. J Cell Biochem 1996, 61:310-324.

37. Prince M, Banerjee C, Javed A, Green J, Liu JB, Stein GS, Bodiford PV, Komm BS: Expression and regulation of Runx2/Cbfal and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts. J Cell Biochem 2001, 80:424-440.

38. Bae SC, Lee KS, Zhang YW, Ito Y: Intimate relationship between pTGF-beta/BMP signaling and runt domain transcription factor, PEBP2/CFB. J Bone Joint Surg Am 2001, 83-A Suppl 1:S48-S55.

39. Leboy P, Grasso-Knight G, D’Angelo M, Volk SW, Liu JB, Drissi H, Stein GS, Adams SL: Smad-Runx interactions during chondrocyte maturation. J Bone Joint Surg Am 2001, 83-A Suppl 1: S15-S22.

40. Ito Y, Miyazono K: RUNX transcription factors as key targets of TGF-beta superfamily signaling. Curr Opin Genet Dev 2003, 13:43-47.

41. Alarcon-Riquelme ME: A RUNX trio with a taste for autoimmunity. Nat Genet 2003, 35:299-300.

Enhanced local production of osteopontin in rheumatoid joints. J Rheumatol 2002, 29:2061-2067.

36. Stricker S, Fandele R, Vortkamp A, Mundlos S: Role of Runx genes in chondrocyte differentiation. Dev Biol 2002, 245:55-68.

37. Ballara S, Taylor PC, Reusch P, Marme D, Feldmann M, Maini RN, Paleolog EM: Raised serum vascular endothelial growth factor levels are associated with destructive change in inflammatory arthritis. Arthritis Rheum 1998, 41:1258-1265.

38. Paleolog EM, Young S, Stark AC, McCloskey RV, Feldmann M, Maini RN: Modulation of angiogenic vascular endothelial growth factor by tumor necrosis factor alpha and interleukin-1 in rheumatoid arthritis. Arthritis Rheum 1997, 41:1391-1399.

39. Delmar M: Evidence for vascular endothelial growth factor (VEGF) as a modifier gene in psoriasis. J Invest Dermatol 2004, 122:xiv-xv.

40. Balomenos D, Martin-Caballero J, Garcia MI, Prieto I, Flores JM, Serrano M, Martinez AC: The cell cycle inhibitor p21 controls T-cell proliferation and sex-linked lupus development. Nat Med 2000, 6:171-176.

41. Iida K, Mornaghi R, Raffelzweig V: Complement receptor (CR1) deficiency in erythrocytes from patients with systemic lupus erythematosus. J Exp Med 1982, 155:1427-1438.

42. Hoffmann HM, Beumer TL, Rahman S, McCabe LR, Banerjee C, Aslam F, Tjo JA, van Wijnen AJ, Stein JL, Stein GS, et al.: Bone tissue-specific transcription of the osteoclastic gene: role of an activator osteoblast-specific complex and suppressor box proteins that bind the OC box. J Cell Biochem 1996, 61:310-324.

43. Prince M, Banerjee C, Javed A, Green J, Liu JB, Stein GS, Bodiford PV, Komm BS: Expression and regulation of Runx2/Cbfal and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts. J Cell Biochem 2001, 80:424-440.

44. Bae SC, Lee KS, Zhang YW, Ito Y: Intimate relationship between pTGF-beta/BMP signaling and runt domain transcription factor, PEBP2/CFB. J Bone Joint Surg Am 2001, 83-A Suppl 1:S48-S55.

45. Hoffmann HM, Beumer TL, Rahman S, McCabe LR, Banerjee C, Aslam F, Tjo JA, van Wijnen AJ, Stein JL, Stein GS, et al.: Bone tissue-specific transcription of the osteoclastic gene: role of an activator osteoblast-specific complex and suppressor box proteins that bind the OC box. J Cell Biochem 1996, 61:310-324.

46. Alarcon-Riquelme ME: A RUNX trio with a taste for autoimmunity. Nat Genet 2003, 35:299-300.

Available online http://arthritis-research.com/content/6/4/1169