Search for the lightest scalar top quark in events with two leptons in \(p \bar{p} \) collisions at \(\sqrt{s} = 1.96 \) TeV

V.M. Abazov, B. Abbott, M. Abolins, B.S. Acharya, M. Adams, E. Aguilo, S.H. Ahn, M. Ahsan, G.D. Alexeev, G. Alkhazov, A. Alton, G. Alves, M. Anastasio, L.S. Ancu, T. Andeen, S. Anderson, B. Andrieu, M.S. Anzelo, Y. Arnaud, M. Arthaud, A. Askew, B. Åsman, A.C.S. Assis, O. Atramentov, C. Autermann, C. Avila, C. Ay, F. Badaud, A. Baden, L. Bagby, B. Baldin, D.V. Bandurin, S. Banerjee, P. Banerjee, E. Barberis, A.-F. Barfuss, P. Bargassa, P. Baringe, J. Barreto, J.F. Bartlett, U. Bassler, D. Bauer, S. Beale, A. Beau, M. Begalli, M. Begel, C. Belanger-Champagne, L. Bellantoni, A. Bellavance, J.A. Benitez, S.B. Beri, G. Bernardi, R. Bernhard, L. Berntzon, I. Bertram, M. Besançon, R. Beuselinck, V.A. Bezzubov, P.C. Bhat, V. Bhattacharjee, C. Biscarini, G. Blazey, F. Blekman, S. Blessing, D. Bloch, K. Bloom, A. Boehnerlin, D. Boline, T.A. Bolton, G. Borisov, K. Bos, T. Bose, A. Brandt, R. Brock, G. Broojmans, A. Bross, D. Brown, N. Buchanan, D. Buchholz, M. Buehler, V. Buescher, S. Burdin, S. Burke, T.H. Burnett, C.P. Buszello, J.M. Butler, P. Calfayan, S. Calvet, J. Cammin, S. Caron, W. Carvalho, B.C.K. Casey, N.M. Cason, H. Castilla-Valdez, S. Chakrabarti, D. Chakraborty, K.M. Chan, K. Chanu, A. Chandra, F. Charles, E. Cheu, F. Chevalier, D.K. Cho, S. Choi, B. Choudhary, L. Christofek, T. Christoudias, I.S. Chianiga, D. Claes, B. Clément, M. Cooke, W.E. Cooper, M. Corcoran, F. Couderc, M.-C. Cousinou, S. Crépé-Renaudin, D. Cutts, M. Ćwiku, H. da Motta, A. Das, G. Davies, K. De, S.J. de Jong, P. de Jong, E. De La Cruz-Burelo, C. De Oliveira Martins, J.D. Degenhardt, F. Déliot, M. Demarteau, R. Demina, D. Denisov, S. Desai, H.T. Diehl, M. Diesburg, A. Dominguez, H. Dong, L.V. Dudko, L. Duflot, S.R. Dugan, D. Duggan, A. Duperrin, J. Dyer, A. Dyskan, M. Eads, D. Edmunds, J. Ellison, V.D. Elvira, Y. Enari, S. Enø, P. Ermolov, H. Evans, A. Evdokimov, V.N. Evdokimov, A.V. Ferapontov, T. Ferbel, F. Fiedler, F. Filthaut, W. Fisher, H.E. Fisk, M. Ford, M. Fortner, H. Fox, S. Fu, S. Fues, T. Gadfort, C.F. Galea, E. Gallas, E. Galyaev, C. Garcia, A. Garcia-Bellido, V. Gavrilov, P. Gay, W. Geist, D. Gelé, C.E. Gerbil, Y. Gershtein, D. Gillberg, G. Ginter, N. Gollub, B. Gómez, A. Gousset, P.D. Grannis, H. Greenlee, Z.D. Greenwood, E.M. Gregores, G. Grenier, Ph. Gris, J.-F. Grivaz, A. Grohsjean, S. Grünendahl, M.W. Grünewald, J. Guo, F. Guo, M. Gutierrez, G. Gutierrez, A. Haas, N.J. Hadley, P. Haefner, S. Hagopian, J. Haley, I. Half, R.E. Hall, L. Hani, K. Hanagaki, P. Hansson, K. Harder, A. Harel, R. Harrington, J.M. Hauptman, R. Hause, J. Hays, T. Hebbeker, D. Hedlin, J.G. Hegeman, J.M. Heimann, A.P. Heinsohn, U. Heintz, B. Heusel, G. Hesketh, M.D. Hildreth, R. Hirosky, J.D. Hobbs, B. Hoennekes, H. Hoeth, M. Hohlfeld, S.J. Hong, R. Hooper, S. Hossain, P. Houben, Y. Hu, Z. Hubacek, V. Hynek, I. Iashvili, R. Iltingworth, A.S. Ito, S. Jabeen, M. Jaffre, S. Jain, K. Jakobs, C. Jarvis, R. Jesik, K. Johns, C. Johnson, M. Johnson, A. Jonckheere, P. Jonsson, A. Juste, D. Käfer, S. Kahn, E. Kajfasz, A.M. Kalinin, J.R. Kall, J.M. Kalk, S. Kappel, D. Karmanov, J. Kasper, P. Katsanos, D. Kauf, R. Kaur, V. Kausik, R. Kehoe, S. Kermiche, N. Khalatyan, A. Khanov, A. Kharshiladze, Y.M. Kharzeev, D. Khatidze, H. Kim, T.J. Kim, M.H. Kirby, M. Klima, J.M. Kohler, J.-P. Konrath, M. Kopajtic, V.M. Koroblev, A.V. Kozlov, D. Krop, A. Kryemadhi, T. Kuhl, A. Kuma, S. Kumori, A. Kupco, T. Kurt, J. Kvita, F. Lacroix, D. Lam, S. Lammers, G. Landsberg, J. Lazlof, P. Lebrun, W.M. Lee, A. Leflat, F. Lehner, J. Leclerc, J. Leveque, P. Lewis, J. Li, Q.Z. Li, L. Li, G. S.M. Lietti, J.G.R. Lima, D. Lincoln, J. Limmen, V.V. Lipaev, R. Lipton, Y. Liu, Z. Liu, L. Lobo, A. Lobodenko, M. Lokajícek, A. Louiss, P. Love, H.J. Lubatti, A.L. Lyon, A.K.A. Maciel, D. Mackin, R.J. Madaras, P. Mättig, C. Magass, A. Magerkurth, N. Makovec, P.K. Mal, H.B. Malbouisson, S. Malik, V.L. Malyshkin, H.S. Mao, Y. Maravin, B. Martin, R. McCarthy, A. Mehlich, A. Mendes, L. Mendoza, P.G. Mercardente, A. Merklin, K.W. Merritt, J. Meyer, A. Meyer, M. Michaut, T. Millet, J. Mitrevski, J. Molina, R.K. Mommsen, N.K. Mondal, R.W. Moore, T. Moulik, G.S. Muanza, M. Mulders, M. Mulhearn, O. Mundal, L. Mundim, E. Nagy, M. Naimuddin,
Physikalisches Institut, Universität Freiburg, Freiburg, Germany
Institut für Physik, Universität Mainz, Mainz, Germany
Ludwig-Maximilians-Universität München, München, Germany
Fachbereich Physik, University of Wuppertal, Wuppertal, Germany
Panjab University, Chandigarh, India
Delhi University, Delhi, India
Tata Institute of Fundamental Research, Mumbai, India
University College Dublin, Dublin, Ireland
Korea Detector Laboratory, Korea University, Seoul, Korea
SungKyunKwan University, Suwon, Korea
CINVESTAV, Mexico City, Mexico
FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands
Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands
Joint Institute for Nuclear Research, Dubna, Russia
Institute for Theoretical and Experimental Physics, Moscow, Russia
Moscow State University, Moscow, Russia
Institute for High Energy Physics, Protvino, Russia
Petersburg Nuclear Physics Institute, St. Petersburg, Russia
Lund University, Lund, Sweden, Royal Institute of Technology and Stockholm University, Stockholm, Sweden, and Uppsala University, Uppsala, Sweden
Physik Institut der Universität Zürich, Zürich, Switzerland
Lancaster University, Lancaster, United Kingdom
Imperial College, London, United Kingdom
University of Manchester, Manchester, United Kingdom
University of Arizona, Tucson, Arizona 85720, USA
California State University, Fresno, California 93740, USA
Florida State University, Tallahassee, Florida 32306, USA
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
University of Illinois at Chicago, Chicago, Illinois 60607, USA
Northern Illinois University, DeKalb, Illinois 60115, USA
Northwestern University, Evanston, Illinois 60208, USA
Indiana University, Bloomington, Indiana 47405, USA
University of Notre Dame, Notre Dame, Indiana 46556, USA
Purdue University Calumet, Hammond, Indiana 46323, USA
Iowa State University, Ames, Iowa 50011, USA
University of Kansas, Lawrence, Kansas 66045, USA
Kansas State University, Manhattan, Kansas 66506, USA
Louisiana Tech University, Ruston, Louisiana 71272, USA
University of Maryland, College Park, Maryland 20742, USA
Boston University, Boston, Massachusetts 02215, USA
Northeastern University, Boston, Massachusetts 02115, USA
University of Michigan, Ann Arbor, Michigan 48109, USA
Michigan State University, East Lansing, Michigan 48824, USA
University of Mississippi, University, Mississippi 38677, USA
University of Nebraska, Lincoln, Nebraska 68588, USA
Princeton University, Princeton, New Jersey 08544, USA
State University of New York, Buffalo, New York 14260, USA
Columbia University, New York, New York 10027, USA
University of Rochester, Rochester, New York 14627, USA
State University of New York, Stony Brook, New York 11794, USA
Brookhaven National Laboratory, Upton, New York 11973, USA
Langston University, Langston, Oklahoma 73050, USA
University of Oklahoma, Norman, Oklahoma 73019, USA
Oklahoma State University, Stillwater, Oklahoma 74078, USA
Brown University, Providence, Rhode Island 02912, USA
University of Texas, Arlington, Texas 76019, USA
Southern Methodist University, Dallas, Texas 75275, USA
Rice University, Houston, Texas 77005, USA
University of Virginia, Charlottesville, Virginia 22901, USA and
University of Washington, Seattle, Washington 98195, USA

(Dated: November 19, 2007)
Supersymmetric theories \[\text{I}\] predict the existence of a scalar partner for each standard model fermion. Because of the large mass of the standard model top quark, the mixing between its chiral supersymmetric partners is the largest among all squarks; therefore the lightest supersymmetric partner of the top quark, \(\tilde{t}_1\) (stop), might be the lightest squark. If the \(\tilde{t}_1 \rightarrow b\tilde{\chi}^0\) decay channel is kinematically accessible, it will be dominant \[\text{II}\] as long as the \(\tilde{t}_1 \rightarrow b\tilde{\chi}^\pm\) and \(\tilde{t}_1 \rightarrow \tilde{\chi}^0\) channels are kinematically closed, where \(\tilde{\chi}^\pm\) and \(\tilde{\chi}^0\) are the lightest chargino and neutralino, respectively. In this letter we present a search for stop pair production in the kinematically accessible channels; the signal topology consists of two isolated leptons, missing transverse energy (\(E_T\)), and jets. D0 has also searched for scalar top in the charm jet final state \[\text{III}\].

The D0 detector \[\text{IV}\] comprises a central tracking system surrounding by a liquid-argon sampling calorimeter and a system of muon detectors. Charged particles are reconstructed using a multi-layer silicon detector and eight double layers of scintillating fibers in a 2 T magnetic field produced by a superconducting solenoid. The calorimeter provides hermetic coverage up to pseudo-rapidities \(|\eta| \approx 4\) (where \(\eta = -\log(\tan(\theta/2))\), and where \(\theta\) is the polar angle with respect to the proton beam direction) in a semi-projective tower geometry with longitudinal segmentation. After passing through the calorimeter, muons are detected in the muon detector comprising three layers of tracking detectors and scintillation counters located inside and outside of 1.8 T iron toroids. Events containing electrons or muons are selected for off-line analysis by a trigger system. A set of dilepton triggers is used to tag the presence of electrons and muons based on their energy deposit in the calorimeter, hits in the muon detectors, and tracks in the tracking system.

In both \(e\mu\) and \(\mu\mu\) channels, the signal points \([M(\tilde{t}_1), M(\tilde{\nu})] = (110, 80)\) GeV/\(c^2\) and \((145, 50)\) GeV/\(c^2\), respectively referred as “soft” (point \(A\)) and “hard” data collected by the D0 detector at a \(p\bar{p}\) center-of-mass energy of 1.96 TeV at the Fermilab Tevatron Collider have been used to search for pair production of the lightest supersymmetric partner of the top quark decaying into \(b\tilde{\nu}\). The search is performed in the \(\ell\ell' = e\mu\) and \(\mu\mu\) final states. No evidence for this process has been found in data samples of approximately 400 pb\(^{-1}\). The domain in the \([M(\tilde{t}_1), M(\tilde{\nu})]\) plane excluded at the 95% C.L. is substantially extended by this search.
(point B) signals, have been used to optimize the selection of signals of different kinematics because of different $\Delta m = M(t_\tau) - M(\bar{t})$. The choice of these points was also motivated by the sensitivity of the D0 search during Run I \cite{14}. The main background processes imitating the signal topology are $Z/\gamma^* \rightarrow WW,t\bar{t}$ production, and multijet background. All but the latter are estimated with MC simulation. The multijet background is estimated from data. In the $ee\mu$ channel, two samples each dominated by a different multijet background are obtained by inverting the muon isolation requirements, and by inverting the cut on the electron-likelihood; in the $\mu\mu$ channel, such a sample is obtained by selecting same-sign muon events. Factors normalizing each sample to the selection sample are also obtained from data, and applied to the background samples to obtain the multijet background estimation, this, at an early stage of the selection.

For the $ee\mu$ channel, the integrated luminosity \cite{15} of the data sample is (428 ± 28) pb$^{-1}$. The preselection is concluded by requiring the transverse momenta of the electron and muon (see Fig. (1a) and (b)) to be greater than 10 and 8 GeV/c, respectively. In this final state, the data are dominated by the multijet and $Z/\gamma^* \rightarrow \tau\tau$ backgrounds. In these processes, poorly reconstructed leptons are correlated with E_T, giving rise to higher event populations at high and low values of the azimuthal angular difference between the leptons and the E_T, a low value of the angular difference for one lepton being correlated with a high value of the other. Taking advantage of a higher background contribution at low values of angular distributions, we require

$$
\Delta \phi(\mu, E_T) > 0.4, \Delta \phi(e, E_T) > 0.4. \text{ (Emu 1)}
$$

We require E_T to be greater than 15 GeV to reduce contribution of both the multijet and $Z/\gamma^* \rightarrow \tau\tau$ backgrounds. To reject multijet events in which leptons are associated with a jet, we require the two leptons to be at a ΔR distance greater than 0.5 from any reconstructed jet. To further reduce the multijet contribution, we require the z component of the origin of the highest transverse momentum muon track to be within four standard deviations σ from the z component of the primary vertex:

$$
E_T > 15 \text{ GeV} \quad \Delta R((e, \mu), \text{jet}) > 0.5 \quad |z(\mu) - z(\text{p.v.})| < 4\sigma. \text{ (Emu 2)}
$$

To reduce the $Z/\gamma^* \rightarrow \tau\tau$ background, we cut on low values of the transverse mass of the muon and E_T ($MT(\mu, E_T)$, see Fig. (1c)). To further reduce this background, we make use of the correlation between the angular differences $\Delta \phi(\mu, E_T)$ and $\Delta \phi(e, E_T)$, and require their sum (see Fig. (1d)) to be greater than 2.9:

$$
MT(\mu, E_T) > 15 \text{ GeV}/c^2 \quad \Delta \phi(\mu, E_T) + \Delta \phi(e, E_T) > 2.9. \text{ (Emu 3)}
$$

The contributions of different backgrounds, and the expected numbers of signal and observed data events in the $ee\mu$ final state at different selection levels are summarized in Table I. After all selections, the WW (dominating the diboson contribution) and $t\bar{t}$ contributions are the dominant backgrounds. To separate soft signals such as point A from these backgrounds, we consider the variable S_T defined as the scalar sum of the transverse momentum of the muon, the electron, and the E_T (see Fig. (1e)). To separate hard signals such as point B from background contributions, we consider the variable H_T defined as the scalar sum of the transverse momentum of all jets (see Fig. (1f)). Rather than cutting on these two variables, the H_T and S_T spectra predicted for signal and background are compared with the observed spectra in twelve $[S_T, H_T]$ bins (see Table III) when extracting limits on the signal cross section, thus allowing a separation of signals of different kinematics from the WW and $t\bar{t}$ backgrounds.

For the $\mu\mu$ channel, the integrated luminosity \cite{15} of the data sample is (395 ± 26) pb$^{-1}$. The selection of the signal in this final state is more challenging because of the strongly dominating $Z/\gamma^* \rightarrow \mu\mu$ background. The preselection is concluded by requiring the transverse momenta of the two highest transverse momenta opposite-sign muons to be greater than 8 and 6 GeV/c. While the signal is characterized by the presence of jets originating from the hadronization of b quarks, the $Z/\gamma^* \rightarrow \mu\mu$ background owes the presence of jets to initial state radiation gluons which hadronize into softer jets, resulting in a lower multiplicity of jets; the latter is also valid for soft signals such as point A. To keep sensitivity to soft signals while rejecting substantial background, we require at least one jet:

$$
N(\text{jets}) \geq 1. \text{ (Dimu 1)}
$$

To further remove $Z/\gamma^* \rightarrow \mu\mu$ background events, where poorly reconstructed muons correlate with the E_T, we require E_T to be greater than the contour shown on Fig. (2a), using a cut parametrized by the following equation:

$$
E_T/\text{GeV} > 20 + |\Delta \phi(\mu_1, E_T)| - 1.55|^{0.2}, \text{ (Dimu 2)}
$$

where μ_1 is the highest transverse momentum muon. To augment the search sensitivity in this channel, we take advantage of the presence of jets originating from the fragmentation of long-lived b quarks in the signal. An algorithm based on the lifetime of hadrons calculates the probability P for the tracks of a jet to originate from the primary interaction point \cite{16}. This b jet tagging probability is constructed such that its distribution is uniform for light-flavor jets while peaking at zero for heavy-flavor jets which have a vertex significantly displaced from the primary vertex (Fig. (2b)). Considering the highest transverse energy jet, we require

$$
P(\text{jet}) < 1\%. \text{ (Dimu 3)}
$$
A cut on the dimuon invariant mass (Fig. 2(c)) in the vicinity of the Z boson resonance only at low E_T (Fig. 2(d)) further suppresses the $Z/\gamma^* \rightarrow \mu\mu$ background while preserving the signal:

$$M(\mu, \mu) \not\in [75, 120] \text{ GeV}^2 \text{ for } E_T < 50 \text{ GeV}. \text{ (Dimu 4)}$$

Table III summarizes the different stages of the signal selection in the $\mu\mu$ channel. The $t\bar{t}$ background dominates after the selection cuts; five H_T bins are considered (see Table IV) to separate various signal points from this background.

The expected numbers of background and signal events depend on several measurements and parametrizations which each introduce a systematic uncertainty: lepton identification and reconstruction efficiency [(2.6–7)%] \[^{[1]}\], trigger efficiency [(3.5–5)%] \[^{[13]}\], luminosity [6.1%] \[^{[17]}\], multijet background modeling [10%], JES [(4–22)%] \[^{[12]}\], jet identification and reconstruction efficiency and resolution [(4–16)%] \[^{[13]}\], bjet tagging [(1–11)%] \[^{[16]}\], PDF uncertainty affecting the signal efficiency [10%] \[^{[17]}\].

After applying all selection cuts for $e\mu$ and $\mu\mu$ data sets, no evidence for t_1 production is observed. We combine the number of expected signal and background events and their corresponding uncertainty, and the number of observed events in data from the twelve bins of the $e\mu$ selection (Table III) and the five bins of the $\mu\mu$ selection (Table IV) to calculate upper-limit cross sections for signal production at the 95% C.L. Figure 3 shows the excluded region as a function of the scalar top quark and sneutrino masses, for 95% C.L.

In summary, we have searched for the lightest stop decaying into $b\ell\nu$ to date.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France): FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); Science and Technology Facilities Council (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); Alexander von Humboldt Foundation; and the Marie Curie Program.

[a] Visitor from Augustana College, Sioux Falls, SD, USA.
[b] Visitor from The University of Liverpool, Liverpool, UK.
[c] Visitor from ICN-UNAM, Mexico City, Mexico.
[d] Visitor from II. Physikalisches Institut, Georg-August-University Göttingen, Germany.
[e] Visitor from Helsinki Institute of Physics, Helsinki, Finland.
[f] Visitor from Universität Zürich, Zürich, Switzerland.
[g] Fermilab International Fellow
[h] deceased

[1] S.P. Martin, in “Perspectives on Supersymmetry,” ed. G.L. Kane (World Scientific, Singapore 1998); revised version [arXiv:hep-ph/9709356v4].
[2] H. Hikasa and M. Kobayashi, Phys. Rev. D 36, 724 (1987).
[3] D0 Collaboration, V.M. Abazov et al., Phys. Lett. B 645, 119 (2007).
[4] D0 Collaboration, V.M. Abazov et al., Nucl. Instrum. Methods A 565, 463 (2006).
[5] A. Pukhov et al., User’s manual for version 3.3, INP-MSU 98-41/542.
[6] T. Sjostrand et al., Comput. Phys. Commun. 135, 238 (2001).
[7] M.L Mangano et al., JHEP 0307, 001 (2003).
[8] H.L. Lai et al., Eur. Phys. J. C12, 375 (2000).
[9] R. Hamberg, W.L. van Neerven and T. Matsuura, Nucl. Phys. B 359, 343 (1991) [Erratum-ibid. B 644, 403 (2002)].
[10] J.M. Campbell, R. K. Ellis, Phys. Rev. D 60, 113006 (1999), [arXiv:hep-ph/9905386].
[11] N. Kidonakis and R. Vogt, Phys. Rev. D 68, 114014.
TABLE I: $\epsilon\mu$ channel. Expected numbers of events in various background and signal channels, and number of observed events in data, at various selection levels. Statistical as well as systematic uncertainties from the JES correction are shown for the total background and signal.

Selection	Multijet	Background contributions	\(Z/\gamma^* \to \ell\ell\)	\(\ell\ell\)	Diboson	Total Background	Data	Point A	Point B
Preselection	304.5	286.7	12.4	28.6	632.3 ± 19.5	596	65.9 ± 2.4	26.6 ± 0.7	
Emu 1	194.4	115.4	10.4	25.3	345.4 ± 15.0	329	54.1 ± 2.3	22.7 ± 0.7	
Emu 2	8.6	20.0	9.1	21.2	58.9 ± 3.8	52	31.6 ± 1.7	19.0 ± 0.6	
Emu 3	5.9	3.6	7.4	20.2	37.1 ± 2.7	34	26.0 ± 1.5	17.3 ± 0.6	

TABLE II: $\epsilon\mu$ channel. Expected numbers of events for total background, signal points A and B, and number of observed events in data, in the twelve \(S_T, H_T\) bins. Statistical and JES uncertainties are added in quadrature for the total background and signal points.

Bin	Total background	Data	Point A	Point B
\(S_T \in [0, 70]\) GeV, \(H_T = 0\)	2.6 ± 1.1	1	7.3 ± 1.0	0.0 ± 0.0
\(S_T \in [70, 120]\) GeV, \(H_T = 0\)	9.2 ± 1.2	14	4.8 ± 0.7	0.2 ± 0.1
\(S_T \in [120, \ldots]\) GeV, \(H_T = 0\)	7.7 ± 0.7	5	0.8 ± 0.3	1.8 ± 0.2
\(S_T \in [0, 70]\) GeV, \(H_T \in [0, 60]\)	1.9 ± 0.7	2	5.2 ± 0.7	0.0 ± 0.0
\(S_T \in [70, 120]\) GeV, \(H_T \in [0, 60]\)	3.6 ± 1.2	4	5.3 ± 0.8	1.2 ± 0.2
\(S_T \in [120, \ldots]\) GeV, \(H_T \in [0, 60]\)	3.0 ± 0.4	2	0.6 ± 0.3	6.3 ± 0.5
\(S_T \in [0, 70]\) GeV, \(H_T \in [60, 120]\)	0.4 ± 0.6	0	0.6 ± 0.3	0.0 ± 0.0
\(S_T \in [70, 120]\) GeV, \(H_T \in [60, 120]\)	0.7 ± 0.2	1	1.2 ± 0.3	1.3 ± 0.2
\(S_T \in [120, \ldots]\) GeV, \(H_T \in [60, 120]\)	3.6 ± 0.8	2	0.1 ± 0.1	4.3 ± 0.3
\(S_T \in [0, 70]\) GeV, \(H_T \in [120, \ldots]\)	0.0 ± 0.0	0	0.0 ± 0.0	0.0 ± 0.0
\(S_T \in [70, 120]\) GeV, \(H_T \in [120, \ldots]\)	0.8 ± 0.6	1	0.0 ± 0.0	0.4 ± 0.1
\(S_T \in [120, \ldots]\) GeV, \(H_T \in [120, \ldots]\)	3.7 ± 1.1	2	0.1 ± 0.1	1.7 ± 0.3

TABLE III: $\mu\mu$ channel. Expected numbers of events in various background and signal channels, and number of observed events in data, at various selection levels. Statistical as well as systematic uncertainties from the JES correction are shown for the total background and signal.

Selection	Multijet	Background contributions	\(T(1,2S)\)	\(Z/\gamma^* \to \ell\ell\)	WW	Total Background	Data	Point A	Point B
Preselection	3607.6	973.1	23781.7	5.1	9.6	28377.1 ± 34.9	28373	9.8 ± 0.4	41.1 ± 1.5
Dimu 1	632.1	80.8	3894.9	5.1	1.5	4664.4 ± 97.5	4337	8.8 ± 0.4	24.2 ± 1.1
Dimu 2	418.8	0.4	155.7	4.7	1.1	203.7 ± 8.5	213	7.5 ± 0.3	12.9 ± 0.8
Dimu 3	0.0	0.0	6.1	2.6	0.0	8.7 ± 1.6	4	3.5 ± 0.2	3.4 ± 0.4
Dimu 4	0.0	0.0	0.1	2.3	0.0	2.9 ± 0.4	1	3.1 ± 0.2	3.3 ± 0.4

TABLE IV: $\mu\mu$ channel. Expected numbers of events for total background, signal points A and B, and number of observed events in data, in the 5 \(H_T\) bins. Statistical and JES uncertainties are added in quadrature for the total background and signal points.

Bin	Total background	Data	Point A	Signal
\(H_T \in [0, 40]\) GeV	0.11 ± 0.0	0	2.0 ± 0.3	0.5 ± 0.1
\(H_T \in [40, 80]\) GeV	0.89 ± 0.4	0	1.1 ± 0.3	1.0 ± 0.1
\(H_T \in [80, 120]\) GeV	0.75 ± 0.0	0	0.2 ± 0.1	0.8 ± 0.1
\(H_T \in [120, 160]\) GeV	0.56 ± 0.0	1	0.0 ± 0.0	0.4 ± 0.1
\(H_T \in [160, \ldots]\) GeV	0.57 ± 0.0	0	0.0 ± 0.0	0.4 ± 0.1
FIG. 1: $e\mu$ channel. Distributions of the transverse momenta of the electron (a) and of the muon (b) after preselection cuts; (c) the transverse mass $M_T(e, \mu, \not{E}_T)$ after preselection cuts and $E_T > 15$ GeV and $\Delta R((e, \mu), \text{jet}) > 0.5$; (d) the angular sum $\Delta\phi(\mu, \not{E}_T) + \Delta\phi(e, \not{E}_T)$ after the cut (Emu 2); (e) S_T and (f) H_T distributions after the cut (Emu 3).

FIG. 2: $\mu\mu$ channel. (a) $\Delta\phi(\mu_1, \not{E}_T)$ versus \not{E}_T in simulated $Z/\gamma^* \rightarrow \mu\mu$ events; the contour of the cut (Dimu 2) is shown by the solid line. Distributions of the b jet tagging probability $P(\text{jet})$ (b), the invariant mass of the two most energetic muons (c), and E_T (d) after preselection cuts.
FIG. 3: For the nominal production cross section, the 95% C.L. excluded regions in the $[M(\tilde{t}_1), M(\tilde{\nu})]$ plane for the observed (full curve) and the average expected (dashed curve) limits are shown; the band surrounding the observed limit represents the lower and upper bounds of the signal cross-section variation. The regions excluded by D0 during Run I [14] and by LEP [19] are also shown.

(2003).
U. Baur and E. L. Berger, Phys. Rev. D 41, 1476 (1990).
[10] R. Brun and F. Carminati, CERN Program Library Long Writeup W5013, 1993 (unpublished).
[11] G.C. Blazey et al., in Proceedings of the Workshop: QCD and Weak Boson Physics in Run II, edited by U. Baur, R.K. Ellis, and D. Zeppenfeld, Fermilab-Pub-00/297 (2000).
[12] D0 Collaboration, V.M. Abazov et al., Phys. Rev. D 75, 092001 (2007).
[13] D0 Collaboration, V.M. Abazov et al., Phys. Rev. D 76, 052006 (2007).
[14] D0 Collaboration, V.M. Abazov et al., Phys. Rev. Lett. 88, 171802 (2002).
[15] T. Andeen et al., “The D0 experiment’s integrated luminosity for Tevatron Run IIa”, Fermilab-TM-2365 (2007).
[16] S. Greder, Ph.D. thesis, Fermilab-Thesis-2004-28, 2004; B. Clément, Ph.D. thesis, Fermilab-Thesis-2006-06, 2006.
[17] J. Pumplin et al., JHEP 0207 012 (2002).
D. Stump et al., JHEP 0310 046 (2003).
[18] T. Junk, Nucl. Instrum. Methods A 434, 435 (1999).
[19] LEPSUSYWG, ALEPH, DELPHI, L3 and OPAL experiments, note LEPSUSYWG/04-02 (http://lepsusy.web.cern.ch/lepsusy/Welcome.html).
ALEPH Collaboration, A. Heister et al., Phys. Lett. B 537 5 (2002).