Introduction

World Health Organization reported that in developing countries death rate is higher due to chronic diseases like hypertension, diabetes, etc. The main root causes for all chronic diseases are either increased blood pressure (BP) or increased weight. Research reported that globally, in 2016, about 39% of people over 18 years are overweight and 13% already in obese category. Overweight/obesity are the fifth risk factor which may also lead to death also. About 2.8 million people annually die because of obesity globally. So, overweight or obese is a global epidemic. National Family Health Survey (NFHS) report 2005-2006 revealed that overweight or obesity was significantly noted in urban communities. The report also revealed that it’s highly prevalence is higher in middle aged women especially.

Abstr Act

Objectives: Change in the past few decades in human life style, nowadays international health organizations, i.e., World Health Organization are also focusing on prevention along with treatment aspect of chronic illness. Researches focus that women of age group 30-45 years are at increased risk for hypertension and heart disease due to increased weight. Yoga is an effective method to control our physiological variables like blood pressure (BP), pulse, etc. The main aim of this study was to identify the effects of yoga on physiological variables. Methods: The study was an experimental study with two group, pretest and posttest control group, design, which was conducted on 40 female participants. Pranayama and meditation for a period of 6 weeks was done by these women. Results: Yoga therapy significantly reduced the BP (0.000*) and pulse rate (0.000*) of women, which was also statistically proved. Conclusions: Yoga therapy can be an effective method to control BP and pulse rate of patients with chronic diseases.

Keywords: Blood pressure, physiological variables, pulse rate, yoga therapy

Effect of yoga on pulse rate and blood pressure among women

G. Kaleeswari, C. Vasantha Kalyani, J. S. Jayarani, Kusum K. Rohilla

College of Nursing, All India Institute Medical Science, Rishikesh, Uttarakhand, India

Abstract

Objectives: Change in the past few decades in human life style, nowadays international health organizations, i.e., World Health Organization are also focusing on prevention along with treatment aspect of chronic illness. Researches focus that women of age group 30-45 years are at increased risk for hypertension and heart disease due to increased weight. Yoga is an effective method to control our physiological variables like blood pressure (BP), pulse, etc. The main aim of this study was to identify the effects of yoga on physiological variables. Methods: The study was an experimental study with two group, pretest and posttest control group, design, which was conducted on 40 female participants. Pranayama and meditation for a period of 6 weeks was done by these women. Results: Yoga therapy significantly reduced the BP (0.000*) and pulse rate (0.000*) of women, which was also statistically proved. Conclusions: Yoga therapy can be an effective method to control BP and pulse rate of patients with chronic diseases.

Keywords: Blood pressure, physiological variables, pulse rate, yoga therapy

Introduction

World Health Organization reported that in developing countries death rate is higher due to chronic diseases like hypertension, diabetes, etc. The main root causes for all chronic diseases are either increased blood pressure (BP) or increased weight. Research reported that globally, in 2016, about 39% of people over 18 years are overweight and 13% already in obese category. Overweight/obesity are the fifth risk factor which may also lead to death also. About 2.8 million people annually die because of obesity globally. So, overweight or obese is a global epidemic.

National Family Health Survey (NFHS) report 2005-2006 revealed that overweight or obesity was significantly noted in urban communities. The report also revealed that it’s highly prevalence is higher in middle aged women especially. Various researches reported reasons for its high prevalence of overweight/obesity among middle aged women. Research reported that main cause of overweight/obesity were reduced basal metabolic rate due to decreased physical activity. Another study reported that due to decreased production of growth hormones and estrogen lead to obesity. Another study identified that overeating is a reasons for overweight and obesity. Due to lack of physical activity, which may lead to obesity or other associated comorbidity like hypertension. It is observed that body mass index (BMI) is comparatively high among pre-hypertensive and hypertensive groups, which shows its significant correlation.

Studies have found that obesity leads to arterial stiffness due to changes in the vascular structure. Obesity reduces vascular elasticity due to changes in endothelial function which may lead to increased BP. The reasons will be due to increased arterial intima layer thickness and, hence, it reduces arterial lumen diameter. This arterial stiffness increases systolic blood pressure (SBP) and simultaneously decreases diastolic blood pressure (DBP). This further increases pulse pressure, which increases the load on left ventricle, results in increased

Access this article online

Quick Response Code:

Website: www.jfmpc.com

DOI: 10.4103/jfmpc.jfmpc_113_21

How to cite this article: Kaleeswari G, Kalyani CV, Jayarani JS, Rohilla KK. Effect of yoga on pulse rate and blood pressure among women. J Family Med Prim Care 2021;10:3670-4.
risk of myocardial infarction and other coronary heart disease. So, obesity changes both physiological variables, i.e., BP and pulse rate.

Yoga is a mind and body technique which is a combination of physical exercises (Asanas) in synchronous with breathing techniques like pranayama and meditation. It provides us with various beneficial effects. Yoga also improves lipid profile, heart rate variability and decrease in BP. The aim of our study was to identify effectiveness of yoga therapy of physiological variables among women.

Methods

The study was conducted at All India Institute of Medical Sciences, Rishikesh, India. Total 46 women of age group range from 30 to 45 years were recruited for this study. A total of 50 women were screened; out of whom four declined to sign informed consent form. Remaining 46 were registered for the trial and were randomly allocated in both groups. Figure 1 depicts a flow diagram of the study, enrollment and intervention.

Inclusion criteria for study were: women of age group 30–45 years; normal BP; diagnosed with any chronic illness and taking any treatment; physical activity not contraindicated; physical and cognitive impairment; able to perform yoga and willing to participate in study. Exclusion criteria for study were: prior experience of yoga, hospitalized within 3 months.

Single-blind randomized control trial with 46 participants was divided in two groups (yoga versus control) using a computer-generated random software, i.e., sealed envelope. Opaque envelopes were used to do random allocation of participants in each group.

Specialist physician did complete systemic examination of each participants at enrollment of study. Each participant did practice set of integrated for yoga for 45 mint, 5 days/week for 6 weeks with postgraduate diploma in yoga with 10 years of experiences. Participants of control group did conventional therapy. Pre yoga and post yoga therapy assessments, i.e., BP and heart rate was done in both groups equally after 6 weeks of intervention. All participants refrain from participating in other type of yoga-related activity during this study period.

Blinding

Double blinding was not possible for yoga interventions, in this participants and trainer can identify both assigned group.

Intervention

Yoga sets of integrated modules were developed and validated by five experts in the field of yoga. It mainly consist of simple practices which work on physical, mental and emotional health. Yoga training session details depicted in Tables 1-3.

Data collection procedure

Pre and post assessment of subjects after 6 weeks was done after relaxation for 20 min. BP was measured using a calibrated and validated android sphygmomanometer device. Both SBP and DBP recordings were taken with back support, legs uncrossed and upper arms bared from the left hand to maintain consistency in sitting position. All clothing covering the cuff region was removed, cuff bladder was ensured encircling 80% or more of the participants arm circumference. Participants were instructed not to talk while taking measurements. Pulse rates were measured by sitting each participant comfortably and measured using a digital

Figure 1: Consort Diagram
Participants' complete medical history and information sheet were collected before starting of study. Adherence and compliance were checked by attendance records maintained by yoga instructor. Participants were instructed to continue yoga session for 6 weeks intervention period. At end of 6 week, a feedback form was used to assess happiness and hurdle faced by participants of study.

Table 1: Yogic training schedule for 0-2 weeks

Yogic training	Duration	Repetition	Sets	Rest between practices	Rest between Sets	Frequency/week
Sitilikarana Vyayama (loosening exercises)	5 min	2	2	5-10 s	5-6 min	5 days/week
Surya Namaskar	6 min	2	2	10-15 s		
Padmasana	3 min	2	2	5-10 s		
Ardha Katichakarasana	3 min	2	2	5-10 s		
Vipareeta karani	3 min	2	2	5-10 s		
Bhumangasana	3 min	2	2	5-10 s		
Padahastasana	3 min	2	2	5-10 s		
Savasana	6 min	1	1	5-10 s		
Chandra and Surya anuloma and viloma	3 min	2	1	5-10 s		
Nadishodana Pranayama	3 min	2	1	5-10 s		
Viramari and Bhastrika Pranayama	3 min	2	1	5-10 s		
Japa Meditation	5 min	1	1			

Table 2: Yoga training schedule for 2-4 weeks

Yogic training	Duration	Repetition	Sets	Rest between practices	Rest between Sets	Frequency/week
Sitilikarana Vyayama (loosening exercises)	4 min	3	2	5-8 s	5-6 min	5 days/week
Surya Namaskar	6 min	3	2	5-10 s		
Vajrasana	3 min	3	2	5-8 s		
Ustrasana	3 min	3	2	5-8 s		
Padahastasana	3 min	3	2	5-8 s		
Sasangasana	3 min	3	2	5-8 s		
Halasana	3 min	3	2	5-8 s		
Dhanurasana	3 min	3	1	5-8 s		
Savasana	6 min	1	-			
Nadi Shodhana Pranayama	3 min	3	1	5-8 s		
Sheetali and Sheetkari Pranayama	3 min	3	1	5-8 s		
Japa Meditation	5 min	1	1			

Table 3: Yoga training schedule for 4-6 weeks

Yogic training	Duration	Repetition	Sets	Rest between practices	Rest between Sets	Frequency/week	
Sitilikarana Vyayama (loosening exercises)	3 min	3	2	3-6 s		3-5 min	5 days/week
Surya Namaskar	4 min	3	2	5-8 s			
Salabasana	2 min	3	3	3-6 s			
Halasana	3 min	3	3	3-6 s			
Bhumangasana	3 min	3	3	3-6 s			
Ustrasana	3 min	3	3	3-6 s			
Vibareethakarani	3 min	3	3	3-6 s			
Dhanurasana	3 min	3	2	3-6 s			
Paschimotanasana	3 min	3	2	3-6 s			
Savasana	6 min	1	-				
Nadi Shodhana Pranayama	4 min	3	1	3-6 s			
Bhastrika	4 min	3	1				

Participants information sheet were completed by each participant.

Ethical approval was taken from Institute Ethical Committee (AIIMS/IM/RC69/2015/07) on dated 27.08.2016 in accordance with Helsinki Declaration. After explaining the aim of this study to each participant, written informed consent was obtained from each participant of study.

Data analysis was done by using SPSS version 23.0. For participants, information sheet frequency and percentage were calculated. Effectiveness of yoga therapy was analyzed by using unpaired t-test and \(P < 0.05 \) was considered significant.
Results

Out of 40 participants, the mean age of participants was 40.6 years. In both groups, mostly belongs to age groups of 41–45 years, doing heavy work, non-vegetarian, literate and no any family history of obesity. Most of women were have BMI higher than 24.9 kg/m² in both groups [Table 4].

After 6 weeks of yoga training, the pulse rate of the experimental group was significantly reduced, which is again also statistically significant. Statistically, there was a significant difference in values of mean of SBP as well as DBP after doing yoga training for 6 weeks among experimental and control groups. So it is hence identified that yoga therapy is an effective method to control BP and pulse rate [Table 5].

Discussion

In our study, participants mean age was 40.6 years. Another randomized control trial recruited participants from an age group of more than 65 years[20], indicating that in our study most of the participants were of a young age. The majority were heavy worker, nonvegetarian and literate and had no family history of obesity, where no any study shared this types of participant’s information sheet which could be helpful to explore more details about participants.

| Table 4: Participants information sheet of experimental and control group (n₁=20, n₂=20) |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Variables | Options | Experimental | Control |
| | | group n₁=20 | group n₂=20 |
| Age | Mean=40.6 | 07 35 08 40 | 13 65 12 60 | 07 35 08 40 | 13 65 12 60 | 07 35 08 40 | 13 65 12 60 | 07 35 08 40 | 13 65 12 60 | 07 35 08 40 | 13 65 12 60 | 07 35 08 40 | 13 65 12 60 |
| Occupation | Sedentary worker| 08 08 07 36 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 |
| Food pattern | Vegetarian | 08 09 07 41 | 12 08 07 41 | 12 08 07 41 | 12 08 07 41 | 12 08 07 41 | 12 08 07 41 | 12 08 07 41 | 12 08 07 41 | 12 08 07 41 | 12 08 07 41 | 12 08 07 41 | 12 08 07 41 |
| Education | Literate | 08 08 07 36 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 |
| Family history | Hereditary | 08 08 07 36 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 |
| Body Mass Index | Non-vegetarian | 08 08 07 36 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 | 12 09 08 34 |

Table 5: Comparison of pulse rate and blood pressure of experimental and control group

Physiological variables	Group	Pretest value	Posttest value	SD	t	P
1. Pulse Rate	Experimental group	80.40	77.05	2.62	35.78	0.000*
	Control group	81.35	80.40	2.84		
2. Systolic BP	Experimental group	146.89	140.23	4.24	13.11	0.000*
	Control group	147.90	146.11	5.20		
3. Diastolic BP	Experimental group	86.70	80.20	3.40	24.78	0.000*
	Control group	88.40	86.40	4.32		

*Significance at P<0.05 level

Conclusion

Out of various treatment modalities, yoga therapy should be preferable therapy used for overweight women, which could be easily adopted by them. As this study involves only a small sample size and follow-up for one and half month only. As a researcher, we suggest for large sample size study with a long-term follow-ups to final shows yoga therapy efficacy. Yoga therapy can be effectively and easily introduced in the school and college curriculum to manage childhood obesity also, as in developing countries this major problem among developing countries.

Yoga therapy should be an integral part of hypertension patient’s treatment that helps us to treat a human holistically including their physical, mental, social and spiritual health. Yoga therapy has preventive nature, while it could be used for curative and restorative purposes in some chronic diseases. So significant...
changes were observed in physiological variables in our study that suggested that yoga therapy is beneficial therapy and improves quality of life of women by reducing stress level and decreases weight also.

Declaration of patient consent

The authors certify that they have obtained all appropriate participants consent forms. In the form, the participants have given their consent for their images and other clinical information to be reported in the journal. The participants understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. World Health Organization. World Health Statistics. In: World Health Statistics. Accessed on 10.03.2021.2020.
2. Steyn K, Damasceno A. Lifestyle and Related Risk Factors for Chronic Diseases: Disease and Mortality in Sub-Saharan Africa. 2nd ed. The International Bank for Reconstruction and Development/The World Bank; 2006.
3. World Health Organization. Obesity and Overweight. World Health Organization: WHO. 2020. [Last accessed on 2021 Mar 10].
4. World Health Organization. 10 Facts on Obesity. World Health Organization. 2017. [Last accessed on 2021 Mar 10].
5. Gouda J, Fristy RK. Overweight and obesity among women by economic stratum in urban India. J Health Popul Nutr 2014;32:79-88.
6. Seema S, Rohilla K, Kalyani V, Babbar P. Prevalence and contributing factors for adolescent obesity in present era: Cross-sectional study. J Family Med Prim Care 2021;10:1890-4.
7. Sahoo K, Sahoo B, Choudhury AK, Sofi NY, Kumar R, Bhadoria AS. Childhood obesity: Causes and consequences, J Family Med Prim Care 2015;4:187-92.
8. Sidhu S, Parikh T, Burman KD. Endocrine Changes in Obesity. [Updated 2017 Oct 12]. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc; 2000-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279053/.
9. Kim D-Y, Jung S-Y. Effect of aerobic exercise on risk factors of cardiovascular disease and the apolipoprotein B/apolipoprotein a-1 ratio in obese woman. J Phys Ther Sci 2014;26:1825-9.
10. Khanam MA, Lindeboom W, Razzaza A, Niessen L, Milton AH. Prevalence and determinants of pre-hypertension and hypertension among the adults in rural Bangladesh: Findings from a community-based study. BMC Public Health 2015;15:203.
11. Katzmarzyk PT, Janssen I. The economic costs associated with physical inactivity and obesity in Canada: An update. Can J Appl Physiol 2004;29:90-115.
12. McGill HC Jr, McMahan CA, Herderick EE, Zieske AW, Malcom GT, Tracy RE, et al. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Obesity accelerates the progression of coronary atherosclerosis in young men. Circulation 2002;105:2712-8.
13. Petersen KS, Blanch N, Keogh JB, Clifton PM. Effect of weight loss on pulse wave velocity: systematic review and meta-analysis. Arterioscler Thromb Vasc Biol 2013;35:243-52. doi: 10.1161/ATVBAHA.113.304798. Epub 2014 Nov 20. PMID: 25414255.
14. Son W-M, Kim D-Y, Kim Y-S, Ha M-S. Effect of obesity on blood pressure and arterial stiffness in middle-aged Korean women. Osong Public Health Res Perspect 2017;8:369-72.
15. Kusum K, Shruti C, Kant R, Kalyani V, Singh A. Comparison of blood pressure measurements taken by one stage approach, two stage approach and digital apparatus. J Biol Med 2020;3:37-9.
16. Kalyani V, Bisht M, Thapliyal S, Rohilla KK. Comparison of practice and attitude of self-treatment in rural and urban population in Uttarakhand, India: A comparative study. Natl J Physiol Pharm Pharmacol 2020;10:1052-9.
17. Subramanya P, Telles S. Effect of two yoga-based relaxation techniques on memory scores and state anxiety. Biopsychosoc Med 2009;3:8.
18. Krishna BH, Pal P, G K P, J B, E J, Y S, et al. Effect of yoga therapy on heart rate, blood pressure and cardiac autonomic function in heart failure. J Clin Diagn Res 2014;8:14-6.
19. Pocock SJ. Clinical Trials: A Practical Approach. Create a Blocked Randomisation List| Sealed Envelope. Wiley; 2020.
20. Östh J, Diwan V, Jirve M, Diwan V, Choudhary A, Mahadik VK, et al. Effects of yoga on well-being and healthy ageing: Study protocol for a randomised controlled trial (FitForAge). BMJ Open 2019;9:e027386.
21. Tyagi A, Cohen M. Yoga and heart rate variability: A comprehensive review of the literature. Int J Yoga 2016;9:97-113.
22. Hagins M, States R, Selfe T, Innes K. Effectiveness of yoga for hypertension: Systematic review and meta-analysis. Evid Based Complement Alternat Med 2013;2013:649836.
23. Annapoorna K, Vasanthalaxmi K. Effects of yoga therapy on obesity and quality of life in women: A longitudinal study. Int J Yoga Allied Sci 2017;2:18-24.