Group 13 complexes of dipyridylmethane, a forgotten ligand in coordination chemistry

Vasko, Petra; Kinnunen, Virva; Moilanen, Jani; Roemmele, Tracey L.; Boeré, René T.; Konu, Jari; Tuononen, Heikki

2015

Please cite the original version:
Vasko, P., Kinnunen, V., Moilanen, J., Roemmele, T. L., Boeré, R. T., Konu, J., & Tuononen, H. (2015). Group 13 complexes of dipyridylmethane, a forgotten ligand in coordination chemistry. Dalton Transactions, 44(41), 18247-18259. https://doi.org/10.1039/C5DT02830B

All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
Group 13 Complexes of Dipyridylmethane, a Forgotten Ligand in Coordination Chemistry

Petra Vasko,* Virva Kinnunen,* Jani Moilanen,* Tracey L. Roemmele,* René T. Boéré,* Jari Konu,* and Heikki M. Tuononen* *a

Abstract

The reactions of dipyridylmethane (dpma) with group 13 trichlorides were investigated in 1:1 and 1:2 molar ratios using NMR spectroscopy and X-ray crystallography. With 1:1 stoichiometry and Et₂O as solvent, reactions employing AlCl₃ or GaCl₃ gave mixtures of products with the salt [(dpma)₂MCl₂][MCl₄]⁻ (M = Al, Ga) as the main species. The corresponding reactions in 1:2 molar ratio gave similar mixtures but with [(dpma)MCl₂][MCl₄]⁻ as the primary product. Pure salts [(dpma)AlCl₂][Cl]⁻ and [(dpma)AlCl₂][AlCl₄]⁻ could be obtained by performing the reactions in CH₃CN. In the case of InCl₃, a neutral monoadduct (dpma)InCl₃ formed regardless of the stoichiometry employed. A neutral adduct (dpma)(BCl₃)₂ was obtained from the reaction between dpma and BCl₃ in Et₂O using 1:2 stoichiometry. With 1:1 molar ratio of reagents, a mixture of products and deprotonation of the methylene bridge in [(dpma)BCl₂]⁺ was observed. The experimental data showed that the structural flexibility of the dpma ligand results in more diverse coordination chemistry with group 13 elements than that observed for bipyridine (bpy), while computational investigations indicated that the investigated metal-ligand interactions are, to a first approximation, independent of the ligand type. Electrochemical and chemical attempts to reduce the cations [(dpma)MCl₂]⁺ showed that, in stark contrast to the chemistry of the related
[(bpy)BCl$_2$]$^+$ cation, the neutral radicals [(dpma)MCl$_2$]* are extremely unstable. Differences in the redox behaviour of dpma and bpy could be rationalized with the electronic structure of the ligand and that of the methylene bridge in particular. As a whole, the facile reactivity of the methylene bridge in the dpma ligand renders it amenable to further reactivity and functionalization that is not possible in the case of bpy.
Introduction

The heterocyclic 2,2’-bipyridine (bpy) ligand is one of the cornerstones of modern coordination chemistry. Its ubiquitous nature is best exemplified by the more than 8000 hits found in the Cambridge Crystallographic Database that contain this ligand coordinated to a metal centre. Consequently, the understanding and appreciation of the electronic structure of bpy have shaped the development of many different fields of chemistry. One particularly noteworthy example is metal complexes of bpy with the general formula [M(bpy)₃]^n⁺ and the dication [Ru(bpy)₃]²⁺ in particular. The latter is a well-known luminophore whose optical and physicochemical properties make it ideally suited for photochemical applications with recent high-impact examples from bioanalysis and photocatalysis.

In contrast to the widespread use of bpy as a bidentate chelating ligand, the coordination chemistry of 2,2’-dipyridylmethane (dpma) appears to be significantly underdeveloped with only a handful of extant structurally characterized examples. This is understandable in part as the methylene bridge disrupts the π-conjugation between the pyridyl rings, thereby influencing the photochemical properties of the ligand. Nevertheless, the coordination properties of the dpma ligand have received some attention, particularly in platinum(II) chemistry. Specifically, platinum complexes supported by dpma ligands have recently been shown to activate C–H bonds in arenes.
to undergo oxidative addition with CHCl$_3$ and CH$_2$Cl$_2$,7 and to function as highly efficient catalysts for olefin hydroarylation.8

Recently we reported the synthesis of an aluminium complex [(dpme)$_2$Al]$^+$ and its one-electron reduction to the corresponding radical, [(dpme)$_2$Al]$,^9$ thereby demonstrating the non-innocent behaviour of anionic, deprotonated, 2,2$'$-dipyridylmethene (dpme) ligand which is analogous to the ubiquitous β-diketiminate (nacnac) framework. This research was motivated by the realization that the structurally related 2,2$'$-dipyrrromethenes (dipyme) are examples of non-innocent ligands with highly interesting redox properties.10 As essential background to further studies of the deprotonated dpme ligand, it was necessary to gain a more complete understanding of the coordination chemistry of its neutral precursor, the dpma ligand, with group 13 elements.

Herein we report the results of our investigations on the reactions of dpma with group 13 trichlorides. We describe the synthesis and characterization of ionic aluminium and gallium compounds [(dpma)$_2$MCl$_2$]$^+$[MCl$_4$]$^-$ (M = Ga (1a), Al (1b)), [(dpma)MCl$_2$]$^+$[Cl]$^-$ (M = Ga (2a), Al (2b)) and [(dpma)MCl$_2$]$^+$[MCl$_4$]$^-$ (M = Ga (2c), Al (2d)), as well as that of the neutral indium and boron adducts (dpma)InCl$_3$·THF (3·THF) and (dpma)(BCl$_3$)$_2$ (4). The molecular and electronic structures of 1–4 were examined via combination of crystallographic and computational methods, while their solution behaviour was assessed with NMR spectroscopy. Furthermore, the redox properties of the cations [(dpma)MCl$_2$]$^+$ (M = Al, Ga) were examined using electrochemical techniques. A summary of these reactions and their outcomes is provided in Schemes 1 and 2. Throughout this report, the results will be compared and contrasted with the coordination chemistry of the bpy ligand.
Scheme 1 Summary of products from 1:1 reactions of dpma with group 13 trichlorides.

Scheme 2 Summary of products from 1:2 reactions of dpma with group 13 trichlorides.
Experimental section

Materials and methods. All reactions and manipulations were performed under an argon atmosphere by using standard Schlenk techniques or an inert atmosphere glovebox. Compounds BCl$_3$ (Aldrich, 1.0 M in heptane and 1.0 M in hexanes), GaCl$_3$ (Strem, 99.99%), InCl$_3$ (Strem, 99.999%), 2-picoline (Aldrich, 98%), 2-fluoropyridine (Aldrich, 98%), n-BuLi (Aldrich, 2.5 M in hexanes) and [(n-Bu)$_4$N][PF$_6$] (Aldrich, ≥99.0%) were used as received. AlCl$_3$ (Riedel-de Haën, >98%) was sublimed prior to use. The solvents were dried and deoxygenated by distillation under an argon atmosphere from appropriate drying agent (Na/benzophenone for n-hexane, toluene, THF and Et$_2$O; CaH$_2$ for CH$_2$Cl$_2$ and CH$_3$CN) and stored over 3–4 Å molecular sieves.

The solvents used for 1H and 13C {1H} NMR measurements were CD$_2$Cl$_2$, CD$_3$CN, d_8-toluene and d_8-THF. The room temperature (+23 °C) 1H and 13C {1H}, as well as variable temperature 1H NMR spectra were obtained on a Bruker Avance DPX 250 spectrometer operating at 250.13 MHz, Bruker Avance 300 spectrometer operating at 300.13 MHz, Bruker Avance 400 spectrometer operating at 400.13 MHz, or Bruker Avance DRX 500 spectrometer operating at 500.13 (13C {1H}) and 125.77 MHz (1H). All 1H and 13C {1H} NMR spectra are referenced to the solvent and the chemical shifts are reported relative to (CH$_3$)$_4$Si.

Elemental analyses were performed by using a Vario EL III Element Analyzer by Elementar Analysensysteme GmbH. Samples for melting point determinations were placed in glass capillaries and sealed with vacuum grease. The temperatures were measured with a Melting Point Apparatus SMP3.

Crystal structure determinations. Single crystals of \{[(2-NC$_5$H$_4$)$_2$CH$_2$]$_2$GaCl$_2$\} [GaCl$_4$]$^-$ (CH$_2$Cl$_2$) (1a·CH$_2$Cl$_2$), \{[(2-NC$_5$H$_4$)$_2$CH$_2$]$_2$AlCl$_2$\} [AlCl$_4$]$^-$ (C$_4$H$_8$O) (1b·THF), \{[(2-NC$_5$H$_4$)$_2$CH$_2$]GaCl$_2$\} [GaCl$_4$]$^-$ (2c), \{[(2-NC$_5$H$_4$)$_2$CH$_2$]InCl$_3$\} (C$_4$H$_8$O) (3·THF) and \{(2-}
NC₅H₄)₂CH₂}{(BCl)₂ (4) were coated with Fomblin® Y oil and mounted on a glass fiber or a MiTeGen loop. Diffraction data were collected on a Bruker-Nonius Kappa Apex II CCD area-detector diffractometer (compounds 1a, 2c and 3) using graphite monochromatized MoKα radiation (λ = 0.71073 Å) at −150 °C and on an Agilent SuperNova Dual Source diffractometer equipped with an Atlas CCD area-detector (compounds 1b and 4) using graphite monochromatized CuKα radiation (λ = 1.54184 Å) at −150 °C. For compounds 1a, 2c and 3, the data were processed using DENZO-SMN v0.93.0 by applying empirical absorption correction, whereas for compounds 1b and 4, the data were processed using CrysAlisPro v1.171.36.28 by performing an analytical numeric absorption correction using a multifaceted crystal (as implemented in CrysAlisPro). All structures were solved by direct methods with the help of the SIR-97 program¹¹ and refined using SHELXL-97¹² within Olex2.¹³ After the full-matrix least-squares refinement of all non-hydrogen atoms with anisotropic thermal parameters, the hydrogen atoms were placed in calculated (idealized) positions. The isotropic thermal parameters of the hydrogen atoms were fixed at 1.2 times that of the respective heavy atoms and they were treated as riding atoms in the final refinement. For details of the crystallographic data, see ESI†.

Electrochemical experiments. Cyclic voltammetry experiments were carried out using a Princeton Applied Research PARSTAT 2273 potentiostat. A conventional three electrode cell fitted with a platinum or glassy carbon working electrode, a platinum counter electrode and a silver reference electrode was used in all measurements. The cyclic voltammograms (CVs) were recorded at +21±2 °C using solutions ~5 mM in analyte in freshly distilled CH₃CN or CH₂Cl₂ which were 0.4 M in [(n-Bu)₄N][PF₆]− supporting electrolyte. All CVs were referenced against an internal standard (~5 mM ferrocene) and measured using scan rates between 0.1 and 10 Vs⁻¹.
Computational details. All calculations were done with the Gaussian 09 program package.14 The geometries of studied systems were optimized in the gas phase with density functional theory (DFT) using the hybrid PBE\textsubscript{1}PBE exchange-correlation functional15 in combination with the def-TZVP basis sets.16 Frequency calculations were performed for all stationary points found to find out their nature on the potential energy hypersurface.

Synthesis of (2-NC\textsubscript{5}H\textsubscript{4})\textsubscript{2}CH\textsubscript{2} (dpma). The neutral ligand (2-NC\textsubscript{5}H\textsubscript{4})\textsubscript{2}CH\textsubscript{2} (dpma) was prepared according to a literature procedure giving a yellow oily product in 51\% yield.17 1H NMR (\textit{d\textsubscript{8}}-THF, +23 °C): δ 4.25 [s, 2H, (2-NC\textsubscript{5}H\textsubscript{4})\textsubscript{2}CH\textsubscript{2}], 7.08–8.45 [8H, (2-NC\textsubscript{5}H\textsubscript{4})\textsubscript{2}CH\textsubscript{2}], 1H NMR (CD\textsubscript{3}CN, +23 °C): δ 4.25 [s, 2H, (2-NC\textsubscript{5}H\textsubscript{4})\textsubscript{2}CH\textsubscript{2}], 7.15–8.46 [8H, (2-NC\textsubscript{5}H\textsubscript{4})\textsubscript{2}CH\textsubscript{2}].

Synthesis of [(dpma)\textsubscript{2}GaCl\textsubscript{2}]+[GaCl\textsubscript{4}]– (1a). A solution of dpma (0.170 g, 1.00 mmol) in 10 mL of Et\textsubscript{2}O was cooled to –78 °C and a solution of GaCl\textsubscript{3} (0.176 g, 1.00 mmol) in 10 mL of Et\textsubscript{2}O was added via cannula. The reaction mixture was stirred for 10 min at –78 °C and 2 h at room temperature, after which the precipitate was allowed to settle and the solvent was decanted via cannula. The product was washed with Et\textsubscript{2}O (1 × 5 mL) and dried under vacuum, giving 1a as a white powder (0.350 g, 95\% calculated as 1a). Crystals suitable for single crystal X-ray diffraction measurement were grown by slow diffusion from CH\textsubscript{2}Cl\textsubscript{2} and \textit{n}-hexane. Melting point: 91–92 °C (sample turns to yellow before melting). 1H NMR (\textit{d\textsubscript{8}}-THF, +23 °C): δ 4.14 [br, 4H, (2-NC\textsubscript{5}H\textsubscript{4})\textsubscript{2}CH\textsubscript{2}], 7.58–8.99 [16H, (2-NC\textsubscript{5}H\textsubscript{4})\textsubscript{2}CH\textsubscript{2}]; (\textit{d\textsubscript{8}}-THF, –80 °C): δ 3.34 [d, 1H, (2-NC\textsubscript{5}H\textsubscript{4})\textsubscript{2}CH\textsubscript{2}], 4.40 [d, 1H, (2-NC\textsubscript{5}H\textsubscript{4})\textsubscript{2}CH\textsubscript{2}], 4.62 [s, 2H, (2-NC\textsubscript{5}H\textsubscript{4})\textsubscript{2}CH\textsubscript{2}], 7.52–9.90 [24H, (2-NC\textsubscript{5}H\textsubscript{4})\textsubscript{2}CH\textsubscript{2}]. 13C {1H} NMR (\textit{d\textsubscript{8}}-THF, +23 °C): δ 40.9 [(2-NC\textsubscript{5}H\textsubscript{4})\textsubscript{2}CH\textsubscript{2}], 125.1–156.1 [(2-NC\textsubscript{5}H\textsubscript{4})\textsubscript{2}CH\textsubscript{2}]. Anal. Calcd. for C\textsubscript{22}H\textsubscript{20}Ga\textsubscript{2}Cl\textsubscript{6}N\textsubscript{4}: C, 38.15; N, 8.09; H, 2.91. Found: C, 37.62; N, 7.89; H, 3.32.
Synthesis of [(dpma)AlCl₂]⁺[Cl]⁻ (2b). A solution of dpma (0.170 g, 1.00 mmol) in 15 mL of CH₃CN was cooled to −50 °C and a solution of AlCl₃ (0.133 g, 1.00 mmol) in 15 mL of CH₃CN was added via cannula. The reaction mixture was first stirred for 15 min at −50 °C and then ca. 16 h at +55 °C. The solvent was evaporated and the precipitate was washed with Et₂O (2 × 5 mL) and dried under vacuum, which gave 2b as a pale yellow powder (0.200 g, 66%). Melting point: 104–105 °C (sample turns to yellow before melting). ^1H NMR (CD₃CN, +23 °C): δ 4.61 [s, 2H, (2-NC₅H₄)₂CH₂], 7.55–8.62 [8H, (2-NC₅H₄)₂CH₂]. ^13C{^1H} NMR (CD₃CN, +23 °C): δ 40.3 [(2-NC₅H₄)₂CH₂], 124.8–156.5 [(2-NC₅H₄)₂CH₂]. Anal. Calcd. for C₂₂H₂₀Al₂Cl₆N₄: C, 43.52; N, 9.23; H, 3.32. Found: C, 42.63; N, 9.29; H, 3.57.

Reaction between dpma and AlCl₃ in Et₂O in 1:1 molar ratio. A solution of dpma (0.170 g, 1.00 mmol) in 10 mL of Et₂O was cooled to −78 °C and a solution of AlCl₃ (0.133 g, 1.00 mmol) in 10 mL of Et₂O was added via cannula. The reaction mixture was stirred for 15 min at −78 °C and 1.5 h at room temperature, after which the precipitate was allowed to settle and the solvent was decanted via cannula. The product was washed with Et₂O (1 × 5 mL) and dried under vacuum, giving a white powder (0.263 g). Characterization of the powder via ^1H NMR showed it to be a mixture of 1b and 2b; for further details, see main text and ESI†. Crystals of 1b, [(dpma)₂AlCl₂]⁺[AlCl₄]⁻, suitable for single crystal X-ray diffraction measurement were grown by slow diffusion from THF and n-hexane.

Synthesis of [(dpma)GaCl₂]⁺[GaCl₄]⁻ (2c). A solution of dpma (0.170 g, 1.00 mmol) in 10 mL of Et₂O was cooled to −78 °C and a solution of GaCl₃ (0.350 g, 2.00 mmol) in 10 mL of Et₂O was added via cannula. The reaction mixture was stirred for 10 min at −78 °C and 2 h at room temperature, after which the precipitate was allowed to settle and the solvent was decanted via cannula. The product was washed with 5 mL of Et₂O and dried under vacuum, giving 2c as a white
powder (0.500 g, 88% calculated as 2c). Crystals suitable for single crystal X-ray diffraction measurement were grown slowly from a saturated solution of toluene. Melting point: 151–153 °C (sample turns to yellow before melting). 1H NMR (d_8-THF, +23 °C): δ 4.75 [br, 2H, (2-NC$_3$H$_4$)$_2$CH$_2$], 7.81–8.97 [8H, (2-NC$_3$H$_4$)$_2$CH$_2$].]; (d_8-THF, –60 °C): δ 3.34 [d, 1H, (2-NC$_3$H$_4$)$_2$CH$_2$], 4.40 [d, 1H, (2-NC$_3$H$_4$)$_2$CH$_2$], 4.97 [s, 2H, (2-NC$_3$H$_4$)$_2$CH$_2$], 7.91–9.00 [8H, (2-NC$_3$H$_4$)$_2$CH$_2$], 7.55–9.88 [16H, (2-NC$_3$H$_4$)$_2$CH$_2$]. 13C{1H} NMR (d_8-THF, +23 °C): δ 40.1 [(2-NC$_3$H$_4$)$_2$CH$_2$], 126.4–155.6 [(2-NC$_3$H$_4$)$_2$CH$_2$]. Anal. Calcd. for C$_{11}$H$_{10}$Ga$_2$Cl$_6$N$_2$: C, 25.29; N, 5.36; H, 1.93. Found: C, 25.65; N, 5.39; H, 2.39.

Synthesis of [(dpma)AlCl$_2$][AlCl$_4$] (2d). A solution of dpma (0.170 g, 1.00 mmol) in 10 mL of CH$_3$CN was cooled to –50 °C and a solution of AlCl$_3$ (0.266 g, 2.00 mmol) in 10 mL of CH$_3$CN was added via cannula. The reaction mixture was first stirred for 5 min at –50 °C and then ca. 16 h at +55 °C. The solvent was evaporated and the precipitate was washed with Et$_2$O (3 × 5 mL) and dried under vacuum, giving 2d as a pale yellow powder (0.360 g, 82%). Melting point: 217–218 °C (sample turns to yellow before melting). 1H NMR (CD$_3$CN, +23 °C): δ 5.00 [s, 2H, (2-NC$_3$H$_4$)$_2$CH$_2$], 7.92–8.69 [8H, (2-NC$_3$H$_4$)$_2$CH$_2$]. 13C{1H} NMR (CD$_3$CN, +23 °C): δ 36.5 [(2-NC$_3$H$_4$)$_2$CH$_2$], 127.1–152.0 [(2-NC$_3$H$_4$)$_2$CH$_2$]. Anal. Calcd. for C$_{11}$H$_{10}$Al$_2$Cl$_6$N$_2$: C, 30.24; N, 6.41; H, 2.31. Found: C, 30.59; N, 6.97; H, 2.49.

Reaction between dpma and AlCl$_3$ in Et$_2$O in 1:2 molar ratio. A solution of dpma (0.170g, 1.00 mmol) in 10 mL of Et$_2$O was cooled to –78 °C and a solution of AlCl$_3$ (0.267 g, 2.00 mmol) in 10 mL of Et$_2$O was added via cannula. The reaction mixture was stirred for 10 min at –78 °C and 1.5 h at room temperature, after which the precipitate was allowed to settle and the solvent was decanted via cannula. The product was washed with Et$_2$O (1 × 5 mL) and dried under vacuum, giving a white powder (0.307 g). Characterization of the product via 1H NMR showed it to be a
mixture of 1b and 2d; for further details, see main text and ESI†. Crystals of 1b, [(dpma)$_2$AlCl$_2$][AlCl$_4$], suitable for single crystal X-ray diffraction measurement were grown by slow diffusion from THF and n-hexane.

Synthesis of (dpma)InCl$_3$ (3). A solution of dpma (0.170 g, 1.00 mmol) in 10 mL of Et$_2$O was cooled to –78 °C and a solution of InCl$_3$ (0.221 g, 1.00 mmol) in 10 mL of Et$_2$O was added via cannula. The reaction mixture was stirred for 10 min at –78 °C and 3 h at room temperature, after which the precipitate was allowed to settle and the solvent was decanted. The product was dried under vacuum, giving 3 as a pale yellow powder (0.360 g, 92%). The same synthesis was also performed using 1:2 ratio between dpma (0.170 g, 1.00 mmol) and InCl$_3$ (0.442 g, 2.00 mmol), yielding a pale yellow powder (0.532 g) that was spectroscopically and crystallographically identical to 3. Crystals suitable for single crystal X-ray diffraction measurement were obtained by slow diffusion from THF and n-hexane. Melting point: 226–229 °C. 1H NMR (d$_8$-THF, +23 °C): δ 5.09 [s, 2H, (2-NC$_5$H$_4$)$_2$CH_2], 7.58–9.17 [8H, (2-NC$_5$H$_4$)$_2$CH$_2$]. 13C{1H} NMR spectrum could not be obtained owing to poor solubility of 3 in common deuterated solvents. Anal. Calcd. for C$_{11}$H$_{10}$Cl$_3$InN$_2$: C, 33.76; N, 7.16; H, 2.58. Found: C, 34.04; N, 7.05; H, 3.19.

Synthesis of (dpma)(BCl$_3$)$_2$ (4). A solution of dpma (0.142 g, 0.82 mmol) in 15 mL of Et$_2$O was cooled to –78 °C and a solution of BCl$_3$ (1.6 mL, 1.60 mmol) in hexanes was added via syringe. The reaction mixture was stirred for 10 min at –78 °C, which resulted in formation of an off-white precipitate. The stirring was continued for one hour at room temperature after which the solvent was decanted and the precipitate was dried under vacuum, giving 4 as an off-white powder (0.289 g, 86%). Crystals suitable for single crystal X-ray diffraction measurement were obtained by slow diffusion from CH$_2$Cl$_2$ and n-hexane. Melting point: 138–141 °C (sample turns to red before melting). 1H NMR (CD$_2$Cl$_2$, +23 °C): δ 6.25 [s, 2H, (2-NC$_3$H$_4$)$_2$CH$_2$], 7.43–9.82 [8H, (2-
NC$_5$H$_4$)$_2$CH$_2$. 13C1H NMR (CD$_2$Cl$_2$, +23 °C): δ 41.9 ((2-NC$_5$H$_4$)$_2$CH$_2$), 124.6–157.7 [(2-NC$_5$H$_4$)$_2$CH$_2$]. Anal. Calcd. for C$_{11}$H$_{10}$B$_2$Cl$_6$N$_2$: C, 32.66; N, 6.92; H, 2.49. Found: C, 33.65; N, 6.92; H, 3.18.

Reaction between dpma and BCl$_3$ in toluene in 1:1 molar ratio. A solution of BCl$_3$ in hexanes (1.0 mL, 1.00 mmol) was added to a stirred solution of dpma (0.170 g, 1.00 mmol) in toluene at −78 °C. After stirring for 3 h at room temperature, a yellow-orange precipitate was formed. The precipitate was allowed to settle, after which the red solution was decanted and both phases dried under vacuum. Subsequent 1H NMR studies showed that the solvent phase contains a mixture of products, whereas the precipitate was found to be the salt [H$_2$(dpma)]$^{2+}$[Cl]−[BCl$_4$]$^-$, as confirmed by recrystallization via slow diffusion from CH$_2$Cl$_2$ and pentane; for further details, see main text and ESI†.

The equimolar reaction between dpma and BCl$_3$ was also done by adding a combined solution of triethylamine (0.109 g, 1.08 mmol) and BCl$_3$ in hexanes (1.0 mL, 1.00 mmol) to a stirred solution of dpma (0.173 mg, 1.00 mmol) in toluene at −78 °C. Stirring of the reaction mixture at +45°C for 8 h gave a red solution and a light orange precipitate. Subsequent 1H NMR studies showed the light orange precipitate to be the salt [Et$_3$NH]$^+$[Cl]$^-$, whereas the red solution was found to contain the complex (dpme)BCl$_2$; for further details, see main text and ESI†.
Results and discussion

Reactions of dipyridylmethane (dpma) with MCl$_3$ (M = Al, Ga) in 1:1 molar ratio. A reaction between dpma and GaCl$_3$ was carried out in 1:1 molar ratio at –78 °C in Et$_2$O. A white precipitate formed immediately and after an appropriate reaction time, the product was separated from the solution, washed and dried to afford a white powder in excellent yield (95%).

Compound 1a was crystallized as colourless single crystals suitable for X-ray diffraction studies from a 1:1 mixture of CH$_3$CN and n-hexane (Fig. 1). The solid state structure of 1a shows that it consists of discrete tetrahedral [GaCl$_4$]$^-$ anions and octahedral [cis-(dpma)$_2$GaCl$_2$]$^+$ cations packed in alternating layers with no significant close contacts between the two; molecules of crystallization solvent (CH$_2$Cl$_2$) fill the remaining cavities in the lattice. The structure of the cation has C_2 symmetry and adopts a cis-conformation. The key bond parameters of the cation in 1a show two nearly identical and distinctively bent dpma ligands, each with a bridge N-C-C-C dihedral angle close to 60°; the bending of the ligand framework in 1a is similar to other known main group metal complexes incorporating the dpma ligand.18 The crystal structure of 1a shows the methylene hydrogens to be inequivalent and remote from the two chlorine atoms. The average Ga-N bond length in 1a is 2.125(4) Å which is slightly longer than that in an analogous salt containing the bpy ligand, [(bpy)$_2$GaCl$_2$]$^+$[GaCl$_4$]$^-$, 2.103(2) Å; the Ga-Cl distances are also comparable between these structures.19

The room temperature 1H NMR spectrum from the product (in d_8-THF) shows a singlet at 4.14 ppm and four multiplets from 7.58 to 8.99 ppm (see Fig. S1 in ESI†). Although all signals are of equal intensity, as expected, the singlet corresponding to the methylene hydrogens is extremely broad, as is also the case for one of the multiplets in the aromatic region. This strongly indicates the presence of a dynamic process in solution. Consequently, the reaction product was further
investigated by variable temperature (VT) 1H NMR spectroscopy (see ESI† for details). The VT
1H NMR experiments (in d_8-THF) revealed that there is a second species in solution in addition to
1a and we assigned it to the salt [(dpma)GaCl$_2$]$^+$[Cl]$^-$ (2a) based on the equilibrium
[(dpma)$_2$GaCl$_2$]$^+$[GaCl$_4$]$^-$ ⇔ 2[(dpma)GaCl$_2$]$^+$[Cl]$^-$.

The relative intensities of the 1H NMR signals reveal that the dynamic ligand redistribution process favours 1a over 2a in ca. 9:1 ratio at –80 °C with the relative concentration of 2a increasing as the temperature is increased. More detailed NMR investigations revealed that the dynamic process is not only temperature but also solvent dependent. While the room temperature 1H NMR spectrum of the product in CD$_2$Cl$_2$ is similar to that in d_8-THF (see Fig. S3 in ESI†), a complete conversion to [(dpma)GaCl$_2$]$^+$[Cl]$^-$, i.e. 2a takes place rapidly in CD$_3$CN (see Fig. S4 in ESI†). However, 2a was found to be unstable in CD$_3$CN and it decomposes gradually into the free dpma ligand as well as to other uncharacterized products.

Fig. 1 Thermal ellipsoid plots (30% probability) of the cations [(dpma)$_2$GaCl$_2$]$^+$ (left) and
[(dpma)$_2$AlCl$_2$]$^+$ (right) as found in the crystal structures of the salts [(dpma)$_2$MCl$_2$]$^+$[MCl$_4$]$^-$ (M = Ga (1a), Al (1b)). Only C(6) bound hydrogen atoms are shown for clarity.
Having therefore established the salt \[\text{cis-}(\text{dpma})_2\text{GaCl}_2]^+\text{[GaCl}_4^-\] (1a) as the preferred product from the 1:1 reaction between dpma and GaCl\(_3\) in Et\(_2\)O, we set our target to the synthesis of its aluminium analogue \[(\text{dpma})_2\text{AlCl}_2]^+\text{[AlCl}_4^-\] (1b). Similarly to the synthesis of 1a, the reaction between dpma and AlCl\(_3\) was carried out in 1:1 molar ratio by the addition of the metal halide at \(-78\ ^\circ\text{C}\) in Et\(_2\)O, which resulted in an immediate formation of a white precipitate. After an appropriate reaction time and separation from the mother liquor, a white powdery product was isolated in good yield (87%).

In view of the previously observed solution behaviour of 1a, the product was first characterized by \(^1\text{H}\) NMR spectroscopy (in \(d_8\)-THF, see Fig. S5 in ESI\(\dagger\)) which in this instance revealed a well-resolved spectrum even at room temperature that clearly shows a mixture of two major products as judged by the number and intensity of signals in the aliphatic region: a singlet at 4.43 ppm as well as two AB doublets at 3.09 and 4.33 ppm (\(^2\)J(\(^1\text{H},\text{H}) = 17.5\ Hz). These spectral features, as well as the pattern of several equal intensity multiplets in the aromatic region, can be compared to the \(^1\text{H}\) NMR data for the mixture of 1a and 2a (see ESI\(\dagger\) for details), which allows the assignment of the main products from the AlCl\(_3\) reaction as \[\text{cis-}(\text{dpma})_2\text{AlCl}_2]^+\text{[AlCl}_4^-\] (1b) and \[(\text{dpma})\text{AlCl}_2]^+\text{[Cl}^-\] (2b) in ca. 2:1 ratio.

When measuring the \(^1\text{H}\) NMR spectra of the 1b:2b mixture in different solvents, it was found that a complete conversion to 2b takes place rapidly in CD\(_3\)CN. However, unlike for 1a, repeated \(^1\text{H}\) NMR measurements for 2b in CD\(_3\)CN showed no change in the spectral data. Consequently, the 1:1 reaction between dpma and AlCl\(_3\) was repeated in CH\(_3\)CN, yielding 2b as a pure product. The room temperature \(^1\text{H}\) NMR spectrum of 2b (in CD\(_3\)CN) shows a singlet for the bridging methylene hydrogens at 4.61 ppm and four multiplets for the pyridyl hydrogens from 7.55 to 8.62 ppm (see Fig. S6 in ESI\(\dagger\)).\(^{20}\)
Despite extensive crystallization efforts, we were not able to grow single crystals of 2b from CH$_3$CN. However, colourless crystals suitable for single crystal X-ray structural studies were obtained using a mixture of THF and n-hexane as the solvent system. A subsequent structure determination showed that the crystals actually contain the salt [cis-(dpma)$_2$AlCl$_2$]$^+$[AlCl$_4$]$^-\ i.e. \ 1b$ that is analogous to 1a (Fig. 1). The preferred crystallization of 1b over 2b from THF and n-hexane solvent system is not overly surprising taking into account that a mixture of products was seen in the 1H NMR in d_8-THF. The cation in 1b is close to ideal C$_2$ symmetry and adopts cis-conformation with respect to the two chloride atoms. The key metrical parameters of the dpma ligands in 1b are virtually identical to that in 1a (see Table S2 in ESI†) and the M-N and M-Cl bond lengths are only slightly shorter for M = Al, as expected due to the d-block contraction in Ga. We note that the local coordination environment of the metal centre in [cis-(dpma)$_2$AlCl$_2$]$^+$ is very similar to that of the analogous complex with bpy, [(bpy)$_2$AlCl$_2$]$^+$[Cl]$^-$, 21 despite the significant puckering of the coordinated dpma ligand.

Reactions of dipyridylmethane (dpma) with MCl$_3$ (M = Al, Ga) in 1:2 molar ratio. Since the reactions between dpma and MCl$_3$ turned out to be more complex than anticipated, we were also interested in examining them using a 1:2 molar ratio of the reagents. The synthesis between 1 equivalent of dpma and 2 equivalents of GaCl$_3$ was carried out by the addition of the metal halide at –78 °C in Et$_2$O. A white precipitate formed immediately after the addition of GaCl$_3$ and the product was isolated as a white powder after workup in good yield (88%).

The room temperature 1H NMR spectrum (in d_8-THF) recorded for the product is similar to that of 1a (see Fig. S7 in ESI†): a broad singlet for the methylene hydrogens is observed at 4.75 ppm, whereas the pyridyl bound hydrogens show a set of multiplets between 7.81 and 8.97 ppm. The
The broadness of the observed signals suggests that a ligand redistribution process is again occurring, which prompted us to conduct VT 1H NMR studies also for this compound (see ESI† for details). As in the case of 1a, the solution was found to contain two major species in a temperature dependent equilibrium. An analysis of the NMR data allows the identification of the products as the salts [(dpma)GaCl$_2$]$^+$(GaCl$_4$)$^-$(2c) and [cis-(dpma)$_2$GaCl$_2$]$^+$(GaCl$_4$)$^-$ (1a) in ca. 4:1 ratio at – 60 °C; the salt 2c remains the preferred product also at higher temperatures. Subsequent 1H NMR studies in different deuterated solvents showed that the dynamic equilibrium observed for 2c is solvent dependent. In CD$_2$Cl$_2$, the NMR data are consistent with 2c being the only species present in solution (see Fig. S9 in ESI†), whereas a very small amount of 1a is visible in CD$_3$CN with no indication of a dynamic process that is faster than the NMR timescale (see Fig. S10 in ESI†).

The above spectral interpretation is supported by results from crystallization studies that yielded excellent quality colourless single crystals of the salt 2c (Fig. 2) when using toluene as the crystallization solvent. The solid state structure displays distinct [GaCl$_4$]$^-$ anions and [(dpma)GaCl$_2$]$^+$ cations, the latter having the expected C_5 symmetric structure. The Ga-N bond lengths in the cation are somewhat shorter than those in 1a (see Table S2 in ESI†), mainly owing to the difference in the metal coordination number. All other bond lengths and angles involving the N,N'-chelated ligand are comparable between the two structures, including the bending of the ligand backbone. While there are no reports of structurally characterized complexes of the type [(bpy)GaX$_2$]$^+$ (X = halogen), the metrical parameters of the dpma ligand in 2c can be compared to those in a related thallium salt, [(dpma)TlMe$_2$]$^+$(NO$_3$)$^-$, which shows major differences only in torsional angles and metal-ligand bond lengths. This can be attributed to different coordination environment at the metal: tetrahedral for [(dpma)GaCl$_2$]$^+$ and disphenoidal for [(dpma)TlMe$_2$]$^+$.

17
Fig. 2 Thermal ellipsoid plot (30% probability) of the cation [(dpma)GaCl\(_2\)]\(^+\) in the salt [(dpma)GaCl\(_2\)]\(^+\)[GaCl\(_4\)]\(^-\) (2c). Hydrogen atoms in the pyridyl rings have been omitted for clarity.

If the reaction between the dpma ligand and AlCl\(_3\) is performed in 1:2 molar ratio in Et\(_2\)O, a product mixture similar to that found in the case of 1b is seen in the \(^1\)H NMR spectrum (in \(d\)\(_8\)-THF, see Fig. S11 in ESI†). Consequently, the reaction was performed in CH\(_3\)CN at \(-50\) °C, giving a pale yellow powder, presumed to be the salt [(dpma)AlCl\(_2\)]\(^+\)[AlCl\(_4\)]\(^-\) (2d), after removal of volatiles. The \(^1\)H NMR spectrum of the product (in CD\(_3\)CN) shows a single species and no signs of ligand redistribution (see Fig. S12 in ESI†):\(^{20}\) a sharp singlet for the methylene hydrogens is observed at 5.00 ppm, while four multiplets for the pyridyl hydrogens are seen from 7.92 to 8.69 ppm. Hence, the \(^1\)H NMR data for 2d is nearly identical to that of [(dpma)GaCl\(_2\)]\(^+\)[GaCl\(_4\)]\(^-\), as should be the case for two structurally similar compounds that differ only in the identity of the group 13 element.

Unfortunately we were not able to grow single crystals of 2d from CH\(_3\)CN. In addition, crystallization attempts from ethereal solvents again resulted in the characterization of the salt [cis-(dpma)\(_2\)AlCl\(_2\)]\(^+\)[AlCl\(_4\)]\(^-\) i.e. 1b. Due to our inability to obtain crystallographic data for both 2d and 2b, we sought a way to ensure that they have been properly identified. Hence, one equivalent of
AlCl₃ (in toluene) was added to a CH₃CN solution of 2b as this should result in formation of the [AlCl₄]⁻ anion and, hence, the salt 2d: [(dpma)AlCl₂][Cl]⁻ (2b) + AlCl₃ → [(dpma)AlCl₂][AlCl₄]⁻ (2d). The reaction was performed at +55 °C and monitored by ¹H NMR spectroscopy (in CD₃CN). As expected, the addition of AlCl₃ results in a characteristic downfield shift of the singlet associated to the methylene hydrogens from 4.61 (2b) to 5.02 ppm, thereby yielding a ¹H NMR spectrum that is identical to that of pure 2d (see Fig. S13 in ESI†). We also note that a similar trend is seen in the ¹H NMR data of the gallium analogues 2a and 2c, in which case the singlet shifts similarly from 4.62 to 4.97 ppm (in d₈-THF).

Reactions of dipyridylmethane (dpma) with InCl₃ in 1:1 and 1:2 molar ratios. In a similar fashion to the synthesis of 1a, the reaction between dpma and InCl₃ was performed in 1:1 stoichiometry at −78 °C in Et₂O. A pale yellow precipitate formed immediately upon addition of InCl₃. After stirring for 3 h at room temperature, a yellow powder was isolated in excellent yield (92%). Crystals suitable for a single crystal X-ray structure determination were grown from the powder by slow diffusion of n-hexane into a THF solution. All attempts to grow crystals of 3 from non-coordinating solvents failed due to the low solubility of the product.

The room temperature ¹H NMR spectrum (in d₈-THF) of the pale yellow powdery product shows a signal pattern similar to that observed for 2a, d and 2c, b (see Fig. S14 in ESI†). However, a prominent downfield shift of the signals is noticed: the singlet for the methylene hydrogens is observed at 5.09 ppm and the four aromatic multiplets are found between 7.58 and 9.17 ppm. A subsequent crystallographic analysis of the product showed it to be the neutral 1:1 adduct (dpma)InCl₃ (3) instead of an ionic compound. The crystal structure also contains a molecule of the crystallization solvent that completes the octahedral coordination environment at the metal.
The neutral coordinated ligand in 3·THF is bent in the same way to that in 1a, 1b and 2c, with all other ligand related pertinent bond lengths and angles comparable between the four structures. The average In-N bond length in 3·THF, 2.309(2) Å, is considerably shorter than that in a related complex \{[(dpma)InMe₂]⁺[NO₃]⁻\}·H₂O, 2.431(4) Å, which is, however, ionic and significantly distorted from regular octahedral geometry. The packing of 3·THF in the crystal lattice is similar to the salts 1a and 1b in that the adducts form layers along the crystallographic c-axis. The In-O distance in 3·THF is 2.314(2) Å which is slightly shorter than that in a related THF adduct of an iminopyridine complex \{ArN=C(H)Py\}InCl₃·THF, 2.396(3) Å.

Fig. 3 Thermal ellipsoid plots (30% probability) of the adducts (dpma)InCl₃·THF (3·THF) (left) and (dpma)(BCl₃)₂ (4) (right) as found in X-ray crystal structures. Hydrogen atoms on the pyridyl rings and the coordinated THF molecule have been omitted for clarity.

The reaction between dpma and InCl₃ in 1:2 stoichiometry in Et₂O also gave a pale yellow and highly insoluble powder in low yield. Subsequent characterization of the product by ¹H NMR spectroscopy (in d₈-THF) and X-ray crystallography showed the product to be the adduct 3 (see Fig. S15 in ESI†). It is clear from these results that charge separation and subsequent formation of cations \[(dpma)₂InCl₂\]^⁺ and \[(dpma)InCl₂\]^⁺ are in this case energetically disfavoured processes.
Reactions of dipyridylmethane (dpma) with BCl\textsubscript{3} in 1:1 and 1:2 molar ratios. A reaction between dpma and BCl\textsubscript{3} was first performed using a 1:2 molar ratio of the reagents. The synthesis was carried out by the addition of BCl\textsubscript{3} to Et\textsubscript{2}O solution of dpma at –78 °C, after which the reaction mixture was stirred for 1 h at room temperature. After removal of volatiles, the product was isolated as a fine off-white powder in good yield (86%). Single crystals of the product were obtained by slow diffusion from CH\textsubscript{2}Cl\textsubscript{2} and n-hexane.

The results from single crystal X-ray structural studies (Fig. 3) show that the 1:2 reaction between dpma and BCl\textsubscript{3} gives a neutral diadduct (dpma)(BCl\textsubscript{3})\textsubscript{2} (4) instead of the salt [(dpma)BCl\textsubscript{2}]+[BCl\textsubscript{4}]−. Clearly the formation of two Lewis acid-base interactions is in this instance energetically more favourable than charge separation and formation of a salt. Both B-N bond lengths in 4 (1.621(4) and 1.612(4) Å) fall within a typical range observed for related coordinate bonds (for example, 1.593(1) Å in a 1:1 complex between BCl\textsubscript{3} and pyridine).23 The structural flexibility of the dpma backbone ensures a sterically unhindered conformation for the adduct in which the pyridine rings adopt an almost perpendicular orientation, giving a structure that is close to C\textsubscript{2} symmetry.

The 1H NMR spectrum of 4 (in CD\textsubscript{2}Cl\textsubscript{2}) shows four multiplets for the pyridyl hydrogens from 7.43 to 9.82 ppm and a singlet for the bridge methylene hydrogens at 6.25 ppm which is shifted \textit{ca.} 1.75 ppm downfield compared to the 1H NMR data of 2c and 2d (see Fig. S16 in ESI†). The significant downfield shift of the methylene hydrogens can be attributed to the short intramolecular H···Cl contacts that are observed in the structure of 4. All signals in the 1H NMR spectrum of 4 are slightly broadened, which in this instance is anticipated due to the nearly unhindered rotation of the pyridine rings around the bridging methylene group.
To complete the series, an equimolar reaction between dpma and BCl$_3$ was carried out by addition of BCl$_3$ to a stirred solution of dpma in Et$_2$O at −78 °C. After stirring for 3 h, a red solution formed that was found to contain multiple products based on 1H NMR spectroscopy. The reaction was therefore repeated in toluene, which, again, gave a red solution but also a yellow-orange precipitate. 1H NMR spectrum of the isolated powder (in CD$_2$Cl$_2$) showed it to be a single product giving a singlet at 5.06 ppm as well as four multiplets between 7.92 and 8.51 ppm. Subsequent recrystallization from a mixture of CH$_2$Cl$_2$ and pentane gave X-ray quality single crystals that were not of the expected product, [(dpma)BCl$_2$]$^+$[Cl]$^-$, but that of the dipyridinium salt [H$_2$(dpma)]$_2^+$[BCl$_4$]$^-$[Cl]$^-$ (see ESI† for details).

A detailed 1H NMR analysis (in CD$_2$Cl$_2$) of the red solution phase showed it to be a mixture of three major products: (dpma)(BCl$_3$)$_2$, i.e. 4, [(dpma)BCl$_2$]$^+$[Cl]$^-$ and (dpme)BCl$_2$ (see ESI† for details). This suggests that the 1:1 reaction of BCl$_3$ with dpma initially gives both the diadduct 4 and the corresponding monoadduct which then undergoes ring closure to yield the salt [(dpma)BCl$_2$]$^+$[Cl]$^-$, but that of the dipyridinium salt [H$_2$(dpma)]$_2^+$[BCl$_4$]$^-$[Cl]$^-$ (see ESI† for details). This kind of reactivity has been reported for coordination complexes of related ligands with a methylene bridge and a 1,3-diimine core. 24 These simple transformations would therefore lead directly to the product mixture observed spectroscopically.

In order to test the above hypothesis, the 1:1 reaction between dpma and BCl$_3$ was repeated in the presence of an equimolar amount of trimethylamine. As a stronger base, trimethylamine should protonate more easily and crystallize out from the reaction mixture as the salt [Et$_3$NH]$^+$[Cl]$^-$, Consequently, the reaction should in this instance yield a single complex of the deprotonated dpme ligand i.e. (dpme)BCl$_2$. In good agreement with this prediction, the reaction gave a red solution
and a light orange precipitate or which the latter was confirmed to be the known salt [Et₃NH⁺][Cl⁻] by ¹H NMR spectroscopy. The room temperature ¹H NMR spectrum (in CD₂Cl₂) recorded for the red solution showed a singlet at 5.48 ppm and four multiplets, two doublets and two triplets, between 6.59 and 8.22 ppm (see Fig. S18 in ESI†). The relative integration of the signals is 1:8, which confirms the presence of an anionic dpme ligand i.e. the neutral complex (dpme)BCl₂; the identity of the product was subsequently confirmed by single crystal X-ray crystallography.²⁵

Comparison between group 13 complexes of bpy and dpma. Interestingly, there are only a handful of crystallographically characterized examples of coordination complexes of the parent bpy ligand with aluminium or gallium. For example, the 1:1 reaction between GaCl₃ and bpy is known to give the ionic compound [(bpy)₂GaCl₂⁺][GaCl₄⁻],¹⁹,²⁶ analogous to 1b, whereas the aluminium salt [(bpy)₂AlCl₂⁺][Cl⁻] comparable to 1a, has been obtained from 1:2 reaction between AlCl₃ and bpy.²¹ There are no reported crystallographic data of salts containing ions of the type [(bpy)MCl₂⁺] (M = Al, Ga) that would be analogous to the cations in compounds 2a–d. However, it is known that the reactions of group 13 halides with bpy are complex and depend on the solvent and stoichiometry.²¹,²⁷ No VT NMR data of these reactions have been published, but it has been concluded that the exclusive crystallization of specific salts may simply be a result of precipitation of the least soluble cation,²¹ which therefore leaves the predominant solution species unknown. The results reported herein show that the dpma ligand displays complex solution behaviour with both AlCl₃ and GaCl₃, suggesting that the same could also be true for the bpy ligand. However, in all instances where crystal structures were obtained in this work (salts 1a, 1b and 2c), the composition of the determined structure was indeed consistent with the predominant species present in solution.
There are a number of coordination complexes of bpy with indium. Most relevant to the work reported herein are the solvated adducts of (bpy)InCl₃ similar to 3·THF. For example, (bpy)InCl₃·H₂O has been prepared from InCl₃ and bpy in aqueous conditions. The adduct is octahedral at indium and the chlorides adopt a *facial* arrangement. Due to the planarity of the bpy ligand, the In-N bond lengths (*ca.* 2.28 Å) are shorter and the N-In-N bond angle (71.98(9)°) narrower in (bpy)InCl₃·H₂O than in 3·THF (*ca.* 2.31 Å and 79.25(7)°). A similar adduct with the composition (bpy)InCl₃·EtOH has also been reported. In addition to neutral adducts of the type (bpy)InCl₃, a salt [(bpy)InCl₂]Cl containing a cation similar to that in 2c has been structurally characterized. Unfortunately the quality of the crystallographic data for [(bpy)InCl₂]Cl precludes any further discussion of its structure.

There are no structurally characterized examples of neutral diadducts of the type (bpy)(MCl₃)₂ for any of the group 13 elements (M = B, Al, Ga, In). The compound most closely related to 4 is (bpy)B(C₆F₅)₃ in which only one of the two nitrogen atoms is coordinated to tris(pentafluorophenyl)borane. This monodentate coordination mode naturally results from the large steric bulk of the C₆F₅ rings in B(C₆F₅)₃. Despite the vast difference in size between BCl₃ and B(C₆F₅)₃, the B-N bond length in (bpy)B(C₆F₅)₃ is 1.649(5) Å and therefore very much comparable to that in 4, 1.621(4) Å. A second coordination compound of bpy with boron that is related to the chemistry of the dpma ligand examined herein is [(bpy)BCl₂]⁺[Cl]⁻. This salt contains the cation [(bpy)BCl₂]⁺ that is structurally similar to that in 2c. The compound was synthesized by 1:1 reaction between BCl₃ and bpy in CH₂Cl₂ *i.e.* in an analogous fashion to what in the case of the dpma ligand resulted in the formation of a mixture of products due to the facile deprotonation of the coordinated dpma ligand.
A very interesting feature in the chemistry of the [(bpy)BCl₂][Cl]⁻ salt is the possibility to reduce the cation to the corresponding neutral radical [(bpy)BCl₂]*. Spectroscopic, crystallographic and computational studies revealed that the unpaired electron in this complex is fully confined to the ligand framework, thereby yielding the paramagnetic anion (bpy)* that has also been structurally characterized in another group 13 complex, (bpy)₃Al. The bpy ligand can also exist as a diamagnetic dianion, (bpy)²⁻, which in the context of group 13 chemistry has been characterized in compounds such as (bpy)BCl and [Li(THF)₄]⁺[(bpy)₂Al]⁻. Even though there are significantly more cases of singly or doubly reduced bpy ligands coordinated to transition metal centres, ligand non-innocence is also a prominent feature in main group chemistry of bpy and that of group 13 elements in particular.

Having therefore established the scope of coordination chemistry for the dpma ligand with group 13 elements, we turned our attention to investigate its possible non-innocent behaviour and the possibility to form paramagnetic group 13 complexes containing the anionic (dpma)*⁻ radical.

Computational investigations of the cations [(dpma)MCl₂]⁺ and [(dpma)₂MCl₂]⁺ (M = Al, Ga). Before pursuing electrochemical and chemical attempts to reduce the cations [(dpma)MCl₂]⁺ (M = Al, Ga) to the corresponding neutral radicals, their electronic structures, as well as that of [(dpma)₂MCl₂]⁺, were examined using density functional theory (DFT).

The PBE1PBE/def-TZVP optimized structures of the cations [(dpma)MCl₂]⁺ and [(dpma)₂MCl₂]⁺ (M = Al, Ga) are in very good agreement with the data from X-ray crystallographic analyses of 1a, 1b and 2c (see ESI† for details). This was expected as there are no significant cation-anion interactions present in the crystal structures of any of the characterized salts. The computed theoretical data was used to calculate Gibbs free energies for the reactions.
[(dpma)₂MCl₂]⁺ → [(dpma)MCl₂]⁺ + dpma (M = Al, Ga) which were found to be endergonic by 49 and 23 kJ mol⁻¹ for M = Al and Ga, respectively. Even though the model reactions do not take into account the effect of the counter ion or solvent, the predicted trend is comparable to experimental observations and suggest facile ligand detachment from [(dpma)₂GaCl₂]⁺, as already observed in the VT NMR experiments.

The intrinsic strength of metal-ligand bonding in [(dpma)MCl₂]⁺ (M = Al, Ga) was examined by calculating the instantaneous interaction energies with respect to the free dpma ligand and a cationic [MCl₂]⁺ fragment in the geometries they adopt in the complex. Again, only the trends in the calculated values should be considered meaningful as the reported energies do not correspond to proper bond dissociation. The results show that the instantaneous interaction energies are 356 and 323 kJ mol⁻¹ per Al-N and Ga-N bond, respectively. Similar values were also obtained for the M-N bonds in cations [(dpma)₂MCl₂]⁺ as well as in [(bpy)MCl₂]⁺ (340 and 307 kJ mol⁻¹ for Al-N and Ga-N, respectively, which shows that, to a first approximation, the metal-ligand bonding is independent of the ligand type.

Fig. 4 depicts the singly occupied molecular orbitals (SOMOs) of [(dpma)GaCl₂]⁻ and [(dpma)₂GaCl₂]⁻; the SOMOs of the corresponding aluminium cations are analogous and are not shown. In both cases the SOMO has virtually no contribution from the metal, indicating that the reductions are ligand centred. The SOMO of [(dpma)GaCl₂]⁻ is comparable to the LUMO of the free dpma ligand, showing a delocalized π-system on both pyridyl rings and a node at the methylene bridge carbon due to the bent geometry of the ligand. In contrast, the SOMO of [(dpma)₂GaCl₂]⁻, while retaining much of the shape of the LUMO of free dpma, is delocalized to both of the ligands in the complex.
The vertical electron affinities (VEAs) calculated for the cations [(dpma)MCl$_2$]$^+$ and [(dpma)$_2$MCl$_2$]$^+$ are both positive and virtually independent of the metal: ca. 4.5 and 3.7 eV for [(dpma)MCl$_2$]$^+$ and [(dpma)$_2$MCl$_2$]$^+$, respectively. While all complexes are predicted to be reasonable electron acceptors, the calculated values are significantly lower than the VEA calculated for the cation [(bpy)BCl$_2$]$^+$ (5.5 eV) that is known to give the neutral radical [(bpy)BCl$_2$]*. The difference in the calculated VEAs for [(dpma)MCl$_2$]$^+$ and [(bpy)BCl$_2$]$^+$ can be understood in terms of the electronic structure of the ligand: the VEA for dpma is negative (−0.6 eV) while that of bpy is essentially zero (0.1 eV). Hence, the dpma ligand will not accept an electron unless it is coordinated to a metal centre. The energies of the LUMOs for the cations [(dpma)MCl$_2$]$^+$ and [(dpma)$_2$MCl$_2$]$^+$ follow the same trend as VEAs, which suggests that the former are more easily reduced than the latter. For these reasons, the electrochemical behaviour of the cations [(dpma)MCl$_2$]$^+$ was put to the fore.

Fig. 4 Isosurface plots of the SOMOs of the radicals [(dpma)GaCl$_2$]* (left) and [(dpma)$_2$GaCl$_2$]* (right).
Electrochemical and chemical reduction of [(dpma)MCl₂]⁺[MCl₄]⁻ (M = Al, Ga). The electrochemical properties of the dpma ligand as well as that of the salts 2a–d were investigated with cyclic voltammetry (CV) using a Pt electrode and [(n-Bu)₄N]⁺[PF₆]⁻ as the supporting electrolyte. The free dpma ligand was found to be redox innocent within the potential window of the CH₃CN solvent (see Fig. S19 in ESI†) as expected based on its negative VEA. As shown by ¹H NMR investigations, the aluminium salts 2b and 2d are stable in CD₃CN, but 2a converts to the free dpma ligand, while 2c contains a very small amount of 1a. Consequently, the primary cationic species present in CH₃CN solutions of 2a–d is [(dpma)MCl₂]⁺ (M = Al, Ga). This is well corroborated by CV studies which showed a non-reversible reduction at nearly the same potential for 2a and 2c (M = Ga; $E_p^c = -0.95$ V; Fig. 5) and 2b and 2d (M = Al, $E_p^c = -1.11$ V; see Fig. S20 in ESI†), in agreement with the redox process [(dpma)MCl₂]⁺ + e⁻ → [(dpma)MCl₂]*. The difference in the cathodic peak potentials for the aluminium and gallium complexes is consistent with the role of the metal to tune the potential to a more accessible range than in the uncoordinated ligand, with the heavier metal having the stronger influence.³⁶

Fig. 5 Cyclic voltammograms of 2a (dashed line, 5.2 mM) and 2c (solid line, 6.3 mM) in CH₃CN solutions containing 0.4 M [(n-Bu)₄N]⁺[PF₆]⁻ at a Pt electrode at room temperature, ν = 0.2 Vs⁻¹.
An interesting feature in the CV of 2c is the preliminary wave at ca. –0.65 V; a similar feature was not observed for 2a or the aluminium systems 2b and 2d. We are unsure of the origin of this process, though it was observed that the preliminary wave is significantly smaller in CH₂Cl₂ (see Fig. S21 in ESI†) and disappears entirely when the sample is titrated with extraneous [Cl]⁻ (see Fig. S22 in ESI†). It is tempting to assign the process to the reduction of the cation [(dpma)₂GaCl₂]⁺ that is a minor species present in the CH₃CN solution of 2c, but this assignment is not supported by the calculated VEAs that show [(dpma)₂GaCl₂]⁺ to be reduced less readily than [(dpma)GaCl₂]⁺. One plausible scenario is, however, that the pre-reduction wave is a surface-confined process, resulting from strong adsorption of [(dpma)GaCl₂]⁺ on the electrode and eliminating chloride as this process would become evident only in solutions that are not saturated with [Cl]⁻ i.e. 2c.

Despite the appearance of a preliminary wave in the CV of 2c, the data for 2a–d is consistent with a single ligand-centred redox process that is nearly identical to all systems investigated. Although the CVs of 2a, 2b and 2d show a hint of a return wave, the stability of the radical species [(dpma)MCl₂]⁺ was insufficient to allow for detection of an EPR signal by in situ simultaneous electrochemistry and electron paramagnetic resonance spectroscopy. Indeed, several aspects point to significant instability of the reduction products: reduction potentials at glassy carbon electrode show characteristics of surface-confined processes with a strong cathodic shift, fouling of the electrode surface, total absence of reverse peaks and, most importantly, strong induction of chloride oxidation waves on the return scan. In this respect, if the reduction of [(dpma)₂MCl₂]⁺ leads to the loss of chloride, the formed radicals [(dpma)MCl]⁺ are metal, not ligand, centred and therefore extremely reactive. The instability of the reduction products, whatever their identity, is also seen in chemical reduction experiments conducted using cobaltocene and sodium.
naphthalenide. Regardless of the colour changes observed during the reactions, 1H NMR spectroscopy showed the products to be complex mixtures and crystallization attempts yielded only diamagnetic side products such as the salt [Cp$_2$Co]$^+$[GaCl$_4$]$^-$ or salts containing the pyridinium cation.

Conclusions

In this comprehensive study, the reactions of dipyridylmethane (dpma) with MCl$_3$ (M = B, Al, Ga, In) were investigated in 1:1 and 1:2 stoichiometries with the primary interest in charting the coordination chemistry of the ligand and in the possibility to observe non-innocent ligand behaviour via one-electron reduction of the cations [(dpma)MCl$_2$]$^+$.

The 1:1 and 1:2 reactions between dpma and AlCl$_3$ in CH$_3$CN yielded the salts [(dpma)AlCl$_2$]$^+$[Cl]$^-$ (2b) and [(dpma)AlCl$_2$]$^+$[AlCl$_4$]$^-$ (2d), respectively. Mixtures of products were obtained if the same reactions were performed in Et$_2$O, allowing the spectroscopic and structural characterization of the salt [(dpma)$_2$AlCl$_2$]$^+$[AlCl$_4$]$^-$ (1b). The analogous reactions employing GaCl$_3$ gave [(dpma)$_2$GaCl$_2$]$^+$[GaCl$_4$]$^-$ (1a) and [(dpma)GaCl$_2$]$^+$[Cl]$^-$ (2a) if performed in Et$_2$O and using an equimolar amount of reagents. With 1:2 stoichiometry, the reaction between dpma and GaCl$_3$ yielded the salt [(dpma)GaCl$_2$]$^+$[GaCl$_4$]$^-$ (2c).

In contrast to the charge separated products obtained from the reactions of dpma with AlCl$_3$ and GaCl$_3$, similar reactions with BCl$_3$ and InCl$_3$ in Et$_2$O led to the characterization of neutral adducts. In the case of InCl$_3$, the adduct (dpma)InCl$_3$·THF (3·THF) was obtained as the sole product irrespective of the stoichiometry employed. Conversely, the outcome of the reaction employing BCl$_3$ was dependent on the molar ratio of reagents. While 1:2 stoichiometry afforded the diadduct
(dpma)(BCl$_3$)$_2$ (4), the use of an equimolar amount of reagents resulted in a mixture of products and subsequent deprotonation of the dpma ligand to give the neutral complex (dpme)BCl$_2$.

The results of this work can be compared to the chemistry of the ubiquitous bipyridine (bpy) ligand with group 13 trihalides. Computational data shows that the intrinsic metal-ligand bond strengths in the examined complexes are virtually independent of the ligand type. Thus, as far as the bond strength is concerned, the dpma ligand should have wide applicability in coordination chemistry. Furthermore, the presence of a methylene bridge in the dpma ligand renders the structural versatility of its complexes more varied than that observed for bpy. This is best exemplified by the notion that there are no crystallographically characterized examples of cations [(bpy)MCl$_2$]$^+$ (M = Al, Ga) or neutral adducts (bpy)(MCl$_3$)$_2$ (M = B). However, the methylene bridge in the dpma ligand is also a potential site for further reactivity and can be readily deprotonated by bases, as exemplified by the conversion of [(dpma)BCl$_2$]$^+$[Cl]$^-$ to (dpme)BCl$_2$.

Despite the suitable coordinating properties of dpma, the results from electrochemical reduction experiments show it to be a poor electron acceptor. Coordination to a group 13 metal can be used to tune the reduction potential of the ligand to a more accessible range, but the purported radicals [(dpma)MCl$_2$]* (M = Al, Ga) were found to be highly unstable, possibly dissociating chloride to yield metal centred radicals with fleeting existence. The different redox behaviour of dpma with respect to bpy can be rationalized with the electronic structure of the ligand and the presence of a methylene bridge in particular. This conclusion is further supported by our recent EPR spectroscopic characterization of the persistent spirocyclic radical [(dpme)$_2$Al]* in which the ligand is deprotonated and has a methene, not methylene, bridge.

With these features and characteristics of the dpma ligand in mind, we are currently continuing our investigations on redox non-innocent dpme and related nacnac-type ligands in main group
complexes. Furthermore, we are also examining the possibility to take use of the facile reactivity observed for the methylene bridge in dpma to perform further ligand functionalization not possible for bpy. Preliminary results indicate that dpma is a useful and currently unexplored building block for new types of heteroscorpionate ligands. These represent one of the most versatile types of tridentate ligands that can coordinate to a wide variety of elements across the periodic table. The results of these investigations will be reported in due course.

Acknowledgements

The authors gratefully acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada, the Academy of Finland and the Technology Industries of Finland Centennial Foundation. Esa Haapaniemi and Elina Hautakangas are thanked for their assistance in NMR spectroscopy and elemental analyses, respectively. Veera Puhakka and Samu Forsblom are acknowledged for performing the preliminary reactions of the dpma ligand with BCl3.

Notes and references

a University of Jyväskylä, Department of Chemistry, Nanoscience Centre, P.O. Box 35, FI-40014 University of Jyväskylä, Finland. Phone: +358-40-805-3713, Fax: +358-14-260-2501, E-mail: heikki.m.tuononen@jyu.fi

b Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4.

† Electronic Supporting Information (ESI) available: X-ray crystallographic files of 1a·CH2Cl2, 1b·THF, 2c, 3·THF and 4 in CIF format, crystallographic data and selected bond lengths and
angles, 1H NMR spectra and details of variable temperature NMR experiments, X-ray crystallographic characterization data of [H$_2$(dpma)]$^{2+}$[BCl$_4$][Cl], additional CV data and DFT optimized structures of dpma, [(dpma)MCl$_2$]$^+$, [(dpma)$_2$MCl$_2$]$^+$ and [(dpma)MCl$_2$]$^·$ (M = Al, Ga).

1. Cambridge Structural Database System 5.36: F. H. Allen, Acta Crystallogr., Sect. B: Struct. Sci., 2002, 58, 380–388.

2. (a) V. Balzani, F. Scandola, Supramolecular Photochemistry, Horwood: Chichester, U.K., 1991. (b) A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, A. von Zelewsky, Coord. Chem. Rev., 1988, 84, 85–277. (c) V. Balzani, A. Juris, M. Venturi, S. Campagna, S. Serroni, Chem. Rev., 1996, 96, 759–834. (d) E. A. Medlycott, G. S. Hanan, Chem. Soc. Rev., 2005, 34, 133–142. (e) E. A. Medlycott, G. S. Hanan, Coord. Chem. Rev., 2006, 250, 1763–1782.

3. (a) D. M. Klassen, G. A. Crosby, J. Chem. Phys., 1965, 43, 1498–1503. (b) G. A. Crosby, R. J. Watts, D. H. W. Carstens, Science, 1970, 170, 1195–1196. (c) A. D. Gafney, A. W. Adamson, J. Am. Chem. Soc., 1972, 94, 8238–8239.

4. (a) X. Zhou, D. Zhu, Y. Liao, W. Liu, H: Liu, Z, Ma, D. Xing, Nature Protocols, 2014, 9, 1146–1159. (b) H. Wei, E. Wang, Luminescence, 2011, 26, 77–85.

5. (a) T. P Yoon, M. A. Ischay, J. Du, Nature Chem., 2010, 2, 527–532. (b) D. A. Nicewicz, D. W. C. MacMillan, Science, 2008, 322, 77–80.

6. F. Zhang, C. W. Kirby, D. W. Hairsine, M. C. Jennings, R. J. Puddephatt, J. Am. Chem. Soc., 2005, 127, 14196–14197.

7. A. Abo-Amer, M. S. McCready, F. Zhang, R. J. Puddephatt, Can. J. Chem., 2012, 90, 46–54.

8. (a) B. A. McKeown, H. E. Gonzalez, T. Michaelos, T. B. Gunnoe, T. R. Cundari, R H. Crabtree, M. Sabat, Organometallics, 2013, 32, 3903–3913. (b) B. A. McKeown, H. E. Gonzalez, T. B. Gunnoe, T. R. Cundari, M. Sabat, ACS Catal., 2013, 3, 1165–1171.

9. J. Moilanen, J. Borau-Garcia, R. Roesler, H. M. Tuononen, Chem. Commun., 2012, 48, 8949–8951.

10. A. B. Nepomnyashchii, A. J. Bard, Acc. Chem. Res., 2012, 45, 1844–1853.

11. A. Altomare, M. C. Burla, M. Camalli, G. L. Cascaroni, C. Giacovazzo, A. Guagliardi, A. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Cryst., 1999, 32, 115–119.

12. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112–122.

13. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339–341.

14. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Ikengar, J. Tomasi, M. Cossi,
Dalton Trans. 10.1002/anie.201503935.

(a) E. J. Thompson, C. C. Scarborough, K. Wieghardt, J. Chem. Soc., Dalton Trans. 1972, 1067–1073.

(b) M. Kerbaol, Y. Le Mest, P. L'Haridon, Inorg. Chem., 1990, 29, 707–713.

Variable temperature 1H NMR experiments performed in CD$_3$CN for $2b$ and $2d$ showed no changes in their spectra within temperature range –30 to +30 °C.

G. Dyker, O. Muth, Eur. J. Org. Chem., 2004, 21, 4319–4322.

(a) H. Gornitzka, D. Stalke, Organometallics, 1994, 13, 4398–4405. (b) A. J. Canty, L. A. Titcombe, B. W. Skelton, A. H. White, J. Chem. Soc., Dalton Trans., 1988, 35–45. (c) A. J. Canty, K. Mills, B. W. Skelton, A. H. White, J. Chem. Soc., Dalton Trans., 1986, 939–945.

R. Restivo, G. J. Palenik, Polyhedron, 2004, 23, 10466–10474.

(b) M. Goto, Y. Ishikawa, T. Ishihara, C. Nakatake, T. Higuchi, H. Kurosaki, V. L. Goedken, J. Chem. Soc., Dalton Trans., 1998, 1213–1222. (b) M. Goto, Y. Ishikawa, T. Ishihara, C. Nakatake, T. Higuchi, H. Kurosaki, V. L. Goedken, Chem. Commun., 1997, 539–540. (c) J.-M. Giraudon, D. Mandon, J. Sala-Pala, J. E. Guerchais, J.-M. Kerbaol, Y. Le Mest, P. L’Haridon, Inorg. Chem., 1990, 29, 707–713.

Unpublished results.

A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829–5835.

15. (a) J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865–3868. (b) J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1997, 78, 1396. (c) J. P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys., 1996, 105, 9982–9985. (d) C. Adamo, V. Barone, J. Chem. Phys., 1999, 110, 6158–6170.

(a) A. J. Carty, L. A. Berben, Angew. Chem., Int. Ed. Engl., 1963, 2, 47–48.

34