A simplified proof of the Johansson-Molloy Theorem using the Rosenfeld counting method

Anders Martinsson

12th November 2021

Abstract

We show that any triangle-free graph with maximum degree Δ has chromatic number at most $(1 + o(1))\Delta / \log \Delta$.

1 Introduction

The Johansson-Molloy Theorem states that any triangle-free graph G with maximum degree Δ has chromatic number at most $(1 + o(1))\Delta / \ln \Delta$ as $\Delta \to \infty$. In an interesting new development on this problem, a recent article by Hurley and Pirot [1] present an elementary proof based on the Rosenfeld counting method [2]. In fact, their result is quite a bit stronger in that it works even if the underlying graph contains a moderate amount of triangles, it extends to list colorings, and give explicit error terms. In this note, we will present a simplified version of their proof in the case of triangle-free graphs. We prove the following.

Theorem 1.1. For any $\varepsilon > 0$ there exists a constant $\Delta_0 = \Delta_0(\varepsilon)$ such that any triangle-free graph with maximum degree at most $\Delta \geq \Delta_0$ is $\lceil (1 + \varepsilon)\Delta / \ln \Delta \rceil$-colorable.

Let us start by fixing some notation. Let $k = \lceil (1 + \varepsilon)\Delta / \ln \Delta \rceil$ denote the number of colors, and for any graph G, let $\mathcal{C}(G)$ the set of proper k-colorings of G.

We will show this theorem following the format of Rosenfelds counting method, by proving by induction that the number of proper colorings of a triangle-free graph grows by a large factor whenever a vertex is added. To this end, let $\ell = \ell(\Delta)$ be any function such that $\ln \Delta \ll \ell = \Delta \circ(1)$, for instance $\ell(\Delta) = \ln^2 \Delta$.

Claim 1.2. Let Δ be sufficiently large and let G be any triangle-free graph with maximum degree at most Δ. Then $|\mathcal{C}(G)|/|\mathcal{C}(G - v)| \geq \ell$ for any $v \in G$.

Note that this immediately implies Theorem 1.1. In fact, the number of proper k-colorings of G grows as $\ell^{|V(G)|} > 0$.

We will prove Claim 1.2 by induction of the number of vertices in G. Note that the statement is trivially true when G consists of a single vertex. So we may assume below that G has at least two vertices and that $v \in G$ denotes an arbitrary but fixed vertex.

For any partial proper coloring c of G, let $L_c(u)$ denote the set of available colors for u. That is, the set of colors not present in the neighborhood of u. In other words, $L_c(u)$ is the set of

*ETH Zürich, maanders@inf.ethz.ch
colors we can (re-)assign to \(u \) while keeping the coloring proper. Note that this definition holds regardless of whether \(u \) is already assigned a color.

The core of our argument is to study the behavior of a uniformly chosen proper coloring \(c \) of the graph \(G - v \). That is, \(c \) is taken uniformly at random from \(\mathcal{C}(G - v) \). We first note that the conclusion of the theorem can be expressed in terms of the expectation of the number \(|L_c(v)| \) of available colors for \(v \) in \(c \). Observe that each proper coloring of \(G \) can be formed by taking a proper coloring of \(G - v \) and extending it by coloring \(v \) in one of its available colors. Hence, we have the equality

\[
\mathbb{E}[|L_c(v)|] = \sum_{c \in \mathcal{C}(G-v)} |L_c(v)| \cdot |\mathcal{C}(G)| / |\mathcal{C}(G-v)| = |\mathcal{C}(G)| / |\mathcal{C}(G-v)|,
\]

which means that the claim follows if we can prove that, for sufficiently large \(\Delta \), \(\mathbb{E}|L_c(v)| \geq \ell \).

In fact, we will show the stronger statement that, whp as \(\Delta \to \infty \), we have \(|L_c(v)| \gg \ell \).

The proof of this is based on two observations about the distribution of \(c \). Let \(u \) be any neighbor of \(v \) in \(G \), and let \(t \geq 0 \) be a number to be chosen later. By the induction hypothesis, we know (in fact, for any vertex) that \(|\mathcal{C}(G-v)| \geq \ell \cdot |\mathcal{C}(G-v-u)| \). We will use this to show that it is unlikely for \(u \) to have only few available colors in \(c \). Note that any proper coloring of \(G - v \) in which \(v \) has at most \(t \) available colors can be formed by taking some proper coloring of \(G - v - u \) and coloring \(u \) by picking one out of at most \(t \) options. Hence, there are at most \(t \cdot \mathbb{E}|\mathcal{C}(G-v-u)| \) such colorings. Plugging in the induction hypothesis as above, it follows that

\[
\Pr(|L_c(u)| \leq t) \leq \frac{t \cdot \mathbb{E}|\mathcal{C}(G-v-u)|}{\mathbb{E}|\mathcal{C}(G-v)|} \leq \frac{t}{\ell}.
\]

In particular, this means that the expected number of neighbors of \(v \) with at most \(t \) available colors in \(c \) is at most \(t \Delta / \ell \). So if we let \(1 \ll t \ll \ell / \ln \Delta \), it follows by Markov’s inequality that, with high probability, all but at most \(o(k) = o(\Delta / \ln \Delta) \) neighbors of \(v \) have more than \(t = o(1) \) available colors. Crucially, then only a small fraction of colors will be unavailable for \(v \) due to these vertices. Thus if suffices to show that it is unlikely for the remaining neighbors of \(v \) to block too many of the other \(k - o(k) \) colors.

Second, letting \(G_0 := G - v - N(v) \), we consider the distribution of \(c \) conditioned on \(c_{G_0} = c_0 \) for some \(c_0 \in \mathcal{C}(G_0) \). Observe that, as \(G \) is triangle-free, there cannot be any edges between two vertices in \(N(v) \). Thus, for any \(u \in N(v) \), we have that \(L_c(u) \) is completely determined by \(c_0 \) according to \(L_{c_0}(u) \). Moreover, any \(c \in \mathcal{C}(G-v) \) such that \(c_{G_0} = c_0 \) can be constructed from \(c_0 \) by, for each \(v \in N(v) \), color \(u \) by an arbitrary color in \(L_{c_0}(u) \). As \(c \) is uniformly distributed, any such extension of \(c_0 \) is equally likely. Hence, conditioned on \(c_{G_0} = c_0 \), we get that the colors of the neighbors of \(v \) are conditionally independent and uniformly chosen from the respective sets \(L_{c_0}(u) \). It remains to show that when \(L_c(u) \) is large for most \(u \in N(v) \), the set of colors present in \(N(v) \) behaves like a coupon collector process.

We have now reduced the problem to the following elementary statement: We are given sets \(L_1, L_2, \ldots, L_d \subseteq [k] \) for some \(d \leq \Delta \) where all but \(o(k) \) sets satisfies \(|L_i| > t = o(1) \), and random variables \(X_1 \in L_1, \ldots, X_d \in L_d \) chosen independently and uniformly from the respective sets. We wish to show that, whp, \(X := [k] \setminus \{X_1, X_2, \ldots, X_d\} \) contains \(\gg \ell \) elements.

Note first that the events \(j \in X \) for \(j \in [k] \) are negatively correlated. This is intuitively clear as if some number \(j \) never appears among \(X_1, \ldots, X_d \), then any \(X_i \) such that \(j \in L_i \) is consequently more likely to hit any value in \(L_i \setminus \{j\} \). It follows that \(\Var(|X|) \leq \mathbb{E}|X| \), so by Chebyshev’s inequality it suffices to show that \(\mathbb{E}|X| \gg \ell \).

Condition on the values of \(X_i \) for each \(i \) such that \(|L_i| \leq t \), and let \(B \) be the set of colors assigned to these variables. Then \(|B| = o(k) \). By linearity of expectation, the conditional
expected value of $|X|$ given these values is

$$\sum_{j \in [k] \setminus B} \prod_{L_i \ni j, |L_i| > t} \left(1 - \frac{1}{|L_i|}\right).$$

It only remains to find a natural lower bound to this expression. By applying the AM-GM inequality to the right-hand side sum, we can lower bound the previous expression by

$$(k - |B|) \left(\prod_{j \in [k] \setminus B} \prod_{L_i \ni j, |L_i| > t} \left(1 - \frac{1}{|L_i|}\right)\right)^{1/(k - |B|)}.$$

Now, by reordering the products, we get

$$\prod_{i; |L_i| > t} \prod_{j \in L_i \setminus B} \left(1 - 1/|L_i|\right) \geq \left((1 - 1/t)^\Delta\right)^\Delta = e^{-\left(1 + O(1/t)^\Delta\right)},$$

meaning we can further lower bound the above expression by

$$(k - |B|) \exp\left(-\frac{(1 + o(1)) \cdot \Delta}{k - |B|}\right) = \Theta\left(\frac{\Delta}{\ln \Delta}\right) \cdot \exp\left(-\frac{1 + o(1)}{1 + \varepsilon} \ln \Delta\right) \geq \Delta^{\varepsilon/(1 + \varepsilon) - o(1)},$$

which is clearly $\gg \ell$, as desired.

We end this note with two short remarks. First, by carefully choosing parameters ℓ and t in the argument, it is possible to let ε depend on Δ according to $\varepsilon = \Omega(\log \log \Delta / \log \Delta)$. Second, it is strictly speaking not needed to argue for concentration of $|X|$ in the proof. As one only wishes to conclude that $|L_c(v)|$ is large in expectation, estimating $E|X|$ suffices on its own. Nevertheless, we have chosen to write the proof with concentration as we find the statement that $|L_c(v)|$ is large whp intuitively simpler than that $E\left[|L_c(v)|\mid c \in G_0\right]$ is large whp.

Acknowledgements

The author thanks François Pirot and Eoin Hurley for helpful feedback.

References

[1] Eoin Hurley, and François Pirot, *A first moment proof of the Johansson-Molloy theorem*, preprint available at https://arxiv.org/abs/2109.15215, 2021+.

[2] Matthieu Rosenfeld, *Another Approach to Non-Repetitive Colorings of Graphs of Bounded Degree*, Electronic Journal of Combinatorics 27(3), 2020.