Introduction. Every disease that hit our organism leaves some proteins that continuously circulate in the bloodstream after each postponed disease. In addition, these proteins theoretically could play specific role during the illness emergence or development of complications. The most common of such specific proteins is immunoglobulin class G.

In certain cases, immunoglobulins class G can be realized as autoantibodies [12]. In previous research we have shown that IgG, which appear in the bloodstream after stroke, are able to induce releasing of the proteins, fragments and protein complexes from the granules of the platelets [6]. Hence interaction between IgG and platelets surface causes modulation of the cellular response [7-9].

At the same time, stroke is one of the most pressing health and social problem which require urgent solution [4]. Full recovery of patients after stroke was not observed [1]. It is obvious that certain molecules or mechanisms exist that may be the reason for the disease recurrence or further complications. It is known that the leading mechanism of ischemic stroke realization correlated with hemostatic profile. Activation of blood clotting and thrombus formation were observed after stroke attack [3, 8, 14]. The origin of the primary thrombus formation is platelet's ability to aggregate [5].

Given the above, investigation of the potential impact of IgG, formed in the bloodstream after suffering a stroke, on the platelet aggregation process is of utmost importance. Moreover, as known IgG circulate in the bloodstream in higher concentrations for a long time after disease. This fact provide importance to to investigate and compare their effects on platelets aggregation ability in the acute stroke as well year past acute phase of ischemic stroke. That was the purpose of current work.

Materials and methods. Blood plasma samples were taken from 236 patients (66 patients with atherothrombotic ischemic stroke and 56 patients with cardioembolic ischemic stroke during the acute phase of disease; 57 patients with atherothrombotic ischemic stroke and 57 patients with cardioembolic ischemic stroke one year past acute phase of stroke) and 35 healthy donors. Average age of patients was 72±8 years. Patients were hospitalized in neurological
The diagnosis of ischemic stroke was confirmed through computed tomography or magnetic resonance imaging. On the first day of admission to hospital, all patients received aspirin 325 mg orally, then the daily 100 mg aspirin. From the second day of hospital stay, patients received low molecular weight heparin in prophylactic dose. All donors and patients or their relatives had been warned about the conduct of clinical research and provide written agreement to participate in it. Current experiment was approved by the ethics committee from ESC "Institute of Biology", Ukraine.

Blood samples were collected from the cubital vein with the addition of sodium citrate (38 g/l) in the final correlation 9:1. Platelet-rich plasma (PRP) was obtained by centrifugation of stabilized blood at 300 g for 10 min at 20 °C. Platelet-poor plasma (PPP) was obtained by further centrifugation of PRP at 1500 g for 30 min at 20 °C.

IgG was separated by affinity chromatography on protein A Sepharose [10,12]. Quality of immunoglobulin fractions was controlled by disk-electrophoresis in 10% PAGE with SDS-Na [6,7]. All separated fractions of IgG were lyophilized by (LyoQuest, Spain) and dissolved in the 0.05 M Tris-HCl buffer containing 0.13 M NaCl, pH 7.4 and 0.05 M Tris-HCl buffer containing 0.13 M NaCl, pH 7.4 was added. All similar manipulations were conducted with a control sample as with an experimental samples.

Statistical processing of the results was performed using software Statistica 7. Value changes were considered significant at P < 0.05. Statistical processing and analysis of electrophoreograms was performed by the scanning of the computer program TotalLab 2.01.

Results and discussions. Fractions of immunoglobulin class G and were extracted from: plasma of healthy donors; plasma of patients with atherothrombotic ischemic stroke (AIS) and cardioembolic ischemic stroke (CIS) in acute phase of the disease; and plasma of the same patients past one year of acute phase of the disease.

Details of IgG fractions separations concentrations and characterization had provided in our previous research [6, 7].

Than incubation of the tested IgG fractions with the PRP obtained from the healthy donors was performed. The effect of each tested IgG fractions on the ADP-dependent healthy donors platelets aggregation was evaluated. Aggregograms were compared with the control platelet aggregograms which include equal volume of 0.05 M Tris-HCl buffer containing 0.13 M NaCl, pH 7.4 instead of tested fractions.

IgG fraction obtained from the healthy donor's blood plasma did not influence tested process meaningful and was similar to the result of the control aggregation (Table 1).

Spontaneous aggregation. The addition to the donors PRP of the majority fractions has not provoked spontaneous aggregation. This indicates an absence of initial activation of platelets, which were separated from the blood of healthy donors. However, it has been shown that after addition of IgG fractions separated from the blood plasma of patients with AIS as well as with CIS one year past acute phase the rate spontaneous aggregation was equal up to 5%.

One-wave irreversible aggregation was observed after incubation of each explored fractions with the donor's platelets rich plasma (figure 1).

Table 1. Functional characteristics of immunoglobulin fractions separated from healthy donors and patients with acute ischemic stroke. The maximum amplitude of platelet aggregation which were influence of the IgG fractions separated from the plasma of patients in acute phase of both stroke subtypes was in average on 15% higher comparengly with the control sample. Donor's PRP incubation with the IgG fractions separated from blood plasma of patients one year past acute phase of stroke provoke maximum amplitude of platelet aggregation that was on the 26% for AIS and on the 20% for CIS lower comparengly with a control sample.

The rate of platelet aggregation after incubation of donor's PRP with the IgG fractions separated from the blood plasma of patients with AIS as well as CIS was slightly increased compared with the control aggregators. However according to the timing the rate of platelets aggregation was on the 8% per minutes higher after adding of IgG fraction separated from the patients with stroke one year past acute phase in comparison with the same effect of the IgG fraction separated from the acute stroke patients (Table 1).
Table 1. The rate and maximum amplitude of ADP-dependent platelet aggregation after incubation of the healthy donor’s platelets with the tested IgG fractions

IgG fraction separated from the blood plasma of	Maximum amplitude of platelet aggregation, %	Platelet aggregation rate, %/sec
Healthy donors	63.6 ± 5.6#	42.3 ± 6.2#
Patients with acute AIS	61.1 ± 5.2#	46.8 ± 6.1#
Patients with past one year stroke AIS	51.8 ± 10.4*	54.0 ± 5.5*
Patients with past one year stroke CIS	48.4 ± 11.5#	

* P<0.05 in comparison with aggregation amplitude and the platelet aggregation rate under the influence of IgG separated from the blood plasma of healthy donors.

Moreover, IgG fraction separated from the plasma of patients with AIS activated donor’s platelet aggregation process an average on 5% more intensive comparatively to the IgG fraction separated from plasma of patients with CIS in the acute phase of stroke as well as one year past acute phase.

Results could be an evidence of the potentially different immunoglobulin fractions formation in the bloodstream of the patients with different pathology. Previously it was proved that cardioembolic and atherothrombotic ischemic subtypes of stroke involve different response of hemostasis system [1-4].

Conclusion. The results shows that atherothrombotic and cardioembolic ischemic subtypes of acute stroke accompanied by increased concentrations of immunoglobulin class G. But concentration of IgG for the patients one year past acute phase is close to IgG concentration of healthy donors. All investigated IgG fractions separated from the stroke patients are able to influence certain parts of the haemostasis system instead of IgG fraction separated from the blood plasma of healthy donor which effect was close to zero. In particular IgG separated from the plasma of patients with AIS and CIS in the acute phase have caused the activation of ADP-induced healthy donor’s platelets aggregation. In contrast, IgG separated from the plasma of patients with AIS and CIS one year past acute phase have caused inhibition of healthy donor’s platelets aggregation.

References
1. Burlova-Vasylieva M. The appearance of molecules of prothrombin origin in blood upon development of atherothrombotic and cardioembolic ischemic stroke / Kravenko N., Torgalo E., Savchuk O. // Bulletin of Taras Shevchenko National University of Kyiv. Kyiv, Ukraine.– 2014. Vol. 3, N 68. – P.57-60.
2. Burlova-Vasylieva M. Polymorphisms in FII, FV and PAI-1 genes in Ukrainian patients with atherothrombotic and cardioembolic ischemic stroke / Kravenko N, Savchuk O. // European Journal of Human Genetics. – 2014. Vol. 22, N 1. – P.411.
3. Hirsch, Jack. Hemostasis and thrombosis: basic principles and clinical practice. 1983 Jan; 197(1):116–117. PMCID: PMC1352865. English.
4. Hoyert D., Land Xu J. National vital statistics reports : from the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System. 2012, 61(6). Р. 1-52. English.
5. Kravchenko N.K., Vovk T.B., Ostapchenko L.I. Influence of IgG Separated from Blood Plasma of Patients with Ischemic Stroke on the Process Platelet’s Proteins Secretion. / Savchuk O, Ostapchenko L.I. // Physic of life. – 2010. Vol. 18, N 3. – P.59-63.
6. Vovk T. Characteristic of autoimmune antibodies to components of hemostasis, which are producing in blood flow during systemic lupus erythematosus. / Zhao L, Xiang G, Xu C. // Exp Clin Endocrinol Diabetes. – 2014. Vol. 122, N 4. – P.254.
7. Woodward M. Associations of inflammatory and haemostatic variables with the risk of recurrent stroke. / Lowe G.D., Campbell D.J. [et al.] // Stroke. – 2005. Vol. 36. – P. 2143-2147.
АГРЕГАЦІЙНА СПОСОБНОСТЬ ТРОМБОЦИТІВ ПОД ДЕЙСТВІЕМ ІМУНОГЛОБУЛІНІВ КЛАСУ G ПОЛУЧЕННИХ ИЗ ПЛАЗМИ КРОВІ БОЛЬНИХ С ІШЕМІЧЕСЬКИМ ІНСУЛЬТОМ.

Стаття посвячена ізученню АДФ-зв'язуваної агрегації тромбоцитів здорових донорів після інкубації з імуноглобулинами класу G, які були виведені з плазми крові хворих атеротромботичним і кардіоемболічним підтипами ішемічного інсульту в гострій фазі хвороби. В ході дослідної роботи було показано, що атеротромботичний і кардіоемболічний підтипи ішемічного інсульту супроводжуються збільшенням концентрації імуноглобулінів класу G. При цьому концентрація IgG через рік після перенесеної гострії фази відповідає показателю практично здорових донорів. Більш того IgG мають здатність впливати на рухомість захворювальних систем, зокрема на перенесену гоструй інсульт. Зокрема, IgG отримані з плазми крові хворих АКИ та КИ в гострій фазі характерним був агрегаційний підтип АДФ-зв'язуваної агрегації тромбоцитів здорових донорів. В свою чергу IgG отримані з плазми крові хворих АКИ та КИ через рік після гострої фази провели протиоположний ефект, то є, інсульгрування АДФ-зв'язуваної агрегаційної активності тромбоцитів здорових донорів.

Ключова речення: ішемічні інсульт, IgG, агрегація тромбоцитів.

Т. Катрий, асп., О. Савчук, д-р біол. наук
Київський національний університет імені Тараса Шевченка, Київ, Україна

ІДЕНТИФІКАЦІЯ ЗБУДНИКІВ ЗМИШАНОЇ ІНФЕКЦІЇ ОРХІДНИХ В КОЛЄКЦІЙ БОТАНІЧНОГО САДУ ІМ. АКАД. О.В. ФОМІНА

Проведено дослідження та ідентифікацію збудників інфекційних хвороб орхідних в колекції захищеного ґрунту ботанічного саду ім. акад. О.В. Фоміна Київського національного університету імені Тараса Шевченка. Описані симптоми інфікованих рослин. Встановлено наявність змішаної інфекції, обумовленої вірусними та бактеріальними агентами.

Ключова речення: інфекції, орхідні, орхідні хвороби, вірусні хвороби, фазотерапія.

Вступ. Тропічні і субтропічні види орхідних культивуються в багатьох країнах світу і є однією з провідних галузей сучасного квітникаства. В Україні більшість тропічних орхідних вирощується в умовах захищеного ґрунту в колекціях ботанічних садів та приватних господарствах. Проте, вірусні захворювання орхідних значно обумовлюють діагностику, що зумовлено зростанням виникнення інфекційного хвороби. Наприклад, тромбоцитопатія вірусних захворювань орхідних в колекції захищеного ґрунту вивчено в прохідному періоді клопотаних рослин.

Крім вірусів, збудниками інфекційних хвороб у орхідних є бактерії та таракани. Серед грибових уражень найбільшого значення має коренева гній (фітіум, різкотоксій), трахеомікози, плямистість (борошниста роса, іржа, сіра та коричнева гній), септоріоз, стагногійробот, філлостіктоз, церкоспорозоз [8]. Бактеріальні інфекції розглядаються як внаслідок проникнення бактерій крізь порожнини тромбоцитових рослин, а також внаслідок інфекції. Індуковані захворювання орхідних в колекції захищеного ґрунту вивчено в умовах тропічного саду.

Для встановлення ідентифікації збудників інфекційних хвороб орхідних в колекції захищеного ґрунту ботанічного саду ім. Фоміна Київського національного університету імені Тараса Шевченка проведено дослідження. Метою дослідження було вивчення етіологічних причин інфекційних хвороб орхідних в колекції захищеного ґрунту ботанічного саду ім. Фоміна Київського національного університету імені Тараса Шевченка.

Результати. В колекції захищеного ґрунту ботанічного саду ім. Фоміна Київського національного університету імені Тараса Шевченка визначено ідентифікацію збудників інфекційних хвороб орхідних. Найчастіше збудники інфекційних хвороб орхідних є віруси, бактерії та того інших. Серед грибових уражень найбільшого значення має коренева гній (фітіум, різкотоксій), трахеомікози, плямистість (борошниста роса, іржа, сіра та коричнева гній), септоріоз, стагногійробот, філлостіктоз, церкоспорозоз [8]. Бактеріальні інфекції розглядаються як внаслідок проникнення бактерій крізь порожнини тромбоцитових рослин, а також внаслідок інфекції. Індуковані захворювання орхідних в колекції захищеного ґрунту вивчено в умовах тропічного саду.