Some cenotic features of Scots pine blister rust and red ring rot in pine forests

A I Tatarintsev and N P Melnichenko
Scientific Laboratory of Forest Health, Reshetnev Siberian State University of Science and Technology, 31, Krasnoyarskii Rabochii Prospekt, Krasnoyarsk, 660037, Russia
E-mail: lespat@mail.ru

Abstract. Scots pine blister rust and red ring rot are common diseases on Scots pine throughout its entire range. Many specialists have studied these diseases in various aspects. Nevertheless, the cenotic patterns of incidence in pine forests, primarily for Scots pine blister rust, have been studied to a lesser extent. The study is aimed to establish the peculiarities of incidence of Scots pine blister rust and red ring rot in pine forests at the dendrocenosis-level in the context of forest conditions and the biology of pathogens. We studied the pine forests of the Dzerzhinskoe forestry located in the Krasnoyarsk Krai. Research methods included detailed forest pathological examination, macroscopic diagnostics of diseases, determination of indicators proving disease manifestation, and analysis of the series of diameter-related distribution of trees. Scots pine blister rust was proved to be of high injuriousness for trees and entire forest stand in case of hotspot emergency. Red ring rot does not play such a significant role in the plant community since trees with signs of rot retain their activity for a long time as part of the cenopopulation. Diameter-related distribution of the affected trees mainly corresponds to the general stand structure. Nevertheless, in red ring rot hotspots, there is a certain predominance of large specimens in the affected part of the stand, which is associated with a reduced immunity in such trees. Scots pine blister rust in herb-rich pine forests often damages trees with diameters below average. Scots pine blister rust pathogen completes different stages of its life cycle on different plants infecting intermediate host from various species of herbaceous growing in the ground cover of herb-rich pine forests.

1. Introduction

Pinus sylvestris L. (Scots pine) – is one of the most widespread conifers occurring in boreal forests in Europe and Asia [1]. Mixed-species pine stands are susceptible to pathogens that can have a significant (including negative) impact on forest biogeocenoses [2-4]. The dominant pathogens on Scots pine in the forests of Eurasia include micromycetes of the genus *Cronartium* (cause Scots pine blister rust) and the xylotrophic fungus *Porodaedalea pini* (Brot.) Murrill (causes red ring rot) [5-15]. In particular, Scots pine blister rust is ranked among the major diseases damaging coniferous forests in Sweden and Finland [16-21]. The diseases weaken trees, cause pathological litterfall accumulation (snag, rotten windbreak) and timber assortment reduction in commercial pine forests [22, 23]. Numerous studies of Scots pine blister rust and red ring rot in pine forests mainly contain general information about the incidence in different regions, data on the prevalence of diseases depending on forest conditions, forest inventory indicators, and their influence on forest health. The cenotic patterns of incidence in pine forests, primarily for Scots pine blister rust, have been studied to a lesser extent.
The purpose of our study is to establish the peculiarities of incidence of Scots pine blister rust and red ring rot in pine forests at the dendrocenosis-level in the context of forest conditions and the biology of pathogens.

2. Materials and methods of research

We studied the pine forests of the Dzerzhinskoe forestry located in the Krasnoyarsk Krai. According to the Korotkov forest community zoning scheme [24], the studied forest stands belong to the forest-steppe of the Kansk-Krasnoyarsk-Biryusinsky forest province. We used the materials of a detailed forest pathological examination of pine stands infected with Scots pine blister rust and red ring rot (the prevalence rate is ≥ 10%). Pine forests belong to the predominant forest types: lichen (includes forest community types: Lingonberry/Bearberry, Bearberry/Lichen); mossy (Lingonberry/Moss); herb-rich (Herbaceous, Blueberry/Herbaceous). Types of growing conditions: A1 (dry pine barrens); B1, B2 (dry, slightly moist pine forests growing on relatively nutrient-poor soils); C2 (slightly moist multi-storied mixed (coniferous/deciduous) forests dominated by *P. sylvestris* L. growing on relatively nutrient-rich soils). The survey covered forest stands of IV-XI age classes, II-IV bonitet classes, and a relative density of 0.4-0.6.

We conducted the detailed survey following generally accepted methods [25, 26] by a continuous enumeration of trees on sample plots (SP). Trees (150-200 pcs. on SP) were divided according to thickness steps (four-centimeter gradation) and condition classes: 1 – no signs of weakening; 2 – weakened; 3 – severely weakened; 4 – drying up; 5 – snag of the current year, 6 – snag of previous years. The value of the natural thickness step is expressed in tenths of the average diameter, taken as a unit. The condition class was indicated by a visual assessment of tree crowns. Tree diseases were diagnosed according to a set of direct symptoms. Symptoms of Scots pine blister rust include dark wounds with resin stains on stems and branches in different parts of the crown. Girdling of the stem may result in the death of the top or the entire tree. Symptoms of red ring rot in pine include basidioma and swollen knots produced by *P. pini*. Dormant stem rot (lack of apparent signs) in overmature pine stands was indicated by analyzing the state of heartwood in core samples taken with an auger at the height of 1.3 m for every tenth tree during counting.

We analyzed data from 15 sample plots. Scots pine blister rust was studied on 12 sample plots, red ring rot – on four ones. According to the forest pathological inventory at the sample plots, two indicators of disease manifestation were established: prevalence and injuriousness. The prevalence was determined as the proportion (%) of affected trees from the total sample size. The injuriousness was assessed the weighted average condition index (K_{av}) of the affected part of the stand, which was calculated by the formula:

$$K_{av} = \frac{(P_1 \times K_1 + P_2 \times K_2 + P_3 \times K_3 + P_4 \times K_4 + P_5 \times K_5)}{100},$$

where P_i is the proportion of stem stock of each condition class of the affected trees, %; K_i is the index of trees condition class (1 – no signs of weakening, 2 – weakened, 3 – severely weakened, 4 – drying up, 5 – all-years snag). At $K_{av} \leq 1.5$, the aggregate of affected trees, on average, has no visible signs of weakening; $1.5 < K_{av} \leq 2.5$ – affected trees are weakened on average; $2.5 < K_{av} \leq 3.5$ – severely weakened; $3.5 < K_{av} \leq 4.5$ – drying up; $K_{av} > 4.5$ – died.

The central aspect in the study of incidence in pine forests at the dendrocenotic level was the analysis of the distribution of affected trees by the stem diameters (thickness steps) at the height of 1.3 m in the general structure of the stand. Comparative analysis of the series of distribution of trees by thickness steps in stands infected with red ring rot was performed using the λ criterion (Kolmogorov-Smirnov) [27].

3. Results and discussion

Scots pine blister rust is ubiquitous in the pine forests of the study area [22]. However, hotspots (prevalence over 10%) were identified in less than half of the cases. The degree of damage to forest stands in Scots pine blister rust hotspots was weak (11-20%), less often - moderate (21-30%) (table 1). The chronic disease on trees leads to their weakening and drying up. According to our data (table 1), the
weighted average condition index of the affected trees was from 2.6 (severely weakened) to 4.4 (dying up). Thus, Scots pine blister rust is highly injurious, and its hotspots are a factor disturbing pine forests' sustainability.

Table 1. Pine forests damage indicators in Scots pine blister rust hotspots.

SP	Pine forest type	P, %¹	K_{av}² infected trees	Average diameter, cm stand affected trees	
1	Lingonberry/Moss	10.5	4.3	22.8	22.4
2	Lingonberry/Bearberry	13.5	3.8	23.8	24.3
3	Lingonberry/Lichen	21.2	3.3	30.7	31.3
4	Lingonberry/Lichen	28.2	2.9	32.0	32.6
5	Lingonberry/Moss	12.7	3.0	31.8	31.1
6	Lingonberry/Herbaceous	10.0	4.1	19.4	16.1
7	Lingonberry/Lichen	11.4	4.4	38.7	40.4
8	Lingonberry/Herbaceous	15.8	2.7	29.9	29.8
9	Lingonberry/Lichen	14.4	2.6	30.2	29.6
10	Lingonberry/Herbaceous	16.5	3.3	43.2	36.8
11	Herbaceous	13.7	3.9	49.5	38.4
12	Lingonberry/Lichen	17.0	2.8	35.2	34.6

¹ prevalence rate.
² weighted average condition index.

Scots pine blister rust pathogens are obligate parasites with anemochorous spores that enable them to affect more or less viable trees. The representation of trees with different morphometric parameters in the affected part of the cenopopulation mostly corresponds to the general structure of the stand. Figure 1 confirms this pattern showing the diagrams of the distribution of trees by diameter in hotspots pine forests. Nevertheless, in the stands of the herb-rich group (SP 6, 10, 11), there is a shift in the number of infected trees towards diameters below the average, meaning the average diameter of the aggregate of affected trees is less than the average for the stand (Table 1). We explain this by the presence of a heteroecious rust fungus *Cronartium flaccidum* [Alb. & Schwein.] G. Winter, acting as a major Scots pine blister rust pathogen. *C. flaccidum* is characterized by a vertical transfer of infection (basidiospores) from intermediate hosts (herbaceous plants) to pine crowns. As a result, smaller trees become infected first. In pine forests of mossy and even more so lichen group, with a lack or absence of herbs in the ground cover, the dominant pathogen is autoecious *C. pini* [Willd.] Jørst. This micromycete completes the entire life cycle on a single host (pine in our case). Therefore, the presence of a significant number of aeciospores in the crown determines the infection of trees of different sizes (diameters).

Red ring rot is widespread in mature and overmature pine stands within the study area, forming hotspots. The damage to forest stands reaches a strong degree (on average 38.0 ± 2.1%) [23]. Damage and decay of heartwood caused by *P. pini* are ecologically reasoned, but it significantly reduces the quality of trees as the primary forest resource. The fungus does not disturb physiologically active peripheral elements of the tree stem. Therefore, trees affected by red ring rot are in a satisfactory condition: the weighted average condition index for such trees in the analyzed samples does not exceed 1.7.
Figure 1. Distribution by thickness steps (cm) of all trees (white) and those affected by Scots pine blister rust (black) (pcs.).
The spread of red ring rot in pine stands also follows a particular pattern associated with the stem diameter. We have analyzed the series of diameter-related distribution of trees in red ring rot hotspots according to the enumeration data on four sample plots laid out in mature and overmature pine stands of the predominant forest types (figure 2). Diagrams prove that the part of the stand affected by red ring rot mainly retains the diameter characteristic typical of forest stands. The obtained results are consistent with those from other studies [28-30]. We also conducted an additional comparative analysis of the considered distribution series basing on calculating the statistical criterion λ (Kolmogorov-Smirnov) and comparing average diameters (table 2). For three sample plots (SP 7, 13, 15), no significant differences were found between the compared series of tree distribution by thickness steps within the entire stand and its part affected by red ring rot: design values of the criterion $\lambda \leq$ its critical value for confidence level 0.95. On SP 14, a significant difference was recorded between the compared samples because there were no affected small-diameter trees. Thus, in pine forests, red ring rot usually affects trees of different thicknesses respectively to their share in the cenopopulation. Nevertheless, there is a certain tendency towards the predominance of large-sized specimens among infected trees. The increased susceptibility to red ring rot of large trees is due to their anatomical and morphological structure. In particular, a large proportion of heartwood [31] and insufficient cleansing of the stem from branches which act as the “gates” to infection.

Table 2. Results of a comparative analysis of the thickness-related distribution of trees affected by red ring rot.

SP	Average diameter, cm	Comparative analysis of the series of trees distribution (see figure 2) by the criterion λ	
	stand	affected trees	λ_c (calculated value) = $\lambda_{0.05}$ (critical value for confidence level 0.95)
7	38.7	41.8	$\lambda_c(1.36) = \lambda_{0.05}(1.36)$
13	33.3	37.0	$\lambda_c(1.26) < \lambda_{0.05}(1.36)$
14	35.1	42.9	$\lambda_c(2.93) > \lambda_{0.05}(1.36)$
15	38.7	39.8	$\lambda_c(0.59) < \lambda_{0.05}(1.36)$

1 calculated value.
2 critical value for confidence level 0.95.

4. Conclusion

The incidence of Scots pine blister rust and red ring rot in mature and overmature pine forests reaches the hotspots extent: weak and moderate damage to stands by Scots pine blister rust, severe damage by red ring rot.

Within the forest stands, diseases affect trees of different morphometric parameters. The distribution of the affected trees by thickness steps mostly corresponds to the general diameter structure of the stands. Nevertheless, in red ring rot hotspots, there is a certain predominance of large specimens in the affected part of the stand, which is associated with a reduced immunity in such trees. Scots pine blister rust in herb-rich pine forests often damages trees with diameters below average. This is probably due to the bioecological characteristics of the pathogen, which complete different stages of its life cycle on different plants infecting various species of herbaceous. So the ground cover of herb-rich pine forests provides intermediate hosts for $C. flaccidum$ development. This thesis requires additional experimental study.

Trees affected by Scots pine blister are fatally weakened and gradually turn into pathological litterfall. The coenotic role of red ring rot is insignificant; trees with signs of rot maintain a satisfactory condition and remain in the cenopopulation for a long time.

The presented results supplement the available information on the biocenotic features of Scots pine blister rust and red ring rot in pine forests and can help assess the resource potential of commercial forest stands.
Figure 2. Distribution by thickness steps (cm) of all trees (white) and those affected by red ring rot (black) (pcs.).
Acknowledgement
The research was carried out within and the State Assignment (theme «Fundamental principles of forest protection from entomo- and phyto- pests in Siberia» No. FEFE-2020-0014) supported by the Ministry of Education and Science of the Russian Federation.

References
[1] Giertych M and Mátyás C 1991 Genetics of Scots Pine Developments in plant genetics and breeding (Amsterdam: Elsevier Science Publisher) 3 280
[2] Trumbore S, Brando P and Hartmann H 2015 Forest health and global change Science 349 814-8
[3] Shirk A J, Cushman S A, Waring K M, Wehenkel C A, Leal-Sáenz A, Toney C and Lopez-Sanchez C A 2018 Southwestern white pine (Pinus strobus) species distribution models project a large range shift and contraction due to regional climatic changes For. Ecol. Manag. 411 176-86
[4] Haagsma M, Page G F M, Johnson J S, Still C, Waring K M, Sniezko R A and Selker J S 2020 Using Hyperspectral Imagery to Detect an Invasive Fungal Pathogen and Symptom Severity in Pinus strobus Seedlings of Different Genotypes Remote Sens 12 4041
[5] Ezhov O N 1998 Distribution of the pine sponge Phellinus pini [Thore ex. Fr.] Pil. in the middle subzone of the taiga and the limitation of its harmfulness: extended abstract of dissertation St. Petersburg Russia 18
[6] Kaitera J 2000 Analysis of Cronartium flaccidum lesion development on pole-stage Scots pines Silva Fennica 34 21-7
[7] Gninenko Yu I 2002 The main diseases of the Russian forests and their economic significance In 5th International Conference "Problems of Forest Phytopathology and Mycology" (Moscow: All-Russian Research Institute for Silviculture and Mechanization of Forestry) 63-6
[8] Maslov A A and Peterson Yu V 2002 Scots pine blister rust as a factor of natural mortality in boreal pine forests: 20 years of monitoring in forest reserves In 5th International Conference "Problems of Forest Phytopathology and Mycology" (Moscow: All-Russian Research Institute for Silviculture and Mechanization of Forestry) 155-8
[9] Davis C and Meyer T 2004 Field guide to tree diseases of Ontario 137
[10] Federov N I and Yarmolovich V A 2004 Scots pine blister rust in the forests of Belarus Mushroom communities of forest ecosystems 239-54
[11] Churakov B P and Kandrashtin A I 2009 Infection of pine forest stands with a pine spong in various types of forests and its impact on the output of business wood Forest Journal 3 37-41
[12] Ozkazanc N and Maden S 2013 Some important shoot and stem fungi in pine (Pinus spp.) and firs (Abies sp.) in western Blacksea region, Turkey Bartın Orman Fakültesi Dergisi 15(1-2) 32-8
[13] Vlasenko V A 2013 Ecological characteristics of bracket fungi in the forest steppe of Western Siberia Contemporary Problems of Ecology 6 390-5
[14] Szewczyk W, Kwaśna H, Behnke-Borowczyk J and Baranowska-Wasilewska M 2014 Phylogenetic relationships among Porodaedalea pini from Poland and related Porodaedalea species Central European Journal of Biology 9 614-27
[15] Kaitera J, Hiltunen R, Kauppila T and et al. 2017 Five plant families support natural sporulation of Cronartium ribicola and C. flaccidum in Finland Eur J Plant Pathol. 149 367-83
[16] Samils B, Ihrmark K, Kaitera J, Hansson P and Barklund P 2010 Genetic structure of scots pine blister rust (Cronartium flaccidum and Peridermium pini) Phytopathologia Mediterranea 49 428
[17] Wulff S, Liendelow A, Lundin L, Hansson P, Axelsson A-L, Barklund P, Wijk S and Stahl G 2012. Adapting forest health assessments to changing perspectives on threats – a case example from Sweden Environmental Monitoring Assessment 184 2453-64
[18] Skyttä V 2017 Tervasroso piinaa pohjoisessa Metsälehti 6 2
[19] Nevalainen S, Nuorteva H Ja and Pouttu A 2018 Metsätuhot vuonna (Helsinki: Luonnonvarakeskus) 48
[20] Normark E 2019 Multiskadad Ungskog I Västerbottens - Öch Norrbottens Län Mjöliga Åtgärder För Att Mildra Problemen Skogsstyrelsen Rapport 10
[21] Samils B, Kaitera J, Persson T, Stenlid J and Barklund P 2021 Relationship and genetic structure among autoecious and heteroecious populations of Cronartium pini in northern Fennoscandia Fungal Ecology 50 101032
[22] Tatarintsev A I and Aminev P I 2014 Infestation of pine forests with Scots pine blister rust in the Krasnoyarsk Priangarye: eco-coenotic features of the prevalence of the disease Conifers of the boreal zone XXXII(3-4) 58-65
[23] Tatarintsev A I 2016 Stem rot in anthropogenically disturbed pine forests of the Krasnoyarsk Priangarye Conifers of the boreal zone XXXIV(5-6) 259-65
[24] Korotkov I A 1994 Forest growing zoning of Russia and the republics of the former USSR Carbon in the ecosystems of forests and swamps of Russia Krasnoyarsk 29-47
[25] Mozolevskaya E G, Kataev O A and Sokolova E S 1984 Methods of forest pathological examination of foci of stem pests and forest diseases (M: Lesnaya promyshlennost) 152
[26] On approval of the procedure for conducting forest pathological examinations and the form of the forest pathological examination report Order of the Ministry of Natural Resources of Russia 480(16)
[27] Falaleev E N and Smolyanov A S 1981 Mathematical statistics (Krasnoyarsk: Publishing house of Krasnoyarsk State University) 128
[28] Bratus V N 1956 Some data on the structure of stands affected by Phellinus pini Proceedings of the Ukrainian Academy of Agricultural Sciences 8 48-54
[29] Konev G I 1964 Pine affected by red ring rot in the Angara region and its bucking Proceedings of the East Siberian Research and Design Institute of Forestry and Woodworking Industry II 77-84
[30] Smirnova V K 1968 Infection of pine forests with pine sponge - Phellinus pini - in various groups of forest types (green moss and dense- pine forests) and its influence on the output of commercial wood: PhD thesi Sverdlovsk Russia
[31] Gabrilavichus R 1978 Variations of heartwood volume in pine populations of the Lithuanian Soviet Socialist Republic Proceedings of Saint Petersburg Forestry Research Institute 18 59-66