Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Association of Vitamin D receptor gene polymorphisms and clinical/severe outcomes of COVID-19 patients

Rasoul Abdollahzadeh a,*,1, Mohammad Hossein Shushizadeh b,1, Mina Barazandehrokh c, Sepideh Choopani d, Asaad Azarnezhad e,*, Sahereh Paknahad a, Maryam Pirhoushiaran a, S. Zahra Makani f, Razieh Zarifian Yeganeh a, Ahmed Al-Kateb g, Roozbeh Heidarzadehpilehrood h

ARTICLE INFO

Keywords:
COVID-19
Vitamin D receptor
Single nucleotide polymorphisms (SNPs)
Genetic predisposition
Clinical outcomes

ABSTRACT

Introduction: Growing evidence documented the critical impacts of vitamin D (VD) in the prognosis of COVID-19 patients. The functions of VD are dependent on the vitamin D receptor (VDR) in the VD/VDR signaling pathway. Therefore, we aimed to assess the association of VDR gene polymorphisms with COVID-19 outcomes.

Methods: In the present study, eight VDR single nucleotide polymorphisms (SNPs) were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 500 COVID-19 patients in Iran, including 160 asymptomatic, 250 mild/moderate, and 90 severe/critical cases. The association of these polymorphisms with severity, clinical outcomes, and comorbidities were evaluated through the calculation of the Odds ratio (OR).

Results: Interestingly, significant associations were disclosed for some of the SNP-related alleles and/or genotypes in one or more genetic models with different clinical data in COVID-19 patients. Significant association of VDR-SNPs with signs, symptoms, and comorbidities was as follows: ApaI with shortness of breath (P < 0.001) and asthma (P = 0.034) in severe/critical patients (group III); BsmI with chronic renal disease (P = 0.010) in mild/moderate patients (group II); Tru9I with vomiting (P = 0.031), shortness of breath (P = 0.04), and hypertension (P = 0.03); FokI with fever and hypertension (P = 0.027) in severe/critical patients (group III); CDX2 with shortness of breath (P = 0.022), hypertension (P = 0.036), and diabetes (P = 0.042) in severe/critical patients (group III); EcoRV with diabetes (P < 0.001 and P = 0.045 in mild/moderate patients (group II) and severe/critical patients (group III), respectively). However, the association of VDR TaqI and BglI polymorphisms with clinical symptoms and comorbidities in COVID-19 patients was not significant.

Conclusion: VDR gene polymorphisms might play critical roles in the vulnerability to infection and severity of COVID-19, probably by altering the risk of comorbidities. However, these results require further validation in larger studies with different ethnicities and geographical regions.

* Corresponding authors.
E-mail addresses: RASOUL142857@gmail.com (R. Abdollahzadeh), asad.azarnezhad@muk.ac.ir (A. Azarnezhad), Ahmedalaakateb@gmail.com (A. Al-Kateb), roozbeh.heidarzadeh@gmail.com (R. Heidarzadehpilehrood).
1 Rasoul Abdollahzadeh and Mohammad Hossein Shushizadeh contributed equally to this work.

https://doi.org/10.1016/j.meegid.2021.105098
Received 15 May 2021; Received in revised form 11 September 2021; Accepted 27 September 2021
Available online 2 October 2021
1567-1348/© 2021 Published by Elsevier B.V.
1. Introduction

The ongoing global epidemic of coronavirus disease 2019 (COVID-19), caused by SARSCoV-2, certainly represents one of the most important current epidemiological challenges of the 21st century (Sohrabi et al., 2020; De Wit et al., 2016). COVID-19 can manifest a wide spectrum of clinical symptoms, which range from lack of symptoms, or mild symptoms of the upper respiratory tract to severe pneumonia with acute respiratory distress syndrome (ARDS) and death (Richardson et al., 2020; Grasselli et al., 2020). This highly phenotypic heterogeneity seems to depend on patient age, gender, underlying health conditions, and inter-individual genetic uneveness (Xie and Chen, 2020). Vitamin D (VD) has been demonstrated to perform critical roles in a wide range of immunomodulatory, anti-inflammatory, antifibrotic, and antioxidant functions. Therefore, its deficiency and insufficiency contribute to many pathogenic conditions, including autoimmune disorders, respiratory infections, cancer, cardiovascular disorders, osteoporosis, sarcopenia, and diabetes (Bizzaro et al., 2017; Kunadian et al., 2014; Amrein et al., 2020; Zdr encouragement in COVID-19 patients (Biesalski, 2020). On the other hand, mounting investigations demonstrated that VD deficiency was a fatal co-morbidity in COVID-19 pa- tients (Biesalski, 2020). On the other hand, mounting investigations declare that VD supplementation, especially FDA-approved analog (generic name, paricalcitol), prevents COVID-19 infection-induced multi-organ damage (Aygun, 2020), coagulopathy (Ali, 2020), mortality (Grant et al., 2020; Ilie et al., 2020), as well as attenuates the risk and severity of COVID-19 (Hribar et al., 2020). Therefore it has been postulated that daily supplementation with moderate doses of vitamin D3 is a safe treatment for COVID-19 patients (Zemb et al., 2020).

The mechanisms by which VD insufficiency exacerbates COVID-19-associated pneumonia remain poorly understood. However, most studies have focused on the pivotal roles of the VD/VD receptor (VDR) pathway in alleviating acute lung injury (ALI) and ARDS, a crucial component of the pathophysiological processes that occurred in almost 20% of the hospitalized patients (including ICU and non-ICU patients) with COVID-19 (Xu et al., 2020; Chen et al., 2020). The two principal pathophysiological mechanisms involved in ARDS include the release of large amounts of pro-inflammatory cytokines and chemokines, known as a cytokine storm, and aberrant activation of the renin-angiotensin system (RAS) with a decrease of angiotensin-converting enzyme2 (ACE2) (Channappanavar and Perlman, 2017; Cameron et al., 2008; Imai et al., 2005). Most previous work has revealed that the VD/VDR signaling axis may provide some beneficial effects in COVID-19 infection and especially in related ARDS phenotype through several mechanisms, such as attenuating the storm of cytokines and chemokines, modulating of the RAS, regulating the activity of a wide range of the immune cell types i.e., neutrophil and monocytes/macrophages, maintaining the integrity of the pulmonary epithelial barrier and stimulating epithelial repair, declining coagulation and thrombosis, and attenuating endothelial dysfunction (Xu et al., 2017; Shi et al., 2016; Kong et al., 2013; Zheng et al., 2020; Zhang et al., 2020a).

VD exerts its pleiotropic effects via binding with its active ligand, vitamin D, 1α,25-dihydroxy vitamin D3 [1,25(OH)2D3], and functions as a transcription factor (TF) on ~5% of human genes through binding to more than 23,000 cell-specific genomic locations, known as vitamin D response elements (VDREs) (Chen et al., 2014; Rhodes et al., 2020). The VDR gene is mapped at chromosome 12q13.11 which spans ~100 kb and has five promoters, eight coding exons, and six untranslated exons (K-i et al., 1997). Genetic variations in the VDR gene such as single nucleotide polymorphisms (SNPs) might influence the activity, stability, and expression levels of VDR products (mRNAs and/or proteins), subsequently altering the VD-VDR signaling axis, ultimately leading to disturbance of VD immune-regulatory functions. To date, a vast amount of investigations have been accomplished regarding the association of VDR polymorphisms with susceptibility to different diseases, including autoimmune disorders, cancers, viral and bacterial respiratory infections (Valdivielso and Fernandez, 2006; Laplana et al., 2018; Abdollahzadeh et al., 2016; Abdollahzadeh et al., 2018). Collectively, a few VDR gene variants that have been observed in relation to predisposing to various conditions with contradictory results include Apal (rs7975232; intron 8; C > A), BsmI (rs1544410; intron 8; G > A), Tru9I (rs757343; intron 8; G > A), TaqI (rs731236; exon 9; A > G), BglI (rs739837; 3’UTR region; C > T), FokI (rs2288570; exon 2; C > T), CDX2 (rs11568820; promoter; G > A), and EcoRV or A-1012G/GATA (rs4516035; promoter; T > C). Hence, we aimed to evaluate the potential association of the aforementioned eight SNPs located in the 5’ end (FokI, CDX2, and EcoRV) and also 3’ end (Apal, BsmI, Tru9I, TaqI, and BglI) of the VDR gene with the severity of COVID-19 in an Iranian population. The identification of genetic variants linked with variable susceptibility of individuals to COVID-19 infection and severity of adverse complications could ultimately help open new avenues, including innovative personalized treatments, stratifying individuals according to the risk, and prioritization of subjects at greater risk for protection, assisting current biomedical research efforts to combat the virus, and also guide current genetics and genomics research towards candidate gene variants that warrant further investigation in larger studies.

2. Material and methods

2.1. COVID-19 patients

Five hundred COVID-19 patients were recruited in the current study that hospitalized at several different hospitals (Iran), during the period between May 5 and September 25, 2020. The COVID-19 diagnoses were established based on a positive result of real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay of nasal and/or pharyngeal swabs, following WHO interim guidance (Organisation WH, 2020). The enrolled patients were categorized into 3 groups based on clinical manifestations: group I, 160 asymptomatic subjects, according to the absence of clinical symptoms and no need for hospitalization or ventilation; group II, 250 mild/moderate patients with a wide range of symptoms, including fever, sore throat, dry cough, headache, shortness of breath, diarrhea, myalgia, fatigue, nausea, vomiting, and parageusia; and group III, 90 subjects with a severe/critical condition. Regarding respiratory impairment, severe cases require non-invasive ventilation, while critical patients, defined as respiratory failure, requiring invasive ventilation and intensive care unit (ICU) admission. The presence of comorbidities (hypertension, diabetes, asthma, cardiovascular disease, chronic renal disease, and malignancy) was obtained from the participant’s medical records (Table 1). The current research was conducted in agreement with the ethical principles of the Declaration of Helsinki and all the patients or their representatives gave their consent to participate.

2.2. VDR gene polymorphisms genotyping by PCR-RFLP

Peripheral blood was taken from each of the participants and DNA extraction was applied by High Pure PCR Template Preparation Kit (Roche Applied Science, USA) following the manufacturer’s recommendations. The concentration and purity, as well as quality of DNA, were determined by NanoDropND-1000 Spectrometer (ThermoScientific, Boston, MA) and gel electrophoresis, respectively. The target SNPs were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Primers were designed using PRIMER3 on line software (version 4.1.0) (https://primer3.ut.ee/), and their specificities were assessed using primer blast and possible secondary structures were analyzed using GENE RUNNER software (Gene Runner version 6.5.52). The primer sequences, PCR thermal profiles, expected amplicon size, and RFLP patterns are summarized in Table 2. It should be noted that in the present study, regardless of the type of substituted nucleotide
(s) in SNP locations, the “capital” letter represents SNP-related major allele, and the small letter indicate minor allele. Accordingly, the major and minor alleles of Apal [C and A (C > A), respectively] indicate as “A” and “a”, BsmI alleles indicate as “B” and “b”, Tru9I alleles indicate as “U” and “u”, TaqI alleles indicate as “T” and “t”, BglII alleles indicate as “G” and “g”, FokI alleles indicate as “F” and “f”, CDX2 alleles indicate as “C” and “c”, and EcoRV alleles indicate as “E” and “e”. It is expected that the restriction enzymes can digest PCR products of major alleles (capital letters) in SNPs Apal, BsmI, BglII, CDX2, and EcoRV, and digest PCR products of minor alleles (small letters) in Tru9I, TaqI, and FokI. PCR reactions were carried out in a 25 µl reaction mixture containing 12.5 µl Taq DNA Polymerase 2× Master Mix (Ambion, DENMARK), 1 µl of each primer (10 pmol), 1 µl genomic DNA (50 ng/µl), and 9.5 µl ddH2O in a thermal cycler instrument (Applied Biosystems, GeneAmp 2720, Singapore) under the PCR parameters indicated in Table 2. The PCR products were examined by 1.5% agarose gel electrophoresis to ensure appropriate amplification. Subsequently, the amplified PCR products were digested with the corresponding restriction enzymes including Apal, BsmI, MseI (isoschizomer of Tru9I enzyme), TaqI, BglII, FokI, HpyCH4III (used to genotyping CDX2), and EcoRV following the manufacturer’s instructions. Digested products were then electrophoresed on 2–3% agarose gel and the genotypes of all the SNPs were determined based on digestion patterns.

Variables	Status	Asymptomatic patients (group I)	Mild/moderate illness (group II)	Severe and critical illness (group III)	P-value (I and II)	P-value (I and III)	P-value (II and III)	Overall P-value	
Age (mean ± Std. Deviation)	53.30 ± 16.16	50.28 ± 17.66	53.10 ± 16.10	59.19 ± 13.62	0.187	< 0.001	0.006	< 0.001	
Gender	Male	293 (96.6)	142 (56.8)	61 (67.1)	0.988	0.090	0.069	0.161	
	Female	207 (93.0)	70 (43.7)	108 (43.2)	29 (32.2)	0.575	0.013	0.056	0.079

Signs and symptoms	Status	Asymptomatic patients (group I)	Mild/moderate illness (group II)	Severe and critical illness (group III)	P-value (I and II)	P-value (I and III)	P-value (II and III)
Dry cough	Yes	0 (0.0)	14 (5.6)	52 (57.1)	0.821		
	No	160 (100.0)	109 (43.6)	38 (42.1)			
Sore throat	Yes	0 (0.0)	82 (32.8)	26 (28.9)	0.494		
	No	160 (100.0)	167 (67.2)	64 (71.1)			
Fatigue	Yes	0 (0.0)	144 (57.6)	44 (48.5)	0.154		
	No	160 (100.0)	106 (42.4)	46 (51.1)			
Headache	Yes	0 (0.0)	49 (19.6)	10 (11.1)	0.068		
	No	160 (100.0)	201 (80.4)	80 (88.9)			
Shortness of breath	Yes	0 (0.0)	32 (12.8)	58 (64.4)	< 0.001		
	No	160 (100.0)	218 (87.2)	32 (35.6)			
Diarrhea	Yes	0 (0.0)	19 (7.6)	11 (12.2)	0.185		
	No	160 (100.0)	231 (92.4)	79 (87.8)			
Myalgia	Yes	0 (0.0)	52 (20.4)	17 (18.9)	0.255		
	No	160 (100.0)	188 (75.2)	73 (81.1)			
Parageusia	Yes	0 (0.0)	12 (4.8)	26 (28.9)	< 0.001		
	No	160 (100.0)	238 (95.2)	64 (71.1)			

Comorbidities	Status	Asymptomatic patients (group I)	Mild/moderate illness (group II)	Severe and critical illness (group III)	P-value (I and II)	P-value (I and III)	P-value (II and III)	Overall P-value
Hypertension	Yes	19 (11.9)	44 (17.6)	45 (50.0)	0.117	< 0.001	< 0.001	< 0.001
	No	141 (88.1)	206 (82.4)	45 (50.0)				
Diabetes	Yes	16 (10.0)	44 (17.6)	32 (35.6)	0.034	< 0.001	< 0.001	< 0.001
	No	144 (90.0)	206 (82.4)	58 (64.4)				
Asthma	Yes	22 (13.8)	14 (5.6)	15 (16.7)	0.002	< 0.001	0.001	< 0.001
	No	138 (86.2)	226 (94.4)	75 (83.3)				
Cardiovascular disease	Yes	18 (11.2)	24 (9.6)	11 (12.2)	0.591	0.818	0.483	0.746
	No	142 (88.8)	226 (90.4)	79 (87.8)				
Chronic renal disease	Yes	11 (6.9)	39 (15.6)	25 (27.8)	0.008	< 0.001	0.011	< 0.001
	No	149 (93.1)	211 (84.4)	65 (72.2)				
Malignancy	Yes	9 (5.6)	10 (4.0)	10 (11.1)	0.445	0.116	0.014	0.046
	No	151 (94.4)	240 (96.0)	80 (88.9)				

OR (95% CI)	n vs. n = 3.00 (1.21–7.47)	n vs. n = 2.95 (1.24–9.00)	n vs. n = 2.51 (1.22–5.11)	n vs. n = 2.08 (1.17–3.69)
	Hypertension	Diabetes	Asthma	Cardiovascular disease
	4.75 (2.04–11.08)	4.58 (2.77–7.92)	0.034 (0.001–0.001)	1.56–3.71
	OR (95% CI)	n vs. n = 2.50 (1.24–9.37)	n vs. n = 2.51 (1.22–5.11)	n vs. n = 2.08 (1.17–3.69)

OR (95% CI)	n vs. n = 4.44 (2.58–7.47)	n vs. n = 1.99 (0.87–4.53)	n vs. n = 1.99 (0.87–4.53)	n vs. n = 1.99 (0.87–4.53)
	Hypertension	Diabetes	Asthma	Cardiovascular disease
	2.00 (1.00–0.00)	2.00 (1.00–0.00)	2.00 (1.00–0.00)	2.00 (1.00–0.00)

OR (95% CI)	n vs. n = 1.99 (0.87–4.53)			
	Hypertension	Diabetes	Asthma	Cardiovascular disease
	2.00 (1.00–0.00)	2.00 (1.00–0.00)	2.00 (1.00–0.00)	2.00 (1.00–0.00)
Table 2
Primers sequences, PCR thermocycling profile, amplicon size, and RFLP pattern of different genotypes for the selected VDR gene polymorphisms.

SNP (ReSNPs)/other names	restriction enzymes	Primers sequences and PCR thermal profiles	Amplicon (bp)	Restriction fragments (bp)
rs7975232 Apal	Forward: 5’CTGGCCTTAATGCTGCTGCTG’	Reverse: 5’TACGGCTGCTGCTGCTGCTG’	242	C: 191 + 51
rs1544410 BsmI	Forward: 5’GGGCGGGGAGGAGGAGGAGG’	Reverse: 5’GGGCGGGGAGGAGGAGGAGG’	297	G: 192 + 105
rs738378 BglI	Forward: 5’GCCGAGCTGAGGAGGAGGAGG’	Reverse: 5’GCCGAGCTGAGGAGGAGGAGG’	248	C: 178 + 70
rs731236 TaqI	Forward: 5’CCCTGACCTGAGGAGGAGGAGG’	Reverse: 5’TACCTGACCTGAGGAGGAGGAGG’	699	T: 699
rs73734 Tru9I/Msel	Forward: 5’CTGGGCACTGAGGAGGAGGAGG’	Reverse: 5’TACGGCTGCTGCTGCTGCTG’	235	G: 235
rs2228570 FokI	Forward: 5’CTGGCCTGAGCAGCTGCTGCTG’	Reverse: 5’TACGGCTGCTGCTGCTGCTG’	247	C: 247
rs11568820/CDX2 HpyCH4III	Forward: 5’AGGGAGGAGGAGGAGGAGGAGG’	Reverse: 5’TACGGCTGCTGCTGCTGCTG’	414	G: 254 + 110 + 50
rs450635/GATA/A-1012G EcorV	Forward: 5’CGGAGGAGGAGGAGGAGGAGG’	Reverse: 5’TACGGCTGCTGCTGCTGCTG’	181	T: 154 + 27

Bold items indicate an statistically significant levels.

2.3. Statistical analysis

All statistical analyses were implemented in the Statistical Package for the Social Sciences version 19 (IBM SPSS Inc., Chicago, IL, USA) and https://www.medcalc.org/calc/odds_ratio.php. The One-Sample Kolmogorov-Smirnov test was used to check the normal distribution of numerical variables. Student’s unpaired t-tests and chi-square (χ²) tests were used to compare quantitative clinical data and qualitative demographic data between paired-groups of COVID-19, including asymptomatic vs mild and moderate (I vs. II), asymptomatic vs. severe/critical (I vs. III), and mild/moderate vs severe/critical groups (II vs. III). Odds ratios (ORs) and their associated 95% confidence intervals (95% CIs) were calculated by https://www.medcalc.org/calc/odds_ratio.php, as a measure to show the strength of associations with three groups of COVID-19, demographic data, and clinical outcomes. In all statistical tests, P-values <0.05 were considered to show statistically significant values.

3. Results

3.1. Baseline characteristics of patients

In our study, 500 COVID-19 patients were enrolled that were confirmed with a positive viral RT-PCR test, with an average age of 53.30 ± 16.16 years and 58.6% of them were men. The participants consisted of 32.0% asymptomatic patients (group I; average age 50.28 ± 16.76 years), 50.0% mild/moderate subjects (group II; average age 53.10 ± 16.10 years), and 18.0% severe/critical cases (group III; average age 59.19 ± 13.62 years). As presented in Table 1, no significant differences were found in ratio sex, defined as (F/fire) among three groups (P = 0.161), as well as between the paired-groups I vs II, I vs III, and II vs III (P = 0.988, P = 0.090, and P = 0.069, respectively). However, we observed significant differences in the average age of participants among three groups (P < 0.001), and also in I than III and II vs. III, but not between groups I and II (I vs. II) (P < 0.001, P = 0.006, and P = 0.187, respectively). Significant differences were observed between groups II and III in some features, including shortness of breath, fatigue, and parageusia (P values < 0.001), but not in other variables, such as fever, sore throat, dry cough, headache, diarrhea, myalgia, nausea, and vomiting (P values >0.05).

In the case of comorbidities, we observed significant differences among three groups and also paired-groups of I-III, I-II, and II-III for diabetes, chronic renal disease, and asthma. According to these conditions, we found negative associations with the severity of COVID-19 patients. Higher remarkable frequencies of diabetes were observed in group II against group I, as well as in group III against groups I and also group II. Additionally, significantly higher frequencies of asthma condition were observed in group III compared to group II. Interestingly, we found a higher frequency of asthma disease in group I versus group II, and the hypertension was noticeably higher in group III compared to group I and group II, but not in group pair I-II (P = 0.117). Additionally, a higher frequency of malnutrition was shown in group III than group II, but not in paired-groups I-II and I-III (P = 0.445 and P = 0.116, respectively). We did not found any significant differences between/among patients’ groups for the cardiovascular disorder (P values >0.05).

3.2. VDR gene polymorphism genotype and allelic distribution in three various groups of COVID-19 patients

VDR gene polymorphisms were genotyped for all studied participants, and the resulted RFLP products were visualized by 2–3% agarose gel electrophoresis.
As it is indicated in Table 3, significant differences were found between asymptomatic (I) and symptomatic (II + III) patients in the genotypic distribution of FokI SNP only in the recessive genetic model, in which wild-type allele ("F") is recessive against to mutant allele ("f"). Based on this genetic model, a significantly lower genotypic frequency of "F/F" vs. "f/f + F/F" (P = 0.037) was observed in symptomatic compared to asymptomatic cases. Furthermore, genotypic distributions of the FokI showed a remarkable discrepancy in severe/critical patients compared to asymptomatic cases in recessive and codominant. No significant discrepancies were observed between asymptomatic and mild/moderate patients, as well as between mild/moderate and severe/critical patients for none of the proposed genetic models. Similar to genotypes, remarkable differences were found for FokI allelic distribution between symptomatic and asymptomatic, as well as between severe/critical and asymptomatic COVID-19 subjects. No remarkable discrepancies were found between asymptomatic and mild/moderate groups, as well as mild/moderate and severe/critical patients.

The genotypic distributions of the second selected 5'-end's VDR gene polymorphism, CDX2, in three various groups of COVID-19 patients were indicated in Table 3. The allelic frequency of CDX2 polymorphism, which is known as “C” (Wild-type) and “c” (mutated), was different in asymptomatic, mild/moderate, and severe/critical patients. We observed significant discrepancies in CDX2 genotypic distribution between symptomatic (II + III) and asymptomatic (I) groups only in the recessive genetic model. Moreover, significant differences were showed in the distribution of CDX2 genotypes in severe/critical compared to asymptomatic cases in the dominant model, in the recessive model, and in the codominant model, however, the genotypic distribution of CDX2 was not significantly different in the overdominant model. CDX2 allelic distributions in three various types of COVID-19 patients demonstrated results similar to FokI. The CDX2 allele frequency was found to be higher in symptomatic patients (II + III) than asymptomatic patients. Moreover, the allelic frequency of CDX2 was revealed to be significantly different in group III than group I. No significant discrepancies were identified in allelic and genotypic distribution of CDX2 SNP between mild/moderate vs. asymptomatic, as well as mild/moderate vs. severe/critical groups [P values >0.05).

EcoRV polymorphism was the last selected SNP located in the 5'-end of the VDR gene, which showed more complexity in allelic and genotypic distributions (Table 3). Significantly, EcoRV genotypes were differentially distributed between symptomatic group (II + III) and asymptomatic group in three genetic models, including recessive, overdominant, and codominant ("C vs. CC") genetic models (P < 0.05). Similarly, our results showed a significantly different EcoRV genotypic distribution in both severe/critical group and mild/moderate group against the asymptomatic group in recessive, overdominant, and codominant ("C vs. CC") models (P < 0.05). The EcoRV genotypic distribution showed significant deviation between severe/critical patients and mild/moderate patients in two genetic models, including overdominant and codominant (P < 0.05). Furthermore, our findings demonstrated the significant allelic distribution of the EcoRV SNP between whole paired groups, excluding in Group III vs. group II.

The first selected 3'-end VDR gene polymorphism to evaluate its association with COVID-19 patients' severity was ApaI. As it has been shown in Table 4, ApaI genotypic distributions were remarkably different between symptomatic group (II + III) and asymptomatic group in two genetic models, including overdominant and codominant (P < 0.05). Moreover, we observed significant differences in the distribution of ApaI genotypes in the severe/critical group than the mild/moderate group in the overdominant genetic model, as well as in the mild/moderate group compared to asymptomatic patients in recessive and overdominant genetic models. Interestingly, we did not find any significant discrepancies in ApaI genotypic distribution between severe/critical and asymptomatic groups in any of the proposed genetic models. Moreover, no significant differences were found in ApaI allelic distribution among three different types of COVID-19 (P > 0.05).

The genotypic distribution of BsmI, the second studied SNP located in the 3'-end's VDR gene, revealed remarkable discrepancies only in the severe/critical group compared to the mild/moderate group for two genetic models, including recessive and overdominant models, in which wild-type allele (B) is recessive against mutant allele (b) (Table 4). As presented in Table 4, BsmI genotypic distributions were not significantly different between other COVID-19 patients' groups, including groups II & III vs. group I, group III vs. group I, group II vs. group I (P > 0.05). We also didn't found remarkable discrepancies in BsmI allelic distribution between all paired groups, except between the severe/critical group and mild/moderate group (P < 0.05).

As it is shown in Table 4, the genotypic distributions of Tru9I, the third studied SNP located in the 3' end's VDR gene, were not observed significantly different for any proposed genetic models, between three groups of COVID-19 patients, including symptomatic (II + III) and asymptomatic groups, severe/critical and asymptomatic groups, mild/moderate and asymptomatic groups, and eventually, severe/critical and mild/moderate groups (P > 0.05). Moreover, no significant discrepancies were found in Tru9I allelic distribution between paired groups, excluding in severe/critical group compared to mild/moderate group, in which lower rates of “U” vs. “u” and higher rates of “u” vs. “U” were significantly different between groups. TaqI polymorphism was another selected SNP in the present study that is located in the 3' end's VDR gene. As is indicated in Table 4, our data didn't reveal any remarkable

Fig. 1. The PCR-RFLP patterns of eight selected VDR polymorphisms. (A) Genotypes were determined from lanes 1–12 for ApaI, BsmI, FokI, and TaqI polymorphisms; (B) Genotyping results for BglI, HpyCH4III, Tru9I/Msel, and EcoRV polymorphisms. The RFLP product sizes for each genotype of the selected SNPs are indicated in Table 2.
Table 3
Allelic and genotypic comparison of selected polymorphisms in the 5’-end of VDR gene among three different groups of COVID-19 patients.

EcoRV (rs4516035)

Genotypes and alleles	Group I (%)	Group II (%)	Group III (%)
EE (%)	107 (66.88)	134 (53.60)	39 (43.33)
Ee (%)	43 (26.87)	95 (38.00)	46 (51.11)
ee (%)	10 (6.25)	21 (8.40)	5 (5.66)
E (%)	257 (58.00)	363 (51.11)	182 (51.11)
HWE Chi-squared value* (P-value)	3.61 (0.058)	0.50 (0.478)	3.33 (0.068)

Odds ratio (95% CI) and P-values

Genetic models	Groups II & III vs. group I	Group III vs. group I	Group II vs. group I
Dominant			
CC vs. Cc	0.71 (0.43-1.18), P = 0.188	0.48 (0.26-0.90), P = 0.023	0.57 (0.33-1.00), P = 0.051
Cc vs. CC	1.40 (0.85-2.33), P = 0.188	2.08 (1.11-3.85), P = 0.023	1.75 (1.00-3.03), P = 0.051
recessive			
cc vs. CC	1.48 (1.01-2.27), P = 0.044	1.86 (1.08-3.20), P = 0.026	1.36 (0.81-2.27), P = 0.244
Overdominant			
Cc vs. cc	0.82 (0.43-1.57), P = 0.038	2.01 (0.95-4.19), P = 0.047	1.09 (0.54-2.19), P = 0.367
Codominant			
Cc vs. CC	1.67 (0.97-2.86), P = 0.066	2.63 (1.28-5.26), P = 0.008	1.89 (0.99-3.57), P = 0.054
Allelic			
C vs. c	1.35 (1.03-1.79), P = 0.030	1.72 (1.19-2.50), P = 0.004	1.41 (1.00-1.96), P = 0.053

CDX2 (rs11568820)

Genotypes and alleles	Group I (%)	Group II (%)	Group III (%)
FF (%)	75 (46.88)	96 (38.40)	30 (34.44)
Ff (%)	66 (41.25)	116 (46.40)	42 (33.33)
ff (%)	19 (11.87)	38 (15.20)	18 (32.23)
HWE Chi-squared value* (P-value)	0.57 (0.449)	0.09 (0.761)	0.22 (0.637)

Odds ratio (95% CI) and P-values

Genetic models	Groups II & III vs. group I	Group III vs. group I	Group II vs. group I
dominant			
FF vs. Ff	0.68 (0.39-1.19), P = 0.181	0.54 (0.27-1.09), P = 0.086	0.72 (0.39-1.34), P = 0.294
Ff vs. FF	1.47 (0.84-2.56), P = 0.181	1.85 (0.92-3.70), P = 0.086	1.39 (0.75-2.56), P = 0.294
overdominant			
FF vs. Ff	1.50 (1.02-2.19), P = 0.037	1.77 (1.03-3.02), P = 0.038	1.25 (0.75-2.07), P = 0.394
Allelic			
Cc vs. cc	0.68 (0.46-0.99), P = 0.044	0.55 (0.31-0.93), P = 0.026	0.71 (0.44-1.24), P = 0.294
RE vs. R	1.35 (1.03-1.79), P = 0.030	1.72 (1.19-2.50), P = 0.004	1.41 (1.00-1.96), P = 0.053

Allelic E vs. e	Group I (%)	Group II (%)	Group III (%)
E (%)	257 (80.31)	363 (72.60)	124 (68.89)
e (%)	10 (3.25)	21 (8.40)	5 (2.56)
HWE Chi-squared value* (P-value)	0.57 (0.449)	0.09 (0.761)	0.22 (0.637)

Allelic F vs. f	Group I (%)	Group II (%)	Group III (%)
F (%)	216 (67.50)	308 (61.60)	102 (56.67)
f (%)	104 (32.50)	192 (28.40)	78 (43.33)
HWE Chi-squared value* (P-value)	0.57 (0.449)	0.09 (0.761)	0.22 (0.637)

Allelic C vs. c	Group I (%)	Group II (%)	Group III (%)
C (%)	73 (45.63)	95 (38.00)	28 (31.11)
c (%)	25 (15.62)	45 (18.00)	25 (27.88)
HWE Chi-squared value* (P-value)	3.52 (0.061)	1.74 (0.188)	2.82 (0.093)

Bold items indicate an statistically significant levels.
Table 4

Allelic and genotypic comparison of 3' end's VDR polymorphisms among three different groups of COVID-19 patients.

Apal (rs7975232)

Genotypes and Alleles	Group I (%)	Group II (%)	Group III (%)
AA (%)	51 (31.88)	107 (42.80)	31 (34.44)
Aa (%)	88 (55.90)	103 (41.20)	50 (35.56)
aa (%)	21 (13.22)	40 (16.00)	9 (10.00)
A (%)	190 (59.38)	317 (63.40)	112 (62.22)
a (%)	130 (40.62)	183 (36.60)	68 (37.78)
HWE-Chi-squared value* (P-value)	3.14 (0.076)	3.15 (0.076)	2.97 (0.085)

Odds ratio (95% CI) and P-values

Genetic models

- AA vs. Aa

- Bb vs. BB

BsmI (rs1544410)

Genotypes and alleles	Group I (%)	Group II (%)	Group III (%)
BB (%)	63 (39.38)	112 (64.80)	29 (32.22)
Bb (%)	82 (51.25)	119 (47.60)	50 (55.56)
bb (%)	15 (9.37)	19 (7.60)	11 (12.22)
B (%)	208 (65.00)	343 (68.60)	108 (60.00)
b (%)	112 (35.00)	157 (31.40)	72 (40.00)
HWE-Chi-squared value* (P-value)	2.56 (0.110)	2.75 (0.097)	2.23 (0.135)

Odds ratio (95% CI) and P-values

Genetic models

- BB vs. Bb

- Bb vs. BB
- Bb vs. BB
- Bb vs. BB
- Bb vs. BB
- Bb vs. BB
- Bb vs. BB
- Bb vs. BB
- Bb vs. BB

HhaI (rs757343)

Genotypes and alleles	Group I (%)	Group II (%)	Group III (%)
UU (%)	119 (74.37)	199 (79.60)	63 (70.00)
Uu (%)	35 (21.88)	45 (18.00)	22 (24.44)
uu (%)	6 (3.75)	6 (2.40)	5 (5.56)
U (%)	273 (85.31)	443 (88.60)	148 (82.22)
u (%)	47 (14.69)	57 (11.40)	32 (17.78)
HWE-Chi-squared value* (P-value)	2.59 (0.108)	2.97 (0.085)	2.42 (0.120)

Odds ratio (95% CI) and P-values

Genetic models

- UU vs. UU

- Uu vs. Uu
- Uu vs. Uu
- Uu vs. Uu
- Uu vs. Uu
- Uu vs. Uu
- Uu vs. Uu
- Uu vs. Uu
- Uu vs. Uu

- U vs. u
- U vs. u
discrepancies in genotypic and allelic distributions of TaqI and BglI SNPs, for any recommended genetic models, between various groups of COVID-19 patients (P > 0.05).

3.3. Association of VDR gene polymorphisms with demographic and clinical features, and comorbidities of COVID-19 patients

We evaluate the potential association of selected VDR SNPs with various demographic and clinical features of patients, including gender, fever, sore throat, dry cough, headache, shortness of breath, diarrhea, myalgia, fatigue, nausea, vomiting, and parageusia (Tables 5 and 6). Additionally, the association of VDR gene polymorphisms with multifactorial diseases that are revealed to function as critical prognostic factors in COVID-19 patients (P < 0.05).

However, no significant associations were observed between VDR polymorphisms and other comorbidities in mild/moderate patients (P values >0.05).

As presented in Table 7, remarkable differences were detected in BsmI genotypic distribution between mild/moderate patients with a positive/negative history of chronic renal disease in three genetic models, including recessive, overdominant, and codominant (P < 0.05). Similarly, significant discrepancies were identified in both allelic and genotypic distributions of EcoRV between mild/moderate patients with a positive history of diabetes versus cases with no diabetes, in all suggested genetic models. Accordingly, declined ratios of “EE + Ee vs. ee”, “EE + ee vs. Ee”, and “Ee vs. ee” were seen in group II cases with diabetes versus group II cases without diabetes.

Remarkable associations between VDR gene polymorphisms with more clinical variables and comorbidities were represented in group II of COCID-19 patients (Tables 5 and 6). Regarding the signs and symptoms, significant associations were found between Apal and CDX2 SNPs with shortness of breath, and Tru9I SNP with vomiting (P < 0.001, P = 0.022, and P = 0.031, respectively). Our data showed a significant association of both Apal genotypes and alleles with shortness of breath in all proposed genetic models except the dominant model (Table 7). Our results also revealed remarkable associations of CDX2 genotypes and...
Table 5

Association of 5’ end’s VDR polymorphisms-related genotypes with different clinical data in COVID-19 patients.

Variables	Status	FokI	CDX2	EcoRV													
	FF	FF	FF	CC	Gc	cc	P	EE	Ee	ee							
Asymptomatic patients (group I)	Male	48	30	12	0.070	41	38	11	0.339	61	24	5	0.911				
	Female	27	36	7	1.00	32	24	14	0.200	46	19	5	0.718				
	Hypertension	Yes	9 (47.4)	9 (47.4)	1 (5.3)	0.609	9 (47.4)	8 (42.1)	2 (10.5)	0.804	12	4	21.4	3.158	0.178		
	No	66	5 (4.4)	18	0.128	64	54	23	0.163	95	39	7	0.50				
	Diabetes	Yes	6 (37.5)	6 (37.5)	4 (25.0)	0.226	5 (31.2)	8 (50.0)	3 (18.8)	0.473	13	2	(2.15)	1.62	0.384		
	No	69	56	15	0.109	64	52	22	0.159	94	34	10	0.72				
	Asthma	Yes	8 (36.4)	10 (45.5)	4 (18.2)	0.457	9 (40.9)	10	3 (13.6)	0.785	13	9	(40.9)	0	0.158		
	No	67	56	15	0.109	64	52	22	0.159	94	34	10	0.72				
	Cardiovascular	disease	Yes	6 (33.3)	10 (55.6)	2 (11.1)	0.405	8 (44.4)	7 (38.9)	3 (16.7)	0.990	9	7	(38.9)	2	11.1	0.257
	Chronic renal	disease	Yes	3 (27.3)	7 (63.6)	1 (9.1)	0.289	5 (45.5)	5 (45.5)	1 (9.1)	0.795	98	36	8	5.6		
	No	69	56	17	0	65	55	22	0.155	98	36	8	5.6				
	Malignancy	Yes	3 (33.3)	5 (55.6)	1 (11.1)	0.653	2 (22.2)	4 (44.4)	3 (33.3)	0.208	7	17	0.00	77			
	No	72	61	18	0.11	71	58	22	14.6	100	41	10	6.6				
Mild/moderate patients (group II)	Gender	Male	52	72	18	0.227	52	61	29	0.204	517	70	16	0.104			
	Female	44	44	20	0	43	49	16	0.148	64	39	5	4.6				
	Fever	Yes	50	65	26	0.227	58	58	25	0.177	484	77	54	10.19	6.95		
	No	46	51	12	0	37	52	20	0.183	57	41	11	10.1				
	Sore throat	Yes	21	37	14	0.845	28	40	14	0.171	557	43	34	5.1	0.553		
	No	65	79	24	0	67	70	31	0.185	91	61	16	9.5				
	Dry cough	Yes	56	69	19	0.580	61	59	24	0.167	254	79	13	9.0	0.749		
	No	50	47	19	0	34	51	21	0.198	55	43	8	7.5				
	Headache	Yes	19	24	6	0.803	17	21	11	0.224	649	51	23	5.12	0.243		
	No	77	92	32	15.9	78	89	34	16.9	113	72	16	8.0				
	Shortness of breath	Yes	15	10	7	0.219	10	14	8	2.50	0.487	15	13	4.25	0.574		
	Nausea	Yes	6 (31.6)	10 (52.6)	3 (15.8)	0.808	5 (26.3)	11	3 (15.8)	0.428	14	4.21	1.1	5.3	0.188		
	No	90	106	35	0	90	99	42	18.2	120	91	20	8.7				
	Myalgia	Yes	21	32	9	14.5	0.622	27	24	11	0.177	550	39	3	4.8	0.193	
	No	75	82	29	15.4	68	86	34	18.1	95	75	18	9.6				
	Fatigue	Yes	8 (30.8)	13 (50.0)	5 (19.2)	0.660	11	11	4	15.4	0.873	12	4	27.7	0.662		
	No	88	103	33	14.7	27	84	41	18.3	122	83	19	8.5				
	Nausea	Yes	10	10	4	0.167	8.87	7 (29.2)	14	3 (12.5)	0.328	15	6	25.0	1.125	0.349	
	No	86	116	34	15.0	88	96	42	18.6	119	89	18	8.0				
	Vomiting	Yes	7 (38.9)	9 (50.5)	2 (11.1)	0.847	9 (50.0)	5 (27.8)	4 (22.2)	0.352	9	50.0	7 (38.9)	2	11.1	0.896	
	No	89	107	36	15.5	86	105	41	17.7	125	88	19	8.2				

(continued on next page)
Variables	Status	FokI	CCX2	EcoRVI					
Asthma	Yes	3 (21.4)	6 (42.9)	6 (42.9)	0.395	6 (42.9)	6 (42.9)	2 (14.3)	0.600
	No	10 (62.5)	14 (87.5)	17 (106.3)	0.001				
Fever	Yes	12 (24.4)	18 (36.0)	20 (40.0)	0.509				
	No	27 (54.0)	30 (60.0)	34 (68.0)	0.022				
Cardiovascular disease	Yes	12 (7.5)	7 (11.1)	7 (11.1)	0.308				
	No	12 (6.0)	7 (11.1)	7 (11.1)	0.793				
Chronic renal disease	Yes	18 (36.0)	28 (56.0)	29 (58.0)	0.074				
	No	30 (60.0)	34 (68.0)	35 (68.0)	0.027				
Malignancy	Yes	4 (20.0)	5 (50.0)	5 (50.0)	0.028				
	No	9 (45.0)	10 (50.0)	10 (50.0)	0.196				
Severe and critical patients (group III)									
Gender	Male	19 (31.1)	27 (45.6)	27 (45.6)	0.256				
	Female	11 (18.3)	15 (25.0)	15 (25.0)	0.206				
Fever	Yes	16 (32.0)	24 (40.0)	24 (40.0)	0.509				
	No	26 (46.0)	30 (50.0)	30 (50.0)	0.022				
Headache	Yes	2 (20.0)	4 (20.0)	4 (20.0)	0.598				
	No	28 (56.0)	32 (64.0)	32 (64.0)	0.098				
Shortness of breath	Yes	19 (32.0)	27 (45.6)	27 (45.6)	0.022				
	No	11 (18.3)	15 (25.0)	15 (25.0)	0.256				
Diarrhea	Yes	3 (5.5)	5 (8.3)	5 (8.3)	0.598				
	No	27 (46.0)	30 (50.0)	30 (50.0)	0.022				
Myalgia	Yes	5 (29.4)	8 (47.1)	8 (47.1)	0.308				
	No	25 (45.4)	30 (54.0)	30 (54.0)	0.098				
Fatigue	Yes	12 (38.7)	16 (47.1)	16 (47.1)	0.022				
	No	18 (32.0)	22 (36.8)	22 (36.8)	0.256				
Nausea	Yes	4 (26.7)	8 (53.3)	8 (53.3)	0.117				
	No	26 (39.0)	34 (51.4)	34 (51.4)	0.256				
Vomiting	Yes	2 (18.2)	7 (36.8)	7 (36.8)	0.598				
	No	28 (35.4)	32 (53.6)	32 (53.6)	0.022				
Paraguesia	Yes	12 (31.1)	17 (39.5)	17 (39.5)	0.022				
	No	18 (31.1)	23 (43.1)	23 (43.1)	0.256				

(continued on next page)
alleles with shortness of breath in dominant and codominant genetic models (Table 7). It was shown that rates of “Cc + Cc vs. cc” and “Cc vs. c” were higher in severe/critical patients with shortness of breath, while the frequency of “cc vs. Cc + Cc”, “Cc vs. CC”, and “c vs. C” were lower.

Additionally, significant associations were observed between VDR gene variants and more comorbidities in severe/critical COVID-19 patients, including ApaI and asthma (P = 0.001), BsmI and chronic renal disease (P = 0.014), FokI and hypertension (P = 0.027), CDX2 and both hypertension and diabetes (P = 0.36 and P = 0.42, respectively), EcoRV and diabetes (P = 0.045) (Tables 5 and 6). As presented in Table 7, a significant association was found between ApaI and asthma in severe/critical COVID-19 patients only in the dominant genetic model, in which diminished proportion of the “AA + Aa vs. aa” and elevated proportion of the “aa vs. AA + Aa” were disclosed. Regarding the BsmI SNP, significant associations were found with chronic renal disease in dominant and codominant genetic models. Accordingly, a higher amount of “bb vs. BB + Bb” and “bb vs. BB” were found in severe/critical patients with chronic renal disease than those didn’t have this comorbidity, while “BB + Bb vs. bb” was lower. The association of FokI genotypic distribution with hypertension was significant in severe/critical patients in dominant and codominant genetic models. The data revealed a reduced rate of “FF + Ff vs. ff”, but increased rates of the “ff vs. FF + Ff” and “ff vs. FF” in group III patients with hypertension compared to negative hypertension history (Table 7). The results of the present study showed a significant CDX2 genotype discrepancies in severe/critical patients with hypertension in dominant and codominant genetic models, as well as cases with diabetes in dominant and codominant models compared to negative cases for these comorbidities (Table 7). Significantly, higher frequency of “cc vs. CC + Cc” and “Cc + cc vs. Cc” were observed in group III COVID-19 patients with hypertension than patients with negative history of hypertension, while the frequency of “CC + Cc vs. cc” and “Cc vs. CC + cc” were considered to be reduced. Additionally, the results showed significantly increased amounts of “cc vs. CC + Cc”, “Cc vs. CC”, and “c vs. C”, and decreased frequency of “CC + Cc vs. cc” and “Cc vs. c” in severe/critical COVID-19 patients with diabetes compared to patients without diabetes. Finally, we observed significant association of EcoRV with diabetes in severe/critical patients in recessive, dominant, and codominant genetic models, in which higher proportions of “ee vs. Ee + Ee”, “Ee vs. EE + ee”, and “Ee vs. EE” were found in group III patients with diabetes than negative diabetes cases, while proportions of the “EE vs. ee + Ee” and “EE + ee vs. Ee” were lower (Table 7).

To improve the validity of achieved results, we evaluate the potential association of selected VDR SNPs with signs/symptoms and with comorbidities in all symptomatic COVID-19 patients by combining whole data, regardless of the types of COVID-19 (N = 340 cases, N = 500 cases, respectively). As presented in Table 8, interesting associations of VDR SNPs with symptoms and comorbidities were found that are briefly mentioned: ApaI with fever and asthma (P = 0.001 and P = 0.023, respectively), BsmI with chronic renal disease (P = 0.029), Tru9I with shortness of breath and hypertension (P = 0.040 and P = 0.003, respectively), FokI with fever and hypertension (P = 0.042 and P = 0.045, respectively), CDX2 with headache, hypertension, and diabetes (P = 0.019, P = 0.005 and P = 0.015, respectively), and EcoRV with diabetes (P < 0.001).

As detailed in Table 9, the observed associations of genotypic and allelic VDR polymorphisms with signs, symptoms, and comorbidities of COVID-19 patients (regardless of the group of disease) strongly depend on the genetic models. For instance, significant associations of both allele and genotypic distributions with the fever of COVID-19 patients were detected in recessive, dominant, and codominant genetic models. Additionally, we found a remarkable association of ApaI genotypic distribution with asthma in dominant and overdominant genetic models, but not in recessive and overdominant models, as well as in allelic distribution. Similar to our finding in the earlier section, significant differences in the distribution of genotypes were revealed between COVID-19 patients with the chronic renal disease compared to negative cases only in dominant and overdominant genetic models. Accordingly, a higher frequency of “bb vs. BB + Bb” and “bb vs. BB” were found, while the frequency of “BB + Bb vs. bb” were decreased. Despite the no significant association of Tru9I polymorphism with clinical characteristics in various groups of COVID-19 patients, significant associations of Tru9I with shortness of breath in the combined population of COVID-19 patients were found in recessive, codominant, as well as allelic genetic models. According to Table 9, increased rates of “uu + Uu vs. UU”, “Uu vs. UU”, and “u vs. U”, and decreased rates of “UU vs. uu + Uu” and “Uu vs. u” were seen in COVID-19 patients with shortness of breath versus those who didn’t have this symptom. The higher frequency of FokI variant showed significant associations with fever and hypertension in dominant, codominant, and allelic models, but not in recessive and overdominant genetic models (Table 9).

Moreover, CDX2 polymorphism was disclosed to have significant associations with three clinical features, including headache, hypertension, and diabetes. In respect of headache and hypertension, significant differences were illustrated in the allelic distribution, as well as in the dominant and codominant models for genotypic distributions, but not in recessive and overdominant genetic models (Table 9). According to both headache and hypertension features, the results revealed

Variables	Status	FF	Ff	ff	P	CC	Gc	cc	P	EcoRV										
Diabetes	Yes	16	25	(35.6)	(55.6)	13	24	(28.9)	(53.3)	0.042	24	19	(33.8)	(41.5)	0.040	(28.1)	(68.8)	0.003		
	No	18	30	(31.0)	(51.7)	20	27	(34.5)	(46.6)	0.042	23	35	(33.8)	(41.4)	0.003	(51.7)	(41.4)	0.003		
Asthma	Yes	7	46.7	(33.3)	3	(20.0)	3	(30.0)	4	(26.7)	8	(53.3)	3	(20.0)	0.056	8	(53.3)	(40.0)	1.67	0.641
	No	23	37	(30.7)	(49.3)	15	(32.0)	(38.7)	24	29	(32.0)	(48.3)	22	(29.3)	0.042	31	40	(45.3)	0.5	
Cardiovascular disease	Yes	4	(36.4)	3	(27.3)	4	(36.4)	0.256	6	(54.5)	4	(36.4)	1	(9.1)	0.145	6	(54.5)	(54.5)	0.000	0.566
	No	26	39	(32.9)	(49.4)	14	(27.8)	(41.8)	22	33	(27.8)	(41.5)	24	(30.4)	0.145	33	41	(51.9)	0.63	0.566
Chronic renal disease	Yes	8	(32.0)	10	(40.0)	17	(60.0)	0.483	10	10	(40.0)	5	(20.0)	0.440	10	15	(60.0)	0.000	0.28	
	No	22	32	(33.8)	(49.2)	11	(27.7)	(41.5)	18	27	(27.7)	(41.5)	20	(30.8)	0.446	29	31	(47.7)	0.67	0.675
Malignancy	Yes	2	(20.0)	5	(50.0)	3	(30.0)	0.552	3	(30.0)	5	(50.0)	2	(20.0)	0.792	4	(40.0)	(50.0)	(1.0)	0.675
	No	28	37	(35.0)	(46.2)	15	(31.2)	(40.0)	25	32	(18.8)	(42.5)	23	(28.7)	0.42	34	42	(5.0)	0.675	0.675

Bold items indicate an statistically significant levels.
Table 6
Association of 3' end's VDR polymorphisms- related genotypes with different clinical data in COVID-19 patients.

Variables	Status	Apal	BsmI	Tru9I	TaqI	BglI											
		AA	Aa	a	P	UU	Uu	uu	P	TT	Tt	tt	P	GG	Gg	gg	P
Asymptomatic patients (group I)																	
Gender	Male	29 (32.2)	47 (52.2)	14 (15.6)	0.543	34 (44)	44 (48.9)	11 (13.3)	0.150	70 (77.8)	17 (18.9)	3 (3.3)	0.534				
	Female	22 (31.4)	41 (58.6)	7 (10.0)	0.447	11 (14)	29 (38)	3 (4.3)	49 (61)	18 (24)	3 (4.3)	0.941	13 (15)				
Hypertension	Yes	4 (8)	11 (21.1)	3 (6)	0.774	17 (22)	3 (3.9)	1 (5.3)	0.208	16 (21)	3 (4.3)	0.00	0.483				
	No	47 (59.6)	75 (93.2)	19 (26.3)	0.150	3 (3.6)	52 (68.0)	14 (18.1)	103 (134)	32 (42)	6 (8.1)	46 (60)	36 (39)				
Diabetes	Yes	5 (8)	3 (31.9)	8 (18.8)	0.150	70 (88)	17 (20)	3 (3.6)	0.00	81 (101)	16 (19)	6 (8.1)	50 (60)				
	No	46 (68)	80 (125)	18 (29.2)	0.150	55 (68)	75 (92)	14 (18)	106 (136)	32 (42)	6 (8.1)	74 (92)					
Asthma	Yes	8 (13)	10 (36.4)	4 (18.2)	0.150	11 (17)	9 (12)	2 (9.1)	0.531	16 (22)	5 (6.8)	0.150	13 (18)				
	No	43 (72)	78 (125)	17 (26.3)	0.150	52 (68)	73 (92)	13 (18)	103 (136)	32 (42)	5 (6.8)	74 (92)					
Cardiovascular disease	Yes	7 (3)	10 (32.4)	7 (25.9)	0.150	9 (17)	7 (9)	2 (9.1)	0.150	15 (30)	3 (6.0)	0.150	11 (22)				
	No	46 (68)	79 (125)	18 (29.2)	0.150	54 (71)	75 (92)	13 (18)	104 (136)	32 (42)	6 (8.1)	76 (92)					
Chronic renal disease	Yes	3 (4)	7 (32.3)	1 (9.1)	0.825	5 (9)	5 (7)	0 (0.0)	0.00	8 (14)	3 (6.0)	0.150	6 (12)				
	No	48 (72)	81 (134)	20 (30.3)	0.150	58 (77)	76 (92)	15 (20)	111 (146)	32 (42)	6 (8.1)	81 (134)					
Malignancy	Yes	4 (12)	3 (44.4)	2 (6.6)	0.389	6 (9)	3 (4.1)	0 (0.0)	0.193	5 (9)	4 (8.3)	0.00	0.220				
	No	47 (68)	85 (134)	16 (23.2)	0.150	57 (77)	79 (92)	15 (20)	114 (146)	32 (42)	6 (8.1)	83 (134)					
Mild/moderate patients (group II)																	
Gender	Male	60 (42.3)	59 (41.5)	23 (16.2)	0.980	63 (68)	68 (77)	11 (13)	0.986	112 (127)	26 (31)	4 (2.8)	0.870				
	Female	47 (43.5)	44 (40.7)	17 (15.7)	0.885	60 (65)	70 (81)	11 (13)	0.717	108 (123)	29 (34)	4 (2.8)	0.870				
Fever	Yes	60 (49.5)	59 (42.6)	23 (16.5)	0.885	66 (70)	70 (81)	11 (13)	0.717	108 (123)	29 (34)	4 (2.8)	0.870				
	No	48 (60)	43 (44.0)	18 (12.5)	0.885	60 (65)	70 (81)	11 (13)	0.717	108 (123)	29 (34)	4 (2.8)	0.870				
Sore throat	Yes	39 (79)	31 (47.6)	12 (24.2)	0.568	42 (66)	42 (66)	6 (9)	0.722	71 (91)	9 (13)	2 (2.4)	0.129				
	No	68 (72)	72 (47.6)	28 (26.5)	0.568	46 (66)	72 (91)	13 (21)	128 (176)	36 (54)	4 (2.4)	0.129					
Dry cough	Yes	62 (43.5)	62 (41.0)	23 (16.0)	0.995	64 (68)	44 (48.6)	10 (9)	0.872	111 (123)	30 (34)	3 (2.1)	0.382				
	No	45 (54)	44 (41.5)	17 (16.0)	0.995	48 (52)	49 (9)	8 (8.5)	0.888	15 (18)	3 (2.8)	0.382					
Headache	Yes	24 (42.5)	17 (41.5)	3 (18.4)	0.582	21 (24)	24 (24)	4 (8.2)	0.951	40 (47)	7 (9)	2 (4.1)	0.544				
	No	84 (68)	86 (41.8)	31 (16.0)	0.582	91 (95)	95 (15)	15 (25)	159 (223)	38 (42)	4 (2.0)	0.544					
Shortness of breath	Yes	14 (42.8)	13 (40.6)	5 (15.6)	0.993	17 (21)	12 (37.5)	3 (9.4)	0.471	27 (32)	5 (9)	0 (0.0)	0.577				
	No	14 (32)	13 (34.8)	5 (18.4)	0.993	17 (21)	12 (37.5)	3 (9.4)	0.471	27 (32)	5 (9)	0 (0.0)	0.577				

(continued on next page)
Table 6 (continued)

Variables	Status	Apal	Bmi	TruVl	Taql	BglI
Epidermoid	Yes	7	3	0.907	106	65
	No	93	90	35	92	82
Diarrhea	Yes	17	28	0.856	117	77
	No	94	91	37	159	113
Myalgia	Yes	20	13	0.885	105	169
	No	81	73	34	68	77
Fatigue	Yes	12	17	0.679	89	143
	No	99	92	35	115	147
Nausea	Yes	9	14	0.582	9	18
	No	99	92	35	115	147
Vomiting	Yes	6	14	0.679	9	18
	No	99	92	35	115	147
Parageusia	Yes	7	13	0.252	77	109
	No	91	93	35	122	132
Hypertension	Yes	16	19	0.541	32	36
	No	91	93	35	122	132
Diabetes	Yes	8	15	0.518	14	23
	No	89	90	35	115	147
Asthma	Yes	5	7	0.826	7	12
	No	91	93	35	122	132
Cardiomyopathy	Yes	10	10	0.013	27	38
	No	91	93	35	122	132
Chronic renal disease	Yes	17	15	0.905	101	145
	No	90	88	33	133	170
Malignancy	Yes	3	3	0.432	12	17
	No	104	99	37	141	194
Severe and critical patients (group III)	Male	17	29	0.159	21	34
	Female	32	40	0.068	42	70

(continued on next page)
Variables	Status	Apal	BsmI	Tru9L	TaqI	BglII
		AA	Aa	aa	P	
Fever	Yes	14	13	2	6.9	143.3
		(48.3)	(44.8)			
	No	17	18	3	7.9	31.4
		(44.7)	(47.4)			
Sore throat	Yes	11	11	4	2.2	6.9
		(42.3)	(42.3)	(15.4)		
	No	20	39	5	7.8	65.5
		(31.2)	(60.9)			
Dry cough	Yes	13	26	5	6.1	44.8
		(29.5)	(59.1)	(11.4)		
	No	18	24	4	8.7	52.2
		(39.1)	(52.2)			
Headache	Yes	1	1	1	2.6	40.0
		(10.0)	(10.0)			
	No	30	42	8	6.5	65.4
		(37.5)	(52.5)	(10.0)		
Shortness of breath	Yes	11	41	7	0.001	27.3
		(18.6)	(69.5)	(11.9)		
	No	20	9	6	2.6	39.0
		(64.5)	(29.0)			
Diarrhea	Yes	5	6	0	0.00	27.3
		(45.5)	(54.5)			
	No	24	46	9	5	65.4
		(32.9)	(55.7)	(11.4)		
Myalgia	Yes	8	8	1	5.8	27.3
		(47.1)	(47.1)			
	No	23	42	8	5	65.4
		(31.5)	(57.5)	(11.0)		
Fatigue	Yes	9	19	3	9.7	27.3
		(5.0)	(61.3)			
	No	22	31	6	10.2	65.4
		(37.3)	(52.5)	(10.2)		
Nausea	Yes	6	9	0	0.00	27.3
		(60.0)	(40.0)			
	No	22	22	6	12.0	65.4
		(52.9)	(58.7)	(12.0)		
Vomiting	Yes	4	6	1	1.9	27.3
		(64.0)	(54.5)			
	No	27	44	8	12.0	65.4
		(34.2)	(55.7)	(10.1)		
Paraguesia	Yes	1	7	1	6.3	27.3
		(64.0)	(61.5)	(11.5)		
	No	24	34	6	9.4	65.4
		(37.5)	(53.1)			
Hypertension	Yes	18	24	3	6.7	36.4
		(40.0)	(53.3)			
	No	13	26	6	9.7	36.4
		(28.9)	(57.8)	(13.3)		
Diabetes	Yes	12	19	1	0.11	27.3
		(37.5)	(59.4)			
	No	19	31	8	13.8	65.4
		(32.8)	(53.4)	(13.8)		
(continued on next page)
Table 6 (continued)

Variables	Asthma	Cardiac failure	Chronic renal disease	Malnutrition	CDX2
Biml (P)					
Aa	0.094	0.059	0.034	0.086	0.135
aA	0.048	0.024	0.011	0.021	0.030

Table 7

Significant association of VDR gene polymorphisms with some clinical symptom and comorbidities in COVID-19 suffered patients.

Genetic models	P-value	Odds ratio (95% CI)
Biml and chronic renal disease		
Dominant: BB vs. bb	0.086	0.50 (0.24-1.04)
Recreisve: bb vs. BB	0.176	0.63 (0.33-1.19)
Overdominant: BB vs. bb	0.004	0.32 (0.15-0.69)
Codominant: bb vs. BB	0.636	1.31 (0.43-4.00)

EcoRV and diabetes

Genetic models	P-value	Odds ratio (95% CI)
Dominant: EE vs. ee	<0.001	0.19 (0.08-0.49)
Recreisve: ee vs. EE	<0.001	4.45 (2.13-9.29)
Overdominant: Ee vs. ee	0.034	2.04 (1.06-3.93)
Codominant: ee vs. EE	<0.001	1.01 (0.94-10.20)

Alleric

Genetic models	P-value	Odds ratio (95% CI)
Dominant: A vs. a	0.001	0.31 (0.19-0.50)
Codominant: aa vs. AA	0.001	8.28 (2.96-23.21)

Apal and shortness of breath

Genetic models	P-value	Odds ratio (95% CI)
Dominant: AA vs. aa	0.029	0.20 (0.05-0.85)
Recreisve: aa vs. AA	0.065	0.33 (0.10-1.07)
Overdominant: AA vs. aA	0.137	3.33 (0.68-16.32)

Biml and chronic renal disease

Genetic models	P-value	Odds ratio (95% CI)
Dominant: BB vs. bb	0.009	0.17 (0.04-0.64)
Recreisve: bb vs. BB	0.978	1.01 (0.38-2.72)
Overdominant: BB vs. bb	0.069	0.42 (0.16-1.07)
Codominant: bb vs. BB	0.043	4.59 (1.05-20.06)

Alleric

Genetic models	P-value	Odds ratio (95% CI)
Dominant: B vs. b	0.176	0.63 (0.33-1.23)
Codominant: b vs. B	1.59 (0.81-3.03)	

Fokl and hypertension

Genetic models	P-value	Odds ratio (95% CI)
Dominant: FF vs. Ff	0.013	0.22 (0.07-0.72)
Recreisve: ff vs. FF	0.655	1.22 (0.51-2.94)
Overdominant: FF vs. Ff	0.093	0.49 (0.21-1.13)
Codominant: ff vs. FF	0.040	4.00 (1.07-15.01)

Alleric

Genetic models	P-value	Odds ratio (95% CI)
Dominant: P vs. p	0.072	0.58 (0.32-1.00)
Codominant: p vs. P	1.72 (0.95-3.13)	

CDX2 and shortness of breath

Genetic models	P-value	Odds ratio (95% CI)
Dominant: CC vs. cc	0.009	3.59 (1.37-9.42)
Recreisve: cc vs. CC	0.28 (0.11-0.73)	

(continued on next page)
Furthermore, CDX2 was indicated to possess a strong association with diabetes in both allelic and all genetic models, except in the overdominant model in combined samples of COVID-19 patients (Table 9).

Genetic models	P-value	Odds ratio (95% CI)	
Dominant	CC vs. CC vs. cc	0.833	1.13 (0.98-1.29)
	cc vs. CC	0.570	1.19 (0.90-1.59)
	Cc vs. cc	0.209	1.38 (0.92-2.05)

Mounting investigations have revealed the role of vitamin D deficiency as a pathogenic factor of COVID-19, leading to an increase in the predisposition and severity of individuals, especially via exacerbating acute lung injury and ARDS (Faull et al., 2020; Caragnano et al., 2020; Parakh et al., 2013). Several types of research highlighted that patients with ARDS and also COVID-19 cases are even more vitamin D deficient than control subjects (Dancer et al., 2015; Thickett et al., 2015; Park et al., 2018; Quesada-Gomez et al., 2020). Furthermore, more vitamin D deficiency [25(OH) D levels: < 50 nmol/L] and insufficiency [25(OH) D levels: 50–75 nmol/L] was demonstrated in regions highly affected by COVID-19, such as Iran (Ebadi et al., 2019; Tabrizi et al., 2018). Undoubtedly, a complex relationship can be proposed between vitamin D and COVID-19, in which many environmental and genetic factors are implicated. Among environmental factors, seasonal variation in sun exposure, geographic latitudes, air pollution, and darker skin influence vitamin D formation by sunlight in vitro (Wacker and Holick, 2013). Intriguingly, in Chicago, more than half of COVID-19 cases and around 70% of COVID-19 deaths were observed in African-American individuals (Yancy, 2020) who are at a greater risk for vitamin D deficiency (Alzaman et al., 2016). The actions of vitamin D are largely mediated by its intranuclear receptor, VDR, which is extensively distributed in respiratory epithelial cells and immune cells (B cell, T cell, macrophages, and monocytes). The expression and regulation of VDR itself are influenced by several mechanisms, including cell-type-specific transcription factors (TFs), auto-regulation by vitamin D, methylation of its primary promoter, and genetic variations (Saccone et al., 2015). Genetic variations in the VDR gene such as SNPs might alter the function of VDR pathway in bronchial epithelium and immune-regulatory functions, which consequently influence the susceptibility to a large number of diverse conditions (Valdivieso and Fernandez, 2006; Laplana et al., 2018; Mohammad et al., 2020; Mehrabani et al., 2019) and possibly COVID-19.

In the present study, the association of eight SNPs in the VDR gene with the severity of COVID-19 patients was evaluated. Our data showed significant associations for some of the SNP-related alleles and/or genotypes in one or more genetic models. FokI polymorphism in the exon 2 at the 5' end of the VDR gene is referred to as start codon polymorphism (SCP), in which the presence of the “F” allele (the mutated “f” allele) produces shorter VDR protein that is associated with 1.7-fold increased transcriptional activity (Koestner et al., 2009; Whitfield et al., 2001; Jurutka et al., 2000; Colin et al., 2000). In the FokI variant, results showed this SNP as a pinpointed associated factor with COVID-19; in which “F” (mutated) allele frequencies were intended to be higher in symptomatic and severe/critical patients compared with asymptomatic COVID-19 affected people. Hence, it can be suggested that the “F” allele, is positively associated with signs, symptoms, and possibly the severity of COVID-19 infected peoples. FokI genotypic distributions illustrated important results based on recessive and codominant genetic models in COVID-19 individuals, including the decreased vulnerability of “FF” genotype compared with combined “Ff + ff” genotypes, and increased susceptibility of “f” patients versus “FF” affected subjects to represent signs, symptoms, and possibly more serious outcomes. However, there were no significant differences between “FF” and “Ff” patients for the clinical characteristics of COVID-19. The meta-analyses showed an association of FokI polymorphism with susceptibility to virus infection (McNally et al., 2014). This association could be contributed to the changes in TFIIB-VDR interaction, transcription efficiency, the effects of FokI polymorphism on immune cell

Table 7 (continued)

Genetic models	P-value	Odds ratio (95% CI)	
Dominant	EE vs. EE + ee	0.466	1.09 (0.68-1.75)
	ee vs. EE + ee	0.333	1.30 (0.79-2.13)
	EE vs. EE + ee	0.05	1.71 (0.99-2.97)

Bold items indicate an statistically significant levels.
Table 8
Association of VDR gene polymorphisms-related genotypes with clinical data in COVID-19 patients with positive criteria of signs and symptoms.

5' end of VDR polymorphisms

Variables	Status	FokI	CDX2	EcoRV	
	FF	Ff	ff	P	
Gender	Male	76 (37.4)	96 (47.3)	31 (15.3)	0.766
	Female	50 (36.5)	62 (45.3)	25 (18.2)	0.042
Fever	Yes	65 (33.7)	88 (45.6)	40 (20.7)	0.001
	No	61 (41.5)	70 (47.6)	16 (10.9)	0.001
Sore throat	Yes	37 (34.3)	51 (47.2)	20 (18.5)	0.685
	No	89 (38.4)	107 (46.1)	36 (15.5)	0.685
Dry cough	Yes	66 (35.1)	96 (48.6)	31 (16.5)	0.680
	No	60 (39.5)	67 (44.1)	25 (16.4)	0.680
Headache	Yes	25 (42.4)	26 (44.1)	8 (13.6)	0.001
	No	101 (35.9)	132 (47.0)	48 (17.1)	0.001
Shortness of breath	Yes	35 (38.9)	37 (41.1)	18 (20.0)	0.408
	No	91 (36.4)	121 (48.4)	38 (15.2)	0.408
Diarrhea	Yes	8 (26.7)	15 (50.0)	7 (23.3)	0.207
	No	118 (38.1)	143 (46.1)	49 (15.8)	0.207
Myalgia	Yes	26 (39.2)	40 (50.6)	13 (16.5)	0.650
	No	100 (38.3)	118 (45.2)	43 (16.5)	0.650
Fatigue	Yes	24 (42.1)	19 (33.3)	14 (24.6)	0.057
	No	102 (36.0)	139 (49.1)	42 (14.8)	0.057
Nausea	Yes	14 (35.9)	18 (46.2)	7 (17.9)	0.963
	No	112 (37.2)	140 (46.5)	49 (16.3)	0.963
Vomiting	Yes	6 (20.7)	18 (62.1)	5 (17.2)	0.138
	No	120 (38.6)	140 (45.0)	51 (16.4)	0.138
Parageusia	Yes	17 (44.7)	17 (44.7)	4 (10.5)	0.444
	No	109 (36.1)	141 (46.7)	52 (17.2)	0.444
Hypertension	Yes	26 (31.5)	39 (43.8)	22 (24.7)	0.045
	No	98 (39.0)	119 (47.4)	34 (13.5)	0.045
Diabetes	Yes	26 (34.2)	35 (46.1)	15 (19.7)	0.653
	No	100 (37.9)	123 (46.6)	41 (15.5)	0.653
Asthma	Yes	12 (41.4)	12 (41.4)	5 (17.2)	0.840
	No	114 (36.7)	146 (46.9)	51 (16.4)	0.840
Cardiovascular disease	Yes	18 (51.4)	12 (34.3)	5 (14.3)	0.171
	No	108 (35.4)	146 (47.9)	51 (16.7)	0.171
Chronic renal disease	Yes	24 (37.5)	26 (40.6)	16 (21.9)	0.171
	No	102 (37.0)	132 (47.8)	42 (15.2)	0.171
Malignancy	Yes	6 (30.0)	11 (55.0)	3 (15.0)	0.724
	No	120 (37.5)	147 (45.9)	53 (16.6)	0.724

3' end of VDR polymorphisms

Variables	Status	Apal	Bmi1	TraFIH	TaqFI	BglI	
	AA	Aa	aa	BB	Bb	bb	P
Gender	Male	76 (37.4)	98 (48.3)	29 (14.3)	0.295		
	Female	62 (45.3)	55 (40.1)	20 (14.4)	0.295		
Fever	Yes	63 (32.6)	102 (52.8)	28 (14.5)	0.001		
	No	65 (33.7)	88 (45.6)	40 (20.7)	0.001		

(continued on next page)
Variables	Status	3rd's VDR polymorphisms
		Apal BsmI TaqI BglI
		AA Aa aa P
		BB Bb bb P
		Tru9I
		TT Tt tt P
		GG Gg gg P
Sore throat	Yes	48 (44.4)
	No	90 (38.8)
Dry cough	Yes	75 (39.9)
	No	63 (41.4)
Headache	Yes	26 (44.1)
	No	112 (39.9)
Shortness of breath	Yes	33 (36.7)
	No	105 (39.9)
Diarrhea	Yes	15 (50.0)
	No	123 (39.7)
Myalgia	Yes	34 (43.0)
	No	104 (39.8)
Fatigue	Yes	18 (31.6)
	No	120 (42.4)
Nausea	Yes	17 (43.6)
	No	121 (40.2)
Vomiting	Yes	14 (48.3)
	No	124 (39.9)
Parageusia	Yes	14 (36.8)
	No	124 (41.1)
Hypertension	Yes	35 (39.3)
	No	103 (31.1)
Diabetes	Yes	30 (39.5)
	No	108 (40.9)
Asthma	Yes	11 (37.9)
	No	127 (40.8)
Table 8 (continued)

Variable	Status	ApaI	BsmI	Tru9I	TaqI	BglI			
		R	G	Gg	P				
		G	GG	Gg	P				
		S	S	S	S				
		S	S	S	S				
Chronic renal disease	Yes	26 (40.6)	29 (46.4)	9 (14.1)	0.996	30 (46.9)	24 (37.5)	10 (15.6)	
	No	112	145	111	111	111			
		31 (35.3)	31 (35.3)	31 (35.3)	31 (35.3)	31 (35.3)	31 (35.3)	31 (35.3)	
Malignancy	Yes	5 (25.0)	12 (60.0)	3 (15.0)	0.310	10	50.0	8 (40.0)	2 (20.0)
	No	133	141	46	46	46			

R. Abdollahzadeh et al.

Table 8 indicates an statistically significant levels.

The Cdx2 site in the 1a promoter region of the VDR gene is a functional binding site for the transcription factor Cdx2. Cdx-2 protein and transcription activity of the VDR promoter compared with the G allele (Fang et al., 2003). According to the CDX2 results, “c” minor allele frequency was higher in symptomatic and severe/critical patients against asymptomatic COVID-19 cases, while “C” major allele rates were lower. Thus, the alleles “c” and “C” can be introduced as risk and protective factors, respectively, for signs, symptoms, and maybe the severity of the COVID-19. CDX2 genotypic distributions illustrated more interesting findings based on dominant, recessive, and codominant genetic models in COVID-19 patients, including protective effects of “CC” versus “Cc + cc”, susceptible effects of “cc” versus both “CC + Cc” and “CC” to have clinical features and likely severity of the disease. Cdx2 is considered as a functional polymorphism of the VDR gene that has been demonstrated to impact the immune system alter the risk of contracting certain infectious illnesses (e.g., tuberculosis and rubella) (Meyer and Bornman, 2018; Ovsyannikova et al., 2010). Nevertheless, no substantial link has been established between this SNP and autoimmune disorders such as T1D, MS, vitiligo, or psoriasis (Dickinson et al., 2009; Bornman, 2018; Ovsyannikova et al., 2010). Although it is uncertain why the polymorphism is connected to illnesses like tuberculosis, numerous studies have connected this association to VDR methylation, vitamin D-mediated control of chemokine-positive T cells, and impact adaptive cytokine responses (Meyer and Bornman, 2018; Ovsyannikova et al., 2010; Harishankar and Selvaraj, 2017).

The EcoRV polymorphism (rs4516035), like CDX2, is found in the promoter region of the VDR gene and is thought to play a role in the antitumor immune response. EcoRV (5′ to exon 1a) is a regulatory region SNPs that can affect VDR transcription via TF binding differences (Halsall et al., 2004). In the presented study, EcoRV allelic and genotypic distributions unveiled several intriguing findings. Firstly, EcoRV minor allele “e” frequencies were remarkably inclined to increase in symptomatic, mild/moderate, and severe/critical patients compared to asymptomatic COVID-19 patients, while major allele “E” rates were decreased. Therefore, negative and positive associations of “E” and “e” alleles, respectively, with clinical outcomes of COVID-19 can be proposed. Nonetheless, no significant discrepancy was found in allelic frequencies between mild/moderate and severe/critical patients. Accordingly, genetic model-based genotypic distributions of EcoRV polymorphism highlighted the protective role of “EE” vs. “Ee + ee”, vulnerable effects of “Ee” versus “EE + ee”, and “Ee” versus “EE”. Amazingly, we didn’t find any significant differences in the distribution of “ee” and “EE” genotypes among different clinical groups. Furthermore, increased frequencies of “Ee” versus “EE + ee” and “Ee” versus “EE” in severe/critical compared to mild/moderate patients, obviously demonstrated the important role of heterozygous “Ee” in the severity of COVID-19 patients. It is previously reported that EcoRV is correlated with optimal bone density, cancer risk, diabetes, and susceptibility to HIV-1 infection (Halsall et al., 2004; Ghodsi et al., 2021).

The ApaI (rs7975232) intronic variation is anticipated to impact splice site alterations, which may change VDR translation. This variation is common, as indicated by 734 and 16,751 homozygous mutants in the 1000G and ExAC databases, respectively (Hussain et al., 2019). ApaI
allelic frequencies, determined as major “A” and minor “a” alleles, didn’t show significant differences between various paired groups of COVID-19. The present study highlighted that the “AA” genotype made COVID-19 affected people more prone to possess signs and symptoms versus both “Aa + aa” and “Aa” genotypes based on paired-groups of the asymptomatic-asymptomatic and mild/moderate-asymptomatic comparisons. Additionally, heterozygous “Aa” patients were more protected to show signs and symptoms compared to combined “AA + aa” genotypes. This finding was interestingly opposite between severe/critical and mild/moderate groups, in which a rising risk of severity was demonstrated in patients with “Aa” genotype compared to “AA + aa” genotypes. This could be explained by the involvement of several factors determining the severity of the disease and might not be directly related to Apal effects. Association of Apal with different conditions including cancers, type 1 diabetes, asthma, multiple sclerosis, and several autoimmune diseases has previously been reported (Glendenen et al., 2008; Cheon et al., 2015; Mohammadi et al., 2020; Wjst, 2005).

BsmI polymorphism was revealed not to have any significant differences in allelic and genotypic frequencies between asymptomatic COVID-19 patients and other groups, including mild/moderate, severe/critical, and also all symptomatic patients. However, remarkable discrepancies were observed in allelic and genotypic distributions between mild/moderate and severe/critical COVID-19 suffered individuals. Our finding disclosed that minor allele “b” acts as a predisposition factor to COVID-19 severity, but major allele “B” has a protective effect. Moreover, genetic model-based genotypic distributions illustrated that patients with the “BB” genotype versus combined “bb + Bb” genotypes have decreased risk to develop more serious forms of COVID-19. However, “Bb” symptomatic heterozygotes showed elevated vulnerability to have more seriously COVID-19 than combined “BB + Bb” genotypes. VDR has an essential function in regulating the immune system in macrophages, dendritic cells, neutrophils, B cells, natural killer (NK) cells, and T lymphocyte. Therefore, these findings could be interpreted that VDR BsmI polymorphism has a significant role in susceptibility to and in the progression of viral infections such as COVID-19.

The SNP Tru91 didn’t show any significant differences in allelic distribution between paired-group comparisons, except between severe/critical and mild/moderate groups, in which major “U” and minor “u” alleles were described as protective and risk factors, respectively. Tru91 genotypic frequencies didn’t exhibit any significant association with clinical manifestations and also severity COVID-19. TaqI and BglII variants-related allelic and genotypic frequencies showed no significant association with clinical manifestations and also severity of COVID-19 affected peoples based on any genetic models in the present study. TaqI is a synonymous mutation at codon 352 in exon 9 at the 3’ end of the VDR gene, in which “T” and “t” alleles were identified as absent and presence of the restriction site, respectively. The TT genotype has been reported to be associated with lower circulating levels of active vitamin D3 (Morrison et al., 1994; Hustmyer et al., 1993; Ma et al., 1998). Apal, BsmI, Tru91, and BglII are located in intron 8 at the 3’ end of the VDR gene, which are considered silent SNPs. These polymorphisms do not change the amino acid sequence of the encoded protein, however, they may affect gene expression through the regulation of mRNA stability or linkage disequilibrium with other SNPs affecting the susceptibility to diseases (Jurutka et al., 2001).

Evaluating the potential association of VDR gene SNPs with signs and symptoms of COVID-19 patients, especially respiratory complications, surely highlighted the more detailed importance of these variants in the severity of the disease. Despite the significant associations of some VDR gene variants with signs and symptoms of mild/moderate COVID-19 patients, amazing findings were pinpointed in group III. Accordingly, we found a strong association between both allelic and genotypic distributions of Apal and CDX2 SNPs with shortness of breath. Regarding the Apal, we found that major “A” and minor allele “a” provide a protective and susceptible effect, respectively, in severe/critical patients. According, our findings disclosed that severe/critical COVID-19 patients with “Aa” genotype and then “aa” genotype are more at risk of shortness of breath than “AA” patients. The minor “c” and major “C” alleles of CDX2 were found to have positive and negative associations with symptomatic and severe/critical COVID-19 groups, respectively. Moreover, negative association of “CC” genotype versus combined “Cc + cc” genotypes, positive associations of “cc” genotype versus both combined “CC + Cc” genotypes, and “CC” genotype to have clinical features and likely severity of disease are suggested. Nevertheless, “cc” versus both combined “CC + Cc” genotypes and “CC” genotype revealed a strong protective effect against shortness of breath. Unfortunately, we can’t provide a rational explanation for these contradictory findings, therefore, it needs to be re-evaluated in other studies with larger sample sizes, in other ethnicities, and geographical regions.

Despite the high prevalence of conflicting results in previous investigations, we separately assessed the potential association of these VDR gene SNPs with some comorbidities including hypertension, diabetes, asthma, cardiovascular disease, chronic renal disease, and malignancy in various COVID-19 groups to further clarify how these genetic variants affect the prognosis of COVID-19 patients. No significant association was found between VDR gene variants and comorbidities in the asymptomatic COVID-19 group, while a strong association of VDR gene SNPs was seen with some of these conditions in mild/moderate and severe/critical groups.

Our results revealed that mild/moderate COVID-19 patients with the “BB” genotype are more prone to chronic renal disease, while patients with “Bb” are more protective. Therefore, it can be proposed that homozygotes subjects (“BB” and “bb”) are at increased risk of chronic renal disease than heterozygotes in mild/moderate patients. Unlike, we found an increased risk of the “bb” genotype versus the combined “BB + Bb” and “BB” genotype, and no significant discrepancy was observed between the distribution of the “Bb” and “BB” to have chronic renal disease in severe/critical COVID-19 patients. Consequently, we can suggest that the “Bb” genotype provides a protective role to have chronic renal disease in both mild/moderate and severe/critical COVID-19 patients, but the effects of “BB” and “bb” genotypes entirely depend on the stage of the disease. Regarding the EcoRV variant and diabetes in mild/moderate COVID-19 patients, we observed a negative association of the “E” allele and a positive association of the “e” allele. Also, our data revealed the protective effect of the “EE” genotype, but predisposing impacts of “ee” genotype, as well as increased risk of “Ee” genotype versus combined “EE + ee” and “EE” genotypes against diabetes. Therefore, it can be proposed that mild/moderate COVID-19 patients with 0, 1, and 2 alleles of minor allele “e” have a low, intermediate, and high risk of diabetes, respectively. Similar findings were observed in severe/critical patients, however, the distribution of “EE” and “ee” didn’t show any remarkable difference. Overall, it can be argued that how the EcoRV variant is associated with diabetes depends entirely on the stage of COVID-19 disease, wherein the additive and overdominant genetic model better explains the observed findings in mild/moderate and severe/critical groups, respectively.

In addition to EcoRV, CDX2 polymorphism has also been disclosed to have a significant association with diabetes in severe/critical COVID-19 patients. The major “C” and minor “c” alleles exhibited a negative and positive association with diabetes, respectively. Moreover, it was demonstrated that severe/critical patients with the “cc” genotype are more susceptible to have diabetes. Also, the CDX2 was recognized to have an association with hypertension, in which severe/critical COVID-19 patients with genotype “cc” have an increased risk for hypertension. Collectively, it can be proposed that the “cc” genotype causes an increased risk on severe/critical COVID-19 to exhibit both diabetes and hypertension comorbidities. Similarly, FokI SNP illustrated a remarkable association with hypertension in severe/critical COVID-19 patients, in which elevated risk of hypertension was detected in “f” genotype. Apal genotypes were deciphered to possess a significant association with asthma, in which severe/critical COVID-19 patients with “as” genotype strongly have increased risk than “AA + Aa” patients. Briefly, our data
Significant association of VDR gene polymorphisms with some clinical symptom and comorbidities in COVID-19 patients.

Genetic models	P-value	Odds ratio (95% CI)
Apal and fever		
Dominant	0.054	0.98 (0.53-1.81)
recessive	< 0.001	2.15 (1.38-3.34)
overdominant	< 0.001	2.11 (1.36-3.28)
codominant	0.107	1.02 (0.55-1.89)
Allelic	0.013	0.67 (0.49-0.92)
Apal and asthma		
Dominant	0.011	0.33 (0.14-0.77)
recessive	0.761	1.13 (0.52-2.47)
overdominant	0.119	0.89 (0.41-1.92)
codominant	0.049	1.92 (0.85-4.35)
Allelic	0.114	0.65 (0.38-1.11)
Bbm and chronic renal disease		
Dominant	0.038	0.42 (0.19-0.95)
recessive	0.331	0.76 (0.44-1.32)
overdominant	0.032	1.32 (0.76-2.27)
codominant	0.161	1.85 (1.05-3.23)
Allelic	0.853	0.96 (0.64-1.44)
Tru9l and shortness of breath		
Dominant	0.159	0.42 (0.12-1.41)
recessive	0.016	1.95 (1.14-3.35)
overdominant	0.055	1.75 (0.99-3.10)
codominant	0.038	1.84 (1.03-3.27)
Allelic	0.008	0.53 (0.33-0.85)
Tru9l and hypertension		
Dominant	0.933	0.94 (0.25-3.64)
recessive	0.013	1.99 (1.16-3.43)
overdominant	0.010	2.11 (1.20-3.72)
codominant	0.737	1.26 (0.52-2.91)
Allelic	0.009	2.14 (1.21-3.77)
Fokl and fever		
Dominant	0.017	0.47 (0.25-0.87)
recessive	0.140	1.40 (0.90-2.18)
overdominant	0.711	0.92 (0.60-1.42)
codominant	0.014	2.35 (1.19-4.62)
Allelic	0.020	0.69 (0.50-0.94)
Fokl and hypertension		
Dominant	0.016	0.48 (0.26-0.87)
recessive	0.204	2.08 (1.15-3.85)

Table 9 (continued)

Infection, Genetics and Evolution 96 (2021) 105098

Genetic models	P-value	Odds ratio (95% CI)
CDX2 and headache		
Dominant	0.006	0.42 (0.23-0.78)
recessive	0.282	1.33 (0.79-2.22)
overdominant	0.108	0.66 (0.40-1.09)
codominant	0.007	2.40 (1.27-4.53)
Allelic	0.003	0.63 (0.45-0.89)
CDX2 and diabetes		
Dominant	0.008	0.46 (0.26-0.82)
recessive	0.044	1.79 (1.06-3.16)
overdominant	0.823	0.94 (0.56-1.58)
codominant	0.005	2.69 (1.35-5.35)
Allelic	0.003	0.58 (0.40-0.84)
EcoRV and diabetes		
Dominant	0.014	0.36 (0.16-0.81)
recessive	< 0.001	3.86 (2.19-6.80)
overdominant	< 0.001	2.54 (1.51-4.28)
codominant	< 0.001	0.39 (0.23-0.66)
Allelic	< 0.001	5.61 (2.27-13.89)
Bold items indicate an statistically significant levels.		

highlighted that Apal SNP is associated with respiratory complications, including shortness of breath and asthma in severe/critical COVID-19 patients more likely based on overdominant and dominant genetic models, respectively. To evaluate the reproducibility of the results and increase the accuracy of the study, the association of VDR gene SNPs with clinical outcomes and comorbidities was examined, regardless of the severity grouping of COVID-19 patients that in turn led to obtaining a larger sample size. Here, we found a significant association of VDR gene polymorphisms with several clinical outcomes of COVID-19 patients, including the association of Apal and Fokl variants with fever, Tru9l with shortness of breath, and CDX2 with the headache. By comparing these findings with the results described earlier, it is clear that these associations are quite different. Apal allelic and genotypic frequencies revealed that alleles “A” and “a” contribute to decreased and increased susceptibility of COVID-19 patients to fever, respectively. Our data revealed that patients with genotype “AA”, are more protected to exhibit...
fever than “Aa + aa” patients, but the “Aa” patients are more susceptible to exhibit fever than “AA + aa”, “AA” and “aa” genotypes. All of these findings pinpointed that the overdominant genetic model is the most likely model, in which an increased chance to have a fever might be occurred in heterozygotes compared to both dominant and recessive homozygotes. In respect of FokI SNP, we found that the major “F” allele associate with diminished susceptibility to fever, however the minor “f” allele associate with increased risk. Accordingly, we demonstrated that COVID-19 patients with the “ff” genotype have a higher chance to exhibit fever than “FF + Ff”, “FF”, and “Ff” patients. We didn’t find a significant difference in the distribution of “FF” and “Ff” genotypes between patients with positive and negative fever histories. Consequently, the dominant genetic model is the most likely model, in which “ff” homozygotes are more vulnerable to fever than “Ff” heterozygotes and “FF” homozygotes. Our results disclosed that Tru91 major “U” and minor “u” alleles possess protective and predisposing effects to the shortness of breath, respectively. Further, “UU” COVID-19 patients are more protective to shortness of breath than “Uu + uu,” while “Uu” patients are more susceptible to this respiratory complication than COVID-19 subjects with “UU” or “uu” genotypes. Consequently, although no significant difference between “Uu” and combined “UU + Uu” was detected, we can propose an overdominant genetic model for this SNP, in which the heterozygotes “Uu” are at elevated risk compared to both “UU” and “uu” homozygotes. The findings of the present study identified the association of CDX2 allelic and genotypic association with headache. It was highlighted that the “C” major allele was negatively associated with headache, but the “c” minor allele was positively associated in COVID-19 patients. Accordingly, we found an increased risk of headache in COVID-19 subjects with “cc” genotype than combined “CC + Cc”, “Cc,” and “CC” genotypes. However, any significant differences in the distribution of “CC” and “Cc” genotypes didn’t observe between COVID-19 cases with and without headache though.

The results of VDR gene SNPs association with comorbidities in the combined COVID-19 patient samples regardless of severity groups (N = 500 cases) were interestingly almost consistent with associations found in COVID-19 subgroups. ApoA1 was identified to associate with asthma in the dominant genetic model, in which COVID-19 patients with the “aa” genotype were at higher risk than “AA + Aa” to have asthma. The “bb” homozygotes of BsmI SNP were more susceptible to chronic renal disease in the combined samples (consists of 500 cases) and severe/critical subgroup, while both “BB” and “bb” genotypes increase the risk of chronic renal disease in mild/moderate group. The association of EcoRV polymorphism with diabetes was disclosed in combined COVID-19 samples and the most likely of proposed genetic models is additive genetic model, similar to mild/moderate group, in which the COVID-19 affected individuals with 0, 1, and 2 alleles of minor allele “e” are at low, intermediate, and high risk of diabetes, respectively, nonetheless, the overdominant model works better in the severe/critical group. Similar to the severe/critical class of COVID-19, we found a significant association of the CDX2 allelic and genotypic distributions with diabetes and hypertension, in which major “C” and minor “c” alleles exhibited a negative and positive association with both diabetes and hypertension, respectively. According to the results, the strongest genetic model is the dominant model, in which COVID-19 patients with the “cc” genotype have an increased risk of both diabetes and hypertension comorbidities compared to “CC + Cc”, “Cc,” and “CC” genotypes. Moreover, we found that FokI’s major “F” and minor “f” alleles showed protective and susceptible effects for hypertension in combined COVID-19 samples, respectively. Similar to severe/critical patients, COVID-19 patients with “ff” genotype have elevated risk to hypertension versus “FF + Ff”, “FF”, and “Ff” genotypes. The last detected association between VDR gene variants and comorbidities was an association of Tru91 with hypertension, which was not observed in subtypes of COVID-19 patients. The results disclosed major “U” and minor “u” alleles as susceptible and protective factors for hypertension, respectively. Tru91 genotypic distributions suggested an overdominant genetic model as the most likely model, in which COVID-19 patients with “Uu” genotype had increased risk to hypertension than “UU + uu”, “UU”, “uu” patients.

To appropriately recognize individuals who may require hospital and/or ICU admission, risk stratification based on clinical, radiographic, and laboratory data appears to be essential. The existence of comorbidities is among the most alarming clinical characteristics. Some underlying illnesses such as hypertension, diabetes, lung disease, cardiovascular disease, age may be health issues for severe COVID-19 patients who have poorer outcomes than non-severe COVID-19 patients (Yang et al., 2020). Current evidence from the present study suggests that comorbidities including age, hypertension, diabetes, and chronic renal disease may work as a risk for the worst prognosis of COVID-19 patients. Consistent with previously reported data, our results revealed that severe/critical patients were older than mild/moderate and asymptomatic patients (Williamson et al., 2020). Therefore, a positive association between elder ages and more severity of COVID-19 patients could be proposed. We observed greater frequencies of these diseases in severe/critical patients versus mild/moderate and asymptomatic patients, which is consistent with several reports (Singh et al., 2020; Henry and Lippi, 2020; Pranata et al., 2020). Asthma has been considered as a risk factor that makes people susceptible to more severe COVID-19 illness (Lee et al., 2020). However, managing COVID-19 in severe asthma is difficult, and it’s uncertain if individuals with severe asthma are at a higher risk of having the poorest results, at least partially due to safety concerns about biologics and systemic corticosteroids (SCSs) (Adir et al., 2021). Our results showed an increased frequency of asthma conditions in severe/critical patients versus mild/moderate patients. Interestingly, a lower frequency of this condition was observed in mild/moderate patients than asymptomatic COVID-19 cases. Similar to our results, many recent studies revealed the strong positive association of cancer with the severity of COVID-19, even though inconsistent findings were also observed (Zhang et al., 2020b). Intriguingly, our results didn’t show any significant discrepancies of cancer frequency between severe/critical and asymptomatic COVID-19 patients. Despite early studies suggested that cancer might be a separate risk factor for severe COVID-19, recent matched researches comparing outcomes between hospitalized cancer patients and matched controls found no statistically significant differences in death (Brar et al., 2020; Klein et al., 2021). As a result, a history of cancer and cancer-directed treatments might not even be associated with a greater risk of the most serious COVID-19 outcomes in hospitalized individuals. A proinflammatory state and a weakened innate immune response are suggested as the common characteristics between these chronic illnesses and infectious diseases, which may be connected etiologically to its pathogenesis. More importantly, the co-existence of multiple comorbidities in patients seems to increase the risk of severity or death in COVID-19 disease. Regarding the signs and symptoms in symptomatic patients, increased significant frequencies of the shortness of breath, fatigue, and parageusia were illustrated in the severe/critical group compared to the mild/moderate group, which is similar to previous investigations (Liu et al., 2020). Breathlessness is a distressing and common symptom in patients with severe illness, and it is thought to be caused by physiological and structural abnormalities in the lungs. The increased ventilatory drive may rationalize our findings since individuals with moderate COVID-19 nevertheless respond physiologically to hypoxia.

5. Conclusion

Vitamin D has been shown to regulate macrophage responses, stopping them from producing excessive amounts of inflammatory cytokines and chemokines, which are common in COVID-19. Therefore, the prevalence and mortality rate of COVID-19 may depend on the modulatory effect of bioavailable Vitamin D levels of individuals, which is determined by the genetic background, such as VDR gene polymorphisms. Therefore, we designed the present study to explore the association of eight VDR gene SNPs with the clinical status and prognosis of COVID-19
patients. We found significant associations of VDR gene variants with several clinical outcomes such as severity and shortness of breath in mild/moderate and severe/critical cases of COVID-19. Nevertheless, the VDR gene SNPs could not be proposed as either independent or dependent risk factors to COVID-19-co-existing conditions, including hypertension, diabetes, asthma, cardiovascular disease, chronic renal disease, and malignancy. Our data showed that some VDR SNPs have a clinical impact on the COVID-19 patients and might be helpful to identify the individuals at high risk of COVID-19 severity in the Iranian population. Moreover, the variations in the prevalence of COVID-19 and its mortality rates among countries may be explained by vitamin D function differed by the VDR polymorphisms. However, the present study is preliminary with partially limited sample size. Thus, further experiments are suggested to identify the role of VDR polymorphisms as the cause-effect of COVID-19 severity in a larger population, in other ethnicities and geographical regions.

Author’s Contributions

Asaad Azarnezhad and Rasoul Abdollahzadeh: Conceptualization, Methodology, Funding acquisition, and Project administration. Mohamad Hossein Shushizadeh, Rasoul Abdollahzadeh, and Asaad Azarnezhad: Data curation, Data interpretation, and Writing- Original draft preparation. Mina Barazandehrokh and Sepideh Chooopani: Data curation, Visualization, Investigation, Reviewing and Editing, and Software. Sahebhek Paknahad, Maryam Pirhoushian, S.Zahra Makani, Razieh, and Zarifan Yeganeh: Data curation, Data Interpretation, Laboratory works, and revising. Ahmed Al-Kateb and Rozoobeh Heidarradzepheilhorough: Reviewing, Editing, Software, Validation, and Revising.

Declaration of competing interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

The authors would like to thank the participants enrolled in this study. The author(s) received no specific funding for this work. We also thank all of the individuals who provided insight and expertise that greatly assisted the research, although they may not agree with all of the interpretations/conclusions of this paper.

References

Abdollahzadeh, R., Fard, M.S., Rahmani, F., Moloudi, K., Azarnezhad, A., 2016. Predisposing role of vitamin D receptor (VDR) polymorphisms in the development of multiple sclerosis: a case-control study. J. Neurol. Sci. 367, 148–151.

Abdollahzadeh, R., Moradi Fordanjan, P., Rahmani, F., Masahyekhi, F., Azarnezhad, A., Mansori, Y., 2018. Association of VDR gene polymorphisms with risk of relapsing-remitting multiple sclerosis in an Iranian Kurdish population. Int. J. Neuropsy. 128 (6), 505–511.

Adir, Y., Humbert, M., Saliba, W., 2021. COVID-19 risk and outcomes in adult asthmatics by the VDR polymorphisms. However, the present study is preliminary – Data curation, Data Interpretation, and Writing- Original draft preparation. Mina Barazandehrokh and Sepideh Chooopani: Data curation, Visualization, Investigation, Reviewing and Editing, and Software. Sahebhek Paknahad, Maryam Pirhoushian, S.Zahra Makani, Razieh, and Zarifan Yeganeh: Data curation, Data Interpretation, Laboratory works, and revising. Ahmed Al-Kateb and Rozoobeh Heidarradzepheilhorough: Reviewing, Editing, Software, Validation, and Revising.

Biesalski, H.K., 2020. Vitamin D deficiency and co-morbidities in COVID-19 patients – A fatal relationship? NFS Journal 20, 10–21.

Bizzozero, I., Antico, A., Fortunato, A., Bizzaro, N., 2017. Vitamin D and autoimmune diseases: is vitamin D receptor (VDR) polymorphism the culprit. Inr. Med. Assoc. J. 19 (7), 438–443.

Brat, G., Pinheiro, L.C., Lutteringer, A.G., Bursman, C.J., Birkenhager, J.C., Pols, H.A., et al., 2000. Consequences of vitamin D receptor gene polymorphisms for growth inhibition of cultured human peripheral blood mononuclear cells by 1,25-dihydroxyv itamin D3. Clin. Endocrinol. 52 (2), 211–216.

Dancer, R.C., Pehle, L., Lex, S., D’Souza, V., Zheng, S., Basford, C.R., et al., 2015. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax 70 (7), 617–624.

De Wit, E., Van Doremanen, N., Falgout, D., Munster, V.J., 2016. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14 (8), 523.

Dickinson, J.L., Perera, D.I., Van der Meij, A., Poonpony, A.-L., Polanowski, A.M., Thomson, R.J., et al., 2009. Fast environmental sun exposure and risk of multiple sclerosis: a role for the Gx-2 Vitamin D receptor variant in this interaction. Mult. Scler. J. 15 (5), 563–570.

Elahi, M., Bhanji, R.A., Mazurak, V.C., Lytwynak, E., Mason, A., Caza, J.A., et al., 2019. Severe vitamin D deficiency is a prognostic biomarker in autoimmune hepatitis. Aliment. Pharmacol. Ther. 49 (2), 173–182.

Fang, Y., Van Meurs, J.B., Bergink, A.P., Hofman, A., Van Duijn, C.M., Van Leeuwen, J.P., et al., 2003. Gx-2 polymorphism in the promoter region of the human vitamin D receptor gene determines susceptibility to fracture in the elderly. J. Bone Miner. Res. 18 (9), 1632–1641.

Faul, J., Kerley, C., Love, B., O’Neill, E., Cody, T., Torrey, W., et al., 2020. Vitamin D Deficiency and ARDS after SARS-CoV-2 Infection.

Friederiksen, B., Liu, E., Romanos, J., Steck, A., Yin, X., Kroehl, M., et al., 2013. Investigation of the vitamin D receptor gene (VDR) and its interaction with protein tyrosine phosphatase, non-receptor type 2 gene (PTPN2) on risk of islet autoimmunity and 1 type diabetes: the Diabetes Autoimmunity Study in the Young (DAISY). J. Steroid Biochem. Mol. Biol. 133, 51–57.

Ghodsi, M., Keshikar, A.A., Razi, F., Mohammad Amoli, M., Nastli-Esfahani, F., Zarrabi, F., et al., 2021. Association of vitamin D receptor gene polymorphism with the occurrence of low bone density, osteopenia, and osteoporosis in patients with type 1 diabetes. J. Diabet. Metab. Dis. 1, 1–4.

Gomez, J., Albicata, G.M., Garcia-Clemente, M., Lopez-Larrea, C., Amado-Rodriguez, L., Lopez-Alonso, I., et al., 2020. Angiotensin-converting enzymes (ACE, ACE2) gene variants and COVID-19 outcome. Gene 762, 145102.

Grant, W.B., Labore, H., McDonnell, S.L., Baggery, C.A., French, C.B., Aliano, J.L., et al., 2020. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 12 (4), 988.

Grasselli, G., Zangrillo, A., Zanella, A., Antonelli, M., Caboni, L., Castelli, A., et al., 2020. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA 323 (16), 1574–1581.

Halsall, J., Osborne, J., Potter, L., Pringle, J., Hutchinson, P., 2004. A novel polymorphism in the 1A promoter region of the vitamin D receptor is associated with altered susceptibility and prognosis in malignant melanoma. Br. J. Cancer 91 (4), 765–776.

Harishanker, M., Selvaraj, P., 2017. Influence of Gx2 and Tx2 gene variants on vitamin D modulated intracellular trogocite positive T-cell subsets in pulmonary tuberculosis. Clin. Ther. 39 (5), 946–957.

Henry, B.M., Lippi, G., 2020. Chronic kidney disease is associated with severe coronavirus disease 2019 (COVID-19) infection. Int. Urol. Nephrol. 1–2.

Hou, Y., Zhao, J., Martin, W., Kallianpur, A., Chung, M.K., Jehi, L., et al., 2020. New insights into genetic susceptibility of COVID-19: an ACE2 and Tmprss5 polymorphism analysis. BMC Med. 18 (1), 1–8.

Hribar, C.A., Cobbold, P.H., Church, P.C., 2020. Potential role of vitamin D in the elderly during COVID-19 and to slow progression of Parkinson’s disease. Brain Sciences 10 (5), 284.

Hussain, T., Naushad, S.M., Ahmed, A., Alamery, S., Mohammed, A.A., Abdelkader, M.O., et al., 2019. Association of vitamin D receptor TaqI and Apal genetic polymorphisms with nephritis and end stage renal disease: a meta-analysis. BMC Med. Genet. 20, 1–8.
K-i, Miyamoto, Kesterson, R.A., Yamamoto, H., Taketani, Y., Nishiwaki, E., Tatsumi, S., Ovsyannikova, I.G., Dhiman, N., Haralambieva, I.H., Vierkant, R.A., O'Laplana, M., Royo, J.L., Fibla, J., 2018. Vitamin D receptor polymorphisms and risk of Klein, I.A., Rosenberg, S.M., Reynolds, K.L., Zubiri, L., Rosovsky, R., Piper-Vallillo, A.J., Organization WH, 2020. Clinical Management of COVID-19: Interim Guidance, 27 May 2020. Pranata, R., Lim, M.A., Huang, I., Raharjo, S.B., Lukito, A.A., 2020. Hypertension is associated with increased mortality and severity of disease in COVID-19 pneumonia: a systematic review, meta-analysis and meta-regression. J. Renin-Angiotensin-Aldosterone Syst. 21 (2).

Sarabzadeh et al. 2021. Impact of cancer history on outcomes among hospitalized patients with COVID-19. Oncologist 26 (8), 685–693.

Kong, J., Zhu, X., Shi, Y., Liu, T., Chen, V., Khan, I., et al., 2013. VDR attenuates acute lung injury by blocking Ang-2/Tie2-parathyroid and renin-angiotensin system. Mol. Endocrinol. 27 (12), 2116–2125.

Kostner, K., Denzer, N., Mueller, C.S., Klein, R., Tilgen, W., Reichrath, J., 2009. The relevance of vitamin D receptor (VDR) gene polymorphisms for cancers: a review of the literature. Anticancer Res. 29 (9), 3515–3536.

Kunadian, V., Ford, G.A., Bavamia, B., Gnu, W., Manso, J.E., 2014. Vitamin D deficiency and coronary artery disease: a review of the evidence. Am. Heart J. 167 (3), 283–291.

Laplama, M., Royo, J.L., Fibla, J., 2018. Vitamin D receptor polymorphisms and risk of en sequel virus infection: a meta-analysis. Gene 678, 384–394.

Latini, A., Agolini, E., Novelli, A., Borgiani, P., Giannini, R., Gravina, P., et al., 2020. Clinical outcomes of COVID-19 patients in the hospital. Genes 11 (1), 1010.

Lee, S.C., Son, K.J., Han, C.H., Jung, J.Y., Park, S.C., 2020. Impact of comorbid asthma on severity of coronavirus disease (COVID-19). Sci. Rep. 10 (1), 1–9.

Liu, J., Zhang, S., Wu, X., Long, F., Dong, X., Li, G., et al., 2020. Clinical outcomes of COVID-19 in Wuhan, China: a large cohort study. Ann. Intensive Care 10 (1), 1–21.

Ma, J., Stamper, M.J., Gani, P.H., Hough, H.L., Giovannucci, E., Kelsey, K.T., et al., 1997. Vitamin D receptor polymorphisms and diseases. J. Steroid Biochem. Mol. Biol. 65, 384–390.

Mehrabani, S.Z.N., Shushizadeh, M.H., Abazari, M.F., Aleagha, M.N., Ardalan, A., et al., 2015. Association between prehospital vitamin D status and incident acute respiratory failure in critically ill patients: a retrospective cohort study. BMJ Open Respir. 2 (1).

Mezzetti, P., Vainion, S., Neme, A., Hekkinen, S., Carlberg, C., 2014. Patterns of gene polymorphisms involved in SARS-CoV-2 entry into the host cells. Genes 11 (9), 1010.

Mehran, S.Z.N., Shushizadeh, A.H., Abazari, M.F., Aleagha, M.N., Ardalan, A., et al., 2020. Clinical outcomes of COVID-19 in Wuhan, China: a large cohort study. Ann. Intensive Care 10 (1), 1–21.

Mael, K., Denzer, N., Smolander, L., Huttun, B., Little, J., 2014. Vitamin D receptor (VDR) polymorphisms and severe RIV bronchiolitis: a systematic review and meta-analysis. Pediatr. Pulmonol. 49 (8), 790–799.

Mehrabani, S.Z.N., Shushizadeh, M.H., Abazari, M.F., Aleagha, M.N., Ardalan, A., Abdollahzadeh, R., et al., 2019. Association of SHMT1, MAZ, ERG, and LSM1BT3 gene polymorphisms with susceptibility to multiple sclerosis. Biochem. Genet. 57, 5 (3), 357–360.

Mezler, D.O., Best, T.J., Zhang, H., Vokes, T., Arora, V., Solway, J., 2020. Association of Vitamin D deficiency and treatment with COVID-19 incidence. medRxiv.

Mendy, A., Apewokin, B., Int. J. Infect. Dis. 94 (11), 1243–1249.

Xi, X., Wang, X., Wang, X., Zhang, Q., Zhang, H., 2017. Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin-angiotensin system. Respir. Res. 18 (1), 57.

Xi, Z., Shi, S., Wang, Y., Zhong, J., Huang, L., Zeng, C., et al., 2020. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 8 (4), 420–422.

Yancy, C.W., 2020. COVID-19 and African Americans. JAMA 323 (19), 1891–1892.

Yang, J., Zheng, Y., Guo, X., Pu, K., Chen, Z., Gao, Q., et al., 2020. Prevention of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int. J. Infect. Dis. 94, 91–95.

Zhang, J., McCullough, P.A., Tecson, K.S., 2020a. Vitamin D deficiency in association with endothelial dysfunction: implications for patients with COVID-19. Rev. Cardiovasc. Med. 21 (3), 339–344.

Zhang, J., Huang, H., He, T., Laby, S., Hernandez, A.V., Chen, H., et al., 2020. Clinical characteristics and outcomes of COVID-19 infected cancer patients: a systematic review and meta-analysis. J. Natl. Cancer Inst. 112 (3), 133–134.

Zhang, Z., Yanz, J., Chen, J., Luo, Q., Zhang, Q., Zhang, H., 2017. Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin-angiotensin system. Mol. Med. 23 (16), 7432–7438.

Zhu, J., Shi, L., Wang, Y., Zhang, J., Huang, L., Zeng, C., et al., 2020. World Health Organization declares global emergency: a review of the novel coronavirus (COVID-19). Int. J. Surg. 76, 71–76.