New and emerging forms of data and technologies: literature and bibliometric review

Petar Radanliev1 & David De Roure1

Received: 30 May 2021 / Revised: 26 February 2022 / Accepted: 2 July 2022 /
Published online: 30 July 2022
© The Author(s) 2022

Abstract
With the increased digitalisation of our society, new and emerging forms of data present new values and opportunities for improved data driven multimedia services, or even new solutions for managing future global pandemics (i.e., Disease X). This article conducts a literature review and bibliometric analysis of existing research records on new and emerging forms of multimedia data. The literature review engages with qualitative search of the most prominent journal and conference publications on this topic. The bibliometric analysis engages with statistical software (i.e. R) analysis of Web of Science data records. The results are somewhat unexpected. Despite the special relationship between the US and the UK, there is not much evidence of collaboration in research on this topic. Similarly, despite the negative media publicity on the current relationship between the US and China (and the US sanctions on China), the research on this topic seems to be growing strong. However, it would be interesting to repeat this exercise after a few years and compare the results. It is possible that the effect of the current US sanctions on China has not taken its full effect yet.

Keywords New and emerging forms of data · Literature review · Bibliometric review · Spatiotemporal data · Time-stamped data · Open data · Real-time data · High-dimensional data

MSC classification codes 68 M11 (Internet topics).

JEL classification codes L86 (Information and Internet Services) · C23 (Spatio-temporal Models) · C55 (Large Data Sets) · C8 (Data Collection and Data Estimation Methodology)

* Petar Radanliev petar.radanliev@oerc.ox.ac.uk

1 Oxford e-Research Centre, Department of Engineering Sciences, University of Oxford, Oxford, UK
1 Introduction

Traditionally, multimedia was related to a form of communication that combines data forms such as text, audio, images, animations of video in an interactive presentation. In this article, the term multimedia is related to new and emerging forms of interactive communications, build upon new and emerging types of data, analytics and visualisation techniques.

Traditional media data structures followed a simple and purpose specific design, storing relational databases in a tabular row and column. Modern multimedia data structures follow polymorphic design, where data entries from IoT apps, web sites, social networks, mobile devices, enhanced with artificial intelligence (AI), is coupled with object-oriented programming. Polymorphous data structures, stored as objects with nested elements, can change fast when new analytical features are built in dynamic new media for data analytics.

Big data usually includes terabytes or even zettabytes of structured, semi-structured and unstructured data, generated by human-machine interactions and processes. AI with deep learning (DL) and machine learning (ML) algorithms can analyse big data and derive understanding on events that occurred, and/or as they happen in real-time, and even forecast future events, enabling decisions on strategic directions. Traditional relational databases would struggle to fit, capture, manage, and process big data with low latency. There are many examples of when low-latency is desired [12], e.g. low-latency online gaming enables more realistic environment e.g., metaverse, or in high-frequency trading where trades are executed automatically with optimised algorithms capturing changing market prices. More recent example is the use of different media (e.g., wearables, social platforms) for the COVID-19 digital monitoring and decision making.

The aim of this article is to present a comparative study of qualitative and quantitative review of new and emerging forms of data and the application of such data with new and emerging technologies. The objective is to identify recent state-of-the-art in spatiotemporal data, time-stamped data, open data, real time data, and high-dimensional data. The second objective is to identify how new types of data are used with AI (ML/DL). The gap identified and researcher in this article is the application of new technologies to new types of data, to resolve contemporary problems, such as Covid-19.

This article consists of a literature review section, which also includes a review of research methodologies. Followed by a bibliometric study, comparison of results between the qualitative review and the quantitative study. Results and analysis section, and a conclusion section.

2 Literature review – Qualitative survey of literature

2.1 Processes that generate new forms of data: Data acquisition

New and emerging forms of data (NEFD) are very different types of multimedia data (e.g. transactions, registrations, internet, tracking, image), that are broadly grouped into the NEFD category. NEFD are collected from different types of connectivity. The coverage and bandwidth capabilities of different types of connectivity, mean that some NEFD (e.g. 5G), have longer range but require high energy consumption at handsets,
while other NEFD (e.g. 6LoWPAN and WirelessHART) cover short communication range [16]. This means that these technologies would not be sustainable in Industrial internet of things (IIoT), because of low are coverage, or high energy consumption. But the internet of things (IoT) communications are based on a very diverse set of multimedia data sharing:

- Low Power Wide Area Networks (LPWANs) is a long-range communication that relies on small, cheap batteries that can last for years. LPWANs can connect to most IoT sensors, and are used for remote monitoring, smart metering, and many other functions that can operate with small blocks of data at a low rate. There are licensed LPWANs (NB-IoT, LTE-M) and unlicensed LPWANs (e.g. MYTHINGS, LoRa, Sigfox etc.).
- Mobile (5G) is a high-speed and ultra-low latency connection, best suited for autonomous vehicles and augmented reality, real-time video surveillance, real-time mobile connected health, and time-sensitive industrial automation.
- Zigbee wireless standard (IEEE 802.15.4) is used in short-range (<100 m), low-power, mesh protocol, (similar to e.g. Z-Wave, Thread etc.).
- Bluetooth Low-Energy (BLE) is commonly integrated into fitness and medical wearables and smart home devices and data is visualised on smartphones.
- Radio Frequency Identification (RFID) uses radio waves to transmit small amounts of data within a very short distance. RFID is mostly used in retail, logistics and supply chains.

In Table 1, the LPWAN (Sigfox, LoRa, Narrowband IoT (NB-IoT)) is most represented technology. LPWAN are low power technologies, with communications range from 1 km to 10 km, and NB-IoT node can last up to 10 years on a single battery life, and support 52,547 connections [16]. The weakness of LPWAN technology is the low data rate of up to 250kps, hence its most suitable as a complimenting technology. With the rise of connected devices using different technologies, distributing code data is becoming an issue. Code data dissemination methods are even considering the idea of vehicles being used in smart cities as communication systems for maximising coverage at low cost [77]. Another issue is that analytical methods and challenges for managing NEFD are also very different. It seems inevitable that artificial intelligence will need to be deployed to resolve many of these issues, especially in smart cities [2]. Deep learning algorithms can process big data at speed and high accuracy, but when the number of hidden layers increases from six, the deep learning process cannot be solved [42]. Some research methods are discussed briefly in the text below, just to understand how specific data types require very different approaches for analytics.

2.2 Types of social science research done using NEFD

2.2.1 Social science research using NEFD from IoT devices

The IoT generates, stores and processes real time big data that is offloaded and executed in centralised and decentralised data centres, e.g. cloud and edge servers. One of the main challenges of this process is optimising the execution time (i.e. low latency) and lowering energy consumption. To resolve these challenges, a computational offloading
method is proposed for IoT cloud-edge computing [82]. Similar methods are designed for improving energy efficiency and increasing trust in IoT data, based on avoidance of unnecessary and untrustworthy data [79]. Similar technological solutions are enhancing the role of big data analytics from IoT and the Industrial IoT (IIoT), with enhancements for (1) industrial time series modelling; (2) intelligent shop floor monitoring; (3) industrial microgrids; (4) monitoring machine health; (5) intelligent predictive and preventive maintenance [68].

2.3 New methods involving NEFD as a tool for public engagement

2.3.1 Social media data as an alternative to traditional survey data

There is an increasing interest in data from social media e.g. Twitter, being used to supplement and/or substitute survey data. Studies as early as 2008 showed a strong correlation between the ‘sentiment of tweets containing the word “jobs” and survey-based measures of consumer confidence’, but a more recent study on tweets as an alternative to survey responses, showed lack of evidence and concluded that the 2008 data was a ‘chance occurrence’ [13]. One of the possible explanations presented in the study was that Twitter has become mainstream and the text has evolved into a modern language that differentiates from the original sentiment. But even after adjustments for the language differences, the correlation from 2008 could not be reproduced for recent years.

Other studies show alternative viewpoint. Different methodological approach, using Facebook and Twitter data, has shown that data collection from 1000 participants, without any survey data, can provide effective forecast scores for millions of people [83]. Twitter ‘sentiment’ has also been used to replace customer satisfaction surveys, and the social media approach was found advantageous over survey data [29]. Social media showed stronger potential than survey data, because of dynamic feedback showing reactions to new and product releases. The social media approach was determined to offer a continuous, automated and lower cost feedback process, that added new insights that were not recorded in annual survey data [29].

Social media data was also found as more beneficial than survey data in visitor monitoring of a national park in Finland [30]. The main benefits of social media data vs survey data are stated as the continuous real-time data on visitor’s behaviour and preferences. Even without

Table 1	Wireless connections for IoT endpoints				
Communication Technologies:	LPWAN	5G	Zigbee	BLE	RFID
IoT endpoints:					
IIoT	*	**	**		
Smart meter	*				
Connected health	*				
Smart agriculture	*				
Wearables	**	*			
Smart building	*	**	**		
Tracking	**	*	**	*	

*widely used
**somewhat used
asking any questions, the geotagged social media content provides sufficient data about who
the visitors are, their activities, where in the park they went, among many other things.
Geotagged social media data was also found useful in finding spatio-temporal activity patterns
in areas where visitor monitoring was not taking place.

2.3.2 Big data as an alternative to traditional survey data

Big data is less costly and readily available, while survey data collection is slow and
expensive, but the most promising outcome is to integrate both data sources [44]. The
argument for integrating the low cost big data with the survey abilities to address specific
questions with precise official statistics [20]. Nonetheless, the traditional value of survey
data is diminishing with the declining survey participation, and in the future, it might be
just one element of information data, which would comprise of different sources,
including records and big data [55]. There is an argument that the survey research
method, and the discipline of survey methodology, have adapted to technological
innovations and will continue to evolve [15]. Because they represent strong and adaptable
tools, supported by established theory and extensive evidence. Some studies applied
manual grounded theory approach for improvement of computationally data driven
intensive theory [8]. It is possible than survey methods would also evolve into the digital
world by applying similar approach.

2.4 Background study for ML and DL in healthcare

In recent years (especially since the emergence of Covid-19), ML/DL approaches have been
used extensively in healthcare settings. In this section we list some of the unexpected emerging
innovations from the Covid-19 pandemic. Tables 2 and 3.

3 Types of NEFD – Bibliometric (statistical) review of data records

3.1 Spatiotemporal data

Spatiotemporal data includes location and time of individual events, enabling analysis of
how events change in physical locations, e.g. changes in population over time; tracking
objects in motion. Spatiotemporal data can be used for identifying caused in the past of anomalies that occur or become visible in a different time, e.g. time stamp of product anomaly, compared with production time of the same product. Spatiotemporal data can be analysed for building interactive visual analytics and show abstract view of data points in similar and different regions. Spatiotemporal data can be used to analyse data from localised areas, or to map spatial distribution in individual regions or to compare regions. GeoBrick [61] is one integrative technique that does all that. Other studies use spatiotemporal data to predict: the urban flow using machine learning [81]; air quality interpolation and visualisation in real-time [46]; cloud-terminal ‘SuperMap’ big data engine [78]; climate summer temperature zones [80]; and even the cholera hotspots in Zambia [58]. Spatiotemporal data models are used in various studies, including self-sustainable IoT networks that harvest energy from cellular network [7], and vehicle trajectory data in smart city [85]. Figures 1, 2 and 3.
Solution	IoT devices	IoT Gateway	Algorithm	Health condition	Year	Authors
Ambient Living	Microcontrollers: NodeMCU, Arduino,	Zigbee, Zwave, Wi-Fi or LoRa gateway	Blockchain	Covid-19, heart disease, and diabetes.	2021	[59]
IoT cyber-attacks and anomaly detection	N/A - IoT system failure as a result of denial of service, data type probing, malicious control, malicious operation, scan, spying and wrong setup	N/A	Logistic regression, support vector machine, decision tree, random forest, and artificial neural network.	N/A – Cyber-attacks and anomaly detection	2019	[28]
Solution	Tools	Dataset	Algorithm	Health condition	Year	Authors
Diagnose and treat Covid-19	Automatic extraction of features from X-ray images	Collection of 4575 X-ray images, including 1525 images of Covid-19	Convolutional neural network (CNN) and long short-term memory (LSTM)	Covid-19, pneumonia	2020	[35]
Predictive analytics on Covid-19 recovery	Predictive data mining	Epidemiological dataset of COVID-19 patients of South Korea	Decision tree, support vector machine, naive Bayes, logistic regression, random forest, and K-nearest neighbor	Covid-19 recovery	2020	[57]
Breast Cancer prediction	10-fold cross validation	UCI machine learning repository	Support vector machine and K-Nearest neighbors	Breast Cancer	2017	[34]
Covid-19 detection	CT and X-ray samples	Data collected from medical imaging samples	Deep Neural Networks	Covid-19	2021	[39]
Diabetes prediction	Five-fold cross-validation	Pima Indian Diabetes (PID) data CCTV cameras	Deep Neural Networks	Diabetes	2019	[71]
Facial mask detection	Image Pre-processing	Statlog and Cleveland heart disease dataset	Logistic regression, support vector machine, deep neural network, decision tree, naive bayes, random forest, and k-nearest neighbor	Covid-19	2020	[66]
Heart Disease Prediction	Computational intelligence			Coronary Artery	2020	[5]
Classification of liver disorder	10-fold cross validation	BUPA liver dataset	Random forests and artificial neural networks	Liver disorder	2018	[27]
Automatic Covid-19 detection system	EMCNet	X-ray images	Convolutional neural network, random forest, support vector	Covid-19	2021	[72]
Solution	IoT devices	IoT Gateway	Algorithm	Health condition	Year	Authors
---------------------------------	------------------------------------	---	---	------------------------	------	---------
Breast cancer prediction	Comparative Study	Wisconsin Breast Cancer dataset	machine, decision tree, and AdaBoost	Breast cancer	2020	[36]
			Support vector machine, K-nearest neighbors, random forests, artificial neural networks and logistic regression			
Covid-19 management	Literature review	IEEE Xplore, PubMed, Google Scholar, Research Gate, and Scopus	Linear Regression, Multi-Layer Perceptron, Vector Auto-Regression,	Covid-19	2021	[67]
Covid-19 diagnosis	Review	Real-time data	VGG19, DenseNet121, InceptionV3, and Inception-ResNetV2	Covid-19	2020	[4]
	Combined architecture for computational intelligence	X-ray images	Convolutional Neural Network, Long Short-Term Memory, and Auto-encoder based systems	Fall detection e.g., elderly	2020	[37]
Accidental falls	10-fold cross-validation	Accelerometers, gyroscopes, RGB cameras, radars	Convolutional Neural Network, Long Short-Term Memory, and Auto-encoder based systems	Fall detection e.g., elderly	2020	[37]
Human-Computer Interaction	Review	State-of-the-art	Informative comparison	Emotion recognition	2021	[40]
Human-Computer Interaction	EEG Channel Correlation	Pearson’s Correlation Coefficients (PCC) of alpha, beta and gamma sub-bands	Convolutional Neural Network	Emotion recognition	2021	[41]
Human-Computer Interaction	Webcam of RGB subtracted images	Haar cascade classifier	YCrCb skin segmentation	Hand movement	2020	[38]
Cancer identification	Social-behavioural factors	UCI machine learning repository	Decision tree, random forest, and xgboost	Cervical cancer growth	2021	[1]
Monitor the electrical behaviours of the devices in real-time	Support Vector Machine and Decision Tree	KDD Cup 1999, SEQUOIA 2000	Density-Based Spatial Clustering of Applications with Noise,	Protect electronic devices	2019	[18]
Hepatocellular Carcinoma	SMOTE	XGBoost classifier	Machine learning	Patient’s survival prediction	2021	[23]

All of the NEFD that are used in the remaining part of this study can be collected from the Web of Science core Collection. This can be done for any country in the world, e.g., UK or USA and could also be done on a cumulative global level.
3.2 Time-stamped data

Time-stamped data is common in collecting user behaviour data and contains sequences of even time when data point was captured, or processed time when data point was collected. Time-stamped data enables understanding, predicting, and estimating individual actions over time, though journey analysis, individuals’ steps taken and changes in time and responses. Time-series databases require data storage that can serve the execution of smart infrastructure queries, but cloud-based time-series storage can be expensive. With the increasing computing power and memory in connected devices, time-series data storage and analytics can be moved to the edge with distributed hash tables (DHT) [48]. Edge computing enables different types of predictive analytics, including big data driven predictive catching in mobile wireless networks (MWN) at the wireless edge [10]. Different types of time-stamped data analytics (e.g. IoT, edge, fog and cloud [22]) can also be integrated to analyse the spatio-temporal mobility data.

NEFD	Data marketplace	Cloud-edge	SCADA	MES	ERP	CRM	Healthcare
Blockchain	[6, 9, 43, 50]						
AI/ML	[56, 73]	[42]					
Smart cities	[62]	[2]					
Edge computing	[56]	[79, 82]					
Blockchain joint cloud	[32]						
IoT	[75]	[68]	[68]	[68]	[68]		
Digital single market.	[25]						

In short, NEFD is found in almost all new technologies, as listed in Table 3.

[48] = https://snappydatainc.github.io/snappydata/

Fig. 1 By country research output by key topics – search parameters (social networks AND spatiotemporal data)
(GPS logs), to predict locations of moving agents in real time, e.g. Mobi-IoST [24]. Edge computation is considered as speed-up over cloud computation, which could be of advantage in assessment based on street level data for on-edge traffic congestion [51]. Cloud computations on the other hand have proven abilities to obtain a \textit{‘time synchronization accuracy below 0.1 ms’} in estimating the accuracy of remote virtual machines for accurate time synchronisation in the Industrial IoT [69].

![Annual Scientific Production](image)

Fig. 2 Same search parameters – number of publications are dropping in 2018, 2019 and 2020

![By country research output by key topics](image)

Fig. 3 By country research output by key topics – search parameters (social networks AND time-stamped data)
3.3 Open data

Open data is free for everyone to use, and it has been used for many different purposes. For example, Open Spending App\(^1\) that tracks government spending worldwide in a standardised format, Elgin\(^2\) provides real-time data on roadworks in the UK, and DataViva\(^3\) delivers multiple visualisations on the Brazilian economy. There are many examples of open data usage. But so far, open aggregation of anonymised values, trends or analytics from private data, without disclosing sources, presented as open data, and used for commercial purposes, is only present in academic techniques. Given the increased EU wide regulations on personal data usage, tech companies that are built upon data security, seem reluctant to engage in public commercial usage of anonymised private data presented as open data. In addition, some data is extremely difficult to use, such as unverified outdated data. Unverified data is classified as collected data entries, without understanding of relevance, value, accuracy, or even if it’s the correct data entry. One way of describing outdated data is when the evidence changes, but the data entries do not change. Using unverified outdated data could cause more damage than conducting analysis with no data Figures 4 and 5.

In addition to unverified outdated data, there is also dark data. Dark data is dormant data that is collected, processed, and stored during some form of regular activity, but it’s not used

\(^1\) https://openspending.org/
\(^2\) https://www.elgintech.com/
\(^3\) http://dataviva.info/en/
for any purpose, and is kept as a dormant digital information asset. Dark data is often collected and stored as operational data. Companies collect and store application logs and metrics, events data, and information from third parties and microservices applications. Operational analytics is usually focused on how to turn that data into insights. The real question should be how to reverse engineer operational data metrics into a data strategy mindset of getting the right information from the start. Data strategy should include rethinking of what constitutes datasets and creating new possibilities for working with data. According to IBM, companies analyse only 1% of their data, and over 60% of the data collected loses value immediately. Dark data is different from unverified outdated data, but most of the dark data is unstructured and difficult to analyse.

The Open Data Institute argues that open data is only useful if it’s easy to understand, and can be tracked back to its origin, hence should be shared in standardised format. However, for open data to be more valuable, people need to trust in different interpretation of open data. Technologies such as the secure multi-party computation (also known as privacy-preserving computation), and differential privacy, could enable a broader interpretation, based on trust in privacy preserving technologies.

More work needs to be done on identifying and promoting the benefits for private companies to start sharing open data. One example on how this could be taken forward is the PETRAS-IoT Data Management and Sharing Infrastructure (PEDASI) as a concept for a secure and legally trustworthy brokerage framework [26]. The PEDASI provides architecture for user, data and applications secure access to decentralised combined edge data sources. Similar privacy-preserving computation and differential privacy architectures can result with a significant increase in new data from IoT devices.
and edge computing. Edge devices with high computational power can be enhanced with AI embedded autonomous and remote controlled edge processing, while low computational power, data could be sent to a server as an image, or through a real-time media stream [56].

Different example of promoting open data sharing is to identify open access machine data, and to promote the development of a ‘digital single market’ [25]. Machine data can be explained as a byproduct of everyday activities, e.g. data from mobile phone calls, driving connected cars, computer logs, etc., produced in unpredictable formats and often ignored. Although the term is in use for over 50 years, the rise of IoT brings new light for analysing data near real-time. Edge analytics for example enables automated analytical computation, at the point of collection.

3.4 Real-time data

Real-time data is becoming of ever-increasing relevance with the rise of edge analytics and 5G technology. The instant and immediate analytics of data creates value in different domains, mostly in the domain of smart cities. Real-time data is most valuable in crucial infrastructure e.g. emergency services, traffic control. But real-time data also has strong value in commercial events, e.g. marketing and advertising delivered at the precise moment, based on location and preferences Figure 6.

Fig. 6 Same search parameters as in Fig. 5 – collaboration network – from the 500 most relevant articles on WoS
Real-time data is also used for monitoring and securing crucial systems producing high-dimensional data, where timely detection of abnormal data is crucial. For timely detection of abnormal data, a scalable algorithm is proposed that enables real-time nonparametric anomaly detection in high-dimensional settings [49], through ‘Geometric Entropy Minimization’. Figs. 7 and 8.

Fig. 7 Analysis - UK seems more represented than China in the 500 most relevant articles on WoS

Fig. 8 USA has strong presence in the collaboration network on real-time data analysis
3.5 High-dimensional data

High-dimensional data is defined as a high number of dimensions, in which the number of features exceeds the number of observations. For example, industrial high-dimensional big data reliability is studied and compared with a multi-method approach [52]. If we can analyse high-dimensional data, the research potential with is enormous. High-dimensional data has been used recently for IoT based smart farming in India [45], by applying improved genetic algorithm for extreme learning machine (IGA-ELM). High-dimensional data is also used in: finance, high resolution imaging, facial recognition technologies, etc.

High-dimensional data contains rich information, but also presents challenges in analysis and visualisation, while mapping high-dimensional data into lower-dimensional spaces often leads to information loss, unless multidimensional scaling (MDS) is performed [76]. A new data visualisation method called TMAP, enables visualisation of very large high-dimensional data sets as minimum spanning trees [63]. While for predictive analytics, a Bayesian framework for function-on-scalars regression proposed with many predictors [47].

The increased application of high-dimensional data from IoT, fog and cloud computing, has created many privacy concerns. Differential privacy preserving has emerged as a method to introduce noise and confuse adversaries by mixing sensitive input with noisy results. However, differential privacy has been criticised for poor utility and high complexity, caused by introducing noise to already complex high-dimensional data. A new compressed sensing mechanism (CSM) has been proposed to provide more accurate results [84], for differential privacy preserving. Figures 9 and 10.

4 Comparison results and discussion: An overview of the international landscape

The response to NEFD around the world is conflicted between the values and erosion of privacy. Some authors have expressed significant concerns about the appropriation of big data,
and even compared the capture of social data to ‘nothing less than a new social order, based on continuous tracking, and offering unprecedented new opportunities for social discrimination and behavioral influence’ [14]. Similar text call for disconnecting from the ‘cybernetic loop’, because even a google search reveals our intentions, and we should ‘fight...against the rise of intelligent machines’ [31].

Other authors have focused on the more practical aspect and values of NEFD, such as smart health and monitoring, and promoted advancements towards ‘autonomous wearable sensing for Internet of Things using big data analytics’ [19]. Educational research has called for the implementation of big data in education [17].

The collaborative map in Fig. 11 shows very weak connection between the US and UK in this area. The results are derived by the following search terms (i.e. we searched the Web of Science Core Collection): ALL FIELDS: (“Emerging Data”). This search produced 147 results, refined by: RESEARCH AREAS: (AUTOMATION CONTROL SYSTEMS OR BEHAVIORAL SCIENCES OR COMPUTER SCIENCE OR ARTS HUMANITIES OTHER TOPICS OR INSTRUMENTS INSTRUMENTATION OR PHYSICS OR SOCIOLOGY OR MATHEMATICS OR INFORMATION SCIENCE LIBRARY SCIENCE OR TELECOMMUNICATIONS OR COMMUNICATION). To check if these results are caused by the search terms, we searched the Web of Science Core Collection again for: ALL FIELDS: (“Emerging Data”), Timespan: Last 5 years, but without the filtering. This produced 1775 results. Figures 12 and 13.

4.1 IoT data marketplace

IoT data marketplaces with built in artificial intelligence, machine learning and edge computing enable device owners to sell their data [73]. IoT data is securely collected, stored, shared and sold in marketplaces,\(^\text{10}\) with an increased focus on IoT data quality [53]. Concepts for

\(^{10}\) https://data.iota.org/#/
blockchain enhanced global data marketplaces, based on smart contracts, are already in development [6, 9, 50]. IoT and blockchain are the two disruptive technologies associated most frequently in recent literature on smart cities [62]. Relevant questions have also been answered on the abilities of data providers to fulfil the data collection in on-demand decentralised marketplaces [60]. IoT data in marketplaces is usually distributed in real-time, or stored in the cloud for future sale, and cloud server storage creates a single point of failure. To prevent risk from this single point of failure, the concept of ‘jointcloud’ is proposed, and data trade is supported with blockchain [32]. To achieve trust, transparency and non-reputability in a decentralised IoT marketplace with a limited trust, smart contracts can be used to mediate among trading brokers, data producers and consumers [6]. IoT data marketplaces are trying to securely monetarise data, and that requires development of strong reputation systems, hence the increased reference to blockchain in IoT data marketplaces [43]. The monetising of various IoT data, also requires different pricing mechanisms that ensure maximum value in different market settings [54]. Smart cities generate vast amount of sensor data among various different types of data from IoT devices captured in diverse data formats. This data needs to be transformed before sharing and loading [65]. Creating marketplace of services in smart community could be one method for synthesising and aggregating data resources that could be shared among different sets of open communities [21].
However, there are ethical limits of blockchain enabled marketplaces for IoT private data, and a lack of careful consideration of the techno-economic impact, could result with the opposite effect, leading to ‘the erosion of privacy for IoT users’ [33]. The concern is that even in a transparent private data market, we cannot be certain if the evaluation of diminishing data privacy reflects the established norms on privacy. The limitations of a traditional IoT and blockchain can be partially addressed with a permissioned demand driven analytics, enabling data democracy in the data supply chain [70].

Fig. 12 Analysis of the updated results - US seems to be leading in NEFD

Fig. 13 Different search, similar results like the previous Fig. 11 – weak collaboration between UK and US, – despite the news media coverage, the US seems to be working closer with China in this area
4.2 Major NEFD research infrastructure initiatives and their impact

Existing enterprise based NEFD infrastructures include (1) supervisory control and data acquisition (SCADA); (2) manufacturing execution systems (MES); (3) enterprise resource planning (ERP) systems; (4) systems, customer relationship management (CRM) systems [68].

5 Results and analysis

5.1 Privacy-preserving data mechanisms for IoT data

Industrial IoT (IIoT) sensing as a service models suggest that industries are losing significant value from inadequate data sharing, which is usually caused by lack of property rights enforcement and relevant pricing models [75]. A new dynamic pricing mechanism, based on reinforcement learning, has been proposed for intelligent IoT data pricing [74]. Blockchain technology called ‘sensor data protection system’ (SDPS) has been proven successful in a tamper resistant IoT sensor data gathering, processing and exchange [11]. The main evaluation criteria for the SDPS is based on (1) tamper resistant in all stages of processing; (2) privacy preserving of the data owner; (3) capabilities to handle big data; and (4) economic feasibility of protection outweighing the cost. The use case study found that blockchain technology for security IoT sensor data, cannot assure tamper-proof without additional cross-validation, neither could assure data privacy without additional privacy such as IoT access control management [64]. Therefore, data protection should be implemented early in the processing, and hybrid blockchain is needed for certified data scaling, but economic feasibility is possible.

5.2 Findings on NEFD privacy preserving

With the rise of Bitcoin in 2009, we have seen a fast emergence of various blockchain technologies, which currently stand at over 17,000 on CoinMarketCap. While some analysts have been sceptical of blockchains and crypto in the past, the volume of new technologies can no longer be ignored. Since Covid-19, the world has increased the adoption of new technologies, such as virtual reality and the metaverse, which support the further adoption of blockchain technologies. In Table 4 below, we list some of the recent security solutions based on blockchain technologies.

Table 4 NEFD and security

NEFD privacy preserving	IoT sensor data	IoT data marketplace	IIoT sensor data	References
Privacy preserving blockchain	x			[11, 70]
Blockchain data marketplace	x			[6, 9, 32, 43, 50, 60, 62]
Data property rights enforcement	x			[75]

Blockchain technologies seem to be predominating the security literature. We found state-of-the-art solutions in privacy preserving, data preserving and rights enforcements.
5.3 Findings on NEFD analytics methods

The marketplace in different countries can be compared with the following NEFD categories—as listed in Table 5. We included some of the existing solutions, but we imagine these solutions are constantly on the rise. In not very distant future, we can imagine blockchain technologies contributing to the rise of digital decentralised marketplaces for NEFD.

6 Conclusion

This article conducted a literature review and bibliometric analysis on NEFD. The qualitative literature review engages with search of the most prominent journal and conference publications on this topic and produces some interesting insights on new methods involving NEFD as a tool for public engagement. The qualitative review outlines the processes that generate new forms of data (i.e. data acquisition) and reviews the types of social science research done using NEFD, including the social science research using NEFD from IoT endpoints. The qualitative review derives new methods involving NEFD as a tool for public engagement, with the use of social media data as an alternative to traditional survey data.
The second part of this article engages with statistical R analysis of Web of Science data records. The data records are searched for a few different types of NEFD data records, including spatiotemporal data, time-stamped data, open data, real-time data, and high-dimensional data. The results are somewhat surprising. By country and research output by key topics – (search parameters: social networks AND spatiotemporal data), confirms that the US and China are leading the research efforts in this area. But the number of publications are dropping in 2018, 2019 and 2020. Second unexpected results emerged from the analysis of country research output by key topics with a slightly edited search parameters: social networks AND time-stamped data. This analysis showed much lower research output from China, with US and Japan at the lead points. Since this result seems in conflict with the first result, we conducted further analysis of the same data records, and we discovered that US, China and UK have individual and isolated collaboration networks. Could this be interpreted that a lack of collaboration between the US and China affects the Chinese scientific output more than the US? We need further data to investigate that question.

The analysis of open data seems to provide some insights into this question. Considering the Chinese policies for open data sharing, we would expect China to be at the leading point of this area. However, the Web of Science data records show that the US is leading in scientific output on open data and the UK is leading in collaborative research on open data. Could this be caused by lack of regulatory compliance in analysing open data between different countries (e.g. EU- GDPR)? Again, we need further data to investigate that question. The statistical analysis of real-time data records presented closer collaboration between US and China, but it also showed that UK is performing strongly in this research area – while not collaborating strongly with either the US or China. The US research dominance changes in the area of high-dimensional data, where China seems to lead strongly – in research output and collaboration.

Finally, we conducted a statistical analysis of the international landscape of research collaborations on NEFD, and the result were again unexpected. The research collaboration between the US and China seems to be growing stronger over the past few years. To eliminate doubts and data bias, we conducted alternative search and we reanalysed the data – just to reach the same results. It appears that politics is not affecting science as much as we expected. However, scientific results (i.e. output) can often take many years and this results need to be reanalysed with updated data records in a few years’ time, to check if the results remain the same.

Acknowledgements Eternal gratitude to the Fulbright Visiting Scholar Project.

Code availability N/A – no code was developed; code was however used for running the R Studio analysis.

Authors contributions Both authors contributed equally. Both authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Dr. Petar Radanliev, and Professor David De Roure. The first draft of the manuscript was written by Dr. Petar Radanliev and both authors commented on previous versions of the manuscript. Both authors read and approved the final manuscript.

Funding This work was funded by the ESRC [grant number].

Data availability all data and materials included in the article.
Declarations

Competing interests On behalf of all authors, the corresponding author states that there is no conflict nor competing interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Akter L, Ferdib-Al-Islam I, Milon M, Mabrook Al-Rakhami S, Haque MR (2021) Prediction of cervical Cancer from behavior risk using machine learning techniques. SN Comput Sci 2021 23(3):1–10
2. Allam Z, Dhunny ZA (2019) On big data, artificial intelligence and smart cities. Cities 89:80–91
3. Al-Rakhami MS, Islam Md M, Islam Md Z, Asraf A, Sodhro AH, Ding W (2021) “Diagnosis of COVID-19 from X-rays Using Combined CNN-RNN Architecture with Transfer Learning,” medRxiv
4. Asraf A, Islam MZ, Haque MR, Islam MM (2020) Deep Learning Applications to Combat Novel Coronavirus (COVID-19) Pandemic. SN Comput Sci 1(6):363
5. Ayon SI, Islam MD M, Hossain MD R (2020) “Coronary Artery Heart Disease Prediction: A Comparative Study of Computational Intelligence Techniques,” https://doi.org/10.1080/03772063.2020.1713916
6. Bajoudah S, Dong C, Missier P Toward a decentralized, trust-less marketplace for brokered IoT data trading using blockchain, in Proceedings - 2019 2nd IEEE international conference on Blockchain. Blockchain 2019(2019):339–346
7. Benkhelifa F, ElSawy H, McCann JA, Alouini M-S (2020) “Recycling Cellular Energy for Self-Sustainable IoT Networks: A Spatiotemporal Study,” IEEE Trans Wirel Commun, pp. 1–1
8. Berente N, Seidel S, Safadi H (2019) “Data-driven computationally intensive theory development,” Information Systems Research, vol. 30, no. 1. INFORMS Inst for Operations Res and the Management Sciences, pp. 50–64
9. Brandão A, Mamede HS, Gonçalves R (2019) Trusted Data’s Marketplace. Adv Intell Syst Comput 930:515–527
10. Chan CA, Yan M, Gygax AF, Li W, Li L, Chih-Lin I, Yan J, Leckie C (2019) “Big data driven predictive caching at the wireless edge,” in 2019 IEEE International Conference on Communications Workshops, ICC Workshops 2019 - Proceedings
11. Chanson M, Bogner A, Bilgeri D, Fleisch E, Wortmann F (2019) Blockchain for the IoT: privacy-preserving protection of sensor data. J Assoc Inf Syst 20(9):1271–1307
12. Chen TJ, Sheu JP, Kuo YC (2020) Prefetching and caching schemes for IoT data in hierarchical edge computing architecture. Int J Ad Hoc Ubiquitous Comput 33(2):109–121
13. Conrad FG, Gagnon-Bartsch JA, Ferg RA, Schober MF, Pasek J, Hou E (2019) “Social Media as an Alternative to Surveys of Opinions About the Economy,” Soc Sci Comput. Rev., p. 089443931987569
14. Couldry N, Mejias UA (2019) Data colonialism: rethinking big Data’s relation to the contemporary subject. Telev New Media 20(4):336–349
15. Couper MP (2017) New developments in survey data collection. Annu Rev Sociol 43(1):121–145
16. Dai H-N, Wang H, Xu G, Wan J, Imran M (2019) “Big data analytics for manufacturing internet of things: opportunities, challenges and enabling technologies,” Enterp Inf Syst, pp. 1–25
17. Daniel BK (Jan. 2019) Big data and data science: a critical review of issues for educational research. Br J Educ Technol 50(1):101–113
18. Das S, Sadi MS, Haque Md A, Islam Md M (2019) “A Machine Learning Approach to Protect Electronic Devices from Damage Using the Concept of Outlier,” 1st Int Conf Adv Sci Eng Robot Technol 2019, ICASERT 2019
19. Din, Sadia, and Paul, Anand, “Erratum to ‘Smart health monitoring and management system: Toward autonomous wearable sensing for Internet of Things using big data analytics’ (Future Generation Computer Systems (2019) 91 (611–619), (S0167739X17315078), https://doi.org/10.1016/j.future.2017.12.059),” Futur Gener Comput Syst, vol. 108. Elsevier B.V., pp. 1350–1359
20. Eck A, Cazar ALC, Callegaro M, Biemer P (2019) “ ‘Big Data Meets Survey Science.’ ” Soc Sci Comput Rev, p. 089443931988339
21. Eloffeswy M, Azab M, Olariu S, Gracanin D (2019) “A new paradigm for a marketplace of services: Smart communities in the IoT era,” in 2019 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies, IICT 2019
22. Ferdib-Al-Islam, Akter L, Islam Md M (2021) “Hepatocellular Carcinoma Patient’s Survival Prediction Using Oversampling and Machine Learning Techniques,” Int Conf Robot Electr Signal Process Tech, pp. 445–450
23. Ghosh S, Mukherjee A, Ghosh SK, Buyyra R (2019) “Mobi-IoST: Mobility-aware Cloud-Fog-Edge-IoT Collaborative Framework for Time-Critical Applications,” IEEE Trans Netw Sci Eng, pp. 1–1
24. Giannopoulou A (2019) Access and Reuse of Machine-Generated Data for Scientific Research. Erasmus Law Rev 12(2):1
25. Hall W, Cox A, Crouch S, Schueler M, Graham J (2019) “PETRAS-IoT Data Management and Sharing Infrastructure: An Evolution of IoT Observatory (PEDASI),”
26. Haque Md R, Islam Md M, Iqbal H, Reza Md S, Hasan Md K (2018) “Performance Evaluation of Random Forests and Artificial Neural Networks for the Classification of Liver Disorder,” Int Conf Comput Commun Chem Mater Electron Eng IC4ME2 2018
27. Haque Md R, Islam Md M, Iqbal H, Reza Md S, Hasan Md K (2018) “Using Oversampling and Machine Learning Techniques,” Multimed Tools Appl (2023) 82:2887–2911
28. Hasson SG, Piorkowski J, McCulloh I Social media as a main source of customer feedback
29. Hasson SG, Piorkowski J, McCulloh I Social media as a main source of customer feedback
30. Heikinheimo V, Di Minin E, Tenkanen H, Hausmann A, Erkkonen J, Toivonen T (2017) User-Generated Information for Visitor Monitoring in a National Park: A Comparison of Social Media Data and Visitor Survey. ISPR Int J Geo-Information 6(3):85
31. Helbing D, Frey BS, Gigerenzer G, Hafen E, Hagner M, Hofstetter Y, Van Den Hoven J, … Zwitter A (2018) “Will democracy survive big data and artificial intelligence?,” in Towards Digital Enlightenment: Essays on the Dark and Light Sides of the Digital Revolution, Springer International Publishing, pp. 73–98
32. Huang K, Zhang X, Mu Y, Rezaeibagha F, Wang X, Li J, Xia Q, Qin J (2020) EVA: efficient versatile auditing scheme for IoT-based Datamarket in Jointcloud. IEEE Internet Things J 7(2):882–892
33. Ishmaev G (2019) “The Ethical Limits of Blockchain-Enabled Markets for Private IoT Data,” Philos Technol, pp. 1–22
34. Islam Md M, Iqbal H, Haque Md R, Hasan Md K (2018) “Prediction of breast cancer using support vector machine and K-Nearest neighbors,” 5th IEEE Reg 10 Humanit Technol Conf 2017, R10-HTC 2017, vol 2018-January, pp 226–229
35. Islam MZ, Islam MM, Asraf A (2020) A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images. Inf Med Unlocked 20:100412
36. Islam MM, Haque MR, Iqbal H, Hasan MM, Hasan M, Kabir MN (2020) Breast Cancer Prediction: A Comparative Study Using Machine Learning Techniques. SN Comput Sci 1(5):290
37. Islam M, Tayan O, Islam S, Nooruddin S, Kabir MN, Islam R (2020) Deep Learning Based Systems Developed for Fall Detection: A Review. IEEE Access 8:166117–166137
38. Islam MM, Islam MR, Islam MS (2020) An Efficient Human Computer Interaction through Hand Gesture Using Deep Convolutional Neural Network. SN Comput Sci 1(4):211
39. Islam MM, Karray F, Alhajj R, Zeng J (2021) A Review on Deep Learning Techniques for the Diagnosis of Novel Coronavirus (COVID-19). IEEE Access 9:30571–30572
40. Islam MR, Moni MA, Islam MM, Rashed-Al-Mahfuz M, Islam MS, Hasan MK, Hossain MS, … Lio P (2021) Emotion Recognition from EEG Signal Focusing on Deep Learning and Shallow Learning Techniques. IEEE Access 9:94601–94624
41. Islam MR, Islam MM, Rahman MM, Mondal C, Singh SA, Ahmad M, Awal A, … Moni MA (2021) EEG Channel Correlation Based Model for Emotion Recognition. Comput Biol Med 136:104757
42. Jan B, Farman H, Khan M, Imam M, Islam IU, Ahmad A, Ali S, Jeon G (2019) Deep learning in big data Analytics: A comparative study. Comput Electr Eng 75:275–287
43. Javaid A, Zahid M, Ali I, Khan R, Noshad Z, Javaid N (2020) Reputation System for IoT Data Monetization Using Blockchain. Lect Notes Netw Sys 97, Springer:173–184
44. Johnson TP, Smith TW (2017) “Big data and survey research: Supplement or substitute?,” in Springer Geography, Springer, pp. 113–125
45. Kale AP, Sonavane SP (2019) IoT based Smart Farming: Feature subset selection for optimized high-dimensional data using improved GA based approach for ELM. Comput Electron Agric 161:225–232
46. Kalo M, Zhou X, Li L, Tong W, Piltner R (2020) “Sensing air quality: Spatiotemporal interpolation and visualization of real-time air pollution data for the contiguous United States,” in Spatiotemporal Analysis of Air Pollution and Its Application in Public Health, Elsevier, pp. 169–196
47. Kowal, DR, Bourgeois DC (2020) “Bayesian Function-on-Scalars Regression for High-Dimensional Data,” J Comput Graph Stat, pp. 1–10
48. Krentz, Timothy., Dubey, Abhishek., and Karsai, Gabor, “Short paper: Towards an edge-located time-series database,” in Proceedings - 2019 IEEE 22nd international symposium on real-time distributed computing, ISORC 2019, 2019, pp. 151–154.
49. Kurt MN, Yilmaz Y, Wang X (2020) “Real-Time Nonparametric Anomaly Detection in High-Dimensional Settings,” IEEE Pattern Anal Mach Intell, pp. 1–1
50. Lawrenz S, Sharma P, Rausch A (2019) “Blockchain technology as an approach for data marketplaces,” in ACM International Conference Proceeding Series, vol. Part F1481, pp. 55–59
51. Li Y, Wang H, Buckles B (2019) “Traffic congestion assessment based on street level data for on-edge deployment,” in Proceedings of the 4th ACM/IEEE Symposium on Edge Computing, SEC 2019, pp. 289–291
52. Liu C, Jia G (2019) Industrial Big Data and Computational Sustainability: Multi-Method Comparison Driven by High-Dimensional Data for Improving Reliability and Sustainability of Complex Systems. Sustainability 11(17):4557
53. Liu C, Mitschke P, Williams SP, Zowghi D (2020) Data quality and the internet of things. Computing 102(2):573–599
54. Mao W, Zheng Z, Wu F (2019) “Pricing for Revenue Maximization in IoT Data Markets: An Information Design Perspective,” in Proceedings - IEEE INFOCOM, vol. 2019-April, pp. 1837–1845
55. Miller PV (2017) Is there a future for surveys? Public Opin Q | Oxford Acad 81(S1):205–212
56. Moor L., Bitter L., Prado M De., Pazos N, Ouerhani N (2019) “IoT meets distributed AI - Deployment scenarios of Bonseyes AI applications on FIWARE,” in 2019 IEEE 38th international performance computing and communications conference. IPCCC 2019
57. Muhammad LJ, Islam MM, Usman SS, Ayon SI (2020) Predictive Data Mining Models for Novel Coronavirus (COVID-19) Infected Patients’ Recovery. SN Comput Sci 1(4):206
58. Mwaba J, Debes AK, Shea P, Mukonka V, Chewo O, Chisenga C, Simuyandi M, … Ali M (2020) Identification of cholera hotspots in Zambia: A spatiotemporal analysis of cholera data from 2008 to 2017. PLoS Negl Trop Dis 14(4):e0008227
59. Nasr M, Islam MM, Shehata S, Karray F, Quintana Y (2021) Smart Healthcare in the Age of AI: Recent Advances, Challenges, and Future Prospects. IEEE Access 9:145248–145270
60. Nguyen, DD, Ali MI (2019) “Enabling On-demand decentralized IoT collectability marketplace using blockchain and crowdsensing,” in Global IoT Summit, GlOTS 2019 - Proceedings
61. Park JH, Nadeem S, Kaufman A (2019) GeoBrick: exploration of spatiotemporal data. Vis Comput 35(2):191–204
62. Perboli G, Manfredi A, Musso S, Rosano M A Decentralized Marketplace for M2M Economy for Smart Cities, in Proceedings - 2019 IEEE 28th international conference on enabling technologies: infrastructure for collaborative enterprises. WETICE 2019(2019):27
63. Probst D, Reymond JL (2020) Visualization of very large high-dimensional data sets as minimum spanning trees. J Cheminform 12(1):12
64. Qiu J, Tian Z, Du C, Zuo Q, Su S, Fang B (2020) “A survey on Access Control in the Age of Internet of Things,” IEEE Internet Things J, pp. 1–1
65. Raghavan S, Simon BYL, Lee YL, Tan WL, Kee KK (2020) Data Integration for Smart Cities: Opportunities and Challenges. Lect Notes Electr Eng 603:393–403
66. Rahman MM, Manik Md MH, Islam Md M, Mahmud S, Kim JH (2020) “An automated system to limit COVID-19 using facial mask detection in smart city network,” IEMTRONICS 2020 - Int. IOT, Electron. Mechatronics Conf Proc
67. Rahman MM, Islam MM, Motaleb M, Manik H, Islam MR, Mahbrook Al-Rakhami S (2021) Machine learning approaches for tackling novel coronavirus (COVID-19) pandemic. SN Comput Sci 2021 25 2(5):1–10
68. Rehman U, Habib M, Yaqoob I, Salah K, Imran M, Jayaraman PP, Perera C (2019) The role of big data analytics in industrial Internet of Things. Futur Gener Comput Syst 99:247–259
69. Rinaldi S, Bellagente P, Ferrari P, Flammini A, Sisinni E (2019) “Are cloud services aware of time? an experimental analysis oriented to industry 4.0;” in IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication, ISPCS, vol. 2019-September
70. Sachdev D (2019) Enabling data democracy in supply chain using blockchain and IoT. J Manag 6(1):66–83
71. Safial IA, Md MI (2019) Information Engineering and Electronic Business. Inf Eng Electron Bus 2:21–27
72. Saha P, Sadi MS, Islam MM (2021) EMCNet: Automated COVID-19 diagnosis from X-ray images using convolutional neural network and ensemble of machine learning classifiers. Inform Med Unlocked 22:100505
73. Sajan KK, Ramachandran GS, Krishnamachari B (2019) “Enhancing support for machine learning and edge computing on an iot data marketplace,” in AIChallengeIoT 2019 - Proceedings of the 2019 International Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet of Things, pp. 19–24
74. Song B, Song J, Ye J (2020) A Dynamic Pricing Mechanism in IoT for DaaS: A Reinforcement Learning Approach. Adv Intell Sys Comput 1075:604–615
75. Sørlie JT, Altmann J (2019) Sensing as a Service Revisited: A Property Rights Enforcement and Pricing Model for IIoT Data Marketplaces. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11819 LNCS:127–139
76. Tang L (2020) High-dimensional data visualization. Nat Methods 17(2):129
77. Teng H, Liu Y, Liu A, Xiong NN, Cai Z, Wang T, Liu X (2019) A novel code data dissemination scheme for Internet of Things through mobile vehicle of smart cities. Futur Gener Comput Syst 94:351–367
78. Wang S, Zhong Y, Wang E (2019) An integrated GIS platform architecture for spatiotemporal big data. Futur Gener Comput Syst 94:160–172
79. Wang T, Qiu L, Sangaiah AK, Xu G, Liu A (2020) Energy-efficient and trustworthy data collection protocol based on Mobile fog computing in internet of things. IEEE Trans Ind Informatics 16(5):3531–3539
80. Xia J, Li J, Dong P, Yang K (Mar. 2020) An ArcGIS add-in for spatiotemporal data mining in climate data. Earth Sci Informatics 13(1):185–190
81. Xie P, Li T, Liu J, Du S, Yang X, Zhang J (2020) Urban flow prediction from spatiotemporal data using machine learning: A survey. Inf Fusion 59:1–12
82. Xu X, Liu Q, Luo Y, Peng K, Zhang X, Meng S, Qi L (2019) A computation offloading method over big data for IoT-enabled cloud-edge computing. Futur Gener Comput Syst 95:522–533
83. Yearwood M (2018) “Big data: a new alternative approach to sampling in the digital age,” University of Cambridge
84. Zheng Z, Wang T, Wen J, Mumtaz S, Bashir AK, Chaudhary SH (2019) “Differentially Private High-Dimensional Data Publication in Internet of Things,” IEEE Internet Things J, pp. 1–1
85. Zhou L, Li Q, Tu W (2020) An Efficient Access Model of Massive Spatiotemporal Vehicle Trajectory Data in Smart City. IEEE Access 8:52452–52465

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Petar Radanliev is a Post-Doctoral Research Associate at the University of Oxford. He obtained his Ph.D. at University of Wales in 2014 and continued with Postdoctoral research at Imperial College London, Massachusetts Institute of Technology, University of Cambridge and University of Oxford. His current research focusses on artificial intelligence, internet of things, and cyber risk analytics at the edge.

David De Roure is a Professor of e-Research at University of Oxford. He obtained his Ph.D. at University of Southampton in 1990 and went on to hold the post of Professor of Computer Science, later directing the UK Digital Social Research programme. His current research focusses on social machines, Internet of Things and cybersecurity. He is a Fellow of the British Computer Society and the Institute of Mathematics and its Applications.