Nobiletin Attenuates VLDL Overproduction, Dyslipidemia, and Atherosclerosis in Mice With Diet-Induced Insulin Resistance

Erin E. Mulvihill,1,2 Julia M. Assini,1,2 Justin K. Lee,1 Emma M. Allister,1 Brian G. Sutherland,1 Julie B. Koppes,1 Cynthia G. Sawyez,1,3 Jane Y. Edwards,1,3 Dawn E. Telford,1,3 Alexandre Charbonneau,4 Philippe St-Pierre,4 André Marette,4 and Murray W. Huff1,2,3

OBJECTIVE—Increased plasma concentrations of apolipoprotein B100 often present in patients with insulin resistance and confer increased risk for the development of atherosclerosis. Naturally occurring polyphenolic compounds including flavonoids have antiatherogenic properties. The aim of the current study was to evaluate the effect of the polymethoxylated flavonoid nobiletin on lipoprotein secretion in cultured human hepatoma cells (HepG2) and in a mouse model of insulin resistance and atherosclerosis.

RESEARCH DESIGN AND METHODS—Lipoprotein secretion was determined in HepG2 cells incubated with nobiletin or insulin. mRNA abundance was evaluated by quantitative real-time PCR, and Western blotting was used to demonstrate activation of cell signaling pathways. In LDL receptor–deficient mice (Ldlr−/−) fed a Western diet supplemented with nobiletin, metabolic parameters, gene expression, fatty acid oxidation, glucose homeostasis, and energy expenditure were documented. Atherosclerosis was quantitated by histological analysis.

RESULTS—In HepG2 cells, activation of nitogen-activated protein kinase-extracellular signal–related kinase signaling by nobiletin or insulin increased LDLR and decreased MTP and DGAT1/2 mRNA, resulting in marked inhibition of apoB100 secretion. Nobiletin, unlike insulin, did not induce phosphorylation of the insulin receptor or insulin receptor substrate-1 and did not stimulate lipogenesis. In fat-fed Ldlr−/− mice, nobiletin attenuated dyslipidemia through a reduction in VLDL-triglyceride (TG) secretion. Nobiletin prevented hepatic TG accumulation, increased expression of Pgc1α and Cpt1α, and enhanced fatty acid β-oxidation. Nobiletin did not activate any peroxisome proliferator–activated receptor (PPAR), indicating that the metabolic effects were PPAR independent. Nobiletin increased hepatic and peripheral insulin sensitivity and glucose tolerance and dramatically attenuated atherosclerosis in the aortic sinus.

CONCLUSIONS—Nobiletin provides insight into treatments for dyslipidemia and atherosclerosis associated with insulin-resistant states. Diabetes 60:1446–1457, 2011

Insulin resistance and type 2 diabetes are conditions classically defined by glucose intolerance but are also characterized by lipid abnormalities including an overproduction of hepatic VLDL (1). Increased VLDL secretion contributes to increased plasma concentrations of apolipoprotein B100 (apoB100)-containing lipoproteins, which represents an important risk factor for cardiovascular disease, especially because current pharmacological interventions provide limited benefit for correcting VLDL overproduction (2). Insulin resistance reduces the ability of the hepatic LDL receptor (LDLR) to mediate lipoprotein reuptake and degradation (3,4), increases microsomal triglyceride transfer protein (MTP) expression (5), and increases the hepatic synthesis of cholesterol and triglyceride (TG) (6). Hepatic accumulation of lipids and enhanced MTP-mediated transfer of these lipids onto the apoB100 backbone are key determinants of VLDL secretion (7,8). Concurrent with impaired lipid homeostasis, abnormal glucose metabolism is observed in insulin-resistant states as a result of impaired glucose uptake by peripheral tissues and enhanced hepatic gluconeogenesis (9). Hyperinsulinemia can initiate the transcription of sterol regulatory element–binding protein 1c (SREBP1c), resulting in upregulation of genes involved in fatty acid (FA) synthesis (10), contributing to both hepatic steatosis and dyslipidemia (11). This is clearly observed in mice deficient in the hepatic insulin receptor (IR), where despite hyperinsulinemia, hepatic SREBP1c-mediated lipogenesis, hepatic TG, and VLDL-TG secretion are significantly reduced (12,13). Although not a target of SREBP1c, inhibition of insulin-induced nitogen-activated protein kinase-extracellular signal–related kinase (MAPK)erk signaling increases DGAT1/2 expression leading to microsomal TG accumulation and VLDL secretion (14). In concert with increased lipogenesis, the reduced FA oxidation observed in insulin resistance states further contributes to increased hepatic lipid availability (15). Pgc1α and Ppara are key regulators of hepatic FA oxidation, since in both Pgc1α−/− and Ppara−/− mice β-oxidation is impaired, leading to increased hepatic lipid accumulation (16,17).

The hypocholesterolemic and metabolically beneficial properties of citrus-derived flavonoids have been demonstrated (18–22). Tangeretin, a polymethoxylated flavonoid, reduced apoB100 secretion from human hepatoma (HepG2) cells through inhibition of both DGAT activity and microsomal TG accumulation (23). In a mouse model of dyslipidemia and hyperinsulinemia, naringenin prevented hyperinsulinemia-stimulated de novo lipogenesis, inhibited...
VLDDL-apoB secretion, and improved plasma lipids (24). In insulin-resistant hamsters, a combination of tangeretin and another polymethoxylated flavonoid nobiletin ameliorated dyslipidemia and improved glucose tolerance (18). Nobiletin increased Glut4 expression in muscle and attenuated the hyperglycemia normally observed in ob/ob mice (25). In Ldlr^{−/−} or apoE^{−/−} mice, naringenin, resveratrol, and other polyphenolic compounds reduce atherosclerosis through a variety of mechanisms, suggesting they have powerful antiatherogenic properties (26–28).

The objective of the current study was to determine the effectiveness of the citrus-derived flavonoid nobiletin, to inhibit apoB100 secretion from HepG2 cells, and to attenuate dyslipidemia, insulin resistance, and atherosclerosis. We demonstrate that nobiletin, like insulin, inhibits apoB100 secretion from HepG2 cells through activation of MAPK_{erk} signaling. In contrast with insulin, the effect of nobiletin was independent of either IR or IR substrate-1 (IRS-1) tyrosine phosphorylation. Activation of MAPK_{erk} by both nobiletin and insulin decreased the expression of MTP and DGAT1/2 and increased LDLR expression. In Ldlr^{−/−} mice fed a Western diet, nobiletin prevented dyslipidemia and hepatic lipid accumulation, without any change in caloric intake, intestinal TG absorption, or lean body mass. Hepatic TG accumulation was prevented by nobiletin through an increase in Pgc1α and Cpt1α expression leading to activation of hepatic FA oxidation. VLDDL-TG secretion was significantly decreased by nobiletin. Nobiletin reduced peripheral lipid accumulation, improved glucose tolerance, and restored insulin sensitivity in muscle and attenuated atherosclerotic lesion development, suggesting that amelioration of the dyslipidemia, insulin resistance, and atherosclerosis.

RESULTS

Nobiletin decreases apoB100 secretion through activation of MAPK_{erk} In HepG2 cells, nobiletin dose-dependently reduced the secretion of apoB100-containing lipoproteins into the media (Fig. 1A). Secretion of apoE was unaffected (data not shown). The concentration of nobiletin that inhibited apoB100 secretion by 50% (10 μM) was used for further experiments. Insulin has been shown to decrease apoB100 secretion through activation of MAPK_{erk} signaling (20). Incubation of cells with a specific inhibitor of MEK1/2, U0126, demonstrated that nobiletin, like insulin, reduces apoB100 accumulation through activation of MAPK_{erk} (Fig. 1B). The activity of MAPK_{erk}, which normally attenuates MEK1/2 signaling, was inhibited by SB203580, which enhanced the inhibition of apoB100 secretion by nobiletin, confirming that nobiletin signals through MAPK_{erk} (Fig. 1C). In contrast with insulin, incubation of cells with the PI3-kinase inhibitor wortmannin had no effect on the inhibition of apoB100 secretion by nobiletin (data not shown).

Nobiletin activates signaling through MAPK_{erk} to regulate LDLR, MTP, and DGAT1/2 mRNA expression, independent of the IR or IRS-1. Activation of ERK, a protein downstream of MEK1/2, has been implicated in phospholipid phosphorylation occurring at 15 min. (Fig. 2A and B). To determine whether MAPK_{erk} activation by nobiletin was mediated through activation of the IR, we examined acute phosphorylation of both the IR and IRS-1. In contrast with insulin, nobiletin did not induce tyrosine phosphorylation of the IR or IRS-1 (Fig. 2C and D). Nobiletin rapidly activated MAPK_{erk} through a distinct mechanism (Fig. 2E). Decreased MTP and increased LDLR expression have been linked to inhibition of apoB100 secretion (20,22). Like insulin, MAPK_{erk} activation by nobiletin decreased MTP mRNA (~30%) and increased LDLR mRNA 2.5-fold (Fig. 2E). Nobiletin significantly decreased DGAT1 and DGAT2 mRNA expression through activation of MAPK_{erk} (Fig. 2F).
Nobiletin Prevents VLDL Secretion

FIG. 1. Nobiletin dose-dependently reduces apoB100 secretion through activation of MAPK*erk* signaling. A: HepG2 cells were incubated in 5% LPDS-minimum essential medium with insulin or increasing concentrations of nobiletin for 24 h. B: HepG2 cells were preincubated for 30 min in the absence or presence of DMSO U0126 (10 μM; active MEK1/2 inhibitor) or U0124 (10 μM; null inactive isoform). C: HepG2 cells were preincubated for 30 min in the absence or presence of DMSO, SB203580 (10 μM; active p38 MAPK inhibitor), or SB248080 (10 μM; null inactive isoform), followed by an additional 19.5-h incubation in the absence or presence of DMSO, insulin (100 nM), or nobiletin (10 μM). Media were collected, and apoB100 was measured by immunoblotting. Results are reported as a percentage of the DMSO control. Values are means ± SEM, and different letters are statistically different (*P* < 0.05).

Nobiletin stimulates LDL uptake, inhibits MTP activity, but does not increase cellular TG synthesis or mass accumulation. The increased LDLR expression resulted in enhanced LDLR activity as diL-LDL uptake increased in HepG2 cells incubated with either nobiletin or insulin (Fig. 5A). Nobiletin reduced MTP activity (~25%) (Fig. 3B), whereas insulin had no effect, suggesting that inhibition of MTP by nobiletin was direct and not related to decreased mRNA expression. Insulin is known to stimulate FA and TG synthesis (22); however, nobiletin had no effect on either parameter (Fig. 3C and D). Consistent with decreased *DGAT1/2* mRNA, TG synthesis and TG mass were significantly lower in nobiletin-treated cells, when compared with insulin-treated cells (Fig. 3D and E). Nobiletin increased *CPT1-α* and *PCG1-α* mRNA, which was associated with a modest, but not significant, increase in cellular FA oxidation (Fig. 3F and G).

Nobiletin Prevents Diet-Induced Weight Gain and Reduces Dyslipidemia in High-Fat Fed Ldlr*^−/−* Mice. In *Ldlr*^−/−* mice, a Western diet induces many aspects of the metabolic syndrome including obesity, hyperinsulinemia, hyperlipidemia, and glucose intolerance (37). Using this model, we examined the effect of nobiletin on metabolic parameters including VLDL-TG production, hepatic steatosis, insulin resistance, and atherosclerosis. Nobiletin-treated mice resisted the Western diet-induced weight gain (Fig. 4A) despite no difference in caloric intake or intestinal TG absorption (Fig. 4B and C). The Western diet increased fasting plasma TG (threefold) and cholesterol (2.8-fold) compared with Chow-fed animals. Nobiletin significantly decreased both plasma lipids by 35% (Fig. 4D and E). Metabolic studies with tyloxapol, which inhibits lipolysis of lipoproteins derived from both the intestine and the liver, demonstrated an overproduction of TG-rich lipoproteins induced by the Western diet (Fig. 4F). When compared with Western-fed mice, nobiletin supplementation significantly reduced the VLDL-TG secretion rate (Fig. 4G). Elevated plasma non-esterified fatty acid (NEFA) and glycerol, characteristic of insulin resistance, were observed in Western-fed animals, both of which were normalized by nobiletin (Fig. 4H and I).

Nobiletin Reduces TG in Both the Liver and Intestine in High-Fat Fed Ldlr*^−/−* Mice. The Western diet significantly increased liver TG 1.5-fold and cholesteryl ester (CE) mass 4.8-fold compared with Chow (Fig. 5A and B). Addition of 0.1 and 0.3% nobiletin dose-dependently decreased hepatic TG by 44 and 87%, and hepatic CE by 61 and 71%, respectively. The intestine contributes to VLDL-TG secretion under conditions described for tyloxapol experiments. Significant levels of TG remain within intestinal tissue in Western-fed mice following a 6-h fast (Fig. 5C). Nobiletin supplementation completely normalized intestinal TG (Fig. 5C), suggesting that nobiletin limits lipid availability in both liver and intestine for VLDL-TG secretion. Intestinal CE concentrations were unchanged (data not shown). The Western diet significantly increased liver *Srebplc* expression (2.3-fold) compared with Chow-fed mice. *Srebplc* was dose-dependently reduced by 0.1% (~35%) and 0.3% nobiletin (~80%) (Fig. 5D), suggesting that reduced de novo lipogenesis contributes to the prevention of hepatic TG accumulation. In contrast with HepG2 cells, nobiletin did not affect hepatic expression of *Mttp* or *Dgat1/2* (Fig. 5E–G). The marked reduction in hepatic TG concentrations and VLDL-TG secretion suggested that nobiletin stimulates FA oxidation. Expression of *Cpt1α*, *Pyc1α*, and rates of FA oxidation were depressed in Western-fed animals compared with Chow. All three parameters were significantly increased in nobiletin-treated mice (Fig. 5H–J). Furthermore, nobiletin increased plasma ketones twofold, compared with Western-fed mice (Fig. 5K).

Increased FA oxidation suggested that nobiletin functions as a PPAR activator. However, using a luciferase reporter assay in HepG2 cells, nobiletin did not significantly activate PPARα, PPARγ, or PPARδ (Supplementary Fig. 1). Furthermore, nobiletin had no effect on hepatic *Pparg* mRNA, *Accα* mRNA, or liver weight (data not shown).

Nobiletin Prevents Hyperinsulinemia and Improves Glucose Tolerance and Insulin Sensitivity. Western-fed mice were hyperinsulinemic (1.4 ng/mL) and moderately
hyperglycemic (9.0 mmol/L) compared with chow (0.7 ng/mL and 6.8 mmol/L), whereas fasting plasma insulin and glucose were significantly decreased by 0.3% nobiletin (0.4 ng/mL and 6.2 mmol/L), respectively (Fig. 6A and B). Glucose tolerance tests revealed that nobiletin normalized the impaired glucose tolerance observed in Western-fed mice (Fig. 6C). Nobiletin significantly improved the impaired insulin tolerance in Western-fed mice such that the area under the glucose curve was similar to chow-fed mice (Fig. 6D). The Western diet induced TG accumulation in gastrocnemius and quadriceps, whereas muscle lipid deposition was completely prevented by nobiletin supplementation (Fig. 6E).

To determine the locus of insulin resistance in Western-fed mice and its prevention by nobiletin, hyperinsulinemic euglycemic clamp studies were performed to assess whole-body insulin sensitivity as well as hepatic versus peripheral insulin action. As shown in Fig. 6F, the glucose infusion rate required to maintain euglycemia was significantly increased twofold in nobiletin-supplemented mice compared with Western-fed mice. This improved insulin sensitivity was explained by both an increase in peripheral glucose disposal (Fig. 6G) and enhanced suppression of hepatic glucose production (HGP) (Fig. 6H and I). During the clamp, HGP was significantly lower (−70%) in nobiletin-supplemented mice compared with Western-fed mice because of an increase in the ability of insulin to blunt HGP. Hepatic gluconeogenesis was assessed using a pyruvate tolerance test in which injection of the gluconeogenic substrate pyruvate increases blood glucose by promoting hepatic gluconeogenesis. In Western-fed mice, pyruvate increased blood glucose concentrations to a greater

FIG. 2. Nobiletin, unlike insulin, does not activate the IR and IRS-1 to stimulate ERK phosphorylation. A: HepG2 cells were incubated for 16 h in serum-free minimum essential medium (containing 0.5% insulin-free, FA-free BSA) and treated with DMSO, insulin (100 nM), or nobiletin (10 μM) for up to 30 min. B: HepG2 cells incubated in serum-free minimum essential medium were treated with DMSO (control) and increasing concentrations of nobiletin for 15 min. Total and phosphorylated ERK1/2 were measured by immunoblot analysis. Values are reported as a fold change compared with DMSO control and are means ± SEM. C and D: HepG2 cells were preincubated in serum-free minimum essential medium followed by addition of DMSO, insulin (100 nM), or nobiletin (10 μM) for up to 60 min, and cell lysates were immunoprecipitated with IR (C) or IRS-1 (D) antibodies. Proteins were separated by 6% SDS-PAGE and membranes probed with IR (C) or IRS-1 (D) and phosphotyrosine antibodies. E: HepG2 cells in 5% LPDS-minimum essential medium were preincubated for 30 min with DMSO, the MEK1/2 inhibitor UO126 (10 μM), or its null inactive isoform UO124 (10 μM) followed by a 5.5 h incubation with DMSO, insulin (100 nM), or nobiletin (10 μM). mRNA levels were quantitated by qRT-PCR. Results are normalized to GAPDH and reported relative to the DMSO control. Values are means ± SEM; n ≥5. Different letters are statistically different (P < 0.05).
extent, compared with both nobiletin- and chow-fed animals (Fig. 6).

Nobiletin inhibits diet-induced obesity and adipocyte hypertrophy. Treatment with 0.1% nobiletin had no effect on diet-induced adiposity, whereas 0.3% nobiletin completely prevented adipose tissue accumulation (Fig. 7A and Supplementary Fig. 2A and B). Western-fed mice exhibited elevated plasma leptin levels (Fig. 7B) and adipocyte hypertrophy in epididymal fat pads and brown adipose tissue (Fig. 7C and D and Supplementary Fig. 3A and B), which were completely normalized by 0.3% nobiletin. These changes were independent of caloric intake (Fig. 4B) and muscle mass (Supplementary Fig. 2C and D), suggesting effects on energy metabolism. Total energy expenditure increased significantly in mice fed 0.3% nobiletin, compared with both Western and chow-fed mice. This was primarily because of enhanced energy expenditure during the dark cycle (Fig. 7E). Respiratory quotients were not statistically different among the dietary groups: 0.95 ± 0.02, 0.87 ± 0.02, and 0.93 ± 0.02 for chow, Western, and Western plus 0.3% nobiletin, respectively.

Nobiletin prevents dyslipidemia, hepatic steatosis, and atherosclerosis in Ldlr−/− mice. To evaluate whether correction of dyslipidemia and insulin resistance by nobiletin prevents atherosclerosis, mice were fed chow or the Western diet ± 0.3% nobiletin (weight/weight) for 8 or 26 weeks. By 26 weeks, Western-fed mice developed extensive dyslipidemia. Both plasma TG and cholestrol concentrations increased
sixfold compared with chow-fed mice. Nobiletin supplementation significantly decreased plasma TG and cholesterol by 74 and 67%, respectively (Fig. 8A and B). The Western diet induced marked hepatic steatosis resulting in a 7.3-fold increase in liver TG and a 13-fold increase in liver CE compared with chow-fed mice. Nobiletin almost completely prevented hepatic lipid accumulation such that lipid levels were similar to chow-fed mice (Fig. 8C and D). At 26 weeks, Western-fed mice continued to be hyperglycemic and hyperinsulinemic. Nobiletin normalized fasting glucose and insulin concentrations to levels observed in chow-fed mice (Fig. 8E and F).

After 8 weeks, Western-fed mice demonstrated modest lesion development as assessed by Oil Red O-staining, within the aortic sinus, when compared with chow-fed mice or nobiletin-treated mice (Fig. 8G). After 26 weeks on diet, lesion area within the aortic sinus of Western-fed animals was significantly increased by 12-fold, compared with chow-fed animals. Nobiletin supplementation significantly reduced plaque area by 83%, compared with Western-fed mice (Fig. 8H and I).

DISCUSSION
In the current study, we evaluated the role of nobiletin in the regulation of apoB100 secretion from hepatoma cells and the ability of nobiletin to prevent dyslipidemia, insulin resistance, and atherogenesis induced in mice by high-fat feeding. We show that nobiletin inhibits apoB100 secretion from HepG2 cells through activation of MAPKerk,i in a manner similar to insulin, although nobiletin does not activate the IR and IRS-1. In Ldlr^{−/−} mice, nobiletin attenuates diet-induced obesity, hepatic steatosis, VLDL-TG secretion, and dyslipidemia and increases hepatic FA oxidation. Furthermore, nobiletin restores glucose tolerance and insulin sensitivity in liver and peripheral tissues. Collectively, improvement in these metabolic parameters leads to the prevention of atherosclerosis.
Atherogenic lipoprotein profiles are characterized by increased concentrations of apoB100-containing lipoproteins. Previously, it has been shown that the citrus flavonoid naringenin inhibits apoB100 secretion from HepG2 cells through a mechanism similar to insulin (20,22). Nobiletin is a significantly more potent inhibitor; its half-maximal inhibitory concentration (IC50) for reduction of apoB100 secretion from HepG2 cells is 10-fold lower, compared with naringenin (29). Nobiletin, like insulin, decreases apoB100 secretion through rapid activation of signaling through MAPKerk, leading to the enhanced expression and activity of the LDLR, decreased expression, and activity of MTP and decreased expression of DGAT1/2, all of which are known to contribute to the inhibition of apoB100 secretion (14,20–22). Nobiletin activates MAPKerk through a mechanism distinct from insulin, since nobiletin did not induce tyrosine phosphorylation of the IR or IRS-1. This observation demonstrates that nobiletin has the potential to regulate hepatic lipid and lipoprotein metabolism, in vivo, in the context of insulin resistance.

Activation of MAPKerk signaling by polyphenols in HepG2 cells has been shown to increase LDLR mRNA (38–40). Naringenin increases LDLR expression in HepG2 cells and requires enhanced processing of SREBP1 (22). Berberine increases LDLR mRNA via ERK1/2, through a mechanism involving message stabilization, resulting in reduced plasma LDL-C concentrations in vivo (41). Activation of MAPKerk by nobiletin also decreased DGAT1/2 mRNA expression. In HepG2 cells, inhibition of MAPKerk decreases DGAT1/2 expression and microsomal TG availability for VLDL assembly (14). We demonstrate that nobiletin decreases expression of DGAT mRNA, which is associated with reduced TG synthesis, indicating one mechanism whereby nobiletin limits TG availability for apoB100 secretion. MTP mRNA and MTP activity were both decreased by nobiletin in HepG2 cells, similar to the effect of naringenin (21,32).

FIG. 5. Nobiletin improves hepatic steatosis in Ldlr−/− mice fed a Western diet for 8 weeks. Mice were fed diets for 8 weeks and fasted for 6 h (n = 6/group). Liver TG (A) and CE mass determined by lipid extraction (B) are shown. C: Intestinal TG content at sacrifice. D–I: Expression of Srebf1c (Sreb1c), Mttp, Dgat1, Dgat2, Cpt1a, and Pgc1a mRNA relative to Gapdh mRNA, quantitated by qRT-PCR. J: Fatty acid oxidation in liver (n = 4–6/group) determined by [3H]palmitate conversion to 3H2O. K: Plasma ketone bodies were quantitated by a kinetic rate method. Data represent the mean ± SEM, and different letters are statistically different (P < 0.05).
These data suggest that reduced lipid transfer activity also contributes to reduced apoB100 secretion in nobiletin-treated HepG2 cells.

To extend our in vitro findings, we determined the effect of nobiletin in high-fat fed Ldlr^{2/2} mice, a model of diet-induced insulin resistance and atherosclerosis (37). Nobiletin supplementation resulted in a dramatic reduction in both hepatic and intestinal TG accumulation, attenuation of VLDL-TG secretion, and normalization of glucose homeostasis and conferred an almost complete resistance to obesity, without effect on caloric consumption or fat absorption. Many variables can contribute to hepatic lipid accumulation including increased flux of dietary and liberated visceral FA, increased FA synthesis, and reduced FA oxidation (8). In contrast with the Western diet, nobiletin normalizes insulin concentrations, reduces plasma NEFA, and decreases hepatic Srebp1c mRNA expression demonstrating that nobiletin reduces both NEFA flux and endogenous lipogenesis. It has been shown that blocking the effect of hyperinsulinemia on Srebp1c-stimulated lipogenesis dramatically decreases hepatic TG content and VLDL-TG secretion (12,13). Nobiletin also decreases hepatic TG availability through enhanced expression of Pyc1α and Cpt1α, leading to a significant increase in hepatic TG oxidation.

FIG. 6. Nobiletin improves glucose utilization and insulin sensitivity in Ldlr^{2/2} mice fed a Western diet for 8 weeks. Mice were fed diets for 8 weeks and fasted for 6 h (n = 6/group). A: Plasma insulin was measured by enzyme-linked immunosorbent assay. B: Blood glucose was measured by glucometer. Glucose tolerance tests (C) or insulin tolerance tests (D) were performed in 6-h fasted mice by intraperitoneal injection of 1 g/kg glucose (C) or 0.6 IU/kg insulin (D) and blood glucose measured from 0 to 60 or 120 min. Glucose utilization or insulin sensitivity was determined as the area under the curve (AUC; inset graphs). E: TG content of gastrocnemius and quadriceps muscle. Hyperinsulinemic-euglycemic clamps were conducted in Ldlr^{2/2} mice fed the Western diet or the Western diet supplemented with 0.3% nobiletin for 8 weeks. F: glucose infusion rate during the last 60 min of the clamp. G: Whole-body glucose uptake (Ra) during the clamp. HGP (H) and percent suppression of HGP (I) during the clamp are shown. J: Pyruvate tolerance tests were performed in 16-h fasted mice by intraperitoneal injection of pyruvate (2 g/kg). Data represent the mean ± SEM, and different letters are statistically different (P < 0.05).
β-oxidation. Hepatic-specific overexpression of malonyl-CoA decarboxylase, an enzyme that stimulates β-oxidation, decreases hepatic TG content, reduces plasma NEFA, prevents hyperinsulinemia, and improves whole body glucose tolerance and insulin sensitivity (42). These data indicate that prevention of the hepatic lipid load by nobiletin limits lipid availability for hepatic lipid storage, lipoprotein secretion, and lipid deposition in peripheral tissues.

The striking improvement in hepatic steatosis and prevention of adiposity in nobiletin-treated mice was associated with a significant reduction of TG in muscle. Reduced muscle TG is known to restore muscle function and insulin sensitivity (43–45). Studies in ob/ob mice treated with a PPARα agonist demonstrated improved insulin sensitivity in both liver and muscle, which was accompanied by a significant reduction of lipid accumulation in both tissues (46). This concept is supported in the current study by nobiletin-induced normalization of peripheral glucose disposal, which is primarily a reflection of increased skeletal muscle insulin sensitivity. Furthermore, nobiletin improved hepatic insulin sensitivity as evidenced by enhanced insulin-mediated suppression of HGP and gluconeogenesis; assessed in hyperinsulinemic-euglycemic clamps and pyruvate tolerance tests, respectively. Nobiletin-induced increases in hepatic FA oxidation and reduced lipogenic gene expression would be expected to improve hepatic insulin sensitivity and enhance insulin-mediated suppression of HGP. The restored insulin sensitivity and glucose disposal in peripheral tissues of nobiletin-treated mice could be a secondary consequence of reduced exposure of muscle to both VLDL-derived and plasma NEFA.

The prevention of ectopic lipid accumulation by nobiletin may be partially mediated through increased energy metabolism. Addition of nobiletin to the high-fat diet moderately stimulates whole-body energy expenditure, particularly during the dark period, and thus makes a contribution...
to the dramatic reductions in hepatic and peripheral tissue fat content. However, nobiletin does not appear to affect metabolic fuel preference since the respiratory quotient did not differ among dietary groups. Although cold tolerance was not measured, mean body temperatures were similar among the dietary groups (data not shown) suggesting that brown adipose tissue adaptive thermogenesis did not contribute to enhanced energy expenditure. Interestingly, attenuation of diet-induced adiposity by nobiletin does not account entirely for the prevention of dyslipidemia and hepatic lipid accumulation. Nobiletin at 0.1% had no effect on adiposity but reduced plasma concentrations of cholesterol, TG, glycerol, and NEFA to the same extent as 0.3% nobiletin. Furthermore, 0.1% nobiletin reduced hepatic TG and CE and reduced muscle lipid accumulation. However, plasma concentrations of insulin, glucose, and leptin in 0.1% nobiletin-treated mice were not different from Western-fed animals. This suggests that prevention of dyslipidemia and hepatic lipid accumulation is more sensitive to nobiletin and is independent of decreased diet-induced adiposity. The prevention of insulin resistance, glucose intolerance, and adiposity requires 0.3% nobiletin, suggesting that over 8 weeks normalization of these metabolic parameters by nobiletin is mechanistically linked.

Nobiletin increased hepatic Pgc1α and Cpt1α mRNA, leading to increased FA oxidation. However, in a luciferase reporter assay, nobiletin did not activate any PPAR, including

FIG. 8. Nobiletin improves dyslipidemia, hepatic steatosis, and hyperinsulinemia and reduces atherosclerosis in Ldlr^{−/−} mice fed a Western diet for 26 weeks. A–F: Mice were fed diets for 26 weeks and fasted for 6 h (n = 12/group). Plasma TG (A) and cholesterol concentrations (B) are shown. TG (C) and cholesteryl ester concentrations (D) in liver are shown. E: Blood glucose concentrations. F: Plasma insulin concentrations. G and H: Mice were fed diets for 8 weeks (n = 3/group) or 26 weeks (n = 12/group) and fasted for 6 h before being killed. Representative frozen serial sections (10 µm) of the aortic sinus, prepared using a cryostat, stained with Oil Red O and counterstained with hematoxylin. I: Lesion area for all mice at 26 weeks was quantitated and expressed as total plaque area. Values are the mean ± SEM, and different letters are statistically different (P < 0.05). (A high-quality digital representation of this figure is available in the online issue.)
NOBILETIN PREVENTS VLDL SECRETION

PPARα, nor did nobiletin increase hepatic Ppara expression or liver weight, suggesting activation of FA oxidation was not mediated through classic PPARα activation. In contrast with our in vitro studies, Dgat1/2 or Mttp mRNA abundance was unaffected by any dietary treatment. This is consistent with previous studies in which Mttp expression is unchanged in hepatic IR-deficient (L1B6Ldr−/−), Lxr−/−, and Ldr−/− mice fed a high-fat diet (13,24,47), suggesting that neither the high-fat diet nor flavonoid supplementation affect Mttp or Dgat1/2 expression in this model.

Hyperlipoproteinemia and type 2 diabetes are thought to contribute synergistically to inflammation and atherosclerosis (48). Nobiletin-treated mice had substantially reduced lesion area within the aortic sinus, compared with Western-fed mice, which was evident as early as 8 weeks of treatment. These data suggest that nobiletin supplementation reduces the atherosclerotic disease process, primarily through prevention of dyslipidemia, hepatic steatosis, and improved insulin sensitivity. In macrophages, nobiletin has been shown to suppress proinflammatory cytokine expression (49) and reduce the uptake of acetylated LDL (50). Although not evaluated in this study, a direct effect on inflammation and foam cell formation may also contribute to the attenuation of atherosclerosis.

In conclusion, our studies provide physiological and molecular evidence that nobiletin regulates hepatic lipid metabolism to prevent many of the abnormalities associated with insulin resistance. The correction of hepatic steatosis, dyslipidemia, and glucose homeostasis by nobiletin protects against the development of athero-sclerosis through a range of mechanisms. The use of nobiletin provides insight into potential targets for the treatment of abnormal lipoprotein and glucose metabolism, characteristic of insulin-resistant states, and premature atherosclerosis.

ACKNOWLEDGMENTS

This work was supported by grants from Pfizer Canada (NR2580078), the Heart and Stroke Foundation of Ontario (HSFO; T-7007 and PG-5967 [to M.W.H.]), an HSFO Masters Award (to E.E.M. and J.M.A.), and a Canadian Institute of Health Research-Canada Graduate Scholarship Doctoral Award (to E.E.M.).

No potential conflicts of interest relevant to this article were reported.

E.E.M. researched data, contributed to discussion, wrote the manuscript, and reviewed and edited the manuscript. J.M.A. researched data, contributed to discussion, and reviewed and edited the manuscript. J.K.L. researched data. E.M.A. and B.G.S. researched data, contributed to discussion, and reviewed and edited the manuscript. J.B.K. researched data and contributed to discussion; M.W.H researched data, contributed to discussion, wrote the manuscript, and reviewed and edited the manuscript. The authors acknowledge Christine Dion (Laval University, Quebec City, Quebec, Canada) for expert technical and surgical assistance and Dr. Robert Hegele (Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada) for his insight and helpful suggestions in the preparation of this manuscript.

Parts of this study were presented in abstract form at the Arteriosclerosis, Thrombosis and Vascular Biology Scientific Sessions, San Francisco, California, 8–10 April 2010.

REFERENCES

1. Steiner G, Lewis GF. Hyperinsulinemia and triglyceride-rich lipoproteins. Diabetes 1996;45(Suppl. 3):S24–S26
2. Watts GF, Ooi EM, Chan DC. Therapeutic regulation of apoB100 metabolism in insulin resistance in vivo. Pharmacol Ther 2009;123:281–291
3. Ginsberg HN. Insulin resistance and cardiovascular disease. J Clin Invest 2006;106:453–458
4. Testolin MR. Diabetic dyslipidemia: from basic research to clinical practice. Diabetologia 2003;46:738–749
5. Kamagata A, Qu S, Perdomo G, et al. FoxO1 mediates insulin-dependent regulation of hepatic VLDL production in mice. J Clin Invest 2008;118: 2347–2364
6. Varges B. Abnormal hepatic apolipoprotein B metabolism in type 2 diabetes. Atherosclerosis 2010;211:353–360
7. Thompson GR, Naoumova RP, Watts GF. Role of cholesterol in regulating apolipoprotein B secretion by the liver. J Lipid Res 1996;37:439–447
8. Ginsberg HN, Zhang YL, Hernandez-Orno A. Regulation of plasma triglycerides in insulin resistance and diabetes. Arch Med Res 2005;36: 232–240
9. Fisher SJ, Kahn CR. Insulin signaling is required for insulin’s direct and indirect action on hepatic glucose production. J Clin Invest 2003;111:463–468
10. Horton JD, Goldstein JL, Brown MS. SREBP-2 activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002;109:1125–1131
11. Greffhorst A, Parks EJ. Reduced insulin-mediated inhibition of VLDL secretion upon pharmacological activation of the liver X receptor in mice. J Lipid Res 2009;50:1374–1383
12. Biddinger SB, Hernandez-Orno A, Rask-Madsen C, et al. Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis. Cell Metab 2008;7:125–134
13. Han S, Liang CP, Westerterp M, et al. Hepatic insulin signaling regulates VLDL secretion and atherogenesis in mice. J Clin Invest 2009;119:1029–1041
14. Tsai J, Qu W, Cohen-Avraham R, Adeli K. MIEK/ERK inhibition corrects the defect in VLDL assembly in HepG2 cells: potential role of ERK in VLDL-ApoB100 particle assembly. Arterioscler Thromb Vasc Biol 2007;27: 211–218
15. Stefanovic-Racic M, Perdomo G, Mantell BS, Sipula JJ, Brown NF, O’Doherty RM. A moderate increase in carnitine palmitoyltransferase 1a activity is sufficient to substantially reduce hepatic triglyceride levels. Am J Physiol Endocrinol Metab 2008;294:E969–E977
16. Atherton HJ, Gulston MK, Bailey NJ, et al. Metabolism of the interaction between PPAR-alpha and age in the PPAR-alpha-null mouse. Mol Syst Biol 2009;5:259
17. Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999;98:115–124
18. Kurowska EM, Manthey JA. Hypolipidemic effects and absorption of citrus polyphenol flavones in hamsters with diet-induced hypercholesterolemia. J Agric Food Chem 2004;52:2879–2886
19. Kurowska EM, Spence JD, Jordan J, et al. HDL-cholesterol-raising effect of apolipoprotein B100 secretion from HepG2 cells: potential role of ERK in VLDL-ApoB100 particle assembly. Arterioscler Thromb Vasc Biol 2007;27: 211–218
20. Allister EM, Borradaile NM, Edwards JY, Huff MW. Inhibition of microsomal triglyceride transfer protein expression and apolipoprotein B100 secretion by the citrus flavonoid naringenin and by insulin involves activation of the mitogen-activated protein kinase pathway in hepatocytes. Diabetes 2005;54:1676–1683
21. Allister EM, Mulvihill EE, Barrett PH, Edwards JY, Carter LP, Huff MW. Inhibition of apoB secretion from HepG2 cells by insulin is amplified by naringenin, independent of the insulin receptor. J Lipid Res 2008;49:2218–2229
22. Borradaile NM, de Dreu LE, Huff MW. Inhibition of net HepG2 cell apolipoprotein B secretion by the citrus flavonoid naringenin involves activation of phosphatidylinositol 3-kinase, independent of insulin receptor substrate-1 phosphorylation. Diabetes 2003;52:2554–2561
23. Kurowska EM, Manthey JA. Regulation of lipoprotein metabolism in HepG2 cells by citrus flavonoids. Adv Exp Med Biol 2002;505:173–179
24. Mulvihill EE, Allister EM, Sutherland BG, et al. Naringenin prevents dyslipidemia, apolipoprotein B overproduction, and hyperinsulinemia in LDL
26. Do GM, Kwon EY, Kim HJ, et al. Long-term effects of resveratrol supplementation on suppression of atherogenic lesion formation and cholesterol synthesis in apo E-deficient mice. Biochem Biophys Res Commun 2008; 374:55–59

27. Loke WM, Proudfoot JM, Hodgson JM, et al. Specific dietary polyphenols attenuate atherosclerosis in apolipoprotein E-knockout mice by alleviating inflammation and endothelial dysfunction. Arterioscler Thromb Vasc Biol 2010;30:749–757

28. Mulvihill EE, Assini JM, Sutherland BG, et al. Naringenin decreases pro-inflammatory cytokine production in HepG2 cells. J Med Chem 2009;52:19600–19600

29. Borradaile NM, Carroll KK, Kurowska EM. Regulation of HepG2 cell apolipoprotein B metabolism by the citrus flavonones hesperetin and naringenin. Lipids 1999;34:591–598

30. Patel H, Truant R, Rachubinski RA, Capone JP. Activity and subcellular compartmentalization of peroxisome proliferator-activated receptor alpha are altered by the centrosome-associated protein CAP350. J Cell Sci 2005; 118:175–186

31. Huss JM, Torra IP, Staels B, Giguère V, Kelly DP. Estrogen-related receptor α directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol Cell Biol 2004;24:9079–9091

32. Borradaile NM, de Dreu LE, Barrett PH, Behrsin CD, Huff MW. Hepatocyte apoB-containing lipoprotein secretion is decreased by the grapefruit flavonoid, naringenin, via inhibition of MTP-mediated microsomal triglyceride accumulation. Biochemistry 2003;42:1283–1291

33. Beyea MM, Heslop CL, Sawyez CG, et al. Selective up-regulation of LXR-regulated genes ABCA1, ABCG1, and APOE in macrophages through increased endogenous synthesis of 24(S),25-epoxycholesterol. J Biol Chem 2007;282:5207–5216

34. Siri P, Candela N, Zhang YL, et al. Post-transcriptional stimulation of the assembly and secretion of triglyceride-rich apolipoprotein B lipoproteins in a mouse with selective deficiency of brown adipose tissue, obesity, and insulin resistance. J Biol Chem 2001;276:46064–46072

35. Ayala JE, Bracy DP, McGuinness OP, Wasserman DH. Considerations in the design of hyperinsulinemic-euglycemic clamps in the conscious mouse. Diabetes 2006;55:390–397

36. Charbonneau A, Marette A. Inducible nitric oxide synthase induction underlies lipid-induced hepatic insulin resistance in mice: potential role of tyrosine nitration of insulin signaling proteins. Diabetes 2010;59:861–871

37. Merat S, Casanada F, Sutphin M, Palinski W, Reaven PD. Western-type diets induce insulin resistance and hyperinsulinemia in LDL receptor-deficient mice but do not increase aortic atherosclerosis compared with normoinsulinemic mice in which similar plasma cholesterol levels are achieved by a fructose-rich diet. Arterioscler Thromb Vasc Biol 1999;19:1223–1230

38. Kumar A, Middleton A, Chambers TC, Mehta KD. Differential roles of extracellular signal-regulated kinase-1/2 and p38(MAPK) in interleukin-1beta- and tumor necrosis factor-alpha-induced low density lipoprotein receptor expression in HepG2 cells. J Biol Chem 1998;273:15742–15748

39. Singh RP, Dhawan P, Golden C, Kapoor GS, Mehta KD. One-way cross-talk between p38(MAPK) and p42/44(MAPK). Inhibition of p38(MAPK) induces low density lipoprotein receptor expression through activation of the p42/44(MAPK) cascade. J Biol Chem 1999;274:19503–19600

40. Abidi P, Zhou Y, Jiang JD, Liu J. Extracellular signal-regulated kinase-dependent stabilization of hepatic low-density lipoprotein receptor mRNA by herbal medicine berberine. Arterioscler Thromb Vasc Biol 2005;25:2170–2176

41. Kong W, Wei J, Abidi P, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med 2004;10:1344–1351

42. An J, Muoio DM, Shiota M, et al. Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance. Nat Med 2004;10:268–274

43. Pan DA, Lillojo S, Kriketos AD, et al. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes 1997;46:983–988

44. Petersen KE, Shulman GI. Etiology of insulin resistance. Am J Med 2006;119(Suppl. 1):S10–S16

45. Petersen KE, Shulman GI. New insights into the pathogenesis of insulin resistance in humans using magnetic resonance spectroscopy. Obesity (Silver Spring) 2006;14(Suppl. 1):S15–S16

46. Ide T, Tsuboi M, Mochizuki T, Murakami K. Enhancement of insulin signaling through inhibition of tissue lipid accumulation by activation of peroxisome proliferator-activated receptor (PPAR) alpha in obese mice. Med Sci Monit 2004;10:BR388–BR395

47. Kalaany NY, Gauthier KC, Zavacki AM, et al. LXRs regulate the balance between fat storage and oxidation. Cell Metab 2005;1:231–244

48. Ginsberg HN, MacCallum FR. The obesity, metabolic syndrome, and type 2 diabetes mellitus pandemic: part I. Increased cardiovascular disease risk and the importance of atherogenic dyslipidemia in persons with the metabolic syndrome and type 2 diabetes mellitus. J Cardiometab Syndr 2009;4:113–119

49. Lin N, Sato T, Takayama Y, et al. Novel anti-inflammatory actions of nobiletin, a citrus polymethoxy flavonoid, on human synovial fibroblasts and mouse macrophages. Biochem Pharmacol 2003;65:2065–2071

50. Whitman SC, Kurowska EM, Manthey JA, Daugherty A. Nobiletin, a citrus flavonoid isolated from tangerines, selectively inhibits class A scavenger receptor-mediated metabolism of acetylated LDL by mouse macrophages. Atherosclerosis 2005;178:25–32