Clinical Effects of a 6-Month Treatment Course of Ibandronate, Vitamin D, and Calcium in Postmenopausal Women from Central America: Results of a Multinational, Prospective Pilot Study

Carmen Elena Gutierrez, Helga Codina, Cesar Benjamin Matamoros Pinel, Edin Hidalgo, Arturo Arellano, María Verónica Rey, Santiago Perez-Lloret

Key Words
Osteoporosis · Central America · Ibandronate · Vitamin D · Calcium

Abstract
Background/Aims: To explore the effects of ibandronate plus a supplementation of vitamin D and calcium on bone mineral density (BMD) and health-related quality of life (HRQoL) in a sample of postmenopausal women from Central America. Secondarily, factors related to the magnitude of improvements in BMD after treatment were investigated. Methods: Postmenopausal women with idiopathic osteoporosis or at risk of developing it, who were going to start treatment with ibandronate 150 mg once a month plus daily supplementation with vitamin D 400–800 IU and calcium 500–1,000 mg, were followed up for 6 months. BMD, HRQoL (mini-Osteoporosis Quality of Life Questionnaire), and treatment adherence (Morisky scale) were studied before and after treatment. Results: Four hundred and twenty-five women were assessed at baseline, and 308 (72%) were reassessed at month 6. Lumbar spine, proximal femur, and hip BMD increased by 3.35 ± 0.75, 1.88 ± 0.50, and 2.75 ± 0.32%, respectively (p < 0.001 for all). HRQoL total score and emotional functioning, symptoms, physical function, and leisure subscores improved by 26–49% (p < 0.01 in all cases). Lower body mass index, younger age at menopause, use of corticoids, and higher adherence were significantly and independently associated with a greater improvement in lumbar spine BMD (logistic regression).
Introduction

Osteoporosis is a chronic, silent disease characterized by loss of bone mineral density (BMD) and structural abnormalities, which leads to an increased risk of bone fractures [1]. Osteoporosis affects about 30% of postmenopausal women [1]. Bisphosphonates are the most frequently used antiresorptive pharmacological therapy [2]. Ibandronate is a third-generation nitrogen-containing bisphosphonate with recognized antiresorptive efficacy in several international, randomized, double-blind, controlled trials [3–9]. To the best of our knowledge, antiresorptive activity of the drug has never been explored in Central America, even though the drug is widely used in the region. This is not trivial, as there are differences in the characteristics of osteoporotic women around the globe [10, 11], suggesting that the clinical effects of the antiresorptive agents might not be similar in all regions. Furthermore, in modern society, integrative therapy is the best way for most diseases [12], and, therefore, ibandronate might be used in conjunction with vitamin D and calcium to enhance its efficacy.

We set out this study to explore the effects of a 6-month treatment course with ibandronate plus a supplementation of vitamin D and calcium on BMD and health-related quality of life (HRQoL) in a sample of patients from Central America. Secondarily, factors related to the magnitude of improvements in BMD were investigated.

Methods

Study Design

This was a 6-month prospective study conducted in Honduras, Guatemala, and El Salvador. The study was approved by the Independent Ethics Committee for Pharmacological Studies (Buenos Aires, Argentina). All patients gave informed consent before entering the study. All procedures were performed in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments (Clinicaltrials.gov ID: NCT02635997).

Sample

Postmenopausal women with a diagnosis of osteoporosis or with risk factors and who were going to start treatment with ibandronate 150 mg monthly plus a daily supplementation with vitamin D and calcium were selected for participation. Patients with secondary causes of osteoporosis were excluded.

A power analysis determined that 350 patients would be needed to show changes after treatment of ≥1.5% in BMD. The sample size was then fixed to 420 women to account for a possible 20–25% dropout rate.

Antiresorptive Treatment

All participants received treatment with ibandronate 150 mg once a month plus daily supplementation with vitamin D₃ 400–800 IU and calcium 500–1,000 mg.
Study Procedures

Patients were studied at baseline and after a 6-month treatment course. BMD was measured in the lumbar spine and proximal femur by means of dual-energy X-ray absorptiometry (GE Lunar DPX-PRO). In a minority of patients, BMD at the hip and wrist was also measured. According to WHO recommendations, osteopenia was defined when T-scores were between −1.0 and −2.5, whereas lower values were considered osteoporosis.

HRQoL was studied by the mini-Osteoporosis Quality of Life Questionnaire (mini-OQLQ) [13]. Total and subdomain scores related to emotional functioning (items No. 1 and 2), symptoms (items No. 4 and 9), physical function (items No. 3 and 5), and leisure (items No. 6 and 8) were calculated. Lower scores represented worse quality of life. The activity of daily life subdomain score could not be calculated, as more than 50% of participants did not use vacuum cleaners (item No. 10).

Adherence to antiresorptive therapy at month 6 was evaluated by the Morisky scale [14]. Briefly, this is a 4-item survey about adherence to medications. Patients have to inform if they miss doses, if they are careless with dose timing, and if they stop medication when feeling worse or better. Positive answers are summed, and the total score reflects the likelihood of nonadherence.

Statistical Analysis

Change from baseline in study outcomes was assessed by means of paired t tests. For the analysis of factors related to the magnitude of improvement in BMD, changes in lumbar and femoral BMD were dichotomized to their medians. Differences between patients above or below the median were analyzed by the t test or χ² test. All significant variables were entered in a stepwise logistic regression analysis. Statistical analysis was performed with IBM SPSS version 23 (USA).

Results

Four-hundred and twenty-five patients were recruited for this study. The mean (± SD) age was 63.7 ± 9.9 years, and the mean body mass index was 28.3 ± 6.6. The mean age at menopause was 46.2 ± 5.2 years, and 73% of women had natural menopauses. Seventeen percent of women were on hormone replacement therapy, while 7% had received glucorticoids during their life for a mean period of 2.3 ± 2.6 years. Previous bone fractures were reported by 21% of participants. All patients showed reduced BMD levels on at least one location. At the lumbar spine, 55% showed osteopenia and 30% osteoporosis. At the femur, osteopenia was present in 47% of patients and osteoporosis in 9%. Finally, percentages of women with osteopenia or osteoporosis were 37 and 7% at the hip and 39 and 11% at the wrist.

Out of the 425 women, 308 could also be evaluated at month 6 (72%). Incident bone fractures were observed in 9 women (3.3%). Nonadherence to ibandronate was registered in 48 women (15%), and adverse events were observed in 20 cases (7%), the most frequent ones being epigastralgia and gastric pain. As shown in table 1, BMD was significantly increased at the lumbar spine, femoral neck, and hip, but not at the wrist. Similarly, significant improvements in all HRQoL scores were observed.

Median values for % change in BMD in the lumbar spine were 2.26 and 1.46% in the femoral neck. Differences between women with changes above or below the median value for the lumbar spine are shown in table 2. Significant and independent predictors of greater change were lower weight at baseline, younger age at menopause, use of corticoids, and a higher degree of adherence to treatment (logistic regression). Conversely, only BMD at baseline was related to greater improvement in femoral BMD (data not shown).
Table 1. BMD and HRQoL before and after a 6-month treatment course with ibandronate, vitamin D, and calcium

	Baseline	6 months	6-month-to-baseline difference	% change
BMD, g/cm²				
Lumbar spine	0.88±0.14	0.90±0.14**	0.02±0.07	3.35±13.16
Femoral neck	0.81±0.10	0.83±0.15**	0.02±0.08	1.88±7.72
Hip**	0.87±0.13	0.89±0.13**	0.02±0.02	2.75±2.46
Wristb	0.52±0.11	0.52±0.09**	-0.01±0.02	-1.49±4.21
Mini-OQLQ score				
Total	0.7±0.2	0.8±0.2**	0.1±0.2	31.4±67.0
Emotional functioning	6.8±3.3	8.5±2.5**	1.7±2.8	49.3±102.2
Symptoms	8.7±3.0	10.3±2.1**	1.5±2.6	38.7±95.2
Physical function	7.7±3.3	8.8±2.7**	1.1±3.3	27.0±90.7
Leisure	9.1±2.9	10.3±2.1**	1.2±2.3	26.1±60.4

Means ± SD are shown. ** p < 0.01 versus baseline (paired t test).

a Available in 57 subjects. b Available in 28 subjects.

Table 2. Factors related to greater change in lumbar spine BMD

	≤2.26% (n = 152)	>2.26% (n = 152)	Logistic regression OR (95% CI)
Age, years	64.4±9.5	62.8±9.4	
Body mass index	29.3±8.0	27.0±4.5*	0.94 (0.89–0.99)
Age since menopause, years	47.3±4.9	45.8±5.3*	0.94 (0.89–0.98)
Cause of menopause			
Natural	113 (76)	103 (69)	
Surgical	35 (24)	46 (31)	
Smoking			
Never	142 (95)	139 (92)	
Smoker	2 (1)	1 (1)	
Former smoker	6 (4)	11 (7)	
Physical activity			
Every day	27 (18)	39 (26)*	NI
4–6 days/week	11 (7)	10 (7)	
1–3 days/week	11 (7)	19 (13)	
Sporadically	39 (26)	45 (30)	
Never	63 (42)	39 (26)	
Hormonal replacement therapy	22 (14)	30 (20)	
History of fracture at baseline	36 (24)	23 (15)*	NI
Previous use of corticoids	5 (4)	14 (11)*	3.57 (1.17–10.91)
Spine BMD at baseline, g/cm²	0.90±0.13	0.86±0.14*	NI
Adherence to ibandronate	0.4±0.9	0.2±0.6*	0.67 (0.46–0.97)
Adverse events	11 (8)	6 (4)	

Data shown are means ± SD or n (%), unless otherwise stated. NI = Not included in the final logistic regression model. * p < 0.05 versus women with changes below the median values (t test or χ² test). Variables showing significant differences were entered in a stepwise logistic regression analysis.
Conclusions

Ibandronate efficacy and safety have been demonstrated in several clinical trials [3–9]. Even if this drug is commonly used in Central America, to the best of our knowledge, its clinical effects have never been studied before in patients from this region. In this study, we observed significant increments in BMD and HRQoL after a 6-month treatment course with ibandronate in combination with vitamin D and calcium supplementation. Interestingly, the mean improvements in lumbar spine and proximal femur BMD (i.e. 3.35 and 1.18%, respectively) are in line with results from international clinical trials [4, 8], suggesting that clinical effects of ibandronate in Central American postmenopausal women might be similar to those from other parts of the world. These results might have also depended on the administration of the bisphosphonate with vitamin D and calcium, which may have helped to boost the clinical effects of the drug.

Before further discussion, some limitations of this study must be mentioned. In the first place, a placebo effect cannot be ruled out as we employed an open-label, uncontrolled design. A double-blind, randomized, placebo-controlled trial would have accounted for this bias, but it was considered unfeasible in the region, due to budget, logistic, and ethical constraints. Because of the same reasons, follow-up could not be extended beyond 6 months.

Our study also had some strengths. Firstly, it was designed to be as inclusive as possible, thus probably making results easily applicable to the target population. Another strength of our study was the evaluation of HRQoL by means of the mini-OQLQ. Effects of ibandronate on HRQoL have seldom been assessed [15, 16]. Our results suggest that all aspects of QoL may improve with ibandronate, which should be a primary goal of antiresorptive therapy according to some authors [17].

We could also analyze which factors were associated with a better outcome at month 6. Lower weight, younger age at menopause, history of corticoid use, and higher adherence were independently and significantly associated with a better outcome. The first three factors are probably related to a more severe disease, and, thus, it may be logical to observe a greater effect with the treatment. The effects of a lack of adherence are also self-evident, as drugs are not effective in patients who do not take them [18]. Nonadherence appears to be very common in osteoporosis, with a systematic review of 14 studies suggesting that the rate of persistence on antiresorptive therapy may be as low as 18%. In our study, we observed that 85% of women adhered to treatment, a better-than-expected result probably explained by the short-term nature of the follow-up and the effect of being part of a cohort. Interestingly, our results suggest that nonadherence was related to worse outcomes and, thus, suggest that physicians should discuss with their patients the importance of adhering to the antiresorptive therapy.

In summary, in this open-label, single-arm study, conducted in Central America, significant improvements in BMD at the lumbar spine, proximal femur and hip, as well as in HRQoL, were observed with a 6-month treatment course of ibandronate plus supplementation with vitamin D and calcium. These results suggest that the clinical effect of ibandronate in Central American postmenopausal women may be comparable to those of the rest of the world, which should be further explored by randomized, double-blind, controlled trials. Results also showed that nonadherence impacted negatively on BMD improvement. Therefore, physicians should insist on the importance of adhering to the antiresorptive treatment in order to enhance the clinical effectiveness of the drugs.
Appendix

Study Group

El Salvador: Carmen Elena Gutierrez (MD), Oscar Zepeda Hernández (MD), Dolores Alvarez de Gomez (MD), Emeli Rosario Bonilla Flores (MD), Carmen Elena Vargas de Galvez (MD), Kenia Lissette Vanegas de Campos (MD), Rafael Antonio Portillo Ulloa (MD), Lorena Patricia Guerrero Garcia (MD), Hector Benjamin Gonzalez Moran (MD), and Miriam Elizabeth Mayen de Saprisa (MD).

Guatemala: Alejandro Parada (MD), Carlos Armas (MD), Oscar Ordoñez (MD), Erick Montenegro (MD), Patricia Barco (MD), Carlos Martinez (MD), Norma Posadas (MD), and Edin Hidalgo (MD).

Honduras: Sergio Murillo (MD), Helga Codina (MD), Francisco Girón (MD), Francisco Godoy (MD), Cesar Benjamin Matamoros Pinel (MD), Danilo René Cruz (MD), Gustavo Castañeda (MD), Sergio Nain Torres Guevara (MD), Sergio Murillo (MD), and Marilin Alvarado (MD).

Acknowledgment

This study was funded by a nonrestrictive educational grant from Recalcine Pharmaceutical Corporation.

Disclosure Statement

Arturo Arellano is an employee of Recalcine Pharmaceutical Corporation. María Verónica Rey is CEO of Etymos. Carmen Elena Gutiérrez, Helga Codina, Cesar Benjamin Matamoros Pinel, Edin Hidalgo, and Santiago Perez-Lloret have nothing to declare. The authors alone are responsible for the content and writing of the paper.

References

1. Raisz LG: Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 2005;115:3318–3325.
2. MacLean C, Newberry S, Maglione M, McMahon M, Suttorp M, Mojica W, Timmer M, Alexander A, McNamara M, Desai S, Zhou A, Chen S, Carter J, Tringale C, Valentine D, Johnsen B, Grossman J: Systematic review: comparative effectiveness of treatments to prevent fractures in men and women with low bone density or osteoporosis. Ann Intern Med 2008;148:197–213.
3. Adam S, Felsenberg D, Christiansen C, Robinson J, Lorenc RS, Mahoney P, Coutant K, Schimmer RC, Delmas PD: Efficacy and safety of ibandronate given by intravenous injection once every 3 months. Bone 2004;34:881–889.
4. Chesnut CH 3rd, Skag A, Christiansen C, Recker R, Stakkestad JA, Hoiseth A, Felsenberg D, Huss H, Gilbride J, Schimmer RC, Delmas PD: Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res 2004;19:1241–1249.
5. Felsenberg D, Miller P, Armbrrecht G, Wilson K, Schimmer RC, Papapoulos SE: Oral ibandronate significantly reduces the risk of vertebral fractures of greater severity after 1, 2, and 3 years in postmenopausal women with osteoporosis. Bone 2005;37:651–654.
6. McClung MR, Bolognese MA, Sedarati F, Recker RR, Miller PD: Efficacy and safety of monthly oral ibandronate in the prevention of postmenopausal bone loss. Bone 2009;44:418–422.
7. Miller PD, Epstein S, Sedarati F, Reginster JY: Once-monthly oral ibandronate compared with weekly oral alendronate in postmenopausal osteoporosis: results from the head-to-head MOTION study. Curr Med Res Opin 2008;24:207–213.
8. Ravn P, Clemmesen B, Riis BJ, Christiansen C: The effect on bone mass and bone markers of different doses of ibandronate: a new bisphosphonate for prevention and treatment of postmenopausal osteoporosis: a 1-year, randomized, double-blind, placebo-controlled dose-finding study. Bone 1996;19:527–533.
9. Reginster JY, Adami S, Lakatos P, Greenwald M, Stepan JJ, Silverman SL, Christiansen C, Rowell L, Mairon N, Bonvoisin B, Drezner MK, Emkey R, Felsenberg D, Cooper C, Delmas PD, Miller PD: Efficacy and tolerability of once-monthly oral ibandronate in postmenopausal osteoporosis: 2 year results from the MOBILE study. Ann Rheum Dis 2006;65:654–661.

10. Holt G, Khaw KT, Reid DM, Compston JE, Bhalla A, Woolf AD, Crabtree NJ, Dalzell N, Wardley-Smith B, Lunt M, Reeve J: Prevalence of osteoporotic bone mineral density at the hip in Britain differs substantially from the US over 50 years of age: implications for clinical densitometry. Br J Radiol 2002;75:736–742.

11. Lunt M, Felsenberg D, Adams J, Benevolenskaya L, Cannata J, Dequeker J, Dodenhof C, Falch JA, Johnell O, Khaw KT, Masaryk P, Puls H, Poor G, Reid D, Scheidt-Nave C, Weber K, Silman AJ, Reeve J: Population-based geographic variations in DXA bone density in Europe: the EVOS Study. European Vertebral Osteoporosis. Osteoporos Int 1997;7:175–189.

12. Pan W, Zhou H: Inclusion of integrative medicine in clinical practice. Integr Med Int 2014;1:1–4.

13. Cook DJ, Guyatt GH, Adachi JD, Epstein RS, Juniper EF, Austin PA, Clifton J, Rosen CJ, Kesselich CR, Stock J, Overdorf J, Miller PD, Erickson AI, McClung MR, McClung BL, Griffith LE, Ioannidis G: Development and validation of the mini-Osteoporosis Quality of Life Questionnaire (OQLQ) in osteoporotic women with back pain due to vertebral fractures. Osteoporosis Quality of Life Study Group. Osteoporos Int 1999;10:207–213.

14. Morisky DE, Ang A, Krousel-Wood M, Ward JH: Predictive validity of a medication adherence measure in an outpatient setting. J Clin Hypertens (Greenwich) 2008;10:348–354.

15. Kastelan D, Vlak T, Lozo P, Gradiser M, Mijic S, Nikolic T, Miskic B, Car D, Tajsic G, Dusek T, Jagic Z, Grubisic F, Poljicanin T, Bakula M, Dzubur F, Strizak-Ujevic M, Kadojc M, Radman M, Vugrinec M, Kuster Z, Pekez M, Radovic E, Labar L, Crncevic-Orlic Z, Korsic M: Health-related quality of life among patients with postmenopausal osteoporosis treated with weekly and monthly bisphosphonates. Endocr Res 2010;35:165–173.

16. Vlak T, Kastelan D, Lozo P, Aljinovic J, Gradiser M, Mijic S, Nikolic T, Miskic B, Car D, Tajsic G, Dusek T, Jagic Z, Grubisic F, Poljicanin T, Bakula M, Dzubur F, Strizak-Ujevic M, Kadojc M, Radman M, Vugrinec M, Kuster Z, Pekez M, Radovic E, Labar L, Crncevic-Orlic Z, Korsic M: Monthly or weekly bisphosphonate? Evaluation of satisfaction in patients with postmenopausal osteoporosis using OPSAT-Q questionnaire during the BOOSTER study in Croatia. Clin Rheumatol 2011;30:1549–1554.

17. Madureira MM, Ciconelli RM, Pereira RM: Quality of life measurements in patients with osteoporosis and fractures. Clinics (Sao Paulo) 2012;67:1315–1320.

18. Osterberg L, Blaschke T: Adherence to medication. N Engl J Med 2005;353:487–497.