LAGOON WATER-LEVEL OSCILLATIONS DRIVEN BY RAINFALL AND WAVE CLIMATE

González-Villanueva, R.¹,², Pérez-Arlucea, M.¹ and Costas, S.³

¹ Departamento de Xeociencias Mariñas e O.T. (XM1), Universidade de Vigo, 36310 Vigo, Spain
² Department of Geography, University of Dundee, Dundee, Scotland
³ CIMA, Universidade do Algarve, Portugal Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal

Corresponding author: González-Villanueva R. ritagonzalez@uvigo.es
ABSTRACT

Barrier breaching and subsequent inlet formation represent critical processes that ensure the temporary or permanent connection and transference of water, nutrients, or living organisms between a lagoon and the open sea. Here, we investigate the conditions inducing natural barrier breaching through a 34 months monitoring program of water-level oscillations within a shallow lagoon and the adjacent nearshore, at the Northern coast of the Iberian Peninsula, Louro lagoon. Seven natural openings were identified during the three monitored wet seasons (Wet1, Wet2 and Wet3), four in the Wet1, two in the Wet2 and 1 in the Wet3. Identified openings were grouped in three types depending on the observed relation between the lagoon water-level (L_{wl}), the berm height (B_h) and the water-level at the beach (B_{wl}): (i) openings by lagoon outflow, which include those characterized by L_{wl} higher than the B_h and lower B_{wl}; (ii) openings by wave overwash, including those induced by B_{wl} higher than the B_h and (iii) mixed openings, which result from a combination of the two previous conditions. We have found that the L_{wl} is modulated by the rainfall regime (R_f) and can be explained by the accumulated precipitation while B_h and B_{wl} depend on the wave climate and tidal level and can be estimated applying runup equations. The inlet lifespan was found to be regulated by the wave climate and rainfall regime; in particular barrier sealing was associated with a sudden increase in wave period and reduction in precipitation. This work proves that the natural openings could be predicted successfully with support to medium term water-level monitoring programs, which in turn may significantly contribute to strategic decision making for management and conservation purposes.

KEYWORDS

Natural barrier breaching, rainfall regime, wave climate, coastal lagoon, berm height, tidal range, intermittent inlet
Coastal barrier breaching (inlet formation) is a complex morphodynamic process that enables free water exchange between the lagoon and the open sea. Processes performing at both the seaward and the bay side of a barrier may induce barrier breaching (Boothroyd, 1985; Fagherazzi and Priestas, 2012; Gordon, 1990; Hayes, 1979; Kraus et al., 2002; Pierce, 1970). The consequences of such processes are not restricted to lagoon and barrier morphology (Bird, 1993; FitzGerald et al., 2000; Gordon, 1990; Kraus et al., 2002; Morris and Turner, 2010; Pacheco et al., 2011), but they also have a significant impact over the biogeochemical fluxes by promoting water, sediments, nutrients and pollutants exchange, with the sea (Dussaillant et al., 2009; Dye and Barros, 2005; Gale et al., 2006; Moreno et al., 2010; Schallenberg et al., 2010). Once open, inlets can remain active or close after a period of time depending on their hydraulic efficiency, which in turn depends on the rainfall regime, the tidal prism and the long-shore and/or cross-shore sediment transport by local waves (Castelle et al., 2007; Cayocca, 2001; Cruces et al., 2009; Fitzgerald et al., 1984; Fortunato et al., 2014; Green et al., 2013; Ranasinghe and Pattiaratchi, 2003; Ranasinghe et al., 1999; Rich and Keller, 2013). Yet, inlets can intermittently open and close, imposing a temporary character to the connection between lagoons and the ocean.

Depending on the timing of their opening through the year, inlets can be regular, i.e. the connection with open sea occurs seasonally or cyclically, or they can be irregular, if the opening timing does not occur periodically. Regular openings are related to seasonal favorable conditions such as (i) high water-levels and large storm waves impacting the sea side of coastal barriers, or (ii) lagoon high water-levels induced by strong river discharges and heavy rainfalls (Bird, 1993; Dussaillant et al., 2009; Gale et al., 2006; Gordon, 1990; Weidman and Ebert, 2013). Alternatively, irregular openings usually occur at sites where the seasonal contrasts are not significant, preventing periodic timing in their opening-closing behavior (Gale et al., 2006; Gordon, 1990; Morris and Turner, 2010). Yet, it is worth noticing that many of the examples described in the literature refer to manually opened inlets (with the support of bulldozers) for flood-abatement and flushing purposes (Fortunato et al., 2014; Kraus and Wamsley, 2003; Roy et al., 2001; Wainwright and Baldock, 2015).

Establishing the frequency and the thresholds of natural barrier breaching and closure is crucial for
vulnerability assessment and to prevent the loss of human lives, damage to infrastructures in populated coastal areas and/or damage to ecosystem services. Despite this, understanding barrier breaching and closure is constrained by limitations related to the apparently unpredictable character of natural openings and closures, and the oftentimes lack of data regarding barrier breaching and inlet development fronting a coastal lagoon. Indeed, very few are the examples that include a complete monitoring to understand all the processes involved and provide the required information for management purposes.

To our knowledge, so far only a few studies have been made in small coastal lagoons -pocket lagoons- (Figueiredo et al., 2007; Gordon, 1981; Rijkenberg, 2015), and are inexistent in coastal lagoons located in rocky coasts. In this regard, the present work aims at resolving the mechanisms behind barrier breaching and closure of intermittently connected lagoons by monitoring water-levels in a coastal lagoon. The study site is located at the NW Iberian coast, with a relatively small surface and catchment area and feeding by an ephemeral river. The aim is to improve our understanding on natural breaching and closure processes with particular attention to those openings induced by extremely high water lagoon levels. To understand the mechanisms behind the opening and closure of the ephemeral inlet at Louro lagoon we have examined the water-level changes in the lagoon and explored the most likely associated forcers. This was undertaken through the analysis of different data sets of water-level monitoring (sea and lagoon), topographic, wave climate and meteorological data.

2. STUDY SITE

The explored pocket coastal lagoon (Louro) is located in a small embayment at the northern margin of the Ría de Muros entrance, at the Atlantic coast of Galicia, NW Iberia (Figure 1). Louro lagoon is a pocket lagoon and is influenced by both fresh and saline waters (Cobelo-García et al., 2012). It is an important habitat for numerous plant and animal species, and is included in the Natura 2000 network of the European Union (EU).

The lagoon is a very shallow water body with a flat bottom bed (Figure 1). It has a surface area about 0.25 km², nearly 0.62 km-long and around 0.34 km wide. Reed beds characterize the marginal areas of the lagoon, where the sediment is mostly sand and silt. Sandy sediments characterize the central area, while muddy sediments dominate the inland sector. The communication with the open sea usually
happens through barrier breaching and inlet formation during winter. The inlet opens at the westernmost part of the lagoon (Figure 1D). A 2 m-depth channel with an average width of 15 m cuts the barrier perpendicular to the shoreline just after the barrier is breached (González-Villanueva, 2013; Pérez-Arlucea et al., 2011). Over time, the channel shifts to the north with its long axis becoming parallel to the shoreline until its closure (Almécija, 2009).

The lagoon is separated from the open sea by a 300-600 m-wide and 1500 m-long sand barrier, which anchors to rocky outcrops at both ends (Figure 1). The sandy barrier hosts a dune ridge fragmented by aeolian corridors running across the dune from the upper part of the beach. The dune-ridge reaches maximum heights of 15 m above the Mean Sea-Level in Alicante (MSLA; topographic Spanish Zero, located 1.893 m above mean sea level at Coruña maritime port; see www.puertos.es for more information). High waves come from W to NW directions, with higher values (more than 8 m) during winter (Figure 1C). The NW-SE orientation of the system protects the barrier from the direct impact of these energetic waves. The beach morphology oscillates between two morphodynamic states i.e., intermediate and reflective morphologies from summer to winter conditions respectively (Almécija et al., 2009). In addition, Almécija et al. (2009) demonstrated that the presence offshore of a shallow zone provokes changes in the wave approaching to the coast and a wave divergence with an important energy loss in the northern area of the sand barrier.
Water-level oscillations within the lagoon are mostly seasonal and related to catchment runoff (Cobelo-García et al., 2012; González-Villanueva, 2013; Pérez-Arlucea et al., 2011). Louro catchment area is 4.57 km², with a mean basin slope of 0.19 m/m. The areal percentage of plutonic rocks in the catchment area is 12.58 %, metamorphic rocks 18.83 % and sedimentary (quaternary) rocks and soil 68.59 %. Natural scrubland, abandoned agricultural plots and sparse trees complete the landscape of the catchment areas. The drainage network has a marked torrential regime except for the main tributary, which is the only one with a seasonal water discharge, despite its reduced flow distance of 3.85 km.

Louro is located at the southern limit of the North Atlantic storm track. This region is particularly sensitive to interannual shifts in the trajectories of the mid-latitude cyclones, which are controlled by
the North Atlantic Oscillation -NAO- (Goodess and Jones, 2002; Osborn et al., 1999). The rainfall in
the study area is highly variable, with an average rainfall ranging from 600-700 mm in winter to less
than 100 mm in summer. The average annual rainfall is close to 1700 mm (Martínez Cortizas and Pérez
Alberti, 1999). Previous works suggested that precipitation in this region is strongly modulated by the
NAO, with more humid conditions during winters corresponding to low and negative NAO index values
(Rodriguez-Fonseca and de Castro, 2002; Trigo et al., 2008).

3. MATERIAL AND METHODS

Two water-level loggers were deployed at the study site to monitor water-level oscillations (Figure
1, Table 1). Available topographic data (Table 1) was obtained from two high-resolution DTMs,
measured at low and high lagoon water-levels. These data were used to examine the morphology of the
barrier and the bottom topography of the lagoon. The first was surveyed on 19/09/2009, with a
Terrestrial Laser Scanner (TLS) Class-1 TSL-RIEGL model LMS Z-390i while the second was surveyed
by the IGN on 8/03/2011 using an airborne LiDAR (downloaded from http://pnoa.ign.es/coberturalidar).
The DTM were constructed based on the Geodetic Reference System ED50 and were represented on the
UTM mapping projection (UTM zone 29N). All heights were referred to MSLA.

Metoecean data were also examined and jointly analyzed with in-situ water levels: (i) meteorological
data (i.e. rainfall and evaporation parameters) from a near coastal meteorological station -Corrubedo
station (Figure 1) - (downloaded from http://www.meteogalicia.gal/web/index.action), and (ii) wave
climate data from one node of the SIMAR dataset (courtesy of Puertos del Estado), which includes
hindcast winds, sea-level and waves starting in 1958 (Figure 1, Table 1).

Table 1. Summary of the available data.
Available data

Type of data	Units	Temporal resolution or accuracy	Temporal range	Data source
Rainfall	l/m²	10 min mean	10/2009-7/2012	Meteogalicia
Evaporation	l/m²	24 hour mean	10/2009-7/2012	Meteogalicia
Offshore waves (H, T, Direction)	(m, s, °)	3 hour mean	10/2009-12/2011	Puertos del Estado
Sea level Lagoon water-level	M	5 min mean	10/2009-1/2012	Survey-Pressure transducer
Sea level Lagoon water-level	M	5 min mean	10/2009-1/2012	Survey-Pressure transducer
DTM’s Topographic data	M	H: 3mm V:3mm	19/09/2009	Survey-TLS
Topographic data	M	H: 8mm V:15mm	30/01/2010	Survey-DGPS-RTK
Topographic data	M	H: 8mm V:15mm	05/02/2010	Survey-DGPS-RTK
DTM’s	M	H: 0.15m V:0.2m	08/03/2011	LiDAR-IGN
Topographic data	M	H: 8mm V:15mm	29/09/2011	Survey-DGPS-RTK

3.1. Lagoon water-level changes
3.1.1. Lagoon water-level monitoring

One logger was located in the lagoon to register lagoon water-levels (Lwl; Figure 1). Water oscillations were recorded at 5 min time intervals, for 34 months (Table 1) with Water-level logger models Seabird SBE 39 and AQUALogger 520 PT. The elevation of the logger was measured, once deployed, using a Trimble DGPS-RTK. Observations were therefore referred to the MSLA by referencing to the corresponding water logger elevation. Water-level measurements were corrected for variations in barometric pressure using the data downloaded from the closest meteorological station (Figure 1).

Corrected data were used to determine the timing of lagoon natural opening, the duration of the active inlet phase, inlet sealing and the associated water-level thresholds. In addition, these data allowed us to identify the parameters that can characterize the lagoon openings: (i) the plateau phase, which corresponds to the time (in hours) between the moment when the lagoon reaches its highest water-level and the breach, and (ii) the water-head (or hydraulic head) difference (in meters), which was calculated as the difference between the lagoon water-level and the water-level in the nearshore at the opening.

3.1.2. Rainfall regime impact on lagoon water-level

The relation between Lwl and the rainfall was evaluated using the accumulated rainfall (Rf) for the periods when the lagoon was closed. First the periods with more intense and frequent rainfalls or wet seasons were identified, including also the periods during which the lagoon opens. In addition, the water storage capacity of the lagoon was obtained using the bathymetry to translate lagoon water-levels into water-volumes (Lv). Therefore, the relation between Lv and Rf was obtained, which can be applied for
any situation knowing the accumulated rainfall. In addition, the obtained expression can only be applied after a certain level in the lagoon is reached in order to allow direct comparison between events \((L_{\text{mwl}})\).

To select the latter, we have imposed criteria to normalize all the data that is defined by local sea water levels:

\[
(1) \quad L_{\text{mwl}} = MW + \frac{1}{2} (MHW - MW)
\]

where \(MW\) is sea mean water-level and \(MHW\) is the high sea mean water-level.

3.2. Nearshore water-levels

3.2.1. Tidal regime

The tidal regime was monitored using a logger located at the beach nearshore (Figure 1). Water oscillations at the nearshore were recorded at 5 min time intervals, for 28 months (Table 1). We used the same models of water-level loggers as previously described for the \(L_{\text{wl}}\) monitoring. The same topographic and barometric corrections used for the lagoon water-level record were applied to these data. The corrected record was analyzed using the script World Tides (Boon, 2004) for MATLAB software. This MATLAB routine calculates the tidal curves and residuals (storm surges) using the highest astronomical tide (HAT) and the lowest astronomical tide (LAT). Different reference tidal-levels were obtained from the data record: \(MW\), \(MHW\) and mean low water-level (MLW). Identified short gaps in the observed sea-level record due to failures in the logger were corrected by including the predicted tide level obtained with the same MATLAB routine. The tidal height \((T_h)\) at identified lagoon openings were extracted from the record.

3.2.2. Runup

The runup formulation (equation 2) proposed by Stockdon et al. (2006) was chosen to estimate the 2% exceedance value of runup peaks \((R_2)\). Among the available formulas for runup calculation, this one was selected because can be applied to intermediate or reflective beaches. Indeed, under storm conditions (reflective beaches, with \(\xi_0 > 1.25\)), where the swash is dominated by incident energy, the equation 2 can be simplified into the equation 3.

\[
(2) \quad R_2 = 1.1 \left(0.35 \beta_f \sqrt{(H_0L_0)} + \sqrt{\frac{H_0L_0(0.563\beta^2 + 0.004)}{2}} \right) \quad \text{or} \quad (3) \quad R_2 = 0.73 \beta_f \sqrt{(H_0L_0)}; \quad \text{for} \quad \xi_0 > 1.25
\]
where β_f is the beach-face slope, H_0 and L_0 are the deep-water wave height and length, respectively. The ξ_0 is a non-dimensional surf similarity parameter or Iribarren number (Battjes, 1974) and is defined by the equation 4:

$$
(4) \quad \xi_0 = \frac{\beta_f}{\sqrt{H_0 L_0}}
$$

The beach morphology falls into the reflective type during winter conditions (Almécija, 2009) with an average winter slope of 0.1, which was used to calculate the Iribarren number and the runup values.

B_{wl} at the breaching moment was obtained by the addition of the measured tidal-level (T_h) and the calculated runup levels (R_2).

To estimate runup levels at the beach we have used the wave data from a hindcast time series extracted from the SIMAR-3009017 node, located offshore of Louro (Figure 1), for the time period overlapping the record of the water loggers. Because of the orientation and irregular shape of the coast, offshore waves have been propagated onshore using a bathymetric grid with the best available data with a 50m resolution. The SIMAR wave data were used to feed the SWAN (Simulating WAves Nearshore) model (Booij et al., 1999) to simulate the nearshore wave climate. The model was run in non-stationary mode using one computational grid based on the bathymetric grid and was forced along its open boundaries by the integral parameters of the wave time series: H_s, T_p and θ_p. The spectral domain was discretized with 31 frequency bins (distributed logarithmically between 0.04 and 1), with a directional spreading coefficient of 3. Wave parameters (H_s, T_p and θ_p) were extracted from 2 locations alongshore the Louro embayment at 12 m depth (Figure 1).

To ensure the correct application of equation 2, the simulated nearshore waves were reversed shoaled to deep-water using the linear wave theory, and assuming a shore-normal approach and the unrefracted wave height and period as suggested by Stockdon et al. (2006).

A similar approach was used to estimate a range in the elevation of the sandy barrier ($B_{h_{min}} - B_{h_{max}}$) by assuming that B_{wl} during antecedent spring-high tides is a proxy for beach berm elevation. The latter is in turn assumed as representative of the barrier dimensions at the area where the barrier breaches, which in turn lacks any dune building.
4. RESULTS

4.1. Lagoon water-levels

Figure 2A shows the water-level in the lagoon. The basal lagoon water-level was around 2 m (MSLA), which was reached during the dry seasons and when the lagoon was opened. In general terms, when the wet season starts, L_{wl} gradually raises 2 m, reaching values above 4 m MSLA (Figure 2A). All recorded openings at Louro were natural; they had not been artificially forced or initiated. Opening events were easily recognized within the lagoon water-level record as sharp elevation drops (1-2 m), occurring in a short period of time (8-12 hours). The maximum level recorded in the lagoon before barrier breaching was 4.72 m in March 2010 (Figure 2A, Table 2-event 3-). However, the maximum water-level recorded in the lagoon was 4.83 m in February 2011 (Figure 2A-star-, Table 2-event *-), which did not trigger a breaching but showed a gradual water-level lowering that spanned over few months in the following spring and summer.

When breaching occurs, and the lagoon communication opens, water fluctuations driven by tides are propagated inside the lagoon, showing a small time lag relative to the nearshore water-level (Figure 2A). The number of days that the lagoon remained open ranged between 7 and 29 days (Table 2). Once the connection with the open sea became more restricted, tidal fluctuations in the lagoon were flattened, tending to disappear.
Figure 2. (A) Water-levels obtained from the loggers: observed, predicted and residual sea-level and water oscillations in the lagoon (red close and blue open). (B) Rainfall and evaporation record from the Corrubedo meteorological station during the same period. Grey bands show the wet seasons 1 to 3 (October to April) during the test period. Black arrows indicate the most significant events of inlet opening: 1 to 7. Star symbol corresponds to high water-levels into the lagoon which not ended in a barrier breaching. (C,D,E) Wave height (m), period (s) and direction (°) record of offshore waves obtained from the SIMAR node and at the points 1 and 2 from the SWAN model.
Table 2. Detailed information of water-levels into the lagoon, rainfall, tides and waves for opening events. Initial water-levels in the lagoon are established as the minimal water-level before a breach (L_{mwl}). Beach berm values (minimal and maximum) are calculated by adding to the height of the spring-high tides values the corresponding runup values before a barrier beach. The plateau phase corresponds to the time (in hours) between the highest water-level reached by in the lagoon and the breach. The barrier recovery time is referred to the time between the closing of the inlet. The next opening is given in days. The water-head (or hydraulic head) difference (in meters) was calculated as the difference between the water-level in the lagoon and in the barrier.

Event	Lagoon water-level (m)/Date	Initial level (m)	Breach level (m)	B_{max}	B_{min} (m)	Plateau phase (h)	Days open	Barrier recovery time (days)	Water-head (m)	Accumulated rainfall (l/m2)	Water-level at the beach (m)	Wave direction (º)	Wave height (m)	Tidal level (m)	Tidal stage	Tidal type	Tidal range (m)
1	2.91 (14/11/2009)	4.14 (2/12/2009)	4.1-5.1	15.5	7	>76	-0.19	153	4.33	239-WSW	1.52	Rising, close to high	Close spring	2.98			
2	2.91 (28/12/2009)	3.89 (1/1/2010)	3.9-4.1	5.8	13	4	0.83	40.8	3.06	242-WSW	2.57	Falling, close to low	Spring	3.73			
3	2.91 (31/1/2010)	4.72 (2/3/2010)	4.2-5.1	21.8	15	48	1.09	162.1	3.63	232-SW	1.17	Rising, close to high	Spring	4.11			
4	2.91 (18/3/2010)	3.49 (30/3/2010)	3.7-4.8	---	29	13	-2.03	78.5	5.51	231-SW	2.57	Close high	Spring	4.29			
5	2.91 (8/10/2010)	4.62 (3/12/2010)	4.6-4.8	46.3	13	229	2.93	261.6	1.69	239-WSW	0.64	Falling close to low	Close spring	2.55			
6	2.91 (22/12/2010)	3.57 (6/1/2011)	4.5-4.8	---	11	19	-1.28	81.1	4.84	223-SW	2.23	Rising, close to high	Spring	3.07			
*	2.91 (3/2/2011)	4.83* (25/2/2011)	5.2-5.3	153	---	---	1.15*	105.9	3.68*	230*-SW	1.19*	Rising*	Neap*	1.65			
7	2.91 (3/11/2011)	4.43 (16/12/2011)	4.2-5.1	61.2	20	344	1.13	265.8	3.30	233-SW	2.78	Low	Close neap	2.12			
4.2. Impact of rainfall on lagoon water-levels

Figure 2B shows rainfall and evaporation data for the same time interval. From these data, we could identify three wet seasons during the monitoring program: Wet1 extended from October 2009 to April 2010, Wet2 from October 2010 to April 2011, and Wet3 between October 2011 and April 2012. The total rainfall decreased from Wet1 to Wet3. Seven opening events were identified; 4 events during Wet1, 2 events during Wet2, and only one event during Wet3. The first opening event of each wet season was characterized by L_{wl} above 4 m (Table 2) while consecutive openings within a same season were below 4 m, which means that the time interval for barrier recovery would be relatively short; openings 2, 4 and 6 (Table 2).

Figure 3A shows the relationship between L_{wl} and the corresponding L_v for L_{wl} higher than 2.91 m (L_{mw} obtained using equation 1). The relation (with a r^2 value of 0.99) between these variables was:

\[
L_v = 259641L_{wl} - 643018
\]

Figure 3B shows L_v versus R_f for each opening event between the moments in which the imposed criteria is attained ($L_{wl}=L_{mw}$) and the breaching moment. The relation (with a r^2 value of 0.75) between these variables can be described with the following regression:

\[
L_v = 1211R_f + 1.77e^{-05}
\]

Combining equations 4 and 5 we can obtain the relation between the rainfall and the lagoon water-level:

\[
L_{wl} = \frac{(1211R_f + 820018)}{259641}
\]

Figure 3. (A) Lagoon water volume in m3 versus lagoon water-level in m (black points) and the linear regression (blue line) (B) Lagoon volume in m3 obtained for each event from 2.91 m of water-level in the lagoon until the opening level versus accumulated precipitation for each event with the same timing (black points) and the linear regression (blue line).
To validate this relation, we have used the values of rainfall in our study area and the recorded lagoon water-levels. Figure 4 represents the \(L_{wl} \), recorded and predicted using equation 6, at the barrier breach. The predicted values are close to the recorded values (less than 0.3 m of difference) with the exception of the events 2 and 3, having a difference of 0.5 and 0.8 m respectively.

![Figure 4](image)

Figure 4. Lagoon water-level in m for each opening event. Black points represent the recorded water-levels and the grey points the predicted water-levels using the equation 6.

4.3. Nearshore water-levels

Figure 2A shows the complete record of sea level during the monitoring program. The mean sea water-level (MW) was 1.99 m above MSLA; close to the basal level recorded in the lagoon (i.e. 2 m). The obtained mean low water-level (MLW) was 0.19 m while the mean high water-level (MHW) was 3.83 m above MSLA. However, sea level reached values of 4.4 m during storm events (Figure 2A). Identified openings occurred at spring tides or close to spring tides with the exception of opening 7, which took place close to neap tides. Four of the recorded openings occurred close to the high tide (openings 1, 3, 4 and 6) while the other three (opening 2, 5 and 7) happened close to the low tide (Table 2).

Figures 2C, D and E show the wave parameters obtained from the node SIMAR-3009017 and the propagated waves with SWAN model at points 1 and 2 (Figure 1). The results show that higher wave heights came from SW, suggesting the occurrence of storms recorded during the wet seasons. Waves from SW impact the beach directly while waves from westerly and northerly directions are transformed before reaching the
beach due to wave refraction. The effect of refraction is not linear and becomes higher as the offshore waves approach NW, reaching a maximum difference of 50° between offshore and local wave direction (e.g., 343°-NNW-transformed to 290°-WNW-). The wave height and period were reduced by 30% and 20% respectively. Differences between the nearshore points 1 and 2 were only observed on waves above 3 m, suggesting a higher effect as the waves enter the northern-end of the bay.

The minimum and maximum values estimated for barrier elevation (B_{min} and B_{max}) before the openings are presented in Table 2, ranging from 3.7 to 5.3 m. The latter were associated with local waves arriving parallel to the beach or with low angles (∼225-230°) and high periods (>8 s), promoting onshore sediment transport.

In the same way, B_{wl} at the openings were calculated and are presented in Table 2. The estimated values of B_{wl} for four of the identified openings were lower than the recorded L_{wl} (openings 2, 3, 5 and 7), resulting in a positive water-head difference. Alternatively, the other three cases estimated B_{wl} values were higher than L_{wl} (openings 1, 4 and 6), producing a negative water-head difference (Table 2).

4.4. Processes and data integration

Barrier breaching was tentatively parameterized using the relation between the L_{wl} (lagoon water-level); B_{h} (Barrier height) and B_{wl} (barrier water-level). Wave climate, rainfall and the tidal range modulate the selected parameters. Indeed, the water level in the lagoon can be predicted using the accumulated rainfall, while the elevation of the berm can be estimated using the local wave climate and nearshore water level. In addition, the relation between these parameters determines the mechanism that will induce barrier breaching and could be used to predict the timing, the direction of the lagoon openings and, therefore, the type of opening. Three types of openings have been identified: (i) Lw-type or breaching triggered from the lagoon, (ii) Sw-type or breaching triggered from the sea and (iii) Mx-type or mixed lagoon-sea opening.

(i) Lw-type. Three of the identified events were included into this type of event: openings 3, 5 and 7 (Figure 5, event 5). Lw-type was associated with the highest recorded water-levels in the lagoon, ranging from 4.43 to 4.72 m, and highest values of accumulated rainfall with values up to 268.5 l/m². The high lagoon water-levels were maintained between 21.8 and 61.2 hours, what we have named as the plateau phase (Table 2). This type was also associated with a strong barrier, with more than 48 days to recover from a previous opening (Table 2). In addition, the water-head
difference (Table 2), always showed positive values greater than 1 m, generating a gradient between the lagoon and the sea side. Lw-types were preferably happening with low waves heights and spring tide, only the event 7 occurred with high height waves but at low and close to neap tides (Table 2). We observed that for all these cases the relation $L_{wl} \geq B_{h_{min}} > B_{wl}$ was filled.

Figure 5. Example of Lw type (event 5). (A) lagoon water-level and sea-level, (B) rainfall and (C, D, E) waves previous, during and after the opening.

(ii) Sw-type. Openings 4 and 6 (Figure 6, event 4) were classified as Sw-type. In both cases, the opening occurred shortly after beach berm reconstruction, following barrier breaching within the same wet period. The water-level inside the lagoon and the accumulated rainfall was lower than for the Lw-type, with values circa 3.5 m of water-level and circa 80 l/m2 for rainfall (Table 2). Estimated beach berm elevations before the opening were similar or lower than the values obtained for the Lw-type (see Table 2). However, the barrier recovery time in these cases was less than 20 days (Table 2), and the SW waves reached the beach at an oblique angle to the shoreline.
These waves were previously documented as responsible for the beach-face erosion in the study area, provoking the lowering and narrowing of the barrier (Almécija et al., 2009). Water-head differences were negative and greater than 1 m for these cases, generating an inverse gradient between the lagoon and the ocean. During these events, the plateau phase was not present. Sw type events developed during spring tides, coincident with high tides and high SW waves promoting high runup values (see Figure 2 and Table 2). For these cases the observed relation between the three variables was $B_{wl} \geq B_{h_{\text{max}}} > L_{wl}$.

![Image]

Figure 6. Example of Sw type (event 4). (A) lagoon water-level and sea-level, (B) rainfall and (C, D, E) waves, previous, during and after the opening.

(iii) Mx-type. This type represents the openings 1 and 2 (Figure 7, event 2) that could not be easily grouped within the Lw- and Sw-types. The water-level inside the lagoon was relatively high (around 4 m, Table 2). Yet, the water-head difference in this type was positive or negative but lower than 1 m. Moreover, like in the Sw type, the days before the opening were characterized by high SW waves, with high erosion potentials to erode the beach berm, inducing barrier breaching.
Under such conditions, it is expected that the weak barrier would not be able to store high water-volumes in the lagoon, maintaining the plateau phase only for less than 16 hours. For that type of opening, the relation between the variables was $L_{wl} \approx B_{h_{min}} < or > B_{wl}$.

![Figure 7. Example of Mx type (event 2). (A) lagoon water-level and sea-level, (B) rainfall and (C, D, E) waves previous, at and after the opening.](image)

If the water-levels in the lagoon or at the barrier do not reach the minimal barrier crest height the barrier is not breached, even with high water head differences (event *, Table2). For this cases the situation is defined by $L_{wl} < B_{h_{min}} > B_{wl}$.

Once open, the lagoon can maintain its direct connection with the open sea for a variable length of time, ranging from 7 to 29 days. The duration of this phase does not show a clear relation with the lagoon water-level (Table 2). In turn, inlet longevity at Louro seems to be regulated by the rainfall regime and wave climate after the opening. The identified closure events were coincident with a cessation of rain, which would explain the reduction of the water input, and the incidence of constructive waves characterized by higher period values. The latter would promote the onshore sediment transport and the development of high berms with the
subsequent barrier growth and widening. In some cases, barrier sealing was interrupted by high erosive waves, and a slight amount of rainfall; this was observed clearly in opening 2 and 4 (Early-January 2010-Figure 7- and Mid-April 2010- Figure 6).

5. DISCUSSION

The ultimate objective of this work was to monitor water-level oscillations within an intermittently open coastal lagoon and the adjacent nearshore, providing a continuous medium-term (> 2 years), high temporal resolution record of water-level oscillations to understand natural breaching processes and evaluate the role of the major forcers (i.e. rainfall regime or wave climate) during these events. The methodology selected to achieve this purpose allowed barrier breaching and closure identification through the occurrence of water-level changes in the lagoon.

One or other of the identified opening types (Lw-, Sw- and Mx-types) have been previously described at other case studies. Yet, in most of the cases, references to breaching processes at lagoons usually focus on one of these types, suggesting a persistent relation between sites and types of opening; i.e. openings from the lagoon side (Joseph, 1958; Kraus et al., 2008; Rich and Keller, 2013; Rijkenberg, 2015), which are comparable to our Lw-type, versus breaching induced by high waves (Penland and Suter, 2011; Pierce, 1970; Vidal-Juárez et al., 2014), comparable to our Sw-type. All examples found in the literature suggest common processes to explain barrier breaching with independence of site-specific features such as catchment area or lagoon basin dimensions.

At Louro, barrier breaching induced from the land side (lagoon) results from water-level rise in the lagoon as a consequence of intense rainfall and river discharges, in this case under torrential regime. The natural breaching occurs when $L_{wl} \geq B_{min} > B_{wl}$ and after the high lagoon water-levels are maintained for a long period of time, and the water-head value is above 1 m. Under these circumstances we may expect two processes leading barrier breaching as described by Kraus and Wamsley (2003): (i) overflow from the lagoon side, and (ii) seaward seepage generated by the groundwater gradient associated to the difference in water elevation between the both sides of the barrier, contributing to liquefaction and removal of the barrier sand. The estimated berm elevations suggest that a combination of both processes should lead to barrier breaching in Louro. In fact, we have found that barrier breaching in Lw- and Mx-types, only occurs when the water-level in the lagoon equals or exceeds the minimum estimated barrier elevation, which in turn maximizes the potential
seepage to compensate the generated gradient of water elevation between the lagoon and the sea side of the barrier. Indeed, the event observed in February 2011 (event *, Figure 2), despite a clear positive and large water head difference, did not lead to an opening because recorded L_{wl} were below B_{hmin} and therefore did not triggered a lagoon overflow.

Breaching processes generated by overflow from the lagoon have been previously documented along the Californian coast (Joseph, 1958; Kraus et al., 2002), the southeast coast of Australia (Gordon, 1990; Rijkenberg, 2015), the south of Brazil (Figueiredo et al., 2007) and along the southeast African coast (Smith et al., 2014; Zietsman, 2004). For all those cases, high and wide barriers were described, usually backed by lagoons of variable sizes, with the exception of the examples at the southeast African coast, which correspond to narrow estuarine beaches, developed at the mouth of small rivers. Alternatively, breaching processes generated by sediment liquefaction have been usually observed at low and narrow barriers due to the high water-level of the groundwater (Kraus and Wamsley, 2003; Pierce, 1970).

Conversely, openings induced from the sea side of the barrier (Sw-Type) were linked to high values of wave setup and runup, which in turn contributed to the inundation of the weaker or lower areas of the barrier and subsequent barrier breaching. This type of breaching is more frequently observed and is associated to low barrier islands and low lying barrier spits (Gordon, 1990; Kraus et al., 2002; Kraus and Wamsley, 2003; Penland and Suter, 2011; Pierce, 1970; Vidal-Juárez et al., 2014). In fact, Sw-type have been identified when $B_{wl} \geq B_{hmax} > L_{wl}$ and overwash appears to trigger the breaching through the inundation of a barrier section with lower topography, while the impact of the waves increased sediment mobilization and barrier erosion. The recorded SW waves in this type of opening can generate high runup values, which in turn suggest the onset of inundation regimes during the openings as suggested by the application of the storm impact scale classification proposed by Sallenger (2000). A similar situation occurs when $L_{wl} \approx B_{hmin} < B_{wl}$ (Mx-type breaching, opening 1). However, the values of runup for this case did not exceed the estimated B_{hmax} and thus, cannot explain barrier breaching by itself, suggesting the combined effect of waves weakening the barrier and the similar values of water-level in the lagoon side and the B_{hmin}. In addition we can expect that the seaward seepage could contribute to a great extent to barrier breaching also to the latter breaching type, if generated groundwater gradients are considered for all cases. Indeed, a recent experimental work by Turner et al. (2016) had proved how seaward seepage fluxes can be generated under different circumstances, which in turn are
coincident with the ones exemplified by Lw-, Sw- and Mx- breaching types.

The above suggests that Louro lagoon mimics breaching processes identified worldwide. However, we have also found specific differences that should be highlighted. Revised literature, dealing with openings driven from the lagoon side of the barrier, relate the timing of barrier breaching to low tides, when the water-head difference is largest (Kraus et al., 2008; Rich and Keller, 2013; Rijkenberg, 2015). However, at Louro this type of breaching seems to occur when the hydraulic gradient lagoon-sea is positive, independently of the tidal elevation; Lw-type openings occurred close to the high, close to low or in low tide. In addition, it is worth noticing that our case is one of the few showing natural, instead of human-induced, breaching. The latter is usually provoked at low tides to maximize lagoon drainage and avoid hinterland flooding. Other point to highlight is the fact that our records indicate that Lw-type only happens when the high water-level inside the lagoon is maintained over time (long plateau phase), yet the actual breaching occurs only if the values of water-head difference are above 1 m. Other examples described in the literature stated that the influence of the water-head difference is more important than the forcing for the actual rain (Rijkenberg, 2015), but in our case the torrential nature of the river provokes that the water-head is directly due to the persistence of rainfall. Indeed, the water-level records at Louro suggest that the greatest water-head differences only provoke barrier breaching if the rain extends time enough to ensure barrier overflow from the lagoon. Per contra, if rainfall stops the barrier might not be saturated and therefore breaching might be prevented (see event *, Figure 2 and Table 2).

As stated in the results, the lagoon can maintain its connection with the open sea for a variable period of time. However, this study contrast with previous works concluding that growing and stability of the channel from the lagoon side mainly depends on the strength of the ebb-flow created by the volume of water stored within the lagoon prior to openings (Cruces et al., 2009; Fortunato et al., 2014; Stretch and Parkinson, 2006). This response is not observed in Louro, where the lifespan of the inlet seems to depend on the rainfall regime and the wave climate. Sealing processes dominated by wave climate have been reported at other sites (Costas et al., 2005; Dodet et al., 2013; Fortunato et al., 2014; Kraus et al., 2008). However, in those examples the actual conditions promoting the closure are not clearly explained; it is simplified as a natural trend to close by wave driven sediment transport when the outflow is sufficiently reduced. In this regard, it has been suggested that inlet closure is at a great extent promoted by the onshore or longshore transport of the sediment originally
ejected by the breaching. The role of the onshore transport was also described in the closure of seasonally open small tidal inlets by Ranasinghe and Pattiaratchi (2003) who demonstrated that onshore transport of material can induce closure if the longshore sediment transport rate is small or inadequate.

Finally, we have explored the relation between the number of openings per year and the corresponding local climate (Figure 2), finding that the number of openings decreased (increased) with the decreased (increase) of the annual rainfall and with the decreased (increased) occurrence of erosive high and SW waves. Climate projections for the Western Iberian region predict an upward trend of the NAO towards more positive values and a greater frequency of warm and dry winters in the future (López-Moreno et al., 2011), leading to a significant decline of the annual precipitation (Sáez de Cámara et al., 2015; Trigo et al., 2004; Trigo et al., 2008). Water-level monitoring at Louro provides supporting evidences that the lagoon waters may not be renewed if rainfall is low or highly intermittent. If so, the system functionality may be negatively affected due to the eutrophication, as water renewal can be dramatically reduced. Previous works documented that artificial actions (barrier breaching) avoid or mitigate this situation enhancing system functionality (del Barrio Fernández et al., 2012; Smith, 2003). However, if these actions are not well addressed the consequences for the lagoons can be negative instead (De Decker, 1987; Dye and Barros, 2005; Netto et al., 2012). The present work shows an example on how a monitoring program may contribute to the implementation of appropriate management practices, through the definition of the relation between the principal variables governing barrier-breaching processes under changing environmental conditions.

6. CONCLUSIONS

In this work we present a monitoring program of water-level oscillations within Louro lagoon, a small coastal lagoon, included in the Natura 2000 network of the EU, based on the analysis of a dataset expanding more than 2 years. The monitoring included water-level observations in the lagoon and seaward. These datasets are useful to locate accurately the opening timing and to establish the variables playing at breaching time with climatic, wave and topographic data. The methodology proposed in this paper allows us to understand this process at medium-term time scales. However, the co-occurrence of climate related processes (such as heavy rainfall or sea storms) adds uncertainty in the identification of drivers during breaching. To account for those uncertainties, we have first identified the events and then used additional data; i.e. topography, wave
parameters and rainfall to parametrize the variables responsible for lagoon opening.

We can parametrize three principal variables responsible for triggering the natural openings: \(L_{wl} \), lagoon water-level; \(B_h \), barrier height and \(B_{wl} \), beach water-level.

We found that each variable is dependent of other processes, in that way, the \(L_{wl} \) is highly modulated by the rainfall regime, \(B_h \) is dependent of the wave climate (runup) and the \(B_{wl} \) depends on the tidal regime (tidal height) and wave climate (runup).

Three types of openings were identified in function of the relation between these three variables:

- **Lw-type**, when \(L_{wl} \geq B_{hmin} > B_{wl} \); opening from the lagoon side, by lagoon water overflow.
- **Sw-type**; when \(B_{wl} \geq B_{hmax} > L_{wl} \); opening from the sea side, by wave overwash or lagoon inundation
- **Mx-type**; when \(L_{wl} \approx B_{hmin} < \text{ or } > B_{wl} \); the opening is triggered by a combination of processes from both sides.

However, when \(L_{wl} < B_{hmin} > B_{wl} \); there is no opening.

The natural openings are climate modulated, indeed the occurrence of the natural openings are linked to rainfall regimes. The results suggest that if the projections are right, the study area will tend to register more frequent warm and dry winters, which in turn will lead to a decrease on the annual precipitation and thus a reduction on the communication of the lagoon with the open sea. The latter has negative consequences over the lagoon ecosystem due to the reduction of its functionality.

With this work we prove that understanding how and when a lagoon opens naturally is possible and that it can support and improve management practices. On the other hand, the quality and temporal extent of the dataset provides a perfect framework for future work, which should include model calibration of opening and closure processes.

7. ACKNOWLEDGEMENTS

Financial support was provided by grants from the Xunta de Galicia (08MDS036000PR) and MICINN (CTM2012-39599-C03-01). The authors would like to thank Puertos del Estado (Ministerio de Fomento) for the SIMAR-44 database provided for this study and to the IGN (© Instituto Geográfico Nacional de España), for providing the LiDAR data and aerial imagery. We thank the Regional Weather Forecast Agency...
(MeteoGalicia) for kindly providing the climatic data. We also thank the members of the XM-1 group (U. Vigo) for field assistance. R. González-Villanueva was funded by the Xunta de Galicia Post-Doc Fellowship (PlanI2C-ED481B 2014/132-0). Susana Costas was founded by the Portuguese Science Foundation through the “FCT Investigator” program (ref. IF/01047/2014).

8. REFERENCES

Alméjica, C., 2009. Morfodinámica e hidrodinámica de una playa expuesta. Ejemplo de la playa de louro (muros, nw península ibérica). Master Thesis Thesis, Universidad de Vigo, Vigo, 54 pp.

Alméjica, C., Villacieros-Robineau, N., Alejo, I. and Pérez-Arlucea, M., 2009. Morphodynamic conceptual model of an exposed beach: The case of louro beach (galicia, nw, iberia). Journal of Coastal Research, SI 56: 1711-1715.

Battjes, J.A., 1974. Surf similarity. 14th Conference of Coastal Engineering, p. pp. 466-480.

Bird, E.C.F., 1993. Physical setting and geomorphology of coastal lagoons. In: B. Kjerfve (Editor), Coastal lagoon processes. Elsevier, Amsterdam, pp. 9–39.

Booij, N., Ris, R.C. and Holthuijsen, L.H., 1999. A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4): 7649-7666.

Boon, J.D., 2004. Secrets of the tide : Tide and tidal current analysis and applications, storm surges and sea level trends. Horwood Pub., Chichester, U.K.

Boothroyd, J., 1985. Tidal inlets and tidal deltas. In: R. Davis, Jr. (Editor), Coastal sedimentary environments. Springer New York, pp. 445-532.

Castelle, B. et al., 2007. Dynamics of a wave-dominated tidal inlet and influence on adjacent beaches, currumbin creek, gold coast, australia. Coastal Engineering, 54(1): 77-90.

Cayocca, F., 2001. Long-term morphological modeling of a tidal inlet: The arcachon basin, france. Coastal Engineering, 42(2): 115-142.

Cobelo-García, A. et al., 2012. Temporal and diel cycling of nutrients in a barrier–lagoon complex: Implications for phytoplankton abundance and composition. Estuarine, Coastal and Shelf Science, 110(0): 69-76.

Costas, S., Alejo, I., Vila-Concejo, A. and Nombela, M.A., 2005. Persistence of storm-induced morphology on a modal low-energy beach: A case study from nw-iberian peninsula. Marine Geology, 224: 43-56.

Cruces, A., Freitas, M.C. and Andrade, C., 2009. Morphodynamics of the artificial inlet of santo andré coastal lagoon (sw portugal) - twelve years of monitoring. In: G. Flor Rodríguez, J. Gallastegui, G. Flor Blanco and J. Martín LLaneza (Editors), 6º Simposio sobre el Margen Ibérico Atlántico MIA09, Oviedo, pp. 233-236.

De Decker, H.P., 1987. Breaching the mouth of the bot river estuary, south africa: Impact on its benthic macrofaunal communities. Transactions of the Royal Society of South Africa, 46(3): 231-250.

del Barrio Fernández, P., Gómez, A.G., Alba, J.G., Díaz, C.Á. and Revilla Cortezón, J.A., 2012. A model for describing the eutrophication in a heavily regulated coastal lagoon. Application to the albufera of valencia (spain). Journal of Environmental Management, 112(0): 340-352.

Dodet, G. et al., 2013. Wave-current interactions in a wave-dominated tidal inlet. Journal of Geophysical Research: Oceans, 118(3): 1587-1605.

Dussaillant, A., Galdames, P. and Sun, C.-L., 2009. Water level fluctuations in a coastal lagoon: El yali ramsar wetland, chile. Desalination, 246(1-3): 202-214.

Dye, A. and Barros, F., 2005. Spatial patterns of macrofaunal assemblages in intermittently closed/open coastal lakes in new south wales, australia. Estuarine, Coastal and Shelf Science, 64(2–3): 357-371.

Fagherazzi, S. and Priestas, A.M., 2012. Back-barrier flooding by storm surges and overland flow. Earth Surface Processes and Landforms, 37(4): 400-410.

Figueiredo, S.A., Cowell, P. and Short, A., 2007. Intermittent backbeach discharge to the surfzone: Modes and geomorphologic implications. Journal of Coastal Research, SI 50: 4.

FitzGerald, D.M., Kraus, N.C. and Hands, E.B., 2000. Natural mechanisms of sediment bypassing at tidal inlets, US Army Corps of Engineers.

FitzGerald, D.M., Penland, S. and Nummedal, D., 1984. Control of barrier island shape by inlet sediment...
bypassing: East frisian islands, west germany. In: B. Greenwood and R.A. Davis (Editors), Developments in sedimentology. Elsevier, pp. 355-376.

Fortunato, A.B. et al., 2014. Morphological evolution of an ephemeral tidal inlet from opening to closure: The albufeira inlet, portugal. Continental Shelf Research, 73(0): 49-63.

Gale, E., Pattiaratchi, C. and Ranasinghe, R., 2006. Vertical mixing processes in intermittently closed and open lakes and lagoons, and the dissolved oxygen response. Estuarine, Coastal and Shelf Science, 69(1–2): 205-216.

González-Villanueva, R., 2013. Origin, evolution and processes controlling holocene barrier-lagoon systems (nw spain), Universidad de Vigo, 199 pp.

Goodess, C.M. and Jones, P.D., 2002. Links between circulation and changes in the characteristics of iberian rainfall. International Journal of Climatology, 22(13): 1593-1615.

Gordon, A.D., 1981. Behaviour of lagoon inlets. National Conference Publication - Institution of Engineers, Australia, p.4pp. 54-58.

Gordon, A.D., 1990. Coastal lagoon entrance dynamics. Coastal Engineering Proceedings(22).

Green, A., Cooper, J.A.G. and LeVieux, A., 2013. Unusual barrier/inlet behaviour associated with active coastal progradation and river-dominated estuaries. Journal of Coastal Research: 35-45.

Hayes, M.O., 1979. Barrier islands morphology as a function of tidal and wave regime. In: S.P. Leatherman (Editor), Barrier islands from the gulf of st. Lawrence to the gulf od mexico. Academic Press, New York, pp. 1-27.

Joseph, J., 1958. Studies of big lagoon, humboldt county, california 1956-1958. Master Thesis Thesis, Humboldt State University, Humboldt, California, 137 pp.

Kraus, N.C., Miliello, A. and Todoroff, G., 2002. Barrier breaching processes and barrier spit breach, stone lagoon california. Shore & Beach, 70(4): 8.

Kraus, N.C., Munger, S. and Patsch, K., 2008. Barrier beach breaching from the lagoon side, with reference to northern california. Shore & Beach, 2(76): 10.

Kraus, N.C. and Wamsley, T.V., 2003. Coastal barrier breaching. Part 1: Overview of breaching processes, U.S. Army Engineer Research and Development Center, Vicksburg, MS.

López-Moreno, J.I. et al., 2011. Effects of the north atlantic oscillation (nao) on combined temperature and precipitation winter modes in the mediterranean mountains: Observed relationships and projections for the 21st century. Global and Planetary Change, 77(1–2): 62-76.

Martínez Cortizas, A. and Pérez Alberti, A., 1999. Atlas climático de galicia, Xunta de Galicia, 207 pp.

Moreno, I.M., Ávila, A. and Losada, M.Á., 2010. Morphodynamics of intermittent coastal lagoons in southern spain: Zahara de los atunes. Geomorphology, 121(3–4): 305-316.

Morris, B.D. and Turner, I.L., 2010. Morphodynamics of intermittently open–closed coastal lagoon entrances: New insights and a conceptual model. Marine Geology, 271(1–2): 55-66.

Netto, S.A., Domingos, A.M. and Kurtz, M.N., 2012. Effects of artificial breaching of a temporarily open/closed estuary on benthic macroinvertebrates (camacho lagoon, southern brazil). Estuaries and Coasts, 35(4): 1069-1081.

Osborn, T., Briffa, K.R., Tett, S.F.B., Jones, P.D. and Trigo, R.M., 1999. Evaluation of the north atlantic oscillation as simulated by a coupled climate model. Climate Dynamics, 15(9): 685-702.

Pacheco, A., Ferreira, Ó. and Williams, J.J., 2011. Long-term morphological impacts of the opening of a new inlet on a multiple inlet system. Earth Surface Processes and Landforms, 36(13): 1726-1735.

Penland, S. and Suter, J.R., 2011. Low-profile barrier islands overwash and breaching in the gulf of mexico. Coastal Engineering Proceedings(19).

Pérez-Arlucea, M., Almécija, C., González-Villanueva, R. and Alejo, I., 2011. Water dynamics in a barrier-lagoon system: Controlling factors. Journal of Coastal Research(SI 64): 15-19.

Pierce, J.W., 1970. Tidal inlets and washover fans. The Journal of Geology, 78(2): 230-234.

Ranasinghe, R. and Pattiaratichi, C., 2003. The seasonal closure of tidal inlets: Causes and effects. Coastal Engineering Journal, 45(04): 601-627.

Ranasinghe, R., Pattiaratichi, C. and Masselink, G., 1999. A morphodynamic model to simulate the seasonal closure of tidal inlets. Coastal Engineering, 37(1): 1-36.

Rich, A. and Keller, E.A., 2013. A hydrologic and geomorphic model of estuary breaching and closure. Geomorphology, 191: 64-74.

Rijkenberg, L., 2015. Wave-dominated tidal inlet systems: Processes which force opening and closure of intermittently open natural inlets. Master Thesis, Delft University of Technology, 152 pp.
Rodriguez-Fonseca, B. and de Castro, M., 2002. On the connection between winter anomalous precipitation in the Iberian Peninsula and North West Africa and the summer subtropical Atlantic Sea surface temperature. Geophysical Research Letters, 29(18): 1863.

Roy, P.S. et al., 2001. Structure and function of South-East Australian estuaries. Estuarine, Coastal and Shelf Science, 53(3): 351-384.

Sáez de Cámara, E., Gangoiti, G., Alonso, L. and Iza, J., 2015. Daily precipitation in Northern Iberia: Understanding the recent changes after the circulation variability in the North Atlantic sector. Journal of Geophysical Research: Atmospheres, 120(19): 9981-10,005.

Sallenger, A.H., Jr., 2000. Storm impact scale for barrier islands. Journal of Coastal Research, 16(3): 890-895.

Schallenberg, M., Larned, S.T., Hayward, S. and Arbuckle, C., 2010. Contrasting effects of managed opening regimes on water quality in two intermittently closed and open coastal lakes. Estuarine, Coastal and Shelf Science, 86(4): 587-597.

Smith, A.M., Guastella, L.A. and Goble, B.J., 2014. Forecasting lagoon outlet erosion: KwaZulu-Natal, Southeast Africa. Journal of Coastal Research: 151-155.

Smith, V., 2003. Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ Sci & Pollut Res, 10(2): 126-139.

Stockdon, H.F., Holman, R.A., Howd, P.A. and Sallenger Jr, A.H., 2006. Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7): 573-588.

Stretch, D. and Parkinson, M., 2006. The breaching of sand barriers at perched, temporary open-closed estuaries - a model study. Coastal Engineering Journal, 48(01): 13-30.

Trigo, R.M. et al., 2004. North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. International Journal of Climatology, 24(8): 925-944.

Trigo, R.M. et al., 2008. The impact of North Atlantic wind and cyclone trends on European precipitation and significant wave height in the Atlantic. Annals of the New York Academy of Sciences, 1146(1): 212-234.

Turner, I.L., Rau, G.C., Austin, M.J. and Andersen, M.S., 2016. Groundwater fluxes and flow paths within coastal barriers: Observations from a large-scale laboratory experiment (bardex II). Coastal Engineering, 113: 104-116.

Vidal-Juárez, T., Ruiz de Alegría-Arzaburu, A., Mejía-Trejo, A., García-Nava, H. and Enríquez, C., 2014. Predicting barrier beach breaching due to extreme water levels at San Quintín, Baja California, Mexico. Journal of Coastal Research: 100-106.

Wainwright, D.J. and Baldock, T.E., 2015. Measurement and modelling of an artificial coastal lagoon breach. Coastal Engineering, 101: 1-16.

Weidman, C.R. and Ebert, J.R., 2013. Cyclic spit morphology in a developing inlet system, Formation and evolution of multiple tidal inlets. American Geophysical Union, pp. 186-212.

Zietsman, I., 2004. Hydrodynamics of temporary open estuaries, with case studies of Mhlanga and Mdloti. Master Thesis Thesis, University of Kwa-Zulu Natal, South Africa, 131 pp.