Review

Mesenchymal stem cells and immunomodulation: current status and future prospects

F Gao1,5, SM Chiu2,5, DAL Motan1, Z Zhang1, L Chen1, H-L Ji3, H-F Tse2, Q-L Fu4 and Q Lian*1,2

The unique immunomodulatory properties of mesenchymal stem cells (MSCs) make them an invaluable cell type for the repair of tissue/organ damage caused by chronic inflammation or autoimmune disorders. Although they hold great promise in the treatment of immune disorders such as graft versus host disease (GVHD) and allergic disorders, there remain many challenges to overcome before their widespread clinical application. An understanding of the biological properties of MSCs will clarify the mechanisms of MSC-based transplantation for immunomodulation. In this review, we summarize the preclinical and clinical studies of MSCs from different adult tissues, discuss the current hurdles to their use and propose the future development of pluripotent stem cell-derived MSCs as an approach to immunomodulation therapy.

Cell Death and Disease (2016) 7, e2062; doi:10.1038/cddis.2015.327; published online 21 January 2016

Facts

- Mesenchymal stem cells (MSCs) are multipotent stem cells that can differentiate into a variety of cell types, and be isolated and expanded easily in vitro.
- Preclinical and clinical studies show that MSCs have anti-inflammatory and immune-privilege potential.
- Several MSC products have been approved for clinical application: Cartistem for degenerative arthritis, Cupistem for anal fistula in Korea and Prochymal for acute GVHD in Canada and New Zealand.

Unresolved Issues

- An understanding of the mechanisms of MSC-based immunomodulation remains incomplete.
- The possible reasons for the mixed results of MSC immunomodulation therapies in clinical trials require further scientific clarification.
- There remain challenges to the future development of MSCs for immunomodulation and a need for improved quality control.

MSCs and Immunomodulation

Mesenchymal stem cells (MSCs) are multipotent stem cells that can differentiate into a variety of cell types, including adipocytes, osteoblasts, chondrocytes, myocytes, β-pancreatic islets cells and, potentially, neuronal cells. In addition to their differentiation potential, MSCs have been reported to regulate the immune response in many diseases.1–8 Numerous reports have shown that adult MSCs can affect the immune T- and B-cell response: (1) adult MSCs suppress T-cell proliferation, cytokine secretion and cytotoxicity and regulate the balance of Th1/Th2;9–12 (2) adult MSCs regulate the functions of regulatory T cells (Tregs);13–15 (3) MSCs increase B-cell viability but also may inhibit their proliferation and arrest the cell cycle; in addition, MSCs affect the secretion of antibodies and production of co-stimulatory molecules of B cells;12,16 (4) MSCs inhibit the maturation, activation and antigen presentation of dendritic cells;13,14 and (5) adult MSCs also inhibit interleukin-2 (IL-2)-induced natural killer (NK) cell activation.15

Similar to adult MSCs, pluripotent stem cell-derived MSCs such as embryonic stem cell (iPSCs), that is, ESC-MSCs or iPSC-MSCs, also demonstrate strong potential for immunomodulation by inhibition of lymphocyte proliferation16–18 and NK cells.18 Furthermore, ESC-MSCs suppress proliferation of responder T lymphocytes, including CD4+ or CD8+ T cells.16,17 They also suppress the cytotoxic effects of activated NK cells and downregulate NK-activating receptors.17 Our recent studies have shown that iPSC-MSCs can inhibit phytohemagglutinin-
stimulated lymphocyte proliferation in a dose-dependent manner.19

Interestingly, current evidence suggests that MSCs exert variable immunomodulatory effects on the same types of immune cell depending on the local microenvironment or disease status. For example, MSCs decrease the Th1 response in patients with acute graft versus host disease (GvHD)20 and autoimmune diseases such as systemic lupus erythematous (SLE).21 However, bone marrow (BM)-derived MSCs (BM-MSC) lead to a shift from Th2 to Th1 responses in airway allergic inflammatory diseases, including allergic rhinitis22,23 and asthma.24–27 Inflammatory conditions also have been proven to change immunomodulatory gene expression in MSCs or promote the cell–cell contact effect, resulting in an enhanced immunosuppressive response.28–30

These observations suggest that MSCs are capable of switching their effects to protect the body from disease in different situations.

Mechanisms of MSC-mediated immunomodulation.

Although the underlying mechanisms of MSC immunomodulation have yet to be elucidated, they are likely mediated by soluble factors and cell contact-dependent mechanisms in response to immune cells (Figure 1). We and others have shown that MSCs regulate the adaptive and innate immune systems by suppression of T cells and maturation of dendritic cells, reducing B-cell activation and proliferation and inhibiting proliferation and cytotoxicity of NK cells, and promote the generation of regulatory T cells via soluble factors or cell–cell contact mechanisms.16,31–33

Immunomodulation by soluble factors: Several soluble factors have been proposed to mediate the immunosuppressive effect, including transforming growth factor-β1 (TGF-β1), prostaglandin E2 (PGE2), hepatocyte growth factor (HGF), indoleamine-pyrolole 2,3-dioxygenase (IDO), nitric oxide (NO) and interleukin-10 (IL-10). Extensive data show that the proinflammatory cytokine interferon-γ (IFN-γ), alone or in combination with tumor necrosis factor-α (TNF-α), IL-1α or IL-1β, induces MSCs to secrete various enzymes and soluble factors such as cyclooxygenase 2 (COX-2), PGE2 and IDO that mediate immunosuppressive activity.34–37 PGE2, which is dramatically upregulated after co-culture of MSCs with peripheral blood mononuclear cells,38 has been shown to inhibit T-cell proliferation.39 IDO, by catalyzing the conversion of tryptophan to kynurenine, is able to inhibit the growth and function of immune cells.39 Secretion of IDO by MSCs has been shown to inhibit allogeneic T-cell responses and induce kidney allograft tolerance,40 although IDO-expressing dendritic cells have also been shown to mediate the inhibitory effect of MSCs on T-cell proliferation.41 NO is another soluble factor known to inhibit T-cell proliferation.42,43 It has been shown that MSC-produced NO is one of the major mediators of T-cell suppression by MSCs.44 Ren et al.37 established that BM-MSCs dramatically upregulated inducible nitric oxide synthase (iNOS) and chemokines in response to a combination of IFN-γ and proinflammatory cytokines. They further found that MSCs attenuated delayed-type hypersensitivity and prevented the development of GvHD through a mechanism that required TNF-α and iNOS.37 Nemeth et al.25 showed that BM-MSCs significantly suppressed allergic responses in a mouse model of ragweed-induced asthma by TGF-β. In addition to the above mentioned factors, several reports suggest that other soluble factors such as IL-6,43 galectins45,46 and leukemia inhibitory factor47 can regulate immunomodulation of MSCs.

Figure 1 Immunomodulatory effects of MSCs on immune cells. Immunomodulatory effects of MSCs include suppression of B- and T-cell proliferation, induction and regulation of regulatory T cells, inhibition of NK cell function and inhibiting dendritic cell maturation and activation. The immunosuppressive effects of MSCs are mediated by soluble factors and cell–cell contact.
Preclinical studies of MSCs in immunomodulation. MSCs derived from BM or fat tissues or other tissues have been employed in the treatment for experimental animal models of inflammatory and immune disorder diseases (Table 1). Autologous, allogeneic and even xenogeneic MSCs have shown great promise in the treatment. In mouse models of chronic or severe asthma, systemic administration of MSCs reduces allergen-specific IgE and Th2 cytokines IL-4, IL-5 or IL-13 in bronchial fluid and inhibits airway inflammation and pathology remodeling.55,56 A decrease in serum NO levels following administration of MSCs was also observed.57 In experimental disease models including colitis,58 radiation proctitis,59 immune thrombocytopenia60 and autoimmune encephalomyelitis61,62 the interaction between cells and the action or counteraction of several factors involved in the immune function of MSCs is a complex network. In order to provide pleiotropic immunomodulation that is responsive to different stimuli, such as cytokines and that targets different immune cells, MSCs are likely to employ both direct contact and soluble factors that work together for diverse and strong regulation.

Table 1 Immunomodulation of MSCs in animal model

Model	Animals	Source	Effect	Mechanism	Reference
Allergic rhinitis	Balb/c mice	Balb/c mice adipose tissue	Y	IFN-γ dependent	22
Asthma	Balb/c mice and C57BL/6 mice	C57BL/6 mice BM-MSCs	Y	TGF-β	24
Asthma	C57BL/6J mice	Balb/c mice BM-MSCs	Y	TGF-β	25
Chronic asthma	Balb/c mice	Human BM-MSCs	Y	TGF-β	26
Allergic rhinitis	Balb/c mice	Human BM-MSCs	Y	TGF-β	27
Autoimmune hearing loss	Balb/c mice	Human adipose tissue MSCs	Y	IL-10	55
Severe asthma	Balb/c mice	S.D. rats BM-MSCs	Y	TGF-β	56
Asthma	Balb/c mice	Balb/c mice BM-MSCs	Y	TGF-β	57
Chronic asthma	Balb/c mice	Balb/c mice BM-MSCs	Y	TGF-β	58
Experimental colitis	C57BL/6J mice	Human gingival-MSCs	Y	IL-10, IDO	59
Radiation proctitis	SD rats	SD rat BM-MSCs	Y	Glucocorticoid	60
Immune thrombocytopenia	Balb/c mice	Human adipose tissue MSCs	Y	T helper cells	61
Experimental autoimmune	C57BL/6 mice	C57BL/6J mice BM-MSCs	Y	IFN-γ	62
encephalomyelitis	C57BL/6 mice	Human adipose tissue MSCs	Y	Inducing Treg cells	63
Rheumatoid arthritis	DBA/1 LacJ mice	Human adipose tissue MSCs	Y	Inducing Treg cells	64
Rheumatoid arthritis	DBA/1 mice	Human adipose tissue MSCs	Y	Inducing Treg cells	65
SLE	MRL/pr mice	Human umbilical cord-MSCs	Y	IL-10, IDO	66
SLE	NZB/W F1 mice	Human umbilical cord-MSCs	Y	TGF-β	67
GvHD	DBA/2 mice	Human umbilical cord-MSCs	Y	IDO, TGF-β	68
Experimental autoimmune	Lewis rats	Lewis rats BM-MSCs	Y	TGF-β	69
encephalomyelitis	C57BL/6 mice	Human adipose tissue MSCs	Y	T helper cells	70
Autoimmune thyroiditis	C57BL/6 mice	Human adipose tissue MSCs	Y	T helper cells	71
Autoimmune myasthenia	C57BL/6 mice	Human BM-MSCs	Y	T helper cells	72
Contact dermatitis	Balb/c mice	Human gingival-MSCs	Y	PGE2	151
Asthma	Balb/c OlaHsd mice	FV/BN mice BM-MSCs	Y	Inducing Treg cells	152
Asthma	C57BL/6 mice	C57BL/6J mice BM-MSCs	Y	Inducing Treg cells	153
Asthma	Balb/c mice	Balb/c mice adipose tissue	Y	T helper cells	154

Although more than a dozen soluble factors are known to be involved in the immunomodulation of MSCs, their relationship remains unclear. The effect of soluble factors on the activity of MSCs may vary depending on the origin of the MSCs, target cells and the microenvironment. Though it is indisputable that MSC therapy contributes to immunosuppression, further elucidation of the detailed biological mechanisms involved in this process is required. At the same time, it must be noted that some cytokines or chemokines released from MSCs may be harmful, such as TNF-α and IL-6 that promote an inflammatory response.48 Therefore, the regulation mechanism of MSCs to produce beneficial soluble factors and how such factors can modulate immune cells are key issues that underlie the successful immunomodulation effects of MSCs.

Immunomodulation by cell–cell contact: Several reports on culture systems have shown that cell–cell contact is a key factor involved in the immunomodulatory effects of MSCs. Han et al.49 found that BM-MSCs not only decrease the survival and proliferation of T cells by contact-dependent mechanisms, but they also increase the proportion of Tregs. Krampera et al.50 reported that the inhibitory effect of MSCs on T cells requires the presence of MSCs in culture and MSC–T-cell contact. In addition, it has previously been found that direct contact between MSCs and purified T cells is required for Treg induction.51 Cell adhesion molecules secreted by MSCs, such as CD274 (also known as Programmed death ligand 1), vascular cell adhesion molecule-1 and galectin-1, could be upregulated by IFN-γ that not only can support cell–cell contact but also promote the immunomodulation capacity of MSCs.29,30,32–34 The interaction between cells and the action or counteraction of several factors involved in the immune function of MSCs is a complex network. In order to provide pleiotropic immunomodulation that is responsive to different stimuli such as chemokines and that targets different immune cells, MSCs are likely to employ both direct contact and soluble factors that work together for diverse and strong regulation.
encephalomyelitis, MSCs reduce T-cell proliferation, suppress the inflammatory infiltrates and cytokines and express anti-inflammatory cytokines. Similarly, prominent immune-suppressive effects of MSCs for animal immune disorder models of arthritis, SLE, and multiple sclerosis have been well documented. In the treatment of SLE, both allogeneic BM-MSCs and xenogeneic umbilical cord blood derived-MSCs from humans significantly delay the development of proteinuria, reconstruct the BM osteoblastic niche and effectively reverse multiorgan dysfunction. MSCs also seem to confer protective effects in other immune diseases including autoimmune thyroiditis, autoimmune myasthenia gravis, hearing loss and primary biliary cirrhosis.

Notably, human MSCs demonstrated effective immunomodulation in mouse models of immune disorders. As human MSCs are well tolerated in murine disease models, it suggests that human MSCs can favorably change the outcome of inflammatory reactions while avoiding the pathology associated with cross-species application.

Human ESC/iPSC-MSCs act as new cell types have also been investigated in immunoregulation and showed encouraging results. Human ESC-MSCS exhibited better engraftment and immunomodulation effect than human BM-MSCs in mouse pulmonary arterial hypertension model. Another study demonstrated the immunomodulatory properties of human iPSC-MSCs in a mouse model of allergic inflammation in both the upper and lower airways. Systemic administration of human iPSC-MSCs significantly inhibited inflammatory infiltration in both the bronchoalveolar and nasal lavage, and serum levels of IgE and Th2 cytokines (IL-4, IL-5 or IL-13) were also significantly decreased. Interestingly, compared with adult MSCs, human ESC/iPSC-MSCs are insensitive to IFN-γ-induced human leukocyte antigen-II (HLA-II) and have better cell survival and engraftment rate after transplantation. These advantages of ESC/iPSC-MSCS indicate that pluripotent stem cell-derived MSCs can serve as an alternative to adult MSCs in the future treatment of these diseases.

Clinical studies of MSCs in immunomodulation

A progressive understanding of the biology of MSCs has led to their approval and use in clinical trials as an immunomodulator in the treatment of diseases such as GVHD, organ transplantation, diabetes, multiple sclerosis and Crohn's disease. Detailed information is summarized in Table 2. To date, more than 400 studies to explore the therapeutic effects of MSCs have been registered on the clinical trial database (www.clinicaltrials.gov).

Severe GVHD is a life-threatening complication following allogeneic transplantation of hematopoietic stem cells in many malignant and nonmalignant disorders. Steroids are currently the first-line treatment for GVHD. Nonetheless, the outcome for patients with severe, steroid-resistant or acute GVHD is poor. In a phase II study, Le Blanc et al. injected allogeneic BM-MSCs into 55 patients with grade 2–4 GVHD: a complete or partial response was achieved in 30 and 9 patients, respectively. More importantly, the total and transplantation-related mortality in those with a complete response was significantly lower than in those with a partial or no response, and no patients experienced major adverse effects following infusion of MSCs. In another phase I/II clinical trial of the therapeutic effects of MSCs on acute (10 patients) and chronic (8 patients) GVHD, a complete response was achieved in 1 patient with acute GVHD and 1 with chronic GVHD; a partial response was observed in 6 patients with acute GVHD and 3 patients with chronic GVHD. No major adverse event was observed following MSC therapy. In pediatric patients with chronic GVHD following allogeneic stem cell transplantation, one of three patients showed slight improvement following allogeneic BM-MSC infusion. Allogeneic BM-MSCs have also been shown by other clinical trials to be beneficial in GVHD. Recently, Health Canada has approved the clinical application of MSCs in patients with GVHD.

Phase I/II clinical trials have evaluated the application of MSCs in patients with multiple sclerosis. In a phase I open-safety clinical trial, Karussis et al. showed that transplantation of MSCs in patients with multiple sclerosis and amyotrophic lateral sclerosis could induce immediate immunomodulatory effects and was a safe and clinically feasible procedure. Another open-label phase II study of autologous MSCs for the treatment of secondary progressive multiple sclerosis demonstrated improved visual acuity and visual evoked response latency with no serious adverse effects.

The therapeutic effects of MSC transplantation have been investigated in patients following kidney transplantation, and in those with SLE, diabetes, Crohn's disease, ulcerative colitis and osteoarthritis. Of particular note, a study by Perico et al. showed that pretransplant infusion of autologous MSCs can protect the transplanted kidney from graft dysfunction. All studies except the one in Crohn's disease showed some clinical benefit of MSC treatment. Based on these initial encouraging results, further investigations are in progress to improve the safety and efficacy of MSC therapy.

Mohamadnejad et al. and Kharaziz et al. have carried out successful phase I trials in liver failure and cirrhosis, respectively. Transplantation of autologous MSCs remarkably improved patients' quality of life and improved liver function. Another two phase II studies also demonstrated that infusion of MSCs increased serum albumin, reduced serum bilirubin and improved Mayo end-stage liver disease score in patients with liver failure.

Until now, clinical trials are mostly focused on BM-MSCs, and this may be because it is the earliest and traditional investigated cell type. With the further exploration of MSCs from other tissue origins and the progress got from preclinical studies, more types of MSCs will be learned in clinical studies and provide multiple cell-type choice for immunomodulation therapy.

Issues of MSCs in Immunomodulation Therapies

In the majority of completed early pilot clinical trials, recipients of MSC therapy demonstrated good tolerance and improved clinical symptoms. Although results from these clinical trials indicate that MSC-based therapy is a promising strategy for immunomodulation, there remain many challenges to be overcome.

In 2009, Osiris therapeutics, Inc., reported their preliminary results for prochymal phase III GVHD trials (http://clinicaltrials.gov/show/NCT00366145; http://investor.osiris.com/release-detail.cfm?ReleaseID=407404) in 192 patients with GVHD.
Disease	Sample size	Study period	Source of MSCs	MSCs Description	Dosage	Effect	Stage	Reference
Acute and chronic GvHD	18 Adults	3 Days to 1 year	Allogeneic BM-MSCs	1–2 × 10^6/kg, 1 dose	Y	Y	Phase I/II	82
GvHD	20 Adults	1 Year	Allogeneic BM-MSCs	/	Y	/	/	84
GvHD	3 Adults	20–103 Days	Allogeneic BM-MSCs	0.5 × 10^6/kg, 1 dose	Y	/	/	85
GvHD	12 Adults	795–1914 days	Allogeneic BM-MSCs	0.4–1.1 × 10^6/kg, 3 doses	Y	/	/	86
Sclerodermatous chronic GvHD	4 Adults	4.6–23 Months	Allogeneic BM-MSCs	1–2 × 10^6/kg, 1 dose	Y	/	/	87
GvHD	32 Adults	28 Days	Allogeneic BM-MSCs	2 or 8 × 10^5/kg, 1 dose	Y	/	/	88
GvHD	55 Adults	60 Months	Allogeneic BM-MSCs	0.4–9 × 10^6/kg, 1–5 doses	Y	Y	Phase II	81
GvHD	7 Children	29 Months	Allogeneic BM-MSCs	0.4–3 × 10^6/kg, 1 dose	Y	Y	/	83
GvHD	8 Adults	3 Years	Allogeneic BM-MSCs	(0.7–9) × 10^6/kg, 1–2 doses	Y	Y	/	88
Multiple sclerosis	10 Adults	10 Months	Autologous BM-MSCs	/	Y	Y	Phase IIA	90
Multiple sclerosis	8 Adults	/	Autologous BM-MSCs	2 × 10^6/kg, 1 dose	Y	/	/	155
Multiple sclerosis	7 Adults	6 Months	BM-MSCs	2 × 10^7, 1 dose	Y	Y	/	156
Multiple sclerosis	10 Adults	1 Year	Autologous BM-MSCs	1–2 × 10^6/kg, 1 dose	Y	Y	Phase IIA	89
Multiple sclerosis and amyotrophic	MS: 15 adults, ALS: 6 Months		Autologous BM-MSCs	MS: 6.32 × 10^7; ALS: 1.74 × 10^7, 1 dose	Y	Y	Phase I/II	91
lateral sclerosis	19 adults							
Multiple sclerosis	10 Adults	12 Months	Autologous BM-MSCs	3–5 × 10^7, 1 dose	Y	Y	Phase I	130
Multiple sclerosis	10 Adults	13–26 Months	Autologous BM-MSCs	8.73 × 10^7, 1 dose	Y	Y	/	130
Multiple sclerosis	15 Adults	12 Months	Autologous BM-MSCs	1–2 × 10^9/kg, 1 dose	Y	Y	Phase II	157
Multiple sclerosis	16 Adults	6 Months	Placenta MSCs	1.5–10^9, 1 dose	Y	Y	Phase IB	156
Kidney transplantation	159 Adults	1 Year	Autologous BM-MSCs	2 × 10^7/kg, 1 dose	Y	Y	/	159
Kidney transplantation	2 Adults	360 Days	Autologous BM-MSCs	1.7 × 10^7/kg, 1 dose	Y	Y	/	160
Kidney transplantation	4 Adults	540 Days	Autologous BM-MSCs	2 × 10^6/kg, 1 dose	Y	Y	Phase I/II	100
Kidney transplantation	6 Adults	6 Months	Autologous BM-MSCs	1 × 10^9/kg, 2 doses	Y	Y	Phase I	161
Type II Diabetes	10 Adults	3 Months	Autologous placenta- derived MSCs	1.35 × 10^7/kg, 1 dose	Y	Y	Phase I	162
Diabetes	41 Adults	2 Years	Autologous BM-MSCs	Intramuscular. No clear statement for dosage	Y	/	/	96
Osteoarthritis	4 Adults	1 Year	Autologous BM-MSCs	8–9 × 10^6, injected in the knee	N	/	/	163
Crohn's disease	12 Adults	12 Months	Autologous BM-MSCs	2 × 10^7 at 4-week intervals, injected into the lumen and the wall of the tracks	Y	/	/	97
Crohn's disease	5 Adults	12–30 Months	Autologous ASCs	3–30 × 10^6 injected into the wall of the tracks	N	Phase I	98	
Crohn's disease	9 Adults	6 Weeks	Autologous BM-MSCs	1–2 × 10^9/kg, 2 doses	Y	Phase I	106	
Crohn's disease	12 Adults	2 Years	Human placenta-MSCs	2–8 × 10^5/person, 2 doses	Y	Phase I	164	
Crohn's disease	16 Adults	6 Weeks	Allogeneic MSCs	2 × 10^6/kg, 4 doses	Y	Phase I	165	
SLE	15 Adults	17.2 ± 9.5 Months	Autologous MSCs	1 × 10^6/kg, 1 dose	Y	/	/	65
SLE	4 Adults	12–18 Months	Allogeneic BM-MSCs	≥ 1 × 10^6/kg, 1 dose	Y	Y	/	99

Abbreviations: BM-MSC, bone marrow-derived mesenchymal stem cell; GvHD, graft versus host disease; SLE, systemic lupus erythematosus; Y, effect was shown; N, effect was not shown.

MSCs were administrated intravenously except the special statement.
Important differences exist in the origin of MSCs used in different clinical trials. For instance, BM, adipose tissue, and cord blood are the most common sources for MSC therapy. Nonetheless, it is crucial to consider the variability in terms of MSC origin, preparation, and delivery methods. The current widespread application of MSCs also makes it difficult to compare and contextualize the results generated by various trials. Although paracrine signaling by MSCs for immunosuppression is a well-established concept, the molecular mechanisms that regulate the secretion of soluble factors remain a matter for debate. Hence, the signaling networks between MSCs and immune cells, which are key issues in modulating the immune response, require further mechanistic investigation. The modest immunosuppressive and short-term effects of MSC transplantation also need to be improved. Here we address the issues related to cell preparation and infusion.

Variability of MSCs derived from different sources and ages: As mentioned above, BM, adipose tissue, and cord blood are the most common sources for MSC therapy. Nonetheless, MSCs that are employed in immunomodulation therapies may also be isolated from dental pulp, thymus, gingiva, saphenous vein, and even fetal tissue or newborn tissue. It has also been shown that dexamethasone treatment can improve the quality, proliferation, senescence, and immunomodulation ability of the cells.

Mixed results of MSCs in immunomodulation therapies: In order to adequately assess the benefit of MSCs as immunomodulation therapy, a significant amount of scientific data is required. Nonetheless, most published studies involve only small numbers of patients, and are fraught with a variety of differences in terms of MSC origin, preparation and delivery methods. The current widespread application of MSCs also makes it difficult to compare and contextualize the results generated by various trials. Although paracrine signaling by MSCs for immunosuppression is a well-established concept, the molecular mechanisms that regulate the secretion of soluble factors remain a matter for debate. Hence, the signaling networks between MSCs and immune cells, which are key issues in modulating the immune response, require further mechanistic investigation. The modest immunosuppressive and short-term effects of MSC transplantation also need to be improved. Here we address the issues related to cell preparation and infusion.

Mesenchymal stem cells (MSCs) are often used in various clinical settings due to their potential for immunomodulation. However, their effectiveness can vary significantly depending on the source, age, and preparation of the MSCs. Different studies have shown mixed results regarding the efficacy of MSCs in treating specific conditions. For example, while some studies have reported promising outcomes, others have failed to demonstrate significant improvements. One of the main challenges is the variability in MSC characterization and drug delivery methods. A systematic evaluation of different kinds of MSCs is needed to better understand their potential and limitations.

Cell dose, cell modification and injection frequency: There is great variation among clinical trials in the injected dosage of MSCs (ranging from 0.5 × 10^6 to 10 × 10^6/kg of the recipients or even higher) as well as the frequency (single versus multiple injections). Although MSCs are thought to be immunoprivileged, repeated infusion of mismatched MSCs has been reported to lead to alloimmunization and subsequent refractoriness in mice. These issues need to be addressed in the future design of clinical trials.

The modification of MSCs with cytokines or drugs (environment engineering) may improve their therapeutic efficacy. In GVHD therapy, MSCs pretreated with IFN-γ were more effective than nontreated MSCs in suppressing GVHD and preventing mortality, even if their number was fivefold lower. It has also been shown that dexamethasone treatment can affect cytokine expression and inhibit the immunomodulation effect of MSCs. Therefore, the therapeutic potential of modified MSCs requires further exploration.

Cell transfusion pattern: MSCs used in GVHD therapy are administrated by systemic infusion. Contrary to this, administration has been more targeted in other disease conditions. For example, Yamout et al. and others treated multiple sclerosis patients with intrathecal MSC injections. Based on these findings, and in the further investigation of immune disorders, the curative effect of MSCs may be improved if they are delivered to patients via a more targeted approach, especially in the treatment of solid organ disease.

Future Prospects in the Development of MSCs for Immunomodulation

Clinical grade of MSCs derived from human pluripotent stem cells. Despite the availability of MSCs from adult/newborn tissue, they have limited proliferative capacity,
a large variability in cell quality derived from different donors and quickly lose their differentiation potential when cultured in vitro.116,136 All these factors limit their therapeutic benefit.137,138 Prochymal (BM-MSCs) has yet to be granted approval from US FDA, partly because of inconsistent immunosuppression results. These controversial outcomes are thought to be largely attributed to wide variation in BM-MSC preparations acquired from different donors. To overcome these disadvantages, MSCs have been derived from alternative sources such as fat, dental pulp, umbilical cord, placenta and human ESCs or iPSCs. Among these alternatives, human ESCs/iPSCs are the most valuable sources for MSC production with considerable advantages.

When compared with adult tissue-derived MSCs, human ESC/iPSC-MSCs reveal similar morphology and in vitro differentiation potential,139 but have marked differences in their age-related DNA methylation level. This means that human ESC/iPSC-MSCs have a higher proliferation and regenerative capacity.140 Studies have also shown that single cell colony-derived MSC lines from human pluripotent stem cells are not only as functional as BM-MSCs in terms of phenotype, tissue repair capability79,141 and anti-inflammation,33 but also have less batch-to-batch variation and can be expanded for > 120 population doublings without any obvious senescence or risk of transformation,142 thus offering an ideal source for mass production of MSCs.

In contrast to an academic setting, for clinical and industrial use, human ESC/iPSC-MSCs must be produced to a clinical grade standard. Clinical grade MSC production necessitates adhering to GMP to ensure that the ‘cell drug’ is safe, reproducible and efficient when it is delivered to patients. All parts of the process must be defined: the starting material (tissue origin, separation or enrichment procedures), cell culture density and medium (fetal calf serum or human serum, cytokines with serum-free medium for target). To reach the GMP standard, cells must be cultured in as close to a closed system as possible.

![Figure 2](image-url) Establishing clinical grade hESC-MSC lines under cGMP facilities and protocols. All parts of the process must be defined and operated by professionals: the cell lines, the starting materials, cell culture density and medium. Cells must be cultured under the GMP standard. Phenotype, functional potential and microbiological safety of each batch of hESC-MSCs are tested. Scientific, rigorous and complete quality control of cells should be done before infusion.
For clinical trials, in order to get comparable therapeutic effects, the injected cells should be of similar condition. Quality control of cells is thus essential before infusion. We must consider the phenotype, functional potential and microbiological safety of the cells and ensure that cultured cells remain untransformed. In addition, quality assurance system procedures specific to the production of MSCs as a ‘cell drug’ must be determined and implemented. In summary, MSC therapy for immunomodulation necessitates ideal and universal cell sources, such as human ESC/iPSC-MSCs, and cells must be produced under GMP with scientific, rigorous and complete quality control (Figure 2).

Modification of MSCs. Preconditioning or genetic engineering of MSCs can promote the immunomodulation effect of MSC therapies. For the preconditioning of MSCs, IFN-γ pretreatment enhances the immunomodulatory effect of MSCs by improving the cell–cell contact and the secretion of soluble factors related to immunosuppression. Other interesting approach is the induction of homing the MSC to the targeted site. Expression of the chemokine receptor 7 (CCR7) gene in MSCs can enhance their migration into secondary lymphoid organs, all major niches for generating immune responses or tolerance. Indeed, CCR7 gene engineering of MSCs has been shown to improve their immunomodulatory effect when used as therapy for GvHD. Nevertheless, the safety of gene vectors used in modification should be optimized to minimize their impact on the function of MSCs. If safety is guaranteed, MSCs can be conditioned or genetically modified before administration to achieve better effects.

Conclusion

MSCs are excellent candidates for therapeutic use as cellular therapies that can potentially revolutionize the current pharmaceutical landscape. Although they show great promise in the treatment of many immune disorders, the large variability in cell quality derived from different donors and tissues, inconsistent protocols, varying dosages and differing transfusion patterns can limit their therapeutic benefit. To overcome these hurdles, a careful evaluation of appropriate cell sources, more scientific data and a better mechanistic understanding of immunosuppression of MSCs is necessary. In the future, it is feasible to establish a clinical grade of human ESC/iPSC-MSCs using GMP to serve as the universal cell source for clinical immunomodulation therapy. Nonetheless, before this can be implemented, standardized protocols for cell culture, differentiation, expansion and cryopreservation as well as robust quality control systems need to be in place. These factors in combination with safely preconditioned and genetically modified MSCs may pave the way for the development of an effective cellular therapy for countless human immune disorders.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgements. We thank our colleagues for their input and scientific discussions. This research was supported by HKU Small Project Funding (201409176221 to Z Zhang and 201409176251 to Q-L Lian); National Natural Science Foundation of China (No. 31270967; 31571407 to Q-L Lian, and 81322012, 81170896 and 81373174 to Q-L Fu), Shenzhen Technology Project (No. JCYJ20140828163363995 to Q-L Lian) and the key grant from the Science and Technology Foundation of Guangdong Province of China (2015B020225001 to Q-L Fu and Q Lian).

Author contributions

F Gao and SM Chiw wrote the manuscript; Z Zhang, DAL Motan, SM Chiw, Z Zhang and L Chen organized data of the manuscript; H-F Tse revised the manuscript; Q-L Fu and Q Lian organized and revised the manuscript.

1. Uccelli A, Moretta L, Pistoia V. Immunoregulatory function of mesenchymal stem cells. Eur J Immunol 2006; 36: 2566–2573.
2. Siegel G, Schafer R, Dazzi F. The immunosuppressive properties of mesenchymal stem cells. Transplantation 2008; 87(9 Suppl): S45–S49.
3. Puissant B, Barreau C, Bounin P, Clavel C, Corre J, Bouquet C et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 2005; 129: 118–125.
4. Uccelli A, Pistoia V, Moretta L. Mesenchymal stem cells: a new strategy for immunosuppression? Trends Immunol 2007; 28: 219–226.
5. Sehmi R, Baatjes AJ, Denburg JA. Hemopoitic progenitor cells and hematopoietic factors: potential targets for treatment of allergic inflammatory diseases. Curr Drug Targets Inflamm Allergy 2003; 2: 271–278.
6. Denburg JA, Inman MD, Wood L, Ellis R, Sehmi R, Dahlback M et al. Bone marrow progenitors in allergic airways diseases: studies in canine and human models. Int Arch Allergy Immunol 1997; 113: 181–183.
7. Sehmi R, Denburg JA. Haemopoietic mechanisms in allergic rhinitis. Clin Exp Allergy 2005; 35: 1–3.
8. Denburg JA, Inman MD, Sehmi R, Uno M, O’Byrne PM. Hemopoietic mechanisms in allergic airway inflammation. Int Arch Allergy Immunol 1998; 117: 155–159.
9. Fazekasova H, Lam EW, Soeiro I, Lombardi G, Dazzi F. Mesenchymal stem cells modulate B-cell functions. Blood 2006; 108: 2582–2591.
10. Glennes S, Soeiro I, Dyson PJ, Lam EW, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 2005; 106: 2821–2827.
11. Selmanzi Z, Naj A, Z'dik I, Favier B, Galfre E, Obert L et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 2006; 24: 212–222.
12. Coricione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F et al. Human mesenchymal stem cells modulate B-cell functions. Blood 2006; 107: 367–372.
13. Burchell JT, Strickland DH, Stumbles PA. The role of dendritic cells and regulatory T cells in allergic airway inflammation. Eur Respir J 2005; 26: 1184–1490.
14. Trivedi P, Hematti P. Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Exp Hematol 2008; 36: 350–359.
15. Chen JZ, Chang CJ, Liu KJ, Chen YC, Hu HI, Bai CH et al. Brief report–human embryonic stem cell–derived mesenchymal progenitors possess strong immunosuppressive effects toward natural killer cells as well as T lymphocytes. Stem Cells 2009; 27: 451–456.
16. Tan Z, Su ZY, Wu RR, Gu B, Liu YK, Zhao XL et al. Immunomodulatory effects of mesenchymal stem cells derived from human embryonic stem cells in vivo and in vitro. J Zhejiang Univ Sci B 2011; 12: 18–27.
17. Qin QL, Chow YY, Sun SJ, Zeng QX, Li HB, Shi JB et al. Human mesenchymal stem cells derived from human induced pluripotent stem cells modulate T-cell phenotypes in allergic rhinitis. Allergy 2012; 67: 1215–1222.
18. Le Blanc K, Rasmusson I, Sundberg B, Gотherstrom C, Hassan M, Uzunel M et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363: 1439–1441.
19. Rafei M, Campeau PM, Nagar-Shehata A, Buchanan M, Williams P, Birman E et al. Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4+Th17 T cells in a CC chemokine ligand 2-dependent manner. J Immunol 2009; 182: 5994–6002.
20. Cho KS, Park HK, Park HY, Jung JS, Jeon SG, Kim YK et al. IFATS collection: immunomodulatory effects of adipose tissue-derived stem cells in an allergic rhinitis mouse model. Stem Cells 2009; 27: 259–265.
21. Cho KS, RoH HJ. Immunomodulatory effects of adipose-derived stem cells in airway allergic diseases. Curr Stem Cell Res Ther 2010; 5: 111–115.
41. Terness P, Bauer TM, Rose L, Dufter C, Watzlik A, Simon H et al.
42. Wang Y, Chen X, Cao W, Shi Y. Plasticity of mesenchymal stem cells in human lung allografts. Transplantation 2010; 89: 562–567.
43. DelaRosa O, Lombardo E, Beraza A, Mancheno-Corvo P, Ramirez C, Menta R.
44. Nemeth K, Keane-Myers A, Brown JM, Metcalfe DD, Gorham JD, Bundoc VG et al.
45. Raicevic G, Najar M, Najimi M, El Taqhdouini A, van Grunsven LA, Sokal E et al.
46. Sioud M, Mobergslien A, Boudabous A, Floisand Y. Evidence for the involvement of mesenchymal stem cells derived from umbilical cord blood in the induction of T-cell anergy. J Immunol 2009; 183: 3778–3788.
47. Ren G, Zhao X, Zhang L, Zhang J, L’Huillier A, Ling W.
48. Raicevic G, Najmi M, Naj ini M, B, van Grunsven LA, Sokal E et al.
49. Sun YQ, Deng MX, He J, Zeng QX, Wen W, Wong DS et al.
50. Kerpamer M, Glienke S, Dyson J, Scott D, Laylor R, Simpson E et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003; 101: 3722–3729.
51. English K, Ryan JM, Tobin L, Murphy MJ, Barry FP,Mahon BP. Cell contact, prostaglandin E2 and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(high)forkhead box P3 regulatory T cells. Clin Exp Immunol 2009; 156: 149–160.
52. Sheng H, Wang Y, Jin Y, Zhang Y, Zhang Y, Wang L et al. A critical role of IFN-gamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res 2008; 18: 846–857.
53. Najmi M, Raicevic G, Fayyad-Kazan H, De Bruyn C, Bron D, Toungouz M et al. Immunoregulated antigens, surface molecules and regulatory factors in human-derived mesenchymal stromal cells: the expression and impact of inflammatory priming. Stem Cell Rev 2012; 8: 1188–1198.
54. Gieseke F, Bohltering J, Bussolari R, Dominici M, Handgretinger R, Mller U. Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells. Blood 2010; 116: 3770–3779.
55. Lee SH, Jiang AS, Kwon JH, Park SK, Won JH, Park CS. Mesenchymal stem cell transfer suppresses airways remodeling in a tolueen disooyanate-induced murine asthma model. Allergy Asthma Immunol Res 2011; 3: 205–211.
56. Froni C, Karaman M, Baran Y, Bagiyaklin A, Ayildizi ZA, Kiraz M et al. Mesenchymal stem cells ameliorate the histopathological changes in a murine model of chronic asthma. Int Immunopharmacol 2011; 11: 1120–1126.
57. Froni C, Karaman M, Baran Y, Bagiyaklin A, Ayildizi ZA, Kiraz M et al. Mesenchymal stem cells control the histopathological changes in a murine model of chronic asthma. Int Immunopharmacol 2011; 11: 1120–1126.
58. Zhang G, Shi S, Liu Y, Uyanne J, Shi Y, Shi S et al. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammatory-related tissue destruction in experimental colitis. J Immunol 2009; 183: 7787–7798.
59. Bessourt R, Semont A, Demarquay C, Charcosset A, Bandettini M, Mathieu N. Mesenchymal stem cell therapy induces glucocorticoid synthesis in colonic mucosa and suppresses radiation-activated T cells: new insights into MSC immunomodulation. Mucosal Immunol 2014; 7: 656–669.
60. Xiao J, Zhang C, Zhang Y, Zhang X, Zhao J, Liang J et al. Transplantation of adipose-derived mesenchymal stem cells into a murine model of chronic lung allograft rejection. Am J Respir Crit Care Med 2010; 182: 1491–1500.
61. Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanini I, Geroldi E et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 2009; 105: 1755–1761.
62. Zhou B, Yuan J, Zhou Y, Ghawi M, Dang YP, Lee AJ et al. Administering human adipose-derived mesenchymal stem cells to prevent and treat experimental arthritis. Clin Immunol 2011; 141: 328–337.
63. Gonzalez MA, Gonzalez-Rey E, Rico L, Buscher D, Delgado M. Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum 2009; 52: 1012–1019.
64. Liu Y, Mi R, Wang S, Long L, Liu X, Li R et al. Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis. Arthritis Res Ther 2010; 12: R210.
65. Sun L, Ak Lumia K, Zhang H, Yama ta T, Hou Y, Zhao S et al. Mesenchymal stem cell transplantation reverses multifocal dysfunction in systemic lupus erythematosus mice and humans. Stem Cells 2009; 27: 1421–1432.
66. Chang JW, Hung SP, Wu HH, Wu WM, Yang AH, Tsai HL.
67. Chang JW, Hung SP, Wu HH, Wu WM, Yang AH, Tsai HL.
68. Gu Z, Akiyama K, Ma X, Zhang H, Feng X, Yao G et al. The critical role of heme oxi dase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood 2007; 109: 3691–3697.
69. Guo J, Yang J, Cao G, Fan H, Guo C, Ma YE et al.
70. Morando S, Vigo T, Esposito M, Casazza S, Novi G, Principato MC et al.
71. Liu XJ, Zhang JF, Sun B, Peng HS, Kong QF, Bai SS et al. Therapeutic effect of mesenchymal stem cell transplantation in experimental autoimmune encephalomyelitis is mediated by peripheral and central mechanisms. Cell Death and Disease 2013; 4: 3082–3089.
72. Liu XJ, Zhang JF, Sun B, Peng HS, Kong QF, Bai SS et al. Therapeutic effect of mesenchymal stem cell transplantation in experimental autoimmune encephalomyelitis is mediated by peripheral and central mechanisms. Cell Death and Disease 2013; 4: 3082–3089.
73. Xiao J, Chan MS, Wang QJ, Wang H, Ma HQ et al. Dendritic cell-mediated CTLs targeting hepatoepithelial carcinoma cells. Cancer Biol Ther 2010; 10: 368–375.
74. Gu Z, Ak Lumia K, Ma X, Zhang H, Feng X, Yao G et al. Transplantation of umbilical cord mesenchymal stem cells alleviates lupus nephritis in MRL/lpr mice. Lupus 2010; 19: 1502–1514.
75. Guo J, Yang J, Cao G, Fan H, Guo C, Ma YE et al. Xenogeneic immunosuppression of human umbilical cord mesenchymal stem cells in a major histocompatibility complex-mismatched xenogeneic acute graft-versus-host disease murine model. Eur J Haematol 2011; 87: 235–243.
76. Oh DY, Cui P, Hosseini H, Mosea J, Tob BH, Chan J. Potent immunsuppressive 5-lipoxygenase-resistant stem cells completely repair an experimental autoimmune diabetes. J Immunol 2012; 188: 2207–2217.
77. Morando S, Vigo T, Esposito M, Casazza S, Novi G, Principato MC et al. The therapeutic effect of mesenchymal stem cell transplantation in experimental autoimmune encephalomyelitis is mediated by peripheral and central mechanisms. Stem Cell Res Ther 2012; 3: 22.
78. Liu XJ, Zhang JF, Sun B, Peng HS, Kong QF, Bai SS et al. Reciprocal effect of mesenchymal stem cell on experimental autoimmune encephalomyelitis is mediated by transforming growth factor-beta and interleukin-6. Clin Exp Immunol 2009; 158: 37–44.
79. Cho EW, Shin IB, Lee HW, Park SY, Park JH, Nam MH et al. Transplantation of CTLA4g genetically modified adipose tissue-derived mesenchymal stem cells reduces inflammatory immune response and improves Th1/Th2 balance in experimental thyroiditis. J Gene Med 2011; 13: 3–16.
Mesenchymal stem cells (MSCs) and immunomodulation

F Gao et al.

74. Yu J, Zheng C, Ren X, Li J, Liu M, Zhang L et al. Intravenous administration of bone marrow mesenchymal stem cells benefits experimental autoimmune myasthenia gravis mice through an immunomodulatory action. Scand J Immunol 2010; 72: 242–249.

75. Zhou Y, Yuan J, Zhou B, Lee AJ, Lee AJ, Ghiwari M Jr et al. The therapeutic efficacy of bone marrow-derived mesenchymal stem cells on experimental autoimmune encephalomyelitis in mice. Immunology 2011; 133: 133–140.

76. Wang D, Zhang H, Liang J, Gu Z, Ma X, Huang J et al. Effect of allogeneic bone marrow-derived mesenchymal stem cells transplantation in a poly(C)-induced primary biliary cirrhosis mouse model. Clin Exp Med 2011; 11: 25–32.

77. Yang H, Apacito RM, Zhou X, Wang G, Zhang W, Ding Y et al. Therapeutic effect of TSG-6 engineered iPSC-Derived MSCs on experimental periodontitis in rats: a pilot study. PLoS One 2014; 9: e100285.

78. Cheng PP, Liu XC, Ma PF, Gao C, Li JL, Lin YY et al. iPSC-MSCs combined with low-dose rapamycin induced islet allograft tolerance by suppressing Th1 and enhancing regulatory T-cell differentiation. Stem Cells Dev 2015; 24: 1793–1804.

79. Yang Y, Liao S, Yang M, Liang X, Poon MW, Wong CY et al. Improved cell survival and paracrine capacity of human embryonic stem cell-derived mesenchymal stem cells promote therapeutic potential for pulmonary arterial hypertension. Cell Transplant 2012; 21: 2255–2263.

80. Sun YQ, Zhang Y, Li X, Deng MX, Gao WX, Yao Y et al. Insemination of human iPSCs derived mesenchymal stem cells to interferon-gamma-induced HLA expression potentiates their paracrine capacity of human embryonic stem cell-derived mesenchymal stem cells transplantation in a poly(C)-induced primary biliary cirrhosis mouse model. Clin Exp Med 2011; 11: 25–32.

81. Le Blanc K, Frassoni F, Ball i, Locatelli F, Roelofs H, Lewis I et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 2008; 371: 1579–1586.

82. Perez-Simon JA, Lopez-Villar O, Andreu EJ, Riton J, Munton S, Campelo MD et al. Mesenchymal stem cells expanded in vitro with human serum for the treatment of acute and chronic graft-versus-host disease: results of a phase VI clinical trial. Haematologica 2011; 96: 1072–1076.

83. Muller I, Kordowsch S, Holzwarth C, Iseense G, Lang P, Neunhoeffer F et al. Application of multipotent mesenchymal stromal cells in pediatric patients following allogeneic stem cell transplantation. Blood Cells Mol Dis 2008; 40: 25–32.

84. Baron F, Lechanteur C, Willems E, Bruck F, Baudoux E, Seidel L et al. Cotransplantation of mesenchymal stem cells might prevent death from graft-versus-host-disease (GVHD) without abrogating graft-versus-tumor effects after HLA-mismatched allogeneic transplantation following nonmyeloablative conditioning. Biol Blood Marrow Transplant 2010; 16: 837–847.

85. Anima N, Nakamura F, Fukunaga A, Hirata H, Machida H, Kouno S et al. Single intraarterial injection of mesenchymal stromal cells for treatment of steroid-refractory acute graft-versus-host disease: a pilot study. Cytotherapy 2010; 12: 265–268.

86. Zhou H, Guo M, Bian C, Sun Z, Yang Z, Zeng Y et al. Efficacy of bone marrow-derived mesenchymal stem cells in the treatment of scleroderma: chronic graft-versus-host disease: clinical report. Biol Blood Marrow Transplant 2010; 16: 403–412.

87. Kelberman P, Isola L, Bahceci E, Holland K, Rowley S, McDurr J et al. Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol Blood Marrow Transplant 2009; 15: 804–811.

88. Ringden O, Uzunel M, Rasmussen I, Remherber M, Sundberg B, Lonnes H et al. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 2008; 85: 277–283.

89. Connick P, Kolappam M, Patani R, Scott MA, Crawley C, He XL et al. The mesenchymal stem cells in multiple sclerosis (MSCiMS) trial protocol and baseline cohort characteristics: an open-label pre-test: post-test study with blinded outcome assessments. Trials 2011; 12: 56.

90. Connick P, Kolappam M, Crawley C, Webber DJ, Patani R, Michel AW et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 2012; 11: 150–156.

91. Karussis D, Karageorgiou C, Valinakis-Dembiak A, Gouda-Kurraki B, Gomori JM, Kassi I et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 2010; 67: 1187–1194.

92. Yamout B, Hourani R, Salti H, Barada W, El-Hajj T, Al-Kutoubi A et al. Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J Neuroimmunol 2010; 221: 187–189.

93. Wang D, Li J, Zhang Y, Zhang M, Chen J, Li X et al. Umbilical cord mesenchymal stem cell transplantation in active and refractory systemic lupus erythematosus: a multicenter clinical study. Arthritis Res Ther 2014; 16: R79.

94. Wang D, Zhang H, Liang J, Li X, Feng X, Wang H et al. Allogeneic mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus: 4 years of experience. Cell Transplant 2013; 22: 2235–2277.

95. Carrion F, Nova E, Ruiz C, Diaz F, Inostroza C, Rojo D et al. Autologous mesenchymal stem cell transplantation in patients with multiple sclerosis and with no response to conventional treatment. Lupus 2010; 19: 317–322.

96. Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S et al. Comparison of bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract 2011; 92: 26–35.
121. Banfi A, Muraglia A, Dozin B, Mastrogiovanni M, Canoedoa R, Quarto R. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Exp Hematol 2000; 28: 707–715.

122. Berndakovich I, Giorgio M. Low oxygen tension maintains multipotency, whereas normoxia increases differentiation of mouse bone marrow stromal cells. Int J Mol Sci 2013; 14: 2111–2134.

123. Yoo HS, Yi T, Cho YK, Vannucci L, Jindra P. Expanded cryopreserved mesenchymal stromal cells as an optimal source for graft-versus-host-disease treatment. Biologica 2014; 42: 139–144.

125. Galipeau J. The mesenchymal stromal cellular dilemma—does a negative phase III trial of random donor mesenchymal stromal cells in steroid-resistant graft-versus-host disease represent a death knell or a bump in the road? Cytotherapy 2013; 15: 2–8.

126. Hermann R, Sturm M, Shaw K, Purtillo D, Cooney J, Wright M et al. Mesenchymal stromal cell therapy for steroid-refractory acute and chronic graft versus host disease: a phase 1 study. Int J Hematol 2012; 95: 182–188.

127. Prasad YK, Lucas KG, Kleinig GL, Talano JA, Jacobson D, Broadwater G et al. Efficacy and safety of ex vivo cultured adult human mesenchymal stem cells (Prochymal) in pediatric patients with severe refractory acute graft-versus-host disease in a compassionate use study. Biol Blood Marrow Transplant 2011; 17: 534–541.

128. Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EG, Willemze R, Fibbe WE. Mesenchymal stem cell therapy for steroid-refractory acute and chronic graft versus host disease in hematologic malignancies: a non-randomized, open-label single-arm evaluation. Blood. 2006; 108: 2114–2120.

129. Eliopoulos N, Stagg J, Lejeune L, Pommey S, Galipeau J. Mesenchymal stromal cell lines isolated from umbilical cord blood are not superior to cord blood derived MSCs and immunoreactivity of peripherally isolated lymphocytes (PIL) are not dependent on PIL stem or stromal contamination. Cell Death and Disease 2011; 2: 1072–1076.

130. Mohyeddin Bonab M, Yazdanbakhsh S, Lotfi J, Alimohammadi K, Talebian F, Hooshmand M et al. Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J Immunol 2007; 4: 50–57.

131. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ et al. Characterization and expression in multiple sclerosis patients pre- and post mesenchymal stem cell therapy. Cell Death and Disease 2012; 3: 414–422.

132. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ et al. Mesenchymal stem cells in Wharton’s jelly of the human umbilical cord. Stem Cells 2004; 22: 1330–1337.

133. Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 2004; 14: 311–324.

134. Ransohoff PR, Wang M, Wairaku GM, Morrell ED, Terrell AM, Seshadri P H. High passage number of stem cells adversely affect stem cell activation and myocardial protection. Shock 2006; 26: 575–580.

135. Heo H, C, Lehman J, Honold J, Assmus B, Aicher A, Wattert DH et al. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 2004; 109: 1615–1622.

136. Roodveld VC, Uloca-Montoya F, Verfaillie CM. Self-renewal and differentiation capacity of mesenchymal stromal cells as an optimal source for graft-versus-host disease treatment. Cell Transplant 2012; 21: 7–117.

137. Lian Q, Zhang Y, Jiang Z, Zhang HK, Wu X, Zhang Y et al. Functional mesenchymal stem cells derived from human induced pluripotent stem cells cultured on synthetic substrates. Stem Cells 2012; 30: 1174–1181.

138. Frobel J, Hemedo H, Lenz M, Abagane G, Joussen S, Denecke B et al. Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells. Cell Death and Disease 2013; 4: 1–11.

139. Lian Q, Zhang Y, Jiang Z, Zhang HK, Wu X, Zhang Y et al. Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation 2012; 121: 1113–1122.

140. Lian Q, Lyu E, Suan Y, Kha V, Way Tan E, Salto-Tellez M, Liu TM et al. Differentiation of clinically compliant MSCs from CD105+, CD29- differentiated human ESCs. Stem Cells 2007; 25: 426–436.

141. Tannenbaum SE, Turczyk TT, Singer O, Aizenman E, Kirshberg S, Ilouz N et al. Randomized placebo-controlled phase II trial of autologous mesenchymal stromal cells in multiple sclerosis. PLoS One 2014; 9: e113936.

142. Lubin FB, Bowen JD, Haddleton J, Kremenetsky M, Carpenter A, Corboy JR et al. Human placenta-derived cells (PDA-001) for the treatment of adults with multiple sclerosis: a randomized, placebo-controlled, multiple-dose study. Mult Scler Relat Disord 2014; 3: 696–704.

143. Tannenbaum SE, Turczyk TT, Singer O, Aizenman E, Kirshberg S, Ilouz N et al. Randomized placebo-controlled phase II trial of autologous mesenchymal stromal cells in multiple sclerosis. PLoS One 2014; 9: e113936.

144. Luzzani C, Neiman G, Garate X, Questa M, Solari C, Fernandez Espinosa D et al. Characterization and expression in multiple sclerosis patients pre- and post mesenchymal stem cell therapy. Iran J Allergy Asthma Immunol 2011; 10: 155–161.

145. Luzzani C, Neiman G, Garate X, Questa M, Solari C, Fernandez Espinosa D et al. Characterization and expression in multiple sclerosis patients pre- and post mesenchymal stem cell therapy. Iran J Allergy Asthma Immunol 2011; 10: 155–161.

146. Forbes GM, Sturm MJ, Leong RW, Sparrow MP, Segarajasingam D, Cummins AG et al. Allogeneic mesenchymal stem cells and immunomodulation in multiple sclerosis. Cell Death and Disease 2012; 3: 707–715.

147. Liang J, Zhang H, Hua B, Wang H, Lu L, Shi S et al. Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J Immunol 2007; 4: 50–57.

148. Liang J, Zhang H, Hua B, Wang H, Lu L, Shi S et al. Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J Immunol 2007; 4: 50–57.

149. Liang J, Zhang H, Hua B, Wang H, Lu L, Shi S et al. Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J Immunol 2007; 4: 50–57.

150. Liang J, Zhang H, Hua B, Wang H, Lu L, Shi S et al. Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J Immunol 2007; 4: 50–57.

151. Liang J, Zhang H, Hua B, Wang H, Lu L, Shi S et al. Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J Immunol 2007; 4: 50–57.

152. Liang J, Zhang H, Hua B, Wang H, Lu L, Shi S et al. Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J Immunol 2007; 4: 50–57.