In Vivo Regulation of Steroid Hormones by the Chst10 Sulfotransferase in Mouse

Misa Suzuki-Anekoji, Atsushi Suzuki, Sz-Wei Wu, Kiyohiko Angata, Keith K. Murai, Kazuhiro Sugihara, Tomoya O. Akama, Kay-Hoon Kho, Jun Nakayama, Michiko N. Fukuda, and Minoru Fukuda

Background: Chst10 transfers sulfate to glucuronic acid to form the HNK-1 antigen carried by glycoproteins and glycolipids in neurons and NK cells.

Results: Chst10 transfers sulfate to glucuronidated steroid hormones, and Chst10-deficient mice exhibited subfertility.

Conclusion: Subfertility in Chst10 null females is caused by a loss of steroid hormone dysregulation.

Significance: This study identified a new regulatory mechanism mediated by sulfation of glucuronidated steroid.

Chst10 adds sulfate to glucuronic acid to form a carbohydrate antigen, HNK-1, in glycoproteins and glycolipids. To determine the role of Chst10 in vivo, we generated systemic Chst10-deficient mutant mice. Although Chst10+/− mice were born and grew to adulthood with no gross defects, they were subfertile. Uteri from Chst10−/− females at the pro-estrus stage were larger than those from wild-type females and exhibited a thick uterine endometrium. Serum estrogen levels in Chst10+/− females were higher than those from wild-type females, suggesting impaired down-regulation of estrogen. Because steroid hormones are often conjugated to glucuronic acid, we hypothesized that Chst10 sulfates glucuronidated steroid hormone to regulate steroid hormone in vivo. Enzymatic activity assays and structural analysis of Chst10 products by HPLC and mass spectrometry revealed that Chst10 indeed sulfates glucuronidated estrogen, testosterone, and other steroid hormones. We also identified an HPLC peak corresponding to sulfated and glucuronidated estradiol in serum from wild-type but not from Chst10 null female mice. Estrogen-response element reporter assays revealed that Chst10-modified estrogen likely did not bind to its receptor.

These results suggest that subfertility exhibited by female mice following Chst10 loss results from dysregulation of estrogen. Given that Chst10 transfers sulfates to several steroid hormones, Chst10 likely functions in widespread regulation of steroid hormones in vivo.

Sulfated glycans play diverse roles in development, differentiation, and homeostasis. These glycans provide a ligand for lymphocytes homing to lymph nodes (1–9) or blastocysts rolling on endometrial epithelia (10–12), alter binding of growth factors to receptors (13), function in the clearance of circulating glycoprotein hormones (13, 14), participate in formation of a transparent cornea (15), and play critical roles in embryonic development of species as diverse as mice (16) and Drosophila (17).

Monoclonal antibodies specifically recognizing sulfated glycan epitopes have served as useful reagents for defining cellular activities mediated by sulfated glycans (5, 18–23). The monoclonal antibody HNK-1, which was raised against human natural killer cells (24), recognizes a unique glycan structure terminated by sulfated glucuronic acid linked to N-acetyl-lactosamine or SO₃−→3GlcUAβ1→3Galβ1→4GlcNAcβ1→R (18). The HNK-1 epitope is carried by both glycoproteins and glycolipids (18, 25–31). This antigen has also been found in neuronal cells (32, 33). HNK-1 antigen found on adhesion molecules such as neural cell adhesion molecule is inhibited by HNK-1 (35). Neurite outgrowth by mouse motor neurons is facilitated by an HNK-1 glycolipid substrate (40). However, neurite outgrowth on neural cell adhesion molecule is inhibited by HNK-1 glycan (41). These findings suggest that HNK-1 glycan plays a regulatory role in neuronal cell-cell/matrix interaction.

To synthesize the HNK-1 epitope, mammalian cells require two enzymes, B3GAT1 (or β1,3-glucuronyltransferase) (42) and CHST10 (or HNK-1 sulfotransferase) (43, 44). Previously,
we found that CHST10 contains a conserved RDP sequence in the 3'-phosphoadenosine phosphosulfate (PAPS)\(^6\) binding domain (44). CHST10 also shares a 5'-PAPS binding domain with cytosolic sulfotransferases, such as the estrogen sulfotransferase Sult1E1 (45, 46). Sult1E1-deficient female mice are reportedly infertile due to a placental defect and exhibit spontaneous loss of embryos (47, 48).

Steroid hormones, including estrogen, are synthesized from cholesterol in the ovary and testis via coordinated activities of enzymes such as cytochrome P450s, 17\(\beta\)-hydroxysteroid dehydrogenases, and aromatase (49). In liver, some steroid hormones are conjugated with glucuronic acid by uridine-diphosphoglucuronic acid transferases (UGTs). UGT family proteins, encoded by UGTT and UGT2 genes (50), consist of more than 15 enzymes formed by alternative splicing of transcripts of these genes. Glucuronidation of steroid hormones blocks their binding to corresponding receptors, down-regulating bioactive hormones in vivo. Glucuronidation also converts steroid hormones into more water-soluble products, facilitating removal from the circulation. In addition to glucuronidation, sulfation also plays a role in down-regulating steroid hormones (51).

To investigate the in vivo role of Chst10, we generated systemic Chst10-deficient mice. Chst10 null mice grew to adulthood without exhibiting gross abnormalities. However, Chst10 null mice bred infrequently and had a small litter size. We used these mice to determine whether Chst10 transfers sulfate to glucuronidated steroid hormones, with a focus on sulfation of glucuronidated estrogen. Those genetic studies, combined with biochemical approaches, suggest that Chst10 regulates estrogen in vivo in the female mouse.

MATERIALS AND METHODS

Generation of Chst10-deficient Mice—A Chst10 targeting vector was constructed as shown in Fig. 1. Homologously recombined ES clones were selected by Southern hybridization using a probe adjacent to the targeting vector. Probe DNA (about 450 bp) was amplified by PCR using the following primers: 5’–3’, TGTGCTACGCGCAACACAAGCA, and 5’–13a, GAGCGCCAAACAGCAGCAG. Genomic DNA was digested with EcoRI to distinguish the targeted (3.8 kb) from the wild-type (7.4 kb) allele. To assess whether the line is maintained, genotyping was performed by PCR using the following primers: 5’–3’ (5’-primer in Neo), GTGCTACTTCCATTGGTACGG; 5’–10 (3’-primer in the common sequence), TCTTTCAGTCGAGATGTTGGC; and 5’–11 (3’-primer in deleted sequence), GCTGCTTGTGAATCCGGTAGTCTTG.

Blood Steroid Hormone Levels—The estrus cycle of female mice was determined by vaginal smears following a standard procedure (52). Blood from female mice was collected in the mornings at the pro-estrus stage, and serum was separated and stored at −80 °C. Quantitative analysis of mouse blood steroid hormones was carried out by radioimmunoassay at the Ligand Assay and Analysis Core Facility of University of Virginia Center for Research in Reproduction.

In Vitro Sulfation and Glycosylation of Steroids—Sulfation of GlcUA steroids in vitro by recombinant Chst10 was performed as described (44). The reaction mixture (100 \(\mu\)l) contained 0.9 nmol (3 \(\mu\)Ci) of \(^{[35}\)S\]PAPS, 2 \(\mu\)ml unlabeled PAPS, 100 \(\mu\)m Tris-HCl, pH 7.2, 0.1% Triton X-100, 10 \(\mu\)m MnCl\(_2\), 2.5 \(\mu\)m ATP, and 3 \(\mu\)m acceptor glucuronidated steroid. A recombinant protein A-conjugated soluble form of CHST10 was produced in COS cells. A protein A-ChST10 chimera collected from culture supernatants was purified and concentrated to ~50 times by CentriPrep YM-10 (Millipore). Purified enzyme was added in the reaction mixture. After incubation at 37 °C for 20–60 min, ice-cold ethanol (500 \(\mu\)l) was added to stop the reaction. The ethanol-soluble fraction was collected and concentrated using a SpeedVac. Steroids were purified using a 0.2-ml bed volume solid phase extraction column (High Load C\(_{18}\); Alltech). The sample was dissolved in 0.25 \(m\) ammonium formate, pH 4.0, applied to the column, and washed with the same buffer. Sulfated steroids were eluted in 70% methanol and then concentrated and subjected to HPLC analysis described below.

Sulfation of steroid in vitro was performed in a manner similar to that described above. The reaction mixture contained the following: 50 \(\mu\)M Tris-HCl, pH 7.5, 10 \(\mu\)m MgCl\(_2\), 0.1 mg/ml phosphatidylcholine, 8.5 \(\mu\)m \(\alpha\)-saccharide acid \(\beta\)-lactone, 15 \(\mu\)m (3 \(\mu\)Ci) of \(^{[3}\)H\]UDP-GlcUA, 0.5 \(\mu\)ml unlabeled UDP-GlcUA, and acceptor steroid. The reaction mixture was incubated at 37 °C for 16 h, and the reaction product was purified using High Load C\(_{18}\) solid phase extraction column described above and then subjected to HPLC analysis. The enzyme source was either recombinant UGT or a mouse liver microsome fraction, prepared as described (53).

HPLC Analysis—GlcUA- and/or SO\(_3\)-GlcUA-modified steroids were analyzed by HPLC using an Ascentis C\(_{18}\) reverse phase column (4.6 mm × 15 cm, 5-\(\mu\)m particles) (SUPELCO). Solvent A was composed of 90% 5 mM tetrabutyl ammonium sulfate in water, 7.5% acetonitrile and 2.5% methanol. Solvent B was composed of 30% 5 mM tetrabutyl ammonium sulfate, 52% acetonitrile, and 17.5% methanol. Unmodified and modified steroid hormones were separated using the following elution programs. Program 1, 100% A for 10 min followed by a gradient up to 100% B over 40 min, followed by 100% B over 15 min. The flow rate was 1 ml/min. Program 2 is the same as program 1, except the initial elution with A is for 12 min. Elution positions of standard steroids (50 nmol) were monitored by absorbance at 220 nm. Radiolabeled GlcUA- or SO\(_3\)-GlcUA-modified steroids were collected every minute, and radioactivity was measured by a scintillation counter.

Preparation of SO\(_3\)-GlcUA-3-E\(_2\)—The Chst10 reaction mixture (100 \(\mu\)l) was identical to that described above without radiolabeled PAPS (44, 45). Product SO\(_3\)-GlcUA-3-E\(_2\) was purified twice by HPLC using either an Ascentis C\(_{18}\) column, as described above for mass spectrometry, or Zorbx SB-C18 (Agilent). A 4.6 mm × 25 cm column was programmed to be washed by a linear gradient of 30% buffer B (75% acetonitrile in methanol) in 70% buffer A (5 \(\mu\)m tetrabutyl ammonium sulfate-H\(_2\)O) up to 10 min followed by a gradient to 60% B over 30 min,
followed by 100% B over 5 min. The flow rate was 1 ml/min. Elution of \(\text{SO}_3\)-GlcUA-E\(_2\) was monitored by UV absorbance at 220 nm. Purified \(\text{SO}_3\)-GlcUA-3-E\(_2\) was used for estrogen receptor assay.

Digestion of Steroid Conjugates by Glycosidases—HPLC analysis of glycosidase-digested samples was performed as follows. The radiolabeled steroid fraction was desalted using a High Load C\(_18\) solid phase extraction column and dried in a tube under a SpeedVac. Escherichia coli-derived \(\beta\)-glucuronidase (Sigma) (1 \(\mu\)l) was added to the steroid fraction dissolved in 20 \(\mu\)l of 50 mm Tris-HCl, pH 6.8, and incubated at 37 °C for 16 h. Aryl sulfatase from Helix pomatia (Sigma) (1 \(\mu\)l) was added to the steroid fraction dissolved in 20 \(\mu\)l of 50 mm Tris-HCl, pH 6.5, plus 8.5 mm \(\beta\)-saccharic acid \(\alpha\),1,4-lactone incubated at 37 °C for 1 h.

Mass Spectrometry Analysis—The samples were dissolved in 50% (v/v) acetonitrile in water and injected into a Q-TOF Ultima API mass spectrometer (Micromass) by direct infusion or by static nanospray. Both MS and MS/MS data were acquired in negative ion mode. For direct infusion, the flow rate was set as 0.3 \(\mu\)l/min, and the spray voltage was set as 3.5 kV. Nanoflow Probe Tip (M956231AD1-S, WatersTM) was used for static nanospray, and the spray voltage was set as 900 V. All spectra were interpreted manually.

Estrogen-responsive Element (ERE) Gene Activation Assay—HEK293T cells were cultured in a 10-cm plate using phenol red-free DMEM containing 5% charcoal/dextran-treated FBS. Cells were transfected with the pBIND-ER\(_{\alpha}\) (Promega) expression vector, which contains the yeast Gal4 DNA binding domain and an estrogen receptor-\(\alpha\)-ligand binding domain gene fusion that can induce the transcription of luciferase gene in the pGL4.35 vector when activated by a ligand. Three hours after transfection, cells were seeded at 1 \(\times\) 10\(^5\) cells/well in 96-well tissue culture plates. One day later or on the 2nd day of transfection, cells were treated with serial dilutions of ligands, including E\(_2\). Then 24 h after ligand stimulation, luciferin was added to the culture medium at 0.6 mg/ml, and chemiluminescence was measured in a Beckman DTX880 plate reader.

RESULTS

Targeted Disruption of Chst10 in the Mouse—Targeting disruption of Chst10 for systemic gene knock-out was performed using methods similar to those described previously (54). Because the RDP sequence found in the Chst10 catalytic domain (45) is encoded by exon 5, we disrupted exon 5 by homologous recombination (Fig. 1A). Two lines of ES cells harboring homologous recombinant clones were identified by Southern hybridization using probes adjacent to the targeting vector (Fig. 1B), and those cells were injected into blastocysts to generate mutant mice. Elimination of HNK-1 antigen in Chst10 null mice was confirmed by immunohistochemistry of brain tissue using anti-HNK-1 antibody (Fig. 1C).

Breeding of Chst10-deficient Mutant Mice—Neither male nor female Chst10\(^{-/-}\) mice showed gross morphological anomalies in brain tissues (supplemental Fig. S1). However, both male and female Chst10\(^{-/-}\) mice were subfertile, and crosses between Chst10\(^{+/+}\) males and females yielded pups at the rate of 8.11/ litter (\(n = 17\)); those between wild-type and Chst10\(^{-/-}\) often did not produce pups or produced pups at a low rate of 5.4/litter (\(n = 5\), statistical significance with \(p = 0.005\) by unpaired two-tailed Student’s \(t\) test) (supplemental Fig. S2). These observations suggest that Chst10 functions in male and female reproduction.

Abnormalities in Female Reproductive Organs of Chst10\(^{-/-}\) Mice—To assess a potential role for Chst10 in reproduction, we focused on female Chst10\(^{-/-}\) mice. Analysis of morphology of female reproductive organs revealed that uteri of Chst10\(^{-/-}\) females from the pro-estrus phase were larger than those from Chst10\(^{+/+}\) females (Fig. 2, A, upper panel and B). Sections of uterine tissue showed that the endometrium was thicker in Chst10\(^{-/-}\) compared with Chst10\(^{+/+}\) mice (Fig. 2A, lower panel). Because growth of endometrial epithelia requires E\(_2\), this observation suggested that E\(_2\) is more active in Chst10\(^{-/-}\) than in Chst10\(^{+/+}\) mice. Indeed, serum E\(_2\) levels in Chst10\(^{-/-}\) females at pro-estrus stages were higher than those seen in Chst10\(^{+/+}\) mice (Fig. 2C), suggesting that E\(_2\) down-regulation is impaired in the former. As anticipated, the hormonal cycle of uteri of Chst10\(^{+/+}\) females was regular, whereas that of Chst10\(^{-/-}\) females showed signs of disruption (supplemental Fig. S3).

Chst10 Transfers Sulfate to Glucuronidated Sex Steroid Hormones—Steroid hormones are reportedly glucuronidated in liver as an excretion mechanism in vivo (51). Because glu-
Sulfation of Estrogen by Chst10

A

B

C

FIGURE 2. Abnormalities in uteri from Chst10-deficient mutant female mice. A, Chst10−/− mice show enlarged uteri compared with wild-type mice based on histology and organ weight. Note extensive growth of endometrial epithelial layers in hematoxylin and eosin-stained uterine sections from Chst10−/− compared with Chst10+/+ females. B, average weight of uteri from Chst10+/+ (n = 10) and Chst10−/− (n = 4). C, estrogen levels in sera from Chst10+/+ (n = 4) and Chst10−/− (n = 3) at the pro-oestrus stage. B and C, Student’s t test was used for statistical analysis.

caronide is a Chst10 substrate, we asked whether Chst10 transfers sulfate to glucuronidated steroid hormones (Fig. 3 and supplemental Fig. S4). In vitro analysis indicated that various glucuronidated steroids serve as good acceptor substrates for Chst10. These findings suggest that Chst10 prefers GlcUA at the 3-hydroxyl group of a sterol ring over 17-hydroxyl (Fig. 3, 3rd and 4th columns). Among the steroids tested, GlcUA-3-androstan-5β-carboxylic acid 3β-D-glucuronide, an androgen variant, appeared to be the best acceptor substrate, followed by GlcUA-3-E2 (17-β-estradiol-3-3-glucuronide), a major form of estrogen. Dehydroepiandrosterone-3-δ-glucuronidated steroid hormones may be used to identify functional relationships between estrogen and androgen variants, and products were purified by HPLC (Fig. 4, lower panel). Kinetic analysis (Fig. 5 and Table 1) suggested that GlcUA-3-E2 is a 3-fold better Chst10 substrate than is GlcUA-17-E2, based on elution positions of authentic GlcUA-3-E2 and GlcUA-17-E2 (supplemental Fig. S6, upper panel). We reacted both peaks with [35S]PAPS and soluble recombinant Chst10, which resulted in disappearance of the two GlcUA-E2 peaks and the appearance of a [35S]SO3-[3H]GluCA peak (supplemental Fig. S6, lower panel). Because both SO3-GlcUA-3-E2 and SO3-GlcUA-17-E2 were eluted at the same position in prior experiments (Fig. 4A), we conclude that the 35S- and 3H-double-labeled product peak represents a mixture of SO3-GlcUA-3-E2 and SO3-GlcUA-17-E2. These observations indicate that two recombinant enzymes, UGT1A1 and Chst10, can be used to synthesize glucuronidated and sulfated E2 in vivo.

Detection of SO3-GlcUA-E2 in Mouse Serum—To detect SO3-GlcUA-E2 in vivo in the mouse, female mice were injected intravenously with either [3H]E2 or [35S]SO3 (inorganic sulfate). Serum was collected 24 h after injection, and radioactive products were analyzed by HPLC (Fig. 6). In Chst10+/+ mice, [3H]E2 was converted to several compounds (Fig. 6A, upper panel). The one that eluted at 42 min matches the elution position of E2, which was a prominent peak in Chst10−/− serum (Fig. 6A, lower panel). A peak seen at 46 min in Chst10+/+ mice matched the elution position of SO3-GlcUA-3-E2 (Fig. 6A, A and B, upper panels, shown by arrows). This peak was not detected in samples from Chst10−/− mice (Fig. 6A, A and B, lower panels).

Products derived from [3H]E2 injected into Chst10+/+ mice were subjected to sulfatase and β-glucuronidase digestion (Fig. 6C). Digestion of products by β-glucuronidase dismissed all peaks except E2 at 42 min (Fig. 6C, panels a and b), suggesting that these compounds are capped by glucuronic acids. However, arylsulfatase digestion of [3H]E2 products dismissed peaks at 31, 36, 38, and 46 min, suggesting that these compounds are sulfated at the terminus (Fig. 6C, a and c). The 46-min peak, presumably representing SO3-GlcUA-3-E2, was shifted to GlcUA-3-E2 at 28 or 34 min after arylsulfatase digestion, indicating that sulfate was at the terminus of this compound and shifted to GlcUA-3-E2 (Fig. 6C, panel c). Digestion of 3H-labeled products with a mixture of β-glucuronidase and arylsulfatase dismissed all peaks except E2 at 42 min (Fig. 6C, panel d), suggesting that all metabolites detected by HPLC in Fig. 6C, panel a, are glucuronidated and/or sulfated E2.
FIGURE 3. Chst10 sulfate-transferring activity toward various steroid hormones. [35S]PAPS was incubated with each steroid plus Chst10, and the yield of sulfated product was determined. Structures of each substrate are shown in supplemental Fig. S4. Each measurement was done as a duplicate. Error bars represent standard deviation.

FIGURE 4. HPLC and mass spectrometry analysis of sulfated GlcUA-E2 in vitro. A, GlcUA-3-E2 was incubated with Chst10 and [35S]PAPS, and radioactive product was analyzed by HPLC using program 1 (see "Materials and Methods"). A prominent peak at 43 min matches the elution position of SO3-GlcUA-E2 (A, lower panel). A large peak in front of peak P is likely unmodified E2, as authentic E2 elutes at this position under the HPLC conditions used in this experiment (data not shown). B, product was isolated and subjected to nanoESI-MS and MS/MS analysis. SO3-GlcUA-E2 afforded the expected [M – H]– molecular ions at m/z 527. This ion was further subjected to MS/MS, and the major product ions observed were assigned as annotated.
When \([3H]E2\) was injected intravenously into a Chst10\(^{-/-}\) mouse, \([3H]E2\) was not all converted into those seen in wild-type (Fig. 6A, lower panel). When \([35S]SO_4\) was injected into the Chst10\(^{-/-}\) mouse, several \(35S\)-labeled peaks, including \(SO_3-GlcUA-3-E2\) (Fig. 6B, upper panel, shown by an arrow), appeared. By contrast, those major \(35S\)-labeled peaks found in Chst10\(^{+/+}\) mice were not detected in Chst10\(^{-/-}\) (Fig. 6B, lower panel), suggesting that peaks shown in Fig. 6B, upper panel are sulfated \(E_2\) derivatives.

Homing of \(SO_3-GlcUA-E2\) in Vivo in the Mouse—To gain insight into \(SO_3-GlcUA-3-E2\) function, we performed a homing assay in the mouse. \([3H]E2\) was injected intravenously into female mice, and 3 h later radioactivity in representative organs was determined. Significant radioactivity was recovered in the uterus and liver (supplemental Fig. S7), consistent with the idea that \(E_2\) goes to organs where ERs are expressed at high levels (55). When \(35S\)-labeled or \([3H]SO_3-GlcUA-3-E2\) was used in this assay, \(SO_3-GlcUA-3-E2\) was recovered largely from urine, from digested materials in small intestines, and from serum (supplemental Fig. S7), suggesting that \(SO_3-GlcUA-E2\) is excreted from the body through the entero-hepatic pathway.

SO\(_3\)-GlcUA-3-E2 Activity in Cells Expressing ERs—SO\(_3\)-GlcUA-3-E2 activity relevant to ERs was verified by luciferase-based promoter assays employing an ERE (Fig. 7). Luciferase and ER vectors were co-transfected into ER-negative HEK293T cells, and cells were then treated with \(E_2\), GlcUA-3-E2, \(SO_3-3-E2\), or \(SO_3-GlcUA-3-E2\). Cells co-transfected with ER and luciferase reporter constructs showed luciferase activity when treated with \(10^{-8}\)M \(E_2\). By contrast, neither GlcUA-3-E2 nor \(SO_3-GlcUA-3-E2\) promoted this activity at concentrations as high as \(10^{-6}\)M, indicating that they are relatively poor activa-

Acceptor	\(K_m\) (mM) ± S.E.	\(V_{max}\) pmol/min/mg Chst10
GlcUA-3-DHEA	0.210 ± 0.035	3194 ± 157
GlcUA-3-E2	0.321 ± 0.081	3858 ± 329
GlcUA-3-LacNAC	1.518 ± 0.464	1723 ± 331

FIGURE 5. Kinetics analysis of Chst10. A, Chst10 activity dependence on acceptor concentration of GlcUA-3-dehydroepiandrosterone (DHEA), GlcUA-3-E2, and GlcUA-LacNac substrates. B, Michaelis-Menten plots of GlcUA-3-dehydroepiandrosterone A (top panel), GlcUA-3-E2 (middle panel), and GlcUA-LacNac (bottom panel).
tors of an ERE. These results strongly suggest that Chst10 down-regulates E2 activity in vivo.

DISCUSSION

In this study, we report that Chst10, the enzyme responsible for biosynthesis of the carbohydrate antigen HNK-1, is capable of transferring sulfate to glucuronidated steroid hormones. This finding emerged from analysis of Chst10-deficient mice, which showed subfertility in both males and females. We hypothesized that Chst10 likely transfers sulfate to glucuronidated steroids, as the enzyme transfers sulfate to glucuronidated N-acetyl-lactosamines in glycoproteins and glycolipids (18, 33, 44, 56). Enzymatic activity of Chst10 to GlcUA steroids was confirmed by *in vitro* activity assays using structure-defined steroids as acceptor substrates (Fig. 3 and supplemental Fig. S4). Structures of products or sulfated steroid hormones were validated by mass spectrometry (Fig. 4 and supplemental Fig. S5). The biosynthesis of sulfated and glucuronidated steroid hormones in Chst10+/+ but not in Chst10−/− mice was demonstrated using radioactive acceptor substrates or inorganic SO₄ intravenously injected into mice (Fig. 6). Glucuronyltransferases associated with ER membranes transfer GlcUA to various substrates, including steroids (50, 57). We speculate that steroids enter the luminal side of the ER, where they are glucuronidated by glucuronyltransferase(s) and further sulfated by Chst10 in the Golgi.

Although the existence of SO₄-3-GlcUA-17-E₂ has been known (51), the structure of SO₄-3-GlcUA-3-E₂ presented here has not been reported previously. Because these two molecules are isomers and difficult to separate from each other (supplemental Fig. S6), they could have been missed by biochemical analysis such as mass spectrometry or HPLC. In this study, we hypothesized that GlcUA-3-E₂ is sulfated by Chst10 to produce...
Sulfation of Estrogen by Chst10

SO₃-GlcUA-3-E₂. Support for this hypothesis is shown in Figs. 3–6 and supplemental Fig. S6. Genetic deletion of Chst10 reported here thus revealed a new structure, SO₃-GlcUA-3-E₂, which was heretofore unknown.

Glucuronidation of steroids is essential for maintaining hormonal balance and as a means to detoxify a wide variety of heterocyclic compounds. Glucuronidated steroids are easily transported around the body and are secreted into the urine. Sulfation of glucuronidated steroids may facilitate this process by promoting efficient elimination of products from the body into urine and feces, an activity suggested by the assay shown in supplemental Fig. S7. Loss of Chst10 in mutant mice apparently blocked down-regulation of steroids in vivo, resulting in up-regulation of hormonally active steroid hormones in female mice (Fig. 2). Steroid hormones are sulfated by Sult1E1 (45, 46). Sult1E1 null females (47, 48) exhibited phenotypes similar to those shown in this study of Chst10. In Sult1E1 null mice, the small litter size was attributed to a failure in placental development (47) and to ovulation defects resulting from a hormonal irregularity (48). Chst10 null mice also showed hormonal irregularities (supplemental Fig. S3). However, we have not determined the mechanism underlying the embryonic lethality seen in Chst10 nulls.

A mutant mouse line in which regions of the Chst10 second exon were knocked out has been previously reported by others (58). These mice were viable and fertile, although the null mice showed impaired basal synaptic transmission and long term memory deficits. It is possible that our targeting construct (Fig. 1A) produced a fragment of Chst10 protein translated from exons 1–4, which may function as a dominant negative for other sulfotransferases and thus give rise to stronger phenotypes than previously reported Chst10 null mice (58).

Chst10 is ubiquitously expressed in various tissues (44). Therefore, Chst10 protein may function in tissues other than reproductive organs. We observed that intravenously injected E₂ was not modified in Chst10⁻/⁻ mice (Fig. 6), suggesting that activities of conjugation enzymes other than Chst10 are also suppressed in Chst10 null mice. Future studies should define whether steroid-modifying enzymes interact with one another or are regulated together.

HNK-1 antigen is highly expressed in neuronal cells (Fig. 1C, supplemental Fig. S1A) (32, 33, 36). It is worth noting that sulfated steroids bind to vomenosal receptors and function as pheromones in mice (59) and in fish (60). Pheromones are sex hormones, but their function is linked to the nervous systems. Expression of an SO₃-GlcUA-terminal structure as an HNK-1 antigen in neurons together with the existence of a similar structural modification of sex steroid hormones suggest that this modification may have an unidentified endocrine function linking steroid hormones to neuronal activation in mammals. Further studies are required to address this intriguing possibility.

Acknowledgments—We thank Drs. Xiakun Zhang and Lin Bingzhen of Sanford-Burnham Medical Research Institute for providing us with expression vectors for the estrogen receptor and Dr. Elise Lamar for editing the manuscript.

REFERENCES
1. Rosen, S. D. (2006) Homing in on L-selectin. J. Immunol. 177, 3–4
2. Springer, T. A. (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration. The multistep paradigm. Cell 76, 301–314
3. McEver, R. P., Moore, K. L., and Cummings, R. D. (1995) Leukocyte trafficking mediated by selectin-carbohydrate interactions. J. Biol. Chem. 270, 11025–11028
4. Butcher, E. C., and Picker, L. J. (1996) Lymphocyte homing and homeostasis. Science 272, 60–66
5. Hirakawa, J., Tsuboi, K., Sato, K., Kobayashi, M., Watanabe, S., Takakura, A., Imai, Y., Ito, Y., Fukuda, M., and Kawashima, H. (2010) Novel anti-carbohydrate antibodies reveal the cooperative function of sulfated N- and O-glycans in lymphocyte homing. J. Biol. Chem. 285, 40864–40878
6. Fenrette, P. S., and Weiss, L. (2000) Sulfated glycans induce rapid hematopoietic progenitor cell mobilization: evidence for selectin-dependent and -independent mechanisms. Blood 96, 2460–2468
7. McEver, R. P. (2002) Selectins. Lectins that initiate cell adhesion under flow. Curr. Opin. Cell Biol. 14, 581–586
8. Yeh, J. C., Hiraoka, N., Petryniak, B., Nakayama, J., Ellies, L. G., Rabuka, D., Hindsaul, O., Marsh, J. D., Lowe, J. B., and Fukuda, M. (2001) Novel sulfated lymphocyte homing receptors and their control by a CoreI extension B1,3-N-acetylgalcosaminyltransferase. Cell 105, 957–969
9. Kawashima, H., Petryniak, B., Hiraoka, N., Mitoma, J., Huckaby, V., Nakayama, J., Uchimura, K., Kadomatsu, K., Muramatsu, T., Lowe, J. B., and Fukuda, M. (2005) N-Acetylgalcosaminase-6-O-sulfotransferases and 2 cooperatively control lymphocyte homing through L-selectin ligand biosynthesis in high endothelial venules. Nat. Immunol. 6, 1096–1104
10. Genbacev, O. D., Prakobphol, A., Foulk, R. A., Krtolica, A. R., Ilic, D., Singer, M. S., Yang, Z. Q., Kiessling, L. L., Rosen, S. D., and Fisher, S. I. (2003) Trophoblast L-selectin-mediated adhesion at the maternal-fetal interface. Science 299, 405–408
11. Rosen, S. D. (2004) Ligands for L-selectin. Homing, inflammation, and beyond. Annu. Rev. Immunol. 22, 129–156
12. Fukuda, M. N. and Sugihara, K. (2008) An integrated view of L-selectin and trophinin function in human embryo implantation. J. Obstet. Gynaecol. Res. 34, 129–136
13. Rapaeger, A. C., Krufka, A., and Olwin, B. B. (1991) Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252, 1705–1708
14. Mi, Y., Fiete, D., and Baenziger, J. U. (2008) Ablation of GalNAc-4-sulfotransferase-1 enhances reproduction by altering the carbohydrate structures of luteinizing hormone in mice. J. Clin. Invest. 118, 1815–1824
15. Akama, T. O., Nishida, K., Nakayama, J., Watanabe, H., Ozaki, K., Nakamura, T., Dota, A., Kawasaki, S., Inoue, Y., Maeda, N., Yamamoto, S., Fujitawa, T., Thonar, E. J., Shimomura, Y., Kinoshita, S., Tanigami, A., and Fukuda, M. N. (2000) Macular corneal dystrophy type I and type II are caused by distinct mutations in a new sulphotransferase gene. Nat. Genet. 26, 237–241
16. Bullock, S. L., Fletcher, J. M., Beddington, R. S., and Wilson, V. A. (1998) Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev. 12, 1894–1906
17. Tsuda, M., Kamimura, K., Nakatani, H., Archer, M., Staatz, W., Fox, B., Humphrey, M., Suttich, S., Futch, T., Kaluza, V., Siegfried, E., Stam, L., and Selleck, S. B. (1999) The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila. Nature 400, 276–280
18. Chou, D. K., Ilyas, A. A., Evans, J. E., Costello, C., Quares, R. H., and Jungalwala, F. B. (1986) Structure of sulfated glucuronyl glycolipids in human hepatocellular carcinoma defined in neuropathy. J. Biol. Chem. 261, 11717–11725
19. Hiraïwa, N., Fukuda, Y., Imura, H., Tadano-Aritomi, K., Nagai, K., Ishizuka, I., and Kannagi, R. (1990) Accumulation of highly acidic sulfated glycosphingolipids in human hepatocellular carcinoma defined by...
by a series of monoclonal antibodies. Cancer Res. 50, 2917–2928
20. Loveless, R. W., Yuen, C. T., Tsuji, H., Irimura, T., and Feizi, T. (1998) Monoclonal antibody LEWISA tetrasaccharide sequence. Glycobiology 8, 1237–1242

Tsuji, Y., Fukuda, H., Iuchi, A., Ishizuka, I., and Isojima, S. (1992) Sperm immobilizing antibodies react to the 3-O-sulfated galactose residue of seminolipid on human sperm. J. Reprod. Immunol. 22, 225–236

Yamakawa, N., Sato, C., Miyata, S., Maeshashi, E., Toriyama, M., Sato, N., Furuhata, K., and Kitajima, K. (2007) Development of sensitive chemical and immunoochemical methods for detecting sulfated sialic acids and their application to glycoconjugates from sea urchin sperm and eggs. Biochimie 89, 1396–1408

Shibata, T. K., Matsumura, F., Wang, P., Yu, S., Chou, C. C., Khoo, K. H., Kitayama, K., Akama, T. O., Sugihara, K., Kanayama, K., Kojima-Aikawa, K., Seeberger, P. H., Fukuda, M., Suzuki, A., Aoki, D., and Fukuda, M. N. (2012) Identification of mono- and disulfated N-acetyl-lactosaminyl oligosaccharide structures as epitopes specifically recognized by humanized monoclonal antibody HMOCC-1 raised against ovarian cancer. J. Biol. Chem. 287, 6659–6660

Abo, T., Cooper, M. D., and Balch, C. M. (1981) A differentiation antigen of human NK cells identified by a monoclonal antibody (HNK-1).

Trends Neurosci. 1024–1029

Characterization of glycoconjugate antigens in mouse embryonic neural precursors are essential for mouse brain development.

Sulfation of Estrogen by Chst10

Science 126, 134–135

Tsukiyama, O., Sato, K., Senpa, S., Iuchi, T., Yamauchi, J., and Okada, Y. (2000) Characterization of carbohydrate epitope HNK-1.

J. Biol. Chem. 275, 14210–14217

Characterization of sulfated glucuronic acid containing glycolipids reacting with Igm M-proteins in patients with neuropathy.

J. Biol. Chem. 262, 848–853

Kleene, R., and Schachner, M. (2004) Glycans and neural cell adhesion. Nat. Rev. Neurosci. 5, 195–208

Fukui, S., Feizi, T., Galustian, C., Lawson, A. M., and Chai, W. (2002) Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat. Biotechnol. 20, 1011–1017

Kruse, J., Mailhammer, R., Wernecke, H., Faissner, A., Sommer, I., Goridis, C., and Schachner, M. (1988) Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1.

Nature 311, 153–155

Ong, E., Suzuki, M., Belot, F., Yeh, J. C., Franceschini, I., Angata, K., Furuhata, K., and Kitajima, K. (2007) Development of chemical application to glycoconjugates from sea urchin sperm and eggs. Biochimie 89, 1396–1408

McKeon, R. J., Schreiber, R. C., Rudge, J. S., and Silver, J. (1991) Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J. Neurosci. 11, 3398–3411

Terayama, O., Oka, S., Seiki, T., Miki, Y., Nakamura, A., Kozutsumi, Y., Takio, K., and Kawasaki, T. (1997) Cloning and functional expression of a novel glucuronosyltransferase involved in the biosynthesis of the carbohydrate epitope HNK-1. Proc. Natl. Acad. Sci. U.S.A. 94, 6093–6098

Bakker, H., Friedmann, I., Oka, S., Kawasaki, T., Nifant’ev, N., Schachner, M., and Mantei, N. (1997) Expression cloning of a CDNA encoding a sulfotransferase involved in the biosynthesis of the HNK-1 carbohydrate epitope. J. Biol. Chem. 272, 29942–29946

Ong, E., Yeh, J. C., Ding, Y., Hindsgaul, O., and Fukuda, M. (1998) Expression cloning of a human sulfotransferase that directs the synthesis of the HNK-1 glycan on the neural cell adhesion molecule and glycolipids.

J. Biol. Chem. 273, 5190–5195

Ong, E., Yeh, J. C., Ding, Y., Hindsgaul, O., Pedersen, L. C., Negishi, M., and Fukuda, M. (1999) Structure and function of HNK-1 sulfotransferase. Identification of donor and acceptor binding sites by site-directed mutagenesis. J. Biol. Chem. 274, 25608–25612

Pasqualini, R. J. (2009) Estrogen sulfotransferases in breast and endometrial cancers. Ann. N.Y. Acad. Sci. 1155, 88–98

Tong, M. H., Jiang, H., Liu, P., Lawson, J. A., Brass, L. F., and Song, W. C. (2005) Spontaneous fetal loss caused by placentomal throbosis in estrogen sulfotransferase-deficient mice. Nat. Med. 11, 153–159

Gershon, E., Hovurtitz, A., Reikhaa, S., Maman, E., and Dekel, N. (2007) Low expression of COX-2, reduced cumulus expansion, and impaired ovulation in SULT1E1-deficient mice. FASEB J. 21, 1893–1901

Simpson, E. R., and Davis, S. R. (2001) Minireview. Aromatase and the regulation of estrogen biosynthesis–some new perspectives. Endocrinology 142, 4589–4594

Tukey, R. H., and Strassburg, C. P. (2000) Human UDP-glucuronosyltransferases. Metabolism, expression, and disease. Annu. Rev. Pharmacol. Toxicol. 40, 581–616

Rafgianis, R., Creveling, C., Weinshilboum, R., and Weisz, J. (2000) Estrogen metabolism by conjugation. J. Natl. Cancer Inst. Monogr. 27, 113–124

Caligioni, C. S. (2009) Assessing reproductive status/stages in mice. Curr. Protoc. Neurosci. 48, A41.1–A41.8

GHz, R., Kamboj, V. P., and Singh, M. M. (2001) Interaction with anti-estrogen receptor modulator, by tetracycline in female Sprague-Dawley rats. Contraception 64, 261–269

Angata, K., Huckaby, V., Rasch, B., Terskikh, A., Marth, J. D., and Fukuda, M. (2007) Polysialic acid-directed migration and differentiation of neural precursors are essential for mouse brain development. Mol. Cell. Biol. 27, 6659–6668

Jensen, E. V., and DeSombre, E. R. (1973) Estrogen-receptor interaction. Science 182, 126–134

Illyas, A. A., Quares, R. H., and Brady, R. O. (1984) The monoclonal antibody HNK-1 reacts with a human peripheral nerve ganglioside. Biochem.
Sulfation of Estrogen by Chst10

Biophys. Res. Commun. 122, 1206–1211
57. Fisher, M. B., Campanale, K., Ackermann, B. L., VandenBranden, M., and Wrighton, S. A. (2000) In vitro glucuronidation using human liver microsomes and the pore-forming peptide alamethicin. Drug Metab. Dispos. 28, 560–566
58. Senn, C., Kutsche, M., Saghatelyan, A., Bösl, M. R., Löhler, J., Bartsch, U., Morellini, F., and Schachner, M. (2002) Mice deficient for the HNK-1 sulfotransferase show alterations in synaptic efficacy and spatial learning and memory. Mol. Cell. Neurosci. 20, 712–729
59. Isogai, Y., Si, S., Pont-Lezica, L., Tan, T., Kapoor, V., Murthy, V. N., and Dulac, C. (2011) Molecular organization of vomeronasal chemoreception. Nature 478, 241–245
60. Sorensen, P. W., Fine, J. M., Dvornikovs, V., Jeffrey, C. S., Shao, F., Wang, J., Vrieze, L. A., Anderson, K. R., and Hoye, T. R. (2005) Mixture of new sulfated steroids functions as a migratory pheromone in the sea lamprey. Nat. Chem. Biol. 1, 324–328