Construction of primitive Pythagorean triples and Pythagorean triples with a common multiplier using gnomons

Aleshkevich Natalia V.

Peter the Great St. Petersburg Polytechnic University

Abstract

The traditional construction of primitive Pythagorean triples by the formulas of two independent variables does not allow their ordering. The paper shows a new view on the construction of primitive Pythagorean triples. A method for constructing primitive Pythagorean triples, based on the use of gnomons equal in area to the squares of the legs from a primitive Pythagorean triple, using two dependent variables, is proposed. This enables the ability to build an ordered table of primitive Pythagorean triples.

Working with ordered data, it is possible to approach in a new way the solution of problems that include systems of Pythagorean triples, such as the construction of Eulerian parallelepipeds, the construction of a Perfect Cuboid, or the problem of coloring natural numbers in two colors so that no Pythagorean triple is monochrome (one of the problems of Ramsey theory).

Keywords: Pythagorean triples, gnomon, arithmetic progression.
Introduction

The objects of our consideration are the Pythagorean numbers, also called Pythagorean triples – triples \((x, y, a)\) of natural numbers satisfying the Pythagorean equation:

\[x^2 + y^2 = a^2. \]

The Pythagorean theorem is a fundamental geometric statement: in any right triangle, the area of a square built on the hypotenuse is equal to the sum of the areas of squares built on the legs.

The general solution are the following formulas [1]:

\[y = 2mn; \quad x = m^2 - n^2; \quad a = m^2 + n^2. \]

These formulas describe exactly once every Pythagorean triple \((x, y, a)\), satisfying the condition \(\gcd(x, y, a) = 1\). This means that all sides of the Pythagorean triangle are expressed by relatively prime numbers. This triple of numbers is called a primitive Pythagorean triple.

In any primitive Pythagorean triple one of the legs is an even number and the other is an odd number. In this case the hypotenuse \(a\) is an odd number. Without loss of generality, we will assume that \(x\) is odd and \(y\) – even. Under these constraints we can get all primitive Pythagorean triples and only them.

The variables \(m\) and \(n\), forming primitive Pythagorean triples, were obtained from very abstract considerations and are not related to each other; that is, they are independent.

The task was to find a geometric interpretation of generation of primitive Pythagorean triples; and to, based on the received interpretation, determine the order on the set of primitive Pythagorean triples, their properties, and quantitative estimates.
The paper proposes a method for generating primitive Pythagorean triples using gnomons. A gnomon is a figure whose addition to a square leads to the construction of a larger square.

The paper also considers the description of gnomons using arithmetic progressions. And using gnomons, the construction of Pythagorean triples with a common multiplier is considered.

1. Building primitive Pythagorean triples using gnomons

We will consider the construction of consecutive squares, starting with the square of one. The formula of such a construction:

\[(n + 1)^2 = n^2 + 2n + 1.\]

To the constructed square with side \(n\), we can add a figure whose area is equal to twice the value of the side of the square plus 1: \(2n + 1\). This figure, called a gnomon \((G)\), builds the original square to a larger square; the side of which will be equal to \(n + 1\). The thickness of the gnomon \((T)\) will be equal to 1. By constructing \(k\) such consecutive gnomons, we can construct a square with side \(n + k\). We can combine consecutive gnomons with a thickness equal to 1 into one common gnomon with a thickness equal to \(k\).

\[x^2 + G = a^2.\]

We need to build a gnomon that is equal in area to some square: \(G = y^2\)

Then we come to the equation:

\[x^2 + y^2 = a^2.\]

We show the construction of squares of a primitive Pythagorean triple using a generating square with side \(S = 2tl\) [2]. Here GCD\((t, l) = 1\). We assume that \(l\) is odd and \(t\) is of any parity.
Without loss of generality, we will build a square with an even side.

We increase the side S of the generating square by $2t^2$ and build a larger square with side $y = S + 2t^2$ (Fig. 1). In this case, we obtain a gnomon G with a thickness $2t^2$, placed on the generating square.

![Figure 1](image)

Next, we increase the side y by the value l^2. Concurrently we extend the side of the gnomon by the same value l^2. At both ends of the gnomon we will have identical rectangles with an area $2t^2 \times l^2$ (Fig. 2).

![Figure 2](image)

The total area of both rectangles is equal to the area of the generating square with even side. Thus, the newly constructed square with side $y = 2tl + 2t^2 = 2t(t + l)$ unfolds into a gnomon G_y by redistributing the area of the generating square into two equal rectangles, the total area of which is equal to the area of the generating square (Fig. 3). In this case, the area of the gnomon G_y is equal to y^2.
Gnomon G_y is placed on a square with a side:

$$x = S + l^2 = 2tl + l^2 = l(l + 2l) \text{ (Fig. 4)}$$

The outer side of the gnomon G_y is equal to the hypotenuse:

$$a = S + 2t^2 + l^2 = (l + t)^2 + t^2.$$

The sum of two squares can be represented as one of the squares and a gnomon placed on it, which is equal in area to the second square. This representation is symmetrical (Fig. 5, 6):

$$x^2 + G_y = y^2 + G_x.$$
The total square in the form of both gnomons is shown in Fig. 7. Here, the larger gnomon absorbs the smaller gnomon. We will call this representation of gnomons connected gnomons. Both gnomons have a common outer side equals to the hypotenuse a. Thus, we have the following relation:

$$x^2 + G_y = y^2 + G_x = G_x + G_y = a^2.$$
Thus, using generating square, we build gnomons equal in area to the squares of the legs of the primitive Pythagorean triple, which together build the square of the hypotenuse.

Theorem 1.1. The variables $S, t(S), l(S)$ uniquely determine the primitive Pythagorean triple (x, y, a).

There are two different proofs of this statement.

Proof 1

We represent the area of the generating square by two equal rectangles. For this, we represent the side of the generating square S as a doubled product of two groups of factors:

$$ S = 2tl, $$

where

$$ t = 2^{a_0 - 1} \prod_{i=1}^{k} p_i^{a_i}, $$

$$ l = \prod_{i=k+1}^{r} p_i^{a_i}, $$

a_0, a_i — powers of the corresponding terms in the product

p_i — various odd prime factors

$$ GCD(t, l) = 1. $$

In this case, the number l is always odd, and t can be either an even number when $a_0 > 1$, or an odd number when $a_0 = 1$.

Each of the equal rectangles will have an even side equal to $2t^2$ and an odd side equal to l^2. As a result of the construction, we have an even leg from the primitive Pythagorean triple $y = S + 2t^2$, an odd leg from the primitive Pythagorean triple $x = S + l^2$ and a hypotenuse from the primitive Pythagorean triple $a = S + 2t^2 + l^2$.
As we can see, all three numbers of the primitive Pythagorean triple are determined by the values of the variables $S, t(S)$ and $l(S)$. At the same time, these variables are interdependent $S = 2tl$. Together the variables t and l contain all the prime factors into which the value S is factorized. Since every natural number, according to the basic theorem of arithmetic, is factorized into prime factors in the only one way without taking into account the order of the factors, then the obtained numbers defining the Pythagorean triple - (x, y, a) will correspond to the variables $(S, t(S), l(S))$ in the only one way. Theorem 1.1. proved.

Proof 2

Expression of the variables m and n through the partitioning variables of the side of the generating square was considered earlier. [2]

We move from our notation of the variables t and l to the generally accepted m and n:

$$m = l + t; n = t.$$

In this case, a square with an even side will have a side $y = 2mn$. The total square will have a side $m^2 + n^2$. Indeed, $a = 2tl + 2t^2 + l^2 = t^2 + 2tl + l^2 + t^2 = (t + l)^2 + t^2$.

A square with an odd side will have a side $m^2 - n^2$. Indeed, $x = 2tl + l^2 = 2tl + l^2 + t^2 - t^2 = (t + l)^2 - t^2$.

Since the variables m and n, as is known, determine the primitive Pythagorean triple in the only one way, and we use variable substitution to construct similar formulas describing the primitive Pythagorean triple, then using our variables we also describe the primitive Pythagorean triple in the only one way. Theorem 1.1. proved.

Theorem 1.2. The number of ways to represent the $L(S)$ area of the generating square by two equal rectangles with relatively prime sides, the total area of which is equal to the area of the generating
square, is determined by the number of odd prime factors without
taking into account their powers in the product for the side of the
generating square \(S = 2 \times 2^{a_0-1} p_1^{a_1} p_2^{a_2} \ldots p_r^{a_r} \), where \(p_i \) are prime
odd factors, and is equal to

\[
L(S) = \sum_{j=0}^{r} C_r^j = 2^r,
\]

\(r \) – this is the number of prime odd factors without taking into
account their powers,

\(C_r^j \) – binomial coefficients.

Proof

We consider the set of odd prime factors without taking into account their
powers of a number \(S: \{p_1^{a_1}, p_2^{a_2}, \ldots, p_r^{a_r}\} \). Each prime factor is taken into
account to an appropriate power as one element. We cannot divide the
powers, since the numbers in both factors in the formula must be relatively
prime by condition and the factors of these groups represent the sides of a
rectangle with relatively prime quantities.

The factors will have partition divided into two groups: \(t \) and \(l \). In the first
step, we do not select any element from the set, then \(t \) will be equal to 1,
and \(l \) will contain all the elements of the set in the product. There is one
such sample \(C_r^0 \).

Next, we can choose any one factor from the list for \(t \) and \(r - 1 \) for \(l \), the
number of such samples is equal to \(C_r^1 = r \). This corresponds to the number
of combinations of one element from \(r \). Then we can select two elements
from the list for \(t \) and \(r - 2 \) elements for \(l \). This corresponds to the number
of combinations of two elements from : \(C_r^2 \). And further until the list of odd
prime factors is completely ended. In the last step, we select the entire set
for \(t \) and \(l = 1 \), this corresponds to the number of combinations of \(r
\) elements from \(r: C_r^r \).
After we made all the partitions of the set, we attribute the factor $2^{\alpha_0 - 1}$ at $\alpha_0 > 1$ only to the variable t. It is not included in the calculation for binomial coefficients, but is attributed to t for each partition variant using the concatenation operation, as a factor. Thus, the number of partitions of the area of the generating square into two equal rectangles with relatively prime sides with a total area equal to the area of the generating square depends only on the number of odd prime factors r in the composition of the number S without taking into account their powers and is equal to the sum of the binomial coefficients, that is, to number 2^r.

Theorem 1.2. proved.

Setting the order on a set of primitive Pythagorean triples was considered earlier. [3]

Theorem 1.3. The variables $S, t(S)$ are setting the order on the set of primitive Pythagorean triples.

Proof

As follows from Theorem 1.1, the variables $S, t(S), l(S)$ uniquely determine the primitive Pythagorean triple (x, y, a). Since the variable $l(S)$ can be expressed via the other two variables:

$$l(S) = \frac{S}{t(S)},$$

For setting the order, we will leave two of them, namely S and $t(S)$.

We build the variable S in ascending order, starting with $S = 2$, and moving in increments of 2:

$$2, 4, 6, 8, \ldots$$

As follows from Theorem 1.2, each value of S corresponds to $L(S) = 2^r$ pairs of numbers $(t(S), l(S))$, where r is the number of odd prime factors in the factorization of the number S into prime factors.
Inside the block by S we will arrange the values of the variable $t(S)$ in ascending order:

$$t_1 < t_2 < \cdots < t_{2^r}.$$

All these numbers differ from each other.

In accordance with the variables $S, t(S)$, ordered tables of primitive Pythagorean triples can be constructed. In this case, ordinal number of the first level N is determined by the equality:

$$N = S/2.$$

The ordinal number of the second level n changes from 1 to $L(S)$ within S in accordance with the growth of $t(S)$.

We write down a set of pairs of elements

$$\{(S_1, t_1(S_1)), \ldots (S_1, t_{2^r}(S_1), \ldots, (S_k, t_1(S_k)), \ldots, (S_k, t_{2^m}(S_k)), \ldots \}.$$

Since there is a bijection between the elements $(S_i, t_j(S_i))$ and primitive Pythagorean triples (Theorem 1.1), we can write the elements of a primitive Pythagorean triple in a string with a number (N, n). At the same time

$$N = \frac{S}{2}; n(S) = 1, 2, \ldots, L(S).$$

Thus, Theorem 1.3 is proved.

Setting the order on the set of primitive Pythagorean triples makes it possible to construct a table of primitive Pythagorean triples. The table is presented in Appendix 1, where is a fragment of the beginning of the set for the values $S = 2 \div 500$. Accordingly $N = 1, 2, \ldots, 250$.

2. **Primitive Pythagorean triples and their representation via arithmetic progressions**
Theorem 2.1. Connected gnomons are uniquely described by corresponding arithmetic progressions.

Proof

Without loss of generality, we imagine a primitive Pythagorean triple in the form of a square with side x and a gnomon G_y placed on it. The thickness of the gnomon T_y is equal to the number of consecutive gnomons with a thickness of 1. The area of the first gnomon s_1 with a thickness of 1 is equal to $2x + 1$. The area of the next gnomon with a thickness of 1 is equal to

$$s_2 = 2(x + 1) + 1 = 2x + 3.$$

The area of each subsequent gnomon with a thickness of 1 relative to the previous gnomon with a thickness of 1 is equal to

$$s_k = s_{k-1} + 2.$$

The difference of the areas d between consecutive gnomons with a thickness of 1 is equal to two. Therefore, a gnomon describing the square of an even-numbered leg of a primitive Pythagorean triple can be described by three numbers: (s_1, d, T_y). We imagine the number s_1, equal to the area of the first gnomon with a thickness of 1, as the first term of the arithmetic progression. The difference of the areas of two consecutive gnomons d with a thickness of 1 will be the difference of the arithmetic progression. The thickness of the gnomon will correspond to the number of terms of the arithmetic progression. There is a one-to-one correspondence between the three numbers describing the gnomon and the three numbers describing the arithmetic progression.

Each gnomon can be described by the corresponding arithmetic progression. Two gnomons (connected gnomons) representing the squares of the legs of a primitive Pythagorean triple, respectively, are described by two arithmetic
progressions with different initial terms, a common step \(d = 2 \), and the corresponding number of terms in each progression:

\[
\begin{align*}
 \begin{cases}
 s_1 = 2x + 1 \\
 d = 2 \\
 T_y = 2t^2
 \end{cases} & \iff \begin{cases}
 s_1 = 2x + 1 \\
 d = 2 \\
 n = 2t^2
 \end{cases} \\
 \begin{cases}
 s_1 = 2y + 1 \\
 d = 2 \\
 T_x = l^2
 \end{cases} & \iff \begin{cases}
 s_1 = 2y + 1 \\
 d = 2 \\
 n = l^2
 \end{cases}
\end{align*}
\]

This proves Theorem 2.1

Corollary from Theorem 2.1. The sum of the terms of the arithmetic progression is equal to the area of the corresponding gnomon.

Theorem 2.2. There is a bijection between variables defining primitive Pythagorean triples \((x, y, a)\) and variables describing arithmetic progressions corresponding to connected gnomons of primitive Pythagorean triples.

Proof

Connected gnomons uniquely define the primitive Pythagorean triple. The gnomon \(G_x \) has an area equal to the square of the leg \(x \). The gnomon \(G_y \) has an area equal to the square of the leg \(y \). The outer side of each gnomon is equal to the hypotenuse \(a \). There is a correspondence between the hypotenuse and the legs through the thickness of the gnomons describing the squares of these legs:

\[a = x + T_y = y + T_x\]

Imagine a primitive Pythagorean triple in the form of a square and a gnomon placed on it. We take a square with an odd side \(x \). Then the area of the gnomon \(G_y \) can be represented as the sum of an arithmetic progression with the first term \(2x + 1 \). Each subsequent term of the progression will be
two units larger than the previous one. The number of such terms in arithmetic progression is equal to the thickness of the gnomon

\[T_y = 2t^2. \]

Now we take a square with an even side \(y \). Then the area of the gnomon \(G_x \) built on it can be represented as the sum of an arithmetic progression with the first term equal to \(2y + 1 \). Each subsequent term of the progression will be two units larger than the previous one. The number of such terms in arithmetic progression is equal to the thickness of the gnomon

\[T_x = l^2. \]

We consider two connected gnomons. When \(y < x \), all the terms of the arithmetic progression describing the gnomon \(G_y \) (and their number is \(T_y \)), will be equal, respectively, to the last terms in the arithmetic progression representing the gnomon \(G_x \). And, conversely, for \(x < y \), all the terms of the arithmetic progression describing the gnomon \(G_x \) (and their number is \(T_x \)) will be equal, respectively, to the last terms in the arithmetic progression representing the gnomon \(G_y \).

This representation in the form of an arithmetic progression of each gnomon fully corresponds to the figure 7 (Fig. 7) of absorption by a gnomon of a larger area of a connected gnomon of a smaller area.

The sum of the terms of the arithmetic progression is equal to the area of the corresponding gnomon (see Corollary from Theorem 2.1). In turn, the gnomon by construction is equal to the square of the corresponding leg. Therefore, the sum of the terms of the arithmetic progression is equal to the square of this leg. Consequently, the sum of the terms of both arithmetic progressions is equal to the square of the hypotenuse.

The middle term (arithmetic mean) \(s_x \) of the arithmetic progression describing the gnomon \(G_x \) is equal to the sum of the arithmetic progression divided by the number of its terms:
The middle term (arithmetic mean) \(s_y \) of the arithmetic progression describing the gnomon \(G_y \) is equal to the sum of the arithmetic progression divided by the number of its terms:

\[
s_y = \frac{y^2}{T_y} = \frac{4t^2(l + t)^2}{2t^2} = 2(l + t)^2.
\]

The first term of the arithmetic progression can be determined through the middle term (arithmetic mean) and the total number of terms.

Indeed, for a gnomon corresponding to the square of an odd leg, the thickness is an odd number; that is, the number of terms of the corresponding arithmetic progression is an odd number. Therefore, the middle term of the arithmetic progression is

\[
s = s_1 + d \left(\frac{T_x - 1}{2} \right) = s_1 + T_x - 1,
\]

where \(\frac{T_x - 1}{2} \) — the number of terms up to the middle term in the arithmetic progression; the progression step is \(d = 2 \).

For the gnomon corresponding to the square of an even leg, the thickness is an even number, that is, the number of terms of the corresponding arithmetic progression is an even number. Therefore, the middle term of the arithmetic progression (arithmetic mean) is equal to

\[
s = s_1 + d \left(\frac{T_y - \frac{1}{2}}{2} \right) = s_1 + T_y - 1,
\]

where \(\frac{T_y}{2} \) — the number of terms in the first half of the arithmetic progression;

\(\frac{d}{2} \) — the half step of the arithmetic progression determines the shift to find the arithmetic mean, since it is an even number and is in the middle.
between two odd numbers. All the terms of the arithmetic progression are the odd numbers.

From these equations for the middle term we derive the value for the first term of the arithmetic progression:

\[s_1 = s - (T - 1). \]

Since \(s_{1y} = 2x + 1 \) and \(s_{1x} = 2y + 1 \), then we can find the values for \(x \) and \(y \):

\[x = \frac{s_{1y} - 1}{2} = \frac{s_y - T_y}{2} = \frac{2(l + t)^2 - 2t^2}{2} = (l + t)^2 - t^2 = l^2 + 2tl = l(l + 2t). \]

\[y = \frac{s_{1x} - 1}{2} = \frac{s_x - T_x}{2} = \frac{(l + 2t)^2 - l^2}{2} = \frac{4t^2 + 4tl}{2} = 2t(l + t). \]

Connected gnomons have the same last terms of arithmetic progression. The last term of the arithmetic progression \(s_n \) is equal to the sum of the middle term of the arithmetic progression and the corresponding number of terms in this progression minus one:

\[s_n = s_x + (T_x - 1) = s_y + (T_y - 1). \]

The conclusion is similar to obtaining the first term of an arithmetic progression, but the difference in the first case is replaced by the sum in the second case.

Here, the last term is equal to \(s_n = 2a - 1 \). Hence the equality for hypotenuse \(a \) follows:

\[a = \frac{s_n + 1}{2}; \]

\[a = \frac{s_x + T_x}{2} = \frac{(l + 2t)^2 + l^2}{2} = \frac{2l^2 + 4t^2 + 4lt}{2} = 2lt + 2t^2 + l^2; \]
Substitute $S = 2lt$ into the equations, we have:

$$a = S + 2t^2 + l^2 = x + 2t^2 = y + l^2.$$

The last equation corresponds to the value of hypotenuse a, constructed using the generating square with side S.

Thus, the result obtained is that the arithmetic progressions corresponding to connected gnomons also represent the primitive Pythagorean triple (y, x, a) in the only one way.

Theorem 2.2 is proved.

3. Transformation of Gnomons

The transformation of a gnomon is understood as a simultaneous reduction in the number of terms of the arithmetic progression describing it, with an increase in the middle term of the arithmetic progression (arithmetic mean) by the same number of times. Or vice versa. At the same time, the area of the gnomon remains unchanged. The area of the gnomon is equal to the sum of the terms of the arithmetic progression, describing the gnomon. And besides, the area of the gnomon is equal to the square of the corresponding leg of the primitive Pythagorean triple.

With that the sum of the terms of the arithmetic progression is equal to the area of the corresponding leg, either y^2 or x^2.

The product of the number of terms of the arithmetic progression by the value of its middle term (the arithmetic mean of the values of all terms) is equal to the area of the corresponding square of the leg. The thickness of
the gnomon in the arithmetic progression describing it corresponds to the number of terms of this progression.

Theorem 3.1. The transformation of a gnomon corresponding to square of a leg of a primitive Pythagorean triple through a change in a thickness of a gnomon leads to the disintegration of the original primitive Pythagorean triple and the construction of a new primitive Pythagorean triple

Proof

Consider the formulas for the legs of the primitive Pythagorean triple:

\[y = 2t(l + t); \quad x = l(l + 2t). \]

The number of terms in the arithmetic progression describing the gnomon \(G_y \), representing the square of the even leg \(y \), is equal to the thickness of the gnomon \(T_y = 2t^2 \). The middle term of this arithmetic progression is equal \(s_y = 2(l + t)^2 \). When the thickness of the gnomon is reduced by \(k \) times, the value of the middle term increases by \(k \) times. At the same time, the number \(k \) is a multiplier in \(t \). When the value of the middle term is reduced by \(m \) times, the thickness of the gnomon increases by \(m \) times. In this case, the number \(m \) is a multiplier in \((l + t)^2 \).

We write the value of \(y \) in the form:

\[y = S + 2t^2. \]

If the value of \(y \) is unchanged, a change in the value of \(t \) immediately leads to a change in the value of \(S \). Various primitive Pythagorean triples correspond to different values of pairs \(S, t(S) \) (Theorem 1.1).

The number of terms in the arithmetic progression describing the gnomon \(G_x \), which represents the square of the odd leg \(x \), is equal to the thickness of the gnomon \(T_x = l^2 \). The middle term of this arithmetic progression is equal to \(s_x = (l + 2t)^2 \). When the thickness of the gnomon is reduced by \(u \) times,
the value of the middle term increases by \(u \) times. In this case, the number \(u \) is a multiplier in \(l \). If we increase the thickness of the gnomon by \(v \) times, then the value of the middle term is reduced by \(v \) times. In this case, the number \(v \) is a multiplier in \((l + 2t)^2\).

We write the value of \(x \) in the form:

\[
x = S + l^2
\]

If the value of \(x \) is unchanged, a change in the value of \(l \) immediately leads to a change in the value of \(S \). Various primitive Pythagorean triples correspond to different values of pairs \(S \) and \(l(S) \) (Theorem 1.1).

Thus, we proved that during the transformation, the gnomon is placed on another square, different from its second leg from the original primitive Pythagorean triple.

According to the formulas: \(a = x + 2t^2; a = y + l^2 \), the side of the total square will also be equal to another value, since when the value of the second term changes, while the first term remains unchanged, the sum also changes.

Thus, during the transformation of the gnomon, the original primitive Pythagorean triple disintegrates and a new primitive Pythagorean triple is formed.

During the transformation, a gnomon can form a number of new primitive Pythagorean triples. This applies to each connected gnomon. That is, this pair of legs from the primitive Pythagorean triple disintegrates when at least one gnomon is transformed. Theorem 3.1 is proved.

Corollary from Theorem 3.1. When the gnomon is transformed, the variable \(S \) changes, therefore the block \(S \) does not contain the same legs, both even and odd.

Theorem 3.2. The total number of occurrences of the same leg in various primitive Pythagorean triples as a leg depends on the
number of n prime factors without taking into account their powers when factorizating this leg into prime factors and is equal to 2^{n-1}.

Proof

We write an even leg in the form of a product $y = 2t(l + t)$. Let n be the number of prime factors without taking into account their powers in the factorization of the number y into prime factors.

By construction, the numbers t and l are relatively prime, hence the factors t and $(l + t)$ in the formula for y are also relatively prime. Therefore, the factors included in the variables t and $(l + t)$ are different.

Without loss of generality, we can consider half of an even leg: $y/2 = t(l + t)$, since t and $(l + t)$ have different parity, that is, in the prime factorization there is still a factor of 2 in the corresponding power, and it will not be lost.

For an even leg, the number of its occurrences in various primitive Pythagorean triples as a leg depends on the number of different t in the formula.

Changing the variable t for an even leg y leads to the transformation of the gnomon G_y, which represents the square of this leg, since this variable determines the thickness of the gnomon.

Changing the thickness of the gnomon leads to the disintegration of the original primitive Pythagorean triple and the formation of a new primitive Pythagorean triple (Theorem 3.1).

If we select some subset from the n-set, then we naturally will have a partition of the n-set into two parts: the first part is formed by the selected elements for t, the second by the remaining ones for $(l + t)$.

Each such partition is obtained exactly twice: since at some point we will definitely choose for t those elements that were left for $(l + t)$ before that.
However, we are only interested in those partitions where the even leg has
\(t < (l + t) \).

Thus, the number of different primitive Pythagorean triples for the same leg
\(y = t(l + t) \) is determined by the number of different \(t \) that can be substituted into this formula for \(y \).

The number of such partitions is half of the total number of partitions. When selecting a null subset, the variable \(t \) is assigned one, and all elements of the set are written in \((l + t)\).

Since the number of all subsets of a finite set consisting of \(n \) elements is \(2^n \), the number of subsets for the multiplier \(t \) will be \(2^{n-1} \).

It is also the same for the legs \(x \). We write the odd leg as a product of
\(x = l(l + 2t) \). Let \(n \) be the number of prime factors without taking into account their powers in the factorization of the number \(x \) into prime factors.

By construction, the numbers \(t \) and \(l \) are relatively prime, hence the factors
\(l \) and \((l + 2t) \) in the formula for \(x \) are also relatively prime. Consequently, the factors included in the variables \(l \) and \((l + 2t) \) are different.

Changing the variable \(l \) for an odd leg \(x \) leads to the transformation of the gnomon \(G_x \), which represents the square of this leg, since this variable determines the thickness of the gnomon.

Changing the thickness of the gnomon leads to the disintegration of the original primitive Pythagorean triple and the formation of a new primitive Pythagorean triple (Theorem 3.1).

We will determine how many different primitive triples the same odd leg \(x \) can form.

For an odd leg, it depends on the number of different partitions of its multipliers into groups \(l \) and \((l + 2t) \).
If we select some subset from the n-set, then we will naturally obtain a partition of the n-set into two parts: the first part is formed by the selected elements for \(l \), the second by the remaining ones for \((l + 2t) \).

Each such partition is obtained exactly twice: since at some point we will definitely choose for \(l \) those elements that were left for \((l + 2t) \) before that. However, we are only interested in those partitions where the odd leg has \(l < (l + 2t) \).

Thus, the number of different primitive Pythagorean triples for the same leg \(x = l(l + 2t) \) is determined by the number of different \(l \) that can be substituted into this formula for \(x \).

The number of such partitions, where \(l < (l + 2t) \), is half of the total number of partitions. When selecting a null subset, the variable \(l \) is assigned one, and all elements of the set are written in \((l + 2t) \).

Since the number of all subsets of a finite set consisting of \(n \) elements is \(2^n \), the number of subsets for the multiplier \(l \) will be \(2^{n-1} \).

Thus, Theorem 3.2 is proved.

Corollary 1 of Theorem 3.2. The number of different \(S \), which corresponds to the number of different primitive Pythagorean triples for the same leg \(y = t(l + t) \), is determined by the number of different \(t \) that can be substituted into this formula for \(y \).

Corollary 2 of Theorem 3.2. The number of different \(S \), which corresponds to the number of different primitive Pythagorean triples for the same leg \(x = l(l + 2t) \), is determined by the number of different \(l \) that can be substituted into this formula for \(x \).
4. Construction of Pythagorean triples with a common multiplier using gnomons

Earlier we considered the construction of Pythagorean triples with a common multiplier. [3]

We multiply all the elements of a primitive Pythagorean triple by an integer coefficient \(k \). Thus we will define a Pythagorean triple with a common multiplier: \((kx, ky, ka)\).

We will build a Pythagorean triple with a common multiplier using a square lattice.

Theorem 4. In a Pythagorean triple with a common multiplier \((kx, ky, ka)\), the thickness of each gnomon increases \(k \) times and the middle terms of arithmetic progressions describing the corresponding gnomons increase \(k \) times:

\[
T_{kx} = kT_x; \ T_{ky} = kT_y; \ s_{kx} = ks_x; \ s_{ky} = ks_y.
\]

Proof

We construct a primitive Pythagorean triple \((x, y, a)\). We draw it as a square with side \(a \). Inside this square, in the upper right corner, we will place a square with side \(y \). Now we add the gnomon \(G_x \) to the inner square. The area of the gnomon is equal to the area of the square with side \(x \). Thickness of the gnomon is \(T_x = l^2 \). In this case, \(a = y + l^2 \).

Next, we place the square \(a^2 \) in the cells of the square lattice with side \(ka \) (Fig. 8).
We put together all the squares with side \(y \) on the right into a large square with side \(ky \), and on the left we will depict the total gnomon assembled from gnomons inside each inner square of the square lattice (Fig. 9). The area of the total square \(a^2 \) has increased by \(k^2 \) times. The area of the square with side \(y \) has increased by \(k^2 \) times. The area of the gnomon \(G_x \) has also increased by \(k^2 \) times. Thus, we have constructed a Pythagorean triple with a common multiplier \((kx, ky, ka)\).
Since the hypotenuse is $ka = k(y + l^2) = ky + kl^2$, then the common side of the collected squares becomes equal to ky, and the thickness of the total gnomon G_{kx} becomes equal to $T_{kx} = kl^2 = kT_x$.

The middle term of the arithmetic progression describing the gnomon G_{kx} is calculated by the formula:

$$s_{kx} = \frac{(kx)^2}{T_{kx}} = \frac{k^2x^2}{kl^2} = k \frac{l^2(l + 2t)^2}{l^2} = k(l + 2t)^2 = ks_x.$$

The construction will be similar if we place a square with side x in the total square with side a and place a gnomon G_y on it. The thickness of the gnomon is $T_y = 2t^2$.

Next, we will place the square a^2 in the cells of the square lattice with side ka (Fig. 8). We will put together all the squares with side x on the right into a large square with side kx, and on the left we will depict the total gnomon G_{ky}, assembled from gnomons inside each inner square of the square lattice (Fig. 9). The area of the total square a^2 has increased by k^2 times. The area of the square with side x has increased by k^2 times. The area of the gnomon G_y has also increased by k^2 times. Thus, we have constructed a Pythagorean triple with a common multiplier (kx, ky, ka).

Since the hypotenuse is $ka = k(x + 2t^2) = kx + 2kt^2$, the common side of the assembled squares becomes equal to kx, and the thickness of the total gnomon G_{ky} becomes equal to $T_{ky} = 2kt^2 = kT_y$.

The middle term of the arithmetic progression describing the gnomon G_{ky} is calculated by the formula:

$$s_{ky} = \frac{(ky)^2}{T_{ky}} = \frac{k^2y^2}{2kt^2} = k \frac{4t^2(l + t)^2}{2t^2} = 2k(l + t)^2 = ks_y.$$
Thus, when multiplying all the elements of the Pythagorean triple by an integer coefficient k, the thickness of each gnomon increases by k times and the middle terms of the arithmetic progressions describing the corresponding gnomons increase by k times. Theorem 4 is proved.

Conclusion

The construction of primitive Pythagorean triples is based on the concept of a generating square with an even side. With the help of this concept, the relationship of variables necessary for the construction of primitive Pythagorean triples is found. The number of different constructions of primitive Pythagorean triples is determined depending on the size of a side of a generating square.

Abstract formulas for constructing primitive Pythagorean triples through the traditional unrelated parameters m and n are replaced by mutually related parameters through the side of the generating square $S = 2 tl$, where $t = n; m = l + t$. A sequential increase in the side of the generating square with a constant step equal to 2, starting from 2, led to the construction of an order on the set of primitive Pythagorean triples using two related parameters S and t. A table of primitive Pythagorean triples, constructed in ascending order of the parameter S and the second-level parameter inside the block S, namely $t(S)$ up to the value $S = 500$, is given.

Three ways of representing a primitive Pythagorean triple are described: the square of the first leg plus the gnomon of the second, and, conversely, the square of the second leg plus the gnomon of the first leg, as well as two connected gnomons.

The paper shows a description of connected gnomons by arithmetic progressions. Their one-to-one correspondence has been proved. The existence of a bijection between the numbers of a primitive Pythagorean
triple and the variables of arithmetic progressions corresponding to connected gnomons is proved.

It has been proven that with the transformation of any gnomon equal in area to the square of the leg, that is, a coordinated change in the thickness of the gnomon and the middle term of the arithmetic progression describing the gnomon, provided that the area of the gnomon is preserved, the leg forms another primitive Pythagorean triple.

A method of assembling gnomons on a square lattice for legs with a common multiplier is proposed. The dependence of the thickness of the gnomon and the middle term of the arithmetic progression describing the gnomon on the value of the common multiplier of the numbers of the Pythagorean triple is proved.

References

1. Dunham W. «Euclid’s Proof of the Pythagorean Theorem.» Journey Through Genius: The Great Theorems of Mathematics. New York: Wiley Science Editions, (1990) pp. 27-60.

2. Aleshkevich N. V. (2019). Geometric and algebraic interpretation of primitive Pythagorean triples parameters. Retrieved from https://arxiv.org/abs/1907.05540.

3. Aleshkevich N. V. (2021). Constructive representation of primitive Pythagorean triples. Retrieved from https://arxiv.org/abs/2108.06799.
Appendix 1

Fragment of a table of primitive Pythagorean triples constructed with increasing parameters $S, t(S)$

N_n_i	S	t	l	$x = S + l^2$	$y = S + 2t^2$	$a = S + l^2 + 2t^2$	
1.1	2	1	1	3	4	5	
2.1	4	2	1	5	12	13	
3.1	6	1	3	15	8	17	
3.2	3	1	7	24	25		
4.1	8	4	1	9	40	41	
5.1	10	1	5	35	12	37	
5.2	5	1	11	60	61		
6.1	12	2	3	21	20	29	
6.2	6	1	13	84	85		
7.1	14	1	7	63	16	65	
7.2	7	1	15	112	113		
8.1	16	8	1	17	144	145	
9.1	18	1	9	99	20	101	
9.2	9	1	19	180	181		
10.1	20	2	5	45	28	53	
10.2	10	1	21	220	221		
11.1	22	1	11	143	24	145	
11.2	11	1	23	264	265		
12.1	24	4	3	33	56	65	
12.2	12	1	25	312	313		
13.1	26	1	13	195	28	197	
13.2	13	1	27	364	365		
14.1	28	2	7	77	36	85	
14.2	14	1	29	420	421		
15.1	30	1	15	255	32	257	
15.2	3	5	55	48	73		
15.3	5	3	39	80	89		
15.4	15	1	31	480	481		
16.1	32	16	1	33	544	545	
17.1	34	1	17	323	36	325	
17.2	17	1	35	612	613		
18.1	36	2	9	117	44	125	
18.2	18	1	37	684	685		
19.1	38	1	19	399	40	401	
19.2	19	1	39	760	761		
20.1	40	4	5	65	72	97	
20.2	20	1	41	840	841		
21.1	42	1	21	483	44	485	
21.2	3	7	91	60	109		
21.3	7	3	51	140	149		
21.4	21	1	43	924	925		
22.1	44	2	11	165	52	173	
22.2	22	1	45	1012	1013		
23.1	46	1	23	575	48	577	
23.2	23	1	47	1104	1105		
24.1	48	8	3	57	176	185	
24.2	4	1	49	1200	1201		
25.1	50	1	25	675	52	677	
25.2	25	1	51	1300	1301		
26.1	52	2	13	221	60	229	
$N. n_i$	S	t	l	$x = S + l^2$	$y = S + 2t^2$	$a = S + l^2 + 2t^2$	
---	---	---	---	---	---	---	
26.2	26	1	53	1404	1405		
27.1	54	1	27	783	56	785	
27.2	27	1	55	1512	1513		
28.1	56	4	7	105	88	137	
28.2	28	1	57	1624	1625		
29.1	58	1	29	899	60	901	
29.2	29	1	59	1740	1741		
30.1	60	2	15	285	68	293	
30.2	6	5	85	132	157		
30.3	10	3	69	260	269		
30.4	30	1	61	1860	1861		
31.1	62	1	31	1023	64	1025	
31.2	31	1	63	1984	1985		
32.1	64	32	1	65	2112	2113	
33.1	66	1	33	1155	68	1157	
33.2	11	3	75	308	317		
33.4	33	1	67	2244	2245		
34.1	68	2	17	357	76	365	
34.2	34	1	69	2380	2381		
35.1	70	1	35	1295	72	1297	
35.2	5	7	119	120	169		
35.3	7	5	95	168	193		
35.4	35	1	71	2520	2521		
36.1	72	4	9	153	104	185	
36.2	36	1	73	2664	2665		
37.1	74	1	37	1443	76	1445	
37.2	37	1	75	2812	2813		
38.1	76	2	19	437	84	445	
38.2	38	1	77	2964	2965		
39.1	78	1	39	1599	80	1601	
39.2	3	13	247	96	265		
39.3	13	3	87	416	425		
39.4	39	1	79	3120	3121		
40.1	80	8	5	125	208	233	
40.2	40	1	81	3280	3281		
41.1	82	1	41	1763	84	1765	
41.2	41	1	83	3444	3445		
42.1	84	2	21	525	92	533	
42.2	6	7	133	156	205		
42.3	14	3	93	476	485		
42.4	42	1	85	3612	3613		
43.1	86	1	43	1935	88	1937	
43.2	43	1	87	3784	3785		
44.1	88	4	11	209	120	241	
44.2	44	1	89	3960	3961		
45.1	90	1	45	2115	92	2117	
45.2	5	9	171	140	221		
45.3	9	5	115	252	277		
45.4	45	1	91	4140	4141		
46.1	92	2	23	621	100	629	
46.2	46	1	93	4324	4325		
47.1	94	1	47	2303	96	2305	
47.2	47	1	95	4512	4513		
48.1	96	16	3	105	608	617	
48.2	48	1	97	4704	4705		
N \cdot n_i	S	t	l	x = S + l^2	y = S + 2t^2	a = S + l^2 + 2t^2	
-------------	---	---	---	-------------	-------------	-------------------	
49.1	98	1	49	2499	100	2501	
49.2	49	1	99	4900	4901		
50.1	100	2	25	725	108	733	
50.2	50	1	101	5100	5101		
51.1	102	1	51	2703	104	2705	
51.2	3	17	391	120	409		
51.3	17	3	111	680	689		
51.4	51	1	103	5304	5305		
52.1	104	4	13	273	136	305	
52.2	52	1	105	5512	5513		
53.1	106	1	53	2915	108	2917	
53.2	53	1	107	5724	5725		
54.1	108	2	27	837	116	845	
54.2	54	1	109	5940	5941		
55.1	110	1	55	3135	3137		
55.2	5	11	231	160	281		
55.3	11	5	135	352	377		
55.4	55	1	111	6160	6161		
56.1	112	8	7	161	240	289	
56.2	56	1	113	6384	6385		
57.1	114	1	57	3363	3365		
57.2	3	19	475	132	493		
57.3	19	3	123	836	845		
57.4	57	1	115	6612	6613		
58.1	116	2	29	957	124	965	
58.2	58	1	117	6844	6845		
59.1	118	1	59	3599	3601		
59.2	59	1	119	7080	7081		
60.1	120	4	15	345	152	377	
60.2	12	5	145	408	433		
60.3	20	3	129	920	929		
60.4	60	1	121	840	841		
61.1	122	1	61	3843	3845		
61.2	61	1	123	7564	7565		
62.1	124	2	31	1085	132	1093	
62.2	62	1	125	7812	7813		
63.1	126	1	63	4095	4097		
63.2	7	9	207	224	305		
63.3	9	7	175	288	337		
63.4	63	1	127	8064	8065		
64.1	128	64	1	129	8320	8321	
65.1	130	1	65	4355	4357		
65.2	5	13	299	180	349		
65.3	13	5	155	468	493		
65.4	65	1	131	8580	8581		
66.1	132	2	33	1221	140	1229	
66.2	6	11	253	204	325		
66.3	22	3	141	1100	1109		
66.4	66	1	133	8844	8845		
67.1	134	1	67	4623	4625		
67.2	67	1	135	9112	9113		
68.1	136	4	17	425	457		
68.2	68	1	137	9384	9385		
69.1	138	1	69	4899	4901		
69.2	3	23	667	156	685		
69.3	23	3	147	1196	1205		
$N\cdot n_i$	S	t	l	$x = S + t^2$	$y = S + 2t^2$	$a = S + l^2 + 2t^2$	
------------	-----	-----	-----	--------------	--------------	---------------------	
69.4	69	1	139	9660	9661		
70.1	140	2	35	1365	148	1373	
70.2	10	7	189	340	389		
70.3	14	5	165	532	557		
70.4	70	1	141	9940	9941		
71.1	142	1	71	5183	144	5185	
71.2	71	1	143	10224	10225		
72.1	144	8	9	225	272	353	
72.2	72	1	145	10512	10513		
73.1	146	1	73	5475	148	5477	
73.2	73	1	147	10804	10805		
74.1	148	2	37	1517	156	1525	
74.2	74	1	149	11100	11101		
75.1	150	1	75	5775	152	5777	
75.2	3	25	775	168	793		
75.3	25	3	159	1400	1409		
75.4	75	1	151	11400	11401		
76.1	152	4	19	513	184	545	
76.2	76	1	153	11704	11705		
77.1	154	1	77	6083	156	6085	
77.2	7	11	275	252	373		
77.3	11	7	203	396	445		
77.4	77	1	155	12012	12013		
78.1	156	2	39	1677	164	1685	
78.2	6	13	325	228	397		
78.3	26	3	165	1508	1517		
78.4	78	1	157	12324	12325		
79.1	158	1	79	6399	160	6401	
79.2	79	1	159	12640	12641		
80.1	160	16	5	185	672	697	
80.2	80	1	161	12960	12961		
81.1	162	1	81	6723	164	6725	
81.2	81	1	163	13284	13285		
82.1	164	2	41	1845	172	1853	
82.2	82	1	165	13612	13613		
83.1	166	1	83	7055	168	7057	
83.2	83	1	167	13944	13945		
84.1	168	4	21	609	200	641	
84.2	12	7	217	456	505		
84.3	28	3	177	1736	1745		
84.4	84	1	169	14280	14281		
85.1	170	1	85	7395	172	7397	
85.2	5	17	459	220	509		
85.3	17	5	195	748	773		
85.4	85	1	171	14620	14621		
86.1	172	2	43	2021	180	2029	
86.2	86	1	173	14964	14965		
87.1	174	1	87	7743	176	7745	
87.2	3	29	1015	192	1033		
87.3	29	3	183	1856	1865		
87.4	87	1	175	15312	15313		
88.1	176	8	11	297	304	425	
88.2	88	1	177	15664	15665		
89.1	178	1	89	8099	180	8101	
89.2	89	1	179	16020	16021		
90.1	180	2	45	2205	188	2213	
N. n_i	S	t	l	\(x = S + l^2 \)	\(y = S + 2t^2 \)	\(a = S + l^2 + 2t^2 \)	
--------	-------	---	---	-----------------	-----------------	-----------------	
90.2	10	9	261	380	461		
90.3	18	5	205	828	853		
90.4	90	1	181	16200	16201		
91.1	182	1	91	8463	8465		
91.2	7	13	351	280	449		
91.3	13	7	231	520	569		
91.4	91	1	183	16744	16745		
92.1	184	4	23	713	745		
92.2	92	1	185	17112	17113		
93.1	186	1	93	8835	8837		
93.2	3	31	1147	204	1165		
93.3	31	3	195	2108	2117		
93.4	93	1	187	17484	17485		
94.1	188	2	47	2397	196	2405	
94.2	94	1	189	17860	17861		
95.1	190	1	95	9215	192	9217	
95.2	5	19	551	240	553		
95.3	19	5	215	912	937		
95.4	95	1	191	18240	18241		
96.1	192	32	3	201	2240	2249	
96.2	96	1	193	18624	18625		
97.1	194	1	97	9603	196	9605	
97.2	97	1	195	19012	19013		
98.1	196	2	49	2597	204	2605	
98.2	98	1	197	19404	19405		
99.1	198	1	99	9999	200	10001	
99.2	9	11	319	360	481		
99.3	11	9	279	440	521		
99.4	99	1	199	19800	19801		
100.1	200	4	25	825	232	857	
100.2	100	1	201	20200	20201		
101.1	202	1	101	10403	204	10405	
101.2	101	1	203	20604	20605		
102.1	204	2	51	2805	212	2813	
102.2	6	17	493	276	565		
102.3	34	3	213	2516	2525		
102.4	102	1	205	21012	21013		
103.1	206	1	103	10815	208	10817	
103.2	103	1	207	21424	21425		
104.1	208	8	13	377	336	505	
104.2	104	1	209	21840	21841		
105.1	210	1	105	11235	212	11237	
105.2	3	35	1435	228	1453		
105.3	5	21	651	260	701		
105.4	7	15	435	308	533		
105.5	15	7	259	420	469		
105.6	21	5	235	1092	1117		
105.7	35	3	219	2660	2669		
105.8	105	1	211	22260	22261		
106.1	212	2	53	3021	220	3029	
106.2	106	1	213	22684	22685		
107.1	214	1	107	11663	216	11665	
107.2	107	1	215	23112	23113		
108.1	216	4	27	945	248	977	
108.2	108	1	217	23544	23545		
109.1	218	1	109	12099	220	12101	
N.m_i	S	t	l	x = S + l²	y = S + 2t²	a = S + l² + 2t²	
-------	-----	----	----	-----------	-------------	-----------------	
109.2	109	1	219	23980	23981		
110.1	220	2	55	3245	228	3253	
110.2	10	11	341	420	541		
110.3	22	5	245	1188	1213		
110.4	110	1	221	24420	24421		
111.1	222	1	111	12543	224	12545	
111.2	3	37	1591	240	1609		
111.3	37	3	231	2960	2969		
111.4	111	1	223	24864	24865		
112.1	224	16	7	736	785		
112.2	112	1	225	25312	25313		
113.1	226	1	113	12995	228	12997	
113.2	113	1	227	25764	25765		
114.1	228	2	57	3477	236	3485	
114.2	6	19	3477	300	3549		
114.3	38	3	237	3116	3125		
114.4	114	1	229	26220	26221		
115.1	230	1	115	13455	232	13457	
115.2	5	23	759	280	809		
115.3	23	5	255	1288	1313		
115.4	115	1	231	26680	26681		
116.1	232	4	29	1073	264	1105	
116.2	116	1	233	27144	27145		
117.1	234	1	117	13923	236	13925	
117.2	9	13	403	396	565		
117.3	13	9	315	572	653		
117.4	117	1	235	27612	27613		
118.1	236	2	59	3717	244	3725	
118.2	118	1	237	28084	28085		
119.1	238	1	119	14399	240	14401	
119.2	7	17	527	336	625		
119.3	17	7	287	816	865		
119.4	119	1	239	28560	28561		
120.1	240	8	15	465	368	593	
120.2	24	5	265	1392	1417		
120.3	40	3	249	3440	3449		
120.4	120	1	241	29040	29041		
121.1	242	1	121	14883	14885		
121.2	121	1	243	29524	29525		
122.1	244	2	61	3965	252	3973	
122.2	122	1	245	30012	30013		
123.1	246	1	123	15375	248	15377	
123.2	3	41	1927	264	1945		
123.3	41	3	255	3608	3617		
123.4	123	1	247	30504	30505		
124.1	248	4	31	1209	280	1241	
124.2	124	1	249	31000	31001		
125.1	250	1	125	15875	252	15877	
125.2	125	1	251	31500	31501		
126.1	252	2	63	4221	260	4229	
126.2	14	9	333	644	725		
126.3	18	7	301	900	949		
126.4	126	1	253	32004	32005		
127.1	254	1	127	16383	256	16385	
127.2	127	1	255	32512	32513		
128.1	256	128	1	257	33024	33025	
N, n_i	S	t	l	$x = S + l^2$	$y = S + 2t^2$	$a = S + l^2 + 2t^2$	
--------	-----	-----	-----	-------------	-------------	----------------	
129.1	258	1	129	16899	260	16901	
129.2	3	43		2107	276	2125	
129.3	43	3	267	3956	3965		
129.4	129	1	259	33540	33541		
130.1	260	2	65	4485	268	4493	
130.2	10	13	429	460	629		
130.3	26	5	285	1612	1637		
130.4	130	1	261	34060	34061		
131.1	262	1	131	264	17425		
131.2	131	1	263	34584	34585		
132.1	264	4	33	1353	296		
132.2	12	11	385	552	673		
132.3	43	3	273	4136	4145		
132.4	132	1	265	35112	35113		
133.1	266	1	133	17955	268	17957	
133.2	7	19	627	364	725		
133.3	19	7	315	988	1037		
133.4	133	1	267	35644	35645		
134.1	268	2	67	4757	276	4765	
134.2	134	1	269	36180	36181		
135.1	270	1	135	18495	18497		
135.2	5	27	999	320	1049		
135.3	27	5	295	1728	1753		
135.4	135	1	271	36720	36721		
136.1	272	8	17	561	400	689	
136.2	136	1	273	37264	37265		
137.1	274	1	137	19043	19045		
137.2	137	1	275	37812	37813		
138.1	276	2	69	5037	284	5045	
138.2	6	23	805	348	877		
138.3	46	3	285	4508	4517		
138.4	138	1	277	38364	38365		
139.1	278	1	139	19599	280	19601	
139.2	139	1	279	38920	38921		
140.1	280	4	35	1505	312	1537	
140.2	20	7	329	1080	1129		
140.3	28	5	305	1848	1873		
140.4	140	1	281	39480	39481		
141.1	282	1	141	20163	284	20165	
141.2	3	47	2491	300	2509		
141.3	47	3	301	4700	4709		
141.4	141	1	283	40044	40045		
142.1	284	2	71	5325	292	5333	
142.2	142	1	285	40612	40613		
143.1	286	1	143	20735	288	20737	
143.2	11	13	455	528	697		
143.3	13	11	407	624	745		
143.4	143	1	287	41184	41185		
144.1	288	16	9	369	800	881	
144.2	144	1	289	41760	41761		
145.1	290	1	145	21315	292	21317	
145.2	5	29	1131	340	1181		
145.3	29	5	315	1972	1997		
145.4	145	1	291	42340	42341		
146.1	292	2	73	5621	300	5629	
146.2	146	1	293	42924	42925		
$N.m_i$	S	t	l	$x = S + l^2$	$y = S + 2t^2$	$a = S + l^2 + 2t^2$	
-------	-----	-----	-----	--------------	--------------	--------------	
147.1	294	1	147	21903	296	21905	
147.2		3	49	2695	312	2713	
147.3		49	3	303	5096	5105	
147.4		147	1	295	43512	43513	
148.1	296	4	37	1665	328	1697	
148.2		148	1	297	44104	44105	
149.1	298	1	149	22499	300	22501	
149.2		149	1	299	44700	44701	
150.1	300	2	75	5925	308	5933	
150.2		6	25	925	372	997	
150.3		50	3	309	5300	5309	
150.4		150	1	301	45300	45301	
151.1	302	1	151	23103	304	23105	
151.2		151	1	303	45904	45905	
152.1	304	8	19	665	432	793	
152.2		152	1	305	46512	46513	
153.1	306	1	153	23715	308	23717	
153.2		9	17	595	468	757	
153.3		17	9	387	884	965	
153.4		153	1	307	47124	47125	
154.1	308	2	77	6237	316	6245	
154.2		14	11	429	700	821	
154.3		22	7	357	1276	1325	
154.4		154	1	309	47740	47741	
155.1	310	1	155	24335	312	24337	
155.2		5	31	1271	360	1321	
155.3		31	5	335	2232	2257	
155.4		155	1	311	48360	48361	
156.1	312	4	39	1833	344	1865	
156.2		12	13	481	600	769	
156.3		52	3	321	5720	5729	
156.4		156	1	313	48984	48985	
157.1	314	1	157	24963	316	24965	
157.2		157	1	315	49612	49613	
158.1	316	2	79	6557	324	6565	
158.2		158	1	317	50244	50245	
159.1	318	1	159	25599	320	25601	
159.2		3	53	3127	336	3145	
159.3		53	3	327	5936	5945	
159.4		159	1	319	50880	50881	
160.1	320	32	5	345	2368	2393	
160.2		160	1	321	51520	51521	
161.1	322	1	161	26243	324	26245	
161.2		7	23	851	420	949	
161.3		23	7	371	1380	1429	
161.4		161	1	323	52164	52165	
162.1	324	2	81	6885	332	6893	
162.2		162	1	325	52812	52813	
163.1	326	1	163	26895	328	26897	
163.2		163	1	327	53464	53465	
164.1	328	4	41	2009	360	2041	
164.2		164	1	329	54120	54121	
165.1	330	1	165	27555	332	27557	
165.2		3	55	3355	348	3373	
165.3		5	33	1419	380	1469	
165.4		11	15	555	572	797	
\(N \cdot n_i\)	\(S\)	\(t\)	\(l\)	\(x = S + l^2\)	\(y = S + 2t^2\)	\(a = S + l^2 + 2t^2\)	
---	---	---	---	---	---	---	
165.5	15	11	451	780	901		
165.6	33	5	355	2508	2533		
165.7	55	3	339	6380	6389		
165.8	165	1	331	54780	54781		
166.1	332	2	83	7221	340	7229	
166.2	166	1	333	55444	55445		
167.1	334	1	167	28223	336	28225	
167.2	167	1	335	56112	6617		
168.1	336	8	21	777	464	905	
168.2	24	7	385	1488	1537		
168.3	56	3	345	6608	6617		
168.4	168	1	337	56784	56785		
169.1	338	1	169	28899	340	28901	
169.2	169	1	339	57460	57461		
170.1	340	2	85	7565	348	7573	
170.2	10	17	629	540	829		
170.3	34	5	365	2652	2677		
170.4	170	1	341	58140	58141		
171.1	342	1	171	29583	344	29585	
171.2	9	19	703	504	865		
171.3	19	9	423	1064	1145		
171.4	171	1	343	58824	58825		
172.1	344	4	43	2193	376	2225	
172.2	172	1	345	59512	59513		
173.1	346	1	173	30275	348	30277	
173.2	173	1	347	60204	60205		
174.1	348	2	87	7917	356	7925	
174.2	6	29	1189	420	1261		
174.3	58	3	357	7076	7085		
174.4	174	1	349	60900	60901		
175.1	350	1	175	30975	352	30977	
175.2	7	25	975	448	1073		
175.3	25	7	399	1600	1649		
175.4	175	1	351	61600	61601		
176.1	352	16	11	473	864	985	
176.2	176	1	353	62304	62305		
177.1	354	1	177	31683	356	31685	
177.2	3	59	3835	372	3853		
177.3	59	3	363	7316	7325		
177.4	177	1	355	63012	63013		
178.1	356	2	89	8277	364	8285	
178.2	178	1	357	63724	63725		
179.1	358	1	179	32399	360	32401	
179.2	179	1	359	64440	64441		
180.1	360	4	45	2385	392	2417	
180.2	20	9	441	1160	1241		
180.3	36	5	385	2952	2977		
180.4	180	1	361	65160	65161		
181.1	362	1	181	33123	364	33125	
181.2	181	1	363	65884	65885		
182.1	364	2	91	8645	372	8653	
182.2	14	13	533	756	925		
182.3	26	7	413	1716	1765		
182.4	182	1	365	66612	66613		
183.1	366	1	183	33855	368	33857	
183.2	3	61	4087	384	4105		
$N.n_i$	S	t	l	$x = S + t^2$	$y = S + 2t^2$	$a = S + l^2 + 2t^2$	
---------	-----	-----	-----	--------------	--------------	------------------	
183.3	61	3	375	7808	7817		
183.4	183	1	367	67344	76345		
184.1	8	23	897	496	1025		
184.2	184	1	369	68080	68081		
185.1	370	1	185	34595	372	34597	
185.2	5	37	1739	420	1789		
185.3	37	5	395	3108	3133		
185.4	185	1	371	68820	68821		
186.1	372	2	9021	380	9029		
186.2	6	31	1333	444	1405		
186.3	62	3	381	8060	8069		
186.4	186	1	373	69564	69565		
187.1	374	1	187	35343	376	35345	
187.2	11	17	663	616	905		
187.3	17	11	495	952	1073		
187.4	187	1	375	70312	70313		
188.1	376	4	47	2585	408	2617	
188.2	188	1	377	71064	71065		
189.1	378	1	189	36099	380	36101	
189.2	7	27	1107	476	1205		
189.3	27	7	427	1836	1885		
189.4	189	1	379	71820	71821		
190.1	380	2	95	9405	388	941	
190.2	10	19	741	580	941		
190.3	38	5	405	3268	3293		
190.4	190	1	381	72580	72581		
191.1	382	1	191	36863	384	36865	
191.2	191	1	383	73344	73345		
192.1	384	64	3	393	8576	8585	
192.2	192	1	385	74112	74113		
193.1	386	1	193	37635	388	37637	
193.2	193	1	387	74884	74885		
194.1	388	2	97	9797	396	9805	
194.2	194	1	389	75660	75661		
195.1	390	1	195	38415	392	38417	
195.2	3	65	4615	408	4633		
195.3	5	39	1911	440	1961		
195.4	13	15	615	728	953		
195.5	15	13	559	840	1009		
195.6	39	5	415	3432	3457		
195.7	65	3	399	8840	8849		
195.8	195	1	391	76440	76441		
196.1	392	4	49	2793	424	2825	
196.2	196	1	393	77224	77225		
197.1	394	1	197	39203	396	39205	
197.2	197	1	395	78012	78013		
198.1	396	2	99	10197	404	10205	
198.2	18	11	517	1044	1165		
198.3	22	9	477	1364	1445		
198.4	198	1	397	78804	78805		
199.1	398	1	199	39999	400	40001	
199.2	199	1	399	79600	79601		
200.1	400	8	25	1025	528	1153	
200.2	200	1	401	1200	1201		
201.1	402	1	201	40803	404	40805	
201.2	3	67	4891	420	4909		
N,n_i	S	t	l	$x = S + l^2$	$y = S + 2t^2$	$a = S + l^2 + 2t^2$	
---------	-----	-----	-----	--------------	--------------	---------------------	
201.3	67	3	411	9380	9389		
201.4	201	1	403	81204	81205		
202.1	404	2	101	10605	412	10613	
202.2	202	1	405	82012	82013		
203.1	406	1	203	41615	408	41617	
203.2	7	29	1247	504	1345		
203.3	29	7	455	2088	2137		
203.4	203	1	407	82824	82825		
204.1	408	4	51	3009	440	3041	
204.2	12	17	697	696	985		
204.3	68	3	417	9656	9665		
204.4	204	1	409	83640	83641		
205.1	410	1	205	42435	412	42437	
205.2	5	41	2091	460	2141		
205.3	41	5	435	3772	3797		
205.4	205	1	411	84460	84641		
206.1	412	2	103	11021	420	11029	
206.2	206	1	413	85284	85285		
207.1	414	1	207	43263	416	43265	
207.2	9	23	943	576	1105		
207.3	23	9	495	1472	1553		
207.4	207	1	415	86112	86113		
208.1	416	16	13	585	928	1097	
208.2	208	1	417	86944	86945		
209.1	418	1	209	44099	420	44101	
209.2	11	19	779	660	1021		
209.3	19	11	539	1140	1261		
209.4	209	1	419	87780	87781		
210.1	420	2	105	11445	428	11453	
210.2	6	35	1645	492	1717		
210.3	10	21	861	620	1061		
210.4	14	15	645	812	1037		
210.5	30	7	469	2220	2269		
210.6	42	5	445	3948	3973		
210.7	70	3	429	10220	10229		
210.8	210	1	421	88620	88621		
211.1	422	1	211	44943	424	44945	
211.2	211	1	423	89464	89465		
212.1	424	4	53	3233	456	3265	
212.2	212	3	425	90312	90313		
213.1	426	1	213	45795	428	45797	
213.2	3	71	5467	444	5485		
213.3	71	3	435	10508	10517		
213.4	213	1	427	91164	91165		
214.1	428	2	107	11877	436	11885	
214.2	214	1	429	92020	92021		
215.1	430	1	215	46655	432	46657	
215.2	5	43	2279	480	2329		
215.3	43	5	455	4128	4153		
215.4	215	1	431	92880	92881		
216.1	432	8	27	1161	560	1289	
216.2	216	1	433	93744	93745		
217.1	434	1	217	47523	436	47525	
217.2	7	31	1395	532	1493		
217.3	31	7	483	2356	2405		
217.4	217	1	435	94612	94613		
$N.n_i$	S	t	l	$x = S + t^2$	$y = S + 2t^2$	$a = S + l^2 + 2t^2$	
---------	------	-----	-----	---------------	---------------	----------------------	
218.1	436	2	109	12317	444	12325	
218.2	218	1	437	95484	95485		
219.1	438	1	219	48399	440	48401	
219.2	3	73	5767	456	5785		
219.3	73	3	447	11096	11105		
219.4	219	1	439	96360	96361		
220.1	440	4	55	34665	472	3497	
220.2	20	11	561	1240	1361		
220.3	44	5	465	4312	4337		
220.4	220	1	441	97240	97241		
221.1	442	1	221	49283	444	49285	
221.2	13	17	731	780	1069		
221.3	17	13	611	1020	1189		
221.4	221	1	443	98124	98125		
222.2	444	2	111	12765	452	12773	
222.3	6	37	1813	516	1885		
222.4	74	3	453	11396	11405		
223.2	222	1	445	99012	99013		
223.4	446	1	223	50175	448	50177	
224.1	223	1	447	99904	99905		
224.2	448	32	7	497	2496	2545	
224.2	224	1	449	100800	100801		
225.1	450	1	225	51075	452	51077	
225.2	9	25	1075	612	1237		
225.3	25	9	531	1700	1781		
225.4	225	1	451	101700	101701		
226.1	452	2	113	13221	460	13229	
226.2	226	1	453	102604	102605		
227.1	454	1	227	51983	456	51985	
227.2	227	1	455	103512	103513		
228.1	456	4	57	3705	488	3737	
228.2	12	19	817	744	1105		
228.3	76	3	465	12008	12017		
228.4	228	1	457	104424	104425		
229.1	458	1	229	52899	460	52901	
229.2	229	1	459	105340	105341		
230.1	460	2	115	13685	468	13693	
230.2	10	23	989	660	1189		
230.3	46	5	485	4692	4717		
230.4	230	1	461	106260	106261		
231.1	462	1	231	53823	464	53825	
231.2	3	77	6391	480	6409		
231.3	7	33	1551	560	1649		
231.4	11	21	903	704	1145		
231.5	21	11	583	1344	1465		
231.6	33	7	511	2640	2689		
231.7	77	3	471	12320	12329		
231.8	231	1	463	107184	107185		
232.1	464	8	29	1305	592	1433	
232.2	232	1	465	108112	108113		
233.1	466	1	233	54755	468	54757	
233.2	233	1	467	109044	109045		
234.1	468	2	117	14157	476	14165	
234.2	18	13	637	1116	1285		
234.3	26	9	549	1820	1901		
234.4	234	1	469	109980	109981		
N.n_{i}	S	t	l	x = S + l^2	y = S + 2t^2	a = S + l^2 + 2t^2	
---------	-----	---	-----	------------	-------------	-------------------	
235.1	470	1	235	55695	472	55697	
235.2	5	47	2679	520		2729	
235.3	47	5	495	4888		4913	
235.4	235	1	471	110920		110921	
236.1	472	4	59	3953	504	3985	
236.2	236	1	473	111864		111865	
237.1	474	1	237	56643	476	56645	
237.2	3	79	6715	492		6733	
237.3	79	3	483	12956		12965	
237.4	237	1	475	112812		112813	
238.1	476	2	119	14637	484	14645	
238.2	14	17	765	868		1157	
238.3	34	7	525	2788		2837	
238.4	238	1	477	113764		113765	
239.1	478	1	239	57599	480	57601	
239.2	239	1	479	114720		114721	
240.1	480	16	705	992		1217	
240.2	48	5	505	5088		5113	
240.3	80	3	489	13280		13289	
240.4	240	1	481	115680		115681	
241.1	482	1	241	58563	484	58565	
241.2	241	1	483	116644		116645	
242.1	484	2	121	15125	492	15133	
242.2	242	1	485	117612		117613	
243.1	486	1	243	59535	488	59537	
243.2	243	1	487	118584		118585	
244.1	488	4	61	4209	520	4241	
244.2	244	1	489	119560		119561	
245.1	490	1	245	60515	492	60517	
245.2	5	49	2891	540		2941	
245.3	49	5	515	5292		5317	
245.4	245	1	491	120540		120541	
246.1	492	2	123	15621	500	15629	
246.2	6	41	2173	564		2245	
246.3	82	3	501	13940		13949	
246.4	246	1	493	121524		121525	
247.1	494	1	247	61503	496	61505	
247.2	13	19	855	832		1193	
247.3	19	13	663	1216		1385	
247.4	247	1	495	122512		122513	
248.1	496	8	31	1457	624	1585	
248.2	248	1	497	123504		123505	
249.1	498	1	249	62499	500	62501	
249.2	3	83	7387	516		7405	
249.3	83	3	507	14276		14285	
249.4	249	1	499	124500		124501	
250.1	500	2	125	16125	508	16133	
250.2	250	1	501	125500		125501	