News and Perspectives

Immune checkpoint inhibitors win the 2018 Nobel Prize

Pei-Wei Huang a,b, John Wen-Cheng Chang a,b,*

a Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
b College of Medicine, Chang Gung University, Taoyuan, Taiwan

Abstract

The 2018 Nobel Prize in Physiology or Medicine was awarded to Tasuku Honjo and James Allison for their discoveries in cancer immunology. Professor Honjo was awarded due to his discovery of the programmed death molecule-1 (PD-1) on T cells. Professor Allison discovered another important immunosuppressive molecule: cytotoxic T-lymphocyte antigen-4 (CTLA-4). Suppression of T cell activation by PD-1 and/or CTLA-4 is considered one of the major escape mechanisms of cancer cells. Inhibition of these molecules by immune checkpoint inhibitors can successfully activate the immune system to fight cancer. Checkpoint inhibitors have brought about a major breakthrough in cancer immunotherapy, reviving the hope of curing patients with end-stage cancer, including a wide variety of cancer types. In metastatic malignant melanoma, the previous long-term survival of only 5% can now be extended to 50% with anti-PD-1 plus anti-CTLA-4 combined treatment in the latest report. More checkpoint molecules such as lymphocyte-activation gene 3 and T cell immunoglobulin and mucin domain 3 are under investigation. The achievement of Drs. Honjo and Allison in cancer immunotherapy has encouraged research into other immune-pathological diseases.

Like all Nobel Prize winners, Professor Tasuku Honjo and Professor James Allison have been working for a long time to achieve today’s results. Professor Honjo’s team started by studying apoptosis and found programmed death molecule-1 (PD-1) in apoptotic T cells. After long research, they confirmed that mice lacking PD-1 will develop various autoimmune diseases (including lupus-like autoimmune disease, myocarditis, glomerulonephritis, and type 1 diabetes). The co-inhibitory signal provided by the PD-1 pathway regulates the T cell activity to avoid an excessive immune response [1–3]. In contrast, the tumor cell can escape immune surveillance through activating the PD-1 pathway to suppress the effector T cells. Further research has found that the use of antibodies against these molecules can activate the immune system to destroy cancer cells [4]. In the beginning, the major pharmaceutical companies did not have much interest, but Professor Honjo persisted so that finally the PD-1 inhibitor became the main drug for immunotherapy. Professor Allison found cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) on T cells in 1995 and established studies focused on B7/cluster of...
Cancer type	Trial (Phase)	Published date	Stage	Line	Arms	RR (%)	mPFS (months)	mOS (months)	Ref.
Cutaneous melanoma	CA184-002 (III)	2010	Advanced	2nd line	Ipilimumab + gp100	6%	2.8	10.0	[12]
					Ipilimumab	11%	2.9	10.1	
					Gp100	2%	2.8	6.4	
	CA184-024 (III)	2011	Metastatic	1st line	Ipilimumab + DTIC	15%	ND	11.2	[13]
					DTIC	10%	ND	9.1	
	KEYNOTE-006 (III)	2015	Advanced	2nd line	Pembrolizumab Q2w	34%	5.5	NR	[14,15]
					Pembrolizumab Q3w	33%	4.1	NR	
					Ipilimumab	12%	2.8	16.0	
	CheckMate066 (III)	2014	Advanced	1st line	Nivolumab + Gp100	40%	5.1	37.5	[15,16]
					DTIC	34%	2.2	11.2	
	CheckMate-067 (III)	2015	Advanced	1st line	Nivolumab + Ipilimumab	57%	11.5	NR	[17,18]
		2017			Nivolumab	44%	6.9	37.6	
					Ipilimumab	19%	2.9	19.9	
	CheckMate-037 (III)	2015	Advanced	2nd line	Nivolumab	27%	3.1	16	[19,20]
		2018			Chemotherapy	10%	3.7	14	
Cutaneous Squamous cell carcinoma	NCT02760498 (I/II)	2018	Metastatic	1st line	Cemiplimab	47%	NR	NR	[21]
Merkel cell carcinoma	NCT02267603 (II)	2016	Advanced	1st line	Pembrolizumab	56%	67%	NR	[22]
Renal cell carcinoma	CheckMate-025 (III)	2015	Advanced	2nd line	Nivolumab	25%	4.6	25	[23]
					Everolimus	5%	4.4	19.6	
Non-small cell lung cancer -Nonsquamous	CheckMate-214 (III)	2018	Advanced	1st line	Nivolumab + Ipilimumab	42%	11.6	NR	[24]
					Sunitinib	27%	8.4	26	
	CheckMate-057 (III)	2015	Advanced	2nd line	Nivolumab + chemotherapy	19%	2.3	12.2	[25]
					Docetaxel	12%	4.2	9.4	
	KEYNOTE-024 (III)	2016	Advanced	1st line	Pembrolizumab	44.8%	10.3	30	[26,27]
	2018				Platinum-based	27.8%	6.0	14.2	
	KEYNOTE-189 (III)	2018	Metastatic	1st line	Pembrolizumab + chemotherapy	47.6%	8.8	NR	[28]
					Chemotherapy + placebo	18.9%	4.9	11.3	
	IMpower-150 (III)	2018	Metastatic	1st line	Atezolizumab + bevacizum + chemotherapy	63.5%	8.3	19.2	[29]
					Atezolizumab	48%	6.8	14.7	
	IMpower130(III)	2018	Metastatic	1st line	Atezolizumab + chemotherapy	49.2%	7.0	18.6	[30]
					Chemotherapy	31.9%	5.5	13.9	
Non-small cell lung cancer	CheckMate-017 (III)	2015	Advanced	≥ 2nd line	Nivolumab	20%^x	3.5^x	9.2^x [31]	
----------------------------	---------------------	------	----------	------------	-----------	----------------	----------------	-------------------	
IMpower 131 (III)	2017	1st line	Atezolizumab + chemotherapy^y	NR	NR	NR	14.6		
KEYNOTE-407(III)	2018	Advanced	Pembrolizumab + chemotherapy^h	57.6%^x	6.4^x	15.9^x [33]			
Non-small cell lung cancer	KEYNOTE-010 (I/III)	2016	Advanced	≥ 1st line	Pembrolizumab 2 mg/kg	30.2%^j	5.0ⁱ	10.4^j [34]	
					Pembrolizumab 10 mg/kg	19%^x	5.2^x	12.7^x	
					Docetaxel	8%	4.1	8.5	
OAK (III)	2016	Advanced	≥ 2nd line	Atezolizumab	14%	2.8	13.8^x [35]		
CheckMate-026 (III)	2017	Advanced	≥ 1st line	Pembrolizumab	26%^y	4.2^y	14.4^y [36]		
Small cell lung cancer	CheckMate-032 (I/II)	2018	Limited or extensive stage	Pembrolizumab	60.2%^x	5.2^x	12.3^x [38]		
IMpower133 (III)	2018	Extensive stage	Pembrolizumab + Chemotherapy^y	64.4%	4.3	10.3			
Urothelial carcinoma	KEYNOTE-045 (III)	2017	Advanced	≥ 2nd line	Pembrolizumab	21.1%^x	2.1	10.3^x [39]	
IMvigor211 (III)	2018	Advanced	≥ 2nd line	Atezolizumab	23%^y	2.4^y	11.1^y [40]		
CheckMate-275 (II)	2017	Advanced	≥ 2nd line	Nivolumab	19.6%	2.0	8.74 [41]		
NCT01693562 (I/II)	2017	Advanced	Pembrolizumab	26.7%	1.5	18.2 [42]			
JAVELIN Solid Tumor (I)	2017	Advanced	≥ 2nd line	Durvalumab	17%	1.6	6.5 [43]		
IMvigor210 (II)	2017	Advanced^z	Atezolizumab	23%	2.7	15.9 [44]			
KEYNOTE-052 (II)	2017	Advanced^z	Pembrolizumab	28.9%	2	11.5 [45,46]			
Head and neck squamous cell carcinoma	CheckMate-141 (III)	2016	Advanced	≥ 2nd line	Nivolumab	13.3%^x	2.0^x	7.5^x [47]	
KEYNOTE-040 (III)	2018	Advanced	Pembrolizumab	14.6%	2.1	8.4^x [48]			
KEYNOTE-048 (III)	2018	Advanced	Pembrolizumab	10.1%	2.3	6.9			

(continued on next page)
Cancer type	Trial (Phase)	Published date	Stage	Line	Arms	RR (%)	mPFS (months)	mOS (months)	Ref.
Gastric cancer/Gastroesophageal	ATTRACTION-2 (III)	2017	Advanced	3rd line	Nivolumab	11%	1.61^a	5.26⁺	[50]
					Placebo	0%	1.45	4.14	
Hepatocellular carcinoma	KEYNOTE-059 (II)	2018	Advanced	3rd line	Pembrolizumab	11.6%	2.0	5.6	[51]
	CheckMate-040 (I/II)	2017	Advanced	1st line	Nivolumab	20%^c	4	74%⁺	
	KEYNOTE-224 (II)	2018	Advanced	2nd line	Pembrolizumab	17%	28%ⁱ	54%⁺	[52]
	NCT0271531 (IIb)	2018	Advanced	1st line	Atezolizumab + bevacizum	34%	14.9	NR	[53]
Colorectal cancer-dMMR or MSI-H	CheckMate-142 (II)	2017	Advanced	2nd line	Nivolumab	32%	14.3	73%⁺	[54]
Cervical cancer	KEYNOTE-158 (II)	2018	Advanced	1st line	Pembrolizumab + Ipilimumab	55%	71%^a	85%⁺	[55]
Tissue agnostic-dMMR or MSI-H	KEYNOTE-016 (II)	2018	Metastatic	2nd line	Pembrolizumab	54%	53%^c	64%⁺	[56]
	KEYNOTE-016, -164, -012, -028, and -158	2018	Metastatic	2nd line	Pembrolizumab	39.6%	ND	ND	[57]
Breast cancer	IMpassion-130 (III)	2018	Metastatic	1st line	Atezolizumab + Nab-paclitaxel	56%^a	7.2⁺	21.3	[58]
					Nab-paclitaxel	46%	5.5	17.6	

Abbreviations: RR: Response Rate; mPFS: median Progression-Free Survival; mOS: median Overall Survival; Ref: Reference; ND: not documented; NR: not reported; DTIC: Dacarbazine.

^a Chemotherapy: DTIC or carboplatin/paclitaxel.
^b Progression-free survival rate at 6 months.
^c In intermediate- and poor-risk patients.
^d Chemotherapy: pemetrexed + platinum.
^e Chemotherapy: paclitaxel + carboplatin.
^f Chemotherapy: carboplatin + nab-paclitaxel.
^g Chemotherapy: carboplatin + paclitaxel.
^h Chemotherapy: paclitaxel or nab-Paclitaxel + carboplatin.
ⁱ Among population with a tumor proportion score of ≥50%.
^j Among population with a PD-L1 expression level of ≥5%.
^k Chemotherapy: carboplatin + etoposide.
^l Chemotherapy: paclitaxel or docetaxel or vinflunine.
^m In the IC2/3 population.
ⁿ Cisplatin ineligible.
^o Chemotherapy: Methotrexate, docetaxel, cetuximab.
^p Systemic therapy: platinum + 5-FU + cetuximab.
^q Combined positive score (CPS) ≥20 population.
^r In the dose-expansion phase.
^s 9-month OS rate.
^t 12-month PFS rate.
^u 6-month OS rate.
^v 12-month OS rate.
^w 24-month PFS and OS rate.
^x Statistically significant compared to control arm.
differentiation 28 (CD28)/CTLA-4 [5,6]. When CTLA-4 bound to the ‘B7 family’ on the surface of the antigen presenting cell, the T cell was suppressed. This mechanism to regulate the immune response to maintaining self-tolerance can also be misused by cancer cells. Therefore, Professor Allison and his team developed CTLA-4 blockade for cancer treatment and got success in melanoma after 13 years of research [7]. Professors Honjo and Allison both won the first Tang Award for Biotechnology and Medicine in 2014 [8]. The two Tang Award winners rely on their enthusiasm for scientific research, their persistence in the research effort, the search for a variety of possible opportunities, and the realization of their theories and achievements. The spirit of perseverance is truly admirable.

Professor Allison’s research results are mainly used in melanoma, and with anti-PD-1 drugs for the treatment of lung cancer and kidney cancer. Professor Honjo’s research results have now been widely applied in almost all cancers, including head and neck cancer, lung cancer, liver cancer, stomach cancer, urinary tract cancer, lymphoma, and skin cancer. Clinical trials are also actively undergoing in other cancer types. The combination of two immuno-drugs is more effective, but the side effects are relatively greater. Immuno-therapy provides optimistic long-term efficacy compared to traditional chemotherapy or targeted therapy in some patient groups. For example, melanoma is the most widely studied and best-performing disease, with the CTLA-4 immunologic drug (ipilimumab, marketed as Yervoy) successfully allowing 21% of patients to survive for more than 10 years [9]. Because of the recent development of PD-1 drugs, current official reports have only tracked results for about five years. As of now, though, PD-1 drugs can help 30% of patients with terminal disease survive for more than five years [10]. The combination of the two drugs has succeeded in allowing more than 50% of patients to survive for more than three years [11].

After the astonishing improvement reported in melanoma, very many clinical trials have begun in different cancer types, especially in solid cancers with poor prognosis. We list the pivotal trials in Table 1, and these data shape the landscape of cancer treatment in the early 21st century. Besides malignant melanoma [13,15–18], there have been major advances in renal cell carcinoma [24], lung cancer [26–30,32,33,38], urothelial carcinoma [44–46], head and neck squamous cell carcinoma [49], and triple negative breast cancer [59]; in these, immune checkpoint inhibitors have become part of the first-line standard treatment. In other cancer types such as hepatocellular carcinoma [52–54], gastric/gastroesophageal junctional cancer [51], colorectal cancer with microsatellite instability—high (MSI-H) or mismatch repair deficient (dMMR) feature [55,56], and cervical cancer [57], immune checkpoint inhibitors play important an role beyond that of first-line therapy. In some rare cancer types with limited effective regimens, such as cutaneous squamous cell carcinoma [21] and Merkel cell carcinoma [22], immune checkpoint inhibitors can yield an amazing response rate and median overall survival. Furthermore, the US Food and Drug Administration (FDA) granted accelerated approval to anti-PD-1 (pembrolizumab, marketed as Keytruda) for first tissue-agnostic indication in adult and pediatric patients with advanced MSI-H or dMMR solid tumors beyond first-line [58,59]. Furthermore, immunotherapy is moving beyond advanced disease, with studies in consolidation.
therapy in lung cancer [65] and adjuvant therapy in melanoma [61–64] Table 2. We look forward to more positive results in early stage disease that will benefit millions of cancer patients. In conclusion, immune checkpoint inhibitors are writing a whole new chapter in the history of fighting cancer, changing treatment guidelines in many different types of cancer, providing long-term survival, and creating the possibility of a cure for cancer patients who previously had little hope.

Although more and more immune drugs are used in various cancer research studies and clinical trials, these drugs also have side effects, including immune-related adverse reactions which differ completely from those of chemotherapy. We should be alert to the early signs of the complications of immunotherapy and treat patients accordingly so to continue to improve the odds of survival.

We should all follow the enthusiastic, dedicated, and persevering spirit of these two pioneers. The inventions of these Nobel Prize winners truly benefit our patients.

Congratulations again to Professor James Allison and Professor Tasuku Honjo for winning the Nobel Prize in Physiology or Medicine.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgements

The authors declare that they have no conflicts of interest and acknowledge the financial support of grants from Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan (CORPG3F0711, CORPG0721, CORPG0731, CORPG0741). The authors thank Professor Alex Yuan-Chi Chang for providing helpful comments and constructive criticisms of the work.

REFERENCES

[1] Nishimura H, Minato N, Nakano T, Honjo T. Immunological studies on PD-1 deficient mice: implication of PD-1 as a negative regulator for B cell responses. Int Immunol 1998;10:1563–72.
[2] Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999;11:141–51.
[3] Ansari MJ, Salama AD, Chitnis T, Smith RN, Yagita H, Akiba H, et al. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med 2003;198:63–9.
[4] Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012;366:2443–54.
[5] Linsley PS, Ledbetter JA. The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol 1993;11:191–212.
[6] Linsley PS, Clark EA, Ledbetter JA. T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc Natl Acad Sci U S A 1990;87:5031–5.
[7] Weber JS, O’Day S, Urba W, Powderly J, Nichol G, Yellin M, et al. Phase I/II study of ipilimumab for patients with metastatic melanoma. J Clin Oncol 2008;26:5950–6.
[8] Chen YS, Shen CY. Immune checkpoint blockade therapy: the 2014 Tang prize in biopharmaceutical science. Biomed J 2015;38:5–8.
[9] Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 2015;33:1889–94.
[10] Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Keefford R, et al. Five-year survival outcomes for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001. Ann Oncol 2019;30:582–8.
[11] Hodi FS, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Cowey CL, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol 2018;19:1480–92.
[12] Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010;363:711–23.
[13] Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 2011;364:2517–26.
[14] Robert C, Schachtner J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 2015;372:2521–32.
[15] Ascierto PA, Long GV, Robert C, Brady B, Dutriaux C, Di Giacomo AM, et al. Survival outcomes in patients with previously untreated BRAF wild-type advanced melanoma treated with nivolumab therapy. JAMA Oncol 2019;5:187–94.
[16] Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 2015;372:320–30.
[17] Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015;373:23–34.
[18] Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 2017;377:1345–56.
[19] Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmmer R, Neyns B, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 2015;16:375–84.
[20] Larkin J, Minor D, D’Angelo S, Neyns B, Smylie M, Miller Jr WH, et al. Overall survival in patients with advanced melanoma who received nivolumab versus investigator’s choice chemotherapy in CheckMate 037: a randomized, controlled, open-label phase III trial. J Clin Oncol 2018;36:383–90.
[21] Migden MR, Rischin D, Schmutz DS, Guminiski A, Hauschild A, Lewis KD, et al. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N Engl J Med 2018;379:341–51.
[22] Nghiem PT, Bhatia S, Lipson EJ, Kudchadkar RR, Miller NJ, Annamalai L, et al. PD-1 blockade with pembrolizumab in advanced merkel-cell carcinoma. N Engl J Med 2016;374:2542–52.
[23] Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 2015;373:1803–13.
Motzer RJ, Tannir NM, McDermott DF, Arén Frontera O, Melchar B, Choueiri TK, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med 2018;378:1277–90.

Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 2015;373:1637–39.

Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fülöp A, et al. Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non–small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J Clin Oncol 2019;37:537–46.

Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016;375:1823–33.

Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 2018;378:2078–87.

Socinski MA, Kotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 2018;378:2288–301.

Cappuzzo F, Mcleod M, Hussein M, Morabito A, Rittmeyer A, Conter HJ, et al. ImPower130: Progression-free survival (PFS) and safety analysis from a randomised phase 3 study of carboplatin + nab-paclitaxel (CnP) with or without atezolizumab (atezo) as first-line (1L) therapy in advanced non-squamous NSCLC. Ann Oncol 2018;29(Suppl. 8):mdy424-065.

Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 2017;375:123–35.

Socinski MA, Rittmeyer A, Shapovalov D, Orlandi F, Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gümüş M, et al. Pembrolizumab plus chemotherapy in patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 trial. Lancet Oncol 2018;19:51–64.

Bellmunt J, et al. Nivolumab in patients with previously treated advanced gastric or gastroesophageal junction cancer: phase 2 Clinical KEYNOTE-059 Trial. JAMA Oncol 2018;4:e180013.

Cohen EEW, Soulières D, Le Tourneau C, Dinis J, Licitra L, Ahn MJ, et al. Pembrolizumab versus cetuximab, docetaxel, or pembrolizumab plus cetuximab for recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC). Ann Oncol 2018;29(Suppl. 8):mdy424.045.
carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017;389:2492–502.

[53] Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol 2018;19:940–52.

[54] Pishvaian MJ, Lee MS, Byoo BY, Stein S, Lee KH, Verret W, et al. Updated safety and clinical activity results from a Phase Ib study of atezolizumab + bevacizumab in hepatocellular carcinoma (HCC). Ann Oncol 2018;29(Suppl. 8):myy424-028.

[55] Sidaway P. Colorectal cancer: nivolumab effective against MSI tumours. Nat Rev Clin Oncol 2017;14:586.

[56] Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol 2018;36(Suppl. 8):773–79.

[57] Chung HC, Schellens JHM, Delord JP, Perets R, Italiano A, Shapira-Frommer R, et al. Pembrolizumab treatment of advanced cervical cancer: updated results from the phase 2 KEYNOTE-158 study. J Clin Oncol 2018;36(Suppl. 15):5522.

[58] Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LB, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017;357:409–13.

[59] U.S. Food and Drug Administration. FDA grants accelerated approval to pembrolizumab for first tissue/site agnostic indication. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pembrolizumab-first-tissuesite-agnostic-indication/. [Accessed 23 May 2017].

[60] Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 2018;379:2108–21.

[61] Eggermont AM, Chiarion-Sileni V, Grob JJ, Dummer R, Wolchok JD, Schmidt H, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol 2015;16:522–30.

[62] Eggermont AM, Chiarion-Sileni V, Grob JJ, Dummer R, Wolchok JD, Schmidt H, et al. Prolonged survival in stage III melanoma with ipilimumab adjuvant Therapy. N Engl J Med 2016;375:1845–55.

[63] Weber J, Mandalà M, Del Vecchio M, Gogas HJ, Arance AM, Cowey CL, et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med 2017;377:1824–35.

[64] Weber J, Mandalà M, Del Vecchio M, Gogas H, Arance AM, Cowey CL, et al. Adjuvant therapy with nivolumab (NIVO) versus ipilimumab (IPI) after complete resection of stage III/IV melanoma: updated results from a phase III trial (CheckMate 238). J Clin Oncol 2018;36(Suppl. 15):9502.

[65] Antonia SJ, Villegas A, Daniel D, Vicente D1, Murakami S1, Hui R, et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med 2017;377:1919–29.