A transcriptomic insight into the impacts of mast cells in lung, breast,
and colon cancers

Eun-A Ko†, Kenton M. Sanders‡, and Tong Zhou

Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA

ABSTRACT
To date, the exact impact of mast cells in tumor microenvironment is still controversial because of inconsistency in observations regarding the relationship between mast cell infiltrates and cancer development and prognosis. The discrepancies in previous studies have motivated us to examine the roles of mast cells in cancer pathology from different perspectives. Here, we investigated the impact of mast cells on transcriptomic profiles in the tissue microenvironment. Mice carrying the W-sh mutation in c-kit (Kitw−/−) are deficient in mast cell production and were used to assess the influence of mast cells on gene expression. By examining the transcriptomic profile among wild-type mice, Kitw−/− mice, and Kitw−/− mice with mast cell engraftment, we identified a list of “mast cell–dependent genes,” which are enriched for cancer-related pathways. Utilizing whole-genome gene expression data from both mouse models and human cancer patients, we demonstrated that the expression profile of the mast cell–dependent genes differs between tumor and normal tissues from lung, breast, and colon, respectively. Mast cell infiltration is potentially increased in tumors compared with normal tissues, suggesting that mast cells might participate in tumor development. Accordingly, a prognostic molecular signature was developed based on the mast cell–dependent genes, which predicted recurrence-free survival for human patients with lung, breast, and colon cancers, respectively. Our study provides a novel transcriptomic insight into the impact of mast cells in the tumor microenvironment, though further experimental investigation is needed to validate the exact role of individual mast cell–dependent genes in different cancers.

Introduction
Mast cells are a type of white blood cell derived from bone-marrow haematopoietic progenitors. Immature mast cells circulate in blood until they migrate from vascular to peripheral tissues, where they reside close to blood vessels, nerves, and mucosal surfaces and mature with the help of stem-cell factor and other cytokines secreted by endothelial cells and fibroblasts. Mast cells are usually thought to be deeply involved in inflammatory processes. Once activated, mast cells can rapidly react to xenobiotics by either secreting or releasing mediators from their characteristic granules into the local microenvironment. Disorders of mast cell–activation lead to several immune diseases, such as asthma, eczema, itch, and allergic rhinitis.

Mast cells may be important participants in regulating the tumor microenvironment. Firstly, mast cells are implicated in tumor angiogenesis. Angiogenesis is critical to tumor development. Enhanced vascular permeability and abnormal blood vessel development are often observed in tumors. Mast cells can facilitate tumor angiogenesis by secreting heparin-like molecules, angiogenesis factors (e.g., IL-8), and growth factors (e.g., VEGF). Decreased tumor angiogenesis has been observed in mast cell–deficient mice. Secondly, mast cells help tumor invasiveness. Several proteases released by mast cells, such as MMP-9, and the serine proteases chymase and tryptase, degrade components of the extracellular matrix and thus facilitate tumor invasiveness. Thirdly, mast cells may directly or indirectly interact with immunosuppressive and inflammatory cells in the tumor microenvironment, such as myeloid-derived suppressor cells, tumor-associated macrophages, and regulatory T-cells, to affect immunologic tolerance.

Even though there is mounting evidence to indicate mast cell involvement in tumorigenesis, the exact impact of mast cells in the tumor microenvironment is still controversial. Particularly, there are several inconsistent observations regarding the relationship between mast cell infiltrates and human cancer development and prognosis. Here, we briefly review the discrepancies in previous studies regarding lung, breast, and colon cancers. For lung cancer, Imada et al. reported that the number of mast cells was positively correlated with angiogenesis and poor outcome in stage I lung adenocarcinoma, which...
was largely mirrored by the study conducted by Takanami et al.,16 However, Tomita et al. showed in a lung cancer study that the number of mast cells was significantly correlated with a favorable clinical outcome.17 The latter finding is consistent with the study by Welsh et al.,18 in which the authors claimed that mast cell–mediated invasion of tumor islets confers a survival advantage in lung cancer.18 For breast cancer, several studies have linked mast cells to a poor clinical outcome.19,20 However, a tissue microarray study containing 4,444 cases pointed out that stromal mast cell infiltration in invasive breast cancer is an independent marker of favorable prognosis,21 which is consistent with the observation of a significant increase in the number of mast cells in tumors from high hormone–receptive cancer cases compared with minimum hormone–receptive cancers.22 Similar contradictory findings also exist in colon cancer. Mast cell number was positively correlated with microvessel density and associated with a poor prognosis in colon cancer.23-25 These findings are apparently inconsistent with an earlier observation by Nielsen et al.,26 in which 584 colon cancer patients a greater number of tryptase+ mast cells in a tumor specimen correlated significantly with better clinical outcomes.26

The discrepancies in these previous studies motivated us to look into the relationship between mast cells and cancer pathology from different perspectives. In this study, we investigated the impact of mast cells on transcriptomic profiles in the tissue microenvironment. Mast cell–deficient c-kit mutant rodents, C57BL/6-KittW–sh/W–sh (KittW–sh) mice,27 were used to assess the influence of mast cells on gene expression of tissue microenvironment. By examining the transcriptomic profile among wild-type (WT) mice, KittW–sh, and KittW–sh mice engrafted with mast cells derived from WT mice (KitW–sh+MC), we identified a list of “mast cell–dependent genes.” Gene ontology analysis indicates that the mast cell–dependent genes are enriched in cancer-related pathways. Utilizing whole-genome gene expression data from mouse models and human cancer patients, we demonstrated that the expression profile of the mast cell–dependent genes differentiates between tumor and normal tissues from lung, breast, and colon, respectively. Accordingly, a prognostic molecular signature was developed based on the mast cell–dependent genes. This signature successfully predicted recurrence–free survival for human patients with lung, breast, and colon cancers in a manner independent of standard clinical and pathological prognostic factors.

Results

Mast cell–dependent genes in mice

To assess the influence of mast cell on gene expression, we compared the gene expression pattern in 3 mouse groups: WT, KittW–sh, and KittW–sh+MC mice. We investigated a transcriptomic data set obtained from the Gene Expression Omnibus (GEO)28 database (GEO accession: GSE27066),29 which contains whole-genome gene expression data of WT, KittW–sh, and KittW–sh+MC mouse lung tissues. Gene expression fold changes were computed between KittW–sh and WT mice (expression in KittW–sh mice divided by that in WT mice) and between KittW–sh+MC and KittW–sh mice (expression in KittW–sh+MC mice divided by that in KittW–sh mice), respectively. A significant negative correlation (Spearman’s rank correlation test: ρ = –0.413 and P < 10–10) was observed between the 2 sets of fold changes (Fig. 1A), which suggests that the deregulation caused by mast cell deficiency could be remarkably recovered by mast cell engraftment. At the specified significance level of false discovery rate <5% and fold change >1.5 (see Methods for details), the expression of 862 genes was downregulated in KittW–sh mice compared with that in WT mice but upregulated in KittW–sh+MC mice compared with that in KittW–sh mice, whereas 448 genes were upregulated in KittW–sh+MC mice compared with that in WT mice but downregulated in KittW–sh+MC mice compared with that in KittW–sh mice (Fig. 1A). Because the expression pattern of all these deregulated genes showed a largely mast cell–dependent manner, we deemed these genes “mast cell–dependent genes.” The genes that were downregulated in mast cell–deficient mice but recovered by mast cell engraftment were deemed mast cell–positive (MC+) genes (Fig. 1B and Supplementary Table S1) whereas the genes that were upregulated in mast cell–deficient mice but restored after mast cell engraftment were considered as mast cell–negative (MC–) genes (Fig. 1B and Supplementary Table S2). We next searched the enriched Kyoto Encyclopedia of Genes and Genomes (KEGG)30 physiologic pathways among the mast cell–dependent genes. Intriguingly, we found that the top 2 KEGG terms associated with the mast cell–dependent genes were “Pathways in cancer” and “Prostate cancer” (Fig. 1C), which support a significant role for mast cells in cancer pathology. To more precisely understand the biologic processes associated with the mast cell–dependent genes, we further performed pathway/ontology analysis for the MC+ and MC– genes separately from 3 tumor progression–related aspects: i) immunosuppression,31-33 ii) apoptosis,34 and iii) angiogenesis,35,36 in which mast cells were thought to be implicated. Firstly, we found that the KEGG terms, “T cell receptor signaling pathway” and “Natural killer cell mediated cytotoxicity,” were significantly enriched by the MC– genes but not the MC+ genes (Supplementary Fig. S1A), which suggests that increased mast cell infiltration potentially augments the suppression of T cells and natural killer cells in tumor microenvironment.31,32 Secondly, we found that the MC+ genes, but not the MC– genes, were significantly associated with the Gene Ontology (GO)37 term “Positive regulation of apoptotic process,” while the GO term “Negative regulation of apoptotic process” was significantly enriched by the MC+ genes instead of the MC– genes (Supplementary Fig. S1B), which suggests a potential anti-apoptotic role of mast cells in tumor microenvironment.34 Thirdly, we found that both the MC+ and MC– genes were significantly associated with the GO term “Angiogenesis” with a weaker significance level for the MC– genes, while the GO term “Blood vessel remodeling” was only significantly enriched by the MC+ genes but not the MC– genes (Supplementary Fig. S1C), which suggests a pro-angiogenic role of mast cells in tumor tissue.35 These observations further suggest the intrinsic feature of the mast cell–dependent genes regarding immunosuppression, apoptosis, and angiogenesis in tumor microenvironment.

To determine to what extent the mast cell–dependent genes are involved in cancer pathology, we investigated the transcriptomic data in mouse lung (GEO accession: GSE31013),38 breast
The blue dots represent the genes upregulated in mast cell KitW-sh between MC and normal tissues. (F) Comparison of MC cancer-index between mouse tumor and normal tissues. The expression pattern of both the MC genes between mouse tumor and normal tissues. The expression pattern of both the MC genes was significantly higher than that of the MC- genes. (A) Correlation in log2-transformed gene expression fold change (log2FC) between KitW-sh and WT mice (X-axis) and between KitW-sh MC and KitW-wt mice (Y-axis). Each dot stands for a gene. The log2FC between KitW-sh and WT mice is negatively correlated with the log2FC between KitW-sh MC and KitW-wt mice. Only the genes differentially expressed between KitW-sh and WT mice and between KitW-sh MC and KitW-wt mice in opposite direction were considered as mast cell–dependent genes. The pink dots denote the genes downregulated in mast cell–deficient mice but recovered after mast cell engraftment (MC+ genes). The blue dots represent the genes upregulated in mast cell–deficient mice but recovered after mast cell engraftment (MC– genes). (B) Gene expression heatmap of the MC+ and MC– genes. Each row in the heatmap denotes one mouse while each column denotes one gene. Red represents relatively increased gene expression whereas blue represents downregulation. (C) The top 10 KEGG pathways associated with the mast cell–dependent mouse genes. (D) Gene expression fold change of the MC+ and MC– genes between mouse tumor and normal tissues. The expression pattern of both the MC+ and MC– genes in mouse lung, breast, and colon tumors was compared with normal lung, breast, and colon tissues, respectively. Y-axis denotes the log2FC between tumor and normal tissues. (E) Comparison of MC-index between mouse tumor and normal tissues. (F) Comparison of MC cancer-index between mouse tumor and normal tissues.

Figure 1. The mast cell–dependent mouse genes. (A) Correlation in log2-transformed gene expression fold change (log2FC) between KitW-sh and WT mice (X-axis) and between KitW-sh MC and KitW-wt mice (Y-axis). Each dot stands for a gene. The log2FC between KitW-sh and WT mice is negatively correlated with the log2FC between KitW-sh MC and KitW-wt mice. Only the genes differentially expressed between KitW-sh and WT mice and between KitW-sh MC and KitW-wt mice in opposite direction were considered as mast cell–dependent genes. The pink dots denote the genes downregulated in mast cell–deficient mice but recovered after mast cell engraftment (MC+ genes). The blue dots represent the genes upregulated in mast cell–deficient mice but recovered after mast cell engraftment (MC– genes). (B) Gene expression heatmap of the MC+ and MC– genes. Each row in the heatmap denotes one mouse while each column denotes one gene. Red represents relatively increased gene expression whereas blue represents downregulation. (C) The top 10 KEGG pathways associated with the mast cell–dependent genes. (D) Gene expression fold change of the MC+ and MC– genes between mouse tumor and normal tissues. The expression pattern of both the MC+ and MC– genes in mouse lung, breast, and colon tumors was compared with normal lung, breast, and colon tissues, respectively. Y-axis denotes the log2FC between tumor and normal tissues. (E) Comparison of MC-index between mouse tumor and normal tissues. (F) Comparison of MC cancer-index between mouse tumor and normal tissues.

(GEO accession: GSE21444) \(^{39}\) and colon (GEO accession: GSE50794) \(^{40}\) tumors, respectively. Gene expression fold change in mouse lung, breast, and colon tumors were calculated over normal lung, breast, and colon tissues from control mice, respectively. Basically, we found that the log2-transformed gene expression fold change (log2FC) of the MC+ genes was significantly higher than that of the MC– genes (t-test: \(P < 10^{-10}\) for lung and breast; \(P = 1.2 \times 10^{-7}\) for colon) (Fig. 1D). One-sample t-test indicates that the log2FC of the MC+ genes is statistically larger than zero (\(P < 10^{-10}\) in mouse lung, breast, and colon tumors, respectively (Fig. 1D). On the contrary, the log2FC of the MC– genes is statistically less than zero in lung and breast tumors, but not in colon tumor (one-sample t-test: \(P < 10^{-10}\) for lung and breast; \(P = 2.2 \times 10^{-4}\) for colon) (Fig. 1D). Taken together, these results suggest that the MC+ genes, as compared with the MC– genes, are more likely to be overexpressed in mouse tumors, whereas the MC– genes, as compared with MC+ genes, show a higher chance to be downregulated in tumors.

We hypothesized that the mast cell–dependent tissue microenvironment could be delineated from expression deregulation profiles of the mast cell–dependent genes. Here, we developed a novel methodology to compute a mast cell index (MC-index) for individual tissue samples, based on the rank-weighted gene expression information of the MC+ and MC– genes (see Materials and Methods for details). We speculated that the MC-index could be used as a proxy of the impact of mast cells on shaping tissue microenvironment. Fig. 1E provides a comparison of MC-index between tumor and normal tissues from mouse lung, breast, and colon, respectively. The MC-index of tumor tissues was significantly higher than that of normal controls (t-test: \(P = 2.1 \times 10^{-4}\) for lung; \(P = 1.2 \times 10^{-3}\) for breast; \(P = 2.4 \times 10^{-3}\) for colon), which suggests an active role for mast cells in tumor development. To more precisely assess the impact of mast cells on cancer pathology and tumor microenvironment, we made some modifications to the algorithm for computing MC-index: at the significance level of \(P < 0.05\), we only consider the MC+ genes commonly upregulated and the MC– genes commonly downregulated in lung, breast, and colon tumors were considered. We deemed these genes “mast cell–dependent cancer genes.” A mast-cell cancer index (MC cancer-index) was calculated for...
individual tissue samples using the rank-weighted gene expression data of the mast cell-dependent cancer genes (see Materials and Methods for details). Fig. 1F indicates that the MC cancer-index of tumor tissues was significantly higher than that of normal controls (t-test: \(P = 1.6 \times 10^{-6} \) for lung; \(P = 5.5 \times 10^{-7} \) for breast; \(P < 10^{-10} \) for colon). In comparison with MC-index, the difference in MC cancer-index between tumor and normal tissues was even larger (Fig. 1F).

MC- and MC cancer-indices of human cancer patients

To assess the depth of involvement of mast cells in human cancers, we mapped the mast cell-dependent mouse genes to their distinct human orthologs. Next, we investigated the expression pattern of the mast cell-dependent human genes in 6 independent cancer cohorts: 2 lung cancer cohorts from Spain (Lung-ESP, GEO accession: GSE195802), and Taiwan (Lung-TWN, GEO accession: GSE19804), respectively; 2 breast cancer cohorts from the United States (Breast-USA1, GEO accession: GSE70947) and Malaysia (Breast-MYS, GEO accession: GSE15852), respectively; and 2 colon cancer cohorts from Japan (Colon-JPN, GEO accession: GSE177259) and Singapore (Colon-SGP, GEO accession: GSE195802), respectively. We chose these data sets based on the availability of paired transcriptomic data from both tumor and normal tissues. In total, paired tumor and normal tissues from 44 lung cancer patients from the Lung-ESP cohort, 60 lung cancer patients from the Lung-TWN cohort, 148 breast cancer patients from the Breast-USA1 cohort, 43 breast cancer patients from the Breast-MYS cohort, 17 colon cancer patients from the Colon-JPN cohort, and 24 colon cancer patients from the Colon-SGP cohort were investigated. Fig. 2A indicates that the MC-index of the tumor tissues was significantly higher than that of the matched normal tissues in all the 6 human cancer cohorts (paired t-test: \(P = 4.3 \times 10^{-2} \) for Lung-ESP; \(P = 1.1 \times 10^{-2} \) for Lung-TWN; \(P < 10^{-10} \) for Breast-USA1; \(P = 1.5 \times 10^{-8} \) for Breast-MYS; \(P = 7.5 \times 10^{-4} \) for Colon-JPN; \(P = 4.3 \times 10^{-2} \) for Colon-SGP). An even more significant difference between tumor and normal tissues was observed for the MC cancer-index in all these cohorts (paired t-test: \(P < 10^{-10} \) for Lung-ESP; \(P < 10^{-10} \) for Lung-TWN; \(P < 10^{-10} \) for Breast-USA1; \(P = 5.6 \times 10^{-8} \) for Breast-MYS; \(P = 1.3 \times 10^{-7} \) for Colon-JPN; \(P < 10^{-10} \) for Colon-SGP) (Fig. 2B). All these results were highly consistent with our observations in mouse tumors, which suggests the similar significant impact of mast cells on human cancer development.

Because the MC cancer-index was computed based on the mast cell dependent genes commonly deregulated in mouse lung, breast, and colon tumors, we further tested whether this computational model is applicable to other cancer types. Three human cancer cohorts were considered here: one liver cancer cohort from the United States (GEO accession: GSE14520), one prostate cancer cohort from the United States (GEO accession: GSE32448), and one thyroid cancer cohort from Belgium (GEO accession: GSE33630). In total, paired tumor and normal tissues from 214 liver cancer patients, 40 prostate cancer patients, and 44 thyroid cancer patients were investigated. Supplementary Fig. S2 indicates that the MC cancer-index of the tumor tissues was significantly higher than that of the matched normal tissues in liver, prostate, and thyroid cancers (paired t-test: \(P < 10^{-10} \) for liver; \(P = 3.5 \times 10^{-8} \) for prostate; \(P < 10^{-10} \) for thyroid), which suggests the predictive power of MC cancer-index in these cancer types, resonating with our observations in lung, breast, and colon cancers.

Prognostic power of mast cell–dependent cancer genes

We hypothesized that the mast cell–dependent cancer genes would be predictive of cancer outcome and consequently designated these genes as the Mast Cell–Dependent Cancer...
(MCDC) signature (Table 1). To test the predictive power of the MCDC signature, we constructed a scoring system to assign each patient a risk score, representing a linear combination of the MCDC gene expression values weighted by the coefficients obtained from the training data sets (GEO accession: GSE8894, GSE21653, and GSE17536 for lung, 49 breast, 50 and colon 51 cancers, respectively) (see Materials and Methods for details). We speculated that a higher MCDC-based risk score implies a poorer clinical outcome. MCDC-positive (MCDC+) patients were defined as those having risk scores larger than zero whereas the other patients were assigned as MCDC-negative (MCDC−).

We tested the prognostic power of the MCDC-based risk score in independent validation cohorts. For each cancer type, 2 validation data sets were collected: 2 lung cancer cohorts from Japan (Lung-JPN; GEO accession: GSE31210) 52 and Sweden (Lung-SWE; GEO accession: GSE37745), 53 respectively; 2 breast cancer cohorts from Singapore (Breast-SGP; GEO accession: GSE4922) 54 and the United States (Breast-USA2; GEO accession: GSE2034), 55 respectively; and 2 colon cancer cohorts from France (Colon-FRA; GEO accession: GSE39582) 56 and Netherlands (Colon-NLD; GEO accession: GSE33113), 57 respectively. These data sets were chosen based on the availability of recurrence-free survival information. Kaplan-Meier survival curves demonstrated a significantly reduced recurrence-free survival for the MCDC+ patients compared with the MCDC− ones in all the validation cohorts (log-rank test: P = 9.8 × 10−4 for Lung-JPN; P = 3.3 × 10−2 for Lung-SWE; P = 1.4 × 10−4 for Breast-SGP; P = 5.5 × 10−3 for Breast-USA2; P = 4.0 × 10−2 for Colon-FRA; P = 4.4 × 10−3 for Colon-NLD) (Fig. 3). Univariate Cox proportional hazards regression also confirmed the relationship between MCDC status and clinical outcome: the MCDC+ patients have a 2.35-, 1.83-, 2.23-, 1.70-, 1.36-, and 4.40-fold increased risk of recurrence in Lung-JPN, Lung-SWE, Breast-SGP, Breast-USA2, Colon-FRA, and Colon-NLD cohorts, respectively (Table 2). These findings collectively indicate that the MCDC signature is predictive of recurrence-free survival in lung, breast, and colon cancers.

Next, we investigated the performance of the MCDC signature in comparison with standard clinical and pathological factors associated with prognosis in human cancers. For the Lung-JPN cohort, patient age, gender, smoking history, stage, EGFR/KRAS/ALK gene mutation status, and MYC protein levels were considered. For the Lung-SWE cohort, we took age, gender, stage, and WHO performance status into account. For the Breast-SGP cohort, patient age, gender, grade, tumor size, lymph node status, estrogen receptor (ER) status, and TP53 mutation status were considered. For the Breast-USA2 cohort, ER status were included as covariate. For the Colon-FRA cohort, we considered factors including age, gender, stage, and B-Raf, K-Ras, and TP53 mutation status. For the Colon-NLD cohort, patient age and gender were considered as covariate. Multivariate Cox proportional hazards regression indicates that the MCDC status remained a significant covariate in relation to the clinical and pathological factors in each validation cohorts (P = 3.8 × 10−2 for Lung-JPN; P = 3.8 × 10−2 for Lung-SWE; P = 2.4 × 10−2 for Breast-SGP; P = 4.0 × 10−3 for Breast-

Table 1. The MCDC gene signature.

Gene symbol	Gene title
ACPI	acid phosphatase 1, soluble
AKAP9	A kinase (PRKA) anchor protein (yotiao) 9
ARGLU1	arginine and glutamate rich 1
BCRS	breast carcinoma amplified sequence 2
BCR	breakpoint cluster region
BTRC	β-tubulin repeat containing E3 ubiquitin protein ligase
CAC3G	coiled-coil domain containing 59
CEP57	centrosomal protein 57kDa
CHD4	chromomodomian helicase DNA binding protein 4
CNNDT4	CCR4-NOT transcription complex, subunit 4
CPSF6	cleavage and polyadenylation specific factor 6, 68kDa
CXCL12	chemokine (C-X-C motif) ligand 12
DDX39A	DEAD (Asp-Glu-Ala-Asp) box polypeptide 39A
DDX6	DEAD (Asp-Glu-Ala-Asp) box helicase 6
DNAC2	DNA (Hsps40) homolog, subfamily C, member 2
EF3A	eukaryotic translation initiation factor 3, subunit A
EFS	eukaryotic translation initiation factor 5
E2F2	E2F4-like factor 2 (ets domain transcription factor)
EN2V	enhancer of yellow 2 homolog (Drosophila)
E2F2	fascilication and elongation protein zeta 2 (zygyn II)
FTY7D1	42-three domain containing 1
GAS2L3	growth arrest-specific 2 like 3
HDLBP	high density lipoprotein binding protein
HERPUD1	homocysteine-inducible, endoplasmic reticulum stress-inducible, ubiquitin-like domain member 1
hNRNP1	heterogeneous nuclear ribonucleoprotein U (scaffold attachment factor A)
HSPA8	heat shock 70kDa protein 8
ITBK	inhibitor of Bruton agammaglobulinemia tyrosine kinase
IFNGR1	interferon gamma receptor 1
LMS1	LIM and senescent cell antigen-like domains 1
LRFR1P1	leucine rich repeat (in FLII) interacting protein 1
LNT1	lymph node transcript 1
LUC7L3	LUC7-like 3 (S. cerevisiae)
MCM4	minichromosome maintenance complex component 4
MRPL13	mitochondrial ribosomal protein L13
NA14S	N(1)-acetyltransferase 15, NTA auxiliary subunit
NEMF	nuclear export mediator factor
NR1H3	nuclear receptor subfamily 1, group H, member 3
NUCKS1	nuclear casein kinase and cyclin-dependent kinase substrate 1
ORC2	origin recognition complex, subunit 2
PDAP1	PDGFA associated protein 1
PDLIMS	PDZ and LIM domain 5
PFDN1	prefoldin subunit 1
PGGT1B	protein geranylgeranyltransferase type I, β subunit
PGP2L1P	plasminogen
POZG	pogo transposable element with ZNF domain
PPAT	phosphoribosyl pyrophosphate amidotransferase
PPP1R12B	protein phosphatase 1, regulatory subunit 12B
PPTC7	protein phosphatase homolog (S. cerevisiae)
PRKG1	protein kinase, cGMP-dependent, type I
PRP40A	PRP40 pre-mRNA processing factor 40 homolog A (S. cerevisiae)
PSMC4	proteasome (prosome, macropain) 265 subunit, ATPase, 4
RBM26	RNA binding motif protein 26
RBM4	RNA binding motif protein 4
RBM5	RNA binding motif protein 5
RNFL169	ring finger protein 169
RNPC3	RNA-binding region (RNP1, RRM) containing 3
SDAO1	SDA1 domain containing 1
SERF1A	small EDRK-rich factor 1A (telomic)
SKP2	5-phosphate-associated protein 2, E3 ubiquitin protein ligase
SMARCA5	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 5
SMARCA1D1	SWI/SNF-related, matrix-associated actin-dependent regulator of chromatin, subfamily a, containing DEAD/Box 1
SNCG	synuclein, gamma (breast cancer-specific protein 1)

(Continued on next page)
USA2; $P = 2.6 \times 10^{-2}$ for Colon-FRA; $P = 1.4 \times 10^{-2}$ for Colon-NLD) (Table 3), which suggests that the MCDC signature is independent of standard clinical and pathological prognostic factors in lung, breast, and colon cancers.

A bioinformatical study by Venet et al. points out that most published gene signatures are not significantly better than random gene sets of identical size that are randomly picked up from human genome.58 To address this issue, we further conducted resampling test for the MCDC signature. We obtained 1,000 random gene signatures by randomly selecting 82 genes from human genome. For each random set of genes, multivariate Cox proportional hazards regression was conducted. The association between each random gene signature and survival was measured by the mean of Cox regression Z-score. We found that the mean of Z-score of the MCDC signature is significantly larger than that of the random gene signatures (Right-tailed: $P = 0.022$) (Supplementary Fig. S3), which suggests the empirically non-random association between the MCDC signature and survival.

Discussion

For decades, there has been particular interest and speculation as to the physiologic function of mast cells in tumor biology. We know mast cells potentially influence many aspects of tumor biology, including tumor angiogenesis,5,11 tumor invasiveness,6 and immunosuppression1,15; however, the exact contributions of mast cells in tumorigenesis remain controversial. Particularly, there have been a considerable number of contradictory observations regarding the detrimental or protective roles of mast cells in tumor development.31 Although elucidating the detailed reasons for these discrepancies is beyond the scope of this study, we have presented a transcriptomic perspective to study the impact of mast cells on shaping tumor microenvironment. Based on the transcriptomic data from WT, KitW-sh, and KitW-shMC mice, we identified the mast cell–dependent genes, which were deregulated by mast cell deficiency but largely recovered upon mast cell engraftment. To quantify the transcriptomic impact caused by mast cells in tissue microenvironment, a computational algorithm was developed to assign each tissue sample a MC-index based on the rank-weighted expression profile of mast cell–dependent genes, which potentially serves as a proxy of mast cell

Gene symbol	Gene title
SOCS3	suppressor of cytokine signaling 3
SORBS1	sorbin and SH3 domain containing 1
SOX4	SRY (sex determining region Y)-box 4
SSRF3	serine/arginine-rich splicing factor 3
SSB	Sjogren syndrome antigen B (autoantigen La)
STAU2	sushu, von Willebrand factor type A, EGF and pentraxin domain containing 1
SYNCRIP	synaptotagmin binding, cytoplasmic RNA interacting protein
TC2N	tandem C2 domains, nuclear
TGFBRI	transforming growth factor, β receptor III
THO1C	THO complex 1
TMEM38B	transmembrane protein 38B
TDR1AIP1	torsin A interacting protein 1
TRA2B	transformer 2 β homolog (Drosophila)
TRIOBP	TRIO and F-actin binding protein
TRMT6	tRNA methyltransferase 6 homolog (S. cerevisiae)
TTC3	tetratricopeptide repeat domain 3
TTC9C	tetratricopeptide repeat domain 9C
USP7	ubiquitin specific peptidase 7 (herpes virus-associated)
ZC3H15	zinc finger CCCH-type containing 15

Figure 3. The MCDC signature predicts recurrence-free survival in lung, breast, and colon cancers. Kaplan-Meier curves were presented for lung (Panel A), breast (Panel B), and colon (Panel C) cancer, respectively. Six independent human cancer cohorts were analyzed here. The pink curves are for the MCDC patients whereas the blue curves are for the MCDC patients. The P-values were calculated by log-rank test.
breast, and colon cancers, respectively. Genes, the MCDC signature was developed, which predicts and normal tissues mirrors the pattern we observed for commonly deregulated in mouse lung, breast, and colon shaping the tumor microenvironment, the MC cancer-index

to more precisely assess the contribution of mast cells in infiltration level in the tissue microenvironment. We indicate that, in both mouse models and human patients, the MC-indices of tumors are statistically higher than those of normal tissues from lung, breast, and colon, respectively. To more precisely assess the contribution of mast cells in infiltration and between breast and colon tumors are "c-kit" tyrosine kinase-dependent signaling that results in not only mast cell deficiency but also other phenotypic abnormalities. Therefore, the differential gene expression between KitW-sh and WT mice might arise from other abnormalities, not solely attributed to mast cell deficiency. To address this issue, we used KitW-sh MC mice to assess to what extent the abnormalities in gene expression of "c-kit" mutant mice can be recovered by mast cell engraftment. Hence, only the genes that were deregulated in mast cell–deficient mice but recovered upon mast cell engraftment were defined as mast cell–dependent genes.

Table 2. Cox proportional hazards regression of recurrence-free survival by MCDC status.

Cohort	HR	95% CI	P-value
Lung-JPN	2.35	(1.39, 3.98)	1.4 × 10^{-3}
Lung-SWE	1.83	(1.04, 3.23)	3.6 × 10^{-2}
Breast-SGP	2.22	(1.46, 3.40)	2.0 × 10^{-3}
Breast-USA2	1.70	(1.17, 2.49)	5.9 × 10^{-3}
Colon-FRA	1.36	(1.02, 1.83)	4.0 × 10^{-2}
Colon-NLD	4.40	(1.44, 13.38)	9.1 × 10^{-3}

Note – HR: hazard ratio; CI: confidence interval

MC-indices of tumors are statistically higher than those of normal tissues from lung, breast, and colon, respectively.

Table 3. Multivariate Cox proportional hazards regression of survival in the validation cohorts.

Cohort	Covariate	HR	95% CI	P-value
Lung-JPN	MCDC vs. –	1.79	(1.01, 3.04)	3.8 × 10^{-2}
Age	1.04	(1.00, 1.08)	4.2 × 10^{-3}	
Gender male vs. female	0.72	(0.36, 1.42)	3.4 × 10^{-1}	
Smoking + vs. –	1.50	(0.75, 2.88)	2.7 × 10^{-1}	
Stage	2.85	(1.66, 4.84)	1.0 × 10^{-4}	
EGF/KRAS/ALK mutation + vs. –	0.60	(0.36, 1.01)	5.3 × 10^{-2}	
MYC level high vs. low	0.94	(0.37, 2.40)	9.0 × 10^{-1}	
Lung-SWE	MCDC vs. –	1.99	(1.04, 3.81)	3.8 × 10^{-2}
Age (per year)	0.99	(0.96, 1.03)	7.3 × 10^{-1}	
Gender male vs. female	1.01	(0.54, 1.88)	9.8 × 10^{-1}	
Stage	1.81	(0.86, 3.79)	1.2 × 10^{-1}	
ER	1.19	(0.78, 1.81)	4.1 × 10^{-1}	
Tumor size	1.01	(0.99, 1.02)	3.1 × 10^{-1}	
lymph node + vs. –	1.50	(0.94, 2.40)	9.2 × 10^{-2}	
ER + vs. –	1.17	(0.62, 2.23)	6.2 × 10^{-1}	
Breast-SGP	MCDC vs. –	1.84	(1.08, 3.11)	2.4 × 10^{-2}
Age (per year)	1.01	(0.99, 1.02)	4.3 × 10^{-1}	
grade	1.19	(0.78, 1.81)	4.1 × 10^{-1}	
Tumor size	1.01	(0.99, 1.02)	3.1 × 10^{-1}	
lymph node + vs. –	1.50	(0.94, 2.40)	9.2 × 10^{-2}	
ER + vs. –	1.17	(0.62, 2.23)	6.2 × 10^{-1}	
Breast-USA2	MCDC vs. –	1.79	(1.20, 2.66)	4.0 × 10^{-3}
ER + vs. –	1.21	(0.77, 1.91)	4.1 × 10^{-1}	
Colon-FRA	MCDC vs. –	1.41	(1.04, 1.91)	2.6 × 10^{-2}
Age (per year)	1.01	(0.99, 1.02)	3.7 × 10^{-1}	
Gender male vs. female	1.49	(1.10, 2.03)	1.1 × 10^{-1}	
Stage	2.71	(2.16, 3.39)	< 10^{-10}	
BRAF mutation + vs. –	0.86	(0.47, 1.59)	6.4 × 10^{-1}	
KRAS mutation + vs. –	1.28	(0.93, 1.75)	1.3 × 10^{-1}	
TP53 mutation + vs. –	1.51	(1.11, 2.04)	7.7 × 10^{-3}	
Colon-NLD	MCDC vs. –	4.15	(1.34, 12.87)	1.4 × 10^{-2}
Age (per year)	0.99	(0.95, 1.02)	4.8 × 10^{-1}	
Gender male vs. female	0.78	(0.29, 2.05)	6.1 × 10^{-1}	

Table 4. Cox proportional hazards regression of recurrence-free survival by MCDC status.

Note – HR: hazard ratio; CI: confidence interval
process” and “mammary gland development,” respectively (Supplementary Fig. S5).

Understanding the mast cell–dependent transcriptomic pattern may provide therapeutic benefit in cancer treatment. Our study provides a provocative insight into the role of mast cells in cancers. The expression profile of the mast cell–dependent genes potentially serves as a promising proxy of the impact of mast cells on tumor microenvironment although the molecular mechanisms remain unclear. When working cooperatively with known clinical and pathological prognostic factors, the MCDC signature might enhance the prediction accuracy for identifying patients at higher risk for recurrence. However, the real physiological role of mast cells is more complicated than the transcriptomic data and appears to vary with cancer types. In future study, intensive experimental investigation is apparently needed to validate the exact role of individual mast cell–dependent genes in different cancers.

Materials and methods

Transcriptomic data

Four mouse transcriptomic data sets were included in this study. Firstly, the microarray data of lung RNA from WT, Kit^{+/m}, and Kit^{+/m} MC mice were obtained from the GEO database (GEO accession: GSE27066; Affymetrix Mouse Genome 430 2.0 Array).²⁹ We used this data set to filter out the mast cell–dependent mouse genes. Secondly, from the GEO database, we downloaded the gene expression data of both tumor and normal tissues in mouse lung (GEO accession: GSE31013; Affymetrix Mouse Genome 430 2.0 Array),³⁰ breast (GEO accession: GSE21444; Affymetrix Mouse Genome 430 2.0 Array),³¹ and colon (GEO accession: GSE50794; Affymetrix Mouse Genome 430 2.0 Array).³² These data sets were used to examine the deregulation pattern of the mast cell–dependent genes in mouse tumors.

For human subjects, we applied 18 independent whole-genome gene expression data sets in this study. Firstly, we obtained the microarray data of paired normal and tumor tissues derived from lung, breast, colon, liver, prostate, and thyroid cancer patients from the GEO database. For lung cancer, we included the Lung-ESP (GEO accession: GSE118842; Affymetrix Human Genome U133 Plus 2.0 Array)⁴¹ and Lung-TWN (GEO accession: GSE19804; Affymetrix Human Genome U133 Plus 2.0 Array)⁴² cohorts; for breast cancer, we included the Breast-USA1 (GEO accession: GSE39582; Affymetrix Human Genome U133A Array)⁴³ and Breast-USA2 (GEO accession: GSE2034; Affymetrix Human Genome U133A Array)⁴⁴ cohorts; for colon cancer, we considered the (Colon-FRA, GEO accession: GSE39582; Affymetrix Human Genome U133 Plus 2.0 Array)⁴⁵ and Colon-NLD (GEO accession: GSE33113; Affymetrix Human Genome U133 Plus 2.0 Array)⁴⁶ cohorts.

Detecting differential gene expression

Significance analysis of microarrays (SAM),⁸⁰ implemented in the samr library of the R Statistical Package, was used to identify deregulated genes. False discovery rate was controlled using the q-value method.⁸¹ Transcripts with a fold-change >1.5 and false discovery rate <0.05 were deemed differentially expressed. We limited our analysis to the probes/probesets with unique annotations and removed genes on chromosomes X and Y to avoid the potential confounding sex factor.

Mast cell index and mast cell cancer index

Briefly, mast cell index (MC-index) is the difference in normalized centroid of rank-weighted gene expression between the MC⁺ and MC[−] genes, which is designed to utilize transcriptomic data to assess the impact of mast cells on shaping tissue microenvironment. For a transcriptomic data set with <i>n</i> genes, all genes in each sample are sorted in ascending order according to their expression values. If <i>r</i>_i is the rank of gene <i>i</i> in a sample, the exponential weight (<i>w</i>_i) of gene <i>i</i> can be calculated as:

\[
 w_i = r_i \cdot e^{r_i / n}
\]

For the MC⁺ genes, let <i>n</i>⁺ be the number of the genes and the normalized centroid (C⁺) can be calculated as the mean of gene weight across all the MC⁺ genes (Equation 2). For the complement gene set composed of all the other non-MC⁺ genes, let <i>n</i>[−] be the number of the genes and the normalized centroid (C[−]) can be calculated as the mean of gene weight
across all the non-MC\(^+\) genes (Equation 3). The index of the MC\(^+\) genes \((I^+\)\) is simply the difference between the normalized centroid of MC\(^+\) and non-MC\(^+\) genes (Equation 4).

\[
C^+ = \frac{1}{n^+} \sum_{i=1}^{n^+} w_i \tag{2}
\]

\[
\overline{C}^+ = \frac{1}{n^+} \sum_{i=1}^{n^+} w_i \tag{3}
\]

\[
I^+ = C^+ - \overline{C}^+ \tag{4}
\]

Similarly, for the MC\(^-\) genes, let \(n^-\) be the number of the genes and the normalized centroid of MC\(^-\) genes can be calculated as the mean of gene weight across all the non-MC\(^-\) genes (Equation 5). For the complement gene set composed of all the other non-MC\(^-\) genes, let \(\pi^-\) be the number of the genes and the normalized centroid of MC\(^-\) can be calculated as the mean of gene weight across all the non-MC\(^-\) genes (Equation 6). The index of the MC\(^-\) genes \((I^-\)\) is the difference between the normalized centroid of MC\(^-\) and non-MC\(^-\) genes (Equation 7). Finally, the MC-index \((I\)\) of each sample is calculated as the difference between \(I^+\) and \(I^-\) (Equation 8).

\[
C^- = \frac{1}{n^-} \sum_{i=1}^{n^-} w_i \tag{5}
\]

\[
\overline{C}^- = \frac{1}{n^-} \sum_{i=1}^{n^-} w_i \tag{6}
\]

\[
I^- = C^- - \overline{C}^- \tag{7}
\]

\[
I = I^+ - I^- \tag{8}
\]

Mast cell cancer index (MC cancer-index) is designed to assess the impact of mast cells in tumor development. The method to compute MC cancer-index is the same as the procedure to compute MC-index, except for 2 modifications: i) replacing the MC\(^+\) genes with the MC\(^+\) genes commonly upregulated in mouse lung, breast, and colon tumors; and ii) replacing the MC\(^-\) genes with the MC\(^-\) genes commonly downregulated in mouse lung, breast, and colon tumors.

\section*{Risk score}

Based on the gene expression and clinical outcome data from the training data sets (GEO accession: GSE8894, GSE21653, and GSE17536 for lung,\(^{49}\) breast,\(^{50}\) and colon\(^{51}\) cancers, respectively), we conducted univariate Cox proportional hazards regressions to evaluate the association between recurrence-free survival and gene expression for lung, breast, and colon cancers, respectively. A risk score was then calculated for each patient using a linear combination of gene expression weighted by the Wald statistic (ratio of regression coefficient to its standard error)\(^{52-84}\) as shown below:

\[
s = \sum_{i=1}^{n} w_i(e_i - \mu_i) / \tau_i \tag{9}
\]

Here, \(s\) is the risk score of the patient; \(n\) is the number of genes; \(w_i\) denotes the Wald statistic of gene \(i\); \(e_i\) denotes the expression level of gene \(i\); and \(\mu_i\) and \(\tau_i\) are the mean and standard deviation of the gene expression values for gene \(i\) across all samples, respectively. Patients were then divided into high-risk and low-risk groups with zero as the cutoff. We speculated that a higher risk score implies a poorer clinical outcome.

\section*{Disclosure of interest}

The authors report no conflict of interest.

\section*{References}

1. Liu J, Zhang Y, Zhao J, Yang Z, Li D, Katirai F, Huang B. Mast cell: Insight into remodeling a tumor microenvironment. Cancer Metastasis Rev. 2011;30(2):177-84. doi:10.1007/s10555-011-9276-1. PMID:21267769.

2. Urb M, Sheppard DC. The role of mast cells in the defence against pathogens. PLoS Pathog. 2012;8(4):e1002619. doi:10.1371/journal.ppat.1002619. PMID:22577358.

3. da Silva EZ, Jamur MC, Oliver C. Mast cell function: A new vision of an old cell. J Histochem Cytochem. 2014;62(10):698-738. doi:10.1369/0022155414545334. PMID:25062998.

4. Frieri M. Mast cell activation syndrome. Clin Rev Allergy Immunol. 2015;13:27. doi:10.1007/s12016-015-8487-6. PMID:25944644.

5. Crivellato E, Nico B, Ribatti D. Mast cells and tumour angiogenesis: New insight from experimental carcinogenesis. Cancer Lett. 2008;269(1):1-6. doi:10.1016/j.canlet.2008.03.031. PMID:18450371.

6. Marichal T, Tsaï M, Galli SJ. Mast cells: Potential positive and negative roles in tumor biology. Cancer Immunol Res. 2013;1(5):269-79. doi:10.1158/2326-6066.CIR-13-0119. PMID:24777963.

7. Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res. 2008;14(21):6735-41. doi:10.1158/1078-0432.CCR-07-4843. PMID:18980965.

8. Aoki M, Pawankar R, Niimi Y, Kawana S. Mast cells in basal cell carcinoma express VEGF, IL-8 and RANTES. Int Arch Allergy Immunol. 2000;123(3):216-23. doi:10.1159/000069551. PMID:12660426.

9. Sawatsubashi M, Yamada T, Fukushima N, Mizokami H, Tokunaga O, Shin T. Association of vascular endothelial growth factor and mast cells with angiogenesis in laryngeal squamous cell carcinoma. Virchows Arch. 2000;436(3):243-48. doi:10.1007/s004280050037. PMID:10782883.

10. Imada A, Shijubo N, Kojima H, Abe S. Mast cells correlate with angiogenesis and poor outcome in stage I lung adenocarcinoma. Eur Respir J. 2000;15(6):1087-93. doi:10.1034/j.1399-3003.2000.00151.x. PMID:10885428.

11. Starkey JR, Crowle PK, Taubenberger S. Mast-cell-deficient W/Wv mice exhibit a decreased rate of tumor angiogenesis. Int J Cancer. 1998;82(1):48-52. doi:10.1002/ijc.2910420110. PMID:2455691.

12. Almhoft K, Johnsen M. Stromal cell involvement in cancer. Recent Results Cancer Res. 2003;162;31-42. doi:10.1007/978-3-642-59349-9_3. PMID:12790319.

13. Baram D, Vaday GG, Salamon P, Drucker I, Hershkoviz R, Mekori YA. Human mast cells release metalloproteinase-9 on contact with activated T cells. J Immunol. 2001;167(7):4008-16. doi:10.4049/jimmunol.167.7.4008. PMID:11564820.

14. Huang C, Sali A, Stevens RL. Regulation and function of mast cell proteases in inflammation. J Clin Immunol. 1999;18(3):169-83. doi:10.1023/A:1020574820797. PMID:9624576.
27. Grimbaldeston MA, Chen CC, Piliponsky AM, Tsai M, Tam SY, Galli SJ.
26. Nielsen HJ, Hansen U, Christensen IJ, Reimert CM, Brunner N, Mose-
21. Rajput AB, Turbin DA, Cheang MC, Voduc DK, Leung S, Gelmon
17. Tomita M, Matsuzaki Y, Onitsuka T. Correlation between mast cells and
16. Takanami I, Takeuchi K, Naruke M. Mast cell density is associated
32. Huang B, Lei Z, Zhang GM, Li D, Song C, Li B, Liu Y, Yuan Y, Unke-
30. E.-A. KO ET AL.
28. Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene
29. T, Rejto PA, Derkits S, Sansom OJ, et al. Cross-species analysis of
35. Byrnes J, Bradding P. Significance of mast cell number
18. Welsh TJ, Green RH, Richardson D, Waller DA, O’Byrne KJ, Bradding P.
Macrophage and mast-cell invasion of tumor cell islets confers a marked
31. B, Vacca A, Beltrami CA. Angiogenesis and mast cells in human breast
36. Yano H, Kinuta M, Tateishi H, Nakano Y, Matsui S, Monden T,
37. Byrne KJ, Bradding P. Significance of mast cell number
33. Blatner NR, Bonertz A, Beckhove P, Cheon EC, Krantz SB, Strouch M,
38. Pandiri AR, Sills RC, Ziglioli V, Ton TV, Hong HH, Lahousse SA, Gerrish
34. Byrnes J, Bradding P. Significance of mast cell number
19. Xiang M, Gu Y, Zhao F, Lu H, Chen S, Yin L. Mast cell tryptase pro-
25. Gulubova M, Vlaykova T. Prognostic signi-
20. Ribatti D, Finato N, Crivellato E, Guidolin D, Longo V, Mangieri D, Nico
15. Wasiuk A, de Vries VC, Hartmann K, Roers A, Noelle RJ. Mast cells as reg-
13. Blatner NR, Bonertz A, Beckhove P, Cheon EC, Krantz SB, Strouch M,
22. J, Xiong H, et al. SCF-mediated mast cell in-
39. Jiang X, Tan J, Li J, Kivimae S, Yang X, Zhuang L, Lee PL, Chan MT,
46. Roessler S, Jia HL, Budhu A, Forgues M, Ye QH, Lee JS, Thorgeirsson
14. Nielsen HJ, Hansen U, Christensen IJ, Reimert CM, Brunner N, Mose-
12. Yodavudh S, Tanggitamol S, Puangsart S. Prognostic significance of microvessel density and mast cell density for the survival of Thai patients with primary colorectal cancer. J Med Assoc Thai. 2008;91(5):723-32. PMID:18676239.
11. Gulubova M, Vlaykova T. Prognostic significance of mast cell number and microvascular density for the survival of patients with primary colorectal cancer. J Gastroenterol Hepatol. 2009;24(7):1265-75. doi:10.1111/j.1440-1746.2007.05009.x. PMID:17645466.
10. Nielsen HJ, Hansen U, Christensen II, Reimert CM, Brunner N, Moes-
8. Nielsen HJ, Hansen U, Christensen II, Reimert CM, Brunner N, Mose-
7. Nielsen HJ, Hansen U, Christensen II, Reimert CM, Brunner N, Moes-
9. Byrnes J, Bradding P. Significance of mast cell number
4. Yodavudh S, Tanggitamol S, Puangsart S. Prognostic significance of microvessel density and mast cell density for the survival of Thai patients with primary colorectal cancer. J Med Assoc Thai. 2008;91(5):723-32. PMID:18676239.
3. Gulubova M, Vlaykova T. Prognostic significance of mast cell number and microvascular density for the survival of patients with primary colorectal cancer. J Gastroenterol Hepatol. 2009;24(7):1265-75. doi:10.1111/j.1440-1746.2007.05009.x. PMID:17645466.
2. Nielsen HJ, Hansen U, Christensen II, Reimert CM, Brunner N, Moes-
1. Nielsen HJ, Hansen U, Christensen II, Reimert CM, Brunner N, Moes-

15. Wasiuk A, de Vries VC, Hartmann K, Roers A, Noelle RJ. Mast cells as reg-
13. Blatner NR, Bonertz A, Beckhove P, Cheon EC, Krantz SB, Strouch M,
11. Gulubova M, Vlaykova T. Prognostic significance of mast cell number
10. Nielsen HJ, Hansen U, Christensen II, Reimert CM, Brunner N, Moes-
9. Byrnes J, Bradding P. Significance of mast cell number
8. Nielsen HJ, Hansen U, Christensen II, Reimert CM, Brunner N, Moes-
7. Nielsen HJ, Hansen U, Christensen II, Reimert CM, Brunner N, Moes-
6. Nielsen HJ, Hansen U, Christensen II, Reimert CM, Brunner N, Moes-
5. Nielsen HJ, Hansen U, Christensen II, Reimert CM, Brunner N, Moes-
4. Yodavudh S, Tanggitamol S, Puangsart S. Prognostic significance of microvessel density and mast cell density for the survival of Thai patients with primary colorectal cancer. J Med Assoc Thai. 2008;91(5):723-32. PMID:18676239.
3. Gulubova M, Vlaykova T. Prognostic significance of mast cell number and microvascular density for the survival of patients with primary colorectal cancer. J Gastroenterol Hepatol. 2009;24(7):1265-75. doi:10.1111/j.1440-1746.2007.05009.x. PMID:17645466.
2. Nielsen HJ, Hansen U, Christensen II, Reimert CM, Brunner N, Moes-
1. Nielsen HJ, Hansen U, Christensen II, Reimert CM, Brunner N, Moes-

metastatic progression. Prostate Cancer Prostatic Dis. 2012;15(2):150-56. doi:10.1038/pcan.2011.61. PMID:22343836.

48. Dom G, Tarabichi M, Unger K, Thomas G, Oczko-Wojciechowska M, Bogdanova T, Jarzab B, Dumont JE, Detours V, Maenhaut C. A gene expression signature distinguishes normal tissues of sporadic and radiation-induced papillary thyroid carcinomas. Br J Cancer. 2012;107(10):1604-10. doi:10.1038/bjc.2012.302. PMID:22828612.

49. Lee ES, Son DS, Kim SH, Lee J, Jo J, Kim H, Lee HJ, Choi HY, Jung Y, et al. Prediction of recurrence-free survival in postoperative non-small cell lung cancer patients by using an integrated model of clinical information and gene expression. Clin Cancer Res. 2008;14(22):7397-404. doi:10.1158/1078-0432.CCR-07-4937. PMID:19010856.

50. Sabatier R, Finetti P, Cervera N, Lombardie E, Besterin M, Mammessier E, Tallet A, Chabannon C, Extra JM, Jacquemier J, et al. A gene expression signature identifies two prognostic subgroups of basal breast cancer. Breast Cancer Res Treat. 2011;126(2):407-20. doi:10.1007/s10549-010-0897-9. PMID:20490655.

51. Smith JJ, Deane NG, Wu F, Merchant NB, Zhang B, Merchant NB, Zhang B, Jiang A, Lu P, Johnson JC, Schmidt C, Bailey CE, et al. Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer. Gastroenterology. 2010;138(3):958-68. doi:10.1053/j.gastro.2009.11.005. PMID:19914252.

52. Okayama H, Kohno T, Ishii Y, Shimada Y, Shiraishi K, Iwakawa N, Furuta K, Tsuta K, Shibata T, Yamamoto S, et al. Identification of genes upregulated in AKL-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res. 2012;72(1):100-11. doi:10.1158/0008-5472.CAN-11-1403. PMID:22080568.

53. Botling J, Edlund K, Lohr M, Hellwig B, Holmberg L, Lambe M, Berglund A, Ekman S, Bergqvist M, Ponten F, et al. Biomarker discovery in non-small cell lung cancer: Integrating gene expression profiling, meta-analysis, and tissue microarray validation. Clin Cancer Res. 2013;19(1):194-204. doi:10.1158/1078-0432.CCR-12-1139. PMID:23027247.

54. Irshiva AV, George J, Senko O, Mow B, Douchi D, Oikawa M, Kiyama T, Kato Y, Egawa S, Unno M. GCP2/LRRFIP1 promotes colorectal cancer metastasis and liver invasion through integrin-dependent RhoA activation. Cancer Lett. 2013;325(1):99-107. doi:10.1016/j.canlet.2012.06.012. PMID:22750095.

55. Kikuchi A, Ishikawa T, Mogushi K, Ishiguro M, Ueta H, Tanaka H, Sugihara K. Identification of NUCKS1 as a colorectal cancer prognostic marker through integrated expression and copy number analysis. Int J Cancer. 2013;132(2):299-305. doi:10.1002/ijc.27291. PMID:23065711.

56. Wang P, Zhao J, Yang X, Guan S, Feng H, Han D, Li J, Ou B, Jin R, Sun J, et al. PFDN1, an indicator for colorectal cancer progression, enhances tumor cell proliferation and motility through cytoskeletal reorganization. Med Oncol. 2013;30(12):246. doi:10.1007/s12094-013-0710-z. PMID:26563318.

57. Wang Y, Chen D, Qian H, Tsai YS, Shao S, Liu Q, Dominguez D, Wang Z. The splicing factor RBM4 controls apoptosis, proliferation, and migration to suppress tumor progression. Cancer Cell. 2014;26(3):374-89. doi:10.1016/j.ccr.2014.07.010. PMID:25203323.

58. Gstaiger M, Jordan R, Lim M, Catravas C, Mestan J, Slingerland J, Krek W. SKp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci U S A. 2001;98(9):5043-48. doi:10.1073/pnas.013474898. PMID:11094941.

59. Gigek CO, Lisboa LC, Leal MF, Silva PN, Lima EM, Khayat AS, Assumpcao PP, Burbano RR, Smith Mde A. SMARC5 methylation and expression in gastric cancer. Cancer Invest. 2011;29(2):162-66. doi:10.3109/07357907.2010.543365. PMID:21261476.

60. Al Kubaisey A, Arafat K, De Wever O, Hassan AH, Attoub S. SMARC1 knockdown uncovers its role in breast cancer cell migration, invasion, and metastasis. Expert Opin Ther Targets. 2016;20(10):1035-45. doi:10.1517/14728222.2016.119509. PMID:27325353.

61. Wu K, Weng Z, Tao Q, Lin G, Wu X, Qian H, Zhang Y, Ding X, Jiang Y, Shi YE. Stage-specific expression of breast cancer-specific gene gamma-synuclein. Cancer Epidemiol Biomarkers Prev. 2003;12(9):920-25. PMID:14504205.

62. Kim G, Ouzounova M, Quraishi AA, Davis A, Tawakkol N, Clouthier SG, Malik F, Paulson AK, D’Angelo RC, Korkaya S, et al. SOCS3-mediated regulation of inflammatory cytokines in PTEN and p53 inactivated triple negative breast cancer model. Oncogene. 2015;34(6):671-80. doi:10.1038/onc.2014.4. PMID:24537117.

63. Chen J, Ju HL, Yuan XY, Wang TJ, Lai BQ. SOX4 is a potential prognostic factor in human cancers: A systematic review and meta-analysis. Clin Transl Oncol. 2016;18(1):65-72. doi:10.1007/s12094-015-1337-4. PMID:26250764.

64. Glat-Santar C, Benayahu D. Regulation of SVEP1 gene expression by 17beta-estradiol and TGFalpha in pre-osteoblastic and mammary adenocarcinoma cells. J Steroid Biochem Mol Biol. 2012;130(1-2):36-44. doi:10.1016/j.jsbmb.2011.12.015. PMID:22265959.

65. Liu XL, Xiao K, Xue B, Yang D, Lei Z, Shan Y, Zhang HT. Dual role of TGFBR3 in bladder cancer. Oncol Rep. 2013;30(3):1301-08. doi:10.3892/or.2013.2599. PMID:23835618.

66. Chinnam M, Wang Y, Zhang X, Gold DL, Khoury T, Nikitin AY, Foster BA, Li Y, Bshara W, Morrison CD, et al. The Thoc1 ribonucleoprotein and prostate cancer progression. J Natl Cancer Inst. 2014;106(11):djn037. doi:10.1093/jnci/djn037. PMID:25296641.

67. Fan YH, Cheng J, Vasudevan SA, Dou J, Zhang H, Patel RH, Ma IT, Rojas Y, Zhao Y, Yu Y, et al. USP7 inhibitor P20777 inhibits
neuroblastoma growth via inducing p53-mediated apoptosis. Cell Death Dis. 2013;4:e867. doi:10.1038/cddis.2013.400. PMID:24136231.

79. Dwyer DF, Barrett NA, Austen KF, Immunological Genome Project C. Expression profiling of constitutive mast cells reveals a unique identity within the immune system. Nat Immunol. 2016;17(7):878-87. doi:10.1038/ni.3445. PMID:27135604.

80. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001;98(9):5116-21. doi:10.1073/pnas.091062498. PMID:11309499.

81. Taylor J, Tibshirani R, Efron B. The 'miss rate' for the analysis of gene expression data. Biostatistics. 2005;6(1):111-17. doi:10.1093/biostatistics/kxh021. PMID:15618531.

82. Zhou T, Wang T, Garcia JG. Expression of nicotinamide phosphoribosyltransferase-influenced genes predicts recurrence-free survival in lung and breast cancers. Sci Rep. 2014;4:6107. doi:10.1038/srep06107. PMID:25146220.

83. Wang R, Gurguis CI, Gu W, Ko EA, Lim I, Bang H, Zhou T, Ko JH. Ion channel gene expression predicts survival in glioma patients. Sci Rep. 2015;5:11593. doi:10.1038/srep11593. PMID:26235283.

84. Zhou T, Wang T, Garcia JG. Genes influenced by the non-muscle isoform of Myosin light chain kinase impact human cancer prognosis. PLoS One. 2014;9(4):e94325. doi:10.1371/journal.pone.0094325. PMID:24714365.