RKKY interaction between adsorbed magnetic impurities in graphene: Symmetry and strain effects - DTU Orbit (04/11/2018)

RKKY interaction between adsorbed magnetic impurities in graphene: Symmetry and strain effects
The growing interest in carbon-based spintronics has stimulated a number of recent theoretical studies on the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in graphene, with the aim of determining the most energetically favorable alignments between embedded magnetic moments. The RKKY interaction in undoped graphene decays faster than expected for conventional two-dimensional materials, and recent studies suggest that the adsorption configurations favored by many transition-metal impurities may lead to even shorter-ranged decays and possible sign-changing oscillations. Here, we show that these features emerge in a mathematically transparent manner when the symmetry of the configurations is included in the calculation. Furthermore, we show that by breaking the symmetry of the graphene lattice, via uniaxial strain, the decay rate, and hence the range, of the RKKY interaction can be significantly altered. Our results suggest that magnetic interactions between adsorbed impurities in graphene can be manipulated by careful strain engineering of such systems.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Theoretical Nanotechnology, Center for Nanostructured Graphene, Trinity College Dublin
Contributors: Gorman, P. D., Duffy, J. M., Ferreira, M., Power, S.
Number of pages: 11
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Physical Review B
Volume: 88
Issue number: 8
ISSN (Print): 1098-0121
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.34 SJR 1.604 SNIP 1.04
Web of Science (2017): Impact factor 3.813
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 3.16 SJR 2.339 SNIP 1.151
Web of Science (2016): Impact factor 3.836
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 2.8 SJR 2.377 SNIP 1.13
Web of Science (2015): Impact factor 3.718
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 3.3 SJR 2.762 SNIP 1.316
Web of Science (2014): Impact factor 3.736
Web of Science (2014): Indexed yes
Scopus rating (2013): CiteScore 3.55 SJR 2.813 SNIP 1.326
Web of Science (2013): Impact factor 3.664
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): CiteScore 3.57 SJR 3.173 SNIP 1.378
Web of Science (2012): Impact factor 3.767
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
Scopus rating (2011): CiteScore 3.61 SJR 3.326 SNIP 1.423
Web of Science (2011): Impact factor 3.691
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
Scopus rating (2010): SJR 3.318 SNIP 1.447
Web of Science (2010): Impact factor 3.774
