Catalytic Enantioselective Entry to Triflones Featuring a Quaternary Stereocenter

Francesca Franco, Sara Meninno, Jacob Overgaard, Sergio Rossi, Maurizio Benaglia, and Alessandra Lattanzi*

ABSTRACT: A highly enantioselective one-pot synthesis of functionalized triflones, bearing a quaternary stereocenter, has been developed, exploiting the Michael reaction of \(\alpha \)-(trifluoromethylsulfonyl) aryl acetic acid esters with \(\text{N} \)-acryloyl-1\(\text{H} \)-pyrazole catalyzed by commercially available Takemoto’s catalyst, followed by nucleophilic acyl substitution with alcohols. Preliminary investigations highlighted the attractive potential of the triflate anion as the leaving group for sterecontrolled postfunctionalizations.

Chiral nonracemic sulfones are a class of compounds of great importance in different areas, from organic synthesis, medicinal chemistry to material science. In particular, those bearing the sulfone group directly connected to the stereogenic center are endowed with different biological activities, such as antifungal agents (Agelasidine A), \(\beta \)-lactamase inhibitors (tazobactan), and \(\gamma \)-secretase inhibitor. The sulfonyl group is an accredited bioisoster of the carbonyl group and a strong H-bonding acceptor able to increase the interactions with the biological targets. Moreover, sulfones are highly useful synthetic building blocks amenable of different transformations.

The asymmetric synthesis of sulfones, having this group directly attached to the stereogenic center is a challenging task, which has been mainly accomplished via metal-catalyzed substitution, hydrosulfonylation, hydrogenation, and conjugate addition. However, most of the protocols so far developed are focused on the generation of optically enriched secondary sulfones. In comparison, the stereoselective preparation of aryl and alkyl sulfones featuring a quaternary stereocenter is largely underdeveloped. In this context, scant examples have been reported on the stereoselective preparation of either secondary and tertiary triflones (Scheme 1). Nakamura and Toru illustrated an interesting asymmetric reaction of \(\text{nBuLi} \) generated \(\alpha \)-carbanion of benzyl trifluoromethylsulfonyl with aldehydes in the presence of 30 mol % of bis(oxazoline) ligands (Scheme 1a). The products were obtained in good to high diastereo- and enantioselectivity.

Raabe and Gais, developed a five-step sequence from optically enriched secondary alcohols as the reagent to obtain secondary triflones, maintaining the level of enantioselectivity. The latter were then alkylated, under controlled conditions, to provide triflones with an all-carbon quaternary stereocenter in comparable ee values (Scheme 1b). We recently developed a one-pot \(\alpha \)-trifluoromethylthiolation of readily available \(\text{N} \)-acyl pyrazoles, followed by oxidation to access \(\alpha \)-trifluoromethansulfonyl aryl acetic acid esters. The process has been also improved under continuous flow conditions, starting from carboxylic acids. The trifyl group is the strongest neutral electron-withdrawing group, showing mild lipophilicity. This prompted its introduction onto molecular scaffolds, as it affects pyrazoles.

Received: May 8, 2022
Published: June 10, 2022
the activity of fluorinated drugs, and more in general the properties of the materials. As illustrated in Scheme 1, the asymmetric synthesis of tertiary triflones remains an elusive goal, where catalytic approaches still have to be developed. It is worth noting that, while having in hand a viable route to trifluoromethanesulfonyl aryl acetic acid esters, we envisaged that they might serve as suitable pronucleophiles to employ in Michael reactions under mild organocatalytic conditions. Herein, we report a first catalytic and highly enantioselective preparation of triflones, featuring a quaternary stereocenter. Michael reaction of trifluoromethanesulfonyl aryl acetic acid esters with N-acyrtyl-1H-pyrazole has been mediated by Takemoto’s catalyst, followed by nucleophilic acyl substitution with alcohols in one pot. The final bis-ester triflones also demonstrated to be useful compounds for interesting postfunctionalizations.

At the outset of the study, methyl vinyl ketone was reacted with compound 1a, using readily available bifunctional organocatalysts at 20 mol % loading, in toluene at room temperature (Table 1). Pleasingly, quinidine (QD) catalyzed the conjugate addition, providing product 3a in 82% yield and 20% ee (entry 1). This result prompted us to use Cinchona alkaloids-derived thiourea eQNT and eQDT, which unfortunately were much less effective promoters (entries 2 and 3). Sterically hindered amine-thiourea 4 gave a small improvement in the enantioselectivity up to 37% ee (entry 4). Takemoto’s catalyst 5 proved to be more active, leading to 3a in 75% yield and 55% ee, after a short reaction time (entry 5). Next, phenyl vinyl ketone was treated with compound 1a using catalyst 5, observing the formation of the adduct 3b with an increased level of enantioselectivity (entry 6). Readily available amine-thiourea 6 was then checked in the process, giving disappointing results (entry 7), as well as the commercially available squaramide 7, which afforded racemic 3b in only moderate yield (entry 8). When more sterically hindered isopropyl ester 1a’ (R’ = 4-BrC₆H₄) was reacted, a decreased level of enantioselectivity was observed (entry 9). For the purpose of improving the enantiocontrol, 1-naphthyl vinyl ketone was employed with 1a in the presence of catalyst 5 (entry 10). However, the adduct 3d was isolated in 85% yield and 44% ee. Activated acrylic acid derivatives were then checked, such as the 1,1,1,3,3,3-hexafluoroisopropyl acrylate, but it proved to be poorly reactive (entry 11). Given the utility displayed over recent years by α,β-unsaturated N-acyl pyrazoles in asymmetric catalysis, the corresponding N-acyrlyl-1H-3-phenyl pyrazole was reacted under the optimized conditions (entry 12). Pleasingly, it was smoothly converted into the corresponding adduct 3e, which was isolated in 42% yield and 75% ee. The same reaction when conducted at −20 °C afforded product 3e with improved 86% ee (entry 13). Finally, when using N-acycrl-1H-pyrazole as the acceptor, adduct 3f was recovered in 50% yield and 89% ee (entry 14). Reduction of the catalyst loading to 10 mol % as well as the temperature as low as −20 °C enabled the product to be satisfactorily obtained in high yield and 94% ee (entries 15 and 16).

N-Acyl pyrazoles behave as useful carboxylic acid ester surrogates due to the good leaving group ability of the pyrazole group. Hence, we thought to develop a simple one-pot methodology to directly obtain the bis-ester triflones, treating compounds 3 with an alcohol at room temperature, after the end of the conjugate addition step. Under the optimized reaction conditions reported in Scheme 1, entry 16, the scope of the one-pot process was next investigated (Scheme 2). As illustrated in Scheme 2, triflones 1 bearing halogens at para- and ortho-position of the phenyl ring, were converted into the corresponding methyl esters 8a–d in excellent yields and high enantiomeric excess (82–95% ee).

Pleasingly, more sterically encumbered ortho-fluoro derivative 8d was isolated with excellent ee value (95%). Electron-donating or withdrawing substitution at the para-, meta-, and ortho- positions, including the phenyl and 2-naphthyl moieties, were well tolerated, as the products 8e–j were recovered in good to high yields and 91–96% ee values. Only the sterically demanding ortho-methyl derivative 8g was isolated in 40% yield, although a 96% ee value was observed. Then, we surveyed the suitability of other alcohols as nucleophiles in the second step on differently substituted trifluoromethanesulfonyl phenyl acetic acid esters 1. Ethanol, n-butanol to more sterically hindered isopropanol and allylic alcohol could be employed, performing the esterification at 50 °C. The corresponding triflones 8k–o, bearing single or double substitution at the phenyl ring, have been obtained in fairly good to high yields and ee values (83–94%).

Table 1. Reaction Optimization

entry	cat.	R’	t (h)	3 yield (%)	3 ee	
1	QD	Me	2a	7	82 (3a)	20
2	eQNT	Me	10	23	10 (3a)	5
3	eQDT	Me	57	23	57 (3a)	rac
4	Me	Me	23	6	75 (3a)	55 (-)
5	5	Me	16	16	44 (3b)	37
6	7	Ph	16	16	44 (3b)	37
7	8	Ph	16	16	23 (3b)	rac
9	5	Ph	17	17	76 (3c)	63
10	5	1-naphthyl	2c	17	85 (3d)	44
11	5	OCH(CF₃)₂	2d	25	<10 n.d.	
12	5	3-Pyrazole	2e	17	42 (3e)	75
13	5	3-Pyrazole	2e	40	61 (3e)	86
14	5	pyrazole	2f	17	50 (3f)	89
15	5	pyrazole	2f	24	90 (3f)	93
16	5	pyrazole	2f	24	95 (3f)	94

*Reactions performed at 0.1 mmol scale of 1a (C = 0.2 M) using 2 (1.2 equiv). †Isolated yield after chromatography. ‡Determined by chiral HPLC analysis; n.d. = not determined. Negative sign indicates enantiomeric excess for the opposite enantiomer. The isopropyl ester of compound 1a was used. Run at −20 °C. ‡10 mol % of 5 was used at 0 °C. ‡10 mol % of 5 was used at −20 °C.
Finally, the pyrazole displacement with morpholine performed at room temperature led to the corresponding product $8p$, bearing a tertiary amide group, in 92% yield and 93% ee. The practicality of the process was investigated scaling-up reagent $1a$ to 1.0 mmol. Tri-fluorone $8a$ was isolated maintaining a high yield and enantioselectivity. Further experiments, carried out during the preparation of tertiary amide $8p$, allowed us to disclose a synthetically appealing derivatization, involving tri-fluorone group displacement (Scheme 3).

When the second step was performed using morpholine in the presence of water (2 equiv) at 50 °C, for a prolonged reaction time, the α-hydroxyl ester 9 was efficiently formed in 95% yield and 92% ee. This remarkable result would be rationalized invoking $S_{N}2$ displacement of the triflate anion, which is an excellent leaving group,22 by an in situ generated hydroxyl anion.23 The transformation is noteworthy, being a formal enantioselective hydroxylation at a congested α-position of an ester. The absolute configuration of compound 9 was determined to be S by X-ray crystallographic analysis (CCDC No.: 2165089).

The transition states leading to the formation of both (R)-$8a$ and (S)-$8a$ for the Michael reaction, promoted by (R,R)-catalyst 5, were fully optimized by DFT calculation at the M062X-6-31G(d,p)/PCM (toluene) level of theory. Hydrogens are omitted for clarity.

We further applied the displacement to develop an asymmetric one-pot Michael/$S_{N}2$ displacement/esterification to γ-butyrolactone, bearing a γ-quaternary stereocenter (Scheme 3). The in situ generated adduct $8p$ was treated with Et$_3$N, water at 50 °C, affording the expected lactone 10 in 44% yield and 95% ee. Although the process needs to be

Consequently, compounds 8 were assigned as R-configured, which was found to be consistent with DFT calculations (Figure 1).

![Scheme 2. Substrate Scope of the One-Pot Processa,b,c](image)

![Scheme 3. One-Pot Derivatizations of Compounds 8 Involving Trifl Group Displacement](image)

![Figure 1. Proposed model of stereoselection. Geometries and $\Delta\Delta G^0$ of transition states related to the synthesis of enriched triflone $8a$ were calculated at the M062X/6-31G(d,p)/PCM (toluene) level of theory. Hydrogens are omitted for clarity.](image)
optimized, it represents an interesting and useful application of optically active triflones 8 as intermediates toward difficult to prepare γ-butyrolactones. 10,27

Additional postfunctionalizations on representative compound 8a have been performed under reductive conditions (Scheme 4). Unexpectedly, treatment with DIBALH under controlled conditions afforded alcohol 11 in 76% yield, without erosion of the ee value. Reduction of the less activated methyl ester might be likely ascribed to the congested nature of the ethyl ester portion. Having ascertained that selective reduction of the ester to aldehyde occurred in a shorter reaction time, a one-pot process from reagent 1a, involving asymmetric Michael reaction/reduction to aldehyde/Horner–Emmons olefination, has been developed. The diversely functionalized product 12 was recovered in satisfactory 50% overall yield and 93% ee.

In summary, we successfully develop a first enantioselective catalytic route to triflones, featuring a quaternary stereocenter. The asymmetric Michael reaction between α-(trifluoromethylsulfonyl) aryl acetic acid esters with N-acryloyl-1H-pyrazole was efficiently catalyzed by commercial Takemoto’s catalyst, followed by nucleophilic acyl substitution with alcohols. The bis-ester triflones were obtained in good to excellent yields and high enantioselectivity in one-pot. Moreover, this work provides useful knowledge on the application of tertiary triflones in stereoselective organic synthesis. The utility of the products has been demonstrated via trilone displacement and under reductive conditions to conveniently access a variety of attractive enantioenriched scaffolds.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.2c01589.

Full experimental procedures, characterization data, NMR spectra, HPLC traces, computational details and crystallographic data for 9 are available. (PDF)

Accession Codes

CCDC 21065089 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Author Information

Corresponding Author

Alessandra Lattanzi – Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, 84084 Fisciano, Italy; orcid.org/0000-0003-1132-8610; Email: lattanzi@unisa.it

Authors

Francesca Franco – Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, 84084 Fisciano, Italy
Sara Meninno – Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, 84084 Fisciano, Italy; orcid.org/0000-0001-8364-0211
Jacob Overgaard – Department of Chemistry, Aarhus University, 8000 Aarhus, Denmark; orcid.org/0000-0001-6492-7962
Sergio Rossi – Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy; orcid.org/0000-0002-2694-9535
Maurizio Benaglia – Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy; orcid.org/0000-0002-9568-9642

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.2c01589

Notes

The authors declare no competing financial interest.

Acknowledgments

F.F. thanks MUR for a PON RI 2014-2020 PhD fellowship. S.M. thanks MUR and European Union for AIM – international attraction and mobility call for researchers funded by PON RI 2014-2020. University of Salerno is acknowledged for financial support.

References

1. Stout, E. P.; Yu, L. C.; Molinski, T. F. Antifungal Diterpene Alkaloids from the Caribbean Sponge Agelas citrina: Unified Configurational Assignments of Agelasidines and Agelasines. *Eur. J. Org. Chem.* 2012, 2012, 5131–5135.
2. Mohan, S.; Perry, P. S.; Banoe, N.; Niikura, M.; Pinto, B. M. Serendipitous Discovery of a Potent Influenza Virus A Neuraminidase Inhibitor. *Angew. Chem., Int. Ed.* 2014, 53, 1076–1080.
3. Scott, J. P.; Oliver, S. F.; Brands, K. M. J.; Brewer, S. E.; Davies, A. J.; Gibb, A. D.; Hands, D.; Keen, S. P.; Sheen, F. J.; Reamer, R. A.; Wilson, R. D.; Dolling, U.-H. Practical Asymmetric Synthesis of a γ-Secretase Inhibitor Exploiting Substrate-Controlled Intramolecular Nitrile Oxide Olefin Cycloaddition. *J. Org. Chem.* 2006, 71, 3086–3092.
4. Velázquez, F.; Sannigrahi, M.; Bennett, F.; Lovey, R. G.; Arasappan, A.; Bogen, S.; Nair, L.; Venkatraman, S.; Blackman, M.; Hendrata, S.; Huang, Y.; Huelgas, R.; Pinto, P.; Cheng, K.-C.; Tong, X.; McPhail, A. T.; Njoroge, F. G. Cyclic Sulfones as Novel P3-Caps for Hepatitis C Virus NS3/4A (HCV NS3/4A) Protease Inhibitors: Synthesis and Evaluation of Inhibitors with Improved Potency and Pharmacokinetic Profiles. *J. Med. Chem.* 2010, 53, 3075–3085.
5. (a) Trost, B. M. Chemical Chameleons. Organosulfones as Synthetic Building Blocks. *Bull. Chem. Soc. Jpn.* 1988, 61, 107–124. (b) El-Awa, A.; Noshi, M. N.; du Jourdin, X. M.; Fuchs, P. L. Evolving Organic Synthesis Fostered by the Pluripotent Phenylsulfone. *Moiety. Chem. Rev.* 2009, 109, 2315–2349. (c) Xu, X. H.; Matsuoka, K.; Shibata, N. Synthetic Methods for Compounds Having CF3-S Units on Carbon by Trifluoromethylation, Trifluoromethylthiolation, Triflylation, and Related Reactions. *Chem. Rev.* 2015, 115, 731–764.
(6) For recent reviews, see: (a) Zhu, C.; Cai, Y.; Jiang, H. Recent Advances for the Synthesis of Chiral Sulfonyl Compounds: A Guide for the Future. Chem. Soc. Rev. 2019, 48, 3188–3200. (b) Landa, A.; Maestro, M.; Masdeu, C.; Puente, A. Recent advances in the synthesis of chiral sulphonates. Chem. Soc. Rev. 2010, 39, 404–422.

(7) For selected examples, see: (a) Shi, L.; Wei, B.; Yin, X.; Xue, P.; Lv, H.; Zhang, X. Rhodium-Catalyzed Chiral Sulfonyl Compounds: Scope, Mechanism, and Origin of Selectivity. J. Am. Chem. Soc. 2019, 141, 18323–18332.

(8) For selected examples, see: (a) Mauleon, P.; Carretero, J. C. Rhodium-Catalyzed Chiral Sulfonyl Compounds: Recent Advances. Adv. Synth. Catal. 2020, 362, 3078–3106.

(9) For selected examples, see: (a) Mauleon, P.; Carretero, J. C. Rhodium-Catalyzed Chiral Sulfonyl Compounds: Recent Advances. Adv. Synth. Catal. 2020, 362, 3078–3106.

(10) For selected examples, see: (a) Mauleon, P.; Carretero, J. C. Rhodium-Catalyzed Chiral Sulfonyl Compounds: Recent Advances. Adv. Synth. Catal. 2020, 362, 3078–3106.

(11) For selected examples, see: (a) Mauleon, P.; Carretero, J. C. Rhodium-Catalyzed Chiral Sulfonyl Compounds: Recent Advances. Adv. Synth. Catal. 2020, 362, 3078–3106.

(12) For selected examples, see: (a) Mauleon, P.; Carretero, J. C. Rhodium-Catalyzed Chiral Sulfonyl Compounds: Recent Advances. Adv. Synth. Catal. 2020, 362, 3078–3106.
(25) (a) Okino, T.; Hoashi, Y.; Takemoto, Y. Enantioselective Michael Reaction of Malonates to Nitroolefins Catalyzed by Bifunctional Organocatalysts. *J. Am. Chem. Soc.* 2003, 125, 12672–12673. (b) Guo, J.; Wong, M. W. Cinchona Alkaloid-Squaramide Catalyzed Sulfá-Michael Addition Reaction: Mode of Bifunctional Activation and Origin of Stereoinduction. *J. Org. Chem.* 2017, 82, 4362–4368. (c) Izzo, J. A.; Myshchuk, Y.; Hirschi, J. S.; Vetticatt, M. J. Transition State Analysis of an Enantioselective Michael Addition by a Bifunctional Thiourea Organocatalyst. *Org. Biomol. Chem.* 2019, 17, 3934–3939.

(26) Hamza, A.; Schubert, G.; Soós, T.; Pápai, I. Theoretical Studies on the Bifunctionality of Chiral Thiourea-Based Organocatalysts: Competing Routes to C-C Bond Formation. *J. Am. Chem. Soc.* 2006, 128, 13151–13160.

(27) For a review, see: Murauski, K. J. R.; Jaworski, A. A.; Scheidt, K. A. A Continuing Challenge: N-Heterocyclic Carbene-Catalyzed Syntheses of γ-Butyrolactones. *Chem. Soc. Rev.* 2018, 47, 1773–1782.