V371 Per – A thick-disc, short-period F/1O Cepheid

P. Wils,1,* A. A. Henden,2*A. S. Kleidis,3,4* E. G. Schmidt5* and D. L. Welch6*

1Vereniging voor Sterrenkunde, Belgium
2American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138, USA
3Zagori Observatory, Epirus, Greece
4Hellenikai Astronomikai Enosi, Athens, Greece
5Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588, USA
6Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada

Accepted 2009 October 27. Received 2009 October 27; in original form 2009 September 11

ABSTRACT

V371 Per was found to be a double-mode Cepheid with a fundamental mode period of 1.738 days, the shortest among Galactic beat Cepheids, and an unusually high period ratio of 0.731, while the other Galactic beat Cepheids have period ratios between 0.697 and 0.713. The latter suggests that the star has a metallicity [Fe/H] between −1 and −0.7. The derived distance from the Galactic plane places it in the thick disc or the Halo, while all other Galactic beat Cepheids belong to the thin disc. There are indications from historical data that both the fundamental and first overtone periods have lengthened.

Key words: stars: individual: V371 Per – Cepheids.

1 INTRODUCTION

The variability of V371 Per was discovered by Weber (1964). From photographic studies, Satyvaldiev (1966) and Meinunger (1980) did not find any periodicity, and the star was therefore assumed to be an irregular variable. Schmidt, Chab & Reiswig (1995) found a period of 1.2697 days from CCD data and suspected it to be a beat Cepheid because of its changing light curve. This interpretation agrees with the spectral type G0 given by Bond (1978). As a consequence, the star was observed for a number of years at the Behlen Observatory at the University of Nebraska, the United States Naval Observatory Flagstaff Station (NOFS), the Sonoita Research Observatory (SRO; Sonoita, Arizona) and the Zagori Observatory (Athens, Greece). The resulting data will be presented in this paper. In addition to the new data, the data sets from Satyvaldiev (1966) and Schmidt et al. (1995) are reanalysed (the latter with revised values for the comparison stars), and data from the Northern Sky Variability Survey (NSVS; Woźniak et al. 2004) are analysed as well.

2 OBSERVATIONS

Table 1 contains a summary of the new observations. All data will be made available at the Centre de Données astronomiques de Strasbourg. A comparison star sequence in the Johnson–Cousins system, derived from observations at SRO, is given in Table 2. Observations on each photometric night included following an extinction star from low-to-high airmass, along with $BVRCI_c$ exposures of Landolt standard fields. Further details on the procedure are outlined in Templeton & Henden (2007). A similar procedure was used to obtain the data from the NOFS. The comparison star sequence was chosen to have a large colour range in the vicinity of the variable. GSC 3854–1439 is a close double of about 1 arcsec separation of which both components need to be included in any aperture.

The method described in Schmidt et al. (2004) was used to reduce the data from the Behlen Observatory. Data from the Zagori Observatory were reduced with the photometry package ab4win (Berry & Burnell 2000) and were transformed to the standard system with transformation coefficients obtained by measuring several of the comparison stars from Table 2. While the colour terms for V and I_c were found to be almost negligible, those for B and R_c involved corrections of up to 0.05 mag. Fig. 1 contains a section of the data superposed on a model plot as derived in the following section.

3 PERIOD ANALYSIS

A Fourier analysis of the data was done using PERIOD04 (Lenz & Breger 2005). For all available data sets, two independent frequencies were found: a first one, hereafter referred to as f_1, near 0.787 c/d or 1.270 d, corresponding to the period found by Schmidt et al. (1995), and a second one, further referred to as f_0, near 0.576 c/d or 1.737 d. The ratio $f_0/f_1 = 0.7312$ also proves that the suggestion of a beat Cepheid was correct and that f_0 and f_1 should be interpreted, respectively, as the frequency of the fundamental and the first overtone mode.

The two most extensive data sets also reveal a number of combination modes of these two frequencies, demonstrating that the variations observed are from a single star and not, for example,
Table 1. Observation log for V371 Per.

Observatory	Instruments	Filters	JD - 240 0000	Nights	Points
Behlen	76-cm Cassegrain + TI4849	V, R, c	47872-53967	51	157
NOFS	1.0-m Ritchey-Chrétien + Tektronix	VR, R, c	50033-51528	32	47
SRO	35-cm C-14 + SBIG ST-1001E	VR, R, c	53629-54054	23	1341
Zagori	30-cm LX200 + SBIG ST-7XMEI	VR, R, c	53726-54135	38	1331

Table 2. Comparison star data from the Sonota Research Observatory.

GSC ID	RA (J2000) Dec.	V	σ_V	B - V	σ_{B-V}	V - R	σ_{V-R}	R - I_c	σ_{R-I}	
2854-0440	02:54:43.43	+42:27:07.8	11.700	0.016	0.634	0.026	0.373	0.013	0.289	0.013
2854-0492	02:55:05.14	+42:38:07.7	12.262	0.013	0.741	0.023	0.427	0.018	0.340	0.016
2854-0965	02:55:08.88	+42:39:10.9	11.704	0.010	0.471	0.017	0.275	0.020	0.202	0.022
2854-1439	02:55:14.45	+43:23:24.2	13.145	0.003	0.596	0.007	0.354	0.005	0.377	0.007
2854-1056	02:55:15.05	+42:32:35.6	12.793	0.004	0.952	0.006	0.529	0.006	0.493	0.008
2854-0637	02:55:23.95	+42:45:05.3	12.339	0.013	0.706	0.031	0.406	0.021	0.339	0.022
2854-1058	02:55:37.11	+42:30:36.8	11.570	0.020	1.453	0.021	0.799	0.011	0.713	0.021
2854-0696	02:55:37.35	+42:44:21.6	11.922	0.012	0.673	0.032	0.387	0.021	0.301	0.021
2854-0713	02:55:45.27	+42:31:16.5	9.609	0.036	0.185	0.041	0.995	0.035	0.127	0.035
2854-0768	02:56:03.32	+42:43:01.7	10.728	0.013	0.511	0.029	0.307	0.023	0.224	0.011
2854-1013	02:56:09.96	+42:39:52.4	11.658	0.007	0.470	0.020	0.289	0.012	0.210	0.012

Table 3. Frequencies for V371 Per and their semi-amplitudes (in millimag) and phases (in degrees) derived from the SRO and Zagori data sets.

Frequency (c/d)	A_B	φ_B	S/N_B	A_V	φ_V	S/N_V	A_R	φ_R	S/N_R	A_I	φ_I	S/N_I	
f_1	0.787329(3)	244.5(10)	314(1)	51.1	173.5(6)	311(1)	68.1	136.2(6)	309(1)	45.5	105.4(5)	305(1)	56.0
f_0	0.575678(4)	175.2(10)	109(1)	60.7	124.8(7)	106(1)	63.5	99.2(6)	102(1)	50.7	77.2(4)	97(1)	44.8
f_0 + f_1	1.363007	85.8(11)	189(1)	23.9	60.6(7)	189(1)	29.0	48.4(7)	186(1)	18.9	37.3(4)	186(1)	22.9
2f_1	1.574658	53.3(11)	44(2)	14.6	38.6(6)	40(1)	17.0	30.0(6)	41(2)	12.5	23.2(5)	41(2)	12.8
f_1 - f_0	0.211651	41.7(9)	152(2)	9.8	27.5(6)	154(2)	11.5	24.1(6)	148(2)	7.5	19.4(5)	154(2)	8.5
2f_0	1.151355	25.2(8)	11(3)	4.8	18.3(7)	356(2)	5.8	13.6(7)	360(3)	3.7	11.4(4)	360(3)	4.5
2f_0 + f_1	1.938684	23.1(9)	115(3)	4.2	17.9(7)	110(2)	7.2	14.9(6)	117(3)	4.3	12.8(4)	122(3)	5.9
f_0 + 2f_1	2.150336	34.0(10)	303(2)	7.2	24.9(7)	306(2)	10.0	19.0(6)	306(2)	5.9	15.3(5)	307(2)	7.4
3f_1	2.361987	14.1(9)	173(4)	4.4	117.6(7)	160(4)	6.0	10.6(6)	167(4)	4.9	9.1(5)	162(4)	5.6
3f_0	1.727033	16.3(8)	298(4)	3.8	7.4(7)	302(5)	4.2	9.9(5)	304(4)	3.7	7.6(5)	312(4)	4.0

Note. Uncertainties calculated from Monte Carlo simulations with Period04 [Lenz & Breger 2005] are given between parenthesis in units of the last decimal.

from two separate pulsators within the same resolution element on the sky, as those would not show these combination frequencies. The details of the frequencies found are given in Table 3. For each passband and detected frequency, the semi-amplitude, phase and signal-to-noise ratio are given. The values of the frequencies themselves were derived from the V data, and then used to calculate the amplitudes and phases for the other passbands. The small decrease in phase when going to redder colours for f_0 and f_1 indicate that these are radial modes. Phase plots of the fundamental mode variation and the first overtone variation in V (pre-whitened for the other mode and combination modes) are given in Fig. 2.

The amplitude of the first overtone mode is larger than that of the fundamental mode, which is not common among Galactic beat Cepheids. Only in AX Vel (with a fundamental period of 3.67 d) and
V458 Sct (4.84 d), the first overtone mode has a larger amplitude than the fundamental pulsation mode. There does not seem to be a relation of amplitude ratio with period.

The value of the generalized phase difference $G_{1,1}$ for the cross coupling term $f_0 + f_1$ for Galactic double-mode Cepheids. Besides V371 Per, the values are taken from Poretti & Pardo (1997) and Wils & Otero (2004) or calculated from ASAS-3 data (Pojmanski 2002) when not available otherwise.

V458 Sct (4.84 d), the first overtone mode has a larger amplitude than the fundamental pulsation mode. There does not seem to be a relation of amplitude ratio with period.

Figure 2. Phase plot of V data from SRO and Zagori Observatory. The top panel shows the data pre-whitened for the first overtone mode and all combination frequencies as given in Table 3. The bottom panel shows the data pre-whitened for the fundamental mode and all combination frequencies.

Figure 3. Values (in degrees) of the generalized phase difference $G_{1,1}$ for the cross coupling term $f_0 + f_1$ for Galactic double-mode Cepheids. Besides V371 Per, the values are taken from Poretti & Pardo (1997) and Wils & Otero (2004) or calculated from ASAS-3 data (Pojmanski 2002) when not available otherwise.

The values and semi-amplitudes of the fundamental and first overtone frequencies and the frequency ratio calculated from the other data sets are given in Table 3. For reference, the corresponding values already given in Table 3 are repeated. The periods derived from the NSVS data are less reliable because of the short time-span of the data (less than a year).

Figure 4. B data from SRO and Zagori Observatory plotted against colour $B - R_c$.

4 PERIOD EVOLUTION

The values and semi-amplitudes of the fundamental and first overtone frequencies and the frequency ratio calculated from the other data sets are given in Table 4. For reference, the corresponding values already given in Table 3 are repeated. The periods derived from the NSVS data are less reliable because of the short time-span of the data (less than a year).

The derived frequency values are plotted in Fig. 5. There are indications that both the fundamental mode and first overtone frequency have decreased, while the frequency ratio remained constant at 0.7312. This result highly depends on the photographic data set of Satyvaldiev (1966), and should therefore be treated with caution. However, there is also a significant difference between the frequencies derived from the Behlen data set and those from the newer SRO and Zagori data sets, in line with this conclusion.

There is no indication that the amplitude has changed over the years. Note that the Satyvaldiev (1966) data are photographic and the amplitude should therefore be compared to the B-band amplitudes. The NSVS data are unfiltered CCD data, so that amplitudes derived from them are to be compared with R_c-band amplitudes. The lesser number of data points in the NOFS data sets give less reliable amplitudes, and their uncertainties are likely underestimated.

5 DISCUSSION

The fundamental period of 1.737 days of V371 Per is short and outside the range of the periods of the other known Galactic beat Cepheids. Until now, those with the shortest fundamental periods known were TU Cas with a period of 2.139 days (Oosterhoff 1957) and DZ CMa with a period of 2.311 days (determined from ASAS-3 data; Pojmanski 2002). The beat Cepheid with the largest known period is V367 Sct (6.293 days; Efremov & Kholopov 1975). As can be seen in Fig. 6, the period and period ratio of V371 Per are more reminiscent of the Small Magellanic Cloud (SMC) double-mode Cepheids. From theoretical calculations, Buchler & Szabó (2007) have shown a relation between fundamental period, period ratio and metallicity. From the graphs of Buchler & Szabó (2007) and Buchler (2008), one can determine Z to be approximately between 0.002 and 0.004 for V371 Per, depending on the particular mixture of elements chosen for Z, equivalent to [Fe/H] between -1 and -0.7. From the empirical formula (3) given by Sziládi et al. (2007), also relating fundamental period and period ratio to metallicity for Galactic beat Cepheids, a value [Fe/H] = -0.92 can be derived by extrapolation. Both values are in good agreement and indeed.
The light curve of V371 Per does not resemble those of BL Her stars of comparable apparent magnitude and period (in UCAC2 catalogue (Zacharias et al. 2004), much lower than some of BL Her stars (Population II Cepheids) with similar periods, as they have very steep rising branches. In addition, no double-mode Population II Cepheids are known. Furthermore, theoretical models from di Criscienzo et al. (2007) suggest that there are no stable first overtone pulsations in BL Her stars with the fairly cool temperature of V371 Per. With the extinction $E(B - V) = 0.11$ towards V371 Per estimated from Schlegel, Finkbeiner & Davis (1998) (see Table 5), its dereddened $B - V$ colour can be calculated as 0.54. The effective surface temperature should therefore be 6000 K or lower (depending on metallicity and surface gravity; VandenBerg & Clem 2003). All of the models in di Criscienzo et al. (2007) have the red edge of stable first overtone modes at temperatures above 6000 K.

The proper motion of V371 Per is 4.1 ± 1.1 mas yr$^{-1}$ from the UCAC2 catalogue (Zacharias et al. 2004), much lower than some BL Her stars of comparable apparent magnitude and period (in mas yr$^{-1}$: BL Her 13.2 ± 1.4, SW Tau 10.8 ± 1.4, RT Tra 14.1 ± 2.5, DU Ara 12.3 ± 5.1, UY Eri 25.7 ± 1.8). Of course, centre-of-mass radial velocities, combined with the proper motion and distance, will only determine the kinematic group to which V371 Per belongs.
With the extinction data from Table 5, the empirical $BVRi_c$ period–luminosity (PL) relations given by Fouqué et al. (2007) can be used to calculate the distance to V371 Per. The average distance modulus derived from these four passbands is $m - M = 12.51 \pm 0.07$, corresponding to a distance of 3.2 ± 0.1 kpc, and a Galactocentric distance of 10.6 kpc. Assuming the Sun is very near the Galactic plane (Reed 2005), a height of 0.8 kpc above the Galactic plane can then be calculated for V371 Per, much higher than all other Galactic Cepheids, which all lie within 300 pc from the Galactic plane. This would place V371 Per above the thin disc, so that it is located in the Galactic thick disc or halo, while all of the previously known Galactic beat Cepheids lie within the Galactic thin disc. Using the PL relations for the reddening-free Wesenheit magnitudes given in Fouqué et al. (2007), a somewhat smaller distance modulus $m - M = 12.34 \pm 0.03$ is obtained, bringing V371 Per about 50 pc closer to the Galactic Plane. The Two-Micron All-Sky Survey (2MASS) JHK_s magnitudes (Cutri et al. 2003) give a similar distance modulus $m - M = 12.33 \pm 0.03$ (care should be taken here because the exact pulsation phase of the 2MASS measurements is difficult to determine.).

Using the calculated absolute magnitude from Table 5, an independent estimate can be made for the mass of V371 Per, using the relations for fundamental mode Cepheids established by Cutrò et al. (2005). In principle, these are only valid for stars with $Z = 0.02$ and $P > 3$ d. Depending on the passband, a pulsation mass between 2.3 and 3.1 M_\odot is obtained. With the luminosity taken to be the canonical luminosity L_{can} (Caputo et al. 2005), the deduced values for the evolutionary mass range between 3.3 and 3.8 M_\odot from the mass–period–luminosity relation and between 3.6 and 3.7 M_\odot from the mass–colour–luminosity relation. Although these estimates show a large range they do confirm V371 Per to be an intermediate-mass pulsator.

6 CONCLUSION

Extensive CCD photometry of V371 Per over a number of years has clearly shown it to be a Galactic beat Cepheid, with the shortest period known so far. The high value of the frequency ratio (0.731) suggests that its metallicity is much lower than that of the other Galactic beat Cepheids. Its distance derived from empirical PL relations places it in the Galactic thick disc or halo, 0.8 kpc above the Galactic plane. V371 Per is therefore a remarkable object and a spectroscopic study is warranted to confirm its low metallicity. It is very likely that V371 Per will help to refine the theoretical models for Cepheid pulsation. Further photometric observations may also confirm the period increase suspected for both modes. This will become evident within the next 5–10 years.

ACKNOWLEDGMENTS

Klaus Häußler is acknowledged for providing a copy of the Satyvaldiev and Meinunger papers. This study used data from the Northern Sky Variability Survey created jointly by the Los Alamos National Laboratory and the University of Michigan, and funded by the US Department of Energy, the National Aeronautics and Space Administration (NASA) and the National Science Foundation. Use of the SIMBAD and VIZIER data bases operated at the Centre de Données astronomiques de Strasbourg (Ochsenbein, Bauer & Marcot 2000) and the SAO/NASA Astrophysics Data System is gratefully acknowledged. DLW acknowledges support from the Natural Sciences and Engineering Research Council of Canada. The authors are grateful to the reviewer, Giuseppe Bono, for constructive remarks to improve the paper.

REFERENCES

Alcock C. et al., 1995, AJ, 109, 1654
Alcock C. et al., 1997, preprint (arXiv:astro-ph/9709025v1)
Antipin H. E., 2006, Peremennye Zvezdy Prilozenenie, 6, 9
Beaulieu J. P. et al., 1997, A&A, 321, L5
Berry R., Burnell J., 2000, The Handbook of Astronomical Image Processing, Willmann-Bell, Richmond
Bond H. E., 1978, PASP, 90, 526
Buchler J. R., 2008, ApJ, 680, 1412
Buchler J. R., Szabó R., 2007, ApJ, 660, 723
Caputo F., Marconi M., Musella I., Pont F., 2001, A&A, 372, 544
Caputo F., Bono G., Fiorentino G., Marconi M., Musella I., 2005, ApJ, 629, 1021
di Criscienzo M., Caputo F., Marconi M., Cassisi S., 2007, A&A, 471, 893
Cutrò R. M. et al., 2003, The 2MASS All-Sky Catalog of Point Sources. NASA/IPAC Infrared Science Archive
Efremov Yu. N., Khlopotov P. N., 1975, Inf. Bull. Var. Stars, 1073
Fouqué P. et al., 2007, A&A, 476, 73
Lemasle B., François P., Piersimoni A., Pedicelli S., Bono G., Lanev C. D., Primas F., Romaniello M., 2008, A&A, 490, 613
Lenz P., Breger M., 2005, Communications Aстреросеимология, 146, 53
Luck R. E., Kovtyukh V. V., Andrievsky S. M., 2005, ApJ, 629, 1021
Meinunger I., 1980, Sternw. Sonneberg, 9, 197
Ochsenbein F., Bauer P., Marcot J., 2000, A&AS, 143, 23
Oosterhoff P. Th., 1957, Bull. Astron. Inst. Netherlands, 13, 320
Pojmanski G., 2002, Acta Astron. 52, 397
Pomicelli S. et al., 2009, A&A, 504, 81
Poretti E., Pardo I., 1997, A&A, 324, 133
Reed B. C., 2005, J. R. Astron. Soc. Can., 100, 146
Satyvaldiev V., 1966, Bull. Inst. Astrophys. Tajik Acad. Sci., 47, 17
Schlegel D. J., Finkbeiner D. P., Davis M., 1998, ApJ, 500, 525
Schmidt E. G., Reiswig D. E., 1995, AJ, 109, 1239
Schmidt E. G., Johnston D., Langan S., Lee K. M., 2004, AJ, 128, 1748
Schmidt E. G., Finkbeiner D. P., Davis M., 1998, ApJ, 500, 525
Soldatov V., Udalski A., Szymański M., Kubiak M., Pietrzyński G., Woźniak P., Zebrun K., 2000, Acta Astron., 50, 451
Sziládi K., Vinkó J., Poretti E., Szabados L., Kun M., 2007, A&A, 473, 579
Templeton M. R., Henden A. A., 2007, AJ, 134, 1999
Udalski A., Szymański I., Szymański M., Kubiak M., Pietrzyński G., Woźniak P., Zebrun K., 1999, Acta Astron. 19, 1
Vandenberg D. A., Cunliffe J. L., 2007, AJ, 126, 778
Weber R., 1964, Inf. Bull. Var. Stars, 42
Welch D., 1998, http://www.physics.mcmaster.ca/Cepheid/BeatCepheid.html
Wils P., Otero S. A., 2004, Inf. Bull. Var. Stars, 5501
Woźniak P. R. et al., 2004, AJ, 127, 2436
Zacharias N., Urban S. E., Zacharias M. I., Wycoff G. L., Hall D. M., Monet D. G., Rafferty T. J., 2004, AJ, 127, 3043

This paper has been typeset from a TeXfile prepared by the author.