Testing Primordial Abundances With Sterile Neutrinos.

O. Civitarese and M. E. Mosquera

Department of Physics, University of La Plata c.c. 67 1900, La Plata, Argentina and
Faculty of Astronomy and Geophysics, University of La Plata Paseo del Bosque s.n., La Plata, Argentina

(Dated: September 3, 2008)

The mixing between sterile and active neutrinos is taken into account in the calculation of Big Bang Nucleosynthesis. The abundances of primordial elements, like D, 3He, 4He and 7Li, are calculated by including sterile neutrinos, and by using finite chemical potentials. It is found that the resulting theoretical abundances are consistent with WMAP data on baryonic densities, and with limits of LSND on mixing angles, only if 7Li is excluded from the statistical analysis of theoretical and experimental results.

PACS numbers: 26.35.+c,95.85.Ry,98.80.Ft

key words: Sterile Neutrinos, Primordial Abundances, WMAP data, LNSD, Big Bang Nucleosynthesis.

I. INTRODUCTION

In recently published papers [1, 2] the sensitivity of the 4He primordial abundance, upon distortions of the light neutrino spectrum induced by couplings with a sterile neutrino, was analyzed. The effects due to the mixing between sterile and active neutrinos [1, 2] reflect upon Big Bang Nucleosynthesis (BBN) in a noticeable manner. Previous studies on this matter can be found in [3, 4, 5], where the effects of mixing upon BBN in presence of primordial leptonic asymmetry have been investigated, and stringent limits on the mixing due to BBN have been presented. Similar studies have been presented in [6, 7]. A review on inclusion of sterile neutrino in cosmology was presented in [8].

The results of [2] may be taken as a solid starting point for a systematic analysis of the sterile-active neutrino mixing upon cosmological observables, like the primordial abundance of light elements. By the other hand, the mixing mechanism between sterile and active neutrinos has been studied in detail (see [2] and references therein), so that the calculation of neutrino distribution functions can readily be performed. The information about the neutrino distribution function, in the flavor basis and at a given temperature, is an essential element in the calculation of the neutron decay rate, which is a critical quantity entering BBN [10, 11].

Direct physical consequences upon BBN, due to the mixing between active and sterile neutrinos, have been explored in [12, 13]. Following the arguments presented in [12], and in the framework of the standard cosmological model, sterile neutrinos would produce a faster expansion rate for the Universe and a higher yield of 4He. This is, indeed, a severe constraint on neutrino mixing since a higher predicted abundance of 4He may be in conflict with observational data [12]. Another constraint on active-sterile neutrino mixing is the neutrino mass derived from Cosmic Microwave Background Anisotropy (CMB) [14]. The analysis of constraints presented in [15] focus on the mixing scheme at the level of the neutrino mass hierarchy, and it suggests the adequacy of the non-degenerate mass hierarchy to set limits on the mass difference between active and sterile neutrinos, δm^2_{1a-s}. The study of [15] confirms the notion about the convenience of the three active + one sterile neutrinos scheme.

In standard BBN calculations, the mixing of sterile and active neutrinos affects the leptonic fractional occupancies, which are essential quantities appearing in the expression of the weak decay rates. Thus, one needs to know, as input of the calculations, the parameters of the proposed mixing scheme, the neutrino mass hierarchy and the leptonic densities [13]. With these elements one can calculate neutron-decay-rates and neutron abundances, by assuming the freeze-out of weak interactions [10, 12]. The effective number of neutrino generations, N_ν, is fixed by the analysis of CMB [16, 17, 18]. Current limits on the neutrino degeneracy parameter, for light (electron) neutrinos, η [1], runs from −0.1 to 0.3 [17, 18]. For a detailed presentation of the formalism, in the context of relic-neutrino asymmetry evolution see [13].

In this work we focus on the calculation of the abundances of D, 3He, 4He and 7Li, in presence of sterile-active neutrino mixing in the three flavor scenario, and for the normal and inverse neutrino mass hierarchies [9]. We have compared the calculated values with data [10, 20, 21] and determined the compatibility between them by performing a χ^2 statistical analysis. Since the theoretical expressions depend on the mixing angle $\sin^2 2\phi$, the square mass difference δm^2_{14} (normal mass hierarchy) or δm^2_{14} (inverse mass hierarchy), and the baryonic density $\Omega_B h^2$, we have adopted the LSND limits on the mixing angle [22, 23, 24] and the WMAP results on the baryonic density [25], as constraints.

The paper is organized as follows. In Section II we briefly present the essentials of the formalism. Section III is devoted to the calculation of the neutron decay rate and BBN abundances. In Section IV we present and discuss the...
results of the calculations. Conclusions are drawn in Section V.

II. FORMALISM

The mixing between active neutrino mass eigenstates ν_i ($i = 1, 2, 3$), leading to neutrinos of a given flavor ν_k ($k = \text{light, medium, heavy}$), is described by the mixing matrix U [26]

\[
U = \begin{pmatrix}
 c_{13}c_{12} & s_{12}c_{13} & s_{13} \\
 -s_{12}c_{23} - s_{23}s_{13}c_{12} & c_{23}c_{12} - s_{23}s_{13}s_{12} & s_{23}s_{13}c_{12} \\
 2s_{23}s_{12} - s_{13}c_{23} & -s_{23}c_{12} & c_{23}c_{12}
\end{pmatrix},
\]

where c_{ij} and s_{ij} stand for $\cos \theta_{ij}$ and $\sin \theta_{ij}$, respectively, and CP conservation is assumed [26]. To this mixing we add the mixing of a sterile neutrino with: a) the neutrino mass eigenstate of lowest mass in the normal mass hierarchy, ν_1, and b) to the one of the inverse mass hierarchy, ν_3, by defining the mixing angle ϕ, such that the new mixing matrix U is redefined as $U(\phi)$ [27]

\[
U(\phi) = \begin{pmatrix}
 c_{13}c_{12} \cos \phi & s_{12}c_{13} & s_{13} \\
 (-s_{12}c_{23} - s_{23}s_{13}c_{12}) \cos \phi & c_{23}c_{12} - s_{23}s_{13}s_{12} & s_{23}s_{13}c_{12} \\
 (-s_{12}c_{23} - s_{23}s_{13}c_{12}) \sin \phi & -s_{23}c_{12} & c_{23}c_{12}
\end{pmatrix},
\]

for the normal mass hierarchy, and,

\[
U(\phi) = \begin{pmatrix}
 c_{13}c_{12} & s_{12}c_{13} & s_{13} \\
 -s_{12}c_{23} - s_{23}s_{13}c_{12} & c_{23}c_{12} - s_{23}s_{13}s_{12} & s_{23}s_{13}c_{12} \\
 s_{23}s_{12} - s_{13}c_{23} & -s_{23}c_{12} & c_{23}c_{12}
\end{pmatrix},
\]

for the inverse mass hierarchy. The mixing between neutrino mass eigenstates, and particularly the inclusion of the sterile neutrino as a partner of the light neutrino, affects the statistical occupation factors of neutrinos of a given flavor. The equation which determines the structure of the neutrino occupation factors, in the basis of mass eigenstates and for an expanding Universe, can be written [27]:

\[
\left(\frac{\partial f}{\partial t} - HE_\nu \frac{\partial f}{\partial E_\nu} \right) = i [H_0, f],
\]

where t is time, H is the expansion rate of the Universe, defined as $H = \sqrt{\frac{4\pi^2 \pi^N}{34M_{\text{Planck}}} T^2} = \mu T^2$, T is the temperature, E_ν is the energy of the neutrino, and H_0 is the unperturbed mass term of the neutrino’s Hamiltonian in the rest frame. The initial condition is fixed by defining the occupation numbers at the temperature $T_0 = 3$ MeV [28],

\[
\begin{pmatrix}
 f_{11} & f_{12} & f_{13} & f_{14} \\
 f_{21} & f_{22} & f_{23} & f_{24} \\
 f_{31} & f_{32} & f_{33} & f_{34} \\
 f_{41} & f_{42} & f_{43} & f_{44}
\end{pmatrix}_{T_0} = \frac{1}{1 + e^{E_\nu/T_0 - \eta}} \begin{pmatrix}
 \cos^2 \phi & 0 & 0 & \sin \phi \cos \phi \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0
\end{pmatrix},
\]

for the normal mass hierarchy, and

\[
\begin{pmatrix}
 f_{11} & f_{12} & f_{13} & f_{14} \\
 f_{21} & f_{22} & f_{23} & f_{24} \\
 f_{31} & f_{32} & f_{33} & f_{34} \\
 f_{41} & f_{42} & f_{43} & f_{44}
\end{pmatrix}_{T_0} = \frac{1}{1 + e^{E_\nu/T_0 - \eta}} \begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & \cos^2 \phi & \sin \phi \cos \phi \\
 0 & 0 & \sin \phi \cos \phi & \sin^2 \phi
\end{pmatrix},
\]

for the inverse mass hierarchy.

To obtain the solutions of Eq. (4) we have written the source term, that is the commutator in the r.h.s of Eq. (4), in terms of the square mass differences, $\delta m_{ij}^2 = m_i^2 - m_j^2$:

\[
[H_0, f] = \frac{1}{2p} \begin{pmatrix}
 0 & \delta m_{12}^2 f_{12} & \delta m_{13}^2 f_{13} & \delta m_{14}^2 f_{14} \\
 -\delta m_{12}^2 f_{21} & 0 & \delta m_{13}^2 f_{23} & \delta m_{14}^2 f_{24} \\
 -\delta m_{13}^2 f_{31} & -\delta m_{13}^2 f_{32} & 0 & \delta m_{14}^2 f_{34} \\
 -\delta m_{14}^2 f_{41} & -\delta m_{14}^2 f_{42} & -\delta m_{14}^2 f_{43} & 0
\end{pmatrix}.
\]
The value of the mixing angle θ_{13} is constrained by the upper limit given by 29 so that $\tan \theta_{13} \leq 10^{-3}$. The solution in the basis of mass eigenstates is

$$f_{ii} = \frac{\text{const}}{1 + e^{E_{ii}/T - \eta}}$$

$$f_{ij} = \frac{\text{const}}{1 + e^{E_{ij}/T - \eta}} \exp \left[\frac{\delta m_{ij}^2}{6\mu_P} T \left(\frac{1}{T^3} - \frac{1}{T_0^3} \right) \right]$$

where the normalization constants are fixed by the initial conditions ($T = T_0$). The formal solution for the occupation number in the flavor basis, for the light neutrino flavor in the normal mass hierarchy, is:

$$f_l = \frac{1}{1 + e^{E/T - \eta}} \left[1 + \cos^2 \theta_{13} \cos \theta_{12} \sin^2 \frac{2\phi}{2} \left[\cos \left(\frac{\delta m_{14}^2}{6\mu_P} E \left(\frac{1}{T^3} - \frac{1}{T_0^3} \right) \right) - 1 \right] \right],$$

and

$$f_l = \frac{1}{1 + e^{E/T - \eta}} \left[1 + \sin^2 \theta_{13} \sin^2 \frac{2\phi}{2} \left[\cos \left(\frac{\delta m_{14}^2}{6\mu_P} E \left(\frac{1}{T^3} - \frac{1}{T_0^3} \right) \right) - 1 \right] \right],$$

in the inverse mass hierarchy.

In the above expressions, η is the ratio between the neutrino chemical potential and the temperature. This parameter depends on the adopted value of the leptonic number L. Explicit expressions of η versus L can be found in 30. In the present context we have taken η as an input for the calculations (see section III).

III. DECAY RATES AND NEUTRON ABUNDANCE

In the following we shall outline the main steps of the calculation of neutron decay rates, for the electroweak processes $n + e^+ \rightarrow p + \bar{\nu}$ and $n + \nu \rightarrow p + e^-$. The starting point is the calculation of the reduced rates λ_{\pm}.

$$\lambda(n + \nu \rightarrow p + e^-) = \lambda_- = \lambda_0\int_0^\infty dp_\nu p_\nu E_\nu E_\nu (1 - f_e) f_l,$$

$$\lambda(n + e^+ \rightarrow p + \bar{\nu}) = \lambda_+ = \lambda_0\int_0^\infty dp_e p_e E_\nu E_\nu (1 - f_l) f_e,$$

and the total neutron to proton decay rate

$$\lambda_{np}(y) = \lambda_-(y) + \lambda_+(y)$$

$$= 2\lambda_0 \left[e^{\eta} \left(1 - \alpha \frac{\sin^2 2\phi}{2} \right) + \frac{\Delta m_{np}^5}{y^5} \left(\frac{6}{y} + \frac{12}{y^2} \right) \right] + \lambda_0 \Delta m_{np}^5 \frac{\sin^2 2\phi}{2} e^{\eta} \int_0^\infty dqy^2 (q + 1)^2 e^{-qy} g(q, y),$$

at lowest order in the quantity e^{η}. For the sake of convenience we have introduced the more compact notation $f_l = (1 + e^{E_{ii}/T - \eta})^{-1} \left[1 - \alpha \frac{\sin^2 2\phi}{2} + \frac{\sin^2 2\phi}{2} g(E_\nu, T) \right]$ with $\alpha = c_{13}^2 s_{12}^2$ for the normal mass hierarchy and $\alpha = s_{13}^2$ for the inverse mass hierarchy, respectively. The function $g(E_\nu, T)$ is the factor which contains the temperature T and the energy E_ν in Eqs. (9) and (10), and the variable y is defined as $y = \frac{\Delta m_{np}^2}{2E_\nu}$. The details of the calculations have been discussed elsewhere 30, for the case of two neutrino mass eigenstates. The final expression for the neutron to proton decay rate is obtained by fixing the normalization λ_0, of Eq. (15), from the neutron half-life

$$\frac{1}{\tau} = \frac{4\lambda_0 \Delta m_{np}^5}{255},$$

and the result is

$$\lambda_{np}(y) = \frac{255}{2\tau} \left[e^{\eta} \left(1 - \alpha \frac{\sin^2 2\phi}{2} \right) + \frac{1}{y^3} + \frac{6}{y^4} + \frac{12}{y^5} \right] + \frac{255 \sin^2 2\phi}{4\tau} e^{\eta} \int_0^\infty dqy^2 (q + 1)^2 e^{-qy} g(q, y).$$
in units of sec\(^{-1}\). Following Ref. [10], the neutron abundance, until the freeze-out of weak interactions, is expressed in terms of the neutron to proton decay rate, \(\lambda_{np}\) of Eq. (15) as

\[
X_{\text{neutrons}} = \int_0^\infty dw \, e^{w+\eta} \frac{1}{1+e^{w+\eta}} 2^{-\delta m^2_{\nu} \phi} (1+e^{-\eta})\lambda_{np}(w) \int_0^\infty du \, e^{u+\eta} \delta m^2_{\nu} \phi - 1.
\]

The quantity \(X_{\text{neutrons}}\) is, therefore, a function of \(\lambda_{np}\) and, consequently, of the occupation factors \(f_l\), which contain the information about the mixing between active and sterile neutrinos. The next step consists on the calculation of primordial nuclear abundances. The method to calculate the BBN abundances was presented in Ref. [11]. It is a semi-analytic approach based on the balance between production and destruction of a given nuclear element, which requires the knowledge of \(X_{\text{neutrons}}\). For details we refer the reader to [11].

The above presented framework shows that the calculation of primordial abundances may indeed be taken as a tool to test leptonic mechanisms, like the mixing between sterile and active neutrinos, as it has been pointed out by Kishimoto et al. [2].

IV. RESULTS AND DISCUSSION

To perform the calculations we have adopted the oscillation parameters determined from SNO, SK and CHOOZ measurements [29]. The mixing with the sterile neutrino, represented by the mixing angle \(\phi\), is taken as an unknown variable, within the limits fixed by the LSND data [22, 23, 24]. The mass splitting \(\delta m^2_{1}\) (or \(\delta m^2_{13}\)) was taken from the analysis given by Keränen et al. [2]. The actual value is fixed at \(\delta m^2\) = \(10^{-11}\) eV\(^2\). We have then calculated the neutron abundance, by applying the formalism of the previous section. The primordial abundances of D, \(^{3}\)He, \(^{4}\)He and \(^{7}\)Li, have been calculated as described in [11]. The baryonic density \(\Omega_B h^2\) (see Ref. [30]) was varied within the limits \(0.010 < \Omega_B h^2 < 0.035\). Concerning the value of \(\eta\) we have varied it in the interval determined by the allowed values of the potential lepton number, \(\mathcal{L} = 2L_{\nu_e} + L_{\nu_x} + L_{\nu_x}\), that is \(0 \leq \mathcal{L} \leq 0.4\). In the previous calculations we have adopted the values \(0.0 \leq \eta \leq 0.07\) which are consistent with the baryonic density \(0.0 \leq L_{\nu_x} \leq 0.05\).

To determine the allowed values of the mixing angle \(\phi\) we have performed a \(\chi^2\)-minimization, after computing the primordial abundances. The data have been taken from Refs. [19, 20, 21]. The results are shown in Figure 1, insets 1.(a) and 1.(b). The curves are the contour plots for results with comparable values of \(\chi^2\). Figure 1.(a) shows the results obtained by the \(\chi^2\)-analysis of theoretical and experimental values [19, 20, 21], including data on \(^{7}\)Li. Figure 1.(b) shows the results of the statistical analysis performed with the exclusion of \(^{7}\)Li. In the first case, Figure 1.(a), the absolute minimum is located at \(\sin^2 2\phi = 0.000 \pm 0.026\), and \(\Omega_B h^2 = 0.0253 \pm 0.0015\), both set of results have been obtained by using the solution [19] for the occupations. The smallness of the mixing angle does not contradict the uncertainties inherent to the physics of \(^{7}\)Li in the interior of the stars, i.e; the turbulent transport in the radiative zone of stars. In contrast, the situation improves if the data on \(^{7}\)Li are removed at the time of performing the statistical analysis (Figure 1.(b)). For this case, the best value of the mixing angle is \(\sin^2 2\phi = 0.018 \pm 0.098\), and the baryonic density corresponding to the minimum, \(\Omega_B h^2 = 0.0216 \pm 0.0017\), is indeed consistent with the WMAP data. The anomalous feature associated with the inclusion of \(^{7}\)Li in the set of data persists if other elements are removed from the data. We have verified it by systematically removing, one at the time, the abundances of D, \(^{3}\)He, and \(^{4}\)He, and keeping the data on \(^{7}\)Li. In all cases the location of the minimum lies closer to the one of Figure 1.(a). For the case of inverse mass hierarchy the occupation factor \(^{7}\)Li is strongly constrained by the value of \(\theta_{13}\) and the difference with respect to the thermal occupation factor vanishes. It means that the contour plot shows, for the inverse mass hierarchy, parallel lines to the vertical axis (\(\sin^2 2\phi\))., since all possible values of \(\sin^2 2\phi\) are allowed by Eq. (10) when \(\sin^2 \theta_{13} \to 0\). For both the normal and inverse hierarchy solutions, Eq. (9) and (11), particle number conservation was enforced, on the average, by the factor \(\mu_P\) (see its definition following Eq. (4)). Because of the high temperature we have not included collision terms in Eq. (4).

Similar results, related to the abundance of \(^{7}\)Li, have been obtained in the calculations of nuclear abundances in the context of cosmological models [32, 33, 34], and also in the case of a two neutrino mixing [30].

To investigate the dependence of the above results on the parameter \(\eta\), we show in Figure 2 the values of the mixing angle \(\sin^2 2\phi\), obtained from the \(\chi^2\) analysis, as functions of the chemical potential. The calculations have been performed by excluding the data on \(^{7}\)Li. Our present results are very much in agreement with the results reported in Ref. [10], since the values shown in Figure 2 display a small variation in a relatively large domain of values of \(\eta\). Finally, the best values of the baryonic density and the mixing angle, both with and without including \(^{7}\)Li in the analysis, are shown in Table 1 as functions of \(\eta\). In agreement with the expectations of [10], and with our own, both
FIG. 1: Statistical analysis of the calculated nuclear abundances. The curves are the contour plots for results with comparable χ^2 values. The contours correspond to increasing values of χ^2, from bottom to top. The calculations were performed by taking the sterile-active neutrino mixing, $\sin^2 2\phi$, and the baryonic density, $\Omega_B h^2$, as variables. The inset 1.(a) shows the results obtained by the χ^2 analysis of theoretical and experimental values, including data on 7Li. Inset 1.(b) shows the results of the statistical analysis performed with the exclusion of 7Li. The results shown in the figure have been obtained with the solution corresponding to the normal mass hierarchy.

Table of results do not differ much, or at least they do not show a pronounced dependence, with respect to the chemical potential.

η	$\Omega_B h^2$	$\sin^2 2\phi$	$\Omega_B h^2$	$\sin^2 2\phi$
0.00	0.0253 ± 0.0015	0.000 ± 0.026	0.0216 ± 0.0017	0.018 ± 0.098
0.01	0.0250 ± 0.0014	0.000 ± 0.010	0.0216 ± 0.0020	0.002 ± 0.022
0.02	0.0248 ± 0.0014	0.000 ± 0.015	0.0218 ± 0.0020	0.004 ± 0.030
0.03	0.0246 ± 0.0012	0.000 ± 0.034	0.0216 ± 0.0018	0.008 ± 0.080
0.04	0.0244 ± 0.0016	0.000 ± 0.039	0.0216 ± 0.0019	0.018 ± 0.090
0.05	0.0244 ± 0.0016	0.000 ± 0.056	0.0216 ± 0.0017	0.052 ± 0.090
0.06	0.0244 ± 0.0016	0.000 ± 0.101	0.0216 ± 0.0018	0.108 ± 0.090

TABLE 1: Best values of the mixing angle and of the baryonic density, determined from the χ^2 analysis of the calculated abundances, as functions of the parameter η. Left and right sides of the table show the results obtained with and without considering the data on 7Li, respectively.
FIG. 2: Best values of the mixing angle, $\sin^2 2\phi$, determined from the χ^2 analysis of the calculated abundances, as functions of the parameter η

V. CONCLUSIONS

In this work we have calculated BBN abundances, by including the mixing between active and sterile neutrinos. As pointed out by Kishimoto et al, the BBN abundances are sensitive to active-sterile neutrino mixing, indeed. Kishimoto et al. [2] have demonstrated the sensitivity of the 4He abundance on the distortion of the light neutrino spectrum produced by the mixing with a sterile neutrino. In our case, the statistical analysis of the compatibility between theoretical and observed nuclear abundances, indicates the existence of a clear sensitivity of the results upon active-sterile neutrino mixing, too. In performing our analysis, we have considered the WMAP baryonic density, together with the LSND constraint on the sterile-active neutrino mixing. The comparison between calculated and observed abundances indicates some sort of anomaly in the abundance of 7Li. Similar difficulties, related to the determination of the abundance of 7Li, have been reported previously [31], in the context of the physics of the interior of stars. We found that the consideration of the abundance of 7Li, in presence of active-sterile neutrino mixing, excludes the WMAP value of the baryonic density. This exclusion is not observed when the other nuclear abundances are not included in the analysis.

VI. ACKNOWLEDGEMENTS

This work has been partially supported by the National Research Council (CONICET) of Argentina. Discussions with Professor Jukka Maalampi (University of Jyväskylä) are gratefully acknowledged.

[1] C. J. Smith, G. M. Fuller, C. T. Kishimoto and K. N. Abazajian, Phys. Rev., D74, 085008 (2006)
[2] C. T. Kishimoto, G. M. Fuller and C. J. Smith, Phys. Rev. Lett. 97, 141301 (2006)
[3] M. Cirelli, G. Marandella, A. Strumia and F. Vissani, Nucl. Phys. B. 708, 215 (2005)
[4] Y. Z. Chu and M. Cirelli, Phys. Rev. D 74, 085015 (2006)
[5] M. Cirelli, astro-ph/0410122
[6] Ya.B. Zeldovich and M. Yu. Khlopov, Usp. Fiz. Nauk. 135, 45 (1981)
[7] M. Yu. Khlopov and S. T. Petcov, Phys. Lett. B. 99, 117 (1981)
[8] M. Yu Khlopov, Cosmoparticle Physics. Ed. World Scientific. (1999).
[9] P. Keränen, J. Maalampi, M. Myyryläinen and J. Ritinen, Phys. Lett. B 574, 162 (2003)
[10] J. Bernstein, L. Brown and G. Feinberg, Reviews of Modern Physics, 61, 25-39 (1989)
[11] R. Esmailzadeh, G. Starkman and S. Dimopoulos., Astrophysical Journal, 378, 504-518 (1991)
[12] K. Abazajian, N. F. Bell, G. M. Fuller, and Y. Y. Y. Wong., Phys. Rev. D72, 063004 (2005)
[13] N. F. Bell, R. R. Volkas and Y. Y. Y. Wong, Phys. Rev. D59, 113001 (1999)
[14] S. Hannestad, J. Cosmol. Astropart. Phys. 05, 004 (2003).
[15] U. Seljak et al., Phys. Rev D71, 103515 (2005)
[16] G. Steigman, hep-ph/0501100 and Phys. Scripta T 121, 142 (2005)
[17] V. Barger, J. P. Kneller, H. S. Lee, D. Marfatia and G. Steigman, Phys. Lett. B 566, 8 (2003)
[18] V. Barger, J. P. Kneller, P. Langacker, D. Marfatia and G. Steigman, Phys. Lett. B 569, 123 (2003)
[19] M. Pettini and D. V. Bowen, Astrophysical Journal, 560, 41 (2001); J. M. O’Meara et al., Astrophysical Journal, 552, 718 (2001); D. Kirkman et al., astro-ph/0302006; S. Burles and D. Tytler, Astrophysical Journal, 499, 699 (1998); S. Burles and D. Tytler, Astrophysical Journal, 507, 732 (1998); N. Critten et al., Mont. Not. Roy. Ast. Soc., 355, 1042 (2004); J. M. O’Meara et al., Ast. Phys. J. Lett., 659, 61 (2006); C. Oliveira and G. Hebrard, astro-ph/0609236
[20] Y. Izotov and T. Thuan, Astrophysical Journal, 500, 188 (1998); Y. Izotov et al., Astrophysical Journal Suplement, 108, 1 (1997); M. Peimbert et al., Astrophysical Journal, 541, 688 (2000); K. A. Olive and G. Steigman, Astrophysical Journal Supplement, 97, 49 (1995); T. Bania, R. Rood and D. Balser, Nature 415, 54 (2002)
[21] Ryan et al., Astrophysical Journal, 523, 654 (1999); P. Bonifacio et al., MNRAS, 292, 1 (1997); P. Bonifacio and P. Molaro, MNRAS, 285, 847 (1997); P. Bonifacio et al., Astron. Astrophys., 390, 91 (2002); M. Asplund et al., Astrophysical Journal, 644, 229 (2006); A. Boesgaard, M. Novicki and A. Stephens, IAU Symposium, 29-37 (2005)
[22] K. Eitel, New J. Phys., 2, 1 (2000)
[23] C. Athanassopoulos et al., Phys. Rev. Lett., 75, 2650 (1995)
[24] G. McGregor, AIP Conf. Proc. 655: Particle Physics and Cosmology, p. 58, edited by J. F. Nieves and C. N. Leung (2003)
[25] D. Spergel et al., Astrophys. J. Suppl. 170, 377 (2007)
[26] A. Bandayopadhyay, S. Choubey, S. Goswami and K. Kar, Phys. Rev. D 65, 073031 (2002)
[27] D. P. Kirilova, JINR-E2-88-301 (1988)
[28] A. D. Dolgov, S. H. Hansen and D. V. Semikoz, Nucl. Phys., B503, 426-444 (1997)
[29] Q. R. Ahmad et al. [SNO Collaboration], Phys. Rev. Lett. 87, 071301 (2001); S. Fukuda et al. [SuperKamiokande Collaboration], Phys. Rev. Lett. 86, 5651 (2001); M. Appollonio et al., Phys. Lett. B 466, 415 (1999)
[30] O. Civitarese and M. E. Mosquera, Int. J. Mod. Phys. E (2007) (in press)
[31] O. Richard, G. Michaud and J. Richer, Astrophys. J., 619, 598 (2005)
[32] A. Cuoco et al., Int. J. Mod. Phys. A19, 4431 (2004)
[33] A. Coc, E. Vangioni-Flam, P. Descouvemont, A. Adahchour and C. Angulo, Astrophys. J. 600, 544 (2004)
[34] S. Landau, M. E. Mosquera and H. Vucetich, Astrophys. J. 637, 38 (2006)