High-Spin Iron(VI), Low-Spin Ruthenium(VI), and Magnetically Bistable Osmium(VI) in Molecular Group 8 Nitrido Trifluorides NMF₃

Tony Stüker,[a] Xiya Xia,[a] Helmut Beckers,[a] and Sebastian Riedel*[a]

Abstract: Pseudo-tetrahedral nitrido trifluorides N≡MF₃ (M=Fe, Ru, Os) and square pyramidal nitrido tetrafluorides N≡MF₄ (M=Ru, Os) were formed by free-metal-atom reactions with NF₃ and subsequently isolated in solid neon at 5 K. Their IR spectra were recorded and analyzed aided by quantum-chemical calculations. For a d⁰ electron configuration of the N≡MF₃ compounds in C₃ᵥ symmetry, Hund’s rule predict a high-spin ⁴A₂ ground state with two parallel spin electrons and two degenerate metal d(δ)-orbitals. The corresponding high-spin ¹A₂ ground state was, however, only found for N≡FeF₃, the first experimentally verified neutral nitrido Fe⁶⁺ species. The valence-isoelectronic N≡RuF₃ and N≡OsF₃ adopt different angular distorted singlet structures. For N≡RuF₃, the triplet ⁴A₂ state is only 5 kJ mol⁻¹ higher in energy than the singlet ¹A₂ ground state, and the magnetically bistable molecular N≡OsF₃ with two distorted near degenerate ¹A and ⁴A electronic states were experimentally detected at 5 K in solid neon.

Introduction

The group 8 transition metals have eight electrons in their valence shell, but in addition to the well-known strong oxidizers RuO₂ and OsO₂, only Os has a variety of different complexes in oxidation state VIII.[11] While the oxidation state VI is abundant for ruthenium and osmium, the complex anion [FeO₂]²⁻ was the only known Fe⁶⁺ compound for a long time.[2] In 2007 the neutral, dioxo Fe⁶⁺ peroxide O₂Fe(η²-O₂) was reported to be formed from molecular FeO₂ and O₂ under cryogenic conditions.[12] Tetrahedral Fe⁶⁺O₂ was shown to be metastable with respect to O₂Fe(η²-O₂) in the gas phase,[16] and the oxidation state VII is so far the highest oxidation state of iron observed experimentally for the tetrahedral tetroxo anion FeO₄⁻[17] in addition to oxygen, nitrogen ligands are also able to stabilize high oxidation states of iron. Such terminal iron-nitrido complexes have already been the subject of several up-to-date reviews.[18] We restrict ourselves to some representative examples such as the square-pyramidal [(TPP)FeN]=(TPP⁺=tetraphenylporphyrinato) dication, characterized by Raman spectroscopy,[19] the tetragonal nitrido Fe⁶⁺ dication [(Me₆cycac)FeN]²⁺ (Me₆cycac)⁻=N,N,N-tri-methyl-1,4,8,11-tetraazacyclotetra-decane-1-acetate, confirmed by Mössbauer and X-ray spectroscopy,[20] the pseudo-tetrahedral [PhB(PCH₃)₂Pr₂]FeN⁺ and, very recently, the crystal structure of a thermally stable four-coordinate Fe⁶⁺ bis(imido) cation, [[H₂B(MesIm)₂]Fe(=NMesIm)]⁺ ([H₂B(MesIm)]=dihydrios-1-(2,4,6-trimethylphenyl)imidazol-2-ylidene)borato).[10]

Nitrido iron complexes play an important role in a number of chemical and biological processes, for example in the catalytic cycle of cytochrome P450,[11] in the FeMo cofactor of the nitrogenase enzyme[19] and in the Haber–Bosch process.[12] In analogy to the active iron surface nitrile in the Haber–Bosch process, ammonia synthesis has also successfully achieved under mild conditions using the ruthenium pincer nitrido complex [(PNP)RuN] (PNP=([CHₓCHₓPₓBuₓ]N))⁻.[13] Quite recently osmium(VI) nitrides have emerged as a new class of potential anticancer and antimumor agents.[14] Examples include [(bipy)Cl₂OsN⁺][15] (bipy=2,2'-bipyridine)[16] and [(sap)(py)ClOsN⁺][17] (sap=deprotonated N-salicylidene-2-amino)enophenol).[18] The wide field of possible applications of group 8 nitrido complexes underline the importance of a deeper understanding of the properties of this class of compounds. Especially the nitrido metal–ligand multiple bond and the valency of the metal are key factors for the reactivity and structure of these compounds.

In particular, there has been a tremendous progress in the synthesis and the chemistry of molecular Fe⁶⁺ and Fe⁴⁺ nitrido compounds in the recent years that have been described in detail in several review articles.[6] They are supported by sterically encumbered macrocyclic or chelating ligands involving nitrogen or N-heterocyclic carbene donors based on, for example porphyrin or nitrogen- and boron-anchored tri- and tetapodal chelates to protect the reactive Fe≡N moiety (see Scheme 1 for representative examples). The most common route to these nitrido compounds is the photolysis of an iron azido precursor and concomitant N₂ evolution, whereby the

[6] T. Stüker, Xiya Xia, Dr. H. Beckers, Prof. S. Riedel
Institut für Chemie und Biochemie, Anorganische Chemie
Freie Universität Berlin
Fabeckstr. 34/36, 14195 Berlin (Germany)
E-mail: s.riedel@fu-berlin.de

[a] Supporting information for this article is available on the WWW under https://doi.org/10.1002/chem.202101404

© 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
strong Fe

and contradictory. Two questions arise here: what is the nature of the compounds upon iron oxidization is, however, still very limited. Our knowledge about the behavior, the nature, and quantum mechanical methods. Investigated in detail using a variety of experimental and theoretical methods.

one-electron oxidation of the Fe

ground-state electron configuration of Fe

Note that the d

antibonding Fe

N orbitals. This results in a relatively small d

N bond order in trigonal Fe-

N distances (Table S1 in the Supporting Information) and Fe

N distances (Scheme 1, 157(2) pm) with a singlet 3d

configuration.

In contrast, the formal Fe=\text{N} bond order in trigonal Fe-nitrido complexes does not change by increasing the iron oxidation state from singlet Fe

6 to triplet Fe

5, making predictions about the bond lengths less intuitive as other factors such as the geometry and the nature of the ligands come to the fore. X-ray structure analysis of the Fe\text{N}\text{Fe}

derivatives of the two redox pairs [Ph\text{B}(\text{BuIm})\text{FeN}]

(Scheme 1)\text{mes}

and \text{[TIMMN}\text{mes}\text{FeN}]

(Scheme 1)\text{mes}

show different trends. While the Fe--N length decreases slightly from 151.2(1) pm to 150.6(2) pm for the former, it increases from 151.3(3) pm to 152.9(1) pm for the latter. The different trend in these Fe\text{N}\text{Fe}

distances during oxidation of Fe\text{N}

to Fe

was attributed to a possibly stronger interaction between the ligand N anchor with the more electrophilic Fe

center in \text{Fe-N\text{Fe}}

\text{N}

configuration. On the other hand, also coordinated solvent molecules can make it difficult to compare the Fe=\text{N} distances of different complexes, since this leads to shortened experimental Fe\text{N}\text{Fe}

distances.

In this work, we describe the preparation of the molecular, neutral nitrido trifluorides NM\text{F}_3 of the group 8 metals M=Fe, Ru, Os from IR laser ablated metal atoms and gaseous NF\text{3} and their IR-spectroscopic characterization under cryogenic conditions in a noble gas matrix. These trigonal nitrido trifluorides bear genuine M=\text{N} triple bonds, unsupported by sterically encumbered electron donor substituents with the innocent fluoride ligand. The M=\text{N} stretching vibration of these derivatives is energetically sufficiently isolated from other fundamentals. Hence, it is considered to be a reliable experimental signature for M--N bond strength and M--N bond length in these nitrilo complexes. This analysis overcomes the difficulties described above and also has the advantage that the experimental results can be supported and analyzed by reliable and accurate quantum mechanical calculations of these molecular, neutral compounds. Furthermore, this analysis enables a direct comparison of experimental M=\text{N} stretching frequencies of M=Fe

and its heavier group 8 congeners with those of the analogous nitrido trifluorides \text{N}\text{MF}_3 of group 6 (M=Cr, Mo, W)\text{F}_3 and group 9 (Co, Rh, Ir)\text{F}_3 transition metals which have been studied previously. To the best of our knowledge, N=Fe\text{F}_3 is the first experimentally verified neutral, nitrido iron(VI) complex. In addition, we have evidence for the formation of NM\text{F}_4 (M= Ru, Os).

It should be emphasized that the known iron nitrido species can be divided into trigonal (pseudo-tetrahedral) and tetragonal (pseudo-octahedral) complexes (Scheme 1), since these two groups show different ligand field splitting of the Fe\text{3d}

orbitals.\text{trans}

In a trigonal \text{C}_3v ligand field there are two purely Fe=\text{N} nonbonding \text{e}^\text{t}-type orbitals (d_{xy}, d_{xz}), which allow the accommodation of up to four electrons energetically below the antibonding Fe=\text{N} orbitals.\text{mes}

This results in a relatively strong Fe=\text{N} triple bond, for example, low spin Fe\text{V}

derivatives, for which very short experimental Fe--N distances (Table S1 in the Supporting Information) and Fe--N stretching vibrations at 164(1)-164(2) pm\text{v}\text{H}

were found.\text{mes}

Conversely, in the tetragonal \text{C}_4v ligand field there is only one purely nonbonding (d_{xy}) orbital with respect to the Fe=\text{N} bond energetically below the \text{π}^\text{antibonding} (d_{xy}, d_{xz}) MOs.\text{mes}

A d-electron count larger than two results here in the occupation of \text{π}(\text{Fe=\text{N}}) orbitals, and, accordingly, Fe\text{II} (d^2) and Fe\text{I} (d^3) nitrido complexes in tetragonal symmetry are generally thermally less stable and more reactive.\text{mes}

Note that the d\text{I} ground-state electron configuration of Fe\text{I} nitrido complexes is subject to a Jahn–Teller distortion.\text{mes}

To overcome the thermal instability and high reactivity of such tetragonal Fe\text{I} nitride complexes their Fe=\text{N} distances and stretching frequencies were obtained by a variety of spectroscopic methods either at cryogenic temperatures or at the gas phase (for representative examples, see Table S1). As expected, the experimental Fe--N distances for the two tetragonal complexes [Fe\text{V} (\text{N})(\text{MePy}_{2}\text{tacon})]^{2+} (Scheme 1, 3d\text{I} configuration, Fe--N: 164(1) pm)\text{mes}

and [Fe\text{VI} (\text{cyclam-ac})]^{2+} (Scheme 1, cyclam-ac= 1,4,8,11-tetraazacyclotetradecane-1-aceto, Fe--N: 161(1) pm),\text{mes}

estimated from extended X-ray absorption fine structure (EXAFS) analysis, were found to be longer than the Fe--N distance of the analogous Fe\text{VI} dication [Fe\text{V} (\text{N})(\text{MePy}_{2}\text{cyclam-ac})]^{2+} (Scheme 1, 157(2) pm) with a singlet 3d\text{I} configuration.\text{mes}

Strong Fe\text{II} derivatives of the two redox pairs [Ph\text{B}(\text{BuIm})\text{FeN}]\text{mes}

(Scheme 1)\text{mes}

and [TIMMN\text{mes}\text{FeN}]\text{mes}

(Scheme 1)\text{mes}

The reactivity of these high-valent iron nitrido compounds in chemical transformations have been thoroughly explored,\text{trans}

their structures, and their electronic properties have been investigated in detail using a variety of experimental and quantum mechanical methods.\text{trans}

While these studies contributed greatly to the understanding of the iron nitride bonding motif, our knowledge about the behavior, the nature, and bond-strengths of the Fe=\text{N} triple bond in high valent iron compounds upon iron oxidization is, however, still very limited and contradictory. Two questions arise here: is there a nitrido wave\text{trans}

from which the nitrido ligand gives up its innocent behavior,\text{trans}

and does the Fe=\text{N} bond become stronger and stronger through oxidation of the iron center?

Scheme 1. Representative examples of ligand-supported tetragonal (A\text{mes}

and B\text{mes}

) and trigonal (C\text{mes}

and D\text{mes}

) coordinated high-valent iron nitrido complexes.
For an electronic metal d configuration of these N_xMF_y compounds in C_{3v} symmetry Hund’s rule predict that two parallel spin electrons occupy the degenerate $M(d_{x^2-y^2})$ orbitals of e-type symmetry resulting in a non-degenerate high-spin $^3\text{A}_2$ ground state. Although this $^3\text{A}_2$ state is not Jahn–Teller (JT) active, an electronic e configuration can generally lead to a JT–Teller distorted ground state as a result of a strong pseudo-Jahn–Teller (PJT) mixing of two excited singlet electronic states 27 This is because an electronic e configuration in C_{3v} symmetry, in addition to the $^3\text{A}_2$ state, is generally associated with two electronic singlet states $^1\text{A}_1$ and ^1E. These electronic states are reminiscent of the well-known singlet excited states of molecular oxygen. $^{[28]}$

It has been noted that the JT stabilization energy of the excited ^1E state is usually much weaker than the PJT stabilization resulting from mixing of the two excited $^1\text{A}_1$ and ^1E states. The stabilization energy of this PJT interaction can be so large that the lower of these excited states crosses the $^3\text{A}_2$ potential energy surfaces and become the distorted global minimum configuration. $^{[27, 29]}$ We observed such a “hidden” PJT distortion for NiRuF_3 and NiOsF_3 but not for NF_xF_y. Note that this distortion is also associated with a PJT-induced triplet-singlet spin crossover. $^{[27, 29]}

Results

Vibrational wavenumbers of group 8 nitrito trifluorides NM^{15}F_3 and tetrafluorides NM^{18}F_4

The IR spectra of the novel group 8 metal nitrito trifluorides, N_xMF_y ($M = \text{Fe, Ru, Os}$) were recorded from the products obtained from laser-ablated free metal atoms with NF$_3$ seeded in a 1:1000 excess of neon after their deposition at 5 K on a gold-plated copper mirror (for experimental details see the Supporting Information). According to density functional theory calculations, the direct insertion of the metal atoms into an F–N bond of NF$_3$ to yield $\text{F}_x\text{N}–\text{MF}_y$, and the subsequent fluorine migration from nitrogen to the metal center to $\text{FN}–\text{MF}_2$ is highly exothermic for all three metals (Figure 1, Table S2).

![Figure 1](image1.png)

Figure 1. Stationary points on the reaction coordinate obtained at the BP86 level of theory for the formation of the nitrito metal complexes N_xMF_y starting from the free metal atoms M and NF$_3$ (C_{3v}, $^1\text{A}_1$). See Table S2 for more details.

The rearrangement of the fluorimido complexes to the hexavalent nitrito trifluorides N_xMF_3 is found to be considerably exothermic for osmium ($\Delta H = -208 \text{ kJ mol}^{-1}$), ruthenium ($\Delta H = -146 \text{ kJ mol}^{-1}$), and iron ($\Delta H = -78 \text{ kJ mol}^{-1}$) at the BP86/def2-QZVP level of theory (details see the Supporting Information). Experimental IR spectra are shown from the deposits obtained in solid neon for the iron (Figures 2 and S1), ruthenium (Figures 3 and S2), and the osmium experiments (Figures 4 and S3), respectively. Experimental band positions are compared

![Figure 2](image2.png)

Figure 2. IR absorption spectra obtained from co-deposition of laser-ablated iron with 0.1% $^{15}\text{NF}_3$ (bottom) and 0.1% $^{18}\text{NF}_3$ (top) in solid Ne. Bands labeled with A, B and C are assigned to NFeF$_3$ (Table 1). Band A is enhanced by a factor of five. Known bands of binary iron fluorides $^[26]$ are labeled, and an unassigned band showing no ^{15}N isotopic shift is labeled with a hash mark. The bands associated with NF$_3$ and NF$_2$ are marked with circles and asterisks, respectively. $^{[26]}$ For more details, see Figure S1.

![Figure 3](image3.png)

Figure 3. IR absorption spectra obtained from co-deposition of laser ablated ruthenium with 0.1% $^{15}\text{NF}_3$ (bottom), and $^{18}\text{NF}_3$ (top) in solid Ne, respectively. Bands labeled A to C are attributed to NRuF_3 and A’ and B’ are due to NRuF_2. Unknown bands are labeled by a pound and a plus sign, respectively. $^{[26]}$ For more details, see Figure S2.

![Figure 4](image4.png)

Figure 4. IR absorption spectra of laser ablated osmium co-deposited with 0.1% $^{15}\text{NF}_3$ in solid Ne (bottom), with 0.1% $^{18}\text{NF}_3$ in Ne (top). Bands labeled A–D are attributed to NOsF$_3$ (A) and A’–D’ to NOsF$_2$ (A’). The bands marked with a pentagram sign are binary osmium fluorides. The bands associated with NF$_3$, NF$_2$, and NF$_2$ are marked with squares, circles, and asterisks, respectively. $^{[26]}$ For more details see Figure S3.
with predicted ones from quantum-chemical calculations in Tables 1 and S4 (for a detailed band assignment refer to the Supporting Information). The formation of molecular NFeF3 (C3v) is clearly proved by the assignment of all its stretching vibrations marked A (ν(NF3): 946.4 cm⁻¹), B (ν(NF3): 766.8 cm⁻¹), and C (ν(NFeF3): 658.8 cm⁻¹) in Figure 2 (Table 1). Bands at 743.6/744.7, 752.6 and 785.1 cm⁻¹ were assigned to the known molecular binary iron fluorides 32FeF2, 33FeF2, and 34FeF2 respectively. Their high intensity and the high yield of these binary fluorides compared to the NFeF2 product bands indicate the lower stability of NFeF3 under the harsh conditions of the laser ablation process. The spectra recorded in the rubidium experiment (Figure 3), clearly revealed the presence of two different nitro-rubidium complexes, finally assigned to NRuF3 (C2v) and NRuF5 (C2v). The characteristic Ru–N stretching bands of NRuF3 (C2v) and NRuF5 (C2v) are labeled A (1105.4 cm⁻¹), NRuF3 and A' (1098.5 cm⁻¹), NRuF5 in Figure 3. The RuF3 stretching modes of C3v symmetric NRuF3 split into three modes. The strong antisymmetric F–Ru–F appearing at 668.5 cm⁻¹ (labeled B in Figure 3) and likely overlaps with the nearby weaker F–Ru band. The symmetric F–Ru–F mode is attributed to the band labeled C in Figure 3 at 635.8 cm⁻¹ (Table 1).

For NRuF4 only the strongest RuF4 stretching band, the degenerate e-type mode could safely be assigned to the band labeled B' in Figure 3 centered at 700.0 cm⁻¹.

In the spectra obtained from the reaction of osmium atoms with isotopic labeled 119/121Os: two OsF2 stretching bands appeared at 1104.6 and 1086 cm⁻¹, which are labeled A and A', respectively, in Figure 4, and which are finally assigned to different “spin-isomers” of NOsF2, in near-degenerate singlet ‘A’ and triplet ‘A’ electronic states (Table 1). In the 119/121Os experiment A is observed at 1140.1 cm⁻¹ (Figure 4), while A' is overlapped by a stronger band due to the 19F nuclear radical at 1120.8 cm⁻¹. All three Os–F stretching bands of singlet NOsF2 (‘A’) are assigned (Table 1) and labeled B (ν(OsF2): 686.0 cm⁻¹), C (ν(OsF2): 641.3 cm⁻¹) and D (ν(OsF2): 632.3 cm⁻¹) in Figure 4, respectively. Bands labeled B', C' and D' at 675.8 cm⁻¹, 660.5 cm⁻¹ and 607.4 cm⁻¹, respectively, are assigned to the three Os–F stretching modes of triplet NOsF2 (‘A’, Table 1). Finally, a band at 689.6 cm⁻¹ (Figure 4) is tentatively assigned to the strongest vibrational mode of NOsF2 (C4v, Table 1). The tetrafuorides N=MF3 (M=Ru, Os) are likely formed by the exothermic addition of a fluoride atom to N≡MF3 (Table S2).

Pseudo-Jahn–Teller distortion of molecular group 8 nitrido fluorides NM3F2

The group 8 nitrido fluorides NM3F2 adopt metal d⁷ configurations, for which Hund’s rule predicts a high-spin A1 ground state in an undistorted C3v symmetry and two parallel spin electrons in the twofold degenerate e(dₓ²−y²)-orbital (|eₓ|²|eᵧ|²), labeled 9e for NFeF3 in the Supporting Information Figure S6. Three e terms (four states) can be formed, A2 (|eₓ|²|eᵧ|² + |eᵧ|²|eₓ|²), A2 (|eₓ|²|eᵧ|² − |eᵧ|²|eₓ|²) and E (|eₓ|²|eᵧ|² + |eᵧ|²|eₓ|²). Due to the nondegenerate nature and totally symmetric charge distribution of the A2 state no Jahn–Teller distortion is expected. Other distributions of the electrons, as outlined above, result in configurations with lower spin and the absence of low-laying triplet excited states rule out obvious ground state pseudo-Jahn–Teller distortions.

Nevertheless, as shown in Figure 5 and in agreement with experimental vibrational assignments, all four NM3F2 species possess surprisingly different structures and the C3v symmetric ground state was only verified for NFeF3. In case of NRuF3, extensive CCSD(T)/CBS calculations (Table S10) find the high symmetric A1 state is just about 5 kJ mol⁻¹ higher than the distorted A1 ground state. According to our experimental data, NOsF2 features two quasi-degenerate, distorted structures in A1 and A2 electronic states, separated by only ΔEₐₐ₋ₐ = −1.3 kJ mol⁻¹ (CCSD(T)/CBS, Table S11).

To elucidate these findings, adiabatic potential energy surface (APES) scans were carried out using state-averaged complete active space self-consistent field calculations by distributing eight electrons in the eight molecular orbitals formed by the metal (n-1)d and N(2p) orbitals (SA-CASSCF(8,8)) with subsequent NEVPT2 treatment to recover dynamic correlation. Shown in Figure 6a–c are cross sections along a distortion coordinate (D) that connects the two stationary points of the

Table 1. Calculated and experimental vibrational wavenumbers (ν(N)=N in cm⁻¹) and (15/15)N isotopic shifts (Δν in parentheses) for NFeF3, NRuF3, NRuF5, NOsF2, and NOsF3.

Exp.	CCSD(T) (15/15)N	Assignment
NFeF3 (C3v, A₂)	946.4 (23.7)	NFe str., a₁
766.8/767.7 (0)	737 (0)	FeF₂ str., e
658.8 (1.1)	689 (2)	FeF₂ str., e
N²⁵RuF3 (C₂v, A₂)	1105.4 (32.7)	NRu str., a'
739 (0)	768 (0)	F–Ru str., a'
668.5 (0)	678 (0)	asym. F–Ru–F str., a'
635.8 (0)	649 (0)	sym. F–Ru–F str., a'
NOsF3 (C₂v, A₂)	1098.5 (32.5)	NRu str., a₂
701.0 (0)	711 (0)	RuF₂ str., e
689 (0)	681 (0)	RuF₂ str., a₁
632.3 (0)	652 (0)	RuF₂ str., a₂
NOsF2 (C₃v, A₁)	1140.1 (35.5)	NOs str., a'
675.8/677.0 (0)	675 (0)	OsF₂ str., a'
660.5/658.9 (0)	668 (0)	OsF₂ str., a'
607.4 (0)	614 (0)	OsF₂ str., a'
NOsF3 (C₃v, B₁)	1086.0 (36.5)	NOs str., a'
1095 (36.5)	1095 (36.5)	NOs str., a'
675.8/677.0 (0)	675 (0)	OsF₂ str., a'
660.5/658.9 (0)	668 (0)	OsF₂ str., a'
607.4 (0)	614 (0)	OsF₂ str., a'
NOsF₂ (C₃v, B₂)	1145 (36.5)	NOs str., a'
706 (0)	693 (0)	OsF₂ str., a'
635 (0)	635 (0)	OsF₂ str., a'

[a] Neon matrix; matrix sites are separated by a slash. [b] Intensities from DFT calculations available in Table S4. [c] M06-L/def2-QZVP: 785 a. (−11) [2] 703 (0) [200]. [d] 15/15N isotopic ratio: 1.0256. [e] 15/15N isotopic ratio: 1.0257. [f] NEVPT2/aug-cc-pwCVTZ-DK. [g] For the experimentally observed Ru isotope splitting see Tables S5–S7 and Figures S4 and S5. [h] Band is likely hidden by the stronger antisymmetric F–Ru–F stretching mode (a'). [i] ν(N–Os)=N in cm⁻¹, see text. [j] Not IR active. [k] Too weak or overlapped.
A' surface, at $D = 1$ and 1, respectively, via the high-symmetry C_{3v} stationary point at $D = 0$. The distortions take place along one component of the lowest (NFeF_3, NRuF_3) or imaginary (NOsF_3) degenerate e normal mode in the high-symmetry C_{3v} configuration. Therefore, mainly bond angle distortions are involved, in particular the dihedral angle $F' - M - N - F$ (α, Figure S9), and the valence angles $N - M - F'$ (β, Figure S5), and $N - M - F$ (γ). The sign of the distortion D in Figure 6 indicates a widening (positive) or closing (negative) of α. Differences in these angles and in the three nonequivalent bond distances between two localized stationary points in C_{3v} symmetry were divided into equal incremental steps and used as intermediate internal coordinates in the APES calculation for each step (Tables S14–S17). In the case of Figure 6d the distortion in the positive direction was carried out using the NOsF$_3$ $1A'$ minimum structure at $D = 1$. The graphs shown in Figure 6a–d represent the energies of the terms arising from the electronic e^2 configuration, as outlined above. They demonstrate the propensity of trigonal group 8 nitrido complexes in the oxidation state VI to be subject to a PJT distortion. Other trigonal systems displaying a $(A + E) \otimes e$ Pseudo-Jahn–Teller effect (PJTE) that is “hidden” in excited states (h-PJTE) have already been described.$^{[27a,31]}$ The condition for a distorted ground state minimum structure caused by the h-PJTE is that the PJT stabilization energy of an excited state (E_{PJT}) is larger than the energy gap Δ_0 between the ground state in the high-symmetry configuration and the PJT active excited state ($E_{\text{PJT}} > \Delta_0$, see Figure 6, a–c).$^{[16b]}$ The global minimum of the APES of NFeF$_3$ shown in Figure 6a is located at the high-symmetry point. The stationary points on the $1A'$ (blue line) surface are a local minimum ($D = 1$) and a first-order saddle point ($D = 1$) without surface crossings in between. Consistent with the experimental vibrational data the global minimum is the high symmetry configuration. The h-PJTE in the $1E$ state is not strong enough to distort the high-
symmetry configuration. The PJT stabilization energy, \(E_{\text{PJT}} \), is about 0.39 eV and smaller than the \(3\Delta_1 \) energy gap \(\Delta_0 = 1.36 \) eV. The \(\Delta_A \) minima, which features a \(\{1s_0,2p_0,3p_0\} \) electronic configuration, and the \(\Delta_A \) minima are separated by about 0.86 eV. The angular distortion from \(D = -1 \) to \(D = 1 \) at the \(\Delta_A \) surface extends from about 101°–132° (\(\alpha_1 \)), 100°–120° (\(\beta_1 \)), and 112°–104° (\(\gamma_1 \)).

The cross section of the APES of NRuF\(_3\) along the distortion coordinate from \(D = 0 \) to \(D = 1 \) illustrated in Figure 6b shows that one of the components of the \(3\Delta_1 \) term is stabilized by the strong PJT coupling with the excited \(\Delta_1 \) state. It crosses the \(\Delta_1 \) ground state of the undistorted high-symmetry configuration to produce the global minimum with a distorted structure. The triplet-singlet spin crossover is associated with an orbital disproportionation,\(^{[27b]}\) because in the distorted structure the electrons are paired in one \(e_g \) orbital \(\{1s_0,2p_0,3p_0\} \) instead of the symmetric distribution \(\{1s_1,2p_1,3p_1\} \) in the undistorted configuration. Accordingly, we find that \(E_{\text{PJT}} = 0.76 \) eV is larger than \(\Delta_0 = 0.64 \) eV. The high-spin \(\Delta_A \) state is higher in energy by only \(-0.12 \) eV and it has an energy barrier of \(-0.25 \) eV to the point of spin crossover with the low-spin \(\Delta_1 \) state.

Figures 6c and d exhibit four relevant low-lying stationary points on the \(\Delta' \) and \(\Delta'' \) APES of NOsF\(_3\). The h-PJTE in this case produces a minimum with a distorted \(\Delta' \) structure at \(D = -1 \) and accordingly, the orbital disproportionation and spin crossover leads to a \(\{1s_1,2p_1,3p_1\} \) configuration with \(E_{\text{PJT}} = 0.82 \) eV and \(\Delta_0 = 0.60 \) eV. Unlike the former two cases, the \(\Delta_A \) high-symmetry configuration of NOsF\(_3\) does not represent a minimum point, but a first order saddle point. Following the \(\varepsilon \) component of the imaginary mode in Figure 6d we find – in accordance with the CCSD(T)/CBS results – an energetically quasi-degenerate distorted \(\Delta_A \) minimum that shows orbital disproportionation, but no spin crossover about 0.1 eV (or 0.7 kJ mol\(^{-1}\)) lower than the \(\Delta_1 \) state. The energy barrier of the spin crossover point is \(-0.27 \) eV (CCSD(T)/VTZ-PP: 0.24 eV, Table S12), a significant barrier connecting both stationary points at the experimental cryogenic conditions. These findings support the observation of two different species in the experimental infrared spectra which correspond to species in different \(\Delta' \) and \(\Delta'' \) electronic states. We did not analyze the source of the distortion of the high-spin minimum (\(\Delta'' \)). But, under the premise that PJTE is the only source for symmetry breaking of non-degenerate high-symmetry states,\(^{[27b,31]}\) the source is most likely an interacting triplet \(3\Delta \) excited state.

Discussion

All metal specific bands showing a \(^{14}N\) isotopic shift were successfully assigned. Bands due to binary fluorides are always present in experiments using IR laser ablation of metals in the presence of molecular fluorides as precursors. They are likely formed by recombination of metal atoms and atomic fluoride radicals formed by thermal or photolytic decomposition of the fluoride precursor in the hot plasma plume region or by the decomposition of metal fluoride product molecules. However, the very strong NF\(_3\), precursor bands and comparatively weak NF and NF\(_2\) bands in all spectra suggest that the formation of the NF\(_3\) title product can be attributed to the reaction of M and NF\(_2\). Lower nitrido fluorides NMF\(_3\) or NMF\(_2\) could in principle also be formed through the cleavage of a metal-fluorine bond or by the reaction of metal atoms with NF or NF\(_2\) but have so far not been identified.\(^{[25,26,30c,33]}\) The addition of fluorine to NMF\(_3\) and NMF\(_2\) to yield NMF\(_2\) and also the formation of NMF\(_3\) for M = Ru and Os are calculated to be exothermic (Table S2).

As shown here, all the trinodal NMF\(_3\) species possess two equilibrium configurations with different spin multiplicities, while those of NRuF\(_3\) and NOsF\(_3\) are close in energy. Such a magnetic and structural PJT induced bistability may also be possible for ligand-stabilized trinodal d\(^2\) metal complexes. Such compounds are of interest for molecular switching, especially when symmetry breaking is involved (as for NFeF\(_3\) and NRuF\(_3\)).\(^{[34]}\)

The different stationary structures that were obtained for the group 8 NMF\(_3\) molecules shown in Figure 5 possess surprisingly different electronic configurations, as outlined above and summarized in Figure 7 (for molecular orbital plots, see Figures S6 and S8). The different \(\Delta' \) electronic ground states of NRuF\(_3\) and NOsF\(_3\) arise from the pairing of two unpaired electrons in different orbitals, which are associated with two different structural distortions. The HOMO of NRuF\(_3\) (\(\Delta' \)) is of \(\alpha' \) symmetry, which is consistent with a widening of the F–M–F angle, whereas the HOMO of NOsF\(_3\) (\(\Delta'' \)) is of \(\alpha" \) symmetry, which shows a reduction in the F–M–F angle bisected by the \(\alpha \) plane in \(C_3 \) symmetry (Figure 5). The \(\Delta'' \) metal configuration for the heptavalent tetrafluorides NRuF\(_3\) and NOsF\(_3\) is nearly the same as the \(\Delta'' \) configuration for the singly occupied MO.

The effective bond orders\(^{[35]}\) (EBOs) for NOsF\(_3\), NRuF\(_3\) and NFeF\(_3\) are 2.8, 2.7 and 2.2, respectively, which in fact corresponds to triple bonds for all these M–N bonds. The computed M–N bond lengths for the novel nitrido compounds (153 pm (FeN), 159 pm (RuN), 163–164 pm (OsN), Figure 7) are close to our published triple bond additive covalent radii: 156 pm (FeN), 157 pm (RuN) and 163 pm (OsN),\(^{[36]}\) and also the experimental M–N stretching frequencies (Table 1) support the presence of strong M–N triple bonds in the novel hexavalent nitrido complexes NM\(_2\)F\(_3\). We note that the experimental \(v(\text{FeN}) \) frequency of NFeF\(_3\) of 946 cm\(^{-1}\) (Table 1) is not well reproduced by calculations at DFT or CCSD(T) levels (Table S3) and is also
overestimated by the more sophisticated NEVPT2 multi-reference approach (ν(Fe=Fe)=1027 cm⁻¹, Table S3). On the other hand, its comparison with experimental Fe=Fe stretching frequencies for pseudo-tetrahedral N²FeL₃ complexes, previously reported at 1008 (Fe³⁺(NMe₃)(TIMENMe₃) ᵃ);¹⁴ 1028 (Fe³⁺(NPh(BuIm))₂);¹⁴ and 1034 cm⁻¹ (Fe³⁺(N)(PhB(CH₃)₂P₂)₂);¹⁴ Table S1) suggests that an increase in the ion oxidation state beyond V does not necessarily lead to a stronger Fe=Fe bond.

Table 2 shows experimental M–N stretching frequencies of molecular NMF₃ species formed by the reaction of NF₃ with laser-ablated transition metals. For the d⁶ configurations of all group 4 and group 6 nitrido trifluorides the ideal pseudo-tetrahedral C₄ᵥ symmetric arrangement was experimentally verified, since there are no electrons in the nonbonding e(π,σ,σ *) orbitals that could cause distortions. So far, no experimental data are available for the group 10 derivatives, and for the group 11 analogues only the initial metal insertion products F₃N–MF were detected after matrix deposition (irradiation of F₃NCuF led to rearrangement to metastable FN–CuF₃).²⁶

The M–N stretching normal mode of the terminal bond nitrogen ligands of the nitrido trifluorides can regarded to be a good approximation as an almost pure and uncoupled metal–nitrogen stretching normal mode of the terminally bonded M–N bond. The NM Fet₂⁻ configuration of NRhF₃ and Ni₃F₃ leads to a Jahn–Teller distorted spin doublet ground states in C₄ᵥ symmetry.²⁶ So far, no experimental data are available for the group 10 derivatives, and for the group 11 analogues only the initial metal insertion products F₃N–MF were detected after matrix deposition (irradiation of F₃NCuF led to rearrangement to metastable FN–CuF₃).²⁶

The M–N stretching fundamental of the nitrido trifluorides can be assigned to an undistorted C₄ᵥ structure in a non-degenerate ᵃ叁 electronically degenerate state. For M=Fe and Ru the negative charge at the nitrogen atom leads to a Jahn–Teller distorted spin doublet ground states in C₄ᵥ symmetry.²⁶ So far, no experimental data are available for the group 10 derivatives, and for the group 11 analogues only the initial metal insertion products F₃N–MF were detected after matrix deposition (irradiation of F₃NCuF led to rearrangement to metastable FN–CuF₃).²⁶

The M–N stretching fundamental of the nitrido trifluorides can be assigned to an undistorted C₄ᵥ structure in a non-degenerate ᵃ叁 electronically degenerate state. For M=Fe and Ru the negative charge at the nitrogen atom leads to a Jahn–Teller distorted spin doublet ground states in C₄ᵥ symmetry.²⁶ So far, no experimental data are available for the group 10 derivatives, and for the group 11 analogues only the initial metal insertion products F₃N–MF were detected after matrix deposition (irradiation of F₃NCuF led to rearrangement to metastable FN–CuF₃).²⁶

Table 2. Experimental M–N stretching frequencies [cm⁻¹] of NMF₃ molecules formed by the reaction of NF₃ with transition metals of group 4, 6, 8, 9, and 11.

Row	Group 4	Group 6	Group 8	Group 9	Group 11
3d	596.7 (Ti, C₄ᵥ, ᵃ叁)	1015 (Cr, C₄ᵥ, ᵃ叁)	946.4 (Fe, C₄ᵥ, ᵃ叁)	FN=CoF₂ only	F₃N–CuF₃ only
4d	553.1 (Zr, C₄ᵥ, ᵃ叁)	1075 (Mo, C₄ᵥ, ᵃ叁)	1098.5 (Ru, C₄ᵥ, ᵃ叁)	1116.1 (Rh, C₄ᵥ, ᵃ叁)	1112.5 (Ir, C₄ᵥ, ᵃ叁)
5d	548.1 (Hf, C₄ᵥ, ᵃ叁)	1091 (W, C₄ᵥ, ᵃ叁)	1140.1 (Os, C₄ᵥ, ᵃ叁)	1150.4 (Ir, C₄ᵥ, ᵃ叁)	1144.6 (Ir, Ar)

[a] Ar matrix.²⁶ [b] Ar matrix.²⁶ [c] Ne matrix (this work). [d] Ne and Ar matrices.²⁶ [e] Formation of Ni≡RhF₃ along with FN=RhF₂.

Conclusion

The nitrido complexes NFeF₃, NRuF₃, Ni₃F₃, NOsF₃ (³A), NOsF₃ (³A), and NOsF₃ were shown to be formed by the reaction of free group 8 metal atoms with NF₃ and established by their characteristic IR spectra recorded in solid neon matrices. Their assignment is supported by observed ¹⁴N isotope shifts and quantum-chemical predictions. All stretching fundamentals of the NMF₃ complexes were confidently assigned. For the C₄ᵥ symmetric NRuF₃, two distinct bands were confidently assigned, whereas for NOsF₃, only the strongest band was tentatively assigned. Based on the joint experimental IR and quantum-chemical analysis the half-filled e² configuration of NFeF₃ can be assigned to an undistorted C₄ᵥ structure in a non-degenerate ᵃ叁 electronic ground state. NFeF₃ features an unprecedented low Fe=N triple-bond frequency of 946.7 (¹⁴N=Fe) and 922.7 cm⁻¹ (¹⁸N=Fe). The heavier group 8 NMF₃ homologues are subject to symmetry lowering and spin-crossover caused by a pseudo Jahn–Teller effect “hidden” in the excited states. While the electronic ground state of NRuF₃ is a structurally distorted singlet ᵃ¹Σ ground state (C₄ᵥ symmetry), for molecular NOsF₃ two coexisting distorted C₄ᵥ structures with high-spin and low-spin d² configurations (magnetic bistability) were detected at 5 K in solid neon. To the best of our knowledge, apart from O₂Fe(η⁵-C₅H₅)³– no other neutral Fe³⁺ complexes or molecular neutral complexes of Ru³⁺ have yet been reported, and after OsOF₃ (¹⁸O) NOsF₃ is the second known monomeric Os³⁺ compound.
Acknowledgements

We gratefully acknowledge the Zentraleinrichtung für Datenverarbeitung (ZEDAT) of the Freie Universität Berlin for the allocation of computing resources.111 We thank the ERC Project HighPotOx as well as the CRC 1349 (SFB 1349) Fluorine Specific Interactions – Project-ID 387284271 for continuous support. Open access funding enabled and organized by Project DEAL.

Conflict of Interest

The authors declare no conflict of interest.

Keywords: ab initio calculations · high oxidation states · matrix isolation · N ligands · transition metals

[1] a) S. Riedel, M. Kaupp, Coord. Chem. Rev. 2009, 253, 606–624; b) O. Ruff, E. Vidic, Z. Anorg. Allg. Chem. 1924, 136, 9–49; c) W. J. Casteel Jr, D. A. Dixon, H. P. A. Mercier, G. J. Schrobligen, Inorg. Chem. 1996, 35, 4310–4322; d) A. O. Chong, K. Oshima, K. B. Sharpless, J. Am. Chem. Soc. 1977, 99, 3420–3426; e) K. Muniz, F. W. Heinemann, J. Am. Chem. Soc. 2007, 129, 12955–12959; b) G. Ertl, Angew. Chem. Int. Ed. 1996, 35, 536–559.

[2] W. Huang, D.-H. Xing, J.-B. Lu, B. Long, Schwarz, W. H. Eugen, J. Li, J. Chem. Theory Comput. 2016, 12, 1525–1533.

[3] J.-B. Lu, J. Jian, W. Huang, H. Lin, J. L. Zhou, Phys. Chem. Chem. Phys. 2016, 18, 31125–31131.

[4] J. Hohenberger, K. Ray, K. Meyer, J. Am. Chem. Soc. 2016, 138, 2769–2776.

[5] a) A. D. Becke, J. Chem. Phys. 1986, 88, 2363–2372; b) F. Weigend, F. Furche, R. Ahlrichs, J. Phys. Chem. A 2001, 105, 8398–8406.

[6] a) J. F. Berry, E. Bill, E. Bothe, S. D. George, B. Mienert, F. Neese, K. Wieghardt, Science 2006, 312, 1937–1941.

[7] T. A. Betley, J. C. Peters, J. Am. Chem. Soc. 2004, 126, 6252–6254.

[8] J. L. Martinez, S. A. Lutz, H. Yang, J. Xie, J. Telser, B. M. Hoffman, V. Carta, M. Pink, Y. Lossovy, J. Smith, Science 2020, 370, 356–359.

[9] E. W. Svasits, J. H. Dawson, R. Breslow, S. H. Gellman, J. Am. Chem. Soc. 1985, 107, 6427–6428.

[10] a) T. Kandemir, M. Schuster, A. Seshnys, M. Behrens, R. Schögöl, Angew. Chem. Int. Ed. 2013, 52, 12723–12726; b) V. Bruck, P. S. White, F. Hasana, A. J. Miller, J. Am. Chem. Soc. 2017, 139, 5305–5308.

[11] a) B. Askeland, J. T. Neto, S. Tussupbayev, M. Diefenbach, E. Herdtweck, Wieghardt, Angew. Chem. Int. Ed. 2013, 122, 12955–12959; b) G. Ertl, Angew. Chem. Int. Ed. 2001, 33, 1–45.

[12] a) W. Schröder, M. Diefenbach, Angew. Chem. Int. Ed. 2015, 54, 8835–8839; b) M. Schönhuber, B. Faller, M. J. Klinowski, Angew. Chem. Int. Ed. 2006, 45, 7929–7934.

[13] R. H. Herber, J. Telser, J. M. Smith, M. L. Kirk, B. M. Hoffman, Angew. Chem. Int. Ed. 2005, 44, 2908–2912; Angew. Chem. 2005, 117, 2968–2972.

[14] a) M. P. Hendrich, W. Gundersdon, M. T. Behan, M. P. Mein, T. A. Betley, C.-C. Li, J. C. Peters, Nat. Acad. Sci. USA 2006, 103, 17107–17112.

[15] a) J.-U. Rohde, T. A. Betley, T. A. Jackson, C. T. Saouma, J. C. Peters, Quantum Jr, Inorg. Chem. 2007, 46, 5720–5726; b) J. J. Scepaniak, M. D. Fulton, R. P. Bontchev, E. N. Duesler, M. L. Kirk, J. M. Smith, J. Am. Chem. Soc. 2008, 130, 10515–10517; c) J. C. Peters, Angew. Chem. Int. Ed. 2008, 47, 2681–2684; Angew. Chem. 2008, 120, 2712–2724.

[16] X. Wang, L. Andrews, R. Lindh, V. Veryazov, B. O. Roos, J. Phys. Chem. A 2008, 112, 8030–8037.

[17] F. Stüker, T. Hohmann, H. Beckers, S. Riedel, Angew. Chem. Int. Ed. 2020, 59, 23174–23179; Angew. Chem. 2020, 132, 23374–23379.

[18] a) M. A. Jacox, J. Phys. Chem. Ref. Data 1998, 27, 115–393; b) D. E. Milligan, M. A. Jacox, J. Chem. Phys. 1964, 40, 2461–2466; c) Y. Gong, L. Andrews, Inorg. Chem. 2012, 51, 667–673.

[19] J. B. Berusker, Chem. Rev. 2013, 113, 1315–1339.

[20] a) A. D. Becke, Phys. Rev. A 1988, 38, 3098–3100; b) J. P. Perdew, Phys. Rev. B 1986, 33, 8822–8824; c) F. Weigend, F. Furche, R. Ahlrichs, J. Phys. Chem. 2003, 119, 12753–12762; d) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305; e) D. Andreae, U. Huermann, M. Dolg, H. Stoll, H. Preu, Theor. Chem. Acts 1990, 77, 123–141.

[21] X. Wang, J. T. Lyon, L. Andrews, Inorg. Chem. 2009, 48, 6297–6302.

[22] P. Garcia-Fernandez, I. B. Berusker, J. E. Boggs, J. Chem. Phys. 2006, 125, 104102; b) I. B. Berusker, Chem. Rev. 2012, 121, 1463–1512.

[23] M. Laing, J. Chem. Educ. 1989, 66, 453.

[24] a) A. D. Becke, Phys. Rev. Lett. 2010, 106, 246406.

[25] B. O. Roos, A. C. Boin, L. Gagliardi, Angew. Chem. Int. Ed. 2007, 46, 1469–1472; Angew. Chem. 2007, 119, 1491–1494.

[26] P. Pykkö, S. Riedel, M. Patzschke, Chem. Eur. J. 2005, 11, 3511–3520.

[27] P. Pykkö, Chem. Rev. 1988, 88, 563–594.

[28] M. Kaupp, J. Comput. Chem. 2007, 28, 320–325.

[29] S. H. Yu, L. B. Lu, J. L. Bao, H. S. Yu, D. G. Truhlar, J. K. Gibson, J. Marçalo, M. Zhou, S. Riedel, W. H. Eugen, J. Li, Angew. Chem. Int. Ed. 2018, 57, 3242–3245; Angew. Chem. 2018, 130, 3297–3300.

[30] R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Clarendon, Oxford, 1994.

[31] L. Bennett, B. Melchers, B. Proppe, Curta: A General-Purpose High-Performance Computer at ZEDAT, Freie Universität Berlin; Freie Universität Berlin, 2020.