Preparation of particle-reinforced mullite composite ceramic materials using kaolin and IG-017 bio-origin additives

Emese KUROVICS • Institute of Ceramics and Polymer Engineering, University of Miskolc, Hungary • fememese@uni-miskolc.hu
Olga B. KOTOVA • Institute of Geology, Komi Science Center, Ural Branch of the Russian Academy of Sciences, Russian Federation • kotova@geo.komisc.ru
László A. GÖMZE • Institute of Ceramics and Polymer Engineering, University of Miskolc, Hungary, IGREX Engineering Service Ltd. • femgomze@uni-miskolc.hu
Dmitry A. SHUSHKOV • Institute of Geology, Komi Science Center, Ural Branch of the Russian Academy of Sciences, Russian Federation • dashushkov@geo.komisc.ru
Grigory V. IGNATIEV • Institute of Geology, Komi Science Center, Ural Branch of the Russian Academy of Sciences, Russian Federation • ignatiev.grigory@gmail.com
Petr A. SITNIKOV • Institute of Chemistry, Komi Science Center, Ural Branch of the Russian Academy of Sciences, Russian Federation • sitnikov-pa@mail.ru
Irina N. VASENEVA • Institute of Chemistry, Komi Science Center, Ural Branch of the Russian Academy of Sciences, Russian Federation • ir_vaseneva@mail.ru
Ludmila N. GÖMZE • Igrex Engineering Service Ltd., Hungary • igrex2009@yandex.ru

Erkezett: 2019. 06. 26. • Received: 2019. 06. 26. • https://doi.org/10.14382/epitoanyag-jsbcm.2019.20

Abstract
In this research work, the possibilities of producing advanced ceramics from traditional, relatively inexpensive raw materials were studied. Powder mixtures from kaolinite and IG-017 bio-origin additive were milled and uniaxially pressed to pellets, then pre-sintered in the electric kiln under oxidation and oxygen-free atmosphere at 1250 °C. The pre-sintered specimens were then further sintered in nitrogen gas at 1600 °C. The produced specimens were tested on composition, microstructures and morphologies using several characterization techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDAX). The conducted experiments by the authors have shown that it is possible from traditional kaolinite to develop technical ceramic specimens with increased physical and mechanical properties based on formed amorphous phases, mullite crystals, micro and nano carbon fibers. Keywords: carbonization, ceramic, composition, microstructure, mullite, sintering

1. Introduction
In recent years, there is a huge demand in many industries for new low-density materials with enhanced physical, electrical, magnetic, mechanical, thermal or chemical properties [1-34]. Thanks to these continuously increased requirements, more and more ceramic materials and ceramic-based composites are being developed and used in various fields of industry and technology [35-46]. Mullite is a stable intermediate phase under atmospheric pressure in the Al₂O₃ - SiO₂ system (Fig. 1) [47]. Despite the rare occurrence of mullite as mineral, the sintered mullite crystals are playing an important role both in traditional and modern technical ceramics. Fig. 1 shows how the various crystals and phases are depending on the temperature and also reveals that pure mullite (3Al₂O₃ -2SiO₂) melts at 1870 °C. Generally, at normal (atmospheric) pressure mullite crystals are capable to incorporate several transition metal cations and other foreign atoms into their structures depending on sintering environment and temperature [48-50].
Generally, non-oxide technical ceramics and nitride ceramics have a much higher surface hardness and compression strength than metals and metal alloys or oxide ceramics, but their production costs are usually very expensive [51]. Nitride-based (SiAlON or Si₃N₄) materials are considered as significant and attractive structural ceramics/refractories because of their excellent properties, like high mechanical properties (e.g., strength, hardness, toughness), chemical inertness, good corrosion resistance and outstanding thermal resistance.

Silicon nitride is a non-natural mineral that needs to be synthesized by different methods [52-54]. The easiest way to produce silicon nitride from kaolin or other clay minerals is through carbothermal reduction and nitridation. The following reaction equations show the steps in which silicon carbide, silicon oxynitride, silicon nitride, and sialons are formed during the process [53-56].

1. Decomposition of kaolin at a temperature of 450 °C
 \[\text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2 \cdot 2\text{H}_2\text{O} \rightarrow 2\text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2 + 2\text{H}_2\text{O} \ (\text{vapor}) \] (1)

2. Formation of mullite (3\text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2) as decomposed of metakaolin at a temperature at 1087°C
 \[3(\text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2) \rightarrow 3\text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2 + 4\text{SiO}_2 \ (\text{amorphous}) \] (2)

While the temperature raises up to 1360°C, amorphous SiO₂ begins to transform into crystalline Si₃N₄. Carbothermal reduction and simultaneous nitridation occur at a temperature above 1400°C

 \[\text{SiO}_2 + 3\text{C} + \text{N}_2 \rightarrow \text{Si}_3\text{N}_4 + 2\text{CO} \] (3)

3. Formation of silicon oxynitrides takes place progressively in environment richer in nitrogen under the reducing influence of the carbon

 \[3\text{SiO}_2 + 3\text{C} + \text{N}_2 \rightarrow \text{Si}_3\text{N}_4 \] (5)

 \[2\text{SiO}_2(g) + \text{C} + \text{N}_2 \rightarrow \text{Si}_3\text{N}_4 + 2\text{CO}(g) \] (4)

4. Formation of χ-phase sialon and β'-sialon from mullite

 \[3(\text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2) \ (\text{mullite}) + 12 \text{C} + \text{N}_2 \rightarrow \text{Si}_3\text{Al}_6\text{O}_{12}\text{N}_3 \ (\chi - \text{phase sialon}) + 6\text{AIN} + 13\text{SiO}_2 + 12\text{C} \] (7)

 \[3\text{Si}_3\text{Al}_6\text{O}_{12}\text{N}_3 + 3\text{N}_2 + 9\text{C} \rightarrow 3\text{Si}_3\text{Al}_6\text{O}_{12}\text{N}_3 (\beta' - \text{sialon}) + 2\text{AIN} + 9\text{CO} \] (8)

5. Formation of SiC

 \[\text{SiO}_2 + 2\text{C} \rightarrow \text{SiC} + \text{CO}_2(g) \] (9)

6. Formation of Si₃N₄

 \[3\text{SiO}_2 + 6\text{C} + 2\text{N}_2 \rightarrow \text{Si}_3\text{N}_4 + 6\text{CO} \] (10)

The Si-N bonds are formed at 1200°C in the presence of carbon. These bonds are progressively formed in N-rich environment and lead to a continuous formation of silicon oxynitride compositions. Usually, these bonds are not detected by XRD but appear later in the reaction, when crystalline silicon oxynitride persists throughout the reaction and possibly containing a little amount of Al (like O-sialon and x-phase sialon). After the destruction of the mullite, the Si-O bonds survive and remain throughout the reaction, especially in the kaolinite starting material. Later in the reaction, Si-C bonds are formed. The created SiC phase behaves more like a secondary product than a transitory intermediate [54-56].

Based on the studied literatures, it can be said that mullite or mullite containment taken from kaolinite can be successfully used as a matrix material for silicon nitride particles or whiskers reinforced ceramic composites. Si₃N₄ particles and whiskers can considerably enhance the mechanical strengths and toughness of both kaolinite and mullite based ceramic composites. Using conventional kaolinite or other types of clay minerals as starting materials, different micro and nano-size reinforcement materials can be produced like, SiC, Si₃N₄, Si₃ON₄, or SiAlON through carbothermal reduction and nitridation.

The aims of this work are to develop ceramic composites material with superior physical and mechanical properties using relatively inexpensive processing technology and raw materials like conventional kaolinite or other clay minerals. In this work, the authors present a part of their research on the production of carbon-containing ceramics using kaolin and a biological additive. Further these produced ceramic composite could be a potential candidate for many applications showing better mechanical properties.

2. Materials and Experiments

Particle-reinforced mullite composite ceramics were prepared via carbothermal reduction and nitridation techniques, commercial kaolinite powders KKA-MB and IG-017 refined bio-original additives developed and produced by IGREX Ltd. were used as starting raw materials. Stochiometric amount of these ceramic powders were weighted using 6 different mixtures compositions as shown in Table 1. The prepared ceramic mixtures were well milled in a laboratory ball mill for 20 minutes in the speed of 200 rpm. The milled powders then uniaxially compacted at 150 MPa pressures to produce 24 cylindrical disc specimens with diameters of 20 mm for each mixture. The filling weights of specimens were 8 grams in each case. After compacting, half of the specimens were pre-sintered in an oxygen-free atmosphere and the other half of the specimens were pre-sintered in an oxygen-free atmosphere. In both cases, the maximum pre-sintering temperatures were 1250 °C. After these, the pre-sintered specimens were well studied and later they were burned at 1600 °C using nitrogen gas in the high-temperature kiln. Fig. 2 shows the sintered specimens.
Table 1. The volumetric relationship between components in m%

Mixture	Kaolinite	IG-017
I	85	15
II	75	25
III	65	35
IV	55	45
V	45	55
VI	35	65

3. Results and discussions

Part of the authors have already shown in their earlier work some properties of the pre-sintered specimens, like volume shrinkage, weight losses, density, porosity and microstructure [57]. In this work are shown how the properties change due to sintering the specimens at a high sintering temperature (1600°C) in nitrogen gas. During pre-sintering of the specimens, firstly, drying of the samples takes place, followed by removal of the crystalline waters from kaolinite structure at approximately 450°C, parallely gasification of the IG-017 additives occurs. Pre-sintering kaolinite at a temperature of 1250°C is high enough for the formation of mullite crystal phases and free SiO₂ components. Some of the specimens from each mixture were further sintered at 1600°C, where SiC and Si₃N₄ can be formed in the ceramic product. Figs. 3 and 4 show the volume shrinkages and weight losses of the sintered samples.

Fig. 3 compares the volume shrinkage of the heat-treatemd ceramic products to that of the pre-sintered and crude product volumes. Oxygen deficient pre-sintered ceramic specimens exhibit higher shrinkage. In contrast, the total volume shrinkages of the two type of pre-sintered specimens were almost the same.

Fig. 4 shows the weight loss of the specimens fired at 1600°C in an Oxygen atmosphere and Oxygen-free environment. In the case of the use of a larger amount of bio-originial additive, the weight of the oxidation pre-sintered samples is increased, this could be possibly due to the incorporation of Nitrogen gas into the samples. In the case of oxygen-free pre-sintered specimens, some of the carbon remaining in the material structure is discharged during sintering at 1600°C. Examination of the microstructure and elemental composition of the samples was done by scanning electron microscopy (SEM).

Fig. 5 shows the outer surface and breaking surface of a specimen made with 15 m% bio-additive pre-sintered in an oxidation atmosphere and then heat-treated in nitrogen at 1600°C. It can be clearly seen on the crushed surface that it has a high degree of porosity, from which the open pores and capillaries are significant on the surface. Based on the elemental composition determined by EDAX, the sample has a significant carbon and titanium at the surface, indicating that carbon and titan-containing surface layer has been formed during higher-temperature combustion. In the case of specimens with higher biological additive content, the surface of the pressed ceramic specimens was slightly nitrated.
Based on the EDAX test, the specimen contains 45 m% IG-017 has 1.51 m% nitrogen content (Table 2).

The authors measured the oxide and phase composition of the sintered specimens with XRD test. After pre-sintering the specimens, the main phase was mullite with a large amount of amorphous glass phase and a small amount of quartz or cristobalite. During oxygen-free pre-sintering, carbon fibres were formed. After high-temperature heat treatment, the oxygen-free pre-sintered samples consisted of 60% mullite, 32% amorphous phase and 8% carbon fibres. Compared to the pre-sintered sample, the amount of carbon fibres in the sample was reduced (Table 3).
4. Conclusion

In this research, the authors have successfully produced carbon-reinforced mullite ceramics using conventional kaolin minerals and IG-017 biological additive. Moreover, they continue their research on the production of mullite ceramics reinforced with silicon nitride particles or whiskers. Compared to the green products data, the weight loss and volume shrinkage of the prepared specimens after sintering at 1600 °C were not influenced by the pre-sintering atmosphere. However, the elemental and phase composition of the final products are significantly influenced by the type of applied pre-sintering process. In the case of specimens with higher biological additive content, the surface of the pressed ceramic specimens was slightly nitrated.

5. Acknowledgements

The described article was carried out as part of the EFOP-3.6.1-16-00011 “Younger and Renewing University – Innovative Knowledge City – institutional development of the University of Miskolc aiming at intelligent specialization” project implemented in the framework of the Szchenyi 2020 program. The realization of this project is supported by the European Union, co-financed by the European Social Fund.

References

[1] Kalatur, E. S., Kozlova, A. V., Buyakova, S. P., Kulkov, S. N. (2013): Degradation behavior of zirconia-based porous ceramics, IOP Conf. Ser.: Mater. Sci. Eng., Vol. 47, 012004 https://doi.org/10.1088/1757-899X/47/1/012004

[2] Chu, H. L., Wang, C. L., Lee, H. E., Sie, Y. Y., Chen, R. S., Hwang, W. S., Wang, M. C. (2013): Effect of sintering process parameters on the properties of 3Y-PSZ ceramics, IOP Conf. Ser.: Mater. Sci. Eng., Vol. 47, 012005 https://doi.org/10.1088/1757-899X/47/1/012005

[3] Loca, D., Locs., J. Berzina-Cimdina, L. (2013): Preparation of hydroxyapatite/poly(lactic acid) hybrid microparticles for local drug delivery, IOP Conf. Ser.: Mater. Sci. Eng., Vol. 47, 012007 https://doi.org/10.1088/1757-899X/47/1/012007

[4] Mimira, T., Umeda, T., Musha, Y., Itatani, K. (2013): Properties of novel bone hemostat prepared using sugar-modified hydroxyapatite, phospholipid oligosaccharides of calcium and thermoplastic resin, IOP Conf. Ser.: Mater. Sci. Eng., Vol. 47, 012008 https://doi.org/10.1088/1757-899X/47/1/012008

[5] Elek, J., Gómez, L. A. (2013): Scanning electron microscopic study of glass container degradation in infusion solution, IOP Conf. Ser.: Mater. Sci. Eng., Vol. 47, 012009 https://doi.org/10.1088/1757-899X/47/1/012009

[6] Rundans, M., Sperberga, I., Sedmale, G., Stinkulis, G. (2013): Porous and Dense Cordierite Ceramic from Illite Clay, IOP Conf. Ser.: Mater. Sci. Eng., Vol. 47, 012012 https://doi.org/10.1088/1757-899X/47/1/012012

[7] Takato, M., Kaneko, M., Nishi, T., Saito, K., Uchiokba, F. (2013): Multilayer magnetic circuit for millimeter scale MEMS air turbine generator, IOP Conf. Ser.: Mater. Sci. Eng., Vol. 47, 012015 https://doi.org/10.1088/1757-899X/47/1/012015

[8] Kimura, T., Dong, Q., Yin, S., Hashimoto, T., Sasaki, A., Aisawa, S., Sato, T. (2013): Synthesis and piezoelectric properties of Li, Ca and Mn-codoped BaTiO3 by a solvothermal approach, IOP Conf. Ser.: Mater. Sci. Eng., Vol. 47, 012018 https://doi.org/10.1088/1757-899X/47/1/012018

[9] Pura, A., Locs, J., Berzina-Cimdina, L. (2013): The effect of thermal processing parameters on the microstructure of extruded and sintered TiO2 ceramics, IOP Conf. Ser.: Mater. Sci. Eng., Vol. 47, 012019 https://doi.org/10.1088/1757-899X/47/1/012019
euporium doping on the structural and magnetic properties of GdMnO3 multiferroic ceramics, Advanced Ceramics Progres, Vol. 3, No. 4, pp. 1-5

[28] Grigoriev, M. V., Savchenko, N. L., Sablina, T. Yu., Kurovics, E., Sevostyanova, I. N., Buyakova, S. P., Gomze, I. A., Kulkov, S. N. (2018): Deformation and fracture of alumina ceramics with hierarchical porosity, Építőanyag – JSBCM, Vol. 70, No. 1, pp. 18–22. https://doi.org/10.14382/epitoanyag-jscbm.2018.4

[29] Knyazeva, A. G., Pribytkov, G. A., Chumakov, Yu. A. (2019): Titanium-based composites with extreme dynamic strength, IOP Conf. Ser.: Mater. Sci. Eng., vol. 47, p. 012059. https://doi.org/10.1088/1757-899X/47/1/012059

[30] El-Fakhary, M. E., Ezzat, M., Gad, A., Ghaffour, N. G., Abdel, Baghdady, A. R. (2019): Performance of dolomitic cementitious mortars as a repairing material for normal concrete in Egypt, Építőanyag – JSBCM, vol. 71, no. 2, pp. 33–42. https://doi.org/10.14382/epitoanyag-jscbm.2019.7

[31] Ershova, N. I. and Kelina, I. Y. (2009): High-temperature wear-resistant materials based on silicon nitride Építőanyag – JSBCM, vol. 61, no. 2, p. 195–203 https://doi.org/10.14382/epitoanyag-jscbm.2009.6

[32] Lukin, E. S., Makarov, N. A., Kozlov, A. I., Popova, N. A., Anufrieva, E. V., Vartanyan, M. A., Kozlov, Yu. A., Safina, M. N., Lemeshev, D. O., Gorelik, E. I. (2008): Oxide ceramics of the new generation and areas of application, Glass and Ceramics, vol. 65, no. 9-10, pp. 348-352. Translated from Steklo i Keramika no. 10 pp. 27–31, October, 2008

[33] Rocha-Rangel, E., Hernández-Silva, D., Trér-Rojas, E., Martines-Franco, E. and Diaz-De La Torre, S. (2010): Alumina-based composites strengthen with titanium and titanium carbide dispersions, Építőanyag – JSBCM, vol. 61, no. 2, p. 38. http://dx.doi.org/10.14382/epitoanyag-jscbm.2009.7

[34] Gömze A. L. and Gömze, N. L. (2013): Ceramic based lightweight composites with extreme dynamic strength, IOP Conf. Ser.: Mater. Sci. Eng., vol. 47, p. 012033, 2013. https://doi.org/10.1088/1757-899X/47/1/012033

[35] Riedel, Ralf (2008): Handbook of Ceramic Hard Materials, 2008. https://doi.org/10.1088/1757-899X/47/1/012033

[36] Mackenzie, K. J. D., Meinhold, R. H., White, G. V., Sheppard, C. M., Sherriff, B. L. (1994): Carbothermal Formation of β-Sialon from Kaolinite and Halloysite Studied by Si-29 and Al-27 Solid-State MAS NMR, Journal of Materials Science, Vol. 606, pp. 27-41

[37] Cho, Y. W. and Charles, J. A. (1991): Synthesis of nitrogen ceramic powders by carbothermal reduction and nitridation, Materials Science and Technology, Vol. 7 pp. 399-406

[38] Kurovics, E., Gömze L. A. (2017): Development of high-tech ceramic composites from conventional kaolinite minerals and IG-017 additives, Multisience - XXXII. microCAD International Multidisciplinary Scientific Conference, Hungary, http://dx.doi.org/10.26649/musci.2017.030