Wieloparametryczna ultrasonografia w diagnostyce worka mosznowego i jąder niezstąpionych u chłopców

Multiparametric ultrasonography of the pediatric scrotum and in boys with undescended testes

Grzegorz Jędrzejewski, Andrzej Paweł Wieczorek

Zakład Radiologii Dzieci, Uniwersytet Medyczny w Lublinie, Lublin, Polska

Correspondence: Grzegorz Jędrzejewski, Zakład Radiologii Dzieci, Uniwersytet Medyczny w Lublinie, ul. Chodźki 2, 20-093 Lublin, tel./faks: +48 81 741 84 47, e-mail: gjedrzejewski@wp.pl

Streszczenie
Ze względu na nieinwazyjność i dużą zdolność rozdzielczą badanie sonograficzne jest badaniem z wyboru w obrazowaniu struktur worka mosznowego u dzieci. Pozwala wykazywać zmiany niemożliwe do stwierdzenia w badaniu klinicznym. Postępy technologiczne w ostatnich latach dodatkowo wzmocniły znaczenie tego badania. Wraz z wprowadzeniem głowic o częstotliwościach 10–17 MHz poprawiła się rozdzielczość obrazów jąder pediatrycznych oraz rozdzielczość kanałów pachwinowych, co ma szczególne znaczenie w ocenie jąder niezstąpionych i wędrujących, a także brzusznych. Pojawiły się także nowe narzędzia diagnostyczne, takie jak obrazowanie trójwymiarowe czy elastografia, których zastosowanie może dostarczyć wielu dodatkowych informacji w ocenie jąder u dzieci, a także w monitorowaniu leczenia bądź kontrolach pooperacyjnych. Badanie 3D umożliwia dokładniejszą ocenę położenia jądra niezstąpkowego, objętości jądra, a także ocenę waskularyzacji. Elastografia może być stosowana w ocenie zmian ogniskowych, zmian poniedokrwiennych, niejasnych przestrzeni płynowych, jąder niezstąpionych i po orchidopeksji.

Abstract
Due to its noninvasiveness and high resolving power, ultrasound examination is the examination of choice for the imaging of the structures of the pediatric scrotum. It allows to reveal changes impossible to find in the course of a clinical examination. Its significance has increased over the past few years due to the technological developments. The introduction of transducers with frequency of 10–17 MHz has improved the resolution of pediatric testes images as well as the resolution of the inguinal canals images, which has been of particular importance for the evaluation of undescended, retractile and abdominal testes. New diagnostic tools have also been introduced, such as 3D imaging or elastography, whose application has helped provide valuable additional information for the evaluation of pediatric testes, for treatment monitoring, and for post-surgical follow-up examinations. 3D imaging facilitates a more accurate evaluation of the location of an undescended testicle, testicular volume, and vascularization. Elastography may be used for the evaluation of focal lesions, post-ischemic lesions, unclear fluid spaces, undescended testes, and following orchidopexy.
Introduction

The basic diagnostic method for scrotal structures imaging is 2D examination allowing for the evaluation of a testicle’s structure, size and – in the case of a measurements in three planes – estimating the volume. The increasingly sensitive Doppler scan may also be used, to detect low flow speed, which is of considerable importance for the evaluation of testes in young boys. The examination renders a very good image of the inguinal canal and its content, thus allowing to locate the testicle in the canal and determine its flows. It also reveals changes such as decrease in the size of an undescended testicle, or changes in its structure.

Despite such excellent imaging opportunities, we still need a tool helping to evaluate the condition of an undescended testicle prior to and following a surgical procedure, and to provide a prognosis on the function of the testes in the future. This proves difficult mainly due to the time which lapses before a testicle resumes its full function after the procedure. The general tendency is to evaluate the testicular volume, trying to translate it into the testicle’s function. This can be accompanied by counting the vascular segments and the evaluating the flow spectrum. New diagnostic methods, such as sonoelastography and 3D ultrasonography have also emerged.

3D ultrasound (3DUS)

3D technology provides numerous interesting functions that may be used alongside the 2D examination. The image of an organ or a pathological structure is presented in many different planes. The coronal plane (for conditions such as undescended testes frequently unobtainable in a 2D scan) proves particularly significant, as it helps to determine more accurately the exact location of such a testicle in the inguinal canal itself or in an inguinal pouch where ectopic testes are sometimes found\(^1\) (fig. 1).

In a 3D examination the evaluation of a testicular volume or focal lesions is more accurate as we can map the exact shape of an area of interest. In an archived examination the measurements may be viewed repeatedly. The evaluation of a testicular volume in a 2D scan depends on the accurateness of measurements in the three planes, and they cannot be corrected in the archived examinations\(^2\). It is precisely the archiving of 3D examinations that has huge potential for standardizing examinations. It allows to recover a patient’s full data in the future, to monitor changes, and to examine the correlation with other imaging modalities\(^1\).

Combining 3D option with power Doppler helps to deliver a more accurate qualitative and quantitative assessment of the vascularization of an organ and the changes occurring therein. It reveals pathologic vascularization and enables to calculate the vascularization index, i.e. the ratio of the number of vessels to a given volume, lesion or entire organ (fig. 2). The vascularization index has a huge diagnostic potential, since it allows to monitor,
Multimodal ultrasonography of the pediatric scrotum and in boys with undescended testes

monitorowanie – bez użycia środków kontrastowych – wszelkich patologii, w których dochodzi do zmian w unaczynieniu. Pomiar indeksu waskularyzacji może mieć znaczenie w przypadku oceny dobrostanu jąder po zabiegach operacyjnych, po skrętach i wielu innych przypadków klinicznych związanych nie tylko z układem płciowym. W przypadku jąder prawidłowych zwykle nie przekracza on 10%, a w zmianach patologicznych może dochodzić nawet do 30%. U chłopców z winietrostwem indeks waskularyzacji był niższy w jądrach without any contrasting agents, all kinds of pathologies where vascularization changes occur. The vascularization index measurement may be significant for the evaluation of the health of testes following surgical procedures, torsions, as well as various other clinical conditions, including ones unrelated to the reproductive system. For normal testes the index tends not to exceed 10%, whereas in pathologic changes it amounts to 30%. In boys displaying cryptorchidism the vascularization index was lower
niczstąpiionych, a także w jądrach sprowadzonych do moszny (ryc. 3). U pacjentów z guzami wywodzącymi się z ektopo-
wej tkanki nadnerczowej (testicular adrenal rest tumor, TART) indeks waskularyzacji zmian obniżał się w trakcie lecze-
nia, co może wskazywać na obniżenie aktywności zmian(3). Wystandaryzowanie metody wymaga oczywiście dodato-
kowych badań na większej grupie pacjentów.

Niestety, możemy napotkać także pewne ograniczenia badań 3D moszny u dzieci. Należą do nich: brak współpracy
pacjenta, gorsza rozdzielczość niż w USG 2D, potrzeba analizy komputerowej, mniejszy rozmiar obszarów zaintereso-
wańcy niż mniejsze rozmiary badanych narzędzi. Mimo to, jeśli pozwala na to stosowana aparatura, badanie 3D
powinno być wykonywane jako uzupełnienie badania 2D.

Unfortunately, there also exist limitations of 3D scrotum examinations in children, including lack of patient’s coop-
eration, poorer resolution than in 2DUS, the need for computer analysis, the smaller size of the regions of interest and of organs to be examined. Nonetheless, wherever the device allows, a 3D scan should be performed to accom-
pany the 2D one.

Sonoelastografia czasu rzeczywistego

Elastografia jest coraz szerzej stosowana metodą w diagno-
styce ultrasonograficznej, także w ocenie struktur moszny. Dotychczasowe publikacje wskazują na znaczący potencjał
elastografii w ocenie zmian ogniskowych w jądrze i lep-
szym ich zróżnicowaniu, a także odróżnianiu zmian zapal-
nych od guzowatych(4). Dodatkowo wskazują na możliwość
odróżniania niejasyých zmian płynowych, np. krwiaków od
guzów litych(5). Prace te dotyczą głównie dorosłych męż-
czyzn, u których częściej dochodzi do powstawania zmian
guzowatych. U dzieci zmiany te są zdecydowanie rzadsze,
dlatego zastosowanie elastografii będzie użyteczne raczej
w innych schorzeniach.

Prawidłowe jądro wykazuje dość jednorodną strukturę,
o wysokiej sztywności (spoistości) (ryc. 4). Zmiany ogni-
skowe mogą być lepiej wyodrębnione w badaniu elasto-
graficznym, jako obszary o jeszcze wyższej spoistości

Real-time sonoelastography (RTSE)

Elastography is an increasingly popular method applied
in the ultrasound diagnostics, including the assessment of
the scrotal structures. The publications so far have indi-
cated a significant potential of elastography for the eval-
uation of focal lesions in the testicle and for their improved
differentiation as well as for distinguishing inflammatory
from mass lesions(4). Moreover, they have also pointed to
the potential for distinguishing unclear fluid lesions, e.g.
ematoma, from solid tumors(5). The research however
has mostly been concerned with adult men who are more
prone to develop mass lesions which in children are much
less prevalent. Hence, the application of elastography tends
to be found useful for diagnosing other conditions.

A normal testicle tends to display homogenous structure of
high stiffness (fig. 4). Focal lesions may be better isolated in
the elastographic examination, as areas of even increased
stiffness as compared to the normal testicular parenchyma

Fig. 3. Vi in patients with undescended testes (1), following orchio-
pecy (2), and in control group (3)

Fig. 4. 2D image and elastography of a normal testicle (white ar-
row) and a fibrous pseudotumor (black arrow)
w stosunku do prawidłowego miąższu jądra (ryc. 4, 5). W przypadku takich zmian, rozlanych bądź ogniskowych, prawidłowy miąższ jądra wykazuje spoistość pośrednią(6). Podobnie zachowują się guzy łagodne, TART (ryc. 5), potworniak, torbiel skórzasta oraz guzy rzekome, dlatego sama elastografia nie może być stosowana w diagnostyce różnicowej tych zmian(7,8). U pacjentów z TART zaobserwowano wyrównywanie się spoistości zmiany i pozostalonego miąższu jądra, co może świadczyć o zmniejszaniu się sztywności tkanek guza. Elastografia wychwytuje z większą dokładnością zmiany poniedokrwienne i bliznowate.

(figs. 4, 5). In the case of such lesions, whether diffuse or focal, the normal parenchyma of the testicle displays intermediate stiffness(6). A similar pattern may be found in conditions such as benign tumors, TART (fig. 5), teratomas, dermoid cysts and pseudotumors, hence elastography on its own is insufficient for the sake of differentiative diagnosis thereof(7,8). In TART patients the stiffness of lesions and the remaining testicular parenchyma has been observed to even out which may be an evidence of a decrease in the stiffness of the tumor tissue. Elastography proves a more accurate method of finding post-ischemic and scarring

Ryc. 5. Guzy jąder (TART) (białe strzałki) u pacjenta z wrodzonym przerostem kory nadnerczy
Fig. 5. TART (white arrows) in a patient with congenital adrenal hyperplasia

Ryc. 6. Elastografia jądra trzy tygodnie po skręciu jądra. Zmiany bliznowate o wyższej spoistości
Fig. 6. Elastography of a testicle 3 weeks after a torsion incident. Scarring lesions of increased cohesion

Ryc. 7. Elastografia jądra znajdującego się w kanale pachwinowym (białe strzałki) i w jamie brzusznej (czarne strzałki)
Fig. 7. Elastography of a testicle located in the inguinal canal (white arrows), and in the abdominal cavity (black arrows)

Ryc. 8. Elastografia jąder dwa lata po prawostronnej orchidopeksji. Jądro prawe mniejsze, o niejednorodnej strukturze elastograficznej, z obszarami o wzmożonej spoistości
Fig. 8. Elastography of a testicle 2 years after a right-side orchiopexy. Right testicle smaller, of heterogeneous elastographic structure, with areas of enhanced stiffness
Konflikt interesów

Autorzy nie zgłaszają żadnych finansowych ani osobistych powiązań z innymi osobami lub organizacjami, które mogłyby negatywnie wpływać na treść publikacji oraz rościć sobie prawo do tej publikacji.

Podsumowanie

Zastosowanie nowoczesnych metod ultrasonograficznych, takich jak obrazowanie trójwymiarowe czy elastografia, może dostarczyć wielu dodatkowych informacji w ocenie jąder u dzieci, a także w monitorowaniu leczenia lub kontrolach pooperacyjnych. Badanie 3D pozwala na dokładniejszą ocenę położenia jądra niezstępnego, objętości jądra, a także ocenę waskularyzacji. Elastografia może być stosowana w ocenie zmian ogniskowych, zmian poniedźwiedkowych, niejasnych przestrzeni płynowych, jąder niezstępnionych oraz po orchidopektii.

Conflict of interest

Authors do not report any financial or personal links with other persons or organizations, which might affect negatively the content of this publication and/or claim authorship rights to this publication.

Piśmiennictwo/References

1. Riccabona M: Pediatric three-dimensional ultrasound: basics and potential clinical value. Clin Imaging 2005; 29: 1–5.
2. Elwagdy S, Razmy S, Ghoneim S, Elhakim S: Diagnostic performance of three-dimensional ultrasound extended imaging at scrotal mass lesions. Int J Urol 2007; 14: 1025–1033.
3. Jedrzejewski G, Ben-Skowronek I, Wozniak MM, Brodzisz A, Budzynska E, Wieczorek AP: Testicular adrenal rest tumors in boys with congenital adrenal hyperplasia: 3D US and elastography – do we get more information in diagnosis and monitoring? J Pediatr Urol 2013; 9: 1032–1037.
4. Goddi A, Sacchi A, Magistretti G, Almola J, Salvadore M: Real-time tissue elastography for testicular lesion assessment. Eur Radiol 2012; 22: 721–730.
5. Grasso M, Blanco S, Raber M, Nespoli L: Elasto-sonography of the testis: preliminary experience. Arch Ital Urol Androl 2010; 82: 160–163.
6. Itoh A, Ueno E, Tohno E, Kamma H, Takahashi H, Shiina T et al.: Breast disease: clinical application of US elastography for diagnosis. Radiology 2006; 239: 341–350.
7. Huang DY, Sidhu PS: Focal testicular lesions: colour Doppler ultrasound, contrast-enhanced ultrasound and tissue elastography as adjuvants to the diagnosis. Br J Radiol 2012; 85 Spec No 1: S41–S53.
8. Patel K, Sellars M, Clarke JL, Sidhu PS: Features of testicular epidermoid cysts on contrast-enhanced sonography and real-time tissue elastography. J Ultrasound Med 2012; 31: 115–122.