Supporting Information

Solvation Effects on the Structure and Stability of Alkali Metal Carbenoids

Katharina Dilchert, Michelle Schmidt, Angela Großjohann, Kai-Stephan Feichtner, Robert E. Mulvey,* and Viktoria H. Gessner*

anie_202011278_sm_miscellaneous_information.pdf
Index

1. Experimental Details 2
 1.1 General methods 2
 1.2 Synthesis of the chiral carbenoids 3

2. NMR spectra 5
 2.1 NMR spectra of the isolated compounds 5
 2.2 VT 31P(1H) NMR spectroscopy 13

3. DOSY NMR spectroscopy 17
 3.1 General procedure 17
 3.2 DOSY NMR data of rac-1-Li 18
 3.3 DOSY NMR Data of rac-1-Na 22
 3.4 DOSY NMR data of rac-1-K 26

4. Determination of ee 30

5. Crystal Structure Determination 31
 5.1 General information 31
 5.2 Further Details to the Crystal Structures 33

6. Computational Details 52
 6.1 General 52
 6.2 Structures of the energy-optimized compounds 53
 6.3 Energies of the optimized compounds 56
 6.4 Coordinates 59
 6.4.1 Coordinates of the monomeric structures of 1-Li 59
 6.4.2 Coordinates of the dimeric structures of 1-Li 74
 6.4.3 Coordinates of the monomeric structures of 1-Na 93
 6.4.4 Coordinates of the dimeric structures of 1-Na 108
 6.4.5 Coordinates of the monomeric structures of 1-K 118
 6.4.6 Coordinates of the dimeric structures of 1-K 132

7. References 141
1. Experimental Details

1.1 General methods

All experiments were carried out under a dry, oxygen-free argon atmosphere using standard Schlenk techniques. Involved solvents were dried using an MBraun SPS-800 (THF, toluene, Et₂O, DCM, pentane, hexane) or dried in accordance with standard procedures. H₂O is distilled water. ¹H, ¹³C{¹H}, ³¹P{¹H} NMR spectra were recorded on Avance-400 or AVIII-400 spectrometers at 25 °C if not stated otherwise. All values of the chemical shift are in ppm regarding the δ-scale. All spin-spin coupling constants (J) are printed in Hertz (Hz). To display multiplicities and signal forms correctly the following abbreviations were used: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad signal. Signal assignment was supported by DEPT, APT, HSQC and HMBC experiments and by literature studies on similar compounds.

Elemental analyses were performed on an Elementar vario MICRO-cube elemental analyzer.

For column chromatography silica gel 60M purchased from Machery-Nagel was used. The solvent mixtures are given as volume fractions (v/v). Pre-coated TLC sheets (ALUGRAM ALOX N/UV 254) with fluorescence indicator purchased from Machery-Nagel were used. The detection was done by means of UV light (λ = 254 nm).

For automated Column Chromatography a Reveleris X2 Flash Instrument by Büchi was used. Solid loaders with a screw cap and Flash cartridges (FlashPure Silica) by Büchi were used. The detection was done by means of integrated UV detection (λ₁ = 254 nm, λ₂ = 265 nm, λ₃ = 280 nm) and ELSD.

For the determination of the ee an analytical Knauer Azura HPLC system equipped with a Dr. Maisch Reprosil Chiral-NR 8µm, 250•4.6 mm was used. A mixture of hexane and isopropanol (85:15) were used with a flow rate of 1.5 mL/min.

All other reagents were purchased from Sigma-Aldrich, ABCR, Rockwood Lithium or Acros Organics and used without further purification.

¹H₂ was synthesized according to literature.[¹]
1.2 Synthesis of the chiral carbenoids

Synthesis of R-1

901 mg (2.337 mmol) of R-2 were dissolved in 50 mL THF and cooled to –80 °C. 1.64 mL (1.71 M in Hex, 2.805 mmol) tBuLi were added dropwise. The yellow solution was stirred between −80 °C and −30 °C for 1 h. 719.24 mg of hexachloroethane were dissolved in 50 mL THF. The yellow reaction mixture was transferred to hexachloroethane via temperature gradient and warmed to RT slowly overnight. 25 mL of H2O were added, and the phases were separated. The aqueous phase was extracted with 25 mL of Et2O three times. The combined organic phases were dried over Na2SO4. After filtration the solvent was removed in vacuo. The crude product was purified by column chromatography (THF/Hex 1:2.5, r = 0.4). The product was obtained as a white solid in 54 % yield (525 mg, 1.25 mmol). The same procedure was also used for racemic mixtures of the sulfoximine. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of hexane from a solution of the rac-1 at RT.

1H NMR (400.33 MHz, CDCl3): δH = 2.77 + 2.88 (s + s, 3H; NCH3), 5.71 + 5.78 (d + d, 1H, JCP = 4.49 Hz + 4.81 Hz; CHCl), 7.29-7.35 (m, 4H; CHPh,ortho/meta), 7.37-7.51 (m, 5H, CH), 7.73-7.93 (m, 6H; CHPh,ortho/meta/para), 13C(1H) NMR (100.67 Hz, CDCl3): δC = 29.6 (s, NCH3), 31.0 (s, NCH3), 69.2 (s, CCl) 75.9 (s, CCl), 128.5 (s, PCPh,para) 128.5 (s, PCPh,para), 128.6 (bs, PCPh, ortho), 129.0 (s, SPh, meta), 129.2 (s, SPh, meta), 130.3 (s, PCPh, ipso), 130.6 (s, PCPh,para), 130.9 (s, SPh, ortho), 131.6 (s, PCPh,para), 132.1 (s, PCPh, ortho/meta), 132.2 (s, PCPh, ortho/meta), 132.2 (s, PCPh, ortho/meta), 132.3 (s, PCPh, ortho/meta), 132.4 (s, PCPh, ortho/meta), 132.5 (s, PCPh, ortho/meta), 133.5 (s, SPh, para), 134.0 (s, SPh, para), 135.6 (s, PCPh, ipso), 139.0 (s, PCPh,ipso), 31P(1H) NMR (162.1 MHz, CDCl3): δP = 45.1 (s), 46.5 (s). Anal. Calcd. for C26H19ClNOPS: C, 57.21; H, 4.56; N, 3.34; S, 15.27. Found: C, 57.32; H, 4.55; N, 3.28; S, 15.30.

Preparation of R-1-Li-2THF

12.4 mg (0.0295 mmol) of R-1 were dissolved in 1 mL of THF and cooled to 0 °C. 0.02 mL (0.0295 mmol, 1.6M in Et2O) MeLi were added slowly. The resulting yellow solution was stirred for 1 h at 0 °C. The solvent was removed, and the product was obtained as a yellow solid in 93 % yield. R-1 is coordinated by two THF molecules. (15.6 mg, 0.0274 mmol). NMR spectroscopic characterization was performed at −30 °C. Single crystals suitable for X-ray diffraction analysis were obtained from a concentrated THF solution at −30 °C.

1H NMR (400.33 MHz, d8-THF): δH = 2.91 (s, 3H; NCH3), 7.13-7.19(m, 3H; SCHPh,meta,para + PCHPh,meta,para), 7.27-7.29 (m, 6H; SCHPh,meta,para + PCHPh,meta,para), 7.70-7.75 (m, 2H; PCHPh,ortho), 8.11-8.13 (m, 4H; PCHPh,ortho + SCHPh,ortho), 13C(1H) NMR (100.67 MHz, d8-THF): δC = 29.8 (s, NCH3), 49.2 (d, 1JCp = 83.1 Hz; CCI), 127.8 – 128.1 (d + d, 1JCp = 11.9 Hz; PCPh,meta); 128.0 (s, SPh,meta); 129.0 (SPh,ortho); 130.0 (d, 1JCp = 2.5 Hz; CPh,para); 130.2 (d, 1JCp = 4.4 Hz; CPh,para); 130.2 (s, 2JCp = 10.3 Hz; SPh,para); 133.1 (d, 2JCp = 9.8 Hz; CPh,ortho); 133.2 (d, 2JCp = 10.1 Hz; CPh,ortho); 139.1 + 140.7 (d + d, 1JCp = 88.8 Hz + 96.2 Hz; CPh,ipso); 145.8 (s, SPh,ipso), 31P(1H) NMR (162.1 MHz, d8-THF): δP = 42.2 (s). Anal. Calcd. for C26H14ClN2LiO3PS2: C 58.99, H 6.01, N 2.46, S 11.25. Found: C 58.76, H 5.81, N 2.74, S 11.64.
Preparation of \(R\)-1-Na-THF

13.4 mg (0.0319 mmol) of \(R\)-1 were dissolved in 1 mL of THF and cooled to 0 °C. Subsequently, the solution was added to 2.3 mg (0.1821 mmol) of NaH. The reaction solution was stirred for 1 h at 0 °C and subsequently filtered through a cannula. The solvent was removed in vacuo. The product was obtained as a pale-yellow solid in 92 % yield (15.1 mg, 0.0294 mmol). Suitable crystals for X-ray diffraction analysis were obtained by slow diffusion of pentane into a solution of 1eq. of \(18\)-C-6 and \(rac\)-1-\(Na\)-THF in THF at -30 °C.

\(^1\)H NMR (400.3 MHz, \(d_8\)-THF): \(\delta_H = 2.84\) (s, 3H; NCH\(_3\)), 7.13-7.31 (m, 9H; SCH\(_{Ph,meta,para}\) + PCH\(_{Ph,meta,para}\)), 7.85-7.89 (m, 2H; PCH\(_{Ph,ortho}\)), 7.98-8.10 (m, 4H; PCH\(_{Ph,ortho} + \) SCH\(_{Ph,ortho}\))

\(^{13}\)C\(^{(1)}\)H\) NMR (100.7 MHz, \(d_8\)-THF): \(\delta_C = 30.2\) (NCH\(_3\)), 50.4 (d, \(^1\)J\(_{CP} = 88.5\) Hz; CCl), 127.7 + 127.9 (d + d, \(^3\)J\(_{CP} = 12.1\) Hz; PCH\(_{Ph,meta}\)), 128.1 (SC\(_{Ph,meta}\)), 128.4 (SC\(_{Ph,ortho}\)), 129.8 (SC\(_{Ph,para}\)), 130.0 (d, \(^4\)J\(_{CP} = 2.2\) Hz; PCH\(_{Ph,para}\)), 130.2 (d, \(^4\)J\(_{CP} = 2.9\) Hz; PCH\(_{Ph,para}\)), 133.3 (d, \(^2\)J\(_{CP} = 10.3\) Hz; PCH\(_{Ph,ortho}\)), 139.2 + 140.5 (d + d, \(^1\)J\(_{CP} = 87.9\) Hz + 95.6 Hz; PCH\(_{Ph,ipso}\)), 147.3 (s, SC\(_{Ph,ipso}\))

\(^{31}\)P\(^{(1)}\)H\) NMR (162.1 MHz, \(d_8\)-THF): \(\delta_P = 43.1\). \(^7\)Li NMR (155.6 MHz, THF): 0.53. Anal. Calcd. for C\(_{20}\)H\(_{28}\)CI\(_2\)N\(_2\)O\(_2\)S\(_2\): C, 52.45; H, 3.96; N, 3.06; S, 14.00. Found: C, 52.4, H, 4.36, N, 3.05, S, 13.78.

Preparation of \(R\)-1-K

22.2 mg (0.0528 mmol) of \(R\)-1 were dissolved in 1 mL of THF and cooled to 0 °C. Subsequently, the solution was added to 6.4 mg (0.16 mmol) KH and stirred at 0 °C for 1 h. The reaction solution was filtered through a cannula, and the solvent was removed in vacuo. The product was obtained as a yellow solid in 88 % yield (21.3 mg, 0.046 mmol). Crystals suitable for X-ray diffraction analysis were obtained from a saturated solution of \(rac\)-1-K and 2 eq. of 15-C-5 in THF at -30 °C.

\(^1\)H NMR (400.3 MHz, \(d_8\)-THF): \(\delta_H = 2.68\) (s, 3H; NCH\(_3\)), 7.13-7.31 (m, 9H; SCH\(_{Ph,meta,para}\) + PCH\(_{Ph,meta,para}\)), 7.85-7.89 (m, 2H; PCH\(_{Ph,ortho}\)), 7.98-8.00 (m, 2H; SCH\(_{Ph,ortho}\)), 8.05-8.10 (m, 2H; PCH\(_{Ph,ortho}\))

\(^{13}\)C\(^{(1)}\)H\) NMR (100.7 MHz, \(d_8\)-THF): \(\delta_C = 29.6\) (s, NCH\(_3\)), 49.8 (d, \(^1\)J\(_{CP} = 86.3\) Hz; CCl), 127.6 + 127.7 (d + d, \(^3\)J\(_{CP} = 13.9\) Hz; PCH\(_{Ph,meta}\)), 128.2 (SC\(_{Ph,meta}\)), 128.5 (s, SC\(_{Ph,meta}\)), 129.9 (dd, \(^4\)J\(_{CP} = 4.13\) Hz; PCH\(_{Ph,para} + \) SC\(_{Ph,para}\)), 133.1 + 133.2 (d + d, \(^2\)J\(_{CP} = 10.2\) Hz + 9.7 Hz; PCH\(_{Ph,ortho}\)), 139.5 (d, \(^1\)J\(_{CP} = 85.9\) Hz; PCH\(_{Ph,ipso}\)), 140.4 (d, \(^1\)J\(_{CP} = 90.0\) Hz; PCH\(_{Ph,ipso}\)), 146.5 (s, SC\(_{Ph,ipso}\))

\(^{31}\)P\(^{(1)}\)H\) NMR (162.1 MHz, \(d_8\)-THF): \(\delta_P = 44.1\) (s). Anal. Calcd. for C\(_{20}\)H\(_{18}\)CIKNOPS\(_2\): C, 52.45; H, 3.96; N, 3.06; S, 14.00. Found: C, 52.4, H, 4.36, N, 3.05, S, 13.78.
2. NMR spectra

2.1 NMR spectra of the isolated compounds

Figure S1. 1H NMR spectrum of R-1 in CDCl$_3$ recorded at room temperature.

Figure S2. 13C(1H)(31P) NMR spectrum of R-1 in CDCl$_3$ recorded at room temperature.
Figure S3. $^{31}\text{P}^{1}\text{H}$ NMR spectrum of R-1 in CDCls recorded at room temperature.

Figure S4. ^1H NMR spectrum of R-1-Li 2THF in d8-THF recorded at 243 K.
Figure S5. 13C{H} NMR spectrum of R-1-Li\textsubscript{2}THF in d$_8$-THF recorded at 243 K.

Figure S6. 7Li NMR spectrum of R-1-Li\textsubscript{2}THF in THF recorded at RT.
Figure S7. 31P(1H) NMR spectra of R-1-Li-2THF in THF recorded at RT (top) and in toluene recorded at 263K (bottom).
Figure S8. 1H NMR spectrum of R-1-Na·1THF in d$_8$-THF recorded at room temperature.

Figure S9. 13C(1H) NMR spectrum of R-1-Na·1THF in d$_8$-THF recorded at room temperature.
Supporting Information

Figure S10. 31P(1H) NMR spectra of R-1-Na•THF in d$_8$-THF recorded at room temperature (top) and in d$_8$-toluene at room temperature (bottom).
Figure S11. 1H NMR spectra of R-1-K in d$_8$-THF recorded at room temperature.

Figure S12. 13C(1H) NMR spectrum of R-1-K in d$_8$-THF recorded at room temperature.
Figure S13. $^{31}\text{P}[^1\text{H}]$ NMR spectra of R-1-K in d$_8$-THF recorded at room temperature (top) and in d$_8$-toluene at room temperature (bottom).
2.2 VT $^{31}\text{P}\{^1\text{H}\}$ NMR spectroscopy

The carbenoids were prepared according to the synthesis stated above. A J. Young NMR tube was set under vacuum and flushed with Ar three times and cooled to $-40 \ ^\circ\text{C}$. The deuterated solvent (d_8-THF or d_8-Tol) was cooled to $-40 \ ^\circ\text{C}$. 0.6 mL of cooled deuterated solvent was added to the Schlenk flask which was also cooled to $-40 \ ^\circ\text{C}$ and the carbenoids were dissolved and subsequently, transferred via a syringe to the J. Young NMR tube. The NMR tube was cooled while transporting to the NMR instrument.

NMR instrument: The NMR instrument is cooled to $-30 \ ^\circ\text{C}$ prior to the injection of the sample to prevent sample decomposition. The VT NMR studies are performed in automation starting at $-30 \ ^\circ\text{C}$ and incrementing the temperature by 10 °C steps with a start delay of 3515 sec. until a temperature of 50 °C is reached.

![Figure S14. VT $^{31}\text{P}\{^1\text{H}\}$ NMR Spectra of rac-1-Li in d_8-THF.](image)
Figure S15. VT $^{31}\text{P}^\text{(1H)}$ NMR Spectra of rac-1-Li in d_8-Tol.

Figure S16. VT $^{31}\text{P}^\text{(1H)}$ NMR Spectra of rac-1-Na in d_8-THF.
Figure S17. VT 31P(1H) NMR Spectra of rac-1-Na in d8-Tol.

Figure S18. VT 31P(1H) NMR Spectra of rac-1-K in d8-THF.
Figure S19. VT 31P(1H) NMR Spectra of rac-1-K in d$_8$-Tol.
3. **DOSY NMR spectroscopy**

3.1 **General procedure**

General procedure of the sample preparation for DOSY NMR spectroscopic measurements.

DOSY measurements were recorded on an AV 400 MHz spectrometer operating at 400.13 MHz. A double stimulated echo sequence (dstebpg3s) was used and the pulse gradients (g) were incremented from 2 to 95% of the maximum gradient strength in a linear ramp. The Stejskal-Tanner diffusion delay (d20) was set to 0.2 s and the eddy-current delay (d21) to 5 ms. After Fourier transformation and baseline correction, the diffusion dimension was processed with the Topspin 3.6.1 software (BrukerBiospin). Diffusion coefficients were calculated by exponential fits with the T1/T2 software of Topspin. Tetramethylsilane and adamantane have been used as references in DOSY measurements in THF and toluene, respectively. The molecular masses were calculated by the ECC-MW estimation software by Stalke et al. [143]

All carbenoids were prepared according to the synthetic procedure stated above with 0.075 mmol of the protonated precursor. The corresponding metal base was added to a THF solution of the protonated precursor. After stirring for 1h at that temperature, the solvent was removed in vacuo. The obtained solid was subsequently dissolved in 0.6 mL of cooled deuterated solvent and transferred via a syringe into a J. Young NMR tube with the corresponding internal standard and used for DOSY NMR spectroscopy measurements. The THF used for synthesis could not be removed completely in vacuo and residual THF was still present during the DOSY measurements (see above).

Measurements in d₈-toluene:

4 mg (0.03 mmol) adamantane were added to a J. Young NMR tube and the NMR tube was evaporated and flushed with Ar three times. 0.6 mL cooled (−40 °C) d₈-Tol was added to the cooled (−40 °C) Schlenk flask containing the respective carbenoid. The carbenoid was prepared as stated above, dissolved in d₈-Tol and subsequently transferred to the J. Young NMR tube via a syringe under Ar. The J. Young NMR tube was cooled to −40 °C and the sample was kept at that temperature while transferring it to the NMR instrument.

Measurements in d₈-THF:

A J. Young NMR tube was evaporated and flushed with Ar three times. 0.6 mL d₈-THF cooled to −40 °C were added to the cooled (−40 °C) Schlenk flask containing the carbenoid. The J. Young NMR tube is placed in a cooling bath at −40 °C and the d₈-THF solution of the carbenoid (prepared as stated above) is transferred to the J. Young NMR tube. Then, 4 µL TMS (0.03 mmol) were added to the J. Young tube under Ar. The sample was kept at −40 °C while transferring it to the NMR instrument.

NMR instrument:

The NMR instrument is cooled to −30 °C prior to the injection of the sample to prevent sample decomposition. The DOSY NMR spectra are recorded at -30 °C, -10 °C and 27 °C, respectively. The instrument is warmed up to the respective temperature manually.
3.2 DOSY NMR data of rac-1-Li

Figure S20. 1H DOSY NMR spectrum for rac-1-Li in d_8-THF at 27 °C.

Table S1. 1H DOSY NMR data for rac-1-Li at 27 °C in d_8-THF.

Solvent	Int. reference	D_{ref} [m2s$^{-1}$]	log$_{D_{\text{ref}}}$	Θ	log$_{D_{\text{Carb}}}$	MW$_{\text{DOSY}}$ [g/mol]	MW$_{\text{calc}}$ [g/mol]	Species	Error [%]
THF	TMS	2.21E-9	-9.05	464	497.96	-6.8		Monomer	+1THF

Figure S21. 1H DOSY NMR spectrum for rac-1-Li in d_8-THF at –10 °C.

Table S2. 1H DOSY NMR data for rac-1-Li at –10 °C in d_8-THF.

Solvent	Int. reference	D_{ref} [m2s$^{-1}$]	log$_{D_{\text{ref}}}$	Θ	log$_{D_{\text{Carb}}}$	MW$_{\text{DOSY}}$ [g/mol]	MW$_{\text{calc}}$ [g/mol]	Species	Error [%]
THF	TMS	1.28E-9	-8.89	-9.33	554	570.07	-2.8	Monomer	+ 2 THF
Figure S22. 1H DOSY NMR spectrum for rac-1-Li in d$_8$-THF at −10 °C.

Table S3. 1H DOSY NMR data for rac-1-Li at −30 °C in d$_8$-THF.

Solvent	Int. reference	D_{ref} [m2s$^{-1}$]	log D_{ref}	ϕ	log D_{carb}	MW$_{\text{DOSY}}$ [g/mol]	MW$_{\text{calc}}$ [g/mol]	Species	Error [%]
THF	TMS	8.75E-10	-9.06	-9.51	600	570.07	642.17	Monomer + 2 THF	+ 5.3
								Monomer + 3 THF	+ 6.6

Figure S23. 1H DOSY NMR spectrum for rac-1-Li in d$_8$-Tol at 27 °C.
Table S4. 1H DOSY NMR data for rac-1-Li at 27 °C in d$_8$-Tol.

Solvent	Int. reference	ØD$_{ref}$ $[^{m^2s^{-1}}]$	ØlogD$_{re}$	ØlogD$_{Carb}$	MW$_{DOSY}$ [g/mol]	MW$_{calc}$ [g/mol]	Species	Error [%]
Tol	Adam	1.69E-9	-8.77	-9.25	904	851.71	Dimer	+6.1
					923.81		Dimer	-2.1

Figure S24. 1H DOSY NMR spectrum for rac-1-Li in d$_8$-Tol at –10 °C.

Table S5. 1H DOSY NMR data for rac-1-Li at –10 °C in d$_8$-Tol.

Solvent	Int. reference	ØD$_{ref}$ $[^{m^2s^{-1}}]$	ØlogD$_{re}$	ØlogD$_{Carb}$	MW$_{DOSY}$ [g/mol]	MW$_{calc}$ [g/mol]	Species	Error [%]
Tol	Adam	8.62E-10	-9.06	-9.58	1051	995.92	Dimer	+5.5
					1068.03		Dimer	-1.6
Figure S25. 1H DOSY NMR spectrum for rac-1-Li in d$_8$-Tol at –30 °C.

Table S6. 1H DOSY NMR data for rac-1-Li at –30 °C in d$_8$-Tol.

Solvent	Int. reference	$\bar{\Omega}_{\text{ref}}$ [m2s$^{-1}$]	$\bar{\Omega}_{\text{logD}}$	$\bar{\Omega}_{\text{logDCarb}}$	MW_{DOSY} [g/mol]	MW_{calc} [g/mol]	Species	Error [%]
Tol	Adam 5.36E-10	-9.27	-9.78	1025	995.92	1068.03	Dimer + 2 THF	2.9
							Dimer + 2 THF	-4.0
3.3 DOSY NMR Data of rac-1-Na

Figure S26. 1H DOSY NMR spectrum for rac-1-Na in d_8-THF at 27 °C.

Table S7. 1H DOSY NMR data for rac-1-Na at 27 °C in d_8-THF.

Solvent	Int. reference	D_{ref} [m2s$^{-1}$]	logD_{ref}	\varnothing	MW$_{\text{DOSY}}$ [g/mol]	MW$_{\text{calc}}$ [g/mol]	Species	Error [%]
THF	TMS	2.33E-9	-8.63	-9.03	471	441.90	Monomer + 0 THF	6.6
						514.01	Monomer + 1 THF	-8.3

Figure S27. 1H DOSY NMR spectrum for rac-1-Na in d_8-THF at −10 °C.
Table S8. 1H DOSY NMR data for rac-1-Na at -10 °C in d$_8$-THF.

Solvent	Int. reference	D_{ref} [m2s$^{-1}$]	$\log D_{\text{ref}}$	Θ	$\log D_{\text{Carb}}$	MW_{DOSY} [g/mol]	MW_{calc} [g/mol]	Species	Error [%]
THF	TMS	1.44E-9	-8.84	-9.30	-8.84	595	586.12	Monomer + 2THF	+1.5

Table S9. 1H DOSY NMR data for rac-1-Na at -30 °C in d$_8$-THF.

Solvent	Int. reference	D_{ref} [m2s$^{-1}$]	$\log D_{\text{ref}}$	Θ	$\log D_{\text{Carb}}$	MW_{DOSY} [g/mol]	MW_{calc} [g/mol]	Species	Error [%]
THF	TMS	1.01E-9	-8.99	-9.41	-8.99	683	658.23	Monomer + 3THF	+3.8
Table S10. 1H DOSY NMR data for rac-1-Na at 27 °C in d_8-Tol.

Solvent	Int. reference	ΔD_{ref} [m2s$^{-1}$]	$\Delta \log D_{\text{ref}}$	$\Delta \log D_{\text{Carb}}$	MW$_{\text{DOSY}}$ [g/mol]	MW$_{\text{calc}}$ [g/mol]	Species	Error [%]
Tol	Adam	1.80E-9	-8.75	-9.33	1330	1316.46	Dimer	+1.0
						1325.70	Trimer	-0.3

Table S11. 1H DOSY NMR data for rac-1-Na at −10 °C in d_8-Tol.

Solvent	Int. reference	ΔD_{ref} [m2s$^{-1}$]	$\Delta \log D_{\text{ref}}$	$\Delta \log D_{\text{Carb}}$	MW$_{\text{DOSY}}$ [g/mol]	MW$_{\text{calc}}$ [g/mol]	Species	Error [%]
Tol	Adam	9.14E-10	-9.04	-9.62	1312	1316.46	Dimer	-0.3
						1325.70	Trimer	-1.0
Figure S31. 1H DOSY NMR spectrum for rac-1-Na in d$_8$-Tol at –30 °C.

Table S12. 1H DOSY NMR data for rac-1-Na at –30 °C in d$_8$-Tol.

Solvent	Int. reference	$\Omega_{D,ref}$ [m2s$^{-1}$]	Ω_{logD}	Ω_{logD_Carb}	MW$_{DOSY}$ [g/mol]	MW$_{calc}$ [g/mol]	Species	Error [%]
Tol	Adam	9.53E-10	-9.26	-9.81	1195	1172.24	Dimer	+1.9
3.4 DOSY NMR data of rac-1-K

Figure S32. ¹H DOSY NMR spectrum for rac-1-K in d₈-THF at 27 °C.

Table S13. ¹H DOSY NMR data for rac-1-K at 27 °C in d₈-THF.

Solvent	Int. reference	Dₚₒₑᵣ [m²s⁻¹]	logDₚₒₑᵣ	Ø logDₑᵣₑᵣ	MWₑᵣₒᵣ [g/mol]	MWₑᵣₑᵣ [g/mol]	Species	Error [%]
THF	TMS	2.17E-9	-8.66	-9.083	521	530.12	Monomer + 1THF	-1.7

Figure S33. ¹H DOSY NMR spectrum for rac-1-K in d₈-THF at −10 °C.
Table S14. 1H DOSY NMR data for rac-1-K at -10 °C in d$_8$-THF.

Solvent	Int. reference	D_{ref} [m2s$^{-1}$]	$\log D_{ref}$	Φ	$\log D_{Carb}$	MW$_{DOSY}$ [g/mol]	MW$_{calc}$ [g/mol]	Species	Error [%]
THF	TMS	1.24E-9	-8.91	-9.34	555	530.12	602.23	Monomer	+4.7
								+1THF	
								Monomer	-7.8
								+2THF	

Figure S34. 1H DOSY NMR spectrum for rac-1-K in d$_8$-THF at -30 °C.

Table S15. 1H DOSY NMR data for rac-1-K at -30 °C in d$_8$-THF.

Solvent	Int. reference	D_{ref} [m2s$^{-1}$]	$\log D_{ref}$	Φ	$\log D_{Carb}$	MW$_{DOSY}$ [g/mol]	MW$_{calc}$ [g/mol]	Species	Error [%]
THF	TMS	9.16E-10	-9.04	-9.51	633	602.23	674.33	Monomer	+5.1
								+2THF	
								Monomer	-6.1
								+3THF	
Figure S35. 1H DOSY NMR spectrum for rac-1-K in d$_8$-Tol at 27 °C.

Table S16. 1H DOSY NMR data for rac-1-K at 27 °C in d$_8$-Tol.

Solvent	Int. reference	ØD$_{ref}$ [m2s$^{-1}$]	ØlogD$_{ref}$	ØlogD$_{Carb}$	MW$_{DOSY}$ [g/mol]	MW$_{calc}$ [g/mol]	Species	Error [%]
Tol	Adam	1.71E-9	-8.77	-9.31	1135	1132.35	Dimer +	+0.2
							3THF	

Figure S36. 1H DOSY NMR spectrum for rac-1-K in d$_8$-Tol at –10 °C.

Table S17. 1H DOSY NMR data for rac-1-K at –10 °C in d$_8$-Tol.

Solvent	Int. reference	ØD$_{ref}$ [m2s$^{-1}$]	ØlogD$_{ref}$	ØlogD$_{Carb}$	MW$_{DOSY}$ [g/mol]	MW$_{calc}$ [g/mol]	Species	Error [%]
Tol	Adam	9.51E-9	-9.02	-9.53	1012	1060.24	Dimer +	-4.5
							2THF	
Figure S37. 1H DOSY NMR spectrum for rac-1-K in d$_8$-Tol at −30 °C.

Table S18. 1H DOSY NMR data for rac-1-K at −30 °C in d$_8$-Tol.

Solvent	Int. reference	ØD$_{ref}$	ØlogD$_{ref}$	ØlogD$_{Carb}$	MW$_{DOSY}$	MW$_{calc}$	Species	Error
Tol	Adam 4.70E-10	-9.33	-9.89		1252	1251.46	Dimer	0.0
							6THF	
4. Determination of ee

Retention Time	Area [mAU.s]	Height [mAU]	Area [%]	WOS [min]	PDA Peak Purity	Compound Name	PDA Best Match Name
1	14.223	4963.300	1317.071	100.0	0.50	901	
Total	4363.300	1317.071	100.0				

Figure S38. HPLC chromatogram of $R\text{-}2$ in hexane:isopropanol (85:15).

Retention Time	Area [mAU.s]	Height [mAU]	Area [%]	WOS [min]	PDA Peak Purity	Compound Name	PDA Best Match Name
1	14.237	25766.386	831.276	90.0	0.52	925	
2	15.467	25803.460	743.596	95.0	0.55	907	
Total	51569.775	15753.732	96.0				

Figure S39. HPLC chromatogram of $rac\text{-}2$ in hexane:isopropanol (85:15).
5. Crystal Structure Determination

5.1 General information

Data collection of all compounds was conducted with an Oxford Synergy. The structures were solved using direct methods, refined with the Shelx software package and expanded using Fourier techniques. The crystals of all compounds were mounted in an inert oil (perfluoropolyalkylether). Crystal structure determinations were affected at 100 K. Crystallographic data (including structure factors) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-2022984-2022987. Copies of the data can be obtained free of charge on application to Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; [fax: (+44) 1223-336-033; email: deposit@ccdc.cam.ac.uk].

The structure of rac-1-Na(18crown6) has been solved using the DELU and SIMU commands to prevent distortion of an ellipsoid due to residue electron density from a minor disorder.

The structure of rac-1-K(18crown6) contained a twin with the occupancy 0.59:0.41 and was solved with the TWIN and BASF commands (Twin law: $-1 0 0 0 1 0 0 0 -1$)

Table S19. Data collection and structure refinement details for compound S,S-1-H and rac-1-Li.

Parameter	S,S-1-H	rac-1-Li
CCDC No.	CCDC-2022984	CCDC-2022985
Emperical formula	$C_{20}H_{19}ClNOPS_2$	$C_{32}H_{42}ClLiNO_4PS_2$
Formula weight	419.90 g/mol	642.14 g/mol
Temperature	100(2) K	100(2) K
Wavelength	0.71073 Å	1.54184 Å
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1$	$P2_1/c$
Unit cell dimensions	a = 9.3549(5) Å	a = 8.9364(4) Å
	b = 9.4299(5) Å	b = 19.994(3) Å
	c = 10.8508(6) Å	c = 18.1879(14) Å
	α = 90°	α = 90°
	β = 92.165(2)°	β = 97.652(6)°
	γ = 90°	γ = 90°
Volume	956.53(9) Å3	3220.8(5) Å3
Formula unit per cell	2	4
Density (calculated)	1.458 Mg/m3	1.324 Mg/m3
Absorption coefficient	0.511 mm$^{-1}$	3.025 mm$^{-1}$
F(000)	436	1360
Crystal size	0.30 x 0.25 x 0.24 mm3	0.409 x 0.164 x 0.116 mm3
Θ range for data collection	1.878 to 26.395°	3.301 to 72.483°
Table S20. Data collection and structure refinement details for compound rac-1-Na(18crown6) and rac-1-K(18crown6).

Parameter	rac-1-Na(18crown6)	rac-1-K(18crown6)
CCDC No.	CCDC-2022986	CCDC-2022987
Empirical formula	C_{60}H_{116}Cl_{11}N_{13}Na_{12}O_{18}P_{2}S_{4}	C_{40}H_{56}ClKNO_{11}PS_{2}
Formula weight	1700.80 g/mol	898.51 g/mol
Temperature	100(2) K	100(2) K
Wavelength	1.54184 Å	1.54184 Å
Crystal system	Triclinic	Triclinic
Space group	P̅1	P̅1
Unit cell dimensions	a = 9.2135(3) Å	a = 9.1916(3) Å
	b = 20.4163(6) Å	b = 20.6188(8) Å
	c = 23.8781(8) Å	c = 23.3493(5) Å
	α = 75.754(3)°	α = 89.975(2)°
	β = 80.345(3)°	β = 84.739(2)°
	γ = 87.399(3)°	γ = 89.983(3)°
Volume	4291.7(2) Å	4406.5(2) Å
Formula unit per cell	2	4
Density (calculated)	1.316 Mg/m³	1.354 Mg/m³
Absorption coefficient	2.586 mm⁻¹	3.323 mm⁻¹
F(000)	1808	1904
Crystal size	0.129 x 0.059 x 0.059 mm⁻³	0.295 x 0.036 x 0.017 mm⁻³
Θ range for data collection	3.290 to 67.080°	2.865 to 67.499°
Index ranges	-11 ≤ h ≤ 11, -24 ≤ k ≤ 20, -28 ≤ l ≤ 28	-10 ≤ h ≤ 11, -24 ≤ k ≤ 24, -26 ≤ l ≤ 27
Reflections collected	29548	79386
Independent reflections	15283 [R(int) = 0.0564]	15421 [R(int) = 0.1498]
Supporting Information

Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Data / restraints / parameters	15283 / 7 / 997	15421 / 0 / 1049
Goodness-of-fit on F^2	1.024	1.040
Final R indices [$I>2\sigma(I)$]	$R_1 = 0.0519$, $wR_2 = 0.1281$	$R_1 = 0.0799$, $wR_2 = 0.2051$
R indices (all data)	$R_1 = 0.0798$, $wR_2 = 0.1432$	$R_1 = 0.0855$, $wR_2 = 0.2103$
Largest diff. peak and hole	1.573 and -0.597 e.Å3	1.422 and -1.312 e.Å3

5.2 Further Details to the Crystal Structures

Crystal Structure Determination of (S,S)-1-H

![ORTEP of compound S,S-1-H](image)

Figure S40. ORTEP of compound S,S-1-H. Ellipsoids are drawn at the 50% probability level.

Table S21. Atomic coordinates ($x \times 10^4$) and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for S,S-1-H. U(eq) is defined as one third of the trace of the orthogonalized U^i_j tensor.

	x	y	z	U(eq)
Cl(1)	8242(1)	11120(1)	5139(1)	18(1)
S(1)	8418(1)	9172(1)	1977(1)	18(1)
S(2)	6077(1)	8978(1)	4718(1)	13(1)
P(1)	7297(1)	10780(1)	2499(1)	11(1)
O(1)	5467(2)	9451(2)	5862(1)	17(1)
N(1)	7085(2)	7745(2)	4670(2)	17(1)
C(1)	6767(2)	10695(2)	4130(2)	12(1)
C(2)	5613(2)	11039(2)	1649(2)	13(1)
C(3)	4751(2)	12213(2)	1895(2)	16(1)
Table S22. Anisotropic displacement parameters (Å² x 10³) for S,S-1-H. The anisotropic displacement factor exponent takes the form: -2p²[h² a*²U₁₁ + ... + 2 h k a* b* U₁₂]

	U₁¹	U₂²	U₃³	U₂³	U₁³	U₁²
Cl(1)	18(1)	22(1)	15(1)	0(1)	-4(1)	-5(1)
S(1)	16(1)	17(1)	20(1)	-4(1)	3(1)	3(1)
S(2)	11(1)	14(1)	14(1)	2(1)	-1(1)	-1(1)
P(1)	11(1)	13(1)	11(1)	-1(1)	1(1)	0(1)
O(1)	18(1)	20(1)	13(1)	1(1)	2(1)	-1(1)
N(1)	15(1)	17(1)	20(1)	0(1)	-3(1)	1(1)
C(1)	11(1)	14(1)	11(1)	-1(1)	-1(1)	-2(1)
C(2)	13(1)	16(1)	11(1)	2(1)	0(1)	-2(1)
C(3)	17(1)	16(1)	15(1)	-1(1)	0(1)	-2(1)
C(4)	17(1)	16(1)	23(1)	4(1)	1(1)	1(1)
C(5)	18(1)	23(1)	20(1)	7(1)	-6(1)	-3(1)
C(6)	24(1)	21(1)	16(1)	0(1)	-3(1)	-6(1)
C(7)	18(1)	17(1)	14(1)	0(1)	1(1)	-2(1)
C(8)	11(1)	16(1)	15(1)	2(1)	-2(1)	-2(1)
C(9)	14(1)	19(1)	16(1)	0(1)	0(1)	0(1)
C(10)	18(1)	17(1)	23(1)	-1(1)	-5(1)	0(1)
C(11)	16(1)	20(1)	28(1)	9(1)	-7(1)	-5(1)
C(12)	14(1)	30(1)	20(1)	9(1)	1(1)	-2(1)
C(13)	14(1)	21(1)	16(1)	2(1)	1(1)	1(1)
C(14)	12(1)	16(1)	16(1)	4(1)	-1(1)	-4(1)
C(15)	17(1)	16(1)	20(1)	2(1)	1(1)	-1(1)
C(16)	25(1)	20(1)	20(1)	-1(1)	-2(1)	-6(1)
C(17)	19(1)	25(1)	19(1)	5(1)	-5(1)	-8(1)
C(18)	13(1)	22(1)	24(1)	6(1)	-1(1)	-1(1)
C(19)	16(1)	16(1)	18(1)	2(1)	1(1)	-2(1)
C(20)	14(1)	23(1)	31(1)	3(1)	-7(1)	4(1)
Crystal Structure Determination of rac-1-Li

Figure S41. ORTEP of compound rac-1-Li. Ellipsoids are drawn at the 50% probability level.

Table S23. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for rac-1-Li. U(eq) is defined as one third of the trace of the orthogonized U^ij tensor.

	x	y	z	U(eq)
Li(1)	3025(3)	5815(1)	2182(1)	24(1)
Cl(1)	7063(1)	6836(1)	4726(1)	23(1)
S(1)	5020(1)	6278(1)	3538(1)	18(1)
S(2)	4178(1)	8238(1)	4248(1)	25(1)
P(1)	5592(1)	7799(1)	3658(1)	18(1)
N(1)	5930(1)	5632(1)	3632(1)	22(1)
O(1)	4221(1)	6458(1)	2803(1)	21(1)
O(2)	4174(1)	5459(1)	1439(1)	26(1)
O(3)	2257(1)	5067(1)	2676(1)	25(1)
O(4)	1346(1)	6334(1)	1695(1)	28(1)
C(1)	6080(2)	6955(1)	3822(1)	19(1)
C(2)	7437(2)	8218(1)	3797(1)	21(1)
C(3)	8700(2)	7909(1)	3563(1)	25(1)
Table S24. Anisotropic displacement parameters (Å² x 10³) for rac-1-Li. The anisotropic displacement factor exponent takes the form: -2p²\[h^2 a^*2 U_{11} + ... + 2 h k a^* b^* U_{12} \]

	U₁₁	U₂₂	U₃₃	U₁₂	U¹³	U¹₂																																	
Li(1)	23(1)	24(1)	23(1)	1(1)	1(1)	-1(1)																																	
Cl(1)	21(1)	29(1)	17(1)	2(1)	-2(1)	-1(1)																																	
S(1)	16(1)	20(1)	17(1)	1(1)	1(1)	-1(1)																																	
S(2)	22(1)	28(1)	25(1)	-6(1)	6(1)	1(1)																																	
P(1)	15(1)	20(1)	17(1)	-1(1)	1(1)	-1(1)																																	
N(1)	19(1)	23(1)	25(1)	1(1)	4(1)	1(1)																																	
	O(1)	O(2)	O(3)	O(4)	C(1)	C(2)	C(3)	C(4)	C(5)	C(6)	C(7)	C(8)	C(9)	C(10)	C(11)	C(12)	C(13)	C(14)	C(15)	C(16)	C(17)	C(18)	C(19)	C(20)	C(21)	C(22)	C(23)	C(24)	C(25)	C(26)	C(27)	C(28)	C(29)	C(30)	C(31)	C(32)			
---	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------
	21	28	22	29	18	18	22	22	24	31	24	24	24	25	28	27	20	21	17	21	20	20	20	28	29	22	30	22	22	31	37	29	29	29	42	42			
	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)					
	24	26	24	26	18	16	20	31	36	24	26	23	36	30	23	29	22	25	17	25	23	29	29	29	29	30	30	29	26	34	25	25	36						
	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)					
	18	23	24	26	25	16	20	31	36	31	26	23	36	30	23	29	22	25	17	25	23	29	29	29	29	30	30	29	26	34	25	25	36						
	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)					
	1	2	4	-1	1	1	2	2	11	3	2	0	0	2	7	8	2	3	0	0	0	4	0	0	2	8	8	0	0	2	2	4	1	1	1	1	1		
	0	5	9	-4	-1	-3	0	0	-5	-8	-4	1	0	0	-3	-2	2	5	-3	-1	-2	5	-1	1	-2	-6	-8	-1	-6	-6	-5	-5	-5	-5	-5	-5	-5		
	-3	1	0	5	0	0	-1	-4	-11	-8	0	0	0	1	5	2	1	2	0	0	0	2	0	0	2	-3	-2	0	0	0	0	0	0	0	0	0	0		
Crystal Structure Determination of rac-1-Na

Figure S42. ORTEP of compound rac-1-Na. Ellipsoids are drawn at the 50% probability level.

Table S25. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\AA^2 \times 10^3$) for rac-1-Na. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	y	z	U(eq)	
Cl(1)	5297(1)	1768(1)	3051(1)	27(1)	
S(1)	6898(1)	1295(1)	2077(1)	24(1)	
P(1)	5741(1)	281(1)	3199(1)	21(1)	
O(1)	7227(2)	655(1)	1907(1)	29(1)	
N(1)	6416(3)	1916(1)	1645(1)	29(1)	
C(1)	5677(3)	1081(1)	2711(1)	23(1)	
Cl(2)	3175(1)	5885(1)	1360(1)	30(1)	
O(2)	3626(3)	6907(1)	2613(1)	33(1)	
S(2)	7494(1)	-31(1)	3571(1)	33(1)	
P(2)	3322(1)	5396(1)	2621(1)	25(1)	
N(2)	3799(3)	7396(1)	1468(1)	35(1)	
C(2)	4145(3)	312(1)	3762(1)	23(1)	
S(3)	3242(1)	6876(1)	2032(1)	30(1)	
C(3)	4340(3)	413(2)	4297(1)	26(1)	
---	---	---	---	---	
S(4)	1287(1)	5249(1)	3047(1)	34(1)	
C(4)	3134(4)	479(2)	4716(1)	27(1)	
C(5)	1711(4)	436(2)	4605(1)	29(1)	
C(6)	1502(4)	329(2)	4077(2)	31(1)	
C(7)	2714(3)	270(2)	3656(1)	26(1)	
C(8)	5213(4)	-332(2)	2825(1)	28(1)	
C(9)	5733(4)	-993(2)	2961(2)	39(1)	
C(10)	5214(5)	-1474(2)	2716(2)	52(1)	
C(11)	4209(5)	-1306(2)	2339(2)	54(1)	
C(12)	3724(4)	-646(2)	2192(2)	48(1)	
C(13)	4231(4)	-163(2)	2432(2)	35(1)	
C(14)	8590(3)	1584(2)	2198(1)	26(1)	
C(15)	9674(4)	1104(2)	2333(2)	34(1)	
C(16)	11020(4)	1309(2)	2417(2)	39(1)	
C(17)	11269(4)	1983(2)	2373(2)	40(1)	
C(18)	10172(4)	2459(2)	2255(2)	35(1)	
C(19)	8816(3)	2257(2)	2171(1)	29(1)	
C(20)	4964(4)	1873(2)	1482(2)	34(1)	
C(21)	3724(4)	6062(2)	1986(1)	28(1)	
C(22)	4017(3)	4643(2)	2373(1)	23(1)	
C(23)	5285(3)	4670(2)	1958(1)	28(1)	
C(24)	5833(4)	4091(2)	1789(1)	30(1)	
C(25)	5127(4)	3476(2)	2039(1)	30(1)	
C(26)	3870(4)	3449(2)	2456(1)	29(1)	
C(27)	3306(3)	4029(2)	2620(1)	25(1)	
C(28)	4620(3)	5446(2)	3112(1)	26(1)	
C(29)	6042(4)	5693(2)	2904(2)	33(1)	
C(30)	7044(4)	5657(2)	3283(2)	41(1)	
C(31)	6599(5)	5393(2)	3877(2)	47(1)	
C(32)	5182(5)	5158(2)	4090(2)	51(1)	
C(33)	4200(4)	5176(2)	3707(2)	39(1)	
C(34)	1292(4)	7024(2)	2051(2)	33(1)	
C(35)	674(4)	7154(2)	1545(2)	37(1)	
C(36)	-848(4)	7273(2)	1583(2)	39(1)	
C(37)	-1694(4)	7264(2)	2120(2)	40(1)	
C(38)	-1059(4)	7132(2)	2617(2)	41(1)	
C(39)	443(4)	7005(2)	2585(2)	37(1)	
C(40)	5368(4)	7393(2)	1235(2)	41(1)	
Na1	9081(1)	2667(1)	4848(1)	28(1)	
O11	10339(3)	3581(1)	5159(1)	34(1)	
C11	9450(4)	4011(2)	5459(2)	43(1)	
Atom	u1	u2	u3	u4	u5
------	-----	-----	------	-----	-----
O21	7260(3)	3377(1)	5628(1)	39(1)	
C21	8315(4)	3579(2)	5915(2)	45(1)	
O31	5284(3)	2539(1)	5321(1)	40(1)	
C31	6072(4)	3029(2)	6053(2)	45(1)	
O41	7332(2)	1781(1)	4727(1)	27(1)	
C41	4874(5)	2921(2)	5748(2)	48(1)	
O51	10201(2)	1923(1)	5645(1)	39(1)	
C51	5533(4)	1843(2)	5555(2)	37(1)	
O61	11677(2)	3028(1)	4275(1)	32(1)	
C61	5989(4)	1508(2)	5067(2)	31(1)	
O71	7883(4)	1406(2)	4304(1)	33(1)	
C71	4874(5)	2921(2)	5748(2)	48(1)	
O81	8176(2)	3351(1)	4064(1)	33(1)	
C81	9102(4)	1783(2)	3873(2)	32(1)	
C91	11518(4)	2160(2)	3804(2)	37(1)	
C101	12463(4)	2459(2)	4132(2)	34(1)	
C111	12505(4)	3403(2)	4533(2)	38(1)	
C121	11505(4)	3921(2)	4747(2)	37(1)	
C131	10811(5)	2026(2)	6080(2)	45(1)	
C141	9953(5)	1633(2)	6660(2)	46(1)	
C151	9144(4)	1100(2)	6482(2)	35(1)	
C161	9603(4)	1252(2)	5821(2)	36(1)	
C171	6664(4)	3390(2)	3988(2)	45(1)	
C181	6688(6)	3587(3)	3335(2)	66(1)	
C191	8180(5)	3904(2)	3085(2)	50(1)	
C201	8914(4)	3870(2)	3610(2)	48(1)	
Na12	0	10000	0	37(1)	
O12	-2102(3)	9835(1)	934(1)	46(1)	
C12	-3541(5)	10087(3)	871(2)	58(1)	
O22	281(4)	9020(1)	1022(1)	50(1)	
C22	-2099(6)	9289(2)	1431(2)	56(1)	
O32	2662(3)	9340(2)	98(1)	51(1)	
C32	-589(6)	9146(2)	1534(2)	57(1)	
O42	-845(3)	9107(2)	-314(1)	52(1)	
C42	1768(6)	8863(2)	1091(2)	62(1)	
C52	2580(6)	8726(2)	535(2)	63(1)	
C62	3417(5)	9253(3)	-446(2)	59(1)	
C72	-2056(6)	8706(3)	37(2)	70(2)	
C82	-2223(5)	8133(2)	-243(2)	52(1)	
C92	-1433(5)	8377(2)	-860(2)	48(1)	
C102	-757(7)	9025(3)	-879(2)	68(2)	
Table S26. Anisotropic displacement parameters (Å$^2 \times 10^3$) for rac-1-Na. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^2 U_{11} + \ldots + 2hk a^* b^* U_{12}]$

	U11	U22	U33	U23	U13	U12	
Cl(1)	29(1)	21(1)	29(1)	-10(1)	4(1)	-1(1)	
S(1)	21(1)	26(1)	23(1)	-8(1)	2(1)	-3(1)	
P(1)	20(1)	22(1)	21(1)	-7(1)	2(1)	-2(1)	
O(1)	30(1)	30(1)	28(1)	-14(1)	6(1)	-4(1)	
N(1)	24(1)	34(1)	26(1)	-5(1)	-1(1)	-6(1)	
C(1)	25(2)	19(1)	26(2)	-10(1)	1(1)	0(1)	
Cl(2)	29(1)	32(1)	32(1)	-10(1)	-8(1)	0(1)	
O(2)	42(1)	24(1)	38(1)	-16(1)	-5(1)	-2(1)	
S(2)	24(1)	42(1)	29(1)	-8(1)	-3(1)	7(1)	
P(2)	20(1)	21(1)	32(1)	-7(1)	0(1)	-3(1)	
N(2)	25(1)	32(2)	47(2)	-3(1)	-9(1)	1(1)	
C(2)	25(2)	16(1)	25(1)	-5(1)	2(1)	-3(1)	
S(3)	30(1)	23(1)	38(1)	-10(1)	-8(1)	-1(1)	
C(3)	24(2)	26(2)	30(2)	-11(1)	-2(1)	-4(1)	
S(4)	23(1)	31(1)	47(1)	-13(1)	6(1)	-5(1)	
C(4)	31(2)	29(2)	23(1)	-12(1)	3(1)	-4(1)	
C(5)	28(2)	24(2)	32(2)	-12(1)	9(1)	-4(1)	
C(6)	23(2)	31(2)	39(2)	-14(1)	1(1)	-3(1)	
C(7)	25(2)	28(2)	27(2)	-12(1)	-1(1)	-1(1)	
C(8)	28(2)	25(2)	29(2)	-11(1)	8(1)	-6(1)	
C(9)	49(2)	26(2)	34(2)	-8(1)	19(2)	-5(2)	
-------	-------	-------	-------	-------	-------	-------	
C(10)	71(3)	26(2)	49(2)	-18(2)	33(2)	-13(2)	
C(11)	64(3)	50(2)	53(2)	-38(2)	23(2)	-30(2)	
C(12)	42(2)	66(3)	45(2)	-35(2)	10(2)	-23(2)	
C(13)	29(2)	44(2)	33(2)	-21(2)	8(1)	-12(1)	
C(14)	19(2)	30(2)	24(2)	-5(1)	6(1)	-5(1)	
C(15)	27(2)	36(2)	36(2)	-8(1)	4(1)	0(1)	
C(16)	24(2)	55(2)	35(2)	-11(2)	-1(1)	5(2)	
C(17)	26(2)	61(2)	34(2)	-18(2)	3(1)	-11(2)	
C(18)	31(2)	42(2)	31(2)	-12(1)	3(1)	-16(2)	
C(19)	23(2)	32(2)	29(2)	-10(1)	3(1)	-4(1)	
C(20)	28(2)	41(2)	32(2)	-6(1)	-3(1)	-2(1)	
C(21)	29(2)	29(2)	29(2)	-9(1)	-6(1)	-2(1)	
C(22)	18(1)	25(2)	26(1)	-7(1)	-6(1)	-1(1)	
C(23)	24(2)	33(2)	28(2)	-7(1)	-6(1)	-5(1)	
C(24)	26(2)	36(2)	31(2)	-13(1)	-6(1)	3(1)	
C(25)	29(2)	34(2)	35(2)	-17(1)	-14(1)	5(1)	
C(26)	31(2)	29(2)	31(2)	-9(1)	-10(1)	-7(1)	
C(27)	21(2)	29(2)	26(2)	-7(1)	-6(1)	-3(1)	
C(28)	26(2)	27(2)	30(2)	-13(1)	-4(1)	-1(1)	
C(29)	29(2)	31(2)	41(2)	-14(1)	-4(1)	1(1)	
C(30)	36(2)	37(2)	57(2)	-20(2)	-13(2)	0(2)	
C(31)	59(3)	46(2)	50(2)	-23(2)	-30(2)	3(2)	
C(32)	65(3)	57(3)	37(2)	-17(2)	-18(2)	-6(2)	
C(33)	43(2)	41(2)	34(2)	-12(2)	-5(2)	-9(2)	
C(34)	30(2)	27(2)	43(2)	-10(1)	-5(2)	4(1)	
C(35)	32(2)	36(2)	41(2)	-11(2)	-4(2)	0(1)	
C(36)	30(2)	42(2)	50(2)	-17(2)	-10(2)	-1(2)	
C(37)	27(2)	40(2)	56(2)	-23(2)	-3(2)	0(1)	
C(38)	36(2)	42(2)	47(2)	-18(2)	2(2)	-1(2)	
C(39)	38(2)	38(2)	38(2)	-10(2)	-9(2)	4(2)	
C(40)	29(2)	33(2)	53(2)	-1(2)	-2(2)	-2(1)	
Na11	30(1)	27(1)	30(1)	-8(1)	-11(1)	0(1)	
O11	30(1)	34(1)	41(1)	-20(1)	1(1)	-3(1)	
C11	35(2)	40(2)	62(2)	-34(2)	2(2)	-3(2)	
O21	35(1)	44(1)	40(1)	-20(1)	-1(1)	-7(1)	
C21	41(2)	56(2)	45(2)	-29(2)	-2(2)	0(2)	
O31	45(2)	39(1)	39(1)	-17(1)	-2(1)	-1(1)	
C31	45(2)	57(2)	36(2)	-22(2)	4(2)	-6(2)	
O41	23(1)	28(1)	30(1)	-13(1)	2(1)	-7(1)	
C41	45(2)	55(2)	49(2)	-30(2)	5(2)	-8(2)	
	20(1)	33(1)	34(1)	-14(1)	3(1)	-3(1)	
-------	-------	-------	-------	--------	-------	-------	
O51	29(2)	41(2)	36(2)	-9(2)	7(1)	-5(1)	
C51	22(1)	35(1)	41(1)	-18(1)	-4(1)	-1(1)	
O61	24(2)	30(2)	39(2)	-9(1)	3(1)	-10(1)	
C61	47(2)	33(1)	39(1)	-6(1)	-17(1)	1(1)	
O71	29(2)	31(2)	33(2)	-17(1)	0(1)	-5(1)	
C71	22(1)	37(1)	33(1)	7(1)	-7(1)	-5(1)	
C81	30(2)	39(2)	32(2)	-18(1)	-1(1)	-4(1)	
C91	29(2)	39(2)	43(2)	-19(2)	11(2)	-9(1)	
C101	22(2)	37(2)	45(2)	-17(2)	5(1)	-1(1)	
C111	24(2)	45(2)	50(2)	-24(2)	-5(2)	-7(1)	
C121	27(2)	35(2)	52(2)	-19(2)	-1(2)	-12(1)	
C131	47(2)	40(2)	50(2)	-9(2)	-19(2)	4(2)	
C141	59(3)	41(2)	39(2)	-10(2)	-13(2)	-2(2)	
C151	32(2)	34(2)	39(2)	-9(2)	-3(1)	3(1)	
C161	37(2)	31(2)	40(2)	-10(2)	-9(2)	6(1)	
C171	24(2)	51(2)	50(2)	10(2)	-11(2)	-5(2)	
C181	62(3)	79(3)	58(3)	-4(2)	-37(2)	-1(3)	
C191	70(3)	42(2)	30(2)	-1(2)	1(2)	12(2)	
C201	28(2)	44(2)	57(2)	13(2)	0(2)	-4(2)	
Na12	41(1)	42(1)	33(1)	-18(1)	0(1)	-7(1)	
O12	53(2)	45(2)	37(1)	-17(1)	12(1)	-12(1)	
C12	33(2)	85(3)	66(3)	-46(3)	10(2)	-8(2)	
O22	82(2)	39(2)	34(1)	-12(1)	-20(1)	2(1)	
C22	90(4)	41(2)	33(2)	-14(2)	16(2)	-26(2)	
O32	50(2)	52(2)	58(2)	-26(1)	-16(1)	16(1)	
C32	107(4)	35(2)	27(2)	-5(2)	-9(2)	-16(2)	
O42	52(2)	72(2)	38(1)	-31(1)	8(1)	-26(1)	
C42	94(4)	44(2)	60(3)	-11(2)	-48(3)	14(2)	
C52	73(3)	48(3)	73(3)	-15(2)	-33(3)	23(2)	
C62	44(2)	74(3)	69(3)	-41(3)	-6(2)	17(2)	
C72	73(3)	91(4)	50(3)	-37(3)	18(2)	-41(3)	
C82	55(3)	54(2)	47(2)	-16(2)	4(2)	-15(2)	
C92	51(2)	50(2)	44(2)	-19(2)	0(2)	-11(2)	
C102	95(4)	63(3)	43(2)	-22(2)	18(2)	-35(3)	
Na13	26(1)	34(1)	42(1)	-6(1)	-5(1)	-7(1)	
O13	22(1)	35(1)	30(1)	-13(1)	-5(1)	-1(1)	
C13	25(2)	46(2)	34(2)	-18(2)	-2(1)	-4(1)	
O23	19(1)	44(1)	28(1)	-11(1)	-4(1)	-1(1)	
C23	30(2)	34(2)	32(2)	-11(1)	1(1)	0(1)	
O33	20(1)	37(1)	24(1)	-5(1)	-3(1)	-1(1)	
	C33	23(2)	39(2)	32(2)	-9(1)	-1(1)	5(1)
---	-----	-------	-------	-------	-------	-------	------
C43	O43	28(1)	36(1)	61(2)	1(1)	-19(1)	-6(1)
C53	C43	23(2)	41(2)	35(2)	-8(1)	-11(1)	2(1)
C63	C53	29(2)	34(2)	32(2)	-5(1)	-12(1)	1(1)
C73	C63	22(2)	50(2)	23(2)	-7(1)	-1(1)	-6(1)
C83	C73	31(2)	39(2)	38(2)	4(2)	-8(2)	-5(1)
C93	C83	37(2)	40(2)	53(2)	-3(2)	-12(2)	-6(2)
C103	C93	35(2)	44(2)	64(3)	10(2)	-19(2)	-15(2)
		26(2)	43(2)	43(2)	-3(2)	-12(2)	-3(2)
Crystal Structure Determination of rac-1-K

Figure S43. ORTEP of compound rac-1-K. Ellipsoids are drawn at the 50% probability level.

Table S27. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å^2 x 10^3) for rac-1-K U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	y	z	U(eq)		
K(1)	611(1)	2885(1)	5268(1)	23(1)		
K(2)	844(1)	2086(1)	240(1)	26(1)		
Cl(1)	5143(1)	3909(1)	1892(1)	29(1)		
Cl(2)	4361(2)	-1071(1)	2976(1)	33(1)		
S(1)	3370(2)	4472(1)	2859(1)	29(1)		
Atomic Symbol	Value 1 (Standard Deviation)	Value 2 (Standard Deviation)	Value 3 (Standard Deviation)	Value 4 (Standard Deviation)		
---------------	------------------------------	------------------------------	------------------------------	------------------------------		
S(2)	2343(2)	5332(1)	1408(1)	38(1)		
S(3)	6150(2)	-379(1)	2092(1)	31(1)		
S(4)	6968(2)	15(1)	3768(1)	36(1)		
P(1)	4159(1)	5281(1)	1794(1)	23(1)		
P(2)	5394(1)	220(1)	3279(1)	24(1)		
O(1)	2901(5)	5113(2)	3072(2)	42(1)		
O(2)	6544(5)	290(2)	1925(2)	42(1)		
O(3)	-1213(6)	3280(3)	6248(3)	68(2)		
O(4)	1613(6)	3800(4)	6123(2)	63(2)		
O(5)	2488(5)	3998(2)	4935(2)	42(1)		
O(6)	-402(4)	4046(2)	4615(2)	36(1)		
O(7)	-2420(5)	3151(2)	5156(3)	50(1)		
O(8)	-1317(5)	1859(2)	5720(2)	36(1)		
O(9)	1523(5)	2086(2)	6121(2)	39(1)		
O(10)	3516(4)	2348(2)	5138(2)	35(1)		
O(11)	1994(4)	2592(2)	4149(2)	32(1)		
O(12)	-222(4)	1780(2)	4577(2)	32(1)		
O(13)	613(6)	1464(3)	1431(2)	61(2)		
O(14)	3140(6)	1213(3)	641(2)	57(1)		
O(15)	1944(5)	1046(3)	-433(2)	47(1)		
O(16)	-1043(5)	991(3)	-94(2)	45(1)		
O(17)	-1938(5)	1777(2)	843(2)	44(1)		
O(18)	-365(5)	3139(2)	901(2)	41(1)		
O(19)	2635(5)	3160(3)	515(2)	43(1)		
O(20)	3745(5)	2341(2)	-343(2)	40(1)		
O(21)	1229(5)	2683(2)	-936(2)	38(1)		
O(22)	-1430(4)	2885(2)	-207(2)	36(1)		
N(1)	4016(5)	3978(3)	3251(2)	34(1)		
N(2)	5509(5)	-837(3)	1667(2)	42(1)		
C(1)	4483(6)	4627(3)	2249(2)	27(1)		
C(2)	5475(7)	4109(4)	3425(3)	46(2)		
C(3)	1754(6)	4051(3)	2703(2)	30(1)		
C(4)	540(7)	4423(4)	2598(3)	37(1)		
C(5)	-758(7)	4101(4)	2493(3)	44(2)		
C(6)	-821(7)	3447(4)	2486(3)	45(2)		
C(7)	395(8)	3081(4)	2586(3)	46(2)		
C(8)	1684(6)	3385(3)	2701(3)	35(1)		
C(9)	4458(6)	6029(3)	2189(2)	26(1)		
C(10)	3709(7)	6584(3)	2082(3)	37(1)		
C(11)	4059(9)	7175(3)	2345(3)	46(2)		
---	-----	-----	-----	-----		
C(12)	5121(9)	7190(3)	2712(3)	47(2)		
C(13)	5875(8)	6633(3)	2836(3)	43(2)		
C(14)	5534(6)	6058(3)	2578(3)	36(1)		
C(15)	5763(5)	5272(3)	1263(2)	25(1)		
C(16)	5583(7)	5363(3)	689(2)	35(1)		
C(17)	6802(8)	5369(3)	280(3)	47(2)		
C(18)	8152(7)	5283(3)	456(3)	44(2)		
C(19)	8349(7)	5185(3)	1029(4)	49(2)		
C(20)	7143(6)	5182(3)	1442(3)	35(1)		
C(21)	5052(6)	-305(3)	2714(2)	32(1)		
C(22)	3991(7)	-737(4)	1540(3)	47(2)		
C(23)	7800(6)	-814(3)	2205(2)	34(1)		
C(24)	7856(7)	-1482(4)	2171(3)	41(2)		
C(25)	10410(7)	-1438(4)	2315(3)	48(2)		
C(26)	10308(7)	-789(4)	2367(3)	48(2)		
C(27)	8999(7)	-463(4)	2313(3)	38(1)		
C(29)	3621(5)	242(3)	3707(2)	25(1)		
C(30)	3539(6)	308(3)	4297(2)	30(1)		
C(31)	2149(7)	352(3)	4606(3)	40(2)		
C(32)	900(6)	317(3)	4325(3)	37(1)		
C(33)	994(6)	248(3)	3738(3)	40(2)		
C(34)	2341(6)	209(3)	3425(3)	33(1)		
C(35)	5545(6)	1051(3)	3009(2)	26(1)		
C(36)	4554(6)	1313(3)	2660(2)	31(1)		
C(37)	4615(7)	1962(3)	2504(3)	37(1)		
C(38)	5653(7)	2365(3)	2693(3)	36(1)		
C(39)	6663(7)	2111(4)	3043(3)	39(1)		
C(40)	6609(6)	1466(3)	3193(3)	32(1)		
C(43)	-2547(9)	3569(4)	6134(4)	66(3)		
C(44)	-3218(7)	3149(4)	5717(4)	56(2)		
C(45)	-2815(8)	3666(4)	4790(4)	56(2)		
C(46)	-1565(9)	3783(4)	4339(3)	53(2)		
C(47)	844(8)	4194(3)	4230(3)	40(2)		
C(48)	1966(7)	4479(3)	4568(3)	38(1)		
C(49)	3226(8)	4234(4)	5389(4)	54(2)		
C(50)	2233(9)	4396(4)	5912(4)	61(2)		
C(51)	18(7)	1921(3)	3980(3)	38(1)		
C(52)	-1688(7)	1585(3)	4760(3)	42(2)		
C(53)	-1701(7)	1344(3)	5361(3)	39(2)		
	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
-------	------------	------------	------------	------------	------------	------------
K(1)	23(1)	20(1)	24(1)	1(1)	4(1)	5(1)
K(2)	26(1)	24(1)	26(1)	-4(1)	3(1)	-1(1)
Cl(1)	31(1)	24(1)	31(1)	0(1)	1(1)	2(1)
Cl(2)	35(1)	27(1)	37(1)	-3(1)	5(1)	-2(1)

Table S28. Anisotropic displacement parameters (Å$^2 \times 10^3$) for rac-1-K. The anisotropic displacement factor exponent takes the form:

$$-2\pi^2 \left[a^2 U_{11} + 2 a b U_{12} + b^2 U_{22} + \cdots \right]$$
	S(1)	S(2)	S(3)	S(4)	P(1)	P(2)	O(1)	O(2)	O(3)	O(4)	O(5)	O(6)	O(7)	O(8)	O(9)	O(10)	O(11)	O(12)	O(13)	O(14)	O(15)	O(16)	O(17)	O(18)	O(19)	O(20)	O(21)	O(22)	N(1)	N(2)	C(1)	C(2)	C(3)	C(4)	C(5)	C(6)	C(7)	C(8)	C(9)	C(10)																																																																																																																																																																																																								
	C(11)	C(12)	C(13)	C(14)	C(15)	C(16)	C(17)	C(18)	C(19)	C(20)	C(21)	C(22)	C(23)	C(24)	C(25)	C(26)	C(27)	C(28)	C(29)	C(30)	C(31)	C(32)	C(33)	C(34)	C(35)	C(36)	C(37)	C(38)	C(39)	C(40)	C(41)	C(42)	C(43)	C(44)	C(45)	C(46)	C(47)	C(48)	C(49)	C(50)	C(51)	C(52)																																																																																																																																																																																																						
---	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------																																																																																																																																																																																																			
	66(4)	21(3)	48(4)	3(3)	5(3)	22(3)	44(4)	39(4)	45(4)	-7(3)	10(3)	-5(3)	44(4)	39(4)	45(4)	-7(3)	1(3)	-1(3)	28(3)	35(3)	45(3)	-9(3)	-4(2)	2(2)	21(2)	21(3)	33(3)	-3(2)	1(2)	-5(2)	38(3)	41(4)	24(3)	-1(2)	7(2)	-12(3)	61(4)	40(4)	35(3)	-4(3)	20(3)	-17(3)	47(4)	27(3)	52(4)	-9(3)	31(3)	-5(3)	27(3)	26(3)	91(6)	3(3)	9(3)	3(2)	25(3)	28(3)	51(4)	4(3)	2(2)	0(2)	30(3)	34(3)	30(3)	-2(2)	6(2)	-3(2)	37(3)	71(5)	34(3)	-2(3)	-3(2)	1(3)	27(3)	49(4)	22(3)	-6(2)	7(2)	4(2)	30(3)	56(4)	37(3)	-14(3)	0(2)	-2(3)	58(4)	52(4)	37(3)	-15(3)	0(3)	14(3)	33(3)	80(6)	31(3)	-12(3)	1(2)	19(3)	33(3)	81(6)	29(3)	-2(3)	0(2)	-3(3)	33(3)	49(4)	30(3)	-1(3)	10(2)	3(3)	23(2)	17(3)	34(3)	2(2)	5(2)	5(2)	35(3)	25(3)	30(3)	-2(2)	-3(2)	-5(2)	47(4)	31(3)	38(3)	-2(3)	21(3)	-8(3)	29(3)	25(3)	55(4)	4(3)	16(3)	-3(2)	23(3)	28(3)	67(4)	8(3)	4(3)	1(2)	26(3)	33(3)	38(3)	0(3)	1(2)	1(2)	22(2)	30(3)	26(3)	2(2)	2(2)	1(2)	29(3)	31(3)	33(3)	3(2)	-1(2)	1(2)	34(3)	41(4)	34(3)	2(3)	-1(2)	6(3)	45(3)	29(3)	32(3)	8(2)	9(3)	0(3)	34(3)	44(4)	39(3)	1(3)	2(2)	-10(3)	27(3)	35(3)	35(3)	2(2)	-2(2)	-6(2)	56(5)	36(4)	94(6)	-10(4)	51(5)	1(3)	27(3)	43(4)	94(6)	17(4)	12(3)	6(3)	37(3)	33(4)	101(6)	18(4)	-27(4)	-1(3)	69(5)	38(4)	58(4)	0(3)	-34(4)	6(3)	50(4)	35(3)	32(3)	6(3)	13(3)	11(3)	34(3)	30(3)	48(4)	3(3)	14(3)	7(2)	34(3)	52(5)	76(5)	11(4)	-16(3)	-7(3)	51(4)	62(5)	73(5)	-31(4)	-25(4)	11(4)	41(3)	45(4)	30(3)	-4(3)	-12(2)	9(3)	24(3)	37(4)	67(4)	-11(3)	-6(3)	-4(3)
---	---	---	---	---	---																																																																																																																																																																																																																																											
C(53)	28(3)	26(3)	61(4)	-4(3)	13(3)	-3(2)																																																																																																																																																																																																																																										
C(54)	46(3)	30(3)	39(3)	8(3)	18(3)	8(3)																																																																																																																																																																																																																																										
C(55)	49(4)	29(3)	38(3)	7(3)	14(3)	14(3)																																																																																																																																																																																																																																										
C(56)	37(3)	53(4)	43(4)	-1(3)	-13(3)	4(3)																																																																																																																																																																																																																																										
C(57)	32(3)	33(3)	59(4)	-1(3)	-12(3)	7(3)																																																																																																																																																																																																																																										
C(58)	27(3)	42(4)	44(3)	-9(3)	4(2)	4(3)																																																																																																																																																																																																																																										
C(59)	32(3)	31(3)	37(3)	-2(2)	9(2)	2(2)																																																																																																																																																																																																																																										
C(60)	49(3)	27(3)	25(3)	-1(2)	3(2)	6(3)																																																																																																																																																																																																																																										
C(61)	49(4)	70(5)	42(4)	3(4)	-7(3)	2(4)																																																																																																																																																																																																																																										
C(62)	51(4)	63(5)	60(5)	23(4)	-19(3)	-8(4)																																																																																																																																																																																																																																										
C(63)	51(4)	57(5)	37(4)	1(3)	10(3)	-21(3)																																																																																																																																																																																																																																										
C(64)	63(5)	53(5)	42(4)	-10(3)	20(3)	-13(4)																																																																																																																																																																																																																																										
C(65)	35(3)	41(4)	73(5)	5(4)	12(3)	-8(3)																																																																																																																																																																																																																																										
C(66)	26(3)	41(4)	53(4)	-3(3)	-1(3)	0(3)																																																																																																																																																																																																																																										
C(67)	39(3)	50(4)	26(3)	-8(3)	1(2)	10(3)																																																																																																																																																																																																																																										
C(68)	33(3)	51(4)	28(3)	-9(3)	6(2)	-3(3)																																																																																																																																																																																																																																										
C(69)	37(3)	52(4)	44(4)	-4(3)	-4(3)	12(3)																																																																																																																																																																																																																																										
C(70)	57(4)	40(4)	59(5)	7(3)	-4(3)	15(3)																																																																																																																																																																																																																																										
C(71)	39(3)	39(4)	35(3)	-11(3)	-4(2)	-4(3)																																																																																																																																																																																																																																										
C(72)	38(3)	45(4)	33(3)	-18(3)	0(2)	-5(3)																																																																																																																																																																																																																																										
C(73)	31(3)	30(3)	64(4)	-11(3)	-3(3)	-1(2)																																																																																																																																																																																																																																										
C(74)	27(3)	29(3)	56(4)	-1(3)	-1(3)	0(2)																																																																																																																																																																																																																																										
C(75)	54(4)	37(4)	46(4)	8(3)	-19(3)	-1(3)																																																																																																																																																																																																																																										
C(76)	58(4)	28(3)	40(3)	1(3)	-10(3)	2(3)																																																																																																																																																																																																																																										
C(77)	51(4)	39(4)	35(3)	2(3)	8(3)	-13(3)																																																																																																																																																																																																																																										
C(78)	46(4)	41(4)	44(4)	-9(3)	16(3)	-4(3)																																																																																																																																																																																																																																										
C(79)	33(3)	38(4)	69(5)	-9(3)	-5(3)	0(3)																																																																																																																																																																																																																																										
C(80)	25(3)	63(5)	64(4)	-18(4)	-7(3)	2(3)																																																																																																																																																																																																																																										
C(41A)	86(18)	29(12)	52(10)	0(8)	-6(10)	4(10)																																																																																																																																																																																																																																										
C(42A)	110(20)	45(12)	38(10)	0(9)	33(11)	0(12)																																																																																																																																																																																																																																										
C(41B)	26(5)	37(10)	31(6)	-15(5)	-1(4)	1(5)																																																																																																																																																																																																																																										
C(42B)	25(6)	46(9)	29(6)	9(5)	6(4)	-4(5)																																																																																																																																																																																																																																										
6. Computational Details

6.1 General

All calculations were performed without symmetry restrictions. Starting coordinates for the corresponding structures were obtained from the crystal structure analyses or modelled with GaussView 6.0.16. The geometry optimization was performed with the Gaussian 16 (Revision C.01) program package. The geometry optimization was performed using Density-Functional Theory (DFT) with the PBE0 functional and the MWB10 basis set and the corresponding Stuttgart-Dresden ECP for Potassium and the def2svp basis set for all other atoms including Grimme’s D3 dispersion correction with Becke-Johnson damping. Solvent corrections were included by using the polarizable continuum model (PCM) for THF. Harmonic vibrational frequency analysis was performed on the same levels of theory to determine the nature of the structure. The vibrational frequency analysis showed no imaginary frequencies for all calculated structures. Coordinates of all energy-optimized structures are provided as cartesian coordinates in Angstrom in the Tables below.

Single point energies were obtained with the PBE0 functional and the MWB10 basis set and the corresponding Stuttgart-Dresden ECP for Potassium and the def2tzvp basis set for all other atoms with Grimme’s D3 dispersion correction with Becke-Johnson damping. Solvent corrections were included by using the polarizable continuum model (PCM) for THF and toluene, which are also the solvents used in experiments.

The energies were corrected by conversion from the standard state (1 atm) to the solution state as follows:

\[\Delta G_M^0 = \Delta G_{gas}^0 + RT \ln \left(\frac{K_M^0}{K_{gas}^0} \right) \]

with \(R = 8.31447 \text{ J K}^{-1} \text{ mol}^{-1} \), \(T = \) temperature in K = 298.15 K, \(c_{gas} = p/RT = 0.0408 \text{ mol/L (ideal gas)} \),

in THF: \(c_M(\text{monomer}) = 0.05 \text{ mol/l, } c_M(\text{dimer}) = 0.025 \text{ mol/l, } c_M(\text{THF}) = 12 \text{ mol/l, } \)
in toluene: \(c_M(\text{monomer}) = 0.05 \text{ mol/l, } c_M(\text{dimer}) = 0.025 \text{ mol/l, } c_M(\text{THF}) = 0.05 \text{ mol/l.} \)

THF	toluene		
monomer(THF)_3 + 2 THF → monomer(THF)_5	−28.18	monomer(THF)_3 + 2 THF → monomer(THF)_5	−1.01
monomer(THF)_3 + THF → monomer(THF)_4	−14.09	monomer(THF)_3 + THF → monomer(THF)_4	−0.50
monomer(THF)_3 → monomer(THF)_3 + THF	14.09	monomer(THF)_3 → monomer(THF)_3 + THF	0.50
monomer(THF)_3 → monomer(THF) + 2 THF	28.18	monomer(THF)_3 → monomer(THF) + 2 THF	1.01
2 monomer(THF)_3 → dimer(THF)_2 + 4 THF	54.14	2 monomer(THF)_3 → dimer(THF)_2 + 4 THF	−0.21
2 monomer(THF)_3 → dimer(THF)_4 + 2 THF	25.96	2 monomer(THF)_3 → dimer(THF)_4 + 2 THF	−1.21
2 monomer(THF)_3 → dimer + 6 THF	82.32	2 monomer(THF)_3 → dimer + 6 THF	0.80
6.2 Structures of the energy-optimized compounds

Structures of monomeric 1-Li

Figure S44. Li monomers.
Structures of dimeric 1-Li

Figure S45. Li dimers (Part I).
Figure S46. Li dimers (Part II).
6.3 Energies of the optimized compounds

Table S30. SCF energies and enthalpy/free energy corrections in Hartree for all calculated monomers and dimers.

Structure	Corr(G)	Corr(H)	E_{SCF}(THF)	E_{SCF}(toluene)
κO-Li(THF)$_3$	0.611318	0.740854	-3204.14980656	-3204.14139252
κN-Li(THF)$_3$	0.612755	0.741198	-3204.13862831	-3204.12969871
κO,κN-Li(THF)$_3$	0.499075	0.614954	-2971.84616503	-2971.83624384
κO,κCl-Li(THF)$_3$	0.498669	0.615170	-2971.84374276	-2971.83278651
κO-Li(THF)$_2$	0.499311	0.614947	-2971.85127750	-2971.83885075
κN,κS-Li(THF)$_2$	0.498936	0.615071	-2971.85326828	-2971.84694075
κO,κS-Li(THF)$_2$	0.498165	0.614769	-2971.84916164	-2971.84301703
κO,κN-Li(THF)	0.389890	0.489412	-2739.54907333	-2739.53598398
κO,κS,κCl-Li(THF)	0.388617	0.488997	-2739.55158286	-2739.54181955
κN,κS,κCl-Li(THF)	0.390717	0.489058	-2739.55833053	-2739.54956014
κN,κS-Li(THF)	0.390951	0.488434	-2739.55620864	-2739.54573801
κO,κN,κS-Li(THF)	0.386978	0.489206	-2739.55054668	-2739.54303523
κO,κS-Li(THF)	0.386894	0.488934	-2739.55316844	-2739.54272824
κO,κS-Li$_2$(THF)$_2$	0.799234	0.981443	-5479.14610678	-5479.13728744
κN,κS-Li$_2$(THF)$_2$	0.805385	0.981212	-5479.14937283	-5479.13867604
κO,κN,κCl-Li$_2$(THF)$_2$	0.808277	0.982759	-5479.15020428	-5479.13550119
κO,κN-Li$_2$(THF)$_4$	1.026769	1.233798	-5943.74225062	-5943.73226938
κO,κN,κS,κCl-Li$_2$	0.585839	0.730979	-5014.57443118	-5014.56302866
κN,κS,κCl-Li$_2$	0.588293	0.730560	-5014.55088939	-5014.53312623
κO,κS,κCl-Li$_2$	0.582736	0.729228	-5014.54493149	-5014.52972574
κO,κN-Li$_2$	0.584598	0.730825	-5014.54769161	-5014.52064536
κO,κS-Li$_2$	0.582668	0.728486	-5014.54537659	-5014.52072488
κS,κCl-Li$_2$	0.588351	0.730557	-5014.55089132	-5014.53314863
κO,κN,κCl-Li$_2$	0.585758	0.730791	-5014.55606304	-5014.54056817
κO-Na(THF)$_3$	0.605654	0.739556	-3358.82170887	-3358.81141961
κS-Na(THF)$_5$	0.826338	0.991020	-3823.38603574	-3823.37738340
κO-Na(THF)$_4$	0.716097	0.864732	-3591.10906578	-3591.09872543
κS,κCl-Na(THF)$_4$	0.714107	0.864689	-3591.10150089	-3591.09358604
κO,κN-Na(THF)$_3$	0.606526	0.739755	-3358.81612601	-3358.80652647
κN-Na(THF)$_3$	0.605838	0.739727	-3358.81680171	-3358.80579866
κS,κCl-Na(THF)$_3$	0.602772	0.739384	-3358.81120355	-3358.80343449
κO-Na(THF)$_2$	0.494900	0.613818	-3126.52827985	-3126.51409305
κS,κCl-Na(THF)$_2$	0.494753	0.613917	-3126.52185991	-3126.50839103
κO,κS-Na(THF)$_2$	0.494581	0.613737	-3126.52723608	-3126.51962030
κO,κN-Na(THF)	0.383998	0.488412	-2894.22919197	-2894.21429946
κS,κCl-Na$_3$(THF)$_2$	0.801258	0.979786	-5788.49203279	-5788.47734246
κN,κS,κCl-Na$_2$(THF)$_2$	0.800781	0.980535	-5788.48094950	-5788.49508176
κO,κN,κS-Na$_3$(THF)$_2$	0.797536	0.979414	-5788.51446562	-5788.50544530
κO,κS,κCl-Na$_2$(THF)$_2$	0.797808	0.979125	-5788.50372250	-5788.49038243
Table S31. Gibbs free energies ΔG_M (kJ/mol), enthalpies ΔH (kJ/mol) and entropies ΔS_M (JK$^{-1}$mol$^{-1}$) relative to κO-$\text{M}(\text{THF})_3$ (M=Li,Na,K), respectively. ΔG_M and ΔS_M are the solution state correct energy and entropy.

Structure	THF	Toluol				
	ΔG_M	ΔH	ΔS_M	ΔG_M	ΔH	ΔS_M
κO-$\text{Li}(\text{THF})_3$	33.1	30.3	-9.6	34.5	28.5	-20.1
κN-$\text{Li}(\text{THF})_3$	44.1	75.9	106.8	34.5	76.8	141.9
κO-κN-$\text{Li}(\text{THF})_3$	49.9	82.9	110.5	43.0	86.4	145.6
κO-$\text{Li}(\text{THF})_2$	31.3	62.5	104.6	28.2	69.9	139.8
κN-κS-$\text{Li}(\text{THF})_2$	25.1	57.6	109.0	6.0	49.0	144.2
κO-κS-$\text{Li}(\text{THF})_2$	33.8	67.6	113.2	14.3	58.5	148.3
κO-κN-$\text{Li}(\text{THF})$	79.0	135.6	189.8	64.1	144.8	270.5
κO-κS-κCl-$\text{Li}(\text{THF})$	69.1	127.9	197.3	46.0	-31.5	-260.1
κN-κS-κCl-$\text{Li}(\text{THF})$	56.9	111.5	183.3	31.2	-50.5	-274.1
κN-κS-$\text{Li}(\text{THF})$	63.1	114.3	171.8	41.9	-43.3	-285.6
κO-κS-κS-$\text{Li}(\text{THF})$	67.5	131.2	193.5	50.7	-28.0	-263.9
κO-κS-$\text{Li}(\text{THF})_2$	60.4	123.6	213.6	38.6	-34.2	-243.9
κO-κS-$\text{Li}_2(\text{THF})_2$	81.0	152.2	238.8	6.8	132.3	420.9
κN-κS-$\text{Li}_2(\text{THF})_2$	88.5	143.0	182.6	19.3	128.0	364.7
κO-κN-κCl-$\text{Li}_2(\text{THF})_2$	94.0	144.9	170.7	51.4	31.3	-67.4
κO-κN-$\text{Li}_2(\text{THF})_4$	30.0	31.0	3.2	-14.5	13.6	94.3
κO-κN-κCl-Li_2	104.8	214.0	366.4	10.8	201.5	202.3
κN-κS-κCl-Li_2	173.0	274.7	341.1	95.7	278.9	279.7
κO-κS-κCl-Li_2	174.1	286.9	387.3	90.1	284.3	285.1
κO-κM-Li_2	171.7	283.8	376.0	118.8	312.4	313.2
κO-κS-Li_2	172.7	283.8	372.4	97.0	289.5	290.3
κS-κCl-Li_2	173.2	274.7	340.6	95.8	278.8	279.7
Bond Type	Energy (kcal/mol)					
-----------	------------------					
$\kappa O, \kappa S, \kappa O$-Li$_2$	152.8	261.8	365.5	69.6	260.0	260.8
κO-Na(THF)$_3$	$-$14.6	261.8	365.5	69.6	260.0	260.8
κS-Na(THF)$_5$	13.4	15.2	365.5	69.6	260.0	260.8
κO-Na(THF)$_4$	8.6	80.2	15.9	21.6	140.7	
κS-Na(THF)$_4$	20.0	23.9	13.4	20.5	23.9	
κO-Na(THF)$_3$	13.4	13.3	15.2	15.2	0.1	
κS-Na(THF)$_3$	23.1	27.1	13.3	15.2	0.1	
κO-Na(THF)$_2$	21.2	49.5	95.1	59.8	140.7	
κS-Na(THF)$_2$	37.7	66.7	97.3	75.0	142.8	
κO-Na(THF)$_2$	23.1	52.1	97.2	45.0	142.8	
κO-Na(THF)	56.8	114.8	194.4	126.9	287.2	
κS-Na(THF)$_2$	110.5	149.0	129.4	134.7	311.6	
κO-Na(THF)$_3$	138.3	180.1	140.2	90.1	322.4	
κO-Na(THF)$_4$	41.8	89.2	158.9	60.0	341.1	
κS-Na(THF)$_4$	70.7	116.6	154.0	98.8	336.2	
κO-Na(THF)$_5$	6.2	9.4	10.6	10.9	101.6	
κS-Na(THF)$_5$	$-$28.8	$-$55.8	$-$90.6	$-$66.2	$-$136.2	
κO-K(THF)$_3$	0.5	5.0	14.9	5.7	14.9	
κO-K(THF)$_4$	13.2	11.2	6.7	9.1	6.7	
κO-K(THF)$_5$	4.2	2.5	5.9	8.6	5.9	
κO-K(THF)$_6$	21.8	47.5	86.1	54.5	131.6	
κO-K(THF)$_7$	15.4	38.7	78.3	44.2	123.9	
κO-K(THF)$_8$	32.9	58.6	86.0	67.4	131.5	
κO-K(THF)$_9$	18.5	43.7	84.6	35.2	130.2	
κO-K(THF)$_10$	52.1	100.9	163.8	109.6	256.7	
κO-K(THF)$_11$	16.1	66.5	169.1	31.9	351.3	
κO-K(THF)$_12$	44.0	87.8	147.0	61.3	329.2	
κO-K(THF)$_13$	68.1	118.0	167.6	98.7	349.8	
κO-K(THF)$_14$	9.6	5.7	51.2	41.6	39.9	
6.4 Coordinates

6.4.1 Coordinates of the monomeric structures of 1-Li

κO-Li(THF)_3

E = -3204.14980656

Li 2.311501 0.881552 -0.058066
O 0.598002 0.161150 0.234416
O 2.545079 2.293360 1.243068
O 3.798702 -0.327115 0.027859
O 2.317650 1.726652 -1.785287
S 0.215719 -1.110369 0.954055
C 1.453183 3.214598 1.336212
C 3.002354 1.924570 2.547068
C 4.512301 -0.675742 -1.161407
C 4.110369 -1.232665 1.090690
C 2.787309 3.051537 -1.995738
C 1.302175 1.412646 -2.748936
N 0.725359 -1.389494 2.382955
C -1.478976 -1.158993 0.800520
C 0.972891 -2.436505 0.030056
H 0.654179 2.884636 0.654423
H 1.801085 4.213653 1.016490
C 1.036127 3.204695 2.793115
C 2.357421 2.918476 3.497710
H 4.102209 1.949877 2.555731
H 2.674379 0.892488 2.762949
H 5.020362 0.219535 -1.550618
H 3.787496 -1.018945 -1.918339
C 5.466341 -1.788942 -0.75522
C 4.722185 -2.439237 0.406015
H 3.183220 -1.448596 1.643312
H 4.830901 -0.750038 1.776115
H 3.627849 3.046465 -2.715150
H 3.153186 3.437148 -1.033814
C 1.585397 3.783840 -2.559282
C 0.991732 2.720257 -3.480345
C 0.435082 1.004536 -2.208211
H 1.678911 0.633139 -3.431599
C 0.065057 -0.732938 3.489040
Cl -2.156707 -2.696707 1.334819
P -2.260832 -0.346310 -0.560390
C 1.237611 -2.233758 -1.323785
C 1.182279 -3.677164 0.632207
H 0.319609 2.387954 2.971290
H 0.563283 4.146212 3.103928
H 2.963715 3.835579 3.567810
H 2.236555 2.511569 4.511474
H 6.425126 -1.369641 -0.410918
H 5.676543 -2.479541 -1.584206
H 3.927510 -3.102820 0.032731
H 5.372113 -3.020948 1.074449
H 1.852114 4.714210 -3.079934
H 0.882302 4.029089 -1.747201
H 1.491020 2.746440 -4.461097
H -0.085560 2.850616 -3.652001
H -1.004305 -0.527065 3.296940
H 0.545206 0.224950 3.761852
H 0.123463 -1.383383 4.375754
S -1.813923 -0.818767 -2.442951
Supporting Information

\[\kappa N-Li(THF)_3 \]

\[E = -3204.13862831 \]

Atom	X	Y	Z
O	1.885583	1.907612	1.894087
O	3.947915	-0.251153	0.532550
O	3.111294	2.319444	-0.820445
S	0.296341	-1.094494	0.244675
O	0.545092	2.378231	1.732331
C	0.998632	1.468357	3.239899
O	4.881907	-0.457615	-0.528472
C	4.417989	-0.840346	1.744793
O	3.063539	3.077265	-0.406414
C	3.001527	2.358695	-2.234075
C	-1.381731	-1.103979	0.485770
C	0.794855	-2.709861	-0.379321
C	0.168605	2.007821	0.766870
C	0.546519	3.484093	1.713662
C	-0.216518	1.839301	2.927786
C	0.855056	1.882235	4.012065
H	3.024785	1.926888	3.619322
H	2.212470	0.374155	3.230822
H	0.504952	0.501632	-1.039295
H	4.444116	-1.168574	-1.251619
C	6.129220	-1.024485	0.131094
C	5.542583	-1.770761	1.324697
H	3.570410	-1.344335	2.232031
C	4.785038	-0.045319	2.417861
H	4.046161	4.147124	-0.598005
H	2.866301	3.690514	0.672221
C	1.972922	4.313386	-1.270760
C	1.923471	3.404614	-2.515989
\(\kappa O, \kappa N - Li(THF)_3 \)

\[E = -2971.84616503 \]

Li -2.409307 1.054184 -0.609377
O -0.847967 0.308114 0.474695
O -2.160148 2.924890 -0.555529
O -4.000417 0.193637 -0.016215
S -0.588937 -0.681153 -0.631807
C -2.609623 3.923958 -1.471945
C -1.607116 3.525230 0.625320
C -4.238041 -0.015977 1.380748
C -4.705427 -0.771608 -0.802668
N -1.308783 -0.339799 -1.973812
C 1.084987 -0.866171 -0.733322
C -1.382164 -2.197807 -1.28528
H -3.594600 3.628475 -1.863878
H -1.901285 3.981698 -2.317252
C -2.630530 5.215959 -0.673907
C -1.469531 4.999016 -0.673907
H -0.656907 3.024729 0.856948
H -2.306002 3.362715 1.464256
H -4.495497 0.948468 1.844367
H -3.307705 -0.388927 1.840177
C -5.355928 -1.043020 1.452016
C -5.125606 -1.849982 0.178666
H -4.027484 -1.127644 -1.592522
H -5.576640 -0.294251 -1.271482
C -0.592034 0.489029 -2.929998
Cl 1.544388 -2.236856 -1.760394
P 2.088836 -0.453696 0.7272
C -1.428695 -2.480466 1.237044
C -1.830926 -3.110693 -1.081079
H -3.578954 5.309894 -0.121206
H -2.516778 6.104967 -1.309534
H -0.509577 5.184856 -0.215530
H -1.511237 5.637691 1.183597
H -6.339333 -0.547216 1.423332
H -5.306584 -1.648345 2.367797
H -4.305739 -2.569059 0.323750
H -6.013345 -2.403268 -0.157749
H 0.431452 0.123338 -3.122611
H -0.513564 1.551802 -2.630554
H -1.140894 0.459311 -3.883044
S 1.826063 -1.324234 2.422890
C 3.790997 -0.730895 0.029965
C 1.995472 1.374455 0.781817
H -1.027074 -1.757629 1.949727
C -1.964500 -3.697212 1.652840
C -2.361920 -4.325835 -0.651458
C -1.773352 -2.847576 -2.137970
C 4.168753 -0.283816 -1.242882
C 4.731101 -1.353005 0.851995
C 2.129223 1.984485 2.029715
C 1.876490 2.163792 -0.367769
H -2.013726 -3.929912 2.719890
H -2.430978 -4.617427 0.711843
H -2.725666 -5.048260 -1.385688
H 3.432990 0.188872 -1.896487
C 5.478747 -0.455939 -1.680882
C 6.043434 -1.524681 0.410465
H 4.413132 -1.699205 1.839661
H 2.204413 1.350579 2.917652
C 2.155982 3.375949 2.128965
C 1.915708 3.552303 -0.267423
H 1.734854 1.681321 -1.336910
H -2.849802 -5.570297 1.043826
H 5.768044 -0.108254 -2.675556
Supporting Information

\[\kappa_0, \kappa C/Li(THF)_3 \]

\[E = -2971.84374276 \]

\[
\begin{align*}
\text{Li} & : 1.763449 0.732799 \\
\text{O} & : 3.155749 1.090779 \\
\text{Cl} & : 3.833560 0.303040 \\
\text{C} & : 3.929856 1.943632 \\
\text{P} & : 4.517380 0.816507 \\
\text{Cl} & : 4.633864 -0.357881 \\
\text{H} & : 4.603160 0.692988 \\
\text{H} & : 4.644197 1.054118 \\
\text{H} & : 4.625621 1.698816 \\
\text{C} & : 4.873960 0.44044 \\
\text{C} & : 4.766724 -1.429699 \\
\text{H} & : 4.880056 -0.336081 \\
\text{H} & : 4.626611 -2.188826 \\
\text{C} & : 4.635648 0.633736 -1.298775 \\
\text{P} & : 4.38035 0.189699 -0.692988 \\
\text{H} & : 4.506372 0.317504 0.544198 \\
\text{H} & : 4.562562 1.883091 1.698816 \\
\text{C} & : 4.867837 1.237396 0.440444 \\
\text{C} & : 4.746672 1.222743 -1.429699 \\
\text{H} & : 4.858085 -0.124859 -1.336081 \\
\text{H} & : 4.362266 1.689565 -2.188826 \\
\text{C} & : 4.565564 0.633736 -1.298775 \\
\text{C} & : 4.390973 -1.692419 0.854417 \\
\text{H} & : 4.204445 2.647891 1.572032 \\
\text{H} & : 4.104239 3.943819 2.790411 \\
\text{H} & : 4.024550 5.501291 1.229638 \\
\text{H} & : 3.163908 4.656529 0.150135 \\
\text{H} & : 3.872259 1.642091 0.229565 \\
\text{H} & : 3.822998 0.220457 0.463047 \\
\text{H} & : 3.606842 2.150894 -1.922297 \\
\text{H} & : 3.899191 0.374303 -1.958485 \\
\text{S} & : 1.745525 -2.988033 -1.440074 \\
\text{C} & : 2.453113 0.054483 -1.831918 \\
\text{C} & : 2.980531 -1.072076 0.743962 \\
\text{H} & : 2.904482 -2.810420 -1.085096 \\
\text{C} & : 2.879518 -3.432825 -1.273097 \\
\text{C} & : 2.430508 -2.432867 0.291998 \\
\text{H} & : 3.568498 -0.996449 1.675779 \\
\text{C} & : 2.820144 1.334352 -1.394916 \\
\text{C} & : 2.579912 -0.285066 -3.178428 \\
\text{C} & : 4.137500 -1.853233 0.682246 \\
\text{C} & : 2.797829 -0.184336 1.807867 \\
\text{H} & : 2.681530 -4.110536 -2.106918 \\
\text{C} & : 4.176889 -3.296186 -0.774151 \\
\text{H} & : 5.444396 -2.333582 0.687361 \\
\text{H} & : 2.728223 1.600068 -0.344242 \\
\text{C} & : 3.303887 2.267372 -2.312308 \\
\text{C} & : 3.062967 0.651822 -4.092771
\end{align*}
\]

\[6.418789 -1.075585 -0.854361 \]

\[6.774638 -2.013184 1.059122 \]

\[2.257314 3.848101 3.109232 \]

\[2.059335 4.161440 0.980855 \]

\[1.825830 4.163467 -1.169054 \]

\[7.446329 -1.210299 -1.201193 \]

\[2.085245 5.251154 1.058586 \]
Supporting Information

\[2.99097 \text{-} 1.294753 \text{-} 3.491122 \\
4.257350 \text{-} 2.562645 \text{-} 0.140873 \\
5.114346 \text{-} 1.732834 \text{-} 1.669949 \\
3.775014 \text{-} 0.065878 \text{-} 2.793523 \\
1.870820 \text{-} 0.388199 \text{-} 1.862702 \\
-4.994991 \text{-} 3.868368 \text{-} 1.218135 \\
3.592210 \text{-} 3.264255 \text{-} 1.969623 \\
3.423004 \text{-} 1.927813 \text{-} 3.662044 \\
3.625672 \text{-} 0.626435 \text{-} 3.624263 \\
3.803115 \text{-} 2.660624 \text{-} 4.378071 \\
5.701525 \text{-} 0.744840 \text{-} 3.499267 \\
-0.468413 \text{-} 2.690276 \text{-} 2.936794 \\
-1.275971 \text{-} 3.341854 \text{-} 3.547391 \\
0.300155 \text{-} 0.381521 \text{-} 3.363871 \\
-0.892915 \text{-} 3.351217 \text{-} 3.772507 \\
-0.300155 \text{-} 0.381521 \text{-} 3.363871 \\
H \text{-} 1.202802 \text{-} 2.008234 \text{-} 3.078064 \\
H \text{-} 0.045481 \text{-} 0.949682 \text{-} 3.785394 \\
\]

κO-Li(THF)₂

\[E = -2971.85127750 \]

\[O \text{ 0.742740 0.128423 0.777312} \]
\[O \text{ 2.098612 2.715756 -0.097633} \]
\[O \text{ 3.817967 0.444926 1.165445} \]
\[S \text{ 0.374432 -1.332132 0.868066} \]
\[C \text{ 2.403851 4.090284 0.139986} \]
\[C \text{ 1.636945 2.521153 -1.441065} \]
\[C \text{ 4.661131 0.625591 0.023888} \]
\[C \text{ 0.300155 -0.381521 3.363871} \]
\[C \text{-0.892915 -2.102483 3.772507} \]
\[C \text{-1.441221 0.219962 1.741565} \]

\[E = -2971.85127750 \]

\[O \text{ 0.742740 0.128423 0.777312} \]
\[O \text{ 2.098612 2.715756 -0.097633} \]
\[O \text{ 3.817967 0.444926 1.165445} \]
\[S \text{ 0.374432 -1.332132 0.868066} \]
\[C \text{ 2.403851 4.090284 0.139986} \]
\[C \text{ 1.636945 2.521153 -1.441065} \]
\[C \text{ 4.661131 0.625591 0.023888} \]
\[C \text{ 0.300155 -0.381521 3.363871} \]
\[C \text{-0.892915 -2.102483 3.772507} \]
\[C \text{-1.441221 0.219962 1.741565} \]

\[κO-Li(THF)₂ \]

\[E = -2971.85127750 \]
$\kappa N, \kappa S$-Li(THF)$_2$

$E = -2971.8532682$

Cl $0.714492 -0.243982 -2.276262$
S $0.052810 -1.973623 1.410860$
O $-2.486229 -2.456635 -1.174136$
C $0.758105 0.447578 -0.655495$
P $1.320538 -0.623566 0.624610$
C $-2.486089 -2.017942 -2.538123$
C $-1.923308 -3.761626 -1.11645$
C $2.055031 0.410803 1.935999$
C $2.753519 -1.471796 -0.130579$
C $-0.397539 2.904083 -1.315638$
H $-3.511153 -2.081125 -2.940499$
H $-2.165462 -0.966262 -2.531594$
C $-1.515989 -2.939852 -3.289577$
C $-0.842792 -3.740631 -2.173757$
H $-1.544114 -3.917687 -0.092134$
H $-2.699634 -4.519019 -1.330764$
C $2.655341 1.634997 1.621394$
C $2.074998 -0.58985 3.250564$
C $3.733895 -0.724849 -0.795843$
C $2.889659 -2.855529 -0.157979$
C $0.110310 4.069338 -0.743816$
C $-0.743753 2.843996 -2.665949$
H $-0.793171 -2.370259 -3.889850$
H $-2.064267 -3.609376 -3.969565$
H $0.033743 -3.200292 -1.783341$
\begin{align*}
\kappa O, \kappa S - \text{Li(THF)}_2 \\
E &= -2971.84916164
\end{align*}
Atom	x	y	z
C	-0.676324	-3.605675	-2.899454
C	0.387760	-3.912438	-1.846105
H	0.075965	-3.952785	-0.591596
H	-0.907797	-3.912438	-1.846105
C	2.202100	2.620319	1.011901
C	2.438068	1.104664	2.885548
C	3.675957	0.182844	-1.120142
C	3.347127	-1.982626	-0.089827
C	-1.168660	3.382715	-1.835914
C	-2.661639	1.626466	-2.615391
H	0.075965	-3.952785	-0.591596
H	-0.907797	-3.912438	-1.846105
C	2.202100	2.620319	1.011901
C	2.438068	1.104664	2.885548
C	3.675957	0.182844	-1.120142
C	3.347127	-1.982626	-0.089827
C	-1.168660	3.382715	-1.835914
C	-2.661639	1.626466	-2.615391
H	0.075965	-3.952785	-0.591596
H	-0.907797	-3.912438	-1.846105
C	2.202100	2.620319	1.011901
C	2.438068	1.104664	2.885548
C	3.675957	0.182844	-1.120142
C	3.347127	-1.982626	-0.089827
C	-1.168660	3.382715	-1.835914
C	-2.661639	1.626466	-2.615391
H	0.075965	-3.952785	-0.591596
H	-0.907797	-3.912438	-1.846105
C	2.202100	2.620319	1.011901
C	2.438068	1.104664	2.885548
C	3.675957	0.182844	-1.120142
C	3.347127	-1.982626	-0.089827
C	-1.168660	3.382715	-1.835914
C	-2.661639	1.626466	-2.615391
H	0.075965	-3.952785	-0.591596
H	-0.907797	-3.912438	-1.846105
C	2.202100	2.620319	1.011901
C	2.438068	1.104664	2.885548
C	3.675957	0.182844	-1.120142
C	3.347127	-1.982626	-0.089827
C	-1.168660	3.382715	-1.835914
C	-2.661639	1.626466	-2.615391
H	0.075965	-3.952785	-0.591596
H	-0.907797	-3.912438	-1.846105
C	2.202100	2.620319	1.011901
C	2.438068	1.104664	2.885548
C	3.675957	0.182844	-1.120142
C	3.347127	-1.982626	-0.089827
C	-1.168660	3.382715	-1.835914
C	-2.661639	1.626466	-2.615391
H	0.075965	-3.952785	-0.591596
H	-0.907797	-3.912438	-1.846105
C	2.202100	2.620319	1.011901
C	2.438068	1.104664	2.885548
C	3.675957	0.182844	-1.120142
C	3.347127	-1.982626	-0.089827
C	-1.168660	3.382715	-1.835914
C	-2.661639	1.626466	-2.615391
H	0.075965	-3.952785	-0.591596
H	-0.907797	-3.912438	-1.846105
C	2.202100	2.620319	1.011901
C	2.438068	1.104664	2.885548
H	-0.501178	1.102006	0.554339
O	-1.686955	-1.892688	1.980612
C	-1.224854	1.922721	-2.397287
C	-2.123268	3.340087	-1.549575
C	-0.561577	3.298170	-1.549575
C	-0.501178	1.102006	0.554339
O	-1.686955	-1.892688	1.980612
C	-1.224854	1.922721	-2.397287
C	-2.123268	3.340087	-1.549575
C	-0.561577	3.298170	-1.549575
C	-0.501178	1.102006	0.554339
O	-1.686955	-1.892688	1.980612
C	-1.224854	1.922721	-2.397287
C	-2.123268	3.340087	-1.549575
C	-0.561577	3.298170	-1.549575

κOκN-Li(THF)
\[
\begin{array}{l}
E = -2739.54907333 \\
\text{Li} 2.318590 \ 1.644395 \ -1.029824 \\
\text{O} 0.956659 \ 1.39231 \ 0.426642 \\
\text{O} 3.912270 \ 0.834214 \ -0.379088 \\
\text{S} -0.184321 \ 1.589944 \ -0.515395 \\
\text{C} 5.147449 \ 0.561381 \ -1.037224 \\
\text{C} 3.955022 \ 0.385790 \ 0.986279 \\
\text{N} 0.476467 \ 1.976479 \ -1.885710 \\
\text{C} -1.217051 \ 0.248218 \ -0.511091 \\
\text{C} -1.117439 \ 2.980983 \ 0.119144 \\
\text{H} 5.381555 \ 1.401844 \ -1.707433 \\
\text{H} 5.045116 \ -0.354957 \ -1.646196 \\
\text{C} 6.152089 \ 0.367876 \ 0.082849 \\
\text{C} 5.294113 \ -0.317917 \ 1.141049 \\
\text{H} 3.088663 \ -0.264473 \ 1.170733 \\
\text{H} 3.875624 \ 1.268596 \ 0.426642 \\
\text{C} -0.289943 \ 1.844209 \ -3.106254 \\
\text{C} -1.996161 \ -1.042170 \ 0.670643 \\
\text{C} -1.887374 \ 2.791874 \ 1.267464 \\
\text{C} -1.009068 \ 4.223125 \ -0.499463 \\
\text{H} 6.511655 \ 1.344103 \ 0.445694 \\
\text{H} 7.024004 \ -0.223847 \ -0.228762 \\
\text{H} 5.189371 \ -1.389247 \ 0.911725 \\
\text{H} 5.696837 \ -0.227080 \ 2.159207 \\
\text{H} -1.103670 \ 2.587937 \ -3.200303 \\
\text{H} -0.745107 \ 0.842271 \ -3.216953 \\
\text{H} 0.391230 \ 1.996159 \ -3.956248 \\
\text{C} -1.320503 \ -0.721030 \ 2.606929 \\
\text{C} -2.113133 \ -2.349887 \ 0.028076 \\
\text{C} 0.666766 \ -1.741824 \ 0.366023 \\
\text{C} -1.951755 \ 1.798051 \ 1.726277 \\
\text{C} -2.560097 \ 3.847671 \ 1.805824 \\
\text{C} -1.694413 \ 5.308661 \ 0.046323 \\
\text{H} -0.390419 \ 4.325388 \ -1.393685 \\
\text{C} -2.063395 \ -2.713998 \ -1.323335 \\
\text{C} -2.988070 \ -3.006037 \ 0.893394 \\
\text{C} 1.289040 \ -2.469973 \ 1.833593 \\
\text{C} 1.281937 \ -1.633898 \ -0.885931 \\
\text{H} -3.165735 \ 3.757777 \ 2.706899 \\
\text{C} -2.465588 \ 5.138702 \ 1.195918 \\
\text{H} -1.624536 \ 6.290109 \ -0.428194 \\
\text{H} -1.387304 \ -2.189754 \ -2.002685 \\
\text{C} -2.882577 \ -3.733816 \ -1.798654 \\
\text{C} -3.809767 \ -4.026749 \ 0.413710 \\
\text{H} -3.011405 \ -2.701108 \ 1.943574 \\
\text{H} 0.807117 \ -2.524562 \ 2.363523 \\
\text{C} 2.508058 \ -3.103184 \ 1.144955 \\
\text{C} 2.505575 \ -2.258654 \ -1.117760 \\
\text{H} 0.801156 \ -1.041585 \ -1.668148 \\
\text{H} -3.001632 \ 5.990652 \ 1.620990 \\
\text{H} -2.842827 \ -4.015508 \ -2.853649 \\
\text{C} -3.756902 \ -4.391970 \ -0.930276 \\
\text{H} -4.494651 \ -4.537665 \ 1.094848 \\
\text{H} 2.988071 \ -3.674653 \ 1.942995 \\
\text{C} 3.115399 \ -3.002790 \ -0.107286 \\
\text{H} 2.985056 \ -2.165495 \ -2.095316 \\
\text{H} -4.400252 \ -5.191430 \ -1.306077 \\
\text{H} 4.070181 \ -3.500357 \ -0.294537 \\
\kappa_{O,S,Cl}\cdot Li(THF)
\end{array}

\[E = -2739.55158286 \]

Element	Coordinates
C	-0.176335, -0.365862, 0.932914
Cl	-1.807319, -0.411863, 1.627372
S	0.376102, -1.968441, 0.650273
P	0.079935, 0.834852, -0.342257
S	-0.348511, 0.387553, -2.265878
N	0.352351, -2.691909, 2.010128
C	0.644272, -4.111721, 1.962273
H	1.690240, -4.336822, 1.670192
H	0.496883, -4.525497, 2.971045
H	-0.014421, -4.673551, 1.274769
C	2.045098, -1.749244, 0.029287
C	3.034480, -1.428466, 0.957490
C	2.343472, -1.261825, 0.517423
H	0.328094, -2.678193, -0.492012
C	1.690240, -4.336822, 1.670192
O	0.496883, -4.525497, 2.971045
H	0.496883, -4.525497, 2.971045
Li	1.419673, -1.779552, -1.713285

\[\kappa N, \kappa S, \kappa Cl - Li(THF) \]
\[E = -2739.55833053 \]

\[
\begin{align*}
\text{C} & : -0.136017 -0.323295 0.926378 \\
\text{Cl} & : -1.678349 -0.376873 1.795746 \\
\text{S} & : 0.518948 -1.909638 0.838663 \\
\text{P} & : -0.039458 0.839505 -0.395810 \\
\text{S} & : -0.631349 0.333299 -2.260926 \\
\text{Cl} & : 2.238075 -1.680193 0.399818 \\
\text{C} & : 3.192070 -1.714505 1.414790 \\
\text{S} & : 0.518948 -1.909638 0.838663 \\
\text{P} & : -0.039458 0.839505 -0.395810 \\
\text{S} & : -0.631349 0.333299 -2.260926 \\
\text{Cl} & : 2.238075 -1.680193 0.399818 \\
\text{C} & : 3.192070 -1.714505 1.414790 \\
\text{S} & : 0.518948 -1.909638 0.838663 \\
\text{P} & : -0.039458 0.839505 -0.395810 \\
\text{S} & : -0.631349 0.333299 -2.260926 \\
\text{Cl} & : 2.238075 -1.680193 0.399818 \\
\text{C} & : 3.192070 -1.714505 1.414790 \\
\text{S} & : 0.518948 -1.909638 0.838663 \\
\text{P} & : -0.039458 0.839505 -0.395810 \\
\text{S} & : -0.631349 0.333299 -2.260926 \\
\text{Cl} & : 2.238075 -1.680193 0.399818 \\
\text{C} & : 3.192070 -1.714505 1.414790 \\
\text{S} & : 0.518948 -1.909638 0.838663 \\
\text{P} & : -0.039458 0.839505 -0.395810 \\
\text{S} & : -0.631349 0.333299 -2.260926 \\
\text{Cl} & : 2.238075 -1.680193 0.399818 \\
\text{C} & : 3.192070 -1.714505 1.414790 \\
\text{S} & : 0.518948 -1.909638 0.838663 \\
\text{P} & : -0.039458 0.839505 -0.395810 \\
\text{S} & : -0.631349 0.333299 -2.260926 \\
\text{Cl} & : 2.238075 -1.680193 0.399818 \\
\text{C} & : 3.192070 -1.714505 1.414790 \\
\text{S} & : 0.518948 -1.909638 0.838663 \\
\text{P} & : -0.039458 0.839505 -0.395810 \\
\text{S} & : -0.631349 0.333299 -2.260926 \\
\text{Cl} & : 2.238075 -1.680193 0.399818 \\
\end{align*}
\]

\[\kappa N, \kappa S-Li(THF) \]
E = -2739.55620864
S -0.391256 -2.376835 -1.304385
C -0.577785 0.783527 -0.563470
P -1.239252 -0.831813 -0.330033
C -1.305754 -1.149778 1.464294
C -2.991110 -0.667520 -0.821507
C 1.076268 2.862418 0.282561
C -1.780362 -0.157112 3.692113
C -0.936726 -2.397660 1.149779
C -3.680541 0.530156 -0.596728
C -3.660671 -1.766896 -1.363629
C 0.900115 3.358759 1.572985
C 1.290611 3.710017 -0.804210
H -2.048134 0.825153 1.935000
C -1.881528 -0.418799 3.692113
C -1.038501 -2.654961 3.331646
H -0.563683 -3.157075 1.273378
H -3.144639 1.393449 -0.195529
H 0.749803 2.658901 2.396955
C 0.927940 4.736817 1.775226
C 1.314248 5.598663 0.695923
H 1.480756 5.675856 -1.430528
H -1.589246 -1.869290 5.267379
H -6.768816 -0.410336 -1.683735
H 1.152548 6.678759 0.858937
S 0.995692 1.086222 0.031306
O 1.143869 0.482040 1.377085
N 2.042820 0.697912 -1.067335
C 3.426255 1.043190 -0.781434
H 4.038314 0.785673 -1.658253
H 3.572629 2.122550 -0.590114
H 3.841052 0.496817 0.085045
Li 1.678668 -1.104526 -1.899148
O 3.075605 -2.212017 -1.142934
C 4.383376 -2.543502 -1.606441
C 2.958027 -2.451602 0.265936
C 5.050357 -3.274712 -0.452176
H 4.296889 -3.152552 -2.519307
H 4.923352 -1.613733 -1.859854
C 4.384370 -2.623283 0.754924
H 2.423493 -1.604111 0.720989
H 2.358653 -3.364551 0.423404
H 6.144268 -3.170961 -0.464434
H 4.809581 -4.349125 -0.487995
H 4.840272 -1.641960 0.963107
H 4.445049 -3.227090 1.670902
Cl -0.851989 1.429762 -2.186993

κO,κN,κS-Li(THF)
\[E = -2739.55054668 \]

S	-1.185196	-1.539479	-2.073358	
C	-0.592307	1.051860	-0.164519	
P	-1.521730	-0.432768	-0.422448	
C	-1.339086	-1.458015	1.076581	
C	-3.253112	0.138362	-0.388740	
C	1.891418	2.098589	0.531490	
C	-0.963787	-0.884809	2.295326	
C	-1.620625	-2.825167	1.005295	
C	-3.751215	0.763161	0.761348	
C	-4.075441	-0.034928	1.502266	
C	3.220324	2.387195	0.219172	
C	1.235662	2.728607	1.588140	
H	-0.716315	0.178169	2.327483	
C	-0.877379	-1.677287	3.437970	
C	-1.536019	-3.613564	2.151590	
H	-1.888190	-3.264640	0.040896	
C	-3.107179	0.902057	1.632937	
C	-5.069456	1.208554	1.689624	
C	-5.395971	0.412977	-1.467455	
H	-3.668314	-0.526212	-2.390004	
H	3.698617	1.880055	0.621650	
H	3.906890	3.322015	-0.990259	
C	1.930544	3.666825	2.347631	
H	0.190695	2.484120	1.790084	
H	-0.574897	-1.228447	4.387172	
C	-1.165596	-3.040822	3.368810	
H	-1.755778	-4.682258	2.092332	
C	-5.457633	1.694739	1.689624	
C	-5.893010	1.033980	-0.322858	
H	-6.038474	0.275382	-2.340360	
H	4.948281	3.556490	0.759196	
C	3.262831	3.959828	2.051595	
H	1.428816	4.172559	3.175537	
H	-1.094500	-3.60921	4.265773	
H	-6.927854	1.383869	-0.296249	
H	3.803129	4.695908	2.651394	
S	1.084441	0.823137	-0.422628	
O	1.380007	-0.525932	0.145098	
N	1.684396	0.798802	-1.868237	
C	1.522917	1.917709	-2.773483	
H	0.501946	1.995335	-3.184562	
H	1.771149	2.892300	-2.312962	
H	2.213224	1.772976	-3.618303	
Li	1.348252	-1.251179	-1.954384	
O	2.829328	-2.448865	-1.669778	
C	4.067651	-1.768411	-1.442498	
C	2.602051	-3.423601	-0.640809	
C	4.370470	-1.987691	0.026825	
H	4.848486	-2.205524	-2.090727	
H	3.926299	-0.711589	-1.714467	
C	3.849080	-3.406344	0.233399	
H	1.705479	-3.124788	-0.072950	
H	2.413380	-4.01069	-1.110461	
H	3.787839	-1.274517	0.629036	
H	5.437418	-1.872542	0.263883	
H	3.622192	-3.640865	1.282728	
H	4.585687	-4.141969	-0.127133	
Cl	-1.216864	2.550032	-0.867278	

\(\kappa O, \kappa S-Li(THF) \)
6.4.2 Coordinates of the dimeric structures of 1-Li

\(\kappa O, \kappa S-Li_2(THF)_2 \)

\[E = -5479.14610678 \]

Cl: -3.881936 1.720549 -1.969288
Cl: 3.881650 -1.720805 1.969188
S: -0.942092 1.079989 1.388326
S: 0.942126 -1.079824 -1.388499
O: 0.081845 2.493836 1.966786
O: -0.081620 2.493970 -1.966937
C: -3.307647 0.548813 -0.814909
C: 3.307619 -0.548892 0.814858
P: -2.88523 0.976033 0.826525
P: 2.88541 -0.975957 -0.826628
C: 0.268267 -2.162981 3.347234
C: 0.672659 -3.759718 1.664891
C: -0.268588 2.162981 -3.347289
C: -0.672074 3.760001 -1.664975
S: 0.942126 1.079824 -1.388499
S: -0.942092 -1.079989 1.388326
O: 0.081620 -2.493970 1.966937
O: -0.081845 -2.493836 -1.966786
C: -3.307647 -0.548813 0.814909
C: 3.307619 0.548892 -0.814858
P: 2.88523 0.976033 -0.826525
P: -2.88541 -0.975957 0.826628
C: 0.268267 2.162981 -3.347234
C: 0.672659 3.759718 -1.664891
C: -0.268588 -2.162981 3.347289
C: -0.672074 -3.760001 1.664975
H: 0.642957 -1.659239 3.699048
H: 1.116389 -1.462802 3.434845
C: 0.532392 -3.493964 4.023858
C: 1.334098 -4.228948 2.953918
H: 1.389319 3.632985 0.838693
H: 0.124952 4.445968 1.333406
C: 4.284093 1.988802 1.647125
C: 0.642519 1.659256 -3.699435
C: -1.116703 1.462744 -3.434845
C: -0.533056 3.493964 -4.023858
C: -1.334216 4.228948 -2.953918
C: -1.388238 3.633544 -0.838693
H: 0.125825 4.446233 -1.333406
C: -4.945865 -0.765804 1.590339
C: -3.236393 -0.378557 3.258336
C: -5.068632 2.726352 0.912030
C: -2.939539 3.681167 1.558060
C: 4.945998 0.765837 -1.590222
C: 3.236493 0.378928 -3.258263
C: 5.086064 -2.726334 -0.912197
C: 2.939985 -3.681042 -1.558342
C: -4.555145 -3.062034 -0.800664
C: -5.149447 1.651387 -2.690255
H: 1.073382 -3.383770 4.974295
H: -0.416653 4.016372 4.227418
H: 2.382541 -3.897658 2.976596
H: 1.319765 -5.322439 3.060794
C: 4.555271 3.061883 -0.800895
C: 5.149413 1.651107 2.690441
H: -1.074528 3.383557 -4.974096
H: 0.415881 4.016271 -4.228065
H: -2.382660 3.897698 -2.975771
H: -1.314170 5.322496 -3.060761
H: -5.335525 -0.600745 0.583338
C: -5.618333 -1.604591 2.477303
C: -3.912495 -1.216200 4.143258
H: -2.297920 0.101573 3.546595
H: -5.658516 1.877416 0.559639
Supporting Information

\[\kappa N, \kappa S-Li_2(THF)_2 \]
E = -5479.14937283

Cl -2.350006 -0.655674 2.040689
Cl 2.350152 0.655766 -2.040698
S -0.908357 -0.876635 -1.515934
S 0.908327 0.876611 1.515873
O -0.466811 2.603675 -1.952099
O 0.466803 -2.603661 1.952031
C -3.305662 -0.280646 0.598348
C 3.305729 0.280633 -0.598328
P -2.773935 -1.199576 -0.802527
P 2.773939 1.199542 0.802549
C -1.532182 2.525843 -2.903255
C 1.532148 -2.525772 2.903217
C -0.363952 -3.733905 -2.210765
C 0.363925 3.733915 2.210792
H -2.469672 2.317261 -2.365356
H -1.334132 1.684301 -3.589112
C -1.514116 3.858785 -3.631051
C 1.514085 -3.858684 3.631069
H 1.415312 3.426067 2.122602
H 0.167583 4.509633 1.450079
C 5.366489 1.150996 1.822391
C 3.602803 0.731609 3.430166
C 3.871793 3.328966 -0.661774
C 2.121144 3.910566 0.909174
H -1.932275 3.790055 -4.644962
H -2.096676 4.609611 -3.072889
H 0.515284 3.638572 -4.367805
H 0.178104 5.276484 -3.753432
C 1.932209 -3.789901 4.644991
H 2.096682 -4.609521 3.072959
H -0.515347 -3.638478 4.367729
H -0.178111 -5.276416 3.753453
H -5.678401 -1.339615 -0.792958
C -6.312732 -1.044539 -2.835894
C -4.556517 -0.621505 -4.442423
H -2.537554 -0.613447 -3.643640
H -4.484777 -2.565521 1.146329
C -3.998273 -4.672102 1.010478
C -2.261172 -5.253958 -0.566175
H -1.375420 -3.596174 -1.644124
H 5.678412 1.339546 0.793097
C 6.312646 1.044560 2.836078
C 4.556354 0.621594 4.442539
H 2.537431 0.613508 3.643661
H 4.484841 2.565466 -1.146247
C 3.998384 4.672059 -1.010388
Atom	X	Y	Z
C	2.261259	5.253940	0.566231
H	1.375432	3.596162	1.644130
C	-7.37379	-1.164280	-2.602722
C	-5.909393	-0.777571	-4.146697
C	-4.238479	-0.412564	-5.466585
C	-4.726424	-4.968342	-1.769147
C	-3.195856	-5.635180	0.396519
H	-1.629650	-6.004880	-1.046803
C	7.373304	1.164293	2.602722
C	5.909244	0.777646	4.146697
C	4.238265	0.412701	5.466695
H	4.238479	0.412564	5.466585
C	4.726562	4.968342	-1.769047
H	4.726424	4.968342	-1.769147
C	3.195978	5.635150	-0.396434
H	1.629745	6.004873	1.046850
Li	0.593480	-1.414846	0.433001
O	4.443645	1.621411	-0.796605
O	4.443642	1.621544	0.796555
C	5.965791	1.949619	1.655916
C	4.763698	2.444000	4.134771
H	-2.882730	2.049384	3.121128
C	-6.749705	2.281925	2.758623
H	-6.404431	1.760143	0.674643
C	-6.149834	2.525580	3.995625
H	-4.296838	2.641933	5.102355
H	-7.834544	2.353969	2.651877
C	4.583659	1.864138	1.811615
C	-3.969167	2.113221	3.038579
C	-5.965791	1.949619	1.655916
C	-4.763698	2.444000	4.134771
C	4.443642	1.621544	0.796555
C	5.965791	1.949619	1.655916
C	4.763698	2.444000	4.134771
C	2.261259	5.253940	0.566231

\(\kappa O, \kappa N, \kappa Cl-L_2(THF)_2 \)

\[E = -5479.15020428 \]

Cl 1.444965 1.365199 -2.156734
Cl 1.591586 -1.537747 2.103500
Supporting Information

\[\kappa_O \kappa_N\text{-Li}_2(\text{THF})_4 \]

\[E = -5943.74225062 \]

C -3.756808 0.073296 -0.577335
S -2.182556 0.668452 -0.402962
P -5.087192 0.117379 0.577651
O -1.396811 0.119752 -1.558497
S -4.722508 0.865530 2.375659
Li 0.161823 1.349813 1.594188
Li -0.161771 -1.349956 -1.593967
O 1.396837 -0.119870 1.558640
S 2.182622 -0.668510 0.403079
P 5.087106 -0.117341 -0.577776
S 4.722210 -0.865646 -2.375676
Cl 4.224556 0.352679 2.223259
Cl -4.224426 -0.352511 -2.223313
C 6.446837 -1.047377 0.208020
C 6.152363 -2.098751 1.081851
C 7.774417 -0.794888 -0.154096
C 7.179704 -2.890383 1.591156
H 5.114154 -2.290380 1.364090
C 8.799850 -1.585400 0.360823
H 8.006589 0.020731 -0.843978
C 8.503741 -2.633766 1.233438
H 6.944694 -3.710196 2.274228
H 9.835792 -1.383126 0.078287
H 9.308934 -3.252853 1.636487
C 5.700548 1.606168 -0.689217
C 5.457207 2.343056 -1.852397
C 6.341949 2.219025 0.395878
C 5.831867 3.683336 -2.375676
Cl 4.224426 -0.352511 -2.223313
C 6.446792 1.047527 -0.208242
C 6.152180 2.098927 1.081851
C 7.774421 0.795080 -0.153724
C 7.179432 2.890632 -1.591366
H 5.113934 2.290521 -1.364121
C 8.799764 1.585666 -0.361262
H 8.006702 -0.020560 -0.843542
C 8.503517 2.634061 -1.233795
H 6.944312 3.710466 -2.274375
H 9.835792 1.585666 -0.361262
H 8.006702 -0.020560 -0.843542
C 8.503517 2.634061 -1.233795
H 6.944312 3.710466 -2.274375
H 9.835792 1.585666 -0.361262
H 8.006702 -0.020560 -0.843542
C 8.503517 2.634061 -1.233795
H 6.944312 3.710466 -2.274375
H 9.835792 1.585666 -0.361262
H 8.006702 -0.020560 -0.843542
C 8.503517 2.634061 -1.233795
H 6.944312 3.710466 -2.274375
H 9.835792 1.585666 -0.361262
H 8.006702 -0.020560 -0.843542
C 8.503517 2.634061 -1.233795
H 6.944312 3.710466 -2.274375
H 9.835792 1.585666 -0.361262
H 8.006702 -0.020560 -0.843542
C 8.503517 2.634061 -1.233795
H 6.944312 3.710466 -2.274375
H 9.835792 1.585666 -0.361262
H 8.006702 -0.020560 -0.843542
C 8.503517 2.634061 -1.233795
H 6.944312 3.710466 -2.274375
H 9.835792 1.585666 -0.361262
H 8.006702 -0.020560 -0.843542
C 8.503517 2.634061 -1.233795
H 6.944312 3.710466 -2.274375
H 9.835792 1.585666 -0.361262
H 8.006702 -0.020560 -0.843542
C 8.503517 2.634061 -1.233795
H 6.944312 3.710466 -2.274375
H 9.835792 1.585666 -0.361262
H 8.006702 -0.020560 -0.843542
\[k_{O,S,Cl-Li} \]

\[E = -2.171063 -2.262695 -0.534921 \]
\[O -3.356053 -1.987812 -2.827968 \]
\[C -2.202394 -3.718242 -0.597977 \]
\[H -1.390037 -4.110623 0.032363 \]
\[H -3.147976 -4.151741 -0.220464 \]
\[H -2.044796 -4.101554 -1.620889 \]
\[N -2.170989 2.262628 0.535035 \]
\[O -3.356164 1.987804 2.828003 \]
\[C -2.202264 3.718176 0.598071 \]
\[H -1.389826 4.110515 -0.032192 \]
\[H -3.147794 4.151706 -0.220460 \]
\[H -2.044752 4.101498 1.620992 \]
\[Li -0.605600 1.372502 0.209895 \]
\[Li -0.605525 1.372384 -0.209676 \]
\[\kappa_{O,S,Cl-Li} \]

\[E = -5014.54493149 \]
\[Cl 1.687089 -0.684620 -2.542398 \]
\[Cl -1.665168 0.756919 2.499473 \]
\[S 0.918041 -1.339170 1.094720 \]
\[S -0.942025 1.343624 1.094720 \]
\[C 2.798511 -0.180265 1.267644 \]
\[C -2.784192 0.212346 1.248644 \]
\[P 2.700037 -1.234419 0.135051 \]
\[P -2.718119 1.241390 -0.173915 \]
\[C 4.024791 -0.727692 1.272984 \]
\[C 3.159032 -2.88702 0.467337 \]
\[C -4.053725 0.696391 -1.280902 \]
\[C -3.186833 2.901794 0.403039 \]
\[C 2.798511 -0.180265 1.267644 \]
\[C -2.784192 0.212346 1.248644 \]
\[H 3.186833 2.901794 0.403039 \]
\[C 4.527012 1.912659 -0.587815 \]
\[C -4.497341 -1.920312 0.656879 \]
\[C 5.392484 -0.826829 0.859320 \]
\[C 3.719177 -0.243945 2.545611 \]
\[C 3.997408 -3.031571 -1.578988 \]
\[C 2.704083 -4.019136 0.218635 \]
\[C -5.381661 0.778079 -0.843221 \]
\[C -3.763404 0.199156 -2.551849 \]
\[C -4.016711 3.056241 1.519562 \]
\[C -2.748587 4.024184 -0.306507 \]
\[C 4.881040 2.569659 0.585410 \]
\[C 5.467287 1.622333 -1.576364 \]
\[C -4.875682 -2.603915 -0.493358 \]
\[C -5.412999 -1.623405 1.666320 \]
\[H 5.599004 -1.199830 -0.138354 \]
\[C 6.380282 -0.435715 1.718699 \]
\[C 4.746200 0.151244 3.401403 \]
\[H 2.673478 -0.184735 2.856583 \]
\[H 4.327924 -2.141224 -2.119367 \]
\[C 4.383193 -4.304260 -1.994720 \]
\[C 3.097832 -5.288648 -0.199092 \]
\[H 2.031541 -3.894422 1.071175 \]
\[H -5.609203 1.161169 0.153479 \]
\[H -6.411565 0.355630 -1.676877 \]
\[H -4.799074 -0.227433 -3.817333 \]
\[H -2.722689 0.154090 -2.881518 \]
\[H -4.333923 2.172592 2.078616 \]
\[C -4.410966 4.332289 1.916461 \]
\[C -3.150594 5.297085 0.092700 \]
\[H -2.082389 3.891071 -1.162744 \]
\[H 4.115903 2.774498 1.334434 \]
\[C 6.216530 2.920679 0.783788 \]
Atom	X	Y	Z
C	6.796660	1.973487	-1.366825
H	5.149755	1.111832	-2.488321
H	-4.129715	-2.812063	-1.260597
C	-6.211358	-2.976155	-0.646714
C	-6.742967	-1.995595	1.501571
H	5.045970	0.532951	4.396393
C	5.031799	-4.16085	-2.866681
C	3.937589	-5.431885	-1.304194
H	2.742484	-6.170769	0.335853
H	-7.446011	0.412622	-1.331706
C	-6.120718	-0.149822	2.945253
H	-4.570907	-0.619791	-4.375420
H	-6.525788	-3.500439	-1.551974
C	3.981978	5.451781	1.202533
H	2.808128	6.172945	-0.463214
H	6.511636	3.423718	1.707409
H	4.241044	-6.428594	-1.633493
Li	0.477521	1.169935	0.949891

$kO_{\kappa N}LI_2$

Atom	X	Y	Z
C	-3.854938	-0.821620	-0.620586
S	-2.269042	-0.244514	-0.428446
P	-5.109875	-0.460811	0.586464
O	-1.561936	-0.532465	-1.724170
S	-4.646061	-0.849735	2.473458
Li	-0.347295	0.402468	1.901249
Li	0.281922	-0.587365	-2.047543
O	1.489172	0.558365	1.581917
S	2.232941	0.188999	0.327189
C	3.791700	0.845508	0.494722
P	5.088713	0.422085	-0.644679
S	4.653803	0.606654	-2.568729
Supporting Information

\[\kappa O, \kappa S-Li_2 \]

\[E = -5014.54537659 \]

Atom	\(x \)	\(y \)	\(z \)
Cl	-2.415761	-0.624826	2.788636
Cl	2.417420	0.628673	-2.787575
S	-0.835572	-1.514350	-0.947656
S	0.835353	1.513656	0.949596
C	-2.893837	-0.140338	1.180542
C	2.893696	0.141751	-1.179689
P	-2.678780	1.283943	0.122553
P	-2.678780	1.283943	0.122553
C	-3.894783	-0.853518	1.412671
C	-3.237762	-2.891176	-0.531425
C	3.894195	0.853697	1.419800
C	3.238316	2.891620	-0.531425
C	-4.539348	2.079559	0.513492
C	4.539343	-2.079872	-0.518634
C	-5.236016	-0.679430	-1.053073
C	-3.509223	-0.731018	-2.748296
C	-4.303112	-2.953538	1.443091
C	-2.643811	-4.069797	0.076309
C	5.235191	0.675816	1.055532
C	3.508412	0.730650	2.750676
C	4.304702	2.954720	-1.437734
C	2.643700	0.409842	-0.072093
C	-4.927943	2.651306	-0.692921
C	-5.434038	1.938664	1.575211
C	4.929747	-2.653406	0.686339
C	5.432290	-1.937980	-1.581708
C	-5.536265	-0.756448	-0.006549
C	-6.183087	-0.377500	-2.027199
C	-4.459402	-0.420185	-3.719930
H	-2.459757	-0.878275	-3.015930
H	-4.750182	-2.031682	1.820875
C	-4.771188	-4.190304	1.878007
C	-3.117202	-5.305577	0.515301
H	-1.804978	-4.007351	-0.621779
H	5.535617	0.751843	0.008980
C	6.181812	0.373077	2.029870
C	4.458123	0.419033	3.722502
H	2.459139	0.879506	3.018193
H	4.752287	2.033187	-1.815688
C	4.773155	4.191828	-1.872041
C	3.117467	5.305983	-0.509684
H	1.804092	4.006801	0.625010
Element	X	Y	Z
---------	-----------	-----------	-----------
H	-4.201243	2.736155	-1.501613
C	-6.248740	3.074805	-0.845629
H	-4.204389	2.739053	1.496143
C	6.250609	-3.077755	0.836198
C	6.748278	-2.359430	-1.421178
H	5.091658	-1.490286	-2.518820
C	6.248740	3.074805	0.845629
C	6.749948	2.359286	1.411853
H	5.094802	1.492330	2.513472
C	4.204389	-2.739053	1.496143
C	6.250609	-3.077755	0.836198
C	6.748278	-2.359430	-1.421178
H	5.091658	-1.490286	-2.518820
C	6.248740	3.074805	0.845629
C	6.749948	2.359286	1.411853
H	5.094802	1.492330	2.513472
C	4.204389	-2.739053	1.496143
C	6.250609	-3.077755	0.836198
C	6.748278	-2.359430	-1.421178
H	5.091658	-1.490286	-2.518820
C	6.248740	3.074805	0.845629
C	6.749948	2.359286	1.411853
H	5.094802	1.492330	2.513472
C	4.204389	-2.739053	1.496143

KL, KCl-Li

\[
E = -5014.5509132
\]

Element	X	Y	Z
Cl	1.731505	0.594659	2.590935
Cl	-1.731199	-0.595370	-2.590556
S	1.248339	0.745082	-1.321327
S	-1.248215	-0.744801	1.321575
C	2.981476	0.173306	1.399790
C	-2.981325	-0.173705	-1.399690

KS, KCl-Li

\[
E = -5014.5509132
\]

Element	X	Y	Z
Cl	1.731505	0.594659	2.590935
Cl	-1.731199	-0.595370	-2.590556
S	1.248339	0.745082	-1.321327
S	-1.248215	-0.744801	1.321575
C	2.981476	0.173306	1.399790
C	-2.981325	-0.173705	-1.399690
P	2.820599	1.101346	-0.082125
P	-2.820522	-1.101295	0.082511
C	4.375656	0.977812	-1.016824
C	2.745051	2.837385	0.480308
Atom	X	Y	Z
-------	-------	-------	-------
Cl	-1.921525	-0.070102	2.546259
S	5.353018	-0.011028	-0.829781
S	-5.352780	0.010706	0.830311
C	2.120394	-0.023350	-0.779888
C	-2.120193	0.023676	0.779668
P	3.631420	0.781147	-0.265743
P	-3.631171	-0.781218	0.265980
C	3.542412	0.974258	1.555745
C	3.395005	2.473000	-0.915005
C	-3.542616	-0.974627	-1.555492
C	-3.394248	-2.472915	0.915412
C	2.666591	-2.892400	-0.494323
C	-2.666913	2.892459	0.494016
C	2.697387	1.923756	2.146450
C	4.347943	0.170621	2.365587
C	2.116888	3.040224	-0.992621
C	4.514785	3.211612	-1.303014
C	-2.697896	-1.924364	-2.146259
C	-4.348237	-0.171010	-2.365268
C	-2.115979	-3.039790	0.992971
C	-4.513815	-3.211817	1.303505
C	2.391347	-3.769220	-1.542870
C	3.828787	-3.011937	0.268621
C	-2.391624	3.769389	1.542451
C	-3.829272	3.011739	-0.268721
H	2.090995	2.588866	1.527302
C	2.626074	2.025961	3.536443
C	4.269833	0.270976	3.753484
H	5.049648	-0.519769	1.890119
H	1.245270	2.454515	-0.690837
C	1.969070	4.348575	-1.447854
C	4.360171	4.520492	-1.757757
H	5.501272	2.742201	-1.254430
H	-2.091434	-2.589442	-1.527138
C	-2.627017	-2.026881	-3.536245
C	-4.270541	-0.271665	-3.753167
H	-5.049696	0.519596	-1.889756
H	-1.244556	-2.453825	0.691132
C	-1.967789	-4.348107	1.448193

\(\kappa O, \kappa N, \kappa Cl-Li_2 \)

\[E = -5014.55606304 \]
C -4.358825 -4.520646 1.758247
H -5.500423 -2.742654 1.254972
H 1.470230 -3.651057 -2.114165
C 3.300271 -4.786808 -1.827247
C 4.723969 -4.037192 -0.019096
H 4.023956 -2.314681 1.083814
H 1.965535 2.786907 3.989628
C 3.402049 1.190769 4.341938
H 4.896901 -0.368601 4.379031
H 0.970996 4.786915 -1.508284
C 3.088639 5.089803 -1.829522
H 5.237245 5.096637 -2.061982
H -1.966734 -2.770198 -3.989470
C -3.403098 1.191736 -4.341685
H -4.897681 0.367897 -4.378657
H -0.969591 -4.786876 1.508549
C -3.087136 -5.086629 1.829923
H -5.235723 -5.097020 2.062552
H 3.086246 -5.481013 -2.645435
C 4.462423 -4.920931 -1.067422
H 5.633993 -4.142323 0.575324
H -3.096662 4.810861 2.645083
C -4.463023 4.920669 1.067350
H -5.634754 4.141765 -0.575149
H 3.343249 1.271397 5.429790
H 2.968521 6.114517 2.189648
H -3.344626 -1.272601 -5.429538
H -2.966736 -6.114314 2.190034
H 5.170826 -5.721634 -1.292611
H -5.171327 5.721255 1.292636
S 1.568633 -1.517724 -0.182616
O 0.346688 -1.881671 -0.987886
S -1.568715 1.518024 0.182025
O -0.346564 1.882332 0.986816
N -1.440155 1.294088 -1.349189
C -1.354759 2.425625 -2.258138
H -2.132727 2.337656 -3.034258
H -1.484264 3.405395 -1.769616
H -0.373932 2.432965 2.760699
N 1.439590 -1.294204 1.348620
C 1.354440 -2.425672 2.257461
H 1.481471 -3.405525 1.768453
H 2.133956 -2.339123 3.032204
H 0.374532 -2.431649 2.761816
Li 0.612825 0.448864 1.786211
Li -0.613464 -0.448874 -1.786650
6.4.3 Coordinates of the monomeric structures of 1-Na

κO-Na(THF)₃

E = -3358.82170887

O 0.556258 0.193141 0.155741
O 2.683118 2.571931 1.493066
O 4.128284 -0.481801 -0.171687
S 1.662285 3.556623 1.643864
C 3.020284 2.000525 2.760203
C 4.823006 -1.023535 -1.293784
C 2.094572 3.607461 -2.332028
C 0.865302 -2.896308 -2.181737
N 0.873730 -1.366206 2.273852
C 1.007850 -2.385528 -0.102286
H 0.928119 3.437180 0.832067
H 2.109340 4.564429 1.565388
H 1.728700 3.317622 3.021763
C 2.292350 2.838447 3.800997
H 4.114907 2.013024 2.878593
H 2.682092 0.949075 2.777107
H 5.425431 -0.228726 -1.761226
H 4.084887 -1.382126 -2.032479
C 5.657163 -2.171950 -0.747591
C 4.804287 -2.643461 0.424987
H 3.298882 -1.418233 1.474262
H 4.990959 -0.866396 1.671730
H 2.005654 3.857205 -3.141787
H 2.480129 4.036235 -1.394116
C 0.887087 4.050899 -2.681350
C 0.228595 2.901201 -3.571796
H 0.312551 2.522676 2.970852
H 0.601424 4.215236 3.445393
H 2.910834 3.695990 4.109706
H 2.039017 2.260910 4.701034
H 6.633544 -1.805317 -0.391966
H 5.840185 -2.951577 -1.500414
H 3.968879 -3.263954 0.066967
H 5.364666 -3.219345 1.174784
H 0.856277 5.032379 -3.175136
H 0.067092 4.096611 -1.771703
H 0.620829 3.031434 -4.592855
H -0.863665 2.807911 -3.638405
H -0.837781 -0.967671 3.488967
H 0.347482 0.361032 3.438663
H 0.722927 -1.124813 4.327032
S -1.959883 -0.974783 -2.385718
C -4.072200 -0.842017 -0.051512
C -2.257188 1.346282 -0.272346
H 1.071408 -1.144263 -1.859347
C 1.761753 -3.165016 -2.247007
\[\kappa S-Na(THF)_5 \]

\[
E = -3823.38603574
\]

\[
\begin{align*}
\text{Cl} & : 2.361663 1.063208 -2.373846 \\
\text{S} & : -0.170011 0.605228 1.406888 \\
\text{C} & : 2.208608 0.251013 -0.834168 \\
\text{P} & : 1.620813 1.040505 0.616610 \\
\text{C} & : 2.900560 0.875695 1.921060 \\
\text{C} & : 1.681377 2.828184 0.196723 \\
\text{C} & : 4.321484 -1.628995 -0.933969 \\
\text{C} & : 4.251554 0.144990 1.564499 \\
\text{C} & : 2.540930 0.600815 1.270812 \\
\text{C} & : 2.872111 3.423221 -2.39243 \\
\text{C} & : 0.537070 3.611483 0.352187 \\
\text{C} & : 5.053701 -2.071558 0.165662 \\
\text{C} & : 4.949757 -1.328861 -2.145158 \\
\text{H} & : 4.530880 0.794077 0.508706 \\
\text{C} & : 5.233590 0.745393 2.550655 \\
\text{C} & : 3.524608 0.789851 4.255900 \\
\text{H} & : 1.480135 0.891953 3.532541 \\
\text{H} & : 3.772432 2.820142 -0.369901 \\
\text{C} & : 2.909509 4.786566 -0.518128 \\
\text{C} & : 0.574563 4.976666 0.66885 \\
\text{H} & : -0.377008 3.127804 0.708281 \\
\text{C} & : 4.524439 -2.300300 1.091830 \\
\text{C} & : 6.438705 -2.193836 0.058692 \\
\text{C} & : 6.334653 -1.447390 -2.240269 \\
\text{H} & : 4.352218 -1.001440 -2.998205 \\
\text{H} & : 6.286026 0.686684 2.262430 \\
\text{C} & : 4.872214 0.739397 3.898096 \\
\text{C} & : 3.236488 0.773859 5.309990 \\
\text{C} & : 3.841782 5.244453 -0.857282 \\
\text{C} & : 1.760163 5.565735 -0.368335 \\
\text{H} & : -0.326458 5.582872 0.190584 \\
\end{align*}
\]
Supporting Information

\(\text{K}_2\text{O-Na(THF)}_4 \)

\[
E = -3591.10906578
\]

H -0.260299 2.336012 -3.890481
H -2.010722 2.037820 -4.026921
H 0.246583 0.065868 -4.428354
H -1.405951 0.010589 -5.083068
O -3.796890 1.703899 -0.207974
C -4.465396 2.086954 -1.395973
C -3.796768 2.825571 0.650800
C -4.161890 3.581471 -1.598781
H -1.405951 0.010589 -5.083068
H -5.552902 1.922471 -1.281399
C -3.520449 4.011055 -0.267081
H -4.099309 1.437368 -2.203267
H -5.552902 1.922471 -1.281399

O 0.003687 0.168436 0.129064
O -2.581856 -0.848872 2.023296
O -3.420934 1.801500 0.003838
O -1.729642 -1.806483 -1.777028
S 0.683766 1.463123 0.477030
C -1.965059 -2.036010 2.503300
C -2.564832 0.169059 3.024854
C -2.869735 3.123536 0.045300
C -4.733591 1.797350 0.550371
C -2.118892 -3.145878 1.505179
C -0.517409 -1.786451 -2.538650
N 0.236220 2.282537 1.709976
C 2.347123 1.089258 0.503261
C 0.297042 2.577431 -0.862231
H -1.349790 -2.466946 1.697735
H -2.741745 -2.773587 2.780096
C -1.152621 -1.608002 3.719198
C -2.018024 -0.491023 4.284579
C -3.586303 0.559992 3.159278
C -1.921510 0.994738 2.675836
H -2.504883 3.392680 -0.957914
H -2.006314 3.117767 0.730537
C -3.990694 4.028437 0.536864
C -4.827748 3.068604 1.374285
H -4.868425 0.874955 1.132196
H -5.481241 1.796353 -0.265234
H -2.920032 -3.454705 -2.203934
H -2.526303 -3.196314 -0.484560
C -0.863600 -3.973462 -1.706453
C -0.203704 -3.239171 -2.867612
H 0.276467 -1.322402 -1.932735
H -0.669011 -1.167720 -3.437907
C 0.749797 1.885417 3.004196
Cl 3.346162 2.529901 0.736941
P 3.030660 -0.160483 -0.542757
C -0.697777 2.035464 -2.092936
C 0.431865 3.954610 -0.688360
H -0.179793 -1.210082 3.384514
H -0.967133 -2.430062 4.417288
H -2.836653 -0.914716 4.887638
H -1.460975 0.213261 4.918209
Supporting Information

O -2.908743 -1.795161 1.324029
C 1.455159 0.101357 0.886099
P 1.283694 -0.881324 -0.555229
C -3.397992 -1.852959 2.649723
C -2.149061 -2.974832 1.113684
C 2.804914 -0.645515 -1.536287
C 1.403553 -2.605955 0.043285
H -4.270922 -2.533586 2.699031
H -3.726815 -0.843670 2.933084
C -2.233166 -2.400581 3.464798
C -1.510541 -3.322196 2.466846
C -2.816505 -0.555229 0.555229
C 1.455159 -0.101357 -0.886099
C 2.149061 -2.974832 1.113684
C 3.397992 -1.852959 -2.649723
C 4.709687 -2.005564 -0.250633
C 4.912449 0.624504 1.734357
C 4.035741 -1.847575 -0.246719
C 5.157399 -1.067758 -1.898916
C 3.928909 0.336868 -3.434279
C 1.825441 -0.609986 -2.978984
C 2.415342 -2.058407 1.859592
C 2.167320 -4.210055 1.684370
C 1.032259 -4.968500 -0.310190
C 0.389811 -3.411131 -1.676088
C 4.224888 2.588320 -1.034457
C 6.094305 1.836143 -0.207423
C 5.871818 0.457471 1.768527
C 3.840593 0.160687 2.479323
C 6.090697 -1.541931 -1.587400
C 5.121995 0.270559 -3.043252
C 3.899501 0.961267 -4.330496
H 2.425649 -4.427352 2.637010
C 1.664954 -5.249854 0.902192
H 0.636121 -5.781759 -0.923113
H 6.721240 -2.305650 -0.962951
C 6.674063 1.061433 0.795101
H 6.327938 -0.146735 2.556531
H 6.029826 -0.122053 -3.632371
H 1.762820 -6.284506 1.239939
H 7.757866 0.924692 0.821601
S 2.140883 1.669293 0.736627
Na -2.426053 0.153028 0.168048
N 1.775748 2.395519 2.056486
O 1.888336 2.344095 -0.570116
C 2.341000 3.720048 2.196716
H 2.071076 4.411960 1.375155
H 1.957851 4.161231 3.129659
H 3.448745 3.723826 2.269985
O -4.573578 0.834878 1.035850
C -4.963769 2.203378 1.000160
C -5.685588 -0.002303 0.710260
C -6.231717 2.236651 0.167017
H -5.155749 2.565740 0.207954
H -4.132808 2.781338 0.573413
\[\kappa O, \kappa N-Na(THF)_3 \]

\[E = -3358.81612601 \]

O - 1.542569 2.232693 - 2.281515
O - 4.301498 - 0.229438 - 0.733299
O - 3.156829 2.703886 0.855542
S - 0.271316 - 0.964881 - 0.073907
C - 0.142091 2.358945 - 2.028773
C - 1.766311 1.697177 - 3.585884
C - 5.360656 - 0.411822 0.206429
C - 4.555477 - 0.965151 - 1.930057
C - 2.394533 3.898363 0.735535
C - 3.271729 2.358945 2.236950
C 1.377723 - 1.118947 - 0.422990
C - 0.885734 - 2.522250 0.586883
H 0.071800 1.964678 - 1.023805
H 0.135518 3.429125 - 2.052542
C 0.548053 1.570592 - 3.128483
C - 0.420656 1.750630 - 4.292540
H - 2.548412 2.290656 - 4.084426
H - 2.122223 0.656025 - 3.491402
H - 5.702096 0.573528 0.559926
H - 4.970387 - 0.972061 1.074887
C - 6.438054 - 1.195392 - 0.530754
C - 5.619470 - 1.980105 - 1.551319
H - 3.606603 - 1.409349 - 2.266794
H - 4.918682 - 0.276752 - 2.714790
H - 3.053552 4.783013 0.827408
Supporting Information

\[\text{H} -1.938760 \quad 3.910157 \quad -0.264968 \\
\text{C} -1.407741 \quad 3.824141 \quad 1.883982 \\
\text{C} -2.291975 \quad 3.261765 \quad 2.995621 \\
\text{H} -3.024833 \quad 1.289850 \quad 2.340854 \\
\text{H} -4.313195 \quad 2.501569 \quad 2.570431 \\
\text{Cl} 1.702604 \quad -2.499932 \quad -1.485481 \\
P 2.706337 \quad -0.685481 \quad 0.656021 \\
\text{C} -0.038706 \quad -3.387092 \quad 1.275961 \\
\text{C} -2.256395 \quad -2.767938 \quad 0.492994 \\
\text{H} 0.608260 \quad 0.512941 \quad 2.830674 \\
\text{H} 1.561277 \quad 1.939333 \quad -3.343202 \\
\text{H} -0.274059 \quad 2.732997 \quad -4.769775 \\
\text{H} -0.323331 \quad 0.977708 \quad -5.067763 \\
\text{H} -7.128862 \quad -0.508607 \quad -1.044949 \\
\text{H} -7.030820 \quad -1.830675 \quad 0.141885 \\
\text{H} -5.156761 \quad -2.863679 \quad -1.082223 \\
\text{H} -6.205148 \quad -2.323319 \quad -2.415255 \\
\text{H} -0.958484 \quad 4.795442 \quad 2.134138 \\
\text{H} -0.595232 \quad 3.124182 \quad 1.633785 \\
\text{H} -2.832969 \quad 4.076185 \quad 3.501251 \\
\text{H} -1.726430 \quad 2.714699 \quad 3.762385 \\
\text{S} 3.134626 \quad -1.839535 \quad 2.224863 \\
\text{C} 4.142040 \quad -0.573403 \quad -0.477975 \\
\text{C} 2.474795 \quad 1.058078 \quad 1.177241 \\
\text{H} 1.030243 \quad -3.162953 \quad 1.358429 \\
\text{H} -2.895433 \quad -2.059350 \quad -0.037247 \\
\text{C} 3.981464 \quad -0.181280 \quad -1.812640 \\
\text{C} 5.422643 \quad -0.812440 \quad 0.025636 \\
\text{C} 2.485844 \quad 1.387971 \quad 2.532732 \\
\text{C} 2.386763 \quad 2.074004 \quad 0.219064 \\
\text{H} 0.077532 \quad -5.219967 \quad 2.403038 \\
\text{C} -1.944965 \quad -4.793009 \quad 1.773462 \\
\text{H} -3.856574 \quad -4.111528 \quad 1.024083 \\
\text{H} 2.976709 \quad -0.023178 \quad -2.210186 \\
\text{C} 5.098322 \quad -0.019063 \quad -2.629083 \\
\text{C} 6.538469 \quad -0.647488 \quad -0.794112 \\
\text{H} 5.527555 \quad -1.136492 \quad 1.064697 \\
\text{H} 2.592870 \quad 0.585148 \quad 3.267162 \\
\text{C} 2.372707 \quad 2.720527 \quad 2.930351 \\
\text{C} 2.281660 \quad 3.403389 \quad 0.616230 \\
\text{H} 2.408502 \quad 1.822950 \quad -0.841928 \\
\text{H} -2.360658 \quad -5.690309 \quad 2.238172 \\
\text{H} 4.967995 \quad 0.281301 \quad -3.671619 \\
\text{C} 6.377980 \quad -0.248296 \quad -2.120702 \\
\text{H} 7.537958 \quad -0.835241 \quad -0.394443 \\
\text{H} 2.374129 \quad 2.970682 \quad 3.994026 \\
\text{C} 2.268004 \quad 3.728908 \quad 1.974297 \\
\text{H} 2.211776 \quad 4.190909 \quad -0.138200 \\
\text{H} 7.252316 \quad -0.122238 \quad -2.764036 \\
\text{H} 2.182255 \quad 4.772875 \quad 2.285494 \\
\text{N} -0.588934 \quad 0.178775 \quad 0.937730 \\
\text{C} -0.459811 \quad -0.077466 \quad 2.360132 \\
\text{H} 0.469099 \quad -0.601138 \quad 2.646311 \\
\text{H} -0.448230 \quad 0.890599 \quad 2.880762 \\
\text{H} -1.306345 \quad -0.666574 \quad 2.762663 \\
\text{O} -1.050466 \quad -0.756064 \quad -1.329448 \\
\text{Na} -2.394721 \quad 1.009747 \quad -0.516536
Element	X	Y	Z
O	-3.58153	-2.59981	0.539881
O	-2.599524	0.966938	-0.642634
O	2.991560	-0.217246	2.771552
S	0.094940	-0.520340	-0.970295
C	4.190998	-3.839882	0.083535
C	3.455685	-2.788386	-1.878395
C	4.470284	2.225610	-0.170876
C	3.711718	1.027918	-2.042949
C	3.772181	0.732098	3.473851
C	1.756867	-0.347999	3.474366
C	-1.583466	-0.849425	-0.893308
C	0.370390	1.238787	-0.799328
H	3.937525	-3.757148	1.152161
H	5.266159	-4.087724	0.003568
C	3.3400040	-4.840457	-0.675946
C	3.439125	-4.297924	-2.098403
H	4.125378	-2.265844	-2.580315
H	2.452796	-2.338261	-1.961230
H	5.375160	2.063964	0.436160
H	3.690681	2.683192	0.469969
C	4.722408	3.065151	-1.413980
C	3.683867	2.507024	-2.380456
H	2.756917	0.514032	-2.233061
H	4.511163	0.501737	-2.595964
H	4.582088	1.071824	2.812401
H	4.224676	0.264811	4.369791
C	2.778792	1.816912	3.860030
C	1.492360	1.018938	4.128249
H	1.853482	-1.143626	4.234226
H	0.984471	-0.636519	2.746659
Cl	-2.413093	-0.772040	-2.456732
P	-2.586971	-0.262867	0.441861
C	0.789177	1.807504	0.401291
C	0.016201	2.035226	-1.891437
H	2.299647	-4.799853	-0.317772
C	3.700253	-5.873562	-0.572764
H	4.377775	-4.633342	-2.566997
H	2.608700	-4.614621	-2.744562
H	5.740277	2.890344	-1.797809
H	4.611495	4.141679	-1.222255
H	2.689717	2.923243	-2.158843
H	3.912765	2.704135	-3.437037
H	2.643169	2.509195	3.015130
H	3.112127	2.407482	4.724688
H	0.607320	1.504227	3.692645
H	1.305605	0.906002	5.205561
S	-1.720924	-0.141862	2.218520
C	-3.309503	1.352123	-0.039126
C	-4.016134	-1.395569	0.495367
H	1.029208	1.153501	1.238349
C	0.867594	3.196447	0.502454
C	0.082899	3.420827	-1.772842
H	-0.312576	1.563209	-2.818819
C	-4.354519	1.439762	-0.968771
C	-2.732493	2.523804	0.460160
C	-5.167758	-1.014194	1.193928
C	-3.933368	-2.671843	-0.066175
H	1.195238	3.652810	1.439860
C	0.512072	4.003194	-0.578461
H	-0.199853	4.050091	-2.619690
Supporting Information

$\kappa S, \kappa Cl - Na(THF)_3$

$E = -3358.81120355$

Cl -0.349078 0.298503 -1.823836
S -0.773358 0.359534 2.131482
O -3.423767 1.757857 -0.893308
C 0.917361 0.005358 -0.644473
P 0.737259 0.833033 0.886151
C -4.397759 1.576728 -1.904884
C -2.711775 2.934546 -1.243612
C 2.344461 0.683493 1.736988
C 0.607675 2.602195 0.436556
H -5.229277 2.294235 -1.753418
H -4.800284 0.560333 -1.817298
C -3.652111 1.871266 -3.203024
C -2.604199 2.917692 -2.774961
H -1.743816 2.914092 -0.727858
H -3.276111 3.818818 -0.894057
C 3.493748 -1.079672 -0.848180
C 3.456253 1.381829 1.251649
C 2.468070 -0.126104 2.867211
C 1.136422 3.071501 -0.771620
C -0.014981 3.493613 1.315698
H -3.161320 0.966449 -3.568158
H -4.322406 2.228803 -3.997151
H -1.594653 2.623478 -3.093812
H -2.809676 3.911794 -3.196580
C 4.421028 -1.662454 0.007533
C 3.890447 -0.217471 -1.870311
H 3.365597 2.011193 0.364406
C 4.684089 1.269211 1.896994
C 3.701324 -0.243118 3.505430
H 1.588663 -0.657625 3.237535
H 1.610449 2.364668 -1.456722
C 1.030020 4.421938 -1.099786
C -0.109082 4.844965 0.989311
H -0.44271 3.107799 2.243836
Supporting Information

\[
\begin{align*}
\text{H} & : 4.067613 -2.325435 0.798290 \\
C & : 5.773592 -1.354980 -0.147065 \\
C & : 5.240150 0.086472 -2.016221 \\
H & : 3.135111 0.215542 -2.531015 \\
H & : 5.549654 1.813385 1.512972 \\
C & : 4.808515 0.454251 3.022591 \\
H & : 3.759613 -0.811195 4.837236 \\
H & : 1.431402 4.782285 -2.049949 \\
C & : 0.407931 5.309369 -0.220810 \\
H & : -0.597897 5.537319 1.678814 \\
H & : 6.509885 -1.794946 0.529824 \\
C & : 6.182351 -0.480357 -1.151822 \\
H & : 5.562554 0.768949 -2.806353 \\
H & : 5.774149 0.362414 3.525973 \\
H & : 0.322494 6.367006 -0.481939 \\
H & : 7.241289 -0.236198 -1.265893 \\
S & : 1.743124 -1.496366 -0.707541 \\
\text{Na} & : -2.500101 -0.187119 -0.003932 \\
N & : 1.290103 -2.155283 -2.031516 \\
O & : 1.678075 -2.246434 0.879052 \\
C & : 2.014177 -3.341673 -2.430777 \\
H & : 1.909845 -4.189135 -1.725131 \\
H & : 1.612595 -3.680951 -3.397952 \\
H & : 3.101282 -3.173003 -2.574254 \\
O & : -4.675108 -0.568603 0.669828 \\
C & : -5.162774 -1.881026 0.917578 \\
C & : -5.155997 0.326076 1.675621 \\
C & : -5.356301 -1.933573 2.420458 \\
H & : -6.122339 -2.036303 0.388043 \\
H & : -4.421573 -2.589826 0.523039 \\
C & : -5.905839 -0.535609 2.693019 \\
H & : -4.289005 0.837973 2.125682 \\
H & : -5.797428 1.093124 1.212303 \\
H & : -4.383054 -2.075461 2.918196 \\
H & : -6.029607 -2.740134 2.743121 \\
H & : -5.747052 -0.196072 3.725981 \\
H & : -6.988964 -0.511624 2.495506 \\
O & : -2.130733 -2.428891 -0.260422 \\
C & : -1.545516 -3.218318 0.780116 \\
C & : -1.951813 -3.062366 -1.529352 \\
C & : -0.856339 -4.380327 0.081169 \\
H & : -0.842341 -2.591587 1.347918 \\
H & : -2.352304 -3.557987 1.455349 \\
C & : -1.661725 -4.517001 -1.206228 \\
H & : -2.868790 -2.912197 -2.121144 \\
H & : -1.092685 -2.597664 -2.042218 \\
H & : -0.843137 -5.293009 0.693876 \\
H & : 0.180144 -4.091303 -0.142742 \\
H & : -2.597108 -5.073162 -1.027713 \\
H & : -1.111121 -5.022448 -2.012777 \\
\end{align*}
\]

$\kappa\text{O-}\text{Na(THF)}$_2

\[
E = -3126.52827985
\]

\[
\begin{align*}
\text{O} & : -0.729526 0.076672 -0.716263 \\
\text{O} & : -1.954229 3.041072 0.132853 \\
\text{O} & : -3.995902 0.341754 -1.199551 \\
\text{S} & : -0.355390 -1.375008 -0.832878 \\
C & : -2.080259 4.460016 0.157780 \\
C & : -1.554111 2.548769 1.417433 \\
C & : -4.691660 0.478269 0.036966 \\
C & : -4.151990 -0.985250 -1.717606
\end{align*}
\]
Na -2.091046 1.552489 -1.568205

\(\kappa S, \kappa Cl{-}Na(THF)_2 \)

\[E = -3126.52185991 \]

\[
\begin{align*}
Q & 0.133909 3.404879 -1.152821 \\
O & 3.907815 1.838707 0.342756 \\
S & 0.654852 1.552489 -1.568205 \\
C & -0.648474 3.158319 -2.323226 \\
C & -0.682452 3.927526 -0.103556 \\
C & 5.152890 2.229819 -0.222467 \\
C & 4.126481 0.889341 1.394912 \\
C & -0.34580 2.098321 -1.733772 -0.464038 \\
H & -0.419601 2.145609 -2.690497 \\
H & -0.365017 3.887331 -1.152821 \\
C & -2.096463 3.337190 -1.896152 \\
C & -1.973582 4.362670 -0.774910 \\
H & -0.141943 4.752273 0.385863 \\
H & -0.861424 3.135027 0.644272 \\
H & 5.534534 3.135358 1.283816 \\
C & 6.068558 1.044378 0.009687 \\
C & 5.625573 0.592449 1.398501 \\
H & 3.523095 1.177681 \\
H & 3.777428 1.314978 2.349402 \\
Cl & 0.519500 0.662225 1.249903 \\
P & -1.750875 -1.244692 0.670352 \\
C & 1.934777 -2.522472 0.673936 \\
C & 3.332623 -1.634954 -1.106396 \\
H & -2.496850 2.389910 -1.505433 \\
H & -2.743911 3.660488 -2.722939 \\
H & -1.871281 5.378233 -1.189633 \\
H & -2.824568 4.362303 -0.083977 \\
H & 7.134039 1.307457 -0.046636 \\
H & 5.865043 0.261475 -0.737160 \\
H & 6.138223 1.185629 2.171499 \\
H & 5.832872 -0.468766 1.593906 \\
S & -1.571510 -3.055276 1.480931 \\
C & -2.432779 -0.062737 1.900684 \\
C & -3.025457 -1.228722 -0.640557 \\
H & 0.948834 -2.602962 1.146995 \\
C & 3.038595 -3.196644 1.192356 \\
C & 4.425466 -2.330924 -0.590425 \\
H & 3.429919 -1.005706 -1.992674 \\
H & -2.981133 1.155084 1.482600 \\
H & -2.381685 -0.368655 3.260701 \\
H & -4.149781 -2.043639 -0.482580 \\
H & -2.936411 -0.374983 -1.743181 \\
H & 2.925484 -3.803567 2.093835 \\
C & 4.281521 -3.103228 0.562483 \\
H & 5.395861 -2.265458 -1.088471 \\
H & -3.032363 1.392571 0.417922 \\
C & -3.468026 2.060791 2.421868 \\
C & -2.865727 0.541179 4.200751 \\
H & -1.963247 -1.332561 3.563771 \\
H & -4.195199 -2.727677 0.369013 \\
C & -5.188310 -1.988770 -1.411242 \\
C & -3.975180 -0.322067 -2.670181 \\
H & -2.033911 0.223145 -1.873960 \\
H & 5.142328 -3.637673 0.971448
\end{align*}
\]
\(\kappa_{O,S}\text{Na(THF)}_2 \)

\[E = -3126.52723608 \]

\begin{align*}
\text{Cl} & : 1.664747 -0.274585 -1.952130 \\
\text{S} & : 0.189335 -1.762467 1.644784 \\
\text{O} & : -0.836189 -3.639971 -1.507270 \\
\text{C} & : 0.821114 0.533172 -0.621995 \\
\text{P} & : 1.123599 -0.103990 0.993591 \\
\text{C} & : -0.315106 -3.246446 -2.783143 \\
\text{C} & : 0.120728 4.472387 -0.842810 \\
\text{H} & : 0.907842 1.267557 2.813107 \\
\text{H} & : 2.934042 -0.387358 0.993408 \\
\text{H} & : -0.599320 2.144030 -2.376359 \\
\text{H} & : -0.940995 3.676803 -3.582699 \\
\text{H} & : -0.369932 -2.148454 -2.841941 \\
\text{C} & : 1.127434 -3.752488 -2.836569 \\
\text{C} & : 1.451342 -4.013957 -1.368389 \\
\text{H} & : -0.011157 4.327381 0.240967 \\
\text{H} & : -0.085413 5.353011 -1.086865 \\
\text{C} & : 1.214954 2.580241 1.807817 \\
\text{C} & : 0.497685 0.992866 3.468335 \\
\text{C} & : 3.797180 0.588925 0.479534 \\
\text{C} & : 3.458954 -1.557536 1.543133 \\
\text{C} & : -0.230818 3.437709 -2.006804 \\
\text{C} & : -0.831701 1.804023 -3.705694 \\
\text{H} & : 1.802118 3.019232 -3.299931 \\
\text{H} & : 1.192450 -4.686916 -3.415814 \\
\text{H} & : 1.736718 -3.078426 -0.865178 \\
\text{H} & : 2.249840 -4.754706 -1.219646 \\
\text{H} & : 1.508466 2.786941 0.776621 \\
\text{C} & : 1.114627 3.609097 2.739776 \\
\text{C} & : 0.396580 2.026872 4.417712 \\
\text{H} & : 0.247523 -0.036279 3.757400 \\
\text{H} & : 3.386455 1.495871 0.030781 \\
\text{C} & : 5.174297 0.391733 0.523447 \\
\text{C} & : 4.839942 -1.752139 1.585316 \\
\text{H} & : 2.768286 -2.311028 1.931450 \\
\text{H} & : -0.072625 3.668423 -0.951419 \\
\text{C} & : -0.088445 4.408045 -2.994459 \\
\text{C} & : -0.679767 2.782206 -4.688823 \\
\text{H} & : -1.131507 0.784473 -3.951954 \\
\text{H} & : 1.348677 4.634511 2.443128 \\
\text{C} & : 0.705565 3.334595 4.046844 \\
\text{H} & : 0.071794 1.807855 5.437872 \\
\text{H} & : 5.844227 1.153814 0.118168 \\
\text{C} & : 5.698105 -0.778503 1.077666
\end{align*}
Supporting Information

κO,κN-Na(THF)

E = -2894.229197

O -0.797856 1.388843 -0.274606
O -4.113224 0.901925 0.273409
S 0.413914 1.567674 0.579262
C -5.393689 0.437191 0.682015
C -3.865415 0.545797 -1.094749
N -0.057946 2.015937 2.002279
C 1.361404 0.158486 0.505597
C 1.371924 2.866926 -0.172135
H -5.839506 1.182932 1.357694
H -5.286489 -0.514663 1.235071
C -6.169880 0.233648 -0.606302
C -5.071999 -0.270079 0.153742
H -2.915019 -0.004313 -0.156134
H -3.763327 1.475225 -1.680330
C 0.824529 1.813212 3.131668
Cl 0.305742 0.393107 0.933489
P 0.962310 -1.109417 -0.650796
C 1.991951 2.642374 -1.397959
C 1.437246 4.130679 0.448825
H -6.574286 1.194381 -0.963763
H -7.007475 -0.468766 -0.492113
H -4.889752 -1.341646 -1.366049
H -5.301298 -0.131854 -2.603133
H 1.704310 2.485323 3.136646
H 1.205016 0.776511 3.196271
H 0.255823 2.015800 4.051443
S 1.102143 -0.807372 -2.613910
C 2.061777 -2.476529 -0.116363
C -0.701423 -1.727008 -0.191114
H 1.923936 1.648125 -1.856195
6.4.4 Coordinates of the dimeric structures of 1-Na

$xS, \kappa Cl-Na_2(THF)_2$

E = -5788.49203279

Cl 1.476145 1.515779 1.699285
Cl -1.483862 -1.405375 -1.770364
S 1.346507 0.974221 -1.888525
S -1.224298 -0.976798 1.818187
C 3.475709 -2.168549 1.699761
C 2.589557 -2.918383 2.475411
C 2.432961 -4.276524 2.206188
C 3.163157 -4.876419 1.179250
C 4.061645 -4.121904 0.425194
C 4.225452 -2.762022 0.684280
O 0.770085 -3.548715 -0.706280
C -3.648613 2.174500 -1.632098
C -2.863168 2.963044 -2.473493
C -2.744883 4.326557 -2.212619
C -3.415894 4.893235 -1.128348
C -4.220240 4.099803 -0.310256
C -4.344524 2.734401 -0.569041
O -0.769125 3.577669 0.467190
C 2.569203 0.369816 0.894019
C -2.594327 -0.332168 -0.888842
P 2.987262 0.962526 -0.718991
P -2.918621 -0.968396 0.729050
H 2.038665 -2.427330 3.279685
H 1.735666 -4.868999 2.803202
H 3.033589 -5.940612 0.968294
H 4.643901 -4.592080 -0.370762
Supporting Information

\[\kappa N, \kappa S, \kappa Cl - \text{Na}_2(\text{THF})_2 \]

\[E = -5788.48094950 \]

Cl -1.675277 1.505043 -1.918606
Cl 1.676549 -1.502744 1.920478
S -1.430462 0.161517 1.637814
S 1.430158 -0.160042 -1.635880
O -0.909680 -3.620635 0.583844
O 0.909487 3.620390 -0.581749
C -3.091662 0.785157 -1.119493
C 3.093221 -0.784639 1.120068
P -2.971820 0.979869 0.617143
P 2.971582 -0.979727 -0.616449
C -2.045555 -3.601239 1.430299
C 0.012383 -4.529962 1.161497
C 2.043521 3.600562 -1.430676
C -0.012677 4.531743 -1.156040
C -4.550803 0.482625 1.373262
C -2.902620 2.798523 0.829334
C 4.550475 -0.484621 -1.374176
C 2.900202 -2.798408 -0.827904
C -5.246100 -0.964239 -1.522090
H -2.658300 -4.507669 1.253736
H -2.641849 -2.715100 1.171868
C -1.459838 -3.583369 2.834917
C -0.168516 -4.408698 2.683667
H 1.016999 -4.261398 0.811277
H -0.216631 -5.553061 0.809775
C 5.248720 0.964209 1.519359
H 2.658016 4.505804 -1.254087
H 2.639021 2.713100 -1.174983
C 1.454671 3.585636 -2.833991
C 0.165220 4.413100 -2.678782
X	Y	Z	
H	-1.016929	4.263566	-0.804460
C	0.218028	5.553963	-0.802874
C	-5.746429	1.058184	0.926409
C	-4.563509	-0.423222	2.434866
C	-3.563309	3.634803	-0.078609
C	-2.215979	3.350896	1.913885
C	5.745974	-1.060580	-0.927491
C	4.563122	0.419926	-2.436886
C	3.561511	-3.635019	0.079294
C	2.211337	-3.350501	-1.911185
C	-5.568147	-1.889241	-0.533992
C	-6.230410	-0.305387	-2.255688
H	-1.229823	-2.544169	3.115519
H	-2.150153	-3.992426	3.586527
H	0.688380	-3.900049	3.146515
C	-0.255738	-5.401191	3.149364
C	5.569654	1.888246	0.529980
C	6.233837	0.305911	2.252357
H	1.222193	2.547213	-3.115447
H	2.144047	3.994413	-3.586612
H	-0.693466	3.907004	-3.141104
H	0.253572	5.406345	-3.142665
H	-5.734715	1.760382	0.091162
C	-6.947483	0.718262	1.537991
C	-5.771982	-0.764561	3.040854
H	-3.615945	-0.843769	2.782238
H	-4.061617	3.189286	-0.943490
C	-3.541446	5.014887	0.107513
C	-2.193103	4.733600	2.092004
H	-1.692925	2.686105	2.607371
H	5.734305	-1.761723	-0.091362
C	6.946685	-0.722322	-1.540338
C	5.771422	0.759571	-3.044173
H	3.615635	0.840825	-2.784055
H	4.061521	-3.189706	0.943296
C	3.538091	-5.015135	-0.106355
C	2.186831	-4.733250	-2.088773
H	1.687877	-2.685452	-2.604127
H	-4.765524	-2.388155	0.011668
C	-6.909759	-2.149929	-0.263877
C	-7.568122	-0.563907	-1.970446
H	-5.930212	0.386632	-3.044806
H	4.766402	2.386784	-0.015110
C	6.910961	2.148463	0.257936
C	7.571233	0.563393	1.965210
H	5.934505	-0.385315	3.042498
H	-7.880105	1.161510	1.182674
C	-6.961699	-0.193714	2.594817
H	-5.780388	-1.474443	3.871384
H	-4.051074	5.665892	-0.606875
C	-2.858423	5.565643	1.192845
H	-1.649946	5.160891	2.938138
H	7.879385	-1.165849	-1.185142
C	6.961016	0.188352	-2.598290
H	5.779781	1.468432	-3.875575
H	4.048242	-5.666383	0.607438
C	2.852820	-5.565614	-1.190416
H	1.641888	-5.160300	-2.933879
H	-7.176825	-2.869694	0.512738
C	-7.906245	-1.485828	-0.977707
H	-8.353020	-0.053673	-2.533931
H	7.177172	2.867443	-0.519700
Supporting Information

\[\text{Na}_2(\text{THF})_2 \]

\[E = -5788.51446562 \]

\[\kappa \text{O}, \kappa \text{N}, \kappa \text{S} - \text{Na}_2(\text{THF})_2 \]

\[\text{Cl} - 4.372690 0.861597 -1.960439 \]
\[\text{Cl} 4.373044 -0.861747 1.960266 \]
\[\text{S} -1.448361 1.712795 0.985619 \]
\[\text{S} 1.448430 -1.713059 -0.984561 \]
\[\text{O} 0.408950 -2.674913 2.673636 \]
\[\text{O} -0.409639 2.675426 -2.677266 \]
\[\text{C} -3.561432 -0.057573 -0.706918 \]
\[\text{C} 3.562058 0.057768 0.706760 \]
\[\text{P} -3.199908 0.744015 0.810877 \]
\[\text{P} 3.199949 -0.744172 -0.810747 \]
\[\text{C} 1.420419 -2.505071 3.679834 \]
\[\text{C} 0.641757 -3.876664 1.954264 \]
\[\text{C} -1.420377 2.505424 -3.679433 \]
\[\text{C} -0.643462 3.876826 -1.952902 \]
\[\text{C} -3.371785 -0.479588 2.158986 \]
\[\text{C} -4.597591 1.899482 1.062116 \]
\[\text{C} 3.371172 0.479289 -2.159073 \]
\[\text{C} 4.597665 -1.889512 -1.062400 \]
\[\text{C} -3.393235 -2.678475 -1.724452 \]
\[\text{H} 0.951080 -2.526497 4.677556 \]
\[\text{H} 1.880377 -1.516106 3.521075 \]
\[\text{C} 2.420222 -3.644131 3.478985 \]
\[\text{C} 2.139422 -4.090231 2.046980 \]
\[\text{H} 0.276971 -3.732327 0.926300 \]
\[\text{H} 0.082070 -4.712806 2.415793 \]
\[\text{C} 3.393212 2.678619 1.724269 \]
\[\text{H} -0.950383 2.527154 -4.676838 \]
\[\text{H} -1.880123 1.516268 -3.521127 \]
\[\text{C} -2.420688 3.644104 -3.479025 \]
\[\text{C} -2.141132 4.089842 -2.046662 \]
\[\text{H} -0.279422 3.732260 -0.924706 \]
\[\text{H} -0.083754 4.713349 -2.413711 \]
\[\text{C} -4.157232 -1.623538 1.984993 \]
\[\text{C} -2.725821 -0.256201 3.378545 \]
Supporting Information

\[\kappa O, \kappa S, \kappa Cl - Na_2(THF)_2 \]

\[E = -5788.50372250 \]

Cl 1.847915 1.787980 1.844655
Cl -1.848076 -1.783312 -1.844643
S 1.135029 0.360063 -1.738790
S -1.135021 -0.366148 1.738730
O 0.709298 -4.028987 -0.486474
O -0.709234 4.029531 0.486951
C 2.978155 0.803508 0.925072
C -2.978194 -0.803508 -0.925072
P 2.824415 0.979404 -0.814328
P -2.824417 -0.979473 0.814307
C 1.729277 -4.277107 -1.439539
C -0.376186 -4.876353 -0.835430
C -1.729541 4.277152 1.439540
C 0.375961 -4.876364 0.835769
C 4.275908 0.150392 -1.540341
C 3.051808 2.767877 -1.101746
C -4.275877 -0.150340 1.540341
C -3.051885 -2.767905 1.101882
C 5.059250 -1.008983 1.442779
H 2.228860 -5.238838 -1.212765
H 2.473409 -3.472394 -1.359895
C 0.984588 -4.341213 -2.766452
C -0.367738 -4.963613 -2.370914
H -1.293876 -4.440970 -0.418388
H -0.233924 -5.871188 -0.378843
C -5.059067 1.008998 -1.443027
H -2.229215 5.238638 1.211981
H -2.473497 3.472252 1.360172
C -0.985327 4.342219 2.766705
C 0.367413 4.963816 2.371221
H 1.293806 4.441210 0.418824
H 0.223391 5.871092 0.379039
C 5.561429 0.626281 -1.255065
C 4.110945 -0.957988 -2.372434
C 3.851745 3.525525 -0.236873
C 2.433323 3.380546 -2.195530
C -5.561412 -0.626127 1.254855
C -4.110892 0.958012 2.372366
C -3.851861 -3.525606 0.237093
C -2.433471 -3.380475 2.195761
C 5.589629 -2.124099 0.803866
C 5.874651 -0.986193 2.098009
H 0.844007 -3.323352 -3.161914
H 1.524492 -4.923829 -3.525918
H -1.209317 -4.407823 -2.807160
H -0.452760 -6.007730 -2.704295
C -5.589392 2.124201 -0.804219
C -5.874511 0.086210 -2.098206
H -0.845262 3.324690 3.163195
H 1.525378 4.925725 3.525382
H 1.208592 4.407471 2.807535
H 0.453129 6.007894 2.704536
H 5.695130 1.487600 -0.598213
C 6.673036 -0.009129 -1.798958
C 5.227807 -1.588150 -2.907152
H 3.100350 -1.307460 -2.596563
H 4.304010 -3.044076 -0.633160
C 4.033600 -4.886460 0.473418
C 2.620169 -4.742185 2.428611
H -1.792628 -2.782315 2.848760
H 4.917012 -2.820381 -0.302430
C 6.973086 -2.304990 1.798677
C 7.252832 -0.273845 2.085731
H 5.642137 0.773894 2.596635
H -4.916747 2.820381 -0.302430
C -6.972836 2.304990 -0.799653
C -7.252680 0.273955 -2.085977
H -5.421278 -0.773952 -2.596741
H 7.674455 0.361364 -1.569976
C 6.507547 -1.124263 -2.621913
H 5.095539 -2.469250 -3.553247
H 4.650123 5.476997 0.208419
H 3.419895 5.495422 -1.568956
H 2.131637 5.217758 -3.281976
H -7.674442 -0.361065 1.569610
C -6.507503 1.124461 2.621661
H -5.095468 2.469336 3.553116
H -4.650346 -5.477087 -0.207977
C -3.420151 -5.495370 1.569422
H -2.131922 -5.217567 3.282444
H 7.404131 -3.168627 0.287970
C 7.802240 -1.381916 1.433675
H 7.904360 0.446295 2.586236
H -7.403838 3.168897 -0.288465
C -7.802035 1.382114 -1.434026
H -7.904242 -0.446186 -2.586437
H 7.382370 -1.626363 -3.042140
H 3.559424 6.564145 -1.748508
H -7.382322 1.626620 3.041826
H -3.559752 -6.564063 1.749099
H 8.885501 -1.523934 1.422190
H -8.885287 1.524201 -1.422576
Supporting Information

\[\kappa O, \kappa N - Na_2(THF)_4 \]

\[E = -6253.09435252 \]

\[
\begin{align*}
C & & \quad 3.828451 & 0.031806 & -0.572054 \\
S & & \quad 3.209951 & -0.383168 & 1.499382 \\
P & & \quad 5.214687 & -0.020145 & 0.518591 \\
O & & \quad 1.490068 & -0.383168 & 1.500382 \\
S & & \quad 4.862434 & 0.349086 & 2.432822 \\
C & & \quad 3.828281 & -0.031806 & 0.572054 \\
P & & \quad 5.214774 & -0.020291 & 0.518595 \\
S & & \quad 4.862434 & 0.349086 & 2.432822 \\
Cl & & \quad 4.253746 & -0.237755 & 2.275619 \\
C & & \quad 6.436133 & 1.179192 & 0.121794 \\
C & & \quad 6.014747 & 2.270300 & 0.887388 \\
C & & \quad 7.782181 & 1.067313 & -0.245739 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.436133 & 1.179192 & 0.121794 \\
C & & \quad 6.014747 & 2.270300 & 0.887388 \\
C & & \quad 7.782181 & 1.067313 & -0.245739 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.436133 & 1.179192 & 0.121794 \\
C & & \quad 6.014747 & 2.270300 & 0.887388 \\
C & & \quad 7.782181 & 1.067313 & -0.245739 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.436133 & 1.179192 & 0.121794 \\
C & & \quad 6.014747 & 2.270300 & 0.887388 \\
C & & \quad 7.782181 & 1.067313 & -0.245739 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.436133 & 1.179192 & 0.121794 \\
C & & \quad 6.014747 & 2.270300 & 0.887388 \\
C & & \quad 7.782181 & 1.067313 & -0.245739 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.436133 & 1.179192 & 0.121794 \\
C & & \quad 6.014747 & 2.270300 & 0.887388 \\
C & & \quad 7.782181 & 1.067313 & -0.245739 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.436133 & 1.179192 & 0.121794 \\
C & & \quad 6.014747 & 2.270300 & 0.887388 \\
C & & \quad 7.782181 & 1.067313 & -0.245739 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.436133 & 1.179192 & 0.121794 \\
C & & \quad 6.014747 & 2.270300 & 0.887388 \\
C & & \quad 7.782181 & 1.067313 & -0.245739 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.436133 & 1.179192 & 0.121794 \\
C & & \quad 6.014747 & 2.270300 & 0.887388 \\
C & & \quad 7.782181 & 1.067313 & -0.245739 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.436133 & 1.179192 & 0.121794 \\
C & & \quad 6.014747 & 2.270300 & 0.887388 \\
C & & \quad 7.782181 & 1.067313 & -0.245739 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.436133 & 1.179192 & 0.121794 \\
C & & \quad 6.014747 & 2.270300 & 0.887388 \\
C & & \quad 7.782181 & 1.067313 & -0.245739 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.436133 & 1.179192 & 0.121794 \\
C & & \quad 6.014747 & 2.270300 & 0.887388 \\
C & & \quad 7.782181 & 1.067313 & -0.245739 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.436133 & 1.179192 & 0.121794 \\
C & & \quad 6.014747 & 2.270300 & 0.887388 \\
C & & \quad 7.782181 & 1.067313 & -0.245739 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.932821 & 2.270300 & 0.887388 \\
C & & \quad 6.436133 & 1.179192 & 0.121794
6.4.5 Coordinates of the monomeric structures of 1-K

κO-K(THF)$_3$

E = -3224.9355907

O 0.494338 0.319543 0.099420
O 2.409912 2.806809 1.456226
O 4.487364 -0.412954 -0.174579
O 1.117257 3.228826 -2.162012
S 0.448202 -1.073668 0.653949
C 1.097242 3.322053 1.680835
C 2.802790 2.006892 2.563599
C 5.144671 -1.233466 -1.130358
C 4.558905 -1.012964 1.122866
C 0.953746 4.612354 -1.877065
C -0.095638 2.685002 -2.692288
N 1.159516 -1.429963 1.979543
C -1.202560 -1.498353 0.651394
C 1.334493 -2.096260 -0.517886
H 0.403587 2.920607 0.924350
Atom	X	Y	Z
H	1.134643	4.419685	1.574666
C	0.701438	2.897061	3.094570
C	2.045344	2.584222	3.743870
H	3.897624	2.062380	2.660847
H	2.516381	0.951729	2.391467
H	5.641563	-0.585519	-1.869716
C	4.404867	-1.861833	-1.659622
C	6.107937	-2.089346	-0.327845
H	3.538500	-1.147044	1.518696
H	5.112428	-0.329258	1.791142
H	1.463701	5.216666	-2.650876
H	1.425519	4.836103	-0.907253
C	-0.545520	4.856876	-1.892997
C	-0.993110	3.879050	-2.972765
H	-0.545697	2.004028	-1.949725
H	0.137128	2.096863	-3.594150
C	0.491711	-1.132542	3.225684
Cl	-1.467634	-3.197288	1.050386
P	-2.334662	-0.746883	-0.474421
C	1.315093	-1.725268	-1.863496
C	1.901160	-3.033907	-0.112737
H	0.085475	1.986802	3.053218
H	0.125662	3.697771	3.622608
C	2.535956	3.504687	4.099218
H	1.970629	1.860324	4.589888
H	7.025917	-1.522841	-0.101281
H	6.395532	-3.012294	-0.851407
C	4.579115	-3.151877	0.774442
H	5.913255	-2.966445	1.812231
H	-0.806025	5.903699	-2.104061
H	-0.990318	4.577759	-0.923930
H	-0.789525	4.293602	-3.973433
H	-2.059575	3.622473	-2.921240
H	-0.609481	1.209582	3.158340
H	0.731453	-0.124947	3.613180
H	0.825859	1.853512	3.988553
S	-2.077692	-0.852634	-2.449331
C	-3.934633	-1.508585	0.005719
C	-2.579283	0.988838	0.061363
H	0.809885	-0.805140	-2.162459
C	1.899884	-2.565427	-2.809132
C	2.481596	-4.138262	-1.067188
H	1.886519	-3.560323	0.947105
C	-4.357366	-1.465346	1.340294
C	-4.744288	-2.105817	-0.959335
C	-3.186349	1.883314	-0.824774
C	-2.276291	1.401107	1.361721
H	1.889163	-2.281589	-3.864196
C	2.483803	-3.770289	-2.413245
H	2.933605	-5.083337	-0.756634
H	-3.719568	-1.004352	2.098177
C	-5.584048	-2.015724	1.699762
C	-5.972913	-2.659565	-0.593636
H	-4.393813	-2.124085	-1.995385
H	-3.404972	1.548439	-1.842590
C	-3.494943	3.178114	-0.411670
C	-2.579717	2.698920	1.770348
H	-1.794564	0.694935	2.041275
H	2.937962	-4.427612	-3.158473
H	-5.911048	-1.980329	2.741852
C	-6.394012	-2.614346	0.731376
H -6.603363 -3.127870 -1.356307
H -3.973915 3.871494 -1.107463
C -3.190463 3.589020 0.886635
H -2.337588 3.017748 2.786710
H -7.356738 -3.046326 1.015878
H -3.429953 4.604923 1.210392
K 2.702213 1.480021 -0.881829

\(\kappa O-K(THF)_{4} \)

\[E = -3457.231249 \]

O 0.054487 -0.830675 1.163115
O 2.020833 2.043168 2.445604
O 3.569331 -0.931539 0.927114
O 1.970800 3.445681 -0.839793
S -0.726821 2.107770 1.015878
C 0.788176 2.230440 3.117470
C 2.918897 1.401241 3.342473
C 4.585456 -1.351510 0.018141
C 3.215138 -1.996189 1.802806
C 2.252492 4.443019 0.127630
C 1.007856 3.947497 -1.762484
N -0.929796 -3.009261 2.281013
C -2.155249 -1.612663 0.267464
C 0.207689 -3.190704 -0.030102
H 0.002596 2.382354 2.364448
H 0.830628 3.133003 3.760083
C 0.617426 0.965023 3.939549
C 2.053798 0.679404 4.392883
C 3.576045 2.153349 3.815747
C 3.544390 0.720132 2.746753
H 5.413362 -0.623358 0.039236
H 4.165637 -1.355151 -1.002422
C 5.008994 -2.743117 0.469938
C 3.737185 -3.257273 1.135173
H 2.124553 -1.986924 1.941100
H 3.695209 -1.843364 2.784874
H 3.034491 5.134435 -0.243994
H 2.614598 3.938744 1.034489
C 0.928723 5.160839 0.313094
C 0.394111 5.200760 -1.119079
H 0.269442 3.149127 -1.943210
H 1.496689 4.182291 -2.724661
C -1.874132 -2.575179 3.284256
Cl -3.193714 -2.938468 -0.231381
P -2.255265 -0.045345 -0.518829
C 0.748237 -2.631002 -1.187877
C 0.343551 -4.548766 0.247746
H 0.246156 0.165195 3.281610
H -0.085589 1.088830 4.775345
H 2.243217 1.090144 5.395932
H 2.266016 -0.398313 4.433650
H 5.827650 -2.679704 1.204973
H 5.352734 -3.369502 -0.366616
H 3.020681 -3.607349 0.377503
H 3.910157 -4.076947 1.846833
H 1.033364 6.156507 0.767091
H 0.272776 4.556155 0.958409
H 0.742513 6.109430 -1.632961
H -0.704414 5.198710 -1.16571
H -2.870555 -2.337148 2.863828
H -1.536323 -1.691258 3.859125
Atom	X	Y	Z
H	-2.014143	-3.392667	4.007743
S	-0.964445	0.514770	-1.957818
C	-3.962709	0.003256	-1.180313
H	0.570098	-1.576150	-1.415350
C	-2.324801	1.260684	0.767763
O	1.059410	-5.353731	-0.638044
H	-0.106858	-4.941401	1.159836
C	-5.050466	0.092234	-0.300342
C	-4.185071	0.044214	-2.555467
H	1.892970	-3.012652	-2.971656
C	1.623970	-4.02974	-1.788932
C	1.177185	-6.418984	0.425772
H	-4.880052	-0.151720	-1.109410
C	-6.349930	-0.080842	-0.798896
C	-5.488720	0.051089	-3.052455
H	-3.323716	0.102627	-2.26269
C	-1.941388	2.835157	-0.652202
C	-2.370459	3.616201	1.323496
H	-2.797533	1.966032	3.033411
H	-2.727273	-0.099853	2.382472
H	2.186053	-5.436864	-2.478113
H	-7.196252	0.127727	-0.109410
C	-6.570895	-0.010422	-2.176224
H	-5.658057	0.107174	-4.130521
C	-2.276010	4.660842	1.017221
C	-2.675551	3.300927	2.648826
H	-3.026174	1.712758	4.071434
H	-7.591942	-0.001380	-2.565583
H	-2.813906	4.098190	3.383038
C	1.685884	0.846629	-0.025288
C	2.955649	0.351186	-2.439720
C	3.904276	1.378693	-2.731517
C	2.284235	-0.035546	-3.628570
C	3.738612	1.713659	-4.214889
H	3.675198	2.244409	-2.088610
H	4.920693	1.023130	-2.491504
C	2.337125	1.191569	-4.518342
H	2.825782	-0.890438	-4.105115
H	1.263093	-0.347934	-3.638747
H	4.482125	1.173044	-4.821480
H	3.859674	2.787430	-4.416746
H	2.172622	0.963326	-5.580850
H	1.570640	1.915970	-4.198736

$k\text{Ph}_x\kappa S-K(\text{THF})_3$

$E = -3224.93366894$

Atom	X	Y	Z
K	-1.588434	-0.061148	0.317991
Cl	0.521440	-0.825218	-2.003475
S	1.057144	0.999996	1.769935
C	0.449683	-2.972894	0.665417
C	-0.566847	-3.574061	-0.080284
C	-1.789907	-3.843346	0.533232
C	-1.989231	-3.520052	1.877441
C	-0.961122	-2.928403	2.615123
C	0.264734	-2.647509	2.010916
O	-2.936257	0.509655	2.634382
C	1.798550	-0.917121	-0.780128
P	2.150553	0.532249	0.147352
H -5.170034 3.483722 -2.175120
H -4.020831 4.448670 0.320654
H -3.704867 5.150514 -1.273331
S 1.988849 -2.484925 -0.101670
O 2.973575 -2.300501 0.996729
N 2.155377 -3.579425 -1.175543
C 3.218579 -3.824399 -2.137693
H 4.230369 -3.482456 -1.699912
H 3.128965 -4.151444 -2.920150
H 3.176315 -2.395682 -2.639568
κN-K(THF)_3

E = -3224.93163716
O 1.502702 -4.048887 -0.704662
O 4.350580 -0.122348 -1.678606
O 4.511083 -0.630188 1.879782
S 0.267545 -0.123928 0.039798
C 1.061469 -5.192430 0.005248
C 0.526832 -3.801525 -1.705849
C 4.019204 0.319380 -3.049275
C 5.799106 1.659769 0.996729
C 3.709319 2.788956 0.039798
C -1.395095 -0.473323 -0.212925
C 0.536150 1.642721 0.037211
H 1.536133 -5.183242 0.997584
H 1.388673 -6.108022 -0.522797
H 0.666924 -4.506675 -2.548845
H 0.655040 -2.769969 -2.059149
H 4.869332 1.643989 -0.734547
H 3.146435 1.793711 -0.607636
C 3.683551 1.957466 -2.561453
C 3.105722 0.839392 -3.420797
C 3.529654 -1.302446 -3.162733
H 4.937276 -0.323253 -3.659697
H 5.974148 -0.037466 0.571672
H 6.576091 -0.710233 2.108616
C 5.782687 1.330890 2.292946
C 4.295558 1.588065 2.533288
H 3.83864 -0.128313 3.832334
H 2.709755 0.052177 2.568942
Cl -1.849847 -0.602965 -1.924232
P -2.638710 0.311401 0.776808
C 0.825557 2.334359 1.210510
C 0.366702 2.312435 -1.177113
H -0.834830 -4.814904 1.043366
H -0.927107 -6.077536 -0.195465
H -1.601060 -4.327084 -1.696071
H -1.108882 -3.087514 -0.518542
H 4.596358 2.369098 -3.022288
H 2.982795 2.785044 -2.385249
H 2.077555 0.612588 -3.100513
H 3.109254 1.057446 -4.498079
H 6.254656 2.087312 1.649594
H 6.326640 1.325403 3.250003
H 3.812411 2.002698 1.635357
H 4.102597 2.276263 3.368910
S -2.197768 0.528507 2.691835
C -3.077729 1.922396 0.018385
Supporting Information

\[\begin{align*}
\text{H:} & \quad 0.918007 \quad 1.770244 \quad 2.138411 \\
\text{C:} & \quad 0.980582 \quad 3.719422 \quad 1.158608 \\
\text{C:} & \quad 0.507176 \quad 3.696546 \quad -1.212801 \\
\text{H:} & \quad 0.120946 \quad 1.749410 \quad -2.079018 \\
\text{C:} & \quad 3.779491 \quad 1.992071 \quad -1.193464 \\
\text{C:} & \quad 2.614031 \quad 3.099696 \quad 0.613049 \\
\text{C:} & \quad 0.980582 \quad 3.719422 \quad -1.158608 \\
\text{H:} & \quad 0.120946 \quad 1.749410 \quad -2.079018 \\
\text{C:} & \quad 3.779491 \quad 1.992071 \quad -1.193464 \\
\text{D:} & \quad 6.528842 \quad -0.967875 \quad 0.747910 \\
\text{C:} & \quad 0.380900 \quad -1.827239 \quad 1.982121 \\
\text{H:} & \quad 0.680250 \quad -1.818678 \quad 2.283655 \\
\text{H:} & \quad 0.538618 \quad -2.690434 \quad 1.310447 \\
\text{H:} & \quad 0.977067 \quad -2.003772 \quad 2.891930 \\
\text{O:} & \quad 0.993843 \quad -0.617141 \quad 0.947628 \\
\text{K:} & \quad 3.132652 \quad -1.955784 \quad -0.042393 \\
\end{align*} \]

\[\begin{align*}
\kappa_O \kappa_S \text{K(THF)}_3 \\
E = -3224.934281 \\
\end{align*} \]
\(\kappa O, \kappa N-K(THF)_2 \)

\[E = -2992.64304011 \]

\[
\begin{align*}
O & \ -0.759698 \ 0.136482 \ -0.079947 \\
O & \ -2.083466 \ 3.354930 \ -0.408902 \\
O & \ -4.475404 \ -0.143911 \ -0.352061 \\
S & \ -0.304535 \ -1.086692 \ -0.817843 \\
C & \ -2.308340 \ 4.740161 \ -0.606985 \\
C & \ -1.723328 \ 3.103444 \ 0.953696 \\
C & \ -4.143481 \ -0.187776 \ 1.037640 \\
N & \ -5.098640 \ -1.360503 \ -0.749060 \\
N & \ -8.05075 \ -1.300813 \ -2.274757 \\
C & \ 1.386547 \ -1.104425 \ -0.667080 \\
C & \ -1.023004 \ -2.476025 \ 0.044682 \\
H & \ -3.121404 \ 4.865448 \ -1.339331 \\
H & \ -1.398522 \ 5.219383 \ -1.018023 \\
C & \ -2.632840 \ 5.292484 \ 0.769764 \\
C & \ -1.697465 \ 4.462584 \ 1.642884 \\
H & \ -0.758285 \ 2.577041 \ 0.984609 \\
H & \ -2.484794 \ 2.438511 \ 1.397195 \\
H & \ -4.491115 \ 0.740541 \ 1.519072 \\
H & \ -3.045694 \ -0.241089 \ 1.037640 \\
C & \ -4.817625 \ -1.434015 \ 1.590845 \\
C & \ -4.826267 \ -2.349106 \ 0.371987 \\
H & \ -4.679749 \ -1.678342 \ -1.71421 \\
H & \ -6.183909 \ -1.194509 \ -0.884217 \\
C & \ -0.033906 \ -0.701348 \ -3.345262 \\
Cl & \ 2.120693 \ -2.599784 \ -1.238561 \\
P & \ 2.169879 \ -0.231293 \ 0.650934 \\
C & \ -1.190775 \ -2.365792 \ 1.425773 \\
C & \ -1.298051 \ -3.665048 \ -0.628489 \\
H & \ -3.868623 \ 5.088689 \ 1.022593 \\
H & \ -2.465548 \ 6.376134 \ 0.848353 \\
H & \ -0.680768 \ 4.883027 \ 1.615859 \\
H & \ -2.010791 \ 4.406097 \ 2.694836 \\
H & \ -5.847021 \ -1.208433 \ 1.913167 \\
H & \ -4.275170 \ -1.857515 \ 2.447648 \\
H & \ -3.837866 \ -2.813738 \ 0.240023 \\
H & \ -5.577691 \ -3.149479 \ 0.425350 \\
H & \ 1.052715 \ -0.872599 \ -3.244038 \\
H & \ -0.174868 \ 0.394173 \ -3.455281 \\
H & \ -0.352475 \ -1.153077 \ -4.297171 \\
S & \ 1.815362 \ -0.686434 \ 2.557000 \\
C & \ 3.94962 \ -0.435067 \ 0.252326 \\
C & \ 1.900590 \ 1.557076 \ 0.341721 \\
C & \ -0.924177 \ -1.433432 \ 1.928288 \\
C & \ -1.669403 \ -3.463912 \ 2.136564 \\
C & \ -1.778286 \ -4.756602 \ 0.093655 \\
H & \ -1.145938 \ -3.706629 \ -1.707584 \\
C & \ 4.423620 \ -0.106673 \ -1.024106 \\
C & \ 4.837413 \ -0.891893 \ 1.225616 \\
C & \ 2.077473 \ 2.455465 \ 1.397252 \\
C & \ 1.587581 \ 2.039493 \ -0.932605 \\
H & \ -1.808199 \ -3.388791 \ 3.217630 \\
C & \ -1.966638 \ -4.655884 \ 1.472842 \\
H & \ -2.006918 \ -5.691061 \ -0.424177 \\
H & \ 3.726933 \ 0.243546 \ -1.789406 \\
C & \ 5.778250 \ -0.233795 \ -1.317374 \\
C & \ 6.194888 \ -1.021086 \ 0.928710 \\
H & \ 4.443754 \ -1.139920 \ 2.215639 \\
H & \ 2.299763 \ 2.061253 \ 2.392541 \\
\end{align*}
\]
C 1.954465 3.826742 1.177770
C 1.447061 3.409312 -1.145426
H 1.438048 1.328134 -1.747388
H 2.343854 -5.513242 2.035354
H 6.145059 0.023286 -2.314113
C 6.666271 -0.691749 -0.340855
H 6.886499 -1.380839 1.694535
H 2.098761 4.52387 5 2.006917
C 1.636812 4.305928 -0.093336
H 1.188260 3.780734 -2.140273
H 7.729437 -0.791625 -0.573397
H 1.529789 5.380243 -0.263238
K -2.611705 1.131295 -1.830769

KO-K(THF)_{2}

E = -2992.64651467
O -0.759516 -0.125480 -0.699322
O -2.191738 3.019263 0.467396
S -0.244620 -1.530655 -0.783004
C -2.462083 4.386559 0.751585
C -1.710496 2.354205 1.635620
C -4.248259 0.252568 0.003947
C -4.018012 -1.145786 -1.821617
N -0.508504 -2.386668 -2.043210
C -1.132002 -2.442806 0.467880
H -3.465116 4.647245 0.375813
H -1.725273 5.020148 0.223425
C -2.331680 4.537239 2.261215
C -1.302704 3.461320 2.589502
O -0.885884 1.682326 1.356381
H -2.522947 1.742189 2.070203
H -4.648510 1.243455 0.264563
H -3.297844 0.104602 0.548218
C -5.195807 -0.902872 0.260684
C -4.624169 -1.967678 -0.674511
H -2.988203 -1.474415 -2.043126
H -4.613623 -1.206606 -2.747005
C 0.282957 -2.084703 -3.215081
Cl 2.184569 -2.966370 -1.450186
P 2.004709 -0.028666 0.536227
C -1.521732 -1.753332 1.616144
C -1.377956 -3.804618 0.320466
H -3.290558 4.310308 2.754469
H -2.028546 5.550434 2.560655
H -0.286081 3.814608 2.353771
H -1.313478 3.141437 3.640570
H -6.220693 -0.623275 -0.031962
H -5.211065 -1.218077 1.313923
H -3.838414 -2.539219 -0.159727
H -5.81438 -2.682890 -1.025302
H 1.369599 -2.057679 -3.007450
H 0.018059 -1.121580 -3.695047
H 0.109631 -2.871818 -3.964640
S 1.424455 0.304206 2.414612
C 3.828014 -0.221007 0.449866
C 1.716719 1.457475 -0.509806
H -1.275225 -0.695760 1.718995
C -2.203722 -2.440438 2.617707
C -2.061028 -4.483498 1.329435
Supporting Information

\[E = -2992.63903055 \]

O -1.588665 3.277379 -0.410908
O 3.528624 3.073284 0.399639
S 1.233739 -0.823885 -0.953860
C -2.592879 3.712112 -1.318459
C -2.151359 3.069139 0.887532
C 4.633001 3.447420 -0.414084
C 3.854245 1.910333 1.167512
C 0.017390 -0.567501 0.188261
C 2.612817 -1.720003 -0.210261
H -2.419485 3.229258 -2.292767
H -2.522492 4.806953 -1.463398
C -3.913498 3.325281 -0.672282
C -3.593849 3.546599 0.803194
H -1.558983 3.623289 1.633694
H -2.087903 1.996762 1.133066
H 5.144788 4.323598 0.026587
H 4.262021 3.738919 -1.410154
C 5.550496 2.236670 -0.443976
C 5.340709 1.669153 0.955201
H 3.252650 1.064361 0.796898
H 3.589648 2.087984 2.221945
Cl 0.433094 0.517384 1.509155
P -1.369719 -1.655614 0.244094
C 2.344780 -2.766035 0.670946
C 3.919834 -1.391722 -0.566935
H -4.141115 2.272951 -0.870092
H -4.756056 3.937832 -1.034857
H -3.666512 4.616015 1.057981
H -4.255108 2.991384 1.482624
H 6.594837 2.496975 -0.666448
H 5.206221 1.518896 -1.205647
H 5.937793 2.233784 1.689233
H 5.606254 0.606473 1.044323
S -1.144337 -3.619620 0.520000
C -2.355845 -0.999383 1.647786
C -2.421612 -1.311174 -1.212886
H 1.305864 -3.019969 0.912907
C 3.410500 -3.478749 1.217906
C 4.978963 -2.114646 -0.019166
H 4.090942 -0.568069 -1.261563
C 3.519636 -0.247561 1.464372
C 1.942174 -1.315837 2.948723
C 3.260603 -2.306708 -1.715396
C -2.421369 -0.039835 -1.795730
H 3.211928 -4.295590 1.916057
C 4.724960 -3.153880 0.876760
H 6.006963 -1.863054 -0.291754
H 3.865454 0.191300 2.562626
C -2.665525 -0.862682 4.047029
H -1.052407 -1.933731 3.091869
H 3.261458 0.229305 -2.874326
H -1.753009 0.728914 -1.398383
H 5.556071 -3.715939 1.310092
H -5.172150 0.764411 2.413367
C -3.825358 -0.106556 3.859142
H -2.329385 -1.108546 5.057305
H 4.749940 -2.819167 -3.193626
C -4.101049 -0.766902 -3.377258
H 3.256244 1.220751 -3.343222
H 4.399659 0.239723 4.721897
H -4.754093 -0.554045 -4.227246
N 0.514976 -1.699558 -1.998551
C 1.249055 -2.628889 -2.818395
H 1.942422 -3.277817 -2.248196
H 0.523600 -3.295259 -3.310040
H 1.837190 -2.143999 -3.621333
O 1.881049 0.466378 -1.362038
K 1.049577 2.879412 -0.720083

\kappa O_{\kappa S-K(THF)}

E = -2992.64457655

Cl 2.530646 0.091045 1.164802
S 0.007944 1.771712 -1.767765
O 0.648841 4.085757 1.479877
C 1.018098 -0.442587 0.439937
P 0.715058 -0.030817 -1.240502
C 1.563781 3.481459 2.401185
C 1.353646 4.568067 0.342062
O -0.310166 -1.359824 -1.971487
C 2.354809 -0.293327 -2.022110
C 0.173322 -2.037033 2.561390
H 1.453749 3.959193 3.388973
H 1.308522 2.413094 2.499535
C 2.956068 3.667569 1.808600
C 2.654368 3.788946 0.319639
H 0.736449 4.394952 -0.553186
H 1.535459 5.655765 0.441286
C -0.135135 -2.688072 -1.569896
C -1.225788 -1.055288 -2.978744
C 3.118145 -1.422279 -1.698016
Supporting Information

$E = -2760.34854473$

O 0.729144 1.373703 0.021389
O 4.108743 0.63811 0.075590
S -0.579650 1.546145 -0.667590
C 5.368056 -0.020289 0.079001
C 3.585983 0.723572 1.403048
N -0.339862 1.961107 -2.149606

$kO,kN-K(THF)$

$E = -2760.34854473$

O 0.729144 1.373703 0.021389
O 4.108743 0.63811 0.075590
S -0.579650 1.546145 -0.667590
C 5.368056 -0.020289 0.079001
C 3.585983 0.723572 1.403048
N -0.339862 1.961107 -2.149606
Atom	X	Y	Z
C	-1.523389	0.144821	-0.419858
C	-1.418275	2.876213	0.206455
H	6.074943	0.544213	-0.550978
H	5.255475	-1.030869	-0.355053
C	5.796171	-0.096485	1.537073
C	4.449377	-0.200855	2.243941
H	2.521696	0.449994	1.386320
C	3.664898	1.768827	1.756496
C	-1.377950	1.692633	-3.120529
Cl	-3.261747	0.378924	-0.53772
P	-0.903003	-1.119386	0.630712
C	-1.825288	2.659651	1.523549
C	-1.594600	4.104269	-0.422423
H	6.314816	0.829124	1.835140
H	6.469610	-0.941869	1.737680
C	4.067152	-1.232226	2.191595
H	4.481273	0.095837	3.301658
H	-2.255786	2.363270	-3.036296
H	-1.759142	0.654267	-3.066610
H	-0.957465	1.838196	-4.127583
C	-0.662174	-0.845165	2.591408
C	-2.053696	-2.513113	0.313017
C	0.654764	-1.691107	-0.159494
H	-1.675869	1.676708	1.985986
C	-2.420381	3.707273	2.220370
C	-2.196581	5.146446	0.284341
H	-1.254791	4.226463	-1.453569
C	-2.420896	-2.840931	-0.99397
C	-2.535409	-3.274321	1.378164
C	1.643108	-2.291630	0.623664
C	0.828413	-1.601251	-1.545172
H	-2.744741	3.556725	3.252845
C	-2.066481	4.947440	1.602261
H	-2.345086	6.116290	-0.196462
H	-2.056900	-2.234507	-1.830591
C	-3.258890	-3.926755	-1.235803
C	-3.377049	-3.461019	1.137798
H	-2.239877	-2.996288	2.393908
H	1.496771	-2.342594	1.706349
C	2.798106	-2.796402	0.027026
C	1.986631	-2.102192	-2.138587
H	0.059474	-1.109328	-2.145918
H	-3.078501	5.764016	2.154057
H	-3.545129	-4.177983	-2.260023
C	-3.738063	-4.689023	-0.167803
H	-3.752255	-4.952510	1.976341
H	3.567973	-3.265267	0.644836
C	2.973457	-2.701936	-1.353183
H	2.117511	-2.028340	-3.221726
H	-4.397787	-5.539602	-0.356576
H	3.879544	-3.097244	-1.819110
K	2.537361	1.526619	-1.939397
6.4.6 Coordinates of the dimeric structures of 1-K

κOκNκS-K2(THF)2

E = –5520.75133972

Cl 4.814649 0.902496 1.696501
Cl -4.814297 -0.902754 -1.696605
S 1.700897 1.489447 -1.399194
S -1.700539 -1.489138 1.398843
O -1.356179 3.608766 2.260178
O -1.355486 -3.608698 -2.260305
P 3.395930 0.494614 -0.978041
P -3.395788 -0.494578 0.977961
C 3.731955 -0.005653 0.668843
C -3.732035 0.005807 -0.668842
P 3.395960 0.494614 -0.978041
P -3.395788 -0.494578 0.977961
C 3.731955 -0.005653 0.668843
C -3.732035 0.005807 -0.668842

H 2.095165 -3.572791 -4.195814
H -2.653151 -2.247422 -3.127921
C -3.607359 -4.161695 -2.708180
C -3.336991 -4.282646 -1.213441
H -1.378656 -4.064520 -0.249305
H -1.514485 -5.471269 -1.351604
C -3.643328 2.532714 -1.931746
H 2.095512 3.572650 4.195817
H 2.653486 2.247256 3.127944
C 3.608051 4.161426 2.708487
C 3.337953 4.282532 1.213712
H 1.379749 4.064766 0.249228
H 1.515939 5.471399 1.351673
C 4.293212 -2.077400 -1.680921
C -2.899686 -0.970945 -3.192122
C 6.140812 0.959497 -1.303193
C 4.686254 2.772922 -1.977672
H -4.293637 2.077134 1.681247
H -2.899526 0.970879 3.319176
C -6.140582 -0.960087 1.303012
H -4.685614 -2.773066 1.977807
C 3.485798 -3.742231 1.257508
C 4.560620 -2.397774 2.975844
H -4.568079 -3.680169 -2.937577
H -3.596939 -5.155593 -3.184319
H -3.634843 -3.359270 -0.699357
H -3.854629 -5.125189 -0.733095
C -3.487020 3.742402 -1.257423
C -4.561224 2.397657 -2.975920
H 4.568663 3.679741 2.938005
H 3.597700 5.155290 3.184699
H 3.635768 3.358110 0.699610
H 3.855788 5.125041 0.733518
H 4.775734 -2.078141 -0.700926
H 4.408511 -3.179281 -2.526135
H 3.018078 -2.074690 -4.163777
H 2.302610 -0.103070 -3.613546
H 6.275497 -0.038914 -0.880738
\begin{align*}
C & : 7.248919 \ 1.705089 \ -1.693408 \\
C & : 5.800005 \ 3.519244 \ -2.366604 \\
H & : -2.302163 \ 0.103134 \ 3.613309 \\
H & : -6.275486 \ 0.038228 \ 0.701336 \\
C & : -3.018074 \ 2.074500 \ 4.163883 \\
H & : 2.752481 \ -3.811309 \ 0.452573 \\
C & : 4.277113 \ -4.830578 \ 1.623033 \\
C & : 5.348451 \ -3.490612 \ 3.329397 \\
H & : 4.654092 \ -1.444236 \ 3.499233 \\
C & : -2.753798 \ 3.816098 \ -0.452420 \\
C & : -4.278679 \ 4.830492 \ -1.622966 \\
C & : -5.349401 \ 3.490239 \ -3.329491 \\
H & : -4.654317 \ 1.444111 \ -3.499233 \\
H & : 4.994228 \ -4.044715 \ 2.208773 \\
C & : 3.769094 \ -3.182011 \ -3.766627 \\
H & : 2.518614 \ -2.069797 \ 5.135747 \\
H & : 8.251243 \ -1.286617 \ 1.581988 \\
C & : 7.079988 \ -2.987630 \ 2.222753 \\
H & : 5.664203 \ 4.520627 \ -2.779832 \\
H & : -4.995108 \ 4.044715 \ 2.208773 \\
C & : -3.769464 \ 3.181656 \ -3.766987 \\
H & : 2.518441 \ 2.069636 \ 5.135747 \\
H & : -8.251243 \ 1.286617 \ 1.581988 \\
C & : -7.079304 \ -2.987630 \ 2.222753 \\
H & : -5.663171 \ -4.520886 \ 2.780195 \\
H & : 4.163057 \ -5.782969 \ 1.099803 \\
C & : 5.209249 \ -4.704585 \ -2.653426 \\
H & : 6.072814 \ -3.395709 \ 4.141678 \\
H & : -4.165000 \ 5.782998 \ -1.099681 \\
C & : -5.210680 \ 4.704228 \ -2.653448 \\
H & : -6.073658 \ 3.395125 \ -4.141842 \\
H & : 3.855292 \ -4.049432 \ -4.254249 \\
C & : 7.952294 \ 3.570720 \ -2.526655 \\
H & : -3.855792 \ 4.048979 \ 4.425897 \\
H & : -7.951480 \ -3.571561 \ 2.526806 \\
H & : 5.828402 \ -5.559179 \ 2.936142 \\
H & : -5.830102 \ 5.558622 \ -2.936179 \\
S & : 2.684116 \ -1.099144 \ 1.423266 \\
O & : 1.790501 \ -1.615483 \ 0.339347 \\
S & : -2.684445 \ 1.099581 \ -1.423217 \\
O & : -1.791014 \ 1.616190 \ -0.339274 \\
N & : -2.077832 \ 0.431552 \ -2.681009 \\
C & : -1.417627 \ 1.269773 \ -3.665856 \\
H & : -1.312643 \ 0.691833 \ -4.597035 \\
H & : -1.981165 \ 2.188215 \ -3.916862 \\
H & : 0.403007 \ 1.579463 \ -3.353631 \\
N & : 2.077744 \ -0.430939 \ 2.681080 \\
C & : 1.417420 \ -1.268994 \ 3.666020 \\
H & : 1.980882 \ -2.187394 \ 3.917207 \\
H & : 1.312433 \ -0.690851 \ 4.597096 \\
H & : 0.402796 \ -1.578627 \ 3.353791 \\
K & : 0.134877 \ 1.330551 \ 1.463047 \\
K & : -0.134853 \ -1.330011 \ -1.463522
\end{align*}

$\kappa N, \kappa S, \kappa Cl-K_2(THF)_2$
\(E = -5520.74331077 \)

Element	Charge	X	Y	Z
Cl	-1	2.414896	0.976694	1.653604
Cl	-1	-2.409098	-0.976869	-1.650284
S	-2	1.503008	0.059922	-2.104532
S	-2	1.508530	0.056649	2.112121
O	-2	0.419798	-3.986256	1.018115
O	-2	-0.420991	3.990233	1.025463
C	0	3.422650	0.127455	0.489302
P	-3	3.182790	0.562813	-1.186840
C	3	3.185790	-0.563743	1.187849
C	3	1.119018	-3.847829	-2.245636
C	3	0.899170	-4.451821	-1.290454
C	3	1.151514	-4.221862	-2.798315
C	3	1.598943	-3.889022	0.654719
C	3	-0.986348	-5.518361	-1.019009
C	3	-5.627750	1.101632	-1.743918
C	3	-1.560668	4.815261	2.562093
C	3	-1.932330	3.121317	2.103826
C	3	-0.055605	3.386311	3.231183
C	3	1.151058	4.219445	2.795848
C	3	1.597795	3.888892	0.661965
C	3	0.988857	5.519023	1.028415
C	3	5.937590	0.403546	-1.625989
C	3	4.544658	-0.542493	-3.365873
C	3	4.086450	3.071795	-0.296971
C	3	2.524284	3.119107	-2.144825
C	3	-5.941816	-0.402041	1.617925
C	3	-4.553850	0.541623	3.363034
C	3	-4.089473	-3.071110	0.293863
C	3	-2.533526	-3.121275	2.146886
C	3	6.813794	-1.509696	1.121071
C	3	5.649795	-0.435246	2.966474
C	3	-0.127419	-2.314154	-3.081562
C	3	0.337707	-3.549549	-4.276866
C	3	-2.107519	-3.710652	-2.969611
C	3	-1.176585	-5.180279	-3.328668
C	3	-6.808276	1.512486	-1.130477
C	3	-5.639459	0.435795	-2.971516
C	3	0.127722	2.310286	3.081632
C	3	-0.336953	3.540437	4.282565
C	3	2.107601	3.709035	2.976565
C	3	1.174547	5.176701	3.338352
C	3	6.036587	0.884159	-0.650534
C	3	7.073931	0.078622	-2.360571
C	3	5.686318	-0.865010	-4.099238
C	3	3.545811	-0.783866	-3.739038
C	3	4.635094	2.505876	0.459620
C	3	4.194563	4.459259	-0.356844
C	3	2.632232	4.508929	-2.198894
H	1	1.872518	2.579902	-2.838263
\(\kappa \text{Ph}, \kappa \text{S}, \kappa \text{Cl} - \text{K}_2(\text{THF})_2 \)

\[
E = -5520.73154420
\]

\[
\begin{align*}
\kappa & = -0.815455 \quad 1.892088 \quad 0.327708 \\
\kappa & = 0.851963 \quad -1.927614 \quad -0.271178
\end{align*}
\]

Supporting Information
Supporting Information

\[\kappa_{O,N,S-K_2(THF)}^4 \]

\[\text{E} = -5985.32646643 \]

Cl 4.659622 2.154968 1.219149
Cl -4.437387 -2.154364 -1.237084
S 1.595233 0.955574 1.362393
H -7.528748 0.957194 0.502555
H -7.361123 0.458550 2.201285
H -6.685894 2.013432 1.653479

\[\kappa_{O,N,S-K_2(THF)}^4 \]
C 3.732211 0.794329 0.631158
C -3.719310 -0.795011 -0.641623
P 3.422034 0.538008 -1.074891
P -3.422295 -0.538086 1.066616
C -2.045688 -4.593427 -1.535261
C -1.773248 -4.747737 0.782454
C 2.051963 4.587860 1.531306
C 1.754542 4.754095 -0.782882
C 3.968193 -1.145579 -1.544593
C 4.668869 1.584572 -1.912763
C -3.981747 1.141581 1.534202
C -4.668945 -1.592037 1.895775
C 3.949465 -0.801695 2.921897
H -1.435008 -5.102739 -2.300169
H -2.447237 -3.662746 -1.969703
C -3.153449 -5.482890 -0.982057
C -3.232160 -5.031925 0.472544
H -1.633567 -3.985963 1.565244
H -1.242250 -5.694543 1.091975
C -3.934362 0.810594 -2.927286
H 1.457316 5.096800 2.308926
H 2.450281 3.649558 1.952394
C 3.160819 5.469785 0.969315
C 3.215553 5.021627 -0.486951
H 1.599842 3.993837 2.921897
H 1.230829 5.681458 -1.087601
C 4.878225 -1.839559 -0.742544
C 3.562909 -1.688861 -2.767200
C 6.030326 1.410151 -1.632585
C 4.270347 2.523161 -2.864318
C -4.889595 1.830771 0.725506
C -3.590300 1.685593 2.760934
C -6.029595 -1.424090 1.607770
C -4.271585 -2.529520 2.848888
C 4.232162 -2.162176 2.812682
C 4.590551 -0.007141 3.874914
H -4.099451 -5.355823 -1.527657
H -2.866360 -6.545411 -1.040990
H -3.818413 -4.104847 0.550476
H -3.676232 -5.779394 1.145620
C -4.214362 2.171523 -2.817098
C -4.576105 0.018291 -3.881790
H 4.111539 5.332949 1.504205
H 2.883152 6.534487 1.034155
H 3.794928 4.088396 -0.572404
H 3.665173 5.765436 -1.163050
H 5.181134 -1.410082 0.215516
C 5.388057 -3.064576 -1.168625
C 4.080540 -2.909926 -3.193295
H 2.836981 -1.145387 -3.77905
H 6.347113 0.673240 -0.890916
C 6.979998 2.181823 -2.294987
C 5.224921 3.296204 -3.526364
H 3.204075 2.634280 -3.079230
H -5.181675 1.400821 -0.236678
H -5.411374 3.051546 1.149272
C -4.120025 2.902200 3.184751
H -2.865474 1.146276 3.376589
H -6.345735 -0.687852 0.865173
C -6.979334 -2.201399 2.263438
C -5.226174 -3.308261 3.504186
H -3.206186 -2.635178 3.070643
C 1.726542 -5.286723 -1.768015
C 2.061980 -4.487059 0.306832
C 2.787677 -6.228268 -1.180089
H 0.713584 -5.715165 -1.649047
H 1.884008 -5.045973 -2.829140
C 3.076570 -5.624050 0.207970
H 2.407459 -3.601825 0.856185
H 1.119696 -4.840816 0.768711
H 3.694614 -6.238272 -1.800551
H 2.416343 -7.261512 -1.121981
H 4.099929 -5.225055 0.252323
H 2.961717 -6.349733 1.025620
7. References

[1] K.-S. Feichtner, S. Englert, V. H. Gessner, Chem Eur. J. 2016, 22, 506-510.
[2] a) G. M. Sheldrick, Acta Cryst. 2008, A64, 112; b) A. Thorn, B. Dittrich, G. M. Sheldrick, Acta Cryst. 2012, A68, 448; c) G. M. Sheldrick, Acta Cryst. 2008, A64, 112; d) G. M. Sheldrick, Acta Cryst. 2015, C71, 3.
[3] R. Dennington, T. A. Keith, J. M. Millam, GaussView, Semichem Inc. Shawnee Mission KS, 2016.
[4] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji et al., Gaussian 16 Revision C.01, 2016.
[5] a) W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133-A1138; b) P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864-B871; c) J. Reinhold, Cryst. Res. Technol. 1990, 25, 624; d) R. G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (International Series of Monographs on Chemistry), Oxford University Press, USA, 1994.
[6] C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.
[7] A. Bergner, M. Dolg, W. Kuechle, H. Stoll, H. Preuss Mol. Phys. 1993, 80, 1431.
[8] A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571.
[9] a) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456; b) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
[10] P. Deglmann, F. Furch, R. Ahlrichs, Chem. Phys. Lett. 2002, 362, 511.
[11] A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829.