Title
A flood-based information flow analysis and network minimization method for gene regulatory networks

Permalink
https://escholarship.org/uc/item/3kf755mr

Journal
BMC Bioinformatics, 14(1)

ISSN
1471-2105

Authors
Pavlogiannis, Andreas
Mozhayskiy, Vadim
Tagkopoulos, Ilias

Publication Date
2013-04-24

DOI
http://dx.doi.org/10.1186/1471-2105-14-137

Peer reviewed
A flood-based information flow analysis and network minimization method for gene regulatory networks

Andreas Pavlogiannis1, Vadim Mozhayskiy1,2 and Ilias Tagkopoulos1,2*

Abstract

Background: Biological networks tend to have high interconnectivity, complex topologies and multiple types of interactions. This renders difficult the identification of sub-networks that are involved in condition-specific responses. In addition, we generally lack scalable methods that can reveal the information flow in gene regulatory and biochemical pathways. Doing so will help us to identify key participants and paths under specific environmental and cellular context.

Results: This paper introduces the theory of network flooding, which aims to address the problem of network minimization and regulatory information flow in gene regulatory networks. Given a regulatory biological network, a set of source (input) nodes and optionally a set of sink (output) nodes, our task is to find (a) the minimal sub-network that encodes the regulatory program involving all input and output nodes and (b) the information flow from the source to the sink nodes of the network. Here, we describe a novel, scalable, network traversal algorithm and we assess its potential to achieve significant network size reduction in both synthetic and E. coli networks. Scalability and sensitivity analysis show that the proposed method scales well with the size of the network, and is robust to noise and missing data.

Conclusions: The method of network flooding proves to be a useful, practical approach towards information flow analysis in gene regulatory networks. Further extension of the proposed theory has the potential to lead in a unifying framework for the simultaneous network minimization and information flow analysis across various "omics" levels.

Keywords: Network flood, Network flux, Information flow, Gene regulatory networks, Network minimization

Background

In the last decade we have witnessed an explosion of biological data that are available in all branches of the Tree of Life. Significant advances in the biotechnological and computational realm have enabled new ways of acquisition, representation, analysis, and integration of many heterogeneous and seemingly disparate sources of data. This has led to the development of numerous databases that contain validated and putative associations between DNA, proteins or metabolites and various inference algorithms for network reconstruction. Still, in many cases, we lack the methods to extract information that is specific to a cellular mechanism, a biological behavior, or a complex phenotype from the plethora of the available data. The need to develop such methods will become increasingly more obvious, due to the projected accumulation of data in the following years.

Here, we address the problem of network minimization and regulatory information flow in gene regulatory networks. Given a gene regulatory network, a set of source (input) and a set of sink (output) nodes, our task is to find (a) the minimal sub-network that encodes the regulatory program which involves all input and output nodes and (b) the information flow from the source to the sink nodes of the network. Concomitantly, if no sink nodes are specified, our task is reduced to identify the underlying pathways and nodes that are recipients of the information propagated from the source node(s). In this context, source nodes can be thought as cellular components that are sensitive to environmental fluctuations, and they can propagate this information to their downstream targets.

* Correspondence: itagkopoulos@ucdavis.edu
1 Department of Computer Science, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
2 UC Davis Genome Center, University of California Davis, One Shields Avenue, Davis, CA 95616, USA

© 2013 Pavlogiannis et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
bacteria, this set includes intracellular and transmembrane receptors that participate in complex behaviors, such as chemotaxis and quorum sensing, transcription factors and response-specific proteins that are (in)activated by external environmental stimuli, and sigma factors that initiate system-wide regulatory responses to environmental changes, such as heat shocks and nutrient limitation. In vertebrates, this list expands even more to include proteins involved in signal propagation in the nervous system, tissues, and organs. Similarly, sink nodes represent downstream targets of interest. Some examples include enzymes that participate in metabolic reactions, and proteins that are responsible for complex traits, such as stress-response proteins, motility genes, and genes involved in aerobic respiration.

The theory of network floods that we introduce here is a fundamental extension of network flow theory for networks where (a) interactions can be negative and (b) flow is replicated instead of conserved, as it is the case in regulatory networks. Network flow theory [1-3] has been traditionally applied in other disciplines, including multiprocessor scheduling [4], transportation [5], and sociology [6]. Despite the availability of efficient methods in the field early on [7], network flow theory has not been applied in this biological context. The network flow theory cannot be applied directly to biological systems in general, and gene regulatory systems more specifically, since the interactions that take place in biological networks and the network properties are of different nature when compared to the networks in other applications. One of the most striking differences is that network flow is not conserved in each node; in other words, the sum of all incoming flows is not equal to the sum of all outgoing flows. In fact, most regulatory networks exhibit flow replication, where the sum of the incoming flow is replicated in each of the outgoing interactions. This network characteristic captures the process of transcriptional activation of a gene that itself has multiple downstream targets. In that case, each outgoing regulatory edge from that node can have activatory or inhibitory information that does not have to conform to any flow conservation rule. As an example of this flow replication property, imagine a transcriptional regulator, (e.g. the AraC activator protein) that can bind to two distinct promoters in the genome, which drive two different genes. In that case, upregulation of the *araC* gene will signify the simultaneous up-regulation of the downstream targets (the two distinct genes). In this typical case, there is no conservation rule of any sort, for example the number of AraC copies do not have to be equal to the number of the two gene copies. Furthermore, given saturating levels of regulatory protein, the effect of the regulation will be the simultaneous up-regulation of all upstream genes and thus the *replication* of the information flow to each distinct path. The vast majority of signal transduction network analysis methods are focused on topological features [8], such as motifs and binary interactions between nodes in the network [9]. Other approaches use Boolean theory to infer hidden regulatory pathways [10] or compute the minimal set of nodes that can perform signal transduction independently [11]. Although these methods provide valuable insight, they can't capture quantitative relationships between nodes that are critical for elucidating the network dynamics, and where the weights of the individual edges have a critical role. In a recent study the information flow of acyclic, activation-only, hierarchical networks was studied using continuous expression models [12]. Other relevant prior work includes the application of elementary modes in signaling and regulatory networks for functional analysis [13], shortest path algorithms for biological interaction paths [14,15], application of Petri-net based analysis to signal transduction pathways [16], partitioning biological data with transitivity clustering [17,18], and measuring information flow through random walks ignoring inhibitory links [19]. In contrast to the methods that mostly target clustering or motif finding in biological data, network flooding can elucidate the regulatory information flow taking into account regulation weight and sign, an important challenge in systems biology [9,20], and perform hypothesis-specific network minimization towards transforming data and networks to knowledge. Although network-based approaches have been developed in the past mainly for metabolic networks [21-23], they are not suitable to be applied in cases where both positive and negative regulation is present and flow conservation does not hold.

Figure 1 depicts different scenarios for network minimization and information flow in regulatory networks. Given a set of input/output nodes and an undirected network, node reduction can be achieved by deleting nodes that are not connected to sub-graphs that contain at least one input or output nodes (Figure 1A). In a directed weighted network where regulation follows an additive continuous model where the combined information flow through an edge is a continuous variable and can be less or equal than that edge's weight, this approach can be extended to discard nodes that do not regulate the output node(s) directly or indirectly (Figure 1B). In the flood network analysis that is introduced in this paper, the weight, sign and directionality of the network is taken into account in order to minimize the network and reveal the flow of information in the various pathways (Figure 1C).

Note that network flooding is very different from simple superposition of negative and positive regulatory weights for each node, as it takes into account the amount of regulatory information in the preceding paths. For
instance, nodes 5 and 6 have exactly the same regulatory influences (both direction and strength). However, while node 6 will be activated and propagate the signal to downstream nodes, node 5 will be inactive, due to the large information flow from node 1 to node 2 (compared to the small information flow from 1 to 4), which in this case has an inhibitory effect. The outcome of this process is thus highly dependent on both the network topology, and the corresponding weights. The problem becomes more challenging in the presence of loops and cycles, where simple network traversals (such as depth/breadth-first search) are not applicable. In addition, network flooding is fundamentally different from network flows, as it introduces negative regulatory interactions and conservation of flow is not guaranteed for each node, as it would be the case in metabolic processes. The latter is a necessary addition to realistically capture regulatory interactions, as regulatory information is usually replicated as it passes through a node with multiple outputs.

Methods

In this section, we define the problem of gene regulatory network (GRN) minimization and we introduce the network flooding method along with an algorithmic implementation. Before we describe the method of network flooding, we first define some terms that we will use in its description.

Definitions

Flood networks and network floods

First, we define the capacity \(c(u, v) \) of the edge \((u, v)\), between nodes \(u \) and \(v \) as the maximum amount of information that can pass from node \(u \) to node \(v \). A flood network \(G = (V, E) \) is a directed graph in which every edge \((u, v) \in E\) with \(u, v \in V \) has a non-zero capacity \(c(u, v) \in R \), and \(c(u, v) = 0 \) when \((u, v) \notin E \) (i.e. zero capacity where no edge exists between two nodes). In the case of gene regulatory networks, the nodes represent genes and the edges establish the regulatory interactions between them. The capacity of each edge represents the weight and direction of each regulatory interaction, and can be either positive, or negative. We distinguish a source node \(s \in V \), and for simplicity we assume that a path exists from \(s \) to all other nodes in \(G \).

Since feedback and high interconnectivity is common in gene regulatory networks specifically, and biological networks in general, we have to devise a method to account for all possible walks in a network, which are not necessary simple. For this reason we “unwind” or “traverse” all its walks that are essential, which is formally defined as follows:

Essential walk: Given a network \(G = (V, E) \), a walk \(P = (x_1, x_2, ..., x_n) \) on \(G \) with \((x_i, x_j) \in E \) is essential, if between any two successive appearances \(x_n x_j \) of any node \(v \in V \), there exists at least one node that does not appear in the walk \(P' = (x_1, x_2, ..., x_i) \).

An essential walk allows multiple appearances of some nodes, as long as each cycle introduces at least one new node to the essential walk. An essential walk is called saturated, if its expansion through any node will make it non-essential. An essential traversal of \(G \), starting from the source node, is the set \(P^* \) of all saturated walks starting from the source node \(s \), following a breadth-first manner. For a given edge \((u, v)\) we denote as \(P(u, v)^* = \{s, u, v, ..., s\} \) the subset of all saturated walks within the essential traversal that include the edge \((u, v)\). Note that the essential traversal captures feedback loops of arbitrary size. Given the above, the network flood \(f(u, v) \) of an edge \((u, v)\) corresponds to the amount of information that flows through that edge, and it can be calculated by any function \(f: E \to R \), provided that it is subject to the following three constraints:

Capacity Constraint: For all edges \((u, v)\) we require that \(|f(u, v)| \leq c(u, v) \).
Polarity Constraint: For all edges \((u, v)\) we require that \(f(u, v)c(u, v) \geq 0\).

Essential Walk Constraint: We denote with \(f(P)\) the flood \(f(u, v)\) to an edge \((u, v)\) that is carried through a walk \(P = (s, ..., u, v)\), which starts from the source node \(s\). The following constructs by induction a set of essential walks \(D\), which defines the essential walk constraint on \([f(u, v)]\), for all edges \((u, v)\): Base case: Initially \(D = \cup_{s \in \mathcal{E}} \{(s, u)\}\), and we require that \([f(s, u)] = |c(s, u)|\). Inductive step: Let \(P\) be a walk in \(D\), and \(P'\) its expansion through an edge \((u, v)\). The essential walk constraint states that the network flood in edge \((u, v)\) is given by: \([f(u, v)] = [f(P)] = \max(0, \min(|c(u, v)|, \sum Q \in D : Q = (u, ..., w, u) f(Q))\)), with \(D = D \cup \{P\}\).

The capacity constraint restricts the magnitude of the flood that can run through an edge. The polarity constraint guarantees that the running flood has the same sign as the edge capacity, to preserve its regulatory function. Finally, the essential walk constraint imposes that each non-saturating walk \(P\) entering a node has to carry out the same flood as the one it brings into \(u\), and the magnitude of the total flood in any edge \((u, v)\) is determined by the algebraic sum of the flood carried by the set \(P_{u,v} \subseteq Q\). In general, the function itself can take any form (e.g. sigmoid, polynomial), similar to the kernel functions in classification, although here we define its magnitude to be the linear sum of all incoming floods from essential walks, with the edge capacity value being its upper bound (capacity constraint), and its sign to be the same as the edge capacity (polarity constraint). The above definitions can be naturally extended to networks with more than one distinguished source nodes.

Environmental signals and source nodes: Let \(S = \{s_1, s_2, ..., s_n\}\) be a set of continuous variables that encode for environmental signals (e.g. heat, pressure, light, chemicals), each of which can be sensed by the organism through a non-empty set of nodes \(\{u_0 \in V\}\), namely the receptor nodes for the corresponding environmental signal. An environmental signal \(s_j\) serves as a source node in a flood network, and is defined as “active” when it has a positive value. An edge or a node is defined as “active” when it has a non-zero flood. Floods can be positive or negative, which corresponds to activation or inhibition of the target node (i.e. downstream gene), respectively. Depending on which environmental signals are active, different pathways in the regulatory network are activated as a response to the current environmental state.

Network minimization problem
Given a GRN \(G\) and a set of active environmental signals \(S_{\text{act}} \subseteq S\), infer the minimal GRN \(G' = (V, E)\), such that

Figure 2 Example of the flood network minimization. Original gene regulatory network (A) is transformed (B) to introduce saturation gadgets and potentially basal nodes (not shown). Minimized network is obtained after a flood threshold is applied to the flooded transformed network. Degree of minimization can be varied from aggressive (C) to mild (D) depending on the value of the threshold. Capacity of the edge is the upper limit for the magnitude of the flood through that edge, which depends on the upstream regulation. For example, edge 3→6 has a high capacity and a high positive flood, but the flood through edge 2→6 is low regardless its high capacity. Floods are calculated for the essential traversals from the input(s)/signal(s) to the output(s)/sink(s): 1→3→6, 1→4→6, 1→4→6→5→2→6, 1→3→6→5→2→6, 1→3→4→6, etc. The total flood through edge 2→6 is zero due to the strong negative flood 3→2 (inhibition of node 2). Therefore, nodes 2 and 5 are not part of the minimized network connecting inputs and outputs regardless of the imposed flood threshold. In contrast, node 4 may be included in the minimized network if a flood threshold is relatively low: flood 1→3 is replicated into two edges of high capacity 3→6 (positive flood, activation of node 6) and 3→4 (negative flood, inhibition of node 4). Large positive flood 1→4 in combination with a negative flood 3→4 produces a weak positive flood 4→6. Edge 4→6 is included in the minimized network only if the flood threshold is below 4→6 flood (D). If edge 4→6 is not in minimized network (C), edges 1→4 and 3→4, and node 4 are also not included, as they are disconnected from the output node(s).
Regulatory network minimization through flood analysis

Here, we introduce a three-phase pipeline to address the network minimization problem defined above (Figure 3). Given a GRN \(G \), and a set of active environmental signals \(S_{\text{act}} \), we first transform the input network \(G \) to a flood network that captures basic properties of gene networks such as a basal steady-state expression and a saturation limit on the expression of any given gene (phase one). Then, we calculate the floods on the transformed network (stage two). We then perform the actual minimization by imposing a flood threshold and then we inversely transform the resulting network to its GRN counterpart (stage three).

Network transformation (phase one)

In the first phase, the GRN is transformed to a flood network \(G' = (V' , E') \), which uses signal nodes, basal nodes, saturation nodes, signal and basal regulatory links to capture the basic elements of gene regulation. The steps of the transformation are the following (Figure 3A):

1. Introduction of the signal nodes. Every signal \(s \in S_{\text{act}} \) is mapped to a signal node \(s \in V' \). The set of all signal nodes serves also as the set of distinguished nodes \(S \subseteq V' \).
2. An additional basal node \(b \in V' \) is introduced. This node captures the basal (i.e. base) expression of the gene that depends on the "leakiness" of the upstream promoter and the concentration of the transcription factors that are bound to the promoter and regulate the gene’s expression.
3. To capture the saturation of the node \(v \) expression, a saturation gadget is introduced. For every node \(v \) in the original GRN, two nodes \(v_{\text{in}}, v_{\text{out}} \) are introduced together with an edge \((v_{\text{in}}, v_{\text{out}}) \) the capacity of which \(c(v_{\text{in}}, v_{\text{out}}) \) is a positive number that limits the maximum flood through node.
4. Introduction of the signal and basal regulatory links. For every receptor node \(v \) in the original GRN regulated by an external signal \(s \), \((s, v_{\text{out}}) \) is added in \(E' \). The capacity \(c(s, v_{\text{out}}) \) is set equal to the corresponding signal regulation weight \(w(s, v_{\text{out}}) \) from signal \(s \) to node \(v \). Moreover, in the presence of information on the basal expression levels of a node \(v \), an edge \((b, v_{\text{out}}) \) is added, with the capacity \(c(b, v_{\text{out}}) \) set equal to the basal expression of \(v \), \(b(v) \).

The basal node \(b \) serves as an additional source node which is always being active.

Network flooding (phase two)

In this step we calculate all network floods in the transformed flood network, by applying an essential traversal on it. Algorithm 1 provides computation of floods in a flood network \(G = (V, E) \) with a set of distinct source nodes \(S \). The process starts from the nodes in \(S \), and is based on repetitive expansions of essential walks until they get saturated. Each walk \(P \) is carrying some flood, and upon its expansion through an edge \((u, v) \), the following take place: (a) the magnitude of the flood to be stored in that edge is determined (\(\text{flood}_{\text{total}} \)) by adding the existing flood on the edge with the one carried by the \(P \); (b) possible excess of the incoming flood caused by the saturation limit is stored in a matrix (\(\text{Excess} \)); (c) the flood change (\(\text{Flood}_{\text{delta}} \)) is then propagated along the walk, after being polarized by the sign of the edge. The time complexity of the essential traversal is highly dependent on the network topology and while in the worst case it can scale exponentially with the number of the nodes, scalability analysis shows that our method scales robustly with the increase of the graph size.
Algorithm 1

Input: A flood network $G = (V, E)$ and a set of distinct nodes S.
1. Initialize a queue q
2. Initialize a matrix of flood magnitudes $Flood$ to zero
3. Initialize a matrix of excess floods $Excess$ to zero
4. For each $s \in S$
5. For each $(s, u) \in E$
6. Create a walk $P = (s)$ and push $(P, (s, u), |c(s, u)|)$ in q
7. While q is not empty:
8. Pop $(P, (u, v), flood)$ from q
9. If P extended by v remains essential:
10. attempt $= flood + Flood[u, v] + Excess[u, v]$
11. Case 1: attempt ≥ 0:
12. flood$_{total} =$main($attempt, |c(u, v)|$)
13. Excess[u, v] = max $($attempt $- |c(u, v)|, 0)$
14. Case 2: attempt < 0:
15. flood$_{total} = 0$
16. Excess[u, v] = attempt
17. flood$_{delta} = sign(c(u, v)) * ($flood$_{total} - Flood[u, v])$
18. Flood[u, v] = flood$_{total}$
19. For each
20. Set P' as P extended with v and push $(P', (v, w), flood_{delta})$ in q

Output: $\forall (u, v) \in E, f(u, v) = Flood[u, v] \cdot sign(c(u, v))$

Threshold imposition and reverse network transformation
Now that we have calculated all floods, we can impose a lower bound on the minimal magnitude that we will allow. Conservatively, this value is zero (i.e. even a small amount of information flow is sufficient to add an edge on the minimized network), but any threshold t can be used, so that only edges with flood magnitude greater that t will exist (i.e. $|f(u, v)| > t$), where negative flood values are also allowed. In case that a set of output (sink) nodes A is also supplied, this step additionally disregards edges getting disconnected from A once the threshold is imposed. Transformation the minimized network to its GRN counterpart is achieved by simply reversing the steps performed in phase one. The network flooding method is deterministic for any given threshold.

Results
Ideally, performance evaluation of the network floods theory requires complete regulatory networks where all nodes and links are present, together with link directionality and a signed weight. In addition, the quantitative expression model for each node should be known, and the phenotypic change after the network reduction should be measurable for informative comparison between the original and minimized network. Since currently we are far from having any such dataset, we first adopted a similar approach to what is used for benchmarking gene network reconstruction algorithms, by constructing synthetic datasets of in silico organisms [24]. We used a multi-scale microbial evolution simulator to create a synthetic complete dataset with the information mentioned above to comprehensively evaluate the proposed methods. Our results show that our method has very good scaling, is robust to noise and missing data, and does not require full network knowledge. We then evaluated our method with experimental data in the case of the bacterium E. coli, a well-studied model organism. The source code, sample data files and a brief tutorial on the network flooding algorithm is provided in Additional file 1.

Synthetic datasets
We used the EVE (Evolution in Variable Environments) simulator to create a synthetic dataset and applied the network flood algorithm to the resulting networks. The EVE simulator has multiple levels of abstractions that range from molecular species, gene regulatory and biochemical networks, to organisms and environment. Each organism has its own distinct gene regulatory and biochemical network that can be depicted as a directed weighted graph. The network comprises of a number
of “triplets” (three nodes): Gene/mRNA, Protein, and Modified Protein. The Promoter/Gene/RNA node captures gene regulation and transcription, while the Protein and Modified Protein nodes capture translation and post-translational modification (acetylation, phosphorylation, etc.), respectively. In other words, the triplets capture the “central dogma” of molecular biology. Organisms undergo a stochastic evolution and their gene regulatory and biochemical networks change in size and topology in order to adapt to the synthetic environments. EVE has been used to test the hypothesis of anticipatory behavior in bacteria [25], to investigate Horizontal Gene Transfer dynamics [26], the distribution of fitness effects during evolution [27], facilitated variation in microbial communities [28], and has been documented elsewhere [29]. Here, 64 populations of 256 organisms each where evolved in low and high mutation rates (lmr/hrm) for 5,000 generations in dynamical environments where the existence of two environmental signals and the presence of nutrients follows a either an AND or a XOR gate (more about environmental structure in the supplementary online material of [25]). This resulted on a dataset of 47,698 organisms (after the complete set was filtered for organisms of high fitness) evolved in a total of four environments with unknown function or regulation (more than 1000 genes). Unit regulatory dots, Figure 4 and Table 1). This result is even more pronounced for the case of the AND environment. Decrease in fitness by random removal of links is expected, as a subset of these links is likely to be important for the organism to exhibit the desired phenotype (XOR and AND, respectively). Additionally, cells that evolved in environments with higher mutation rates, contained cells that exhibited higher stochasticity in their expression levels, and the network flooding resulted in a larger fitness loss, but still for <0.1% of cells. Similar results have been found for cells that have been evolved in an OR environment (31129 cells; Additional file 2: Figure S1).

Scalability and sensitivity analysis

We evaluated the scalability of our algorithm in respect to node size, and it was found to scale well below the exponential theoretical upper bound (Additional file 2: Figure S2). To assess the performance of our method when data are missing, we randomly removed sets of links from the network before minimization (Figure 5 and Additional file 2: Figure S3). This analysis is necessary as even for *E. coli*, the amount of missing information is high as it currently has a reconstructed network of about 1700 genes (38% of the genome) and many missing associations. Our method was found to be robust even in cases where half of the biological network is unknown. Similarly, perturbation of 10% of the weight value did not affect the network minimization result (<1% fitness change).

Escherichia coli regulatory network

Next, we reconstructed the regulatory network of *E. coli* from data available in EcoCyc [30] and RegulonDB [31]. Compared to the networks in the synthetic dataset, the derived *E. coli* network is incomplete with many genes measured in different environmental conditions and of unknown function or regulation (more than 1000 genes are not connected to any sigma factor). Unit regulatory weights were used in this example and Gaussian noise with a standard deviation of 0.05 was added. To evaluate our network flooding algorithm, we considered several...
scenarios that are relevant to *E. coli* growth and stress response. We used sigma factors as information source nodes, as they act as master regulators. under various scenarios and their relative concentration ratios are known for each of the conditions we consider here [32].

To assess the performance of our algorithm, we created a set of reporter genes for each condition that are likely to be involved in the respective processes. This set includes genes that have been differentially expressed in these conditions (microarray data provided in [33]), and are implicated in cellular response as indicated by their GO terms. In this context, our network flooding analysis has been used to reveal regulatory information flow, and perform network minimization (Figure 6). A functional analysis of the genes in the minimized network show consistent patterns with what is biologically known for growth in the conditions that we focus on (See Additional file 2: Tables S1-3). More specifically, under “exponential growth” (Figure 6B and Table 2) among the over-represented terms where protein complex (p-value 2.7×10^{-12}, GO:0043234),

Figure 4 Flood-based minimization of regulatory networks of *in silico* organisms evolved in AND (A-C) and XOR (D-F) environments. Top panels (A and D) show the distribution of fitness for cells evolved in high mutation rates (red) and low mutation rates (black). Dot plots show the statistics of the flood minimization for populations of cells evolved in AND low mutation rate (B), AND high mutation rate (C), XOR low mutation rate (E), and XOR high mutation rate (F) environments. Gray dots show the effect on fitness of a random network minimization to the same degree as obtained by the flood analysis. Bar plots in (B, C, E, and F) show the distribution of minimization degree (decrease in number of links) for each type of evolved cells.
cellular respiration (2.6×10^{-9}, GO:0045333), chemotaxis (2.2×10^{-8}, GO:0006935), generation of precursor metabolites and energy (7.9×10^{-8}, GO:0006091), carbohydrate transport (1.3×10^{-7}, GO:0008643), membrane part (1.1×10^{-6}, GO:0044425), amino acid transport (2.7×10^{-6}, GO:0006865).

Under the stationary phase scenario (Figure 6A and Table 2), over-represented terms include oxidative phosphorylation (5×10^{-7}, GO:0006119), anaerobic respiration (2.6×10^{-7}, GO:0009061), oxidation-reduction process (5.4×10^{-5}, GO:0055114), nitrogen utilization
Table 2 Scenarios used in the flood minimization of *E. coli* regulatory network

Scenario	Inputs	Reporter gene selection	Genes in a sub-network	Reporter genes	Total flood in a network with the flood threshold equals to
					0.00 0.35 0.70
Stationary phase	σ^{38}	Stationary phase specific genes under control of σ^{38} (22)	1,254	10	185 50 33
Exponential growth / GO groups	σ^{70}, σ^{54}, σ^{38}	Genes based on GO terms (amino acid synthesis, translation, protein folding, protein modification, glycolysis, tricarboxylic acid cycle)	1,584	168	242 49 48
Exponential growth / expression data	σ^{70}, σ^{54}, σ^{38}	Genes expressed in the exponential phase (microarray expression data (23))	1,584	54	232 96 40
Heat shock / GO groups	σ^{38}, σ^{54}, σ^{32}	Genes expressed in the exponential phase (microarray expression data (23))	1,314	13	173 46 33
Transition phase / expression data	σ^{70}, σ^{38}	Genes expressed in the transition from the exponential to the stationary phase (microarray expression data (23))	1,595	34	241 102 52

Total number of genes is shown for a sub-network regulated by the selected inputs. Total flood is shown for full and minimized networks with three different flood thresholds (the maximum flood through a link is 1.0).

Conclusions

In this paper, we have presented the method of network flooding that aims to minimize regulatory networks in order to capture core regulatory patterns and information flow for specific biological conditions. We introduced a scalable, robust, graph-based algorithmic implementation that can achieve impressive network size reduction, without disrupting core regulatory pathways in synthetic datasets. When network flooding was applied in the reconstructed *E. coli* regulatory network, it was able to minimize the network while still preserving statistical significance of the results (Figure 6). P-values can be viewed as the probability that the reporter nodes obtained in the minimized network are by random chance. Figure 7 depicts the minimal network for different flood thresholds.
reduce its size producing meaningful (in terms of biological processes involved) and statistical significant (in terms of differentially expressed genes and GO terms) results. In addition, network topology is sufficient for network flooding to operate at the lack of other data sources, and the method copes well with missing information and unknown relationships. There are numerous extensions to our work that can prove useful for biological network analysis and pathway extraction. The presented method can be used to ask questions regarding the maximum information and (regulatory) control that can be achieved by any given node or set of nodes; the importance of a single node or sub-network manifested by the amount of information flow that it channels, which is a quite different metric than its connectivity or regulatory strength; and the degree of multiplexing information that can be achieved in various organisms, a possible proxy for regulatory complexity. We intend to apply the method of network flooding in reconstructed mammalian networks, both in respect to regulation of core mechanisms [9], and miRNA-based regulation [15]. Although we have mainly focused so far on regulatory networks, this work can be extended in protein-protein interaction (PPI), signal transduction and metabolic networks. This entails the extension of the network flood theory in order to handle differently nodes and edges that belong to distinct network types, as the associations between nodes are usually different (for example, a link between two nodes in a metabolic network usually signifies conversion, and not regulation). Taking into account the high degree of interconnection between multiple scales of biological organization, this extension may lead to a unifying framework for the simultaneous network minimization and information flow analysis across various “omics” levels, that is more than the sum of its parts.

Acknowledgements
We would like to thank the members of the Tagkopoulos lab for their feedback and useful discussions. This work was supported by the University of California opportunity fund and NSF award to IT.

References
1. Ahuja R, Magnanti T, Orlin J: Network flows: theory, algorithms, and applications. Upper Saddle River, NJ: Prentice Hall; 1993.
2. Ford L: Network flow theory. RAND 1956, 923:1–13.
3. West D: Introduction to graph theory. Upper Saddle River, NJ: Prentice Hall; 2001.
4. Stone HS: Multiprocessor scheduling with aid of network flow algorithms. IEEE Trans Softw Eng 1977, 3(1):85–93.
5. Niemhauser G, Wolsey L: Integer and combinatorial optimization. New York: Wiley; 1988.
6. Borgatti SP: Centrality and network flow. Social Networks 2005, 27(1):55–71.
7. Edmonds J, Karp RM: Theoretical improvements in algorithmic efficiency for network flow problems. J ACM 1972, 19(2):248–264.
8. Nassiri I, Massoudi-Nejad A, Jali M, Zarei H: Nonparametric Simulation of Signal Transduction Networks with Semi-Synchronised Update. PLoS One 2012, 7(6):e39643.
9. Malayan A, Jenkins SL, Neves S, Hasseldine A, Grace E, Dubin-Thaler B, Eungdamrong NJ, Weng GZ, Ram PT, Rice JJ, et al: Formation of regulatory patterns during signal propagation in a mammalian cellular network. Science 2005, 309(5737):1090–1093.
10. Saez-Rodriguez J, Simeoni L, Lindquist JA, Hemenway R, Bommhardt U, Arndt B, Haus U-U, Weismantel R, Gilles ED, Klarmt S, et al: A logical model provides insights into T cell receptor signaling. Plos Computational Biology 2007, 3(8):e163.
11. Wang RS, Albert R: Elementary signaling modes predict the essentiality of signal transduction network components. BMC Syst Biol 2011, 5(1):1–14.
12. Bocchi F, Wittmann DM, Theis FJ: Effective Parameters Determining the Information Flow in Hierarchical Biological Systems. Bull Math Biol 2011, 73(4):706–725.
13. Klarmt S, Saez-Rodriguez J, Lindquist JA, Simeoni L, Gilles ED: A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinformatics 2006, 7:1–26.
14. Klarmt S, von Kamp A: Computing paths and cycles in biological interaction graphs. BMC Bioinformatics 2009, 10(1):1–11.
15. Cui Q, Yu Z, Purisma ED, Wang E: Principles of microRNA regulation of a human cellular signaling network. Mol Syst Biol 2006, 2(46).
16. Sackmann A, Heiner M, Koch I: Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinformatics 2006, 7(1):1–17.
17. Wittkop T, Emig D, Lange S, Rahmann S, Albrecht M, Morris JH, Boecker S, Stoye J, Baumbach J: Partitioning biological data with transitivity clustering. Nature Methods 2010, 7(6):19.
18. Boecker S, Brandes U, Baumbach J: Exact Algorithms for Cluster Editing: Evaluation and Experiments. Algorithmica 2011, 60(2):289–302.
19. Kemp Y-A, Przytycka TM, Wuchty S, Przytycka JT: Modeling information flow in biological networks. Phys Biol 2011, 8(3):035012.
20. Neves SR, Tiscok P, Sarkar A, Grace EA, Rangamani P, Taubenfeld SM, Alberini CM, Schaff JC, Blitzer RD, Moraru II, et al: Cell shape and negative links in regulatory motifs together control spatial information flow in signalling networks. Cell 2008, 133(4):666–680.
21. Yeger-Lotem E, Riva L, Su LJ, Gitter AD, Cashikar AG, King OD, Auluck PK, Geddie ML, Valastyan JS, Karger DR, et al: Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity. Nat Genet 2009, 41(3):316–323.
22. Dasika MS, Burgard A, Maranas CD: A computational framework for the topological analysis and targeted disruption of signal transduction networks. Biophys J 2006, 91(1):383–398.
23. Khodolenko B, Yaffe MB, Kalch W: Computational Approaches for Analyzing Information Flow in Biological Networks. Sci Signal 2012, 5(220):rel.
24. Marbach D, Prill RJ, Schaffter T, Mattussi C, Floreano D, Stolovitzky G: Revealing strengths and weaknesses of methods for gene network inference. Proc Natl Acad Sci U S A 2010, 107(4):2628–6291.

Additional files

Additional file 1: The source code, samples and a brief tutorial for NetFloords.

Additional file 2: Supplementary text, figures and tables.

Abbreviations
GRN: Gene regulatory network; GO: Gene ontology; PPI: Protein-protein interaction; lmr: Low mutation rate; hmr: High mutation rate.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Corresponding author IT conceived the project and supervised all its aspects; AP designed the algorithms and performed the experiments; IT, AP and VM analyzed the data and wrote the manuscript. All authors read and approved the final manuscript.

Published: 24 April 2013

Published: 24 April 2013

Received: 7 June 2012 Accepted: 19 March 2013

Received: 7 June 2012 Accepted: 19 March 2013

(1) The final manuscript.

AP designed the algorithms and performed the experiments; IT, AP and VM

Corresponding author IT conceived the project and supervised all its aspects; Authors

The authors declare that they have no competing interests.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Corresponding author IT conceived the project and supervised all its aspects; AP designed the algorithms and performed the experiments; IT, AP and VM analyzed the data and wrote the manuscript. All authors read and approved the final manuscript.

Page 11 of 12

http://www.biomedcentral.com/1471-2105/14/137
25. Tagkopoulos I, Liu YC, Tavazoie S: Predictive behavior within microbial genetic networks. Science 2008, 32(5881):1313–1317.
26. Mozhayskiy V, Tagkopoulos I: In Silico Evolution of Multi-Scale Microbial Systems in the Presence of Mobile Genetic Elements and Horizontal Gene Transfer. Lect Notes in Comput Sc 2011, 6674:262.
27. Mozhayskiy V, Tagkopoulos I: Horizontal gene transfer dynamics and distribution of fitness effects during microbial in silico evolution. BMC Bioinformatics 2012, 13:510.
28. Mozhayskiy V, Tagkopoulos I: Guided evolution of in silico microbial populations in complex environments accelerates evolutionary rates through a step-wise adaptation. BMC Bioinforma 2012:13.
29. Mozhayskiy V, Miller R, Ma K-L, Tagkopoulos I: A Scalable Multi-scale Framework for Parallel Simulation and Visualization of Microbial Evolution. Salt Lake City, UT: TeraGrid’11; 2011.
30. Keseler IM, Collado-Vides J, Santos-Zavaleta A, Peralta-Gil M, Gama-Castro S, Muniz-Rascado L, Bonavides-Martinez C, Paley S, Krümmenacker M, Altman T, et al: EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res 2011, 39:D583–D590.
31. Gama-Castro S, Salgado H, Peralta-Gil M, Santos-Zavaleta A, Muniz-Rascado L, Solano-Lira H, Jimenez-Jacinto V, Weiss V, Garcia-Sotoelo JS, Lopez-Fuentes A, et al: RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gsensor Units). Nucleic Acids Research 2011, 39:D98–D105.
32. Sharma UK, Chatterji D: Transcriptional switching in Escherichia coli during stress and starvation by modulation of Sigma 70 activity. Fems Microbiology Reviews 2010, 34(5):646–657.
33. Wei Y, Lee JM, Richmond C, Blattner FR, Rafalski JA, LaRossa RA: High-density microarray-mediated gene expression profiling of Escherichia coli. J Bacteriol 2001, 183(2):545–556.

doi:10.1186/1471-2105-14-137
Cite this article as: Pavlogiannis et al: A flood-based information flow analysis and network minimization method for gene regulatory networks. BMC Bioinformatics 2013 14:137.