Abstract: Since the beginning of the epidemic, human immunodeficiency virus (HIV) has infected around 70 million people worldwide, most of whom reside in sub-Saharan Africa. There have been very promising developments in the treatment of HIV with anti-retroviral drug cocktails. However, drug resistance to anti-HIV drugs is emerging, and many people infected with HIV have adverse reactions or do not have ready access to currently available HIV chemotherapies. Thus, there is a need to discover new anti-HIV agents to supplement our current arsenal of anti-HIV drugs and to provide therapeutic options for populations with limited resources or access to currently efficacious chemotherapies. Plant-derived natural products continue to serve as a reservoir for the discovery of new medicines, including anti-HIV agents. This review presents a survey of plants that have shown anti-HIV activity, both in vitro and in vivo.

Keywords: acquired immune deficiency syndrome; phytochemistry; pharmacognosy; antiviral; drug discovery
1. Introduction

The World Health Organisation estimates that over 75 million people globally have been infected with the human immunodeficiency virus (HIV), of which approximately 37 million are still alive and living with the infection [1,2]. It is currently estimated that ~26 million of these patients reside in Africa; 3.3 million in the Americas; 3.5 million in Southeast Asia; 2.4 million in Europe; 360,000 in the eastern Mediterranean; and 1.5 million in the western Pacific [2]. Data from 2016 indicates that there were approximately two million new cases of HIV infections, and as many as one million deaths due to the disease [2]. Importantly, these annual numbers are much reduced, as the numbers of newly infected patients has declined by 35% since 2000, and the mortality rate has also declined by almost 50%. The decline in HIV infections is thought to be due to increased use of condoms, a reduction in the prevalence of sexually transmitted infection, and the increased use of effective therapies, such as the three-drug therapy anti-retroviral therapy (ART). The number of HIV patients now receiving antiretroviral therapy has increased from ~685,000 in 2000 to 20.9 million in 2017 [2].

While HIV is a significant cause of morbidity and mortality worldwide, the sub-Sahara region of Africa is burdened with the largest number of HIV cases [2]. Of the 37 million cases of HIV, the sub-Saharan Africa is home to ~70%, although it has only 21% of the world’s population. In fact, African men and women worldwide are more affected by this disease than any other race [2,3]. Only ten countries in southern and eastern Africa, including South Africa (25%), Nigeria (13%), Mozambique (6%), Uganda (6%), Tanzania (6%), Zambia (4%), Zimbabwe (6%), Kenya (6%), Malawi (4%) and Ethiopia (3%), account for approximately 80% of HIV patients [2,3]; In most countries, the prevalence of HIV is the highest in specific groups including men who have sex with men, intravenous drug users, people in prisons and other confined settings, sex workers and transgender individuals. However, unlike other countries, the primary HIV transmission mode in sub-Saharan Africa is through heterosexual sex, with a concomitant epidemic in children through vertical transmission [3]. As a consequence, African women are disproportionately affected and make up ~58% of the total number of people living with HIV, have the highest number of children living with HIV and the highest number of AIDS related deaths [2].

New data from coding complete genome analyses of US serum samples from 1978 to 1979 revealed that the US HIV-1 epidemic that occurred in the 1970s was extensively genetically diverse [4]. Bayesian phylogenetic analyses of HIV-1 genomes suggest that the US epidemic emerged from a preexisting Caribbean epidemic with the place of the ancestral US virus being New York City [4]. The analysis of gag, pol and env RNA sequences placed the US sequences in a monophyletic clade nested within Caribbean subtype B sequences from Haiti, and other Caribbean countries, as well as Haitian immigrants in the US [4]. The data further suggested that the US clade emerged from the early growth phase of the Caribbean epidemic (1969–1973), which began after the introduction of the subtype B lineage from Africa about 1967 [4]. The Centers for Disease Control eventually made the connections between homosexual men with AIDS and Kaposi’s syndrome and sexual transmission of an infectious agent [5,6].

1.1. Pathophysiology

The HIV virus is a retrovirus that is able to integrate a DNA copy of the viral genome into the DNA of the host cells. The virus enters the cell through receptors that are expressed on the surface of T lymphocytes (activated T lymphocytes are preferred targets), monocytes, macrophages and dendritic cells [1,7]. To gain entry to the host cell, HIV-1 binds to the chemokine receptor 5 or the CXC chemokine receptor 4 through interactions with the envelope proteins. After fusion and uncoating, single stranded RNA is reverse transcribed into HIV DNA, and then integrated into the host DNA. HIV DNA is transcribed to viral mRNA and exported to the cytoplasm where it is translated to viral Gag, Gag-Pol, and Nef polyproteins, which are then cleaved later during virion assembly and maturation at the cell surface or after release of the new viral particles. Current therapies inhibit many of the steps
in this process, such as entry inhibitors, reverse transcriptase inhibitors, integrase strand transfer inhibitors and protease inhibitors [1,7].

1.2. Diagnosis

Detection of the HIV virus in the blood is usually measured as viral RNA load and infection is associated with an acute symptomatic period that includes fever, general malaise, lymphadenopathy, rash, myalgias, however serious consequences such as meningitis have also been reported [7,8]. During the period of acute infection, the plasma levels of HIV RNA are at their highest and the severity of symptoms is associated with the level of viral load. It has been suggested that viral characteristics and viral load determine both the replication and pathogenesis. Thus, the clinical outcomes and disease progression are dependent not only on the host, but also on the viral genotype [7]. HIV is difficult to completely eradicate as it establishes a quiescent or latent infection within the memory CD4+ T cells, which have a stem-cell-like capacity for self-renewal. Once the HIV DNA is integrated into the host chromatin, the virus can repeatedly initiate replication as long as that cell exists. While ART can prevent new cells from becoming infected, it cannot eliminate infection once the DNA has successfully integrated into the target cell. The lymph nodes harbor the virus because of limited antiretroviral drug penetration, and limited host clearance mechanisms, and serves as a source of virus recrudescence in individuals who stop or interrupt their therapy. It has been suggested that ART therapy may be needed for several decades before the viral reservoir might decay to negligible levels.

1.3. Current Treatments for HIV/AIDS

Although HIV was recognized early in the 1980s, there is still no cure or an effective vaccine for HIV infection, but there have been some significant advances in treatment, control, and prevention [9]. The introduction of anti-retroviral agents and highly active antiretroviral therapy (HAART) in 1996 significantly reduced the morbidity and mortality of HIV/AIDS. Antiretroviral therapy is currently recommended for all adults with HIV. Recommendations for initial regimens include two nucleoside reverse transcriptase inhibitors (NRTIs; abacavir with lamivudine or tenofovir disoproxil fumarate with emtricitabine) and an integrase strand transfer inhibitor, such as dolutegravir, elvitegravir, or raltegravir; a nonnucleoside reverse transcriptase inhibitor (efavirenz or rilpivirine) or a boosted protease inhibitor (darunavir or atazanavir) [10]. Alternative regimens are also available. Protease inhibitor monotherapy is generally not recommended, but NRTI-sparing approaches may be considered. Suspected treatment failure warrants rapid confirmation, performance of resistance testing while the patient is receiving the failing regimen, and evaluation of reasons for failure before consideration of switching therapy. Alterations in therapeutic regimens due to adverse effects, convenience, or to reduce costs should be carefully considered so as not to jeopardize antiretroviral potency. Research continues into HIV vaccines and antimicrobial agents, however other major advances in HIV prevention has been voluntary male medical circumcision [11,12], as well as antiretrovirals for the prevention of mother to child transmission [13–16].

The reduction in the morbidity and mortality of the disease has changed it from a fatal disease to a chronic, manageable condition [2,3,11,12]. Interestingly, the increased survival rate has resulted in an aging HIV/AIDS population, which has presented a whole new set of issues including a higher prevalence of chronic diseases in this population, such as cardiovascular and pulmonary diseases, malignancies and even a unique set of comorbidities, which are now designated as HIV-associated non-AIDS (HANA) conditions.

Antiretroviral agents remain the cornerstone of HIV treatment and prevention [17]. It is currently recommended that all HIV-infected patients with detectable virus, regardless of their CD4 cell count, should be treated with anti-retroviral therapy (ART) soon after diagnosis to prevent disease progression, improve clinical outcomes including reducing AIDS-associated events, non-AIDS-related events, and all-cause mortality, as well as to decrease transmission [17]. These recommendations are supported by large randomized controlled clinical trials it is recommended that all HIV-infected individuals
with detectable plasma virus receive treatment with recommended initial regimens consisting of an integrase strand transfer inhibitors (InSTI) plus two nucleoside reverse transcriptase inhibitors (NRTIs). When used effectively, the anti-retroviral agents suppress HIV and prevent new HIV infections. It has been suggested that with these treatment regimens, that survival rates among HIV-infected adults can approach those of uninfected adults [17].

1.4. New Drug Therapies for HIV

A recent review of HIV therapies with new mechanisms of action in phase 2 clinical trials has reported on drugs with new mechanisms of action, including histone deacetylase (HDAC) inhibitors, gene therapies, broadly neutralizing anti-HIV antibodies, immune modulation, and drugs with new mechanisms to block HIV entry [18]. The new therapies are being developed for both as add-on therapy to existing combination antiretroviral therapy and as agents to be used during treatment interruption. The current drugs in development have had varying degrees of success in the early trials. Each of these new drugs may potentially fill a void in current antiretroviral therapy (ART) therapies, which will ultimately lead to improved outcomes in HIV-infected individuals.

1.5. Natural Products and Herbal Medicines for HIV

Although effective, ART is not without serious adverse events, which is especially evident in persons undergoing long-term treatment. In addition, the current therapies are limited by emergence of multidrug resistance [19], and new drugs and novel targets are needed to overcome the issues of HIV reservoirs in the body in order to have the complete eradication of HIV and AIDS. Latently infected cells remain a primary barrier to eradication of HIV-1. Over the last ten years the molecular mechanism by which HIV latency persists has led to the discovery of a number of drugs that are able to selectively reactivate latent proviruses without inducing polyclonal T cell activation [20]. Interestingly, histone deacetylase (HDAC) inhibitors, including vorinostat are able to induce HIV transcription from latently infected cells. Vorinostat has been shown to increase the susceptibility of CD4+ T cells to infection by HIV in a dose- and time-dependent manner, does not enhance viral fusion with cells, but increases reverse transcription, nuclear import, and integration, and enhances viral production in a spreading-infection assay. HDAC inhibitors, particularly vorinostat, are currently being investigated clinically as part of a “shock-and-kill” strategy to purge latent reservoirs of HIV [20].

Since new drugs will be needed for the management of HIV, the World Health Organization (WHO) has suggested the that ethnomedicines and other natural products should be systematically tested against HIV as they may yield effective and more affordable therapeutic agents (World Health Organization [21,22]. Interestingly, a significant amount of work in this area was performed in the 1990s, particularly investigations of natural products with activities against HIV-1 reverse transcriptase, HIV-1 and -2 proteases and integrases (extensively reviewed by Kurapati et al. [23]). The natural products calanolides (coumarins), ursolic and betulinic acids (triterpenes), baicalin (flavonoid), polycitine A (alkaloid), lithospermic acid (phenolic compound) have been proposed as promising candidates for anti-HIV agents [23]. However, most of these studies are in vitro, and too few investigations have been performed in vivo or in human studies. In terms of clinical data, a meta-analysis assessed 12 clinical trials involving 881 patients with AIDS to determine the efficacy of traditional Chinese medicines (TCM). The results showed that TCM interventions were associated with significantly reduced plasma viral load compared with placebo. This study further suggested that TCM interventions were significantly more effective than placebo for reducing plasma viral load and increasing CD4+ T lymphocyte count in patients with AIDS. However, when compared with conventional Western medicine, TCM interventions were significantly less effective in reducing viral load, but were associated with improved symptoms in a larger number of patients, with fewer adverse events [24]. Thus, there is significant potential for natural products and traditional medicines for the management of HIV infections and symptoms but in vivo and human studies are lacking.
2. Traditional Knowledge on Plants Used against HIV

Medicinal plants can be a promising alternative for various diseases and conditions [25–46]. The 717 species belonging to 151 families are reported in this article. The taxonomy of the plant species plays a significant role in the proper identification. The website, http://www.theplantlist.org and http://www.tropicos.org/Home.aspx were considered as the authentic sources of information in resolving the ambiguity of the names related to plants. A list of plant species with inhibition studies is summarized in Table 1. A majority of the inhibition studies are carried out on the crude extracts of the plant material by various solvents, while limited literature is available on the isolated natural products for different inhibition studies. Table 2 lists all the names which are reported in this article and their synonyms are reported in the literature.

The Food and Drug Administration (FDA or USFDA) classifies antiretroviral drugs for HIV infection into the following categories:

1. Multi-class Combination Products,
2. Nucleoside Reverse Transcriptase Inhibitors (NRTIs),
3. Nonnucleoside Reverse Transcriptase Inhibitors (NNRTIs),
4. Protease Inhibitors (PIs),
5. Fusion Inhibitors,
6. Entry Inhibitors—CCR5 co-receptor antagonist and
7. HIV integrase strand transfer inhibitors.

For better understanding, 1st, 5th and 6th types are not explicitly mentioned in this article. 2nd and 3rd classes are categorized into HIV-reverse transcription (HIV-RT), 4th type as HIV-protease (HIV-PR) and 7th type as HIV-integrase (HIV-IN). Painter et al. [47] Konvalinka et al. [48] and Blanco et al. [49] have reviewed the roles of HIV-RT, HIV-PR and HIV-IN, respectively. Also, Matthée et al. [50] have discussed the natural inhibitors of HIV-RT.

Of these 717 species, HIV-RT, HIV-PR, and HIV-IN are reported for 206, 254 and 43 species, respectively. Apart from these three inhibitor studies, researchers have also evaluated 390 species for other enzyme inhibition studies which are grouped under anti-HIV activities.
Table 1. List of plant species exhibiting different human immunodeficiency virus (HIV)-inhibition activities.

Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
Acanthaceae	*Andrographis paniculata* (Burm. f.) Wall. ex Nees	Aerial part	Crude			Crude [51,52]
Acanthaceae	*Avicennia marina var. rumphiana* (Hallier f.) Bakh.	Seed				Iridoid glycoside [53]
Acanthaceae	*Avicennia officinalis* L.	Leaf	Crude			Crude [54]
Acanthaceae	*Justicia adhatoda* L.					Crude [56]
Acanthaceae	*Justicia gendarussa* Burm.f.	Aerial part	Crude			Crude [57]
Acanthaceae	*Rhinacanthus nasutus* (L.) Kurz	Aerial part	Crude			Crude [58]
Acanthaceae	*Strobilanthes casia* (Nees) Kuntze					Crude [59]
Acoraceae	*Acorus calamus* L.	Rhizome	Crude			Crude [58]
Adoxaceae	*Sambucus ebulus* L.	Whole plant	Crude			Crude [61]
Adoxaceae	*Sambucus nigra* L.	Whole plant	Crude			Crude [62,63]
Adoxaceae	*Sambucus racemosa* L.	Leaf, Fruit	Crude			Crude [62,64]
Adoxaceae	*Sambucus williamsii* Hance	Roots, Fruits				Crude [65,66]
Adoxaceae	*Viburnum opulus* L.	Leaf, Fruit	Crude			Crude [62]
Aizoaceae	*Sceletium tortuosum* (L.) N.E. Br.		Crude			Crude [67]
Alismataceae	*Alisma plantago-aquatica* L.	Rhizome				Crude [66]
Amaranthaceae	*Achyranthes bidentata* Blume					Crude [66,69]
Amaranthaceae	*Achyranthes japonica* (Miq.) Nakai	Root				Crude [66]
Amaranthaceae	*Aerva lanata* (L.) Juss. ex Schult.	Root	Phytoterosols [70]			
Amaranthaceae	*Alternanthera brasiliensis* (L.) Kuntze					Crude [71]
Amaranthaceae	*Alternanthera philoxeroides* (Mart.) Griseb.	Aerial part				Crude [72,73]
Amaryllidaceae	*Allium sativum* L.	Bulb	Crude			Crude [58]
Amaryllidaceae	*Crinum amabile* Donn ex Ker Gawl.	Bulb	Crude			Crude [74]
Amaryllidaceae	*Crinum macowanii* Baker	Bulb	Crude			Crude [75]
Amaryllidaceae	*Hymenarthus albiflos* Jacq.					Crude [76]
Amaryllidaceae	*Leucojum vernum* L.	Bulb	Alkaloids [77]			
Amaryllidaceae	*Pamianthe peruviana* Anonymous	Bulb	Crude			Crude [74]
Amaryllidaceae	*Tulbagha alliacea* Anonymous	Bulb				Crude [78]
Amaryllidaceae	*Tulbagha violacea* Harv.	Bulb	Crude			Crude [75]
Anacardiaceae	*Lannea edulis* (Sond.) Engl.	Bulb				Crude [79]
Anacardiaceae	*Mangifera indica* L.	Stem bark				Crude [80]
Anacardiaceae	*Rhus chinesis* Mill.	Leaf, Root, Stem, Bark, Fruit				Read phyto [81]
Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
-----------------	-------------------------------	------------	----------------------------	--------------	----------------------------	---
Anacardiaceae	*Schinus molle* L.	Leaf	Crude [82]			
Anacardiaceae	*Spondias pinnata* (L. f.) Kurz	Fruit	Crude [58]			
Anacardiaceae	*Toxicodendron ascinmunatum* (DC.) C.Y. Wu & T.L. Ming	Gall	Crude [85]			
Anacrostocladaeae	*Ancistrocladus korupensis* D.W. Thomas & Gereau	Root	Naphthylisoquinoline alkaloids [84]	Crude [85]	Naphthylisoquinoline alkaloids [86]	
Annonaceae	*Annona glabra* L.	Fruit	Alkaloids [87]			
Annonaceae	*Annona senegalensis* Pers.	Leaf	Crude [80]			
Annonaceae	*Annona squamosa* L.	Fruit	Diterpenoids [86]			
Annonaceae	*Dasymachalon rostratum* Merr. & Chun	Stem	Phenypropanoid derivatives [89]			
Annonaceae	*Dasymachalon sootepense* Craib	Leaf	Alkaloids, Flavonoid [90]			
Annonaceae	*Polyalthia suberosa* (Roxb.) Thwaites	Stem bark	Crude [57]			Triterpene [91] and 2-substituted furans [92]
Annonaceae	*Xylopia frutescens* Aubl.	Bark	Crude [93]			
Apiaceae	*Aepidea amatymbica* Eckl. & Zeyh.					Rosmarinic acid [94]
Apiaceae	*Ammi vinage* (L.) Lam.	Fruit	Crude [95]			
Apiaceae	*Anethum graveolens* L.	Seed	Crude [83]			
Apiaceae	*Angelica dahurica* (Fisch.) Benth. & Hook. f.	Root	Crude [66]			
Apiaceae	*Angelica gigaserrata* Maxim.	Aerial part	Crude [96]			
Apiaceae	*Apium graveolens* L.	Fruit	Crude [83]			
Apiaceae	*Cryptotaenia japonica* Hassk.	Aerial part	Crude [96]			
Apiaceae	*Foeniculum vulgare* Mill	Fruit	Crude [66]			
Apiaceae	*Lomatium suksdorff* (H. Watson) J.M. Coulth. & Rose	Fruit	Coumarins [97]			
Apiaceae	*Malus sieversii* Gillet & Hook.	Leaf, Stem	Crude [82]			
Apiaceae	*Ridolfia segetum* (L.) Moris					Essential oils [98]
Apiaceae	*Saposnkoavia divaricata* (Turcz.) Schischk.					
Apiaceae	*Toreia japonica* (Houtt.) DC.	Seed	Crude [96]			
Apocynaceae	*Aristolochia rusa* (L.) R. Br.	Stem bark	Crude [56]			
Apocynaceae	*Carissa bispinosa* Desf. ex Brenan	Roots	Crude [99]			
Apocynaceae	*Catharanthus roseus* (L.) G. Don	Leaf	Crude [56]			
Apocynaceae	*Cynanchum atratum* Bunge	Root	Crude [66]			
Apocynaceae	*Cynanchum paniculatum* (Bunge) Kitag.	Root	Crude [66]			
Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
-----------------	------------------------	------------	----------	---------	--------	-----------
Apocynaceae	Gymnema sylvestre (Retz.) R. Br. ex Schult.	Crude [99]				
Apocynaceae	Hemidesmus indicus (L.) R. Br. ex Schult.					
Apocynaceae	Hoodia gordonii (Masson) Sweet ex Decne.	Crude [101]				
Apocynaceae	Paraemia laricigata (Juss.) Moldenke	Bark		Crude [101]		
Apocynaceae	Rauwolfia serpentina (L.) Benth. ex Kurz	Crude [100]	Crude [101]			
Apocynaceae	Sesamum indicum	Root		Crude [56]		
Apocynaceae	Tabernaemontana stapfiana Britten					
Araceae	Alocasia odora (Roxb.) K. Koch	Rhizome	Crude [68]			
Araliaceae	Acanthopanax koreanum Nakai	Stem bark	Crude [66]			
Araliaceae	Eleutheroococcus sessiliflorus (Rupr. & Maxim.) S.Y. Hu	Crude [66]	Crude [66]			
Araliaceae	Kalopanax pictus (Thunb.) Nakai	Stem bark	Crude [66]			
Araliaceae	Panax ginseng C.A. Mey.	Root	Triterpenoids [103]		Saponin [104]	
Araliaceae	Panax notoginseng (Burkill) F.H. Chen ex C.H. Chow	Crude [60,83]	Crude [105]			
Araliaceae	Panax zingiberensis C.Y. Wu & K.M. Feng	Rhizome		Zingibroside [106]		
Areaceae	Areca catechu L.	Seed	Crude [60,83]			
Areaceae	Attalea tessmannii Burret	Seed	Crude [82]			
Aristolochiaceae	Aristolochia bracteolate Lam.	Fruit	Crude [74]			
Aristolochiaceae	Aristolochia contorta Bunge	Fruit	Crude [95]			
Aristolochiaceae	Aristolochia manshurianum Kom.	Stem	Ossoperezonone [107]			
Aristolochiaceae	Asarum sieboldii Miq.	Root	Crude [66]			
Asparagaceae	Anemarrhena asphodeloides Bunge	Rhizome	Crude [66]			
Asparagaceae	Asperagus cochinchinensis (Loutr.) Merr.	Root	Crude [66]			
Asparagaceae	Asparagus racemosus Willd.	Root	Crude [56]			
Asparagaceae	Dactylis glomerata (Loutr.) S.C. Chen	Aerial part	Crude [58]			
Asteraceae	Acanthoserum hispidum DC.	Aerial part	Crude [74]			
Asteraceae	Achyranthes alata (Kunth) DC.	Flower, Stem	Crude [82]			
Asteraceae	Achyranthes flaccida (Weinm.) DC.	Flower	Crude [108]			
Asteraceae	Achyranthes sativoides (Lam.) DC.	Flower	Crude [82]			
Asteraceae	Ainsliaea acerifolia Sch. Bip.	Whole plant	Crude [82]			
Asteraceae	Ambrosia artemisiifolia L.	Whole plant	Crude [82]			
Asteraceae	Ambrosia maritima L.	Aerial part	Crude [56]			
Asteraceae	Ambrosia persimilis All.	Leaf, stem	Crude [82]			
Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
--------------	--------------------------------	------------	--------	--------	--------	-------------------------------
Asteraceae	Anvillea garcinii (Burm. f.) DC.	Aerial part				Germacranolides [109]
Asteraceae	Arctium lappa L.	Aerial part		Crude	Crude	[60]
Asteraceae	Artemisia absinthium L.	Leaf				Crude [105]
Asteraceae	Artemisia annua L.	Aerial part				Crude [82]
Asteraceae	Artemisia capillaris Thunb.	Aerial part, Seed	Crude			[68]
Asteraceae	Artemisia princeps Pamp.	Leaf				Crude [66,96]
Asteraceae	Artemisia verlotorum Lamotte					Crude [110]
Asteraceae	Aspilia pluriseta Schweinf. ex Schweinf.	Aerial part				Crude [111]
Asteraceae	Aster tataricus L. f.	Root		Crude		[68]
Asteraceae	Atractylodes japonica Koedz.	Root		Crude		[66]
Asteraceae	Atractylodes lancea (Thunb.) DC.	Rhizome				Crude [112]
Asteraceae	Atractylodes ovata (Thunb.) DC.	Rhizome		Crude		[68]
Asteraceae	Baccharis genistemoides (Lam.) Pers.	Leaf, stem		Crude		[82]
Asteraceae	Baccharis latifolia (Ruiz & Pav.) Pers.	Leaf, stem		Crude		[82]
Asteraceae	Baccharis trimera (Less.) DC.	Leaf, stem		Crude		[82]
Asteraceae	Baccharis trinervis Pers.	Aerial part				Crude [95]
Asteraceae	Bidens pilosa L.	Aerial part		Crude		[95]
Asteraceae	Blumea balsamifera (L.) DC.					Crude [113]
Asteraceae	Broussonetia Bunge Kitam.	Aerial part				Crude [113]
Asteraceae	Calopogon acuminatus L.	Leaf				Crude [62]
Asteraceae	Carthamus tinctorius L.	Flower				Crude [66]
Asteraceae	Centaurea punctata Cass.	Leaf		Crude		[114]
Asteraceae	Chrysanthemum indicum L.	Capitulum		Crude		[60]
Asteraceae	Chrysanthemum morifolium Ramat.	Capitulum	Flavonoids [116]	Crude	[105]	[60,68]
Asteraceae	Cirsium japonicum DC.					Flavonoid [117]
Asteraceae	Cirsium prostratum (L.) L.	Whole plant				Crude [117,118]
Asteraceae	Elephantopus scaber L.	Leaf		Crude		[68]
Asteraceae	Espartium lindleyanum DC.	Aerial part				Crude [96]
Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
--------------	------------------------------------	------------------	--------	--------	--------	----------
Asteraceae	Francoeuria crispa (Forssk.) Cass.	Leaf, stem	Crude			[121]
Asteraceae	Franseria artemiosioides Willd.		Crude			[82]
Asteraceae	Gamochaeta simplicialis (Willd. ex Spreng.) Cabrera		Crude			[122]
Asteraceae	Geigeria alata (DC.) Oliv. & Hiern	Leaf, stem	Crude			[108]
Asteraceae	Gynura pseudochina (L.) DC.	Leaf	Crude			[121]
Asteraceae	Gynura pseudochina (L.) DC.	Leaf	Crude			[57]
Asteraceae	Helianthus tuberosus L.	Whole plant	Crude			[96]
Asteraceae	Helichrysum acutatum DC.	Aerial part	Crude			[123]
Asteraceae	Helichrysum alliosides Less.	Aerial part	Crude			[123]
Asteraceae	Helichrysum anomalum Less.	Aerial part	Crude			[123]
Asteraceae	Helichrysum appendiculatum (L. f.) Less.	Aerial part	Crude			[123]
Asteraceae	Helichrysum auroritum Sch. Bip.	Aerial part	Crude			[123]
Asteraceae	Helichrysum cephaloideum DC.	Aerial part	Crude			[123]
Asteraceae	Helichrysum chinosphaerum DC.	Aerial part	Crude			[123]
Asteraceae	Helichrysum conferum N.E. Br.	Aerial part	Crude			[123]
Asteraceae	Helichrysum cymosum (L.) D. Don ex G. Don	Aerial part	Crude			[123]
Asteraceae	Helichrysum difficile Hilliard	Aerial part	Crude			[123]
Asteraceae	Helichrysum drakensbergense Killick	Aerial part	Crude			[123]
Asteraceae	Helichrysum herbaceum (Andrews) Sweet	Aerial part	Crude			[123]
Asteraceae	Helichrysum melanacme DC.	Aerial part	Crude			[123]
Asteraceae	Helichrysum micostifillum DC.	Aerial part	Crude			[123]
Asteraceae	Helichrysum natalitium DC.	Aerial part	Crude			[123]
Asteraceae	Helichrysum nudifolium (L.) Less.	Aerial part	Crude			[123]
Asteraceae	Helichrysum odoratissimum (L.) Sweet	Aerial part	Crude			[123]
Asteraceae	Helichrysum oreophilum Dunster	Aerial part	Crude			[123]
Asteraceae	Helichrysum oxyphyllum DC.	Aerial part	Crude			[123]
Asteraceae	Helichrysum pallidium DC.	Aerial part	Crude			[123]
Asteraceae	Helichrysum panduratum O. Hoffm.	Aerial part	Crude			[123]
Asteraceae	Helichrysum pannosum DC.	Aerial part	Crude			[123]
Asteraceae	Helichrysum pilosifolium (L. f.) Less.	Aerial part	Crude			[123]
Asteraceae	Helichrysum populifolium DC.	Aerial part	Crude			[123]
Table 1. Cont.

Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
Asteraceae	Helichrysum rugulosum Less.	Aerial part	Crude			[123]
Asteraceae	Helichrysum splendidum (Thunb.) Less.	Aerial part	Crude			[123]
Asteraceae	Helichrysum subulatum Burtt Davy	Aerial part	Crude			[123]
Asteraceae	Helichrysum sutherlandii Harv.	Aerial part	Crude			[123]
Asteraceae	Helichrysum umbaculigerum Less.	Aerial part	Crude			[123]
Asteraceae	Helichrysum vernum Füllard	Aerial part	Crude			[123]
Asteraceae	Hieracium pilosella L.	Whole plant	Crude			[61]
Asteraceae	Hieracium umbellatum L.	Whole plant	Crude			[96]
Asteraceae	Inula britannica L.	Flower	Crude			[66]
Asteraceae	Inula helenium L.	Root	Crude			[66]
Asteraceae	Ixeris tamagawaensis (Makino) Kitam.	Aerial part	Crude			[124]
Asteraceae	Lactuca raddiana Maxim.	Whole plant	Crude			[96]
Asteraceae	Miyamagunysa koraiensis (Nakai) Kitam.	Root	Crude			[96]
Asteraceae	Matutia acuminata Ruiz & Pav.	Leaf	Crude			[82]
Asteraceae	Perzizia multiora (Bonpl.) Less.	Leaf	Crude			[82]
Asteraceae	Pilosella officinarum FW. Schultz & Sch. Bip.	Whole plant	Crude			[61]
Asteraceae	Psidias dentata (Cass.) DC.		Coumarin			[125]
Asteraceae	Senotolina oblongfolia Boss.	Whole plant	Crude			[61]
Asteraceae	Serratula coronata L.	Leaf	Crude			[96]
Asteraceae	Scrobicula pisunata (Lam.) Kuntze ex Thell.	Leaf	Crude			[82]
Asteraceae	Senecio comans Sch. Bip.	Leaf	Crude			[82]
Asteraceae	Senecio matthesii Wedd.	Leaf	Crude			[82]
Asteraceae	Senecio rizomatus Rusby	Leaf	Crude			[82]
Asteraceae	Senecio sasandens Buch.-Ham. ex D. Don	Whole plant	Crude			[60]
Asteraceae	Serratula coronate L.	Aerial part	Crude			[96]
Asteraceae	Sigebeckia glabrescens (Makino) Makino	Whole plant	Crude			[66]
Asteraceae	Sonchus aleraceus L.	Leaf	Crude			[82]
Asteraceae	Symphyotrichum undulatum (L.) G.L.Nesom	Aerial part				[126]
Asteraceae	Tagetes riganez M. Ferraro	Leaf	Crude			[82]
Asteraceae	Tanacetum microphyllum DC.	Whole plant	Crude			[61]
Asteraceae	Taraxacum mongolicum Hand.-Mazz.	Whole plant	Crude			[68]
Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
--------------	---------------------------	------------	--------	--------	--------	----------
Asteraceae	Xanthium spinosum L.	Flower	Crude	[82]		
Berberidaceae	Berberis holstii Engl.	Root and Leaf	Crude	[127]		
Berberidaceae	Epimedium grandiflorum C. Morren	Aerial part	Crude	[21,72]		
Berberidaceae	Epimedium sagittatum (Siebold & Zucc.) Maxim.	Leaf	Crude	[68]		
Berberidaceae	Nandina domestica Thunb.	Leaf	Crude	[68]		
Betulaceae	Alnus firma Siebold & Zucc.	Leaf	Triterpenoids [126]			
Betulaceae	Alnus incana (L.) Moench	Leaf	Crude	[62]		
Bignoniaceae	Kigelia africana (Lam.) Benth.	Fruit	Crude	[105]		
Bignoniaceae	Spathodea campanulata P. Beauv.	Stem bark	Crude	[129]		
Bignoniaceae	Tecomella undulata (Sm.) Seem.	Leaf	Crude	[130]		
Blechnaceae	Blechnum spicant (L.) Sm.	Leaf	Crude	[62]		
Blechnaceae	Brainea insignis (Hook.) J. Sm.	Rhizome	Crude	[68]		
Blechnaceae	Woodwardia orientalis Sw.	Rhizome	Crude	[68]		
Blechnaceae	Woodwardia unigemmata (Makino) Nakai	Rhizome	Crude	[60]	Crude	[105]
Boraginaceae	Brachyacanthes parviflora Maxim. ex Oliv.	Leaf	Crude	[96]		
Boraginaceae	Cordia spinosae L.	Leaf	Crude	[93]	Crude	[93]
Boraginaceae	Lithospermum erythroborzii Siebold & Zucc.	Root	Crude	[60,68]	Crude	[105]
Boraginaceae	Lobostemon trigonae H. Baue	Root	Crude	[132]		
Brassicaceae	Brassica juncea (L.) Cerns.	Semen	Crude	[133]		
Brassicaceae	Brassica oleracea L.	Crude	[134]			
Brassicaceae	Brassica rapa L.	Crude	[134]			
Brassicaceae	Capsella bursa-pastoris (L.) Medik.	Whole plant	Crude	[82]		
Brassicaceae	Lepidium arvensefolium Turcz.	Leaf	Crude	[82]		
Brassicaceae	Raphanus raphanistrum L.	Crude	Inhibition [66]			
Cactaceae	Pilosus hiso (Kunth) DC.	Whole plant	Crude	[53]		
Calophyllaceae	Marilia pluricostata Standl. & L.O. Williams	Phenylcoumarins [135]				
Campanulaceae	Adenophora triflora (Thunb.) A. DC.	Root	Crude	[66]		
Campanulaceae	Platycodon grandiflorus (Jacq.) A. DC.	Root	Crude	[68]		
Cannabinaceae	Cannabis sativa L.	Fruit	Crude	[68]		
Cannabinaceae	Humulus lupulus L.					Flavonoid [136]
Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
---------------	---------------------------------	----------------	--------	--------	--------	----------------
Cannaceae	Canna indica L.	Rhizome	Crude	[57]		
Canellaceae	Warburgia ugandensis Sprague	Crude	[102]			
Capparaceae	Buscia senegalensis (Pers.) Lam. ex Poir.	Leaf	Crude	[74]		
Capparaceae	Capparis decidua (Forsik.) Edgew.	Stem	Crude	[74]		
Capparaceae	Crateva religiosa G. Forst.	Bark	Crude	[83]		
Caprifoliaceae	Loniceria japonica Thunb.	Flower bud	Crude	[135]	Crude	
Caprifoliaceae	Patrinia scabiosifolia Link	Root	Crude	[96]		
Caprifoliaceae	Patrinia villosa (Thunb.) Dufr.	Root	Crude	[68,96]		
Caprifoliaceae	Valeriana coarctata Ruiz & Pav.	Leaf				
Caprifoliaceae	Valeriana micropterina Wedd.					
Caprifoliaceae	Valeriana thalictroides Graebn.	Root				
Caryophyllaceae	Wightella suberosa L.H. Bailey	Stem	Crude	[96]		
Caryophyllaceae	Drymaria cordata (L.) Willd. ex Schult.	Leaf				
Caryophyllaceae	Drymaria diandra Blume		Alkaloid [138]			
Caryophyllaceae	Silene soulenensis Nakai	Aerial part	Crude	[96]		
Celastraceae	Cassine creoea (Thunb.) C.Presl		Glycoside [140]			
Celastraceae	Cassine schlechteriana Loes.		Crude	[141]		
Celastraceae	Celastrus binusii Benth.					
Celastraceae	Celastrus orbiculatus Thunb.	Root	Crude	[96]		
Celastraceae	Esonjumus alatus (Thunb.) Siebold	Leaf	Crude	[96]		
Celastraceae	Gymnosperma buchananii Loes.		Crude	[100]		
Celastraceae	Gymnosperma senegalensis (Lam.) Loes.	Root	Crude	[100]		
Celastraceae	Maytenus bucharanii (Loes.) R. Wilczek	Root, bark	Crude	[102]		
Celastraceae	Maytenus macrocarpus (Ruiz & Pav.) Brig.	Triterpene [144]				
Celastraceae	Maytenus senegalensis (Lam.) Exell	Stem	Crude	[102]	Crude	
Celastraceae	Salacia chinensis L.	Stem	Crude	[98]		
Celastraceae	Tripterygium wilfordii Hook. f.	Root	Salaspermic acid [145]			
Chenopodiaceae	Chenopodium ambrosioides L.	Leaf	Crude	[82]		
Chloranthaceae	Chloranthus japonicus Siebold	Whole plant	Disesquiterpenoids [149]	Crude	[96]	

Note: HIV-RT, HIV-PR, and HIV-IN denote activity against HIV-1 Reverse Transcriptase (RT), HIV-1 Protease (PR), and HIV-1 Integrase (IN), respectively.
Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
Cistaceae	Whole plant	Whole plant	Crude [61]	Crude [61]	Crude [61]	
Cistaceae	Tuberaria lignose Samp.	Whole plant	Crude [61]			
Cleomaceae	Clematis viscosa L.	Seed	Nevirapine [151]	Crude [85]		
Clusiaceae	Allamblackia stuhlmannii (Engl.) Engl.					Benzophenone [152]
Clusiaceae	Calophyllum brasiliense Cambess.	Leaf	Crude [153]	Dipyranocoumarins [154]	Coumarins [155]	
Clusiaceae	Calophyllum coriiferum Vesque					
Clusiaceae	Calophyllum cordato-oblongum Thwaites					
Clusiaceae	Calophyllum inophyllum L.	Bark	Crude [158]	Crude [158]	Crude [158]	Dipyranocoumarins [159] Inophyllum [160]
Clusiaceae	Calophyllum lanigerum Miq.					Calanolide [162]
Clusiaceae	Calophyllum rubiinoum M.R. Hend. & Wyatt-Sm.	Stem bark	Crude [165]			
Clusiaceae	Calophyllum tegumnitii Miq.					Pyranocoumarins [141]
Clusiaceae	Clusia quadrangular Bartlett					
Clusiaceae	Garcinia buchneri Engl.	Stem bark	Crude [153]			
Clusiaceae	Garcinia gymmi-zatta Roxb.	Leaf	Crude [158]	Crude [158]	Crude [158]	
Clusiaceae	Garcinia hamberty Hook. f.	Root				Xanthone [167]
Clusiaceae	Garcinia indica Choisy	Leaf	Crude [158]	Crude [158]	Crude [158]	
Clusiaceae	Garcinia kingoensis Engl.	Stem bark	Crude [166]			
Clusiaceae	Garcinia livingstonei T. Anderson	Fruit				Crude [168]
Clusiaceae	Garcinia mangostenu L.	Fruit bark	Crude [58]	Crude [169]		
Clusiaceae	Garcinia sensei Verde.	Stem bark	Crude [166]			
Clusiaceae	Garcinia smeathmannii (Planch. & Triana) Oliv.	Stem bark	Crude [166]			
Colchicaceae	Colchicum luteum Baker	Bulb				Crude [56]
Combretaceae	Anogeissus acuminata (Roxb. ex DC.) Guill., Perr. & A. Rich.					Lignans [170]
Combretaceae	Combretum adenogenium Steud. ex A. Rich.	Root, Leaf and Stem bark	Crude [171]			
Combretaceae	Combretum hartmannianum C. Schweinf.	Stem	Crude [74]			
Combretaceae	Combretum molle R. Br. ex G. Don	Root	Crude [172]			
Combretaceae	Combretum paniculatum Vent.	Leaf				
Combretaceae	Terminalia arjuna (Roxb. ex DC.) Wight & Arr.	Stem bark	Crude [68,63]			

Table 1. Cont.
Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
Combretaceae	Terminalia bellirica (Gaertn.) Roxb.	Fruit	Crude [58,175]	Crude [68]		Crude [176]
Combretaceae	Terminalia chebula Retz.	Fruit	Crude [58,175]	Crude [68,83]	Galloyl glycosides [177]	Crude [175]
Combretaceae	Terminalia sericea Burch. ex DC.	Crude [179]				
Convulvulacae	Argucia nervosa (Burm. f.) Bojer	Aerial part	Crude [57]			
Convulvulacae	Calystegia soldanella (L.) R. Br.	Leaf, Stem	Crude [96]			
Convulvulacae	Cuscuta chinensis Lam.	Fruit, Stem	Crude [96]			
Convulvulacae	Cuscuta japonica Choisy	Semen	Crude [66]			
Convulvulacae	Ipomoea aquatica Forsk.	Whole plant	Crude [57]			
Convulvulacae	Ipomoea cairica (L.) Sweet	Whole plant	Crude [57]			
Convulvulacae	Ipomoea carnea Jacq.	Aerial part	Crude [57]			
Convulvulacae	Merremia peltata (L.) Merr.	Crude [181]				
Cornaceae	Cornus walteri Wangerin	Aerial part	Crude [96]			
Cornaceae	Campylothea acuminata Decne	Rubitecan [182]				
Crassulaceae	Orostachys japonica A. Berger	Aerial part	Crude [183]			
Crassulaceae	Sedum album L.	Whole plant	Crude [61]			
Crassulaceae	Sedum maximum Hoffm.	Leaf	Crude [62]			
Crassulaceae	Sedum polytrichoides Hems.	Whole plant	Crude [96]			
Crassulaceae	Sedum roseum Scop.	Crude [96]				
Cucurbitaceae	Citrullus colocynthis (L.) Schrad.	Fruit peel	Crude [74]			
Cucurbitaceae	Cynoglossum pentaphyllum (Thunb.) Makino	Tuber	Crude [184]			
Cucurbitaceae	Hemsleya edeacephylla C. Y. Wu	Tuber	Crude [185]			
Cucurbitaceae	Momordica balsamina L.	Leaf	Crude [186]			
Cucurbitaceae	Momordica charantia L.	Seed, Fruit	Crude [187]			
Cucurbitaceae	Momordica cochinchenensis (Lour.) Spreng.	Semen	Crude [96]			
Cucurbitaceae	Trichosanthes kirilowii Maxim.	Semen	Crude [66,188]			
Cupressaceae	Cupressus sempervirens L.	Crude [189]				
Cupressaceae	Platycladus orientalis (L.) Franco	Crude [66]				
Cupressaceae	Thuja occidentalis L.	Crude [180]				
Cyperaceae	Bolboschoenus maritimus (L.) Palla	Crude [66]				
Cyperaceae	Cyperus rotundus L.	Rhizome	Crude [66]			
Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
------------------	-------------------------------	------------	--------	--------	--------	----------------
Davalliaceae	Davallia mariesii T. Moore ex Baker	Root				Crude [66]
Dioscoreaceae	Dioscorea bulbifera L.				Flavonoid [191]	
Dioscoreaceae	Dioscorea hispida Denst.	Rhizome				Crude Protease [66]
Dioscoreaceae	Dioscorea polystachya Turcz.					Crude inhibition [66]
Dioscoreaceae	Dioscorea tokoro Makino	Root				Crude inhibition [66]
Dipterocarpaceae	Monotes africana A. DC.					Crude [192]
Dryopteridaceae	Cyrtomium fortunii J. Sm.	Rhizome				Crude Protease [66]
Dryopteridaceae	Dryopteris crassirhizoma Nakai	Rhizome	Flavonoid [193]	Triterpenes [194]		
Ebenaceae	Euclia natalensis A. DC.					Naphthoquinone [195]
Elaeocarpaceae	Elaeocarpus grandiflorus Sm.	Fruit				Crude [58]
Ephedraceae	Ephedra americana Humb. & Bonpl. ex Willd.	Stem				Crude [82]
Ephedraceae	Ephedra sinica Stapf	Stem			Crude [196]	Crude [68]
Equisetaceae	Equisetum arvense L.	Stem				Crude [82]
Equisetaceae	Equisetum giganteum L.	Stem				Crude [82]
Equisetaceae	Equisetum hyemale L.	Aerial part				Crude [66]
Erythroxylaceae	Erythroxylum citrifolium A. St.-Hil.	Trunk				Crude [93]
Eucomiaceae	Eucommia ulmoides Oliv.	Stem bark				Crude [66]
Euphorbiaceae	Alysonia macrostachya Jacq.	Leaf				Crude [93]
Euphorbiaceae	Alchornea cordifolia (Schumach. & Thonn.) Müll. Arg.	Leaf				Crude [80]
Euphorbiaceae	Balsamoporum solanifolium (Geiseler) Suresh					Crude [99]
Euphorbiaceae	Chamaesyce hyoscyfolia (L.) Small	Whole plant				Crude [93]
Euphorbiaceae	Croton bilbergians Mull. Arg.	Trunk				Crude [93]
Euphorbiaceae	Croton gratusimus Burch.					Crude [74]
Euphorbiaceae	Croton ligulum L.	Seed				Crude [197]
Euphorbiaceae	Croton zambesiacus Mull. Arg.	Seed				Crude [95]
Euphorbiaceae	Euphorbia erythropedia Boiss.	Aerial part				Triterpene [198]
Euphorbiaceae	Euphorbia granulata Forsk.	Leaf				Crude [95]
Euphorbiaceae	Euphorbia hirta L.	Whole plant				Crude [58]
Euphorbiaceae	Euphorbia hysopifolia L.	Whole plant				Crude [93]
Euphorbiaceae	Euphorbia kansui T.N. Liou ex S.B. Ho					Crude [199]
Euphorbiaceae	Euphorbia neriifolia L.	Stem bark				Diterpenoids [200,201]
Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
----------------	-------------------------------	------------	--------	--------	--------	----------
Euphorbiaceae	Euphorbia polyacantha Boiss.	Crude [74]				
Euphorbiaceae	Euphorbia prostrata Aiton					
Euphorbiaceae	Euphorbia thunbergiana.	Aerial part				
Euphorbiaceae	Homalanthus nutans (G. Forst.) Guill.					
Euphorbiaceae	Jatropha curcas L.	Leaf				
Euphorbiaceae	Mallotus japonicus (L.f.) Müll.Arg.	Tannins [203]				
Euphorbiaceae	Mallotus philippensis (Lam.) Müll. Arg.	Flower				
Euphorbiaceae	Maprounea africana Müll. Arg.	Leaf	Xanthone	Crude [90-93]	Crude [80-93]	Triterpene [205]
Fabaceae	Neobalanus japonicus (Siebold & Zucc.) Esser	Leaf	Crude [96]			
Fabaceae	Ricinus communis L.	Leaf	Lectins [206]	Crude [83]		
Fabaceae	Sapium indicum Willd.	Fruit	Crude [58]			
Fabaceae	Shirakoupis indica (Willd.) Esser					
Fabaceae	Trigonostemon thyridoides Stapf	Stem	Diterpene	Triterpene [208,209]		
Fabaceae	Abrus precatorius L.	Seed	Saponins [210]			
Fabaceae	Acacia catechu (L. f.) Willd.	Resin	Crude [58]			
Fabaceae	Acacia mellifera (Vahl) Benth.	Stem bark	Crude [102]			
Fabaceae	Acacia nilotica (L.) Willd. ex Delile	Bark	Crude [95]			
Fabaceae	Albizia gummifera (J.F. Gmel.) C.A. Sm.	Stem bark	Crude [102]			
Fabaceae	Albizia procera (Roxb.) Benth.		Crude [113]			
Fabaceae	Astragalus propinquus Schischk.	Aerial part	Crude [68]			
Fabaceae	Astragalus spinosus Muschl.	Aerial part	Triterpene [213]			
Fabaceae	Bauhinia straphulina Craib					
Fabaceae	Bauhinia variegata L.		Crude [134]			
Fabaceae	Butea monosperma (Lam.) Taub.	Root				
Fabaceae	Caesalpinia bonduc (L.) Roxb.	Seed	Crude [83]			
Fabaceae	Caesalpinia sappan L.	Stem	Crude [58]			
Fabaceae	Cassia fistula L.	Bark	Crude [68,63]			
Fabaceae	Castanospermum auratum A. Gunn. & C. Fraser	Alkaloid [214]				
Fabaceae	Cullen corylifolium (L.) Medik.					
Fabaceae	Detarium microcarpum Guill. & Perr.	Flavonoids [215]				
Table 1. Cont.

Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
Fabaceae	*Elephantorrhiza elephantine* (Burch.) Skeels	Bulb				Crude [79]
Fabaceae	*Erthrina abpoosinica* Lam.	Bark	Crude [74]	102		Alkaloids [216]
Fabaceae	*Erthrina senegalensis* DC.					Flavonoids [217]
Fabaceae	*Eucnrena formosana* (Hayata) Ohwi					Crude [218]
Fabaceae	*Gleditsia japonica* Miq.	Fruit				Saponin [219]
Fabaceae	*Glycine max* (L.) Merr.		Crude [134]			
Fabaceae	*Glycyrrhiza glabra* L.					Crude [56,221]
Fabaceae	*Glycyrrhiza uralensis* Fisch. ex DC.					Crude [222]
Fabaceae	*Hylodendron gabunense* Taub.					Saponin [219]
Fabaceae	*Lespedeza juncea* (L. f.) Pers.	Whole plant				Crude [96]
Fabaceae	*Lespedeza tomentosa* (Thunb.) Siebold ex Maxim.	Leaf				Crude [96]
Fabaceae	*Melilotus suaveolens* Ledeb.	Whole plant				Crude [96]
Fabaceae	*Milletta erythrocalyx* Gagnep.	Leaf				Flavonoid [224]
Fabaceae	*Peltophorum africanum* Sond.	Stem bark	Crude [172]		Crude [172]	Betulinic acid [225]
Fabaceae	*Phaseolus vulgaris* L.	Seed				[223]
Fabaceae	*Pongamia pinnata* (L.) Pierre	Bark	Flavonoids [227]		Crude [83]	
Fabaceae	*Prosopis glandulosa* Torr.	Leaf				Oleanolic acid [228]
Fabaceae	*Pueraria lobata* L.	Leaf				Crude [82]
Fabaceae	*Pterocarpus marsupium* Roxb.					Crude [229]
Fabaceae	*Pueraria montana* (Lour.) Merr.					Crude [66]
Fabaceae	*Sessilia indica* L.	Bark				Crude [65]
Fabaceae	*Securigera securidaca* (L.) Degener & Dorrll.	Aerial part				Kaempferol [230]
Fabaceae	*Senna alata* Roxb.	Aerial part				Crude [57]
Fabaceae	*Senna garrettiana* (Crab) H.S.Irwin & Barneby	Aerial part				Crude [113]
Fabaceae	*Senna obtusifolia* (L.) H.S. Irwin & Barneby	Aerial part				Crude [231]
Fabaceae	*Senna occidentalis* (L.) Link	Leaf				Crude [56]
Fabaceae	*Sophora flavescens* Astron	Root	Crude [196]		Crude [105]	
Fabaceae	*Sophora japonica* L.	Flower				Crude [66]
Fabaceae	*Sophora tonkinensis* Gagnep.	Root	Crude [60,68]			
Fabaceae	*SPATHOLOBUS SUBRECTUS* Dunn	Rhizome	Crude [60,68]		Crude [105]	
Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
------------	--	-----------------	--------	--------	--------	------------------
Fabaceae	*Styphnolobium japonicum* (L.) Schott	Flower bud			Crude [68]	
	Sutherlandia frutescens (L.) R. Br.					Crude [132]
Fabaceae	*Tephrosia purpurea* (L.) Pers.	Root				Crude [83]
Fabaceae	*Vigna unguiculata* (L.) Walp.	Seed			Crude [83]	
Fagaceae	*Quercus infectoria* Olivier	Fruit		Crude [58]		
Fagaceae	*Quercus robur* L.					Crude [175]
Flacourtiaceae	*Hydnocarpus anthelminticus* Pierre ex Laness.	Semen				Crude [66]
Gentianaceae	*Gentiana asclepiada* L.	Leaf			Crude [62]	
Gentianaceae	*Gentiana macrophylla* Pall.	Root		Crude [68]		
Gentianaceae	*Gentiana scabra* Bunge	Root		Crude [68]		
Gentianaceae	*Suerita bimaculata* (Siebold & Zucc.) Hook. f. & Thomson ex C.B. Clarke				Sesterterpenoid [232]	
Gentianaceae	*Suerita franchetiana* Harry Sm.	Root		Xanthone [204]		Xanthone [233]
Gentianaceae	*Suerita punicea* Hemsl.			Crude [234]		
Gentianaceae	*Tripterospermum lancolatum* (Hayata) H. Hara ex Satake		Crude [235]			
Gesneriaceae	*Drynaria serrulata* (Jacq.) Mart.	Leaf			Crude [95]	
Ginkgoaceae	*Ginkgo biloba* L.	Semen	Crude [236]	Crude [236]	Ginkgolic acid [237]	Crude [66]
Gunneraceae	*Gunnera magellanica* Lam.	Stem				Crude [82]
Hydrangeaceae	*Philadelphus schrenkii* Rupe.	Stem			Crude [96]	
Hydrocharitaceae	*Thalassia testudinum* Banks & Sol. ex K.D. Koernig					Crude [238]
Hypericaceae	*Cratoxylum arborescens* Blume	Leaf				Xanthones [239]
Hypericaceae	*Hypericum capitatum* Choisy					Crude [240]
Hypericaceae	*Hypericum hircinum* L.		Crude [241]			
Hypericaceae	*Hypericum perforatum* L.					Crude [242]
Hypericaceae	*Vismia baccifer* (L.) Triana & Planch.		Crude [155]			
Hypericaceae	*Vismia cayennensis* (Jacq.) Pers.	Leaf				Crude [243]
Hypoxidaceae	*Hypoxis hemerocallidea* Fisch., C.A. Mey. & Avé-Lall.	Corm	Crude [75]			
Iridaceae	*Aristea ecklonii* Baker					
Iridaceae	*Eleutherine bulbosa* (Mill.) Urb.	Bulb			Crude [75]	Naphthoquinone [245]

Table 1. Cont.
Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
Iridaceae	Iris domestica (L.) Goldblatt & Mabb.	Crude [68]				
Juglandaceae	Juglans mandshurica Maxim.	Bark		Crude [96]		Glycosides [246]
Lamiaceae	Aegiphila anomala Pittier	Leaf	Crude [93]			
Lamiaceae	Agastache rugosa (Fisch. & C.A. Mey.) Kuntze	Whole plant	Crude [60,96]	Crude [247]	Crude [248]	
Lamiaceae	Ajuga decumbens Thunb.					Crude [249]
Lamiaceae	Anisomeles indica (L.) Kuntze					Diterpenoid [250]
Lamiaceae	Clinopodium bolivianum (Benth.) Kuntze	Leaf				Crude [82]
Lamiaceae	Clinopodium chinense (Benth.) Kuntze	Whole plant	Crude [96]			
Lamiaceae	Coleus forskohlii (Willd.) Briq.	Aerial part				Crude [56,251]
Lamiaceae	Cornutia grandifolia (Schldfl. & Cham.) Schauer	Trunk				Crude [93]
Lamiaceae	Cornutia pyramidata L.					Crude [93]
Lamiaceae	Hyptis capitata Jacq.	Whole plant				Oleanolic acid [228]
Lamiaceae	Hyptis lanatifolia Post.					
Lamiaceae	Hyssopus officinalis L.	Leaf				Crude [252]
Lamiaceae	Isodon excisus (Maxim.) Kudô	Whole plant	Crude [96]			
Lamiaceae	Isodon inflexus (Thurb.) Kudô					Crude [96]
Lamiaceae	Leonurus leonurus (L.) R. Br.	Leaf	Crude [75]	Crude [75]		
Lamiaceae	Leonurus japonicae Houtt.					
Lamiaceae	Leonurus sibiricus L.	Aerial part				Crude [96]
Lamiaceae	Lycopus lucidus Turcz. ex Benth.	Whole plant				Crude [68]
Lamiaceae	Marrubium vulgare L.	Leaf	Crude [92]			
Lamiaceae	Melhania articulata (Miq.) Makino	Whole plant	Crude [96]			
Lamiaceae	Melissa officinalis L.	Whole plant				Crude [255]
Lamiaceae	Mentha arvensis L.	Leaf	Crude [66]			
Lamiaceae	Mentha canadensis L.	Whole plant				Crude [66,69]
Lamiaceae	Mentha longifolia (L.) Huds.					Crude [254]
Lamiaceae	Minthostachys mollis Cris.	Leaf				Crude [82]
Lamiaceae	Mosla scabra (Thurb.) C.Y. Wu & H.W. Li	Whole plant	Crude [96]			
Lamiaceae	Ocimum basilicum L.	Leaf	Crude [98]			
Lamiaceae	Ocimum kilimandscharicum Baker ex Gürke					Crude [256]
Lamiaceae	Ocimum labiatum (N.E. Br.) A. J. Paton					Triterpenoid [256]
Table 1. Cont.

Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
Lamiaceae	Ocimum tenuiflorum L.	Leaf	Crude	[54,58]		
Lamiaceae	Perilla frutescens (L.) Britton	Leaf				
Lamiaceae	Plectranthus amboinicus (Lour.) Spreng.	Leaf		Crude	[85,59]	
Lamiaceae	Plectranthus barbatus Andrews					
Lamiaceae	Pogostemon heynanus Benth.	Leaf				Crude [66]
Lamiaceae	Prunella vulgaris L.	Whole plant		Crude	[60]	
Lamiaceae	Rosmarinus officinalis L.					
Lamiaceae	Salvia haemkei Benth.					
Lamiaceae	Salvia miltiorrhiza Bunge	Root	Crude	[60,68]		
Lamiaceae	Salvia officinalis L.	Leaf		Crude	[262]	
Lamiaceae	Salvia resolute Ruiz & Pav.					
Lamiaceae	Salvia yunnanensis C.H. Wright	Root				Polyphenol [265]
Lamiaceae	Satureja canescens Ten.	Whole plant				
Lamiaceae	Satureja obovata Lag.	Whole plant				
Lamiaceae	Scutellaria baicalensis Georgi	Root	Crude	[60,68]		Flavonoid [266]
Lamiaceae	Teucrium buxifolium Schreib.	Whole plant				
Lamiaceae	Vitis glabrata R. Br.	Branche	Crude	[57]		
Lamiaceae	Vitis negundo L.	Aerial part	Crude	[57]		
Lamiaceae	Vitis trifolia L.	Aerial part	Crude	[57]		
Lardizabalaceae	Akebia quinata (Houtt.) Decne.	Lignum				
Lardizabalaceae	Stauntonia abortifolia Hayata					
Lauraceae	Cinnamomum laurifolium Nees	Stem bark	Crude	[58]		
Lauraceae	Cinnamomum verum J. Presl	Leaf	Crude	[63]		
Lauraceae	Lindera aggregata (Samo) Kosterm.	Stem	Crude	[60]	Crude [266]	
Lauraceae	Lindera chaunii Merr.					Sesquiterpenoid [269]
Lauraceae	Lindera elongata Makino	Leaf	Crude	[270]		
Lauraceae	Lindera obtusiloba Blume	Leaf, Stem	Crude	[96]		
Lauraceae	Litsea glutinosa (Lour.) C.B. Rob.	Bark	Crude	[83]		
Lauraceae	Litsea verticillata Honda	Leaf	Crude	[38]		
Liliaceae	Amara edulis (Miq.) Honda		Crude	[196]		
Liliaceae	Asparagopsis (Miq.) Honda		Crude	[196]		
Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
-----------------	--------------------------------	------------	--------	--------	--------	----------
Liliaceae	*Fritillaria cirrhosa* D. Don	Rhizome	Crude	[60]	Crude	[105]
Liliaceae	*Fritillaria thunbergii* Miq.	Rhizome	Crude	[68]		
Liliaceae	*Cassyphea pentlandii* (Paxton ex Graham) G. Don ex Loudon	Leaf				Crude [82]
Loganiaceae	*Strychnos ignatii* P.J. Bergius	Semen				Crude [66]
Loganiaceae	*Strychnos nuxvomica* L.	Seed	Crude	[58]		
Loganiaceae	*Strychnos potatorum* L. f.	Seed	Crude	[83]		
Loranthaceae	*Scurrula parasitica* L.	Aerial part	Crude	[68]		
Lycopodiaceae	*Lycopodium japonicum* Thunb.	Aerial part	Crude	[58,83]		
Lythraceae	*Lythrum salicaria* L.	Leaf	Crude	[62]		
Lythraceae	*Panica granatum* L.	Fruit bark	Crude	[58]	Crude	[68,83]
Lythraceae	*Woodfordia fruticosa* (L.) Kurz					
Magnoliaceae	*Magnolia biindi* Pamp.	Flower bud	Crude	[68]		
Magnoliaceae	*Magnolia demutat* Desr.	Flower	Crude	[96]		
Magnoliaceae	*Magnolia obovata* Thunb.	Bark	Crude	[68]		
Magnoliaceae	*Magnolia officinalis* Rehdler & E.H. Wilson	Bark	Crude	[68]		
Malpighiaceae	*Tetrapterys goasudiana* Triana & Planch.					
Malvaceae	*Adansonia digitata* L.	Leaf	Crude	[273]	Crude	[275]
Malvaceae	*Corchoropsis tomentosa* (Thur.) Makino	Aerial part				
Malvaceae	*Cresia mollis* Juss.	Root	Crude	[102]		
Malvaceae	*Hibiscus sabdariffa* L.	Flower	Crude	[58]		
Malvaceae	*Paroia schiedeana* Steud.	Aerial part	Crude	[93]		
Malvaceae	*Sida cordata* (Burm. f.) Boess. Waalck.	Root	Crude	[83]	Polyphenols [274]	
Malvaceae	*Sida myorensis* Wright & Arn.	Seed	Crude	[68]	Polyphenols [274]	
Malvaceae	*Sida rhombifolia* L.	Leaf	Crude	[80]	Polyphenols [274]	
Malvaceae	*Theosperma papulnea* (L.) Sol. ex Corrêa					
Malvaceae	*Tilia amurensis* Rupr.	Leaf, Stem	Crude	[96]		
Malvaceae	*Waltheria indica*	Branch	Crude	[93]		
Meliaceae	*Aeglea lauvi* (Wight) C.J. Saldanha	Leaf	Crude	[276]		
Meliaceae	*Azadirachta indica* A. Juss.	Leaf	Crude	[58,102]	Crude	[83,95]
Meliaceae	*Khaya senegalensis* (Desr.) A. Juss.				Crude	[95]
Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
-------------------	--------------------------------	------------	--------	--------	--------	----------
Meliaceae	Melia azedarach L.	Fruit	Crude	[102]		
Meliaceae	Swietenia macrophylla King	Crude	[66]			
Meliaceae	Swietenia mahagoni (L.) Jacq.	Bark	Crude	[276]		
Meliaceae	Trichilia emetica Vahl		Crude	[95]		
Meliaceae	Bersama alphavirica Fresen.	Root				Crude [174]
Menispermaceae	Couscinium fenestratum Colebr.	Gali	Crude	[158]	[83,158]	[158]
Menispermaceae	Pericampylus glaucus (Lam.) Merz.	Aerial part				Alkaloids [279]
Menispermaceae	Sinomenium acutum (Thunb.) Rehder & E.H. Wilson	Root	Crude	[96]		
Menispermaceae	Stephanita cephalantha Hayata	Root				Crude [286]
Menispermaceae	Tinopora crispa (L.) Hook. f. & Thomson	Vine	Crude	[57]		Crude [281]
Menispermaceae	Tinospora sinensis (Lour.) Merr.	Stem bark	Crude	[54]		Crude [56]
Menyanthaceae	Nymphoides peltata (S.G. Gmel.) Kuntze	Whole plant				Crude [66]
Monimiaceae	Bolidea fragrans Endl.		Crude	[82]		
Moraceae	Artocarpus heterophyllus Lam.	Seed	Crude	[58]		
Moraceae	Ficus carica L.	Leaf				Crude [124]
Moraceae	Ficus edelstii King	Bark	Crude	[68]		
Moraceae	Ficus racemosa L.	Bark	Crude	[282]		
Moraceae	Ficus religiosa L.	Bark	Crude	[83]		
Moraceae	Maclura cochinchinensis (Lour.) Corner	Stem	Crude	[58]		
Moraceae	Maclura tinctoria (L.) D. Don ex Steud.	Stem	Crude	[58]		
Moraceae	Morus alba L.	Stem bark	Crude	[66]		
Moringaceae	Mortuga oleifera Lam.	Seed	Crude	[58,74]		
Musaceae	Musa acuminate Colla	Fruit				Lectin [284]
Myricaceae	Morella salicifolia (Hochst. ex. A. Rich.) Verdc. & Polhill	Root bark	Crude	[102]		
Myricaceae	Myrica salicifolia Hochst. ex. A. Rich.	Root bark	Crude	[102]		
Myristicaceae	Myristica fragrans Houtt.	Stem	Crude	[58]		Crude [83]
Myrothamnaceae	Myrothamnus flabellifolius Welw.	Leaf	Polyphenol	[285]		
Myrtaceae	Combria citriodora (Hook.) K.D. Hill & L.A.S. Johnson	Seed	Crude	[80]		
Myrtaceae	Eucalyptus citriodora Hook.	Leaf	Crude	[80]		
Myrtaceae	Eugenia biennis Cambess.					Glycosides [286]
Table 1. Cont.

Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
Myrtaceae	*Psidium guajava* L.	Leaf				Saponin [287]
Myrtaceae	*Syzygium aromaticum* (L.) Merr. & L.M. Perry	Siquegium claviflorum (Roxb.) Wall. ex A.M. Cowan & Cowan	Leaf			Oleanolic acid [228]
Myrtaceae	*Syzygium cumini* (L.) Skeels	Bark		Crude [63]		
Nyctaginaceae	*Boerhavia caribaea* Jacq.	Leaf				Crude [82]
Nyctaginaceae	*Boerhavia diffusa* L.	Root				
Nyctaginaceae	*Boerhavia erecta* L.	Leaf				Glycosides [291]
Ochnaceae	*Ochna integerrima* (Lour.) Merr.	Leaf				Flavonoids [292]
Oleaceae	*Heisteria spiracae* Engl.	Bark				
Oleaceae	*Ximenia americana* L.	Stem bark				
Oleaceae	*Ximenia caffra* Sond.	Leaf				Crude [293]
Oleaceae	*Chionanthus retusus* Lindl. & Paxton	Leaf				Crude [96]
Oleaceae	*Ligustrum lucidum* W.T. Aiton	Fruit		Crude [60]	Crude [105]	
Onagraceae	*Epilobium angustifolium* L.	Leaf				Crude [62]
Onagraceae	*Oenothera erythrosepala* (Borbás) Borbás	Leaf				Oenothein [294]
Onocleaceae	*Matteuccia struthiopteris* (L.) Tod.	Rhizome				
Orchidaceae	*Arundina graminifolia* (D. Don) Hochr.	Whole plant				Crude [295]
Orchidaceae	*Bletilla striata* (Thunb.) Rchb. f.	Root				Crude [66]
Orchidaceae	*Dendrobium moniliforme* (L.) Soc.	Whole plant				Crude [66]
Orobanchaceae	*Melampyrum roseum* Maxim.	Whole plant				Crude [96]
Orobanchaceae	*Pedicularis resupnata* L.	Whole plant				Crude [96]
Orobanchaceae	*Rehmannia glutinosa* (Gaertn.) Lisobos. ex Fisch. & C.A. Mey.	Root				Crude [66]
Paremiaceae	*Paonia lactiflora* Pall.	Leaf				Crude [66]
Paremiaceae	*Paonia suffruticosa* Andrews	Root		Crude [60,68]	Crude [105]	
Papaveraceae	*Argemone mexicana* L.	Leaf				Crude [56]
Papaveraceae	*Papaver somniferum* L.	Seed				Crude [56]
Papaveraceae	*Linnea florida* (L.) Weber ex F.H. Wigg.	Whole plant				Crude [82]
Pentaphylacaceae	*Ternstroemia gymnanthera* (Wight & Arn.) Sprague	Aerial part				Oleanolic acid [228]
Phrymaceae	*Peyryia leptostachya* L.	Whole plant				Crude [96]
Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
------------	----------------------------	------------	--------	--------	--------	----------
Phyllanthaceae	Aporosa cardiosperma (Gaertn.) Merr.	Crude [99]				
Phyllanthaceae	Bridelia ferruginea Benth.	Stem bark			Crude [80]	
Phyllanthaceae	Bridelia micrantha (Hochst.) Baill.	Root		Crude [296]		
Phyllanthaceae	Hymenocardia acida Tul.	Leaf			Crude [80]	
Phyllanthaceae	Phylanthus amarus Schumach. & Thonn.	Crude [297]				
Phyllanthaceae	Phylanthus emblica L.	Fruit		Crude [83]		Crude [175]
Phyllanthaceae	Phylanthus myriophyllus Moon ex Hook. f.	Lignans [137]				
Phyllanthaceae	Phylanthus niruri L.	Crude [296]			Crude [108]	
Phyllanthaceae	Phylanthus selloianus (Klotzsch) Mull. Arg.	Crude [122]				
Pinaceae	Pinus nigra J.F. Arnold	Seed		Crude [299]		
Pinaceae	Pinus peregrina Siebold & Zucc.	Cone		Crude [300]		
Piperaceae	Piper aduncum L.	Leaf		Crude [82]		
Piperaceae	Piper elongatum Vahl	Leaf		Crude [82]		
Piperaceae	Piper longum L.	Fruit		Crude [82]		
Plantaginaceae	Digitalis purpurea L.	Leaf		Crude [301]		
Plantaginaceae	Scopaia dulcis L.	Leaf		Crude [301]		
Plumbaginaceae	Plumbago indica L.	Root		Crude [58]		
Poaceae	Chrysopogon zizanioides (L.) Roberthy	Root		Crude [83]		
Poaceae	Coix lacryma L.	Seed		Crude [66]		
Poaceae	Cortaderia radiosa Stapf	Leaf		Crude [82]		
Poaceae	Scirpus officinalis L.	Stem		Crude [58]		
Poaceae	Sea lomas (Hack.) Makino & Shibata	Whole plant		Crude [96]		
Polemoniaceae	Centua hibrida Herrera	Leaf		Crude [82]		
Polygonaceae	Polygala tenuifolia Willd.	Root		Crude [66]		
Polygonaceae	Muehlenbeckia fruticosa (Walp.) Standl.	Leaf		Crude [82]		
Polygonaceae	Persicaria tinctoria (Alton) H. Gross	Whole plant		Crude [96]		
Polygonaceae	Polygonum articulare L.	Aerial part		Crude [66]		
Polygonaceae	Polygonum senticosum (Meissn.) Franch. & Sav.	Whole plant		Crude [96]		
Polygonaceae	Reynoutria japonica Houitt.	Root		Crude [68]		
Polygonaceae	Reynoutria multiflora (Thunb.) Moldenke	Crude [60]				
Polygonaceae	Rheum palmatum L.	Rhizome	Sennoside [302]	Crude [68]	Sennoside [302]	Sennoside [302]
Table 1. Cont.

Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
Polygonaceae	Rheum tanguticum Maxim. ex Balf.	Root				Glycosides [303]
Polygonaceae	Rumex crispus L.	Crude				[82]
Polygonaceae	Rumex cypricus Murb.			Crude	[175]	
Polygonaceae	Rumex frutescens Thouars	Root				[82]
Polygonaceae	Rumex nepalensis Spreng.	Crude				[111]
Polygonaceae	Rumex peruaeus Rech. f.	Leaf				[82]
Polypodiaceae	Drynaria roosi Nakaike	Rhiome				[68]
Polypodiaceae	Pleopeltis pyrocarnus (C. Chr.) A.R. Sm.	Crude				[82]
Polypodiaceae	Polypodium pyrocarnum C. Chr.	Root				[82]
Polypodiaceae	Pyrosia lingae (Thrub.) Farw.	Aerial part				[66]
Polypodiaceae	Polychrichum commum Hedw.		Crude			[62]
Portulacaceae	Portulaca oleracea L.	Aerial part		Crude	[68]	
Primulaceae	Ardisia japonica (Thrub.) Blume	Aerial part				[304]
Primulaceae	Embelia rhes Burm. f.	Fruit				[56]
Proteaceae	Conopsernum incurium Lindl.					[305]
Ranunculaceae	Aconitum ferox Wall. ex Ser.	Tuber				[83]
Ranunculaceae	Aconitum jahense Kom.	Root				[66]
Ranunculaceae	Aconitum subfomai Nakai	Root				[96]
Ranunculaceae	Actaea heracleifolia (Kom.) J. Compton	Rhizome				[68]
Ranunculaceae	Asarum chinensis Bunge	Root				[68]
Ranunculaceae	Clematis chinensis Osbeck	Root				[60,68]
Ranunculaceae	Clematis mandshurica Max.					[96]
Ranunculaceae	Coptis chinensis Franch.	Rhizome		Crude	[60,68]	Crude [105]
Ranunculaceae	Nigella sativa L.	Seed				[63]
Ranunculaceae	Pulsatilla cernua (Thrub.) Bercht. ex J. Presl	Root				[66]
Resedaceae	Reseda latif L.	Whole plant				[61]
Resedaeae	Reseda suffraticosa Loefl.	Whole plant				[61]
Rhamnaceae	Berchemia berchemifolia (Makino) Koidz.	Bark				[96,270]
Rhamnaceae	Rhamnus staddo A. Rich.					[102]
Rhamnaceae	Zizyphus spina-christi (L.) Desf.	Fruit				[74]
Rhizophoraceae	Rhizophora macrolimata Lam.	Leaf		Crude	[34]	Crude [55]
Rosaceae	Agrimonia pilosa Lede.	Whole plant				[96]
Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
-----------	------------------------------	------------	--------	--------	--------	--------------
Rosaceae	*Alchemilla andina* (L.M. Perry) J.F. Macbr.	Stem				Crude [82]
Rosaceae	*Chaenomeles sinensis* (Thouin) Koehne	Fruit				Crude [66]
Rosaceae	*Crataegus pinmatifida* Bunge	Leaf		Crude [96]	Triterpenes [306]	
Rosaceae	*Eriobotrya japonica* (Thunb.) Lindl.	Leaf		Crude [96]		Crude [66]
Rosaceae	*Malus baccata* (L.) Borkh.	Whole plant		Crude [66]		
Rosaceae	*Malus sieboldii* (Regel) Rehder	Stem		Crude [96]		
Rosaceae	*Pruina africana* (Hook. f.) Kalkman	Stem bark		Crude [102]		
Rosaceae	*Pruina armenica* L.	Seed		Crude [68]		
Rosaceae	*Pruina persica* (L.) Batsch	Semen		Crude [66]		
Rosaceae	*Pruina yedoensis* Matsum.	Stem bark		Crude [102]		
Rosaceae	*Rosa damascena* Mill.			Crude [307]		
Rosaceae	*Rosa davurica* Pall.			Crude [308]		
Rosaceae	*Rosa laevigata* Michx.	Fruit		Crude [66]		
Rosaceae	*Rosa s expanding Lindl.	Leaf		Oleanolic acid [228]		
Rosaceae	*Sangisivora minor* Scop.	Whole plant		Crude [61]		
Rosaceae	*Sangisivora officinalis* L.	Root		Crude [809]		
Rosaceae	*Sorbus commixta* Hedl.	Stem		Crude [96]		
Rosaceae	*Stephanandra incise* (Thunb.) Siebold & Zucc. ex Zabel	Crude [96]				
Rubiaceae	*Cantium coromandelicum* (Burm.f.) Alston	Leaf		Crude [310]		
Rubiaceae	*Cinchona pubescens* Vahl	Bark		Crude [82]		
Rubiaceae	*Cruciata glabrata* Ehrend.			Crude [62]		
Rubiaceae	*Galium aparine* L.	Leaf		Crude [62]		
Rubiaceae	*Galium mollugo* L.	Leaf		Crude [62]		
Rubiaceae	*Galium verum* L.	Whole plant		Crude [96]		
Rubiaceae	*Gardenia ternifolia* Schumach. & Thonn.			Crude [74]		
Rubiaceae	*Gardenia tubifera* Wall. ex Rosb.	Leaf	Cycloartanes [311]			
Rubiaceae	*Hedyotis corymbosa* (L.) Lam.			Crude [99]		
Rubiaceae	*Hedyotis diffusa* Wild.	Aerial part		Crude [66]		
Rubiaceae	*Morinda citrifolia* L.	Leaf	Crude [158]	Crude [158]	Crude [158]	
Rubiaceae	*Oldenlandia diffusa* (Wild.) Roxb.	Whole plant	Crude [60,68]	Crude [105]		
Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
--------------	--	------------	--------	--------	--------	----------
Rubiaceae	*Oldenlandia herbacea* (L.) Roxb.	Root	Crude			[83]
Rubiaceae	*Rubia cordifolia* L.	Root		Crude		[229]
Rubiaceae	*Sarcocephalus latifolius* (Sm.) Bruce					[95]
Rutaceae	*Aegle marmelos* (L.) Corrêa	Leaf		Crude		[83]
Rutaceae	*Citrus hystrix* DC.	Fruit bark				[58]
Rutaceae	*Clusena anisata*	root	Crude			[102]
Rutaceae	*Clusena exarata* (Willd.) Hook. f. ex Berth.	Aerial part				[57]
Rutaceae	*Dictamnus albus* L.	Root bark	Crude			[68]
Rutaceae	*Murraya koenigii* (L.) Spreng.	Aerial part				[57]
Rutaceae	*Phellodendron amurense* Repr.	Bark	Crude			[68]
Rutaceae	*Tetradium ruticarpum* (A. Juss.) T.G. Hartley					[83]
Rutaceae	*Todalia asiatica* (L.) Lam.	Root	Crude			[102]
Rutaceae	*Vepris simplicifolia* (Engl.) Mairay			Crude		[102]
Rutaceae	*Zanthoxylum bungeanum* Maxim.	Fruit peel				[68]
Rutaceae	*Zanthoxylum chalybeum* Engl.	Root bark	Crude			[102]
Rutaceae	*Zanthoxylum schinifolium* Siebold & Zucc.	Fruit peel				[68,96]
Salvadoraceae	*Salvadora persica* L.	Stem	Crude			[74]
Santalaceae	*Phoradendron juniperinum* Engelm. ex A. Gray	Whole plant				Crude
Santalaceae	*Viscum album* L.	Flower				Oleanolic acid [228]
Sapindaceae	*Acer okamotoanum* Nakai	Leaf				Flavonoid [316]
Sapindaceae	*Acer pictum* Thunb.	Stem	Crude			[96]
Sapindaceae	*Aesculus chinesis* Bunge	Seed				Triterpenoid [317]
Sapindaceae	*Aesculus turbinata* Blume	Fruit	Crude			[96]
Sapindaceae	*Allophylus cobbe* (L.) Raesch.	Leaf				Crude [318]
Sapindaceae	*Dodonaea viscosa* Jaq.	Leaf				[62,174]
Sapindaceae	*Koelreuteria paniculata* Laxm.	Stem	Crude			[96]
Sapindaceae	*Nepheleium lappaceum* L.	Seed	Crude			[319]
Sapindaceae	*Serjania mexicana* (L.) Willd.	Whole plant				Crude
Sapodaceae	*Madhuca longifolia* (J. Koenig ex L.) J.F. Macbr.	Bark				[56]
Sapodaceae	*Mimusops elengi* L.	Bark	Crude			[320]
Sapodaceae	*Tieghemella heckelii* Pierre ex A. Chev.	Leaf				Crude

Table 1. Cont.
Table 1. Cont.

Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
Sauruaceae	Houttuynia cordata Thunb.	Aerial part	Crude [66,322]			
Sauruaceae	Saururus chinensis (Lour.) Baill.	Rhizome	Lignans [323]			
Saxifragaceae	Astilbe grandis Stapf ex E.H. Wilson	Aerial part	Crude [96]			
Saxifragaceae	Astilbe rubra Hook. f. & Thomson ex Hook.	Whole plant	Crude [96]			
Schisandraceae	Illicium verum Hook. f.	Root	Phytochemicals [324]			
Schisandraceae	Kadsura angustifolia A.C. Sm.		Lignans [325]			
Schisandraceae	Kadsura heteroclit (Roeb.) Craib		Triterpenoid [326]			Crude [327]
Schisandraceae	Kadsura longipedunculata Finet & Gagnep.		Lignans [328]			
Schisandraceae	Schisandra chinensis (Turcz.) Baill.	Fruit	Protease [68]			
Schisandraceae	Schisandra lancifolia (Rehder & E.H. Wilson) A.C. Sm.	Leaf, Stem	Triterpenoid [329]	Nortriterpenoid [330]		
Schisandraceae	Schisandra propinqua Hook. f. & Thomson	Aerial part	Lignans [331]			
Schisandraceae	Schisandra rubriflora (Franch.) Rehder & E.H. Wilson		Lignans [332]			
Schisandraceae	Schisandra sphenanthera Rehder & E.H. Wilson	Stem	Triterpenoid [333]	Triterpenoid [333]		
Schisandraceae	Schisandra sphenanthera Rehder & E.H. Wilson	Leaf, Stem	Triterpenoid [334]	Nortriterpenoid [335]		
Schisandraceae	Schisandra wilsoniana A.C. Sm.	Fruit	Lignans [336]			
Scrophulariaceae	Buddleja officinalis Maxim.	Flower	Crude [66]			
Scrophulariaceae	Scrophularia buergeriana Muq.	Root	Crude [96]			
Scrophulariaceae	Scrophularia hakuroensis Franch.	Aerial part	Crude [96]			
Scrophulariaceae	Verbascum densiflorum Bertol.		Crude [62]			
Scrophulariaceae	Verbascum thapsiforme Schrad.		Crude [62]			
Selaginellaceae	Selaginella tamariscina (P. Beauv.) Spring	Aerial part	Crude [66]			
Simaroubaceae	Ailanthus altissima (Mill.) Swingle	Stem bark	Crude [66]			
Simaroubaceae	Bruca javanica (L.) Merr.	Seed	Crude [58]	Crude [68]		
Simaroubaceae	Leitneria floridana Chapm.		Crude [337]			
Simaroubaceae	Quassia amara L.	Bark	Crude [82]			
Smilacaceae	Smilax campestres Griseb.	Root	Crude [82]			
Smilacaceae	Smilax china L.	Fruit	Crude [96]			Crude [338]
Solanaceae	Cestrum parqui L’Her.	Leaf	Crude [82]			
Solanaceae	Lycium chinense Mill.	Fruit	Crude [66]			
Solanaceae	Physalisstrum japonicum (Franch. & Sav) Honda	Aerial part	Crude [96]			
Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
-----------------	------------------------------	------------	--------	--------	--------	-------------------
Solanaceae	Solanum incanum L.					Betulinic acid [339]
Solanaceae	Solanum tomentosum L.					Crude [340]
Solanaceae	Solanum virginianum L.					Crude [341]
Solanaceae	Withania somnifera (L.) Dunal	Root		Crude [342]		
Staphyleaceae	Staphylea bumalda DC.	Whole plant				
Styracaceae	Styxys japonicas Siebold & Zucc.	Stem				Lignins [343]
Styracaceae	Styxys obassia Siebold & Zucc.	Stem				
Tamaricaceae	Tamarix senegalensis DC.					Crude [74]
Taxaceae	Taxus caespitosa Nakai	Stem				Crude [96]
Taxaceae	Taxus cuspidate Siebold & Zucc.	Stem				Crude [96]
Theaceae	Camellia japonica L.	Leaf				Crude [344]
Theaceae	Steurartia korai Nakai ex Rheder	Leaf				Crude [96]
Thymelaeaceae	Daphne acutiloba Rehder					Diterpene [345]
Thymelaeaceae	Daphne feddei H.Lév.	Leaf, Stem				Lignans [346]
Thymelaeaceae	Wikstroemia indica (L.) C.A. Mey.	Leaf				Crude [347]
Typhaceae	Typha domingensis Pers.					Crude [102]
Ulmaceae	Ulmus davidiana Planch.	Leaf, Stem				Crude [96]
Ulmaceae	Ulmus pumila L. Eng.	Bark				Crude [66]
Urticaceae	Myriophyllum helotii Engl.					Lectin [348]
Urticaceae	Phenax angustifolius (Kunth) Wedd.	Leaf				Lignans [349]
Urticaceae	Urtica dioica L.	Rhizome				Crude [62]
Urticaceae	Urtica macellamus Juss. ex Poir.	Leaf				Crude [82]
Urticaceae	Urtica urens L.	Leaf				Crude [82]
Verbenaceae	Lampaca medicinalis Phil.	Leaf				Crude [82]
Verbenaceae	Lippia javanica (Burm f) Spreng.	Phytochemicals [351]				
Verbenaceae	Stachypoditis jantzianensis (L.) Vahl	Whole plant				Crude [57]
Violaceae	Viola pohosensis Makino	Whole plant				Crude [60]
Vitaceae	Cissus quadrangularis L.	Stem				Crude [74]
Vitaceae	Vitis vinifera L.					Phytochemicals [352]
Xanthorrhoeaceae	Aloe ferox Mill.					Crude [353]
Xanthorrhoeaceae	Aloe vera (L) Burn. f.					Crude [354]
Family	Plant	Plant Part	HIV-RT	HIV-PR	HIV-IN	Anti-HIV
--------------	----------------------------	------------	--------	--------	--------	----------
Xanthorrhoeaceae	Asphodelus ramosus L.	Whole plant	Crude [61]			
Xanthorrhoeaceae	Bulbine alooides Willd.	Roots	Crude [75]	Crude [75]		
Zingiberaceae	Alpinia galangal (L.) Willd.		Crude [355]			
Zingiberaceae	Alpinia officinarum Hance	Root	Crude [68]	Crude [66]		
Zingiberaceae	Boesenbergia rotunda (L.) Mansf.		Phytochemicals [357]	Flavonoid [358]		
Zingiberaceae	Curcuma longa L.	Rhizome	Crude [58]	Crude [83]	Crude [359]	Crude [66]
Zingiberaceae	Curcuma zanthorrhiza Rosb.		Crude [58]			
Zingiberaceae	Elettaria cardamomum (L.) Maton	Fruit		Crude [83]		
Zingiberaceae	Kaempferia parviflora Wall. ex Baker		Crude [355]			
Zygophyllaceae	Balanites aegyptiacus (L.) Delile	Bark		Crude [95]		
Zygophyllaceae	Larrea tridentata (Sessé & Moc. ex DC.) Coville		Lignan [360]			
Zygophyllaceae	Tribulus terrestris L.	Fruit	Crude [95]			Crude [66]
Table 2. Plant names which are having synonyms found in the plantlist.org.

Reported Name	Accepted Name
Aglais andamanica Hiern	Aglais laura (Wight) C.J. Saldanha
Andropogon maricatatus Retz.	Chrysopogon zizanioides (L.) Roberty
Angelica koreana Maxim.	Angelica grosseserrata Maxim.
Aporous lindleyana (Wight) Baill.	Aporous cardioposperma (Gaertn.) Merr.
Asterol koraiensis Nakai	Miyamayomea koraiensis (Nakai) Kitam.
Aster scaber Elliott	Symphyotrichum undulatum (L.) G.L. Nesom
Astilbe chinensis (Maxim.) Franch. & Sav.	Astilbe rubra Hook. f. & Thomson ex Hook.
Astilbe koreana (Kom.) Nakai	Astilbe grandio Stapt ex E.H. Wilson
Astragalus membranaceus Moench	Astragulus propinquus Schischk.
Baliospernum montanum (Willd.) Müll. Arg.	Baliospernum solanifolium (Geiseiler) Suresh
Baphicacanthus cusia (Nees) Bremek.	Strobilanthes cusia (Nees) Kuntze
Belamcanda chinensis (L.) Redouté	Saposnikovia divaricate (Turcz.) Schischk.
Boreonbergia pandurata (Rosxb.) Schltr.	Boreonbergia rotunda (L.) Manf.
Brassica alboglabra L.H. Bailey	Brassica oleracea L.
Brassica campestris L.	Brassica rapa L.
Cauvalpina boudicca (L.) Fleming	Cauvalpina boudicca (L.) Roebb.
Carissa edulis (Forneuk.) Vahl	Carissa spinarum L.
Cassia argustellia Craib	Cassia argustellia Craib
Cassia accidentalis L.	Cassia argustellia Craib
Chamaesacce hypsophila (L.) Small	Euphorbia hypsophila L.
Cinnamomum heuffelacoe (Kom.)	Actaea heuffelacoe (Kom.) J. Compton
Clerodendrum inerme (L.) Gaertn.	Volkameria inerme L.
Coleus ambovicosus Lour.	Plectranthus ambovicosus (Lour.) Spreng.
Curcuma domestica Valeson	Curcuma longa L.
Cydonia vulgaris Pers.	Chamaemexis sinesis (Thouin) Koehne
Dictamnus dasyarbus Turez.	Dictamnus albus L.
Dodonaea angustifolia L. f.	Dodonaea viscoso Jacq.
Delichus biflorus L.	Vigna unguiculata (L.) Walp.
Drymara diandra Blume	Drymara cordata (L.) Willd. ex Schult.
Drymara fortunei (Kunze ex Mett.) J. Sm.	Drymara rovisi Nakaike
Elseonodendron crocuse (Thunb.) DC.	Cassia crocuse (Thunb.) C. Pres.
Eleuthera americana (Aubl.) Merr. ex K. Heyne	Eleuthera bulbosa (Mill.) Urb.
Enanta chlorantha Oliv.	Annicka chlorantha (Oliv.) Setten & Maas
Epninetrum villosa Trupolin	Albertisa villosa Forman
Erythroxylum lucidum Kunth	Erythroxylum macrophyllum Cav.
Eugenia carpophyllata Thunb.	Syzygium aromaticum (L.) Merr. & L.M. Perry
Eugenia jambolana Lam.	Syzygium cumini (L.) Skeels
Euapterum buniifolium Hook. ex Arn.	Acanthothyes buniifolius (Hook. ex Arn.) R.M. King & H. Rob.
Eucalytus ruticarpus (A. Juss.) Benth.	Tepladum ruticarpum (A. Juss.) T.G. Hartley
Ferula sambul (Kaufm.) Hook. f.	Ferula moschat (H. Reinsch) Koso-Pol.
Gardnia cambogia Rosb.	Gardinia gymno-gutta Rosb.
Gardinia edulis Exell	Gardinia buchneri Engl
Gardinia polyantha Oliv.	Gardinia smetanina (Plantch. & Triana) Oliv.
Gardinia japonicum Thunb.	Gardinia macrophyllum Willd.
Ginkgo biloba L.	Ginkgo biloba (L.) Rich.
Glycosmis montana Pierre	Glycosmis lanceolata (Blume) Teijms. & Binn. ex Kurz
Kadura inferior A.C. Sm.	Kadura heterociste (Rosxb.) Craib
Kalopanax pictus (Thunb.) Nakai	Aesor pictum Thunb.
Ledebuoria divaricate (Turcz.) Hiroe	Saposnikovia divaricate (Turcz.) Schischk.
Lespedea eunota (Dam. Cours.) G. Don	Lespedea junoca (L.) F. Pers.
Lindera glauca (Siebold & Zucc.) Blume	Lindera communis Hemsl.
Lithsea sotheri Pers	Lithsea glutinosa (Lour.) C.B. Rob.
Loranthus parasiticus (L.) Merr.	Scyrella parasitica L.
Madhuca indica J.F. Gmel.	Madhuca longifolia (J. Koenig ex L.) J.F. Macbr.
Magnolia fargesii (Finet & Gagnep.) W.C. Cheng	Magnolia biondii Pamp.
Magnopircus setosus Ruiz & Pav.	Magnopircus pinnatus (Lam.) Kuntze
Marptssus heterophylla (Eckl. & Zeyh.) N. Robson	Gymnosporia hetrophylla (Eckl. & Zeyh.) Loes.
Marptssus senegalensis (Lam.) Exell	Gymnosporia senegalensis (Lam.) Loes.
Melandrium seoulense (Nakai) Nakai	Silene seoulensis Nakai
Mentha haplocalyx Briq.	Mentha canadensis L.
Moa punctulata (J.F. Gmel.) (Nakai)	Moa seabra (Thunb.) C.Y. Wu & H.W. Li
Mutisia vicicfolia to. internodia Cuatrec.	Mutisia acuminate Ruiz & Pav.
Orthosiphon labiatus N.E. Br.	Ocimum labiatus (N.E. Br.) A.J. Paton
Persicaria senticosa (Meissn.) H. Gross ex Nakai	Polygonum senticosum (Meissn.) Franck. & Sav.
Peucedanum graveolens (L.) Hierrn	Anethum graveolens L.
Phoradendron juniperinum Engelm. ex A. Gray	Phoradendron ligatum Trel.
Polanisia kosandra (L.) Wight & Arn.	Cleome viscosa L.
Polygonum cuspidatum Sieb. et Zucc.	Reynoutria japonica Houtt.
Polygonum multiformum (Meissn.) H. Gross ex Nakai	Reynoutria multiflora (Thunb.) Moldenke
3. Plant Extracts and Some Secondary Metabolites with Anti-HIV Activity

Most of the world’s cultures have centuries of tradition in the use of plant materials in order to control diseases. With recent advancement in pharmacognosy and technology along with the current trends of a more health-conscious general public, natural products are becoming a popular resource for researchers to discover novel and more effective antiviral drugs, considering the relatively reduced adverse effects and cost effectiveness of natural products in commercial scale [361]. Plants, as evolutionary responses to infections by fungi, nematodes, and other organisms, to avoid herbivory, and to compete for light and space, produce numerous secondary metabolites such as phenolics, glycosides, alkaloids, coumarins, terpenoids, essential oils and peptides. These metabolites have been identified with different biological activities. Some of them play an important role in immune system enhancement, exhibiting antiviral potential [362], including viral infections associated with Human Immunodeficiency Virus type 1 (HIV-1) and 2 (HIV-2) as genetic variabilities. An increasing number of patients with HIV infection cannot use the currently approved anti-HIV drugs including the reverse transcriptase and protease inhibitors, due to the adverse reactions, particularly liver diseases, that have been reported for antiretroviral drugs. The best antiretroviral therapy (HAART) has also fallen short of completely suppressing HIV replication [363]. Therefore, the discovery and development of new anti-HIV agents or new mechanisms of activity from medicinal plants are required to reduce toxicity in drug application and to minimize side effects when compared with current synthetic drugs [364]. The potential utilization of plant extracts and their secondary metabolites to combat the development of anti-HIV agents is considered to be one of the most important approaches toward effective therapy for AIDS [365]. Bioassay-guided fractionation and isolation of secondary metabolites from medicinal plants according to their preliminary high throughput screenings provide systematic source to the novel compounds. The in vitro and in vivo evaluation affirmed the therapeutic potentials in these chemical compounds. Thus, traditional medicines can serve as sources of potential new drug candidates and initial research has focused on the isolation of bioactive lead compounds [366].

Many compounds with anti-HIV-1 effects have been screened and isolated from natural sources and discovered to inhibit HIV at nearly all stages of the viral life cycle. They include alkaloids, sulfated polysaccharides, polyphenolics, flavonoids, coumarins, phenolics, tannins, triterpenes,
lectins, phloroglucinols, lactones, iridoids, depsidones, O-caffeoyl derivatives, lignans, ribosome inactivating proteins, saponins, xanthones, naphthodianthrones, photosensitisers, phospholipids, quinones and peptides [367]. Natural products provide a large reservoir for screening of anti-HIV agents with novel structures and anti-viral mechanisms because of their structural diversity. A variety of natural products have been found to inhibit unique enzymes and proteins crucial to the life cycle of HIV including efficient intervention with the reverse transcription process, virus entry, and integrase and protease inhibition [368]. However the mechanism of anti-HIV activities of many natural products is still unknown. Some of the plant extracts have significantly inhibited the enzyme activity of HIV-1 replication and protected cells infected with HIV-1. These extracts with anti-HIV activity are also active against other retroviruses such as Herpes Simplex Virus (HSV). Most studies have used in vitro test systems for anti-HIV-1 enzyme assays such as HIV-1 reverse transcriptase colorimetric assay, HIV-1 integrase assay, and HIV-1 protease fluorogenic assay, but a few in vivo studies have been carried out using compounds isolated from natural sources [369]. The anti-HIV activities of extracts from some medicinal plants have been reviewed.

3.1. *Artemisia annua* L. (Asteraceae)

The anti-HIV activity of the tea infusion prepared from the Chinese medicinal plant identified as *Artemisia annua* L. by using the validated cellular systems were examined. The tea infusion of *Artemisia annua* was found to be highly active with IC\textsubscript{50} values as low as 2.0 µg/mL. In addition, artemisinin was found as inactive at 25 µg/mL and the related species *Artemisia afra* (not containing artemisinin) has also shown a similar level of activity [370].

3.2. *Astragalus membranaceus* Bunge (Fabaceae)

Astragalus membranaceus is well-known Chinese traditional medicine as an immunostimulant. Studies in immune-suppressed and immune-competent human patients have demonstrated restoration or augmentation of local graft versus host rejection using *Astragalus* extracts. These extracts have improved symptomology in HIV-infected patients. These results are suggested that the extracts of *Astragalus* to be safe, however mutagenecity has yet to be examined [115].

3.3. *Calendula officinalis* L. (Asteraceae)

In India, the flowers of *Calendula officinalis* are used in ointments for treating wounds, herpes, ulcers, frostbite, skin damage, scars and blood purification. The infusions prepared from the leaves have been used for treating varicose veins in traditional use. Dichloromethane-methanol (1:1) extract of *Calendula officinalis* flowers exhibited potent anti-HIV activity in in vitro (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide)(MTT)/tetrazolium-based assay. This activity was attributed to inhibition of HIV1-RT at a concentration of 1000 µg/mL as well as suppression of the HIV mediated fusion at 500 µg/mL [371]. The organic and aqueous extracts of dried flowers from *Calendula officinalis* were examined for their ability to inhibit the human immunodeficiency virus type 1 (HIV-1) replication. Both extracts were relatively nontoxic to human lymphocytic Molt-4 cells, but only the organic one exhibited potent anti-HIV activity in an in vitro MTT tetrazolium-based assay. In addition, in the presence of the organic extract (500 µg/mL), the uninfected Molt-4 cells were completely protected for up to 24 h from fusion and subsequent death, caused by cocultivation with persistently infected U-937/HIV-1 cells. It was also found that the organic extract from *Calendula officinalis* flowers caused a significant dose- and time-dependent reduction of HIV-1 reverse transcription (RT) activity. An 85% RT inhibition was achieved after a 30 min treatment of partially purified enzyme in a cell-free system. These results suggested that organic extract of flowers from *Calendula officinalis* are possessed anti-HIV properties of therapeutic interest [163].
3.4. Calophyllum lanigerum Miq. var. austrocoriaceum (T.C. Whitmore) P.F. Stevens (Clusiaceae)

Calophyllum lanigerum var. austrocoriaceum has been found to inhibit the cytopathic effects of in vitro HIV infection. Bioassay-guided fractionation of the extract and the chemical along with biological characterization of active constituents as coumarine derivatives have been reported [372]. The latex of Calophyllum teysmannii L. has shown to be active against HIV-1 reverse transcriptase mediated by soulattrolide, a coumarin isolated from the latex of Calophyllum teysmannii [373].

3.5. Cassia abbreviata Oliv. Oliv., C. sieberiana D.C. (Fabaceae)

Cassia abbreviata growing in Botswana used by traditional healers to manage HIV/AIDS, was tested for their inhibitory effects on HIV replication against a clone of HIV-1c (MJ4) measuring cytopathic effect protection and levels of viral p24 antigen in infected PBMCs. Cassia sieberiana and Cassia abbreviata extracts have shown significant inhibition of HIV-1c (MJ4) replication. Anti-HIV activity of Cassia sieberiana root and bark extracts, and Cassia abbreviata root extracts were occurred in a concentration-dependent manner with an effective concentration (EC₅₀) of 65.1 µg/mL, 85.3 µg/mL and 102.8 µg/mL, respectively [374].

3.6. Chelidonium majus L. (Papaveraceae)

The anti-retroviral activity of the freshly prepared crude extract of Chelidonium majus L. was examined and a low-sulfated poly-glycosaminoglycan moiety with molecular weight of ~3800 Da. was isolated from the extract [173]. The substance prevented infection of human CD4⁺ T-cell lines AA2 and H9 with HIV-1 at concentration of 25 µg/mL as well as the cell-to-cell virus spread in H9 cells continuously infected with HIV-1 were determined by the measurement of reverse transcriptase activity and p24 content in cell cultures. In addition, in a murine AIDS model that the treatment with purified substance significantly prevented splenomegaly and the enlargement of cervical lymph nodes in C57Bl/6 mice chronically infected with the pool of murine leukemia retroviruses were also reported [173].

3.7. Combretum molle (R. Br. ex. G. Don.) Engl & Diels (Combretaceae)

In vitro anti-HIV activity of various extracts prepared from the stem bark of Combretum molle widely used in Ethiopian traditional medicine for the treatment of liver diseases, malaria and tuberculosis has been assessed against human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2). The extracts were prepared by percolation with petroleum ether, chloroform, acetone and the methanol extract was obtained by successive hot extraction using Soxhlet apparatus. Selective inhibition of viral growth was assessed by the simultaneous determination of the in vitro cytotoxicity of each of the extracts against MT-4 cells [375]. The results obtained in this study indicate that the acetone fraction possessed the highest selective inhibition of HIV-1 replication. Phytochemical investigation of the acetone fraction has resulted in the isolation of two tannins and two oleanane-type pentacyclic triterpene glycosides. One of the tannins was identified as punicalagin (an ellagitannin), while the structure of the other (CM-A) has not yet been fully elucidated. On the other hand, both punicalagin and CM-A had displayed selective inhibition of HIV-1 replication with selectivity indices (ratio of 50% cytotoxic concentration to 50% effective antiviral concentration) of 16 and 25, respectively and afforded cell protection of viral induced cytopathic effect of 100% when compared with control samples.

3.8. Diospyros lotus L. (Ebenaceae)

Methanol extract of the fruits of Diospyros lotus were tested for anti-HIV-1 activity. Gallic acid was found the most active compound against HIV-1 with Therapeutic Index (TI) value of >32.84 and the other compounds were less potent active. Diospyros lotus fruits could provide a chemical reservoir of anti-HIV agents. All identified compounds were tested for their cytotoxicity and anti-HIV-1
activities. For positive control, the marketed drug azido-thymidine (AZT) was also tested as a reference according to the same methods. The activity data were described as 50% cytotoxicity concentration (CC_{50}), 50% effective concentration (EC_{50}%), and therapeutic index (TI), the ratio of CC_{50}/EC_{50}). Seven isolated phenolic compounds (CC_{50} > 200 µg/mL) have shown less toxicity to C8166 cells compared to ellagic acid (CC_{50} = 35.84 µg/mL). Gallic acid inhibited HIV-1 replication with EC_{50} value of 6.09 µg/mL and TI value of > 32.84, higher than any other compounds. The anti-HIV-1 activity assay was performed by syncytia formation. The seven phenolic compounds showed a good anti-HIV-1 activity and compound gallic acid, a simple tannin compound was the most active and its TI value was the highest [376].

3.9. Dittrichia viscosa (L.) Greuter (Asteraceae)

The aqueous extract of Dittrichia viscosa was tested for its ability to inhibit the HIV replication. HIV infection of MT-2 cells was used for evaluating antiviral test as rapid and sensitive assay system for the detection of potential antiviral drugs effective against AIDS. The aqueous extract of Dittrichia viscosa has showed inhibitory effects against HIV-1 induced infections in MT-2 cells at concentrations ranging from 25 to 400 µg/mL of therapeutic interest [377].

3.10. Galanthus nivalis L. (Amaryllidaceae)

Agglutinin isolated from Galanthus nivalis (GNA) is a member of a superfamily of strictly mannose-binding specific lectins widespread among monocotyledonous plants, and is well-known to possess a broad range of biological functions such as anti-tumor, anti-viral and anti-fungal activities [378]. The molecular mechanisms of GNA exerting anti-viral activities by blocking the entry of the virus into its target cells, preventing transmission of the virus as well as forcing virus to delete glycan in its envelope protein and triggering neutralizing antibody were discussed. These findings may provide a new perspective of GNA-related lectins as potential drugs for virus therapeutics in the future.

3.11. Garcinia edulis Exell (Clusiaceae)

The isoprenylated xanthone derivative determined as 1,4,6-trihydroxy-3-methoxy-2-(3-methyl-2-butenyl)-5-(1,1-dimethyl-prop-2-enyl)xanthone was isolated from the ethanolic extract of the root bark of Garcinia edulis. It exhibited anti-HIV-1 protease activity with IC_{50} value of 11.3 µg/mL in vitro while acetyl pepstatin was used as a positive control possessing an anti-HIV-1 PR activity of IC_{50} value of 2.2 µg/mL [379]. However, this compound has also showed potent lethality with LC_{50} value of 2.36 µg/mL against brine shrimp larvae in vitro.

3.12. Helichrysum populifolium (Asteraceae)

The methanol:water (1:1) extract of the aerial parts of Helichrysum populifolium growing in South Africa was tested for the anti-HIV test by using HeLa-SXR5 expressed the CD4 receptor and the CXCR4/CCR5 chemokine receptors and the extract was found to be active (IC_{50} value of 12 µg/mL) [123]. The anti-HIV compounds identified from H. populifolium were three dicaffeoylquinic acid derivatives, i.e., 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid as well as two tricaffeoylquinic acid derivatives, i.e., 1,3,5-tricaffeoylquinic acid and either 5-malonyl-1,3,4-tricaffeoylquinic or 3-malonyl-1,4,5-tricaffeoylquinic acid.

3.13. Hoodia gordonii (Masson) Sweet ex Decne (Apocynaceae)

The in vitro anti-HIV potential of the ethanol and ethylacetate extracts of Hoodia gordonii was examined. Both extracts had shown good inhibition in a dose-dependent manner against HIV-1 reverse transcriptase (RT) with IC_{50} values of 73.55 ± 0.04 and 69.81 ± 9.45 µg/mL, respectively. Doxorubicin, a known RT inhibitor was used as a positive control and inhibited HIV RT by 68% at
25 µg/mL (IC₅₀ < 25 µg/mL). Both extracts also demonstrated inhibitory activity against HIV protease (PR) with IC₅₀ values of 97.29 ± 0.01 and 63.76 ± 9.01 µg/mL for ethanol and ethyl acetate extracts, respectively. Acetyl pepstatin was used as a known PR inhibitor and inhibited HIV PR by as much as 82% at 50 µg/mL (IC₅₀ < 50 µg/mL). In addition, both ethanol and ethyl acetate extracts had weak inhibition against HIV-1 integrase (IN) with <50% inhibition at the highest concentration tested of 400 µg/mL. Sodium azide was used as a positive control compound for IN inhibition [101]. In the same study, phytochemical screening of Hoodia gordonii was revealed the presence of phenolics, alkaloids, terpenes, steroids, cardiac glycosides and tannins in the ethanolic extract, while the ethyl acetate extract only showed the presence of phenolics, cardiac glycosides and steroids.

3.14. Hypericum perforatum L. (Hypericaceae)

Hypericum perforatum, known as St. John’s Wort, has been used for medicinal purposes, particularly wound healing, since the Middle Ages. It was also used in treatment of AIDS [380]. In a clinical trial, hypericin and pseudohypericin isolated from this plant have shown antiretroviral activity in HIV-infected patients [381].

3.15. Hyssopus officinalis L. (Lamiaceae)

Hyssopus officinalis has been used as herbal medicine and the extracts of this species have demonstrated strong activity against HIV-1 due to the content of polysaccharide-type compounds [252]. The 50% hydroalcoholic extract of Hyssopus officinalis was examined for its ability to inhibit HIV replication. Among the variety of assays for evaluating antiviral tests, HIV infection of MT-2 cells was used as a rapid and sensitive assay system for the detection of potential antiviral drugs effective against AIDS. This extract had shown inhibitory effects against HIV-1 induced infections in MT-2 cells at concentrations ranging from 50 to 100 µg/mL.

3.16. Justicia gendarussa Burm. f. (syn: Gendarussa vulgaris Nees) (Acanthaceae)

Justicia gendarussa was identified as a potent anti-HIV-1 active lead from the evaluation of over 4500 plant species growing in Vietnam and Laos by showing complete inhibition against HIV replication at a concentration 20 µg/mL. The methanol extract of the stems and barks of the plant have led to the isolation of justiprocumins A and B as new arylnaphthalide lignan glycosides by using bioassay-guided isolation. Justiprocumin B has shown potent activity against a broad spectrum of HIV strains with IC₅₀ values in the range of 15–21 nM (AZT, IC₅₀ 77–95 nM, as positive control). Justiprocumin B also displayed potent inhibitory activity against the NRTI (nucleoside reverse transcriptase inhibitor)-resistant isolate (HIV-1₁₆₁₇₋₁) of the analogue (AZT) as well as the NNRTI (non-nucleoside reverse transcriptase inhibitor)-resistant isolate (HIV-1_{N119}) of the analogue (nevirapine) [382]. The dichloromethane plant extract has shown complete inhibition of HIV replication at a concentration of 20 µg/mL. This bioactivity was confirmed by the evaluation of the MeOH extract prepared from a re-collected sample of the same plant, with HIV-1 replication inhibition at an IC₅₀ value of 40 ng/mL. Bioassay-guided separation of the extracts of the stems and roots of this plant led to the isolation of an anti-HIV arylnaphthalene lignan (ANL) glycoside, patentiflorin A. Evaluation of the compound against both the M- and T-tropic HIV-1 isolates showed it to possess a significantly higher inhibition effect than the clinically used anti-HIV drugs known as the nucleotide analogue (AZT) and non-nucleotide analogue (nevirapine). Thus, patentiflorin A has the potential to be developed as a novel anti-HIV drug [382]. Patentiflorin A showed anti-HIV-1 activity with an IC₅₀ value of 26.9 nM in the defective HIV-based pseudotyped assay. The results clearly showed that patentiflorin A has broad-spectrum activity against both M-tropic and T-tropic HIV-1 isolates with IC₅₀ values lower than that of AZT, the first anti-HIV drug developed and still used in the treatment of HIV/AIDS. Like AZT, it inhibited the particle production of all four HIV isolates effectively in a dose-dependent manner. Patentiflorin A gave an IC₅₀ value of 24–37 nM, compared to 77–95 nM for AZT.
3.17. Momordica charantia L. (Cucurbitaceae)

Momordica charantia, known as bitter melon and widely exploited in folkloric medicine, has been shown to inhibit HIV-1 reverse transcriptase due to its protein coded as MRK29 [383]. The efficacies and molecular mechanisms of bitter gourd-induced anti-diabetic, anti-HIV, and antitumor activities contributed by over twenty active components were determined. Therefore, bitter gourd is a cornucopia of health and it has been deserved in-depth investigations for clinical application in the future.

Anti-HIV properties of the fruit pulp extract of *Momordica balsamina*, commonly used in the northern part of Nigeria for its anti-viral efficacy in poultry, was studied in vitro and was found as a potent inhibitor of HIV-1 replication; further research on fruit pulp extract should be pursued for its potential in the prophylaxis and therapy of retroviral infections in humans [384].

3.18. Pachyma hoelen Rumph (Polyporaceae)

The hexane extract of *Pachyma hoelen* Rumph used in folk medicine in Korea was shown to have the best anti-HIV-1 activity compared to the other extracts tested. This extract had 37.3 µg/mL (EC₅₀) on the p24 antigen assay as the highest value, 36.8% on the RT activity test (at 200 µg/mL). In addition, this extract had shown protective effects on infected MT-4 cells; the protection was the highest observed at 58.2%. The 50% cytotoxic concentration (CC₅₀) of the hexane extract of this plant species was found 100.6 µg/mL [196].

3.19. Phyllanthus pulcher (Euphorbiaceae)

The methanol extract of *Phyllanthus* species growing in Malaysia was evaluated for anti-HIV-1 reverse transcriptase (RT) activity using the HIV-RT assay by inhibition of the HIV-1 RT enzyme based on their IC₅₀ values. Azido-deoxythymidine-triphosphate (AZT151TP) was used as a positive control. The inhibition of HIV-RT for *P. pulcher* was IC₅₀ of 5.9 µg/mL [385].

3.20. Rhus chinensis Mill (Anacardiaceae)

The anti-HIV-1 activities of the petroleum ether, ethyl acetate, butanol and aqueous extracts of *Rhus chinensis* growing in China and Japan where it is known as Chinese Sumac were examined. The petroleum ether extract had significantly suppressed HIV-1 activity in vitro and was found to inhibit syncytium formation and HIV-1 p24 antigen at non-cytotoxic concentrations, the EC₅₀ were 0.71 and 0.93 µg/mL respectively. The petroleum ether extract had no activity on inhibiting HIV-1 recombinant RT or HIV-1 entry into host cells cycle. *R. chinensis* would be a useful medicinal plant for the chemotherapy of HIV-1 infection. The petroleum ether extract of this plant likely inhibit the post entry steps or target the new sites of HIV-1 replication [386].

3.21. Sceletium tortuosum (L.) N.E. Brown (Aizoaceae)

The ethanolic and ethyl acetate extracts prepared from the whole part of *Sceletium tortuosum*, distributed throughout southern Africa, were investigated for their inhibitory activity against HIV-1 enzymes including protease (PR), reverse transcriptase (RT) and integrase (IN) [172]. The HIV-1 RT inhibition testing had IC₅₀ values of <50 and 121.7 ± 2.5 µg/mL for ethanol and ethyl acetate extracts, respectively. In addition, both extracts had also inhibited HIV-1 PR with IC₅₀ values < 100 µg/mL. *Sceletium tortuosum* might be a potential source of new lead compounds in the development of new anti-HIV compounds [67].

3.22. Smilax corbularia Kunth (Smilaceae)

The ethanolic and aqueous extracts were tested for their inhibitory effects against HIV-1 protease (HIV-PR) and HIV-1 integrase (HIV-1 IN). The results indicated that the ethanolic extract of *S. corbularia* exhibited anti-HIV-1 IN activity with an IC₅₀ value of 1.9 µg/mL, approximately two-fold lower
than that of suramin ($IC_{50} = 3.4 \mu g/mL$) as the positive control. The value of $IC_{50} = 5.4 \mu g/mL$ was determined for the water extract of *Smilax corbularia* [120].

3.23. *Terminalia paniculata* (Combretaceae)

The in vitro anti-HIV1 activity of acetone and methanol extracts prepared from the fruits of *Terminalia paniculata* was examined. The EC_{50} values of the acetone and methanol extracts of *T. paniculata* were $\leq 10.3 \mu g/mL$. The enzymatic assays were performed to determine the mechanism of action and indicated that the anti-HIV1 activity might be due to inhibition of reverse transcriptase ($\geq 77.7\%$ inhibition) and protease ($\geq 69.9\%$ inhibition) enzymes [387].

3.24. *Tuberaria lignosa* (Sweet) Sampaio (Asteraceae)

Tuberaria lignosa was widely used in the folk medicine to treat diseases of viral origin of the Iberian Peninsula and the ethanolic and aqueous extracts were evaluated for its anti-HIV activity by inhibiting HIV replication. The toxicity of the extracts to MT-2 cells was also investigated. The ethanolic extract was especially toxic, which prevented the evaluation of their potential antiviral effects at higher concentrations. However, the aqueous extract of *T. lignosa* tested was relatively nontoxic to human lymphocytic MT-2 cells, but did show anti-HIV activity at concentrations ranging from 12.5 to 50 $\mu g/mL$ [61].

In conclusion, terrestrial plants produce secondary metabolites for their chemical defense, which possess unique chemical structures and have played pivotal roles in human health. There is a continuous need to introduce new drug candidates to treat diseases and the drug discovery process can be realized using both ancient and modern research methodologies in a complementary manner. Some medicinal plants are still unexplored; therefore there are numerous avenues of research for the determination of their biological activities. In this review, the anti-HIV activity of some plant extracts and their potential utilization for anti-HIV agents have been summarized. Among them *Calendula officinalis*, *Justicia gendarussa* and *Sceletium tortuosum* might be useful potential sources for new lead compounds in the development of new candidates with anti-HIV properties of therapeutic interest. These studies are considered to be one of the most important approaches toward effective therapy for AIDS.

4. Human Clinical Trials

There are few reports about using the herbal medicine in clinical studies and treatment for HIV/AIDS. This area is not well researched. But, in Africa, where HIV, AIDS and HIV related diseases are the most widespread problems, herbal medicines are used as primary treatment for them. Highly active antiretroviral therapy is also applied in China and implies three types of treatment systems. One of them is traditional Chinese medicine provided by trained Chinese herbalists. There are several randomized studies related to beneficial effects of traditional medical plants on patients with HIV or AIDS which were compared with control group (without treatment and placebo). The effects in promoting CD4$^+$ cells were followed. Based on selected, different, studies approximately eleven different Chinese traditional medical plants such as *Panax ginseng*, *Astragalus membranaceus*, *Lycium barbarum*, *Trichosanthis kirilowii*, and *Viola mandshurica* were tested in about 1000 patients within different studies. Compared with placebo, treatment with traditional medical plants showed positive effect, increasing CD4 cells, but studies need to be improved [388].

Some Chinese herbal preparation which consists of 14 plants (*Coptis chinensis*, *Jasminum officinale*, *Wolfiporia extensa*, *Sparganium stoloniferum*, *Polygonatum odoratum*, and *Scrophularia buergeriana*) was investigated during 24 weeks and observed to have increased plasma CD4 count and also showed inhibition of HIV growth [389]. According to one US study, 26% of HIV-infected people use herbal medicine as part of their treatment. A European study showed that herbal medicines are used by approximately 25% of HIV infected people [390].
The study, which included 366 HIV-positive African-American women who were enrolled in herbal medicine therapy, showed that in these patients experienced 1.69 time stronger anti-retroviral effect compared to women not using the therapy based on medical plants [391]. Thirty-three HIV-positive volunteers (7 men and 26 women between 22 and 43 years of age) who used *Calendula officinalis* or *Agastache rugosa* were evaluated in South Africa. There was a significant decrease in viral loads and in CD4 T-cell counts [392].

The Ministry of Health of South Africa is actively promoting the use of traditional medicines with antiretroviral treatments and recommended two plants remedies which have been used for HIV/AIDS treatment: *Hypoxis hemerocallidea* and *Sutherlandia frutescens* [393]. Also, in Romania it was noticed that children with AIDS who were treated with natural herbal remedies showed a decrease in mortality rate [393]. Furthermore, in blood samples of 30 adults who used an extract of *Alternanthera pungens*, a significant increase of CD4 and CD8 lymphocytes was observed [394].

The study which was conducted to demonstrate using medical plants in different districts in Uganda, where this disease first described and one million inhabitants are infected, 25 traditional medicine practitioners were interviewed. The practitioners received on average 29 (range, 2–250) patients each year. They mentioned 145 belong to families Asteraceae, Fabaceae and Euphorbiaceae. It was also noted that the most used plants were *Aloe* spp., *Erythrina abyssinica*, *Sarcocephalus latifolius*, *Psorospermum febrifugum*, *Mangifera indica*, and *Warburgia salutaris*. In patients involved in herbal medicine treatment progressive loss of CD4 positive T-cell lymphocytes in the blood was observed [311].

5. Conclusions

Focusing on phytochemicals that have reached clinical trials, if there are any; highlighting medicinal plants where high level of scientific evidence has been reached; future perspectives.

Although there have been major accomplishments in HIV chemotherapy, there remains a need for new anti-HIV drug discovery, and medicinal plants can play an important role in this endeavor. Several plant species have shown remarkable anti-HIV activity, especially *Artemisia annua*, *Garcinia edulis*, *Justicia gendarussa*, *Phyllanthus pulcher*, *Rhus chinensis*, *Smilax corbularia*, *Terminalia paniculata*, and *Tuberaria lignosa*. These plant species are worthy of further study for the development of new anti-HIV chemotherapeutic options. In particular, in vivo testing and, ultimately, human clinical trials need to be carried out on key lead plants and phytochemical isolates. In addition, continuous evaluation of medicinal plants for anti-HIV activity should be pursued.

Author Contributions: All authors contributed equally in the preparation of the manuscript.

Acknowledgments: The authors are grateful to Marzieh Sharifi-Rad, Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran, for critically reading the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Deeks, S.G.; Overbaugh, J.; Phillips, A.; Buchbinder, S. HIV infection. *Nat. Rev. Dis. Prim.* 2015, 1, 15035. [CrossRef] [PubMed]
2. World Health Organization (WHO). 2017. Available online: http://www.who.int/hiv/data/epi_plhiv_2016_regions.png?ua=1 (accessed on 1 December 2017).
3. Kharsany, A.B.; Karim, Q.A. HIV infection and AIDS in sub-saharan Africa: Current status, challenges and opportunities. *Open AIDS J.* 2016, 10, 34–48. [CrossRef] [PubMed]
4. Worobey, M.; Watts, T.D.; McKay, R.A.; Suchard, M.A.; Granade, T.; Teuwen, D.E.; Koblin, B.A.; Heneine, W.; Lemey, P.; Jaffe, H.W. 1970s and ‘patient 0’ HIV-1 genomes illuminate early HIV/AIDS history in north america. *Nature* 2016, 539, 98–101. [CrossRef] [PubMed]
5. Auerbach, D.M.; Darrow, W.W.; Jaffe, H.W.; Curran, J.W. Cluster of cases of the acquired immune deficiency syndrome: Patients linked by sexual contact. *Am. J. Med.* 1984, 76, 487–492. [CrossRef]
6. Centers for Disease Control. A cluster of Kaposi’s sarcoma and *Pneumocystis carinii* pneumonia among homosexual male residents of Los Angeles and Orange Counties, California. *MMWR Morb. Mortal. Wkly. Rep.* 1982, 31, 305–307.

7. Moir, S.; Chun, T.-W.; Fauci, A.S. Pathogenic mechanisms of HIV disease. *Annu. Rev. Pathol. Mech. Dis.* 2011, 6, 223–248. [CrossRef] [PubMed]

8. Harden, V.A.; Fauci, A. *AIDS at 30: A History*; Potomac Books, Inc.: Lincoln, NE, USA, 2012.

9. Piot, P.; Karim, S.S.A.; Hecht, R.; Legido-Quigley, H.; Buse, K.; Stover, J.; Resch, S.; Ryckman, T.; Møgedal, S.; Dybul, M. Defeating AIDS—Advancing global health. *Lancet* 2015, 386, 171–218. [CrossRef]

10. Günthard, H.F.; Aberg, J.A.; Eron, J.J.; Hoy, J.F.; Telenti, A.; Benson, C.A.; Burger, D.M.; Cahn, P.; Gallant, J.E.; Glesby, M.J. Antiretroviral treatment of adult HIV infection: 2014 recommendations of the International Antiviral Society—USA panel. *JAMA* 2014, 312, 410–425. [CrossRef] [PubMed]

11. Auvert, B.; Taljaard, D.; Lagarde, E.; Sobngwi-Tambekou, J.; Sitta, R.; Puren, A. Randomized, controlled intervention trial of male circumcision for reduction for HIV infection risk: The ANRS 1265 trial. *PLoS Med.* 2005, 2, e298. [CrossRef] [PubMed]

12. Bailey, R.C.; Moses, S.; Parker, C.B.; Agot, K.; Maclean, I.; Krieger, J.N.; Williams, C.F.; Campbell, R.T.; Ndinya-Achola, J.O. Male circumcision for HIV prevention in young men in Kisumu, Kenya: A randomised controlled trial. *Lancet* 2007, 363, 643–656. [CrossRef]

13. Anderson, S.-J.; Cherutich, P.; Kilonzo, N.; Cremin, I.; Fecht, D.; Kimanga, D.; Harper, M.; Mashar, R.L.; Ngong, P.B.; Maina, W. Maximising the effect of combination HIV prevention through prioritisation of the people and places in greatest need: A modelling study. *Lancet* 2014, 384, 249–256. [CrossRef]

14. Cohen, M.S.; Chen, Y.Q.; McCauley, M.; Gamble, T.; Hosseinipour, M.C.; Kumarasamy, N.; Hakim, J.G.; Kumwenda, J.; Grinszteijn, B.; Plotto, J.H. Prevention of HIV-1 infection with early antiretroviral therapy. *N. Engl. J. Med.* 2011, 365, 493–505. [CrossRef] [PubMed]

15. Guay, L.A.; Musoke, P.; Fleming, T.; Bagenda, D.; Allen, M.; Nakabiito, C.; Sherman, J.; Bakaki, P.; Ducar, C.; Deseyve, M. Intrapartum and neonatal single-dose nevirapine compared with zidovudine for prevention of mother-to-child transmission of HIV-1 in Kampala, Uganda: HIVNET 012 randomised trial. *Lancet* 1999, 354, 795–802. [CrossRef]

16. Maartens, G.; Celum, C.; Lewin, S.R. HIV infection: Epidemiology, pathogenesis, treatment, and prevention. *Lancet* 2014, 384, 258–271. [CrossRef]

17. Günthard, H.F.; Saag, M.S.; Benson, C.A.; Del Rio, C.; Eron, J.J.; Gallant, J.E.; Hoy, J.F.; Mugavero, M.J.; Sax, P.E.; Thompson, M.A. Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2016 recommendations of the International Antiviral Society—USA panel. *JAMA* 2016, 316, 191–210. [CrossRef] [PubMed]

18. Gravatt, L.A.H.; Leibrand, C.R.; Patel, S.; McRae, M. New drugs in the pipeline for the treatment of HIV: A review. *Curr. Infect. Dis. Rep.* 2017, 19, 42. [CrossRef] [PubMed]

19. Sharifi-Rad, J. Herbal antibiotics: Moving back into the mainstream as an alternative for “superbugs”. *Cell. Mol. Biol.* 2016, 62, 1–2. [PubMed]

20. Lucera, M.B.; Tilton, C.A.; Mao, H.; Dobrowolski, C.; Tabler, C.O.; Haqqani, A.A.; Karn, J.; Tilton, J.C. The histone deacetylase inhibitor vorinostat (SAHA) increases the susceptibility of uninfected CD4+ T cells to HIV by increasing the kinetics and efficiency of postentry viral events. *J. Virol.* 2014, 88, 10803–10812. [CrossRef] [PubMed]

21. WHO. In vitro screening of traditional medicines for anti-HIV activity: Memorandum from a WHO meeting. *Bull. World Health Organ.* 1989, 67, 613–618.

22. WHO. Report of a WHO Informal Consultation on Traditional Medicine and AIDS: In Vitro Screening for Anti-HIV Activity; WHO: Geneva, Switzerland, 1989.

23. Kurapati, K.R.V.; Atluri, V.S.; Samikkannu, T.; Garcia, G.; Nair, M.P. Natural products as anti-HIV agents and role in HIV-associated neurocognitive disorders (hand): A brief overview. *Front. Microbiol.* 2016, 6, 1444. [CrossRef] [PubMed]

24. Deng, X.; Jiang, M.; Zhao, X.; Liang, J. Efficacy and safety of traditional Chinese medicine for the treatment of acquired immunodeficiency syndrome: A systematic review. *J. Tradit. Chin. Med.* 2014, 34, 1–9. [CrossRef]

25. Sharifi-Rad, M.; Varoni, E.M.; Salehi, B.; Sharifi-Rad, J.; Matthews, K.R.; Ayatollahi, S.A.; Kobarfard, F.; Ibrahim, S.A.; Mnayer, D.; Zakaria, Z.A. Plants of the genus *Zingiber* as a source of bioactive phytochemicals: From tradition to pharmacy. *Molecules* 2017, 22, 2145. [CrossRef] [PubMed]
26. Sharifi-Rad, J.; Salehi, B.; Varoni, E.M.; Sharopov, F.; Yousaf, Z.; Ayatollahi, S.A.; Kobarfard, F.; Sharifi-Rad, M.; Afdjei, M.H.; Sharifi-Rad, M. Plants of the Melaleuca genus as antimicrobial agents: From farm to pharmacy. *Phytother. Res.* 2017, 31, 1475–1494. [CrossRef] [PubMed]

27. Salehi, B.; Ayatollahi, S.; Segura-Carretero, A.; Kobarfard, F.; Contreras, M.; Faizi, M.; Sharifi-Rad, M.; Tabatabai, S.; Sharifi-Rad, J. Bioactive chemical compounds in *Eremurus persicus* (Joub. & Spach) Boiss. Essential oil and their health implications. *Cell. Mol. Biol.* 2017, 63, 1–7. [PubMed]

28. Sharifi-Rad, J.; Salehi, B.; Schnitzler, P.; Ayatollahi, S.; Kobarfard, F.; Fathi, M.; Esazadeh, M.; Sharifi-Rad, M. Susceptibility of herpes simplex virus type 1 to monoterpenes thymol, carvacrol, c-p-cymene and essential oils of *Sinapis arvensis* L., *Lallemantia royleana* Benth. and *Pulicaria vulgaris* Gaertn. *Cell. Mol. Biol.* 2017, 63, 42–47. [CrossRef] [PubMed]

29. Sharifi-Rad, J.; Ayatollahi, S.; Varoni, E.; Salehi, B.; Kobarfard, F.; Sharifi-Rad, M.; Iriti, M.; Sharifi-Rad, M. Chemical composition and functional properties of essential oils from *Nepeta schiraziana* Boiss. *Farnacia* 2017, 65, 802–812.

30. Sharifi-Rad, J.; Salehi, B.; Stojanović-Radić, Z.Z.; Fokou, P.V.T.; Sharifi-Rad, M.; Mahady, G.B.; Sharifi-Rad, M.; Masjedi, M.-R.; Lawal, T.O.; Ayatollahi, S.A. Medicinal plants used in the treatment of tuberculosis-ethnobotanical and ethnopharmacological approaches. *Biotecnol. Adv.* 2017. [CrossRef] [PubMed]

31. Salehi, B.; Zucca, P.; Sharifi-Rad, M.; Pezzani, R.; Rajabi, S.; Setzer, W.; Varoni, E.; Iriti, M.; Kobarfard, F.; Sharifi-Rad, J. Phytotherapeutics in cancer invasion and metastasis. *Phytother. Res.* 2018, 1–25. [CrossRef] [PubMed]

32. Sahraie-Rad, M.; Izadyari, A.; Rakizadeh, S.; Sharifi-Rad, J. Preparation of strong antidandruff shampoo using medicinal plant extracts: A clinical trial and chronic dandruff treatment. *Jundishapur J. Nat. Pharm. Prod.* 2015, 10, e21517. [CrossRef]

33. Bagheri, G.; Mirzaei, M.; Mehrabi, R.; Sharifi-Rad, J. Cytotoxic and antioxidant activities of *Echinacea angustifolia* L. essential oils against biofilms of *P. aeruginosa* clinical isolates. *Cell. Mol. Biol.* 2016, 62, 27–32. [PubMed]

34. Sharifi-Rad, J.; Hoseini-Alfatemi, S.; Sharifi-Rad, M.; Miri, A. Phytochemical screening and antibacterial activity of different parts of the *Prosopis farcta* extracts against methicillin-resistant *Staphylococcus aureus* (MRSA). *Min. Biotecnol.* 2014, 26, 287–293.

35. Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Ademiluyi, A.O. Biological activities of essential oils: From plant chemoecology to traditional healing systems. *Molecules* 2017, 22, 70. [CrossRef] [PubMed]

36. Sharifi-Rad, J.; Fallah, F.; Setzer, W.; Entezari, R.H.; Sharifi-Rad, M. *Tordylium persicum* Boiss. & Hausskn extract: A possible alternative for treatment of pediatric infectious diseases. *Cell. Mol. Biol.* 2016, 62, 20–26. [PubMed]

37. Sharifi-Rad, M.; Tayeboon, G.; Sharifi-Rad, J.; Iriti, M.; Varoni, E.; Razazi, S. Inhibitory activity on type 2 diabetes and hypertension key-enzymes, and antioxidant capacity of *Veronica persica* phenolic-rich extracts. *Cell. Mol. Biol.* 2016, 62, 80–85. [PubMed]

38. Sharifi-Rad, J.; Mnayer, D.; Rooinent, A.; Shahri, F.; Ayatollahi, S.; Sharifi-Rad, M.; Molaee, N. Antibacterial activities of essential oils from Iranian medicinal plants on extended-spectrum β-lactamase-producing *Escherichia coli*. *Cell. Mol. Biol.* 2016, 62, 75–82. [PubMed]

39. Snow Setzer, M.; Sharifi-Rad, J.; Setzer, W.N. The search for herbal antibiotics: An *in-silico* investigation of antibacterial phytochemicals. *Antibiotics* 2016, 5, 30. [CrossRef] [PubMed]

40. Sharifi-Rad, M.; Mnayer, D.; Flaviana Bezerra Morais-Braga, M.; Nályda Pereira Carneiro, J.; Fonseca Bezerra, C.; Douglas Melo Coutinho, H.; Salehi, B.; Martorell, M.; del Mar Contreras, M.; Soltani-Nejad, A.; et al. *Echinacea* plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications. *Phytother. Res.* 2018. [CrossRef] [PubMed]

41. Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; del Mar Contreras, M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbakhsh, M.; et al. Carvacrol and human health: A comprehensive review. *Phytother. Res.* 2018. [CrossRef] [PubMed]
43. Salehi, B.; Mishra, A.P.; Shukla, I.; Sharifi-Rad, M.; del Mar Contreras, M.; Segura-Carretero, A.; Fathi, H.; Nasri NasrAbadi, N.; Kobafard, F.; Sharifi-Rad, J. Thymol, thyme and other plant sources: Health and potential uses. *Phytother. Res.* 2018. [CrossRef]

44. Sharifi-Rad, J.; Mnayer, D.; Tabanelli, G.; Stojanović-Radić, Z.; Sharifi-Rad, M.; Yousaf, Z.; Vallone, L.; Setzer, W.; Irrit, M. Plants of the genus *Allium* as antibacterial agents: From tradition to pharmacy. *Cell. Mol. Biol.* 2016, 62, 57–68. [PubMed]

45. Sharifi-Rad, M.; Iriti, M.; Gibbons, S.; Sharifi-Rad, J. Anti-methicillin-resistant *Staphylococcus aureus* (MRSA) activity of Rubiaceae, Fabaceae and Poaceae plants: A search for new sources of useful alternative antibacterials against MRSA infections. *Cell. Mol. Biol.* 2016, 62, 39–45. [PubMed]

46. Sharifi-Rad, J.; Soufi, L.; Ayatollahi, S.; Iriti, M.; Sharifi-Rad, M.; Varoni, E.M.; Shahri, F.; Esposito, S.; Kuhestani, K. Anti-bacterial effect of essential oil from *Xanthium strumarium* against shiga toxin-producing *Escherichia coli*. *Cell. Mol. Biol.* 2016, 62, 69–74. [PubMed]

47. Painter, G.; Almond, M.; Mao, S.; Liotta, D. Biochemical and mechanistic basis for the activity of nucleoside analogue inhibitors of HIV reverse transcriptase. *Curr. Top. Med. Chem.* 2004, 4, 1035–1044. [CrossRef] [PubMed]

48. Konvalinka, J.; Kräusslich, H.-G.; Müller, B. Retroviral proteases and their roles in virion maturation. *Virology* 2015, 479–480, 403–417. [CrossRef] [PubMed]

49. Blanco, J.L.; Whitlock, G.; Milinkovic, A.; Moyle, G. HIV integrase inhibitors: A new era in the treatment of HIV. *Expert Opin. Pharmacother.* 2015, 16, 1313–1324. [CrossRef] [PubMed]

50. Matthée, G.; Wright, A.D.; König, G.M. HIV reverse transcriptase inhibitors of natural origin. *Planta Med.* 1999, 65, 493–506. [CrossRef] [PubMed]

51. Yao, X.J.; Wainberg, M.A.; Parniak, M.A. Mechanism of inhibition of HIV-1 infection in vitro by purified extract of *Prunella vulgaris*. *Virology* 1992, 187, 56–62. [CrossRef]

52. Reddy, V.L.N.; Reddy, S.M.; Ravikanth, V.; Krishnaiah, P.; Goud, T.V.; Rao, T.P.; Ram, T.S.; Gonnade, R.G.; Reddy, S.M.; Ravikanth, V.; Krishnaiah, P.; Goud, T.V.; Rao, T.P.; Ram, T.S.; Gonnade, R.G. Anti-HIV-1 reverse transcriptase activities of hexane extracts from some Asian medicinal plants. *J. Med. Plants Res.* 2013, 4194–4201.

53. Sabde, S.; Bodiwala, H.S.; Karmase, A.; Deshpande, P.J.; Kaur, A.; Ahmed, N.; Chauhute, S.K.; Brahmbhatt, K.G.; Phadke, R.U.; Mitra, D.; et al. Anti-HIV activity of indian medicinal plants. *J. Nat. Med.* 2011, 65, 662–669. [CrossRef] [PubMed]

54. Woradulayapinij, W.; Soonthornchareonnon, N.; Wiwat, C. In vitro HIV type 1 reverse transcriptase inhibitory activities of Thai medicinal plants and *Can indica* L. rhizomes. *J. Ethnopharmacol.* 2005, 101, 84–89. [CrossRef] [PubMed]

55. Silprasit, K.; Seetaha, S.; Pongsanarakul, P.; Hannongbua, S.; Choowongkomon, K. Anti-HIV-1 reverse transcriptase activities of hexane extracts from some Asian medicinal plants. *J. Med. Plants Res.* 2011, 5, 4194–4201.

56. Blignaut, E.; Patton, L.L.; Nittayananta, W.; Ramirez-Amador, V.; Ranganathan, K.; Chattopadhyay, A. (A3) HIV phenotypes, oral lesions, and management of HIV-related disease. *Adv. Dent. Res.* 2006, 19, 122–129. [CrossRef] [PubMed]

57. Lam, T.L.; Lam, M.L.; Au, T.K.; Ip, D.T.; Ng, T.B.; Fong, W.P.; Wan, D.C. A comparison of human immunodeficiency virus type-1 protease inhibition activities by the aqueous and methanol extracts of Chinese medicinal herbs. *Life Sci.* 2000, 67, 2889–2896. [CrossRef]

58. Bedoya, L.M.; Sanchez-Palomino, S.; Abad, M.J.; Bermejo, P.; Alcamí, J. Anti-HIV activity of medicinal plant extracts. *J. Ethnopharmacol.* 2001, 77, 113–116. [CrossRef]

59. Grzybek, J.; Wongpanich, V.; Mata-Greenwood, E.; Angererhofer, C.K.; Pezzuto, J.M.; Cordell, G.A. Biological evaluation of selected plants from Poland. *Pharm. Biol.* 1997, 35, 1–5. [CrossRef]

60. Uncini Manganelli, R.E.; Zaccaro, L.; Tomei, P.E. Antiviral activity in vitro of *Urtica dioica* L., *Parietaria difusa* M. et K. and *Sambucus nigra* L. *J. Ethnopharmacol.* 2005, 8, 323–327. [CrossRef] [PubMed]
64. Mlinarič, A.; Kreft, S.; Umek, A.; Štrukelj, B. Screening of selected plant extracts for in vitro inhibitory activity on HIV-1 reverse transcriptase (HIV-1 RT). *Pharmazie* **2000**, *55*, 75–77. [PubMed]

65. Ma, Y.M.; Wu, H. Chemical constituents of *Sambucus* L. *Chin. J. Org. Chem.* **2012**, *32*, 2063–2072. [CrossRef]

66. Chang, Y.S.; Woo, E.R. Korean medicinal plants inhibiting to human immunodeficiency virus type 1 (HIV-1) fusion. *Phytother. Res.* **2003**, *17*, 426–429. [CrossRef] [PubMed]

67. Chang, Y.S.; Woo, E.R. Korean medicinal plants inhibiting to human immunodeficiency virus type 1 (HIV-1) protease. *Phytother. Res.* **1999**, *13*, 207–210. [CrossRef]

68. Xu, H.-X.; Chang, Y.; Loh, B.-N.; Kon, O.-L.; Chow, P.-W.; Sim, K.-Y. Screening of traditional medicines for their inhibitory activity against HIV-1 protease. *Phytother. Res.* **1996**, *10*, 163–175. [CrossRef]

69. Peng, Z.G.; Chen, H.S.; Guo, Z.M.; Dong, B.; Tian, G.Y.; Wang, G.Q. Anti-HIV activities of *Achyranthes bidentata* polysaccharide sulfate in vitro and in vivo. * Yaoxue Xuebao* **2008**, *43*, 702–706.

70. Gujjeti, R.P.; Mamidala, E. Anti-HIV activity of phytosterol isolated from *Aerva lanata* roots. *Pharmacogn. J.* **2017**, *9*, 112–116. [CrossRef]

71. Lagrota, M.H.C.; Wigg, M.D.; Santos, M.M.G.; Miranda, M.M.F.S.; Camara, F.P.; Couceiro, J.N.S.S.; Costa, S.S. Inhibitory activity of extracts of *Alternanthera brasiliana* (Amaranthaceae) against the herpes simplex virus. *Phytother. Res.* **1994**, *8*, 358–361. [CrossRef]

72. Chang, R.S.; Yeung, H.W. Inhibition of growth of human immunodeficiency virus in vitro by crude extracts of Chinese medicinal herbs. *Antivir. Res.* **1988**, *9*, 163–175. [CrossRef]

73. Zhang, S.M.; He, Y.S.; Tabba, H.D.; Smith, K.M. Inhibitor against the human immunodeficiency virus in aqueous extracts of *Alternanthera philoxeroides*. *Chin. Med. J.* **1988**, *101*, 861–866. [PubMed]

74. Ali, H.; Konig, G.M.; Khalid, S.A.; Wright, A.D.; Kaminsky, R. Evaluation of selected sudanese medicinal plants for their in vitro activity against hemoflagellates, selected bacteria, HIV-1-RT and tyrosine kinase inhibitory, and for cytotoxicity. *J. Ethnopharmacol.* **2002**, *83*, 219–228. [CrossRef]

75. Klos, M.; van de Venter, M.; Milne, P.J.; Traore, H.N.; Meyer, D.; Oosthuizen, V. In vitro anti-HIV activity of five selected South African medicinal plant extracts. *J. Ethnopharmacol.* **2009**, *124*, 182–188. [CrossRef] [PubMed]

76. Husson, G.P.; Subra, F.; Lai-Kuen, R.; Vilagne, R. Antiviral activity of hydroalcoholic extract from *Haemanthus albilflos* on the moloney murine leukemia virus and the human immunodeficiency virus. *C. R. Seances Soc. Biol. Fil.* **1997**, *191*, 473–485. [PubMed]

77. Szlavik, L.; Gyuris, A.; Minarovits, J.; Forgó, P.; Molnar, J.; Höhmann, J. Alkaloids from *Leucojum vernum* and antiretroviral activity of Amaryllidaceae alkaloids. *Planta Med.* **2004**, *70*, 871–873. [CrossRef] [PubMed]

78. Thamburam, S.; Klaassen, J.; Mabusela, W.T.; Cannon, J.F.; Folk, W.; Johnson, Q. Tbolbagha alliaceae phytotherapy: A potential anti-infective remedy for candidiasis. *Phytother. Res.* **2006**, *20*, 844–850. [CrossRef] [PubMed]

79. Sigidi, M.T.; Traoré, A.N.; Boukandou, M.M.; Tshisikhawé, M.P.; Ntuli, S.S.; Potgieter, N. Anti-HIV, pro-inflammatory and cytotoxicity properties of selected Venda plants. *Indian J. Tradit. Knowl.* **2017**, *16*, 545–552.

80. Muanza, D.N.; Euler, K.L.; Williams, L.; Newman, D.J. Screening for antitumor and anti-HIV activities of nine medicinal plants from Zaire. *Pharm. Biol.* **1995**, *33*, 98–106. [CrossRef]

81. Djakpo, O.; Yao, W. *Rhus chinensis* and *Galla chinensis*—Folklore to modern evidence: Review. *Phytother. Res.* **2010**, *24*, 1739–1747. [CrossRef] [PubMed]

82. Abdel-Malek, S.; Bastien, J.W.; Mahler, W.F.; Jia, Q.; Reinecke, M.G.; Robinson, W.E.; Shu, Y.-H.; Zalles-Asin, J. Drug leads from the Kallawaya herbalists of Bolivia. 1. Background, rationale, protocol and anti-HIV activity. *J. Ethnopharmacol.* **1996**, *50*, 157–166. [CrossRef]

83. Kusumoto, I.T.; Nakabayashi, T.; Kida, H.; Miyashiro, H.; Hattori, M.; Namba, T.; Shimotohno, K. Screening of various plant-extracts used in ayurvedic medicine for inhibitory effects on human-immunodeficiency-virus type-1 (HIV-1) protease. *Phytother. Res.* **1995**, *9*, 180–184. [CrossRef] [PubMed]

84. McMahon, J.B.; Currens, M.J.; Gulakowski, R.J.; Buckheit, R.W., Jr.; Lackman-Smith, C.; Hallock, Y.F.; Boyd, M.R. Michellamine B, a novel plant alkaloid, inhibits human immunodeficiency virus-induced cell killing by at least two distinct mechanisms. *Antimicrob. Agents Chemother.* **1995**, *39*, 484–488. [CrossRef] [PubMed]

85. Thomas, D.W.; Boyd, M.R.; Cardellina, J.H.; Gereau, R.E.; Jato, J.; Symonds, P. Notes on economic plants. *Econ. Bot.* **1994**, *48*, 413–414. [CrossRef]
86. Bringmann, G.; Steinert, C.; Feineis, D.; Mudogo, V.; Betzin, J.; Scheller, C. HIV-inhibitory michellamine-type dimeric naphthysisoquinoline alkaloids from the central African liana Ancistrocladus congoensis. Phytochemistry 2016, 128, 71–81. [CrossRef] [PubMed]
87. Hien, N.T.T.; Nhiem, N.X.; Yen, D.T.H.; Hang, D.T.T.; Tai, B.H.; Quang, T.H.; Anh, H.L.T.; Van Kiem, P.; Van Minh, C.; Kim, E.J.; et al. Chemical constituents of the Annona squamosa fruit and their cytotoxic activity. Pharm. Biol. 2015, 53, 1602–1607. [CrossRef] [PubMed]
88. Wu, Y.C.; Hung, Y.C.; Chang, F.R.; Cosentino, M.; Wang, H.K.; Lee, K.H. Identification of ent-16β,17-dihydroxykauran-19-oic acid as an anti-HIV principle and isolation of the new diterpenoids annonaquamosins A and B from Annona squamosa. J. Nat. Prod. 1996, 59, 635–637. [CrossRef] [PubMed]
89. Yu, Z.X.; Niu, Z.G.; Li, X.B.; Zheng, C.J.; Song, X.M.; Chen, G.Y.; Song, X.P.; Han, C.R.; Wu, S.X. New phenylpropanoid and 6H-dibenzo(b,d)pyran-6-one derivatives from the stems of Dasymaschalon rostatum. Fitoterapia 2017, 118, 27–31. [CrossRef] [PubMed]
90. Hongthong, S.; Kuhakarn, C.; Jaipetch, T.; Prabpai, S.; Kongsaeree, P.; Piyachaturawat, P.; Jariyawat, S.; Hongthong, S.; Kuhakarn, C.; Jaipetch, T.; Prabpai, S.; Kongsaeree, P.; Piyachaturawat, P.; Jariyawat, S. Identification of compounds from the plant species Alepidea amatymbica active against HIV. S. Afr. J. Bot. 2013, 86, 9–14. [CrossRef] [PubMed]
91. Hussein, G.; Miyashiro, H.; Nakamura, N.; Hattori, M.; Kawahata, T.; Otake, T.; Kakiuchi, N.; Shimotohno, K. Inhibi HIV-1 protease. Phytother. Res. 1999, 13, 31–36. [CrossRef]
92. Min, B.S.; Bae, K.H.; Kim, Y.H.; Miyashiro, H.; Hattori, M.; Shimotohno, K. Screening of Korean plants against human immunodeficiency virus type 1 protease. Phytother. Res. 1999, 13, 680–682. [CrossRef]
93. Lee, T.T.Y.; Kashiwada, Y.; Huang, L.; Snider, J.; Cosentino, M.; Lee, K.H. Suksdorfin: An anti-HIV principle from Lomatium suksdorfii, its structure-activity correlation with related coumarins, and synergistic effects with anti-AIDS nucleosides. Bioorg. Med. Chem. 1994, 2, 1051–1056. [CrossRef]
94. Bicchi, C.; Rubiolo, P.; Ballero, M.; Sanna, C.; Matteodo, M.; Esposito, F.; Zinzula, L.; Tramontano, E. HIV-1-inhibiting activity of the essential oil of Ridolfia segetum and Oenanthe crocata. Planta Med. 2009, 75, 1331–1335. [CrossRef] [PubMed]
95. Chingwaru, W.; Vidmar, J.; Kapewangolo, P.T. The potential of sub-Saharan African plants in the management of human immunodeficiency virus infections: A review. Phytother. Res. 2015, 29, 1452–1487. [CrossRef] [PubMed]
96. Esposito, F.; Mandrone, M.; Del Vecchio, C.; Carli, I.; Distinto, S.; Corona, A.; Lianza, M.; Piano, D.; Tacchini, M.; Maccioni, E.; et al. Multi-target activity of Hemidesmus indicus decoction against innovative HIV-1 drug targets and characterization of lupeol mode of action. Pathog. Dis. 2017, 75. [CrossRef] [PubMed]
97. Kapewangolo, P.; Knott, M.; Shithigona, R.E.K.; Uusiku, S.L.; Kandawa-Schulz, M. In vitro anti-HIV and antioxidant activity of Hoodia gordoni (Apocynaceae), a commercial plant product. BMC Complement. Altern. Med. 2016, 16, 411. [CrossRef] [PubMed]
98. Rukunga, G.M.; Kofi-Tsepkpo, M.W.; Kurokawa, M.; Kageyama, S.; Mungai, G.M.; Mulí, J.M.; Toló, F.M.; Kibaya, R.M.; Muthaura, C.N.; Kanyara, J.N.; et al. Evaluation of the HIV-1 reverse transcriptase inhibitory properties of extracts from some medicinal plants in Kenya. Afr. J. Health Sci. 2002, 9, 81–90. [CrossRef] [PubMed]
99. Wei, Y.; Ma, C.-M.; Hattori, M. Anti-HIV protease triterpenoids from the acid hydrolysate of Panax ginseng. Phytochem. Lett. 2009, 2, 63–66. [CrossRef]
104. Zhang, H.; Lu, Z.; Tan, G.T.; Qiu, S.; Farnsworth, N.R.; Pezzuto, J.M.; Fong, H.H.S. Polycetylenegeisenoside-Ro, a novel triterpene saponin from Panax ginseng. Tetrahedron Lett. 2002, 43, 973–977. [CrossRef]

105. Au, T.K.; Lam, T.L.; Ng, T.B.; Fong, W.P.; Wán, D.C.C. A Comparison of HIV-1 Integrase Inhibition by Aqueous and Methanol Extracts of Chinese Medicinal Herbs. Life Sci. 2001, 68, 1687–1694. [CrossRef]

106. Hasegawa, H.; Matsumiya, S.; Uchiyama, M.; Kurokawa, T.; Inouye, Y.; Kasai, R.; Ishibashi, S.; Yamasa, S. Inhibitory effect of some triterpenoid saponins on glucose transport in tumor cells and its application to in vitro cytotoxic and antiviral activities. Planta Med. 1994, 60, 240–243. [CrossRef] [PubMed]

107. Wu, P.-L.; Su, G.-C.; Wu, T.-S. Constituents from the stems of Achyrocline flaccida Wein DC and Gamochaeta simplicicaulis aqueous extracts. Phytother. Res. 1997, 11, 82–83. [CrossRef]

108. Salomón, H.; Pampuro, S.; Cavallaro, L.; García, G.; Coussio, J.; Campos, R. Anti-human immunodeficiency virus type 1 (HIV-1) activity of Achyrocline flaccida Wein DC and Gamochaeta simplicicaulis aqueous extracts. Phytother. Res. 1997, 11, 82–83. [CrossRef]

109. Martinotti, E.; Calderone, V.; Breschi, M.C.; Bandini, P.; Cioni, P.L. Pharmacological action of aqueous crude extracts of Artemisia verlotorum Lamotte (Compositae). Phytother. Res. 1997, 11, 612–614. [CrossRef]

110. Sattar, E.A.; Galal, A.M.; Mossa, G.S. Antitumor germacranolides from Anvillea garcinii. J. Nat. Prod. 1997, 60, 973–977. [CrossRef]

111. Cos, P.; Hermans, N.; De Bruyne, T.; Apers, S.; Sindambiwe, J.B.; Witvrouw, M.; De Clercq, E.; Vanden Berghe, D.; Pieters, L.; Vlietinck, A.J. Antiviral activity of Rwandan medicinal plants against human immunodeficiency virus type-1 (HIV-1). Phytomedicine 2002, 9, 62–68. [CrossRef] [PubMed]

112. Kato, T.; Horie, N.; Matsuta, T.; Naoki, U.; Shimoyama, T.; Kaneko, T.; Kanamoto, T.; Terakubo, S.; Nakashima, H.; Kusama, K.; et al. Anti-UV/HIV activity of kampo medicines and constituent plant extracts. In Vivo 2012, 26, 1007–1014. [PubMed]

113. Bunluepuech, K.; Tewtrakul, S. Anti-HIV-1 integrase activity of Thai medicinal plants in longevity preparations. Songklanakarin J. Sci. Technol. 2011, 33, 693–697.

114. Chukwujekwu, J.C.; Ndhlala, A.R.; de Kock, C.A.; Smith, P.J.; Van Staden, J. Antiplasmodial, HIV-1 reverse transcriptase inhibitory and cytotoxicity properties of Centratherum punctatum Cass. and its fractions. S. Afr. J. Bot. 2014, 90, 17–19. [CrossRef]

115. Muley, B.P.; Khadabadi, S.S.; Banarase, N.B. Phytochemical constituents and pharmacological activities of Calendula officinalis Linn (Asteraceae): A review. Trop. J. Pharm. Res. 2009, 8, 455–465. [CrossRef]

116. Wang, H.K.; Xia, Y.; Yang, Z.Y.; Morris Natschke, S.L.; Lee, K.H. Recent advances in the discovery and development of flavonoids and their analogues as antitumor and anti-HIV agents. Adv. Exp. Med. Biol. 1998, 439, 191–225. [PubMed]

117. Lee, J.S.; Kim, H.J.; Lee, Y.S. A new anti-HIV flavonoid glucuronide from Chrysanthemum morifolium. Planta Med. 2003, 69, 859–861. [PubMed]

118. Hu, C.-Q.; Chen, K.; Shi, Q.; Kilkuskie, R.E.; Cheng, Y.-C.; Lee, K.-H. Anti-AIDS agents, 10. Acacetin-7-o-β-D-galactopyranoside, an anti-HIV principle from Chrysanthemum morifolium and a structure-activity correlation with some related flavonoids. J. Nat. Prod. 1994, 57, 42–51. [CrossRef] [PubMed]

119. Tewtrakul, S.; Subhadhirasakul, S.; Cheenpracha, S.; Karalai, C. HIV-1 protease and HIV-1 integrase inhibitory substances from Eclipta prostrata. Phytother. Res. 2007, 21, 1092–1095. [CrossRef] [PubMed]

120. Tewtrakul, S.; Subhadhirasakul, S.; Kummee, S. Anti-HIV-1 integrase activity of medicinal plants used as self medication by AIDS patients. Songklanakarin J. Sci. Technol. 2006, 28, 785–790.

121. Ross, S.; El Sayed, K.; El Sohly, M.; Hamann, M.; Abdel-Halim, O.; Ahmed, A.; Ahmed, M. Phytochemical analysis of Geigeria alata and Francococcia crispa essential oils. Planta Med. 1997, 63, 479–482. [CrossRef] [PubMed]

122. Hnatyszyn, O.; Broussalis, A.; Herrera, G.; Muschietti, L.; Coussio, J.; Martino, V.; Ferraro, G.; Font, M.; Monge, A.; Martinez-Irujo, J.J.; et al. Argentinite plant extracts active against polymerase and ribonuclease h activities of HIV-1 reverse transcriptase. Phytother. Res. 1999, 13, 206–209. [CrossRef]

123. Heyman, H.M.; Senejoux, F.; Seibert, I.; Klimkait, T.; Maharaj, V.J.; Meyer, J.J.M. Identification of anti-HIV active dicaffeoylquinic- and tricaffeoylquinic acids in Helichrysum populifolium by NMR-based metabolomic guided fractionation. Fitoterapia 2015, 103, 155–164. [CrossRef] [PubMed]
145. Chen, K.; Shi, Q.; Kashiwada, Y.; Hu, C.Q.; Zhang, D.C.; Jin, J.Q.; Nozaki, H.; Kilkuskie, R.E.; Tramontano, E.; Cheng, Y.C.; et al. Anti-AIDS agents. 6. Salaspermic acid, an anti-HIV principle from *Tripterygium wilfordii*, and the structure-activity correlation with its related compounds. *J. Nat. Prod.* **1992**, *55*, 340–346. [CrossRef] [PubMed]

146. Chen, K.; Shi, Q.; Fujioka, T.; Zhang, D.C.; Hu, C.Q.; Jin, J.Q.; Kilkuskie, R.E.; Lee, K.-H. Anti-AIDS agents. 4. Tripterifordin, a novel anti-HIV principle from *Tripterygium wilfordii*: Isolation and structural elucidation. *J. Nat. Prod.* **1992**, *55*, 88–92. [CrossRef] [PubMed]

147. Duan, H.; Takaishi, Y.; Imakura, Y.; Jia, Y.; Li, D.; Cosentino, L.M.; Lee, K.-H. Sesquiterpene alkaloids from *Calophyllum hypoglauccum* and *Tripterygium wilfordii*: A new class of potent anti-HIV agents. *J. Nat. Prod.* **2000**, *63*, 357–361. [CrossRef] [PubMed]

148. Fang, P.L.; Cao, Y.L.; Yan, H.; Pan, L.L.; Liu, S.C.; Gong, N.B.; Lü, Y.; Chen, C.X.; Zhong, H.M.; Guo, Y.; Liu, S.C.; Gong, N.B.; Lü, Y.; Chen, C.X.; Zhong, H.M.; Guo, Y.; Liu, H.Y. Lindenane sesquiterpenoid dimers from *Chloranthus japonicus* inhibit HIV-1 and HCV replication. *Fitoterapia* **2016**, *115*, 64–68. [CrossRef] [PubMed]

149. Chattopadhyay, S.K.; Chatterjee, A.; Tandon, S.; Maulik, P.R.; Kant, R. Isolation of optically active nevirapine, a dipyridodiazepinone metabolite from the seeds of *Cleome viscosa*. *Tetrahedron* **2011**, *67*, 452–454. [CrossRef]

150. Fuller, R.W.; Blunt, J.W.; Boswell, J.L.; Cardellina, J.H.; Boyd, M.R. Gutiferone F, the first prenylated benzophenone from *Allanblackia stuhlmannii*. *J. Nat. Prod.* **1999**, *62*, 130–132. [CrossRef] [PubMed]

151. Gomez-Verjan, J.C.; Estrella-Parra, E.A.; Gonzalez-Sanchez, I.; Rivero-Segura, N.A.; Vazquez-Martinez, R.; Huerta-Reyes, M.; Basualdo, M.D.C.; Abe, F.; Jimenez-Estrada, M.; Soler, C.; Reyes-Chilpa, R. HIV-1 inhibition by extracts of Clusiaceae species from Mexico. *Biol. Pharm. Bull.* **2004**, *27*, 916–920. [CrossRef] [PubMed]

152. Huerta-Reyes, M.; Basualdo, M.D.C.; Lozada, L.; Jimenez-Estrada, M.; Soler, C.; Reyes-Chilpa, R. HIV-1 inhibitory compounds from *Calophyllum brasiliense* leaves. *Biol. Pharm. Bull.* **2004**, *27*, 1471–1475. [CrossRef] [PubMed]

153. Gomez-Verjan, J.C.; Estrella-Parra, E.A.; Gonzalez-Sanchez, I.; Rivero-Segura, N.A.; Vazquez-Martinez, R.; Magos-Guerrero, G.; Mendoza-Villanueva, D.; Cerbón-Cervantes, M.A.; Reyes-Chilpa, R. Toxicogenomic analysis of pharmacological active coumarins isolated from *Calophyllum brasiliense*. *Genom. Data* **2015**, *6*, 258–259. [CrossRef] [PubMed]

154. Huerta-Reyes, M.; Basualdo, M.D.C.; Abe, F.; Jimenez-Estrada, M.; Soler, C.; Reyes-Chilpa, R. HIV-1 inhibitory compounds from *Calophyllum brasiliense* leaves. *Biol. Pharm. Bull.* **2004**, *27*, 1471–1475. [CrossRef] [PubMed]

155. Spino, C.; Dodier, M.; Sotheeswaran, S. Anti-HIV coumarins from *Calophyllum* seed oil. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 3475–3478. [CrossRef]

156. Dharmaratne, H.; Wanigasekara, W.; Mata-Greenwood, E.; Pezzuto, J. Inhibition of human immunodeficiency virus type 1 reverse transcriptase activity by cordatolides isolated from *Calophyllum cordato-oblongum*. *Planta Med.* **2007**, *74*, 1408–1413. [CrossRef] [PubMed]

157. Cheng, Y.C.; et al. Anti-AIDS agents-XIX. *Tripterygium wilfordii*: A new class of potent anti-HIV-1 protease inhibitors from extracts of Indian medicinal plants. *Int. J. Phytomed.* **2011**, *3*, 312–318. [CrossRef] [PubMed]
163. Kashman, Y.; Gustafson, K.R.; Fuller, R.; Cardellina, J., 2nd; McMahon, J.; Currens, M.; Buckheit, R., Jr.; Hughes, S.; Cragg, G.; Boyd, M. The calanolides, a novel HIV-inhibitory class of cudermative derivatives from the tropical rainforest tree, Calophyllum lanigerum. J. Med. Chem. 1992, 35, 2735–2743. [CrossRef] [PubMed]

164. McKee, T.C.; Fuller, R.W.; Covington, C.D.; Cardellina Ii, J.H.; Gulakowski, R.J.; Krepps, B.L.; McMahon, J.B.; Boyd, M.R. New pyranocoumarins isolated from Calophyllum lanigerum and Calophyllum teysmannii. J. Nat. Prod. 1996, 59, 754–758. [CrossRef] [PubMed]

165. Alkhamaiseh, S.I.; Taher, M.; Ahmad, F. The phytochemical contents and antimicrobial activities of Malaysian Calophyllum rubiginosum. Am. J. Appl. Sci. 2011, 8, 201–205. [CrossRef]

166. Magadula, J.J.; Tewtrakul, S. Anti-HIV-1 protease activities of crude extracts of some Garcinia species growing in Tanzania. Afr. J. Biotechnol. 2010, 9, 1848–1852.

167. Zhou, P.; Takaishi, Y.; Duan, H.; Chen, B.; Honda, G.; Itoh, M.; Takeda, Y.; Kodzhimatov, O.K.; Lee, K.H. Coumarins and bicoumarin from Ferula sambula: Anti-HIV activity and inhibition of cytokine release. Phytochemistry 2000, 53, 689–697. [CrossRef]

168. Magadula, J.J.; Suleimani, H.O. Cytotoxic and anti-HIV activities of some Tanzanian Garcinia species. Tanzania J. Health Res. 2010, 12. [CrossRef]

169. Chen, S.X.; Wan, M.; Loh, B.N. Active constituents against HIV-1 protease from Garcinia mangostana. Planta Med. 1996, 62, 381–382. [CrossRef] [PubMed]

170. Rimando, A.M.; Pezzuto, J.M.; Farnsworth, N.R.; Santisuk, T.; Reutrakul, V.; Kawanishi, K. New lignans from Anogeissus acuminata with HIV-1 reverse transcriptase inhibitory activity. J. Nat. Prod. 1994, 57, 896–904. [CrossRef] [PubMed]

171. Mush, N.F.; Mbwambo, Z.H.; Innocent, E.; Tewtrakul, S. Antibacterial, anti-HIV-1 protease and cytotoxic activities of aqueous ethanolic extracts from Combretum adenogonium Steud. Ex A. Rich (Combretaceae). BMC Complement. Altern. Med. 2012, 12. [CrossRef] [PubMed]

172. Bessong, P.O.; Obi, C.L.; Andreola, M.L.; Rojas, L.B.; Pouysegu, L.; Igumbor, E.; Meyer, J.M.; Quideau, S.; Ltvak, S. Evaluation of selected south african medicinal plants for inhibitory properties against human immunodefiency virus type 1 reverse transcriptase and integrase. J. Ethnopharmacol. 2005, 99, 83–91. [CrossRef] [PubMed]

173. Asres, K.; Bucar, F. Anti-HIV activity against immunodefiency virus type 1 (HIV-1) and type II (HIV-II) of compounds isolated from the stem bark of Combretum molle. Ethiop. Med. J. 2005, 43, 15–20. [PubMed]

174. Asres, K.; Bucar, F.; Kartnig, T.; Witvrouw, M.; Pannecoque, C.; De Clercq, E. Antiviral activity against human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) of ethnotoxically selected Ethiopian medicinal plants. Phytother. Res. 2001, 15, 62–69. [CrossRef] [PubMed]

175. El-Mekkawy, S.; Meselhy, M.R.; Kusumoto, I.T.; Kadota, S.; Hattori, M.; Namba, T. Inhibitory effects of Egyptian folk medicines on human immunodeficiency virus (HIV) reverse transcriptase. Chem. Pharm. Bull. 1995, 43, 641–648. [CrossRef] [PubMed]

176. Valsaraj, K.R.; Pushpangadan, P.; Smitt, U.W.; Adsersen, A.; Christensen, S.B.; Sittie, A.; Nyman, U.; Nielsen, C.; Olsen, C.E. New anti-HIV-1, antimalarial, and antifungal compounds from Terminalia bellerica. J. Nat. Prod. 1997, 60, 739–742. [CrossRef] [PubMed]

177. Ahn, M.J.; Chul, Y.K.; Ji, S.L.; Tae, G.K.; Seung, H.K.; Lee, C.K.; Lee, B.B.; Shin, C.G.; Huh, H.; Kim, J. Inhibition of HIV-1 integrase by galloyl glucoses from Terminalia chebula and flavonol glycoside gallates from Euphorbia pekinensis. Planta Med. 2002, 68, 457–459. [CrossRef] [PubMed]

178. Chaouke, M.A.; Shai, L.J.; Mogale, M.A.; MKgomotho, M.P. Antibacterial and anti HIV 1 reverse transcriptase activity of selected medicinal plants from Phalaborwa, South Africa. Res. J. Med. Plant 2016, 10, 388–395.

179. Tshikalange, T.E.; Meyer, J.J.M.; Lall, N.; Muñoz, E.; Sancho, R.; Van de Venter, M.; Oosthuizen, V. In vitro anti-HIV-1 properties of ethnotoxically selected South African plants used in the treatment of sexually transmitted diseases. J. Ethnopharmacol. 2008, 119, 478–481. [CrossRef] [PubMed]

180. Schröder, H.C.; Merz, H.; Steffen, R.; Müller, W.E.G.; Sarin, P.S.; Trumm, S.; Schulz, J.; Eich, E. Differential in vitro anti-HIV activity of natural lignans. Z. Naturforsch. C 1990, 45, 1215–1221. [PubMed]

181. Yamamoto, T.; Takahashi, H.; Sakai, K.; Kowithayakorn, T.; Koyano, T. Screening of Thai plants for anti-HIV-1 activity. Nat. Med. 1997, 51, 541–546.

182. Anonymous. Rubitecan: 9-NC, 9-Nitro-20(S)-Camptothecin, 9-Nitro-Camptothecin, 9-Nitrocamptothecin, RFS 2000, RFS2000. Drugs R D 2004, 5, 305–311.
183. Ju, G.; Park, J.; Cheol, P.; Cheol, P.; Moon, H.; Sung, P.; Da, C.; Young, S.; Ky, P.; Hyun, C.; Moon, K. Phenolic compounds from Orostachys japonicus having anti-HIV-1 protease activity. Nat. Prod. Sci. 2000, 6, 117–121.
184. Okoye, E.L.; Nworu, C.S.; Ezeifeke, G.O.; Esimone, C.O. Inhibition of HIV-1 lentiviral particles infectivity by Gynostemma pentaphyllum extracts in a viral vector based assay. Afr. J. Biotechnol. 2012, 11, 1782–1788. [CrossRef]
185. Chen, J.C.; Zhang, G.H.; Zhang, Z.Q.; Qiu, M.H.; Zheng, Y.T.; Yang, L.M.; Yu, K.B. Octanorcucurbitane and cucurbitane triterpenoids from the tubers of Hemsleya endecaphylla with HIV-1 inhibitory activity. J. Nat. Prod. 2008, 71, 153–155. [CrossRef][PubMed]
186. Thakur, G.S.; Bag, M.; Sanodiya, B.S.; Bhadauriya, P.; Devnath, M.; Prasad, G.B.K.S.; Bisen, P.S. Momordica balsamina: A medicinal and neutracutical plant for health care management. Curr. Pharm. Biotechnol. 2009, 10, 667–682. [CrossRef][PubMed]
187. Lee-Huang, S.; Huang, P.L.; Kung, H.F.; Li, B.Q.; Huang, P.; Huang, H.I.; Chen, H.C. A new anti-human immunodeficiency virus from Euphorbia kansui. J. Antibiot. 1994, 47, 546–548. [CrossRef][PubMed]
188. Lee-Huang, S.; Huang, P.L.; Nara, P.L.; Chen, H.-C.; Kung, H.-F.; Huang, P.; Huang, H.I.; Huang, P.L. A new class of anti-HIV agents: GAP31, DAPs 30 and 32. FEBS Lett. 1990, 272, 12–18. [CrossRef]
189. Lee-Huang, S.; Huang, P.L.; Kung, H.F.; Li, B.Q.; Huang, P.L.; Huang, P.; Huang, H.I.; Chen, H.C. Tap 29: An anti-human immunodeficiency virus protein from Trichosanthes kirilowii that is nontoxic to intact cells. Proc. Natl. Acad. Sci. USA 1991, 88, 6570–6574. [CrossRef][PubMed]
190. Offergeld, R.; Reinecker, C.; Gumz, E.; Treiber, R.; Neth, R.D.; Gohla, S.H. Mitogenic activity of high molecular polysaccharide fractions isolated from the Cupressaceae Thuja occidentalis L. Enhanced cytokine-production by thypolysaccharide, g-fraction (TPSg). Leukemia 1992, 6 (Suppl. 3), 1895–1915. [PubMed]
191. Chaniad, P.; Wattanapromsakul, C.; Pianwanit, S.; Tewtrakul, S. Antiviral activity in vitro of Cupressus sempervirens on two human retroviruses HIV and htlv. Phytother. Res. 1998, 12, 367–368. [CrossRef]
192. Meragelman, K.M.; McKee, T.C.; Boyd, M.R. Anti-HIV prenylated flavonoids from Monotes africanus and molecular docking study. An anti-human immunodeficiency virus from Euphorbia erythradenia. J. Microbiol. Prod. 2001, 64, 546–548. [CrossRef][PubMed]
193. Min, B.S.; Tomiyama, M.; Ma, C.M.; Nakamura, N.; Hattori, M. Kaempferol acetylrhamnosides from Mallotus japonicus and their in vitro anti-HIV activity. Phytochemistry 2000, 56, 711–714. [CrossRef][PubMed]
194. Meragelman, K.M.; McKee, T.C.; Boyd, M.R. Anti-HIV-1 reverse transcriptase inhibition activity of 1,4-naphthoquinone derivatives. Chem. Nat. Compd. 2012, 47, 883–887. [CrossRef]
195. Chen, J.C.; Zhang, G.H.; Zhang, Z.Q.; Qiu, M.H.; Park, J.; Park, B.W.; Park, S.W.; Paik, S.Y. Anti-HIV-1 efficacy of extracts from medicinal plants. J. Microbiol. 2010, 48, 249–252. [CrossRef][PubMed]
196. El-Mekkawy, S.; Meselhy, M.R.; Nakamura, N.; Hattori, M.; Kawahata, T.; Otake, T. Anti-HIV-1 phorbol esters from the seeds of Croton tiglium. Phytochemistry 2000, 53, 457–464. [CrossRef]
197. Ayatollahi, A.M.; Zarei, S.M.; Memarnejadian, A.; Ghanadian, M.; Moghadam, M.H.; Kobarfard, F. Triterpenoids from Euphorbia erythradenia Biss. And their anti-HIV activity. Iran. J. Pharm. Res. 2016, 15, 19–27. [PubMed]
198. Zheng, W.; Cui, Z.; Zhu, Q. Cytotoxicity and antiviral activity of the compounds from Euphorbia kansui. Planta Med. 2007, 64, 754–756. [CrossRef][PubMed]
199. Zhao, J.X.; Liu, C.P.; Qi, W.Y.; Han, M.L.; Han, Y.S.; Wainberg, M.A.; Yue, J.M. Eurifoloids A-R, structurally diverse diterpenoids from Euphorbia Neriifolia. J. Nat. Prod. 2014, 77, 2224–2233. [CrossRef][PubMed]
200. Yan, S.L.; Li, Y.H.; Chen, X.Q.; Liu, D.; Chen, C.H.; Li, R.T. Diterpenes from the stem bark of Euphorbia neriifolia and their in vitro anti-HIV activity. Phytochemistry 2018, 145, 40–47. [CrossRef][PubMed]
201. Cox, P.A. Saving the ethnomedicinal heritage of Samoa. J. Ethnopharmacol. 1993, 38, 181–188. [CrossRef]
202. Arisawa, M. A review of the biological activity and chemistry of Mallotus japonicus (Euphorbiaceae). Phytomedicine 1994, 1, 261–269. [CrossRef]
204. Pengsuparp, T.; Cai, L.; Constant, H.; Fong, H.H.S.; Lin, L.Z.; Kinghorn, A.D.; Pezzuto, J.M.; Cordell, G.A.; Ingolfsdottir, K.; Wagner, H.; et al. Mechanistic evaluation of new plant-derived compounds that inhibit HIV-1 reverse transcriptase. *J. Nat. Prod.* 1995, 58, 1024–1031. [CrossRef] [PubMed]

205. Pengsuparp, T.; Cai, L.; Fong, H.H.S.; Kinghorn, A.D.; Pezzuto, J.M.; Wani, M.C.; Wall, M.E. Pentacyclic triterpenes derived from *Maprounea africana* are potent inhibitors of HIV-1 reverse transcriptase. *J. Nat. Prod.* 1994, 57, 415–418. [CrossRef] [PubMed]

206. Wang, H.X.; Ng, T.B. Examination of lectins, polysaccharopeptide, polysaccharide, alkaloid, coumarin and trypsin inhibitors for inhibitory activity against human immunodeficiency virus reverse transcriptase and glycolyrase. *Planta Med.* 2001, 67, 669–672. [CrossRef] [PubMed]

207. Ranki, A.; Nyberg, M.; Ovod, V.; Haltia, M.; Elovaara, I.; Raininko, R.; Haapasalo, H.; Krohn, K. Abundant expression of HIV Nef and Rev proteins in brain astrocytes in vivo is associated with dementia. *AIDS* 1995, 9, 1001–1008. [CrossRef] [PubMed]

208. Zhang, L.; Luo, R.-H.; Wang, F.; Jiang, M.-Y.; Dong, Z.-J.; Yang, L.-M.; Zheng, Y.-T.; Liu, J.-K. Highly functionalized daphnane diterpenoids from *Trigonostemon thyrsoides*. *Organ. Lett.* 2010, 12, 152–155. [CrossRef] [PubMed]

209. Cheng, Y.-Y.; Chen, H.; He, H.-P.; Zhang, Y.; Li, S.-F.; Tang, G.-H.; Guo, L.-L.; Yang, W.; Zhu, F.; Zheng, Y.-T.; et al. Anti-HIV active daphnane diterpenoids from *Trigonostemon thyrsoides*. *Phytochemistry* 2013, 96, 360–369. [CrossRef] [PubMed]

210. Ma, C.-M.; Nakamura, N.; Hattori, M. Saponins and C-glycosyl flavones from the seeds of *Acacia catechu* suppress HIV-1 replication by inhibiting the activities of the viral protease and tat. *J. Virol.* 2013, 10, 309. [CrossRef] [PubMed]

211. Chinsembu, K.C. Ethnobotanical study of plants used in the management of HIV/AIDS-related diseases in Livingstone, Southern Province, Zambia. *J. Ethn.-Based Complement. Altern. Med.* 2016, 2016, 4238625. [CrossRef] [PubMed]

212. Nutan, S.K.; Modi, M.; Dezzutti, C.S.; Kulshreshtha, S.; Rawat, A.K.S.; Srivastava, S.K.; Malhotra, S.; Verma, A.; Ranga, U.; Gupta, S.K. Extracts from *Acacia catechu* suppress HIV-1 replication by inhibiting the activities of the viral protease and tat. *J. Med. Chem.* 2014, 57, 415–418. [CrossRef] [PubMed]

213. Abdallah, R.M.; Ghazy, N.M.; El-Sebakhy, N.; Pirillo, A.; Verotta, L. Astragalosides from Egyptian *Astragalus spinosus* Vahl. *Pharmazie* 1993, 48, 452–454. [PubMed]

214. Taylor, D.L.; Nash, R.; Fellows, L.E.; Kang, M.S.; Tymo, A.S. Naturally occurring pyrrolizidines: Inhibition of α-glucosidase 1 and anti-HIV activity of one stereoisomer. *Antivir. Chem. Chemother.* 1992, 3, 273–277. [CrossRef]

215. Mahmoud, N.; Pizza, C.; Aquino, R.; De Tommasi, N.; Piacenti, S.; Colman, S.; Burke, A.; Hay, A.J. Inhibition of HIV infection by flavonoids. *Antivir. Res.* 1993, 22, 189–199. [CrossRef]

216. Mohammed, M.M.D.; Ibrahim, N.A.; Awad, N.E.; Matloub, A.A.; Mohamed-Ali, A.G.; Barakat, E.E.; Mohamed, A.E.; Colla, P.L. Anti-HIV-1 and cytotoxicity of the alkaloids of *Erythrina abyssinica* as novel HIV-1 protease inhibitors. *Planta Med.* 2009, 75, 268–270. [CrossRef] [PubMed]

217. Lo, W.L.; Wu, C.C.; Chang, F.R.; Wang, W.Y.; Khalil, A.T.; Lee, K.H.; Wu, Y.C. Antiplatelet and anti-HIV constituents from *Euchresta formosana*. *Nat. Prod. Res.* 2003, 17, 91–97. [CrossRef] [PubMed]

218. Konoshima, T.; Yasuda, I.; Kashiwada, Y.; Cosentino, L.M.; Lee, K.-H. Anti-AIDS agents. 21. Triterpenoid glycosides from the roots of *Gymnocladus chinesis* Lam. growing in Sudan. *Nat. Prod. Res.* 2012, 26, 1565–1575. [CrossRef] [PubMed]

219. Lee, J.; Oh, W.K.; Ahn, J.S.; Kim, Y.H.; Mbafor, J.T.; Wandji, J.; Fomum, Z.T. Pentacyclic triterpenoids from *Erythrina senegalensis* as novel HIV-1 protease inhibitors. *Phytochemistry* 2009, 70, 369–376. [CrossRef] [PubMed]

220. Lo, W.L.; Wu, C.C.; Chang, F.R.; Wang, W.Y.; Khalil, A.T.; Lee, K.H.; Wu, Y.C. Antiplatelet and anti-HIV constituents from *Euchresta formosana*. *Nat. Prod. Res.* 2003, 17, 91–97. [CrossRef] [PubMed]

221. Konoshima, T.; Yasuda, I.; Kashiwada, Y.; Cosentino, L.M.; Lee, K.-H. Anti-AIDS agents. 21. Triterpenoid saponins as anti-HIV principles from fruits of *Gleditsia japonica* and *Gymnocladus chinesis*, and a structure-activity correlation. *J. Nat. Prod.* 1995, 58, 1372–1377. [CrossRef] [PubMed]

222. Cheng, B.H.; Zhou, X.; Wang, Y.; Chan, J.Y.W.; Lin, H.Q.; Or, P.M.Y.; Wan, D.C.C.; Leung, P.C.; Fung, K.P.; Wang, Y.F.; et al. Herb-drug interaction between an anti-HIV Chinese herbal sh formula and atazanavir in vitro and in vivo. *J. Ethnopharmacol.* 2015, 162, 369–376. [CrossRef] [PubMed]

223. Ito, M.; Sato, A.; Hirabayashi, K.; Tanabe, F.; Shigeta, S.; Baba, M.; De Clercq, E.; Nakashima, H.; Yamamoto, N. Mechanism of inhibitory effect of glycyrrhizin on replication of human immunodeficiency virus (HIV). *Antivir. Res.* 1988, 10, 289–298. [CrossRef]

224. Baltina, L.A. Chemical modification of glycyrrhizic acid as a route to new bioactive compounds for medicine. *Curr. Med. Chem.* 2003, 10, 155–171. [CrossRef] [PubMed]
223. Takada, K.; Bermingham, A.; O’Keefe, B.R.; Wamiru, A.; Beutler, J.A.; Le Grice, S.F.J.; Lloyd, J.; Gustafson, K.R.; McMahon, J.B. An HIV RNase H inhibitory 1,3,4,5-tetragalloylapiptol from the African plant Hylocladon gabunensis. *J. Nat. Prod.* 2007, 70, 1647–1649. [CrossRef] [PubMed]

224. Likhitwitayawuid, K.; Srituralak, B.; Benchanak, K.; Lipipun, V.; Mathew, J.; Schinazi, R.F. Phenolics with antiviral activity from *Milletta erythrolaxya* and *Arctocarpus lakoocha*. *Nat. Prod. Res.* 2005, 19, 177–182. [CrossRef] [PubMed]

225. Theo, A.; Masebe, T.; Suzuki, Y.; Kikuchi, H.; Wada, S.; Obi, C.L.; Bessong, P.O.; Usuzawa, M.; Oshima, Y.; Hattori, T. *Peltophyllum africanum*, a traditional South African medicinal plant, contains an anti-HIV-1 constituent, betulinic acid. *Tohoku J. Exp. Med.* 2009, 217, 93–99. [CrossRef] [PubMed]

226. Fang, E.F.; Lin, P.; Wong, J.H.; Tsao, S.W.; Ng, T.B. A lectin with anti-HIV-1 reverse transcriptase, antitumor, and nitric oxide inducing activities from seeds of *Phaseolus vulgaris* cv. extralong autumn purple bean. *J. Agric. Food Chem.* 2010, 58, 2221–2229. [CrossRef] [PubMed]

227. Li, L.; Li, X.; Shi, C.; Deng, Z.; Fu, H.; Proksch, P.; Lin, W. Pongamone A–E, five flavonoids from the stems of a mangrove plant, *Pongamia pinnata*. *Phytochemistry* 2006, 67, 1347–1352. [CrossRef] [PubMed]

228. Kashiwada, Y.; Wang, H.-K.; Nagao, T.; Kitanaka, S.; Yasuda, I.; Fujioka, T.; Yamagishi, T.; Cosentino, L.M.; Reutrakul, V.; Chanakul, W.; Pohmakotr, M.; Jaipetch, T.; Yoosook, C.; Kasisit, J.; Napaswat, C.; Santisuk, T.; Rowley, D.C.; Hansen, M.S.; Rhodes, D.; Sotriffer, C.A.; Ni, H.; McCammon, J.A.; Bushman, F.D.; Fenical, W. Identification of xanthones and flavonoids from *Swertia bimaculata* transcriptase inhibitor and the first flavone-xanthone dimer, from *Swertia franchetiana* transcriptase inhibitor and the first flavone-xanthone dimer, from *Swertia japonica* transcriptase inhibitor. *J. Nat. Prod.* 1998, 61, 1090–1095. [CrossRef] [PubMed]

229. Thayil Seema, M.; Thyagarajan, S.P. Methanol and aqueous extracts of *Hylodendron gabunensis* plant inhibit HIV-1 reverse transcriptase in vitro. *Int. J. Pharmacogn. Phytochem. Res.* 2016, 8, 1099–1103.

230. Behbahani, M.; Sayedipour, S.; Pourazar, A.; Shamehsazzadeh, M. In vitro anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside isolated from *Securigera securirada*. *Res. Pharm. Sci.* 2014, 9, 463–469. [PubMed]

231. Quintero, A.; Fabbro, R.; Maillo, M.; Barrios, M.; Milano, M.B.; Fernandez, A.; Williams, B.; Michelangeli, F.; Rangel, H.R.; Pujol, F.H. Inhibition of hepatitis B virus and human immunodeficiency virus (HIV-1) replication by *Warscewiczia coccinea* (Vahl) Kl. (Rubiaceae) ethanol extract. *Nat. Prod. Res.* 2011, 25, 1565–1569. [CrossRef] [PubMed]

232. Dong, M.; Quan, L.Q.; Dai, W.F.; Yan, S.L.; Chen, C.H.; Chen, X.Q.; Li, R.T. Anti-inflammatory and anti-HIV compounds from *Swertia bimaculata*. *Planta Med.* 2017, 83, 1368–1373. [CrossRef] [PubMed]

233. Wang, J.-N.; Hou, C.-Y.; Liu, Y.-L.; Lin, J.-Y. Inhibition of Moloney murine leukemia virus reverse transcriptase activity by tetrahydroxyxanthones isolated from the Chinese herb, *Tripterospermum lanceolatum*. *Rapid Commun. Mass Spectrom.* 2012, 26, 2913–2923. [CrossRef] [PubMed]

234. Chang, C.-C.; Lin, C.-N.; Lin, J.-Y. Inhibition of hepatitis B virus and human immunodeficiency virus (HIV-1) replication by *Securigera securidaca*-glucoside isolated from *Securigera securidaca*. *Vaccine* 2006, 25, 1565–1569. [CrossRef] [PubMed]

235. Ji, S.L.; Hattori, T. Anti-viral activity from *Artocarpus lakoocha*. *Antivir. Res.* 2011, 91, 93–99. [CrossRef] [PubMed]

236. Ji, S.L.; Hattori, T. Anti-viral activity from *Artocarpus lakoocha*. *J. Nat. Prod.* 2012, 75, 1647–1649. [CrossRef] [PubMed]

237. Ji, S.L.; Hattori, T. Anti-viral activity from *Artocarpus lakoocha*. *J. Nat. Prod.* 2012, 75, 1647–1649. [CrossRef] [PubMed]

238. Sokmen, A.; Jones, B.M.; Erturk, M. Antimicrobial activity of extracts from the cell cultures of some Turkish medicinal plants. *Phytother. Res.* 1999, 13, 355–357. [CrossRef]

239. Esposito, F.; Sanna, C.; Del Vecchio, C.; Cannas, V.; Venditti, A.; Corona, A.; Bianco, A.; Serrilli, A.M.; Guarini, L.; Parolin, C.; et al. *Hypericum hircinum* L. components as new single-molecule inhibitors of both
HIV-1 reverse transcriptase-associated DNA polymerase and ribonuclease H activities. *Pathog. Dis.* **2013**, *68*, 116–124. [CrossRef] [PubMed]

Birt, D.F.; Widrlechner, M.P.; Hammer, K.D.P.; Hillwig, M.L.; Wei, J.; Kraus, G.A.; Murphy, P.A.; McCoy, J.A.; Wurtele, E.S.; Neighbors, J.D.; et al. *Hypericum* in infection: Identification of anti-viral and anti-inflammatory constituents. *Pharm. Biol.* **2009**, *47*, 774–782. [CrossRef] [PubMed]

Fuller, R.W.; Westergaard, C.K.; Collins, J.W.; Cardellina, J.H.; Boyd, M.R. Vismiaphenones D–G, new prenylated benzophenones from *Vismia cayennensis*. *J. Nat. Prod.* **1999**, *62*, 67–69. [CrossRef] [PubMed]

Drewes, S.E.; Khan, F. The African potato (*Hypoxis hemerocallidea*): A chemical-historical perspective. *S. Afr. J. Sci.* **2004**, *100*, 425–430.

Hara, H.; Maruyama, N.; Yamashita, S.; Hayashi, Y.; Lee, K.H.; Bastow, K.F.; Chairul; Marumoto, R.; Imakura, Y. Elecancin, a novel new naphthoquinone from the bulb of *Eleatherine americana*. *Chem. Pharm. Bull.* **1997**, *45*, 1714–1716. [CrossRef]

Byung, S.M.; Hyeong, K.L.; Sang, M.L.; Young, H.K.; Ki, H.B.; Otake, T.; Nakamura, N.; Hattori, M. Anti-human immunodeficiency virus-type 1 activity of constituents from *Juglans mandshurica*. *Arch. Pharm. Res.* **2002**, *25*, 441–445.

Kim, H.K.; Lee, H.K.; Shin, C.G.; Huh, H. HIV integrase inhibitory activity of *Agastache rugosa*. *Arch. Pharm. Res.* **1999**, *22*, 520–523. [CrossRef] [PubMed]

Tang, X.; Chen, H.; Zhang, X.; Quan, K.; Sun, M. Screening anti-HIV Chinese materia medica with HIV and equine infectious anemic virus reverse transcriptase. *J. Tradit. Chin. Med.* **1994**, *14*, 10–13. [PubMed]

Shahidul Alam, M.; Quader, M.A.; Rashid, M.A. HIV-inhibitory diterpenoid from *Anisomeles indica*. *Fitoterapia* **2000**, *71*, 574–576. [CrossRef]

Bodiwala, H.S.; Sabde, S.; Mitra, D.; Bhutani, K.K.; Singh, I.P. Anti-HIV diterpenes from *Coleus forskohlii*. *Nat. Prod. Commun.* **2009**, *4*, 1173–1175. [PubMed]

Kreis, W.; Kaplan, M.H.; Freeman, J.; Sun, D.K.; Sarin, P.S. Inhibition of HIV replication by *Hyssop officinalis* extracts. *Antivir. Res.* **1990**, *14*, 323–337. [CrossRef]

Miraj, S.; Azizi, N.; Kiani, S. A review of chemical components and pharmacological effects of *Melissa officinalis* L. *Der Pharm. Lett.* **2016**, *8*, 229–237.

Amzazi, S.; Ghoulami, S.; Bakri, Y.; Il Idrissi, A.; Fkih-T.

Bebhahani, M.; Mohabatkar, H.; Soltani, M. Anti-HIV-1 activities of aerial parts of *Cuscuta campestris* parasite *Cuscua campestris*. *J. Antivir. Antiretrovir.* **2013**, *5*, 57–61. [CrossRef]

Kapewangolo, P.; Omolo, J.; Fonteh, P.; Kandawa-Schulz, M.; Meyer, D. Triterpenoids from *Ocimum labiatum* activates latent HIV-1 expression in vitro: Potential for use in adjuvant therapy. *Molecules* **2017**, *22*, 1703. [CrossRef] [PubMed]

Kapewangolo, P.; Hussein, A.A.; Meyer, D. Inhibition of HIV-1 enzymes, antioxidant and anti-inflammatory activities of *Plectranthus barbatus*. *J. Ethnomedecarmacol.* **2013**, *149*, 184–190. [CrossRef] [PubMed]

Tabba, H.D.; Chang, R.S.; Smith, K.M. Isolation, purification, and partial characterization of prunellin, an anti-HIV component from aqueous extracts of *Prunella vulgaris*. *Antivir. Res.* **1989**, *11*, 263–273. [CrossRef]

Pariš, A.; Štrukelj, B.; Renko, M.; Turk, V.; Pukl, M.; Umek, A.; Korant, B.D. Inhibitory effect of carnosolic acid on HIV-1 protease in cell-free assays. *J. Nat. Prod.* **1993**, *56*, 1426–1430. [CrossRef] [PubMed]

Fu, M.; Ng, T.B.; Jiang, Y.; Pi, Z.F.; Liu, Z.K.; Li, L.; Liu, F. Compounds from rose (*Rosa rugosa*) flowers with human immunodeficiency virus type 1 reverse transcriptase inhibitory activity. *J. Pharm. Pharmacol.* **2006**, *58*, 1275–1280. [CrossRef] [PubMed]

Abd-Elazem, I.S.; Chen, H.S.; Bates, R.B.; Huang, R.C.C. Isolation of two highly potent and non-toxic inhibitors of human immunodeficiency virus type 1 (HIV-1) integrase from *Salvia miltiorrhiza*. *Antivir. Res.* **2002**, *55*, 91–106. [CrossRef]

Geuenich, S.; Goffinet, C.; Venzke, S.; Nolkemper, S.; Baumann, I.; Pliinkert, P.; Reichling, J.; Kepper, O.T. Aqueous extracts from peppermint, sage and lemon balm leaves display potent anti-HIV-1 activity by increasing the virion density. *Retrovirology* **2008**, *5*, 27. [CrossRef] [PubMed]

Bailly, F.; Queffelec, C.; Mbemba, G.; Mouscadet, J.F.; Cotelle, P. Synthesis and HIV-1 integrase inhibitory activities of caffeic acid dimers derived from *Salvia officinalis*. *Bioorgan. Med. Chem. Lett.* **2005**, *15*, 5053–5056. [CrossRef] [PubMed]
263. Watanabe, M.; Kobayashi, Y.; Ogihara, J.; Kato, J.; Oishi, K. HIV-1 reverse transcriptase-inhibitory compound in
Salvia officinalis. Food Sci. Technol. Res. 2000, 6, 216–220. [CrossRef]

264. Zhang, Z.F.; Peng, Z.G.; Gao, L.; Dong, B.; Li, J.R.; Li, Z.Y.; Chen, H.S. Three new derivatives of anti-HIV-1
polyphenols isolated from Salvia yunnanensis. J. Asian Nat. Prod. Res. 2008, 10, 391–396. [CrossRef] [PubMed]

265. Li, B.Q.; Fu, T.; Yan, Y.D.; Baylor, N.W.; Russetti, F.W.; Kung, H.F. Inhibition of HIV infection by baicalin-A
flavonoid compound purified from Chinese herbal medicine. Cell. Mol. Biol. Res. 1993, 39, 119–124. [PubMed]

266. Wei, Y.; Ma, C.M.; Chen, D.Y.; Hattori, M. Anti-HIV-1 protease triterpenoids from Stauntonia obovatifoliola
Hayata subsp. Intermedia. Phytochemistry 2008, 69, 1875–1879. [CrossRef] [PubMed]

267. Zhang, C.F.; Sun, Q.S.; Wang, Z.T.; Masao, H.; Supinya, T. Inhibitory activities of tannins extracted from
stem of Lindera aggregata against HIV-1 integrase. Chin. Pharm. J. 2003, 38, 911–914.

268. Zhang, C.F.; Nakamura, N.; Tewtrakul, S.; Hattori, M.; Sun, Q.S.; Wang, Z.T.; Fujiwara, T. Sesquiterpenes and
alkaloids from Lindera chunii and their inhibitory activities against HIV-1 integrase. Chem. Pharm. Bull. 2002,
50, 1195–1200. [CrossRef] [PubMed]

269. Byung Sun, M.; Bae, K.; Young Ho, K.; Shimotohno, K.; Miyashiro, H.; Hattori, M. Inhibitory activities of
Korean plants on HIV-1 protease. Nat. Prod. Sci. 1998, 4, 241–244.

270. Zhang, H.J.; Tan, G.T.; Hoang, V.D.; Hung, N.V.; Cuong, N.M.; Soejarto, D.D.; Pezzuto, J.M.; Fong, H.H.S.
Inhibitory activities of tannins extracted from Swietenia mahagoni. J. Nat. Prod. 2000, 63, 1537–1539. [CrossRef] [PubMed]

271. Zhang, C.F.; Sun, Q.S.; Wang, Z.T.; Masao, H.; Supinya, T. Inhibitory activities of tannins extracted from
stem of Lindera aggregata against HIV-1 integrase. Chin. Pharm. J. 2003, 38, 911–914.

272. Zhang, C.F.; Nakamura, N.; Tewtrakul, S.; Hattori, M.; Sun, Q.S.; Wang, Z.T.; Fujiwara, T. Sesquiterpenes and
alkaloids from Lindera chunii and their inhibitory activities against HIV-1 integrase. Chem. Pharm. Bull. 2002,
50, 1195–1200. [CrossRef] [PubMed]

273. Subramanya, M.D.; Pai, S.R.; Upadhyya, V.; Ankad, G.M.; Bhagwat, S.S.; Hegde, H.V. Total polyphenolic
contents and in vitro antioxidant properties of eight Sida species from Western Ghats, India. J. Ayurveda
Integ. Med. 2015, 6, 24–28. [PubMed]

274. Kainuma, M.; Baba, S.; Chan, H.T.; Inoue, T.; Tangah, J.; Chan, E.W.C. Medicinal plants of sandy shores: A
short review on Calophyllum inophyllum and Thespesia populnea. Int. J. Pharmacogn. Phytochem. Res. 2016,
8, 2056–2062.

275. Puripattanavong, J.; Tungcharoen, P.; Chianiad, P.; Pianwanit, S.; Tewtrakul, S. Anti-HIV-1 integrase effect
of compounds from Aglaia andamanica leaves and molecular docking study with acute toxicity test in mice.
Pharm. Biol. 2016, 54, 654–659. [CrossRef] [PubMed]

276. Eid, A.M.M.; Elmarzugi, N.A.; El-Enshasy, H.A. A review on the phytopharmacological effect of
Swietenia macrophylla. Int. J. Pharm. Pharm. Sci. 2013, 5, 47–53.

277. Matsuse, I.T.; Nakabayashi, T.; Lim, Y.A.; Hussein, G.M.E.; Miyashiro, H.; Kakiuchi, N.; Hattori, M.;
Stardj, S.; Shimotohno, K. A human immunodeficiency virus protease inhibitory substance from
Swietenia malagarei. Phytother. Res. 1997, 11, 433–436. [CrossRef]

278. Yan, M.H.; Cheng, P.; Jiang, Z.Y.; Ma, Y.B.; Zhang, X.M.; Zhang, F.X.; Yang, L.M.; Zheng, Y.T.; Chen, J.J.
Periglaucines A-D, anti-HBV and -HIV-1 alkaloids from Persicarpium glauccum. J. Nat. Prod. 2008, 71, 760–763.
[CrossRef] [PubMed]

279. Ma, C.M.; Nakamura, N.; Miyashiro, H.; Hattori, M.; Komatsu, K.; Kawahata, T.; Otake, T. Screening of Chinese and Mongolian herbal drugs for anti-human immunodeficiency virus type 1 (HIV-1) activity. Phytother. Res. 2002, 16, 186–189. [CrossRef] [PubMed]

280. Bunluepuech, K.; Tewtrakul, S. Anti-HIV-1 integrase activity of Thai medicinal plants. Songklanakarin J.
Sci. Technol. 2009, 31, 289–292.

281. Bunluepuech, K.; Sudsai, T.; Wattanapromsakul, C.; Tewtrakul, S. Inhibition on HIV-1 integrase activity
and nitric oxide production of compounds from Ficus glomerata. Nat. Prod. Commun. 2011, 6, 1095–1098.
[PubMed]

282. Groweiss, A.; Cardellina, J.H.; Boyd, M.R. HIV-Inhibitory Prenylated xanthones and flavones from
Maclura tinctoria. J. Nat. Prod. 2000, 63, 1537–1539. [CrossRef] [PubMed]

283. Swanson, M.D.; Winter, H.C.; Goldstein, I.J.; Markovitz, D.M. A lectin isolated from bananas is a potent
inhibitor of HIV replication. J. Biol. Chem. 2010, 285, 8646–8655. [CrossRef] [PubMed]
305. Min, B.S.; Jung, H.J.; Lee, J.S.; Kim, Y.H.; Bok, S.H.; Ma, C.M.; Nakamura, N.; Hattori, M.; Bae, K. Inhibitory effect of triterpenes from *Crataegus pinnatifida* on HIV-1 protease. *Planta Med.* 1999, 65, 374–375. [CrossRef] [PubMed]

306. Mahmoud, N.; Piacente, S.; Pizza, C.; Burke, A.; Khan, A.I.; Hayt, A.J. The anti-HIV activity and mechanisms of action of pure compounds isolated from *Rosa damascena*. *Biochem. Biophys. Res. Commun.* 1996, 229, 73–79. [CrossRef] [PubMed]

307. Jong Cheol, P.; Suk Nam, K.; Kwang Jin, C.; Jong Won, C. Anti-HIV-1 protease activity and in vivo anti-lipid peroxidative effect on *Rosa daurica*. *Korean J. Pharmacogn.* 2000, 31, 264–267.

308. Liang, J.; Chen, J.; Tan, Z.; Peng, J.; Zheng, X.; Nishiura, K.; Ng, J.; Wang, Z.; Wang, D.; Chen, Z.; et al. Extracts of the medicinal herb *Sanguisorba officinalis* inhibit the entry of human immunodeficiency virus-1. *J. Food Drug Anal.* 2013, 21, S52–S58. [CrossRef] [PubMed]

309. Song, W.Y.; Ma, Y.B.; Bai, X.; Zhang, X.M.; Gu, Q.; Zheng, Y.T.; Zhou, J.; Chen, J.J. Two new compounds and anti-HIV active constituents from *Illicium verum*. *Planta Med.* 2007, 73, 372–375. [CrossRef] [PubMed]

310. Reutrakul, V.; Krachangchaeng, C.; Tuchinda, P.; Pohmakotr, M.; Jaipetch, T.; Yoosook, C.; Byakika-Kibirwa, P.; Bbosa, G.S.; Luhega, A.; Ogwal-Okeng, J.; Ryan, M.; et al. Medicinal plants used by traditional medicine practitioners for the treatment of HIV/AIDS and related conditions in Uganda. *J. Ethnopharmacol.* 2010, 130, 43–53. [CrossRef]

311. Rashid, M.; Gustafson, K.; Kashmani, Y.; Cardellina, J., III; McMahon, J.; Boyd, M. Anti-HIV alkaloids from *Clausena anisata*. *Antivir. Res.* 2003, 58, 25–33. [CrossRef]

312. Ayisi, N.K.; Nyadedzor, C. Comparative in vitro effects of azt and extracts of *Alchornea cordifolia* on HSV-1, influenza virus, and HIV-1 infections. *Antivir. Res.* 1998, 39, 145–148. [CrossRef] [PubMed]

313. Yang, X.W.; Zhao, J.; Cui, Y.X.; Liu, X.H.; Ma, C.M.; Hattori, M.; Zhang, L.H. Anti-HIV-1 protease triterpenoid saponins from the seeds of *Aesculus chinensis*. *J. Nat. Prod.* 1999, 62, 1510–1513. [CrossRef] [PubMed]

314. Min, B.S.; Jung, H.J.; Lee, J.S.; Kim, Y.H.; Bok, S.H.; Ma, C.M.; Nakamura, N.; Hattori, M.; Bae, K. Inhibitory effect of triterpenes from *Crataegus pinnatifida* on HIV-1 protease. *Planta Med.* 1999, 65, 374–375. [CrossRef] [PubMed]

315. Kim, H.J.; Woo, E.-R.; Shin, C.-G.; Park, H. A new flavonol glycoside gallate ester from *Acer okamotoanum*. *J. Nat. Prod.* 2002, 65, 153–156. [CrossRef] [PubMed]

316. Kim, H.J.; Woo, E.-R.; Shin, C.-G.; Park, H. A new flavonol glycoside gallate ester from *Acer okamotoanum* and its inhibitory activity against human immunodeficiency virus-1 (HIV-1) integrase. *J. Nat. Prod.* 1998, 61, 145–148. [CrossRef] [PubMed]

317. Ayisi, N.K.; Nyadedzor, C. Comparative in vitro effects of azt and extracts of *Alchornea cordifolia* on HSV-1, influenza virus, and HIV-1 infections. *Antivir. Res.* 1998, 39, 145–148. [CrossRef] [PubMed]

318. Fang, E.F.; Ng, T.B. A trypsin inhibitor from rambutan seeds with antitumor, anti-HIV-1 reverse transcriptase, and nitric oxide-inducing properties. *J. Food Drug Anal.* 2001, 9, 1101–1103. [CrossRef]

319. Rashid, M.; Gustafson, K.; Kashmani, Y.; Cardellina, J., III; McMahon, J.; Boyd, M. Anti-HIV alkaloids from *Clausena anisata*. *Antivir. Res.* 2003, 58, 25–33. [CrossRef]

320. Sunthitikawinsakul, A.; Kongkathip, N.; Kongkathip, B.; Phonnakhu, S.; Daly, J.W.; Spande, T.F.; Nimit, Y.; Napaswat, C.; Kasisit, J.; Yoosook, C. Anti-HIV-1 limonoid: First isolation from *Clausena excavata*. *Phytother. Res.* 2003, 17, 1101–1103. [CrossRef] [PubMed]

321. Kim, H.J.; Woo, E.-R.; Shin, C.-G.; Park, H. A new flavonol glycoside gallate ester from *Acer okamotoanum* and its inhibitory activity against human immunodeficiency virus-1 (HIV-1) integrase. *J. Nat. Prod.* 1998, 61, 145–148. [CrossRef] [PubMed]

322. Yang, X.W.; Zhao, J.; Cui, Y.X.; Liu, X.H.; Ma, C.M.; Hattori, M.; Zhang, L.H. Anti-HIV-1 protease triterpenoid saponins from the seeds of *Aesculus chinensis*. *J. Nat. Prod.* 1999, 62, 1510–1513. [CrossRef] [PubMed]

323. Ayisi, N.K.; Nyadedzor, C. Comparative in vitro effects of azt and extracts of *Alchornea cordifolia* on HSV-1, influenza virus, and HIV-1 infections. *Antivir. Res.* 1998, 39, 145–148. [CrossRef] [PubMed]

324. Fang, E.F.; Ng, T.B. A trypsin inhibitor from rambutan seeds with antitumor, anti-HIV-1 reverse transcriptase, and nitric oxide-inducing properties. *Appl. Biochem. Biotechnol.* 2015, 175, 3828–3839. [CrossRef] [PubMed]

325. Sahu, N.P.; Mandal, N.B.; Banerjee, S.; Siddiqui, K.A.I. Chemistry and biology of the triterpenes and saponins from seeds of *Minusosops elengi*. *J. Herbs Spices Med. Plants* 2001, 8, 29–37. [CrossRef] [PubMed]

326. Gose, B.; Gnbare, J.; Bates, R.B.; Dicus, C.W.; Nakkiew, P.; Huang, R.C.C. Antiviral saponins from *Tieghemella heckelii*. *J. Nat. Prod.* 2002, 65, 1942–1944. [CrossRef] [PubMed]

327. Hayashi, K.; Kamiya, M.; Hayashi, T. Virucidal effects of the steam distillate from *Houttuynia cordata* and its components on HSV-1, influenza virus, and HIV. *Planta Med.* 1995, 61, 237–241. [CrossRef] [PubMed]

328. Lee, J.; Huh, M.S.; Kim, Y.C.; Hattori, M.; Otake, T. Lignan, sesquilignans and dilignans, novel HIV-1 protease and cytopathic effect inhibitors purified from the rhizomes of *Saururus chinensis*. *Antivir. Res.* 2010, 85, 425–428. [CrossRef] [PubMed]

329. Song, W.Y.; Ma, Y.B.; Bai, X.; Zhang, X.M.; Gu, Q.; Zheng, Y.T.; Zhou, J.; Chen, J.J. Two new compounds and anti-HIV active constituents from *Illicium verum*. *Planta Med.* 2007, 73, 372–375. [CrossRef] [PubMed]

330. Gao, X.-M.; Pu, J.-X.; Huang, S.-X.; Yang, L.-M.; Huang, H.; Xiao, W.-L.; Zheng, Y.-T.; Sun, H.-D. Lignans from *Kadsura angustifolia*. *J. Nat. Prod.* 2008, 71, 558–563. [CrossRef] [PubMed]

331. Xu, L.J.; Peng, Z.G.; Chen, H.S.; Wang, J.; Xiao, P.G. Bioactive triterpenoids from *Kadsura heteroclita*. *Chem. Biodivers.* 2010, 7, 2289–2295. [CrossRef] [PubMed]
326. Pu, J.X.; Yang, L.M.; Xiao, W.L.; Li, R.T.; Lei, C.; Gao, X.M.; Huang, S.X.; Li, S.H.; Zheng, Y.T.; Huang, H.; et al. Compounds from *Kadsura heteroclita* and related anti-HIV activity. *Phytochemistry* 2008, 69, 1266–1272. [PubMed] [CrossRef]

327. Sun, Q.Z.; Chen, D.F.; Ding, P.L.; Ma, C.M.; Kakuda, H.; Nakamura, N.; Hattori, M. Three new lignans, longipedinums A–C, from *Kadsura longipedunculata* and their inhibitory activity against HIV-1 protease. *Chem. Pharm. Bull.* 2006, 54, 129–132. [PubMed] [CrossRef]

328. Xiao, W.-L.; Tian, R.-R.; Pu, J.-X.; Li, X.; Wu, L.; Lu, Y.; Li, S.-H.; Li, R.-T.; Zheng, Y.-T.; Zheng, Q.-T.; et al. Triterpenoids from *Schisandra lancifolia* with anti-HIV-1 activity. *J. Nat. Prod.* 2006, 69, 277–279. [PubMed] [CrossRef]

329. Xiao, W.L.; Huang, S.X.; Zhang, L.; Tian, R.R.; Wu, L.; Li, X.L.; Pu, J.X.; Zheng, Y.T.; Lu, Y.; Li, R.T.; et al. Nortriterpenoids from *Schisandra lancifolia*. *J. Nat. Prod.* 2006, 69, 650–653. [PubMed] [CrossRef]

330. Li, X.-N.; Pu, J.-X.; Du, X.; Yang, L.-M.; An, H.-M.; Lei, C.; He, F.; Luo, X.; Zheng, Y.-T.; Lu, Y.; et al. Lignans with anti-HIV activity from *Schisandra propinqu var. sinensis*. *J. Nat. Prod.* 2009, 72, 1133–1141. [PubMed] [CrossRef]

331. Xiao, W.L.; Tian, R.R.; Pu, J.X.; Li, X.; Wu, L.; Lu, Y.; Li, S.H.; Li, R.T.; Zheng, Y.T.; Zheng, Q.T.; et al. Lignans from the fruits of *Schisandra sphenanthera* and their anti-HIV-1 activities. *Arch. Pharm. Res.* 2014, 37, 168–174. [PubMed] [CrossRef]

332. Sun, H.; Qiu, S.; Lin, L.; Wang, Z.; Lin, Z.; Pengsuparp, T.; Pezzuto, J.M.; Fong, H.H.S.; Cordell, G.A.; Farnsworth, N.R. Nigranoic acid, a triterpenoid from *Schisandra sphaerandra* that inhibits HIV-1 reverse transcriptase. *J. Nat. Prod.* 1996, 59, 525–527. [PubMed] [CrossRef]

333. Xiao, W.L.; Huang, S.X.; Zhang, L.; Tian, R.R.; Wu, L.; Li, X.L.; Pu, J.X.; Zheng, Y.T.; Lu, Y.; Li, R.T.; et al. Sphenadiactones A and B, two novel nortriterpenoids from *Schisandra sphenanthera*. *Organ. Lett.* 2006, 8, 1475–1478. [PubMed] [CrossRef]

334. Liang, C.Q.; Luo, R.H.; Yan, J.M.; Li, Y.; Li, X.N.; Shi, Y.M.; Shang, S.Z.; Gao, Z.H.; Yang, L.M.; Zheng, Y.T.; et al. Structure and bioactivity of triterpenoids from the stems of *Schisandra sphenanthera*. *Arch. Pharm. Res.* 2013, 36, 1712–1715. [PubMed] [CrossRef]

335. Yang, G.Y.; Li, Y.K.; Wang, R.R.; Xiao, W.L.; Yang, L.M.; Pu, J.X.; Zheng, Y.T.; Sun, H.D. Triterpenoids from *Kadsura wilsoniana* and their anti-HIV-1 activities. *J. Asian Nat. Prod. Res.* 2010, 12, 470–476. [PubMed] [CrossRef]

336. Xu, Z.; Chang, F.-R.; Wang, H.-K.; Kashiwada, Y.; McPhail, A.T.; Bastow, K.F.; Tachibana, Y.; Cosentino, M.; Lee, K.-H. Anti-HIV agents 45 and antitumor agents 205. Two new sesquiterpenes, leitneridanins A and B, and the cytotoxic and anti-HIV principles from *Leitneria floridana*. *J. Nat. Prod.* 2000, 63, 1712–1715. [PubMed] [CrossRef]

337. Wang, W.X.; Qian, J.Y.; Wang, X.J.; Jiang, A.P.; Jia, A.Q. Anti-HIV-1 activities of extracts and phenolics from *Smilax china* L. *Pakistan J. Pharm. Sci.* 2014, 27, 147–151.

338. Shy, S.N.; Chang, W.T.; Lee, S.S.; Chen Liu, K.C.S. Production of triterpenes from cell suspension cultures of *Solanum incanum* L. *Chin. Pharm. J.* 2000, 52, 35–42.

339. Mamba, P.; Adebayo, S.A.; Tshikalange, T.E. Anti-microbial, anti-inflammatory and HIV-1 reverse transcriptase activity of selected South African plants used to treat sexually transmitted diseases. *Int. J. Pharmacogn. Phytochem. Res.* 2016, 8, 1870–1876.

340. Kumar, S.; Pandey, A.K. Medicinal attributes of *Solanum xanthocarpum* fruit consumed by several tribal communities as food: An in vitro antioxidant, anticancer and anti HIV perspective. *BMC Complement. Altern. Med.* 2014, 14, 112. [PubMed] [CrossRef]

341. Rege, A.A.; Chowdhary, A.S. Evaluation of some medicinal plants as putative HIV-protease inhibitors. *Indian Drugs* 2013, 50, 24–28.

342. Wu, N.; Wang, L.; Chzn, Y.K.; Liao, Z.; Yang, G.Y.; Hu, Q.F. Lignans from the stem of *Styrax japonica*. *Asian J. Chem.* 2011, 23, 931–932.

343. Park, J.C.; Hur, J.M.; Park, J.G.; Hatano, T.; Yoshida, T.; Miyashiro, H.; Min, B.S.; Hattori, M. Inhibitory effects of Korean medicinal plants and camelliatannin H from *Camellia japonica* on human immunodeficiency virus type 1 protease. *Phytoterror. Res.* 2002, 16, 422–426. [PubMed] [CrossRef]

344. Zhang, X.; Huang, S.Z.; Gu, W.G.; Yang, L.M.; Chen, H.; Zheng, C.B.; Zhao, Y.X.; Wan, D.C.C.; Zheng, Y.T. Wikstroelide M potently inhibits HIV replication by targeting reverse transcriptase and integrase nuclear translocation. *Chin. J. Nat. Med.* 2014, 12, 186–193. [CrossRef]
345. Hu, Q.F.; Mu, H.X.; Huang, H.T.; Lv, H.Y.; Li, S.L.; Tu, P.F.; Li, G.P. Secolignans, neolignans and phenylpropanoids from *Daphne feddei* and their biological activities. *Chem. Pharm. Bull.* 2011, 59, 1421–1424. [CrossRef] [PubMed]

346. Rahman, M.K.; Chowdhury, M.A.; Islam, M.F.; Barua, S.; Rahman, M.A. Antidiarrheal and thrombolytic effects of methanol extract of *Wikstroemia indica* (L.) C. A. Mey leaves. *Int. J. Green Pharm.* 2015, 9, 8–13. [CrossRef]

347. Charan, R.D.; Munro, M.H.G.; O’Keefe, B.R.; Sowder Ii, R.C.; McKee, T.C.; Currens, M.J.; Pannell, L.K.; Boyd, M.R. Isolation and characterization of *Myrianthhus holstii* lectin, a potent HIV-1 inhibitory protein from the plant *Myrianthhus holstii*. *J. Nat. Prod.* 2000, 63, 1170–1174. [CrossRef] [PubMed]

348. Piccinelli, A.L.; Mahmood, N.; Mora, G.; Poveda, L.; De Simone, F.; Rastrelli, L. Anti-HIV activity of dibenzylbutyrolactone-type lignans from *Phenax* species endemic in Costa Rica. *J. Pharm. Pharmacol.* 2005, 57, 1109–1115. [CrossRef] [PubMed]

349. Turville, S.G.; Vermeire, K.; Balzarini, J.; Schols, D. Sugar-binding proteins potently inhibit dendritic cell human immunodeficiency virus type 1 (HIV-1) infection and dendritic-cell-directed HIV-1 transfer. *J. Virol.* 2005, 79, 13519–13527. [CrossRef] [PubMed]

350. Mujovo, S.; Hussein, A.; Meyer, J.M.; Fourie, B.; MutHIVhi, T.; Lall, N. Bioactive compounds from *Lippia javonica* and *Hoslundia opposita*. *Nat. Prod. Res.* 2008, 22, 1047–1054. [CrossRef] [PubMed]

351. Pfieger, A.; Teguo, P.W.; Papastamoulis, Y.; Chaignepain, S.; Subra, F.; Munir, S.; Delelis, O.; Lesbats, P.; Calmels, C.; Andreola, M.L.; et al. Natural stilbenoids isolated from grapevine exhibiting inhibitory effects against HIV-1 integrase and eukaryote MOS1 transposase in vitro activities. *PLoS ONE* 2013, 8, e81184. [CrossRef] [PubMed]

352. Afolayan, A.J.; Grierson, D.S.; Mbeng, W.O. Ethnobotanical survey of medicinal plants used in the management of skin disorders among the Xhosa communities of the Amathole district, Eastern Cape, South Africa. *J. Ethnopharmacol.* 2014, 153, 220–232. [CrossRef] [PubMed]

353. Olatunya, O.S.; Olatunya, A.M.; Anyabolu, H.C.; Adejuyigbe, E.A.; Oyelami, O.A. Preliminary trial of *Aloe vera* gruel on HIV infection. *J. Altern. Complement. Med.* 2012, 18, 850–853. [CrossRef] [PubMed]

354. Sookkongwaree, K.; Geitmann, M.; Roengsumran, S.; Petsom, A.; Danielson, U.H. Inhibition of viral proteases and their biological activities. *Chem. Pharm. Bull.* 2005, 53, 141–153. [CrossRef] [PubMed]

355. Tan, E.C.; Karsani, S.A.; Foo, G.T.; Wong, S.M.; Abdul Rahman, N.; Khalid, N.; Othman, S.; Yusof, R. Identification of proteins involved in flavonoid and phenylpropanoid biosynthesis pathways. *Plant Cell Proteomic analysis of cell suspension cultures of Boesenbergia rotunda medicinal plants widely used among AIDS patients in Thailand. *Pharmazie* 2006, 61, 717–721. [PubMed]

356. Voravuthikunchai, S.P.; Phongpaichit, S.; Subhadhirasakul, E. Evaluation of antibacterial activities of *Daphne feddei* and *Boesenbergia rotunda* pathway in response to exogenous phenylalanine in cell culture. *Int. J. Green Pharm.* 2012, 111, 219–229. [CrossRef]

357. Md-Mustafa, N.D.; Khalid, N.; Gao, H.; Peng, Z.; Alimin, M.F.; Bujang, N.; Ming, W.S.; Mohd-Yusuf, Y.; Harikrishna, J.A.; Othman, R.Y. Transcriptome profiling shows gene regulation patterns in a flavonoid species endemic in Costa Rica. *Planta* 2015, 238, 991–1002. [CrossRef] [PubMed]

358. Mesa, M.D. Pharmacological and nutritional effects of *Curcuma longa* L. extracts and curcuminooids. *Arzneimittel Forsch.* 1971, 21, 307–321. [PubMed]

359. Gnaabre, J.N.; Brady, J.N.; Clanton, D.J.; Ito, Y.; Dittmer, J.; Bates, R.B.; Huang, R.C.C. Inhibition of human immunodeficiency virus type 1 infection and replication by DNA sequence-selective plant lignans. *Proc. Natl. Acad. Sci. USA* 1995, 92, 11239–11243. [CrossRef] [PubMed]

360. Borris, R.P. Natural products research: Perspectives from a major pharmaceutical company. *J. Ethnopharmacol.* 1996, 51, 29–38. [CrossRef]

361. Yang, S.S.; Cragg, G.M.; Newman, D.J.; Bader, J.P. Natural product-based anti-HIV drug discovery and development facilitated by the NCI developmental therapeutics program. *J. Nat. Prod.* 2001, 64, 265–277. [CrossRef] [PubMed]

362. Sarin, P.S. Molecular pharmacologic approaches to the treatment of AIDS. *Annu. Rev. Pharmacol. Toxicol.* 1998, 28, 411–428. [CrossRef] [PubMed]

363. Vlietinck, A.J.; Berghe, D.A.V. Can ethnopharmacology contribute to the development of antiviral dmg? *J. Ethnopharmacol.* 1991, 32, 141–153. [CrossRef]
364. Harvey, A. Strategies for discovering drugs from previously unexplored natural products. *Drug Discov. Today* 2000, 5, 294–300. [CrossRef]

365. Beutler, J.A. Natural products as a foundation for drug discovery. *Curr. Protoc. Pharmacol.* 2009, 46, 9–11. [CrossRef] [PubMed]

366. Vlie tinck, A.; De Bruyne, T.; Apers, S.; Pieters, L. Plant-derived leading compounds for chemotherapy of human immunodeficiency virus (HIV) infection. *Planta Med.* 1998, 64, 97–109. [CrossRef] [PubMed]

367. De Clercq, E. Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. *Med. Res. Rev.* 2000, 20, 323–349. [CrossRef]

368. Jadaun, P.; Khopkar, P.; Kulkarni, S. Repurposing Phytochemicals as Anti-HIV Agents. *J. Antivir. Antiretrovir.* 2016, 8, 139–141. [CrossRef]

369. Lubbe, A.; Seibert, I.; Klimkait, T.; Van der Kooy, F. Ethnopharmacology in overdrive: The remarkable anti-HIV activity of *Artemisia annua*. *J. Ethnopharmacol.* 2012, 141, 854–859. [CrossRef] [PubMed]

370. Burack, J.H.; Cohen, M.R.; Hahn, J.A.; Abrams, D.I. Pilot randomized controlled trial of Chinese herbal treatment for HIV-associated symptoms. *J. Acquir. Immune Defic. Syndr.* 1996, 12, 386–393. [CrossRef]

371. Kalvatchev, Z.; Walder, R.; Garzaro, D. Anti-HIV activity of extracts from *Calendula officinalis* flowers. *Biomed. Pharmacother.* 1997, 51, 176–180. [CrossRef]

372. Pengsuparp, T.; Serit, M.; Hughes, S.H.; Soejarto, D.D.; Pezzuto, J.M. Specific inhibition of human immunodeficiency virus type 1 reverse transcriptase mediated by soulattrolide, a coumarin isolated from the latex of *Calophyllum teysmannii*. *J. Nat. Prod.* 1996, 59, 839–842. [CrossRef] [PubMed]

373. Leteane, M.M.; Ngwenya, B.N.; Muzila, M.; Namushe, A.; Mwinga, J.; Musonda, R.; Mengestu, Y.B.; Abegaz, B.M.; Andrae-Marobela, K. Old plants newly discovered: *Diospyros lotus* fruits. *Glycoconj. J.* 2012, 30, 269–279. [CrossRef] [PubMed]

374. Gerencser, M.; Turecek, P.L.; Kistner, O.; Mitterer, A.; Savidis-Dacho, H.; Barrett, N.P. In vitro and in vivo anti-retroviral activity of the substance purified from the aqueous extract of *Chelidonium majus* L. *Antivir. Res.* 2006, 72, 153–156. [CrossRef] [PubMed]

375. Rashid, K.; Zhang, X.-J.; Luo, M.-T.; Zheng, Y.-T. Anti-HIV-1 activity of phenolic compounds isolated from * Diospyros lotus* fruits. *Phyto pharmacology* 2012, 3, 199–207.

376. Bedoya, L.; Palomino, S.S.; Abad, M.; Bermejo, P.; Alcamí, J. Screening of selected plant extracts for in vitro inhibitory activity on human immunodeficiency virus. *Phytother. Res.* 2002, 16, 550–554. [CrossRef] [PubMed]

377. Wu, L.; Bao, J.-k. Anti-tumor and anti-viral activities of *Galanthus nivalis* agglutinin (Gna)-related lectins. *Glycoconj. J.* 2013, 30, 269–279. [CrossRef] [PubMed]

378. Magadula, J.J. A bioactive isoprenylated xanthone and other constituents of *Garcinia edulis*. *Fitoterapia* 2010, 81, 420–423. [CrossRef] [PubMed]

379. Hudson, J.; Harris, L.; Towers, G. The importance of light in the anti-HIV effect of hypericin. *Antivir. Res.* 1993, 20, 173–178. [CrossRef]

380. Gulick, R.M.; McAuliffe, V.; Holden-Wiltse, J.; Crumpacker, C.; Liebes, L.; Stein, D.S.; Meehan, P.; Hussey, S.; Forcht, J.; Valentine, F.T. Phase I studies of hypericin, the active compound in St. John’s wort, as an antiretroviral agent in HIV-infected adults: AIDS clinical trials group protocols 150 and 258. *Ann. Intern. Med.* 1999, 130, 510–514. [CrossRef] [PubMed]

381. Zhang, H.-J.; Rumschlag-Booms, E.; Guan, Y.-F.; Wang, D.-Y.; Liu, K.-L.; Li, W.-F.; Nguyen, V.H.; Cuong, N.M.; Soejarto, D.D.; Fong, H.H. Potent inhibitor of drug-resistant HIV-1 strains identified from the medicinal plant *Justicia gendarussa*. *J. Nat. Prod.* 2017, 80, 1798–1807. [CrossRef] [PubMed]

382. Jiratchariyakul, W.; Wiwat, C.; Vongsakul, M.; Somanabandhu, A.; Leelamanit, W.; Fujii, I.; Suwannaroj, N.; Ebizuka, Y. HIV inhibitor from Thai bitter gourd. *Planta Med.* 2001, 67, 350–353. [CrossRef] [PubMed]

383. Bot, Y.; Mgbojikwe, L.; Nwosu, C.; Abimiku, A.; Dadik, J.; Damshak, D. Screening of the fruit pulp extract of *Momordica balsamina* for anti-HIV property. *Afr. J. Biotechnol.* 2007, 6, 47–52.

384. Eldeen, I.; Seow, E.; Abdullah, R.; Sulaiman, S. In vitro antibacterial, antioxidant, total phenolic contents and anti-HIV-1 reverse transcriptase activities of extracts of seven *Phyllanthus* sp. *S. Afr. J. Bot.* 2011, 77, 75–79. [CrossRef]

385. Wang, R.-R.; Gu, Q.; Yang, L.-M.; Chen, J.-J.; Li, S.-Y.; Zheng, Y.-T. Anti-HIV-1 activities of extracts from the medicinal plant *Rhus chinensis*. *J. Ethnopharmacol.* 2006, 105, 269–273. [CrossRef] [PubMed]
386. Durge, A.; Jadaun, P.; Wadhwani, A.; Chinchansure, A.A.; Said, M.; Thulasiram, H.; Joshi, S.P.; Kulkarni, S.S. Acetone and methanol fruit extracts of *Terminalia paniculata* inhibit HIV-1 infection in vitro. *Nat. Prod. Res.* 2017, 31, 1468–1471. [CrossRef] [PubMed]

387. Jian, W.; Feng-Zhen, Y.; Min, Z.; Yun-Hui, Z.; Yong-Xiang, Z.; Ying, L.; Wei-Min, L.; Fu-Sheng, W.; Shu-Ling, X.; Zhi-Min, Y. Randomized double-blinded and controlled clinical trial on treatment of HIV/AIDS by zhongyan-4. *Chin. J. Integr. Med.* 2006, 12, 6–11. [CrossRef]

388. Zhang, L.; Yue, S.-T.; Xue, Y.-X.; Attele, A.S.; Yuan, C.-S. Effects of Qian-Kun-Nin, a Chinese herbal medicine formulation, on HIV positive subjects: A pilot study. *Am. J. Chin. Med.* 2000, 28, 305–312. [CrossRef] [PubMed]

389. Colebunders, R.; Dreezen, C.; Florence, E.; Pelgrom, Y.; Schrooten, W. The use of complementary and alternative medicine by persons with HIV infection in Europe. *Int. J. STD AIDS* 2003, 14, 672–674. [CrossRef] [PubMed]

390. Owen-Smith, A.; Diclemente, R.; Wingood, G. Complementary and alternative medicine use decreases adherence to HAART in HIV-positive women. *AIDS Care* 2007, 19, 589–593. [CrossRef] [PubMed]

391. Tshibangu, K.; Worku, Z.; De Jongh, M.; Van Wyk, A.; Mokwena, S.; Peranovic, V. Assessment of effectiveness of traditional herbal medicine in managing HIV/AIDS patients in south Africa. *East Afr. Med. J.* 2004, 81, 499–504. [CrossRef] [PubMed]

392. Mills, E.; Cooper, C.; Seely, D.; Kanfer, I. African herbal medicines in the treatment of HIV: *Hypoxis* and *Sutherlandia*. An overview of evidence and pharmacology. *Nutr. J.* 2005, 4, 19. [CrossRef] [PubMed]

393. Tani, M.; Nagase, M.; Nishiyama, T.; Yamamoto, T.; Matusa, R. The effects of long-term herbal treatment for pediatric AIDS. *Am. J. Chin. Med.* 2002, 30, 51–64. [CrossRef] [PubMed]

394. Djohan, Y.; Camara, C.; Monde, A.; Koffi, G.; Niamké, G.; Déré, L.; Tiahou, G.; Djessou, P.; Sess, D. Interest of antioxidants in the care of the patients infected by the HIV: The experience of long term administration of alternanthera pungens herb tea. *Ann. Biol. Clin.* 2009, 67, 563–568.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).