ONLINE SUPPLEMENT

Effects of Perhexiline-Induced Fuel Switch on the Cardiac Proteome and Metabolome

Xiaoke Yin\(^1\)*, Joseph Dwyer\(^1\)*, Sarah Langley\(^1\), Ursula Mayr\(^1\), Qiuru Xing\(^1\), Ignat Drozdov\(^1,2\), Adam Nabeebaccus\(^1\), Ajay Shah\(^1\), Basetti Madhu\(^3\), John Griffiths\(^3\), Lindsay M Edwards\(^4\), Manuel Mayr\(^1\)

* authors contributed equally

\(^1\) King’s BHF Centre, King’s College London, UK

\(^2\) Centre for Bioinformatics - School of Physical Sciences and Engineering, King's College London, London, UK

\(^3\) Cancer Research UK, Cambridge Research Institute, Cambridge, UK

\(^4\) Centre of Human & Aerospace Physiological Sciences, King's College London, UK

Correspondence to:
Prof. Manuel Mayr, King’s BHF Centre, King’s College London, UK; 125 Coldharbour Lane, London SE5 9NU, UK. Tel.: +44-20-7848-5132; Fax: +44-20-7848-5296; E-mail: manuel.mayr@kcl.ac.uk
Online Materials and Methods

Mice. Mice were fed on a normal dry chow diet containing 4.5% fat by weight (0.02% cholesterol), kept on a light/dark (12/12h) cycle at 22°C receiving food and water *ad libitum*. The diets of mice fed on perhexiline were prepared by homogenising their food and adding the crushed drug Pexsig® (Perhexiline Maleate 100mg, Sigma) in a ratio of 1mg to 1g of mouse food with subsequent freeze-drying of the preparation. All procedures were performed according to protocols approved by the Institutional Committee for the Use and Care of Laboratory Animals. Hearts of C57BL/6 mice used for proteomic and metabolic analyses were rinsed thoroughly with cold PBS to remove any blood components and frozen in liquid nitrogen until they were pulverised with mortar and pestle. Plasma concentrations of perhexiline and hydroxy-perhexiline (OH-perhexiline) were measured by high-performance liquid chromatography (Dr. Alan Hutchinson, Toxicology Lab, LLanduch, UK).

Difference in-gel electrophoresis (DIGE). Pulverised heart tissue was incubated in 2DE lysis buffer (9.5M urea, 2% w/v CHAPS, 2% v/v Pharmalyte pH 3-10, 1% w/v DTT, protease inhibitors) for 0.5 hr at RT. After centrifugation at 13,000rpm for 15min, the supernatant was collected, proteins were precipitated (2D Clean-up kit, Bio-Rad) and resuspended in DIGE buffer (8M urea, 4% w/v CHAPS, 30mM TrisCl, pH=8.5). Protein concentrations were normalised using the Bradford assay. Samples were labelled with fluorescent dyes Cy3 and Cy5 with Cy2 being reserved for the labelling of the internal standard. Incubation with the dyes was done at a dye/protein ratio of 400pmol/100µg for 30 min on ice with the reaction being quenched with 10mM L-lysine (L8662, Sigma) for 15 min. Samples were mixed in 2x buffer (8M urea, 4% w/v CHAPS, 2% w/v DTT, 2% v/v Pharmalyte pH 3-10) and a volume of sample calculated to have a protein content of 50µg was diluted in
rehydration solution (8M urea, 0.5% w/v CHAPS, 0.2% w/v DTT, and 0.2% v/v Pharmalyte pH 3-10) and loaded onto a IPG strip for isoelectric focusing (18cm, pH 3-10NL, GE healthcare) for overnight rehydration. IPG strips were focused overnight for 64.6 kVhrs using a gradient programme at 20°C. Strips were equilibrated and run on top of a 12% SDS gel without stacking gel until the blue dye front reached the end of the gel. Fluorescent images of gels were obtained by scanning with an Ettan DIGE Imager (GE healthcare). Differentially expressed spots showing statistical significance (p<0.05) were filtered by using the DeCyder® software (Version 6.5, GE healthcare). Gels were then silver stained (Plus one silver staining kit, GE healthcare) and spots were excised for analysis by mass spectrometry [1, 2].

Tandem mass spectrometry. Excised gel spots were subjected to in-gel tryptic digestion with an Investigator ProGest (Genomic Solutions) robotic digestion system with subsequent lyophilisation. Freeze-dried samples were resuspended in 20µl of 0.05% trifluoroacetic acid. Samples were then identified via separation by nano-flow liquid chromatography on a reverse-phase column (PepMap100, 25cm, Dionex) interfaced to a high-performance linear ion trap mass spectrometer (LTQ XL, Thermo Fisher). Spectra were collected for analysis and searched through mouse protein databases using SEQUEST (Bioworks Browser version 3.2, Thermo Fisher Scientific) and imported into Scaffold software (Proteome software).

Phosphate-affinity gel electrophoresis (Phos-tag®). For phosphate-affinity gel electrophoresis, 50 µg of protein extracts were separated on 10% polyacrylamide gels containing 50 µM Phos-tag® (Wako Chemicals GmbH) and 50 µM MnCl$_2$ (Sigma) [1]. After electrophoresis, gels were soaked in transfer buffer with 1mM EDTA for 10 min, then in transfer buffer for another 10 min prior to blotting onto a polyvinylidene fluoride (PVDF) membrane. Membranes were probed with anti-PDH
subunit E1 alpha monoclonal antibody (Invitrogen, 459400).

High-resolution NMR spectroscopy. For metabolomic analysis, cardiac metabolites were extracted in 6% perchloric acid [2]. All hearts were from the same litter of mice and harvested and processed at the same time. Storage times of the extracts were identical. Neutralized extracts were freeze-dried and reconstituted in deuterium oxide (D₂O). One-half milliliter of each extract was placed in 5-mm nuclear magnetic resonance tubes. Proton magnetic resonance spectroscopy (¹H-NMR) spectra were obtained using a Bruker 600-MHz spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) as previously described [3, 4]. The water resonance was suppressed by using gated irradiation centered on the water frequency. Fifty microliters of 5 mM sodium 3-trimethylsilyl-2,2,3,3-tetradeuteropropionate (TSP) in D₂O was added to the samples for chemical shift calibration and quantification. Immediately before the ¹H-NMR analysis, the pH was readjusted to 7 with perchloric acid or potassium hydroxide.

Statistical and bioinformatic analysis. Principle components analysis (PCA) was performed in R, where the principle components were identified by a singular value decomposition of the data [5]. Pearson correlations were calculated between each of the metabolites and the associated False Discovery Rate (FDR) was applied for each using the q-value method [6]. The functional enrichment analysis of Gene Ontology (GO) and KEGG Pathway terms was performed on the selected proteins showing differences after perhexilene treatment using DAVID [7]. The enrichment calculations used a Fishers Exact P-value and multiple testing corrections were applied using the False Discovery Rate (AFDR) [8]. Terms with an FDR <5% were deemed to be significant. The hierarchical clustering of the metabolites was performed in R using the ‘Manhattan’ distance. The ‘Manhattan’ distance metric is
based on the absolute difference between the two vectors of measurements [5]. The approximately unbiased (AU) values were calculated with multiscale bootstrap resampling and the bootstrap probability (BP) values were calculated via standard bootstrap resampling. The corresponding AU and BP values were calculated at each branch of the cluster dendrogram, where a value of 95% in Figure 2C corresponds to a significance level equal to $p<0.05$. Each resampling was run with a bootstrap sample size of 10,000. Metabolite profiles were interrogated using the context likelihood of relatedness (CLR) between all possible metabolite pairs.

Computational modeling. For computational modeling, we used an existing and well-validated proteome-scale model of heart mitochondria metabolism [9, 10], slightly modified to address a small earlier error in the mass-balancing of complex IV of the respiratory chain. The model did not contain any kinetic data, but instead consisted of the stoichiometric coefficients of every reaction in the human heart mitochondrial metabolic network, obtained from the existing literature and curated databases [9, 10]. Simulations assumed that the network was at steady-state. In other words, if S was the matrix of stoichiometric coefficients and v was a column vector of unknown reaction fluxes, we sought to characterize all solutions that satisfied $Sv = 0$. We also applied linear inequalities to many of the elements of v (i.e. upper and lower limits of substrate exchange), based on literature values. Greater detail regarding the model itself can be found in [9, 10]. We chose the mitochondria model for this project because it is small enough to be tractable using random sampling techniques, yet still encompasses the salient features of central carbon metabolism in the human heart.

The final model comprised 195 reactions, 235 metabolites and 25 exchange reactions. Uniform sampling of the solution space was carried out using a random walk algorithm (accelerated-centering hit-and-run [11]) as described in [9] and as
implemented in the COBRA toolbox [12]. For each sampling experiment, 20,000 warm-up points were generated, from which an approximate centre was estimated; thence 50,000 points were computed with a 1,000 point skip between samples. We simulated perhexiline treatment by constraining C16-C20 fatty acid uptake to <25% of the median values obtained by sampling the control model. Simulations were conducted using the COBRA toolbox [12] and Tomlab CPLEX solver (Tomlab Optimization, Miami, FL), both in Matlab R2012a (MathWorks, Natick, MA). All other computation was conducted in either Matlab or Microsoft Excel.
Online References

[1] Mayr M, May D, Oren G, Madhu B, Gilon D, Yin X, Xing Q, Drozdov I, Ainali C, Tsoka S, Xu Q, Griffiths J, Horrevoets A, Keshet E. Metabolic homeostasis is maintained in myocardial hibernation by adaptive changes in the transcriptome and proteome. J Mol Cell Cardiol. 2011; 50 : 982-990.

[2] Bergmeyer, H. Methods of enzymatic analysis. Weinheim: Verlag Chemie; 1974.

[3] Mayr M, Yusuf S, Weir G, Chung YL, Mayr U, Yin X, et al. Combined metabolomic and proteomic analysis of human atrial fibrillation. J Am Coll Cardiol. 2008;51:585-94.

[4] Mayr M, Liem D, Zhang J, Li X, Avliyakulov NK, Yang JI, Young G, Vondriska TM, Ladroue C, Madhu B, Griffiths JR, Gomes A, Xu Q, Ping P. Proteomic and metabolomic analysis of cardioprotection: Interplay between protein kinase C epsilon and delta in regulating glucose metabolism of murine hearts. J Mol Cell Cardiol. 2009;46:268-77.

[5] R Development Core Team (2011). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

[6] Storey JD. The positive false discovery rate: A Bayesian interpretation and the q-value. The Annals of Statistics. 2003;31:2013-35.

[7] Dennis G, Jr., Sherman BT, Hosack DA, Yang J, Gao W, Lane CH, et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003;4:R60.

[8] Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological). 1995;57:289-300.

[9] Thiele I, Price ND, Vo TD, Palsson BO. Candidate metabolic network states in human mitochondria. Impact of diabetes, ischemia, and diet. J Biol Chem. 2005;280:11683-95.

[10] Vo TD, Greenberg HJ, Palsson BO. Reconstruction and functional characterization of the human mitochondrial metabolic network based on proteomic and biochemical data. J Biol Chem. 2004;279:39532-40.

[11] Kaufman DE, Smith RL. Direction Choice for Accelerated Convergence in Hit-and-Run Sampling. Operations Research. 1998;46:84-95.
Online Figures

Supplemental Figure 1. A quantized (5-colour) heatmap showing differences in median flux between control and simulated-perhexiline conditions. All comparisons are perhexiline vs. control (for example, 'down' indicates 'flux down in perhexiline vs control').
GREEN: strongly suppressed
LIGHT GREEN: modestly suppressed
YELLOW: no change
ORANGE: moderately increased
RED: strongly increased

Supplemental Figure 2. Flux probability density functions from computer simulations of mitochondrial metabolism.
Red = perhexiline, blue = control.
(A) EX glc(e) = glucose exchange (negative value indicates uptake)
(B) EX glu-L(e) = L-glutamate exchange
(C) LDH L = L-lactate dehydrogenase (negative value indicates pyruvate production)
(D) PDHm = pyruvate dehydrogenase
(E) CSm = citrate synthase
(F) FUMm = mitochondrial fumarase
Supplemental Table 1: List of differentially expressed proteins in perhexiline-treated hearts as compared to controls.

No.	Protein Name	UniProt ID	Calculated pl/Mw (kD)	Average Ratio*	T-test (p-Value)	Number of unique peptides	Number of unique spectra	Number of total spectra	Sequence Coverage				
	Glycolysis												
25	Alpha-enolase	ENOA_MOUSE	6.37/47.14	-1.25	0.020	5	6	7	20.0%				
35	L-lactate dehydrogenase B chain	LDHB_MOUSE	7.96/36.57	1.26	4.9E-4	4	4	4	10.5%				
36	L-lactate dehydrogenase B chain	LDHB_MOUSE	7.96/36.57	1.76	7.6E-6	4	4	5	12.0%				
22	Pyruvate dehydrogenase E1 component subunit alpha, mitochondrial	ODPA_MOUSE	8.49/43.23	-1.42	0.0039	5	5	6	13.6%				
24	Pyruvate dehydrogenase E1 component subunit alpha, mitochondrial	ODPA_MOUSE	8.49/43.23	-1.43	7.8E-4	4	5	7	11.0%				
26	Pyruvate dehydrogenase E1 component subunit alpha, mitochondrial	ODPA_MOUSE	8.49/43.23	-3.23	3.2E-4	14	15	18	25.6%				
28	Pyruvate dehydrogenase E1 component subunit alpha, mitochondrial	ODPA_MOUSE	8.49/43.23	-1.34	6.0E-4	4	4	4	10.5%				
29a	Pyruvate dehydrogenase E1 component subunit alpha, mitochondrial	ODPA_MOUSE	8.49/43.23	-2.19	2.5E-8	11	12	16	27.7%				
30	Pyruvate dehydrogenase E1 component subunit alpha, mitochondrial	ODPA_MOUSE	8.49/43.23	-1.36	5.3E-4	7	7	10	18.5%				
32	Pyruvate dehydrogenase E1 component subunit alpha, mitochondrial	ODPA_MOUSE	8.49/43.23	-1.75	5.3E-4	17	21	35	39.7%				
33	Pyruvate dehydrogenase E1 component subunit alpha, mitochondrial	ODPA_MOUSE	8.49/43.23	2.02	6.9E-8	15	19	31	35.9%				
34	Pyruvate dehydrogenase E1 component subunit alpha, mitochondrial	ODPA_MOUSE	8.49/43.23	1.51	9.3E-7	6	6	7	15.4%				
41	Triosephosphate isomerase	TPIS_MOUSE	5.56/26.71	-1.33	0.0090	3	3	3	14.9%				
	Lipid Metabolism												
29b	Acyl-coenzyme A thioesterase 2,	ACOT2_MOUSE	5.88/49.66	-2.19	2.5E-8	5	7	46	35.0%				
Number	Protein Name	Gene Symbol	Value	p Value	FDR	Z-score	Fold Change	Protein Function					
--------	--	-------------	---------	---------	------	----------	-------------	---					
47	Apolipoprotein A-I	APOA1 MOUSE	5.64/30.59	1.86	0.0016	20	24	40	52.7%				
52	Fatty acid-binding protein	FABP4 MOUSE	8.53/14.65	1.80	1.2E-4	9	15	23	47.0%				
53	Fatty acid-binding protein	FABP4 MOUSE	8.53/14.65	2.21	6.5E-5	7	8	8	52.3%				
	Energy Metabolism												
44	Adenylate kinase isoenzyme 4, mitochondrial	KAD4 MOUSE	7.02/25.06	1.28	0.0079	4	5	5	21.1%				
21	Creatine kinase B-type	KCRB MOUSE	5.40/42.71	-1.27	9.6E-4	12	13	18	41.7%				
38	Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial	IDH3A MOUSE	6.27/39.64	-1.25	5.4E-3	11	14	16	27.6%				
	Protein Metabolism												
23	2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial	ODBA_MOUSE	8.14/50.37	-1.27	0.025	3	3	3	10.2%				
27	2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial	ODBA_MOUSE	8.14/50.37	-2.31	3.2E-7	3	3	4	8.4%				
39	Elongation factor Ts, mitochondrial	EFTS_MOUSE	6.61/35.33	-1.30	4.0E-6	3	3	3	10.5%				
31	Elongation factor Tu, mitochondrial	EFTU_MOUSE	7.23/49.51	-1.22	9.0E-6	19	28	53	40.5%				
	Antioxidants												
45	Glutathione S-transferase P 1	GSTP1 MOUSE	7.69/23.61	-1.25	3.7E-4	4	4	6	24.8%				
48	Peroxiredoxin-2	PRDX2 MOUSE	5.20/21.78	1.24	0.0017	2	2	2	13.6%				
	Cytoskeletal/Structural												
46	Cysteine and glycine-rich protein 3	CSRP3 MOUSE	8.90/20.89	-1.32	0.0027	5	6	7	28.9%				
40	F-actin-capping protein subunit beta	CAPZB MOUSE	5.47/31.35	-1.24	0.0034	2	2	2	9.0%				
1	LIM domain-binding protein 3	LDB3 MOUSE	7.96/76.43	-1.23	8.1E-4	2	3	4	3.5%				
2	LIM domain-binding protein 3	LDB3 MOUSE	7.96/76.43	-1.30	0.0014	5	6	6	10.0%				
3	LIM domain-binding protein 3	LDB3 MOUSE	7.96/76.43	-1.22	3.5E-4	11	12	16	21.6%				
	Protein Name	Accession	U00788	U00787	U00786	U00785	U00784	U00783	U00782	U00781	U00780	U00779	U00778
---	-------------	-----------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------
4	LIM domain-binding protein 3	LDB3_MOUSE	7.96/76.43	-1.20	0.0025	13	16	19	25.4%				
37	PDZ and LIM domain protein 1	PDLI1_MOUSE	6.38/35.77	-1.22	1.5E-4	7	7	8	21.1%				
13	Tubulin beta-2A chain	TBB2A_MOUSE	4.78/49.91	1.56	7.0E-4	11	11	16	23.4%				
14	Tubulin beta-2A chain	TBB2A_MOUSE	4.78/49.91	1.41	2.2E-4	18	19	35	38.2%				
15	Tubulin beta-2A chain	TBB2A_MOUSE	4.78/49.91	1.20	0.0044	15	17	37	32.4%				
5	Vimentin	VIME_MOUSE	5.05/53.69	1.44	5.0E-5	3	3	4	7.9%				

Serum proteins

	Protein Name	Accession	U00788	U00787	U00786	U00785	U00784	U00783	U00782	U00781	U00780	U00779	U00778
11	Alpha-1-antitrypsin 1-1	A1AT1_MOUSE	5.44/46.00	1.28	0.036	5	7	9	13.3%				
12	Alpha-1-antitrypsin 1-1	A1AT1_MOUSE	5.44/46.00	1.48	0.0014	9	11	11	24.2%				
17	Fibrinogen beta chain	FIBB_MOUSE	6.68/54.75	1.45	8.5E-5	4	4	4	10.6%				
18	Fibrinogen beta chain	FIBB_MOUSE	6.68/54.75	1.81	2.1E-4	16	19	25	38.3%				
19	Fibrinogen beta chain	FIBB_MOUSE	6.68/54.75	1.26	0.0077	6	6	8	14.1%				
16	Fibrinogen gamma chain	FIBG_MOUSE	5.54/49.39	1.45	4.8E-5	9	11	16	21.1%				
59	Hemoglobin subunit alpha	HBA_MOUSE	7.97/15.09	2.31	7.8E-4	10	18	82	76.1%				
60	Hemoglobin subunit alpha	HBA_MOUSE	7.97/15.09	2.49	4.9E-4	7	12	37	62.7%				
61	Hemoglobin subunit alpha	HBA_MOUSE	7.97/15.09	2.38	9.4E-4	6	11	33	62.7%				
62	Hemoglobin subunit alpha	HBA_MOUSE	7.97/15.09	2.06	2.4E-5	3	5	15	25.4%				
63	Hemoglobin subunit alpha	HBA_MOUSE	7.97/15.09	2.22	1.7E-4	5	6	15	54.2%				
51	Hemoglobin subunit beta-1	HBB1_MOUSE	7.13/15.84	2.92	1.8E-4	5	6	11	42.9%				
55	Hemoglobin subunit beta-1	HBB1_MOUSE	7.13/15.84	2.60	3.8E-4	5	7	12	44.9%				
56	Hemoglobin subunit beta-1	HBB1_MOUSE	7.13/15.84	2.46	0.0013	7	14	33	54.4%				
57	Hemoglobin subunit beta-1	HBB1_MOUSE	7.13/15.84	2.34	5.6E-4	8	18	88	54.4%				
58	Hemoglobin subunit beta-1	HBB1_MOUSE	7.13/15.84	2.50	7.6E-4	9	16	52	54.4%				
50	Myoglobin	MYG_MOUSE	7.06/17.07	1.20	8.8E-4	2	3	3	14.9%				
6	Serum albumin	ALBU_MOUSE	5.75/68.69	1.26	0.022	27	34	50	46.9%				
7	Serum albumin	ALBU_MOUSE	5.75/68.69	1.41	0.0014	44	70	127	61.5%				
8	Serum albumin	ALBU_MOUSE	5.75/68.69	1.36	0.0040	54	83	161	70.7%				
9	Serum albumin	ALBU_MOUSE	5.75/68.69	1.40	0.0013	38	58	107	62.5%				
10	Serum albumin	ALBU_MOUSE	5.75/68.69	1.37	0.0017	29	40	63	50.7%				
49	Transthyretin	TTHY_MOUSE	5.77/15.78	1.24	0.012	4	4	5	25.2%				

Others

	Protein Name	Accession	U00788	U00787	U00786	U00785	U00784	U00783	U00782	U00781	U00780	U00779	U00778
20	cAMP-dependent protein kinase type I-	KAP0_MOUSE	5.27/43.19	-1.24	8.0E-4	6	6	7	19.4%				
No.	Protein	Accession	Ratio	p-value	fold change	PERHEXILINE							
-----	-------------------------------------	------------	---------	---------	-------------	--------------							
43	Carbonic anhydrase 1	CAH1_MOUSE	6.44/28.32	1.50	5.3E-4	5	7	22.6%					
42	Carbonic anhydrase 2	CAH2_MOUSE	6.49/29.03	1.91	0.0014	4	6	7	14.6%				
54	D-dopachrome decarboxylase	DOPD_MOUSE	6.09/13.08	1.51	2.9E-4	4	4	4	44.9%				

A negative or positive ratio indicates a decrease or increase in perhexiline-treated murine hearts compared to controls.
GO and KEGG Categories	GO and KEGG Terms	Percentage of proteins	P-Value	FDR	Proteins
GO Biological Process	GO:0015669~gas transport	12.50	2.21E-06	3.09E-03	CAH2_MOUSE, HBA_MOUSE, HBB1_MOUSE, MYG_MOUSE
GO Biological Process	GO:0006906~glycolysis	12.50	9.81E-05	1.37E-01	CAH2_MOUSE, HBA_MOUSE, HBB1_MOUSE
GO Biological Process	GO:0006007~glucose catalytic process	12.50	2.12E-07	3.03E-04	CAH2_MOUSE, HBA_MOUSE, HBB1_MOUSE, MYG_MOUSE
GO Biological Process	GO:0006096~glycolysis	12.50	1.62E-04	2.26E-01	LDHB_MOUSE, TPIS_MOUSE, ENOA_MOUSE, ODPA_MOUSE
GO Biological Process	GO:0006091~generation of precursor metabolites and energy	15.63	1.89E-03	2.62E+00	LDHB_MOUSE, IDH3A_MOUSE, TPIS_MOUSE, ENOA_MOUSE, ODPA_MOUSE
GO Biological Process	GO:0006006~glucose metabolic process	12.50	2.90E-03	3.99E+00	LDHB_MOUSE, TPIS_MOUSE, ENOA_MOUSE, ODPA_MOUSE
GO Molecular Function	GO:0016836~hydro-lyase activity	9.38	4.28E-03	4.71E+00	CAH2_MOUSE, ENOA_MOUSE, CAH1_MOUSE
GO Cellular Component	GO:0005739~mitochondrion	28.13	4.18E-03	4.42E+00	EFTU_MOUSE, LDHB_MOUSE, IDH3A_MOUSE, EFTS_MOUSE, PRDX2_MOUSE, KCRB_MOUSE, ODPA_MOUSE, KAD4_MOUSE, ODBA_MOUSE
GO Biological Process	GO:0019220~regulation of phosphate metabolic process	15.63	3.18E-03	4.35E+00	HBB1_MOUSE, FABP4_MOUSE, PRDX2_MOUSE, KAP1_MOUSE, APOA1_MOUSE
GO Biological Process	GO:00015671~oxygen transport	9.38	2.33E-04	3.11E-01	HBA_MOUSE, HBB1_MOUSE, MYG_MOUSE
GO Molecular Function	GO:0005344~oxygen transporter activity	9.38	3.76E-04	4.63E+00	HBA_MOUSE, HBB1_MOUSE, MYG_MOUSE
GO Biological Process	GO:00044275~cellular carbohydrate catalytic process	12.50	2.48E-04	3.46E+00	LDHB_MOUSE, TPIS_MOUSE, ENOA_MOUSE, ODPA_MOUSE
GO Biological Process	GO:0006091~generation of precursor metabolites and energy	15.63	3.16E-03	4.35E+00	LDHB_MOUSE, IDH3A_MOUSE, TPIS_MOUSE, ENOA_MOUSE, ODPA_MOUSE
GO Cellular Component	GO:0005739~mitochondrion	28.13	4.18E-03	4.42E+00	EFTU_MOUSE, LDHB_MOUSE, IDH3A_MOUSE, EFTS_MOUSE, PRDX2_MOUSE, KCRB_MOUSE, ODPA_MOUSE, KAD4_MOUSE, ODBA_MOUSE
GO Biological Process	GO:0019220~regulation of phosphate metabolic process	15.63	3.18E-03	4.35E+00	HBB1_MOUSE, FABP4_MOUSE, PRDX2_MOUSE, KAP1_MOUSE, APOA1_MOUSE
GO Biological Process	GO:00015671~oxygen transport	9.38	2.33E-04	3.11E-01	HBA_MOUSE, HBB1_MOUSE, MYG_MOUSE
GO Molecular Function	GO:0005344~oxygen transporter activity	9.38	3.76E-04	4.63E+00	HBA_MOUSE, HBB1_MOUSE, MYG_MOUSE
Supplemental Table 3:
Metabolic profile of perhexiline-treated hearts as compared to controls.

	Control (n=5)	Perhexiline (n=5)	Ratio*	P (t-test)
Acetate	0.134 (± 0.019)	0.087 (± 0.009)	-1.54	0.086
Alanine	2.122 (± 0.153)	2.111 (± 0.481)	-1.01	0.984
AMP+ADP+ATP	4.454 (± 0.186)	2.966 (± 0.703)	-1.50	0.102
Aspartate	0.367 (± 0.069)	0.390 (± 0.028)	1.06	0.787
B-Hydroxybutyrate	0.106 (± 0.017)	0.133 (± 0.039)	1.25	0.557
Carnitine	0.581 (± 0.063)	0.454 (± 0.013)	-1.28	0.137
Choline	0.179 (± 0.008)	0.176 (± 0.021)	-1.02	0.901
Creatine	8.979 (± 0.039)	7.945 (± 0.170)	-1.13	0.003**
Formate	4.863 (± 1.313)	3.092 (± 1.062)	-1.57	0.353
Fumarate	0.048 (± 0.014)	0.048 (± 0.020)	1.00	0.988
Glucose	0.116 (± 0.034)	0.236 (± 0.085)	2.03	0.248
Glutamate	3.299 (± 0.368)	2.759 (± 0.302)	-1.20	0.371
Glutamine	5.352 (± 0.572)	3.827 (± 0.436)	-1.40	0.071
Glycine	0.548 (± 0.017)	0.487 (± 0.024)	-1.13	0.081
Glycolic acid	0.515 (± 0.147)	0.303 (± 0.033)	-1.70	0.260
Iso-Leucine	0.228 (± 0.035)	0.190 (± 0.029)	-1.20	0.455
Lactate	10.154 (± 0.961)	10.265 (± 1.842)	1.01	0.960
Leucine	0.178 (± 0.016)	0.174 (± 0.033)	-1.02	0.908
NAD+NADH	0.562 (± 0.035)	0.515 (± 0.016)	-1.09	0.300
Phenylalanine	0.071 (± 0.018)	0.054 (± 0.006)	-1.31	0.447
Phosphocholine	0.162 (± 0.019)	0.127 (± 0.023)	-1.28	0.292
Succinate	1.641 (± 0.369)	1.476 (± 0.300)	-1.11	0.752
Syllo-inositol	0.371 (± 0.030)	0.343 (± 0.029)	-1.08	0.543
Taurine	25.680 (± 0.132)	22.020 (± 0.609)	-1.17	0.003**
Tyrosine	0.032 (± 0.006)	0.017 (± 0.005)	-1.88	0.106
Valine	0.128 (± 0.013)	0.108 (± 0.016)	-1.19	0.373

*A negative or positive ratio indicates a decrease or increase in perhexiline-treated murine hearts compared to controls. ** indicates significant changes using an unpaired Student’s t-test.
Supplemental Table 4: Cross Correlation of Cardiac Metabolites

| Absolute Value | Leucine | Iso-Leucine | Valine | Oil-Butyrate | Lactate | Alanine | Acetate | Glutamate | Succinate | Glutamine | Aspartate | Choline | Phosphocholine | Taurine | Glycine | Glyceric acid | Glucose | Fumarate | Tyrosine | Phenylalanine | Adenosine nucleotides | NAD+ | NADH | Formate | Sylo-Inositol | Carnitine |
|----------------|---------|-------------|-------|--------------|---------|---------|---------|-----------|-----------|-----------|-----------|---------|---------|---------------|---------|---------|-------------|--------|----------|---------|--------------|-------------------------|------|------|--------|-----------|----------|
| 0.50 | 0.50 | 0.50 | 0.34 | 0.38 | 0.31 | 0.28 | 0.46 | 0.40 | 0.07 | 0.16 | 0.26 | 0.25 | 0.47 | 0.47 | 0.84 | 0.75 | 0.64 | 0.68 | 0.01 | 0.16 | 0.38 | 0.02 | 0.16 | 0.08 |
| 0.02* | 0.50 | 0.50 | 0.34 | 0.38 | 0.31 | 0.28 | 0.46 | 0.40 | 0.07 | 0.16 | 0.26 | 0.25 | 0.47 | 0.47 | 0.84 | 0.75 | 0.64 | 0.68 | 0.01 | 0.16 | 0.38 | 0.02 | 0.16 | 0.08 |
| 0.02* | 0.50 | 0.50 | 0.34 | 0.38 | 0.31 | 0.28 | 0.46 | 0.40 | 0.07 | 0.16 | 0.26 | 0.25 | 0.47 | 0.47 | 0.84 | 0.75 | 0.64 | 0.68 | 0.01 | 0.16 | 0.38 | 0.02 | 0.16 | 0.08 |
| 0.02* | 0.50 | 0.50 | 0.34 | 0.38 | 0.31 | 0.28 | 0.46 | 0.40 | 0.07 | 0.16 | 0.26 | 0.25 | 0.47 | 0.47 | 0.84 | 0.75 | 0.64 | 0.68 | 0.01 | 0.16 | 0.38 | 0.02 | 0.16 | 0.08 |
| 0.02* | 0.50 | 0.50 | 0.34 | 0.38 | 0.31 | 0.28 | 0.46 | 0.40 | 0.07 | 0.16 | 0.26 | 0.25 | 0.47 | 0.47 | 0.84 | 0.75 | 0.64 | 0.68 | 0.01 | 0.16 | 0.38 | 0.02 | 0.16 | 0.08 |
| 0.02* | 0.50 | 0.50 | 0.34 | 0.38 | 0.31 | 0.28 | 0.46 | 0.40 | 0.07 | 0.16 | 0.26 | 0.25 | 0.47 | 0.47 | 0.84 | 0.75 | 0.64 | 0.68 | 0.01 | 0.16 | 0.38 | 0.02 | 0.16 | 0.08 |
| 0.02* | 0.50 | 0.50 | 0.34 | 0.38 | 0.31 | 0.28 | 0.46 | 0.40 | 0.07 | 0.16 | 0.26 | 0.25 | 0.47 | 0.47 | 0.84 | 0.75 | 0.64 | 0.68 | 0.01 | 0.16 | 0.38 | 0.02 | 0.16 | 0.08 |
| 0.02* | 0.50 | 0.50 | 0.34 | 0.38 | 0.31 | 0.28 | 0.46 | 0.40 | 0.07 | 0.16 | 0.26 | 0.25 | 0.47 | 0.47 | 0.84 | 0.75 | 0.64 | 0.68 | 0.01 | 0.16 | 0.38 | 0.02 | 0.16 | 0.08 |
| 0.02* | 0.50 | 0.50 | 0.34 | 0.38 | 0.31 | 0.28 | 0.46 | 0.40 | 0.07 | 0.16 | 0.26 | 0.25 | 0.47 | 0.47 | 0.84 | 0.75 | 0.64 | 0.68 | 0.01 | 0.16 | 0.38 | 0.02 | 0.16 | 0.08 |
| 0.02* | 0.50 | 0.50 | 0.34 | 0.38 | 0.31 | 0.28 | 0.46 | 0.40 | 0.07 | 0.16 | 0.26 | 0.25 | 0.47 | 0.47 | 0.84 | 0.75 | 0.64 | 0.68 | 0.01 | 0.16 | 0.38 | 0.02 | 0.16 | 0.08 |

*The correlation values in bold and denoted with an * are those which were significant at a 10% False Discovery Rate (FDR)
row	name	role/number	role/number	role/number	role/number
50	*glyceraldehyde-3-phosphate dehydrogenase*	*h_m*	2.402	5.007	5.007
49	*glyceraldehyde-3-phosphate dehydrogenase*	*c_m*	2.402	5.007	5.007
48	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
47	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
46	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
45	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
44	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
43	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
42	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
41	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
40	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
39	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
38	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
37	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
36	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
35	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
34	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
33	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
32	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
31	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
30	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
29	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
28	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
27	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
26	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
25	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
24	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
23	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
22	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
21	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
20	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
19	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
18	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
17	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
16	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
15	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
14	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
13	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
12	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
11	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
10	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
9	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
8	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
7	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
6	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
5	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
4	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
3	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
2	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
1	*glyceraldehyde-3-phosphate dehydrogenase*	*c_c*	2.402	5.007	5.007
Supplemental Figure 2