We thank Professor Thierry Naas, Professor Pierre Bogaerts and Dr Romano Mattei for providing NG-Test Carba 5, KPC K-SET and the RAPIDEC® CARBA NP test, respectively.

Acknowledgements

Funding

This work was supported by internal funding.

Transparency declarations

None to declare.

References

1 Iovleva A, Doi Y. Carbapenem-resistant Enterobacteriaceae. Clin Lab Med 2017; 37: 303–15.

2 van Duijn D, Doi Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 2017; 8: 460–9.

3 Pence MA, Hink T, Burnham C-A. Comparison of chromogenic media for recovery of carbapenemase-producing Enterobacteriaceae (CPE) and evaluation of CPE prevalence at a tertiary care academic medical center. J Clin Microbiol 2015; 53: 663–6.

4 Nordmann P, Poirel L, Dortet L. Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 2012; 18: 1503–7.

5 Wright H, Bonomo RA, Paterson DL. New agents for the treatment of infections with Gram-negative bacteria: restoring the miracle or false dawn? Clin Microbiol Infect 2017; 23: 704–12.

6 Tamma PD, Simner PJ. Phenotypic detection of carbapenemase-producing organisms from clinical isolates. J Clin Microbiol 2018; 56: e01140-18.

7 Riccobono E, Antonelli A, Pecile P et al. Evaluation of the KPC K-SET™ immunochromatographic assay for the rapid detection of KPC carbapenemase producers from positive blood cultures. J Antimicrob Chemother 2018; 73: 539–40.

8 Sherry N, Howden B. Emerging Gram negative resistance to last-line antimicrobial agents fosfomycin, colistin and ceftazidime-avibactam—epidemiology, laboratory detection and treatment implications. Expert Rev Anti Infect Ther 2018; 16: 289–306.

9 Galbani P, Campoli C, Lewis RE et al. In vivo evolution of resistant subpopulations of KPC-producing Klebsiella pneumoniae during ceftazidime/avibactam treatment. J Antimicrob Chemother 2018; 73: 1525–9.

10 Nelson K, Hemarajata P, Sun D et al. Resistance to ceftazidime-avibactam is due to transposition of KPC in a porin-deficient strain of Klebsiella pneumoniae with increased efflux activity. Antimicrob Agents Chemother 2017; 61: e00989-17.

11 Haidar G, Clancy CJ, Shields RK et al. Mutations in blakepc, that confer ceftazidime-avibactam resistance encode novel KPC-3 variants that function as extended-spectrum β-lactamases. Antimicrob Agents Chemother 2017; 61: e02534-16.

12 Antonelli A, Arena F, Giani T et al. Performance of the BD MAX™ instrument with Check-Direct CPE real-time PCR for the detection of carbapenemase genes from rectal swabs, in a setting with endemic dissemination of carbapenemase-producing Enterobacteriaceae. Diagn Microbiol Infect Dis 2016; 86: 30–4.

13 Lomovskaya O, Sun D, Rubio-Aparicio D et al. Vaborbactam: spectrum of β-lactamase inhibition and impact of resistance mechanisms on activity in Enterobacteriaceae. Antimicrob Agents Chemother 2017; 61: e01443-17.

14 Compain F, Arthur M. Impaired inhibition by avibactam and resistance to the ceftazidime-avibactam combination due to the D179Y substitution in the KPC-2 β-lactamase. Antimicrob Agents Chemother 2017; 61: e00451-17.

Identification of L169P mutation in the omega loop of KPC-3 after a short course of ceftazidime/avibactam

Carolina Venditti1, Carla Nisii1,*, Milva Ballardini2, Marcello Meledandri2 and Antonino Di Caro1

1 L. Spallanzani National Institute for Infectious Diseases, Rome, Italy; 2 U.O.C. of Microbiology and Virology, San Filippo Neri Hospital, Rome, Italy

*Corresponding author. Tel: +39-06-55170675; E-mail: carla.nisii@inmi.it

Sir,

We read with interest a recent article by Hemarajata and Humphries1 entitled ‘Ceftazidime/avibactam resistance associated with L169P mutation in the omega loop of KPC-2’, wherein the authors report a novel mutation, conferring resistance to ceftazidime/avibactam, in the omega loop of the blakepc gene of a Klebsiella pneumoniae isolate, which emerged after 12 days of combination therapy.

Following the ECDC alert,2 in an effort to prevent the spread of ceftazidime/avibactam-resistant, carbapenem-resistant Enterobacteriaceae (CRE), and in our role as regional reference centre, we began collecting and analysing all ceftazidime/avibactam-resistant isolates obtained from patients treated at our hospital as well as strains received from other hospitals of the Latium region. In this context, we would like to share the preliminary results of our ongoing study aimed at detecting the mechanisms responsible for ceftazidime/avibactam resistance in CRE.

Two K. pneumoniae strains, one susceptible (Kp-1-S) and one resistant (Kp-2-R) to ceftazidime/avibactam, were obtained from the blood cultures of a patient treated at the San Filippo Neri

Advance Access publication 13 May 2019

doi:10.1093/jac/dkz201

J Antimicrob Chemother 2019; 74: 2466–2467

© The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Hospital and were analysed at the ‘L. Spallanzani’ National Institute for Infectious Diseases in Rome. The Kp-2-R strain, which also showed decreased imipenem and meropenem MICs, was isolated after 19 days of a ceftazidime/avibactam + colistin-based treatment, which was started in order to treat bacteraemia caused by the Kp-1-S susceptible strain.

Susceptibility testing was performed using the broth microdilution method, as recommended. The ST of both isolates was determined by traditional MLST of seven housekeeping genes; the blaKPC alleles and porin alterations (OmpK35 and OmpK36) were investigated by Sanger sequencing.

Both isolates belonged to ST512 and harboured an insertion mutation of glycine-aspartic acid residues (GD) at amino acid positions 134–135 in the OmpK36 L3 loop, as described previously. No mutations were observed in OmpK35. As shown in Table 1, the MIC of ceftazidime/avibactam increased by four 2-fold serial dilutions, i.e. from 2 to 32 mg/L. Conversely, the MICs of two out of three carbapenems were markedly decreased (Table 1). BLAST analysis revealed the presence, in the blaKPC-3 gene of the ceftazidime/avibactam-resistant K. pneumoniae isolate, of the L169P mutation, which consists of a single nucleotide substitution (T to C) resulting in a leucine-to-proline amino acid substitution at amino acid position 169.

Besides mutations in the omega loop of KPC enzymes, other mechanisms of ceftazidime/avibactam resistance have been reported, such as a decrease in permeability caused by modifications in outer membrane proteins and differences in susceptibility of KPC subtypes. However, the mechanisms most often associated with resistance observed after ceftazidime/avibactam treatment are mutations in the blaKPC gene. At the time of writing, the known blaKPC mutations responsible for ceftazidime/avibactam resistance include A177E, D179Y, E184K, and E184G. The L169P mutation that Hemarajata and Humphries have described in the blaKPC-2 gene and that was observed by us in blaKPC-3 is similar to D179Y (found in both blaKPC variants); both mutations result in combined ceftazidime/avibactam resistance and restoration of in vitro activity of carbapenems.

Taken together, our results support the observation that the omega loop of KPC enzymes plays a key role in the emergence of mutations arising after antibiotic therapy; further studies aiming at understanding the mechanisms of ceftazidime/avibactam resistance should probably focus on this mutation-prone region of the bacterial genome. Our data also underscore the need for active surveillance in order to prevent the spread of any ceftazidime/avibactam-resistant strains that emerge during treatment.

References

1. Hemarajata P, Humphries RM. Ceftazidime/avibactam resistance associated with L169P mutation in the omega loop of KPC-2. J Antimicrob Chemother 2019; 74: 1241–3.

2. ECDC. Emergence of Resistance to Ceftazidime-Avibactam in Carbapenem-Resistant Enterobacteriaceae—12 June 2018. Stockholm, Sweden: ECDC, 2018.

3. Wise MG, Horvath E, Young K et al. Global survey of Klebsiella pneumoniae major porins from ertapenem non-susceptible isolates lacking carbapenemases. J Med Microbiol 2018; 67: 289–95.

4. Humphries RM, Yang S, Hemarajata P et al. First report of ceftazidime-avibactam resistance in a KPC-3-expressing Klebsiella pneumoniae isolate. Antimicrob Agents Chemother 2015; 59: 6605–7.

5. Shields RK, Potoski BA, Haidar G et al. Clinical outcomes, drug toxicity, and emergence of ceftazidime-avibactam resistance among patients treated for carbapenem-resistant Enterobacteriaceae infections. Clin Infect Dis 2016; 63: 1615–8.

6. Shields RK, Clancy CJ, Hao B et al. Effects of Klebsiella pneumoniae carbapenemase subtypes, extended-spectrum ß-lactamases, and porin mutations on the in vitro activity of ceftazidime-avibactam against carbapenem-resistant K. pneumoniae. Antimicrob Agents Chemother 2015; 59: 5793–7.

7. Siddiqui MJ, Macesic N, Annavajhala MK et al. Successive emergence of ceftazidime-avibactam resistance in 21 carbapenem-resistant Klebsiella pneumoniae strains containing the beta-lactamase KPC-3 gene. J Antimicrob Chemother 2016; 71: 1525–9.

8. Gaibani P, Campoli C, Lewis RE et al. In vivo evolution of resistant subpopulations of KPC-producing Klebsiella pneumoniae during ceftazidime/avibactam treatment. J Antimicrob Chemother 2018; 73: 1525–9.

9. Shields RK, Chen L, Cheng S et al. Emergence of ceftazidime-avibactam resistance due to plasmid-borne blaKPC-3 mutations during treatment of carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob Agents Chemother 2017; 61: e02097-16.

10. Haidar G, Clancy CJ, Shields RK et al. Mutations in blaKPC-3 that confer ceftazidime-avibactam resistance encode novel KPC-3 variants that function as extended-spectrum ß-lactamases. Antimicrob Agents Chemother 2017; 61: e02534-16.