Late Ediacaran organic microfossils from Finland

Sebastian Willman and Ben J. Slater

Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, SE-75236, Uppsala, Sweden

Abstract

Here we present a detailed accounting of organic microfossils from late Ediacaran sediments of Finland, from the island of Hailuoto (northwest Finnish coast), and the Saarijärvi meteorite impact structure (~170 km northeast of Hailuoto, mainland Finland). Fossils were recovered from fine-grained thermally immature mudstones and siltstones and are preserved in exquisite detail. The majority of recovered forms are sourced from filamentous prokaryotic and protistan-grade organisms forming interwoven microbial mats. Flattened Nostoc-ball-like masses of bundled Siphonophycus filaments are abundant, alongside Rugosoopsis and Palaeocalyptus of probable cyanobacterial origin. Acritarchs include Chuaria, Leiosphaeridia, Symplasapheridi and Synsphaeridi. Significantly, rare spine-shaped sclerites of bilaterian origin were recovered, providing new evidence for a nascent bilaterian fauna in the terminal Ediacaran. These findings offer a direct body-fossil insight into Ediacaran mat-forming microbial communities, and demonstrate that alongside trace fossils, detection of a bilaterian fauna prior to the Cambrian might also be sought among the emerging record of small carbonaceous fossils (SCFs).

1. Introduction

The latest part of the Ediacaran System harbours signatures for some of the most important changes in the history of the biosphere. Multiple lines of fossil evidence indicate that many of the foundations of animal-dominated Phanerozoic-style ecosystems were assembled at this time, and include structurally complex Ediacaran macrofossils (e.g. Liu et al. 2014; Ivanov et al. 2019a), animal-derived biomarkers (Bobrovskiy et al. 2018a), possible metazoan reefs (Grotzinger et al. 2005; Penny et al. 2014) and the advent of macroscopic biomineralization (e.g. Cloudina (Grant, 1990)). Perhaps most significantly, a trace fossil record of complex horizontal burrows and trails appears from ~560 Ma, likely documenting the emergence of a bilaterian benthos (Martin et al. 2000; Jensen, 2003; Chen et al. 2013, 2019; Budd, 2015; Budd & Jensen, 2017). These simple trace fossils are consistently found in association with bedding planes exhibiting microbial mat textures, and have been interpreted as representing a variety of mat-exploiting behaviours (Buatois et al. 2014; Meyer et al. 2014; Tarhan et al. 2017; Ivanov et al. 2019b). Together, these lines of evidence point to a characteristic Ediacaran matground ecology which appears to have persisted into the early Cambrian Fortunian (Buatois et al. 2014; Laing et al. 2019). Despite the importance of these environments as cradles of early animal evolution (Budd & Jensen, 2017), there is currently little direct accounting of body fossils either from the biomat-forming organisms, or from the nascent bilaterian fauna themselves.

Organic walled microfossils (OWMs) are one source of direct body-fossil data that can be retrieved from siliciclastic rocks. Most studies of OWMs from the Ediacaran to date have focused on acritarchs (e.g. Moczydłowska, 2005; Willman et al. 2006). In studies of comparable OWM-bearing deposits from the Cambrian, there has recently been an increased awareness that a larger size class of organically preserved remains is accessible if a gentler processing procedure is applied. These larger, more delicate forms have been dubbed small carbonaceous fossils (SCFs), and encompass a polyphyletic mix of organic remains sourced from various organisms, including the fragmentary remains of metazoans (Butterfield & Harvey, 2012). Recently, several SCF biotas have been recovered from early Cambrian sediments in the Baltic region (Slater et al. 2017; Guilbaud et al. 2018; Kesidis et al. 2019; Slater & Willman, 2019), including from earliest Cambrian strata (Slater et al. 2018a). Extending this record into the Ediacaran is crucial for capturing SCF diversity contemporaneous with the earliest stages of bilaterian evolution.

Finland is one region of Baltica that has been relatively under-explored in terms of its Ediacaran fossil record. Nevertheless, several localities preserving sediments of Ediacaran age are found in Finland, and crucially the thermal immaturity of these sediments makes them ideally suited for SCF preservation (Slater & Willman, 2019). Here we report a rich record of organic microfossils from a late Ediacaran sequence in Finland, from Hailuoto Island and the Saarijärvi meteorite impact crater (Fig. 1).
2. Geological setting

An extended episode of erosion during the early- to mid-Neoproterozoic era left Baltica as a peneplained continent of exceptionally low relief (Lidmar-Bergström, 1993, 1995). Subsequent transgressions during the late Neoproterozoic and early Phanerozoic flooded large regions of this topographically flat landscape, resulting in extensive shallow marine deposition (Nielsen & Schovsbo, 2011). Siliciclastic sediments deposited in these epiric seaways extend over large regions of the Bothnian Sea and the Baltic states. Based on the thickening trend of these sediments toward the Finnish coastline, equivalent deposits are thought to have once covered much of Finland (Puura et al., 1996; Kohonen & Rämo, 2005; Bogdanova et al., 2008; Klein et al., 2015; Slater & Willman, 2019). In Finland, even more than elsewhere in Baltica, the vast majority of these sediments have subsequently been eroded and now remain only as relatively small and geographically scattered outliers.

One region where a substantial portion of late Neoproterozoic sediments has survived in Finland is the island of Hailuoto (Fig. 1). Hailuoto is situated in the Bothnian Bay off the northwest coast of the Finnish mainland, west of the coastal city of Oulu (Fig. 1). Beneath a covering of Quaternary sediments lies the subsurface Hailuoto Formation (known entirely from drillcore), a package of sandstones, mudstones, siltstones, clays and conglomerates which varies in thickness across the island, reaching a maximum thickness of ~560 m (Solismaa, 2008; Klein et al., 2015). The upper ~55–65 m of the formation consists of greenish-grey fine-grained sandstones, shales and siltstones. Below this are deposited red-coloured arkosic sandstones and shales, which rest unconformably on the crystalline basement or on sediments of the Mesoproterozoic–Neoproterozoic Muhos Formation which underlies much of the Bothnian Bay and outcrops adjacent to Hailuoto on the Finnish mainland (Fig. 1). The Muhos Formation consists of red-green-grey siltstones and shales (Kohonen & Rämo, 2005), similar in lithology to the Hailuoto Formation (Tynni & Sivola, 1966; Tynni & Donner, 1980; Kohonen & Rämo, 2005; Solismaa, 2008; Klein et al., 2015).

Based on correlation with adjacent strata and its microfossil contents, the Hailuoto Formation is considered to be late Neoproterozoic in age, with estimates in the range of 600–570 Ma (Veltheim, 1969; Tynni & Donner, 1980; Paulamäki & Kuivamäki, 2006; Klein et al., 2015; Luukas et al., 2017). This would place the deposition of the Hailuoto Formation in approximately the middle of the Ediacaran Period. A microfossil analysis of sediments from the upper parts of the Hailuoto Formation by Tynni & Donner (1980) drew comparisons with the uppermost parts of the Visingsö Formation of Sweden. Detrital zircon U–Pb ages have subsequently constrained the Visingsö Formation to a maximum depositional age of ≤886 ± 9 Ma (Moczydłowska et al., 2017), and recent microfossil studies also suggest this formation was deposited during the Tonian (Loron & Moczydłowska, 2018). Klein et al. (2015), however, point out that many of the form-taxa reported from the Hailuoto Formation by Tynni & Donner (1980) are actually found in much younger sediments elsewhere in the Baltic region and East European Platform, for example, in late Ediacaran strata from the Kotlin Formation of Estonia (Mens & Pirrus, 1997; Meidla, 2017; Arvestål & Willman, 2020; Slater et al. 2020). A particularly close comparison can also be drawn with OWM assemblages from the late Ediacaran Redkino and Kotlin regional stages of the Lyamtsa, Verkhovka, Zimnie Gory and Yorga formations of the White Sea region in Russia (e.g. Leonov & Ragozina, 2007). These similarities to assemblages from comparatively well-constrained late Ediacaran strata (e.g. in the White Sea region) would suggest a substantially younger age for the Hailuoto Formation than suggested in previous studies, closer to the Ediacaran–Cambrian boundary. Indeed, U–Pb zircon dating of volcanic tuffs has indicated an age of 551–548 Ma for the lowermost Kotlin in the White Sea area of northern Russia (Grazhdankin et al., 2011). With this advancement in understanding of the local and regional stratigraphy we favour a younger, latest Ediacaran age for the upper part of the Hailuoto Formation here.

Another subsurface remnant of comparable Neoproterozoic sediments is preserved within the Saarijärvi impact structure in central Finland (Fig. 1). The Saarijärvi impact crater is situated 30 km south of Taivalkoski near the border between the Finnish regions of northern Ostrobothnia and Kainuu, and is largely covered by a lake (Saarijärvi) that has formed in the crater depression (to avoid confusion, it is worth noting that in Finnish ‘Saarijärvi’ is a very common lake name – there are at least 198...
The local geology has largely been reconstructed based on drillcore material. As with many impact structures, the precise geological history has been problematic to disentangle. Up to 156 m thickness of sediments is preserved within the ~1.5 km diameter crater. These packages of sediment are difficult to correlate even between closely spaced cores, likely as a result of separate cores intersecting different coherent megablocks of sediment arranged in a chaotic way (Hyyppä & Pekkala, 1987; Öhman & Preeden, 2013). The signatures of impact-disruption are evident throughout the cores: Sediments display significant changes in dip direction and angle over relatively short intervals of core depth. Further, fractured angular clasts of basement rock (granite) are found within the sediments at several depths in different cores. Another notable feature is that even among soft lithologies the core material tends to break along shiny, polished surfaces which cut across the bedding; such features may represent subsequent fracturing of the sediments related to tectonism (Öhman & Preeden, 2013). Precise dating of the impact event has been difficult, and there are competing scenarios between a Proterozoic and an early Cambrian age impact hypothesis (see Öhman & Preeden, 2013). Shales and siltstones in the upper parts of the Saarijärvi impact structure are reminiscent of those in the Hailuoto Formation, and have produced comparable OWM assemblages both in terms of taxonomic composition and preservation (Tynni & Donner, 1980; Tynni & Utela, 1984, 1985; Paulamäki & Kuivamäki, 2006), suggesting that sediments of the Hailuoto Formation originally extended north and east to cover a substantial portion of central Finland.

3. Materials and methods

Sampling targeted three cores intersecting the Neoproterozoic sediments of Hailuoto Island: M52-Hail-04-004 (drilled at an angle of 70° towards 226° direction), M52-Hail-04-005 and M52-Hail-64-001 (Fig. 1). In all cases our samples are derived from the green-grey and grey-brown mudstones which make up the upper parts of Hailuoto cores from 64–77 m depth of M52-Hail-04-004 (28 samples), 60–67 m depth of M52-Hail-04-005 (21 samples) and 75–80 m depth of M52-Hail-64-001 (5 samples) (Fig. 2; for additional details of cores see Solismaa, 2008). In addition, three cores intersecting the Saarijärvi impact crater were sampled: M52-3533-81-311, M52-3533-81-312 and M52-3533-84-313 (Figs 1, 2). These samples were also selected from green-grey mudrocks, which at Saarijärvi are distributed chaotically even among closely spaced cores, due to the displacement of megablocks associated with crater formation (see Öhman & Preeden, 2013). Processing followed the techniques outlined in Butterfield & Harvey (2012). Cores are housed at the Geological Survey of Finland national drillcore archive in Loppi. All imaged fossil material is deposited in the Palaeontological collections of the Museum of Evolution (PMU), Uppsala University, Sweden.

4. Organic-walled fossils

Of the 64 processed samples, all were productive for microfossils, although with significant variation in contents and abundance. A particularly productive section was identified in mudstones of...
the M52-Hail-04-004 drillcore, spanning ~71–73 m depth. The majority of recovered fossils fall into the broad form-taxonomic distinctions of acritarchs (vesicular organic-walled microfossils of unknown biological affinity; Evitt, 1963) or filamentous forms. Specimens of metazoan origin were also recovered from Hailuoto. Assemblages from Hailuoto and Saarijärvi contained the same acritarchs and filamentous form taxa, supporting previous hypotheses that these strata are remnants of once widespread late Ediacaran deposits in Finland (Tynni & Donner, 1980; Tynni & Utela, 1985; Paulamäki & Kuivamäki 2006).

4.4. Metazoan remains

An individual triangular structure of ~800 μm length and ~450 μm width at the base was recovered from a particularly fossil-rich sample at 72.7 m depth in the M52-Hail-04-004 drillcore. This spine-shaped fossil possesses a thin-walled flared basal region exhibiting rhombus-shaped surficial scaly ornamentation, which tapers to a darkened, presumably sclerotized tip (Fig. 3a). The same sample also produced a broadly blade-shaped sclerotized element edged with crenate serrations that are densely encrusted with pyrite euhedra (Fig. 3b).

Close comparisons can be drawn between the spine-shaped element (Fig. 3a) and early Cambrian carbonaceous ‘protoconodont’ spines (see Protohertztina compressa, figs 3, 4 of Slater et al. 2018a; fig. 3 of Slater & Willman, 2019). In particular, the tip closely resembles known early Cambrian spines of this type (compare to holotype specimen of P. compressa, fig. 3B of Slater et al. 2018a). The basal portion of the Hailuoto spine, however, differs from these protoconodont-type spines: P. compressa exhibit a dense fibrous microstructure, whereas the Hailuoto spine displays a faint scaly ornamentation on an otherwise smooth basal portion. Broadly comparable ornamentation occurs on the basal pad of cuticular sclerites of scalidophoran worms (notably the triangular ‘teeth’ borne on the pharynx of such worms; see fig. 9K of Smith et al. 2015; fig. 3B of Slater et al. 2018b; fig. 2R of Wallet et al. 2021).

This spine is perhaps the most unexpected find from the Hailuoto assemblage, and appears to derive from a metazoan. Several Ediacaran metazoans (e.g. Dickinsonia, Yorgia and Kimberella) are known to have produced dorsal integumentary shields that were covered with various tubercles and spines (see Ivantsov et al. 2019a, figs 2, 3). The fine-scale structures of these integuments are unclear however, since they are known solely from preservation as casts and moulds. Cnidarians can possess a chitinous exoskeleton (Mendoza-Becerril et al. 2016), which conceivably could produce sclerite-like elements preserving as carbonaceous fossil remains. Fossil examples of early cnidarians with a chitinous exoskeleton include early Cambrian (Fortunian) cororate scyphozoans such as Olivooides (Dong et al. 2013), Quadrapyrgites (Y. Liu et al. 2014) and Qingsphyus (Liu et al. 2017), as well as possible Ediacaran cnidarians such as the tubular Corambella (Warren et al. 2012). None of these, nor any other cnidarians we are aware of, produce spine-like sclerites, however, and we deem it likely the sclerite from Hailuoto is sourced from a bilaterian-grade animal. Among the bilateria, protoconodonts and scalidophorans both have fossil records extending to almost the base of the Cambrian (Kouchinsky et al. 2012; Slater et al. 2018a). Some of the earliest Cambrian, and even latest Ediacaran, burrows may have been produced by scalidophoran or cycloneuran worms (see Kesidis et al. 2019). Based on the simple set of characters, however, this spine cannot confidently be attributed to either a protoconodont, or a cuticular sclerite of a scalidophoran worm. Indeed, spines of this type could conceivably be sourced from a much broader array of bilaterians, including various edyszoans, gastrotrichs (Rieger & Rieger, 1977), gnathiferans (Marletaz et al. 2019), as well as stem-protostomes or even stem-bilaterians.

4.4.1. Siphonophycus ‘donuts’

A ubiquitous constituent of fossiliferous samples is bundled filaments of the form-taxon *Siphonophycus* (Fig. 4). *Siphonophycus* are smooth-walled, unbranched, tubular filaments that lack septa or preserved cellular remains (Knoll et al. 1991). The *Siphonophycus* filaments from Finland are a few microns in thickness, and are often found bundled up into tight rings varying in size between 50 and 650 μm in maximum diameter, often with a central hollow (ranging between absent and up to ~300 μm diameter). These structures likely represent flattened *Nostoc*-ball-like masses of interwoven filaments (see Butterfield et al. 1994; Mollenhauer et al. 1999; Guiry & Guiry, 2008). The ‘donut-shaped’ (Fig. 4a–k, n, p, q) and more irregular agglomerations (Fig. 4l, m, o, s) possibly formed via the collapse of originally torus-shaped colonies, or alternatively the central hollow may represent the void left by a mucilage-filled interior space within an originally spherical colony. Though lacking an overall ring shape, bundled filaments described as *Polytrichoides lineatus* Hermann 1974 emend. (Hermann in Timofeev et al. 1976) exhibit similarities to the
bundles of Siphonophycus described here, and are frequently recov-
ered from Proterozoic assemblages (Li et al. 2019). A closer com-
parison comes from comparable tightly wound rings of filaments
recorded from the Neoproterozoic Svanbergfjellet Formation
(fig. 26G of Butterfield et al. 1994), suggesting
this growth habit is widespread among Neoproterozoic
cyanobacterial mats.

4.b.2. Palaeolyngbya
The majority of samples produced smooth, strap-shaped filamen-
tous sheaths, ranging between ~50 and 110 μm in diameter, and of
various lengths up to ~3 mm (Fig. 5). In a subset of these filaments,
the outer envelopes enclose optically darker, unbranched, uniseri-
ate, multicellular trichomes, composed of shrunken and degraded
cells (Fig. 5m–p, x, ac, an). The trichome is c. 30–40 % of the outer
envelope diameter in most specimens, though this may represent
taphonomic shrinkage since a few specimens preserve much
broader trichomes (e.g. Fig. 5x). The internal trichome may run
the entire filament length (e.g. Fig. 5o); however, in some speci-
mens it is fragmented or incomplete (e.g. Fig. 5p). The cells of
the trichome are occasionally separated and displaced obliquely
within the sheath, appearing as a series of discoidal cells (e.g. Fig.
5ac). These filaments can be ascribed to the form-taxon
Palaeolyngbya Schopf 1968 emend. Butterfield, Knoll and Swett
1994 (see pl. 2, fig. 1 of Yun, 1981; fig. 2.1 of Vidal &
Moczydłowska, 1992; fig. 25E–G of Butterfield et al. 1994;
figs 4–5 of Moczydłowska, 2008; fig. 3) of Loron et al. 2019;
fig. 10O–X of Arvestål & Willman, 2020). These filaments are dis-
tinguishable from other fossil multicellular trichomes such as
Oscillatoriopsis from the manner in which specimens break (across
pseudosepta vs between true cells in Oscillatoriopsis). Occasional
specimens display a pseudoseptate sheath comparable to some
Tortunema (e.g. fig. 7.5 of Sergeev et al. 2016), likely reflecting
taphomorphic and/or ontogenetic variation.

4.b.3. Rugosoopsis
Another common filament type found in most samples from
Halluoto and Saarijärvi consists of a bi-layered form with a
dense, smooth-walled inner sheath (similar to Siphonophycus or
Palaeolyngbya), enclosed by a thinner-walled outer sheath with
a pronounced series of transverse ridges (or rugose ornamentation) on the surface (Figs 5a–l, r–w, y–ab, af–am) Rugosoopsis. (m–p, x, ac, an) Palaeolyngbya. (q, ad, ae) Exhibit mixed morphology of Rugosoopsis-like filaments with occasional lengths of Palaeolyngbya-like trichome. (an) Palaeolyngbya filaments adhered to matted sheet of filamentous remains. Arrow indicates shrivelled cell (necridia) in specimen (l). Note the discoidal cells of the trichome in (l), (ac) and (ae). Scale bars represent 200 μm. (a–l, n–t, w), y–ab, ad, af, ag, ai–am) 72.70 m MS2-Hail-04-004 core; (m–o, q, u, x, ac, ae, ah, an) 72.20 m MS2-Hail-04-004 core. All specimen numbers have the prefix PMU 38: (a) 161/2; (b) 161/3; (c) 161/4; (d) 163/1; (e) 163/5; (f) 156/2; (g) 161/6; (h) 160/2; (i) 160/3; (j) 159/2; (k) 161/7; (l) 161/12; (m) 162/2; (n) 159/3; (o) 162/3; (p) 162/4; (q) 162/5; (r) 159/4; (s) 160/6; (t) 161/8; (u) 158/5; (v) 157/4; (w) 156/3; (x) 157/5; (y) 160/5; (z) 164/4; (aa) 160/6; (ab) 161/9; (ac) 157/6; (ad) 160/7; (ae) 158/6; (af) 161/10; (ag) 161/11; (ah) 162/6; (ai) 163/2; (aj) 163/3; (ak) 159/5; (al) 163/4; (am) 163/5; (an) 157/7.

Fig. 5. (Colour online) Filamentous microfossils. (a–l, r–w, y–ab, af–am) Rugosoopsis. (m–p, x, ac, an) Palaeolyngbya. (q, ad, ae) Exhibit mixed morphology of Rugosoopsis-like filaments with occasional lengths of Palaeolyngbya-like trichome. (an) Palaeolyngbya filaments adhered to matted sheet of filamentous remains. Arrow indicates shrivelled cell (necridia) in specimen (l). Note the discoidal cells of the trichome in (l), (ac) and (ae). Scale bars represent 200 μm. (a–l, n–t, w), y–ab, ad, af, ag, ai–am) 72.70 m MS2-Hail-04-004 core; (m–o, q, u, x, ac, ae, ah, an) 72.20 m MS2-Hail-04-004 core. All specimen numbers have the prefix PMU 38: (a) 161/2; (b) 161/3; (c) 161/4; (d) 163/1; (e) 163/5; (f) 156/2; (g) 161/6; (h) 160/2; (i) 160/3; (j) 159/2; (k) 161/7; (l) 161/12; (m) 162/2; (n) 159/3; (o) 162/3; (p) 162/4; (q) 162/5; (r) 159/4; (s) 160/6; (t) 161/8; (u) 158/5; (v) 157/4; (w) 156/3; (x) 157/5; (y) 160/5; (z) 164/4; (aa) 160/6; (ab) 161/9; (ac) 157/6; (ad) 160/7; (ae) 158/6; (af) 161/10; (ag) 161/11; (ah) 162/6; (ai) 163/2; (aj) 163/3; (ak) 159/5; (al) 163/4; (am) 163/5; (an) 157/7.

4.b.4. Obruchevella

Abundant coiled, thin-walled filaments (~10–20 μm in diameter) occasionally with apparent septa were recovered in all samples from Hailuoto and Saarijärvi (Figs 7f, 8h–n). The majority of specimens are compressed into a coiled ring, but occasional specimens show laterally displaced coils (Fig. 7f, 8i, l), revealing a Spirulina-like helical habit (see Sili et al. 2012). Compressed cylindrical forms were recovered in previous investigations by Tynni & Donner (1980), who assigned these to the form-taxon Volyniella cylindrica (compare also with fig. 1F of Leonov & Ragozina, 2007; figs 3, 5 of Sharma & Shukla, 2012). Jankauskas et al. (1989) point out that the distinction between the flattened, two-dimensional Volyniella (Shepeleva, 1973) and typically three-dimensionally preserved Obruchevella (e.g. Anderson et al. 2018; Willman et al. 2020) is essentially artificial, and based on taphomorphs. Noting that there are several possible names for spiralled filaments (in addition to Volyniella, also Glomovertella and Circumiella), we prefer to follow the recommendations of Jankauskas et al. (1989) and term these coiled filaments Obruchevella.

4.b.5. Matted filaments

The majority of samples produced abundant entangled mats of Siphonophycus, Palaeolyngbya and Rugosoopsis exhibiting a mesh-like growth habit (Figs 6, 7), where filaments are densely interwoven (Figs 6a–d, 7a). Frequently the density of overlapping filaments is such that they form a sheet-like layer that has been
compressed into a single carbonaceous film (see Martí Mus, 2014; Slater et al. 2020). Some of these mats are of mixed composition (e.g. Fig. 6a); however, others are composed entirely from a single filament morphology (e.g. Figs 6c, d, 7a). In this latter category, the filaments are all of similar dimensions, suggesting that they are at the same ontogenetic stage (e.g. Fig. 7a). Within these mats, individual filamentous structures may be encrusted with pyrite euhedra (Figs 6a, b, 7c, e). Pyrite also occurs as circular or more irregular patches within the sheet, possibly representing voids within the mat created by gas bubbles. Together, these agglomerations are reminiscent of various acid-isolated mat-forming filaments from Proterozoic shales (compare Fig. 6c with fig. 8.5 of Sergeev et al. 2016; fig. 2 of Samuelsson & Butterfield, 2001; fig. 2G of Butterfield, 2015a; fig. 4D of Butterfield, 2015b) and carbonates (Knoll et al. 2013).

4.c. Acritarchs

The majority of samples from both Hailuoto and Saarijärvi produced irregular, aggregate clusters of spheroids (Fig. 9m, n). Comparable sheet-forming clusters of spheroids are frequently assigned to the form-taxon *Ostiana* (e.g. fig. 5) of Samuelsson & Butterfield, 2001); however, the more irregular aggregates recovered here are more appropriately assigned to the form-taxon *Synsphaeridium* Eisenack 1965 (Fig. 9m, n; cf. fig. 13 of Riedman & Porter, 2016). The individual spheroids range between 15 and 25 μm in diameter, and form clusters up to ~350 μm in maximum dimension, consisting of up to ~100 individual spheroids. More tightly bound and regular-shaped clusters of spheroids (e.g. Fig. 9f–l), where the vesicles are often deformed by compression, are assigned to *Symplasosphaeridium* Timofeev 1959, 1966 (cf. fig. 18.6 of Hofmann & Jackson, 1994). Occasionally, similar forms have been ascribed to *Squamosphaera colonialica* Jankauskas 1979, but *Squamosphaera* do not possess true vesicles, displaying only hemispherical protrusions from the vesicle wall (see fig. 17 of Porter & Riedman, 2016).

Larger cell-aggregates with denser walls were found in most samples, but were particularly abundant in samples from Hailuoto (Fig. 9e–h). Fragmentary forms of identical morphology to these acritarchs were described by Tynni & Donner (1980) from the same sediments on Hailuoto, which they ascribed to the extant prasinophycean alga genera *Cymatiosphaera* as a new species, *Cymatiosphaera precambrica* (a holotype was not formally designated in that paper, but was rectified in Tynni & Donner, 1982). Tynni & Donner (1980) extrapolated the size of the fragmentary remains to be derived from a spherical body c. 250 μm in diameter when complete; this falls towards the lower end of the size range of forms recovered in this study (~300–700 μm), perhaps reflecting the differing processing techniques. Assignment of fossil material to the extant genus *Cymatiosphaera* is not unknown (e.g. *Cymatiosphaera* are reported from the Early Devonian Rhynie Chert; Dotzler et al. 2007). However, the surface sculpture
of specimens recovered by Tynni & Donner (1980) was originally interpreted as reticulate, as in extant Cymatiosphaera. Our recovery of intact specimens here nevertheless demonstrates that the apparently polygonal surface texture actually results from the intersection of compacted adjacent spheroids, which clearly protrude at the flattened cluster margins (Fig. 9e–h). In light of this, these densely clustered cell aggregates are instead more appropriately compared to cell colonies found within organic cysts such as those reported in some Chuaria (see fig. 3 of Tang et al. 2017).

Acritarchs assigned to Chuaria were found to co-occur with these large cell-aggregate forms (Fig. 9a–b). Feasibly, the large cell aggregates represent the vegetative stage of co-occurring empty Chuaria cysts. Tang et al. (2017) suggest that although these cell aggregates could be described under a distinct form-taxonomic name, they likely represent different life-cycle stages of the same biological species, and therefore it may be suitable to expand the form taxonomy of Chuaria to encompass these aggregate forms (see also Chuaria as a subcomponent of a macroalgal, fig. 16 of Kumar, 2001; fig. 7 of Wang et al. 2017). Less optically dense forms could potentially fall under the definition of Leiosphaeridia jacutica (see Javaux & Knoll, 2017). Other hollow cyst-like acritarchs recovered include relatively large smooth-walled Leiosphaeridia (Fig. 9e) with prominent compaction folds encrusted in pyrite (compare with fig. 1 of Slater & Budd, 2019).

5. Discussion

5.a. Palaeoenvironment of Hailuoto/Saarijärvi OWM assemblage

As with most assemblages of acid-extracted organic-walled fossils, the Hailuoto and Saarijärvi material likely represents a combination of both benthic and planktonic organisms. Smaller vesicular acritarchs may be sourced from the water column, whereas the majority of the filamentous taxa appear to be benthic, based on their mat-forming interwoven habit. Indeed, OWM assemblages from mid- to late-Proterozoic siliciclastic sediments record a prevalence of mat-forming filaments in shallow-water assemblages, probably reflecting photic-zone colonization by cyanobacterial mats (Butterfield & Rainbird, 1998; figs 6, 7 of Butterfield & Chandler, 1992; Butterfield, 2015b). Filamentous bacterial mats can nevertheless form at a wide range of depths on modern seafloors; Whilst shallow-water mats tend to be principally composed of cyanobacteria, deeper water mats are frequently dominated by filamentous sulphur-oxidizing bacteria (Williams & Reimers, 1983; Jannasch et al. 1989; Bernard & Fenchel, 1995). Despite the inherent difficulties of determining the phylogenetic affinities of simple fossil filaments, there is a case for viewing the filamentous mats at Hailuoto and Saarijärvi as largely cyanobacterial; matted sheaths of Palaeolyngbya and Rugosoopsis share a number of

---

Fig. 7. (Colour online) Matted filaments. (a) Interwoven filamentous mat. (b) Sinuous ribbon-like filaments on surface of mat, alongside chain of pyritized trichome. (c) Mixture of Siphonophycus, Rugosoopsis and pyrite-encrusted filaments (arrow points to necridia within Rugosoopsis-type filament). (d) Dense mat of Rugosoopsis exhibiting pyrite encrustation (arrow points to prominent necridia). (e) Pyrite-encrusted filaments. (f) Coiled Obruchevella-type filament within mat. (g) Degraded mat with prominent Rugosoopsis filament (white arrow points to necridia). Scale bars represent 200 μm (a, b, d); 100 μm (c, e–g). [a–g] 72.70 m MS2-Hail-04-004 core. All specimen numbers have the prefix PMU 38: (a) 164/5; (b) 163/7; (c) 163/8; (d) 163/9; (e) 164/2; (f) 163/10; (g) 164/3.
Fig. 8. (Colour online) Filaments and acritarchs (small). (a–b) Smooth sheaths of Siphonophycus. (c) Possible fragment of Cepholonyx-type filament showing regular transverse banding. (d–g) Typical fragments of Rugosoopsis. (h–n) Specimens of Obruchevello, comprising chains of cell rings. (i, l) Show laterally displaced rings. Scale bar represents 100 μm. (a–n) 7.53 m Saarijärvi M52/3533/84/313 core. All specimen numbers have the prefix PMU 38: (a) 165/9; (b) 165/10; (c) 165/11; (d) 165/12; (e) 165/13; (f) 165/14; (g) 165/15; (h) 165/16; (i) 165/17; (j) 165/18; (k) 165/19; (l) 165/20; (m) 165/21; (n) 165/22.

Fig. 9. (Colour online) Acritarchs (large). (a, b) Chuaria sp. (c) Large leiosphaerid encrusted with pyrite frambooids. (d) Cell aggregate mass. (e–h) Large, densely packed cell aggregates. (j–l) Compact, regular spheroid clusters assigned to Symplassosphaeridium. (m, n) Irregular aggregates of loosely-bound spheroids assigned to Synsphaeridium. Scale bars represent 200 μm (a–i); 100 μm (j–n). (a, b, j) 72.20 m M52-Hail-04-004 core; (c–h) 72.70 m M52-Hail-04-004 core; (j–n) 7.53 m Saarijärvi M52/3533/84/313 core. All specimen numbers have the prefix PMU 38: (a) 158/7; (b) 157/8; (c) 159/7; (d) 161/13; (e) 156/4; (f) 156/5; (g) 160/9; (h) 160/10; (i) 162/9; (j) 165/1; (k) 165/2; (l) 165/3; (m) 165/4; (n) 165/5.
features with the extant cyanobacteria Oscillatoria, Calothrix and Lyngbya; for example, lengths of Rugosoopsis are divided into a trichome and tend to break around shrivelled portions which potentially represent necridia – features associated with oscillatoriacean cyanobacteria (Lamont, 1969; Spezielle & Dyck, 1992; Butterfield et al. 1994; Samuelsson & Butterfield, 2001). The cells of the trichome in Palaeoelyngbya also occur as a series of stacked discs, and exhibit features resembling hormocyte cells (compare Fig. 5ac with fig. 2D of Curren & Leong, 2018) as in extant Oscillatoria and Lyngbya (Shukovsky & Halén, 1976; Horodytskyy, 1977; Nagarkar, 2002; Rani et al. 2016). Cyanobacterial mats would support a shallow-water depositional environment for the sequences at Hailuoto/Saarijärvi (Tyyni & Donner, 1980; Kohonen & Rämö, 2005), although even within the photic zone such mats are likely to include a variety of other microbes (Grazhdankin & Gerdes, 2007; Davies et al. 2016). Other probable benthic elements among the Hailuoto/Saarijärvi assemblages include a subset of the larger vesicular acritarchs (sensu Butterfield 2005, 2007; Knoll et al. 2006), and donut-shaped rings of Siphonophycus that probably grew as spherical nostocalean-like cyanobacterial colonies on late Ediacaran seafloors (see extant Nostoc; Mollenhauer et al. 1999). Larger versions of these colonies may be responsible for Ediacaran macrofossils such as Beltanelliformis (Steiner & Retner, 2001; Bobrovskiy et al. 2018b), or even certain Aspidella and torus-shaped structures on the surface of Ediacaran microbial mats (e.g. Dzaugis et al. 2018).

5.b. Ediacaran microbial mats and bilaterians

Trace fossil assemblages in terminal Ediacaran (c. 555–541 Ma) sediments (globally) contain burrows that appear to have been produced by animals with a coelom/hydrostatic internal cavity and an anterior concentration of sensory systems (Budd & Jensen, 2000), meaning that at least stem-grade bilaterians were present in benthic communities by this time (e.g. Jensen et al. 2000, 2006; Jensen, 2003; Narbonne, 2005; Chen et al. 2013; Schibbauer et al. 2016; Herringshaw et al. 2017; Laing et al. 2019; Davies et al. 2020). The cuticular fragments recovered at Hailuoto (Fig. 3) demonstrate that body-fossil remains of such bilaterian-grade animals are preserved not only in the Phanerozoic but also in the Ediacaran SCF record. This raises the significance of these otherwise predominantly prokaryotic microbial mat-type fossil assemblages; given the central importance of bilaterians in shaping the nature of the Phanerozoic biosphere, the environment(s) and ecological backdrop of early bilaterian evolution are of intense palaeobiological interest (Budd & Jensen, 2017).

A variety of macroscopic surface textures on Ediacaran bedding planes have been attributed to microbial mats, often termed microbially induced sedimentary structures or ‘MISS’ (see a review of such structures in Davies et al. 2016). Microbial mats have also been widely invoked in the preservation of Ediacaran mouldiform macrofossils (e.g. Gehling, 1999; Gehling & Droser, 2009; but see Bobrovskiy et al. 2019 for an alternative view). In the latter part of the Ediacaran, bedding planes exhibiting MISS are frequently associated with simple horizontal burrows (e.g. Chen et al. 2013). This association has led to the hypothesis that Ediacaran bilaterians exploited such matgrounds as sources of nutrient concentration (Stanley, 1973; Selacher 1999; Jensen et al. 2005; Selacher et al. 2005; Buatois et al. 2011; Girngas et al. 2011; Meyer et al. 2014; Evans et al. 2019; Ivantsov et al. 2019b), or as oxygen-rich microenvironments if photosynthetic (Canfield & Des Marais, 1993;McIlroy & Logan 1999; Girngas et al. 2011; Ding et al. 2019). Current accounts of Ediacaran matground habitats are almost entirely based on records from MISS, cast-and-mould fossils and trace fossils. Steiner & Retner (2001) reported carbonaceous compressions of macroscopic Ediacaran taxa from the White Sea region; associated with these fossils were bedding-plane visible ‘elephant skin’ and wrinkle structures attributed to microbial mat imparted textures. Acid treatment was shown to produce Siphonophycus and other filamentous sheaths comparable to those recovered from Hailuoto and Saarijärvi (compare Figs 6–7 with fig. 6 of Steiner & Retner, 2001), including pyritized sheaths similar to those reported here (see fig. 7 of Steiner & Retner, 2001). Our data from the late Ediacaran of Finland demonstrate that such preservation is widespread, critical in the absence of carbonaceous macrofossil preservation. In this light, SCF-style processing and investigation of late Ediacaran sedimentary structures can be viewed as a largely untapped taphonomic window, offering new insights into the critical change from matground to mixedground seafloor environments as the Proterozoic gave way to the Phanerozoic.

6. Conclusions

Late Ediacaran sedimentary rocks from subsurface deposits in central Finland contain well-preserved carbonaceous microfossils, including an abundance of filamentous prokaryotes (probable cyanobacteria), a variety of acritarchs, and significantly, fragments of metazoan cuticle derived from bilaterians. Based on the composition of the recovered fossil assemblage, we revise previous interpretations of an early- to mid-Ediacaran age to a late Ediacaran age for the upper part of the Hailuoto Formation.

Acknowledgements. SW and BJS acknowledge joint first authorship of this paper. We thank Marko Pronti for help in collection of samples and logistical work at the Finnish national drillcore archive in Loppi, and Jussi Pokki (Geological Survey of Finland) for helpful advice. Insightful comments by Heda Agić (University of California, Santa Barbara) and an anonymous reviewer improved the manuscript. BJS acknowledges the support of Swedish Research Council (VR) grant 2020-03314.

References

Anderson RP, McMahon S, Macdonald FA, Jones DS and Briggs DEG (2018). Palaeobiology of latest Ediacaran phosphorites from the upper Khesen Formation, Khuusugul Group, northern Mongolia. Journal of Systematic Palaeontology 17, 501–32.

Arvesstål EHM and Willman S (2020) Organic-walled microfossils in the Ediacaran of Estonia: biodiversity on the East European platform. Precambrian Research 341, 1–27.

Bernard C and Fenchel T (1995) Mats of colourless sulphur bacteria. II. Structure, composition of biota and successional patterns. Marine Ecology Progress Series 128, 171–9.

Bobrovskiy I, Hope JM, Ivantsov A, Nettersheim BJ, Hallmann C and Brocks JJ (2018a) Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals. Science 361, 1246–9.

Bobrovskiy I, Hope JM, Krasnova A, Ivantsov A and Brocks JJ (2018b) Molecular fossils from organically preserved Ediacara biota reveal cyanobacterial origin for Beltanelliformis. Nature Ecology & Evolution 2, 437–40.

Bobrovskiy I, Krasnova A, Ivantsov A, Luzhnaya E and Brocks JJ (2019) Simple sediment rheology explains the Ediacara biota preservation. Nature Ecology & Evolution 3, 582–9.

Bogdanova SV, Bingen B, Gorbatschev R, Kheraskova TN, Kozlov VI, Puchkov VN and Volozh YA (2008) The East European Craton (Baltica) before and during the assembly of Rodinia. Precambrian Research 160, 23–45.

Buatois LA, Mángano MG, Noftke N and Chafetz H (2011) The trace-fossil record of organism-matground interactions in space and time. In Microbial...
Mats in Siliciclastic Sediments. (eds N Norfield and H Chafet), pp. 15–28. SEPIM Special Publication 101.

Buatois LA, Narbonne GM, Mángano MG, Carmona NB and Myrow P (2014) Ediacaran matground ecology persisted into the earliest Cambrian. Nature Communications 5, 3544.

Butterfield NJ (2015) Early animal evolution and the origins of nervous systems. Philosophical Transactions of the Royal Society B: Biological Sciences 370, 20150037.

Butterfield NJ and Jensen S (2000) A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews 75, 253–95.

Butterfield NJ and Jensen S (2017) The origin of the animals and a ‘Savannah’ hypothesis for earlier bilaterian evolution. Biological Reviews 92, 446–73.

Butterfield NJ and Chandler FW (2015b) Proterozoic photosynthesis. Butterfield NJ (2015a) The Neoproterozoic. Current Biology 25, 859–63.

Butterfield NJ (2015b) Proterozoic photosynthesis – a critical review. Palaeontology 58, 953–72.

Butterfield NJ and Chandler FW (1992) Palaeoenvironmental distribution of Proterozoic microfossils, with an example from the Aggu Bay Formation, Baffin Island. Palaeontology 35, 943–57.

Butterfield NJ and Harvey THP (2012) Small carbonaceous fossils (SCFs): a new measure of early Palaeozoic paleobiology. Geology 40, 71–4.

Butterfield NJ, Knoll AH and Swett K (1994) Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils & Strata 27, 1–84.

Butterfield NJ and Rainbird RH (1998) Diverse organic-walled fossils, including “possible dinoflagellates”, from the early Neoproterozoic. Geology 26, 963–6.

Canfield DE and Des Marais DJ (1993) Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Geochimica Cosmochimica Acta 57, 3971–84.

Chen Z, Zhou C, Meyer M, Xiang K, Schiffbauer JD, Yuan X and Xiao S (2019) Death march of a segmented and trilobate bilaterian elucidates early animal evolution. Nature 573, 412–15.

Curren E and Leong SCY (2014) Lyngbya regalis sp. nov. (Oscillatoriales, Cyanophyceae), a new tropical marine cyanobacterium. Phytotaxa 367, 120–32.

Davies NS, Liu AG, Gibling MR and Miller RF (2016) Resolving MIS conceptions and misconceptions: a geological approach to sedimentary surface textures generated by microbial and abiotic processes. Earth-Science Reviews 154, 210–46.

Davies NS, Shillito AP, Slater BJ, Liu AG and McMahon WJ (2020) Evolutionary synchrony of Earth’s biosphere and sedimentary-stratigraphic record. Earth-Science Reviews 201, 102979.

Ding W, Dong L, Sun Y, Ma H, Xu Y, Yang R, Peng Y, Zhou C and Shen B (2019) Early animal evolution and highly oxygenated seafloor niches hosted by microbial mats. Scientific Reports 9, 1–11.

Dong XP, Cunningham JA, Bengston S, Thomas CW, Liu J, Stampamoni M and Donoghue PCJ (2013) Embryos, polypl vs medusae of the Early Cambrian scyphozoan Oliviourae. Proceedings of the Royal Society B 280, 20131747.

Dotzler N, Taylor TN and Kring M (2007) A prasinophycean alga of the genus Cymatosphaera in the Early Devonian Rhynie chert. Review of Palaeobotany and Palynology 147, 106–11.

Dvorek P, Casamattha DA, Pouliková A, Hasič P, Ondřej V and Sanges R (2014) Synychococcus: 3 billion years of global dominance. Molecular Ecology 23, 5358–51.

Dzauig PW, Evans SD, Droser ML, Gehling JG and Hughes IV (2018) Stuck in the mat: Obamas coronatus, a new benthic organism from the Ediacara Member, Ravensley Quartzite, South Australia. Australian Journal of Earth Sciences 1–7; doi: 10.1080/08120099.2018.1479306.

Eisenack A (1965) Die Mikrofauna der Osteekalkere. 1. Chitinozoen. Hystrixchopprodukt. Neues Jahrhundert fuer Geologie und Palaeontologie, Abhandlungen 123, 149–59.

Evans SD, Gehling JD and Droser ML (2019) Slime travelers: early evidence of animal mobility and feeding in an organic mat world. Geobiology 17, 490–509.

Evitt WR (1963) A discussion and proposals concerning fossil dinoflagellates, hystrixchopaddes, and acritarchs, I. Proceedings of the National Academy of Sciences 49, 158–64.

Gehling JG (1999) Microbial mats in terminal Proterozoic siliciclastics; Ediacaran death masks. Palaeontology 14, 40–57.

Gehling JG and Droser ML (2009) Textured organic surfaces associated with the Ediacara biota in South Australia. Earth-Science Reviews 96, 196–206.

Gingras M, Hagadorn JW, Seilacher A, Lalonde SV, Pecoits E, Petrasch D and Konhauser KO (2011) Possible evolution of mobile animals in association with microbial mats. Nature Geoscience 4, 372–5.

Grant SWF (1990) Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. American Journal of Science 290, 261–94.

Grazhdanin D and Gerdes G (2007) Ediacaran microbial colonies. Lethaia 40, 201–10.

Grazhdanin DV, Marusin VV, Meert J, Krupenin MT and Maslov AV (2011) Kotlin regional stage in the South Urals. Doklady Earth Sciences 440, 1222–6.

Grotzinger J, Adams EW and Schroder S (2005) Probable Proterozoic fungi. Microbiology 201, 1–11.

Guilbaud R, Slater BJ, Poulton SW, Harvey THP, Brocks JJ, Nettersheim BJ and Butterfield NJ (2018) Oxygen minimum zones in the early Cambrian ocean. Geochemoical Perspectives Letters 6, 33–8.

Guiry MD and Guiry GM (2008) Nostoc. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway.

Hermann, TN (1974) Findings of mass accumulations of trichomes in the Riphean. In Microfossils of Proterozoic and Early Paleozoic of the USSR (ed. BV Timofeev), pp. 6–10. Leningrad: Nauka.

Herringshaw LG, Callow RH and McIvoy D (2017) Engineering the Cambrian explosion: the earliest bioturbators as ecosystem engineers. In Earth System Evolution and Early Life: A Celebration of the Work of Martin Brasier (eds AT Brasier, D McIvoy and N McLaughlin), pp. 369–82. Geological Society of London, Special Publication no. 448.

Hofmann HJ and Jackson GD (1994) Shale-Facies Microfossils from the Proterozoic Blyot Supergroup, Baffin Island, Canada. Washington, DC: The Paleontological Society, Memoir 37.

Horodycki RJ (1977) Lyngbya mats at Laguna Mormona, Baja California, México; comparison with Proterozoic stromatolites. Journal of Sedimentary Research 47, 1305–20.

Hyppä J and Pekkala Y (1987) Tatkinmostyj selostos Taivalkosken kannassa valunasalusseljä Suurjaarya 1-3 (kuv. rek. nro 31561/1-3) suoritetuista saaritutkimuksista. Report M 03/5533/871189. Espoo: Geological Survey of Finland.

Ivanovs AY, Nagovitsyn A and Zakreviskaya M (2019b) Traces of locomotion of Ediacaran macroorganisms. Geosciences 9, 1–11.

Ivanovs AY, Zakreviskaya MA and Nagovitsin AL (2019a) Morphology of integuments of the Precambrian animals, Proarticulata. Invertebrate Zoology 16, 19–26.

Jankaukas TV (1979) Srednerifesyeki microbiota Yuzhnoho Urala i Bashkirsksogo Priural’ya [Middle Riphean microbiota of the southern Urals and the Ural region in Bashkoria]. Akademi Nauk SSSR, Doklady 248, 190–3 (in Russian).

Jankaukas TV, Mikhailova NS and Hermann TN (1989) Mikrofossili Dokembriska SSSR [Precambrian Microfossils of the USSR]. Leningrad: Nauka, 190 pp. (in Russian).

Jannasch HW, Nelson DC and Wirszen CO (1989) Massive natural occurrence of unusually large bacteria (Reggiatia sp.) at a hydrothermal deep-sea vent site. Nature 342, 834–6.

Javaux EJ and Knoll AH (2017) Micropaleontology of the lower Mesoproterozoic Rosper Group, Australia, and implications for early eukaryotic evolution. Journal of Palaeontology 91, 199–229.
Lorom and Moczydlowska (2018) Torian (Neoproterozoic) eukaryotic and prokaryotic organic-walled microfossils from the upper Visingö Group, Sweden. Palynology 42, 220–54.
Lorom CC, Rainbird RH, Turner EC, Greenman JW and Javas EJ (2019) Organic-walled microfossils from the late Mesoproterozoic to early Neoproterozoic lower Shaler Supergroup (Arctic Canada): diversity and biostratigraphic significance. Precambrian Research 321, 349–74.
Luukas J, Kousa J, Nironen M and Vuollo J (2017) Major stratigraphic units in the bedrock of Finland, and an approach to tectonostratigraphic division. Geological Survey of Finland Special Papers 60, 9–40.
Marlețas F, Peijnenburg BT, Goto T, Satoh N and Rokhsar DS (2019) A new spiralian phylogeny places the enigmatic arrow worms among gnathiferans. Current Biology 29, 312–8.
Marti Mus M (2014) Interpreting ‘shelly’ fossils preserved as organic films: the case of hyoliths. Lithua 47, 397–404.
Martin MW, Grazhdankin DV, Bowring SA, Evans FAD, Fedonkin MA and Kirschvink J (2000) Age of Neoproterozoic bilateral body and trace fossils, White Sea, Russia: implications for metazoan evolution. Science 288, 841–5.
McIvor D and Logan GA (1999) The impact of bioturbation on infaunal ecology and evolution during the Protorezozo-Cambrian transition. Palaeontology 42, 58–72.
Meidla T (2017) Ediacaran and Cambrian stratigraphy in Estonia: an updated review. Estonian Journal of Earth Sciences 66, 152–60.
Mendoza-Beccerril MA, Maronna MM, Pacheco ML, Simões MG, Leme JM, Miranda LS, Morandini AC and Marques AC (2016) An evolutionary comparative analysis of the medusozoan (Cnidaria) exoskeleton. Zoological Journal of the Linnean Society 178, 206–25.
Mens K and Pirrus E (1997) Cambrian. In Geology and Mineral Resources of Estonia (eds A Raukas and A Teeduse), pp. 39–51. Tallinn: Estonian Academy of Sciences.
Meyer M, Xiao S, Gill BC, Schiffbauer JD, Chen Z, Zhou C and Yuan X (2014) Interactions between Ediacaran animals and microbial mats: insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China. Palaeogeography, Palaeoclimatology, Palaeoecology 396, 62–74.
Moczydlowska M (2005) Taxonomic review of some Ediacaran acritarchs from the Siberian Platform. Precambrian Research 136, 283–307.
Moczydlowska M (2008) The Ediacaran microbiota and the survival of Snowball Earth conditions. Precambrian Research 167, 1–15.
Moczydlowska M, Pease V, Willman S, Wickström L and Agić H (2017) A Torian age for the Visingö Group in Sweden constrained by detrital zircon dating and biochronology: implications for evolutionary events. Geological Magazine 155, 1175–89.
Mollenhauer D, Bengtsson R and Lindström EA (2019) Macroscopic cyanobacteria of the genus Nostoc: a neglected and endangered constituent of European inland aquatic biodiversity. European Journal of Phycolology 34, 349–60.
Mogerkar (2002) Morphology and ecology of new records of cyanobacteria belonging to the genus Oscillatoria from Hong Kong rocky shores. Botanica Marina 45, 274–83.
Narbonne GM (2005) The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences 33, 421–42.
Nielsen AT and Schovsbo NH (2011) The Lower Cambrian of Scandinavia: depositional environment, sequence stratigraphy and palaeogeography. Earth-Science Reviews 107, 207–310.
Öhman T and Preeden U (2013) Shock metamorphic features in quartz grains from the Saarjärvi and Söderfjärden impact structures, Finland. Meteoritics and Planetary Science 48, 955–75.
Puumaläki S and Kuvimäki A (2006) Depositional history and tectonic regimes within and in the margins of the Fennoscandian Shield during the last 1300 million years. Posiva Working Report 2006-43, 128 pp.
Penny AM, Wood R, Curtis A, Bowyer F, Tostevin R and Hoffman KH (2014) Ediacaran metazoan reefs from the Nama Group, Namibia. Science 344, 1504–6.
Late Ediacaran microfossils from Finland

Pjatiltev VG (1988) Mikrofitofossili Pozdnogo Dokembrija Uchuro-Maiskogo Raiona (late Precambrian microphytofossils from the Uchur-Maya region). In Pozdnii Dokembrii I Runnii Paleozoii Sibiri Riife I Vend (eds VV Khoementovskiy and VY Shnifil'), pp. 47–104. Novosibirsk: Institut Geologii I Geokhimii Akademiya Nauk SSSR, Sibirskoe Otdelenie.

Porter SM and Riedman LA (2016) Systematics of organic-walled microfossils from the ca. 780–780 Ma Chuar Group, Grand Canyon, Arizona. Journal of Paleontology 90, 815–53.

Puura V, Amantov A, Tikhomirov S and Laitakari I (1996) Latest events affecting the Precambrian basement, Gulf of Finland and surrounding areas. Geological Survey of Finland, Special Paper 21, 115–25.

Rani VU, Perumal UE and Palanivel S (2016) Morphology and taxonomy of Oscillatoria princeps Vaucher ex gomont (oscillatoriaceae, oscillatoriaceae). Indian Journal of Education and Information Management 5, 1–5.

Riedman LA and Porter S (2016) Organic-walled microfossils of the mid-Neoproterozoic Alinya Formation, Officer Basin, Australia. Journal of Paleontology 90, 854–87.

Riedman LA, Porter SM, Halverson GP, Hurtgen MT and Junium CK (2016) Organic-walled microfossil assemblages from glacial and interglacial Neoproterozoic units of Australia and Svalbard. Geology 42, 1011–14.

Rieger GE and Rieger RM (1977) Comparative fine structure study of the cellular differentiation of terminal cells (SCFs) from the Terreneuvian (lower Cambrian) of Baltica. Palaeontology 20, 323–56.

Ranina VU, Perumal UE and Palanivel S (2016) Occurrence of helically coiled microfossil of Oscillatoria princeps in the Kurnool Group and its significance. Journal of Paleontology 90, 854–87.

Ramiikovskiy ES and Haflen LN (2005) Cellular differentiation of terminal regions of trichomes of oscillatoria princeps (cyanophyceae) 1. Journal of Phycology 41, 336–42.

Ratna PG, Motomiya Y, Kusumoto K and Akita H (2015) Systematics of organic-walled microfossils from the ca. 780–780 Ma Chuar Group, Grand Canyon, Arizona. Journal of Paleontology 90, 815–53.

Slater BJ and Willman S (2019) Early Cambrian small carbonaceous fossils (SCFs) from an impact crater in western Finland. Lethaia 52, 570–82.

Slater BJ, Willman S, Budd GE and Ped JS (2018) Widespread preservation of small carbonaceous fossils (SCFs) in the early Cambrian of North Greenland. Geology 46, 107–10.

Smith MR, Harvey TPH and Butterfield NJ (2015) The macro- and microfossil record of the Cambrian priapulid Ottoia. Palaeontology 58, 705–21.

Solisimaa LM (2008) Hailauloan ja Muhoksen muodostumien sedimentologista ja stratigrafista [On the sedimentology and stratigraphy of the Hailaulo and Muhos Formations]. Master’s thesis. University of Turku, Finland, 106 pp. (in Finnish).

Speziale BJ and Dyck LA (1992) Lyngbya infestations: comparative taxonomy of Lyngbya wolfei comb. nov. (cyanobacteria) 1. Journal of Phycology 28, 693–706.

Stanley SM (1973) An ecological theory for the sudden origin of multicellular life in the late Precambrian. Proceedings of the National Academy of Sciences 70, 1486–9.

Steiner M and Retiner J (2001) Evidence of organic structures in Ediacara-type fossils and associated microbial mats. Geology 29, 1119–22.

Tang Q, Peng K, Yuan X and Xiao S (2017) Electron microscopy reveals evidence for simple multicellularity in the Proterozoic fossil Chuaria. Geology 45, 75–8.

Tarhan LG, Dresler MR, Gehling JG and Dzaugis MP (2017) Microbial mat sandwiches and other anachronistic sedimentary features of the Ediacara Member (Rawsley Quarztite, South Australia): implications for interpretation of the Ediacaran sedimentary record. Palaeontology 60, 181–94.

Timofeev BV (1959) The ancient flora of the Baltic region and its stratigraphic significance. Trudy VNIIGiU 129, 1–320.

Timofeev BV (1966) Mikropaleontologicheskoe Islesdovanie Drevnih Sht. [Micropaleontological Investigations of Ancient Formations]. Moscow: Akademiya Nauk SSSR, Issledatel'skoe Nauka, 147 pp.

Timofeev BV and Hermann TN (1979) Precambrian microbiota of the Lakhanda Formation. In Paleontology of the Precambrian and Early Cambrian, pp. 137–47. Leningrad: Nauka (in Russian).

Timofeev BV, Hermann TN and Mikhailova NS (1976) Microphytofossils from the Precambrian, Cambrian and Ordovician. Leningrad: Nauka, 106 pp.

Tynni R and Donner J (1980) A microfossil and sedimentation study of the Late Precambrian formation of Hailuoto, Finland. Geological Survey of Finland Bulletin 311, 1–27.

Tynni R and Donner J (1982) Validation of some late Precambrian microfossil species from the Hailuoto Formation, Finland. Journal of Paleontology 56, 754.

Tynni R and Siivola J (1966) On the Precambrian microfossil flora in the siltstone of Muos, Finland. Bulletin de la Commission Géologique de Finlande 222, 127–33.

Tynni R and Uutela A (1984) Microfossils from the Precambrian Muos formation in western Finland. Geological Survey of Finland Bulletin 300, 1–60.

Tynni R and Uutela A (1985) Myöhäisprekambriinjen ajoitus Taivalkosken savikivelle mikrofossiilien perusteella. Summary: Late Precambrian shale formation of Taivalkoski in northern Finland. Geologi 37, 61–5.

Veltheim V (1969) On the pre-Quaternary geology of the Bothnian Bay area in the Baltic Sea. Bulletin de la Commission Géologique de Finlände 239, 1–56.

Vidal G and Moczydłowska M (1992) Patterns of phytoplankton radiation across the Precambrian-Cambrian boundary. Journal of the Geological Society 149, 647–54.

Wallet E, Slater BJ, Willman S and Peel JS (2021) Small carbonaceous fossils (SCFs) from North Greenland: new light on metazoan diversity in early Cambrian shelf environments. Papers in Palaeontology 7, 1403–1433.

Wang Y, Wang Y and Du W (2017) A rare disc-like holofossil of the Ediacaran macrofauna from South China. Journal of Paleontology 91, 1091–1101.

Warren LV, Pacheco MLA, Fairchild TR, Simões MG, Riccomini C, Boggiani PC and Cáceres AA (2012) The dawn of animal skeletogenesis:...
Williams LA and Reimers C (1983) Role of bacterial mats in oxygen-deficient marine basins and coastal upwelling regimes. Preliminary report. Geology 11, 267–9.

Willman S, Moczydłowska M and Grey K (2006) Neoproterozoic (Ediacaran) diversification of acritarchs: a new record from the Murnaroo 1 drillcore, eastern Officer Basin, Australia. Review of Palaeobotany and Palynology 139, 17–39.

Willman S, Peel JS, Ineson JR, Schovsbo NH, Rugen EJ and Frei R (2020) Ediacaran Doushantuo-Type biota discovered in Laurentia. Communications Biology 3, 1–10. doi: 10.1038/s42003-020-01381-7

Yun Z (1981) Proterozoic stromatolite microfloras of the Gaoyuzhuang Formation (Early Sinian: Rhiphean), Hebei, China. Journal of Paleontology 55, 485–506.