Genome Sequences of Two Nondomesticated *Bacillus subtilis* Strains Able To Form Thick Biofilms on Submerged Surfaces

Pilar Sanchez-Vizuete,¹,² Kosei Tanaka,³ Arnaud Bridier,⁴ Yusuke Shirae,⁵ Ken-ichi Yoshida,⁶ Théodore Bouchez,⁴ Stéphane Aymerich,¹,² Romain Briandet,¹,² Dominique Le Coq,¹,²,⁷

INRA, UMR1319 Micalis, Jouy-en-Josas, France;² AgroParisTech, UMR Micalis, Jouy-en-Josas, France;² Organization of Advanced Science and Technology, Kobe University, Kobe, Japan;³ IRSTEA, UR HBAN, Antony, France;¹ Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan;⁵ CNRS, Jouy-en-Josas, France

P.S.-V and K.T. contributed equally to this work.

Genomes of two nondomesticated strains of *Bacillus subtilis* subspecies *subtilis*, NDmed and NDfood, have been sequenced. Both strains form very thick and spatially complex biofilms on submerged surfaces. Moreover, biofilms of the NDmed isolate were shown to be highly resistant to antimicrobials action.

Bacillus subtilis is a non-pathogenic Gram-positive bacterium largely used in biotechnological processes and academic research. Although this bacterium is mainly found in the soil, several strains have recently been isolated from other environments (1–6). *B. subtilis* is able to form structured biofilms in which cells are embedded in a self-produced matrix of polymers. For studying biofilm properties and the associated genetic regulation, most researchers have used the “less domesticated” strain NCIB3610 instead of the reference strain 168, which is defective for determinants involved in multicellular behavior (7). Here we present the genome sequences of two *B. subtilis* natural isolates. The first strain, NDmed, was isolated from an endoscope washer disinfectant in a hospital in England (8). The second strain, NDfood, was isolated from a dairy product in France (9). Both strains are able to form spatially organized biofilms with protruding structures on submerged surfaces as well as wrinkled macrocolonies and robust pellicles (9). In addition, submerged biofilms of NDmed exhibited high resistance to antimicrobials and the ability to protect pathogens (10).

Genome sequencing of *B. subtilis* NDmed and NDfood strains was performed using Illumina MiSeq technology. A total of 4,595,294 and 3,622,152 reads were obtained for NDmed and NDfood, respectively. The raw sequences generated were mapped to the reference strain 168 genome (11) and using the CLC NGS assembler, the reads were assembled into 10 contigs for NDmed (ranging from 4.9 kb to 1.2 Mb) and 12 contigs for NDfood (ranging from 1.4 kb to 1.1 Mb), with an average coverage of 271-fold and 214-fold, respectively. For both strains the total size of the assembly was around 4.06 Mb and the G+C content about 43.7%.

Comparison of NDmed and NDfood sequences to the genome shotgun projects have been deposited at DDBJ/EMBL/GenBank under the accession numbers JPVW00000000 for *B. subtilis* NDmed and JPVX00000000 for *B. subtilis* NDfood. The versions described in this paper are the first versions, JPVW01000000 and JPVX01000000.

Nucleotide sequence accession numbers. These two whole-genome shotgun projects have been deposited at DDBJ/EMBL/GenBank under the accession numbers JPVW00000000 for *B. subtilis* NDmed and JPVX00000000 for *B. subtilis* NDfood. The versions described in this paper are the first versions, JPVW01000000 and JPVX01000000.

ACKNOWLEDGMENTS

We thank C. Neuvéglise for helpful advices and fruitful discussions.

P. Sanchez-Vizuete is the recipient of a Ph.D. grant from the Région Ile-de-France (DIM ASTREA). This work was supported by Special Coordination Funds for Creation of Innovative Centers for Advanced Interdisciplinary Research Areas from JST, MEXT (Japan), and by INRA funding (France).
REFERENCES

1. Schyns G, Serra CR, Lapointe T, Pereira-Leal JB, Potot S, Fickers P, Perkins JB, Wyss M, Henriques AO. 2013. Genome of a gut strain of Bacillus subtilis. Genome Announc. 1(1):e00184-12. http://dx.doi.org/10.1128/genomeA.00184-12.

2. Matulová M, Husárová S, Capek P, Sancelme M, Delort A-M. 2011. NMR structural study of fructans produced by Bacillus sp. 3B6, bacterium isolated in cloud water. Carbohydr. Res. 346:501–507. http://dx.doi.org/10.1016/j.carres.2010.12.012.

3. Karlyshev AV, Melnikov VG, Chikindas ML. 2014. Draft genome sequence of Bacillus subtilis strain KATMIRA1933. Genome Announc. 2(3):e00619-14. http://dx.doi.org/10.1128/genomeA.00619-14.

4. Earl AM, Eppinger M, Fricke WF, Rosovitz MJ, Rasko DA, Daugherty S, Losick R, Kolter R, Ravel J. 2012. Whole-genome sequences of Bacillus subtilis and close relatives. J. Bacteriol. 194:2378–2379. http://dx.doi.org/10.1128/JB.05675-11.

5. Durrett R, Mandic-Mulec I, Narechania A, Miras M, Mirouze N, Durrett R, Briandet R. 2011. The spatial architecture of Bacillus subtilis biofilms of a gut strain of Bacillus subtilis. Genome Announc. 1(3):e00619-14. http://dx.doi.org/10.1128/genomeA.00619-14.

6. Chen Y, Yan F, Chai Y, Liu H, Kolter R, Guo JH. 2013. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ. Microbiol. 15:848–864. http://dx.doi.org/10.1111/j.1462-2920.2012.02860.x.

7. McLoon AL, Guttenplan SB, Kearns DB, Kolter R, Losick R. 2011. Tracing the domestication of a biofilm-forming bacterium. J. Bacteriol. 193:2027–2034. http://dx.doi.org/10.1128/JB.00542-10.

8. Martin DJH, McNeely SP, McDonnell G, Maillard J-Y. 2008. Resistance and cross-resistance to oxidising agents of bacterial isolates from endo-scope washer disinfectors. J. Hosp. Infect. 69:377–383. http://dx.doi.org/10.1016/j.jhin.2008.04.010.

9. Bridier A, Le Coq D, Dubois-Brissonnet F, Thomas V, Aymerich S, Briandet R. 2011. The spatial architecture of Bacillus subtilis biofilms deciphered using a surface-associated model and in situ imaging. PLoS One 6:e16177. http://dx.doi.org/10.1371/journal.pone.0016177.

10. Bridier A, Sanchez-Vizuete MdElP, Le Coq D, Aymerich S, Meyheuc T, Maillard JY, Thomas V, Dubois-Brissonnet F, Briandet R. 2012. Biofilms of a Bacillus subtilis Hospital Isolate Protect Staphylococcus aureus from biocide Action. PLoS One 7:e44506. http://dx.doi.org/10.1371/journal.pone.0044506.

11. Kunst F, Ogasawara N, Moser I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessières P, Bolotin A, Borchert S, Borriss R, Bouris L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Cavuozzo V, Carter NM, Choi SK, Cordani JJ, Connerton IF, Cummings NJ, Daniel RA, Denziot F, Devine KM, Desserthof A, Ehrlich SD, Emmerson PT, Entian KD, Errington J, Fabret C, Ferrari E, Foulger D, Fritz C, Fujita M, Fujita Y, Fuma S, Galizzi A, Galleron N, Ghim SY, Glaser P, Goffeau A, Golightly EJ, Grandi G, Guiseppi G, Gyl BI, Haga K, Haiche J, Harwood CR, Henaut A, Hilbert H, Holzappel S, Hosono S, Hullo MF, Itaya M, Jones L, Joris B, Karamata D, Kasahara Y, Klaerr-Blanchard M, Klein C, Kobayashi Y, Koetter P, Koningstein G, Krogh S, Kumano M, Kurita K, Lapidus A, Lardinois S, Lauber J, Lazarevic V, Lee SM, Levine A, Liu H, Masuda S, Mauel C, Médigue C, Médina N, Mellado RP, Mizuno M, Moestl D, Nakai S, Noback M, Noone D, O’Reilly M, Ogawa K, Ogigawa A, Ouenda B, Park SH, Parro V, Pohl TM, Portelle D, Porwollik S, Prescott AM, Presesan P, Pujic P, Purnelle B, Rapoport G, Rey M, Reynolds S, Rieger M, Rivolta C, Rocha E, Roche B, Rose M, Sadaie Y, Sato T, Scanlan E, Schleier S, Schroeter R, Scopfne F, Sekiguchi J, Sekowska A, Seror SJ, Seror P, Shin BS, Soldo B, Sorokin A, Taconi F, Takagi T, Takahashi H, Takemaru K, Takeuchi M, Tamakoshi A, Tanaka T, Terpstra P, Togoni A, Tosato V, Uchiyama S, Vandevel M, Vanner F, Vassarotti A, Viani A, Wambutt R, Wedler H, Wittenzegger T, Winters P, Wipat A, Yamamoto H, Yamane K, Yasumoto K, Yata K, Yoshida K, Yoshikawa HF, Zumstein E, Yoshikawa H, Danis A. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256. http://dx.doi.org/10.1038/36786.

12. Deng Y, Zhu Y, Wang P, Zhu L, Zheng J, Li R, Ruan L, Peng D, Sun M. 2011. Complete genome sequence of Bacillus subtilis BSN5, an endophytic bacterium of Amorphophallus konjac with antimicrobial activity for the plant pathogen Erwinia carotovora subsp. carotovora. J. Bacteriol. 193:2070–2071. http://dx.doi.org/10.1128/JB.00129-11.

13. Konkol MA, Blair KM, Kearns DB. 2013. Plasmid-encoded ComI inhibits its competence in the ancestral 3610 strain of Bacillus subtilis. J. Bacteriol. 195:4085–4093. http://dx.doi.org/10.1128/JB.00696-13.