Dispersion and colonization by fungus-growing termites
Vertical transmission of the symbiont helps, but then…?

Tânia Nobre* and Durr K. Aanen
Laboratory of Genetics; Wageningen University and Research Center; Wageningen, The Netherlands

The fungus-growing termites (Macrotermitinae) have developed an obligate mutualistic symbiosis with fungi (Termitomyces) and, in most cases, the symbiotic partner is collected from the environment upon establishment of a new colony (horizontal transmission). The requirement that partners are able to find and recognize each other after independent reproduction is likely to severely constrain long-distance dispersal. In support of this hypothesis, we have recently shown that a single colonisation of Madagascar by fungus-growing termites has occurred. The successful colonizers belong to the genus Microtermes, known to inherit their symbiont from the parental colony (vertical transmission). However, the fungal symbionts of Madagascar were not monophyletic, as expected under strict vertical transmission. Here we further discuss these findings, and we suggest further bottlenecks to dispersion and propose a transient window for horizontal transmission for the otherwise vertically transmitted Termitomyces strains.

In most species, the primordial fungus comb (during colony foundation) is inoculated with basidiospores of the right species of fungus, collected by the first foraging workers along with the first forage brought into the nest from the outside environment. This transmission mode—horizontal transmission—has been demonstrated for species of the genera Ancistrotermes, Macrotermes, Pseudacanthotermes and Odontotermes® and is likely to represent the ancestral symbiont transmission mode. The Termitomyces symbionts of these macrotermite genera regularly produce fruiting bodies, so that spores are readily available in the environment. A consequence of this independent partner reproduction is that, at each generation, new combinations of termite and fungal lineages arise® and obviously this requires that partners are able to find and recognize each other after independent reproduction.

Fungus-growing termites occur throughout the Old-World tropics, but originated in the African rainforest. Most of the diversity occurs in Africa, with all genera being present (except for Hypotermes), while only four genera are found in Asia. We have recently shown that a single colonisation has occurred to Madagascar, of termites belonging to the genus Microtermes. The species within this genus are believed to belong to one of the only two derived lineages of the Macrotermitinae that have independently evolved vertical transmission of Termitomyces®, i.e., where symbionts are inherited from a parental colony and used to inoculate the fungus comb of the newly founded colonies. This vertical

Key words: vertical transmission, symbiont transmission mode, long-distance dispersal, mutualism, microtermes, termitomyces

Submitted: 02/05/10
Accepted: 02/05/10
Previously published online: www.landesbioscience.com/journals/cib/article/11415

*Correspondence to: Tânia Nobre; Email: tania.mesquitanobre@wur.nl
transmission mode has been found in all five studied Microtermes species, where it is uniparental via the female, and in a single species of the genus Macrotermes, *M. bellicosus*, where it is also uniparental but via the reproductive male. The recent results obtained for the colonisation of Madagascar by fungus-growing termites are compatible with the hypothesis that vertical transmission provides an advantage for long-distance colonisation. By travelling together, the risk of failure in establishment by not finding the right partner in the new environment is minimised. However, we inferred at least three independent colonisation events of Madagascar by the fungal symbionts of the Microtermes clade from Madagascar. This was unexpected: under strict vertical transmission of fungal symbionts, host-switching would not occur. Therefore, occasional events of horizontal transmission have to be inferred to explain the phylogenetics pattern of the Malagasy fungus-growing termites (Fig. 1). Considering the symbionts’ point of view, selection favors dispersal out of the host and de novo association with new hosts, the Hamilton & May effect, which favors individuals to disperse away from close relatives and avoid competition with similar genotypes. Furthermore, at the level of the symbiotic unit, the presence of a certain level of horizontal transmission, associated with sexual reproduction is beneficial on the longer term, as there seems to be a critical level of horizontal transfers below which natural selection is unable to purge deleterious mutations, leading to an expected loss of fitness over time.

Hence, symbiont vertical transmission seems to be advantageous for long distance dispersion, but might be detrimental in the long term. How (or when) is a new symbiont strain acquired? Within a colony, crop mixing does not occur as the fungal symbionts are always reared as single-strain monocolonies regardless of the symbiont transmission mode. It has recently been shown that single-strain monocolonies of *Termitomyces* within single nests are maintained through positive frequency-dependent selection. This mechanism thus prevents subsequent occupation of the comb by other fungal strains.

However, the pattern observed on the Malagasy Microtermes implies that the first colonisers arrived to the island and established the fungus comb with inoculum brought from the mainland colony and later host-switching has occurred by horizontal transmission. A transient window for horizontal transmission can be hypothesized for the otherwise vertically transmitted *Termitomyces* strains. Considering that at the initial stages of the colony formation the symbiotic fungus biomass is still rather low, it will be possible for a new, horizontally transmitted, symbiont strain to establish itself then.

Additional support for occasional horizontal transmission events of the otherwise vertically transmitted Microtermes symbionts is that some Microtermes species share a closely related symbiont with species of the genera Ancistrotermes and *Synacanthotermes*. If we compare the number of described species in both symbiotic partners—40 in *Termitomyces* and 330 in fungus-growing termites—it seems logical to assume that many of these symbionts are shared between termite species. However, *Termitomyces* taxonomy is largely based on the morphology of sexual fruiting bodies, which are rare and possibly absent in some *Termitomyces* species, and molecular data indicate that there may also be many morphologically indistinguishable sibling species.

Therefore, a better understanding of *Termitomyces* phylogeny is needed. Additionally, closely related Microtermes symbionts have also found between geographical regions, although a higher level of differentiation seems to have been observed between African and Asiatic *Termitomyces*. It has been shown that fungal symbionts can disperse independently of their hosts, but the level of genetic homogenization that we recently reported clearly shows regular exchange of fungi between Madagascar and continental Africa.

Further research is needed on the details of symbiont transmission as the current evidence is based on only few species. In fungus-growing termites with vertical symbiont transmission, future experimental studies should focus on the details of symbiont transmission and the frequency of horizontal transmission. In
addition, the gathering of Termitomyces spores by fungus-growing termites seems to be a selective process, as suggested by the observed patterns of co-evolution.\(^{2,16,22}\) It remains to be tested how this selectivity occurs.

Acknowledgements

T.N. is supported by a Marie Curie Intra European Fellowship within the 7\(^{th}\) European Community Framework Programme (IEF Project No. 220077).

References

1. Aanen DK, Eggleton P. Fungus-growing termites originated in African rain forest. Curr Biol 2005; 15:851-5.
2. Aanen DK, Eggleton P, Rouland-Lefevre C, Guldberg-Froslev T, Rosendahl S, Boomsma JJ. The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc Natl Acad Sci USA 2002; 99:14887-92.
3. Froslev TG, Aanen DK, Laessoe T, Rosendahl S. Phylogenetic relationships of Termitomyces and related taxa. Mycol Res 2003; 107:1277-86.
4. Wood TG, Thomas RJ. The mutualistic association between Macrotermiteinae and Termitomyces. In: Wilding N, Collins SM, Hammond PM, Webber FP, eds. Insect–Fungus Interactions. London: Academic Press 1999; 69-92.
5. Darlington J. Nutrition and evolution in fungus-growing termites. In: Hunt JH, Nalepa CA, eds. Nourishment and evolution in insect societies. Boulder, CO Westview Press 1994; 105-39.
6. Grassé P-P, Noirot C. La fondation de nouvelles sociétés par Bellicositermes natalensis Hav. Insect Soc 1955; 2:213-20.
7. Johnson RA, Thomas RJ, Wood TG, Swift MJ. The inoculation of the fungus comb in newly founded colonies of some species of the Macrotermiteinae (Isoptera) from Nigeria. J Nat Hist 1981; 15:751-6.
8. Sands W. The initiation of fungus comb construction in laboratory colonies of Ancistrotermes guineensis (Silvestri). Insectes Sociaux 1960; 7:251-65.
9. Sieber R. Establishment of fungus comb in laboratory colonies of Macrotermes michaelseni and Odontotermes montanus (Isoptera, Macrotermiteinae). Insect Soc 1983; 30:204-9.
10. Korb J, Aanen DK. The evolution of uniparental transmission of fungal symbionts in fungus-growing termites (Macrotermiteinae). Behav Ecol Sociobiol 2003; 53:65-71.
11. Nobre T, Eggleton P, Aanen DK. Vertical transmission as the key to the colonization of Madagascar by fungus-growing termites? Proc Royal Soc B Biol Sci 2009; In press.
12. Johnson R. Colony development and establishment of the fungus comb in Microtermes sp. nr. usambaricus (Sjöstedt) (Isoptera: Macrotermiteinae) from Nigeria. Insect Soc 1981; 28:3-12.
13. Hamilton WD, May RM. Dispersal in stable habitats. Nature 1977; 269:578-81.
14. O’Fallon B, Hansen T. Population structure, levels of selection, and the evolution of intracellular symbionts. Evolution 2008; 62:361-73.
15. Aanen DK, de Fine Licht HH, Debets AJM, Kerstes NAG, Hoekstra RF, Boomsma JJ. High symbiont relatedness stabilizes mutuatic cooperation in fungus-growing termites. Science 2009; 326:1103-6.
16. Aanen DK, Ros V, de Fine Licht H, Mitchell J, de Beer ZW, Slippers B, et al. Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa. BMC Evol Biol 2007; 7:119.
17. De Fine Licht HH, Andersen A, Aanen DK. Termitomyces sp. associated with the termite Macrotermes natalensis has a heterothallic mating system and multinucleate cells. Mycol Res 2005; 109:341-8.
18. Karsh H, Mita T, Maekawa K, Shinzato N, Marumoto T. Genetic variation of symbiotic fungi cultivated by the macrotermite termite Odontotermes formosanus (Isoptera: Termitidae) in the Ryukyu Archipelago. Molec Ecol 2002; 11:1565-72.
19. Kirk PM, Cannon PF, David JC, Stalpers JA. Ainsworth & Bigby’s Dictionary of the Fungi Walingford UK.: CAB International 2001.
20. Eggleton P. Global patterns of termite diversity. In: Abe T, Bignell DE, Higashi M, eds. Termites: Evolution, Sociality, Symbioses, Ecology. Dordrecht: Kluwer Academic Publishers 2000; 25-51.
21. Froslev TG, Aanen DK, Laessoe T, Rosendahl S. Phylogenetic relationships of Termitomyces and related taxa. Mycol Res 2003; 107:1277-86.
22. Frøslev TG, Aanen DK, Læssøe T, Rosendahl S. Phylogenetic relationships of Termitomyces and related taxa. Mycol Res 2003; 107:1277-86.
23. Rouland-Lefevre C, Diouf MN, Brauman A, Neyra M. Phylogenetic relationships in Termitomyces (family Agaricaceae) based on the nucleotide sequence of ITS: A first approach to elucidate the evolutionary history of the symbiosis between fungus-growing termites and their fungi. Molec Phylog Evol 2002; 22:423-9.