Case Report
Gas Gangrene in Orthopaedic Patients

Zhimin Ying, Min Zhang, Shigui Yan, and Zhong Zhu

1 Department of Orthopaedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jiefang Road, Hangzhou, Zhejiang 317000, China
2 Taizhou Hospital of Zhejiang Province, The Forth Affiliated Hospital of Wenzhou Medical University, No. 150 Ximen Road, Linhai, Zhejiang 317000, China
3 Department of Orthopaedic Surgery, Taizhou Hospital of Zhejiang Province, The Forth Affiliated Hospital of Wenzhou Medical University, No. 150 Ximen Road, Linhai, Zhejiang 317000, China

Correspondence should be addressed to Zhong Zhu; zz7222@sohu.com

Received 13 August 2013; Accepted 9 September 2013

Academic Editors: I.-H. Choi, A. Ramasamy, and H. G. Said

Copyright © 2013 Zhimin Ying et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Clostridial myonecrosis is most often seen in settings of trauma, surgery, malignancy, and other underlying immunocompromised conditions. Since 1953 cases of gas gangrene have been reported in orthopaedic patients including open fractures, closed fractures, and orthopaedic surgeries. We present a case of 55-year-old obese woman who developed rapidly progressive gas gangrene in her right leg accompanied by tibial plateau fracture without skin lacerations. She was diagnosed with clostridial myonecrosis and above-the-knee amputation was carried out. This patient made full recovery within three weeks of the initial episode. We identified a total of 50 cases of gas gangrene in orthopaedic patients. Several factors, if available, were analyzed for each case: age, cause of injury, fracture location, pathogen, and outcome. Based on our case report and the literature review, emergency clinicians should be aware of this severe and potentially fatal infectious disease and should not delay treatment or prompt orthopedic surgery consultation.

1. Introduction

Emergency physicians and surgeons are confronted with patients of gas gangrene so uncommon in civilian practice that many are unfamiliar with its signs and symptoms and do not recognize its development quickly and accurately. The difficulties in diagnosis not only lie in unfamiliarity with the signs and symptoms of gas gangrene but also in the lack of differentiation between contamination and infection and to the confusion between gas gangrene and various clostridial infections and other bacterial and nonbacterial lesions simulating gas gangrene [1, 2]. Gas gangrene occurs in a variety of clinical settings that can be subdivided into three major types: posttraumatic origins, postoperative origins, and spontaneous occurrences. Clostridial myonecrosis, also known as true gas gangrene, is the most devastating kind of clostridial infection which requires aggressive, early surgical management. Its onset is insidious and subsequent progressive rapidly. Spontaneous types occurred in patients with compromised medical conditions including uncontrolled diabetes mellitus and various forms of malignancy, the more commonly reported being leukemia and breast cancer [3]. Clostridium septicum is the major cause of nontraumatic spontaneous gas gangrene in patients with immunosuppressive diseases [4].

2. Case Report

A 55-year-old obese female farmer (BMI 35) presented to the Emergency Department with a two-day history of the right leg progressing sensory deprivation and swelling. Eight days ago she had a car accident which caused her right tibial plateau fracture. Two days after her hospitalization, elective surgery for the fracture was performed at a local hospital. Afterwards, the patient felt increasing pain out of proportion to physical findings accompanied by progressive swelling, numbness, and weakness of the limb. She was unable to move her right lower extremity and had no sensation below the knee joint level. These signs were not taken seriously.
Knee joint was present. Laboratory evaluations showed that muscle compartments of the right leg reaching to the level of the leg. Extensive gas formation throughout all the knee to ankle. Roentgenograms revealed gas in the interfacial length of the limb and the skin discoloration spread from the incision (Figure 1). Subcutaneous crepitus extended along the length of the limb and the skin discoloration spread from knee to ankle. Roentgenograms revealed gas in the interfacial planes of the leg. Extensive gas formation throughout all the muscle compartments of the right leg reaching to the level of the knee joint was present. Laboratory evaluation showed that white blood cell count was \(22.2 \times 10^9/L\), hemoglobin was \(83 \text{ g/L}\), platelet count was \(183 \times 10^9/L\), a serum glucose of \(324 \text{ mg/dL}\), \(C\)-reactive protein was \(48.0 \text{ mg/dL}\), and serum creatinine was \(155 \mu\text{mol/L}\). Examination of a needle aspirated from the incision showed gram-positive bacilli.

A diagnosis of gas gangrene was made and the patient was started on broad spectrum antibiotic coverage with intravenous penicillin, clindamycin, metronidazole, and fluid resuscitation. Urgent surgery was carried out immediately. Upon incision, the musculature was found to be extensive necrotic, foul smelling, and crepitant (Figure 2). An above-the-knee amputation remained the single best life-saving treatment and was performed, followed by extensive debridement of the remaining necrotic tissue. Then she was sent to the adult intensive care unit and all the wounds were kept open postoperatively. Two days later, the patient was taken to the operating room again for wound exploration. At this time, the muscle and tissue were found to be viable without evidence of spreading infection, and the wound was closed in a standard fashion. Hemocultures both superficially and deep.

Figure 1: The limb was severe swollen and skin was brownish with bullae exuding from the incision.

Figure 2: The muscle was found to be necrotic, foul smelling, and crepitant both superficially and deep.

3. Review of Published Gas Gangrene in Orthopaedic Patients

All published, English language and full-text available, Medline-reported orthopaedic patients with gas gangrene were included in this review. Several factors, if available, were analyzed for each case: age, cause of injury, fracture location, pathogen, and clinical outcome. As seen in Table 1, we identified a total of 50 cases of gas gangrene in orthopaedic patients. Of these, 24 (48%) cases were caused by *C. perfringens*. Average age is 28.75 years old (range from 5 to 76).

In our review of published orthopaedic gas gangrene literature, we found that conditions related with gas gangrene in orthopaedic patients can be grouped into three major categories: infection with clostridial myonecrosis, nonclostridial myonecrosis, unidentified; 38 patients survived, of which 25 survived with amputation, while 12 patients died. Gas gangrene followed by simple fracture occurred in 25 patients; 3 cases presented with gas gangrene after elective orthopaedic surgery and the rest cases were resulted from compound fracture. As for fracture location, most gas gangrene cases were involved with tibia and/or fibula fracture while forearm fractures were ranked in the second place and following were femur, ankle, knee, and pelvic. Especially 5 patients developed gas gangrene with no fractures (three were elective orthopaedic surgeries, one was nail piercing, and the other one was soft tissue injury (see Table 2)).

4. Discussion

Gas gangrene is generally regarded as a disease associated with war or other mass casualty situations and is seldom a feature of normal peaceful time medical practice. The cause of gas gangrene could be grouped into following different types: clostridial myonecrosis, clostridial cellulitis, nonclostridial lesion simulation gas gangrene. Clostridial myonecrosis is the preferred term to denote the clinical syndrome of true gas gangrene [27]. More than 90% of these lesions occur in the extremities, thigh, shoulder, and so on. Clostridial cellulitis has been confused with clostridial myonecrosis by clinicians. Clostridial cellulitis has been noted to be a septic crepitant process involving epifascial, retroperitoneal, or other connective tissues, and its onset has been generally more gradual than clostridial myonecrosis. It is usually little pain, no edema, and little systemic toxicity. The wound is foul with brownish seropurulent exudates, and gas is found diffused through the tissues and bubbling up in the wound. The gas is much more evident than in clostridial...
Table 1: Gas gangrene infections in traumatic orthopaedic patients.

Source	Cause	Age	Fracture	Soft tissue	Pathogen	Outcome
Fee, 1977 [5]	Fall from a tree	8	Closed, forearm	A small laceration	Gram-positive Spore-forming rods	Lived with disarticulation
	Fall from a tree	10	Open, right forearm	Two small lacerations	Clostridium perfringens	Lived with amputation
	Fall from a tree	11	Open, right forearm	A puncture wound	Clostridium perfringens	Lived with amputation
	Fall from a roof	12	Open, right forearm	Two openings	Clostridium perfringens	Lived with preserved forearm
	Fall on the street	52	Open, left radius	A puncture wound	Gram-positive rods	Lived with amputation
Buchanan and Gordon, 1980 [6]	Fall from 5 stories	19	Compound fracture of right tibia and fibula	Contaminated with dirt, gravel	Clostridium perfringens	Lived with amputation
Fulford, 1969 [7]	Traffic accident	19	Open, right femur	Contaminated, No detail	Unknown	Lived with preserved limb
Lucas et al., 1976 [8]	Kicked on right shin in a tackle	24	Tibia and fibula	7 cm wound	Clostridium septicum	Lived with preserved limb
Woolley et al., 2004 [9]	Fall from high place	39	Open, left tibia, and fibula	Gustillo Grade III	Clostridium septicum (no gas gangrene)	Lived with preserved limb
Werry and Meek, 1986 [10]	Unknown	32	Distal radius	Abrasion of the volar wrist skin	Clostridium perfringens	Lived with amputation
Goon et al., 2005 [11]	Local accident	76	No fracture	No traumatic history	Clostridium septicum	Died
Taylor et al., 2011 [12]	High-speed motor vehicle collision	21	Closed, right femur with traction pin	Multiple organ injuries	Clostridium perfringens	Died
Mulier et al., 1993 [13]	Fall from a height of 8 feet	45	Closed, femoral fracture	Unknown	Clostridium septicum	Survived with disarticulation
Lorea et al., 2004 [14]	Muscle transfer for opponensplasty	49	No fracture	Normal muscle surgery	Clostridium perfringens, Sordellii	Survived with preserved forearm
Sevitt, 1953 [15]	Playing football	26	Closed, left ankle	Unknown	Clostridium perfringens	Survived with amputation
HILL, 1959 [16]	Fall from a gate	6	Left forearm fracture	A small wound on the forearm	Unknown	Survived with amputation
Aufranc et al., 1969 [17]	Struck by a rotating truck wheel	29	Open, right tibia	Wringter-type injury of leg.	Presence of gram-positive rods	Survived with preserved limb
Source	Cause	Age	Fracture	Soft tissue	Pathogen	Outcome
---------------------------	--	-----	---	-------------	----------------------	-----------------------
Automobile accident	13 Compound, left tibia, and fibula			Unknown	Bacilli welchii	Died
Fall from window to ground	24 Compound, left tibia			Unknown	Bacilli welchii	Survived with amputation
Automobile accident	37 Compound, left tibia, and fibula			Unknown	Bacilli welchii	Died
Hooked by a cow	6 Compound, right forearm			Unknown	Bacilli welchii	Survived with amputation
Street accident	52 Compound, left tibia, and fibula			Unknown	Positive culture, detail Unknown	Survived with amputation
Truck Accident	21 Compound, left tibia, and fibula			Unknown	Positive culture, detail Unknown	Survived with preserved limb
Motorcycle accident	18 Compound, right tibia, and fibula		Compound, upper extremity, left femur, left tibia, and fibula	Unknown	Bacilli welchii	Survived with amputation
Struck by a truck	5 Compound, both legs			Unknown	Bacilli welchii	Died
Street-car accident	13 Compound, both legs			Unknown	Bacilli welchii	Died
Knee joint fracture from gun-shot	30 Knee joint fracture			Unknown	Positive culture, detail Unknown	Survived with amputation
Auto accident	36 Compound, right tibia, and fibula			Unknown	Positive culture, detail Unknown	Survived with amputation
Falling from freight train	16 Compound, both legs			Unknown	Positive culture, detail Unknown	Survived with amputation
Motorcycle accident	40 Compound, left tibia, and fibula			Unknown	Positive culture, detail Unknown	Survived with preserved limb
Automobile accident	25 Compound, both legs			Unknown	Positive culture, detail Unknown	Died
Gun-shot	20 Compound, right ulnar, and radius			Unknown	Negative culture	Died
Source	Cause	Age	Fracture	Soft tissue	Pathogen	Outcome
------------------------------------	----------------------------	-----	---------------------------	-------------	----------------------	--------------------------------
Brume and Ijagha, 1985 [19]	Unknown	9	Closed Colles' Fracture	Unknown	Unknown	Survived with amputation
Unknown	27	Closed, medical malleolus	Unknown	Unknown	Survived with amputation	
Unknown	30	Closed, tibia and fibula	Unknown	Unknown	Died	
Unknown	14	Closed Colles' Fracture	Unknown	Unknown	Survived with amputation	
Moehring, 1988 [20]	Automobile accident	13	Right ankle region	Marked soft tissue swelling	*Clostridium perfringens*	Lived with preserved limb
Oncel and Arsoy, 2010 [21]	Nail pierced the skin of hand	16	No fracture	A small wound on the hand	Gram-positive rods	Survived with amputation
Hoffman et al., 1971 [22]	Working accident	25	Tibia fracture	Muscle and skin lacerated	*Clostridium welchii*	Survived
Source	Cause	Age	Fracture	Soft tissue	Pathogen	Outcome
--------------------------------	----------------------------	-----	---------------------------------------	-----------------------------	--------------------------------	------------------------------
DeHaven and Evarts, 1971 [23]	Fall from horseback	10	Open, both bones of forearms	Mild damage of soft tissue	Clostridium perfringens	Survived with amputation
	Automobile accident	44	Open, Bilateral tibia, and fibulae	Damaged and contaminated severely	Pseudomonas, Klebsiella et al.	Survived with amputation
	Fall from running	21	Open, both bones of forearms	Mild damage of soft tissue	Clostridium perfringens	Survived
	Automobile accident	19	Open, tibia, and fibula	Severe damage of soft tissue	Bacillus subtilis, Proteus	Survived with amputation
Johnson et al., 1994 [24]	Arthroscopic knee surgery	36	No fracture	No	Clostridium septicum	Survived with amputation
	Hip Arthroplasty	57	No fracture	No	Clostridium Septicum	Survived
Dykes, 1977 [25]	Hip nailing	71	Transcervical fracture of femur	No	Clostridium welchii	Died
	Hip nailing and plate fixation	68	Subtrochanteric fracture of femur	No	Unknown	Died
	Hip nailing	79	Transcervical fracture of femur	No	Unknown	Died
Miller et al., 1993 [26]	Iliac crest bone graft transplantation	55	Nonunion of closed fracture of clavicle	No	Clostridium perfringens	Survived

(1) Compound fracture indicates open fracture, while simple fracture means closed fracture.
(2) Bacillus welchii is another expression of Clostridium perfringens.
(3) Clostridium perfringens (formerly known as C. welchii).
Table 2: Clinical outcome, pathogens, fractures locations, fractures, or surgeries types.

(a) Clinical outcome after infection with gas gangrene

Outcome	Survived with amputation	Survived with no amputation	Died
Number	25	13	12

(b) Pathogen of gas gangrene accompanied with traumatic orthopaedic patients

Pathogen	Clostridium myonecrosis	Non-clostridial myonecrosis	Unidentified
Number	28	3	19

Clostridium myonecrosis including Clostridium perfringens and septium while nonclostridial myonecrosis including culture negative; unidentified indicates no detail about the infection pathogen were reported.

(c) Fractures locations together with gas gangrene

Location	Tibia and/or fibula	Forearm	Femur	Ankle	Clavicle	Knee	Pelvic	None
Number	21	14	7	2	1	1	1	5

One case involved multiple locations of fractures: forearm, tibia and fibula, and femur; forearm including both or single bones of the forearm.

(d) Fractures or surgeries types associated with gas gangrene

Fracture severity	Simple fracture	Compound fracture	Elective orthopaedic surgery
Number	25	22	3

Compound (open) fracture: the bone breaks and pieces of the bone go through the internal soft tissue of the body and break through the skin from the inside.

Table 3: Clinical consideration when gas gangrene is present.

(I) Clostridial myonecrosis (true gas gangrene)
 (A) Localized: crepitant or noncrepitant
 (B) Diffuse: crepitant or noncrepitant together with toxemia

(II) Clostridial cellulitis: anaerobic or crepitant

(III) Nonclostridial
 (A) Bacterial: aerobic aerogenic infections; Staphylococcal fasciitis; anaerobic streptococcal infections
 (B) Nonbacterial: mechanical trauma; infiltration from air-hose injury

myonecrosis, but it has never been found to be intramuscular. Also a large number of other bacterial and nonbacterial lesions which resemble clostridial myonecrosis may be seen in routine clinical practice. Many of these are diagnosed as gas gangrene and diagnostic skill knowledge is necessary for their differentiation [28]. For example, Streptococcal myonecrosis, which clinically resemble a subacute form of clostridial myonecrosis, is the second variety of anaerobic myonecrosis. Clinical considerations are listed in Table 3 when gas gangrene present.

The most common causative organism of clostridial myonecrosis is _C. perfringens_ while _C. septicum_ is considered as the second most frequent agent. _C. perfringens_ is commonly found in the human gastrointestinal tract, including the oral cavity. Myonecrosis resulting from _C. perfringens_ alone after surgical procedures is rather uncommon. Clostridium myonecrosis following orthopaedic surgery is associated with a definite set of conditions: underlying malignancies, hematological and gastrointestinal solid tumors primarily, diabetes mellitus and atherosclerotic disease, and severe peripheral vascular disease [29].

Gas gangrene is an acute and life threatening infection characterized by fever, sudden onset of prominent pain, massive local edema, severe extensive myonecrosis, and the accumulation of gas at the site of infection. The typical manifestation of this disease usually starts with excruciating pain, out of proportion to physical findings, not relieved by pain killers. As the infection progresses, myonecrosis is accompanied by necrotizing fasciitis and cutaneous and muscle necrosis. The appearance of the skin around the site of infection usually becomes tense and changes from pale to bronze initially and then to purplish red, and multiple hemorrhagic bullae develop. Paramount to successful treatment for gas gangrene involves prompt recognition of the diagnosis and initiation multiple therapy including supportive measures, antimicrobial therapy, and timely surgical intervention. Despite this, in many cases of _C. perfringens_ induced gas gangrene, radical amputation still remains the treatment of best choice [30]. If not controlled, it will always result in systemic toxemia, hypotension, shock, multiorgan failure, and death [31]. Hyperbaric oxygen therapy is recommended by some experts but is controversial because its effectiveness has not yet been established.

Still we cannot identify the definitive cause of the clostridial myonecrosis in our case, as both postoperative origins and spontaneously occurrences could be possible. Our case is unique in two aspects. First, as we all know, the responsible organism _C. perfringens_ is mostly associated with development of traumatic gas gangrene but also can be associated with the nontraumatic spontaneous gas gangrene in patients with immunocompromised condition including malignancies and diabetes mellitus [2, 32]. Impaired evacuation and motility of the stomach (and the small intestine)
has been described in diabetics with long lasting unsatisfactory diabetes compensation, microangiopathic complications, and diabetic autonomous neuropathy [33]. Postoperative infection of elective surgical wounds with Clostridium species has been linked to gastrointestinal tract lesions. As clostridia can multiply readily in low-oxygen conditions, infections are usually seen in the setting of decreased intestine lining blood supply which could account for a route of entry for hematogenous spread. Second, gas gangrene rarely occurs in the patients undergoing elective surgery. One of the basic principles of orthopedic surgery is that gas gangrene does not develop in closed fractures. Almost all cases of gas gangrene after orthopedic surgery developed in open wounds which was not adequately debrided, in association with peripheral vascular disease and immunocompromised status. Even patients with closed fracture clostridium gas gangrene also had been found [11]. In our case, a possible mechanism is soil contamination of the skin near or at the infection site, as well as the severe injured soft tissue around the fracture together that contribute to the production histohypoxia environment. All these factors such as immunocompromised status, unviability of tissues, and local decrease of blood supply together nourished the gas gangrene. But the exact origin of the germ remains unknown.

5. Conclusion

Based on the case presented in the paper and our review of the literature on gas gangrene in orthopaedics patients, several following points should be emphasized.

(1) Our emergency clinicians should be aware of this severe and potentially fatal infectious disease and should not delay treatment or prompt orthopedic surgery consultation. Gas gangrene, while rare in now peace days, can be a devastating complication of almost any small wound or surgical procedure even one as common as closed reduction of fractures. It is our experience that we should give sufficient extension of the wound to provide adequate visualization of surgical field so as to be certain that all the necrotic or foreign material has been removed.

(2) Strict aseptic techniques should be observed for even the most minor procedure. Clostridial spores are ubiquitous and can reside in hospital environments, possibly on surgeons’ hands, patients’ skin, topical application, and so on.

(3) The best way to prevent gas gangrene is meticulous wound debridement and delayed closure for all potentially contaminated wounds regardless of closed or open fractures.

(4) Once gas gangrene is diagnosed, careful and adequate debridement should be instituted immediately to avoid further deterioration excision of necrotic tissue still the cornerstone of treatment, which should be involved with antibiotics and all other supportive treatments.

(5) Systematic resuscitative efforts should be instituted immediately in whom the diagnosis of incipient gas gangrene is even considered. This cannot be overemphasized.

(6) Recognized that gas gangrene may occur spontaneously and often in a immunocompromised patient, postoperative wounds may also develop gas gangrene due to the local soft tissue damage and decreasing blood supply.

Consent

Written informed consent was obtained from the patient for publication of this case report.

Conflict of Interests

The authors have no conflict of interests to declare.

References

[1] W. A. Altemeier, W. R. Culbertson, M. Vetto, and W. Cole, “Problems in the diagnosis and treatment of gas gangrene,” A.M.A. Archives of Surgery, vol. 74, no. 6, pp. 839–845, 1957.

[2] W. A. Altemeier, “Diagnosis classification and general management of gas producing infections, particularly those produced by Clostridium Perfringens,” in proceedings of the 3rd International Conference on Hyperbaric Medicine, pp. 481–490, National Academy of Sciences, Washington, DC, USA, 1966.

[3] R. S. Rich and R. F. Salluzzo, “Spontaneous clostridial myonecrosis with abdominal involvement in a nonimmuno-compromised patient,” Annals of Emergency Medicine, vol. 22, no. 9, pp. 1477–1480, 1993.

[4] H. Shibuya, H. Terashi, S. Kurata et al., “Gas gangrene following sacral pressure sores,” Journal of Dermatology, vol. 21, no. 7, pp. 518–523, 1994.

[5] N. F. Fee, A. Dobranski, and R. S. Bisla, “Gas gangrene complicating open forearm fractures. Report of 5 cases,” Journal of Bone and Joint Surgery A, vol. 59, no. 1, pp. 135–138, 1977.

[6] J. R. Buchanan and S. L. Gordon, “Gas gangrene in a wound treated without skin closure: a case report,” Clinical Orthopaedics and Related Research, vol. 148, pp. 233–236, 1980.

[7] P. C. Fulford, “Gas gangrene following compound fracture of femur,” Proceedings of the Royal Society of Medicine, vol. 62, no. 7, p. 644, 1969.

[8] H. K. Lucas, D. C. E. Speller, and M. Stephens, “Chronic Clostridium septicum infection of a tibial fracture: a case report,” Injury, vol. 8, no. 2, pp. 117–119, 1976.

[9] I. I. Woolley, R. L. Love, and A. C. Street, “Clostridium septicum bacteremia without gas gangrene as a late consequence of a contaminated wound,” Surgical Infections, vol. 5, no. 3, pp. 315–317, 2004.

[10] D. G. Werry and R. N. Meek, “Clostridial gas gangrene complicating Colles’ fracture,” Journal of Trauma, vol. 26, no. 3, pp. 280–283, 1986.

[11] P. K. Y. Goon, M. O’Brien, and O. G. Titley, “Spontaneous Clostridium septicum septic arthritis of the shoulder and gas gangrene: a case report,” Journal of Bone and Joint Surgery A, vol. 87, no. 4, pp. 874–877, 2005.
[12] B. C. Taylor, T. J. Bramwell, and N. Formaini, “Gas gangrene as a result of femoral traction pin placement,” Case Reports in Orthopedics, vol. 2011, Article ID 459812, 3 pages, 2011.

[13] T. Mulier, M. Morgan, and G. Fabry, “Clostridium septicum gangrene complicating a closed femoral fracture,” Acta Orthopaedica Belgica, vol. 59, no. 4, pp. 416–419, 1993.

[14] P. Lorea, Y. Baeten, N. Chahidi, D. Franck, and J.-P. Moermans, “A severe complication of muscle transfer: clostridial myonecrosis,” Annales de Chirurgie Plastique et Esthetique, vol. 49, no. 1, pp. 32–35, 2004.

[15] S. Sevitt, “Gas-gangrene infection in an operating-theatre,” The Lancet, vol. 262, no. 6796, pp. 1121–1123, 1953.

[16] M. M. Hill, “Gas-gangrene following fracture,” The Lancet, vol. 1, no. 7075, pp. 729–730, 1959.

[17] O. E. Aufranc, W. N. Jones, and B. E. Bieber, “Gas gangrene complicating fracture of the tibia,” Journal of the American Medical Association, vol. 209, no. 13, pp. 2045–2047, 1969.

[18] E. K. Boland, “Gas gangrene in compound fractures,” Annals of Surgery, vol. 90, no. 4, pp. 603–613, 1929.

[19] J. Brume and E. O. Ijagha, “Traditional bone setters and gas gangrene,” The Lancet, vol. 1, no. 8432, p. 813, 1985.

[20] H. D. Moehring, “Postoperative clostridial infection. A case report,” Clinical Orthopaedics and Related Research, no. 228, pp. 265–269, 1988.

[21] S. Oncel and E. S. Arsoy, “Rapidly developing gas gangrene due to a simple puncture wound,” Pediatric Emergency Care, vol. 26, no. 6, pp. 434–435.

[22] S. Hoffman, J. F. Katz, and J. H. Jacobson, “Salvage of a lower limb after gas gangrene,” Bulletin of the New York Academy of Medicine, vol. 47, no. 1, pp. 40–49, 1971.

[23] K. E. DeHaven and C. M. Evarts, “The continuing problem of gas gangrene: a review and report of illustrative cases,” Journal of Trauma, vol. 11, no. 12, pp. 983–991, 1971.

[24] S. Johnson, M. R. Driks, R. K. Tweten et al., “Clinical courses of seven survivors of Clostridium septicum infection and their immunologic responses to α toxin,” Clinical Infectious Diseases, vol. 19, no. 4, pp. 761–764, 1994.

[25] R. G. Dykes, “Gas gangrene after hip nailing,” Australian and New Zealand Journal of Surgery, vol. 47, no. 6, pp. 790–792, 1977.

[26] S. D. Miller, B. R. Moed, and J. L. Chess, “Clostridium perfringens infection of an anterior iliac crest bone graft donor site: a case report,” Clinical Orthopaedics and Related Research, no. 293, pp. 265–268, 1993.

[27] L. Weinstein and M. A. Barza, “Gas gangrene,” The New England Journal of Medicine, vol. 289, no. 21, pp. 1129–1131, 1973.

[28] W. A. Altemeier and W. D. Fullen, “Prevention and treatment of gas gangrene,” Journal of the American Medical Association, vol. 217, no. 6, pp. 806–813, 1971.

[29] D. A. Present, R. Meislin, and B. Shaffer, “Gas gangrene: a review,” Orthopaedic Review, vol. 19, no. 4, pp. 333–344, 1990.

[30] D. L. Stevens and A. E. Bryant, “The role of clostridial toxins in the pathogenesis of gas gangrene,” Clinical Infectious Diseases, vol. 35, no. 1, pp. S93–S100, 2002.

[31] D. L. Stevens, “The pathogenesis of clostridial myonecrosis,” International Journal of Medical Microbiology, vol. 290, no. 4-5, pp. 497–502, 2000.

[32] J. M. Pereira De Godoy, J. Vasconcelos Ribeiro, and L. A. Caracanhas, “Mortality and diabetes mellitus in amputations of the lower limbs for gas gangrene: a case report,” International Journal of Lower Extremity Wounds, vol. 7, no. 4, pp. 239–240, 2008.

[33] C. J. Nolan, P. Damm, and M. Prentki, “Type 2 diabetes across generations: from pathophysiology to prevention and management,” The Lancet, vol. 378, no. 9786, pp. 169–181, 2011.