Results of Measurements of the Analyzing Powers for Polarized Neutrons on C, CH$_2$ and Cu Targets for Momenta Between 3 and 4.2 GeV/c.

I M Sitnik1, S N Basilev1, Yu P Bushuev1, O P Gavrishchuk1, V V Glagolev1, D A Kirillov1, N V Kostayeva1, A D Kovalenko1, K S Legostaeva1, A N Livann1, I A Philippov1, N M Piskunov1, A A Povtoreiko1, P A Rukoyatkin1, R A Shindin1, A V Shipunov1, A V Shutov1, V M Slepnev1, I V Terletskiy1, K Hamilton2, R Montgomery2, J R M Annand2, D Marchand3, Y Wang3, E Tomasi-Gustafsson4, C F Perdrisat5, V Punjabi6, G Martinska7, J Urban7 and J Musinsky8

1 Joint Institute for Nuclear Research, 141980 Dubna, Russia
2 University of Glasgow, Glasgow G12 8QQ, Scotland, UK
3 IPN Orsay, Universite Paris-Saclay, 91406 ORSAY, France
4 IRFU, CEA, Universite Paris-Saclay, 91191 Gif-sur-Yvette, France
5 The College of William and Mary, Williamsburg, VA 23187, USA
6 Norfolk State University, Norfolk, VA 23504, USA
7 University of P.J. Safarik, Jesenaa 5, SK-04154 Kosice, Slovak Republic
8 Institute of Experimental Physics, Watsonova 47, SK-04001 Kosice, Slovak Republic

E-mail: sitnik@dubna.ru

Abstract. The analyzing powers for neutron charge exchange $nA \rightarrow pX$ reactions on nuclei have been measured on C, CH$_2$ and Cu targets at incident neutron momenta 3.0 - 4.2 GeV/c by detecting one charged particle in forward direction. The polarized neutron measurements are the first of their kind. The experiment was performed using the Nuclotron accelerator in JINR Dubna, where polarized neutrons and protons were obtained from breakup of a polarized deuteron beam which has a maximum momentum of 13 GeV/c. The polarimeter ALPOM2 was used to obtain the analyzing power dependence on the transverse momentum of the final-state nucleon. These data have been used to estimate the figure of merit of a proposed experiment at Jefferson Laboratory to measure the recoiling neutron polarization in the quasi-elastic $^2H(e, e'n)$ reaction, which yields information on the charge and magnetic elastic form factors of the neutron.

1. Introduction

The proposal E12-07-109 [1] to measure the p/n polarization from the reaction $^2H(e, e'n/p)$ up to momentum of p/n equal 8 GeV/c needs to have analyzing power A_y in dependence on solid scattering angle or its derivatives. This unique possibility takes place at the JINR NUCLOTRON. We are planning to measure A_y at the beam momenta of protons/neutrons up to 6.5 GeV/c. A part of this program is completed and we present the data on analyzing power for the nA interaction within the neutron momentum range 3.00 to 4.2 GeV/c.
2. Measurements

To obtain polarized proton/neutron beams we used the accelerated deuteron beam. After its interaction on the T_1 target (see Fig.1), the secondary beams of protons/neutrons of half-momenta were directed to the T_2 target. The T_1 target was set at different locations to produce proton/neutron beams. The polarization transfer from deuteron to half-momentum nucleon is equal to 1. Spectra and φ-asymmetry of scattering on the T_2 target were measured with the help of drift chambers. For the neutron beam the average value of the directions of the secondary particles was assumed as direction of the incident particles. These values were monitored every 10 min of beam time.

To separate elastic and inelastic scattering on T_2 information from the calorimeter was used. More details on the experiment can be found in [2].

3. Results

The results are presented as a function of the variable $p_t = p_{\text{lab}} \sin \theta$. For elastic scattering of equal mass particles we have $p_t^2 \simeq -t$, where t is a Mandelstam variable, which is good to the description of the elastic scattering spectra. Therefore, we present the obtained $n \rightarrow p$ spectra as a function of p_t^2.

Part of the obtained results is shown in Fig.2. Firstly, one can see that A-dependence is not observed. Secondly, we see two distinct exponential slopes in the spectra behavior. Alike behavior of $p \rightarrow n$ spectra was observed in, for example, [3]. There, a sharper slope has been attributed to ρ-exchange, the other one – to π-exchange.
Following Ref. [4], the φ-asymmetry of the reaction with the vector polarized beam is:

$$N(p_t, \varphi, \mathcal{P}) = N_0(p_t)[1 + A_y(p_t)P \cos \varphi], \quad -1 \leq P \leq 1$$

(1)

where N_0 is yield on unpolarized beam, P is vertical polarization. For 2 values of polarization we have 2 Eqs.1, and so, we can exclude N_0. The solution is given in [5].

The A-dependence of the analyzing power is shown in Fig.3. One can see that no sizeable dependence is observed.

The dependence of the analyzing power on the beam momentum is shown in Fig.4.

Figure 5. Dependence of A_y^{max} on neutron beam momentum.

Figure 6. Dependence of A_y^{max} on proton beam momentum.

We can remark here that the positions of maxima of A_y coincide. The dependence of the values of maxima on the beam momentum is shown in Fig.5. We see that these value are proportional to p_{lab}^{-1}. A similar behavior in the $p \rightarrow p$ reaction was observed in [5] and other experiments (see Fig.6).

Figure 7. CS' distributions.

Figure 8. Average CS vs p_t.

The polarization measurement error is described by the following formula:

$$\Delta P = \frac{1}{\mathcal{F}} \sqrt{\frac{2}{N_{\text{inc}}}},$$

(2)

where N_{inc} is the number of incident particles, \mathcal{F} is the figure of merit. \mathcal{F} is connected to analyzing power, differential cross section and target thickness by

$$\mathcal{F}^2 = N_{\text{nuc}} \int_{p_t} \frac{d\sigma}{dp_t} A_y^2(p_t) \, dp_t,$$

(3)
where N_{nucl} is the number of nuclei in the target.

Let us consider now, how the calorimeter may improve F. The distribution of given values, $CS' = CS * E_{\text{kin}}(0)/E_{\text{kin}}(p_t)$, where CS is calorimeter signals, is shown in Fig.7. Also, it is shown the same distribution, but at $p_t < 0.1$ GeV/c (normalized), where events are certainly elastic. The average CS vs p_t is shown in Fig.8. We expect, for elastic scattered events these values are proportional to $E_{\text{kin}} = f(p_t, p_{\text{lab}})$. We see such a behavior at $p_t < 0.3$ GeV/c. At higher values of p_t the average CS are sizeably less due to contribution of inelastic scattering with small A_y. It is seen from Fig.9 that larger values of A_y correspond to larger values of CS.

Subdividing all events on 3 slices along CS', we can construct

$$F_c^2 = \sum_{i=1}^{3} F_i^2,$$

where i is the slice number, F_i^2 is Eq.3 for i-th slice. In Fig.10 it is seen that such an approach improves figure of merit.

Figure 9. A_y vs p_t for 3 regions of CS'.

Figure 10. Figure of Merit vs acceptance of the setup.

For the track reconstruction via the drift chambers, the description of the spectra and obtaining of A_y, the soft [6, 7] was used.

Acknowledgments

This work has been partially supported by the Slovak Grant Agency VEGA, under grant No. 1/0113/18, and by the UK Science and Technology Facilities Council, under Grants No. 57071/1 and No. 50727/1.

References

[1] Puckett A J R et al., 2017 Phys. Rev. C96 055203.
[2] S N Basilev et al., arXiv:1908.06159 [nucl-ex]
[3] Boehmer V et al., 1976 Nucl. Phys. B 110 205
[4] Arvieux J et al., 1988 Nucl. Instrum. Meth. A 273 48
[5] Azhgirey L S et al., 2005 Nucl. Instrum. Meth. A 538 431
[6] Sitnii K M, 2016 Comput. Phys. Commun. 209 199
[7] Sitnik I M, Alexeev I I and Selugin O V, submitted to Comput. Phys. Commun.