Haemodynamic or metabolic stimulation tests to reveal the renal functional response: requiem or revival?

Bart De Moor¹, Johan F. Vanwalleghem², Quirine Swennen¹, Koen J. Stas² and Björn K. I. Meijers³,⁴

¹Faculty of Medicine and Life Sciences, University of Hasselt, Diepenbeek, Belgium, ²Department of Nephrology, Jessa Hospital of Hasselt, Hasselt, Belgium, ³Department of Nephrology, Universitair Ziekenhuis Leuven, Leuven, Belgium and ⁴Department of Immunology and Microbiology, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium

Correspondence and offprint requests to: Bart De Moor; E-mail: bart.demoor@uhasselt.be

ABSTRACT

Renal stimulation tests document the dynamic response of the glomerular filtration rate (GFR) after a single or a combination of stimuli, such as an intravenous infusion of dopamine or amino acids or an oral protein meal. The increment of the GFR above the unstimulated state has formerly been called the renal functional reserve (RFR). Although the concept of a renal reserve capacity has not withstood scientific scrutiny, the literature documenting renal stimulation merits renewed interest. An absent or a blunted response of the GFR after a stimulus indicates lost or diseased nephrons. This information is valuable in preventing, diagnosing and prognosticating acute kidney injury and pregnancy-related renal events as well as chronic kidney disease. However, before renal function testing is universally practiced, some shortcomings must be addressed. First, a common nomenclature should be decided upon. The expression of RFR should be replaced by renal functional response. Second, a simple protocol must be developed and propagated. Third, we suggest designing prospective studies linking a defective stimulatory response to emergence of renal injury biomarkers, to histological or morphological renal abnormalities and to adverse renal outcomes in different renal syndromes.

Keywords: protein stimulation test, renal functional reserve, renal functional response, renal stimulation test, renal stress test

INTRODUCTION

Glomerular filtration rate (GFR) is considered the best overall index of kidney function. It is dependent on age, gender, ethnicity, body composition and diet [1] as well as nephron endowment [2]. GFR is determined by the measured clearance of certain exogenous markers or endogenous waste products. In everyday practice, clinicians usually rely on estimated GFR (eGFR) calculated from a single serum marker measurement, mostly creatinine. However, such estimates have several limitations. Estimating equations are valid only in steady-state conditions. Moreover, analytical variation of serum creatinine measurements (2% for enzymatic assays), variation in tubular secretion and dependency on muscle mass [3] should be factored in.
Often ignored, GFR is not constant, as the kidneys do not continuously function at maximum filtration capacity [4]. It is estimated that in healthy subjects, kidneys usually operate at ~75% of their maximal GFR. Renal function is influenced by diurnal cycles [5] and is stimulated by protein-containing meals. Thus, single-point assessments of renal function ignore varying rates of glomerular filtration, as kidneys are capable of adjusting their performance to haemodynamic and metabolic demands.

In 1930, Verney mentioned the reserve forces of the kidney [6]. In analogy with myocardial and pulmonary function, a redundant or dormant renal reserve was hypothesized, intended to cope with extraordinary haemodynamic and metabolic demands. Fifty years later, Bosch called this the renal functional reserve (RFR), defined as the difference between the baseline GFR and the stimulated GFR, measured 2 h after a protein meal [7].

Over the years, enthusiasm for the RFR concept abated [8–12], until Ronco and colleagues [4, 13–15] and Molitoris [16] recently revived interest in this concept. They postulate that diminished RFR contributes to the susceptibility for recurrent acute kidney injury (AKI). These authors argue that evaluation of the degree of functional recovery post-AKI is not only clouded by the loss of muscle mass but also by stimulated single-nephron GFR to compensate for nephron loss. Testing the renal functional response in these recovered patients could possibly unveil this undetected loss of functional units and could identify patients at risk for progression to chronic kidney disease (CKD). This hypothesis was discussed and reviewed at the Fifth International Conference of the French Society of Intensive Care [17,18].

Additionally, a deficit in RFR has been incriminated in pregnancy-related kidney disease [19]. Further, study of the diagnostic and prognostic utility of RFR has been mentioned in the roadmap for global kidney health 2017, issued by the International Society of Nephrology [20]. Finally, the promotion of high-protein diets to lose weight stimulated renewed attention to the postprandial behaviour of the GFR.

Reviewing the literature on RFR is impeded by a myriad of definitions and stimulatory tests. This article aims to propose a synthesizing lexicon and tries to offer a variety of protocols for future directions of research.

LEXICON

The RFR (also referred to as renal reserve capacity) is defined as the difference between the stimulated GFR and the baseline GFR. This difference can be expressed in absolute terms (mL/min) or in relative terms (percentage of increment relative to the baseline GFR). Although a straightforward and simple definition at first sight, terminologies and definitions are quite confusing. Table 1 proposes a revised nomenclature in the context of renal functional testing. The expression of RFR should be replaced by renal functional response.

The baseline or basal GFR is sometimes referred to as unstimulated GFR (as opposed to stimulated GFR) or unstressed GFR (to better differentiate it from the GFR in stressed circumstances) and finally resting GFR. While the resting GFR is the lowest normal GFR, it is not identical to the baseline GFR used in the context of AKI, which is usually defined as the best or highest GFR preceding an AKI episode [17, 21].

To maximally guarantee an unstimulated (lowest) GFR, patients are often instructed to adhere to a low-protein or vegetarian diet in preparation for a renal stimulation test. If the person is not instructed to do so, the test results (actual GFR and maximal increase) should be interpreted in the light of the usual protein intake of the subject. This can be derived from the urea nitrogen level in timed urine collection. Coincidentally, patients with CKD often follow a low-protein diet. This increases the value of a stimulatory test.

The stimulated or stressed GFR is the measured GFR following a stimulus, including an oral protein load, an intravenous amino acid (AA) solution, a glucagon infusion or a dopamine drip [22]. Rodríguez-Iturbe et al. [23] defined a tubular stress test, describing the tubular secretion of intravenously injected creatinine. Regrettfully, a creatinine solution marketed for intravenous use in human experiments is currently not available (personal inquiry). As creatinine is readily absorbed by the gastrointestinal tract, an oral creatinine load is safer and might result in a comparable tubular challenge [24]. Recently a furosemide stress test was applied to patients with progressive AKI, discriminating recovery from progression [25]. Thus renal stimuli are either of a metabolic or haemodynamic nature. A protein meal, when composed of cooked meat, challenges the kidney with both AA and creatinine. This stimulus can be considered a combination of both a metabolic and a tubular stimulus.

Descriptions of the numerous alternative tubular challenges (sodium, potassium, phosphorus, acid, water deprivation and water loading) is beyond the scope of this review.

After stimulation and in healthy subjects, the GFR can reach 180–200 mL/min. Some authors refer to GFR in this range as hyperfiltration. Cachat et al. [26] reviewed the literature in 2015 and Tonnesjck et al. [27] recently described the mechanisms of diabetic hyperfiltration. These authors correctly differentiate between whole kidney function as opposed to single-nephron function. On a single-nephron level, hyperfiltration is assumed when the intraglomerular pressure is elevated, causing albuminuria and in the long-term leading to progressive glomerulosclerosis. Single-nephron hyperfiltration does not automatically translate into whole-kidney hyperfiltration, quite the opposite: glomerular hyperfiltration is often intended to preserve a waning whole-kidney GFR in the face of a diminishing nephron number [28]. More recently, high GFR values were also noted in septic intensive care unit (ICU) and post-operative patients. We advocate the use of augmented renal clearance for seemingly physiological adaptations and the use of stimulated GFR in the context of RFR.

PHYSIOLOGY OF METABOLIC RENAL STIMULATION

For a more extensive overview of the functional compensation after a protein meal, we refer the reader to excellent reviews by Gabbai [29], Bankir et al. [30], Helal et al. [31], King and Levey [1] and Premen [32].

Table 1. Suggested terminology and alternatives in the context of a renal stimulation test
Unstimulated GFR
Unstressed GFR
Basal GFR
Baseline GFR
Resting GFR
Minimal GFR

Renal functional response – stimulated GFR – baseline GFR (either in mL/min or in percentage of baseline GFR), i.e. renal functional reserve, renal reserve capacity, renal reserve filtration capacity.
Any metabolic stimulus triggers the kidneys to increase the GFR primarily by reducing the overall renal vascular resistance (RVR) and inducing a postprandial renal hyperaemia. This increase of the renal blood flow results from systemic mediators as well as paracrine factors, both acting on the whole kidney level as on the single-nephron GFR. Initially, recruitment of quiescent glomeruli in ill-perfused regions was hypothesized, hence the term ‘renal functional reserve’ [7, 33]. Later it was concluded that the increased GFR results from a higher filtration effort of all single nephrons, almost exclusively attributed to a higher effective renal plasma flow (ERPF).

The feed-forward stimulus after a protein load or an increase in AA plasma levels originates from the pancreas and the liver [30]. A higher ratio of glucagon to insulin stimulates the liver in favour of nitrogen handling and helps the kidneys in the disposal of urea. The hepatic production of cyclic adenosine monophosphate (cAMP) operates as a second messenger. On the single-nephron level, glucagon and cAMP cooperate to reduce the tubular solute concentration at the macula densa. In this way, the tubuloglomerular feedback is downregulated. As a result, vasodilation of the pre-glomerular arteries and arterioles induces an increase in the single-nephron GFR. Intrinsic renal autoregulation with nitric oxide, vasodilating prostaglandins and kinins is responsible for this action. Inhibition of renal autocrine prostaglandin synthesis with indomethacin counteracts the vasodilatory effects of AAs. The hypothalamic–hypophyseal axis contributes to this process. Vasopressin or the antidiuretic hormone (ADH) is also active in stimulating the GFR after a protein meal. Together with glucagon, this hormone helps in the processing of protein metabolites. The role of growth hormone seems of less importance, as a protein meal equaly elicits a functional renal response in growth hormone-deficient patients [34, 35].

In the long term, the afferent arteriole is evidently the weak spot in these consecutive events, as this site harbours the first signs of hypertensive hyalinosis, impeding maximal relaxation [36]. Arterial stiffness proved to be an independent predictor of signs of hypertensive hyalinosis, impeding maximal relaxation [36]. Arterial stiffness proved to be an independent predictor of signs of hypertensive hyalinosis, impeding maximal relaxation [36].

METHODOLOGY OF RENAL STIMULATION TESTS

Table 2 provides an overview of the chronology and methodology of a renal stimulation test. The numerous stimuli and modes of GFR measurements are described in the following paragraph.

Measurement of unstimulated GFR

Several factors may influence the unstimulated GFR. First, hydration status [39] is a very important confounding variable. Spinelli et al. [40] advise the use of bio-impedance measurements to identify dehydrated subjects. For this reason, most protocols adopt a strict oral hydration policy, starting with 10–20 mL/kg plain water and replacing each voided urine sample with an equal amount of oral fluids. Hypovolaemia also blunts the renal response after stimulation [38]. Second, the body must remain in the fasting state for at least 8 h (overnight fasting). A low-protein or vegetarian diet for 10 days preceding the test is advised by some authors to ascertain a true unstimulated GFR. Doubt remains if this interval succeeds in normalizing glomerular hypertrophy caused by a chronically high-protein diet. If the investigator does not advocate this preparatory phase, habitual protein intake can be estimated from urea nitrogen in a 24-h urine collection [41] and the extent of GFR stimulation must be interpreted with this knowledge. Finally, besides a thorough non-pharmacological preparation, some drugs must be paused, as they interfere with renal vascular adaptation. These include non-steroidal anti-inflammatory drugs (NSAIDs) [42], ACE inhibitors and angiotensin receptor blockers.

Selecting the proper stimulus

Measuring the stimulated GFR requires maximal recruitment of the so-called reserve GFR. Several approaches have been advocated, which—broadly speaking—can be divided into haemodynamic and metabolic stimuli.

In humans, a significant increase of the GFR has been described with glucagon infusions at a rate of 10–20 ng/kg/min. More frequently, dopamine is used. This vasoactive drug augments the ERPF and hence the GFR without affecting cardiac output or systemic vascular resistance. The FF usually drops slightly when dopamine is infused at a dose of 2.0 μg/kg/min. This is the result of afferent and preferentially efferent arteriolar dilation [43]. At the single-nephron level, the increased filtration seems totally attributable to higher plasma flow in combination with lower transcapillary pressure. Sometimes dopamine is the only renal stimulus used, for instance, in a dopamine-induced glomerular response test [44].

Dopamine provocation may be combined with a metabolic stimulus. When combined with an AA infusion, the effects are additive [45]. During the AA infusion, ERPF and GFR increase proportionally with a predominant afferent arteriolar dilation resulting in a constant FF. The composition of the AA solution depends on local availability, but gluconeogenic AA should be present [46], whereas branched-chain AAs do not alter GFR or FF [47]. The infusion rates reported in the literature are disparate. The AA infusion can begin the night before the test day, but the GFR response is already present after a 1- or 2-h infusion time. A dose–response curve for AA stimulus was constructed by Giordano et al. [48]. Within the physiological range, incremental AA concentrations cause a stepwise increase in the GFR, whereas this effect levels off in the pharmacological range.

The administration of a single AA to elicit a change in GFR is also reported. Arginine [49, 50] and glycine have been used, each acting via different pathways. Arginine causes systemic and renal vasodilation, while glycine operates via the N-methyl-D-aspartate glutamate receptor (NMDA-R) [29]. This receptor is localized in the proximal tubule and functions as a calcium channel, causing local vasodilation.

A more natural approach is to stimulate the GFR by a protein meal. This short-term oral protein loading should consist of at least 1 g/kg of protein [51]. Rodriguez-Iтурbe et al. [52] studied three quantities of protein meals: 1.3, 1.1 and 0.55 g/kg. The filtration fraction rose significantly with the moderate and large protein load but not with the lower protein load.

Animal proteins are preferred, so most centres prepare a cooked beef hamburger. Red meat, however, contains 3.5–5 mg/g.
Variables	Preparatory phase: instruction and informed consent	Test day: Part 1, measuring unstimulated GFR	Test day: Part 2, stimulus	Test day: Part 3, measuring stimulated GFR	
Location	Home	Hospital: recumbent position	2–4 h	2–4 h	
Duration	1 day: starting urine collection		30–60 min to cover ingestion and digestion		
	2–3 days: when CACrC is opted				
	10 days: when a low-protein diet is advised				
Diet	Diet 1: habitual diet until the night before RFR testing	Fasting for at least 8 h			
	Diet 2: controlled low-protein diet for at least 10 days before RFR	Fasting for at least 8 h			
Fluids	Drinking according to thirst	Drinking is stimulated: 10–20 mL/kg at start	Drinking in equal amounts to match diuresis	Drinking in equal amounts to match diuresis	
PO	Start cimetidine (when CACrC is chosen) according to the Hilbrands protocol		Stimulus option 1: 1 g/kg protein offered as cooked meat (containing creatinine)		
	Stop NSAID, preferentially pause ACE i or angiotensin receptor blocker		Stimulus option 2: 1 g/kg protein offered as egg whites or a commercial protein solution (not containing creatinine)		
IV	Introduce two separate IV lines		Stimulus option 3: a 10% IV AA solution at a rate of 4 mL/kg/h during 3 h		
			Stimulus option 4: IV dopamine at a rate of 2 µg/kg/min (can be combined with stimulus 3)		
Clinical exam	Weight, height, hydration status, blood pressure	GFR option 1: plasma or urinary clearance of an exogenous marker	Urine collections and samples: every 30–60 min bracketed with serum samples	Urine collections and samples every 30–60 min bracketed with serum samples	
Blood as well as urine samples in combination with timed urine collections	24-h urine collection for reference creatinine clearance, sodium excretion and urea nitrogen appearance	Urine collections and samples: every 30–60 minutes bracketed with serum samples			
Result	Unstimulated GFR or CrC: mean of at least three measurements		Stimulated GFR or Stimulated CrC: highest of at least three measurements		

PO, by mouth; IV, intravenous.
creatinine. By cooking, a non-metabolic conversion of creatine to creatinine occurs [53]. This metabolite is easily absorbed and the rising serum levels result in increased tubular secretion until the tubular transport maximum is reached [54]. Accordingly, the more pronounced response (after a protein challenge) of creatinine clearance (CrC) compared with inulin clearance is due to a higher input and increased tubular secretion of creatinine.

Alternatives for animal protein are dairy products and egg-white proteins. These are more practical in paediatric subjects [55]. Vegetable proteins, for instance soy products or bean curd, are less effective in stimulating the GFR [56]. Many reasons for this difference have been postulated, including a different AA mixture, less sulphur-containing AA, less oxidative stress or acid load, lower maximal AA serum levels, faster internalization in the cells due to a different insulin/glucagon surge, less sodium and more potassium content. An elaborate description of the renal benefits attributed to a vegetarian diet is beyond the scope of this article. The reader is referred to excellent reviews by Kalantar-Zadeh et al. [57] and Snelson and Fouque [58].

The renal response after a haemodynamic stimulus is immediate while the maximal effect of a metabolic stimulus is noted after 1–3 h. Recent evidence shows that in obese non-diabetic subjects, the maximal rise in GFR after a protein stimulus is postponed [59].

Over the years, no major side effects of renal stimulation tests have been observed. In the different studies, blood pressure and heart rate were carefully monitored, especially when dopamine was used as a stimulating agent. After the stimulus has waned renal function returns to its unstimulated state. Intravenous perfusion of a hyperosmolar AA solution has been found to cause local pain and phlebitis. No increase in urinary neutrophil gelatinase-associated lipocalin or proteinuria has been documented in local pain and phlebitis. No increase in urinary neutrophil gelatinase-associated lipocalin or proteinuria has been documented in local pain and phlebitis. No increase in urinary neutrophil gelatinase-associated lipocalin or proteinuria has been documented in local pain and phlebitis. No increase in urinary neutrophil gelatinase-associated lipocalin or proteinuria has been documented in local pain and phlebitis.

Measuring GFR during renal stimulation tests

The Achilles heel of renal function testing is the method used for GFR determination [61]. Urinary inulin clearance remains the most extensively reported method in renal stimulation tests. This classic mode of GFR measurement is often combined with para-aminohippuric acid (PAH) clearance to document the ERPF. Delanaye et al. [62] delineates the difficulties of this technique, including costs, variances in lab techniques and availability. Zitta et al. [44] succeeded in studying GFR behaviour after AA infusion via the plasma kinetics of sinistrin and hippurate supplied to a two-compartment computer model. The advantage of this technique is the elimination of urine collections.

The easiest alternative for the use of inulin is to monitor urinary CrC by timed urine collections (30 or 60 min), considering known caveats when using this biomarker. At least three clearance calculations are advised. The CrC overestimates true GFR because of additive tubular secretion, leading to a mean bias of 14 mL/min or 25% [63]. The overestimation depends on baseline kidney function. However, when subjects are asked to adhere to a low-protein diet of 0.5 g/kg/day, calculated CrCs are similar to inulin clearance [64, 65]. When urinary CrC is used not only as a GFR estimator but also to track accessory tubular secretion, the intake of drugs that inhibit the tubular secretion of creatinine must be avoided (e.g. trimethoprim–sulfamethoxazole, cimetidine and possibly fenofibrate). On the other hand, when the investigator wants to capture solely the dynamics of glomerular filtration, tubular secretion of creatinine can be blocked by cimetidine. This results in the cimetidine-aided CrC (CACrC). In the publication by Hilbrands et al. [66], cimetidine was started 1–4 days prior to the GFR stimulus according to a dosing protocol determined by the actual renal function.

Irrespective of the methodology, investigators must ascertained complete voiding or resort to placing a bladder catheter (mostly done in children, which increases the invasiveness of the test).

We do not advocate GFR estimating formulas (Chronic Kidney Disease Epidemiology Collaboration formula or Cockcroft-Gault formula) to document the renal functional response. Some authors propose cystatin C measurements [67, 68]. The kinetics of this functional biomarker have been tested after protein meals, with conflicting results [69, 70].

Alternative possibilities for measuring the GFR before and after a stimulus are urinary or plasma clearances of isotopes, e.g. 11Cr-labeled ethylenediaminetetra-acetic acid (Cr-EDTA), 125I-labeled iothalamate [45] and 99mTc-labeled dihydroxymetamindopenta-acetic acid (Tc-DTPA) (see Tables 4 and 5 for references). Most protocols choose the urinary clearance of a subcutaneously injected or continuously infused radioisotope. Alternatively, calculation of the GFR by decaying plasma levels after an intravenous bolus can be performed. However, this technique requires the investigator to invite the test person on two separate days, one for an unstimulated GFR test and one for a stimulated GFR test. Other drawbacks are the exposure to radiation and the additional costs. Recently an elegant technique of urinary clearance of iohexol was tested in an ICU population with varying GFRs [71]. The protocol describes a bolus injection followed by a continuous infusion of a low dose of iohexol combined with regular plasma and urine sampling. This technique seems applicable in renal function testing.

In the meantime, progress is being made in the development and validation of fluorescent markers for GFR determination. These intravenously injected compounds behave as an ideal renal filtration marker. Their plasma disappearance curves match glomerular filtration and can be read transdermally thanks to their fluorescent properties. In this way, an almost real-time GFR evaluation is possible [72, 73].

Table 3 describes in more detail the advantages and disadvantages of the numerous options.

Alternatives to GFR measurements

Magnetic resonance imaging (MRI) holds great promise, as it allows for simultaneous measurements of both the GFR and renal plasma flow (RPF) [74], as well as providing estimates of single-nephron GFR. Additionally, MRI could be used to quantify renal fibrosis, as recent evidence suggests [75].

Doppler ultrasound can detect the decrease in RVR occurring in healthy kidneys after a protein challenge [76, 77]. This has led investigators to study the renal resistive index variation (RRIV) before and after an AA infusion. A similar decrease in RVR can be documented when pressure is applied to the retroperitoneal vasculature. This autoregulatory reflex is intended to preserve the GFR. Maximal renal vasodilation was recorded when a saline bag representing 10% of the body weight was placed on the abdomen. The maximal RRIV observed in these experiments correlated with the RFR, thus offering a non-invasive real-time evaluation of the changing RVR [78].
Despite this fundamental statistical consideration, most papers omit biological variance and inter-person variability in subjects. Molina [79] decided on a sample size of 384 because of the heterogeneous nomenclature, necessitating an ex-haustive literature search of RFR testing proves very challenging.

Over the last three decades, numerous publications have reported on the renal stimulation test in various healthy and diseased populations (summarized in Tables 4 and 5). An ex-haustive literature search of RFR testing proves very challenging because of the heterogeneous nomenclature, necessitating several surveys and meticulous scrutiny of the references. Surprisingly, only a minor fraction of studies investigated >50 subjects. Molina et al. [79] decided on a sample size of 384 children, considering a standard deviation of the GFR of ±20 mL/min to find a pre–post difference of at least 2 mL/min. Despite this fundamental statistical consideration, most papers omit biological variance and inter-person variability in their discussions.

CLINICAL SUPPORT OF RENAL STIMULATION TESTING

Over the last three decades, numerous publications have reported on the renal stimulation test in various healthy and diseased populations (summarized in Tables 4 and 5). An ex-haustive literature search of RFR testing proves very challenging because of the heterogeneous nomenclature, necessitating several surveys and meticulous scrutiny of the references. Surprisingly, only a minor fraction of studies investigated >50 subjects. Molina et al. [79] decided on a sample size of 384 children, considering a standard deviation of the GFR of ±20 mL/min to find a pre–post difference of at least 2 mL/min. Despite this fundamental statistical consideration, most papers omit biological variance and inter-person variability in their discussions.

Table 3. Advantages and disadvantages of the different options mentioned in Table 1

Option	Pros	Cons	Evaluation		
Diet 1: habitual diet	Easiest protocol. Protein intake can be evaluated by the urinary nitrogen appearance	Unstimulated GFR is influenced by the protein content of the habitual diet. The renal response may be lower	Simplicity: high	Duration: low	Costs: low
Diet 2: 10 days of low-protein or vegetarian diet	Best guarantee of approaching unstimulated or resting GFR	Requires the effort of a dietician and the subject’s compliance	Simplicity: low	Duration: long	Costs: higher
Stimulus option 1: oral protein load in the form of cooked meat	Easiest to prepare. Oldest and most extensively documented challenge	Subjects must ingest the meal in 30 min. In case of gastric emptying disorders, digestion can be slower	Simplicity: high	Duration: low	Costs: low
Stimulus option 2: oral protein load without creatinine	The taste can be adapted to subjective wishes. Can be used in children	Requires the effort of a dietician to compose the meal. The tubular secretion of creatinine is missed	Simplicity: neutral	Duration: low	Costs: low
Stimulus option 3: IV dopamine	Low-dose dopamine augments the renal plasma flow more than the GFR	Only offering a haemodynamic stimulus. Mostly used in combination with an AA infusion. Requires an extra IV line and clinical follow-up. Dopamine has fallen into disuse	Simplicity: neutral	Duration: low	Costs: low
Stimulus option 4: IV AA infusion	If AA plasma levels are more than tripled, this stimulus offers the best guarantee of maximal GFR simulation	AA composition must match those used in literature. Infusing AA may cause phlebitis	Simplicity: low	Duration: high	Costs: high
Stimulus option 5: IV glucagon	Shortest stimulus. Physiologically logical stimulus	Requires glycaemic controls. Misses simultaneous insulin secretion as in normal physiology. Less experience and literature support	Simplicity: low	Duration: low	Costs: high
GFR option 1: exogenous marker	Best GFR measurement. Current literature proposes a bolus/continuous infusion protocol for the evaluation of unstable renal function	In case of a single bolus injection: un-stimulated and stimulated GFR measurements must be scheduled on two separate days.	Simplicity: low	Duration: neutral	Costs: high
GFR option 2: creatinine clearance	Easiest protocol. Evaluates glomerular filtration as well as tubular secretion	CrC overestimates true GFR	Simplicity: neutral	Duration: neutral	Costs: low
GFR option 2: CACrC	If tubular inhibition is maximal, CACrC matches measured GFR	Maximal tubular inhibition of creatinine secretion cannot be guaranteed. Potential side effects of cimetidine (allergy and tolerance). The tubular contribution to overall clearance is blocked	Simplicity: low	Duration: lower	Costs: higher

IV, intravenous.

The first studies were performed in healthy individuals (Table 4). Several different stimuli were used. It was shown that inulin clearances could rise to 130–150 mL/min while CrCs reached 160–180 mL/min [7]. These studies also demonstrated that the protein content of the habitual diet influences un-stimulated GFR and determines the absolute extent of the GFR increase after a protein load [80–82]. Hypovolaemia is an appreciated cause of a blunted response [38]. Healthy elderly individuals show a lower GFR and less effect after stimulation, most probably because they rely on fewer nephrons [83–85]. Recently Denic et al. [86] demonstrated that the single-nephron GFR (in unstimulated circumstances) remained remarkably stable in a large cohort of living kidney donors until the age of 70 years. The age-dependent decline of the GFR in elderly donors was attributed to a lower nephron count and a lower metabolic need without the presence of kidney disease.
Confounding variables	Reference	Number	Dopamine	Amino acids	Protein meal	Creatinine IV	Urinary inulin (+ PAH) clearance	Urinary CrC	Exogenous marker	Summary of the results
Bosch 1983¹	5: normal protein diet 8: vegetarian diet		X				X			GFR reached a maximal level of 171 ± 7.7 mL/min after 150 min. In patients with reduced number of nephrons, RFR may be diminished or absent
Graf 1983²	5 receiving parenteral nutrition	X						X		Endogenous CrC increases during infusion of AA
Bosch 1984³	16		X							CrC increases from 123 ± 13 to 157 ± 13 mL/min
Rodriguez-Iturbe 1985⁴	44	X								CrC increases from 108.5 ± 6.45 to 161.5 ± 9.39 mL/min
ter Wee 1986⁵	9	X						X		IOTH 1 Infusion of AA and dopamine show additive effects: dopamine lowers FF, while during AA infusion the FF remains unchanged
Hostetter 1986⁶	10		X							GFR increases from 101 ± 7 to 114 ± 6 mL/min. RVR decreases
Castellino 1986⁷	13		X							GFR increases from 107 ± 5 to 128 ± 4 mL/min. Somatostatine blocks this increase
Bosch 1986⁸	7		X							GFR increases from 122 ± 10 to 151 ± 15 mL/min
Solling 1986⁹	Healthy male physicians and students		X							IOTH 1 Eight subjects received a meat meal while seven were challenged with an AA infusion. GFR and RPF increased and FF as well as albumin excretion remained unchanged
Mansy 1987¹⁰	37		X	X						Same increase of CrC after AA, 80 g meat and 80 g milk protein
Rodriguez-Iturbe 1988¹¹			X	X						Subjects were given, three quantities of protein load: mild protein load, 0.55 g/kg; moderate protein load, 1.08 g/kg; high protein load, 1.35 g/kg. The effect on the GFR was incremental: the largest increase of GFR was observed when a high protein load was served. To accomplish this GFR increase, the
Confounding variables	Type of stimulus	Type of GFR measurement	Type of GFR measurement	Summary of the results						
-----------------------	-----------------	------------------------	-------------------------	------------------------						
		Amino acids	Protein meal	Urinary inulin (÷ PAH) clearance	Urinary CrC	Exogenous marker				
			IV							
Rodriguez-Iturbe 1988	10	X	X	filtration fraction was significantly increased						
Hinchberg 1988	12 subjects	(Glucagon) X (Arg)	X	A protein meal and not a carbohydrate meal stimulates the CrC and is associated with a parallel increase (doubling) in plasma immunoreactive ANF						
Castellino 1988	18	X	X	Glucagon and IV infusion of arginine induce an increase in GFR that is blunted by NSAIDs						
Laville 1989	9	X	X	The renal haemodynamic response following AA infusion is dependent on insulin/glucagon/growth hormone replacement and can be blocked by somatostatin						
Olsen 1990	12 volunteers	X		Simultaneous measurements of GFR and CrC showed a peak in GFR after 127 min and a maximal CrC after 189 min. This was caused by a subsequent increase of tubular secretion of creatinine (contributing 15%)	EDTA 1					
Tam 1990	12 healthy medical students	X		AA increased GFR by a primary effect on renal haemodynamics or, less likely, by reducing the signal to the TGF. The increase in proximal tubular outflow was compensated for in the distal tubules						
Braendle 1990	10	X	X	Three protein meals were offered and compared with a control meal. Regardless of the protein content, an increase in CrC is observed						
Wada 1991	7 normal subjects tested twice with	X		Oral protein concentrate and an oral mixture of AA induce a similar increase in GFR						

(continued)
Confounding variables	Reference	Number	Type of stimulus	Type of GFR measurement	Summary of the results					
			Dopamine	Amino acids	Protein meal	Creatinine IV	Urinary inulin (+ PAH) clearance	Urinary CrC	Exogenous marker	
	Cirillo 1998	25	a different AA	X	X					
	composition									
	Luipold 2000	12		X	X					
	Bani 2008	109	kidney donor	X	DTPA 1					
	candidates									
	Bird 2008	20		X	EDTA 2					
	Sharma 2016	18		X	X					
	Rodenbach	18		X	X with cimetidine	IOH 1	Protein loading stimulates iohexol clearance and CACrC after a beef-or milk-based meal. Cystatin C eGFR changes are smaller.			
	2017									
	Fiser 1993	10	median age 70	X	X					
	years (up to 80									

(Discussion continued)
Confounding variables	Reference	Number	Type of stimulus	Type of GFR measurement	Gender	Ethnicity	Diet [low protein (LP), normal protein (NP), high protein (HP)]	Summary of the results
	Böhler 1993	12 non-renal patients ages 60–80 years						Baseline GFR is lower in the elderly compared with young adults. However, RFR is well maintained in elderly human subjects
	Pecly 1999²⁷	13: 20–39 years, 13: 40–59 years, 11: 60–68						Ageing decreases the increment of CrC. Increased bradykinin seems responsible for the GFR adaptation
	Fuiano 2001²⁸	10 young, 11: 65–76 years, 15 young donors, 11 older donors						In older subjects, GFR is lower. After combined stimulus, a smaller increase was seen in older subjects. More arteriosclerosis and interstitial fibrosis in older patients
	Esposito 2007²⁹	6 (25–37 years), 6 (44–74 years), 7 (81–96 years)						GFR and RPF were slightly reduced in elderly individuals, which resulted in increased FF. In the elderly as opposed to young and middle-aged subjects, neither GFR nor RPF increased after maximal stimulation
	Musso 2011³⁰	5: 20–40 years, 6: 64–74 years, 5: > 74 years						Renal functional response was present in all age groups. Its magnitude was significantly higher in healthy compared with older subjects
	Bosch 1984³	10 (LP = 0.7–0.8 g/kg/d, NP 1.0–1.5 g/kg/d)						CrC on low protein (LP) diet is lower: 97 ± 34 versus 109 ± 37 mL/min. Peak GFR is similar at 122 ± 45 mL/min
	Castellino⁷	6 (LP= 40 g/d, NP 1.2–1.5 g/kg/d)						GFR is lower on LP diet. Increment after stimulus is equal
	Viberti 1987³¹	6 (LP: 43 g/d, NP: 75 g/d)						GFR is lower on LP diet; more relative increment but not reaching peak GFR on normal protein diet. Unchanged FF
Confounding variables	Reference	Number	Type of stimulus	Type of GFR measurement	Summary of the results			
-----------------------	-----------	--------	-----------------	-------------------------	------------------------			
	Kontessis 1990	17 healthy subjects (3 weeks vegetarian versus animal protein)	X	X	GFR is lower after a 3-week course of vegetarian protein. Soy proteins induce less GFR increase than meat proteins while serum AA levels are comparable. A meal containing animal protein induces a higher and more sustained increase in glucagon levels.			
	Nakamura 1993	6 healthy females and 6 type 2 diabetics	X	X	JOHTH1			
	Nakamura 1989	11 healthy 20 diabetics	X	X	Comparison with 0.7 g/kg tuna fish and the same or double amount of boiled egg white. GFR increases only after ingestion of tuna fish both in normal controls and diabetics. Only AA Gly and Ala rose differently after this meal.			
	Nakamura 1990	10 healthy volunteers 6 type 2 diabetics	X	X	Comparison with 0.7 g/kg tuna fish versus bean curd. Vegetable protein could not induce an increase of the CrC in healthy subjects or in diabetics.			
	Simon 1998	8 healthy volunteers	X	X	A chicken or equivalent beef meal induces identical GFR and RPF response. RVR decreases as GFR and RPF increase. FF remains unchanged.			
	Orita 2004	6 healthy male subjects	X	X	Offering a beefsteak or the same amount of skim soy with soy sauce results in an identical enhancement of GFR. AA analysis revealed no differences between the two protein challenges.			

(continued)
Confounding variables	Reference	Number	Type of stimulus	Type of GFR measurement	Summary of the results						
Low sodium diet (20 mmol/d and furosemide 80 mg once)	Ruijope 1986³⁸	11	Dopamine	Amino acids	Protein meal	Creatinine IV	Urinary inulin (+ PAH) clearance	Urinary CrC	Exogenous marker		No increment of GFR when salt-depleted. Recovery when captopril is given. No recovery under indomethacine
Low sodium diet (0.5 g) and furosemide 25 mg for at least 3 days	Memoli 1991³⁹	8 paired observations	X	X						In control conditions, both GFR and RPF increase (+31.5% and +41%) after dopamine and AA stimulation. After salt depletion, GFR and RPF are impaired mainly by an increased vascular resistance. After dopamine and AA, both GFR and RPF increase (+37% and +31%)	
Low hydration/high hydration	Hadj-Aissa 1992⁴⁰	10 paired observations. High hydration: 1st h 10 mL/kg, 2nd h 7.5 mL/kg and 5 mL/kg/30 min	X	X						High hydration resulting in a low urinary osmolality blunts a protein-induced response of GFR	
	Claris-Appiani 1999⁴¹	7 adults tested 6 times		X	X					The renal haemodynamic response is blunted when hypotonic saline is infused (0.23–0.45%)	
	Anastasio 2001⁴²	12 paired observations. High hydration means 5 mL/kg/30 min. Low hydration means 0.5 mL/kg/30 min		X	X					High hydration lowers GFR and preserves response versus low hydration (with a higher unstimulated GFR and lower response)	
Medication	Krishna 1988⁴³	9: tested 3 times (placebo, indomethacine, enalapril		X						GFR increased from 101±7 to 118±4 mL/min. Smaller increase after indomethacine. No effect of enalapril	
	Herrera 1988⁴⁴	10 healthy subjects, twice stimulated without and with indomethacine		X						A protein load induces an increase in GFR from 107.2±6.05 to 146.4±6.79 mL/min/1.73 m² and an increase in RBF. No effect of indomethacine	
	Vanrenterghem 1988⁴⁵	6 subjects		X	X					Indomethacine blunts the GFR increase	

(continued)
Confounding variables	Reference	Number	Type of stimulus	Type of GFR measurement	Summary of the results
Type of stimulus					
Dopamine					
Amino acids					
Protein meal					
Creatinine IV					
Urinary inulin (+ PAH) clearance					
Urinary CrC					
Exogenous marker					
Summary of the results					
Chagnac 1989⁴⁶	12 healthy subjects before and after enalapril		Dopamine	X	CrC increases from 114.3 ± 4.5 to 137.1 mL/min/m² after a protein load. On the enalapril intake day, the increase of CrC was lower
	Mizuiri 1994⁴⁷	6 controls	X (L-Arg)	X	L-arginine infusion leads to a significant decrease in RVR and a significant increase in RPF and GFR in all groups. An increase in plasma glucagon levels was observed. Captopril pretreatment in healthy subjects attenuates this effect
	Pritchard 1997⁴⁸	23 patients with hypertension (four-way crossover)	X	X	Tandolapril 2 mg and indomethacin 3 times 25 mg: no effect on GFR or ERPF after dopamine and AA
	Deibert 2011⁴⁹	10 male patients with the metabolic syndrome		X	The obese subjects show a higher baseline GFR and RPF. The protein load induced a significant increase in GFR and RPF in healthy controls and even more in patients with metabolic syndrome
	Anastasio 2017⁵⁰	28 obese		X	Delayed glomerular response in obese patients
	Buzio 1988⁵¹	7		X	Best CrC stimulatory effect when protein load is administered at lunch (instead of supper)
	Buzio 1989⁵²	10		X	Circadian rhythm. No effect of placebo when given in the evening

^{Iothalamic acid: IV bolus followed by a continuous infusion. Urinary and plasma clearances (to correct for incomplete voiding). HPLC measurement (in later studies). Iothalamic acid: single subcutaneous injection. Plasma clearances. Gamma counter measurement; Iothalamic acid: IV bolus followed by a continuous infusion. Plasma clearances. HPLC measurement; EDTA 1 (51Cr-EDTA): IV bolus followed by a continuous infusion. Urinary clearances; EDTA 2 (51Cr-EDTA): single IV bolus. Plasma clearances; DTPA 1 (99mTc-DTPA): single IV bolus. Plasma clearances. BSA, body surface area; HPLC, high-performance liquid chromatography; IV, intravenous; NGAL, neutrophil gelatinase-associated lipocalin.}
Clinical context	Ref	Number	Type of stimulus	Protein marker	GFR measurement	Result
Single kidney			Dopamine AA	Protein	CrC clearance	X
Post-donation	Bosch 1984	5	Hyperchogenicity	Potential kidney donors	CrC increases from 70 to 140 mL/min	X
	Fouda 2011	34			X	
	X		AA			
	Bosch 1984	3	Hyperchogenicity	Potential kidney donors	CrC increases from 70 to 140 mL/min	X
	Fouda 2011	34			X	
	X		AA			
	Bosch 1984	3	Hyperchogenicity	Potential kidney donors	CrC increases from 70 to 140 mL/min	X
	Fouda 2011	34			X	
	X		AA			
Clinical context	Condition	Ref	Number	Type of stimulus	Type of GFR measurement	Result
------------------	-----------	-----	--------	------------------	--------------------------	--------
				Dopamine AA	Protein meal	
				Creatinine IV	Urinary inulin clearance	
					Urinary CrC	
					Exogenous marker	
						EDTA 1

Table 5. Continued

Ref	Number	Type of stimulus	Type of GFR measurement	Result		
ter Wee 1994	15 pairs (donor/recipient)	X	X	IOTH 1	Preserved increase in GFR on AA stimulus, less after dopamine. Long-term RFR is preserved, less due to increased ERPF than to glomerular hypertrophy	
Rodriguez-Iturbe 2001	14 normal controls 7 donors 11 after kidney transplantation	X		IOTH 2	An IV bolus of creatinine stimulated tubular secretion in controls (11.3 times), in donors (4.3 times) and in transplanted patients (2.5 times)	
Rook 2006	125 kidney donors 120 days before and 57 days after donation	X	X	IOTH 1	GFR post-donation was predicted by GFR_{pre}, GFR_{max} and age	
Rook 2008	178 kidney donors, 4 months before and 2 months after donation	X		IOTH 1	Dopamine-induced increase in GFR was reduced from 11 to 5% after nephrectomy. Dopamine-induced increase correlated negatively with donor age and BMI	
Spinelli 2017	7 pairs donor/recipient	X	X	IOTH 1	Sum of stimulated CrC of donor and recipient equals pre-donation stimulated CrC	
Van London 2018	105 female kidney donors ages <45 years 51 donors with a BMI >25 kg/m²	X		IOTH 1	Donors were tested 4 months before and 2 months after donation. Female donors with a BMI >25 kg/m² showed an absent functional response. BMI correlated with RFR	
After resection of Wilms tumour	Bhistikul 1991	12	X	X	No differences in CrC before and after oral protein load in single kidneys versus controls	
	Regazzoni 1998	37 after nephrectomy in childhood	X	X	Long-term follow-up shows stable GFR but decreasing increase of GFR after oral protein load	
	Donckerwolcke 2001	11 patients after nephrectomy	X	X	GFR and ERPF are well preserved. At rest, tubular secretion of creatinine is stimulated. Two patients show maladaptation with loss of RFR	
Renal agenesis	De Santo 1997	21 adults with unilateral renal agenesis (3 groups with declining GFR)	X	X	Higher blood pressure and proteinuria in patients with lowest GFR. Normal response after protein load in all groups. CrC overestimated GFR by 32.7%	
Renal transplantation	Cairns 1988	9 renal transplants on cyclosporine	X	X	EDTA 1	After a protein load, azathioprine-treated renal transplantation

(continued)
Clinical context	Condition	Ref	Number	Type of stimulus	Type of GFR measurement	Exogenous marker	Result
			9	dopamine	urine protein concentration		showed a significant increase of GFR and ERPF compared with cyclosporine treated renal transplants
			6/7	dopamine, azathioprine	urine protein concentration		Cyclosporine alters the renal response to a protein meal
			36	dopamine, azathioprine	urine protein concentration		Renal transplant patients show a GFR increase after AA stimulus
			12	dopamine, azathioprine	urine protein concentration		High-dose nifedipine increases renal perfusion, decreases FF and RVR but RFR remains absent
			12	dopamine, azathioprine	urine protein concentration		A 10-week dietary supplementation with fish oil did not induce significant renal function improvement. On low-dose cyclosporine, a well-preserved renal response is demonstrated
			16	dopamine, azathioprine	urine protein concentration		No renal functional response on cyclosporine treatment, both transplanted and non-renal patients. Basal GFR correlates with renal allograft volume (measured by ultrasound)
			36	dopamine, azathioprine	urine protein concentration		Low-dose cyclosporine A does not attenuate the renal response after dopamine or AA infusion
			36	dopamine, azathioprine	urine protein concentration		Baseline GFR and ERPF is lower in transplanted patients. Increases are similar. Stimulated GFR and ERPF correlated with kidney length
			12	dopamine, azathioprine	urine protein concentration		
			12	dopamine, azathioprine	urine protein concentration		
Table 5. Continued

Clinical context	Condition	Ref	Number	Type of stimulus	Type of GFR measurement	Result	
				Dopamine AA	Protein meal	Urinary	Exogenous marker
					Creatinine IV	Inulin	marker
						c clearance	
						Urinary CrC	
Maranes 199879	11 patients with 'en bloc' transplantation 10 controls (single kidney transplants)	X		X	X	Patients having received an 'en bloc' pediatric kidney transplantation show a greater renal response (and a lesser risk of hyperfiltration)	
Fagugli 199880	25 kidney transplanted patients 8 controls	X		X	X	A group of renal transplants shows no RFR but rather a reduction of GFR, a higher FF and a high level of thromboxane	
Zhang 199991	5 normal volunteers 21 renal transplants on cyclosporine (10 with normal renal function)	X (L-Arg)		X	L-Arg increased GFR from 103 ± 9 to 122 ± 7 mL/min/1.73 m² in control subjects. In transplanted patients, no increase of GFR was observed		
Englund 200092	30 children 7 recipient/donor pairs	X		X	X	Stable GFR and preserved increase on repeated measurements. Donors tend to show a higher response. Max GFR is related to kidney volume	
Bertoni 200193	40 grafted with a kidney younger than 55 years 40 grafted with a kidney older than 55 years	X		X	CrC increases at 6 months and after 1 year. The increase in the CrC is higher in kidneys from younger donors. This increase is inversely related to donor baseline GFR		
Delclaux 200194	11 out of 14 patients, >20 years after transplantation	X		X	EDTA 1	7 of 11 patients show an RFR that is lower than median. No correlation was found with morphological data (unless a slightly higher glomerulosclerosis rate in this population). In 4 of 11 patients a functional response is present, even >20 years after renal transplantation	
Fulladona 200395	32 transplanted patients on cyclosporine	X		X	X	Correlation of renal response with renal biopsy. The presence of arterial hyalinosis is the only pathological parameter associated with impaired renal response	
Kamar 200696	10 patients on FK and sirolimus 7 patients on FK and MMF	X		X	X	Similar GFR and renal functional response after 6 and 12 months post-transplantation. No correlation with histology	
Saurina 200697	14 patients before and 8 months after conversion to sirolimus	X		X	DTPA 1	More proteinuria and higher calculated glomerular filtration pressure after conversion of CNI to sirolimus	

(continued)
Clinical context	Condition	Ref	Number	Type of stimulus	Type of GFR measurement	Result
Heart transplantation	Ader 1996	12 renal and 13 heart	Dopamine AA, Protein meal	Urinary CrC	X	Maximal increase of GFR after heart transplantation (7 months) is lower than in controls. No increase in ERPF was seen in heart transplanted patients
Heart Failure	Magri 1998	10 (mild HF, compensated)	X	X	X	No vasodilatory response on AA in mild HF. Restored response after treatment with RAS blocker
Frangiosa 1999	9 patients with end-stage HF (ACE inhibitors, diuretics)	X	X			GFR and ERPF are higher in normal controls, but the percentage increase after a protein load is conserved (27%) in HF patients, although they show a high FF (35%)
Coronary artery disease	Fuiano 2005	15 patients with an indication for coronary angiography	X	X		Unstimulated: lower ERPF in CAD, higher FF. Lower RPF dependent on severity of CAD. After AA infusion: no increase of GFR in CAD. After 2 years: decrease in GFR and RPF. Unchanged response to AA. Patients were tested before, as well as 9 days and 6 months after cardiac surgery. At 9 days, no significant renal response could be shown. The renal response was restored at 6 months.
Cardiac surgery	Mazzarella 1991	11 adult patients scheduled for coronary artery bypass graft	X			
Pregnancy	Ronco 1988	29 pregnant subjects	X	X	X	Resting CrC increases during pregnancy. Increment in CrC decreases during pregnancy. Peak GFR is 160 mL/min.
Late gestation compared with 3 months post-partum	Barron 1995	14: protein challenge	X	X		GFR is higher during gestation and even higher than post-protein load in post-partum women. Placebo during pregnancy is less effective. GFR increases in early and late pregnancy. Percentage increase is not different from post-partum. Unstimulated GFR is 40% higher during pregnancy.
Early and late gestation compared with 3 months post-partum	Sturgiss 1996	14: AA infusion	X			
Heguile 2001	8 pregnant women (15 weeks)	X	X			Pregnant women still show an increased CrC on protein loading
Mid-term	Heguile 2007	8 hypertensive pregnant, 5 non-hypertensive, 8 controls	X			After protein challenge, hypertensive pregnant women show a lesser increase of CrC than normal pregnant women

(continued)
Clinical context	Condition	Ref	Number	Type of stimulus	Type of GFR measurement	Result	
Liver cirrhosis	Healthy pregnancy – 15, Pregnancy and CKD – 25, Non-pregnant women – 8	Cohen 2012	80			In controls, baseline CrC increases from 99.8 ± 2.9 to 149 ± 4 mL/min. In healthy pregnancy, baseline CrC increases from 118.5 ± 3.2 to 224 ± 5.2 mL/min, a 90% increase. In CKD pregnancy, baseline CrC increases from 132 ± 7.6 to 186 ± 10.3 mL/min, a 40% increase	
Liver cirrhosis	10 patients with Child A liver cirrhosis, 10 controls	Rodriguez 1999	99			No increase of the GFR after a protein load	
Liver cirrhosis	22 patients with decompenated liver cirrhosis and ascites	Woitas 2002	101			GFR and ERPF are lower in patients with cirrhosis. The functional reserve is similar. Higher levels in cGMP and NO were seen in patients, probably to compensate for angiotensine II effects	
Liver cirrhosis	12 patients with liver cirrhosis and portal hypertension	Woitas 1999	102			Baseline GFR and ERPF were lower. After AA infusion the GFR increases by 67% and ERPF by 29%	
Liver transplantation	13 treated with fish oil, 13 with corn oil, during 2 months	Badalamenti 1995	103			Two months treatment with fish oil improves renal hemodynamics, no effect on RFR	
Nephrotoxicity	Occupational exposure to lead	Roels 1994	104			Both controls and lead workers showed a significant increase in CrC of 15%. Baseline and stimulated CrC is higher in lead workers	
Genetic risk of essential hypertension	26 normotensive with positive familial risk of hypertension, 13 controls	O’Connor 2001	105			RFR is already blunted in still normotensive subjects at genetic risk of hypertension. Potential explanations: insulin resistance to the amino acid–translocating effects of this hormone, baseline hyperfiltration and decreased proximal tubular reabsorption during amino acid infusion	
Hypertension	34 mild to moderate HT (22 controls)	Losito 1988	106			Less increase in CrC after AA infusion. Some patients show no RFR: CrC correlates with albuminuria in these patients	
Clinical context	Condition	Ref	Number	Type of stimulus	Type of GFR measurement	Result	
------------------	-----------	-----	--------	------------------	--------------------------	--------	
				Dopamine AA	Protein meal, Creatinine IV		
					Urinary Inulin (+PAH) clearance, Urinary CrC		
					Exogenous marker		
Valvo 1990	106	15	hypertensives	AA	X	JOTTH 2	RFR is identical to controls. ACE inhibitor does not influence the amount of RFR
		12	healthy subjects				
Buzio 1994	107	16	hypertensives	apparently normal	X	JOTTH 1	Nifedipine increases GFR, ERPF as well as urinary excretion of proteins after a protein load, while captopril decreases GFR and proteinuria
		16	with	GFR with and without			
			without	nifedipine and			
				captopril			
Cottone 1994	108	16	newly diagnosed patients	with essential hypertension	X		
		10	healthy controls				
Tietze 1997	109	12	controls		X		
		14	patients with essential hypertension				
Belsha 1998	110	33	normotensive adolescents		X		
		29	hypertensive adolescents				
Zitta 2000	111	15	controls	36 hypertensive patients	X		
Obesity hypertension							
Pecly 2006	112	14	obese and AHT		X		
		9	lean and AHT				
Teunissen-Beekman 2016		79	overweight individuals with untreated hypertension and normal GFR, 27 on maltodextrin and 25 on protein mix participated		X		
Garipov 2016	113	10	hypertensive nephropathy		X		
		14	hypertensive without nephropathy				
ADPKD	Harrap 1992	11	controls		X		
		19	ADPKD				
		20	controls				

Obesity + hypertension

Greater decrease in FF after a protein supplemented breakfast following a 4-week course of protein supplementation

ADPKD

Lower RFR in hypertensive patients. Correlation with renal resistive index and proteinuria

Lower ERPF in ADPKD patients, also stimulated renin-angiotensin system and higher body sodium load. Non-significant increase in GFR after oral protein load

(continued)
Table 5. Continued

Clinical context	Condition	Ref	Number	Type of stimulus	Type of GFR measurement	Result	
Scleroderma	Livi 2002	116	21 patients	Dopamine AA with normal & creatinine & 10 controls	Urinary Inulin (± PAH) clearance	X	Unstimulated: lower CrC and stimulated: less increase of CrC. The response is dependent on MAP and unstimulated CrC. 19 patients had an RFR defect and 9 showed a normal RFR. Those patients had a lower BP. After 5 years: 13 of 19 showed a reduction of CrC >2 mL/min/year
Scleroderma	Livi 2011	117	28 normotenstive scleroderma patients	Dopamine	Urinary CrC	X	High prevalence of lower RFR in scleroderma patients. Pulmonary hypertension correlated with abnormal RFR
Scleroderma	Amin 2012	118	30 patients with scleroderma & 30 controls	Dopamine	DTPA 2	X	CrC rose from 82.0 ± 6.45 to 90.3 ± 5.3 mL/min. Renal response and glomerular-tubular balance are intact. Abnormal lack of suppression of the renin-angiotensin-aldosterone system after AA in fusion
SLE	No CKD	Khusnutdinova 2014	30 patients & 40 controls	Dopamine	KOTH 1	X	RFR was 41% in controls and lower in SLE
Poststreptococal GN	No CKD on follow-up	Iturbe 1985	35 patients	Dopamine	KOTH 1	X	CrC rise from 82.0 ± 6.45 to 90.3 ± 5.3 mL/min. Renal response and glomerular-tubular balance are intact. Abnormal lack of suppression of the renin-angiotensin-aldosterone system after AA in fusion
Chronic glomerulonephritis	No CKD	Tietze 1994	13 biopsied CGN & 13 controls	Dopamine	KOTH 1	X	Renal response and glomerular-tubular balance are intact. Abnormal lack of suppression of the renin-angiotensin-aldosterone system after AA in fusion
IgA nephropathy	Bach 1994	119	7 patients	Dopamine & 2 nephrotic & 9 controls	KOTH 1	X	GFR and ERPF increased in controls and patients without nephrotic syndrome. No increase in the two nephrotic patients
Chronic glomerulonephritis	No CKD	Beukhof 1985	32	Dopamine	KOTH 1	X	Dopamine induces GFR-only effect when baseline GFR > 73 mL/min/1.73 m²
Chronic glomerulonephritis	No CKD	Plevio 1996	7 stage II, 8 stage III-IV and 12 controls	Dopamine	KOTH 1	X	RFR 20% in Stage II comparable to normals. No RFR in Stages III-IV
Chronic glomerulonephritis	No CKD	De Santo 1997	10 proteinuric IgAN patients & 20 controls	Dopamine	KOTH 1	X	GFR was lower and FF was higher at baseline in patients. GFR increase following protein load was comparable
Chronic glomerulonephritis	No CKD	Sulikowska 2004	20 patients before and 1 year after treatment with Omega-3	Dopamine	KOTH 1	X	Omega-3 polyunsaturated acids improve dopamine-induced GFR response and lower proteinuria and NAG excretion
Chronic glomerulonephritis	No CKD	Sulikowska 2008	50	Dopamine	KOTH 1	X	Less response on dopamine, higher NAG and FelUA
Chronic glomerulonephritis	No CKD	Sulikowska 2012	46 patients & 15 controls	Dopamine	KOTH 1	X	Lower DIR in patients. Correlation of EPO with uric acid clearance: more EPO and reduced urate clearance

(continued)
Table 5. Continued

Clinical context	Condition	Ref	Number	Type of stimulus	Type of GFR measurement	Result
HIV nephropathy	Marques 1998129	6 healthy 9 asymptomatic carriers of HIV	X	X	IgAN patients were separated in subjects showing a decrease in EPO levels versus those showing an increase in EPO levels. A decreasing EPO level was associated with a preserved CrC response, less proteinuria, less NAG and lower uric acid and blood pressure while kidney biopsy findings were comparable	
Sickle Cell anaemia	Herrera 2002130	16 sickle cell A 20 controls	X	X	X	JOTH 2
CKD	Altered renal function	Bosch 19834	6	X	X	SCA patients have a higher GFR at baseline, but no increase in tubular secretion of creatinine
CKD1a, CKD1b, CKD2, CKD4	Bosch 19843	CKD1a (4), CKD1b (13), CKD2 (9), CKD4 (5)	X	X	X	JOTH 1
CKD 1, CKD 2-3, CKD 4	ter Wee 1985131	CKD 1: 9 CKD 2-3: 11 CKD 4: 7	X	X	X	GFR increases from 63 ± 29 to 76 ± 37 mL/min dependent on severity
Variable GFR	Bosch 19868	10	X	X	No response if clearance is <40 mL/min and in patients with acquired or congenital solitary kidney. The presence of proteinuria is not associated	
	Colame 1983132	16 controls (13 adults and 3 children) 31 patients (22 adults and 9 children)	X	X	No acute effect on glomerular barrier size selectivity	
	Chan 1986133	12 patients 12 controls 20 with 15–70% sclerotic glomeruli 10 with acquired single kidney 5 with surgical ablation of <50% of renal mass 24 controls	X	X	RFR is not necessarily reduced or absent in patients with a reduced number of functioning glomeruli	
	Zuccala 1989134	8 healthy subjects 9 subjects with CGN and baseline GFR >90 mL/min 8 subjects with baseline GFR between 40 and 90 mL/min	X	X	THD	
	Krishna 1991135	15 CKD	X	X	Preserved renal reserve in CKD patients not influenced by enalapril	
	Uemasu 1991136	8 healthy subjects glucagon	X	X	Normal controls show an increase in GFR and ERPF. CGN with preserved GFR showed no increase in ERPF, while patients with lower GFR showed no effect on GFR while ERPF increases	

(continued)
Clinical context	Ref.	Condition	Ref.	Number	Type of stimulus	Type of GFR measurement	Result			
					Dopamine AA	Protein meal	Creatinine IV	Urinary Inulin (± PAH) clearance	Urinary CrC	Exogenous marker
					X	X	X	X	X	
Diabetes	Bosch 1986	18	X		X	X	X	Control mean renal reserve = 23.4%	X	DTPA 1
	ter Wee 1987	14	X		X	X	X	GFR decreases from 118 ± 46 to 102 ± 37 mL/min	X	JOPTH 1
Type 2 DM	Nakamura 1989	34	A: no albuminuria	X	X	X	X	No albuminuria: normal GFR increase. Microalbuminuria: no GFR increase. Macro: GFR decreases after placebo	X	EDTA 1
Type 1 DM	Nosadini 1989	15	1 IDDM (<9 years), 8 with and 7 without albuminuria, 8 controls	X	X	X	X	Comparison of AA and ketone body infusion shows that renal response in long-standing DM type 1 patients is not present	X	
Clinical context	Condition	Ref	Number	Type of stimulus	Type of GFR measurement	Result				
------------------	-----------	-----	--------	------------------	-------------------------	--------				
Type 2 DM with nephropathy	Brouhard 1990	8 patients on low-protein (0.6 g/kg/d) and 7 on normal diet	X	Dopamine AA	Protein meal	Creatinine IV	Urinary clearance	X	Increased RFR measured at 6-month intervals during 1 year decreased as well as resting GFR in patients on normal diet.	
Type 1 DM	Dedov 1991	10 patients with type 1 DM without diabetic nephropathy 7 healthy controls	X	Protein meal	Creatinine IV	Urinary clearance	Urinary CrC	X	Patients with normal RFR show a lower baseline GFR. Patients with no RFR have a higher resting GFR and demonstrate hilar glomerular lesions with severely expanded mesangium, apparently preceding overt nephropathy.	
Type 2 DM	Tuttle 1992	12 diabetic patients without insulin treatment 9 normal subjects	X	Protein meal	Creatinine IV	Urinary clearance	Urinary CrC	X	Early stage (at high GFR) and late stage (proteinuric and lower GFR) show less response.	
Type 1 DM	Sackmann 1998	33 patients: 14 early stage, 10 microalbuminuric, 9 late stage 12 controls	X	Protein meal	Creatinine IV	Urinary clearance	Urinary CrC	X	Less increase of GFR in patients with nephropathy (proteinuria and hypertension) even when GFR is preserved.	
Type 1 DM	Sackmann 2000	10 with nephropathy, 10 without 15 controls	X	Protein meal	Creatinine IV	Urinary clearance	Urinary CrC	X	75% of patients show microalbuminuria. Studied microalbuminuric patients lose response on protein load.	
Type 2 DM	Guizar 2001	181 recently diagnosed type 2: 28 studied, 7 controls	X	Protein meal	Creatinine IV	Urinary clearance	Urinary CrC	X	Less response in patients of African-Asian descent due to defective NO production or bioavailability.	
Type 2 DM	Earle 2001	9 African-Asian diabetes 9 white patients	X	Protein meal	Creatinine IV	Urinary clearance	Urinary CrC	X	Diabetics have a higher GFR and IF. AA and glucagon induce GFR to rise via a different pathway. Glucagon can be inhibited by indomethacin.	
Type 1 DM	Assan 2002	285 IDDM treated with cyclosporine 100 IDDM not treated with cyclosporine	X	Protein meal	Creatinine IV	Urinary clearance	Urinary CrC	X	10-12% functional response, conserved even after 7 and 10 years of low-dose cyclosporine treatment.	
Type 1 DM	Tuttle 2002	12 DM type 1 12 controls	X	Protein meal	Creatinine IV	Urinary clearance	Urinary CrC	X	(continued)	
Table 5. Continued

Clinical context	Condition	Ref	Number	Type of stimulus	Type of GFR measurement	Result
Type 1 DM	Zaletel 2004¹⁵⁴	22 patients without renal disease	Dopamine AA	Protein meal	CRP, linking endothelial dysfunction with renal haemodynamic behaviour	
Type 1 DM	Sulikowska 2007¹⁵⁵	30 sulodexide and 13 not	X	Creatinine IV	Sulodexide helps in improving dopamine-induced GFR response and lowering of NAG	
	Mueller 2009¹⁵⁶	28 diabetic patients	X	Urinary (PAH) clearance	Preserved RFR in 6 of 28 patients. No correlation with cystatin C	
Children (< 18 years)	Hellerstein 2004¹⁵⁷	89 studies in 78 children	X	Urinary CrC	Follow-up of CACrC after a meat-free protein meal is non-invasive and inexpensive	
Solitary kidneys	Peco-Antic 2012¹⁵⁸	22 patients 30 controls	X	X + cimetidine	CACrC and cystatin C were compared. Half of the patients had decreased RFR. Cystatin C was a strong predictor. Also, blood pressure was a determinant	
CKD	Molina 1988¹⁵⁹	Normal: 386 CKD: 21	X	X	A normogram was constructed with p10 and p90. Negative correlation of stimulated GFR with unstimulated	
	De Santo 1990¹⁶⁰	Normal: 11 10 children with mean creatinine 2.6 mg/dL	X	X	Earlier peak GFR in healthy children. Greater increase of GFR and RPF in diseased children	
Offspring of hypertensive parents	Grunfeld 1990¹⁶¹	21	X	X	Lack of GFR increment in offspring of hypertensive parents is associated with higher albuminuria	
Type 1 DM	Semiz 1998¹⁶²	22 patients (11 with >5 years of diabetes, 11 with shorter duration) 15 healthy controls 51 diabetic children 34 controls	X	X	Renal functional response is lower after a longer duration of diabetes. This pathology is present without albuminuria	
	Raes 2007¹⁶³	36 patients (5–21 years old) without renal function anomalies 12 controls (2–12 years old) 51 diabetic children 34 controls	X	X	Unstimulated GFR is similar, increased FF. Lower RFR in patients	
Previous post-streptococcal GN	Cleper 1997¹⁶⁴	6 patients (5–21 years old) without renal function anomalies 12 controls (2–12 years old) 51 diabetic children 34 controls	X	X	Similar basal CrC. The functional response is lower in patients after a post-streptococcal GN	
Previous HUS	Perelstein 1990¹⁶⁵	17: previous HUS 11: single kidney 15: controls	X	X	Children with a history of HUS show an abnormal RFR	
	Tufro 1991¹⁶⁶	16	X	X	Protein content in the diet influences CrC	

(continued)
Clinical context	Condition	Ref	Number	Type of stimulus	Type of GFR measurement	Result

- **Dopamine**
 - **AA**
 - **Protein meal**
 - **Creatinine**
 - **IV clearance**
 - **Urinary CrC**
 - **Exogenous marker**

- **Dieguez 2004**
 - Tested two times 15 controls
 - **X**
 - **X + cimetidine**
 - CAcC rises after a protein load in both patients and controls. When distinction is made between responders (>30% increase) and non-responders develop proteinuria. They had a longer oliguria period during their HUS.

- **Bruno 2012**
 - 33 children with previous HUS (18 males, 15 females) with normal CrC
 - **X**
 - **EDTA 2**
 - Half of the children showed a GFR increase of at least 20%, judged as a normal response.

- **Reflux nephropathy**
 - Coppo 1993
 - 28 children with surgically corrected bilateral vesico-ureteric reflux
 - **X**
 - Children with severe renal parenchymal scarring had greater albuminuria and beta-2 microglobuline in basal conditions. Both increased after AA infusions. CrC increases also.

- **Matsuoka 2009**
 - 35 patients with reflux nephropathy, glomerular size evaluated on renal biopsy
 - **X**
 - **THIO**
 - When glomerular size was normal, DIR was good and ERPF was unchanged.
 - When GS was enlarged, GFR and ERPF increased both.
 - When GS was extremely enlarged, both GFR and ERPF remained unchanged.

- **Unilateral ureteropelvic junction obstruction**
 - Montini 2000
 - 4 boys and 1 girl after pyeloplasty with contralateral kidney as control
 - **X**
 - **X**
 - GFR at baseline was greater in normal than in surgically treated kidney.
 - Aspirin decreases GFR in operated kidneys. Lower GFR increase after protein loads in operated kidneys.

- **Posterior urethral valve**
 - Ansari 2011
 - 25 patients, at least 6 weeks after fulguration of posterior urethral valve
 - **X**
 - **DTPA 1**
 - In more than a third of patients, RFR is depleted. They had more bladder dysfunction and more severe vesicoureteral reflux.

Notes:
- IOTH 1 (125I-iothalamate): IV bolus followed by a continuous infusion. Urinary and plasma clearances (to correct for incomplete voiding). HPLC measurement (in later studies). IOTH 2 (125I-iothalamate): single SC injection. Plasma clearances. Gamma counter measurement; IOTH 1 (iohexol): IV bolus followed by a continuous infusion. Plasma clearances. HPLC measurement; IOTH 2 (iohexol): single IV bolus. Plasma clearances. HPLC measurement; EDTA 1 (51Cr-EDTA): IV bolus followed by a continuous infusion. Urinary clearances; EDTA 2 (51Cr-EDTA): single IV bolus. Plasma clearances; EDTA 1 (51Cr-EDTA): single IV bolus. Isotope renography; MAG 3 (99mTc MAG 3): single IV bolus. Isotope renography; THIO (thiosulfate sodium): IV bolus followed by a continuous infusion. Urinary clearances. Measurement by the method of Brun. GN: glomerulonephritis; HUS: Haemolytic uraemic syndrome.
Overweight people show an increased unstimulated GFR and less exploitable filtration capacity [87].

Kidney donors as well as patients with a congenital single kidney were extensively studied (Table 5). The expected response after a fixed protein meal or an AA infusion is generally preserved in single kidneys, even several years after nephrectomy. Dopamine accomplishes less stimulatory effect, as ERPF is already maximally increased [45]. Long-term follow-up reveals that the gradual increase in the GFR in the post-transplant period is achieved by glomerular hypertrophy instead of an increased ERPF [88]. Regazzoni et al. [89] described an unchanged GFR several years after a nephrectomy in childhood. However, an oral protein load proved gradually less effective in evoking an adequate response. Transplanted kidneys show less response to a protein stimulus when treated with cyclosporine compared with patients treated with a calcineurin-free regimen, mostly azathioprine [90]. The extent of the GFR increment after a stimulus correlated with kidney size (i.e. length or volume). Kidneys from younger donors exhibited a better renal response after a stimulus and this was dependent upon the unstimulated GFR of the donor [91]. The native kidneys of patients after a heart transplantation tended to show less response than the single transplanted kidney [92]. This was attributed to pre-existent cardiovascular damage, absence of renal denervation or a slightly higher cyclosporine trough level.

Hypertensive patients challenged with a protein meal, demonstrate a weaker or absent renal response. The presence of albuminuria indicates subclinical damage with abolished filtration reserve. A significant negative correlation was shown between the renal response and the renal resistive indices, evaluated by ultrasound [77]. In the offspring of hypertensive parents, the RFR proved lower and was associated with albuminuria [93]. Fifteen patients planned for a coronary angiography were matched with as many healthy peers. Their ERPF was lower and correlated with the extent of coronary lesions [94]. No response on AA infusion could be documented in patients with coronary artery disease.

IgAN cases were studied after AA and dopamine infusions. A diminished renal response was present in patients with more prominent histological lesions (with >50% of the glomeruli showing proliferation and >15% of the glomeruli with crescents or segmental lesions) [95]. Another study correlated a lower GFR increase to injury biomarkers such as proteinuria and NAG excretion [60].

Livi et al. [96] studied patients suffering from systemic sclerosis and found that they displayed a lower stimulated GFR. Followed for 5 years, scleroderma patients without increasing GFR at the start lost kidney function at a faster rate of >2 mL/min/year. This study is one of the rare prospective reports. Children tested after a previous episode of haemolytic uraemic syndrome showed variable response after a protein meal. Low responders (<36% increase) developed proteinuria later in life [97].

When renal function is decreasing, the amount of exploitable filtration capacity decreases but stays measurable even in patients with Stage 4 CKD [98]. This contrasts with the former theory of RFR, claiming that the reserve capacity is fully utilized before the GFR drops below 50 mL/min [80].

In a small study, 10 compensated patients with mild heart failure showed no vasodilatory response after AA infusion. The response was restored after initiation of an ACE inhibitors [99].

A higher GFR is observed in diabetics with hyperglycaemia. In these circumstances, the renal blood flow and the filtration fraction are increased, resulting in a higher intraglomerular pressure. This leads to transient or permanent albuminuria [27].

Diabetic patients with overt proteinuria fail to respond with a GFR increase when challenged with a protein meal [100–103].

In pregnancy, the induced augmented renal clearance (we deliberately avoid using the phrase ‘hyperfiltration’) is observed because of an increased ERPF thanks to relaxin, a vasodilating hormone produced by a healthy placenta. Pregnancy offers the most extensive increment of GFR [104]. The filtration fraction of kidneys in pregnancy is normal or decreased [105]. Only normotensive gravidas display a functional response [106]. Failure to fully dilate the afferent arteriole and augment ERPF may lead to pre-eclampsia or pregnancy-related hypertension [104]. Hence the interest in examining the RFR in women with kidney disorders consulting with a pregnancy wish.

CRITICAL APPRAISAL OF RENAL STIMULATION TESTING

The idea of a dormant and exhaustible RFR was flawed as soon as it became obvious that single and transplanted kidneys still show a functional improvement after a protein load [10]. This observation led to waning interest in renal function testing and resulted in incomplete scientific explorations: not all renal syndromes have been thoroughly tested. Correlations with histological findings are hardly reported. Moreover, there are no reference data in sickness or in health. Furthermore, longitudinal data linking a decreased stimulatory effect to unfavourable outcomes are scarce. Today, the use of RFR measurements has no place in routine clinical care.

A second criticism is the missing of a renal distress signal, making renal and cardiac stress testing hard to compare. An absent functional response and/or the demonstration of a higher filtration fraction could be viewed as a surrogate for renal maladaptation, potentially leading to progressive nephron loss. This parameter can only be documented when renal clearances of a filtration and a perfusion marker (PAH or 131I-hippuran or 99mTc-mercaptoacetyltriglycine) are followed simultaneously. Without the emergence of injury biomarkers, a normal renal response after a protein load implies normal protein tolerance.

In contrast to cardiac stress testing providing the clinician with an early diagnosis allowing for targeted treatment, renal function testing offers the clinician a suggestion of subclinical pathology, but without therapeutic consequences.

A concern is the terminology used. The literature is with confounding nomenclature and consensus definitions are missing.

Renewed interest in renal function testing has been stimulated by nephrologists involved in AKI care. A metabolic challenge could be valuable in assessment of the renal recovery. However, the causative link of diminished renal protein tolerance to a higher susceptibility for recurrent AKI remains debatable.

Finally, renal function testing is relatively labour intensive and requires the allocation of resources. Because the test remains in the experimental context, it is not reimbursed. Spinelli et al. [40] performed a cost calculation of a simple RFR test using cooked beef as a stimulus and four urine CrC measurements added to 8 h of a nurse’s workload. The total cost was £91 for a single RFR estimation. Costs were predominantly driven by the nursing workload, so actual costs may vary substantially between different regions of the world.

FUTURE DIRECTIONS OF RESEARCH

The first step to be taken is deciding on a common vocabulary. We propose to use the terminology of unstimulated GFR (when

(raw text continues...
diagnosed as having subclinical kidney disease. A lower as well an increment of glomerular filtration, these patients can be with a preserved eGFR. If a renal stimulation test fails to induce ascertained. Subjects at high cardiovascular risk may present cant stimulatory response indicates a sufficient nephron quan-
ity. In the case of a diminished or absent increase, CKD can be an augmented renal clearance. When the eGFR is low, a signifi-
cant of renal clearance can be evaluated by simultaneously bound retention products [107]. The tubular contribution to contribution of tubular secretion in the clearance of protein-
collections. However, recent evidence points to the important scheme with calculated renal CrCs by the means of timed urine be proposed, varying in complexity from an elaborate research methodology (encompassing exogenous markers) to a simple with calculated renal CrCs by the means of timed urine collections. However, recent evidence points to the important contribution of tubular secretion in the clearance of protein-bound retention products [107]. The tubular contribution to overall renal clearance can be evaluated by simultaneously measuring the clearance of creatinine and an exogenous filtra-
tion marker, either after a protein meal or a creatinine load. Alternative stimuli should be explored, for instance serelaxin [108].

Third, prospective studies in different disease entities are necessary to link an abnormal renal response to major adverse renal endpoints and provide us with reference values. In Table 6 we present four clinical situations in which the absent response after stimulation might yield meaningful diagnostic and prognostic information: subjects before kidney mass reducing sur-
gery or known to have a diminished number of nephrons, patients in which renal disease is assumed and individuals with an augmented renal clearance. When the eGFR is low, a signifi-
cant stimulatory response indicates a sufficient nephron quant-
y. In the case of a diminished or absent increase, CKD can be ascertained. Subjects at high cardiovascular risk may present with a preserved eGFR. If a renal stimulation test fails to induce an increment of glomerular filtration, these patients can be diagnosed as having subclinical kidney disease. A lower as well as a higher GFR have been associated with increased cardiovas-
cular risk [109]. No renal response might indicate single-neph-
ron hyperfiltration in both circumstances.

The complexity of the stimulation protocol should match the importance of the anticipated result. Hence the study of kid-
ney donor candidates might receive the greatest attention: maximal stimulus (dopamine in combination with an AA infu-
sion) combined with measured GFR by an exogenous marker. Women at high risk for pre-eclampsia or pregnancy-induced hypertension might be solicited to participate in a simple protein challenge study with urinary CrC. Also, patients applying for bariatric surgery might be tested: an absent functional re-
sponse could provide the multidisciplinary team with a sense of urgency. Will these patients regain their glomerular reactivity along with the expected reduction of proteinuria [110]? Tubular function testing can be interesting in patients with chronic ob-
structive pulmonary disease or obstructive sleep apnea, with both showing a high prevalence of kidney disease. Can RFR test-
ing before and after starting nocturnal continuous positive air-
way pressure sort out the questions in this syndrome regarding cause, effect or merely association? Post-AKI patients can be evaluated before they leave the ICU by means of an AA infusion and true AKI change of therapy?

Table 6. Suggested research topics for renal stimulation testing (adapted and complemented from Molitoris [16])

Clinical category	Specific situation	Diagnostic information
1. Prior to renal mass reducing surgery	Before kidney donation Before nephrectomy for other reasons	Risk of CKD post-donation Need for nephron-sparing surgery or alternative therapies (e.g. radiofrequency ablation)
2. In case of congenital or acquired lower renal mass	Congenital anomalies of the kidney and urinary tract After kidney transplantation After kidney donation	Long-term prognosis Long-term prognosis Risk of progressive renal failure Risk of AKI Risk of gestational hypertension and pre-eclampsia Early nephrotoxicity? Need for dose reduction or change of therapy? Early diagnosis of CKD
3. In case of suspected renal frailty	Before major surgery Before pregnancy in high-risk situations Before or during chemotherapy or treatment with nephrotoxic drugs In high-risk patients (cardiovascular disease, COPD, OSAS, diabetes, scleroderma, etc.) In geriatric patients In patients after cystectomy and urinary diversion In patients with the cardiorenal syndrome	Distinction between worsening renal function and true AKI Fully recovered or not Fully recovered or not
4. In case of suspected whole kidney hyperfiltration	Obesity Diabetes type 1 and type 2 Septic patients	Maladaptive hyperfiltration or not Maladaptive hyperfiltration or not Augmented renal clearance resulting in alternative dosing of antibiotics

COPD, chronic obstructive pulmonary disease; OSAS, obstructive sleep apnoea syndrome.
Finally, to broaden the scientific foundation of renal function testing, studying the behaviour of renal damage biomarkers during renal stimulation might offer more insight into glomerular and tubular adaptation. Moreover, functional data should be coupled to histological information. Morphological details acquired by MRI or ultrasound can provide additional elements. Obviously these lines of research will greatly amplify the cost of renal function testing and can only be initiated in the context of a study. Eventually comparison of these divergent diagnostic procedures can guide us in choosing the most cost-effective procedure to gain deeper insight into renal health. Several relevant clinical trials (www.clinicaltrials.gov) are under way or are awaiting publication. One trial (NCT03190070) includes 30 participants and is testing a liquid protein load in normal and CKD subjects. A second trial (NCT03190070) included 110 patients scheduled for cardiac surgery and performed RFR testing 1 day before and 3 months after the procedure as well as urinary TIMP2-IGFBP7 analysis. Another trial (NCT03190070) plans to monitor 100 patients with a partial laparoscopic nephrectomy and intends to compare the renal protective effect of total versus segmental renal artery clamping by studying the RFR.

CONCLUSIONS

This article offers the most extensive review of renal function testing to date. The authors propose a synthesizing lexicon and advocate a limited number of protocols applicable in future research.

A renal stimulation or stress test aims to document the capacity of an individual to increase his or her kidney function in response to a metabolic need. The stimuli that are proposed are derived from both physiological and experimental evidence. Offering a short-term oral protein load, for instance, mimics a normal meal and probes the integrity of the gut–kidney axis. This protein challenge tests glomerular as well as tubular function. Confirmation of an increasing GFR after a stimulus is meaningful. It implies an associated decrease of RVR. To accomplish this, the kidneys’ vascular reactivity as well as a critical number of pre-glomerular arteri-oles must be preserved.

This dynamic test of a vital organ, shows analogies with stress tests in other clinical domains. Preservation of a renal haemodynamic and/or metabolic response might imply overall vascular health to overcome planned or unintentional injurious events.

With the available evidence, measurement of the renal functional response remains restricted to research purposes. Without prospective studies delivering reference data and acknowledging that renal iconographic and biomarker research is moving at great speed, a requiem rather than a revival for renal function testing is equally possible.

SUPPLEMENTARY DATA

Supplementary data are available at ckj online.

ACKNOWLEDGEMENTS

The authors thank P. Delanaye for the stimulating discussions.

CONFLICT OF INTEREST STATEMENT

None declared.

REFERENCES

1. King AJ, Levey AS. Dietary protein and renal function. J Am Soc Nephrol 1993; 3: 1723–1737
2. The Low Birth Weight and Nephron Number Working Group. The impact of kidney development on the life course: a consensus document for action. Nephron 2017; 136: 3–49
3. Delanaye P, Cavalier E, Potel H. Serum creatinine: not so simple! Nephron 2017; 136: 302–308
4. Ronco C, Bellomo R, Kellum J. Understanding renal functional reserve. Intensive Care Med 2017; 39(Suppl 2): 353
5. Koopman MG, Koomen GC, Krediet RT et al. Circadian rhythm of glomerular filtration rate in normal individuals. Clin Sci 1989; 77: 105–111
6. Verney EB. The reserve forces of the kidney. Lancet 1930; 216: 63–69
7. Bosch JP, Saccaggi A, Lauer A et al. Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate. Am J Med 1983; 75: 943–950
8. Amiel C, Blanchet F, Friedlander G et al. Renal functional reserve. Nephrol Dial Transplant 1990; 5: 763–770
9. Rodriguez-Iturbe B. The renal response to an acute protein load in man: clinical perspective. Nephrol Dial Transplant 1990; 5: 1–9
10. Zuccalà A, Zucchelli P. Use and misuse of the renal functional reserve concept in clinical nephrology. Nephrol Dial Transplant 1990; 5: 410–417
11. Woods LL. Mechanisms of renal hemodynamic regulation in response to protein feeding. Kidney Int 1993; 44: 659–675
12. Thomas DM, Coles GA, Williams JD. What does the renal reserve mean? Kidney Int 1994; 45: 411–416
13. Ronco C, Chawla LS. Glomerular and tubular kidney stress test: new tools for a deeper evaluation of kidney function. Nephron 2016; 134: 191–194
14. Sharma A, Mucino MJ, Ronco C. Renal functional reserve and renal recovery after acute kidney injury. Nephron Clin Pract 2014; 127: 94–100
15. Chawla LS, Ronco C. Renal stress testing in the assessment of kidney disease. Kidney Int Rep 2016; 1: 57–63
16. Molitoris BA. Rethinking CKD evaluation: should we be quantifying basal or stimulated GFR to maximize precision and sensitivity? Am J Kidney Dis 2017; 69: 675–683
17. Forni LG, Darmon M, Ostermann M et al. Renal recovery after acute kidney injury. Intensive Care Med 2017; 43: 855–866
18. Bellomo R, Ronco C, Mehta RL, et al. Acute kidney injury in the ICU: from injury to recovery: reports from the 5th Paris International Conference. Ann Intensive Care 2017; 7: 49
19. Koratala A, Kazory A. Pregnancy outcomes in ‘recovered’ acute kidney injury: underscoring renal functional reserve. Nephron 2017; 136: 243–244
20. Levin A, Tonelli M, Bonventre J et al. Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. Lancet 2017; 390: 1888–1917
21. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2012; 2: 1–138
22. Mansy H, Patel D, Tapson JS et al. Four methods to recruit renal functional reserve. Nephrol Dial Transplant 1987; 2: 228–232

Downloaded from https://academic.oup.com/ckj/article-abstract/11/5/623/4969997 by guest on 16 March 2020
64. Wiegmann TB, Zlomke AM, MacDougall ML et al. Controlled changes in chronic dietary protein intake do not change glomerular filtration rate. Am J Kidney Dis 1990; 15: 147–154

65. Liew SW, Bosch JP. Effect of diet on creatinine clearance and excretion in young and elderly healthy subjects and in patients with renal disease. J Am Soc Nephrol 1991; 2: 856–865

66. Hilbrands LB, Artz MA, Wetzelis JFM et al. Cimetidine improves the reliability of creatinine as a marker of glomerular filtration. Kidney Int 1991; 40: 1171–1176

67. Fuhrman DY, Maier PS, Schwartz GJ. Rapid assessment of renal reserve in young adults by cystatin C. Scand J Clin Lab Invest 2013; 73: 265–268

68. Peco-Antic A, Paripovic D, Kotur-Stevilovic J et al. Renal functional reserve in children with apparently normal congenital solitary functioning kidney. Clin Biochem 2012; 45: 1173–1177

69. Mueller TF, Raeder J, Oettel K et al. Cystatin C does not detect acute changes in glomerular filtration rate in early diabetic nephropathy. Ren Fail 2009; 30: 21–29

70. Rodenbach KE, Fuhrman DY, Maier PS et al. Renal response to a protein load in healthy young adults as determined by iohexol infusion clearance, cimetidine-inhibited creatinine clearance, and cystatin C estimated glomerular filtration rate. J Ren Nutr 2017; 27: 275–281

71. Dixon JJ, Lane K, Dalton RN et al. Continuous infusion of low-dose iohexol measures changing glomerular filtration rate in critically ill patients. Crit Care Med 2018; 46: 493

72. Solomon R, Goldstein S. Real-time measurement of glomerular filtration rate. Curr Opin Crit Care 2017; 23: 470–474

73. Molitoris BA, Reilly ES. Quantifying glomerular filtration rates in acute kidney injury: a requirement for translational success. Semin Nephrol 2016; 36: 31–41

74. Cutajar M, Hilton R, Olshbury J et al. Renal blood flow using arterial spin labelling MRI and calculated filtration fraction in healthy adult kidney donors pre-nephrectomy and post-nephrectomy. Eur Radiol 2015; 25: 2390–2396

75. Leung G, Kirpalani A, Szeto SG et al. Cystatin C does not detect acute changes in glomerular filtration rate. Ren Fail 2015; 376: 2349–2357

76. Fuhrman DY, Maier PS, Schwartz GJ. Rapid assessment of renal functional reserve in healthy subjects. Curr Opin Nephrol Hypertension 2017; 26: 336–336

77. Adler JL, Tack I, Durand D et al. Renal functional reserve in kidney and heart transplant recipients. J Am Soc Nephrol 1996; 7: 1145–1152

78. Grunfeld B, Perelstein E, Simoslo R et al. Renal functional reserve and microalbuminuria in offspring of hypertensive parents. Hypertension 1990; 15: 257–261

79. Fuiano G, Mancuso D, Indolfi C et al. Early detection of progressive renal dysfunction in patients with coronary artery disease. Kidney Int 2005; 68: 2773–2780

80. Pluvio C, de Pascale V, Giordano M et al. Lack of activation of renal functional reserve and microalbuminuria in offspring of hypertensive parents. Hypertension 1994; 4: 179–186

81. Dieguez S, Ayuso S, Brindo M et al. Correlation between glomerular morphology and renal haemodynamic response to amino-acid administration in patients with IgA nephropathy. Nephrol Dial Transplant 1996; 11: 2421–2425

82. Baral S, Gambhir S, Prasad N et al. Functional renal reserve capacity in different stages of chronic kidney disease. Nephrology (Carlton) 2010; 15: 350–353

83. Magri P, Rao MA, Cangianiello S et al. Early impairment of renal hemodynamic reserve in patients with asymptomatic heart failure is restored by angiotensin II antagonism. Circulation 1998; 98: 2849–2854

84. Nakamura H, Takasawa M, Kasahara S et al. Effects of acute protein loads of different sources on renal function of patients with diabetic nephropathy. Tohoku J Exp Med 1989; 159: 153–162

85. Sackmann H, Tran-Van T, Tack I. Renal functional reserve in IDDM patients. Diabetologia 1998; 41: 86–93

86. Sackmann H, Tran-Van T, Tack I et al. Contrasting renal functional reserve in very long-term type I diabetic patients with and without nephropathy. Diabetologia 2000; 43: 227–230

87. Guizar JM, Kornhauser C, Malacara JM et al. Renal functional reserve in patients with recently diagnosed type 2 diabetes
104. Ronco C, Brendolan A, Bragantini L et al. Renal functional reserve in pregnancy. *Nephrol Dial Transplant* 1988; 3: 157–161
105. Sturgiss SN, Wilkinson R, Davison JM. Renal reserve during human pregnancy. *Am J Physiol* 1996; 271: F16–F20
106. Heguilen RM, Liste AA, Bellosci AD et al. Renal response to an acute protein challenge in pregnant women with borderline hypertension. *Nephrology* 2007; 12: 254–260
107. Lowenstein J, Grantham JJ. The rebirth of interest in renal tubular function. *Am J Physiol Renal Physiol* 2016; 310: F1351–F1355
108. Voors AA, Dahlke M, Meyer S et al. Renal hemodynamic effects of serelaxin in patients with chronic heart failure: a randomized, placebo-controlled study. *Circ Heart Fail* 2014; 7: 994–1002
109. Rognant N, Laville M. To live with normal GFR: when higher is not better. *Kidney Int* 2014; 86: 10–13
110. Chang AR, Grams ME, Navaneethan SD. Bariatric surgery and kidney-related outcomes. *Kidney Int Rep* 2017; 2: 261–270
111. Doig GS, Simpson F, Bellomo R et al. Intravenous amino acid therapy for kidney function in critically ill patients: a randomized controlled trial. *Intensive Care Med* 2015; 41: 1197–1208