Lock-in range of classical PLL with impulse signals and proportionally-integrating filter

K. D. Aleksandrov, N.V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, R. V. Yuldashev
Faculty of Mathematics and Mechanics, Saint-Petersburg State University, Russia
Dept. of Mathematical Information Technology, University of Jyväskylä, Finland
Institute of Problems of Mechanical Engineering RAS, Russia

Abstract
In the present work the model of PLL with impulse signals and active PI filter in the signal’s phase space is described. For the considered PLL the lock-in range is computed analytically and obtained result are compared with numerical simulations.

Keywords: phase-locked loop, nonlinear analysis, PLL, two-phase PLL, lock-in range, Gardner’s problem on unique lock-in frequency, pull-out frequency

1. Models of classical PLL with impulse signals

Consider a physical model of classical PLL in the signals space (see Fig. 1).

This model contains the following blocks: a reference oscillator (Input), a voltage-controlled oscillator (VCO), a filter (Filter), and an analog multiplier as a phase detector (PD). The signals $\text{sign}(\sin \theta_1(t))$ and $\text{sign}(\cos \theta_2(t))$ of the Input and the VCO (here $\theta_2(0)$ is the initial phase of VCO) enter the multiplier block. The resulting impulse signal $\phi(t) = \text{sign}(\sin \theta_1(t) \cos \theta_2(t))$ is filtered by low-pass filter Filter (here $x(0)$ is an initial state of Filter). The filtered signal $g(t)$ is used as a control signal for VCO.

The equations describing the model of PLL-based circuits in the signals space are difficult for the study, since that equations are nonautonomous (see, e.g., Kudrewicz).

Email address: nkuznetsov239@gmail.com (N.V. Kuznetsov)

Preprint submitted to arXiv February 14, 2018
By contrast, the equations of model in the signal’s phase space are autonomous (Gardner 1966, Shakhgil'dyan and Lyakhovkin 1966, Viterbi 1966), what simplifies the study of PLL-based circuits. The application of averaging methods (Mitropolsky and Bogolubov 1961, Samoilenko and Petryshyn 2004) allows one to reduce the model of PLL-based circuits in the signals space to the model in the signal’s phase space (see, e.g., (Leonov et al., 2012; Leonov and Kuznetsov 2014; Leonov et al., 2015a; Kuznetsov et al., 2015b,a; Best et al., 2015).

The main difference between the physical model (Fig. 1) and the simplified mathematical model in the signal’s phase space (Fig. 2) is the absence of high-frequency component of the phase detector output. The output of the phase detector in the signal’s phase space is called a phase detector characteristic and has the form

\[K_d \varphi(\theta_1(t) - \theta_2(t)). \]

The maximum absolute value of PD output \(K_d > 0 \) is called a phase detector gain (see, e.g., (Best 2007, Goldman 2007)). The periodic function \(\varphi(\theta_\Delta(t)) \) depends on difference \(\theta_1(t) - \theta_2(t) \) (which is called a phase error and denoted by \(\theta_\Delta(t) \)). The PD characteristic depends on the design of PLL-based circuit and the signal waveforms \(f_1(\theta_1) \) of Input and \(f_2(\theta_2) \) of VCO. For PLL with impulse signals the PD characteristic is as follows (see, e.g., (Viterbi 1966, Gardner 1966, Leonov et al., 2012)):

\[
K_d = 1; \\
\varphi(\theta_\Delta(t)) = \begin{cases}
\frac{\pi}{2} \theta_\Delta(t), & \text{if } -\frac{\pi}{2} \leq \theta_\Delta(t) \leq \frac{\pi}{2}, \\
-\frac{\pi}{2} \theta_\Delta(t) + 2, & \text{if } \frac{\pi}{2} \leq \theta_\Delta(t) \leq \frac{3\pi}{2}.
\end{cases}
\]

Let us describe a model of classical PLL with impulse signals in the signal’s phase space (see Fig. 2). A reference oscillator and a voltage-controlled oscillator generate the phases \(\theta_1(t) \) and \(\theta_2(t) \), respectively. The frequency of reference signal usually assumed to be constant:

\[\dot{\theta}_1(t) = \omega_1. \]

The phases \(\theta_1(t) \) and \(\theta_2(t) \) enter the inputs of the phase detector. The output of phase detector is processed by Filter. Further we consider the active PI filter (see, e.g., (Baker 2007)).
with transfer function $W(s) = \frac{1+\tau_2 s}{\tau_1 s}$, $\tau_1 > 0$, $\tau_2 > 0$. The considered filter can be described as

$$\begin{cases}
\dot{x}(t) = K_d \varphi(\theta_\Delta(t)), \\
G(t) = \frac{1}{\tau_1} x(t) + \frac{\tau_2}{\tau_1} K_d \varphi(\theta_\Delta(t)),
\end{cases} \tag{3}$$

where $x(t)$ is the filter state.

The output of Filter $G(t)$ is used as a control signal for VCO:

$$\dot{\theta}_2(t) = \omega_2^\text{free} + K_v G(t), \tag{4}$$

where ω_2^free is the VCO free-running frequency and $K_v > 0$ is the VCO gain.

Relations (2), (3), and (4) result in autonomous system of differential equations

$$\begin{cases}
\dot{x} = K_d \varphi(\theta_\Delta), \\
\dot{\theta}_\Delta = \omega_1 - \omega_2^\text{free} - K_v \tau_1 (x + \tau_2 K_d \varphi(\theta_\Delta)).
\end{cases} \tag{5}$$

Denote the difference of the reference frequency and the VCO free-running frequency $\omega_1 - \omega_2^\text{free}$ by $\omega_\Delta^\text{free}$. By the linear transformation $x \rightarrow K_d x$ we have

$$\begin{cases}
\dot{x} = \varphi(\theta_\Delta), \\
\dot{\theta}_\Delta = \omega_\Delta^\text{free} - K_0 \tau_1 (x + \tau_2 \varphi(\theta_\Delta)),
\end{cases} \tag{6}$$

where $K_0 = K_v K_d$ is the loop gain. Here (6) describes the model of PLL with the impulse signals and active PI filter in the signal’s phase space.

By the transformation

$$\left(\omega_\Delta^\text{free}, x, \theta_\Delta\right) \rightarrow \left(-\omega_\Delta^\text{free}, -x, -\theta_\Delta\right),$$

with odd PD characteristic (1) is not changed. This property allows one to use the concept of frequency deviation

$$|\omega_\Delta^\text{free}| = |\omega_1 - \omega_2^\text{free}|$$

and consider (6) with $\omega_\Delta^\text{free} > 0$ only.

The PLL state for which the VCO frequency is adjusted to the reference frequency of Input is called a locked state. The locked states of the PLL correspond to the locally asymptotically stable equilibria of (6), which can be found from the relations

$$\begin{cases}
\varphi(\theta_{eq}) = 0, \\
\omega_\Delta^\text{free} - K_0 \tau_1 x_{eq} = 0.
\end{cases}$$

Since (6) is 2π-periodic in θ_Δ, we can consider (6) in a 2π-interval of θ_Δ, $\theta_\Delta \in (-\pi, \pi]$. In interval $\theta_\Delta \in (-\pi, \pi]$ there exist two equilibria:

$$\left(\theta_{eq}, x_{eq}(\omega_\Delta^\text{free})\right) = (0, \frac{\omega_\Delta^\text{free} \tau_1}{K_0}) \text{ and } \left(\theta_{eq}^u, x_{eq}(\omega_\Delta^\text{free})\right) = (\pi, \frac{\omega_\Delta^\text{free} \tau_1}{K_0}).$$

As is shown below (see Appendix A) the equilibria

$$\left(\theta_{eq} + 2\pi k, x_{eq}(\omega_\Delta^\text{free})\right) = \left(2\pi k, \frac{\omega_\Delta^\text{free} \tau_1}{K_0}\right)$$
are locally asymptotically stable. Hence, the locked states of (6) are given by equilibria \((\theta^s_{eq}, x_{eq}(\omega^\Delta_{free})) \). The remaining equilibria

\[
(\theta^u_{eq} + 2\pi k, x_{eq}(\omega^\Delta_{free})) = \left(\pi + 2\pi k, \frac{\omega^\Delta_{free}\tau_1}{K_0} \right)
\]

are saddle equilibria (see Appendix A).

2. The lock-in range

The model of classical PLL with impulse signals and active PI filter in the signal’s phase space is globally asymptotically stable (see, e.g., (Gubar', 1961; Leonov and Aleksandrov, 2015)). The PLL achieves locked state for any initial VCO phase \(\theta^2(0) \) and filter state \(x(0) \). So, there exist no limit cycles of the first kind, heteroclinic trajectories, and limit cycles of the second kind on the phase plane of (6) (see Fig. 3).

However, the phase error \(\theta^\Delta \) may significantly increase during the acquisition process. In order to consider the property of the model to synchronize without undesired growth of the phase error \(\theta^\Delta \), a lock-in range concept was introduced in (Gardner, 1966): “If, for some reason, the frequency difference between input and VCO is less than the loop bandwidth, the loop will lock up almost instantaneously without slipping cycles. The maximum frequency difference for which this fast acquisition is possible is called the lock-in frequency”. The lock-in range concept is widely used in engineering literature on the PLL-based circuits study (see, e.g., (Stensby, 1997; Kihara et al., 2002; Kroupa, 2003; Gardner, 2005; Best, 2007)). It is said that a cycle slipping occurs if (see, e.g., (Ascheid and Meyr, 1982; Ershova and Leonov, 1983; Smirnova et al., 2014))

\[
\limsup_{t \to +\infty} |\theta^\Delta(0) - \theta^\Delta(t)| \geq 2\pi.
\]

However, in general, even for zero frequency deviation (\(\omega^\Delta_{free} = 0 \)) and a sufficiently large initial state of filter \(x(0) \), cycle slipping may take place, thus in 1979 Gardner wrote: “There is no natural way to define exactly any unique lock-in frequency” and “despite its vague reality, lock-in range is a useful concept” (Gardner, 1979).

To overcome the stated problem, in (Kuznetsov et al., 2015c; Leonov et al., 2015b) the rigorous mathematical definition of a lock-in range is suggested:
Figure 4: The lock-in domain and cycle slipping.

Definition 1. (Kuznetsov et al., 2015c; Leonov et al., 2015b) The lock-in range of model (6) is a range \([0, \omega_l]\) such that for each frequency deviation \(|\omega_{\Delta}^{\text{free}}| \in [0, \omega_l]\) the model (6) is globally asymptotically stable and the following domain

\[
D_{\text{lock-in}}((-\omega_l, \omega_l)) = \bigcap_{|\omega_{\Delta}^{\text{free}}| < \omega_l} D_{\text{lock-in}}(\omega_{\Delta}^{\text{free}})
\]

contains all corresponding equilibria \((\theta_{eq}^{s}, x_{eq}(\omega_{\Delta}^{\text{free}}))\).

For model (6) each lock-in domain from intersection \(\bigcap_{|\omega_{\Delta}^{\text{free}}| < \omega_l} D_{\text{lock-in}}(\omega_{\Delta}^{\text{free}})\) is bounded by the separatrices of saddle equilibria \((\theta_{eq}^{u}, x_{eq}(\omega_{\Delta}^{\text{free}}))\) and vertical lines \(\theta_{\Delta} = \theta_{eq}^{s} \pm 2\pi\). Thus, the behavior of separatrices on the phase plane is the key to the lock-in range study (see Fig. 5).

3. Phase plane analysis for the lock-in range estimation

Consider an approach to the lock-in range computation of (6), based on the phase plane analysis. To compute the lock-in range of (6) we need to consider the behavior of the lower separatrix \(Q(\theta_{\Delta}, \omega_{\Delta}^{\text{free}})\), which tends to the saddle point \((\theta_{eq}^{s}, x_{eq}(\omega_{\Delta}^{\text{free}})) = \left(\pi, \frac{\omega_{\Delta}^{\text{free}}}{K_0} \frac{\tau_1}{\tau_1}\right)\) as \(t \to +\infty\) (by the symmetry of the lower and the upper half-planes, the consideration of the upper separatrix is also possible). The parameter \(\omega_{\Delta}^{\text{free}}\) shifts the phase plane vertically.

To check this, we use a linear transformation \(x \to x + \omega_{\Delta}^{\text{free}} \frac{\tau_1}{K_0}\). Thus, to compute the lock-in range of (6), we need to find \(\omega_{\Delta}^{\text{free}} = \omega_l\) (where \(\omega_l\) is called a lock-in frequency) such that (see Fig. 5)

\[
x_{eq}(-\omega_l) = Q(\theta_{eq}^{s}, \omega_l).
\]

By (7), we obtain an exact formula for the lock-in frequency \(\omega_l\):

\[
\frac{\omega_l}{K_0/\tau_1} = \frac{\omega_l}{K_0/\tau_1} + Q(\theta_{eq}^{s}, 0),
\]

\[
\omega_l = \frac{K_0 Q(\theta_{eq}^{s}, 0)}{2\tau_1},
\]

(8)
Numerical simulations are used to compute the lock-in range of (6) applying (8). The separatrix \(Q(\theta_\Delta, 0)\) is numerically integrated and the corresponding \(\omega_l\) is approximated. The obtained numerical results can be illustrated by special diagram (see Fig. 5). Note that (6) depends on the value of two coefficients \(K_0/\tau_1\) and \(\tau_2\). In Fig. 5 choosing X-axis as \(K_0/\tau_1\), we can plot a single curve for every fixed value of \(\tau_2\). The results of numerical simulations show that for sufficiently large \(K_0/\tau_1\), the value of \(\omega_l\) grows almost proportionally to \(K_0/\tau_1\). Hence, \(\frac{\omega_l}{K_0}\) is almost constant for sufficiently large \(K_0/\tau_1\) and in Fig. 5 the Y-axis can be chosen as \(\frac{\omega_l}{K_0}\).

To obtain the lock-in frequency \(\omega_l\) for fixed \(\tau_1, \tau_2,\) and \(K_0\) using Fig. 5 we consider the curve corresponding to the chosen \(\tau_2\). Next, for X-value equal \(\frac{K_0}{\tau_1}\) we get the Y-value of the curve. Finally, we multiply the Y-value by \(\frac{K_0}{\tau_1}\).

Consider an analytical approach to the exact lock-in range computation. Main stages of computation are presented in Subsection 3.1.

3.1. Analytical approach to the lock-in range computation

Consider a system

\[
\begin{align*}
\dot{\theta}_\Delta(t) &= y(t), \\
\dot{y}(t) &= -\frac{K_0}{\tau_1} \cdot \phi(\theta_\Delta(t)) y(t) - \frac{K_0}{\tau_1} \cdot \phi(\theta_\Delta(t)),
\end{align*}
\]

where \(y(t) = \omega_{\text{free}} - \frac{K_0}{\tau_1} (x(t) + \tau_2 \phi(\theta_\Delta(t)))\). Relations (9) are equivalent to (6) and allow one to exclude \(\omega_{\text{free}}\) from the computation. Note that equilibria \((\theta_{eq}, y_{eq})\) of (9) and the corresponding equilibria \((\theta_{eq}, x_{eq})\) of (6) are of the same type and related as

\[\begin{align*}
(\theta_{eq}, y_{eq}) &= \left(\theta_{eq}, \omega_{\text{free}} - K_0 b x_{eq}\right).
\end{align*}\]
The separatrix $Q(\theta_\Delta, \omega_\Delta)$ from (8) corresponds to the upper separatrix $S'(\theta_\Delta)$ of the phase plane of (9) (see Fig. 7) and the following relation

$$Q(\theta_{eq}, \omega_\Delta) = \frac{\tau_1}{K_0} \left(\frac{\omega_\Delta}{\omega_\text{free}} - S'(\theta_{eq}) \right)$$

is valid.

Relation (8) takes the form

$$\omega_l = \frac{1}{2} S'(\theta_{eq}). \quad (10)$$

The computation of the separatrix $S'(\theta_\Delta)$ is in two steps. Step 1: we integrate the separatrix $S'(\theta_\Delta)$ in the interval $\left(\frac{\pi}{2}, \pi \right)$ (in which the function $\varphi(\theta_\Delta)$ is continuously differentiable) and compute $S'(\frac{\pi}{2})$. For this purpose, we need to find the eigenvector that
corresponds to separatrix $S'(\theta_\Lambda)$ on the considered interval. Step 2: we find a general solution of (9) on the interval $(-\frac{\pi}{2}, \frac{\pi}{2})$. Here there exist three cases depending on the type stable equilibrium $(\theta_{eq}, 0)$: a stable focus, stable node, and stable degenerated node. For every case described above we perform separate computations. Using the computed $S'(\frac{\pi}{2})$ as the initial data of the Cauchy problem, it is possible to obtain an exact expression for $S'(\theta_{eq})$.

The obtained analytical results are illustrated in Fig. 8. The red line in Fig. 8 is used for the case of stable focus, and the green line for the case of stable node. The crosses are used for the case of stable degenerated node.

![Figure 8: Diagram for the lock-in frequency ω_l calculation.](image)

The formulae for three possible cases are given below (redefinitions $a = \frac{\tau_2}{\tau_1}$, $b = \frac{1}{\tau_1}$ are used to reduce the analytical formulae):

A. $(aK_0)^2 - 2bK_0\pi > 0$ that corresponds to a stable node:

$$\omega_l = \frac{1}{\pi} c_1 \sqrt{(aK_0)^2 - 2bK_0\pi} \left(\frac{c_2}{c_1}\right) \left(1 - \frac{aK_0}{2\sqrt{(aK_0)^2 - 2bK_0\pi}}\right),$$

where $c_1 = \frac{\pi}{4} \left(\sqrt{(aK_0)^2 + 2bK_0\pi} + 1\right)$, $c_2 = \frac{\pi}{4} \left(1 - \frac{\sqrt{(aK_0)^2 + 2bK_0\pi}}{\sqrt{(aK_0)^2 - 2bK_0\pi}}\right).$

B. $(aK_0)^2 - 2bK_0\pi = 0$ that corresponds to a stable degenerated node:

$$\omega_l = \frac{1}{2} c_2 e^{\left(-\frac{aK_0}{2c_2}\right)}, \text{ where } c_2 = \frac{\sqrt{(aK_0)^2 + 2bK_0\pi}}{2}.$$
C. \((aK_0)^2 - 2bK_0\pi < 0\) that corresponds to a stable focus:

\[
\begin{align*}
\omega_l &= -\frac{aK_0}{2\pi} e^{t_0 \Re \lambda_1^s} (c_1 \cos (t_0 \Im \lambda_1^s) + c_2 \sin (t_0 \Im \lambda_1^s)) + \\
&\quad + \frac{e^{t_0 \Re \lambda_1^s}}{2\sqrt{2bK_0\pi - (aK_0)^2}} (c_2 \cos (t_0 \Im \lambda_1^s) - c_1 \sin (t_0 \Im \lambda_1^s)),
\end{align*}
\]

(13)

where \(t_0 = \arctan \left(-\frac{c_1}{c_2} \right) \), \(c_1 = \pi/2\), \(c_2 = \frac{\pi (aK_0)^2 + 4bK_0(\pi - \frac{1}{K_0})}{2\sqrt{2bK_0\pi - (aK_0)^2}}\),

\[\lambda_1^s = -aK_0 + i\sqrt{2bK_0\pi - (aK_0)^2} / \pi.\]

Rigorous derivation of (11), (12), and (13) is given in Appendix A. The analytical and numerical results are compared in Fig. 9.

\[\begin{array}{c|c}
\hline
\text{Figure 9: Comparison of analytical and numerical results on the lock-in computation.} \\
\end{array}\]

4. Conclusion

In the present work the model of PLL with impulse signals and active PI filter in the signal’s phase space is described. For the considered PLL the lock-in range is computed analytically and obtained result are compared with numerical simulations.

Appendix A. The lock-in computation

In this section equations (11), (12), and (13) are rigorously derived. Consider the following relations

\[
\begin{align*}
\dot{\theta}_\Delta &= y, \\
\dot{y} &= -aK_0 \dot{\varphi}(\theta_\Delta) y - bK_0 \varphi(\theta_\Delta).
\end{align*}
\]

(A.1)

Also we consider a normalized \(2\pi\)-periodic zigzag function

\[
\varphi(\theta_\Delta) = \begin{cases}
 k\theta_\Delta, & \text{if } -\frac{1}{K} \leq \theta_\Delta \leq \frac{1}{K}, \\
 -\frac{k}{\pi k - 1} \theta_\Delta + \frac{\pi k}{\pi k - 1}, & \text{if } \frac{1}{K} \leq \theta_\Delta \leq 2\pi - \frac{1}{K}
\end{cases}
\]

(A.2)
for finite \(k > \frac{1}{\pi} \) in the interval \(\theta_\Delta \in \left[-\frac{1}{k}, 2\pi - \frac{1}{k} \right) \). For \(k = \frac{2}{\pi} \) the function \(\varphi(\theta_\Delta) \) is triangular and corresponds to (1).

From \(2\pi \)-periodicity of (A.1) it follows that for each interval the behavior of phase trajectories on the system phase plane is the same

\[
\theta_\Delta \in \left(-\frac{1}{k} + 2\pi j, -\frac{1}{k} + 2\pi (j + 1) \right], \quad j \in \mathbb{Z}.
\]

Thus, we can consider a single interval \(\left(-\frac{1}{k}, 2\pi - \frac{1}{k} \right) \) of the phase plane of (A.1).

In the intervals inside \(\left(-\frac{1}{k}, 2\pi - \frac{1}{k} \right) \), (A.1) takes the form:

I. \(-\frac{1}{k} < \theta_\Delta < \frac{1}{k} \)

\[
\begin{align*}
\dot{\theta}_\Delta &= y, \\
\dot{y} &= -aK_0 ky - bK_0 k\theta_\Delta;
\end{align*}
\]

II. \(\frac{1}{k} < \theta_\Delta < 2\pi - \frac{1}{k} \)

\[
\begin{align*}
\dot{\theta}_\Delta &= y, \\
\dot{y} &= aK_0 \frac{k}{\pi k - 1} y + bK_0 \left(\frac{k}{\pi k - 1} \theta_\Delta - \frac{\pi k}{\pi k - 1} \right).
\end{align*}
\]

In each interval there exists only one equilibrium:

I. \(-\frac{1}{k} < \theta_\Delta < \frac{1}{k} \)

\[
\begin{align*}
y_{eq} &= 0, \\
-aK_0 ky - bK_0 k\theta_{eq} &= 0; \quad \theta_{eq} = 0;
\end{align*}
\]

II. \(\frac{1}{k} < \theta_\Delta < 2\pi - \frac{1}{k} \)

\[
\begin{align*}
y_{eq} &= 0, \\
\frac{aK_0 k}{\pi k - 1} y_{eq} + \frac{bK_0 k}{\pi k - 1} (\theta_{eq} - \pi) &= 0. \quad \theta_{eq} = \pi.
\end{align*}
\]

To define a type of the equilibria points, we compute the corresponding characteristic polynomial and eigenvalues. For the first equilibrium \((\theta_{eq}, y_{eq}) = (0, 0) \) the characteristic polynomial is as follows

\[
\chi(\lambda) = \left| \begin{array}{cc}
-\lambda & 1 \\
-bK_0 k & -aK_0 k - \lambda \end{array} \right| = \lambda^2 + aK_0 k\lambda + bK_0 k.
\]

The eigenvalues of the equilibrium \((\theta_{eq}, y_{eq}) = (0, 0) \) depend on a sign of \((aK_0)^2 - \frac{4bK_0}{k} \).

Here, there exist three cases:

A. \((aK_0)^2 - \frac{4bK_0}{k} > 0 \):

\[
\lambda_{1,2}^s = \frac{-aK_0 k \pm \sqrt{(aK_0 k)^2 - 4bK_0 k}}{2},
\]

the equilibrium \((0, 0) \) is a stable node.

B. \((aK_0)^2 - \frac{4bK_0}{k} = 0 \):

\[
\lambda_1^s = \lambda_2^s = \frac{-aK_0 k}{2},
\]

10
the equilibrium \((0,0)\) is a stable degenerated node, or stable proper node.

C. \((aK_0)^2 - 4bK_0/k < 0:\)

\[
\lambda_{1,2}^s = \frac{-aK_0k \pm i\sqrt{4bK_0k - (aK_0k)^2}}{2},
\]

the equilibrium \((0,0)\) is a stable focus.

Denote \((\theta_{eq}^s, y_{eq}) = (0,0).\)

For the second equilibrium \((\theta_{eq}, y_{eq}) = (\pi,0)\) we have

\[
\begin{aligned}
\chi(\lambda) &= \left| \begin{array}{cc}
-\lambda & 1 \\
\frac{bK_0k}{\pi k - 1} & \frac{aK_0k}{\pi k - 1} - \lambda
\end{array} \right| = \lambda^2 - \frac{aK_0k}{\pi k - 1} \lambda - \frac{bK_0k}{\pi k - 1},
\end{aligned}
\]

\[
\lambda_{1,2}^u = \frac{aK_0k}{\pi k - 1} \pm \sqrt{\left(\frac{aK_0k}{\pi k - 1}\right)^2 + \frac{4bK_0k}{\pi k - 1}},
\]

which means that \((\pi,0)\) is always an unstable saddle for the considered parameters of the PLL. Denote \((\theta_{eq}^u, y_{eq}) = (\pi,0).\)

The calculation of \(S'(\theta_{eq}^s)\) from formula (10) for lock-in range is in some stages. First, find two-dimensional eigenvectors \(X_1^u, X_2^u\) of saddle point \((\theta_{eq}^u, y_{eq})\) from the interval \(\theta_{\Delta} \in \left(\frac{1}{k}, 2\pi - \frac{1}{k}\right).\)

Next, compute \(S'(\frac{1}{k})\), which is possible due to the continuity of (A.1). Find two-dimensional eigenvectors \(X_1^s, X_2^s\) of stable equilibrium \((\theta_{eq}^s, y_{eq})\) in the interval \(\theta_{\Delta} \in \left(-\frac{1}{k}, \frac{1}{k}\right).\)

Find a general solution of (A.1) in the interval \(\theta_{\Delta} \in \left(-\frac{1}{k}, \frac{1}{k}\right).\) Using the obtained \(S'(\frac{1}{k})\) as the initial data of the Cauchy problem, we can compute \(S'(\theta_{eq}^s)\).

Let us find the eigenvectors \(X_1^u, X_2^u\) of a saddle point \((\theta_{eq}^u, y_{eq}).\) First, find the eigenvector \(X_1^u:\)

\[
\left(\begin{array}{cc}
-\lambda & 1 \\
\frac{bK_0k}{\pi k - 1} & \frac{aK_0k}{\pi k - 1} - \lambda
\end{array} \right) X_1^u = \Theta,
\]

\[
\left(\begin{array}{cc}
\frac{aK_0k}{\pi k - 1} + \sqrt{\left(\frac{aK_0k}{\pi k - 1}\right)^2 + \frac{4bK_0k}{\pi k - 1}} \\
\frac{bK_0k}{\pi k - 1} & \frac{aK_0k}{\pi k - 1} - \sqrt{\left(\frac{aK_0k}{\pi k - 1}\right)^2 + \frac{4bK_0k}{\pi k - 1}}
\end{array} \right)
\left(\begin{array}{c}
1 \\
\frac{aK_0k}{\pi k - 1} + \sqrt{\left(\frac{aK_0k}{\pi k - 1}\right)^2 + \frac{4bK_0k}{\pi k - 1}} \\
\frac{bK_0k}{\pi k - 1} & \frac{aK_0k}{\pi k - 1} - \sqrt{\left(\frac{aK_0k}{\pi k - 1}\right)^2 + \frac{4bK_0k}{\pi k - 1}}
\end{array} \right)
\right) X_1^u = \Theta,
\]

\[
\left(\begin{array}{cc}
\frac{aK_0k}{\pi k - 1} + \sqrt{\left(\frac{aK_0k}{\pi k - 1}\right)^2 + \frac{4bK_0k}{\pi k - 1}} \\
\frac{bK_0k}{\pi k - 1} & \frac{aK_0k}{\pi k - 1} - \sqrt{\left(\frac{aK_0k}{\pi k - 1}\right)^2 + \frac{4bK_0k}{\pi k - 1}}
\end{array} \right)
\left(\begin{array}{c}
1 \\
\frac{aK_0k}{\pi k - 1} - \sqrt{\left(\frac{aK_0k}{\pi k - 1}\right)^2 + \frac{4bK_0k}{\pi k - 1}} \\
\frac{bK_0k}{\pi k - 1} & \frac{aK_0k}{\pi k - 1} + \sqrt{\left(\frac{aK_0k}{\pi k - 1}\right)^2 + \frac{4bK_0k}{\pi k - 1}}
\end{array} \right)
\right) X_1^u = \Theta.
\]

Multiply the second row of (A.5) by \(\frac{aK_0k}{\pi k - 1} + \sqrt{\left(\frac{aK_0k}{\pi k - 1}\right)^2 + \frac{4bK_0k}{\pi k - 1}}\) and divide it by \(\frac{bK_0k}{\pi k - 1}\).
Then we have

$$\begin{pmatrix}
-\frac{a_{0}}{\pi k} + \frac{1}{2} \left(\frac{a_{0}}{\pi k} \right)^2 + \frac{4b_{0}}{\pi k} \\
\frac{a_{0}}{\pi k} + \frac{1}{2} \left(\frac{a_{0}}{\pi k} \right)^2 + \frac{4b_{0}}{\pi k}
\end{pmatrix}
\begin{pmatrix}
\frac{1}{4b_{0}} \\
\frac{1}{4b_{0}}
\end{pmatrix}
X_{1}^{u} = \mathbb{O},$$

Hence,

$$X_{1}^{u} = \begin{pmatrix}
c \sqrt{(a_{0}k)^2 + 4b_{0}k(\pi k - 1) + a_{0}k} \\
\frac{2b_{0}k}{(a_{0}k)^2 + 4b_{0}k(\pi k - 1) - (a_{0}k)^2}
\end{pmatrix}.$$

Let us choose $c = \sqrt{(a_{0}k)^2 + 4b_{0}k(\pi k - 1) - a_{0}k}$. Then

$$X_{1}^{u} = \begin{pmatrix}
\sqrt{(a_{0}k)^2 + 4b_{0}k(\pi k - 1) - a_{0}k} \\
\frac{2b_{0}k}{(a_{0}k)^2 + 4b_{0}k(\pi k - 1) - (a_{0}k)^2}
\end{pmatrix}.$$

Next, find the second eigenvector X_{2}^{u} in the same way:

$$\begin{pmatrix}
-\frac{\lambda_{2}^{u}}{b_{0}k} + \frac{1}{\pi k - 1} - \lambda_{2}^{u} \\
\frac{a_{0}k}{\pi k - 1} + \frac{1}{2} \left(\frac{a_{0}k}{\pi k - 1} \right)^2 + \frac{4b_{0}k}{\pi k - 1}
\end{pmatrix}
X_{2}^{u} = \mathbb{O},$$

$$X_{2}^{u} = \begin{pmatrix}
\frac{2b_{0}k}{(a_{0}k)^2 + 4b_{0}k(\pi k - 1) - (a_{0}k)^2} \\
\frac{1}{2b_{0}k}
\end{pmatrix}.$$

(A.6)
Multiply the second row of (A.6) by \(\sqrt{\frac{(aK_0k)^2 + 4bK_0k(\pi k - 1) - aK_0k}{\pi k - 1}}\), and divide it by \(bK_0k\). Then

\[
\begin{pmatrix}
\sqrt{\frac{(aK_0k)^2 + 4bK_0k(\pi k - 1) - aK_0k}{\pi k - 1}} \quad 2 \\
\sqrt{\frac{(aK_0k)^2 + 4bK_0k(\pi k - 1) - aK_0k}{\pi k - 1}} \quad \frac{1}{2bK_0k}
\end{pmatrix}
\]

\[X^u_2 = \emptyset,
\]

\[
\begin{pmatrix}
\sqrt{\frac{(aK_0k)^2 + 4bK_0k(\pi k - 1) - aK_0k}{\pi k - 1}} \quad 2 \\
\sqrt{\frac{(aK_0k)^2 + 4bK_0k(\pi k - 1) - aK_0k}{\pi k - 1}} \quad \frac{1}{2bK_0k}
\end{pmatrix}
\]

\[X^u_2 = \emptyset.
\]

Hence,

\[X^u_2 = \begin{pmatrix} -c \\ c \sqrt{\frac{(aK_0k)^2 + 4bK_0k(\pi k - 1) - aK_0k}{\pi k - 1}} \end{pmatrix}.
\]

Choose \(c = \frac{\sqrt{(aK_0k)^2 + 4bK_0k(\pi k - 1) + aK_0k}}{2bK_0k} \):

\[X^u_2 = \begin{pmatrix}
\frac{2bK_0k}{(aK_0k)^2 + 4bK_0k(\pi k - 1) - (aK_0k)^2} \\
\frac{4bK_0k(\pi k - 1)}{2bK_0k}
\end{pmatrix}.
\]

We can show that the direction of separatrix \(S'(\theta_{\Delta})\) coincides with the direction of eigenvector \(X^u_2\), which corresponds to eigenvalue \(\lambda^u_2\). That allows us to find \(S'(\frac{1}{2})\). For this purpose, we write an equation of straight line, which passes through two points

\[(x_1, y_1) = (\pi, 0), \quad (x_2, y_2) = \left(\pi - \frac{\sqrt{(aK_0k)^2 + 4bK_0k(\pi k - 1) + aK_0k}}{2bK_0k}, 1\right).
\]
The equation takes the form
\[
\frac{y - 0}{1 - 0} = \frac{x - \pi}{\pi - \sqrt{(aK_0 k)^2 + 4bK_0 k(\pi k - 1) + aK_0 k}} - \pi,
\]
\[
y = \frac{2bK_0 k}{\sqrt{(aK_0 k)^2 + 4bK_0 k(\pi k - 1) + aK_0 k}} (\pi - x),
\]
\[
y = \frac{2bK_0 k (\sqrt{(aK_0 k)^2 + 4bK_0 k(\pi k - 1) - aK_0 k})}{(aK_0 k)^2 + 4bK_0 k(\pi k - 1) - (aK_0 k)^2} (\pi - x),
\]
\[
y = \frac{\sqrt{(aK_0 k)^2 + 4bK_0 k(\pi k - 1) - aK_0 k}}{2(\pi k - 1)} (\pi - x).
\]

Then
\[
S'(\frac{1}{k}) = \frac{\sqrt{(aK_0 k)^2 + 4bK_0 k(\pi k - 1) - aK_0 k}}{2(\pi k - 1)} (\pi - \frac{1}{k}) = \frac{\sqrt{(aK_0)^2 + 4bK_0(\pi - \frac{1}{k}) - aK_0}}{2}.
\]

Next, we need to find the eigenvectors of equilibrium \((\theta^s_0, y_0)\) and a general solution of \((A.1)\) in the interval \((-\frac{1}{k}, \frac{1}{k})\). It was shown that for a stable equilibrium \((\theta^s_0, y_0)\) in the interval \((-\frac{1}{k}, \frac{1}{k})\) there exist three different cases, which depend on a sign of \((aK_0)^2 - \frac{4bK_0}{k}\).

The eigenvectors \(X_1^s\) and \(X_2^s\) are computed in the case of stable focus only. For other cases the computation of \(X_1^s, X_2^s\) is similar to that, considered in Appendix A.1.

Appendix A.1. Stable node

This case corresponds to \((aK_0)^2 - \frac{4bK_0}{k} > 0\). Let us find the eigenvectors \(X_1^s, X_2^s\):
\[
\begin{pmatrix}
-aK_0 k - \sqrt{(aK_0 k)^2 - 4bK_0 k} & 1 \\
-bK_0 k & -aK_0 k + \frac{aK_0 k - \sqrt{(aK_0 k)^2 - 4bK_0 k}}{2}
\end{pmatrix}
\]
\[
\begin{pmatrix}
-aK_0 k + \frac{aK_0 k - \sqrt{(aK_0 k)^2 - 4bK_0 k}}{2} & 1 \\
bK_0 k
\end{pmatrix}
\]
\[
\begin{pmatrix}
-aK_0 k - \sqrt{(aK_0 k)^2 - 4bK_0 k} & 1 \\
bK_0 k
\end{pmatrix}
\]

Multiply the second row of \((A.7)\) by \(\frac{aK_0 k - \sqrt{(aK_0 k)^2 - 4bK_0 k}}{2}\), and divide it by \(bK_0 k\):
\[
\begin{pmatrix}
-\frac{aK_0 k - \sqrt{(aK_0 k)^2 - 4bK_0 k}}{2} & 1 \\
-\frac{aK_0 k - \sqrt{(aK_0 k)^2 - 4bK_0 k}}{2} - \frac{(aK_0 k)^2 - (aK_0 k)^2 + 4bK_0 k}{4bK_0 k}
\end{pmatrix}
\]
\[
X_1^s = \emptyset,
\]

\[
X_1^s = \emptyset.
\]
\[
\begin{pmatrix}
\frac{aK_0k - \sqrt{(aK_0k)^2 - 4bK_0k}}{2} & 1 \\
-\frac{aK_0k - \sqrt{(aK_0k)^2 - 4bK_0k}}{2} & -1
\end{pmatrix} \quad X_1^s = \emptyset,
\]

\[
X_1^s = \begin{pmatrix}
-c \\
\frac{aK_0k - \sqrt{(aK_0k)^2 - 4bK_0k}}{2}
\end{pmatrix}.
\]

Choose \(c = -1 \). Then

\[
X_1^s = \begin{pmatrix}
\frac{1}{\sqrt{(aK_0k)^2 - 4bK_0k} - aK_0k} \\
\frac{1}{2}
\end{pmatrix}
\]

Next, find eigenvector \(X_2^s \):

\[
\begin{pmatrix}
-\lambda_2^s & 1 \\
-bK_0k & -aK_0k - \lambda_2^s
\end{pmatrix} \quad X_2^s = \emptyset,
\]

\[
\begin{pmatrix}
\frac{aK_0k + \sqrt{(aK_0k)^2 - 4bK_0k}}{2} & 1 \\
-bK_0k & -aK_0k + \frac{aK_0k + \sqrt{(aK_0k)^2 - 4bK_0k}}{2}
\end{pmatrix} \quad X_2^s = \emptyset,
\]

\[
\begin{pmatrix}
\frac{aK_0k + \sqrt{(aK_0k)^2 - 4bK_0k}}{2} & 1 \\
-bK_0k & -aK_0k + \frac{\sqrt{(aK_0k)^2 - 4bK_0k} - aK_0k}{2}
\end{pmatrix} \quad X_2^s = \emptyset.
\]

Multiply the second row of (A.8) by \(\frac{aK_0k + \sqrt{(aK_0k)^2 - 4bK_0k}}{2} \), and divide it by \(bK_0k \):

\[
\begin{pmatrix}
\frac{aK_0k + \sqrt{(aK_0k)^2 - 4bK_0k}}{2} & 1 \\
-\frac{aK_0k + \sqrt{(aK_0k)^2 - 4bK_0k}}{2} & (aK_0k)^2 - 4bK_0k - (aK_0k)^2
\end{pmatrix} \quad X_2^s = \emptyset,
\]

\[
\begin{pmatrix}
\frac{aK_0k + \sqrt{(aK_0k)^2 - 4bK_0k}}{2} & 1 \\
-\frac{aK_0k + \sqrt{(aK_0k)^2 - 4bK_0k}}{2} & -1
\end{pmatrix} \quad X_2^s = \emptyset,
\]

\[
X_2^s = \begin{pmatrix}
\frac{1}{\sqrt{(aK_0k)^2 - 4bK_0k} - aK_0k} \\
\frac{1}{2}
\end{pmatrix}.
\]
Choose \(c = -1 \). Then
\[
X_2^s = \left(\frac{1}{-aK_0k + \sqrt{(aK_0k)^2 - 4bK_0k}} \right).
\]

In the interval \(\theta_{\Delta} \in \left(-\frac{1}{k}, \frac{1}{k} \right) \) for \((\theta_{eq}^s, y_{eq}) = (0, 0)\) being a node, a general solution of (A.1) has the form:
\[
\begin{align*}
\theta_{\Delta}(t) &= c_1 e^{\lambda_1^s t} + c_2 e^{\lambda_2^s t}, \\
y(t) &= -c_1 \frac{aK_0k - \sqrt{(aK_0k)^2 - 4bK_0k}}{2} e^{\lambda_1^s t} - c_2 \frac{aK_0k + \sqrt{(aK_0k)^2 - 4bK_0k}}{2} e^{\lambda_2^s t}.
\end{align*}
\]

(A.9)

Let us find coefficients \(c_1, c_2 \) of (A.9) for the solution of the Cauchy problem with initial conditions \(\theta_{\Delta}(0) = \frac{1}{k}, y(0) = \frac{\sqrt{(aK_0)^2 + 4bK_0(\pi - \frac{1}{k})} - aK_0}{aK_0} \), which coincide with \(S'(\frac{1}{k}) \).

At moment \(t = 0 \) we have
\[
\begin{align*}
\frac{1}{k} &= c_1 + c_2, \\
\frac{\sqrt{(aK_0)^2 + 4bK_0(\pi - \frac{1}{k})} - aK_0}{aK_0} &= -c_1 \frac{aK_0k - \sqrt{(aK_0k)^2 - 4bK_0k}}{2} - c_2 \frac{aK_0k + \sqrt{(aK_0k)^2 - 4bK_0k}}{2},
\end{align*}
\]

\[
\begin{align*}
c_2 &= \frac{1}{k} - c_1, \\
\frac{\sqrt{(aK_0)^2 + 4bK_0(\pi - \frac{1}{k})} - aK_0}{aK_0} &= -c_1 \frac{aK_0k - \sqrt{(aK_0k)^2 - 4bK_0k}}{2} + c_1 \frac{2k}{aK_0k + \sqrt{(aK_0k)^2 - 4bK_0k}}, \\
c_2 &= \frac{1}{k} - c_1, \\
\frac{\sqrt{(aK_0)^2 + 4bK_0(\pi - \frac{1}{k})}}{2} + \frac{\sqrt{(aK_0)^2 - \frac{4bK_0}{k}}}{2} &= c_1 \sqrt{(aK_0)^2 - \frac{4bK_0}{k}},
\end{align*}
\]

\[
\begin{align*}
c_2 &= \frac{1}{k} - c_1, \\
c_1 &= \left(\frac{\sqrt{(aK_0)^2 + 4bK_0(\pi - \frac{1}{k})}}{\sqrt{(aK_0)^2 - \frac{4bK_0}{k}}} + 1 \right) : 2k,
\end{align*}
\]
Finally, find \(y(t_0) \) under the condition \(\theta_\Delta(t_0) = 0 \). The value of \(y(t_0) \) corresponds to \(S''(\theta_{eq}) \). For this purpose, we express \(y(t_0) \) in terms of \(c_1, c_2 \) from (A.10). Then

\[
\begin{align*}
0 &= c_1 e^{\lambda_1^s t_0} + c_2 e^{\lambda_2^s t_0}, \\
y(t_0) &= -c_1 \frac{aK_0 k - \sqrt{(aK_0 k)^2 - 4bK_0 k}}{2} e^{\lambda_1^s t_0} - c_2 \frac{aK_0 k + \sqrt{(aK_0 k)^2 - 4bK_0 k}}{2} e^{\lambda_2^s t_0}, \\
-\frac{c_1}{c_2} &= e^{(\lambda_2^s - \lambda_1^s) t_0}, \\
y(t_0) &= -c_1 \frac{aK_0 k - \sqrt{(aK_0 k)^2 - 4bK_0 k}}{2} e^{\lambda_1^s t_0} - c_2 \frac{aK_0 k + \sqrt{(aK_0 k)^2 - 4bK_0 k}}{2} e^{\lambda_2^s t_0}, \\
-\frac{c_1}{c_2} &= e \left(-\frac{\sqrt{(aK_0 k)^2 - 4bK_0 k + aK_0 k}}{2} - \frac{\sqrt{(aK_0 k)^2 - 4bK_0 k - aK_0 k}}{2}\right) t_0, \\
y(t_0) &= -c_1 \frac{aK_0 k - \sqrt{(aK_0 k)^2 - 4bK_0 k}}{2} e^{\lambda_1^s t_0} - c_2 \frac{aK_0 k + \sqrt{(aK_0 k)^2 - 4bK_0 k}}{2} e^{\lambda_2^s t_0}, \\
-\frac{c_1}{c_2} &= e \left(-\sqrt{(aK_0 k)^2 - 4bK_0 k}\right) t_0, \\
y(t_0) &= -c_1 \frac{aK_0 k - \sqrt{(aK_0 k)^2 - 4bK_0 k}}{2} e^{\lambda_1^s t_0} - c_2 \frac{aK_0 k + \sqrt{(aK_0 k)^2 - 4bK_0 k}}{2} e^{\lambda_2^s t_0}, \\
\ln \left(-\frac{c_1}{c_2}\right) &= -\left(\sqrt{(aK_0 k)^2 - 4bK_0 k}\right) t_0, \\
y(t_0) &= -c_1 \frac{aK_0 k - \sqrt{(aK_0 k)^2 - 4bK_0 k}}{2} e^{\lambda_1^s t_0} - c_2 \frac{aK_0 k + \sqrt{(aK_0 k)^2 - 4bK_0 k}}{2} e^{\lambda_2^s t_0}, \\
t_0 &= \frac{\ln \left(-\frac{c_2}{c_1}\right)}{\sqrt{(aK_0 k)^2 - 4bK_0 k}}, \\
y(t_0) &= -c_1 \frac{aK_0 k - \sqrt{(aK_0 k)^2 - 4bK_0 k}}{2} e^{\lambda_1^s t_0} - c_2 \frac{aK_0 k + \sqrt{(aK_0 k)^2 - 4bK_0 k}}{2} e^{\lambda_2^s t_0},
\end{align*}
\]
Transform the following expression
\[e^{\lambda_1} t_0 = e^{\left(\ln \left(-\frac{c_2}{c_1} \right) + \frac{\lambda_1^*}{\sqrt{(aK_0k)^2 - 4bK_0k}} \right)} = e^{\left(\ln \left(-\frac{c_2}{c_1} \right) + \frac{\sqrt{(aK_0k)^2 - 4bK_0k} - aK_0k}{2\sqrt{(aK_0k)^2 - 4bK_0k}} \right)} = \]
\[= \left(e^{\left(\ln \left(-\frac{c_2}{c_1} \right) \right)} \right) \left(\frac{1}{2} - \frac{aK_0k}{2\sqrt{(aK_0k)^2 - 4bK_0k}} \right) = \left(-\frac{c_2}{c_1} \right) \left(\frac{1}{2} - \frac{aK_0k}{2\sqrt{(aK_0k)^2 - 4bK_0k}} \right). \]

Similarly,
\[e^{\lambda_2} t_0 = e^{\left(\ln \left(-\frac{c_2}{c_1} \right) + \frac{\lambda_2^*}{\sqrt{(aK_0k)^2 - 4bK_0k}} \right)} = e^{\left(\ln \left(-\frac{c_2}{c_1} \right) - \frac{\sqrt{(aK_0k)^2 - 4bK_0k} + aK_0k}{2\sqrt{(aK_0k)^2 - 4bK_0k}} \right)} = \]
\[= \left(e^{\left(\ln \left(-\frac{c_2}{c_1} \right) \right)} \right) \left(\frac{1}{2} + \frac{aK_0k}{2\sqrt{(aK_0k)^2 - 4bK_0k}} \right) = \left(-\frac{c_2}{c_1} \right) \left(\frac{1}{2} - \frac{aK_0k}{2\sqrt{(aK_0k)^2 - 4bK_0k}} \right) - 1. \]

Then
\[y(t_0) = -c_1 \frac{aK_0k - \sqrt{(aK_0k)^2 - 4bK_0k}}{2} e^{\lambda_1} t_0 - c_2 \frac{aK_0k + \sqrt{(aK_0k)^2 - 4bK_0k}}{2} e^{\lambda_2^*} t_0, \]
\[y(t_0) = -c_1 \frac{aK_0k - \sqrt{(aK_0k)^2 - 4bK_0k}}{2} \left(-\frac{c_2}{c_1} \right) \left(\frac{1}{2} - \frac{aK_0k}{2\sqrt{(aK_0k)^2 - 4bK_0k}} \right), \]
\[-c_2 \frac{aK_0k + \sqrt{(aK_0k)^2 - 4bK_0k}}{2} \left(-\frac{c_2}{c_1} \right) \left(\frac{1}{2} - \frac{aK_0k}{2\sqrt{(aK_0k)^2 - 4bK_0k}} \right) - 1, \]
\[y(t_0) = -c_1 \frac{aK_0k - \sqrt{(aK_0k)^2 - 4bK_0k}}{2} \left(-\frac{c_2}{c_1} \right) \left(\frac{1}{2} + \frac{aK_0k}{2\sqrt{(aK_0k)^2 - 4bK_0k}} \right) + \]
\[+ c_1 \frac{aK_0k + \sqrt{(aK_0k)^2 - 4bK_0k}}{2} \left(-\frac{c_2}{c_1} \right) \left(\frac{1}{2} - \frac{aK_0k}{2\sqrt{(aK_0k)^2 - 4bK_0k}} \right). \]

As a result, for the case \((aK_0k)^2 - 4bK_0k > 0\), when a stable equilibrium \((\theta_{eq}^*, y_{eq})\) is a stable node, \(S'(\theta_{eq}^*)\) can be found from the following formula
\[S'(\theta_{eq}^*) = c_1 \frac{aK_0k}{2\sqrt{(aK_0k)^2 - 4bK_0k}} \left(-\frac{c_2}{c_1} \right) \left(\frac{1}{2} - \frac{aK_0k}{2\sqrt{(aK_0k)^2 - 4bK_0k}} \right), \quad \text{(A.11)} \]
Consider a solution of (A.1), which corresponds to the eigenvalue λ_1. The eigenvectors X_1^s, X_2^s are found in the same way as in Appendix A.1:

$$X_1^s = \begin{pmatrix} 1 \\ -aK_0k - i\sqrt{4bK_0k - (aK_0k)^2} \end{pmatrix}, \quad X_2^s = \begin{pmatrix} 1 \\ -aK_0k + i\sqrt{4bK_0k - (aK_0k)^2} \end{pmatrix}.$$

The eigenvectors X_1^s, X_2^s can be represented as

$$X_{1,2}(t) = U_{1,2}^s + iV_{1,2}^s,$$

where $U_{1,2}^s$, $V_{1,2}^s$ are real two-dimensional vectors:

$$U_1^s = \begin{pmatrix} 1 \\ -aK_0k \end{pmatrix}, \quad V_1^s = \begin{pmatrix} 0 \\ \sqrt{4bK_0k - (aK_0k)^2} \end{pmatrix},$$

$$U_2^s = \begin{pmatrix} 1 \\ -aK_0k \end{pmatrix}, \quad V_2^s = \begin{pmatrix} 0 \\ -\sqrt{4bK_0k - (aK_0k)^2} \end{pmatrix}.$$

Consider a solution of (A.1), which corresponds to the eigenvalue λ_1^s:

$$Y_1(t) = e^{\lambda_1^s t} X_1^s = e^{(\Re \lambda_1^s + i\Im \lambda_1^s)t} (U_1^s + iV_1^s) =$$

$$= e^{t\Re \lambda_1^s} (U_1^s \cos(t\Im \lambda_1^s) + i\sin(t\Im \lambda_1^s)) (U_1^s + iV_1^s) +$$

$$+ ie^{t\Re \lambda_1^s} (U_1^s \sin(t\Im \lambda_1^s) - V_1^s \cos(t\Im \lambda_1^s)).$$

A general solution of (A.1) takes the form

$$Y(t) = c_1 e^{t\Re \lambda_1^s} (U_1^s \cos(t\Im \lambda_1^s) - V_1^s \sin(t\Im \lambda_1^s)) +$$

$$+ c_2 e^{t\Re \lambda_1^s} (U_1^s \sin(t\Im \lambda_1^s) + V_1^s \cos(t\Im \lambda_1^s)) =$$

$$= e^{t\Re \lambda_1^s} \left[c_1 \cos(t\Im \lambda_1^s) + c_2 \sin(t\Im \lambda_1^s) \right] +$$

$$+ e^{t\Re \lambda_1^s} \sqrt{4bK_0k - (aK_0k)^2} \left[c_2 \cos(t\Im \lambda_1^s) - c_1 \sin(t\Im \lambda_1^s) \right].$$

In other words,

$$\begin{cases}
\theta_\Delta(t) = c_1 e^{t\Re \lambda_1^s} (\cos(t\Im \lambda_1^s) + c_2 \sin(t\Im \lambda_1^s)), \\
y(t) = -aK_0k e^{t\Re \lambda_1^s} \left[c_1 \cos(t\Im \lambda_1^s) + c_2 \sin(t\Im \lambda_1^s) \right] +$$

$$+ e^{t\Re \lambda_1^s} \sqrt{4bK_0k - (aK_0k)^2} \left(c_2 \cos(t\Im \lambda_1^s) - c_1 \sin(t\Im \lambda_1^s) \right) \quad (A.12) \end{cases}$$
Let us find the coefficients c_1, c_2 for the solution of the Cauchy problem with the initial data $\theta_\Delta(0) = \frac{1}{k}$, $y(0) = \sqrt{\frac{(aK_0)^2 + 4bK_0(\pi - \frac{1}{k}) - aK_0}{2}}$, similarly to Appendix A.1.

\[
\begin{align*}
\frac{1}{k} &= e^{0 \Re \lambda_1^s} (c_1 \cos(0 \Im \lambda_1^s) + c_2 \sin(0 \Im \lambda_1^s)), \\
\sqrt{(aK_0)^2 + 4bK_0(\pi - \frac{1}{k}) - aK_0} &= -\frac{aK_0k}{2} e^{0 \Re \lambda_1^s} (c_1 \cos(0 \Im \lambda_1^s) + c_2 \sin(0 \Im \lambda_1^s)) + \\
&\quad + \frac{e^{0 \Re \lambda_1^s}}{\sqrt{4bK_0k - (aK_0k)^2}} \frac{2}{2} (c_2 \cos(0 \Im \lambda_1^s) - c_1 \sin(0 \Im \lambda_1^s)),
\end{align*}
\]

\[
\begin{align*}
\frac{1}{k} &= c_1, \\
\sqrt{(aK_0)^2 + 4bK_0(\pi - \frac{1}{k}) - aK_0} &= -\frac{aK_0k}{2} c_1 + \frac{\sqrt{4bK_0k - (aK_0k)^2}}{2} c_2,
\end{align*}
\]

\[
\begin{align*}
c_1 &= \frac{1}{k}, \\
c_2 &= \sqrt{\frac{(aK_0)^2 + 4bK_0(\pi - \frac{1}{k})}{k \sqrt{4bK_0k - (aK_0k)^2}}},
\end{align*}
\]

Next, let us find t_0 such that $\theta_\Delta(t_0) = 0$.

\[
0 = e^{t_0 \Re \lambda_1^s} (c_1 \cos(t_0 \Im \lambda_1^s) + c_2 \sin(t_0 \Im \lambda_1^s)),
\]

\[
-\frac{c_1}{c_2} = \tan(t_0 \Im \lambda_1^s),
\]

\[
t_0 = \arctg\left(-\frac{c_1}{c_2}\right).
\]

Finally, all the unknowns for $y(t_0)$ from (A.12) are found and $S'(\theta_{eq}^s)$ is as follows

\[
S'(\theta_{eq}^s) = y(t_0) = -\frac{aK_0k}{2} e^{t_0 \Re \lambda_1^s} (c_1 \cos(t_0 \Im \lambda_1^s) + c_2 \sin(t_0 \Im \lambda_1^s)) + \\
+ \frac{e^{t_0 \Re \lambda_1^s}}{\sqrt{4bK_0k - (aK_0k)^2}} \frac{2}{2} (c_2 \cos(t_0 \Im \lambda_1^s) - c_1 \sin(t_0 \Im \lambda_1^s)),
\]

where

\[
t_0 = \frac{\arctg\left(-\frac{c_1}{c_2}\right)}{\Im \lambda_1^s},
\]

\[
\lambda_1^s = -aK_0k + i\sqrt{4bK_0k - (aK_0k)^2}.
\]

\[
c_1 = \frac{1}{k}, \quad c_2 = \sqrt{\frac{(aK_0)^2 + 4bK_0(\pi - \frac{1}{k})}{k \sqrt{4bK_0k - (aK_0k)^2}}}.
\]
Appendix A.3. Stable degenerated node

This case corresponds to \((aK_0)^2 - \frac{4bK_0}{k} = 0\). In this case the eigenvalues \(\lambda^*_1\) and \(\lambda^*_2\) coincide:

\[
\lambda^* = -\frac{aK_0k}{2} = \lambda^*_1 = \lambda^*_2.
\]

A stable equilibrium \((\theta_{eq}^*, y_{eq})\) is a stable degenerated node, or a stable proper node.

For the characteristic matrix

\[
\begin{pmatrix}
-\lambda^* & 1 \\
-bK_0k & -aK_0k - \lambda^*
\end{pmatrix}
\]

of \((A.1)\) it is shown that \((\theta_{eq}^*, y_{eq})\) is a stable degenerated node. Find the eigenvector \(X^*\) corresponding to the eigenvalue \(\lambda^*\) of algebraic multiplicity two:

\[
\begin{pmatrix}
-\lambda^* & 1 \\
-bK_0k & -aK_0k - \lambda^*
\end{pmatrix}
\begin{pmatrix}
X^* \\
0
\end{pmatrix} = \mathbb{0},
\]

\[
\begin{pmatrix}
\frac{aK_0k}{2} & 1 \\
-bK_0k & \frac{aK_0k}{2}
\end{pmatrix}
\begin{pmatrix}
X^* \\
0
\end{pmatrix} = \mathbb{0}.
\]

Adding the first row, multiplied by \(\frac{aK_0k}{2}\), to the second row, we have:

\[
\begin{pmatrix}
\frac{aK_0k}{2} & 1 \\
\frac{(aK_0k)^2}{4} - bK_0k & 0
\end{pmatrix}
\begin{pmatrix}
X^* \\
0
\end{pmatrix} = \mathbb{0}.
\]

The eigenvector \(X^*\) can be written as

\[
X^* = \begin{pmatrix}
c \\
-c\frac{aK_0k}{2}
\end{pmatrix}.
\]

Choose \(c = 1\). To find a general solution of \((A.1)\), we need to additionally find the first associated vector \(X_1^*:\)

\[
\begin{pmatrix}
\frac{aK_0k}{2} & 1 \\
-bK_0k & \frac{aK_0k}{2}
\end{pmatrix}
\begin{pmatrix}
X_1^* \\
0
\end{pmatrix} = \begin{pmatrix}1 \\
-c\frac{aK_0k}{2}
\end{pmatrix},
\]

\[
\begin{pmatrix}
\frac{aK_0k}{2} & 1 \\
\frac{(aK_0k)^2}{4} - bK_0k & 0
\end{pmatrix}
\begin{pmatrix}
X_1^* \\
0
\end{pmatrix} = \begin{pmatrix}1 \\
0
\end{pmatrix},
\]

\[
X_1^* = \begin{pmatrix}c \\
c - c\frac{aK_0k}{2}
\end{pmatrix}.
\]

Choose \(c = 1\).
A general solution of (A.1) has the form

\[
\begin{cases}
\theta(t) = e\left(\frac{-aK_0 k t}{2}\right) (c_1 + c_2 (t + 1)), \\
y(t) = e\left(\frac{-aK_0 k t}{2}\right) \left(-\frac{aK_0 k}{2} c_1 + c_2 \left(-\frac{aK_0 k}{2} t + 1 - \frac{aK_0 k}{2}\right)\right).
\end{cases}
\]

(A.14)

Similarly to Appendix A.1 and Appendix A.2, let us find the coefficients \(c_1\) and \(c_2\) for the solution of the Cauchy problem with the initial data \(\theta(0) = \frac{1}{k}\) and \(y(0) = \sqrt{(aK_0)^2 + 4bK_0(\pi - \frac{1}{k})} - aK_0\). In this case we have:

\[
\begin{cases}
\frac{1}{k} = c_1 + c_2, \\
\sqrt{(aK_0)^2 + 4bK_0(\pi - \frac{1}{k})} - aK_0 = -\frac{aK_0 k}{2} (1 - \frac{aK_0 k}{2}),
\end{cases}
\]

\[
\begin{cases}
c_1 = \frac{1}{k} - c_2, \\
\sqrt{(aK_0)^2 + 4bK_0(\pi - \frac{1}{k})} - aK_0 = -\frac{aK_0 k}{2} (1 - \frac{aK_0 k}{2}) - c_2 \frac{aK_0 k}{2},
\end{cases}
\]

\[
\begin{cases}
c_1 = \frac{1}{k} - c_2, \\
\sqrt{(aK_0)^2 + 4bK_0(\pi - \frac{1}{k})} = c_2,
\end{cases}
\]

\[
\begin{cases}
c_1 = \frac{1}{k} - \sqrt{(aK_0)^2 + 4bK_0(\pi - \frac{1}{k})}, \\
c_2 = \frac{\sqrt{(aK_0)^2 + 4bK_0(\pi - \frac{1}{k})}}{2},
\end{cases}
\]

Find \(t_0\) such that \(\theta(t_0) = 0\):

\[
\begin{cases}
0 = e\left(\frac{-aK_0 k}{2} t_0\right) (c_1 + c_2 (t_0 + 1)), \\
y(t_0) = e\left(\frac{-aK_0 k}{2} t_0\right) \left(-\frac{aK_0 k}{2} c_1 + c_2 \left(-\frac{aK_0 k}{2} t_0 + 1 - \frac{aK_0 k}{2}\right)\right),
\end{cases}
\]

\[
\begin{cases}
0 = e\left(\frac{-aK_0 k}{2} t_0\right) ((c_1 + c_2) + c_2 t_0), \\
y(t_0) = e\left(\frac{-aK_0 k}{2} t_0\right) \left(-\frac{aK_0 k}{2} (c_1 + c_2) + c_2 \left(-\frac{aK_0 k}{2} t_0 + 1\right)\right),
\end{cases}
\]

22
\[
\begin{aligned}
0 &= \frac{1}{k} + c_2 t_0, \\
y(t_0) &= e\left(-\frac{aK_0 k}{2} t_0 \right) \left(-\frac{aK_0}{2} + c_2 \left(-\frac{aK_0 k}{2} t_0 + 1\right)\right).
\end{aligned}
\]
\[
\begin{aligned}
t_0 &= -\frac{1}{c_2 k^2}, \\
y(t_0) &= e\left(-\frac{aK_0 k}{2} t_0 \right) \left(-\frac{aK_0}{2} - \frac{aK_0 k c_2}{2} t_0 + c_2\right).
\end{aligned}
\]
Finally, the expression for \(S'(\theta_{eq}^s) \) is as follows
\[
S'(\theta_{eq}^s) = y(t_0) = c_2 e\left(\frac{aK_0}{2c_2}\right), \tag{A.15}
\]
where
\[
c_2 = \sqrt{(aK_0)^2 + 4bK_0(\pi - \frac{1}{k})}.
\]

ACKNOWLEDGMENTS

This work was supported by the Russian Scientific Foundation and Saint-Petersburg State University. The authors would like to thank Roland E. Best, the founder of the Best Engineering Company, Oberwil, Switzerland and the author of the bestseller on PLL-based circuits [Best (2007)] for valuable discussion.

References

G. Ascheid and H. Meyr. Cycle slips in phase-locked loops: A tutorial survey. Communications, IEEE Transactions on, 30(10):2228–2241, 1982.

R. Jacob Baker. CMOS: Circuit Design, Layout, and Simulation, volume 18. John Wiley & Sons, 2011.

R.E. Best. Phase-Lock Loops: Design, Simulation and Application. McGraw-Hill, 6th edition, 2007.

R.E. Best, N.V. Kuznetsov, O.A. Kuznetsova, G.A. Leonov, M.V. Yuldashev, and R.V. Yuldashev. A short survey on nonlinear models of the classic Costas loop: rigorous derivation and limitations of the classic analysis. In Proceedings of the American Control Conference, pages 1296–1302. IEEE, 2015. doi: 10.1109/ACC.2015.7170912. art. num. 7170912, http://arxiv.org/pdf/1505.04288v1.pdf.

O. B. Ershova and G. A. Leonov. Frequency estimates of the number of cycle slidings in phase control systems. Avtomat. Remove Control, 44(5):600–607, 1983.

F.M. Gardner. Phase-lock techniques. John Wiley & Sons, New York, 1966.

F.M. Gardner. Phase-lock techniques. John Wiley & Sons, New York, 2nd edition, 1979.
F.M. Gardner. *Phase lock Techniques*. Wiley, 3rd edition, 2005.

S.J. Goldman. *Phase-Locked Loops Engineering Handbook for Integrated Circuits*. Artech House, 2007.

N. A. Gubarev. Investigation of a piecewise linear dynamical system with three parameters. *J. Appl. Math. Mech.*, 25(6):1011–1023, 1961.

M. Kihara, S. Ono, and P. Eskelinen. *Digital Clocks for Synchronization and Communications*. Artech House, 2002.

V.F. Kroupa. *Phase Lock Loops and Frequency Synthesis*. John Wiley & Sons, 2003.

J. Kudrewicz and S. Wasowicz. *Equations of phase-locked loop. Dynamics on circle, torus and cylinder*. World Scientific, 2007.

N.V. Kuznetsov, O.A. Kuznetsova, G.A. Leonov, P. Neitaaanmaki, M.V. Yuldashev, and R.V. Yuldashev. Limitations of the classical phase-locked loop analysis. *Proceedings - IEEE International Symposium on Circuits and Systems*, 2015-July:533–536, 2015a. doi: http://dx.doi.org/10.1109/ISCAS.2015.7168688.

N.V. Kuznetsov, G.A. Leonov, S.M. Seledzgi, M.V. Yuldashev, and R.V. Yuldashev. Elegant analytic computation of phase detector characteristic for non-sinusoidal signals. *IFAC-PapersOnLine*, 48(11):960–963, 2015b. doi: http://dx.doi.org/10.1016/j.ifacol.2015.09.316.

N.V. Kuznetsov, G.A. Leonov, M.V. Yuldashev, and R.V. Yuldashev. Rigorous mathematical definitions of the hold-in and pull-in ranges for phase-locked loops. *IFAC-PapersOnLine*, 48(11):710–713, 2015c. doi: http://dx.doi.org/10.1016/j.ifacol.2015.09.272.

G. A. Leonov and K. D. Aleksandrov. Frequency-Domain Criteria for the Global Stability of Phase Synchronization Systems. *Doklady Mathematics*, 92(3):764–768, 2015.

G.A. Leonov and N.V. Kuznetsov. *Nonlinear Mathematical Models of Phase-Locked Loops. Stability and Oscillations*. Cambridge Scientific Publisher, 2014.

G.A. Leonov, N.V. Kuznetsov, M.V. Yuldashev, and R.V. Yuldashev. Analytical method for computation of phase-detector characteristic. *IEEE Transactions on Circuits and Systems - II: Express Briefs*, 59(10):633–647, 2012. doi: 10.1109/TCSII.2012.2213362.

G.A. Leonov, N.V. Kuznetsov, M.V. Yuldashev, and R.V. Yuldashev. Nonlinear dynamical model of Costas loop and an approach to the analysis of its stability in the large. *Signal processing*, 108:124–135, 2015a. doi: 10.1016/j.sigpro.2014.08.033.

G.A. Leonov, N.V. Kuznetsov, M.V. Yuldashev, and R.V. Yuldashev. Hold-in, pull-in, and lock-in ranges of PLL circuits: rigorous mathematical definitions and limitations of classical theory. *IEEE Transactions on Circuits and Systems–I: Regular Papers*, 62 (10):2454–2464, 2015b. doi: http://dx.doi.org/10.1109/TCSI.2015.2476295.

Y.A. Mitropolsky and N.N. Bogolubov. *Asymptotic Methods in the Theory of Non-Linear Oscillations*. Gordon and Breach, New York, 1961.
A.M. Samoilenko and R. Petryshyn. *Multifrequency Oscillations of Nonlinear Systems*. Mathematics and Its Applications. Springer, 2004.

V.V. Shakhlgildyev and A.A. Lyakhovkin. *Fazovaya avtopodstroika chastoty (in Russian)*. Svyaz’, Moscow, 1966.

V. Smirnova, A. Proskurnikov, and N. Utina. Problem of cycle-slipping for infinite dimensional systems with MIMO nonlinearities. In *Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 2014 6th International Congress on*, pages 590–595. IEEE, 2014.

J.L. Stensby. *Phase-Locked Loops: Theory and Applications*. Phase-locked Loops: Theory and Applications. Taylor & Francis, 1997.

A. Viterbi. *Principles of coherent communications*. McGraw-Hill, New York, 1966.