How Competition and Wildfire Affect Tree Range Shifts in the American West

Avery P. Hill* and Christopher B. Field

1Department of Biology, Stanford University, Stanford, CA, USA
2Woods Institute for the Environment, Stanford University, Stanford, CA, USA

* Correspondence
Avery Hill
aph82@stanford.edu

Abstract

Due to climate change, plant populations experience environmental conditions to which they are not adapted. Our understanding of the next century’s vegetation geography depends on the distance, direction, and rate at which plants redistribute in response to a changing climate.

Although plant redistribution in response to contemporary climate change is widely observed, our understanding of its mechanics is nascent. In this study we test the response of plant range shift rates to wildfire occurrence using 33,838 Forest Inventory Analysis plots across five states in the western United States. Wildfire increased the rate of observed range shifts for 6/8 tree species by more than 22% on average, suggesting that incumbent vegetation can act as a barrier to plant range shifts and that fire management may play an important role in facilitating transitions between vegetation types in response to climate change.
Main

At the broadest scale, plant biogeography is determined by climate. A panoply of research has supported the expectation that plant distributions should change in response to climate changes. Range shifts over the last century have been observed at a global scale, particularly in mountainous areas, with mounting evidence of changing distributions in flatter landscapes as well. The required rates of plant range shifts (RS) to keep up with the velocity of climate change are large, relative to observed RS rates. Though these rates are highly variable between taxa, a global synthesis found that plant distributions have been shifting to higher elevations at an average rate of 1.5 m/y. Of the plants that do track climate change—many do not—some have argued that RS rates are not fast enough for many species to keep pace with the velocity of climate change under contemporary conditions. Furthermore, plants must contend with other anthropogenic factors such as land-use change (e.g. logging, urbanization) or invasive species, which can exacerbate the vulnerability of plant populations.

Our ability to understand and predict the distribution of vegetation in the Anthropocene is important for resource management, conservation, and other efforts to secure a sustainable future. The interspecific variability and context specificity of RS rates makes modeling RS difficult. Research into the causes and ecological implications of variable RS rates is ongoing and incomplete. Features that affect the RS rate of a species include species characteristics (morphology, dispersal mechanisms, etc.), landscape characteristics (suitable habitat availability, disturbance regimes, geographic barriers), and biotic interactions (interspecific competition, predation, mutualism). Of these, effects of biotic interactions may be the most difficult to understand and predict—not for lack of effort—but in part due to the specificity, conditionality, and complexity of the relationship between species interactions and local
population establishment and growth. While biotic interactions have both inhibited and
facilitated RS during historical deglaciation events \(^{18,19}\), empirical evidence of their role in
contemporary RS is sparse.

Competition is known to affect range limits \(^{20,21}\). A hypothesis that the leading edge of
migrating populations may be slowed by competition with pre-existing vegetation \(^{16,22}\) is
supported by some vegetation models \(^{23-26}\). However, empirical evidence of competition slowing
leading-edge RS in contemporary systems under climate change is scant \(^{22}\). Though some recent
experimental work suggests that interspecific competition is more significant at the trailing-edge
than the leading-edge in montane plant communities \(^{27,28}\), a continental-scale and/or
observational investigation into this phenomenon has not yet been conducted.

Wildfire, because it alters the intensity of competition, provides a promising avenue for
studying the effects of competition on RS rate. Recent modeling indicates that disturbance has
the potential to facilitate RS \(^{23,29-31}\), specifically forest fires \(^{26}\), by reducing competitor population
size and creating clearings for colonization. Some studies show that fires can also facilitate
transitions to alternative stable states, but this is not the same thing as facilitating RS due to
climate change. As a cause of significant mortality, fire could have the potential to remove or
thin trailing-edge populations and make room for the leading-edge of other migrating plant
populations. Competition is not the only potentially range-limiting factor affected by wildfire—
others include soil characteristics like nutrient composition and infiltration \(^{32}\). Interspecific
differences in fire-adaptation and ruderal characteristics could also complicate the relationship
between wildfire and competition. Fires are likely to favor fire-adapted and early-successional
species shortly after burning, whether these species are immigrants or incumbents. Without
empirical evidence, it is unclear how forest fires impact RS patterns.
In this study we used observational evidence from the USDA Forest Inventory and Analysis (FIA) to test the hypothesis that forest fires facilitate plant RS in response to contemporary climate change. We used all FIA plots (33,838 total) within the Northwestern Forested Mountains and Marine West Coast Forest ecoregions of the continental U.S. in a natural experiment, with historic wildfires as the treatment and observed tree RS rate as the response. We focused on RS through climate space rather than geographic space and define the source population as composed of plots with both trees and seedlings present and the leading edge (not necessarily the geographic extent of the species) as composed of plots with only seedlings present. We performed additional analysis to strengthen confidence in our characterization of each species RS direction and magnitude (including testing the possibility of sink populations at the leading edge), then compared RS rates between plots that had and had not burned in the last 5 years. Here, we show that the ranges of six tree species shifted faster through climate space in plots with a recent fire.

Results

Evidence of RS in Unburned Plots

Of the 79 tree species within the study area (Figure 1), 12 were sufficiently abundant to meet the minimum plot-level sample size for groups of both burned (B) and non-burned (N) plots and for both seedlings only (S) and trees and seedlings (T). Three of the twelve (Picea engelmannii, Pinus monticola, and Larix occidentalis) were filtered out due to inconsistency in the direction of RS through climate space between different life stages, and Pinus albicaulis was excluded due to directional inconsistency in RS between burned and unburned plots—the remaining eight are described in Table 1. Evidence of RS was strong for these eight tree species
in the unburned (control) plots: the leading-edge populations (NS, see methods) grew in significantly different climates than source populations (NT). Schoener’s D is a metric of climatic niche equivalency, where values closer to 1 indicate more niche similarity, and values closer to 0 indicate less. In unburned plots, the overlap between the climatic niche of the leading edge (NS) and the source population (NT) yielded Schoener’s D values from 0.82 to 0.56 (Table 2). All values of Schoener’s D for unburned plots were less than 0.82 (p < .05), and we rejected the niche equivalency test’s null hypothesis that the climatic niche of the leading edge (NS) was equivalent to the niche of the source population (NT).

The climatic niche differences between leading-edge and source populations were corroborated by PCA and the Euclidean centroid distance. For example, *Pinus ponderosa* exhibited differential clustering of component scores when grouped into leading-edge and source population occurrences in unburned plots (Figure 2). Though the climatic niches of NS and NT were broadly overlapping, the centroids (the average component score coordinates) of the groups differed. The Hotelling’s T² test, used to test the statistical significance of the difference between the centroids of two populations, showed that the difference between the NS and NT centroids was significant for each species (Table 2).

Comparing RS Rates of Burned and Unburned Plots

We used two metrics to compare the RS rate of burned plots and unburned plots: Euclidean centroid distance (i.e. niche distance) and Schoener’s D (i.e. niche equivalency). We calculated RS Euclidean distance in climate space (DC) based on centroids with respect to three climatic variables: Mean Temperature of the Warmest Month (MTWM), Mean Summer Precipitation (MSP), Mean Winter Precipitation (MWP). The ratio of RS distance in burned to unburned plots (DCᵢ / DCᵢ, where B = burned, N = unburned) is a measure of the effect of fire
on RS rate. Based on DC_B/DC_N, the climatic niche difference between source populations and
leading-edge populations was greater in areas that burned than in those that did not for six of the
eight species. DC_B/DC_N was, on average, 2.10. By this metric, fire most increased the rate of RS
for *Lithocarpus densiflorus*, which had the greatest ratio—6.35 (though sample size was
smallest for this species). *Abies grandis* was the only species where DC_B was appreciably less
than DC_N: $DC_B/DC_N = 0.70$. The second measure of RS rate, Schoener’s D, was closer to 0
(indicating less niche equivalency) for burned plots across each of the eight species, by 22% on
average (Table 2). Schoener’s D corroborated DC_B/DC_N for *Lithocarpus densiflorus*, which had
a burned-plot Schoener’s D 36% closer to 0 than in unburned plots (the greatest difference in
Schoener’s D across species).

With the RS broken down into each climate variable we found that RS with respect to
each of the three components of the climate space was greater in plots that burned than in plots
that did not, on average across the eight species (Figure 3). For example, as each species in
unburned areas migrated towards plots with either higher or lower Mean Summer Precipitation
(MSP), species in burned plots migrated in the same direction (either higher or lower MSP) at a
rate that was 100% greater on average (Appendix 1, Fig. A1.1-A1.8). The difference between RS
rates was greatest for Mean Winter Precipitation (MWP), where the average RS rate was 208%
greater in burned plots. Mean Temperature of the Warmest Month (MTWM) had the least
difference between RS rates, but burned plots still had an average RS rate 55% greater than
unburned plots for this variable. The range of RS rates across species was greater in burned plots
(Figure 3), probably reflecting the smaller sample size of burned plots.

Contextualizing the Direction of RS
When compared to recent climate change in the study area (Figure 4), the eight species, on average, shifted in the direction that kept them closer to their historic climatic niche. For example, as plots across this study received less MSP, the species shifted towards plots with more summer precipitation— with burned areas exhibiting faster RS than unburned areas (Figure 3a). Individual species varied in the extent to which their RS directly opposed climate changes across their individual distributions. Mean Summer Precipitation elicited the most consistent response— six of eight species (all but the two subalpine species, *Abies lasiocarpa* and *Pinus contorta*) shifted towards plots with greater mean summer precipitation (Appendix 1).

Based on responses to recent climatic shifts across the study area, species fall into three groups, depending on whether they (1) migrated to oppose recent climatic shifts across all three climate variables, (2) migrated to oppose recent climate shifts across one or two climate variables, or (3) migrated in the same direction as climate shifts for one or more variable. *Pinus ponderosa*, *Populus tremuloides*, *Quercus chrysolepis*, and *Abies grandis* fell into the first group. Additionally, the burned-plot samples for *P. ponderosa* and *P. tremuloides* exhibited faster rates of RS for each variable (Appendix 1, Fig. A1.2-A1.5). These two species had high agreement between RS vectors through the three dimensions of climate space (≥ 93%) in burned and unburned plots (Table 1). Group 2 was composed of *Pseudotsuga menziesii* and *Lithocarpus densiflorus*. *P. menziesii* exhibited faster RS towards lower MTWM and higher MSP while *L. densiflorus* exhibited faster RS towards higher MSP and MWP (Appendix 1, Fig. A1.1 and A1.6). *Abies lasiocarpa* and *Pinus contorta* fell into group 3— each migrated with recent climate shifts, towards higher MTWM and lower MSP (Appendix 1, Fig. A1.7-A1.8).
Discussion

Our results are consistent with the hypothesis that forest fires facilitate climate-induced range shifts and provides some of the first empirical evidence of contemporary climate-induced RS being facilitated by fire. These findings are consistent with current understandings of range shifts, climate change, and disturbance ecology, and the observed increase in RS rate in burned areas provides insight into the role of interspecific competition in limiting RS rate.

Range edges are dynamic over time, expanding or contracting as the relationship between a population and its environment changes, because of changes in either (1) the environment (e.g. warmer temperatures, increased disturbance, etc.) and/or (2) the population (e.g. phenotypic changes in temperature tolerance, water-use efficiency, etc.). At time scales (1 to 2 generations) where evolution is unlikely to have made populations tolerant to observed climate changes, we observed range expansions where environmental variables that limit species ranges were lessened/removed. As a possible range-limiting factor for many species, interspecific competition could limit range shifts when competitors are abundant. Removal or extirpation of competitor populations could facilitate range shifts. Many types of environmental disturbance can decrease the population size of plant competitors, but none are as common and severe in western North America as wildfire.

Wildfire typically facilitates shifts in species composition along trajectories of ecological succession, with post-fire assemblages that are abundant shortly after fire eventually succeeded by climax vegetation. Post-fire succession can be predictable and specific to ecosystems and return an ecosystem to the initial pre-fire or climax species assemblage. In contrast, fire can also facilitate state-shifts where the post-fire trajectory of vegetation succession leads to a different suite of climax species. This kind of state shift occurs in the boreal forests of
Alaska, where fire decreases ecosystem resilience, i.e. the ability of an ecosystem to return to the initial species composition after disturbance. The observed state shifts were largely attributed to the effect of fire on species regeneration (e.g. seedbanks)36,37. Fire and climate change, in concert, can affect tree regeneration further south as well, in \textit{P. ponderosa} and \textit{P. menziesii} forests, with warmer temperatures unsuitable for conifer seedlings that emerged after fire38.

Fire could also facilitate range shifts through reducing population size and density of plant species present before the fires, increasing light availability, increasing erosion, and altering soil nutrients and microbiota39—the exact impacts are contingent upon the intensity of fire as well as particular plot conditions. While plant mortality, erosion, and post-fire light availability are positively correlated with fire intensity, the relationship between fire intensity and other soil characteristics can be more complicated. In vastly simplified terms, lower intensity fires more consistently increase soil microbial activity and the availability of soil nutrients like carbon, nitrogen, sulfur, and phosphorus, while higher intensity fires can sterilize soil and deplete nutrients40.

Most fires across our study plots were of low intensity. When possible, FIA data collectors classified fires as either crown or ground fires. Ground fires, typically of lower intensity than crown fires41, composed 63\% of the fires cited across the FIA plots of this study. This suggests that most fires within this study increased soil nutrients and microbial activity while moderately increasing light availability and erosion. While the high intensity fires (with subsequent soil sterilization and nutrient depletion) and increased erosion could have presented challenges for seedling establishment, most of the wildfires presumably increased establishment rate across the study area due to an increase in soil nutrients and reduction in interspecific competitors for light and water.
In accordance with basic ecological theory, where resources are more abundant (like light and nutrients) and competitors fewer, populations grow. Unless species have particular adaptations for post-fire regeneration (fire-induced seed release or re-sprouting), population growth is accomplished by recolonization from nearby populations. A gap in the canopy, or a spot cleared of underbrush with sufficient available nutrients, welcomes the establishment of vegetation. The species that colonize and establish in these locales are determined by myriad factors—some stochastic, others intimately contingent upon the relationship between plot characteristics and species traits. We expect that the leading-edge populations of species observed in this study had a competitive advantage colonizing and establishing in the more burned and depauperate locales where the climate had shifted to become more similar to the colonizers’ climatic niche than to the climatic niche of the historical populations. In other words, in areas where the climate had changed, species adapted to the new climate had a greater chance of establishing in fire-cleared spots. Further work will be necessary to provide a comprehensive understanding of the interactions between fire succession and climate-induced migration and their effect on post-fire community assembly.

The amount of climate change in the CMIP data across our study area is consistent with the observations and projections of other studies, particularly with regards to decreased summer precipitation and mean temperature increase. Precipitation and temperature variables are among the most important for determining plant distributions, and these variables can affect plant traits/distributions in concert and compound each other’s effects. All but one species had a coupled response to both MSP and MTWM—six of eight species migrated towards higher MSP, of which all but one (L. densiflorus) also migrated towards lower MTWM. MSP and MTWM are both associated with drought-stress in trees, which can lead to mortality. Based on the
available information, the shift of six of the eight species in this study towards lower MTWM and higher MSP could reflect an increase in suitability for the migrating species or a decrease in suitability for the previous dominants, or some combination of the two. The available evidence does not address the relative roles of the two mechanisms.

The two species that did not migrate towards increased MSP or decreased MTWM were *P. contorta* and *A. lasiocarpa*, the only two species in this study that populate high-elevation subalpine regions. These trees are typically relegated to high altitude regions in the southern extent of the study area (Sierra Nevada for *P. contorta*, and the southern Rocky Mountains for both), and occupy lower elevation regions further north. Recent studies indicate that subalpine tree populations face decreased recruitment and range contraction due to climate change. Range expansions in northern low-elevation populations, coupled with range contraction or stagnation in high-elevation populations, could explain the unexpected shift of these two species towards increased MTWM and decreased MSP. Perhaps lower elevation populations shifted distributions to maintain climate equilibrium (towards decreased MTWM and increased MSP) but this trend was masked by the high altitude populations lack of shift or contraction.

The observed RS rates, when roughly converted from climatic distance to spatial distance, are also consistent with general expectations. Combining the observed average shifts in MTWM with the normal lapse rate of 6.5°C/km, we estimate that the non-subalpine trees shifted towards areas of lower MTWM by roughly +48m elevation in unburned plots, and +105m in burned. Subalpine tree (*P. contorta* & *A. lasiocarpa*) RS corresponds to -83 and -126m altitudinal shifts for unburned and burned plots, respectively. These values are within the range of RS in western Europe, where trees shifted up to 214m in mean elevation over the last century.
The sources of potential uncertainty in the interpretation of our results include (i) potential sink populations where seedlings occur but have not, and may not, reach maturity (ii) fire succession and fire-regime adaptations and (iii) the relationship between climatic distance and spatial distance (Equation 1).

An underlying assumption of the approach was that seedlings eventually mature into trees. This is, of course, not necessarily the case. We attempted to minimize the impact of sink populations on our results by excluding species where the direction of RS was not consistent among different life stages. We used diameter at breast height to delineate seedlings (dbh < 2.5cm), saplings (2.5cm < dbh < 12.7cm), trees (dbh > 2.5cm), and large trees (dbh > 12.7cm) and compared the RS vectors of seedlings and trees to saplings and large trees. We confirmed that all eight trees used in the primary analysis had consistent RS vector direction between these groups. However, while the sapling group likely contained fewer sink populations than the seedling group, it is still possible that some saplings were members of sink populations and would never reach reproductive maturity.

Fire adaptation and succession dynamics could confound the results where rates of RS into burned areas were partly due to post-fire colonization adaptations, creating two possible explanations for spread into burned areas. We minimized this effect by excluding species where the direction of RS in burned areas was inconsistent with the direction of RS in unburned areas—effectively removing species with traits that make post-fire colonization different from normal colonization. Only Pinus albicaulis was filtered out at this step, potentially because this tree occurred in the smallest number of burned plots (N_{BS} + N_{BT} = 24). Another caveat, more specifically pertaining to this analysis, is that the FIA recorded only fires that occurred within 5 years prior to the survey. Fires that burned 6 years prior could have affected the vegetation
regeneration/recruitment (and therefore RS rate) but would have been included in the NS and NT rather than the BS and BT groups. This could have resulted in an underestimation of the impact of fire on RS rate.

Further bias may have come from calculating climatic distance and assuming that it was an accurate proxy for spatial distance (Equation 1). The relationship is certainly not fixed, particularly across topographically diverse regions. A 400m horizontal distance will likely be much more climatically distant in a mountainous than a flatter region. Climatic distance is important in itself. Further, climatic and spatial distance are strongly correlated. One possible confounding effect would occur if burned plots are on steeper slopes. In this case, larger climatic distances in burned plots might not correspond to larger spatial distances. Slopes are significantly steeper in burned than in unburned plots (p << .05) (Appendix 2). The mean slope gradient across burned plots was 22.7°, while unburned plots averaged 18.6°. Steeper slopes may have inflated the RS rate in burned plots, but an average difference in slope of 4.1° explains only ~24% of the difference in mean elevation: 100 lateral meters on a 22.7° slope results in an endpoint 8.18m higher than on an 18.6° slope. Only the altitudinal shift of *P. contorta* and *Q. chrysolepis* (11% and 23% decrease in elevation in burned areas, respectively) could be entirely attributed to this, and the average percent increase in the elevation of other species in burned plots was 102%.

This study provides empirical evidence that wildfire increases the RS rate of tree species that are moving in response to recent climate change. Furthermore, we have argued that the increase in RS rate is likely a product of the reduction of the population size and density of the competitors due to wildfire. The findings of this study bolster previous work suggesting that competition is yet another barrier (in addition to dispersal limitations and geographic barriers).
that affects the ability of plant species to track their optimal climatic conditions as they move across landscapes.

Methods

Occurrence Data

Plot-level tree and seedling species lists were sourced from the USDA Forest Inventory and Analysis (FIA) program via the FIA DataMart tool (apps.fs.usda.gov/fia/datamart) in March of 2020 and analyzed using R version 4.0.0. The FIA data also include tree age, tree diameter at breast height (dbh), and the presence of fire disturbance at the plot (fires must have occurred, at most, 5 years prior to plot establishment and caused at least 25% tree mortality over at least 0.4 ha to have been recorded). FIA datasets are the most comprehensive continent-scale source for plot-level forest data in the U.S. In FIA Phase 2 data collection (sourced in this study), a plot is divided into four 168m² subplots and four 13.5m² microplots. Within subplots, all tree species (live or dead) with a dbh greater than 12.7cm are identified and tallied, and all seedlings are identified and tallied within microplots.

We sourced all plots (33,838 total) within the Northwestern Forested Mountains and Marine West Coast Forest ecoregions of the continental U.S. (Fig. 1). All plots used in this study were surveyed between 2002 & 2017. For each species we separated the plots into unburned (N, control) and burned (B, treatment) groups. Within these two groups, novel seedling establishment was used as a proxy for RS as outlined in Zhu et al., 2012. Seedlings in plots with no adult tree (hereafter referred to as “tree”) of the species were considered the leading-edge of the migrating population. Subsequently, the FIA plots of each species were separated into 4 independent groups: (1) Plots that did not burn with only seedlings present (NS) (2) Plots that did
not burn with seedlings and trees present (NT) (3) Plots that burned with only seedlings present (BS) (4) Plots that burned with seedlings and trees present (BT). Species were removed from analysis if the number of plots was less than 5 in any of these four categories (NS, NT, BS, BT).

Because of the spatial uniformity of FIA sampling, spatial sampling bias is unlikely to be a major source of error in our analysis. However, seedlings were sampled in only a subset of each FIA plot, and it is possible that seedling species present in the full sampling plots were absent in the seedling microplots, potentially reducing the number of NS and BS plots.

Climate Data

Rasterized climate data (averaged from 1981-2010) were sourced at 30 arc-second resolution from the 2015 AdaptWest Project (https://adaptwest.databasin.org), constructed using ClimateNA v5.10 software. This climate data covers a period that ended seven years prior to the most recent FIA sampling, but we do not think this should have an appreciable effect on the results. We initially considered 8 possible climate variables, which were used for similar studies and recommended for climatic niche analysis because of their relevance to plant physiology: Mean Temperature of the Coldest Month, Mean Temperature of the Warmest Month, Mean Annual Precipitation, Ratio of Actual to Potential Evapotranspiration, Potential Evapotranspiration, Precipitation Seasonality, Mean Annual Temperature, and Growing Degree Days. We replaced Mean Precipitation Seasonality with its seasonal components, Mean Summer Precipitation and Mean Winter Precipitation, to make the results more interpretable and to isolate shifts in precipitation regimes across the study area, which varies (summer precipitation, particularly) across mountain, coastal, and mediterranean climates. We calculated the Variance Inflation Factor (VIF) for the set of 9 variables using the R package usdm and incrementally excluded collinear variables until VIF < 10, as recommended, leaving the 3
climate variables with the least collinearity (see Appendix 3 for more information). The resulting climatic variables were: Mean Temperature of the Warmest Month (MTWM), Mean Summer Precipitation (MSP), Mean Winter Precipitation (MWP).

Species Selection

The climatic difference between seedling-only plots and tree-and-seedling plots may not represent the actual RS direction of a species. For example, seedling establishment may represent sink populations that occur in areas that will not support a reproducing population in the future. To ensure that we included only species for which we could confidently estimate the direction of RS, we compared the climatic RS vector of NS and NT plots with the RS vector of unburned sapling plots (NJ), with dbh between 2.5cm and 12.7cm, and unburned large tree (NG) plots, with dbh greater than 12.7cm. We determined the consistency of the RS direction between the different life stages by calculating the component of the seedling RS vector, \(\vec{RS}_{seed} \), that pointed in the same direction as the sapling RS vector, \(\vec{RS}_{sapling} \), i.e. the dot product of the normalized RS vectors in climate space, \(\frac{\vec{RS}_{seed} \cdot \vec{RS}_{sapling}}{|\vec{RS}_{seed}| |\vec{RS}_{sapling}|} \). Figure 5 provides a graphical explanation of this process. We used the cutoff of 50% vector agreement to exclude species where the RS direction was not consistent across life stages.

The direction of the RS vectors may differ significantly between the unburned and burned plots, possibly because of species-specific adaptations that affect colonization/regeneration after fire. To avoid the difficulty of comparing and interpreting RS rates of groups that are migrating in different directions, we also excluded species for which the cosine of the angle between RS vectors in burned and unburned plots was less than 0.5 (Figure 5).

Calculating Climatic Niche Difference and RS Rate
The RS rate was proxied by the climatic distance between source populations and leading-edge populations, i.e. the difference between the climatic niche of seedling-only plots and the plots with both trees and seedlings of a species (eq. 1).

\[r_i = \frac{DG_i}{t} \approx \frac{DC_i}{A_{T_i} - A_{S_i}} \]

(1)

Where \(r_i \) is the RS rate and \(i \) is either burned (B) or unburned (N), DG is the geographic RS distance per time (t), DC is the climatic RS distance, per time unit defined by the mean age difference between mature trees (\(A_T \)) and seedlings (\(A_S \)). The Euclidean distance between the centroids for NS and NT and between BS and BT (derived from the magnitude of the climate RS vectors described above) give \(DC_N \) and \(DC_B \), respectively. We do not have information on \(A_T \) and \(A_S \), but we have no reason to expect them to be different between burned and unburned plots. Therefore, we use the ratio of \(DC_B \) to \(DC_N \) as our primary measure of whether RS distances are greater in burned plots.

Another metric for climatic niche difference, Schoener’s D, was calculated using a modified R script\(^{58}\) that calculates the two principal components which describe the most variation in climate space across NS and NT and across BS and BT, and then measures the difference between the kernel-smoothed component scores for the two pairs of plots. The statistical significance of Schoener’s D is determined with the niche equivalency test of Broennimann et al 2012\(^{58}\).

Lower values of Schoener’s D and greater values of DC in burned plots support the hypothesis that fire facilitates RS.

Additional Analyses

To test the robustness of our results to different sets of climate parameters, we compared the results presented in this manuscript with a suite of results obtained from the use of different
sets of climate variables. We reanalyzed our data after adding each variable that was excluded in the multicollinearity analysis (Appendix 3), adding variables in the order of increasing VIF values for all variables beneath the threshold of $VIF = 10$: $\frac{\text{Actual Evapotranspiration}}{\text{Potential Evapotranspiration}}$. Mean Temperature of Coldest Month, then Potential Evapotranspiration. These 3 additional sets of results did not differ appreciably from our primary results—Schoener’s D and Euclidean centroid distance consistently indicated that RS rates were greater in plots that burned (Appendix 4).

To ensure that the threshold minimum sample size did not greatly impact the results, we repeated our analysis of RS rates for minimum sample size of presence in 5, 10, and 15 FIA plots. The threshold minimum sample size affects the number of species analyzed but not the conclusion that fire facilitates RS (Appendix 5). We focus on the analysis using a minimum sample size of 5, because the number of species meeting the threshold decreased sharply as the threshold increased. Furthermore, two species with $N_{BS} = 5$ passed the RS vector direction vetting, indicating that this sample size was sufficient to estimate an RS vector that was consistent with populations of larger sample sizes. We also verified that other decisions regarding species exclusion, such as species vetting due to RS vector agreement between life stages and burned-unburned plots, did not produce results that contradicted our conclusions (Appendix 6).
Acknowledgements

We would like to thank those that provided prompt and invaluable feedback on the manuscript, including Robert S. Harbert at Stonehill College, Kai Zhu at UC Santa Cruz, and Lucas Pavan at Stanford University. A.P.H. would also like to thank Raymond and Neta Thornell for their enduring and consequential support.

Contributions

A.P.H. and C.B.F designed the thesis and research jointly, and A.P.H. conducted the data analysis and wrote the first draft of the manuscript. Both authors worked on subsequent revisions to both methodology and manuscript.

Competing Interests

The authors declare no competing interests.

Data Availability

The climate and plant occurrence data used to support the findings of this study are available from the AdaptWest Project (https://adaptwest.databasin.org/) and Forest Inventory Analysis (http://apps.fs.usda.gov/fia/datamart), respectively.

Code Availability

R scripts used in this study can be found at https://github.com/avephill/wildfire-plant_RS
Work Cited

1. von Humboldt, A. & Bonpland, A. Essay on the Geography of Plants. (1807).

2. Woodward, F. I. *Climate and plant distribution*. (Cambridge University Press, 1987).

3. Kelly, A. E. & Goulden, M. L. Rapid shifts in plant distribution with recent climate change. *Proc. Natl. Acad. Sci.* **105**, 11823–11826 (2008).

4. Koide, D., Yoshida, K., Daehler, C. C. & Mueller-Dombois, D. An upward elevation shift of native and non-native vascular plants over 40 years on the island of Hawai’i. *J. Veg. Sci.* **28**, 939–950 (2017).

5. Thomas, C. D. Climate, climate change and range boundaries: Climate and range boundaries. *Divers. Distrib.* **16**, 488–495 (2010).

6. Lenoir, J. & Svenning, J.-C. Climate-related range shifts - a global multidimensional synthesis and new research directions. *Ecography* **38**, 15–28 (2015).

7. Chen, I.-C., Hill, J. K., Ohlemuller, R., Roy, D. B. & Thomas, C. D. Rapid Range Shifts of Species Associated with High Levels of Climate Warming. *Science* **333**, 1024–1026 (2011).

8. Grabherr, G., Gottfried, M. & Pauli, H. Climate Change Impacts in Alpine Environments: Climate change impacts in alpine environments. *Geogr. Compass* **4**, 1133–1153 (2010).

9. Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. *Glob. Change Biol.* **18**, 1042–1052 (2012).

10. Im, S. T., Kharuk, V. I., Sukachev Institute of Forest SB RAS – subdivision of FSC KSC SB RAS; Siberian Federal University & Lee, V. G. Migration of the northern evergreen needleleaf timberline in Siberia in the 21st century. *Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Iz Kosmosa* **17**, 176–187 (2020).

11. Loarie, S. R. *et al.* The velocity of climate change. *Nature* **462**, 1052–1055 (2009).
12. Murphy, H. T., VanDerWal, J. & Lovett-Doust, J. Signatures of range expansion and erosion in eastern North American trees: Signatures of range expansion and erosion. *Ecol. Lett.* 13, 1233–1244 (2010).

13. Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T. & Curtis-McLane, S. Adaptation, migration or extirpation: climate change outcomes for tree populations: Climate change outcomes for tree populations. *Evol. Appl.* 1, 95–111 (2008).

14. Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? *Trends Ecol. Evol.* 28, 482–488 (2013).

15. Williams, M. I. & Dumroese, R. K. Preparing for Climate Change: Forestry and Assisted Migration. *J. For.* 111, 287–297 (2013).

16. Svenning, J.-C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. *Am. J. Bot.* 100, 1266–1286 (2013).

17. Anderson, R. P. When and how should biotic interactions be considered in models of species niches and distributions? *J. Biogeogr.* 44, 8–17 (2017).

18. Wilkinson, D. M. Mycorrhizal Fungi and Quaternary Plant Migrations. *Glob. Ecol. Biogeogr. Lett.* 7, 137 (1998).

19. Wilkinson, D. M. Plant colonization: are wind dispersed seeds really dispersed by birds at larger spatial and temporal scales? *J. Biogeogr.* 24, 61–65 (1997).

20. MacArthur, R. H. *Geographical ecology: patterns in the distribution of species.* (Princeton University Press, 1984).

21. Pigot, A. L. & Tobias, J. A. Species interactions constrain geographic range expansion over evolutionary time. *Ecol. Lett.* 16, 330–338 (2013).
22. Svenning, J.-C. et al. The influence of interspecific interactions on species range expansion rates. *Ecography* **37**, 1198–1209 (2014).

23. Liang, Y., Duveneck, M. J., Gustafson, E. J., Serra-Diaz, J. M. & Thompson, J. R. How disturbance, competition, and dispersal interact to prevent tree range boundaries from keeping pace with climate change. *Glob. Change Biol.* **24**, e335–e351 (2018).

24. Moorcroft, P. R., Pacala, S. W. & Lewis, M. A. Potential role of natural enemies during tree range expansions following climate change. *J. Theor. Biol.* **241**, 601–616 (2006).

25. Moran, E. V. & Ormond, R. A. Simulating the Interacting Effects of Intraspecific Variation, Disturbance, and Competition on Climate-Driven Range Shifts in Trees. *PLOS ONE* **10**, e0142369 (2015).

26. Stralberg, D. et al. Wildfire-mediated vegetation change in boreal forests of Alberta, Canada. *Ecosphere* **9**, e02156 (2018).

27. Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. *Nature* **525**, 515–518 (2015).

28. Ettinger, A. & HilleRisLambers, J. Competition and facilitation may lead to asymmetric range shift dynamics with climate change. *Glob. Change Biol.* **23**, 3921–3933 (2017).

29. Caplat, P., Anand, M. & Bauch, C. Interactions between climate change, competition, dispersal, and disturbances in a tree migration model. *Theor. Ecol.* **1**, 209–220 (2008).

30. Serra-Diaz, J. M., Scheller, R. M., Syphard, A. D. & Franklin, J. Disturbance and climate microrefugia mediate tree range shifts during climate change. *Landsc. Ecol.* **30**, 1039–1053 (2015).
31. Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. *Proc. R. Soc. B Biol. Sci.* **279**, 2072–2080 (2012).

32. Ebel, B. A. & Moody, J. A. Rethinking infiltration in wildfire-affected soils: INVITED COMMENTARY. *Hydrol. Process.* **27**, 1510–1514 (2013).

33. Anderson, T. W. *An introduction to multivariate statistical analysis.* (Wiley-Interscience, 2003).

34. Hanes, T. L. Succession after Fire in the Chaparral of Southern California. *Ecol. Monogr.* **41**, 27–52 (1971).

35. McKenzie, D. A. & Tinker, D. B. Fire-induced shifts in overstory tree species composition and associated understory plant composition in Glacier National Park, Montana. *Plant Ecol.* **213**, 207–224 (2012).

36. Walker, X. J., Mack, M. C. & Johnstone, J. F. Predicting Ecosystem Resilience to Fire from Tree Ring Analysis in Black Spruce Forests. *Ecosystems* **20**, 1137–1150 (2017).

37. Hart, S. J. *et al.* Examining forest resilience to changing fire frequency in a fire-prone region of boreal forest. *Glob. Change Biol.* **25**, 869–884 (2019).

38. Davis, K. T. *et al.* Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. *Proc. Natl. Acad. Sci.* **116**, 6193–6198 (2019).

39. Pivello, V. R. *et al.* Effect of fires on soil nutrient availability in an open savanna in Central Brazil. *Plant Soil* **337**, 111–123 (2010).

40. Neary, D. G., Ryan, K. C. & DeBano, L. F. *Wildland fire in ecosystems: effects of fire on soils and water.* RMRS-GTR-42-V4 https://www.fs.usda.gov/treesearch/pubs/20912 (2005) doi:10.2737/RMRS-GTR-42-V4.
41. Keeley, J. E. Fire intensity, fire severity and burn severity: a brief review and suggested usage. *Int. J. Wildland Fire* **18**, 116 (2009).

42. Gutzler, D. S. & Robbins, T. O. Climate variability and projected change in the western United States: regional downscaling and drought statistics. *Clim. Dyn.* **37**, 835–849 (2011).

43. Leung, L. R. *et al.* Mid-Century Ensemble Regional Climate Change Scenarios for the Western United States. *Clim. Change* **62**, 75–113 (2004).

44. Allen, C. D. *et al.* A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. *For. Ecol. Manag.* **259**, 660–684 (2010).

45. Williams, A. P. *et al.* Temperature as a potent driver of regional forest drought stress and tree mortality. *Nat. Clim. Change* **3**, 292–297 (2013).

46. Anderegg, W. R. L. *et al.* Climate-driven risks to the climate mitigation potential of forests. *Science* **368**, eaaz7005 (2020).

47. Moore, P. *et al.* *Climate change and tree-line ecosystems in the Sierra Nevada: Habitat suitability modelling to inform high-elevation forest dynamics monitoring.* (2017).

48. Andrus, R. A., Harvey, B. J., Rodman, K. C., Hart, S. J. & Veblen, T. T. Moisture availability limits subalpine tree establishment. *Ecology* **99**, 567–575 (2018).

49. Lenoir, J., Gegout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A Significant Upward Shift in Plant Species Optimum Elevation During the 20th Century. *Science* **320**, 1768–1771 (2008).

50. R Core Team. *R: A language and environment for statistical computing.* (R Foundation for Statistical Computing, 2020).
545 51. U.S. Forest Service. *Forest Inventory and Analysis National Core Field Guide.*

546 https://www.fia.fs.fed.us/library/field-guides-methods-proc/docs/2017/core_ver7-

547 2_10_2017_final.pdf. (2017).

548 52. U.S. EPA. Level I Ecoregions of North America Shapefile. (2010).

549 53. Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally Downscaled and Spatially

550 Customizable Climate Data for Historical and Future Periods for North America. *PLOS ONE*

551 11, e0156720 (2016).

552 54. Early, R. & Sax, D. F. Climatic niche shifts between species’ native and naturalized ranges

553 raise concern for ecological forecasts during invasions and climate change: Niche shift

554 during naturalization. *Glob. Ecol. Biogeogr.* 23, 1356–1365 (2014).

555 55. Petitpierre, B. *et al.* Climatic Niche Shifts Are Rare Among Terrestrial Plant Invaders.

556 *Science* 335, 1344–1348 (2012).

557 56. Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is

558 positional uncertainty a problem for species distribution modelling? *Ecography* 37, 191–203

559 (2014).

560 57. Dormann, C. F. *et al.* Collinearity: a review of methods to deal with it and a simulation study

561 evaluating their performance. *Ecography* 36, 27–46 (2013).

562 58. Broennimann, O. *et al.* Measuring ecological niche overlap from occurrence and spatial

563 environmental data: Measuring niche overlap. *Glob. Ecol. Biogeogr.* 21, 481–497 (2012).
Table 1. Summary of the sample sizes and vector agreement values—values that were used to determine the species included in further analysis.

Species	Trees & Seedlings	Novel Seedlings	Outside Fire	Trees & Seedlings	Novel Seedlings	Inside Fire	Outside Fire	Between Life Stages (NS-NT vs. NJ-NG)	Inside vs. Outside Fire (BS-BT vs. NS-NT)
Abies grandis	43	11	2543	523	81.647%	95.492%			
Abies lasiocarpa	99	11	3301	514	53.182%	79.249%			
Lithocarpus densiflorus	35	5	400	97	67.314%	66.866%			
Pinus contorta	167	21	1866	209	61.769%	97.354%			
Pinus ponderosa	58	18	1143	211	97.231%	93.45%			
Populus tremuloides	11	56	336	267	60.676%	95.91%			
Pseudotsuga menziesii	185	12	5785	563	84.591%	99.229%			
Quercus chrysolepis	62	11	349	121	98.436%	75.337%			

Table 2. Summary of the climatic niche difference metrics. Schoener’s D and Centroid distance were tested for statistical significance using the niche equivalency test and Hotelling’s T^2 Test, respectively. Values appended with * indicate statistical significance ($p < .05$). Lower D and higher centroid distance values suggest greater niche difference.

Species	Schoener’s D Inside Fire	Schoener’s D Outside Fire	Centroid Distance Inside Fire	Centroid Distance Outside Fire
Abies grandis	0.551*	0.566*	0.129	0.185*
Abies lasiocarpa	0.637*	0.721*	0.455	0.221*
Lithocarpus densiflorus	0.512*	0.796*	1.269*	0.201*
Pinus contorta	0.555*	0.605*	0.263	0.226*
Pinus ponderosa	0.544*	0.633*	0.827*	0.447*
Populus tremuloides	0.537*	0.683*	0.273	0.178*
Pseudotsuga menziesii	0.428*	0.557*	0.902	0.419*
Quercus chrysolepis	0.644	0.815*	0.243	0.248*
Figure 1. Plot of the study area. The Northwestern Forested Mountains and Marine West Coast Forest ecoregions (thin black outline) of the northwestern continental United States determined the extent of the FIA plots (blue points) that were sourced.
Figure 2

Pinus ponderosa Range Shift into Areas That Did Not Burn

Figure 2. The scaled and centered PCA plot of the climatic niches of the leading-edge population (plots with only seedlings) and source population (plots with both seedlings and trees) of P. ponderosa. PC1 and PC2 explain 84% of the variation across all 3 climatic variables. Centroids are shown as large circles.
Figure 3. Box plots of the average difference between leading-edge populations and source populations (i.e. RS rate) for each climate variable. White dots indicate the mean while white bars indicate the median. 3a keeps the directionality of RS and shows the relative difference of RS rates across each variable. By contrast, 3b shows the value of RS rate, relative to unburned plots.
Figure 4. Boxplot showing the scaled difference between average 1981-2010 climate and average 1961-1990 climate across the study area (i.e. $\overline{\text{Climate}_{1981-2010}} - \overline{\text{Climate}_{1961-1990}}$). Observed climatic shifts were statistically significant according to a two-sided t-test, with $p << .05$ for each climate variable. The MTWM increased at a greater magnitude than the precipitation variables decreased. Climatic shifts specific to the distribution of each species can be found in Appendix 1.
Figure 5. A synthesized example of the RS vector-direction comparison methodology. After scaling the environmental variables across the study area, we plotted the RS vectors (exemplified here by \vec{A} and \vec{B}) with the initial point of each vector at the centroid of the source population and the terminal point of each vector at the centroid of the leading-edge population (a). We then translocated the vectors to the origin and found the angle θ between them (b) and calculated the cosine of θ which is equivalent to $\frac{|\vec{A}|}{|A|}$, i.e. the component of the normalized \vec{A} that lies along normalized \vec{B} (c).