Invariant Star Products of Wick Type:
Classification and Quantum Momentum Mappings

Michael F. Müller-Bahns *
Mathematisches Institut
Universität Heidelberg
Im Neuenheimer Feld 288
D-69120 Heidelberg
Germany

Nikolai Neumaier §
Fachbereich Mathematik
Universität Frankfurt
Robert-Mayer-Straße 10
D-60054 Frankfurt a. M.
Germany

Revised Version
February 2004

Abstract

We extend our investigations on \mathfrak{g}-invariant Fedosov star products and quantum momentum mappings [22] to star products of Wick type on pseudo-Kähler manifolds. Star products of Wick type can be completely characterized by a local description as given by Karabegov in [14] for star products with separation of variables. We separately treat the action of a Lie group G on $C^\infty(M)[[\nu]]$ by (pull-backs with) diffeomorphisms and the action of a Lie algebra \mathfrak{g} on $C^\infty(M)[[\nu]]$ by (Lie derivatives with respect to) vector fields. Within Karabegov’s framework, we prove necessary and sufficient conditions for a given star product of Wick type to be invariant in the respective sense. Moreover, our results yield a complete classification of invariant star products of Wick type. We also prove a necessary and sufficient condition for (the Lie derivative with respect to) a vector field to be even a quasi-inner derivation of a given star product of Wick type. We then transfer our former results about quantum momentum mappings for \mathfrak{g}-invariant Fedosov star products to the case of invariant star products of Wick type.

∗bahns@mathi.uni-heidelberg.de
§neumaier@math.uni-frankfurt.de
1 Introduction

In all the existing approaches to quantization, the incorporation of classical symmetries is a central issue that has proven to pose serious problems. In the framework of deformation quantization, however, this incorporation can at least be formulated very naturally as it has already been indicated in the pioneering articles [2] by Bayen, Flato, Frønsdal, Lichnerowicz, and Sternheimer. Various notions of invariance of star products with respect to actions of Lie groups and Lie algebras were introduced and discussed by Arnal, Cortet, Molin, and Pinczon in [1]. Previously, the existence of G-invariant symplectic connections has been related to that of certain G-invariant star products by Lichnerowicz in [20]. In [3] Bertelson, Bieliavsky, and Gutt proved that the G-equivalence classes of G-invariant star products on a symplectic manifold that possesses a G-invariant symplectic connection are in bijection to formal series with values in the second G-invariant de Rham cohomology of the manifold.

Another important notion in deformation quantization – which is one of the key ingredients of the formulation of phase space reduction in this framework (cf. [5, 9]) – is that of a quantum momentum mapping, an object introduced and studied in detail by Xu [26]. In [22], we studied g-invariant Fedosov star products and quantum momentum mappings and we gave necessary and sufficient conditions for the existence of quantum momentum mappings for these star products which particularly showed that generally, the existence of a classical momentum mapping does not imply the existence of a quantum momentum mapping. (Some of the statements of [22] have also been presented by Gutt in [11], see also [12].)

The present letter extends these results to star products of Wick type on pseudo-Kähler manifolds. Those are an important example of star products compatible with an additional geometric structure, namely the complex structure. They are closely related to geometric quantization [25] with a complex polarization, and to Berezin’s quantization on Kähler manifolds. The star products constructed in that context by Moreno [21] and by Cahen, Gutt, and Rawnsley [7] are concrete examples. Moreover, star products of Wick type also appear as asymptotic expansions of the Berezin-Toeplitz quantization, cf. [1], and for details [18, 24].

We begin by recalling the definition of these special star products. On a pseudo-Kähler manifold (M, ω, I) a star product is said to be of Wick type if the bidifferential operators determining the star product contain only derivatives in holomorphic directions in the first argument and only derivatives in anti-holomorphic directions in the second argument. This definition of star products of Wick type clearly is equivalent to the condition that on every open subset $U \subseteq M$ star-right-multiplication with functions that are holomorphic on U and star-left-multiplication with functions that are anti-holomorphic on U both coincide with pointwise multiplication. Star products of Wick type for general Kähler manifolds were independently constructed by Karabegov in his work on star products with separation of variables [14, 15, 17] and by Bordemann and Waldmann [6] using a modified Fedosov construction with a fibrewise Wick product. The latter results have been
generalized in [23], where it is shown under which conditions a generalized Fedosov star product constructed using a fibrewise Wick product is of Wick type and that in fact all star products of Wick type are generalized Fedosov star products.

Our results constitute the starting point for the investigation of the interplay of deformation quantization of Wick type and phase space reduction of pseudo-Kähler manifolds. The first step in this direction which is done in this letter is to derive necessary and sufficient conditions that permit the formulation of ‘reduction’ of a star product of Wick type (by reduction of a star product we mean the definition of a star product on the reduced phase which is induced by a star product on the initial phase space) that in the hitherto existing approaches is bound to the G-invariance of the original star product and to the existence of a quantum momentum mapping (cf. Remark 3.4).

The present letter is organized as follows: In Section 2 we briefly review some of Karabegov’s main results as needed in the sequel. We also collect some notational conventions and shorthands.

In Section 3 we use Karabegov’s results to independently treat the cases of invariance of a given star product of Wick type on a pseudo-Kähler manifold with respect to the action of Lie groups and Lie algebras. We give a complete classification of invariant star products of Wick type which shows that for star products of Wick type, an even stronger result holds than the one obtained in [3] for general invariant star products on a symplectic manifold. Eventually, we give a necessary and sufficient condition for a vector field X to be a quasi-inner derivation (see below for a definition).

With the results from Section 3 our statements about quantum momentum mappings from [22] are then adapted to the case of invariant star products of Wick type in Section 4. Finally, we provide some concrete examples of invariant star products of Wick type, where the existence of a quantum momentum mapping is guaranteed. In particular, the star product corresponding to the Berezin-Toeplitz quantization has this remarkable property provided there is a classical momentum mapping.

Conventions: Whenever we speak of Kähler manifolds (M, ω, I), we include pseudo-Kähler manifolds since positivity of the Hermitian metric $\omega(\cdot, I\cdot)$ is nowhere required. By $C^\infty(M)$, we denote the complex-valued smooth functions and similarly $\Gamma^\infty(TM)$ stands for the complex-valued smooth vector fields et cetera. Slightly abusing notation we denote elements of $\Gamma^\infty(TM)$ and the corresponding derivations on $C^\infty(M)$ by the same symbol. We use Einstein’s summation convention in local expressions.

2 Karabegov’s Description and Characterization of Star Products of Wick Type

Let (M, ω, I) be a Kähler manifold of real dimension $2n$ with symplectic form ω and complex structure I. In a local holomorphic chart, we write $Z_k := \partial_z^k$ and $\bar{Z}_\bar{k} := \partial_{\bar{z}}^k$ for local basis vector fields of type $(1,0)$ and of type $(0,1)$ that locally span the $+i$ and $-i$ eigenspaces $TM^{1,0}$ and $TM^{0,1}$ of the complex structure I. For vector fields $X \in \Gamma^\infty(TM) = \Gamma^\infty(TM^{1,0}) \oplus \Gamma^\infty(TM^{0,1})$, we sometimes write $X = \chi + \sum L_k \partial_{z^k}$, where, using some coefficient functions C_r, in local holomorphic coordinates for $r \geq 1$ each bidifferential operator has the form $C_r(a, b) = \sum_{K,L} C_r^{K,L} g^{K|a} \partial_{\bar{z}^L} \bar{a}$.

We shall now use Karabegov’s results from [14] about star products with separation of variables to give a unique description of all star products of Wick type. Note that the star products with separation of variables in Karabegov’s original works [14, 15, 17] differ from the star products of Wick type considered here by a sign in the Poisson bracket and by an interchange of the rôles of
holomorphic and anti-holomorphic coordinates. In the sequel, we shall therefore adapt Karabegov’s results to our setting.

Let now \(\star \) be a star product of Wick type on \((M, \omega, I)\). Then (cf. [14] Lemma 2]) there are formal functions \(u_k, \tau_l \in C^\infty(U)[[\nu]] \) defined on an open, contractible domain \(U \subseteq M \) of a local holomorphic chart \((z, U)\) of \(M \) such that

\[
a \star u_k = au_k + \nu Z_k(a) \quad \text{and} \quad \tau_l \star a = \tau_l a + \nu \overline{Z_l}(a)
\]

(1) for all \(a \in C^\infty(U)[[\nu]] \). We shall always reserve the symbols \(u_k \) and \(\tau_l \) to denote functions as in (1). Moreover, Karabegov considers locally defined formal series of one-forms \(\alpha, \beta \in \Gamma^\infty(T^*U)[[\nu]] \) given by \(\alpha := -u_k dz^k \) which is of type \((1, 0)\) and \(\beta := \tau_l d\bar{z}^l \) which is of type \((0, 1)\). As the \(\star \)-right-multiplication with \(u_k \) obviously commutes with the \(\star \)-left-multiplication with \(\tau_l \), one in addition obtains from (1) that \(\overline{\partial} \alpha = \partial \beta \). One can show that this procedure yields a formal series of closed two-forms of type \((1, 1)\) on \(M \). In the following, the so-defined formal two-form that can be associated to any star product \(\star \) of Wick type shall be denoted by \(K(\star) \). It is referred to as Karabegov’s characterizing form of the star product \(\star \). It is easy to see from the very definition that \(K(\star) \in \omega + \nu Z^2_{\text{dr}}(M, \mathbb{C})^{1,1}[[\nu]] \), where \(\nu Z^2_{\text{dr}}(M, \mathbb{C})^{1,1}[[\nu]] = \{ \Omega \in \nu \Gamma^\infty(\Lambda^2 T^*M)[[\nu]] \mid d\Omega = 0, \pi^{1,1} \Omega = \Omega \} \), and hence by the \(\partial - \bar{\partial} \)-Poincaré Lemmas, there exist local formal functions \(\varphi \in C^\infty(U)[[\nu]] \) on every contractible domain \(U \) of holomorphic coordinates such that \(K(\star)_{|U} = \partial \bar{\partial} \varphi \); \(\varphi \) is called a formal local Kähler potential of \(K(\star) \). With such a formal local Kähler potential, the equations

\[
a \star Z_k(\varphi) = a Z_k(\varphi) + \nu Z_k(a) \quad \text{and} \quad \overline{Z_l}(\varphi) \star a = \overline{Z_l}(\varphi)a + \nu \overline{Z_l}(a)
\]

(2) hold for all \(a \in C^\infty(U)[[\nu]] \). Together, one finds:

Theorem 2.1 ([14] Thm. 1]) Let \(\star \) be a star product of Wick type on a Kähler manifold \((M, \omega, I)\). Then \(K(\star) \in \omega + \nu Z^2_{\text{dr}}(M, \mathbb{C})^{1,1}[[\nu]] \) associates a formal series of closed two-forms of type \((1, 1)\) on \(M \) – which is a deformation of the Kähler form \(\omega \) – to this star product. In case \(\varphi \in C^\infty(U)[[\nu]] \) is a formal local Kähler potential of \(K(\star) \), the equations (2) hold for all \(a \in C^\infty(U)[[\nu]] \).

Conversely, in [14] Sect. 4 Karabegov has shown that to each form \(K \) as in the preceding theorem, one can assign a star product \(\star \) of Wick type such that the characterizing form \(K(\star) \) of this star product actually coincides with this given \(K \). To this end, Karabegov has given an explicit construction of such a star product extensively using local considerations, and he proved:

Theorem 2.2 ([14] Thm. 2]) Karabegov’s characterizing form induces a bijection

\[
\{ \text{star products of Wick type on } (M, \omega, I) \} \ni \star \quad \mapsto \quad K(\star) - \omega \in \nu Z^2_{\text{dr}}(M, \mathbb{C})^{1,1}[[\nu]]
\]

(3) between star products of Wick type on \((M, \omega, I)\) and formal closed two-forms on \(M \) of type \((1, 1)\) with formal degree \(\geq 1 \).

In [23] Thm. 5.2 an alternative proof of the fact that a star product of Wick type is completely determined by one of the equations (2) valid in every holomorphic chart and hence that it is determined by its characterizing form has been given.

3 Classification of Invariant Star Products of Wick Type

We are going to treat the cases of invariance with respect to group actions on \(C^\infty(M)[[\nu]] \) by diffeomorphisms and invariance with respect to Lie algebra actions on \(C^\infty(M)[[\nu]] \) by vector fields
separately and independently. That way, we do not have to assume that the groups considered are connected (which would permit to deduce the statement about the group action from the analogous statement about the corresponding Lie algebra action). On the other hand, we have to consider actions of Lie algebras anyway to derive conditions for the existence of quantum momentum mappings, and it turns out that our proofs also work for actions of complex Lie algebras that, in general, trivially cannot be the infinitesimals of actions of Lie groups. Nevertheless, the result about the Lie algebra actions that are not infinitesimals of group actions should rather be seen as a by-product since the interesting situation for the application in phase space reduction is that of the action of a Lie group.

Note that, in the case of a Lie group G, the statements for the sufficient conditions for an ordinary Fedosov star product as defined in [8] to be G-invariant are well-known (cf. [3, Sect. 3]). In [22], we proved a statement giving both necessary and sufficient conditions for generalized Fedosov star products to be g-invariant. Also note that, owing to the fact that every star product of Wick type can be obtained using the generalized Fedosov construction on Kähler manifolds [23], one could as well use a Fedosov construction to prove the statements of the following sections. In particular, the proofs of the sufficient conditions for invariance with respect to a diffeomorphism and invariance with respect to a vector field in Propositions 3.1 and 3.2 are straightforward using Fedosov methods. In the present letter, however, we avoid the use of the Fedosov construction, and we give much less technical proofs only using Karabegov’s powerful description of star products of Wick type. The methods we use are similar in spirit to those applied to flag manifolds in [16].

First we give necessary and sufficient conditions for a diffeomorphism of M to induce – via pull-back – an automorphism of a given star product of Wick type.

Proposition 3.1 Let \star be a star product of Wick type on (M, ω, I) with Karabegov’s characterizing form $K(\cdot)$, and let ϕ be a diffeomorphism of M. Then the pull-back $\phi^* \star$ is an automorphism of \star if and only if

$$\phi^* I = I \quad \text{and} \quad \phi^* K(\cdot) = K(\cdot).$$

Proof: Let us first prove that $\phi^* I = I$ and $\phi^* K(\cdot) = K(\cdot)$ are necessary conditions for $\phi^* \star$ to be an automorphism of \star. Then $\phi^{-1} \star$ also being an automorphism of \star and Karabegov’s relations [11] imply that on $\phi(U)$ we have

$$a \ast \phi^{-1} \ast u_k = \phi^{-1}(\phi^* a \ast u_k) = \phi^{-1}((\phi^* a)u_k + \nu Z_k(\phi^* a)) = a\phi^{-1} \ast u_k + \nu \left(\phi^{-1} Z_k\right)(a)$$

for all $a \in C^\infty(\phi(U))$. In particular, we can choose a local holomorphic chart $(z',\phi(U))$, and then for $a = \overline{z'}$ the last equation becomes $(\phi^{-1} Z_k)(z') = 0$, which implies that $\phi^{-1} Z_k$ is still of type $(1,0)$, that is $I(\phi^{-1} Z_k) = i\phi^{-1} Z_k$. But this implies that $\phi^{-1} \ast$ maps vector fields if type $(1,0)$ to vector fields of type $(1,0)$ and hence $\phi^* I = I$. In particular, $\phi^* \ast$ maps local holomorphic charts to local holomorphic charts. Now we calculate $K(\cdot)$ and $\phi^* K(\cdot)$. Using equation [2] for ϕ^{-1} instead of ϕ, we obtain $a \ast \phi^{-1} \ast u_k = a\phi^{-1} \ast u_k + \nu(\phi^* Z_k)(a)$ for $a \in C^\infty(\phi^{-1}(U))$. Since $\phi^* Z_k = Z'_k$ in the holomorphic chart $(z',U') = (\phi^* z,\phi^{-1}(U))$, we can use $\phi^* \ast u_k$ to calculate $K(\cdot)$ in the chart (z',U'):

$$K(\cdot)|_{U'} = -\overline{z'}(\phi^* u_k d\overline{z'}^k) = -\overline{Z'_k}(\phi^* u_k) d\overline{z'} \wedge d\overline{z'^k} = -\phi^* (\overline{Z'_k(u_k)}) \phi^* d\overline{z'} \wedge \phi^* dz^k$$

$$= \phi^* (-\overline{Z'_k(u_k)dz^k}) = \phi^* (K(\cdot)|_{U'}).$$

Analogously, one could use the equation $\phi^* \pi_t \ast b = \phi^* \pi_t b + \nu(\phi^* \overline{Z}_t)(b)$ for $b \in C^\infty(\phi^{-1}(U))$ to obtain the same result.

Conversely, let us now assume that $\phi^* I = I$ and that $\phi^* K(\cdot) = K(\cdot)$. We want to prove that this implies that $\phi^* (a \ast b) = \phi^* a \ast \phi^* b$ for all formal functions $a,b \in C^\infty(M)[[\nu]]$. For this purpose, consider the star product

$$a \ast' b := \phi^{-1} \ast (\phi^* a \ast \phi^* b).$$
Since $\phi^{-1}\ast$ is type-preserving and since $\phi^{-1}\ast K(\ast) = K(\ast)$, which in particular implies $\phi^{-1}\ast \omega = \omega$, we obviously find that \ast' is a star product of Wick type on (M, ω, I). But star products of Wick type are uniquely determined by their Karabegov form K. Therefore, the proof is done if we can show that $K(\ast') = K(\ast)$, since then \ast' equals \ast and hence ϕ^{\ast} is an automorphism of \ast. To see that this is true, we write $\phi^{-1}\ast Z_k = \tilde{Z}_k$ in the holomorphic chart $(\tilde{z}, \tilde{U}) = (\phi^{-1}\ast \tilde{z}, \phi(U))$ and compute as in equation (5): $a \ast' \phi^{-1}\ast u_k = a\phi^{-1}\ast u_k + \nu \tilde{Z}_k(a)$ for $a \in C^\infty(\phi(U))$. Therefore, we have

$$K(\ast')|_{\phi(U)} = -\tilde{Z}_l \left(\phi^{-1}\ast u_k \right) dz^l \wedge dz^k = \phi^{-1}\ast (\tilde{Z}_l(u_k) dz^l \wedge dz^k) = \phi^{-1}\ast (K(\ast)|_{U}) = K(\ast)|_{\phi(U)},$$

where we used $K(\ast) = \phi^{\ast} K(\ast)$ to obtain the last equality.

Now we derive necessary and sufficient conditions for a vector field on M to define – via the Lie derivative – a derivation of a given star product of Wick type. The proof also gives an important step of the proof for necessary and sufficient conditions for a given derivation to be quasi-inner (cf. Proposition 3.5).

Proposition 3.2 Let \ast be a star product of Wick type on (M, ω, I) with Karabegov’s characterizing form $K(\ast)$ and let $X \in \Gamma^\infty(TM)$ be a vector field on M. Then X is a derivation of \ast if and only if

$$\mathcal{L}_X I = 0 \quad \text{and} \quad \mathcal{L}_X K(\ast) = 0. \quad (6)$$

Proof: Let us first show that $\mathcal{L}_X I = 0 = \mathcal{L}_X K(\ast)$ implies that X is a derivation of \ast. We write $X = \chi + \chi^T$ with $\chi \in \Gamma^\infty(TM^{1,0})$ and $\chi^T \in \Gamma^\infty(TM^{0,1})$, locally $X = \chi^n Z_n + \chi^T Z_l$. Then we get from $0 = (\mathcal{L}_X I)Z_k$ that $\mathcal{L}_X Z_k = 0 \left(\chi^n Z_n + Z_k \chi^T Z_l \right)$, which implies that $Z_k(\chi^T) = 0$, which means that χ^T is locally anti-holomorphic. Likewise, from $(\mathcal{L}_X I) Z_m = 0$ we find that χ^n is locally holomorphic. Now, since $K(\ast)$ is closed, we have $0 = \mathcal{L}_X K(\ast) = d \chi K(\ast)$, i.e. $i_X K(\ast)$ is a closed one-form on M. Hence on an open, contractible domain U of a chart, there exists a local formal function $a \in C^\infty(U)[[\nu]]$ with $i_X K(\ast)|_{U} = da$, hence $\partial a = i_X K(\ast)|_{U}$ and $\overline{\partial} a = i_X K(\ast)|_{U}$. Using the first of these equations with $K(\ast)$ written out in local coordinates $K(\ast)|_{U} = Z_k(\overline{\tau}_l) d\tau^k \wedge d\overline{\tau}^l$, then gives $Z_k(a) d\tau^k = -Z_k(\chi^T) d\overline{\tau}^l$, which follows since χ^T is locally anti-holomorphic. Therefore, locally $a = -\chi^T \overline{\tau}_l + h$ with a locally anti-holomorphic formal function $\overline{\tau}_l \in C^\infty(U)[[\nu]]$. Then since \ast is of Wick type and since χ^T is locally anti-holomorphic, we have $\chi^T \overline{\tau}_l = \chi^T \ast \overline{\tau}_l$. Hence for all local functions $b \in C^\infty(U)$, the second of the equations (1) implies that the star product $a \ast b$ is given by

$$a \ast b = (h - \chi^T \ast \overline{\tau}_l) \ast b = h \overline{\tau}_l - \chi^T(\overline{\tau}_l b + \nu \tilde{Z}_l(b)).$$

On the other hand, writing $K(\ast)|_{U} = -\tilde{Z}_l(u_k) dz^l \wedge dz^k$ and using $\overline{\partial} a = i_X K(\ast)|_{U}$, an analogous calculation implies that $a = \chi^k u_k + h$ with a locally holomorphic formal function $h \in C^\infty(U)[[\nu]]$. Then, as above, for all $b \in C^\infty(U)$ we have

$$b \ast a = bh + (bu_k + \nu Z_k(b)) \chi^k.$$

Combining these equations, we find

$$\text{ad}_\ast(a)(b) = h \overline{\tau}_l - \chi^T(\overline{\tau}_l b + \nu \tilde{Z}_l(b)) - bh - (bu_k + \nu Z_k(b)) \chi^k.$$

But evaluating this equation for $b = 1$, we get $0 = \overline{\tau}_l - \chi^T \overline{\tau}_l - \chi^k u_k - h$, and therefore $\text{ad}_\ast(a)b = -\nu \left(\chi^T Z_l + \chi^k Z_k \right) (b) = -\nu X(b)$. But this means there is a local formal function $a \in C^\infty(U)[[\nu]]$ such that on U the Lie derivative is quasi-inner, that is

$$X|_{C^\infty(U)} = -\frac{1}{\nu} \text{ad}_\ast(a)|_{C^\infty(U)}. \quad (7)$$

We shall later use this fact to prove a necessary and sufficient condition for X to be globally quasi-inner. But now we have finished the first part of the proof since (1) implies that X is a derivation of \ast.
Conversely, let X be a derivation of \ast. Then, applying X to the right-hand side of the first equation in (1), we have $X(a \ast u_k) = X(a)u_k + \nu X(Z_k(a))$, but using the derivation property and the first equation of (1) we also have $X(a \ast u_k) = X(a)u_k + \nu Z_k(X(a)) + a \ast X(u_k)$ and hence $a \ast X(u_k) = aX(u_k) + \nu[X, Z_k](a)$. Now in a local holomorphic chart (z, U) of M, we choose $a = \Omega$ and we write X in local holomorphic coordinates as $X = \chi^m Z_m + \chi^t Z_t$. First, \ast-left-multiplication with $a = \Omega$ is just the pointwise product, hence we get

$$0 = \nu[X, Z_k](\Omega) = -Z_k(\chi^m)^0.$$

Analogously, from the second equation of (1) one finds $-Z_k(\chi^m)^0 = 0$. Now we have in local holomorphic coordinates: $(L_X I)Z_k = L_X Z_k - I([\chi^m Z_m + \chi^t Z_t], Z_k)$. But $Z_k(\chi^t) = 0$ implies $[\chi^m Z_m + \chi^t Z_t, Z_k] = -Z_k(\chi^m)Z_m$. Therefore $L_X Z_k = i\mathcal{L}_X Z_k$ and hence $(L_X I)Z_k = 0$. Likewise, one finds $(L_X I)Z_t = 0$. Together this implies $L_X I = 0$. To show that $L_X K(\ast) = 0$, we use that $K(\ast) = \overline{\Omega}(-u_k dz^k)$ and that we have $L_X I = 0$. Then $L_X K(\ast) = -\overline{\Omega}L_X(u_k dz^k) = -\overline{\Omega}(X(u_k)dz^k + u_k d\chi^k) = -Z_l(X(u_k))dz^l \wedge dz^k + Z_l(u_k)dz^l \wedge d\chi^k + u_k d\chi^k = -(Z_l(X(u_k)))dz^l \wedge dz^k + Z_l(u_k)Z_k(\chi^m)dz^l \wedge d\chi^k$, where we have used that $\overline{\Omega}d\chi^k = 0$ since χ^k is locally holomorphic. But this last expression equals zero, since applying X to $\tau_t \ast u_k$, again the derivation property and (1) yield $[X, Z_k](\tau_t) = Z_l(X(u_k))$. Explicitly this becomes $-Z_k(\chi^m)Z_l(u_m) = Z_l(X(u_k))$ since $[X, Z_k] = -Z_k(\chi^m)Z_m$, and $Z_m(\tau_t) = Z_l(u_m)$. Hence $L_X K(\ast) = 0$, and the proposition is proved.

We have now proved all the prerequisites we need to give a complete classification of all the invariant star products of Wick type on a Kähler manifold. We first have to recall some definitions of notions of invariance of star products from [1].

Let G be a Lie group and let $\Phi : G \times M \rightarrow M$ denote a (left-)action of G on M. Writing ϕ_g $\forall g \in G$ for the diffeomorphism of M defined by $\phi_g(m) := \Phi(g, m)$ $\forall m \in M$, obviously $r(g)a := \phi_g^{-1}a$ defines a Lie group action of G on $C^\infty(M)$ that naturally extends to a Lie group action on $C^\infty(M)[[\nu]]$. Now recall that a star product \ast on (M, ω) is called G-invariant if $r(g)$ is an automorphism of \ast for all $g \in G$.

Furthermore, let \mathfrak{g} be a finite dimensional real or complex Lie algebra and let $X : \mathfrak{g} \rightarrow \Gamma^\infty(TM)$: $\xi \mapsto X_\xi$ denote a Lie algebra anti-homomorphism. Then obviously $\phi_\xi(a) := -X_\xi(a)$ defines a Lie algebra action of \mathfrak{g} on $C^\infty(M)$ that also extends naturally to $C^\infty(M)[[\nu]]$. Also recall that a star product \ast on (M, ω) is called \mathfrak{g}-invariant if $\phi(\xi)$ is a derivation of \ast for all $\xi \in \mathfrak{g}$.

Observe that from the action of a Lie group G one obtains a corresponding Lie algebra action of $\mathfrak{g} = \text{Lie}(G)$ by $X_\xi(m) := \frac{d}{dt}|_{t=0}\Phi(\exp(t\xi), m)$ for all $m \in M$ and in this case G-invariance of a star product clearly implies \mathfrak{g}-invariance. In case G is in addition connected one even has that \mathfrak{g}-invariance with respect to the above action implies G-invariance.

With the notations from above and from Propositions 3.1 and 3.2 we obtain the following classification result:

Theorem 3.3 Let (M, ω, I) be a Kähler manifold.

i.) For a given Lie group action r as above there are G-invariant star products of Wick type on (M, ω, I) if and only if $\phi_g^I = I$ and $\phi_g^\omega = \omega$ for all $g \in G$. In this case the set of G-invariant star products of Wick type is in bijection to $\{ \Omega \in \nu Z_{\text{der}}^2(M, \mathbb{C}) \}^{1,1,1}[[\nu]] | \phi_g^\Omega = \Omega \forall g \in G$ and the bijection is given by the restriction of the mapping according to (3) to the respective G-invariant elements.

ii.) For a given Lie algebra action ϕ as above there are \mathfrak{g}-invariant star products of Wick type on (M, ω, I) if and only if $L_{X_\xi} I = 0$ and $L_{X_\xi} \omega = 0$ for all $\xi \in \mathfrak{g}$. In this case the set of \mathfrak{g}-invariant star products of Wick type is in bijection to $\{ \Omega \in \nu Z_{\text{der}}^2(M, \mathbb{C}) \}^{1,1,1}[[\nu]] | L_{X_\xi} \Omega = 0 \forall \xi \in \mathfrak{g}$ and the bijection is given by the restriction of the mapping according to (3) to the respective \mathfrak{g}-invariant elements.
Remark 3.4 It is interesting to note that the necessary and sufficient conditions for the existence of G-invariant star products of Wick type on Kähler manifolds given above are precisely – besides other additional conditions that guarantee that the reduced phase space exists as a smooth symplectic manifold or more generally as a stratified symplectic space – the conditions that are sufficient for the reduced phase space to be a Kähler manifold or more generally a stratified Kähler space (cf. [13]). In particular, this means that the notion of star products of Wick type can also be defined on the reduced phase space and therefore the question whether ‘deformation quantization of Wick type commutes with reduction’ can at least be given a meaning. Note, however, that unless there is a quantum momentum mapping, one does not even have the possibility to say what the relation between a star product on the reduced phase space and a reduced star product should be, since so far there is no obvious method to obtain the latter in that case.

We now state a proposition giving a necessary and sufficient condition for a derivation of a star product of Wick type given by a vector field X to satisfy

$$X(b) = -\frac{1}{\nu} \text{ad}_\nu(a)b$$

(8)

with some $a \in \mathcal{C}^\infty(M)[[\nu]]$ for all $b \in \mathcal{C}^\infty(M)[[\nu]]$. In this case X is called a quasi-inner (or essentially inner [10]) derivation.

The condition given in [22] was first presented for ordinary slightly more special Fedosov star products by Gutt in [11] (cf. also [12] Thm. 7.2). The proof that the given condition is sufficient for these Fedosov star products was originally published in [19] Prop. 4.3.

Proposition 3.5 (cf. [22 Prop. 3.9]) Let \star be a star product of Wick type on (M, ω, I) with Karabegov’s characterizing form $K(\star)$. Assume that $X \in \Gamma^\infty(TM)$ is a vector field such that X is a derivation of \star. Then X is even quasi-inner if and only if there is a formal function $a \in \mathcal{C}^\infty(M)[[\nu]]$ such that

$$da = i_X K(\star),$$

(9)

and then $X(b) = X^\omega_{a_0}(b) = -\frac{1}{\nu} \text{ad}_\nu(a)b$ for all $b \in \mathcal{C}^\infty(M)[[\nu]]$, where we have written $a = a_0 + a_+$ with $a_0 \in \mathcal{C}^\infty(M)$ and $a_+ \in \nu \mathcal{C}^\infty(M)[[\nu]]$, and $X^\omega_{a_0}$ denotes the Hamiltonian vector field of a_0 with respect to ω.

PROOF: Let X be a derivation of \star, then from Proposition 5.2 we know that $\mathcal{L}_X I = 0 = \mathcal{L}_X K(\star)$. Now we have already shown in equation (7) that under these conditions on every open, contractible set $U \subseteq M$ there is a local formal function $a \in \mathcal{C}^\infty(U)[[\nu]]$ with $da = i_X K(\star)_U$ and that this implies that $X|_{\mathcal{C}^\infty(U)} = -\frac{1}{\nu} \text{ad}_\nu(a)|_{\mathcal{C}^\infty(U)}$. Hence if there is a globally defined formal function $a \in \mathcal{C}^\infty(M)[[\nu]]$ with $da = i_X K(\star)$, the proof of Proposition 5.2 also shows that X is quasi-inner.

Conversely let $X = \chi + \chi$, where $\chi \in \Gamma^\infty(TM^{1,0})$ and $\chi \in \Gamma^\infty(TM^{0,1})$, be a quasi-inner derivation of \star, that is for all $b \in \mathcal{C}^\infty(M)$ we have $X(b) = -\frac{1}{\nu} \text{ad}_\nu(a)b$, or equivalently $b \star a - \nu \chi(b) = a \star b + \nu \chi(b)$.

Since \star is of Wick type, the left-hand side of the former equation contains only derivatives of b in holomorphic directions, while the right-hand side only contains derivatives in anti-holomorphic ones. This implies that $b \star a - \nu \chi(b) = cb(= a \star b + \nu \chi(b))$, with a formal function $c \in \mathcal{C}^\infty(M)[[\nu]]$ and for $b = 1$ this particularly yields $c = a$ and therefore we have $\chi(b) = \frac{1}{\nu}(b \star a - ba)$. As in the previous proofs, we now use the equations (11) and calculate $\chi(u_k) = \frac{1}{\nu}(au_k - (au_k + \nu Z_k(a))) = -Z_k(a)$ and likewise $\chi(\nu_1) = Z_1(a)$. From these equations and the very definition of $K(\star)$ it is obvious that $\partial a = i_X K(\star)$ and likewise $\partial a = i_X K(\star)$ and hence (9) holds and the necessary condition is proved. For the remaining statement of the proposition, just observe that the zeroth order in ν implies that $\partial a_0 = i_X \omega$, and hence $X = X^\omega_{a_0}$ is the Hamiltonian vector field of the function $a_0 \in \mathcal{C}^\infty(M)$. □
4 Quantum Momentum Mappings for Invariant Star Products of Wick Type

We are now in the position to derive the analogues of our results on quantum momentum mappings for Fedosov star products [22 Sect. 4].

For the sake of brevity, and since all the proofs are (almost) literally the same, we simply write down the statements themselves and refer the reader to [22 Sect. 4] for proofs and some additional comments.

We no longer treat the cases of Lie group actions and Lie algebra actions separately and we simply speak of invariant star products in this section. Moreover, in the case of a Lie group action, we always consider the induced Lie algebra action by means of its infinitesimal generators.

First we shall need to recall some definitions and notations from [26] and [22]. Considering some complex vector space V endowed with a representation $\pi : g \rightarrow \text{Hom}(V, V)$ of the Lie algebra g in V, we denote the space of V-valued k-multilinear alternating forms on g by $C^k(g, V)$, and the corresponding Chevalley-Eilenberg differential is denoted by $\delta_{\pi} : C^k(g, V) \rightarrow C^{k+1}(g, V)$. Moreover, the spaces of the corresponding cocycles, coboundaries, and the corresponding cohomology spaces shall be denoted by $Z^k_{\pi}(g, V)$, $B^k_{\pi}(g, V)$, and $H^k_{\pi}(g, V)$, respectively.

A Lie group action r or a Lie algebra action ϱ is called Hamiltonian if and only if there is an element $J_0 \in C^1(g, \mathcal{C}^\infty(M))$ such that $X^\omega_{J_0(\xi)} = X_\xi$ for all $\xi \in g$, i.e. $i_{X_\xi} \omega = dJ_0(\xi)$. In this case $\varrho(\xi) = \{ J_0(\xi), \cdot \}$, and J_0 is said to be a Hamiltonian for the action r resp. ϱ. In case J_0 is g-equivariant, i.e. $\varrho(\xi) J_0(\eta) = \{ J_0(\xi), J_0(\eta) \} = J_0([\xi, \eta])$ for all $\xi, \eta \in g$, the Hamiltonian J_0 is called a classical momentum mapping. For a Lie group action, this is the case if in particular we have $r(g) J_0(\xi) = J_0(\text{Ad}(g) \xi)$ for all $g \in G$ and all $\xi \in g$, and in this case J_0 is called a G-equivariant classical momentum mapping.

Let now \star be an invariant star product. Then $J = J_0 + J_+ \in C^1(g, \mathcal{C}^\infty(M))[[\nu]]$ with $J_0 \in C^1(g, \mathcal{C}^\infty(M))$ and $J_+ \in \nu C^1(g, \mathcal{C}^\infty(M))[[\nu]]$ is called a quantum Hamiltonian for the action r resp. ϱ in case

$$\varrho(\xi) = \frac{1}{\nu} \text{ad}_* (J(\xi)) \quad \text{for all} \quad \xi \in g. \quad (10)$$

J is called a quantum momentum mapping if in addition

$$\frac{1}{\nu} (J(\xi) \star J(\eta) - J(\eta) \star J(\xi)) = J([\xi, \eta]) \quad (11)$$

for all $\xi, \eta \in g$, i.e. in case J is g-equivariant.

The zeroth orders of (10) and (11) just mean that J_0 is a classical momentum mapping. As for the classical momentum mapping J_0 a quantum Hamiltonian J for a Lie group action r that is G-equivariant, i.e. that satisfies $r(g) J(\xi) = J(\text{Ad}(g) \xi)$ for all $g \in G$ and for all $\xi \in g$, clearly defines a quantum momentum mapping which is called a G-equivariant quantum momentum mapping.

Also recall the definition of a strongly invariant star product from [1]: Let J_0 be a classical momentum mapping for the action r resp. ϱ. Then an invariant star product is called strongly invariant if and only if $J = J_0$ defines a quantum Hamiltonian for this action.

As in [22 Ded. 4.4], the condition for the existence of a quantum Hamiltonian for an action r resp. ϱ can be seen directly from Proposition 3.5.

Deduction 4.1 An invariant star product \star of Wick type on (M, ω, I) with Karabegov’s characterizing form $K(\star)$ admits a quantum Hamiltonian if and only if there is an element $J \in C^1(g, \mathcal{C}^\infty(M))[[\nu]]$ such that

$$dJ(\xi) = i_{X_\xi} K(\star) \quad \forall \xi \in g, \quad (12)$$

9
i.e. if and only if the cohomology class of \(i_{\mathbf{X}} \lambda \) vanishes for all \(\xi \in \mathfrak{g} \). Moreover, from equation (12), \(J \) is determined (in case it exists) up to elements in \(C^1(\mathfrak{g}, \mathbb{C})[[\nu]] \).

We also have the following statement on strong invariance:

Corollary 4.2 (cf. [22, Cor. 4.7]) Let \(J_0 \) be a classical momentum mapping for the action \(r \) resp. \(g \). Then an invariant star product of Wick type \(* \) with Karabegov’s characterizing form \(K(*) \) is strongly invariant if and only if

\[
i_{\mathbf{X}}(K(*)) = 0 \quad \text{for all} \quad \xi \in \mathfrak{g}.
\]

(13)

In this case every classical momentum mapping defines a quantum momentum mapping for \(*\).

In the general case of an invariant star product of Wick type, [22, Prop. 4.8] and [22, Cor. 4.10] also transfer directly:

Proposition 4.3 (cf. [22, Prop. 4.8]) Let \(J \) be a quantum Hamiltonian for a star product of Wick type \(* \) with Karabegov’s characterizing form \(K(*) \), then \(\lambda \in C^2(\mathfrak{g}, \mathbb{C}^\infty(M))[[\nu]] \) defined by

\[
\lambda(\xi, \eta) := \frac{1}{\nu} (J(\xi) \ast J(\eta) - J(\xi) \ast J(\eta)) - J([\xi, \eta])
\]

(14)

lies in \(C^2(\mathfrak{g}, \mathbb{C})[[\nu]] \) and is an element of \(Z_2^g(\mathfrak{g}, \mathbb{C})[[\nu]] \) which is explicitly given by

\[
\lambda(\xi, \eta) = K(*) (\mathbf{X}_\xi, \mathbf{X}_\eta) - J([\xi, \eta]).
\]

(15)

The cohomology class \([\lambda] \in H_0(\mathfrak{g}, \mathbb{C})[[\nu]] \) does not depend on the choice of \(J \). Moreover, quantum momentum mappings exist if and only if \([\lambda] = [0] \in H_0^0(\mathfrak{g}, \mathbb{C})[[\nu]] \), and for every \(\tau \in C^1(\mathfrak{g}, \mathbb{C})[[\nu]] \) such that \(\delta_0 \tau = \lambda \) the element \(J^\tau := J - \tau \in C^1(\mathfrak{g}, \mathbb{C}^\infty(M))[[\nu]] \) is a quantum momentum mapping for \(*\). Finally, the quantum momentum mapping (if it exists) is unique up to elements in \(Z_2^g(\mathfrak{g}, \mathbb{C})[[\nu]] \), and hence we have uniqueness if and only if \(H_0^0(\mathfrak{g}, \mathbb{C}) = 0 \).

\[\text{Remark 4.4} \quad \text{In the case of a G-action a quantum Hamiltonian J clearly defines a smooth mapping} \quad \sigma : G \to C^1(\mathfrak{g}, \mathbb{C})[[\nu]] \text{ by} \quad (\sigma(g))(\xi) := r(g) J(\xi) - J(\text{Ad}(g)\xi) \text{ which is a cocycle on G, i.e.} \quad \sigma(g') = \sigma(g') + \sigma(g) \circ \text{Ad}(g') \text{ for all} \quad g, g' \in G. \text{ Moreover, the cohomology class} \quad [\sigma] \text{ is independent of the choice of} \ J, \text{ i.e. for a different quantum Hamiltonian J' we have} \quad \sigma'(g) - \sigma(g) = \gamma - \gamma \circ \text{Ad}(g), \text{ where} \quad \gamma \in C^1(\mathfrak{g}, \mathbb{C})[[\nu]]. \text{ Clearly, a G-equivariant quantum momentum mapping exists if and only if the cohomology class of} \ \sigma \text{ vanishes, i.e. if and only if there is an element} \ \tau \in C^1(\mathfrak{g}, \mathbb{C})[[\nu]] \text{ such that} \ \sigma(g) = \tau - \tau \circ \text{Ad}(g) \text{ and in this case} \ J^\tau := J - \tau \text{ is a G-equivariant quantum momentum mapping which is unique up to G-invariant elements in} \ C^1(\mathfrak{g}, \mathbb{C})[[\nu]].\]

We would like to recall the example of semi-simple Lie algebras we gave in [22, Ex. 4.9]. In this case, owing to the Whitehead Lemmas and a deformed version of Sternberg’s Lemma, there is a unique quantum momentum mapping for every invariant star product of Wick type. Another important example clearly is that of Abelian Lie algebras, where, even if a quantum momentum mapping exists, it is never unique. Yet another interesting example, where the existence of a quantum momentum mapping is guaranteed and which is specific for the case of Kähler manifolds considered in the present letter is the following:

Example 4.5 In case there is a global formal Kähler potential \(\varphi \in \mathcal{C}^\infty(M)[[\nu]] \) for \(K(*) \), i.e. \(K(*) = \partial \bar{\partial} \varphi \), that additionally satisfies \(\mathbf{X}_\xi(\varphi) = 0 \) for all \(\xi \in \mathfrak{g} \), it is a straightforward verification to see that \(J \) defined by \(J(\xi) := \frac{1}{\nu} (\mathbf{X}_\xi(\varphi)) \) fulfills \(dj(\xi) = i_{\mathbf{X}} K(*) \) and \(J([\xi, \eta]) = K(*) (\mathbf{X}_\xi, \mathbf{X}_\eta) \) and therefore defines a quantum momentum mapping for the invariant star product \(*\). If in the case of a group action \(\varphi \) additionally satisfies \(r(g) \varphi = \varphi \) for all \(g \in G \), then the quantum momentum mapping \(J \) defined above evidently is \(G \)-equivariant.
Finally, in the case of star products of Wick type we also find that in general the existence of a classical momentum mapping does not imply the existence of a quantum momentum mapping:

Corollary 4.6 (cf. [22, Cor. 4.10]) Let $*$ be an invariant star product of Wick type with Karabegov’s characterizing form $K(*)$, and assume that there is a classical momentum mapping J_0 for the action r resp. g, then a quantum momentum mapping J exists if and only if there is an element $J_+ \in \nu C^1(\mathfrak{g}, C^\infty(M))[\nu]$ such that

$$i_{X_\xi}(K(*)) - \omega = dJ_+(\xi) \quad \text{and} \quad (K(*) - \omega)(X_\xi, X_\eta) = (\delta_\nu J_+)(\xi, \eta) \quad \forall \xi, \eta \in \mathfrak{g},$$

(16)

and these equations determine J_+ up to elements of $\nu \mathcal{Z}_0^1(\mathfrak{g}, \mathbb{C})[[\nu]]$.

We want to conclude our considerations giving an exceptional example of an invariant but in general not strongly invariant star product of Wick type, where the existence of a classical momentum mapping already guarantees the existence of a quantum momentum mapping.

Example 4.7 In [15] it has been shown that the star product $*_\text{BT}$ of Wick type that arises from the asymptotic expansion of the Berezin-Toeplitz quantization corresponds to the characterizing form $K(*_\text{BT}) = \omega + \frac{2\nu}{1} \rho$, where ρ denotes the Ricci form – using the curvature R of the Kahler connection ∇ – is explicitly given by $\rho(Y, Y') = -\frac{1}{4} \text{tr}(R(Y, Y')I)$ for $Y, Y' \in \Gamma^\infty(TM)$. In case ω and I are invariant evidently the Kahler connection and its curvature are invariant implying that $*_\text{BT}$ is an invariant star product by Theorem 3.3. Using the invariance of ∇ in the form $[X_\xi, \nabla Y'] = \nabla [X_\xi, Y'] + \nabla Y[X_\xi, Y']$ together with the property $\nabla I = 0$ of the Kahler connection and the invariance of I it is an easy computation to obtain that $i_{X_\xi} \rho = d_j(\xi)$, where $j(\xi) = \frac{1}{4} \text{div}(X_\xi)$ and div denotes the covariant divergence with respect to ∇, i.e. $\text{div}(Y) = \text{tr}(\nabla Y)$ for $Y \in \Gamma^\infty(TM)$. Moreover, using the invariance of ∇ and I once again it is rather obvious that $\rho(X_\xi, X_\eta) = j(\xi, \eta)$ and in the case of a group action we even have $r(g)j(\xi) = j(\text{Ad}(g)\xi)$. Consequently, in this situation the existence of a (G-equivariant) classical momentum mapping J_0 implies that $J = J_0 + \frac{2\nu}{1} j$ defines a (G-equivariant) quantum momentum mapping.

References

[1] Arnal, D., Cortet, J. C., Molin, P., Pinczon, G.: Covariance and geometrical invariance in $*$ quantization. J. Math. Phys. 24, 276–283 (1983).

[2] Bayen, F., Flato, M., Frønsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation Theory and Quantization. Ann. Phys. 111, Part I: 61–110, Part II: 111–151 (1978).

[3] Bertelson, M., Bieliavsky, P., Gutt, S.: Parametrizing Equivalence Classes of Invariant Star Products. Lett. Math. Phys. 46, 339–345 (1998).

[4] Bordemann, M., Meinrenken, E., Schlichenmaier, M.: Toeplitz quantization of Kahler manifolds and $gl(N)$, $N \to \infty$ limits. Commun. Math. Phys. 165, 281–296 (1994).

[5] Bordemann, M., Herbig, H.-C., Waldmann, S.: BRST Cohomology and Phase Space Reduction in Deformation Quantization. Commun. Math. Phys. 210, 107–144 (2000).

[6] Bordemann, M., Waldmann, S.: A Fedosov Star Product of Wick Type for Kahler Manifolds. Lett. Math. Phys. 41, 243–253 (1997).

[7] Cahen, M., Gutt, S., Rawnsley, J.: Quantization of Kahler manifolds. II. Trans. Amer. Math. Soc. 337, 1, 73–98 (1993).

[8] Fedosov, B. V.: A Simple Geometrical Construction of Deformation Quantization. J. Diff. Geom. 40, 213–238 (1994).
[9] Fedosov, B. V.: Non-Abelian Reduction in Deformation Quantization. Lett. Math. Phys. 43, 137–154 (1998).

[10] Gutt, S., Rawnsley, J.: Equivalence of star products on a symplectic manifold; an introduction to Deligne’s Čech cohomology classes. J. Geom. Phys. 29, 347–392 (1999).

[11] Gutt, S.: Star products and group actions. Contribution to the Bayrischzell Workshop, April 26–29, 2002.

[12] Gutt, S., Rawnsley, J.: Natural star products on symplectic manifolds and quantum moment maps. Preprint, April 2003, math.SG/0304498 v1, to appear in Lett. Math. Phys..

[13] Heinze, P., Huckleberry, A.: Kählerian structures on symplectic reductions. In: Peter, T. (ed.): Complex analysis and algebraic geometry. A volume in memory of Michael Schneider. Walter de Gruyter, Berlin, 225–253 (2000).

[14] Karabegov, A. V.: Deformation Quantization with Separation of Variables on a Kähler Manifold. Commun. Math. Phys. 180, 745–755 (1996).

[15] Karabegov, A. V.: Cohomological Classification of Deformation Quantization with Separation of Variables. Lett. Math. Phys. 43, 347–357 (1998).

[16] Karabegov, A. V.: Pseudo-Kähler Quantization on Flag Manifolds. Commun. Math. Phys. 200, 355–379 (1999).

[17] Karabegov, A. V.: On Fedosov’s approach to Deformation Quantization with Separation of Variables. In: Dito, G., Sternheimer, D. (eds.): Conference Moshé Flato 1999, Vol. II. Kluwer Academic Publ., Dordrecht, 167–176 (2000).

[18] Karabegov, A. V., Schlichenmaier, M.: Identification of Berezin-Toeplitz Deformation Quantization. J. reine angew. Math. 540, 49–76 (2001).

[19] Kravchenko, O.: Deformation quantization of symplectic fibrations. Compositio Math. 123, 131–165 (2000).

[20] Lichnerowicz, A.: Connexions symplectiques et *-produits invariants. C. R. Acad. Sc. Paris 291, A, 413–417 (1980).

[21] Moreno, C.: *-products on some Kähler manifolds. Lett. Math. Phys. 11, 361–372 (1986).

[22] Müller, M. F., Neumaier, N.: Some Remarks on g-invariant Fedosov Star Products and Quantum Momentum Mappings. Preprint, January 2003, math.QA/0301101 v2, to appear in J. Geom. Phys..

[23] Neumaier, N.: Universality of Fedosov’s Construction for Star Products of Wick Type on Pseudo-Kähler Manifolds. Rep. Math. Phys. 52, 43–80 (2003).

[24] Schlichenmaier, M.: Deformation quantization of compact Kähler manifolds by Berezin-Toeplitz quantization. In: Dito, G., Sternheimer, D. (eds.): Conference Moshé Flato 1999, Vol. II. Kluwer Academic Publ., Dordrecht, 289–306 (2000).

[25] Woodhouse, N. M. J.: Geometric Quantization. Oxford Mathematical Monographs. Oxford University Press (1991).

[26] Xu, P.: Fedosov *-Products and Quantum Momentum Maps. Commun. Math. Phys. 197, 167–197 (1998).