Arteriovenous fistula (AVF) is defined as an abnormal communication between the high flow arterial system and the low flow venous network, which directly connects the arterial feeding vessels and the near draining veins without normal intervening capillary bed. Arteriovenous fistula incurs in preauricular region is exceeding rare. Most of these fistulae occur as a result of an iatrogenic injury, the volume is small, feeding and draining vessels of feeding and draining are simple, and can be cured easily. However, the treatment of the large and complicated AVF after incidental trauma in preauricular region is a challenge even for senior neurosurgeon. In this study, we discuss the management of a traumatic AVF through combined therapeutic method of surgical ligation and transarterial embolization. It is fed by ipsilateral superficial temporal artery, internal maxillary artery, posterior auricular artery, and their accessory branches and is drained by ipsilateral common facial vein and external jugular vein. Also the etiology, clinical manifestations, pathology, diagnosis, and management are summarized.

Key Words: Arteriovenous fistula, maxillofacial region, preauricular region, superficial temporal artery, superficial temporal vein

(PL) Arteriovenous fistula (AVF) is defined as an abnormal communication between the high flow arterial system and the low flow venous network, which directly connects the arterial feeding vessels and the near draining veins without normal intervening capillary bed. Arteriovenous fistula incurs in preauricular region is exceeding rare. Most of these fistulae occur as a result of an iatrogenic injury, the volume is small, feeding and draining vessels of feeding and draining are simple, and can be cured easily. However, the treatment of the large and complicated AVF after incidental trauma in preauricular region is a challenge even for senior neurosurgeon. In this study, we discuss the management of a traumatic AVF through combined therapeutic method of surgical ligation and transarterial embolization. It is fed by ipsilateral superficial temporal artery (STA), internal maxillary artery, posterior auricular artery, and their accessory branches and is drained by ipsilateral common facial vein and external jugular vein. Also the etiology, clinical manifestations, pathology, diagnosis, and management are summarized.

Conclusion: Large and complicated traumatic AVF in preauricular region is rare, often due from an injury in maxillofacial region, combined therapy needed.
cardiopneumatic abnormality was found. The cardiothoracic ratio was 0.48, which was in the normal physiologic range. And no other

FIGURE 2. Thoracic photograph of x-rays revealed the cardiothoracic ratio was 0.48, which was in the normal physiologic range. And no other cardiopneumatic abnormality was found.

and tortuous. There was a generous and irregular vascular mass located next to the root of STA. The grossus ECA main trunk between the irregular vascular mass and the root of occipital artery twisted as a U-shaped. The right STA, internal maxillary artery, and posterior auricular artery were directly or indirectly supplying blood to the vascular mass. The irregular vascular mass, showed in popcorn shaped in MRI angiogram, drained through ipsilateral common facial vein and external jugular vein, which appeared remarkably thickened and tortuous and were further drained into the internal carotid vein and the subclavian vein, respectively. There was a large venous lake, adjoining to the vascular mass, in the regurgitant veins. Right internal carotid artery would appear under enough pressure on the anterior–inferior border of the tragus and would fleetly vanish without compression. The blood, in the segment of STA main trunk that was located beyond the irregular vascular mass, widdershins and centripetally flowed to the vascular mass, which directly connected the feeding arteries and draining veins, just was the orifice fistulae.

At first, we selected transarterial embolotherapy for the AVF and consumed one 20 mm × 40 cm Interlock-35 coils (Detachable coi-cube, Boston Scientific, Marlborough, MA) and 3 No 2 detachable balloon (Balt, Montmorency, France), but failed (Fig. 5). A month later, we performed a combined therapy of vascular ligation and intravascular embolism for him.

The therapy was also implemented under general anesthesia in Invasive Technology Department. Initially a transfemoral angiography catheter was implanted into the right CCA to monitor the therapeutic process, at first reviewed visualization obviated new change in the lesion. The intraoperative process included 3 procedures (Fig. 6). The first procedure was to dissect and exposure relative blood vessels for immediately ligation. Three incisions were made: the first incision, from rear of the angle of mandible to horizontal line of cricoid cartilage, was for revealing the proximal part of common facial vein and the lowest segment of U-shaped loop, these 2 vessels were all circled cord for ligature. The second incision, along marked STA main trunk above the zygomatic arch, where STA main trunk was dissected and circle with suture at its proximal part. The third incision was made at proximal part of external jugular vein along superior border of clavicle, where we revealed and circled the distal end of external jugular vein with No 10 silk suture. Second procedure was to ligate these vessels. After heparinization through peripheral vein we immediately ligated these vessels in order: STA trunk with No 7 silk suture, ECA doubly with double strands No 10 silk suture. We subsequently crushed and eliminated blood in the dilated lumen of common facial vein, external jugular vein, and ligated them, respectively, at centripetal distal end.

Third procedure was interventional therapy. We punctured ECA at centrifugal side of ligating silk suture and implanted 6F sheath into the ascending portion of U-shaped loop, just approximating the orificium fistulae, this path was used for embolism and contrast examination. At last, we confirmed the orificium fistulae was soundly embolized, consuming 6 detachable Interlock-35 coils (20 mm × 40 cm × 4, 18 mm × 40 cm × 2 Detachable Coil-Cube, Boston Scientific), through contrast examination. In the procedure the venous lake swollen with tension rising, thrice suctions were given and about 25 mL mixed liquor of blood and contrast media was sucked out. We sewed up these 3 incisions in layered fashion with a standalone drain, which was kept for near 30 hours, in the first incision. The patient awoke from general anesthetic without neurologic deficits, and tinnitus had shearly vanished.
After operation the patient was given strict blood pressure control at 110 to 130/60 to 90 mm Hg, right about 20 mm Hg below preoperative fundamental height; 5000 U low molecular heparin was subcutaneously injected bis in die in first postoperative week and once a day in the following week. His complains of postoperative apparente headache and jumping pain in right maxillofacial region gradually relieved 2 weeks later, during this period lente liberantes analgesics were given once a day and oppression to right CCA was given 4 times in the first postoperative week. Computed tomography angiography (CTA) revealed little contrast media in ascending branch of U-shaped loop and orificium fistulae was out of visualization (Fig. 7). He experienced no postoperative neurologic deterioration and hyperperfusion syndrome and was discharged in soundly independent status 4 weeks after the second therapy. Four months later, control angiograms confirmed that the AVF was completely occluded, and no other maxillofacial region gradually relieved 2 weeks later, during this period lente liberantes analgesics were given once a day and oppression to right CCA was given 4 times in the first postoperative week. Computed tomography angiography (CTA) revealed little contrast media in ascending branch of U-shaped loop and orificium fistulae was out of visualization (Fig. 7). He experienced no postoperative neurologic deterioration and hyperperfusion syndrome and was discharged in soundly independent status 4 weeks after the second therapy. Four months later, control angiograms confirmed that the AVF was completely occluded, and no other
lesion was found (Fig. 8). The patient was contacted 12 months later, there was a hard mass, about thumb tip-sized, existing prior to right tragus, and his other symptoms all had resolved.

DISCUSSION

Traumatic AVF in preauricular region is fairly rare. Most of these fistulae occur as a result of an incidental injury or iatrogenic injury (Table 1). Spontaneous occurrence in maxillofacial region has also been reported. Difference trauma, a blunt or sharp trauma, to local jacent blood vessels may immediately induce AVF or indirectly facilitate the formation of AVF.

The suppositional mechanism is anatomic difference that the soft subcutaneous tissues in preauricular region is more mobile and thicker than that in scalp and there is no smooth outer table of the skull in preauricular region. So the preauricular region is not particularly susceptible to blunt injury as scalp. To this patient we supposed the development of the AVF in preauricular region was from the direct puncturing injury to the main trunk of STA and adjacent veins.

With regard to the mechanism of formation of post-traumatic AVF in preauricular region, at least 2 mechanisms have been suggested. One is the laceration theory that simultaneous lacerations of the artery and the accompanying vein result in a single fistula. The other is the disruption theory of the vasa vasorum form endothelial buds and numerous cells proliferating from the vasa vasorum into the hematoma around disrupted vasa vasorum form endothelial buds and numerous small vessels resulting in numerous vascular channels created to adjacent veins. Concerning the mechanism of the lesion in our patient, according the history of pricking injury from "flying cutter" and the outcome of auxiliary examination, the STA main trunk and the neighboring venous systems maybe simultaneously directly or indirectly injured, and the AVF generated and gradually grew along with time. As the fistula increases in size, additional peripheral vessels contribute to the high-flow, high-pressure shunt. The natural history of traumatic AVF is not completely understood. Most patients with traumatic AVF in scalp, head and neck were found in the period of about a few days to months postoperatively or after trauma. This patient was symptomless in the first 20 years after prick and the symptom tardily developed in the subsequent 20 years, it may be explained that the factors such as dysvascular status, hemodynamic specialty of regional blood vessels, and anatomic features adjacent anatomic structure influenced the onset and development of the fistula.

The indication of therapy includes improvement appearance, elimination of symptom such as tremor and tinnitus, and reduction of the risk of health lesions such as hemorrhage and steals flow. Two categories fundamental therapeutic methods, chirurgic surgery and transvascular interventional therapy have constantly been used to deal with these lesions, the former including excision of all the fistula and ligation of relative vessels has been the traditional therapeutic modality of dealing with such lesions in vast majority in the past and now is still constantly being adopted, the latter including transarterial and transvenous embolization has been a gradually prevalent essential therapeutic modality for its rapid, safe, and highly effective virtue. The therapy of injection of sclerosant in focal zone or radiation therapy were also adopted. Simple therapeutic method maybe effective for simple patient, but for large and complicated AVF may need combined treatment. The lesion in the present patient was a large, complicated, high-flow AVF whose orificium fistulae around the right neck of condyle, that impeded surgical access to exposure and excision. Embolization has been proposed as a safer alternative to surgical ligation or resection in such situations. We first applied transarterial embolization with detachable balloons and cilary spring coil but

TABLE 1. List of Reports

Year	Authors	No of Patient	Location	Cause	Complicated AVF
1991	Preisler et al	1	Superficial temporal artery	Iatrogenic	No
1991	Lanigan et al	1	Internal maxillary artery	Iatrogenic	No
1997	Scholl and Rutledge	1	Uperfacial temporal artery	Iatrogenic	No
1999	Calwell et al	1	Uperfacial temporal artery	Iatrogenic	No
2004	Martin-Granizo et al	1	Uperfacial temporal artery	Iatrogenic	No
2013	Janssen et al	1	Superficial temporal artery	Iatrogenic	No
2014	Sacho et al	1	Superficial temporal artery	Iatrogenic	No

AVF, arteriovenous fistula.

*The AVF with more than 1 supplying arteries and draining veins.
failed after effort of 4 hours. At first, the coils could be partly coiled in the orifice fistulae but we could not release it for its instability under the vigorous impact force of blood stream even we weakened it through compression. And we could not release the balloon because the orifice fistulae was too large that there was no enough frictional resistance between it and the balloon for detachment. We also could not use PTA Balloon Dilatation Catheter (Bard Peripheral Vascular, Murray Hill, NJ), which has a straight balloon of 4 cm—length can be inflated to the diameter of 12 or 16 mm according its type, to obstruct blood stream for there is a short 180° N-shaped loop at the head of ECA. It is critical to select the suitable embolic material that match the size of the shunt for success in embolotherapy, but we found it was difficult for such a big AVF at that time. The patient was at last swimmingly cured through combined therapy of chytric ligation of feeding arteries, draining veins and embolization of orificium fistulae via transarterial path. In the therapeutic procedure, the powerful blood stream in the orificium fistulae was successfully blocked by ligating the feeding arteries, which made it feasible to steadily embolize the orificium fistulae with unmix detachable coils. In fact the orificium fistulae was not tightly embolized with unmixi detachable ciliary coils, we concluded that the constriction of soft tissues after ligation of feeding arteries may have further reduced the relict hematologic supply to the orificium fistulae, and once the fistula has been obliterated by thrombosis the occlusion would be stable. The main purpose of ligating the common facial vein and the external jugular vein at their centripetal distal ends and postoperative use of low molecular heparin was to avoid the formation of antodicromic thrombus in the stumps of these grossus veins. The treatment protocols for such a formidable and high-risk patient, in our experience, should be made according the character of the extensive lesion and extensive discussion among related professional specialists, and the combined therapeutic method maybe the practical alternative.

CONCLUSION
Large and complicated traumatic AVF in preauricular region is rare, often due from a injury in maxillofacial region, combined therapy is needed. How such lesions should be managed on an individualized basis and extensive discussion is especially helpful in making suitable treatment protocols for such a formidable and high-risk patient.

REFERENCES
1. Jansen M, Vaninbroukx J, Fourneau I, et al. Arteriovenous fistula after superficial temporal arterial biopsy. Ann Vasc Surg 2013;27:e1–e4
2. Zheng F, Augustus Pits H, Goldbrunner R, et al. Traumatic arteriovenous fistula of the scalp in the left temporoparietal region with intra- and extracranial blood supply. Case Rep Vasc Med 2016;2016:8671472
3. Moses Z, Topper DD. Arteriovenous fistula: an unusual complication associated with arthroscopic temporomandibular joint surgery. J Oral Maxillofac Surg 1990:48:1220–1222
4. Preiser SL, Kooorbuch GF, Olson RA. An acquired arteriovenous fistula secondary to temporomandibular joint arthroscopy: report of a case. J Oral Maxillofac Surg 1991:49:187–190
5. Lanigan DT, Hey JH, West RA. Major vascular complications of orthognathic surgery: false aneurysms and arteriovenous fistulae. J Oral Maxillofac Surg 1991:49:571–577
6. Scholl PD, Rutledge JN. Arteriovenous fistula after temporomandibular joint arthroscopy treated with external carotid embolization. Otolaryngol Head Neck Surg 1997;117:124–126
7. Calwell EI., McKinstry CS, Kendrick RW. Arteriovenous fistula after temporomandibular arthroscopy. Br J Oral Maxillofac Surg 1999;37:127–128
8. Martin-Granizo R, Caniego JL, de Pedro M, et al. Arteriovenous fistula after temporomandibular joint arthroscopy successfully treated with embolization. Int J Oral Maxillofac Surg 2004;33:301–303
9. Sacho RH, Kryshitský B, Krings T. Arteriovenous fistula of the middle meningeal artery—a rare complication after arthroscopic temporomandibular joint surgery readily amenable to endovascular treatment. J Oral Maxillofac Surg 2014;72:1258–1265
10. Whiteside OH, Monksfield P, Steventon NB, et al. Endovascular embolization of a traumatic arteriovenous fistula of the superficial temporal artery. J Laryngol Otol 2005;119:322–324
11. Amirjamshidi A, Zafarghandy MR, Edraki K, et al. Unilateral exophthalmos caused by traumatic vertebral artery to vertebral and jugular vein fistula: problems in diagnosis and management. Br J Neurosurg 1999;13:201–205
12. Rappaport I, Rappaport J. Congenital arteriovenous fistula of the maxillofacial region. Am J Surg 1977;134:39–48
13. Berenstein A, Scott J, Cho ES, et al. Percutaneous embolization of arteriovenous fistula of the external carotid artery. AJNR 1986;7:937–942
14. Amirjamshidi A, Abbassionk R, Rahmat H. Traumatic aneurysms and arteriovenous fistulas of the extracranial vessels in war injuries. Surg Neurol 2000;53:136–145
15. Li F, Zhu S, Liu Y, et al. Traumatic arteriovenous fistula of the superficial temporal artery. J Clin Neurosci 2007;14:595–600
16. Moran AM, Aleman TS, Gausas RE, et al. Traumatic arteriovenous fistula of the superficial temporal artery: a histopathologic report. Ophthal Plast Reconstr Surg 2013;29:e126–e128
17. Leal FS, Miranda CC, Guimars AC. Traumatic pseudoaneurysm of the superficial temporal artery: case report. Arq Neuropsiquiatr 2005;63:859–861
18. Asai K, Tani S, Imai Y, et al. Traumatic arteriovenous fistula of the superficial temporal artery. Case report. J Neurosurg 1987;66:773–774
19. Miekisja G, Mis M, Sandler A, et al. Iatrogenic arteriovenous fistula of the superficial temporal artery. Oral Maxillofac Surg 2008;12:219–221
20. Subington SR, Rigg KM. Traumatic arteriovenous fistula of the superficial temporal vessels: a case for protective headgear when playing squash? Br J Sports Med 1995;29:275–276
21. Kim BS, Lee SK, terBruggie KG. Endovascular treatment of congenital arteriovenous fistulae of the internal maxillary artery. Neuroangiology 2003;45:445–450
22. Svendsen PA, Wikholm G, Fogdstam I, et al. Direct puncture of large arteriovenous malformations in head and neck for embolisation and subsequent reconstructive surgery. Scand J Plast Reconstr Surg Hand Surg 1994;28:131–135
23. Dabus G, Pizzolato R, Lin E, et al. Endovascular treatment for traumatic scalp arteriovenous fistulas: results with Onyx embolization. J Neurointervent Surg 2014;6:405–408
24. Kaban LB, Mulliken JB. Vascular anomalies of the maxillofacial region. J Oral Maxillofac Surg 1986;44:203–213
25. Guneyilia S, Cinarb C, Bozkayab H, et al. Endovascular management of congenital arteriovenous fistulae of the superficial temporal artery. J Neurosurg 1999;91:937–942
26. Higashida RT, Halbach VV, Fong Y. Interventional neurovascular treatment of traumatic carotid and vertebral artery lesions: results in 234 cases. AJNR 1989;15:577–582
27. Bobin YP, de la Fuente JAG, Herbreteau D, et al. Endovascular treatment of external carotid—jugular fistulae in the parotid region. Neurosurgery 1993;33:812–816
28. Hoffman J, Cox G, Fleischer A. Interventional neuroradiology: a joint effort of the neuroradiologist and neurosurgeon in the treatment of vascular lesions of the head and neck. Surg Neurol 1978;10:247–253