"λ_μ"-CONNECTEDNESS IN GENERALIZED
TOPOLOGICAL SPACES

Pon Jeyanthi, Periyadurai Nalayini, and Takashi Noiri

Abstract. In this paper, we introduce the concept of λ_μ-connectedness in
generalized topological spaces by means of λ_μ-open sets and investigate their
properties.

1. Introduction

In 1997, Császár [2] introduced the concept of a generalization of topological
spaces, which is a generalized topological space. A generalized topology (briefly
GT) μ on a non-empty set X is a collection of subsets of X such that $\emptyset \in \mu$ and μ
is closed under arbitrary union. Elements of μ are called μ-open sets. A set X with
a GT μ is called a generalized topological space (briefly GTS), denoted by (X, μ).
If A is a subset of (X, μ), then $c_\mu(A)$ is the smallest μ-closed set containing A and
$i_\mu(A)$ is the largest μ-open set contained in A. Clearly, A is μ-open if and only if
$A = i_\mu(A)$ and A is μ-closed if and only if $A = c_\mu(A)$ [4, 3]. A GTS (X, μ) is called
a strong generalized topological space if $X \in \mu$. The concept of γ-connectedness
was also introduced by Császár, further studied by several authors including Shen
[10] and Baskaran et al. [1]. In this paper, we introduce the concept of λ_μ-
connectedness in generalized topological spaces and give some characterizations of
these spaces.

Definition 1.1. ([6]) Let (X, μ) be a GTS and $A \subseteq X$. Then the subsets
$\wedge_\mu(A)$ and $\vee_\mu(A)$ are defined as follows:

$$\wedge_\mu(A) = \begin{cases}
\bigcap\{G : A \subseteq G, G \in \mu\} & \text{if there exists } G \in \mu \text{ such that } A \subseteq G; \\
X & \text{otherwise.}
\end{cases}$$

2010 Mathematics Subject Classification. Primary 54 A 05.
Key words and phrases. λ_μ-separateness, λ_μ-connectedness, λ_μ-closed, λ_μ-open.
are no non-empty disjoint sets $U; V$

X

A closed set is called a A if $A = \cap \{G : A \subseteq G, G \in \lambda(\mathbb{X}, \mu)\}$.

Definition 1.3. (9) A subset A of a GTS (\mathbb{X}, μ) is said to be λ_{μ}-closed set if $A = T \cap C$, where T is a \wedge_{μ}-set and C is a μ-closed set. The complement of a λ_{μ}-closed set is called a λ_{μ}-open set.

For $A \subseteq X$, we denote by $c_{\lambda_{\mu}}(A)$ the intersection of all λ_{μ}-closed subsets of X containing A.

Definition 1.4. (8) Let (\mathbb{X}, μ) be a GTS. A subset A of X is called a \wedge_{μ}-set if $A = \cap \wedge_{\mu}(A)$, where $\wedge_{\mu}(A) = \cap\{G : A \subseteq G, G \in \lambda(\mathbb{X}, \mu)\}$.

Definition 1.5. A subset A of a GTS (\mathbb{X}, μ) is called a λ_{μ}-closed set if $A = T \cap C$, where T is a \wedge_{μ}-set and C is λ_{μ}-closed. The complement of a λ_{μ}-closed set is called a λ_{μ}-open set.

We denote the collection of all λ_{μ}-open (resp. λ_{μ}-closed, λ_{μ}-open, λ_{μ}-closed) sets of X by $\lambda_{\mu}(\mathbb{X}, \mu)$ (resp. $\lambda_{\mu}(\mathbb{X}, \mu)$, $\lambda_{\mu}(\mathbb{X}, \mu)$).

Definition 1.6. A GTS (\mathbb{X}, μ) is μ-connected (5) if there are no non-empty disjoint sets $U, V \in \mu$ such that $U \cup V = \mathbb{X}$.

Definition 1.7. (1) Two subsets A and B in a GTS (\mathbb{X}, μ) are said to be μ-separated if and only if $A \cap c_{\mu}(B) = \emptyset$ and $B \cap c_{\mu}(A) = \emptyset$.

Definition 1.8. (7) If (\mathbb{X}, μ) is a GTS and Y is a subset of X, then the collection $\mu|_{Y} = \{U \cap Y : U \in \mu\}$ is a GT on Y called the subspace generalized topology and $(Y, \mu|_{Y})$ is the subspace of X.

2. λ_{μ}-Separateness

In this section, we introduce the notion of λ_{μ}-separated sets and discuss its properties.

Definition 2.1. Two subsets A and B of a GTS (\mathbb{X}, μ) are said to be λ_{μ}-separated if and only if $A \cap c_{\mu_{\mu}}(B) = \emptyset$ and $c_{\mu_{\mu}}(A) \cap B = \emptyset$.

From the fact that $c_{\mu_{\mu}}(A) \subseteq c_{\mu}(A)$, for every subset A of (\mathbb{X}, μ), every μ-separated set is λ_{μ}-separated. But the converse may not be true as shown in the following example.

Example 2.1. Let $X = R$ and $\mu = \{\emptyset, Q\}$, where R and Q denote the set of all real numbers and rational numbers, respectively. The family of all λ_{μ}-closed sets is $\{\emptyset, Q, R \setminus Q, R\}$. Then $Q \cap c_{\lambda_{\mu}}(R \setminus Q) = c_{\lambda_{\mu}}(Q) \cap (R \setminus Q) = \emptyset$ but $c_{\mu}(Q) \cap (R \setminus Q) \neq \emptyset$. Hence Q and $R \setminus Q$ are λ_{μ}-separated but not μ-separated. \hfill \square
Remark 2.1. Since \(A \cap B \subseteq A \cap c_{\lambda_\mu}(B) \), \(\lambda_\mu \)-separated sets are always disjoint. The converse may not be true in general. \(\square \)

Example 2.2. Let \(X = R \) and \(\mu = \{0, Q\} \). The subsets \(\{\sqrt{2}, \sqrt{3}\} \), \(\{\sqrt{5}, \sqrt{7}\} \) are disjoint but not \(\lambda_\mu \)-separated.

\[\square \]

Theorem 2.1. Let \(A \) and \(B \) be non-empty subsets in a GTS \((X, \mu)\). The following statements are hold:

(i) If \(A \) and \(B \) are \(\lambda_\mu \)-separated, \(A_1 \subseteq A \) and \(B_1 \subseteq B \), then \(A_1 \) and \(B_1 \) are also \(\lambda_\mu \)-separated.

(ii) If \(A \) and \(B \) are \(\lambda_\mu \)-closed sets such that \(A \cap B = \emptyset \), then \(A \) and \(B \) are \(\lambda_\mu \)-separated.

(iii) If \(A \) and \(B \) are \(\lambda_\mu \)-open, \(H = A \cap (X \setminus B) \) and \(G = B \cap (X \setminus A) \), then \(H \) and \(G \) are \(\lambda_\mu \)-separated.

Proof. (i) Since \(A_1 \subseteq A \), \(c_{\lambda_\mu}(A_1) \subseteq c_{\lambda_\mu}(A) \). Therefore \(B \cap c_{\lambda_\mu}(A) = \emptyset \) implies \(B_1 \cap c_{\lambda_\mu}(A) = \emptyset \) and \(B_1 \cap c_{\lambda_\mu}(A_1) = \emptyset \). Similarly \(A_1 \cap c_{\lambda_\mu}(B_1) = \emptyset \). Hence \(A_1 \) and \(B_1 \) are \(\lambda_\mu \)-separated.

(ii) Since \(A \) and \(B \) are \(\lambda_\mu \)-closed, \(A = c_{\lambda_\mu}(A) \) and \(B = c_{\lambda_\mu}(B) \). Now \(A \cap B = \emptyset \) implies \(c_{\lambda_\mu}(A) \cap B = \emptyset \) and \(c_{\lambda_\mu}(B) \cap A = \emptyset \). Hence \(A \) and \(B \) are \(\lambda_\mu \)-separated.

(iii) Since \(H \subseteq (X \setminus B) \), \(c_{\lambda_\mu}(H) \subseteq c_{\lambda_\mu}(X \setminus B) = X \setminus B \) and hence \(c_{\lambda_\mu}(H) \cap B = \emptyset \). Also \(G \subseteq B \) implies \(c_{\lambda_\mu}(H) \cap G = \emptyset \). Similarly \(H \cap c_{\lambda_\mu}(G) = \emptyset \). Hence \(H \) and \(G \) are \(\lambda_\mu \)-separated. \(\square \)

Corollary 2.1. Let \(A \) and \(B \) be non-empty sets in a GTS \((X, \mu)\). The following statements are hold:

(i) If \(A \) and \(B \) are \(\lambda_\mu \)-open sets such that \(A \cap B = \emptyset \), then \(A \) and \(B \) are \(\lambda_\mu \)-separated.

(ii) If \(A \) and \(B \) are \(\lambda_\mu \)-closed, \(H = A \cap (X \setminus B) \) and \(G = B \cap (X \setminus A) \), then \(H \) and \(G \) are \(\lambda_\mu \)-separated.

Theorem 2.2. The subsets \(A \) and \(B \) of a GTS \((X, \mu)\) are \(\lambda_\mu \)-separated if and only if there exist \(U, V \in \lambda_\mu O(X, \mu) \) such that \(A \subseteq U \), \(B \subseteq V \) and \(A \cap V = \emptyset \), \(B \cap U = \emptyset \).

Proof. Let \(A \) and \(B \) be \(\lambda_\mu \)-separated sets. Let \(V = X \setminus c_{\lambda_\mu}(A) \) and \(U = X \setminus c_{\lambda_\mu}(B) \). Then \(U, V \in \lambda_\mu O(X, \mu) \) such that \(A \subseteq U \), \(B \subseteq V \) and \(A \cap V = \emptyset \). Hence \(A \cap U = \emptyset \). On the other hand, let \(U, V \in \lambda_\mu O(X, \mu) \) such that \(A \subseteq U \), \(B \subseteq V \) and \(A \cap V = \emptyset \), \(B \cap U = \emptyset \). Since \(X \setminus V \) and \(X \setminus U \) are \(\lambda_\mu \)-closed, \(c_{\lambda_\mu}(A) \subseteq c_{\lambda_\mu}(X \setminus V) = X \setminus V \subseteq X \setminus B \). Thus, \(c_{\lambda_\mu}(A) \cap B = \emptyset \). Similarly \(A \cap c_{\lambda_\mu}(B) = \emptyset \). Hence \(A \) and \(B \) are \(\lambda_\mu \)-separated. \(\square \)

3. \(\lambda_\mu \)-Connectedness

In this section, we introduce the notion of \(\lambda_\mu \)-connectedness and discuss their properties.
DEFINITION 3.1. A subset S of a GTS (X, μ) is said to be λ_μ-connected if there exist no λ_μ-separated subsets A and B and $S = A \cup B$. Otherwise S is said to be λ_μ-disconnected.

It is clear that each λ_μ-connected set is μ-connected. The converse may not be true in general as shown in the following example. In other words, each λ_μ-disconnected is λ_μ-disconnected.

EXAMPLE 3.1. Let $X = [1, 2]$ and $\mu = \{\emptyset, \{1\}, \{1, 2\}\}$. The family of all λ_μ-closed sets is $\{\emptyset, \{1\}, \{1, 2\}, \{2\}, \{1, 2\} \}$, Thus, $\{1, 2\}$ is μ-connected but not λ_μ-separated.

\[\square \]

THEOREM 3.1. A GTS (X, μ) is λ_μ-disconnected if and only if there exists a non-empty proper λ_μ-clopen subset.

PROOF. Assume that (X, μ) is λ_μ-disconnected. There exist λ_μ-separated sets A and B such that $A \cup B = X$, $A \cap B = \emptyset$. Hence $A = X \setminus B$ and $B = X \setminus A$. Since $A \cup B = X$ and $B \subseteq c_\lambda_A (B)$, $X \subseteq A \cup c_\lambda_A (B)$. But $A \cup c_\lambda_A (B) \subseteq X$. Thus, $A \cup c_\lambda_A (B) = X$. We have $A \cap c_\lambda_A (B) = \emptyset$ and $B \cap c_\lambda_A (A) = \emptyset$ which implies $A = X \setminus c_\lambda_A (B)$ and $B = X \setminus c_\lambda_A (A)$. Since $c_\lambda_A (A)$ and $c_\lambda_A (B)$ are λ_μ-closed, $X \setminus c_\lambda_A (A)$ and $X \setminus c_\lambda_A (B)$ are λ_μ-open. Thus, A and B are λ_μ-open. Since $A = X \setminus B$ and $B = X \setminus A$, A and B are λ_μ-closed. Conversely, assume that there exists non-empty proper λ_μ-clopen subset A of X. Let $B = X \setminus A$. Then $A \cap B = \emptyset$ and $A \cup B = X$. Since $A \cap B = \emptyset$, $c_\lambda_A (A) \cap B = \emptyset$ and $A \cap c_\lambda_A (B) = \emptyset$. Thus, A and B are λ_μ-separated. Hence (X, μ) is λ_μ-disconnected.

\[\square \]

THEOREM 3.2. A GTS (X, μ) is λ_μ-disconnected if and only if any one of the following statements holds:

(i) X is the union of two non-empty disjoint λ_μ-open sets.
(ii) X is the union of two non-empty disjoint λ_μ-closed sets.

PROOF. Assume that (X, μ) is λ_μ-disconnected. By Theorem 3.1, there exists a non-empty proper λ_μ-clopen subset A of X. Also, $A \cup (X \setminus A) = X$. Hence A and $X \setminus A$ satisfy the conditions (i) and (ii). Conversely, assume that $A \cup B = X$ and $A \cap B = \emptyset$, where A and B are non-empty λ_μ-open sets. Then $A = X \setminus B$ is λ_μ-closed. Since B is non-empty, A is a proper subset of X. Thus, A is a non-empty proper λ_μ-closed subset of X. By Theorem 3.1, X is λ_μ-disconnected. Let $X = C \cup D$ and $C \cap D = \emptyset$, where C and D are non-empty λ_μ-closed sets. Then $C = X \setminus D$ so that C is λ_μ-open. Since D is non-empty, C is a proper λ_μ-clopen subset of X. By Theorem 3.1, X is λ_μ-disconnected.

\[\square \]

THEOREM 3.3. If E is a λ_μ-connected subset of a GTS (X, μ) such that $E \subseteq A \cup B$, where A and B are λ_μ-separated sets, then either $E \subseteq A$ or $E \subseteq B$.

PROOF. Since A and B are λ_μ-separated sets, $A \cap c_\lambda_B (B) = \emptyset$ and $B \cap c_\lambda_A (A) = \emptyset$. $E \subseteq A \cup B$ implies $E = E \cap (A \cup B) = (E \cap A) \cup (E \cap B)$. Suppose $E \cap A \neq \emptyset$ and $E \cap B \neq \emptyset$. Then $(E \cap A) \cap c_\lambda_B (E \cap B) \subseteq (E \cap A) \cap (c_\lambda_B (E) \cap c_\lambda_A (B)) = (E \cap c_\lambda_B (E)) \cap (A \cap c_\lambda_A (B)) = \emptyset$. Similarly, $(E \cap B) \cap c_\lambda_A (E \cap A) = \emptyset$. Therefore, $E \subseteq A$ or $E \subseteq B$.

\[\square \]
Hence $E \cap A$ and $E \cap B$ are λ_μ-separated. Thus, E is λ_μ-disconnected, which is a contradiction. Hence at least one of the sets $E \cap A$ and $E \cap B$ is empty. If $E \cap A = \emptyset$, then $E = E \cap B$ which implies that $E \subseteq B$. Similarly if $E \cap B = \emptyset$, then $E \subseteq A$. Therefore, either $E \subseteq A$ or $E \subseteq B$.

Corollary 3.1. If E is a λ_μ-connected subset of a GTS (X, μ) such that $E \subseteq A \cup B$, where A and B are disjoint λ_μ-open (resp. λ_μ-closed) subsets of X, then A and B are λ_μ-separated.

Proof. Since $A \subseteq X \setminus B$, $c_\lambda(A) \subseteq c_\lambda(X \setminus B) = X \setminus B$. Thus, $B \cap c_\lambda(A) = \emptyset$. Similarly, $A \cap c_\lambda(B) = \emptyset$. Hence A and B are λ_μ-separated.

Theorem 3.4. If E is a λ_μ-connected subset of a GTS (X, μ) and C is a subset such that $E \subseteq C \subseteq c_\lambda(E)$, then C is also λ_μ-connected.

Proof. Suppose that C is not λ_μ-connected. There exist λ_μ-separated sets A and B such that $C = A \cup B$. Since $E \subseteq C$, $E \subseteq A \cup B$. By Theorem 3.3, $E \subseteq A$ or $E \subseteq B$. Let $E \subseteq A$, then $c_\lambda(E) \subseteq c_\lambda(A)$ which implies $c_\lambda(E) \cap B \subseteq c_\lambda(A) \cap B = \emptyset$. Since $C \subseteq c_\lambda(E)$, $B \subseteq C \subseteq c_\lambda(E)$ and hence $c_\lambda(E) \cap B = B$. Thus, $c_\lambda(E) \cap B = \emptyset$ and $c_\lambda(E) \cap B$ implies $B = \emptyset$. Similarly, if we consider $E \subseteq B$, we obtain $A = \emptyset$, which contradicts A and B are non-empty. Therefore C is λ_μ-connected.

Corollary 3.2. If E is a λ_μ-connected subset of a GTS (X, μ), $c_\lambda(E)$ is also λ_μ-connected.

Proof. This is obvious by Theorem 3.4.

Theorem 3.5. Let E be a subset of a GTS (X, μ). If any two points of E are contained in some λ_μ-connected subset of E, E is a λ_μ-connected subset of X.

Proof. Suppose E is not λ_μ-connected. Then there exist non-empty subsets A and B of X such that $A \cap c_\lambda(B) = \emptyset$, $B \cap c_\lambda(A) = \emptyset$ and $E = A \cup B$. Since A, B are non-empty, there exists a point $a \in A$ and a point $b \in B$. By hypothesis, a and b must be contained in some λ_μ-connected subset F of E. Since $F \subseteq A \cup B$ and F is λ_μ-connected, either $F \subseteq A$ or $F \subseteq B$. It follows that either $a, b \in A$ or $a, b \in B$. Let $a, b \in A$. Then $A \cap B = \emptyset$, which is a contradiction. Hence E is a λ_μ-connected subset of X.

Theorem 3.6. The union of any family of λ_μ-connected sets having a non-empty intersection is a λ_μ-connected set.

Proof. Let $\{E_\alpha\}$ be any family of λ_μ-connected sets such that $\cap \{E_\alpha\} \neq \emptyset$. Let $E = \cup \{E_\alpha\}$. Suppose E is not λ_μ-connected. Therefore, there exist λ_μ-separated sets A and B such that $E = A \cup B$. Since $\cap \{E_\alpha\} \neq \emptyset$, $x \in \cap \{E_\alpha\}$. Then x belongs to each E_α and so $x \in E$. Consequently, $x \in A$ or $x \in B$. Without loss of generality, assume that $x \in A$. Then $E_\alpha \subseteq A$ for each α. Hence $\cup E_\alpha \subseteq A$ and so $E \subseteq A$. Thus, $A \cup B \subseteq A$. Therefore $A = E$ which implies $B = \emptyset$ which is a contradiction. Thus, E is λ_μ-connected.
Theorem 3.7. The union of any family of \(\ast\lambda_\mu\)-connected subsets of a GTS \((X,\mu)\) with the property that one of the members of the family, intersects every other members is a \(\ast\lambda_\mu\)-connected set.

Proof. Let \(\{E_\alpha\}\) be any family of \(\ast\lambda_\mu\)-connected sets of a GTS \((X,\mu)\) with the property that one of the member say, \(E_\alpha\), intersects every other members. By Theorem 3.6, \(E_\alpha\) is \(\ast\lambda_\mu\)-connected. Now, let \(E_\alpha\) and \(E_\alpha\) be any two members of the family. Then \(E_\alpha\cap E_\alpha\neq\emptyset\), \(E_\alpha\cap E_\alpha\neq\emptyset\) and hence \((E_\alpha\cap E_\alpha)\cup(E_\alpha\cap E_\alpha)\neq\emptyset\) by Theorem 3.6, \(\cup(E_\alpha\cap E_\alpha)\) for each \(\alpha\) is \(\ast\lambda_\mu\)-connected. Hence \(\cup E_\alpha\) is \(\ast\lambda_\mu\)-connected.

Theorem 3.8. If \(A \subseteq B \cup C\) such that \(A\) is a non-empty \(\ast\lambda_\mu\)-connected set in a GTS \((X,\mu)\) and \(B, C\) are \(\ast\lambda_\mu\)-separated, then one of the following conditions holds:

(i) \(A \subseteq B\) and \(A \cap C = \emptyset\).

(ii) \(A \subseteq C\) and \(A \cap B = \emptyset\).

Proof. This is obvious by Theorem 3.3.

Definition 3.2. Let \((X,\mu)\) and \((X,\mu’)\) be two GTS. A mapping \(f : (X,\mu) \rightarrow (Y,\mu’)\) is said to be \((\ast\lambda_\mu,\mu’\) continuous if for each \(\mu’\)-open set \(V, f^{-1}(V)\) is \(\ast\lambda_\mu\)-open.

Theorem 3.9. Let \(f : (X,\mu) \rightarrow (Y,\mu’)\) be a \((\ast\lambda_\mu,\mu’\) continuous function. If \(K\) is \(\ast\lambda_\mu\)-connected in \(X\), then \(f(K)\) is \(\mu’\)-connected in \(Y\).

Proof. Suppose that \(f(K)\) is \(\mu’\)-disconnected in \(Y\). There exist \(\mu’\)-separated sets \(G\) and \(H\) of \(Y\) such that \(f(K) = G \cup H\). Set \(A = K \cap f^{-1}(G)\) and \(B = K \cap f^{-1}(H)\). Since \(f(K) = G \cup H, K \cap f^{-1}(G) \neq \emptyset\) and hence \(A \neq \emptyset\). Similarly, \(B \neq \emptyset\). Now, \(A \cap B = (K \cap f^{-1}(G)) \cap (K \cap f^{-1}(H)) = K \cap (f^{-1}(G) \cap f^{-1}(H)) = K \cap (f^{-1}(G \cap H)) = \emptyset\). Thus, \(A \cap B = \emptyset\) and \(A \cup B = K\). Now, \(A \cap c_{\lambda,\mu}(B) \subseteq f^{-1}(G) \cap c_{\lambda,\mu}(f^{-1}(H))\). Since \(f\) is \((\ast\lambda_\mu,\mu’\)-continuous, \(A \cap c_{\lambda,\mu}(B) \subseteq f^{-1}(G) \cap c_{\lambda,\mu}(f^{-1}(H))\). Therefore, \(A \cap c_{\lambda,\mu}(B) = \emptyset\). Similarly, \(B \cap c_{\lambda,\mu}(A) = \emptyset\). Thus, \(A\) and \(B\) are \(\ast\lambda_\mu\)-separated in \(X\) which is a contradiction. Therefore \(f(K)\) is \(\mu\)-connected in \(Y\).

Corollary 3.3. Let \(f : (X,\mu) \rightarrow (Y,\mu’)\) be a \((\ast\lambda_\mu,\mu’\) continuous surjection. If \(K\) is \(\mu’\)-disconnected in \(Y\), then \(f^{-1}(K)\) is \(\ast\lambda_\mu\)-connected in \(X\).

Proof. Let \(f^{-1}(K)\) be not \(\ast\lambda_\mu\)-disconnected in \(X\). Then \(f^{-1}(K)\) is \(\ast\lambda_\mu\)-connected in \(X\) and by Theorem 3.10, \(f(f^{-1}(K)) = K\) is \(\mu’\)-connected. Hence \(K\) is not \(\mu’\)-disconnected in \(Y\). Therefore, the proof is completed.

Acknowledgement

We would like to thank the referees for his suggestions to improve the presentation of the paper.
References

[1] R. Baskaran, M. Murugalingam and D. Sivaraj. Separated sets in generalized topological spaces. J. Adv. Res. Pure Math., 2(1)(2010), 74–83.
[2] Á. Császár. Generalized open sets. Acta Math.Hungar., 75(1-2) (1997), 65–87.
[3] Á. Császár. On the γ-interior and γ-closure of a set. Acta Math.Hungar., 80(1-2) (1998), 89–93.
[4] Á. Császár. Generalized open sets in generalized topologies. Acta Math.Hungar., 106(1-2)(2005), 53–66.
[5] Á. Császár. γ-connected spaces. Acta Math.Hungar., 101(4)(2003), 273–279.
[6] E. Ekici and B. Roy. New generalized topologies on generalized topological spaces due to Császár. Acta Math.Hungar., 132(1-2) (2011), 117–124.
[7] J. Li. Generalized topologies generated by subbases. Acta Math.Hungar., 114 (1-2)(2007), 1–12.
[8] P. Jeyanthi, P. Nalayini and T. Noiri. *λ_μ* sets and *ν_μ* sets in generalized topological spaces. Bol. Soc. Paran. Mat. (3s), 35(1)(2017), 33–41.
[9] B. Roy and E. Ekici. On (Λ,μ)-closed sets in generalized topological spaces. Methods Func. Anal. Top., 17(2)(2011), 174–179.
[10] R. X. Shen. A note on generalized connectedness. Acta Math.Hungar., 122(3)(2009), 231–235.

Received by editors 07.10.2017; Revised version 01.10.2018; Available online 15.10.2018.

PON Jeyanthi. Research Centre, Department of Mathematics, Govindammal Aditanar College for Women, Trichy, Tamil Nadu, India.
E-mail address: jeyajeyanthi@rediffmail.com

Periyadurai Nalayini. Research Scholar, Reg. No: 11769, Research Centre, Department of Mathematics, Govindammal Aditanar College for Women, Trichy, Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekappatti, Tirunelveli 627012, Tamilnadu, India.
E-mail address: nalayini4@gmail.com

Takashi Noiri. Hinagu, Yatsushiro - shi, Kumamoto - ken, 869-5142 Japan
E-mail address: t.noiri@nifty.com