Multiple solutions and profile description for a nonlinear Schrödinger–Bopp–Podolsky–Proca system on a manifold

Pietro d’Avenia1 · Marco G. Ghimenti2

Received: 1 August 2022 / Accepted: 27 September 2022 / Published online: 11 October 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
We prove a multiplicity result for
\[
\begin{align*}
-\varepsilon^2 \Delta_g u + \omega u + q^2 \phi u &= |u|^{p-2} u \\
-\Delta_g \phi + a^2 \Delta_g^2 \phi + m^2 \phi &= 4\pi u^2
\end{align*}
\]
in \(M\),
where \((M, g)\) is a smooth and compact 3-dimensional Riemannian manifold without boundary, \(p \in (4, 6)\), \(a, m, q \neq 0\), \(\varepsilon > 0\) small enough. The proof of this result relies on Lusternik–Schnirellman category. We also provide a profile description for low energy solutions.

Mathematics Subject Classification 35J20 · 35Q55 · 53C80

Communicated by A. Neves.

The authors are members of GNAMPA (INdAM).

Pietro d’Avenia is partially supported by PRIN 2017JPCAPN Qualitative and quantitative aspects of nonlinear PDEs and by GNAMPA project Modelli EDP nello studio problemi della fisica moderna.

Marco G. Ghimenti is partially supported by GNAMPA project Modelli matematici con singolarità per fenomeni di interazione and by PRA 2022 Nonlinear dispersive equations and dynamics of fluids.

1 Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via E. Orabona 4, 70125 Bari, Italy

2 Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo, 5, 56126 Pisa, Italy
1 Introduction

In this paper we study the system
\[
\begin{align*}
-\varepsilon^2 \Delta_g u + \omega u + q^2 \phi u &= |u|^{p-2} u \\
-\Delta_g \phi + a^2 \Delta_g^2 \phi + m^2 \phi &= 4\pi u^2
\end{align*}
\] in \(M \),
\[(1.1)\]
where \((M, g)\) is a smooth and compact 3-dimensional Riemannian manifold without boundary, \(\Delta_g\) is the Laplace–Beltrami operator, \(u, \phi : M \to \mathbb{R},\ p \in (4, 6), a, m, q \neq 0, \varepsilon > 0\). System (1.1) can be obtained starting from the classical nonlinear Schrödinger Lagrangian density
\[
\mathcal{L}_S(\psi) := i\hbar \partial_t \psi - \frac{\hbar^2}{2m_0^2} |\nabla_g \psi|^2 + \frac{2}{p} |\psi|^p,
\]
with \(\psi : \mathbb{R} \times M \to \mathbb{C}, \hbar > 0\) (the Plank constant), and \(m_0 \neq 0\).

Such a Lagrangian density describes a charged particle \(\psi\) and, to study it in the electromagnetic field \((E, B)\) generated by itself motion, it is usual to apply the minimal coupling rule. This consists into replacing in (1.2) the usual temporal and spatial derivatives \(\partial_t, \nabla_g\), with the gauge covariant ones
\[
\partial_t + i \frac{q}{\hbar} \phi, \quad \nabla_g - i \frac{q}{\hbar c} A,
\]
where \((\phi, A)\) is the gauge potential related to \((E, B)\), \(q\) is a coupling constant, and \(c\) is the speed of light, obtaining
\[
\mathcal{L}_{\text{Coupl}}(\psi, \phi, A) := i\hbar \partial_t \psi - q\phi |\psi|^2 - \frac{\hbar^2}{2m_0^2} |\nabla_g \psi|^2 - i \frac{q}{\hbar c} A \psi^2 + \frac{2}{p} |\psi|^p.
\]
To this Lagrangian density we have to add the electromagnetic field one. Of course this step implies the choice of an electromagnetic theory. In our case we consider the Bopp–Podolsky one in the Proca setting that is
\[
\mathcal{L}_{\text{BPP}}(\phi, A) := \frac{1}{8\pi} \left\{ |\nabla_g \phi + \frac{1}{c} \partial_t A|^2 - |\nabla_g \times A|^2 + m^2 (|\phi|^2 - |A|^2) \right. \\
\left. + a^2 \left[(\Delta_g \phi + \frac{1}{c} \nabla_g \cdot \partial_t A)^2 - |\nabla_g \times \nabla_g \times A + \frac{1}{c} \partial_t (\nabla_g \phi + \frac{1}{c} \partial_t A)|^2 \right] \right\}.
\]
It was introduced, without the Proca term, namely with \(m = 0\), independently in [6] and [24] as an higher-order perturbation of the classical Maxwell theory, to solve its infinity problem: the energy of the electromagnetic field generated by a pointwise charge, in the electrostatic case, is not finite.

Hence, the Euler–Lagrange equations for the total action
\[
S_{\text{tot}}(\psi, \phi, A) := \int \int [\mathcal{L}_{\text{Coupl}}(\psi, \phi, A) + \mathcal{L}_{\text{BPP}}(\phi, A)] d\mu_g dt
\]
in the purely electrostatic case, for standing waves \(\psi(t, x) = e^{i\omega t} u(x)\), normalizing some parameter, and applying some rescaling, give (1.1). For more details we refer the reader to [9, 17].

In the last few years a wide literature on this topic is developing both in \(\mathbb{R}^3\) (see [7, 8, 11, 12, 21–23, 26, 27] and references therein) and on manifolds, due to Hebey (see [16–19]).
In this paper we want to prove the following multiplicity result for (1.1) in the spirit of the semiclassical limit.

Theorem 1.1 Let $4 < p < 6$ and $2am < 1$. For ε small enough we have at least $\text{cat}(M)$ nonconstant positive solutions $(u_\varepsilon, \phi_\varepsilon)$ of (1.1) with low energy. The functions u_ε have a unique maximum point P_ε and $u_\varepsilon = W_\varepsilon, P_\varepsilon + R_\varepsilon$ where $W_\varepsilon, P_\varepsilon$ is defined in (4.2) and $|R_\varepsilon|_\infty \to 0$ as $\varepsilon \to 0$. In addition, $\|\phi_\varepsilon\|_{C^2(M)} \to 0$ as $\varepsilon \to 0$. Finally, there exists at least a further nonconstant positive solution of (1.1) with higher energy.

Here $\text{cat}(M)$ is the Lusternik–Schnirelman category which is hereafter defined.

Definition 1.2 Let X a topological space and consider a closed subset $A \subset X$. We say that A has category k relative to X ($\text{cat}_X A = k$) if A is covered by k closed sets A_j, $j = 1, \ldots, k$, which are contractible in X, and k is the minimum integer with this property. We simply denote $\text{cat}_X = \text{cat}_{X X}$.

The proof relies on a topological method, sometimes called *photography method*, which was firstly introduced for an elliptic nonlinear critical equation in a bounded domain by Bahri and Coron [2], then readapted by Benci and Cerami [4] and by Benci, Cerami, and Passaseo [5], and thereafter used in a wide class of elliptic problems, both on domains and on manifolds.

The main idea of this method is to establish a connection between the functions which have low energy and the domain of the equation. Roughly speaking, on the one hand it is possible to construct, for any point of the domain, a function which is peaked in this point, and, on the other hand, it can be showed that any function, for which the energy functional is sufficiently small, is concentrated around a point of the domain. Once this link is set, one can prove that the topology of the low energy functions is at least rich as the topology of the domain, and use classical results to link this topology to the number of solutions. This methods are particularly useful on manifolds, since, for example, for any compact smooth manifold without boundary it holds $\text{cat} M \geq 2$.

To prove that a low energy function is concentrated around a point of the manifold, we have to consider manifolds smoothly embedded in some euclidean space \mathbb{R}^N, for a suitable N. This does not imply a loss of generality: such an embedding exists for any smooth compact Riemannian manifold.

In the context of Riemannian manifolds, this method has been used for the nonlinear Klein–Gordon–Maxwell–Proca system in [15] (see references therein for different situations).

A similar topological method has also been used by Siciliano, Figueiredo, and Mascaro in [12, 22] to obtain multiplicity result of the doubly perturbed nonlinear Schrödinger–Bopp–Podolsky system

\[
\begin{cases}
-\varepsilon^2 \Delta u + V(x)u + \lambda \phi u = f(u) \\
-\varepsilon^2 \Delta \phi + \varepsilon^4 \Delta^2 \phi = u^2
\end{cases}
\quad \text{in } \mathbb{R}^3.
\]

The number of solutions is related to the Lusternik-Schnirelmann category of the set $\{ x \in \mathbb{R}^3 : V(x) = \min V \}$.

We would like to make a final comment on the exponent $p \in (4, 6)$. In our setting, this condition is necessary since one of our main tools is the Nehari manifold: it is a natural constraint and, for $p > 4$, it is smooth and the energy functional on such a constraint is bounded from below. Dealing with systems in \mathbb{R}^3, the condition on p typically could be loosened using, for example, other additional natural constraints, as the Pohozaev constraint or a *linear combination* of Nehari and Pohozaev identities (see [9]). In the Riemannian
manifold setting, Pohozaev type identities carry on extra terms and they can be hard to handle.

Our paper is organized as follows. Section 2 contains a list of useful results and all the preliminary definitions. In Sect. 3 the variational framework of the problem is presented, while the rest of the paper is devoted to the proof of Theorem 1.1. In particular, the connection between low energy function and the manifold M is proved in Sect. 4, as well as the main topological result to obtain $\text{cat}(M)$ low energy solutions. These solutions turn out to be nontrivial and a description of their profile is given in Sect. 5. Finally we prove that there exists an additional nontrivial solution in Sect. 6, concluding the proof of Theorem 1.1. For the sake of readability, we have collected two technical and somewhat classical proof in the “Appendix”.

2 Preliminaries

From now on, for the sake of simplicity, we will take $\omega = q = m = 1$ in (1.1).

In the following we will use the notation

$$
\|v\|_{H^2}^2 := \int_M (a^2|\Delta_g v|^2 + |\nabla_g v|^2 + v^2) d\mu_g, \quad \|v\|_{H^1}^2 := \int_M (|\nabla_g v|^2 + v^2) d\mu_g,
$$

$$
|v|_p := \int_M |v|^p d\mu_g
$$

for the norms on $H^2(M)$, $H^1(M)$, and $L^p(M)$, and, with abuse of notation, also for the respective norms in \mathbb{R}^3. Moreover, for every fixed $\varepsilon > 0$, we will use

$$
\|v\|_{\varepsilon}^2 := \frac{1}{\varepsilon} \int_M |\nabla_g v|^2 d\mu_g + \frac{1}{\varepsilon^3} \int_M v^2 d\mu_g, \quad |v|_{p,\varepsilon}^p := \frac{1}{\varepsilon^3} \int_M |v|^p d\mu_R.
$$

We recall that there exists $C > 0$, independent of ε, such that, for every $p \in [1, 6],

$$
|v|_{p,\varepsilon} \leq C \|v\|_{\varepsilon}.
$$

(2.1)

Now let us recall some known properties about the second equation in (1.1), whose proof can be found in [16, Lemma 3.1 andLemma 4.1].

Lemma 2.1 For every $u \in H^1(M)$ there exists a unique $\phi_u \in H^4(M) \cap C^2(M)$ solution of

$$
-\Delta_g v + a^2 \Delta_g^2 v + v = 4\pi u^2 \quad \text{in } M
$$

(2.2)

and

(a) there exists $C > 0$ such that, for every $u \in H^1(M)$, $\|\phi_u\|_{H^2} \leq C|u|^2_2$ and $\|\phi_u\|_{H^4} \leq C|u|^4_4$;

(b) if $a < 1/2$, then, for every $u \in H^1(M)$, $\phi_u \geq 0$.

In view of the previous Lemma we write (1.1) as

$$
-\varepsilon^2 \Delta_g u + u + \phi_u u = |u|^{p-2} u \quad \text{in } M.
$$

(2.3)

Moreover we will use the further results that involve ϕ_u.

1 Without the normalization of the constants, our results hold for every $\omega, q > 0$ and $2am < 1$.

Lemma 2.2 The map \(\Phi := u \in H^1(M) \mapsto \phi_u \in H^2 \) is \(C^2 \) and, for every \(u \in H^1(M) \) and \(h, k \in H^1(M) \), \(\Phi'(u)[h] \) and \(\Phi''(u)[h, k] \) are the unique solutions of

\[
- \Delta_g v + a^2 \Delta_g^2 v + v = 8\pi uh \quad \text{in } M
\]

and

\[
- \Delta_g v + a^2 \Delta_g^2 v + v = 8\pi hk \quad \text{in } M,
\]

respectively.

Moreover, for every \(t \in \mathbb{R} \) and \(u \in H^1(M) \), \(\Phi(tu) = t^2\Phi(u) \) and if \(\{u_n\} \subset H^1(M) \) converges weakly to \(\tilde{u} \) in \(H^1(M) \), then, up to a subsequence, \(\Phi(u_n) \to \Phi(\tilde{u}) \) in \(H^2(M) \).

\textbf{Proof} Let \(\tilde{\phi} \) be the unique solution of (2.4) in \(H^2(M) \). Then

\[
\Phi(u + h) - \Phi(u) - \tilde{\phi} = \Phi(h)
\]

since

\[
-\Delta_g [\Phi(u + h) - \Phi(u) - \tilde{\phi}] + a^2 \Delta_g^2 [\Phi(u + h) - \Phi(u) - \tilde{\phi}]
\]

and, since, by Lemma 2.1, as \(h \to 0 \) in \(H^1(M) \), \(\|\Phi(h)\|_{H^2}/\|h\|_{H^1} \leq C\|h\|_{H^1} \to 0 \), we get that \(\Phi'(u)[h] = \tilde{\phi} \).

Analogously, if \(\tilde{\psi} \) is the unique solution of (2.5) in \(H^2(M) \), then, using that for every \(h \in H^1(M) \), \(\Phi'(u)[h] \) is the unique solution of (2.4), we have

\[
-\Delta_g [\Phi'(u + k)[h] - \Phi'(u)[h] - \tilde{\psi}] + a^2 \Delta_g^2 [\Phi'(u + k)[h] - \Phi'(u)[h] - \tilde{\psi}]
\]

and so

\[
[\Phi'(u + k)[h] - \Phi'(u)[h] - \tilde{\psi}] = 0.
\]

This easily implies that \(\Phi''(u)[h, k] = \tilde{\psi} \).

To show that the map \(u \in H^1(M) \mapsto \Phi'(u) \) is continuous we observe that, if \(u_n \to u \) in \(H^1(M) \), then \(\Phi'(u_n)[h] - \Phi'(u)[h] \) is the unique solution of

\[
-\Delta_g v + a^2 \Delta_g^2 v + v = 8\pi (u_n - u)h.
\]

Thus

\[
\|\Phi'(u_n)[h] - \Phi'(u)[h]\|_{H^2}^2 = 8\pi \int_M [\Phi'(u_n)[h] - \Phi'(u)[h])(u_n - u)hd\mu_g
\]

\[
\leq C\|\Phi'(u_n)[h] - \Phi'(u)[h]\|_{H^2}\|u_n - u\|_{H^1}\|h\|_{H^1}
\]

that allows us to conclude easily.

Analogously we can prove that the map \(u \in H^1(M) \mapsto \Phi''(u) \) is continuous using that \(\Phi''(u_n)[h] - \Phi''(u)[h] \) is the unique solution of

\[
-\Delta_g v + a^2 \Delta_g^2 v + v = 0.
\]

Finally, the last part of the statement follows from

\[
-\Delta_g \Phi(tu) + a^2 \Delta_g^2 \Phi(tu) + \Phi(tu) = 4\pi t^2 u^2 = t^2 [\Delta_g \Phi(u) + a^2 \Delta_g^2 \Phi(u) + \Phi(u)]
\]

\[
= -\Delta_g [t^2 \Phi(u)] + a^2 \Delta_g^2 [t^2 \Phi(u)] + [t^2 \Phi(u)]
\]

\(\square \) Springer
and observing that, since up to a subsequence, $u_n \to \bar{u}$ in $L^\tau(M)$ for $1 \leq \tau < 6$, then, for any $\varphi \in H^2(M)$,
\[\langle \Phi(u_n), \varphi \rangle_{H^2} = 4\pi \int_M u_n^2 \varphi d\mu_g \to 4\pi \int_M \bar{u}^2 \varphi d\mu_g = \langle \Phi(\bar{u}), \varphi \rangle_{H^2} \tag{2.6} \]
and so $\{\Phi(u_n)\}$ converges to $\Phi(\bar{u})$ weakly in $H^2(M)$ and, up to a subsequence, strongly in $L^\tau(M)$ for $\tau \geq 1$.
Moreover, by (a) in Lemma 2.1 and (2.6),
\[
\|\Phi(u_n)\|_{H^2}^2 - \|\Phi(\bar{u})\|_{H^2}^2 = 4\pi \left| \int_M \phi u^2 \Phi(u_n) d\mu_g - \int_M \bar{u}^2 \Phi(\bar{u}) d\mu_g \right| \\
\leq 4\pi \left| \int_M \Phi(u_n) - \Phi(\bar{u})|u_n^2 d\mu_g + \int_M \Phi(\bar{u})|u_n^2 - \bar{u}^2 d\mu_g \right| \\
\leq 4\pi \left| \Phi(u_n) - \Phi(\bar{u})|u_n^2 d\mu_g + \int_M \Phi(\bar{u})|u_n^2 - \bar{u}^2 d\mu_g \right| \to 0
\]
and we conclude. \hfill \Box

Now let us consider the functional
\[G := u \in H^1(M) \mapsto \int_M u^2 \phi u d\mu_g \]
which is well defined and, for every $u \in H^1(M)$, since ϕ_u is the unique solution of (2.2),
\[G(u) = \frac{1}{4\pi} \|\phi_u\|_{H^2}^2 \geq 0 \tag{2.7} \]
and
\[G(u) = 0 \iff \phi_u = 0 \iff u = 0. \]
It satisfies the following properties.

Lemma 2.3 For every $u \in H^1(M)$, $|G(u)| \leq C \|\phi_u\|_{H^2} \|u\|_{H^1}^2$. Moreover the functional G is C^1, for every $u, h \in H^1(M)$,
\[G'(u)[h] = 4 \int_M \phi_u u h d\mu_g, \]
and, if $\{u_n\} \subset H^1(M)$ converges weakly to \bar{u} in $H^1(M)$, then, up to a subsequence, $G(u_n) \to G(\bar{u})$.

Proof The first property and the continuity of G are immediate consequences of Hölder inequality and of the previous Lemma.
By (2.7) and since $\Phi'(u)[h]$ is the unique solution of (2.4), we have
\[
G'(u)[h] = \frac{1}{2\pi} \langle \phi_u, \Phi'(u)[h] \rangle_{H^2} \\
= \frac{1}{2\pi} \int_M \phi_u [-\Delta g \Phi'(u)[h] + a^2 \Delta g^2 \Phi'(u)[h] + \Phi'(u)[h]] d\mu_g \\
= 4 \int_M \phi_u u h d\mu_g.
\]

\(\Box\) Springer
The continuity of G' follows from

$$|G'(u_n)[h] - G'(u)[h]| \leq C\|\phi_{u_n} - \phi_u\|_{H^2} \|u_n\|_{H^1} + \|\phi_{u_n}\|_{H^2} \|u_n - u\|_{H^1}\|h\|_{H^1}. $$

Finally, the last part of the statement is an easy consequence of (2.7) and of Lemma 2.2. \hfill \square

Let us conclude this section with some recall concerning the manifold M. Let us consider the C^∞ exponential map $\exp : TM \to M$. Since M is compact, there exists $r > 0$, called injectivity radius, such that $\exp_{B(0,r)} : B(0,r) \to B_g(\xi,r)$ is a diffeomorphism for any $\xi \in M$. Fixed $\xi \in M$, for every $y \in B(0,r) = \exp^{-1}(B_g(\xi,r))$, we have

$$(g_\xi)_{ij}(y) = \delta_{ij} + \frac{1}{3}R_{ij}y^hy^l + O(|y|^3),$$

where R_{ij} and R_{ihlj} are the components of the Ricci curvature tensor and of the Riemann curvature tensor, respectively (see e.g. [25]). Finally, the following further definition will be useful in Sect. 4.

Definition 2.4 Let M be a smooth compact Riemannian manifold embedded in \mathbb{R}^N. The radius of topological invariance for M is

$$r(M) := \sup\{\rho > 0 : \text{cat}(M_\rho) = \text{cat}(M)\}$$

where $M_\rho := \{x \in \mathbb{R}^N : d(x,M) < \rho\}$.

3 Functional setting

Using Lemmas 2.1 and 2.3 we have that positive solutions of (1.1) are critical points of the C^3 functional

$$J_\varepsilon := u \in H^1(M) \mapsto \frac{1}{2}\|u\|_\varepsilon^2 + \frac{1}{4\varepsilon^3} \int_M \phi_u u^2 d\mu_g - \frac{1}{p}\|u^+\|_{p,\varepsilon}^p, \varepsilon \in \mathbb{R}. $$

Moreover, let us consider the Nehari manifold

$$N_\varepsilon := \{u \in H^1(M) \setminus \{0\} : J_\varepsilon(u) = 0\},$$

where

$$N_\varepsilon(u) := J_\varepsilon'(u)[u] = \|u\|_\varepsilon^2 + \frac{1}{\varepsilon^3} \int_M \phi_u u^2 d\mu_g - |u^+|_{p,\varepsilon}^p.$$

We have

Lemma 3.1 If $p > 4$, then:

(i) for every $u \in H^1(M)$ with $u^+ \neq 0$, there exists $t_u > 0$ such that $t_u u \in N_\varepsilon$;
(ii) the map $u \in H^1(M) \mapsto t_u \in (0, +\infty)$ is continuous;
(iii) there exists $C > 0$ such that, for every $\varepsilon > 0$ and $u \in N_\varepsilon$, $|u^+|_{p,\varepsilon} \geq C$;
(iv) for every $u \in N_\varepsilon$, $N_\varepsilon'(u) \neq 0$;
(v) there exists $C > 0$ such that, for every $\varepsilon > 0$, $m_\varepsilon := \inf_{N_\varepsilon} J_\varepsilon \geq C > 0.$
Proof Let \(u \in H^1(M) \) with \(u^+ \neq 0 \). Property (i) is an easy consequence of the fact that, using Lemma 2.2, the function

\[
\varphi_u(t) := N_\varepsilon(t u) = t^2 \|u\|^2_\varepsilon + \frac{t^4}{\varepsilon^3} \int_M \phi_u u^2 d\mu_g - t^p |u^+|^p_{p,\varepsilon}, \quad t > 0,
\]

admits a unique zero \(t_u \), due to the assumption \(p > 4 \).

To get claim (ii) we observe that, if \(u_n \to u \) in \(H^1(M) \), then \(|u_n^+|^p_{p,\varepsilon} \to |u^+|^p_{p,\varepsilon} \) and, by Lemma 2.3,

\[
\int_M \phi_{u_n} u_n^2 d\mu_g \to \int_M \phi_u u^2 d\mu_g.
\]

Then \(\{t_{u_n}\} \) is bounded and so it converges, up to subsequence, to some \(\bar{t} \in \mathbb{R} \). At this point, since we are dealing with the unique solutions of \(\varphi_{u_\varepsilon}(t) = 0 \), it is easy to see that \(\bar{t} = t_u \).

Moreover, if \(u \in N_\varepsilon \), by Lemma 2.1 and (2.1)

\[
|u^+|^p_{p,\varepsilon} = \|u\|^2_\varepsilon + \frac{1}{\varepsilon^3} \int_M \phi_u u^2 d\mu_g \geq \|u\|^2_\varepsilon \geq C \|u\|^2_{p,\varepsilon} \geq C |u^+|^2_{p,\varepsilon}
\]

and so we get (iii).

To prove (iv) we observe that, if \(u \in N_\varepsilon \), then, by Lemma 2.3,

\[
N'_\varepsilon(u)[u] = N'_\varepsilon(u)[u] - 4N_\varepsilon(u) = -2\|u\|^2_\varepsilon - \frac{2}{p - 4} |u^+|^p_{p,\varepsilon} \leq -C < 0
\]

being \(p > 4 \).

Finally, observe that, if \(u \in N_\varepsilon \), since \(p > 4 \), by (2.1), (b) of Lemma 2.1, and (iii), we have

\[
J_\varepsilon(u) = \left(\frac{1}{2} - \frac{1}{p} \right) \|u\|^2_\varepsilon + \frac{1}{p - 4} \frac{1}{\varepsilon^3} \int_M \phi_u u^2 d\mu_g \geq C > 0.
\]

\qed

Lemma 3.2 Let \(\varepsilon > 0 \) be fixed. Then, for every \(c > 0 \), the functional \(J_\varepsilon \) satisfies the Palais Smale condition at level \(c \). Moreover, if \(\{u_n\} \) is a Palais Smale sequence for \(J_\varepsilon |_{N_\varepsilon} \), then it is a Palais Smale sequence also for \(J_\varepsilon \).

Proof Let \(\varepsilon > 0 \) be fixed and \(\{u_n\} \subset H^1(M) \) be a Palais Smale sequence for \(J_\varepsilon \) at level \(c \), with \(c > 0 \). Then

\[
c + o_n(1) + o_n(1)\|u_n\|_\varepsilon \geq J_\varepsilon(u_n) - \frac{1}{4} J'_\varepsilon(u_n)[u_n]
\]

\[
= \frac{1}{4} \|u_n\|^2_\varepsilon + \left(\frac{1}{4} - \frac{1}{p} \right) |u_n^+|^p_{p,\varepsilon} \geq \frac{1}{4} \|u_n\|^2_\varepsilon
\]

and so \(\{u_n\} \) is bounded in \(H^1(M) \). Thus, up to a subsequence, it converges weakly to a function \(\bar{u} \in H^1(M) \) and \(u_n \to \bar{u} \) in \(L^\tau(M) \) for \(1 \leq \tau < 6 \).

The remaining part is standard, since, if

\[
R_\varepsilon := -\frac{1}{\varepsilon} \Delta_g + \frac{1}{\varepsilon^2} \text{Id}
\]

is the Riesz isomorphism on \(H^1(M) \), we have

\[
u_n = -\frac{q^2}{\varepsilon^3} R_\varepsilon^{-1}(\phi_{u_n} u_n) + \frac{1}{\varepsilon^3} R_\varepsilon^{-1}(|u_n^+|^{p-2} u_n^+) + o_n(1)
\]

\(\Box \) Springer
and so we can conclude observing that \(\{ \phi_{u_n} u_n \} \) is bounded in \(L^{3/2}(M) \), being
\[
|\phi_{u_n} u_n|^{3/2} \leq |\phi_{u_n}|_6 |u_n|_2.
\]
\(\{ |u_n^+|^{p-2} u_n^+ \} \) is bounded in \(L^{p'}(M) \), being \(p' \) the conjugate exponent of \(p \), and using the compact embedding (by duality) of \(L^\infty(M) \) in \(H^{-1}(M) \). Thus, up to a subsequence \(u_n \to \bar{u} \) in \(H^1(M) \).

Let now \(\{ u_n \} \subset N_{c} \) be a Palais Smale sequence of \(J_\varepsilon |_{N_{c}} \), namely such that \(J_\varepsilon(u_n) \to c \) and \(J_\varepsilon'(u_n) - \lambda_n N'_{c}(u_n) \to 0 \), with \(\{ \lambda_n \} \subset \mathbb{R} \).

To prove that \(J_\varepsilon'(u_n) \to 0 \), first we observe that, arguing as before, we have that \(\{ u_n \} \) is bounded in \(H^1(M) \).

Moreover, arguing as in the proof of (iv) of Lemma 3.1 and using (iii) of Lemma 3.1 we have
\[
N'_\varepsilon(u_n)[u_n] = -2\|u_n\|^2 - (p - 4)|u_n^+|_{p,\varepsilon}^p < -C < 0.
\]
Thus, up to a subsequence, \(N'_\varepsilon(u_n)[u_n] \to \ell \in [-\infty, 0) \).

Then, since \(\{ u_n \} \subset N_{c} \), we have that \(\lambda_n N'_{c}(u_n)[u_n] \to 0 \) and so \(\lambda_n \to 0 \). Hence we can conclude proving that \(\{ N'_\varepsilon(u_n) \} \) is bounded in \(H^{-1}(M) \) and this is an immediate consequence of the Hölder inequality and of the boundedness of \(\{ u_n \} \) in \(H^1(M) \), since, for every \(\varphi \in H^1(M) \),
\[
|N'_\varepsilon(u_n)[\varphi]| \leq 2|\langle u_n, \varphi \rangle|_\varepsilon + \frac{4}{\varepsilon^3} \int_M |\phi_{u_n} u_n \varphi| d\mu_g + \frac{p}{\varepsilon^2} \int_M |u_n^+|^{p-1}|\varphi| d\mu_g
\]
\[
\leq C(\|u_n\|_\varepsilon + \|u_n\|^2_\varepsilon + \|u_n\|^{p-1}_\varepsilon) \|\varphi\|_\varepsilon
\]
\[
\leq C \|\varphi\|_\varepsilon.
\]
\[\square\]

4 Low energy solutions

We start now the proof of Theorem 1.1. In particular, this section is devoted to show the existence of multiple low energy solutions by the *photography method*. The core of the proof relies in three claims: Lemma 4.2 where we show that, for small \(\varepsilon > 0 \), the function \(\Psi_\varepsilon \), defined in (4.5), maps points of \(M \) in low energy functions in \(N_{c} \), Lemma 4.4 that prevents vanishing for low energy functions, Propositon 4.5 which states that low energy functions in \(N_{c} \) are indeed concentrated around a point on the manifold. In light of these results, Proposition 4.6 establishes the link between the points on \(M \) and the set of low energy functions, which allows us to apply classical result Theorem 4.7 and to get the first claim of Theorem 1.1.

Firstly, we give a good model for low energy solutions of (1.1).

Let \(U \in H^1(\mathbb{R}^3) \) be the unique positive solution of
\[
-\Delta u + u = |u|^{p-2}u \text{ in } \mathbb{R}^3.
\]
(4.1)

It is well known that such a function is radially symmetric, nondegenerate, and decays exponentially at infinity (see [13, 20]). For \(\xi \in M \) and \(\varepsilon > 0 \), let us take
\[
W_{\xi,\varepsilon} := U_\varepsilon(\exp_{\xi}^{-1} \cdot) \chi_r(\|\exp_{\xi}^{-1} \cdot\|)
\]
(4.2)

where \(\chi \) is a cut off such that
\[
\chi_r(\rho) := \begin{cases} 1 & \text{if } \rho \in [0, r/2), \\ 0 & \text{if } \rho \in (r, +\infty), \end{cases} \quad |\chi'| \leq 2/r, \quad |\chi''| \leq 2/r^2,
\]
\[\checkmark\] Springer
Let us prove the following preliminary result.

Lemma 4.1 We have:

(i) \(\lim_{\varepsilon \to 0} \| W_{\xi,\varepsilon} \|_{L^2}^2 = \| U \|_{L^2}^2 \);
(ii) \(\lim_{\varepsilon \to 0} \| W_{\xi,\varepsilon} \|_{L^q}^q = \| U \|_{L^q}^q \) for \(q \in [1, 6] \);
(iii) \(\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_M W_{\xi,\varepsilon} \phi W_{\xi,\varepsilon} = 0 \);
(iv) \(\lim_{\varepsilon \to 0} t_{W_{\xi,\varepsilon}} = 1 \).

Proof Let \(\tilde{W}_{\xi,\varepsilon} := W_{\xi,\varepsilon}(\exp_{\xi} \cdot) \) and \(|g_\xi| := \det(g_{ij}) \), where \((g_{ij}) \) is the inverse matrix of \((g^j_\xi) \). Then \(\tilde{W}_{\xi,\varepsilon} = U(\cdot / \varepsilon) \chi(| \cdot |) \) and we have

\[
\frac{1}{\varepsilon} \int_M |\nabla g_{\xi,\varepsilon}|^2 d\mu_\varepsilon = \frac{1}{\varepsilon} \int_{B(0,r)} g_{ij}^{\xi}(y) \partial_i \tilde{W}_{\xi,\varepsilon}(y) \partial_j \tilde{W}_{\xi,\varepsilon}(y) |g_\xi(y)|^{1/2} dy \\
= \int_{B(0,r/\varepsilon)} \left(g_{ij}^{\xi}(\varepsilon z) \partial_i U(z) \partial_j U(z) \right) \chi(|\varepsilon z|) |g_\xi(\varepsilon z)|^{1/2} dz \\
+ \varepsilon \int_{B(0,r/\varepsilon)} \left(g_{ij}^{\xi}(\varepsilon z) \partial_i U(z) \frac{\partial_j g}{|z|} U(z) \chi(|\varepsilon z|) \chi'(|\varepsilon z|) |g_\xi(\varepsilon z)|^{1/2} dz \\
+ \varepsilon \int_{B(0,r/\varepsilon)} \left(g_{ij}^{\xi}(\varepsilon z) \frac{\partial_j g}{|z|} \partial U(z) \chi(|\varepsilon z|) \chi'(|\varepsilon z|) |g_\xi(\varepsilon z)|^{1/2} dz \\
+ \varepsilon^2 \int_{B(0,r/\varepsilon)} \left(g_{ij}^{\xi}(\varepsilon z) z_i z_j \right) U^2(z) \left(\frac{\chi'(|\varepsilon z|)}{|z|} \right)^2 |g_\xi(\varepsilon z)|^{1/2} dz
\]

and

\[
\int_M |W_{\xi,\varepsilon}|^2 d\mu_\varepsilon = \int_{B(0,r)} |U(\varepsilon y) \chi(|x|)|^2 |g_\xi(y)|^{1/2} dy \\
= \varepsilon^3 \int_{B(0,r/\varepsilon)} |U(z) \chi(|\varepsilon z|)|^2 |g_\xi(\varepsilon z)|^{1/2} dz.
\]

Applying the Dominated Convergence Theorem and using (2.8) we get

\[
\frac{1}{\varepsilon} \int_M |\nabla g_{\xi,\varepsilon}|^2 d\mu_\varepsilon + \frac{1}{\varepsilon^3} \int_M |W_{\xi,\varepsilon}|^2 d\mu_\varepsilon \to |\nabla U|^2 + |U|^2.
\]

Analogously

\[
\frac{1}{\varepsilon^3} \int_M |W_{\xi,\varepsilon}|^p d\mu_\varepsilon = \frac{1}{\varepsilon^3} \int_{B(0,r)} |U(\varepsilon y) \chi(|y|)|^p |g_\xi(y)|^{1/2} dy \\
= \int_{B(0,r/\varepsilon)} |U(z) \chi(|\varepsilon z|)|^p |g_\xi(\varepsilon z)|^{1/2} dz \to |U|^p.
\]

To prove (iii), observe that, by (i) in Lemmas 3.1 and 2.2, \(t_{W_{\xi,\varepsilon}} \) satisfies

\[
t_{W_{\xi,\varepsilon}}^p - 2 |W_{\xi,\varepsilon}|^p + \frac{1}{\varepsilon^3} \int_M W_{\xi,\varepsilon}^2 \phi W_{\xi,\varepsilon} d\mu_\varepsilon.
\]

(4.3)

By (a) in Lemma 2.1 we have

\[
\int_M W_{\xi,\varepsilon}^2 \phi W_{\xi,\varepsilon} d\mu_\varepsilon = \| \phi W_{\xi,\varepsilon} \|^2_{L^2} \leq C |W_{\xi,\varepsilon}|^4
\]
and so,
\[0 \leq \frac{1}{\varepsilon^3} \int_M W_{\xi,\varepsilon}^2 \phi_t W_{\xi,\varepsilon} d\mu_g \leq C \varepsilon^3 |W_{\xi,\varepsilon}|_{2,\varepsilon}^4 \to 0. \] (4.4)

Finally, writing (4.3) as
\[t_{W_{\xi,\varepsilon}}^2 \left(t_{W_{\xi,\varepsilon}}^{p-4} |W_{\xi,\varepsilon}|_{p,\varepsilon}^p - \frac{1}{\varepsilon^3} \int_M W_{\xi,\varepsilon}^2 \phi W_{\xi,\varepsilon} d\mu_g \right) = |W_{\xi,\varepsilon}|_{\varepsilon}^2 \]
and using (i), (ii), and (4.4), we get that \(t_{W_{\xi,\varepsilon}} \) is bounded for \(\varepsilon \) small enough. Hence, again by (4.3), (i), and (ii),
\[t_{W_{\xi,\varepsilon}}^2 = \frac{1}{|W_{\xi,\varepsilon}|_{p,\varepsilon}^p} \left(|W_{\xi,\varepsilon}|_{\varepsilon}^2 + t_{W_{\xi,\varepsilon}}^2 \frac{1}{\varepsilon^3} \int_M W_{\xi,\varepsilon}^2 \phi W_{\xi,\varepsilon} d\mu_g \right) \to \frac{\|U\|_{H^1}^2}{|U|_p} = 1. \]

Now let us define, for every fixed \(\varepsilon > 0 \), the continuous map
\[\Psi_{\varepsilon} := \xi \in M \mapsto t_{W_{\xi,\varepsilon}} W_{\xi,\varepsilon} \in N_{\varepsilon} \] (4.5)
and
\[m_{\infty} := \frac{p-2}{2p} |U|_p^p = \frac{p-2}{2p} \|U\|_{H^1}^2, \] (4.6)
which corresponds to the energy level of \(U \) with respect to Eq. (4.1).

Using Lemma 4.1 we have

Lemma 4.2 For every \(\delta > 0 \) there exists \(\varepsilon_0 = \varepsilon_0(\delta) > 0 \) such that, for every \(\varepsilon \in (0, \varepsilon_0) \), and for every \(\xi \in M \), \(J_\varepsilon(\Psi_\varepsilon(\xi)) < m_{\infty} + \delta \).

As an immediate consequence of Lemma 4.2, using Lemma 3.1, we have that there exists \(C > 0 \) such that
\[C \leq \liminf_{\varepsilon \to 0} m_\varepsilon \leq \limsup_{\varepsilon \to 0} m_\varepsilon \leq m_{\infty}. \] (4.7)

Now, as in [3], we need to consider a good partition of the manifold \(M \) which we define as follows.

Definition 4.3 For a given \(\varepsilon > 0 \) we say that a finite partition \(P_\varepsilon = \{P_j^\varepsilon\}_{j \in \Lambda_\varepsilon} \) of the manifold \(M \) is a good partition of \(M \) if:

1. for any \(j \in \Lambda_\varepsilon \) the set \(P_j^\varepsilon \) is closed;
2. \(P_j^\varepsilon \cap P_j^\varepsilon \subset \partial P_j^\varepsilon \cap \partial P_j^\varepsilon \) for any \(i \neq j \);
3. there exist \(r_1(\varepsilon) > 0 \) such that there are points \(q_j^\varepsilon \in P_j^\varepsilon \) for which \(B_g(q_j^\varepsilon, \varepsilon) \subset P_j^\varepsilon \subset B_g(q_j^\varepsilon, r_1(\varepsilon)) \), with \(r_1(\varepsilon) \geq C \varepsilon \) for some positive constant \(C \);
4. there exists \(v(M) \in \mathbb{N} \), independent of \(\varepsilon \), such that every \(\xi \in M \) is contained in at most \(v(M) \) balls \(B_g(q_j^\varepsilon, r_1(\varepsilon)) \).

The existence of good partitions easily follows observing that, for \(\varepsilon \) small enough, condition (4) in Definition 4.3 can be satisfied by the compactness of \(M \). Thus, without loss of generality, we can assume that, given \(\delta > 0 \), \(\varepsilon_0(\delta) \) in Lemma 4.2 is sufficiently small to ensure also the existence of a good partition for every \(\varepsilon \in (0, \varepsilon_0(\delta)) \).

Thus, arguing as in [3, Lemma 5.3], we get the following result which prevents vanishing on the Nehari manifold.
Lemma 4.4 There exists a constant $\gamma > 0$ such that for any $\delta > 0$ and for any $\varepsilon \in (0, \varepsilon_0(\delta))$, given any good partition $P_\varepsilon = \{ P^\varepsilon_j \}_j$ of the manifold M and for any function $u \in \mathcal{N}_\varepsilon$, there exists $j \in \Lambda_\varepsilon$ such that

$$\frac{1}{\varepsilon^3} \int_{P^\varepsilon_j} |u^+|^p d\mu_g \geq \gamma.$$

Proof Observe that, if \bar{u} exists good given any ε such that

$$\|u\|^2 = \frac{1}{\varepsilon^3} |u^+|^p - \frac{q^2}{\varepsilon^3} \int_M \phi_u u^2 d\mu_g \leq \frac{1}{\varepsilon^3} |u^+|^p = \sum_{j \in \Lambda_\varepsilon} \frac{1}{\varepsilon^3} \int_{P^\varepsilon_j} |u^+|^p d\mu_g$$

$$= \sum_{j \in \Lambda_\varepsilon} \left(\frac{1}{\varepsilon^3} \int_{P^\varepsilon_j} |u^+|^p d\mu_g \right)^{1 - \frac{2}{p}} \left(\frac{1}{\varepsilon^3} \int_{P^\varepsilon_j} |u^+|^p d\mu_g \right)^{\frac{2}{p}}$$

$$\leq \max_{j \in \Lambda_\varepsilon} \left\{ \left(\frac{1}{\varepsilon^3} \int_{P^\varepsilon_j} |u^+|^p d\mu_g \right)^{1 - \frac{2}{p}} \right\} \sum_{j \in \Lambda_\varepsilon} \left(\frac{1}{\varepsilon^3} \int_{P^\varepsilon_j} |u^+|^p d\mu_g \right)^{\frac{2}{p}}.$$

(4.8)

Let now $\chi_\varepsilon \in C^\infty([0, +\infty[, [0, 1])$ such that

$$\chi_\varepsilon(t) := \begin{cases} 1 & \text{if } t \leq r_2(\varepsilon), \\ 0 & \text{if } t > r_1(\varepsilon), \end{cases} \quad |\chi_\varepsilon'| \leq \frac{K}{\varepsilon}, \text{ for } K > 0,$$

and, for every $j \in \Lambda_\varepsilon$, $u_j := u^+ \chi_\varepsilon(|\cdot - q^\varepsilon_j|)$, where $r_i(\varepsilon)$’s and q^ε_j come from Definition 4.3.

For every $j \in \Lambda_\varepsilon$ we have that $u_j \in H^1(M)$ and

$$\left(\frac{1}{\varepsilon^3} \int_{P^\varepsilon_j} |u^+|^p d\mu_g \right)^{\frac{2}{p}} \leq |u_j|^2_{p, \varepsilon} \leq C \|u_j\|^2_{\varepsilon} = C \left(\|u^+_{p_j}\|^2_{\varepsilon} + \|u_j\|_{B_\varepsilon(q^\varepsilon_j, r_1(\varepsilon)) \setminus P^\varepsilon_j}^2 \right)$$

$$\leq C \left(\|u^+_{p_j}\|^2_{\varepsilon} + \frac{1}{\varepsilon} \int_{B_\varepsilon(q^\varepsilon_j, r_1(\varepsilon)) \setminus P^\varepsilon_j} |\nabla u^+|^2 d\mu_g \right.$$

$$\left. + \frac{K^2 + \omega}{\varepsilon^3} \int_{B_\varepsilon(q^\varepsilon_j, r_1(\varepsilon)) \setminus P^\varepsilon_j} |u^+|^2 d\mu_g \right)$$

$$\leq C \left(\|u^+_{p_j}\|^2_{\varepsilon} + \frac{K^2 + \omega}{\omega} \|u^+\|_{B_\varepsilon(q^\varepsilon_j, r_1(\varepsilon)) \setminus P^\varepsilon_j}^2 \right).$$

Thus, using (4) in Definition 4.3,

$$\sum_{j \in \Lambda_\varepsilon} \left(\frac{1}{\varepsilon^3} \int_{P^\varepsilon_j} |u^+|^p d\mu_g \right)^{\frac{2}{p}} \leq C \frac{K^2 + 2\omega}{\omega} v(M) |u^+|^2_{\varepsilon} \leq C \frac{K^2 + 2\omega}{\omega} v(M) \|u\|^2.$$

(4.9)

Hence, by (4.8) and (4.9),

$$\max_{j \in \Lambda_\varepsilon} \left\{ \left(\frac{1}{\varepsilon^3} \int_{P^\varepsilon_j} |u^+|^p d\mu_g \right)^{1 - \frac{2}{p}} \right\} \geq C$$

and we conclude. □
Now, we can refine previous result, obtaining concentration of low energy functions on the Nehari manifold. This is a key tool to get the multiplicity claim in Theorem 1.1.

Proposition 4.5 For any \(\eta \in (0, 1) \) there exists \(\delta_0 < m_{\infty} \) such that for any \(\delta \in (0, \delta_0) \), for any \(\varepsilon \in (0, \varepsilon_0(\delta)) \), with \(\varepsilon_0(\delta) \) as in Lemma 4.2, and for any function \(u \in N_{\varepsilon} \cap J_{\varepsilon}^{m_{\infty}+\delta} \) we can find a point \(q = q(u) \in M \) such that

\[
\frac{1}{\varepsilon^3} \int_{B_{\varepsilon}(q,r(M)/2)} |u^+|^p d\mu_g > (1 - \eta) \frac{2p}{p - 2} m_{\infty}.
\]

Proof First let us show our thesis for \(u \in N_{\varepsilon} \cap J_{\varepsilon}^{m_{\infty}+2\delta} \).

Assume by contradiction that there exists \(\eta \in (0, 1) \) and sequences \(\{\delta_k\}, \{\varepsilon_k\} \subset (0, +\infty) \), \(\{u_k\} \subset N_{\varepsilon_k} \), such that \(\delta_k, \varepsilon_k \to 0 \) as \(k \to +\infty \),

\[
m_{\varepsilon_k} \leq J_{\varepsilon_k}(u_k) \leq m_{\varepsilon_k} + 2\delta_k
\]

and, for every \(q \in M \),

\[
\frac{1}{\varepsilon_k^3} \int_{B_{\varepsilon_k}(q,r(M)/2)} |u_k^+|^p d\mu_g \leq (1 - \eta) \frac{2p}{p - 2} m_{\infty}.
\]

First observe that \(\|u_k\|_{\varepsilon_k} \) is bounded. Indeed, by (4.7), (4.10), for \(k \) large enough,

\[
2m_{\infty} \geq m_{\varepsilon_k} + 2\delta_k \geq J_{\varepsilon_k}(u_k) - \frac{1}{p} J'_{\varepsilon_k}(u_k)[u_k]
\]

\[
= \left(\frac{1}{2} - \frac{1}{p} \right) \|u_k\|_{\varepsilon_k}^2 + \left(\frac{1}{4} - \frac{1}{p} \right) \frac{1}{\varepsilon_k^3} \int_M \phi u_k^2 \mu_g
\]

\[
\geq \left(\frac{1}{2} - \frac{1}{p} \right) \|u_k\|_{\varepsilon_k}^2.
\]

Applying the Ekeland Principle (see [10]) as in [3, Lemma 5.4],\(^2\) we get that, for every \(\varphi \in H^1(M) \),

\[
|J'_{\varepsilon_k}(u_k)[\varphi]| \leq C \sqrt{\delta_k} \|\varphi\|_{\varepsilon_k}.
\]

Moreover, by Lemma 4.4, there exists a constant \(\gamma > 0 \) such that for any \(\delta > 0 \) and for any \(k \) large enough, given a good partition \(P_{\varepsilon_k} = \{P_{\varepsilon_k}^j\}_{j \in \Lambda_{\varepsilon_k}} \) of the manifold \(M \), there exists \(\tilde{\gamma}_k \in \Lambda_{\varepsilon_k} \) such that

\[
\frac{1}{\tilde{\varepsilon}_k^3} \int_{P_{\varepsilon_k}^j} |u_k^+|^p d\mu_g \geq \gamma.
\]

Let \(q_k \in P_{\tilde{\varepsilon}_k}^j \) as in (3) of Definition 4.3 and

\[
w_k(z) := u_k(\exp_{q_k}(\varepsilon_k z)) \chi_{r}(\varepsilon_k |z|),
\]

where \(r \) is the injectivity radius.

Moreover, let \(\tilde{w}_k(z) = u_k(\exp_{q_k}(z)) \), \(v_k(z) = u_k(\varepsilon_k z) \), and \(\chi_{r}(|z|) = \chi_{r}(\varepsilon_k |z|) \), so that

\[
w_k(z) = \tilde{w}_k(\varepsilon_k z) \chi_{r}(\varepsilon_k |z|) = v_k(z) \chi_{r}(|z|).
\]

\(^2\) For completeness, in “Appendix A” we give some details.
Thus, by (4.12),

\[\|w_k\|_{H^1}^2 = \int_{B(0, \frac{r}{\varepsilon_k})} |\chi_k(|z|)\nabla v_k(z) + \varepsilon_k \chi'_k(\varepsilon_k|z|) \frac{z}{|z|} v_k(z)|^2 dz + \int_{B(0, \frac{r}{\varepsilon_k})} |\chi_k(|z|)v_k(z)|^2 dz \]

\[\leq 2 \int_{B(0, \frac{r}{\varepsilon_k})} |\nabla v_k(z)|^2 dz + \frac{8}{r^2} \varepsilon_k^2 \int_{B(0, \frac{r}{\varepsilon_k})} |v_k(z)|^2 dz + \int_{B(0, \frac{r}{\varepsilon_k})} |v_k(z)|^2 dz \]

\[\leq 2 \varepsilon_k^2 \int_{B(0, \frac{r}{\varepsilon_k})} |\nabla \tilde{u}_k(\varepsilon_kz)|^2 dz + C \int_{B(0, \frac{r}{\varepsilon_k})} |\tilde{u}_k(\varepsilon_kz)|^2 dz \]

\[\leq C \varepsilon_k^2 \int_{B(0, r)} \i g |\tilde{u}_k(y)| \frac{\partial \tilde{u}_k}{\partial z_i}(\varepsilon_k z) \frac{\partial \tilde{u}_k}{\partial z_j}(\varepsilon_k z) |gq_k(\varepsilon_k z)|^{1/2} dz \]

\[+ C \int_{B(0, r)} |\tilde{u}_k(\varepsilon_k z)|^2 |gq_k(\varepsilon_k z)|^{1/2} dz \]

\[= C \int_{B(0, r)} \i g |\tilde{u}_k(y)| \frac{\partial \tilde{u}_k}{\partial z_i}(y) \frac{\partial \tilde{u}_k}{\partial z_j}(y) |gq_k(y)|^{1/2} dy + C \varepsilon_k^2 \int_{B(0, r)} |\tilde{u}_k(y)|^2 |gq_k(y)|^{1/2} dy \]

\[\leq C \|u_k\|^2_{H^1} \leq C. \]

Thus \(w_k \) converges weakly in \(H^1(\mathbb{R}^3) \) and strongly in \(L^t_{\text{loc}}(\mathbb{R}^3), t \in [1, 6) \), to a function \(w \in H^1(\mathbb{R}^3) \).

Let us prove that \(w \geq 0 \) and it solves weakly

\[- \Delta w + w = w^{p-1} \text{ in } \mathbb{R}^3. \] (4.14)

Let \(\varphi \in C_0^\infty(\mathbb{R}^3) \). There exists \(k \in \mathbb{N} \) such that \(\text{spt} (\varphi) \subset B(0, r/2\varepsilon_k) \). Define

\[\varphi_k : M \to \mathbb{R}, \quad \varphi_k(x) := \varphi\left(\frac{1}{\varepsilon_k} \exp^{-1}_q(x)\right). \]

We have that \(\text{spt}(\varphi_k) \subset B_k(q_k, r/2) \) and, being

\[\tilde{\varphi}_k(y) := \varphi_k(\exp_{q_k}(y)) = \varphi(y/\varepsilon_k), \] (4.15)

then

\[\|\varphi_k\|^2_{H^1} = \frac{1}{\varepsilon_k} \int_{B(0, \frac{r}{\varepsilon_k})} \i g |\tilde{u}_k(y)| \frac{\partial \tilde{u}_k}{\partial y_i}(y) \frac{\partial \tilde{u}_k}{\partial y_f}(y) |gq_k(y)|^{1/2} dy + \frac{1}{\varepsilon_k} \int_{B(0, \frac{r}{\varepsilon_k})} |\tilde{u}_k(y)|^2 |gq_k(y)|^{1/2} dy \]

\[= \int_{B(0, \frac{r}{\varepsilon_k})} \i g |\tilde{u}_k(\varepsilon_k z)| \frac{\partial \tilde{u}_k}{\partial z_i}(z) \frac{\partial \tilde{u}_k}{\partial z_f}(z) |gq_k(\varepsilon_k z)|^{1/2} dz + \int_{B(0, \frac{r}{\varepsilon_k})} |\varphi(z)|^2 |gq_k(\varepsilon_k z)|^{1/2} dz \]

\[\leq C \|\varphi\|^2_{H^1}. \]

Thus, by (4.12),

\[|J_{\varepsilon_k}(\varphi_k)| \leq C \sqrt{\delta_k} \|\varphi_k\|_{H^1} \leq C \sqrt{\delta_k} \|\varphi\|_{H^1} \to 0 \text{ as } k \to +\infty. \] (4.16)

On the other hand, observe that

\[\frac{1}{\varepsilon_k^3} \int_M \phi u_k \varphi_k d\mu_g \to 0 \text{ as } k \to +\infty. \] (4.17)
since, by \((4.15)\),
\[
\int_M |\varphi_k|^3 d\mu_g = \int_{B_{\varepsilon_k}(q_k, r/2)} |\varphi_k|^3 d\mu_g = \int_{B(0, \xi)} |\varphi_k(y)|^3 |g_{qk}(y)|^{1/2} dy
\]
\[
\leq C\varepsilon_k^3 \int_{B(0, \xi)} |\varphi(z)|^3 dy \leq C\varepsilon_k^3 |\varphi|^3
\]
and so, by Hölder inequality and (a) in Lemma 2.1,
\[
\left| \int_M \phi_{uk} u_k \varphi_k d\mu_g \right| \leq |\phi_{uk}| |u_k| |\varphi_k| \leq C\varepsilon_k \|\phi_{uk}\|_{H^2} |u_k| |\varphi_k| \leq C\varepsilon_k |u_k|^2 |\varphi_k|
\]
\[
= C\varepsilon_k^5 |u_k|^2 |\varphi_k| |\varphi_k| \leq C\varepsilon_k^5.
\]

Then, using \(\sim\) to denote the composition of the function with \(\exp_{qk}\) as before, since
\[
w_k \left(\frac{y}{\varepsilon_k} \right) = \tilde{u}_k(y) \chi_r(y) = \tilde{u}_k(y) \quad \text{in } B(0, r/2)
\]
by \((4.13)\) and \((4.15)\),
\[
J'_{\varepsilon_k}(u_k)(\varphi_k) = \frac{1}{\varepsilon_k^3} \left(\varepsilon_k^2 \int_{B_{\varepsilon_k}(q_k, r/2)} \nabla u_k \nabla \varphi_k d\mu_g + \int_{B_{\varepsilon_k}(q_k, r/2)} u_k \varphi_k d\mu_g
- \int_{B_{\varepsilon_k}(q_k, r/2)} u_k^{1+} |p-2 u_k^{1+} \varphi_k d\mu_g \right)
+ o_k(1)
\]
\[
= \frac{1}{\varepsilon_k^3} \left(\varepsilon_k^2 \int_{B(0, \xi)} s_{qk}^i(y) \partial_i \tilde{u}_k(y) \partial_j \tilde{\varphi}_k(y) |g_{qk}(y)|^{1/2} dy
+ \int_{B(0, \xi)} \tilde{u}_k(y) \tilde{\varphi}_k(y) |g_{qk}(y)|^{1/2} dy
- \int_{B(0, \xi)} |\tilde{u}_k^+(y)|^{p-2} \tilde{u}_k^+(y) \tilde{\varphi}_k(y) |g_{qk}(y)|^{1/2} dy \right) + o_k(1)
\]
\[
= \int_{T_k} s_{qk}^i(\varepsilon_k z) \frac{\partial w_k}{\partial z_i}(z) \frac{\partial \varphi}{\partial z_j}(z) |g_{qk}(\varepsilon_k z)|^{1/2} dz + \int_{T_k} w_k(z) \varphi(z) |g_{qk}(\varepsilon_k z)|^{1/2} dz
- \int_{T_k} |w_k^+(z)|^{p-2} w_k^+(z) \varphi(z) |g_{qk}(\varepsilon_k z)|^{1/2} dz + o_k(1),
\]
where \(T_k := B(0, r/2\varepsilon_k) \cap \text{spt}(\varphi)\) and, for \(k\) large enough, \(T_k \equiv \text{spt}(\varphi)\).

Hence, since by \((2.8)\),
\[
\int_{T_k} s_{qk}^i(\varepsilon_k z) \frac{\partial w_k}{\partial z_i}(z) \frac{\partial \varphi}{\partial z_j}(z) |g_{qk}(\varepsilon_k z)|^{1/2} dz = \int_{T_k} \nabla w_k(z) \nabla \varphi(z) dz + O(\varepsilon_k^2),
\]
\[
\int_{T_k} w_k(z) \varphi(z) |g_{qk}(\varepsilon_k z)|^{1/2} dz = \int_{T_k} w_k(z) \varphi(z) dz + O(\varepsilon_k^2),
\]
and
\[
\int_{T_k} |w_k^+(z)|^{p-2} w_k^+(z) \varphi(z) |g_{qk}(\varepsilon_k z)|^{1/2} dz = \int_{T_k} |w_k^+(z)|^{p-2} w_k^+(z) \varphi(z) dz + O(\varepsilon_k^2).
\]
Let $N \eta$ \Hence, in particular, for any w Then, there exists w Let us show that reaching a contradiction with (4.18).

(4.16), and the convergence properties of $\{w_k\}$ imply that $w \geq 0$ solves (4.14).

Let $N_\infty := \{v \in H^1(\mathbb{R}^3) \setminus \{0\} : |\nabla w|^2 + \omega |w|^2 = |w|^p_\rho\}$ and $T > 0$ large enough such that $P^{\rho_k}_{jk} \subset B_g(q_k, \varepsilon_k T)$. By (2.8) and Lemma 4.4, if k is large enough, we have

$$\int_{B(0,T)} (w^+_k)^p \, dz = \frac{1}{\varepsilon_k^3} \int_{B(0,\varepsilon_k T)} (u^+_k(\exp q_k(y)))^p \, dy$$

$$\geq \frac{C}{\varepsilon_k^3} \int_{B(0,\varepsilon_k T)} (u^+_k(\exp q_k(y)))^p \, |g_{q_k}(y)|^{1/2} \, dy$$

$$\geq \frac{C}{\varepsilon_k^3} \int_{P^{\rho_k}_{jk}} |u^+_k|^p \, d\mu_g \geq \gamma.$$

Hence $w \neq 0$, $w \in N_\infty$, and so $w = U$ (see (4.1)) and, by (4.6),

$$\|w\|^2_{H^1} = |w|^p_\rho = \frac{2p}{p - 2} m_\infty.$$

Then, there exists $T > 0$ such that

$$\int_{B(0,T)} w^p \, dz > \left(1 - \frac{\eta}{8}\right) \frac{2p}{p - 2} m_\infty$$

and, since $w_k \rightarrow w$ in $L^p_{\text{loc}}(\mathbb{R}^3)$, for k large enough we get

$$\int_{B(0,T)} (w^+_k)^p \, dz > \left(1 - \frac{\eta}{4}\right) \frac{2p}{p - 2} m_\infty. \quad (4.18)$$

On the other hand, by (2.8), if $\sigma \in (0, 3\eta/(4 - \eta))$, we have that for k sufficiently large,

$$|g_{q_k}(\varepsilon_k z)|^{1/2} > 1 - \sigma \text{ on } B(0, T)$$

and so, by (4.11), we get

$$\int_{B(0,T)} (w^+_k)^p \, dz \leq \frac{1}{1 - \sigma} \int_{B(0,T)} (u^+_k(\exp q_k(\varepsilon_k z)))^p \, |g_{q_k}(\varepsilon_k z)|^{1/2} \, dz$$

$$= \frac{1}{(1 - \sigma)\varepsilon_k^3} \int_{B(0,\varepsilon_k T)} (u^+_k(\exp q_k(y)))^p \, |g_{q_k}(y)|^{1/2} \, dy$$

$$\leq \frac{1}{(1 - \sigma)\varepsilon_k^3} \int_{B(0,r(M)/2)} (u^+_k(\exp q_k(y)))^p \, |g_{q_k}(y)|^{1/2} \, dy$$

$$= \frac{1}{(1 - \sigma)\varepsilon_k^3} \int_{B_g(q_k,r(M)/2)} |u^+_k|^p \, d\mu_g$$

$$\leq \frac{1}{1 - \sigma} \frac{2p}{p - 2} m_\infty < \left(1 - \frac{\eta}{4}\right) \frac{2p}{p - 2} m_\infty,$$

reaching a contradiction with (4.18).

Hence, in particular, for any $\eta \in (0, 1)$ there exists $\delta_0 < m_\infty$ such that, if $[\delta_k] \subset (0, \delta_0)$ and $\delta_k \rightarrow 0$ as $k \rightarrow +\infty$ and $\varepsilon_k \in (0, \varepsilon_0(\delta_k))$, with $\varepsilon_0(\delta_k)$ as in Lemma 4.2 and $\varepsilon_k \rightarrow 0$ as $k \rightarrow +\infty$, for any function $u_k \in N_{\varepsilon_k} \cap J^{m_\infty + 2\mu_k}$ we can find $q_k = q_k(u_k) \in M$ such that

$$\frac{1}{\varepsilon_k^3} \int_{B_g(q_k,r(M)/2)} |u^+_k|^p \, d\mu_g > (1 - \eta) \frac{2p}{p - 2} m_\infty.$$
Then
\[m_{\varepsilon_k} + 2\delta_k \geq J_{\varepsilon_k}(u_k) = \left(\frac{1}{2} - \frac{1}{p}\right) |u_k^+|_p^{p,\varepsilon_k} - \frac{q^2}{4\varepsilon_k^3} \int_M u_k^2 \phi u_k d\mu_g \]
\[> (1 - \eta) m_{\infty} - \frac{q^2}{4\varepsilon_k^3} \int_M u_k^2 \phi u_k d\mu_g. \]

Observe that
\[\frac{1}{\varepsilon_k^3} \int_M u_k^2 \phi u_k d\mu_g \leq C \varepsilon_k^3 |\phi u_k|_{H^2} \leq C \varepsilon_k^3 |u_k|^4_{2,\varepsilon_k} \leq C \varepsilon_k^3. \]

Thus, by (4.7),
\[\lim_{k} m_{\varepsilon_k} = m_{\infty}. \]

Hence, when \(\varepsilon, \delta \) are small enough, \(N_{\varepsilon} \cap J_{\varepsilon}^{m_{\infty}+\delta} \subset N_{\varepsilon} \cap J_{\varepsilon}^{m_{\varepsilon}+2\delta} \) and the general claim follows from the first part of the proof. \(\square \)

We remind that we are assuming \(M \) to be smoothly embedded in some \(\mathbb{R}^N \), for \(N \) sufficiently large. At this point, if \(u \in H^1(M) \), with \(u^+ \neq 0 \), it is possible to define its barycenter as follows
\[\beta(u) := \frac{1}{|u^+|_p^p} \int_M x[u^+(x)]^p d\mu_g \in \mathbb{R}^N. \]

By the barycenter map, it is possible to associate to any low energy function a unique point which lies in \(M_{r(M)} \), a neighborhood of the manifold. This is the final step to link the manifold to the set of low energy functions.

Proposition 4.6 There exists \(\delta_0 \in (0, m_{\infty}) \) such that for any \(\delta \in (0, \delta_0), \varepsilon \in (0, \varepsilon(\delta_0)) \), and \(u \in N_{\varepsilon} \cap J_{\varepsilon}^{m_{\infty}+\delta} \), \(\beta(u) \in M_{r(M)} \). Moreover the composition \(\beta \circ \Psi_{\varepsilon} : M \to M_{r(M)} \) is \(s \) homotopic to the immersion \(i : M \to M_{r(M)} \).

Proof By Proposition 4.5, given \(\eta \in (0, 1) \) and \(\varepsilon, \delta \) small enough, if \(u \in N_{\varepsilon} \cap J_{\varepsilon}^{m_{\infty}+\delta} \), there exists \(q = q(u) \in M \) such that
\[\frac{1}{\varepsilon^3} \int_{B(q,r(M)/2)} (u^+)^p d\mu_g > (1 - \eta) \frac{2p}{p-2} m_{\infty}. \]

Moreover
\[m_{\infty} + \delta \geq J_{\varepsilon}(u) = \frac{p-2}{2p} |u^+|_p^{p,\varepsilon} - \frac{q^2}{4\varepsilon^3} \int_M u^2 \phi u d\mu_g \quad (4.19) \]
and
\[m_{\infty} + \delta \geq J_{\varepsilon}(u) - \frac{1}{p} J_{\varepsilon}'(u)[u] \geq \left(\frac{1}{2} - \frac{1}{p}\right) \|u\|_{\varepsilon}^2. \quad (4.20) \]

By (a) in Lemma 2.1 and (4.20)
\[\frac{1}{\varepsilon^3} \int_M \phi u^2 d\mu_g \leq \frac{C}{\varepsilon^3} |u|^4_{2,\varepsilon} \leq C \varepsilon^3 \|u\|_{\varepsilon}^4 \leq C \varepsilon^3. \]
Thus, if $\varepsilon(\delta_0)$ is small enough, by (4.19),
$$\frac{p - 2}{2p} |u^+|_{p,\varepsilon}^p \leq m_\infty + 2\delta_0$$
and so
$$\frac{1}{\varepsilon^3 |u^+|_{p,\varepsilon}^p} \int_{B_g(q, r(M)/2)} (u^+)^p d\mu_g > \frac{(1 - \eta)m_\infty}{m_\infty + 2\delta_0}.$$

Hence
$$|\beta(u) - q| \leq \frac{1}{\varepsilon^3 |u^+|_{p,\varepsilon}^p} \left| \int_M (x - q)(u^+)^p d\mu_g \right| \leq \frac{1}{\varepsilon^3 |u^+|_{p,\varepsilon}^p} \left(\left| \int_{B_g(q, r(M)/2)} (x - q)(u^+)^p d\mu_g \right| + \left| \int_{M \setminus B_g(q, r(M)/2)} (x - q)(u^+)^p d\mu_g \right| \right) \leq \frac{r(M)}{2} + \text{diam}(M) \left(1 - \frac{(1 - \eta)m_\infty}{m_\infty + 2\delta_0} \right) < r(M),$$
for δ_0 and η small. Here diam(M) denotes the diameter of the manifold M as subset of \mathbb{R}^N. The second part is standard (see for instance [3, Proposition 5.11]).

To conclude the proof of the first claim of Theorem 1.1, we recall a classical result in topological methods.

Theorem 4.7 Let J be a $C^{1,1}$ real functional on a complete $C^{1,1}$ manifold N. If J is bounded from below and satisfies the Palais Smale condition then has at least $\text{cat}(J^d)$ critical point in J^d where $J^d = \{ u \in N \mid J(u) \leq d \}$. Moreover if N is contractible and $\text{cat} J^d > 1$, there exists at least one critical point $u \notin J^d$.

The proof of this theorem combines [1, Theorem 9.10], for the first part, and a consequence of [1, Deformation Lemma 7.11] for the additional solution when $\text{cat} J^d > 1$, due to the fact that a change of topology generates a (PS) sequence.

To complete the proof of the multiplicity result, it is sufficient to apply the following

Remark 4.8 Let X_1 and X_2 be topological spaces. If $g_1 : X_1 \to X_2$ and $g_2 : X_2 \to X_1$ are continuous operators such that $g_2 \circ g_1$ is homotopic to the identity on X_1, then $\text{cat} X_1 \leq \text{cat} X_2$.

Indeed, for $g_1 = \Psi_\varepsilon$ and $g_2 = \beta$, we obtain $\text{cat} N_\varepsilon \cap J^{m_\infty + \delta} \geq \text{cat} M$, concluding the proof of the first claim of Theorem 1.1.

5 Profile description

In this section we give a qualitative and somehow quantitative description of the solutions found in the previous section.

Let $\delta > 0$ and u_ε be a nontrivial (positive) solution of (2.3) such that $J_\varepsilon(u_\varepsilon) = m_\varepsilon \leq m_\infty + \delta < 2m_\infty$.

Springer
First we observe that, since \(\{\|u_\varepsilon\|_\varepsilon\} \) is bounded, then, by Lemma 2.1,
\[
\|\phi_{u_\varepsilon}\|_{C^2(M)} \leq C|u_\varepsilon|_{4}^2 \leq C\varepsilon^{3/2} \to 0 \quad \text{as} \quad \varepsilon \to 0,
\]
proving the claim on \(\phi_{u_\varepsilon} \) in Theorem 1.1.

Moreover, by standard regularity theory we can prove that \(u_\varepsilon \in C^2(M) \), and so, by the compactness of \(M \), it admits at least one maximum point.

To complete the proof of the second part of Theorem 1.1, it remains to show that, for \(\varepsilon \) sufficiently small, such a maximum point is unique and to provide a description of the profile of \(u_\varepsilon \).

Let us start with some preliminary results.

Lemma 5.1 Let \(P \in M \) be a maximum point of \(u_\varepsilon \). Then \(u_\varepsilon(P) \geq 1.3^{3} \)

Proof Since \(P \) is a maximum point, \(\Delta_g u_\varepsilon(P) \leq 0 \). In addition, by Lemma 2.1, item (b),
\[
u_\varepsilon^{p-1}(P) = -\varepsilon^2 \Delta_g u_\varepsilon(P) + u_\varepsilon(P) + \phi_\varepsilon(P) u_\varepsilon(P) \geq u_\varepsilon(P),
\]
that concludes the proof. \(\square \)

Lemma 5.2 Suppose that there exist two maximum points \(P_{\varepsilon}^1, P_{\varepsilon}^2 \) for \(u_\varepsilon \) on \(M \). Then \(d_g(P_{\varepsilon}^1, P_{\varepsilon}^2) \to 0 \) as \(\varepsilon \to 0 \).

Proof By contradiction, let \(\{\varepsilon_j\} \) be a vanishing sequence such that \(P_{\varepsilon_j}^1 \to P^1 \in M, P_{\varepsilon_j}^2 \to P^2 \in M, \) and \(P^1 \neq P^2 \).

Let now
\[
Q_{\varepsilon_j}^i := \exp_{P_{\varepsilon_j}^i}^{-1}(P_{\varepsilon_j}^j) \in B(0, r), \; i = 1, 2,
\]
and
\[
v_{\varepsilon_j}^{1}(z) := u_{\varepsilon_j}(\exp_{P_{\varepsilon_j}^1}(Q_{\varepsilon_j}^1 + \varepsilon_j z)) \text{ for } |Q_{\varepsilon_j}^1 + \varepsilon_j z| < r,
\]
r being the injectivity radius of \(M \).

Observe that, since, by definition, \(Q_{\varepsilon_j}^1 \to 0 \) as \(\varepsilon_j \to 0 \),
\[
B\left(0, \frac{r}{2\varepsilon_j}\right) \subset B\left(-\frac{Q_{\varepsilon_j}^1}{\varepsilon_j}, \frac{r}{\varepsilon_j}\right) \text{ for } j \text{ large enough. (5.1)}
\]

By Lemma 5.1 we have that
\[
v_{\varepsilon_j}^{1}(0) = u_{\varepsilon_j}(P_{\varepsilon_j}^1) \geq 1 \quad (5.2)
\]
and, by (2.8),
\[
\int_{B(-Q_{\varepsilon_j}^1/\varepsilon_j, r/\varepsilon_j)} |\nabla v_{\varepsilon_j}^{1}|^2 dz = \frac{1}{\varepsilon_j} \int_{B(0, r)} |\nabla u_{\varepsilon_j}(\exp_{P^1}(y))|^2 dy
\leq \frac{C}{\varepsilon_j} \int_{B(0, r)} g^{hl}(y) \partial_l u_{\varepsilon_j}(\exp_{P^1}(y)) \partial_j u_{\varepsilon_j}(\exp_{P^1}(y)) |g_{P^1}(y)|^{1/2} dy
= \frac{C}{\varepsilon_j} \int_{B(P^1, r)} |\nabla_g u_{\varepsilon_j}|^2 d\mu_g \leq \frac{1}{\varepsilon_j} \int_{M} |\nabla_g u_{\varepsilon_j}|^2 d\mu_g
\]

\(3^{3} \) Without the normalization of the constants assumed at the beginning of Sect. 2, we get \(u_\varepsilon(P) \geq \omega^{\frac{1}{p-2}} \).
and, analogously,
\[\int_{B(-Q^1_{\epsilon_j}/r, r/\epsilon_j)} |v_j^1|^2 dz \leq \frac{C}{\epsilon_j^2} \int_M |u_{\epsilon_j}|^2 d\mu_g. \]

Thus, since \(u_{\epsilon_j} \in N_{\epsilon_j} \), by (4.7), we have
\[
C \left(\int_{B(-Q^1_{\epsilon_j}/r, r/\epsilon_j)} |\nabla v_j^1|^2 dy + \int_{B(-Q^1_{\epsilon_j}/r, r/\epsilon_j)} |v_j^1|^2 dy \right)
\leq \|u_{\epsilon_j}\|^2_{\epsilon_j} \leq \frac{2p}{p-2} J_{\epsilon_j}(u_{\epsilon_j}) - \frac{p-4}{2\epsilon_j^p(p-2)} \int_M \phi_{u_{\epsilon_j}} u_{\epsilon_j}^2 d\mu_g \leq \frac{2p}{p-2} m_{\epsilon_j} \leq \frac{4p}{p-2} m_{\infty}.
\]

Now, let
\[\tilde{v}_j^1 := v_j^1 \chi_r(|Q^1_{\epsilon_j} + \epsilon_j \cdot |). \]

We have that \(\tilde{v}_j^1 \in H^1(\mathbb{R}^3) \) and, since
\[
|\nabla \tilde{v}_j^1|^2 = \int_{\mathbb{R}^3} [\chi_r(|Q^1_{\epsilon_j} + \epsilon_j z|)]^2 |\nabla v_j^1(z)|^2 dz + \int_{\mathbb{R}^3} [v_j^1(z)]^2 |\nabla \chi_r(|Q^1_{\epsilon_j} + \epsilon_j z|)|^2 dz
+ 2 \int_{\mathbb{R}^3} \chi_r(|Q^1_{\epsilon_j} + \epsilon_j z|) v_j^1(z) \nabla v_j^1(z) \cdot \nabla \chi_r(|Q^1_{\epsilon_j} + \epsilon_j z|)dz
\leq \int_{B(-Q^1_{\epsilon_j}/r, r/\epsilon_j)} |\nabla v_j^1|^2 dz + \frac{4\epsilon_j^2}{r^2} \int_{B(-Q^1_{\epsilon_j}/r, r/\epsilon_j)} |v_j^1|^2 dz
+ \frac{4\epsilon_j}{r} \left(\int_{B(-Q^1_{\epsilon_j}/r, r/\epsilon_j)} |v_j^1|^2 dz \right)^{1/2} \left(\int_{B(-Q^1_{\epsilon_j}/r, r/\epsilon_j)} |\nabla v_j^1|^2 dz \right)^{1/2}
\]
and
\[|\tilde{v}_j^1|^2 \leq \int_{B(-Q^1_{\epsilon_j}/r, r/\epsilon_j)} |v_j^1|^2 dz, \]
by (5.3), the sequence \(\{\tilde{v}_j^1\} \) is bounded in \(H^1(\mathbb{R}^3) \).

Thus, there exists \(\tilde{v}^1 \in H^1(\mathbb{R}^3) \) such that, up to a subsequence, \(\tilde{v}_j^1 \) converges to \(\tilde{v}^1 \) weakly in \(H^1(\mathbb{R}^3) \) and strongly in \(L^t_{\text{loc}}(\mathbb{R}^3) \) for \(t \in [1, 6] \).

Let now \(\varphi \in C_0^\infty(\mathbb{R}^3) \). Arguing as in (5.1), for \(\epsilon_j \) small we have that
\[\text{spt}(\varphi) \subset B \left(0, \frac{r}{4\epsilon_j} \right) \subset B \left(-\frac{Q^1_{\epsilon_j}}{\epsilon_j}, \frac{r}{2\epsilon_j} \right) \]
and so \(\tilde{v}_j^1 = v_j^1 \) on \(\text{spt}(\varphi) \).

Proceeding as in the proof of Proposition 4.5, if we define
\[\varphi_j : M \to \mathbb{R}, \quad \varphi_j(x) := \varphi \left(\frac{\exp_p^{-1}(x) - Q^1_{\epsilon_j}}{\epsilon_j} \right) \]
so that, for \(j \) large \(\text{spt}(\varphi_j) \subset B_g(P^1, r) \), we have
\[\int_M \nabla g u_{\varepsilon} \nabla g \varphi j d \mu_g = \int_{B_{\varepsilon}(P^1, r)} \nabla g u_{\varepsilon} \nabla g \varphi j d \mu_g \\
= \int_{B_{\varepsilon}(P^1, r)} g_{P^1} \frac{\partial}{\partial t} \tilde{u}_{\varepsilon} (y) \tilde{\varphi}_j (y) |g_{P^1} (y)|^{1/2} dy \\
= \varepsilon \int_{B_{\varepsilon} (-Q_{\varepsilon}^1, \varepsilon z)} \frac{g_{P^1}}{\varepsilon} (Q_{\varepsilon}^1 + \varepsilon z) \tilde{\varphi}_j (z) |g_{P^1} (Q_{\varepsilon}^1 + \varepsilon z)|^{1/2} dz \\
= \varepsilon j \int_{spt(\varphi)} \frac{g_{P^1}}{\varepsilon} (Q_{\varepsilon}^1 + \varepsilon z) \tilde{\varphi}_j (z) |g_{P^1} (Q_{\varepsilon}^1 + \varepsilon z)|^{1/2} dz \]

and, arguing as in Proposition 4.5 (proof of (4.17)) and using again the boundedness of \{u_{\varepsilon_j}\} in \(H^1 (M) \),

\[\frac{1}{\varepsilon_j} \int_M \phi u_{\varepsilon_j} u_{\varepsilon_j} \varphi j d \mu_g \rightarrow 0 \text{ as } j \rightarrow + \infty. \]

Since \(u_{\varepsilon_j} \)'s are solutions of (2.3), we obtain

\[0 = \frac{1}{\varepsilon_j} \int_M \nabla g u_{\varepsilon_j} \nabla g \varphi j d \mu_g + \int_M \phi u_{\varepsilon_j} u_{\varepsilon_j} \varphi j d \mu_g + \int_M \phi u_{\varepsilon_j} u_{\varepsilon_j} \varphi j d \mu_g - \int_M u_{\varepsilon_j}^{p-1} \varphi j d \mu_g \]

\[= \int_{spt(\varphi)} \frac{g_{P^1}}{\varepsilon} (Q_{\varepsilon}^1 + \varepsilon z) \tilde{\varphi}_j (z) |g_{P^1} (Q_{\varepsilon}^1 + \varepsilon z)|^{1/2} dz \\
+ \int_{spt(\varphi)} (\tilde{\varphi}_j (z))^{p-1} \varphi j (z) |g_{P^1} (Q_{\varepsilon}^1 + \varepsilon z)|^{1/2} dz + o_j (1). \]

Thus, passing to the limit as \(j \rightarrow + \infty \) in (5.4), by (2.8), we deduce that for all \(\varphi \in C_0^\infty (\mathbb{R}^3) \)

\[0 = \int_{spt(\varphi)} \left[\nabla \tilde{\varphi}_j (z) \nabla \varphi (z) + \tilde{\varphi}_j (z) \varphi (z) - (\tilde{\varphi}_j (z))^{p-1} \varphi (z) \right] dz, \]

so that \(\tilde{\varphi}_j \) is a weak solution of

\[-\Delta \tilde{\varphi}_j + \tilde{\varphi}_j = (\tilde{\varphi}_j)^{p-1} \text{ on } \mathbb{R}^3. \]

By a bootstrap argument (see “Appendix B”) we have that, up to a subsequence, \(\tilde{\varphi}_j \rightarrow \tilde{\varphi}_j \) in \(C_{loc}^2 (\mathbb{R}^3) \).

Then, since by (5.2), \(\tilde{\varphi}_j (0) \geq 1 \), \(\tilde{\varphi}_j \) is not the trivial solution zero. Hence, \(\tilde{\varphi}_j = U \).

Of course we can repeat the same argument for \(P^2_{\varepsilon_j} \).

Now, let \(\bar{R} \) such that

\[\int_{B_{\varepsilon}(0, R)} |\nabla U|^2 + U^2 dy > \frac{p}{p-2} (m_\infty + \delta). \]

For \(\varepsilon_j \) sufficiently small, such that \(2 \varepsilon_j \bar{R} \leq d_{\varepsilon_j} (P^1, P^2) \), we have, since \(p > 4 \),

\[J_{\varepsilon_j} (u_{\varepsilon_j}) = \frac{p-2}{2p} \| u_{\varepsilon_j} \|_{\varepsilon_j}^2 + \frac{p-4}{4p} \int_M \phi u_{\varepsilon_j} u_{\varepsilon_j}^2 d \mu_g \]

\[\geq \frac{p-2}{2p} \int_{B_{\varepsilon_j} (P^1, R)} [u_{\varepsilon_j}^2 |\nabla u_{\varepsilon_j}|^2 + u_{\varepsilon_j}^2] d \mu_g. \]

\[\circ \] Springer
Then, since, for \(h = 1, 2 \),
\[
\frac{1}{\varepsilon_j} \int_{B_{\varepsilon_j}(P^h,\varepsilon_j \bar{K})} \left[\varepsilon_j^2 |\nabla u_{\varepsilon_j}|^2 + u_{\varepsilon_j}^2 \right] d\mu_g = \int_{B(0,\bar{R})} \left[|\nabla \tilde{u}_{\varepsilon_j}|^2 + \tilde{u}_{\varepsilon_j}^2 \right] dz + o_j(1)
\]
\[
= \int_{B(0,\bar{R})} \left[|\nabla \tilde{v}_j|^2 + (\tilde{v}_j)^2 \right] dz + o_j(1)
\]
\[
\to \int_{B(0,\bar{R})} \left[|\nabla U|^2 + U^2 \right] dz
\]
we get \(J_{\varepsilon_j}(u_{\varepsilon_j}) > m_\infty + \delta \) which leads us to a contradiction. \(\square \)

Lemma 5.3 If \(\varepsilon \) is sufficiently small, \(u_\varepsilon \) has a unique maximum point.

Proof Suppose that there exists a sequence \(\varepsilon_j \to 0 \) such that \(u_{\varepsilon_j} \) has at least two maximum points \(P^1_{\varepsilon_j} \) and \(P^2_{\varepsilon_j} \). By Lemma 5.2 we know that \(d_\varepsilon(P^1_{\varepsilon_j}, P^2_{\varepsilon_j}) \to 0 \).

We have also that
\[
\lim_j \frac{1}{\varepsilon_j} d_\varepsilon(P^1_{\varepsilon_j}, P^2_{\varepsilon_j}) = +\infty.
\]

Indeed, suppose by contradiction that \(d_\varepsilon(P^1_{\varepsilon_j}, P^2_{\varepsilon_j}) \leq C \varepsilon_j \) for some \(C > 0 \) and let
\[
w_{\varepsilon_j} := u_{\varepsilon_j}(\exp_{P^j_j}(\varepsilon_j \cdot)) \text{ in } B(0, 2C).
\]

Thus, for \(j \) large enough, \(w_{\varepsilon_j} \) has two maximum points in \(B(0, 2C) \).

Moreover, arguing as in Lemma 5.2, \(w_{\varepsilon_j} \to U \) in \(C^2_{\text{loc}}(\mathbb{R}^3) \) and the two maximum points of \(w_{\varepsilon_j} \) collapse in \(0 \). Thus \(0 \) should be a degenerate critical point for \(U \). This is a contradiction and (5.5) is proved.

Now, in light of (5.5), we have that, fixed \(\rho > 0 \), then \(B_\varepsilon(P^1_{\varepsilon_j}, \rho \varepsilon_j) \cap B_\varepsilon(P^2_{\varepsilon_j}, \rho \varepsilon_j) = \emptyset \) for \(j \) large. Then we proceed as in the final part of the proof of Lemma 5.2 obtaining \(J_{\varepsilon_j}(u_{\varepsilon_j}) > m_\infty + \delta \) which leads us to a contradiction. \(\square \)

We conclude this section with the profile description of \(u_\varepsilon \).

Lemma 5.4 As \(\varepsilon \to 0 \), for any \(\rho > 0 \), \(\| u_\varepsilon - W_{P_\varepsilon,\varepsilon} \|_{C^2(B_\varepsilon(P_\varepsilon,\varepsilon \rho))} \to 0 \), and \(\| u_\varepsilon - W_{P_\varepsilon,\varepsilon} \|_{L^\infty(M)} \to 0 \).

Proof By the \(C^2 \) convergence proved in Lemma 5.2 we have that, given \(\rho > 0 \),
\[
\| u_\varepsilon - W_{P_\varepsilon,\varepsilon} \|_{C^2(B_\varepsilon(P_\varepsilon,\varepsilon \rho))} = \| u_\varepsilon(\exp_{P_\varepsilon}(\varepsilon z)) - U(z) \|_{C^2(B(0,\rho))} \to 0 \quad \text{as } \varepsilon \to 0.
\]

Moreover, since, by Lemma 5.3, \(u_\varepsilon \) has a unique maximum point \(P_\varepsilon \), we have that, for any \(\rho > 0 \),
\[
\max_{M \setminus B_\varepsilon(P_\varepsilon,\varepsilon \rho)} u_\varepsilon = \max_{\partial B_\varepsilon(P_\varepsilon,\varepsilon \rho)} u_\varepsilon = \max_{|z|=\rho} U(z) + o(1) \leq ce^{-\alpha \rho} + o(1)
\]
for some constant \(c, \alpha > 0 \) as \(\varepsilon \to 0 \). This proves the claim. \(\square \)

6 A further solution

In this section we prove that, since \(\text{cat}(M) > 1 \), for \(\varepsilon \) small enough, there exists a further nonconstant solution with higher energy, concluding the proof of Theorem 1.1.
To this end, it is enough to show that, for ε small, it is possible to construct a contractible set $T_\varepsilon \subset \mathcal{N}_\varepsilon$ with $\sup_{T_\varepsilon} J_\varepsilon \leq C$, where the constant C does not depend on ε.

Then, since $\mathcal{N}_\varepsilon \cap J_\varepsilon^{m_\infty+\delta}$ is not contractible due to $\text{cat}(\mathcal{N}_\varepsilon \cap J_\varepsilon^{m_\infty+\delta}) \geq \text{cat}(M) > 1$,

we get that there exists a solution w_ε with $m_\infty+\delta < J_\varepsilon(w_\varepsilon)$ applying the second part of Theorem 4.7. Given a positive function $V \in H^1(\mathbb{R}^3)$ and a point $\xi_0 \in M$, we define a function $v_\varepsilon \in H^1(M)$ as

$$v_\varepsilon := V_\varepsilon(\exp_{\xi_0}^{-1} \cdot) \chi(\|\exp_{\xi_0}^{-1} \cdot\|)$$

where χ is as in definition of the exponential map and $V_\varepsilon = V(\cdot/\varepsilon)$, and the cone $C_\varepsilon \subset H^1(M)$ as

$$C_\varepsilon := \{ u = \theta v_\varepsilon + (1 - \theta) W_{\xi_0, \varepsilon}, \theta \in [0, 1], \xi \in M \}. $$

Easily we have that C_ε is a compact contractible set in $H^1(M)$.

Since, by (ii) in Lemma 3.1, the map $u \mapsto t_u$ is continuous, we can project C_ε on the Nehari manifold \mathcal{N}_ε obtaining the following compact and contractible set

$$T_\varepsilon := \{ t_u u : u \in C_\varepsilon \}. $$

In addiction, since

$$\begin{align*}
\frac{1}{\varepsilon} \int_M |\nabla v_\varepsilon|^2 d\mu_g &= \frac{1}{\varepsilon} \int_{B(0,r)} g^{ij}_{\xi_0}(y) \partial_i v_\varepsilon(y) \partial_j v_\varepsilon(y) |g_{\xi_0}(y)|^{1/2} dy \\
&= \int_{B(0,r/\varepsilon)} g^{ij}_{\xi_0}(\varepsilon z) \chi^2(|\varepsilon z|) \partial_i V(z) \partial_j V(z) |g_{\xi_0}(\varepsilon z)|^{1/2} dz \\
&\quad + \varepsilon \int_{B(0,r/\varepsilon)} g^{ij}_{\xi_0}(\varepsilon z) \chi(|\varepsilon z|) V(z) \partial_i V(z) \frac{z_j}{|z|} |g_{\xi_0}(\varepsilon z)|^{1/2} dz \\
&\quad + \varepsilon^2 \int_{B(0,r/\varepsilon)} g^{ij}_{\xi_0}(\varepsilon z) [\chi(|\varepsilon z|)]^2 \frac{z_i z_j}{|z|^2} V^2(z) |g_{\xi_0}(\varepsilon z)|^{1/2} dz \\
&\leq C \left[|\nabla V|^2 + \frac{2}{r^2} |\nabla V|^2 V^2 + \frac{4}{r^2} \varepsilon^2 |V|^2 \right],
\end{align*}$$

arguing as in (i) of Lemma 4.1, we have

$$\| \theta v_\varepsilon + (1 - \theta) W_{\xi_0, \varepsilon}\|_\varepsilon \leq \|v_\varepsilon\|_\varepsilon + \|W_{\xi_0, \varepsilon}\|_\varepsilon \leq C \left(\|V\|_{H^1} + \|U\|_{H^1} \right),$$

and

$$|\theta v_\varepsilon + (1 - \theta) W_{\xi_0, \varepsilon}|_{\varepsilon,p} \leq C \left(|V|_p + |U|_p \right).$$

Furthermore, since $v_\varepsilon \geq 0$ and $W_{\xi_0, \varepsilon} \geq 0$, it holds

$$\theta v_\varepsilon(x) + (1 - \theta) W_{\xi_0, \varepsilon}(x) \geq \max \{ \theta v_\varepsilon(x), (1 - \theta) W_{\xi_0, \varepsilon}(x) \},$$

for all $x \in M$, so that

$$|\theta v_\varepsilon + (1 - \theta) W_{\xi_0, \varepsilon}|_p \geq \max \{|\theta v_\varepsilon|_p, |(1 - \theta) W_{\xi_0, \varepsilon}|_p\}.$$
and, if $\theta \leq \frac{1}{2}$,
\[
\max\{|\theta v_e|^p, |(1-\theta)W_{\xi,e}|^p\} \geq (1-\theta)\max\{|W_{\xi,e}|^p\} \geq \frac{1}{2p} \max\{|\theta v_e|^p, |W_{\xi,e}|^p\} \geq \frac{1}{2p} \min\{|v_e|^p, |W_{\xi,e}|^p\}.
\]
Thus, arguing as in (ii) of Lemma 4.1 and using it,
\[
|\theta v_e + (1-\theta)W_{\xi,e}|^p \geq \frac{1}{2p} \min\{|v_e|^p, |W_{\xi,e}|^p\} \geq \frac{1}{4p} \min\{|V|^p, |U|^p\}.
\]
Analogously, we get also
\[
||\theta v_e + (1-\theta)W_{\xi,e}\|_{p,e}^2 \geq \frac{1}{4^2} \min\{\|V\|_2^2, \|U\|_2^2\}.
\]
Finally, by (a) in Lemma 2.1 and (2.7) we have
\[
\frac{1}{\epsilon^3}G(\theta v_e + (1-\theta)W_{\xi,e}) \leq \epsilon^3 C|\theta v_e + (1-\theta)W_{\xi,e}|_{2,e}^4
\]
Hence, using (3.1), we have that there exist $c_1, c_2 > 0$, independent of ϵ, such that
\[
c_1 < t_{\theta v_e + (1-\theta)W_{\xi,e}} < c_2
\]
and so we can conclude now, since, for any $t_{u,e} \in T_\epsilon$, we have
\[
J_\epsilon(t_{u,e}) = \frac{1}{4} t_{u,e}^2 \|u\|_e^2 + \left(\frac{1}{4} - \frac{1}{p}\right) t_{u,e}^p \|u\|_{p,e}^p \leq C.
\]
Finally, we check that the solution found is not a constant function.
Notice that, if $u \equiv c_\ast \neq 0$, then $\phi \equiv 4\pi c_\ast^2$, and $c_\ast^{p-2} - 4\pi q^2 c_\ast^2 - \omega = 0$, so that $c_\ast \geq C > 0$.
Since $c_\ast \in \mathcal{N}_\epsilon$, then
\[
J_\epsilon(c_\ast) = \frac{1}{4} \|c_\ast\|_e^2 + \left(\frac{1}{4} - \frac{1}{p}\right) |c_\ast|^p_{p,e} = \frac{\mu_\epsilon(M)}{\epsilon^3} \left[\frac{c_\ast^2}{4} + \left(\frac{1}{4} - \frac{1}{p}\right) c_\ast^p\right] \to +\infty \text{ as } \epsilon \to 0
\]
and this is not possible since $\sup_{T_\epsilon} J_\epsilon \leq C$.

Data availability Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Appendix A. Ekeland principle

In this Appendix we want to show that (4.12) holds.
To this end, we proceed as in [3, Lemma 5.4], applying the Ekeland Principle (see [10, Chapter 4]) as follows:
for every $\theta, \iota > 0$ and $u \in J_\epsilon^{m_{\epsilon} + \theta/2}$, there exists $u_t \in \mathcal{N}_\epsilon$ such that
\[
J_\epsilon(u_t) < J_\epsilon(u), \quad \|u_t - u\|_{\epsilon} < \iota, \quad J_\epsilon(u_t) < J_\epsilon(v) + \frac{\theta}{\iota} \|u_t - u\|_{\epsilon} < \iota \text{ for all } v \in \mathcal{N}_\epsilon.
\]
Thus, for every k, taking $\theta = 4\delta_k$ and $\iota = 4\sqrt{\delta_k}$, there exists $\tilde{u}_k \in \mathcal{N}_{\epsilon_k}$ such that
\[
J_{\epsilon_k}(\tilde{u}_k) < J_{\epsilon_k}(u_k), \quad \|\tilde{u}_k - u_k\|_{\epsilon_k} < 4\sqrt{\delta_k}, \quad J_{\epsilon_k}(\tilde{u}_k) < J_{\epsilon_k}(v) + \sqrt{\delta_k} \|\tilde{u}_k - v\|_{\epsilon_k} \text{ for all } v \in \mathcal{N}_{\epsilon_k}. \quad (A.1)
\]
The boundedness of $\{\|u_k\|_{\epsilon_k}\}$ and (A.1) implies that $\{\|\tilde{u}_k\|_{\epsilon_k}\}$ is bounded too.
Observe, moreover, that, for every $\xi \in T_{\tilde{u}_k}N_{\tilde{E}_k}$, there exists a smooth curve $\gamma : [a, b] \to N_{\tilde{E}_k}$, with $a < 0 < b$, such that

$$\gamma(0) = \tilde{u}_k$$

and $\gamma'(0) = \xi$

(see e.g. [1]).

Let $\{t_n\} \subset \mathbb{R}$ such that $t_n \to 0$.

Since

$$J_{\tilde{E}_k}(\gamma(t_n)) = J_{\tilde{E}_k}(\gamma(0)) + J'_{\tilde{E}_k}(\gamma(0))[\gamma'(0)]t_n + O(t_n^2) = J_{\tilde{E}_k}(\tilde{u}_k) + J'_{\tilde{E}_k}(\tilde{u}_k)[\xi]t_n + O(t_n^2)$$

and

$$\|\tilde{u}_k - \gamma(t_n)\|_{\tilde{E}_k} = \|\gamma(0) - \gamma(t_n)\|_{\tilde{E}_k} = \|\gamma'(0)t_n + O(t_n^2)\|_{\tilde{E}_k},$$

by the Ekeland Variational Principle, we get

$$\sqrt{\delta_k} > \frac{J_{\tilde{E}_k}(\tilde{u}_k) - J_{\tilde{E}_k}(\gamma(t_n))}{\|\tilde{u}_k - \gamma(t_n)\|_{\tilde{E}_k}} = \frac{t_n\, J'_{\tilde{E}_k}(\tilde{u}_k)[\xi] + O(t_n)}{t_n\, \|\xi + O(t_n)\|_{\tilde{E}_k}}.$$

Considering the left and right limits as $t_n \to 0$ we can conclude that

$$|J'_{\tilde{E}_k}(\tilde{u}_k)[\xi]| \leq \sqrt{\delta_k}\|\xi\|_{\tilde{E}_k} \text{ for all } \xi \in T_{\tilde{u}_k}N_{\tilde{E}_k}. \quad (A.2)$$

Let now $\varphi \in H^1(M)$ be arbitrary.

Since $\tilde{u}_k \in N_{\tilde{E}_k}$, by (iii) in Lemma 3.1,

$$N'_{\tilde{E}_k}(\tilde{u}_k)[\tilde{u}_k] = -2\|\tilde{u}_k\|^2 - (p - 4)|\tilde{u}_k|^p_{p,\tilde{E}_k} \leq -C < 0. \quad (A.3)$$

Then $\tilde{u}_k \notin T_{\tilde{u}_k}N_{\tilde{E}_k}$. Thus there exists $\lambda, \mu \in \mathbb{R}$ and $\xi \in T_{\tilde{u}_k}N_{\tilde{E}_k}$ such that $\varphi = \lambda \xi + \mu \tilde{u}_k$.

Observe that, by (A.3), there exists $C \in (0, 1)$ such that for all $u \in N_{\tilde{E}_k}, \xi \in T_{\tilde{u}_k}N_{\tilde{E}_k}$,

$$|\langle \xi, u \rangle_{\tilde{E}_k}| \leq C\|\xi\|_{\tilde{E}_k}\|u\|_{\tilde{E}_k}.$$

Then a straightforward calculation shows that there exists $C > 0$ such that

$$\|\lambda \xi\|_{\tilde{E}_k} \leq C\|\varphi\|_{\tilde{E}_k}.$$

Then, by (A.2), we get that for every $\varphi \in H^1(M)$

$$|J'_{\tilde{E}_k}(\tilde{u}_k)[\varphi]| = |\lambda J'_{\tilde{E}_k}(\tilde{u}_k)[\xi]| \leq \sqrt{\delta_k}\|\lambda \xi\|_{\tilde{E}_k} \leq C\sqrt{\delta_k}\|\varphi\|_{\tilde{E}_k}. \quad (A.4)$$

Hence, we can conclude. Indeed, since

$$|J'_{\tilde{E}_k}(u_k)[\varphi]| \leq |J'_{\tilde{E}_k}(u_k)[\varphi] - J'_{\tilde{E}_k}(\tilde{u}_k)[\varphi]| + |J'_{\tilde{E}_k}(\tilde{u}_k)[\varphi]|,$$

by (A.4), it is enough to prove that

$$|J'_{\tilde{E}_k}(u_k)[\varphi] - J'_{\tilde{E}_k}(\tilde{u}_k)[\varphi]| \leq C\sqrt{\delta_k}\|\varphi\|_{\tilde{E}_k}. \quad (A.5)$$

This follows observing that

$$|J'_{\tilde{E}_k}(u_k)[\varphi] - J'_{\tilde{E}_k}(\tilde{u}_k)[\varphi]| = \left| \frac{1}{\tilde{E}_k^2} \int_M \nabla g(u_k - \tilde{u}_k) \nabla g \varphi d\mu_g + \omega \int_M (u_k - \tilde{u}_k) \varphi d\mu_g
+ q^2 \int_M (\phi u_k - \phi \tilde{u}_k) \varphi d\mu_g
- \int_M (|u_k^+|^p - |\tilde{u}_k^+|^p - |\tilde{u}_k^+|^p |\tilde{u}_k^+|) \varphi d\mu_g \right|.$$

Then, by Hölder inequality and (A.1),
Moreover

\[\frac{1}{\varepsilon_k} \int_M \nabla_g (u_k - \tilde{u}_k) \nabla_g \varphi \, d\mu_g + \omega \int_M (u_k - \tilde{u}_k) \varphi \, d\mu_g \leq \|u_k - \tilde{u}_k\|_{\varepsilon_k} \|\varphi\|_{\varepsilon_k} \]

\[< 4\sqrt{\delta_k} \|\varphi\|_{\varepsilon_k}. \]

Moreover

\[\frac{1}{\varepsilon_k^3} \int_M (\varphi_{u_k} u_k - \varphi_{\tilde{u}_k} \tilde{u}_k) \varphi \, d\mu_g \leq \frac{1}{\varepsilon_k^3} \int_M \varphi_{u_k} (u_k - \tilde{u}_k) \varphi \, d\mu_g \]

\[+ \frac{1}{\varepsilon_k^3} \int_M (\varphi_{u_k} - \varphi_{\tilde{u}_k}) \tilde{u}_k \varphi \, d\mu_g. \]

(A.6)

Considering the first term in the right hand side of (A.6), by Lemma 2.1, Sobolev embedding \(H^2(M) \subset C^0(M) \), Hölder inequality, (2.1), the boundedness of \(\{\|u_k\|_{\varepsilon_k}\} \), and (A.1),

\[\frac{1}{\varepsilon_k^3} \int_M \varphi_{u_k} (u_k - \tilde{u}_k) \varphi \, d\mu_g \leq \frac{1}{\varepsilon_k^3} \|\varphi_{u_k}\|_{C^0} \|u_k - \tilde{u}_k\|_{2,\varepsilon_k} \|\varphi\|_{2,\varepsilon_k} \]

\[\leq C \|u_k\|_{2,\varepsilon_k} \|\varphi\|_{\varepsilon_k} \]

\[\leq C \|u_k\|_{2,\varepsilon_k} \|\varphi\|_{\varepsilon_k}. \]

To estimate the second term in the right hand side of (A.6), first observe that

\[-\Delta_g (\varphi_{u_k} - \varphi_{\tilde{u}_k}) + \alpha^2 \Delta_g^2 (\varphi_{u_k} - \varphi_{\tilde{u}_k}) + (\varphi_{u_k} - \varphi_{\tilde{u}_k}) = 4\pi (u_k^2 - \tilde{u}_k^2). \]

Then, using also Sobolev and Hölder inequalities, (2.1), (A.1), and the boundedness of \(\{\|u_k\|_{\varepsilon_k}\} \) and \(\{\|\tilde{u}_k\|_{\varepsilon_k}\} \),

\[\|\varphi_{u_k} - \varphi_{\tilde{u}_k}\|_{H^2}^2 = 4\pi \int_M (\varphi_{u_k} - \varphi_{\tilde{u}_k}) (u_k^2 - \tilde{u}_k^2) \, d\mu_g \leq C \|\varphi_{u_k} - \varphi_{\tilde{u}_k}\|_{H^2} \int_M |u_k^2 - \tilde{u}_k^2| \, d\mu_g \]

\[\leq C \|\varphi_{u_k} - \varphi_{\tilde{u}_k}\|_{H^2} \|u_k - \tilde{u}_k\|_{2,\varepsilon_k} \|\varphi\|_{2,\varepsilon_k} \]

Thus, using also Sobolev imbeddings, Hölder inequality, and (A.1),

\[\frac{1}{\varepsilon_k^3} \int_M (\varphi_{u_k} - \varphi_{\tilde{u}_k}) \tilde{u}_k \varphi \, d\mu_g \leq \frac{1}{\varepsilon_k^3} \|\varphi_{u_k} - \varphi_{\tilde{u}_k}\|_{C^0} \|\tilde{u}_k\|_{2,\varepsilon_k} \|\varphi\|_{2,\varepsilon_k} \]

\[\leq C \varepsilon_k^3 \|u_k - \tilde{u}_k\|_{\varepsilon_k} \|\tilde{u}_k\|_{2,\varepsilon_k} \|\varphi\|_{2,\varepsilon_k} \]

Finally, by Lagrange Theorem, Hölder inequality, (2.1), boundedness of \(\{\|u_k\|_{\varepsilon_k}\} \) and \(\{\|\tilde{u}_k\|_{\varepsilon_k}\} \), (A.1), we have

\[\frac{1}{\varepsilon_k^3} \int_M (|u_k^+|^{-p-2} u_k^+ - |\tilde{u}_k^+|^{-p-2} \tilde{u}_k^+) \varphi \, d\mu_g \]

\[\leq \frac{p-1}{\varepsilon_k^3} \int_M |\theta_k u_k^+ + (1 - \theta_k) \tilde{u}_k^+-p-2| u_k^+ - \tilde{u}_k^+ |\varphi| \, d\mu_g \]

\[\leq C (|u_k^+|^{-p-2} + |\tilde{u}_k^+|^{-p-2}) |u_k^+ - \tilde{u}_k^+| \|\varphi\|_{p,\varepsilon_k} \]

\[\leq C \sqrt{\delta_k} \|\varphi\|_{\varepsilon_k}, \]

completing the proof of (A.5).
Appendix B. Bootstrap argument

In this section, through a classical bootstrap argument, we prove that \(\{\tilde{v}_j^1\} \subset C^2(B(0, R/2)) \) and that it is bounded in \(C^2(B(0, R/2)) \).

Let \(R > 0 \).

Observe that, arguing as in (5.1), for \(j \) large,

\[
B(0, R) \subset B \left(0, \frac{r}{4\varepsilon_j} \right) \subset B \left(-\frac{Q_{\varepsilon_j}^1}{\varepsilon}, \frac{r}{2\varepsilon_j} \right).
\]

(B.1)

Thus, in \(B(0, R) \), since \(u_{\varepsilon_j} \) is a solution of (2.3), we have

\[
-\varepsilon_j^2 (\Delta g u_{\varepsilon_j}) (\exp_{p^1}(Q_{\varepsilon_j}^1 + \varepsilon_j z)) = -u_{\varepsilon_j} (\exp_{p^1}(Q_{\varepsilon_j}^1 + \varepsilon_j z)) + (u_{\varepsilon_j})^{p-1} (\exp_{p^1}(Q_{\varepsilon_j}^1 + \varepsilon_j z)) - \phi_{u_{\varepsilon_j}} (\exp_{p^1}(Q_{\varepsilon_j}^1 + \varepsilon_j z)) u_{\varepsilon_j} (\exp_{p^1}(Q_{\varepsilon_j}^1 + \varepsilon_j z)).
\]

(B.2)

But, since

\[
(\Delta g u_{\varepsilon_j}) (\exp_{p^1}(Q_{\varepsilon_j}^1 + \varepsilon_j z)) = \frac{1}{\varepsilon_j^2} g_{p^1}^{|l} (Q_{\varepsilon_j}^1 + \varepsilon_j z) \partial_l \tilde{v}_j^1 (z)
\]

\[
+ \varepsilon_j^2 |g_{p^1} (Q_{\varepsilon_j}^1 + \varepsilon_j z)|^{1/2} \partial_l
\]

\[
\left(g_{p^1}^{|l} (Q_{\varepsilon_j}^1 + \varepsilon_j z) |g_{p^1} (Q_{\varepsilon_j}^1 + \varepsilon_j z)|^{1/2} \right) (z) \partial_l \tilde{v}_j^1 (z),
\]

(B.2) reads as

\[
- \tilde{g}_{p^1}^{|l} (Q_{\varepsilon_j}^1 + \varepsilon_j z) \partial_l \tilde{v}_j^1 (z) = f_j(z),
\]

where

\[
f_j(z) := \frac{1}{|g_{p^1} (Q_{\varepsilon_j}^1 + \varepsilon_j z)|^{1/2}} \partial_l \left(\tilde{g}_{p^1}^{|l} (Q_{\varepsilon_j}^1 + \varepsilon_j z) |g_{p^1} (Q_{\varepsilon_j}^1 + \varepsilon_j z)|^{1/2} \right) (z) \partial_l \tilde{v}_j^1 (z) - \tilde{\phi}_j(z) \tilde{v}_j^1 (z) + (\tilde{v}_j^1)^{p-1} (z)
\]

\[
\text{and } \tilde{\phi}_j(z) := \phi_{u_{\varepsilon_j}} (\exp_{p^1}(Q_{\varepsilon_j}^1 + \varepsilon_j z)).
\]

Let us show that \(\tilde{v}_j^1 \in C^{0, \alpha} (B(0, R)) \) for some \(\alpha \in (0, 1) \).

Let us consider equation (B.3) in \(B(0, R) \) and let \(q_0 := 6 \). Since \(p \in (4, 6) \), then \(q_0/(p-1) \in (6/5, 2) \). Thus

\[
\min \left\{ 2, \frac{q_0}{p-1} \right\} = \frac{q_0}{p-1}
\]

and so, using the boundedness of \(\{\tilde{v}_j^1\} \) in \(H^1(\mathbb{R}^3) \) and of \(\{u_{\varepsilon_j}\} \), (B.1), and Lemma 2.1, \(f_j \in L^{q_0/(p-1)}(B(0, R)) \) and

\[
\left(\int_{B(0,R)} |\tilde{\phi}_j \tilde{v}_j^1|^{q_0/(p-1)} dz \right)^{(p-1)/q_0} \leq C \left(\int_{B(0,R)} |\tilde{\phi}_j \tilde{v}_j^1|^2 dz \right)^{1/2} \leq C |\tilde{\phi}_j|_{L^\infty(B(0,R))}
\]

\[
\leq C |\phi_{u_{\varepsilon_j}} (\exp_{p^1}(Q_{\varepsilon_j}^1 + \varepsilon_j \cdot))|_{L^\infty(B(-Q_{\varepsilon_j}^1/\varepsilon_j,r/(2\varepsilon_j)))}
\]

\[
\leq C |\phi_{u_{\varepsilon_j}} (\exp_{p^1}(\cdot))|_{L^\infty(B(0,r/2))}
\]

\(\square \)
\[\leq C |\phi_{u_{\varepsilon j}}|_{\infty} \leq C \|\phi_{u_{\varepsilon j}}\|_{H^2} \]
\[\leq C |u_{\varepsilon j}|_{2}^2 \leq C \varepsilon_{j}^3. \]

Hence, by \((B.3)\),
\[|\Delta \bar{v}_{j}^1|_{L^{q_{0}/(p-1)}(B(0,R))} \leq C |f_{j}|_{L^{q_{0}/(p-1)}(B(0,R))} \leq C, \]
and so, by a classical interpolation inequality, \(\bar{v}_{j}^1 \in W^{2,q_{0}/(p-1)}(B(0,R))\) and
\[\|\bar{v}_{j}^1\|_{W^{2,6/(p-1)}(B(0,R))} \leq C. \]

If \(q_{0}/(p-1) > 3/2\), namely if
\[(p - 1) - 4 < 0, \]
we get that \(\bar{v}_{j}^1\) is continuous and, by the previous arguments, \(\{\bar{v}_{j}^1\}\) is bounded in \(C^{0,\alpha}(B(0,R))\) for some \(\alpha \in (0, 1)\).

If, instead, \(q_{0}/(p-1) \leq 3/2\), namely if
\[(p - 1) - 4 \geq 0, \]
or, equivalently, \(5 \leq p < 6\), then \(W^{2,q_{0}/(p-1)}(B(0,R))\) embeds in \(L^{q_{1}}(B(0,R))\) with
\[q_{1} := \frac{6}{(p - 1) - 4}. \]

Then we consider
\[\min \left\{ 2, \frac{q_{1}}{p - 1} \right\} \]
and we iterate the procedure.

So, at the \(n\)th step we take
\[q_{n} := \frac{6}{(p - 1)^{n} - 4 \sum_{k=0}^{n-1}(p - 1)^{k}} = \frac{6}{(p - 1)^{n} - 4 \frac{(p - 1)^{n} - 1}{p - 2}} = \frac{6(p - 2)}{(p - 6)(p - 1)^{n} + 4}, \]
and we consider
\[\min \left\{ 2, \frac{q_{n}}{p - 1} \right\}. \]

We can conclude if
\[\min \left\{ 2, \frac{q_{n}}{p - 1} \right\} > \frac{3}{2}, \]
which occurs in a finite number of steps since
\[\frac{q_{n}}{p - 1} > \frac{3}{2}, \]
namely for
\[n > \frac{\log 4 - \log(6 - p)}{\log(p - 1)} - 1. \]

Observe that, at each step, whenever
\[\min \left\{ 2, \frac{q_{n}}{p - 1} \right\} = \frac{q_{n}}{p - 1} > \frac{3}{2}, \]
arguing as before we get that \(\{ \tilde{v}_j^1 \} \) is bounded in \(C^{0,\alpha}(B(0, R)) \) for some \(\alpha \in (0, 1) \). Now, let us write (B.3) as

\[
\begin{align*}
-g_p^1(\epsilon_j)\partial_i\tilde{v}_j^1 &= \frac{1}{|g_p^1(\epsilon_j)|^{1/2}}\partial_i \\
&\left(g_p^1(\epsilon_j) + \epsilon_j \right)|g_p^1(\epsilon_j)|^{1/2}(z)\partial_i\tilde{v}_j^1 \\
&+ \omega\tilde{v}_j^1 + q^2\phi_j(z)\tilde{v}_j^1 = (\tilde{v}_j^1)^{p-1}.
\end{align*}
\]

(B.4)

The continuity of \(\tilde{v}_j^1 \) implies that the right hand side of (B.4) is in \(L^2(B(0, R)) \). In addition, also \(|\nabla(\tilde{v}_j^1)|^{p-1} \in L^2(B(0, R)) \) and so the right hand side of (B.4) is in \(H^1(B(0, R)) \). Thus, [14, Theorem 8.10] implies that \(\tilde{v}_j^1 \in W^{3,2}_{\text{loc}}(B(0, 2R/3)) \) and so, by classical embeddings, \(\tilde{v}_j^1 \in C^{1,\alpha}(B(0, 2R/3)) \) for some \(\alpha \in (0, 1) \). Then, repeating the procedure we get that \(\tilde{v}_j^1 \in C^{2,\alpha}(B(0, R/2)) \) for some \(\alpha \in (0, 1) \) and, by Schauder estimate [14, page 93],

\[
\|\tilde{v}_j^1\|_{C^{2,\alpha}(B(0, R/4))} \leq C.
\]

References

1. Ambrosetti, A., Malchiodi, A.: Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge Studies in Advanced Mathematics, vol. 104. Cambridge University Press, Cambridge (2007)
2. Bahri, A., Coron, J.-M.: On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain. Commun. Pure Appl. Math. 41, 253–294 (1988)
3. Benci, V., Bonanno, C., Micheletti, A.M.: On the multiplicity of solutions of a nonlinear elliptic problem on Riemannian manifolds. J. Funct. Anal. 252, 464–489 (2007)
4. Benci, V., Cerami, G.: The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems. Arch. Ration. Mech. Anal. 114, 79–93 (1991)
5. Benci, V., Cerami, G., Passaseo, D.: On the number of the positive solutions of some nonlinear elliptic problems, 93–107. In: Ambrosetti, A., Marino, A. (eds.) Nonlinear Analysis. A tribute in honour of G. Prodi, Quaderni Sc. Norm. Super. di Pisa, Scuola Norm. Sup., Pisa (1991)
6. Bopp, F.: Eine Lineare Theorie des Elektrons. Ann. Phys. 430, 345–384 (1940)
7. Chen, S., Li, L., Rădulescu, V.D., Tang, X.: Ground state solutions of the non-autonomous Schrödinger–Bopp–Podolsky system. Anal. Math. Phys. 12, 32 (2022)
8. Chen, S., Tang, X.: On the critical Schrödinger–Bopp–Podolsky system with general nonlinearities. Nonlinear Anal. 195, 111734 (2020)
9. d’Avenia, P., Siciliano, G.: Nonlinear Schrödinger equation in the Bopp–Podolsky electrodynamics: solutions in the electrostatic case. J. Differ. Equ. 267, 1025–1065 (2019)
10. de Figueiredo, D.G.: Lectures on the Ekeland variational principle with applications and detours. In: Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 81. Springer, Berlin (1989)
11. Figueiredo, G.M., Siciliano, G.: Existence and asymptotic behaviour of solutions for a quasi-linear Schrödinger–Poisson system under a critical nonlinearity. Z. Angew. Math. Phys. 71, 130 (2020)
12. Figueiredo, G.M., Siciliano, G.: Multiple solutions for a Schrödinger–Bopp–Podolsky system with positive potentials. arXiv:2006.12637
13. Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \(\mathbb{R}^n \). In: Mathematical Analysis and Applications, Part A, Advances in Mathematics Supplementary Studies, vol. 7a, pp. 369–402. Academic Press, New York (1981)
14. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)
15. Ghimenti, M., Micheletti, A.M.: Number and profile of low energy solutions for singularly perturbed Klein–Gordon–Maxwell systems on a Riemannian manifold. J. Differ. Equ. 256, 2502–2525 (2014)
16. Hebey, E.: Electro-magneto-static study of the nonlinear Schrödinger equation coupled with Bopp–Podolsky electrodynamics in the Proca setting. Discrete Contin. Dyn. Syst. 39, 6683–6712 (2019)
17. Hebey, E.: Strong convergence of the Bopp–Podolsky–Schrödinger–Proca system to the Schrödinger–Poisson–Proca system in the electro-magneto-static case. Calc. Var. Partial Differ. Equ. 59, 25 (2020)
18. Hebey, E.: Schrödinger–Poisson–Proca systems in EMS regime. Commun. Contemp. Math. **24**, 2150038 (2022)
19. Hebey, E.: Blowing-up solutions to Bopp–Podolsky–Schrödinger–Proca and Schrödinger–Poisson–Proca systems in the electro-magneto-static case. Adv. Differ. Equ. **27**, 253–332 (2022)
20. Kwong, M.K.: Uniqueness of positive solutions of \(\Delta u - u + u^p = 0\) in \(\mathbb{R}^n\). Arch. Ration. Mech. Anal. **105**, 243–266 (1989)
21. Li, L., Pucci, P., Tang, X.: Ground state solutions for the nonlinear Schrödinger–Bopp–Podolsky system with critical Sobolev exponent. Adv. Nonlinear Stud. **20**, 511–538 (2020)
22. Mascaro, B., Siciliano, G.: Positive Solutions For a Schrödinger–Bopp–Podolsky system in \(\mathbb{R}^3\). arXiv:2009.08531
23. Peng, X., Jia, G.: Existence and concentration behavior of solutions for the logarithmic Schrödinger–Bopp–Podolsky system. Z. Angew. Math. Phys. **72**, 198 (2021)
24. Podolsky, B.: A generalized electrodynamics. Phys. Rev. **62**, 68–71 (1942)
25. Schoen, R., Yau, S.-T.: Lectures on Differential Geometry, International Press, 2010 by International Press, Somerville (1994)
26. Silva, K.: On an abstract bifurcation result concerning homogeneous potential operators with applications to PDEs. J. Differ. Equ. **269**, 7643–7675 (2020)
27. Zheng, P.: Existence and finite time blow-up for nonlinear Schrödinger equations in the Bopp–Podolsky electrodynamics. J. Math. Anal. Appl. **514**, 126346 (2022)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.