Prescribing valuations of the order of a point in the reductions of abelian varieties and tori

Antonella Perucca

Abstract

Let G be the product of an abelian variety and a torus defined over a number field K. Let R be a K-rational point on G of infinite order. Call n_R the number of connected components of the smallest algebraic K-subgroup of G to which R belongs. We prove that n_R is the greatest positive integer which divides the order of $(R \mod p)$ for all but finitely many primes p of K. Furthermore, let $m > 0$ be a multiple of n_R and let S be a finite set of rational primes. Then there exists a positive Dirichlet density of primes p of K such that for every ℓ in S the ℓ-adic valuation of the order of $(R \mod p)$ equals $v_{\ell}(m)$.

1 Introduction

Let G be a semi-abelian variety defined over a number field K. We consider reduction maps on G by fixing a model for G over an open subscheme of Spec \mathcal{O}, where \mathcal{O} is the ring of integers of K.

Remark that different choices of the model may affect only finitely many reductions because in fact any two models are isomorphic on a (possibly smaller) open subscheme of Spec \mathcal{O}.

Let R be a K-rational point on G. For all but finitely many primes p of K the reduction modulo p is well defined on the point R and the order of $(R \mod p)$ is finite. It is natural to ask the following question: how does the order of $(R \mod p)$ behave if we vary p?

It is easy to see that if R is non-zero then for all but finitely many primes p of K the point $(R \mod p)$ is non-zero. A first consequence is that if R is a torsion point of order n then for all but finitely many primes p of K the order of $(R \mod p)$ is n. A second consequence is that if R has infinite order then the order of $(R \mod p)$ cannot take the same value for infinitely many primes p of K. In this paper we prove the following result:

Main Theorem 1. Let G be the product of an abelian variety and a torus defined over a number field K. Let R be a K-rational point on G of infinite order. Call n_R the number of connected components of the smallest K-algebraic subgroup of G containing R. Then n_R is the largest positive integer which divides the order of $(R \mod p)$ for all but finitely many primes p of K. In this paper we prove the following result:
primes p of K. Furthermore, let $m > 0$ be a multiple of n_R and let S be a finite set of rational primes. Then there exists a positive Dirichlet density of primes p of K such that for every ℓ in S the ℓ-adic valuation of the order of $(R \mod p)$ equals $v(p(m))$.

It is interesting to see whether our result generalizes to semi-abelian varieties. In this generality we prove that for every integer $m > 0$ there exists a positive Dirichlet density of primes p of K such that the order of $(R \mod p)$ is a multiple of m (see Corollary 4.4). Also for all but finitely many primes p the order of $(R \mod p)$ is a multiple of n_R (see Proposition 2.2).

The Main Theorem and the results in section 4 (Proposition 4.1, Proposition 4.2 and Corollary 4.4) strengthen results which are in the literature: [9, Lemma 5]; [12, Theorems 4.1 and 4.4]; [1, Theorem 3.1] and [2, Theorem 5.1] in the case of abelian varieties. Further papers concerning the order of the reductions of points are [4, 10] and [8].

2 Preliminaries

Let G be a semi-abelian variety defined over a number field K. Let R be a K-rational point on G. Write G_R for the Zariski closure of $Z \cdot R$ in $G \times_K \bar{K}$ (with reduced structure). Because $Z \cdot R$ is dense in $G_R(\bar{K})$, it follows that G_R is an algebraic subgroup of G defined over K. In particular for every algebraic extension L of K we have that G_R is the smallest algebraic L-subgroup of G such that R is an L-rational point. Write G^0_R for the connected component of the identity of G_R. Then G^0_R is an algebraic subgroup of G defined over K and $G^0_R(\bar{K})$ is divisible. Write n_R for the number of connected components of G_R. The number n_R does not get affected by a change of ground field: since $Z \cdot R$ is Zariski-dense in $G_R(\bar{K})$ then every connected component of G_R is a translate of G^0_R by a K-rational point therefore it is also defined over K.

Lemma 2.1. Let G be a semi-abelian variety defined over a number field K. Let R be a K-rational point on G. Then $G_{n_R} = G^0_R$. Furthermore, let H be a connected component of G_R. Then there exists a torsion point X in $G_R(\bar{K})$ such that $H = X + G^0_R$.

Proof. Clearly G^0_R contains G_{n_R}. Also G^0_R is mapped to G_{n_R} by $[n_R]$. Because this map has finite kernel, G^0_R and G_{n_R} have the same dimension. Then since G^0_R is connected, we must have $G_{n_R} = G^0_R$.

Let P be any point in $H(\bar{K})$. Then $P + G^0_R = H$. The point $n_R P$ is in $G^0_R(\bar{K})$. Since $G^0_R(\bar{K})$ is divisible, there exists a point Q in $G^0_R(\bar{K})$ such that $n_R Q = n_R P$. Set $X = P - Q$, thus X is a torsion point in $G_R(\bar{K})$. Then we have:

$$H = P + G^0_R = P - Q + G^0_R = X + G^0_R.$$

□

2
Proposition 2.2. Let G be a semi-abelian variety defined over a number field K. Let R be a K-rational point on G. Then n_R divides the order of $(R \mod p)$ for all but finitely many primes p of K.

Proof. Because of Lemma 2.1 there exist a torsion point X in $G_R(\bar{K})$ and a point P in $G_R^0(\bar{K})$ such that $R = P + X$. Then clearly n_RX is the least multiple of X which belongs to $G_R^0(\bar{K})$. Call t the order of X. Let F be a finite extension of K where P is defined and $G_R[t]$ is split. Fix a prime p of K and let q be a prime of F over p. Call m the order of $(R \mod p)$. Up to excluding finitely many primes p of K, we may assume that the order of $(R \mod q)$ is also m. The equality $(mX \mod q) = (−mP \mod q)$ implies that $(mX \mod q)$ belongs to $(G_R^0(F) \mod q)$. Then $(mX \mod q)$ belongs to $(G_R^0 \mod q)[t]$. Up to excluding finitely many primes p of K, we may assume that the reduction modulo q maps injectively $G_R[t]$ to $(G_R \mod q)[t]$ and that it maps surjectively $G_R^0[t]$ onto $(G_R^0 \mod q)[t]$. See [10, Lemma 4.4]. We deduce that $mX \mod q$ belongs to $G_R^0[t]$. Then m is a multiple of n_R. This shows that for all but finitely many primes p the order of $(R \mod p)$ is a multiple of n_R. □

Definition 2.3. Let G be a semi-abelian variety defined over a number field K. Let R be a K-rational point on G. We say that R is independent if R is non-zero and $G_R = G$.

By this definition an independent point has infinite order. Notice that this definition does not depend on the choice of the number field K such that R belongs to $G(K)$.

In Remark 2.6 we prove that if G is the product of an abelian variety and a torus then R is independent if and only if it is non-zero and the left End$_K G$-module generated by R is free. Then rational points of infinite order on the multiplicative group or on a simple abelian variety are independent.

Lemma 2.4. Let G be a semi-abelian variety defined over a number field K. Let R be a K-rational point on G of infinite order. Then the point $n_R R$ is independent in G_R^0. Furthermore, let X be a torsion point in $G(K)$ and suppose that R is independent. Then $R + X$ is independent.

Proof. By Lemma 2.1 we have $G_{nR} = G_R^0$ therefore $n_R R$ is independent in G_R^0.

For the second assertion, we have to prove that $G_{R+X} = G$. Call t the order of X. Clearly $G_{R+X} \supseteq G_{t(R+X)} = G_{tR}$. Because $G_R = G$ it suffices to show that $G_{tR} = G_R$. Remark that G_R contains G_{tR} and that G_R is mapped to G_{tR} by $[t]$. Because $[t]$ has finite kernel, G_R and G_{tR} have the same dimension. Because G_R is connected it follows that $G_{tR} = G_R$. □

Proposition 2.5. Let K be a number field. Let $G = A \times T$ be the product of an abelian variety and a torus defined over K. Then a connected algebraic K-subgroup of G is the product of a K-abelian subvariety of A and a K-subtorus of T.

3
Proof. Let V be an algebraic subgroup of G. Call π_A and π_T the projections of V on A and T respectively. Remark that $\pi_A(V)$ is a connected K-subgroup of A therefore it is an abelian subvariety of A. Similarly $\pi_T(V)$ is a connected K-subgroup of T therefore it is a subtorus of T. By replacing G with $\pi_A(V) \times \pi_T(V)$, we may assume that $\pi_A(V) = A$ and $\pi_T(V) = T$.

Write $N_T = \pi_T(V \cap (\{0\} \times T))$ and $N_A = \pi_A(V \cap (A \times \{0\}))$. Remark that N_A and N_T are K-algebraic subgroups of A and T respectively. It suffices to show that $N_A = A$ and $N_T = T$ because in that case $V = A \times T$ and we are done. To prove the assertion, we make a base change to \bar{K}. Since the category of commutative algebraic \bar{K}-schemes is abelian (\cite{2} Theorem p. 315 §5.4 Expose VI) it suffices to see that the quotients $\hat{A} = A/N_A$ and $\hat{T} = T/N_T$ are zero. The quotient A/N_A^0 is an abelian variety (see \cite{13} §9.5) and then the quotient of A/N_A^0 by the image of N_A in A/N_A^0 is an abelian variety (see \cite{11} Theorem 4 p.72). Hence \hat{A} is an abelian variety. Because of [5] Corollary §8.5 the algebraic group T/N_T^0 is a torus. The quotient of T/N_T^0 by the image of N_T in T/N_T^0 is an affine algebraic group (see \cite{5} Theorem §6.8). Hence \hat{T} is an affine algebraic group.

Call α the composition of π_A and the quotient map from A to \hat{A}. Similarly call β the composition of π_T and the quotient map from T to \hat{T}. The product map $\alpha \times \beta$ is a map from V to $\hat{A} \times \hat{T}$. Now we show that the projection $\pi_{\hat{A}}$ from $\alpha \times \beta(V)$ to \hat{A} is an isomorphism. Clearly $\pi_{\hat{A}}$ is an epimorphism. Since we are working in an abelian category, it suffices to show that $\pi_{\hat{A}}$ is a monomorphism. Because the map $\alpha \times \beta$ from V to $\alpha \times \beta(V)$ is an epimorphism, it suffices to check that the maps $\pi_{\hat{A}} \circ (\alpha \times \beta)$ and $\alpha \times \beta$ have the same kernel. The kernel of the first map is $V \cap (N_A \times \hat{T})$. The kernel of the second map is $V \cap (N_A \times T) \cap (A \times N_T)$. We show that these two group schemes are isomorphic because they have the same groups of Z-points for every \bar{K}-scheme Z. The Z-points of the first kernel are the pairs (a, b) in $V(Z)$ such that a lies in $N_A(Z)$. Since $(a, 0)$ belongs to $V(Z)$ we deduce that $(0, b)$ lies in $V(Z)$ and so b belongs to $N_T(Z)$. Then the two kernels have the same Z-points. The proof that $\alpha \times \beta(V)$ is isomorphic to \hat{T} is analogous. We deduce that \hat{A} and \hat{T} are isomorphic. Since \hat{A} is a complete variety while \hat{T} is affine the only possible morphism from \hat{A} to \hat{T} is zero. Then \hat{A} and \hat{T} are zero. □

For the convenience of the reader we prove the following remark.

Remark 2.6. Let $G = A \times T$ be the product of an abelian variety and a torus defined over a number field K. Then a non-zero K-rational point R on G is independent if and only if the left $\text{End}_K G$-module generated by R is free.

Proof. The ‘only if’ part is straightforward: if ϕ is a non-zero element of $\text{End}_K G$ such that $\phi(R) = 0$ then $\ker(\phi)$ is an algebraic subgroup of G different from G and containing R hence containing G_R. Now we prove the ‘if’ part. Suppose that R is not independent. Because of [14] Proposition 1.5] the left $\text{End}_K G$-submodule of $G(K)$ generated by R is free if and only if the left $\text{End}_K G$-submodule of $G(\bar{K})$ generated by R is free. Then to conclude we construct a non-zero element of $\text{End}_K G$ whose kernel contains the point R.
Clearly we may assume that \(R \) has infinite order. So \(G_R^0 \) is non-zero and since \(R \) is not independent we have \(G_R^0 \neq G \). By Proposition 2.5, \(G_R^0 \) is the product of an abelian subvariety \(A' \) of \(A \) and a subtorus \(T' \) of \(T \). Then either \(A' \) or \(T' \) are non-zero and either \(A \neq A' \) or \(T \neq T' \). If \(A' \) is zero set \(\phi_A = \text{id}_A \), if \(A' = A \) set \(\phi_A = 0 \). Otherwise by the Poincaré Reducibility Theorem there exists a non-zero abelian subvariety \(B \) of \(A \) such that \(A' \) and \(B \) have finite intersection and such that the map

\[
\alpha : A' \times B \to A \quad \alpha(x, y) = x + y
\]

is an isogeny. Call \(d \) the degree of \(\alpha \) and remark that \(d \) is the order of \(A' \cap B \). Call \(\hat{\alpha} \) the isogeny from \(A \) to \(A' \times B \) such that \(\alpha \circ \hat{\alpha} = [d] \). Call \(\pi \) the projection from \(A' \times B \) to \(\{0\} \times B \). Set \(\phi_A = \alpha \circ [d] \circ \pi \circ \hat{\alpha} \). Remark that if \(\alpha(x, y) \) is a point on \(A' \) then both \(x \) and \(y \) are points on \(A' \). Then it is immediate to see that \(\phi_A \) is a non-zero element of \(\text{End}_K A \) and that its kernel contains \(A' \).

If \(T' \) is zero set \(\phi_T = \text{id}_T \), if \(T' = T \) set \(\phi_T = 0 \). Otherwise, because a subtorus is a direct factor there exists a non-zero \(\phi_T \) in \(\text{End}_K T \) such that \(T' \) is contained in \(\ker(\phi_T) \). Then by construction \((\phi_A \times \phi_T) \circ [n_R] \) is a non-zero element of \(\text{End}_K G \) whose kernel contains \(G_R \).

\[\square\]

3 The method by Khare and Prasad

In this section we prove the following result, which will be used in section 4 to prove the Main Theorem. To prove this result we generalize a method by Khare and Prasad (see [9, Lemma 5]).

Theorem 3.1. Let \(G \) be the product of an abelian variety and a torus defined over a number field \(K \). Let \(F \) be a finite extension of \(K \). Let \(R \) be an \(F \)-rational point on \(G \) such that \(G_R \) is connected. Fix a non-zero integer \(m \). There exists a positive Dirichlet density of primes \(p \) of \(K \) such that the following holds: there exists a prime \(q \) of \(F \) over \(p \) such that the order of \((R \bmod q) \) is coprime to \(m \).

Remark that if \(F = K \) the theorem simply says that there exists a positive Dirichlet density of primes \(p \) of \(K \) such that the order of \((R \bmod p) \) is coprime to \(m \).

Let \(G \) be a semi-abelian variety defined over a number field \(K \). For \(n \in \mathbb{N} \) call \(K_{\ell^n} \) the smallest extension of \(K \) over which every point of \(G(\ell^n) \) is defined. Let \(R \) be in \(G(K) \). Then for \(n \in \mathbb{N} \) call \(K(\frac{1}{\ell^n} R) \) the smallest extension of \(K_{\ell^n} \) over which the \(\ell^n \)-th roots of \(R \) are defined. Clearly the extensions \(K_{\ell^{n+1}}/K_{\ell^n} \) and \(K(\frac{1}{\ell^n} R)/K_{\ell^n} \) are Galois.

Lemma 3.2. Let \(G \) be a semi-abelian variety defined over a number field \(K \). Let \(\ell \) be a rational prime and let \(n \) be a positive integer. Suppose that \(G(K) \) contains \(G(\ell) \). Then the degree \([K_{\ell^n} : K] \) is a power of \(\ell \) and for every \(R \) in \(G(K) \) the degree \([K(\frac{1}{\ell^n} R) : K] \) is a power of \(\ell \).
Proof. Since the points of $G[\ell]$ are defined over K, we can embed $\text{Gal}(K_{\ell^n}/K)$ into the group of the endomorphisms of $G[\ell^n]$ fixing $G[\ell]$. The order of this group is a power of ℓ since $G[\ell^n]$ is a finite abelian group whose order is a power of ℓ. Now we only have to prove that the degree $[K(\ell^n R)/K_{\ell^n}]$ is a power of ℓ. We can map the Galois group of the extension $K(\ell^n R)/K_{\ell^n}$ into $G[\ell^n]$, whose order is a power of ℓ. This is accomplished via the Kummer map

$$\phi_n : \text{Gal}(K(\ell^n R)/K_{\ell^n}) \to G[\ell^n]; \quad \phi_n(\sigma)(R) = \sigma(\ell^n R) - (\ell^n R),$$

where $\ell^n R$ is an ℓ^n-th root of R. Since two such ℓ^n-th roots differ by a torsion point of order dividing ℓ^n, it does not matter which root we take. This also implies that ϕ_n is injective. This proves the assertion. □

Lemma 3.3. Let G be the product of an abelian variety and a torus defined over a number field K. Let R be a K-rational point of G which is independent. Then for all sufficiently large n we have:

$$K(\ell^n R) \cap K_{\ell^{n+1}} = K_{\ell^n}.$$

Proof. Consider the map

$$\alpha_n : \text{Gal}(K(\ell^{n+1} R)/K_{\ell^{n+1}}) \to \text{Gal}(K(\ell^n R)/K_{\ell^n})$$

given by the restriction to $K(\ell^n R)$. To prove this lemma, it suffices to show that α_n is surjective for sufficiently large n.

It is not difficult to check that the following diagram is well defined and commutative (ϕ_n is the Kummer map defined in the proof of Lemma 3.2 and β_n is induced by the diagram):

$$\begin{array}{cccccc}
0 & \longrightarrow & \text{Gal}(K(\ell^{n+1} R)/K_{\ell^{n+1}}) & \longrightarrow & G[\ell^{n+1}] & \longrightarrow & \text{Coker } \phi_{n+1} & \longrightarrow & 0 \\
& & \downarrow \alpha_n & & |[\ell]| & & \downarrow \beta_n & & \\
0 & \longrightarrow & \text{Gal}(K(\ell^n R)/K_{\ell^n}) & \longrightarrow & G[\ell^n] & \longrightarrow & \text{Coker } \phi_n & \longrightarrow & 0
\end{array}$$

If β_n is injective then α_n is surjective. Since β_n is surjective, it suffices to prove that $\text{Coker } \phi_{n+1}$ and $\text{Coker } \phi_n$ have the same order for sufficiently large n. Since the order of $\text{Coker } \phi_n$ increases with n, it is equivalent to show that the order of $\text{Coker } \phi_n$ is bounded by a constant which does not depend on n. Since we assumed that $G_R = G$, this assertion is a special case of a result by Bertrand ([3, Theorem 1]). □

Lemma 3.4. Let K be a number field. Let $G = A \times T$ be the product of an abelian variety defined over K and a torus split over K. Fix a rational prime ℓ. If $T = 0$ or if $A = 0$ or
if \(\ell \) is odd then for every sufficiently large \(n > 0 \) there exists an element \(h_\ell \) in \(\text{Gal}(\bar{K}/K) \) which acts on \(G[\ell^n] \) via an automorphism whose set of fixed points is \(G[\ell^n] \). If \(A \) and \(T \) are non-zero and \(\ell = 2 \) then for every sufficiently large \(n > 0 \) there exists an element \(h_2 \) in \(\text{Gal}(\bar{K}/K) \) which acts on \(G[2^n] \) via an automorphism whose set of fixed points is \(A[2^n] \times T[2^{n+1}] \).

Proof. If \(T = 0 \) then the assertion is a consequence of a result by Bogomolov ([4, Corollaire 1]). If \(A = 0 \), because \(T \) is split over \(K \) then it suffices to remark the following fact: for every sufficiently large \(n > 0 \) the field obtained by adjoining to \(K \) the \(\ell^{(n+1)} \)-th roots of unity is a non-trivial extension of the field obtained by adjoining to \(K \) the \(\ell^n \)-th roots of unity. Now assume that \(A \) and \(T \) are non-zero. Call \(\hat{A} \) the dual abelian variety of \(A \). By applying a result of Bogomolov ([4, Corollaire 1]) to \(A \times \hat{A} \) we know that if \(n > 0 \) is sufficiently large, there exists an element \(h_\ell \) in \(\text{Gal}(\bar{K}/K) \) which acts on \(A \times \hat{A}[\ell^n] \) as a homothety with factor \(h \) in \(\mathbb{Z}_\ell^* \) such that \(h \equiv 1 \pmod{\ell^n} \) and \(h \not\equiv 1 \pmod{\ell^{n+1}} \). For every \(n \) the Weil pairing

\[
e_{\ell^n} : A[\ell^n] \times \hat{A}[\ell^n] \to \mu_{\ell^n}
\]
is bilinear, non-degenerate and Galois invariant. Since \(e_{\ell^n} \) is bilinear and non-degenerate its image contains a root of unity \(\zeta \) of order \(\ell^n \). Choose \(X_1 \in A[\ell^n] \), \(X_2 \in \hat{A}[\ell^n] \) such that \(e_{\ell^n}(X_1, X_2) = \zeta \). By Galois invariance and bilinearity we have:

\[
\sigma(\zeta) = \sigma(e_{\ell^n}(X_1, X_2)) = e_{\ell^n}(\sigma(X_1), \sigma(X_2)) = e_{\ell^n}(h \cdot X_1, h \cdot X_2) = \zeta^{h^2}.
\]

Because \(\zeta \) generates \(\mu_{\ell^n} \) then \(\sigma \) acts on \(\mu_{\ell^n} \) as a homothety with factor \(h^2 \pmod{\ell^n} \). Clearly \(h^2 \equiv 1 \pmod{\ell^n} \) and \(h^2 \not\equiv 1 \pmod{\ell^{n+1}} \) if \(\ell \) is odd. If \(\ell = 2 \) and \(n > 1 \) then \(h^2 \equiv 1 \pmod{2^{n+1}} \) and \(h^2 \not\equiv 1 \pmod{2^{n+2}} \). Because \(T \) is split over \(K \) we deduce the following: if \(\ell \) is odd the set of fixed points for the automorphism of \(G[\ell^n] \) induced by \(h_\ell \) is \(G[\ell^n] \); if \(\ell = 2 \) the set of fixed points for the automorphism of \(G[2^n] \) induced by \(h_2 \) is \(A[2^n] \times T[2^{n+1}] \). \(\square \)

Proof of Theorem 3.1. By Proposition 2.5, \(G_R \) is the product of an abelian variety \(A \) and a torus \(T \) defined over \(F \). Let \(R' \) be a point in \(G_R(F) \) such that \(2R' = R \). Since \(R \) is independent in \(G_R \), the point \(R' \) is independent in \(G_R \). Call \(S \) the set of the prime divisors of \(m \). Let \(K' \) be a finite extension of \(F \) over which \(R' \) is defined, over which \(T \) is split and over which \(G_R[\ell] \) is split for every \(\ell \) in \(S \). Apply Lemma 3.3 to the point \(R' \), the algebraic group \(G_R \) and with base field \(K' \). Then for all sufficiently large \(n \) and for every \(\ell \) in \(S \) the intersection of \(K'(\frac{1}{\ell^n} R') \) and \(K'_{\ell^n+1} \) is \(K'_{\ell n} \). Apply Lemma 3.3 to \(G_R \) with base field \(K' \): we can choose \(n > 0 \) such that the previous assertion holds and such that for every \(\ell \) in \(S \) there exists \(h_\ell \) as in Lemma 3.3. Call \(L \) the compositum of the fields \(K'(\frac{1}{\ell^n} R') \) and the fields \(K'_{\ell n+1} \) where \(\ell \) varies in \(S \). By Lemma 3.2 the fields \(K'(\frac{1}{\ell^n} R') \cdot K'_{\ell n+1} \) where \(\ell \) varies in \(S \) are linearly disjoint over \(K' \). Then we can construct \(\sigma \) in \(\text{Gal}(L/K) \) such that for every \(\ell \) in \(S \) the restriction of \(\sigma \) to \(K'(\frac{1}{\ell^n} R') \) is the identity and such that the restriction to \(K'_{\ell n+1} \) of \(\sigma \) and of \(h_\ell \) coincide.
Let \(p \) be a prime of \(K \) which does not ramify in \(L \) and such that there exists a prime \(\mathfrak{w} \) of \(L \) which is over \(p \) and such that \(\text{Frob}_{L/K} \mathfrak{w} = \sigma \). By Chebotarev’s Density Theorem there exists a positive Dirichlet density of prime ideals \(p \) of \(K \) which satisfy the above conditions. Let \(q \) be the prime of \(F \) lying under \(\mathfrak{w} \). Fix a prime \(\ell \) in \(S \) and suppose that the order of \((R \mod q) \) is a multiple of \(\ell \). Up to discarding finitely many primes \(p \) the order of \((R \mod \mathfrak{w}) \) is a multiple of \(\ell \). Let \(Z \) be an element of \(G_R(L) \) such that \(\ell^n Z = R' \). Then the order of \((Z \mod \mathfrak{w}) \) is a multiple of \(\ell^{n+1} \) (respectively of \(\ell^{n+2} \) if \(\ell = 2 \)). Let \(a \geq 1 \) be such that the order of \((aZ \mod \mathfrak{w}) \) is exactly \(\ell^{n+1} \) (respectively \(\ell^{n+2} \) if \(\ell = 2 \)). Up to discarding finitely many primes \(p \) there exists a torsion point \(X \) in \(G_R(L) \) of order \(\ell^{n+1} \) (respectively \(\ell^{n+2} \) if \(\ell = 2 \)) and such that \((aZ \mod \mathfrak{w}) = (X \mod \mathfrak{w}) \). See [10] Lemma 4.4.

Up to excluding finitely many primes \(p \), the action of the Frobenius \(\text{Frob}_{L/K} \mathfrak{w} \) commutes with the reduction modulo \(\mathfrak{w} \) of \(G \) hence we deduce the following: the point \((Z \mod \mathfrak{w}) \) is fixed by the Frobenius of \(\mathfrak{w} \) while \((X \mod \mathfrak{w}) \) is not fixed. Then the point \((aZ \mod \mathfrak{w}) \) is fixed by the Frobenius of \(\mathfrak{w} \) and we get a contradiction. \(\square \)

4 The proof of the Main Theorem and corollaries

In this section we prove the Main Theorem and other applications of Theorem 3.1.

Proposition 4.1. Let \(K \) be a number field. For every \(i = 1, \ldots, n \) let \(G_i \) be the product of an abelian variety and a torus defined over \(K \) and let \(R_i \) be a point in \(G_i(K) \) of infinite order. Suppose that the point \(R = (R_1, \ldots, R_n) \) in \(G = G_1 \times \cdots \times G_n \) is such that \(G_R \) is connected. Fix a non-zero integer \(m \). For every \(i = 1, \ldots, n \) fix a torsion point \(X_i \) in \(G_i(K) \) such that the point \(X = (X_1, \ldots, X_n) \) is in \(G_R(K) \). Let \(F \) be a finite extension of \(K \) over which \(X \) is defined. Then there exists a positive Dirichlet density of primes \(p \) of \(K \) such that the following holds: there exists a prime \(q \) of \(F \) over \(p \) such that for every \(i = 1, \ldots, n \) the order of \((R_i - X_i \mod q) \) is coprime to \(m \).

Proof. By Lemma 2.3 the point \(R \) is independent in \(G_R \) and the point \(R' = R - X \) is independent in \(G_R \). Since \(G_{R'} = G_R \), by Proposition 2.5 the algebraic group \(G_{R'} \) is the product of an abelian variety and a torus defined over \(K \). Apply Theorem 3.1 to \(R' \) and find a positive Dirichlet density of primes \(p \) of \(K \) such that the following holds: there exists a prime \(q \) of \(F \) over \(p \) such that the order of \((R' \mod q) \) is coprime to \(m \). This clearly implies the statement. \(\square \)

Proposition 4.2. Let \(K \) be a number field. For every \(i = 1, \ldots, n \) let \(G_i \) be the product of an abelian variety and a torus defined over \(K \) and let \(R_i \) be a point in \(G_i(K) \) of infinite order. Suppose that the point \(R = (R_1, \ldots, R_n) \) in \(G = G_1 \times \cdots \times G_n \) is independent. Fix a finite set \(S \) of rational primes. For every \(i = 1, \ldots, n \) fix a non-zero integer \(m_i \). Then there exists a positive Dirichlet density of primes \(p \) of \(K \) such that for every \(i = 1, \ldots, n \) and for every \(\ell \) in \(S \) the \(\ell \)-adic valuation of the order of \((R_i \mod p) \) is \(v_{\ell}(m_i) \).
Proof. For every $i = 1, \ldots, n$ choose a torsion point X_i in $G_i(\overline{K})$ of order m_i and call $X = (X_1, \ldots, X_n)$. Let F be a finite extension of K over which X is defined. Call m the product of the primes in S. Apply Proposition 1.1 to R and find a positive Dirichlet density of primes p of K such that the following holds: there exists a prime q of F over p such that the order of $(R - X \mod q)$ is coprime to m. Fix p as above. Up to discarding finitely many primes p, for every $i = 1, \ldots, n$ the order of $(X_i \mod q)$ equals m_i. This implies that for every $i = 1, \ldots, n$ and for every ℓ in S the ℓ-adic valuation of the order of $(R_i \mod q)$ equals $v_\ell(m_i)$. Then up to discarding finitely many primes p, the ℓ-adic valuation of the order of $(R_i \mod p)$ equals $v_\ell(m_i)$ for every $i = 1, \ldots, n$ and for every ℓ in S. □

Proof of the Main Theorem. Call n the largest positive integer which divides the order of $(R \mod p)$ for all but finitely many primes p of K. By Proposition 2.2 we know that n_R divides n. Now we prove that n divides n_R. By Lemma 2.7 $G_{n_R R}$ is connected hence by Proposition 2.5 it is the product of an abelian variety and a torus defined over K. Let ℓ be a rational prime. Apply Theorem 3.1 to $n_R R$ and find infinitely many primes p of K such that the ℓ-adic valuation of the order of $(n_R R \mod p)$ is 0. Thus there exist infinitely many primes p of K such that the ℓ-adic valuation of the order of $(R \mod p)$ is less than or equal to $v_\ell(n_R)$. This shows that n divides n_R. Now we prove the second assertion.

Apply Proposition 1.2 to $n_R R$ in $G_{n_R R}$ and find a positive density of primes p of K such that for every ℓ in S the ℓ-adic valuation of the order of $(n_R R \mod p)$ is $v_\ell(\frac{n_R}{n_R})$. Because of the first assertion, we may assume that n_R divides the order of $(R \mod p)$. Then for every ℓ in S the ℓ-adic valuation of the order of $(R \mod p)$ is $v_\ell(m)$. □

By adapting this proof straightforwardly we may remark that n_R is also the largest positive integer which divides the order of $(R \mod p)$ for a set of primes p of K of Dirichlet density 1.

Lemma 4.3. Let K be a number field. For every $i = 1, \ldots, n$ let G_i be the product of an abelian variety and a torus defined over K. Let H be an algebraic subgroup of $G_1 \times \ldots \times G_n$ such that the projection π_i from H to G_i is non-zero for every $i = 1, \ldots, n$. Let ℓ be a rational prime. Then there exists X in $H[\ell]\infty$ such that $\pi_i(X)$ is non-zero for every $i = 1, \ldots, n$.

Proof. By Proposition 2.5 up to replacing H with H^0 we may assume that H is the product of an abelian variety and a torus. For every $i = 1, \ldots, n$ since the projection π_i is non-zero, it is easy to see that there exists Y_i in $H[\ell]\infty$ such that $\pi_i(Y_i)$ is non-zero. The point Y_1 is not in the kernel of π_1. So if $n = 1$ we conclude. Otherwise let $1 < r \leq n$ and suppose that $\sum_{j=1}^{r-1} Y_j$ is not in the kernel of π_i for every $i = 1, \ldots, r - 1$. Up to replacing Y_r with an element in $\frac{1}{\ell} \cdot Y_r$, we may assume that for every $i = 1, \ldots, r$ either $\pi_i(Y_r)$ is zero or the order of $\pi_i(Y_r)$ is greater than the order of $\pi_i(\sum_{j=1}^{r-1} Y_j)$. Then $\sum_{j=1}^{r} Y_j$ is not in the kernel of π_i for every $i = 1, \ldots, r$. We conclude by iterating the procedure up to $r = n$. □
Corollary 4.4. Let K be a number field. For every $i = 1, \ldots, n$ let G_i be a semi-abelian variety defined over K and let R_i be a point on $G_i(K)$ of infinite order. Then for every integer $m > 0$ there exists a positive Dirichlet density of primes p of K such that for every $i = 1, \ldots, n$ the order of $(R_i \mod p)$ is a multiple of m.

Proof. First we prove the case where G_i is the product of an abelian variety A_i and a torus T_i for every $i = 1, \ldots, n$. Call S the set of prime divisors of m. Consider the point $R = (R_1, \ldots, R_n)$ in $G = G_1 \times \cdots \times G_n$. We may assume that $n_R = 1$ by replacing R_i with $n_R R_i$ and we may assume that m is square-free by replacing R_i with $(m/\prod_{\ell \in S} \ell) R_i$ for every $i = 1, \ldots, n$. Since G_R contains R, the projection from G_R to G_i is non-zero for every $i = 1, \ldots, n$ so we can apply Lemma 4.3. Then for every ℓ in S there exists X_ℓ in $G_R[\ell\infty]$ such that all the coordinates of X_ℓ are non-zero. Write $Y = \sum_{\ell \in S} X_\ell$. By construction Y belongs to $G_R(K)_{\text{tors}}$ and for every $\ell \in S$ the order of every coordinate of Y is a multiple of ℓ. Let F be a finite extension of K where Y is defined. By Proposition 4.1, there exists a positive Dirichlet density of primes p of K such that the following holds: there exists a prime q of F over p such that the order of $(R - Y \mod q)$ is coprime to m. Then up to discarding finitely many primes p the order of $(R_i \mod p)$ is a multiple of ℓ for every ℓ in S and for every $i = 1, \ldots, n$. This concludes the proof for this case.

For every $i = 1, \ldots, n$ let G_i be an extension of an abelian variety A_i by a torus T_i and call π_i the quotient map from G_i to A_i. If $\pi_i(R_i)$ does not have infinite order let R'_i be a non-zero multiple of R_i which belongs to $T_i(K)$. If $\pi_i(R)$ has infinite order then let $R'_i = 0$. Then $(\pi_i R_i, R'_i)$ is a K-rational point of $A_i \times T_i$ of infinite order. Clearly for all but finitely many primes p of K the following holds: the order of $(R_i \mod p)$ is a multiple of m whenever the order of $((\pi_i R_i, R'_i) \mod p)$ is a multiple of m. Then we reduced to the previous case. \hfill \square

Acknowledgements

Marc Hindry suggested to me that the greatest integer dividing the order of a point for almost all reductions could be related to the number of connected components of the algebraic subgroup generated by the point. I thank Bas Edixhoven for the idea of imitating Goursat’s Lemma in Proposition 2.5. I also thank Brian Conrad and René Schoof for helpful discussions.

References

[1] G. Banaszak, W. Gajda, P. Krasoń, Detecting linear dependence by reduction maps, J. Number Theory 115 (2) (2005) 322–342.

[2] S. Barańczuk, On reduction maps and support problem in K-theory and abelian varieties, J. Number Theory 119 (1) (2006) 1–17.
[3] D. Bertrand, Galois representations and transcendental numbers, in: A. Baker (Ed.), New advances in Transcendence theory (Durham, 1986), Cambridge University Press, 1988, pp. 37–55.

[4] F. A. Bogomolov, Sur l’algébricité des représentations l-adiques, C.R. Acad. Sci. Paris Sér. A–B 290 (15) (1980) A701–A703, presented by J.-P. Serre.

[5] A. Borel, Linear Algebraic Groups, 2nd Edition, Springer-Verlag, 1991, Graduate Texts in Mathematics, 126.

[6] J. Cheon, S. Hahn, The orders of the reductions of a point in the Mordell-Weil group of an elliptic curve, Acta Arith. 88 (3) (1999) 219–222.

[7] A. Grothendieck, Schémas en groupes I: Propriétés générales des schémas en groupes, Vol. 1 of Séminaire de Géométrie Algébrique du Bois Marie - 1962/64 (SGA 3), Springer-Verlag, 1970, Lecture notes in mathematics 151.

[8] R. Jones, J. Rouse, Iterated endomorphisms of abelian algebraic groups, arXiv:0706.2384 (2007).

[9] C. Khare, D. Prasad, Reduction of homomorphisms mod p and algebraicity, J. Number Theory 105 (2) (2004) 322–332.

[10] E. Kowalski, Some local-global applications of Kummer theory, Manuscripta Math. 111 (1) (2003) 105–139.

[11] D. Mumford, Abelian Varieties, Oxford University Press, 1970.

[12] R. Pink, On the order of the reduction of a point on an abelian variety, Math. Ann. 330 (2) (2004) 275–291.

[13] A. Polishchuk, Abelian varieties, theta functions and the Fourier transform, Cambridge University Press, 2003, Cambridge Tracts in Mathematics, 153.

[14] K. Ribet, Kummer theory on extensions of abelian varieties by tori, Duke Math. J. 46 (4) (1979) 745–761.