ON S. MAZUR’S PROBLEMS 8 AND 88
FROM THE SCOTTISH BOOK

V.V. PELLER

Abstract. The paper discusses Problems 8 and 88 posed by Stanislaw Mazur in the Scottish Book [SB]. It turns out that negative solutions to both problems are immediate consequences of the results of §5 of [P1]. We discuss here some quantitative aspects of Problems 8 and 88 and give answers to open problems discussed in a recent paper [PS] in connection with Problem 88.

1. Introduction

We are going to discuss in this paper Problems 8 and 88 posed by Stanislaw Mazur in the Scottish Book [SB]. Problem 88 asks whether a Hankel matrix in the injective tensor product $\ell^1 \hat{\otimes} \ell^1$ of two spaces ℓ^1 must have finite sum of the moduli of its matrix entries. Problem 8 asks whether for an arbitrary sequence $\{z_n\}_{n \geq 0}$ in the space c of converging sequences there exist sequences $\{x_n\}_{n \geq 0}$ and $\{y_n\}_{n \geq 0}$ in the space c such that

$$z_n = \frac{1}{n+1} \sum_{k=0}^{n} x_k y_{n-k}, \quad n \geq 0.$$

We give precise statements of the problems and all necessary definitions later.

It turned out that both problems have negative solutions. Independently, solutions were obtained by Kwapień and Pełczyński [KP] and Eggermont and Leung [EL]. In a recent paper by Pełczyński and Sukochev [PS] in Section 6 certain quantitative results related to negative solutions of Problems 8 and 88 are obtained and certain open problems are raised.

It turns out, however, that the results of Section 5 of my earlier paper [P1] immediately imply negative solutions to Problems 8 and 88. Moreover, Section 5 of [P1] contains much stronger results. In particular, a complete description of the Hankel matrices\(^1\) in the injective tensor product of two spaces ℓ^1 is obtained in [P1] in terms of the Besov space $B_{\infty, 1}$\(^1\). Unfortunately, I was not aware about the Problems 8 and 88 when I wrote the paper [P1].

In Sections 3 and 4 of this paper we explain why the results of [P1] immediately imply negative solutions to Problems 8 and 88 and we give a solution to the problems raised in [PS].

\(^1\)Note that Hankel matrices and Hankel operators play an important role in many areas of mathematics and applications, see [P2].

The author is partially supported by NSF grant DMS 0200712.
In §2 we collect necessary information on tensor products and Besov spaces.

2. Preliminaries

1. Projective and injective tensor products. We define the projective tensor product $\ell_\infty \hat{\otimes} \ell_\infty$ as the space of matrices $\{q_{jk}\}_{j,k \geq 0}$ of the form

$$q_{jk} = \sum_{n \geq 0} a_j^{(n)} b_k^{(n)},$$

(2.1)

where the $a^{(n)} = \{a_j^{(n)}\}_{j \geq 0}$ and $b^{(n)} = \{b_j^{(n)}\}_{j \geq 0}$ are sequences in ℓ_∞ such that

$$\sum_{n \geq 0} \|a^{(n)}\|_{\ell_\infty} \|b^{(n)}\|_{\ell_\infty} < \infty.$$

(2.2)

The norm of the matrix $\{q_{jk}\}_{j,k \geq 0}$ in $\ell_\infty \hat{\otimes} \ell_\infty$ is defined as the infimum of the left-hand side of (2.2) over all sequences $a^{(n)} = \{a_j^{(n)}\}_{j \geq 0}$ and $b^{(n)} = \{b_j^{(n)}\}_{j \geq 0}$ satisfying (2.1).

Similarly, one can define the projective tensor products $c \hat{\otimes} c$ and $c_0 \hat{\otimes} c_0$, where c is the subspace of ℓ_∞ that consists of the converging sequences and c_0 is the subspace of c that consists of the sequences with zero limit.

We consider the space V^2 that is a kind of a “weak completion” of $\ell_\infty \hat{\otimes} \ell_\infty$. V^2 consists of the matrices $Q = \{q_{jk}\}_{j,k \geq 0}$ for which

$$\sup_{n > 0} \|P_n Q\|_{\ell_\infty \hat{\otimes} \ell_\infty} < \infty,$$

where the projections P_n are defined by

$$(P_n Q)_{jk} = \begin{cases} q_{jk}, & j \leq n, \ k \leq n, \\ 0, & \text{otherwise}. \end{cases}$$

Note that $c \hat{\otimes} c \subset \ell_\infty \hat{\otimes} \ell_\infty \subset V^2$.

The injective tensor product $\ell^1 \hat{\otimes} \ell^1$ of two spaces ℓ^1 is, by definition, the space of matrices $Q = \{q_{jk}\}_{j,k \geq 0}$ such that

$$\|Q\|_{\ell^1 \hat{\otimes} \ell^1} = \sup_{j,k=0}^N \sum_{j,k=0}^N q_{jk} x_j y_k < \infty,$$

where the supremum is taken over all sequences $\{x_j\}_{j \geq 0}$ and $\{y_k\}_{k \geq 0}$ in the unit ball of ℓ^∞ and over all positive integers N. The space $\ell^1 \hat{\otimes} \ell^1$ can naturally be identified with the space of bounded linear operators from c_0 to ℓ^1 (note that every bounded operator from c_0 to ℓ^1 is compact).

2. Besov spaces. In this paper we consider only Besov spaces of functions analytic in the unit disk \mathbb{D}. Besov spaces $B_{p,q}^s$ admit many equivalent descriptions. We give a definition in terms of dyadic Fourier expansions. We define the polynomials W_n, $n \geq 0$, as follows. If $n \geq 1$, then $\hat{W}_n(2^n) = 1$, $\hat{W}_n(k) = 0$ for $k \not\in (2^{n-1}, 2^{n+1})$, and \hat{W}_n is a
linear function on $[2^{n-1}, 2^n]$ and on $[2^n, 2^{n+1}]$. We put $W_0(z) = 1 + z$. It is easy to see that
\[\|W_n\|_{L^1} \leq \frac{3}{2}, \quad n \geq 0, \]
and
\[f = \sum_{n \geq 0} f \ast W_n \]
for an arbitrary analytic function f in \mathbb{D}.

For $1 \leq p \leq \infty$, $1 \leq q \leq \infty$, and $s \in \mathbb{R}$, we define the Besov space $B^{s}_{p,q}$ as the space of analytic functions in \mathbb{D} satisfying
\[f \in B^{s}_{p,q} \iff \{2^{ns} \|f \ast W_n\|_{L^p}\}_{n \geq 0} \in c_0. \quad (2.3) \]
If $q = \infty$, the space $B^{s}_{p,q}$ is nonseparable. We denote by $b^{s}_{p,\infty}$ the closure of the set of polynomials in $B^{s}_{p,\infty}$. It is easy to verify that
\[f \in b^{s}_{p,\infty} \iff \{2^{ns} \|f \ast W_n\|_{L^p}\}_{n \geq 0} \in c_0. \]

Besov spaces admit many other descriptions (see [Pe] and [P2]).

3. Problem 8

To state Mazur’s Problem 8 of the Scottish Book [SB], consider the bilinear form B on $c \times c$ defined by
\[B(\{x_n\}_{n \geq 0}, \{y_n\}_{n \geq 0}) = \{z_n\}_{n \geq 0}, \]
where
\[z_n = \frac{1}{n+1} \sum_{k=0}^{n} x_k y_{n-k}, \quad n \geq 0, \]
and c is the space of sequences that have a limit at infinity.

It is easy to see that B maps $c \times c$ into c. S. Mazur asked in Problem 8 whether B maps $c \times c$ onto c.

As mentioned in the Introduction, a negative solution to problem 8 follows immediately from the results of §5 of [P1]. To state Theorem 5.1 of [P1], we define the operator A on the space of matrices. Let $Q = \{q_{jk}\}_{j,k \geq 0}$. Then AQ is the sequence defined by
\[AQ = \{z_n\}_{n \geq 0}, \quad \text{where} \quad z_n = \frac{1}{n+1} \sum_{j+k=n} q_{jk}. \]

Theorem 5.1 of [P1]. A maps the space V^2 onto the space of Fourier coefficients of the Besov space $B^{0}_{1,\infty}$.

Recall that the space V^2 is defined in the introduction. In particular, it follows from Theorem 5.1 of [P1] that
\[A(c \hat{\otimes} c) \subset A(\ell^\infty \hat{\otimes} \ell^\infty) \subset A(V^2) \subset \left\{\{\hat{f}(n)\}_{n \geq 0} : f \in B^{0}_{1,\infty}\right\}, \]
and so
\[B(c \times c) \subset \left\{ \{\hat{f}(n)\}_{n \geq 0} : f \in B_{1,\infty}^0 \right\}. \]

It is easy to see that
\[c \not\subset \left\{ \{\hat{f}(n)\}_{n \geq 0} : f \in B_{1,\infty}^0 \right\}. \]

Indeed, if \(f \in B_{1,\infty}^0 \), then it follows immediately from (2.3) and from [R], §8.6 that
\[
\sup_{n \geq 0} \sum_{k=0}^{n} |\hat{f}(2^n + 2^k)|^2 < \infty.
\]

This gives a negative solution to Problem 8.

In fact, Theorem 5.1 of [P1] allows one to describe \(A(c \hat{\otimes} c) \). First, let us observe that Theorem 5.1 of [P1] easily implies the following description of \(A(c_0 \hat{\otimes} c_0) \).

Theorem 3.1.
\[
A(c_0 \hat{\otimes} c_0) = \left\{ \{\hat{f}(n)\}_{n \geq 0} : f \in b_{1,\infty}^0 \right\}.
\]

Recall that \(b_{1,\infty}^0 \) is the closure of the polynomials in \(b_{1,\infty}^0 \) (see §2). Theorem 3.1, in turn, easily implies the following description of \(A(c \hat{\otimes} c) \).

Theorem 3.2.
\[
A(c \hat{\otimes} c) = \left\{ \{\hat{f}(n) + d\}_{n \geq 0} : f \in b_{1,\infty}^0, \ d \in \mathbb{C} \right\}.
\]

4. Problem 88

Recall that in Problem 88 of [SB] S. Mazur asked whether a Hankel matrix \(\{\gamma_{j+k}\}_{j,k \geq 0} \) in the injective tensor product \(\ell^1 \hat{\otimes} \ell^1 \) must satisfy the condition:
\[
\sum_{k=0}^{\infty} (1+k)|\gamma_k| < \infty,
\]
i.e., whether the sum of the moduli of the matrix entries must be finite.

As mentioned in the Introduction, a negative solution to Problem 88 follows immediately from the results of §5 of [P1]. A complete description of Hankel matrices in \(\ell^1 \hat{\otimes} \ell^1 \) is given by Theorem 5.2 of [P1]:

Theorem 5.2 of [P1]. A Hankel matrix \(\{\gamma_{j+k}\}_{j,k \geq 0} \) belongs to \(\ell^1 \hat{\otimes} \ell^1 \) if and only if the function \(f \) defined by
\[
f(z) = \sum_{n \geq 0} \gamma_n z^n
\]
belongs to the Besov class \(B_{\infty,1}^1 \).

Let us obtain the best possible estimate on the moduli of the matrix entries of Hankel matrices in \(\ell^1 \hat{\otimes} \ell^1 \).
Since \(\|f * W_n\|_{L^2} \leq \|f\|_{L^2} \|W_n\|_{L^1} \leq 3/2\|f\|_{L^2} \), it follows easily from (2.3) that if \(f \in B^{1}_{\infty, 1} \), then
\[
\sum_{n=0}^{\infty} 2^n \left(\sum_{k=2^n}^{2^{n+1}-1} |\hat{f}(k)|^2 \right)^{1/2} < \infty.
\]
(4.1)

Let us show that this is the best possible estimate for the moduli of the Fourier coefficients of functions in \(B^{1}_{\infty, 1} \). To show this, we are going to use a version of the de Leeuw–Katznelson–Kahane theorem. It was proved in [dLKK] that if \(\{\beta_n\}_{n \in \mathbb{Z}} \) is a sequence of nonnegative numbers in \(\ell^2(\mathbb{Z}) \), then there exists a continuous function \(f \) on \(T \) such that
\[
|\hat{f}(n)| \geq \beta_n, \quad n \in \mathbb{Z}.
\]
We refer the reader to [K1], [K2], and [N] for refinements of the de Leeuw–Katznelson–Kahane theorem and different proofs. We need the following version of the de Leeuw–Katznelson–Kahane theorem:

Lemma 4.1. There is a positive number \(K \) such that for arbitrary nonnegative numbers \(\beta_0, \beta_1, \cdots, \beta_m \), there exists a polynomial \(f \) of degree \(m \) such that
\[
|\hat{f}(j)| \geq \beta_j, \quad 0 \leq j \leq n, \quad \text{and} \quad \|f\|_{L^\infty} \leq K \left(\sum_{j=0}^{n} \beta_j^2 \right)^{1/2}.
\]
Lemma 4.1 follows easily from the results of [K2].

Theorem 4.2. Let \(\{\alpha_k\}_{k \geq 0} \) be a sequence of nonnegative numbers such that
\[
\sum_{n=0}^{\infty} 2^n \left(\sum_{k=2^n}^{2^{n+1}-1} \alpha_k^2 \right)^{1/2} < \infty.
\]
(4.2)
Then there exists a function \(\varphi \) in the space \(B^{1}_{\infty, 1} \) such that \(|\hat{\varphi}(k)| \geq \alpha_k \) for \(k \geq 0 \).

Proof. By Lemma 4.1, there exists \(K > 0 \) and a sequence of polynomials \(f_n, n \geq 0 \), such that
\[
f_0(z) = \hat{f}_0(0) + \hat{f}_0(1)z, \quad f_n(z) = \sum_{k=2^n}^{2^{n+1}-1} \hat{f}_n(k)z^k, \quad \text{for} \quad n \geq 1,
\]
\[
|\hat{f}_0(k)| \geq \alpha_k, \quad \text{for} \quad k = 0, 1, \quad |\hat{f}_n(k)| \geq \alpha_k, \quad \text{for} \quad n \geq 1, \quad 2^n \leq k \leq 2^{n+1} - 1,
\]
and
\[
\|f_0\|_{L^\infty} \leq K(\alpha_0^2 + \alpha_1^2)^{1/2}, \quad \|f_n\|_{L^\infty} \leq K \left(\sum_{k=2^n}^{2^{n+1}-1} \alpha_k^2 \right)^{1/2}, \quad \text{for} \quad n \geq 1.
\]
We can define now the function \(\varphi \) by
\[
\varphi = \sum_{n \geq 0}^{\infty} f_n.
\]
Obviously, $|\hat{\varphi}(k)| \geq \alpha_k$ for $k \geq 0$. Let us show that $\varphi \in B^1_{\infty}$. We have
\[
\sum_{n \geq 1} 2^n \| \varphi \ast W_n \|_{L^\infty} = \sum_{n \geq 1} 2^n \| (f_{n-1} + f_n + f_{n+1}) \ast W_n \|_{L^\infty}
\leq \sum_{n \geq 1} 2^n \| (f_{n-1} + f_n + f_{n+1}) \|_{L^\infty} \| W_n \|_{L^1}
\leq 3 \sum_{n \geq 1} 2^n \| f_n \|_{L^\infty} \| W_n \|_{L^1} \leq 3 \cdot \frac{3}{2} \sum_{n \geq 1} 2^n \| f_n \|_{L^\infty}
\leq 9 \frac{1}{2} K \sum_{n=0}^{\infty} 2^n \left(\sum_{k=2^n}^{2^{n+1}-1} \alpha_k^2 \right)^{1/2} < \infty. \quad \blacksquare
\]

In [PS] the following problem was considered. Let Ψ be the function on $(0, \infty)$ defined by
\[
\Psi(t) = \begin{cases}
\frac{3}{2} t - 1, & 0 < t \leq 2, \\
t, & t > 2.
\end{cases}
\]

Let $\{\gamma_{j+k}\}_{j,k \geq 0}$ be a Hankel matrix. The following result was proved in [PS] (Theorem 6.7):

(i) if $\beta < \Psi(t)$, then
\[
\sum_{k \geq 0} |\gamma_k|^t (1 + k)^\beta < \infty \quad \text{whenever} \quad \{\gamma_{j+k}\}_{j,k \geq 0} \in \ell^1 \otimes \ell^1;
\]

(ii) if $\beta > \Psi(t)$, then
\[
\sum_{k \geq 0} |\gamma_k|^t (1 + k)^\beta = \infty \quad \text{for some} \quad \{\gamma_{j+k}\}_{j,k \geq 0} \in \ell^1 \otimes \ell^1;
\]

(iii) if $\beta = \Psi(t)$ and $t < \infty$, then
\[
\sum_{k \geq 0} |\gamma_k|^t (1 + k)^\beta < \infty \quad \text{whenever} \quad \{\gamma_{j+k}\}_{j,k \geq 0} \in \ell^1 \otimes \ell^1.
\]

In [PS] the problem is raised to find out whether
\[
\sum_{k \geq 0} |\gamma_k|^t (1 + k)^{\Psi(t)}
\]
has to be finite for $t \in \left(0, \frac{4}{3}\right)$ whenever $\{\gamma_{j+k}\}_{j,k \geq 0} \in \ell^1 \otimes \ell^1$.

It is easy to deduce Theorem 6.7 of [PS] from (4.1) and above Theorem 4.2. Moreover, using (4.1) and Theorem 4.2, we can solve the problem posed in [PS] and settle the case $t \in \left(0, \frac{4}{3}\right)$.

Theorem 4.3. If $1 \leq t < \frac{4}{3}$, then
\[
\sum_{k \geq 0} |\gamma_k|^t (1 + k)^{3t/2-1} < \infty \quad \text{whenever} \quad \{\gamma_{j+k}\}_{j,k \geq 0} \in \ell^1 \otimes \ell^1.
\]
If $0 < t < 1$, then
\[\sum_{k \geq 0} |\gamma_k|^t (1 + k)^{3t/2 - 1} = \infty \quad \text{for some} \quad \{\gamma_{j+k}\}_{j,k \geq 0} \in \ell^1 \otimes \ell^1. \]

Proof. Suppose that $1 \leq t < 2$. By Hölder's inequality, we have
\[
\sum_{k \geq 1} |\gamma_k|^t (1 + k)^{3t/2 - 1} \leq \const \sum_{n \geq 0} 2^{n(3t/2 - 1)} \sum_{k = 2^n}^{2^{n+1}} |\gamma_k|^t \leq \sum_{n \geq 0} 2^{\frac{3n}{2}t} 2^{-n} \left(\sum_{k = 2^n}^{2^{n+1}} |\gamma_k|^2 \right)^{t/2} 2^{n(1-t/2)} = \sum_{n \geq 0} 2^{nt} \left(\sum_{k = 2^n}^{2^{n+1}} |\gamma_k|^2 \right)^{t/2}.
\]

Since $t \geq 1$, the ℓ^t norm of a sequence does not exceed its ℓ^1 norm, and so
\[
\sum_{n \geq 0} 2^{nt} \left(\sum_{k = 2^n}^{2^{n+1}} |\gamma_k|^2 \right)^{t/2} \leq \left(\sum_{n \geq 0} 2^n \left(\sum_{k = 2^n}^{2^{n+1}} |\gamma_k|^2 \right)^{1/2} \right)^t.
\]

The result follows now from Theorem 5.2 of [P1] and (4.1).

Suppose now that $0 < t < 1$. It follows from Theorem 4.2 that it suffices to find a sequence $\{\alpha_k\}_{k \geq 0}$ of nonnegative numbers that satisfies (4.2) and such that
\[\sum_{k \geq 0} \alpha_k^t (1 + k)^{3t/2 - 1} = \infty. \]

Let $\{\delta_n\}_{n \geq 0}$ be a sequence of positive numbers such that $\{2^{3n/2}\delta_n\}_{n \geq 0} \in \ell^1$, but $\{2^{3n/2}\delta_n\}_{n \geq 0} \notin \ell^t$.

Put $\alpha_0 = 0$ and $\alpha_k = \delta_n$ if $2^n \leq k \leq 2^{n+1} - 1$.

We have
\[
\sum_{n \geq 0} 2^n \left(\sum_{k = 2^n}^{2^{n+1}-1} \alpha_k^2 \right)^{1/2} = \sum_{n \geq 0} 2^{3n/2} \delta_n < \infty.
\]

However,
\[
\sum_{k \geq 0} \alpha_k^t (1 + k)^{3t/2 - 1} \geq \const \sum_{n \geq 0} 2^{n(3t/2 - 1)} \sum_{k = 2^n}^{2^{n+1}} \alpha_k^t = \const \sum_{n \geq 0} 2^{n(3t/2 - 1)} 2^n \delta_n = \const \sum_{n \geq 0} 2^{3nt/2} \delta_n = \infty. \]

\[\blacksquare \]
References

[dlKK] K. de Leeuw, Y. Katznelson, and J.-P. Kahane, *Sur les coefficients de Fourier des fonctions continues*, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), A1001–A1003.

[EL] P. P. B. Eggermont and Y. J. Leung, *On a factorization problem for convergent sequences and on Hankel forms in bounded sequences*, Proc. Amer. Math. Soc. 96 (1986), 269–274.

[K1] S. V. Kislyakov, *Fourier coefficients of boundary values of functions that are analytic in the disc and bidisc* (Russian). In: Spectral theory of functions and operators, II. Trudy Mat. Inst. Steklov. 155 (1981), 77–94.

[K2] S. V. Kislyakov, *Fourier coefficients of continuous functions and a class of multipliers*, Ann. Inst. Fourier (Grenoble) 38 (1988), 147–183.

[KP] S. Kwapien and A. Pelczynski, *On two problems of S. Mazur from the Scottish Book*, Lecture at the Colloquium dedicated to the memory of Stanislaw Mazur, Warsaw Univ. (1985) (unpublished).

[N] F. L. Nazarov, *The Bang solution of the coefficient problem* (Russian), Algebra i Analiz 9 (1997), 272–287. English Translation: St. Petersburg Math. J. 9 (1998), 407–419.

[Pe] J. Peetre, *New thoughts on Besov spaces*, Duke Univ. Press., Durham, NC, 1976.

[PS] A. Pelczyński and F. Sukochev, *Some remarks on Toeplitz multipliers and Hankel matrices*, Studia Math. 175 (2006), 175–204.

[P1] V. V. Peller, *Estimates of functions of power bounded operators on Hilbert spaces*, J. Operator Theory 7 (1982), 341–372.

[P2] V. V. Peller, *Hankel operators and their applications*, Springer-Verlag, New York, 2003.

[R] W. Rudin, *Fourier analysis on groups*, Wiley Classics Library, Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1990.

[SB] The Scottish Book, R. D. Mauldin (ed.). Birkhäuser, Boston, MA, 1979.

Department of Mathematics
Michigan State University
East Lansing, Michigan 48824
USA
email: peller@math.msu.edu