THE 3D NARROW CAPTURE PROBLEM FOR TRAPS WITH SEMIPERMEABLE INTERFACES

PAUL C. BRESSLOFF*

Abstract. In this paper we analyze the narrow capture problem for a single Brownian particle diffusing in a three-dimensional (3D) bounded domain containing a set of small, spherical traps. The boundary surface of each trap is taken to be a semipermeable membrane. That is, the continuous flux across the interface is proportional to an associated jump discontinuity in the probability density. The constant of proportionality is identified with the permeability κ. In addition, we allow for discontinuities in the diffusivity and chemical potential across each interface; the latter introduces a directional bias. We also assume that the particle can be absorbed (captured) within the interior of each trap at some Poisson rate γ. In the small-trap limit, we use matched asymptotics and Green’s function methods to calculate the splitting probabilities and unconditional MFPT to be absorbed by one of the traps. However, the details of the analysis depend on how various parameters scale with the characteristic trap radius ϵ. Under the scalings $\gamma = O(1/\epsilon^2)$ and $\kappa = O(1/\epsilon)$, we show that the semipermeable membrane reduces the effective capacitance C of each spherical trap compared to the standard example of totally absorbing traps. The latter case is recovered in the dual limits $\gamma \to \infty$ and $\kappa \to \infty$, with C equal to the intrinsic capacitance of a sphere, namely, the radius. We also illustrate how the asymptotic expansions are modified when $\gamma = O(1/\epsilon)$ (slow absorption) or $\kappa = O(1)$ (low permeability). Finally, we consider the unidirectional limit in which each interface only allows particles to flow into a trap. The traps then act as partially absorbing surfaces with a constant reaction rate κ. Combining asymptotic analysis with the encounter-based formulation of partially reactive surfaces, we show how a generalized surface absorption mechanism (non-Markovian) can be analyzed in terms of the capacitances C. We thus establish that a wide range of narrow capture problems can be characterized in terms of the effective capacitances of the traps.

1. Introduction. An important problem in the mathematics of diffusion is analyzing transport through a semipermeable interface. Interfaces of this form occur in a wide range of processes, including lipid bilayers regulating molecular transport in biological cells [43, 2, 8, 42], chemical and electrical gap junctions [21, 19, 23, 7], artificial membranes for reverse osmosis [36, 44], and animal migration in heterogeneous landscapes [5, 4, 34]. Moreover, a variety of complex porous media are modeled in terms of multiple semipermeable interfaces and heterogeneous diffusivities [25, 30, 20, 1, 37, 22, 23]. The classical approach to incorporating a semipermeable interface into the diffusion equation is to impose flux continuity across the interface, with the flux proportional to an associated jump discontinuity in the concentration; the constant of proportionality represents the permeability. One method for deriving the semipermeable boundary conditions is to consider a thin membrane and to apply statistical thermodynamical principles [33, 32, 31]. This leads to the so-called Kedem-Katchalsky equations, which also allow for discontinuities in the diffusivity and chemical potential across the interface. The latter introduces a directional bias.

In this paper we consider the problem of a single Brownian particle diffusing in a three-dimensional (3D) bounded domain $\Omega \subset \mathbb{R}^3$ containing a set of N small, spherical traps U_j, $j = 1, \ldots, N$. The boundary ∂U_j of the jth trap is taken to be a semipermeable membrane with permeability κ_j and a directional bias $\alpha_j \in [0, 1]$. Diffusive flux is preferentially directed into the trap if $\alpha_j \in [0, 1/2)$ and out of the trap if $\alpha_j \in (1/2, 1]$; the unbiased case is $\alpha_j = 1/2$. We also allow for the diffusivity D_j within a trap to differ from the bulk diffusivity D. Finally, we assume that the particle can be absorbed (captured) within the interior of each trap at a Poisson rate γ. In the small-trap limit, $|U_j| = \epsilon^3|\Omega|$ with $0 < \epsilon \ll 1$, we use matched asymptotics

*Department of Mathematics, University of Utah, Salt Lake City, UT 84112 USA (bressloff@math.utah.edu)
and Green’s function methods to solve the resulting narrow capture problem \[17, 16, 18, 6, 38, 39, 9, 10\]. In particular, we calculate the splitting probability \(\pi_k(x_0)\) to be captured by the \(k\)th trap, given that the particle started in the bulk domain at a position \(x_0\), and the corresponding unconditional MFPT \(T(x_0)\) for absorption. We investigate how these quantities depend on the model parameters, and consider various limiting cases.

In the dual limits \(\gamma \to \infty\) and \(\kappa_j \to \infty\), \(j = 1, \ldots, N\), the interfaces \(\partial \mathcal{U}_j\) become completely permeable and the particle is immediately absorbed on entering a trap. Our model then reduces to the standard example of a 3D narrow capture problem, in which the surface of each trap acts as a totally absorbing surface \(\partial \mathcal{U}_j\). We show that in this limiting case our expressions for \(\pi_k(x_0)\) and \(T(x_0)\) are equivalent to previously obtained results \[18, 9\]. In particular, the leading order contribution to \(\pi_k(x_0)\) is an \(O(1)\) constant, whereas the leading order contribution to \(T(x_0)\) is an \(O(1/\epsilon)\) constant. On the other hand, for finite \(\gamma\) and \(\kappa_j\), the details of the asymptotic analysis depend on how these parameters scale with the size of the traps. Under the scalings \(\gamma = O(1/\epsilon^2)\) and \(\kappa = O(1/\epsilon)\), we show that the contributions from the semipermeable membranes are encapsulated by an effective reduction in the diffusive capacitance \(C_j\) of each spherical trap compared to the standard example of totally absorbing traps, for which \(C_j\) is the trap radius. We then explore how the asymptotic expansions are modified when \(\gamma = O(1/\epsilon)\) (slow absorption) or \(\kappa = O(1)\) (low permeability). In particular, we show that the \(O(\epsilon)\) contribution to \(\pi_k(x_0)\) and the \(O(1)\) contribution to \(T(x_0)\) are also now constants involving effective capacitances.

Another important limiting case is obtained by taking \(\alpha_j \to 0\) for finite \(\kappa_j\), which means that once the particle enters a trap it can never escape (no outward flux). Each trap thus acts as a partially absorbing surface \(\partial \mathcal{U}_j\) with a Robin boundary condition. The corresponding reaction rate is determined by \(\kappa_j\). We have recently analyzed a generalized version of the narrow capture problem with partially absorbing surfaces \[11\] by combining matched asymptotic analysis with an encounter-based formulation of diffusion-mediated surface reactions \[27, 28, 12, 13\]. The latter considers the joint probability density or generalized propagator for particle position and the so-called boundary local time, which characterizes the amount of time that a Brownian particle spends in the neighborhood of a point on a totally reflecting boundary. The effects of surface reactions are then incorporated via an appropriate stopping condition for the boundary local time. In particular, Robin boundary conditions are recovered in the special case of an exponential law for the stopping local times. In Ref. \[11\] we derived an asymptotic expansion of the generalized propagator in the case of diffusion in an unbounded domain \(\mathbb{R}^3\). (The traps were taken to be small compared to the minimum distance between any pair of traps.) One difference from a bounded domain \(\Omega\) is that the splitting probabilities are \(O(\epsilon)\), since 3D diffusion is transient rather than recurrent. Our main result was to show that for a general surface reaction, the leading order terms in the asymptotic expansion are characterized by an effective renormalization of the capacitance (radius) of the form \(C_j \to C_j - \tilde{\Psi}(1/C_j)\), where \(\tilde{\Psi}\) is the Laplace transform of the stopping local time distribution. In the final part of the paper we generalize this result to narrow capture in bounded domains, thus establishing that a wide range of narrow capture problems can be analyzed in terms of effective capacitances. (Alternative methods for analyzing the encounter-based narrow capture problem are developed in Ref. \[29\].)

The structure of the paper is as follows. In section 2, we write down the forward reaction-diffusion equations for the narrow capture problem with semipermeable traps,
define the splitting probabilities and MFPT, and discuss various limiting cases. We then derive the boundary value problems (BVPs) for these quantities by constructing the corresponding backward reaction-diffusion equations. The main nontrivial step is determining the adjoint semipermeable boundary conditions. In section 3 we carry out the matched asymptotic analysis of the splitting probabilities for $\gamma = O(1/\epsilon^2)$ and $\kappa = O(1/\epsilon)$, and derive an explicit expression for the effective capacitances C_j. In section 4 we develop the corresponding analysis of the unconditional MFPT. The explicit example of a triplet of traps in the unit sphere is presented in section 5, and the alternative forms of scaling are considered in section 6. Finally, in section 7, we consider the narrow capture problem with partially absorbing surfaces.

2. The 3D narrow capture problem. Consider a set of partially absorbing traps $U_k \subset \Omega$, $k = 1, \ldots, N$, in a bounded search domain $\Omega \subset \mathbb{R}^3$ and set $\bigcup_{k=1}^{N} U_k = \mathcal{U}_a$, see Fig. 2.1. Whenever the particle is within U_k it can be absorbed (react) at a rate γ. Each trap is taken to be much smaller than Ω, that is, $|U_j| \sim \epsilon^3 |\Omega|$ with $U_j \rightarrow x_j \in \Omega$ uniformly as $\epsilon \rightarrow 0$, $j = 1, \ldots, N$. In addition, the traps are assumed to be well separated with $|x_i - x_j| = O(1)$, $j \neq i$, and $\text{dist}(x_j, \partial \Omega) = O(1)$ for all $i = 1, \ldots, N$. For concreteness, we take each trap to be a 3-sphere of radius $\epsilon \rho_j$: $U_i = \{x \in \Omega, |x - x_i| \leq \epsilon \rho_i\}$. Finally, the jth trap boundary ∂U_j is treated as a semipermeable interface with $\partial U_j^+ (\partial U_j^-)$ denoting the side approached from outside (inside) U_j, see Fig. 2.1(b). The particle flux across each interface is continuous but there is a jump discontinuity in the concentration. Throughout the paper we will fix the length and time scales by taking $L \equiv |\Omega|^{1/3} = O(1)$ and $\tau \equiv L^2/D = O(1)$.

2.1. Forward reaction-diffusion equations. Let $p(x, t|x_0)$ be the probability density that at time t a particle is at $X(t) = x$, having started at position x_0. We will set $p = q_j$ for all $x \in U_j$ so that

$$\frac{\partial p(x, t|x_0)}{\partial t} = D \nabla^2 p(x, t|x_0), \ x \in \Omega \setminus \mathcal{U}_a, \quad \quad (2.1a)$$

$$\frac{\partial q_j(x, t|x_0)}{\partial t} = D_j \nabla^2 q_j(x, t|x_0) - \gamma q_j(x, t|x_0), \ x \in U_j, \quad \quad (2.1b)$$

Fig. 2.1. (a) A particle diffuses in a bounded domain $\Omega \subset \mathbb{R}^3$ containing N partially absorbing traps U_j, $j = 1, \ldots, N$. Whenever the particle is within the trap domain U_j, it can be absorbed at a rate γ. The outward unit normals of $\partial \Omega$ and ∂U_j are denoted by n and n_j, respectively. (b) The boundary ∂U_j of the jth trap acts as a semipermeable interface.
together with the semipermeable boundary conditions

\[D \nabla p(x^+, t|x_0) \cdot n_j = D_j \nabla q_j(x^-, t|x_0) \cdot n_j \equiv J_j(x, t|x_0) \quad (2.1c) \]

\[J_j(x, t|x_0) = \kappa_j [(1 - \alpha_j)p(x^+, t|x_0) - \alpha_j q_j(x^-, t|x_0)], \quad x \in \partial \mathcal{U}_j, \quad (2.1d) \]

and the exterior boundary condition

\[\nabla p \cdot n = 0, \quad x \in \partial \Omega. \quad (2.1e) \]

Here \(D \) and \(D_j \) are the diffusivities in \(\Omega \setminus \mathcal{U}_a \) and \(\mathcal{U}_j \), respectively, \(n \) is the outward unit normal at a point on \(\partial \Omega \), \(n_j \) is the outward unit normal at a point on \(\partial \mathcal{U}_j \), \(J_j(x, t) \) is the continuous inward flux across the point \(x \in \partial \mathcal{U}_j \), \(\kappa_j \) is the permeability of the interface \(\partial \mathcal{U}_j \), and \(\alpha_j \in [0, 1] \) specifies a directional bias with \(\alpha_j = 1/2 \) the unbiased case. Equations (2.1c,d) are one version of the well-known Kedem-Katchalsky (KK) equations [33, 32, 31]. We will assume that the particle starts at some point \(x_0 \in \Omega \setminus \mathcal{U}_a \).

The absorption flux within the \(k \)-th trap at time \(t \) is

\[J_k(x_0, t) = \gamma \int_{\mathcal{U}_k} q_k(x, t|x_0)dx, \quad k = 1, \ldots, N. \quad (2.2) \]

Hence, the splitting probability that the particle is eventually captured by the \(k \)-th trap is

\[\pi_k(x_0) = \int_0^\infty J_k(x_0, t')dt' = \tilde{J}_k(x_0, 0), \quad (2.3) \]

where \(\tilde{J}_k(x_0, s) \) denotes the Laplace transform of \(J_k(x_0, t) \). Let \(Q(x_0, t) \) denote the survival probability that the particle hasn’t been absorbed by a trap in the time interval \([0, t]\), having started at \(x_0 \):

\[Q(x_0, t) = \int_\Omega p(x, t|x_0)dx = \int_{\Omega \setminus \mathcal{U}_a} p(x, t|x_0)dx + \sum_{k=1}^N \int_{\mathcal{U}_k} q_k(x, t|x_0)dx. \quad (2.4) \]

Differentiating both sides of this equation with respect to \(t \) and using equations (2.1a,b) implies that

\[
\frac{\partial Q(x_0, t)}{\partial t} = D \int_{\Omega \setminus \mathcal{U}_a} \nabla^2 p(x, t|x_0)dx + \sum_{k=1}^N \int_{\mathcal{U}_k} \left[D_k \nabla^2 q_k(x, t|x_0) - \gamma q_k(x, t|x_0) \right]dx \\
= -D \sum_{k=1}^N \int_{\partial \mathcal{U}_k} \nabla p \cdot n_k d\sigma + \sum_{k=1}^N D_k \int_{\partial \mathcal{U}_k} \nabla q_k \cdot n_k d\sigma \\
- \gamma \sum_{k=1}^N \int_{\mathcal{U}_k} q_k(x, t|x_0)dx = -\sum_{k=1}^N \tilde{J}_k(x_0, t), \quad (2.5)
\]

where we have used the current conservation condition in equation (2.1c). Laplace transforming equation (2.5) and imposing the initial condition \(Q(x_0, 0) = 1 \) gives

\[s\tilde{Q}(x_0, s) - 1 = -\sum_{k=1}^N \tilde{J}_k(x_0, s). \quad (2.6) \]
In the case of a bounded domain Ω, the particle is eventually absorbed by one of the traps with probability one, which means that $\lim_{t \to \infty} Q(x_0, t) = \lim_{s \to 0}s\bar{Q}(x_0, s) = 0$. Hence, $\sum_{k=1}^{N} \bar{J}_k(x_0, s) = \sum_{k=1}^{N} \pi_k(x_0) = 1$. The normalized flux $\bar{J}_k(x_0, t)/\pi_k(x_0)$ is the conditional FPT density for absorption by the kth trap. Hence, the kth conditional MFPT is

$$T_k(x_0) = \frac{1}{\pi_k(x_0)} \int_0^\infty t \bar{J}_k(x_0, t) dt = -\frac{1}{\pi_k(x_0)} \left. \frac{\partial}{\partial s} \bar{J}_k(x_0, s) \right|_{s=0}.$$ \hspace{1cm} (2.7)

The corresponding unconditional MFPT is

$$T(x_0) \equiv \sum_{k=1}^{N} \pi_k(x_0) T_k(x_0) = -\left. \frac{\partial}{\partial s} \sum_{k=1}^{N} \bar{J}_k(x_0, s) \right|_{s=0} = \bar{Q}(x_0, 0).$$ \hspace{1cm} (2.8)

Note that if the domain Ω were unbounded then $T(x_0)$ would be infinite.

Finally, note that the Laplace transformed fluxes $\bar{J}_j(x_0, s)$ and $\bar{J}_j(x, t|x_0)$ can be related as follows. Integrating equation (2.1b) with respect to $x \in U_j$ and multiplying by γ gives

$$\frac{\partial \bar{J}_j(x_0, t)}{\partial t} = \gamma D_j \int_{\partial U_j} \nabla^2 \bar{q}_j(x, t|x_0) dx - \gamma \bar{J}_j(x_0, t)$$

$$= \gamma D_j \int_{\partial U_j} \nabla \bar{q}_j(x, t|x_0) \cdot n_j dx - \gamma \bar{J}_j(x_0, t)$$

$$= \gamma \int_{\partial U_j} J_j(x, t|x_0) dx - \gamma \bar{J}_j(x_0, t).$$ \hspace{1cm} (2.9)

Laplace transforming this equation with respect to t and using the initial condition $\bar{J}_j(x_0, 0) = 0$ for $x_0 \notin U_j$, we have

$$(\gamma + s) \bar{J}_j(x_0, s) = \gamma \int_{\partial U_j} \bar{J}_j(x, s|x_0) dx.$$ \hspace{1cm} (2.10)

In particular, for all $x_0 \notin U_k$

$$\pi_k(x_0) \equiv \bar{J}_k(x_0, 0) = \int_{\partial U_k} \bar{J}_k(x, 0|x_0) dx$$ \hspace{1cm} (2.11)

and

$$T_k(x_0) \equiv -\frac{1}{\pi_k(x_0)} \left. \frac{\partial}{\partial s} \bar{J}_k(x_0, s) \right|_{s=0} = \frac{1}{\gamma} - \frac{1}{\pi_k(x_0)} \int_{\partial U_k} \partial_s \bar{J}_k(x, 0|x_0) dx.$$ \hspace{1cm} (2.12)

2.2. Limiting cases.** The general model given by equations (2.1) includes a number of limiting cases that have been considered previously. These are illustrated in Fig. 2.2. First, in the limit $\alpha_j \to \infty$ (complete permeability), the particle can freely enter and exit the jth trap and is absorbed at a rate γ whenever it is within the trap interior (Fig. 2.2(b)). The corresponding narrow capture problem was analyzed in Ref. [10]. On the other hand, if $\alpha_j \to 0$, then once the particle enters the trap it cannot escape (zero outflux). This means that ∂U_j acts as a partially absorbing
boundary with reactivity κ_j, and the boundary condition (2.1(c)) becomes Robin (Fig. 2.2(c)). That is, we have

\[
\frac{\partial p(x,t|x_0)}{\partial t} = D\nabla^2 p(x,t|x_0), \quad x \in \Omega \setminus \mathcal{U}_a, \quad \nabla q \cdot n = 0, \quad x \in \partial \Omega.
\]

(2.13a)

together with the Robin boundary conditions

\[
D\nabla p(x,t|x_0) \cdot n_j = \kappa_j p(x,t|x_0), \quad x \in \partial \mathcal{U}_j
\]

(2.13b)

The narrow capture problem with partially reflecting surfaces $\partial \mathcal{U}_j$ was recently developed with in the context of encounter-based models [11], see also section 7. Finally, in the double limit $\gamma \to \infty$ (or $\alpha_j \to 0$) and $\kappa_j \to \infty$, the surface \mathcal{U}_j becomes totally absorbing (Fig. 2.2(d)), and we recover the original example considered in Refs. [18, 9].

2.3. Backward equations, splitting probabilities and MFPTs. In order to derive BVPs for the splitting probabilities and the MFPT we need to determine the backward diffusion equation. Since the adjoints of the semipermeable boundary conditions (2.1c,d) are not as familiar as classical boundary conditions, we derive the backward equation explicitly. We use the fact that the solution $p(x,t|x_0)$ to the
forward BVP (2.1) satisfies the Chapman-Kolmogorov equation

\[p(x, t|x_0) = \int_{\Omega} p(x, t - \tau|y)p(y, \tau|x_0)dy, \quad 0 \leq \tau \leq t. \] (2.14)

This essentially states that the probability of \(x\) given \(x_0\) is the sum of the probabilities of each possible path from \(x_0\) to \(x\). We have also imposed time translation invariance. Using the fact that the left-hand side of equation (2.14) is independent of the intermediate time \(\tau\), we have

\[0 = \int_{\Omega} \partial_{\tau} p(x, t - \tau|y)p(y, \tau|x_0)dy + \int_{\Omega} p(x, t - \tau|y)\partial_{\tau} p(y, \tau|x_0)dy. \] (2.15)

Since \(p(y, \tau|x_0)\) satisfies the forward BVP equation, \(\partial_{\tau}[p(y, \tau|x_0)]\) can be replaced by terms involving derivatives with respect to \(y\):

\[\int_{\Omega} p(x, t - \tau|y)\partial_{\tau} p(y, \tau|x_0)dy = D \int_{\Omega\setminus U_a} u(x, t - \tau|y)\nabla_y^2 p(y, \tau|x_0)dy \]

\[+ \sum_{k=1}^{N} \int_{U_k} v_k(x, t - \tau|y)[D_k \nabla_y^2 q_k(y, \tau|x_0) - \gamma q_k(y, \tau|x_0)]dy. \]

(Here we are using the notation that for all \(x \in \Omega\), \(p(x, t - \tau|y) = u(x, t - \tau|y)\) if \(y \in \Omega\setminus U_a\) and \(p(x, t - \tau|y) = v_k(x, t - \tau|y)\) if \(y \in U_k\).) Integrating by parts using Green’s identities shows that

\[\int_{\Omega\setminus U_a} u(x, t - \tau|y)\nabla_y^2 p(y, \tau|x_0)dy \]

\[= - \int_{\Omega\setminus U_a} \nabla_y u(x, t - \tau|y) \cdot \nabla_y p(y, \tau|x_0)dy + \int_{\partial \Omega} u(x, t - \tau|y)\nabla_y p(y, \tau|x_0) \cdot n dy \]

\[- \sum_{k=1}^{N} \int_{\partial U_k^+} u(x, t - \tau|y)\nabla_y p(y, \tau|x_0) \cdot n_k dy \]

\[= \int_{\Omega\setminus U_a} \nabla_y^2 u(x, t - \tau|y)p(y, \tau|x_0)dy - \int_{\partial \Omega} p(y, \tau|x_0)\nabla_y u(x, t - \tau|y) \cdot n dy \]

\[- \sum_{k=1}^{N} \int_{\partial U_k^+} u(x, t - \tau|y)\nabla_y p(y, \tau|x_0) \cdot n_k dy \]

\[+ \sum_{k=1}^{N} \int_{\partial U_k^-} p(y, \tau|x_0)\nabla_y u(x, t - \tau|y) \cdot n_k dy. \]

Similarly,

\[\int_{U_k} v_k(x, t - \tau|y)\nabla_y^2 q_k(y, \tau|x_0) = \int_{U_k} \nabla_y^2 v_k(x, t - \tau|y)p_k(y, \tau|x_0)dy \]

\[+ \int_{\partial U_k^+} v_k(x, t - \tau|y)\nabla_y q_k(y, \tau|x_0) \cdot n_k dy \]

\[- \int_{\partial U_k^-} q_k(y, \tau|x_0)\nabla_y v_k(x, t - \tau|y) \cdot n_k dy. \]
We see from the above equations that the various boundary terms cancel if we impose the adjoint boundary conditions \(\nabla_y u(x, t - \tau |y) \cdot n = 0 \) and
\[
D p(y^+, \tau |x_0) \nabla_y u(x, t - \tau |y^+) \cdot n_k - D u(x, t - \tau |y^+) \nabla_y p(y^+, \tau |x_0) \cdot n_k \\
= D_k q_k(y^-, \tau |x_0) \nabla_y v_k(x, t - \tau |y^-) \cdot n_k - D_k v_k(x, t - \tau |y^-) \nabla_y q_k(y^-, \tau |x_0) \cdot n_k
\]
for all \(y^\pm \in \partial U_k^\pm \). Setting
\[
J_k^I(x, t|y^+) = D \nabla_y u(x, t|y^+) \cdot n_k, \quad J_k^I(x, t|y^-) = D_k \nabla_y v_k(x, t - \tau|y^-) \cdot n_k
\]
gives
\[
p(y^+, \tau |x_0) J_k^I(x, t - \tau|y^+) - u(x, t - \tau|y^+) J_k(y, \tau|x_0) \\
= q_k(y^-, \tau|x_0) J_k^I(x, t - \tau|y^-) - v_k(x, t - \tau|y^-) J_k(y, \tau|x_0), \quad y^\pm \in \partial U_k^\pm.
\]
Rearranging the last equation and imposing the forward semipermeable boundary conditions \((2.19a, b, c, d)\) yields
\[
p(y^+, \tau |x_0) J_k^I(x, t - \tau|y^+) - q_k(y^-, \tau|x_0) J_k^I(x, t - \tau|y^-) \\
= [u(x, t - \tau|y^+) - v_k(x, t - \tau|y^-)] J_k(y, \tau|x_0)
\]
\[
= [u(x, t - \tau|y^+) - v_k(x, t - \tau|y^-)] \kappa_k [(1 - \alpha_k) p(y^+, \tau|x_0) - \alpha_k q_k(y^-, \tau|x_0)]
\]
for \(y^\pm \in \partial U_k^\pm \). We thus have the adjoint equations
\[
J_k^I(x, t|y^+) = \kappa_k (1 - \alpha_k) [u(x, t|y^+) - v_k(x, t|y^-)] \quad (2.19a) \\
J_k^I(x, t|y^-) = \kappa_k \alpha_k [u(x, t|y^+) - v_k(x, t|y^-)]. \quad (2.19b)
\]
Combining our various results we the following backward BVP
\[
\frac{\partial u(x, t|y)}{\partial t} = D \nabla_y^2 u(x, t|y), \quad y \in \Omega \setminus U_a, \quad (2.19a) \\
\frac{\partial v_j(x, t|y)}{\partial t} = D_j \nabla_y^2 v_j(x, t|y) - \gamma v_j(x, t|y), \quad y \in U_j, \quad (2.19b)
\]
with the adjoint semipermeable boundary conditions
\[
\alpha_j D \nabla_y u(x, t|y^+) \cdot n_j = (1 - \alpha_j) D_j \nabla v_j(x, t|y^-) \cdot n_j \equiv \frac{1}{2} J_j^I(x, t|y) \quad (2.19c) \\
J_j^I(x, t|y) = 2 \kappa_j \alpha_j (1 - \alpha_j) [u(x, t|y^+) - v_j(x, t|y^-)], \quad y \in \partial U_j, \quad (2.19d)
\]
and the exterior boundary condition
\[
\nabla_y u(x, t|y) \cdot n = 0, \quad y \in \partial \Omega. \quad (2.19e)
\]
Note that if \(\alpha_j = 1/2 \) (unbiased interface), then the semipermeable boundary conditions are self-adjoint.

We can now write down the corresponding BVP for the absorption flux \(J_k(x_0, t) \) by integrating equations \((2.19)\) with respect to \(x \in U_a \):
\[
\frac{\partial J_k(x_0, t)}{\partial t} = D \nabla^2 J_k(x_0, t), \quad x_0 \in \Omega \setminus U_a, \quad (2.20a) \\
\frac{\partial J_k(x_0, t)}{\partial t} = D_j \nabla^2 J_k(x_0, t) - \gamma J_k(x_0, t), \quad x_0 \in U_j, \quad (2.20b)
\]
together with the adjoint semipermeable boundary conditions

\[\alpha_j D \nabla J_k(x_0, t) \cdot n_j = (1 - \alpha_j)D_j \nabla J_k(x_0, t) \cdot n_j = 1/2 J^j_k(x_0, t) \]

(2.20c)

\[J^j_k(x_0, t) = 2\kappa_j \alpha_j (1 - \alpha_j)[J_k(x_0^+, t) - J_k(x_0^-, t)], \ x_0 \in \partial U_j, \]

(2.20d)

and the exterior boundary condition

\[\nabla J_k(x_0, t) \cdot n = 0, \ x_0 \in \partial \Omega. \]

(2.20e)

All derivatives are with respect to the initial position \(x_0 \). The initial condition is

\[J_k(x_0, 0) = \gamma I_{U_k}(x_0), \]

(2.21)

where \(I_{U_k}(x_0) = 1 \) if \(x_0 \in U_k \) and is zero otherwise. Laplace transforming the BVP (2.20) and using equation (2.3), we find that the splitting probability \(\pi_k(x) \) satisfies the BVP

\[D \nabla^2 \pi_k(x_0) = 0, \ x_0 \in \Omega \setminus U_a, \]

(2.22a)

\[D_j \nabla^2 \pi_k(x_0) + \gamma(\delta_{j,k} - \pi_k(x_0)) = 0, \ x_0 \in U_j, \]

(2.22b)

\[\alpha_j D \nabla \pi_k(x_0^+) \cdot n_j = (1 - \alpha_j)D_j \nabla \pi_k(x_0^-) \cdot n_j \]

\[= \kappa_j \alpha_j (1 - \alpha_j)[\pi_k(x_0^+) - \pi_k(x_0^-)], \ x_0 \in \partial U_j, \]

(2.22c)

and the exterior boundary condition

\[\nabla \pi_k(x_0) \cdot n = 0, \ x_0 \in \partial \Omega. \]

(2.22d)

Similarly, using equation (2.8), we obtain the BVP for the unconditional MFPT, which takes the form

\[\nabla^2 T(x_0) = -1/D, \ x \in \Omega \setminus U_a, \]

(2.23a)

\[\nabla^2 T(x_0) - \gamma T(x_0) = -1/D_j, \ x \in U_j, \]

(2.23b)

\[\alpha_j D \nabla T(x_0) \cdot n_j = (1 - \alpha_j)D_j \nabla T(x_0) \cdot n_j \]

\[= \kappa_j \alpha_j (1 - \alpha_j)[T(x_0^+) - T(x_0^-)], \ x_0 \in \partial U_j, \]

(2.23c)

and the exterior boundary condition

\[\nabla T(x_0) \cdot n = 0, \ x_0 \in \partial \Omega. \]

(2.23d)

3. Matched asymptotic analysis: splitting probabilities. The BVP (2.22) for the splitting probabilities and the BVP (2.23) for the unconditional MFPT can both be solved in the small trap limit using matched asymptotic expansions and Green’s functions along analogous lines to previous studies of the narrow capture problem [17, 16, 18, 6, 38, 39, 9, 10]. The basic idea is to construct an inner or local solution valid in an \(O(\epsilon) \) neighborhood of each trap, and then match to an outer or global solution that is valid away from each neighborhood. We first consider the BVP for the splitting probabilities.
In the outer region $\Omega' = \Omega \setminus \{x_1, \ldots, x_N\}$, π_k is expanded as $\pi_k = \pi_k^{(0)} + \epsilon \pi_k^{(1)} + \epsilon^2 \pi_k^{(2)} + \ldots$, where $\pi_k^{(0)}$ is an unknown constant. After dropping the subscript on x_0, we have

$$D \nabla^2 \pi_k^{(n)}(x) = 0, \; x \in \Omega', \quad (3.1a)$$

$$\nabla \pi_k^{(n)}(x) \cdot n = 0, \; x \in \partial \Omega, \quad n \geq 1, \quad (3.1b)$$

together with a set of singularity conditions as $x \to x_j$, $j = 1, \ldots, N$. The latter are determined by matching to the inner solution. In the inner region around the j-th trap, we introduce the stretched coordinates $z = \epsilon^{-1}(x - x_j)$ and set

$$U_k(z) = \pi_k(x_j + \epsilon z), \; |z| < \rho_j, \quad V_k(z) = \pi_k(x_j + \epsilon z), \; |z| > \rho_j.$$

Note that U_k and V_k are the components of the inner solution corresponding to the interior and exterior of the j-th trap. For the moment, we will assume that $\gamma = O(1/\epsilon^2)$ and $\kappa = O(1/\epsilon)$ and perform the scalings

$$\gamma = \frac{\gamma'}{\epsilon^2}, \quad \kappa_j = \frac{\kappa'_j}{\epsilon}. \quad (3.2)$$

Introducing the series expansions

$$U_k = U_k^{(0)} + \epsilon U_k^{(1)} + \ldots, \quad V_k = V_k^{(0)} + \epsilon V_k^{(1)} + \ldots, \quad (3.3)$$

we have

$$D \nabla^2 V_k^{(n)}(z) = 0, \; |z| > \rho_j, \quad (3.4a)$$

$$D_j \nabla^2 U_k^{(n)}(z) + \gamma'(\delta_{j,k} \delta_{n,0} - U_k^{(n)}(z)) = 0, \; |z| < \rho_j, \quad (3.4b)$$

$$\alpha_j D \nabla V_k^{(n)}(z) \cdot n_j = (1 - \alpha_j) D_j \nabla U_k^{(n)}(z) \cdot n_j$$

$$= \kappa'_j \alpha_j (1 - \alpha_j) [U_k^{(n)}(z) - V_k^{(n)}(z)], \; |z| = \rho_j, \quad (3.4c)$$

Finally, the matching condition is that the near-field behavior of the outer solution as $x \to x_j$ should agree with the far-field behavior of the inner solution as $|y| \to \infty$, which is expressed as

$$\pi_k^{(0)} + \epsilon \pi_k^{(1)} + \epsilon^2 \pi_k^{(2)} \sim V_k^{(0)} + \epsilon V_k^{(1)} + \epsilon^2 V_k^{(2)} + \ldots.$$

3.1. Inner solution $U_k^{(0)}, V_k^{(0)}$. We solve the inner BVP for $n = 0$ using spherical polar coordinates with $\rho = |z|$ and the far-field condition $V_k^{(0)} \sim \pi_k^{(0)} = \text{constant}$. Equations (3.4) reduce to the form

$$D \frac{\partial^2 V_k^{(0)}(\rho)}{\partial \rho^2} + \frac{2D}{\rho} \frac{\partial V_k^{(0)}(\rho)}{\partial \rho} = 0, \; \rho > \rho_j, \quad (3.5a)$$

$$D_j \frac{\partial^2 U_k^{(0)}(\rho)}{\partial \rho^2} + \frac{2D_j}{\rho} \frac{\partial U_k^{(0)}(\rho)}{\partial \rho} + \gamma'(\delta_{j,k} - U_k^{(0)}(\rho)) = 0, \; \rho < \rho_j, \quad (3.5b)$$

$$\alpha_j D \frac{\partial V_k^{(0)}(\rho_j)}{\partial \rho} = (1 - \alpha_j) D_j \frac{\partial U_k^{(0)}(\rho_j)}{\partial \rho} = \kappa'_j \alpha_j (1 - \alpha_j) [V_k^{(0)}(\rho_j) - U_k^{(0)}(\rho_j)]. \quad (3.5c)$$
A well known trick for solving the spherically symmetric diffusion equation in 3D is to perform the change of variables \(U_k^{(0)}(\rho) = \phi_k^{(0)}(\rho) / \rho \) and \(V_k^{(0)}(\rho) = \psi_k^{(0)}(\rho) / \rho \). Substituting into equations (3.5a,b) yields

\[
D \frac{\partial^2 \psi_k^{(0)}(\rho)}{\partial \rho^2} = 0, \quad \rho > \rho_j, \quad \text{(3.6a)}
\]
\[
D_j \frac{\partial^2 \phi_k^{(0)}(\rho)}{\partial \rho^2} + \gamma'(\rho \delta_{j,k} - \phi_k^{(0)}(\rho)) = 0, \quad \rho < \rho_j \quad \text{(3.6b)}
\]

We also have the far-field condition \(\psi_k^{(0)} \sim \pi_k^{(0)} \rho \). We thus obtain the general solution

\[
U_k^{(0)}(\rho) = \delta_{j,k} + B_{jk} \sinh(\sqrt{\gamma'D_j} \rho), \quad V_k^{(0)}(\rho) = \frac{A_{jk}^{(0)}}{\rho} + \pi_k^{(0)}. \quad \text{(3.7)}
\]

Substituting into the boundary conditions (3.5c) gives

\[
- \frac{\alpha_j D A_{jk}^{(0)}}{\rho_j} = (1 - \alpha_j) B_{jk} \left\{ \sqrt{\gamma'D_j} \cosh(\sqrt{\gamma'D_j} \rho_j) - \frac{D_j}{\rho_j} \sinh(\sqrt{\gamma'D_j} \rho_j) \right\}, \quad \text{(3.8a)}
\]
\[
- \frac{\alpha_j D A_{jk}^{(0)}}{\rho_j} = \kappa'_j \alpha_j (1 - \alpha_j) \left[A_{jk}^{(0)} + [\pi_k^{(0)} - \delta_{j,k} \rho_j - B_{jk}^{(0)} \sinh(\sqrt{\gamma'D_j} \rho_j) \right]. \quad \text{(3.8b)}
\]

Setting

\[
\Gamma^a_j = \frac{\alpha_j D}{(1 - \alpha_j) \rho_j}, \quad \Gamma^b_j = \frac{D_j}{(1 - \alpha_j) \kappa'_j \rho_j + 1} \quad \text{(3.9)}
\]

and

\[
C_j = \frac{D_j \left\{ \rho_j \sqrt{\gamma'/D_j} \cosh(\sqrt{\gamma'/D_j} \rho_j) - \sinh(\sqrt{\gamma'/D_j} \rho_j) \right\}}{\Gamma^a_j \sinh(\sqrt{\gamma'/D_j} \rho_j) + \Gamma^b_j \left\{ \rho_j \sqrt{\gamma'/D_j} \cosh(\sqrt{\gamma'/D_j} \rho_j) - \sinh(\sqrt{\gamma'/D_j} \rho_j) \right\}}. \quad \text{(3.10)}
\]

we find that

\[
A_{jk}^{(0)} = C_j (\delta_{j,k} - \pi_k^{(0)}). \quad \text{(3.11)}
\]

The expression for the coefficient \(C_j \) is one of the main results of this paper. Its significance will be developed below.

3.2. Calculation of \(\pi_k^{(0)} \). So far we have shown that the inner solution \(V_k^{(0)} \) outside the \(j \)th trap is

\[
V_k^{(0)}(z) = \pi_k^{(0)} + \frac{A_{jk}^{(0)}}{|z|}, \quad \text{(3.12)}
\]

with \(A_{jk}^{(0)} \) given by equation (3.11). It follows that the outer solution \(\pi_k^{(1)} \) satisfies the singularity condition

\[
\pi_k^{(1)}(x) \sim \frac{A_{jk}^{(0)}}{|x - x_j|} \quad \text{as} \; x \to x_j. \]
In other words, \(\pi_k^{(1)} \) satisfies the inhomogeneous equation

\[
\nabla^2 \pi_k^{(1)}(x) = -4\pi \sum_{j=1}^{N} A_{jk}^{(0)} \delta(x - x_j), \quad x \in \Omega; \quad \nabla \pi_k^{(1)}(x) \cdot n = 0, \quad x \in \partial\Omega. \quad (3.13)
\]

Integrating this equation with respect to \(x \in \Omega \) and using the divergence theorem implies that \(\sum_{j=1}^{N} A_{jk}^{(0)} = 0 \). Hence, summing equation (3.11) with respect to \(j = 1, \ldots, N \) determines the unknown constant \(\pi_k^{(0)} \) according to

\[
\pi_k^{(0)} = \frac{C_k}{NC}, \quad \mathcal{C} = \frac{1}{N} \sum_{j=1}^{N} C_j. \quad (3.14)
\]

In particular, note that \(\sum_{k=1}^{N} \pi_k^{(0)} = 1 \) and thus \(\sum_{k=1}^{N} \pi_k^{(n)} = 0 \) for \(n \geq 1 \).

Equation (3.13) can now be solved in terms of the Neumann Green’s function:

\[
\pi_k^{(1)}(x) = 4\pi \sum_{j=1}^{N} A_{jk}^{(0)} G(x, x_j) + \chi_k^{(1)}, \quad (3.15)
\]

where \(\nabla^2 G(x, x') = \frac{1}{|x - x'|} - \delta(x - x'), \quad x \in \Omega; \quad \nabla G \cdot n = 0, \quad x \in \partial\Omega, \quad (3.16a) \)

\[
G(x, x') = \frac{1}{4\pi|x - x'|} + R(x, x'), \quad \int_{\Omega} G(x, x') dx = 0, \quad (3.16b)
\]

with \(R(x, x') \) corresponding to the regular part of the Green’s function. Integrating both sides of equation (3.15) with respect to \(x \in \Omega \) shows that the unknown constant \(\chi_k^{(1)} \) satisfies

\[
\chi_k^{(1)} = \frac{1}{|\Omega|} \int_{\Omega} \pi_k^{(1)}(x) dx, \quad \sum_{k=1}^{N} \chi_k^{(1)} = 0. \quad (3.17)
\]

3.3. Calculation of \(\chi_k^{(1)} \)

The outer solution (3.15) implies that the inner solution \(V_k^{(1)} \) around the \(j \)th trap has the far-field behavior

\[
V_k^{(1)}(z) \sim A_{k}^{(1)} \equiv 4\pi \sum_{i=1}^{N} G_{ji} A_{ik}^{(0)} + \chi_k^{(1)}, \quad |z| \to \infty \quad (3.18)
\]

where \(G_{ji} = G(x_j, x_i) \) for \(i \neq j \), \(G_{jj} = R(x_j, x_j). \) (3.19)

The inner BVP for \(n = 1 \) for \(V_k^{(1)}(\rho) = \psi_k^{(1)}(\rho)/\rho \) and \(U_k^{(1)}(\rho) = \phi_k^{(1)}(\rho)/\rho \) is

\[
D \frac{\partial^2 \psi_k^{(1)}(\rho)}{\partial \rho^2} = 0, \quad \rho > \rho_j, \quad (3.20a)
\]

\[
D_j \frac{\partial^2 \phi_k^{(1)}(\rho)}{\partial \rho^2} - \gamma' \phi_k^{(1)}(\rho) = 0, \quad \rho < \rho_j, \quad (3.20b)
\]
and $\psi_k^{(1)} \sim \Lambda_{jk}^{(1)} \rho$. The general solution is thus

$$U_k^{(1)}(\rho) = B_{jk}^{(1)} \frac{\sinh(\sqrt{\gamma' / D_j} \rho)}{\rho}, \quad V_k^{(1)}(\rho) = \frac{A_{jk}^{(1)}}{\rho} + \Lambda_{jk}^{(1)}. \quad (3.21)$$

Proceeding along analogous lines to the case $n = 0$, we find that

$$A_{jk}^{(1)} = -C_j \Lambda_{jk}^{(1)}, \quad (3.22)$$

with C_j defined in equation (3.10). Hence, the inner solution $V_k^{(1)}$ outside the jth trap is

$$V_k^{(1)}(\rho) = \left(1 - \frac{C_j}{\rho} \right) \Lambda_{jk}^{(1)}. \quad (3.23)$$

It follows that the outer solution $\pi_k^{(2)}$ has the singular behavior

$$\pi_k^{(2)} \sim -\frac{C_j \Lambda_{jk}^{(1)}}{|x - x_j|} \text{ as } x \to x_j. \quad (3.24)$$

That is, $\pi_k^{(2)}$ satisfies the inhomogeneous equation

$$\nabla^2 \pi_k^{(2)}(x) = 4\pi \sum_{j=1}^{N} C_j \Lambda_{jk}^{(1)} \delta(x - x_j), \quad x \in \Omega; \quad \nabla \pi_k^{(2)}(x) \cdot n = 0, \quad x \in \partial \Omega. \quad (3.25)$$

Integrating this equation with respect to $x \in \Omega$ and using the divergence theorem implies that

$$\sum_{j=1}^{N} C_j \left(4\pi \sum_{i=1}^{N} G_{ji}[C_i(\delta_{i,k} - \pi_k^{(0)})] + \chi_k^{(1)} \right) = 0, \quad (3.26)$$

where we have used equations (3.11) and (3.18). That is,

$$\chi_k^{(1)} = \frac{4\pi}{N\mathcal{C}} \left(\pi_k^{(0)} \sum_{i,j=1}^{N} C_j G_{ji} C_i - \sum_{j=1}^{N} C_j G_{jk} C_k \right). \quad (3.27)$$

3.4. Properties of C_j. In summary, the outer solution for the splitting probability π_k is

$$\pi_k(x_0) \sim \frac{C_k}{N\mathcal{C}} \left(1 + 4\pi \epsilon \left(\sum_{i,j=1}^{N} \frac{1}{N\mathcal{C}} C_j G_{ji} C_i - \sum_{j=1}^{N} C_j G_{jk} C_k \right)\right)$$

$$+ 4\pi \epsilon \sum_{j=1}^{N} C_j [G(x_0, x_k) - G(x_0, x_j)] + O(\epsilon^2). \quad (3.28)$$

Hence, the dependence of $\pi_k(x_0)$ on the properties of the jth trap ($\kappa_j, \alpha_j, D_j, \rho_j$) are encapsulated by the coefficients C_j in equation (3.10). In the limit $\gamma' \to \infty$, a particle is instantaneously absorbed when entering a trap and

$$\lim_{\gamma' \to \infty} C_j = \frac{D_j}{\Gamma_j} = \rho_j \left[\frac{D}{(1 - \alpha_j) \kappa_j \rho_j} + 1 \right]^{-1}. \quad (3.29)$$
If we also take $\kappa_j' \to \infty$, $j = 1, \ldots, N$, then the interfaces become totally permeable and $C_j \to \rho_j$. The corresponding splitting probabilities reduce to the form

$$\pi_k(x_0) \sim \frac{\rho_k}{N}\left(1 + 4\pi \epsilon \left(\sum_{i,j=1}^N \frac{\rho_j G_{ji}\rho_i}{N^2} - \sum_{j=1}^N \rho_j G_{jk}\right)
ight) + 4\pi \epsilon \sum_{j=1}^N \rho_j [G(x_0, x_k) - G(x_0, x_j)] + O(\epsilon^2).$$

(3.30)

This is identical to the result previously derived for the 3D narrow capture problem with totally absorbing surfaces ∂U_j [18, 9]. The length ρ_j is the diffusive capacitance of a sphere of radius ρ_j.

Now suppose that $\gamma' \geq 0$, $\alpha_j = 0.5$ and $\kappa_j' \to \infty$, see Fig. 2.2(b). We then recover the example of partially absorbing target interiors analyzed in Ref. [10], except that here we are allowing the diffusivity to be discontinuous across each completely permeable interface. From equation (3.10),

$$\lim_{\kappa_j' \to \infty} C_j = \frac{\rho_j D_j \left\{ \rho_j \sqrt{\gamma'/D_j \rho_j} \cosh(\sqrt{\gamma'/D_j \rho_j}) - \sinh(\sqrt{\gamma'/D_j \rho_j}) \right\}}{D - D_j \sinh(\sqrt{\gamma'/D_j \rho_j}) + D_j \rho_j \sqrt{\gamma'/D_j \rho_j} \cosh(\sqrt{\gamma'/D_j \rho_j})},$$

(3.31)

In particular, if $D_j = D$ then

$$\lim_{\kappa_j' \to \infty} C_j = \rho_j \left\{ 1 - \frac{\tanh(\sqrt{\gamma'/D \rho_j})}{\rho_j \sqrt{\gamma'/D}} \right\},$$

(3.32)

which recovers our previous result [10]. In the case of finite κ_j' and γ', the general expression for C_j in equation (3.10) can be interpreted as the effective capacitance of the sphere with $C_j \leq \rho_j$. Reducing the permeability κ_j' or increasing the outward bias α_j reduces C_j, since it is more difficult for a particle to enter the trap and be absorbed. The latter is illustrated in Fig. 3.1(a), which shows plots of C_j against α_j

![Fig. 3.1. Plot of coefficient C_j defined by equation (3.10) as a function of (a) the bias parameter α_j and (b) the permeability κ_j' for different absorption rates γ'. Default parameters are $D = D_j = \rho_j = 1 = \kappa_j' = 1$ and $\alpha_j = 0.5$.](image)
for various absorption rates γ'. In the limit $\gamma' \to \infty$ we that the range of C_j is $[0, 2/3]$, which is consistent with equation (3.29) for $D = D_j = \rho_j = \kappa_j' = 1$. Corresponding plots of C_j as a function of κ_j' are shown in Fig. 3.1(b).

Finally, consider the intermediate absorption regime in which $\epsilon \ll \gamma' \ll 1$ and $D_j/\rho_j^2 = O(1)$ for all $j = 1, \ldots, N$. Taylor expanding the numerator and denominator on the right-hand side of equation (3.10) with respect to $\xi_j = \sqrt{\gamma'/D_j}\rho_j$ gives

$$
C_j = \frac{D_j \left\{ \xi_j (1 + \xi_j^2/2) - \xi_j (1 + \xi_j^2/6) \right\} + \ldots}{\Gamma_j^2 \xi_j (1 + \xi_j^2/6) + \Gamma_j^2 \left\{ \xi_j (1 + \xi_j^2/2) - \xi_j (1 + \xi_j^2/6) \right\} + \ldots}
$$

$$
\approx \frac{D_j \xi_j^2}{3\Gamma_j^2} \approx \frac{\gamma'(1 - \alpha_j)\rho_j^2}{\Gamma_j^2} = \frac{\gamma'(1 - \alpha_j)|\partial U_j^0|}{4\pi D_j}. \quad (3.33)
$$

That is, to leading order, C_j is proportional to the absorption rate γ' and the stretched trap volume $|\partial U_j^0| = 4\pi\rho_j^2/3$, whereas it is independent of the permeability κ_j'. On the other hand, in the intermediate permeability regime $\epsilon \ll \kappa_j' \ll 1$ and $(1 - \alpha_j)\rho_j/D = O(1)$ for all $j = 1, \ldots, N$, we find that

$$
C_j \approx \frac{D_j}{\Gamma_j^2} \approx \frac{(1 - \alpha_j)\kappa_j'\rho_j^2}{D} = \frac{(1 - \alpha_j)\kappa_j'|\partial U_j^0|}{4\pi D}. \quad (3.34)
$$

To leading order, C_j is proportional to the permeability κ_j' and the stretched trap surface area $|\partial U_j^0| = 4\pi\rho_j^2$, but is independent of γ'.

4. Matched asymptotic analysis: MFPT. A similar analysis to section 3 can be performed in the case of the MFPT. Again we will consider the particular scaling (3.2). In the outer region, T is expanded as $T = \epsilon^{-1}T^{(0)} + \epsilon T^{(1)} + \epsilon^2 T^{(2)} + \ldots$ Here T_0 is an unknown constant, and

$$
\nabla^2 T^{(n)}(x) = -\frac{\delta_{nm}}{D}, \quad x \in \Omega \setminus \{x_1, \ldots, x_N\}, \quad \nabla T^{(n)}(x) \cdot n = 0, \quad x \in \partial \Omega \quad (4.1)
$$

together with certain singularity conditions as $x \to x_j$, $j = 1, \ldots, N$. The latter are determined by matching to the inner solution. In the inner region around the j-th trap, we again introduce the stretched coordinates $z_j = \epsilon^{-1}(x - x_j)$ and set

$$
U(z) = T(x_j + \epsilon z), \quad |z| < \rho_j, \quad V(z) = T(x_j + \epsilon z), \quad |z| > \rho_j.
$$

We keep the same scalings $\gamma \to \gamma'/\epsilon^2$ and $\kappa_j \to \kappa_j/\epsilon$. Introducing the series expansions

$$
U = \epsilon^{-1}U^{(0)} + \epsilon U^{(1)} + \ldots, \quad V = \epsilon^{-1}V^{(0)} + \epsilon V^{(1)} + \ldots, \quad (4.2)
$$

we have

$$
D\nabla^2 V^{(n)}(z) = 0, \quad |z| > \rho_j, \quad (4.3a)
$$

$$
D_j\nabla^2 U^{(n)}(z) - \gamma U^{(n)}(z) = 0, \quad |z| < \rho_j, \quad n = 0, 1, \quad (4.3b)
$$

$$
\alpha_j D\nabla V^{(n)}(z) \cdot n_j = (1 - \alpha_j)D_j \nabla U^{(n)}(z) \cdot n_j = \kappa_j \alpha_j (1 - \alpha_j)|\partial U^{(n)}(z) - V^{(n)}(z)|, \quad |z| = \rho_j. \quad (4.3c)
$$

Finally, the matching condition is that the near-field behavior of the outer solution as $x \to x_j$ should agree with the far-field behavior of the inner solution as $|y| \to \infty$, which is expressed as

$$
\epsilon^{-1}T^{(0)} + \epsilon T^{(1)} + \epsilon^2 T^{(2)} \sim \epsilon^{-1}V^{(0)} + V^{(1)} + \epsilon V^{(2)} \ldots.
$$
Following along similar lines to section 3.1 by working in spherical polar coordinates, we obtain the solutions
\[U^{(0)}(\rho) = B_j^{(0)} \frac{\sinh(\sqrt{\gamma/D_j} \rho)}{\rho}, \quad V^{(0)}(\rho) = \frac{A_j^{(0)}}{\rho} + T^{(0)}. \] (4.4)

with
\[
-\frac{\alpha_j D A_j^{(0)}}{\rho_j} = (1 - \alpha_j) B_j^{(0)} \left\{ \sqrt{\gamma D_j} \cosh(\sqrt{\gamma/D_j} \rho_j) - \frac{D_j}{\rho_j} \sinh(\sqrt{\gamma/D_j} \rho_j) \right\},
\]
\[
-\frac{\alpha_j D A_j^{(0)}}{\rho_j} = \kappa_j \alpha_j (1 - \alpha_j) \left[A_j^{(0)} + T^{(0)} \rho_j - B_j^{(0)} \sinh(\sqrt{\gamma/D_j} \rho_j) \right].
\]

Hence, \(A_j^{(0)} = -C_j T^{(0)} \) with \(C_j \) defined in equation (3.10). Next, the outer solution \(T^{(1)} \) satisfies the singularity condition
\[T^{(1)}(x) \sim -\frac{C_j T^{(0)}}{|x - x_j|} \text{ as } x \rightarrow x_j. \]

Hence, \(T^{(1)} \) satisfies the inhomogeneous equation
\[D \nabla^2 T^{(1)}(x) = -\frac{1}{D} + 4\pi \sum_{j=1}^{N} C_j T^{(0)} \delta(x - x_j), \quad x \in \Omega, \quad \nabla T^{(1)}(x) \cdot n = 0, \quad x \in \partial \Omega. \] (4.6)

Integrating with respect to \(x \in \Omega \) and using the divergence theorem implies that
\[T^{(0)} = \frac{\Omega}{4\pi D N C}. \] (4.7)

Equation (4.6) can now be solved in terms of the Neumann Green’s function:
\[T^{(1)}(x) = -4\pi T^{(0)} \sum_{j=1}^{N} C_j G(x, x_j) + \chi^{(1)}, \] (4.8)

Integrating both sides of equation (4.8) with respect to \(x \in \Omega \) implies that the unknown constant \(\chi^{(1)} \) satisfies
\[\chi^{(1)} = \frac{1}{|\Omega|} \int_{\Omega} T^{(1)}(x) dx. \] (4.9)

The outer solution (4.8) implies that the inner solution \(V^{(1)} \) around the \(j \)th trap has the far-field behavior
\[V^{(1)}(z) \sim A_j^{(1)} \equiv -4\pi T^{(0)} \sum_{i=1}^{N} G_{ji} C_i + \chi^{(1)}, \quad |z| \rightarrow \infty. \] (4.10)

Proceeding along analogous lines to the case \(n = 0 \), we find that
\[V^{(1)}(z) = \left(1 - \frac{C_j}{z} \right) A_j^{(1)} \] (4.11)
with C_j defined in equation (3.10). It follows that the outer solution $T^{(2)}$ has the singular behavior

$$T^{(2)} \sim -\frac{C_j \Lambda_j^{(1)}}{|x - x_j|} \quad \text{as} \quad x \to x_j.$$ (4.12)

That is, $T^{(2)}$ satisfies the inhomogeneous equation

$$D \nabla^2 T^{(2)}(x) = 4\pi \sum_{j=1}^{N} C_j \Lambda_j^{(1)} \delta(x - x_j), \quad x \in \Omega; \quad \nabla T^{(2)}(x) \cdot n = 0, \quad x \in \partial\Omega.$$ (4.13)

Integrating this equation with respect to $x \in \Omega$ and using the divergence theorem implies that

$$\sum_{j=1}^{N} C_j \left(-4\pi T^{(0)} \sum_{i=1}^{N} G_{ji} C_i + \chi^{(1)} \right) = 0,$$ (4.14)

where we have used equation (4.10). That is,

$$\chi^{(1)} = \frac{4\pi T^{(0)}}{NC} \sum_{i,j=1}^{N} C_j G_{ji} C_i.$$ (4.15)

In summary, the outer solution for the unconditional MFPT is given by

$$T(x_0) \sim \frac{|\Omega|}{4\pi D \epsilon NC} \left\{ 1 + 4\pi \sum_{j=1}^{N} \frac{1}{NC} C_j G_{ji} C_i - 4\pi \sum_{j=1}^{N} C_j G(x_0, x_j) \right\} + O(\epsilon).$$ (4.16)

Again we recover previous results in the dual limits $\gamma \to \infty$ and $\kappa_j \to \infty$, $j = 1, \ldots, N$, since $C_j \to \rho_j$ [18, 9]. As in the case of the splitting probabilities, C_j acts as an effective capacitance. Finally note that for a single target, equation (4.16) reduces to

$$T(x_0) \sim \frac{|\Omega|}{4\pi D \epsilon C_1} + \frac{|\Omega|}{D} [R(x_1, x_1) - G(x_0, x_1)] + O(\epsilon).$$ (4.17)

and the $O(1)$ contribution becomes independent of the parameters $(D_1, \kappa_1, \alpha_1, \rho_1)$.

5. Example: triplet of targets in the unit sphere. For the sake of illustration, suppose that the search domain Ω is the unit sphere and that it contains a triplet of targets evenly distributed in the horizontal mid-plane, see Fig. 5.1(a). The 3D Neumann Green’s function in the unit sphere is known explicitly [17]:

$$G_0(x, \xi) = \frac{1}{4\pi|x - \xi|} + \frac{1}{4\pi|x||\xi|} + \frac{1}{4\pi} \ln \left(\frac{2}{1 - ||\xi|| \cos \theta + |x||\xi|} \right)$$

$$+ \frac{1}{6|\Omega|} \left(|x|^2 + ||\xi||^2 \right) - \frac{7}{10\pi},$$ (5.1)

where $|\Omega| = 4\pi/3$, and

$$\cos \theta = \frac{x \cdot \xi}{|x||\xi|}, \quad x' = \frac{x}{|x|^2}, \quad r' = |x' - \xi|. \quad \text{17}$$
Fig. 5.1. MFPT for narrow capture in the unit sphere. (a) A triplet of spherical traps are evenly distributed in the horizontal mid-plane at a radial distance $a = 0.5$ from the center. (b) Contour plot of MFPT $T(x)$ given by equation (4.16) as a function of the initial position $x_0 = (x_0, y_0, \cos \theta_0)$ with $\theta_0 = \pi/3$ fixed. The three traps are identical with $D_j = r_j = 1$, $\alpha_j = 0.5$, and $\kappa_j = 10$ for $j = 1, 2, 3$. (c) Same as (b) except that $\alpha_1 = 0.1$. (d) Same as (b) except that $\alpha_1 = 0.9$. Other parameters are $D = 1, \gamma = 1$ and $\epsilon = 0.05$.

The final constant is chosen so that $\int_\Omega G(x, \xi)dx = 0$. We assume that all traps have the same radius ρ and take the positions of the traps to be $x_1 = (a, 0, 0)$, $x_2 = a(\cos 2\pi/3, \sin 2\pi/3, 0)$ and $x_3 = a(\cos 4\pi/3, \sin 4\pi/3, 0)$ with $2\rho < a < 1$. In Fig. 5.1(b-d) we show contour plots of the MFPT $T(x_0)$ given by equation (4.16) for $N = 3$. We display $T(x_0)$ as a function of the x_0 and y_0 components of the initial position x_0 for fixed z_0, namely, $x_0 = (x_0, y_0, \cos \pi/3)$. The traps are taken to be identical except for different choices of the bias α_1 in the first trap. It can be seen that if $\alpha_1 < \alpha_2 = \alpha_3$ then the MFPT is smaller if it starts in a neighborhood of the first trap. On the other hand, if $\alpha_1 > \alpha_2 = \alpha_3$ then the MFPT is reduced if it starts in a neighborhood of the second or third trap. Finally, note that the x_0 dependence of $T(x_0)$ is particularly weak, since we are considering x_0 away from the horizontal mid-plane.

Suppose that the initial condition is now taken to be in the (x_0, y_0)-plane such that $x_0 = (\rho_0 \cos \phi, \rho_0 \sin \phi, 0)$ with ρ_0 fixed. In Fig. 5.2 we plot the splitting probabilities π_j, $j = 1, 2, 3$, as a function of the angular coordinate $\phi_0 \in [0, 2\pi]$ for different parameter values of the first trap. Clearly π_j has a maximum when $\phi_0 = \phi_j$ and minima at $\phi_0 = \phi_k$, $k \neq j$, where ϕ_k is the angular coordinate of the kth trap. For identical traps, the splitting probabilities are identical up to a $2\pi/3$ shift in ϕ_0. However, as expected, decreasing α_1 or increasing κ_1 increases π_1 and reduces π_2 and...
Fig. 5.2. Splitting probabilities $\pi_j(x_0)$, $j = 1, 2, 3$, for narrow capture in the unit sphere with the triplet of traps shown in Fig. 5.1(a). The initial position is taken to be in the (x_0,y_0)-plane, $x_0 = (\rho_0 \cos \phi_0, \rho_0 \sin \phi_0, 0)$ with $\rho_0 = 0.6$. (a) Identical traps with the same parameter values as Fig. 5.1(b). (b) Same as (a) except that $\alpha_1 = 0.1$. (c) Same as (a) except that $\kappa_1 = 0.3$. (d) Same as (a) except that $\kappa_1 = 100$. Other parameters are $D = 1$, $\gamma = 1$ and $\epsilon = 0.05$.

Fig. 5.3. MFPT $T(x_0)$ as a function of ϕ_0 with $x_0 = (\rho_0 \cos \phi_0, \rho_0 \sin \phi_0, 0)$. (a) Effect of changing one of the parameters of the first trap. Baseline levels are as in Fig. 5.1. (b) Identical traps as in Fig. 5.1(b) and various ρ_0. Other parameters are $D = 1$, $\gamma = 1$ and $\epsilon = 0.05$.

π_3. Analogous plots for the MFPT are presented in Fig. 5.3.

6. Alternative parameter scalings. So far we have assumed the scalings (3.2) with $\gamma', \kappa_j' = O(1)$. In this section we perform an asymptotic analysis of the split-
following along similar lines to section 3.1, we find that

no longer be reduced to the totally absorbing case in an appropriate limit. (Analogous results hold for the MFPT.)

6.1. Slow absorption. Suppose that

$$\gamma = \frac{\gamma'}{\epsilon}, \quad \kappa_j = \frac{\kappa'_j}{\epsilon}. \quad (6.1)$$

The inner solutions are now expanded as

$$U_k = \pi_k^{(0)} + \epsilon U_k^{(1)} + O(\epsilon^2), \quad V_k = \pi_k^{(0)} + \epsilon V_k^{(1)} + O(\epsilon^4), \quad (6.2)$$

with

$$D \nabla^2 V_k^{(n)}(z) = 0, \quad |z| > \rho_j, \quad (6.3a)$$

$$D_j \nabla^2 U_k^{(n)}(z) + \gamma'(\delta_{j,k}\delta_{n,1} - U_k^{(n-1)}(z)) = 0, \quad |z| < \rho_j, \quad n \geq 2, \quad (6.3b)$$

$$\alpha_j D \nabla V_k^{(n)}(z) \cdot n_j = (1 - \alpha_j)D_j \nabla U_k^{(n)}(z) \cdot n_j,$$

$$= \kappa'_j \alpha_j (1 - \alpha_j)[U_k^{(n)}(z) - V_k^{(n)}(z)], \quad |z| = \rho_j. \quad (6.3c)$$

Following along similar lines to section 3.1, we find that

$$U_k^{(1)}(\rho) = B_{jk}^{(1)} - \frac{\gamma'\rho^2}{6D_j}[\delta_{j,k} - \pi_k^{(0)}], \quad V_k^{(1)}(\rho) = \frac{A_{jk}^{(1)}}{\rho} + \pi_k^{(1)}. \quad (6.4)$$

Substituting into (6.3c) yields

$$\frac{-\alpha_j D A_{jk}^{(1)}}{\rho_j} = -\frac{\gamma'(1 - \alpha_j)\rho^2}{3}[\delta_{j,k} - \pi_k^{(0)}], \quad (6.5a)$$

$$\frac{\alpha_j D A_{jk}^{(1)}}{\rho_j} = \frac{\kappa'_j \alpha_j (1 - \alpha_j)}{\rho_j} \left[A_{jk}^{(1)} + \rho_j \pi_k^{(1)} + \frac{\gamma'\rho^2}{6D_j}[\delta_{j,k} - \pi_k^{(0)}] - \rho_j B_{jk}^{(1)} \right]. \quad (6.5b)$$

Hence,

$$A_{jk}^{(1)} = C_j^{(0)}[\delta_{j,k} - \pi_k^{(0)}], \quad C_j^{(0)} = \frac{\gamma'(1 - \alpha_j)|U_j^{(0)}|}{4\pi D \alpha_j}, \quad (6.6)$$

and

$$\rho_j B_{jk}^{(1)} = \left(1 + \frac{D}{\kappa'_j \rho_j (1 - \alpha_j)} + \frac{\alpha_j D}{2(1 - \alpha_j)D_j}\right) A_{jk}^{(1)} + \rho_j \pi_k^{(1)}. \quad (6.7)$$

\footnote{Under the scaling $\gamma = O(1/\epsilon)$, the effective absorption rate in stretched coordinates is $\epsilon^2 \gamma = O(\epsilon)$. Similarly, if $\kappa = O(1)$, then the effective permeability in stretched coordinates is $\epsilon \kappa_j = O(\epsilon).$}
The outer solution has the asymptotic expansion \(\pi_k(x) \sim \pi_k^{(0)} + \varepsilon \pi_k^{(1)} + \varepsilon^2 \pi_k^{(2)}(x) + O(\varepsilon^3) \) with \(\pi_k^{(0,1)} \) constants, and

\[
\pi_k^{(2)}(x) \sim \frac{A_{jk}}{|x - x_j|} \quad \text{as} \quad x \to x_j.
\]

Proceeding in a similar fashion to section 3.2, we have

\[
\pi_k^{(2)}(x) = 4\pi N \sum_{j=1}^{N} A_{jk} \phi_j^2(x, x_j) + \sum_{j=1}^{N} A_{jk}^{(1)} = 0. \quad (6.8)
\]

In particular, \(\pi_k^{(0)} \) has the form \((3.14)\) under the mapping \(C_j \to C_j^\gamma \):

\[
\pi_k^{(0)} = \frac{C_j^\gamma}{NC_j}, \quad \gamma = \frac{1}{N} \sum_{j=1}^{N} C_j^\gamma. \quad (6.9)
\]

Since \(\sum_{k=1}^{N} \pi_k^{(0)} = 1 \) we see from equation \((6.6)\) that \(\sum_{k=1}^{N} A_{jk}^{(1)} = 0 \).

Finally, \(\pi_k^{(1)} \) is determined by considering the next term in the inner solution along the lines of section 3.3. First, note that

\[
V_k^{(2)}(z) = \frac{A_{jk}}{\rho} + A_{jk}^{(2)}, \quad A_{jk}^{(2)} \equiv 4\pi \sum_{i=1}^{N} G_{ji} A_{ik}^{(1)} + \chi_k^{(2)}. \quad (6.10)
\]

On the other hand,

\[
D_j \nabla^2 U_k^{(2)}(z) - \gamma' U_k^{(1)}(z) = 0, \quad |z| \leq \rho_j \quad (6.11)
\]

Setting \(U_k^{(2)}(z) = \phi_k^{(2)}(\rho)/\rho \), we have

\[
D_j \frac{\partial^2 \phi_k^{(2)}(\rho)}{\partial \rho^2} - \gamma' \rho B_j^{(1)} + \frac{\gamma' \rho^3}{6D_j} [\delta_{j,k} - \pi_k^{(0)}] = 0, \quad \rho \leq \rho_j, \quad (6.12)
\]

We thus have

\[
U_k^{(2)}(\rho) = -\frac{\gamma' \rho^4}{3D_j} \delta_{j,k} - \pi_k^{(0)}] + \frac{\gamma' \rho^2 B_j^{(1)}}{6D_j} + B_j^{(2)}. \quad (6.13)
\]

Substituting the resulting solutions for \(U_k^{(2)} \) and \(V_k^{(2)} \) into \((6.3c)\) yields

\[
\frac{-\alpha_j DA_{jk}^{(2)}}{\rho_j} = (1 - \alpha_j) D_j \left(-\frac{\gamma' \rho_j^5}{30D_j^2} \delta_{j,k} - \pi_k^{(0)} \right) + \frac{\gamma' \rho_j^3 B_j^{(1)}}{3D_j} \quad (6.14a)
\]

\[
\frac{-\alpha_j DA_{jk}^{(2)}}{\rho_j} = \kappa' \alpha_j (1 - \alpha_j) \left[A_{jk}^{(2)} + \rho_j A_{jk}^{(2)} + \frac{\gamma' \rho_j^5}{51D_j^2} [\delta_{j,k} - \pi_k^{(0)}] - \frac{\gamma' \rho_j^3 B_j^{(1)}}{6D_j} - \rho_j B_j^{(2)} \right]. \quad (6.14b)
\]
The inner solution $V_k^{(2)}$ determines the singular behavior of the outer solution $\pi_k^{(3)}$ and the resulting diffusion equation implies that $\sum_{j=1}^{N} A_{jk}^{(2)} = 0$. Hence,

$$0 = \sum_{j=1}^{N} \frac{(1 - \alpha_j)D_j}{\alpha_j D} \left(-\frac{\gamma' J_3}{30D_j^2} [\delta_{j,k} - \pi_k^{(0)}] + \frac{\gamma' \rho_j B_j^{(1)}}{6D_j} \right)$$

$$= \sum_{j=1}^{N} C_j \gamma \left(\rho_j B_j^{(1)} - \frac{\alpha_j D}{5(1 - \alpha_j)D_j} A_{jk}^{(1)} \right). \tag{6.15}$$

Substituting for $B_{jk}^{(1)}$ using equation (6.7) yields

$$\pi_k^{(1)} = -\frac{1}{\Theta \gamma} \sum_{j=1}^{N} C_j \gamma \left(1 + \frac{\kappa_j \rho_j (1 - \alpha_j)}{\kappa_j \rho_j (1 - \alpha_j) + 3\alpha_j D} \right) C_j \gamma [\delta_{j,k} - \pi_k^{(0)}], \tag{6.16}$$

where $\Theta = \sum_{j=1}^{N} \rho_j C_j \gamma$. Note that $\sum_{k=1}^{N} \pi_k^{(1)} = 0$.

6.2. Low permeability.

Now suppose that $\gamma = \gamma'/\epsilon^2$, whereas $\kappa_j = O(1)$. The inner solution is

$$D\nabla^2 V_k^{(n)}(z) = 0, \quad |z| > \rho_j, \tag{6.17a}$$

$$D_j \nabla^2 U_k^{(n)}(z) + \gamma' (\delta_{j,k} \delta_{n,0} - U_k^{(n)}(z)) = 0, \quad |z| < \rho_j, \tag{6.17b}$$

$$\alpha_j D \nabla V_k^{(n)}(z) \cdot n_j = (1 - \alpha_j) D_j \nabla U_k^{(n)}(z) \cdot n_j = \kappa_j \alpha_j (1 - \alpha_j) [U_k^{(n-1)}(z) - V_k^{(n-1)}(z)], \quad |z| = \rho_j, \tag{6.17c}$$

with $U_k^{(-1)}, V_k^{(-1)} \equiv 0$. Equations (3.7) still hold for $U_k^{(0)}$, $V_k^{(0)}$ but the boundary conditions now take the form

$$\nabla V_k^{(0)}(z) \cdot n_j = \nabla U_k^{(0)}(z) = 0.$$

It follows that $U_k^{(0)} = \delta_{j,k}$ and $V_k^{(0)} = \pi_k^{(0)}$. In addition, as in the previous example, the outer solution has the expansion $\pi_k(x) \sim \pi_k^{(0)} + \epsilon \pi_k^{(1)} + \epsilon^2 \pi_k^{(2)}(x) + O(\epsilon^3)$ with $\pi_k^{(0,1)}$ constants.

The $O(\epsilon)$ inner solution has the same form as equation (3.21):

$$U_k^{(1)}(\rho) = B_{jk}^{(1)} \frac{\sinh(\gamma'/D_j \rho)}{\rho}, \quad V_k^{(1)}(\rho) = A_{jk}^{(1)} \frac{\rho}{\rho} + \pi_k^{(1)}. \tag{6.18}$$

The corresponding boundary conditions are

$$\alpha_j D \nabla V_k^{(1)}(z) \cdot n_j = (1 - \alpha_j) D_j \nabla U_k^{(1)}(z) \cdot n_j$$

$$= \kappa_j \alpha_j (1 - \alpha_j) [\delta_{j,k} - \pi_k^{(0)}], \quad |z| = \rho_j, \tag{6.19}$$

This implies that

$$\frac{\alpha_j D A_{jk}^{(1)}}{\rho_j} = (1 - \alpha_j) D_{jk}^{(1)} \left\{ \frac{\sqrt{\gamma'} D_j}{\rho_j} \cosh(\sqrt{\gamma'} D_j \rho_j) - \frac{D_j}{\rho_j} \sinh(\sqrt{\gamma'} D_j \rho_j) \right\}, \tag{6.20a}$$

$$\frac{\alpha_j D A_{jk}^{(1)}}{\rho_j^2} = \kappa_j \alpha_j (1 - \alpha_j) [\delta_{j,k} - \pi_k^{(0)}]. \tag{6.20b}$$
Hence,

\[A_{jk}^{(1)} = -C_j^\kappa [\delta_{jk} - \pi_k^{(0)}], \quad C_j^\kappa = \frac{\kappa_j (1 - \alpha_j) |\partial U_0^j|}{4\pi D}, \quad B_{jk}^{(1)} = -G_j A_{jk}^{(1)}, \quad (6.21) \]

where

\[G_j = \frac{\alpha_j D}{(1 - \alpha_j) \rho_j} \left\{ \sqrt{\gamma' D_j} \cosh\left(\sqrt{\gamma'/D_j} \rho_j\right) - \frac{D_j}{\rho_j} \sinh\left(\sqrt{\gamma'/D_j} \rho_j\right) \right\}^{-1} \quad (6.22) \]

The outer solution \(\pi_k^{(2)}(x) \) is then given by equation (6.8) so that

\[\pi_k^{(0)} = C^\kappa_k N C^\kappa_j, \quad C^\kappa_j = \frac{1}{N} \sum_{j=1}^{N} C_j^\kappa. \quad (6.23) \]

The \(O(\epsilon^2) \) inner solution has the form

\[U_k^{(2)}(\rho) = B_{jk}^{(2)} \frac{\sinh\left(\sqrt{\gamma'/D_j} \rho\right)}{\rho}, \quad V_k^{(2)}(\rho) = \frac{A_{jk}^{(2)}}{\rho} + \Lambda_{jk}^{(2)}, \quad (6.24) \]

with

\[\Lambda_{jk}^{(2)} = 4\pi \sum_{i=1}^{N} G_{ji} A_{ik}^{(1)} + \chi_k^{(2)}. \quad (6.25) \]

The corresponding boundary conditions are

\[\alpha_j D \nabla V_k^{(2)}(z) \cdot n_j = (1 - \alpha_j) D_j \nabla U_k^{(2)}(z) \cdot n_j \]

\[= \kappa_j \alpha_j (1 - \alpha_j) [\delta_{jk} - \pi_k^{(0)}], \quad |z| = \rho_j, \quad (6.26) \]

This implies that

\[-\frac{\alpha_j D A_{jk}^{(2)}}{\rho_j} = (1 - \alpha_j) B_{jk}^{(2)} \left\{ \sqrt{\gamma'/D_j} \cosh\left(\sqrt{\gamma'/D_j} \rho_j\right) - \frac{D_j}{\rho_j} \sinh\left(\sqrt{\gamma'/D_j} \rho_j\right) \right\} \quad (6.27a) \]

\[-\frac{\alpha_j D A_{jk}^{(2)}}{\rho_j^2} = \kappa_j \alpha_j (1 - \alpha_j) \left[A_{jk}^{(1)} + \pi_k^{(1)} \rho_j - B_{jk}^{(1)} \sinh\left(\sqrt{\gamma'/D_j} \rho_j\right) \right]. \quad (6.27b) \]

Finally, the diffusion equation for \(\pi_k^{(3)} \) implies that \(\sum_{j=1}^{N} A_{jk}^{(2)} = 0 \) and, thus,

\[0 = \sum_{j=1}^{N} C_j^\kappa \left(A_{jk}^{(1)} + \pi_k^{(1)} \rho_j - B_{jk}^{(1)} \sinh\left(\sqrt{\gamma'/D_j} \rho_j\right) \right). \quad (6.28) \]

Rearranging shows that

\[\pi_k^{(1)} = \frac{1}{\Theta^\kappa} \sum_{j=1}^{N} C_j^\kappa \left(1 + G_j \sinh\left(\sqrt{\gamma'/D_j} \rho_j\right) \right) C_j^\kappa [\delta_{jk} - \pi_k^{(0)}], \quad (6.29) \]

with \(\Theta^\kappa = \sum_{j=1}^{N} C_j^\kappa \rho_j. \)
7. Partially reactive surfaces. Taking $\alpha_j = 0$ leads to the narrow capture problem of equations (2.13), with κ_j the effective constant reaction rate for the Robin boundary condition at the jth trap, see Fig. 2.2(c). For simplicity we will assume that $\kappa_j = \kappa_0$ for all $j = 1, \ldots, N$. We can then reformulate the Robin boundary conditions using a probabilistic interpretation based on a boundary local time \cite{27, 28, 12, 13}. The latter is a Brownian functional that keeps track of the amount of time a particle spends in a local neighborhood of the total interior boundary $\partial \mathcal{U}_a$ with $\mathcal{U}_a = \sum_{j=1}^N \mathcal{U}_j$. Let $X_t \in \Omega \setminus \mathcal{U}_a$ represent the position of the diffusing particle at time t. If the surface $\partial \mathcal{U}_a$ is totally reflecting then we can define the boundary local time according to

$$\ell_t = \lim_{h \to 0} \frac{D}{h} \int_0^t \Theta(h - \text{dist}(X_\tau, \partial \mathcal{U}_a)) d\tau,$$

where Θ is the Heaviside function. Note that ℓ_t has units of length due to the additional factor of D. Let $P(x, t|x_0)$ denote the joint probability density or propagator for the pair (X_t, ℓ_t) and introduce the stopping time

$$\mathcal{T} = \inf \{ t > 0 : \ell_t > \hat{\ell} \},$$

with $\hat{\ell}$ an exponentially distributed random variable that represents a stopping local time. That is, $\mathbb{P}[\hat{\ell} > \ell] = e^{-z_0 \ell}$ with $z_0 = \kappa_0 / D$. (Roughly speaking, the stopping time \mathcal{T} is a random variable that specifies the time of absorption, which is determined by the instant at which the local time ℓ_t crosses the random threshold $\hat{\ell}$.) The marginal density $p(x, t|x_0)$ satisfying equations (2.13) can be related to the propagator $P(x, \ell, t|x_0)$ as follows:

$$p(x, t|x_0) dx = \mathbb{P}[X_t \in (x, x + dx), t < \mathcal{T}|X_0 = x].$$

$$= \mathbb{P}[X_t \in (x, x + dx), \ell_t < \hat{\ell}|X_0 = x]$$

$$= \int_0^\infty d\ell \ z_0 e^{-z_0 \ell} \mathbb{P}[X_t \in (x, x + dx), \ell_t < \hat{\ell}|X_0 = x]$$

$$= \int_0^\infty d\ell \ z_0 e^{-z_0 \ell} \int_0^\ell d\ell' P(x, \ell', t|x_0) dx.$$

We have used the fact that ℓ_t is a nondecreasing process so that the condition $t < \mathcal{T}$ is equivalent to the condition $\ell_t < \hat{\ell}$. Using the identity

$$\int_0^\infty d\ell f(\ell) \int_0^\ell d\ell' g(\ell') = \int_0^\infty d\ell' g(\ell') \int_\ell^\infty d\ell f(\ell)$$

for arbitrary integrable functions f, g, it follows that

$$p(x, t|x_0) = \int_0^\infty e^{-z_0 \ell} P(x, \ell, t|x_0) d\ell \equiv \tilde{P}(x, \gamma, t|x_0).$$

Hence, the marginal density $p(x, t|x_0)$ is equivalent to the Laplace transform $\tilde{P}(x, z_0, t|x_0)$ of the propagator with respect to the local time ℓ. In other words, $\tilde{P}(x, z, t|x_0)$ satisfies the Robin BVP (2.13) with $\kappa_0 = z_0 D$. The advantage of this formulation is that one can consider a more general probability distribution $\Psi(\ell) = \mathbb{P}[\hat{\ell} > \ell]$ for the stopping local time ℓ such that \cite{27, 28, 12, 13}.

$$p^\Psi(x, t|x_0) = \int_0^\infty \Psi(\ell) P(x, \ell, t|x_0) d\rho = \int_0^\infty \Psi(\ell) \mathcal{L}^{-1} \tilde{P}(x, z, t|x_0) d\rho,$$

24
where \mathcal{L}^{-1} denotes the inverse Laplace transform with respect to z. The steps of the general encounter-based method for a Brownian particle can be summarized as follows:

1. Solve the Robin BVP for the probability density $p(x, t|x_0)$ in the case of a constant rate of absorption κ_0.
2. Identify $p(x, t|x_0)$ with the Laplace transform $\tilde{P}(x, z, t|x_0)$ of the local time propagator, with $\kappa_0 = zD$.
3. Invert the Laplace transform with respect to z to obtain $P(x, \ell, t|x_0)$.
4. Calculate the general marginal density according to (7.5).

An alternative approach would be to solve the BVP for the local time propagator directly, which is how we proceeded in Ref. [11] for the narrow capture problem in \mathbb{R}^3. Here we will work directly with the asymptotic expansions of the splitting probabilities and MFPT in the bounded domain Ω.

First, consider the case of constant reactivity κ_0. The total probability flux into the partially absorbing boundary U_k is then

$$J_k(x_0, t) = D \int_{U_k} \nabla p(x, t|x_0) \cdot n_j dx, \quad x_0 \in \Omega \setminus U_a, \quad (7.6)$$

with p the solution to the BVP (2.13). Hence, the corresponding splitting probabilities and unconditional MFPT are $\pi_k(x_0) = \tilde{J}_k(x_0, 0)$ and $T(x_0) = -\partial_s \tilde{J}_k(x_0, 0)$. Suppose that we include $z = \kappa_0/D$ as an additional variable in the flux by writing $\tilde{J}_k = \tilde{J}_k(x_0, z, s)$, and set

$$\pi_k(x_0, z) = \tilde{J}_k(x_0, z, 0), \quad T(x_0, z) = -\partial_s \tilde{J}_k(x_0, z, 0). \quad (7.7)$$

Using the above encounter-based method, the splitting probabilities and MFPT for a general reaction scheme can then be written as

$$\pi_k^\Psi(x_0) = \int_0^\infty \Psi(\ell) \mathcal{L}^{-1} \pi_k(x_0, z) d\ell, \quad T^\Psi(x_0) = -\int_0^\infty \Psi(\ell) \mathcal{L}^{-1} T(x_0, z) d\ell. \quad (7.8)$$

It remains to determine the explicit dependence of π_k and T on z. We now make the crucial observation that the flux \tilde{J}_k is related to the flux \tilde{J}_k according to equations (2.11) and (2.12). That is, although the interior of each trap no longer plays any role, we can still use the solutions of the BVPs (2.22) and (2.23) to determine $\pi_k(x_0, z)$ and $T(x_0, z)$ for partially absorbing surfaces with constant reactivity $\kappa_0 = zD$ by setting $\alpha = 0$ in equations (3.28) and (4.16). This is equivalent to setting

$$C_j = \rho_j \left[\frac{D}{\kappa_0 \rho_j} + 1 \right]^{-1} = \frac{z \rho_j}{\rho_j^{-1} + z} = \rho_j - \frac{1}{\rho_j^{-1} + z} \equiv C_j(z). \quad (7.9)$$

It follows that the construction of the asymptotic solutions for general Ψ reduces to the problem of finding the inverse Laplace transforms of the terms involving the capacitances $C_k(z)$. (We are using the fact that an asymptotic expansion commutes with integral operators.)
As a simple example, suppose that $\rho_j = \overline{\rho}$ for all $j = 1, \ldots, N$. Equation (3.28) reduces to the simpler form

$$\pi_k(x_0, z) \sim \frac{1}{N} \left\{ 1 + 4\pi \epsilon C(z) \left(\sum_{i,j=1}^{N} \frac{1}{N} G_{ji} + \sum_{j=1}^{N} G(x_0, x_k) - G(x_0, x_j) - G_{jk} \right) \right\} + O(\epsilon^2).$$

(7.10)

with

$$C(z) = \overline{\rho} - \frac{1}{\rho + z}, \quad C(\ell) \equiv [\mathcal{L}^{-1}C](\ell) = \overline{\rho} \delta(\ell) - e^{-\overline{\rho}^\ell}.$$ (7.11)

Substituting equation (7.10) into the first equation of (7.8) and using (7.11) yields the generalized asymptotic expansion

$$\pi_k^\Psi(x_0) \sim \frac{1}{N} \int_0^\infty \Psi(\ell) \left\{ \delta(\ell) + 4\pi \epsilon \left[\overline{\rho} \delta(\ell) - e^{-\overline{\rho}/\rho} \right] \left(\sum_{i,j=1}^{N} \frac{1}{N} G_{ji} + \sum_{j=1}^{N} G(x_0, x_k) - G(x_0, x_j) - G_{jk} \right) \right\} + O(\epsilon^2) \sim \frac{1}{N} \int_0^\infty \left\{ 1 + 4\pi \epsilon \left[\overline{\rho} - \Psi(1/\rho) \right] \left(\sum_{i,j=1}^{N} \frac{1}{N} G_{ji} + \sum_{j=1}^{N} G(x_0, x_k) - G(x_0, x_j) - G_{jk} \right) \right\} + O(\epsilon^2).$$

(7.12)

Similarly, equation (4.16) becomes

$$T(x_0, z) \sim \frac{|\Omega|}{D} \left\{ \frac{1}{4\pi \epsilon C(z)} + \sum_{i,j=1}^{N} G_{ji} - \sum_{j=1}^{N} G(x_0, x_j) \right\} + O(\epsilon).$$

(7.13)

with

$$\mathcal{F}(z) \equiv C(z)^{-1} = \frac{\overline{\rho}^{-1} + z}{\epsilon \overline{\rho}}, \quad F(\ell) \equiv [\mathcal{L}^{-1}\mathcal{F}](\ell) = \frac{1}{\overline{\rho}} \delta(\ell) - \frac{1}{\overline{\rho}}.$$ (7.14)

Hence

$$T^\Psi(x_0) \sim \frac{|\Omega|}{D} \left\{ \frac{1}{4\pi \epsilon \overline{\rho}} \left(1 + \overline{\Psi} \right) + \sum_{i,j=1}^{N} G_{ji} - \sum_{j=1}^{N} G(x_0, x_j) \right\} + O(\epsilon),$$

(7.15)

where $\overline{\Psi} = \int_0^\infty \Psi(\ell) d\ell$.

It is possible to extend the analysis to the case of inhomogeneous radii ρ_i, but the algebra is more involved, since one has to find the poles of potentially high-dimensional rational functions in order to calculate the inverse Laplace transforms. For example, suppose that we have two traps. The $O(1)$ contribution to π_1 is independent of x_0 and takes the form

$$\pi_1(z) = \frac{C_1(z)}{C_1(z) + C_2(z)} = \frac{1}{1 + \frac{\rho_2}{\rho_1} \frac{\rho^{-1}_1 + z}{\rho^{-1}_2 + z}} = \frac{\rho_1 (\rho^{-1}_2 + z)}{\rho_1 + \rho_2 + \rho_1 \rho_2^{-1} + (\rho_1 + \rho_2) z}$$

$$= \frac{\rho_1}{\rho_1 + \rho_2} \frac{\rho_2^{-1} + z}{\Sigma_{12} + z}.$$ (7.16)
with

\[\Sigma_{12} = \frac{\rho_1^{-1} \rho_2 + \rho_1 \rho_2^{-1}}{\rho_1 + \rho_2} = \frac{1}{\rho_1} + \frac{1}{\rho_2} - \frac{2}{\rho_1 + \rho_2}. \]

(7.17)

Hence,

\[\mathcal{L}^{-1}[\pi_1](\ell) = \frac{\rho_1}{\rho_1 + \rho_2} \left[\delta(\ell) + \left(\rho_2^{-1} - \Sigma_{12} \right) e^{-\Sigma_{12} \ell} \right], \]

(7.18)

so that

\[\pi_1^{\Psi} = \int_0^\ell \Psi(\ell) \mathcal{L}^{-1}[\pi_1](\ell) d\ell = \frac{\rho_1}{\rho_1 + \rho_2} \left[1 + \left(\rho_2^{-1} - \Sigma_{12} \right) \tilde{\Psi}(\Sigma_{12}) \right]. \]

(7.19)

Similarly, \(\pi_2^{\Psi} \) is obtained under the interchange \(\rho_1 \leftrightarrow \rho_2 \). It can be checked that \(\pi_1^{\Psi} + \pi_2^{\Psi} = 1 \) since \(\Sigma_{12} = \Sigma_{21} \). For the sake of illustration, suppose that \(\psi(\ell) = -\Psi'(\ell) \) is given by the gamma distribution:

\[\psi(\ell) = \eta (\eta \ell)^{\mu-1} e^{-\eta \ell}/\Gamma(\mu), \quad \mu > 0, \]

(7.20)

where \(\Gamma(\mu) \) is the gamma function. The corresponding Laplace transforms are

\[\tilde{\psi}(z) = \left(\frac{\eta}{\eta + z} \right)^\mu, \quad \tilde{\Psi}(z) = \frac{1 - \tilde{\psi}(z)}{z}. \]

(7.21)

Note that if \(\mu = 1 \) then \(\psi \) reduces to the exponential distribution with constant reactivity \(\kappa_0 = D \eta \). The parameter \(\mu \) thus characterizes the deviation of \(\psi(\ell) \) from the exponential case. If \(\mu < 1 \) (\(\mu > 1 \)) then \(\psi(\ell) \) decreases more rapidly (slowly).
as a function of the local time ℓ. The effective reaction time is given by the mean $\mathbb{E}[\ell] = \mu/\eta$. Example plots of the leading order contributions to π_1^Ψ and π_2^Ψ as a function of ρ_1 for $\rho_2 = 1$ are shown in Fig. 7.1. It can be seen that increasing μ reduces π_1^Ψ when $\rho_1 < \rho_2$ and has the opposite effect when $\rho_1 > \rho_2$.

8. Discussion. In this paper we developed a general theory of the 3D narrow capture problem for small spherical traps in a bounded domain, with the boundaries of the traps taken to be semipermeable. We used singular perturbation theory and Greens function methods to derive the leading order terms in the asymptotic expansions of the splitting probabilities and the unconditional MFPT. (Other quantities such as the conditional MFPTs and higher FPT moments could have been analyzed in a similar fashion, see Ref. [18, 10].) We also showed how previously studied versions of the narrow capture problem can be recovered in appropriate limits, including partially absorbing interior substrates [10], totally absorbing surfaces [18, 9] and partially reactive surfaces [11]. This established that the main difference between the various cases is the form of the effective capacitances C_i; the general formula was given in equation (3.10). In the special example of partially reactive surfaces, we also showed how to incorporate non-Markovian models of absorption using the encounter-based method.

One natural extension of the current work would be to consider non-spherical trap geometries along the lines of Ref. [18] for totally absorbing traps. This would require taking into account the intrinsic capacitance and dipole vectors that are determined by the shape of U_j. In particular, the analysis of the inner solutions would need to be modified using a different stretched coordinate system. Another non-trivial extension would be to apply the encounter-based method to the full model given by equations (2.1). This would involve both the absorption process within each trap along the lines of Ref. [12, 13] as well as the semipermeable interface itself. As we have recently shown elsewhere [14, 15], the latter can be reformulated using a probabilistic formulation of Brownian motion through a semipermeable interface known as snapping out Brownian motion [35]. The latter sews together successive rounds of partially reflected Brownian motion that are restricted to either the interior or exterior of each interface. Each round is killed when an associated local time exceeds a random threshold, analogous to the mechanism considered in section 7.

Finally, it is useful to relate our work to another class of problem involving semipermeable interfaces, namely, coupled PDE-ODE systems. Let us return to the full model system (2.1) and assume that D_j is sufficiently large so that the density q_j within U_j is approximately spatially uniform. This means that we can take

$$q_j(x, t) \approx q_j(t) = \frac{1}{|U_j|} \int_{U_j} q_j(x, t) dx. \quad (8.1)$$

For convenience, we have dropped the explicit dependence on x_0. Integrating both sides of equation (2.1b) with respect to $x \in U_j$ and using the divergence theorem gives

$$\frac{dq_j(t)}{dt} = \frac{D_j}{|U_j|} \int_{\partial U_j} \nabla q_j(x, t) \cdot n_j dx - \gamma q_j(t), \quad (8.2)$$

Using the semipermeable boundary conditions (2.1c), this becomes

$$\frac{dq_j(t)}{dt} = \frac{\kappa_j}{|U_j|} \int_{\partial U_j} (|1 - \alpha_j| p(x, t) - \alpha_j q_j(t)) dx - \gamma q_j(t), \quad (8.3a)$$
with \(p(x, t) \) the solution to

\[
\frac{\partial p(x, t)}{\partial t} = D \nabla^2 p(x, t), \quad x \in \Omega \setminus \mathcal{U}_a,
\]

\[(8.3b) \]

\[
D \nabla p(x, t) \cdot n_j = \kappa_j [(1 - \alpha_j)p(x, t) - \alpha_j q_j(t)], \quad x \in \partial \mathcal{U}_j,
\]

\[(8.3c) \]

\[
\nabla p \cdot n = 0, \quad x \in \partial \Omega.
\]

\[(8.3d) \]

Equations (8.3) are an example of a PDE-ODE system that couples bulk diffusion in \(\Omega \setminus \mathcal{U}_a \) with a set of \(N \) spatially uniform compartments. The coupling is mediated by an effective semipermeable boundary condition. More general versions of this type of model are obtained by replacing the decay term in the ODE (8.3a) with a nonlinear function \(f(q_j, w_j) \), where \(w_j \) represents a set of \(m \) additional variables that evolve according to a system of ODEs that in turn couple to \(q_j \).

One major application of the nonlinear version of equations (8.3) is bacterial quorum sensing [40, 41, 24]. Quorum sensing involves the production and extracellular secretion of signaling molecules known as autoinducers. Each cell contains receptors that specifically detect the signaling molecule (inducer), which then activates transcription of certain genes, including those for inducer synthesis. However, since there is a low likelihood of an individual bacterium detecting its own secreted inducer, the cell must encounter signaling molecules secreted by other cells in its environment in order for gene transcription to be activated. The extracellular concentration depends on the bacterial population density. Hence, as the population grows, the concentration of the inducer passes a threshold, causing more inducer to be synthesized. This generates a positive feedback loop that fully activates the receptor, and induces the up-regulation of other specific genes. All of the cells thus initiate transcription at approximately the same time, resulting in some form of coordinated behavior such as bioluminescence, biofilm formation or infection of an animal host. With reference to (8.3), \(p(x, t) \) would represent the extracellular autoinducer concentration, whereas \(q_j(t) \) would represent the concentration inside the \(j \)th cell. On the other hand, the additional variables \(w_j \) would represent the concentrations of downstream signaling proteins and genes that are activated by the autoinducers within the \(j \)th cell. At the population level, one is typically interested in the steady-state solution and its stability, both of which can be analyzed using matched asymptotics [40, 41, 24]. These studies typically take \(\alpha_j = 1/2 \) (unbiased interfaces).

REFERENCES

[1] V. Aho, K. Mattila, T. Kühn, P. Kekäläinen, O. Pulkkinen, R. B. Minussi, M. Vihinen-Ranta and J. Timonen Diffusion through thin membranes: Modeling across scales. Phy. Rev. E 93 (2016)043309

[2] B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts and P. Walter Molecular biology of the cell. 6th ed. Chapter 11. New York: Garland Science (2015)

[3] I. Alemany, J. N. Rose, J. Garnier-Brun, A. D. Scott and D. J. Dooley Random walk diffusion simulations in semi-permeable layered media with varying diffusivity Science Reports 12 (2022) 10759

[4] J. Assis, H. C. Giacomini and M. C. Ribeiro Road permeability index: evaluating the heterogeneous permeability of roads for wildlife crossing Ecol. Indic. 99 (2019) 305

[5] H. L. Beyer, E. Gurarie, L. Borger, M. Panzacchi, M. Basille, I. Herfindal, B. Van Moorter, S. R. Lele and J. Matthiopoulos “You shall not pass!”: quantifying barrier permeability and proximity avoidance by animals J. Anim. Ecol. 85 (2016) 43

[6] P. C. Bressloff and S. D. Lawley Stochastically-gated diffusion-limited reactions for a small target in a bounded domain. Phys. Rev. E 92 (2015) 062117

[7] P. C. Bressloff Diffusion in cells with stochastically-gated gap junctions. SIAM J. Appl. Math. 76 (2016) 1658-1682
P.C. Bressloff Asymptotic analysis of trap fluxes in the three-dimensional narrow capture problem. Multiscale Model. Simul. 19 (2021) 612-632

P.C. Bressloff The narrow capture problem with partially absorbing targets and stochastic resetting. Multiscale Model. Simul. 20 (2022) 857-881.

P.C. Bressloff and R. D. Schumm The narrow capture problem with partially absorbing targets and stochastic resetting. Multiscale Model. Simul. 19 (2021) 612-632

P. C. Bressloff and R. D. Schumm The narrow capture problem with partially absorbing targets and stochastic resetting. Multiscale Model. Simul. 20 (2022) 857-881.

P.C. Bressloff The narrow capture problem: an encounter-based approach to partially reactive targets. Phys. Rev. E 105 (2022) 034141.

P.C. Bressloff Diffusion-mediated absorption by partially reactive targets: Brownian functionals and generalized propagators. J. Phys. A. 55 (2022) 205001.

P.C. Bressloff Spectral theory of diffusion in partially absorbing media. Proc. R. Soc. A 478 (2022) 20220319.

P.C. Bressloff A probabilistic model of diffusion through a semipermeable barrier. Submitted (2023).

P.C. Bressloff Renewal equation for single-particle diffusion through a semipermeable interface. Submitted (2023).

C. Chevalier, O. Benichou, B. Meyer and R. Voituriez First-passage quantities of Brownian motion in a bounded domain with multiple targets: a unified approach. J. Phys. A 44 (2011) 025002.

A. F. Cheviakov and M. J. Ward Optimizing the principal eigenvalue of the laplacian in a sphere with interior targets. Math. Comp. Modeling 53 (2011) 042118.

M. I. Delgado, M. J. Ward and D. Coombs Conditional mean first passage times to small targets in a 3-D domain with a sticky boundary: Applications to T cell searching behavior in lymph nodes. Multiscale Model. Simul. 13 (2015) pp. 1224-1258.

B. W. Connors and M. A. Long Electrical synapses in the mammalian brain. Ann. Re. Neurosci. 27 (2004) 393-418.

E. Carr and I. Turner A semi-analytical solution for multilayer diffusion in a composite medium consisting of a large number of layers. Appl. Math. Model. 40 (2016) 7034-7050.

W. J. Evans and P. E. Martin Gap junctions: structure and function. Mol. Membr. Biol. 19 (2002) 121-136.

O. Farago Algorithms for Brownian dynamics across discontinuities. J. Comput. Phys. 423 (2020) 109802.

D. A. Goodenough and D. L. Paul Gap junctions. Cold Spring Harb Perspect Biol 1 (2009) a002576.

J. Gou and M. J. Ward 2106. Asymptotic analysis of a 2-D Model of dynamically active compartments coupled by bulk diffusion. J. Nonlinear Science. 26 (2016) 979-1029.

D. S. Grebenkov Pulsed-gradient spin-echo monitoring of restricted diffusion in multilayered structures. J. Magn. Reson. 205 (2010) 181-195

D. S. Grebenkov Diffusion toward non-overlapping partially reactive spherical traps: Fresh insights onto classic problems J. Chem. Phys. 152 (2020) 244108.

D. S. Grebenkov Paradigm shift in diffusion-mediated surface phenomena. Phys. Rev. Lett. 125 (2020) 078102.

D. S. Grebenkov An encounter-based approach for restricted diffusion with a gradient drift. J. Phys. A. (2022) 55 045203.

D. S. Grebenkov Statistics of diffusive encounters with a small target: three complementary approaches. J. Stat. Mech. (2022) 083205.

D. W. Hahn and M. N. Ozisik One-Dimensional Composite Medium Ch. 10 pp. 393-432. Wiley, Hoboken (2012).

A. Kargol, M. Kargol and S. Przestalski The Kedem-Katchalsky equations as applied for describing substance transport across biological membranes Cell. Mol. Biol. Lett. 2 (1996) 117-124

A. Katchalsky and O. Kedem Thermodynamics of Flow Processes in Biological Systems. Biophys. J. 2 (1962) 53-78

O. Kedem and A. Katchalsky Thermodynamic analysis of the permeability of biological membrane to non-electrolytes. Biochim. Biophys. Acta 27 (1958) 229-246.

V. M. Kenkre and L. Giuggioli Theory of the Spread of Epidemics and Movement Ecology of Animals: An Interdisciplinary Approach Using Methodologies of Physics and Mathematics Cambridge University Press, Cambridge, UK (2021).

A. Lejay The snapping out Brownian motion. The Annals of Applied Probability 26 (2016) 1727-1742.

J. Li and H. Wang Recent developments in reverse osmosis desalination membranes J. Mater. Chem. 20 (2010) 4551.

N. Moutal and D. S. Grebenkov Diffusion across semi-permeable barriers: spectral proper-
ties, efficient computation, and applications J. Sci. Comput. 81 (2019) 1630-1654

[38] A. E. Lindsay, T. Kolokolnikov and J. C. Tzou Narrow escape problem with a mixed target and the effect of orientation. Phys. Rev. E 91 (2015) 032111.

[39] A. E. Lindsay, A. J. Bernoff and M. J. Ward First passage statistics for the capture of a Brownian particle by a structured spherical target with multiple surface targets Multiscale Model. Simul. 15 (2017) pp. 74-109.

[40] J. Muller, C. Kuttler, B. A. Hense, M. Rothbächer and A. Hartmann Cell-cell communication by quorum sensing and dimension-reduction. J. Math. Biol. 53 (2006) 672-702.

[41] J. Muller and H. Uecker Approximating the dynamics of communicating cells in a diffusive medium by ODEs - homogenization with localization. J. Math. Biol., 67 (2013) 1023-1065.

[42] V. Nikonenko V and N. Pismenskaya (Eds.) Ion and Molecule Transport in Membrane Systems (special issue). Int. J. Mol. Sci. 22 (2021) 3556

[43] R. Phillips, J. Kondev, J. Theriot, H. G. Garcia and N. Orme Physical Biology of the Cell Garland, New York (2012)

[44] I. Rubinstein, A. Schur and B. Zaltzman Artifact of “breakthrough” osmosis: Comment on the local Spiegler-Kedem-Katchalsky equations with constant coefficients. Sci. Rep. 11 (2021) 9051