LOWER Q-HOMEOMORPHISMS WITH RESPECT TO p-MODULUS AND ORLICZ-SOBOLEV CLASSES

R. Salimov

March 4, 2013

Abstract

We show that under a condition of the Calderon type on φ the homeomorphisms f with finite distortion in W_{loc}^1,φ and, in particular, $f \in W_{\text{loc}}^{1,s}$ for $s > n - 1$ are the so-called lower Q-homeomorphisms with respect to p-modulus where $Q(x)$ is equal to its outer p-dilatation $K_{p,f}(x)$.

2000 Mathematics Subject Classification: Primary 30C65; Secondary 30C75
Key words: Sobolev classes, Orlicz-Sobolev classes, mappings of finite distortion, lower Q-homeomorphisms.

1 Introduction

In what follows, D is a domain in a finite-dimensional Euclidean space. Following Orlicz, see [26], given a convex increasing function $\varphi : [0, \infty) \to [0, \infty)$, $\varphi(0) = 0$, denote by L_φ the space of all functions $f : D \to \mathbb{R}$ such that

$$\int_D \varphi \left(\frac{|f(x)|}{\lambda} \right) \, dm(x) < \infty$$

(1.1)

for some $\lambda > 0$ where $dm(x)$ corresponds to the Lebesgue measure in D. L_φ is called the Orlicz space. If $\varphi(t) = t^p$, then we write also L_p. In other words, L_φ is the cone over the class of all functions $g : D \to \mathbb{R}$ such that

$$\int_D \varphi (|g(x)|) \, dm(x) < \infty$$

(1.2)

which is also called the Orlicz class, see [3].

The Orlicz-Sobolev class $W_{\text{loc}}^{1,\varphi}(D)$ is the class of locally integrable functions f given in D with the first distributional derivatives whose gradient ∇f belongs locally in D to the Orlicz class. Note that by definition $W_{\text{loc}}^{1,\varphi} \subseteq W_{\text{loc}}^{1,1}$. As usual, we write $f \in W_{\text{loc}}^{1,p}$ if $\varphi(t) = t^p$, $p \geq 1$. It is known that a continuous function f belongs to $W_{\text{loc}}^{1,p}$ if and only if $f \in ACL^p$, i.e., if f is locally absolutely continuous on a.e. straight line which is parallel to a coordinate axis, and if the first partial derivatives
of f are locally integrable with the power p, see, e.g., 1.1.3 in [24]. The concept of the distributional derivative was introduced by Sobolev [32] in \mathbb{R}^n, $n \geq 2$, and it is developed under wider settings at present, see, e.g., [28].

Later on, we also write $f \in W^{1,}\varphi\,_{\text{loc}}$ for a locally integrable vector-function $f = (f_1, \ldots, f_m)$ of n real variables x_1, \ldots, x_n if $f_i \in W^{1,1}_{\text{loc}}$ and

$$\int_D \varphi(|\nabla f(x)|) \, dm(x) < \infty \quad (1.3)$$

where $|\nabla f(x)| = \sqrt{\sum_{i,j} \left(\frac{\partial f_i}{\partial x_j} \right)^2}$. Note that in this paper we use the notation $W^{1,}\varphi\,_{\text{loc}}$ for more general functions φ than in the classical Orlicz classes giving up the condition on convexity of φ. Note also that the Orlicz–Sobolev classes are intensively studied in various aspects at present.

Recall that a homeomorphism f between domains D and D' in \mathbb{R}^n, $n \geq 2$, is called of finite distortion if $f \in W^{1,1}\,_{\text{loc}}$ and

$$\|f'(x)\|^n \leq K(x) \cdot J_f(x) \quad (1.4)$$

with a.e. finite function K where $\|f'(x)\|$ denotes the matrix norm of the Jacobian matrix f' of f at $x \in D$, $\|f'(x)\| = \sup_{h \in \mathbb{R}^n, |h|=1} |f'(x) \cdot h|$, and $J_f(x) = \det f'(x)$ is its Jacobian. We set $K_{p,f}(x) = \|f'(x)\|^p / J_f(x)$ if $J_f(x) \neq 0$, $K_{p,f}(x) = 1$ if $f'(x) = 0$ and $K_{p,f}(x) = \infty$ at the rest points.

First this notion was introduced on the plane for $f \in W^{1,2}_{\text{loc}}$ in the work [16]. Later on, this condition was changed by $f \in W^{1,1}_{\text{loc}}$ but with the additional condition $J_f \in L^1_{\text{loc}}$ in the monograph [15]. The theory of the mappings with finite distortion had many successors, see, e.g., a number of references in the monograph [23]. They had as predecessors the mappings with bounded distortion, see [27] and [34], in other words, the quasiregular mappings, see, e.g., [4], [5], [13], [21], [29] and [35].

Note that the above additional condition $J_f \in L^1_{\text{loc}}$ in the definition of the mappings with finite distortion can be omitted for homeomorphisms. Indeed, for each homeomorphism f between domains D and D' in \mathbb{R}^n with the first partial derivatives a.e. in D, there is a set E of the Lebesgue measure zero such that f satisfies (N)-property by Lusin on $D \setminus E$ and

$$\int_A J_f(x) \, dm(x) = |f(A)| \quad (1.5)$$

for every Borel set $A \subset D \setminus E$, see, e.g., 3.1.4, 3.1.8 and 3.2.5 in [8]. On this base, it is easy by the Hölder inequality to verify, in particular, that if $f \in W^{1,1}_{\text{loc}}$ is a homeomorphism and $K_f \in L^q_{\text{loc}}$ for some $q > n - 1$, then also $f \in W^{1,p}_{\text{loc}}$ for some $p > n - 1$, that we use further to obtain corollaries.
In this paper $H^k(A)$, $k \geq 0$, $\dim_H A$ denote the k-dimensional Hausdorff measure and the Hausdorff dimension, correspondingly, of a set A in \mathbb{R}^n, $n \geq 1$. It was shown in [11] that a set A with $\dim_H A = p$ can be transformed into a set $B = f(A)$ with $\dim_H B = q$ for each pair of numbers p and $q \in (0, n)$ under a quasiconformal mapping f of \mathbb{R}^n onto itself, cf. also [1] and [2].

2 Preliminaries

First of all, the following fine property of functions f in the Sobolev classes $W^{1,p}_{loc}$ was proved in the monograph [12], Theorem 5.5, and can be extended to the Orlicz-Sobolev classes. The statement follows directly from the Fubini theorem and the known characterization of functions in Sobolev’s class $W^{1,1}_{loc}$ in terms of ACL (absolute continuity on lines), see, e.g., Section 1.1.3 in [24].

Theorem 2.1. Let Ω be an open set in \mathbb{R}^n, $n \geq 3$, and let $f : \Omega \to \mathbb{R}^n$ be a continuous open mapping in the class $W^{1,\phi}_{loc}(\Omega)$ where $\phi : [0, \infty) \to [0, \infty)$ is increasing with the condition

$$\int_1^\infty \left[\frac{t}{\phi(t)} \right]^{\frac{1}{n-2}} dt < \infty. \quad (2.1)$$

Then f has a total differential a.e. in Ω.

Corollary 2.1. If $f : \Omega \to \mathbb{R}^n$ is a homeomorphism in $W^{1,1}_{loc}$ with $K_f \in L^p_{loc}$ for $p > n - 1$, then f is differentiable a.e.

Theorem 2.2. Let U be an open set in \mathbb{R}^n, $n \geq 3$, and let $\phi : [0, \infty) \to [0, \infty)$ is increasing with the condition (2.1). Then each continuous mapping $f : U \to \mathbb{R}^m$, $m \geq 1$, in the class $W^{1,\phi}_{loc}$ has the (N)-property (furthermore, it is locally absolutely continuous) with respect to the $(n-1)$-dimensional Hausdorff measure on a.e. hyperplane \mathcal{P} which is parallel to a fixed coordinate hyperplane \mathcal{P}_0. Moreover, $H^{n-1}(f(E)) = 0$ whenever $|\nabla f| = 0$ on $E \subseteq \mathcal{P}$ for a.e. such \mathcal{P}.

Note that, if the condition (2.1) holds for an increasing function ϕ, then the function $\phi_* = \phi(ct)$ for $c > 0$ also satisfies (2.1). Moreover, the Hausdorff measures are quasi-invariant under quasi-isometries. By the Lindelöf property of \mathbb{R}^n, $U \setminus \{x_0\}$ can be covered by a countable collection of open segments of spherical rings in $U \setminus \{x_0\}$ centered at x_0 and each such segment can be mapped onto a rectangular oriented segment of \mathbb{R}^n by some quasi-isometry, see, e.g., I.5.XI in [20] for the Lindelöf theorem. Thus, applying piecewise Theorem 2.2, we obtain the following.

Corollary 2.2. Under (2.1) each $f \in W^{1,\phi}_{loc}$ has the (N)-property (furthermore, it is locally absolutely continuous) on a.e. sphere S centered at a prescribed point $x_0 \in \mathbb{R}^n$. Moreover, $H^{n-1}(f(E)) = 0$ whenever $|\nabla f| = 0$ on $E \subseteq S$ for a.e. such sphere S.
3 Moduli of families of surfaces

The recent development of the moduli method in the connection with modern classes of mappings can be found in the monograph [23] and further references therein.

Let \(\omega \) be an open set in \(\mathbb{R}^k \), \(k = 1, \ldots, n-1 \). A (continuous) mapping \(S : \omega \to \mathbb{R}^n \) is called a \(k \)-dimensional surface \(S \) in \(\mathbb{R}^n \). Sometimes we call the image \(S(\omega) \subseteq \mathbb{R}^n \) the surface \(S \), too. The number of preimages

\[
N(S, y) = \text{card} S^{-1}(y) = \text{card} \{ x \in \omega : S(x) = y \}, \quad y \in \mathbb{R}^n \tag{3.1}
\]
is said to be a \textbf{multiplicity function} of the surface \(S \). In other words, \(N(S, y) \) denotes the multiplicity of covering of the point \(y \) by the surface \(S \). It is known that the multiplicity function is lower semicontinuous, i.e.,

\[
N(S, y) \geq \lim \inf_{m \to \infty} N(S, y_m)
\]
for every sequence \(y_m \in \mathbb{R}^n, m = 1, 2, \ldots \), such that \(y_m \to y \in \mathbb{R}^n \) as \(m \to \infty \), see e.g. [?] , p. 160. Thus, the function \(N(S, y) \) is Borel measurable and hence measurable with respect to every Hausdorff measure \(H^k \); see e.g. [31], p. 52.

Recall that a \(k \)-dimensional Hausdorff area in \(\mathbb{R}^n \) (or simply \textbf{area}) associated with a surface \(S : \omega \to \mathbb{R}^n \) is given by

\[
\mathcal{A}_S(B) = \mathcal{A}_S^k(B) := \int_B N(S, y) \, dH^k y \tag{3.2}
\]
for every Borel set \(B \subseteq \mathbb{R}^n \) and, more generally, for an arbitrary set that is measurable with respect to \(H^k \) in \(\mathbb{R}^n \), cf. 3.2.1 in [8]. The surface \(S \) is called \textbf{rectifiable} if \(\mathcal{A}_S(\mathbb{R}^n) < \infty \), see 9.2 in [23].

If \(\varrho : \mathbb{R}^n \to [0, \infty] \) is a Borel function, then its \textbf{integral over} \(S \) is defined by the equality

\[
\int_S \varrho \, d\mathcal{A} := \int_{\mathbb{R}^n} \varrho(y) \, N(S, y) \, dH^k y . \tag{3.3}
\]

Given a family \(\Gamma \) of \(k \)-dimensional surfaces \(S \), a Borel function \(\varrho : \mathbb{R}^n \to [0, \infty] \) is called \textbf{admissible} for \(\Gamma \), abbr. \(\varrho \in \text{adm} \, \Gamma \), if

\[
\int_S \varrho^k \, d\mathcal{A} \geq 1 \tag{3.4}
\]
for every \(S \in \Gamma \). Given \(p \in (0, \infty) \), the \textbf{\(p \)-modulus} of \(\Gamma \) is the quantity

\[
M_p(\Gamma) = \inf_{\varrho \in \text{adm} \, \Gamma} \int_{\mathbb{R}^n} \varrho^p(x) \, dm(x) . \tag{3.5}
\]

We also set

\[
M(\Gamma) = M_n(\Gamma) \tag{3.6}
\]
and call the quantity $M(\Gamma)$ the **modulus of the family** Γ. The modulus is itself an outer measure in the space of all k-dimensional surfaces.

We say that Γ_2 is **minorized** by Γ_1 and write $\Gamma_2 > \Gamma_1$ if every $S \subset \Gamma_2$ has a subsurface that belongs to Γ_1. It is known that $M_p(\Gamma_1) \geq M_p(\Gamma_2)$, see [?], p. 176-178. We also say that a property P holds for p-a.e. (almost every) k-dimensional surface S in a family Γ if a subfamily of all surfaces of Γ, for which P fails, has the p-modulus zero. If $0 < q < p$, then P also holds for q-a.e. S, see Theorem 3 in [?]. In the case $p = n$, we write simply a.e.

Remark 3.1. The definition of the modulus immediately implies that, for every $p \in (0, \infty)$ and $k = 1, \ldots, n - 1$

(1) p-a.e. k-dimensional surface in \mathbb{R}^n is rectifiable,

(2) given a Borel set B in \mathbb{R}^n of (Lebesgue) measure zero,

$$A_S(B) = 0$$

for p-a.e. k-dimensional surface S in \mathbb{R}^n.

The following lemma was first proved in [17], see also Lemma 9.1 in [23].

Lemma 3.1. Let $k = 1, \ldots, n - 1, p \in [k, \infty)$, and let C be an open cube in \mathbb{R}^n, $n \geq 2$, whose edges are parallel to coordinate axis. If a property P holds for p-a.e. k-dimensional surface S in C, then P also holds for a.e. k-dimensional plane in C that is parallel to a k-dimensional coordinate plane H.

The latter a.e. is related to the Lebesgue measure in the corresponding $(n - k)$-dimensional coordinate plane H^\perp that is perpendicular to H.

The following statement, see Theorem 2.11 in [18] or Theorem 9.1 in [23], is an analog of the Fubini theorem, cf. e.g. [31], p. 77. It extends Theorem 33.1 in [?], cf. also Theorem 3 in [?], Lemma 2.13 in [?] and Lemma 8.1 in [23].

Theorem 3.1. Let $k = 1, \ldots, n - 1, p \in [k, \infty)$, and let E be a subset in an open set $\Omega \subset \mathbb{R}^n$, $n \geq 2$. Then E is measurable by Lebesgue in \mathbb{R}^n if and only if E is measurable with respect to area on p-a.e. k-dimensional surface S in Ω. Moreover, $|E| = 0$ if and only if

$$A_S(E) = 0$$

on p-a.e. k-dimensional surface S in Ω.

Remark 3.2. Say by the Lusin theorem, see e.g. Section 2.3.5 in [8], for every measurable function $\varrho : \mathbb{R}^n \to [0, \infty]$, there is a Borel function $\varrho^* : \mathbb{R}^n \to [0, \infty]$ such that $\varrho^* = \varrho$ a.e. in \mathbb{R}^n. Thus, by Theorem 3.1, ϱ is measurable on p-a.e. k-dimensional surface S in \mathbb{R}^n for every $p \in (0, \infty)$ and $k = 1, \ldots, n - 1$.
We say that a Lebesgue measurable function \(\rho : \mathbb{R}^n \to [0, \infty] \) is \(p \)-extensively admissible for a family \(\Gamma \) of \(k \)-dimensional surfaces \(S \) in \(\mathbb{R}^n \), abbr. \(\rho \in \text{ext}_p \text{adm} \Gamma \), if
\[
\int_S \rho^k \, dA \geq 1
\]for \(p \)-a.e. \(S \in \Gamma \). The \(p \)-extensive modulus \(\overline{M}_p(\Gamma) \) of \(\Gamma \) is the quantity
\[
\overline{M}_p(\Gamma) = \inf \int_{\mathbb{R}^n} \rho^p(x) \, dm(x)
\]
where the infimum is taken over all \(\rho \in \text{ext}_p \text{adm} \Gamma \). In the case \(p = n \), we use the notations \(M(\Gamma) \) and \(\rho \in \text{ext adm} \Gamma \), respectively. For every \(p \in (0, \infty) \), \(k = 1, \ldots, n - 1 \), and every family \(\Gamma \) of \(k \)-dimensional surfaces in \(\mathbb{R}^n \),
\[
\overline{M}_p(\Gamma) = M_p(\Gamma) .
\]

4 Ring \(Q \)-homeomorphisms and their properties

Recall some necessary notions. Let \(E, F \subseteq \mathbb{R}^n \) be arbitrary domains. Denote by \(\Delta(E, F, G) \) the family of all curves \(\gamma : [a, b] \to \mathbb{R}^n \), which join \(E \) and \(F \) in \(G \), i.e. \(\gamma(a) \in E, \gamma(b) \in F \) and \(\gamma(t) \in G \) for \(a < t < b \). Set \(d_0 = \text{dist} (x_0, \partial G) \) and let \(Q : G \to [0, \infty] \) be a Lebesgue measurable function. Denote
\[
A(x_0, r_1, r_2) = \{ x \in \mathbb{R}^n : r_1 < |x - x_0| < r_2 \} ,
\]
and
\[
S_i = S(x_0, r_i) = \{ x \in \mathbb{R}^n : |x - x_0| = r_i \} , \quad i = 1, 2 .
\]

We say that a homeomorphism \(f : G \to \mathbb{R}^n \) is the ring \(Q \)-homeomorphism with respect to \(p \)-module at the point \(x_0 \in G \), \(1 < p \leq n \) if the inequality
\[
\mathcal{M}_p \left(\Delta \left(f(S_1), f(S_2), f(G) \right) \right) \leq \int_A Q(x) \cdot \eta^p(|x - x_0|) \, dx
\]
is fulfilled for any ring \(A = A(x_0, r_1, r_2) \), \(0 < r_1 < r_2 < d_0 \) and for every measurable function \(\eta : (r_1, r_2) \to [0, \infty] \), satisfying
\[
\int_{r_1}^{r_2} \eta(r) \, dr \geq 1 .
\]

The homeomorphism \(f : G \to \mathbb{R}^n \) is the ring \(Q \)-homeomorphism with respect to \(p \)-module in the domain \(G \), if inequality (4.2) holds for all points \(x_0 \in G \). The properties of the ring \(Q \)-homeomorphisms for \(p = n \) are studied in [?].
The ring Q-homeomorphisms are defined in fact locally and contain as a proper subclass of Q-homeomorphisms (see [?]). A necessary and sufficient condition for homeomorphisms to be ring Q-homeomorphisms with respect to p-module at a point given in [?], asserts:

Proposition 4.1. Let G be a bounded domain in \mathbb{R}^n, $n \geq 2$ and let $Q : G \rightarrow [0, \infty]$ belong to L^1_{loc}. A homeomorphism $f : G \rightarrow \mathbb{R}^n$ is a ring Q-homeomorphism with respect to p-module at $x_0 \in G$ if and only if for any $0 < r_1 < r_2 < d_0 = \text{dist}(x_0, \partial G)$,

$$
\mathcal{M}_p(\Delta(f(S_1), f(S_2), f(G))) \leq \frac{\omega_{n-1}}{I^p_{p-1}},
$$

where S_1 and S_2 are the spheres defined in (4.1)

$$
I = I(x_0, r_1, r_2) = \int_{r_1}^{r_2} \frac{dr}{r^{n-1/p}q_{x_0}(r)},
$$

and $q_{x_0}(r)$ is the mean value of Q over $|x - x_0| = r$. Note that the infimum in the right-hand side of (4.2) over all admissible η satisfying (4.3) is attained only for the function

$$
\eta_0(r) = \frac{1}{I r^{n-1/p}q_{x_0}(r)}.
$$

In this sections we establish the relationship between the ring and lower Q-homeomorphisms with respect to p-module.

Theorem 4.1. Every lower Q-homeomorphism with respect to p-module $f : G \rightarrow G^*$ at $x_0 \in G$, with $p > n - 1$ and $Q \in L^p_{loc}^{n-1/p}$, is a ring \tilde{Q}-homeomorphism with respect to α-module at x_0 with $\tilde{Q} = Q^{n-1/p_{n+1}}$ and $\alpha = \frac{p}{p-n+1}$.

5 Lower Q-homeomorphisms and Orlicz-Sobolev classes

Let D and D' be two bounded domains in \mathbb{R}^n, $n \geq 2$ and $x_0 \in D$. Given a Lebesgue measurable function $Q : D \rightarrow [0, \infty]$, a homeomorphism $f : D \rightarrow D'$ is called the lower Q-homeomorphism with respect to p-modulus at x_0 if

$$
\mathcal{M}_p(f(\Sigma_{\varepsilon})) \geq \inf_{\rho \in \text{ext}_{p, \text{adm}} \Sigma} \int_{A_{\varepsilon}(x_0)} \frac{\rho^p(x)}{Q(x)} dm(x),
$$

(5.1)

where

$$
A_{\varepsilon}(x_0) = \{x \in \mathbb{R}^n : \varepsilon < |x - x_0| < \varepsilon_0\}, \quad 0 < \varepsilon < \varepsilon_0, \quad 0 < \varepsilon_0 < \sup_{x \in G} |x - x_0|,
$$

and Σ_{ε} denotes the family of all spheres centered at x_0 of radii r, $\varepsilon < r < \varepsilon_0$, located in D.
Theorem 5.1. Let D and D' be domains in \mathbb{R}^n, $n \geq 3$, and let $\varphi : [0, \infty) \to [0, \infty)$ be increasing with the condition (2.1). Then each homeomorphism $f : D \to D'$ of finite distortion in the class $W^{1,\varphi}_{\text{loc}}$ is a lower Q-homeomorphism at every point $x_0 \in D$ with $Q(x) = K_{p,f}(x)$.

Proof. Let B be a (Borel) set of all points $x \in D$ where f has a total differential $f'(x)$ and $J_f(x) \neq 0$. Then, applying Kirszbraun’s theorem and uniqueness of approximate differential, see, e.g., 2.10.43 and 3.1.2 in [8], we see that B is the union of a countable collection of Borel sets B_l, $l = 1, 2, \ldots$, such that $f_l = f|_{B_l}$ are bi-Lipschitz homeomorphisms, see, 3.2.2, 3.1.4 and 3.1.8 in [8]. With no loss of generality, we may assume that the B_l are mutually disjoint. Denote also by B^* the set of all points $x \in D$ where f has the total differential but with $f'(x) = 0$.

By the construction the set $B_0 := D \setminus (B \cup B^*)$ has Lebesgue measure zero, see Theorem 2.1. Hence by Theorem 2.4 in [18] or by Theorem 9.1 in [23] the area $\mathcal{A}_{S^*(f(B_0))} = 0$ for a.e. hypersurface S in \mathbb{R}^n and, in particular, for a.e. sphere $S_r := S(x_0, r)$ centered at a prescribed point $x_0 \in \overline{D}$. Thus, by Corollary 2.2 $\mathcal{A}_{S^*(f(B_r))} = 0$ for a.e. S_r where $S^*_r = f(S_r)$.

Let Γ be the family of all intersections of the spheres S_r, $r \in (\varepsilon, \varepsilon_0)$, $\varepsilon_0 < d_0 = \sup_{x \in D} |x - x_0|$, with the domain D. Given $\rho_* \in \text{adm } f(\Gamma)$, $\rho_* \equiv 0$ outside of $f(D)$, set $\rho \equiv 0$ outside of D and on B_0,

$$
\rho(x) : = \rho_*(f(x)) \|f'(x)\| \quad \text{for } x \in D \setminus B_0.
$$

Arguing piecewise on B_l, $l = 1, 2, \ldots$, we have by 1.7.6 and 3.2.2 in [8] that

$$
\int_{S_r} \sigma^{n-1} dA \geq \int_{S^*_r} \sigma_*^{n-1} dA \geq 1
$$

for a.e. S_r and, thus, $\rho \in \text{ext}_p \text{adm } \Gamma$.

The change of variables on each B_l, $l = 1, 2, \ldots$, see, e.g., Theorem 3.2.5 in [8], and countable additivity of integrals give the estimate

$$
\int_D \frac{\rho^p(x)}{K_{p,f}(x)} dm(x) \leq \int_{f(D)} \rho_*^p(x) dm(x)
$$

and the proof is complete.

Corollary 5.1. Each homeomorphism f of finite distortion in \mathbb{R}^n, $n \geq 3$, in the class $W^{1,s}_{\text{loc}}$ for $s > n - 1$ is a lower Q-homeomorphism at every point $x_0 \in D$ with $Q(x) = K_{p,f}(x)$.

References

[1] Balogh Z.M.: Hausdorff dimension distribution of quasiconformal mappings on the Heisenberg group. J. d’Anal. Math. 83, 289–312 (2001).

[2] Bishop C.J.: Quasiconformal mappings which increase dimension. Ann. Acad. Sci. Fenn. Ser. A I Math. 24, 397–407 (1999).

[3] Birnbaum Z. and Orlicz W.: Über die Verallgemeinerungen des Begriffes der zueinander konjugierten Potenzen. Studia. Math. 3, 1–67 (1931).

[4] Bojarski B. and Iwaniec T.: Analytical foundations of the theory of quasiconformal mappings in \mathbb{R}^n. Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (2), 257–324 (1983).

[5] Bonk M. and Heinonen J.: Smooth quasiregular mappings with branching. Publ. Math. Inst. Hautes Etudes Math. 100, 153–170 (2004).

[6] Calderon A.P.: On the differentiability of absolutely continuous functions. Riv. Math. Univ. Parma 2, 203–213 (1951).

[7] Fadell A.G.: A note on a theorem of Gehring and Lehto. Proc. Amer. Math. Soc. 49, 195–198 (1975).

[8] Federer H.: Geometric Measure Theory. Springer-Verlag, Berlin (1969).

[9] Gehring F.W. and Lehto O.: On the total differentiability of functions of a complex variable. Ann. Acad. Sci. Fenn. Ser. A I Math. 272, 3–8 (1959).

[10] Gehring F.W. and Martio O.: Quasiextremal distance domains and extension of quasiconformal mappings. J. Anal. Math. 45, 181–206 (1985).

[11] Gehring F.W. and Väisälä J.: Hausdorff dimension and quasiconformal mappings. J. London Math. Soc. (2) 6, 504–512 (1973).

[12] Gol’dshteiin V. M. and Reshetnyak Yu.G.: Introduction to the Theory of Functions with Distributional Derivatives and Quasiconformal Mappings: Nauka, Moscow (1983); English transl., Quasiconformal Mappings and Sobolev Spaces. Kluwer, Dordrecht (1990).

[13] Heinonen J., Kilpelainen T. and Martio O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Mathematical Monographs. Clarendon Press, Oxford-New York-Tokio (1993).

[14] Hurewicz W. and Wallman H.: Dimension Theory. Princeton Univ. Press, Princeton, NJ (1948).

[15] Iwaniec T. and Martin G.: Geometric Function Theory and Non-linear Analysis. Oxford Math. Monogr., Oxford Univ. Press, Oxford (2001).
[16] Iwaniec T. and Sverak V.: On mappings with integrable dilatation. Proc. Amer. Math. Soc. **118**, 181–188 (1993).

[17] Kovtonyuk D. and Ryazanov V.: To the theory of lower Q-homeomorphisms. Ukr. Mat. Visn. **5** (2), 159–184 (2008); transl. in Ukrainian Math. Bull. **5** (2), 157–181 (2008).

[18] Kovtonyuk D. and Ryazanov V.: On the theory of mappings with finite area distortion. J. Anal. Math. **104**, 291–306 (2008).

[19] Kovtonyuk D. and Ryazanov V.: On the boundary behavior of generalized quasi-isometries. J. Anal. Math. **115**, 103–120 (2011).

[20] Kuratowski K.: Topology, vol. 1. Acad. Press, NY (1968).

[21] Martio O., Rickman S. and Vaisala J.: Definitions for quasiregular mappings. Ann. Acad. Sci. Fenn. Ser. A I Math. **448**, 1–40 (1969).

[22] Martio O. and Vuorinen M.: Whitney cubes, p-capacity and Minkowski content. Expo. Math. **27**, 17–40 (1987).

[23] Martio O., Ryazanov V., Srebro U. and Yakubov E.: Moduli in Modern Mapping Theory. Springer Monographs in Mathematics. Springer, New York (2009).

[24] Maz’ya V.: Sobolev Spaces. Springer-Verlag, Berlin (1985).

[25] Menchoff D.: Sur les differencelles totales des fonctions univalentes. Math. Ann. **105**, 75–85 (1931).

[26] Orlicz W.: Über eine gewisse Klasse von Räumen vom Typus B. Bull. Intern. de l’Acad. Pol. Serie A, Cracovie (1932).

[27] Reshetnyak Yu.G.: Space Mappings with Bounded Distortion. Nauka, Novosibirsk (1982); English transl., Translations of Mathematical Monographs, vol. 73, Amer. Math. Soc., Providence, RI (1988).

[28] Reshetnyak Yu.G.: Sobolev classes of functions with values in a metric space. Sibirsk. Mat. Zh. **38** (3), 657–675 (1997); transl. in Siberian Math. J. **38** (3), 567–583 (1997).

[29] Rickman S.: Quasiregular Mappings. Springer, Berlin etc. (1993).

[30] Ryazanov V., Srebro U. and Yakubov E.: On integral conditions in the mapping theory. Ukr. Mat. Visn. **7** (1), 73–87 (2010); transl. in J. Math. Sci. **173** (4), 397–407 (2011).

[31] Saks S.: Theory of the Integral. Dover, New York (1964).
[32] Sobolev S.L.: Applications of Functional Analysis in Mathematical Physics. Izdat. Gos. Univ., Leningrad (1950); English transl. Amer. Math. Soc., Providence, R.I. (1963).

[33] Väisälä J.: On quasiconformal mappings in space. Ann. Acad. Sci. Fenn. Ser. A I Math. 298, 1–36 (1961).

[34] Vodop’yanov S.: Mappings with bounded distortion and with finite distortion on Carnot groups. Sibirsk. Mat. Zh. 40 (4), 764–804 (1999); transl. in Siberian Math. J. 40 (4), 644–677 (1999).

[35] Vuorinen S.: Conformal Geometry and Quasiregular mappings. Lecture Notes in Math, vol. 1319, Springer-Verlag, Berlin (1988).