Biomarker concordance between primary colorectal cancer and its metastases

D.S. Bhullar 1, J. Barriuso 1, S. Mullamitha, M.P. Saunders, S.T. O’Dwyer, O. Aziz *

Colorectal & Peritoneal Oncology Centre, The Christie NHS Foundation Trust, Manchester, UK
Division of Cancer Sciences, School of Medical Science, Faculty of Biology, Medicine and Health, University of Manchester, UK

ARTICLE INFO

Keywords: Biomarker Concordance Colorectal cancer RAS BRAF PIK3CA

Abstract

Background: The use of biomarkers to target anti-EGFR treatments for metastatic colorectal cancer (CRC) is well-established, requiring molecular analysis of primary or metastatic biopsies. We aim to review concordance between primary CRC and its metastatic sites.

Methods: A systematic review and meta-analysis of all published studies (1991–2018) reporting on biomarker concordance between primary CRC and its metastatic site(s) was undertaken according to PRISMA guidelines using several medical databases. Studies without matched samples or using peripheral blood for biomarker analysis were excluded.

Findings: 61 studies including 3565 patient samples were included. Median biomarker concordance for KRAS (n = 50) was 93.7% [67–100], NRAS (n = 11) was 100% [80–100], BRAF (n = 22) was 99.4% [80–100], and PIK3CA (n = 17) was 95% [42–100]. Meta-analytic pooled discordance was 8% for KRAS (95% CI = 5–10%), 8% for BRAF (95% CI = 5–10%), 7% for PIK3CA (95% CI = 2–13%), and 28% overall (95% CI = 14–44%). The liver was the most commonly biopsied metastatic site (n = 2276), followed by lung (n = 438), lymph nodes (n = 1123), and peritoneum (n = 132). Median absolute concordance in multiple biomarkers was 81% (5–95%).

Interpretation: Metastatic CRC demonstrates high concordance across multiple biomarkers, suggesting that molecular testing of either the primary or liver and lung metastasis is adequate. More research on colorectal peritoneal metastases is required.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Research in context

Evidence before this study

Genetic mutations in key biomarkers are known to predict outcomes and response to treatment in metastatic colorectal cancer. Concordance in these biomarkers between the primary and metastatic sites is an important factor to consider with both diagnostic and therapeutic implications. We systematically reviewed all published comparative studies reporting on biomarker concordance between primary and metastatic sites. These studies were identified using PubMed, MedLINE, Ovid, Embase, Cochrane, and Google Scholar databases. Biomarkers that were studied included KRAS, BRAF, NRAS, PIK3CA, and PTEN, among others.

Added value of this study

This study provides a comprehensive review of the concordance rates of genetic biomarker mutations between primary and metastatic sites in colorectal cancer. This allows us to quantify the predictive value of a metastatic site biopsy in determining the biomarker mutation status of the primary colorectal cancer. It also presents what is currently known about biomarker concordance by metastatic site.

Implications of all the available evidence

This study demonstrates a high genetic concordance rate between primary colorectal cancers and their liver/lung metastases. Despite peritoneal metastases being the third most common site, little remains known about their concordance with the primary colorectal cancer. There is currently no evidence that multiple metastatic site biopsies will provide benefit, with single sites sufficient for diagnosis and biomarker profiling provided adequate samples can be taken. This has important implications for reducing the time to diagnosis, commencement of treatment, and cost.

involved in the malignant transformation of CRC, with mutation in TP53 resulting in a non-functional p53 protein and reduced OS [27–30]. Unlike APC and TP53, which usually occur in early colorectal tumorigene- sis, inactivation of SMAD4 is associated with late-stage or metastatic disease [31]. SMAD4, also known as DPC4, encodes a tumour suppressor that regulates transcriptional activity downstream of TGF-β receptor signalling. Expression of SMAD4 is an important prognostic factor in CRC, with patients who retain higher levels of SMAD4 within their tumours having higher OS than those with low or absent expression [32,33].

This study aims to systematically review the literature and undertake meta-analysis where appropriate in order to determine the concordance between primary CRC and its metastatic site, with regards to the above-mentioned biomarkers and their combinations. It also aims to determine the variation in concordance by metastatic site, and the ‘absolute concordance’ in multiple biomarkers for mCRC. This is important for two reasons: First, it has implications for the understanding of how tumours evolve and differ between the primary and metastatic site. Studies demonstrating the dynamic changes in circulating DNA of mCRC patients with the clonal evolution and resistance to anti-EGFR treatments with time have suggested that the CRC genome adapts to drug schedules, providing a molecular explanation for changes in efficacy with re-challenge anti-EGFR therapies [34]. Second it also has implications for personalized treatment strategies used for patients based on single site biopsies [35,36]. This study tries to shed light in respect to the heterogeneity (studied as mutational discordance) between the primary and metastatic sites in light of evidence that significant intra-tumour heterogeneity exists between different points on the same primary CRC specimen [37]. There are cases where the primary tumour cannot be accessed, in which case knowledge on concordance between the metastatic sites (liver, lung, lymph node or peritoneum) is important.

2. Methods

This systematic review was undertaken in accordance with the PRISMA guidelines [38]. A literature search was undertaken by two independent reviewers (DB and OA) of all published studies using PubMed, MedLINE, Ovid, Embase, Cochrane, and Google Scholar databases using the following MeSH terms: “colorectal neoplasm” “peritoneal neoplasm” and “mutation”, plus additional search terms including: “primary colorectal cancer”, “metastasis”, “biomarker”, and “concordance”. Further references were identified manually using the bibliographies of relevant papers and review articles. Equal consideration was given to fully published studies and those available in only abstract form.

2.1. Study selection

Studies were included provided that patients had a confirmed diagnosis of metastatic colorectal adenocarcinoma, and mutational biomarker analysis on biopsies both from the colorectal primary and at least one site of metastasis. Studies were excluded if the primary and metastatic tumour samples were unmatched, concordance was reported in relation to peripheral blood samples instead of solid tumour, or there was insufficient data available to provide a value for concordance. The method and extent of mutational analysis was not a criterion for exclusion. In this study the biomarker concordance between primary tumour and metastasis was defined in terms of both mutant and wild-type pairs, and not limited to the mutant-only population.

2.2. Meta-analysis

The proportion of changes (discordance proportion) with exact 95% confidence intervals (CIs) was calculated for each study. The Freeman–Tukey double arc sine transformation was the chosen approach for the calculation of pooled estimates and corresponding 95% CIs [39,40]. If a study had a sample size below 10, the arc sine transformation was pre-

3. Results

Literature search identified 1498 studies reporting on concordance in mCRC between 1991 and 2018. Of these, 61 articles including 3565 patients matched the selection criteria and were deemed suitable for qualitative synthesis as outlined in Fig. 1.

3.1. Concordance between primary CRC and its metastatic site

Concordance in individual biomarker status in patients with mCRC was reported in a range of oncogenes and tumour suppressor genes. The median reported concordance was 93.7% (range 67–100) for KRAS (n = 50) [24,44–93], 99.4% (range 80–100) for BRAF (n = 22)
[44,45,48,49,54,60,61,63–65,67–69,71,73–76,79,80,83,86], 93% (range 42–100) for PIK3CA \((n = 17)\) [44,48–51,53,54,58–60,63,65,67–69,73,76], 92.9% (range 73–100) for TP53 \((n = 12)\) [44,48,51–53,58–60,63,64,68,87], and 100% (range 90–100) for NRAS \((n = 11)\) [44,48,49,51,56,59,60,63,68,69,70,72,77,80–82,94,100]. Less commonly reported markers included: PTEN \((n = 10)\) [24,44,48,49,52,53,58,63,67,71,76,79,94], APC \((n = 10)\) [44,48,51–53,58,63,64,88], SMAD4 \((n = 6)\) [51,53,54,58,63,64], and EGFR \((n = 5)\) [24,71,79,95,96]. Additional data was also available on the concordance of MSI status and MMR genes \((n = 5)\) [45,48,51,52,54,64]. This also included single studies of mitochondrial microsatellite instability (mtMSI), CpG island methylator phenotype (CIMP), neuroendocrine differentiation, and microRNA (miRNA) [60,99–101].

3.3. Absolute concordance

15 studies compared the overall molecular profiles of the matched primary and metastatic sites as shown in Table 5 [44,45,51,52,54,59,60,63,65,69,76,80,83,93,102]. An additional 2 studies reported on somatic variance between matched tumours [103,104]. Studies identified that the greater the number of genes included within the analysis, the lower the rate of absolute concordance. For example, a combination of KRAS and BRAF was concordant in 44 out of 48 of cases (91.7%) but sequencing of >1000 genes in a separate cohort saw concordance fall to only 1 in 19 cases (5.3%) [45,72].

3.4. Meta-analysis of the discordance

The discordance rate was assessed in 3066 patients for KRAS, 1312 patients for BRAF, 727 patients for PIK3CA and 626 patients with overall molecular profiles. There was no evidence for publication bias for PIK3CA and the overall molecular profiles (labelled as “ALL” in the Supplementary Fig. 1 (Egger’s test: \(p = .76\) and \(p = .08\) respectively). However, publication bias was found in KRAS and BRAF studies (Egger’s test: \(p = .01\) and \(p = .01\) respectively).
KRAS - Fig. 2 shows the discordance proportions reported for KRAS in each study included in the analysis. The heterogeneity between proportions ranged from 0% to 29% ($I^2 = 91\%, \tau^2 = 0.012, p < .0001$). The meta-analytic pooled discordance proportion was 8% (95% CI: 5–10%)

BRAF - Fig. 3 shows the discordance proportions reported for BRAF in each study included in the analysis. The heterogeneity between proportions ranged from 0% to 20% ($I^2 = 59\%, \tau^2 = 0.007, p < .0003$). The meta-analytic pooled discordance proportion was 8% (95% CI: 5–10%)

PIK3CA - Fig. 4 shows the discordance proportions reported for PIK3CA in each study included in the analysis. The heterogeneity between proportions ranged from 0% to 58% ($I^2 = 86\%, \tau^2 = 0.04, p < .0001$). The meta-analytic pooled discordance proportion was 7% (95% CI: 2–13%).

Overall molecular profiles – Fig. 5 shows the discordance proportions reported considering the overall molecular profiles. PIK3CA in for all studies included in the analysis. The heterogeneity between proportions ranged from 5% to 95% ($I^2 = 93\%, \tau^2 = 0.1, p < .0001$). The meta-analytic pooled discordance proportion was 28% (95% CI: 14–44%).

Table 1: KRAS biomarker studies (n = 50).

Study	Year	N	Analysis	Codons	Sites of metastasis	Concordance (%)
Moorcraft et al.	2017	15	NGS	–	–	92
Fujiiyoshi et al.	2017	457	NGS	12, 13, 61	L + D	96.9
Petaccia de Macedo et al.	2017	97	Pyro	12, 13, 61	L + D	97.9
Pang et al.	2017	72	ARMS PCR	–	–	81.9
Nemec et al.	2016	12	NGS	12, 13, 22, 61, 117, 146	L + D	75
Li et al.	2016	58	qRT-PCR + NGS	12, 13	D	81
He et al.	2016	59	PCR	12, 13, 61, 117	D	76.3
Kovaleva et al.	2016	14	NGS	12, 13	–	78.6
Crumley et al.	2016	16	NGS	–	L + D	93.8
Vignot et al.	2015	13	NGS	–	–	100
Jesinghaus et al.	2015	24	NGS	–	L + D	77.4
Sisar-Ekinci et al.	2015	31	Pyro	–	–	88.1
Lau et al.	2015	82	Sanger	12, 13, 61	D	79.7
Lee et al.	2015	74	Seq	12, 13	–	97
Lim et al.	2015	34	NGS + Sanger	–	–	97
Kim et al.	2015	19	NGS	12, 13, 61	L + D	100
Kleist et al.	2014	151	Seq	12, 13, 61	L + D	86.8
Giannini et al.	2014	17	PCR + Pyro	12, 13	L + D	82.4
Palogiannis et al.	2014	31	Seq	12, 13, 61	D	90.3
Brannon et al.	2014	69	NGS	–	–	76.3
Lee et al.	2014	15	NGS	–	–	80
Murata et al.	2013	26	Pyro	12	L + D	94
Miglio et al.	2013	45	Seq	12, 13	–	100
Vakiani et al.	2012	84	Sanger	12, 13, 22, 61, 117, 146	L + D	97.6
Ververmaat et al.	2012	21	NGS + Sanger	12, 13, 146	Li	85.7
Knijn et al.	2011	305	Seq	12, 13	–	96.4
Park et al.	2011	17	Seq	12, 13	–	76
Watanabe et al.	2011	43	Seq	12, 13	–	88.4
Baldus et al.	2010	75	Pyro	–	L + D	74.7
Italiano et al.	2010	64	Seq	–	–	94.9
Mariani et al.	2010	38	Seq	12, 13	–	97
Perrone et al.	2009	12	Seq	12, 13	–	80
Cejas et al.	2009	110	Seq	12, 13	–	94
Garm-Spindler et al.	2009	31	qPCR	12, 13	–	93.5
Loupakis et al.	2009	53	Seq	12, 13	–	95
Molinari et al.	2009	38	Seq	12, 13	–	92
Gattenlöhner et al.	2009	21	AS-PCR	12, 13	–	95
Etienne-Grimaldi et al.	2008	48	PCR-RFLP	12, 13	–	100
Santini et al.	2008	99	Seq	12, 13	–	96
Artale et al.	2008	48	Seq	12, 13	–	94
Gattenlöchner et al.	2008	106	Seq	12, 13	–	99
Weber et al.	2007	38	Seq	12, 13	–	94.7
Oliveira et al.	2007	28	–	–	–	67.9
Albanese et al.	2004	30	PCR-SSCP	12, 13	–	70
Zaubier et al.	2003	42	Seq	12, 13	–	70
Tórtola et al.	2001	51	SSCP + Seq	12, 13	–	100
Al-Mulla et al.	1998	58	PCR ASO	12, 13	–	87
Suchy et al.	1992	109	PCR ASO	12	–	100
Losi et al.	1992	35	AS-PCR	12, 13	–	100
Ouadji et al.	1991	31	Seq	12, 13, 61	D	93.5

Table key [1–3]:
N = no. of patients with matched samples
L = local metastasis e.g. loco-regional lymph nodes
D = distant metastasis e.g. liver, lung, peritoneum, omentum, mesentery, brain, bone, ovary, uterus, vagina, small intestine, adrenal gland, pancreas
Li = Liver only
Lu = Lung only
BM = Bone marrow only

Abbreviations: ARMS, amplification-refractory mutation system analysis; ASO, allele-specific oligonucleotide hybridisation; AS-PCR, allele-specific polymerase chain reaction; NGS, next generation sequencing; PCR, polymerase chain reaction; RFLP, restriction fragment length polymorphism; Pyro, pyrosequencing; qPCR, quantitative PCR; qRT, quantitative reverse transcription; Sanger, sanger sequencing; Seq, sequencing; SSCP, single-stranded conformation polymorphism; −, information unavailable/ unspecified.
4. Discussion

A total of 9 studies reported absolute concordance in KRAS point mutations within codons 12 and 13, despite apparent differences in sequencing methodologies, suggesting the stability in KRAS status between the primary and metastatic sites [53,54,59,63,66,81,88,91,92].

Of note, Tórtola et al. did identify some discordance when using single-strand conformational polymorphism (SSCP) analysis of bone micrometastases [89]. In this study, 17 mutations were found among the primary tumours compared to only 7 in corresponding metastases, and whereas the majority (88%) of mutated KRAS in primary CRC's were located in codon 12, in the bone marrow these mutations were

Table 2
BRAF biomarker studies (n = 22).

Study	Year	N	Analysis	Codons	Sites of metastasis	Concordance (%)
Moorcraft et al.	2017	15	NGS	–	Lu	100
Fujiyoshi et al.	2017	457	PCR-RFLP	600	L + D	100
Nemecck et al.	2016	12	NGS	600	L + D	92
Li et al.	2016	10	NGS	–	D	80
Jesinghaus et al.	2015	24	NGS	–	D	100
Lee et al.	2014	15	NGS	–	Li	93.3
Kleist et al.	2014	151	PCR Seq	–	L + D	98.7
Giannini et al.	2014	17	PCR + Pyro	600	L + D	94.1
Brannom et al.	2014	69	NGS	–	D	100
Murata et al.	2013	26	Pyro	600	L + D	100
Voutsina et al.	2013	83	Sanger + ARMS AS-PCR	600	D	100
Vemaraf et al.	2012	21	NGS + Sanger	600	Li	100
Vakiani et al.	2012	84	Sanger	600	L + D	100
Park et al.	2011	20	Seq	600	L + D	90
Mariani et al.	2011	38	Seq	600	D	100
Italiano et al.	2010	48	PCR Seq	–	–	97.9
Baldus et al.	2010	75	Pyro	600	L + D	97.4
Perrone et al.	2009	12	PCR Seq	600	D	90.1
Moliniari et al.	2009	38	PCR Seq	600	L + D	100
Gartenlöhner et al.	2009	21	AS-PCR	600	D	100
Artale et al.	2008	48	Seq	600	D	98
Oliveira et al.	2007	28	–	600 + 601	L	89.3

Table key [1–3]:
N = no. of patients with matched samples
L = local metastasis e.g. loco-regional lymph nodes
D = distant metastasis e.g. liver, lung, peritoneum, omentum, mesentry, brain, bone, ovary, uterus, vagina, small intestine, adrenal gland, pancreas
Li = Liver only
Lu = Lung only
BM = Bone marrow only
Abbreviations: ARMS, amplification-refractory mutation system analysis; AS-PCR; allele-specific polymerase chain reaction; NGS, next generation sequencing; PCR, polymerase chain reaction; Pyro, pyrosequencing; Sanger, sanger sequencing; Seq, sequencing; SSCP, single-stranded conformation polymorphism; –, information unavailable/unspecified.

Table 3
PIK3CA biomarker studies (n = 17).

Study	Year	N	Analysis	Codons	Site of metastases	Concordance (%)
Moorcraft et al.	2017	15	NGS	–	Lu	86.7
Li et al.	2016	10	NGS	–	D	100
He et al.	2016	59	PCR Seq	542, 545, 1047	D	42.4
Kovaleva et al.	2016	14	NGS	542, 545, 1047	D	92.9
Nemecck et al.	2016	12	NGS	542, 545, 1047	L + D	83
Vignot et al.	2015	13	NGS	–	D	100
Jesinghaus et al.	2015	24	NGS	–	D	100
Lim et al.	2015	34	NGS + Sanger	–	Li	100
Kim et al.	2015	19	NGS	542, 545, 1047	L + D	100
Kleist et al.	2014	151	PCR Seq	542, 545, 1047	L + D	97.4
Brannom et al.	2014	69	NGS	–	D	94.2
Murata et al.	2013	32	Pyro	542, 545, 1047	L + D	88
Voutsina et al.	2013	83	Sanger + ARMS AS-PCR	525, 545, 1047	D	93
Vakiani et al.	2012	84	Sanger	545, 420, 542, 545, 546, 1043, 1047	L + D	98.8
Vemaraf et al.	2012	21	NGS + Sanger	542, 545, 1047	Li	85.7
Baldus et al.	2010	75	Pyro	–	L + D	89.3
Perrone et al.	2009	12	PCR Seq	542, 545, 1047	D	90.1

Table key [1–3]:
N = no. of patients with matched samples
L = local metastasis e.g. loco-regional lymph nodes
D = distant metastasis e.g. liver, lung, peritoneum, omentum, mesentry, brain, bone, ovary, uterus, vagina, small intestine, adrenal gland, pancreas
Li = Liver only
Lu = Lung only
BM = Bone marrow only
Abbreviations: ARMS, amplification-refractory mutation system analysis; AS-PCR; allele-specific polymerase chain reaction; NGS, next generation sequencing; PCR, polymerase chain reaction; Pyro, pyrosequencing; Sanger, sanger sequencing; Seq, sequencing; SSCP, single-stranded conformation polymorphism; –, information unavailable/unspecific.
Study	Year	Biomarker	LN	Liver	Lung	PTM	Other
Kleist et al.	2017	mtMSI	97.1	97.4	100	98	85.7
Fujiyoshi et al.	2017	KRAS	97.1	97.4	100	98	85.7
Moorcraft et al.	2017	KRAS	100	100	100	100	100
		BRAF	98.8	98.7	100	92	100
		MSI/MSI	100	100	-	92	100
Moorcraft et al.	2017	KRAS	100	93	100		
		NRAS	100	100	100		
		BRAF	100	100	100		
		PIK3CA	100	86.7	100		
		PTEN	100	100	100		
		TPS3	100	100	100		
		APC	100	100	100		
Petaccia et al.	2017	KRAS	97.8	98.9	100		
Crumley et al.	2016	KRAS	92.3	100			
		TP53	92.3	100			
		APC	84.6	100			
He et al.	2016	KRAS	75.8	66.7	92.9		
		PIK3CA	39.4	44.4	47.1		
Kovaleva et al.	2016	KRAS	85.7	85.7			
		NRAS	100	100			
		PIK3CA	92.9	92.9			
		TP53	92.9	92.9			
		APC	71.4	100			
		SMAD4	92.9				
Li et al.	2016	KRAS	100	80	80		
		NRAS	100	100	50		
		BRAF	0	80	100		
		PIK3CA	100	100	100		
Vignot et al.	2015	KRAS	100	100	100		
		PIK3CA	100	100	100		
		TP53	84.6	100			
		APC	91.7	100			
		SMAD4	84.6	100			
Lau et al.	2015	KRAS	78.6	100	66.7		
Giannini et al.	2014	KRAS	78.6	100	66.7		
Kleist et al.	2014	KRAS	88.1	83.3			
		NRAS	99.1	97.6			
		BRAF	99.1	100			
		PIK3CA	96.3	100			
		TP53	95.4	100			
Brannon et al.	2014	KRAS	100	100			
		NRAS	100	100			
		BRAF	100	100			
		PIK3CA	98.5	100			
		PTEN	100	100			
		TPS3	100	100			
		APC	93.9	100			
Lee et al.	2014	KRAS	80	93			
		BRAF	93.3	73.3			
		TP53	73.3	93.3			
Atreya et al.	2013	PTEN	98	98			
Murata et al.	2013	KRAS	100	94			
		BRAF	100	100			
		PIK3CA	100	88			
		MSI	100	96			
Vermaat et al.	2012	KRAS	85.7	100			
		NRAS	100	100			
		BRAF	100	100			
		PIK3CA	100	100			
Knijn et al.	2011	KRAS	80	96.4			
Watanabe et al.	2011	KRAS	69	90			
Baldus et al.	2010	KRAS	69	90			
		BRAF	96	100			
		PIK3CA	87	95			
Cejas et al.	2009	KRAS	94.6	88.2			
Molinari et al.	2009	KRAS	100	92			
		BRAF	100	100			
		PTEN	87	89			
Etienne-Grimaldi et al.	2008	KRAS	100	100			
mainly localised to codon 13 (71%) [89]. There are however studies that identified discordance rates in KRAS as high as 30% [86,87]. In the case of Baldus et al., the lower reported concordance was suggested to be attributable to intra-tumour heterogeneity; a phenomenon strongly evidenced in colorectal tumours as well as numerous other solid malignancies [37,73,105,106]. In a comparable study by He et al., a combination of low sensitivity testing and unreported mutation analysis of the tissues could have led to false-negatives [50,73]. This is effectively illustrated in the study by Vakiani and colleagues where concordance rates increased by 5% when more sensitive analysis methods were used [68]. KRAS status can therefore be determined from the primary tumour or the metastatic site as long as the sample is sufficient and sequencing technique adequate.

Although significantly fewer studies have evaluated NRAS status compared to KRAS in matched tumours, the available data suggests concordance rates are also high (median of 100%, range 90–100%) regardless of sequencing method [56,60,63]. BRAF notably demonstrated 100% mutation concordance in half of the identified studies, despite similar variances in the type of metastasis sampled and sequencing method [48,54,65,68]. Expanded analysis of BRAF mutations to include exons 11 and 15 did result in a slightly lower concordance (median of 99.4%, range 80–100%), with discordance limited to V600E region of exon 15 [76]. It is important to note that all of the studies reporting lower rates of BRAF concordance demonstrated a small sample size of paired specimens which may have impacted their results. This is aligned to the publication bias detected in this particular subset where usually smaller studies are published only with positive findings. Altogether 7 BRAF studies had sample sizes that were considered small, defined as less than or equal to 20 matched patient samples [49,71,76].

The results for PIK3CA in some cases show a much more discordant relationship between the primary tumour and the metastasis, with a median concordance of 93% (42–100%) [50]. While the aforementioned report is unhindered by its adequate sample size (>50 matched pairs), a combination of the low sensitivity method of sequencing within this study and the unusually high proportion of patients with detected PIK3CA mutation may somewhat explain its contradiction to the rest of the literature [50]. Thus, based on the consistent results of other studies, the concordance rate for PIK3CA is relatively high overall within the average CRC population [60,63,73]. Importantly, this study identified that some of the tumour suppressor genes (PTEN, TP53, APC and SMAD4) can show a more variable and discordant relationship between the primary tumour and the metastasis [59]. Mutation within these tumour suppressors, such as TP53, is at times more common in the metastasis than the primary [68]. However, cumulative data indicate that the PTEN and APC genes are among those demonstrating the greatest variation, revealing less consistency for higher rates of concordance [24,51,52,63,64,67,94]. We also found that although primary tumours and their metastases displayed a variable concordance with regards to MSI and EGFR, the number of studies reporting on these biomarkers was small making our findings difficult to interpret [24,45,95,97]. Nonetheless, EGFR does show notable evidence of a predisposition toward discordant expression [95,96].

This study was also able to determine biomarker concordance by metastatic site, with hepatic metastases most commonly studied and displaying a remarkably concordant relationship with the primary tumour [63,69]. The liver is a site that can be relatively easily biopsied with sufficient sample sizes (core biopsies). In contrast, pulmonary metastases are more challenging to sample and therefore not surprisingly were sampled less frequently than the liver. Much of the variation in concordance with lung metastases may be explained by this. It is however a valid site for biopsy and determination of RAS status. Peritoneal samples were extremely infrequently sampled and would also be
potentially more difficult to obtain sufficient tissue from due to their location and size. It is therefore difficult to comment on their relationship with the primary. Only two studies reported on biomarker concordance specifically comparing peritoneal metastases to the primary tumour [45,53]. This suggests the need to investigate this area, particularly as peritoneal metastases have a significantly worse median OS (16.3 months) compared to liver (19.1 months) and lung (24.6 months) metastases [107].

It is not surprising that we found that absolute concordance in more than one biomarker fell as the number of biomarkers was increased. For example limiting analysis to KRAS and BRAF demonstrated a 92–95% concordance [45,80,83], falling to 87% with extended RAS mutation analysis (including KRAS, NRAS and HRAS) [93]. Cohorts tested for KRAS and BRAF as well as additional alterations in PIK3CA/PTEN/TP53/APC demonstrate a more variable absolute concordance ranging from 57 to 84% [44,51,54]. Finally studies comparing 12, 230 and 1321 gene sequencing have demonstrated how absolute concordance falls as more genes are included within the analysis to only 5% [59,63,108]. This suggests that the metastases are distinctly different in their genetic composition to the primary tumour [64]. In any case poor absolute concordance may provide some explanation as to the complexities of colorectal tumours and their resistance to cytotoxic and biological therapies [109]. Furthermore, as metastases generally possess greater mutational load than primary tumours as well as less intra-tumour heterogeneity, basing clinical decision-making on the profile of metastases in preference to generalising the data obtained from primary tumours may be beneficial [64,67].

It is important to note a number of limitations of this study. First it should be noted that the studies included were retrospective and varied in their sample size. This was reflected in the meta-analysis showing a clear publication bias for the KRAS and BRAF papers. Second, there was heterogeneity in sample collection and processing techniques as well as sequencing techniques used which have evolved over time, making absolute comparisons difficult. This would for example explain...
the higher concordance for newer biomarkers such as NRAS. Third, the patients varied in the systemic treatments they received, and the impact of this on the metastasis (tumour regression after chemo- or radiotherapy) may have affected the sequencing result through adequacy of the sample. Fourth, it is important to note that any change in concordance may represent the evolution of the tumour as it metastasises and therefore the time between the primary tumour and metastasis sampling is an important factor to consider which could not be accounted for. Finally, inter-tumour heterogeneity means that sufficient samples may not have been possible to obtain in many of the studies to determine biomarker status especially at the metastatic sites.

Despite the above limitations, we feel that this study has demonstrated high biomarker concordance rate between primary tumours and the metastases with challenges in getting adequate sample size from metastatic sites likely to account for most discordance. This has important practical implications as it suggests there is little evidence for separate biopsy of the primary and metastatic sites. Whether the evolving use of liquid biopsy through circulating tumour DNA (ctDNA) analysis adds anything further to a patient’s treatment options remains to be seen. We also feel that little information is currently available on peritoneal metastases and this is an area for further research.

5. Conclusion

mCRC demonstrates remarkably high concordance across a number of individual biomarkers, suggesting that molecular testing of either the primary or liver and lung metastasis is adequate for determining biomarker status to personalize treatment. More research is required to determine concordance in colorectal cancer peritoneal metastases which may explain why these tumours have a significantly worse prognosis compared to other sites. Clonal selection and tumour evolution add
Fig. 5. Forest plot for proportion of discordance of studies considering the overall molecular profiles. The estimate proportion and 95% CI interval at the level of the pooled Discordance Proportion are the random effects pooled estimates to take into account heterogeneity.

References

[1] Noone A, Howlader N, Krapcho M, Miller D, Brest A, Yu M, et al. SEER Cancer Statistics Review, 1975–2015 Bethesda, MD: 2018.
[2] Van Cutsem E, Group on behalf of the EGCW, Nordlinger B, Group on behalf of the EGCW, et al. Metastatic colorectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2014 Sep 1;25(Suppl_3):iii1–9.
[3] Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods, and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136(5):E359–86.
[4] Wang H, Wei X-Z, Fu-C, Zhao R-H, Cao F-A. Patterns of lymph node metastasis are different in colon and rectal carcinomas. World J Gastroenterol 2010 Nov 14;16(42):5375–9.
[5] Weich JP, Donaldson GA. The clinical correlation of an autopsy study of recurrent colorectal cancer. Ann Surg 1979 Apr;189(4):496–502.
[6] Geoghegan J, Scheel J. Treatment of colorectal liver metastases. BJU Int 1999 Jan 2;83(4):358–69.
[7] Calandrini S, Wiese HS, Moertel CG, Cha SS, Fitzgibbons RJ, Pemberton JH, et al. Patterns of recurrence after curative resection of carcinoma of the colon and rectum. Surg Gynecol Obstet 1992 Jan;174(1):27–32.
[8] Segelman J, Granath F, Holm T, Machado M, Mahteme H, Martling A. Incidence, prevalence and risk factors for peritoneal carcinomatosis from colorectal cancer. Br J Surg 2012 May;99(5):699–705.
[9] Koppe MJ, Boerman OC, Oyen WJG, Bleichrodt RP. Peritoneal carcinomatosis of colorectal origin: incidence and current treatment strategies. Ann Surg 2006 Feb;243(2):212–22.
[10] Rihimäki M, Hemminki A, Sundquist J, Hemminki K. Patterns of metastasis in colon and rectal cancer. Scand J Gastroenterol 2016 Jul 15;51:2976–85.
[11] Lech G, Słodkowski R, Słodkowski M, Krasnodębski IW. Colorectal cancer tumour markers and biomarkers: recent therapeutic advances. World J Gastroenterol 2016 Feb 7;22(5):1745–55.
[12] Network TCGA, Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012 Jul 19;487(7407):330–7.
[13] Lievere A, Bachet JB, Le Corre D, Boige V, Landi B, Emilie J-F, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 2006 Apr;66(8):3992–5.
[14] Loughlak F, Ruzzo A, Cremolini C, Vincenzi B, Salvatore L, Santini D, et al. KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br J Cancer 2009 Aug 18;101(4):715–21.
[15] Hurwitz HI, Tubbitt NC, Kabinbava F, Gianonni BJ, Guan Z-Z, Mitchell E, et al. Efficiency and safety of bevacizumab in metastatic colorectal cancer: pooled analysis from seven randomized controlled trials. Oncologist 2013;18(9):1004–12.
[16] Zhou M, Yu P, Qu J, Chen Y, Zhou Y, Fu L, et al. Efficacy of bevacizumab in the first-line treatment of patients with RAS mutations metastatic colorectal cancer: a systematic review and network meta-analysis. Cell Physiol Biochem 2016;40(1–2):361–9.
[17] Fischer MW, Jwiese MD, Rowland A, Kichenadasse G, McKinnon RA, Karapetis CS. Extended RAS mutations and anti-EGFR monoclonal antibody survival benefit in metastatic colorectal cancer: a meta-analysis of randomized, controlled trials. Ann Oncol Off J Eur Soc Med Oncol 2014 Jan;25(1):13–21.
[18] Peeters M, Oliver KS, Price TJ, Cervantes A, Soberro AF, Ducreux M, et al. Analysis of KRAS/NRAS Mutations in a phase III study of panitumumab with FOLFIRI compared with FOLFIRI alone as second-line treatment for metastatic colorectal cancer. Clin Cancer Res 2015 Dec;21(24):5469–79.
[19] Davies H, Bignell GR, Cox C, Stephens G, Edkins S, Lugg S, et al. Mutations of the KRAS gene in human cancer. Nature 2002 Jun;417(6892):590–6.
[20] Vaughn CP, Zohbell SD, Furtado LV, Baker CL, Samowitz WS. Frequency of KRAS, BRAF, and NRAS mutations in colorectal cancer. Genes Chromosomes Cancer 2006 Apr;45(4):307–12.
[21] Maughan TS, Adams RA, Smith CG, Meade AM, Seymour MT, Wilson RH, et al. Adenomyosis and KRAS, NRF2, PIK3CA, KRAS, BRAF and NRAS mutations in colorectal cancer. Genes Chromosomes Cancer 2011 May;50(5):307–12.
[22] Maughan TS, Adams RA, Meade AM, Seymour MT, Wilson RH, et al. Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet (London, England) 2011 Jun;377(9783):2103–14.
[23] De Roock W, De Vriendt V, Normanno N, Ciardiello F, Tejpar S, KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol 2011;12(6):594–603.
[24] Pan C, Yang ZY, Hu XE, Chen G, Tang J. PIK3CA exon 20 mutations as a potential biomarker for resistance to anti-EGFR monoclonal antibodies in KRAS wild-type metastatic colorectal cancer: a systematic review and meta-analysis. Ann Oncol Off J Eur Soc Med Oncol 2012 Jan 23(1):1518–25.
[25] Loughlak F, Pollina L, Stasi I, Ruzzo A, Scarsozi M, Santini D, et al. PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer. J Clin Oncol 2009 Jun;27(16):2622–5.
patients: evaluation of concordance between genomic and transcriptional profiles. Eur J Cancer 2015 May;51(7):791–9.

Schoffski P, Greten F, Wolf J, Zander T, Kunz-Waack A, Rebhuber A, Ahadova A, Warth A, et al. Distinct spatiotemporal stability of somatic mutations in metastasized microsatellite-stable colorectal cancer. Am J Surg Pathol 2015 Aug;39(8):1140–7.

Slyar Elkind A, Demirci U, Calmakh Okusoglu B, Ozturk A, Eshba O, Ozatli T, et al. KRAS and BRAF discordance between primary and metastatic tumor in patients with metastatic colorectal carcinoma. J BUON 2015;20(1):128–35.

Lau KS, Lam KO, Choy TS, Shek WH, Chung LP, Leung TW. Discordant RAS Status Between Primary and Metastatic Colorectal Cancer and Predicted Pattern of Metastasis. Oncotarget 2015 Sep 28;6(26):22179–90.

Lee KH, Kim JS, Lee CS, Kim YJ. KRAS discordance between primary and recurrent tumors after radical resection of colorectal cancer. J Surg Oncol 2015 Jun;111(8):1059–64.

Lin R, Mun J, Kim Y-H, Kim CW, Roh SA, Cho D-H, et al. Genome-wide mutation profiles of colorectal tumors and associated liver metastases at the exome and transcriptome levels. Oncotarget 2015 Sep 8;6(26):22179–90.

Kim R, Schell MJ, Teer JK, Greenwald DM, Yang M, Yeatman TJ. Co-evolution of somatic variation in primary and metastatic colorectal cancer may expand biop- indications in the molecular era. Suzuki H, editor PLoS One 2015 May 14;10(5): e0126670.

Klebs B, Kempa M, Novy M, Oberkanins C, Xu L, Li G, et al. Comparison of neuroendocrine differentiation and KRAS/BRAF/PIK3CA/TP53 mutation status in primary and metastatic colorectal cancer. Int J Clin Exp Pathol 2014 Aug 15;7(9):5927–39.

Gianni R, Lupi C, Luspaiv S, Servadio A, Cremolini C, Sensi E, et al. KRAS and BRAF profiling of synchronous colorectal carcinomas. Oncol Lett 2014 May;7(3):857–61.

Paldogiannis P, Cozzol A, Tanda F, Palermi G, Palombia G. KRAS mutation concordance between a primary and metastatic colorectal adenocarcinoma. Onco Targets Ther 2014 Dec;7:999–1004.

Bramon AR, Vakiani E, Sylvester BE, Scott SN, McDermott G, Shah RH, et al. Comparative sequencing analysis reveals high genomic concordance between matched primary and metastatic colorectal cancer lesions. Genome Biol 2014 Aug 15;15(8):454.

Lee SY, Haq F, Kim D, Jun C, Jo H-J, Ahn S-M, et al. Comparative genomic analysis of primary and synchronous metastatic colorectal cancers. Wilkman H, editor PLoS One 2014 Mar 5;9(3): e90459.

Murata A, Baba Y, Watanabe M, Shigaki H, Miyake K, Ishimoto T, et al. Methylation levels of LINE-1 in primary and metastatic lesions of colorectal cancer. Br J Cancer 2013 Jul 23;109(2):408–15.

Migliorini, Mezzapelle R, Papajotović A, Allregiri S, Veghiani C, Antonia J, et al. Comparative analysis of KRAS in primary colorectal cancer and metastatic cancers by means of highly sensitive molecular assay. Pathol Res Pract 2013 Apr;209(4):233–6.

Voutsina A, Tziard M, Kalikakis A, Zafeiriou Z, Papadimitriou E, Papadakis M, et al. Combined analysis of KRAS and PIK3CA mutations, MET and PTEN expression in primary tumors and corresponding metastases in colorectal cancer. Mod Pathol 2013 Aug;26:302.

Vakiani E, Janakiraman M, Shen R, Sinha R, Zeng Z, Shi J, et al. Comparative genomic analysis of primary versus metastatic colorectal carcinomas. J Clin Oncol 2012 Aug;30(24):2956–62.

Vermaat NS, Nijman JJ, Koudijns MJ, Gerritsen FL, Scherer MJ, Molony M, et al. Primary colorectal cancers and their subsequent hepatic metastases are genetically different: clinical implications for selection of patients for targeted treatment. Cancer Res Clin Oncol 2012 Feb;183(1):68–99.

Knuj A, Mekenkamp KJ, Klop M, Villen-Borg MT, Tol J, Teenren S, et al. KRAS mutation analysis: a comparison between primary tumours and matched liver metastases. Br J Cancer 2013 Mar 11;108(5):1020–6.

Park JH, Han S-W, Oh D-Y, Yin S-A, Jeon Y-S, Park JK, et al. Analysis of KRAS, BRAF, PIK3CA, EGFR, LIN1 or PTEN in both primary tumours and paired metastases in determining beneﬁts from cetuximab therapy in colon cancer. Cancer Chemother Pharmacol 2011;68(4):1045–55.

Watanabe T, Kobunai T, Yamamoto Y, Matsuda K, Ishihara S, Nozawa K, et al. Heterogeneity of KRAS status may explain the subset discordance of KRAS status between primary and metastatic colorectal cancer. Dis Colon Rectum 2011 Sep;54(9):1170–8.

Baldus SE, Schaefer KL, Engers R, Hartleb D, Stoecklein NH, Gabbett HE. Prevalence and heterogeneity of KRAS, BRAF, and PIK3CA mutations in primary colorectal adenocarcinomas and their corresponding metastases. Clin Cancer Res 2010 Feb;16(3):790–9.

Italiano A, Hostein I, Soubyrian I, Fabas T, Benchimol D, Evrard S, et al. KRAS and BRAF mutation status in primary tumors and related metastatic lesions: biological and clinical implications. Ann Surg Oncol 2010 May;17(5):1425–34.

Mariani P, Pan M, Degeorges A, Cachex L, Lappartient E, Margogne A, et al. Concordant analysis of KRAS status in primary colon carcinoma and matched metastases. Anticancer Res 2010 Oct;30(10):4229–35.

Rabkin SG, F. Lamps A, Hong Y, Banerjee N, Avgustin M, Georgyvan A, Losa M, et al. PTK787/PDZ043: nebulization contributes to improved responses to cetuximab in metastatic colorectal cancer patients. Ann Oncol Off J Eur Soc Med Oncol 2009 Jan;20(1):84–90.

Segal BP, Lopez-Gomez M, Aguayo C, Madero R, de Castro Carpeno J, Belda-Iniesta C, et al. KRAS mutations in primary colorectal cancer tumors and related metastases: a potential role in prediction of lung metastasis. PLoS One 2009 Dec;4(12):e8199.

Garm Spindler K-L, Pallisgaard N, Rasmussen AA, Lindebjerg J, Andersen RF, Cruger et al. Mutational analysis of primary and metastatic colorectal cancer samples from synchronous colorectal carcinomas and their matched liver metastases of colorectal cancer patients. Int J Clin Exp Pathol 2014 Aug 15;7(9):5927–39.

Gianni R, Lupi C, Luspaiv S, Servadio A, Cremolini C, Sensi E, et al. KRAS and BRAF profiling of synchronous colorectal carcinomas. Oncol Lett 2014 May;7(3):857–61.

Paldogiannis P, Cozzol A, Tanda F, Palermi G, Palombia G. KRAS mutation concordance between a primary and metastatic colorectal adenocarcinoma. Onco Targets Ther 2014 Jun 1;7:999–1004.

Fleming ID, Petrelli N, Perez-Gracia JL, Chansky K, Bunn PA, Carli G, et al. Guidelines for primary tumor, lymph node, and distant metastasis classification with special reference to lung cancer. J Natl Cancer Inst 1981;66(6):I–II.

The American Joint Committee on Cancer: guidelines for the evaluation of the resected colorectal cancer specimen, 4th ed. Springfield, Illinois: Charles C. Thomas; 1984.

American Joint Committee on Cancer: guidelines for the evaluation of surgical specimens from patients with colorectal carcinoma, 4th ed. Springfield, Illinois: Charles C. Thomas; 1984.

American Joint Committee on Cancer: guidelines for the evaluation of surgical specimens from patients with colorectal carcinoma, 4th ed. Springfield, Illinois: Charles C. Thomas; 1984.

American Joint Committee on Cancer: guidelines for the evaluation of surgical specimens from patients with colorectal carcinoma, 4th ed. Springfield, Illinois: Charles C. Thomas; 1984.
effect of cetuximab and irinotecan in metastatic colorectal cancer. Ann Oncol Off J Eur Soc Med Oncol 2009 May;20(5):879–84.

[79] Molinari F, Martino V, Saletti P, De Dosso S, Spitalè A, Canponoso A, et al. Differing deregulation of EGRF and downstream proteins in primary colorectal cancer and related metastatic sites may be clinically relevant. Br J Cancer 2009 Apr 7;100(7):1087–94.

[80] Gattenlöhner S, Eriksen B, Kunzmann V, Thalheimer A, Hack M, Kleber G, et al. Concordance of KRAS/BRAF mutation status in metastatic colorectal cancer before and after anti-EGFR therapy. J Oncol 2009 Mar 10;2009:831626.

[81] Erienne-Grimaud M-C, Formento J-L, Francaul M, Francois E, Formento P, Renee N, et al. K-Ras mutations and treatment outcome in colorectal cancer patients receiving exclusive fluoropyrimidine therapy. Clin Cancer Res 2008 Aug;14(15):4830–5.

[82] Santini D, Loupakis F, Vincenzi B, Fioriani I, Stati I, Canestrafi E, et al. High concordance of KRAS status between primary colorectal tumors and related metastatic sites: implications for clinical practice. Oncologist 2008 Dec;13(12):1270–5.

[83] Artale S, Sartore-Bianchi A, Veronese SM, Gambi V, Sarnataro CS, Gambacorta M, et al. Mutations of KRAS and BRAF in primary and matched metastatic sites of colorectal cancer. J Clin Oncol 2008;26:4217–9 Official Journal of the American Society of Clinical Oncology. United States.

[84] Gattenlöhner S, Gerner C, Muller-Hermelink H-K. K-ras mutations and cetuximab in colorectal cancer. N Engl J Med 2008;360:835 United States. [author reply 835–6].

[85] Weber J-C, Meyer N, Pencrach E, Schneider A, Goerin E, Neuvile A, et al. Allelotyping analyses of synchronous primary and metastasis CIN colon cancers identified different subtypes. Int J Cancer 2007 Feb;120(3):524–32.

[86] Oliveira C, Velho S, Moutinho C, Ferreira A, Preto A, Domingo E, et al. KRAS and BRAF oncogenic mutations in MSS colorectal carcinoma progression. Oncogene 2007 Jan;26(1):158–63.

[87] Albanese I, Scibetta AG, Migliavacca M, Russo A, Bazan V, Tomasino RM, et al. Heterogeneity within and between primary colorectal carcinomas and matched metastases as revealed by analysis of Ki-ras and p53 mutations. Biochem Biophys Res Commun 2004 Dec;325(3):784–91.

[88] Zacker P, Sams K, Hartmann B, Kahlert C, Weirich G, Lotze E, et al. Analysis of Ki-ras and p53 point mutations in synchronous and metachronous colorectal carcinomas: translational implications. Oncogene 2007 May 10;26(22):3401–9.

[89] Balschun K, Haag J, Wenke A-K, von Schönfels W, Schwarz NT, Röcken C, KRAS, NRAS, PIK3CA Exon 20, and BRAF genotypes in synchronous and metachronous primary colorectal cancers: diagnostic and therapeutic implications. J Mol Diagn 2011 Jul 22;13(4):436–45.

[90] Sutton PA, Jhihesh PV, Jones RP, Evans JP, Vimalachandran D, Malik HZ, et al. Exome sequencing of synchronously resected primary colorectal tumours and colorectal liver metastases to inform oncurgical management. Eur J Surg Oncol 2018 Jan;44(1):115–21.

[91] Tan I, Malik S, Ramarayan K, McPherson J, Ho D, Suzuki Y, et al. High-depth sequencing of over 750 genes supports linear progression of primary tumours and metastases in most patients with liver-limited metastatic colorectal cancer. Genome Biol 2015;16;5:175.

[92] Marusyk A, Almedendorf V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 2012 Apr 19;12:123.

[93] Losi L, Baise B, Bouzourene H, Benhattar J. Evolution of intratumoral genetic heterogeneity during colorectal cancer progression. Carcinogenesis 2005 May 1;26(5):916–22.

[94] Franko J, Shi Q, Meyers JP, Maughan TS, Adams RA, Seymour MT, et al. Prognosis of patients with peritoneal metastatic colorectal cancer given systemic therapy: an analysis of individual patient data from prospective randomised trials from the Analysis and Research in Cancers of the Digestive System (ARCAD) database. Lancet Oncol 2016;17(12):1709–19.

[95] Goswami RS, Patel KP, Singh RR, Meric-Bernstam F, Kopetz ES, Subbiah V, et al. Hotspot mutation panel testing reveals clonal evolution in a study of 265 paired primary and metastatic tumors. Clin Cancer Res 2015 Jun 1;21(11):2644–51.

[96] Noll C, Stehlik A, Schwartz AL, Sabel MS, Potter P, Cohen AM, et al. Tumor mutational burden as a predictor of response to anti-programmed death-ligand 1 therapy in advanced melanoma. J Clin Oncol 2016;34(25):3019–27.

[97] Sozzi G, Cioni L, Panetta JC, Badenhoop K, van Loo P, Wiestler OD, et al. Characterization of V600E BRAF mutations in human colorectal cancer. Nat Genet 2004;36(2):147–50.