SYMMETRY REDUCTIONS OF A NONLINEAR OPTION PRICING MODEL

L. A. BORDAG

Abstract. The studied model was suggested to design a perfect hedging strategy for a large trader. In this case the implementation of a hedging strategy affects the price of the underlying security. The feedback-effect leads to a nonlinear version of the Black-Scholes partial differential equation. Using the Lie group theory we reduce the partial differential equation in special cases to ordinary differential equations. The found Lie group of the model equation gives rise to invariant solutions. Families of exact invariant solutions for special values of parameters are described.

Key words. Black-Scholes model, illiquidity, nonlinearity, Lie group symmetry, exact solutions

AMS subject classifications. 35K55, 22E60, 34A05

1. Introduction. In a series of works [3], [6], [4] and [5] a model for a hedging strategy in an illiquid market was suggested. In the model the implementation of a hedging strategy affects the price of the underlying security. For a large trader a hedge-cost of the claim differs from the price of the option. The feedback-effect leads to a nonlinear version of the Black-Scholes partial differential equation,

$$u_t + \frac{\sigma^2 S^2}{2} \frac{u_{SS}}{(1 - \rho S \lambda(S) u_{SS})^2} = 0,$$

with $S \in [0, \infty)$, $t \in [0, T]$. As usual, S denotes here the price of the underlying asset and $u(S, t)$ denotes the hedge-cost of the claim with later defined payoff, which is different from the price of the derivatives product in illiquid markets, t is the time variable, σ defines the volatility of the underlying asset, ρ is a measure for the feedback-effect of a large trader, $\lambda(S)$ is chosen in a way to obtain the desired payoff. The values of ρ and $\lambda(S)$ might be estimated from the observed option prices. In dependence on the propositions on the market different variations of the Black-Scholes formula can accrue like in a well known model [12]. Usually the volatility term in the Black-Scholes formula will be replaced to fit the behavior of the price on the market. The modeling process is not finished now and new models can appear. An analytical study of these equations may be useful for an easier classification of models created.

Frey and co-authors studied equation (1.1) under constrictions and did some numerical simulations. Our goal is to investigate this equation using analytical methods. We study the model equation (1.1) using methods of the Lie group theory. This method has a long tradition beginning with the work of S. Lie [9]. The applications of this method are connected with an obvious limitation of group-theoretical methods based on local symmetries because many nonlinear partial differential equations do not have local symmetries. The modern description of the method and a large number of applications can be found in [11], [10], [13], [7], [8].

In Section 2 we find the Lie algebra and finite equations for the symmetry group of equation (1.1). For a special form of the function $\lambda(S)$ it is possible to find two functionally independent invariants of the symmetry group. Using the symmetry group and its invariants we reduce the partial differential equation (1.1) in special cases to ordinary differential equations in Section 3. We study singular points of the reduced equations in Section 4 and describe the behavior of invariant solutions. For a fixed set of parameters the complete set of exact invariant solutions is given.

*Halmstad University, Box 823, 301 18 Halmstad, Sweden(Ljudmila.Bordag@ide.hh.se)
2. Lie group symmetries. Let us introduce a two-dimensional space X of independent variables $(S, t) \in X$ and a one-dimensional space of dependent variables $u \in U$. We consider the space $U_{(1)}$ of the first derivatives of the variable u on S and t, i.e., $(u_S, u_t) \in U_{(1)}$ and analogously we introduce the space $U_{(2)}$ of the second order derivatives $(u_{SS}, u_{St}, u_{tt}) \in U_{(2)}$. We denote by $M = X \times U$ a base space which is a Cartesian product of pairs (x, u) with $x = (S, t) \in X$, $u \in U$. The studied differential equation (1.1) is of the second order and to represent this equation as an algebraic equation we introduce a second order jet bundle $M^{(2)}$ of the base space M. This space has the form

$$M^{(2)} = X \times U \times U_{(1)} \times U_{(2)}$$

and possesses a natural contact structure. We label the coordinates in the space $M^{(2)}$ by $w = (S, t, u, u_S, u_t, u_{SS}, u_{St}, u_{tt}) \in M^{(2)}$. In the space $M^{(2)}$ equation (1.1) is equivalent to the relation

$$\Delta(w) = 0, \ w \in M^{(2)},$$

where we denote by Δ the following function

$$\Delta(S, t, u, u_S, u_t, u_{SS}, u_{St}, u_{tt}) = u_t + \sigma^2 S^2 \frac{u_{SS}}{2(1 - \rho S X(S)u_{SS})^2}.$$

We identify the algebraic equation (2.2) with its solution manifold L_{Δ} defined by

$$L_{\Delta} = \{w \in M^{(2)}|\Delta(w) = 0\} \subset M^{(2)}.$$

Let us consider an action of a Lie-point group on our differential equation and its solutions. We define a symmetry group G_{Δ} of equation (2.2) by

$$G_{\Delta} = \{g \in \text{Diff}(M^{(2)})| g : L_{\Delta} \rightarrow L_{\Delta}\},$$

consequently we are interested in a subgroup of Diff($M^{(2)}$) which is compatible with the structure of L_{Δ}.

As usual we first find the corresponding symmetry Lie algebra $\text{Diff}_{\Delta}(M^{(2)}) \subset \text{Diff}(M^{(2)})$ and then use the main Lie theorem to obtain G_{Δ} and its invariants. We denote an element of a Lie-point vector field on M by

$$V = \xi(S, t, u) \frac{\partial}{\partial S} + \tau(S, t, u) \frac{\partial}{\partial t} + \phi(S, t, u) \frac{\partial}{\partial u},$$

where $\xi(S, t, u), \tau(S, t, u)$ and $\phi(S, t, u)$ are smooth functions of their arguments, $V \in \text{Diff}(M)$.

If the infinitesimal generators of $g \in G_{\Delta}$ exist then they have the structure of the type (2.6) and form an algebra $\text{Diff}_{\Delta}(M)$.

A Lie group of transformations acting on the base space M induce as well the transformations on $M^{(2)}$.

The corresponding algebra $\text{Diff}_{\Delta}(M^{(2)})$ will be composed of vectors

$$pr^{(2)} V = \xi(S, t, u) \frac{\partial}{\partial S} + \tau(S, t, u) \frac{\partial}{\partial t} + \phi(S, t, u) \frac{\partial}{\partial u} + \phi^S(S, t, u) \frac{\partial}{\partial u_s} + \phi^t(S, t, u) \frac{\partial}{\partial u_t} + \phi^{SS}(S, t, u) \frac{\partial}{\partial u_{SS}} + \phi^{St}(S, t, u) \frac{\partial}{\partial u_{St}} + \phi^{tt}(S, t, u) \frac{\partial}{\partial u_{tt}}.$$
which are the second prolongation of vectors \(V \). Here the smooth functions \(\phi^S(S, t, u) \), \(\phi^t(S, t, u) \), \(\phi^{SS}(S, t, u) \), \(\phi^{SI}(S, t, u) \) and \(\phi^{tt}(S, t, u) \) are uniquely defined by the functions \(\xi(S, t, u) \), \(\tau(S, t, u) \) and \(\phi(S, t, u) \) using the prolongation procedure (see [11], [10], [13], [7], [8]).

Theorem 2.1. The differential equation \((2.2) \) with an arbitrary function \(\lambda(S) \) possesses a trivial three dimensional Lie algebra \(\text{Diff}_\Delta(M(2)) \) spanned by generators

\[
V_1 = \frac{\partial}{\partial t}, \quad V_2 = S \frac{\partial}{\partial u}, \quad V_3 = \frac{\partial}{\partial u}.
\]

Only for the special form of the function \(\lambda(S) = \omega S^k \), where \(\omega, k \in \mathbb{R} \) equation \((2.2) \) can be defined as a solution of the defining equations

\[
pr^{(2)} V(\Delta) = 0 \pmod{\Delta = 0},
\]

i.e., the equation \((2.8) \) should be satisfied on the solution manifold \(L_\Delta \).

For our calculations we will use the exact form of the coefficients \(\phi^t(S, t, u) \) and \(\phi^{SS}(S, t, u) \) only. The coefficient \(\phi^t(S, t, u) \) can be defined by the formula

\[
\phi^t(S, t, u) = \phi_t + u_t \phi_u - u_S \xi_t - u_S u_t \xi_u - u_t \tau_t - (u_t)^2 \tau_u,
\]

and the coefficient \(\phi^{SS}(S, t, u) \) by the expression

\[
\phi^{SS}(S, t, u) = \phi_{SS} + 2 u_S \phi_{Su} + u_{SS} \phi_u
\]

\[
+ (u_S)^2 \phi_{uu} - 2 u_{SSS} \xi_S - u_S \xi_{SS} - 2(u_S)^2 \xi_{Su}
\]

\[
- 3 u_S u_{SS} \xi_u - (u_S)^3 \xi_{uu} - 2 u_S \xi_{Su} - u_t \tau_{SS}
\]

\[
- 2 u_S u_t \tau_{Su} - (u_t u_{SS} + 2 u_S u_{Su}) \tau_u - (u_S)^2 u_t \tau_{uu},
\]

where the subscripts by \(\xi, \tau, \phi \) denote corresponding partial derivatives.

The first equations of the set \((2.8) \) imply that if \(V \in \text{Diff}_\Delta(M) \) then

\[
\xi(S, t, u) = a_1 S, \quad \tau(S, t, u) = a_2, \quad \phi(S, t, u) = a_3 S + a_4 + a_5 u,
\]

where \(a_1, a_2, a_3, a_4, a_5 \) are arbitrary constants and \(\xi, \tau, \phi \) are coefficients in the expression \((2.4) \).

The remaining equation has a form

\[
a_1 S \lambda_S(S) - (a_1 - a_5) \lambda(S) = 0.
\]

Because this equation should be satisfied for all \(S \) identically we obtain for an arbitrary function \(\lambda(S) \)

\[
a_1 = a_5 = 0, \quad \rightarrow \xi(S, t, u) = 0, \quad \tau(S, t, u) = a_2, \quad \phi(S, t, u) = a_3 S + a_4.
\]

Finally, \(\text{Diff}_\Delta(M) \) admits the following generators

\[
V_1 = \frac{\partial}{\partial t}, \quad V_2 = S \frac{\partial}{\partial u}, \quad V_3 = \frac{\partial}{\partial u},
\]

with commutator relations

\[
[V_1, V_2] = [V_1, V_3] = [V_2, V_3] = 0.
\]
If the function \(\lambda(S) \) has a special form
\[
\lambda(S) = \omega S^k, \quad \omega, k \in R
\] (2.16)
then the equation on the coefficients of is less restrictive and we obtain
\[
\xi(S, t, u) = a_1 S, \quad \tau(S, t, u) = a_2, \quad \phi(S, t, u) = (1 - k)a_1 u + a_3 S + a_4.
\] (2.17)

Now the symmetry algebra \(\text{Diff}_\Delta(M) \) admits four generators
\[
V_1 = \frac{\partial}{\partial t}, \quad V_2 = S \frac{\partial}{\partial u}, \quad V_3 = \frac{\partial}{\partial u}, \quad V_4 = S \frac{\partial}{\partial S} + (1 - k)u \frac{\partial}{\partial u},
\] (2.18)
with commutator relations
\[
[V_1, V_2] = [V_1, V_3] = [V_1, V_4] = [V_2, V_3] = 0, \\
[V_2, V_4] = -kV_2, \quad [V_3, V_4] = (1 - k)V_3.
\] (2.19)

Remark 2.1. In the general case the algebra (??) possesses a two dimensional Abelian sub-algebra. For the cases \(k = 0, 1 \) the Abelian sub-algebra is three dimensional (2.19) and we see later that the corresponding equations (3.8) became autonomous.

The symmetry algebra \(\text{Diff}_\Delta(M) \) defines by the main theorem of S. Lie [9] the corresponding symmetry group \(G_\Delta \) of the equation (2.2). To find the closed form of transformations for the solutions of equation (1.1) corresponding to this symmetry group we just integrate the system of ordinary differential equations
\[
\frac{d\tilde{S}}{d\epsilon} = \xi(\tilde{S}, \tilde{t}, \tilde{u}), \\
\frac{d\tilde{t}}{d\epsilon} = \tau(\tilde{S}, \tilde{t}, \tilde{u}), \\
\frac{d\tilde{u}}{d\epsilon} = \phi(\tilde{S}, \tilde{t}, \tilde{u}),
\] (2.20)
with initial conditions
\[
\tilde{S}|_{\epsilon=0} = S, \quad \tilde{t}|_{\epsilon=0} = t, \quad \tilde{u}|_{\epsilon=0} = u.
\] (2.23)

Here the variables \(\tilde{S}, \tilde{t} \) and \(\tilde{u} \) denote values \(S, t, u \) after a symmetry transformation. The parameter \(\epsilon \) describes a motion along an orbit of the group.

Theorem 2.2. The action of the symmetry group \(G_\Delta \) of (1.1) with an arbitrary function \(\lambda(S) \) is given by (2.20)–(2.22). If the function \(\lambda(S) \) has the special form (2.16) then the symmetry group \(G_\Delta \) is represented by (2.21)–(2.24).

Proof. The solutions of the system of ordinary differential equations (2.20) with functions \(\xi, \tau, \phi \) defined by (2.13) and initial conditions (2.23) have the form
\[
\tilde{S} = S, \\
\tilde{t} = t + a_2 \epsilon, \\
\tilde{u} = u + a_3 S \epsilon + a_4 \epsilon, \quad \epsilon \in (-\infty, \infty).
\] (2.24)
(2.25)
(2.26)
The equations (2.21)–(2.24) are the finite representation of the symmetry group \(G_\Delta \) which corresponds to the symmetry algebra defined by (2.14) in case of an arbitrary function \(\lambda(S) \).

If the function \(\lambda(S) \) has a special form given by (2.16) we obtain a reacher symmetry
group. The solution of the system of equations (2.20) with the functions \(\xi, \tau, \phi \) defined by (2.17) and initial conditions (2.23) have the form

\[
\tilde{S} = Se^{a_1 \epsilon}, \quad \epsilon \in (-\infty, \infty),
\]

\[
\tilde{t} = t + a_2 \epsilon,
\]

\[
\tilde{u} = ue^{a_1 (1-k) \epsilon} + \frac{a_3}{a_1 k} Se^{a_1 \epsilon} (1 - e^{-a_1 k \epsilon}) + \frac{a_4}{a_1} (e^{a_1 \epsilon} - 1), \quad k \neq 0, \quad k \neq 1
\]

\[
\tilde{u} = u + \frac{a_3}{a_1} S (e^{a_1 \epsilon} - 1) + a_4 \epsilon, \quad k = 1,
\]

where we assume that \(a_1 \neq 0 \) because the case \(a_1 = 0 \) coincides with the former case (2.24)-(2.26).

We will use the symmetry group \(G_\Delta \) to construct invariant solutions of equation (1.1). To obtain the invariants of the symmetry group \(G_\Delta \) we exclude \(\epsilon \) from the equations (2.24)–(2.26) or in the special case from equations (2.27)–(2.29).

In the first case the symmetry group \(G_\Delta \) is very poor and we can obtain just the following invariants

\[
inv_1 = S,
\]

\[
inv_2 = u - \left(a_3 S S + a_4 \right) / a_2, \quad a_2 \neq 0.
\]

These invariants are useless because they do not lead to any reduction of (1.1).

In the special case (2.16) the symmetry group admits two functionally independent invariants of the form

\[
inv_1 = \log S + at, \quad a = a_1 / a_2, \quad a_2 \neq 0
\]

\[
inv_2 = u S^{(k-1)}.
\]

In general the form of invariants is not unique because each function of invariants is an invariant. But it is possible to obtain just two non trivial functionally independent invariants which we take in the form (2.31), (2.32). The invariants can be used as new independent and dependent variables in order to reduce the partial differential equation (1.1) with the special function \(\lambda(S) \) defined by (2.16) to an ordinary differential equation.

3. The special case \(\lambda(S) = \omega S^k \). Let us study a special case of equation (1.1) with \(\lambda(S) = \omega S^k, k \in \mathbb{R} \). The equation under investigation is now

\[
Ut + \frac{\sigma^2 S^2}{2} \frac{UsS}{(1 - bS^k uS^k)^2} = 0
\]

with the constant \(b = \rho \omega \). As usual we suggest that \(\rho \in (0,1) \). The value of the constant \(\omega \) depends on the corresponding option type and in our investigation it can be assumed that \(\omega \) is an arbitrary constant, \(\omega \neq 0 \). The variables \(S, t \) are in the intervals

\[
S > 0, \quad t \in [0, T], \quad T > 0.
\]

Remark 3.1. The case \(b = 0 \), i.e. \(\rho = 0 \) or \(\omega = 0 \) leads to the well known linear Black-Scholes model and we will exclude this case from our investigations.

We will suppose that the denominator in equation (1.1) (correspondingly (3.1)) is non equal to zero identically.
Let us study the denominator in the second term of the equation (3.1). It will be equal to zero if the function \(u(S, t) \) satisfies the equation

\[
1 - bS^{k+1}u_{SS} = 0.
\]
(3.3)

The solution of this equation is a function \(u_0(S, t) \)

\[
u_0(S, t) = \begin{cases}
\frac{1}{bk(k-1)}S^{1-k} + Sc_1(t) + c_2(t), & b \neq 0, k \neq 0, 1, \\
-\frac{1}{b}\log S + Sc_1(t) + c_2(t), & b \neq 0, k = 1, \\
\frac{1}{b}S\log S + Sc_1(t) + c_2(t), & b \neq 0, k = 0,
\end{cases}
\]
(3.4)

where the functions \(c_1(t) \) and \(c_2(t) \) are arbitrary functions of the variable \(t \).

Subsequently we will suggest that the denominator in the second term of the equation (3.1) is not identically zero, i.e., a solution \(u(S, t) \) is not equal to the function \(u_0(S, t) \) except in a discrete set of points.

Let us now introduce new invariant variables

\[
z = \log S + at, \quad a \neq 0,
\]
(3.5)

\[
v = uS^{(k-1)}.
\]
(3.5)

After this substitution equation (3.1) will be reduced to an ordinary differential equation

\[
aw_z + \frac{\sigma^2}{2}v_z + \frac{(1 - 2k)v_z - k(1 - k)v}{1 - b(v_z + (1 - 2k)v_z - k(1 - k)v)^2} = 0, \quad a, b \neq 0.
\]
(3.6)

Elementary solutions of this equation we obtain if we assume that \(v = \text{const.} \) or \(v_z = \text{const.} \). It is easy to prove that there exists the trivial solution \(v = 0 \) if \(k \neq 0, 1 \), and the solutions \(v = \text{const.} \neq 0, v = \text{const.} \neq 0 \) if \(k = 0, 1 \) only. The condition that the denominator in (3.6) is non equal to zero, i.e.,

\[
(1 - b(v_z + (1 - 2k)v_z - k(1 - k)v))^2 \neq 0
\]
(3.7)

corresponds to equation (3.3) in new variables \(z, v \).

If the function \(v(z) \) satisfies the inequality (3.7) then we can multiply both terms of equation (3.6) with the denominator of the second term. In equation (3.6) all coefficients are constants hence we can reduce the order of the equation. We assume that \(v, v_z \neq \text{const.} \) and choose as a new independent variable \(v \) and introduce as a new dependent variable \(x(v) = v_z(z) \). This variable substitution reduces equation (3.6) to a first order differential equation which is second order polynomial corresponding to the function \(x(v) \). Under assumption (3.7) the set of solutions of equation (3.6) is equivalent to a union of solution sets of the following equations

\[
x = 0,
\]
(3.8)

\[
x_v = -1 + 2k - \frac{\sigma^2}{4ab^2x^2} + \frac{1}{bx} + \frac{k(1-k)v}{x} - \sqrt{\sigma^2 \left(\sigma^2 - 8abx \right)} + \frac{\sqrt{\sigma^2 \left(\sigma^2 - 8abx \right)}}{4ab^2x^2},
\]
(3.8)

\[
x_v = -1 + 2k - \frac{\sigma^2}{4ab^2x^2} + \frac{1}{bx} + \frac{k(1-k)v}{x} + \sqrt{\sigma^2 \left(\sigma^2 - 8abx \right)} - \frac{\sqrt{\sigma^2 \left(\sigma^2 - 8abx \right)}}{4ab^2x^2}.
\]
(3.8)

Equations (3.8) are of an autonomous type if the parameter \(k \) is equal to \(k = 0, 1 \) only. We see that these are exactly the cases in which the corresponding Lie-algebra \(2.19 \) has a three dimensional Abelian sub-algebra. The case \(k = 0 \) was studied earlier in \(11, 2 \). In the next section we will study the case \(k = 1 \).
4. The special case $\lambda = \omega S$. If we put $k = 1$ in (2.16) then equation (3.6) takes the form

$$v_z + q \frac{v_{zz} - v_z}{(1 - b(v_{zz} - v_z))^2} = 0,$$

where $q = \frac{\sigma^2}{2 a}$, $a, b \neq 0$. It is an autonomous equation which possesses a simple structure. We will use this structure and introduce a more simple substitution as described at the end of the previous section to reduce the order of equation.

One family of solutions of this equation is very easy to find. We just suppose that the value $v_z(z)$ is equal to a constant. The equation (4.1) admits as a solution the value $v_z = \left(-1 \pm \sqrt{q} \right)/b$ consequently the corresponding solution $u(s, t)$ of (3.1) with $\lambda = \omega S$ can be represented by the formula

$$u(S, t) = \frac{1}{\rho \omega} \left(-1 \pm \sqrt{q} \right) (\log S + at) + c, \ a > 0,$$

where c is an arbitrary constant.

To find other families of solutions we introduce a new dependent variable

$$y(z) = v_z(z)$$

and assume that the denominator of the equation (4.1) is not equal to zero, i.e.

$$v(z) \neq -\frac{z}{b} + c_1 e^z + c_2, \ i.e. \ y(z) \neq -\frac{1}{b} + c_1 e^z,$$

where c_1, c_2 are arbitrary constants.

We multiply both terms of equation (4.1) by the denominator of the second term and obtain

$$yy_z^2 - 2 \left(y^2 + \frac{1}{b} y - \frac{q}{2 b^2} \right) y_z + \left(y^2 + 2 b y + \left(\frac{1 - q}{b^2} \right) \right) y = 0, \ b \neq 0.$$

We denote the left hand side of this equation by $F(y, y_z)$. The equation (4.5) can possess exceptional solutions which are the solutions of a system

$$\frac{\partial F(y, y_z)}{\partial y_z} = 0, \ F(y, y_z) = 0.$$

The first equation in this system defines a discriminant curve which has the form

$$y(z) = \frac{q}{4b},$$

If this curve is also a solution of the original equation (4.1) then we obtain an exceptional solution. We obtain an exceptional solution if $q = 4$, i.e. $a = \sigma^2/8$. It has the form

$$y(z) = \frac{1}{b}.$$

This solution belongs to the family of solutions (4.10) by the specified value of the parameter q. In all other cases the equation (4.6) does not possess any exceptional solutions.

Hence the set of solutions of equation (4.5) is a union of solution sets of following equations

$$y = 0,$$

$$y = \left(-1 \pm \sqrt{q} \right)/b,$$

$$y_z = \left(y^2 + \frac{1}{b} y - \frac{q}{2 b^2} - \sqrt{\frac{\sigma^2}{2ab^4} \left(\frac{q}{4b} - y \right)} \right) \frac{1}{y}, \ y \neq 0$$

$$y_z = \left(y^2 + \frac{1}{b} y - \frac{q}{2 b^2} + \sqrt{\frac{\sigma^2}{2ab^4} \left(\frac{q}{4b} - y \right)} \right) \frac{1}{y}, \ y \neq 0.$$
where one of the solutions (4.10) is an exceptional solution (4.8) by \(q = 4 \). We denote the right hand side of equations (4.11), (4.12) by \(f(y) \). The Lipschitz condition for equations of the type \(y_z = f(y) \) is satisfied in all points where the derivative \(\frac{\partial f}{\partial y} \) exists and is bounded. It is easy to see that this condition will not be satisfied by
\[
y = 0, \quad y = \frac{q}{4b}, \quad y = \infty.
\]

(4.13)

It means that on the lines (4.13) the uniqueness of solutions of equations (4.11), (4.12) can be lost. We will study in detail the behavior of solutions in the neighborhood of lines (4.13). For this purpose we look at the equation (4.5) from another point of view. If we assume now that \(z, y, y_z \) are complex variables and denote
\[
y(z) = \zeta, \quad y_z(z) = w, \quad \zeta, w \in C,
\]
(4.14)

then the equation (4.5) takes the form
\[
F(\zeta, w) = \zeta w^2 - 2 \left(\frac{1}{b} \zeta - \frac{q}{2b^2} \right) w + \left(\frac{1}{b} \zeta + \frac{1}{b^2} \right) \zeta = 0,
\]
(4.15)

where \(b \neq 0 \). The equation (4.15) is an algebraic relation in \(C^2 \) and defines a plane curve in this space. The polynomial \(F(\zeta, w) \) is an irreducible polynomial if at all roots \(w_r(z) \) of \(F(\zeta, w_r) \) either the partial derivative \(F_\zeta(\zeta, w_r) \) or \(F_w(\zeta, w_r) \) are non equal to zero. It is easy to prove that the polynomial (4.15) is irreducible.

We can treat equation (4.15) as an algebraic relation which defines a Riemann surface \(\Gamma : F(\zeta, w) = 0 \) of \(w = w(\zeta) \) as a compact manifold over the \(\zeta \)-sphere. The function \(w(\zeta) \) is uniquely analytically extended over the Riemann surface \(\Gamma \) of two sheets over the \(\zeta \)-sphere. We find all singular or branch points of \(w(\zeta) \) if we study the roots of the first coefficient of the polynomial \(F(\zeta, w) \), the common roots of equations
\[
F(\zeta, w) = 0, \quad F_w(\zeta, w) = 0, \quad \zeta, w \in C \cup \infty.
\]
(4.16)

and the point \(\zeta = \infty \). The set of singular or branch points consists of the points
\[
\zeta_1 = 0, \quad \zeta_2 = \frac{q}{4b}, \quad \zeta_3 = \infty.
\]
(4.17)

As expected we got the same set of points as in real case (4.13) by the study of the Lipschitz condition but now the behavior of solutions at the points is more visible. The points \(\zeta_2, \zeta_3 \) are the branch points at which two sheets of \(\Gamma \) are glued on. We remark that
\[
w(\zeta_2) = \frac{1}{b} (q - 4) + t \frac{1}{4\sqrt{-bq}} + \cdots, \quad t^2 = \zeta - \frac{q}{4b},
\]
(4.18)

where \(t \) is a local parameter in the neighborhood of \(\zeta_2 \). For the special value of \(q = 4 \) the value \(w(\zeta_2) \) is equal to zero.

At the point \(\zeta_3 = \infty \) we have
\[
w(\zeta) = \frac{1}{t^2} + \frac{1}{b} + t \frac{1}{\sqrt{-q/4b^2}}, \quad t^2 = \frac{1}{\zeta}, \quad \zeta \to \infty,
\]

where \(t \) is a local parameter in the neighborhood of \(\zeta_3 \). At the point \(\zeta_1 = 0 \) the function \(w(\zeta) \) has the following behavior
\[
w(\zeta) \sim -\frac{q}{b^2 \zeta^2}, \quad \zeta \to \zeta_1 = 0, \quad \text{on the principal sheet},
\]
(4.19)

\[
w(\zeta) \sim (1 - q) \zeta, \quad \zeta \to \zeta_1 = 0, \quad q \neq 1, \quad \text{on the second sheet},
\]
(4.20)

\[
w(\zeta) \sim -2b^2 \zeta^2, \quad \zeta \to \zeta_1 = 0, \quad q = 1, \quad \text{on the second sheet}.
\]
(4.21)
Any solution \(w(\zeta) \) of an irreducible algebraic equation (4.15) is meromorphic on this compact Riemann surface \(\Gamma \) of the genus 0 and has a pole of the order one correspondingly (4.19) over the point \(\zeta_1 = 0 \) and the pole of the second order over \(\zeta_3 = \infty \). It means also that the meromorphic function \(w(\zeta) \) cannot be defined on a manifold of less than 2 sheets over the \(\zeta \) sphere.

To solve differential equations (4.11) and (4.12) from this point of view it is equivalent to integrate on \(\Gamma \) a differential of the type \(\frac{d\zeta}{w(\zeta)} \) and then to solve an Abel’s inverse problem of degenerated type

\[
\int \frac{d\zeta}{w(\zeta)} = z + \text{const.} \tag{4.22}
\]

The integration can be done very easily because we can introduce a uniformizing parameter on the Riemann surface \(\Gamma \) and represent the integral (4.22) in terms of rational functions merged possibly with logarithmic terms.

To realize this program we introduce a new variable (our uniformizing parameter \(p \)) in the way

\[
\zeta = q \left(1 - \frac{p^2}{4b} \right), \tag{4.23}
\]

\[
w = \frac{(1 - p)(q(1 + p)^2 - 4)}{4b(p + 1)}. \tag{4.24}
\]

Then the equations (4.11) and (4.12) will take the form

\[
2q \int \frac{p(p + 1)dp}{(p - 1)(q(p + 1)^2 - 4)} = z + \text{const}, \tag{4.25}
\]

\[
2q \int \frac{p(p - 1)dp}{(p + 1)(q(p - 1)^2 - 4)} = z + \text{const}. \tag{4.26}
\]

The integration procedure of equation (4.25) gives rise to the following relations

\[
2q \log (p - 1) + (q - \sqrt{q} - 2) \log ((p + 1)\sqrt{q} - 2) \tag{4.27}
\]

\[
+ (q + \sqrt{q} - 2) \log ((p + 1)\sqrt{q} + 2) = 2(q - 1)z + c, \quad q \neq 1, q > 0
\]

\[
\frac{1}{1 - p} + \frac{1}{4} \log \left(\frac{p + 3}{p - 1} \right)^3 = z + c, \quad q = 1. \tag{4.28}
\]

\[
2\sqrt{(-q)} \arctan ((p + 1)\sqrt{(-q)}/2) - 2q \log (p - 1) \tag{4.29}
\]

\[
+(2 - q) \log (4 - q(p + 1)^2) = 2(1 - q)z + c, \quad q < 0,
\]

where \(c \) is an arbitrary constant. The equation (4.26) leads to

\[
2q \log (p + 1) + (q + \sqrt{q} - 2) \log ((p - 1)\sqrt{q} - 2) \tag{4.30}
\]

\[
+ (q - \sqrt{q} - 2) \log ((p - 1)\sqrt{q} + 2) = 2(q - 1)z + c, \quad q \neq 1, q > 0
\]

\[
\frac{1}{p + 1} + \frac{1}{4} \log \left(\frac{p - 3}{p + 1} \right)^3 = z + c, \quad q = 1. \tag{4.31}
\]

\[
-2\sqrt{(-q)} \arctan ((p - 1)\sqrt{(-q)}/2) - 2q \log (1 + p) \tag{4.32}
\]

\[
+(2 - q) \log (4 - q(p - 1)^2) = 2(1 - q)z + c, \quad q < 0.
\]

where \(c \) is an arbitrary constant.

The relations (4.27)-(4.32) are first order ordinary differential equations because of the substitutions (4.3) and (4.4) we have

\[
p = \sqrt{1 - \frac{4b}{q}} n_z. \tag{4.33}
\]
All these results can be collected to the following theorem.

Theorem 4.1. The equation (4.1) for arbitrary values of the parameters \(q, b \neq 0 \) can be reduced to the set of first order differential equations which consists of the equations

\[
v_z = 0, \quad v_z = (-1 \pm \sqrt{q})/b
\]

and equations (4.27) - (4.32). The complete set of solutions of the equation (4.1) coincides with the union of solutions of these equations.

To solve equations (4.27) - (4.32) exactly we should first invert these formulas in order to obtain an exact representation \(p \) as a function of \(z \). If an exact formula for the function \(p = p(z) \) is found we can use the substitution (4.33) to obtain an explicit ordinary differential equation of the type \(v_z(z) = f(z) \) or another suitable type and if it possible then to integrate the final equation.

But even on the first step we would not be able to do this for an arbitrary value of the parameter \(q \). It means we have just implicit representations for the solutions of the equation (4.1) as solutions of the implicit first order differential equations (4.27) - (4.32).

4.1. Exact invariant solutions in case of a fixed relation between variables \(S \) and \(t \). For a special value of the parameter \(q \) we can invert the equations (4.27) and (4.30). Let us take \(q = 4 \), i.e., the relation between variables \(S, t \) is fixed in the form

\[
z = \log S + \frac{\sigma^2}{8} t.
\]

In this case the equation (4.37) takes the form

\[
(p - 1)^2(p + 2) = c \exp (3z/2)
\]

and correspondingly the equation (4.30) the form

\[
(p + 1)^2(p - 2) = c \exp (3z/2),
\]

where \(c \) is an arbitrary constant. It is easy to see that the equations (4.36) and (4.37) are connected by a transformation

\[
p \rightarrow -p, \quad c \rightarrow -c.
\]

This symmetry arises from the symmetry of the underlining Riemann surface \(\Gamma \) and corresponds to a change of the sheets on \(\Gamma \).

Theorem 4.2. The second order differential equation

\[
v_z + 4 \frac{v_{zz} - v_z}{(1 - b(v_{zz} - v_z))^2} = 0,
\]

is exactly integrable for an arbitrary value of the parameter \(b \). The complete set of solutions for \(b \neq 0 \) is given by the union of solutions (4.43), (4.45) - (4.48) and solutions

\[
v(z) = d, \quad v(z) = -\frac{3}{b}z + d, \quad v(z) = \frac{1}{b}z + d,
\]

where \(d \) is an arbitrary constant. The last solution in (4.41) corresponds to the exceptional solution of equation (4.39).

For \(b = 0 \) equation (4.39) is linear and its solutions are given by \(v(z) = d_1 + d_2 \exp (3z/4) \), where \(d_1, d_2 \) are arbitrary constants.
Proof. Because of the symmetry (4.38) it is sufficient to study either the equations (4.36) or (4.37) for \(c \in \mathbb{R} \) or both these equations for \(c > 0 \). The value \(c = 0 \) can be excluded because it complies with the constant value of \(p(z) \) and correspondingly constant value of \(v_z(z) \), but all such cases are studied before and the solutions are given by (4.40).

We will study equation (4.37) in case \(c \in \mathbb{R} \setminus \{0\} \) and obtain on this way the complete class of exact solutions for equations (4.36)-(4.37).

Equation (4.37) for \(c > 0 \) has a one real root only. It leads to an ordinary differential equation of the form

\[
v_z(z) = -\frac{1}{b} - \frac{2^\frac{2}{3}}{b \left(2 + c e^{\frac{3z}{2}} + \sqrt[3]{4 c e^{\frac{3z}{2}} + c^2 e^{3z}}\right)^\frac{2}{3}} - \frac{2 + c e^{\frac{3z}{2}} + \sqrt[3]{4 c e^{\frac{3z}{2}} + c^2 e^{3z}}}{b 2^\frac{2}{3}}, \quad c > 0.
\]
(4.41)

Equation (4.41) can be exactly integrated if we use an Euler substitution and introduce a new independent variable

\[
\tau = 2 + c e^{\frac{3z}{2}} + \sqrt{4 c e^{\frac{3z}{2}} + c^2 e^{3z}}.
\]
(4.42)

The corresponding solution is given by

\[
v(z) = -\frac{2^\frac{2}{3}}{b \left(2 + c e^{\frac{3z}{2}} + \sqrt[3]{4 c e^{\frac{3z}{2}} + c^2 e^{3z}}\right)^\frac{2}{3}} - \frac{2 + c e^{\frac{3z}{2}} + \sqrt[3]{4 c e^{\frac{3z}{2}} + c^2 e^{3z}}}{b 2^\frac{2}{3}} - \frac{2}{b} \log \left(\frac{2^\frac{2}{3}}{2 + c e^{\frac{3z}{2}} + \sqrt[3]{4 c e^{\frac{3z}{2}} + c^2 e^{3z}}} + \frac{2 + c e^{\frac{3z}{2}} + \sqrt[3]{4 c e^{\frac{3z}{2}} + c^2 e^{3z}}}{2^\frac{2}{3}} \right) - 2 + d, \quad d \in \mathbb{R}
\]
(4.43)

where \(d \in \mathbb{R} \) is an arbitrary constant.

If in the right hand side of equation (4.37) the parameter \(c \) satisfies the inequality \(c < 0 \) and the variable \(z \) chosen in the region

\[
z \in \left(-\infty, \frac{4}{3 \ln \frac{2}{|c|}}\right)
\]
(4.44)

then the equation on \(p \) possesses maximal three real roots.

These three roots of cubic equation (4.37) give rise to three differential equations of the type \(v_z = (1 - p^2(z))/b \). The equations can be exactly solved and we find correspondingly three solutions \(v_i(z) \), \(i = 1, 2, 3 \).

The first solution is given by the expression

\[
v_1(z) = -\frac{z}{b} - \frac{2^\frac{2}{3}}{b \left(2 + c e^{\frac{3z}{2}} + \sqrt[3]{4 c e^{\frac{3z}{2}} + c^2 e^{3z}}\right)^\frac{2}{3}} - \frac{2 + c e^{\frac{3z}{2}} + \sqrt[3]{4 c e^{\frac{3z}{2}} + c^2 e^{3z}}}{b 2^\frac{2}{3}} - \frac{2}{b} \log \left(\frac{2^\frac{2}{3}}{2 + c e^{\frac{3z}{2}} + \sqrt[3]{4 c e^{\frac{3z}{2}} + c^2 e^{3z}}} + \frac{2 + c e^{\frac{3z}{2}} + \sqrt[3]{4 c e^{\frac{3z}{2}} + c^2 e^{3z}}}{2^\frac{2}{3}} \right) - 2 + d
\]
(4.45)
where $d \in \mathbb{R}$ is an arbitrary constant. The second solution is given by the formula

$$v_2(z) = \frac{z}{b} - \frac{2}{b} \cos \left(\frac{2}{3} \pi + \frac{2}{3} \arccos \left(-1 + \frac{|c|}{2} e^{\frac{3z}{2}} \right) \right) - \frac{4}{3b} \log \left(1 + 2 \cos \left(\frac{1}{3} \pi + \frac{1}{3} \arccos \left(-1 + \frac{|c|}{2} e^{\frac{3z}{2}} \right) \right) \right) - \frac{16}{3b} \log \left(\sin \left(\frac{1}{6} \pi + \frac{1}{6} \arccos \left(-1 + \frac{|c|}{2} e^{\frac{3z}{2}} \right) \right) \right) + d,$$ \hspace{1cm} (4.46)

where $d \in \mathbb{R}$ is an arbitrary constant. The first and second solutions are defined up to the point $z = \frac{4}{3} \ln \frac{b}{|c|}$ where they coincide (see Fig. 4.1). The third solution for $z < \frac{4}{3} \ln \frac{b}{|c|}$ is given by the formula

$$v_{3,1}(z) = \frac{z}{b} - \frac{2}{b} \cos \left(\frac{1}{3} \arccos \left(-1 + \frac{|c|}{2} e^{\frac{3z}{2}} \right) \right) - \frac{4}{3b} \log \left(1 + 2 \cos \left(\frac{1}{3} \arccos \left(-1 + \frac{|c|}{2} e^{\frac{3z}{2}} \right) \right) \right) - \frac{16}{3b} \log \left(\cos \left(\frac{1}{6} \arccos \left(-1 + \frac{|c|}{2} e^{\frac{3z}{2}} \right) \right) \right) + d,$$ \hspace{1cm} (4.47)

where $d \in \mathbb{R}$ is an arbitrary constant. In case $z > \frac{4}{3} \ln \frac{b}{|c|}$ the polynomial (4.47) has a one real root and the corresponding solution can be represented by the formula

$$v_{3,2}(z) = \frac{z}{b} - \frac{2}{b} \cosh \left(\frac{2}{3} \arccosh \left(-1 + \frac{|c|}{2} e^{\frac{3z}{2}} \right) \right) - \frac{16}{3b} \log \left(\cosh \left(\frac{1}{6} \arccosh \left(-1 + \frac{|c|}{2} e^{\frac{3z}{2}} \right) \right) \right) - \frac{4}{3b} \log \left(1 + 2 \cosh \left(\frac{1}{3} \arccosh \left(-1 + \frac{|c|}{2} e^{\frac{3z}{2}} \right) \right) \right) + d.$$ \hspace{1cm} (4.48)

The third solution is represented by formulas $v_{3,2}(z)$ and $v_{3,1}(z)$ for different values of the variable z. [\QED]

One of the sets of solutions \textbf{4.38}, \textbf{4.39} - \textbf{4.38} for fixed parameters b, c, d is represented in Fig. 4.1. The first solution \textbf{4.31} and the third solution given by both \textbf{4.37} and \textbf{4.38} are defined for any values of z. The solutions $v_1(z)$ and $v_2(z)$ cannot be continued after the point $z = \frac{4}{3} \ln \frac{b}{|c|}$ where they coincide.

If we put in mind that $z = \log S + \frac{c^2}{\rho} t$ and $v(z) = u(S, t)$ we can represent exact invariant solution of equation \textbf{3.1}. The solution \textbf{4.38} gives rise to an invariant solution $u(S, t)$ in the form

$$u(S, t) = -\frac{1}{\omega^2} \left(1 + c S^\frac{3}{4} e^{\frac{3c^2}{4\rho}} + \sqrt{2 c S^\frac{3}{4} e^{\frac{3c^2}{4\rho}} + c^2 S^3 e^{\frac{3c^2}{4\rho^2}}} \right)^{-\frac{3}{2}}$$

$$-\frac{1}{\omega^2} \left(1 + c S^\frac{3}{4} e^{\frac{3c^2}{4\rho}} + \sqrt{2 c S^\frac{3}{4} e^{\frac{3c^2}{4\rho}} + c^2 S^3 e^{\frac{3c^2}{4\rho^2}}} \right)^{\frac{3}{2}} - \frac{1}{\omega^2} \left(1 + c S^\frac{3}{4} e^{\frac{3c^2}{4\rho}} + \sqrt{2 c S^\frac{3}{4} e^{\frac{3c^2}{4\rho}} + c^2 S^3 e^{\frac{3c^2}{4\rho^2}}} \right)^{-\frac{3}{2}}$$

$$+ \left(1 + c S^\frac{3}{4} e^{\frac{3c^2}{4\rho}} + \sqrt{2 c S^\frac{3}{4} e^{\frac{3c^2}{4\rho}} + c^2 S^3 e^{\frac{3c^2}{4\rho^2}}} \right) - 2 \right) + d$$

where $d \in \mathbb{R}, c > 0$.

Figure 4.1

- **Graph of Invariant Solution**

- **Zones of Parameter Values**

Figure 4.2

- **Graph of Invariant Solution**

- **Zones of Parameter Values**

Figure 4.3

- **Graph of Invariant Solution**

- **Zones of Parameter Values**
Symmetry reductions of a nonlinear model

In case $c < 0$ we can obtain correspondingly three solutions if

$$0 < S \leq \left(\frac{2}{|c|} \right)^{4/3} \exp \left(-\frac{\sigma^2}{8} t \right).$$

(4.50)

The first solution is represented by

$$u_1(S,t) = \frac{1}{\omega \rho} \left(\log S + \frac{\sigma^2}{8} t \right) - \frac{2}{\omega \rho} \cos \left(\frac{2}{3} \arccos \left(1 - \frac{|c|}{2} S^2 e^{\frac{3\sigma^2}{16} t} \right) \right)$$

$$- \frac{4}{3\omega \rho} \log \left(1 + 2 \cos \left(\frac{1}{3} \arccos \left(1 - \frac{|c|}{2} S^2 e^{\frac{3\sigma^2}{16} t} \right) \right) \right) - \frac{16}{3\omega \rho} \log \left(\sin \left(\frac{1}{6} \arccos \left(1 - \frac{|c|}{2} S^2 e^{\frac{3\sigma^2}{16} t} \right) \right) \right) + d,$$

(4.51)

where $d \in R$, $c < 0$. The second solution is given by the formula

$$u_2(S,t) = \frac{1}{\omega \rho} \left(\log S + \frac{\sigma^2}{8} t \right) - \frac{2}{\omega \rho} \cos \left(\frac{2}{3} \pi + \frac{2}{3} \arccos \left(-1 + \frac{|c|}{2} S^2 e^{\frac{3\sigma^2}{16} t} \right) \right)$$

$$- \frac{4}{3\omega \rho} \log \left(1 + 2 \cos \left(\frac{1}{3} \pi + \frac{1}{3} \arccos \left(-1 + \frac{|c|}{2} S^2 e^{\frac{3\sigma^2}{16} t} \right) \right) \right)$$

$$- \frac{16}{3\omega \rho} \log \left(\sin \left(\frac{1}{6} \pi + \frac{1}{6} \arccos \left(-1 + \frac{|c|}{2} S^2 e^{\frac{3\sigma^2}{16} t} \right) \right) \right) + d,$$

(4.52)

where $d \in R$, $c < 0$. The first and second solutions are defined for the variables under conditions (4.50). They coincide along the curve

$$S = \left(\frac{2}{|c|} \right)^{4/3} \exp \left(-\frac{\sigma^2}{8} t \right)$$

and cannot be continued further.
The third solution is defined by

$$u_{3,1}(S, t) = \frac{1}{\omega \rho} \left(\log S + \frac{\sigma^2}{8} t \right) - \frac{2}{\omega \rho} \cos \left(\frac{2}{3} \arccos \left(-1 + \frac{|c|}{2} S \frac{\sqrt{2} e^{|c|^2 t}}{16} \right) \right)$$

$$- \frac{4}{3 \omega \rho} \log \left(-1 + 2 \cos \left(\frac{1}{3} \arccos \left(-1 + \frac{|c|}{2} S \frac{\sqrt{2} e^{|c|^2 t}}{16} \right) \right) \right) + d,$$

(4.53)

$$- \frac{16}{3 \omega \rho} \log \left(\cos \left(\frac{1}{6} \arccos \left(-1 + \frac{|c|}{2} S \frac{\sqrt{2} e^{|c|^2 t}}{16} \right) \right) \right) + d,$$

(4.54)

where $d \in \mathbb{R}$ and S, t satisfied the condition (4.50).

In case $\log S + \frac{\sigma^2}{8} t > \frac{4}{3} \ln \frac{2}{|c|}$, the third solution can be represented by the formula

$$u_{3,2}(S, t) = \frac{1}{\omega \rho} \left(\log S + \frac{\sigma^2}{8} t \right) - \frac{2}{\omega \rho} \cosh \left(\frac{2}{3} \text{arccosh} \left(-1 + \frac{|c|}{2} S \frac{\sqrt{2} e^{|c|^2 t}}{16} \right) \right)$$

$$- \frac{16}{3 \omega \rho} \log \left(\cosh \left(\frac{1}{6} \text{arccosh} \left(-1 + \frac{|c|}{2} S \frac{\sqrt{2} e^{|c|^2 t}}{16} \right) \right) \right)$$

$$- \frac{4}{3 \omega \rho} \log \left(-1 + 2 \cosh \left(\frac{1}{3} \text{arccosh} \left(-1 + \frac{|c|}{2} S \frac{\sqrt{2} e^{|c|^2 t}}{16} \right) \right) \right) + d.$$

(4.54)

The solution $u(S, t)$ and the third solution given by $u_{3,1}, u_{3,2}$ are defined for all values of variables t and $S > 0$. They have a common intersection
curve of the type $S = \text{const. } \exp(-\sigma^2 t/8)$. The typical behavior of all these invariant solutions is represented in Fig. 4.

Previous results can be summed up in the following theorem describing the set of invariant solutions of equation (1.1).

Theorem 4.3.

1. The equation (1.1) possesses invariant solutions for the special form of the function $\lambda(S)$ given by $\lambda(S) = \omega S$ only.

2. In case (2.10) the invariant solutions of equation (1.1) are defined by ordinary differential equations (3.8). In special cases $k = 0, 1$ equations (3.8) are of an autonomous type.

3. If $\lambda(S) = \omega S$, i.e. $k = 1$, then the invariant solutions of equation (1.1) can be defined by the set of first order ordinary differential equations (4.27)–(4.32) and equation (4.34).

If additionally the parameter $\rho = 4$, or equivalent in the first invariant (2.31) we chose $\alpha = \sigma^2/8$ then the complete set of invariant solutions (1.1) can be found exactly. This set of invariant solutions is given by formulas (4.49)–(4.54) and by solutions

$$u(S, t) = d, \quad u(S, t) = -3/b (\log S + \sigma^2 t/8), \quad u(S, t) = 1/b (\log S + \sigma^2 t/8),$$

where d is an arbitrary constant. This set of invariant solutions is unique up to the transformations of the symmetry group G^Δ given by theorem 2.2.

The solutions $u(S, t)$, $u_1(S, t)$, $u_2(S, t)$, $u_3(S, t)$, $u_3,1(S, t)$, $u_3,2(S, t)$, have no one counterpart in a linear case. If the parameter $\rho \to 0$ then equation (1.1) and correspondingly equation (3.1) will be reduced to the linear Black-Scholes equation but solutions (4.49)–(4.54) which we obtained here will be completely blown up by $\rho \to 0$ because of the factor $1/b = 1/(\omega \rho)$ in the formulas (4.49)–(4.54). This phenomena was described as well in [1], [2] for the invariant solutions of equation (3.1) with $k = 0$.

REFERENCES

[1] L. A. BORDAG and A. Y. CHMAKOVA, Explicit solutions for a nonlinear model of financial derivatives, (2004). BTU Cottbus 02/04, 2004.

[2] A. Y. CHMAKOVA, Symmetriereduktionen und explicite Lösungen für ein nichtlineares Modell eines Preisbildungsprozesses in illiquiden Märkten, PhD thesis, BTU Cottbus, 2005.

[3] R. FREY, Perfect Option Replication for a Large Trader, PhD thesis, ETH Zurich, 1996.

[4] _______ Market illiquidity as a source of model risk in dynamic hedging, Model Risk, (2000), pp. 125–136.

[5] R. FREY and P. PATIE, Risk management for derivatives with market illiquities, tech. report, RiskLab, Department of Mathematics, ETH Zurich, 2002.

[6] R. FREY and A. STREMMIE, Market volatility and feedback effect from dynamic hedging, Mathematical Finance, 7 (1997), pp. 351–374.

[7] GIUSEPPE GAETA, Nonlinear Symmetries and Nonlinear Equations, vol. 299 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, NL Boston, USA London UK, 1994.

[8] NAIL H. IBRAGIMOV, Elementary Lie Group Analysis and Ordinary Differential Equations, John Wiley&Sons, Chischester, USA New York, USA Weinheim, Germany Brisbane, USA Singapore, Singapore Toronto Canada etc., 1999.

[9] SOPHUS LIE, Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen, Teubner, Leipzig, 1912.

[10] P. J. OLVER, Application of Lie groups to differential equations, Springer-Verlag, New York, USA, 1986.

[11] LEV V. OVSYANNIKOV, Group Analysis of Differential Equations, Academic Press, New York, USA, 1982.

[12] P. J. SCHONBUCHER and P. WILMOTT, The feedback effect of hedging in illiquid markets, SIAM J. Appl. Math., 61 (2000), pp. 232–272.

[13] HANS STEPHANI, Differential Gleichungen: Symmetrien und Lösungsmethoden, Spektrum Akademischer Verlag GmbH, Heidelberg, Germany, 1994.