Confidence Intervals for Nonparametric Empirical Bayes Analysis

Οικονομικό Πανεπιστήμιο Αθηνών
Τμήμα Στατιστικής

Οκτώβριος 7, 2022

Nikos Ignatiadis
Statistics Department, Columbia University
What is empirical Bayes?

• Regularization/Shrinkage estimation
• Deconvolution
• Inverse problem
• Hierarchical Bayes
• A Mixed Model with (potentially) some nonparametric components.
• Compound decision theory
Experience rating (Bichsel, 1964)

Erfahrungs-Tarifierung
in der Motorfahrzeughaftpflicht-Versicherung

Von Fritz Bichsel, Muri bei Bern

$Z_i(1961)$: number of claims of i-th policy holder in 1961

z	$\#\{Z_i(1961) = z\}$
0	103704
1	14075
2	1766
3	255
4	45
≥ 5	8
Experience rating (Bichsel, 1964)

Erfahrungs-Tarifierung
in der Motorfahrzeughaftpflicht-Versicherung

Von Fritz Bichsel, Muri bei Bern

$Z_i(1961)$: number of claims of i-th policy holder in 1961

z	$\#\{Z_i(1961) = z\}$
0	103704
1	14075
2	1766
3	255
4	45
≥ 5	8

Goal: Assign premium for the next year as a function of $Z_i(1961)$.
Experience rating (Bichsel, 1964)

Erfahrungs-Tarifierung
in der Motorfahrzeughaftpflicht-Versicherung

Von Fritz Bichsel, Muri bei Bern

\(Z_i(1961) \): number of claims of \(i \)-th policy holder in 1961

\(z \)	\#\{ \(Z_i(1961) = z \} \)
0	103704
1	14075
2	1766
3	255
4	45
\(\geq 5 \)	8

Goal: Assign premium for the next year as a function of \(Z_i(1961) \).

Idea: Assess expected number of claims in next year,

\[
\mathbb{E}[Z_i(1962) \mid Z_i(1961) = z]
\]
Experience rating (Bichsel, 1964)

\(i: \) policy holder, \(Z_i(t) \): number of claims in year \(t \).

\[Z_i(1961), Z_i(1962) \overset{iid}{\sim} \text{Poisson}(\mu_i) \]
Experience rating (Bichsel, 1964)

\(i: \) policy holder, \(Z_i(t): \) number of claims in year \(t \).

\[
Z_i(1961), Z_i(1962) \sim \text{Poisson}(\mu_i)
\]

\(\mu_i \sim G \)

“Structural function representing heterogeneity of the portfolio”
Experience rating (Bichsel, 1964)

i: policy holder, $Z_i(t)$: number of claims in year t.

\[Z_i(1961), Z_i(1962) \sim \text{Poisson}(\mu_i) \]

\[\mu_i \sim G \] "Structural function representing heterogeneity of the portfolio"

Best guess for the number of claims in 1962 for i is:

\[\mathbb{E}[Z_i(1962) \mid Z_i(1961) = z] \]
\[= \mathbb{E}[\mu_i \mid Z_i(1961) = z] \]
\[= \theta_G(z) \]
Experience rating (Bichsel, 1964)

i: policy holder, \(Z_i(t) \): number of claims in year \(t \).

\[
Z_i(1961), Z_i(1962) \overset{iid}{\sim} \text{Poisson}(\mu_i)
\]

\[
\mu_i \sim G
\]

“Structural function representing heterogeneity of the portfolio”

Best guess for the number of claims in 1962 for \(i \) is:

\[
\mathbb{E}[Z_i(1962) \mid Z_i(1961) = z] = \mathbb{E}[\mu_i \mid Z_i(1961) = z] = \theta_G(z)
\]

Bichsel did not know \(G \)… But had data.
Nonparametric Maximum Likelihood (NPMLE)

\[Z_i = Z_i(1961): \text{number of claims in 1961} \]

\[Z_i \sim \text{Poisson}(\mu_i) \]

\[\mu_i \sim G \]

\(G \in \mathcal{G} = \{ \text{all distributions supported on } [0, 5] \} \)

Kiefer-Wolfowitz (1956), Simar (1976), Laird (1978), Lindsay (1983),
Walhlin and Paris (1999), Koenker and Mizera (2014), Koenker and Gu (2017)
What about confidence intervals?

Estimated posterior mean: $\hat{\theta}_G(3) = \mathbb{E}_{\tilde{G}} [\mu \mid Z = 3] = 0.69$
What about confidence intervals?

Estimated posterior mean: \(\hat{\theta}_G(3) = \mathbb{E}_G[\mu \mid Z = 3] = 0.69 \)

Confidence intervals of the premiums of optimal bonus malus systems

Dimitris Karlis\(^a\), George Tzougas\(^b\) and Nicholas Frangos\(^a\)

\(^a\)Department of Statistics, Athens University of Economics and Business, Athens, Greece; \(^b\)Department of Statistics, London School of Economics, London, UK

\(\theta_G(3) = \mathbb{E}_G[\mu \mid Z = 3] \in [0.55, 0.80] \).
Confidence intervals for $\theta_G(z) = \mathbb{E}_G[\mu \mid Z = z]$

1. Let \hat{G} be the NPMLE of G based on Z_1, \ldots, Z_n.
2. for $b = 1$ to B do
 3. Draw $\mu_i^b \sim \hat{G}$, $Z_i^b \sim p(\cdot \mid \mu_i^b)$ for $i = 1, \ldots, n$ (iid).
 4. Let \hat{G}^b be the NPMLE of G based on Z_1^b, \ldots, Z_n^b.
 5. Let $\hat{\theta}^b(z) = \theta_{\hat{G}^b}(z)$.
3. end
4. Form a percentile bootstrap confidence interval $[\hat{\theta}^-_\alpha(z), \hat{\theta}^+_-\alpha(z)]$ of $\theta_G(z)$ based on $\hat{\theta}^b(z)$, $b = 1, \ldots, B$.

The challenge in using bootstrap intervals in the nonparametric case, however, is that, as Ghosal writes, “no bootstrap theory seems to be known in this setup.” There is one exception, however, in which bootstrap theory is available. Suppose $p(\cdot \mid \mu) = \text{Poisson} (\mu)$ and that we seek to conduct inference for the posterior mean $\theta_G(z) = \mathbb{E} \left[\mu \mid Z = z \right]$. Suppose further that G is supported on $[0,M]$ for known $M > 0$, that is $G \in \mathcal{P}([0,M])$ (IW-(4)), and also assume that there exist constants $d, \beta > 0$ such that:

$$
\mathbb{P}
\left[
\mu^2(u, u + \beta) \leq d \beta
\right]
\leq 2
$$

for all $u, \beta \in (0, \beta)$. (3)
Confidence intervals for $\theta_G(z) = \mathbb{E}_G[\mu \mid Z = z]$

1. Let \widehat{G} be the NPMLE of G based on Z_1, \ldots, Z_n.
2. for $b = 1$ to B do
 3. Draw $\mu_i^b \sim \widehat{G}$, $Z_i^b \sim p(\cdot \mid \mu_i^b)$ for $i = 1, \ldots, n$ (iid).
4. Let \widehat{G}^b be the NPMLE of G based on Z_1^b, \ldots, Z_n^b.
5. Let $\hat{\theta}^b(z) = \theta_{\widehat{G}^b}(z)$.
6. end
7. Form a percentile bootstrap confidence interval $[\hat{\theta}_\alpha^-(z), \hat{\theta}_\alpha^+(z)]$ of $\theta_G(z)$ based on $\hat{\theta}^b(z)$, $b = 1, \ldots, B$.

Theorem [Karlis, Tzougas, and Frangos (2018)]: Assume independence and that $Z_i \mid \mu_i \sim \text{Poisson}(\mu_i)$, $\mu_i \sim G$, with

$$G \in \mathcal{G} = \left\{ G \text{ supported on compact interval } [0,M], \right.$$

$$\mathbb{P}_G[\mu \in (0,\varepsilon)] \text{ is sufficiently large for all } \varepsilon > 0 \right\}$$

Then:

$$\liminf_{n \to \infty} \left\{ \mathbb{P}_G \left[\theta_G(z) \in [\hat{\theta}_\alpha^-(z), \hat{\theta}_\alpha^+(z)] \right] \right\} \geq 1 - \alpha.$$
Confidence Intervals for Nonparametric Empirical Bayes Analysis (with Rejoinder)

N.I., and Stefan Wager, JASA T&M (2022)
Empirical Bayes (EB) Robbins (1956), Efron (2010)

We have noisy data Z_i on n related units with latent parameter μ_i.

Three main ingredients to an EB analysis:

1) Known noise model:
 \[Z_i \mid \mu_i \sim p(\cdot \mid \mu_i) \]

 $p(\cdot \mid \mu_i)$ is a density w.r.t. a measure λ, e.g., $Z_i \mid \mu_i \sim \text{Poisson}(\mu_i)$.

2) Class of priors:
 \[\mu_i \sim G, \quad G \in \mathcal{G} \]

 G is unknown.

3) Empirical Bayes estimand:
 \[\theta_G(z) = \mathbb{E}_G[h(\mu_i) \mid Z_i = z] \]

 for a known function $h(\cdot)$,

 e.g., for $h(\mu) = \mu$, $\theta_G(z)$ is the posterior mean given $Z_i = z$.
Empirical Bayes (EB)
Robbins (1956), Efron (2010)

We have noisy data Z_i on n related units with latent parameter μ_i. Three main ingredients to an EB analysis:

1) Known noise model:
$$Z_i \mid \mu_i \sim p(\cdot \mid \mu_i)$$
$p(\cdot \mid \mu_i)$ is a density w.r.t. a measure λ, e.g., $Z_i \mid \mu_i \sim \text{Poisson}(\mu_i)$.

2) Class of priors:
$$\mu_i \sim G, \ G \in \mathcal{G}$$
G is unknown.

3) Empirical Bayes estimand:
$$\theta_G(z) = \mathbb{E}_G[h(\mu_i) \mid Z_i = z]$$
for a known function $h(\cdot)$,
e.g., for $h(\mu) = \mu$, $\theta_G(z)$ is the posterior mean given $Z_i = z$

Predominant approach: Point estimate $\hat{\theta}_G(z)$ of $\theta_G(z)$.
EB confidence intervals: statistical task

1) Known noise model: \[Z_i \mid \mu_i \sim p(\cdot \mid \mu_i) \]

2) Class of priors: \[\mu_i \sim G, \quad G \in \mathcal{G} \]
 \(G \) is unknown

3) Empirical Bayes estimand: \[\theta_G(z) = \mathbb{E}_G[h(\mu_i) \mid Z_i = z] \]

CI: \[[\hat{\theta}_\alpha^-(z), \hat{\theta}_\alpha^+(z)] \] with pointwise frequentist coverage:

\[
\lim \inf_{n \to \infty} \left\{ \mathbb{P}_G \left[\theta_G(z) \in [\hat{\theta}_\alpha^-(z), \hat{\theta}_\alpha^+(z)] \right] \right\} \geq 1 - \alpha
\]

and also with simultaneous coverage.
EB confidence intervals: statistical task

1) Known noise model: \(Z_i \mid \mu_i \sim p(\cdot \mid \mu_i) \) \(i = 1, \ldots, n \)

2) Class of priors: \(\mu_i \sim G, \quad G \in \mathcal{G} \)

\(G \) is unknown \(\mathcal{G} \) is a pre-specified convex class of priors.

3) Empirical Bayes estimand: \(\theta_G(z) = \mathbb{E}_G[h(\mu_i) \mid Z_i = z] \)

CI: \([\hat{\theta}^-_\alpha(z), \hat{\theta}^+\alpha(z)] \) with pointwise frequentist coverage:

\[
\liminf_{n \to \infty} \left\{ \mathbb{P}_G \left[\theta_G(z) \in [\hat{\theta}^-_\alpha(z), \hat{\theta}^+\alpha(z)] \right] \right\} \geq 1 - \alpha \quad \text{for all} \quad G \in \mathcal{G}
\]

and also with simultaneous coverage.
The statistical properties of RCTs and a proposal for shrinkage

Erik van Zwet1 | Simon Schwab2,3 | Stephen Senn4

Z-Score from an RCT: \(Z_i \mid \mu_i \sim N(\mu_i, 1) \)
The statistical properties of RCTs and a proposal for shrinkage

Erik van Zwet1a | Simon Schwab2,3a | Stephen Senn4a

Z-Score from an RCT: \[Z_i \mid \mu_i \sim \mathcal{N}(\mu_i, 1) \]

For inference: \[\mu_i \sim G \]
The statistical properties of RCTs and a proposal for shrinkage

Erik van Zwet1 | Simon Schwab2,3 | Stephen Senn4

Z-Score from an RCT: \[Z_i \mid \mu_i \sim \mathcal{N}(\mu_i, 1) \]
For inference: \[\mu_i \sim G \]

\[n = 23551 \] Z-scores from RCTs in healthcare (Cochrane Database of Systematic Reviews).
The statistical properties of RCTs and a proposal for shrinkage

Erik van Zwet1 | Simon Schwab2,3 | Stephen Senn4

\textbf{Z-Score from an RCT:} \[Z_i \mid \mu_i \sim N(\mu_i, 1) \]
\[\mu_i \sim G \]

For an RCT with Z-score $Z_i = -1.81$

\textbf{Posterior mean:}
\[\mathbb{E}_G [\mu \mid Z = -1.81] = -1.12 \]

\textbf{Local false sign rate:}
\[\mathbb{P}_G [\mu \geq 0 \mid Z = -1.81] = 0.091 \]
RESEARCH ARTICLE

The statistical properties of RCTs and a proposal for shrinkage

Erik van Zwet1 | Simon Schwab2,3 | Stephen Senn4

1 Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
2 Center for Reproducible Science (CRS), University of Zürich, Zürich, Switzerland
3 Epidemiology, Biostatistics and Prevention Institute (EPBI), University of Zürich, Zürich, Switzerland
4 Statistical Consultant, Edinburgh, UK

Correspondence
Erik van Zwet, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.
Email: E.W.van_Zwet@lumc.nl

Abstract
We abstract the concept of a randomized controlled trial as a triple \((\mu, \hat{b}, s)\), where \(\mu\) is the primary efficacy parameter, \(\hat{b}\) the estimate, and \(s\) the standard error \((s > 0)\). If the parameter \(\mu\) is either a difference of means, a log odds ratio or a log hazard ratio, then it is reasonable to assume that \(\hat{b}\) is unbiased and normally distributed. This then allows us to estimate the joint distribution of the \(z\)-value \(z = \frac{\hat{b}}{s}\) and the signal-to-noise ratio \(\text{SNR} = \frac{\mu}{s}\) from a sample of pairs \((\hat{b}_i, s_i)\).

We have collected 23,551 such pairs from the Cochrane database. We note that there are many statistical quantities that depend on \((\mu, \hat{b}, s)\) only through the pair \((z, \text{SNR})\). We start by determining the estimated distribution of the achieved power. In particular, we estimate the median achieved power to be only 13%. We also consider the exaggeration ratio which is the factor by which the magnitude of \(\mu\) is overestimated. We find that if the estimate is just significant at the 5% level, we would expect it to overestimate the true effect by a factor of 1.7. This exaggeration is sometimes referred to as the winner’s curse and it is undoubtedly to a considerable extent responsible for disappointing replication results.

For this reason, we believe it is important to shrink the unbiased estimator, and we propose a method for doing so. We show that our shrinkage estimator successfully addresses the exaggeration. As an example, we re-analyze the ANDROMEDA-SHOCK trial.

KEYWORDS
achieved power, Cochrane review, exaggeration, randomized controlled trial, type M error

1 INTRODUCTION
It is nearly three quarters of a century since what is generally regarded as the first modern randomized clinical trial, the UK Medical Research Council study of the effectiveness of streptomycin in tuberculosis. Since then, tens of thousands of randomized controlled trials (RCT) have been conducted. The purpose of this article is to study this wealth of information, and to try to learn from it.

We have collected the results of more than 20,000 RCTs from the Cochrane Database of Systematic Reviews (CDSR), which is the leading journal and database for systematic reviews in health care. These data allow us to determine the

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2021 The Authors.
Statistics in Medicine
Statistics in Medicine. 2021;1–11.

what about confidence intervals?
$n = 12990$ students

Z_i: Score on multiple choice test with 20 questions

(5 choices per question)
Educational Testing Service

\[
n = 12990 \text{ students}
\]

\[
Z_i: \text{Score on multiple choice test with 20 questions (5 choices per question)}
\]

Empirical Bayes model:

\[
\mu_i \sim G
\]

\[
Z_i \mid \mu_i \sim \text{Binomial}(20, \mu_i)
\]

Posterior mean:

\[
\theta_G(z) = \mathbb{E}_G[\mu_i \mid Z_i = z]
\]

Lord (1969), Lord and Cressie (1975), Lord and Stocking (1976)
Educational Testing Service

$n = 12990$ students
Z_i: Score on multiple choice test with 20 questions
(5 choices per question)

Empirical Bayes model:
$\mu_i \sim G$
$Z_i \mid \mu_i \sim \text{Binomial}(20, \mu_i)$

Posterior mean:
$\theta_G(z) = \mathbb{E}_G[\mu_i \mid Z_i = z]$
Related work: EB confidence intervals

Efron (2014, 2016, 2019), Narasimhan and Efron (2020)
Use a flexible parametric model for G, and estimate variance of point estimates $\hat{\theta}_G(z)$.
Related work: EB confidence intervals

Efron (2014, 2016, 2019), Narasimhan and Efron (2020)
Use a flexible parametric model for G, and estimate variance of point estimates $\hat{\theta}_G(z)$.

Nonparametrics:

Poisson model, Posterior Mean
Robbins (1980, *Proceedings of the National Academy of Sciences*)
Karlis, Tzougas and Frangos (2018, *Scandinavian Actuarial Journal*)

Binomial model, Posterior Mean
Lord and Cressie (1975, *Sankhyā Series B*)
Lord and Stocking (1976, *Psychometrika*)

Our work
A unified inference framework that works in the general nonparametric situation described.
Nonparametric EB estimation

Poisson model, Posterior Mean: \(\checkmark \) \(\checkmark \)
It is possible to estimate \(\theta_G(z) \) at the parametric rate \(1/\sqrt{n} \)
[Robbins (1956), Lambert and Tierney (1984)]

Gaussian model, Posterior Mean: \(\checkmark \)
It is possible to estimate \(\theta_G(z) \) at the quasi-parametric rate
\(\log(n)^{3/4}/\sqrt{n} \) \[Matias and Taupin (2004)]

Gaussian model, Local False Sign Rate: \(\times \)
For Sobolev \(G \), minimax rates for estimating \(\theta_G(z) \) are polynomial in \(1/\log(n) \) \[Butucea and Comte (2009), Pensky (2017)]

Binomial model, Posterior Mean: \(\times \) \(\times \) \(\times \)
If we impose no restrictions on \(G \), \(\theta_G(z) \) is only partially identified \[Robbins (1956)]
Why does the difficulty of estimation vary?

Hierarchical model: \[\mu_i \sim G, \quad Z_i \mid \mu_i \sim p(\cdot \mid \mu_i) \]

Marginally: \[Z_i \sim f_G, \quad f_G(z) = \int p(z \mid \mu) dG(\mu) \]
Why does the difficulty of estimation vary?

Hierarchical model:
\[\mu_i \sim G, \quad Z_i \mid \mu_i \sim p(\cdot \mid \mu_i) \]

Marginally:
\[Z_i \sim f_G, \quad f_G(z) = \int p(z \mid \mu) dG(\mu) \]

\[f_{G_1} \approx f_{G_2} \quad \not\Rightarrow \quad G_1 \approx G_2 \]
Why does the difficulty of estimation vary?

Hierarchical model:
\[\mu_i \sim G, \quad Z_i \mid \mu_i \sim p(\cdot \mid \mu_i) \]

Marginally:
\[Z_i \sim f_G, \quad f_G(z) = \int p(z \mid \mu) dG(\mu) \]

\[f_{G_1} \approx f_{G_2} \quad \Rightarrow \quad G_1 \approx G_2 \]

\[f_{G_1} \approx f_{G_2} \quad \Rightarrow \quad \theta_{G_1}(z) \approx \theta_{G_2}(z) \]
Why is a unified inference approach difficult?

1) Distributional theory for e.g., NPMLE is notoriously difficult. Some results for discrete distributions by Lambert and Tierney (1984), Böhning and Patilea (2005), Karlis and Patilea (2008).
Why is a unified inference approach difficult?

1) Distributional theory for e.g., NPMLE is notoriously difficult. Some results for discrete distributions by Lambert and Tierney (1984), Böhning and Patilea (2005), Karlis and Patilea (2008).

2) Suppose we had asymptotic normality: \(\hat{\theta}_G(z) \pm 1.96 \cdot \hat{se} \)
Why is a unified inference approach difficult?

1) Distributional theory for e.g., NPMLE is notoriously difficult. Some results for discrete distributions by Lambert and Tierney (1984), Böhning and Patilea (2005), Karlis and Patilea (2008).

2) Suppose we had asymptotic normality: \(\hat{\theta}_G(z) \pm 1.96 \cdot \hat{\text{se}} \)

Assumes that: \(\text{Bias}^2 \ll \hat{\text{se}}^2 \)

Not true under partial identification or when minimax estimation rates are slow!

“when the minimax convergence rate is slower than any algebraic rate, the optimal linear estimator must have maximum squared bias completely dominating the variance” [Cai and Low (2003)]

Instead: **Bias-aware inference**

[Armstrong and Kolesár (2018), Imbens and Manski (2004), Imbens and Wager (2018)]
F-Localization
F-Localization

\(\mathcal{F}_n(\alpha) \): a set of distributions, such that

\[
\liminf_{n \to \infty} \left\{ \mathbb{P}_G[F_G \in \mathcal{F}_n(\alpha)] - (1 - \alpha) \right\} \geq 0.
\]
F-Localization

\(\mathcal{F}_n(\alpha) \) : a set of distributions, such that

\[
\liminf_{n \to \infty} \left\{ \mathbb{P}_G[F_G \in \mathcal{F}_n(\alpha)] - (1 - \alpha) \right\} \geq 0.
\]

Set of all priors consistent with the F-Localization

\[
\mathcal{G}(\mathcal{F}_n(\alpha)) = \{ G \in \mathcal{G} : F_G \in \mathcal{F}_n(\alpha) \}
\]

Confidence intervals for empirical Bayes estimand

\[
\hat{\theta}_\alpha^+(z) = \sup \{ \theta_G(z) : G \in \mathcal{G}(\mathcal{F}_n(\alpha)) \}, \quad \mathcal{I}_\alpha(z) = \left[\hat{\theta}_\alpha^-(z), \hat{\theta}_\alpha^+(z) \right]
\]
F-Localization

\(\mathcal{F}_n(\alpha) \) : a set of distributions, such that

\[
\lim \inf_{n \to \infty} \left\{ \mathbb{P}_G[F_G \in \mathcal{F}_n(\alpha)] - (1 - \alpha) \right\} \geq 0.
\]

Set of all priors consistent with the F-Localization

\[
\mathcal{G}(\mathcal{F}_n(\alpha)) = \{ G \in \mathcal{G} : F_G \in \mathcal{F}_n(\alpha) \}
\]

Confidence intervals for empirical Bayes estimand

\[
\hat{\theta}^+_{\alpha}(z) = \sup \{ \theta_G(z) : G \in \mathcal{G}(\mathcal{F}_n(\alpha)) \}, \quad \mathcal{I}_\alpha(z) = \left[\hat{\theta}^-_{\alpha}(z), \hat{\theta}^+_{\alpha}(z) \right]
\]

Proposition (I., Wager):

\[
\lim \inf_{n \to \infty} \left\{ \mathbb{P}_G \left[\theta_G(z) \in [\hat{\theta}^-_{\alpha}(z), \hat{\theta}^+_{\alpha}(z)] \right] \right\} \geq 1 - \alpha
\]

Robbins (1956), Anderson (1964), Deely and Kruse (1968), Romano and Wolf (2000), Stark (1992), Donoho and Reeves (2013), Kuusela and Stark (2017), Greenshtein and Itskov (2018), Brennan et al. (2020),
Dvoretzky–Kiefer–Wolfowitz

$\mathcal{F}_n(\alpha) = \left\{ F : \sup_{t \in \mathbb{R}} |F(t) - \hat{F}_n(t)| \leq \sqrt{\log(2/\alpha)/(2n)} \right\}$

Theorem [Massart (1990)]: \[\mathbb{P}_G[F_G \in \mathcal{F}_n(\alpha)] \geq 1 - \alpha \]
Theorem [Massart (1990)]: \(\mathbb{P}_G[F_G \in \mathcal{F}_n(\alpha)] \geq 1 - \alpha \)

\(n = 12990 \) students

\(Z_i \): Score on multiple choice test with 20 questions (5 choices per question)

\(Z_i \mid \mu_i \sim \text{Binomial}(20, \mu_i) \)
Example (ETS)

\[\theta_G(z) = \mathbb{E}_G[\mu_i \mid Z_i = z], \ G = \{\text{all distributions supported on } [0,1]\} \]
Example (ETS)

\[\theta_G(z) = \mathbb{E}_G[\mu_i \mid Z_i = z], \ \mathcal{G} = \{ \text{all distributions supported on } [0,1] \} \]

\[\hat{\theta}_{\alpha}(0) = 2 \cdot 10^{-4} \]
Example (ETS)

\[\theta_G(z) = \mathbb{E}_G[\mu_i \mid Z_i = z], \quad \mathcal{G} = \{ \text{all distributions supported on } [0,1] \} \]

\[\hat{\theta}_\alpha^{-}(0) = 2 \cdot 10^{-4} \]

Linear programming!
[Charnes-Cooper (1962)]
Example (ETS)

\[\theta_G(z) = \mathbb{E}_G[\mu_i \mid Z_i = z], \quad \mathcal{G} = \{ \text{all distributions supported on } [0,1] \} \]

\[\hat{\theta}_-^\alpha(0) = 2 \cdot 10^{-4} \]

\[\hat{\theta}_+^\alpha(0) = 0.42 \]
Example (ETS)

\[\theta_G(z) = \mathbb{E}_G[\mu_i \mid Z_i = z], \quad \mathcal{G} = \{ \text{all distributions supported on } [0,1] \} \]

\[\hat{\theta}_\alpha^-(0) = 2 \cdot 10^{-4} \]

\[\hat{\theta}_\alpha^+(0) = 0.42 \]
Example (ETS)

\[\theta_G(z) = \mathbb{E}_G[\mu_i \mid Z_i = z], \ G = \{ \text{all distributions supported on } [0,1] \} \]

\[\hat{\theta}_-^-(0) = 2 \cdot 10^{-4} \]
\[\hat{\theta}_+^+(0) = 0.42 \]
Choice of F-localization

DKW F-Localization: Universal and finite-sample

χ^2-F-Localization: When $Z_i \mid \mu_i \sim \text{Binomial}(N, \mu_i)$,

$$\mathcal{F}_n(\alpha) = \left\{ F \text{ with pmf } f \text{ on } \{0,\ldots,N\} : \sum_{z=0}^{N} \frac{(nf_n(z) - nf(z))^2}{nf(z)} \leq \chi^2_{N,1-\alpha} \right\}$$

$$\frac{1}{n} \sum_{i=1}^{n} 1(Z_i = z)$$
Choice of F-localization

DKW F-Localization: Universal and finite-sample

χ^2-F-Localization: When \(Z_i \mid \mu_i \sim \text{Binomial}(N, \mu_i) \),

\[
\mathcal{F}_n(\alpha) = \left\{ F \text{ with pmf } f \text{ on } \{0,...,N\} : \sum_{z=0}^{N} \frac{(n \hat{f}_n(z) - nf(z))^2}{nf(z)} \leq \chi^2_{N,1-\alpha} \right\}
\]

\[
\frac{1}{n} \sum_{i=1}^{n} 1(Z_i = z)
\]
Choice of F-localization

DKW F-Localization: Universal and finite-sample

\[\chi^2\text{-F-Localization:} \quad \text{When } Z_i \mid \mu_i \sim \text{Binomial}(N, \mu_i), \]

\[\mathcal{F}_n(\alpha) = \left\{ F \text{ with pmf } f \text{ on } \{0, \ldots, N\} : \sum_{z=0}^{N} \frac{(n\hat{f}_n(z) - nf(z))^2}{nf(z)} \leq \chi^2_{N,1-\alpha} \right\} \]

\[\frac{1}{n} \sum_{i=1}^{n} 1(Z_i = z) \]

Lord and Cressie (1975), Lord and Stocking (1976)
Beyond F-localization

Easy to construct

“Common sense approach”

Simultaneous coverage

What about power? Power strong only if F-localization gives tight characterization of uncertainty. Not true in general, because of simultaneous coverage.

Conservative!

Choice of F-Localization matters.
AMARI
(Affine Minimax Anderson Rubin Inference)
$H_0 : \theta_G(z) = c$
$H_0 : \theta_G(z) = c$

\[
\theta_G(z) = \mathbb{E}_G[h(\mu_i) \mid Z_i = z] = \frac{\int h(\mu)p(z \mid \mu) \; dG(\mu)}{\int p(z \mid \mu) \; dG(\mu)} = \frac{a_G(z)}{f_G(z)}
\]

$H_0 : \theta_G(z) = c \iff H_0 : a_G(z) - c \cdot f_G(z) = 0$
\begin{align*}
H_0 : \theta_G(z) &= c \\
\theta_G(z) &= \mathbb{E}_G[h(\mu_i) \mid Z_i = z] = \frac{\int h(\mu)p(z \mid \mu) \, dG(\mu)}{\int p(z \mid \mu) \, dG(\mu)} = \frac{a_G(z)}{f_G(z)}
\end{align*}

\begin{align*}
H_0 : \theta_G(z) &= c \iff H_0 : a_G(z) - c \cdot f_G(z) &= 0
\end{align*}

Jiaying Gu
Noack and Rothe (2019)
Anderson and Rubin (1949)
Fieller (1954)

Upshot:
Can focus on inference for linear functionals!

$L(G)$ Linear in G
Seek to conduct inference for the linear functional $L(G)$.

Ansatz: Consider affine estimators of the form

$$\hat{L} = \hat{L}(G) = \frac{1}{n} \sum_{i=1}^{n} Q_n(Z_i).$$

Why?

- Convenient computationally.
- Class of estimators that includes kernel density estimators and minimax optimal estimators of linear functionals in the Gaussian deconvolution problem [Butucea and Comte (2009), Pensky (2017)].
\[\hat{L} = \frac{1}{n} \sum_{i=1}^{n} Q_n(Z_i). \quad \text{How to choose } Q = Q_n? \]

\[
\min_{Q: \mathbb{R} \to \mathbb{R}} \left\{ \max_{G \in \mathcal{G}_n} \left\{ \text{Bias}_G[\hat{L}]^2 \right\} + \widehat{\text{Var}}[\hat{L}] \right\}
\]
AMARI
(Affine Minimax Anderson Rubin Inference)

\[\hat{L} = \frac{1}{n} \sum_{i=1}^{n} Q_n(Z_i). \]

How to choose \(Q = Q_n? \)

\[
\min_{Q: \mathbb{R} \rightarrow \mathbb{R}} \left\{ \max_{G \in \mathcal{G}_n} \left\{ \text{Bias}_G[\hat{L}]^2 \right\} + \widehat{\text{Var}}[\hat{L}] \right\}
\]

Bias:

\[
\max_{G \in \mathcal{G}_n} \left\{ \text{Bias}_G[\hat{L}]^2 \right\} = \max_{G \in \mathcal{G}_n} \left\{ \left(\mathbb{E}_G[Q(Z_i)] - L(G) \right)^2 \right\}
\]

\[\mathcal{G}_n = \{ G \in \mathcal{G} : F_G \in \mathcal{F}_n(\alpha_n) \}, \ \alpha_n \rightarrow 0 \]
AMARI
(Affine Minimax Anderson Rubin Inference)

\[\hat{L} = \frac{1}{n} \sum_{i=1}^{n} Q_n(Z_i). \quad \text{How to choose } Q = Q_n? \]

\[
\min_{Q: \mathbb{R} \to \mathbb{R}} \left\{ \max_{G \in \mathcal{G}_n} \left\{ \text{Bias}_G[\hat{L}]^2 \right\} + \widehat{\text{Var}}[\hat{L}] \right\}
\]

Bias:
\[
\max_{G \in \mathcal{G}_n} \left\{ \text{Bias}_G[\hat{L}]^2 \right\} = \max_{G \in \mathcal{G}_n} \left\{ \left(\mathbb{E}_G[Q(Z_i)] - L(G) \right)^2 \right\}
\]
\[\mathcal{G}_n = \{ G \in \mathcal{G} : F_G \in \mathcal{F}_n(\alpha_n) \}, \quad \alpha_n \to 0 \]

Variance:
We use a pilot estimator \(\bar{f}_n(z) \) of the marginal density.
\[
\widehat{\text{Var}}[\hat{L}] = \frac{1}{n} \left\{ \int Q^2(z)\bar{f}_n(z)d\lambda(z) - \left(\int Q(z)\bar{f}_n(z)d\lambda(z) \right)^2 \right\}
\]
Minimax optimization

\[
\min_{Q: \mathbb{R} \to \mathbb{R}} \left\{ \max_{G \in \mathcal{G}_n} \left\{ \text{Bias}_G[\hat{L}]^2 \right\} + \hat{\text{Var}}[\hat{L}] \right\}
\]

The above optimization problem can be solved by building upon:

Donoho (1994), Armstrong and Kolesár (2018, 2020, 2021, ...), Sacks and Ylvisacker (1978), Ibragimov and Hasminskii (1984), Donoho and Liu (1989, 1991), Low (1995), Zhao (1997), Cai and Low (2003, 2004), ...
Bias-aware inference

Armstrong and Kolesár (2018), Imbens and Manski (2004), Imbens and Wager (2018)

Estimate $L(G)$ by $\hat{L} = \sum_{i=1}^{n} Q_n(Z_i) / n$

$\hat{V} = \text{Var}(Q_n(Z_i)) / n$ \hspace{1cm} $\hat{B} = \sup_{G \in \mathcal{G}_n} \left| \text{Bias}_G[\hat{L}] \right|$

$\hat{L} \pm t_\alpha(\hat{B}, \hat{V})$ \hspace{1cm} $t_\alpha(B, V) = \inf\{t : \mathbb{P}[|b + V^{1/2}W| > t] < \alpha \text{ for all } |b| \leq B \}$

$W \sim \mathcal{N}(0, 1)$

Theorem (I., Wager), Informal

Suppose we choose $Q_n(\cdot)$ as piecewise constant outside $[-M, M]$. If $\mathcal{F}_n(\alpha_n), \tilde{f}_n(\cdot)$ are constructed by sample splitting, then in the Binomial, Gaussian and Poisson empirical Bayes models, our intervals have asymptotic coverage $\geq 1 - \alpha$.
Confidence intervals in the RCT example

\[n = 23,551 \text{ RCTs} \]

\[\mu_i \sim G, \]

\[Z_i \mid \mu_i \sim \mathcal{N}(\mu_i, 1) \]

\[\mathcal{G} \hat{=} \text{Scale Mixture of centered Gaussians} \]

\[= \left\{ G \text{ with Leb. density } g(\mu) = \int \frac{1}{\tau} \varphi \left(\frac{\mu}{\tau} \right) d\Pi(\tau), \text{ } \Pi \text{ supported on } [0.1, 60] \right\} \]
Confidence intervals in the RCT example

\[n = 23,551 \text{ RCTs} \quad \mu_i \sim G, \quad Z_i \mid \mu_i \sim \mathcal{N}(\mu_i, 1) \]

\(\mathcal{G} \) = Scale Mixture of centered Gaussians

\[= \left\{ \text{G with Leb. density } g(\mu) = \int \frac{1}{\tau} \varphi \left(\frac{\mu}{\tau} \right) d\Pi(\tau), \ \Pi \text{ supported on } [0.1, 60] \right\} \]
Confidence intervals in the RCT example

\[n = 23,551 \text{ RCTs} \quad \mu_i \sim G, \quad Z_i \mid \mu_i \sim \mathcal{N}(\mu_i, 1) \]

\[\mathcal{G} \overset{\sim}{=} \text{Scale Mixture of centered Gaussians} \]

\[= \left\{ G \text{ with Leb. density } g(\mu) = \int \frac{1}{\tau} \varphi \left(\frac{\mu}{\tau} \right) d\Pi(\tau), \quad \Pi \text{ supported on } [0.1, 60] \right\} \]
Simulation

\[\mu_i \sim G \]

\[Z_i \mid \mu_i \sim \mathcal{N}(\mu_i, 1) \]

\[n = 5000 \]

\[\mathcal{G}_{loc} \overset{\Delta}{=} \text{Location Mixture of Gaussians} \]

\[= \left\{ G \text{ with Leb. density } g(\mu) = \int \frac{1}{\tau} \varphi \left(\frac{\mu - u}{\tau} \right) d\Pi(u), \ \Pi \text{ supported on } [-3,3] \right\} \]

[Magder and Zeger (1996), Cordy and Thomas (1997)]

\[\mathcal{G}_{sc} \overset{\Delta}{=} \text{Scale Mixture of centered Gaussians} \]

\[= \left\{ G \text{ with Leb. density } g(\mu) = \int \frac{1}{\tau} \varphi \left(\frac{\mu}{\tau} \right) d\Pi(\tau), \ \Pi \text{ supported on } [0.1, 15.6] \right\} \]
\[
\begin{align*}
\mu_i & \sim G \\
Z_i \mid \mu_i & \sim \mathcal{N}(\mu_i, 1) \\
n & = 5000
\end{align*}
\]

\[G_{\text{loc}} \overset{\sim}{=} \left\{ \begin{array}{l}
G \text{ with} \\
\text{logit}
\end{array} \right\}
\]

\[G_{\text{sc}} \overset{\sim}{=} \frac{\mathcal{G}}{1.16} \\
\int_{\tau}^{\infty} \mathcal{W}(\tau, \tau)
\]

"enables more accurate inferences provided that it holds"

Biostatistics (2017) 18, 2, pp. 275–294

False discovery rates: a new deal

MATTHEW STEPHENS*

Department of Statistics and Department of Human Genetics, University of Chicago,
5801 S Ellis Ave, Chicago, IL 60637 USA
mstephens@uchicago.edu
Simulation

\[\mu_i \sim G \]
\[Z_i \mid \mu_i \sim \mathcal{N}(\mu_i, 1) \]
\[n = 5000 \]

\[G_{loc} \overset{\Delta}{=} \text{Location Mixture of Gaussians} \]
Simulation

\[\mu_i \sim G \]
\[Z_i \mid \mu_i \sim \mathcal{N}(\mu_i, 1) \]

\[n = 5000 \]

\[\mathcal{G}_{loc} \triangleq \text{Location Mixture of Gaussians} \]
Simulation

\[\mu_i \sim G \]

\[Z_i \mid \mu_i \sim \mathcal{N}(\mu_i, 1) \]

\[n = 5000 \]

\[G_{sc} \overset{\text{}}{=} \text{Scale Mixture of centered Gaussians} \]
Conclusion

Even if n is large, there may be substantial uncertainty in the estimation of empirical Bayes quantities.

Here we describe two approaches to conduct inference for empirical Bayes estimands that can accompany empirical Bayes point estimation in practice.

Our approaches can also be used to assess the sensitivity to the choice of prior class \mathcal{G}.
Thank you for your attention!
Seek to conduct inference for the linear functional

\[L(G) \]

We consider affine estimators
Butucea and Comte (2009), Pensky (2017)

We choose the affine estimator by minimax optimization
Donoho (1994), Armstrong and Kolesár (2018, 2020, 2021, ...), Sacks and Ylvisacker (1978), Ibragimov and Hasminskii (1984), Donoho and Liu (1989, 1991), Low (1995), Zhao (1997), Cai and Low (2003, 2004), ...

We conduct bias-aware inference
Armstrong and Kolesár (2018), Imbens and Manski (2004), Imbens and Wager (2018)
Stein’s hardest 1-dimensional subfamily

Suppose \(G_1, G_2 \in \mathcal{G}_n \) solve the following optimization problem \((\delta > 0)\):

\[
\begin{align*}
\text{maximize} \quad & L(G_1) - L(G_2) \quad \text{s. t.} \quad \int \frac{(f_{G_1}(z) - f_{G_2}(z))^2}{\bar{f}_n(z)} \ d\lambda(z) \leq \frac{\delta^2}{n} \\
\end{align*}
\]

We call \(\text{Conv}(G_1, G_2) = \{ \eta G_1 + (1 - \eta) G_2 : \eta \in [0,1] \} \) a hardest 1-dimensional subfamily.
Stein’s hardest 1-dimensional subfamily

Suppose $G_1, G_2 \in \mathcal{G}_n$ solve the following optimization problem ($\delta > 0$):

maximize $L(G_1) - L(G_2)$ \quad s. t. \quad \int \frac{(f_{G_1}(z) - f_{G_2}(z))^2}{\bar{f}_n(z)} \, d\lambda(z) \leq \frac{\delta^2}{n}$

We call $\text{Conv}(G_1, G_2) = \{ \eta G_1 + (1 - \eta) G_2 : \eta \in [0,1] \}$ a hardest 1-dimensional subfamily.

$$\min_{Q: \mathbb{R} \to \mathbb{R}} \max_{G \in \mathcal{G}_n} \left\{ \text{Bias}_G[\hat{L}]^2 + \Gamma_n \cdot \hat{\text{Var}}[\hat{L}] \right\}$$
Suppose $G_1, G_2 \in \mathcal{G}_n$ solve the following optimization problem ($\delta > 0$):

\[
\begin{align*}
\text{maximize} & \quad L(G_1) - L(G_2) \quad \text{s. t.} \quad \int \frac{(f_{G_1}(z) - f_{G_2}(z))^2}{\bar{f}_n(z)} \, d\lambda(z) \leq \frac{\delta^2}{n} \\
\end{align*}
\]

We call $\text{Conv}(G_1, G_2) = \{\eta G_1 + (1 - \eta)G_2 : \eta \in [0,1]\}$ a hardest 1-dimensional subfamily.

\[
\begin{align*}
\min_{Q: \mathbb{R} \to \mathbb{R}} \max_{G \in \mathcal{G}_n} \left\{ \text{Bias}_G[\hat{L}]^2 + \Gamma_n(\delta) \cdot \text{Var} [\hat{L}] \right\} \\
\text{Conv}(G_1, G_2)
\end{align*}
\]

The above optimization problem can be solved analytically!
Stein’s hardest 1-dimensional subfamily

Suppose \(G_1, G_2 \in \mathcal{G}_n \) solve the following optimization problem \((\delta > 0)\):

\[
\text{maximize} \quad L(G_1) - L(G_2) \quad \text{s. t.} \quad \int \frac{(f_{G_1}(z) - f_{G_2}(z))^2}{\bar{f}_n(z)} \, d\lambda(z) \leq \frac{\delta^2}{n}
\]

We call \(\text{Conv}(G_1, G_2) = \{ \eta G_1 + (1 - \eta) G_2 : \eta \in [0,1] \} \)
a hardest 1-dimensional subfamily.

\[
\min_{Q: \mathbb{R} \to \mathbb{R}} \max_{G \in \mathcal{G}_n} \left\{ \text{Bias}_G[^L]^2 + \Gamma_n(\delta) \cdot \text{Var}[^L] \right\}
\]

The above optimization problem can be solved analytically!

Donoho (1994), Armstrong and Kolesár (2018, 2020, 2021, …),
Sacks and Ylvisacker (1978), Ibragimov and Hasminskii (1984), Donoho and Liu (1989, 1991), Low (1995), Zhao (1997), Cai and Low (2003, 2004), …