High-Resolution Electrochemical Transistors Defined by Mold-Guided Drying of PEDOT:PSS Liquid Suspension

Jin Li, Xin Chang, Shunpu Li, Pawan Kumar Shrestha, Edward K.W. Tan, and Daping Chu*

ABSTRACT: Ion-sensitive transistors with nanoscale or microscale dimensions are promising for high-resolution electrophysiological recording and sensing. Technology that can pattern polymer functional materials directly from a solution can effectively avoid any chemical damage induced by conventional lithography techniques. The application of a mold-guided drying technique to pattern PEDOT:PSS-based transistors with high resolution directly from the water-based suspension is presented in this paper. Gold electrodes with short channels were first defined by creating high-resolution polymer lines with mold-guided drying followed by pattern transfer through a lift-off process. Then, PEDOT:PSS lines were subsequently created through an identical mold-guided drying process on the predefined electrodes. Small-scale transistor devices with both shortened channel length and width exhibited a good high-frequency response because of the weak capacitive effect. This is particularly advantageous for electrochemical transistors since the use of conventional fabrication techniques is extremely challenging in this case. In addition, modified polymer chain alignment of the assembled PEDOT:PSS lines during the drying process was observed by optical and electrical measurement. The mold-guided drying technique has been proven to be a promising method to fabricate small-scale devices, especially for biological applications.

KEYWORDS: PEDOT:PSS liquid suspension, mold-guided drying, electrochemical transistors, short channels, small-scale devices

1. INTRODUCTION

Recent developments in solution-processable devices/systems have revived interest in micrometer- and nanometer-scale drying processes. Considerable efforts have been made to generate high-resolution patterns or structures using various methods including (a) controlling solvent evaporation, such as inkjet printing,3−5 (b) line-wise deposition by pulling a sharp blade,6−8 and (c) repeated pinning/depinning of the contact line between the drying solution and substrate.6−8 Edge deposition induced by template confinement has also been used to form high-resolution structures including the progressive shrinkage of capillary bridge and groove pinning.9−11 Direct patterning of materials from the solution has several advantages: high resolution, inexpensive cost, and applicability to a range of situations where conventional lithography technology may not be suitable due to the induced material degradation by UV irradiation and chemical reaction during the development process.

Fine patterning of ion-sensitive materials to form small-sized devices that permit high-frequency detection and high-density device packing is undoubtedly attractive. For instance, a small ion-sensitive transistor array can be used for high-resolution bio-recording where the ion concentration fluctuates within the subcellular domain.12,13 Ion-based synaptic transistors with a proper dopant in the active layer could generate reprogrammable and multiple states with stable conduction, which are promising for next-generation neuromorphic computing, and the miniaturization of such synaptic transistors is significant for large-scale integration.14

Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is a well-known conducting polymer, which is a blend of cationic polystyrene derivatives doped with a polyanion.15−17 The polymer conductance is extremely sensitive to ion doping from the environment by modifying the redox conditions of the PEDOT polymer.18−20 Various techniques have been used to pattern PEDOT:PSS materials, which include mask etching,11,21,22 soft lithography,23 nanoimprinting,24 pulsed laser ablation,25 direct UV patterning,26 selective polymerization,27,28 and electrospinning.29 Most of the approaches are mainly limited by insufficient spatial resolution. Although electrosprinning, nanoimprinting, and mask etching
techniques can be used to produce submicron PEDOT:PSS, they demand further pattern transfer by plasma etching or face challenges to form a well-defined pattern. To this end, the development of techniques that enable direct patterning of PEDOT:PSS with high resolution is valuable.

In this paper, a novel patterning process based on the mold-guided drying technique was used in this paper to pattern PEDOT:PSS directly from its water suspension and to fabricate PEDOT:PSS-based organic electrochemical transistors (OECTs). In the process, gold electrodes with narrow channels were first defined by creating polymer lines with a mold-guided drying technique and transferring the pattern through a lift-off process. Then, the mold-guided drying process was repeated to form PEDOT:PSS lines over the electrodes through proper solution formulation. The OECT with both shortened channel length and width demonstrated good high-frequency and multifrequency responses. In addition, the alignment of PEDOT:PSS chains during formation of the assembled lines was observed, and it was confirmed by electrical and optical measurements.

2. RESULTS AND DISCUSSION

2.1. Principle of PEDOT:PSS Patterning. The formation process used for PEDOT:PSS patterning is schematically shown in Figure 1. A formulated PEDOT:PSS water suspension was introduced between a substrate and a polydimethylsiloxane (PDMS) mold. As the solvent evaporated, capillary bridges of the solution formed, and the liquid/substrate contact lines were pinned at the mold grooves. Thin PEDOT:PSS lines were subsequently formed next to the groove-pinned contact lines. To be more specific, a controlled volume of the formulated solution (~3 μL, for PDMS mold with a 1 cm² area of line pattern) was drop-casted onto the surface of the structured PDMS mold. Then, a substrate was gently brought into contact with the solution-wetted mold and left dried at room temperature for 4 h under a small applied pressure (about 5 MPa) (Figure 1a,b). Finally, the PDMS mold was removed, leaving the patterned PEDOT:PSS on the substrate (Figure 1c). The groove depth of the PDMS mold was 1.5 μm, and the line width/separations varied from 40 to 120 μm.

The PEDOT:PSS lines were formed by a single patterning process (Figure 2a), and a sequential double patterning process can be used to generate grid structures (Figure 2b). The existing structure on the substrate does not affect the subsequent patterning because the capillary bridges are pinned at the mold grooves. We also observed that the PEDOT:PSS solution formulation was critical for the successful patterning, which was discussed in Section 4. Apart from the modification of the surface property of the substrate and surface tension of the solution, both ethylene glycol and triton can affect the polymer chain alignment and interaction between the PEDOT and PSS molecules, which might contribute to the patterning process and the resulted structures. The typical line width was measured to be 700 nm, and the width of PEDOT:PSS wires can be controlled by adjusting the solution concentration. It was also found that the profile of the patterned PEDOT:PSS wire was approximately a triangle.

2.2. PEDOT:PSS Wire Transistors. The PEDOT:PSS-based OECT was fabricated by first preparing electrodes with small gaps using a similar process. Silicon with a 300 nm-thick SiO₂ layer or glass was used as the substrate. A 250 nm-thick polydimethylglutarimide (PMGI) layer was spin coated on the substrate and baked for 30 min at 200 °C. A 10 nm-thick Ge layer was then thermally evaporated on top as an etching mask (in CF₄) for subsequent PMGI etching (in oxygen).Poly-4-
The device worked with a depletion model because of the partial charge of the negatively charged PSS. The drain current decreased as the gate voltage increased, i.e., the contact area between the PEDOT:PSS wire and the electrolyte is considerably reduced compared to the spin-coated PEDOT:PSS (Figure 5). As a result, the PEDOT:PSS wire transistor has a smaller capacitance between the electrolyte and the active material. This is particularly important for high-frequency operation since the RC time constant ($\tau = R \times C$) is significantly reduced. In order to investigate the high-frequency response of the PEDOT:PSS wire transistor, experiments were conducted with various gate frequencies. The frequency response was measured with an oscilloscope on the voltage drop across a resistor connected in series in the drain current loop. Figure 6 shows the frequency response of different input signals, and the device exhibited a good frequency response. Multiple-input response was also measured, which widely exists in the signal processing in the neuron system (Figure 4e) and can be potentially applied for logical calculation.33,34 Multiple inputs were realized by using multiple gates, and each gate was powered by a signal generator. Figure 6a shows the single-input response at 1 kHz, while Figure 6b–e shows the multiple-input responses of the transistor and the simulated results. The resulting output spectra are well described by a summation of multiple input signals and can be conveniently decomposed at high accuracy, which makes the response to very small variations between inputs possible. For instance, a tiny phase change (less than 0.01\(\pi\)) of the inputs can be read out in the output spectra (Figure 6e). The over 1 kHz bandwidth of our OECT is sufficient to record the biosignal in medical application, like brain mapping.19 Device performance can be further improved in future research by adding an insulating layer between the liquid and electrodes, which is expected to reduce the parasitic effects.

2.4. Molecular Alignment of PEDOT:PSS Wires during Formation. The device fabrication and characterization have been presented in the previous sections. Moreover, the molecular alignment of PEDOT:PSS during the guided drying process is expected due to the hydrophobic behavior of PDMS. This was confirmed during the experiment31 by optical and electrical measurements. Polarized ultraviolet–visible absorption spectroscopy was first used to indicate the polymer alignment, and a maximum absorption is expected when the transition dipole moments align with the polarization direction of light since the transition dipole moment of the conjugated polymers are oriented in the direction along the polymer orientation.

Figure 3. (a–d) Process used for the fabrication of the PEDOT:PSS-based OECT and (e–g) molecular structure of PEDOT:PSS polymers and Triton X-100.
Figure 7 shows the absorbance spectrum of the fabricated PEDOT:PSS wires, in which a larger absorbance was observed when the PEDOT:PSS line direction was oriented parallel to the light polarization direction, indicating that the PEDOT chains are preferentially aligned in the line direction. This was further confirmed by the electrical conductivity of the PEDOT:PSS thin film (spin coating) and PEDOT:PSS wires with identical post-treatment (100 °C for 10 min). The conductivity (σ) of the PEDOT:PSS is calculated by

$$\sigma = \frac{I \times l}{A \times V}$$

where I is the electrical current, l is the conductive length of the PEDOT:PSS, A is the cross-section area, and V is the voltage.
applied. As $I \times \frac{1}{A} = \sigma \times V$, the conductivity ($\sigma$) can be read out from the slope of the $(I \times \frac{1}{A}) \approx V$ plot, as shown in Figure 8. Moreover, the ratio of conductivity between PEDOT:PSS wires and the thin film ($\sigma_{\text{line}} / \sigma_{\text{film}}$) was extracted to be 2.05, which indicates that the PEDOT:PSS chains were preferentially aligned in the wire direction.

The preferential alignment of the PEDOT chain can be explained by the deposition and collapsing of gel-like particles...
from the solution, as shown in Figure 9. The PEDOT:PSS dispersion can be regarded as being composed of gel-like particles comprising PSS and PEDOT polymers. The gel-like particles are collapsing and aggregating during the line deposition process. The PEDOT chains are packed either with pure PEDOT chains or with PEDOT:PSS chains alternatively in the aggregates. The aggregates are connected to form a percolation network of charge conduction. The way of aggregate arrangement and associated global chain orientation along the PEDOT lines is required by energy minimization during PEDOT:PSS deposition.

3. CONCLUSIONS

We have applied the mold-guided drying process to pattern PEDOT:PSS with high resolution directly from its water-based suspension, and a small-sized OECT was successfully fabricated. The transistor characteristics of the OECT with small-scale channel width and channel length were demonstrated, and its high-frequency and multiple-input response were also investigated. In addition, PEDOT:PSS chain alignment of the assembled lines was observed and verified by optical and electrical measurements. Such ion-sensitive transistors with small dimensions are particularly promising for high-resolution electrophysiological recording and sensing.

4. EXPERIMENTAL METHOD

4.1. Template Preparation and Line Forming. The PDMS template with proper line patterns was made with a commercial silicone elastomer (Sylgard 184, Dow Corning). The silicone elastomer, consisted of a two-part liquid component kit (a 10:1 mix ratio), was poured onto a photoresist master predefined by optical lithography. The thickness of the photoresist carried on a Si wafer was 1.5 μm, which defines the groove depth of the PDMS template. After curing of the silicone elastomer along with the photoresist master at 70 °C for 1 h, the PDMS elastomer with a duplicated pattern was peeled off from the master. PEDOT:PSS and PVP patterning was performed with a self-developed stainless-steel clamping platform, which enabled the proper alignment of the substrates and PDMS template, and adjustment of the applied pressure was done.

4.2. Device Fabrication and Measurements. To fabricate the patterned PEDOT:PSS wire transistors, the PEDOT:PSS solution was formulated with a PEDOT:PSS (Clevios PH-1000) water-based suspension (from Heraeus) by adding 20% ethylene glycol and 0.92% Triton X-100 (Sigma-Aldrich) (both in volume percentage) to the PEDOT:PSS suspension in order to improve material conductivity and reduce the surface tension. It was observed that the PEDOT:PSS solution formulation was critical for the PEDOT:PSS patterning, which is the reason why direct patterning of PEDOT:PSS could not be previously achieved by mold-guided drying. The pattern quality is particularly sensitive to the amount of Triton X-100 added to the solution. It was found that a high-quality pattern is obtained when 0.92 mg/mL Triton X-100 was contained in the formulated solution. Insufficient addition of Triton causes line noncontinuity induced by the high surface tension of the liquid. In contrast, a higher concentration of Triton often induces residual material between the patterned lines. The PEDOT:PSS wire transistors were tested with an Agilent 4156A precision semiconductor parameter analyzer (Yokogawa-Hewlett-Packard Ltd., Tokyo, Japan).

4.3. Analysis of Molecule Alignment and Electric Conductivity. To analyze electric conductivity, a 90 nm-thick PEDOT:PSS film was spin-coated onto a SiO2 (300 nm)/Si substrate and annealed at 100 °C for 10 min. PEDOT:PSS wires were fabricated using the method developed and annealed at the same condition. The Jasco V-670 absorption spectrometer with an attached linear polarizer was used to measure the absorption of the patterned PEDOT:PSS wires. The cross-section area of the PEDOT:PSS wires was measured by a profilometer.

AUTHOR INFORMATION

Corresponding Author

Daping Chu — Centre for Photonic Devices and Sensors, University of Cambridge, Cambridge CB3 0FA, U.K.; orcid.org/0000-0001-9989-6238; Email: dpc31@cam.ac.uk

Figure 7. Absorbance of the assembled PEDOT:PSS wires. A larger absorbance is observed when the light polarization direction is parallel to the line orientation.

Figure 8. Electrical conductivity of the spin-coated PEDOT:PSS thin film and self-assembled PEDOT:PSS wires.

Figure 9. Schematic illustration of PEDOT:PSS deposition from the solution. The bottom deposited line is composed of aggregates with a PSS rich part (gray color) and PEDOT rich part (blue color).
We would like to thank the Bio-lab of CPDS, University of Cambridge, and the financial support of UK Engineering and Physical Sciences Research Council (EPSRC) through the EPSRC Centre for Doctoral Training in Integrated Photonic and Electronic Systems (EP/L015455/1). S.L. thanks the financial support from Guangdong Basic and Applied Basic Research Foundation (grant no. 2019A1515011673). X.C. thanks the China Scholarship Council for PhD studentship funding. All data are available in the main text and the Cambridge University’s repository.

ACKNOWLEDGMENTS

The authors declare no competing financial interest. The data that support the findings of this study are available from the corresponding author upon request.

REFERENCES

(1) Zhang, L.; Liu, H.; Zhao, Y.; Sun, X.; Wen, Y.; Guo, Y.; Gao, X.; Di, C.; Yu, G.; Liu, Y. Inkjet printing high-resolution, large-area graphene patterns by coffee-ring lithography. Adv. Mater. 2012, 24, 436–440.
(2) Chen, F.-C.; Lu, J.-P.; Huang, W.-K. Using ink-jet printing and coffee ring effect to fabricate refractive microlens arrays. IEEE Photonics Technol. Lett. 2009, 21, 648–650.
(3) Farcas, C.; Moreira, H.; Viallet, B.; Grisolia, J.; Ressier, L. Tunable conductive nanoparticle wire arrays fabricated by convective self-assembly on nonpatterned substrates. ACS Nano 2010, 4, 7275–7282.
(4) Kim, H. S.; Lee, C. H.; Sudeep, P. K.; Emrich, T.; Crosby, A. J. Nanoparticle stripes, grids, and ribbons produced by flow coating. Adv. Mater. 2010, 22, 4600–4604.
(5) Park, J. H.; Lee, D. Y.; Seung, W.; Sun, Q.; Kim, S. W.; Cho, J. H. Metallic grid electrode fabricated via flow coating for high-performance flexible piezoelectric nanogenerators. J. Phys. Chem. C 2015, 119, 7802–7808.
(6) Xu, J.; Xia, J.; Lin, Z. Evaporation-induced self-assembly of nanoparticles from a sphere-on-flat geometry. Angew. Chem., Int. Ed 2007, 46, 1860–1863.
(7) Xu, J.; Xia, J.; Hong, S. W.; Lin, Z.; Qiu, F.; Yang, Y. Self-assembly of gradient concentric rings via solvent evaporation from a capillary bridge. Phys. Rev. Lett. 2006, 96, No. 066104.
(28) Thourson, S. B.; Payne, C. K. Modulation of action potentials using PEDOT: PSS conducting polymer microwires. *Sci. Rep.* 2017, 7, 10402.

(29) Pisesweerayos, P.; Dangtip, S.; Supaphol, P.; Srikhirin, T. Electrically Conductive Ultrafine Fibers of PVA-PEDOT/PSS and PVA-AgNPs by Means of Electrospinning. *Adv. Mater. Res.* 2014, 1033-1034, 1024–1035.

(30) Yoon, S. S.; Khang, D. Y. Roles of Nonionic Surfactant Additives in PEDOT: PSS Thin Films. *J. Phys. Chem. C* 2016, 120, 29525–29532.

(31) Natali, M.; Popa, A.; Ebels, U.; Chen, Y.; Li, S.; Welland, M. E. Correlated vortex chiralities in interacting permalloy dot patterns. *J. Appl. Phys.* 2004, 96, 4334–4341.

(32) Chen, Y.; Lebib, A.; Li, S.; Pépin, A.; Peyrade, D.; Natali, M.; Cambril, E. Nanoimprint and micro-contact printing tri-layer processes. *Eur. Phys. J. A* 2000, 12, 223.

(33) LeMieux, M. C.; Roberts, M.; Barman, S.; Jin, Y. W.; Kim, J. M.; Bao, Z. Self-sorted, aligned nanotube networks for thin-film transistors. *Science* 2008, 321, 101–104.

(34) Kolodziejczyk, B.; Ng, C. H.; Strakosas, X.; Malliaras, G. G.; Winther-Jensen, B. Light sensors and opto-logic gates based on organic electrochemical transistors. *Mater. Horizons* 2018, 5, 93–98.

(35) Pan, G.; Chen, F.; Hu, L.; Zhang, K.; Dai, J.; Zhang, F. Effective Controlling of Film Texture and Carrier Transport of a High-Performance Polymeric Semiconductor by Magnetic Alignment. *Adv. Funct. Mater.* 2015, 25, 5126–5133.

(36) Mohammadi, E.; Zhao, C.; Meng, Y.; Qu, G.; Zhang, F.; Zhao, X.; Mei, J.; Zao, J. M.; Shukla, D.; Diao, Y. Dynamic-template-directed multiscale assembly for large-area coating of highly-aligned conjugated polymer thin films. *Nat. Commun.* 2017, 8, 16070.

(37) Rivnay, J.; Inal, S.; Collins, B. A.; Sessolo, M.; Stavrinidou, E.; Strakosas, X.; Tassone, C.; Delongchamp, D. M.; Malliaras, G. G. Structural control of mixed ionic and electronic transport in conducting polymers. *Nat. Commun.* 2016, 7, 11287.

(38) Takano, T.; Masunaga, H.; Fujiwara, A.; Okuzaki, H.; Sasaki, T. PEDOT nanocrystal in highly conductive PEDOT:PSS polymer films. *Macromolecules* 2012, 45, 3859–3865.

(39) Aasmundtveit, K. E.; Samuelsen, E. J.; Inganäs, O.; Pettersson, L. A. A.; Johansson, T.; Ferrer, S. Structural aspects of electrochemical doping and dedoping of poly(3,4-ethylenedioxythiophene). *Synth. Met* 2000, 113, 93–97.