Differentially Private Bayesian Learning on Distributed Data

Mikko Heikkilä¹, Yusuke Okimoto², Samuel Kaski³, Kana Shimizu² and Antti Honkela¹,4,5

¹ Helsinki Institute for Information Technology (HIIT), Department of Mathematics and Statistics, University of Helsinki
² Department of Computer Science and Engineering, Waseda University
³ HIIT, Department of Computer Science, Aalto University
⁴ HIIT, Department of Computer Science, University of Helsinki
⁵ Department of Public Health, University of Helsinki

Abstract

Many applications of machine learning, for example in health care, would benefit from methods that can guarantee privacy of data subjects. Differential privacy (DP) has become established as a standard for protecting learning results, but the proposed algorithms require a single trusted party to have access to the entire data, which is a clear weakness.

We consider DP Bayesian learning in a distributed setting, where each party only holds a single sample or a few samples of the data. We propose a novel method for DP learning in this distributed setting, based on a secure multi-party sum function for aggregating summaries from the data holders. Each data holder adds their share of Gaussian noise to make the total computation differentially private using the Gaussian mechanism. We prove that the system can be made secure against a desired number of colluding data owners and robust against faulting data owners. The method builds on an asymptotically optimal and practically efficient DP Bayesian inference with rapidly diminishing extra cost.

1 Introduction

Data privacy has gained an increasing amount of attention in recent years. The importance of rigorous data privacy mechanisms has been accentuated by several well-known examples of supposedly privatised data sets being used to identify individuals therein, such as (Barbaro and Zeller, 2006) and (Narayanan and Shmatikov, 2008).

Differential privacy (DP) (Dwork et al., 2006; Dwork and Roth, 2014) is theoretically the best-founded way of protecting privacy. It gives mathematically provable guarantees against breaches of individual privacy that are robust even against attackers with access to additional side information.

The DP field is already well-established and a substantial amount of work has been done in the past decade. Many important techniques regularly used for solving machine learning problems have been considered under the privacy constraint. General principles have been proposed e.g. for maximum likelihood estimation (Smith, 2008), empirical risk minimisation (Chaudhuri et al., 2011) and Bayesian inference (e.g. Dimitrakakis et al., 2013; Foulds et al., 2016; Honkela et al., 2016; Jalkó et al., 2016; Park et al., 2016; Wang et al., 2015; Zhang et al., 2016). There are DP versions of most popular machine learning methods including linear regression (Honkela et al., 2016; Zhang et al., 2012), logistic regression (Chaudhuri and Monteleoni, 2009), support vector machines (Chaudhuri et al., 2011), and deep learning (Abadi et al., 2016).

The standard methods assume that some trusted party has unrestricted access to all data in order to add the necessary amount of noise needed for the privacy guarantees. This is a highly restrictive assumption for many applications. In contrast, it is desirable to develop methods for a distributed setting where no such trusted aggregator exists.

A naive approach to distributed DP learning would require each party to add sufficient noise to effectively mask any single sample in the small data set they hold, which will require adding excessive noise.

In this paper we introduce a general strategy for privacy-preserving Bayesian learning in the distributed setting with
minimal overhead. Our method builds on the asymptotically optimal sufficient statistic perturbation mechanism \cite{Foulds2016, Honkela2016} and shares its asymptotic optimality. The method is based on a new DP secure multi-party communication (SMC) algorithm called Master-Compute algorithm (MCA) for achieving DP in the distributed setting. We demonstrate its performance on DP Bayesian inference using a linear regression model problem as an example.

1.1 Our Contribution

We propose a general approach that combines SMC with DP Bayesian learning methods, originally introduced for the trusted aggregator setting, to achieve DP Bayesian learning in the distributed setting.

To guarantee privacy securely and with maximal utility, we introduce a novel algorithm, MCA, for answering sum queries without a trusted aggregator. Our method uses Paillier homomorphic encryption scheme for secure aggregation together with a Gaussian mechanism for differential privacy.

Compared to the existing DP-SMC methods, our algorithm is faster and scales well with the number of data holders, while still offering good security properties. Set against the trusted aggregator setting, the method achieves almost the same noise level for any practical number of data holders.

Our method can guarantee privacy against colluding data holders and fault tolerance against data holders dropping out without adding new communication rounds or major key management problems.

The method can also support dynamic joins and leaves. In this case users can drop out of the scheme while others join it between the communication rounds without the need for running complicated setup routines.

We demonstrate the general framework and the MCA performance empirically by considering a problem of Bayesian linear regression in the distributed setting.

2 Background

2.1 Cryptographic primitives for secure multi-party computation

In this paper, we perform secure multi-party computation for calculating aggregated results based on homomorphic encryption. More formally, we use an additively homomorphic public-key encryption scheme \((\text{KeyGen}; \text{Enc}; \text{Dec})\). KeyGen is a key generation algorithm that creates a pair of a public key \(pk\) and a secret key \(sk\). \(\text{Enc}(m)\) denotes a ciphertext obtained by encrypting message \(m\) under \(pk\) and \(\text{Dec}(c)\) denotes the decryption result of ciphertext \(c\) under \(sk\). This scheme should be semantically secure, that is, a ciphertext leaks no information about the plaintext \cite{Goldwasser1984}, and have the property that it enables computing \(\text{Enc}(m_1 + m_2)\) without knowing \(m_1, m_2\) and \(sk\), given two ciphertexts \(\text{Enc}(m_1)\) and \(\text{Enc}(m_2)\) of messages \(m_1\) and \(m_2\). Hereafter, we denote the property by \(\text{Enc}(m_1) \oplus \text{Enc}(m_2)\). From among such schemes, we use the Paillier cryptosystem \cite{Paillier1999}.

2.2 Differential Privacy

Differential privacy, originally introduced by Dwork et al. \cite{Dwork2006}, is a method that gives strict, mathematically provable guarantees against intrusions on individual privacy. The main idea in DP is to add random noise to a data set in such a way as to mask the influence any single individual can have on the results calculated from the data.

Formally, we consider randomised algorithms on adjacent data sets, where adjacency means that the data sets differ by a single element, i.e., the two data sets have the same number of samples, but they differ on a single one. In this work we utilise a relaxed version of DP called \((\epsilon, \delta)\)-differential privacy, as in Definition 2.4 of Dwork and Roth \cite{Dwork2014}.

Definition 2.1. A randomised algorithm \(A\) is \((\epsilon, \delta)\)-differentially private, if for all \(S \subseteq \text{Range}(A)\) and all adjacent data sets \(D, D'\),

\[
P(A(D) \in S) \leq \exp(\epsilon)P(A(D') \in S) + \delta.
\]

The parameters \(\epsilon\) and \(\delta\) in Definition 2.1 control the privacy guarantee: \(\epsilon\) tunes the amount of privacy (smaller \(\epsilon\) means stricter privacy), while \(\delta\) can be interpreted as the proportion of probability space where the privacy guarantee may break down.

There are several established mechanisms for ensuring DP. We use the Gaussian mechanism (Theorem 3.22 in Dwork and Roth \cite{Dwork2014}). The theorem says that given a query \(f\) with \(l_2\)-sensitivity \(\Delta_2(f)\), adding noise distributed as \(N(0, \sigma^2)\) to each output component guarantees DP, when

\[
\sigma^2 > 2\ln(1.25/\delta)(\Delta_2(f)/\epsilon)^2.
\]

(1)

Here, the \(l_2\)-sensitivity on adjacent data sets \(D, D'\) is defined as

\[
\Delta_2(f) = \sup_{x \in D, x' \in D'} ||f(x) - f(x')||_2.
\]

(2)

We consider alternatives to the Gaussian mechanism in Section 8.

2.3 Differentially private Bayesian learning

Bayesian learning provides a natural complement to DP because it can inherently handle uncertainty, including that introduced because of DP \cite{Williams2010}, and it provides a flexible framework for data modelling.
Three distinct types of mechanisms for DP Bayesian inference have been proposed:

1. Drawing a small number of samples from the posterior or an annealed posterior (Dimitrakakis et al., 2014; Wang et al., 2015);
2. Perturbing the sufficient statistics of an exponential family model (Foulds et al., 2016; Honkela et al., 2016; Park et al., 2016); and
3. Perturbing the gradients in optimisation of variational inference (Jalkö et al., 2016).

For models where it applies, the sufficient statistic perturbation approach is asymptotically efficient (Foulds et al., 2016; Honkela et al., 2016), unlike the posterior sampling mechanisms.

The sufficient statistic perturbation (#2) and gradient perturbation (#3) mechanisms are of similar form in that the DP mechanism ultimately computes a perturbed sum

$$z = \sum_{i=1}^{N} z_i + \eta$$

over quantities z_i computed for different samples $i = 1, \ldots, N$, where η denotes the noise injected to ensure the DP guarantee. For sufficient statistic perturbation (Foulds et al., 2016; Honkela et al., 2016; Park et al., 2016), the z_i are the sufficient statistics of a particular sample, whereas for gradient perturbation (Jalkö et al., 2016), the z_i are the clipped per-sample gradient contributions. When a single party holds the entire data set, the sum z in Eq. (3) can be computed easily.

Next we will consider calculating the perturbed sum of Eq. (3) securely in the distributed setting.

3 Secure and Private Learning

Let us assume there are N data holders (called clients in the following), who each hold a single data sample. We would like to use the aggregate data for learning, but the clients do not want to reveal their data as such to anybody else. The main problem with the distributed setting is that if each client uses a trusted aggregator DP technique separately, the noise η in Eq. (3) is added by each client, increasing the total noise level by a factor of N, effectively reducing to naive input perturbation.

To reduce the noise level without compromising on privacy, the individual data samples need to be combined without revealing them directly to anyone. For solving this problem, we present our Master-Compute Algorithm.

![Figure 1: Schematic diagram of the Master-Compute Algorithm. Red refers to encrypted values, blue to unencrypted DP values.

3.1 Master-Compute Algorithm

We assume that the final query results can be partitioned into a sum over the results of some operations performed on the individual data samples, as in Eq. (3).

For the adversary model, we assume the clients are honest-but-curious, i.e., they will take a peek at other people’s data if given the chance, but they will follow the protocol. We additionally assume at most T clients may collude to break the privacy, either by revealing the noise they add to their data samples or by abstaining from adding the noise in the first place.

In order to add the correct amount of noise while avoiding revealing the unperturbed data to any single party, we combine a homomorphic encryption scheme with the Gaussian mechanism for DP as illustrated in Fig. 1. The idea is that each individual client adds a small amount of Gaussian noise to his data, so that when the individual data points are aggregated, the total noise is also Gaussian with variance that sums up to the correct level. The details of the noise scaling along with a proof that the result is DP are presented in Section 3.2.

Using homomorphic encryption the necessary summations can be done under encryption without revealing the unperturbed data. Since the standard Paillier scheme only works for integers, the values are represented in fixed-point format.

Our approach relies on two distinct entities called Master and Compute. Master is responsible for handling the cryptographic keys and for distributing the final unencrypted DP results, while Compute does the actual summations under encryption without access to the private key (see Algo-
Algorithm 1 Master-Compute Algorithm for secure distributed summation

Input: Distributed Gaussian mechanism noise variances \(\sigma_j^2, j = 1, \ldots, d \) (public);
Number of parties \(N \) (public);
\(d \)-dimensional vectors \(z_i \) held by clients \(i \in \{1, \ldots, N\} \)

Output: Differentially private sum \(\sum_{i=1}^{N} z_i + \eta_j \), where \(\eta_j \sim \mathcal{N}(0, \sigma_j^2) \)

1. Master generates a pair of secret and public keys \((sk, pk)\), and shares the public key \(pk \) to Compute and to each of the clients
2. Each client simulates \(\eta_i \sim \mathcal{N}(0, \text{diag}(\sigma_j^2/N)) \) and calculates \(m_i = z_i + \eta_i \), where \(i \in \{1, \ldots, N\} \) is the ID of the client. The client then encrypts the noisy sums: \((\text{Enc}(m_i,1), \ldots, \text{Enc}(m_i,d))\) and sends them to Compute.
3. After receiving the encrypted noisy values from all of the clients, Compute calculates an encrypted noisy aggregate sum \(\text{Enc}(\sum_{i=1}^{N} m_{i,k}) = \text{Enc}(m_{1,k}) \oplus \cdots \oplus \text{Enc}(m_{N,k}) \) and stores it as \(c_k \) for \(k = 1, \ldots, d \). It then sends \((c_1, \ldots, c_d)\) to Master.
4. After receiving \((c_1, \ldots, c_d)\), Master obtains DP sums \(\sum_{i=1}^{N} m_{i,1}, \ldots, \sum_{i=1}^{N} m_{i,d} \) by computing \(\text{Dec}(c_1), \ldots, \text{Dec}(c_d) \) and distributes them to interested parties.

3.2 Privacy of the mechanism

In order to guarantee that the sum-query results returned by Algorithm 1 are DP, we need to show that the variance of the aggregated Gaussian noise is large enough.

Theorem 1 (Distributed Gaussian mechanism). If at most \(T \) clients collude or drop out of the protocol, the sum-query result returned by Algorithm 1 is differentially private, when the variance of the added noise \(\sigma_j^2 \) fulfills

\[
\sigma_j^2 \geq \frac{N}{N-T-1}\sigma_{j,\text{std}}^2
\]

where \(N \) is the number of clients and \(\sigma_{j,\text{std}}^2 \) is the variance of the noise in the standard Gaussian mechanism given in Eq. (7).

Proof. Using the property that a sum of independent Gaussian variables is another Gaussian with variance equal to the sum of the component variances, we can divide the total noise equally among the \(N \) clients. This gives the minimum variance \(\sigma_{\text{part}}^2 = \sigma_j^2/N \) when adding the noise in \(N \) separate pieces on line 2 of Algorithm 1.

However, in the distributed setting even with all honest-but-curious clients, there is an extra scaling factor needed compared to the standard DP. Since each client knows the noise values she adds to the data, she can also remove them from the aggregate values. In other words, privacy has to be guaranteed by the noise the remaining \(N-1 \) clients add to the data. If we further assume the possibility of \(T \) colluding clients, then the noise from \(N-T-1 \) clients must be sufficient to guarantee the privacy.

The additional noise factor \(c' \) has to satisfy the inequality

\[
\sum_{i=1}^{N-T-1} c'^2 \sigma_{j,\text{part}}^2 \geq \sigma_{j,\text{std}}^2 \quad (4)
\]

\[
\Leftrightarrow (N-T-1)c'^2 \sigma_{j,\text{part}}^2 \geq N\sigma_{j,\text{part}}^2 \quad (5)
\]

which clearly holds when \(c' \geq \frac{N}{N-T-1} \). The variance each individual client uses for generating the independent Gaussian noise that guarantees DP is therefore

\[
\sigma_j^2 \geq \frac{N}{N-T-1}\sigma_{j,\text{std}}^2 \quad (6)
\]

In the case of all honest-but-curious clients, \(T = 0 \). The extra scaling factor increases the variance of the distributed noise, but this factor quickly approaches 1 as the number of clients increases, as shown in Figure 2.

3.3 Fault Tolerance

The same strategy used to protect against colluding clients can also be used for creating a fault-tolerant version of the method. With the all honest-but-curious clients and \(T = 0 \), if one client fails to send his data then the summed up...
noise variance is not sufficient to guarantee privacy, and consequently the algorithm needs to be started again from the beginning with the corrected noise variance. When $T > 0$, at most T clients in total can drop or collude and the scheme will still remain private.

3.4 Computational scalability

There are two main bottlenecks in Algorithm 1: all the clients need to send their individual results to Compute, which then has to calculate the final sums under encryption.

A naive implementation with d-dimensional data, assuming each of the N clients simply sends d encrypted numbers to Compute which then sums them up one by one, has linear complexity $O(dN)$. The server-side computations parallelise trivially up to d ways.

For further parallelisation with $N > d$ d-dimensional inputs, we could create a binary tree of Compute nodes such that each node calculates the sum of two vectors and sends the results to a higher level Compute node. In this case we could use $\lceil N/2^i \rceil$ nodes for the ith layer, where $i = 1$ is the input layer, giving complexity of $O(d \log N)$.

3.5 Security of the mechanism

In order to guarantee the security of the scheme, Master and Compute must not collude. The scheme could be made more resistant against such collusion using the binary tree aggregation outlined above as individual Compute nodes would then only have access to either very few samples or aggregates.

We assume the data providers have an interest in the results and hence they will not attempt to pollute the results with invalid values.

4 DP Bayesian learning on distributed data

In order to perform DP Bayesian learning securely in the distributed setting, we use the MCA Algorithm 1 to compute the required data summaries that are of the form shown in Eq. (5). In this Section we consider how to combine this scheme with concrete DP learning methods introduced for the trusted aggregator setting. These methods provide a wide range of possibilities for performing DP Bayesian learning securely with distributed data. They also exemplify the basic steps needed in order to convert a trusted aggregator setting method to the distributed setting.

The distributed algorithm is most straightforward to apply to the sufficient statistic perturbation method of Foulds et al. (2016) and Honkela et al. (2016) for exact and approximate posterior inference on exponential family models. Foulds et al. (2016) and Honkela et al. (2016) use Laplacian noise to guarantee ϵ-DP, which is a stricter form of privacy than the (ϵ, δ)-DP used in Algorithm 1. Dwork and Roth (2014). We consider here only (ϵ, δ)-DP version of the method, and discuss the possible Laplace noise mechanism further in Section 8. The model training in this case is done in a single iteration, so a single application of Algorithm 1 is enough for learning.

4.1 Distributed Bayesian Linear Regression with Data Projection

We consider next the Bayesian linear regression (BLR) with data projection method in detail in the distributed setting. The standard BLR model depends on the data only through sufficient statistics, and the distributed data posterior inference approach discussed in Section 4 can be used in a straightforward manner to fit the model by running a single round of Algorithm 1.

The more efficient BLR of Honkela et al. (2016) introduces data projection to reduce the data range by non-linearly projecting all data points inside stricter bounds. Since the DP noise level is determined by the sensitivity of the data, reducing the sensitivity by limiting the data range translates into less added noise. By selecting the bounds suitably, we only need to introduce a little bias while significantly decreasing the variance from DP. In the distributed setting, the data projection needs to run an additional round of Algorithm 1, use a part of the privacy budget to estimate data standard deviations (stds). However, as shown by the test results (see Figure 4), this still achieves significantly better utility with a given privacy level.

The method is described in detail in Algorithm 2. It estimates the DP sufficient statistics needed to fit a BLR model with data projection securely in the distributed setting. Full source code is freely available through GitHub, and a more detailed description can be found in the supplement.

The assumed bounds in Step 1 are needed for the initial estimation of standard deviations for scaling. These would typically be available from general knowledge of the data. The projection in Step 1 ensures the privacy of the scheme even if the bounds are invalid for some samples. We determine the optimal projection thresholds p_j in Step 4 using the same general approach as Honkela et al. (2016): we create an auxiliary data set of equal size as the original with data generated as

$$ x_i \sim N(0, I_d) \quad (7) $$

$$ \beta \sim N(0, \lambda_0 I) \quad (8) $$

$$ y_i|x_i \sim N(x_i^T \beta, \lambda). \quad (9) $$

We then perform grid search on the auxiliary data to find optimal thresholds by calculating the projection with different thresholds and comparing the prediction performances. Available on publication
At each iteration, the model trainer selects a random mini-batch of fixed public size from the available clients and sends them the current model parameters. The selected clients then make use of Algorithm 1 to send the requested data to the model trainer, i.e., they calculate the clipped gradients or expected sufficient statistics using their data, add noise to the values scaled reflecting the batch size, encrypt them, and send them to the Compute. The model trainer receives the decrypted DP sums from the Master and updates the model parameters.

4.2 Distributed differentially private variational inference

We can apply the same distributed algorithms also for DP variational inference [Jalko et al. (2016); Park et al. (2016)]. These methods rely on possibly clipped gradients or expected sufficient statistics calculated from the data. Typically, each training iteration would use only a mini-batch of arbitrary size, each training iteration would use only a mini-batch of fixed public size from the available clients and sends them the current model parameters. The selected clients then make use of Algorithm 1 to send the requested data to the model trainer, i.e., they calculate the clipped gradients or expected sufficient statistics using their data, add noise to the values scaled reflecting the batch size, encrypt them, and send them to the Compute. The model trainer receives the decrypted DP sums from the Master and updates the model parameters.

5 Experimental Setup

We demonstrate the secure DP Bayesian learning scheme in practice by testing the performance of the BLR with data projection, the implementation of which was discussed in Section 4.1, along with the MCA (Algorithm 1) in the all honest-but-curious clients distributed setting (T = 0).

For the MCA our primary interest is the performance of the algorithm. In the case of BLR implementation, we are interested in comparing the distributed algorithm to the trusted aggregator version as well as comparing the performance of the straightforward BLR to the variant using data projection, since it is not clear a priori if the extra cost in privacy, necessitated by the projection in the distributed setting, is offset by the reduced noise level.

We use simulated data for the MCA scalability testing, and real data for the BLR tests. As real data, we use the Wine Quality [Cortez et al., 2009] and Abalone data sets from the UCI repository [uci]. We split the Wine Quality data to two parts for red wines and white wines. The data sets are assumed to be zero-centred. This assumption is not crucial but is done here for simplicity: non-zero data means can be estimated like the marginal standard deviations at the cost of some added noise (see Section 4.1).

For estimating the marginal std, we also need to assume bounds for the data. For unbounded data, we can enforce arbitrary bounds simply by projecting all data inside the chosen bounds, although very poor choice of bounds will lead to poor performance. With real distributed data, the assumed bounds could differ from the actual data range. In the tests we simulate this effect by scaling the data projection, since it is not clear a priori if the extra cost in privacy, necessitated by the projection in the distributed setting, is offset by the reduced noise level.

To use variational inference in the distributed setting, an arbitrary party keeps track of the current (public) model parameters and the privacy budget, and asks for updates from the clients. Since this model trainer does not have any privileged access to the private data, the clients could also do the model training jointly, provided that there is an agreed upon method for selecting the mini-batches available.

At each iteration, the model trainer selects a random mini-batch of fixed public size from the available clients and sends them the current model parameters. The selected clients then make use of Algorithm 1 to send the requested data to the model trainer, i.e., they calculate the clipped gradients or expected sufficient statistics using their data, add noise to the values scaled reflecting the batch size, encrypt them, and send them to the Compute. The model trainer receives the decrypted DP sums from the Master and updates the model parameters.

2http://archive.ics.uci.edu/ml/datasets.html
Figure 3: Minimum of Compute wall times over 5 repeats. The purely serial implementation scales well with a reasonable number of clients and dimensions as shown here. However, a more complicated parallelised implementation would be advantageous for significantly larger inputs.

arate test data set. The size of the test set in Figure 4 is 500 for red wine, 1000 for white wine, and 1000 for abalone data. We compare the median performance measured on mean absolute error over 40 runs using input perturbation [Dwork et al. (2006)] and the trusted aggregator setting as baselines.

6 Results

Figure 3 shows the Compute wall-clock times with several numbers of clients and dimensions. The serial implementation is clearly sufficiently fast for these cases but for larger examples the parallel implementations outlined in Sec. 3.4 may be necessary.

Comparing the results on predictive error with and without projection (top row and bottom row in Fig. 4 respectively), it is clear that despite incurring extra privacy cost for having to estimate the marginal standard deviations, using the projection can improve the results markedly with a given privacy budget.

The results also demonstrate that compared to the trusted aggregator setting, the extra noise added due to the distributed setting with honest-but-curious clients is insignificant in practise as the results of the distributed and trusted aggregator algorithms are effectively indistinguishable.

We further tested the performance of the same alternatives when changing the size of the data set with white wine data. The results (Supplementary Figure 1) show that the prediction accuracy does not significantly depend on the number of samples in the range [500, 4000].

7 Related Work

To the best of our knowledge, there is no prior work on secure DP Bayesian statistical inference in the distributed setting. The existing prior works mainly focus on answering simple database queries and on distributed classification. [Rastogi and Nath (2010)] present a method for distributed DP time series analysis by answering simple queries on Fourier transform coefficients using a distributed Laplace mechanism. The distributed Laplace mechanism could be used instead of MCA in our work if pure \(\epsilon \)-DP is required.

[Pathak et al. (2010)] present a method for aggregating classifiers in a DP manner, but their approach is sensitive to the number of parties and sizes of the data sets held by each party and cannot be applied in a completely distributed setting. [Rajkumar and Agarwal (2012)] improve upon this by an algorithm for distributed DP stochastic gradient descent that works for any number of parties. The fundamentally iterative nature of their stochastic gradient descent means the method cannot be combined with the asymptotically optimal sufficient statistic perturbation for DP Bayesian inference. [Hamm et al. (2016)] present an alternative aggregation method that uses an auxiliary public data set to improve the performance.

There is a wealth of literature on secure distributed computation of DP sum queries as reviewed by [Goryczka and Xiong (2015)]. [Shi et al. (2011)] present several DP definitions and results for the distributed setting. They also present the idea of noise scaling to achieve collusion resistance that is similar to our approach, although they require that the colluding data holders still add noise according to the scheme, while we assume more adversarial colluders who can leave the noise out completely if they so choose.

The same idea of noise scaling was also used by [Ács and Castelluccia (2011)], [Chan et al. (2012)] and [Goryczka and Xiong (2015)]. However, unlike the method of Shi et al. (2011), all of these schemes can also provide fault tolerance by the addition of a separate recovery round after data holder failures.

Compared to the previous collusion-resistant and fault-tolerant methods [Ács and Castelluccia (2011)], [Chan et al. (2012)] and [Goryczka and Xiong (2015)], the MCA effectively saves one round of communication and avoids more complicated key management issues by assuming that the key management and the untrusted aggregation are done separately. It can also support dynamic joins and leaves with very light overhead, since it does not require any pairwise secret key exchanging.

Finally, [Wu et al. (2016)] present several proofs related to the SMC setting and introduce a protocol for generating approximately Gaussian noise in a distributed manner. Com-
The performance of the distributed methods is indistinguishable from the corresponding undistributed TA algorithms and the projection can clearly be beneficial for prediction performance.

Compared to their protocol, our method of noise addition is considerably simpler and faster, and produces exactly instead of approximately Gaussian noise.

8 Discussion

We have presented a general framework for performing DP Bayesian learning securely in a distributed setting. Our method combines a practical SMC method for calculating secure sum queries with efficient Bayesian DP learning techniques adapted to the distributed setting.

DP methods are based on adding sufficient noise to effectively mask the contribution of any single sample. The extra loss in accuracy due to DP tends to diminish as the number of samples increases, and efficient DP estimation methods converge to their non-private counterparts as the number of samples increases (Foulds et al., 2016; Honkela et al., 2016). A distributed DP learning method can significantly help in increasing the number of samples because data held by several parties can be combined thus helping make DP learning significantly more effective.

Considering the DP and the SMC components separately, it is clear that the choice of method to use for each sub-problem can be made largely independently. Assessing these separately, we can therefore easily change the privacy mechanism from the Gaussian used in Algorithm 1 to the Laplace mechanism, e.g. by utilising one of the distributed Laplace noise addition methods presented by Goryczka and Xiong (2015) to obtain a pure ϵ-DP method. The secure sum algorithm in our method can also be easily replaced with a more complicated and secure variant if more security is needed.

While the noise introduced for DP will not improve the performance of an otherwise good learning algorithm, a DP solution to a learning problem can yield better results if the DP guarantees allow access to more data than without privacy. Our distributed method can further help make this more efficient by securely and privately combining data from multiple parties.

Acknowledgements

This work was funded by the Academy of Finland [Centre of Excellence COIN, 283193 to S.K., 294238 to S.K., 292334 to A.H., and 278300 to A.H. and 283107 to A.H.] and the Japan Agency for Medical Research and Development (AMED).

References

Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In Proc. CCS 2016, 2016. doi: 10.1145/2976749.2978318. arXiv:1607.00133 [stat.ML].

Gergely Ács and Claude Castelluccia. I have a DREAM! (DiffeRentially privatE smArt Metering). In Tomáš Filler, Tomáš Pevný, Scott Craver, and Andrew Ker, editors, Information Hiding: 13th International Conference, IH 2011, Prague, Czech Republic, May 18-20, 2011, Revised Selected Papers, pages 118–132. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN 978-3-642-24178-9. doi: 10.1007/978-3-642-24178-9_9. URL http://dx.doi.org/10.1007/978-3-642-24178-9_9

Michael Barbaro and Tom Zeller. A face is exposed for AOL searcher No. 4417749. New York Times, August 2006.

T. H. Hubert Chan, Elaine Shi, and Dawn Song. Privacy-preserving stream aggregation with fault tolerance. In Angelos D. Keromytis, editor, Financial Cryptography and Data Security: 16th International Conference, FC 2012, Kralendijk, Bonaire, February 27- March 2, 2012, Revised Selected Papers, pages 200–214. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-32946-3. doi: 10.1007/978-3-642-32946-3_15. URL http://dx.doi.org/10.1007/978-3-642-32946-3_15

Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logistic regression. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 289–296. Curran Associates, Inc., 2009. URL http://papers.nips.cc/paper/3486-privacy-preserving-logistic-regression.pdf

Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. Differentially private empirical risk minimization. J. Mach. Learn. Res., 12:1069–1109, July 2011. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=1953048.2021036

Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. Modeling wine preferences by data mining from physicochemical properties. Decision Support Systems, 47(4):547–553, 2009. doi: 10.1016/j.dss.2009.05.016.

Christos Dimitrakakis, Blaine Nelson, Zuhe Zhang, Aikaterini Mitrokotsa, and Benjamin Rubinstein. Bayesian differential privacy through posterior sampling. 2013. arXiv 1306.1066 [stat.ML], updated 2016.

Christos Dimitrakakis, Blaine Nelson, Aikaterini Mitrokotsa, and Benjamín I. P. Rubinstein. Robust and private Bayesian inference. In ALT 2014, volume 8776 of Lecture Notes in Computer Science, pages 291–305. Springer Science + Business Media, 2014.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014. ISSN 1551-305X. doi: 10.1561/0400000042. URL http://dx.doi.org/10.1561/0400000042

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private data analysis. In Shai Halevi and Tal Rabin, editors, Theory of Cryptography: Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings, pages 265–284. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. ISBN 978-3-540-32732-5. doi: 10.1007/11681878_14. URL http://dx.doi.org/10.1007/11681878_14

James Foulds, Joseph Geumlek, Max Wellin, and Kamalika Chaudhuri. On the theory and practice of privacy-preserving Bayesian data analysis. In Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence, UAI’16, pages 192–201, Arlington, Virginia, United States, March 2016. AUAI Press. ISBN 978-0-9966431-1-5. URL http://dl.acm.org/citation.cfm?id=3020948.3020969 arXiv:1603.07294 [cs.LG].

Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299, 1984.

Slawomir Goryczka and Li Xiong. A comprehensive comparison of multiparty secure additions with differential privacy. IEEE Transactions on Dependable and Secure Computing, 2015. doi: 10.1109/TDSC.2015.2484326.

Jihun Hamm, Paul Cao, and Mikhail Belkin. Learning privately from multiparty data. In ICML, 2016.

Antti Honkela, Mrinal Das, Onur Dikmen, and Samuel Kaski. Efficient differentially private learning improves drug sensitivity prediction. arXiv:1606.02109, 2016.

Joonas Jalkó, Onur Dikmen, and Antti Honkela. Differentially private variational inference for non-conjugate models. arXiv:1610.08749, 2016.

Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large sparse datasets. In Proceedings of the 2008 IEEE Symposium on Security and Privacy, SP ’08, pages 111–125, Washington, DC, USA, 2008.
Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In *Proceedings of the 17th international conference on Theory and application of cryptographic techniques*, EUROCRYPT’99, pages 223–238, Berlin, Heidelberg, 1999. Springer-Verlag. ISBN 3-540-65889-0. URL http://dl.acm.org/citation.cfm?id=1756123.1756146.

Mijung Park, James Foulds, Kamalika Chaudhuri, and Max Welling. Variational Bayes in private settings (VIPS). *arXiv:1611.00340*, 2016.

Manas A. Pathak, Shantanu Rane, and Bhiksha Raj. Multiparty differential privacy via aggregation of locally trained classifiers. In *Proceedings of the 23rd International Conference on Neural Information Processing Systems*, NIPS’10, pages 1876–1884, USA, 2010. Curran Associates Inc. URL http://dl.acm.org/citation.cfm?id=2997046.2997105.

Arun Rajkumar and Shivani Agarwal. A differentially private stochastic gradient descent algorithm for multiparty classification. In *AISTATS*, pages 933–941, 2012.

Vibhor Rastogi and Suman Nath. Differentially private aggregation of distributed time-series with transformation and encryption. In *Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data*, SIGMOD ’10, pages 735–746, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0032-2. doi: 10.1145/1807167.1807247. URL http://doi.acm.org/10.1145/1807167.1807247.

E. Shi, T. Chan, E. Rieffel, R. Chow, and D. Song. Privacy-preserving aggregation of time-series data. *Proceedings of NDSS*, 2011.

Adam Smith. Efficient, differentially private point estimators. September 2008. arXiv:0809.4794 [cs.CR].

Yu-Xiang Wang, Stephen E. Fienberg, and Alexander J. Smola. Privacy for free: Posterior sampling and stochastic gradient Monte Carlo. In *Proc. ICML 2015*, pages 2493–2502, 2015. URL http://jmlr.org/proceedings/papers/v37/wangg15.html.

O. Williams and F. McSherry. Probabilistic inference and differential privacy. In *Adv. Neural Inf. Process. Syst.* 23, 2010.

Genqiang Wu, Yeping He, Jingzheng Wu, and Xianyao Xia. Inherit differential privacy in distributed setting: Multiparty randomized function computation. In *2016 IEEE Trustcom/BigDataSE/ISPA*, pages 921–928, Aug 2016. doi: 10.1109/TrustCom.2016.0157. arXiv:1604.03001 [cs.CR].

Jun Zhang, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, and Marianne Winslett. Functional mechanism: Regression analysis under differential privacy. *PVLDB*, 5(11):1364–1375, 2012. URL http://vldb.org/pvldb/vol5/p1364_zunjieh_zhang_vldb2012.pdf.

Zuhe Zhang, Benjamin Rubinstein, and Christos Dimitrakakis. On the differential privacy of Bayesian inference. In *Proc. AAAI 2016*, 2016. arXiv:1512.06992 [cs.AI].
Supplement

This supplement contains a more detailed presentation of the Bayesian linear regression with projection discussed in the main text and some additional test results.

In the following, we denote the ith observation in d dimensional data by x_i, the scalar target values by y_i, and the whole $d+1$ dimensional dataset by $D_i = (x_i, y_i)$. We assume all column-wise expectations to be zeroes for simplicity. For n observations, we denote the sufficient statistics by $n\bar{xx} = \sum_{i=1}^{n} x_i^T x_i$ and $n\bar{xy} = \sum_{i=1}^{n} x_i^T y_i$.

For the regression, we assume that
\[y_i | x_i \sim N(x_i^T \beta, \lambda), \quad i = 1, \ldots, n \] (10)
\[\beta \sim N(0, \lambda_0 I), \] (11)
where we want to learn the posterior over β, and λ, λ_0 are hyperparameters (set to 1 in the tests). The posterior can be solved analytically to give
\[\beta | y, x \sim N(\hat{\mu}, \hat{\Lambda}), \] (12)
\[\hat{\Lambda} = \lambda_0 I + \lambda n\bar{xx}, \] (13)
\[\hat{\mu} = \hat{\Lambda}^{-1}(\lambda n\bar{xy}). \] (14)

The predicted values from the model are $\hat{y}_j = x_j^T \hat{\mu}$.

The DP sufficient statistics are given by $n\bar{xx} = n\bar{xx} + \epsilon_{xx}, n\bar{xy} = n\bar{xy} + \epsilon_{xy}$, where $\epsilon_{xx}, \epsilon_{xy}$ consist of suitably scaled Gaussian noise added independently to each dimension. In total, there are $d(d+1)/2 + d$ parameters in the combined sufficient statistic, since $n\bar{xx}$ is a symmetric matrix.

The main idea in the data projection is simply to project the data into some reduced range. Since the noise level is determined by the sensitivity of the data, reducing the sensitivity by limiting the data range translates into less added noise.

With projection threshold c, the kth dimension of the data $x_i^{(k)}$ is given by
\[x_i^{(k)} = \max(-c, \min(x_i^{(k)}, c)). \] (15)

This data projection obviously discards information, but in various problems it can be beneficial to disregard some information in the data in order to achieve less noisy estimates of the model parameters. From the bias-variance trade-off point of view, this can be seen as increasing the bias while reducing the variance. The optimal trade-off then depends on the actual problem.

To run Algorithm 2 (in the main text), we need to assume projection bounds (c_j, d_j) for each dimension $j \in \{1, \ldots, d+1\}$ for the data D. In the paper we assume bounds of the form $(-c_j, c_j)$.

bounds, we first find an optimal projection threshold by grid search on an auxiliary dataset, that is generated from a BLR model similar to the regression model defined above.

This gives us the projection thresholds in terms of std for each dimension. We then estimate the marginal std for each dimension by using Algorithm 1 (in the main text), to fix the actual projection thresholds. For this the data is assumed to lie on some known bounded interval. In practice, the assumed bounds need to be based on prior information.

In case the estimates are negative due to noise, they are set to small positive constants.

The amount of noise each client needs to add to the output depends partly on the sensitivity of the function in question. Assuming that dimension j is bounded on an interval $(-b_j, b_j)$, and that the neighbouring datasets D, D' differ only at element $t \in \{1, \ldots, n\}$, the sensitivity for the $(j,k), j \neq k$ element in the sufficient statistics is
\[\Delta_2(f) = \sup_{x \in D, y \in D'} \| f(x) - f(y) \|_2 \] (16)
\[= \sup_{x \in D, y \in D'} \| \sum_{i} x_i^{(j)} x_i^{(k)} - \sum_{i} y_i^{(j)} y_i^{(k)} \|_2 \] (17)
\[= \sup_{x \in D, y \in D'} \| x_t^{(j)} x_t^{(k)} - y_t^{(j)} y_t^{(k)} \|_2 \] (18)
\[\leq \|b_j b_k\|_2 \] (19)
\[= 2b_j b_k. \] (20)

In contrast, with the projected data the corresponding sensitivity is readily calculated to be $\Delta_2(f) \leq 2c_j c_k$, which shows how the projection reduces the noise level when $c_j c_k < b_j b_k$.

For $j = k$, the same calculation gives $\Delta_2(f) \leq b_j^2$ for the non-projected and $\Delta_2(f) \leq c_j^2$ for the projected data.

Additional Results

Figure 3 shows the prediction error with fixed privacy parameters and changing sample size. The results support our claim that the projection method can improve predictive performance.
Figure 5: Median prediction error with IQR for UCI white wine dataset.