Corpus-based Discourse Understanding in Spoken Dialogue Systems

Ryuichiro Higashinaka, Mikio Nakano, Kiyoaki Aikawa

NTT Communication Science Laboratories
Overview

• A new discourse understanding method in spoken dialogue systems
 - discourse understanding means utterance understanding taking the context into account
 - retains the ambiguity of a user utterance and resolves it by subsequent utterances
 - uses statistical information derived from dialogue corpora
Objective

• Spoken dialogue systems that can
 - accurately understand user intention using the context of a dialogue

Benefits:
 - more efficient dialogue
 - robust to misrecognitions
Discourse Understanding

User Utterance: e.g., "I’d like to go to Tokyo"

Speech Recognition

Recognition hypothesis: e.g., "I’d like to go to Tokyo"

Syntactic and Semantic Analysis

Dialogue act: e.g., [refer-destination: Tokyo]

Discourse Understanding

Update: e.g., (before) (After)

Dialogue State

	Origin	Destination
(Before)	--	--
(After)	--	Tokyo
Problem

• Ambiguities in discourse understanding
 - Speech recognizer outputs multiple recognition hypotheses (N-best)
 - Syntactic and semantic analysis produce multiple parsing results
 - multiple dialogue act candidates and thus multiple dialogue state candidates are derived from a user utterance

System has to appropriately rank the dialogue state candidates to obtain the most plausible user intention
Problem: an example

Example dialogue:
User: "To Sapporo"
System: "uh-huh"
User: "From Tokyo"

Which one is more plausible?

Origin	Destination
Tokyo	--

Which one is more plausible?

Origin	Destination
Sapporo	--
Related Work

• ISSS Method (Nakano et al., 1999)
 - rank multiple dialogue states by hand-crafted scoring rules
 □ creating rules by hand is costly

• Estimation of dialogue act type (Nagata et al. 1994)
 - estimate the most probable dialogue act from previous dialogue act sequences
 □ mainly aims at improving recognition accuracy; not applied to dialogue systems
Approach

• Use of statistical information derived from dialogue corpora to score the dialogue states
• Keep the low-ranked dialogue states to allow possible understanding in the future
Statistical Information

- N-gram probability of a dialogue act type sequence (as Nagata et al.)
 - represents brief (superficial) flow of a dialogue
- Collocation probability of a dialogue state and the next dialogue act
 - deals with more detailed information about the dialogue
 - such as dialogue state changes including grounding information
Dialogue State Scoring

• Update the score of dialogue states by the following formula

Score of the updated dialogue state =

Score of the dialogue state before update

+ \(\theta \) \cdot Score of a dialogue act
 (from Speech Recognition and the Syntactic and Semantic Analysis)

+ \(\psi \) \cdot N\text{-}gram probability score of dialogue act type sequences

+ \(\eta \) \cdot Collocation probability score of a dialogue state and the next dialogue act

(\(\theta \), \(\psi \), and \(\eta \) are weighting factors)
Progress of Understanding

Example dialogue:

User: “To Sapporo”
System: “uh-huh”
User: “From Tokyo”

Table: Flight Reservation Domain

Origin	Destination
Tokyo	Sapporo
Sapporo	--

Score: $X > Y$
Plausible: True

Origin	Destination
Tokyo	Sapporo
Sapporo	--

Score: $Z < W$
Plausible: True

“To Sapporo”
[refer-origin: Sapporo]

“From Tokyo”
[refer-origin: Tokyo]

“To Sapporo”
[refer-destination: Sapporo]

“From Tokyo”
[refer-origin: Tokyo]
Data Collection

• Corpus
 - 240 dialogues collected in the meeting room reservation domain
 - 26 dialogue act types
 - Vocabulary of 168 words
 - All the utterances transcribed and converted to dialogue acts

• Extraction of statistical information
 - Trigram probability of dialogue act types
 - Collocation probability
 • Classify the way of collocation into 64 classes
 • Use occurrence probability of each class
 • 17 classes found in the corpus
Implementation

• Scoring formula
 Score of the updated dialogue state =
 Score of the dialogue state before update
 + \(\beta \cdot \log \left(\frac{1}{\text{N-best-rank}} \right) \)
 + \(\gamma \cdot \log(\text{dialogue act type trigram probability}) \)
 + \(\delta \cdot \log(\text{collocation probability}) \) \(\beta = \gamma = \delta = 1 \)

• Maximum number of dialogue states
 - Enables real-time processing by avoiding explosion of dialogue states

• Response generation
 - Rule-based response generation based on the highest-ranked dialogue state
Experiment (1)

• Verification of our approach
 - Collected 256 dialogues with the implemented system
 - 5-best recognition hypotheses as input
 - Maximum number of dialogue states: 15
 - Task completion rate: 88.3% (succeed in reservation within 5 minutes)

- Sufficiently high percentage of task completion rate suggests that system based on our approach works sufficiently
Experiment (2)

- Effectiveness of holding multiple dialogue states
 - **System1** (maximum number of dialogue states: 1)
 vs.
 - **System30** (maximum number of dialogue states: 30)
 - 224 dialogues collected with each system
 - System30 outperformed System1 both in task completion rate and task completion time
 - Average task completion time of System30 (95.86 sec.) was significantly shorter than that of System1 (107.66 sec.)

- Holding multiple dialogue states is effective
Conclusion

- A new discourse understanding method that
 - retains the ambiguity of a user utterance and resolves it by subsequent utterances
 - uses statistical information derived from dialogue corpora
- Experimental results show the validity of our approach