Vaughan Jones, Kolmogorov Complexity, and the New Complexity Landscape around Circuit Minimization*

Eric Allender[0000−0002−0650−028X]
Rutgers University, New Brunswick NJ 08854, USA
allender@cs.rutgers.edu
http://www.cs.rutgers.edu/~allender

Abstract. We survey recent developments related to the Minimum Circuit Size Problem and time-bounded Kolmogorov Complexity.

Keywords: Complexity Theory · Kolmogorov Complexity · Minimum Circuit Size Problem

1 Introduction

When listing the many accomplishments of Vaughan Jones, the obituaries did not mention the fact that he is indirectly responsible for much of the modern development of the study of Algorithmic Information Theory, also known as Kolmogorov Complexity. This is because much of this modern development was spurred on by Rod Downey and Denis Hirschfeldt, who wrote, in the preface and acknowledgments for their influential book [22]:

At the time, neither of us knew much about Kolmogorov complexity, but we had a distinct interest in it after Lance Fortnow’s illuminating lectures at Kaikoura in January 2000. . . . As mentioned in the preface, our early interest in Kolmogorov complexity was stimulated by a talk given by Lance Fortnow at a conference in Kaikoura . . .

The conference in Kaikoura in January, 2000 was organized by the New Zealand Mathematical Research Institute (MZMRI), which owes its existence to the efforts of Vaughan Jones. I was also a participant in the 2000 Kaikoura conference, and that was the first time I met Vaughan. It was indeed a stimulating conference, and it led to other research-related visits to New Zealand.

One of those visits included participation in a meeting held to celebrate a significant birthday for Rod Downey, and I wrote a contribution to the Festschrift surveying the connections between Kolmogorov complexity and computational complexity theory [1]. Three years later, that survey was already out of date, with several of the open questions that were mentioned in [1] newly resolved, and some of the conjectures mentioned in [1] consigned to the scrap heap. (In

* Supported in part by NSF Grants CCF-1909216 and CCF-1909683.
particular, recent work [29] shows that these conjectures are extremely unlikely to be true.) Thus, when I was invited to give a keynote address at a conference in Milan in 2020 (which was postponed to the fall of 2021 due to COVID) I wrote a survey article [2] entitled “The New Complexity Landscape around Circuit Minimization” (emphasis added), where by “New” I signaled my intent to avoid repeating too many of the observations that were made in [1]. (It turns out that the studies of Circuit Minimization and Kolmogorov Complexity are closely related.) That survey began with these paragraphs:

Over the past few years, there has been an explosion of interest in the Minimum Circuit Size Problem (MCSP) and related problems. Thus the time seemed right to provide a survey, describing the new landscape and offering a guidebook so that one can easily reach the new frontiers of research in this area.

It turns out that this landscape is extremely unstable, with new features arising at an alarming rate. Although this makes it a scientifically exciting time, it also means that this survey is doomed to be obsolete before it appears. It also means that the survey is going to take the form of an “annotated bibliography” with the intent to provide many pointers to the relevant literature, along with a bit of context.

As predicted, that survey, which was written for a conference that has not yet even taken place (due to the pandemic), is indeed already obsolete, with several important advances being announced in just the past year. Also, some unfortunate typographical errors and at least one misstatement wormed their way into [2]. Thus I offer this updated survey.

2 Meta-complexity, MCSP and Kolmogorov Complexity

The focus of complexity theory is to determine how hard problems are. The focus of meta-complexity is to determine how hard it is to determine how hard problems are. Some of the most exciting recent developments in complexity theory have been the result of meta-complexity-theoretic investigations.

The Minimum Circuit Size Problem (MCSP) is, quite simply, the problem of determining the circuit complexity of functions. The input consists of a pair \((f, i)\), where \(f\) is a bit string of length \(N = 2^n\) representing the truth-table of a Boolean function, and \(i \in \mathbb{N}\), and the problem is to determine if \(f\) has a circuit of size at most \(i\).\(^1\) The study of the complexity of MCSP is therefore the canonical meta-complexity-theoretic question. Complexity theoreticians are fond of complaining

\(^1\) The terms “circuit” and “size” are intentionally left undefined here. There are many reasonable choices (such as “size” being the number of gates, or the number of wires, or the length of an encoding of the circuit description, or “circuits” consisting only of NAND gates, or allowing threshold gates, etc.) It is conceivable – although seemingly unlikely – that these variants have very different complexity. No reductions among these variants are known.
that the problems they confront (showing that computational problems are hard to compute) are notoriously difficult. But is this really true? Is it hard to show that a particular function is difficult to compute? This question can be made precise by asking about the computational complexity of MCSP. (See also [55] for a different approach.)

A small circuit is a short description of a large truth-table \( f \); thus it is no surprise that investigations of MCSP have made use of the tools and terminology of Kolmogorov complexity. In order to discuss some of the recent developments, it will be necessary to review some of the different notions, and to establish the notation that will be used throughout the rest of the article.

Let \( U \) be a Turing machine. We define \( K_U(x) \) to be \( \min \{|d| : U(d) = x\} \). Those readers who are familiar with Kolmogorov complexity will notice that the definition here is for what is sometimes called “plain” Kolmogorov complexity, although the notation \( K_U(x) \) is more commonly used to denote what is called “prefix-free” Kolmogorov complexity. This is intentional. In this survey, the distinctions between these two notions will be blurred, in order to keep the discussion on a high level. Some of the theorems that will be mentioned below are only known to hold for the prefix-free variant, but the reader is encouraged to ignore these finer distinctions here, and seek the more detailed information in the cited references. For some Turing machines \( U \), \( K_U(x) \) will not be defined for some \( x \), and the values of \( K_U(x) \) and \( K_{U'}(x) \) can be very different, for different machines \( U \) and \( U' \). But the beauty of Kolmogorov complexity (and the applicability of the theory it gives rise to) derives from the fact that if \( U \) and \( U' \) are universal Turing machines, then \( K_U(x) \) and \( K_{U'}(x) \) differ by at most \( O(1) \). By convention, we select one particular universal machine \( U \) and define \( K(x) \) to be equal to \( K_U(x) \).

The function \( K \) is not computable. The simplest way to obtain a computable function that shares many of the properties of \( K \) is to simply impose a time bound, leading to the definition \( K^t(x) := \min \{|d| : U(d) = x \text{ in time } t(|x|)\} \) where \( t \) is a computable function. Although it is useful in many contexts, \( K^t(x) \) does not appear to be closely connected to the circuit size of \( x \) (where \( x \) is viewed as the truth-table of a function). Thus we will frequently refer to two additional resource-bounded Kolmogorov complexity measures, \( K_t \) and \( K_T \).

Levin defined \( K_t(x) \) to be \( \min \{|d| + \log t : U(d) = x \text{ in time } t\} \) [41]; it has the nice property that it can be used to define the optimal search strategy to use, in searching for accepting computations on a nondeterministic Turing machine. \( K_t(x) \) also corresponds to the circuit size of the function \( x \), but not on “normal” circuits. As is shown in [4], \( K_t(x) \) is roughly the same as the size of the smallest oracle circuit that computes \( x \), where the oracle is a complete set for EXP. (An oracle circuit has “oracle gates” in addition to the usual AND, OR, and NOT gates; an oracle gate for oracle \( A \) has \( k \) wires leading into it, and if those \( k \) wires encode a bitstring \( y \) of length \( k \) where \( y \) is in \( A \), then the gate outputs 1, otherwise it outputs 0.)

\(^2\) If the reader is not familiar with Kolmogorov complexity, then we recommend some excellent books on this topic [43, 22].
It is clearly desirable to have a version of Kolmogorov complexity that is more closely related to “ordinary” circuit size, instead of oracle circuit size. This is accomplished by defining $\text{KT}(x)$ to be $\min\{|d| + t : U(d,i) = x_i \text{ in time } t\}$. (More precise definitions can be found in [4, 14].)

We have now presented a number of different measures $K_{\mu} \in \{K, K^t, KT\}$. In order to connect the problem of computing these measures to the framework of complexity classes, it is useful to define corresponding decision problems, as follows: By analogy with $\text{MCSP}$, we can study $K_{\mu}$ in place of the “circuit size” measure, and thus obtain various problems of the form $\text{MK}_{\mu}P = \{(x,i) : K_{\mu}(x) \leq i\}$, such as $\text{MKTP}$, $\text{MK}^tP$ and $\text{MKtP}$. If $t(n) = n^{O(1)}$, then $\text{MK}^tP$ is in NP, and several theorems about $\text{MKTP}$ yield corollaries about $\text{MK}^tP$ in this case. (See, e.g. [4]). Similarly, if $t(n) = 2^{n^c}$ for some $c > 0$, then $\text{MK}^tP$ is in EXP, and several theorems about $\text{MKtP}$ yield corollaries about $\text{MK}^tP$ for $t$ in this range [4].

Table 1. List of the main complexity measures and decision problems dealing with Kolmogorov complexity considered here.

| Complexity Measure | Definition | Decision Problem |
|--------------------|------------|-----------------|
| $K$                | $\min\{|d| : U(d) = x\}$ | $\text{MKP}$  |
| $K^t$              | $\min\{|d| : U(d) = x \text{ in time } t(|x|)\}$ | $\text{MK}^tP$ |
| $Kt$               | $\min\{|d| + \log t : U(d) = x \text{ in time } t\}$ | $\text{MKtP}$ |
| $KT$               | $\min\{|d| + t : U(d,i) = x_i \text{ in time } t\}$ | $\text{MKTP}$ |

In order to highlight some of the recent developments, let us introduce some notation that is somewhat imprecise and which is not used anywhere else, but which will be convenient for our purposes. Let $K^\text{poly}$ serve as a shorthand for $K^t$ whenever $t = n^{O(1)}$, and similarly let $K^\text{exp}$ serve as a shorthand for $K^t$ whenever $t = 2^{n^c}$ for some $c > 0$. We will thus be referring to $\text{MK}^\text{poly}P$ and $\text{MK}^\text{exp}P$. Doing so will enable us to avoid some confusing notation surrounding the name $\text{MinKT}$, which was introduced by Ko [40] to denote the set

$$\text{MinKT} = \{(x,i) : \exists d [U(d) = x \text{ in at most } t \text{ steps and } |d| \leq i]\}.$$ 

That is, $(x,i) \in \text{MK}^\text{poly}P$ iff $(x,1^{n^c},i) \in \text{MinKT}$ (where the time bound $t(n) = n^c$). Hence these sets have comparable complexity and results about $\text{MinKT}$ can be rephrased in terms of $\text{MK}^\text{poly}P$ with only a small loss of accuracy. In particular, some recent important results [27, 28] are phrased in terms of $\text{MinKT}$, and as such they deal with $K^\text{poly}$ complexity, and they are not really very closely connected with the KT measure; the name $\text{MinKT}$ was devised more than a decade before KT was formulated. The reader who is interested in the details should refer to the original papers for the precise formulation of the theorems. However, the view presented here is “probably approximately correct”.

Frequently, theorems about $\text{MCSP}$ and the various $\text{MK}_{\mu}P$ problems are stated not in terms of exactly computing the circuit size or the complexity of a string, but in terms of approximating these values. This is usually presented in terms of
two thresholds \( \theta_1 < \theta_2 \), where the desired solution is to say \( \text{yes} \) if the complexity of \( x \) is less than \( \theta_1 \), and to say \( \text{no} \) if the complexity of \( x \) is greater than \( \theta_2 \), and any answer is allowed if the complexity of \( x \) lies in the “gap” between \( \theta_1 \) and \( \theta_2 \). In the various theorems that have been proved in this setting, the choice of thresholds \( \theta_1 \) and \( \theta_2 \) is usually important, but in this article those details will be suppressed, and all of these approximation problems will be referred to as \text{GapMCSP}, \text{GapMKtP}, \text{GapMKTP}, etc.

At this point, the reader’s eyes may be starting to glaze over. It is natural to wonder if we really need to have all of these different related notions. In particular, there does not seem to be much difference between \text{MCSP} and \text{MKTP}. Most hardness results for \text{MCSP} actually hold for \text{GapMCSP}, and if the “gap” is large enough, then \text{MKTP} is a solution to \text{GapMCSP} (and vice-versa). Furthermore it has frequently been the case that a theorem about \text{MCSP} was first proved for \text{MKTP} and then the result for \text{MCSP} was obtained as a corollary. However, there is no efficient reduction known (in either direction) between \text{MCSP} and \text{MKTP}, and there are some theorems that are currently known to hold only for \text{MKTP}, although they are suspected to hold also for \text{MCSP} (e.g., [8, 10, 31, 20]). Similarly, some of the more intriguing recent developments can only be understood by paying attention to the distinction between different notions of resource-bounded Kolmogorov complexity. Thus it is worth making this investment in defining the various distinct notions.

## 3 Connections to Learning Theory

Certain connections between computational learning theory and Kolmogorov complexity were identified soon after computational learning theory emerged as a field. After all, the goal of computational learning theory is to find a satisfactory (and hence succinct) explanation of a large body of observed data. For instance, in the 1980s and 1990s (and even earlier [25]) there was work [56, 57] showing that it is \text{NP}-hard to find “succinct explanations” that have size somewhat close to the optimal size, if these “explanations” are required to be finite automata or various other restricted formalisms. Ko studied this in a more general setting, allowing “explanations” to be efficient programs (in the setting of time-bounded Kolmogorov complexity).

Thus Ko studied not only the problem of computing \( K^{\text{poly}}(x) \) (where one can consider \( x \) to be a completely-specified Boolean function), but also the problem of finding the smallest description \( d \) such that \( U(d) \) agrees with a given list of “yes instances” \( Y \) and a list of “no instances” \( N \) (that is, \( x \) can be considered as a partial Boolean function, with many “don’t care” instances). Thus, following [36], we can call this problem \text{Partial-MK}^{\text{poly}}\text{P}. In the setting that is most relevant for computational learning theory, the partial function \( x \) is presented compactly

\[\text{3} \] Given the close connection between \( \text{KT} \) and circuit size, the case can be made that \text{MKTP} is a particularly convenient formulation of \text{MCSP}. They are suspected to have equivalent complexity, but it seems to be easier to prove theorems about \text{MKTP} than \text{MCSP}. 
as separate lists $Y$ and $N$, rather than as a string of length $2^n$ over the alphabet $\{0, 1, *, \}$.

Ko showed in [40] that relativizing techniques would not suffice, in order to settle the question of whether $MK^{poly}P$ and $Partial-MK^{poly}P$ are NP-complete. That is, by giving the universal Turing machine $U$ that defines Kolmogorov complexity access to an oracle $A$, one obtains the problems $MK^{poly}P^A$ and $Partial-MK^{poly}P^A$, and these sets can either be $NP^A$-complete or not, depending on the choice of $A$.

Thus it is noteworthy that it has recently been shown that $Partial-MCSP$ is NP-complete under $\leq^p_m$ reductions [36]. (As is usually the case\footnote{In fact, I am not aware of any instance where a theorem has been proved for $MCSP$ and the proof does not carry over to $MKTP$. As mentioned in the last paragraph of the preceding section, there are some theorems that have been proved for $MKTP$ that are not (yet) known to hold for $MCSP$.}, the proof also establishes that $Partial-MKTP$ is NP-complete under $\leq^p_m$ reductions.) One lesson to take from this is that $KT$ and $K^{poly}$ complexity differ from each other in significant ways, since the result of Ko mentioned in the previous paragraph shows that $Partial-MK^{poly}P$, cannot be shown to be NP-complete using relativizing techniques. There are other recent examples of related phenomena, which will be discussed below.

There are other strong connections between $MCSP$ and learning theory that have come to light recently. Using $MCSP$ as an oracle (or even using a set that shares certain characteristics with $MCSP$) one can efficiently learn small circuits that do a good job of explaining the data [15]. For certain restricted classes of circuits, there are sets in $P$ that one can use in place of $MCSP$ to obtain learning algorithms that don’t require an oracle [15]. This connection has been explored further [51, 16].

4 Completeness, Hardness, Reducibility

The preceding section mentioned a result about a problem being NP-complete under $\leq^p_m$ reductions. In order to discuss other results about the complexity of $MCSP$ and related problems it is necessary to go into more detail about different notions of reducibility.

Let $C$ be either a class of functions or a class of circuits. The classes that will concern us the most are the standard complexity classes $L \subseteq P \subseteq NP$ as well as the circuit classes (both uniform and nonuniform):

$$NC^0 \subseteq AC^0 \subseteq AC^0[p] \subseteq NC^1 \subseteq P/poly.$$  

We refer the reader to the text by Vollmer [63] for background and more complete definitions of these standard circuit complexity classes, as well as for a discussion of uniformity.

We say that $A \leq^C_m B$ if there is a function $f \in C$ (or $f$ computed by a circuit family in $C$, respectively) such that $x \in A$ iff $f(x) \in B$. We will make use of
The New Complexity Landscape around Circuit Minimization

$\leq^p_m, \leq^{AC^0}_m, \leq^{NC^0}_m$, and $\leq^{proj}_m$ reducibility. This last notion ($\leq^{proj}_m$), refers to projections, which are functions computed by $NC^0$ circuits that have only NOT gates. That is, in a projection, each output bit is either a constant 0 or 1, or is connected by a wire to an input bit or its negation.

The more powerful notion of Turing reducibility also plays an important role in this work. Here, $\mathcal{C}$ is a complexity class that admits a characterization in terms of Turing machines or circuits, which can be augmented with an “oracle” mechanism, either by providing a “query tape” or “oracle gates”. We say that $A \leq_T B$ if there is a oracle machine in $\mathcal{C}$ (or a family of oracle circuits in $\mathcal{C}$) accepting $A$, when given oracle $B$. We make use of $\leq_T^{P/poly}, \leq_T^{ZPP}, \leq_T^{BPP}, \leq_T^P, \leq_T^{NC^0}$ and $\leq_T^{AC^0}$ reducibility; instead of writing $A \leq_T^{P/poly} B$ or $A \leq_T^{ZPP} B$, we will sometimes write $A \in P^{B/poly}$ or $A \in ZPP^{B}$. Turing reductions that are “nonadaptive” – in the sense that the list of queries that are posed on input $x$ does not depend on the answers provided by the oracle – are called truth table reductions. We make use of $\leq_T^{P/poly}$ reducibility.

Once again, the reader may protest that this profusion of different notions of reducibility is unjustified and unmotivated. We will return to discuss this objection, after we present some of the hardness and non-hardness results, so that the reader will be in a better position to understand the motivation.

### 4.1 Hardness of MCSP

The strongest hardness results that are known for the $MK_pP$ problems in $NP$ remain the results of [6], where it was shown that $MCSP$, $MKTP$, and $MK^{poly}P$ are all hard for $SZK$ under $\leq_T^{BPP}$ reductions. $SZK$ is the class of problems that have statistical zero knowledge interactive proofs; $SZK$ contains most of the problems that are assumed to be intractable, in order to build public-key cryptosystems. Thus it is widely assumed that $MCSP$ and related problems lie outside of $P/poly$, and cryptographers hope that it requires nearly exponential-sized circuits. $SZK$ also contains the Graph Isomorphism problem, which is $\leq_T^{RP}$-reducible to $MCSP$ and $MKTP$. In [8], Graph Isomorphism (and several other problems) were shown to be $\leq_T^{ZPP}$ reducible to $MKTP$; it remains unknown if this also holds for $MCSP$. In fact, there is no interesting example of a problem $A$ that is not known to be in $NP \cap coNP$ that has been shown to be $\leq_T^{ZPP}$ reducible to $MCSP$.

Although it is useful to know that every problem in $SZK$ is “efficiently reducible” (via a $BPP$ reduction) to $MCSP$, this does not yield any unconditional lower bounds on the complexity of $MCSP$, since it is still open whether $BPP = EXP$. Thus there is motivation to consider very restrictive reductions:

**Theorem 1.** [7] $MKTP$ is hard for $co-NISZK_L$ under non-uniform $\leq^{proj}_m$ reductions. This also holds for $MKtP$ and $MKP$.

Here, $co-NISZK_L$ is a subclass of $SZK$ that – like $SZK$ – contains several problems that are widely believed to be cryptographically hard. It includes the well-known complexity classes $L$ and $NL$, as well as the class known as $DET$: the class of problems $NC^1$-Turing-reducible to computing the determinant.
Because projections are so computationally weak, this immediately implies that MKTP is not in $\text{AC}^0[p]$ for any prime $p$. (This was mentioned as an open question in [1] (see footnote 2 of [1]).) It also implies that MKTP cannot be computed by $\text{THRESHOLD} \circ \text{MAJORITY}$ circuits of size $2^{n^{o(1)}}$, by appealing to a lower bound proved in [23]. It is currently still open whether this latter lower bound holds also for MCSP.

The $\text{AC}^0[p]$ lower bound for MKTP was first proved in [10]. It remained open whether MCSP was in $\text{AC}^0[p]$ until this was established in [26], by showing that the problem of computing the determinant of integer matrices is reducible to MCSP via non-uniform $\leq \text{AC}^0$ reductions. Incidentally, it is no accident that the reductions presented in [7, 10, 26] are non-uniform. If one can show that MCSP or MKTP is hard for $\text{TC}^0$ under uniform $\leq \text{AC}^0$ reductions, then one will have shown that $\text{NP} \neq \text{TC}^0$ [11]. Of course, most researchers would conjecture that $\text{NP} \neq \text{TC}^0$, and thus this should not be taken as evidence that non-uniformity is essential – only that it is essential given our current inability to prove lower bounds.

### 4.2 Negative hardness results

In the last section, we noted that proving hardness for MKTP under uniform $\leq \text{AC}^0$ reductions will be difficult with our current understanding. This is just one example of what is by now a large collection of results, showing either that MCSP is not hard under a class of reductions, or at least showing that it will be difficult to show that it is hard. Table 2 is an updated version of a similar table that appeared in my earlier survey [1]. Table 2 presents information about the consequences that will follow if MCSP is NP-complete (or even if it is hard for certain subclasses of NP). There is some redundancy in the table, since some readers will primarily be interested in the consequences that follow if MCSP is NP-complete under uniform $\leq \text{AC}^0$ reductions, even though that line in the table follows from the lines dealing with hardness for subclasses of NP under even more powerful reductions. The “???” entry indicates that no consequences are known, if MCSP is NP-complete under $\leq \text{P}_m$ reductions. The table does not include results about some restricted versions of $\leq \text{P}_m$ reductions, although the theorems of this type that were proved by Kabanets and Cai [39] were influential in starting off this line of research. One thing should jump out at the reader from Table 2: All of the conditions listed in Column 3 (with the exception of “FALSE”) are widely believed to be true, although they all seem to be far beyond the reach of current proof techniques.

It is significant that neither MCSP nor MKTP is NP-complete under $\leq \text{P}_{m^{1/3}}$ reductions, since SAT and many other well-known problems are complete under this very restrictive notion of reducibility – but it would be more satisfying to know whether these problems can be complete under more widely-used reducibilities such as $\leq \text{AC}^0$. These sublinear-time reductions are so restrictive, that even the PARITY problem is not $\leq \text{P}_{m^{1/3}}$-reducible to MCSP or MKTP.
Table 2. Summary of what is known about the consequences of MCSP being hard for NP under different types of reducibility. If MCSP is hard for the class in Column 1 under the reducibility shown in Column 2, then the consequence in Column 3 follows.

| Class C | reductions R   | statement S                                      | Reference   |
|---------|----------------|--------------------------------------------------|-------------|
| TC₀     | ≤ₚⁿ/₃           | FALSE⁵                                           | [50]        |
| TC₀     | ≤ₚⁿ⁰           | LTH⁰ ⊆ io-SIZE(2ⁿ/₃) and P = BPP                 | [11, 50]    |
| TC₀     | ≤ₚⁿ⁰           | NP ⊆ P/poly                                      | [11]        |
| TC₀     | ≤ₚⁿ⁰           | NP ≠ TC₀                                         | [10]        |
| NC¹     | ≤ₚⁿ⁰           | NP ≠ NC                                          | [10]        |
| P       | ≤ₚⁿ⁰           | PSPACE ≠ P                                       | [11]        |
| ZPP     | ≤ₚⁿ₀           | PSATE ≠ ZPP                                      | [24]        |
| ZPP     | ≤ₚⁿ₀           | EXP ≠ ZPP                                        | [24]        |
| NP      | ≤ₚⁿ₀           | NP ≠ (MA ∩ P/poly)                                | [10]        |
| NP      | ≤ₚⁿ₀           | EXP ≠ ZPP                                        | [50]        |
| NP      | ≤ₚⁿ₀           | EXP ≠ ZPP                                        | [33]        |
| NP      | ≤ₚⁿ₀           | ???                                              | [60]        |

I suspect that Theorem 1 holds also for MCSP. Let us pause, to consider one of the obstacles to proving this. The proof of Theorem 1 actually carries over to a version of GapMKTP where the “gap” is quite small. Thus one avenue for proving a hardness result for MCSP had seemed to be to improve the hardness result for MKTP, so that it worked for a much larger “gap”. This avenue was subsequently blocked, when it was shown that PARITY is not AC⁰-reducible to GapMCSP (or to GapMKTP) for a moderate-sized “gap” [12]. Thus, although it is still open whether MCSP is NP-complete under ≤ₚⁿ reductions, we now know that GapMCSP is not NP-complete under this notion of reducibility.

When a much larger “gap” is considered, it was shown in [10] that, if cryptographically-secure one-way functions exist, then GapMCSP and GapMKTP are NP-intermediate in the sense that neither problem is in P/poly, and neither problem is complete for NP under P/poly-Turing reductions.

We close this section with a discussion of a very powerful notion of reducibility: SNP reductions. (Informally A is SNP reducible to B means that A is (NP ∩ coNP)-reducible to B.) Hitchcock and Pavan have shown, under the very plausible assumption that NP ∩ coNP contains problems that require large circuits, that if MCSP is NP-complete (under the usual ≤ₚⁿ reductions), then it is also complete under SNP reductions whose queries avoid asking about very small circuit sizes; they are able to use this as a tool to derive additional interesting consequences from the assumption that MCSP is NP-complete [33]. It is interest-

⁵ The notation “≤ₚⁿ/₃” refers to “local reductions” computable in time bounded by the cube root of the input length. This is an important non-hardness result, because SAT and most familiar NP-complete problems are complete under local reductions computable even in logarithmic time.

⁶ LTH is the linear-time analog of the polynomial hierarchy. Problems in LTH are accepted by alternating Turing machines that make only O(1) alternations and run for linear time.
ing to note that, back in the early 1990’s, Ko explicitly considered the possibility that computing $MK^\text{poly}P$ might be NP-complete under SNP reductions [40].

4.3 Completeness in EXP and Other Classes

There are problems “similar” to MCSP that reside in many complexity classes. We can define $MCSP^A$ to be MCSP for oracle circuits with $A$-oracle gates. That is, $MCSP^A = \{(f, i) : f$ has an $A$-oracle circuit of size at most $i\}$. When $A$ is complete for EXP, then $MCSP^A$ is thought of as being quite similar to $MKtP$.

Both of these problems, along with $MK^{\exp}P$, are complete for EXP under $\leq_{\text{tt}}^{\text{P/poly}}$ and $\leq_{\text{tt}}^\text{NP}$ reductions, and neither is complete for EXP under $\leq_{\text{tt}}^\text{P}$ reductions [4].

It is still open whether either of $MKtP$ or $MCSP^A$ is in P, and it had been open if $MK^tP$ is in P for “small” exponential functions $t$ such as $t(n) = 2^{n/2}$. But there is recent progress:

**Theorem 2.** [28] $MK^{\exp}P$ is complete for EXP under $\leq_{\text{tt}}^{\text{ZPP}}$ reductions.

This seems to go a long way toward addressing Open Question 3.6 in [1].

In contrast to $MKtP$, we know that $MK^{\exp}P$ is not in P. In fact, a much stronger result holds. Let $t$ be any superpolynomial function. Then the set of $K^t$-random strings $\{x : K^t(x) < |x|\}$ is immune to P (meaning: it has no infinite subset in P) [28]. The proof does not seem to carry over to $Kt$ complexity, highlighting a significant difference between $Kt$ and $K^{\exp}$.

Although it remains open whether $MKtP \in P$, Hirahara [29] does show that $MKtP$ is not in P-uniform ACC$^0$, and in fact the set of $Kt$-random strings is immune to P-uniform ACC$^0$. Furthermore, improved immunity results for the $Kt$-random strings are in some sense possible if and only if better algorithms for CircuitSAT can be devised for larger classes of circuits [28].

Oliveira has defined a randomized version of $Kt$ complexity, which is conjectured to be nearly the same as $Kt$, but for which he is able to prove unconditional intractability results [52]. Lu and Oliveira also show that a version of the “coding theorem” for Kolmogorov complexity holds for this randomized version of $Kt$, which is a nice property not known to hold for other versions of resource-bounded Kolmogorov complexity [48].

$MCSP^{\text{QBF}}$ was known to be complete for PSPACE under $\leq_{\text{tt}}^{\text{ZPP}}$ reductions [4]. In more recent work, for various subclasses $C$ of PSPACE, when $A$ is a suitable complete problem for $C$, then $MCSP^A$ has been shown to be complete for $C$ under $\leq_{\text{tt}}^{\text{BPP}}$ reductions [38]. Crucially, the techniques used by [38] (and, indeed, by any of the authors who had proved hardness results for $MCSP^A$ previously for various $A$) failed to work for any $A$ in the polynomial hierarchy. We will return to this issue in the following section.

In related work, it was shown [10] that the question of whether $MK^{\exp}P^A$ is hard for DET under a type of uniform AC$^0$ reductions is equivalent to the question of whether $\text{DSPACE}(n)$ contains any sets that require exponential-size $A$-oracle circuits. Furthermore, this happens if and only if PARITY reduces to $MK^{\exp}P^A$. Note that this condition is more likely to be true if $A$ is easy, than if
A is complex; it is false if \( A = \emptyset \). Thus, although \( \text{MKTP}^{QBF} \) is almost certainly more complex than \( \text{MKTP} \) (the former is \( \text{PSPACE} \)-complete, and the latter is in \( \text{NP} \)), a reasonably-large subclass of \( P \) probably reduces to \( \text{MKTP} \) via these uniform \( \text{AC}^0 \) reductions, whereas hardly anything \( \text{AC}^0 \)-reduces to \( \text{MKTP}^{QBF} \). The explanation for this is that a uniform \( \text{AC}^0 \) reduction cannot formulate any useful queries to a complex oracle, whereas it (probably) can do so for a simpler oracle.

### 4.4 NP-Hardness

Recall from the previous section that there were no \( \text{NP} \)-hardness results known for any problem of the form \( \text{MCSP}^A \) where \( A \) is in the polynomial hierarchy.

This is still true; however, there is some progress to report. Hirahara has shown that computing the “conditional” complexity \( K^{\text{poly}}(x|y) \) relative to \( \text{SAT} \) (i.e., given \( (x,y) \), finding the length of the shortest description \( d \) such that \( U^{\text{SAT}}(d,y) = x \) in time \( n^c \)) is \( \text{NP} \)-hard under \( \leq^P \text{tt} \) reductions [28].

It might be more satisfying to remove the \( \text{SAT} \) oracle, and have a hardness result for computing \( K^{\text{poly}}(x|y) \) – but Hirahara [29] shows that this can’t be shown to be hard for \( \text{NP} \) (or even hard for \( \text{ZPP} \)) under \( \leq^P \text{tt} \) reductions without first separating \( \text{EXP} \) from \( \text{ZPP} \).

In a similar vein, if one were to show that \( \text{MCSP} \) or \( \text{MKTP} \) (or \( \text{MCSP}^A \) or \( \text{MKTP}^A \) for any set \( A \in \text{EXP} \)) is hard for \( \text{NP} \) under \( \leq^P \text{tt} \) reductions, then one will have shown that \( \text{ZPP} \neq \text{EXP} \) [28].

One should be careful how to interpret these results. To illustrate this, let me restate the result above, and provide additional context, for the particular case where \( A \) is complete for \( \text{EXP} \) (in which case the proof carries over to \( \text{MKtP} \): the problem of computing Levin’s \( K_t \) complexity).

1. If \( \text{MKtP} \) is hard for \( \text{NP} \) under \( \leq^P \text{tt} \) reductions, then \( \text{ZPP} \neq \text{EXP} \) [28].
2. If \( \text{MKtP} \) is hard for \( \text{ZPP} \) under \( \leq^P \text{tt} \) reductions, then \( \text{ZPP} \neq \text{EXP} \) (This follows from the proof given in [24], showing the analogous result where \( \text{MKtP} \) is replaced by \( \text{MCSP} \)).
3. If \( \text{MKtP} \) is hard for \( \text{NP} \) under \( \leq^P \text{m} \) reductions, then \( \text{EXP} = \text{NEXP} \) [11].

The second item is a strengthening of the first item; each of the first two items seem to be saying that we should not expect a proof in the near future, showing that \( \text{MKtP} \) is hard for \( \text{NP} \) (or even for \( \text{ZPP} \)) under \( \leq^P \text{m} \) reductions, since this would provide the long-awaited proof that \( \text{EXP} \) is not equal to \( \text{ZPP} \). But the third item shows that the “expected” conclusion that \( \text{ZPP} \neq \text{EXP} \) follows because of the extremely unlikely condition \( \text{EXP} = \text{NEXP} \). Thus we should certainly not expect that \( \text{MKtP} \) is \( \text{NP} \)-hard under \( \leq^P \text{m} \) reductions. These results give us no guidance, regarding whether we should expect that \( \text{MKtP} \) is hard for \( \text{ZPP} \) under \( \leq^P \text{m} \) reductions.

But let us return to the topic of \( \text{NP} \)-hardness for conditional versions of Kolmogorov complexity.

\[ ^7 \text{Of course, under the popular conjecture that } \text{ZPP} = \text{P}, \text{ hardness holds trivially.} \]
A different kind of NP-hardness result for conditional Kolmogorov complexity was proved recently by Ilango [34]. In [4], conditional KT complexity $\text{KT}(x|y)$ was studied by making the string $y$ available to the universal Turing machine $U$ as an “oracle”. Thus it makes sense to consider a “conditional complexity” version of MCSP by giving a string $y$ available to a circuit via oracle gates. This problem was formalized and shown to be NP-complete under randomized reductions\footnote{A randomized reduction from $A$ to $B$ is computed by a polynomial-time machine that takes as input a string $x$ and a string $r$ of random bits, such that, with high probability over the choice of $r$, $x \in A$ if and only if $M(x,r) \in B$.} [34]. This proof was adapted [5] to show that $\text{McKTP} = \{(x, y, i) : \text{KT}(x|y) \leq i\}$ is also NP-complete under randomized reductions. Neither of these problems can be shown to be hard for NP (or even for ZPP) under $\leq^p_m$ reductions, without first showing $\text{ZPP} \neq \text{EXP}$ (by adapting the proof in [24]).

Many of the functions that we compute daily produce more than one bit of output. Thus it makes sense to study the circuit size that is required in order to compute such functions. This problem is called Multi-MCSP in [36], where it is shown to be NP-complete under randomized reductions. It will be interesting to see how the complexity of this problem varies, as the number of output bits of the functions under consideration shrinks toward one (at which point it becomes MCSP).

It has been known since the 1970’s that computing the size of the smallest DNF expression for a given truth-table is NP-complete. (A simple proof, and a discussion of the history can be found in [9].) However, it remains unknown what the complexity is of finding the smallest depth-three circuit for a given truth table. (Some very weak intractability results for minimizing constant-depth circuits can be found in [9], giving subexponential reductions from the problem of factoring Blum integers.) The first real progress on this front was reported in [30], giving an NP-completeness result (under $\leq^p_m$ reductions) for a class of depth three circuits (with MOD gates on the bottom level). Ilango proved that computing the size of the smallest depth-$d$ formula for a truth-table lies outside of $\text{AC}^0[p]$ for any prime $p$ [34], and he has now followed that up with a proof that computing the size of the smallest depth-$d$ formula is NP-complete under randomized quasipolynomial-time reductions [35]. Note that a constant-depth circuit can be transformed into a formula with only a polynomial blow-up; thus in many situations we are able to ignore the distinction between circuits and formulas in the constant-depth realm. However, the techniques employed in [35, 34] are quite sensitive to small perturbations in the size, and hence the distinction between circuits and formulae is important here. Still, this is dramatic progress on a front where progress has been very slow.

4.5 Why so many kinds of reducibility?

I was pleased to be invited to give a lecture on Metacomplexity at the 2021 Computational Complexity Conference [3]. One of the questions from the audience after the lecture essentially asked: “Why do you bother with so many different...
Better lower bounds follow from hardness results using less-powerful forms of reducibility. For instance, the lower bound proved in \cite{7}, showing that MKTP requires large $\text{THRESHOLD} \circ \text{MAJORITY}$ circuits of size $2^{n^{o(1)}}$ would not follow if we did not have a $\leq_{\text{proj}}$ reduction from a problem in $A \in L$ to MKTP, where $A$ is known to require large circuits of this type. (Projections are typically the most restrictive notion of reducibility that is studied – although even in this instance we needed to use non-uniform projections, because hardness under uniform projections, or even uniform AC$^0$ reductions, cannot be established without first separating NP from TC$^0$ \cite{11}.) Similarly, the argument in \cite{26} showing that MCSP $\not\in$ AC$^0[p]$ required making use of $\leq_{AC^0}$ reducibility. Using a more powerful notion of reducibility would not have yielded the lower bound. And we still don’t know if hardness under a more restrictive reducibility holds. Thus, even if you don’t care about restrictive reductions, they can still be used as the means to a desirable end.

On occasion, more powerful forms of reducibility are required, because hardness under more restrictive reducibilities fails to hold. The problem MKtP provides an instructive example. It is useful to know that MKtP is complete for EXP; but the only “efficient” reducibility for which this is known to hold is $\leq_{\text{P}}^{\text{P}}$. It is provably not complete under the usual $\leq_{\text{m}}$ or even $\leq_{\text{m}}^{\text{P}}$ reducibility \cite{4}. It is a significant open question whether it is complete under $\leq_{\text{T}}^{\text{P}}$ reductions. It is known that MKtP is in ZPP if EXP = ZPP \cite{4}, which is the conclusion one would obtain if MKtP were hard for EXP under $\leq_{\text{T}}^{\text{ZPP}}$ reductions – but we still do not know if hardness under $\leq_{\text{T}}^{\text{ZPP}}$ reductions holds. (This highlights the importance of Hirahara’s proof that MK$\text{exp} \circ$P is complete for EXP under $\leq_{\text{T}}^{\text{ZPP}}$ reductions \cite{28}.) Or consider the conditional KT problem McKTP. It is useful to know that McKTP is NP-complete under randomized reductions. If it’s complete under $\leq_{\text{m}}^{\text{P}}$ reductions, then EXP $\neq$ ZPP; if it’s not complete under $\leq_{\text{m}}^{\text{P}}$ reductions, then P $\neq$ NP. Thus it seems like we’re unlikely to avoid randomized reductions when considering the complexity of this problem, until some of the longstanding questions in complexity are resolved. (There may be reasons to consider whether McKTP is hard under, say, randomized or nonuniform AC$^0$ reductions, but this requires some extra work, and thus far there has not been a reason to take this step. In “most” cases, a problem that is hard under $\leq_{\text{m}}^{\text{P}}$ reductions is actually hard under $\leq_{AC^0}$ or even $\leq_{\text{proj}}^{\text{AC}^0}$ reductions, although for MKTP in particular this is an open question \cite{7}.)

The general lesson is: It’s better to use more restrictive reducibilities, because doing so yields stronger conclusions. But more powerful notions of reducibility are sometimes the only feasible tool available, to draw an important connection about the complexity of a problem.
5 Average Case Complexity, One-Way Functions, and Cryptography

Cai and Kabanets gave birth to the modern study of MCSP in 2000 [39], in a paper that was motivated in part by the study of Natural Proofs [58], and which called attention to the fact that if MCSP is easy, then there are no cryptographically-secure one-way functions. In the succeeding decades, there has been speculation about whether the converse implication also holds. That is, can one base cryptography on assumptions about the complexity of MCSP?

First, it should be observed that, in some sense, MCSP is very easy “on average”. For instance the hardness results that we have (such as reducing SZK to MCSP) show that the “hard instances” of MCSP are the ones where we want to distinguish between \( n \)-ary functions that require circuits of size \( 2^n/n^2 \) (the “NO” instances) and those that have circuits of size at most \( 2^{n/3} \) (the “YES” instances). However, an algorithm that simply says “no” on all inputs will give the correct answer more than 99% of the time. (We will return to this point later in this section.)

Thus Hirahara and Santhanam [31] chose to study a different notion of heuristics for MCSP, where algorithms must always give an answer in \{Yes, No, I don’t know\}, where the algorithm never gives an incorrect answer (“errorless heuristics”), and the algorithm is said to perform well “on average” if it only seldom answers “I don’t know”. They were able to show unconditionally that MCSP is hard on average in this sense for \( \mathsf{AC}^0[p] \) for any prime \( p \), and to show that certain well-studied hypotheses imply that MCSP is hard on average.

More recently, Santhanam [61] has formulated a conjecture (which would involve too big of a digression to describe more carefully here), which – if true – would imply that a version of MCSP is hard on average in this sense if and only if cryptographically-secure one-way functions exist. That is, Santhanam’s conjecture provides a framework for believing that one can base cryptography on the average-case complexity of MCSP.

But how does the average-case complexity of MCSP depend on its worst-case complexity? Hirahara [27] showed that GapMCSP has no solution in BPP if and only if a version of MCSP is hard on average. A related result stated in terms of \( K^{\text{poly}} \) appears in the same paper. These results attracted considerable attention, because prior work had indicated that such worst-case-to-average-case reductions would be impossible to prove using black-box techniques. Additional work has given further evidence that the techniques of [27] are inherently non-black-box [32].

A flurry of recent activity has shown that the existence of cryptographically-secure one-way functions can indeed be characterized in terms of the complexity of computing time-bounded Kolmogorov complexity.

The initial breakthrough was provided by Liu and Pass, who showed that one-way functions exist if and only if \( MK^{poly} \) is hard-on-average [44] (in the sense of “regular” heuristics, rather than “errorless” heuristics).

Let us digress for a moment, to highlight the significance of this result of Liu and Pass. Although one-way functions are essential for cryptography, the nom-
The New Complexity Landscape around Circuit Minimization

The complexity of any particular candidate one-way function has largely been guided more by heuristics, experimentation, and conjecture, instead of a firm theoretical foundation. There had never been a natural example of a computational problem whose complexity is equivalent to the existence of cryptographically-secure one-way functions. (There had long been an “unnatural” example, arising from Levin’s “universal one-way function” [42]. But it is safe to say that this function, although of theoretical interest, has had little impact on practical cryptography.) In contrast, $\text{MK}^{\text{poly}}\text{P}$ has been studied for years, independent of any connection to cryptography. Thus [44] provided a new window into the theoretical foundations of cryptography. Furthermore, since Hirahara [27] had related the worst-case complexity of $\text{MK}^{\text{poly}}\text{P}$ to its average case complexity (albeit only for errorless heuristics), this seems to bring us closer to the goal of basing one-way functions on a worst-case complexity assumption for a problem where we have strong theoretical justification of intractability.

The result of [44] relates one-way functions to $\text{MK}^{\text{poly}}\text{P}$. What about $\text{MKTP}$? Ren and Santhanam addressed this question, by showing that $\text{MKTP}$ is hard-on-average if and only if logspace-computable one-way functions exist [59]. Furthermore, this happens if and only if the $\text{NP}$-complete problem $\text{McKTP}$ (discussed earlier) is hard-on-average [5]. In addition, if any one-way functions exist (not just those computable in logspace), then $\text{McKTP}$ is “somewhat” hard-on-average [5]; thereby giving the first example of a “natural” $\text{NP}$-complete problem whose average-case complexity is tightly linked to the existence of cryptographically-secure one-way functions. Liu and Pass [46] subsequently provided an alternative definition of conditional time-bounded Kolmogorov complexity (which they also called $\text{McKTP}$), and showed that (a) it is also $\text{NP}$-complete under randomized reductions, and (b) it is hard on average if and only if one-way functions exist.

But $\text{NP}$ is not the limit! It turns out that cryptographically-secure one-way functions exist if and only the $\text{EXP}$-complete problem $\text{MKtP}$ is hard on average [59, 47]. Nor do things stop at $\text{EXP}$. Ilango, Ren, and Santhanam subsequently showed that one-way functions exist if and only if the undecidable problem $\text{MKP}$ is hard on some samplable distribution (and they also provide yet another equivalent characterization, in terms of the average-case complexity of $\text{MCSP}$ on a class of “locally-samplable” distributions) [37]. This was subsequently generalized again by Liu and Pass [45].

This connection between complexity-theoretical considerations and undecidable languages connects well to our next topic:

6 Complexity Classes and Noncomputable Complexity Measures

The title of this section is the same as the title of Section 4 of my earlier survey [1]. In that section, I described the work that had been done, studying the classes of sets that are reducible to the (non-computable) set of Kolmogorov-random strings $R_K$, and to $\text{MKP}$, including the reasons why it seemed reasonable to
conjecture that $\text{BPP}$ and $\text{NEXP}$ could be characterized in terms of different types of reductions to the Kolmogorov-random strings.

I won’t repeat that discussion here, because both of those conjectures have been disproved (barring some extremely unlikely complexity class collapses). Taken together, the papers [32], [29], and [28] give a much better understanding of the classes of languages reducible to the Kolmogorov-random strings.

Previously, it was known that $\text{PSPACE} \subseteq \text{P}^{R_K}$, and $\text{NEXP} \subseteq \text{NP}^{R_K}$. Hirahara [28] has now shown $\text{NEXP} \subseteq \text{EXP}^{\text{NP}} \subseteq \text{P}^{R_K}$.

This same paper also gives a surprising answer to Open Question 4.6 of [1], in showing that Quasipolynomial-time nonadaptive reductions to $R_K$ suffice to capture $\text{NP}$ (and also some other classes in the polynomial hierarchy).

As described in [1], when we consider uniform reductions to MKP (such as $\leq^p_T$ or $\leq^{NP}_T$ reductions) that hold regardless of the universal Turing machine that is used in defining Kolmogorov complexity, only subclasses of EXPSPACE result (and when $\leq^p_T$ reductions are used, one obtains a class between BPP and PSPACE). It is not clear what the true picture is.

Similarly, when one considers nonuniform reductions to MKP all computably-enumerable sets are $\leq^{P/poly}_t$-reducible to MKP, but no complexity class larger than $\text{co-NISZK}_L$ is known to be $\leq^{AC^0}_m$ reducible to MKP [7]. It seems unlikely that this is is optimal.

7 Magnification

Some of the most important and exciting developments relating to $\text{MCSP}$ and related problems deal with the emerging study of “hardness magnification”. This is the phenomenon whereby seemingly very modest lower bounds can be “amplified” or “magnified” and thereby be shown to imply superpolynomial lower bounds. I was involved in some of the early work in this direction [13] (which did not involve $\text{MCSP}$), but much stronger work has subsequently appeared.

It is important to note, in this regard, that lower bounds have been proved for $\text{MCSP}$ that essentially match the strongest lower bounds that we have for any problems in $\text{NP}$ [21]. There is now a significant body of work, showing that slight improvements to those bounds, or other seemingly-attainable lower bounds for GapMKtP or GapMCSP or related problems, would yield dramatic complexity class separations [19, 18, 17, 16, 62, 54, 53, 49].

In particular, I’d like to put a spotlight on two theorems. To state the theorems, let $\text{MCSP}[s(n)]$ denote the set of truth tables $f$ of $n$-ary Boolean functions that have circuits of size $\leq s(n)$. That is $\text{MCSP}[s(n)] = \{ f : |f| = N = 2^n \land (f, s(n)) \in \text{MCSP}\}$.

- $\text{MCSP}[2^{\epsilon n}]$ requires time more than $N^{1.99}$ on any one-tape probabilistic Turing machine [20].
- If $\text{MCSP}[2^{n \epsilon}]$ requires time more than $N^{1.01}$ on any one-tape deterministic Turing machine, then $\text{P} \neq \text{NP}$ [49].
If it were not the case that $\delta < \epsilon$, this would yield a proof of $P \neq NP$.

This would be a good place to survey the field of hardness magnification, except that an excellent survey already appears in [16]. Igor Carboni Oliveira has also written some notes entitled “Advances in Hardness Magnification” related to a talk he gave at the Simons Institute in December, 2019, available on his home page. These notes and [16] describe in detail the reasons that this approach seems to avoid the Natural Proofs barrier identified in the work of Razborov and Rudich [58]. But they also describe some potential obstacles that need to be overcome, before this approach can truly be used to separate complexity classes.

Acknowledgments

Thanks are due to Rahul Santhanam, for calling attention to some misstatements in an earlier version of this survey [2]. I also thank Noah Singer and Harsha Tirumala for helpful discussions.

References

1. Allender, E.: The complexity of complexity. In: Computability and Complexity: Essays Dedicated to Rodney G. Downey on the Occasion of his 60th Birthday. Lecture Notes in Computer Science, vol. 10010, pp. 79–94. Springer (2017). https://doi.org/10.1007/978-3-319-50062-1_6
2. Allender, E.: The new complexity landscape around circuit minimization. In: Proc. 14th International Conference on Language and Automata Theory and Applications (LATA). Lecture Notes in Computer Science, vol. 12038, pp. 3–16. Springer (2020)
3. Allender, E.: How much information is in the title of this lecture? (invited lecture) (2021)
4. Allender, E., Buhrman, H., Koucký, M., van Melkebeek, D., Ronneburger, D.: Power from random strings. SIAM Journal on Computing 35, 1467–1493 (2006). https://doi.org/10.1137/050628994
5. Allender, E., Cheraghchi, M., Myrisiotis, D., Tirumala, H., Volkovich, I.: One-way functions and partial MCSP. Tech. Rep. TR21-9, Electronic Colloquium on Computational Complexity (ECCC) (2021)
6. Allender, E., Das, B.: Zero knowledge and circuit minimization. Information and Computation 256, 2–8 (2017). https://doi.org/10.1016/j.ic.2017.04.004, special issue for MFCS ’14
7. Allender, E., Gouwar, J., Hirahara, S., Robelle, C.: Cryptographic hardness under projections for time-bounded Kolmogorov complexity. Tech. Rep. TR21-10, Electronic Colloquium on Computational Complexity (ECCC) (2021)
8. Allender, E., Grochow, J., van Melkebeek, D., Morgan, A., Moore, C.: Minimum circuit size, graph isomorphism and related problems. SIAM Journal on Computing 47, 1339–1372 (2018). https://doi.org/10.1137/17M1157970
9. Allender, E., Hellerstein, L., McCabe, P., Pitassi, T., Saks, M.E.: Minimizing disjunctive normal form formulas and $AC^0$ circuits given a truth table. SIAM Journal on Computing 38(1), 63–84 (2008). https://doi.org/10.1137/060664537
10. Allender, E., Hirahara, S.: New insights on the (non)-hardness of circuit minimization and related problems. ACM Transactions on Computation Theory (ToCT) 11(4), 27:1–27:27 (2019). https://doi.org/10.1145/3349616
11. Allender, E., Holden, D., Kabanets, V.: The minimum oracle circuit size problem. Computational Complexity 26(2), 469–496 (2017). https://doi.org/10.1007/s00037-016-0124-0
12. Allender, E., Ilango, R., Vafa, N.: The non-hardness of approximating circuit size. Theory Comput. Syst. 65(3), 559–578 (2021). https://doi.org/10.1007/s00224-020-10004-x, special issue for CSR’19
13. Allender, E., Koucký, M.: Amplifying lower bounds by means of self-reducibility. J. ACM 57, 14:1 – 14:36 (2010). https://doi.org/10.1145/1706591.1706594
14. Allender, E., Koucký, M., Ronneberger, D., Roy, S.: The pervasive reach of resource-bounded Kolmogorov complexity in computational complexity theory. J. Comput. Syst. Sci. 77, 14–40 (2010). https://doi.org/10.1016/j.jcss.2010.06.004
15. Carmosino, M., Impagliazzo, R., Kabanets, V., Kolokolova, A.: Learning algorithms from natural proofs. In: 31st Conference on Computational Complexity, CCC. LIPIcs, vol. 50, pp. 10:1–10:24. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016). https://doi.org/10.4230/LIPIcs.CCC.2016.10
16. Chen, L., Hirahara, S., Oliveira, I.C., Pich, J., Rajgopal, N., Santhanam, R.: Beyond natural proofs: Hardness magnification and locality. In: 11th Innovations in Theoretical Computer Science Conference (ITCS). LIPIcs, vol. 151, pp. 70:1–70:48. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2020). https://doi.org/10.4230/LIPIcs.ITCS.2020.70
17. Chen, L., Jin, C., Williams, R.: Hardness magnification for all sparse NP languages. In: Symposium on Foundations of Computer Science (FOCS). pp. 1240–1255 (2019). https://doi.org/10.1109/FOCS.2019.00077
18. Chen, L., Jin, C., Williams, R.: Sharp threshold results for computational complexity (2019), manuscript
19. Chen, L., McKay, D.M., Murray, C.D., Williams, R.R.: Relations and equivalences between circuit lower bounds and Karp-Lipton theorems. In: 34th Computational Complexity Conference (CCC). LIPIcs, vol. 137, pp. 30:1–30:21. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2019). https://doi.org/10.4230/LIPIcs.CCC.2019.30
20. Cheraghchi, M., Hirahara, S., Myrisiotis, D., Yoshida, Y.: One-tape turing machine and branching program lower bounds for MCSP. In: Bläser, M., Monmege, B. (eds.) 38th International Symposium on Theoretical Aspects of Computer Science (STACS). LIPIcs, vol. 187, pp. 23:1–23:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.STACS.2021.23
21. Cheraghchi, M., Kabanets, V., Lu, Z., Myrisiotis, D.: Circuit lower bounds for MCSP from local pseudorandom generators. ACM Trans. Comput. Theory 12(3), 21:1–21:27 (2020). https://doi.org/10.1145/3404860
22. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer (2010)
23. Forster, J., Krause, M., Lokam, S.V., Mubarakzjanov, R., Schmitt, N., Simon, H.U.: Relations between communication complexity, linear arrangements, and computational complexity. In: Proc. 21st Foundations of Software Technology and Theoretical Computer Science (FSTTCS). Lecture Notes in Computer Science, vol. 2245, pp. 171–182. Springer (2001). https://doi.org/10.1007/3-540-45294-X_15
24. Fu, B.: Hardness of sparse sets and minimal circuit size problem. In: Kim, D., Uma, R.N., Cai, Z., Lee, D.H. (eds.) Computing and Combinatorics - 26th International
The New Complexity Landscape around Circuit Minimization

25. Gold, E.M.: Complexity of automaton identification from given data. Inf. Control. 37(3), 302–320 (1978). https://doi.org/10.1016/S0019-9958(78)90562-4

26. Golovnev, A., Ilango, R., Impagliazzo, R., Kabanets, V., Kolokolova, A., Tal, A.: AC^0[p] lower bounds against MCSP via the coin problem. In: 46th International Colloquium on Automata, Languages, and Programming, ICALP. LIPIcs, vol. 132, pp. 66:1–66:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.66

27. Hirahara, S.: Non-black-box worst-case to average-case reductions within NP. In: 59th IEEE Annual Symposium on Foundations of Computer Science (FOCS). pp. 247–258 (2018). https://doi.org/10.1109/FOCS.2018.00032

28. Hirahara, S.: Unexpected hardness results for Kolmogorov complexity under uniform reductions. In: Makarychev, K., Makarychev, Y., Tulsiani, M., Kamath, G., Chazhoy, J. (eds.) Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC). pp. 1038–1051. ACM (2020). https://doi.org/10.1145/3357713.3384251

29. Hirahara, S.: Unexpected power of random strings. In: 11th Innovations in Theoretical Computer Science Conference, ITCS. LIPIcs, vol. 151, pp. 41:1–41:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2020). https://doi.org/10.4230/LIPIcs.ITCS.2020.41

30. Hirahara, S., Oliveira, I.C., Santhanam, R.: NP-hardness of minimum circuit size problem for OR-AND-MOD circuits. In: 33rd Conference on Computational Complexity, CCC. LIPIcs, vol. 102, pp. 5:1–5:31. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018). https://doi.org/10.4230/LIPIcs.CCC.2018.5

31. Hirahara, S., Santhanam, R.: On the average-case complexity of MCSP and its variants. In: 32nd Conference on Computational Complexity, CCC. LIPIcs, vol. 79, pp. 7:1–7:20. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.CCC.2017.7

32. Hirahara, S., Watanabe, O.: On nonadaptive reductions to the set of random strings and its dense subsets. In: Du, D., Wang, J. (eds.) Complexity and Approximation - In Memory of Ker-I Ko. Lecture Notes in Computer Science, vol. 12000, pp. 67–79. Springer (2020). https://doi.org/10.1007/978-3-030-41672-0_6

33. Hitchcock, J.M., Pavan, A.: On the NP-completeness of the minimum circuit size problem. In: Conference on Foundations of Software Technology and Theoretical Computer Science (FST&TC). LIPIcs, vol. 45, pp. 236–245. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015). https://doi.org/10.4230/LIPIcs.FSTTCS.2015.236

34. Ilango, R.: Approaching MCSP from above and below: Hardness for a conditional variant and AC^0[p]. In: 11th Innovations in Theoretical Computer Science Conference, ITCS. LIPIcs, vol. 151, pp. 34:1–34:26. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2020). https://doi.org/10.4230/LIPIcs.ITCS.2020.34

35. Ilango, R.: Constant depth formula and partial function versions of MCSP are hard. In: 61st IEEE Annual Symposium on Foundations of Computer Science (FOCS). pp. 424–433. IEEE (2020). https://doi.org/10.1109/FOCS46700.2020.00047

36. Ilango, R., Loff, B., Oliveira, I.C.: NP-hardness of circuit minimization for multi-output functions. In: Saraf, S. (ed.) 35th Computation Complexity Conference (CCC). LIPIcs, vol. 169, pp. 22:1–22:36. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2020). https://doi.org/10.4230/LIPIcs.CCC.2020.22
37. Ilango, R., Ren, H., Santhanam, R.: Hardness on any samplable distribution suffices: New characterizations of one-way functions by meta-complexity. Tech. Rep. TR21-82, Electronic Colloquium on Computational Complexity (ECCC) (2021).

38. Impagliazzo, R., Kabanets, V., Volkovich, I.: The power of natural properties as oracles. In: 33rd Conference on Computational Complexity, CCC. LIPIcs, vol. 102, pp. 7:1–7:20. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018). https://doi.org/10.4230/LIPIcs.CCC.2018.7

39. Kabanets, V., Cai, J.Y.: Circuit minimization problem. In: ACM Symposium on Theory of Computing (STOC). pp. 73–79 (2000). https://doi.org/10.1145/335305.335314

40. Ko, K.: On the notion of infinite pseudorandom sequences. Theor. Comput. Sci. 48(3), 9–33 (1986). https://doi.org/10.1016/0304-3975(86)90081-2

41. Levin, L.A.: Randomness conservation inequalities; information and independence in mathematical theories. Information and Control 61(1), 15–37 (1984). https://doi.org/10.1016/S0019-9958(84)80060-1

42. Levin, L.A.: The tale of one-way functions. Probl. Inf. Transm. 39(1), 92–103 (2003). https://doi.org/10.1023/A:1023634616182

43. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Applications, 4th Edition. Texts in Computer Science, Springer (2019). https://doi.org/10.1007/978-3-030-11298-1

44. Liu, Y., Pass, R.: On one-way functions and Kolmogorov complexity. In: 61st IEEE Annual Symposium on Foundations of Computer Science (FOCS). pp. 1243–1254. IEEE (2020). https://doi.org/10.1109/FOCS46700.2020.00118

45. Liu, Y., Pass, R.: A note on one-way functions and sparse languages. Tech. Rep. TR21-92, Electronic Colloquium on Computational Complexity (ECCC) (2021)

46. Liu, Y., Pass, R.: On one-way functions from NP-complete problems. Tech. Rep. TR21-59, Electronic Colloquium on Computational Complexity (ECCC) (2021)

47. Liu, Y., Pass, R.: On the possibility of basing cryptography on EXP ≠ BPP. Tech. Rep. TR21-56, Electronic Colloquium on Computational Complexity (ECCC) (2021)

48. Lu, Z., Oliveira, I.C.: An efficient coding theorem via probabilistic representations and its applications. In: Bansal, N., Merelli, E., Worrell, J. (eds.) 48th International Colloquium on Automata, Languages, and Programming (ICALP). LIPIcs, vol. 198, pp. 94:1–94:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.ICALP.2021.94

49. McKay, D.M., Murray, C.D., Williams, R.R.: Weak lower bounds on resource-bounded compression imply strong separations of complexity classes. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC). pp. 1215–1225 (2019). https://doi.org/10.1145/3313276.3316396

50. Murray, C., Williams, R.: On the (non) NP-hardness of computing circuit complexity. Theory of Computing 13(4), 1–22 (2017). https://doi.org/10.4086/toc.2017.v013a004

51. Oliveira, I., Santhanam, R.: Conspiracies between learning algorithms, circuit lower bounds and pseudorandomness. In: 32nd Conference on Computational Complexity, CCC. LIPIcs, vol. 79, pp. 18:1–18:49. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.CCC.2017.18

52. Oliveira, I.C.: Randomness and intractability in Kolmogorov complexity. In: 46th International Colloquium on Automata, Languages, and Programming, ICALP. LIPIcs, vol. 132, pp. 32:1–32:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.32
53. Oliveira, I.C., Pich, J., Santhanam, R.: Hardness magnification near state-of-the-art lower bounds. In: 34th Computational Complexity Conference (CCC). LIPIcs, vol. 137, pp. 27:1–27:29. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2019). https://doi.org/10.4230/LIPIcs.CCC.2019.27

54. Oliveira, I.C., Santhanam, R.: Hardness magnification for natural problems. In: 59th IEEE Annual Symposium on Foundations of Computer Science (FOCS). pp. 65–76 (2018). https://doi.org/10.1109/FOCS.2018.00016

55. Pich, J., Santhanam, R.: Why are proof complexity lower bounds hard? In: Symposium on Foundations of Computer Science (FOCS). pp. 1305–1324 (2019). https://doi.org/10.1109/FOCS.2019.00080

56. Pitt, L., Valiant, L.G.: Computational limitations on learning from examples. J. ACM 35(4), 965–984 (1988). https://doi.org/10.1145/48014.63140

57. Pitt, L., Warmuth, M.K.: The minimum consistent DFA problem cannot be approximated within any polynomial. J. ACM 40(1), 95–142 (1993). https://doi.org/10.1145/138027.138042

58. Razborov, A., Rudich, S.: Natural proofs. J. Comput. Syst. Sci. 55, 24–35 (1997). https://doi.org/10.1006/jcss.1997.1494

59. Ren, H., Santhanam, R.: Hardness of KT characterizes parallel cryptography. In: Kabanets, V. (ed.) 36th Computational Complexity Conference (CCC). LIPIcs, vol. 200, pp. 35:1–35:58. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2021). https://doi.org/10.4230/LIPIcs.CCC.2021.35

60. Saks, M., Santhanam, R.: Circuit lower bounds from np-hardness of MCSP under Turing reductions. In: Saraf, S. (ed.) 35th Computational Complexity Conference (CCC). LIPIcs, vol. 169, pp. 26:1–26:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2020). https://doi.org/10.4230/LIPIcs.CCC.2020.26

61. Santhanam, R.: Pseudorandomness and the minimum circuit size problem. In: 11th Innovations in Theoretical Computer Science Conference (ITCS). LIPIcs, vol. 151, pp. 68:1–68:26. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2020). https://doi.org/10.4230/LIPIcs.ITCS.2020.68

62. Tal, A.: The bipartite formula complexity of inner-product is quadratic. Electronic Colloquium on Computational Complexity (ECCC) 23, 181 (2016)

63. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer-Verlag New York Inc. (1999). https://doi.org/10.1007/978-3-662-03927-4