FACTORIZATIONS OF WEIGHTED HARDY INEQUALITIES

SORINA BARZA, ANCA N. MARCOCI, LIVIU G. MARCOCI

Abstract. We present factorizations of weighted Lebesgue, Cesàro and Copson spaces, for weights satisfying the conditions which assure the boundedness of the Hardy’s integral operator between weighted Lebesgue spaces. Our results enhance, among other, the best known forms of weighted Hardy inequalities.

1. Introduction

Let $p > 1$. The classical Hardy inequalities

$$\left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} |a_k| \right)^p \right)^{1/p} \leq \frac{p}{p-1} \left(\sum_{n=1}^{\infty} |a_n|^p \right)^{1/p}$$

and

$$\left(\int_{0}^{x} \left(\frac{1}{x} \int_{0}^{x} |f(t)| dt \right)^p dx \right)^{1/p} \leq \frac{p}{p-1} \left(\int_{0}^{\infty} |f(t)|^p dx \right)^{1/p}$$

(see e.g. [KMP]) can be interpreted as inclusions between the Lebesgue space and Cesàro space of sequences (respectively functions). The Cesàro space of sequences is defined to be the set of all real sequences $a = (a_n)_{n \geq 1}$ that satisfy

$$\|a\|_{ces(p)} = \left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} |a_k| \right)^p \right)^{1/p} < \infty$$

and the Cesàro space of functions is defined to be the set of all Lebesgue measurable real functions on $[0, \infty)$ such that

$$\|f\|_{ces(p)} = \left(\int_{0}^{\infty} \left(\frac{1}{x} \int_{0}^{x} |f(t)| dt \right)^p dx \right)^{1/p} < \infty.$$

The same interpretation is valid if the Hardy operator is substituted by its dual. In his celebrated book [B], G. Bennett "enhanced" the classical Hardy inequality by substituting it with an equality, factorizing the Cesàro space of sequences, with the final aim to characterize its Köthe dual. He proved that a sequence x belongs to the Cesàro space of sequences $ces(p)$ if and only if

\begin{itemize}
 \item Primary 26D20; Secondary 46B25.
 \item Key words and phrases. factorization of function spaces, Hardy averaging integral operator, Cesàro spaces, Copson spaces.
\end{itemize}
it admits a factorization $x = y \cdot z$ with $y \in l^p$ and $z_1^{p'} + \ldots + z_n^{p'} = O(n)$, where $p' = \frac{p}{p-1}$ is the conjugate index of p. This factorization gives also a better insight in the structure of Cesàro spaces. The answer to the question of finding the dual space of the Cesàro space was given for the first time by A. Jagers [J]. This problem was posed by the Dutch Academy of Sciences. His conditions are nevertheless difficult to check. By means of factorizations a new isometric characterization, an alternative description of the dual Cesàro space of sequences was given by G. Bennett in [B].

In the case of functions, the same factorization results as well as the dual space of Cesàro space are only mentioned in [B, Ch. 20], for the unweighted spaces. A factorization result for the unweighted Cesàro function spaces was proved in [AM] where also an isomorphic description of the dual space of the Cesàro space of functions was given. An isometric description for the general weighted case, in the spirit of A. Jagers was given in [K]. Although the characterization is given for general weights, the condition is difficult to checked. The results of [B] have a big impact in many parts of analysis but it seems that the corresponding results for weighted spaces are less studied. However, in [CH] can be found the following factorization result which is a weighted integral analogue of a result obtained by G. Bennett in [B] for the discrete Hardy operator in the unweighted case.

Theorem 1.1 ([CH]). Let $1 < p < \infty$ and w, v two weights such that $w > 0$, $v > 0$ a.e. and assume that h is a non-negative function on $[0, \infty)$. Then the function h belongs to $\text{Ces}_p(w)$ if and only if it admits a factorization $h = f \cdot g$, $f \geq 0$, $g > 0$ on $[0, \infty)$, with $f \in L^p(v)$ and g such that

$$\|g\|_{w,v} = \sup_{t>0} \left(\int_t^\infty \frac{w(s)}{s^p} ds \right)^{1/p} \left(\int_0^t v^{1-p'}(s) g^{p'}(s) ds \right)^{1/p'} < \infty.$$

Moreover

$$\inf \|f\|_{p,v}\|g\|_{w,v} \leq \|h\|_{\text{Ces}_p(w)} \leq 2(p')^{1/p'} p^{1/p} \inf \|f\|_{p,v}\|g\|_{w,v},$$

where the infimum is taken over all possible factorizations.

Throughout this paper, we use standard notations and conventions. The letters $u, v, w,...$, are used for weight functions which are positive a.e. and locally integrable on $(0, \infty)$. The function f is real-valued and Lebesgue measurable on $(0, \infty)$. Also for a given weight v we write $V(t) = \int_0^t v(s) ds$, $0 \leq t < \infty$. By χ_A we denote the characteristic function of the measurable set A.

Observe that the best known form of the Hardy inequality does not follow from the above result. The aim of this paper is to prove factorization results of the same type for the weighted Lebesgue, Cesàro and Copson spaces of functions, which enhance in the same manner the weighted Hardy inequality. The weights satisfy the natural conditions which assure the boundedness of the Hardy, respectively the dual Hardy operators as well as some reversed conditions.
We denote by P the Hardy operator and by Q its adjoint

$$Pf(t) = \frac{1}{t} \int_0^t f(x)dx; \quad Qf(t) = \int_t^\infty \frac{f(x)}{x} dx, \quad (t > 0).$$

For $p \geq 1$, it is known that P is bounded on the weighted Lebesgue space $L^p (w)$ if and only if $w \in M_p$ (see [M]), where M_p is the class of weights for which there exists a constant $C > 0$ such that, for all $t > 0$ it holds

$$M_p : \left(\int_t^\infty \frac{v(x)}{x^p} dx \right)^{1/p} \left(\int_0^t v^{1-p'}(x) dx \right)^{1/p'} \leq C.$$

The least constant satisfying the condition M_p will be denoted by $[v]_{M_p}$. Similarly, we denote by m_p the class of weights satisfying the reverse inequality and by $[v]_{m_p}$ the biggest constant for which the reverse inequality holds.

The Hardy operator P is bounded on $L^1(v)$ if and only if there exists $C > 0$, such that

$$M_1 : \int_t^\infty \frac{v(x)}{x} dx \leq C v(t).$$

We denote by $[v]_{M_1}$ the least constant for which the above inequality is satisfied. Similarly, $[v]_{m_1}$ is the biggest constant for which the reverse inequality of (5) is satisfied.

The corresponding condition for the boundedness of the adjoint operator Q on $L^p(v)$ (see [M]) is given by

$$M^*_p : \left(\int_0^t v(x) dx \right)^{1/p} \left(\int_t^\infty \frac{v^{1-p'}(x)}{x^{p'}} dx \right)^{1/p'} \leq C.$$

The least constant satisfying the M^*_p condition will be denoted $[w]_{M^*_p}$. Similarly, we denote by m^*_p the class of weights satisfying the reverse inequality and by $[w]_{m^*_p}$ the biggest constant for which the reverse inequality holds.

The dual Hardy operator Q, (defined by (3)) is bounded on $L^1(v)$ if and only if there exists $C > 0$, such that

$$M^*_1 : \frac{1}{t} \int_0^t v(x) dx \leq C v(t).$$

We denote by $[v]_{M^*_1}$ the least constant for which the above inequality is satisfied. Similarly, $[v]_{m^*_1}$ is the biggest constant for which the reverse inequality of (7) is satisfied.

In Section 2 we prove a factorization result for the weighted Lebesgue spaces $L^p(v)$. This result is a natural extension of Theorem 3.8 from [B].

In Section 3 we present some factorization theorems for the weighted Cesàro spaces in terms of weighted Lebesgue spaces and the spaces $G_p(v)$, for $p > 1$. We treat separately the case $p = 1$ which appears to be new. Moreover, our study is motivated by similar factorization results established by G. Bennett [B], in the unweighted case, for spaces of sequences. As a
consequence we recover the best known form of the Hardy inequality for weighted Lebesgue spaces.

We also present the optimal result for the power weights. Section 4 is devoted to the same problems but for Copson spaces.

2. The spaces $D_p(v)$ and $G_p(v)$

For $p > 0$, the function spaces $G_p(v)$ and $D_p(v)$ are defined by

$$G_p(v) = \{ f : \sup_{t > 0} \left(\frac{1}{V(t)} \int_0^t |f(x)|^p v(x) dx \right)^{1/p} < \infty \}$$

and

$$D_p(v) = \{ f : \left(\int_0^\infty \text{esssup}_{t \geq x} |f(t)|^p v(x) dx \right)^{1/p} < \infty \}.$$

These spaces are Banach spaces, for $p \geq 1$, endowed with the norms

$$\|f\|_{G_p(v)} = \sup_{t > 0} \left(\frac{1}{V(t)} \int_0^t |f(x)|^p v(x) dx \right)^{1/p},$$

respectively

$$\|f\|_{D_p(v)} = \left(\int_0^\infty \text{esssup}_{t \geq x} |f(t)|^p v(x) dx \right)^{1/p}.$$

We denote by $\hat{f}(x) = \text{esssup}_{t \geq x} |f(t)|$ the least decreasing majorant of the absolute value of the function f. Obviously, the function $f \in D_p(v)$ if and only if $\hat{f} \in L_p(v)$ and that $\|f\|_{D_p(v)} = \|\hat{f}\|_{L_p(v)}$.

In what follows we need the following two lemmas.

Lemma 2.1 (Hardy’s lemma). Let f, g be two nonnegative real-valued functions and h be a nonnegative decreasing function. If

$$\int_0^t f(x) dx \leq \int_0^t g(x) dx, \text{ for any } t > 0$$

then

$$\int_0^\infty f(x)h(x) dx \leq \int_0^\infty g(x)h(x) dx.$$

Proof. See [BS, Proposition 3.6]. □

Lemma 2.2. Let h be a nonnegative measurable function on $(0, \infty)$, such that

$$\lim_{x \to \infty} \int_0^x h(t)v(t) dt = 0.$$

Then there exists a nonnegative decreasing function h^0 on $(0, \infty)$, called the level function of h with respect to the measure $v(x) dx$ satisfying the following conditions:

1. $\int_0^x h(t)v(t) dt \leq \int_0^x h^0(t)v(t) dt$;
(2) up to a set of measure zero, the set \(\{ x : h(x) \neq h^\circ(x) \} = \bigcup_{k=1}^{\infty} I_k \), where \(I_k \) are bounded disjoint intervals such that

\[
\int_{I_k} h^\circ(t) v(t) dt = \int_{I_k} h(t) v(t) dt
\]

and \(h^\circ \) is constant on \(I_k \), i.e. \(h^\circ(t) = \frac{\int_{I_k} h v}{\int_{I_k} v} \).

Proof. For a proof see e.g. [BKS] or [S].

We are now ready to prove the main theorem of this section which contains one of the possible factorizations of weighted Lebesgue spaces.

Theorem 2.1. If \(0 < p \leq \infty \), then a function \(h \in L^p(v) \) if and only if \(f \) admits a factorization \(h = f \cdot g \) such that \(f \in D_p(v) \) and \(g \in G_p(v) \). Moreover,

\[
\|h\|_{L^p(v)} = \inf \{ \|f\|_{D_p(v)} \|g\|_{G_p(v)} \},
\]

where the infimum is taken over all possible factorizations \(h = f \cdot g \) with \(f \in D_p(v) \) and \(g \in G_p(v) \).

Proof. The case \(p = \infty \) is trivial. By homogeneity, it is sufficient to prove the theorem for \(p = 1 \).

We first prove that \(D_1(v) \cdot G_1(v) \subseteq L^1(v) \). Suppose that \(h \) admits a factorization \(h = f \cdot g \) with \(f \in D_1(v), g \in G_1(v) \). Then

\[
\|h\|_{L^1(v)} = \int_0^\infty |f(x)g(x)|v(x)dx \leq \int_0^\infty \hat{f}(x)|g(x)|v(x)dx.
\]

From definition [S], we have the inequality

\[
\int_0^t |g(x)|v(x)dx \leq \|g\|_{G_1(v)} \int_0^t v(x)dx,
\]

for any \(t > 0 \) which together with Lemma [2.1] give

\[
\int_0^\infty \hat{f}(x)|g(x)|v(x)dx \leq \|g\|_{G_1(v)} \int_0^\infty \hat{f}(x)v(x)dx = \|g\|_{G_1(v)} \|f\|_{D_1(v)}.
\]

Thus we have that \(D_1(v) \cdot G_p(v) \subseteq L^1(v) \) and that

\[
\|h\|_{L^1(v)} \leq \inf \{ \|g\|_{G_1(v)} \|f\|_{D_1(v)} \},
\]

where the infimum is taken over all possible factorizations \(h = f \cdot g \).

Conversely let \(h \) be a nonnegative function such that \(h \in L^1(v) \). We set \(f(x) = h^\circ(x), x > 0 \), where \(h^\circ(x) \) is the level function of \(h \) with respect to the measure \(v(x)dx \), as in Lemma [2.2]. Since \(h^\circ(x) \) is a decreasing function by the definition of the space \(D_1(v) \) and by Lemma [2.2] we have that

\[
\|f\|_{D_1(v)} = \|h^\circ\|_{D_1(v)} = \|h^\circ\|_{L_1(v)} = \|h\|_{L_1(v)}.
\]
We define $g(x) = \frac{h(x)}{h^\circ(x)}$ for any $x > 0$. If $t \in I_n$, for some n, we have
\[
\frac{1}{V(t)} \int_0^t g(x)v(x)dx = \frac{1}{V(t)} \int_0^t \frac{h(x)}{h^\circ(x)}v(x)dx = \frac{1}{V(t)} \left(\int_E \frac{h(x)}{h^\circ(x)}v(x)dx + \int_{\bigcup_{k=1}^{n-1} I_k} \frac{h(x)}{h^\circ(x)}v(x)dx \right),
\]
where $E = \{x \in (0, t) : h(x) = h^\circ(x)\}$ and $I_k = (a_k, b_k)$ are the disjoint intervals from Lemma 2.2. Hence, by Lemma 2.2 we get that
\[
\int_E \frac{h(x)}{h^\circ(x)}v(x)dx = \int_E v(x)dx,
\]
\[
\int_{I_k} \frac{h(x)}{h^\circ(x)}v(x)dx = \int_{I_k} v(x)dx
\]
and
\[
\int_{a_n}^t \frac{h(x)}{h^\circ(x)}v(x)dx \leq \int_{I_n} v(x)dx.
\]
Hence
\[
\|g\|_{G_1(v)} \leq 1.
\]
Since $h = f \cdot g$, with $f \in D_1(v)$ and $g \in G_1(v)$ we have that $L^1(v) \subseteq D_1(v) \cdot G_1(v)$ and
\[
\|h\|_{L^1(v)} = \|f\|_{D_1(v)} \geq \|f\|_{D_1(v)} \cdot \|g\|_{G_1(v)} \geq \inf \{\|f\|_{D_1(v)} \cdot \|g\|_{G_1(v)}\},
\]
where the infimum is taken over all possible factorizations $h = f \cdot g$. It is easy to see from this proof that the infimum is actually attained and this concludes the proof of the theorem.

3. Factorization of the weighted Cesàro spaces

In this section we present a factorization of the weighted Cesàro spaces $C_{es_p}(v)$. We treat separately the cases $p > 1$ and $p = 1$. The weighted Cesàro spaces of functions, $C_{es_p}(v)$ is defined to be the space of all Lebesgue measurable real functions on $[0, \infty)$ such that
\[
\|f\|_{C_{es_p}(v)} = \left(\int_0^\infty \left(\frac{1}{x} \int_0^x |f(t)|dt \right)^p v(x)dx \right)^{1/p} < \infty.
\]
These spaces are obviously Banach spaces, for $p \geq 1$ and if the weight v satisfies (11) we have that $L^p(v) \subseteq C_{es_p}(v)$. We denote by
\[
!h_{p,v} = \inf \{\|f\|_{L^p(v)} \|g\|_{G_{p'}(v^{1-p'})}\}
\]
where the infimum is taken over all possible decompositions of $h = f \cdot g$, with $f \in L^p(v)$ and $g \in G_{p'}(v^{1-p'})$.
Theorem 3.1. Let \(p > 1 \) and \(v \) belongs to the class \(M_p \) and \(m_p \). The function \(h \) belongs to \(\text{Ces}_p(v) \) if and only if it admits a factorization \(h = f \cdot g \), with \(f \in L^p(v) \) and \(g \in G_{p'}(v^{1-p'}) \). Moreover

\[
[v]m_p h!_{p,v} \leq \|h\|_{\text{Ces}_p(v)} \leq (p')^{1/p'} p^{1/p}[v]_{M_p} h!_{p,v}.
\]

Proof. Let \(f \in L^p(v) \) and \(g \in G_{p'}(v^{1-p'}) \). First we prove that the function \(h = f \cdot g \in \text{Ces}_p(v) \) and the right-hand side inequality. Let \(u \) be an arbitrary decreasing function. By Hölder’s inequality we get

\[
\int_0^t |h(x)| dx = \int_0^t |f(x)g(x)| dx \leq \\
\left(\int_0^t |f(x)|^p v(x) u^{-p}(x) dx \right)^{1/p} \left(\int_0^t |g(x)|^{p'} v^{-p'}(x) u^{p'}(x) dx \right)^{1/p'}.
\]

On the other hand, by Lemma 2.1 we obtain

\[
\left(\int_0^t |g(x)|^{p'} v^{-p'}(x) u^{p'}(x) dx \right)^{1/p'} \leq \|g\|_{G_{p'}(v^{1-p'})} \cdot \left(\int_0^t v^{-p'}(x) u^{p'}(x) dx \right)^{1/p'}.
\]

Hence, by (12) and (13), integrating from 0 to \(\infty \) and by applying Fubbini’s theorem we have

\[
\int_0^\infty \left(\frac{1}{t} \int_0^t |h(x)| dx \right)^p v(t) dt \leq \|g\|^p_{G_{p'}(v^{1-p'})} \int_0^\infty \left(\int_0^t |f(x)|^p v(x) u^{-p}(x) dx \right) \cdot \left(\int_0^t v^{-p'}(x) u^{p'}(x) dx \right)^{p-1} t^{-p} v(t) dt \\
= \|g\|^p_{G_{p'}(v^{1-p'})} \int_0^\infty |f(x)|^p v(x) u^{-p}(x) \cdot \left(\int_x^\infty t^{-p} v(t) \left(\int_0^t v^{-p'}(x) u^{p'}(x) dx \right)^{p-1} dt \right) dx.
\]

Taking \(u(t) = \left(\int_0^t v^{-p'}(s) ds \right)^{-1/(pp')} \), since \(v \in M_p \) we get

\[
\|h\|_{\text{Ces}_p(v)} \leq p^{1/p}(p')^{1/p'} [v]_{M_p} \|g\|_{G_{p'}(v^{1-p'})} \|f\|_{L^p(v)}.
\]

Hence \(h \in \text{Ces}_p(v) \) and

\[
\|h\|_{\text{Ces}_p(v)} \leq p^{1/p}(p')^{1/p'} [v]_{M_p} \inf \{ \|f\|_{L^p(v)} \cdot \|g\|_{G_{p'}(v^{1-p'})} \},
\]

where the infimum is taken over all possible factorizations of \(h \). This completes the first part of the proof of the theorem.

For the reversed embedding, i.e. \(\text{Ces}_p(v) \subseteq L^p(v) \cdot G_{p'}(v^{1-p'}) \), let \(h \in \text{Ces}_p(v) \) and set \(w(t) := \frac{1}{v(t)} \int_t^\infty \frac{v(s)}{s} \left(\frac{1}{v} \int_0^s |h(s)| ds \right)^{p-1} dx, t > 0 \). We may assume, without loss of generality that \(v(t) > 0 \), for any \(t > 0 \). We define
In this way, we get the left-hand side inequality.

\[g \text{ which shows that } \]

Hence

\[
\|f\|_{L^p(v)} = \|h\|_{\text{Cos}_p(v)} < \infty.
\]

By Hölder’s inequality we have

\[
(\int_0^t g^{p'}(x)v^{1-p'}(x)dx)^p \leq \left(\int_0^t |h(x)|dx \right)^{p-1}
\cdot \left(\int_0^t |h(x)|w^{-p'}(x)v^{-p'}(x)dx \right).
\]

Multiplying the inequality (15) by \(\int_t^\infty x^{-p}v(x)dx \) and using that \(w(t)v(t) \) is a decreasing function we get

\[
\left(\int_t^\infty \frac{v(x)}{x^p}dx \right) \left(\int_0^t g^{p'}(x)v^{1-p'}(x)dx \right)^p \leq \left(\int_t^\infty \frac{v(s)}{x^p} \left(\int_0^x |h|ds \right)^{p-1}dx \right)
\cdot \left(\int_0^t |h(x)|w^{-p'}(x)v^{-p'}(x)dx \right).
\]

\[
= w(t)v(t) \left(\int_0^t |h(x)|w^{-p'}(x)v^{-p'}(x)dx \right)
\leq \int_0^t |h(x)|w^{1-p'}(x)v^{1-p'}(x)dx.
\]

Since \(g^{p'}(x) = |h(x)|w^{1-p'}(x) \) we obtain

\[
\left(\int_0^t \frac{1}{v^{1-p'}(x)dx} \int_0^t g^{p'}(x)v^{1-p'}(x)dx \right)^{1/p'} \leq \left(\int_0^t v^{1-p'}(x)dx \right)^{-1/p'}
\cdot \left(\int_0^\infty \frac{v(x)}{x^p}dx \right)^{-1/p}.
\]

Hence

\[
\sup_{t>0} \left(\int_0^t \frac{1}{v^{1-p'}(x)dx} \int_0^t g^{p'}(x)v^{1-p'}(x)dx \right)^{1/p'} \leq \frac{1}{|v|_{m_p}}
\]

which shows that \(g \) belongs to \(G_{\nu'}(v^{1-p'}) \) and

\[
\|h\|_{\text{Cos}_p(v)} = \|f\|_{L^p(v)} \geq |v|_{m_p} \|f\|_{L^p(v)} \|g\|_{G_{\nu'}(v^{1-p'})}.
\]

In this way, we get the left-hand side inequality.

\[\square \]

If we take \(g(x) = 1, x > 0 \) the right-hand side inequality implies the best form of the weighted Hardy inequality for \(1 < p < \infty \) see e.g. [KMP].

Observe also that the infimum is attained.
In particular, we denote by L^p_α the weighted Lebesgue space with the power weight $v(t) = t^\alpha$ and in a similar way the spaces $G_{p,\alpha}$ and $\text{Ces}_{p,\alpha}$. In analogy with the general case we also denote by

$$\!h!_{p,\alpha} = \inf \|f\|_{L^p_\alpha} \|g\|_{G_{p',\alpha(1-p')}},$$

where the infimum is taken over all possible decompositions of $h = f \cdot g$, with $f \in L^p_\alpha$ and $g \in G_{p',\alpha(1-p')}$.

Corollary 3.2. Let $p > 1$ and $-1 < \alpha < p - 1$. The function h belongs to $\text{Ces}_{p,\alpha}$ if and only if it admits a factorization $h = f \cdot g$, with $f \in L^p_\alpha$ and $g \in G_{p',\alpha(1-p')}$. Moreover

$$\left(\frac{1}{p}\right)^{1/p'} \left(\frac{1}{p}\right)^{1/p'} \frac{p}{p - \alpha - 1} \!h!_{p,\alpha} \leq \|h\|_{\text{Ces}_{p,\alpha}} \leq \frac{p}{p - \alpha - 1} \!h!_{p,\alpha}.$$

Proof. Take $v(t) = t^\alpha$ in Theorem 3.1. The constant in the right hand-side inequality is optimal since it is the best constant in Hardy’s inequality with a power weight (see e.g [KMP] p. 23).

For the sake of completeness, as well as for the independent interest we present separately the case $p = 1$, although the proof of the main result in this case follows the same ideas as for $p > 1$.

By L^∞ we denote, as usual, the space of all measurable functions which satisfy the condition

$$\|g\|_\infty := \text{esssup}_{x > 0} |g(x)| < \infty.$$

As before,

$$\!h!_{1,v} = \inf \|f\|_{L^1(v)} \|g\|_\infty$$

where the infimum is taken over all possible factorizations of $h = f \cdot g$, with $f \in L^1(v)$ and $g \in L^\infty$.

Theorem 3.3. Let v belong to M_1 and m_1. The function h belongs to $\text{Ces}_1(v)$ if and only if it admits a factorization $h = f \cdot g$, with $f \in L_1(v)$ and $g \in G_\infty$. Moreover

$$[v]_{M_1} \!h!_{1,v} \leq \|h\|_{\text{Ces}_1(v)} \leq [v]_{M_1} \!h!_{1,v}.$$

Proof. Let $f \in L_1(v)$ and $g \in L^\infty$. We prove that the function $h = fg$ belongs to $\text{Ces}_1(v)$. By Hölder’s inequality and since $g \in L^\infty$ we get

$$\int_0^\infty \left(\frac{1}{t} \int_0^t h(s)ds\right) v(t)dt \leq \|g\|_\infty \int_0^\infty \left(\frac{1}{t} \int_0^t f(x)dx\right) v(t)dt.$$

By Fubini’s theorem and taking into account that $v \in M_1$ we have that

$$\|h\|_{\text{Ces}_1(v)} \leq [v]_{M_1} \|g\|_\infty \|f\|_{L_1(v)}.$$

for any f, g as above. Hence $h \in \text{Ces}_1(v)$ and

$$\|h\|_{\text{Ces}_1(v)} \leq [v]_{M_1} \inf \|g\|_\infty \|f\|_{L_1(v)}.$$
where infimum is taken over all possible factorizations of \(h \). This completes the first part of the proof.

Conversely, let \(h \in \text{Ces}_1(v) \) and \(w(t) = \frac{1}{v(t)} \int_t^\infty \frac{v(x)}{x} dx \). We may assume, without loss of generality that \(v(t) > 0 \), for all \(t > 0 \).

Let \(f(t) = |h(t)|w(t) \text{ sign } h(t) \) and \(g(x) = \frac{1}{w(x)} \). It is easy to see that

\[
\|f\|_{L_1(v)} = \|h\|_{\text{Ces}_1(v)} < \infty.
\]

Since \(v \in m_1 \), \(g \) belongs to \(L_\infty \) and

\[
\|g\|_\infty \leq \frac{1}{[v]_{m_1}}.
\]

Moreover, \(\|h\|_{\text{Ces}_1(v)} = \|f\|_{L_1(v)} \geq [v]_{m_1} \|f\|_{L_1(v)} \|g\|_\infty \) and we get the left-hand side inequality of the theorem. The proof is complete.

\[\square\]

4. Factorization of the weighted Copson spaces

In the same manner, in this section we present the factorizations of the weighted Copson space, namely the space

\[
\text{Cop}_p(v) = \{ f : \int_0^\infty \left(\int_t^\infty \frac{|f(x)|}{x} dx \right)^p v(t) dt < \infty \}.
\]

Let

\[
G^*_p(v) = \{ f : \sup_{t>0} \left(\frac{1}{v(x)} \int_t^\infty f(x)^p v(x) x^{-p} dx \right)^{1/p} < \infty \}
\]

To prove the main result we need the following Lemma.

Lemma 4.1. Let \(f, g \) be two non-negative real-valued functions and \(h \) be a non-negative increasing function. If

\[
\int_t^\infty f(x) dx \leq \int_t^\infty g(x) dx, \quad t > 0
\]

then

\[
\int_t^\infty f(x)h(x) dx \leq \int_t^\infty g(x)h(x) dx.
\]

Proof. The proof follows by a change of variable and Lemma 2.1. \[\square\]

We denote by

\[
!!h!!_{p,v} = \inf \|f\|_{L_p(v)} \|g\|_{G^*_p(v^{1-p'})}
\]

where the infimum is taken over all possible factorizations of \(h = f \cdot g \).

Theorem 4.1. Let \(p > 1 \) and \(v \) belong to the class \(m_p^* \) and \(m_p^* \).

The function \(h \) belongs to \(\text{Cop}_p(v) \) if and only if it admits a factorization \(h = f \cdot g \), with \(f \in L^p(v) \) and \(g \in G^*_p(v^{1-p'}) \). Moreover

\[
[v]_{m_p^*} !!h!!_{p,v} \leq \|h\|_{\text{Cop}_p(v)} \leq p^{1/p'} p^{1/p} [v]_{m_p^*} !!h!!_{p,v}.
\]
Proof. Let $f \in L^p(v)$ and $g \in G^p_{v^1}(v^{1-p'})$.

We show first that the function $h = fg \in \text{Cop}_p(v)$. Let u be an arbitrary positive increasing function. Hölder’s inequality gives

$$
\int_0^\infty \frac{f(x)g(x)}{x}dx \leq \\
\left(\int_0^\infty f^p(x)v(x)u^{-p}(x)dx \right)^{1/p} \left(\int_0^\infty g^p(x)\frac{v^{1-p'}(x)}{x^{p'}}u^{p'}(x)dx \right)^{1/p'}.
$$

By Hardy’s Lemma 4.1 we obtain

$$
\left(\int_0^\infty g^p(x)\frac{v^{1-p'}(x)}{x^{p'}}u^{p'}(x)dx \right)^{1/p'} \leq \|g\|^p_{G^p_{v^1}(v^{1-p'})} \cdot \left(\int_0^\infty \frac{v^{1-p'}(x)}{x^{p'}}u^{p'}(x)dx \right)^{1/p'}.
$$

Hence, multiplying (19) by $v(t)$, raising to p and integrating from 0 to ∞, we get

$$
\int_0^\infty \left(\int_0^\infty \frac{h(x)}{x}dx \right)^p v(t)dt \leq \|g\|^p_{G^p_{v^1}(v^{1-p'})} \cdot \int_0^\infty v(t) \left(\int_0^\infty f^p(x)v(x)u^{-p}(x)dx \right) \left(\int_0^\infty \frac{v^{1-p'}(x)}{x^{p'}}u^{p'}(x)dx \right)^{p-1} dt.
$$

By Fubini’s theorem we have

$$
\int_0^\infty \left(\int_0^\infty \frac{h(s)}{s}ds \right)^p v(t)dt \leq \|g\|^p_{G^p_{v^1}(v^{1-p'})} \cdot \int_0^\infty f^p(x)v(x) \left(\int_0^x v(t) \left(\int_t^\infty \frac{v^{1-p'}(s)}{s^{p'}}u^{p'}(s)ds \right)^{p-1} dt \right) u^{-p}(x)dx.
$$

Taking $u(t) = \left(\int_t^\infty \frac{v^{1-p'}(s)}{s^{p'}}ds \right)^{-1/p'}$, in the above inequality and since

$$
\int_0^\infty \frac{v^{1-p'}(s)}{s^{p'}}u^{p'}(s)ds = \left(\int_t^\infty \frac{v^{1-p'}(s)}{s^{p'}}(s)ds \right)^{1/p'}
$$

we have that
\[\int_0^\infty f^p(x)v(x) \left(\int_0^x v(t) \left(\int_t^\infty \frac{v^{1-p'}(s)}{s^{p'}}ds \right)^{p-1} dt \right) u^{-p}(x)dx = (p')^{p-1} \int_0^\infty f^p(x)v(x) \left(\int_0^x v(t) \left(\int_t^\infty \frac{v^{1-p'}(s)}{s^{p'}}ds \right)^{\frac{p-1}{p'}} dt \right) \cdot \left(\int_0^\infty \frac{v^{1-p'}(s)}{s^{p'}}ds \right)^{1/p'} \]

By the definition of \(M^*_p \) we get
\[\int_0^\infty \left(\int_t^\infty h(s)s ds \right)^p v(t)dt \leq (p')^{p-1}\|v\|_{M^*_p}^{p-1} \int_0^\infty f^p(x)v(x) \left(\int_0^x v(t) \left(\int_t^\infty \frac{v^{1-p'}(s)}{s^{p'}}ds \right)^{1/p'} dt \right) \left(\int_0^\infty \frac{v^{1-p'}(s)}{s^{p'}}ds \right)^{1/p'} \]
\[\leq (p')^{p-1}\|v\|_{M^*_p}^{p-1} \int_0^\infty f^p(x)v(x)dx,\]

since
\[\frac{d}{dx} \left(\int_0^x v(t)dt \right)^{1/p} = \frac{1}{p} \left(\int_0^x v(t)dt \right)^{1/p-1} v(x).\]

Hence
\[\|h\|_{\text{Cop}_p(v)} \leq p^{1/p}p^{1/p'}[v]_{M^*_p} \|g\|_{G^*_p(v^{1-p'})} \|f\|_{L^p(v)}.\]
for any \(f, g \) as above. Hence \(h \in \text{Cop}_p(v) \) and
\[\|h\|_{\text{Cop}_p(v)} \leq p^{1/p}p^{1/p'}[v]_{M^*_p} \inf \|g\|_{G^*_p(v^{1-p'})} \|f\|_{L^p(v)}\]
where the infimum is taken over all possible factorizations of \(h \) which gives the left-hand side inequality of the theorem.

For the reverse embedding, i.e. \(\text{Cop}_p(v) \subset L^p(v)G^*_p(v^{1-p'}) \), let \(h \in \text{Cop}_p(v) \) and \(w(t) := \frac{1}{tv(t)} \int_t^x v(x) \left(\int_x^\infty h(s)s ds \right)^{p-1} dx, \) if \(v \neq 0 \). Define
\(f(t) = |h|^{1/p}(t)w^{1/p}(t) \) sign \(h(t) \) and \(g(t) = |h|^{1/p'}(t)w^{-1/p}(t) \). An easy application of Fubini theorem gives
\[\|f\|_{L^p(v)} = \|h\|_{\text{Cop}_p(v)} < \infty.\]
By Hölder’s inequality and the definition of \(g \) we have
\[
\left(\int_x^\infty g^{p'}(t) \frac{v^{1-p'}(t)}{t^{p'}} \, dt \right)^p \leq \left(\int_x^\infty \frac{|h(t)|}{t} \, dt \right)^{p-1} \int_x^\infty \frac{|h(t)|}{t} w^{-p'}(t) \frac{v^{-p'}(t)}{t^{p'}} \, dt.
\]

We estimate first the right-hand side term of the inequality (20) multiplied by \(\int_0^x v(t) \, dt \).
\[
\left(\int_0^x v(t) \, dt \right) \left(\int_x^\infty \frac{|h(t)|}{t} \, dt \right)^{p-1} \int_x^\infty \frac{|h(t)|}{t} w^{-p'}(t) \frac{v^{-p'}(t)}{t^{p'}} \, dt
\]
\[
\leq \int_0^x v(t) \left(\int_t^\infty \frac{|h(s)|}{s} \, ds \right)^{p-1} \, dt \int_x^\infty \frac{|h(t)|}{t} w^{-p'}(t) \frac{v^{-p'}(t)}{t^{p'}} \, dt
\]
\[
= xw(x)v(x) \left(\int_x^\infty h(t) w^{-p'}(t) v^{-p'}(t) \, dt \right) \leq \int_x^\infty h(t) w^{1-p'}(t) v^{1-p'}(t) t^{-p'} \, dt,
\]
since, by definition, \(xw(x)v(x) \) is an increasing function. By using that \(g^{p'}(x) = h(x) w^{1-p'}(x) \) we get
\[
\left(\frac{1}{\int_x^\infty v^{1-p'}(t) \, dt} \int_x^\infty g^{p'}(t) \frac{v^{1-p'}(t)}{t^{p'}} \, dt \right)^{1/p'} \leq \frac{1}{\left(\int_0^x v(t) \, dt \right)^{1/p} \left(\int_x^\infty t^{-p'} v^{1-p'}(t) \, dt \right)^{1/p'}}.
\]
Hence
\[
\sup_{t>0} \left(\int_t^\infty v^{1-p'}(x) x^{-p'} \, dx \right)^{1/p'} \left(\int_t^\infty g^{p'}(x) v^{1-p'}(x) x^{-p'} \, dx \right)^{1/p'} \leq \frac{1}{|v| m^*_p}, \tag{21}
\]
which means that \(g \) belongs to \(G^*_{p'}(v^{1-p'}) \). Moreover,
\[
\|h\|_{\text{Cop}_{p,\alpha}(v)} = \|f\|_{L^p(v)} \geq [v] m^*_p \|f\|_{L^p(v)} \|g\|_{G^*_{p'}(v^{1-p'})}.
\]
In this way the left-hand side inequality is proved.

The space \(\text{Cop}_{p,\alpha} \) is the Copson weighted space with the weight \(t^\alpha \). We have the following result for the case of a power weight.

Corollary 4.2. Let \(p > 1 \) and \(\alpha > -1 \). The function \(h \) belongs to \(\text{Cop}_{p,\alpha} \) if and only if it admits a factorization \(h = f \cdot g \), with \(f \in L^p_\alpha \) and \(g \in G^*_{p',\alpha(1-p')} \). Moreover
\[
\frac{(p - 1)^{1/p'}}{\alpha + 1} l h!_{p,\alpha} \leq \|h\|_{p,\alpha} \leq \frac{p}{\alpha + 1} l h!_{p,\alpha}.
\]
The constants in both inequalities are optimal.
Proof. Take \(v(t) = t^\alpha \) in Theorem 4.1. The constant in the right hand-side inequality is optimal since it is the best constant in Hardy inequality (see e.g. [KMP]) and the optimality of the constant in the left-hand side follows if we take \(h(x) = \chi(a-\varepsilon,a+\varepsilon) \) and let then \(\varepsilon \to 0 \) and \(a \to \infty \).

We present now the case \(p = 1 \).
The dual Hardy operator \(Q \), (defined by (3)) is bounded on \(L^1(v) \) if and only if there exists \(C > 0 \), such that
\[
M_1^*: \frac{1}{t} \int_0^t v(x) dx \leq C v(t).
\]
We denote by \([v]_{M_1^*} \) the least constant for which the above inequality is satisfied. Similarly, \([v]_{M_1^*} \) is the biggest constant for which the reverse inequality of (22) is satisfied.

Theorem 4.3. Let \(v \) belong to \(M_1^* \) and \(m_1^* \). The function \(h \) belongs to \(\operatorname{Cop}_1(v) \) if and only if it admits a factorization \(h = f \cdot g \), with \(f \in L_1(v) \) and \(g \in G_\infty \). Moreover
\[
[v]_{m_1^*} h_{1,v} \leq \|h\|_{\operatorname{Cop}_1(v)} \leq [v]_{M_1^*} h_{1,v},
\]
and the constants are optimal.

Proof. The proof is similar with that of Theorem 3.3. \(\square \)

References

[AM] S. V. Astashkin and L. Maligranda, *Structure of Cesàro function spaces*, Indag. Mathem., 20(3) (2009), 329–379.

[BKS] S. Barza, V. Kolyada and J. Soria, *Sharp constants related to the triangle inequality in Lorentz spaces*, Trans. Amer. Math. Soc. 361(2009), no. 10, 5555–5574.

[BS] C. Bennett and R. Sharpley, *Interpolation of Operators*, Academic Press, Boston, 1988.

[BMR] J. Bastero, M. Milman, F. J. Ruiz Blasco, *A note on \(L(1; q) \) spaces and Sobolev embeddings* Indiana Univ. Math. J. 52 (2003), no. 5, 1215–1230.

[B] G. Bennett, *Factorizing the classical inequalities*, Mem. Amer. Math. Soc. 120 (1996).

[CGMP] M. Carro, A. Gogatishvili, J. Martín and L. Pick, *Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces*, J. Oper. Theory 59 (2008), 309–332.

[CH] C. Carton-Lebrun and H. P. Heinig, *Weight characterization of an averaging operator*, J. Math. Anal. Appl. 283 (2003) 236–243.

[J] A. A. Jagers, *A note on Cesàro sequence spaces*, Nieuw Arch. voor Wiskunde (3) 22 (1974), 113–124.

[K] A. Kaminska, D. Kubiak, *On the dual of Cesàro function space*, Nonlinear Analysis, 75 (2012), 2760–2773.

[KMP] A. Kufner, L. Maligranda and L.-E. Persson, *The Hardy Inequality. About its History and Some Related Results*, Pilsen, 2007.

[M] B. Muckenhoupt, *Hardy’s inequality with weights*, Studia Math. 44 (1972), 31–38.

[S] G. Sinnamon, *Spaces defined by their level functions and their duals*, Studia Math. 111 (1994), 19–52.
