Case Report

Effect of Zinc(II)-2,4,5-triphenyl-1H-imidazole Complex Against Replication DENV-2 in Vero Cell

Aswandi Wibrianto1, Fatimah Martak2, Teguh Hari Sucipto3a, Siti Churrotin3, Ilham Harlan Amarullah3, Harsasi Setyawati4, Puspa Wardhani3, Aryati3, Soegeng Soegijanto3
1 Undergraduate Student, Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Indonesia
2 Department of Chemistry, Faculty of Natural Science, Institut Teknologi Sepuluh Nopember, Indonesia
3 Dengue Study Group, Institute of Tropical Disease, Universitas Airlangga, Indonesia
4 Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Indonesia

Received: 8th April 2019; Revised: 29th January 2020; Accepted: 23rd April 2020

ABSTRACT

Dengue virus (DENV) is a significant pathogen emerging worldwide as a cause of infectious disease. DENVs are transmitted to humans through female mosquitoes from Aedes aegypti and Aedes albopictus species. Indonesia is one of the largest countries in the world in dengue endemic regions worldwide. Dengue fever was occurred for the first time as an outbreak in Surabaya and Jakarta in 1968. Many efforts have been made to prevent and treat DENV infections, and clinical trials of a number of vaccines are currently underway. Antiviral testing of DENV is an important alternative for drug characterization and development. Complex compounds are formed as a result of metal and organic complex reactions. Complex compounds can be used as an anti-inflammatory, antimicrobial antifungal, antibacterial, antivirus. The Zn2+ ion can be used as an antiviral candidate. The purpose of this project was investigated Zinc(II)-2,4,5-triphenyl-1H-imidazole antiviral compound to be further tested for inhibitory effect on the replication of DENV-2 in cell culture. DENV replication was measured by antiviral activity assay and cytotoxicity assay. The inhibitory activity of Zinc(II)-2,4,5-triphenyl-1H-imidazole complex compound was determined by Viral ToxGloTM Assay. The cytotoxicity of Zinc(II)-2,4,5-triphenyl-1H-imidazole complex compound was determined by CellTiter96® AQueous assay. The inhibitory concentration (IC50) of Zinc(II)-2,4,5-triphenyl-1H-imidazole against dengue virus type-2 was 34.42 μg/ml. The cytotoxic concentration (CC50) of compound against Vero cell was <100 μg/ml. The results of this study demonstrate the antidengue serotype 2 inhibitory activity of investigated Zinc(II)-2,4,5-triphenyl-1H-imidazole complex and its high toxicity in Vero cells. Further studies are not required before investigated Zinc(II)-2,4,5-triphenylimidazole can be applied in the treatment of DENV-2 infections.

Keywords: Zinc (II), complex compound, cytotoxicity, inhibitory activity, DENV-2

* Corresponding Author: teguhharisucipto@staf.unair.ac.id
INTRODUCTION

Dengue virus (DENV) is a virus carried by the *flavivirus* genus of the family Flaviviridae. Dengue virus (DENV) consists of four serotypes which is dengue virus type 1, dengue virus type 2, dengue virus type 3, and dengue virus type 4. Dengue virus is transmitted to humans through female mosquitoes from *Aedes aegypti* and *Aedes albopictus* species. World Health Organization (WHO) reported 390 million dengue infections per year. Indonesia is one of the largest countries in the world with dengue endemic areas. Surabaya and Jakarta were the cities where dengue disease was first reported in Indonesia in 1968. Many studies have been conducted to overcome the threat of dengue virus infections, and clinical trials of a number of vaccines are currently on the way. Antiviral testing on DENV is a very important method in the development and characterization of drugs. Supplementary to vaccines, inhibitors in each natural cycle of viral replication have the potential to cure dengue virus infection and indeed compounds such as RNA replication inhibitors have been tested as such. However, there is no commercially available drug with antiviral activity for DENV.

Materials and Methods

Chemicals and Media

Chemical reagents used in this research were Zinc(II)-2,4,5-triphenyl-1H-imidazole complex compound, Minimum Essential Eagle Medium (Sigma-Aldrich, Germany), dengue virus serotype 2 Surabaya isolate (KT012509), Vero cells (African Green Monkey Kidney), Viral ToxGlo™ assay (Promega, USA), CellTiter96® AQuoieus. Konsentrasi penghambatan (IC₅₀) Zinc(II)-2,4,5-trifenil-1H-imidazol terhadap virus dengue tipe-2 adalah 34,42 μg/ml. Konsentrasi sitotoksik (CC₅₀) senyawa terhadap sel Vero adalah <100 μg/ml. Hasil penelitian ini menunjukkan aktivitas penghambatan serotipe 2 antidengue dari Zinc(II)-2,4,5-trifenil-1H-imidazol yang diteliti dan toksisitasnya yang tinggi dalam sel Vero. Studi lebih lanjut tidak diperlukan sebelum investigasi Zinc(II)-2,4,5-trifenil-1H-imidazol dapat diterapkan dalam pengobatan infeksi DENV-2.

Kata kunci: Seng (II), senyawa kompleks, sitotoksisitas, aktivitas penghambatan, DENV-2

How to Cite: Effect of Zinc(II)-2,4,5-triphenyl-1H-imidazole Complex Against Replication DENV-2 in Vero Cell. Wibrianto, A. Martak, F. Setyawati, H. Sucipto, TH. Churrotin, S. Amarullah, IH. Wardhani, P. Aryati, A. Soegijanto, S. Indonesian Journal of Tropical and Infectious Disease, 8(3), 183–188.

*Imidazole-1-β-ᴅ-ribofuranoside is examined for four different types of viruses from the *flaviridae* family in vitro, including hepatitis C virus (HCV), Japanese viral encephalitis (JEV), West Nile virus (WNV), and dengue virus (DENV) in vitro against NTPases/helicases. The compound showed activity highly active against WNV with IC₅₀ was 23 μM.*

Complex compounds are formed as a result of metal and organic compound reactions. Complex compounds can be used as an anti-inflammatory, antimicrobial, antifungal, antibacterial, and antivirus. Based on previous research, Copper(II)-imidazole derivatives can be used as anti-DENV-2, can be used as low toxicity and potential as drug candidates. The compound exhibited adsorption inhibitory activity against DENV-2 at IC₅₀ = 2.3 μg/ml.

The Zn²⁺ ion can be used as an antiviral candidate. Zn²⁺ ions can change the activity of various transcription factors and thus, patterns of cellular and viral gene expression. Thus, the antiviral test of the compound Zinc(II)-2,4,5-triphenyl-1H-imidazole was investigated.
Aswandi Wibrianto, et al.: Effect of Zinc(II)-2,4,5-triphenyl-1H-imidazole Complex Against Replication

Antiviral Activity Assay

Confluent monolayers of Vero cells were prepared on a 96-well plate (1 × 10⁶ cells/10 ml) and counted using a hemocytometer, and the titer of DENV-2 (2 × 10⁴ FFU/well) was expressed in Foci-Forming Units (FFU) after incubating at 37°C for 2 days. The concentrations of Zinc(II)-2,4,5-triphenyl-1H-imidazole were 50 μg/mL; 25 μg/mL; 12.5 μg/mL; 6.25 μg/mL; 3.13 μg/mL; 1.57 μg/mL; 0.78 μg/mL; and 0.39 μg/mL with addition 100 μL Viral ToxGlo™ Assay per well. The 50% inhibitory concentration (IC₅₀) of DENV-2 replication by each compound was further investigated by using GloMax® Discover System.

Cytotoxicity Assay

A cytotoxicity assay was performed using CellTiter96® AQueous One Solution Cell Proliferation reagent. The CellTiter96® Assay is a modification of the MTT assay method portrayed by Akter.¹⁵ The concentrations of Zinc(II)-2,4,5-triphenyl-1H-imidazole were 100 μg/mL; 200 μg/mL; 400 μg/mL; 600 μg/mL; 800 μg/mL; and 1000 μg/mL. The medium was allowed to equilibrate for 1 hour; then 20μl/well of CellTiter 96® AQueous One Solution Reagent was added. After 1 hour at 37°C in a humidified, 5% CO₂ atmosphere, the absorbance at 490nm was recorded using GloMax® Discover System.

RESULTS AND DISCUSSION

The cytotoxicity of Zinc(II)-2,4,5-triphenyl-1H-imidazole complex compound was determined by CellTiter96® AQueous assay and the recorded CC₅₀ value is <100 μg/ml to Vero cells. When compared with a previous study, Copper(II) was found to be nontoxic to human erythrocyte cells to concentrations of 500 μg/ml.¹⁷ CC₅₀ is the cytotoxicity level of [Cu(2,4,5-triphenyl-1H-imidazole)]₈ (compound) to cause death to 50% of Vero cells.¹² The toxicity value of Cobalt(II) complex with 2,4,5-triphenyl-1H-imidazole ligand was 362.24 mg/L, which was not toxic.¹⁸ The toxicity value of 2-methyl-4,5-diphenyl-1H-Immidazole ligand compound was 192,3 μg/ml.¹⁹ The toxicity of [Mn(2-(4-chlorophenyl)-4,5-diphenyl-1H-imidazole)₂(H₂O)₂]·2H₂O was >200 μg/ml which had less toxicity.²⁰ Zinc(II)–2-(4-dihydroxyphenyl)-3,5,7-trihydroxyxromen-4-one complex compound defined cytotoxicity with CC₅₀ at 3.59 μg/ml.²¹ But, the metal-free imidazole more toxic for Vero cells (CC₅₀ = 5.03 μg/ml).²² Activity against HIV-1 strain IIIB and HIV-2 strain ROD in MT-4 cells (CC₅₀) by zinc(II) complexes with hexyl-Me₂-cyclam (HMC; 3,14-dimethyl-2,6,13,17-tetraazaatricyclo(16.4.0.0⁷,12)-docosane) were >372 μM and >372 μM with selectivity index >35 and >3. Activity against HIV-1 strain IIIB and HIV-2 strain ROD in MT-4 cells (CC₅₀) by Zn(II)–HMC diacetate were 110.67 ± 12.67 μM and 110.67 ± 12.67 μM with selectivity index 32 and <1.²³

The complex stability is highly dependent on both the metallic ion and the ligands. As for the central ion (M²⁺), Zn(II) more unstable than Cu(II), Mn(II), and Co(II). The Zn(II) complex has grater polarizability that that Cu(II), Mn(II), and Co(II) because it contains more d-electrons, and the Zn(II) complex produced more product ions soluble in water.²⁴ This effect causes Zn(II) to be more toxic, because Zn²⁺ in the medium are
more numerous, so it damages the cell wall faster than complex compound that have high stability such as Cu(II), Mn(II), and Co(II).

The percentage inhibition of the development of dengue virus type-2 by the test sample of Zinc(II)-2,4,5-triphenyl-1H-imidazole complex compound was shown on figure 1. The IC$_{50}$ value was determined from the concentration–response curve (Figure 1); the IC$_{50}$ value was 34.42 μg/ml, R^2 was 0.9196. Based on the value of the IC$_{50}$ Zinc(II)-2,4,5-triphenyl-1H-imidazole complex compound was a medium toxic compound.

Antiviral activity was also shown in Figure 2, these findings were corroborated by results obtained from RT-PCR which indicated significant reduction in the amount of DENV-2 genomic RNA levels. The highest percentage of viral inhibition was observed after treating the infected cells with 50 μg/ml.

Based on the previous study, [Cu(2,4,5-triphenyl-1H-imidazole)$_2$]$_n$ complex compound exhibited adsorption inhibitory activity against DENV-2 at IC$_{50}$ = 2.3 μg/ml. The inhibition at IC$_{50}$ was not significantly high (p<0.005) compared to that of the metal-free imidazole (IC$_{50}$ = 0.13 μg/ml).12 The maximal inhibitory concentration (IC$_{50}$) of Copper(II)chloride Dihydrate against DENV-2 was 0.13 μg/ml.22

Activity against HIV-1 strain IIIB and HIV-2 strain ROD in MT-4 cells (IC$_{50}$) by zinc(II) complexes with hexyl-Me$_2$-cyclam (HMC; 3,14-dimethyl-2,6,13,17-tetraazaatricyclo(16.4.0.0$_{7,12}$)docosane) were 10.51 ± 0.23 μM and 133.78 ± 14.10 μM. Activity against HIV-1 strain IIIB and HIV-2 strain ROD in MT-4 cells (IC$_{50}$) by Zn(II)–HMC diacetate were 3.50 ± 0.33 μM and >110.67 μM.23 Anti-HIV-1 activity (IC$_{50}$) in C8166/IIIB, MT-4/GUN1 and PBLs/IIIB were 8.0 μg/ml, 3.5 μg/ml, and 9.3 μg/ml, respectively. The IC$_{50}$ value of the Cobalt(II)–Morin complex for DENV-2 was 3.08 μg/ml.25 MB21, a benzimidazole derivative, was found to be the most potential inhibitor of cloned proteases (IC$_{50}$ = 5.95 μM).26

This study suggest that of Zinc(II)-2,4,5-triphenyl-1H-imidazole complex compound can’t be an attractive antiviral option. It would be interesting to further investigate whether 2,4,5-triphenyl-1H-imidazole complex with other metal. The result of this study, Zinc(II)-2,4,5-triphenyl-1H-imidazole complex compound more toxic than Cu(II)-2,4,5-triphenyl-1H-imidazole, this is caused by the Zn (II) complex being unstable compared to the Cu (II) complex.

CONCLUSION

Further studies are not required before Zinc(II)-2,4,5-triphenyl-1H-imidazole can be applied in the medication of DENV-2 infections. This study did not show the potential of the Zinc(II)-2,4,5-triphenyl-1H-imidazole complex as a candidate for antiviral agents against DENV-2 because it was shown to be toxic to Vero cells.
CONFLICT OF INTEREST

There is no conflict of interest of this paper.

ACKNOWLEDGEMENT

This research was supported by a Research Grant from Mandat Universitas Airlangga (HRMUA) 2019; the Institute of Tropical Disease (ITD); the Center of Excellence (COE) program by the Ministry of Research and Technology (RISTEK) Indonesia; and the Chemistry Department of Universitas Airlangga.

REFERENCES

1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504–7.
2. Chi J, Meng L, Zhai X, Guo Y, Pan S, Zhou C, et al. Tanshinone II A attenuates diabetic cardiomyopathy by down-regulation of mTOR/P70S6K signaling pathway. Int J Clin Exp Pathol. 2016;9(12):12297–305.
3. Woodland DL. Vaccines Against Dengue Virus. Viral Immunol [Internet]. 2015;28(2):75–75. Available from: https://www.liebertpub.com/doi/10.1089/vim.2015.1502
4. Lim SP, Noble CG, Shi PY. The dengue virus NS5 protein as a target for drug discovery. Antiviral Res [Internet]. 2015;119(April):57–67. Available from: http://dx.doi.org/10.1016/j.antiviral.2015.04.010
5. Assunção-Miranda I, Cruz-Oliveira C, Neris RLS, Figueiredo CM, Pereira LPS, Rodrigues D, et al. Inactivation of Dengue and Yellow Fever viruses by heme, cobalt-protoporphyrin IX and tin-protoporphyrin IX. J Appl Microbiol. 2016;120(3):790–804.
6. Saudy M, Zmurko J, Kaptein S, Rozenki J, Neys J, Van Aerschot A. Synthesis and evaluation of imidazole-4,5-and pyrazine-2,3-dicarboxamides targeting dengue and yellow fever virus. Eur J Med Chem [Internet]. 2014;87:529–39. Available from: http://dx.doi.org/10.1016/j.ejmech.2014.09.062
7. Wu, H., Kou, F., Jia, F., Liu, B., Yuan, J., and Bai, Y. Synthesis and Characterization of the Ligand Based on Benzimidazole and Its Copper Complex: DNA Binding and Antioxidant Activity. Bioinorganic Chemistry and Applications, 2011; 2011: 1–11.
8. Agotegaray MA, Dennehy M, Boeris MA, Grela MA, Burrow RA, Quinanzi O V. Therapeutic properties, SOD and catecholase mimetic activities of novel ternary copper(II) complexes of the anti-inflammatory drug Fenoprofen with imidazole and caffeine. Polyhedron [Internet]. 2012;34(1):74–83. Available from: http://dx.doi.org/10.1016/j.poly.2011.12.005
9. El-Sonbatia AZ, Diaba MA, and Morgan ShM. Thermal properties, antimicrobial activity and DNA binding of Ni(II) complexes of azo dye compounds. Journal of Molecular Liquids. 2017; 225:195-206.
10. Kaczmarek MT, Zabiszak M, Nowak M, and Jastrzab R. Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coordination Chemistry Reviews. 2018; 370: 42–54.
11. Shahabadi N, Pourfoulad M, and Taherpour A. Synthesis, characterization and in vitro DNA binding studies of a new copper(II) complex containing an antiviral drug, valganciclovir. Journal of Coordination Chemistry. 2016; 70(2): 201–222.
12. Sucipto TH, Churrotin S, Setyawati H, Martak F, Mulyatno KC, Amarullah IH, et al. A new copper (II)-imidazole derivative effectively inhibits replication of denv-2 in vero cell. African J Infect Dis. 2018;12(Special Issue 1):116–9.
13. Sensi SL, Canzoniero LMT, Yu SP, Ying HS, Koh J, Kerchner GA, et al. Sădegov_Отрошённо_Курбагов_ (Синтезы_Орг_Препаратов_Пиридинового_Ряда) (1974). 1997;17(24):955–64.
14. Ishida T. Antiviral Activities of Zn2+ Ions for Viral Prevention, Replication, Capsid Protein in Intracellular Proliferation of Viruses. World Sci News [Internet]. 2018;97(March):28–50. Available from: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.psjd-8ab2ba6c3-8e3f-4707-b97f-0c14fa91b094
15. Akter S, Addeppalli R, Netzel ME, Tinggi U, Fletcher MT, Sultanbawa Y, and Osborne SA. Antioxidant-Rich Extracts of Terminalia cambodiensis and Terminalia chebula (Синтезы_Орг_Препаратов_Пиридинового_Ряда) from: http://dx.doi.org/10.1016/j.ejmech.2014.09.062
16. Bhatnagar J, Paddock CD, Shieh WJ, Blau DM, Liu L, Patel M, and Zaki SR. Molecular Detection and Typing of Dengue Viruses from Archived Tissues of Fatal Cases by RT-PCR and Sequencing: Diagnostic and Epidemiologic Implications. The American Journal of Tropical Medicine and Hygiene. 2012; 86(2): 335–340.
17. Turecka K, Chylewska A, Kawiak A, and Waleron KF. Antiinfl ugal Activity and Mechanism of Action of the Co(III) Coordination Complexes With Diamine Chelate Ligands Against Reference and Clinical Strains of Candida spp. Frontiers in Microbiology. 2018; 9: 191–197.
18. Bhatnagar J, Paddock CD, Shieh WJ, Blau DM, Liu L, Patel M, and Zaki SR. Molecular Detection and Typing of Dengue Viruses from Archived Tissues of Fatal Cases by RT-PCR and Sequencing: Diagnostic and Epidemiologic Implications. The American Journal of Tropical Medicine and Hygiene. 2012; 86(2): 335–340.
19. Martak F, Cahyani NWD, Nugraheni Z Y, Utomo WP. Properties and toxicity of cobalt(II) complex with 2,4,5-triphenyl-1H-imidazole ligand. Indones J Chem [Internet]. 2016;16(3):260–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85002759335&doi=10.22146%2Fjicm.1147&partnerID=40
20. Martak F, Herliana N, Yosina SD, Merriana PC, Wahyudi A, Gunawan WH. Synthesis and Toxicity Test.
of Cobalt (II), Manganese (II) and Copper (II) Complex with 2-Methyl-4, 5-Diphenyl-1H-Imidazole. Indian J Sci Technol [Internet]. 2018;11(7):1–11. Available from: http://www.indjst.org/index.php/indjst/article/view/115356.

20. Martak F, Wahyudi A, Limanto D, Tajudin M, Ali M. Sintesis dan Karakterisasi Senyawa Kompleks Difenil-1H-Imidazol. 2018;3(2):159–74.

21. Sucipto TH, Setyawati H, Churrotin S, Amarullah IH, Sumarsih S, Wardhani P, and Soegijanto S. Anti-Dengue Type 2 Virus Activities of Zinc (II) Complex Compounds with 2-(2,4-dihydroxyphenyl)-3,5,7-trihydroxycromen-4-one Ligands In Vero Cells. Indones J Trop Infect Dis. 2019;7(5):105-108.

22. Sucipto TH, Churrotin S, Setyawati H, Kotaki T, Martak F, Soegijanto S. Antiviral Activity of Copper(II) Chloride Dihydrate Against Dengue Virus Type-2 in Vero Cell. Indones J Trop Infect Dis [Internet]. 2017;6(4):84. Available from: http://e-journal.unair.ac.id/index.php/IJTID/article/view/3806

23. Biot C, Castro W, Botté CY, Navarro M. The therapeutic potential of metal-based antimalarial agents: Implications for the mechanism of action. Dalt Trans. 2012;41(21):6335–49.

24. Liu Y, Guo M. Studies on Transition Metal-Quercetin Complexes Using Electrospray Ionization Tandem Mass Spectrometry. Molecules. 2015;20:8583-8594.

25. Sucipto TH, Churrotin S, Setyawati H, Mulyatno KC, Amarullah IH, Ueda S, et al. INHIBITORY ACTIVITY OF COBALT (II)–MORIN COMPLEX AGAINST THE REPLICATION OF DENGUE VIRUS TYPE 2. 2017;6(6):6–9.

26. Raut R, Beesetti H, Tyagi P, Khanna I, Jain SK, Jeankumar VU, et al. A small molecule inhibitor of dengue virus type 2 protease inhibits the replication of all four dengue virus serotypes in cell culture. Virol J. 2015;12(1):1–7.