Enhancing identification of cancer types via lowly-expressed microRNAs

Roni Rasnic¹, Nathan Linial¹,∗ and Michal Linial²,∗

¹School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel and ²Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem 91904, Israel

Received October 19, 2016; Revised March 15, 2017; Editorial Decision March 19, 2017; Accepted March 31, 2017

ABSTRACT
The primary function of microRNAs (miRNAs) is to maintain cell homeostasis. In cancerous tissues miRNAs’ expression undergo drastic alterations. In this study, we use miRNA expression profiles from The Cancer Genome Atlas of 24 cancer types and 3 healthy tissues, collected from >8500 samples. We seek to classify the cancer’s origin and tissue identification using the expression from 1046 reported miRNAs. Despite an apparent uniform appearance of miRNAs among cancerous samples, we recover indispensable information from lowly expressed miRNAs regarding the cancer/tissue types. Multiclass support vector machine classification yields an average recall of 58% in identifying the correct tissue and tumor types. Data discretization had led to substantial improvement, reaching an average recall of 91% (95% median). We propose a straightforward protocol as a crucial step in classifying tumors of unknown primary origin. Our counter-intuitive conclusion is that in almost all cancer types, highly expressing miRNAs mask the significant signal that lower expressed miRNAs provide.

INTRODUCTION
Mature microRNAs (miRNAs) are short, non-coding RNA molecules. They lead to post-transcriptional repression by reducing the stability of mRNAs and attenuating the translation machinery (1). In humans, there are about 1900 miRNA genes that yield ~2600 mature miRNAs. The expression levels of miRNAs in healthy tissue span five to six orders of magnitude (2).

In all multicellular organisms including humans, miRNAs were implicated in embryogenesis, tissue identity and development. As the gatekeepers of cell homeostasis (3), miRNAs respond to alteration in cell regulation that occurs during viral infection, inflammation and numerous pathologies. In mammals, cell transformation and carcinogenesis are accompanied by drastic alterations in miRNA expression profiles (4,5). Those miRNAs that are associated with carcinogenesis and metastasis are called oncomiRs (6). They were implicated in targeting components of the cell cycle, DNA repair, oncogenes or tumor suppressor genes (7,8). Most oncomiRs are expressed in multiple cancer tissues. However, some are specific to only certain cancer tissues. For example, human miR-21 over-expression is associated with almost all cancers while miR-15 and miR-16 expressions are mostly associated with B-cell neoplasm. Other miRNAs (miR-143 and miR-145) directly regulate other oncomiRs and thus are candidates for anti-tumor therapy (9). Therefore, altered miRNA expression in cancerous versus healthy tissues is suggested as invaluable biomarkers, for cancer diagnosis and prognosis and as a lead for novel therapeutic approach (10). Despite advances in understanding cell deregulation by miRNAs in cancers for most miRNAs, a relation between expression level, diagnosis and prognosis for specific cancer types cannot be drawn (see ‘Discussion’ section in (11,12)).

From a clinical perspective, profiling miRNAs is important for: (i) selecting optimal treatment; (ii) monitoring the disease’s progression; (iii) identifying the primary origin of a metastatic cancer (12). For example, miR-10b level was shown to be a prognosis indicator for chemotherapeutic resistance in colorectal cancer (13) while miR-30c inhibits tumor chemotherapy resistance in breast cancer (14). The monitoring of minute miRNAs levels in patient’s body fluids allows a follow up for treatment and a direct assessment for disease’s progression (5,15).

The goal of our study is to use the miRNA expression profile data from The Cancer Genome Atlas (TCGA) toward the task of classifying different cancerous tissues and their disease/healthy states. TCGA provides rich molecular data from cancer patients on an unprecedented scale (16), with samples of >25 cancer types. We focused on miRNA profiles that report on the normalized expression level of each of the 1046 analyzed miRNAs. Specifically, we ask: (i) which miRNAs best capture the information needed to distinguish the various cancerous types and origin? (ii) Which
tissues are prone to false classifications? (iii) Can we find a biological interpretation of the set of informative miRNAs?

MATERIALS AND METHODS

Data collection

MicroRNAs (miRNAs) profiles were extracted from TCGA (collected between October 2013 and January 2014) (17–20). We defined a class by coupling the originating tissue with the label of the sample’s state (i.e. cancerous or healthy). We limited our analysis to classes with over 50 samples. In total we collected 27 classes. Three classes of healthy tissues are abbreviated as kidney, thyroid and breast. Additionally, 24 cancerous classes and their acronyms are listed in Table 1.

The 27 classes include 8522 distinct samples. Each sample includes the expression values of 1046 miRNAs. We assessed the similarity among patient samples by calculating the cosine of the angle between the vectors of miRNA expression. These cosines were used as a proxy to the initial separation ability and similarity among classes. The cosine similarity over mean-centered vectors is very similar to Pearson correlation. This similarity measure is less biased toward the extreme values. The lists of all samples and miRNAs' TCGA identifiers are provided in Supplementary Table S1.

Data transformation

We apply a rough discretization to the data, according to miRNA expression level, measured in reads per million (RPM). The threshold for data transformation was carefully determined by a systematic analysis of the entire range of thresholds. The threshold that performed best, and was stable for the different datasets was found to be 30 RPM. We used three data representations: raw, dichotomy and trichotomy. Raw representation include the unprocessed data as collected from the TCGA. For the dichotomy, there are two categories: one for expression levels strictly between 0 and 30 RPM, and a second one for everything else. A somewhat more refined classification is the trichotomy. For this representation data was partitioned to non-expressed, lowly expressed (expression levels from 0 to 30 RPM) and highly expressed (>30 RPM). On average, each sample has 306 lowly expressed miRNAs (standard deviation (s.d.) of 43.91) and 163 highly expressed miRNAs (s.d. of 18.58).

Machine learning model

Human TCGA samples were classified to the 27 classes (see above) by training a multiclass support vector machine (SVM) classifier (21). We used a Python implementation based on the scikit-learn package (22). The training sets for the raw data, the dichotomy and the trichotomy were 40% of the samples of each class. The sensitivity of the SVM classifier to the size of the training set was tested. The tests were repeated with training set comprised of 20–80% of each class of samples, with increments of 10%. Our results for both data transformations were consistent and stable for training sets between 40 and 80% of the samples. However, reducing the training sets to <40% resulted in a gradual decline in the recall rate results. Both dichotomy and trichotomy schemes were run 1000–10 000 times each. Scikit-learn cross-validation mechanism was used in order to prevent over-fitting.

We added a majority vote procedure. The data were randomly partitioned into 40% of unseen samples and 60% seen, that were used for training. We created five training sets, each of which comprised of a random subset of two-thirds of the seen part and generated using a cross-validation as described above. For each set, two classification matrices were created, one based on the 30 RPM threshold, and the other based on a 60 RPM threshold. The latter provides an additional assessment for the sensitivity of the threshold on the performance. We then run our machine-learning procedure on each of these five sets and test them on the unseen part of the data. Our final classification is chosen by carrying a plurality vote among these 10 classification results.

Performance evaluation and error analysis

We assessed our models according to their average recall rate for each of the classes. Recall is defined as [true positive]/[true positive + false negative]. The average, median and s.d. were measured for over 300 independent runs of the SVM protocol on raw or discretized data.

We carried out two types of error analysis: at the sample level and at the class level. First, we analyzed the errors made per each of the samples over distinct runs (sample-based error). A second error analysis concerns a class misclassifications and the identity of the faulty assignment (class-based error). The plurality vote was implemented in our final classification in order to overcome sample-based errors. We have merged the classes rectum adenocarcinoma (READ) and colon adenocarcinoma (COAD) in order to reduce the extent of class-based errors.

Informative miRNA extraction

Several methodologies were applied to test whether there is a selected set of miRNAs that are most informative toward a successful classification task. Namely, whether we can replicate our best results using only a subset of the miRNA collection. To this end, numerous methodologies were tested (e.g. SVD decomposition, a systematic removal of individual miRNAs and testing the impact on the performance). Our best and consistent results were obtained using the following method: for each miRNA we create an 81-dimensional vector, with 3 coordinates for each of the 27 classes (24 cancer types and 3 healthy tissues). These three coordinates are defined as follows: if there are N samples in this class for the miRNA at hand, of which N_0 are not expressed, N_1 are between 0 and 30 RPM and N_2 are highly expressed, then we set the first coordinate at N_0/N, the second to N_1/N and the third to N_2/N. We then calculate the s.d. of each of the expression levels among the 27 classes separately, and calculate the sum of the s.d. Formally:

sd(N_0, N_1, N_2) = \sqrt{sd(N_0^2, N_1^2, N_2^2)}

informative miRNAs were extracted from TCGA (collected between October 2013 and January 2014) (17–20). We defined a class by coupling the originating tissue with the label of the sample’s state (i.e. cancerous or healthy). We limited our analysis to classes with over 50 samples. In total we collected 27 classes. Three classes of healthy tissues are abbreviated as kidney, thyroid and breast. Additionally, 24 cancerous classes and their acronyms are listed in Table 1.

The 27 classes include 8522 distinct samples. Each sample includes the expression values of 1046 miRNAs. We assessed the similarity among patient samples by calculating the cosine of the angle between the vectors of miRNA expression. These cosines were used as a proxy to the initial separation ability and similarity among classes. The cosine similarity over mean-centered vectors is very similar to Pearson correlation. This similarity measure is less biased toward the extreme values. The lists of all samples and miRNAs’ TCGA identifiers are provided in Supplementary Table S1.

Data transformation

We apply a rough discretization to the data, according to miRNA expression level, measured in reads per million (RPM). The threshold for data transformation was carefully determined by a systematic analysis of the entire range of thresholds. The threshold that performed best, and was stable for the different datasets was found to be 30 RPM. We used three data representations: raw, dichotomy and trichotomy. Raw representation include the unprocessed data as collected from the TCGA. For the dichotomy, there are two categories: one for expression levels strictly between 0 and 30 RPM, and a second one for everything else. A somewhat more refined classification is the trichotomy. For this representation data was partitioned to non-expressed, lowly expressed (expression levels from 0 to 30 RPM) and highly expressed (>30 RPM). On average, each sample has 306 lowly expressed miRNAs (standard deviation (s.d.) of 43.91) and 163 highly expressed miRNAs (s.d. of 18.58).

Machine learning model

Human TCGA samples were classified to the 27 classes (see above) by training a multiclass support vector machine (SVM) classifier (21). We used a Python implementation based on the scikit-learn package (22). The training sets for the raw data, the dichotomy and the trichotomy were 40% of the samples of each class. The sensitivity of the SVM classifier to the size of the training set was tested. The tests were repeated with training set comprised of 20–80% of each class of samples, with increments of 10%. Our results for both data transformations were consistent and stable for training sets between 40 and 80% of the samples. However, reducing the training sets to <40% resulted in a gradual decline in the recall rate results. Both dichotomy and trichotomy schemes were run 1000–10 000 times each. Scikit-learn cross-validation mechanism was used in order to prevent over-fitting.

We added a majority vote procedure. The data were randomly partitioned into 40% of unseen samples and 60% seen, that were used for training. We created five training sets, each of which comprised of a random subset of two-thirds of the seen part and generated using a cross-validation as described above. For each set, two classification matrices were created, one based on the 30 RPM threshold, and the other based on a 60 RPM threshold. The latter provides an additional assessment for the sensitivity of the threshold on the performance. We then run our machine-learning procedure on each of these five sets and test them on the unseen part of the data. Our final classification is chosen by carrying a plurality vote among these 10 classification results.

Performance evaluation and error analysis

We assessed our models according to their average recall rate for each of the classes. Recall is defined as [true positive]/[true positive + false negative]. The average, median and s.d. were measured for over 300 independent runs of the SVM protocol on raw or discretized data.

We carried out two types of error analysis: at the sample level and at the class level. First, we analyzed the errors made per each of the samples over distinct runs (sample-based error). A second error analysis concerns a class misclassifications and the identity of the faulty assignment (class-based error). The plurality vote was implemented in our final classification in order to overcome sample-based errors. We have merged the classes rectum adenocarcinoma (READ) and colon adenocarcinoma (COAD) in order to reduce the extent of class-based errors.

Informative miRNA extraction

Several methodologies were applied to test whether there is a selected set of miRNAs that are most informative toward a successful classification task. Namely, whether we can replicate our best results using only a subset of the miRNA collection. To this end, numerous methodologies were tested (e.g. SVD decomposition, a systematic removal of individual miRNAs and testing the impact on the performance). Our best and consistent results were obtained using the following method: for each miRNA we create an 81-dimensional vector, with 3 coordinates for each of the 27 classes (24 cancer types and 3 healthy tissues). These three coordinates are defined as follows: if there are N samples in this class for the miRNA at hand, of which N_0 are not expressed, N_1 are between 0 and 30 RPM and N_2 are highly expressed, then we set the first coordinate at N_0/N, the second to N_1/N and the third to N_2/N. We then calculate the s.d. of each of the expression levels among the 27 classes separately, and calculate the sum of the s.d. Formally:

sd(N_0, N_1, N_2) = \sqrt{sd(N_0^2, N_1^2, N_2^2)}

sd(N_0, N_1, N_2) = \sqrt{sd(N_0^2, N_1^2, N_2^2)}
Table 1. List of the 24 cancerous classes and their acronyms

Cancer name	Acronym
Adrenocortical carcinoma	ACC
Bladder urothelial carcinoma	BLCA
Brain lower grade glioma	LGG
Breast invasive carcinoma	BRCA
Cervical squamous cell carcinoma and endocervical adenocarcinoma	CESC
Colon adenocarcinoma	COAD
Esophageal carcinoma	ESCA
Head and neck squamous cell carcinoma	HNSC
Kidney chromophobe	KICH
Kidney renal clear cell carcinoma	KIRC
Kidney renal papillary cell carcinoma	KIRP
Liver hepatocellular carcinoma	LHC
Lung adenocarcinoma	LUAD
Lung squamous cell carcinoma	LUSC
Pancreatic adenocarcinoma	PAAD
Pheochromocytoma and paraganglioma	PCPG
Prostate adenocarcinoma	PRAD
Rectum adenocarcinoma	READ
Sarcoma	SARC
Skin cutaneous melanoma	SKCM
Stomach adenocarcinoma	STAD
Thyroid carcinoma	THCA
Uterine carcinosarcoma	UCS
Uterine corpus endometrial carcinoma	UCEC

We expect miRNAs of higher summed s.d. values to be more informative, since the s.d. captures the miRNAs' variability among different classes. We chose not to assign distinct weights to different classes despite their differing samples' size (ranging from 57 for uterine carcinosarcoma to 1066 for breast invasive carcinoma; BRCA).

RESULTS

Many cancerous tissues have similar miRNA profiles

The main goal of our study is to classify cancer classes using the information encoded by miRNA profiles from patients. For most cancer types, a small number of highly expressed miRNAs undergo a drastic change in expression level along the progression of the disease. Therefore, it is a commonly held view that uniquely expressed miRNAs might be used for diagnosis, prognosis and possibly also for disease treatment. Here we revisit this view and test the miRNA heterogeneity and expression consistency in an unbiased way. We analyze many different cancer types and tissues, and thousands of patient samples.

We wanted to get a sense of the similarity between the vectors of miRNA expression values among samples from each given tissue. We found high correlations among the miRNA expression vectors when both samples are healthy or when both are diseased (within the same tissue) and much lower for healthy versus cancerous one (an average correlation coefficient of $r = 0.97$ versus 0.37). Figure 1 shows an analysis for all pairs of patients with lung adenocarcinoma samples (521 samples, abbreviated LUAD) and matched healthy samples (~ 50 samples). The similarity between each pair is indicated (cosine values, see ‘Materials and Methods’ section). We show that healthy and cancerous tissues exhibit different patterns. Importantly, healthy samples are similar to each another as are the diseased samples.

We tested whether this property (Figure 1) extends to all other cancerous and healthy tissues. We therefore restricted our analysis to tissues for which samples from both healthy and cancerous patients are available. As Figure 2A shows, each healthy tissue is well characterized by its miRNAs’ profile. For example, breast tissues in different patients have very similar miRNA profiles and differ significantly from liver profiles. Even the two types of lung tissues are visibly distinguishable from each other. However, the distance matrix for the diseased samples (5 classes, ~ 2700 patients, Figure 2B) is relatively uniform. While all the diseased tissues are rather similar using our similarity matrix, a somewhat higher similarity is visible between the two lung diseases, the adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). We concluded that the trend that we observed in Figure 1 applies to other tissues. Namely, the distance among all pairs of diseased tissues is lower than that among the corresponding healthy tissues.

Figure 2C offers a bird’s eye view of miRNA-based information for all 8522 samples that were included in our analysis, according to 27 classes discussed in this study. The entries show the average of the correlations over all samples in each pair of classes. Note that the values on the diagonal are only slightly higher than the rest of the values in this symmetric matrix. It is noteworthy that brain lower grade glioma (LGG) markedly differs from other cancerous tissues, yet exhibiting a significant self-similarity. Additionally, sarcoma samples (SARC, diagonal, Figure 2C) exhibit rather low (0.61) average correlation, suggesting high variability of the miRNA expression in this cancer type.

Lowest expressed miRNAs improve cancer type classification

In view of the relatively homogenous pattern of miRNA profiles among diseased tissues (Figure 1), it is clear that the identification of cancer classes using miRNA profiles requires the use of a computational method that takes ad-
We applied a simple dichotomy that partitions the lowly expressed miRNA (<30 RPM) versus the rest of the miRNAs. Typically, ~70% of the miRNAs are expressed at the range of >0–30 RPM. This simple transformation (see ‘Materials and Methods’ section) dramatically reduces the volume of data, and concentrates on only ~0.02% of the original signal (i.e. the sum total of miRNAs expression values). Importantly, the application of naive dichotomy already improves the performance of our classifier to an average recall rate of 66% (median of 80%, Figure 3A).

We sought additional data processing procedures to further improve the classification performance. In dichotomy we treat equally miRNAs that are expressed at levels above the threshold (>30 RPM) and those that are not expressed at all in a specific class. We next separate these two sets, and replace the data transformation to a trichotomy (Figure 3A, see ‘Materials and Methods’ section). This transformation yields a substantial improvement. The classifier thus reaches an average recall rate of 88% (median 91%, Figure 3B and Table 2). Figure 3B shows the improvement in the classification success for the trichotomy mode with respect to the original raw data. It is clear that some classes benefit more from this transformation than others. For 8 out of the 27 classes the observed improvement was >3-folds (Figure 3B).

We analyzed the dependence of the recall rate on the chosen threshold. Figure 4 was generated using an identical training and testing sets for each of the 200 classification tests. As shown in Figure 4C and D, the recall rate remained virtually unchanged for thresholds ranging between 5 and 30 RPM. This phenomenon remained robust when using different training and testing sets. Moreover, the performance *per se* is most stable for different training and testing sets when using the threshold of 30 RPM. Note that raising the threshold above 30 RPM affects the performance nega-
Figure 2. Analysis of the relations between samples from different tissue origin. (A) Distance matrix of healthy samples from five sources. The healthy samples are far more similar within the tissue than among tissues, substantial similarity is observed between healthy samples from LUAD and lung squamous cell carcinoma (LUSC) that are marked as lung and lung2, respectively. (B) Matched diseased samples from the same tissues reported in (A). The number of patients from each class is indicated (axis Y). We excluded classes that are supported by <50 samples (see ‘Materials and Methods’ section). As oppose to the healthy samples, the distances between the patient samples are rather uniform with no clear partition between diseased classes. Blue to red indicating the range from similarity to maximal distance. (C) A ‘birdview’ of the miRNA-based information for >8500 TCGA samples. All 27 classes are listed in an alphabetical order. The classes that are associated with healthy samples (breast, kidney and thyroid) are marked by arrows. Note that the correlation within the same class (the diagonal) is not necessarily maximal (e.g. 0.61 for Sarcoma, SARC). The brain lower grade glioma (LGG) is an outlier with maximal distance to any other class.

It is evident that for both the dichotomy and trichotomy modes, information within the very low expression levels is critical for the classification task. The contribution of the very lowly expressed miRNAs to the classification task was further assessed. We zoomed on miRNAs expressed at levels up to x, where x ranges from >0 to 30. We trained the classifier again for different values of x and artificially re-labeled miRNAs that are smaller than x as non-expressed. When marking as non-expressed miRNAs with expression levels under 10 RPM, there was no significant change to the classification results, while applying x > 10 RPM led to a decline in performance. Typically, only ~8% of the miRNAs are listed in the range of 10–30 RPM, while 25% of the entire list of miRNAs are within the range of 1–10 RPM. We conclude that lowly expressed miRNAs that carry fundamental information for the classifier, mostly (but not entirely) reside in the 10–30 RPM range.

Not all tissue types are equally hard to classify

As mentioned, trichotomy has resulted in a substantial improvement for many classified tissues. For 11 out of the 27 classes, we consistently reached a recall rate of 95% or above...
Figure 3. Classification results following data transformation. (A) Average recall rates for each class while using raw data (blue), data in a dichotomous representation (empty diamonds) and data following the trichotomous representation (red). (B) Fold improvement achieved by applying trichotomous transformation with respect to the results from raw data without any processing. The classes are sorted alphabetically.

(Ref 32). Importantly, the classification success does not immediately reflect the sample size. For example, a 96% recall rate for adrenocortical carcinoma is based on only 80 samples while LUSC achieved only 84% recall rate with a sample size which is 6-fold larger (Ref 32). Specifically, we are doing poorly on classifying esophageal carcinoma and READ, with a recall rate of 43 and 39%, respectively.

We tested the sensitivity of the classification performance with respect to alternative machine learning methods: Random Forest and SVM with polynomial and radial basis function (RBF) kernels. The results for Random Forest and SVM with polynomial kernel were somewhat worse than the used SVM (see ‘Materials and Methods’ section). RBF kernel gave an improved performance on the raw data, but failed to improve following data discretization and data transformation.

A third of the classification errors are interpretable

We tried to refine our understanding on features that govern the success/failure in the classification task. To this end we inspected the results in view of the different errors that are made. Figure 5 presents a ‘wheel view’ for all 27 classes with a visual indication on the samples’ size for each class, and the typical errors. Cross-edges in the graph and their color indicate the extent and nature of all misclassifications. The wheel indicates the true-positives and false-positives (inner arc), as well as the true-positives and false-negatives (middle arc). From the outermost arc one can estimate the sum
Table 2. Average classification recall rate for classification of the 27 classes by various data transformation protocols

Class	# of samples	Raw data	Dichotomy	Trichotomy	Plurality vote
ACC	80	0.7	0.86	0.96	0.96
BLCA	275	0.3	0.57	0.8	0.77
BRCA	1066	0.86	0.96	0.97	0.98
Breast	102	0.7	0.23	0.91	0.92
CESC	258	0.23	0.33	0.75	0.78
COAD*	433	0.82	0.9	0.8	0.97
ESCA	127	0.03	0.02	0.43	0.52
HNSC	518	0.8	0.89	0.89	0.92
KICH	66	0.74	0.53	0.92	0.94
Kidney	71	0.19	0.55	0.99	1
KIRC	535	0.87	0.96	0.95	0.95
KIRP	258	0.77	0.74	0.91	0.91
LGG	518	0.99	1	1	0.99
LIHC	269	0.8	0.95	0.98	0.97
LUAD	499	0.78	0.83	0.9	0.94
LUSC	467	0.6	0.69	0.84	0.87
PAAD	96	0.12	0.46	0.91	0.89
PCPG	184	0.93	0.99	0.99	1
PRAD	421	0.97	0.99	0.99	1
READ*	159	0.03	0.02	0.39	
SARC	196	0.32	0.8	0.97	0.99
SKCM	411	0.92	0.99	0.99	0.99
STAD	353	0.54	0.59	0.87	0.87
THCA	507	0.94	1	0.99	1
Thyroid	59	0.08	0	0.82	0.88
UCRC	542	0.7	0.93	0.94	0.95
UCS	57	0.08	0.15	0.79	0.8
AVERAGE	315.63	0.59	0.66	0.88	0.91

*COAD and READ classes were merged for the plurality vote protocol.

Figure 4. Average recall rate when applying 200 separation thresholds from 5 to 1000 RPM with 5 RPM increments. (A) The average recall rate obtained for the dichotomous transformation. (B) The average recall rate obtained for the trichotomous transformation. (C) Zooming on results of the dashed framed area in (A), with thresholds in the range of 0–200 RPM for the dichotomous transformation. (D) Zooming on results of the dashed framed area in (B), with thresholds in the range of 0–200 RPM for the trichotomous transformation. The drop in performance supports the notion of increasing noisy data by increasing the threshold. Note a difference in the average recall rate for the dichotomous versus the trichotomous transformations.
We categorized the errors by biological relevance of the classification errors: (i) cancerous state errors: correct classified tissue but failure in determining healthy versus diseased state. These are restricted to the three instances of tissues that are represented by both healthy and cancerous instances. (ii) Intra-tissue errors: misclassification of one class to another that is anatomically adjacent. Such errors are limited to classes with multiple diseases of the same/related organ. (iii) Inter-class errors: classification mistakes that are not obviously interpretable. Figure 6A shows schematically the possible error types for all 27 classes. Figure 6B indicates the distribution of different error types among the relevant categories of errors. Figure 6C focuses on an example for inter-class error and the source for false positives. It shows that in the case of BLCA, the majority of the false positives (10.6 out of 12.7%) derive from misclassification from six classes of cancer carcinomas (additional classes, that contribute <1% of false positives each are not shown).

Improving classification success from errors’ consistency

As Figures 5 and 6 demonstrate, many errors are recurrent among specific classes. We tested the effect of merging classes that are characterized by abundant, bi-directional false assignments by the classifier. The most prominent case involves READ and COAD, respectively. Merging these two classes has improved the average recall rate, while merging other pairs of classes has worsened the overall classification success (not shown).

When we examined the errors per sample it transpired that for certain samples, classification varied with the (random) choice of training sets. A plurality vote protocol was
applied in order to reduce this dependency (see ‘Materials and Methods’ section). The plurality vote led to an additional improvement in the average classification recall rate. For most classes the improvement is rather modest. However, merging the READ and COAD classes that were reported with 39 and 80% recall rate, respectively was highly beneficial. Actually the merged collection of samples reached 97% recall. The average recall rate for the valid 26 classes has reached a further improvement to 91%, with a median of 95% (Table 2).

A cancer type classification by a subset of miRNAs

Notwithstanding the impressive recall rate of the classifier (91%, with 95% median), we are still unable to quantify...
the contribution of any specific miRNA to this success. To this end, we designed a ranking score for miRNAs according to their potential in contributing to the classifier success (see ‘Materials and Methods’ section). Empirically, we compared the results achieved when classifying with a reduced vector of miRNA expression. We randomly drew various groups of 50 miRNAs out of the 1046 miRNA discussed in this study (Supplementary Table S1) and tested the classification results when using the data as is (raw data), as well as following the trichotomy transformation (Figure 7A). We also tested the results when selecting the 50 most informative miRNA (according to rank by sum of the statistical variation, see ‘Materials and Methods’ section). We repeated this randomization test for a growing set of miRNAs. Note that as the set size grows, a random set tends to include more informative miRNAs (e.g. for 200 miRNAs). Consequently, the differences between the performance of the randomized set and the most informative set is reduced. Already the 50 most informative miRNAs attain an impressive 75% recall rate, suggesting that much of the classification results when using the data as is (raw data), as well as following the trichotomy transformation (Figure 7A). We also tested the results when selecting the 50 most informative miRNA (according to rank by sum of the statistical variation, see ‘Materials and Methods’ section). We repeated this randomization test for a growing set of miRNAs. Note that as the set size grows, a random set tends to include more informative miRNAs (e.g. for 200 miRNAs). Consequently, the differences between the performance of the randomized set and the most informative set is reduced. Already the 50 most informative miRNAs attain an impressive 75% recall rate, suggesting that much of the classification results when using the data as is (raw data), as well as following the trichotomy transformation (Figure 7A). With 300 of the most informative miRNAs, recall rate reached on average 87%, approaching the recall rate achieved when all miRNAs are employed along with the trichotomy transformation (91%).

We tested whether the miRNAs that contribute most to the classification task are indeed those that were implicated in cancer progression, prognosis and diagnosis. To this end, we analyzed the 20 most informative miRNAs by the criterion used in Figure 7A. The source of variability is shown as reflected by the s.d. associated with the three coordinates for each class (no expression, lowly expressed (< 30) and highly expressed (> 30 RPM). For a complete rank of informative miRNAs see Supplementary Table S3. It is clear that some informative miRNAs rely on variability in the vector of highly expressed (Figure 7B, compare miR-205 to miR 934). For others, no variability is observed in the vector for non-expressed (Figure 7B, blue). While both hsa-mir-141 and hsa-mir-215 are among the most informative miRNAs, their source of variability is rather different. While hsa-miR-205 is characterized by a very large variation to in the highly expressed section, yet a substantial variability is recorded for this miRNA also in the other two categories (non-expressed and lowly expression).

DISCUSSION

Cellular quantities of miRNAs

Our results uncover the power of the least expressed miRNAs in distinguishing a large collection of tissues and cancerous types. The common notion is that the quantity of mature miRNAs in the cell is critical for cell regulation. Specifically, excess of a specific type of miRNA potentially titrates out genuine mRNA targets (23). As a secondary effect, an overflow of specific miRNA will most likely result in its binding to non-genuine targets, the so-called called ‘off target’ effect (24). The overall quantitative effect of miRNA levels is discussed in terms of competition (25,26) and co-operativity (27). Most studies that consider miRNAs in living cells tend to be biased toward the analysis of highly expressed miRNAs. Within such framework, lowly expressed miRNAs are most likely discarded with the premise that they have no impact of the mass effect.

In this study, we show for the first time that for the task of cancer classification, miRNA-based information is encoded by the minute expression of miRNAs that together account for only 0.02% of the total reads. Moreover, it is apparently the long distributional tail of miRNA expression that carries the signal for correctly identifying multiple cancer/tissue types. We actually show that including the entire profile of miRNAs leads to poorer performance as the principal, informative signal for class identification is masked.

A practical consequence of our observation concerns the preferred sequencing depth needed for a routine miRNA profiling. The high coverage that is reported for all samples in TCGA, entails a high sensitivity. Specifically, about 45–50% of the miRNAs, in almost all classes are expressed at a level of 0–1 RPM. The miRNA list with values of 1–10 RPM accounts for an additional 25% of the miRNA list. Classically, when sequencing short RNA (<200 nt), most protocols call for a coverage ranging from 0.5 to 1.5M reads, under the assumption that discovery rate for new miRNAs is extremely low above 2M reads (28). We argue that the high coverage provided by the TCGA is essential for (i) increased reliability of miRNA identification (i.e. reporting on expression from a list of 1046 miRNAs); (ii) highlighting non-classical and often low expressing miRNAs.

Low expressing miRNA act as intrinsic markers for tissue specificity

An unexpected outcome of our study refers to the stability and consistency in the expression of the lowly expressed miRNAs through many samples of the same cancer class. Ample observations show that extreme conditions (e.g. stress, transformation, viral infection, differentiation) lead to drastic changes in miRNA expression profiles in cell types. We postulate that in conditions where miRNA expression patterns dramatically change (e.g. cancer, stem cell differentiation, hypoxia etc.), the tail of the miRNA distribution is hardly affected and consequently cell identity and the origin of the cells remain robust. This interpretation is supported by the gradual manipulating of the data by removal of miRNAs that belong to the lowly expressed tail and assessing the robustness of the classifier to such manipulations (Figure 4).

mRNA profile can be used for sub-classification of cancer types

TCGA is a fast growing resource and has already reached >10 000 samples which are assigned with 33 cancer types. The methodology presented in this study is applicable for a classification task for any number of diseases’ classes that are supported by a large number of instances. We showed that the classification performance is very high for a small set of classes (Figure 3B and Table 2). For example, the recall rate for BRCA is 96–98%. However, a wide spectrum of survival rates (29,30) is associated with breast cancers, supporting the notion of heterogeneous molecular basis of this disease. Therefore, managing the disease is likely to benefit from a refined classification within the broad class of...
Figure 7. Average recall rate achieved when limiting the number of miRNAs. (A) The performance of the classification scheme following reduction of the miRNA sample size to 50, 100 and 200 is shown. The blue markers show the results with randomly selected miRNAs in their raw form are used (i.e. when using expression levels as obtained from TCGA). The red markers were run with randomly selected miRNA in the trichotomy format. The orange markers were run with the top informative miRNA in the trichotomy form (see ‘Materials and Methods’ section). The filled square in the box-plot captures 75% of the data. Note that the s.d. for each of the informative trichotomy runs is very low (0.1%) while the s.d. for the randomly chosen miRNAs is substantially higher. (B) A list of 20 most informative miRNAs according to the s.d. of the three vectors used to define the trichotomous transformation. The miRNAs are sorted according to the s.d. for the non-expressed vector. The full list of miRNAs associated with the s.d. for each of the three coordinates and ranked by the variability sum is available in Supplementary Table S3.

BRCA. A prognosis profile combining mRNAs, miRNAs and DNA methylation had been proposed (31). In addition to the genes that were implicated as driver mutations, the authors identified number of informative miRNAs such as hsa-miR-328, hsa-miR-484 and hsa-miR-874. While these miRNAs were associated with cell proliferation, angiogenesis and tumor-suppressive functions (32,33), they are poor separators of BRCA from other major tumor types (34). Actually, these miRNAs were implicated in COAD (35) and mostly in renal and lung carcinomas (34).

Importantly, each cancer type displays its unique miRNA set. For example, overexpressed miRNAs that were implicated in gastric cancer include miR-17-5p, miR-18a, miR-18b, miR-19a, miR-20b, miR-20a, miR-21, miR-106a, miR-106b, miR-135b, miR-183, miR-340-3p, miR-421 and miR-658. In colon cancer, in addition to the validated oncomiRs, miR-16, miR-31, miR-34a, miR-96, miR-125b and
miR-133b were overexpressed. The list of cancer associated miRNAs for pancreatic ductal adenocarcinoma includes miR-15b, miR-95, miR-155, miR-186, miR-190, miR-196a, miR-200b, miR-221 and miR-222 (reviewed (36)). Among the under-represented miRNAs (called anti-oncomiRs; let-7a-1, miR-143 and miR-145) were validated for a number of cancer types.

We found no statistical evidence for an overlap between the ‘most informative’ miRNAs (e.g. Supplementary Table S3 and Figure 7B) and miRNAs that are reported in the literature to govern cancer progression. The later includes an extended list of oncomiRs including miR-15, miR-16, miR-17, miR-18, miR-19a, miR-19b, miR-20, miR-21, miR-92, miR-125b, miR-155 and miR-569. We postulate that there is no direct correspondence between the informative tail of lowly expressing miRNAs and the dominating miRNAs that best associated with a transition of a cell to its transformed, cancerous state.

Among the top 20 most informative miRNAs, miR-205 and miR-141 exhibit maximal variability for the 27 classes (by a vector of 81 values, see ‘Materials and Methods’ section). Addition informative miRNAs (Figure 7B) include miR-7-3, miR-31, miR-15a/15b, miR-149, miR-196a-1, miR-200a/200b/200c, miR-215, miR-224, miR-328, miR-429, miR-552, miR-934, miR-944 and miR-1251. In view of the lack of any statistical enrichment between miRNAs assigned as the most significant ones (Figure 7B) and the collection of oncomiRs/anti-oncomiRs from the literature, we postulate that the multiclass typing and markers for tumorigenesis representing different aspects in the characterization of the disease.

Inspecting the top 50 miRNAs from our results addresses (indirectly) a question on the nature of miRNAs that capture most of the classification information. Among the most variable miRNAs, three of the miRNAs (hsa-miR-141, hsa-mir-200a and hsa-mir-200b) belong to one family (mir-8) with a high correlation in their appearance in all 27 classes ($r^2 = 0.71–0.74$).

Clinical application and premises

Our results provide an additional component for the challenging task of identifying cancer sample origin. At present, TCGA data do not provide samples tagged as Cancer of unknown primary (CUP), and thus we could not test our predictor on CUP samples. Other direct measurements (e.g. immune-histochemical, polymerase chain reaction for mRNA expression) are needed for selecting the optimal treatment for these patients.

A set of miRNAs that best classify cancer samples by tissue of origin was presented in view of the success in diagnosis of CUP (37–39). A significant overlap between the most informative miRNAs (extracted from (38)) and our SVM protocol was found. By comparing informative 50 candidates from the two studies, we detected 10 shared miRNAs (miR-122, miR-138-1, miR-141, miR-146a, miR-196a, miR-200a, miR-200c, miR-205, miR-31 and miR-9-3). Despite a large difference in the analyzed data (300 versus 8000 samples) and the methodology used (decision tree versus SVM), the consistency among informative miRNAs is intriguing (P-value $2E^{-5}$). Ample evidence demonstrated the impact of alteration in hsa-miR-200/hsa-miR-141 expression on proliferation, morphology and aberrant histone acetylation in numerous cancers and cell types.

At last, we inspected the features that specify the least informative miRNAs in our study. There are 90 miRNAs (out of 1046) that are completely non-informative to our task. Namely, in the trichotomy transformation they are uniformly expressed with respect to the 3*27 miRNA representation. For these miRNAs the sum of the s.d. (Supplementary Table S3) for each of the trichotomy label is zero. Obviously, these miRNAs cannot contribute to the classification task. Interestingly, several validated oncomiRs are among these miRNAs (e.g. miR-16, miR-17, miR-18 and miR-21). This emphasizes the uncoupling between the informative low expressing miRNAs we have identified for the classification task and highly expressed oncomiRs. The level of expression of oncomiRs are used as valuable markers for cell dysregulation and as such are the hallmark of proliferation and transformation in cancer.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

FUNDING

ERC grant on High Dimensional Combinatorics [339096]; ELIXIR-Excelerate [676559]. Funding for open access charge: ERC grant on High Dimensional Combinatorics [339096]; ELIXIR-Excelerate [676559].

Conflict of interest statement. None declared.

REFERENCES

1. Iorio,M.V. and Croce,C.M. (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med., 4, 143–159.
2. Baffa,R., Fassan,M., Volinia,S., O’Hara,B., Liu,C.G., Palazzo,J.P., Gardiman,M., Rugge,M., Gomella,L.G., Croce,C.M. et al. (2009) MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J. Pathol., 219, 214–221.
3. Dumontier,O., Hinault,C. and Van Obberghen,E. (2013) MicroRNAs and metabolism crosstalk in energy homeostasis. Cell Metab., 18, 312–324.
4. Calin,G.A. and Croce,C.M. (2006) MicroRNA signatures in human cancers. Nat. Rev. Cancer, 6, 857–866.
5. Volinia,S., Calin,G.A., Liu,C.G., Ambs,S., Cimmino,A., Petrocca,F., Visone,R., Iorio,M., Roldo,C., Ferracin,M. et al. (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. U.S.A., 103, 2257–2261.
6. Wang,D., Gu,J., Wang,T. and Ding,Z. (2014) OncomiRDB: a database for the experimentally verified oncogenic and tumor-suppressive microRNAs. Bioinformatics, 30, 2237–2238.
7. Jansson,M.D. and Lund,A.H. (2012) MicroRNA and cancer. Mol. Oncol., 6, 590–610.
8. Lujambio,A. and Lowe,S.W. (2012) The microcosmos of cancer. Nature, 482, 347–353.
9. Kitade,Y. and Akao,Y. (2010) MicroRNAs and their therapeutic potential for human diseases: microRNAs, miR-143 and -145, function as anti-oncomirs and the application of chemically modified miR-143 as an anti-cancer drug. J. Pharmacol. Sci., 114, 276–280.
10. Hayes,J., Peruzzi,P.P. and Lawler,S. (2014) MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol. Med., 20, 460–469.
11. Lu,J., Getz,G., Miska,E.A., Alvarez-Saavedra,E., Lamb,J., Peck,D., Sweet-Cordero,A., Ebert,B.L., Mak,R.H., Ferrando,A.A. et al. (2005) MicroRNA expression profiles classify human cancers. Nature, 435, 834–838.
12. Di Leva, G. and Croce, C.M. (2013) miRNA profiling of cancer. *Curr. Opin. Genet. Dev.*, 23, 3–11.

13. Nishida, N., Yamashita, S., Mimori, K., Sudo, T., Tanaka, F., Shibata, K., Yamamoto, H., Ishii, H., Doki, Y. and Mori, M. (2012) MicroRNA-10b is a prognostic indicator in colorectal cancer and confers resistance to the chemotherapeutic agent 5-fluorouracil in colorectal cancer cells. *Ann. Surg. Oncol.*, 19, 3065–3071.

14. Bockhorn, J., Dalton, R., Nwachukwu, C., Huang, S., Prat, A., Yee, K., Chang, Y.F., Huo, D., Wen, Y., Swanson, K.E. et al. (2013) MicroRNA-30c inhibits human breast tumour chemotherapy resistance by regulating TWF1 and IL-11. *Nat. Commun.*, 4, 1–28.

15. Bryant, R.J., Pawlowski, T., Catto, J.W., Marsden, G., Vessella, R.L., Rhees, B., Kusalik, C., Visakorpi, T. and Hamdy, F.C. (2012) Changes in circulating microRNA levels associated with prostate cancer. *Br. J. Cancer*, 106, 768–774.

16. Monzon, F.A. and Koen, T.J. (2010) Diagnosis of metastatic neoplasms: molecular approaches for identification of tissue of origin. *Arch. Pathol. Lab. Med.*, 134, 216–224.

17. Gore, J., Craven, K.E., Wilson, J.L., Cote, G.A., Cheng, M., Nguyen, H.V., Cramer, H.M., Sherman, S. and Korc, M. (2015) TCGA data and patient-derived orthotopic xenografts highlight pancreatic cancer-associated angiogenesis. *Oncotarget*, 6, 7504–7521.

18. Zhang, W. (2014) TCGA divides gastric cancer into four molecular subtypes: implications for individualized therapeutics. *Chin. J. Cancer*, 33, 469–470.

19. Ho, D.W., Kai, A.K. and Ng, I.O. (2015) TCGA whole-transcriptome sequencing data reveals significantly dysregulated genes and signaling pathways in hepatocellular carcinoma. *Front. Med.*, 9, 322–330.

20. Zhu, Y., Qu, P. and Ji, Y. (2014) TCGA-assembler: open-source software for retrieving and processing TCGA data. *Neuroinform.*, 11, 599–600.

21. Chang, C.C., Hsu, C.W. and Lin, C.J. (2000) The analysis of decomposition methods for support vector machines. *IEEE Trans. Neural Netw.*, 11, 1003–1008.

22. Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaij, J., Gramfort, A., Thirion, B. and Varoquaux, G. (2014) Machine learning for neuroimaging with scikit-learn. *Front. Neuroinform.*, 8, 1–10.

23. Bosson, A.D., Zamudio, J.R. and Sharp, P.A. (2014) Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. *Mol. Cell*, 56, 347–359.

24. Jackson, A.L., Burchard, J., Schelter, J., Chau, B.N., Cleary, M., Lim, L. and Linsley, P.S. (2006) Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. *RNA*, 12, 1179–1187.

25. Tay, Y., Rinn, J. and Pandolfi, P.P. (2014) The multilayered complexity of ceRNA crosstalk and competition. *Nature*, 505, 344–352.

26. Hansen, T.B., Jensen, T.I., Clausen, B.H., Bramsen, J.B., Finsen, B., Damgaard, C.K. and Kjems, J. (2013) Natural RNA circles function as efficient microRNA sponges. *Nature*, 495, 384–388.

27. Balaga, O., Friedman, Y. and Linial, M. (2012) Toward a combinatorial nature of microRNA regulation in human cells. *Nucleic Acids Res.*, 40, 9404–9416.

28. Metpally, R.P., Nasser, S., Malenica, I., Courtright, A., Carlson, E., Ghaffari, L., Villa, S., Tembe, W. and Van Keuren-Jensen, K. (2013) Comparison of analysis tools for microRNA high throughput sequencing using nerve crush as a model. *Front. Genet.*, 4, 1–13.

29. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. *Nature*, 490, 61–70.

30. Tahiri, A., Leivonen, S.K., Lutters, T., Steinfield, I., Ragle, Aure, M., Geiser, J., Makela, R., Nord, S., Riis, M.L., Yakhini, Z. et al. (2014) Deregression of cancer-related miRNAs as a common event in both benign and malignant human breast tumors. *Carcinogenesis*, 35, 76–85.

31. Volinia, S. and Croce, C.M. (2013) Prognostic microRNA/miRNA signature from the integrated analysis of patients with invasive breast cancer. *Proc. Natl. Acad. Sci. U.S.A.*, 110, 7413–7417.

32. Dai, Y., Sui, W., Lan, H., Yan, Q., Huang, H. and Huang, Y. (2009) Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients. *Rheumatol. Int.*, 29, 749–754.

33. Nohata, N., Hanazawa, T., Kikkawa, N., Sakurai, D., Fujimura, L., Chiyomaru, T., Kawakami, K., Yoshino, H., Enokida, H., Nakagawa, M. et al. (2011) Tumour suppressive microRNA-874 regulates novel cancer networks in maxillary sinus squamous cell carcinoma. *Br. J. Cancer*, 105, 833–841.

34. Leidinger, P., Keller, A., Borries, A., Huwer, H., Rohling, M., Huebers, J., Lenhof, H.P. and Meese, E. (2011) Specific peripheral miRNA profiles for distinguishing lung cancer from COPD. *Lung Cancer*, 74, 41–47.

35. Li, H.G., Zhao, L.H., Bao, X.B., Sun, P.C. and Zhai, B.P. (2014) Meta-analysis of the differentially expressed colorectal cancer-related microRNA expression profiles. *Eur. Rev. Med. Pharmacol. Sci.*, 18, 2048–2057.

36. Paranjape, T., Slack, F.J. and Weidhaas, J.B. (2009) MicroRNAs: tools for cancer diagnostics. *Gut*, 58, 1546–1554.

37. Rosenwald, A., Gilad, S., Benjamin, S., Lebanon, D., Droni, N., Faerman, A., Benjamin, H., Tamir, R., Ezagouri, M., Goren, E. et al. (2010) Validation of a microRNA-based qRT-PCR test for accurate identification of tumor tissue origin. *Mod. Pathol.*, 23, 814–823.

38. Rosenfeld, N., Aharonov, R., Meiri, E., Rosenwald, S., Spector, Y., Zepeniuk, M., Benjamin, H., Shabes, N., Tabak, S., Levy, A. et al. (2008) MicroRNAs accurately identify cancer tissue origin. *Nat. Biotechnol.*, 26, 462–469.

39. Meiri, E., Mueller, W.C., Rosenwald, S., Zepeniuk, M., Klinke, I., Edmonston, T.B., Werner, M., Lass, U., Bardacki, J., Feinmesser, M. et al. (2012) A second-generation microRNA-based assay for diagnosing tumor tissue origin. *Oncologist*, 17, 801–812.