Time Eigenvalues For The One-dimensional Infinite Square Well
David M. Rosenbaum

Discrete time eigenvalues exist for the one-dimensional infinite square well. This paper finds the values and describes the associated eigenfunctions in detail.

INTRODUCTION

This paper, and ultimately all quantum mechanics, is based on the three dimensional commutation relation

$$\left[p, q \right] = -i\hbar. \tag{1}$$

The fourth component of the commutation relation would naturally be

$$\left[\mathcal{H}, T \right] = -i\hbar, \tag{2}$$

where \mathcal{H} is the Hamiltonian and T is a Hermitian time operator.

As Pauli\(^1\) pointed out in the 1920s, no such time operator can exist in Hilbert space unless \mathcal{H} has a continuum of eigenvalues from $-\infty$ to $+\infty$.

However, for a long time, quantum mechanics has not really been done in Hilbert Space. For example, $e^{i\mathcal{H}_x}$, $\psi(x)$ and $\delta(x)$ do not exist in L^2.

In 1969 I published a paper\(^2\) in which physical states are represented by continuous linear functionals on a space of good functions\(^3\), rather than by functions in a Hilbert space. Since L^2 is isomorphic to a subset of Super Hilbert space, everything that can be done in L^2 can be done in Super Hilbert space. In addition, lots of other things exist in Super Hilbert space, such as delta-functionals and time operators.

This paper is about the one-dimensional infinite square well, so the calculations are in one dimension. The extensions to two and three dimensions are straightforward.

\(^1\) W. Pauli, Handbuch der Physik, Vol. 24/1, page 143

\(^2\) David M. Rosenbaum, Super Hilbert Space and the Quantum-Mechanical Time Operators, J. Math. Phys. 1127 (1969)

\(^3\) Good functions are functions which are everywhere differentiable any number of times and such that they and their derivatives fall off at infinity faster than the inverse of any polynomial.
MOMENTUM REPRESENTATIONS

No representations of operators were used in reference (2), so it is important to show that the results in this paper are independent of the representation chosen.

The representation of \(p \) is restricted only by (1), so let

\[
p \rightarrow -i\hbar \frac{d}{dx} + f(x),
\]

where the arrow stands for “be represented by” and \(f(x) \) is any real function with a first derivative and an indefinite integral.

Energy

With this representation of \(p \), the energy eigenvalue equation for a potential \(V(x) \) is:

\[
\frac{d^2 \psi}{dx^2} + i \left(\frac{2}{\hbar} \right) f(x) \frac{d \psi}{dx} + \frac{1}{\hbar^2} \left[i\hbar \frac{df}{dx} - f^2(x) - 2mV(x) + 2mE \right] \psi(x) = 0.
\]

Energy eigenvalue equation for a potential \(V(x) \):

\[
\frac{d^2 \psi}{dx^2} + i \left(\frac{2}{\hbar} \right) f(x) \frac{d \psi}{dx} + \frac{1}{\hbar^2} \left[i\hbar \frac{df}{dx} - f^2(x) - 2mV(x) + 2mE \right] \psi(x) = 0.
\]

Let

\[
\psi(x) = e^{\frac{i}{\hbar} \int f(x)dx} \Phi(x)
\]

Then \(\Phi(x) \) satisfies

\[
\frac{d^2 \Phi}{dx^2} + \left(\frac{2m(E - V(x))}{\hbar^2} \right) \Phi(x) = 0.
\]

which is the standard energy eigenvalue equation for a potential \(V(x) \). Thus, the use of the general representation (3) changes neither the energy eigenvalues nor the probability density. It just adds a phase change to the wave function.

Time

As given in reference (2), the symmetrical free particle time operator is:
\[
\frac{m}{2} \left(\frac{1}{p} q + q \left(\frac{1}{p} \right) \right) .
\] (7)

The eigenvalue equation for time is then:
\[
\frac{m}{2} \left(\frac{1}{p} q + q \left(\frac{1}{p} \right) \right) = \tau ,
\] (8)

where \(\tau \) is a number. For \(\tau \neq 0 \), we get
\[
p^2 - \left(\frac{m}{\tau} \right) qp + i \left(\frac{\hbar m}{2 \tau} \right) = 0 .
\] (9)

Using (3), this is
\[
\frac{d^2 \psi}{dx^2} + \left[\frac{2}{\hbar^2} x f(x) - \frac{m}{\hbar^2} x \right] \frac{d \psi}{dx} + \left[\frac{i}{\hbar} \frac{df}{dx} + \frac{m}{\hbar^2} x f(x) - \frac{1}{\hbar^2} f^2(x) - \frac{im}{2 \hbar} \right] \psi(x) = 0
\] (10)

Let
\[
\psi(x) = e^{i \left(\frac{m}{4 \hbar \alpha} x^2 + \frac{1}{\hbar} \int f(x) dx \right)} \Theta(x).
\] (11)

Define
\[
\alpha = \frac{m}{\hbar^2} ; \ y = \sqrt{\alpha x} .
\] (12)

Then \(y \) is dimensionless and
\[
\psi(y) = e^{i \left(\frac{y^2}{4 \hbar^2 \alpha} - \frac{1}{\hbar \sqrt{\alpha}} \int f(y) dy \right)} \Theta(y),
\] (13)

where \(\Theta(y) \) satisfies
\[
\frac{d^2 \Theta}{dy^2} + \frac{y^2}{4} \Theta(y) = 0 .
\] (14)

Just as for energy, the use of the general representation (3) changes neither the time eigenvalues nor the probability density. It only adds a phase change to the wave function.
The infinite, one-dimensional square well

The solution to (14) is a parabolic cylinder function, but it will be more useful to solve it directly.

The square well runs from 0 to L. Since the walls are infinitely high, any wave function must be 0 at the walls. For \(\Theta(0) = 0 \), the solution to (14) is:

\[
\Theta(y) = a_0y + \sum_{j=1}^{\infty} a_{4j+1} y^{4j+1} \tag{15}
\]

where

\[
a_{4j+1} = \frac{(-1)^j a_1}{4^j (4 \cdot 5) (8 \cdot 9) \cdots (4j - 3) (4j - 2) (4j - 1) (4j + 1)} = \frac{(-1)^j a_1}{4^{2j} \cdot j! \cdot 5 \cdot 9 \cdot 13 \cdots (4j + 1)} \tag{16}
\]

and \(a_1 \) is an arbitrary constant. The infinite series for \(\Theta(y) \) converges for all \(y \).

Zeros

The zeros of \(\Theta(y) \) are not evenly spaced. [relative error = (value - predicted value)/value.] The nth predicted value is given by:

\[
\sqrt{4(n - 1) \pi - \pi^2}, \tag{17}
\]

where \(n \) is the zero number, except for the first predicted value which is 0 because that is a boundary condition on \(\Theta(y) \). Here are the first 60 zeros:

Zero Number (n)	Zero Position	Difference in Zero Positions	Predicted Zero Positions	Zero Position - Predicted Position	Relative Error
1	0	3.3352	0	0	0
2	3.3352	3.335678509	-0.000478509	-0.000143472	
3	4.86051	4.867558087	-0.007048087	-0.001450072	
4	6.01411	6.021585534	-0.007475534	-0.001242999	
5	6.98036	6.98755057	-0.00719057	-0.001030114	
6	7.8285	7.835319622	-0.006819622	-0.000871128	
---	-----	-------	-------	-------	-------
7	8.59347	0.76497	8.59918848	-0.006448848	-0.000750436
8	9.29576	0.70229	9.301880176	-0.006120176	-0.000658384
9	9.94863	0.65287	9.954463593	-0.005833593	-0.000586371
10	10.5612	0.61257	10.56682147	-0.005621473	-0.000532276
11	11.1402	0.579	11.14558597	-0.005385971	-0.000483472
12	11.6906	0.5504	11.69574526	-0.005145263	-0.00044012
13	12.2162	0.5256	12.22116311	-0.004963115	-0.000406273
14	12.7201	0.5039	12.72490466	-0.004804655	-0.000377722
15	13.2048	0.4847	13.20944999	-0.004649993	-0.000352144
16	13.6723	0.4675	13.67683954	-0.004539537	-0.000332024
17	14.1244	0.4521	14.12877597	-0.004375967	-0.000309816
18	14.5624	0.438	14.56669767	-0.004297668	-0.000295121
19	14.9877	0.4253	14.99183283	-0.004132829	-0.000275748
20	15.4012	0.4135	15.40524009	-0.004040088	-0.000262323
21	15.8039	0.4027	15.8078396	-0.003939599	-0.00024928
22	16.1966	0.3927	16.20043714	-0.003837136	-0.00023691
23	16.58	0.3834	16.58374306	-0.003743064	-0.000225758
24	16.9547	0.3747	16.95838744	-0.003687442	-0.000217488
25	17.3213	0.3666	17.32493219	-0.003632186	-0.000209695
26	17.6803	0.359	17.68388096	-0.003580962	-0.00020254
27	18.0322	0.3519	18.0356873	-0.003487303	-0.000193393
28	18.3773	0.3451	18.38076133	-0.003461331	-0.000188348
29	18.7161	0.3388	18.71947536	-0.003375359	-0.000180345
30	19.0488	0.3327	19.0521686	-0.003368599	-0.00017684
---	-------	-------	---------	---------	---------
31	19.3759	0.3216	19.37915114	-0.003251141	-0.000167793
32	19.6975	0.3164	19.70070734	-0.003207336	-0.00016283
33	20.0139	0.3115	20.01709869	-0.003198695	-0.000159824
34	20.3254	0.3068	20.32856637	-0.003166373	-0.000155784
35	20.6322	0.3024	20.63533332	-0.003133324	-0.000151866
36	20.9346	0.298	20.93760617	-0.003006167	-0.000143598
37	21.2326	0.2939	21.23557681	-0.002976814	-0.0001402
38	21.5265	0.2899	21.52942389	-0.002923895	-0.000135828
39	21.8164	0.2861	21.81931401	-0.00291401	-0.00013357
40	22.1025	0.2825	22.10540283	-0.002902834	-0.000131335
41	22.385	0.2789	22.3878361	-0.002836096	-0.000126696
42	22.6639	0.2756	22.66675044	-0.002850444	-0.00012577
43	22.9395	0.2723	22.94227422	-0.002774218	-0.000120936
44	23.2118	0.2691	23.21452814	-0.002728143	-0.000117533
45	23.4809	0.2661	23.48362595	-0.002725945	-0.000116092
46	23.747	0.2631	23.74967491	-0.002674906	-0.000112642
47	24.0101	0.2603	24.01277637	-0.002676365	-0.000111468
48	24.2704	0.2575	24.27302617	-0.002626169	-0.000108205
49	24.5279	0.2548	24.53051508	-0.002615078	-0.000106616
50	24.7827	0.2523	24.78532914	-0.002629141	-0.000106088
51	25.035	0.2497	25.03755002	-0.002550024	-0.000101858
52	25.2847	0.2473	25.28725532	-0.002555324	-0.000101062
53	25.532	0.2449	25.53451884	-0.002518841	-9.86543E-05
54	25.7769	0.2426	25.77941084	-0.002510836	-9.74064E-05
55	26.0195	0.2393	26.02199826	-0.002498265	-9.60151E-05
The zeros draw steadily closer together and the error in the predictions fall steadily. This is illustrated by the following figures:
The \(\Theta \) Function

The maxima and minima of \(\Theta(y) \) approach zero from the top and bottom as \(y \) goes to infinity. We have already discussed the position of the zeros of \(\Theta(y) \) which, as \(n \to \infty \), seem to approach

\[
\sqrt{4(n - 1)} \pi - \pi^{\frac{3}{2}}
\]

(17)

The maxima and minima of \(\Theta \) have an even simpler pattern as illustrated by the following data. Predicted maximum and minimum values are given by:

\[
\Theta(y) = \pm \frac{2}{\sqrt{y}}.
\]

(18)

Minima y Value	Predicted	Error	Maxima y Value	Predicted	Error	
4.13959	-0.9791	-0.983	2.05768	1.3356	1.394251	-0.05865
6.5079	-0.78345	-0.78399	5.45544	0.855098	0.856279	-0.00118
8.21628	-0.69755	-0.69774	7.41164	0.734335	0.734637	-0.0003
9.62549	-0.64455	-0.64464	8.94871	0.668445	0.668574	-0.00013
10.853	-0.60704	-0.60709	10.2577	0.624391	0.624461	-7E-05
11.9551	-0.57840	-0.57843	11.4174	0.591854	0.591897	-4.3E-05
12.9638	-0.55545	-0.55547	12.4697	0.566344	0.566372	-2.8E-05
Time Eigenvalues

The time wave function must be zero at \(x=L \). Thus \(\Theta(L)=0 \). Let \(z_n \) be the dimensionless position of the \(n \)th zero of \(\Theta \).

Then, from (12), at the wall at \(x = L \):

\[
z_n = \sqrt{\alpha_n} L , \tag{19}\]

which gives the eigenvalues of time as

\[
\tau_n = \frac{mL^2}{\hbar z_n^2} . \tag{20}\]

For almost all \(z_n \), the approximation in (17) is very good and we have, approximately,

\[
\tau_n \approx \frac{mL^2}{\hbar [4(n-1)\pi - \pi^2]} . \tag{21}\]

The number of physical significance is the difference in time eigenvalues. The difference between the \(n \)th and the \((n+k)\)th eigenvalues is:

\[
\tau_n - \tau_{n+k} = \frac{mL^2}{\hbar} \left(\frac{z_n^2 - z_{n+k}^2}{z_n^2 z_{n+k}^2} \right) \tag{22}\]

with the very good approximation

\[
\tau_n - \tau_{n+k} = \frac{mL^2}{\hbar} \left[\frac{4\pi \hbar}{4(n-1)\pi - \pi^2 \pm 4(n-1+k)\pi - \pi^2} \right] \tag{23}\]
The Uncertainty Principle

Although the lowest non-zero eigenvalues of energy and time for the infinite square well are not the same as the uncertainties, ΔE and Δt, we would expect that the product of the lowest eigenvalues would be on the order of \hbar. Thus

$$\left[\frac{\hbar^2 \pi^2}{2 m L^2} \right] \left[\frac{m L^2}{\hbar^2 z_2^2} \right] = \frac{\hbar \pi^2}{2 z_2^2} = 0.443635188 \hbar. \quad (24)$$