Enhancing Production of Bio-Isoprene Using Hybrid MVA Pathway and Isoprene Synthase in *E. coli*

Jianming Yang¹, Mo Xian¹*, Sizheng Su², Guang Zhao¹, Qingjuan Nie³, Xinglin Jiang¹, Yanning Zheng¹, Wei Liu¹

1 Biomaterials Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China, 2 Department of Biochemistry, Beijing Risun Chemical Technologies Institute, China Risun Coal Chemicals Group Limited, Beijing, China, 3 College English Office, Foreign Languages School, Qingdao Agricultural University, Qingdao, China

Abstract

The depleting petroleum reserve, increasingly severe energy crisis, and global climate change are reigniting enthusiasm for seeking sustainable technologies to replace petroleum as a source of fuel and chemicals. In this paper, the efficiency of the MVA pathway on isoprene production has been improved as follows: firstly, in order to increase MVA production, the source of the "upper pathway" which contains HMG-CoA synthase, acetyl-CoA acetyltransferase and HMG-CoA reductase to covert acetyl-CoA into MVA has been changed from *Saccharomyces cerevisiae* to *Enterococcus faecalis*; secondly, to further enhance the production of MVA and isoprene, a alanine 110 of the mvaS gene has been mutated to a glycine. The final genetic strain YJM25 containing the optimized MVA pathway and isoprene synthase from *Populus alba* can accumulate isoprene up to 6.3 g/L after 40 h of fed-batch cultivation.

Introduction

Isoprene (2-methyl-1,3-butadiene) was firstly discovered as a cell metabolite in the mid-1950s by Samadze.[1,2]. It functions as a thermoprotectant of plant membranes or as an antioxidant [3,4], or may have a signaling function, altering the flowering time in some plants [5]. As an important platform chemical, isoprene has been used in industrial production of synthetic rubber for tires and coatings [6] or aviation fuel [7].

Isoprene is the progenitor of the isoprenoid family of compounds[8]. Many commercially relevant isoprenoids exist in nature in small quantity and the yield produced from their natural organisms remains rather low. The depletion of fossil sources and the structural complexity of isoprenoids make it difficult or costly to produce isoprenoids by means of chemical synthesis. Isoprene is no exception since it is produced entirely from petrochemical sources through chemical synthesis method [9,10,11].

Compared with conventional means, microbial synthesis of isoprene by fermentation should become a promising and attractive route mainly for environmental production, renewable resources, sustainable development[12]. Additionally, isoprene could be collected from the gas phase of the fermentor, eliminating the need for distillation. All isoprenoids are biosynthesized from IPP, and its isomer dimethylallyl diphosphate (DMAPP), which are synthesized from two different pathways including methylerythritol 4-phosphate (MEP) pathway and mevalonate (MVA) pathway (Fig.1) [13]. MVA pathway mainly exists in eukaryotes, archaeabacteria, and cytosols of higher plants, while the MEP pathway is used by many eubacteria, green algae, and chloroplasts of higher plant [14,15]. MVA pathway has been studied extensively for producing isoprenoids. The introduction of heterologous MVA pathway genes into E. coli has been reported to improve the productivity of carotenoids or sesquiterpenes that are synthesized from DMAPP[16,17,18,19,20,21,22].

Although MVA pathway has been studied comprehensively, the methylenerythritol phosphate (MEP) pathway was merely discovered in the early 1990s by labeling experiments in bacteria and plants[23,24], and till 2001 the genes of whole MEP pathway has been completely characterized [25]. This biosynthetic pathway, made up of seven enzymatic steps, begins with the condensation of pyruvate and glyceraldehyde-3-phosphate to form 1-deoxy-D-xylulose 5-phosphate (DXP) and ends with the formation of the isoprenoid precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) [26,27]. In spite of great efforts taken in isoprenoids production using MEP pathway[28,29,30], this approach still remains ineffective due to regulation mechanisms present in the native host[18].

In this paper, based on our previous experiments, the efficiency of the MVA pathway on isoprene production has largely been improved as follows: firstly, in order to increase MVA production, the source of the “upper pathway” which contains HMG-CoA synthase, acetyl-CoA acetyltransferase and HMG-CoA reductase to covert acetyl-CoA into MVA has been changed from *Saccharomyces cerevisiae* to *Enterococcus faecalis*; secondly, to further enhance the production of MVA and isoprene, a alanine 110 of...
Figure 1. Production of isoprene via the MVA pathways used in this study. Gene symbols and the enzymes they encode (all genes marked with white arrows were isolated from S. cerevisiae, the gene marked with light gray arrows derived from P. alba and all genes marked with gray arrows were from Enterococcus faecalis). MVA pathway: ERG10, acetoacetyl-CoA thiolase; ERG13, HMG-CoA synthase; tHMGR, truncated HMG-CoA reductase; mvaE, acetyl-CoA acetyltransferase/HMG-CoA reductase; mvaS, HMG-CoA synthase; ERG12, mevalonate kinase; ERG8, phosphomonomovalonate kinase; ERG19, mevalonate pyrophosphate decarboxylase; ID1, IPP isomerase; ispSPa, P. alba isoprene synthase was optimized to the preferred codon usage of E. coli. Pathway intermediates. MVA pathway: A-CoA, acetyl-CoA; AA-CoA, acetoacetyl-CoA; HMG-CoA, hydroxymethylglutaryl-CoA; IPP, isopentenyl pyrophosphate; DMAPP, dimethylallyl pyrophosphate.

the mvaS gene has been mutated to a glycine. The final genetic strain YJM25 containing the optimized MVA pathway and isoprene synthase from P. alba can accumulate isoprene up to 6.3 g/L after 40 h of fed-batch cultivation, which is approximately a 12-fold increase in isoprene production compared with the previous data [25].

Materials and Methods

Bacterial Strains, Plasmids, and Growth Conditions

All Strains and plasmids used in this study are listed in Table 1. E. coli strains were grown in LB medium. For MVA or isoprene production, recombinant strains were cultured in shake-flask or fed-batch fermentation with the medium containing glucose 20 g/l, K2HPO4 9.8 g/l, beef extract 5 g/l, ferric ammonium citrate 0.5 g/l, citric acid monohydrate 2.1 g/l, MgSO4 0.06 g/l and 1 ml trace element solution which includes (NH4)6 Mo7O24 0.37 g/l, ZnSO4·7H2O 0.29 g/l, H3BO4 2.47 g/l, H2BO3 2.47 g/l, CuSO4·5H2O 0.25 g/l, and MnCl2·H2O 1.58 g/l. If necessary, appropriate antibiotics were added to the culture medium at the following concentrations: ampicillin (Amp, 100 µg/ml), kanamycin (Kan, 50 µg/ml), and chloramphenicol (Cm, 34 µg/ml).

Plasmid Construction

Standard DNA manipulations were carried out as previously described by Sambrook et al. [31]. Polymerase chain reaction (PCR) was performed using Phusion DNA polymerase (TaKaRa, Dalian, China) according to the manufacturer's instruction.

Construction of Plasmid for Upper pathway of MVA

The mvaS (HMG-CoA synthase, GenBank No. AAG02439) and mvaE (acetyl-CoA acetyltransferase/HMG-CoA reductase, GenBank No. AAG02438) genes from E. faecalis were chemically synthesized by Genray Company with plasmid pGEMH as vector (named pGH/mvaS, pGH/mvaE). The mvaE was obtained by PCR using the primers mvaE-F (5'-CATGCCCATGAGGAGGATATAGGAGCTATTATTATGATGC-3') and mvaE-R (5'-CGCGGATCCCTATTTGTTTCTTAAAT-CTTTAAATAG-3') and pGH/mvaE as a template. The isolated mvaE gene fragment was excised using Ncol and BamHI, followed by insertion into the corresponding sites of pACYCDuet-1 or pYJM8 to create pYJM15 and pYJM18 respectively. The mvaS gene was obtained by PCR using the primers mvaS-F (5'-CCAGAGCTGAGGTAAAGTACGACAATTGGGGATTGGATAAAATTA-3') and mvaS-R (5'-CACTGCGATGGTTTCTGATAAGGAGGACGAA CG-3') and pGH/mvaS as a template. The product of mvaS was introduced behind the mvaE gene of pYJM15 or pYJM18 after restriction with SacI and PstI to create pYJM16 (Fig.2A) and pYJM20 (Fig.2C).

Construction of Plasmid for Lower Pathway of MVA

Plasmid pYJM14 was constructed on pTrcHis2B by introducing the ERG8, ERG12, ERG19 and ID11 from S. cerevisiae. The four genes were ligated into the plasmid pTrcHis2B using the method established in our lab [25,32] as follows: successive substrate fragments that designed to have long overlaps with each other were mixed, denatured and annealed. Then a circle plasmid can be formed and be ready for transformation. The plasmid containing four genes (ERG12, ERG8, ERG19 and ID11) was named pYJM14. The correct insertions of these genes into vectors were confirmed by PCR, restriction digestion and subsequent sequencing.

Mutation of mvaS Gene from Enterococcus Faecalis

The mutation PCR procedure was performed according to the instruction of Fast Mutagenesis System purchased from TransGen Biotech (Beijing, China). Mutagenesis mixtures contained 10×EasyPhu polymerase buffer 2.5 µl, 200 µM dNTPs, 1 ng/ul template, 500 nM each primer, and 1 µl EasyPhu DNA polymerase. The mutated mvaS gene as described by [33] (mvaSexpA110G) was obtained by PCR using the primers mvaSmutF (5'-CTCTTCTTCGAAATCAAGGAAAGT-DHITCCGTTGC-3') and mvaSmutR (5'-CTGTCTTCTGAGATGC-AGGAAAGTCGAGCGAAAG-3') and pGH/mvaS as a template. The product of mvaSmut was cloned into the plasmid pYJM15 or pYJM18 behind the mvaE gene after restriction with SacI and PstI to create pYJM17 (Fig.2B) and pYJM21 (Fig.2D) respectively. The
The mevalonate produced by the engineered strains was quantitatively analyzed by GC-FID as described previously [34].

Shake-flask Cultures

Shake-flask experiments were carried out in triplicate series of 600 ml sealed shake flasks containing 50 ml fermentation medium as described above plus 34 μg/ml Cm and 100 μg/ml Amp. E. coli pYJM17 and pYJM21 were transformed into the BL21(DE3) competent cell for expression.

MVA Quantification by Gas Chromatography (GC)

The mevalonate produced by the engineered strains was quantitatively analyzed by GC-FID as described previously [34]. The E. coli strain was inoculated in 50 ml fermentation medium containing 34 μg/ml Cm resistance and incubated at 37°C and 180 rpm. When OD$_{600}$ of the bacterial culture reached 0.6, the culture cells were induced by IPTG at a final concentration of 1 mM for 24 h. After fermentation broth was centrifuged for 10 min at 12000 rpm at room temperature, the supernatant was adjusted to pH 2.0 with 3 M HCl and incubated at 45°C for 1 h to convert mevalonate to mevalonic acid lactone. Then this solution was saturated with Na$_2$SO$_4$, and extracted with ethyl acetate. The ethyl acetate phase was transferred to a clean glass vial and dried by vacuum distillation. The residues were redissolved in 1 ml of ethyl acetate and analyzed by GC.

GC analysis was performed on an Agilent 7890A equipped with a flame ionization detector (FID) and a HP-AL/S column (25 m×320 μm×8 μm). N$_2$ was used as carrier gas with a linear velocity of 1 ml/min. The column temperature profile was 75°C for 0.5 min, 25°C/min to 150°C, 15°C/min to 200°C, 30°C/min to 250°C, and 250°C for 5 min. The product was characterized by direct comparison with an authentic standard (Sigma-Aldrich, USA). The peak area was converted to MVA concentration by comparing with a standard curve plotted with a set of known concentration of MVA.
strains were inoculated to the culture broth and incubated in a
gyratory shaker incubator at 37°C and 180 rpm. When OD₆₀₀
reached 0.6, IPTG was added to final concentration of 0.5 mM,
and culture was further incubated at 30°C for 24 h. Then 1 ml gas
sample from the headspace of the sealed cultures was analyzed as
described earlier [35] using a GC (Agilent 7890A, America)
equipped with a flame ionization detector (FID) and a HP-AL/S
column (25 m×320 μm×8 μm). To identify bacterial isoprene
production, peak retention times and mass spectra were compared
with that of standard. Concentrations of isoprene produced by
bacterial cells were calculated by converting GC peak area to mg
of isoprene via a calibration curve. Isoprene standard (TCI-EP,
Tokyo, Japan) of various concentrations was added to 600 ml
fermentation medium to make a calibration curve.

Fed-batch Fermentation
The strain was grown overnight at 37°C in 100 ml of M9
minimal media (containing K₂HPO₄ 1 g, Na₂HPO₄·12H₂O
15.3 g, KH₂PO₄ 3 g, NH₄Cl 1 g; NaCl 0.5 g, MgSO₄ 0.5 mmol
in 1 L with glucose (20 g/L) as the primary carbon source). These
cultures were used to inoculate a 5-L fermentor (BIOSTAT Bplus
MO5L, Sartorius, Germany) containing 3 L fermentation medium.
The temperature was controlled at 30°C; the pH was
maintained at 7.0 via automated addition of ammonia, and
Antifoam 204 was used to prohibit foam development. The
stirring speed was first set at 400 rpm and then associated with the
dissolved oxygen (DO) to maintain a DO concentration of 20%
saturation. The expression of plasmid-borne exogenous gene(s) for
isoprene production was initiated at an OD₆₀₀ of 12 by adding
IPTG to the final concentration of 0.5 mM and inducer was
added every 8 h. During the course of fermentation, the residual
glucose was measured using a glucose analyzer (SBA-40D, China)
and maintained below 0.5 g/l by feeding solution containing
800 g/L of glucose at appropriate rates. Then isoprene accumu-
lation was measured every 15 min by GC as described [35]. At the
same time, the growth of the bacterial culture was determined by
measuring the OD₆₀₀ with a spectrophotometer (Cary 50 UV-Vis,
Varian).
Results and Discussion

Characterization of the Rate-limiting Step of MVA Pathway

In our previous work, a novel pathway for production of isoprene was established by assembling the whole MVA pathway derived from *S. cerevisiae* and isoprene synthase (ispS) from *Populus alba* in the *E. coli* BL21(DE3) strain. The final engineered strain YJM13 harboring the MVA pathway and *ispS* gene could accumulate isoprene up to 2.48 mg/L and 532 mg/L under the flask and fed-batch fermentation conditions, respectively [25]. However, the yield of isoprene by the engineered strain YJM13 is too low to meet the demand for industrial application.

The low yield of isoprene might be primarily attributed to the existing of rate-limiting step of MVA pathway. In the previous study, the whole MVA pathway was divided into two parts and studied respectively; the “upper pathway”, which catalyzed the existing of rate-limiting step of MVA pathway. In the previous report, the mass production of mevalonate of 47 g/L was achieved by fed-batch culture of recombinant *E. coli* harboring *mvaE* and *mvaS* genes of *E. faecalis* [36]. Yoon also demonstrated that the *mvaE* and *mvaS* genes of *E. faecalis* were the most efficient for mevalonate production among the top MVA portions used in *E. coli* [22]. Therefore, the engineered strain YJM16 containing *mvaS* and *mvaE* gene from *E. faecalis* instead of “upper pathway” from *S. cerevisiae* was constructed in this study. The strain YJM16 was inoculated in 50 ml fermentation medium and incubated at 37°C. When OD₆₀₀ of the bacterial culture reached 0.6, IPTG was added to a final concentration of 0.5 mM, and the culture was further incubated for 24 h. MVA was isolated from fermentation broth as described method. The strain YJM16 containing the *mvaS* and *mvaE* gene from *E. faecalis* could accumulate MVA up to 1.31 g/L, which was about fifty-fold in contrast to the strain YJM11 containing *S. cerevisiae’s* upper pathway (0.026 mg/L). Obviously, the upper pathway from *E. faecalis* proves to be more effective than that from *S. cerevisiae*.

The Effect of Mutation of *mvaS* Gene on MVA Production

The *mvaS* gene encodes the HMG-CoA synthase, the second enzyme in the MVA pathway, which catalyzes three molecules of acetyl-CoA to HMG-CoA and plays a key role in isoprenoid formation in the eukaryotic cytosol and in Gram-positive bacteria [37]. Steussy has reported that the overall reaction rate of the enzyme was increased 140-fold by mutating alanine 110 of HMG-CoA synthase from *E. faecalis* into a glycine [33]. Hence, a hypothesis would be put forward that the engineered strain with the mutated *mvaS* gene and *mvaE* from *E. faecalis* could further enhance the MVA production.

To verify the effect of mutation of *mvaS* gene on MVA production, the recombinant strains YJM17 (*E. coli* harboring *mvaSLTF* & *mvaE*) and YJM16 (*E. coli* containing *mvaS* & *mvaE*) were cultured in fermentation medium under shake-flask conditions. The amount of MVA accumulated in the culture media from different recombinant strains was calculated according to a standard curve plotted with a set of known concentrations of MVA. MVA concentration of the strain YJM17 reached around 3.1 g/L after being induced by 0.5 mM IPTG for 24 h, about 2.37 times higher than that of the strain YJM16 (1.31 g/L) [Fig. 4]. The result demonstrated that A110G mutation of *mvaS* gene caused an appreciable increase in MVA production.

The Effect of Optimized Upper Pathway on Isoprene Production

To test the function of optimized upper pathway on isoprene production, the plasmid pYJM14 containing the lower pathway from *S. cerevisiae* was transformed into the strains (*E. coli* harboring *mvaSLTF* & *mvaE*, *mvaS* & *mvaE*), which formed the recombinant strains YJM21 and YJM20, respectively. Both of the strains YJM21 and YJM20 were inoculated into the medium under the shake-flask conditions and the cultures were induced with 0.5 mM IPTG when the OD₆₀₀ reached 0.6–0.9. As is shown in Fig. 5, isoprene produced by the strain YJM21 reached 760 mg/L, which was about 1.5 fold to the control strain YJM20 (500 mg/L). The result showed that the optimized upper pathway played an important role in improving the isoprene production.

![Figure 3. Isoprene production of Strain YJM12.](https://www.plosone.org/figure/3.0033509)
Comparison of Isoprene Production in Different *E. coli* Host Strains

To choose a most efficient host strain for isoprene production, plasmids pYJM20 and pYJM21 were transformed into *E. coli* host strains JM109 (DE3), BL21 (DE3) and BL21 star™ (DE3) carrying plasmid pYJM14, respectively. As shown in the Table 2, BL21 star™ (DE3) produced more isoprene than BL21 (DE3), while the yield of isoprene produced by JM109 (DE3) was the lowest among three strains. Obviously, BL21 star™ (DE3) was the most suitable host to produce isoprene. No significant difference in cell growth was observed for all these strains.

Fed-batch Culture of Metabolically Engineered *E. coli* Strains

To further confirm the effectiveness of the optimized MVA pathway on increasing isoprene production, fed-batch cultivation was carried out using the recombinant *E. coli* BL21™ (DE3) strain simultaneously harboring plasmids pYJM21 and pYJM14. After depletion of the glucose added initially, glucose (800 g l⁻¹) was fed and the residual glucose was maintained below 0.5 g/l to minimize acetic acid accumulation. As is shown in Fig. 6, isoprene was produced in a growth associated manner in the fed-batch phase to reach maximum concentration of 6.3 g l⁻¹ after 40 h of cultivation. The conversion efficiency of glucose to isoprene in the metabolically engineered strain has attained 7%, reaching 29% of the theoretical limit (25.2%). The theoretical yield was calculated according to the following formula [13]:

\[
1.5C_6H_{12}O_6 + 2NADPH + 6NAD^+ \rightarrow C_8H_{16}O_4 + 4CO_2 + 6NADH + 2-NADP^+ + H_2O + 4[H].
\]

Expressing the optimized MVA pathway and isoprene synthase from *P. alba* resulted in approximately a 12-fold increase in isoprene production compared with our previous data achieved by expression of the MVA pathway from *S. cerevisiae* and isoprene synthase in the same host strain.

In spite of the great progress for isoprene production made in *E. coli*, some problems still remained unsolved and were expected to be tackled before commercial production. For instance, the instability of the recombinant strain remains to be a severe problem due to the plasmid instability which in turn restricts the industrial application to a large extent. From metabolic engineering perspective, the stability of strain can be improved by genetic manipulation of chromosome integration technique [38,39]. From the fermentation process aspect, immobilization of microbial cells may enhance the stability of engineered strain during the process of production [40,41].

Figure 4. MVA production by strains with or without mutation of *mvaS* gene. The MVA isolated from cultural broth as described in “MVA quantification by gas chromatography (GC)”. The experiment was performed in triplicate. doi:10.1371/journal.pone.0033509.g004

Figure 5. Comparison of isoprene production from different recombinant strains. The experiment was conducted under flask conditions in triplicate. doi:10.1371/journal.pone.0033509.g005

Figure 6. The time course of isoprene production by YJM25. Isoprene accumulation (■) and cell growth (△) in YJM25. Induction was carried out at an OD₆₀₀ of 12. Other experiment conditions were described in ‘Fed-batch fermentation’. doi:10.1371/journal.pone.0033509.g006

Table 2. Isoprene production by different *E. coli* strains harboring pYJM14 and pYJM20 or pYJM14 and pYJM21 under flask conditions.

Host	Plasmids	Isoprene (mg/L)	OD₆₀₀	OD₆₀₀ max
E. coli	BL21(DE3)	pYJM14, pYJM20	502mg/L	760mg/L
E. coli	BL21 Start™ (DE3)	pYJM14, pYJM21	788mg/L	1091mg/L
E. coli	JM109(DE3)		32mg/L	55mg/L

The experiment was done in triplicate. doi:10.1371/journal.pone.0033509.t002
Conclusions

In this paper, the efficiency of the MVA pathway on isoprene production has largely been improved by changing the source of “upper pathway” of MVA synthesis from S. cerevisiae to E. facialis and mutating the mxaS gene. In the final engineered strain YJMM25 (E. coli BL21(DE3)/pYJM21, pYJM14) containing the optimized MVA pathway and isoprene synthase, it can accumulate isoprene up to 6.3 g/L after 40 h fed-batch fermentation. The conversion efficiency of glucose to isoprene (gram to gram) in the metabolically engineered strain has attained 7%, reaching 28% of the theoretical limit. These results proved to be the highest isoprene productivity reported so far [7,29,42].

Author Contributions

Conceived and designed the experiments: JY MX. Performed the experiments: JY. Analyzed the data: JY SS XJ YZ. Contributed reagents/materials/analysis tools: JY GZ WL. Wrote the paper: JY. Refined the manuscript: QN.

References

1. Sanadze G (1956) Emission of Gaseous Organic Substances from Plants. Repertuar Akademiai Nauk Gruzinok SSR 17: 429–433.
2. Sanadze G (1957) Nature of Gaseous Substances from the Robinia pseudacacia Leaves. Rep Akad Nauk Gruzn SSR 19: 83–92.
3. Loretto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology 127: 1781.
4. Petruhas J, Eliaia J, Arsenio D, Munné-Bosch S (2005) Linking isoprene with plant thermotolerance, antioxidants and monoterpene emissions. Plant Cell & Environment 28: 276–286.
5. Terry G, Stokes N, Hewitt C, Mansfield T (1995) Exposure to isoprene promotes flowering in plants. Journal of experimental botany 46: 1629.
6. Alainan GA, Derwinch F, Wells D, Taylor T (2010) Isoprene compositions and methods of use. US2010/0099932 A1.
7. Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metabolic Engineering 12: 70–79.
8. Sacchettini JC, Poulter CD (1997) Creating isoprenoid diversity. Science 277: 1780.
9. Reis T (1972) Isoprene production.2. Synthesis based on isobutylene. Chem Process Eng 53: 68–71.
10. Ushio S (1972) Extract isoprene with DMF. Chem Eng Prog 79: 82–83.
11. DiGiacomo AA, Markert JB, Schall JW (1961) Isoprene by Delyldegradation. Chem Eng Prog 57: 3540.
12. Glomburg JM, Giraldo R (2010) Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Applied microbiology and biotechnology 86: 419–434.
13. Steinbacher A (2003) Production of rubber-like polymers by microorganisms. Current Opinion in Microbiology 6: 261–270.
14. Seemann M, Campos N, Rodriguez-Concepcion M, Baeta E, Duvold T, et al. (2002) Isoprenoid biosynthesis in Escherichia coli via the methylerythritol phosphate pathway: enzymatic conversion of methylerythritol cyclophosphate into a phosphorylated derivative of (E)-2-methylbut-2-en-1,4-diol. Tetrahedron Letters 43: 1413–1415.
15. Eroglo E, Melis A (2010) Extracellular terpenoid hydrocarbon extraction and quantitation from the green microalgal Botryococcus braunii var. Shiosa. Biorosource technology 101: 2359–2366.
16. Anthony JR, Anthony LC, Nowrouzi F, Kwon G, Newman JD, et al. (2009) Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metabolic Engineering 11: 13–19.
17. Campos N, Rodriguez-Concepcion M, Sauret-Gueto S, Gallego F, Lois L, et al. (2001) Escherichia coli engineered to synthesise isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate: a novel system for the genetic analysis of the 2-C-methyl-d-erythritol 4-phosphate pathway for isoprenoid biosynthesis. Biochemical Journal 353: 59.
18. Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature biotechnology 21: 796–802.
19. Newman JD, Marshall J, Chang M, Nowrouzi F, Paradise E, et al. (2006) High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnology and bioengineering 95: 684–691.
20. Pitera DJ, Paddon CJ, Newman JD, Keasling JD (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metabolic Engineering 9: 193–207.
21. Rodriguez-Villalon A, Perez-Gil J, Rodriguez-Concepcion M (2008) Carotenoid accumulation in bacteria with enhanced supply of isoprenoid precursors by upregulation of exogenous or endogenous pathways. Journal of biotechnology 135: 78–84.
22. Yoon SH, Lee SH, Das A, Ryu HK, Jang HJ, et al. (2009) Combinatorial expression of bacterial whole mevalonate pathway for the production of [beta]-carotene in E. coli. Journal of biotechnology 140: 218–226.
23. Rohmer M, Kaani M, Simonin P, Sutter B, Sahn H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochemical Journal 295: 517.
24. Schwartz MK (1996) Terpen-Biosynthese in Ginkgo biloba: Eine uberraschende Geschichte. PhD Thesis, ETH Zürich, Switzerland.
25. Rodriguez-Concepcion M, Boronat A (2004) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plants. A metabolic milestone achieved through genomics. Plant Physiology 130: 1079–1089.
26. Esumiire W, Bacher A, Arigoni D, Rohlich F (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cellular and Molecular Life Sciences 61: 1401–1426.
27. Rodriguez-Concepcion M (2004) The MEP pathway: A new target for the development of herbicides, antibiotics and antimarial drugs. Current Pharmaceutical Design 10: 2391–2403.
28. Kim SJ, Kim MD, Choi JH, Kim SY, Ryu VW, et al. (2006) Amplification of 1-deoxy-d-xylulose 5-phosphate (DXP) synthase level increases coenzyme Q 10 production in recombinant Escherichia coli. Applied Microbiology and Biotechnology 72: 962–975.
29. Xue JF, Ahring BK (2011) Enhancing isoprene production by genetic modification of the DXP pathway in Bacillus subtilis. Applied and environmental microbiology 77: 2399–2405.
30. Glumovic GP, Lee HC, Soling JK (2009) Improved Squalene Production via Mediation of the Methylerythritol 4-Phosphate Pathway and Heterologous Expression of Genes from Streptomyces peucetius ATCC 27952 in Escherichia coli. Applied and Environmental Microbiology 75: 7291.
31. Sambrook J, Russell DW (1989) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
32. Jiang X, Zhang H, Zou H, Wang C (2012) In Vitro Assembly of Multiple DNA Fragments Using Successive Hybridization. PLoS ONE. e30267.
33. Estus AM, Robison AD, Terrick AM, Knight JT, Rodwell VW, et al. (2006) A structural limitation on enzyme activation: the case of HMG-CoA synthase. Biochemistry 45: 14407–14414.
34. Pfleger BF, Pitera DJ, Newman JD, Martin VJ, Keasling JD (2007) Microbial sensors for small molecules: development of a mevalonate biosensor. Metabolic Engineering 9: 30–38.
35. Julsing MK, Rijpkema M, Woerdeman HJ, Quax WJ, Kayser O (2007) Functional analysis of genes involved in the biosynthesis of isoprene in Bacillus subtilis. Applied microbiology and biotechnology 75: 1377–1384.
36. Tabaka K, Hashimoto SI (2004) Production of mevalonate by a metabolically engineered Escherichia coli. Biotechnology letters 26: 1487–1491.
37. Stenby CN, Varita AA, Bargerve JW, Sutherylin A, Rodwell VW, et al. (2005) X-ray crystal structures of HMG-CoA synthase from Enterococcus faecalis and a complex with its second substrate/inhibitor acetoacetyl-CoA. Biochemistry 44: 14256–14267.
38. Kuhlman TE, Cox EC (2010) Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Research 38: 692.
39. Chen HT, Lin MS, Hou SY (2008) Multiple-copie-genere integration on chromosome of Escherichia coli for beta-galactosidase production. Korean Journal of Chemical Engineering 25: 1082–1087.
40. Chen X, Xu Z, Cen P, Wong W (2006) Enhanced plasmid stability and production of EGF by immobilized recombinant E. coli JM101. Biochemical engineering journal 28: 215–219.
41. Kilenzo P, Margaritis A, Bergougnou M (2009) Airlift-driven fibrous-bed bioreactor for continuous production of glucoamylase using immobilized recombinant yeast cells. Journal of biotechnology 143: 60–68.
42. Zhao Y, Yang J, Qin B, Li Y, Sun Y, et al. (2011) Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Applied microbiology and biotechnology, pp 1–8.