Impact of nephron sparing surgery on survival in upper urinary tract urothelial carcinoma patients stratified by tumor characteristics

Liang Jin
Shanghai Tenth People's Hospital https://orcid.org/0000-0002-4530-7597

Ting-shuai Zhai
Shanghai Tenth People's Hospital

Zhen Zhou
Nanjing Medical University

Xiang Liu
shanghai putuo district people's hospital of tongji university

Jia-xin Zhang
Shanghai Tenth People's Hospital

Xiao-cui Nie
Shenyang women and children's hospital

Hui-qing Liu
Center of Reproductive medicine of ji'an maternal and child health hospital

Xu-dong Yao
Shanghai Tenth People's Hospital

Feng Yue
Dalian friendship hospital

Lin Ye (ericyelin@163.com)
Shanghai Tenth People's Hospital https://orcid.org/0000-0001-5377-2264

Research article

Keywords: upper urinary tract urothelial carcinoma, nephron sparing surgery, SEER, survival analysis

DOI: https://doi.org/10.21203/rs.3.rs-20146/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: We aimed to evaluate the impact of nephron sparing surgery (NSS) on survival in upper urinary tract urothelial carcinoma (UTUC) patients stratified by tumor grade and stage compared to radical nephroureterectomy (RNU) or no surgery.

Methods: Overall, 10319 UTUC patients between 2004 and 2015 were extracted from the SEER database. Patients were divided into no surgery group, NSS group and RNU group. Kaplan-Meier plots illustrated survival rates according to surgical method. Multivariable Cox regression analyses assessed the effect of different surgical methods on survival rates.

Result: Among the 10319 UTUC patients. Kaplan-Meier plots showed that NSS was associated with a higher overall survival (OS) and cancer-specific survival (CSS) in grade II and III and AJCC stage III patients (all p <0.05). In multivariable Cox regression analyses, NSS was prone to a higher OS or CSS in grade II (p > 0.05). Moreover, NSS predisposed to a higher OS only in AJCC stage III (p <0.05).

Conclusion: The beneficial effect of NSS was evident in grade II or AJCC stage III. NSS can be considered in grade III or stage III, for other grades or stages remains to be seen, both of which will be verified by further prospective research.

Background

Urothelial carcinomas are the fourth most common tumor, most of which are located in the lower urinary tract and upper tract urothelial carcinoma (UTUC) accounts for only 5% of urothelial tumors and 8% of renal tumors[1, 2]. Radical nephroureterectomy (RNU) with bladder cuff excision is the gold standard treatment for UTUC. However, solitary kidney after RNU may lead to higher risk of dialysis, cardiovascular morbidity and overall mortality[3, 4]. In an effort to decrease the potential risk, nephron sparing surgery deserves attention greatly in elaborately chosen patients with UTUC with the intention of obtaining acceptable oncological results[5-7].

Although the stage of UTUC is usually determined by endoscopic biopsy during ureteroscopy, inadequate tissue sampling and concerns about ureteral perforation make accurate staging challenging[8, 9]. Therefore, due to concerns of cancer progression, many clinicians are willing to perform radical eradication therapy even in patients with early-stage UTUC[10, 11]. However, some scholars have suggested that NSS may play a curative role especially in low grades and early stages[12, 13]. Nevertheless, evidence-based data are scarce to support the oncologic efficacy of NSS for its rarity.

Originally, NSS was exclusively considered for UTUC patients who are intolerance of RNU or those with imperative indications such as anatomically or functionally solitary kidneys. Recently, It is that elective risk-based indications were introduced for patients with bilateral functional kidneys when obtaining effective oncologic control for these emergency cases[14]. As a result, all the contemporary reports comparing NSS versus RNU have included a mix of patients with imperative and elective indications, and
the available data are therefore highly heterogeneous\cite{15}, which makes it difficult to draw any reasonable conclusions from the current literature. To clarify this issue, we evaluated and compared the treatment of NSS on overall survival (OS) and cancer-specific survival (CSS) when compared to RNU or no surgery.

Methods

Data source and patients

Within the Surveillance, Epidemiology and End Results (SEER) database from 2004 to 2015, we used the National Cancer Institute’s SEER*Stat software (version 8.3.5) with UTUC (codes C65.9 and C66.9) to identified 10,319 patients treated with NSS, RNU or no surgery between January 1, 2004, to December 31, 2015. The exclusion criteria were as follows: (a) unknown survival time; (b) unclear grade or AJCC stage; (c) patients under 18 years of age; (d) unclear tumor location; (e) surgical code is not 00, 30, 40, 50. Finally, 10,319 eligible patients were identified in the present research.

Study variables

Study variables included age of diagnosis, year of diagnosis, sex, race, marital status, urban-rural residence, insurance, summary AJCC stage, grade, surgical method, radiotherapy and chemotherapy information. According to the surgical code, patients were divided into three groups: no surgery (code 00, no cancer-directed surgery of primary site), NSS group (code 30, Partial or subtotal nephrectomy or partial ureterectomy, including Cryosurgery, Electrocautery, Excisional biopsy, Laser, Segmental resection, Thermal ablation, Wedge resection) and RNU group (code 40,50. Radical nephrectomy). AJCC stage is refer to AJCC Cancer Staging Manual, 7th Edition. Meanwhile these group are divided into four groups according to the 2016 WHO classification (grade I, grade II, grade III and grade IV). Demographic and clinicopathological characteristics including age at diagnosis (18-50, 51-65, 66-80 and >80), sex (male and female), race (white, black and others), marital status (married, unmarried and unknown), urban-rural residence (metropolitan and nonmetropolitan), summary stage (localized, regional, distant), radiotherapy (yes or no) and chemotherapy (yes or no). Household income was divided into three group: lower group (<4219), middle group (4219-5210) and upper group (>5210). OS and CSS are the primary endpoints of our study.

Statistical analysis

Statistical Package for the Social Sciences software (version 24.0; SPSS Inc, Chicago, IL, USA) was used for all statistical analyses. The chi-square test was used to analyze factors related to the surgical method. Kaplan-Meier curves analyses using a log-rank test was used to analyze the OS and CSS rate. Multivariate Cox regression was used to analyses factors associated with OS and CSS. P value ≤ 0.05 was considered statistically significant.

Results
General characteristics

A total of 10,319 eligible UTUC patients were identified in our study cohort between 2004 and 2015. Among them, 963 (9.3%) patients did not receive surgery, 1,273 (12.3%) received NSS and 8,083 (78.3%) received RNU. Table 1 demonstrated the demographic and clinicopathological characteristics of patients with UTUC. Chi-square test showed some risks had an impact on therapeutic decision making.

Of the 10,319 patients, the proportion of NSS remained stable from 2004 to 2015, while the proportion of NSS decreased in pelvis patients (Figure 1).

Survival related variables

Kaplan-Meier curves analysis the influence of risk factors on OS and CSS of UTUC patients (Table 2). Patients undergoing NSS had the longest OS median survival time (MST) (70.00 months) and highest CSS MST (115.10 months) compared with the other groups.

Survival analyses according to surgical method

As shown in Table S1, the 3,5,10-year OS for the population who received NSS was significantly longer than RNU patients in WHO grade III (58.3 % vs 50.3%, 46.5% vs 37.1%, 27.1% vs 22.8%, \(p < 0.001 \)). In addition, in the stage IV, NSS patients have longer survival ratio when compared with RNU patients (33.4 % vs 22.0%, 20.8% vs 14.9%, 16.3% vs 8.7%, \(p < 0.001 \)).

Multivariate cox regression analysis revealed some risk factors in UTUC patients (Table 3). After adjusting for risk factors, the results shown that compared with the patients who receive RNU treatment, no surgery patients (HR:3.78, 95% CI: 3.51-4.08, \(p < 0.001 \)) may be at increased risk. In term of CSS, no surgery patients (HR: 2.46, 95% CI: 2.18-2.77, \(p < 0.001 \)) associated more commonly with low-risk CSS, while the people performed with NSS (HR: 0.78, 95% CI: 0.67-0.91, \(p =0.002 \)) may also associated with significantly greatest odds of CSS.

Subgroup analysis stratified by AJCC stage and WHO grade

Based on summary stage and WHO grade, we further discussed the difference between surgical method and prognosis among the subgroups of patients (Table 4). We found that for OS and CSS, surgical method was still associated with them among different stage and various grade subgroups patients. Kaplan-Meier plots showed that NSS was associated with a higher overall survival (OS) and cancer-specific survival (CSS) in grade I and II and AJCC stage I and II patients (all \(p<0.05 \)) (Figure 2, Figure 3). In multivariable COX regression analyses, NSS patients had a higher OS rate in stage IV group (OS: HR: 0.74, 95% CI 0.60-0.90, \(p=0.003 \)) and a higher OS or CSS rate in grade III group compared to RNU patients. However, for other subgroup patients, the surgical method had no obvious effect in terms of OS, as well as CSS (\(p > 0.05 \)). When classified according to the primary organ, the related results are shown in the supplementary materials (Table S2-S3). Supplemental Figure 1-4 was performed to verify the NSS group was prone to a higher OS or CSS in the former periods.
Discussion

Our study was based on a large number of population database to quantitatively compare the impact of NSS on survival in patients with UTUC compared to RNU or no surgery. UTUC is a rare disease with an annual incidence of one to two cases per 100,000 individuals in Western countries. We explored the effect of surgical methods on OS and CSS in UTUC patients and discovery that surgical method was an independent prognostic factor. Moreover, the mean survival time was higher in NSS group than in RNU patients. Kaplan-Meier plots showed that NSS was associated with a higher OS and CSS in grade 3 and 4 and AJCC stage I patients. In multivariable Cox regression analyses, NSS was prone to a higher OS or CSS in grade 3, and NSS predisposed to a higher OS only in AJCC stage IV.

In our research, the OS and CSS of NSS and RNU were not significant for low-grade or early-stage with the selected UTUC patients. This result is similar to the previous report. Jay Simhan et al[16] reported that patients with similar situation when treated with NSS have analogous cancer-specific mortality (CSM) rates to those patients managed with RNU. Jeldres et al.[17] thought segmental ureterectomy (SU) may be operated to UTUC patients when it is technically feasible, especially when detected in T3 or even T4 lesions. Moreover, Giovanni Lughezzani[18] report a stage and grade migration at NU or SU towards more aggressive disease among surgically treated patients between 1983 and 2004. But the CSM rates are not higher than former that validates the two surgical ways as effective treatments for UTUC. However, in another research, Chen GL[12] reported acceptable oncological outcomes were observed in 23 patients undergoing laser ablation with strict ureteroscopic surveillance. In another side, the use of NSS has become an acceptable alternative in select patients with non-high grade, early-stage UTUC who are at low risk of disease progression[19, 20], However, the risk of cancer progression or recurrence is estimated to be as high as 30% within 5 years[21]. A large part of the difference in these results is due to competing model factors for the selected patient sample as well as aspects of the patient profile. In addition, radiotherapy is usually administered in symptomatic patients or patients unable to undergo radical surgery[22], however, Li Xiaoying[23] concluded radiotherapy can reduce local recurrence rate in patients with radical nephroureterectomy. In our research, we also found radiotherapy may benefit in UTUC patients. It may result from the population with surgery and high grade occupy most of the population, and radiotherapy may further improve the survival rate of patients. Meanwhile, there are studies focusing on the role of chemotherapy on survival for UTUC patients, and the therapeutic effects differ for different patients. In Zhai Ting-Shuai’s research[24], The beneficial effect of chemotherapy on survival probability was evident in pT3/pT4 or patients with lymph node metastasis, this may be involved more population with distant metastasis and more people are may have strong will of survival, so they have to face more treatment including receive extra chemotherapy. In other side, we observed that NSS has higher a OS or CSS when compared to RNU methods especially in Grade III and AJCC stage IV. In a multi cental research, Kaag et al.[25] identified a reduction in mean estimated GFR by ≈24% after RNU in tumor patients. Thus, patients when operated with RNU have notable decreases in renal function and leading to chronic kidney disease[26]. Importantly, such a decline in renal function after radical surgery in patients with UTUC may affect eligibility in the event of disease progression[27]. We concerned more about NSS surgery because
NSS could protect the nephron, and it could better maintain the life of the patient with solitary kidney, thereby prolonging the survival period. Previous studies examining the oncological efficacy in patients managed conservatively were limited by small sample sizes, lack of generalizability, and inclusion of patients with aggressive disease characteristics. Using national registry data, the present multicenter large-sample study might be more convincing.

There are limitations in our research. First, the SEER database is a retrospective dataset. Second, the patient’s physical condition was unclear, patients with much complications might pursue more conservative treatment. Third, patients receiving NSS may have a selection bias relative to RNU. In addition, for chemotherapy and radiotherapy, we didn’t distinguish whether adjuvant or neoadjuvant therapy, and there is no information on specific RT technique (dose, fractionation, beam energy) or chemotherapy regimens.

Conclusions

To conclude, we demonstrated that the beneficial effect of NSS was evident in grade I or AJCC stage I. NSS can be considered in grade I or stage I, for other grades or stages remains to be seen, both of which will be verified by further prospective research.

Abbreviations

NSS: nephron sparing surgery; UTUC: upper urinary tract urothelial carcinoma; RNU: radical nephroureterectomy; OS: overall survival; CSS: cancer-specific survival; SEER: the Surveillance, Epidemiology and End Results; MST: median survival time

Declarations

Ethics approval and consent to participate

For the institutional cohorts, data were extracted from the Surveillance, Epidemiology, and End Results database. This article does not contain any studies with human participants performed by any of the authors. For this type of study, formal consent is not required.

Consent for publication

Not applicable.

Availability of data and material

The datasets used and/or analyzed during this current study are available from the corresponding author on reasonable request.

Competing interests
The authors declare that they have no competing interests.

Funding

This work was supported by grants from the National Natural Science Foundation of China (No.81672549 & 81972409), Natural Science Foundation of Shanghai (No. 15ZR1433000), The sanitation system self-dependent innovation foundation of Putuo district in Shanghai (No. PTKWWS201819). The funding bodies had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Authors' contributions

L J contributed to study designation, data analysis, methodology, data validation and original draft writing. TS Z contributed to data collection, manuscript preparation and edition. Z Z contributed to data collection, formal analysis, investigation and visualization. X L contributed to formal analysis, methodology and validation. JX Z contributed to formal analysis and methodology. XC N contributed to formal analysis and methodology. HQ L contributed to data collection. XD Y contributed to conceptualization and supervision. LM F contributed to conceptualization, supervision and editing. L Y contributed to conceptualization, funding acquisition, resources, supervision and writing-review and editing. All authors have read and approved the manuscript.

Acknowledgements

We would like to express our most sincere thanks to the technical assistance of the department of urology in Shanghai tenth people' hospital and all the patients involved in SEER database.

References

[1]. Siegel RL, Miller KD, Jemal A: Cancer statistics, 2019. *Ca-Cancer J Clin* 2019, 69(1):7-34.

[2]. Froemming A, Potretzke T, Takahashi N, Kim B: Upper tract urothelial cancer. *Eur J Radiol* 2018, 98:50-60.

[3]. Zini L, Perrotte P, Capitanio U, Jeldres C, Shariat SF, Antebi E, Saad F, Patard JJ, Montorsi F, Karakiewicz PI: Radical versus partial nephrectomy: effect on overall and noncancer mortality. *Cancer-Am Cancer Soc* 2009, 115(7):1465-1471.

[4]. McKiernan J, Simmons R, Katz J, Russo P: Natural history of chronic renal insufficiency after partial and radical nephrectomy. *Urology* 2002, 59(6):816-820.

[5]. Gadzinski AJ, Roberts WW, Faerber GJ, Wolf JS, Jr.: Long-term outcomes of nephroureterectomy versus endoscopic management for upper tract urothelial carcinoma. *J Urol* 2010, 183(6):2148-2153.
[6]. Roupret M, Hupertan V, Traxer O, Loison G, Chartier-Kastler E, Conort P, Bitker MO, Gattegno B, Richard F, Cussenot O: Comparison of open nephroureterectomy and ureteroscopic and percutaneous management of upper urinary tract transitional cell carcinoma. *Urology* 2006, 67(6):1181-1187.

[7]. Jung H, Giusti G, Fajkovic H, Herrmann T, Jones R, Straub M, Baard J, Osterh PJ, Brehmer M: Consultation on UTUC, Stockholm 2018: aspects of treatment. *World J Urol* 2019, 37(11):2279-2287.

[8]. Smith AK, Stephenson AJ, Lane BR, Larson BT, Thomas AA, Gong MC, Jones JS, Campbell SC, Hansel DE: Inadequacy of biopsy for diagnosis of upper tract urothelial carcinoma: implications for conservative management. *Urology* 2011, 78(1):82-86.

[9]. Hasan MN, Roupret M, Keeley F, Cracco C, Jones R, Straub M, Traxer O, Osterh PJ, Brehmer M: Consultation on UTUC, Stockholm 2018 aspects of risk stratification: long-term results and follow-up. *World J Urol* 2019, 37(11):2289-2296.

[10]. Margulis V, Shariat SF, Matin SF, Kamat AM, Zigeuner R, Kikuchi E, Lotan Y, Weizer A, Raman JD, Wood CG et al: Outcomes of radical nephroureterectomy: a series from the Upper Tract Urothelial Carcinoma Collaboration. *Cancer-Am Cancer Soc* 2009, 115(6):1224-1233.

[11]. Fernandez MI, Shariat SF, Margulis V, Bolenz C, Montorsi F, Suzuki N, Remzi M, Wood CG, Roscigno M, Kikuchi E et al: Evidence-based sex-related outcomes after radical nephroureterectomy for upper tract urothelial carcinoma: results of large multicenter study. *Urology* 2009, 73(1):142-146.

[12]. GL C, DH B: Ureteroscopic management of upper tract transitional cell carcinoma in patients with normal contralateral kidneys. *The Journal of urology* 2000, 164(4):1173-1176.

[13]. Soria F, Shariat SF, Lerner SP, Fritsche HM, Rink M, Kassouf W, Spiess PE, Lotan Y, Ye D, Fernandez MI et al: Epidemiology, diagnosis, preoperative evaluation and prognostic assessment of upper-tract urothelial carcinoma (UTUC). *World J Urol* 2017, 35(3):379-387.

[14]. Roupret M, Colin P, Yates DR: A new proposal to risk stratify urothelial carcinomas of the upper urinary tract (UTUCs) in a predefinitive treatment setting: low-risk versus high-risk UTUCs. *Eur Urol* 2014, 66(2):181-183.

[15]. Seisen T, Colin P, Roupret M: Risk-adapted strategy for the kidney-sparing management of upper tract tumours. *Nat Rev Urol* 2015, 12(3):155-166.

[16]. Simhan J, Smaldone MC, Egleston BL, Canter D, Sterious SN, Corcoran AT, Ginzburg S, Uzzo RG, Kutikov A: Nephron-sparing management vs radical nephroureterectomy for low- or moderate-grade, low-stage upper tract urothelial carcinoma. *Bju Int* 2014, 114(2):216-220.

[17]. Jeldres C, Lughezzani G, Sun M, Isbarm H, Shariat SF, Budaus L, Lattouf JB, Widmer H, Graefen M, Montorsi F et al: Segmental ureterectomy can safely be performed in patients with transitional cell carcinoma of the ureter. *J Urol* 2010, 183(4):1324-1329.
[18]. Lughezzani G, Jeldres C, Isbarn H, Sun M, Shariat SF, Widmer H, Arjane P, Graefen M, Perrotte P, Montorsi F et al: Temporal stage and grade migration in surgically treated patients with upper tract urothelial carcinoma. *BJU Int* 2010, 105(6):799-804.

[19]. KS P, J S: When is partial ureterectomy acceptable for transitional-cell carcinoma of the ureter? *J Endourol* 2001, 15(4):405-408; discussion 409.

[20]. DS E, JW S, DL D, DE P, ML B: Is nephroureterectomy necessary in all cases of upper tract transitional cell carcinoma? Long-term results of conservative endourologic management of upper tract transitional cell carcinoma in individuals with a normal contralateral kidney. *Urology* 2001, 58(2):174-178.

[21]. MC H, SW A, T C, MD E, CG R: Prognostic factors, recurrence, and survival in transitional cell carcinoma of the upper urinary tract: a 30-year experience in 252 patients. *Urology* 1998, 52(4):594-601.

[22]. Leow J, Orsola A, Chang S, Bellmunt J: A contemporary review of management and prognostic factors of upper tract urothelial carcinoma. *Cancer treatment reviews* 2015, 41(4):310-319.

[23]. Li X, Cui M, Gu X, Fang D, Li H, Qin S, Yang K, Zhu T, Li X, Zhou L et al: Pattern and risk factors of local recurrence after nephroureterectomy for upper tract urothelial carcinoma. *World J Surg Oncol* 2020, 18(1):114.

[24]. Zhai T, Jin L, Feng L, Zhou Z, Liu X, Liu H, Ma W, Lu J, Chen W, Yao X et al: Perioperative Chemotherapy on Survival in Patients With Upper Urinary Tract Urothelial Carcinoma Undergoing Nephroureterectomy: A Population-Based Study. *Front Oncol* 2020, 10:481.

[25]. Kaag MG, O’Malley RL, O’Malley P, Godoy G, Chen M, Smaldone MC, Hrebinko RL, Raman JD, Bochner B, Dalbagni G et al: Changes in Renal Function Following Nephroureterectomy May Affect the Use of Perioperative Chemotherapy. *Eur Urol* 2010, 58(4):581-587.

[26]. Lane BR, Smith AK, Larson BT, Gong MC, Campbell SC, Raghavan D, Dreicer R, Hansel DE, Stephenson AJ: Chronic kidney disease after nephroureterectomy for upper tract urothelial carcinoma and implications for the administration of perioperative chemotherapy. *Cancer-Am Cancer Soc* 2010, 116(12):2967-2973.

[27]. Kang CH, Yu TJ, Hsieh HH, Yang JW, Shu K, Huang CC, Chiang PH, Shiue YL: The development of bladder tumors and contralateral upper urinary tract tumors after primary transitional cell carcinoma of the upper urinary tract. *Cancer-Am Cancer Soc* 2003, 98(8):1620-1626.

Tables
Table 1. Characteristics for UTUC patients stratified by surgical method.

Characteristic	Total No. (%)	No Surgery No. (%)	NSS No. (%)	RNU No. (%)	P value									
Age at diagnosis					<0.001									
18-50	348 (3.4)	20 (0.2)	51 (0.5)	277 (2.7)	1846 (17.9)									
51-65	2275 (22.0)	154 (1.5)	275 (2.7)	1846 (17.9)										
66-80	5177 (50.2)	438 (4.2)	649 (6.3)	4090 (39.6)										
>80	2519 (24.4)	351 (3.4)	324 (3.1)	1844 (17.9)										
Year of diagnosis					<0.001									
2004	840 (8.1)	70 (0.7)	118 (1.1)	652 (6.3)										
2005	792 (7.7)	56 (0.5)	92 (0.9)	644 (6.2)										
2006	895 (8.7)	61 (0.6)	114 (1.1)	687 (6.7)										
2007	869 (8.4)	66 (0.6)	116 (1.1)	687 (6.7)										
2008	895 (8.7)	84 (0.8)	128 (1.2)	683 (6.6)										
2009	893 (8.7)	79 (0.8)	103 (1.0)	711 (6.9)										
2010	882 (8.5)	75 (0.7)	114 (1.1)	693 (6.7)										
2011	837 (8.1)	97 (0.9)	112 (1.1)	628 (6.1)										
2012	787 (7.6)	89 (0.9)	85 (0.8)	613 (5.9)										
2013	830 (8.0)	81 (0.8)	91 (0.9)	658 (6.4)										
2014	867 (8.4)	102 (1.0)	106 (1.0)	659 (6.4)										
2015	932 (9.0)	103 (1.0)	94 (0.9)	735 (7.1)										
Sex					<0.001									
Male	6139 (59.5)	543 (5.3)	843 (8.2)	4753 (46.1)										
Female	4180 (40.5)	420 (4.1)	430 (4.2)	3330 (32.3)										
Race					0.03									
White	9026 (87.4)	824 (8.0)	1103 (10.7)	7099 (68.8)										
Black/Other	1293 (12.6)	139 (1.3)	170 (1.6)	984 (9.5)										
Marital status					<0.001									
Married	6193 (60.0)	500 (4.8)	784 (7.6)	4909 (47.6)										
Unmarried	3716 (36.0)	412 (4.0)	425 (4.1)	2879 (27.9)										
Unknown	410 (4.0)	51 (0.5)	64 (0.6)	295 (2.9)										
Urban-rural residence					0.604									
Metropolitan	9798 (95.0)	913 (8.8)	1214 (11.8)	7671 (74.3)										
Non-metropolitan	521 (5.1)	50 (0.5)	59 (0.6)	412 (4.0)										
Insurance					0.012									
Yes	7571 (73.4)	746 (7.2)	918 (8.9)	5907 (57.2)										
No	88 (0.9)	8 (0.1)	6 (0.1)	74 (0.7)										
Unknown	2660 (25.8)	209 (2.0)	349 (3.4)	2102 (20.4)										
Income					0.491									
Lower	4303 (41.7)	421 (4.1)	520 (5.0)	3362 (32.6)										
Middle	2906 (28.2)	258 (2.5)	355 (3.4)	2298 (22.3)										
Upper	3110 (30.1)	284 (2.8)	403 (3.9)	2423 (23.5)										
Summary stage					<0.001									
Localized	2732 (26.5)	230 (2.2)	421 (4.1)	2081 (20.2)										
Regional	6403 (62.1)	260 (2.5)	813 (7.9)	5330 (51.7)										
Distant	1184 (11.5)	473 (4.6)	39 (0.4)	672 (6.5)										
Grade					<0.001									
I	434 (4.2)	50 (0.5)	71 (0.7)	313 (3.0)										
	II	III	IV	AJCC Stage	Radiotherapy	Chemotherapy								
---	-----	------	------	------------	--------------	--------------								
	1511 (14.6)	3135 (30.4)	5239 (50.8)	<0.001	<0.001									
I	2976 (28.8)	1683 (16.3)	3143 (30.5)	2517 (24.4)	2976 (28.8)	1683 (16.3)	3143 (30.5)	2517 (24.4)	2976 (28.8)	1683 (16.3)	3143 (30.5)	2517 (24.4)	<0.001	<0.001
II	117 (1.1)	386 (3.7)	410 (4.0)	387 (3.8)	386 (3.7)	410 (4.0)	387 (3.8)	<0.001	<0.001					
III	195 (1.9)	387 (3.8)	620 (6.0)	2362 (22.9)	195 (1.9)	387 (3.8)	620 (6.0)	2362 (22.9)	<0.001	<0.001				
IV	1199 (11.6)	2362 (22.9)	4209 (40.8)	<0.001	<0.001									
Yes	455 (4.4)	41 (0.4)	148 (1.4)	1728 (16.7)	455 (4.4)	41 (0.4)	148 (1.4)	1728 (16.7)	<0.001					
No/Other	9864 (95.6)	948 (9.2)	1226 (11.9)	7690 (74.5)	9864 (95.6)	948 (9.2)	1226 (11.9)	7690 (74.5)	<0.001					

Abbreviations: NSS: Nephron Sparing Surgery; RNU: Radical Nephroureterectomy.
Table 2. Kaplan–Meier analysis overall survival and cancer-specific survival for UTUC patients.

Characteristic	OS MST (months)	Kaplan-Meier	CSS MST (months)	Kaplan-Meier
	Log Rank χ^2	P value	Log Rank χ^2	P value
Age at diagnosis				
18-50	92.08	720.68	0.001	104.84
51-65	80.70		104.64	
66-80	61.56		100.82	
>80	37.74		87.31	
Sex				
Male	61.25	0.90	100.79	28.45
Female	60.88	0.344	95.56	0.001
Race				
White	61.32	1.89	100.32	18.45
Black/Other	59.62	0.169	91.81	0.001
Marital status				
Married	64.84	71.99	101.41	27.84
Unmarried	54.75		94.85	
Unknown	60.53		101.02	
Urban-rural residence				
Metropolitan	61.24	1.74	99.25	
Non-metropolitan	58.31	0.188	98.68	
Income				
Lower	58.42	15.84	96.62	12.21
Middle	62.68		100.51	0.002
Upper	63.29		101.68	
Summary stage				
Localized	85.21	2854.23	2853.40	0.001
Regional	58.84		125.18	
Distant	14.16		97.00	
Grade				
I	81.70	305.38	124.43	271.73
II	82.63		119.98	
III	54.03		91.74	
IV	56.79		94.06	
AJCC Stage				
I	85.61	2468.48	2478.87	0.001
II	72.92		115.23	
III	58.99		96.48	
IV	25.87		49.76	
Radiotherapy				
Yes	33.81	133.54	58.27	161.07
No	62.34		100.94	
Chemotherapy				
Yes	50.37	98.78	76.85	267.48
No	63.80		104.80	
Surgery methods				
No	17.66	1476.78	40.04	
NSS	70.70		115.10	
RNU	64.65		102.07	
Abbreviations: OS: Overall Survival; CSS: Cancer Specific Survival; MST: Mean Survival Time; NSS: Nephron Sparing Surgery; RNU: Radical Nephroureterectomy.
Table 3. Risk factors for survival: outcome is overall survival and cancer-specific survival.

Characteristic	OS univariate COX analysis	OS Multivariate Cox analysis	CSS univariate COX analysis	CSS Multivariate Cox analysis				
	Hazard Ratio (95% CI)	*P* value	Hazard Ratio (95% CI)	*P* value				
Age at diagnosis								
18-50	Reference		Reference					
51-65	1.36 (1.13-1.64)	<0.001	1.33 (1.11-1.60)	0.003				
66-80	2.04 (1.71-2.44)	<0.001	1.96 (1.64-2.35)	<0.001				
>80	3.43 (2.87-4.12)	<0.001	3.16 (2.63-3.79)	<0.001				
Race								
White	Reference		Reference					
Black/Other	1.06 (0.98-1.14)	0.173						
Marital status								
Married	Reference		Reference					
Unmarried	1.26 (1.19-1.33)	<0.001	1.12 (1.06-1.18)	<0.001				
Unknown	1.07 (0.93-1.23)	0.374	1.04 (0.90-1.19)	0.614				
Urban-rural residence								
Metropolitan	Reference		Reference					
Non-metropolitan	1.06 (1.02-1.10)	0.007	1.09 (0.97-1.22)	0.169				
Income								
Lower	Reference		Reference					
Middle	0.91 (0.85-0.97)	0.003	0.93 (0.87-0.99)	0.017				
Upper	0.90 (0.84-0.95)	<0.001	0.90 (0.84-0.96)	0.001				
Summary stage								
Localized	Reference		Reference					
Regional	1.87 (1.75-2.00)	<0.001	0.69 (0.51-0.93)	0.015				
Distant	7.84 (7.19-8.55)	<0.001	1.36 (0.99-1.86)	0.053				
Grade								
I	Reference		Reference					
II	5.14 (4.24-6.23)	<0.001	0.95 (0.81-1.11)	0.510				
III	10.25 (8.44-12.46)	<0.001	1.29 (1.11-1.49)	0.001				
IV	17.69 (14.61-21.42)	<0.001	1.33 (1.15-1.54)	<0.001				
AJCC stage								
I	Reference		Reference					
II	1.34 (1.23-1.46)	<0.001	1.91 (1.42-2.58)	<0.001				
III	1.89 (1.76-2.04)	<0.001	2.72 (2.02-3.66)	<0.001				
	IV							
----------------	---------	----------------	----------------	----------------	----------------	----------------	----------------	
Surgery								
No surgery	3.78 (3.51-4.08)	<0.001	2.94 (2.71-3.19)	<0.001	4.69 (4.24-5.19)	<0.001	3.02 (2.70-3.39)	<0.001
NSS	0.86 (0.79-0.94)	<0.001	0.96 (0.88-1.04)	0.332	0.62 (0.54-0.72)	<0.001	0.76 (0.66-0.88)	<0.001
RNU	Reference	Reference	Reference	Reference	Reference	Reference	Reference	
Radiotherapy								
Yes	Reference	Reference	Reference	Reference	Reference	Reference	Reference	
No	0.53 (0.48-0.60)	<0.001	0.70 (0.63-0.78)	<0.001	0.41 (0.36-0.47)	<0.001	0.67 (0.58-0.69)	<0.001
Chemotherapy								
Yes	Reference	Reference	Reference	Reference	Reference	Reference	Reference	
No	0.73 (0.69-0.78)	<0.001	1.24 (1.16-1.33)	<0.001	0.51 (0.46-0.55)	<0.001	1.22 (1.10-1.34)	<0.001

Abbreviations: OS: Overall Survival; CSS: Cancer Specific Survival; MST: Mean Survival Time; NSS: Nephron Sparing Surgery; RNU: Radical Nephroureterectomy.
Table 4. Subgroup analyses stratified by summary stage and grade for overall survival and cancer-specific survival.

Characteristic	OS MST (months)	OS Hazard Ratio (95% CI)	P value	CSS MST (months)	CSS Hazard Ratio (95% CI)	P value
Grade I						
No surgery	28.23	4.28(2.91-6.29)	<0.001	74.77	3.17(1.38-7.28)	0.006
NSS	88.76	1.01(0.67-1.51)	0.97	126.13	0.89(0.34-2.33)	0.814
RNU	90.59	Reference		128.08	Reference	
Grade II						
No surgery	25.10	3.73(2.91-4.77)	<0.001	54.29	4.37(2.98-6.41)	<0.001
NSS	84.76	1.04(0.83-1.30)	0.748	130.43	0.66(0.39-1.10)	0.111
RNU	90.59	Reference		128.08	Reference	
Grade III						
No surgery	15.00	2.60(2.28-2.97)	<0.001	32.87	2.73(2.28-3.27)	<0.001
NSS	68.30	0.86(0.74-0.99)	0.033	112.12	0.69(0.54-0.88)	0.003
RNU	90.59	Reference		128.08	Reference	
Stage I						
No surgery	31.24	3.41(2.88-4.04)	<0.001	73.17	4.99(3.73-6.69)	<0.001
NSS	89.25	1.02(0.90-1.15)	0.797	107.99	0.82(0.67-1.00)	0.053
RNU	90.59	Reference		128.08	Reference	
Stage II						
No surgery	34.22	2.94(1.97-4.61)	<0.001	60.52	4.69(2.46-8.95)	<0.001
NSS	72.58	0.93(0.79-1.10)	0.416	121.56	0.73(0.52-1.02)	0.062
RNU	90.59	Reference		128.08	Reference	
Stage III						
No surgery	19.53	2.96 (2.13-4.12)	<0.001	44.17	2.65(1.58-4.44)	<0.001
NSS	55.61	1.16 (0.99-1.34)	0.056	98.08	0.91(0.72-1.15)	0.430
RNU	90.59	Reference		128.08	Reference	
Stage IV						
No surgery	11.39	1.81(1.62-2.01)	<0.001	22.16	2.02(0.49-0.86)	<0.001
NSS	43.20	0.74(0.60-0.90)	0.003	79.21	1.15(0.95-1.40)	0.144
RNU	90.59	Reference		128.08	Reference	

Abbreviations: OS: Overall Survival; CSS: Cancer Specific Survival; MST: Mean Survival Time; NSS: Nephron Sparing Surgery; RNU: Radical Nephroureterectomy.