Identification of the difference of neutrophils in different locations in RA patients

Hanming Gu (laygmp@gmail.com)
Shanghai Jiao Tong University

Research Article

Keywords: Rheumatoid arthritis, inflammation, KEGG, neutrophils

DOI: https://doi.org/10.21203/rs.3.rs-308329/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Rheumatoid Arthritis (RA) is a complex systemic disease in which numerous cell types are involved. Neutrophils play an important role in the onset and development of RA. In our study, we aim to identify different functions of neutrophils in different conditions (blood and synovium) of RA patients by using a bioinformatics method to clarify their potential pathogenesis. The gene expression profiles of the GSE154474 dataset were originally produced by using the high-throughput Illumina HiSeq 2000 (Homo sapiens). The biological categories and biochemical pathways were identified and analyzed by the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG), Gene Ontology (GO), and Reactom enrichment. KEGG and GO results showed the biological pathways related to the immune and cellular structure were mainly different. Moreover, we identified several genes including GNB4, RHOA, and TECB2 were involved in the regulation of inflammation. Therefore, this study provides different insights into the pathogenesis of RA.

Introduction

Rheumatoid arthritis (RA) is a systemic disease that can cause the disability of the immune system without proper treatment. It is unclear that the precise pathogenetic mechanisms underlying the development of RA\(^1\). At the onset of RA, patients indicate increased articular inflammation usually in the form of a symmetric polyarthritis\(^2\). Leukocyte migrates and aggregates in the joint area with early infiltration of neutrophils, T cells, B cells, and plasma cells that produced autoantibodies in the synovium tissue\(^3\). Not only the neutrophils, other innate immune cells such as macrophages and natural killer cells are also recruited to the synovium\(^4,\,5\). Finally, the local inflammatory condition contributes to fundamental changes and promotes the formation of hyperplastic, inflammatory synovium\(^6,\,7\).

Neutrophils are the first cell type that respond to acute inflammation and are endowed with the ability of antimicrobial mechanisms\(^8\). Neutrophils are from bone marrow and respond to granulocyte colony-stimulating factors. It is believed that integrins and selectins are critical in the process of neutrophil egression\(^9\). Neutrophils also express the C-X-C chemokine receptors. The balance between CXCR2 and CXCR4 and their respective chemokines appears to play a basic role in neutrophil mobilization\(^10\). In the absence of inflammatory stimuli, mature neutrophils locate in the bloodstream and remain in the circulation for a short period\(^8\). Thus, we consider the neutrophils in the blood as the less active neutrophils than those in the synovium in RA patients.

Here, we studied the relative neutrophil changes between blood and synovium. We identified and analyzed a series of DEGs, the relevant biological processes, and biological functions of neutrophils in the synovium in comparison to those in the blood by using comprehensive bioinformatic analysis\(^11\). We performed the signal pathway analysis, the functional enrichment, and protein-protein interaction (PPI) for discovering the features of the neutrophils in the synovium from RA patients. The identified genes and pathways could be critical to favor future clinical and therapeutic studies.
Methods

Data resources

The dataset GSE154474 was obtained from the GEO database (http://www.ncbi.nlm.nih.gov/geo/). The data was produced by Illumina HiSeq 2000 (Homo sapiens), Institute of Life Course and Medical Sciences, University of Liverpool, United Kingdom. Bulk RNA-Seq analysis was performed using Neutrophils (purity > 97%) from paired peripheral blood and synovial fluid (SF) from n = 3 patients with severe rheumatoid arthritis.

Data acquisition and preprocessing

The dataset GSE154474 that includes Neutrophils from paired peripheral blood and synovial fluid was analyzed and conducted by R script12,13. We performed a classical t test to identify DEGs with P < .01 and fold change ≥ 1.5 as being statistically significant.

Gene functional analysis

The Gene Ontology (GO) is a functional genomics research that develop a comprehensive model through knowledge-informed computational analysis of biological data. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database is widely used for identifying the high-level functions and utilities of the biological system. The GO analysis and KEGG pathway enrichment analysis were performed by using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) (http://david.ncifcrf.gov/). P < .05 and gene counts > 10 were considered statistically significant.

Module analysis

The Molecular Complex Detection (MCODE) of Cytoscape software was used to analyze the densely connected regions in protein-protein interaction (PPI) networks. The significant modules were from the constructed PPI network using MCODE. The function and pathway enrichment analyses were performed by using DAVID, and P < .05 was used as the cutoff criterion.

Reactome pathway analysis

We used the Reactom pathway to obtain the visualisation, interpretation and analysis of potential pathways (https://reactome.org/). P < .05 was considered statistically significant.

Results

Identification of DEGs of neutrophils from peripheral blood in comparison to synovial fluid in RA patients

The neutrophils were collected from the paired peripheral blood and synovial fluid from patients with severe rheumatoid arthritis. To gain the insights on the different genes, the neutrophils from blood were
compared to those from synovial fluid. A total of 416 genes were identified to be differentially expressed with the threshold of P<0.005. The top 10 up- and down-regulated genes are list in table 1.

KEGG analysis of DEGs of neutrophils from peripheral blood in comparison to synovial fluid in RA patients

To further identify the biological roles and potential mechanisms of the DEGs of neutrophils from blood and synovial fluid, we performed KEGG pathway and GO categories enrichment analysis (Supplemental Table S1)\(^\text{12}\). The KEGG pathway (http://www.genome.jp/kegg/) includes curated sets of genes that are to understand the molecular interaction, reaction and relation networks. Our study indicated top five enriched KEGG pathways including “Serotonergic synapse”, “Regulation of actin cytoskeleton”, “Alzheimer's disease”, “Proteoglycans in cancer” and “Pathways in cancer” (Figure 1).

GO analysis of DEGs of neutrophils from peripheral blood in comparison to synovial fluid in RA patients

Gene Ontology (GO) analysis includes cellular components (CC), molecular functions (MF), and biological processes (BP). Here, we identified top five cellular components including “mitochondrial envelope”, “extrinsic component of cytoplasmic side of plasma membrane”, “trans-Golgi network”, “ciliary basal body”, and “axon” (Figure 1). We then identified top five biological processes: “negative regulation of bile acid biosynthetic process”, “epithelial cell proliferation involved in mammary gland duct elongation”, “vocalization behavior”, “regulation of microtubule cytoskeleton organization”, and “keratinocyte differentiation” (Figure 1). We identified top five molecular functions: “formyltetrahydrofolate cyclo-ligase activity”, “calcium: sodium antiporter activity”, “MutLalpha complex binding”, “extracellular matrix binding”, and “ligand-dependent nuclear receptor binding” (Figure 1).

PPI (protein–protein interactions) network and Module analysis

The PPI networks were constructed to analyze the relationships of DGEs at the protein level. The criterion of combined score >0.7 was set and the PPI network was created by using the 224 nodes and 320 interactions. Among these nodes, the top ten of most significant genes with highest scores are shown in Table 2. The top two significant modules versus blood samples were selected to indicate the functional annotation (Figure 2).

Reactome Pathway of neutrophils from peripheral blood in comparison to synovial fluid in RA patients

We identified a series of signaling pathways by using Reactome Pathway Database (https://reactome.org/). We identified top ten signaling pathways including: “Defective Base Excision Repair Associated with MUTYH”, “Defective MUTYH substrate processing”, “VEGF ligand-receptor interactions”, “VEGF binds to VEGFR leading to receptor dimerization”, “Activation of RAS in B cells”, “RUNX3 regulates RUNX1-mediated transcription”, “Polymerase switching”, “Leading Strand Synthesis”, “Activated NTRK2 signals through FRS2 and FRS3”, and “PTK6 Regulates RHO GTPases, RAS GTPase...”
and MAP kinases” (Supplemental Table S2). We then constructed the reaction map according to the signaling pathways (Figure 3).

Discussion

Neutrophils are the common cell type in RA synovial fluid and are also detected in RA synovial tissues. Various proteases express in neutrophils play crucial roles in joint damage and inflammation. Moreover, these proteases can activate the proinflammatory cytokines, modulate chemokine function and trigger different pathways. Thus, the molecules present in neutrophil granules lead to inflammation and tissue damage.

To better understand the different roles of neutrophils in blood and synovium in RA, we analyzed the RNA-seq of peripheral blood and synovial fluid neutrophils from rheumatoid arthritis patients. Thus, by using this, we could learn more about the functions of neutrophils in different conditions and environments. By analyzing the DEGs, we selected 10 proteins that may be critical according to the PPI network analysis. G proteins and Regulator of G protein signaling proteins are widely expressed in various tissues and involved in the immune process. In our study, the G Protein Subunit Beta 4 was involved in calcium signaling during infection or inflammation. CXCL12/CXCR4 can activate the RhoA to further promote the inflammation-driven colorectal cancer progression. The absence of OA inhibits Th17 cell differentiation and allergic airway inflammation. TCEB2 is involved in the regulation of apoptosis. Laminin beta 1 (LAMB1) is highly expressed in lung tissue and it is critical for both lung morphogenesis and physiological function. KRAS is the most mutated oncogene in cancer and its receptor AMG 510 contributes the regression of KRAS mutant tumors and improves the anti-tumor efficacy of chemotherapy via formation a pro-inflammatory tumor microenvironment. F2 accounts for the fate of at least 90% of the prothrombin in plasma, which may affect the blood clotting in RA. DNMT3a can regulate the transcriptional inhibition on opiate-induced synaptic and behavioral plasticity via UBE2B. ITGB3 was reported as a hub regulator in the tumor microenvironment, which may regulate the immune system during the tumor genesis. As a mitochondrial protein, ATP5 proteins are important for the construction of complex V. The loss of ATP5F1D can lead to a metabolic disorder. enhanced ITGA2B was discovered in bone marrow megakaryocytes of sepsis onset. Subsequent upregulation of ITGA2B were seen in circulating platelets. Circadian clocks play important roles in physiological and pathophysiological processes such as aging, bone, metabolism diseases. Most interestingly, circadian control of neutrophil responsiveness contributes to changes in different location in inflammation condition, which may influence the development of RA. Interestingly, the genes such as RHOA, and KRAS are critically regulated by circadian clocks. Thus, these PPI proteins are majorly involved in the inflammation and circulation environment during RA. It is suggested that neutrophils in different places and environments may activate different proteins and play different roles during RA.
KEGG and GO analysis showed that cancer related protein, immune and cell skeletal protein play critical roles by comparing the neutrophils from blood and synovium. The KEGG analysis showed the “Cancer pathways” and “Regulation of actin cytoskeleton” were the major different pathways in neutrophils from blood and synovium. It is suggested that the function of neutrophils from different locations is based on the environment. Neutrophils recognize different substrates of microbial and response by sequestering the cargo via phagocytosis or by releasing bioactive factors outside the cell, thus changing and alerting the environment and bystander leukocytes. Interestingly, the CC of GO analysis showed “Mitochondrial envelop”, “Extrinsic component of plasma membrane”, “Tans-Golgi network” and “B cell activation”, suggesting that the neutrophil components were different between blood and synovium in RA patients. Thus, the microenvironmental condition is crucial for the construction and function of neutrophils.

In summary, we identified different genes in neutrophils from blood and synovium in severe RA patients. Immune dysfunction and microenvironment were two key differences of neutrophils in different locations. This study thus provides further insights into the features of neutrophils from different tissues in RA, which may facilitate the diagnosis and drug development.

Declarations

Declarations of interest: none

References

1. Yap HY, Tee SZ, Wong MM, Chow SK, Peh SC, Teow SY: Pathogenic Role of Immune Cells in Rheumatoid Arthritis: Implications in Clinical Treatment and Biomarker Development. Cells 2018, 7.
2. Heidari B: Rheumatoid Arthritis: Early diagnosis and treatment outcomes. Caspian J Intern Med 2011, 2:161–70.
3. Tran CN, Lundy SK, Fox DA: Synovial biology and T cells in rheumatoid arthritis. Pathophysiology 2005, 12:183–9.
4. Paust S, Senman B, von Andrian UH: Adaptive immune responses mediated by natural killer cells. Immunol Rev 2010, 235:286–96.
5. Yuan G, Yang S, Ng A, Fu C, Oursler MJ, Xing L, Yang S: RGS12 Is a Novel Critical NF-kappaB Activator in Inflammatory Arthritis. iScience 2020, 23:101172.
6. Sokolove J, Lepus CM: Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis 2013, 5:77–94.
7. Yuan G, Xu L, Cai T, Hua B, Sun N, Yan Z, Lu C, Qian R: Clock mutant promotes osteoarthritis by inhibiting the acetylation of NFkappaB. Osteoarthritis Cartilage 2019, 27:922–31.
8. Rosales C: Neutrophil: A Cell with Many Roles in Inflammation or Several Cell Types? Front Physiol 2018, 9:113.
9. Furze RC, Rankin SM: Neutrophil mobilization and clearance in the bone marrow. Immunology 2008, 125:281–8.

10. Eash KJ, Greenbaum AM, Gopalan PK, Link DC: CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J Clin Invest 2010, 120:2423–31.

11. Gu H, Yuan G: Identification of specific biomarkers and pathways in the synovial tissues of patients with osteoarthritis in comparison to rheumatoid arthritis. bioRxiv 2020:2020.10.22.340232.

12. Gu H, Yuan G: Identification of key genes in SARS-CoV-2 patients on bioinformatics analysis. bioRxiv 2020:2020.08.09.243444.

13. Hanming G, Wei W, Gongsheng Y: Research Square 2020.

14. Wright HL, Lyon M, Chapman EA, Moots RJ, Edwards SW: Rheumatoid Arthritis Synovial Fluid Neutrophils Drive Inflammation Through Production of Chemokines, Reactive Oxygen Species, and Neutrophil Extracellular Traps. Front Immunol 2020, 11:584116.

15. Ramesh G, MacLean AG, Philipp MT: Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm 2013, 2013:480739.

16. Yuan G, Yang S, Gautam M, Luo W, Yang S: Macrophage regulator of G-protein signaling 12 contributes to inflammatory pain hypersensitivity. Annals of Translational Medicine 2021.

17. Fan XF, Wang XR, Yuan GS, Wu DH, Hu LG, Xue F, Gong YS: [Effect of safflower injection on endoplasmic reticulum stress-induced apoptosts in rats with hypoxic pulmonary hypertension]. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2012, 28:561–7.

18. Mao SZ, Fan XF, Xue F, Chen R, Chen XY, Yuan GS, Hu LG, Liu SF, Gong YS: Intermedin modulates hypoxic pulmonary vascular remodeling by inhibiting pulmonary artery smooth muscle cell proliferation. Pulm Pharmacol Ther 2014, 27:1–9.

19. Pham CT: Neutrophil serine proteases fine-tune the inflammatory response. Int J Biochem Cell Biol 2008, 40:1317–33.

20. Yuan G, Yang S, Liu M, Yang S: RGS12 is required for the maintenance of mitochondrial function during skeletal development. Cell Discov 2020, 6:59.

21. Fu C, Yuan G, Yang ST, Zhang D, Yang S: RGS12 Represses Oral Cancer via the Phosphorylation and SUMOylation of PTEN. J Dent Res 2020:22034520972095.

22. Hamby ME, Coppola G, Ao Y, Geschwind DH, Khakh BS, Sofroniew MV: Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors. J Neurosci 2012, 32:14489–510.

23. Yu X, Wang D, Wang X, Sun S, Zhang Y, Wang S, Miao R, Xu X, Qu X: CXCL12/CXCR4 promotes inflammation-driven colorectal cancer progression through activation of RhoA signaling by sponging miR-133a-3p. J Exp Clin Cancer Res 2019, 38:32.

24. Yang JQ, Kalim KW, Li Y, Zheng Y, Guo F: Ablation of RhoA impairs Th17 cell differentiation and alleviates house dust mite-triggered allergic airway inflammation. J Leukoc Biol 2019, 106:1139–51.
25. Yerlikaya A, Okur E, Baykal AT, Acilan C, Boyaci I, Ulukaya E: A proteomic analysis of p53-independent induction of apoptosis by bortezomib in 4T1 breast cancer cell line. J Proteomics 2015, 113:315–25.

26. Ji X, Wu B, Han R, Yang J, Ayaaba E, Wang T, Han L, Ni C: The association of LAMB1 polymorphism and expression changes with the risk of coal workers' pneumoconiosis. Environ Toxicol 2017, 32:2182–90.

27. Canon J, Rex K, Saiki Ay, Mohr C, Cooke K, Bagal D, Gaida K, Holt T, Knutson CG, Koppada N, Lanman BA, Werner J, Rapaport AS, San Miguel T, Ortiz R, Osgood T, Sun JR, Zhu X, McCarter JD, Volak LP, Houk BE, Fakih MG, O’Neil BH, Price TJ, Falchuck GS, Desai J, Kuo J, Govindan R, Hong DS, Ouyang W, Henary H, Arvedson T, Cee VJ, Lipford JR: The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 2019, 575:217–23.

28. Aronson DL, Stevan L, Ball AP, Franza BR, Jr., Finlayson JS: Generation of the combined prothrombin activation peptide (F1-2) during the clotting of blood and plasma. J Clin Invest 1977, 60:1410–8.

29. Chen ZG, Wang YJ, Chen RS, Geng F, Gan CL, Wang WS, Liu X, Zhou H, He L, Hu G, Liu JG: Ube2b-dependent degradation of DNMT3a relieves a transcriptional brake on opiate-induced synaptic and behavioral plasticity. Mol Psychiatry 2019.

30. Zhu C, Kong Z, Wang B, Cheng W, Wu A, Meng X: ITGB3/CD61: a hub modulator and target in the tumor microenvironment. Am J Transl Res 2019, 11:7195–208.

31. Olahova M, Yoon WH, Thompson K, Jangam S, Fernandez L, Davidson JM, Kyle JE, Grove ME, Fisk DG, Kohler JN, Holmes M, Dries AM, Huang Y, Zhao C, Contrepois K, Zappala Z, Fresard L, Waggott D, Zink EM, Kim YM, Heyman HM, Stratton KG, Webb-Robertson BM, Undiagnosed Diseases N, Snyder M, Merker JD, Montgomery SB, Fisher PG, Feichtinger RM, Mayr JA, Hall J, Barbosa IA, Simpson MA, Deshpande C, Waters KM, Koeller DM, Metz TO, Morris AA, Schelley S, Cowan T, Friederich MW, McFarland R, Van Hove JLK, Enns GM, Yamamoto S, Ashley EA, Wangler MF, Taylor RW, Bellen HJ, Bernstein JA, Wheeler MT: Biallelic Mutations in ATP5F1D, which Encodes a Subunit of ATP Synthase, Cause a Metabolic Disorder. Am J Hum Genet 2018, 102:494–504.

32. Middleton EA, Rowley JW, Campbell RA, Grissom CK, Brown SM, Beesley SJ, Schwartz H, Kosaka Y, Manne BK, Krauel K, Tolley ND, Eustes AS, Guo L, Paine R, Harris ES, Zimmerman GA, Weyrich AS, Rondina MT: Sepsis alters the transcriptional and translational landscape of human and murine platelets. Blood 2019, 134:911–23.

33. Yuan G, Hua B, Cai T, Xu L, Li E, Huang Y, Sun N, Yan Z, Lu C, Qian R: Clock mediates liver senescence by controlling ER stress. Aging 2017, 9:2647–65.

34. Yuan G, Hua B, Yang Y, Xu L, Cai T, Sun N, Yan Z, Lu C, Qian R: The Circadian Gene Clock Regulates Bone Formation Via PDIA3. J Bone Miner Res 2017, 32:861–71.

35. Zhu Z, Hua B, Xu L, Yuan G, Li E, Li X, Sun N, Yan Z, Lu C, Qian R: CLOCK promotes 3T3-L1 cell proliferation via Wnt signaling. IUBMB Life 2016, 68:557–68.

36. Cai T, Hua B, Luo D, Xu L, Cheng Q, Yuan G, Yan Z, Sun N, Hua L, Lu C: The circadian protein CLOCK regulates cell metabolism via the mitochondrial carrier SLC25A10. Biochim Biophys Acta Mol Cell Res 2019, 1866:1310–21.
37. Zhu Z, Hua B, Shang Z, Yuan G, Xu L, Li E, Li X, Sun N, Yan Z, Qian R, Lu C: Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition. Biomed Res Int 2016, 2016:5438589.

38. Zhu Z, Xu L, Cai T, Yuan G, Sun N, Lu C, Qian R: Clock represses preadipocytes adipogenesis via GILZ. J Cell Physiol 2018, 233:6028–40.

39. Ella K, Mocsai A, Kaldi K: Circadian regulation of neutrophils: Control by a cell-autonomous clock or systemic factors? Eur J Clin Invest 2018, 48 Suppl 2:e12965.

40. Masri S, Sassone-Corsi P: The emerging link between cancer, metabolism, and circadian rhythms. Nat Med 2018, 24:1795–803.

41. Petsakou A, Sapsis TP, Blau J: Circadian Rhythms in Rho1 Activity Regulate Neuronal Plasticity and Network Hierarchy. Cell 2015, 162:823–35.

42. Manfredi AA, Ramirez GA, Rovere-Querini P, Maugeri N: The Neutrophil's Choice: Phagocytose vs Make Neutrophil Extracellular Traps. Front Immunol 2018, 9:288.

Tables

Due to technical limitations, Table 1 and Table 2 are only available as a download in the supplementary files section.