Impact of Techno-Creators and Techno-Inhibitors on Techno-Stress Manifestations in Chilean Kindergarten Directors in the Context of the COVID-19 Pandemic and Teleworking

Carla Estrada-Muñoz 1,2, Alejandro Vega-Muñoz 3*, Joan Boada-Grau 2, Dante Castillo 4, Sheyla Müller-Pérez 5 and Nicolas Contreras-Barraza 6

1 Departamento de Ergonomía, Universidad de Concepción, Concepción, Chile, 2 Departamento de Psicología, Universidad Rovira i Virgili, Tarragona, Spain, 3 Public Policy Observatory, Universidad Autónoma de Chile, Santiago, Chile, 4 Centro de Estudios e Investigación Enzo Faletto, Universidad de Santiago de Chile, Santiago, Chile, 5 Facultad de Economía y Negocios, Universidad San Sebastián, Santiago, Chile, 6 Facultad de Economía y Negocios, Universidad Andres Bello, Viña del Mar, Chile

The research objective was to predict the impact of techno-creators and techno-inhibitors on the different manifestations of technostress in kindergarten directors in the context of the COVID-19 pandemic and telework. The participants were INTEGRA Foundation kindergarten directors, from a sample of 567 kindergartens in Chile. To measure the technostress manifestations, the RED-TIC questionnaire was used as an instrument, and concerning techno-creators and techno-inhibitors, those established in previous research were considered. The partial least squares structural equation modeling (PLS-SEM) methodology was used, and the model estimation was performed using SmartPLS version 3.0 software. It was obtained that techno-creators correlate positively and significantly with the technostress manifestations. A negative correlation was found between techno-inhibitors and technostress manifestations and techno-creators, but not significant for skepticism and inefficacy manifestations. Therefore, it is concluded that techno-creators lead to technostress manifestations, however, techno-inhibitors did not show a significant effect in reducing these manifestations in the sample studied.

Keywords: mental health, technostress, techno-creators, techno-inhibitors, information-technology, education, work, information overload

INTRODUCTION

The incorporation of information and communication technologies (ICTs) into people's daily lives has had both positive and negative side effects (MacKay and Vogt, 2012). Although ICTs offer indisputable benefits, such as allowing to maintain family contact, especially in remote or rural locations, which would have a positive impact on people's wellbeing, or others, such as facilitating work allowing to take advantage of waiting times and adapting work times
to the working people’s needs (Pearson et al., 2017). A special attention should be paid to the possible negative consequences, since their use at work can generate technostress given the mental demands required by their use (Macías-García, 2019).

Technostress is defined according to Tarafdar et al. (2007) as the stress experienced by people due to the use of information systems, derived from the demands that these systems cause on the individual and its study has been increasing exponentially in recent decades (Bondanini et al., 2020; Salazar-Concha et al., 2021). Among the consequences of occupational technostress are decreased job satisfaction, decreased user commitment to the organization, increased conflict, and role overload, reduced productivity, performance, and innovation during their use at work (Tarafdar et al., 2007, 2010, 2011, 2014; Jena, 2015).

Regarding wellbeing, the World Health Organization (World Health Organization, 2021) incorporates this concept in the health definition, describing it as a state of complete physical, mental, and social wellbeing, and not only the absence of disease or illness. The International Labour Organization (1995) also mentions this concept within the occupational health objective, which defines it as the promotion and maintenance of the highest degree of physical, mental, and social wellbeing in workers in all occupations. On the other hand, Martínez (2011) incorporates the wellbeing notion when defining technostress, referring to it as a manifestation that hurts the physical and mental wellbeing of the almost mandatory ICT implementation in the work, leisure, and private life spheres.

But in a more specific and relevant to this study, Diener et al. (2002) define subjective wellbeing as “cognitive and affective evaluations of one’s own life; these evaluations include emotional reactions to events, as well as cognitive satisfaction judgments. Thus, subjective wellbeing is a broad concept that includes pleasant emotions, low negative mood levels, and high life satisfaction” (p. 63), and subjective wellbeing can also be defined as a construct composed of a cognitive component that alludes to people’s satisfaction and their satisfaction with specific or global aspects of their existence, and an affective component, which refers to positive mood states (García-Vineiras and González, 2000; Arita, 2005). Moreover, Diener (2006) adds that subjective wellbeing consists of the different evaluations that people do of their lives, the events that take place in them, their bodies and minds, and the circumstances in which they live.

The environment in which activities are developed, the work environment, or other factors derived from working conditions, associated with the life rhythm that is imposed nowadays, can lead to occupational stress in workers (Macías-García, 2019). Thus, conditions that create technostress can be considered stressors and constitute work demands that require effort on the part of workers leading to tension and stress feelings (Pfaffinger et al., 2020), and negative work outcomes (Srivastava et al., 2015), which lead to a reduction in workers’ wellbeing (Paschoal et al., 2015).

Therefore, technostress should be considered a particular threat to wellbeing (Nimrod, 2018). Also, the lack of wellbeing in teachers affects the academic performance of students, and in the case of teachers, it can produce bewilderment, dissatisfaction, transfer requests, desires to leave school, absenteeism, burnout, stress, feelings of guilt, reactive neuroses, depressions, anxiety, etc. (Hué, 2009). To promote wellbeing, the work environment must be adapted to the needs of workers (Stich et al., 2019). According to Molino et al. (2020a), technology use acceptance has been positively associated with work engagement, which is related to workers’ sense of wellbeing. On the other hand, wellbeing is found to be related to job satisfaction (Barrientos, 2005) and good job performance (Pavot and Diener, 2004).

The COVID-19 pandemic, which started on December 1, 2019, in Wuhan City, China (Huang et al., 2020), made most organizations face the challenge of introducing telework practices, because of the health measures proposed by the health authorities (Angelici and Profeta, 2020; Tokarchuk et al., 2021). Telework refers to the performance of work generated with the ICT support and performed outside the established organization (Belzunegui-Eraso and Erro-Garcés, 2020). Due to the emergency installation of this telework modality using information and communication technologies during the pandemic of COVID-19, several studies have been conducted on technostress at different educational levels, for example, at the level of primary and secondary education, higher stress levels have been reported in teachers due to online education (Truzoli et al., 2021), with greater anxiety and fatigue manifestations for female teachers (Estrada-Muñoz et al., 2021), and decreased job performance (Cahapay and Bangoc, 2021). On the other hand, at the higher education level, in the study by Dahabiyyeh et al. (2022), it is mentioned that the technostress creators were associated with burnout and decreased teacher productivity, and in the research by Penado-Abilleira et al. (2021), it was found that the teachers who suffered the most from the negative technological consequences were those who were older, with more years of experience and, consequently, who held a higher position.

Although the adoption of teleworking allows the operation of educational institutions to continue and maintain contact between work teams (Ramaáni et al., 2020), the conditions related to the use of technologies can be creators of technostress, affecting the wellbeing of workers, the establishment of mitigation measures that inhibit technostress becoming relevant (Jena, 2015), is that the objective of this research is to predict the impact of techno-creators and techno-inhibitors on the different manifestations of technostress in directors of kindergartens. In the context of the COVID-19 pandemic and teleworking.

LITERATURE REVIEW

Technostress Manifestations

According to Salanova (2003), technostress is a negative psychological state related to the use of ICTs resulting from the perception of a mismatch between technological demands and the personal resources available to face the use of these technologies, which leads to a high unpleasant psychophysiological activation level, and to the development of negative attitudes and thoughts toward the technology use and the individual capacity to use them. In this sense, if technostress manifests itself with a high unpleasant physiological activation level, we speak of techno anxiety, and if it does so with tiredness and exhaustion feelings, we speak of techno fatigue; in both
cases accompanied by skeptical attitudes and ineffectiveness beliefs (Salanova et al., 2007). Therefore, the variables that construct technostress correspond to anxiety, fatigue, skepticism, and ineffectiveness produced by the interaction with technology (Salanova et al., 2007).

**Precursors of Technostress**

There are mainly five precursor conditions of technostress, described as techno-creators, to which ICT users may be subjected; these conditions correspond to techno-overload, techno-invasion, techno-complexity, techno-insecurity, and techno-uncertainty (Taraňdar et al., 2011; Jena, 2015). Techno-overload refers to the need for information processing of different tasks simultaneously with the use of technological devices; techno-invasion occurs when technology invades personal life and privacy, with the need to be constantly connected anywhere and at any time; techno-complexity is defined as the complexity associated with the use of ICTs that makes it necessary to spend time and effort learning how to use them; techno-insecurity is the feeling that technology threatens the maintenance of employment; and techno-uncertainty is a stress factor due to the constant updates and changes in ICTs, which do not allow users to develop an experience base (Taraňdar et al., 2007, 2011; Jena, 2015). Given the above, this research examines the influence of techno-creators on the manifestations of technostress.

Then, techno-creators, leading to technostress manifestations, have affectations at different levels, both personal and occupational; at the personal level, techno-creators can affect health (Ayyagari et al., 2011; Jena, 2015), provoke negative emotions (Wang et al., 2020), generate prolonged stress (Salo et al., 2019), and even induce work-family conflict (Molino et al., 2020b). At the workplace level, techno-creators have been associated with decreased job satisfaction (Al-Ansari and Alshare, 2019), organizational commitment (Hung et al., 2015), job performance (Christ-Brendemühl and Schaarschmidt, 2020), and productivity (Tiwari, 2021). In this research, the following techno-creators reported by Jena (2015) are considered: to be forced by ICT to live with very tight time schedules, to be forced to change habits to adapt to new developments in technology, to have to sacrifice the personal time to keep current on latest technologies, feel that the personal life is being invaded by ICT and not to find enough time to study and upgrade the technical skills. The following hypotheses are presented in this regard (see Figure 1).

H1: Techno-creators correlate positively with skepticism.
H2: Techno-creators correlate positively with fatigue.
H3: Techno-creators correlate positively with anxiety.
H4: Techno-creators correlate positively with inefficacy.

**Technostress-Inhibitors**

There are situational conditions, called technostress-inhibitors, involved in the stress reduction derived from the use of ICT, which would act as moderators, playing an important role in reducing the non-beneficial consequences caused by the introduction of these technologies in organizations (Ragu-Nathan et al., 2008; Taraňdar et al., 2019). Techno-inhibitors, when implemented in organizations, could mitigate the stress associated with ICT use by decreasing the techno-creator effects resulting from technology demands (Salanova et al., 2007; Fuglseth and Sorebø, 2014). The main ones reported in the literature are, facilitating literacy, which allows increasing technological knowledge; organizational technical support; facilitating participation, involving workers in the adoption and development of ICT; and supporting innovation, through mechanisms that encourage experimentation and learning (Taraňdar et al., 2011; Li and Wang, 2021). Moreover, in this research, the influence of technostress inhibitors on the technostress manifestations and techno-creators is examined.

In this research, the following techno-inhibitors reported by Jena (2015) are considered: the organization provides clear documentation to use new technologies, the organization emphazises teamwork in dealing with new technology-related problems, the technology help desk is responsive to end-user requests, the organization rewards for using new technologies, and the organization consults before the introduction of new technology. The hypotheses put forward are mentioned below (see Figure 1):

H5: Techno-inhibitors will correlate negatively with skepticism.
H6: Techno-inhibitors will correlate negatively with fatigue.
H7: Techno-inhibitors correlate negatively with anxiety.
H8: Techno-inhibitors correlate negatively with inefficacy.
TABLE 1 | Respondent characteristics.

| Region                                | Frequency | Percent |
|---------------------------------------|-----------|---------|
| Santiago Metropolitan                 | 118       | 20.8%   |
| Maule                                 | 59        | 10.4%   |
| Los Lagos                             | 56        | 9.9%    |
| La Araucanía                          | 51        | 9.0%    |
| Biobío                                | 50        | 8.8%    |
| Valparaíso                            | 49        | 8.6%    |
| Libertador General Bernardo O’Higgins | 44        | 7.8%    |
| Coquimbo                              | 32        | 5.6%    |
| Ñuble                                 | 24        | 4.2%    |
| Los Ríos                              | 22        | 3.9%    |
| Tarapacá                              | 18        | 3.2%    |
| Aysén de General Carlos Ibáñez del Campo | 12       | 2.1%  |
| Antofagasta                           | 11        | 1.9%    |
| Atacama                               | 8         | 1.4%    |
| Magallanes and the Chilean Antarctica | 7         | 1.2%    |
| Arica and Parinacota                  | 6         | 1.1%    |
| Total                                 | 567       | 100.0% |

Area (urbanization)

| Kindergarten category | Frequency | Percent |
|-----------------------|-----------|---------|
| Urban                 | 463       | 81.7%   |
| Rural                 | 104       | 18.3%   |
| Total                 | 567       | 100.0% |

Working-age (years, y)

| 0 < y ≤ 10 | 130       | 22.9% |
| 10 < y ≤ 20 | 286       | 50.4% |
| 20 < y ≤ 30 | 138       | 24.3% |
| 30 < y      | 13        | 2.3%  |
| Total       | 567       | 100.0%|

Team of collaborators (c)

| 0 < c ≤ 10 | 139       | 24.5% |
| 10 < c ≤ 20 | 175       | 30.9% |
| 20 < c ≤ 30 | 146       | 25.7% |
| 30 < c      | 91        | 16.0% |
| Total       | 567       | 100.0%|

Gender

| Female | 564 | 99.5% |
| I prefer not to say it | 3   | 0.5%  |
| Total  | 567 | 100.0%|

Age (years old, y)

| 20 < y ≤ 30 | 32    | 5.6% |
| 30 < y ≤ 40 | 226   | 39.9%|
| 40 < y ≤ 50 | 224   | 39.5%|
| 50 < y ≤ 60 | 78    | 13.8%|
| 60 < y      | 7     | 1.2% |
| Total       | 567   | 100.0%|

(Continued)

Table 1 shows the characteristics of the respondents, who are distributed regionally according to Chilean population concentrations and the presence of Fundación INTEGRA’s educational centers. A high percentage of these kindergartens are in urban areas (81.7%), serving groups of <190 infants and children (94%), and whose directors have between 1 and 38 years of work experience in education, with a mean of 16.4 years (σ = 7.3 years), and who are identified in 99.5% of the cases as female, and who are identified in 99.5% of the cases as being of the female gender. They have between 0 and 100 collaborators in charge with an average of 19 people (σ = 13 persons), their age fluctuates between 24 and 65 years (x = 42; σ = 8 years), and they live with between 0 and 14 people (x = 3; σ = 3 persons).

H9: Techno-inhibitors correlate negatively with techno-creators.

Thus, the conceptual model in Figure proposes to test whether techno-creators are positively correlated with technostress manifestations and whether techno-inhibitors are negatively correlated with technostress manifestations and techno-creators.

**MATERIALS AND METHODS**

**Participants**

The kindergarten directors of Fundación INTEGRA participated, based on a sample of 567 kindergartens in Chile.

**Respondent Characterization**

Table 1 shows the characteristics of the respondents, who are distributed regionally according to Chilean population concentrations and the presence of Fundación INTEGRA’s educational centers. A high percentage of these kindergartens are in urban areas (81.7%), serving groups of <190 infants and children (94%), and whose directors have between 1 and 38 years of work experience in education, with a mean of 16.4 years (σ = 7.3 years), and who are identified in 99.5% of the cases as female, and who are identified in 99.5% of the cases as being of the female gender. They have between 0 and 100 collaborators in charge with an average of 19 people (σ = 13 persons), their age fluctuates between 24 and 65 years (x = 42; σ = 8 years), and they live with between 0 and 14 people (x = 3; σ = 3 persons).

**Procedure**

A national self-response survey was applied to a sample of directors of kindergartens and/or nurseries in the Integra Foundation in the context of the COVID-19 pandemic, and telework during the second semester of 2021, which considered the measurement of the technostress manifestations, techno-creators and techno-inhibitors, and a respondent's sociodemographic characterization.

To measure the manifestations of technostress, the RED-TIC questionnaire is used as an instrument (Salanova et al., 2007), previously employed in the Chilean educational setting.
(Estrada-Muñoz et al., 2020, 2021; Vega-Muñoz and Estrada-Muñoz, 2020), and composed of 16 items, which are queried using a Likert – type scale (never – 0, a couple of times a year – 1, once a month – 2, a couple of times a month – 3, once a week – 4, a couple of times a week – 5, every day – 6).

Regarding techno-creators and techno-inhibitors, we consider those established in Jena’s (2015) research, composed of 5 items each, which were measured on a Likert-type scale (strongly disagree – 0, disagree – 1, neither agree nor disagree – 2, agree – 3, and strongly agree – 4).

On the other hand, a respondents characterization was made, considering the following: region in Chile from where they were performing their work in telework mode, urban or rural kindergarten/daycare center sector, kindergarten/daycare category center according to the children attending number, years working in the educational field, dependents number, gender, age and the number of people with whom they live.

Statistical Analysis
Since the article’s objective is to predict the impact of technostress-creators and technostress-inhibitors on the different technostress manifestations, the partial least squares structural equation modeling (PLS-SEM) is the methodology that allows for meeting this objective, given its predictive power, (Hair et al., 2017; Weidlich and Bastiaens, 2017; García-Fernández et al., 2018; Shmueli et al., 2019; Tan et al., 2020; Zhang et al., 2020; Dash and Paul, 2021; Al-Jundi et al., 2022).

According to Hair et al. (2017), PLS-SEM models allow the prediction of key constructs, and their evaluation comprises 2 stages: the measurement models evaluation and the structural model evaluation. Using empirical measures, the first stage seeks to determine the relationships between the items and constructs, and the second stage focuses on the relationship between the constructs of the theoretical model established.

First Phase: Measurement Model Evaluation
The proposed theoretical model is only composed of reflective measures, i.e., the items are manifestations of the established constructs. Therefore, the reflective measurement model must show that the items that make up the construct have internal consistency (Cronbach’s alpha and Composite Reliability) and Convergent Validity, which allows identifying how the items belonging to a construct correlate (Outer Loading, Average Variance Extracted). Finally, it is necessary to ensure that the constructs comply with the Discriminant Validity, which is to ensure that a construct is unique and different from the other constructs of the established model (no interval of the construct combinations the Heterotrait-Monotrait Ratio (HTMT) must include the value of 1).

Second Phase: Structural Model Evaluation
Once it is verified that the constructs are reliable and discriminant, the model is validated. First, the constructs’ collinearity that makes up the model is ruled out, then the bootstrapping technique that is used to check that the hypothesis’s directions (signs) are those established in the theoretical model, and the relationships relevance of each hypothesis is examined to ensure that they are significant. To determine the model predictive power within the sample, the adjusted $R^2$ coefficient of determination is used, but to check the model predictive relevance outside the sample, the blindfolding technique is used, which gives the Stone-Geisser $Q^2$ value. Finally, the effect on the predictive power ($f^2$) and relevance ($q^2$) of each endogenous construct when each construct is omitted from the model is evaluated.

Table 2 presents the criteria to be met by each of the model evaluation phases. The PLS-SEM model estimation was performed using SmartPLS version 3.0 software (Ringle et al., 2015).

RESULTS
Reflective Measurement Model Evaluation
Tables 3, 4 show that the model constructs meet the criteria for convergent and discriminant validation. Regarding convergent validation 2 items, r15 and t9, present external loadings below 0.7, but the recommendation of Hair et al. (2017) to keep these items in the construct is followed, since their Average Variance Extracted (AVE) is >0.50.

| TABLE 2 | Evaluation criteria. |
| --- | --- |
| Evaluation of the reflective measurement model | Internal consistency reliability | Cronbach’s alpha ($\alpha$) $\geq$ 0.70 |
| | Convergent Validity | Composite Reliability (CR) $\geq$ 0.70 |
| | | Outer loading $\geq$ 0.70 |
| | Discriminant validity | Average Variance Extracted (AVE) $\geq$ 0.50 |
| | | Confidence interval HTMT doesn’t have 1 |
| Evaluation of the structural model | Collinearity: Variance Inflation Factor (VIF) $< 5$ |
| | Predictive power ($R^2$ adjusted): 0.25 (weak), 0.50 (moderate) and 0.75 (significant). |
| | Magnitude and significance of the path coefficients when $p$-value $\leq$ 0.05. |
| | Predictive relevance $Q^2 > 0$ |
| | Effect size ($f^2$): values of 0.02, 0.15 and 0.35 are considered small, moderate, and large effects. |
| | Effect size ($q^2$): values of 0.02, 0.15 and 0.35 are considered small, moderate, and large effects. |
TABLE 3 | Results of reflective measurement model evaluation.

| Factor         | Item | Convergent validity | Internal consistency reliability | Discriminant validity | Confidence interval |
|----------------|------|----------------------|----------------------------------|-----------------------|---------------------|
|                |      | Outer loading ≥ 0.70 | AVE ≥ 0.50 | Cronbach's α ≥ 0.70 | Reliability (CR) ≥ 0.70 | HTMT doesn't have 1 |
| Skepticism     | r_1  | 0.802                | 0.808   | 0.796                | 0.866               | Yes                 |
|                | r_2  | 0.738                |          |                      |                    |                     |
|                | r_3  | 0.804                |          |                      |                    |                     |
|                | r_4  | 0.801                |          |                      |                    |                     |
| Fatigue        | r_5  | 0.859                | 0.922   | 0.918                | 0.942               | Yes                 |
|                | r_6  | 0.911                |          |                      |                    |                     |
|                | r_7  | 0.917                |          |                      |                    |                     |
|                | r_8  | 0.898                |          |                      |                    |                     |
| Anxiety        | r_9  | 0.849                | 0.893   | 0.874                | 0.913               | Yes                 |
|                | r_10 | 0.827                |          |                      |                    |                     |
|                | r_11 | 0.865                |          |                      |                    |                     |
|                | r_12 | 0.859                |          |                      |                    |                     |
| Inefficacy     | r_13 | 0.809                | 0.908   | 0.836                | 0.878               | Yes                 |
|                | r_14 | 0.871                |          |                      |                    |                     |
|                | r_15 | 0.592*               |          |                      |                    |                     |
|                | r_16 | 0.726                |          |                      |                    |                     |
| Technostress creators | t_1  | 0.762                | 0.861   | 0.857                | 0.898               | Yes                 |
|                | t_2  | 0.808                |          |                      |                    |                     |
|                | t_3  | 0.841                |          |                      |                    |                     |
|                | t_4  | 0.833                |          |                      |                    |                     |
|                | t_5  | 0.745                |          |                      |                    |                     |
| Technostress inhibitors | t_6  | 0.797                | 0.833   | 0.815                | 0.868               | Yes                 |
|                | t_7  | 0.784                |          |                      |                    |                     |
|                | t_8  | 0.753                |          |                      |                    |                     |
|                | t_9  | 0.684*               |          |                      |                    |                     |
|                | t_10 | 0.751                |          |                      |                    |                     |

*External loads below 0.7.

TABLE 4 | Confidence Intervals.

| Interval | 2.50% | 97.50% |
|----------|-------|--------|
| SKE -> ANX | 0.533 | 0.684 |
| FAT -> ANX | 0.682 | 0.778 |
| FAT -> SKE | 0.485 | 0.632 |
| INE -> ANX | 0.916 | 0.986 |
| INE -> SKE | 0.547 | 0.703 |
| INE -> FAT | 0.653 | 0.742 |
| TC -> ANX | 0.503 | 0.633 |
| TC -> SKE | 0.273 | 0.436 |
| TC -> FAT | 0.617 | 0.715 |
| TC -> INE | 0.432 | 0.562 |
| TI -> ANX | 0.126 | 0.273 |
| TI -> SKE | 0.093 | 0.200 |
| TI -> FAT | 0.162 | 0.320 |
| TI -> INE | 0.116 | 0.206 |
| TI -> TC | 0.152 | 0.318 |

TABLE 5 | Inner Variance Inflation Factor (VIF) values.

| Factors | ANX | FAT | INE | SKE | TC |
|---------|-----|-----|-----|-----|----|
| TI      | 1.042 | 1.042 | 1.042 | 1.042 | 1.000 |
| TI      | 1.042 | 1.042 | 1.042 | 1.042 | 1.000 |

Evaluation of the Structural Model

The model does not present critical collinearity levels as shown in Table 5, so it is possible to estimate the power and predictive relevance of the model.

Figure 2 shows the final estimates of the model and with the data in Table 6, it can be affirmed that only hypotheses 5 and 8 are not significant. It can also be seen that Technostress Creators (TC) have a positive and strong relationship with the fatigue factor (FAT, 0.573), as well as a positive and moderate relationship with the factors Anxiety (ANX, 0.495), Inefficacy (INE, 0.466), and Skepticism (SKE, 0.290). Regarding Technostress Inhibitors, the model shows a weak negative relationship with the factors...
Regarding predictive power and relevance in Table 7, the Anxiety (ANX) and Fatigue (FAT) factors have moderate predictive power (0.360, 0.265, respectively). On the other hand, the Inefficacy (INE), Skepticism (SKE), and Technostress Creators (TC) factors have a weak predictive power (0.222, 0.088, and 0.039, respectively). All $Q^2$ values being greater than zero, the factors have predictive relevance.

The impact on the predictive power ($f^2$) of excluding Technostress creators from the model is large for the fatigue factor (0.494), the effect is moderate for the anxiety (0.321), and inefficacy (0.269) factors, and there is a weak impact on the skepticism factor (0.088). On the other hand, excluding Technostress inhibitors does not show large or moderate effects, but small effects, so this construct could be eliminated from the model. The effect on the predictive significance ($q^2$) of excluding Technostress creators from the model is large for the fatigue factor (0.350), the effect is moderate for the anxiety factor (0.196), and there is a weak impact on the inefficacy (0.121) and skepticism (0.048) factors. On the other hand, when excluding Technostress inhibitors, small effects are presented in the model predictive relevance, which confirms that this construct does not contribute to predicting the factors of manifestation of technostress.

**DISCUSSION**

This research aimed to predict the impact of techno-creators and techno-inhibitors on the different technostress manifestations in kindergarten directors in the context of the COVID-19 pandemic and telework. The manifestations described by Salanova et al. (2007) were considered, and as for the techno-creators and techno-inhibitors, those established in the research by Jena (2015) were included.

According to the research results, it is verified that techno-creators (Jena, 2015) correlate positively and significantly with the technostress manifestations, as described by Salanova et al. (2007). In this sense, it is worth noting that, this positive correlation is strong for fatigue, and moderate for skepticism, anxiety, and inefficacy. In other words, the techno-creators considered lead to technostress manifestations in the sample studied. These positive correlations coincide with previous research, which also mentions that the main techno-creators
TABLE 6 | Structural model evaluation results.

| Hypothesis | Path | Path coefficients | P-value | Result |
|------------|------|-------------------|---------|--------|
| H1         | TC -> ANX | 0.495 | 0.000 | Yes    |
| H2         | TC -> SKE | 0.290 | 0.000 | Yes    |
| H3         | TC -> FAT | 0.573 | 0.000 | Yes    |
| H4         | TC -> INE | 0.466 | 0.000 | Yes    |
| H5         | TI -> SKE | -0.044 | 0.134 | No     |
| H6         | TI -> FAT | -0.101 | 0.003 | Yes    |
| H7         | TI -> ANX | -0.081 | 0.025 | Yes    |
| H8         | TI -> INE | -0.040 | 0.153 | No     |
| H9         | TI -> TC | -0.201 | 0.000 | Yes    |

TABLE 7 | Power and predictive relevance results.

| Factor | $R^2$ | $Q^1$ | $t^2$ | $t^2$ | $Q^2$ | $Q^2$ |
|--------|-------|-------|-------|-------|-------|-------|
|        | Adjusted | exclude | TC | exclude | TI | exclude | TC | exclude | TI |
| ANX    | 0.265 | 0.180 | 0.321 | 0.009 | 0.196 | 0.002 |
| SKE    | 0.088 | 0.051 | 0.088 | 0.002 | 0.048 | 0.000 |
| FAT    | 0.360 | 0.285 | 0.494 | 0.015 | 0.350 | 0.008 |
| INE    | 0.222 | 0.114 | 0.269 | 0.002 | 0.121 | -0.001 |
| TC     | 0.039 | 0.025 | 0.042 |       |       |       |

leading to technostress correspond to techno-overload, technoinvasion, and techno-insecurity (Ayyagari et al., 2011; Suh and Lee, 2017; Florkowski, 2019).

On the other hand, regarding the correlation between techno-inhibitors (Jena, 2015) and technostress manifestations (Salanova et al., 2007), it was found that, although the correlations are negative, which supports the hypotheses raised, the correlation between techno-inhibitors and the skepticism and ineffectiveness manifestations, is not significant, and as for the fatigue and anxiety manifestations, a weak negative correlation is shown, as well as when correlating techno-inhibitors with techno-creators. Even though studies such as Califf and Brooks (2020), where it is argued that literacy facilitation acts as a techno-inhibitor on techno-creators such as techno-complexity, techno-insecurity, techno-invasion, and techno-overload, Hang et al. (2022), in which it is mentioned that techno-inhibitors such as literacy facilitation and the provision of technical support help workers cope with technostress, neutralizing the negative effects of techno-creators, the evidence to reliably support that the most commonly reported techno-inhibitors in the literature have a relevant impact on the technostress manifestations and techno-creators, is scarce, and even contradictory results are reported. In this regard, Jena (2015) is cited, who argues that techno-inhibitors restrain techno-creators, however, according to Li and Wang (2021), literacy facilitation programs, as a techno-inhibitor, could stimulate the development of techno-creators, as they may add new sources of stress.

Most studies argue that techno-stressors are associated with turnover intention (Califf and Brooks, 2020), adverse work outcomes (Borle et al., 2021), and significantly and negatively affect workers’ well-being (Salo et al., 2019; Hang et al., 2022). According to the research of González-López et al. (2021), technostress, at the individual level is related to, abandonment of daily activities, increased loneliness, lack of concentration, irregular sleep patterns, avoidance of real-life problems, reduced hygiene and eating problems, at the group level with, social, family and privacy problems, and at the professional level with, absenteeism, missed deadlines and failure to achieve objectives.

Studies in the context of the COVID-19 pandemic highlight that telework is associated with technostress (Hinojosa-López et al., 2021) and work-home conflict, decreasing job satisfaction and performance (Camacho and Barrios, 2022). Therefore, it is important to inquire about what measures are most effective to inhibit technostress at work, especially in the educational system (Chauhan, 2017), where the use of ICT in telework mode, during the pandemic of COVID-19 became imperative (Sangster et al., 2020).

Regarding the effect of techno-inhibitors on manifestations of technostress, research must be extended to other factors proposed in the literature, in addition to the classic factors, such as, for example, cultural segmentation, which refers to the organizational culture that favors the separation between work and personal life (Kim et al., 2015), the establishment of breaks during the working day (Tarafdar et al., 2019), or other strategies such as the implementation of positive technology, scientific and applied approach to the use of technology to improve the quality of personal experience that can lead to increase the wellbeing of workers and prevent technostress (Brivio et al., 2018).

From a practical point of view, imposing the use of ICTs without considering the capabilities, needs, and limitations of workers, and without implementing strategies to mitigate the risks associated with the use of these technologies, can generate technostress. Thus, this research contributes to increasing knowledge regarding the influence of techno-creators and techno-inhibitors on the technostress manifestations, making available to practitioners which are the factors that most affect technostress, and based on this, generating strategies to prevent the conditions that contribute to increasing the stress associated with the use of ICT in the workplace, to provide and promote healthy work environments that promote wellbeing in workers.

CONCLUSION

Based on the research results, it is concluded that techno-creators and techno-inhibitors correlate positively and negatively, respectively, with manifestations of anxiety, skepticism, fatigue, and ineffectiveness, and that techno-inhibitors have a negative association with techno-creators, in the kindergarten directors who participated in the study in the COVID-19 pandemic and telework context. Specifically for the techno-creators case, all correlations were significant, which allows corroborating their impact and prediction on the technostress manifestations, and for the techno-inhibitors case, it is not predictable their influence on techno-creators and the technostress manifestations, especially for skepticism and ineffectiveness since the correlations were not significant. Therefore, the
techno-inhibitors considered in the studied sample did not show the expected effect, which is to generate a significant reduction in the technostress manifestations.

DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS
AV-M and CE-M: conceptualization, formal analysis, and project administration. DC and SM-P: methodology. SM-P: software. AV-M and JB-G: validation. DC, AV-M, and SM-P: data curation. CE-M, NC-B, and SM-P: writing—original draft preparation. AV-M: writing—review and editing. JB-G: supervision. AV-M, NC-B, and DC: funding acquisition for publishing fees. All authors have read and agreed to the published version of the manuscript.

ACKNOWLEDGMENTS
The authors would like to thank the Ph.D. program in Health, Psychology, and Psychiatry at the Rovira i Virgili University (Tarragona, Spain). The program where the researcher CE-M is studying her Ph.D. with the research line in health and psychosocial risks, studying issues of technostress in the Chilean educational system, under the direction of AV-M and the tutorship of JB-G.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpsyg.2022.865784/full#supplementary-material

REFERENCES
Al-Ansari, M. A., and Alshare, K. (2019). The impact of technostress components on the employees satisfaction and perceived performance: the case of Qatar. J. Glob. Inform. Manag. 27, 65–86. doi: 10.4018/jgim.2019070104
Al-Jundi, S. A., Al-Janabi, H. A., Salam, M. A., Bajaba, S., and Ullah, S. (2022). The impact of urban culture on street vending: a path model analysis of the general public’s perspective. Front. Psychol. 12, 831014. doi: 10.3389/fpsyg.2021.831014
Angelici, M., and Profeta, P. (2020). Technostress: technological antecedents and implications. MIS Quart. 35, 831–858. doi: 10.2307/41409963
Barrientos, J. (2005). Calidad de vida, bienestar subjetivo: Una mirada psicosocial. Santiago de Chile: Ediciones Universidad Diego Portales. Beluznuegui-Eraso, A., and Erro-Garcés, A. (2020). Teleworking in the context of the Covid-19 crisis. Sustantabiility 12, 1–20. doi: 10.3390/su12093662
Bondanini, G., Giorgi, G., Ariza-Montes, A., Vega-Muñoz, A., and Andreucci-Annunziata, P. (2020). Technostress dark side of technology in the workplace: a scientometric analysis. Int. J. Environ. Res. Public Health 17, 8013. doi: 10.3390/ijerph17218013
Borle, P., Reichel, K., Niebuhr, F., and Voelter-Mahlknecht, S. (2021). How are techno-stressors associated with mental health and work outcomes? A systematic review of occupational exposure to information and communication technologies within the technostress model. Int. J. Environ. Res. Public Health 18, 8673. doi: 10.3390/ijerph18168673
Brivio, E., Gaudioso, F., Vergine, I., Mirizzi, C. R., Reina, C., Stellari, A., et al. (2018). Preventing technostress through positive technology. Front. Psychol. 9, 2569. doi: 10.3389/fpsych.2018.02569
Cahapay, M. B., and Bangoc, N. F. II. (2021). Technostress, work performance, job satisfaction, and career commitment of teachers amid COVID-19 crisis in the Philippines. Int. J. Educ. Res. Innov. 260–275. doi: 10.46661/ijeri.6145
Califf, C., and Brooks, S. L. (2020). An empirical study of techno-stressors, literacy facilitation, burnout, and turnover intention as experienced by K-12 teachers. Comput. Educ. 157, 103971. doi: 10.1016/j.compedu.2020.103971
Camacho, S., and Barrios, A. (2022). Teleworking and technostress: Early consequences of a COVID-19 lockdown. Cogn. Technol. Work 1–17. doi: 10.1007/s10111-022-00693-4
Chauhan, S. (2017). A meta-analysis of the impact of technology on learning effectiveness of elementary students. Comput. Educ. 105, 14–30. doi: 10.1016/j.compedu.2016.11.005
Chriat-Brendemühl, S., and Schaarschmidt, M. (2020). The impact of service employees’ technostress on customer satisfaction and delight: a dyadic analysis. J. Business Res. 117, 378–388. doi: 10.1016/j.jbusres.2020.06.021
Dahabiyeh, L., Najar, M. S., and Wang, G. (2022). Online teaching during COVID-19 crisis: the role of technostress and emotional dissonance on online teaching exhaustion and teaching staff productivity. Int. J. Inform. Learn. Technol. 39, 97–121. doi: 10.1108/IJILT-09-2021-0147
Dash, G., and Paul, J. (2021). CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting. Technol. Forecast. Soc. Change 173, 121092. doi: 10.1016/j.techfore.2021.121092
Diener, E. D. (2006). Guidelines for national indicators of subjective well-being and ill-being. J. Happiness Stud. 7, 397–404. doi: 10.1007/s10902-006-9000-3
Diener, E. D., Lucas, R. E., and Oishi, S. (2002). “Subjective well-being: the science of happiness and life satisfaction,” in Handbook of Positive Psychology, eds C. R. Snyder and S. J. Lopez Oxford: Oxford University Press, 63.
Estrada-Muñoz, C., Castillo, D., Vega-Muñoz, A., and Boada-Grau, J. (2020). Teacher technostress in the Chilean school system. Int. J. Environ. Res. Public Health 17, 5280. doi: 10.3390/ijerph17155280
Estrada-Muñoz, C., Vega-Muñoz, A., Castillo, D., Müller-Pérez, S., and Boada-Grau, J. (2021). Technostress of Chilean teachers in the context of the COVID-19 pandemic and teleworking. Int. J. Environ. Res. Public Health 18, 5458. doi: 10.3390/ijerph18105458
Florkowski, G. W. (2019). HR technologies and HR-staff technostress: an unavoidable or combustable effect? Employee Relat. 41, 1120–1144. doi: 10.1108/ER-08-2018-0214
Fugleithe, A. M., and Serebo, Ø. (2014). The effects of technostress within the context of employee use of ICT. Comput. Hum. Behav. 40, 161–170. doi: 10.1016/j.chb.2014.07.040
García-Fernández, J., Martelo-Landroguez, S., Vélez-Colon, L., and Cepeda-Carrion, G. (2018). An explanatory and predictive PLS-SEM approach to the relationship between organizational culture, organizational performance and customer loyalty: the case of health clubs. J. Hospit. Tourism Technol. 9, 438–454. doi: 10.1108/JHTT-09-2017-0100
García-Vinegras, C., and González, I. (2000). La categoría bienestar psicológico. Su relación con otras categorías sociales. Revista Cubana de Medicina General 39, 831–858. doi: 10.2307/41409963
González-López, O. R., Buenadicha-Mateos, M., and Sánchez-Hernández, M. I. (2021). Overwhelmed by technostress? Sensitive archetypes and effects in times of forced digitalization. Int. J. Environ. Res. Public Health 18, 4216. doi: 10.3390/ijerph18084216
Hang, Y., Hussain, G., Amin, A., and Abdullah, M. I. (2022). The moderating effects of technostress creators on technostressors and employee's well-being. Front. Psychol. 12, 821446. doi: 10.3389/fpsyg.2021.821446

Hinojosa-López, J. I., Salas-Rubio, M. L., and Reyna-Castillo, M. A. (2021). Teletrabajo y tecnoestrés en organizaciones educativas: aprendizajes ante la pandemia por la COVID-19 en México. Contaduría Administración 66, 1–25. doi: 10.22021/eca.24488410.2021.3305

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506. doi: 10.1016/S0140-6736(20)30183-5

Hué, G. C. (2009). Razones para el bienestar docente. Cuadernos de Pedagogía 88–91. Available online at: http://hdl.handle.net/11162/37902

Hung, W. H., Chen, K., and Lin, C. P. (2015). Does the proactive personality mitigate the adverse effect of technostress on productivity in the mobile environment? Telemat. Informatics 32, 143–157. doi: 10.1016/j.tele.2014.06.002

International Labour Organization (1995). Report of the twelfth session of the Joint ILO/WHO Committee on Occupational Health, Geneva, 5-7 April 1995.

Jena, R. K. (2015). Technostress in ICT enabled collaborative learning contexts. Ann. Tourism Res. 39, 1380–1401. doi: 10.1016/j.annals.2012.02.001

Li, L., and Wang, X. (2021). Technostressors and creators and their impacts on university teachers’ work performance in higher education. Cogn. Technol. Work 23, 315–330. doi: 10.1007/s10110-020-00625-0

Macías-García, M. C. (2019). El modelo decepción de seguridad y salud laboral. Revista Int. Comparada Relaciones Lab. Derecho del Trabajo y Seguridad e Higiene en el Trabajo. Available online at: https://app.mapfre.com/documentacion/publico/es/catalogo_imagenes/grupo.do?path=1033661 (accessed September 11, 2021).

Pavot, W., and Diener, E. (2004). “Findings on subjective well-being: eustress, techno distress and design: theoretical directions and an agenda for research. Inform. Syst. J. 29, 6–42. doi: 10.1111/02120511.12169

Sala, M., Gali, E., and Neglia, G. (2021). Teleworking during the Covid-19 crisis in Italy: evidence and Tentative Interpretations. ACM 54, 113–120. doi: 10.1145/1995376.195403

Srivastava, S. C., Chandra, S., and Shirish, A. (2015). Technostress creators and job outcomes: theorising the moderating influence of personality traits. Inform. Syst. J. 25, 340–401. doi: 10.1111/iss.12067

Stich, J., Tarafdar, M., Stacey, P., and Cooper, C. L. (2019). E-mail load, workload stress and desired e-mail load: a cybernetic approach. Inform. Technol. People 32, 430–452. doi: 10.1108/ITP-10-2017-0321

Suh, A., and Lee, J. (2017). Understanding teleworkers’ technostress and its influence on job satisfaction. Internet Res. 27, 140–159. doi: 10.1108/INTR-06-2015-0181

Tan, K. L., Sia, J. M., and Tang, K. (2020). Examining students’ behavior towards campus security preparedness exercise: the role of perceived risk within the theory of planned behavior. Curr. Psychol. 1–10. doi: 10.1007/s12144-020-00953-6

Tarafdar, M., Cooper, C. L., and Stich, J. F. (2019). The technostress trilemma - techno eustress, techno distress and design: theoretical directions and an agenda for research. Inform. Syst. J. 29, 6–42. doi: 10.1111/iss.12169

Tarafdar, M., Pullins, E. B., and Ragu-Nathan, T. S. (2014). Technostress: negative effect on performance and possible mitigations. Inform. Syst. J. 25, 103–132. doi: 10.1111/iss.12042

Tarafdar, M., Tu, Q., Ragu-Nathan, B. S., and Ragu-Nathan, T. S. (2007). The impact of technostress on role stress and productivity. J. Manage. Inform. Syst. 24, 301–328. doi: 10.2753/MIS076242-122220109

Tarafdar, M., Tu, Q., and Ragu-Nathan, T. (2010). Impact of technostress on end-user satisfaction and performance. J. Manage. Inform. Syst. 27, 303–334. doi: 10.2753/MIS076242-1222207311

Tarafdar, M., Tu, Q., Ragu-Nathan, T., and Ragu-Nathan, B. S. (2011). Crossing to the dark side: examining creators, outcomes, and inhibitors of technostress. Commum. ACM 54, 113–120. doi: 10.1145/1995376.195403

Tiwari, V. (2021). Countering effects of technostress on productivity: moderating role of proactive personality. Benchmarking Int. J. 28, 636–651. doi: 10.1108/BIJ-06-2020-0313

Tokarchuk, O., Gabriele, R., and Neglia, G. (2021). Teleworking during the Covid-19 crisis in Italy: evidence and Tentative Interpretations. Sustainability 13, 2147. doi: 10.3390/su13042147
Estrada-Muñoz et al. Techno-Creators and Techno-Inhibitors on Technostress

Truzoli, R., Pirola, V., and Conte, S. (2021). The impact of risk and protective factors on online teaching experience in high school Italian teachers during the COVID-19 pandemic. *J. Comput. Assisted Learn.*, 37, 940–952. doi: 10.1111/jcal.12533

Vega-Muñoz, A., and Estrada-Muñoz, C. (2020). “Evaluating technostress to improve teaching performance: Chilean higher education case,” in *Evaluating Mental Workload for Improved Workplace Performance*, eds A. Realyvásquez-Vargas, K. Arredondo-Soto, G. Hernández-Escobedo, and J. González-Reséndiz (IGI Global), 161–183. doi: 10.4018/978-1-7998-1052-0.ch008

Wang, X., Tan, S. C., and Li, L. (2020). Technostress in university students’ technology-enhanced learning: an investigation from multidimensional person-environment misfit. *Comput. Hum. Behav.* 105, 106208. doi: 10.1016/j.chb.2019.106208

Weidlich, J., and Bastiaens, T. J. (2017). Explaining social presence and the quality of online learning with the SIPS model. *Comput. Hum. Behav.*, 72, 479–487. doi: 10.1016/j.chb.2017.03.016

World Health Organization. (2021). ¿Cómo define la OMS la salud? Available online at: https://www.who.int/es/about/who-we-are/frequently-asked-questions.

Zhang, L., Ruiz-Menjivar, J., Luo, B., Liang, Z., and Swisher, M. E. (2020). Predicting climate change mitigation and adaptation behaviors in agricultural production: a comparison of the theory of planned behavior and the Value-Belief-Norm Theory. *J. Environ. Psychol.*, 68, 101408. doi: 10.1016/j.jenvp.2020.101408

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Estrada-Muñoz, Vega-Muñoz, Boada-Grau, Castillo, Müller-Pérez and Contreras-Barranza. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.