Hilbert C^*-bimodules over commutative C^*-algebras and an isomorphism condition for quantum Heisenberg manifolds.

Beatriz Abadie Ruy Exel

March 24, 2022

Abstract

Abstract: A study of Hilbert C^*-bimodules over commutative C^*-algebras is carried out and used to establish a sufficient condition for two quantum Heisenberg manifolds to be isomorphic.

Introduction. In [AEE], a theory of crossed products of C^*-algebras by Hilbert C^*-bimodules was introduced and used to describe certain deformations of Heisenberg manifolds constructed by Rieffel (see [Rf2] and [AEE, 3.3]). This deformation consists of a family of C^*-algebras, denoted $D_{\mu\nu}^c$, depending on two real parameters μ and ν, and a positive integer c. In case $\mu = \nu = 0$, $D_{\mu\nu}^c$ turns out to be isomorphic to the algebra of continuous functions on the Heisenberg manifold M^c.

For K-theoretical reasons [Ab2], $D_{\mu\nu}^c$ and $D_{\mu'\nu'}^{c'}$ cannot be isomorphic unless $c = c'$. It is the main purpose of this work to show that the C^*-algebras $D_{\mu\nu}^c$ and $D_{\mu'\nu'}^{c'}$ are isomorphic when (μ, ν) and (μ', ν') are in the same orbit under the usual action of $GL_2(\mathbb{Z})$ on the torus T^2 (here the parameters are

*Partially supported by CNPq, Brazil.
viewed as running in T^2, since $D_{\mu,\nu}^c$ and $D_{\mu+n,\nu+m}^c$ are isomorphic for any integers m and n).

As indicated above, the quantum Heisenberg manifold $D_{\mu,\nu}^c$ may be described as a crossed product of the commutative C^*-algebra $C(T^2)$ by a Hilbert C^*-bimodule. Motivated by this, we are led to study some special features of Hilbert C^*-bimodules over commutative C^*-algebras, which are relevant to our purposes.

In Section 1 we consider, for a commutative C^*-algebra A, two subgroups of its Picard group $\text{Pic}(A)$: the group of automorphisms of A (embedded in $\text{Pic}(A)$ as in [BGR]), and the classical Picard group $C\text{Pic}(A)$ (see, for instance, [DG]) consisting of Hilbert line bundles over the spectrum of A. Namely, we prove that $\text{Pic}(A)$ is the semidirect product of $C\text{Pic}(A)$ by $\text{Aut}(A)$. This result carries over a slightly more general setting, and a similar statement (see Proposition 1.1) holds for Hilbert C^*-bimodules that are not full, partial automorphisms playing then the role of $\text{Aut}(A)$. These results provide a tool that enables us to deal with $\text{Pic}(C(T^2))$ in order to prove our isomorphism theorem for quantum Heisenberg manifolds, which is done in Section 2.

The authors would like to acknowledge the financial support from FAPESP (grant no. 95/4609-0), Brazil, and CONICYT, Uruguay.

1 The Picard group and the classical Picard group.

Notation. Let A be C^*-algebra. If M is a Hilbert C^*-bimodule over A (in the sense of [EMS, 1.8]) we denote by $\langle \ , \ \rangle^L_M$ and $\langle \ , \ \rangle^R_M$, respectively, the left and right A-valued inner products, and drop the superscript whenever the context is clear enough. If M is a left (resp. right) Hilbert C^*-module over A, we denote by $K(\mathcal{A}M)$ (resp. $K(M\mathcal{A})$) the C^*-algebra of compact operators on M. When M is a Hilbert C^*-bimodule over A we will view the elements of $\langle M, M \rangle_R$ (resp. $\langle M, M \rangle_L$) as compact operators on the left (resp. right)
module M, as well as elements of A, via the well-known identity:

$$\langle m, n \rangle_L p = m \langle n, p \rangle_R,$$

for $m, n, p \in M$.

The bimodule denoted by \tilde{M} is the dual bimodule of M, as defined in [Rfl 6.17].

By an isomorphism of left (resp. right) Hilbert C^*-modules we mean an isomorphism of left (resp. right) modules that preserves the left (resp. right) inner product. An isomorphism of Hilbert C^*-bimodules is an isomorphism of both left and right Hilbert C^*-modules. We recall from [BGR 3] that Pic(A), the Picard group of A, consists of isomorphism classes of full Hilbert C^*-bimodules over A (that is, Hilbert C^*-bimodules M such that $\langle M, M \rangle_L = \langle M, M \rangle_R = A$), equipped with the tensor product, as defined in [Rfl 5.9].

It was shown in [BGR 3.1] that there is an anti-homomorphism from Aut(A) to Pic(A) such that the sequence

$$1 \longrightarrow \text{Gin}(A) \longrightarrow \text{Aut}(A) \longrightarrow \text{Pic}(A)$$

is exact, where Gin(A) is the group of generalized inner automorphisms of A. By this correspondence, an automorphism α is mapped to a bimodule that corresponds to the one we denote by A_α^{-1} (see below), so that $\alpha \mapsto A_\alpha$ is a group homomorphism having Gin(A) as its kernel.

Given a partial automorphism (I, J, θ) of a C^*-algebra A, we denote by J_θ the corresponding ([AEE 3.2]) Hilbert C^*-bimodule over A. That is, J_θ consists of the vector space J endowed with the A-actions:

$$a \cdot x = ax, \quad x \cdot a = \theta[\theta^{-1}(x)a],$$

and the inner products

$$\langle x, y \rangle_L = xy^*,$$

and

$$\langle x, y \rangle_R = \theta^{-1}(x^*y),$$

for $x, y \in J$, and $a \in A$. If M is a Hilbert C^*-bimodule over A, we denote by M_θ the Hilbert C^*-bimodule obtained by taking the tensor product $M \otimes_A J_\theta$. 3
The map $m \otimes j \mapsto mj$, for $m \in M$, $j \in J$, identifies M_θ with the vector space MJ equipped with the A-actions:

$$a \cdot mj = amj, \quad mj \cdot a = m\theta[\theta^{-1}(j)a],$$

and the inner products

$$\langle x, y \rangle_{L}^{M_\theta} = \langle x, y \rangle_{L}^{M},$$

and

$$\langle x, y \rangle_{R}^{M_\theta} = \theta^{-1}(\langle x, y \rangle_{R}^{M}),$$

where $m \in M$, $j \in J$, $x, y \in MJ$, and $a \in A$.

As mentioned above, when M is a C^*-algebra A, equipped with its usual structure of Hilbert C^*-bimodule over A, and $\theta \in \text{Aut}(A)$ the bimodule A_θ corresponds to the element of Pic(A) denoted by X_θ^{-1} in [3GR, 3], so we have $A_\theta \otimes A_\sigma \cong A_{\theta \sigma}$ and $\tilde{A}_\theta \cong A_{\theta^{-1}}$ for all $\theta, \sigma \in \text{Aut}(A)$.

In this section we discuss the interdependence between the left and the right structure of a Hilbert C^*-bimodule. Proposition 1.1 shows that the right structure is determined, up to a partial isomorphism, by the left one. By specializing this result to the case of full Hilbert C^*-bimodules over a commutative C^*-algebra, we are able to describe Pic(A) as the semidirect product of the classical Picard group of A by the group of automorphisms of A.

Proposition 1.1 Let M and N be Hilbert C^*-bimodules over a C^*-algebra A. If $\Phi : M \rightarrow N$ is an isomorphism of left A-Hilbert C^*-modules, then there is a partial automorphism (I, J, θ) of A such that $\Phi : M_\theta \rightarrow N$ is an isomorphism of $A - A$ Hilbert C^*-bimodules. Namely, $I = \langle N, N \rangle_{R}$, $J = \langle M, M \rangle_{R}$ and $\theta(\langle \Phi(m_0), \Phi(m_1) \rangle_{R}) = \langle m_0, m_1 \rangle_{R}$.

Proof: Let $\Phi : M \rightarrow N$ be a left A-Hilbert C^*-module isomorphism. Notice that, if $m \in M$, and $\|m\| = 1$, then, for all $m_i, m'_i \in M$, and $i = 1, ..., n$:

4
\[\| \sum m \langle m_i, m'_i \rangle_R \| = \| \sum \langle m, m_i \rangle_L m'_i \| \]
\[= \| \Phi(\sum \langle m, m_i \rangle_L m'_i) \| \]
\[= \| \sum \langle \Phi(m), \Phi(m_i) \rangle_L \Phi(m'_i) \| \]
\[= \| \sum \langle \Phi(m), \Phi(m_i) \rangle_L \Phi(m'_i) \| \]
\[= \| \sum \Phi(m) \langle \Phi(m_i), \Phi(m'_i) \rangle_R \| . \]

Therefore:
\[\| \sum \langle m_i, m'_i \rangle_R \| = \sup_{\| m \| = 1} \| \sum m \langle m_i, m'_i \rangle_R \| \]
\[= \sup_{\| m \| = 1} \| \sum \Phi(m) \langle \Phi(m_i), \Phi(m'_i) \rangle_R \| \]
\[= \| \sum \langle \Phi(m_i), \Phi(m'_i) \rangle_R \|. \]

Set \(I = \langle N, N \rangle_R \), and \(J = \langle M, M \rangle_R \), and let \(\theta : I \rightarrow J \) be the isometry defined by
\[\theta(\langle \Phi(m_1), \Phi(m_2) \rangle_R) = \langle m_1, m_2 \rangle_R , \]
for \(m_1, m_2 \in M \). Then,
\[\theta(\langle \Phi(m_1), \Phi(m_2) \rangle_R^*) = \theta(\langle \Phi(m_2), \Phi(m_1) \rangle_R) \]
\[= \langle m_2, m_1 \rangle_R \]
\[= \langle m_1, m_2 \rangle_R^* \]
\[= \theta(\langle \Phi(m_1), \Phi(m_2) \rangle_R)^* , \]
and
\[\theta(\langle \Phi(m_1), \Phi(m_2) \rangle_R \langle \Phi(m'_1), \Phi(m'_2) \rangle_R) = \theta(\langle \Phi(m_1), \Phi(m_2) \langle \Phi(m'_1), \Phi(m'_2) \rangle_R \rangle_R) \]
\[= \theta(\langle \Phi(m_1), \langle \Phi(m_2), \Phi(m'_1) \rangle_L \Phi(m'_2) \rangle_R) \]
\[= \langle m_1, \langle \Phi(m_2), \Phi(m'_1) \rangle_L m'_2 \rangle_R \]
\[= \langle m_1, m_2 \rangle_R \langle m'_1, m'_2 \rangle_R \]
\[= \theta(\langle m_1, m_2 \rangle_R) \theta(\langle m'_1, m'_2 \rangle_R) , \]
which shows that \(\theta \) is an isomorphism.

Besides, \(\Phi : M_\theta \rightarrow N \) is a Hilbert \(C^* \)-bimodule isomorphism:
\[\Phi(\langle m_1, m_2 \rangle_R \cdot a) = \Phi(m\theta^{-1}(\langle m_1, m_2 \rangle_R)a) = \Phi(m\theta(\langle \Phi(m_1), \Phi(m_2)a \rangle_R)) = \Phi(\langle m, m_1 \rangle_L \Phi^{-1}(\Phi(m_2)a)) = \langle m, m_1 \rangle_L \Phi(m_2)a = \Phi(\langle m, m_1 \rangle_L m_2)a = \Phi(m_0 \langle m_1, m_2 \rangle_R)a, \]

and
\[\langle \Phi(m_1), \Phi(m_2) \rangle_R = \theta^{-1}(\langle m_1, m_2 \rangle_M) = \langle m_1, m_2 \rangle^{M^\theta}. \]

Finally, \(\Phi \) is onto because
\[\Phi(M_\theta) = \Phi(M \langle M, M \rangle_R) = \Phi(M) = N. \]

Q.E.D.

Corollary 1.2 Let \(M \) and \(N \) be Hilbert \(C^* \)-bimodules over a \(C^* \)-algebra \(A \), and let \(\Phi : M \rightarrow N \) be an isomorphism of left Hilbert \(C^* \)-modules. Then \(\Phi \) is an isomorphism of Hilbert \(C^* \)-bimodules if and only if \(\Phi \) preserves either the right inner product or the right \(A \)-action.

Proof: Let \(\theta \) be as in Proposition 1.1, so that \(\Phi : M_\theta \rightarrow N \) is a Hilbert \(C^* \)-bimodule isomorphism. If \(\Phi \) preserves the right inner product, then \(\theta \) is the identity map on \(\langle M, M \rangle_R \) and \(M_\theta = M \).

If \(\Phi \) preserves the right action of \(A \), then, for \(m_0, m_1, m_2 \in M \) we have:
\[\Phi(m_0)\langle \Phi(m_1), \Phi(m_2) \rangle_R = \langle \Phi(m_0), \Phi(m_1) \rangle_L \Phi(m_2) = \langle m_0, m_1 \rangle_L \Phi(m_2) = \Phi(m_0 \langle m_1, m_2 \rangle_R) = \Phi(m_0)\langle m_1, m_2 \rangle_R, \]
so \(\Phi \) preserves the right inner product as well.

Q.E.D.
Proposition 1.3 Let M and N be left Hilbert C^*-modules over a C^*-algebra A. If M and N are isomorphic as left A-modules, and $K(M)$ is unital, then M and N are isomorphic as left Hilbert C^*-modules.

Proof: First recall that any A-linear map $T : M \rightarrow N$ is adjointable. For if $m_i, m'_i \in M$, $i = 1, ..., n$ are such that $\sum \langle m_i, m'_i \rangle_R = 1_{K(M)}$, then for any $m \in M$:

$$T(m) = T(\sum \langle m, m_i \rangle_L m'_i) = \sum \langle m, m_i \rangle_L T(m'_i) = (\sum \xi_{m,n}(m))(m),$$

where $\xi_{m,n} : M \rightarrow N$ is the compact operator (see, for instance, [La, 1]) defined by $\xi_{m,n}(m_0) = \langle m_0, m \rangle_L n$, for $m \in M$, and $n \in N$, which is adjointable.

Let $T : M \rightarrow N$ be an isomorphism of left modules, and set $S : M \rightarrow N$, $S = T(T^*T)^{-1/2}$. Then S is an A-linear map, therefore adjointable. Furthermore, S is a left Hilbert C^*-module isomorphism: if $m_0, m_1 \in M$, then

$$\langle S(m_0), S(m_1) \rangle_L = \langle T(T^*T)^{-1/2}m_0, T(T^*T)^{-1/2}m_1 \rangle_L$$

$$= \langle m_0, (T^*T)^{-1/2}T(T^*T)^{-1/2}m_1 \rangle_L$$

$$= \langle m_0, m_1 \rangle_L.$$

Q.E.D.

We next discuss the Picard group of a C^*-algebra A. Proposition 1.1 shows that the left structure of a full Hilbert C^*-bimodule over A is determined, up to an isomorphism of A, by its left structure.

This suggests describing $\text{Pic}(A)$ in terms of the subgroup $\text{Aut}(A)$ together with a cross-section of the equivalence classes under left Hilbert C^*-modules isomorphisms. When A is commutative there is a natural choice for this cross-section: the family of symmetric Hilbert C^*-bimodules (see Definition 1.5). That is the reason why we now concentrate on commutative C^*-algebras and their symmetric Hilbert C^*-bimodules.

Proposition 1.4 Let A be a commutative C^*-algebra and M a Hilbert C^*-bimodule over A. Then $\langle m, n \rangle_{LM} = \langle p, n \rangle_L m$ for all $m, n, p \in M$.

7
Proof: We first prove the proposition for $m = n$, the statement will then follow from polarization identities.

Let $m, p \in M$, then:

\[
\langle \langle m, m \rangle_L p - \langle p, m \rangle_L m, \langle m, m \rangle_L p - \langle p, m \rangle_L m \rangle_L = 0.
\]

Now, for $m, n, p \in M$, we have:

\[
\langle m, n \rangle_L p = \frac{1}{4} \sum_{k=0}^{3} i^k \langle m + i^k n, m + i^k n \rangle_L p
\]

\[
= \frac{1}{4} \sum_{k=0}^{3} i^k \langle p, m + i^k n \rangle_L (m + i^k n)
\]

\[
= \frac{1}{4} \sum_{k=0}^{3} i^k p (m + i^k n, m + i^k n)_R
\]

\[
= p (n, m)_R
\]

\[
= \langle p, n \rangle_L m.
\]

Definition 1.5 Let A be a commutative C^*-algebra. A Hilbert C^*-bimodule M over A is said to be symmetric if $am = ma$ for all $m \in M$, and $a \in A$.
If \(M \) is a Hilbert C*-bimodule over \(A \), the symmetrization of \(M \) is the symmetric Hilbert C*-bimodule \(M^* \), whose underlying vector space is \(M \) with its given left Hilbert-module structure, and right structure defined by:

\[
m \cdot a = am, \quad \langle m_0, m_1 \rangle^{M^*}_L = \langle m_1, m_0 \rangle^M_L,
\]

for \(a \in A, m, m_0, m_1 \in M^* \). The commutativity of \(A \) guarantees the compatibility of the left and right actions. As for the inner products, we have, in view of Proposition 1.4:

\[
\langle m_0, m_1 \rangle^{M^*}_L \cdot m_2 = \langle m_0, m_1 \rangle^M_L m_2
\]

\[
= \langle m_2, m_1 \rangle^{M^*}_L m_0
\]

\[
= m_0 \cdot \langle m_2, m_1 \rangle^M_L
\]

\[
= m_0 \cdot \langle m_1, m_2 \rangle^{M^*}_R
\]

for all \(m_0, m_1, m_2 \in M^* \).

Remark 1.6 By Corollary 1.2 the bimodule \(M^* \) is, up to isomorphism, the only symmetric Hilbert C*-bimodule that is isomorphic to \(M \) as a left Hilbert module.

Remark 1.7 Let \(M \) be a symmetric Hilbert C*-bimodule over a commutative C*-algebra \(A \) such that \(K(A) \) is unital. By Remark 1.6 and Proposition 1.3, a symmetric Hilbert C*-bimodule over \(A \) is isomorphic to \(M \) if and only if it is isomorphic to \(M \) as a left module.

Example 1.8 Let \(A = C(X) \) be a commutative unital C*-algebra, and let \(M \) be a Hilbert C*-bimodule over \(A \) that is, as a left Hilbert C*-module, isomorphic to \(A^p \), for some \(p \in \text{Proj}(M_n(A)) \). This implies that \(pM_n(A)p \cong K(A) \) is isomorphic to a C*-subalgebra of \(A \) and is, in particular, commutative. By viewing \(M_n(A) \) as \(C(X, M_n(C)) \) one gets that \(p(x)M_n(C)p(x) \) is a commutative C*-algebra, hence rank \(p(x) \leq 1 \) for all \(x \in X \).
Conversely, let $A = C(X)$ be as above, and let $p : X \to \text{Proj}(M_n(C))$ be a continuous map, such that $\text{rank} \, p(x) \leq 1$ for all $x \in X$. Then A^np is a Hilbert C^*-bimodule over A for its usual left structure, the right action of A by pointwise multiplication, and right inner product given by:

$$\langle m, r \rangle_L = \tau(m^*r),$$

for $m, r \in A^np, a \in A$, and where τ is the usual A-valued trace on $M_n(A)$ (that is, $\tau([a_{ij}]) = \sum a_{ii}$).

To show the compatibility of the inner products, notice that for any $T \in M_n(A)$, and $x \in X$ we have:

$$(pTp)(x) = p(x)T(x)p(x) = [\text{trace}(p(x)T(x)p(x))](x),$$

which implies that $pTp = \tau(pTp)p$. Then, for $m, r, s \in M$:

$$\langle m, r \rangle_L s = mpr^*sp = m\tau(pr^*sp)p = m\tau(r^*s) = m \cdot \langle r, s \rangle_R.$$

Besides, A^np is symmetric:

$$\langle m, r \rangle_R = \tau(m^*r) = \sum_{i=1}^n m_i^*r_i = \langle r, m \rangle_L,$$

for $m = (m_1, m_2, ..., m_n), r = (r_1, r_2, ...r_n) \in M$.

Therefore, by Remark [L], if $p, q \in \text{Proj}(M_n(A))$, the Hilbert C^*-bimodules A^np and A^nq described above are isomorphic if and only if p and q are Murray-von Neumann equivalent. Notice that the identity of $K(A^np)$ is $\tau(p)$, that is, the characteristic function of the set $\{x \in X : \text{rank} \, p(x) = 1\}$. Therefore A^np is full as a right module if and only if $\text{rank} \, p(x) = 1$ for all $x \in X$, which happens in particular when X is connected, and $p \neq 0$.

Proposition 1.9 Let A be a commutative C^*-algebra. For any Hilbert C^*-bimodule M over A there is a partial automorphism $(\langle M, M \rangle_R, \langle M, M \rangle_L, \theta)$ of A such that the map $i : (M^*)_\theta \to M$ defined by $i(m) = m$ is an isomorphism of Hilbert C^*-bimodules.
Proof: The map \(i : M^s \to M \) is a left Hilbert \(C^\ast \)-modules isomorphism. The existence of \(\theta \), with \(I = \langle M, M \rangle_R \) and \(J = \langle M^s, M^s \rangle_R = \langle M, M \rangle_L \), follows from Proposition \[\text{[1.3]} \].

Q.E.D.

We now turn to the discussion of the group \(\text{Pic}(A) \) for a commutative \(C^\ast \)-algebra \(A \). For a full Hilbert \(C^\ast \)-bimodule \(M \) over \(A \), we denote by \([M]\) its equivalence class in \(\text{Pic}(A) \). For a commutative \(C^\ast \)-algebra \(A \), the group \(\text{Gin}(A) \) is trivial, so the map \(\alpha \mapsto A_\alpha \) is one-to-one. In what follows we identify, via that map, \(\text{Aut}(A) \) with a subgroup of \(\text{Pic}(A) \).

Symmetric full Hilbert \(C^\ast \)-bimodules over a commutative \(C^\ast \)-algebra \(A = C(X) \) are known to correspond to line bundles over \(X \). The subgroup of \(\text{Pic}(A) \) consisting of isomorphism classes of symmetric Hilbert \(C^\ast \)-bimodules is usually called the classical Picard group of \(A \), and will be denoted by \(\text{CPic}(A) \). We next specialize the result above to the case of full bimodules.

Notation 1.10 For \(\alpha \in \text{Aut}(A) \), and \(M \) a Hilbert \(C^\ast \)-bimodule over \(A \), we denote by \(\alpha(M) \) the Hilbert \(C^\ast \)-bimodule \(\alpha(M) = A_\alpha \otimes M \otimes A_{\alpha^{-1}} \).

Remark 1.11 The map \(a \otimes m \otimes b \mapsto amb \) identifies \(A_\alpha \otimes M \otimes A_{\alpha^{-1}} \) with \(M \) equipped with the actions:

\[a \cdot m = \alpha^{-1}(a)m, \quad m \cdot a = m\alpha^{-1}(a), \]

and inner products

\[\langle m_0, m_1 \rangle_L = \alpha(\langle m_0, m_1 \rangle^M_L), \]

and

\[\langle m_0, m_1 \rangle_R = \alpha(\langle m_0, m_1 \rangle^M_R), \]

for \(a \in A \), and \(m, m_0, m_1 \in M \).
Theorem 1.12 Let A be a commutative C^*-algebra. Then $CPic(A)$ is a normal subgroup of $Pic(A)$ and

$$Pic(A) = CPic(A) \rtimes Aut(A),$$

where the action of $Aut(A)$ is given by conjugation, that is $\alpha \cdot M = \alpha(M)$.

Proof: Given $[M] \in Pic(A)$ write, as in Proposition 1.9, $M \cong M_\theta^s$, θ being an isomorphism from $\langle M, M \rangle_R = A$ onto $\langle M, M \rangle_L = A$.

Therefore $M \cong M^s \otimes A_\theta$, where $[M^s] \in CPic(A)$ and $\theta \in Aut(A)$. If $[S] \in CPic(A)$ and $\alpha \in Aut(A)$ are such that $M \cong S \otimes A_\alpha$, then S and M^s are symmetric bimodules, and they are both isomorphic to M as left Hilbert C^*-modules. This implies, by Remark 1.11, that they are isomorphic. Thus we have:

$$M^s \otimes A_\theta \cong M^s \otimes A_\alpha \Rightarrow A_\theta \cong \overline{M^s} \otimes M^s \otimes A_\theta \cong \overline{M^s} \otimes M^s \otimes A_\alpha \cong A_\alpha,$$

which implies ([BGR, 3.1]) that $\theta \alpha^{-1} \in \text{Gin}(A) = \{id\}$, so $\alpha = \theta$, and the decomposition above is unique.

It only remains to show that $CPic(A)$ is normal in $Pic(A)$, and it suffices to prove that $[A_\alpha \otimes S \otimes A_\alpha^{-1}] \in CPic(A)$ for all $[S] \in CPic(A)$, and $\alpha \in Aut(A)$, which follows from Remark 1.11.

Q.E.D.

Notation 1.13 If $\alpha \in Aut(A)$, then for any positive integers k, l, we still denote by α the automorphism of $M_{k \times l}(A)$ defined by $\alpha[(a_{ij})] = (\alpha(a_{ij}))$.

Lemma 1.14 Let A be a commutative unital C^*-algebra, and $p \in \text{Proj}(M_n(A))$ be such that $A^n p$ is a symmetric Hilbert C^*-bimodule over A, for the structure described in Example 1.8. If $\alpha \in Aut(A)$, then $\alpha(A^n p) \cong A^n \alpha(p)$.

12
Proof: Set $J : \alpha(A^n p) \rightarrow A^n \alpha(p)$, $J(m \otimes x \otimes r) = m \alpha(xr)$, for $m \in A_\alpha$, $r \in A_{\alpha^{-1}}$, and $x \in A^n p$. Notice that

$$m \alpha(xr) = m \alpha(xpr) = m \alpha(xr) \alpha(p) \in A^n \alpha(p).$$

Besides, if $a \in A$

$$J(m \cdot a \otimes x \otimes r) = J(m \alpha(a) \otimes x \otimes r)$$
$$= m \alpha(xr)$$
$$= J(m \otimes a \cdot x \otimes r),$$

and

$$J(m \otimes x \cdot a \otimes r) = m \alpha(xar)$$
$$= J(m \otimes x \otimes a \cdot r),$$

so the definition above makes sense. We now show that J is a Hilbert C^*-bimodule isomorphism. For $m \in A_\alpha$, $n \in A_{\alpha^{-1}}$, $x \in A^n p$, and $a \in A$, we have:

$$J(a \cdot (m \otimes x \otimes r)) = J(am \otimes x \otimes r)$$
$$= am \alpha(xr)$$
$$= a \cdot J(m \otimes x \otimes r),$$

and

$$J(m \otimes x \otimes r \cdot a) = m \alpha(xr \alpha^{-1}(a))$$
$$= m \alpha(xr) a$$
$$= J((m \otimes x \otimes r) \cdot a)$$

Finally,

$$\langle J(m \otimes x \otimes r), J(m' \otimes x' \otimes r') \rangle_L = \langle m \alpha(xr), m' \alpha(x'r') \rangle_L$$
$$= \langle m \cdot [(xr)(x'r')^*], m' \rangle_L$$
$$= \langle m \cdot \langle x \cdot (r', r'' \rangle_{A}^{A^n p}, x' \rangle_{A^n p}^{A^n p \otimes A_{\alpha^{-1}}}, m' \rangle_L$$
$$= \langle m \cdot \langle x \otimes r, x' \otimes r' \rangle_{L}^{A^n p \otimes A_{\alpha^{-1}}}, m' \rangle_L$$
$$= \langle m \otimes x \otimes r, m' \otimes x' \otimes r' \rangle_{L},$$

which shows, by Corollary 1.2, that J is a Hilbert C^*-bimodule isomorphism.

Q.E.D.
Proposition 1.15 Let A be a commutative unital C^*-algebra and M a Hilbert C^*-bimodule over A. If $\alpha \in \text{Aut}(A)$ is homotopic to the identity, then

$$A_\alpha \otimes M \cong M \otimes A_{\gamma^{-1}\alpha \gamma},$$

where $\gamma \in \text{Aut}(A)$ is such that $M \cong (M^s)_\gamma$.

Proof: We then have that $K(AM)$ is unital so, in view of Proposition 1.3 we can assume that $M^s = A^np$ with the Hilbert C^*-bimodule structure described in Example 1.8, for some positive integer n, and $p \in \text{Proj}(M_m(A))$. Since p and $\alpha(p)$ are homotopic, they are Murray-von Neumann equivalent ([Bl, 4]). Then, by Lemma 1.14 and Example 1.8, we have

$$A_\alpha \otimes M \cong A_\alpha \otimes M^s \otimes A_\gamma \cong M^s \otimes A_{\alpha \gamma} \cong M \otimes A_{\gamma^{-1}\alpha \gamma}.$$

Q.E.D.

We turn now to the discussion of crossed products by Hilbert C^*-bimodules, as defined in [AEE]. For a Hilbert C^*-bimodule M over a C^*-algebra A, we denote by $A \rtimes_M \mathbb{Z}$ the crossed product C^*-algebra. We next establish some general results that will be used later.

Notation 1.16 In what follows, for $A - A$ Hilbert C^*-bimodules M and N we write $M \overset{cp}{\cong} N$ to denote $A \rtimes_M \mathbb{Z} \cong A \rtimes_N \mathbb{Z}$.

Proposition 1.17 Let A be a C^*-algebra, M an $A - A$ Hilbert C^*-bimodule and $\alpha \in \text{Aut}(A)$. Then

i) $M \overset{cp}{\cong} M$.

ii) $M \overset{cp}{\cong} \alpha(M)$.

Proof: Let i_A and i_M denote the standard embeddings of A and M in $A \rtimes_M \mathbb{Z}$, respectively.
i) Set

\[i_M : \tilde{M} \longrightarrow A \rtimes M \mathbb{Z}, \quad i_M(\tilde{m}) = i_M(m)^*. \]

Then \((i_A, i_M)\) is covariant for \((A, M)\):

\[i_M(a \cdot \tilde{m}) = i_M(m \alpha) = i_A(a) i_M(m)^* = i_A(a) i_M(\tilde{m}), \]

\[i_M(\tilde{m}_1) i_M(\tilde{m}_2)^* = i_M(m_1)^* i_M(m_2) = i_A(\langle m_0, m_1 \rangle^M) = i_A(\langle m_0, m_1 \rangle^M), \]

for \(a \in A\) and \(m, m_0, m_1 \in M\). Analogous computations prove covariance on the right. By the universal property of the crossed products there is a homomorphism from \(A \rtimes \tilde{M} \mathbb{Z}\) onto \(A \rtimes M \mathbb{Z}\). Since \(\tilde{M} = M\), by reversing the construction above one gets the inverse of \(J\).

ii) Set

\[j_A : A \longrightarrow A \rtimes M \mathbb{Z}, \quad j_{\alpha(M)} : M \longrightarrow A \rtimes M \mathbb{Z}, \]

defined by \(j_A = i_A \alpha^{-1}\), \(j_{\alpha(M)}(m) = i_M(m)\), where the sets \(M\) and \(\alpha(M)\) are identified as in Remark 1.11. Then \((j_A, j_{\alpha(M)})\) is covariant for \((A, \alpha(M))\):

\[j_{\alpha(M)}(a \cdot m) = j_{\alpha(M)}(\alpha^{-1}(a)m) = i_A(\alpha^{-1}(a)) i_M(m) = j_A(a) i_{\alpha(M)}(m), \]

\[j_{\alpha(M)}(m_0) j_{\alpha(M)}(m_1)^* = i_M(m_0)^* i_M(m_1)^* = i_A(\langle m_0, m_1 \rangle^M) = j_A(\langle m_0, m_1 \rangle^M), \]

for \(a \in A\), \(m, m_0, m_1 \in M\), and analogously on the right. Therefore there is a homomorphism

\[J : A \rtimes \alpha(M) \mathbb{Z} \longrightarrow A \rtimes M \mathbb{Z}, \]

whose inverse is obtained by applying the construction above to \(\alpha^{-1}\).

Q.E.D.

2 An application: isomorphism classes for quantum Heisenberg manifolds.

For \(\mu, \nu \in \mathbb{R}\) and a positive integer \(c\), the quantum Heisenberg manifold \(D_{\mu \nu}^c \mathbb{R}^4\) is isomorphic \((\text{[AEE, Ex.3.3]})\) to the crossed product \(C(T^2) \rtimes (\mathbb{C}^*)_{\alpha_{\mu \nu}} \mathbb{Z}\),

\[15 \]
where \(X^c \) is the vector space of continuous functions on \(R \times T \) satisfying \(f(x + 1, y) = e^{-cy}f(x, y) \). The left and right actions of \(C(T^2) \) are defined by pointwise multiplication, the inner products by \(\langle f, g \rangle_L = \int f(x)g(x) \), and \(\langle f, g \rangle_R = \int \overline{f(y)}g(y) \), and \(\alpha_{\mu \nu} \in \text{Aut}(C(T^2)) \) is given by \(\alpha_{\mu \nu}(x, y) = (x + 2\mu, y + 2\nu) \), and, for \(t \in R \), \(e(t) = \exp(2\pi it) \).

Our purpose is to find isomorphisms in the family \(\{ D^c_{\mu \nu} : \mu, \nu \in R, c \in Z, c > 0 \} \). We concentrate in fixed values of \(c \), because \(K_0(D^c_{\mu \nu}) \cong Z^3 \oplus Z_2 \). Besides, since \(\alpha_{\mu \nu} = \alpha_{\mu+m, \nu+n} \) for all \(m, n \in Z \), we view from now on the parameters \(\mu \) and \(\nu \) as running in \(T \).

Let \(M^c \) denote the set of continuous functions on \(R \times T \) satisfying \(f(x + 1, y) = e^{-cy}f(x, y) \). Then \(M^c \) is a Hilbert \(C^* \)-bimodule over \(C(T^2) \), for pointwise action and inner products given by the same formulas as in \(X^c \).

The map \(f \mapsto \tilde{f} \), where \(\tilde{f}(x, y) = f(x, y + \nu) \), is a Hilbert \(C^* \)-bimodule isomorphism between \((X^c_\nu)_{\alpha_{\mu \nu}} \) and \(C(T^2)_\sigma \otimes M^c \otimes C(T^2)_\rho \), where \(\sigma(x, y) = (x, y + \nu) \), and \(\rho(x, y) = (x + 2\mu, y + \nu) \). In view of Proposition 1.17 we have:

\[
D^c_{\mu \nu} \cong C(T^2) \rtimes_{\alpha_{\mu \nu}} M^c \cong C(T^2) \rtimes_{\alpha_{\mu \nu}} Z.
\]

As a left module over \(C(T^2) \), \(M^c \) corresponds to the module denoted by \(X(1, c) \) in \([R3, 3.7] \). It is shown there that \(M^c \) represents the element \((1, c)\) of \(K_0(C(T^2)) \cong Z^2 \), where the last correspondence is given by \([X] \mapsto (a, b) \), \(a \) being the dimension of the vector bundle corresponding to \(X \) and \(-b\) its twist. It is also proven in \([R3] \) that any line bundle over \(C(T^2) \) corresponds to the left module \(M^c \), for exactly one value of the integer \(c \), and that \(M^c \otimes M^d \) and \(M^{c+d} \) are isomorphic as left modules. It follows now, by putting these results together, that the map \(c \mapsto [M^c] \) is a group isomorphism from \(Z \) to \(\text{CPic}(C(T^2)) \).

Lemma 2.1

\[
\text{Pic}(C(T^2)) \cong Z \rtimes_{\delta_\alpha} \text{Aut}(C(T^2)),
\]

where \(\delta_\alpha(c) = \det \alpha \cdot c \), for \(\alpha \in \text{Aut}(C(T^2)) \), and \(c \in Z \); \(\alpha \) being the usual automorphism of \(K_0(C(T^2)) \cong Z^2 \), viewed as an element of \(GL_2(Z) \).
Proof: By Theorem 1.12 we have:

$$\operatorname{Pic}(C(T^2)) \cong \operatorname{CPic}(C(T^2)) \rtimes \Delta \operatorname{Aut}(C(T^2)).$$

If we identify \(\operatorname{CPic}(C(T^2)) \) with \(\mathbb{Z} \) as above, it only remains to show that \(\alpha(M^c) \cong M^{\det \alpha \cdot c} \). Let us view \(\alpha_* \in GL_2(\mathbb{Z}) \) as above. Since \(\alpha_* \) preserves the dimension of a bundle, and takes \(C(T^2) \) (that is, the element \((1, 0) \in \mathbb{Z}^2 \)) to itself, we have

$$\alpha_* = \begin{pmatrix} 1 & 0 \\ 0 & \det \alpha_* \end{pmatrix}$$

Now,

$$\alpha_*(M^c) = \alpha_*(1, c) = (1, \det \alpha_* \cdot c) = M^{\det \alpha \cdot c}.$$

Since there is cancellation in the positive semigroup of finitely generated projective modules over \(C(T^2) \) (\(\mathbb{R}_3 \)), the result above implies that \(\alpha_*(M^c) \) and \(M^{\det \alpha \cdot c} \) are isomorphic as left modules. Therefore, by Remark 1.7, they are isomorphic as Hilbert \(C^* \)-bimodules.

Q.E.D.

Theorem 2.2 If \((\mu, \nu)\) and \((\mu', \nu')\) belong to the same orbit under the usual action of \(GL(2, \mathbb{Z}) \) on \(T^2 \), then the quantum Heisenberg manifolds \(D^c_{\nu \mu} \) and \(D^{c}_{\nu' \mu'} \) are isomorphic.

Proof: If \((\mu, \nu)\) and \((\mu', \nu')\) belong to the same orbit under the action of \(GL(2, \mathbb{Z}) \), then \(\alpha_{\mu' \nu'} = \sigma \alpha_{\mu \nu} \sigma^{-1} \), for some \(\sigma \in GL(2, \mathbb{Z}) \). Therefore, by Lemma 2.1 and Proposition 1.17,

$$M^c_{\alpha_{\mu' \nu'}} \cong M^c_{\sigma \alpha_{\mu \nu} \sigma^{-1}} \cong M^c \otimes C(T^2)_{\sigma \alpha \sigma^{-1}} \cong$$

$$\cong C(T^2)_{\sigma} \otimes M^{\det \sigma^{-1} \cdot c} \otimes C(T^2)_{\alpha_{\mu \nu} \sigma^{-1}} \cong \sigma(M^{\det \sigma \cdot c}) \cong M^{\det \sigma \cdot c}_{\alpha_{\mu \nu}}.$$
In case $\det \alpha_* = -1$ we have

$$M^\text{det}_{\alpha_{\mu\nu}} \cong M_{\alpha_{\mu\nu}}^{-c} \cong \overline{M_{\alpha_{\mu\nu}}^{-c}} \cong C(T^2)_{\alpha_{\mu\nu}^{-1}} \otimes M^c \cong (M^c)_{\alpha_{\mu\nu}^{-1}},$$

since $\det \alpha_* = 1$, because $\alpha_{\mu\nu}$ is homotopic to the identity.

On the other hand, it was shown in \cite{Ab1, 0.3} that $M^c_{\alpha_{\mu\nu}^{-1}} \cong M^c_{\alpha_{\mu\nu}}$.

Thus, in any case, $M^c_{\alpha_{\mu\nu}'} \cong M^c_{\alpha_{\mu\nu}}$. Therefore

$$D^c_{\mu\nu'} \cong C(T^2) \rtimes M_{\alpha_{\mu\nu}'} \mathbb{Z} \cong C(T^2) \rtimes M_{\alpha_{\mu\nu}} \mathbb{Z} \cong D^c_{\mu\nu}.$$

Q.E.D.

References

\cite{Ab1} Abadie, B. “Vector bundles” over quantum Heisenberg manifolds. Algebraic Methods in Operator Theory, Birkhauser, pp. 307-315 (1994).

\cite{Ab2} Abadie, B. Generalized fixed-point algebras of certain actions on crossed-products. Pacific Journal of Mathematics, Vol 171, No.1, pp. 1-21 (1995).

\cite{AEE} Abadie, B.; Eilers, S.; Exel, R. Morita equivalence for crossed products by Hilbert C^*-bimodules. To appear in the Transactions of the AMS.

\cite{Bl} Blackadar, B. K-Theory of operator algebras. MSRI Publications, 5, Springer-Verlag, (1986).

\cite{BGR} Brown, G.; Green, P.; Rieffel, M. Stable isomorphism and strong Morita equivalence of C^*-algebras. Pacific Journal of Mathematics, Vol.71, Number 2, pp. 349-363 (1977).
[BMS] Brown, L.; Mingo, J. and Shen, N. *Quasi-multipliers and embeddings of Hilbert C^*-bimodules.*
Canadian Journal of Mathematics, Vol. 46(6), pp. 1150-1174.

[DG] Dupré, M.J.; Gillette, R.M. *Banach bundles, Banach modules, and automorphisms of C^*-algebras.*
Research Notes in Mathematics, v.92, Adv. Publ. Program, Pitman (1983).

[La] Lance, C. *Hilbert C^*-modules. A toolkit for operator algebraists.*
Lecture Notes, University of Leeds (1993).

[Rf1] Rieffel, M. *Induced representations of C^*-algebras.*
Advances in Mathematics, 13, No2, pp. 176-257 (1974).

[Rf2] Rieffel, M. *C^*-algebras associated with irrational rotations*
Pacific Journal of Mathematics, Vol. 93, No. 2, pp. 415-429 (1981)

[Rf3] Rieffel, M. *The cancellation theorem for projective modules over irrational rotation C^*-algebras.*
Proc. London Math. Soc. (3), 47 pp. 285-302 (1983).

[Rf4] Rieffel, M. *Deformation Quantization of Heisenberg manifolds.*
Commun. Math. Phys. 122, pp. 531-562 (1989).

BA: Centro de Matemáticas, Facultad de Ciencias, Universidad de la República,
Eduardo Acevedo 1139, C.P 11 200, Montevideo, Uruguay. E-mail address:
abadie@@cmat.edu.uy

RE: Departamento de Matemática, Universidade de São Paulo, Cidade Universitária ”Armando de Salles Oliveira”. Rua do Matão 1010, CEP 05508-900, São Paulo, Brazil. E-mail address: exel@@ime.usp.br