Short Communication

Circulating tumour cells are associated with increased risk of venous thromboembolism in metastatic breast cancer patients

M Mego1,2,3, U De Giorgi1, K Broglio4, S Dawood2, V Valero2, E Andreopoulou2, B Handy5, JM Reuben1 and M Cristofanilli1,2

1Department of Hematology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA; 2Department of Breast Medical Oncology, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, University of Texas, MD Anderson Cancer Center, Houston, TX, USA; 3Department of Medical Oncology, Comenius University, School of Medicine, Bratislava, Slovakia; 4Department of Biostatistics, University of Texas, MD Anderson Cancer Center, Houston, TX, USA

BACKGROUND: Cancer is a risk factor for venous thromboembolism (VTE). Circulating tumour cells (CTCs) are an independent predictor of survival in metastatic breast cancer (MBC) patients. The aim of this study was to test the hypothesis that CTCs are associated with the risk of VTE in MBC patients.

METHODS: This retrospective study included 290 MBC patients treated in the MD Anderson Cancer Center from January 2004 to December 2007. Circulating tumour cells were detected and enumerated using the CellSearch system before starting new lines of therapy.

RESULTS: At a median follow-up of 12.5 months, 25 patients experienced VTE and 53 patients died without experiencing thrombosis. Cumulative incidence of thrombosis at 12 months was 8.5% (95% confidence interval (CI) = 5.5%, 12.4%). Patients with CTCs >1 and ≥5 had a higher incidence of VTE compared with patients with 0 and <5 CTCs (12-month estimate, 11.7 and 11.6% vs 3 and 6.6%; P = 0.006 and P = 0.076, respectively). In the multivariate model, patients with CTCs ≥1 had a hazard ratio of VTE of 5.29 (95% CI = 1.58, 17.7, P = 0.007) compared with patients with no CTCs.

CONCLUSION: These results suggest that CTCs in MBC patients are associated with increased risk of VTE. These patients should be followed up more closely for the risk of VTE.

British Journal of Cancer (2009) 101, 1813–1816. doi:10.1038/sj.bjc.6605413 www.bjcancer.com
Published online 3 November 2009
© 2009 Cancer Research UK

Keywords: circulating tumour cells; venous thromboembolism

Cancer is a well-recognised risk factor for venous thromboembolism (VTE). It has been shown that 5–10% of all cancer patients will develop VTE during the course of the disease (Silverstein et al., 1998). Evidence suggests that the absolute risk depends on the tumour type, the stage or extent of the cancer, and treatment with antineoplastic agents (Silverstein et al., 1998).

Venous thromboembolism following breast cancer chemotherapy is common. In early breast cancer, VTE occurs in 5–10% of patients receiving chemotherapy (Weiss et al., 1981; Levine et al., 1988; von Tempelhoff et al., 1996), and it rises up to 18% in advanced breast cancer with 9% mortality (Goodnough et al., 1984; Kirwan et al., 2008).

Circulating tumour cells (CTCs) are an independent predictor of progression-free survival (PFS) and overall survival (OS) in patients with metastatic breast cancer (MBC) (Cristofanilli et al., 2004). Superior survival among patients with <5 CTCs was observed regardless of histology, hormone receptor and HER2/neu status, sites of first metastases, or whether the patient had relapse or de novo metastatic disease (Cristofanilli et al., 2004; Dawood et al., 2008).

Increased CTC count and VTE are poor prognostic factors in MBC and are linked to inferior survival. In this retrospective study, we tested the hypothesis that CTCs are associated with the risk of VTE in MBC patients.

PATIENTS AND METHODS

Study patients

This study was conducted using the MD Anderson Cancer Center medical records database. The retrospective study was approved by the institutional review board and a waiver of consent form was granted. A population of consecutive MBC patients with at least one measurement of CTC before starting a new line of therapy from January 2004 to December 2007 was eligible. In addition, patients were not excluded on the basis of whether they underwent treatment with any particular form of chemotherapy, hormonal therapy, or biological therapy. Patients on prophylactic or therapeutic anticoagulation therapy including warfarin 1 mg per day or equivalent for port-a-catheter thromboprophylaxis, low molecular weight heparin, or unfractionated heparin were excluded from the analysis. Patients with concurrent malignancy...
other than non-melanoma skin cancer in the previous 5 years were excluded as well. In all, patient data regarding age, tumour histology, hormone receptor status, HER2 status, type and number of metastatic sites, systemic therapy, history of VTE, comorbidities (hypertension, diabetes mellitus), and concomitant therapy were also recorded and compared with risk of VTE.

Definition of the events

All venous thrombosis and/or pulmonary embolism in the presence of unequivocal medical documentation were classified as events. A patient was considered to have had a VTE if the event was clinically apparent and confirmed by diagnostic studies. Cases of superficial phlebitis and cases of secondary thrombosis attributed to superior vena cava syndrome and/or bulky abdominal lymphadenopathy were not classified as events and were excluded from the analysis.

Detection of CTCs in peripheral blood

The CellSearch system (Veridex Corporation, Warren, NJ, USA) was used to detect CTCs in 7.5 ml of whole peripheral blood. Samples were subject to enrichment with anti-EpCAM-coated beads. Circulating tumour cells were defined as nucleated cells lacking CD45 but expressing cytokeratines 8, 18, or 19.

Statistical analysis

Baseline CTCs were defined as the earliest CTC measurement taken before the start of a new line of therapy. Time to thrombosis was calculated from the date of baseline CTC assessment to the date of thrombosis or last follow-up. We calculated the cumulative incidence of thrombosis according to the method previously described (Gray, 1988). We considered baseline CTCs as a continuous measurement, dichotomised at 1 and at 5. The cutoff at 1 was chosen because it has been investigated in other settings such as primary breast cancer (Cristofanilli et al, 2004; Lang et al, 2009). The cutoff at 5 has been established as prognostic for PFS and OS for MBC patients in other studies.

Analyses were repeated considering patients who died before experiencing a thrombosis as censored at their date of death and estimating survival from thrombosis according to the Kaplan–Meier method. Results were similar. Therefore, we used Cox proportional hazards models both to assess CTCs as continuous measurement and to determine the association between CTCs and thrombosis after adjustment for other patient and disease characteristics.

Analyses were conducted in R2.4.0 with the contributed package, cmprsk (Gray, 2004; R Development Core Team, 2006). P-values < 0.05 were considered statistically significant.

RESULTS

We identified 290 patients who satisfied the study eligibility criteria and were included in this analysis. Patient characteristics are shown in Table 1.

A total of 25 patients experienced a thrombosis and 53 patients died without experiencing a thrombosis. Estimates of the cumulative incidence of thrombosis are shown in Table 2. Among all patients, the cumulative incidence of thrombosis at 12 months was 8.5% (95% confidence interval (CI) = 5.5%, 12.4%). There was no association between baseline CTCs and thrombosis when baseline CTCs were considered as continuous in a univariate Cox proportional hazards model (hazards ratio (HR) = 1.0, 95% CI = 0.994, 1.00, P = 0.73). When baseline CTCs were considered dichotomised at 1, patients with CTCs ≥ 1 had four times higher incidence of thrombosis compared with patients with CTCs = 0 (12-month estimate 3.0 vs 11.7%, P = 0.006). Patients with CTCs ≥ 1 have inferior survival compared with patients with CTC = 0 (HR = 0.54, 95% CI = 0.33–0.89, P = 0.03). When patients were considered grouped according to CTCs ≥ 5 vs CTCs < 5, patients with fewer CTCs had a lower incidence of thrombosis compared with patients with more CTCs; however, statistical significance was not attained (6.6 vs 11.6%, P = 0.076).

We considered the baseline CTC measurement dichotomised as 0 vs 1 or more in a multivariable Cox proportional hazards model...
Table 2 Estimates of the cumulative incidence of thrombosis

Event Type	N	12-Month estimate (percent)	95% Confidence interval	P-value
All	290	8.5 (5.5, 12.4)	—	
Baseline CTC				
0	108	3.0 (0.8, 7.9)	—	
1	182	11.7 (7.3, 17.3)	0.006	
Baseline CTC				
<5	177	6.6 (3.3, 11.4)	—	
≥5	113	11.6 (6.3, 18.6)	0.076	
Age (years)				
<50	100	8.9 (4.1, 15.9)	—	
≥50	190	8.3 (4.7, 13.2)	0.552	
Line of therapy				
1	123	3.3 (1.1, 7.8)	—	
≥2	167	12.8 (7.8, 19.1)	0.027	
Estrogen and progesteron receptor				
Positive for both	192	6.4 (3.4, 10.8)	—	
Negative for either	98	12.8 (6.7, 21.0)	0.188	
HER2/neu amplified				
No	227	8.4 (5.1, 12.8)	—	
Yes	62	8.8 (3.2, 18.1)	0.900	
Inflammatory breast cancer				
No	222	7.9 (4.7, 12.1)	—	
Yes	68	11.1 (4.3, 21.3)	0.234	
Visceral metastasis				
No	109	2.0 (0.4, 6.3)	—	
Yes	181	12.3 (7.8, 18.0)	0.002	
Bone metastasis				
No	88	8.6 (3.4, 16.9)	—	
Yes	202	8.6 (5.1, 13.2)	0.547	
Number of sites of metastasis				
1	100	3.5 (0.9, 9.2)	—	
2 or 3	144	7.6 (3.9, 13.2)	—	
≥4	46	21.0 (10.2, 34.5)	0.002	
Chemotherapy				
No	36	5.6 (1.0, 16.5)	—	
Yes	254	8.8 (5.6, 13.0)	0.934	
Bevacizumab-based therapy				
No	230	8.1 (4.9, 12.4)	—	
Yes	60	10.0 (3.5, 20.5)	0.999	
Hormonal therapy				
No	164	11.9 (7.2, 18.0)	—	
Yes	126	4.2 (1.6, 8.9)	0.037	
Tamoxifen				
No	101	10.4 (5.3, 17.5)	—	0.177
Yes	38	0.0 —		
Aromatase inhibitors				
No	194	11.2 (7.0, 16.6)	—	0.016
Yes	96	3.2 (0.9, 8.3)		
Erythropoietin-stimulating agents				
No	256	9.3 (5.9, 13.6)	—	
Yes	34	2.9 (0.2, 13.2)	0.150	

Abbreviations: DVT = deep vein thrombosis; PE = pulmonary embolism; CTC = circulating tumour cells.

Circulating tumour cells and venous thromboembolism
M Mego et al

Table 2 (Continued)

Event Type	N	12-Month estimate (percent)	95% Confidence interval	P-value
Port-a-catheter and/or central venous device	65	7.9 (4.6, 12.4)	—	0.747
Yes	79	9.8 (4.2, 18.1)	—	
History of DVT/PE				
No	274	8.0 (5.1, 11.9)	—	
Yes	16	14.6 (2.0, 38.7)	0.672	
Arterial hypertension				
No	188	9.1 (5.4, 13.9)	—	
Yes	102	7.5 (3.0, 14.8)	0.242	
Diabetes mellitus				
No	255	8.5 (5.3, 12.6)	—	0.924
Yes	35	8.9 (2.2, 21.6)	—	

Abbreviations: DVT = deep vein thrombosis; PE = pulmonary embolism; CTC = circulating tumour cells.

DISCUSSION

This large single centre retrospective study showed that CTCs are associated with increased risk of VTE in MBC patients. The risk is increased in patients with CTCs ≥1 before starting new line of therapy. Observed cumulative 12-month incidence of VTE in our patients was 8.5%, which is in concordance with data from literature. (Ottinger et al, 1995; Baron et al, 1998). We confirmed that the presence of visceral metastases, increased number of metastases, and subsequent lines of therapy are associated with increased risk of VTE. These factors mainly reflect advanced disease, with higher incidence of VTE at all.

In a prospective, multicentre study, the number of CTCs before chemotherapy was an independent predictor of PFS and OS in MBC patients. Although the threshold of 5 CTCs per 7.5 ml of blood has been shown to be prognostic for survival (Cristofanilli et al, 2004), our study, any detectable CTCs were associated with increased risk for VTE as well as with increased risk of death. We also observed that MBC patients with CTCs ≥5 have a doubled risk of VTE compared with patients with CTCs <5; however, this difference did not reach statistical significance.

There are several mechanisms that may explain this association (CTC and VTE). Increased CTC count is a marker of more aggressive disease with increased risk of VTE (Cristofanilli et al, 2004). Circulating tumour cells could be directly involved in coagulation activation as well. It is supposed that the direct toxic effect of anticancer treatment on cancer cells may lead to an increase in CTC fragments or microparticles with procoagulant activity (Dvorak et al, 1983). Circulating tumour cells could be involved in the activation of coagulation through the expression and release of tissue factors (TFs) (Davila et al, 2008). It was shown that TFs are overexpressed in cells with cancer stem cell phenotype (Milsom et al, 2007). At least the subgroups of CTCs are potential cancer stem cells (Reuben et al, 2007); therefore, CTCs could be an important source of TFs and could be involved directly in coagulation activation.

The main limitation of this trial is the retrospective nature of analysis. Therefore, the study results are only hypothesis
generating. Sample size, heterogeneous patient population, and heterogeneity of therapy might affect the study results. On the other hand, the majority of patients in our analysis were treated according to daily clinical practice, which might increase the generalisability of the results.

To our knowledge, this is the first study to assess the prognostic value of CTCs on the risk of VTE. Patients with MBC and any detectable CTCs are at increased risk for VTE. These patients should be followed more closely for the risk of VTE. Further research in this field is warranted, with prospective assessment of coagulation status and its correlation with CTC count and clinical outcome.

ACKNOWLEDGEMENTS

Massimo Cristofanilli received a grant from the State of Texas Rare and Aggressive Breast Cancer Research Program. Michal Mego was supported by a UICC American Cancer Society International Fellowship for Beginning Investigators, ACSBI Award ACS/08/006.

REFERENCES

Baron JA, Gridley G, Weiderpass E, Nyron O, Linet M (1998) Venous thromboembolism and cancer. Cancer 198: 1077–1080
Cristofanilli M, Budd GT, Ellis M, Stoppeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LW, Hayes DF (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351: 781–791
Davila M, Amirkhosravi A, Coll E, Desai H, Robes L, Colon J, Baker CH, Francis JL (2008) Tissue factor-bearing microparticles derived from tumor cells: impact on coagulation activation. J Thromb Haemost 6: 1517–1524
Dawood S, Broglio K, Valero V, Reuben J, Handy B, Islam R, Jackson S, Hortobagyi GN, Fritsche H, Cristofanilli M (2008) Circulating tumor cells in metastatic breast cancer: from prognostic stratification to modification of the staging system. Cancer 113: 2422–2430
Dvorak HF, Van DeWater L, Bitzer AM, Dvorak AM, Anderson D, Harvey VS, Bach R, Davis GL, DeWolf WC, Carvalho AC (1983) Procoagulant activity associated with plasma membrane vesicles shed by cultured tumor cells. Cancer Res 43: 4434–4442
Goodnough LT, Saito H, Manni A, Jones PK, Pearson OH (1984) Increased incidence of thromboembolism in stage IV breast cancer patients treated with a five-drug chemotherapy regimen. A study of 139 patients. Cancer 54: 1264–1268
Gray RJ (1988) A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann Stat 16: 1141–1154
Gray RJ (2004) cmprsk: Subdistribution Analysis of Competing Risks. R package version 2.1-5. http://www.r-project.org, http://biowww.dfci.harvard.edu/~gray
Kirwan CC, McDowell G, McCollum CN, Kumar S, Byrne GJ (2008) Early changes in the haemostatic and procoagulant systems after chemotherapy for breast cancer. Br J Cancer 99: 1000–1006
Lang JE, Mosalpuria K, Cristofanilli M, Krishnamurthy S, Reuben J, Singh B, Bediyan I, Micli-Bernstam E, Lucci A (2009) HER2 status predicts the presence of circulating tumor cells in patients with operable breast cancer. Breast Cancer Res Treat 113: 501–507
Levine MN, Gent M, Hirsh J, Arnold A, Goodyear MD, Hryniuk W, De Pauw S (1988) The thrombogenic effect of anticancer drug therapy in women with stage II breast cancer. N Engl J Med 318: 404–407
Milson C, Anderson GM, Weitz JI, Rak J (2007) Elevated tissue factor procoagulant activity in CD133-positive cancer cells. J Thromb Haemost 5: 2550–2552
Ottinger H, Belka C, Kozole G, Engelhard M, Meusers P, Paar D, Metz KA, Leder LD, Cyrus C, Gnoth S (1995) Deep venous thrombosis and pulmonary artery embolism in high-grade non Hodgkin’s lymphoma: incidence, causes and prognostic relevance. Eur J Haematol 54: 186–194
R Development Core Team (2006) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org
Reuben JM, Lee BN, Li C, Broglio KR, Valero V, Jackson S, Ueno NT, Krishnamurthy S, Hortobagyi GN, Cristofanilli M (2007) Genomic of circulating tumor cells in metastatic breast cancer. J Clin Oncol 25: 10025
Silverstein MD, Heit JA, Mohr DN, Petterson TM, O’Fallon WM, Melton III LJ (1998) Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. Arch Intern Med 58: 585–593
Timpelhoff GF, Dietrich M, Hommel G, Heilmann L (1996) Blood coagulation during adjuvant epirubicin/cyclophosphamide chemo-
therapy in patients with primary operable breast cancer. J Clin Oncol 14: 2560–2568
Weiss RB, Tormey DC, Holland JF, Weinberg VE (1981) Venous thrombosis during multimodal treatment of primary breast carcinoma. Cancer Treat Rep 65: 677–679

Table 3 Cox proportional hazards model

Hazard ratio	Lower 95% CI	Upper 95% CI	P-value	
Baseline CTC (≥ 1 vs 0)	5.29	1.58	17.70	0.007
Line of therapy (≥ 2 vs 1)	2.53	1.00	6.40	0.049
Number of metastatic sites (2 or 3 vs 1)	2.81	0.78	10.10	0.110
Number of metastatic sites (4 or 5 vs 1)	8.08	2.24	29.10	0.001

Abbreviations: CI = confidence interval; CTC = circulating tumour cells.