Detection of Urinary Tract Pathology in Some Schistosoma haematobium Infected Nigerian Adults

O. S. Onile, 1 H. O. Awobode, 2 V. S. Oladele, 3 A. M. Agunloye, 4 and C. I. Anumudu 3

1 Department of Biological Sciences, Elizade University, P.M.B. 002, Ilara-Mokin, Ondo State, Nigeria
2 Parasitology Unit Department of Zoology, University of Ibadan, Ibadan 20004, Nigeria
3 Cellular Parasitology Programme, Department of Zoology, University of Ibadan, Ibadan 200004, Nigeria
4 Department of Radiology, University Teaching Hospital, University of Ibadan, Ibadan 200004, Nigeria

Correspondence should be addressed to C. I. Anumudu; cianumudu@yahoo.com

Received 19 May 2016; Revised 2 July 2016; Accepted 12 July 2016

1. Introduction

An estimated 207 million cases of human schistosomiasis have been reported worldwide and about 90% of these live in Sub-Saharan Africa, with Nigeria having the highest prevalence [1]. Schistosoma infections cause significant morbidity and mortality with peak prevalence and intensity of infection occurring between the ages 10 and 20 years and subsequent decline by age 65 years [2].

Chronic human circulatory system infection by Schistosoma haematobium is reported to affect the urinary bladder and is a possible risk factor in the aetiology of cancers of the bladder and the urinary tract system [3]. S. haematobium infection has been linked with the development of squamous cell carcinoma of the bladder [4, 5]. S. haematobium associated bladder damage has been closely linked to the immune reaction elicited against the parasite egg deposited in the bladder which eventually induces chronic inflammation related granulomatous injury [6].

Schistosomiasis and bladder cancer share common symptoms such as haematuria, dysuria, and pain with micturition. This may prevent early diagnosis of bladder cancer and the resultant severe bladder damage particularly in people living in S. haematobium endemic areas.

In Nigeria, most studies have focused on the epidemiology of S. haematobium infection [3, 7, 8] particularly in school-age children, with limited information about the morbidity resulting from urinary schistosomiasis in adults.

This study was therefore aimed at determining the prevalence of schistosomiasis and associated bladder pathology in adults living in Eggua, Yewa, North Local Government Area, Ogun State, Nigeria.
2. Materials and Methods

The study was carried out in Eggua, a rural agrarian community, between August 2012 and May 2013. It is one of the wards that make up Yewa North Local Government Area as previously described [9]. Eggua lies between latitude 7°4.811’N and longitude 2°52’43.776’E in a derived savanna zone. The area is largely dominated by Yoruba speaking people. It consists of settlements at Sagbon, Imoto, Tata, Agbon-Ojodu, and Igan Alade. It shares boundaries with Igbugila, Ilaro, Ijoun, and Benin Republic.

Two major rivers (Yewa and Iju) flowing through the area serve as the main water source, resulting in high water contact by the inhabitants. These rivers are used for religious, domestic, and entertainment activities which enhance the transmission of schistosomiasis.

A cross-sectional study design was employed for this study. Participants aged 30 to more than 60 years old from the community were enrolled for the study. Children were excluded from the study in line with the objective of the study to determine the effect of chronic urinary schistosomiasis on adult members of the community.

2.1. Ethical Considerations. Informed consent was obtained from each participant under a protocol approved by the Local Government and local health officials. Ethical approval for the study was also obtained from the Ogun State Ministry of Health.

2.2. Sample (Biofluid) Collection. Blood (5 mL) and urine specimens were collected from each study participant. The urine samples were collected between 10:00 and 14:00 hours to ensure maximum egg yield. Packed cell volume (PCV) was determined from the blood collected.

2.3. Sample Analyses. The urine samples (10 mL) were processed for microscopic examination and egg count [3, 10]. The eggs were quantified by counting under the microscope and classified as light infection if there were ≤50 (1–49) eggs/10 mL urine and heavy infection if there were >50 eggs/10 mL urine [3].

2.4. Ultrasound and Pathology. A blind ultrasound examination was carried out on each participant approximately 1 h after drinking potable water (0.1–1.5 litre depending on the age of the participant) to distend the bladder. The classification of bladder pathology or damage was based on the definition of the WHO [11, 12] and Shiff et al. [5]; the abnormalities assessed included abnormal bladder shape, bladder wall irregularities, bladder masses, presence of polyps, calcification, and presence of hydronephrosis in the kidneys. Bladder lesions were considered severely abnormal when four of the above conditions or three conditions as well as hydronephrosis were present in a single individual. Lesions were considered moderate if fewer conditions were seen and negative when no specific lesions were observed.

2.5. Sociodemographic Data Collection. A structured, pre-tested questionnaire was used to obtain information about participants’ habits regarding smoking and alcohol consumption, which are determinants of bladder cancer. Sociodemographic information was also recorded for each of the participants.

Statistical analysis of data obtained was done using SPSS version 20.0 (P < 0.05).

3. Results

A total of 257 (79 males and 178 females) participants aged 30–90 years were screened for _S. haematobium_ infection and associated bladder pathologies. The mean age of participants was 48 ± 12.2 years. The overall prevalence of _S. haematobium_ in the sampled population was 25.68% (66/257), 21 (31.8%) in males and 45 (68.2%) in females. The highest prevalence of infection was observed in participants over 60 years old (Table 1). The majority (56/66) (84.8%) of those positive for _S. haematobium_ had a light intensity of infection with the egg mean intensity of 16.7 eggs/10 mL urine. The Yewa river was the main source of water for most (49/62) (79.0%) of the participants infected with _S. haematobium_ (Table 4).

Bladder pathologies were observed in 33.9% (87/257) of the sample population and included abnormal bladder wall thickness (39/66) (59%), abnormal bladder shape (10/66) (15.2%), bladder wall irregularities (15.2%), bladder masses (1.5%), and bladder calcification (1.5%) (Table 2). Bladder wall thickness, the most common abnormality, was recorded in 46/79 (58.2%) males and 90/178 (50.6%) females (Table 3). Among the participants, 56 (84.8%) with bladder pathologies also had an existing schistosomiasis infection, 48 (87.3%) of which were light intensity and 8 (72.7%) of which were heavy intensity: $\chi^2 = 267.5, P = 0.001$ (Table 5). Thus, there was an association between urinary tract pathology and the intensity of _S. haematobium_ infection ($\chi^2 = 375.4, P = 0.001$, Table 2). Among the participants with light and heavy intensity of _S. haematobium_ infections, bladder wall thickness was the most common bladder structural pathology identified in 33/56

Table 1: Prevalence and intensity of _S. haematobium_ by sex and age group in Eggua, Nigeria.
Light

Sex
Male
Female
Total
χ^2 = 2.514, $P = 0.113$

Table 2: Bladder pathology distribution between sex and age group in Eggua, Nigeria.
Light

Age group
30–34
35–39
40–44
45–49
50–54
55–59
60 and above
χ^2 = 2.514, $P = 0.113$
Table 2: Distribution of bladder pathology with intensity of S. haematobium infection.

Pathology	Light (%)	Heavy (%)	Total
Bladder wall thickness	33 (58.9)	6 (60.0)	59%
Bladder shape	8 (14.3)	2 (20.0)	15.2%
Bladder wall irregularity	8 (14.3)	2 (20.0)	15.2%
Bladder mass	0 (0)	1 (10.0)	1.5%
Calcification	0 (0)	1 (10.0)	1.5%
Polyps	—	—	—
Hydronephrosis	6 (10.7)	0 (0)	9%

Table 3: Distribution of bladder pathology among genders.

Pathology	Male	Female
Bladder wall thickness	46 (58.2)	90 (50.6)
Bladder shape	7 (8.9)	6 (3.4)
Bladder wall irregularity	7 (8.9)	6 (3.4)
Bladder mass	—	1 (0.6)
Calcification	—	1 (0.6)
Polyps	—	—
Hydronephrosis	—	6 (3.4)

(58.9%) and 6 (60.0%) participants with light and heavy S. haematobium infections, respectively (Table 5). Abnormal bladder shape and bladder wall irregularity were seen in 8/56 (14.3%) and 2 (20%) participants with light and heavy infections, respectively (Figures 1–3). Hydronephrosis was present in only one participant with light infection, while calcification was identified in only one participant with heavy infection. No bladder polyp was detected. Mild bladder pathology was more common than severe bladder pathology in this study and was found in 48 of the participants (Table 5). There was a higher incidence of bladder pathologies among female participants (Table 3); bladder mass and hydronephrosis were also seen only in female participants.

There was no significant relationship between cigarette smoking and bladder pathology in the study (Table 6). Among participants with bladder pathology, 29 (33.3%) admitted consuming alcohol while 58 (66.7%) said that they had never consumed alcohol (Table 7).

4. Discussion

The overall prevalence rate (25.98%) of adults with S. haematobium infection recorded in this study was slightly higher than 20.8% and 20.0% reported in Yewa North Local Government, Ogun State, and Owan East Local Government, respectively, in Nigeria [3, 13].

Most (81.3%) of the participants depended solely on the S. haematobium contaminated river water, which could account for the higher S. haematobium prevalence; and little or no schistosomiasis control (drug) intervention targeted to adults has been recorded in this area. The higher frequency of light intensity S. haematobium infection observed in this study could be explained by some level of acquired protected immunity by adults in that community due to chronic exposure to schistosomiasis. Shiff et al. [5] found that the proportion of egg-positive individuals falls progressively with age and is a feature in populations with lifelong exposure to the parasite. Therefore, chronicity of infections in older
Table 4: Relative risk estimates of schistosomiasis with sources of water.

Sources of water use	Status of *S. haematobium* infection	
	Positive	Negative
Rivers	49 (79.0)	160 (88.9)
Others	11 (17.7)	15 (8.1)
Rivers and others	2 (3.2)	11 (5.9)
Total	62 (100.0)	186

\[\chi^2 = 4.789, df = 2, P = 0.091 \]

Table 5: Relation between intensity of bladder pathologies and intensity of *S. haematobium* infection.

Intensity of *S. haematobium* infection	Intensity of bladder pathology	Total
	Mild (\% N)	Severe (\% N)
Heavy	6 (9.09)	2 (3.0)
Light	42 (63.63)	6 (9.1)
Total	48 (69.69)	8 (12.1)

\[\chi^2 = 267.5, P = 0.001 \]

Table 6: Relative risk estimates of bladder pathology associated with cigarette smoking.

Cigarette smoking	Pathology	Total	
	Present (\% N)	Absent (\% N)	
No response	5 (5.7)	12 (71.1)	17 (5.8)
Yes	4 (4.6)	5 (2.9)	9 (12.1)
No	78 (89.7)	153 (90.0)	231 (82.1)
Total	87 (33.9)	170 (66.1)	257

\[\chi^2 = 0.67, P = 0.880 \]

Table 7: Relative risk estimates of bladder pathology associated with alcohol consumption.

Alcohol consumption	Bladder pathology	Total	
	Present (\% N)	Absent (\% N)	
Yes	29 (33.3)	72 (42.4)	101 (39.3)
No	58 (66.7)	85 (50)	143 (55.6)
No response	0 (5.7)	13 (7.6)	13 (5.1)

\[\chi^2 = 3.549, P = 0.170 \]

People will more likely be difficult to ascertain using egg count method. The higher frequency of mild bladder pathology observed in this study was also similar to another study [14] which observed a higher incidence of mild bladder than severe bladder pathology. This result could be explained by the low number of participants who smoked cigarettes and consumed alcohol; these conditions may serve as promoting factors either in progression of bladder pathology to cancer or in making the bladder pathology more severe (Table 4). In addition, this lifestyle could buttress the possibility of *S. haematobium* being the principal cause of the reported bladder structural pathology in the study population.

The close relationship between the intensity of *S. haematobium* infection and the presence of bladder abnormalities was similar to previous reports [3, 14–16]. The presence of hydronephrosis in participants with light infection is however at variance with the report of Nmorsi et al. [3] although hydrocalycosis (a condition mostly mistaken for hydronephrosis) was observed in some patients with heavy infection, indicating the likely contribution of this infection to kidney pathology. Females (64.7%) had more structural bladder pathology compared to males (35.3%). This may be due to higher water contact by females and also to the higher number of female study participants than an indication of a female predilection to bladder pathology. However, since hydronephrosis and bladder mass or bladder calculi were found together in a female participant, female predilection to bladder pathology may not completely be ruled out. The structural changes to the bladder recorded in this study were in consonance with observations in West Madagascar [14] and Nigeria [3, 15] where bladder irregularities and bladder wall thickness were identified as the most common pathologies in individuals infected with *S. haematobium*.

In conclusion, there is evidence that *S. haematobium* infections may be associated with bladder pathology, on ultrasound examination. Individuals with bladder pathologies could have heavy or light intensity of schistosomiasis infection or have no existing infection at all. However, a long term exposure to schistosomiasis is necessary for the development of bladder cancer. Further research on the determinants and progress of the bladder pathologies seen in this study population is needed.

Competing Interests

The authors declare that they have no competing interests.

References

[1] U. S. Ugboroiko, I. E. Ofoezie, I. C. Okoye, and J. Heukelbach, "Factors associated with urinary schistosomiasis in two peri-urban communities in south-western Nigeria," *Annals of Tropical Medicine & Parasitology*, vol. 104, no. 5, pp. 409–419, 2010.
P. F. Rambau, P. L. Chalya, and K. Jackson, "Schistosomiasis and urinary bladder cancer in North Western Tanzania: a retrospective review of 185 patients," *Infectious Agents and Cancer*, vol. 8, article 19, 2013.

O. P. G. Nmorsi, N. C. D. Ukwandu, S. Ogoinja, H. O. T. Blackie, and M. A. C. Odike, "Urinary tract pathology in some *Schistosoma haematobium* infected Nigerians," *African Journal of Biotechnology*, vol. 6, no. 2, pp. 123–127, 2007.

M. C. Botelho, J. C. Machado, and J. M. C. da Costa, "Schistosoma haematobium and bladder cancer: what lies beneath?" *Virulence*, vol. 1, no. 2, pp. 84–87, 2010.

C. Shiff, R. Veltri, J. Naples et al., "Ultrasound verification of bladder damage is associated with known biomarkers of bladder cancer in adults chronically infected with *Schistosoma haematobium* in Ghana," *Transactions of the Royal Society of Tropical Medicine and Hygiene*, vol. 100, no. 9, pp. 847–854, 2006.

P. J. Hotez, P. J. Brindley, J. M. Bethony, C. H. King, E. J. Pearce, and J. Jacobson, "Helminth infections: the great neglected tropical diseases," *Journal of Clinical Investigation*, vol. 118, no. 4, pp. 1311–1321, 2008.

I. J. Agere, W. A. Istifanus, and S. L. Kela, "Water usage and transmission of *Schistosoma haematobium* in jalingo and ardokola local government areas of Taraba State, Nigeria," *Nigerian Journal of Science, Technology and Environmental Education (NIJOSTEE)*, vol. 3, no. 1, 2010.

O. M. Agbolade and A. Odaibo, "*Schistosoma haematobium* infection among pupils, and snail intermediate hosts in Agolwoye, Ogun State," *The Nigerian Journal of Parasitology*, vol. 17, pp. 17–21, 1996.

A. Hassan, N. Uduak, O. Morenikeji et al., "Urine turbidity and microhaematuria as rapid assessment indicators for *Schistosoma haematobium* infection among school children in endemic areas," *American Journal of Infectious Diseases*, vol. 8, no. 1, pp. 60–64, 2012.

M. D. Weber, D. M. Blair, and V. V. Clark, "The pattern of schistosome egg distribution in a micturition flow," *Central African Journal of Medicine*, vol. 13, no. 4, pp. 75–88, 1967.

WHO, "Meeting on ultrasonography in schistosomiasis: proposal for a practical guide to the standardized use of ultrasound in assessment of pathological changes," TDR/SCH/Ultrasound 91.3, World Health Organization, Geneva, Switzerland, 1996.

World Health Organization (WHO), "Ultrasound in schistosomiasis. A practical guide to the standardized use of ultrasonography for assessment of schistosomiasis-related morbidity," Tech. Rep. TDR/STR/SCH/00.1, World Health Organization (WHO), Geneva, Switzerland, 2000.

O. T. Salawu and A. B. Odaibo, "Schistosomiasis among pregnant women in rural communities in Nigeria," *International Journal of Gynecology and Obstetrics*, vol. 122, no. 1, pp. 1–4, 2013.

J. Seriye, P. Boisier, V. E. Ravaolimalala et al., "Schistosoma haematobium infection in western Madagascar: morbidity determined by ultrasonography," *Transactions of the Royal Society of Tropical Medicine and Hygiene*, vol. 90, no. 4, pp. 398–401, 1996.

C. A. Ekwunife, F. C. Okafor, and O. C. Nwaorgu, "Ultrasonographic screening of urinary schistosomiasis infected patients in Agulu community, Anambra state, southeast Nigeria," *International Archives of Medicine*, vol. 2, no. 1, article 34, 2009.

K. S. Warren, A. A. F. Mahmoud, J. F. Muruka, L. R. Whittaker, J. H. Ouma, and T. K. Arap Siongok, "Schistosomiasis haematobia in Coast Province Kenya. Relationship between egg output and morbidity," *American Journal of Tropical Medicine and Hygiene*, vol. 28, no. 5, pp. 864–870, 1979.