Measurement of W-Boson Polarization in Top-quark Decay in $\bar{p}p$ Collisions at $\sqrt{s} = 1.96$ TeV

T. Aaltonen,24 J. Adelman,14 B. Álvarez González,12 S. Amerio,4,4 D. Amidei,35 A. Anastassov,39 A. Annovi,20 J. Antos,18,15 G. Apollinari,18 J. Appel,18 A. Apresyan,49 T. Arisawa,58 A. Artikov,16 J. Asnadi,54 W. Ashmanskas,18 A. Attal,4 A. Aurisano,54 F. Azfar,43 W. Badgett,18 A. Barbaro-Galtieri,29 V.E. Barnes,49 B.A. Barnett,26 P. Barria,49 P. Bartos,15 G. Bauer,33 P.H. Beauchemin,34 F. Bedeschi,47 D. Beecher,31 S. Behari,26 G. Bellettini,47 J. Bellinger,60 D. Benaim,17 A. Beretvas,18 A. Bhatti,54 M. Binkley,4,4 D. Bisello,4,4 I. Bizjak,4,4 R.E. Blair,2 C. Blocker,7 B. Blumenfeld,26 A. Bocci,17 A. Bodek,50 V. Boisvert,50 D. Bortoletto,49 J. Boudreau,48 A. Boveia,11 B. Braun,11 A. Bridgeman,25 L. Brigliadori,46 C. Bromberg,36 E. Bruhuber,14 J. Budagov,16 H.S. Budd,50 S. Budd,25 K. Burdett,18 G. Busetto,44 P. Bussey,22 A. Buzatu,34 K.L. Byrum,2 S. Cabrera,17 C. Calancha,32 S. Camarda,4 M. Campanelli,31 M. Campbell,35 F. Caneli,14 A. Canepa,46 B. Carls,25 D. Car simult,60 R. Carosi,47 S. Cerrillo,19 S. Carron,18 B. Casal,12 M. Casarsa,18 A. Castro,6,6 P. Catastini,47 D. Cauz,55 V. Cavaliere,49 M. Cavalli-Sforza,4 A. Cerri,29 L. Cerrito,31 S.H. Chang,28 Y.C. Chen,3 M. Chertok,8 G. Chiadiz,18 F. Chlebana,18 K. Cho,28 D. Chokheli,16 J.P. Chou,23 K. Chung,18 W.H. Chung,60 Y.S. Chung,50 T. Chwalek,27 C.I. Ciobanu,45 M.A. Ciocci,47 A. Clark,21 D. Clark,7 G. Compostella,44 M.E. Convery,15 J. Conway,8 M. Corbo,45 M. Cordelli,20 C.A. Cox,8 F. Crescioli,47 C. Cuenca Almenar,61 J. Cuesvas,12 R. Culbertson,18 J.C. Culy,35 D. Dagenhart,18 N. d’Ascanzo,45 M. Datta,18 T. Davies,22 P. de Barbaro,50 S. De Cecco,52 A. Deisseroth,29 G. De Lorenzo,1 M. Dell’Orso,47 C. Delucia,4 L. Demortet,31 J. Deng,17 M. Denimo,6 M. d’Errico,44 A. Di Canto,47 B. Di Ruzza,47 J.R. Dittmann,39 M. D’Onofrio,4 S. Donati,47 P. Dong,18 T. Dorigo,45 S. Dube,53 K. Ebina,58 A. Elagin,54 R. Erbacher,8 D. Errede,25 S. Errede,25 N. Ershaidat,45 R. Eusebi,54 H.C. Fang,29 S. Farrington,43 W.T. Fedorko,14 R.G. Feld,61 M. Feindt,27 J.P. Fernandez,32 C. Ferrari,47 R. Field,49 G. Flanagan,49 R. Forrest,8 M.J. Frank,5 M. Franklin,23 J.C. Freeman,18 I. Furic,19 M. Gallinaro,51 J. Galyardt,13 F. Garberison,11 J.E. Garcia,21 A.F. Garfinkel,39 P. Garosi,47 H. Gerberich,25 D. Gerdes,35 A. Gessler,27 S. Giagu,52 V. Giakoumopoulou,3 P. Giannetti,47 K. Gibson,48 J.L. Glimm,26 M. Ginsburg,18 N. Giokaris,3 M. Giordani,55 P. Giromini,20 M. Giunta,47 G. Giurgiu,26 V. Glagolev,16 D. Glenzinski,18 R. Goldschmidt,19 A. Golossanov,18 G. Gomez,12 G. Gomez-Caballlos,33 M. Goncharov,33 O. González,32 I. Gorelov,38 A.T. Goshaw,17 K. Goulianas,53 A. Gresele,44 S. Grinstein,3 C. Grosso-Pilcher,14 R.C. Group,18 U. Grundler,25 J. Guimaraes da Costa,29 Z. Gunay-Unal,36 C. Haber,29 S.R. Hahn,18 E. Halkiadakis,53 B.-Y. Han,50 J.Y. Han,50 F. Happacher,20 K. Hara,56 D. Hare,53 M. Hare,57 R.F. Hart,59 M. Hartz,48 K. Hatakeyama,5 C. Hayes,43 M. Heck,27 J. Heinrich,46 M. Herndon,60 J. Heuser,27 S. Hewamana,5 D. Hidas,53 C.S. Hill,11 D. Hirschbuehl,27 A. Hocker,18 S. Hou,1 M. Houlden,30 S.-C. Hsu,29 R.E. Hughes,40 M. Hurrwitz,14 U. Husemann,51 M. Hussein,36 J. Huston,6 J. Incandela,11 G. Introzzi,47 M. Iorio,52 A. Ivanov,8 E. James,12 D. Jang,18 B. Jayatilaka,17 E.J. Jeon,28 M.K. Jha,6 S. Jindariani,18 W. Johnson,8 M. Jones,49 K.K. Joo,28 S.Y. Jun,13 J.E. Jung,28 T.R. Junk,18 T. Kamon,54 D. Karl,19 P.E. Karchin,59 Y. Kato,42 R. Kephart,14 J. Keung,6 V. Khotilovich,54 B. Kilminster,18 D.H. Kim,28 H.S. Kim,28 H.W. Kim,28 J.E. Kim,28 M.J. Kim,28 S.B. Kim,28 S.H. Kim,56 Y.K. Kim,14 N. Kimura,58 L. Kirsch,7 S. Klimenko,19 K. Kondo,54 D.J. Kong,28 J. Konigsberg,19 A. Korytov,19 A.V. Kotwal,17 M. Kreps,27 J. Kroll,46 D. Krop,14 N. Krumnack,5 M. Kruse,17 V. Kryulov,10 T. Kuhr,27 N.P. Kulkarni,59 M. Kurata,56 S. Kwang,14 A.T. Laasanen,49 S. Lami,47 S. Lammel,18 M. Lancaster,31 R.L. Lander,8 K. Lamon,40 A. Lath,53 G. Latino,99,47 I. Lazajizzera,44 T. LeCompte,2 E. Lee,54 H.S. Lee,14 J.S. Lee,28 S.W. Lee,54 S. Leone,47 J.D. Lewis,18 C.-J. Lin,29 J. Linacre,43 M. Lindgren,18 E. Lipeles,46 A. Lister,21 D.O. Litvintsev,18 C. Liu,48 T. Liu,18 N.S. Lockyer,46 A. Logino,61 L. Lovas,13 D. Lucchesi,44 J. Lueck,27 P. Lujan,29 P. Lukens,18 G. Lungu,51 J. Lys,29 R. Lyssak,15 D. MacQueen,34 R. Madrak,18 K. Maeshima,18 K. Makhoul,33 P. Maksimovic,26 S. Malde,43 S. Malik,31 G. Manca,30 A. Manousakis-Katsikakis,3 F. Margaroli,49 C. Marino,27 C.P. Marino,25 A. Martin,25 V. Martin,18 M. Martinez,4 R. Martínez-Ballarín,32 P. Mastrandrea,52 M. Mathis,26 M.E. Mattson,59 P. Mazzanti,6 K.S. McFarland,50 P. McIntyre,45 R. McNulty,9 A. Mehta,30 P. Mehtala,24 A. Menzione,47 C. Mesropian,15 T. Miao,18 D. Miettlich,35 N. Miladinovic,7 R. Miller,36 C. Mills,23 M. Milink,27 A. Mitra,1 G. Mitselmakher,19 H. Miyake,56 S. Moed,23 N. Moggi,6 M.N. Mondragon,18 C.S. Moon,28 R. Moore,18 M.J. Morello,47 J. Morlock,27 P. Movilla Fernandez,18 J. Mülmenstädt,29 A. Mukherjee,18 Th. Muller,27 P. Murat,18 M. Mussini,6 J. Nachtman,18 Y. Nagai,56 J. Naganoma,56 K. Nakamura,56 I. Nakano,41 A. Napier,57 J. Nett,60 C. Neu,46
We report measurements of the polarization of W bosons from top-quark decays using 2.7 fb$^{-1}$ of $p\bar{p}$ collisions collected by the CDF II detector. Assuming a top-quark mass of 175 GeV/c2, three measurements are performed. A simultaneous measurement of the fraction of longitudinal (f_0) and right-handed (f_+) W bosons yields the model-independent results $f_0 = 0.88 \pm 0.11 \text{(stat)} \pm 0.06 \text{(syst)}$ and $f_+ = -0.15 \pm 0.07 \text{(stat)} \pm 0.06 \text{(syst)}$ with a correlation coefficient of -0.59. A measurement of f_0 (f_+) constraining f_+ (f_0) to its standard model value of 0.0 (0.7) yields $f_0 = 0.70 \pm 0.07 \text{(stat)} \pm 0.04 \text{(syst)}$ ($f_+ = -0.01 \pm 0.02 \text{(stat)} \pm 0.05 \text{(syst)}$). All these results are consistent with standard model expectations.

PACS numbers: 14.65.Ha, 14.80.Cp, 13.85.Ni, 13.85.Qk, 14.70.Dj
The top quark is the most massive fundamental particle observed by experiment. Due to its large mass, in the standard model (SM) the top quark decays before forming a bound state via the charged current weak interaction into a \(W^+ \) boson and a \(b \) quark, with a branching fraction above 99\% [3]. This provides a unique opportunity to study the properties of a “bare” quark. In particular, the \(V – A \) structure of the weak interaction can be tested by reconstructing the polarization of the \(W^+ \) boson from top-quark decay. In the standard model (SM) at tree level [4], the \(W \) model (SM) at tree level [4], the QCD and electroweak radiative corrections modify these production mechanisms in agreement with the SM, and the tensor form factors [7].

In this Letter, we measure the polarization of the \(W \) boson from top-quark decay. We assume the \(t \) from J. Stefan Institute, Ljubljana, Slovenia, and the other leptonically. We apply a likelihood technique based on the theoretical matrix elements for both the dominant signal process, \(q \bar{q} \rightarrow t\bar{t} \), and the main background process, inclusive production of \(W + \)jets. This technique was first developed for the measurements of top-quark mass and \(f_0 \), constraining \(f_+ \) to its SM value [8], and utilizes the kinematic and topological information from the event through integrations over poorly known parton-level quantities. We express the matrix element in terms of the \(W \)-boson polarization fractions and the cosine of the angle \(\theta^* \) between the momentum of the charged lepton or down-type quark in the \(W \)-boson rest frame and the momentum of the \(W \) boson in the top-quark rest frame. Therefore we extract information on the \(W \)-boson polarization from both the leptonic and hadronic \(W \)-boson decays. Previous CDF measurements [9, 10] used only information from the leptonic decay via the transverse momentum \(p_T \) of the lepton, \(\cos \theta^* \) for the leptonically decaying \(W \) boson, or the invariant mass of each lepton and \(b \)-jet pair, which is a function of \(\cos \theta^* \). While the information from the hadronic \(W \)-boson decay carries a sign ambiguity in \(\cos \theta^* \) since we are unable to identify the down-type quark jet its inclusion still improves the sensitivity to the \(f_0 \) polarization fraction. The analysis described in this letter improves the statistical sensitivity on \(f_0 \) by 20\% relative to the best previous CDF measurement [9] for the same event sample. The latest D0 measurement also utilizes information from both the leptonic and hadronic \(W \)-boson decays using a likelihood fit to the \(\cos \theta^* \) distributions [12].

We report measurements of the \(W \)-boson polarization for three different hypotheses of top-quark decay: (1) model-independent with simultaneous measurement of \(f_0 \) and \(f_+ \); (2) anomalous tensor couplings with measurement of \(f_0 \) for fixed \(f_+ = 0 \); and (3) anomalous right-handed couplings with measurement of \(f_+ \) for fixed \(f_0 = 0.70 \).

The polarization fractions are determined by maximizing the likelihood \(L \) with respect to \(f_0 \), \(f_+ \), and the fraction of events consistent with the \(t\bar{t} \) signal hypothesis, \(C_s \),

\[
L(f_0, f_+, C_s) = \prod_{i=1}^{N} C_s \frac{P_s(x; f_0, f_+)}{\langle A_s(x; f_0, f_+) \rangle} + (1 - C_s) \frac{P_b(x)}{\langle A_b(x) \rangle}.
\]

Here \(N \) is the number of observed events, and \(\langle A_s \rangle \) and \(\langle A_b \rangle \) refer to the average acceptances for \(t\bar{t} \) and \(W + \)jets background events, respectively. The dependence of the signal acceptance on the polarization fractions is included in \(\langle A_s \rangle \). The signal probability \(P_s \) and background probability \(P_b \) densities are constructed as in [13] by integrating over the appropriate parton-level differential cross section, \(d\sigma(y)/dy \), convolved with proton parton distribution functions \(f(q_1) \) and \(f(q_2) \) and detector resolution effects relating a set of observed variables \(x \) to cor-
responding parton-level quantities q, $W(x, y)$:

$$P(x) = \sum_{\text{perm.}} \int \frac{d\sigma(y)}{dy} f(q_1)f(q_2)dq_1dq_2 W(x, y)dy.$$

Here partons are identified with the four highest transverse energy E_T jets, and all the corresponding jet-parton permutations are considered.

The signal differential cross section uses the leading-order matrix element of the $q\bar{q} \rightarrow t\bar{t}$ process [14], expressed in terms of $\cos \theta^*$ and polarization fractions:

$$|M|^2 = \frac{g_\lambda^4}{9} F_{lep} \tilde{F}_{had}(2 - \beta^2 \sin^2 \theta_{el}).$$

where g_λ is the strong coupling constant and θ_{el} describes the angle between the incoming parton and the top quark in the rest frame of the incoming partons, and β is the speed of the top quarks in the same rest frame. The factors F_{lep} and \tilde{F}_{had} correspond to the top quarks with a leptonic and a hadronic W-boson decay, such that:

$$F_{lep} = \frac{2\pi g_\lambda^4 m_W^2}{3 m_t^4} (2E_b^2 + 3E_b^2 m_{\ell\nu} + m_b^2)$$

$$(f_+ \cdot \frac{3}{8}(1 + \cos \theta^*)^2 + f_0 \cdot \frac{3}{4}(1 - \cos^2 \theta^*) + (1 - f_0 - f_+) \cdot \frac{3}{8}(1 - \cos \theta^*)^2).$$

Here g_λ is the weak coupling constant, $m_{\ell\nu}$ is the invariant mass of the lepton and neutrino, Γ_t is the width of the top quark, m_t and m_b are the masses of the top quark and b quark, respectively, and $E_b^2 = m_t^2 - m_{\ell\nu}^2$. The hadronic factor \tilde{F}_{had} is similar, with the exception that we do not distinguish between up-type and down-type quarks from W-boson decay and use the average \tilde{F}_{had} related to the two permutations. The background differential cross section uses the sum of matrix elements for W+jets from the VECBOS [15] Monte Carlo (MC) generator.

The measurement is based on a data set with an integrated luminosity of approximately 2.7 fb$^{-1}$ acquired by the Collider Detector at Fermilab (CDF II) [16] from $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. The data used are collected using high-p_T central (pseudorapidity $|\eta| < 1.1$) electron and muon triggers, a high-p_T forward ($1.2 < |\eta| < 2.0$) electron trigger, and a trigger that requires large missing transverse energy E_T with either an energetic electromagnetic cluster or two separated jets (E_T+jets) [17]. The E_T+jets trigger is used to select additional events with high-p_T muons, which are not selected by the lepton triggers.

Candidate events for the lepton plus jets final state ($t\bar{t} \rightarrow W^+bW^b\bar{t} \rightarrow t\bar{v}bbq\bar{q}\bar{b}$) are selected to have a single, isolated electron or muon candidate with $E_T > 20$ GeV, large imbalance in transverse momentum in the event ($E_T > 20$ GeV) as expected from the undetectable neutrino, and at least four jets with $E_T > 20$ GeV. Jets are reconstructed using a cone algorithm with radius $\Delta R = 0.4$ in $\eta - \phi$ space, and their energies are corrected for non-uniformities in the calorimeter response as a function of jet η, multiple $p\bar{p}$ interactions, and the hadronic jet energy scale of the calorimeter [18]. Of these jets, we require at least one to have originated from a b quark by using an algorithm that identifies a long-lived b hadron through the presence of a displaced vertex (b tag) [19]. Backgrounds to the $t\bar{t}$ signal arise from multi-jet QCD production (QCD), W-boson production in association with jets (W+jets), and electroweak backgrounds (EWK) composed of diboson (WW, WZ, ZZ) and single top-quark production. The W+jets background includes b-flavor jets (W+hf) as well as light flavor jets incorrectly identified as b jets (W+lf).

A detailed description of the background estimation can be found in Ref. [20]. Table I shows the expected sample composition assuming a $t\bar{t}$ cross section of 6.7 pb. There are overlapping events between those collected by high-p_T lepton triggers and E_T+jets trigger. These overlapping events are accounted in the central e/μ and forward e categories, and are explicitly vetoed from E_T+jets category.

Process	Central	Forward	E_T+jets
$t\bar{t}$	478 ± 66	58 ± 8	134 ± 19
W+hf	71 ± 22	13 ± 9	19 ± 6
W+lf	25 ± 6	5 ± 7	6 ± 2
EWK	17 ± 10	3 ± 1	5 ± 3
QCD	28 ± 22	46 ± 37	1 ± 1
Total expected	616 ± 74	125 ± 40	165 ± 20
Observed	650	136	178

The HERWIG [21] MC generator is used to model the $t\bar{t}$ signal events with $m_t = 175$ GeV/c2. For estimation of various systematic uncertainties and background modeling MC samples are created using the PYTHIA [22] generator, and ALPGEN [23] or MADEVENT [24] with PYTHIA or HERWIG supplying the parton shower and fragmentation. The QCD background is modeled using data control samples. The signal and background modeling has been extensively checked. Figure I compares the observed data and the MC-predicted distributions of different kinematic variables. We have validated the background model by studying a high-statistics control sample of W+jets candidates extracted by vetoing events containing b-tagged...
jets.

![Comparison of four kinematic variables for data and simulation for different W polarization fractions](image)

FIG. 1: Comparison of four kinematic variables for data and simulation for different W polarization fractions: solid, dashed and dotted histograms correspond to \((f_0, f_+)^\ast\) values of \((0.7, 0.0), (0.88,0.0)\) and \((0.7, 0.3)\), respectively. Plotted are (a) leading jet \(p_T\), (b) lepton \(p_T\); and for the reconstruction chosen as most likely by the per-event likelihood (c) the invariant mass of the pair of light quark jets from the hadronically decaying W boson and (d) the \(\cos \theta^\ast\) of the leptonically decaying W boson.

We calibrate the results of the likelihood fit using the simulated \(\mathcal{F}\) and background samples, and the sample composition of table II. For the simultaneous measurement of \(f_0\) and \(f_+\), we find our estimate \(f_{0,m}\) is related to the true value of \(f_0\) by \(f_{0,m} = (0.88 \pm 0.02)f_0 + (-0.12 \pm 0.01)\) and our estimate of \(f_{+,m}\) is related to the true value of \(f_+\) and \(f_0\) by \(f_{+,m} = (1.26 \pm 0.01)f_+ + (0.17 \pm 0.02)f_0 + (0.06 \pm 0.01)\). We use these two equations and the measured polarization fractions to extract the true polarization fractions. For our measurement of \(f_0\) with \(f_+ = 0\), we find our estimate \(f_{0,m} = (1.15 \pm 0.04)f_0 + (-0.09 \pm 0.02)\), and for our measurement of \(f_+\) with \(f_0 = 0.7\), we find our estimate \(f_{+,m} = (1.17 \pm 0.05)f_+ + (0.01 \pm 0.01)\). The uncertainties on the coefficients of the calibration functions are accounted as the method-related systematic uncertainties, which cover possible biases due to the calibration procedure. The differences between \(f_{0,m}\) or \(f_{+,m}\) values and the corresponding true values are due to the fact that the signal and background probabilities in the likelihood do not model events with extra jets from initial and final state radiation (ISR/FSR), or incorrect jet-parton assignment where a ISR/FSR jet is selected as one of the leading four jets, or all the different background processes. Even though likelihood can be calculated only for the physical values of \(f_0\) and \(f_+\), after calibration the corrected measured values can be slightly outside their physical ranges.

The robustness of the fitting procedure over all physical values of \((f_0, f_+)\) has been tested with simulated experiments, using the number of observed data events and the sample composition of table II. In all cases, the fit is unbiased. Near the physical boundaries, we find that the statistical uncertainty is underestimated by as much as a factor of 1.5. We apply a correction to the statistical uncertainty in these regions. Assuming the SM, the expected statistical uncertainties after all corrections for the simultaneous measurement are \(\pm 0.116\) and \(\pm 0.074\) for \(f_0\) and \(f_+\), respectively.

Various sources of systematic uncertainty affecting the measurement are summarized in table II. The leading sources of systematic uncertainty arise from MC modeling of initial and final state radiation (ISR/FSR), choice of parton distribution functions (PDFs), choice of parton shower model, uncertainties on the measured jet energy, and the background shape and normalization. The method-related uncertainty includes propagating the uncertainty on the fit parameters of the response curves, including their correlations. All systematic uncertainties are determined by performing simulated experiments in which the systematic parameter in question is varied, the default method and calibrations are applied, and the shifts in the mean measured polarization fractions are used to quantify the uncertainty. All shifts are evaluated at the SM helicity fraction.

Source	\(\Delta f_0\)	\(\Delta f_+\)	\(\Delta f_0\) simultaneous	\(\Delta f_+\) simultaneous
ISR/FSR	0.020	0.018	0.020	0.021
PDF	0.024	0.013	0.009	0.016
JES	0.018	0.017	0.004	0.012
Parton shower	0.012	0.008	0.031	0.017
Background	0.009	0.038	0.042	0.039
Method-related	0.010	0.005	0.024	0.024
b-tag SF	0.004	0.002	0.002	0.002
Total	0.041	0.048	0.062	0.057

For the simultaneous measurement of \(f_0\) and \(f_+\), we exclude the events from the forward electron trigger as this significantly reduces the systematic uncertainty from the background model. With 828 events and after all corrections, we measure

\[
\begin{align*}
 f_0 &= 0.879 \pm 0.106\text{(stat)} \pm 0.062\text{(syst)} \\
 f_+ &= -0.151 \pm 0.067\text{(stat)} \pm 0.057\text{(syst)}.
\end{align*}
\]
The statistical correlation between \(f_0 \) and \(f_+ \) is \(\rho = -0.59 \). We estimate a shift of \(\mp (0.010 \pm 0.005) \) in \(f_0 \) and \(\pm (0.017 \pm 0.003) \) in \(f_+ \) per \(\pm 1 \text{ GeV}/c^2 \) shift in the top quark mass from the central value of \(175 \text{ GeV}/c^2 \). As the central value is unphysical we have elected to ensure coverage by applying the Feldman-Cousins method \([25]\) to obtain the confidence level (C.L.) intervals shown in Figure 2.

Fixing \(f_+ = 0 \) and with 964 events, we measure after all corrections \(f_0 = 0.701 \pm 0.069 \text{(stat)} \pm 0.041 \text{(syst)} \). Fixing \(f_0 = 0.70 \), we measure after all corrections \(f_+ = -0.010 \pm 0.019 \text{(stat)} \pm 0.049 \text{(syst)} \) and find \(f_+ < 0.12 \) at 95\% C.L.. We estimate a shift of \(\pm (0.011 \pm 0.003) \) in \(f_0 \) and \(\pm (0.013 \pm 0.002) \) in \(f_+ \) per \(\pm 1 \text{ GeV}/c^2 \) shift in the top-quark mass from the central value of \(175 \text{ GeV}/c^2 \).

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

FIG. 2: Contours in the \((f_0, f_+)\) plane indicating 68\% and 90\% C.L. intervals determined using Feldman-Cousins method. Note that the coverage is correct although the center of the contours is not at the measured value obtained after calibration.

In summary, we have measured the polarization of the \(W \) boson in top-quark decays using a matrix-element method in 2.7 \(\text{fb}^{-1} \) of CDF II data. Our results are consistent with the SM. This result improves the combined statistical and systematic precision on both the model-independent and model-dependent determinations of the longitudinal polarization \(f_0 \) by a factor of 1.3 compared to the best previous measurement \([3]\) for a 1.4 times increase in luminosity.
G. Mahlon and S. Parke, Phys. Rev. D 53, 4886 (1996).
[15] F. A. Berends, W. T. Giele, and H. Kuijf, Nucl. Phys. B321, 39 (1989).
[16] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 031101(R) (2005).
[17] A. Abulencia et al. (CDF Collaboration), Phys. Rev. D 74, 072006 (2006); T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 100, 211801 (2008).
[18] A. Bhatti et al., Nucl. Instrum. Methods A 566, 2 (2006).
[19] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 052003 (2005).
[20] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 97, 082004 (2006).
[21] G. Corcella et al., J. High Energy Phys. 01, 10 (2001).
[22] T. Sjostrand et al., Comput. Phys. Commun. 135, 238 (2001).
[23] M. Mangano et al., J. High Energy Phys. 07, 001 (2003).
[24] J. Alwall et al., J. High Energy Phys. 09, 28 (2007).
[25] G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998).