ON THE COARSE GEOMETRY OF CERTAIN
RIGHT-ANGLED COXETER GROUPS

HOANG THANH NGUYEN AND HUNG CONG TRAN

Abstract. Let Γ be a connected, triangle-free, planar graph with at least five vertices that has no separating vertices or edges. If the graph Γ is CFS, we prove that the right-angled Coxeter group G_Γ is virtually a Seifert manifold group or virtually a graph manifold group and we give a complete quasi-isometry classification of these such groups. Otherwise, we prove that G_Γ is hyperbolic relative to a collection of CFS right-angled Coxeter subgroups of G_Γ. Consequently, the divergence of G_Γ is linear, or quadratic, or exponential. We also generalize right-angled Coxeter groups which are virtually graph manifold groups to certain high dimensional right-angled Coxeter groups (our families exist in every dimension) and study the coarse geometry of this collection.

1. Introduction

For each finite simplicial graph Γ the associated right-angled Coxeter group G_Γ has generating set S equal to the vertices of Γ, relations $s^2 = 1$ for each s in S and relations $st = ts$ whenever s and t are adjacent vertices. Graph Γ is the defining graph of right-angled Coxeter group G_Γ and its flag complex $K = K(\Gamma)$ is the defining nerve of the group. Therefore, we also denote the right-angled Coxeter group G_Γ by G_K where K is the flag complex of Γ.

In geometric group theory, groups acting on CAT(0) cube complexes are fundamental objects and right-angled Coxeter groups provide a rich source of these such groups. The geometry of right-angled Coxeter groups was studied by Caprace [Cap09, Cap15], Davis-Okun [DO01], Dani-Thomas [DT15a] [DT], Dani-Stark-Thomas [DST], Behrstock-Hagen-Sisto [BHS17], Levcovitz [Lev18], Haulmark-Nguyen-Tran [HNT], Tran [Trab] and others. In this paper, we first study the geometry of right-angled Coxeter groups G_Γ whose defining graph Γ are connected, triangle-free, planar, has at least 5 vertices, and has no separating vertices or edges (we call them Standing Assumptions). Then we generalize a part of work on the such group to certain high dimensional right-angled Coxeter groups.
1.1. Right-angled Coxeter groups with \(CFS \) defining graphs. It is well-known from the work of Davis-Januszkiewicz \([DJ00]\) that every right-angled Artin group is commensurable (hence, quasi-isometric) to some right-angled Coxeter group and therefore we are especially interested in right-angled Coxeter groups whose coarse geometry are “similar” to the one of a right-angled Artin group. Behrstock-Charney \([BC12]\) prove that the divergence of a one-ended right-angled Artin group is linear or quadratic. Therefore, the divergence of a one-ended right-angled Coxeter which is quasi-isometric to some right-angled Artin group must be linear or quadratic. It has been shown by Dani-Thomas \([DT15a]\) and Levcovitz \([Lev18]\) that the divergence of a right-angled Coxeter group \(G_{\Gamma} \) is linear or quadratic if and only if \(\Gamma \) is \(CFS \) (see \([BFRHS]\), for example, for the concept of \(CFS \) graphs). Thus studying right-angled Coxeter groups with \(CFS \) defining graphs is one of the main goal in this paper.

1.1.1. Quasi-isometric classification of 2–dimensional right-angled Coxeter groups. Quasi-isometric classification of groups is one of most essential programs in geometric group theory. A complete solution for quasi-isometric classification of the class of right-angled Coxeter groups is unknown (even in the case of \(CFS \) graphs). Behrstock observed that the question on quasi-isometric classification of \(CFS \) right-angled Coxeter groups is appealing but likely difficult (see Question 4.2 \([Beh]\)). In this paper, we partially answer that question when \(CFS \) defining graphs \(\Gamma \) satisfy Standing Assumption.

The key idea here is that after doing a tree-like decomposition on the graph \(\Gamma \) (see Section 3), we obtain a tree which we call visual decomposition tree. We will give the precise definition of visual decomposition tree later in Section 3. Currently, the reader only need to know that each piece of this decomposition is a suspension of distinct points. We observe that the right-angled Coxeter group associated to a piece of this decomposition resembles Seifert fibered space. We then glue these pieces in the pattern of the visual decomposition tree to get a graph manifold where \(G_{\Gamma} \) acts properly and cocompactly. Using the work of Behrstock-Neumann on quasi-isometric classification of graph manifolds, we obtain a quasi-isometric classification theorem for right-angled Coxeter groups with \(CFS \) defining graphs.

Theorem 1.1. Let \(\Gamma \) be a graph satisfying Standing Assumptions. Then:

1. The right-angled Coxeter group \(G_{\Gamma} \) is virtually a Seifert manifold group if and only if \(\Gamma \) is a suspension of some distinct vertices.
2. The right-angled Coxeter group \(G_{\Gamma} \) is virtually a graph manifold group if and only if \(\Gamma \) is \(CFS \) and it is not a suspension of distinct vertices.
3. Let \(\Gamma \) and \(\Gamma' \) be two \(CFS \) graphs satisfying Standing Assumptions. Let \(T_r \) and \(T'_r \) be two visual decomposition trees of \(\Gamma \) and \(\Gamma' \) respectively. Then two groups \(G_{\Gamma} \) and \(G_{\Gamma'} \) are quasi-isometric if and only if \(T_r \) and \(T'_r \) are bisimilar.
As we discussed above every right-angled Artin group is quasi-isometric to some \(\mathcal{CF}S\) right-angled Coxeter group. A natural question arises is which \(\mathcal{CF}S\) right-angled Coxeter groups are quasi-isometric to some right-angled Artin groups. In \cite{Beh}, Behrstock gives an example of \(\mathcal{CF}S\) right-angled Coxeter group which is not quasi-isometric to any right-angled Artin group by using Morse boundary. More precisely, the Morse boundary of the right-angled Coxeter group in his examples contains a circle. Meanwhile, Morse boundaries of all right-angled Artin groups are empty or totally disconnected, this is implicit in \cite{CS15} and also follows immediately from Theorem F in \cite{CH17}. Therefore, the right-angled Coxeter group in his example is not quasi-isometric to any right-angled Artin group since Morse boundary is a quasi-isometry invariant (see \cite{CS15} and also \cite{Cor}). However, it would be natural to conjecture that a one-ended right-angled Coxeter group \(G_{\Gamma}\) is quasi-isometric to some right-angled Artin group if and only if \(\Gamma\) is \(\mathcal{CF}S\) and the Morse boundary of \(G_{\Gamma}\) is empty or totally disconnected. However, we show that this fact is not true.

In fact, let \(\Gamma\) be a \(\mathcal{CF}S\), non-join graph which satisfies Standing Assumptions. By an implicit work in \cite{CS15} and the fact that right-angled Coxeter group \(G_{\Gamma}\) can be decomposed as a tree of groups with empty Morse boundary, we observe that \(G_{\Gamma}\) has totally disconnected Morse boundary. However, \(G_{\Gamma}\) is not necessarily quasi-isometric to a right-angled Artin group. More precisely, we give a characterization on defining graph \(\Gamma\) for \(G_{\Gamma}\) to be quasi-isometric to a right-angled Artin group. Moreover, we also specify types of right-angled Artin groups which are quasi-isometric to such right-angled Coxeter groups.

Theorem 1.2. Let \(\Gamma\) be a \(\mathcal{CF}S\), non-join graph satisfying Standing Assumptions and \(T_{\Gamma}\) a visual decomposition tree of \(\Gamma\). Then the following are equivalent:

1. The right-angled Coxeter group \(G_{\Gamma}\) is quasi-isometric to a right-angled Artin group.
2. The right-angled Coxeter group \(G_{\Gamma}\) is quasi-isometric to the right-angled Artin group of a tree of diameter at least 3.
3. The right-angled Coxeter group \(G_{\Gamma}\) is quasi-isometric to the right-angled Artin group of a tree of diameter exactly 3.
4. All vertices of the tree \(T_{\Gamma}\) are black.

We remark that a visual decomposition tree of a such graph \(\Gamma\) as above is a colored tree whose vertices are colored by black and white and it is constructed in Construction 3.12. By the above theorem, if the defining graph \(\Gamma\) that has a visual decomposition tree \(T_{\Gamma}\) containing at least one white vertex (see Example 4.2), then the right-angled Coxeter group \(G_{\Gamma}\) is not quasi-isometric to any right-angled Artin group.

1.1.2. **Quasi-isometric classification of high dimensional right-angled Coxeter groups.** As we discuss above, the key tool of the proof of quasi-isometric
classification of \(CF_{FS} \) right-angled Coxeter groups \(G_{\Gamma} \) with defining graphs satisfying Standing Assumptions (see \(\text{(3)} \) in Theorem \(\text{[1]} \)) is to decompose \(\Gamma \) into a tree of suspensions of distinct points. We develop this idea to study right-angled Coxeter groups whose nerves belongs to a collections \(K_n \) \((n \geq 1)\) of certain \(n \)-dimensional flag complexes which can be decomposed as a tree of simpler flag complexes (see Definition \(\text{[5.6]} \)). We remark that the 1-skeleton of each flag complex in \(K_n \) is always \(CF_{FS} \) and \(K_1 \) is actually the collection of all \(CF_{FS} \), non-join graphs satisfying Standing Assumptions.

Each flag complex \(K \) in \(K_n \) (by definition) can be constructed from a \(p/f \)-bipartite \(T \) in a collection \(T_n \) (see Definitions \(\text{[5.1]} \) and \(\text{[5.6]} \)). The tree \(T \) is colored in a way to be described in Section \(\text{[5.3]} \) and we apply the concept of bisimilarity on such tree \(T \) to give a complete quasi-isometric classification of each collection of right-angled Coxeter groups \(\{G_K\}_{K \in K_n} \).

Theorem 1.3. Let \(K \) and \(K' \) be two flag complexes in \(K_n \) and we assume that \(K \) and \(K' \) can be constructed from two trees \(T \) and \(T' \) in \(T_n \). Then two right-angled Coxeter groups \(G_K \) and \(G_{K'} \) are quasi-isometric if and only if two colored trees \(T \) and \(T' \) are bisimilar after possibly reordering the \(p \)-colors by an element of the symmetric group on \(2n + 2 \) elements.

In \([BJN10] \), Behrstock-Januszkiewicz-Neumann study quasi-isometry classification of some high dimensional RAAGs. The nerves of these groups can also be constructed from a tree of certain flag complexes of high dimension. Behrstock-Januszkiewicz-Neumann use the tree structure of the nerves to construct geometric models of the corresponding RAAGs to study the quasi-isometry classification of these such groups. The reader can observe that the strategy of the proof of Theorem \(\text{[1.3]} \) (see Subsection \(\text{[5.3]} \)) is similar to the one for quasi-isometry classification of RAAGs in \([BJN10] \). In fact, we also study quasi-isometry classes of our RACGs by constructing their geometric models. However, the such geometric models are not totally identical to the ones in \([BJN10] \) and they are actually required certain nontrivial techniques. Moreover, our collection of RACGs is “richer” and it “includes” the collection of RAAGs in \([BJN10] \) in term of quasi-isometry classes of both collections (see Theorem \(\text{[5.10]} \)).

1.1.3. Strongly quasiconvex subgroups of \(CF_{FS} \) right-angled Coxeter groups

One method to understand the structure of a finitely generated group \(G \) is to investigate subgroups of \(G \) whose geometry reflects that of \(G \). Quasiconvex subgroups of hyperbolic groups is a successful application of this approach. However, quasiconvexity is not as useful for arbitrary finitely generated groups since quasiconvexity depends on a choice of generating set and, in particular, is not preserved under quasi-isometry. In \([DT15b] \), Durham-Taylor introduce a strong notion of quasiconvexity in finitely generated groups, called stability, which is preserved under quasi-isometry.

Stability agrees with quasiconvexity when ambient groups are hyperbolic. However, a stable subgroup of a finitely generated group is always hyperbolic...
no matter the ambient group is hyperbolic or not (see [DT15b]). In some sense, the geometry of a stable subgroup does not reflect completely that of the ambient group. In July 2017, the second author in [Traa] introduces another concept of quasiconvexity, called strong quasiconvexity, which is strong enough to be preserved under quasi-isometry and reflexive enough to capture the geometry of ambient groups. This notion was also introduced independently by Genevois [Gen] in September 2017 under the name Morse subgroup.

There is a strong connection between strong quasiconvexity and stability. More precisely, a subgroup is stable if and only if it is strongly quasiconvex and hyperbolic (see [Traa]). Moreover, these notions agree in hyperbolic setting. Outside hyperbolic setting, there are many strongly quasiconvex subgroups that are not stable.

A natural question arises on which non-hyperbolic group G whose all strongly quasiconvex subgroups of infinite index of G are hyperbolic (i.e. stable). In [Traa], the second author proves this fact is true for one-ended right-angled Artin groups. In a recent paper (see [Kim]), Kim proves that this fact is true for mapping class group of an oriented, connected, finite type surface with negative Euler characteristic. We prove this fact is true for G_K where K is a flag complex in K_n.

Theorem 1.4. Let K be a flag complex in K_n and H a strongly quasiconvex subgroup of infinite index of the right-angled Coxeter group G_K. Then H is virtually free. In particular, H is stable.

We remark here that not all CFS right-angled Coxeter groups has the property that all infinite index strongly quasiconvex subgroups are all virtually free (or even hyperbolic). We refer the reader to Example 6.13 for this fact.

The main ingredient for the proof of Theorem 1.4 is the tree of groups structure of the right-angled Coxeter group G_{G} with vertex groups and edge groups satisfying certain conditions. Actually, we prove a stronger result that is applied to such tree of groups in general. More precisely,

Proposition 1.5. Assume a group G is decomposed as a tree T of groups that satisfies the following.

1. For each vertex v of T the vertex group G_v is finitely generated and undistorted. Moreover, any strongly quasiconvex, infinite subgroup of G_v is of finite index.
2. Each edge group is infinite.

Then, if H is a strongly quasiconvex, torsion free subgroup of G of infinite index, then H is a free subgroup.

1.2. Right-angled Coxeter groups with arbitrary defining graphs satisfying Standing Assumptions. In general case (when the graph Γ is not necessarily CFS), we prove that if Γ satisfies Standing Assumptions, the
associated right-angled Coxeter group G_Γ is hyperbolic relative to a certain collection of CFS right-angled Coxeter subgroups. More precisely,

Theorem 1.6. Let Γ be a graph satisfying Standing Assumptions. There is a collection J of CFS subgraph of Γ such that the right-angled Coxeter group G_Γ is relatively hyperbolic with respect to the collection $\mathcal{P} = \{ G_J \mid J \in J \}$.

For the proof of Theorem 1.6 we carefully investigate the tree structure of the defining graph and use results in [Cap09, Cap15, Theorem A'] and [DS05, Corollary 1.14] to figure out the relatively hyperbolic structure of group G_Γ. The investigation of the such tree structure for proof of Theorem 1.6 is quite technical and we refer the reader to Section 4.2 for the details.

By exploring the relatively hyperbolic structure of groups in Theorem 1.6 we can take an advantage on Theorem 1.1 to study quasi-isometry classification of right-angled Coxeter groups even in the case of non-CFS defining graphs. In fact by Theorem 1.6 these such groups are relatively hyperbolic with respect to collections of CFS right-angled Coxeter groups. Therefore, if we know the difference in term of quasi-isometry between two such peripheral structures of two relatively hyperbolic groups G_Ω and G_Ω' by Theorem 1.1 we can distinguish G_Ω and G_Ω' also in term of quasi-isometry. We refer the reader to Example 4.5 for this application.

Theorem 1.6 also contributes to study the divergence of right-angled Coxeter groups. Behrstock-Hagen-Sisto in [BHS17] show that the divergence of a one-ended right-angled Coxeter group is either exponential or bounded above by a polynomial. Dani-Thomas in [DT15a] also show that for every positive integer d, there is a right-angled Coxeter group with divergence x^d. However by combining Theorem 1.6 with results in [DT15a, Theorem 1.1] and [Sis, Theorem 1.3], the divergence functions of one-ended right-angled Coxeter groups G_Γ of planar, triangle-free graphs Γ are quite simple. More precisely,

Corollary 1.7. Let Γ be a graph satisfying Standing Assumptions. Then the divergence of the right-angled Coxeter group G_Γ is linear, or quadratic, or exponential.

1.3. Overview.

In Section 2 we review some concepts in geometric group theory and 3–manifold theory. In Section 3 we study the “tree structure” of graphs satisfying Standing Assumption. In Section 4, we study right-angled Coxeter groups with planar defining graph. We give the proof of Theorem 1.1 and Theorem 1.2 in Section 4.1. The proof of Theorem 1.6 is given in Section 4.2. In Section 5 we generalize Theorem 1.1 to a certain high dimensional right-angled Coxeter groups. We give the proof of Theorem 1.3 in Section 5.3. In Section 6 we study strongly quasiconvex subgroups of CFS right-angled Coxeter groups. We give proofs of Theorem 1.4 and Proposition 1.5 in Section 6.2.

1.4. Acknowledgments.

The authors would like to thank Chris Hruska and Jason Behrstock for their very helpful conversations and suggestions.
The authors are grateful for the insightful comments of the referees that have helped improve the exposition of this paper.

2. Preliminaries

In this section, we review some concepts in geometric group theory and 3-manifold theory: right-angled Coxeter groups, Davis complexes, right-angled Artin groups, relatively hyperbolic groups, graph manifolds, and mixed manifold. We discuss the work of Caprace [Cap09, Cap15], Behrstock-Hagen-Sisto [BHS17], and Dani-Thomas [DT15a] on peripheral structures of relatively hyperbolic right-angled Coxeter groups and divergence of right-angled Coxeter groups. We also discuss the work of Gersten [Ger94a] and Kapovich–Leeb [KL98] on divergence of 3–manifold groups. We also mention the concept of colored graphs and the bisimilarity equivalence relation on these such graphs. Lastly, we review the works of Behrstock-Neumann [BN08] and Gordon [Gor04] on connections between right-angled Artin groups and 3–manifold groups.

2.1. Right-angled Coxeter groups and their relatively hyperbolic structures. We first review the concepts of right-angled Coxeter groups and Davis complexes.

Definition 2.1. Given a finite simplicial graph Γ, the associated right-angled Coxeter group G_{Γ} is generated by the set S of vertices of Γ and has relations $s^2 = 1$ for all s in S and $st = ts$ whenever s and t are adjacent vertices. Graph Γ is the defining graph of right-angled Coxeter group G_{Γ} and its flag complex $K = K(\Gamma)$ is the defining nerve of the group. Sometimes, we also denote the right-angled Coxeter group G_{Γ} by G_K where K is the flag complex of Γ.

Let S_1 be a subset of S. The subgroup of G_{Γ} generated by S_1 is a right-angled Coxeter group G_{Γ_1}, where Γ_1 is the induced subgraph of Γ with vertex set S_1 (i.e. Γ_1 is the union of all edges of Γ with both endpoints in S_1). The subgroup G_{Γ_1} is called a special subgroup of G_{Γ}.

Definition 2.2. Given a finite simplicial graph Γ, the associated Davis complex Σ_{Γ} is a cube complex constructed as follows. For every k–clique, $T \subset \Gamma$, the special subgroup G_T is isomorphic to the direct product of k copies of Z_2. Hence, the Cayley graph of G_T is isomorphic to the 1–skeleton of a k–cube. The Davis complex Σ_{Γ} has 1–skeleton the Cayley graph of G_{Γ}, where edges are given unit length. Additionally, for each k–clique, $T \subset \Gamma$, and coset gG_T, we glue a unit k–cube to $gG_T \subset \Sigma_{\Gamma}$. The Davis complex Σ_{Γ} is a CAT(0) space and the group G_{Γ} acts properly and cocompactly on the Davis complex Σ_{Γ} (see [Dav08]).

We now review the concept of relatively hyperbolic groups.

Definition 2.3. Given a finitely generated group G with Cayley graph $\Gamma(G, S)$ equipped with the path metric and a finite collection \mathbb{P} of subgroups
of G, one can construct the coned off Cayley graph $\hat{\Gamma}(G, S, P)$ as follows: For each left coset gP where $P \in P$, add a vertex v_{gP}, called a peripheral vertex, to the Cayley graph $\Gamma(G, S)$ and for each element x of gP, add an edge $e(x, gP)$ of length $1/2$ from x to the vertex v_{gP}. This results in a metric space that may not be proper (i.e. closed balls need not be compact).

Definition 2.4 (Relatively hyperbolic group). A finitely generated group G is hyperbolic relative to a finite collection P of subgroups of G if the coned off Cayley graph is δ–hyperbolic and fine (i.e. for each positive number n, each edge of the coned off Cayley graph is contained in only finitely many circuits of length n). Each group $P \in P$ is a peripheral subgroup and its left cosets are peripheral left cosets and we denote the collection of all peripheral left cosets by Π.

Theorem 2.5. [DS05, Corollary 1.14] If a group G is hyperbolic relative to $\{H_1, \cdots, H_m\}$, and each H_i is hyperbolic relative to a collection of subgroups $\{H_j^1, H_j^2, \cdots, H_j^{n_i}\}$ then G is hyperbolic relative to the collection $\{H_j^i | i \in \{1,2,\cdots,m\}, j \in \{1,2,\cdots,n_i\}\}$.

In the rest of this subsection, we discuss the work of Caprace [Cap09, Cap15] and Behrstock-Hagen-Sisto [BHS17] on peripheral structures of relatively hyperbolic right-angled Coxeter groups.

Theorem 2.6 (Theorem A’ in [Cap09, Cap15]). Let Γ be a simplicial graph and \mathbb{J} be a collection of induced subgraphs of Γ. Then the right-angled Coxeter groups G_Γ is hyperbolic relative to the collection $P = \{G_J | J \in \mathbb{J}\}$ if and only if the following three conditions hold:

1. If σ is an induced 4-cycle of Γ, then σ is an induced 4-cycle of some $J \in \mathbb{J}$.
2. For all J_1, J_2 in \mathbb{J} with $J_1 \neq J_2$, the intersection $J_1 \cap J_2$ is empty or $J_1 \cap J_2$ is a complete subgraph of Γ.
3. If a vertex s commutes with two non-adjacent vertices of some J in \mathbb{J}, then s lies in J.

Theorem 2.7 (Theorem B in [Cap09, Cap15]). Let Γ be a simplicial graph. If G_Γ is relatively hyperbolic with respect to finitely generated subgroups H_1, \cdots, H_m, then each H_i is conjugate to a special subgroup of G_Γ.

Theorem 2.8 (Theorem I in [BHS17]). Let \mathcal{T} be the class consisting of the finite simplicial graphs Λ such that G_Λ is strongly algebraically thick. Then for any finite simplicial graph Γ either: $\Gamma \in \mathcal{T}$, or there exists a collection \mathbb{J} of induced subgraphs of Γ such that $\mathbb{J} \subset \mathcal{T}$ and G_Γ is hyperbolic relative to the collection $P = \{G_J | J \in \mathbb{J}\}$ and this peripheral structure is minimal.

Remark 2.9. In Theorem 2.8 we use the notion of strong algebraic thickness which is introduced in [BD14] and is a sufficient condition for a group to be non-hyperbolic relative to any collection of proper subgroups. We refer the reader to [BD14] for more details. The following theorem from [BHS17]...
Theorem 2.10 (Theorem II in [BHS17]). Let \(\mathcal{T} \) be the class of finite simplicial graphs whose corresponding right-angled Coxeter groups are strongly algebraically thick. Then \(\mathcal{T} \) is the smallest class of graphs satisfying the following conditions:

1. The 4-cycle lies in \(\mathcal{T} \).
2. Let \(\Gamma \in \mathcal{T} \) and let \(\Lambda \subset \Gamma \) be an induced subgraph which is not a complete graph. Then the graph obtained from \(\Gamma \) by coning off \(\Lambda \) is in \(\mathcal{T} \).
3. Let \(\Gamma_1, \Gamma_2 \in \mathcal{T} \) and suppose there exists a graph \(\Gamma \) which is not a complete graph, and which arises as a subgraph of each of the \(\Gamma_i \). Then the union \(\Lambda \) of \(\Gamma_1, \Gamma_2 \) along \(\Gamma \) is in \(\mathcal{T} \), and so is any graph obtained from \(\Lambda \) by adding any collection of edges joining vertices in \(\Gamma_1 - \Gamma \) to vertices of \(\Gamma_2 - \Gamma \).

2.2. Divergence of right-angled Coxeter groups and 3–manifold groups. Roughly speaking, divergence is a quasi-isometry invariant that measures the circumference of a ball of radius \(n \) as a function of \(n \). We refer the reader to [Ger94b] for a precise definition. In this section, we state some theorems about divergence of certain right-angled Coxeter groups and 3-manifold groups which will be used later in this paper.

2.2.1. Divergence of right-angled Coxeter groups.

Theorem 2.11 ([BHS17]). The divergence of a right-angled Coxeter group is either exponential (if the group is relatively hyperbolic) or bounded above by a polynomial (if the group is strongly algebraically thick).

Definition 2.12. Given a graph \(\Gamma \), define the associated four-cycle graph \(\Gamma^4 \) as follows. The vertices of \(\Gamma^4 \) are the induced loops of length four (i.e. four-cycles) in \(\Gamma \). Two vertices of \(\Gamma^4 \) are connected by an edge if the corresponding four-cycles in \(\Gamma \) share a pair of non-adjacent vertices. Given a subgraph \(K \) of \(\Gamma^4 \), we define the support of \(K \) to be the collection of vertices of \(\Gamma \) (i.e. generators of \(G_\Gamma \)) that appear in the four-cycles in \(\Gamma \) corresponding to the vertices of \(K \). A graph \(\Gamma \) is said to be CFS if there exists a component of \(\Gamma^4 \) whose support is the entire vertex set of \(\Gamma \).

Theorem 2.13 (Theorem 1.1 in [DT15a]). Let \(\Gamma \) be a finite, simplicial, connected, triangle-free graph which has no separating vertices or edges. Let \(G_\Gamma \) be the associated right-angled Coxeter group.

1. The group \(G_\Gamma \) has linear divergence if and only if \(\Gamma \) is a join.
2. The group \(G_\Gamma \) has quadratic divergence if and only if \(\Gamma \) is CFS and is not a join.
2.2.2. Divergence of 3–manifold groups. Let M be a compact, orientable 3–manifold with empty or toroidal boundary. The 3–manifold M is geometric if its interior admits a geometric structure in the sense of Thurston which are 3–sphere, Euclidean 3–space, hyperbolic 3-space, $S^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$, $SL(2, \mathbb{R})$, Nil and Sol. We note that a geometric 3–manifold M is Seifert fibered if its geometry is neither Sol nor hyperbolic. A non-geometric 3–manifold can be cut into hyperbolic and Seifert fibered “blocks” along a JSJ decomposition. It is called a graph manifold if all the pieces are Seifert fibered, otherwise it is a mixed manifold.

Theorem 2.14 (Gersten [Ger94a], Kapovich–Leeb [KL98]). Let M be a non-geometric manifold. Then M is a graph manifold if and only if the divergence of $\pi_1(M)$ is quadratic, and M is a mixed manifold if and only if the divergence of $\pi_1(M)$ is exponential.

Remark 2.15. Let M be a compact, orientable 3–manifold with linear divergence. Then M has geometry of Sol or M is a Seifert manifold. However, if the universal cover \tilde{M} of M is a fattened tree crossed with \mathbb{R}, then M must be a Seifert manifold.

2.3. Colored graphs and bisimilarity. In this section, we review the concepts of colored graphs and bisimilarity in [BN08] and [BJN10]. We will use them to classify certain right-angled Coxeter groups in this paper.

Definition 2.16. A colored graph is a graph Γ, a set C, and a “vertex coloring” $c : V(\Gamma) \rightarrow C$.

A weak covering of colored graphs is a graph homomorphism $f : \Gamma \rightarrow \Gamma'$ which respects colors and has the property that for each $v \in V(\Gamma)$ and for each edge $e' \in E(\Gamma')$ at $f(v)$, there exists an $e \in E(\Gamma)$ at v with $f(e) = e'$.

Definition 2.17. Colored graphs Γ_1 and Γ_2 are bisimilar, written $\Gamma_1 \sim \Gamma_2$ if Γ_1 and Γ_2 weakly cover some common colored graph.

Proposition 2.18 ([BN08]). The bisimilarity relation \sim is an equivalence relation. Moreover, each equivalence class has a unique minimal element up to isomorphism.

2.4. Right-angled Artin groups and connection to 3–manifold groups. We now review the concept of right-angled Artin groups and the works of Behrstock-Neumann [BN08] and Gordon [Gor04] on connections between right-angled Artin groups and 3–manifold groups.

Definition 2.19. Given a finite simplicial graph Γ, the associated right-angled Artin group A_Γ has generating set S the vertices of Γ, and relations $st = ts$ whenever s and t are adjacent vertices.

The following two theorems show some connections between right-angled Artin groups and 3–manifold groups.

Theorem 2.20 (Gordon [Gor04]). The following are equivalent for a one-ended right-angled Artin group A_Γ:

1. A_Γ is Gromov hyperbolic.
2. A_Γ is a graph manifold.
3. A_Γ is a mixed manifold.

Theorem 2.20 follows by considering the Gromov hyperbolicity of A_Γ and the fact that it is a graph/mixed manifold.
Figure 1. The 4-cycle with vertices $a_2, a_3, b_1,$ and b_2 is separating but not strongly separating with respect to the current choice of planar embedding.

(1) A_Γ is virtually a 3-manifold group;
(2) A_Γ is a 3-manifold group; and
(3) Γ is either a tree or a triangle.

Theorem 2.21 (Behrstock-Neumann [BN08]). A right-angled Artin group A_Γ is quasi-isometric to a 3-manifold group if and only if it is a 3-manifold group (and is hence as in Theorem 2.20).

3. Graph decomposition

In this section, we study the “tree structure” of graphs Γ satisfying Standing Assumptions. This structure will help us study corresponding right-angled Coxeter groups G_Γ in next section.

Definition 3.1. A 4–cycle σ of a graph Γ separates Γ if $\Gamma - \sigma$ has at least two components.

We now talk about a stronger notion of “separating 4-cycle” of planar graph. This notion depends on the choice of embedding map of the ambient graph into the plane and the notion is based on Jordan Curve Theorem.

Definition 3.2. Let Γ be a graph satisfying Standing Assumptions and let $f : \Gamma \to \mathbb{R}^2$ be an embedding. A 4–cycle σ of Γ strongly separates Γ with respect to f if $f(\Gamma)$ has non-empty intersection with both components of $\mathbb{R}^2 - f(\sigma)$.

Remark 3.3. If the map f in Definition 3.2 is clear from the context, we just say the 4-cycle σ strongly separates Γ. It is clear that if a 4–cycle σ strongly separates a graph Γ with respect to some embedding map f, then σ separates Γ in the usual sense. However, if we fix an embedding f of the graph Γ into the plane, then a separating 4-cycle of Γ is not necessarily strongly separating with respect to f. In fact, let Γ be a planar graph with the choice of embedding f in the plane as in Figure 1, the 4-cycle with vertices $a_2, a_3, b_1,$ and b_2 is separating but not strongly separating with respect to f.
Assume a 4-cycle σ strongly separates a graph Γ with respect to an embedding f. Let U_1 and U_2 be two components of $\mathbb{R}^2 - f(\sigma)$. Let Γ_i be σ together with components of $\Gamma - \sigma$ that are mapped into U_i via f. Then, $\Gamma = \Gamma_1 \cup \Gamma_2$ and $\Gamma_1 \cap \Gamma_2 = \sigma$. We call the pair (Γ_1, Γ_2) a strong visual decomposition of Γ along σ with respect to f. If the embedding f is clear from the context, we just say the pair (Γ_1, Γ_2) is a strong visual decomposition of Γ along σ.

Basically, the following lemma shows that each such subgraph Γ_i in a strong visual decomposition of the graph Γ above inherits important properties of the ambient graph Γ.

Lemma 3.4. Let Γ be a graph satisfying Standing Assumptions. Let (Γ_1, Γ_2) be a strong visual decomposition of Γ along a 4-cycle σ with respect to some embedding f. Then each subgraph Γ_i also satisfies Standing Assumptions. Moreover, if Γ is CFS, then each subgraph Γ_i is also CFS.

Proof. It is clear that each graph Γ_i is connected, triangle-free, and planar. We now prove that if either Γ_1 or Γ_2 (say Γ_1) has a separating vertex or a separating edge C, then C is also a separating vertex or separating edge of Γ. Let v be a vertex in $\sigma - C$. Since C is a separating vertex or separating edge of Γ_1, there is a vertex u in $\Gamma_1 - C$ such that there is no path in $\Gamma_1 - C$ connecting u and v. We observe that $\sigma - C$ is a connected set in Γ_1. Then u is not a vertex of σ. We will prove that there is no path in $\Gamma - C$ connecting u and v. Assume for the contradiction that there is a path α in $\Gamma - C$ connecting u and v. We can choose a connected subpath β of α connecting u and some vertex v' of σ such that $\beta \cap \sigma = \{v'\}$. It is clear that β is a path in Γ_1. Again $\sigma - C$ is a connected set in Γ_1 and two vertices v, v' both lie in $\sigma - C$. There is a path in Γ_1 connecting u and v which is a contradiction. This implies that there is no path in $\Gamma - C$ connecting u and v. Therefore, C is a separating vertex or separating edge of Γ which is a contradiction. Thus, each subgraph Γ_i has no separating vertex and no separating edge.

We now assume that Γ is CFS and we will prove that each Γ_i is also CFS. We only need to prove Γ_1 is CFS and the proof for Γ_2 is analogous. Let K be a component of Γ^4 whose support is the entire vertex set of Γ. Let K_1 be an induced subgraph of K that contains all vertices which are 4-cycles of Γ_1. It suffices to prove that K_1 is connected and whose support is the entire vertex set of Γ_1.

We first prove that the 4-cycle σ is a vertex of K. Let u_1 be a vertex in $\Gamma_1 - \sigma$ and let u_2 be a vertex in $\Gamma_2 - \sigma$. Then there is a sequence of 4-cycles Q_1, Q_2, \ldots, Q_n which are vertices of K such that Q_1 contains u_1 and Q_n contains u_2 and $Q_i \cap Q_{i+1}$ is the union of two adjacent edges for each i. We now prove that some Q_k contains two non-adjacent vertices of σ. Assume for the contradiction that no Q_i contains two non-adjacent vertices of σ. Therefore, each Q_i lies completely inside Γ_1 or Γ_2. It is clear that Q_1 lies completely inside Γ_1 and Q_n lies completely inside Γ_2. Then there is Q_ℓ and $Q_{\ell+1}$ such that Q_ℓ lies completely inside Γ_1 and $Q_{\ell+1}$ lies completely
inside Γ_2. Therefore, $Q_{\ell} \cap Q_{\ell+1}$ is contained in the 4-cycle σ. This implies that both Q_{ℓ} and $Q_{\ell+1}$ contain two non-adjacent vertices of σ which is a contradiction. Therefore, some Q_k contains two non-adjacent vertices of σ. Thus, there is a path in Γ^4 connecting Q_k and σ. This implies that σ is a vertex of K. Therefore, σ is also a vertex of K_1.

We now prove K_1 is connected and it suffices to prove each vertex in K_1 is connected to σ by a path in K_1. Let γ be an arbitrary 4-cycle which is a vertex of K_1. If γ contains two non-adjacent vertices of σ, then it is clear that there is a path in K_1 of length at most 2 connecting γ and σ. Otherwise, let $\gamma = P_0, P_1, P_2, \cdots, P_m = \sigma$ be the sequence of vertices of K such that $P_i \cap P_{i+1}$ is the union of two adjacent edges. Let k be the smallest number such that P_k contains two non-adjacent vertices of σ. Therefore, P_k lies completely inside Γ_1 for each $i \leq k - 1$. Thus, P_i is a vertex in K_1 for each $i \leq k - 1$. Let b and c be two non-adjacent vertices of $P_{k-1} \cap P_k$. Then it is clear that b and c are not non-adjacent vertices of $P_k \cap \sigma$. This implies that P_k also lies completely in Γ_1. Therefore, P_k is also a vertex of K_1. Since P_k contains two non-adjacent vertices of σ, there is a path of length at most 2 in K_1 connecting P_k and σ. Thus, there is a path in K_1 connecting γ and σ. Therefore, K_1 is connected.

We now prove that the support of K_1 is the entire vertex set of Γ_1. Let u be a vertex in Γ_1. If u is a vertex of σ or u is adjacent to non-adjacent vertices of σ, then u is in the support of K_1 clearly. Otherwise, let P be a vertex of K that contains u. Then P does not contain two non-adjacent vertices of σ. Therefore, P lies completely inside Γ_1. Thus, P is a vertex of K_1. Thus, u belongs to the support of K_1. This implies that the support of K_1 is the entire vertex set of Γ_1. Therefore, Γ_1 is CFS.

\[\square \]

Definition 3.5. Let Γ be a graph satisfying Standing Assumptions and $f : \Gamma \to \mathbb{R}^2$ be an embedding. We denote $n(\Gamma, f)$ the number of 4-cycles in Γ that strongly separates Γ with respect to f.

The graph Γ is called prime if Γ is not a 4-cycle and $n(\Gamma, f) = 0$ for some embedding $f : \Gamma \to \mathbb{R}^2$.

The following lemma helps us understand the structure of prime graphs.

Lemma 3.6. Let Γ be a graph satisfying Standing Assumptions. Assume that Γ is a prime graph. Then Γ is the suspension of 3 distinct points or Γ does not contain the suspension of 3 distinct points. In particular, if Γ is CFS, then it must be the suspension of 3 distinct points.

Proof. We assume that Γ contains subgraph K which is a suspension of three vertices called a_1, a_2, and a_3. Let b_1 and b_2 be suspension vertices of K. We will show that $\Gamma = K$. Let $f : \Gamma \to \mathbb{R}^2$ be an embedding. Let C_1 be the image of the 4-cycle with vertices b_1, b_2, a_2, and a_3. Let C_2 be the image of the 4-cycle with vertices b_1, b_2, a_1, and a_3. Let C_3 be the image of
the 4-cycle with vertices b_1, b_2, a_1, and a_2. We can assume that $f(a_2)$ lies in the bounded component of $\mathbb{R}^2 - C_2$.

Assume for the contradiction that $\Gamma \neq K$. Then there is a vertex d of Γ that does not belong to the set $\{b_1, b_2, a_1, a_2, a_3\}$. If $f(d)$ lies in the unbounded component of $\mathbb{R}^2 - C_2$, then $f(\Gamma)$ intersects with both components of $\mathbb{R}^2 - C_2$. Therefore, the 4-cycles with vertices b_1, b_2, a_1, and a_3 strongly separates Γ which is a contradiction. If $f(d)$ lies in the bounded component of $\mathbb{R}^2 - C_2$, then $f(d)$ lies in the bounded components of $\mathbb{R}^2 - C_1$ or $\mathbb{R}^2 - C_3$ (say $\mathbb{R}^2 - C_1$). Also $f(a_1)$ lies in the unbounded component of $\mathbb{R}^2 - C_1$. Therefore, $f(\Gamma)$ intersects with both components of $\mathbb{R}^2 - C_1$. This implies that the 4-cycles with vertices b_1, b_2, a_2, and a_3 strongly separates Γ which is a contradiction. Therefore, $\Gamma = K$. □

In the following two lemmas, we discuss some behaviors of 4–cycles in a strong decomposition of a graph.

Lemma 3.7. Let Γ be a graph satisfying Standing Assumptions and $f : \Gamma \to \mathbb{R}^2$ be an embedding. Assume that (Γ_1, Γ_2) be a strong visual decomposition of Γ with respect to f along some 4–cycle σ. Then for each i the 4–cycle σ does not strongly separates any subgraph K of Γ_i that contains σ with respect to $f_{|K}$. Moreover, if a 4–cycle α in some Γ_i that strongly separates Γ_i with respect to $f_{|\Gamma_i}$, then α also strongly separates Γ with respect to f.

Proof. Let V_b and V_u be the two components of $\mathbb{R}^2 - f(\sigma)$. By labeling, we assume that $f(\Gamma_1) \subset V_b \cup f(\sigma)$ and $f(\Gamma_2) \subset V_u \cup f(\sigma)$. Let K be any subgraph of Γ_i such that K contains σ. We will show that σ does not strongly separate K with respect to $f_{|K}$. Without losing generality, we can assume that $i = 1$ (the case $i = 2$ is similar). It follows that $f(K) \subset f(\Gamma_1)$. We now show that $f(K) \cap V_u = \emptyset$. In deed, we know that $f(\Gamma_2) - f(\sigma) \subset V_u$ and $f(\sigma) = f(\Gamma_1) \cap f(\Gamma_2)$. It follows that $f(K) \cap (f(\Gamma_2) - f(\sigma)) \subset f(\Gamma_1) \cap (f(\Gamma_2) - f(\sigma)) = \emptyset$, thus $f(K) \cap V_u = \emptyset$ because $f(K) \cap V_u = f(K) \cap (f(\Gamma_2) - f(\sigma))$.

We are now going to prove that if α is a 4–cycle in some Γ_i which is strongly separates Γ_i with respect to $f_{|\Gamma_i}$, then α also strongly separates Γ with respect to f. Let U_u and U_b be two components of $\mathbb{R}^2 - f(\alpha)$. Since α is strongly separating Γ_i with respect to $f_{|\Gamma_i}$, we have $f(\Gamma_i) \cap U_b$ and $f(\Gamma_i) \cap U_u$ are non-empty set. Of course, it implies that $f(\Gamma) \cap U_b$ and $f(\Gamma) \cap U_u$ are non-empty set as well, thus α is strongly separating Γ with respect to f. □

Lemma 3.8. Let Γ be a graph satisfying Standing Assumptions and $f : \Gamma \to \mathbb{R}^2$ be an embedding. Assume that (Γ_1, Γ_2) be a strong visual decomposition of Γ with respect to f along some 4–cycle σ. If α is a 4–cycle that does not strongly separates Γ with respect to f, then α lies completely inside Γ_1 or Γ_2.

Proof. If $\alpha \cap \sigma$ does not contain two non-adjacent vertices, then α lies completely inside Γ_1 or Γ_2 clearly. We now assume that $\alpha \cap \sigma$ contains two non-adjacent vertices. Let (a_1, a_2) and (b, c) be two pairs of non-adjacent
vertices of σ. Let (a_3, a_4) and (b, c) be two pairs of non-adjacent vertices of α. Assume for the contradiction that α does not lie completely inside Γ_1 or Γ_2. Then $f(a_3)$ and $f(a_4)$ lie in different components of $\mathbb{R}^2 - f(\sigma)$. Therefore, $f(a_1)$ and $f(a_2)$ lie in different components of $\mathbb{R}^2 - f(\alpha)$. This implies that α strongly separates Γ with respect to f which is a contradiction. Therefore, α lies completely inside Γ_1 or Γ_2. \hfill \square

The following lemma is a key step to decompose a graph satisfying Standing Assumptions into a tree of subgraphs.

Lemma 3.9. Let Γ be a graph satisfying Standing Assumptions and $f : \Gamma \to \mathbb{R}^2$ be an embedding. Assume there is a finite tree T that encodes the structure of Γ as follows:

1. Each vertex v of T is associated to an induced connected subgraph Γ_v of Γ that satisfies Standing Assumptions. Moreover, $\Gamma_v \neq \Gamma_{v'}$ if $v \neq v'$ and $\bigcup_{v \in V(T)} \Gamma_v = \Gamma$.
2. Each edge e of T is associated to a 4-cycle Γ_e of Γ. Moreover, $\Gamma_e \neq \Gamma_{e'}$ if $e \neq e'$.
3. Two vertices v_1 and v_2 of T are endpoints of the same edge e if and only if $\Gamma_{v_1} \cap \Gamma_{v_2} = \Gamma_e$. Moreover, if V_1 and V_2 are vertex sets of two components of T removed the midpoint of e, then $(\bigcup_{v \in V_1} \Gamma_v, \bigcup_{v \in V_2} \Gamma_v)$ is a strong visual decomposition of Γ along Γ_e with respect to f.
4. The number $m = \max_{v \in V(T)} (n(\Gamma_v, f|_{\Gamma_v}))$ is positive.

Then there is another tree \overline{T} that encodes the structure of Γ as in Conditions (1), (2), and (3) as above and $n(\Gamma_v, f|_{\Gamma_v}) \leq m - 1$ for each vertex v of \overline{T}. Moreover, if subgraph Γ_v is CFS for each vertex v of T, then subgraph Γ_w is also CFS for each vertex w of \overline{T}.

Proof. Let v_0 be an arbitrary vertex of T such that $m = n(\Gamma_{v_0}, f|_{\Gamma_{v_0}})$. Since $n(\Gamma_{v_0}, f|_{\Gamma_{v_0}}) > 0$, the graph Γ_{v_0} has a 4-cycle σ that strongly separates Γ_{v_0} with respect to $f|_{\Gamma_{v_0}}$. Let (Γ_1, Γ_2) be a strong visual decomposition of Γ_{v_0} along σ with respect to $f|_{\Gamma_{v_0}}$. Let e be an arbitrary edge of T that contains v_0 as an endpoints. Then the 4-cycle Γ_e does not strongly separates Γ_{v_0} with respect to $f|_{\Gamma_{v_0}}$ by Lemma B.7. Therefore, the 4-cycle Γ_e lies completely inside Γ_1 or Γ_2 by Lemma 3.8. Thus, we can modify the tree T to obtain another tree T' as follows.

We first replace the vertex v_0 of T by an edge e_0 with two endpoints v_1 and v_2. We associate the new edge e_0 to the 4-cycle $\Gamma_{e_0} = \sigma$. We associate the new vertex v_1 the graph $\Gamma_{v_1} = \Gamma_1$ and each edge e of T satisfying $\Gamma_e \subset \Gamma_1$ is attached to v_1 in the new tree \overline{T}. Similarly, we associate the new vertex v_2 the graph $\Gamma_{v_2} = \Gamma_2$ and each edge e of T satisfying $\Gamma_e \subset \Gamma_2$ is attached to v_2 in the new tree \overline{T}. It is not hard to see the new tree \overline{T} encodes the structure of the graph Γ carrying Conditions (1), (2), and (3) in the lemma. Moreover, the numbers $n(\Gamma_{v_1}, f|_{\Gamma_{v_1}})$ and $n(\Gamma_{v_2}, f|_{\Gamma_{v_2}})$ is less than or equal to $m - 1$ by Lemma B.7 and the number $n(\Gamma_v, f|_{\Gamma_v})$ does not change for
other vertices. Also the new vertex graphs Γ_{v_1} and Γ_{v_2} also satisfy Standing Assumptions by Lemma 3.4. Also by this lemma, two new vertex graphs Γ_{v_1} and Γ_{v_2} are CFS if Γ_{v_0} is CFS. Repeating this process to any vertex v satisfying $n(\Gamma_{v}, f|_{\Gamma_{v}}) = m$, we can obtained the desired tree T. Moreover, if subgraph Γ_{v} is CFS for each vertex v of T, then subgraph Γ_{w} is also CFS for each vertex w of T.

The following proposition is a direct result of Lemma 3.9.

Proposition 3.10. Let Γ be a graph satisfying Standing Assumptions and $f: \Gamma \to \mathbb{R}^2$ be an embedding. Then there is a finite tree T that encodes the structure of Γ as follows:

1. Each vertex v of T is associated to an induced prime subgraph Γ_v of Γ. Moreover, $\Gamma_v \neq \Gamma_{v'}$ if $v \neq v'$ and $\bigcup_{v \in V(T)} \Gamma_v = \Gamma$.
2. Each edge e of T is associated to a 4-cycle Γ_e of Γ. Moreover, $\Gamma_e \neq \Gamma_{e'}$ if $e \neq e'$.
3. Two vertices v_1 and v_2 of T are endpoints of the same edge e if and only if $\Gamma_{v_1} \cap \Gamma_{v_2} = \Gamma_e$. Moreover, if V_1 and V_2 are vertex sets of two components of T removed the midpoint of e, then $(\bigcup_{v \in V_1} \Gamma_v, \bigcup_{v \in V_2} \Gamma_v)$ is a strong visual decomposition of Γ along Γ_e with respect to f.

Moreover, if the graph Γ is CFS, then subgraph Γ_v is also CFS for each vertex v of T (therefore, Γ_v is a suspension of exactly three points by Lemma 3.6).

Using the “tree structure” on a defining graph Γ as in Proposition 3.10 can help us understand the structure of the corresponding right-angled Coxeter group G_{Γ}.

Corollary 3.11. Let Γ be a graph satisfying Standing Assumptions. Then the right-angled Coxeter group G_{Γ} is a tree of groups that satisfies the following conditions:

1. Each vertex group T_v is G_C where C is the suspension of three distinct points or T_v is a relatively hyperbolic to a collection of $D_\infty \times D_\infty$ subgroups of T_v.
2. Each edge group is $D_\infty \times D_\infty$.

Moreover, all vertex groups are isomorphic to a right-angled Coxeter group of the suspension of three distinct points if and only if Γ is CFS.

In the rest of this section, we will assume that the ambient graph Γ is CFS. Therefore, it is shown in Proposition 3.10 that each vertex subgraph Γ_v is a suspension of exactly three points. For our purpose of obtaining a quasi-isometric classification of right-angled Coxeter groups with CFS graph, the tree structure T in Proposition 3.10 is not a right one to look at. We now modify the tree T to obtain a two-colored new tree that encodes structure of Γ by doing the following construction.
Construction 3.12. Step 1: We color an edge of T by two colors: red and blue as the following. Let e be an edge of Γ with two vertices v_1 and v_2. If Γ_{v_1} and Γ_{v_2} have the same suspension points, then we color the edge e by the red. Otherwise, we color e by the blue.

Step 2: Let R be the union of all red edges of T. We remark that R is not necessarily connected. We form a new tree T_r from the tree T by collapsing each component C of R to a vertex labelled by v_C and we associate each such new vertex v_C to the graph $\Gamma_{v_C} = \bigcup_{v \in V(C)} \Gamma_v$. For each vertex v of T_r which is also a vertex of T we still assign v the graph Γ_v, as in the previous tree T structure. It is clear that for each vertex v in the new tree T_r vertex graph Γ_v is also suspension of a vertex set called A_v. However, the number of elements in A_v may be greater than three and we call this number the weight of v denoted by $w(v)$. It is also clear that the new tree T_r encodes the structure of Γ carrying Conditions (1), (2), and (3) of Lemma 3.9. Moreover, if v_1 and v_2 are two adjacent vertices in T_r, then suspension vertices of Γ_{v_1} are elements in A_{v_2} and similarly suspension vertices of Γ_{v_2} are elements in A_{v_1}.

Step 3: We now choose an appropriate cyclic ordering on the set A_v for vertex v of T_r. Two vertices a and a' in A_v are adjacent if the pair $\{a, a'\}$ together with two suspension points of Γ_v form a 4-cycles that does not strongly separates Γ_v with respect to $f_{|\Gamma_v}$ (see Figure 2). We note that if v_1 and v_2 are endpoints of an edge e of T_r, then by Lemma 3.7 the 4-cycles Γ_e does not strongly separate each graph Γ_{v_i} with respect to $f_{|\Gamma_{v_i}}$. Therefore, suspension vertices of Γ_{v_1} are two adjacent elements in A_{v_2} and similarly suspension vertices of Γ_{v_2} are two adjacent elements in A_{v_1}.

Step 4: We now color vertices of T_r. For each vertex v of T_r, the graph Γ_v is a suspension of a vertex set A_v of T_r. We remind that the weight of v, denoted by $w(v)$, is the number of elements of A_v. It is clear that $w(v)$ is also the number of pairs of adjacent elements in A_v with respect to the above cyclic ordering on A_v. Since for each edge e of the tree T_r that contains v as an endpoint the 4-cycle Γ_e does not strongly separate Γ_v, the 4–cycle Γ_e contains a unique pair of non-adjacent elements of A_v. Moreover, if e' is another edge of T_r that contains v as an endpoint, $\Gamma_{e'}$ must contain a different pair of non-adjacent elements of A_v. Therefore, the weight $w(v)$ is always greater than or equal the degree of v in T_r. We now color v by the black if its weight is strictly greater than its degree. Otherwise, we color v by the white.

We now summarize some key properties of the tree T_r in the above construction:

(1) Each vertex v of T_r is associated to an induced subgraph Γ_v of Γ that is a suspension of a vertex set A_v with at least 3 elements and there is some cyclic ordering on A_v. We call the number of elements in A_v the weight of vertex v, denoted $w(v)$. The weight $w(v)$ of each vertex v is greater than or equal its degree. We color v by the black
if its weight is strictly greater than its degree. Otherwise, we color \(v \) by the white.

(2) If \(\Gamma_v \neq \Gamma_{v'} \) if \(v \neq v' \) and \(\bigcup_{v \in V(T_r)} \Gamma_v = \Gamma \).

(3) Each edge \(e \) of \(T_r \) is associated to a 4–cycle \(\Gamma_e \) of \(\Gamma \). Moreover, \(\Gamma_e \neq \Gamma_{e'} \) if \(e \neq e' \).

(4) Two vertices \(v_1 \) and \(v_2 \) of \(T_r \) are endpoints of the same edge \(e \) if and only if \(\Gamma_{v_1} \cap \Gamma_{v_2} = \Gamma_e \). Moreover, if \(v_1 \) and \(v_2 \) are two adjacent vertices of \(T_r \), suspension vertices of \(\Gamma_{v_1} \) are two adjacent elements in \(A_{v_2} \) and similarly suspension vertices of \(\Gamma_{v_2} \) are two adjacent elements in \(A_{v_1} \). Lastly, if \(V_1 \) and \(V_2 \) are vertex sets of two components of \(T_r \) removed the midpoint of \(e \), then \((\bigcup_{v \in V_1} \Gamma_v) \cap (\bigcup_{v \in V_2} \Gamma_v) = \Gamma_e \).

Definition 3.13 (Visual decomposition trees). Let \(\Gamma \) be a \(CFS \) graph satisfying Standing Assumptions. A tree \(T_r \) that encodes the structure of \(\Gamma \) carrying Properties (1), (2), (3), and (4) as above is called a visual decomposition tree of \(\Gamma \).

Remark 3.14. The existence of a visual decomposition tree for a \(CFS \) graph \(\Gamma \) satisfying Standing Assumptions is guaranteed by Construction 3.12. We do not know whether or not the existence of visual decomposition tree for \(\Gamma \) is unique. However, we only need the existence part of a such tree for our purposes. Moreover, it is not hard to draw a visual decomposition tree for a given \(CFS \) graph \(\Gamma \) satisfying Standing Assumptions.

4. Right-angled Coxeter groups with planar defining graph

In this section, we divide the collection of graphs \(\Gamma \) satisfying Standing Assumptions into two types: \(CFS \) and non \(CFS \). For a \(CFS \) graphs \(\Gamma \), we prove that the corresponding right-angled Coxeter group \(G_\Gamma \) is virtually a Seifert manifold group if \(\Gamma \) is a join and virtually a graph manifold group otherwise (see (1) and (2) in Theorem 1.1). We then use the work of Behrstock-Neumann [BN08] to classify all such groups \(G_\Gamma \) up to quasi-isometry (see (3) in Theorem 1.1). When graphs \(\Gamma \) are non-join, \(CFS \) and satisfy Standing Assumptions, we give a characterization on \(\Gamma \) for \(G_\Gamma \) to be quasi-isometric to right-angled Artin groups and we also specify types of right-angled Artin groups which are quasi-isometric to such right-angled Coxeter groups (see Theorem 1.2). For a non \(CFS \) graph \(\Gamma \), we prove that the corresponding right-angled Coxeter groups \(G_\Gamma \) is relatively hyperbolic with respect to a collection of \(CFS \) right-angled Coxeter subgroups of \(G_\Gamma \) (see Theorem 1.6). These results have some applications on divergence of right-angled Coxeter groups.

4.1. Right-angled Coxeter groups with \(CFS \) graphs.

In this subsection, we will give the proof of Theorem 1.1 and Theorem 1.2.

Let \(\Gamma \) be a \(CFS \) graph satisfying Standing Assumptions. Let \(T_r \) be a two-colored visual decomposition tree of \(\Gamma \) (see Section 3). Since \(\Gamma \) is planar,
it follows that G_{Γ} is virtually a 3–manifold group. The fact G_{Γ} is virtually Seifert manifold or graph manifold may not be surprising to experts. However for the purpose of obtaining a quasi-isometric classification (see (3) in Theorem 1.1) we will construct explicitly a 3–manifold Y where the right-angled Coxeter group G_{Γ} acts properly and cocompactly. We then elaborate the work of Kapovich-Leeb [KL98], Gersten [Ger94a] to get the proof of Theorem 1.1. We note that the construction of the manifold Y is associated to the graph T_r, we then import the work of Behrstock-Neumann [BN08] to get the proof of (3) in Theorem 1.1.

Construction 4.1. We now construct a 3-manifold Y on which the right-angled Coxeter group G_{Γ} acts properly and cocompactly. For each vertex v of T_r, the graph Γ_v is a suspension of a finite set A_v of vertices of Γ. Let b and c be suspension vertices and assume A_v has n elements labelled cyclically by a_i where $i \in \mathbb{Z}_n$. The Davis complex of the right-angled Coxeter group G_{A_v} is an n–regular tree T_n with edges labelled by a_i. We now construct a “fattened tree” $F(T_n)$ of T_n as follows:

We replace each vertex of T_n by a regular n–gon with sides labelled cyclically by $\overline{a_i}$ and we also assume the length side of the n–gon is $1/2$. We replace each edge E labelled by a_i by a strip $E \times [-1/4, 1/4]$. We label each side of length 1 of the strip $E \times [-1/4, 1/4]$ by a_i and we identify the edge E to $E \times \{0\}$ of the strip. Moreover, if u is an endpoint of the edge E of T_n, then the edge $\{u\} \times [-1/4, 1/4]$ is identified to the side labelled by a_i of the n–gon that replaces u. This is clear that the right-angled Coxeter group G_{A_v} acts properly and cocompactly on the fattened tree $F(T_n)$ as an analogous way its acts on the Davis complex T_n. By the construction, for each $i \in \mathbb{Z}_n$ there is a bi-infinite geodesic, denoted $\ell_{\{i-1,i\}}$, in $F(T_n)$ that is a concatenation of edges labelled by a_{i-1} and a_i.

![Figure 2](image-url)
The right-angled Coxeter group $W_{\{b,c\}}$ acts on the line ℓ that is a concatenation of edges labelled by b and c by edge reflections. Let $P_v = F(T_v) \times \ell$ and we equip on P_v the product metric. Then, the right-angled Coxeter group W_{Γ_v} acts properly and cocompactly on P_v in the obvious way. The space P_v is also a 3-manifold with boundaries. Moreover, for each $i \in \mathbb{Z}$ the right-angled Coxeter groups generated by $\{a_{i-1}, a_i, b, c\}$ acts on the Euclidean plane $\ell_{\{i-1,i\}} \times \ell$ as an analogous way it acts on its Davis complex. We label this plane by $\{a_{i-1}, a_i, b, c\}$.

If v_1 and v_2 are two adjacent vertices in T_r, then the pair of suspension vertices (a_1, a_2) of Γ_{v_1} are pair of adjacent elements in A_{v_1} and the pair of suspension vertices (b_1, b_2) of Γ_{v_2} are pair of adjacent elements in A_{v_2}. Therefore, two spaces P_{v_1} and P_{v_2} have two Euclidean planes that are both labeled by $\{a_{i-1}, a_i, b, c\}$ as we constructed above. Thus, using Bass-Serre tree \tilde{T}_r of the decomposition of G_{Γ} as tree T_r of subgroups we can form a three manifold Y by gluing copies of P_v appropriately and we obtain a proper, cocompact action of G_{Γ} on Y.

We first give a proof of Theorem 1.1.

Proof of Theorem 1.1. Let Y be the manifold in Construction 4.1. For each vertex v of T_r, let P_v be the associated space in Construction 4.1. We now are going to prove the necessity of (1) and (2). Since Γ is CFS, the divergence of G_{Γ} is either linear or quadratic by Theorem 2.13. If the divergence of G_{Γ} is linear, then the tree T_r consists of one vertex v and G_{Γ} acts properly and cocompactly on P_v. Let H be a finite index, torsion free subgroup of G_{Γ}. Then H has linear divergence and acts freely and cocompactly on P_v. Therefore, H is the fundamental group of the compact manifold $M = P_v/H$. By possibly passing to a finite cover of M, we can assume that M is orientable. Moreover, the boundary components of M are torus, thus M is a Seifert manifold by Remark 2.15.

We now assume that the divergence of G_{Γ} is quadratic. Let H be a finite index, torsion free subgroup of G_{Γ}. Then H acts freely and cocompactly on the 3-manifold Y. Thus, H is the fundamental group of the compact manifold $M = Y/H$. By possibly passing to a finite cover of M, we can assume that M is orientable. We note that ∂M consists tori. Since the divergence of H is quadratic, it follows that the divergence of $\pi_1(M)$ is quadratic. It follows M is a non-geometric manifold, otherwise divergence of $\pi_1(M)$ is either linear or exponential. Thus M is a graph manifold by Theorem 2.14.

We are going to prove the sufficiency of (1) and (2). Let Γ be just a graph satisfying Standing Assumptions. If G_{Γ} is virtually a Seifert manifold group. Then the divergence of G_{Γ} is linear since the divergence of a Seifert manifold group is linear. Therefore, Γ is a join by Theorem 2.13. Also, Γ is planar and triangle-free. Therefore, Γ is a suspension of some distinct vertices.
If G_Γ is virtually a graph manifold group. Then the divergence of G_Γ is quadratic since the divergence of a graph manifold group is quadratic (see Theorem 2.14). Therefore, Γ is CFS and it is not a join by Theorem 2.13. Again, Γ is planar and triangle-free. Thus, Γ is CFS and it is not a suspension of distinct vertices.

We are now going to prove (3). Since the Bass-Serre tree \tilde{T}_r weakly cover T_r, two trees \tilde{T}_r and T_r are bisimilar. Also, we can color vertices of \tilde{T}_r using its weakly covering on T_r. We observe that a vertex v of \tilde{T}_r is colored by black if and only if the corresponding copy of some P_v includes the boundary of Y. Using the proof of Theorem 3.2 in [BN08], we obtain the proof of theorem. □

Example 4.2. Let Γ and Γ' be graphs in Figure 3. It is not hard to see a visual decomposition tree T_r of Γ is shown in the same figure with the following information. Graph Γ_{u_1} is the suspension of three vertices a_1, a_3, and a_5 with two suspension vertices a_6 and a_7. Graph Γ_{u_2} is the suspension of three vertices a_2, a_6, and a_7 with two suspension vertices a_1 and a_3. Graph Γ_{u_3} is the suspension of three vertices a_4, a_6, and a_7 with two suspension vertices a_3 and a_5. Graph Γ_{u_4} is the suspension of three vertices a_6, a_7, and a_8 with two suspension vertices a_1 and a_5. We observe that each u_i has weight 3. Therefore, three vertices u_2, u_3, and u_4 are colored by black and u_1 is colored by white.

Similarly, a visual decomposition tree T'_r of Γ' is also shown in the Figure 3 with the following information. Graph Γ_{v_1} is the suspension of four vertices b_1, b_3, b_5, and b_9 with two suspension vertices b_6 and b_7. Graph Γ_{v_2} is the suspension of three vertices b_2, b_6, and b_7 with two suspension vertices b_1 and b_3. Graph Γ_{v_3} is the suspension of three vertices b_4, b_6, and b_7 with two suspension vertices b_3 and b_5. Graph Γ_{v_4} is the suspension of three vertices b_6, b_7, and b_9 with two suspension vertices b_1 and b_9. We observe that each v_i has weight 3 excepts v_1 has weight 4. Therefore, all four vertices v_i are colored by black. Therefore, two visual decomposition trees T_r and T'_r are not bisimilar although they are isomorphic if we ignore the vertex colors. Therefore, two groups G_Γ and $G_{\Gamma'}$ are not quasi-isometric.

We now discuss connection between right-angled Coxeter groups G_Γ of non-join, CFS graphs Γ satisfying Standing Assumptions and right-angled Artin groups.

Proof of Theorem 1.2. We first prove that two statements (1) and (2) are equivalent and it suffices to prove that statement (1) implies statement (2). Assume the right-angled Coxeter group G_Γ is quasi-isometric to a right-angled Artin group A_Ω. Then A_Ω is one-ended and quasi-isometric to a 3–manifold group by Theorem 1.1. Therefore, A_Ω is a one-ended, 3–manifold group by Theorem 2.21. Thus, Ω is a tree or a triangle by Theorem 2.20. Since G_Γ is virtually a graph manifold group by Theorem 1.14 the graph Ω
Figure 3. Two groups G_Γ and $G_{\Gamma'}$ are not quasi-isometric because two corresponding decomposition trees T_r and T'_r are not bisimilar.
must be a tree of diameter at least 3. Therefore, two statements (1) and (2) are equivalent.

The equivalence between two statement (2) are (3) are proved by Behrstock-Neumann in [BN08]. We now prove that two statements (3) and (4) are equivalent. We first prove statement (3) implies statement (4). Assume that the right-angled Coxeter group G_T is quasi-isometric to the right-angled Artin group $A_Ω$ of a tree $Ω$ of diameter exactly 3. We now assume for the contradiction that the tree T_r contains a white vertex. As we discussed above, G_T is virtually a fundamental group of a graph manifold M such that M has at least one Seifert component that does not contain any boundary component of M. Therefore, the group $A_Ω$ is quasi-isometric to $π_1(M)$. On the other hand, Behrstock-Neumann in [BN08] shows that $A_Ω$ is the fundamental group of a graph manifold M' with boundary components in each Seifert piece and the fundamental group of the such manifold M' is not quasi-isometric to $π_1(M)$, this is a contradiction. Therefore, all vertices of the tree T_r are black.

We now prove that statement (4) implies statement (3). In fact, if all vertices of the tree T_r are black, the group G_T is virtually the fundamental group of a graph manifold M_1 with boundary components in each Seifert piece. Also, the right-angled Artin group $A_Ω$ of a tree $Ω$ of diameter exactly 3 is the fundamental group of a graph manifold M_2 with boundary components in each Seifert piece. Moreover, two groups $π_1(M_1)$ and $π_1(M_2)$ are quasi-isometric by Behrstock-Neumann [BN08]. Therefore, the right-angled Coxeter group G_T is quasi-isometric to the right-angled Artin group $A_Ω$. □

4.2 Right-angled Coxeter groups with non-CFS graphs. In this subsection, we are going to prove Theorem 4.6.

Let $Γ$ be a non-CFS graph satisfying Standing Assumptions. Let $f : Γ → ℝ^2$ be an embedding. Let T be a tree that encodes the structure of $Γ$ as in Proposition 3.10. Since $Γ$ is not a CFS graph, there is a vertex v_0 of T such that $Γ_{v_0}$ does not contain a suspension of three points.

For each adjacent edge e of v_0 let V_e^1 and V_e^2 be vertex sets of two components of T removed the midpoint of e and we assume that V_e^2 contains the vertex v_0. Let $K_e = \bigcup_{v \in V_e^1} Γ_v$ and $L_e = \bigcup_{v \in V_e^2} Γ_v$. Then $K_e \cap L_e = Γ_e$ by Proposition 3.10.

Let e_1 and e_2 be two arbitrary adjacent edges of v_0. Then it is clear that $V_{e_1}^1 \subset V_{e_2}^2$ and $V_{e_2}^1 \subset V_{e_1}^2$. Therefore, $K_{e_1} \subset L_{e_2}$ and $K_{e_2} \subset L_{e_1}$. Therefore, $K_{e_1} \cap K_{e_2} \subset L_{e_2} \cap K_{e_2} \subset Γ_{e_2}$. Similarly, we also have $K_{e_1} \cap K_{e_2} \subset Γ_{e_1}$. This implies that $K_{e_1} \cap K_{e_2} \subset Γ_{e_1} \cap Γ_{e_2}$. Also $Γ_{e_1}$ and $Γ_{e_2}$ are both 4-cycles in $Γ_{v_0}$ which does not contain a suspension of three points. Thus, $Γ_{e_1} \cap Γ_{e_2}$ is empty or a vertex or an edge. Therefore, $K_{e_1} \cap K_{e_2}$ is empty or a vertex or an edge.

Let $J^1_{v_0}$ be the collection of all graphs K_e for edges e adjacent to v_0. Then $J^1_{v_0}$ satisfies Condition (2) of Theorem 2.6 by the above argument. Let $J^2_{v_0}$ be the collection of all 4-cycles in $Γ_{v_0}$ which are distinct from $Γ_e$ for adjacent
edge e of v_0. Since Γ_{v_0} which does not contain a suspension of three points, $J_{v_0}^2$ also satisfies Condition (2) of Theorem 2.6. Let $J_{v_0} = J_{v_0}^1 \cup J_{v_0}^2$.

We use the following proposition in the proof of Theorem 1.6.

Proposition 4.3. The right-angled Coxeter group G_Γ is relatively hyperbolic with respect to the collection $P_{v_0} = \{ G_J \mid J \in J_{v_0} \}$.

Proof. We will prove that J_{v_0} also satisfies Condition (2) of Theorem 2.6. It suffices to show the intersection between a graph K_e in $J_{v_0}^1$ and a 4-cycle σ in $J_{v_0}^2$ is empty or a vertex or an edge. Indeed, $K_e \cap \sigma = K_e \cap (\Gamma_{v_0} \cap \sigma) = (K_e \cap \Gamma_{v_0}) \cap \sigma = \Gamma_e \cap \sigma$ which is empty or a vertex or an edge since Γ_{v_0} does not contain a suspension of three points. Therefore, J_{v_0} satisfies Condition (2) of Theorem 2.6.

We now prove that J_{v_0} satisfies Condition (3) of Theorem 2.6. We first prove that $J_{v_0}^2$ satisfies Condition (3) of Theorem 2.6. Let σ be a 4-cycle in $J_{v_0}^2$ and d be a vertex that is adjacent to non-adjacent vertices b and c of σ. We now prove that d is a vertex of Γ_{v_0}. Assume for the contradiction that d does not belong to Γ_{v_0}. Therefore, d is a vertex of $K_e - \Gamma_e$ for some adjacent edge e of v_0. Since $\Gamma_e \cap \sigma$ does not contain non-adjacent vertices, either b or c (say b) does not belong to Γ_e. Therefore, two vertices b and d lies in the same component of $\Gamma - \Gamma_e$. This implies that $K_e - \Gamma_e$ and $\Gamma_{v_0} - \Gamma_e$ are contained in the same component of $\Gamma - \Gamma_e$ which is a contradiction. Therefore, d is a vertex of Γ_{v_0}. Since Γ_{v_0} does not contain a suspension of three points, then d is a vertex of σ. Therefore, $J_{v_0}^2$ satisfies Condition (3) of Theorem 2.6.

We now prove that $J_{v_0}^1$ satisfies Condition (3) of Theorem 2.6. Let K_e be a subgraph in $J_{v_0}^1$ and d a vertex that are adjacent to non-adjacent vertices b and c of K_e. Assume for the contradiction that d is not a vertex K_e. Using a similar argument as above, two points b and c are vertices of Γ_e. Therefore, if d is a vertex of Γ_{v_0}, then Γ_{v_0} contains a suspension of three points which is a contradiction. Thus, d is a vertex of $K_{e_1} - \Gamma_{e_1}$ for some adjacent edge e_1 of v_0 other than e. Also $K_e \subset L_{e_1}$ as we observe above, then two points b and c are vertices of L_{e_1}. Therefore, using a similar argument as above, two points b and c are vertices of Γ_{e_1}. Therefore, $\Gamma_e \cap \Gamma_{e_1}$ contains two non-adjacent vertices b and c. This implies that Γ_{v_0} contains a suspension of three points which is a contradiction. Therefore, $J_{v_0}^1$ satisfies Condition (3) of Theorem 2.6. Thus, J_{v_0} satisfies Condition (3) of Theorem 2.6.

Finally, we prove that J_{v_0} satisfies Condition (1) of Theorem 2.6. Let σ be an arbitrary 4-cycle of Γ. It is clear that if $\sigma \cap \Gamma_e$ does not contains non-adjacent vertices for all adjacent edge e of v_0, then σ is either a 4-cycle in $J_{v_0}^2$ or a 4-cycle in a subgraph of $J_{v_0}^1$. Now we assume that there is an adjacent edge e of v_0 such that $\sigma \cap \Gamma_e$ contains two non-adjacent vertices b_1 and b_2. Let a_1 and a_2 be the remaining vertices of σ. Since both a_1 and a_2 are adjacent to both vertices of K_e, they are all vertices of K_e as we prove above. Thus, σ is a 4-cycle of K_e. Therefore, J_{v_0} satisfies Condition (1) of Theorem 2.6. \qed
Two relatively hyperbolic right-angled Coxeter groups G_Ω and $G_{\Omega'}$ are not quasi-isometric because their peripheral subgroups are not quasi-isometric.

Proof of Theorem 4.6. Let T_1 be the subgraph of T induced by all vertices v with Γ_v a suspension of three points (T_1 is not necessarily connected). Let \mathcal{T} be the set of all components of T_1. For each component C in \mathcal{T}, let $\Gamma_C = \bigcup_{v \in V(C)} \Gamma_v$. Then, it is clear that Γ_C is a CFS graph. Let \mathcal{J}_1 be the collection of all Γ_C for all components C in \mathcal{T}. Let \mathcal{J}_2 be the collection of all 4-cycles which are not part of any suspension of three vertices of Γ. Let $\mathcal{J} = \mathcal{J}_1 \cup \mathcal{J}_2$.

Let n be the number of vertices v of the tree T such that Γ_v is not a suspension of three points. We can prove the above proposition easily by induction on n using Theorem 2.5 and Proposition 4.3. We leave the details to the reader.

Remark 4.4. In the above theorem, we remark that if the defining graph Γ is CFS, then the right-angled Coxeter group G_Γ is trivially relatively hyperbolic with respect to itself.

Example 4.5. Let Ω and Ω' be two graphs as in Figure 4. Then Ω (resp. Ω') contains subgraph Γ (resp. Γ') in Figure 3. Moreover, group G_{Ω} (resp. $G_{\Omega'}$) is relatively hyperbolic with respect to group G_Γ (resp. $G_{\Gamma'}$) by Theorem 2.6. However, two groups G_{Ω} and $G_{\Omega'}$ are not quasi-isometric by Example 4.2. Therefore, two groups G_Ω and $G_{\Omega'}$ are not quasi-isometric by Theorem 4.1 in [BDM09].
5. On generalization to certain high dimensional right-angled Coxeter groups

The main ingredient in the proof of quasi-isometric classification of CFS right-angled Coxeter groups with defining graphs satisfying Standing Assumptions is the decomposition of defining graphs as tree structures. Exploiting this idea we study a certain high dimensional right-angled Coxeter groups.

5.1. Tree structure of the nerves of certain high dimensional RAAGs and RACGs. In this section, we introduce a collection of bipartite trees with certain structures and we will use this collection to construct two different collections of flag complexes. The first collection of flag complexes is used to describe high dimensional RAAGs introduced in [BJN10] and the second one is used to construct certain high dimensional RACGs.

Definition 5.1. For each integer $n \geq 1$ we define \mathbb{T}_n be the collection of p/f-bipartite tree T satisfying the followings:

1. The valence of each f-vertex is at least 2 and at most $n + 1$.
2. Each p-vertex is labelled by a number in $\mathbb{I}_n = \{0, 1, 2, \cdots, n\}$ such that if v and v' are two different p-vertices that are both adjacent to an f-vertex, then v and v' are labelled by different numbers in \mathbb{I}_n.
3. Each p-vertex v is assigned to an integer $w(v)$, which we called the weight of v, that is greater than or equal to the valence of v.

We now use each collection tree \mathbb{T}_n ($n \geq 1$) to construct some collection of flag complex.
Definition 5.2. For each integer \(n \geq 1 \) and \(T \) a \(p/f \)-bipartite tree in the collection \(\mathbb{T}_n \) we construct a flag complex \(L (= L(T)) \) as follows:

1. Each \(p \)-vertex \(v \) of \(T \) is associated to a flag complex \(L_v = \Delta_{v}^{n-1} \ast B_v \), where \(\Delta_{v}^{n-1} \) is an \((n-1)\)-simplex and \(B_v \) is the set of \(w(v) \) distinct points. Moreover, if \(v \) is labelled by a number \(i \) in \(\mathbb{I}_n \), then each point in \(B_v \) is also labelled by \(i \) and all \(n \) vertices in \(\Delta_{v}^{n-1} \) are labelled distinctly by elements in \(\mathbb{I}_n - \{i\} \).
2. Each \(f \)-vertex \(u \) of \(T \) is associated to an \(n \)-simplex \(L_u \) and we label all \((n+1)\) vertices of \(L_u \) distinctly by elements in \(\mathbb{I}_n \).
3. If an \(f \)-vertex \(u \) is adjacent to a \(p \)-vertex \(v \), then we identify the \(n \)-simplex \(L_u \) with an \(n \)-simplex in \(L_v \) such that their vertex labels are matched (therefore, we have exactly \(n \) different ways for the identifying). Moreover, if \(u \) and \(u' \) are two different \(f \)-vertices that are both adjacent to a \(p \)-vertex \(v \), then \(L_u \) and \(L_{u'} \) are identified to two different \(n \)-simplices of \(L_v \).

The proof for the following proposition is easy and we leave it to the reader.

Proposition 5.3. Each tree \(T \) in \(\mathbb{T}_n \) defines a unique flag complex \(L(T) \) up to simplicial complex isomorphism.

We now review collection of RAAG nerves studied in \([BJN10]\).

Definition 5.4 (\([BJN10]\)). For each integer \(n \geq 1 \) we define \(\mathbb{L}_n \) to be the smallest class of \(n \)-dimensional simplicial complexes satisfying:

1. the \(n \)-simplex is in \(\mathbb{L}_n \);
2. if \(L_1 \) and \(L_2 \) are complexes in \(\mathbb{L}_n \) then the union of \(L_1 \) and \(L_2 \) along any \((n-1)\)-simplex is in \(\mathbb{L}_n \).

The following proposition shows that each collection \(\mathbb{L}_n \) of RAAG nerves can be characterized by using the corresponding collection \(\mathbb{T}_n \) of bipartite trees.

Proposition 5.5 (\([BJN10]\)). For each integer \(n \geq 1 \), a simplex \(L \) belongs to the collection \(\mathbb{L}_n \) if and only if \(L \) can be constructed from a tree \(T \) in the collection \(\mathbb{T}_n \) as in Definition 5.2.

In \([BJN10]\), Behrstock-Januszkiewicz-Neumann study quasi-isometry classification of collection of RAAGs \(\{A_L\}_{L \in \mathbb{L}_n} \) for each \(n \geq 1 \).

We now discuss a different collection of simplical complexes and we will use it to introduce certain high dimensional RAGCs.

Definition 5.6. For each integer \(n \geq 1 \) and \(T \) a \(p/f \)-bipartite tree in the collection \(\mathbb{T}_n \) we construct a flag complex \(K (= K(T)) \) as follows:

1. Each \(p \)-vertex \(v \) of \(T \) is associated to a flag complex \(K_v = S_{v}^{n-1} \ast A_v \), where \(S_{v}^{n-1} \) is an \((n-1)\)-sphere \(S_0 \ast S_0 \ast \cdots \ast S_0 \) (\(n \) factors \(S_0 \)) and \(A_v \) is the set of \(w(v) \) distinct points with some cyclic ordering. Moreover,
if v is labelled by a number i in \mathbb{I}_n, then each point in A_v is labelled by i and each pair of nonadjacent vertices in S_v^{n-1} is labelled by the same numbers in $\mathbb{I}_n - \{i\}$ such that two different pairs of nonadjacent vertices in S_v^{n-1} are labelled by different numbers.

(2) Each f-vertex u of T is associated to an n-sphere $K_u = S_0 * S_0 * \cdots * S_0$ ($n + 1$ factors S_0) and we label two nonadjacent vertices in K_u by the same numbers in \mathbb{I}_n such that two different pairs of nonadjacent vertices in K_u are labelled by different numbers.

(3) If an f-vertex u is adjacent to a p-vertex v, then we identify the complex K_u with a subcomplex in K_v such that their vertex labels are matched. Moreover, if the p-vertex v is labelled by a number i in \mathbb{I}_n, then two nonadjacent vertices of the complex K_u labelled by i are identified to two adjacent elements in the set A_v of K_v with respect to the cyclic ordering on A_v. Lastly, if u and u' are two different f-vertices that are both adjacent to a p-vertex v, then K_u and $K_{u'}$ are identified to two different subcomplexes of K_v.

Let \mathbb{K}_n be the collection of all flag complexes each of which can be constructed from some tree in \mathbb{T}_n as above.

Remark 5.7. We remark that two non-isomorphic flag complexes in \mathbb{K}_n can be constructed from the same tree T in \mathbb{T}_n (see Figure 5). In this paper, we study the coarse geometry including quasi-isometry classification of collection of RACGs $\{G_K\}_{K \in \mathbb{K}_n}$ for each $n \geq 1$.

5.2. Quasi-isometry classification of some high dimensional right-angled Artin groups

In this section, we briefly review the work of Behrstock-Januszkiewicz-Neumann on quasi-isometry classification of RAAGs with nerves in \mathbb{L}_n. We first review the construction of Behrstock-Januszkiewicz-Neumann of geometric models for their RAAGs.

Fix a flag complex L in \mathbb{L}_n and we assume that L can be constructed from a tree T in \mathbb{T}_n as in Definition 5.2. For each p-vertex v of T the flag complex $L_v = \Delta_v^{n-1} * B_v$ defines a right-angled Artin group A_{L_v} which is the product of a free group of rank $k = w(v)$ with \mathbb{Z}^n.

We can consider the free group of rank k is the fundamental group of a $(k + 1)$-punctured sphere S_{k+1}. Therefore, the right-angled Artin group A_{L_v} is the fundamental group of the $(n + 1)$-manifold $M_v = S_{k+1} \times T^n$ with k n-simplices of the form $\Delta_v^{n-1} * b$ ($b \in B_v$) representing the fundamental groups of k of the $(k + 1)$ boundary components.

When two vertex spaces L_v and $L_{v'}$ of L intersects in an n-simplex, this correspond to gluing the corresponding manifolds M_v and $M_{v'}$ along a boundary component by a flip. Therefore, we can associate to any flag complex L in \mathbb{L}_n a space X_L with $\pi_1(X_L) = A_L$. Thus, the right-angled Artin group A_L acts properly and cocompactly on the universal cover \tilde{X}_L of X_L. We called \tilde{X}_L geometric model of the right-angled Artin group A_L.

By the above construction, the space \tilde{X}_L can be decomposed as copies of $\tilde{M}_v = \tilde{S}_{k+1} \times \mathbb{R}^n$, which we called geometric pieces with p-vertex v of T and
they are glued accordingly. Moreover, each geometric piece have boundaries which are not shared with other geometric pieces in the decomposition.

In [BJN10], Behrstock-Januszkiewicz-Neumann use above geometric models to classify such right-angled Artin groups A_L up to quasi-isometry. Before giving a complete quasi-isometry classification for their RAAGs, for each tree $T \in \mathcal{T}_n$ Behrstock-Januszkiewicz-Neumann colored it using a color set

$$C_1 = \{c, b_0, b_1, b_2, \ldots, b_{n-1}, b_n\}$$

in the identical way of labelling vertices of T. More precisely, we color each f-vertex by c and color each p-vertex labelled by i in \mathbb{I}_n by b_i. Although it seems to be redundant to color the tree T in the way that is identical to their vertex labels, but we still want to differentiate coloring and labeling so we can compare this coloring with another coloring on T we will construct later. The following theorem talks about a complete quasi-isometry classification of the collection of RAAGs $\{A_L\}_{L \in \mathcal{L}_n}$ for each $n \geq 1$.

Theorem 5.8 (Theorem 1.1 in [BJN10]). Let L and L' be two flag complexes in \mathcal{L}_n. Assume that L and L' are constructed from the corresponding trees T and T' as in Definition 5.2 and we color these trees by the color set C_1. Then two right-angled Artin groups A_L and $A_{L'}$ are quasi-isometric if and only if two trees T and T' are bisimilar after possibly reordering the p-colors by an element of the symmetric group on $(n + 1)$ elements.

5.3. Geometric models for high dimensional right-angled Coxeter groups with nerves in \mathbb{K}_n and quasi-isometry classification

In this section, we will construct a geometric model for the right-angled Coxeter group G_K where K is a flag complex in \mathbb{K}_n. We then apply this geometric model and line by line argument as in Section 3 and Section 4 of [BJN10] to get the proof of Theorem 1.3. Before we construct a geometric model for G_K we need a new coloring for each tree T in \mathcal{T}_n as the following.

New coloring of each tree T in \mathcal{T}_n. Let C_1 be the color set given by Subsection 5.2. Let

$$C_2 = \{c, b_0, b_1, b_2, \ldots, b_{n-1}, b_n, w_0, w_1, w_2, \ldots, w_{n-1}, w_n\},$$

that contains the color set C_1.

A new coloring is similar to the previous coloring except we will take vertex weight involved in the coloring process. We first color each f-vertex of T by c in this coloring as we did with the previous coloring.

We color a p-vertex as the following. Assume that a p-vertex v is labelled by a number i in \mathbb{I}_n. We color v by b_i if the weight of v is strictly greater than its valence and we color v by w_i if the weight of v is the same as its valence. Therefore, two different ways of coloring (C_1 and C_2) are identical if and only if the weight of each p-vertex is strictly greater than its valence.

Construction of geometric models:

We now construct geometric models for our RACGs. Let K be a flag complex in \mathbb{K}_n and we assume that K can be constructed from a tree T in
Let Σ_K be the Davis complex of the right-angled Coxeter group G_K. We now construct a “fatten” Davis complex Y_K on which G_K acts properly and cocompact.

For each p-vertex v of T we have the associated flag complex $K_v = S_v^{n-1} \ast A_v$, where S_v^{n-1} is an $(n-1)$-sphere $S_0 \ast S_0 \ast \cdots \ast S_0$ and A_v is the set of $w(v)$ distinct points with some cyclic ordering. Assume that elements in A_v are labelled cyclically by a_i where $i \in \mathbb{Z}_n$ ($n = w(v)$). The Davis complex of the right-angled Coxeter group G_{A_v} is an n–regular tree T_n with edges labelled by a_i. We first construct a “fatten” tree $F(T_n)$ of T_n as follows:

We replace each vertex of T_n by a regular n–gon with sides labelled cyclically by \mathbb{Z}_n and we also assume the length side of the n–gon is $1/2$. We replace each edge E labelled by a_i by a strip $E \times [-1/4, 1/4]$. We label each side of length 1 of the strip $E \times [-1/4, 1/4]$ by a_i and we identify the edge E to $E \times \{0\}$ of the strip. Moreover, if w is an endpoint of the edge E of T_n, then the edge $\{w\} \times [-1/4, 1/4]$ is identified to the side labelled by a_i of the n–gon that replaces w. This is clear that the right-angled Coxeter group G_{A_v} acts properly and cocompactly on the fattened tree $F(T_n)$ as an analogous way its acts on the Davis complex T_n. Moreover, the fattened tree $F(T_n)$ is a 2-dimensional manifold and each boundary component is a line which is labelled concatenatively by $\{a_{i-1}, a_i\}$ for some $i \in \mathbb{Z}_n$.

The Davis complex $\Sigma_{S_v^{n-1}}$ of the right-angled Coxeter group $G_{S_v^{n-1}}$ is isometric to \mathbb{R}^n. Let $P_v = \Sigma_{S_v^{n-1}} \times F(T_n)$. Then the right-angled Coxeter group G_{K_v} acts properly and cocompactly on P_v obviously. Moreover, P_v is an $(n + 1)$-manifold and each boundary components of P_v are copies of the Davis complexes of right-angled Coxeter groups $G_{S_v^{n-1} \ast \{a_{i-1}, a_i\}}$ ($i \in \mathbb{Z}_n$).

For each f-vertex u that is adjacent to a p-vertex v the flag complex K_u is identified to a subcomplex of the form $S_v^{n-1} \ast \{a_{i-1}, a_i\}$ in $K_v = S_v^{n-1} \ast A_v$. Therefore, each boundary component of P_v that is a copy of the Davis complex of right-angled Coxeter group $G_{S_v^{n-1} \ast \{a_{i-1}, a_i\}}$ can also be considered as a copy of the Davis complex Σ_{K_u}. Thus, using the Bass-Serre tree \tilde{T} of the decomposition of the right-angled Coxeter group G_{K_v} as the tree T of subgroups we can form a space Y_K by gluing copies of each space P_v appropriately and we obtain a proper, cocompact action of G_K on the new space Y_K. We call each copy of P_v for some p-vertex v of T a geometric piece of type v and we call the space Y_K a geometric model for the right-angled Coxeter group G_{K}.

Remark 5.9.

1. We observe that for each p-vertex v a geometric piece of type v has boundary components which are not shared with other geometric pieces if and only if the weight of the vertex v is strictly greater than its valence (i.e. the vertex v is colored by some color b_i when we color the tree T using color set C_2 as above).

2. We remark that the geometric model Y_K of a right-angled Coxeter group G_K ($K \in \mathbb{K}_n$) have a similar structure with the geometric
model \tilde{X}_L of a right-angled Artin group A_L ($L \in \mathbb{L}_n$) excepts Y_K may contains geometric pieces such that all its boundary components are shared with other geometric pieces.

Proof of Theorem 1.3. We use the geometric model Y_K in the construction above for each right-angled Coxeter group G_K ($K \in \mathbb{K}_n$) and line by line argument as in Section 3 and Section 4 of [BJN10] to get the proof. □

We can also use an almost identical proof as in Sections 3 and 4 in [BJN10] to prove the following theorem:

Theorem 5.10. Let L be a flag complex in \mathbb{L}_n and let K be a flag complex in \mathbb{K}_n. Assume that L and K can be constructed from two trees T_L and T_K in \mathbb{T}_n respectively. We color the tree T_L by the color set C_1 and the tree T_K by the color set C_2. Then RAAG A_L and RACG G_K are quasi-isometric if and only if p-vertices of T_K are only colored by colors in the set C_1 and two colored trees T_L and T_K are bisimilar after possibly reordering the p-colors by an element of the symmetric group on $n + 1$ elements.

6. Strongly quasiconvex subgroups of \mathcal{CF}S right-angled Coxeter groups

6.1. Background on strongly quasiconvex subgroups and stable subgroups. In this subsection, we review two notions of quasiconvex subgroups and stable subgroups. We also recall some results related to these two notions.

Definition 6.1. A subset A of a geodesic metric space X is Morse if for every $K \geq 1, C \geq 0$ there is some $M = M(K, C)$ such that every (K, C)–quasigeodesic with endpoints on A is contained in the M–neighborhood of A. We call the function M a Morse gauge.

Definition 6.2. Let $\Phi : A \to X$ be a quasi-isometric embedding between geodesic metric spaces. We say A is strongly quasiconvex in X if the image $\Phi(A)$ is Morse in X. We say A is stable in X if for any $K \geq 1, L \geq 0$ there is an $R = R(K, L) \geq 0$ so that if α and β are two (K, L)–quasi-geodesics with the same endpoints in $\Phi(A)$, then the Hausdorff distance between α and β is less than R.

Note that when we say A is strongly quasiconvex (stable) in X we mean that A is strongly quasiconvex (stable) in X with respect to a particular quasi-isometric embedding $\Phi : A \to X$. Such a quasi-isometric embedding will always be clear from context, for example an undistorted subgroup H of a finitely generated group G. We now come up with concepts of strongly quasiconvex subgroups and stable subgroups.

Definition 6.3. Let G be a finite generated group and S an arbitrary finite generating set of G. Let H be a finite generated subgroup of G and T an arbitrary finite generating set of H. The subgroup H is undistorted in G if
the natural inclusion $i : H \to G$ induces a quasi-isometric embedding from the Cayley graph $\Gamma(H, T)$ into the Cayley graph $\Gamma(G, S)$. We say H is stable in G if $\Gamma(H, T)$ is stable in $\Gamma(G, S)$.

We remark that stable subgroups were proved to be independent of the choice of finite generating sets (see Section 3 in [DT15b]).

Definition 6.4. Let G be a finite generated group and H a subgroup of G. We say H is strongly quasiconvex in G if H is a Morse subset in the Cayley graph $\Gamma(G, S)$ for some (any) finite generating set S.

We remark that strongly quasiconvex subgroups were proved to be independent of the choice of finite generating sets of the ambient groups. Moreover, strongly quasiconvex subgroups are all finitely generated and undistorted. We refer the reader to the work of the second author in Section 4 in [Traa] for more details. The following proposition tells us a relation between strongly quasiconvex subgroups and stable subgroups.

Proposition 6.5 (Proposition 4.3 in [Traa]). Let G be a finitely generated group. A subgroup H of G is stable if and only if H is strongly quasiconvex and hyperbolic.

The following proposition gives us a way to get another quasiconvex subgroup from a strongly quasiconvex subgroup.

Proposition 6.6 (Proposition 4.11 in [Traa]). Let G be a finitely generated group and A undistorted subgroup of G. If H is a strongly quasiconvex subgroup of G, then $H_1 = H \cap A$ is a strongly quasiconvex subgroup of A. In particular, H_1 is finitely generated and undistorted in A.

We now discuss the height and the width of subgroups.

Definition 6.7. Let G be a group and H a subgroup.

1. Conjugates $g_1 H g_1^{-1}, \ldots, g_k H g_k^{-1}$ are essentially distinct if the cosets $g_1 H, \ldots, g_k H$ are distinct.
2. H has height at most n in G if the intersection of any $(n+1)$ essentially distinct conjugates is finite. The least n for which this is satisfied is called the height of H in G.
3. The width of H is the maximal cardinality of the set
 \[\{g_i H : |g_i H g_i^{-1} \cap g_j H g_j^{-1}| = \infty\}\], where $\{g_i H\}$ ranges over all collections of distinct cosets.

We note that finite subgroups and subgroups of finite index have finite height and width, and infinite normal subgroups of infinite index have infinite height and width. Hence, the next proposition states that strongly quasiconvex subgroups are far from being normal.

Theorem 6.8 (Theorem 1.2 in [Traa]). Let G be a finitely generated group and let H be a strongly quasiconvex subgroup. Then H has finite height and finite width.
6.2. Strongly quasiconvex subgroups and stable subgroups in certain tree of groups and application to right-angled Coxeter groups.

In this subsection, we prove that torsion free, strongly quasiconvex subgroups of infinite index of certain tree of groups are free. This result can be applied to right-angled Coxeter groups G whose graphs Γ are \mathcal{CFS} and satisfy Standing Assumptions.

Lemma 6.9. Assume a group G is decomposed as a tree T of groups, where each vertex group is finitely generated and each edge group is infinite. Let G_v be a vertex subgroup. Then for each g_1 and g_2 in G there is a finite sequence of conjugates of vertex subgroups $g_1G_vg^{-1}_1 = Q_0, Q_1, \cdots, Q_m = g_2G_vg^{-1}_2$ such that $Q_{i-1} \cap Q_i$ is infinite for each $i \in \{1, 2, \cdots, m\}$.

Proof. For each vertex v of T let S_v be a finite generating set of the vertex group G_v. Let $S = \cup S_v$. Then S is a finite generating set of G. Let $n = |g^{-1}_1g_2|s$ and we will prove the above proposition by induction on n. If $n = 0$, then $g_1 = g_2$. Therefore, the conclusion is true obviously. We now assume that $n = 1$. Then there is a generator a in S such that $g_2 = ga$. Assume that a is an element in S_u for some vertex u of T. Since T is connected, there is a finite sequence of vertices of $u = u_0, u_1, u_2, \cdots, u_\ell = v$ such that u_{i-1} is adjacent to u_i for each $i \in \{1, 2, 3, \cdots, \ell\}$. Let $P_i = g_1Gu_ig_1^{-1}$ and $P'_i = g_2Gu_ig_2^{-1}$ for each $i \in \{0, 1, 2, 3, \cdots, \ell\}$. Since each edge group is infinite, $P_{i-1} \cap P_i$ and $P'_{i-1} \cap P'_i$ are infinite for each $i \in \{1, 2, 3, \cdots, \ell\}$. Moreover, $P_0 = P'_0$ because $g_2 = ga$ and a is a group element in the vertex subgroup $G_{u_0} = G_u$. Therefore, the conclusion is true for $n = 1$ obviously.

Assume the conclusion is true for all $n \leq k$ for some $k \geq 1$. We will prove that the conclusion is true for $n = k + 1$. In fact, if $|g^{-1}_1g_2|s = k + 1$, then there is g_3 in G such that $|g^{-1}_1g_3|s = k$ and $|g^{-1}_3g_2|s = 1$. By the inductive hypothesis, there is a finite sequence of conjugates of vertex subgroups $g_1G_vg^{-1}_1 = L_0, L_1, \cdots, L_m = g_3G_vg_3^{-1}$ such that $L_{i-1} \cap L_i$ is infinite for each $i \in \{1, 2, \cdots, m\}$. Similarly, there is a finite sequence of conjugates of vertex subgroups $g_3G_vg_3^{-1} = L'_0, L'_1, \cdots, L'_{m_2} = g_2G_vg_2^{-1}$ such that $L'_{i-1} \cap L'_i$ is infinite for each $i \in \{1, 2, \cdots, m_2\}$. Therefore, there is a finite sequence of conjugates of vertex subgroups $g_1G_vg_1^{-1} = Q_0, Q_1, \cdots, Q_m = g_2G_vg_2^{-1}$ such that $Q_{i-1} \cap Q_i$ is infinite for each $i \in \{1, 2, \cdots, m\}$. This implies that the conclusion is true for $n = k + 1$. \qed

Proposition 6.10. Assume a group G is decomposed as a tree T of groups that satisfies the following.

1. For each vertex v of T the vertex group G_v is finitely generated and undistorted. Moreover, any strongly quasiconvex, infinite subgroup of G_v is of finite index.
2. Each edge group is infinite.

Then, if H is a strongly quasiconvex subgroup of G of infinite index, then $gHg^{-1} \cap G_v$ is finite for each vertex group G_v and each group element g.

THE COARSE GEOMETRY OF CERTAIN RIGHT-ANGLED COXETER GROUPS 33
Proof. We assume for the contradiction that \(g_0 H g^{-1} \cap G_v \) is infinite for some vertex group \(G_v \) and some \(g_0 \in G \). We claim that \(gHg^{-1} \cap G_v \) has finite index in \(G_v \) for all \(g \in G \). In fact, since \(g_0 H g^{-1} \) is a strongly quasiconvex subgroup and \(G_v \) is an undistorted subgroup, then \(g_0 H g^{-1} \cap G_v \) is a strongly quasiconvex subgroup of \(G_v \) by Proposition 6.10. Therefore, \(g_0 H g^{-1} \cap G_v \) has finite index in \(G_v \), by the hypothesis.

We now prove that \(g H g^{-1} \cap G_v \) has finite index in \(G_v \) for all \(g \in A_T \). By Lemma 6.9, there is a finite sequence of conjugates of vertex subgroups \(g_0^{-1} G_v g_0 = Q_0, Q_1, \ldots, Q_m = g^{-1} G_v g \) such that \(Q_{i-1} \cap Q_i \) is infinite for each \(i \in \{1, 2, \ldots, m\} \). Since \(g_0 H g_0^{-1} \cap G_v \) has finite index in \(G_v \), \(H \cap g^{-1} G_v g_0 \) has finite index in \(Q_0 = g_0^{-1} G_v g_0 \). Also, subgroup \(Q_0 \cap Q_1 \) is infinite. Then, \(H \cap Q_1 \) is infinite. Using a similar argument as above, we obtain \(H \cap Q_1 \) has finite index in \(Q_1 \). Repeating this process, we have \(H \cap g^{-1} G_v g \) has finite index in \(g^{-1} G_v g \). In other word, \(g H g^{-1} \cap G_v \) has finite index in \(G_v \).

By Theorem 6.8 there is a number \(n \) such that the intersection of any \((n + 1)\) essentially distinct conjugates of \(H \) is finite. Since \(H \) has infinite index in \(G \), there is \(n + 1 \) distinct element \(g_1, g_2, \ldots, g_{n+1} \) such that \(g_i H \neq g_j H \) for each \(i \neq j \). Also, \(g_i H g_i^{-1} \cap G_v \) has finite index in \(G_v \) for each \(i \). Then \((\cap g_i H g_i^{-1}) \cap G_v \) also has finite index in \(G_v \). In particular, \(\bigcap g_i H g_i^{-1} \) is infinite which is a contradiction. Therefore, \(g H g^{-1} \cap G_v \) is finite for each vertex group \(G_v \).

Proposition 6.11. Assume a group \(G \) is decomposed as a tree \(T \) of groups. Let \(H \) be a subgroup of \(G \) such that \(g H g^{-1} \cap G_v \) is trivial for each vertex group \(G_v \) and each group element \(g \). Then \(H \) is free.

Proof. We prove the above proposition by induction on the number of vertices of the tree \(T \). For the base case \(T = v \), \(G = \Gamma_v \) and \(H = \{1\} \). Therefore, the result in this case is obvious. For the inductive step, choose a vertex \(v \) of \(T \) of degree 1. Let \(e \) be the unique edge of \(T \) containing \(v \) and \(G_e \) the corresponding edge group. Let \(T' \) be a subtree of \(T \) induced by all vertices of \(T \) except \(v \) and let \(G' \) be the tree \(T' \) of groups. We observe that \(G = G' *_{G_e} G_v \). By standard Bass-Serre Theory, we see that \(H \) acts on the corresponding Bass-Serre tree with trivial edge stabilizer. Therefore, there exists a (possibly infinite) collection of subgroups \(\{H_i\} \) with each \(H_i \) conjugate to \(G' \) in \(G \) such that \(H \) is a free product of subgroups \(H_i \) with possibly an additional free factor. Since \(H_i \) is conjugate into \(G' \) and the tree \(T' \) has fewer vertices than \(T \), we see that \(H \) is free by induction.

Proof of Proposition 1.5. The proof is a combination of Proposition 6.10 and Proposition 6.11.

Proposition 6.12. If \(G \) is a finitely generated group that has infinite center and \(H \) is an infinite strongly quasiconvex subgroup of \(G \), then \(H \) is of finite index.

Proof. Let \(Z \) be the center of the group \(G \). We first prove that the subgroup \(Z \cap H \) has finite index in \(Z \). Assume for a contradiction that the subgroups
$Z \cap H$ has infinite index in Z. Then there is an infinite sequence (z_n) of elements in Z such that $z_i(Z \cap H) \neq z_j(Z \cap H)$ for $i \neq j$. Therefore, $z_i H \neq z_j H$ for $i \neq j$. However, we also have $z_i H z_i^{-1} = z_j H z_j^{-1}$ for all $i \neq j$ which contradicts to Theorem 1.2 in [Traa] that a strongly quasiconvex subgroup has finite height. Therefore, the subgroup $Z \cap H$ has finite index in Z. In particular, the subgroup $Z \cap H$ is infinite.

We now assume for a contradiction that the subgroup H has infinite index in G. Then there is an infinite sequence (g_n) of elements in G such that $g_i H \neq g_j H$ for $i \neq j$. However, $Z \cap H$ is an infinite subgroup of $g_i H g_i^{-1}$ for all i which contradicts to Theorem 1.2 in [Traa] that a strongly quasiconvex subgroup has finite height. Therefore, the subgroup H has finite index in G. \square

By combining the above proposition with Proposition 1.5, we obtain the proof of Theorem 1.4.

Proof of Theorem 1.4. Obviously, the right-angled Coxeter group G_K is a tree of groups whose vertex groups have infinite center and whose edge groups are infinite. Let G_1 be a finite index torsion free subgroup of the right-angled Coxeter group G_K and $H_1 = H \cap G_1$. Then H_1 is a strongly quasiconvex, torsion free subgroup of G_K of infinite index. Therefore, H_1 is a free group by Propositions 1.5 and 6.12. Also, H_1 is a finite index subgroup of H. Therefore, the subgroup H is virtually free. \square

Example 6.13. We now construct a connected, triangle-free, CFS graph Γ with no separating vertices or edges such that the corresponding right-angled Coxeter group G_Γ has a non-stable, strongly quasiconvex subgroup of infinite index.

Let Γ be the graph in Figure 6 and K be the red 4-cycle of Γ. It is not hard to check Γ is connected, triangle-free, CFS and has no separating vertices or edges. Moreover, the 4-cycle K does not contain any pair of non-adjacent vertices of 4-cycle other than itself. Therefore, the subgroup $H = G_K$ is strongly quasiconvex by Theorem 1.11 in [Traa]. We note that infinite index in G_Γ. Also H is not hyperbolic and therefore H is not stable.

Remark 6.14. The existence of the such subgroup $H \leq G_\Gamma$ in Example 6.13 implies that the group G_Γ is not commensurable to any right-angled Artin group because all strongly quasiconvex subgroups of infinite index of a one-ended right-angled Artin group are free.

References

[BC12] Jason Behrstock and Ruth Charney. Divergence and quasimorphisms of right-angled Artin groups. *Math. Ann.*, 352(2):339–356, 2012.

[BD14] Jason Behrstock and Cornelia Druțu. Divergence, thick groups, and short conjugators. *Illinois J. Math.*, 58(4):939–980, 2014.

[BDM09] Jason Behrstock, Cornelia Druțu, and Lee Mosher. Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity. *Math. Ann.*, 344(3):543–595, 2009.
Figure 6. The special subgroup H generated by the red 4-cycle is a non-stable, strongly quasiconvex subgroup of infinite index of the right-angled Coxeter group G_{Γ}.

[Beh] Jason Behrstock. A counterexample to questions about boundaries, stability, and commensurability. Submitted. arXiv:1705.03984.
[BFRHS] Jason Behrstock, Victor Falgas-Ravry, Mark F. Hagen, and Timothy Susse. Global structural properties of random graphs. Submitted. arXiv:1505.01913.
[BHS17] Jason Behrstock, Mark F. Hagen, and Alessandro Sisto. Thickness, relative hyperbolicity, and randomness in Coxeter groups. *Algebr. Geom. Topol.*, 17(2):705–740, 2017. With an appendix written jointly with Pierre-Emmanuel Caprace.
[BJN10] Jason A. Behrstock, Tadeusz Januszkiewicz, and Walter D. Neumann. Quasi-isometric classification of some high dimensional right-angled Artin groups. *Groups Geom. Dyn.*, 4(4):681–692, 2010.
[BN08] Jason A. Behrstock and Walter D. Neumann. Quasi-isometric classification of graph manifold groups. *Duke Math. J.*, 141(2):217–240, 2008.
[Cap09] Pierre-Emmanuel Caprace. Buildings with isolated subspaces and relatively hyperbolic Coxeter groups. *Innov. Incidence Geom.*, 10:15–31, 2009.
[Cap15] Pierre-Emmanuel Caprace. Erratum to “Buildings with isolated subspaces and relatively hyperbolic Coxeter groups” [MR2665193]. *Innov. Incidence Geom.*, 14:77–79, 2015.
[CH17] Matthew Cordes and David Hume. Stability and the Morse boundary. *J. Lond. Math. Soc. (2)*, 95(3):963–988, 2017.

[Cor] Matthew Cordes. Morse boundaries of proper geodesic metric spaces. Preprint. arXiv:1502.04376.

[CS15] Ruth Charney and Harold Sultan. Contracting boundaries of CAT(0) spaces. *J. Topol.*, 8(1):93–117, 2015.

[Dav08] Michael W. Davis. *The geometry and topology of Coxeter groups*, volume 32 of *London Mathematical Society Monographs Series*. Princeton University Press, Princeton, NJ, 2008.

[DJ00] Michael W. Davis and Tadeusz Januszkiewicz. Right-angled Artin groups are commensurable with right-angled Coxeter groups. *J. Pure Appl. Algebra*, 153(3):229–235, 2000.

[DO01] Michael W. Davis and Boris Okun. Vanishing theorems and conjectures for the ℓ^2-homology of right-angled Coxeter groups. *Geom. Topol.*, 5:7–74, 2001.

[DS05] Cornelia Drutu and Mark Sapir. Tree-graded spaces and asymptotic cones of groups. *Topology*, 44(5):959–1058, 2005. With an appendix by Denis Osin and Sapir.

[DST] Pallavi Dani, Emily Stark, and Anne Thomas. Commensurability for certain right-angled Coxeter groups and geometric amalgams of free groups. Submitted. arXiv:1610.06245.

[DT] Pallavi Dani and Anne Thomas. Bowditch’s JSJ tree and the quasi-isometry classification of certain Coxeter groups. Preprint. arXiv:1402.6224.

[DT15a] Pallavi Dani and Anne Thomas. Divergence in right-angled Coxeter groups. *Trans. Amer. Math. Soc.*, 367(5):3549–3577, 2015.

[DT15b] Matthew Gentry Durham and Samuel J. Taylor. Convex cocompactness and stability in mapping class groups. *Algebr. Geom. Topol.*, 15(5):2839–2859, 2015.

[Gen] Anthony Genevois. Hyperbolicities in CAT(0) cube complexes. Submitted. arXiv:1709.08843.

[Ger94a] S. M. Gersten. Divergence in 3-manifold groups. *Geom. Funct. Anal.*, 4(6):633–647, 1994.

[Ger94b] S. M. Gersten. Quadratic divergence of geodesics in CAT(0) spaces. *Geom. Funct. Anal.*, 4(1):37–51, 1994.

[Gor04] C. McA. Gordon. Artin groups, 3-manifolds and coherence. *Bol. Soc. Mat. Mexicana (3)*, 10(Special Issue):193–198, 2004.

[HNT] Matthew Haulmark, Hoang Thanh Nguyen, and Hung Cong Tran. On boundaries of relatively hyperbolic right-angled Coxeter groups. Submitted. arXiv:1708.07818.

[Kim] Heejoung Kim. Stable subgroups and strongly quasiconvex subgroups in mapping class groups. Submitted. arXiv:1710.11617.

[KL98] M. Kapovich and B. Leeb. 3-manifold groups and nonpositive curvature. *Geom. Funct. Anal.*, 8(5):841–852, 1998.

[Lev18] Ivan Levcovitz. Divergence of CAT(0) cube complexes and Coxeter groups. *Algebr. Geom. Topol.*, 18(3):1633–1673, 2018.

[Sis] Alessandro Sisto. On metric relative hyperbolicity. Preprint. arXiv:1210.8081.

[Traa] Hung Cong Tran. On strongly quasiconvex subgroups. Submitted. arXiv:1707.05581.

[Trab] Hung Cong Tran. Purely loxodromic subgroups in right-angled Coxeter groups. Submitted. arXiv:1703.09032.
