ADVERSARIAL ENVIRONMENT GENERATION FOR LEARNING TO NAVIGATE THE WEB

Izzeddin Gur, Natasha Jaques, Kevin Malta, Manoj Tiwari, Honglak Lee, Aleksandra Faust
Google Research, Mountain View, CA, 94043
{izzeddin,natashajaques,kmalta,mjtiwari,honglak,sandrafaust}@google.com

ABSTRACT

Learning to autonomously navigate the web is a difficult sequential decision-making task. The state and action spaces are large and combinatorial in nature, and websites are dynamic environments consisting of several pages. One of the bottlenecks of training web navigation agents is providing a learnable curriculum of training environments that can cover the large variety of real-world websites. Therefore, we propose using Adversarial Environment Generation (AEG) to generate challenging web environments in which to train reinforcement learning (RL) agents. We provide a new benchmarking environment, gMiniWoB, which enables an RL adversary to use compositional primitives to learn to generate arbitrarily complex websites. To train the adversary, we propose a new technique for maximizing regret using the difference in the scores obtained by a pair of navigator agents. Our results show that our approach significantly outperforms prior methods for minimax regret AEG. The regret objective trains the adversary to design a curriculum of environments that are “just-the-right-challenge” for the navigator agents; our results show that over time, the adversary learns to generate increasingly complex web navigation tasks. The navigator agents trained with our technique learn to complete challenging, high-dimensional web navigation tasks, such as form filling, booking a flight etc. We show that the navigator agent trained with our proposed Flexible b-PAIRED technique significantly outperforms competitive automatic curriculum generation baselines—including a state-of-the-art RL web navigation approach—on a set of challenging unseen test environments, and achieves more than 80% success rate on some tasks.

1 INTRODUCTION

The goal of this work is to train reinforcement learning (RL) agents to navigate the web; specifically, by correctly entering relevant information into unknown, real-world websites. This ability could enable a user to issue requests such as, “Buy me a plane ticket to Los Angeles leaving on Friday”, or “Post the following on my social media account”, and have the RL agent automatically handle the details of completing these tasks. However, the complexity and diversity of real-world websites makes this a formidable challenge.

To enable our agents to generalize to novel websites, they operate directly on the Document Object Model (DOM). The DOM is a tree of web elements, and agents must correctly select and fill out the appropriate elements. This makes the state-action space of the problem prohibitively large. Even if the agent is able to navigate the site to arrive at the correct form, and eventually select the correct element (e.g. the ‘departure’ field for booking a flight), there are many possible values it can insert (e.g. all user input). To mitigate this issue, past work (Shi et al., 2017; Liu et al., 2018) has relied on behavior cloning from expert demonstrations. However, this approach is brittle and cannot scale effectively. It is not possible to obtain demonstrations for navigating every possible website, especially since sites are frequently changed and updated. If there is no demonstration data available, a model based on imitation learning is unlikely to be able to generalize to a novel website.

Successfully navigating the wide range of real-world websites requires training an agent on a large distribution of possible tasks and environments. The question is how to create a distribution that will not only cover most real-world tasks, but can be presented in a curriculum that is learnable by
Figure 1: Samples of generated web pages from selected websites taken from early, middle, and late snapshots of the training (a-c) and unseen test “Login” website (d). Over time, the number of pages in a website decreases but the density of elements in a page increases with more task-oriented elements.

One option would be to manually design a pre-defined curriculum of hand-built websites. However, this is tedious, time-consuming, error-prone, and brittle; the designer is likely to miss some real-world edge cases. Another option would be to apply domain randomization (DR) (as in e.g. Jakobi (1997); Sadeghi & Levine (2016); Tobin et al. (2017)) to randomize parameters of websites, or automatically increase some parameter controlling the difficulty over time (as in Gur et al. (2019)). However, both approaches may fail to cover important test cases, and cannot tailor the difficulty of the parameter configuration to the current ability of the agent.

Therefore, in this work we leverage cutting-edge techniques for Adversarial Environment Generation (AEG) to build a curriculum of challenging web navigation tasks. Specifically, we train an adversarial RL agent to learn to create new pages in a web site in order to exploit the current weaknesses in an agent that is learning to navigate the web. To enable this AEG web-design technique, we build a new framework, gMiniWoB, that enables an adversary to construct websites out of common design primitives such as navigation bars, product carousels, item decks, web forms, and item carts. We are releasing this environment in open-source in the hopes of enabling further progress on this problem. To the best of our knowledge, we are the first to apply AEG to web navigation.

The goal of AEG is to automatically generate a curriculum of training environments that will cover the space of possible websites, and thereby enable generalization to real-world web navigation tasks. However, if we naively apply a minimax adversary—i.e. an adversary that seeks to minimize the performance of the learning agent—this curriculum is unlikely to emerge. This is because the adversary is motivated to create the hardest possible website, rather than tailor the difficulty of the site to the current skill level of the agent. Instead, PAIRED (Protagonist Antagonist Induced Regret Environment Design) (Dennis et al., 2020), a recently proposed AEG technique, trains the adversary to maximize the regret. We improve upon the original PAIRED algorithm with two novel algorithmic enhancements. First, we propose a more flexible method for computing the regret which makes our algorithm less vulnerable to becoming stuck in a local minimum. Second, we introduce an explicit budgeting mechanism, such that the adversary is penalized for making more complex environments when the agents cannot solve the task, and otherwise rewarded for making complex environments.

This paper makes the following contributions: i) A new benchmarking environment, gMiniWoB, which empowers the use of Adversarial Environment Generation for web navigation, by enabling the construction of websites out of compositional design primitives; ii) The Flexible b-PAIRED algorithm, which computes a more stable estimate of regret and directly incentivizes the adversary to tailor the complexity of the generated environment to the performance of the agent; and iii) empirical results demonstrating that Flexible b-PAIRED generates a curriculum of increasingly challenging websites, and produces agents that can successfully generalize to navigating complex, unseen sites at test time. Our approach significantly outperforms prior work on minimax regret AEG (Dennis et al., 2020), as well as a state-of-the-art approach for using RL to train web navigation agents (Gur et al., 2019). We hope that this work will provide a meaningful way to make progress on the exceptionally challenging problem of learning to navigate the web, and will be of interest to the wider RL research community for auto-curriculum design in complex and compositional environments.
2 RELATED WORK

Prior work on training agents to navigate the web introduced the Miniwob (Shi et al., 2017) and Miniwob++ (Liu et al., 2018) environments, but relied on obtaining expert demonstrations for each website, which cannot scale effectively to cover the large variety of real-world websites, and cannot adapt to changing websites. Further, these methods failed to solve complex web navigation tasks such as flight booking or social media interaction (Gur et al., 2019).

Gur et al. (2019) take a step farther by training an RL agent to solve complex web navigation tasks using a scheduled curriculum. The curriculum linearly increases a parameter p, in which $1 - p$ controls the number of web elements that are solved by querying an oracle policy, which is obtained via expert data. This work differs in several ways. First, we do not rely on any expert demonstrations to augment sparse rewards. We use AEG to automatically learn to generate a curriculum of web navigation tasks that are tailored to the current skill level of the agent. Next, we make no assumption on the availability of any website while they assume websites are given a priori. Lastly, our web navigation agents generalize to unseen environments.

Multi-agent training can be an effective method for automatically generating a curriculum of RL tasks (e.g. Leibo et al. (2019); Matiisen et al. (2019); Graves et al. (2017); Portelas et al. (2020)). For example, Asymmetric Self Play (ASP) (Sukhbaatar et al., 2017) trains two agents, in which the second agent must learn to repeat the actions taken by the first, demonstrator agent. Both agents play in the same, fixed environment. In contrast, we use a third agent to learn to generate challenging new environments. POET (Wang et al., 2019; 2020) is an AEG technique which uses a population of adversaries to generate the terrain a 2D walker agent must learn to navigate. To create a curriculum, POET requires generating many new environments, testing all agents within each one, and discarding environments based on a manually chosen a reward threshold, which wastes a significant amount of computation. Campero et al. (2020) use a teacher to propose navigation tasks; the teacher’s reward is based on whether the agent takes more steps than a threshold, a hyperparameter that is linearly increased over the course of training.

Most closely related to our work is PAIRED (Dennis et al., 2020), which is an AEG method for training agents with minimal regret that works by constraining the environment-generating adversary using the performance of a second agent. However, PAIRED only demonstrated results on simple gridworld environments, and did not expand to the type of complex, high-dimensional state-action space required for web navigation. We improve on PAIRED using a more flexible estimate of the regret, as well as a budget mechanism, and show that this significantly improves performance.

3 BACKGROUND

3.1 WEB NAVIGATION PROBLEM

Following previous work (Shi et al., 2017; Gur et al., 2019; Liu et al., 2018), we formulate web navigation as a sequential decision making problem where we train an agent, parameterized by a network $\pi(a_t|s_t; \Theta)$, that maps an input state s_t to output actions a_t to maximize the cumulative discounted reward, i.e., $O = \sum_{t=0}^{T} \gamma^t r_t$ where r_t is the reward at time step t, γ is a discount factor, and T is the length of an episode. We use the web page and user instruction as the input state. The web page is dynamically updated at each time step, while the instruction is fixed at the beginning of an episode. We represent web pages using Document Object Model (DOM), a tree of elements in a page, where each element is denoted by a set of (attribute, value) pairs and an array of features (such as spatial coordinates). Instructions are given as a set of fields where each field is a (key, value) pair. Keys are fixed for each task and values dynamically change based on user input.

Each action is represented as a tuple (element, field) that denotes acting on the element using the field as an input; i.e. typing the value of the field into the element. Agents receive a task success reward (1.0 or -1.0) at the end of each episode, a potential-based reward when the value of an element in the page is updated, and a small penalty each timestep to encourage efficient navigation. As an example, consider a flight booking task where the agent is given an instruction {"Departure Date": "Friday", Destination Airport: "Los Angeles (LAX)"}. The agent first picks a field (e.g. destination airport) and finds the corresponding text box in the page; then the corre-
When the adversary generates an environment \(E \), it may strain the adversary to only generate feasible environments which the antagonist can complete. Thus, minimax adversaries are incentivized to create excessively difficult or impossible environments, which may not enable the agent to learn. Instead, PAIRED (Dennis et al., 2020) trains the protagonist against an adversary policy \(\pi_I \) to minimize the performance of an agent’s policy, \(\pi_P \). Let \(R_i^P = \sum_{t=1}^{T_i} \gamma^t r_i^P \) be the total reward received by the agent for trajectory \(i \). In minimax AEG, the objective for the adversary is simply:

\[
\max_{\pi_I} \min_i R_i^P
\]

Thus, minimax AEG trains an adversary that tries to fail to coordinate, then PAIRED minimizes regret with respect to the antagonist’s policy. In that case, the objective in Equation (1) only forces the protagonist to learn to be as good as the antagonist. If the protagonist fails to improve, or reaches a local optimum, then the adversary cannot continue to train the protagonist. In Section 4.3, we propose an improved objective which addresses this problem.

3.2 Adversarial Protagonist Antagonist Induced Regret Environment Design (PAIRED)

Adversarial Environment Generation (AEG) trains an adversary policy \(\pi_I \) to design environments to minimize the performance of an agent’s policy, \(\pi_P \). Let \(R_i^P = \sum_{t=1}^{T_i} \gamma^t r_i^P \) be the total reward received by the agent for trajectory \(i \). In minimax AEG, the objective for the adversary is simply:

\[
\max_{\pi_I} \min_i R_i^P
\]

Thus, minimax adversaries are incentivized to create excessively difficult or impossible environments, which may not enable the agent to learn. Instead, PAIRED (Dennis et al., 2020) trains the adversary against an adversary policy \(\pi_I \) to minimize the performance of an agent’s policy, \(\pi_P \). Let \(R_i^P = \sum_{t=1}^{T_i} \gamma^t r_i^P \) be the total reward received by the agent for trajectory \(i \). In minimax AEG, the objective for the adversary is simply:

\[
\max_{\pi_I} \min_i R_i^P
\]

Thus, minimax AEG trains an adversary that tries to fail to coordinate, then PAIRED minimizes regret with respect to the antagonist’s policy. In that case, the objective in Equation (1) only forces the protagonist to learn to be as good as the antagonist. If the protagonist fails to improve, or reaches a local optimum, then the adversary cannot continue to train the protagonist. In Section 4.3, we propose an improved objective which addresses this problem.

4 Web Environment Design

We start with an empty website that is gradually populated by new pages and links between them. Given that we represent pages by their DOM, we focus on creating DOM trees and assume links between pages are implicitly defined by events attached to certain elements.

While the most general approach to designing DOM trees would be combining a set of arbitrary elements in a bottom-up approach, this would generate a large number of malformed websites that are semantically incoherent. Consider the second page in Figure 3 where there is a text box and
Figure 3: A sample rollout of the adversary for compositional environment generation for web navigation problem. An initial observation (Obs) is given at the beginning of the rollout. f_0, f_K, f_L, f_P, and f_I denote networks for encoding initial observation, generating number of pages, page indices, primitives, and encoding LSTM inputs, respectively.

As a result, we formulate the website design as combining a set of primitive DOM sub-trees that are general enough to create complex websites but can be combined safely in a tree structure. We first create a set of underspecified DOM tree templates where certain elements and attributes are replaced with variables. By assigning values to variables in a template, a fully specified DOM tree primitive is generated that can be combined with other primitives to create a new web page. The order in which the primitives are combined also defines how the web page will be rendered as well.

Figure 2 illustrates an example underspecified DOM tree template and its instantiations with different variable assignments. We create an input template (Figure 2b) as a variable label and text box with a common parent. In Figure 2a, we pick the label element and assign a value to its text attribute while in Figure 2c, we assign a value to the inner text of the text box and ignore the label element.

4.1 WEBSITE DESIGN PRIMITIVES

We introduce a new framework called gMiniWoB for automated website generation, which implements 40 different design primitives from 11 different underspecified DOM templates. These primitives are widely used across the web and include ‘navigation bars’, ‘product carousels’, ‘item decks’, ‘web forms’, ‘item carts’, ‘dropdowns’, etc. Every primitive includes at least one actionable element that changes the DOM structure when the agent interacts with it. Each primitive is classified into 2 different categories based on their use in the reward computation: (i) Active primitives (used), and (ii) Passive primitives (not used). 26 of the 40 different primitives are active primitives and the rest are passive. When a new active primitive is added to a web page, it automatically also grows the instruction to accommodate the corresponding field. For example, adding ‘First Name’ text box in Figure 2c also adds a new field with “firstname” key into user instruction. This makes active primitives more complicated to learn than passive primitives, which mostly serve as noise. However, real websites contain many distracting elements (passive primitives), so it is important for agents to learn to ignore them. Appendix A.3 details all the design primitives used, and Appendix A.4 shows the websites in the testset.

4.2 ADVERSARY ARCHITECTURE

We propose an autoregressive adversary policy for the compositional environment generation problem where the goal is to place a set of design primitives to a set of locations. We parametrize the
adversary with a policy \(\pi_E(a^A|o^A)\) such that

\[
\pi_E(a^A|o^A) = \pi(k|K) \prod_{i=0}^{N} \pi(a_i|a_{0...i-1}, b_{0...i-1}, k) \pi(b_i|a_{0...i-1}, b_{0...i-1}, k)
\]

where \(N\) is an upper limit on the number of outputs, \(K\) is an upper limit on the number of locations, \(a_i\) is a design primitive, \(b_i\) is a location index, and \(o^A\) is an initial observation. The adversary first samples the number of locations \(k\) from a parametrized Categorical distribution \(\text{Cat}(0, K)\). Conditioned on \(o^A\), it executes an autoregressive model to generate a set of primitives and their corresponding locations within \([0, \ldots, K]\).

We sample \(o^A\) from the standard normal distribution, similar to generative adversarial networks (GAN), to allow the adversary to diversify its design distribution. This observation is encoded with a feed forward network \(h_0 = f_0(o^A)\) and \(h_0\) is passed to another network \(f_K\) that outputs a distribution over number of empty pages. The same hidden state \(h_0\) is passed to an LSTM network as the initial input vector and output of the LSTM is used by two independent networks \(f_P\) and \(f_L\) to (i) learn a distribution over design primitives and (ii) learn a distribution over locations, respectively. We sample a primitive and a location from these distributions and they are encoded by another network \(f_i\) into a hidden state which is used as the input to the LSTM at the next step. After running for \(N\) steps, sampled design actions are sent to a renderer module which generates the environment.

For the web navigation problem, \(K\) denotes the number of pages in the website, locations \((b_i)\) denote pages, and primitives \((a_i)\) denote DOM tree primitives. We illustrate a sample rollout of the adversary for web environment generation in Figure 5. We also augment the primitive design actions with a special \texttt{SKIP} action that does nothing when executed by the renderer. This allows the adversary to control the number of primitives added.

4.3 Flexible PAIRED

We use flexible antagonist selection to improve on the regret objective of Eq. 1. We initialize two agents \(A\) and \(P\). At each iteration, the adversary designs a new website and each agent collects a trajectory with return \(R\) by navigating the website and the regret is:

\[
\text{REGRET} = \max\{R^A, R^P\} - 0.5 \ast (R^A + R^P)
\]

This objective does not make a distinction between antagonist and protagonist agents, and instead annotates the best performing agent as the antagonist. As long as any agent has a higher performance than the other agent, the objective will continue to improve the weakest agent. During that time, the other agent in the policy continues learning, and therefore provide a stronger maximum performance against which we measure the regret. The Flexible PAIRED algorithm we propose is shown below. Using policy gradient updates, we train each agent in the population to optimize environmental reward, and the adversary to maximize the regret as computed in Eq. 3.

Algorithm 1 One step training of flexible PAIRED

1: **Input:** \(A, P\): Initialize two agents independently
2: \(W\) ← Run the adversary \(\pi_E\) to generate a new website
3: \(R^A, R^P\) ← Run agent \(A\) and \(P\) in the environment \(W\) and collect rewards
4: REGRET ← Compute regret as in Eq. 3
5: Update adversary parameters using REGRET as the reward
6: Update parameters of \(A\) and \(P\) using \(R^A\) and \(R^P\), respectively

4.4 Budget Enforcing on Adversary

Consider the following scenario where agents are placed on the home page of a shopping website where there are many possible elements, but only a single button that takes them to their account page. During exploration, agents mostly collect negative rewards for taking incorrect actions, bounded to a very narrow interval (as there is only a single optimal action). In this case, the regret is very small and non-informative, which hinders the adversary’s ability to design environments at an appropriate difficulty for agents to learn. This is true even with the proposed flexible regret objective.
To mitigate this problem, we use a budget enforcing objective in addition to the regret that binds the adversary’s design budget to the performance of the best agent. We approximate the effective budget of the adversary as the expected number of non-SKIP actions over N time steps and update this budget according to whether the agents are learning. More formally, we use the following minimization objective for budget enforcing that is added to the PAIRED objective:

$$O_{budget} = R_A \sum_{i=1}^{N} \log \pi(a_i = \text{SKIP}|a_0, b_0, \ldots, b_{i-1})$$

where R_A is the reward of the antagonist (or the best-performing) agent. This objective encourages the adversary to use less budget (more SKIP actions) when the agents are not yet learning (i.e., R_A is negative or low); it encourages the adversary to use more budget (less SKIP actions) when the navigator agents are collecting positive rewards in the environment.

5 Experiments and Methods

We evaluate our models on a variety of web environments implemented in MiniWoB framework (Shi et al., 2017; Liu et al., 2018). We implemented several challenging websites with varying difficulty levels using the same set of design primitives. These environments include ‘Login’, ‘Enter Address’, ‘Flight Booking’, ‘Enter Payment’, and ‘Shopping’ websites, where the agents need to enter text or select information in the website while navigating between pages. Each environment comes with 4 different difficulty levels by gradually adding more primitives to websites. These environments are never explicitly presented to agents during training, so performance in them measures how well agents can generalize to unseen websites at test time.

Agent architecture: Following Gur et al. (2019), we utilize an LSTM based DOM tree encoder and a feed forward network to encode profile fields. The navigator agent policy outputs a joint distribution over elements and fields by measuring pairwise similarities between element encodings and profile fields. We compute the state-value by using the marginal distribution of elements as attention weights over element encodings and passing the context vector through a FF network. Web navigation agents are trained with an actor-critic algorithm (Liu et al., 2018). We train the LSTM-based adversary network using Flexible PAIRED and Flexible b-PAIRED with policy gradient.

Baselines: We benchmark PAIRED, Flexible PAIRED, and Flexible b-PAIRED against two additional baselines. First, a Domain Randomization (DR) agent, which we implement using a similar approach as Dennis et al. (2020). We first sample the number of empty pages k from a uniform distribution $U[0, K]$. Next, we randomly sample a primitive (including SKIP), and a page from $U[0, k]$ for N steps. Second, a Curriculum Learning (CL) approach, which adapts the scheduled curriculum idea of Gur et al. (2019) to zero-shot environment generation where we are not given a specific website but a set of design primitives. We randomly sample each primitive w.r.t. a probability p where p is initialized with a small number and scheduled to reach 1.0 during training.

6 Results

We first compare the original PAIRED algorithm (which used separate antagonist and protagonist agents) to the proposed Flexible PAIRED algorithm that annotates the best performing agent as the antagonist. Flexible PAIRED considerably improves upon PAIRED, which fails to learn in this environment (Figure 4). One reason is that when agents are separate and have very similar rewards, especially early during training, the regret becomes very small. This uninformative signal makes it difficult for the adversary to learn. On the other hand, Flexible PAIRED computes a consistently positive regret signal, which more clearly indicates to the adversary which environments are challenging, but still feasible. The further ablation studies show that adding budget improves performance for both flexible, and original PAIRED method.

Comparison on test environments: We evaluate the performance of the proposed models and baselines on task success rate computed across test environments with different difficulty levels. Flexible b-PAIRED outperforms Flexible PAIRED indicating the budget objective significantly improves performance (Figure 5). Further, both techniques significantly outperform the baseline models on all tasks, with Flexible b-PAIRED effectively reaching more than 80% task success on difficulty 1
Presented at Deep RL Workshop, NeurIPS 2020

Figure 4: Comparison of PAIRED (Dennis et al., 2020) and Flexible PAIRED with and without budget enforcing; averaged over 4 difficulty levels. (f): Percentage of active primitives over training steps.

Figure 5: Aggregated task success rate comparison of Flexible b-PAIRED and baseline models on test environments with increasing difficulty levels. See Appendix A.2 for detailed results.

tasks. Even as the complexity of the environments continues to increase (see Section 6), Flexible b-PAIRED agents still perform consistently well without degrading performance. While CL outperforms Flexible PAIRED early in the training, its performance drops significantly due to ignoring agents’ skill level, and making environments that are too challenging for agents to complete. We also observe that Flexible b-PAIRED learns faster than Flexible PAIRED on all environments as Flexible b-PAIRED reacts to agents’ performance faster than Flexible PAIRED (see Appendix A.2).

Environments complexity: While agent performance improves over time, we would like to know if they are presented with more challenging environments over training. We estimate the percentage of active primitives generated as a measure of environment complexity. Learning a web page with more passive primitives is a relatively easier task than a page with more active primitives, because passive primitives either add noise and should ignored by the agents, or are used by agents only to navigate to another page. On the other hand, if there are more active primitives, not only will the size of the DOM tree increase but the number of profile fields will increase, making the matching between elements and profile more challenging. Flexible b-PAIRED starts around 60% random selection of primitives, and gradually generates more active primitives (Figure 4f). Although presented with more active primitives by Flexible b-PAIRED, agents are still able to improve thanks to Flexible b-PAIRED’s ability to accurately tune the difficulty of the environments according to agents’ skill. We also observe that the distribution of the primitives shifts later in the training to more complex and relevant primitives (see Appendix A.1).

7 Conclusion

This work presents a novel technique for Adversarial Environment Generation (AEG), which we show improves significantly over prior work. In addition, we apply AEG to the problem of web navigation, and provide an open-source environment that enables learning to design complex websites out of a set of compositional primitives. Our Flexible b-PAIRED method is able to generate a curriculum of increasingly complicated websites, and successfully trains agents which can navigate challenging, high-dimensional websites.
REFERENCES

Andres Campero, Roberta Raileanu, Heinrich Kütter, Joshua B Tenenbaum, Tim Rocktäschel, and Edward Grefenstette. Learning with amigo: Adversarially motivated intrinsic goals. arXiv preprint arXiv:2006.12122, 2020.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch, and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment design. Neural Information Processing Systems, 2020.

Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Automated curriculum learning for neural networks. arXiv preprint arXiv:1704.03003, 2017.

Izzeddin Gur, Uli Rueckert, Aleksandra Faust, and Dilek Hakkani-Tur. Learning to navigate the web. In ICLR, 2019.

Nick Jakobi. Evolutionary robotics and the radical envelope-of-noise hypothesis. Adaptive behavior, 6(2):325–368, 1997.

Joel Z Leibo, Edward Hughes, Marc Lanctot, and Thore Graepel. Autocurricula and the emergence of innovation from social interaction: A manifesto for multi-agent intelligence research. arXiv preprint arXiv:1903.00742, 2019.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement learning on web interfaces using workflow-guided exploration. arXiv preprint arXiv:1802.08802, 2018.

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher-student curriculum learning. IEEE transactions on neural networks and learning systems, 2019.

Eric Mazumdar, Lillian J Ratliff, Michael I Jordan, and S Shankar Sastry. Policy-gradient algorithms have no guarantees of convergence in continuous action and state multi-agent settings. arXiv preprint arXiv:1907.03712, 2019a.

Eric V Mazumdar, Michael I Jordan, and S Shankar Sastry. On finding local nash equilibria (and only local nash equilibria) in zero-sum games. arXiv preprint arXiv:1901.00838, 2019b.

Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. Teacher algorithms for curriculum learning of deep rl in continuously parameterized environments. In Conference on Robot Learning, pp. 835–853. PMLR, 2020.

Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real single-image flight without a single real image. arXiv preprint arXiv:1611.04201, 2016.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An open-domain platform for web-based agents. In International Conference on Machine Learning, pp. 3135–3144, 2017.

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and Rob Fergus. Intrinsic motivation and automatic curricula via asymmetric self-play. arXiv preprint arXiv:1703.05407, 2017.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain randomization for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23–30. IEEE, 2017.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired open-ended trailblazer (poet): Endlessly generating increasingly complex and diverse learning environments and their solutions. arXiv preprint arXiv:1901.01753, 2019.

Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeff Clune, and Kenneth O Stanley. Enhanced poet: Open-ended reinforcement learning through unbounded invention of learning challenges and their solutions. arXiv preprint arXiv:2003.08536, 2020.
Table 1: Task success rate comparison of PAIRED and baseline models on test environments with increasing difficulty levels. From left to right, columns correspond to increasing difficulty. From top to bottom, rows correspond to different test environments.

A APPENDIX

A.1 DISTRIBUTION OF PRIMITIVES DURING TRAINING

During training, the distribution of primitives become more skewed towards active primitives (as shown in Figure 4f), but as the environments get more challenging, new primitives are slowly introduced as well (Figure 6). What we observe from the histograms in Figure 6 is that new primitives are slowly introduced between middle and late snapshots while the ranking of the primitives is also slightly changed. For example, the adversary prefers ‘departureairport’ primitive more than ‘full-name’ primitive in the late snapshot of the training.

A.2 DETAILED RESULTS ON TEST ENVIRONMENTS

We detail the aggregated results in Figure 5 and present performance of agents across tasks and difficulty levels (Figure 1). On the easiest level of tasks, CL achieves slightly lower performance than Flexible b-PAIRED early in the training while as the task difficulty increases, the gap becomes more apparent. We observe that the primitive distribution in Figure 6c and task success rate results are consistent in which late in the training, the adversary focuses more on the ‘Flight Booking’ related primitives and its performance still strongly increases.
Figure 6: Histograms of primitives from early, middle, and late snapshots of the training.
Design Primitives and Their Descriptions

Design Primitive	Design Template	Active/Passive	Description
addressline1	input	active	Main address information
addressline2	input	active	Secondary address information
cabin	multi-selection	active	Multiple cabin options
captcha	input	active	Captcha information
carousel	carousel	passive	Items with images in a carousel with previous and next buttons
cart	cart	passive	Items in a product cart with promo code information
cc	multi-selection	active	Multiple credit card type options
cccvv	input	active	Credit card CVV information
ccexpdate	input	active	Credit card expiration date information
ccnumber	input	active	Credit card number information
city	input	active	City address information
dealmedia	media	passive	Product media with image, label, and link
deck	deck	passive	Multiple product decks with image, label, and link
departureairport	input	active	Departure airport information
departuredate	input	active	Departure date information
destinationairport	input	active	Destination airport information
destinationdate	input	active	Destination date information
firstname	input	active	First name information
flighttype	multi-selection	active	Multiple flight type options
footer1	footer	passive	Footer with links and information
forgotpassword	link	passive	Link with forgot password context
forgotusername	link	passive	Link with forgot username context
fullname	input	active	First and last name information
header	label	passive	Generic header
header/login	label	passive	Header for login form
header>Select_items	label	passive	Header for item selection
inpgroup1	input	passive	Generic input with default search context
lastname	input	active	Last name information
nav	navigation bar	passive	A navigation bar with a menu
next_checkout	button	passive	Next button with checkout context
next_login	button	passive	Next button with login context
next_login_page	button	passive	Next button with login context
numberofpeople	multi-selection	active	Multiple number of people options
password	input	active	Password information
rememberme	selection	active	Checkbox with remember me context
state	input	active	State information
stayloggedin	selection	active	Checkbox with stay logged in context
submit	button	passive	Submit button
username	input	active	Username information
zipcode	input	active	Zipcode information

In Table A.3 we present the list of design primitives, corresponding templates, types, and descriptions.
A.4 LIST OF TEST ENVIRONMENTS

In Figure 7 and 8, we present screenshots of the testing environments with the hardest difficulty levels. While “Login”, “Enter Address”, “Enter Payment”, and “Flight Booking” are single page environments, “Shopping” is a multi-page environment where an agent needs to first navigate the home page and then solve “Login” and “Enter Address” tasks.
Figure 8: Screenshots of multi-page “Shopping” environment. The “Shopping” environment is composed of a complex home page and additional “Login” and “Enter Address” pages.