Larval exposure to field-realistic concentrations of clothianidin has no effect on development rate, over-winter survival or adult metabolic rate in a solitary bee, *Osmia bicornis*

Elizabeth Nicholls Corresp. 1, Robert Fowler 1, Jeremy E Niven 1, James D Gilbert 1,2, Dave Goulson 1

1 School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
2 School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull, United Kingdom

Corresponding Author: Elizabeth Nicholls
Email address: E.Nicholls@sussex.ac.uk

There is widespread concern regarding the effects of agro-chemical exposure on bee health, of which neonicotinoids, systemic insecticides detected in the pollen and nectar of both crops and wildflowers, have been the most strongly debated. The majority of studies examining the effect of neonicotinoids on bees have focussed on social species, namely honey bees and bumble bees. However, most bee species are solitary, their life histories differing considerably from these social species, and thus it is possible that their susceptibility to pesticides may be quite different. Studies that have included solitary bees have produced mixed results regarding the impact of neonicotinoid exposure on survival and reproductive success. While the majority of studies have focused on the effects of adult exposure, bees are also likely to be exposed as larvae via the consumption of contaminated pollen. Here we examined the effect of exposure of *Osmia bicornis* larvae to a range of field-realistic concentrations (0-10 ppb) of the neonicotinoid clothianidin, observing no effect on larval development time, overwintering survival or adult weight. Flow-through respirometry was used to test for latent effects of larval exposure on adult physiological function. We observed differences between male and female bees in the propensity to engage in discontinuous gas exchange, however no effect of larval clothianidin exposure was observed. Our results suggest that previously reported adverse effects of neonicotinoids on *O. bicornis* are most likely mediated by impacts on adults.
Larval exposure to field-realistic concentrations of clothianidin has no effect on development rate, over-winter survival or adult metabolic rate in a solitary bee, *Osmia bicornis*

Elizabeth Nicholls¹, Robert Fowler¹, Jeremy E. Niven¹, James D. Gilbert¹,² and Dave Goulson¹

¹School of Life Sciences, University of Sussex, Falmer, UK
²School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull, UK

Corresponding Author:

Elizabeth Nicholls

Email Address: e.nicholls@sussex.ac.uk
Abstract
There is widespread concern regarding the effects of agro-chemical exposure on bee health, of which neonicotinoids, systemic insecticides detected in the pollen and nectar of both crops and wildflowers, have been the most strongly debated. The majority of studies examining the effect of neonicotinoids on bees have focussed on social species, namely honey bees and bumble bees. However, most bee species are solitary, their life histories differing considerably from these social species, and thus it is possible that their susceptibility to pesticides may be quite different. Studies that have included solitary bees have produced mixed results regarding the impact of neonicotinoid exposure on survival and reproductive success. While the majority of studies have focused on the effects of adult exposure, bees are also likely to be exposed as larvae via the consumption of contaminated pollen. Here we examined the effect of exposure of *Osmia bicornis* larvae to a range of field-realistic concentrations (0-10 ppb) of the neonicotinoid clothianidin, observing no effect on larval development time, overwintering survival or adult weight. Flow-through respirometry was used to test for latent effects of larval exposure on adult physiological function. We observed differences between male and female bees in the propensity to engage in discontinuous gas exchange, however no effect of larval clothianidin exposure was observed. Our results suggest that previously reported adverse effects of neonicotinoids on *O. bicornis* are most likely mediated by impacts on adults.

Introduction

Bees are important pollinators of crops and wild flowers, therefore ongoing population declines and extinctions are a major cause for concern, particularly considering increasing global reliance on insect-pollinated crops (Holden, 2006; Gross, 2008; Aizen & Harder, 2009). Such declines are likely attributable to a number of factors, including habitat loss, the spread of non-native species, emergent pathogens and perhaps most controversially, exposure to pesticides (Goulson, Lye, & Darvill, 2008; Goulson, Nicholls, Botías, & Rotheray, 2015; Ollerton, Erenler, Edwards, & Crockett, 2014; Vanbergen, 2013). Of the multitude of chemicals applied to arable land,
Neonicotinoids are some of the most widely used insecticides (Jeschke et al., 2011; Simon-Delso et al., 2014) and the class most strongly implicated in bee declines (Sanchez-Bayo & Goka, 2014; Woodcock et al., 2016). Typically applied as a seed treatment to oilseed and cereal crops, these systemic insecticides become incorporated into all tissues of the plant as it grows, including pollen and nectar, providing a direct route of oral exposure for bees and other pollinators.

Neonicotinoids are neuro-active insecticides which target nicotinic acetylcholine (nACh) receptors in the insect nervous system, causing over-stimulation of nerve cells, paralysis and at sufficiently high doses, death (Tomizawa & Casida, 2005; Palmer et al., 2013; Moffat et al., 2015). Laboratory studies have found the oral toxicity of neonicotinoids to be relatively high for bees (4-5 ng/honeybee, Suchail, Guez, & Belzunces, 2001), and sub-lethal effects have also been observed following exposure to concentrations within the range detected in field-collected pollen and nectar (reviewed in Alkassab & Kirchner, 2017). These effects include deficits in learning (Williamson & Wright, 2013; Stanley et al., 2015), foraging (Feltham, Park & Goulson, 2014; Gill & Raine, 2014) and homing ability (Henry et al., 2012), all of which are essential to bee survival and reproduction.

While previous research has typically focussed on the effects of adult exposure to acute doses via contaminated nectar, the frequent detection of neonicotinoid residues in the pollen of both crops and wildflowers suggests that bees are likely to be exposed to neonicotinoids throughout their entire life cycle (Mullin et al., 2010; Dively et al., 2015; Botias et al. 2015; David et al., 2016; Ellis et al., 2017), and recent studies have shown that the severity of the effect can be dependent on both the timing and duration of exposure (Suchail, Guez & Belzunces, 2001; Decourtye, Lacassie & Pham-Delégue, 2003; Rortais et al., 2005; Rondeau et al., 2014; Heard et al., 2017). Though under-investigated at present, studies have shown that early exposure to neonicotinoids can negatively impact on larval development (Wu, Anelli & Sheppard, 2011; Gregorc et al., 2012; Derecka et al., 2013; Rondeau et al., 2014; Rosa et al., 2016) and may also have latent effects on adult physiology and behaviour (Yang et al., 2012; Tomé et al., 2012; Tan et al., 2015; Peng & Yang, 2016).

The limited body of research investigating the effects of chronic or developmental exposure to neonicotinoids may arise in part from a bias towards studying bees that are commercially reared for pollination, namely honey bees and bumble bees (Lundin et al., 2015),
which are all social species. While the biology of these species is well understood, it can be challenging to study the effects of larval exposure to pesticides independently of worker effects, or to monitor individuals over their entire lifetime. Assessing effects on reproduction in these social species is also complicated given that the unit of replication is the colony. Moreover, it remains unclear whether these managed species actually serve as a good proxy for the diversity of bee species that likely come into contact with pesticides when foraging and nesting in arable landscapes (Devillers et al., 2003; Scott-dupree, Conroy & Harris, 2009; Biddinger et al., 2013; Rondeau et al., 2014; Arena & Sgolastra, 2014; Heard et al., 2017). The majority of wild bees are solitary and, consequently, have life histories that differ considerably from those of managed pollinators. Flight periods and foraging preferences are highly variable between species and so the degree of exposure to pesticides is also likely to differ. Add to this inherent differences in physiology among species, including between honey bees and bumble bees (Cresswell et al., 2012; Piironen & Goulson, 2016), and it becomes clear that much more research is needed to determine the sensitivity of wild bees to neonicotinoid exposure, as well as the implications of both larval and chronic exposure on bee development, adult functioning and ultimately, the stability of bee populations.

Here we investigate the effects of chronic, developmental exposure to a neonicotinoid in a solitary, cavity nesting bee, *Osmia bicornis*. A pollen generalist, the flight period of *O. bicornis* overlaps considerably with that of winter-sown oilseed rape, and studies have shown that *O. bicornis* can greatly benefit from this mass-flowering crop in terms of reproductive output (Jauker et al., 2012; Holzschuh et al., 2013; Diekötter et al., 2014). However, concerns have been raised regarding the trade-off between increased food availability and exposure to pesticides such as neonicotinoids (Rundlöf et al., 2015). The small number of studies of neonicotinoid exposure in this species have so far yielded mixed results regarding their sensitivity. A large-scale field experiment by Rundlöf *et al.* (2015) found a severe effect of proximity to clothianidin-treated spring-sown oilseed rape on *O.bicornis* nesting success, as well as wild bee density more generally. A laboratory-based study by Sandrock *et al.* (2014) found that adult *O. bicornis* exposed to nectar containing a combination of thiamethoxam (2.87 ppb) and clothianidin (0.45 ppb) also had reduced reproductive success. In contrast, Peters *et al.* (2016) found little effect of proximity to winter-sown, clothianidin-treated oilseed rape on *O. bicornis* reproduction. Levels of clothianidin in pollen sampled from nests close to treated
oilseed rape were found to be low (1-1.7 ppb), with the majority of pollen samples containing residues below the limit of quantification (LOQ), though it should be noted that pollen was sampled at a single time point during the flowering season (23 days after cocoon placement and the start of oilseed rape full flowering) and pooled across nests, therefore individual larvae developing in nest cells provisioned earlier or later in the season may have experienced differing levels of exposure. None of the aforementioned studies directly examined the effect of neonicotinoid exposure on *O. bicornis* larval development.

Female *O. bicornis*, like many other species of cavity nesting bee, provision their offspring with a single mass of unprocessed pollen, providing an opportunity to manipulate and tightly control pesticide exposure throughout development without the confound of adult or worker exposure (Abbott et al., 2008; Konrad et al., 2008; Hodgson, Pitts-Singer & Barbour, 2011). In this study, we spiked pollen with a range of clothianidin concentrations (0-10 ppb) representative of the levels detected in the pollen of both oilseed rape (Mean =2.27 ppb, Range= ≤0.12-14.5 ppb, Botías et al. 2015) and field margin plants likely to be visited by *O. bicornis* (Range= 1.1-9.4 ppb, Krupke et al., 2012; Mean = 1.2 ppb, Range= 0-5.9 ppb, Rundlöf et al., 2015; Range ≤0.12-0.36 ppb, Botías et al., 2015) and monitored effects on larval development time, survival and overwintering success. Because larval exposure to neuro-toxic compounds may affect nervous system development and basic autonomic functioning (Dwyer, McQuown & Leslie, 2009; Peng & Yang, 2016), we also tested for latent effects of larval exposure on adult physiology. Cellular metabolism which underpins all physiological processes, is reliant on the delivery of oxygen to tissues and the removal of carbon dioxide, which in insects occurs via the tracheal system. The rate of gas exchange is mediated by the opening and closing of the spiracles, which is under neuronal control. Many insects exhibit cyclical or discontinuous patterns of gas exchange, where spiracles are kept closed for prolonged periods, hypothesised to be a strategy to minimise water loss when resting (Buck, 1953; 1955; Quinlan & Hadley, 1993; Quinlan & Lighton, 1999). Exposure to neuro-active pesticides has been show to affect patterns of gas exchange, as well as the propensity to engage in discontinuous gas exchange across a diversity of insects (reviewed in Karise & Mänd, 2015). In bees, acute exposure to imidacloprid has been shown to alter abdominal ventilation patterns in adult honey bees (Hatjina et al., 2013) and to increase metabolic rates in the stingless bee *Melipona quadrifasciata* (Tomé et al., 2015). Therefore patterns of respiratory gas exchange are considered a useful physiological measure of
an insects’ response to stress, and so we used flow-through respirometry to examine the metabolic rate and respirometry rhythms of adult *O. bicornis* exposed to clothianidin as larvae.

1. **Methods**

2.1 *Study organism*

Osmia bicornis (Linnaeus, 1758) is a solitary bee that nests in dead plant stems. Adults emerge in early spring, whenever temperatures exceed *ca.* 12°C. Following mating, females begin provisioning nests with pollen and nectar (hereafter referred to as pollen provision), and once a sufficiently large provision of pollen has been collected, an egg is laid and then a mud partition is built to form an individual nest cell (Raw, 1972). The female then begins provisioning another cell, and so on, until the tube is full, at which point the female seals the entrance with mud. Within a nest tube, female eggs tend to be laid first, and provisioned with more pollen, with male eggs and their smaller provisions found towards the entrance of the nest. Approximately one week after laying, eggs hatch and the larvae begin to eat the pollen provision. Once all the pollen is consumed (after *ca.* 30 days) the larvae spin a cocoon and pupate, overwintering as an adult inside the cocoon and emerging the following spring (Raw, 1972).

2.2 *Rearing methods*

Six ‘trap nests’, consisting of cardboard tubes (8 mm diameter, 150 mm in length) housed in a waterproof shelter, were positioned a few metres above ground in an orchard at Stanmer Organics, East Sussex, UK. Stanmer Organics has been Soil Association certified organic for the past 10 years. Nests were placed out in early April 2016, and each contained a release tube seeded with 12 female and 10 male cocoons. Cocoons were checked for viability prior to release by making a small incision at the tip of the cocoon, and clypeal hair colour was used to distinguish between male and female bees. From mid-May onwards, once bees had emerged and females had begun provisioning the nests, tubes were checked daily for the presence of eggs. Eggs plus pollen provisions were removed from the nests and added to individual polystyrene nest blocks, which had Perspex lids to permit observation of larval development. A small piece of cotton wool was used to plug the entrance to the nests, and nests were covered when in the field, to limit light exposure.
Nest blocks were then returned to the laboratory and pollen provision (plus egg) were weighed to the nearest 0.001g (Precisa 125A, Newport Pagnell, Bucks, UK) before being placed into a dark incubator (20°C, 75% RH). Bees were assigned to one of four treatments; 0 ppb (control), 1ppb, 3ppb or 10ppb clothianidin, with care taken to balance the provision weight and nest position (as a proxy for sex) across treatments.

2.3 Pesticide Exposure

Clothianidin is currently the most commonly used seed treatment worldwide, and is a breakdown product of another commonly applied neonicotinoid, thiamethoxam (Simon-Delso et al. 2015). Data on neonicotinoid residue levels commonly present in the nests of *O. bicornis* was unfortunately lacking at the time of the experiment (but see Peters *et al.* 2017 which detected concentrations of 1-1.7 ppb clothianidin in *O. bicornis* pollen provisions) so we selected a range of clothianidin doses (0-10 ppb) to reflect the range of concentrations commonly detected in field-collected oilseed rape and wildflower pollen (Botias *et al.* 2015; Rundlöf *et al.* 2015; Krupke *et al.* 2012), with 10 ppb serving as a ‘worst-case scenario’ level of exposure, though still within the range of concentrations detected in the pollen of crops and wildflowers. To contaminate pollen provisions, 10 mg of technical grade clothianidin (Sigma-Aldrich, Gillingham, UK) was diluted in 10 ml of acetone to give an initial 1 mg/ml stock, which was then further diluted with acetone to produce a stock of 0.01 mg/ml, both of which were stored at -80°C. On the day of pollen collection, 0.01 mg/ml stock was diluted with a mixture of acetone and water (10% acetone v/v) to give a 100 ng/ml solution, which was used to contaminate provisions in the 10 ppb treatment. This stock was further diluted to 30 ng/ml and 10 ng/ml to contaminate pollen in the 3 and 1 ppb treatments, respectively. Approximately 50 µL of solution was injected into a longitudinal fissure made in each pollen provision, with the exact volume varied according to provision weight to standardise the concentration within treatments. Pollen provisions in the 0 ppb group were injected with acetone and water alone. To test the accuracy of the spiking method and degradation of the compounds over time, a sub-sample of pollen from each treatment was frozen for residue analysis at -80°C, either after 24 hours or 28 days of incubation. Pollen samples were extracted using the QuEChERS method and analysed for neonicotinoid residues using ultra high-performance liquid chromatography tandem mass spectrometry.
(UHPLC-MS/MS) as described in Botias et al. (2015). Samples were screened not only for
clothianidin, but also for four other commonly applied neonicotinoids: thiamethoxam,
imidacloprid, acetamiprid and thiacloprid (see Table S1 for method detection limits,
quantification limits, absolute recoveries).

2.4 Monitoring development

Following contamination of pollen provisions, nest blocks were returned to the incubator and
checked daily for the following developmental stages: Egg hatching, defecation, total pollen
consumption, initiation of cocoon spinning, and cocoon completion. Larvae were reweighed
once all pollen had been consumed, and the efficiency of food conversion was calculated as the
difference between the body weight of the mature larvae and the fresh pollen provision. Cocoons
were weighed ten days after completion (once fully darkened) to give an estimate of pre-pupal
weight. One hundred and twenty days after the beginning of the neonicotinoid exposure, the
temperature in the incubator was reduced to 14°C. Three weeks later, all nest blocks were moved
to a cool climate controlled chamber held at 4°C and 50% relative humidity (RH). Following a
196 day overwintering period, bees inside their cocoons were placed back into an incubator,
warmed to 20°C and checked daily for emergence.

2.5 Metabolic rate measurement

Metabolic rate was measured for each bee on the day of emergence using flow-through
respirometry, using CO₂ production as the measure of metabolic rate. Atmospheric air was
scrubbed of CO₂ and H₂O using a Drierite®-Ascarite® column, before being pumped through
two chambers of identical volume (2 ml), one of which was used for measuring CO₂ production,
the other to serve as a reference. Flow rate through the chambers was maintained at 150
ml/minute via two mass flow controllers (GFC17; Aalborg, NY, USA). After passing through the
chambers, air flowed into two separate channels of an infrared CO₂-H₂O analyser (Li-7000; Li-
Cor, Lincoln, NE, USA), and the output signal from the two analysers was captured by LiCor
software. The sampling rate was 5 Hz. The temperature in the room was held at 21°C (Mean ±
SD= 20.82 ± 2.11°C) and measurements lasted for 30 minutes per bee. This included an initial
period of CO₂ stabilisation after opening and closing the chamber, and time for bees to recover
from being transferred. Once the bee was secured inside the chamber the experimenter left the
room to minimise disturbance. We observed no changes in bee activity whilst in the chambers
during pilot studies (data not shown). Indeed, bees remained stationary throughout the recording
period. Following metabolic rate measurements, bees were removed from the chamber and
immediately weighed to the nearest 0.001g (Precisa 125A, Newport Pagnell, Bucks, UK).

Respirometry data was analysed using OriginPro 2016 software (Origin Lab, Northampton, MA, USA). Volumes of CO$_2$ (ppm) were baseline corrected and temperature
normalised using the Q10 correction for temperature differences (Morgan et al. 1985). To
calculate the rate of CO$_2$ production per bee, volume CO$_2$ (ppm) was converted to CO$_2$ fraction
and then multiplied by the flow rate (200 ml min$^{-1}$). The integral of CO$_2$ min$^{-1}$ vs. min was
calculated for a stable period of the recording, totalling approximately 20 minutes per bee. This
value was then divided by the exact measurement time for each bee (ca. 0.33 h) to give a rate of
ml CO$_2$ h$^{-1}$. Patterns of CO$_2$ production over time were visually inspected for each bee and
categorised as either continuous, discontinuous or cyclic, though no observations of cyclic gas
exchange were observed (Buck, 1958; Lighton, 1996; Chown et al. 2006; Kovac et al. 2007).

1.6 Statistical Analysis

All statistical analyses were conducted using SPSS v.22. Normality was assessed via inspection
of q-q plots combined with the Shapiro-Wilk statistic. Homogeneity of variance was assessed via
Levene’s test. Where necessary data were transformed to meet the assumptions of parametric
tests, or non-parametric alternatives were used. Fisher’s exact test was used to compare mortality
(number of dead vs. live bees) across clothianidin treatments during larval, pupal and
overwintering stages of development. Pollen provision weight was log-transformed and
compared across treatments using analysis of variance (ANOVA). There was no correlation
between pollen provision weight and the time to cocoon spinning, so ANOVA was used to
compare larval development time. Time to adult emergence was analysed using a two-way
ANOVA with treatment and sex as the predictors. Larval and adult body mass was compared
between treatments using analysis of co-variance (ANCOVA), with log-transformed pollen
provision weight included as the co-variante. Given that provision weight is highly dependent on
sex, the analysis was run separately for male and female bees. Homogeneity of regression slopes
was assessed by testing for an interaction between provision weight and the categorical predictor, treatment (in all cases p>0.05). Weight loss over winter was compared using a mixed-design ANOVA, with body mass (pre-pupa vs. adult) as the within-subjects measure and treatment and sex as the between-subjects predictors. Metabolic rate data was log-transformed and analysed using an ANCOVA, with neonicotinoid treatment and gas exchange pattern (discontinuous vs. continuous) as the predictors and log-transformed adult body mass as the co-variate. Again, because adult body mass differs between the sexes, the analysis was run separately for male and female bees.

3. Results

3.1 Residue Analysis

Control (0 ppb) pollen provisions contained no neonicotinoid residues, and no neonicotinoids other than clothianidin were detected in samples from each of the treatment groups, confirming that pollen collected by females at the field site was free of neonicotinoids (Table 1). Comparison of pollen provisions that were frozen for residue analysis after either 24 hours or 28 days of incubation showed little evidence of degradation during this time, meaning bees were exposed to neonicotinoids throughout larval development (Wilcoxon Signed-Rank test, 24 hours vs. 28 days; 1 ppb, Z=0.000, p=1.000; 3 ppb, Z=-0.535, p=0.593; 10 ppb, Z=-0.535, p=0.593).

3.2 Mortality

Of the 161 eggs collected, 25 were excluded from analysis either due to mechanical damage (n=9), mould (n=7) or the presence of parasites (n=9). At each developmental stage, a maximum of 4 bees died per treatment (Table 2) and there was no significant difference in mortality between treatment groups during larval development (χ^2=0.837, df=3, p=0.882), pupation (χ^2=4.351, df=3, p=0.214) adult overwintering (χ^2=2.212, df=3, p=0.605), or across all stages of development combined (χ^2=1.718, df=3, p=0.652).

3.3 Development Time
Larval development time, defined as the number of days from egg hatching to the initiation of cocoon spinning, did not differ between treatments (Table 2; ANOVA, $F_{3,115}=0.526$, $p=0.665$). Bees took between 21 and 42 days to develop, with a mean of 30-32 days across all treatment groups (Mean \pmSD; Control $=31 \pm 5$; 1ppb$=31 \pm 4$; 3 ppb$=30 \pm 4$; 10ppb$=32 \pm 4$).

3.4 Larval food conversion and over-winter weight loss

Initial pollen provision weight did not differ between treatments (Table S2, ANOVA, $F_{3,133}=0.053$, $p=0.984$). As might be expected, provision weight had a strong effect on resulting larval body mass (ANCOVA, Pollen Weight (co-variate), $F_{1,116}=258.941$, $p>0.001$), but there was no difference in larval mass between clothianidin treatments (Figure 1; ANCOVA, Treatment, $F_{3,101}=0.722$, $p=0.541$) suggesting that exposure had no effect on the ability of bees to convert pollen into wet body mass. Overall, female larvae had a higher body mass than males (Mann-Whitney, $U = 145$, $Z=-8.329$, $p<0.001$; Median\pmSD Female $= 334.50 \pm 57.24$ mg; Male $= 225.8 \pm 30.12$ mg).

Following overwintering, cocoons were placed back into an incubator at 20°C and checked daily for emergence. As in the wild, males emerged first (ANOVA, Sex, $F_{1,103}=169.099$, $p<0.001$), between 0-14 days after warming (Mean \pm SD$= 6 \pm 4$ days), and females emerged after 6-26 days (Mean \pm SD $= 16 \pm 3$ days). There was no effect of clothianidin treatment on emergence time (Table S3; ANOVA, Treatment, $F_{3,103}=0.095$, $p=0.963$).

Adult body mass did not differ between treatments (Figure 2A; ANCOVA, Treatment, Female $F_{3,50}=1.830$, $p=0.154$; Males, $F_{3,49}=0.769$, $p=0.517$), nor did the amount of weight lost over winter (Figure 2B; Mixed ANOVA, Time x Treatment, $F_{3,95}=0.750$, $p=0.525$). In absolute terms, female bees lost more weight than males (Mixed ANOVA, Time x Sex, $F_{1,95}=34.637$, $p<0.001$; Mean \pmSD, Females $= 47.64 \pm 11.38$ mg, Males$=36.80 \pm 6.49$ mg), but as a percentage of pupal weight, weight loss was similar between the sexes (Mean \pmSD, Females$= 36.04 \pm 5.54$ %; Males$= 39.90 \pm 4.98$ %).

3.5 Metabolic rates

Previous studies have shown that pesticide exposure can alter gas exchange patterns in insects as well as the propensity to engage in discontinuous gas exchange (see Karise & Mand, 2015 for...
Therefore, the proportion of bees engaging in continuous (CGE, Fig. 3A) versus discontinuous (DGE, Fig. 3B) gas exchange was compared across clothianidin treatments using a 3-way loglinear analysis (Factors: Breathing Pattern, Sex, Treatment). This produced a final model which retained only the Breathing Pattern x Sex interaction (Likelihood ratio $\chi^2 = 6.686$, df=12, p=0.878), indicating that there was no significant difference between treatments in the propensity to engage in CGE but that overall, female bees were 2.7 times more likely to perform CGE than males (Table S4, Breathing Pattern x Sex, $\chi^2 = 4.149$, df=1, p=0.042).

There was no significant interaction between breathing pattern and body mass for either sex, indicating a similar mass-scaling of metabolic rate between bees engaged in CGE versus DGE (Fig. 3C, Table 3; ANCOVA, Breathing Pattern x Log-body mass, Females: $F_{1,49}=2.054$, p=0.158; Males: $F_{1,44}= 0.887$, p=0.351), though bees engaged in CGE had a significantly higher metabolic rate (Table 3; ANCOVA, Breathing Pattern, Females: $F_{1,50}=215.839$, p<0.001; Males: $F_{1,45}=72.212$, p<0.001). For both sexes there was no significant difference in metabolic rate between clothianidin treatments (Figure 4, ANCOVA, Treatment, Females: $F_{3,47}=1.767$, p=0.166; Males: $F_{3,42}=0.819$, p=0.491).

4. Discussion

Concerns have been raised regarding the impact that exposure to pesticides such as neonicotinoids have on bee health and non-target organisms more generally (Pisa et al., 2014). Until recently, the majority of studies and regulatory tests have focussed on the effects of short term, acute exposure in adult bees, with a bias towards commercially reared social species such as honeybees and bumblebees. Given that neonicotinoid pesticides have been detected in the pollen and nectar not only of treated crops but also flowering wild plants growing in field margins and ornamental garden plants (Botías et al., 2015; Mogren & Lundgren, 2016; David et al., 2016; Long & Krupke, 2016) a host of bee species are likely to encounter these chemicals when foraging (Hladik, Vandeever & Smalling, 2016; Botías et al., 2017), yet we know relatively little about the sensitivity of wild bees to neonicotinoids.

Here we examined the effect of chronic, larval exposure to neonicotinoids on the development and survival of a solitary bee, Osmia bicornis, under controlled laboratory conditions. We found that exposure to clothianidin at doses representative of the concentrations
detected in field-collected pollen and nectar had no effect on development time or the efficiency
with which larvae converted pollen into wet body mass. Overall, developmental mortality was
similar between treatment groups (ca. 20%). A higher proportion of control group pupae failed to
eclose, which elevated the overall mortality of this group above that of the treatment groups (ca.
30% in total). Once cocoons were placed back into a warmed incubator the following spring,
there was no difference between treatment groups in the time to emerge, and adult body weight
did not differ between exposed and non-exposed bees. Overall, our findings suggest that larvae
of *O. bicornis* are insensitive to clothianidin exposure up to concentrations of 10 ppb.

A study of a North American bee of the same genus (*Osmia lignaria*), using a similar
method of pollen contamination as our study, found that while the timing of discrete larval
development stages was marginally affected by imidacloprid exposure, this effect was only
apparent above 30 ppb. Indeed, even at 300 ppb, a concentration several orders of magnitude
higher than that routinely detected in the field, no differences in survival to adulthood or adult
body weight were observed (Abbott et al., 2008). In the same study, no effect of clothianidin
exposure (3-300 ppb) on another species of megachilid bee, *Megachile rotunda*, was observed.
Abbott *et al.* (2008) reared *O. lignaria* both in the laboratory and outdoors and no differences
were observed in survival, though bees reared indoors did develop more quickly. Our study was
conducted entirely in the laboratory to permit tight control over pesticide exposure and the
rearing environment. Larvae were reared at a constant temperature of 20°C, based on previous
findings regarding optimal temperatures for normal *O. bicornis* development (Radmacher &
Strohm, 2011). It remains to be tested whether fluctuating temperatures and varying humidity
experienced under natural conditions would disproportionately affect clothianidin-exposed *O.
bicorns* relative to non-exposed bees, though this seems unlikely given that development times
did not differ from those reported for bees reared outdoors (Raw, 1972; Radmacher & Strohm,
2011).

Evidence from honeybees suggests that larval exposure to neonicotinoids can lead to
physiological and behavioural changes in adult bees, though the mechanism(s) underpinning this
are still not well understood (Yang et al., 2012; Peng & Yang, 2016). As a result, we were also
interested in whether larval exposure to clothianidin leads to latent effects in adult bees. Because
changes in the function of nervous tissue can affect basic autonomic processes such as
thermoregulation or respiration (Sláma & Miller, 1987; Kestler, 1991; Belzunces, Tchamitchian
& Brunet, 2012; Hatjina et al., 2013; Karise & Mänd, 2015), we measured the metabolic rates of adult bees on the day of emergence. Relatively little is known about the effects of developmental pesticide exposure on adult insect metabolic rates, but acute exposure has been found to alter respiratory rhythms, particularly the propensity to engage in discontinuous gas exchange (Zafeiridou & Theophilidis, 2004; Hatjina et al., 2013; Tomé et al., 2015). We found that while the majority of bees engaged in discontinuous patterns of CO₂ release, a small proportion of bees breathed continuously throughout the observation period, but this propensity was not affected by clothianidin exposure. It also did not appear to reflect differences in activity within the recording chambers. Interestingly, female bees were almost three times more likely to engage in continuous gas exchange than males. The factors underlying switches between continuous and discontinuous patterns of gas exchange in insects are still widely debated (e.g. Contreras & Bradley, 2009), and so the reason why female bees were less likely to engage in discontinuous gas exchange is not clear, though could be related to sex-specific differences in body mass causing females to produce more CO₂ at rest (Terblanche et al., 2008).

The scaling of metabolic rate was identical across bees engaged in continuous versus discontinuous gas exchange, though metabolic rates were higher for bees exchanging CO₂ continuously. When metabolic rates were compared across treatments, we observed no significant treatment effect, though bees exposed to 3 ppb and 10 ppb clothianidin did have lower metabolic rates, on average. This suggests that the respiratory system of Osmia bicornis is unaffected by larval clothianidin exposure, though it remains to be tested whether other physiological or behavioural processes are affected. To our knowledge, the current study is the first to measure metabolic rates in O. bicornis. Previous studies have used flow-through respirometry to measure oxygen consumption at various stages throughout the life cycle of the cavity nesting bees, O. lignaria and Megachile rotunda, utilising the rate of oxygen consumption as a proxy for diapause intensity (Kemp, Bosch & Dennis, 2004; Sgolastra et al., 2010, 2011; Yocum et al., 2011). Scaling relationships were not reported in these studies, therefore ours is the first to describe the intraspecific scaling of metabolic rate with body mass in a Megachilid bee, a measure which can be extremely useful in understanding the physiological functioning of an organism, as well as resistance to stress (Burton et al., 2011).

Our results contrast with previous observations of adverse effects of adult neonicotinoid exposure in this species (Sandrock et al., 2014a; Rundlöf et al., 2015). Comparative studies have
found adult *O. bicornis* to be more sensitive to clothianidin-spiked nectar than either honeybees (Heard et al., 2017) or honeybees and bumblebees (Sgolastra et al., 2016) though effects became apparent over different time-scales. A study of the closely related *O. cornuta* revealed that acute exposure to clothianidin can impair navigational behaviour under laboratory conditions (Jin et al., 2015). Sandrock *et al.* (2014) provided caged adult bees with sucrose solution spiked with thiamethoxam and clothainidin and found that females produced fewer nests, with fewer brood cells than those completed by female bees provided with uncontaminated sucrose solution. Larval and overwintering mortality was found to be higher in the offspring of neonicotinoid-exposed bees, such that fewer adult bees, and proportionally more males, emerged the following spring. However, as in our study, offspring body size did not differ between control and neonicotinoid-exposed bees. Because pollen provisions in Sandrock *et al.*’s study were not found to contain neonicotinoids, the levels that larvae themselves were exposed to during development is not clear. Indeed, it may be that the reduction in offspring emergence is more attributable to effects on adult bee physiology or behaviour than to effects on the larvae. For example, consuming contaminated nectar may have impaired adults’ provisioning ability (Feltham, Park & Goulson, 2015; Gill & Raine, 2014; Stanley & Raine, 2016), sex allocation (Whitehorn et al. 2015) or the viability of gametes (Straub et al. 2016), as has been observed in other bee and wasp species.

Though there are clear methodological differences between previous studies of adult exposure to neonicotinoids and that presented here, both in terms of experimental design and the particular neonicotinoid and/or concentration used, our results tentatively suggest that the effects of neonicotinoid exposure may be less severe for *O. bicornis* larvae than for adults. Certainly in honeybees it has been suggested that larvae may be more tolerant to neonicotinoids than adult bees (Yang et al., 2012), which has been proposed to arise from differential nACh-receptor expression across developmental stages (Thany et al., 2003; Thany & Gauthier, 2005). Additionally, certain higher-level structures targeted by neonicotinoids, such as the mushroom bodies, are not fully developed in bee larvae (Farris et al., 1999). The latent effects of larval exposure to neonicotinoids on adult cognitive ability remain to be tested in *O. bicornis*.

Our findings contribute to an accumulating body of evidence showing that the impacts of neonicotinoid exposure can be both species specific and dependent on developmental stage, and serve as a caution against evaluating the toxicity of a particular pesticide based on the findings
from a single ‘model’ species such as honeybees or bumblebees. In this study we considered the impact of a single pesticide in isolation, but in reality it is likely that bees are exposed to a suite of agrochemicals via the pollen and nectar they collect (David et al., 2016; Botías et al., 2017; , with synergistic effects of combined exposure to neonicotinoids and fungicides having already been observed in adults of *O. bicornis* and the related *O. cornifrons* (Biddinger et al., 2013; Sgolastra et al., 2016). Therefore more data are needed to quantify the exposure risk of wild bees foraging and nesting in arable landscapes and the contribution of such stressors to ongoing bee population declines.

Acknowledgements

The authors wish to thank Arthur David for screening pollen samples for neonicotinoid residues. We would also like to thank Professor Erhard Strohm and Chris Whittles for advice on rearing bees, Thomas David and Douglas Morrison for assistance with developmental observations, and two anonymous referees for their comments on an earlier version of the manuscript.

References

Abbott VA., Nadeau JL., Higo HA., Winston ML. 2008. Lethal and sublethal effects of imidacloprid on Osmia lignaria and clothianidin on Megachile rotundata (Hymenoptera: Megachilidae). *Journal of Economic Entomology* 101:784–796. DOI: 10.1603/0022-0493(2008)101[784:LASEOI]2.0.CO;2.

Aizen MA., Harder LD. 2009. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. *Current Biology* 19:915–918. DOI: 10.1016/j.cub.2009.03.071.

Alkassab AT., Kirchner WH. 2017. Sublethal exposure to neonicotinoids and related side effects on insect pollinators: honeybees, bumblebees, and solitary bees. *Journal of Plant Diseases and Protection* 124:1–30. DOI: 10.1007/s41348-016-0041-0.

Arena M., Sgolastra F. 2014. A meta-analysis comparing the sensitivity of bees to pesticides. *Ecotoxicology* 23:324–334. DOI: 10.1007/s10646-014-1190-1.

Belzunces LP., Tchamitchian S., Brunet J-L. 2012. Neural effects of insecticides in the honey bee. *Apidologie* 43:348–370. DOI: 10.1007/s13592-012-0134-0.

Biddinger DJ., Robertson JL., Mullin C., Frazier J., Ashcraft S a., Rajotte EG., Joshi NK., Vaughan M. 2013. Comparative Toxicities and Synergism of Apple Orchard Pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski). *PloS one* 8:e72587–e72587. DOI: 10.1371/journal.pone.0072587.

Botías C., David A., Hill EM., Goulson D. 2017. Quantifying exposure of wild bumblebees to mixtures of agrochemicals in agricultural and urban landscapes. *Environmental Pollution* 222:73–82. DOI: 10.1016/j.envpol.2017.01.001.

Botías C., David A., Horwood J., Abdul-Sada A., Nicholls E., Hill E., Goulson D. 2015.
Neonicotinoid Residues in Wildflowers, a Potential Route of Chronic Exposure for Bees.
Environmental science & technology 49:12731–40. DOI: 10.1021/acs.est.5b03459.

Burton T., Killen SS., Armstrong JD., Metcalfe NB. 2011. What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? *Proceedings of the Royal Society B* 278:3465–3473. DOI: 10.1098/rspb.2011.1778.

Contreras HL., Bradley TJ. 2009. Metabolic rate controls respiratory pattern in insects. *Journal of Experimental Biology* 212:424–428.

Cresswell JE., Page CJ., Uygun MB., Holmergh M., Li Y., Wheeler JG., Laycock I., Pook CJ., de Ibarra NH., Smirnoff N., Tyler CR. 2012. Differential sensitivity of honey bees and bumble bees to a dietary insecticide (imidacloprid). *Zoology* 115:365–71. DOI: 10.1016/j.zool.2012.05.003.

David A., Botías C., Abdul-Sada A., Nicholls E., Rotheray EL., Hill EM., Goulson D. 2016. Widespread contamination of wildflower and bee-collected pollen with complex mixtures of neonicotinoids and fungicides commonly applied to crops. *Environment International* 88:169–178. DOI: 10.1016/j.envint.2015.12.011.

Decourtye A., Lacassie E., Pham-Delègue M-H. 2003. Learning performances of honeybees (*Apis mellifera* L) are differentially affected by imidacloprid according to the season. *Pest management science* 59:269–78. DOI: 10.1002/ps.631.

Derecka K., Blythe MJ., Malla S., Genereux DP., Guffanti A., Pavan P., Moles A., Snart C., Ryder T., Ortori C’a., Barrett David., Schuster E., Stöger R. 2013. Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae. *PloS one* 8:e68191–e68191. DOI: 10.1371/journal.pone.0068191.

Devillers J., Decourtye A., Budzinski H., Pham-Delègue MH., Cluzeau S., Maurin G. 2003. Comparative toxicity and hazards of pesticides to *Apis* and non-*Apis* bees. A chemometrical study. *SAR and QSAR in Environmental Research* 14:389–403. DOI: 10.1080/10629360310001623980.

Diekötter T., Peter F., Jauker B., Wolters V., Jauker F. 2014. Mass-flowering crops increase richness of cavity-nesting bees and wasps in modern agro-ecosystems. *GCB Bioenergy* 6:219–226. DOI: 10.1111/gcbb.12080.

Dively GP., Embrey MS., Kamel A., Hawthorne DJ., Pettis JS. 2015. Assessment of Chronic Sublethal Effects of Imidacloprid on Honey Bee Colony Health. *PLOS ONE* 10:e0118748. DOI: 10.1371/journal.pone.0118748.

Dwyer JB., McQuown SC., Leslie FM. 2009. The dynamic effects of nicotine on the developing brain. *Pharmacology & Therapeutics* 122:125–139. DOI: 10.1016/j.pharmthera.2009.02.003.

Ellis C., Park KJ., Whitehorn P., David A., Goulson D. 2017. The Neonicotinoid Insecticide Thiacloprid Impacts upon Bumblebee Colony Development under Field Conditions. *Environmental Science & Technology* 51:1727–1732. DOI: 10.1021/acs.est.6b04791.

Farris SM., Robinson GE., Davis RL., Fahrbach SE. 1999. Larval and pupal development of the mushroom bodies in the honey bee, *Apis mellifera*. *The Journal of Comparative Neurology* 414:97–113. DOI: 10.1002/(SICI)1096-9861(19991108)414:1<97::AID-CNE8>3.0.CO;2-Q.

Feltham H., Park K., Goulson D. 2014. Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. *Ecotoxicology (London, England)* 23:317–323. DOI: 10.1007/s10646-014-1189-7.

Gill RJ., Raine NE. 2014. Chronic impairment of bumblebee natural foraging behaviour induced
by sublethal pesticide exposure. *Functional Ecology* 1459–1471. DOI: 10.1111/1365-2435.12292.

Goulson D., Lye GC., Darvill B. 2008. Decline and conservation of bumble bees. *Annual review of entomology* 53:191–208. DOI: 10.1146/annurev.ento.53.103106.093454.

Goulson D., Nicholls E., Botías C., Rotheray EL. 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. *Science* 347:1255957. DOI: 10.1126/science.1255957.

Gregorc A., Evans JD., Scharf M., Ellis JD. 2012. Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mites (Varroa destructor). *Journal of Insect Physiology* 58:1042–1049. DOI: 10.1016/j.jinsphys.2012.03.015.

Hatjina F., Papaefthimiou C., Charistos L., Dogaroglu T., Bouga M., Emmanouil C., Arnold G. 2013. Sublethal doses of imidacloprid decreased size of hypopharyngeal glands and respiratory rhythm of honeybees in vivo. *Apidologie* 44:467–480. DOI: 10.1007/s13592-013-0199-4.

Heard MS., Baas J., Dorne J- Lou., Lahive E., Robinson AG., Rortais A., Spurgeon DJ., Svendsen C., Hesketh H. 2017. Comparative toxicity of pesticides and environmental contaminants in bees: Are honey bees a useful proxy for wild bee species? *Science of The Total Environment* 578:357–365. DOI: 10.1016/j.scitotenv.2016.10.180.

Hodgson EW., Pitts-Singer TL., Barbour JD. 2011. Effects of the Insect Growth Regulator, Novaluron on Immature Alfalfa Leafcutting Bees, *Megachile rotundata*. *Journal of Insect Science* 11:1–10. DOI: 10.1673/031.011.0143.

Holden C. 2006. Report warns of looming pollination crisis in North America. *Science (New York, N.Y.)* 314:397. DOI: 10.1126/science.314.5798.397.

Holzschuh A., Dormann CF., Tscharntke T., Steffan-Dewenter I. 2013. Mass-flowering crops enhance wild bee abundance. *Oecologia* 172:477–484. DOI: 10.1007/s00442-012-2515-5.

Jauker F., Peter F., Wolters V., Diekötter T. 2012. Early reproductive benefits of mass-flowering crops to the solitary bee *Osmia rufa* outbalance post-flowering disadvantages. *Basic and Applied Ecology* 13:268–276. DOI: 10.1016/j.baae.2012.03.010.

Jeschke P., Nauen R., Schindler M., Elbert A. 2011. Overview of the status and global strategy for neonicotinoids. *Journal of agricultural and food chemistry* 59:2897–2908. DOI: 10.1021/jf101303g.

Jin N., Klein S., Leimig F., Bischoff G., Menzel R. 2015. The neonicotinoid clothianidin interferes with navigation of the solitary bee *Osmia cornuta* in a laboratory test. *Journal of Experimental Biology* 218.
170. DOI: 10.1603/0013-8746(2004)097[0161:OCDTLC]2.0.CO;2.

Kestler P. 1991. Cyclic CO2 release as a physiological stress indicator in insects. *Comparative Biochemistry and Physiology Part C: Comparative Pharmacology* 100:207–211. DOI: 10.1016/0742-8413(91)90155-M.

Konrad R., Ferry N., Gatehouse AMR., Babendreier D. 2008. Potential Effects of Oilseed Rape Expressing Oryzacystatin-1 (OC-1) and of Purified Insecticidal Proteins on Larvae of the Solitary Bee Osmia bicornis. *PLoS ONE* 3:e2664. DOI: 10.1371/journal.pone.0002664.

Krupke CH., Hunt GJ., Eitzer BD., Andino G., Given K. 2012. Multiple routes of pesticide exposure for honey bees living near agricultural fields. *PloS one* 7:e29268–e29268. DOI: 10.1371/journal.pone.0029268.

Long EY., Krupke CH. 2016. Non-cultivated plants present a season-long route of pesticide exposure for honey bees. *Nature Communications* 7:11629. DOI: 10.1038/ncomms11629.

Lundin O., Rundlof M., Smith HG., Fries I., Bommarco R. 2015. Neonicotinoid insecticides and their impacts on bees: A systematic review of research approaches and identification of knowledge gaps. *PLoS ONE* 10:1–20. DOI: 10.1371/journal.pone.0136928.

Moffat C., Pacheco JG., Sharp S., Samson AJ., Bollan KA., Huang J., Buckland ST., Connolly CN. 2015. Chronic exposure to neonicotinoids increases neuronal vulnerability to mitochondrial dysfunction in the bumblebee (Bombus terrestris). *FASEB journal: official publication of the Federation of American Societies for Experimental Biology* 29:2112–9. DOI: 10.1096/fj.14-267179.

Mogren CL., Lundgren JG. 2016. Neonicotinoid-contaminated pollinator strips adjacent to cropland reduce honey bee nutritional status. *Nature Publishing Group*:1–10. DOI: 10.1038/srep29608.

Mullin CA., Frazier M., Frazier JL., Ashcraft S., Simonds R., Vanengelsdorp D., Pettis JS. 2010. High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. *PloS one* 5:e9754–e9754.

Ollerton J., Erenler H., Edwards M., Crockett R. 2014. Pollinator declines. Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. *Science (New York, N.Y.)* 346:1360–2. DOI: 10.1126/science.1257259.

Palmer MJ., Moffat C., Saranzewa N., Harvey J., Wright GA., Connolly CN. 2013. Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. *Nature Communications* 4:1634. DOI: 10.1038/ncomms2648.

Peng Y-C., Yang E-C. 2016. Sublethal Dosage of Imidacloprid Reduces the Microglomerular Density of Honey Bee Mushroom Bodies. *Scientific reports* 6:19298. DOI: 10.1038/srep19298.

Peters B., Gao Z., Zumkier U. 2016. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: effects on red mason bees (Osmia bicornis). *Ecotoxicology* 25:1679–1690. DOI: 10.1007/s10646-016-1729-4.

Piironen S., Goulson D. 2016. Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees. *Proceedings. Biological sciences / The Royal Society* 283:20160246. DOI: 10.1098/rspb.2016.0246.

Pisa L.W., Amaral-Rogers V., Belzunce S., Bonmatin J.M., Downs C., Goulson D., Kreutzweiser D.P., Krupke C., Liess M., McField M., Morrissey C., Noome D., Settele J., Simon-Delso N., Stark J.D., Van der Sluijs J.P., Van Dyck H., Wiemers M. 2014. Effects of neonicotinoids and fipronil on non-target invertebrates. *Environmental science and pollution research international* 22:1–35.
Radmacher S., Strohm E. 2011. Effects of constant and fluctuating temperatures on the development of the solitary bee Osmia bicornis (Hymenoptera: Megachilidae). *Apidologie* 42:711–720. DOI: 10.1007/s13592-011-0078-9.

Raw A. 1972. The biology of the solitary bee Osmia rufa (L.) (Megachilidae). *Transactions of the Royal Entomological Society of London* 124:213–229. DOI: 10.1111/j.1365-2311.1972.tb00364.x.

Rondeau G., Sánchez-Bayo F., Tennekes H a., Decourtye A., Ramírez-Romero R., Desneux N. 2014. Delayed and time-cumulative toxicity of imidacloprid in bees, ants and termites. *Scientific reports* 4:5566. DOI: 10.1038/srep05566.

Rundlöf M., Andersson GKS., Bommarco R., Fries I., Hederström V., Herbertsson L., Jonsson O., Klatt BK., Pedersen TR., Yourstone J., Smith HG. 2015. Seed coating with a neonicotinoid insecticide negatively affects wild bees. *Nature* 521:77–80. DOI: 10.1038/nature14420.

Sanchez-Bayo F., Goka K. 2014. Pesticide residues and bees--a risk assessment. *PloS one* 9:e94482–e94482. DOI: 10.1371/journal.pone.0094482.

Sandrock C., Tanadini LG., Pettis JS., Biesmeijer JC., Potts SG., Neumann P. 2014a. Sublethal neonicotinoid insecticide exposure reduces solitary bee reproductive success. *Agricultural and Forest Entomology* 16:119–120. DOI: 10.1111/afe.12041.

Sgolastra F., Bosch J., Molowny-Horas R., Maini S., Kemp WP. 2010. Effect of temperature regime on diapause intensity in an adult-wintering Hymenopteran with obligate diapause. *Journal of Insect Physiology* 56:185–194. DOI: 10.1016/j.jinsphys.2009.10.001.

Sgolastra F., Kemp WP., Buckner JS., Pitts-Singer TL., Maini S., Bosch J. 2011. The long summer: Pre-wintering temperatures affect metabolic expenditure and winter survival in a solitary bee. *Journal of Insect Physiology* 57:1651–1659. DOI: 10.1016/j.jinsphys.2011.08.017.

Sgolastra F., Medrzycki P., Bortolotti L., Renzi MT., Tosi S., Bogo G., Teper D., Porrini C., Molowny-Horas R., Bosch J. 2016. Synergistic mortality between a neonicotinoid insecticide and an ergosterol-biosynthesis-inhibiting fungicide in three bee species. *Pest Management Science*. DOI: 10.1002/ps.4449.

Simon-Delso N., Amaral-Rogers V., Belzunces LP., Bonmatin JM., Chagnon M., Downs C., Furlan L., Gibbons DW., Giorio C., Girolami V., Goulson D., Kreutzweiser DP., Krupke CH., Liess M., Long E., McField M., Mineau P., Mitchell EAD., Morrissey CA., Noome
DA., Pisa L., Settele J., Stark JD., Tapparo A., Van Dyck H., Van Praagh J., Van der Sluijs JP., Whitehorn PR., Wiemers M. 2014. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. *Environmental Science and Pollution Research*. DOI: 10.1007/s11356-014-3470-y.

Sláma K., Miller TA. 1987. Insecticide poisoning: Disruption of a possible autonomic function in pupae of *Tenebrio molitor*. *Pesticide Biochemistry and Physiology* 29:25–34. DOI: 10.1016/0048-3575(87)90081-2.

Stanley DA., Smith KE., Raine NE., Schafer S., Pham-Delègue M-H. 2015. Bumblebee learning and memory is impaired by chronic exposure to a neonicotinoid pesticide. *Scientific Reports* 5:16508. DOI: 10.1038/srep16508.

Suchail S., Guez D., Belzunces LP. 2001. Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in *Apis mellifera*. *Environmental toxicology and chemistry / SETAC* 20:2482–2486.

Tan K., Chen W., Dong S., Liu X., Wang Y., Nieh JC. 2015. A neonicotinoid impairs olfactory learning in Asian honey bees (*Apis cerana*) exposed as larvae or as adults. *Scientific Reports* 5:10989. DOI: 10.1038/srep10989.

Terblanche JS., White CR., Blackburn TM., Marais E., Chown SL. 2008. Scaling of gas exchange cycle frequency in insects. *Biol. Lett* 4:127–129. DOI: 10.1098/rsbl.2007.0522.

Thany SH., Gauthier M. 2005. Nicotine injected into the antennal lobes induces a rapid modulation of sucrose threshold and improves short-term memory in the honeybee *Apis mellifera*<i> </i>. *Brain research* 1039:216–219.

Thany SH., Lenaers G., Crozatier M., Armengaud C., Gauthier M. 2003. Identification and localization of the nicotinic acetylcholine receptor alpha3 mRNA in the brain of the honeybee, *Apis mellifera*. *Insect Molecular Biology* 12:255–262. DOI: 10.1046/j.1365-2583.2003.00409.x.

Tomé HV V., Barbosa WF., Martins GF., Guedes RNC. 2015. Spinosad in the native stingless bee *Melipona quadrifasciata*: Regrettable non-target toxicity of a bioinsecticide. *Chemosphere* 124:103–109. DOI: 10.1016/j.chemosphere.2014.11.038.

Tomé HV V., Martins GF., Lima MAP., Campos LAO., Guedes RNC. 2012. Imidacloprid-induced impairment of mushroom bodies and behavior of the native stingless bee *Melipona quadrifasciata* antiidioides. *PloS one* 7:e38406. DOI: 10.1371/journal.pone.0038406.

Tomizawa M., Casida JE. 2005. Neonicotinoid insecticide toxicology: mechanisms of selective action. *Annual review of pharmacology and toxicology* 45:247–268. DOI: 10.1146/annurev.pharmtox.45.120403.095930.

Vanbergen AJ. 2013. Threats to an ecosystem service: pressures on pollinators. *Frontiers in Ecology and the Environment* 251–259.

Williamson SM., Wright GA. 2013. Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. *The Journal of experimental biology* 216:1799–1807. DOI: 10.1242/jeb.083931.

Woodcock BA., Isaac NJB., Bullock JM., Roy DB., Garthwaite DG., Crowe A., Pywell RF. 2016. Impacts of neonicotinoid use on long-term population changes in wild bees in England. *Nature Communications* 7:12459. DOI: 10.1038/ncomms12459.

Wu JY., Anelli CM., Sheppard WS. 2011. Sub-lethal effects of pesticide residues in brood comb on worker honey bee (*Apis mellifera*) development and longevity. *PloS one* 6:e14720–e14720. DOI: 10.1371/journal.pone.0014720.

Yang EC., Chang HC., Wu WY., Chen YW. 2012. Impaired olfactory associative behavior of
honeybee workers due to contamination of imidacloprid in the larval stage. *PLoS ONE* 7:e49472.

Yocum GD., Greenlee KJ., Rinehart JP., Bennett MM., Kemp WP. 2011. Cyclic CO2 emissions during the high temperature pulse of fluctuating thermal regime in eye-pigmented pupae of Megachile rotundata. *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology* 160:480–485. DOI: 10.1016/j.cbpa.2011.08.004.

Zafeiridou G., Theophilidis G. 2004. *The action of the insecticide imidacloprid on the respiratory rhythm of an insect: the beetle Tenebrio molitor*. DOI: 10.1016/j.neulet.2004.04.084.
Table 1 Concentration of clothianidin detected in pollen provisions, 24 hours and 28 days after spiking provisions. Provisions were incubated under the same conditions as bees (n=3 per treatment per time point, MDL= Method Detection Limit, SE = Standard Error).

CLO (ppb)	24 Hours (Mean ppb ±SE)	28 Days (Mean ppb ±SE)
0	< MDL	< MDL
1	0.741 ±0.11	0.774 ±0.11
3	2.567 ±0.21	2.240 ±0.26
10	8.958 ±0.07	8.765 ±0.33
Table 2 Development time and larval, pupal and overwintering survival rates of *Osmia bicornis* reared on pollen provisions spiked with different concentrations of clothianidin.

CLO (ppb)	Larval Development and Survival	Pupation Success	Over-wintering Survival								
	N	Development Time (Days)	% Mortality (Larval)	**N**	% Mortality (Pupal)	% Mortality (Overwinter)	**N**		% Survival (Overall)		
	Eggs	Mean ±SD	Range		Cocoons			Emerged Adults	m	f	
0	31	31 ±5	24-41	6.45	29	13.79	8.80	8	14	70.97	
1	33	31 ±4	23-39	9.09	30	6.67	7.14	14	12	78.78	
3	38	30 ±4	24-42	9.21	35	5.71	6.06	15	16	81.58	
10	36	32 ±4	21-38	8.88	32	6.25	0.00	14	16	83.33	

Table 2 Development time and larval, pupal and overwintering survival rates of *Osmia bicornis* reared on pollen provisions spiked with different concentrations of clothianidin.
Figure 1 Efficiency with which bees converted pollen provision mass into larval body mass (median and interquartile range). Pollen provisions were spiked with clothianidin at one of four doses (0 ppb n=29; 1 ppb n=30; 3ppb n=35; 10ppb n=32). There was no difference in larval body mass between treatments.
Figure 2 (A) Emergent adult body mass and (B) absolute mass loss over winter (pre-pupa to adult) for female (open circles, n=58) and male (black circles, n=51) bees exposed to pollen spiked with clothianidin during larval development at one of four doses (Mean ±95% confidence interval (CI); 0 ppb m=8, f=14; 1 ppb m=14, f=12; 3 ppb m=15, f=16; 10 ppb m=14, f=16). Data in (A) are least-square means estimated by an ANCOVA performed for each sex, with treatment
as a main effect and log-transformed pollen mass as a co-variate (Females provision weight= 325.69 mg, Males= 222.23 mg).

Figure 3 Example of continuous (A) and discontinuous patterns of gas exchange (B). Scaling relationship between metabolic rate and body mass for male (circles) and female (triangles) bees engaged in continuous (CGE, open shapes) versus discontinuous (DGE, filled shapes) gas exchange (C).
Table 3 Scaling relationship between wet body mass and metabolic rate for male and female bees engaged in continuous and discontinuous gas exchange.

Sex	Gas Exchange	\log_{10} Slope	\log_{10} Intercept	Mass scaling relationship	Regression Equation
Male	Continuous (CGE)	1.78	-0.77	$MR = 0.170 \times M^{1.78}$	$R^2 = 0.432, F_{1,6} = 3.804, p=0.109$
	Discontinuous (DGE)	1.05	-0.07	$MR = 0.851 \times M^{1.05}$	$R^2 = 0.278, F_{1,46} = 15.021, p<0.001$
Female	Continuous (CGE)	1.24	0.03	$MR = 1.072 \times M^{1.24}$	$R^2 = 0.557, F_{1,16} = 18.837, p<0.001$
	Discontinuous (DGE)	0.66	0.46	$MR = 2.884 \times M^{0.66}$	$R^2 = 0.136, F_{1,35} = 5.374, p=0.027$
Clothianidin Treatment

MR (CO2 ml h⁻¹)

Female
Male

1.2 2.2 3.2 4.2

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Figure 4 Metabolic rate for male (black circles, n=48) and female bees (open circles, n=54) exposed to varying concentrations of clothianidin during development. Data are least-square means (± CI) estimated by an ANCOVA performed for each sex, with treatment and gas exchange pattern as a main effect and log-transformed adult body mass as a co-variate (Females=72.03 mg, Males= 46.57 mg).