Neuroimaging Research on Dementia in Brazil in the Last Decade: Scientometric Analysis, Challenges, and Peculiarities

Liara Rizzi†, Ítalo Karmann Aventurato† and Marcio L. F. Balthazar*

Department of Neurology, University of Campinas (UNICAMP), Campinas, Brazil

The last years have evinced a remarkable growth in neuroimaging studies around the world. All these studies have contributed to a better understanding of the cerebral outcomes of dementia, even in the earliest phases. In low- and middle-income countries, studies involving structural and functional neuroimaging are challenging due to low investments and heterogeneous populations. Outstading the importance of diagnosing mild cognitive impairment and dementia, the purpose of this paper is to offer an overview of neuroimaging dementia research in Brazil. The review includes a brief scientometric analysis of quantitative information about the development of this field over the past 10 years. Besides, discusses some peculiarities and challenges that have limited neuroimaging dementia research in this big and heterogeneous country of Latin America. We systematically reviewed existing neuroimaging literature with Brazilian authors that presented outcomes related to a dementia syndrome, published from 2010 to 2020. Briefly, the main neuroimaging methods used were morphometrics, followed by fMRI, and DTI. The major diseases analyzed were Alzheimer’s disease, mild cognitive impairment, and vascular dementia, respectively. Moreover, research activity in Brazil has been restricted almost entirely to a few centers in the Southeast region, and funding could be the main driver for publications. There was relative stability concerning the number of publications per year, the citation impact has historically been below the world average, and the author’s gender inequalities are not relevant in this specific field. Neuroimaging research in Brazil is far from being developed and widespread across the country. Fortunately, increasingly collaborations with foreign partnerships contribute to the impact of Brazil’s domestic research. Although the challenges, neuroimaging researches performed in the native population regarding regional peculiarities and adversities are of pivotal importance.

Keywords: Alzheimer’s disease, Brazil, dementia, mild cognitive impairment, MRI, neuroimaging, scientometric analysis
INTRODUCTION

The majority of people with dementia live in low- and middle-income nations, as is the case of Brazil, the largest and the most populated country in Latin America (LA). LA is experiencing an unprecedented and fast demographic change in the last decades, with the increasing aging of the population (1). As well, Brazil has experienced significant changes in the population age pyramid. Nowadays, the country counts more than 30 million people over 60 years old (14% of the population), and by 2060 this number is projected to increase to 73 million (2). Such a consequence is the increase in the prevalence of dementia cases. In LA is expected a four-fold rise in subjects with dementia by 2050 (3). In Brazil, a recent meta-analysis, which included seven Brazilian studies, found a pooled dementia prevalence of 14.3% (6.8–23.9), but with substantial heterogeneity (4).

Neuroimaging research can provide useful diagnostic images and experimental outcomes that report and support evidence-based clinical practice (5). Moreover, is an essential part of dementia workup to exclude non-neurodegenerative causes of cognitive impairment, as well as to evaluate possible patterns of brain atrophy and cerebrovascular disease (6).

Since the creation of the multicentric study Alzheimer’s disease Neuroimaging Initiative (ADNI) in the United States in 2004, there was a significant increase both in the number of studies and Magnetic Resonance Imaging (MRI) techniques that have contributed to better understand the cerebral repercussions of the disease, even in the earliest phases (7). After then, different techniques have been improved, like brain volumetry (automated, manual, semi-automated), voxel-based morphometry (VBM), cortical thickness analyses, diffusion tensor imaging (DTI), and functional MRI (fMRI), especially functional connectivity, among others (8).

Outstanding the importance of neuroimaging examinations in dementia, especially in Alzheimer’s disease (AD) and mild cognitive impairment (MCI), we aimed to evaluate the scientometric characteristics of Brazilian research in this field in the native population. We analyzed studies published on structural and functional neuroimaging in the last decade in a manner to assess the Brazilian scientific work dedicated to research projects in diagnostic, therapeutic, and experimental outcomes that report and support evidence-based clinical practice (5).

RESULTS

Article Selection

Figure 1 shows schematically the article selection process. The PubMed search resulted in 300 matches from which 135 met the aforementioned criteria. Thirty-two reviews or perspective articles were selected for a separate analysis. From the remaining 103 original research papers, 74 studied Brazilian subjects, among them: 9 case reports, 55 transversal studies, 8 longitudinal studies, and 2 controlled trials. Case reports were excluded from the main analyses. Selected articles are listed in Table 1 with the main findings, and in Supplementary Material 2 with all findings.

Reviews

Review papers found covered a wide range of topics. Nineteen out of 32 papers were published in non-Brazilian journals and 16/32 were coauthored by non-Brazilians. Concerning gender, males were the first authors in 20/32 papers, the median number of male and female authors was 5 and 2, respectively. Publication in international journals was correlated with international coauthorship ($\chi^2 = 4.66, p = 0.031$) and marginally correlated with a female first author ($\chi^2 = 3.12, p = 0.077$). The number of publications per year is presented in Figure 2. Time was not associated with an increasing number of publications during these years (Spearman $p = 0.42, p = 0.19$).

The median number of citations per article was 7 (IQR 2.75–23.75). A multivariate linear model showed a negative correlation of citation number with the Publication Year ($p = 0.045$). International Coauthorship, Journal Nationality, and First Author Gender showed no correlation. Due to the latency expected for an article to be cited, we repeated this analysis with papers published up to 2015, resulting in a median of 7 (IQR 6–33) citations. Regression results were non-significant. The journal’s impact factor (JIF) was available for 21/32 papers, with

METHODS

PubMed (https://pubmed.ncbi.nlm.nih.gov/) was queried using the search strategy described in Supplementary Material 1. The results were inspected by IKA to select relevant matches. In brief, research papers were selected if they: (a) had a Brazilian author; (b) presented some kind of neuroimaging result, either quantitative or qualitative; (c) either concerned a primary or secondary neurological disease presenting with a dementia syndrome or represented cognitive aspects of the aging process; and (d) were published during or after the year of 2010 until the date of access in the year of 2020.

Papers were classified according to their nature and design (e.g., review, longitudinal design, controlled trial), international participation in authorship, and journal nationality (Brazilian or international), first author gender, and the number of male and female authors. Web of Science (webofknowledge.com) was consulted for the number of citations received by each paper and the journal’s impact factor (Journal Citation ReportsTM-JCR). Original research papers were further inspected and tabulated as to their MRI and other imaging methods (e.g.,18-FDG-PET), number of participants in each group (e.g., AD, MCI, controls), AD biomarker reporting, the Brazilian state where the study was performed, and funding agencies (the latter two were only accessed if the study concerned Brazilian participants).

Statistical analyses were performed using SciPy 1.5.3 (9), pandas 1.1.4 (10), and statsmodels 0.12.1 (11).
a median of 4.35 (IQR 3.093–8.329). The multivariate regression showed no correlation with other variables.

Original Research

Figure 3 shows the characteristics of the selected papers. Concerning the number of publications per year, there was no trend toward increasing or decreasing the number of publications (Spearman ρ = 0.13, p = 0.70) (Figure 3A). The most studied pathologies were AD (54%, n = 35) and MCI (48%, n = 31), followed by vascular dementia (4.6%, n = 3) (Figure 3B). Most studies used morphometric methods (58%, n = 38) followed by fMRI (23%, n = 15) and closely by DTI (18%, n = 12) (Figure 3C). Some methods addressed by only a single study nonetheless worth mentioning included spectroscopy (40), texture analysis (21), magnetization transfer ratio, and relaxometry (39).

Regarding gender analyses of original research papers, we found that females are more frequently first-authors (60%). 26/65 of the first authors are male, with a significant time effect for female authorship (Wilcoxon rank-sum test, p = 0.022). However, when considering all co-authors, males are more frequent (5/4 ratio). The median number of male and female authors was 5 and 4, respectively, with significantly more male authors per paper (Wilcoxon sign-rank test, p = 0.001). These findings might indicate that gender inequalities are less relevant in this specific field. Nineteen-out-of-sixty-five articles were co-authored by non-Brazilians. The most common nationalities among those were North-Americans (n = 14), British (n = 3), German (n = 2), Chilean (n = 2) and Swiss (n = 2).

There is great heterogeneity in the distribution of the research centers in the country. Research activity in Brazil has been restricted almost entirely to a few centers in the Southeast of Brazil. The vast majority of studies were set in the state of São Paulo (65%, n = 43), with studies also from Rio de Janeiro (20%, n = 13), Minas Gerais (7.6%, n = 5), Rio Grande do Sul (4.5%, n = 3), Pernambuco and Goiás (each with 1.5%, n = 1) (Figure 3D). Funding could be the main driver for publications. The São Paulo Research Foundation (FAPESP) was the most common funding agency, supporting 33 studies, followed by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), responsible for the funding of 28 studies, and Coordenação de Aperfeiçoamento de Pessoal do Ensino Superior (CAPES), with 14 studies being supported. Other agencies worth mentioning include Fundação de Apoio a Pesquisa do Rio de Janeiro (FAPERJ, 3 studies), Fundação de Apoio a Pesquisa do Estado de Minas Gerais (FAPEMIG, 4 studies), and the Welcome Trust (3 studies). Seventeen studies did not report the source of resources.

The median number of citations received by original research papers was 5 (IQR 2–18). Considering only articles published up to 2015, the median was 17 (IQR 5–28). We produced three multivariate linear models to better understand what drives citation: (a) a regression for author and journal variables; (b) a regression for imaging technique; and (c) a model for the disease studied. All models were repeated restricting the sample to papers published up to 2015. The first model included Publication Year, International Coauthorship, First Author Gender, and Journal Nationality, showing a significant effect for publication in an international journal (p = 0.001) and the publication year (p < 0.001). Repeating the analysis with the papers up to 2015, only the effect of publication in an international journal remained significant (p = 0.037). None of the imaging techniques were associated with citation numbers either with the full or restricted sample (all ps non-significant). AD studies were associated with a higher number of citations (p = 0.003) and MCI studies showed a correlation with fewer citations (p = 0.04). In the restricted sample, only AD studies remained significant (p = 0.017).

JIF was available for 55/65 papers, with a median of 2.94 (IQR 1.90–4.35). The same models described for citations were used to predict JIF. In the first model, omitting Journal Nationality as a regressor, International Coauthorship was marginally associated with a higher JIF (p = 0.055). For imaging technique, Amyloid PET (p = 0.077) and fMRI (p = 0.061) showed a marginal positive correlation with JIF. None of the specific pathologies were associated with JIF.

PECULIARITIES AND CHALLENGES THAT HINDER NEUROIMAGING DEMENTIA RESEARCH IN BRAZIL

Dementia research in low- and middle-income regions is challenging. Like other countries in LA, due to different historical processes that have occurred since the end of the fifteenth century, Brazil has its own social, cultural, racial, and regional peculiarities (147). The heterogeneity makes the diagnosis of dementia and mild cognitive
TABLE 1 | Main findings of articles included in the present review.

Author	Journal	Year	Type	Methods	Pathology	Reference
Balthazar et al.	J Int Neuropsych Soc	2010	T	Morph	AD, MCI	(12)
Balthazar et al.	J Int Neuropsych Soc	2010	T	Morph	AD, MCI	(13)
Porto et al.	Dement Neuropsychol	2010	CR	Quali	PCA	(14)
Chaves et al.	J Neuroinflamm	2010	T	Morph	AD	(15)
Oliveira et al.	J Alzheimers Dis	2010	T	Morph	AD	(16)
de Toledo Ferraz Alves et al.	Curr Opin Psychiatr	2010	R			(17)
Baldaçara et al.	Rev Bras Psiquiatr	2011	L	Morph	AD, MCI	(18)
Caramelli et al.	Dement Neuropsychol	2011	P			(19)
Avila et al.	Neurobiol Aging	2011	T	Morph	Depressed Eld.	(20)
de Oliveira et al.	Am J Neuroradiol	2011	T	Morph, Other	AD, MCI	(21)
Balthazar et al.	Dement Neuropsychol	2011	T	Morph	AD, MCI	(22)
Ferreira et al.	Clinics	2011	R			(23)
Ferreira et al.	Neurobiol Aging	2011	R			(24)
de Souza et al.	Lancet	2011	CR	Quali	HAND	(25)
Caixeta et al.	Clinics	2011	CR	Quali, SPECT	PPA	(26)
Oliveira et al.	Arq Neuro-Psiqiatr	2011	T	Morph, DTI	PPA	(27)
de Toledo Ferraz Alves et al.	J Alzheimers Dis	2011	T	Morph	HE	(28)
Vasconcelos et al.	Clinics	2011	T	Morph	AD	(29)
Tiel et al.	Dement Neuropsychol	2012	T	Quali	Vasc	(30)
Lanna et al.	J Neurol Sci	2012	T	Quali, SPECT	Vasc	(31)
Simon et al.	Neurosci Biobehav R	2012	R			(32)
Alves et al.	PLoS ONE	2012	T	Morph	AD, MCI	(33)
Alves et al.	Dement Neuropsychol	2012	R			(34)
Sudo et al.	Dement Neuropsychol	2012	R			(35)
Borgio et al.	Arq Neuro-Psiqiatr	2012	L	Morph	MCI	(36)
Squarzon et al.	J Alzheimers Dis	2012	T	Morph	HE	(37)
Pedro et al.	Dement Geriatr Cogn	2012	T	Morph	AD, MCI	(38)
Foss et al.	Clinics	2013	T	Morph, Other	HE	(39)
Menezes et al.	Arq Neuro-Psiqiatr	2013	T	Morph, Other	AD, MCI	(40)
Radanovic et al.	Expert Rev Neurother	2013	R			(41)
Sudo et al.	Arq Neuro-Psiqiatr	2013	T	Quali	MCI	(42)
Dubois et al.	Lancet Neurol	2014	P			(43)
Lee et al.	Brain	2014	T	fMRI, Morph	FTD	(44)
Teipel et al.	Psychiatr Res Neuroim	2014	T	Morph	PPA	(45)
Weiler et al.	Curr Alzheimer Res	2014	T	fMRI	AD	(46)
Andrade de Oliveira et al.	J Alzheimers Dis	2014	T	Morph	AD, MCI	(47)
Weiler et al.	Brain Connectivity	2014	T	fMRI	AD, MCI	(48)
Rondina et al.	Front Aging Neurosci	2014	T	Morph	HE	(49)
Balthazar et al.	Hum Brain Mapp	2014	T	fMRI	AD	(50)
Prezzi et al.	Arq Neuro-Psiqiatr	2014	OR	Quali	D-EPS	(51)
Weiler et al.	Psychiatr Res Neuroim	2014	T	DTI	AD, MCI	(52)
Killmann et al.	J Alzheimers Dis	2014	L	Morph	AD, MCI	(53)
Ferreira et al.	Rev Bras Psiquiatr	2014	R			(54)
Vasconcelos et al.	Clinics	2014	T	Morph	AD	(55)
Tovar-Mol et al.	PLoS ONE	2014	T	DTI	D-EPS, FDT	(56)
Balthazar et al.	Psychiatr Res Neuroim	2014	T	fMRI	AD	(57)
de Oliveira et al.	Acta Neurol Belg	2015	CR	Quali, SPECT	FTD	(58)
Yokoyama et al.	PLOS ONE	2015	T	Morph	HE	(59)
Prado et al.	Dement Neuropsychol	2015	R			(60)
Caixeta et al.	CP & EMH	2015	T	Morph	D-EPS, FTD	(61)

(Continued)
TABLE 1 | Continued

Author	Journal	Year	Type	Methods	Pathology	Reference
Forner et al.	Neurology	2015	T	Quali	CJD	(62)
Hayata et al.	Arq Neuro-Psiquiat	2015	T	Morph	AD	(63)
da Rocha et al.	Dement Neuropsychol	2015	R			(64)
Balardin et al.	Front Aging Neurosci	2015	T	fMRI	MCI	(65)
Weiler et al.	J Alzheimers Dis	2015	L	Morph, DTI	AD	(66)
Coutinho et al.	Int Psychogeriatr	2015	T	Quali	AD, MCI	(67)
Alves et al.	BioMed Res Int	2015	R			(68)
Promteangtrong et al.	Dement Neuropsychol	2015	R			(69)
Promteangtrong et al.	Dement Neuropsychol	2015	R			(70)
Haziot et al.	Dement Neuropsychol	2015	R			(71)
Boots et al.	Arch Clin Neuropsych	2015	T	Morph	HE	(72)
Diniz et al.	Mol Psychiatr	2015	T	Morph, Ami	MCI	(73)
Agosta et al.	CNS Neurosci Ther	2015	R			(74)
Hamelin et al.	Neurobiol	2015	T	Morph, Ami	AD	(75)
Grothe et al.	Cereb Cortex	2016	T	Morph, FDG	MCI	(76)
Leuzy et al.	Brain Struct Funct	2016	T	Morph, FDG, Other	FTD	(77)
Resende et al.	eNeurologicalSci	2016	T	Quali	AD, MCI	(78)
Corrêa et al.	J Mag Reson Im	2016	L	Morph, DTI	HAND	(79)
McAleese et al.	BMC Med	2016	R			(80)
Corrêa et al.	J Neuroimaging	2016	T	Morph	HAND	(81)
Teixeira et al.	AGE	2016	T	Morph, DTI	MCI	(82)
Weiler et al.	Neurosci Biobehav R	2016	R			(83)
Wang et al.	P Natl Acad Sci	2016	T	Morph	AD	(84)
Ribeiro et al.	Dement Neuropsychol	2016	R			(85)
Alves et al.	Dement Neuropsychol	2017	R			(86)
Pascoal et al.	Mol Psychiatr	2017	T	Morph, FDG, Ami	HE	(87)
Lajoie et al.	Neuroimage Clin	2017	T	fMRI, Morph	AD	(88)
Vasconcellos et al.	Parkinson's Disease	2017	T	Quali	PD	(89)
Tascone et al.	PLOS ONE	2017	T	Morph	AD	(90)
Etadi et al.	Front Neurosci	2017	T	DTI	AD, MCI	(91)
De Souza et al.	Prion	2017	CR	Quali	CJD	(92)
Shigaeff et al.	Arch Gerontol Geriat	2017	L	fMRI	EMS	(93)
Squarzoni et al.	Clinics	2017	L	Quali	HE	(94)
Fragoso et al.	RadioGraphics	2017	R			(95)
Radanovic et al.	Dement Neuropsychol	2017	T	Quali	AD, MCI	(96)
Resende et al.	Arq Neuro-Psiquiat	2017	T	DTI	MCI	(97)
Weiler et al.	J Psychiat Neurosci	2017	T	fMRI	AD, MCI	(98)
Rabelo et al.	Neuroradiol J	2017	T	Quali	AD, MCI	(99)
Corrêa et al.	Neuroradiol J	2017	L	fMRI, Morph, DTI	HAND	(100)
Ramos Bernardes da Silva Filho et al.	Neuroimage Clin	2017	T	Morph	AD	(101)
Swardfager et al.	Alzheimers Dement	2017	T	DTI	AD	(102)
Swardfager et al.	Neurobiol Aging	2017	T	Morph	AD	(103)
Ferreira et al.	Rev Bras Psiquiat	2017	T	Morph, FDG, SPECT	AD	(104)
Maia da Silva et al.	Front Neurol	2017	R			(105)
Smagula et al.	Am J Geriatr Psychiatr	2018	T	fMRI, Morph	HE	(106)
Branco et al.	Psychiat Res Neuroim	2018	T	Morph, DTI	MIND	(107)
Simon et al.	Front Aging Neurosci	2018	CT	fMRI, Morph	MCI	(108)
Teixeira et al.	Alzheimers Dement	2018	CT	Morph	MCI	(109)
Weiler et al.	Front Aging Neurosci	2018	T	fMRI	AD, MCI	(110)
impairment particularly challenging in comparison with developed countries (148). Regarding specific biological characteristics, for example, we far from understand the particularities of Brazilians miscegenated population. The regional genomic distribution of Brazilians is linked with the different colonization history of each region. Genetic admixture has been influenced by the colonization process, resulting in Brazil becoming a genetically trihybrid population (genomic inheritance of European, African, and Amerindian groups have been traced) (147). Previous epidemiological studies have highlighted that overall dementia prevalence can vary substantially across different ethnic groups and geographical regions (149). These differences in dementia prevalence rates have been attributed to different susceptibility to pathological brain changes in each ethnicity (150). In this sense, neuroimaging research in Brazil should consider these aspects. Neuroimaging studies are required to better characterize how subclinical brain changes might differ among ethnicities, and whether such differences may help explain differences in cognitive performance.
Neuroimaging research has provided evidence that previous or current adversities, such as low socioeconomic status or low levels of educational attainment, may reflect on interindividual variations in brain imaging measurements. Analysis from elderly individuals, recruited in an economically underprivileged area of São Paulo, showed reductions in both regional brain volumes and glucose metabolism in subjects with disadvantageous socioeconomic backgrounds (151, 152). Furthermore, education has a great impact on cognitive performance in older adults (153). A population census found that in 2018 nearly 52.6% of Brazilians over 25 years old did not have finished elementary school, and around 7.2% were unable to read or write (2). Variations in regional brain volumes were verified depending on the level of previous educational attainment (154). In this sense, ecological cognitive tests adapted to Brazilian characteristics (ex: including a wide range of schooling levels, illiterates, and stratified into groups of age and education) are important to be applied to more sophisticated methods, like body fluid biomarkers and neuroimaging.

Among chronic non-communicable diseases, those of the circulatory system are also the main cause of mortality worldwide, including Brazil, which has one of the highest rates in LA (155). Cerebrovascular damage, produced by midlife hypertension, diabetes, dyslipidemia, among other factors, may contribute to the onset and progression of cognitive dysfunction and dementia (156). Besides, Brazilians may have more cerebrovascular damage than other populations, as shown by Grinberg et al. (157) in a clinicopathological study with 1,291 individuals. In Brazil, cerebrovascular damage is one of the most neglected diseases, due to poor control of cardiovascular factors, especially hypertension, the main risk factor (155). In this context, it is surprising that only 4.6% of Brazilian original neuroimaging research was focused on vascular cognitive impairment. Dementia neuroimaging research in Brazil is highly focused on AD. Although AD is the most prevalent form of dementia, our results showed a disproportionate predominance to dementia epidemiology (158). The widespread interest in new drugs for AD may partially explain this finding (159). However, our study also showed that research involving AD was more likely to be cited, potentially feeding a vicious cycle. The underrepresentation of vascular dementia is particularly worrisome, as vascular risk factors and vascular pathology—either exclusive or mixed—are highly prevalent in Brazil. Once improvements in neuroimaging techniques allow detailed and sophisticated evaluation of many manifestations of cerebrovascular diseases, this topic must be considered a priority among Brazilian researchers.

The need for studies with the Brazilian population in this research field is an urgent matter. Scientific research, in general, is far from being fully developed and widespread across the country. Nowadays, even though Brazil is the 13th largest producer of research publications globally, its citation impact has historically been below the world average (160). The present work highlights some of the virtues and faults of the dementia neuroimaging research scenario in Brazil. Most of our findings are consistent with the Brazilian general scientific research background: a significant growth during the first decade of the twenty-first century followed by relative stability. Furthermore, the trend toward a highly concentrated scientific production in the Southeast region along with average-to-low research impact also reflects the national tendency (160). Finally, health research is particularly affected by spatial restriction in the national territory, as the cultural, ethnic, and socioeconomic diversity is not captured by the published depictions of our reality.

Brazil has limited wherewithals, sequential financial crises, bad investment of financial resources, and a lack of priority in investing in science in the different governments. All these factors limit the quality of scientific research performed in Brazil and delay the incorporation of novelties to generate original scientific data of global relevance. One of the consequences of these facts was the failure to implement Brazilian ADNI. Lack of fundings, heterogeneity of resources, and lack of specialized centers across the different regions of the country have hampered the implementation of a large national multicenter study. Besides, only recently Brazilian researchers have started studying molecular neuroimaging, with only five amyloid PET studies, and no Tau PET studies in the last decade. Despite these difficulties, Brazilians are studying and refining new neuroimaging methods, such as functional and structural connectivity, DTI, and surface-based morphometry. Two Brazilian centers in São Paulo and Rio Grande do Sul are studying amyloid PET, and collaborative studies are taking place. Comparisons of Brazilian neuroimaging studies with other countries of Latin America are difficult, due to the lack of relevant studies in this research area as they share the same problems found in Brazil. However, our neighbor Argentina is moving forward in the field, with the establishment of the first ADNI of Latin America (161). This program currently accounts for approximately sixty participants that are evaluated by structural MRI analysis, and metabolic and amyloid PET scan (FDG and PiB). This kind of multicentric program notably will assist the development of neuroimaging studies in low- and middle-income nations in the future.
Fortunately, increasingly Brazilian researchers are working across country borders, within foreign partnerships, and the resulting papers contribute to the impact of Brazil's domestic research. Although the majority of foreign partnerships analyzed in this review were derived from North America and Europe, there are efforts to develop collaborations with our neighbors of LA. One promising group is the Latin America and Caribbean Consortium on Dementia (LAC-CD), which is a regional organization that oversees and promotes clinical and research activities on dementia. Collaborations like this certainly can set new networks to support research and increase the supply of regional and international grant proposals (162). Taken together, suggests that knowledge and technological exchange can drive the Brazilian research scenario toward a richer production. All the above-mentioned challenges require efforts toward solutions involving clinicians, researchers, and policymakers, to better understand and investigate the dementia context in a continental country such as Brazil.

CONCLUDING REMARKS

As illustrated along with this manuscript, neuroimaging research carried out in low- and middle-income countries, such as Brazil, are challenging. Nonetheless, they are extremely important to increase the global knowledge about brain impacts derived from the inherent characteristics of the population, and their relationship with the development of dementia. Neuroimaging researches performed in the native population regarding regional peculiarities and adversities are of pivotal importance, especially in a resource-limited country facing economic and political adversities. In this sense, neuroimaging studies should address dementia not merely from a clinical perspective, but also in a societal context, considering individuals’ environment and peculiarities. Despite the aforementioned limitations, Brazilian researchers in dementia should be encouraged to deepen neuroimaging studies in Alzheimer's spectrum and other prevalent conditions, such as vascular dementia.
Because our focus was neurodegenerative diseases that primarily affect cognition, we did not evaluate normal aging or other conditions that may secondarily lead to dementia, such as Parkinson’s disease, Motor Neuron diseases, Epilepsy, or infectious/parasitic diseases common in Brazil. Further studies might consider the whole spectrum of dementias.

AUTHOR CONTRIBUTIONS

All authors contributed to the preparation and writing manuscript and approved the submitted version.

REFERENCES

1. Custodio N, Wheelock A, Thumala D, Slachevsky A. Dementia in Latin America: epidemiological evidence and implications for public policy. *Front Aging Neurosci.* (2017) 9:221. doi: 10.3389/fnagi.2017.00221

2. IBGE. *Instituto Brasileiro de Geografia e Estatística.* (2020) Available online at: https://www.ibge.gov.br/ (accessed November 10, 2020).

3. Parra MA, Baez S, Allegri R, Nitrini R, Lopera F, Slachevsky A, et al. Dementia in Latin America: assessing the present and envisioning the future. *Neurology.* (2018) 90:222–31. doi: 10.1212/WNL.0000000000004897

4. Farina N, Ibinidris A, Alladi S, Comas-Herrera A, Albanese E, Docrat S, et al. A systematic review and meta-analysis of dementia prevalence in seven developing countries: a STRIDE project. *J Glob Public Health.* (2020) 15:1878–93. doi: 10.1080/17441692.2020.1792527

5. Márquez F, Yassa MA. Neuroimaging biomarkers for Alzheimer’s disease. *Mol Neurodegener.* (2019) 14:21. doi: 10.1186/s13024-019-0325-5

6. Arvanitakis Z, Shah RC, Bennett DA. Diagnosis and management of dementia: review. *JAMA.* (2019) 322:1589–99. doi: 10.1001/jama.2019.4782

7. Jack CR, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, et al. The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. *Magn Reson Imaging.* (2008) 27:685–91. doi: 10.1016/j.mri.21049

8. Weiner MW, Veitch DP, Asien PS, Beckett LA, Cairns NJ, Cedarbaum J, et al. Impact of the Alzheimer’s disease neuroimaging initiative, 2004 to 2014. *Alzheimer’s Dement.* (2015) 11:865–84. doi: 10.1016/j.jalz.2015.04.005

9. Virtanen P, Gommers R, Oliphant T, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. *Nat Methods.* (2020) 17:261–72. doi: 10.1038/s41592-019-0666-2

10. McKinney W, et al. Data structures for statistical computing in python. *Proc Python Sci Conf.* (2010) 445:51–6. doi: 10.25080/Majora-92bf1922-00a

11. Seibold S, Perktold K. Statsmodels J. Ecomometric and statistical modeling with python. *Proc Python Sci Conf.* (2010) 445:92–6. doi: 10.25080/Majora-92bf1922-011

12. Balthazar ML, Yasuda CL, Pereira FR, Bergo FP, Cendes F, Damasceno BP. Coordinated and circulomotoric semantic naming errors are related to anterolateral temporal lobes in mild AD, amnestic mild cognitive impairment, and normal aging. *J Int Neuropsychol Soc.* (2010) 16:1099–107. doi: 10.1017/S1355617710000998

13. Balthazar ML, Yasuda CL, Cendes F, Damasceno BP. Learning, retrieval, and recognition are compromised in aMCI and mild AD: are distinct episodic memory processes mediated by the same anatomical structures? *J Int Neuropsychol Soc.* (2010) 16:205–9. doi: 10.1017/S1355617709999056

14. Porto FHG, Machado GCL, Morillo LS, Brucki SMD. Progressive posterior cortical dysfunction. *Dement Neuropsychol.* (2010) 4:75–8. doi: 10.1590/S1980-57642010001013

15. Chaves ML, Camozzato AL, Ferreira ED, Piatzenski I, Kochhann R, Dall’Ignã O, et al. Serum levels of S100B andNSE proteins in Alzheimer’s disease patients. *J Neuroinflammation.* (2010) 7:6. doi: 10.1186/1742-2094-7-6

16. Oliveira PP, Nitrini R, Busatto G, Buchpiguel C, Sato JR, Amaro E. Use of SVM methods with surface-based cortical and volumetric subcortical measurements to detect Alzheimer’s disease. *J Alzheimers Dis.* (2019) 19:1263–72. doi: 10.3233/JAD-2010-1322

FUNDING

This work was supported by grants from the São Paulo Research Foundation (FAPESP) (grants numbers: 18/15571-7 and 2019/23028-4).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/neur.2021.640525/full#supplementary-material
65. Balardin JB, Batistuzzo MC, Martin MaG, Sato JR, Smid J, Porto C, et al. Differences in prefrontal cortex activation and deactivation during strategic episodic verbal memory encoding in mild cognitive impairment. Front Aging Neurosci. (2015) 7:147. doi: 10.3389/fnagi.2015.00147

66. Weiler M, Agosta F, Canu E, Copetti M, Magnani G, Marcone A, et al. Following the spreading of brain structural changes in Alzheimer's disease: a longitudinal, multimodal MRI study. J Alzheimers Dis. (2015) 47:995–1007. doi: 10.3233/JAD-150196

67. Coutinho G, Drummond C, de Oliveira-Souza R, Moll J, Tovar-Moll F, Mattos P. Immediate story recall in elderly individuals with memory complaints: how much does it contribute to memory assessment? Int Psychogeriatr. (2015) 27:1679–86. doi: 10.1017/S1041610215000307

68. Alves GS, Oertel Knöchel V, Knöchel C, Carvalho AF, Pantel J, Engelhardt E, et al. Integrating retrogenesis theory to Alzheimer's disease pathology: insight from DTI-TBSS investigation of the white matter microstructural integrity. Biomed Res Int. (2015) 2015:291658. doi: 10.1155/2015/291658

69. Promteangtrong C, Kolber M, Ramcharan P, Moghbel M, Houshmand S, Scholl M, et al. Multimodality imaging approach in Alzheimer disease. Part I: structural MRI, functional MRI, diffusion tensor imaging and magnetization transfer imaging. Dement Neuropsychol. (2015) 9:318–29. doi: 10.1016/j.dcn.2015.09.003

70. Promteangtrong C, Kolber M, Ramcharan P, Promteangtrong C, Kolber M, Ramcharan P, Moghbel M, Houshmand S, Scholl M, et al. Multimodality imaging approaches in Alzheimer's disease. Part II: 1H MR spectroscopy, FDG PET and Amyloid PET. Dement Neuropsychol. (2015) 9:330–42. doi: 10.1016/j.dcn.2015.09.004

71. Haziot MEJ, Barbosa Junior SP, Vidal JE, de Oliveira FT, de Oliveira ACP. Neuroimaging of HIV-associated neurocognitive disorders. Dement Neuropsychol. (2015) 9:340–4. doi: 10.1016/j.dcn.2015.09.005

72. Boots EA, Schultz SA, Almeida RP, Oh JM, Koscik RL, Dowling MN, et al. Occupational complexity and cognitive reserve in a middle-aged cohort at risk for Alzheimer's disease. Arch Clin Neuropsychol. (2015) 30:634–42. doi: 10.1093/arcnev/avu041

73. Diniz BS, Sibille E, Ding Y, Tseng G, Aizenstein HJ, Lotrich F, et al. Plasma biosignature and brain pathology related to persistent cognitive impairment in late-life depression. Mol Psychiatry. (2015) 20:594–601. doi: 10.1038/mp.2014.37

74. Agosta F, Weiler M, Filippini F. Propagation of pathology through the novel neuroimaging methods. Front Aging Neurosci. (2015) 7:147. doi: 10.3389/fnagi.2015.00147

75. Hamelin L, Bertoux M, Bottlaender M, Corne H, Lagarde J, Hahn V, et al. Longitudinal assessment of subcortical gray matter volume, cortical thickness, and white matter integrity in HIV-positive patients. J Neuroinflammation. (2016) 13:450–7. doi: 10.1186/s12974-016-0500-6

76. Weiler M, Northoff G, Damasceno BR, Balthazar MLC, Selkoe J, Engelhardt E, et al. Integrating retrogenesis theory to Alzheimer's disease pathology: insight from DTI-TBSS investigation of the white matter microstructural integrity. Biomed Res Int. (2015) 2015:291658. doi: 10.1155/2015/291658

77. Leuzy A, Zimmer ER, Dubois B, Zimmermann N, Tukamoto G, Ventura N, de Oliveira S, Doring T, Ventura N, Leite SC, Tukamoto G, Zimmermann N, Netto TM, Tukamoto G, Ventura N, de Castro Bellini Leite S, et al. Regional cerebral gray matter volume in HIV-positive patients with executive function deficits. J Neuroimaging. (2016) 26:450–7. doi: 10.1111/jon.12327

78. Teixeira CV, Rezende TJ, Weiler M, Nogueira MH, Campos BM, Pegoraro LE, et al. Relation between aerobic fitness and brain structures in amnestic mild cognitive impairment elderly. Age (Dordr). (2016) 38:51. doi: 10.1007/s11357-016-9912-3

79. Weiler M, Northoff G, Damasceno BR, Balthazar MLC, Selkoe J, Engelhardt E, et al. Integrating retrogenesis theory to Alzheimer's disease pathology: insight from DTI-TBSS investigation of the white matter microstructural integrity. Biomed Res Int. (2015) 2015:291658. doi: 10.1155/2015/291658

80. Wang Y, Necus J, Kaiser M, Mota B. Universality in human cortical folding in health and disease. Proc Natl Acad Sci U S A. (2016) 113:12820–5. doi: 10.1073/pnas.1601751113

81. Ribeiro LG, Busatto G. Voxel-based morphometry in Alzheimers disease and mild cognitive impairment: systematic review of studies addressing the frontal lobe. Dement Neuropsychol. (2016) 10:104–12. doi: 10.1016/j.dzn.2016.05.028

82. Weiler M, de Campos BM, Teixeira CV, Casseb RF, Carletti-Cassani AFMK, Vicentini JE, et al. Intranetwork and internetwork connectivity in patients with Alzheimer disease and the association with cerebrospinal fluid biomarker levels. J Psychiatry Neurosci. (2016) 41:366–77. doi: 10.1503/jpnm.160190
across the Alzheimer's disease spectrum. *Mol Neurobiol.* (2019) 56(8):336–44. doi: 10.1007/s12035-019-01671-0

133. Ferrari BL, Neto GCC, Nucci MP, Mamani JB, Lacerda SS, Felicio AC, et al. The accuracy of hippocampal volumetry and glucose metabolism for the diagnosis of patients with suspected Alzheimer's disease, using automatic quantitative clinical tools. *Medicine (Baltimore).* (2019) 98:e17824. doi: 10.1097/MD.0000000000017824

134. Yamashita AY, Falcão AX, Leite NJ, Initiative AsDN. The residual center of mass: an image descriptor for the diagnosis of Alzheimer disease. *Neuroinformatics.* (2019) 17:307–21. doi: 10.1007/s11057-018-9390-0

135. De Carvalho Neto EG, Gomes MF, De Oliveira M, Guete MIN, Santos JP, Monteiro MD, et al. The worst is yet to come: probable sporadic Creutzfeldt-Jakob disease in a well-controlled HIV patient. *Prion.* (2019) 13:156–9. doi: 10.1080/19336896.2019.1648985

136. Gonçalves SAB, Caramelli P, Mariano LI, Guimarães HC, Gambogi LB, Resende EPF, et al. Apathy in frontotemporal dementia is related to medial prefrontal atrophy and is independent of executive dysfunction. *Brain Res.* (2020) 1737:146799. doi: 10.1016/j.brainres.2020.146799

137. Martins-Filho RK, Zotin MC, Rodrigues G, Pontes-Neto O. Biomarkers related to endothelial dysfunction and vascular cognitive impairment: a systematic review. *Dement Geriatr Cogn Disord.* (2020) 49:365–74. doi: 10.1159/0005101053

138. Blevins BL, Vinters HV, Love S, Wilcock DM, Grinberg LT, Schneider JA, et al. Brain arteriolar sclerosis. *Acta Neuropathol.* (2021) 141:1–24. doi: 10.1007/s00401-020-02235-6

139. Rossini PM, Di Iorio R, Vecchio F, Anfossi M, Babiloni C, Bozzali M, et al. Early diagnosis of Alzheimer's disease: the role of biomarkers including advanced EEG signal analysis. Report from the IFCN-sponsored panel of experts. *Clin Neurophysiol.* (2020) 131:1287–310. doi: 10.1016/j.clinph.2020.03.003

140. Dalboni da Rocha JL, Bramati I, Coutinho G, Tovar M, M, et al. Cardiovascular risk in cognitively preserved elders classified using positron emission tomography-based Alzheimer's biomarkers of β-amyloid deposition and neurodegeneration. *J Neurosci Res.* (2021) 99:481–501. doi: 10.1002/jnr.24739

141. Dalboni da Rocha JL, Coutinho G, Bramati I, Moll F, Sitaram R. Fractional anisotropy changes in parahippocampal cingulum due to Alzheimer's disease. *Sci Rep.* (2020) 10:26605. doi: 10.1038/s41598-020-59327-2

142. Busatto Filho G, Duran FLS, Squarzoni P, Coutinho AMN, Rosa PGP, Torralbo L, et al. Hippocampal subregional volume changes in elders classified using positron emission tomography-based Alzheimer's biomarkers of β-amyloid deposition and neurodegeneration. *J Neurosci Res.* (2021) 50(3):1919–36. doi: 10.1002/jnr.24793

143. Ehrenberg AJ, Khatun A, Coomans E, Betts MJ, Capraro F, Thijssen EH, et al. Relevance of biomarkers across different neurodegenerative diseases. *Alzheimers Res Ther.* (2020) 12:56. doi: 10.1186/s13195-020-00601-w

144. Simon SS, Hampstead BM, Nucci MP, Duran FLS, Fonseca LM, Martin MDGM, et al. Training gains and transfer effects after menemic strategy training in mild cognitive impairment: a DMRI study. *Int J Physiother.* (2020) 154:15–26. doi: 10.1016/j.jphysy.2019.03.014

145. Moura RR, Coelho AV, Balbino VeCQ, Crovella S, Brandão LA. Meta-analysis of Brazilian genetic admixture and comparison with other Latin America countries. *Am J Hum Biol.* (2015) 27:674–80. doi: 10.1002/ajhb.22714

146. Fam J, Mahendra R, Kua EH. Dementia care in low and middle-income countries. *Curr Opin Psychiatry.* (2019) 32:461–4. doi: 10.1097/YCO.0000000000000525

147. Morris JC, Schindler SE, McCue LM, Moulder KL, Benzing TLS, Chuangha C, et al. Assessment of racial disparities in biomarkers for Alzheimer disease. *JAMA Neurol.* (2019) 76:264–73. doi: 10.1001/jamaneurol.2018.4249

148. Wong LCK, Wong MYZ, Tan CS, Vrooman H, Grothues F, Venketasubramanian N, Cheng CY, et al. Interethnic differences in neuroimaging markers and cognition in Asians, a population-based study. *Sci Rep.* (2020) 10:2655. doi: 10.1038/s41598-020-95618-8

149. Tamashiro-Duran JH, Squarzoni P, de Souza Duran FL, Curiati PK, Valla D, Bucigopol CA, et al. Cardiovascular risk in cognitively preserved elders is associated with glucose hypometabolism in the posterior cingulate cortex and precuneus regardless of brain atrophy and apolipoprotein gene variations. *Age (Dordr).* (2013) 35:777–92. doi: 10.1007/s11357-012-9413-y

150. Scauzafaca M, Menezes PR, Valla HP, Cepaldi AL, Pastor-Valero M, Coutinho LM, et al. High prevalence of dementia among older adults from poor socioeconomic backgrounds in São Paulo, Brazil. *Int Psychogeriatr.* (2008) 20:394–405. doi: 10.1017/S1041610207005625

151. Ortega LFV, Abravanel J, Borges MK, Caço JC, Yassuda MS. Screening for Alzheimer's disease in low-educated or illiterate older adults in Brazil: a systematic review. *Arq Neuropsiquiatr.* (2019) 77:279–88. doi: 10.1590/0004-282x20190024

152. Rzezak P, Squarzoni P, Duran FL, de Toledo Ferraz Alves T, Tamashiro-Duran J, Bottino CM, et al. Relationship between brain age-related reduction in gray matter and educational attainment. *PloS ONE.* (2015) 10:e0140945. doi: 10.1371/journal.pone.0140945

153. Lotufo PA, Goulart AC, Passos VMA, Satake FM, Souza MEM, França EB, et al. Cerebrovascular disease in Brazil from 1990 to 2015: global burden of disease 2015. *Rev Bras Epidemiol.* (2017) 20(Suppl.01):129–41. doi: 10.1590/1980-5497201700050011

154. Cortes-Canteli M, Iadeola C. Alzheimer’s disease and vascular aging: JACC focus seminar. *J Am Coll Cardiol.* (2020) 75:942–51. doi: 10.1016/j.jacc.2019.10.062

155. Grinberg LT, Nirnini R, Suemoto CK, Lucena Ferretti-Reminini RE, Leite RE, Farfel JM, et al. Prevalence of dementia subtypes in a developing country: a clinico-pathological study. *Clinics (Sao Paulo).* (2013) 68:1140–5. doi: 10.6061/clinics/2013(08)013

156. Daroff RB, Jankovic J, Mazziotta JC, Pomeroy SL, Bradley WG. *Bradley's Neurology in Clinical Practice.* 7th ed. London, NY: Elsevier (2016). 2 volumes.

157. Huang LK, Chao SP, Hu CJ. Clinical trials of new drugs for Alzheimer disease. *J Biomed Sci.* (2020) 27:18. doi: 10.1186/s12929-019-0609-7

158. Cross D, Thomson S, Sinclair A. Research in Brazil: A Report for CAPES by Clarivate Analytics. Clarivate Analytics (2018).

159. Russo MJ, Gustafson D, Vázquez S, Surace E, Guinjoan S, Allegri RE, et al. Creation of the Argentina-Alzheimer’s disease neuroimaging initiative. *Alzheimers Dement.* (2014) 10(00Suppl.1):S84–7. doi: 10.1016/j.jalz.2013.09.015

160. Ibanez A, Parra MA, Butlerfor C. The Latin America and the Caribbean consortium on dementia (LAC-CD): from networking to research to implementation science. *J Alzheimer's Dis.* (2021) 1–16. doi: 10.3233/JAD-201384

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Copyright © 2021 Rizzi, Aventurot and Balbazar. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.