INVESTIGATION OF KAOLIN BASED ONE PART GEPOLYMERS

Sezer ÇETİN1*, Mehmet Uğur TOPRAK2, Seher GÜZ3

1Dumlupınar University, Hisarcık Vocational School, Land Registry and Cadastrale Pr., Kütahya
ORCID No: http://orcid.org/0000-0002-8976-3594
2Dumlupınar University, Faculty of Engineering, Department of Civil Engineering, Kütahya
ORCID No: http://orcid.org/0000-0001-5483-2871
3Dumlupınar University, Faculty of Engineering, Department of Metallurgy and Materials Engineering, Kütahya
ORCID No: http://orcid.org/0000-0003-4926-8035

Keywords

Abstract

Kaolin, Geopolymer, Aluminosilicate, Silica fume, Sodium hydroxide.

Kaolin based one-part geopolymers (produced by adding water to preground aluminosilicate+alkali mixture) were produced in this study. The effect of silica fume addition and pre-curing time on microstructure, mechanical and mineralogical properties of geopolymers evaluated with X-ray Fluorescence (XRF), X-ray diffractometer (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectrometer (FT–IR). 7-day compressive strength of 66.73 MPa was obtained from kaolin-based one-part geopolymers. With the addition of silica fume, the strength enhanced up to 88.57 MPa.

KAOLİN ESASLI TEK BİLEŞENLİ JEOPOLİMERLERİN İNCELENMESİ

Anahtar Kelimeler

Öz

Bu çalışmada tek bileşenli (beraber öğütülerek bekletilen aluminosilikat ve alkali karışımına su eklenerek üretilen) kaolin bazlı jeopolimerler üretilmiştir. Silis dumanı eklenmesinin ve ön bekleme süresinin jeopolimerlerin mikroyapısına, mekanik ve mineralojik özelliklerine etkileri X-ışını kırınımölçeri (XRD), X-ışını Floresans (XRF), Taramalı Elektron Mikroskobu (SEM), Fourier Dönüşümlü Kızılötesi Spektrometre (FT-IR) kullanılarak incelemiştir. Kaolin bazlı tek bileşenli jeopolimerlerden 66,73 MPa 7 günlük basınç dayanımı elde edilmiştir. Silis dumanı eklenmesi ile dayanım artarak 88,57 MPa’ya ulaşmıştır.

Araştırma Makalesi

Başvuru Tarihi : 25.03.2021
Kabul Tarihi : 27.05.2021

Research Article

Submission Date : 25.03.2021
Accepted Date : 27.05.2021

* Sorumlu yazar; e-posta : szrcetin@gmail.com

Bu eser, Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) hükümlerine göre açık erişimli bir malalıdır. This is an open access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Victor Glukhovsky, in the 1960s and 1970s made major contribution in identifying both calcium silicate hydrates, and calcium and sodium alumino-silicate hydrates as solidification products in geopolymerization (Davidovits, 2020).

Davidovits began to work on new heat-resistant “plastic materials” after the catastrophic fires in France in 1970/73. Davidovits stated that these requirements can only be provided by inorganic polymer materials and reported that a mineral such as kaolin may form a binder by alkali activation at a temperature as low as 100-150 °C, instead of heat treatment at 1000-1300°C. He introduced the term of geopolymer in 1978 (Davidovits, 1988). Davidovits has defined Si-O-Al bond as sialate bond and Si-O-Si bond as siloxo bond for aluminosilicate structures and this aluminosilicate structures known as “inorganic polymers”, “mineral polymers” (Davidovits, 1982). If Si/Al molar ratios are 1, 2 and 3, this structures respectively defined as poly (sialate), poly(sialate-siloxo) and poly (sialate-disiloxo) (Davidovits, 1976).

The geopolymer is an amorphous semi-crystalline structure with a three-dimensional Si-O-Al polymeric network. Molecular sequences of geopolymer systems with different Si/Al ratios and share of all oxygen atoms of SiO_4 and AlO_4 tetrahedrals shown in Figure 1 (Palomo, Grutzeck and Blanco-Varela, 1999; Provis, Lukey and van Deventer, 2005).

Figure 1. Molecular Sequences of Geopolymer Systems (Al Bakri Abdullah, Liew, Heah and Mohd Tahir, 2018)

In quadruplex coordinated Al, negative charges are balanced with cations such as Na⁺, K⁺, Li⁺, Ca²⁺, Ba²⁺ and H₂O⁺ (Allahverdi, Mehrpour and Kani, 2008)

Geopolymerization is an exothermic reaction and forms three-dimensional macro molecular structures through oligomers. The structure proposed by Davidovits is given in Figure 2 (Davidovits, 1991) (Davidovits, 1994).

Figure 2. Schematic Representation of Geopolymerization Process

The presence of hydroxyl ions in the alkaline medium initiates the dissolution process of the aluminosilicates and liberates the silicate and aluminate species to promote further-polymerization reaction (Komnitsas and Zaharaki, 2007) (Davidovits, 1988). The degree of dissolution depends on fineness, ion-exchange ability, concentration of alkali solutions and the structure of the precursors. It has been suggested that the geopolymerization reactions occur simultaneously and in multiple steps (van Jaarsveld, van Deventer and Lukey, 2002), (Alonso and Palomo, 2001), (Dimas, Giannopoulou and Panias, 2009).

Geopolymers are divided into two according to the production method. First is conventional (two-part) geopolymers that formed by a reaction between a concentrated aqueous solution of alkali hydroxide, sulfate, silicate, or carbonate (Provis and van Deventer, 2009) (Duxson, et al., 2007) (Provis, 2014) (Provis, et al., 2014) (Provis, 2009).

Second one is one-part geopolymers that demonstrate significant point on geopolymer technology having been described by the first time in 2007 (Koloušek, Urbanova, Andertova, Hulinsky and Vorel, 2007) (Shi, Femández-Jíménez and Palomo, 2011). In one-part geopolymers, solid activators such as calcium hydroxide, sodium hydroxide, calcium carbonate, or sodium metasilicate are blended with geopolymer precursors like rice husk ash, silica fume, or fly ash, then just water is added to initiate the geopolymerization. The dissolution process of the solid phase starts rapidly after adding water to the dry mixture (Abdollahnejad, Pacheco-Torgal and de Aguiar, 2015) (Ma, Long, Shi, & Xie, 2018).

Researchers have studied on one-part geopolymer system because of its economic value, whereby geopolymer compound can be prepared by just adding water to aluminosilicate-alkali mixes (Sturm, Greiser, Gluth, Jäger and Brouwers, 2015) (Ke, Bernal, Ye, Provis and Yang, 2014) (Peng, Wang, Shen and Xiao, 2015). With this approach, it is not necessary to use highly alkaline compound or sodium hydroxide solutions which prevent problems with carbonation and ageing of these solutions as well as safety issues. (Hajimohammadi, Provis and van Deventer, 2008).

173
ESOGÜ Müh Mim Fak Derg. 2021, 29(2), 172 - 181

recent investigations (Peng, Wang, Shen and Xiao, 2015) support that one-part geopolymers show low mechanical strength.

Usually, the method for producing metakaolin consists in heating kaolin between 700 and 850 °C, giving an amorphous material. Then it contains exclusively 50–55% of SiO₂ and 40–45% of Al₂O₃ by weight and is very reactive with respect to an alkaline and calcium-rich solution (Konan, et al., 2009) (Poon, Lam, Kou, Wong, and Wong, 2001) (Shwarzman, Kovler, Grader, and Shter, 2003).

The aims of the present study are (i) to evaluate usability of kaolin as raw material in geopolymers (ii) to determine the effect of silica fume (SF) on properties of geopolymers. For this purpose, mechanical, mineralogical, and microstructural analyses were conducted on geopolymer samples.

2. Materials and Methods

In this study, research and publication ethics principles were followed.

Table 1.

Chemical Composition of Kaolin and Silica Fume
Composition
w % of K
w % of SF

LOI: Loss on Ignition

2.2. Methods

Geopolymer samples were produced by one-part production method described below. Composition and production details of geopolymer series were given in Table 2.

One-part geopolymer (OPG): aluminosilicates (K or K+SF) and the alkali (NaOH pellets) were ground together with ring mill (Figure 3) for 30 minutes. After pre-cure in plastic bags for 1 or 2 day in ambient conditions, ready mix was only mixed with distilled water and pressed in 25 mm cylindrical mold (Figure 4.a) under 12 tons with hydraulic press (Figure 4.b).

Studies have indicated that pre-cured samples show some minor cracks compared to open cured samples without pre-curing. During pre-curing, the binder gains some strength. At a low temperature such as room temperature, the water evaporation and hence the capillary forces are not too high. Therefore, crack formation is prevented. After pre-curing, the binder acquires enough strength to withstand capillary forces and gains its ultimate strength without too many cracks (Peys, Rahier and Pontikes, 2016). For this reason, the effect of the increase in pre-curing time on compressive strength was investigated.

Figure 3. Ring Mill

J ESOGÜ Engin Arch Fac. 2021, 29(2), 172 - 181
Steam Cure (SC) was applied to one-part geopolymer samples in the digital water bath shown in Figure 5 (a) and the samples (25x50mm cylinder) obtained were given in Figure 5 (b).

Table 2: Composition and Production Data of Geopolymer Series

Sample Code	K, g	SF, g	NaOH, g	W, ml	Pre-curing, d	Curing Type	Curing Temp. (°C)	Curing Time (h)
K-1	88.90	-	11.10	5	1	SC	60	5
K+SF-1	80.42	8.48	11.10	5	1	SC	60	5
K-2	88.90	-	11.10	5	2	SC	60	5
K+SF-2	80.42	8.48	11.10	5	2	SC	60	5

Figure 4. (a) 25 mm Cylindrical Mold (b) Hydraulic Press

Figure 5. (a) Digital Water Bath Used for Steam Cure (b) One-Part Geopolymer Samples

2.3. Characterization

After steam curing, geopolymers were stored at an ambient temperature up to testing time. The loading speed of the uniaxial compression test device used in the test should be selected as a constant loading speed between 0.2 MPa/sec - 1.0 MPa/sec with respect to TS EN 12390-3. Therefore, compressive strengths of the geopolymer series were measured at 7 d, with uniaxial compression test device under loading speed of 0.6 MPa/sec.
All the reported results are the means of three samples. Phase analysis of raw kaolin and one-part geopolymer samples (K-2 and K+SF-2) were obtained by using Panalytical Empyrean XRD device at Dumlupinar University ILTEM department with a scanning speed of 1° in a minute between 5–70°. FT–IR spectroscopy was performed between 400–4000 cm⁻¹ wave number using Bruker Alpha brand FT–IR device for K-2 and K+SF-2. Zeiss Supra 50VP scanning electron microscope (SEM) was used for SEM microstructure analysis of K+SF-2 (the highest compressive strength).

3. Results

3.1. Compressive Strength Analysis

SF addition has positively affected the compressive strength of geopolymers as expected (Figure 6). Extending the pre-cure time up to 2 days almost doubled the compressive strength of the 1-day pre-cured geopolymer samples.

A study conducted in the literature, the 3-day compressive strength of calcined kaolin with amorphous structure and high reactivity found 63 MPa at most. In this study, calcined kaolin and NaOH or Na₂CO₃ were used (Peng et al., 2015). However, in our study, 7-day compressive strength was obtained with a maximum of 66.73 MPa with a mixture of uncalcined kaolin and NaOH, and this value was increased up to 88.57 MPa with silica fume additive.

![Figure 6. 7-Day Compressive Strength of Geopolymer Samples](image)

Figure 6. 7-Day Compressive Strength of Geopolymer Samples

3.2. XRD Phase Analysis

Kaolinite, anorthite, stishovite and illite were obtained in kaolin. Kaolinite peaks are observed at 2θ (degrees); 12.3° – 24.9° – 45.4° – 55.1° – 62.2°. The intensities of kaolinite and illite decreased in the XRD pattern of K-2 and K+SF-2 samples in consequence of geopolymerization. Geopolymers show generally amorphous X-ray diffraction (XRD) pattern without sharp peaks at 2θ between 25 and 30°(Lecomte, Liégeois, Rulmont, Cloots and Maseri, 2003).

As the Si/Al ratio in K+SF-2 increased, intensity of peaks at the 2θ range from 20° to 25° decreased as well as the amorphous pattern considerably disappeared. Increasing Si/Al ratio increases the angles of sharp peaks (Lizcano, Kim, Basu and Radovic, 2012).

![Figure 7. XRD Patterns Obtained from Test Samples](image)

Figure 7. XRD Patterns Obtained from Test Samples

3.3. FT-IR Analysis

FT–IR analysis was performed to support geopolymer formation. In the FT-IR spectra of geopolymers, Milkey observed the relationship between the frequency of the
absorption bands and the Si:Al ratio in the aluminosilicate frame. According to this, as the amount of Al increases, the wavenumber decreases (Milkey, 1960). In the FT-IR analysis shown in Figure 8, the bands in the 3600-3800 cm⁻¹ wave number region are caused by hydration of water connected to the structure.

Peaks around 690 cm⁻¹ wave number indicate Si–O symmetrical vibration band. Peaks around 565 cm⁻¹ wave number indicate Si–O–Si or Si–O–Al symmetrical strain. Si–O–Si or Si–O–Al network structure is observed at peaks around 460 cm⁻¹. Inorganic polymers consist of Si–O tetrahedra. These tetrahedras are connected to each other by oxygen bridges at their corners. Considering the FT-IR analysis, peaks around 1030 and 1000 cm⁻¹ wave number is taken to 900 cm⁻¹ wave number with heat treatment and geopolymerization. This withdrawal is indicative of structural changes. FT-IR spectra of geopolymers showed similar wavenumber with different intensities regardless of silica fume addition. The main peak analyzed in the FT-IR spectrum of geopolymers was in the region of 900-1250 cm⁻¹ corresponding to the Si–O–Al or Si–O–Si linkages. K+SF-2’s main peak was lower than K-2’s main peak.

![Figure 8. FT-IR Analysis Obtained from Test Samples](image)

3.4. SEM Microstructures and EDX Spectrum Analysis

Figure 9-10 showed the microstructure of the geopolymers at different magnifications. EDX (Energy dispersive X-ray) analysis of the study were given in Figure 11-15. The rod structures seen in Figure 9-10 are insoluble sodium hydroxide crystals. The weight ratio (%) of sodium in the structure at the selected area was 29.86% which is the average of the spectrum 1-5. The reason of the high sodium ratio was insoluble sodium hydroxide crystals given in Figure 9-10.

![Figure 9. SEM Images Of K+SF-2 Sample](image)
Figure 10. SEM Images Of K+SF-2 Sample at Different Magnifications

Figure 11. Microstructure Image and EDX Analysis K+SF-2 Sample

Figure 12. Microstructure Image and EDX Analysis from Different Point Of K+SF-2 Sample

Figure 13. Microstructure Image and EDX Analysis from Different Point Of K+SF-2 Sample

Figure 14. Microstructure Image and EDX Analysis from Different Point Of K+SF-2 Sample

Figure 15. Microstructure Image and EDX Analysis from Different Point Of K+SF-2 Sample
4. Conclusion

Results of this experimental study can be summarized as follows:

- The interatomic bonds examined in the FT-IR analysis reveals geopolymer formation.
- The SEM observations support the presence of geopolymer bonding at the grain boundaries.
- High strength one-part geopolymers were obtained using kaolin as aluminosilicate source.
- Kaolin can be preferred for geopolymer production considering economic and ecological reasons instead of metakaolin generally used for geopolymer production.
- 37.56 MPa compressive strength was obtained in the sample K-1 containing kaolin + NaOH + water, which was pre-curing for 1 day, but 66.73 MPa compressive strength was obtained in the sample K-2 containing kaolin + NaOH + water for 2 days.
- 48.64 MPa compressive strength was obtained in the sample K+SF-1 containing kaolin + Silica Fume + NaOH + water, which was pre-curing for 1 day, but 88.57 MPa compressive strength was obtained in the sample K+SF-2 containing kaolin + Silica Fume + NaOH + water for 2 days.
- In a kaolin based one-part geopolymer, a decrease in the reaction rate was observed as the ratio of SiO$_2$/Al$_2$O$_3$ increased. In addition, the increase in the ratio of SiO$_2$/Al$_2$O$_3$ due to the addition of silica fume caused the formation of silica-rich phases and increased the amount of unreacted silica.
- Silica fume addition enhanced geopolymerization and the compressive strength of geopolymers.

The study was produced from the first author’s thesis. Therefore, the article does not require legal / special permission (Çetin, 2017).

Author Contributions

In this article; Sezer ÇETİN, contributed to the concept, designed the research, experimental design, experimental work, analysis of results, discussed the results and reviewed the manuscript. Mehmet Uğur TOPRAK contributed to the concept, designed the research, analysis of results, discussed the results and reviewed the manuscript. Seher GÜZ, contributed to experimental work, analysis of results, discussed the results and reviewed the manuscript.

Conflict of Interest

There is no conflict of interest.

References

Abdollahnejad, Z., Pacheco-Torgal, F., & de Aguiar, J. B. (2015). Development of foam one-part geopolymers with enhanced thermal insulation performance and low carbon dioxide emissions. In Advanced Materials Research, 1129, 565-572. Trans Tech Publications Ltd. doi : https://doi.org/10.4028/www.scientific.net/AMR.1129.565

Al Bakri Abdullah, M. M., Liew, Y. M., Heah, C. Y., & Mohd Tahir, M. F. (2018). Clay-based materials in geopolymer technology. Cement Based Materials. London, UK: IntechOpen. doi: http://dx.doi.org/10.5772/intechopen.74438

Aldred, J. M., Bury, M. A., Detwiler, R. J., Fouad, F. H., Halczak, W., Holland, T. C., . . . Zhang, M.-H. (2000). Guide for the use of silica fume in concrete. Report by ACI Committee.

Allahverdi, A., Mehrpour, K., & Kani, E. N. (2008). Investigating the possibility of utilizing pumice-type natural pozzolan in production of geopolymer cement. Ceramics Silikaty, 52(1), 16-23. Retrieved from https://www.ceramics-silikaty.cz/2008/pdf/2008_01_16

Alonso, S., & Palomo, A. (2001). Calorimetric study of alkaline activation of calcium hydroxide-metakaolin solid mixtures. Cement and Concrete Research, 31(1), 25-30. doi: https://doi.org/10.1016/S0008-8846(00)00435-X

Çetin, S. (2017). Alüminasilikat bazlı jeopolimerlerin incelemesi (Master’s thesis). Kütahya Dumlupınar University, Institute of Science, Department of Civil Engineering, Kütahya, Turkey.

Davidovits, J. (1976). Solid-phase synthesis of a mineral blockpolymer by low temperature polycondensation of aluminosilicate polymers: Na-poly(sialate) or Na-PS and characteristics. IUPAC Symposium on Long-Term Properties of Polymers and Polymeric Materials. Stockholm, Sweden.

Davidovits, J. (1982). The need to create a new technical language for the transfer of basic scientific information. Transfer and Exploitation of Scientific and Technical Information, 316 – 320. Luxemburg.
ESOGÜ Müh Mih Mim Fak Derg. 2021, 29(2), 172 - 181

Davidovits, J. (1988). Geopolymer chemistry and properties. 1st International Conference on Geopolymer, 1, 25-48. Compiègne.

Davidovits, J. (1991). Geopolymers: Inorganic polymeric new materials. *Journal of Thermal Analysis and Calorimetry*, 37, 1633–1656. doi: https://doi.org/10.1007/BF01912193

Davidovits, J. (1994). Geopolymers: Man-made rock geosynthesis and the resulting development of very early high strength cement. *Journal of Materials Education*, 16, 91-139.

Davidovits, J. (2020). *Geopolymer chemistry and applications*. France: Institut Géopolymère.

Dimas, D. D., Giannopoulou, I. P., & Panias, D. (2009). Utilization of alumina red mud for synthesis of inorganic polymeric materials. *Mineral Processing and Extractive Metallurgy Review*, 30, 211-239. doi: https://doi.org/10.1016/j.mpex.2008.02.001

Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & van Deventer, J. S. (2007). Geopolymer technology: The current state of the art. *Journal of Materials Science*, 42, 2917–2933. doi: https://doi.org/10.1007/s10853-006-0637-z

Hajimohammadi, A., Provis, J. L., & van Deventer, J. S. (2008). One-part geopolymer mixes from geothermal silica and sodium aluminates. *Industrial & Engineering Chemistry Research*, 47, 9396-9405. doi: https://doi.org/10.1021/ie8006825

Jithendra, C., & Elavenil, S. (2020). Effects of silica fume on workability and compressive strength properties of aluminosilicate based flowable geopolymer mortar under ambient curing. *Silicon*, 12(8), 1965-1974. doi: https://doi.org/10.1007/s12633-019-00308-0

Koloušek, D., Urbanova, M., Andertova, J., Hulinsky, V., & Vorel, J. (2007). Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers. *Journal of Materials Science*, 42, 9267–9275. doi: https://doi.org/10.1007/s10853-007-1910-5

Komnitsas, K., & Zaharaki, D. (2007). Geopolymerisation: A review and prospects for the minerals industry. *Minerals Engineering*, 20(14), 1261-1277. doi: https://doi.org/10.1016/j.mineng.2007.07.011

Konan, K. L., Peyratout, C., Smith, A., Bonnet, J.-P., Rossignol, S., & Oyetola, S. (2009). Comparison of surface properties between kaolin and metakaolin in concentrated lime solutions. *Journal of Colloid and Interface Science*, 339(1), 103-109. doi: https://doi.org/10.1016/j.jcis.2009.07.019

Lecomte, L., Liégeois, M., Rulmont, A., Cloots, R., & Maseri, F. (2003). Synthesis and characterization of new inorganic polymeric composites based on kaolin or white clay and on ground-granulated blast furnace slag. *Journal of Materials Research*, 18(11), 2571-2579. doi: https://doi.org/10.1557/JMR.2003.0360

Lizcano, M., Kim, H. S., Basu, S., & Radovic, M. (2012). Mechanical properties of sodium and potassium activated metakaolin-based geopolymers. *Journal of Materials Science*, 47(6), 2607-2616. doi: https://doi.org/10.1007/s10853-011-6085-4

Ma, C., Long, G., Shi, Y., & Xie, Y. (2018). Preparation of cleaner one-part geopolymer by investigating different types of commercial sodium metasilicate in China. *Journal of Cleaner Production*, 201, 636-647. doi: https://doi.org/10.1016/j.jclepro.2018.08.060

Milkey, R. G. (1960). Infrared spectra of some tectosilicates. *American Mineralogist: Journal of Earth and Planetary Materials*, 45(9-10), 990-1007.

Palomo, A., Grutzek, M. W., & Blanco-Varela, M. T. (1999). Alkali-activated fly ashes - a cement for the future. *Cement and Concrete Research*, 29(8), 1323-1329. doi: https://doi.org/10.1016/S0008-8846(98)00243-9

Peng, M. X., Wang, Z. H., Shen, S. H., & Xiao, Q. G. (2015). Synthesis, characterization and mechanisms of one-part geopolymeric cement by calcining low-quality kaolin with alkali. *Materials and Structures*, 48, 699–708. doi: https://doi.org/10.1617/s11527-014-0350-3

Peys, A., Rahier, H., & Pontikes, Y. (2016). Potassium-rich biomass ashes as activators in metakaolin-based inorganic polymers. *Applied Clay Science*, 119, 401-409. doi: https://doi.org/10.1016/j.clay.2015.11.003

Poon, C.-S., Lam, L., Kou, S., Wong, Y.-L., & Wong, R. (2001). Rate of pozzolanic reaction of metakaolin in high-performance cement pastes. *Cement and Concrete Research*, 31, 1301-1306. doi: https://doi.org/10.1016/S0008-8846(01)00581-6

Provis, J. L. (2009). Activating solution chemistry for geopolymers. In J. L. Provis, & J. S. van Deventer, *Geopolymers: Structure, processing, properties and industrial applications*, 50-71. Cambridge: Woodhead Publishing. doi: https://doi.org/10.1533/9781845696382.1.50

Provis, J. L. (2014). Geopolymers and other alkali activated materials: Why, how, and what? *Materials and Structures*, 47, 11-25. doi: https://doi.org/10.1016/j.mrs.2013.10.011
Provis, J. L., & van Deventer, J. S. (2009). Introduction to geopolymers. In J. L. Provis, & J. J. van Deventer, Geopolymers : Structure, processing, properties and industrial applications, 1-11. Cambridge: Woodhead Publishing. doi: https://doi.org/10.1533/9781845696382.1

Provis, J. L., Duxson, P., Kavalerova, E., Krivenko, P. V., Pan, Z., Puertas, F., & van Deventer, J. S. (2014). Historical aspects and overview. In J. L. Provis, & J. S. van Deventer (Eds.), Alkali Activated Materials, 13, 11-57. Dordrecht: Springer. doi: https://doi.org/10.1007/978-94-007-7672-2_2

Provis, J. L., Lukey, G. C., & van Deventer, J. S. (2005). Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results. Chemistry of Materials, 17(12), 3075-3085. doi: https://doi.org/10.1021/cm050230i

Sathonsaowaphak, A., Chindaprasirt, P., & Pimraksa, K. (2009). Workability and strength of lignite bottom ash geopolymer mortar. Journal of Hazardous Materials, 168(1), 44-50. doi: https://doi.org/10.1016/j.jhazmat.2009.01.120

Shi, C., Fernández-Jiménez, A., & Palomo, A. (2011). New cements for the 21st century: The pursuit of an alternative to portland cement. Cement and Concrete Research, 41(7), 750-763. doi: https://doi.org/10.1016/j.cemconres.2011.03.016

Shvarzman, A., Kovler, K., Grader, G., & Shter, G. (2003). The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite. Cement and Concrete Research, 33(3), 405-416. doi: https://doi.org/10.1016/S0008-8846(02)00975-4

Sturm, P., Greiser, S., Gluth, G. J., Jäger, C., & Brouwers, H. (2015). Degree of reaction and phase content of silica-based one-part geopolymers investigated using chemical and NMR spectroscopic methods. Journal of Materials Science, 50, 6768-6778. doi:https://doi.org/10.1007/s10853-015-9232-5

Tonak, T., Sipahi, F., & Atay, Y. (1997). Elektrometalurji Sanayii Atık Ürünü Silis Dumanı’nın Çimento Üretiminde Kullanılması. Endüstriyel Atıkların İnceleme Sektöründe Kullanılması Sempozyumu, 169-183. Ankara: TMMOB İnşaat Mühendisleri Odası.

van Jaarsveld, J. G., van Deventer, J. S., & Lukey, G. C. (2002). The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers. Chemical Engineering Journal, 89(1-3), 63-73. doi: https://doi.org/10.1016/S1385-8947(02)00025-6

Ye, N., Yang, J., Liang, S., Hu, Y., Hu, J., Xiao, B., & Huang, Q. (2016). Synthesis and strength optimization of one-part geopolymer based on red mud. Construction and Building Materials, 111, 317-325. doi: https://doi.org/10.1016/j.conbuildmat.2016.02.099

Yeğinobalı, A. (2009). Silis dumanı ve çimento ile betonda kullanımı. Türkiye Çimento Müstahsilleri Birliği, 27-36.