Rates, predictors and mortality of sepsis-associated acute kidney injury: systematic review and meta-analysis

Jie feng Liu
Central South University Xiangya School of Public Health

Hebin Xie
Science and education departent of Changsha central hospital

ziwei ye
Xiangya school of public health,central south university

Lesan Wang (✉ wlshncs@126.com)
https://orcid.org/0000-0002-6819-5479

Research article

Keywords: acute kidney injury, sepsis, risk factor, meta-analysis, systematic review.

DOI: https://doi.org/10.21203/rs.3.rs-18145/v3

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Objective: The incidence and mortality of sepsis-induced acute kidney injury is high. Many studies have explored the causes of sepsis-induced acute kidney injury (AKI). However, its predictors are still uncertain; additionally, a complete overview is missing. A systematic review and a meta-analysis were performed to determine the predisposing factors for sepsis-induced AKI.

Method: A systematic literature search was performed in the Medline, Embase, Cochrane Library, PubMed and Web of Science databases, with an end date parameter of May 25, 2019. Valid data were retrieved in compliance with the inclusion and exclusion criteria.

Result: Forty-seven observational studies were included for analysis. A cumulative number of 55911 sepsis patients were evaluated. The incidence of AKI caused by septic shock is the highest. 30 possible risk factors were included in the meta-analysis. The results showed that 20 factors were found to be significant. The odds ratio (OR), 95% confidence interval (CI) and Prevalence of the most prevalent predisposing factors for sepsis-induced AKI were as the following: Septic shock \([2.88(2.36-3.52), 60.47\%]\), Hypertension \([1.43(1.20-1.70), 38.39\%]\), Diabetes mellitus \([1.59(1.47-1.71), 27.57\%]\), Abdominal infection \([1.44(1.32-1.58), 30.87\%]\), Vasopressors use \([2.95(1.67-5.22), 64.61\%]\), Vasoactive drugs use \([3.85(1.89-7.87), 63.22\%]\), Mechanical ventilation \([1.64(1.24-2.16), 68.00\%]\), Positive blood culture \([1.60(1.35-1.89), 41.19\%]\), Smoke history \([1.60(1.09-2.36), 43.09\%]\). Other risk factors include cardiovascular, coronary artery disease, liver disease, unknown infection, diuretics use, ACEI or ARB, gram-negative bacteria and organ transplant.

Conclusion: A large number of factors are associated with AKI development in sepsis patients. Our review can guide risk-reducing interventions, clinical prediction rules, and patient-specific treatment and management strategies for sepsis-induced acute kidney injury.

Background

Sepsis-associated acute kidney injury (S-AKI) is a major public health condition with great disease burden. S-AKI is a syndrome of acute functional impairment and organ damage that could be associated with long-term adverse outcomes. Sepsis is the most common cause of acute kidney injury (AKI) in critically-ill patients, which can be observed in 40-50% of AKI patients. Importantly, S-AKI is closely associated with poor clinical outcomes. For instance, the mortality rate of sepsis patients with AKI complication is significantly higher than that of the non-AKI patients. Among critically-ill patients with AKI, S-AKI is correlated with a higher risk of in-hospital death and longer hospital stay than AKI caused by any other reasons. Despite multiple advances have been achieved in medicine and surgery treatment, the morbidity remains rather high. Mounting evidence suggested that AKI incidence has been increasing. A 10-year cohort study that included more than 90,000 patients from more than 20 ICUs indicated that AKI incidence increased by 2.8% per year. Moreover, along with the global aging trend, majority of the sepsis patients were elderly, and the number of patients with sepsis-associated AKI may continue to increase.
Sepsis-associated AKI portends a high burden of morbidity and mortality in both children and adults with critical illness. Unfortunately, the pathogenesis of S-AKI is still not completely understood. There are also difficulties in the early diagnosis and treatment of S-AKI awaiting to be solved. Therefore, early identification of risk factors and prevention of S-AKI is extremely important. Although a number of studies have explored the risk factors for AKI development in sepsis patients, the opinions remain inconclusive due to regional differences and the inconsistency of the diagnostic criteria of sepsis and AKI. Our study aimed to systematically review previous observational studies (cohort/case-control studies) and to perform meta-analyses with the eligible evidence to investigate the association between sepsis and AKI.

Methods

Inclusion Criteria

Studies that met the following criteria were included for data extraction: (1) Patients were older than 16 years with a hospitalization stay of greater than 24 hours; (2) Studies contained information on 2×2 contingency table; (3) Sepsis and septic shock were diagnosed based on internationally-recognized standards, such as sepsis 1.0, sepsis 2.0, sepsis 3.0; (4) Acute kidney injury was diagnosed based on internationally-recognized standards, such as KDIGO, AKIN and RIFLE; (5) Cohort or case-control studies in which the patients were grouped into sepsis AKI and sepsis non-AKI.

Data Sources and Search Strategy

A systematic review and meta-analysis of scientific peer-reviewed literature were performed by following the recommendations from the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guideline (see Additional files 1).

The systematic literature search was performed in the Medline, Embase, Cochrane Library, PubMed and Web of Science databases from inception to June 2019 with no restrictions to retrieve studies that assessed the risk of AKI development in sepsis patients. The following search terms were used: (septic OR sepsis OR severe sepsis OR Septicemia OR septic shock OR sepsis-associated OR sepsis-associated) AND (Acute Kidney Injury OR Acute Renal Injury OR Acute Renal Insufficiency OR AKI OR acute renal failure OR ARF). The reference list of the included articles was also manually retrieved. Gray literature (generally refers to literature that was not published) and conference abstracts were not included.

Data Extraction

Two independent reviewers participated in the entire process of literature retrieval. The first-round screening was performed based on the title and abstract to exclude studies on irrelevant topics. Next, the included articles were screened based on full text and ineligible articles that did not meet the inclusion criteria were excluded. Data extraction was performed using a standardized data collection form, including:
1. study characteristics: publication year, study design, country of origin, sepsis and acute kidney injury diagnostic criteria, sepsis type, period of data report;

2. number of the 2×2 contingency table and unadjusted crude odds ratios with regard to demographic data (gender) and investigated independent variables/predictors (comorbidities, source of infection, medication, invasive treatment, sepsis types and blood culture);

3. outcome: the primary endpoint was S-AKI, and the secondary outcome was prevalence of influence factors and mortality in patients with S-AKI.

Quality Assessment

Study selection, data extraction, and quality assessment were independently performed by two authors. Any disagreements would be resolved through discussions until a consensus was reached. If disagreements persisted, another reviewer would be invited to the discussion to achieve a final consent. Quality assessment of the observational studies that were included in the meta-analysis was performed using the Newcastle-Ottawa scale (available at http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp).

Statistical Analysis

The core characteristics of the study and patients were sorted out and summarized. The frequency distribution was expressed as a percentage. For the meta-analysis, we only used unadjusted crude odds ratios (OR) from no less than 3 studies to standardize the results due to the great variability of multivariable models across studies. Stata/SE version 11 was used for statistical analyses and a two-sided \(P \) value of 0.05 or less was considered statistical significant. Heterogeneity among studies was evaluated by calculating the \(I^2 \) statistic (significance level at \(I^2 > 50\% \)) and chi-square test (significance level at \(P < 0.10 \)). \(I^2 \) values of 25\% and 75\% were used as the criteria for classifying the degree of intertrial heterogeneity (\(I^2 < 25\% \) low heterogeneity, \(I^2 > 25\% \) while \(< 75\% \) moderate heterogeneity, \(I^2 > 75\% \) high heterogeneity). If severe heterogeneity was present at \(I^2 > 50\% \), the random effect models were chosen, otherwise the fixed effect models were used. For results with a heterogeneity of less than 50\% and a fixed-effect model, the stability would be explored by transforming into a random effects model. Meta regression and subgroup analyses (≥ 6 studies) were conducted according to publication year, study design, country of origin, sepsis type and diagnostic criteria of acute kidney injury and sepsis, on the condition of high intertrial heterogeneity presented (\(I^2 > 50\% \) and \(P < 0.10 \)). A sensitivities analysis of the overall risk (≥ 3 studies) was conducted by omitting 1 study in each turn, to estimate the impact of individual study. The publication bias was visually examined by using funnel plots, and the Egger test was used to carry out asymmetric test on the pooled data of ≥ 7 studies.

Results

1. Literature search (Figure 1)
8033 records from the Medline, Embase, Cochrane Library, PubMed and Web of Science databases were initially identified. After filtering by title and abstract, duplicate articles, review studies, and those on unrelated topics were excluded, and 626 studies were reviewed in full text. After excluding the comment papers, studies with inconsistent control settings, articles with unspecified AKI or sepsis diagnostic criteria, studies performed in special population, and those with limited data, 47 articles met the inclusion criteria and were included in the systematic review and meta-analysis.

2. Characteristics of the Included Studies (Table 1)

The characteristics of the included articles were shown in Table 1. Studies were published between 2008 and 2019, and were from eighteen countries (Spain, Greece, United Kingdom, France, Netherlands, Sweden, Canada, United States, Brazil, China, Japan, Saudi Arabia, Turkey, Finland, Portugal, South Korea and Australia) on four continents (Europe, America, Asia and Oceania). Overall 12 retrospective cohort studies, 25 prospective cohort studies and 12 case-control studies were included, with a total of 55,911 sepsis patients. Document quality assessment showed that the methodological quality of all studies was high, achieving a quality score of 8 (≥ 6).

3. Summary data from the included studies (Table 2)

This study summarized the characteristics of sepsis patients who developed AKI. ICU mortality, hospital mortality, 28-day mortality and 90-day mortality of S-AKI were respectively reported at 45.99% (1899/4325) in 15 studies, 49.84% (2732/5481) in 10 studies, 36.67% (161/439) in 4 studies, 64.66% (2406/3721) in 5 studies. In S-AKI patients, all mortality rates of AKI caused by septic shock were the highest, while that caused by severe sepsis was the lowest.

The most prevalent comorbidity was ARDS (47.02%, 489/1040, from 3 studies), followed by hypertension (38.39%, 3263/8500, from 32 studies), diabetes (27.57%, 2248/8155, from 32 studies) and stroke (22.79%, 67/294, from 4 studies), while cirrhosis and liver disease accounted for only 4.71% (99/2104, from 6 studies) and 3.74% (554/14081, from 7 studies) respectively. Hepatic failure was more common in sepsis patients compared with those with septic shock and severe sepsis. Hypertension in septic shock was less common than sepsis and severe sepsis (26.16% VS 42.28% and 58.07%), while chronic kidney disease was more prevalent (45.13% VS 15.52% and 11.02%). Hypertension and diabetes were more prevalent in severe sepsis than in sepsis and septic shock (58.7% VS 42.28% and 26.16%, 30.20% VS 20.53% and 26.75%).

On admission, patient source mainly included emergency admission (50.88%, 9235/18149, from 8 studies) and medical admission (47.02%, 8701/18506, from 7 studies), followed by operative admission and surgical ward. Vasoactive drugs were the most commonly used drugs, accounting for 64.61% (1293/2001, from 5 studies), among which vasopressors was the most frequently used, accounting for 63.22% (911/1441, from 7 studies), followed by steroids, diuretics, ACEI or ARB, stains and NSAIDS. Vasoactive drugs and vasopressors were more prevalent in septic shock and severe sepsis than in sepsis.
Six sources of infection were reported in this study, including pulmonary infection (46.05%, 1480/3214, from 19 studies), respiratory infection (32.08%, 85/273, from 7 studies), abdominal infection (30.87%, 2152/6971, from 25 studies), urinary tract infection (11.14%, 630/5653, from 19 studies), skin or soft tissue infection (6.03%, 335/5554, from 13 studies), and unknown infection (6.02%, 100/1662, from 4 studies).

Community acquired infection was reported in 3 studies with a prevalence of 57.36% (2041/3558), which was higher than nosocomial acquired infection reported in 2 studies (39.81%, 2474/6215). Twenty-four studies reported mechanical ventilation in 68.00% of the patients (7167/10539, from 24 studies), and mechanical ventilation was more frequently used in septic shock and severe sepsis cases compared with sepsis cases. Other prevalent factors included positive blood culture (41.38%, 3259/7876, from 8 studies) and smoking history (43.09%, 642/1490, from 5 studies).

4. Risk factors for AKI (Figure 2)

Comorbidities

The pooled data on hypertension from 32 studies indicated that it was a significant predictor (OR 1.43, 95%CI 1.20-1.70), with a moderate heterogeneity ($I^2 = 74.00\%$). Source of heterogeneity was not identified through subgroup analysis. The results of the sensitivity analysis were consistent. After excluding 3 studies with rather high heterogeneity, the heterogeneity decreased and the result remained stable (see Additional files 2).

The pooled data on diabetes mellitus from 32 studies indicated that it was a significant predictor (OR 1.59, 95%CI 1.47-1.71), with a moderate heterogeneity ($I^2 = 37.1\%$). The results remained stable even with random effect model (see Additional files 3).

The pooled data on chronic kidney disease from 14 studies indicated that it was a significant predictor (OR 3.49, 95%CI 2.36-5.15), with a moderate heterogeneity ($I^2 = 71.70\%$). Source of heterogeneity was not identified through subgroup analysis. The results of the sensitivity analysis were consistent. After excluding the study with high heterogeneity, the I^2 was reduced to 25.6% (low heterogeneity) and the result remained stable (see Additional files 4).

Cardiovascular disease (from 14 studies, OR 1.31, 95%CI 1.24-1.40) and liver disease (from 17 studies, OR 1.68, 95%CI 1.47-1.90) were identified as risk factors with low heterogeneity, and the results remained stable even with random effect model (see Additional files 5 and 6).

The pooled data on coronary artery disease from 8 studies indicated that it was a significant predictor (OR 1.27, 95%CI 1.08-1.49), with a moderate heterogeneity ($I^2 = 37.1\%$). The results remained stable with the random effect model (see Additional files 7).

Source of infection
The pooled data on pulmonary infection from 8 studies indicated that it was a significant predictor (OR 0.77, 95% CI 0.60-0.99), with a moderate heterogeneity ($I^2 = 77.60\%$). Source of heterogeneity was not identified through subgroup analysis. The results of the sensitivity analysis were consistent (see Additional files 8).

The pooled data on abdominal infection from 25 studies indicated that it was a significant predictor (OR 1.44, 95% CI 1.32-1.58), with a moderate heterogeneity ($I^2 = 40.20\%$). The results of the sensitivity analysis were consistent. After excluding a study with high heterogeneity, the result remained stable, and the results were also stable with the fixed effect model (see Additional files 9).

The pooled data on unknown infection from 25 studies indicated that it was a significant predictor (OR 2.01, 95% CI 1.35-2.98), with a low heterogeneity ($I^2 = 0\%$). The results were still stable with the random effect model (see Additional files 10).

Medications

Vasopressors (from 7 studies, OR 3.15, 95% CI 2.00-4.96) and ACEI or ARB (from 8 studies, OR 1.61, 95% CI 1.10-2.36) were all identified as risk factors with high heterogeneity ($I^2 \geq 75\%$). Source of heterogeneity was not identified through subgroup analysis and the sensitivity analysis results were stable (see Additional files 11).

The pooled data on diuretics from 5 studies indicated that it was a significant predictor (OR 1.40, 95% CI 1.13-1.72), with a low heterogeneity ($I^2 = 0\%$). The results remained stable with the random effect model (see Additional files 12).

Figure 3. Forest plot for meta-analysis of the association between male sex and AKI

Other factors

The pooled data on male sex from 43 studies indicated that it was a significant predictor (OR 1.22, 95% CI 1.06-1.40), with a moderate heterogeneity ($I^2 = 69.80\%$). Source of heterogeneity was not identified through subgroup analysis. The sensitivity analysis results were consistent (see Additional files 13).

The pooled data on positive blood culture from 9 studies indicated that it was a significant predictor (OR 1.60, 95% CI 1.35-1.89), with a moderate heterogeneity ($I^2 = 50.20\%$). Source of heterogeneity was not identified through subgroup analysis. The sensitivity analysis results were consistent (see Additional files 14).

The pooled data on smoking history from 5 studies indicated that it was a significant predictor (OR 1.60, 95% CI 1.09-2.36), with a high heterogeneity ($I^2 = 78.30\%$). The sensitivity analysis results were consistent. After excluding a study with high heterogeneity, the result remained stable (see Additional files 15).
The pooled data on septic shock from 7 studies indicated that it was a significant predictor (OR 1.40, 95% CI 1.13-1.72), with a low heterogeneity ($I^2 = 8.2\%$). The results were still stable with the random effect model (see Additional files 16).

Gram-negative bacteria (from 3 studies, OR 2.19, 95% CI 1.52-3.15) and organ transplant (from 3 studies, OR 1.96, 95% CI 1.48-2.61) were all identified as risk factors with low heterogeneity ($I^2 = 0\%$), and the results remained stable with the random effect model (see Additional files 17 and 18).

The pooled data on mechanical ventilation from 24 studies indicated that it was a significant predictor (OR 1.64, 95% CI 1.24-2.16), with a high heterogeneity ($I^2 = 88.70\%$). Source of heterogeneity was not identified through subgroup analysis. The sensitivity analysis results were consistent (see Additional files 19).

5. Tests for Publication Bias (Figure 2)

The Egger's rank correlation test and the Egger linear regression test indicated no publication bias of all risk factors (\geq 7 studies) except for cardiovascular disease ($P = 0.015$). Due to the limited study number (\leq 7 studies), publication bias was not evaluated with the predictors of smoking history, cirrhosis, multiorgan dysfunction (\geq 3); unknown infection, vasoactive drug administration, use of diuretics and organ transplant.

Discussion

Major Findings

To the best of our knowledge, this is the first meta-analysis providing comprehensive insights into the risk factors for AKI in sepsis patients. In total, 47 studies including 55,911 sepsis patients were included, and 46 risk factors were examined in the systematic review. The results showed that 19 factors were found to be significant, including comorbidities, sources of infection, medications and invasive treatments. Risk factors of S-AKI come from a wide range of sources, making it difficult to prediction and prevention. We found that AKI caused by septic shock had the highest incidence and mortality among sepsis patients from included studies. At the same time, we also found great intertrial heterogeneity in the studies exploring the association between sepsis and AKI, which therefore results in reduced evidence power, leading to controversial opinion regarding the risk factors for AKI in sepsis patients. So we hope that more homogeneous research can be carried out in the future and more reliable conclusions can be obtained.

Analysis of Risk Factors

Risk factors for sepsis-associated AKI can be categorized as pre-sepsis risk factors, sepsis disease related factors and sepsis-related treatment factors. The pre-sepsis risk factors (e.g., concurrent chronic diseases, sex, age, smoking history) and sepsis disease itself (e.g., sepsis type, source of infection,
bacterial infection) cannot be altered since they have been existing at the time of diagnosis. However, these factors can be used to identify the patients that are at high risk of AKI, so that timely precautions shall be applied accordingly to reduce the potential risks in the future. On the other hand, the risk factors associated with sepsis-related treatment can be manually controlled by using efficient strategies (e.g., medication, mechanical ventilation).

- **Pre-sepsis risk factors**

Our study showed multiple chronic comorbidities could be associated with AKI development in sepsis patients. Hypertension and diabetes mellitus were the most common risk factors for AKI among all comorbidities, and other factors included chronic kidney diseases, cardiovascular diseases, coronary artery diseases and liver diseases. This may be due to the fact that majority of the sepsis patients were older adults aged 65 years and older.\(^{59-60}\) We found diabetes mellitus and hypertension were associated with higher risks of AKI, which is consistent with other studies.\(^{61-63,66}\) Chronic kidney disease has been recognized as a significant risk factor for AKI.\(^{64-65}\) Moreover, when AKI occurs in CKD patients, it is more severe and difficult to recover. There is increasing recognition that AKI and chronic kidney disease (CKD) are closely linked and are likely to promote one another. However, the association between severity of CKD (e.g., as measured by levels of estimated GFR) and risk of AKI has not been quantified until a recent meta-analysis showing that CKD may increase the risk of AKI in patients with diabetes or hypertension. Therefore, in addition to directly increasing the risk of AKI, diabetes mellitus, hypertension and CKD could also interact to promote the development of AKI.\(^{66}\) Besides, these three factors are also prevalent risk factors for AKI, so more attention should be paid to the patients with the above three risk factors to avoid potential risks of AKI.

Opinions regarding the association between gender and AKI remains controversial, while our study found that male patients may be at a slightly higher risks of AKI compared with female counterparts. A study found lower glomerular filtration rate (eGFR) and higher albumin-creatinine ratio (ACR) were associated with higher AKI risks in both men and women, and male sex was associated with higher risk of AKI, a slight attenuation in lower eGFR but not in higher ACR.\(^{67}\)

- **Sepsis-disease-related risk factors**

In our study, among sepsis patients, AKI caused by septic shock had the highest incidence and mortality, and septic shock was also a significant risk factor for AKI, so more attention should be paid to the prevention of AKI in patients with septic shock.

The data summary indicated that pulmonary and abdominal infections were the most common source of infection among sepsis patients who developed AKI, and our study also found that both were associated with AKI development. Abdominal infections could increase risk of AKI development, but our study found that lung infection was a protective factor for AKI. At present, there is no research investigating relevant field. Considering the high heterogeneity (\(I^2 = 77.6\%\)), a sensitivity analysis was performed and showed
stable results. The subgroup analysis showed different results among Chinese population and other population. The pulmonary infection was a risk factor among Chinese population (OR 1.62, 95%CI 1.06-2.49), but a protective factor in other populations (OR 0.61, 95%CI 0.50-0.74). We were cautious about the overall results and the results of subgroup analysis since there is lack of reasonable interpretation for the results as well as the heterogeneity among different population. Further research may be needed to investigate relevant issue in the further.

The relationship between the occurrence of AKI and the bacterial infection has rarely been reported. Our study found that gram-negative bacteria could be a risk factor for AKI. However, it remains unclear which gram-negative bacteria could be involved. Only one study showed that Escherichia coli may be associated with the development of AKI\(^\text{67}\). More research on this topic may be needed in the future.

- **Sepsis-related treatment risk factors**

Our study found that diuretics, vasopressors and ACEI or ARB could be associated with the occurrence of AKI. Vasoactive drugs are commonly used in patients with sepsis, especially septic shock. Our research found that vasopressors increased the risk of AKI, while the association between ALI and other medications remain uncertain. A large cohort study\(^\text{68}\) showed ACEI/ARB could be associated with a small increase in AKI risk while individual patient characteristics were much more closely correlated with the rate of AKI. Among patients with CKD, there was no increased risk of developing AKI compared with those who are not exposed to ACEI/ARB, while exposure to ACEI/ARB in people without CKD increases the risk of AKI. A multi-center prospective study in Shanghai showed that diuretics accounted for 22.2% of all drug-induced AKI, ranked only after antibiotics.\(^\text{69}\) The reasons for the association between diuretics use and increased AKI risks could be as follows. First, loop diuretics block sodium chloride uptake in the macula densa, independent of any effect on sodium and water balance, thereby stimulating the RAAS (renin-angiotensin-aldosterone system), and leading to AKI. Sometimes, AKI is caused by the combined action of diuretics and other drugs, which may include antibiotics, contrast media, ACEI/ARB and NSAIDs.\(^\text{70}\) Another study showed a triple therapy combination consisting of diuretics with ACEI or ARB and NSAIDs was associated with an increased risk of AKI.\(^\text{71}\) However, the high heterogeneity of the above factors cannot be ignored, and we have not found the source through subgroup analysis. Therefore, the results should be interpreted with caution. This part of heterogeneity may come from the specific types, duration and dosage of drugs and the interaction with other drugs. More homogeneous clinical randomized trials in sepsis patients should be conducted to confirm the role of these drugs and their interactions in inducing AKI.

At present, many studies have confirmed that mechanical ventilation was a risk factor for AKI, which is consistent with our results.\(^\text{72,73}\) A Study has shown that in patients in the intensive care unit, mechanical ventilation is used among up to 75% of the patients.\(^\text{74}\) Our summary data showed that 68% of sepsis patients who developed AKI used mechanical ventilation, which is even higher in patients with septic shock and severe sepsis. Therefore, we have to pay special attention to prevent the development of AKI in patients with mechanical ventilation. Hypoxemia, hypercapnia, and excessive PEEP values during
mechanical ventilation are all risk factors for AKI. If there are other risk factors at the same time, AKI is more likely to occur. Now, there is no good measure to prevent or reduce the AKI caused by mechanical ventilation. Some studies have shown that the development of AKI can be reduced by adjusting ventilator parameters, improving hypoxia status as soon as possible, avoiding persistent hypercapnia, and using too little PEEP (positive end-expiratory pressure) value. However, a meta-analysis showed that invasive MV could be associated with a threefold increase in odds of AKI in critically ill patients, as well as tidal volume (Vt) and PEEP settings. Therefore, future research should focus on the strategy that can reduce the AKI risks induced by mechanical ventilation.

Limitations

However, our study also has limitations. First of all, our results were based on unadjusted estimates due to the great variability of multivariable models across studies. Therefore, we may fail to identify the independent predictors of AKI in the presence of confounding factors. Secondly, significant heterogeneity was observed for certain risk factors due to the varied geographic locations, demographic data and inconsistent diagnostic criteria of AKI and sepsis, and we did not identify the source through subgroup analysis, which may have impacts on our research results. In addition, due to the small number of studies, heterogeneity and publication bias of certain risk factors were not evaluated.

Conclusion

The most common risk factors for S-AKI were as follows: septic shock, hypertension, diabetes mellitus, abdominal infection, smoke history, positive blood culture, vasopressors use, mechanical ventilation. Other risk factors included cardiovascular, coronary artery disease, liver disease, unknow infection, diuretics use, use of ACEI or ARB, gram-negative bacteria infection and organ transplant. Despite of our rigorous methodology, the inherent limitations of the included studies prevented us from reaching definitive conclusions. However, this article is the first systematic review and meta-analysis investigating the risk factors for AKI development in sepsis patients, which can be used to assist clinical targeted care strategies for AKI prevention, detection, and management among sepsis patients.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Availability of data and materials
All data generated or analysed during this study are included in this published article [and its seen Additional files and Supplementary materials].

Competing interests

There is no conflict of interest in relation to this study.

Funding

This work was supported by Regular funded projects awarded to XHB from the Health Committee of Hunan Province.

The funders had no role in any stage of the design and conduct of the study, collection, management, analysis, and interpretation of data in the study, or the preparation, review, or approval of the manuscript.

Author contributions

LJF: study design, data collection, data analysis, writing; XHB: data collection, data analysis, writing; YZW: data collection, data analysis; WLS: study design, writing. all authors have read and approved the final manuscript.

Acknowledgment

Not applicable.

Contributor Information

Liu jiefeng:201397@163.com

Xiehebin:248207294@qq.com

Yeziwei:yezuweiwriting@163.com

Wanglesan:wlshncs@126.com

Abbreviations

AKI Acute kidney injury

S-AKI Sepsis-associated acute kidney injury

ARF Acute renal failure

OR Odds ratio
References

1. Alobaidi R, Basu RK, Goldstein SL, Bagshaw SM. Sepsis-associated acute kidney injury. Semin Nephrol 2015;35: 2-11. doi 10.1016/j.semnephrol.2015.01.002.

2. Bagshaw SM, George C, Bellomo R.Changes in the incidence and outcome for early acute kidney injury in a cohort of Australian intensive care units. Crit Care 2007;11: R68. doi 10.1186/cc5949.

3. Bagshaw SM, Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney Net al. Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes. Clin J Am Soc Nephrol 2007;2: 431-439. doi 10.2215/CJN.03681106.

4. Bouchard J, Acharya A, Cerda J, Maccariello ER, Madarasu RC, Tolwani AJ, Liang X, Fu P, Liu ZH, Mehta RL. A Prospective International Multicenter Study of AKI in the Intensive Care Unit. Clin J Am Soc Nephrol 2015;10: 1324-1331.

5. Hsu YC, Hsu CW.Septic acute kidney injury patients in emergency department: The risk factors and its correlation to serum lactate. Am J Emerg Med 2019;37: 204-208. doi 10.2215/CJN.04360514.

6. Clifford KM, Dy-Boarman EA, Haase KK, Maxvill K, Pass SE, Alvarez CA. Challenges with Diagnosing and Managing Sepsis in Older Adults. Expert Rev Anti Infect Ther.2016;14: 231-241. doi:10.1586/14787210.2016.1135052.

7. Rowe TA, McKoy JM.Sepsis in Older Adults. Infect Dis Clin North Am 2017;31: 731-742. doi:10.1016/j.micinf.2017.01.009.

8. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Plos Med 2009; 6: e1000097. https://doi:10.1371/journal.pmed.1000097.
9. Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. CHEST 1992; 101:1644-1655. doi:1378/chest.101.6.1644.

10. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med 2003; 29: 530-538. doi: 1097 / 01.CCM.0000050454.01978.3B.

11. Singer M, Deutschman C S, Seymour C W et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315(8): p. 801-10. doi:10.1001/jama.2016.0287.

12. Bu X, Zhang L, Chen P, Wu X. Relation of neutrophil-to-lymphocyte ratio to acute kidney injury in patients with sepsis and septic shock: A retrospective study. Int Immunopharmacol 2019; 70:372-377. doi:1016/j.intimp.2019.02.043.

13. Hsu YC, Hsu CW. Septic acute kidney injury patients in emergency department: The risk factors and its correlation to serum lactate. Am J Emerg Med 2019; 37:204-208. doi:10.1016/j.ajem.2018.05.012.

14. Vilander LM, Vaara ST, Donner KM, Lakkisto P, Kaunisto MA, Pettila V. Heme oxygenase-1 repeat polymorphism in septic acute kidney injury. Plos One 2019; 14:e217291. doi:10.1371/journal.pone.0217291.

15. Xing ZQ, Liu DW, Wang XT, Long Y, Zhang HM, Wang C, Huang W. The value of renal resistance index and urine oxygen pressure for prediction of acute kidney injury in patients with septic shock. Zhonghua Nei Ke Za Zhi 2019; 58:349-354. doi:10.3760/cma.j.issn.0578-1426.2019.05.004.

16. Moman RN, Ostby SA, Akhoundi A, Kashyap R, Kashani K. Impact of individualized target mean arterial pressure for septic shock resuscitation on the incidence of acute kidney injury: a retrospective cohort study. Ann Intensive Care 2018; 8:124. doi: 10.1186/s13613-018-0468-5.

17. Zhi DY, Lin J, Zhuang HZ et al.Acute Kidney Injury in Critically Ill Patients with Sepsis: Clinical Characteristics and Outcomes.Journal of Investigative Surgery 2018;32:689-696. doi.org/10.1080/08941939.2018.1453891

18. Zhou X, Liu J, Ji X, Yang X, Duan M. Predictive value of inflammatory markers for acute kidney injury in sepsis patients: analysis of 753 cases in 7 years]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2018; 30:346-350. doi:10.3760/cma.j.issn.2095-4352.2018.04.012.

19. Costa NA, Gut AL, Azevedo PS, Tanni SE, Cunha NB, Fernandes A, Polegato BF, Zornoff L, de Paiva S, Balbi Alet al. Protein carbonyl concentration as a biomarker for development and mortality in sepsis-associated acute kidney injury. Biosci Rep 2018; 38(1). doi:10.1042/BSR20171238.

20. Song J, Wu W, He Y, Lin S, Zhu D, Zhong M. Value of the combination of renal resistance index and central venous pressure in the early prediction of sepsis-associated acute kidney injury. J Crit Care 2018; 45:204-208. doi 10.1016/j.jccrc.2018.03.016.

21. Hu Q, Ren J, Ren H, Wu J, Wu X, Liu S, Wang G, Gu G, Guo K, Li J. Urinary Mitochondrial DNA Identifies Renal Dysfunction and Mitochondrial Damage in sepsis-associated Acute Kidney Injury. Oxid Med Cell Longev 2018; 2018:8074936. doi 10.1155/2018/8074936.
22. Fatani SH, ALrefai AA, Al-Amodi HS, Kamel HF, Al-Khatieb K, Bader H. Assessment of tumor necrosis factor alpha polymorphism TNF-alpha-238 (rs 361525) as a risk factor for development of acute kidney injury in critically ill patients. Mol Biol Rep 2018; 45:839-847. doi 10.1007/s11033-018-4230-8.

23. Gameiro J, Goncalves M, Pereira M et al. Obesity, acute kidney injury and mortality in patients with sepsis: A cohort analysis. Ren Fail 2018, 40(1): 120-126. doi 10.1080/0886022X.2018.1430588.

24. Katayama S, Nunomiya S, Koyama K, Wada M, Koinuma T, Goto Y, Tonai K, Shima J. Markers of acute kidney injury in patients with sepsis: the role of soluble thrombomodulin. Crit Care 2017; 21:229. doi 1186/s13054-017-1815-x.

25. Vilander LM, Kaunisto MA, Vaara ST, Pettila V. Genetic variants in SERPINA4 and SERPINA5, but not BCL2 and SIK3 are associated with acute kidney injury in critically ill patients with septic shock. Crit Care 2017; 21:47. doi 10.1186/s13054-017-1631-3.

26. Suberviola B, Rodrigo E, Gonzalez-Castro A, Serrano M, Heras M, Castellanos-Ortega A. Association between exposure to angiotensin-converting enzyme inhibitors and angiotensin receptor blockers prior to septic shock and acute kidney injury. Med Intensiva 2017; 41:21-27. doi 10.1016/j.medin.2016.07.010.

27. Fisher J, Russell JA, Bentzer P, Parsons D, Secchia S, Morgelin M, Walley KR, Boyd JH, Linder A. Heparin-Binding Protein (HBP): A Causative Marker and Potential Target for Heparin Treatment of Human sepsis-associated Acute Kidney Injury. Shock 2017; 48:313-320. doi 10.1097/SHK.0000000000000862.

28. Perez-Fernandez X, Sabater-Riera J, Ballus-Noguera J, Cardenas-Campos P, Moreno-Gonzalez G, Alonso-Juste V, Corral-Velez V, Gutierrez-Arambula D, Gumucio-Sanguino V, Betbese-Roig A et al. No impact of surviving sepsis campaign care bundles in reducing sepsis-associated acute kidney injury. Clin Nephrol 2017; 88:105-111. doi 5414/CN109134.

29. Pereira M, Rodrigues N, Godinho I, Gameiro J, Neves M, Gouveia J, Costa ESZ, Lopes JA. Acute kidney injury in patients with severe sepsis or septic shock: a comparison between the 'Risk, Injury, Failure, Loss of kidney function, End-stage kidney disease' (RIFLE), Acute Kidney Injury Network (AKIN) and Kidney Disease: Improving Global Outcomes (KDIGO) classifications. Clin Kidney J 2017; 10:332-340. doi 10.1093/ckj/sfw107.

30. Panich T, Chancharoenthana W, Somparn P, Issara-Amphorn J, Hirankarn N, Leelahavanichkul A. Urinary exosomal activating transcriptional factor 3 as the early diagnostic biomarker for sepsis-associated acute kidney injury. Bmc Nephrol 2017; 18:10. doi 10.1186/s12882-016-0415-3.

31. Su C M, Cheng H H, Hung C W et al. The value of serial serum cell adhesion molecules in predicting acute kidney injury after severe sepsis in adults[J]. Clin Chim Acta 2016; 457:86-91. doi 10.1016/j.cca.2016.04.008.

32. Yilmaz H, Cakmak M, Inan O, Darcin T, Akcay A. Can neutrophil-lymphocyte ratio be independent risk factor for predicting acute kidney injury in patients with severe sepsis? Ren Fail 2015; 37:225-229. doi 10.3109/0886022X.2014.982477.
33. Medeiros P, Nga HS, Menezes P, Bridi R, Balbi A, Ponce D. Acute kidney injury in septic patients admitted to emergency clinical room: risk factors and outcome. Clin Exp Nephrol 2015; 19:859-866. doi 10.1007/s10157-014-1076-9.

34. Dai X, Zeng Z, Fu C, Zhang S, Cai Y, Chen Z. Diagnostic value of neutrophil gelatinase-associated lipocalin, cystatin C, and soluble triggering receptor expressed on myeloid cells-1 in critically ill patients with sepsis-associated acute kidney injury. Crit Care 2015; 19:223. doi 10.1186/s13054-015-0941-6.

35. Sood M, Mandelzweig K, Rigatto C, Tangri N, Komenda P, Martinka G, Arabi Y, Keenan S, Kumar A, Kumar A. Non-pulmonary infections but not specific pathogens are associated with increased risk of AKI in septic shock. Intensive Care Med 2014; 40:1080-1088. doi 10.1007/s00134-014-3361-1.

36. Peng Q, Zhang L, Ai Y, Zhang L. Epidemiology of acute kidney injury in intensive care septic patients based on the KDIGO guidelines. Chin Med J (Engl) 2014; 127:1820-1826.

37. Patschan D, Heeg M, Brier M, Brandhorst G, Schneider S, Muller GA, Koziolek MJ. CD4+ lymphocyte adenosine triphosphate—a new marker in sepsis with acute kidney injury? Bmc Nephrol 2014; 15:203. doi 10.1186/1471-2369-15-203.

38. Tu Y, Wang H, Sun R, Ni Y, Ma L, Xv F, Hu X, Jiang L, Wu A, Chen X et al. Urinary netrin-1 and KIM-1 as early biomarkers for septic acute kidney injury. Ren Fail 2014; 36:1559-1563. doi 10.3109/0886022X.2014.949764.

39. Fan H, Zhao Y, Zhu JH, Song FC. Urine neutrophil gelatinase-associated lipocalin in septic patients with and without acute kidney injury. Ren Fail 2014; 36 :1399-1403. doi 10.3109/0886022X.2014.945184.

40. Cho E, Lee JH, Lim HJ, Oh SW, Jo SK, Cho WY, Kim HK, Lee SY. Soluble CD25 is increased in patients with sepsis-associated acute kidney injury. Nephrology (Carlton) 2014; 19:318-324. doi 10.1111/nep.12230.

41. Terzi I, Papaioannou V, Papanas N, Dragoumanis C, Petala A, Theodorou V, Gioka T, Vargemezis V, Maltezos E, Pneumatikos I. Alpha1-microglobulin as an early biomarker of sepsis-associated acute kidney injury: a prospective cohort study. Hippokratia 2014; 18:262-268.

42. Poukkanen M, Wilkman E, Vaara ST, Pettila V, Kaukonen KM, Korhonen AM, Uusaro A, Hovilehto S, Inkinen O, Laru-Sompa Ret al. Hemodynamic variables and progression of acute kidney injury in critically ill patients with severe sepsis: data from the prospective observational FINNAKI study. Crit Care 2013; 17:R295. doi 10.1186/cc13161.

43. Legrand M, Dupuis C, Simon C, Gayat E, Mateo J, Lukaszewicz AC, Payen D. Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study. Crit Care 2013; 17:R278. doi 10.1186/cc13133.

44. Cardinal-Fernandez P, Ferruelo A, El-Assar M, Santiago C, Gomez-Gallego F, Martin-Pellicer A, Frutos-Vivar F, Penuelas O, Nin N, Esteban Aet al. Genetic predisposition to acute kidney injury induced by severe sepsis. J Crit Care 2013; 28:365-370. doi 10.1016/j.jcrc.2012.11.010.
45. de Geus HR, Fortrie G, Betjes MG, van Schaik RH, Groeneveld AB. Time of injury affects urinary biomarker predictive values for acute kidney injury in critically ill, non-septic patients. Bmc Nephrol 2013; 14:273. doi 10.1186/1471-2369-14-273.

46. Katagiri D, Doi K, Matsubara T, Negishi K, Hamasaki Y, Nakamura K, Ishii T, Yahagi N, Noiri E. New biomarker panel of plasma neutrophil gelatinase-associated lipocalin and endotoxin activity assay for detecting sepsis in acute kidney injury. J Crit Care 2013; 28:564-570. doi 10.1016/j.jcrc.2013.01.009.

47. Aydogdu M, Gursel G, Sancak B, Yeni S, Sari G, Tasyurek S, Turk M, Yuksel S, Senes M, Ozis TN. The use of plasma and urine neutrophil gelatinase associated lipocalin (NGAL) and Cystatin C in early diagnosis of septic acute kidney injury in critically ill patients. Dis Markers 2013; 34:237-246. doi 10.3233/DMA-130966.

48. Suh SH, Kim CS, Choi JS, Bae EH, Ma SK, Kim SW. Acute kidney injury in patients with sepsis and septic shock: risk factors and clinical outcomes. Yonsei Med J 2013; 54:965-972. doi 10.3349/ymj.2013.54.4.965.

49. Poukkonen M, Vaara ST, Pettila V, Kaukonen KM, Korhonen AM, Hovilehto S, Inkinen O, Laru-Sompa R, Kaminski T, Reinikainen M et al. Acute kidney injury in patients with severe sepsis in Finnish Intensive Care Units. Acta Anaesthesiol Scand 2013; 57:863-872. doi 10.1111/aas.12133.

50. Zhao N, Tian H H, Li Z et al. [Risk factors and early diagnosis of acute kidney injury in patients with sepsis][J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2013, 25(9): 542-5. doi 10.3760/cma.j.issn.2095-4352.2013.09.009.

51. Payen D, Lukaszewicz AC, Legrand M, Gayet E, Faivre V, Megarbane B, Azoulay E, Fieux F, Charron D, Loiseau P et al. A multicentre study of acute kidney injury in severe sepsis and septic shock: association with inflammatory phenotype and HLA genotype. Plos One 2012; 7:e35838. doi 10.1371/journal.pone.0035838.

52. Frank AJ, Sheu CC, Zhao Y, Chen F, Su L, Gong MN, Bajwa E, Thompson BT, Christiani DC. BCL2 genetic variants are associated with acute kidney injury in septic shock*. Crit Care Med 2012; 40:2116-2123. https://doi 10.1097/CCM.0b013e3182514bca.

53. Plataki M, Kashani K, Cabello-Garza J, Maldonado F, Kashyap R, Kor DJ, Gajic O, Cartin-Ceba R. Predictors of acute kidney injury in septic shock patients: an observational cohort study. Clin J Am Soc Nephrol 2011; 6:1744-1751. doi 10.2215/CJN.05480610.

54. Martensson J, Bell M, Oldner A, Xu S, Venge P, Martling CR. Neutrophil gelatinase-associated lipocalin in adult septic patients with and without acute kidney injury. Intensive Care Med 2010; 36:1333-1340. doi 10.1007/s00134-010-1887-4.

55. Yang, R.L., X.T. Wang and D.W. Liu, [The hemodynamic characteristic and prognosis significance of acute kidney injury caused by septic shock]. Zhonghua Nei Ke Za Zhi 2009; 48(9):715-9.

56. Lopes JA, Jorge S, Resina C, Santos C, Pereira A, Neves J, Antunes F, Prata MM. Acute kidney injury in patients with sepsis: a contemporary analysis. Int J Infect Dis 2009; 13:176-181. doi 10.1016/j.ijid.2008.05.1231.
57. Bagshaw SM, Lapinsky S, Dial S, Arabi Y, Dodek P, Wood G, Ellis P, Guzman J, Marshall J, Parrillo JE et al. Acute kidney injury in septic shock: clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy. Intensive Care Med 2009; 35:871-881. doi 10.1007/s00134-008-1367-2.

58. Bagshaw SM, George C, Bellomo R. Early acute kidney injury and sepsis: a multicentre evaluation. Crit Care 2008; 12:R47. doi 10.1186/cc6863.

59. Rowe TA, McKoy JM. Sepsis in Older Adults. Infect Dis Clin North Am 2017; 31: 731-742. doi:10.1016/j.idc.2017.07.010

60. Clifford, Kalin M et al. “Challenges with Diagnosing and Managing Sepsis in Older Adults.” Expert review of anti-infective therapy vol 2016; 14(2): 231-41. doi:10.1586/14787210.2016.1135052.

61. Girman CJ, Kou TD, Brodovicz K, Alexander CM, O'Neill EA, Engel S, Williams-Herman DE, Katz L (2012) Risk of acute renal failure in patients with Type 2 diabetes mellitus. Diabet Med 29: 614-621. doi:10.1111/j.1464-5491.2011.03498.x

62. Sathananthan M, Sathananthan A, Jeganathan N.Characteristics and Outcomes of Patients With and Without Type 2 Diabetes Mellitus and Pulmonary Sepsis. J Intensive Care Med 2019:1585820106. doi:10.1177/0885066619833910.

63. Greenberg N, Roberts WL, Bachmann LM, Wright EC, Dalton RN, Zakowski JJ, Miller WG. Specificity characteristics of 7 commercial creatinine measurement procedures by enzymatic and Jaffe method principles. Clin Chem 2012; 58: 391-401. doi:1373 / clinchem.2011.172288.

64. Hsu RK, Hsu CY. The Role of Acute Kidney Injury in Chronic Kidney Disease. Semin Nephrol 2016; 36: 283-292. doi:10.1016/j.semnephrol.2016.05.005.

65. He L, Wei Q, Liu J, Yi M, Liu Y, Liu H, Sun L, Peng Y, Liu F, Venkatachalam MA et al. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. Kidney Int 2017; 92: 1071-1083. doi:10.1016/j.kint.2017.06.030.

66. James MT, Grams ME, Woodward M, Elley CR, Green JA, Wheeler DC, de Jong P, Gansevoort RT, Levey AS, Warnock DG et al. A Meta-analysis of the Association of Estimated GFR, Albuminuria, Diabetes Mellitus, and Hypertension With Acute Kidney Injury. Am J Kidney Dis 2015; 66:602-612. doi:1053 / j.ajkd.2015.02.338.

67. Grams ME, Sang Y, Ballew SH, Gansevoort RT, Kimm H, Kovesdy CP, Naimark D, Oien C, Smith DH, Coresh J et al. A Meta-analysis of the Association of Estimated GFR, Albuminuria, Age, Race, and Sex With Acute Kidney Injury. Am J Kidney Dis 2015; 66: 591-601. doi:10.1053/j.ajkd.2015.02.337.

68. Mansfield K E, Nitsch D, Smeeth L et al. Prescription of renin-angiotensin system blockers and risk of acute kidney injury A population-based cohort study. BMJ Open. 2016;6(12): e012690.doi:10.1136/bmjopen-2016-012690.

69. Che ML, Yan YC, Zhang Y, et al. Analysis of drug-induced acute renal failure in Shanghai. Zhonghua Yi Xue Za Zhi. 2009-03-24 2009;89(11):744-749.

70. Wu X, Zhang W, Ren H, Chen X, Xie J, Chen N. Diuretics associated acute kidney injury: clinical and pathological analysis. Ren Fail. 2014;36(7):1051-1055. doi:10.3109/0886022X.2014.917560.
71. Camin RM, Cols M, Chevarria JL, et al. Acute kidney injury secondary to a combination of renin-angiotensin system inhibitors, diuretics and NSAIDS: "The Triple Whammy". Nefrologia. 2015;35(2):197-206. doi:10.1016/j.nefro.2015.05.021.

72. Koyner JL, Murray PT. Mechanical ventilation and the kidney. Blood Purif. 2010;29(1):52-68. doi:10.1159/000259585.

73. van den Akker JP, Egal M, Groeneveld AB. Invasive mechanical ventilation as a risk factor for acute kidney injury in the critically ill: a systematic review and meta-analysis. Crit Care. 2013;17(3):R98. doi:10.1186/cc12743.

74. Wunsch H, Angus DC, Harrison DA, Linde-Zwirble WT, Rowan KM. Comparison of medical admissions to intensive care units in the United States and United Kingdom. Am J Respir Crit Care Med. 2011;183(12):1666-167. doi:10.1164/rccm.201012-1961OC3.

Tables
Author	Publication year	Country	AKI diagnostic criteria	Sepsis types	Study period	Research design	Numble	AKI	Quality score
Bu et al.	2019	China	KDIGO	Sepsis and Septic shock	2015-2017	Retrospective case-control study	132/90	7	
Hsu et al.	2019	China	AKIN	Sepsis	2012-2016	Retrospective case-control study	99/597	6	
Vilander et al.	2019	Finland	KDIGO	Sepsis	2011-2012	Prospective cohort study	300/353	7	
Xing et al.	2019	China	KDIGO	Septic shock	2018.8-2018.11	Prospective cohort study	29/43	8	
Moman et al.	2018	USA	KDIGO	Septic shock	2007-2009	Retrospective cohort study	160/73	8	
Zhi et al.	2018	China	AKIN	Sepsis	2009-2015	Retrospective case-control study	315/267	5	
Zhou et al.	2018	China	AKIN	Sepsis	2010-2017	Retrospective case-control study	405/348	6	
Costa et al.	2018	Brazil	KDIGO	Septic shock	2014-2015	Prospective cohort study	66/63	7	
Song et al.	2018	China	KDIGO	Sepsis	2015-2016	Prospective cohort study	52/72	7	
Hu et al.	2018	China	RIFLE	Sepsis	2016-2017	Prospective cohort study	52/53	8	
Authors	Year	Country	Classification	System	Disease(s)	Study Period	Study Type	N Cases	
------------------	------	-------------	----------------	--------	--	---------------	----------------	---------	
Fatani et al.	2018	Saudi Arabia	RIFLE		Severe sepsis and Septic shock	2016-2017	Prospective	127/73	
Gameiro et al.	2017	Portugal	KDIGO		Sepsis and Septic shock	2008-2014	Retrospective	399/57	
Katayama et al.	2017	Japan	KDIGO		Sepsis	2011-2016	Retrospective	163/351	
Vilander et al.	2017	Finland	KDIGO		Septic shock	2011-2012	Prospective	252/226	
Suberviola et al.	2017	Spain	KDIGO		Septic shock	2005-2010	Prospective	312/74	
Fisher et al.	2017	Sweden	KDIGO		Septic shock	-	Prospective	225/71	
Pérez-Fernández et al.	2017	USA	KDIGO		Severe sepsis and Septic shock	2005-2007	Prospective	82/178	
Pereira et al.	2017	Portugal	REFILE		Severe sepsis and Septic shock	2008-2014	Retrospective	384/72	
Panich et al.	2017	Thailand	AKIN		Sepsis	2014-2014	Prospective	79/60	
Su et al.	2016	China	KDIGO		Severe sepsis	-	Prospective	45/27	
Yilmaz et al.	2015	Turkey	AKIN		Severe sepsis	2011-2013	Retrospective	68/50	
Authors	Year	Country	AKIN/KDIGO	Event	Time Period	Study Design	Participants		
------------------	------	---------	------------	----------------	---------------	-----------------	--------------		
Medeiros et al.	2015	Japanese	AKIN	Sepsis	2013-2014	Retrospective	144/56		
Dai et al.	2015	China	KDIGO	Sepsis	2012-2014	Prospective	55/57		
Sood et al.	2014	Canada	RIFLE	Septic shock	1996-2008	Prospective	3298/1195		
Peng et al.	2014	China	KDIGO	Sepsis	2008-2011	Prospective	101/110		
Patschan et al.	2014	Germany	AKIN	Sepsis	-	Retrospective	22/11		
Tu et al.	2014	China	AKIN	Sepsis	2011-2013	Prospective	49/101		
Fan et al.	2014	China	RIFLE	Sepsis	2012-2014	Prospective	58/67		
CHO et al.	2014	Korea	RIFLE	Sepsis	2010-2011	Prospective	44/18		
Terzi et al.	2014	Greece	RIFLE	Sepsis	-	Prospective	16/29		
Poukkonen et al.	2013	Finland	KDIGO	Severe sepsis	2011-2012	Retrospective	153/270		
Legrand et al.	2013	France	AKIN	Severe sepsis	2006-2010	Prospective	69/68		
Cardinali	2013	Spain	RIFLE	Severe sepsis	2005-2008	Prospective	65/74		
Authors	Year	Country	Scale	Type	Study Details	Cases/Controls			
--------------------------	------	------------	-------	--------------------------------	--------------------	----------------			
Fernandez et al.	2013	Netherlands	AKIN	Sepsis	2007-2008	49/432			
de Geus et al.	2013	Netherlands	AKIN	Sepsis	Prospective	49/432			
Katagiri et al.	2013	Japan	RIFLE	Sepsis	2010-2011	24/10			
Aydogdu et al.	2013	Turkey	RIFLE	Sepsis	2008-2010	63/66			
Suh et al.	2013	South Korea	RIFLE	Sepsis and Septic shock	2010 Retrospective	573/419			
Poukkonen et al.	2013	Finland	KDIGO	Severe sepsis	2011-2012	437/393			
Zhao et al.	2013	China	AKIN	Sepsis	2011-2013	90/58			
Payen et al.	2012	Brazil	AKIN	Severe sepsis and Septic shock	2004-2005	129/47			
Frank et al.	2012	USA	AKIN	Septic shock	1999-2009	627/637			
Plataki et al.	2011	USA	RIFLE	Septic shock	2005-2007	237/153			
Martensson et al.	2010	Sweden	RIFLE or AKIN	Septic shock	Prospective	18/7			
YANG et al.	2009	China	AKIN	Septic shock	2001-2008	126/32			

Page 23/36
Authors	Year	Country	AKIN/Sepsis Code	Time Period	Study Design	Cases/Controls	Score
Lopes et al. 56	2009	Portugal	AKIN	2004-2007	Retrospective	99/216	7
Bagshaw et al. 57	2009	Canada, the United States and Saudi Arabia	RIFLE	1989-2005	Retrospective	2917/1615	7
Bagshaw et al. 58	2008	Australia	RIFLE	2000-2005	Retrospective	14039/19336	8
Table 2. Summary data of all sepsis patients who developed AKI from included studies.

Characteristics	No. Studies	Prevalence sepsis		Prevalence septic shock		Prevalence severe sepsis		
		No. Studies	Prevalence	No. Studies	Prevalence	No. Studies	Prevalence	
Septic AKI	47	48.73%	22	41.98%	12	60.47%	5	
	(27248/5591)	(16399/3906)	(12678/2096)	(768/1570)				
	1	7)	5)					
Sex (male)	44	59.70%	22	63.68%	11	59.64%	5	
	(5913/9904)	(1380/2167)	(3191/5350)	(495/768)				
Comorbidities								
Hypertension	32	38.39%	14	42.28%	6	26.16%	5	
	(3263/8500)	(859/1817)	(1073/4102)	(446/768)				
Diabetes mellitus	32	27.57%	13	20.53%	7	26.75%	5	
	(2248/8155)	(373/1817)	(1897/7091)	(232/768)				
Stroke	4	22.79%	1	22.33%	-	-	1	
	(67/294)	(67/300)	-	-	-		(8/45)	
Cancer	6	18.23%	-	-	2	18.80%	1	
	(705/3745)		-		(650/3458)	(8/49)		
Chronic kidney	14	16.46%	7	15.52%	2	45.13%	2	
	(449/2795)	(178/1147)	(102/226)	(65/590)				
Cardiovascular								
disease	11	16.30%	4	19.47%	-	-	1	
	(2522/15477)	(169/868)	-		-		(3/45)	
Congestive heart failure	7	12.69%	2	17.26%	4	12.64%	1	
	(491/3869)	(39/226)	(446/3529)	(8/68)				
COPD	17	12.41%	6	12.69%	5	12.99%	1	
	(1114/8976)	(90/709)	(873/6721)	(25/437)				
Condition	4	2	1	3	2			
---------------------------	---	---	---	---	--------------------			
Hepatic failure	12.16%	39.76%	9.90%	12.61%				
Coronary artery disease	11.58%	10.14%	9.30%	6.15%				
Systolic heart failure	11.25%	8.00%	14.32%	11.90%				
Immunosuppression	4.71%	1.73%	7.50%	-				
Cirrhosis	3.74%	3.57%	8.73%	8.59%				
Liver disease	50.88%	50.90%	41.46%	97.12%				
Emergency admission	47.02%	49.16%	36.99%	-				
Operative admission	30.91%	22.33%	23.02%	28.81%				
Surgical ward	17.73%	16.51%	21.29%	-				
Pulmonary infection	46.05%	57.96%	41.10%	48.02%				
Section	Count	Percentage	Count	Percentage	Count	Percentage		
-------------------	-------	------------	-------	------------	-------	------------		
Respiratory	7	32.08%	2	41.22%	2	32.74%	2	26.36%
	(273/85)	(54/131)	(74/226)	(29/110)				
Abdominal	25	30.87%	7	32.12%	7	28.16%	5	28.65%
	(2152/6971)	(177/551)	(1253/4450)	(220/768)				
Urinary tract	19	11.14%	6	12.01%	6	11.34%	5	11.38%
	(630/5653)	(58/483)	(483/4259)	(80/703)				
Skin or soft tissue	13	6.03%	3	2.15%	4	5.40%	3	10.71%
	(335/5554)	(5/232)	(218/4033)	(68/635)				
Unknown	4	6.02%	-	-	2	8.30%	-	-
	(100/1662)	-	(73/879)					
Community acquired	3	57.36%	-	-	1	56.80%	2	65.08%
	(2041/3558)	-	(1657/2917)	(384/590)				
Nosocomial acquired	2	39.81%	-	-	2	39.81%	-	-
	(2474/6215)	-	(2474/6215)					

Medications

Section	Count	Percentage	Count	Percentage	Count	Percentage	Count	Percentage
Vasopressors	7	64.61%	3	45.04%	2	59.38%	-	-
	(1293/2001)	(100/222)	(513/864)					
Vasoactive drugs	5	63.22%	2	35.69%	1	67.50%	2	96.44%
	(911/1441)	(131/367)	(108/160)	(569/590)				
Steroids	3	30.80%	2	38.16%	-	-	-	-
	(85/276)	(79/207)						
Diuretics	4	30.77%	-	-	1	39.40%	2	30.85%
	(296/962)	-	(97/252)	(182/590)				
ACEI or ARB	8	25.62%	1	18.41%	3	24.97%	3	33.59%
	(619/2416)	(58/315)	(200/801)	(220/655)				
Stains	5	21.77%	-	-	2	24.13%	1	15.79%
	(296/962)	-	(97/252)	(182/590)				
	(357/1640)	(118/489)	(69/437)					
--------------------------	-----------	-----------	----------					
Nsaids	9.63%	11.45%	12.54%					
	(203/2108)	(56/489)	(74/590)					

Bacteria

Gram- negative bacteria		
	3	1
	17.26%	22.3%
	(160/927)	(49/225)

Gram- positive bacteria		
	4	1
	10.43%	28.6%
	(99/949)	(63/225)

Invasive treatment

Mechanical ventilation	23	6
	68.00%	71.21%
	(7167/10539)	(5481/7643)

Renal replacement therapy	6	1
	39.51%	18.18%
	(320/810)	(12/66)

Dialysis	3	2
	28.92%	27.39%
	(59/204)	(3/303)

Blood transfusion	3	2
	19.46%	7.64%
	(94/483)	(11/144)

Organ transplant	3	2
	3.76%	3.94%
	(252/6703)	(245/6215)

Positive blood culture	8	4
	41.38%	42.89%
	(3259/7876)	(2836/6612)

Bloodstream infection	4	1
	6.61%	7.40%
	(237/3586)	(216/2917)

Smoke	5	1	
	43.09%	32.35%	
	(203/2108)	(74/590)	
History	(642/1490)	(291/720)	(22/68)
-------------------------	------------	-----------	---------
ARDS	3 47.02%	1 81.19%	2 43.34%
	(489/1040)	(82/101)	(407/939)
Multiorgan dysfunction	3 50.11%	1 70.48%	
	(436/870)	(222/315)	

Mortality			
ICU mortality	10 45.99%	2 50.00%	4 50.47%
	(1989/4325)	(46/92)	(1672/3313)
Hospital mortality	15 49.84%	7 42.17%	3 55.83%
	(2732/5481)	(245/581)	(1935/3466)
28-day mortality	4 36.67%	1 30.61%	1 71.42%
	(161/439)	(15/49)	(90/126)
90-day mortality	5 64.66%	-	1 58.42%
	(2406/3721)		(1704/2917)
COPD: chronic obstructive pulmonary disease			
ACEI or ARB: angiotensin converting enzyme inhibitors or Angiotensin Receptor Blocker			
ARDS: acute respiratory distress syndrome			

Supplemental Information Note

Additional files 1 Checklist. PRISMA Checklist.

Additional files 2 Fig. Hypertension-Forest plot, Funnel plot, Sensitivity and Subgroup analysis.

Additional files 3 Fig. Diabetes mellitus-Forest plot and Funnel plot.

Additional files 4 Fig. Chronic kidney disease-Forest plot, Funnel plot, Sensitivity and Subgroup analysis.
Additional files 5 Fig. Cardiovascular Diseases - Forest plot, Funnel plot.

Additional files 6 Fig. Liver disease - Forest plot and Sensitivity analysis.

Additional files 7 Fig. Coronary artery disease - Forest plot and Funnel plot.

Additional files 8 Fig. Pulmonary infection - Forest plot, Funnel plot, Sensitivity and subgroup analysis.

Additional files 9 Fig. Abdominal infection - Forest plot, Funnel plot and Sensitivity analysis.

Additional files 10 Fig. Unknown source of infection - Forest plot.

Additional files 11 Fig. Vasoactive drugs - Forest plot and Sensitivity analysis.

Additional files 12 Fig. Vasopressors - Forest plot, Funnel plot, Sensitivity and Subgroup analysis.

Additional files 13 Fig. Diuretic - Forest plot.

Additional files 14 Fig. Sex (male) - Forest plot, Funnel plot, Sensitivity and Subgroup analysis.

Additional files 15 Fig. Positive blood culture - Forest plot, Funnel plot and Sensitivity analysis.

Additional files 16 Fig. Smoke history - Forest plot, Sensitivity analysis.

Additional files 17 Fig. Septic shock - Forest plot and Funnel plot.

Additional files 18 Fig. Gram-negative bacteria - Forest plot.

Additional files 19 Fig. Organ transplant - Forest plot and Sensitivity analysis.

Additional files 20 Fig. Mechanical ventilation - Forest plot, Funnel plot, Sensitivity and Subgroup analysis.

Figures
Figure 1

Flow diagram of study selection process
Figure 2

Meta-analysis of risk factors for AKI
Figure 3

Forest plot for meta-analysis of the association of male sex and AKI.
Figure 4

Funnel plot to detect publication bias for male sex, Egger test, $P=0.32$.
Figure 5

Subgroup analyzes for meta-analysis of the association of pulmonary infection and AKI.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- PRISMAChecklist.doc
- AdditionalFiles20Fig.MechanicalVentilation.doc
• Additionalfiles10Fig.Unknownsourceofinfection.doc
• Additionalfiles5Fig.CardiovascularDiseases.doc
• Additionalfiles4Fig.Chronickidneydisease.doc
• Additionalfiles9Fig.Abdominalinfection.doc
• Additionalfiles7Fig.Coronaryarterydisease.doc
• Additionalfiles6Fig.Liverdisease.doc
• Additionalfiles8Fig.Pulmonaryinfection.doc
• Additionalfiles3Fig.Diabetesmellitus.doc
• Additionalfiles1Fig.Hypertension.doc
• Additionalfiles2Fig.Hypertension.doc
• Additionalfiles11Fig.Vasopressors.doc
• Additionalfiles12Fig.Diuretic.doc
• Additionalfiles13Fig.Sexmale.doc
• Additionalfiles15Fig.Smokehistory.doc
• Additionalfiles16Fig.Septicshock.doc
• Additionalfiles17Fig.Gramnegativebacteria.doc
• Additionalfiles14Fig.Positivebloodculture.doc
• Additionalfiles18Fig.Organtransplant.doc
• Additionalfiles19Fig.Mechanicalventilation.doc