Effects of Novel Calpain Inhibitors in Transgenic Animal Model of Parkinson’s disease/dementia with Lewy bodies

Getaw Worku Hassen1,2, Leo Kesner3, Alfred Stracher1, Abraham Shulman3, Edward Rockenstein4, Michael Mante4, Anthony Adame4, Cassia Overk4, Robert A. Rissman4 & Eliezer Masliah4,5

Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) are neurodegenerative disorders of the aging population characterized by the accumulation of α-synuclein (α-syn). The mechanisms triggering α-syn toxicity are not completely understood, however, c-terminus truncation of α-syn by proteases such as calpain may have a role. Therefore, inhibition of calpain may be of value. The main objective of this study was to evaluate the effects of systemically administered novel low molecular weight calpain inhibitors on α-syn pathology in a transgenic mouse model. For this purpose, non-tg and α-syn tg mice received the calpain inhibitors - Gabadur, Neurodur or a vehicle, twice a day for 30 days. Immunocytochemical analysis showed a 60% reduction in α-syn deposition using Gabadur and a 40% reduction using Neurodur with a concomitant reduction in c-terminus α-syn and improvements in neurodegeneration. Western blot analysis showed a 77% decrease in α-spectrin breakdown products (SBDPs) SBDPs with Gabadur and 63% reduction using Neurodur. There was a 65% reduction in the active calpain form with Gabadur and a 45% reduction with Neurodur. Moreover, treatment with calpain inhibitors improved activity performance of the α-syn tg mice. Taken together, this study suggests that calpain inhibition might be considered in the treatment of synucleinopathies.
transporters to cross the BBB. Moreover, the carrier molecule taurine by itself has anti-inflammatory, calpain inhibitory and calpastatin upregulatory effects\(^18\). We show that both calpain inhibitors reduced the accumulation of \(\alpha\)-syn and neurodegeneration in the hippocampus and the associated deficits. This study suggests that calpain inhibition might be considered as a viable therapeutic target for synucleinopathies such as PD/DLB.

Results

Calpain inhibitors reduce \(\alpha\)-syn pathology in the CNS of transgenic mice. Since in PD/DLB, \(\alpha\)-syn pathology and neurodegeneration has been associated with increased calpain activity, we wanted to test if blocking this protease with two novel calpain inhibitor compounds that cross the BBB might ameliorate the pathology. For this purpose \(\alpha\)-syn, tg mice (\(n = 10\) per group) were treated with either Gabadur or Neurodur for 30 days at a dosage of 1 mg/mouse by IP injection twice a day and compared to vehicle-treated non-tg mice (\(n = 8\)) to evaluate activity, neuropathology, and biochemistry. To verify target engagement using an indirect method, brain homogenates were analyzed by immunoblot to assess the shift in calpain bands and SBDPs. Compared to the non-tg mice, the vehicle-treated \(\alpha\)-syn tg mice displayed a 33% increase in the calpain band at 78 kDa (Fig. 1a,b), in contrast, treatment with Gabadur or Neurodur reduced the 78 kDa calpain band by 45% and 35% respectively when compared to vehicle-treated \(\alpha\)-syn tg mice (\(F = 13.75, p < 0.001\)) (Fig. 1a,b). Next, we analyzed by immunoblot \(\alpha\)-spectrin which is known to be degraded by calpain in the CNS. Calpain, when activated, degrades the 230-kDa subunit of the cytoskeletal protein \(\alpha\)-spectrin to yield a 150-kDa calpain-cleaved breakdown fragment which was further degraded to a 145-kDa product. As expected, compared to the non-tg mice, the vehicle-treated \(\alpha\)-syn tg mice showed a 39% decrease in SBDPs (Fig. 1c), whereas treatment with Gabadur or Neurodur decreased SBDPs by 72% and 40%, respectively, when compared to vehicle-treated \(\alpha\)-syn tg mice (\(F = 69.76, p < 0.0001\)) (Fig. 1c).

When compared to the non-tg control, immunocytochemical analysis with an antibody against total \(\alpha\)-syn showed as expected in this line of \(\alpha\)-syn tg mice extensive accumulation in the neuropil and neuronal cell bodies in the deeper layers of the neocortex (Fig. 2a,b) and CA3 of the hippocampus (Fig. 2a,c). Treatment with Gabadur or Neurodur resulted in 53% and 39% decreases, respectively, in the accumulation of \(\alpha\)-syn in the neocortex (\(F = 29.14, p < 0.0001\)) (Fig. 2a,b) when compared to vehicle-treated \(\alpha\)-syn tg mice. Likewise, Gabadur reduced \(\alpha\)-syn aggregates in the hippocampus by 60% and Neurodur by 37% when compared to vehicle-treated \(\alpha\)-syn tg mice (\(F = 42.55, p < 0.0001\)) (Fig. 2a,c).

Since it has been proposed that among other mechanisms calpain might trigger pathology by cleaving \(\alpha\)-syn in the c-terminus\(^18\), we next analyzed the tissue sections with the SYN105 antibody that we have shown to recognize the \(\alpha\)-syn cleaved at aa 118\(^18\). As expected no immunoreactivity was observed in the non-tg controls, in contrast, vehicle-treated \(\alpha\)-syn tg mice displayed considerably increased immunostaining of neuritic processes in the neuropil and neuronal cell bodies in the deeper layers of the neocortex (Fig. 3a,b) and CA3 of the hippocampus (Fig. 3a,c). Treatment with Gabadur or Neurodur resulted in 35% and 38% decreases, respectively, in the accumulation of c-terminus truncated \(\alpha\)-syn in the neocortex (\(F = 69.76, p < 0.0001\)) (Fig. 3a,c) when compared to vehicle-treated \(\alpha\)-syn tg mice. Moreover, Gabadur and Neurodur reduced accumulation of c-terminally truncated \(\alpha\)-syn in the hippocampus by 30% when compared to vehicle-treated \(\alpha\)-syn tg mice (\(F = 66.82, p < 0.0001\)) (Fig. 3a,c).

Figure 1. Immunoblot analysis of the effects of calpain inhibitors on \(\alpha\)-syn tg mice. \(\alpha\)-Syn tg mice were injected ip twice a day for 30 days with either Gabadur (1 mg/mouse; \(N = 10\)), Neurodur (1 mg/mouse; \(N = 10\)), or PBS vehicle control (\(N = 10\)) and compared to vehicle-treated non-tg mice (\(N = 8\)). (a) Immunoblot and (b) quantification of calpain levels. Calpain levels were significantly increased in vehicle-treated \(\alpha\)-syn tg mice compared to vehicle-treated non-tg mice. Treatment with either Gabadur or Neurodur significantly reduced calpain protein levels in \(\alpha\)-syn tg mice compared to vehicle-treated \(\alpha\)-syn tg mice. (c) Immunoblot and (d) quantification of \(\alpha\)-spectrin breakdown products (\(\alpha\)-SBDPs). \(\alpha\)-SBDPs levels were significantly increased in vehicle-treated \(\alpha\)-syn tg mice compared to vehicle-treated non-tg mice. Treatment with either Gabadur or Neurodur significantly reduced \(\alpha\)-SBDPs protein levels in \(\alpha\)-syn tg mice compared to vehicle-treated \(\alpha\)-syn tg mice. Statistical analysis was conducted using one-way ANOVA post hoc Dunnett’s test for comparison with vehicle-treated non-tg mice (*\(p < 0.05\)) and Tukey–Kramer test for comparison with vehicle-treated \(\alpha\)-syn tg mice (**\(p < 0.05\)).
To confirm these findings using an independent approach, immunoblot analysis was performed. As expected, in the cytosolic fraction, levels of total α-syn were increased in the tg mice compared to the vehicle-treated non-tg controls (Fig. 4a,b). No differences were observed between the vehicle α-syn tg and the Gabadur-treated mice, however, mice treated with Neurodur displayed increased soluble 14 kDa monomer band of α-syn ($F = 36.85, p < 0.001$) (Fig. 4a,b). In the particulate fraction, the antibody against total α-syn identified α-syn as a band at approximately 14 kDa in the non-tg mice. In vehicle-treated α-syn mice, this band had a 3-fold increase and the presence of a smear at a higher molecular weight, probably representing oligomers, was also detected (Fig. 4c,d).

Treatment with Gabadur and Neurodur resulted in a reduction of the membrane α-syn low and higher molecular weight species by 35% when compared to vehicle-treated α-syn tg mice ($F = 33.57, p < 0.0001$) (Fig. 4c,d). By western blot, c-terminally truncated α-syn was identified as a single band at 12 kDa in the vehicle α-syn tg mice in the cytosolic (Fig. 4a,b) and membrane fractions (Fig. 4c,d), while no signal was detected in the non-tg mice (Fig. 4a,c). Treatment with Gabadur and Neurodur reduced accumulation of c-terminally truncated α-syn in the cytosolic (Fig. 4a,b) ($F = 12.79, p = 0.002$) and particulate fractions by approximately 35% and 65% when compared to vehicle-treated α-syn tg mice ($F = 18.75, p < 0.0001$) (Fig. 4c,d).

Calpain inhibitors ameliorate α-syn mediated neurodegeneration and associated deficits in the transgenic mice. We have previously shown that accumulation of full length and c-terminally truncated α-syn results in neurodegeneration of the deeper layers of the neocortex and the CA3 region of the hippocampus.
in this line of tg mice. When compared to the non-tg vehicle control, immunocytochemical analysis with an antibody against the neuronal marker NeuN showed a 16% loss of neurons in the deeper layers of the neocortex (F = 8.147, p = 0.0003) (Fig. 5a,b) and 34% loss in the CA3 region of the hippocampus (Fig. 5a,c) in the vehicle-treated α-syn tg mice. Treatment with Gabadur or Neurodur had no significant effects in the neocortex but ameliorated the loss of neurons in the CA3 region of the hippocampus (F = 13.88, p < 0.0001) (Fig. 5a,c) when compared to vehicle-treated α-syn tg mice.
Next, we analyzed the effects of the calpain inhibitors on neuroinflammation. When compared to the non-tg vehicle control, immunocytochemical analysis with an antibody against the astroglial marker GFAP showed a 25% increase in this marker in the deeper layers of the neocortex (F = 8.846, p = 0.002) (Fig. 6a,b) and a 15% increase in the CA3 region of the hippocampus (F = 10.73, p = 0.0001) (Fig. 6a,c) in the vehicle-treated α-syn tg mice. Treatment with Gabadur or Neurodur had no significant effects in the overall density of astroglial cells neocortex (Fig. 6a,b) or the CA3 region of the hippocampus (Fig. 6a,c) when compared to vehicle-treated α-syn tg mice; however, astroglial cells were less ramified in mice treated with Gabadur (p = 0.0003) or Neurodur (p = 0.0007) compared to vehicle-treated α-syn tg mice (Fig. 6d). Immunocytochemical analysis with an antibody against the microglial marker Iba-1 showed a 19% increase in microgliosis in the neocortex (F = 19.38, p < 0.001) (Fig. 6e,f) and 28% increase in the CA3 region of the hippocampus (F = 16.22, p < 0.001) (Fig. 6e,g) in the vehicle-treated α-syn tg mice. Treatment with Gabadur or Neurodur significantly reduced the number of Iba-1-immunoreactive microglia in the neocortex and hippocampus. Treatment with Gabadur or Neurodur significantly reduced the number of Iba-1-immunoreactive microglia in the neocortex and hippocampus. Scale bar = 35 µm. Statistical analysis was conducted using one-way ANOVA post hoc Dunnett's test for comparison with vehicle-treated non-tg mice (*p < 0.05) and Tukey–Kramer test for comparison with vehicle-treated α-syn tg mice (#p < 0.05).

Figure 6. Effects of Gabadur and Neurodur on astrogliosis and microgliosis in α-syn tg mice. α-Syn tg mice were injected ip twice a day for 30 days with either Gabadur (1 mg/mouse; N = 10), Neurodur (1 mg/mouse; N = 10), or PBS vehicle control (N = 10) and compared to vehicle-treated non-tg mice (N = 8). (a) Representative photomicrographs and quantitation of GFAP-positive astrocytes in the (b) neocortex and (c) hippocampus. The number of GFAP-positive neurons was significantly increased in vehicle-treated α-syn tg mice compared to vehicle-treated non-tg mice in both the neocortex and hippocampus. Neither treatment with Gabadur nor Neurodur significantly affected the number of GFAP-immunoreactive astrocytes in either the neocortex or hippocampus compared to vehicle-treated α-syn tg mice. (d) Representative photomicrographs and quantitation of Iba-1-positive microglia in the (e) neocortex and (f) hippocampus. The number of Iba-1-positive microglia was significantly increased in vehicle-treated α-syn tg mice compared to vehicle-treated non-tg mice in both the neocortex and hippocampus. Treatment with Gabadur or Neurodur significantly reduced the number of Iba-1-immunoreactive microglia in the neocortex and hippocampus. Scale bar = 35 µm. Statistical analysis was conducted using one-way ANOVA post hoc Dunnett's test for comparison with vehicle-treated non-tg mice (*p < 0.05) and Tukey–Kramer test for comparison with vehicle-treated α-syn tg mice (#p < 0.05).

Finally, we investigated the functional effects of the calpain inhibitors in the α-syn tg mice. Compared to the non-tg vehicle control, immunocytochemical analysis with an antibody against the astroglial marker GFAP showed a 25% increase in this marker in the deeper layers of the neocortex (F = 8.846, p = 0.002) (Fig. 6a,b) and a 15% increase in the CA3 region of the hippocampus (F = 10.73, p = 0.0001) (Fig. 6a,c) in the vehicle-treated α-syn tg mice. Treatment with Gabadur or Neurodur had no significant effects in the overall density of astroglial cells neocortex (Fig. 6a,b) or the CA3 region of the hippocampus (Fig. 6a,c) when compared to vehicle-treated α-syn tg mice; however, astroglial cells were less ramified in mice treated with Gabadur (p = 0.0003) or Neurodur (p = 0.0007) compared to vehicle-treated α-syn tg mice (Fig. 6d). Immunocytochemical analysis with an antibody against the microglial marker Iba-1 showed a 19% increase in microgliosis in the neocortex (F = 19.38, p < 0.001) (Fig. 6e,f) and 28% increase in the CA3 region of the hippocampus (F = 16.22, p < 0.001) (Fig. 6e,g) in the vehicle-treated α-syn tg mice. Treatment with Gabadur (p < 0.0001) or Neurodur (p < 0.0001) significantly reduced the levels of microgliosis in the neocortex (Fig. 6e,f) and CA3 region of the hippocampus (Fig. 6e,g) to levels comparable to the vehicle non-tg mice. Analysis of microglial cell ramifications showed a significant increase in the vehicle-treated α-syn tg mice (F = 21.09, p < 0.001) (Fig. 6e,h) and treatment with Gabadur (p < 0.0001) or Neurodur (p < 0.0001) significantly reduced the microglial cell ramifications (Fig. 6e,h) to levels comparable to the vehicle non-tg mice.

Finally, we investigated the functional effects of the calpain inhibitors in the α-syn tg mice. Compared to the non-tg mice the vehicle-treated α-syn tg mice showed a 45% increase in total activity in the open field (F = 13.75, p = 0.0001) (Fig. 7a). Treatment with Gabadur or Neurodur ameliorated and normalized levels of activity to those similar to non-tg controls (Fig. 7a). Other analysis in the open field including lateral movement, rearing, and thigmotaxis did not show differences between non-tg and α-syn tg nor were there any changes with Gabadur (p = 0.0001) or Neurodur (p = 0.0004) (Fig. 7b–d). This suggests that these compounds normalize the hyperactivity in the α-syn tg and that no side effects, such as anxiety, were observed.
Figure 7. Effects of Gabadur and Neurodur on behavioral measures in α-syn tg mice. α-Syn tg mice were injected ip twice a day for 30 days with either Gabadur (1 mg/mouse; N = 10), Neurodur (1 mg/mouse; N = 10), or PBS vehicle control (N = 10) and compared to vehicle-treated non-tg mice (N = 8). Testing for (a) total spontaneous locomotor activity, (b) lateral activity; (c) rearing, and (d) thigmotaxis. Compared to vehicle-treated non-tg mice, vehicle-treated α-syn tg mice had a significant increase in total spontaneous activity. Gabadur and Neurodur significantly reduced total spontaneous locomotor compared to vehicle-treated α-syn tg mice. There were no significant differences between treatment groups in any of the other behavioral tests. Statistical analysis was conducted using one-way ANOVA post hoc Dunnett’s test for comparison with vehicle-treated non-tg mice (∗∗p < 0.05) and Tukey–Kramer test for comparison with vehicle-treated α-syn tg mice (∗∗p < 0.05).

Discussion

The present study showed that similar to observations in PD/DLB patients, neurodegeneration is associated with increased calpain fragments that indirectly suggest increased activity. Moreover, in a model of synucleinopathy, CNS-penetrating calpain inhibitors reduced calpain, α-syn accumulation, and c-terminus truncation of α-syn, while ameliorating neurodegenerative pathology in the hippocampus. *In vitro* and *in situ* experiments have shown calpain cleaves α-syn, thereby affecting its metabolism and possibly leading to increased deposition and neurodegeneration. Therefore targeting calpain might be of benefit in patients with PD/DLB. In support of the possibility that the neuroprotective effects of Gabadur and Neurodur are related to their effects on calpain, we showed by immunoblot a reduction in the 78 kDa activated calpain band as well as decreased spectrin degradation. Moreover, we showed and suggested that the neuroprotective effects might be related to reductions in α-syn cleavage at the c-terminus with a concomitant increase in total soluble monomeric α-syn. However, it is worth noting that additional studies will be needed in the future to evaluate calpain activity with alternative assays and more extensive analysis of various proteolytic fragments will be needed. It is possible that blocking calpain and thus α-syn c-terminus truncation might be critical; however, a number of other substrates are cleaved by calpain in the CNS and might co-participate in the neuroprotective mechanisms of these calpain blocking compounds. These results are consistent with previous studies in acute and chemical models of PD. For example, administration of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) increases calpain-mediated proteolysis in nigral dopaminergic neurons *in vivo*. Another indicator of the role of calpain in PD is that overexpression of calpastatin leads to a reduction in truncated as well as aggregated α-syn. In 1-methyl-4-Phenylpyridinium ion (MPP+) treated granular neurons, calpain activation was increased by 74% as measured by SBPDs. Moreover, these studies indicate that this cleavage is mediated by calpains and that MPP+ promoted an increase in cdk5 expression, as well as the cleavage of p35–p25, in a time-dependent manner. Studies in rodent and cell culture models of PD suggest that treatment with calpain inhibitors (e.g., calpeptin, MDL-28170) can prevent neuronal death. Inhibition of calpain using calpain inhibitor (MDL-28170) or adenovirus-mediated overexpression of the endogenous calpain inhibitor protein calpastatin, significantly attenuated MPTP-induced loss of nigral dopamine neurons.

Moreover, we have recently shown that overexpression of the calpain-specific inhibitor calpastatin reduces α-syn processing, aggregation and synaptic impairment in A30P α-syn tg mice. Together, these studies support the crucial role of calpains, particularly of calpain 1, in the pathogenesis of PD and other synucleinopathies, supporting a potential therapeutic role of calpain inhibition in PD/DLB. Interestingly, calpain inhibition has been shown to be neuroprotective in models of other neurological disorders such as Machado-Joseph disease, and the superoxide dismutase 1 (SOD1) mutant (G93A) model of amyotrophic lateral sclerosis (ALS). It was also found to reduce neurodegeneration of retinal ganglion cells in experimental optic neuritis. Along these lines, we found that despite some differences between them, Gabadur and Neurodur reduced calpain activity and α-syn accumulation in the neocortex and hippocampus. This was accompanied by reduced neurodegeneration and astrogliosis in the hippocampus and reduced microgliosis in the neocortex and hippocampus. This might be related to the concentration of the compounds in the CNS and time of exposure. Another possible explanation for this effect is that Gabadur might also exert its effects in the CNS via an α2-δ ligand of the voltage-gated calcium channel which is upregulated in response to various insults, thus probably targeting leucyl-argininal calpain inhibitor to that site, unlike Neurodur which distributes everywhere in the CNS. Other limitations include the sample size and the lack of more direct evidence for calpain inhibition in a time and dose-dependent fashion in the CNS. Future studies will be needed to characterize in more detail the pharmacokinetic and pharmacodynamic characteristics of Gabadur and Neurodur.
In summary, we showed that treatment with the calpain inhibitors reduced α-syn related pathology and improved activity performance of the α-syn tg mice. This suggests that targeting calpain might be a consideration for the treatment of PD/DLB.

Materials and Methods

Animals. A total of 38 mice were utilized for this experiment; 8 non-tg controls and 30 (6-month-old) mice over-expressing human wild-type α-syn under control of human Platelet-derived growth factor-β (h-PDGF-β) promoter. This model was chosen because we have shown in similar models increased calpain activity and α-syn cleavage resulting in aggregation and toxicity. Furthermore, mice from this line develop α-syn aggregates distributed through neocortical and limbic brain regions similar to what has been described in DLB accompanied by hyperactivity and learning behavioral deficits.

Calpain inhibitors. Two newly developed low molecular weight calpain inhibitors were tested. Gabadur: composed of the active end of the calpain inhibitor, leupeptin (Acetyl-L-leucyl-L-leucyl-L-arginal) and linked to stereochemically-modified Pregabalbin. The latter is an analog of gamma-aminobutyric acid (GABA) that acts as a carrier via a succinyl linker. Its complete structure is [(3S,4S)-3 aminomethyl-4-amino-5-methyl hexanoic acid]-Suc-Leu Arg-aldehyde. Pregabalbin is an α2-δ ligand of the voltage-gated calcium channel similar to GABA. Gabadur utilizes Pregabalbin to cross the blood-brain barrier (BBB) using L-type amino acid transporters and exerts its effect via α2-δ calcium channel subunit found on presynaptic sites of glutamatergic neurons. A new study has further demonstrated the kinetics and ability to cross the BBB. Neourdor is composed of cysteic acid (α-amino-β-sulfo-propionic acid) that shares structural similarities with taurine. Neourdor utilizes the Na+-dependent taurine transporters to cross the BBB as taurine. Moreover, the carrier molecule taurine by itself has anti-inflammatory, calpain-inhibitory, and calpastatin upregulatory effects. This is an additional benefit of Neourdor. The combination of leupeptin and taurine has synergistic effects and is very appealing as a therapeutic agent.

These combinations aim to rapidly target the drugs across the BBB as well as to the site of injury/pathology to inhibit calpain and other proteases, while potentially decreasing high levels of calcium and neurotransmitters, thereby conferring a dual therapeutic effect.

Treatments. Both Gabadur and Neourdor were prepared in phosphate buffer saline (PBS) 1X concentration solution. Animals were injected intraperitoneally (IP) with Gabadur, Neourdor, or PBS twice a day (9 AM and 4 PM) for 30 days. The following groups were included: a) non-tg control mice vehicle-treated (n = 8); PDGFβ-α-syn tg mice vehicle-treated (n = 10); PDGFβ-α-syn tg mice Gabadur (30 mg/kg) treated (n = 10) and PDGFβ-α-syn tg mice Neourdor (30 mg/kg) treated (n = 10).

Tissue processing. At the end of the 30-day treatment, the mice were sacrificed and the right hemibrains were snap-frozen and stored at −70°C for biochemical analysis, while the left hemibrains were fixed with 4% paraformaldehyde for vibratome sectioning (50µm) and neuropathological analysis. All animal procedures were approved by the UCSD Institutional Animal Care and Use Committee under protocol #S02221. All methods were performed in accordance with the relevant guidelines and regulations.

Immunoblot analysis of calpain and spectrin degradation. Calpain activity was measured indirectly by analyzing the shift ratio of total vs active calpain bands (80 vs 78kDa) and by ascertaining the substrate degradation using western blot analysis for SBPDs as previously described. Calpain was detected using an anti-calpain antibody (Dr. Naren Banik as a donation from Medical University of South Carolina), while α-spectrin was detected with anti-spectrin α chain (nonerythroid) monoclonal antibody (EMD Millipore, Billerica, MA, USA) (1:1000 dilutions). Actin (anti-β-actin; 1:1000 dilution; Sigma) was used as an internal control and for normalization of the image analysis. We used 1:2000 dilutions of the alkaline phosphatase-conjugated goat anti-rabbit secondary antibody (Sigma, St. Louis, MO). Bands were visualized using 5-bromo-4-cholo-3-indoxyl-phosphate/nitroblue tetrazolium Benzamidine (BCIP; Kirgegaard and Perry Labs, Gaithersburg, MD). Proteins were quantified using Image-pro plus 4.5.1 software (Media Cybernetics, Inc., Silver Spring, MD) and the results were expressed in optical density units ± S.E.M.

Immunoblot analysis of α-syn in brain homogenates. As previously described, brains were homogenized and divided into cytosolic (soluble) and particulate (membrane) fractions. Briefly, brain samples from the non-tg and tg mice treated with a vehicle, Gabadur or Neourdor (0.1 g) were homogenized in 0.7 ml of buffer solution. Animals were injected intraperitoneally (IP) with Gabadur, Neurodur, or PBS twice a day (9 AM and 4 PM) for one hour at 4°C. This supernatant was collected, to serve as the cytosolic (soluble) fraction, and the pellets were resuspended in 0.2 ml of buffer and re-homogenized; this was the particulate (membrane) fraction. The BCA protein assay was used to determine the protein concentration of the samples.

For immunoblot analysis, 20µg of protein from the cytosolic or particulate fractions per lane was loaded into 4–12% Bis-Tris SDS-PAGE gels and blotted onto polyvinylidene fluoride (PVDF) membranes. For characterization of the effects of Neourdor and Gabadur on calpain c-terminus cleavage of α-syn blots were probed with the SYN105 antibody (1:1000), while effects of total α-syn were evaluated with the SYN-1 antibody (mouse monoclonal, 1:1000, BD Biosciences). Incubation with primary antibodies was followed by species-appropriate incubation with secondary antibodies tagged with horseradish peroxidase (1:5000, Santa Cruz Biotechnology, Santa Cruz, CA), visualization with enhanced chemiluminescence and analysis with a Versadoc XL imaging apparatus (BioRad, Hercules, CA). Analysis of β-actin (Sigma, St. Louis, MO) levels was used as a loading control.
Immunohistochemical and Image Analysis. The procedure for immunohistochemical analysis has been described elsewhere. Briefly, blind-coded sagittal brain vibratome sections were treated at 4°C for overnight with primary antibodies against α-syn (Syn-BD Biosciences) mouse monoclonal SYN105 antibody that was raised to detect the C-terminally truncated α-syn (aa 116–126). The characteristics and specificity of these antibodies have been previously described. This antibody was selected based on previous studies showing that α-syn has a C-term domain sensitive to cleavage by calpain and other proteases. The C-term truncated α-syn is more prone to aggregate and accumulate in the membrane fraction, is more toxic, and facilitates trans-cellular propagation. To determine the effects on neuronal, astroglial and microglial cell sections were incubated with primary antibodies against NeuN (Millipore, mouse monoclonal, 1:1000), GFAP (Millipore, mouse monoclonal, 1:1000) and Iba-1 (Abcam, goat polyclonal, 1:500) respectively. Following overnight incubation, the sections were incubated with biotinylated secondary antibodies and detected with avidin D-HRP (ABC Elite, Vector Laboratories, Burlingame, CA). To determine α-syn neuropathology (Syn-1 and SYN105) and astrogliosis (GFAP), the brain sections were imaged by Olympus BX41 microscope. The levels of immunoreactivity were determined by optical density analysis using Image Quant 1.43 program (NIH). From each section, a total of 10 digital fields 1024 × 1024 pixels in the neocortex and hippocampus were analyzed. Levels of optical density were corrected to the background using sections stained in the absence of the primary antibody. The numbers of α-syn inclusion positive cells were determined per field (100 μm²). To estimate neuronal cell numbers briefly as previously described, the numbers of NeuN-immunoreactive neurons in the hippocampus were estimated utilizing unbiased stereological methods. The CA3 region of the hippocampus was outlined using an Olympus BX51 microscope running StereoInvestigator 8.21.1 software (Micro-BrightField, Williston, VT) (grid sizes 150 × 150 μm and the counting frames were 30 × 30 μm). The average coefficient of error for each region was below 0.1. Sections were analyzed using a 100 × 1.4 Plan-Apo oil-immersion objective. The average mounted tissue thickness allowed for 2 μm top and bottom guard-zones and a 5 μm high dissector. To analyze microglial cell morphology briefly as previously described, sections labeled with Iba-1 were analyzed utilizing the Image-Pro Plus program (Media Cybernetics, Silver Spring, MD) (10 digital images 1024 × 1024 pixels per section) and analyzed in order to estimate the average number of microglial cells per unit area (100 μm²) and ramifications of Iba-1 positive microglia.

Statistical analysis. All analyses were performed using GraphPad Prism (version 5.0) software. All experiments were done blind-coded and in triplicate. Values in the figures are expressed as means ± SEM. To determine the statistical significance, values were compared using one-way analysis of variance (ANOVA) with Dunnett’s post-hoc test when comparing non-tg vehicle control to the α-syn tg groups, while the Tukey-Kramer posthoc test was used when comparing the α-syn tg vehicle vs the Gabadur or Neurodur groups as indicated in each figure legend. The differences were considered to be significant if the p-values were less than 0.05.

Dataset Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References
1. Alafuzoff, I. & Hartikainen, P. Alpha-synucleinopathies. *Handb Clin Neurol* 145, 339–353, https://doi.org/10.1016/B978-0-12-802395-2.00024-9 (2017).
2. Jellinger, K. A. Dementia with Lewy bodies and Parkinson’s disease-dementia: current concepts and controversies. *J Neural Transm (Vienna)*, https://doi.org/10.1007/s00702-017-1821-9 (2017).
3. Peng, C., Gathagan, R. J. & Lee, V. M. Distinct alpha-Synuclein strains and implications for heterogeneity among alpha-Synucleinopathies. *Neurobiol Dis* 109, 209–218, https://doi.org/10.1016/j.nbd.2017.07.018 (2018).
4. Goedert, M., Jakes, R. & Spillantini, M. G. The Synucleinopathies: Twenty Years On. *Journal of Parkinson’s disease* 7, S53–S71, https://doi.org/10.3233/JPD-179005 (2017).
5. Ono, K. The Oligomer Hypothesis in alpha-Synucleinopathy. *Neurochem Res* 42, 3362–3371, https://doi.org/10.1007/s11064-017-2382-x (2017).
6. Wong, Y. C. & Krainc, D. alpha-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. *Nat Med* 23, 1–13, https://doi.org/10.1038/nm.4269 (2017).
7. Desplats, P. et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. *Proc Natl Acad Sci USA* 106, 13010–13015, https://doi.org/10.1073/pnas.0903691106 (2009).
8. Brundin, P. & Melki, J. Prying into the Prion Hypothesis for Parkinson’s Disease. *J Neurosci* 37, 9808–9818, https://doi.org/10.1523/JNEUROSCI.1788-16.2017 (2017).
9. Lashuel, H. A., Overk, C. R., Oueslati, A. & Masliah, E. The many faces of alpha-synuclein: from structure and toxicity to therapeutic target. *Nat Rev Neurosci* 14, 38–48, https://doi.org/10.1038/nrn3406 (2013).
10. Vekrellis, K., Xilouri, M., Emmanouilidou, E., Rideout, H. J. & Stefanis, L. Pathological roles of alpha-synuclein in neurological disorders. *Lancet Neurol* 10, 1015–1025, https://doi.org/10.1016/S1474-4422(11)70213-7 (2011).
11. Li, W. et al. Aggregation-promoting C-terminal truncation of alpha-synuclein is a normal cellular process and is enhanced by the familial Parkinson’s disease-linked mutations. *Proc Natl Acad Sci USA* 102, 2162–2167. https://doi.org/10.1073/pnas.0406976102 (2005).
12. Games, D. et al. Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. *J Neurosci* 34, 9441–9454, https://doi.org/10.1523/JNEUROSCI.5314-13.2014 (2014).
13. Dufty, B. M. et al. Calpain cleavage of alpha-synuclein: connecting proteolytic processing to disease-linked aggregation. *Am J Pathol* 170, 1725–1738, https://doi.org/10.1016/j.ajpath.2007.06.023 (2007).
14. Mouatt-Prigent, A., Karlsson, J. O., Agid, Y. & Hirsch, E. C. Increased M-calpain expression in the mesencephalon of patients with Parkinson’s disease but not in other neurodegenerative disorders involving the mesencephalon: a role in nerve cell death? *Neuroscience* 73, 979–987 (1996).
15. Crocker, S. J. et al. Inhibition of calpains prevents neuronal and behavioral deficits in an MPTP mouse model of Parkinson’s disease. *J Neurosci* 23, 4081–4091 (2003).
16. Games, D. et al. Axonopathy in an alpha-synuclein transgenic model of Lewy body disease is associated with extensive accumulation of C-terminal-truncated alpha-synuclein. *Am J Pathol* 182, 940–953, https://doi.org/10.1016/j.ajpath.2012.11.018 (2013).
Morrison, H. W. & Filosa, J. A. A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. *J Neurochem* **86**, 836–847, doi:10.1087 [pii] (2003).

Mishizen-Eberz, A. J. et al. Cleavage of alpha-synuclein by calpain: potential role in degradation of fibrillized and nitrated species of alpha-synuclein. *Biochemistry* **44**, 7818–7829 (2005).

Diepenbrock, M. et al. Overexpression of the calpain-specific inhibitor calpastatin reduces human alpha-synuclein processing, aggregation and synaptic impairment in A30P alpha-syn transgenic mice. *Hum Mol Genet* **23**, 3975–3989, doi:10.1093 [hmg/ddu112] (2014).

Samantaray, S., Ray, S. K., Ali, S. F. & Banik, N. L. Calpain activation in apoptosis of motoneurons in cell culture models of experimental parkinsonism. *Ann N Y Acad Sci* **1074**, 349–356, doi:10.1196/annals.1609.034 (2006).

Samantaray, S., Ray, S. K. & Banik, N. L. A potential therapeutic target in Parkinson’s disease. *CNRS & neurological disorders drug targets* **7**, 305–312 (2008).

Watchon, M. et al. Calpain Inhibition Is Protective in Machado-Joseph Disease Zebrafish Due to Induction of Autophagy. *J Neurosci* **37**, 7782–7794, doi:10.1523/JNEUROSCI.1142-17.2017 (2017).

Rao, M. V., Campbell, J., Palaniappan, A., Kumar, A. & Nixon, R. A. Calpastatin inhibits motor neuron death and increases survival of hSOD1(G93A) mice. *J Neurosci* **133**, 233–263, doi:10.1172/jnn13356 (2016).

Smith, A. W. et al. Calpain inhibition reduces structural and functional impairment of retinal ganglion cells in experimental optic neuritis. *J Neurochem* **139**, 270–284, doi:10.1111/jnc.13770 (2016).

Melrose, H. L. et al. [3H] pregabalin binding is increased in ipsilateral dorsal horn following chronic constriction injury. *Neurosci Lett* **417**, 187–192, doi:10.1016/j.neulet.2007.02.068 (2007).

Boroujerdi, A. et al. Calcium channel alpha-2-delta-1 protein upregulation in dorsal spinal cord mediates spinal cord injury-induced neuropathic pain states. *Pain* **152**, 649–655, doi:10.1016/j.pain.2010.12.014 (2011).

Amschl, D. et al. Time course and progression of wild type alpha-synuclein accumulation in a transgenic mouse model. *BMC Neurosci* **14**, 6, doi:10.1186/1471-2202-14-6 (2013).

Koyama, Y., Baba, A. & Iwata, H. Characteristics of Cl−-dependent L-[35S]cysteic acid transport into rat brain synaptic membrane vesicles. *Neurochem Res* **15**, 1153–1158 (1990).

Lahdesmaki, P. & Oja, S. S. On the mechanism of taurine transport at brain cell membranes. *J Neurochem* **20**, 1411–1417 (1973).

Lahdesmaki, P. & Oja, S. S. On the mechanism of taurine transport at brain cell membranes. *J Neurochem* **20**, 1411–1417 (1973).

Stahl, S. M. Mechanism of action of alpha delta ligands: voltage sensitive calcium channel (VSCC) modulators. *The Journal of clinical psychiatry* **65**, 1033–1034 (2004).

Horga de la Parte, J. F. & Horga, A. Pregabalin: new therapeutic contributions of calcium channel alpha2delta protein ligands on mediating the analgesic actions of pregabalin. *Pain* **103**, 17357–17542, doi:10.1016/j.pains.200906103 (2006).

Gu, Y., Zhao, Y., Qian, K. & Sun, M. Taurine attenuates hippocampal and corpus callosum damage, and enhances neurological recovery after closed head injury in rats. *Neuroscience* **291**, 331–340, doi:10.1016/j.neuroscience.2014.09.073 (2015).

Sun, M., Zhao, Y., Gu, Y. & Zhang, Y. Protective effects of taurine against closed head injury in rats. *J Neurotrauma* **32**, 66–74, https://doi.org/10.1089/neu.2012.2432 (2015).

Su, Y. et al. Taurine improves functional and histological outcomes and reduces inflammation in traumatic brain injury. *Neuroscience* **266**, 56–65, doi:10.1016/j.neuroscience.2014.02.006 (2014).

Pham, E. et al. Progressive accumulation of amyloid-beta oligomers in Alzheimer’s disease and in amyloid precursor protein transgenic mice is accompanied by selective alterations in synaptic scaffold proteins. *Febs J* **277**, 3051–3067, doi:10.1111/j.1742-4658.2010.07719.x (2010).

Kim, C. et al. Antagonizing Neuronal Toll-like Receptor 2 Prevents Synucleinopathy by Activating Autophagy. *Cell Rep* **13**, 771–782, doi:10.1016/j.celrep.2015.09.044 (2015).

Nuber, S. & Selkoe, D. J. Caspase-1 clipping causes complications for alpha-synuclein. *Proc Natl Acad Sci USA* **113**, 9958–9960, doi:10.1073/pnas.1610993113 (2016).

Wang, W. et al. Caspase-1 causes truncation and aggregation of the Parkinson’s disease-associated protein alpha-synuclein. *Proc Natl Acad Sci USA* **113**, 9587–9592, doi:10.1073/pnas.1610993113 (2016).

Dufty, B. M. et al. Calpain-Cleavage of alpha-Synuclein: Connecting Proteolytic Processing to Disease-Linked Aggregation. *Am J Pathol* **170**, 1725–1738 (2007).

Markreiter, F. et al. Glial A30P alpha-synuclein pathology segregates neurogenesis from anxiety-related behavior in conditional transgenic mice. *Neurobiol Dis* **59**, 38–51, doi:10.1016/j.nbd.2013.07.004 (2013).

Tofaris, G. K. et al. Pathological changes in dopaminergic nerve cells of the substantia nigra and olfactory bulb in mice transgenic for truncated human alpha-synuclein(1–120): implications for Lewy body disorders. *J Neurosci* **26**, 3942–3950, doi:10.1063/jb.11742-2094-10-4 (2013).

El-Agnaf, O. et al. Differential effects of immunotherapy with antibodies targeting alpha-synuclein oligomers and fibrils in a transgenic model of synucleinopathy. *Neurobiol Dis* **104**, 85–96, doi:10.1016/j.nd.2017.05.002 (2017).

Morrison, H. W. & Filosa, J. A. A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. *J Neuroinflammation* **10**, 4, doi:10.1186/1742-2094-10-4 (2013).

Acknowledgements
We thank Dr. Naren Banik for the donation of the anti-calpain antibody. This study is partially supported by Michael J. Fox Foundation and the Martha Entemann Tinnitus Research Center Inc (to AS and GW), as well as NIH grants AG18840, BX003040, AG0051839, AG10483 and AG005131 (to RR). This work is dedicated to the late Drs. Kesner and Dr. Stracher who together with Dr. Shulman developed the drugs. We thank Dr. Golnar Pashmforoosh for editing the manuscript.
Author Contributions
G.W.H., L.K., A.I.St. and A.b.Sh., designed and synthesized the compounds. E.R. and M.M. performed animal experiments. A.A. performed histochemical and biochemical experiments. C.O. analyzed data and wrote the paper. E.M. designed the experiments, performed research, analyzed data, and wrote the paper. R.R. analyzed data and wrote the paper.

Additional Information
Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018