BIPARTITE COMPLEMENTS OF CIRCLE GRAPHS

LOUIS ESPERET AND MATĚJ STEHLÍK

ABSTRACT. Using an algebraic characterization of circle graphs, Bouchet proved in 1999 that if a bipartite graph G is the complement of a circle graph, then G is a circle graph. We give an elementary proof of this result, based on the ham sandwich theorem.

A graph is a circle graph if it is the intersection graph of the chords of a circle. Using an algebraic characterization of circle graphs proved by Naji [5] (as the class of graphs satisfying a certain system of equalities over GF(2)), Bouchet proved the following result in [1].

Theorem 1 (Bouchet [1]). If a bipartite graph G is the complement of a circle graph, then G is a circle graph.

The known proofs of Naji’s theorem are fairly involved [5, 3, 6], and Bouchet [1] (see also [2]) asked whether, on the other hand, Theorem 1 has an elementary proof. The purpose of this short note is to present such a proof.

We will need two simple lemmas. Given a finite set of points $X \subset \mathbb{R}^2$ of even cardinality, a line ℓ bisects the set X if each open half-plane defined by ℓ contains precisely $|X|/2$ points. The following lemma is the 2-dimensional discrete ham sandwich theorem (for more details, see e.g. [4]).

Lemma 2. Let $X, Y \subset \mathbb{R}^2$ be disjoint finite point sets of even cardinality, in general position. Then there exists a line ℓ simultaneously bisecting both X and Y.

Lemma 3. Consider a set of pairwise intersecting chords c_1, \ldots, c_n of a circle C, with pairwise distinct endpoints. Then any line ℓ that bisects the $2n$ endpoints of the chords intersects all the chords c_1, \ldots, c_n.

Proof. Assume for the sake of contradiction that some chord c_i does not intersect ℓ. Then c_i lies in one of the two open half-planes defined by ℓ, say to the left of ℓ. Since ℓ bisects the $2n$ endpoints of the chords, it follows that there is another chord c_j that does not intersect ℓ and which lies in the half-plane to the right of ℓ. This implies that c_i and c_j do not intersect, which is a contradiction.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Consider a bipartite graph G such that its complement \overline{G} is a circle graph. In particular, for any vertex v_i of \overline{G} there is a chord

Date: October 21, 2019.
Partially supported by ANR Projects GATO (anr-16-ce40-0009-01) and GrR (anr-18-ce40-0032).
c_i of some circle C such that any two vertices v_i and v_j are adjacent in \overline{G} (equivalently, non-adjacent in G) if and only if the chords c_i and c_j intersect. Since G is bipartite, the vertices v_1, \ldots, v_n (and the corresponding chords c_1, \ldots, c_n) can be colored with colors red and blue such that any two chords of the same color intersect. We can assume without loss of generality that the endpoints of the n chords are pairwise distinct, so the coloring of the chords also gives a coloring of the $2n$ endpoints with colors red or blue (with an even number of blue endpoints and an even number of red endpoints).

Since the $2n$ endpoints lie on the circle C, they are in general position and it follows from Lemma 2 that there exists a line ℓ simultaneously bisecting the set of blue endpoints and the set of red endpoints.

On one side of ℓ, reverse the order of the endpoints of the chords c_1, \ldots, c_n along the circle C. Observe that crossing chords intersecting ℓ become non-crossing, and vice versa. By Lemma 3, ℓ intersects all the chords c_1, \ldots, c_n, and thus the resulting circle graph is precisely G. It follows that G is a circle graph, as desired.

Acknowledgments. The authors would like to thank András Sebő for his remarks on an early version of the draft.

References

[1] A. Bouchet, *Bipartite graphs that are not circle graphs*, Ann. Inst. Fourier, 49(3) (1999), 809–814.

[2] G. Durán, N. Grippo, and D. Safe, *Structural results on circular-arc graphs and circle graphs: A survey and the main open problems*, Discrete Applied Math. 164(2) (2014), 427–443.

[3] E. Gasse, *A proof of a circle graph characterization*, Discrete Math. 173 (1997), 223–238.

[4] J. Matoušek, *Using the Borsuk–Ulam theorem*, Universitext, Springer-Verlag, Berlin, 2003.

[5] W. Naji, *Reconnaissance des graphes de cordes*, Discrete Math. 54 (1985) 329–337.

[6] L. Traldi, *Notes on a theorem of Naji*, Discrete Math. 340(6) (2017), 3217–3234.