On the statistical complexity of quantum circuits

Kaifeng Bu,†, 1 Dax Enshan Koh,2, † Lu Li,3, 4 Qingxian Luo,4, 5 and Yaobo Zhang6, 7

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
3Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
4School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
5Center for Data Science, Zhejiang University, Hangzhou, Zhejiang 310027, China
6Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
7Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China

In theoretical machine learning, the statistical complexity is a notion that measures the richness of a hypothesis space. In this work, we apply a particular measure of statistical complexity, namely the Rademacher complexity, to the quantum circuit model in quantum computation and study how the statistical complexity depends on various quantum circuit parameters. In particular, we investigate the dependence of the statistical complexity on the resources, depth, width, and the number of input and output registers of a quantum circuit. To study how the statistical complexity scales with resources in the circuit, we introduce a resource measure of magic based on the $\langle p, q \rangle$ group norm, which quantifies the amount of magic in the quantum channels associated with the circuit. These dependencies are investigated in the following two settings: (i) where the entire quantum circuit is treated as a single quantum channel, and (ii) where each layer of the quantum circuit is treated as a separate quantum channel. The bounds we obtain can be used to constrain the capacity of quantum neural networks in terms of their depths and widths as well as the resources in the network.

I. INTRODUCTION

Owing to its ability to recognize and analyze patterns in data and use them to make predictions, deep learning—a subfield of machine learning—has made a profound impact on the computing industry [1–3] and has found applications in a myriad of fields, including natural language processing [4–6], drug design [7, 8], fraud detection [9, 10], medical image analysis [11, 12], self-driving cars [13, 14], handwriting recognition [15, 16], and computer vision [17, 18]. A central object in many deep learning models is the neural network, an interconnected collection of nodes that can learn from data and model relationships between them [19]. Different neural networks differ in terms of their ability to learn from data, and understanding this difference is a key problem in theoretical machine learning. This ability of neural networks has been quantified by various statistical complexity measures, including the Vapnik–Chervonenkis (VC) dimension [20, 21], the metric entropy [22], the Gaussian complexity [23], and the Rademacher complexity [23]. The dependence of these measures on various structure parameters of the neural network, such as its depth and width and the number of parameters in the neural network, has been studied in a number of papers [24–29].

In addition to the progress in deep learning, the last decade also saw rapid developments in quantum computing [30]. With the development of noisy intermediate-scale quantum (NISQ) hardware [31] as well as near-term quantum algorithms like the variational quantum eigensolver (VQE) [32] and the quantum approximate optimization algorithm (QAOA) [33, 34], there are expectations that quantum computers are poised to revolutionize computation by speeding up the solutions of certain practical computational problems [35]. Major experimental milestones in this direction include the recent demonstrations of quantum computational supremacy [36, 37] (also called quantum advantage [38]), defined to be an event in which a quantum computer empirically solves a computational problem deemed intractable for classical computers, independent of the practical value of the problem [39–42].

At the intersection of deep learning and quantum computing is the field of quantum deep learning, which has the quantum neural network—the quantum generalization of the classical neural network—as one of its central objects [43–48]. Quantum deep learning has been explored as an application of quantum machine learning, which has gained significant interest of late [49–53]. Compared to the classical neural networks, however, considerably less is known about quantum neural networks and characterizations of their statistical complexities. For example, the following question has hitherto remained largely unaddressed: how does the statistical complexity of quantum neural networks depend on the structure parameters of the quantum circuit underlying it as well as the amount of certain resources it contains?

In this paper, we address the above gap by characterizing the statistical complexity of quantum circuits in terms of their Rademacher complexity. To characterize the dependence of Rademacher complexity on resources in the framework of quantum resource theories [54, 55], we introduce a resource measure of magic [56] for quantum channels based on the $\langle p, q \rangle$ group norm. We consider the Rademacher complexity of quantum circuits in two different settings. First, we consider the case where the entire quantum circuit is treated as a single quantum channel independent of its depth or width. In this case, we find a bound for the statistical complexity that...
depends on a resource measure of magic as well as the number of input and output qubits. Second, we consider the case where each layer of the quantum circuit is treated as a separate quantum channel. In this case, we find a bound for the statistical complexity of the hypothesis space where each
\[\varepsilon \] domain variable, which takes the values \[\pm F\circ C \], data \[[23, 57] \]. Let us consider the Rademacher complexity of the generalization error associated with learning from training of a hypothesis space and can be used to provide bounds on the unknown probability distribution.

II. MAIN RESULTS

Consider \(m \) independent samples \(S = (\vec{x}_1, \ldots, \vec{x}_m) \), where each \(\vec{x}_i \) is encoded as a quantum state \(|\psi(\vec{x}_i)\rangle \). After a quantum circuit \(C \) (e.g., \(C \) could be an instance of a variational quantum circuit or a quantum neural network) is applied to the quantum state \(|\psi(\vec{x}_i)\rangle \) and a (Hermitian) observable \(H \) is measured on the output, the expected measurement outcome is given by
\[
f_C(\vec{x}_i) = \text{Tr}[H|\psi(\vec{x}_i)\rangle\langle\psi(\vec{x}_i)|].
\]
\[\text{(1)} \]
In this way, each quantum circuit \(C \) defines a real-valued function \(f_C \). Let \(F \circ C := \{ f_C : C \in C \} \) denote the function class defined by the set of quantum circuits \(C \).

Consider the hypothesis space \(\mathcal{H} = F \circ C \), where \(C \) is a given set of quantum circuits. Given \(m \) independent samples \(\{(\vec{x}_i, y_i)\}_{i=1}^m \), where each \((\vec{x}_i, y_i) \) is taken i.i.d. from some unknown probability distribution \(D \) on some \(X \times Y \), let us consider a loss function \(L : Y \times Y \to \mathbb{R} \). The goal of the learning task is to find some function in the hypothesis space that minimizes the expected error \(L(f) = \mathbb{E}_{(\vec{x}, y)} D(L(f(\vec{x}), y)) \). As we have access to only the \(m \) independent samples \(\{(\vec{x}_i, y_i)\}_{i=1}^m \), one strategy is to find some function in hypothesis space to minimize the empirical error \(\tilde{L}(f) = \frac{1}{m} \sum_{i=1}^m l(f(\vec{x}_i), y_i) \). The difference between the empirical and expected error is called the generalization error, which determines the performance of the hypothesis function \(f \) on the unseen data drawn from the unknown probability distribution.

The Rademacher complexity is a measure of the richness of a hypothesis space and can be used to provide bounds on the generalization error associated with learning from training data \([23, 57]\). Let us consider the Rademacher complexity of \(F \circ C \) on \(m \) independent samples \(S = \{\vec{x}_1, \ldots, \vec{x}_m\} \), defined as
\[
R_S(F \circ C) = \mathbb{E}_{\xi} \frac{1}{m} \sup_{C \in C} \left| \sum_i \xi_i f_C(\vec{x}_i) \right|,
\]
\[\text{(2)} \]
where each \(\xi_i \) in the expectation above is a Rademacher random variable, which takes the values \(\pm 1 \) with equal probability \(1/2 \). Here, we use the Rademacher complexity as a measure of the statistical complexity of the hypothesis space \(F \circ C \).

A. Rademacher complexity of arbitrary quantum channel

1. Rademacher complexity of arbitrary quantum channel

Given a quantum channel \(\Phi : \mathcal{L}(\mathbb{C}^2 \otimes n_1) \to \mathcal{L}(\mathbb{C}^2 \otimes n_2) \) from \(n_1 \) qubits to \(n_2 \) qubits, we define the \(4^{n_2} \times 4^{n_1} \) representation matrix \(M^\Phi \) of \(\Phi \) to be the matrix whose entries are given by
\[
M^\Phi_{z\bar{z}} = \frac{1}{2^{n_2}} \text{Tr}[P_z \Phi(\bar{P}_\bar{z})],
\]
\[\text{(3)} \]
where \(\bar{z} \in \{0, 1, 2, 3\}^{n_2} \), \(z \in \{0, 1, 2, 3\}^{n_1} \), and \(P_z, \bar{P}_\bar{z} \) are the corresponding Pauli operators. For any Hermitian operator \(P \), the representation vector \(\vec{\alpha}^P \) of \(P \) is defined as
\[
\vec{\alpha}^P = \frac{1}{2} \text{Tr}[P\Phi].
\]
\[\text{(4)} \]
For any \(N_1 \times N_2 \) matrix \(M \), which can be treated as a column of \(N_1 \) row vectors, the \((p, q)\) group norm of \(M \), where \(0 < p, q \leq \infty \), is defined as \(\|M\|_{p,q} = \left(\sum_i |M_i|^p \right)^{1/p} \), where the \(l_p \) norm of the \(i \)-th row vector \(|M_i|^p \) is defined as \(\|M_i\|_p = \left(\sum_{j=1}^{N_2} |M_{ij}|^p \right)^{1/p} \). Of interest to us is the \((p, q)\) group norm of the representation matrix of quantum channels. As we shall show in Appendix A, the \((p, q)\) group norm of the representation matrix of quantum gates can be used as a resource measure to quantify the amount of magic in the quantum gates.

Here, we treat the entire quantum circuit as a single quantum channel. Let us define \(C_{n_0}^{n_1} \|\cdot\|_{p,q} \leq \mu \) to be the set of quantum circuits from \(n_0 \) qubits to \(n_1 \) qubits that have a \((p, q)\) group norm bounded by \(\mu \).

Theorem 1. Given the set of quantum circuits \(C \) from \(n_0 \) qubits to \(n_1 \) qubits with bounded \((p, q)\) group norm \(\|\cdot\|_{p,q} \leq \mu \), the Rademacher complexity of \(F \circ C_{n_0}^{n_1} \|\cdot\|_{p,q} \leq \mu \) on \(m \) independent samples \(S = \{\vec{x}_1, \ldots, \vec{x}_m\} \) is bounded as follows:

(1) For \(1 \leq p \leq 2 \), we have
\[
R_S(F \circ C_{n_0}^{n_1} \|\cdot\|_{p,q} \leq \mu) \leq \mu 4^{n_1} \text{max} \left\{ \frac{1}{m}, \frac{1}{m^p} \right\} \sqrt{\min \{p^r, 8m_0\} \sqrt{m}} K_p(S, H),
\]
\[\text{(5)} \]
(2) For \(2 < p < \infty \), we have
\[
R_S(F \circ C_{n_0}^{n_1} \|\cdot\|_{p,q} \leq \mu) \leq \mu 4^{n_1} \text{max} \left\{ \frac{1}{m^p}, \frac{1}{m^r} \right\} \frac{\sqrt{p^r}}{m^{1/p}} K_p(S, H),
\]
\[\text{(6)} \]
where \(p^r \) is the Hölder conjugate of \(p \), i.e., \(\frac{1}{p^r} + \frac{1}{p} = 1 \);
\[
K_p(S, H) = \|\vec{\alpha}\|_p \text{max} \left\{ \|\vec{f}\|_p \right\}_i ;
\]
\[\text{(7)} \]
and \(\vec{\alpha} \) and \(\vec{f}_i(\vec{x}_i) \) are the representation vectors of \(H \) and \(|\psi(x_i)\rangle\langle\psi(x_i)| \) in the Pauli basis, respectively.

This result provides an upper bound on the Rademacher complexity of quantum circuits that depends on the amount of magic and the number of input and output qubits. (See Appendix A for a proof of Theorem 1.)

2. Rademacher complexity of unital quantum channels

We now consider the special case where the quantum channel \(\Phi \) is unital, i.e., \(\Phi(1) = 1 \). In this case, the representation matrix \(M^\Phi \) has the following form \(M^\Phi = \begin{bmatrix} 1 & \vec{0}^T \\ \vec{0} & M^\Phi \end{bmatrix} \). We
shall define the modified representation matrix \hat{M}_p to be the bottom-right $(4^{n_2} - 1) \times (4^{n_2} - 1)$ submatrix of M_p. Next, note that the representation vector of a Hermitian operator P can be written as $\hat{\alpha}^P = (\alpha_0, \hat{\alpha}^P)$. We shall call $\hat{\alpha}^P$ the modified representation vector of the operator P.

For a unital channel Φ, we shall denote the (p, q) group norm of the modified representation matrix M_p as $\|M_p\|_{p,q}$. Note that the (p, q) group norm of the modified representation matrix of unital quantum channels can be regarded as a resource measure of magic (see Appendix B).

Similarly, let us define $C_{\nu, x}^{n_0, n_1}$ to be the set of unital quantum circuits C from n_0 qubits to n_1 qubits with bounded norm $\|\nu\|_{p,q}$.

Theorem 2. Let H be a traceless observable. Given a set of unital quantum circuits from n_0 qubits to n_1 qubits with bounded norm $\|\nu\|_{p,q}$, the Rademacher complexity of $F \circ C_{\nu, x}^{n_0, n_1}$ on m samples $S = \{\hat{x}_1, \ldots, \hat{x}_m\}$ is bounded as follows.

1. For $1 \leq p \leq 2$, we have
 \[
 R_S(F \circ C_{\nu, x}^{n_0, n_1}) \leq \mu N_1^{\max\left\{ p, \frac{1}{p'} \right\}} \frac{\sqrt{m \nu_1^{\max\left\{ p, \frac{1}{p'} \right\}}}}{\sqrt{m}} K_p(S, H),
 \]
 (8)

2. For $2 < p < \infty$, we have
 \[
 R_S(F \circ C_{\nu, x}^{n_0, n_1}) \leq \mu N_1^{\max\left\{ p, \frac{1}{p'} \right\}} \frac{\sqrt{p \nu_1^{\max\left\{ p, \frac{1}{p'} \right\}}}}{m^{1/p}} K_p(S, H),
 \]
 (9)

where $N_1 = 4^{n_1} - 1$,
\[
K_p(S, H) = \left\| \hat{\alpha} \right\|_p \max_i \left\| \hat{f}_i(\hat{x}_i) \right\|_{p'},
\]
(10)
and $\hat{\alpha}$ and $\hat{f}_i(\hat{x}_i)$ are the modified representation vector of H and $|\psi(x_i)\rangle\langle\psi(x_i)|$ in the Pauli basis, respectively.

The proof of this theorem is presented in Appendix B.

B. Rademacher complexity of depth-l quantum circuits

In this subsection, we take the depth and width of the quantum circuits involved into account by considering the layer structure of the circuits. Consider a depth-l quantum circuit $C_l = \Phi_l \circ \Phi_{l-1} \circ \cdots \circ \Phi_1$, where the i-th layer $\Phi_i : \mathcal{L}(\mathbb{C}^{2^{n_i}}) \rightarrow \mathcal{L}(\mathbb{C}^{2^{n_i}})$ (see Fig. 1 for a circuit diagram). We shall denote the quantum circuit as $\tilde{C}_l = (\Phi_l, \Phi_{l-1}, \ldots, \Phi_1)$ and the set of quantum circuits with fixed depth l and width vector $\vec{n} = (n_1, \ldots, n_l, n_0)$ as
\[
C^l_{\vec{n}} = \left\{ \tilde{C}_l \mid \tilde{C}_l = (\Phi_l, \Phi_{l-1}, \ldots, \Phi_1), \right\}
\]
(11)

Next, let us define the resource measure for a depth-l quantum circuit \tilde{C}_l as follows:
\[
\nu_{p,q}(\tilde{C}_l) = \frac{1}{l} \sum_{i=1}^{l} \| M^{\Phi_i} \|_{p,q},
\]
(12)
which represents the average amount of magic over the layers of the quantum circuit. Let us denote $C^l_{\nu, \vec{x}}^{n_0, n_1}$ to be the set of quantum circuits with bounded resource $\nu_{p,q} \leq \nu$, fixed depth l, and width vector \vec{x} (see Fig. 2). Then we have the following results.

Theorem 3. Given the set of depth-l quantum circuits with bounded resource $\nu_{p,q} \leq \nu$, the Rademacher complexity on m independent samples $S = \{\hat{x}_1, \ldots, \hat{x}_m\}$ is bounded as follows.

1. For $1 \leq p \leq 2$, we have
 \[
 R_S(F \circ C^l_{\nu, \vec{x}}^{n_0, n_1}) \leq \nu^l 4^{\|\vec{n}\|_1} \frac{\max\left\{ p, \frac{1}{p'} \right\}}{\sqrt{m}} K_p(S, H),
 \]
 (13)

2. For $2 < p < \infty$, we have
 \[
 R_S(F \circ C^l_{\nu, \vec{x}}^{n_0, n_1}) \leq \nu^l 4^{\|\vec{n}\|_1} \frac{p^*}{p} \frac{1}{m^{1/p}} K_p(S, H),
 \]
 (14)
where $K_p(S, H)$ is defined by Eq. (7), and $\|\vec{n}\|_1 = \sum_{i=1}^l n_i$.

This theorem tells us how the Rademacher complexity depends on the depth, width and the amount of magic in the quantum circuits. Note that we can choose suitable p, q to reduce the exponential dependence on the width vector to polynomial dependence, for example, by taking $p^* = q = \Omega(\|\vec{n}\|_1 / \log\|\vec{n}\|_1)$ or $p^* = q = \infty$. The proof of Theorem 3 is presented in Appendix C.

![FIG. 1. Circuit diagram of a depth-l quantum circuit](image1.png)

![FIG. 2. Diagram illustrating the layer structure of the representation matrix of a depth-l quantum circuit](image2.png)
We are now ready to state our next result.

Theorem 4. Let H be a traceless observable. Given the set of depth-l quantum circuits with bounded resource $\hat{\nu}_{p,q} \leq \nu$, the Rademacher complexity of $\mathcal{F} \circ C^{l,\hat{\nu}}_{\Psi, q} \leq \nu$ on m independent samples $S = \{\tilde{x}_1, \ldots, \tilde{x}_m\}$ satisfies the following bounds

1. For $1 \leq p \leq 2$, we have
 \[
 R_S(\mathcal{F} \circ C^{l,\hat{\nu}}_{\Psi, q} \leq \nu) \leq \sqrt{\prod_{i=1}^{l} N_i^{\max\{\frac{1}{p} - \frac{1}{2}, 0\}} \frac{\min\{p, 8m\}}{m^{1/p}} \hat{K}_p(S, H)}. \tag{16}
 \]
2. For $2 < p < \infty$, we have
 \[
 R_S(\mathcal{F} \circ C^{l,\hat{\nu}}_{\Psi, q} \leq \nu) \leq \sqrt{\prod_{i=1}^{l} N_i^{\max\{\frac{1}{p} - \frac{1}{q}, 0\}} \frac{\sqrt{p}}{m^{1/p}} \hat{K}_p(S, H)}. \tag{17}
 \]

where $N_i = 4^{n_i} - 1$ for any $1 \leq i \leq l$ and $\hat{K}_p(S, H)$ is defined by Eq. (10).

The proof of this theorem is presented in Appendix D.

![Diagram illustrating the layer structure of the representation matrix of a depth-l unital quantum circuit.](image)

Remark 5. While we based our resource measure in this paper on the arithmetic mean, we could have alternatively defined a resource measure of the quantum circuit $\hat{C}_l = (\Phi_1, \Phi_{l-1}, \ldots, \Phi_1)$ that is based on the geometric mean, viz.

\[
\mu_{p,q}(\hat{C}_l) = \prod_{i=1}^{l} \|M^{\Phi_i}\|_{p,q}, \tag{18}
\]

which is the geometric mean of the resource over the layers of the quantum circuit. By the arithmetic mean–geometric mean inequality, it is easy to see that

\[
\nu_{p,q}(\hat{C}_l) \geq \mu_{p,q}(\hat{C}_l)^{1/l}. \tag{19}
\]

Also, we could define the path norm as a resource measure as follows:

\[
\gamma_{p,q}(\hat{C}_l) = \left(\frac{1}{4^n} \sum_{x} \gamma_{p}^{(x)}(\hat{C}_l)^q \right)^{1/q}, \tag{20}
\]

where

\[
\gamma_{p}^{(x)}(\hat{C}_l) = \left(\sum_{\text{out} = \tilde{x}} \left| M^{\Phi_1}_{\text{out} \rightarrow \text{in}, 1} M^{\Phi_2}_{\text{out} \rightarrow \text{in}, 2} \cdots M^{\Phi_{l-1}}_{\text{out} \rightarrow \text{in}, l-2} M^{\Phi_{l}}_{\text{out} \rightarrow \text{in}, l} \right|^p \right)^{1/p}. \tag{21}
\]

The modified version of these resource measures for quantum circuits can also be similarly defined. We present similar results on the Rademacher complexity of quantum circuits based on these resource measures in Appendices C and D.

Remark 6. Note that for any given quantum channel Ψ, there could be many different ways to realize it by quantum circuits of the same depth l and width vector \hat{n}, i.e., there could be multiple circuits $\hat{C}_l = (\Phi_1, \ldots, \Phi_1)$ for which $\Psi = C_1 \circ \cdots \circ C_1$. Furthermore, note that resource measures such as $\nu_{p,q}$ depend on the realization of the channel. Hence, if we would like to define a resource measure for quantum channels Ψ that is independent of their quantum circuit realization, it would be necessary to adopt a definition like the one below:

\[
\nu_{p,q}^{l,\hat{\nu}}(\Psi) := \min \left\{ \nu_{p,q}(\hat{C}_l) : \hat{C}_l \in C^{l,\hat{\nu}}, \Psi = C_1 \right\}, \tag{22}
\]

which quantifies the minimum amount of resources necessary to realize the target channel over all quantum circuits with a given depth and width. The quantities $\mu_{p,q}^{l,\hat{\nu}}$ and $\nu_{p,q}^{l,\hat{\nu}}$ may also be defined analogously. These resource measures may be of independent interest in resource theory.

III. CONCLUSION

In this work, we studied the Rademacher complexity of quantum circuits. First, we introduced the (p, q) group norm to define the resource measure of magic for quantum channels and for quantum circuits with a layered structure. Second, we proved that the Rademacher complexity of quantum circuits is bounded by its depth and width as well as its amount of magic, where the dependence on the width is determined by the choice of (p, q). These results reveal the dependence of statistical complexity on the resources and structure parameters (such as depth and width) of the quantum circuit.

While our results are stated in terms of the Rademacher complexity, there are other prominent choices of measures of statistical complexity, such as the VC dimension and metric entropy, that could be used. Due to the close relationship between the Rademacher complexity and the VC dimension and the metric entropy [58–60], it is straightforward to extend our results to obtain bounds on these complexity measures of quantum circuits. Another measure that has recently gained prominence is the topological entropy, a concept from dynamic systems that has recently been used to measure the complexity of classical neural networks [61]. We leave for future work the problem of generalizing the results about Rademacher complexity to topological entropy. Finally, we note that while our results are based on expressing each quantum channel in the Pauli basis, there are also other choices of bases, or more generally frames, that can be used to express quantum channels, a notable example being the phase space point operator basis [62, 63]. How do our results generalize to the case where the basis is chosen arbitrarily? We leave this question for further work.
ACKNOWLEDGMENTS

K. B. thanks Arthur Jaffe and Zhengwei Liu for the help and support during the breakout of the COVID-19 pandemic.

K. B. acknowledges the support of ARO Grants W911NF-19-1-0302 and W911NF-20-1-0082, and the support from Yau Mathematical Science Center at Tsinghua University during the visit.

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, “Deep learning,” Nature 521, 436–444 (2015).
[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning (MIT Press, 2016) http://www.deeplearningbook.org.
[3] Kevin P. Murphy, Probabilistic Machine Learning: An introduction (MIT Press, 2021).
[4] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning based natural language processing,” IEEE Computational Intelligence Magazine 13, 55–75 (2018).
[5] Li Deng and Yang Liu, Deep learning in natural language processing (Springer, 2018).
[6] Hang Li, “Deep learning for natural language processing: advantages and challenges,” National Science Review 5, 24–26 (2017).
[7] Yankang Jing, Yuemin Bian, Ziheng Hu, Lirong Wang, and Xiang-Qun Xie, “Deep learning for drug design: an artificial intelligence paradigm for drug discovery in the big data era,” AAPS J. 20, 58, (2018), 29603063.
[8] Erik Gawehn, Jan A Hiss, and Gisbert Schneider, “Deep learning in drug discovery,” Molecular informatics 35, 3–14 (2016).
[9] A. Roy, J. Sun, R. Mahoney, L. Alonzi, S. Adams, and P. Beling, “Deep learning detecting fraud in credit card transactions,” in 2018 Systems and Information Engineering Design Symposium (SIEDS) (2018) pp. 129–134.
[10] Apapan Pummasirat and Liu Yan, “Credit card fraud detection using deep learning based on auto-encoder and restricted boltzmann machine,” International Journal of Advanced Computer Science and Applications 9 (2018).
[11] Dinggang Shen, Guorong Wu, and Heung-Il Suk, “Deep Learning in Medical Image Analysis,” Annu. Rev. Biomed. Eng. 19, 221 (2017).
[12] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adityo Setio, Francesco Ciompi, Moshen Ghafoorian, Jeroen A.W.M. van der Laak, Bram van Ginneken, and Clara I. Sánchez, “A survey on deep learning in medical image analysis,” Medical Image Analysis 42, 60 – 88 (2017).
[13] S. Ramos, S. Gehrig, P. Pinggera, U. Franke, and C. Rother, “Detecting unexpected obstacles for self-driving cars: Fusing deep learning and geometric modeling,” in 2017 IEEE Intelligent Vehicles Symposium (IV) (2017) pp. 1025–1032.
[14] Q. Rao and J. Fritunj, “Deep learning for self-driving cars: Chances and challenges,” in 2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS) (2018) pp. 35–38.
[15] V. Pham, T. Bluche, C. Kermorvant, and J. Louradour, “Dropout improves recurrent neural networks for handwriting recognition,” in 2014 14th International Conference on Frontiers in Handwriting Recognition (2014) pp. 285–290.
[16] M. M. Abu Ghosh and A. Y. Maghari, “A comparative study on handwriting digit recognition using neural networks,” in 2017 International Conference on Promising Electronic Technologies (ICPET) (2017) pp. 77–81.
[17] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, Efthychios Protopapadakis, and Diego Andina, “Deep learning for computer vision: A brief review,” Intell. Neuroscience 2018 (2018), 10.1155/2018/7068349.
[18] M. A. Ponti, L. S. F. Ribeiro, T. S. Nazare, T. Bui, and J. Collomosse, “Everything you wanted to know about deep learning for computer vision but were afraid to ask,” in 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T) (2017) pp. 17–41.
[19] Michael A Nielsen, Neural networks and deep learning, Vol. 2018 (Determination press San Francisco, CA, 2015).
[20] V. N. Vapnik and A. Ya. Chervonenkis, “On the uniform convergence of relative frequencies of events to their probabilities,” Theory of Probability & Its Applications 16, 264–280 (1971).
[21] V. N. Vapnik and A. Ya. Chervonenkis, “Necessary and sufficient conditions for the uniform convergence of means to their expectations,” Theory of Probability & Its Applications 26, 532–553 (1982).
[22] VM Tikhomirov, “ε-entropy and ε-capacity of sets in functional spaces,” in Selected works of AN Kolmogorov (Springer, 1993) pp. 86–170.
[23] Peter L. Bartlett and Shahar Mendelson, “Rademacher and Gaussian complexities: Risk bounds and structural results,” J. Mach. Learn. Res. 3, 463–482 (2003).
[24] Matus Telgarsky, “Benefits of depth in neural networks,” in 29th Annual Conference on Learning Theory, Proceedings of Machine Learning Research, Vol. 49, edited by Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir (PMLR, Columbia University, New York, New York, USA, 2016) pp. 1517–1539.
[25] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro, “Norm-based capacity control in neural networks,” in Proceedings of The 28th Conference on Learning Theory, Proceedings of Machine Learning Research, Vol. 40 (PMLR, Paris, France, 2015) pp. 1376–1401.
[26] Nick Harvey, Christopher Liaw, and Abbas Mehrabian, “Nearly-tight VC-dimension bounds for piecewise linear neural networks,” in Proceedings of the 2017 Conference on Learning Theory, Proceedings of Machine Learning Research, Vol. 65, edited by Satyen Kale and Ohad Shamir (PMLR, Amsterdam, Netherlands, 2017) pp. 1064–1068.
[27] Peter L. Bartlett, Dylan J Foster, and Matus J Telgarsky, “Spectrally-normalized margin bounds for neural networks,” in Advances in Neural Information Processing Systems, Vol. 30, edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Curran Associates, Inc., 2017) pp. 6240–6249.
[28] Behnam Neyshabur, Srinadh Bhojanapalli, David Mcallester, and Nati Srebro, “Exploring generalization in deep learning,” in Advances in Neural Information Processing Systems, Vol. 30 (Curran Associates, Inc., 2017) pp. 5947–5956.
[29] Noah Golowich, Alexander Rakhlin, and Ohad Shamir, “ε-entropy and ε-capacity of sets in functional spaces,” in Selected works of AN Kolmogorov (Springer, 1993) pp. 297–299.
[30] National Academies of Sciences, Engineering, “Quantum Computing: Progress and Prospects,” National Academies Press.
Kunal Sharma, Marco Cerezo, Lukasz Cincio, and Patrick J Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias J. O'Brien, “Classification with quantum neural networks,” Nature communications 5, 4213 (2014).

Edward Farhi, Jeffrey Goldstone, and Sam Gutmann, “A quantum approximate optimization algorithm,” arXiv preprint arXiv:1411.4028 (2014).

Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and Mikhail D. Lukin, “Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices,” Phys. Rev. X 10, 021067 (2020).

M Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, et al., “Variational quantum algorithms,” arXiv preprint arXiv:2012.09265 (2020).

Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando Brandao, David A Buell, et al., “Quantum supremacy using a programmable superconducting processor,” Nature 574, 505–510 (2019).

Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao Peng, Yi-Han Luo, Jian Qin, Dian Wu, Xing Ding, Yi Hu, et al., “Quantum supremacy beyond a programmable superconducting processor,” Nature 576, 213 (2019).

John Preskill, “Quantum computing and the entanglement frontier,” arXiv preprint arXiv:1203.5813 (2012).

Austin P Lund, Michael J Bremner, and Timothy C Ralph, “Quantum sampling problems, BosonSampling and quantum supremacy,” npj Quantum Information 3, 1–8 (2017).

Aram W Harrow and Ashley Montanaro, “Quantum computational supremacy,” Nature 549, 203 (2017).

Alexander M. Dalzell, Aram W. Harrow, Dax Enshan Koh, and Rolando L. La Placa, “How many qubits are needed for quantum computational supremacy?” Quantum 4, 264 (2020).

Edward Farhi and Hartmut Neven, “Classification with quantum neural networks on near term processors,” arXiv preprint arXiv:1802.06002 (2018).

Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias J. Osborne, Robert Salzmann, Daniel Scheiermann, and Ramona Wolf, “Training deep quantum neural networks,” Nat. Commun. 11, 1–6 (2020).

Kunal Sharma, Marco Cerezo, Lukas Cincio, and Patrick J Coles, “Trainability of dissipative perceptron-based quantum neural networks,” arXiv preprint arXiv:2005.12458 (2020).

Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione, “The quest for a Quantum Neural Network,” Quantum Inf. Process. 13, 2567–2586 (2014).

Nathan Killoran, Thomas R. Bromley, Juan Miguel Arrazola, Maria Schuld, Nicolás Quesada, and Seth Lloyd, “Continuous-variable quantum neural networks,” Phys. Rev. Research 1, 033063 (2019).

Iris Cong, Soonwon Choi, and Mikhail D. Lukin, “Quantum convolutional neural networks,” Nat. Phys. 15, 1273–1278 (2019).

Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost, “Quantum algorithms for supervised and unsupervised machine learning,” arXiv preprint arXiv:1307.0411 (2013).

Peter Wittek, Quantum machine learning: what quantum computing means to data mining (Academic Press, 2014).

Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd, “Quantum machine learning,” Nature 549, 195–202 (2017).

Carlo Ciliberto, Mark Herbster, Alessandro Davide Ialongo, Massimiliano Pontil, Andrea Rocchetto, Simone Severini, and Leonid Wossnig, “Quantum machine learning: a classical perspective,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474, 20170551 (2018).

Vedran Dunjko and Hans J Briegel, “Machine learning and artificial intelligence in the quantum domain: a review of recent progress,” Reports on Progress in Physics 81, 074001 (2018).

Bob Coecke, Tobias Fritz, and Robert W. Spekkens, “A mathematical theory of resources,” Information and Computation 250, 59 – 86 (2016), Quantum Physics and Logic.

Eric Chitambar and Gilad Gour, “Quantum resource theories,” Rev. Mod. Phys. 91, 025001 (2019).

Mark Howard and Earl Campbell, “Application of a Resource Theory for Magic States to Fault-Tolerant Quantum Computing,” Phys. Rev. Lett. 118, 090501 (2017).

Vladimir Kolchinskii, “Local Rademacher complexities and oracle inequalities in risk minimization,” Ann. Statist. 34, 2593–2656 (2006).

R.M. Dudley, “The sizes of compact subsets of Hilbert space and continuity of Gaussian processes,” Journal of Functional Analysis 1, 290 – 330 (1967).

Vladimir Nikolaevich Sudakov, “Gaussian random processes and measures of solid angles in Hilbert space,” in Doklady Akademii Nauk, Vol. 197 (Russian Academy of Sciences, 1971) pp. 43–45.

S. Mendelson and R. Vershynin, “Entropy and the combinatorial dimension,” Inventiones mathematicae 152, 37–55 (2003).

Kai-feng Bu, Yaobo Zhang, and Qingxian Luo, “Depth-width trade-offs for neural networks via topological entropy,” arXiv preprint arXiv:2010.07587 (2020).

Victor Veitch, S A Hamed Mousavian, Daniel Gottesman, and Joseph Emerson, “The resource theory of stabilizer quantum computation,” New J. Phys. 16, 013009 (2014).

Christopher Ferrie and Joseph Emerson, “Oblivious Hilbert space: obtaining the quasi-probability pictures of quantum theory,” New Journal of Physics 11, 063040 (2009).

Shai Shalev-Shwartz and Shai Ben-David, Understanding machine learning: From theory to algorithms (Cambridge university press, 2014).
Appendix A: Single quantum channels

1. \((p, q)\) group norm of the representation matrix of a single quantum channel

For any \(N_1 \times N_2\) real-valued matrix \(M\), which can be written as a column

\[
\begin{pmatrix}
M_1 \\
M_2 \\
\vdots \\
M_{N_1}
\end{pmatrix}
\]

of \(N_1\) rows, we define the \((p, q)\) group norm, with \(0 < p, q \leq \infty\), as follows:

\[
\|M\|_{p,q} = \left(\frac{1}{N_1} \sum_i \|M_i\|_p^q \right)^{1/q},
\]

where the \(l_p\) norm of the \(i\)-th row vector \(M_i\) is

\[
\|M_i\|_p = \left(\sum_j |M_{ij}|^p \right)^{1/p}.
\]

The \((p, q)\) group norm satisfies the following multiplicative property.

Lemma 7. Given two matrices \(M_1\) and \(M_2\), it holds that

\[
\|M_1 \otimes M_2\|_{p,q} = \|M_1\|_{p,q} \|M_2\|_{p,q}.
\]

Proof. This follows directly from the fact that \([M_1 \otimes M_2]_{\bar{i} \bar{j}_1 \bar{j}_2} = [M_1]_{i \bar{i}} [M_2]_{\bar{j}_1 j_2}\). \(\square\)

Let \(P_0 = I\), \(P_1 = X\), \(P_2 = Y\), and \(P_3 = Z\) be the single-qubit Pauli matrices. The \(n\)-qubit Pauli matrices \(P_z\) are defined as \(P_z = P_{z_1} \otimes P_{z_2} \otimes \ldots \otimes P_{z_n}\), for any vector \(z \in \{0, 1, 2, 3\}^n\). Given a quantum channel \(\Phi : \mathcal{L}((\mathbb{C}^2)^{\otimes n_1}) \to \mathcal{L}((\mathbb{C}^2)^{\otimes n_2})\) from \(n_1\) qubits to \(n_2\) qubits, we define the \(4^{n_1} \times 4^{n_2}\) representation matrix \(M^\Phi\) in the Pauli basis by its matrix elements as follows:

\[
M^\Phi_{\bar{x},\bar{y}} = \frac{1}{2^{n_2}} \text{Tr}[P_{\bar{x}} \Phi(P_{\bar{y}})],
\]

where \(\bar{x} \in \{0, 1, 2, 3\}^n\), \(\bar{y} \in \{0, 1, 2, 3\}^n\), and \(P_{\bar{x}}\) and \(P_{\bar{y}}\) are the corresponding Pauli operators. From the definition of \(M^\Phi\), it is easy to see that the representation matrix of quantum channels in the Pauli basis satisfies the following properties.

Lemma 8. Given two quantum channels \(\Phi_1 : \mathcal{L}((\mathbb{C}^2)^{\otimes n_1}) \to \mathcal{L}((\mathbb{C}^2)^{\otimes n_2})\) and \(\Phi_2 : \mathcal{L}((\mathbb{C}^2)^{\otimes n_1}) \to \mathcal{L}((\mathbb{C}^2)^{\otimes n_2})\), we have

\[
M^{\Phi_2 \circ \Phi_1} = M^{\Phi_2} M^{\Phi_1},
\]

\[
M^{\Phi_2 \otimes \Phi_1} = M^{\Phi_2} \otimes M^{\Phi_1},
\]

\[
M^{\lambda \Phi_1 + \mu \Phi_2} = \lambda M^{\Phi_1} + \mu M^{\Phi_2}, \quad \forall \lambda, \mu \in \mathbb{R}.
\]

Proof. Based on definition of the representation matrix \(M^\Phi\), we have

\[
\Phi_1(P_{\bar{x}}) = \sum_y M^\Phi_{\bar{x},\bar{y}} P_{\bar{y}}.
\]

Therefore, it follows that

\[
M^{\Phi_2 \circ \Phi_1}_{\bar{x},\bar{y}} = \frac{1}{2^{n_2}} \text{Tr}[P_{\bar{x}} \Phi_2 \circ \Phi_1(P_{\bar{y}})] = \frac{1}{2^{n_1}} \text{Tr}[P_{\bar{x}} \sum_y M^\Phi_{\bar{x},\bar{y}} \Phi_1(P_{\bar{y}})] = \sum_y M^{\Phi_2}_{\bar{x},\bar{y}} M^\Phi_{\bar{y},\bar{z}}.
\]

Hence,

\[
M^{\Phi_2 \circ \Phi_1} = M^{\Phi_2} M^{\Phi_1}.
\]

The other two identities

\[
M^{\Phi_2 \otimes \Phi_1} = M^{\Phi_2} \otimes M^{\Phi_1},
\]

\[
M^{\lambda \Phi_1 + \mu \Phi_2} = \lambda M^{\Phi_1} + \mu M^{\Phi_2},
\]

follow directly from the definition of the representation matrix. \(\square\)
Next, we consider the \((p, q)\) group norm of the representation matrix for quantum channels, for the case when the channel is unitary.

Lemma 9. For a Clifford unitary \(U\), \(M^U\) is a permutation matrix, up to a \(\pm\) sign. That is, \(M^U_{xy} = \pm \delta_{x, \pi(y)}\), where \(\pi\) is a permutation over the set \(\{0, 1, 2, 3\}\).

Proof. This comes directly from the definition of the Clifford unitaries, which map Pauli operators to Pauli operators.

Lemma 10. The \((p, q)\) group norm is invariant under the left or right multiplication of \(M^U\), if \(U\) is a Clifford unitary. That is, for any matrix \(A\), we have

\[
\|M^U A\|_{p,q} = \|A M^U\|_{p,q} = \|A\|_{p,q}.
\]

Proof. Based on the Lemma 9, \(M^U\) is a permutation matrix up to some \(\pm\) sign. Hence, \(A M^U\) is just a permutation of the columns of \(A\) with some \(\pm\) sign. Thus, for the \(i\)-th row vector, we have \(\|(AM^U)i\|_p = \|A_i\|_p\). Therefore, \(\|AM^U\|_{p,q} = \|A\|_{p,q}\).

Similarly, \(M^U A\) is just a permutation of the columns of \(A\) with some \(\pm\) sign. Thus, for the \(i\)-th row vector \(\|(M^U A)i\|_p = \|A_{\pi(i)}\|_p\), where \(\pi\) is a permutation. Then \(\sum_i \|(AM^U)i\|_p = \sum_i \|A_{\pi(i)}\|_p = \sum_i \|A_i\|_p\), i.e., \(\|AM^U\|_{p,q} = \|A\|_{p,q}\).

Lemma 11. Given a unitary channel \(U\), we have the following result:

1. For \(0 < p < 2\), we have \(\|M^U\|_{p,q} \geq 1\), \(\|M^U\|_{p,q} = 1\) iff \(U\) is a Clifford unitary.
2. For \(p > 2\), \(0 < q < \infty\), we have \(\|M^U\|_{p,q} \leq 1\), \(\|M^U\|_{p,q} = 1\) iff \(U\) is a Clifford unitary.
3. For \(p = 2\), \(q > 0\) or \(p > 2, q = \infty\), we have \(\|M^U\|_{p,q} = 1\) for any unitary \(U\).

Proof. First, for any unitary \(U\), it is easy to see that \(M^U\) is an orthogonal matrix. Therefore, \(\|M^U\|_2 = 1\) for any \(\bar{x}\) and \(M^U_0 = (1, 0, \ldots, 0)\). Therefore, we have the statement in (3).

1. For \(0 < p < 2\), we have \(\|M^U\|_p \geq \|M^U\|_2 = 1\) for any \(\bar{x}\). Therefore, \(\|M^U\|_{p,q} \geq 1\). Besides, \(\|M^U\|_{p,q} = 1\) iff \(\|M^U\|_p = 1\) for any \(\bar{x}\) iff every row vector \(M^U_{\bar{x}}\) has only one nonzero element, which could only be \(\pm 1\), iff \(U\) is a Clifford unitary.

2. For \(p > 2\), \(0 < q < \infty\), we have \(\|M^U\|_p \leq \|M^U\|_2 = 1\) for any \(\bar{x}\). Therefore, \(\|M^U\|_{p,q} \leq 1\). Besides, \(\|M^U\|_{p,q} = 1\) iff \(\|M^U\|_p = 1\) for any \(\bar{x}\) iff every row vector \(M^U_{\bar{x}}\) has only one nonzero element, which could only be \(\pm 1\), iff \(U\) is Clifford unitary.

Based on the above facts, it is easy to see that the \((p, q)\) norm of the representation matrix can be regarded as some resource measure of magic of quantum gates.

Proposition 12. Given a unitary channel \(U\), the \((p, q)\) group norm can be regarded as a resource measure satisfying the following properties

1. (Faithfulness) For \(0 < p < 2\), we have \(\|M^U\|_{p,q} \geq 1\), \(\|M^U\|_{p,q} = 1\) iff \(U\) is Clifford unitary.

1'. (Faithfulness) For \(p > 2\), \(0 < q < \infty\), we have \(\|M^U\|_{p,q} \leq 1\), \(\|M^U\|_{p,q} = 1\) iff \(U\) is Clifford unitary.

2. (Invariance under Clifford unitaries) \(\|M^{U_1 U_2}\|_{p,q} = \|M^{U_1}\|_{p,q} \|M^{U_2}\|_{p,q}\) for any Clifford unitaries \(U_1\) and \(U_2\).

3. (Multiplicities under tensor product) \(\|M^{U_1 \otimes U_2}\|_{p,q} = \|M^{U_1}\|_{p,q} \|M^{U_2}\|_{p,q}\).

4. (Convexity) For \(p \geq 1, q \geq 1\), we have \(\|M^{\lambda U_1 + (1-\lambda) U_2}\|_{p,q} \leq \lambda \|M^{U_1}\|_{p,q} + (1 - \lambda) \|M^{U_2}\|_{p,q}\) for \(\lambda \in [0, 1]\).

Proof. (1) and (1') come from Lemma 11 directly.

2. \(\|M^{U_1 U_2}\|_{p,q} = \|M^{U_1 M^{U_2}}\|_{p,q} = \|M^U\|_{p,q}\),

where the first equality comes from Lemma 8 and the second equality comes from Lemma 11.

3. \(\|M^{U_1 \otimes U_2}\|_{p,q} = \|M^{U_1 \otimes M^{U_2}}\|_{p,q} = \|M^{U_1}\|_{p,q} \|M^{U_2}\|_{p,q}\),

where the first equality comes from Lemma 8 and the second equality comes from Lemma 7.

(4) comes directly from the convexity of \(l_p\) and \(l_q\) norm for \(p \geq 1, q \geq 1\).
2. Bounds on the Rademacher complexity of quantum channels

Let p^* denote the Hölder conjugate of p, i.e., $\frac{1}{p^*} + \frac{1}{p} = 1$.

Lemma 13. For any $N_1 \times N_2$ real-valued matrix M, and any vector $\vec{v} \in \mathbb{R}^{N_2}$, we have

$$\|M\vec{v}\|_{p^*} \leq N_1^{\frac{1}{p}} \|M\|_{p,q} \|\vec{v}\|_{p^*}. \tag{A12}$$

Proof. First, let us prove the following inequality

$$\|M\vec{v}\|_{p^*} \leq N_1^{\frac{1}{p}} \|M\|_{p,p^*} \|\vec{v}\|_{p^*}. \tag{A13}$$

This inequality holds because

$$\|M\vec{v}\|_{p^*} = \sum (M_i\vec{v})_{p^*} \leq \sum \|M_i\|_{p,p^*} \|\vec{v}\|_{p^*} = N_1^{\frac{1}{p}} \|M\|_{p,p^*} \|\vec{v}\|_{p^*}. \tag{A14}$$

If $q > p^*$, then $\max \{ \frac{1}{p^*}, \frac{1}{q} \} = \frac{1}{p^*}$ and $\|M\|_{p,q} \geq \|M\|_{p,p^*}$. Hence the inequality Eq. (A12) reduces to

$$\|M\vec{v}\|_{p^*} \leq N_1^{\frac{1}{p}} \|M\|_{p,p^*} \|\vec{v}\|_{p^*}. \tag{A15}$$

If $q < p^*$, then $\max \{ \frac{1}{p^*}, \frac{1}{q} \} = \frac{1}{q}$ and $\|M\|_{p,q} \geq N_1^{1/q} \|M\|_{p,p^*}$. Hence the inequality Eq. (A12) reduces to

$$\|M\vec{v}\|_{p^*} \leq N_1^{\frac{1}{p}} \|M\|_{p,p^*} \|\vec{v}\|_{p^*}. \tag{A16}$$

Lemma 14. For any $1 \leq p \leq 2$

$$\mathbb{E}_\xi \frac{1}{m} \left\| \sum_{i=1}^m \xi_i \vec{v}_i \right\|_{p^*} \leq \frac{\sqrt{\min \{ p^*, 8m \} \max \|\vec{v}\|_{p^*}}}{m}. \tag{A17}$$

For $2 < p < \infty$, we have

$$\mathbb{E}_\xi \frac{1}{m} \left\| \sum_{i=1}^m \xi_i \vec{v}_i \right\|_{p^*} \leq \frac{\sqrt{p^* m^{1/p^*} \max \|\vec{v}\|_{p^*}}}{m}. \tag{A18}$$

where $\vec{v}_i \in \mathbb{R}^N$.

Proof. The proof is similar to that of Lemma 15 in [25]. If $1 \leq p \leq \frac{2 \log_2(N)}{2 \log_2(N) - 1}$, then $2 \log_2(N) \leq p^*$. Hence,

$$\mathbb{E}_\xi \frac{1}{m} \left\| \sum_{i=1}^m \xi_i \vec{v}_i \right\|_{p^*} \leq N^{\frac{1}{p^*}} \mathbb{E}_\xi \frac{1}{m} \left\| \sum_{i=1}^m \xi_i \vec{v}_i \right\|_{\infty} \leq N^{\frac{1}{p^*}} \mathbb{E}_\xi \frac{1}{m} \left\| \sum_{i=1}^m \xi_i \vec{v}_i \right\|_{\infty} \leq \sqrt{2m} \mathbb{E}_\xi \frac{1}{m} \left\| \sum_{i=1}^m \xi_i \vec{v}_i \right\|_{\infty} \leq \sqrt{2} \mathbb{E}_\xi \frac{1}{m} \max_{j} \sum_{i=1}^m |\xi_i v_i(j)| \leq \sqrt{2} \frac{\sqrt{2 \log_2(N)}}{m} \max_{j} \|v_i(j)\|_2 \leq \sqrt{2} \frac{\sqrt{2 \log_2(N)}}{\sqrt{m}} \max_{i} \|\vec{v}_i\|_{\infty} \leq \sqrt{2} \frac{\sqrt{2 \log_2(N)}}{\sqrt{m}} \max_{i} \|\vec{v}_i\|_{p^*}.
If \(\frac{2\log(N)}{2\log(N)-1} \leq p < \infty \), then by the Khintchine-Kahane inequality, we have

\[
\mathbb{E}_x \left\| \frac{1}{m} \sum_{i=1}^m e_i \bar{v}_i \right\|_{p^*} \leq \frac{1}{m} \left(\sum_{j} \mathbb{E}_x \left(\sum_{i} e_i v_i(j) \right)^p \right)^{\frac{1}{p}} \leq \sqrt{p^*/m} \left(\sum_{j} \|v_i(j)\|_{p^*}^p \right)^{\frac{1}{p}},
\]

where

\[
\left(\sum_{j} \|v_i(j)\|_{p^*}^p \right)^{\frac{1}{p^*}} \leq \begin{cases}
\frac{m^{1/2}}{\max} \|v_i\|_{p^*}, & p^* \geq 2, \\
\frac{m^{1/2}}{\max} \|v_i\|_{p^*}, & p^* < 2,
\end{cases}
\]

and the first inequality comes from the Minkowski inequality and the second inequality from the fact that

\[(x+y)^{p^*/2} \leq x^{p^*/2} + y^{p^*/2},
\]

for \(p^*/2 < 1 \). Therefore

\[
\mathbb{E}_x \left\| \frac{1}{m} \sum_{i=1}^m e_i \bar{v}_i \right\|_{p^*} \leq \begin{cases}
\frac{\sqrt{p^*/m}}{\max} \|v_i\|_{p^*}, & p^* \geq 2, \\
\frac{\sqrt{p^*/m}}{\max} \|v_i\|_{p^*}, & p^* < 2.
\end{cases}
\]

\[\square\]

Lemma 15 (Massart lemma [64]). Given a finite set \(A \subset \mathbb{R}^m \), we have

\[R(A) \leq \max_{\bar{v} \in A} \left\| \bar{v} - \bar{\bar{v}} \right\|_2 \frac{\sqrt{2 \log |A|}}{m},\]

where \(\bar{\bar{v}} = \frac{1}{|A|} \sum_{\bar{v} \in A} \bar{v} \).

Theorem 16 (Restatement of Theorem 1). Given a set of quantum circuits \(\Phi \) from \(n_0 \) qubits to \(n_1 \) qubits with bounded \((p,q) \) norm \(\|\cdot\|_{p,q} \), the Rademacher complexity on \(m \) samples \(S = \{\bar{x}_1, \ldots, \bar{x}_m\} \) satisfies the following bounds

1. For \(1 \leq p \leq 2 \), we have

\[R_S(\mathcal{F} \circ \mathcal{C}, \|\cdot\|_{p,q} \leq \mu) \leq \mu 4^{n_1 \max\left\{ \frac{1}{p}, \frac{1}{q} \right\}} \sqrt{\frac{\min\{p^*, \frac{8n_0}{\mu}\}}{m}} \left\| \bar{\alpha} \right\|_p \max_{i} \|\bar{f}_i(\bar{x}_i)\|_{p^*}.\]

2. For \(2 < p < \infty \), we have

\[R_S(\mathcal{F} \circ \mathcal{C}, \|\cdot\|_{p,q} \leq \mu) \leq \mu 4^{n_1 \max\left\{ \frac{1}{p}, \frac{1}{q} \right\}} \frac{\sqrt{p^*}}{m^{1/p}} \left\| \bar{\alpha} \right\|_p \max_{i} \|\bar{f}_i(\bar{x}_i)\|_{p^*}.\]

Proof. First, we compute

\[R_S(\mathcal{F} \circ \mathcal{C}, \|\cdot\|_{p,q} \leq \mu) = \mathbb{E}_x \left\| \frac{1}{m} \sup_{\Phi \in \mathcal{C}_1} \left\| M_{\Phi} \right\|_{p,q} \right\| \sum_{i=1}^m e_i \bar{\alpha} \bar{f}_{\Phi}(\bar{x}_i) \right\|_{p^*} \]

\[\leq \mathbb{E}_x \left\| \frac{1}{m} \sup_{\Phi} \frac{\mu}{\left\| M_{\Phi} \right\|_{p,q}} \right\| \sum_{i=1}^m e_i \bar{\alpha} \bar{f}_{\Phi}(\bar{x}_i) \right\|_{p^*} \]

\[= \mu \left\| \bar{\alpha} \right\|_p \mathbb{E}_x \left\| \frac{1}{m} \sup_{\Phi} \frac{1}{\left\| M_{\Phi} \right\|_{p,q}} \right\| \sum_{i=1}^m e_i \bar{f}_{\Phi}(\bar{x}_i) \right\|_{p^*} \]

\[\leq \mu \left\| \bar{\alpha} \right\|_p \mathbb{E}_x \left\| \frac{1}{m} \sup_{\Phi} \frac{1}{\left\| M_{\Phi} \right\|_{p,q}} \right\| \sum_{i=1}^m e_i M_{\Phi} \bar{f}_{\Phi}(\bar{x}_i) \right\|_{p^*} \]

\[\leq \mu \left\| \bar{\alpha} \right\|_p N_1^{\max\left\{ \frac{1}{p}, \frac{1}{q} \right\}} \mathbb{E}_x \left\| \frac{1}{m} \sum_{i=1}^m e_i \bar{f}_{\Phi}(\bar{x}_i) \right\|_{p^*},\]

where the third inequality follows from Lemma 13. Using Lemma 14, we get the results of this theorem. \[\square\]
Appendix B: Single unital quantum channel

1. \((p, q)\) group norm of the modified representation matrix of unital channels

If a quantum channel \(\Phi\) is unital, i.e., \(\Phi(1) = 1\), then the representation matrix \(M^\Phi\) has the following form:

\[
M^\Phi = \begin{bmatrix}
1 & \tilde{0}^T \\
\tilde{0} & M^\Phi
\end{bmatrix}.
\]

We call \(\hat{M}^\Phi\) the modified representation matrix of \(\Phi\). (Note that a unitary channel is a special case of a unital channel.) For a unital channel \(\Phi\), we define the \((p, q)\) group norm of the modified representation matrix \(\hat{M}^\Phi\) as follows:

\[
\|\hat{M}^\Phi\|_{p,q} = \left(\frac{1}{N} \sum_{\tilde{x} \neq 0} \left(\sum_{\tilde{y} \neq 0} |M_{\tilde{x},\tilde{y}}|^p \right)^{\frac{1}{p}} \right)^{\frac{1}{q}},
\]

where \(N = 4^n - 1\).

We now state and prove the following properties of the \((p, q)\) norm of the representation matrix \(\hat{M}^U\), where \(U\) is a unitary channel.

Proposition 17. For any unitary channel \(U\), we have the following relationships between \(\|M^U\|_{p,q}\) and \(\|\hat{M}^U\|_{p,q}\):

1. For 0 \(< p < 2\), 0 \(< q < \infty\), we have

\[
\|M^U\|_{p,q} \leq \|\hat{M}^U\|_{p,q},
\]

with equality iff \(U\) is a Clifford unitary.

2. For 0 \(< p < 2\), \(q = \infty\), we have

\[
\|M^U\|_{p,\infty} = \|\hat{M}^U\|_{p,\infty},
\]

for any unitary \(U\).

3. For \(p > 2\), \(q > 0\), we have

\[
\|M^U\|_{p,q} \geq \|\hat{M}^U\|_{p,q},
\]

with equality iff \(U\) is a Clifford unitary.

4. For \(p = 2\), \(q > 0\)

\[
\|M^U\|_{p,q} = \|\hat{M}^U\|_{p,q} = 1.
\]

Proof. (4) is obvious, as \(M^U\) and \(\hat{M}^U\) are orthogonal matrices.

For 0 \(< p < 2\), \(q > 0\) we have \(\|M^U_{\tilde{x},\tilde{y}}\|_{p} \geq \|\hat{M}^U_{\tilde{x},\tilde{y}}\|_{p} = 1\) for any \(\tilde{x} \neq \tilde{0}\). Therefore, \(\|M^U\|_{p,q} \leq \|\hat{M}^U\|_{p,q}\) for 0 \(< q < \infty\) and \(\|M^U\|_{p,q} = \|\hat{M}^U\|_{p,q}\) for \(q = \infty\). Hence, we get (2). Next, for 0 \(< q < \infty\), \(\|M^U\|_{p,q} = \|\hat{M}^U\|_{p,q}\) iff \(\|M^U\|_{p} = 1\) for any \(\tilde{x} \neq \tilde{0}\) iff every row vector \(M^U_{\tilde{x}}\) has only one nonzero element, which could only be \(\pm 1\), iff \(U\) is a Clifford unitary. Hence, we get (1).

For \(p > 2\), 0 \(< q \leq \infty\), we have \(\|M^U_{\tilde{x},\tilde{y}}\|_{p} \leq \|M^U_{\tilde{x},\tilde{0}}\|_{p} = 1\) for any \(\tilde{x}\). Therefore, \(\|M^U\|_{p,q} \geq \|\hat{M}^U\|_{p,q}\). Besides, \(\|M^U\|_{p,q} = \|\hat{M}^U\|_{p,q}\) iff \(\|M^U_{\tilde{x},\tilde{y}}\|_{p} = 1\) for any \(\tilde{x}\) iff every row vector \(M^U_{\tilde{x}}\) has only one nonzero element, which could only be \(\pm 1\), iff \(U\) is a Clifford unitary. Therefore, we get (3).

A direct consequence of the above proposition is the following corollary.

Corollary 18. Given a unitary channel \(U\), the \((p, q)\) group norm of the modified representation matrix \(\hat{M}^U\) can be regarded as a resource measure which satisfies the following properties:

1. (Faithfulness) For 0 \(< p < 2\), \(q > 0\) we have \(\|\hat{M}^U\|_{p,q} \geq 1\), \(\|\hat{M}^U\|_{p,q} = 1\) iff \(U\) is a Clifford unitary.

1’ (Faithfulness) For \(p > 2\), \(q > 0\), we have \(\|\hat{M}^U\|_{p,q} \leq 1\), \(\|\hat{M}^U\|_{p,q} = 1\) iff \(U\) is a Clifford unitary.

2. (Invariance under Clifford unitary) \(\|\hat{M}^U\|_{p,q} = \|\hat{M}^{U_1 \circ U_2}\|_{p,q}\) for any Clifford unitary \(U_1\) and \(U_2\).

3. (Convexity) For \(p \geq 1\), we have

\[
\|\hat{M}^{\lambda U_1 + (1-\lambda) U_2}\|_{p,q} \leq \lambda \|\hat{M}^{U_1}\|_{p,q} + (1 - \lambda) \|\hat{M}^{U_2}\|_{p,q}.
\]
Proposition 19. Let U_1 and U_2 be unitary channels.

(1) For $0 < p < 2$, $0 < q < \infty$, we have

$$\|\hat{M}^{U_1} \otimes \hat{M}^{U_2}\|_{p,q} \geq \|\hat{M}^{U_1}\|_{p,q},$$
(\text{B7)}

with equality iff U_1 and U_2 are Clifford unitaries.

(2) For $0 < p < 2$, $q = \infty$, we have

$$\|\hat{M}^{U_1} \otimes \hat{M}^{U_2}\|_{p,\infty} = \|\hat{M}^{U_1}\|_{p,\infty},$$
(\text{B8)}

for any unitaries U_1 and U_2.

(3) For $p > 2$, $0 < q \leq \infty$, we have

$$\|\hat{M}^{U_1} \otimes \hat{M}^{U_2}\|_{p,q} \leq \|\hat{M}^{U_1}\|_{p,q}.$$
(\text{B9)}

For $p > 2$, $0 < q < \infty$, “=” holds iff U_1 and U_2 are Clifford unitary.

(4) For $p = 2$, $0 < q \leq \infty$, we have

$$\|\hat{M}^{U_1} \otimes \hat{M}^{U_2}\|_{2,q} = \|\hat{M}^{U_1}\|_{2,q} = 1.$$
(\text{B10)}

Proof. (3) is obvious as both $\hat{M}^{U_1} \otimes \hat{M}^{U_2}$ and $\hat{M}^{U_1} \otimes \hat{U}_2$ are orthogonal matrices.

Using the property

$$\|\hat{M}^{U_1} \otimes \hat{M}^{U_2}\|_{p,q} = \|\hat{M}^{U_1}\|_{p,q}\|\hat{M}^{U_2}\|_{p,q},$$

we find that for $0 < q < \infty$,

$$\|\hat{M}^{U_1} \otimes \hat{M}^{U_2}\|_{p,q}^q = \left(\frac{1}{N_1} \sum_{x_1 \neq 0} \|M^{U_1}_{11}\|_{p}^q \right) \left(\frac{1}{N_2} \sum_{x_2 \neq 0} \|M^{U_2}_{22}\|_{p}^q \right),$$

$$\|\hat{M}^{U_1} \otimes \hat{U}_2\|_{p,q}^q = \left(\frac{1}{N_1 N_2 + N_1 + N_2} \sum_{x_1, x_2 \neq 0} \|M^{U_1}_{11}\|_{p}^q \|M^{U_2}_{22}\|_{p}^q \right) + \left(\frac{1}{N_1 N_2 + N_1 + N_2} \sum_{x_1 = 0, x_2 \neq 0} \|M^{U_1}_{11}\|_{p}^q \|M^{U_2}_{22}\|_{p}^q \right) + \left(\frac{1}{N_1 N_2 + N_1 + N_2} \sum_{x_1 \neq 0, x_2 = 0} \|M^{U_1}_{11}\|_{p}^q \|M^{U_2}_{22}\|_{p}^q \right),$$

where $N_1 = 4^{n_1} - 1$, $N_2 = 4^{n_2} - 1$. Hence to compare $\|\hat{M}^{U_1} \otimes \hat{M}^{U_2}\|_{p,q}$ and $\|\hat{M}^{U_1} \otimes \hat{U}_2\|_{p,q}$, we need only to compare

$$\left(\frac{1}{N_1} \sum_{x_1 \neq 0} \|M^{U_1}_{11}\|_{p}^q \right) \left(\frac{1}{N_2} \sum_{x_2 \neq 0} \|M^{U_2}_{22}\|_{p}^q \right),$$

and

$$\frac{1}{N_1 + N_2} \left(\sum_{x_1 \neq 0} \|M^{U_1}_{11}\|_{p}^q \right) + \frac{1}{N_1 + N_2} \left(\sum_{x_2 \neq 0} \|M^{U_2}_{22}\|_{p}^q \right).$$

To this end, let us consider a simple inequality first. It is easy to verify the following two inequalities:

(1) For $a, b \geq 1$, we have

$$ab \geq \frac{N_1 a + N_2 b}{N_1 + N_2}.$$
(\text{B11)}

Moreover, equality holds iff $a = b = 1$.

(2) For $0 < a, b \leq 1$, we have

$$ab \leq \frac{N_1 a + N_2 b}{N_1 + N_2}.$$
(\text{B12)}
Moreover, equality holds iff \(a = b = 1 \).

Thus, for \(0 < p < 2, 0 < q < \infty \), we have \(\| M'_U \|^q_p \geq 1 \) for any \(\vec{x} \neq \vec{0} \), and \(\| M'_U \|^q_p = 1 \) for all \(\vec{x} \neq 0 \) iff \(U \) is Clifford. Let

\[
 a = \frac{1}{N_1} \sum_{\vec{x}_1 \neq 0} \| M'_{U_{\vec{x}_1}} \|^q_p,
\]

\[
 b = \frac{1}{N_2} \sum_{\vec{x}_2 \neq 0} \| M'_{U_{\vec{x}_2}} \|^q_p.
\]

Then by the first inequality (1), we have

\[
 \left(\frac{1}{N_1} \sum_{\vec{x}_1 \neq 0} \| M'_{U_{\vec{x}_1}} \|^q_p \right) \left(\frac{1}{N_2} \sum_{\vec{x}_2 \neq 0} \| M'_{U_{\vec{x}_2}} \|^q_p \right) \geq \frac{1}{N_1 + N_2} \left(\sum_{\vec{x}_1 \neq 0} \| M'_{U_{\vec{x}_1}} \|^q_p + \sum_{\vec{x}_2 \neq 0} \| M'_{U_{\vec{x}_2}} \|^q_p \right).
\]

Therefore, for \(0 < p < 2, 0 < q < \infty \), we have

\[
 \| \hat{M}'_{U_{\vec{x}_1}} \otimes \hat{M}'_{U_{\vec{x}_2}} \|_{p,q} \geq \| \hat{M}'_{U_{\vec{x}_1}} \otimes \hat{M}'_{U_{\vec{x}_2}} \|_{p,q},
\]

where equality holds iff \(U_1 \) and \(U_2 \) are Clifford unitary.

Similarly, for \(p > 2, 0 < q < \infty \), we have \(\| M'_U \|^q_p \leq 1 \) for any \(\vec{x} \neq \vec{0} \), and \(\| M'_U \|^q_p = 1 \) for all \(\vec{x} \neq 0 \) iff \(U \) is Clifford. Let

\[
 a = \frac{1}{N_1} \sum_{\vec{x}_1 \neq 0} \| M'_{U_{\vec{x}_1}} \|^q_p,
\]

\[
 b = \frac{1}{N_2} \sum_{\vec{x}_2 \neq 0} \| M'_{U_{\vec{x}_2}} \|^q_p.
\]

Then by the second inequality (2), we have

\[
 \left(\frac{1}{N_1} \sum_{\vec{x}_1 \neq 0} \| M'_{U_{\vec{x}_1}} \|^q_p \right) \left(\frac{1}{N_2} \sum_{\vec{x}_2 \neq 0} \| M'_{U_{\vec{x}_2}} \|^q_p \right) \leq \frac{1}{N_1 + N_2} \left(\sum_{\vec{x}_1 \neq 0} \| M'_{U_{\vec{x}_1}} \|^q_p + \sum_{\vec{x}_2 \neq 0} \| M'_{U_{\vec{x}_2}} \|^q_p \right).
\]

Therefore, for \(p > 2, 0 < q < \infty \), we have

\[
 \| \hat{M}'_{U_{\vec{x}_1}} \otimes \hat{M}'_{U_{\vec{x}_2}} \|_{p,q} \leq \| \hat{M}'_{U_{\vec{x}_1}} \otimes \hat{M}'_{U_{\vec{x}_2}} \|_{p,q}.
\]

Moreover, equality holds iff \(U_1 \) and \(U_2 \) are Clifford unitary.

Now, let us consider the case where \(q = \infty \). For \(q = \infty \), we have

\[
 \| \hat{M}'_{U_{\vec{x}_1}} \otimes \hat{M}'_{U_{\vec{x}_2}} \|_{p,\infty} = \max_{\vec{x}_1 \neq 0} \| M'_{U_{\vec{x}_1}} \| \max_{\vec{x}_2 \neq 0} \| M'_{U_{\vec{x}_2}} \|_p,
\]

and

\[
 \| \hat{M}'_{U_{\vec{x}_1}} \otimes \hat{M}'_{U_{\vec{x}_2}} \|_{p,\infty} = \max_{(\vec{x}_1, \vec{x}_2) \neq (\vec{0}, \vec{0})} \| M'_{U_{\vec{x}_1}} \|_p \| M'_{U_{\vec{x}_2}} \|_p = \max \left\{ \max_{\vec{x}_1 \neq 0} \| M'_{U_{\vec{x}_1}} \|_p \max_{\vec{x}_2 \neq 0} \| M'_{U_{\vec{x}_2}} \|_p, \max_{\vec{x}_1 \neq 0} \| M'_{U_{\vec{x}_1}} \|_p \max_{\vec{x}_2 \neq 0} \| M'_{U_{\vec{x}_2}} \|_p \right\}.
\]

Hence, for \(0 < p < 2 \), we have \(\| M'_U \|^q_p \geq 1 \) for any \(\vec{x} \neq \vec{0} \); therefore,

\[
 \max_{\vec{x}_1 \neq 0} \| M'_{U_{\vec{x}_1}} \|_p \max_{\vec{x}_2 \neq 0} \| M'_{U_{\vec{x}_2}} \|_p \geq \max \left\{ \max_{\vec{x}_1 \neq 0} \| M'_{U_{\vec{x}_1}} \|_p \max_{\vec{x}_2 \neq 0} \| M'_{U_{\vec{x}_2}} \|_p, \max_{\vec{x}_1 \neq 0} \| M'_{U_{\vec{x}_1}} \|_p \max_{\vec{x}_2 \neq 0} \| M'_{U_{\vec{x}_2}} \|_p \right\}.
\]

That is,

\[
 \| \hat{M}'_{U_{\vec{x}_1}} \otimes \hat{M}'_{U_{\vec{x}_2}} \|_{p,\infty} = \| \hat{M}'_{U_{\vec{x}_1}} \otimes \hat{M}'_{U_{\vec{x}_2}} \|_{p,\infty}.
\]

For \(p > 2 \), we have \(\| M'_U \|^q_p \leq 1 \) for any \(\vec{x} \neq \vec{0} \); therefore,

\[
 \max_{\vec{x}_1 \neq 0} \| M'_{U_{\vec{x}_1}} \|_p \max_{\vec{x}_2 \neq 0} \| M'_{U_{\vec{x}_2}} \|_p \leq \max \left\{ \max_{\vec{x}_1 \neq 0} \| M'_{U_{\vec{x}_1}} \|_p \max_{\vec{x}_2 \neq 0} \| M'_{U_{\vec{x}_2}} \|_p, \max_{\vec{x}_1 \neq 0} \| M'_{U_{\vec{x}_1}} \|_p \max_{\vec{x}_2 \neq 0} \| M'_{U_{\vec{x}_2}} \|_p \right\}.
\]
2. Rademacher complexity of single unital quantum circuit

In this subsection, we will assume for simplicity that the observable H is traceless, which implies that $\alpha_0 = 0$.

Theorem 20 (Restatement of Theorem 2). Given the set of unital quantum circuits Φ from n_0 qubits to n_1 qubits with bounded (p,q) norm of the modified representation matrix, the Rademacher complexity on m samples $S = \{\hat{x}_1, ..., \hat{x}_m\}$ satisfies the following bounds

1. For $1 \leq p \leq 2$, we have
 \[
 R_S(\mathcal{F} \circ C_{n_0,n_1}^{\|\|_{\|p,q\|}\leq \mu}) \leq \mu N_1^{\max\{\frac{1}{p}, \frac{1}{q}\}} \sqrt{\frac{\min\{p^*, 8n_0\}}{m^{1/p}}} \max_i \|\hat{\alpha}_i\|_p \|\hat{f}_i(\hat{x}_i)\|_{p^*}, \tag{B13}
 \]
 where $N_1 = 4^{n_1} - 1$.

2. For $2 < p < \infty$, we have
 \[
 R_S(\mathcal{F} \circ C_{n_0,n_1}^{\|\|_{\|p,q\|}\leq \mu}) \leq \mu N_1^{\max\{\frac{1}{p}, \frac{1}{q}\}} \sqrt{\frac{p^*}{m^{1/p}}} \max_i \|\hat{\alpha}_i\|_p \|\hat{f}_i(\hat{x}_i)\|_{p^*}. \tag{B14}
 \]

Proof. Since $\alpha_\xi = 0$, it follows that $\hat{\alpha} = (0, \hat{\alpha})$, where $\hat{\alpha} \in \mathbb{R}^{N_1}$. Hence,

\[
\hat{f}_\Phi(\hat{x}) = \text{Tr}[\Phi(|\psi(\hat{x})\rangle\langle\psi(\hat{x})|)H]
= \sum_{\xi \neq 0} \alpha_\xi \text{Tr}[\Phi(|\psi(\hat{x}_i)\rangle\langle\psi(\hat{x}_i)|)P_\xi]
= \hat{\alpha}_i \hat{f}_\Phi(\hat{x}),
\]

where $\hat{f}_\Phi(\hat{x}) = (\hat{f}_\Phi(\hat{x}))_{\xi \neq 0} \in \mathbb{R}^{N_1}$ and $N_1 = 4^{n_1} - 1$. Similarly, for unital quantum channels Φ, we have

\[
\hat{\Phi}(\hat{x}) = \hat{M}^\Phi \hat{\Phi}(\hat{x}). \tag{B15}
\]

Therefore, we have

\[
R_S(\mathcal{F} \circ C_{\|\|_{\|\|_{\|p,q\|}\leq \mu}}^{n_0,n_1}) = \mathbb{E}_{\hat{\xi}} \frac{1}{m} \sup_{\Phi \in C_{n_0,n_1}^{\|\|_{\|p,q\|}\leq \mu}} \left| \sum_{i=1}^m \epsilon_i \hat{\alpha}_i \hat{f}_\Phi(\hat{x}_i) \right|
\leq \mathbb{E}_{\hat{\xi}} \frac{1}{m} \sup_{\Phi \in C_{n_0,n_1}^{\|\|_{\|p,q\|}\leq \mu}} \left| \sum_{i=1}^m \epsilon_i \hat{\alpha}_i \hat{f}_\Phi(\hat{x}_i) \right|
= \mu \mathbb{E}_{\hat{\xi}} \frac{1}{m} \sup_{\Phi \in C_{n_0,n_1}^{\|\|_{\|p,q\|}\leq \mu}} \left| \sum_{i=1}^m \epsilon_i \hat{\alpha}_i \hat{f}_\Phi(\hat{x}_i) \right|
\leq \mu \|\hat{\alpha}\|_p \mathbb{E}_{\hat{\xi}} \frac{1}{m} \sup_{\Phi \in C_{n_0,n_1}^{\|\|_{\|p,q\|}\leq \mu}} \left| \sum_{i=1}^m \epsilon_i \hat{\alpha}_i \hat{f}_\Phi(\hat{x}_i) \right|
\leq \mu \|\hat{\alpha}\|_p \mathbb{E}_{\hat{\xi}} \frac{1}{m} \sup_{\Phi \in C_{n_0,n_1}^{\|\|_{\|p,q\|}\leq \mu}} \left| \sum_{i=1}^m \epsilon_i \hat{f}_\Phi(\hat{x}_i) \right|
\leq \mu \|\hat{\alpha}\|_p N_1^{\max\{\frac{1}{p}, \frac{1}{q}\}} \mathbb{E}_{\hat{\xi}} \frac{1}{m} \left| \sum_{i=1}^m \epsilon_i \hat{f}_\Phi(\hat{x}_i) \right|_{p^*},
\]

where the third inequality come from the Lemma 13. Using Lemma 14, we get the results of the theorem.
Appendix C: Deep quantum circuits

Consider a depth-l quantum circuit, where each layer of the quantum circuit is a treated as a quantum channel. We denote the depth-l quantum circuit as \mathcal{C}_l as follows

$$\mathcal{C}_l = (\Phi_l, \Phi_{l-1}, \cdots, \Phi_1)$$

(C1)

where the i-th layer $\Phi_i : \mathcal{L}((\mathbb{C}^2)^\otimes n_{i-1}) \to \mathcal{L}((\mathbb{C}^2)^\otimes n_i)$ (See Figure 4).

Let us define $\mathcal{C}^{l,l}$ with the width vector $\vec{n} = (n_1, \ldots, n_l)$ to be the set of all depth-l quantum circuits $\mathcal{C}_l = (\Phi_l, \Phi_{l-1}, \cdots, \Phi_1)$, where the i-th layer $\Phi_i : \mathcal{L}((\mathbb{C}^2)^\otimes n_{i-1}) \to \mathcal{L}((\mathbb{C}^2)^\otimes n_i)$. In this section, we introduce three resource measures to quantify the amount of magic in quantum circuits by making use of the (p,q) group norm.

![FIG. 4. A diagram of a depth-l quantum circuit](image)

1. Multiplication (p,q) depth-norm

In this subsection, let us define the multiplication (p,q) depth-norm for depth-l quantum circuits $\mathcal{C}_l = (\Phi_l, \Phi_{l-1}, \cdots, \Phi_1)$ as follows

$$\mu_{p,q}(\mathcal{C}_l) = \prod_{i=1}^{l} \left\| M^{\Phi_i} \right\|_{p,q}$$

(C2)

Proposition 21. The multiplication (p,q) depth-norm satisfies the following properties:

1. Given a depth-l quantum circuit \mathcal{C}_l and a depth-m quantum circuit \mathcal{C}_m, we have

$$\mu_{p,q}(\mathcal{C}_l \circ \mathcal{C}_m) = \mu_{p,q}(\mathcal{C}_l) \mu_{p,q}(\mathcal{C}_m),$$

(C3)

where $\mathcal{C}_l \circ \mathcal{C}_m := (\mathcal{C}_l, \mathcal{C}_m)$.

2. Given two depth-l quantum circuits \mathcal{C}_l and \mathcal{C}'_l, we have

$$\mu_{p,q}(\mathcal{C}_l \otimes \mathcal{C}'_l) = \mu_{p,q}(\mathcal{C}_l) \mu_{p,q}(\mathcal{C}'_l).$$

(C4)

where $\mathcal{C}_l \otimes \mathcal{C}'_l := (\Phi_l \otimes \Phi'_l, \ldots, \Phi_1 \otimes \Phi'_1)$ for $\mathcal{C}_l = (\Phi_l, \ldots, \Phi_1), \mathcal{C}'_l = (\Phi'_l, \ldots, \Phi'_1)$.

Proof. These two properties follow directly from the definition of $\mu_{p,q}$. □

Note that for the depth-l quantum circuit \mathcal{C}_l, where each layer contains only unitary gates, i.e., $\mathcal{C}_l = (U_l, U_{l-1}, \cdots, U_1)$, $\mu_{p,q}$ can be viewed as a resource measure of magic.

Lemma 22. Given a depth-l quantum circuit $\mathcal{C}_l = (U_l, U_{l-1}, \cdots, U_1)$, we have

1. (Faithfulness) For $0 < p < 2$, $q > 0$, it holds that $\mu_{p,q}(\mathcal{C}_l) \geq 1$, and $\mu_{p,q}(\mathcal{C}_l) = 1$ iff \mathcal{C}_l is a Clifford circuit, i.e., each U_i is a Clifford unitary.

1’ (Faithfulness) For $p > 2$, $0 < q < \infty$, it holds that $\mu_{p,q}(\mathcal{C}_l) \leq 1$, and $\mu_{p,q}(\mathcal{C}_l) = 1$ iff \mathcal{C}_l is a Clifford circuit.

2. (Invariance under Clifford circuit) For $p > 0$, $q > 0$, we have $\mu_{p,q}(\mathcal{C}_l \circ \mathcal{C}_l) = \mu_{p,q}(\mathcal{C}_l)$ if \mathcal{C}_l, \mathcal{C}_2 are Clifford circuits.

Proof. This lemma follows directly from Lemma 11 and Proposition 21. □
Next, let us denote the set of depth-l quantum circuits \mathcal{C}_l with bounded depth-norm $\mu_{p,q}$ as $\mathcal{C}_{l,\mu_{p,q}}^{\leq \mu}$, that is,

$$\mathcal{C}_{l,\mu_{p,q}}^{\leq \mu} := \{ \tilde{C}_l \in \mathcal{C}_{l,\mu_{p,q}} : \mu_{p,q}(\tilde{C}_l) \leq \mu \}.$$ \hfill (C5)

Lemma 23. Given the set of depth-l quantum circuits $\mathcal{C}_{l,\mu_{p,q}}^{\leq \mu}$ and the set of depth-l quantum circuits $\mathcal{C}_{l,\mu_{p,q}}^{n'}$, where $n = (n', n_1)$ and $n' = (n'', n_1 - 1)$, then for $\varepsilon \in \{ \pm 1 \}^m$, we have

$$\sup_{C_l \in \mathcal{C}_{l,\mu_{p,q}}^{\leq \mu}} \frac{1}{p^*} \left\| \sum_{i=1}^m \varepsilon_i \tilde{f}_{\tilde{C}_l}(\tilde{x}_i) \right\|_{p^*} \leq 4^{n_1 \max\left\{ \frac{1}{p^*}, \frac{1}{q} \right\}} \sup_{C_{l-1} \in \mathcal{C}_{l-1}^{n''\mu_{p,q}}} \left\| \sum_{i=1}^m \varepsilon_i \tilde{f}_{\tilde{C}_{l-1}}(\tilde{x}_i) \right\|_{p^*}. \hfill (C6)$$

Thus,

$$\sup_{C_l \in \mathcal{C}_{l,\mu_{p,q}}^{\leq \mu}} \frac{1}{p^*} \left\| \sum_{i=1}^m \varepsilon_i \tilde{f}_{\tilde{C}_l}(\tilde{x}_i) \right\|_{p^*} \leq \frac{1}{p^*} \left\| \sum_{i=1}^m \varepsilon_i \tilde{f}_{\tilde{C}_l}(\tilde{x}_i) \right\|_{p^*}. \hfill (C7)$$

Proof. The lemma follows from

$$\sup_{C_l \in \mathcal{C}_{l,\mu_{p,q}}^{\leq \mu}} \frac{1}{p^*} \left\| \sum_{i=1}^m \varepsilon_i \tilde{f}_{\tilde{C}_l}(\tilde{x}_i) \right\|_{p^*} \leq \frac{1}{p^*} \left\| \sum_{i=1}^m \varepsilon_i \tilde{f}_{\tilde{C}_l}(\tilde{x}_i) \right\|_{p^*},$$

where the inequality follows from Lemma 13. \hfill \square

Theorem 24. Given the set of depth-l quantum circuits with bounded depth-norm $\mu_{p,q}$, the Rademacher complexity on m samples $S = \{ \tilde{x}_1, \ldots, \tilde{x}_m \}$ satisfies the following bounds

1. For $1 \leq p \leq 2$, we have

$$R_S(\mathcal{F} \circ \mathcal{C}_{l,\mu_{p,q}}^{\leq \mu}) \leq \mu 4^{(\Sigma_{i=1}^l n_i) \max\left\{ \frac{1}{p^*}, \frac{1}{q} \right\}} \frac{\sqrt{\min\left\{ \frac{p^*}{q}, 8m \right\}}}{\sqrt{m}} \left\| \tilde{\alpha} \right\|_{p^*} \left\| \tilde{f}_l(\tilde{x}) \right\|_{p^*}. \hfill (C8)$$

2. For $2 < p < \infty$, we have

$$R_S(\mathcal{F} \circ \mathcal{C}_{l,\mu_{p,q}}^{\leq \mu}) \leq \mu 4^{(\Sigma_{i=1}^l n_i) \max\left\{ \frac{1}{p^*}, \frac{1}{q} \right\}} \frac{\sqrt{p^*}}{m^{1/p}} \left\| \tilde{\alpha} \right\|_{p^*} \left\| \tilde{f}_l(\tilde{x}) \right\|_{p^*}. \hfill (C9)$$

Proof. These bounds follow from

$$R_S(\mathcal{F} \circ \mathcal{C}_{l,\mu_{p,q}}^{\leq \mu}) = \mathbb{E}_{\tilde{\alpha}} \frac{1}{m} \sup_{C_l \in \mathcal{C}_{l,\mu_{p,q}}^{\leq \mu}} \left\| \sum_{i=1}^m \varepsilon_i \tilde{\alpha} \tilde{f}_{\tilde{C}_l}(\tilde{x}_i) \right\|_{p^*} \leq \mathbb{E}_{\tilde{\alpha}} \frac{1}{m} \sup_{C_l \in \mathcal{C}_{l,\mu_{p,q}}^{\leq \mu}} \left\| \sum_{i=1}^m \varepsilon_i \tilde{\alpha} \tilde{f}_{\tilde{C}_l}(\tilde{x}_i) \right\|_{p^*} \leq \mu \left\| \tilde{\alpha} \right\|_p \mathbb{E}_{\tilde{\alpha}} \frac{1}{m} \sup_{C_l \in \mathcal{C}_{l,\mu_{p,q}}^{\leq \mu}} \left\| \sum_{i=1}^m \varepsilon_i \tilde{f}_{\tilde{C}_l}(\tilde{x}_i) \right\|_{p^*},$$

where the second inequality comes from Lemma 23. Using Lemma 14, we obtain the results of the theorem. \hfill \square

To get rid of the exponential dependence on the width of the quantum neural network, we need to take $p^* \geq \Sigma_{i=1}^{l-1} n_i$, $q \geq \Sigma_{i=1}^{l-1} n_i$. For example, we could take $p = 1, q = \infty$.

Proposition 25. Given the set of depth-l quantum circuits with bounded μ₁,∞ norm, the Rademacher complexity on m samples \(S = \{ \tilde{x}_1, \ldots, \tilde{x}_m \} \) satisfies the following bounds:

\[
R_S(\mathcal{F} \circ \mathcal{C}_{\mu,\leq \mu}) \leq \mu \frac{\sqrt{S_n}}{\sqrt{m}} \max_i \left\| f_i(\tilde{x}_i) \right\|_\infty.
\]

(C10)

We denote the set of depth-l variational quantum circuits with parameters \(\Phi \) and fixed structure \(\mathcal{A} \) by \(\mathcal{C}_{\Phi,\mathcal{A}} \). By “fixed structure”, we mean that the position of each parametrized gate is fixed. Then, for the \(i \)-th layer of the variational quantum circuit, denoted as \(\Phi_i(\tilde{\theta}) \), let us define \(\mu_i := \sup_{\tilde{\theta}} \left\| M^{\Phi_i}(\tilde{\theta}) \right\|_1 \). Therefore, for any depth-l variational quantum circuit with a fixed structure, we have \(\mu_{p,q} \leq \prod_i \mu_i \). It follows that the Rademacher complexity of the class of depth-l variational quantum circuits with fixed structure is bounded by

\[
R_S(\mathcal{F} \circ \mathcal{C}_{\Phi,\mathcal{A}}) \leq \prod_i \mu_i \frac{\sqrt{S_n}}{\sqrt{m}} \max_i \left\| f_i(\tilde{x}_i) \right\|_\infty.
\]

(C11)

2. Summation \((p,q)\) depth-norm

In this subsection, let us define the summation \((p,q)\) depth-norm for depth-l quantum circuits \(\tilde{C}_i = (\Phi_1, \ldots, \Phi_l) \) as follows:

\[
\nu_{p,q}(\tilde{C}_i) = \left(\frac{1}{l} \sum_{i=1}^l \left\| M^{\Phi_i} \right\|_{p,q} \right)^{\frac{1}{l}},
\]

(C12)

for any \(r > 0 \). For example, if we take \(r = 1 \), then

\[
\nu_{p,q}(\tilde{C}_i) = \frac{1}{l} \sum_{i=1}^l \left\| M^{\Phi_i} \right\|_{p,q},
\]

(C13)

which is the average value of the amount of resources in each layer of the quantum circuit.

Proposition 26. The summation \((p,q)\) depth-norm satisfy the following properties:

(1) Given a depth-l quantum circuit \(\tilde{C}_l \) and a depth-m quantum circuit \(\tilde{C}_m \), we have

\[
(l+m)\left(\nu_{p,q}(\tilde{C}_l \circ \tilde{C}_m) \right)^r = l(\nu_{p,q}(\tilde{C}_l))^r + m(\nu_{p,q}(\tilde{C}_m))^r.
\]

(C14)

(2) Given two depth-l quantum circuits \(C_l \) and \(C_t \), we have

\[
\nu_{p,q}(\tilde{C}_l \otimes \tilde{C}_t) \leq \nu_{p,q}(\tilde{C}_l)\nu_{p,q}(\tilde{C}_t),
\]

(C15)

where \(r,s,t > 0 \) and \(\frac{1}{r} + \frac{1}{s} + \frac{1}{t} = 1 \).

Proof. (1) follows directly from the definition of \(\nu_{p,q} \), and (2) follows directly from Hölder’s inequality. \(\square \)

Similarly, for the depth-l quantum circuit \(\tilde{C}_l \), where each layer only contains unitary gates, i.e., \(\tilde{C}_l = (U_1, U_{l-1}, \cdots, U_l) \), \(\nu_{p,q} \) can be viewed as a resource measure of magic.

Lemma 27. Given a depth-l quantum circuits \(\tilde{C}_l = (U_1, U_{l-1}, \cdots, U_l) \), we have

(1) (Faithfulness) For \(0 < p < 2, q > 0, r > 0 \), \(\nu_{p,q}(\tilde{C}_l) \geq 1 \), and \(\nu_{p,q}(\tilde{C}_l) = 1 \) iff \(\tilde{C}_l \) is a Clifford circuit.

(2) (Faithfulness) For \(p > 2, 0 < q < \infty, r > 0 \), \(\nu_{p,q}(\tilde{C}_l) \leq 1 \), and \(\nu_{p,q}(\tilde{C}_l) = 1 \) iff \(\tilde{C}_l \) is a Clifford circuit.

(2') (Nonincreasing under Clifford circuits) For \(0 < p < 2, 0 < q < \infty, r > 0 \), we have \(\nu_{p,q}(\tilde{C}_1 \circ \tilde{C}_2) \leq \nu_{p,q}(\tilde{C}_1) \) if \(\tilde{C}_1, \tilde{C}_2 \) are Clifford circuit.

(2') (Nondecreasing under Clifford circuits) For \(p > 2, 0 < q < \infty, r > 0 \), we have \(\nu_{p,q}(\tilde{C}_1 \circ \tilde{C}_2) \geq \nu_{p,q}(\tilde{C}_1) \) if \(\tilde{C}_1, \tilde{C}_2 \) are Clifford circuit.

Proof. This lemma comes directly from Proposition 11 and 26. \(\square \)
Note that for $p > 2, 0 < q < \infty$, we can define the resource measure as $1 - \nu_{p,q}^{(r)}$, in which case the resource measure also satisfies the properties of faithfulness and nonincreasing-ness under Clifford circuits.

Let us define the set of depth-l quantum circuits with bounded $\nu_{p,q}(r)$ norm by $C_{\nu_{p,q} \leq \nu}^{l,\hat{r}}$. It is easy to see the following relationship $\nu_{p,q}(r)$ and $\mu_{p,q}$

$$\nu_{p,q}(\tilde{C}_l) \geq \mu_{p,q}(\tilde{C}_l)^{1/l},$$ \hspace{2cm} (C16)

which follows directly from the Arithmetic Mean-Geometric Mean inequality. Hence we have

$$C_{\nu_{p,q} \leq \nu}^{l,\hat{r}} \subseteq C_{\mu_{p,q} \leq \nu}^{l,\hat{r}}.$$ \hspace{2cm} (C17)

This allows us to obtain the following result on the Rademacher complexity of quantum circuits with bounded $\nu_{p,q}^{r}$ norm directly from Theorem 24.

Theorem 28 (Restatement of Theorem 3). *Given the set of depth-l quantum circuits with bounded $\nu_{p,q}(r)$, the Rademacher complexity on m independent samples $S = \{\tilde{x}_1, \ldots, \tilde{x}_m\}$ satisfies the following bounds*

1. For $1 \leq p \leq 2$, we have

$$R_S(\mathcal{F} \circ C_{\nu_{p,q} \leq \nu}^{l,\hat{r}}) \leq \nu l 4 \left(\sum_{i=1}^{l} n_i\right) \max \left\{\frac{1}{p}, \frac{1}{q}\right\} \frac{\sqrt{\min\{p^q, 8n_0\}}}{\sqrt{m}} \|\alpha\|_p \max_i \|\tilde{f}_i(\tilde{x}_i)\|_p.$$ \hspace{2cm} (C18)

2. For $2 < p < \infty$, we have

$$R_S(\mathcal{F} \circ C_{\nu_{p,q} \leq \nu}^{l,\hat{r}}) \leq \nu l 4 \left(\sum_{i=1}^{l} n_i\right) \max \left\{\frac{1}{p}, \frac{1}{q}\right\} \frac{\sqrt{p}}{m^{1/p}} \|\alpha\|_p \max_i \|\tilde{f}_i(\tilde{x}_i)\|_p.$$ \hspace{2cm} (C19)

To get rid of the exponential dependence on the width of quantum neural networks, we need to take $p^* \geq \sum_{i=1}^{l} n_i$ and $q \geq \sum_{i=1}^{l} n_i$. For example, we could take $p = 1, q = \infty$.

Proposition 29. *Given the set of depth-l quantum circuits with bounded $\nu_{1,m}^{(r)}$, the Rademacher complexity on m independent samples $S = \{\tilde{x}_1, \ldots, \tilde{x}_m\}$ satisfies the following bounds*

$$R_S(\mathcal{F} \circ C_{\nu_{1,m} \leq \nu}^{l,\hat{r}}) \leq \nu l \sqrt{8n_0} \|\alpha\|_p \max_i \|\tilde{f}_i(\tilde{x}_i)\|_\infty.$$ \hspace{2cm} (C20)

3. (p,q) path norm

Let us define the (p,q) path-norm for the depth-l quantum circuits $\tilde{C}_l = (\Phi_l, \Phi_{l-1}, \ldots, \Phi_1)$. First, for a fixed output $P_\tilde{z}$, where $\tilde{z} \in \{0, 1, 2, 3\}^n$, let us define

$$\gamma_p^{(\tilde{z})}(\tilde{C}_l) = \left(\sum_{v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{\text{out}}, v_{\text{out}} = \tilde{z}} |M_{\Phi_1}^{v_1} \cdots M_{\Phi_{l-1}}^{v_{l-2}} M_{\Phi_1}^{v_{l-1}}|^{p} \right)^{1/p}.$$ \hspace{2cm} (C21)

Hence, we can define the (p,q) path-norm for the depth-l quantum circuits as follows,

$$\gamma_{p,q}(\tilde{C}_l) = \left(\frac{1}{4^{n_l}} \sum_{\tilde{z}} \gamma_p^{(\tilde{z})}(\tilde{C}_l)^q \right)^{1/q}.$$ \hspace{2cm} (C22)

Proposition 30. *The multiplication (p,q) path-norm satisfies the following properties:*

1. Given a depth-l quantum circuit \tilde{C}_l and a depth-m quantum circuit \tilde{C}_m, we have

$$\gamma_{p,q}(\tilde{C}_l \circ \tilde{C}_m) \leq \gamma_{p,q}(\tilde{C}_l) \gamma_{p,q}(\tilde{C}_m).$$ \hspace{2cm} (C23)

2. Given two depth-l quantum circuits \tilde{C}_l and \tilde{C}_l', we have

$$\gamma_{p,q}(\tilde{C}_l \otimes \tilde{C}_l') = \gamma_{p,q}(\tilde{C}_l) \gamma_{p,q}(\tilde{C}_l').$$ \hspace{2cm} (C24)
Proof. To prove this result, we only need to prove that for any

\[\gamma_{p}^{(2)}(\mathcal{C}_1 \circ \mathcal{C}_m) = \left(\sum_{y_0 \to \cdots \to y_m} |M_{\mathcal{C}_0y_0, \cdots, \mathcal{C}_m| y_{m+1} \cdots, y_{n+1}| y_{n+1} \rangle \langle y_{n+1}^{|m+1, |m\|p | |y_{m+1}y_0\| p} \right)^{1/p} \]

\[= \left(\sum_{y_0 \to y_m} |M_{\mathcal{C}_0y_0, \cdots, \mathcal{C}_m| y_{m+1} \cdots, y_{n+1}| y_{n+1} \rangle \langle y_{n+1}^{|m+1, |m\|p | |y_{m+1}y_0\| p} \right)^{1/p} \]

\[\leq \left(\sum_{y_0 \to y_m} |M_{\mathcal{C}_0y_0, \cdots, \mathcal{C}_m| y_{m+1} \cdots, y_{n+1}| y_{n+1} \rangle \langle y_{n+1}^{|m+1, |m\|p | |y_{m+1}y_0\| p} \right)^{1/p} \]

Therefore, we have \(\gamma_{p,q}(\mathcal{C}_1 \circ \mathcal{C}_m) \leq \gamma_{p,q}(\mathcal{C}_1) \gamma_{p,q}(\mathcal{C}_m) \).

And (2) holds because

\[\gamma_{p,q}(\mathcal{C}_1 \circ \mathcal{C}_m) = \gamma_{p,q}(\mathcal{C}_1) \gamma_{p,q}(\mathcal{C}_m) \]

where the second equality comes from the fact that \(M^{\Phi} \otimes M^{\Psi} = M^{\Phi} \otimes M^{\Psi} \).

\[\square \]

Proposition 31. For any depth-1 quantum circuit \(\mathcal{C}_1 \), we have the following relationship: For any \(0 < p \leq 1, q > 0 \), we have

\[\gamma_{p,q}(\mathcal{C}_1) \geq \|M_\mathcal{C}\|_{p,q} \]

(C25)

Proof. To prove this result, we only need to prove that for any \(\mathcal{C}_1 \), we have

\[\gamma_{p}^{(2)}(\mathcal{C}_1) \leq \|M_\mathcal{C}\|_{p} \]

This is because

\[\|M_\mathcal{C}\|_{p} = \left(\sum_{y_0 \to y_1 \to \cdots \to y_{n+1}} |M_{\mathcal{C}_0y_0}^{y_1} \cdots, M_{\mathcal{C}_{n+1}y_{n+1}}^{y_{n+1}}| y_{n+1} \rangle \langle y_{n+1}^{|m+1, |m\|p | |y_{m+1}y_0\| p} \right)^{1/p} \]

\[\leq \left(\sum_{y_0 \to y_1 \to \cdots \to y_{n+1}} |M_{\mathcal{C}_0y_0}^{y_1} \cdots, M_{\mathcal{C}_{n+1}y_{n+1}}^{y_{n+1}}| y_{n+1} \rangle \langle y_{n+1}^{|m+1, |m\|p | |y_{m+1}y_0\| p} \right)^{1/p} \]

\[= \gamma_{p}^{(2)}(\mathcal{C}_1). \]

\[\square \]

For a depth-1 quantum circuit \(\mathcal{C}_1 \), where each layer contains only unitary gates, i.e., \(\mathcal{C}_1 = (U_1, U_{l-1}, \cdots, U_1) \), the path norm \(\gamma_{p,q} \) can be viewed as a resource measure of magic.

Lemma 32. Given a depth-1 quantum circuit \(\mathcal{C}_1 = (U_1, U_{l-1}, \cdots, U_1) \), we have

1. (Faithfulness) For \(0 < p \leq 1, q > 0 \): \(\gamma_{p,q}(\mathcal{C}_1) \geq 1 \), \(\gamma_{p,q}(\mathcal{C}_1) = 1 \) if \(\mathcal{C}_1 \) is a Clifford circuit.

2. (Invariance under Clifford circuits) \(\gamma_{p,q}(\mathcal{C}_1 \circ \mathcal{C}_2) = \gamma_{p,q}(\mathcal{C}_1) \) if \(\mathcal{C}_1 \) and \(\mathcal{C}_2 \) are Clifford circuits.

Proof. \(\gamma_{p,q}(\mathcal{C}_1) \geq 1 \) comes from the facts that \(\gamma_{p,q}(\mathcal{C}_1) \geq \|M_\mathcal{C}_1\|_{p,q} \) and \(\|M_\mathcal{C}_1\|_{p,q} \geq 1 \) (by Lemma 11).

Finally, the invariance under Clifford circuits has been proved in Proposition 30.

\[\square \]
Let us define the normalized representation matrix of the quantum channel in the depth-l quantum circuit C_l as follows

$$m_{l,i,p} = \frac{\Phi_{k+1}^{1-l}(C_i)}{\gamma_{l}^{1-l}(C_{k+1})}.$$

(C26)

It is easy to see that for any row vector $m_{l,i,p}$, we have

$$\left\| m_{l,i,p} \right\|_p = \left(\sum_x |m_{l,i,p}(x)|^p \right)^{1/p} = 1, \forall x.$$

(C27)

Besides, it is easy to verify that

$$\gamma_{l}^{1-l}(C_i) m_{l,1}^{1-l} \ldots m_{l,1}^{1-l} = M_{l}^{1-l} \ldots M_{l}^{1-l}.$$

(C28)

Therefore

$$f_{C_l}(\vec{x}) = \bar{\alpha} \tilde{f}_{C_l}(\vec{x}) = \bar{\alpha} D(\gamma(C_l)) \tilde{f}_{C_l}(\vec{x}),$$

(C29)

where $D(\gamma(C_l)) = \text{diag}(\gamma_{l}^{1-l} \ldots \gamma_{l}^{1-l})$, $f_{C_l}(\vec{x}) = m_{l,1}^{1-l} \ldots m_{l,1}^{1-l} \tilde{f}_{C_l}(\vec{x})$. It is easy to see that

$$\left\| D(C_l) m_{l,1}^{1-l} \right\|_{p,q} = \left(\frac{1}{N} \sum_i \gamma_{l}^{1-l}(C_i)^q \right)^{1/q}.$$

(C30)

Lemma 33. For any $p^*>0$, the following statement holds for any k-depth quantum circuits $\vec{C}_k = (\Phi_k, \Phi_{k-1}, \ldots, \Phi_1)$,

$$\mathbb{E}_{\vec{x}} \frac{1}{m} \sup_{\vec{C}_k \in \mathbb{C}^k} \left\| \sum_{i=1}^m \epsilon_i \tilde{f}_{\vec{C}_k}(\vec{x}_i) \right\|_{p^*} \leq 4^{\frac{1}{p^*}} \mathbb{E}_{\vec{x}} \frac{1}{m} \sup_{\vec{C}_k \in \mathbb{C}^k} \left\| \sum_{i=1}^m \epsilon_i \tilde{f}_{\vec{C}_k}(\vec{x}_i) \right\|_{\infty}.$$

(C31)

Proof. This lemma comes from the fact that

$$\mathbb{E}_{\vec{x}} \frac{1}{m} \sup_{\vec{C}_k \in \mathbb{C}^k} \left\| \sum_{i=1}^m \epsilon_i \tilde{f}_{\vec{C}_k}(\vec{x}_i) \right\|_{p^*} \leq 4^{\frac{1}{p^*}} \mathbb{E}_{\vec{x}} \frac{1}{m} \sup_{\vec{C}_k \in \mathbb{C}^k} \left\| \sum_{i=1}^m \epsilon_i \tilde{f}_{\vec{C}_k}(\vec{x}_i) \right\|_{\infty} \leq 4^{\frac{1}{p^*}} \mathbb{E}_{\vec{x}} \frac{1}{m} \sup_{\vec{C}_k \in \mathbb{C}^k} \left\| \sum_{i=1}^m \epsilon_i \tilde{f}_{\vec{C}_k}(\vec{x}_i) \right\|_{p^*}.$$

Theorem 34. Given the set of depth-l quantum circuits with bounded path norm $\gamma_{p,q}$, the Rademacher complexity on m independent samples $S = \{ \vec{x}_1, \ldots, \vec{x}_m \}$ satisfies the following bounds

1. For $1 \leq p \leq 2$, we have

$$R_S(\mathcal{F} \circ C_{\gamma_{p,q}(C_l)} \leq \gamma) \leq 4^{\frac{1}{p^*}} \sum_{i=1}^{l-1} 4^{\frac{1}{p^*}} \left[\frac{\sqrt{\min \{ p^*, 8m \}}}{\sqrt{m}} \right] \left\| \tilde{f}_{\vec{C}_l}(\vec{x}_i) \right\|_{p^*}.$$

(C32)

2. For $2 < p < \infty$, we have

$$R_S(\mathcal{F} \circ C_{\gamma_{p,q}(C_l)} \leq \gamma) \leq 4^{\frac{1}{p^*}} \sum_{i=1}^{l-1} 4^{\frac{1}{p^*}} \left[\frac{\sqrt{\min \{ p^*, 8m \}}}{\sqrt{m}} \right] \left\| \tilde{f}_{\vec{C}_l}(\vec{x}_i) \right\|_{p^*}.$$

(C33)
Proof. First we compute the following

\[
R_S(F \circ C^{
abla, i}_{\Phi_q, \Phi_{q+1}}(\hat{C}_i)) = \mathbb{E}_\hat{\gamma} \sup_{\hat{C}_i \in C^{\nabla, i}_{\Phi_q, \Phi_{q+1}}} \| \sum_{i=1}^{m} \varepsilon_i \hat{\alpha} \hat{f}_{C_i}(\hat{x}_i) \|_p,
\]

\[
= \mathbb{E}_\hat{\gamma} \sup_{\hat{C}_i \in C^{\nabla, i}_{\Phi_q, \Phi_{q+1}}} \| \sum_{i=1}^{m} \varepsilon_i \hat{\alpha} D(C_i) \hat{f}_{C_i}(\hat{x}_i) \|_p,
\]

\[
\leq \| \hat{\alpha} \|_p \sup_{\hat{C}_i \in C^{\nabla, i}_{\Phi_q, \Phi_{q+1}}} \| \sum_{i=1}^{m} \varepsilon_i D(C_i) m^{\Phi_i} \hat{f}_{C_i}(\hat{x}_i) \|_p,
\]

\[
\leq \| \hat{\alpha} \|_p \sup_{\hat{C}_i \in C^{\nabla, i}_{\Phi_q, \Phi_{q+1}}} \| \sum_{i=1}^{m} \varepsilon_i f_{C_i}(\hat{x}_i) \|_p,
\]

where the last inequality comes from Lemma \ref{lemma33}. The theorem follows from this and Lemma \ref{lemma14}.

\[
\square
\]

Appendix D: Deep unital quantum circuits

In this section, let us consider depth-\(l\) unital quantum circuits, where each layer of the quantum circuit is a quantum channel. Furthermore, we shall assume that the observable \(H\) is traceless. Unlike the previous section, we consider the \((p, q)\) norm of the modified representation matrix, where \(\|\cdot\|_p\) and only \(\|\cdot\|_q\) is mapped to \(I\).

1. Modified multiplication \((p, q)\) depth-norm

Let us define the modified multiplication \((p, q)\) depth-norm for depth-\(l\) unital quantum circuits \(\hat{C}_i = (\Phi_l, \Phi_{l-1}, \cdots, \Phi_1)\) as follows

\[
\hat{\mu}_{p,q}(\hat{C}_i) = \prod_{l=1}^{l} ||M^{\Phi_l}||_{p,q}.
\]

Lemma 35. Given a depth-\(l\) quantum circuit \(\hat{C}_i = (U_l, U_{l-1}, \cdots, U_1)\), we have

(1) (Faithfulness) For \(0 < p < 2, q > 0\): \(\hat{\mu}_{p,q}(\hat{C}_i) \geq 1\), and \(\hat{\mu}_{p,q}(\hat{C}_i) = 1\) iff \(\hat{C}_i\) is a Clifford circuit.

(1') (Faithfulness) For \(p > 2, q > 0\): \(\hat{\mu}_{p,q}(\hat{C}_i) \leq 1\), and \(\hat{\mu}_{p,q}(\hat{C}_i) = 1\) iff \(\hat{C}_i\) is a Clifford circuit.

(2) (Invariance under Clifford circuit) For \(p > 0, q > 0\), we have \(\hat{\mu}_{p,q}(\hat{C}_i \circ \hat{C}_i) = \hat{\mu}_{p,q}(\hat{C}_i)\) if \(\hat{C}_i, \hat{C}_j\) are Clifford circuit.

Proof. This lemma follows directly from Proposition \ref{prop18} and \ref{prop21}.

Lemma 36. Given the set of depth-\(l\) unital quantum circuit \(C^{\nabla, i}\) and the set of depth-\(l\) unital quantum circuit \(C^{\nabla, i'}\), where \(\nabla' = (i', n_1)\) and \(\nabla'' = (i'', n_{1-1})\), then \(\forall \hat{\varepsilon} \in \{\pm 1\}^m\), we have

\[
\sup_{\hat{C}_i \in C^{\nabla, i}} \frac{1}{\hat{\mu}_{p,q}(\hat{C}_i)} \left\| \sum_{i=1}^{m} \varepsilon_i \hat{f}_{C_i}(\hat{x}_i) \right\|_p \leq N_f \sup_{\hat{C}_i \in C^{\nabla, i}} \frac{1}{\hat{\mu}_{p,q}(\hat{C}_i)} \left\| \sum_{i=1}^{m} \varepsilon_i \hat{f}_{C_i}(\hat{x}_i) \right\|_p,
\]

\[
\leq \prod_{l=1}^{l} \left(N_f \sup_{\hat{C}_i \in C^{\nabla, i}} \frac{1}{\hat{\mu}_{p,q}(\hat{C}_i)} \left\| \sum_{i=1}^{m} \varepsilon_i \hat{f}_{C_i}(\hat{x}_i) \right\|_p \right),
\]

where \(N_f = 4^n - 1\). Thus,

\[
\sup_{\hat{C}_i \in C^{\nabla, i}} \frac{1}{\hat{\mu}_{p,q}(\hat{C}_i)} \left\| \sum_{i=1}^{m} \varepsilon_i \hat{f}_{C_i}(\hat{x}_i) \right\|_p \leq \prod_{l=1}^{l} N_f \left(\sup_{\hat{C}_i \in C^{\nabla, i}} \frac{1}{\hat{\mu}_{p,q}(\hat{C}_i)} \left\| \sum_{i=1}^{m} \varepsilon_i \hat{f}_{C_i}(\hat{x}_i) \right\|_p \right).
\]

(D2)
Proof. This is because
\[
\sup_{\hat{C}_l \in \mathcal{C}_l^{(i)}} \frac{1}{\beta_{p,q}(\hat{C}_l)} \left\| \sum_{i=1}^{m} \varepsilon_i \hat{f}_C(\hat{x}_i) \right\| \leq \sup_{\hat{C}_l \in C_l^{(i)}} \frac{1}{\beta_{p,q}(\hat{C}_l)_{l-1}} \left\| \hat{\mathcal{M}}_{\Phi_l} \right\| \sum_{i=1}^{m} \varepsilon_i \hat{f}_{C_{l-1}}(\hat{x}_i) \right\| \leq N_l^{\max}\left(\frac{1}{p}, \frac{1}{q} \right)
\]
where the inequality follows from Lemma 13.

Theorem 37. Given the set of depth-\(l \) unital quantum circuits with bounded depth-norm \(\beta_{p,q} \), the Rademacher complexity on \(m \) samples \(S = \{ x_1, \ldots, x_m \} \) satisfies the following bounds

(1) For \(1 \leq p \leq 2 \), we have
\[
R_S(F \circ C_l^{(i)}) \leq \mu \prod_{i=1}^{l} N_i^{\max}\left(\frac{1}{p}, \frac{1}{q} \right) \frac{\sqrt{\min \{ p^*, 8n_0 \}}}{\sqrt{m}} \left\| \hat{\alpha} \right\| \left\| \max_{i} \left\| \hat{f}_i(\hat{x}_i) \right\| \right\|_{p^*},
\]
(2) For \(2 < p < \infty \), we have
\[
R_S(F \circ C_l^{(i)}) \leq \mu \prod_{i=1}^{l} N_i^{\max}\left(\frac{1}{p}, \frac{1}{q} \right) \frac{\sqrt{p^*}}{m^{1/p}} \left\| \hat{\alpha} \right\| \left\| \max_{i} \left\| \hat{f}_i(\hat{x}_i) \right\| \right\|_{p^*},
\]
where \(N_l = 4^l - 1 \).

Proof. The theorem follows from
\[
R_S(\mathcal{F} \circ C_l^{(i)}) = \mathbb{E}_\hat{\theta} \frac{1}{m} \sup_{\hat{C}_l \in \mathcal{C}_l^{(i)}} \left\| \sum_{i=1}^{m} \varepsilon_i \hat{\mathcal{M}}_{\Phi_l}(\hat{x}_i) \right\|
\]
\[
\leq \mathbb{E}_\hat{\theta} \frac{1}{m} \sup_{\hat{C}_l \in \mathcal{C}_l^{(i)}} \frac{\mu}{\beta_{p,q}(\hat{C}_l)} \left\| \sum_{i=1}^{m} \varepsilon_i \hat{f}_C(\hat{x}_i) \right\|
\]
\[
= \mu \mathbb{E}_\hat{\theta} \frac{1}{m} \sup_{\hat{C}_l \in \mathcal{C}_l^{(i)}} \frac{1}{\beta_{p,q}(\hat{C}_l)} \left\| \sum_{i=1}^{m} \varepsilon_i \hat{f}_C(\hat{x}_i) \right\|
\]
\[
\leq \mu \left\| \hat{\alpha} \right\| \mathbb{E}_\hat{\theta} \frac{1}{m} \sup_{\hat{C}_l \in \mathcal{C}_l^{(i)}} \frac{1}{\beta_{p,q}(\hat{C}_l)} \left\| \sum_{i=1}^{m} \varepsilon_i \hat{f}_C(\hat{x}_i) \right\|_{p^*}
\]
where the second inequality follows from Lemma 36. Using Lemma 14, we get the results of theorem theorem.

If we take \(p = 1, q = \infty \), then we have the following results directly from the previous results.

Proposition 38. Given the set of depth-\(l \) unital quantum circuits with bounded \(\beta_{1,\infty} \) norm, the Rademacher complexity on \(m \) samples \(S = \{ x_1, \ldots, x_m \} \) satisfies the following bounds
\[
R_S(F \circ C_l^{(i)}) \leq \mu \frac{\sqrt{8n_0}}{\sqrt{m}} \left\| \hat{\alpha} \right\| \max_{i} \left\| \hat{f}_i(x_i) \right\|_{\infty}.
\]

Hence, consider a depth-\(l \) variational unitary quantum circuit on \(n \) qubits with parameters \(\bar{\theta} \) and a fixed structure \(A \), where each layer \(U_l(\bar{\theta}) = \otimes_{i=1}^{n_l} U_{i}^{(j)}(\bar{\theta}) \). Then based on the properties of \((p,q) \) norm of modified matrix \(\hat{M} \) of unitary channels,
\[
\mu_i := \sup_{\bar{\theta}} \left\| \hat{M}_{U_i}(\bar{\theta}) \right\|_{1,\infty} = \sup_{\bar{\theta}} \prod_j \left\| \hat{M}_{U_i}^{(j)}(\bar{\theta}) \right\|_{1,\infty} = \prod_j \sup_{\bar{\theta}} \left\| \hat{M}_{U_i}^{(j)}(\bar{\theta}) \right\|_{1,\infty} = \prod_j \mu_i^{(j)}.
\]
Therefore, for any such depth-\(l \) variational quantum circuits with fixed structure, we have \(\beta_{1,\infty} \leq \prod_i \mu_i^{(j)} \) and each \(\mu_i^{(j)} \geq 1 \).

Corollary 39. The Rademacher complexity of the quantum circuits class of depth-l variational quantum circuits with fixed structure is bounded by

\[R_S(\mathcal{F} \circ \mathcal{C}^{l,n}_{\alpha,\beta}) \leq \prod_i \prod_j \mu_i^{(j)} \frac{\sqrt{n}}{\sqrt{m}} \left\| \hat{\alpha} \right\|_p \max_i \left\| f_i(\bar{x}_i) \right\|_\infty. \]

(D8)

2. Modified summation \((p,q)\) depth-norm

Let us define the modified summation \((p,q)\) depth-norm for depth-l quantum circuits as follows

\[\mathbb{V}_{p,q}(\mathcal{C}_l) = \left(\frac{1}{t} \sum_{i=1}^t \left\| \hat{\alpha} \right\|_{p,q} \right)^{1/t}, \]

(D9)

for any \(r > 0\).

Lemma 40. Given a depth-l quantum circuit \(\mathcal{C}_l = (U_1, U_{l-1}, \cdots, U_1)\), we have

1. (Faithfulness) For \(0 < p < 2\), \(q > 0\), \(r > 0\), \(\mathbb{V}_{p,q}(\mathcal{C}_l) \geq 1\), and \(\mathbb{V}_{p,q}(\mathcal{C}_l) = 1\) iff \(\mathcal{C}_l\) is a Clifford circuit.

1’. (Faithfulness) For \(p > 2\), \(q > 0\), \(r > 0\), \(\mathbb{V}_{p,q}(\mathcal{C}_l) \leq 1\) and \(\mathbb{V}_{p,q}(\mathcal{C}_l) = 1\) iff \(\mathcal{C}_l\) is a Clifford circuit.

2. (Nonincreasing under Clifford circuit) For \(0 < p < 2\), \(q > 0\), \(r > 0\), we have \(\mathbb{V}_{p,q}(\mathcal{C}_1 \circ \mathcal{C}_2) \leq \mathbb{V}_{p,q}(\mathcal{C}_1)\) if \(\mathcal{C}_1, \mathcal{C}_2\) are Clifford circuits.

2’ (Nondecreasing under Clifford circuit) For \(p > 2\), \(q > 0\), \(r > 0\), we have \(\mathbb{V}_{p,q}(\mathcal{C}_1 \circ \mathcal{C}_2) \geq \mathbb{V}_{p,q}(\mathcal{C}_1)\) if \(\mathcal{C}_1, \mathcal{C}_2\) are Clifford circuits.

Proof. This lemma comes directly from Lemma 18 and Proposition 26.

Based on the following relationship between \(\mathbb{V}_{p,q}^{(r)}\) and \(\hat{\mu}_{p,q}\)

\[\mathbb{V}_{p,q}^{(r)}(\mathcal{C}_l) \geq \hat{\mu}_{p,q}(\mathcal{C}_l) \]

(D10)

we have

\[\mathcal{C}^{l,n}_{\mathbb{V}_{p,q} \leq \mathbb{V}^*} \subseteq \mathcal{C}^{l,n}_{\hat{\mu}_{p,q} \leq \mathbb{V}^*}. \]

(D11)

We obtain the following results directly from Theorem 37.

Theorem 41 (Restatement of Theorem 4). Given the set of depth-l unital quantum circuits with bounded \(\mathbb{V}_{p,q}^{(r)}\) norm, the Rademacher complexity on \(m\) samples \(S = \{\bar{x}_1, \ldots, \bar{x}_m\}\) satisfies the following bounds

1. For \(1 \leq p \leq 2\), we have

\[R_S(\mathcal{F} \circ \mathcal{C}^{l,n}_{\mathbb{V}_{p,q} \leq \mathbb{V}}) \leq \sqrt{\prod_i N_i} \max \left\{ \frac{1}{p}, \frac{1}{q} \right\} \frac{\sqrt{m}}{\sqrt{n}} \left\| \hat{\alpha} \right\|_p \max_i \left\| f_i(\bar{x}_i) \right\|_p. \]

(D12)

2. For \(2 < p < \infty\), we have

\[R_S(\mathcal{F} \circ \mathcal{C}^{l,n}_{\mathbb{V}_{p,q} \leq \mathbb{V}}) \leq \sqrt{\prod_i N_i} \max \left\{ \frac{1}{p}, \frac{1}{q} \right\} \frac{\sqrt{p}}{m^{1/p}} \left\| \hat{\alpha} \right\|_p \max_i \left\| f_i(\bar{x}_i) \right\|_p. \]

(D13)

If we take \(p = 1, q = \infty\), then we get the following results directly from the previous results.

Proposition 42. Given the set of depth-l unital quantum circuits with bounded \(\mathbb{V}_{1,\infty}^*\) norm, the Rademacher complexity on \(m\) samples \(S = \{\bar{x}_1, \ldots, \bar{x}_m\}\) satisfies the following bounds

\[R_S(\mathcal{F} \circ \mathcal{C}^{l,n}_{\mathbb{V}_{1,\infty} \leq \mathbb{V}}) \leq \sqrt{\frac{n}{m}} \left\| \hat{\alpha} \right\|_p \max_i \left\| f_i(\bar{x}_i) \right\|_\infty. \]

(D14)
3. Modified \((p,q)\) path-norm

Let us define the modified \((p,q)\) path-norm for depth-\(l\) circuits by

\[
\hat{\gamma}_{p,q}(\hat{C}_l) = \left(\frac{1}{N_l} \sum_{\hat{C}} \left(\gamma_p(\hat{C}_l) \right)^q \right)^{1/q},
\]

where \(N_l = 4^n - 1\).

Let us define the normalized representation matrix of quantum channels in depth-\(l\) quantum circuits \(\hat{C}_l\) as follows

\[
\hat{m}_{\Phi_k+1,p}^{\Phi_k,p+1} = \frac{N_{\Phi_k+1,p}^{\Phi_k,p}(\hat{C}_l)}{\gamma_p(\hat{C}_l)}. \quad (D16)
\]

It is easy to see that for any row vector \(\hat{m}_{\Phi_k+1,p}^{\Phi_k,p+1}\), we have

\[
\left\| \hat{m}_{\Phi_k+1,p}^{\Phi_k,p+1} \right\|_p = \left(\sum_{x} |\hat{m}_{\Phi_k+1,p}^{\Phi_k,p+1}(x)|^p \right)^{1/p} = 1, \forall \mathbb{Z}.
\]

Besides, it is easy to verify that

\[
\gamma_p(\hat{C}_l) \hat{m}_{\Phi_k+1,p}^{\Phi_k,p+1} \hat{m}_{\Phi_k+1,p}^{\Phi_k,p+1} = \hat{M}_{\Phi_k}^{\Phi_k} \hat{M}_{\Phi_k}^{\Phi_k} \cdots \hat{M}_{\Phi_k},
\]

Therefore,

\[
f_{C_l}(\hat{x}) = \hat{\alpha} f_{C_l}(\hat{x}) = \hat{\alpha} \hat{D}(\gamma(\hat{C}_l)) \hat{f}_{C_l}(\hat{x}),
\]

where \(\hat{D}(\gamma(C_l)) = \text{diag}(\gamma_{p}(\hat{C}_l))\), \(\hat{f} = m_{\Phi_k}^{\Phi_k} f_{C_l}(\hat{x})\), and \(f_{C_l}(\hat{x}) = m_{\Phi_k}^{\Phi_k} f_{C_l}(\hat{x})\). It is easy to see that

\[
\left\| \hat{D}(C_l) \hat{m}^{\Phi_k} \right\|_{p,q} = \left(\frac{1}{N_l} \sum_{\hat{C}} \left(\gamma_p(\hat{C}_l) \right)^q \right)^{1/q}.
\]

Similarly to \(\gamma_{p,q}, \hat{\gamma}_{p,q}\) satisfies the following property.

Proposition 43. For any depth-\(l\) unital quantum circuit \(\hat{C}_l\), we have the following relationship: For any \(0 < p \leq 1, q > 0\), we have

\[
\hat{\gamma}_{p,q}(\hat{C}_l) \geq \left\| \hat{M}^{C_l} \right\|_{p,q},
\]

Proof. The proof is similar to that of Proposition 31.

Lemma 44. Given a depth-\(l\) quantum circuit \(\hat{C}_l = (U_l, U_{l-1}, \cdots, U_1)\), we have

1. (Faithfulness) For \(0 < p \leq 1, q > 0\), \(\hat{\gamma}_{p,q}(\hat{C}_l) \geq 1\), \(\gamma_{p,q}(\hat{C}_l) = 1\) iff \(\hat{C}_l\) is Clifford.
2. (Invariance under Clifford circuit) \(\hat{\gamma}_{p,q}(\hat{C}_l \circ \hat{C}_2) = \hat{\gamma}_{p,q}(\hat{C}_1)\) if \(\hat{C}_1\) and \(\hat{C}_2\) are Clifford circuits.

Proof. The proof is similar to that of Lemma 32.

Theorem 45. Given the set of depth-\(l\) unital quantum circuits with bounded path norm \(\gamma_{p,q}\), the Rademacher complexity on \(m\) samples \(S = \{\hat{x}_1, \ldots, \hat{x}_m\}\) satisfies the following bounds

1. For \(1 \leq p \leq 2\), we have

\[
R_S(\mathcal{F} \circ \mathcal{C}_{\gamma_{p,q}(C_l)}^{\gamma_{p,q}(C_l)} \leq \gamma N_l \max \left\{ \frac{1}{2}, \frac{1}{2} \right\} \prod_{i=1}^{l-1} N_i \frac{\sqrt{\min \{p,8n_i\}}}{\sqrt{m}} \left\| \hat{\alpha} \right\|_p \max_i \left\| \hat{f}_{i}(\hat{x}_i) \right\|_{p^*},
\]

2. For \(2 < p < \infty\), we have

\[
R_S(\mathcal{F} \circ \mathcal{C}_{\gamma_{p,q}(C_l)}^{\gamma_{p,q}(C_l)} \leq \gamma N_l \max \left\{ \frac{1}{p}, \frac{1}{2} \right\} \prod_{i=1}^{l-1} N_i \frac{\sqrt{p}}{m^{1/p}} \left\| \hat{\alpha} \right\|_p \max_i \left\| \hat{f}_{i}(\hat{x}_i) \right\|_{p^*},
\]

where \(N_l = 4^n - 1\).
Proof. The statement in the theorem holds because

\[
R_{\gamma}(F \circ C, \tilde{\gamma} \leq \gamma) = \mathbb{E}_\hat{\alpha} \frac{1}{m} \sup_{C \in c^{l, R}(C)} \left| \sum_{i=1}^m \varepsilon_i \hat{f}_{C,i}(\tilde{x}_i) \right|
\]

\[
= \mathbb{E}_\hat{\alpha} \frac{1}{m} \sup_{C \in c^{l, R}(C)} \frac{\gamma}{\gamma_{p,q}(C)} \left| \sum_{i=1}^m \varepsilon_i \hat{\tilde{D}}(C) \tilde{f}_{C,i}(\tilde{x}_i) \right|
\]

\[
\leq \left\| \hat{\alpha} \right\|_{p} \mathbb{E}_\hat{\alpha} \frac{1}{m} \sup_{C \in c^{l, R}(C)} \frac{\gamma}{\gamma_{p,q}(C)} \left| \sum_{i=1}^m \varepsilon_i \tilde{D}(C) \tilde{f}_{C,i}(\tilde{x}_i) \right|_{p^*}
\]

\[
= \left\| \hat{\alpha} \right\|_{p} \mathbb{E}_\hat{\alpha} \frac{1}{m} \sup_{C \in c^{l, R}(C)} \frac{\gamma}{\gamma_{p,q}(C)} \left(N - 1 \right) \max \left\{ \frac{1}{p^*} \right\} \left\| \tilde{D}(C) \tilde{f}_{C} \right\|_{p,q} \left| \sum_{i=1}^m \varepsilon_i \tilde{f}_{C,i}(\tilde{x}_i) \right|_{p^*}
\]

\[
\leq \left\| \hat{\alpha} \right\|_{p} \mathbb{E}_\hat{\alpha} \frac{1}{m} \sup_{C \in c^{l, R}(C)} \frac{\gamma}{\gamma_{p,q}(C)} \left(N - 1 \right) \max \left\{ \frac{1}{p^*} \right\} \left\| \tilde{D}(C) \tilde{f}_{C} \right\|_{p,q} \left| \sum_{i=1}^m \varepsilon_i \tilde{f}_{C,i}(\tilde{x}_i) \right|_{p^*}
\]

where the last inequality follows from Lemma 33. Using Lemma 14 completes the proof of the theorem.