Bacterial degradation of bisphenol analogues: an overview

Julia de Morais Farias1 · Natascha Krepsky1,2,3

Received: 10 May 2022 / Accepted: 12 September 2022 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

Bisphenol A (BPA) is one of the most produced synthetic monomers in the world and is widespread in the environment. BPA was replaced by bisphenol analogues (BP) because of its adverse effects on life. Bacteria can degrade BPA and other bisphenol analogues (BP), diminishing their environmental concentrations. This study aimed to summarize the knowledge and contribute to future studies. In this review, we surveyed papers on bacterial degradation of twelve different bisphenol analogues published between 1987 and June 2022. A total of 102 original papers from PubMed and Google Scholar were selected for this review. Most of the studies (94.1%, n = 96) on bacterial degradation of bisphenol analogues focused on BPA, and then on bisphenol F (BPF), and bisphenol S (BPS). The number of studies on bacterial degradation of bisphenol analogues increased more than six times from 2000 (n = 2) to 2021 (n = 13). Indigenous microorganisms and the genera Sphingomonas, Sphingobium, and Cupriavidus could degrade several BP. However, few studies focussed on Cupriavidus. The acknowledgement of various aspects of BP bacterial biodegradation is vital for choosing the most suitable microorganisms for the bioremediation of a single BP or a mixture of BP.

Keywords Emerging contaminants · Endocrine disruptor · Xenobiotic · Consortium · Mixtures · Bacterial community

Introduction

Bisphenol A (BPA; 4-[2-(4-hydroxyphenyl)propan-2-yl]phenol) is one of the synthetic monomers most produced and used in the world (Michałowicz 2014). The wide use of BPA accounted for an annual production of 6 kilotons in 2021 (Mordor Intelligence 2022). It is estimated that BPA production will increase by 6% between 2022 and 2027 (Mordor Intelligence 2022). The Russian A. P. Dianin was the first to synthesize this compound in 1891. BPA was synthesized by the reaction of two molecules of phenol with acid-catalysed acetone (Alexander and Dill 1998; Rubin and Soto 2009). In 1930, BPA was a potential candidate for synthetic estrogen because of its estrogenic activity. However, the industry chose diethylstilbestrol (DES) instead of BPA (Dodds and Lawson 1938; Rubin and Soto 2009). In the 1940s and 1950s, BPA was introduced in the plastic industry (Rubin and Soto 2009). Nowadays, this compound can be used to manufacture polycarbonates, epoxy resins, flame retardants, and paper thermal, among other uses (Geens et al. 2012).

BPA is continuously released into the environment because of its widespread production. It was detected in all environmental compartments, including soil, air, sediment, and water (Corrales et al. 2015; Crain et al. 2007; Flint et al. 2012; Michałowicz 2014). However, BPA is a xenobiotic and endocrine disruptor. This means BPA is a synthetic substance foreign to the natural environment (Ramírez-García et al. 2018) and an exogenous chemical substance that interferes with the hormonal action of the body (Alexander and Dill 1998; Chen et al. 2002; Kawa et al. 2021; Tarafdar et al. 2022; Vandenberg et al. 2013). BPA was detected in urine, amniotic fluid, and tissues like blood, breast milk, and liver of humans (Calafat et al. 2008; Fernandez et al. 2007; Geens...
et al. 2012; Huang et al. 2018b; Mercogliano and Santonicolola 2018; Yamada et al. 2002; Ye et al. 2009). In vitro studies and animal experiments indicate that exposure to BPA can affect reproductive, cardiovascular, and thyroid function (Catenza et al. 2021; Ma et al. 2019). Moreover, BPA may be related to oxidative stress, and metabolic diseases, including obesity and diabetes (Catenza et al. 2021; Ma et al. 2019). Besides, several adverse effects of BPA in wildlife were reported, including inhibition of development, malformations, and changes in the reproductive system (Akram et al. 2021; Chen et al. 2017; Crain et al. 2007; Falcão et al. 2020; Flint et al. 2012; Huang et al. 2018a; Kim et al. 2020; Moreman et al. 2017; Mu et al. 2018; Yang et al. 2021; Zhang et al. 2022). Consequently, authority regulations restricted the use of BPA. Then, BPA was replaced by substances of a similar chemical structure called bisphenol analogues (BP) (Chen et al. 2016; Lee et al. 2015).

Most toxicity studies still focus on BPA (Pelch et al. 2019). However, bisphenol analogues are not safer than BPA. Several bisphenol analogues listed in Table 1 have estrogenicity and toxicity similar to or greater than BPA, including the BPAF, BPF, BPB, and BPS (Chen et al. 2016; Chen et al. 2002; Gao et al. 2022; Lee et al. 2019; Tišler et al. 2016; Yang et al. 2017). In humans, bisphenol analogues were associated with diseases such as cancer and diabetes, oxidative stress, and other complications, including obesity and asthma (Catenza et al. 2021; Pelch et al. 2019). Therefore, given the emergency of BP harming living organisms, it is essential to understand the fate of bisphenol analogues in the environment, their toxicity, and biodegradability.

Bisphenol analogues (BP)

The bisphenol analogues (BP) are composed of two phenol rings (Hu et al. 2019; Chen et al. 2016; Lee et al. 2015). They can be applied to several materials including polyamides, polyesters, and polymers (Chen et al. 2016; Noszczyńska and Piotrowska-Seget 2018). In the manufacture of poly-carbonates, BPS, BPF, and BPAF are the main substitutes for BPA (Chen et al. 2016). Consequently, BPA substitution resulted in the wide distribution of the analogues in environmental compartments including sludges and effluents from treatment plants, sediment, fresh and marine water, dust, and soil (Česen et al. 2018; Chen et al. 2016; Chen et al. 2020; Hu et al. 2019; Lalwani et al. 2020; Pérez et al. 2017; Sun et al. 2017; Wang et al. 2022a, b; Wang et al. 2022b; Xie et al. 2022; Yamazaki et al. 2015). For example, BPS was found in surface water at a concentration of 24.8 ng/L, BPAF at 10.1 ng/L, and BPF at 9.0 ng/L (Wang et al. 2022a, b).

The fate of bisphenol in the environment is dictated by its water solubility (Table 1). Consequently, the hydrophobic compounds adsorb in soil, and the hydrophilic ones dissolve in water (Česen et al. 2018; Wang et al. 2019a). Thereby, some methods to remove BP from the environment include adsorption, photocatalysis, ozonation, oxidation, electro-chemical methods, and membrane separation (Godiya and Park 2022). The advantages of these approaches include low cost, easy preparation, efficient process, and ability to remove contaminants. Nonetheless, they also have drawbacks such as high energy consumption, the generation of sludge and additional pollution, and the formation of hazardous intermediates (Godiya and Park 2022). Therefore, biodegradation is the best choice for removing organic pollutants from the environment (Zhang et al. 2013) and will be the centre of this review.

Biodegradation of bisphenol

Biodegradation is an eco-friendly method with higher efficiency than traditional ones (Godiya and Park 2022). Biodegradation involves the break of compounds into simpler molecules called metabolites (Godiya and Park 2022; Ramírez-García et al. 2018). Metabolites often have a molecular structure less recalcitrant than the original molecule. Ideally, the mineralization end product should be simple chemical compounds such as water and carbon dioxide (Godiya and Park 2022; Kumar et al. 2018).

Bacterial degradation of BPA is the most relevant in biodegradation studies of bisphenol analogues (Eltoukhy et al. 2020; Zhang et al. 2013, 2007). However, several organisms including fungi, algae, and plants can also degrade BPA in the environment (Eio et al. 2015; Im and Löfler 2016; Michałowicz 2014; Zhang et al. 2019a). In bacterial biodegradation, the process relies on bacteria metabolism (Zhang et al. 2013). The bacteria benefit from molecules as a carbon source and substrate for the generation of bacterial energy (Godiya and Park 2022; Kumar et al. 2018; Noszczyńska and Piotrowska-Seget 2018).

Likewise, the release of aromatic compounds in the environment promotes specific enzymatic pathways in bacteria to degrade and use these compounds as an energy source (Cydzik-Kwiatkowska et al. 2021; Ramírez-García et al. 2018). However, biodegradation rates can be slow and rely on the bioavailability of compounds and bacterial species (Godiya and Park 2022). Besides, environmental factors such as temperature, pH, and supply of nutrients can disturb biodegradation (Eltoukhy et al. 2020; Godiya and Park 2022; Kumar et al. 2018; Ren et al. 2016; Singh et al. 2020). To diminish or improve the removal of contaminants, biodegradation can be associated with bioaugmentation and other methods of degradation (Singh et al. 2020).

The number of studies approaching bisphenol analogues and their potential hazard to the biota is increasing over the years. Nevertheless, bacterial biodegradation of bisphenol A is still predominant (Björnsdotter et al. 2017; Naderi et al.
Table 1 Bisphenol analogues and their respective chemical structures, nomenclature, solubility, and CAS number (Björnsdotter et al. 2017; PubChem 2021a, b, c, d, e, f, g, h, i, j, k, l; Sigma-Aldrich 2021a, b, c, d, e, f, g, h, i, j, k)

Compound	Chemical structure	Nomenclature (IUPAC)	Solubility in water (g/L)	CAS
BPA	![BPA structure](image)	4-[(4-hydroxyphenyl)propy]phenol	120-300	80-05-7
BPF	![BPF structure](image)	4-[(4-hydroxyphenyl)methyl]phenol	190	620-92-8
BPS	![BPS structure](image)	4-[(4-hydroxyphenyl)sulfonyl]phenol	1.1×10^{-3}	80-09-1
BPAF	![BPAF structure](image)	4-[1,1,1,3,3,3-hexafluoro-2-(4-hydroxyphenyl)propan-2-yl]phenol	Insignificant	1478-61-1
BPB	![BPB structure](image)	4-[(4-hydroxyphenyl)butan-2-yl]phenol	< 1.0	77-40-7
BPE	![BPE structure](image)	4-[(4-hydroxyphenyl)ethyl]phenol	n.d	2081-08-5
BPC	![BPC structure](image)	4-[(2,2-dichloro-1-(4-hydroxyphenyl)ethenyl]phenol	4.7	14868-03-2
BPP	![BPP structure](image)	4-[(2-[4-(4-hydroxyphenyl)propan-2-yl]phenyl)propan-2-yl]phenol	n.d	2167-51-3
BPZ	![BPZ structure](image)	4-[(4-hydroxyphenyl)cyclohexyl]phenol	n.d	843-55-0
BPAH	![BPAH structure](image)	4-[(4-hydroxyphenyl)-1-phenylethyl]phenol	1.1	1571-75-1
BPPH	![BPPH structure](image)	4-[(4-hydroxy-3-phenylphenyl)propan-2-yl]-2-phenylphenol	n.d	24038-68-4
BPM	![BPM structure](image)	4-[(2,3-[2-(4-hydroxyphenyl)propan-2-yl]phenyl)propan-2-yl]phenol	n.d	13585-25-0
2014; Noszczyńska and Piotrowska-Seget 2018; Tišler et al. 2016; Usman et al. 2019; Yang et al. 2017). BPA degrading bacteria have been isolated from compartments such as water, soil, sediment, and water treatment plants. However, studies regarding the environmental persistence and fate of bisphenol analogues are scarce (Chen et al. 2016). Therefore, this review aims to summarize the published information on bacterial biodegradation of bisphenol analogues. Furthermore, we hope this survey can contribute to the advance of this discussion, pointing out emerging trends that should be addressed in future studies.

Methods

This survey included papers published between 1987 and June 2022 and available in PubMed and Google Scholar (G-Scholar) databases. The searches included the keywords “biodegradation” AND “bisphenol A”, “bisphenol F” and “biodegradation”; “bisphenol S” AND “biodegradation”; “bisphenol E” AND “biodegradation”; “bisphenol B” AND “biodegradation”; “bisphenol P” AND “biodegradation”; “bisphenol Z” AND “biodegradation”; “bisphenol AP” AND “biodegradation”; “bisphenol PH” AND “biodegradation”; “bisphenol M” AND “biodegradation”; “bisphenol A analogues” AND “biodegradation”.

We analysed the titles and abstracts of the papers retrieved and selected those with adherence to the objective of this study. Reviews, books, preprints, and conference abstracts were excluded. Only original studies in English were selected for this survey. The inclusion criteria were experimental research comprising the ability of bacteria to degrade bisphenol analogues. Thus, we excluded studies about (i) biodegradation with fungi; (ii) biodegradation with algae; (iii) biodegradation with isolated enzymes; (iv) different compounds; (v) monitoring; (vi) sorption and desorption; (vii) detection and occurrence; (viii) ecotoxicology; (iv) bioreactor and wastewater treatment plant (WWTP) membranes; (x) biodegradation articles about different compounds together with some bisphenol analogue; (xi) wetlands; (xii) phytoremediation; (xiii) photodegradation; and (xiv) human health. After this trial, we excluded duplicate articles.

Results and discussion

Overview of BP biodegradation publishing

Table 2 also includes the total number (n) and percentage (%) of papers restricted to bacterial biodegradation, and the number (n) of duplicated articles. The keywords “biodegradation” AND “bisphenol A” retrieved 24,070 papers on the G-Scholar search. However, only 85 (0.4%) were papers about bacterial biodegradation, and 59 were repeated in the PubMed list (Table 2).

A total of 102 original papers on bacterial bioremediation were selected for this review. The selected papers were listed in Online Resource, sheet S1 (de Morais Farias and Krepsky 2022). Figure 1 reveals an increasing trend in the number of studies about BP biodegradation in the past years (p = 0.0044). The first study investigating the biodegradation of BPA and its analogues was published in 1992 (Lobos et al. 1992). A second study about the biodegradation of bisphenol analogues was published 14 years later (Ike et al. 2006). After this publishing hiatus, the number of studies on bacterial degradation of bisphenol analogues increased more than six times from 2000 (n = 2) to 2021 (n = 13) (Fig. 1). In 2020, there was an increase in studies concerning the biodegradation of different bisphenol analogues, including BPS, BPF, BPB, BPE, BPAP, BPZ, BPM, BPPH, and BPAP (Fig. 1). However, the years 2021 and 2019 were the most productive for BP. A total of 13 papers were published in 2021 and 2019 concerning all analogues of bisphenol, especially BPA, BPS, and BPF (Fig. 1).

The evidence of BPA risk to human and environmental health may have encouraged researchers to investigate ways of removing this compound from the environment. Furthermore, the increase in BPA interest also influenced relevant authority decisions. For example, in 2006 the European Food Safety Authority (EFSA) issued a risk assessment opinion on BPA use. The panel members established as tolerable a daily consumption of 50 μg kg\(^{-1}\) of BPA (EFSA 2015). In 2013, 7 years after this issue, studies started to establish a thorough assessment of BPA risk. The EFSA evaluation included the quantification of exposure from non-dietary sources. The most vulnerable groups of the population, including pregnant women, babies, and children, were the focus of these studies (EFSA 2015). In 2015, the maximum acceptable daily intake of BPA from dietary and non-dietary sources was diminished from 50 to 4 μg kg\(^{-1}\) (EFSA 2015). In August 2015, the US Environmental Protection Agency (US EPA) released a list of 19 replacements, including other BP, to replace BPA in thermal papers (US EPA 2015). In December 2016, the European Commission has added BPA to the list of restricted substances (EU 2018). Later, in January 2017, a decree limited the concentrations of BPA in thermal papers to 0.02% after January 2, 2020 (Björnsdotter et al. 2017). In 2018, emerged the first restrictions for the use of BPA in canned food coatings (EU 2018). In Brazil, the Brazilian National Health Surveillance Agency (ANVISA) also banned the manufacture and import of baby bottles with
BPA by a Resolution published in 2011 (Brazil 2011). Thus, increasing awareness may explain the increasing number of publications on bacterial biodegradation of BP in the years 2007, 2015, 2017, 2019, 2020, and 2021 (Fig. 1).

Bisphenol analogues

Most (94.1%, \(n = 96 \)) of the publications analysed investigated the bacterial biodegradation of BPA (Fig. 2). The wide use of BPA in several products and its constant release in nature turned BPA into a ubiquitous compound (Flint et al. 2012; Oehlmann et al. 2009). Consequently, research efforts on the biodegradation of bisphenol analogues are still focussed on BPA. Nevertheless, the bisphenol analogues BPF and BPS are among the main substitutes for BPA in the manufacture of polycarbonates, epoxy resins, and thermal papers (Björnsdotter et al. 2017; Chen et al. 2016). Therefore, the detection of BPF and BPS in different environments is increasing yearly (Chen et al. 2016; Noszczyńska and Piotrowska-Seget 2018).

The increased environmental detection of BPF and BPS encouraged research on the bacterial biodegradation of these compounds. Indeed, our survey data showed that 19.6% and 18.6% of the publications explored the biodegradation of BPF and BPS, respectively (Fig. 2). However, this is not enough. Studies investigating the biodegradation of other BP should be encouraged. For example, BPC, BPZ, BPP, BPAF, and BPB have higher levels of toxicity and estrogenicity when compared to other BP (Chen et al. 2002; Gao et al. 2022; Yang et al. 2017; Zühlke et al. 2016, 2020). Besides, BPAF is an important BPA substitute in industry and can persist in the environment (Chen et al. 2016; Choi and Lee 2017; Choi et al. 2019; Frankowski et al. 2020; Zhou et al. 2020). The biodegradation of BPZ, BPE, and BPB analogues by indigenous microorganisms is not efficient enough (Frankowski et al. 2020; Ike et al. 2006; Zhou et al. 2017).

Table 2

Keywords	Database of search	Total number of papers (n)	Papers about bacterial biodegradation	Number of duplicated papers (n)
“biodegradation” AND “bisphenol A”	PubMed	403	63	59
	G-Scholar	24,070	85	0.4%
“bisphenol F” AND “biodegradation”	PubMed	21	11	11
	G-Scholar	1,312	13	1.0%
“bisphenol S” AND “biodegradation”	PubMed	20	12	12
	G-Scholar	1,406	15	1.1%
“bisphenol E” AND “biodegradation”	PubMed	5	4	4
	G-Scholar	136	6	4.4%
“bisphenol B” AND “biodegradation”	PubMed	8	6	6
	G-Scholar	369	9	2.4%
“bisphenol P” AND “biodegradation”	PubMed	2	1	1
	G-Scholar	71	3	4.2%
“bisphenol Z” AND “biodegradation”	PubMed	3	2	2
	G-Scholar	97	4	4.1%
“bisphenol C” AND “biodegradation”	PubMed	2	1	1
	G-Scholar	106	4	3.8%
“bisphenol AF” AND “biodegradation”	PubMed	6	3	3
	G-Scholar	531	6	1.1%
“bisphenol AP” AND “biodegradation”	PubMed	2	1	1
	G-Scholar	107	3	2.8%
“bisphenol PH” AND “biodegradation”	PubMed	291	1	1
	G-Scholar	16	1	0.3%
“bisphenol M” AND “biodegradation”	PubMed	35	1	1
	G-Scholar	2	1	0.5%
“bisphenol A analogues” AND “biodegradation”	PubMed	424	2	2

Environmental Science and Pollution Research (2022) 29:76543–76564

© Springer
et al. 2020). Nevertheless, there are few studies about the biodegradation of these analogues (Fig. 2).

Furthermore, studies on bacterial degradation of mixed BP are scarce. Figure 3 shows the studies where bacterial biodegradation of bisphenol analogues was considered. We represented in *purple* all studies focussing on a single BP published until June 2022. Studies focussing exclusively on bacterial biodegradation of BPA were listed in Online Resource, sheet SI2 (de Morais Farias and Krepsky 2022). Bisphenol analogues are not isolated in the environment. Notably, only three studies analysed the biodegradation of mixtures of BP (Fig. 3). Therefore, studies of BP mixtures can guide the bioremediation in environments with more than one bisphenol analogue.

Environmental compartments

Figure 4 summarized the environmental compartments studied on bacteria biodegradation of bisphenol analogues until June 2022. Water was the compartment most studied \((n=25)\), including different analogues (Fig. 4). Considering the bisphenol analogues and the water compartment, BPA \((n=24)\) was the compound most analysed, followed by BPS \((n=7)\) and BPF \((n=6)\) (Fig. 4). Some authors also investigated the bacterial degradation of BPB \((n=5)\) and BPE \((n=5)\) in BPA studies (Frankowski et al. 2020; Ike et al.
Inoue et al. 2008; Sakai et al. 2007; Zhou et al. 2020) (Figs. 3 and 4). However, studies with the other BP were rare. For example, the analogues BPP (Inoue et al. 2008; Ike et al. 2006), BPAF (Frankowski et al. 2020; Zhou et al. 2020), and BPZ (Zhou et al. 2020; Sakai et al. 2007) were included in two studies (Fig. 4). Moreover, one study evaluated the bacterial biodegradation of BPC (Sakai et al. 2007) or BPM (Zhou et al. 2020) (Figs. 3 and 4).

The popularity of BPA in bacterial biodegradation studies in various environmental compartments can be attributed to its ubiquity and higher environmental concentration than other BP (Caban and Stepnowski 2020; Chen et al. 2020; Flint et al. 2012; Lalwani et al. 2020; Ozhan and Kocaman 2019; Peteffi et al. 2019; Wang et al. 2022a, 2022b; Xie et al. 2022). The most researched analogues coupled with BPA in water were BPF and BPS (Fig. 3). These three analogues (BPF, BPS, and BPA) were found in 53 surface water samples collected from different regions of India (Lalwani et al. 2020). They were also detected in water samples from China, Poland, Japan, and Korea (Caban and Stepnowski 2020; Yamazaki et al. 2015; Wang et al. 2022a, 2022b; Xie et al. 2022). In China, those three analogues were detected in the Pearl River (Chen et al. 2020). BPS was the third predominant analogue in Chinese seawater (Xie et al. 2022), although, in surface water, BPS was the second most predominant after

References	BP	B	P	A	B	P	S	B	P	F	B	P	E	B	P	A	F	B	P	C	B	P	M	B	A	P	B	P	H
Lu et al. 2022																													
Moreira et al. 2021																													
Kovačič et al. 2021																													
Frankowski et al. 2021																													
Qian et al. 2021																													
Cao et al. 2020																													
Elthouky et al. 2020																													
Frankowski et al. 2020																													
Zhou et al. 2020																													
Zühlke et al. 2020																													
Takeo et al. 2020																													
Choi et al. 2019																													
Huang et al. 2019																													
Wang et al. 2019																													
Choi and Lee 2017																													
Lu et al. 2017																													
Ren et al. 2016																													
Zühlke et al. 2016																													
Chang et al. 2014																													
Ogata et al. 2013																													
Toyama et al. 2013																													
Toyama et al. 2009																													
Danzl et al. 2009																													
Inoue et al. 2008																													
Sakai et al. 2007																													
Ike et al. 2006																													
Lobos et al. 1992																													

Fig. 3 Colour scheme showing the studies investigating bacterial biodegradation of the bisphenol analogues published between 1987 and June 2022. Purple indicates studies with single BP; orange indicates studies of bacterial biodegradation with mixtures of BP. Legend: BPA, bisphenol A; BPS, bisphenol S; BPF, bisphenol F; BPP, bisphenol P; BPC, bisphenol C; BPBH, bisphenol PH; BPM, bisphenol M; BPAP, bisphenol AP.
BPA (Wang et al. 2022a). In Poland, BPS was detected in concentrations similar to BPA found in Gdansk (Caban and Stepnowski 2020). Besides, BPF was also reported in higher concentrations than BPA in Southeastern Asian rivers, including Chinese surface waters (Wang et al. 2022b; Yamazaki et al. 2015).

Afterwards, water treatment plants were the second compartment most investigated (n = 21) in studies for biodegradation of BP (Fig. 4). In the water treatment plant category, we included studies on activated sludge and effluents. Activated sludge is the most popular technique for water treatment plants. This technique supports microbial communities able to remove nutrients and xenobiotics (Noszczyńska and Piotrowska-Seget 2018). Because of its high nutrient richness, the sludge can be used as a fertilizer. However, polluted fertilizers can contaminate the soil, and groundwater, and reach the food chain (Wang et al. 2019a, b). Consequently, some studies focused on the degradation of BP in sludge. Three authors studied the biodegradation of BPA and BPF (Frankowski et al. 2020; Lobos et al. 1992; Zühlke et al. 2016). Two papers included the biodegradation of the analogues BPAF and BPS (Frankowski et al. 2020; Choi et al. 2019), BPB (Lobos et al. 1992; Zühlke et al. 2016), BPZ (Lobos et al. 1992; Zühlke et al. 2016), and BPE (Frankowski et al. 2020; Zühlke et al. 2016), and one study included the biodegradation of BPC (Zühlke et al. 2016). One paper studied the biodegradation of the analogues BPF and BPS (Kovačič et al. 2021). Nevertheless, another paper investigated the biodegradation of BPF isolated (Lu et al. 2022) (Fig. 4).

Fig. 4 Heat map scheme of environmental compartments where bacteria biodegradation of bisphenol analogues was studied in papers published between 1987 and June 2022. The colour scale represents the number of published papers on the subject. Others include microorganisms from fermented food, landfill, and the human gut. Legend: BPA, bisphenol A; BPS, bisphenol S; BPF, bisphenol F; BPB, bisphenol B; BPE, bisphenol E; BPZ, bisphenol Z; BPAF, bisphenol AF; BPP, bisphenol P; BPC, bisphenol C; BPPH, bisphenol PH; BPM, bisphenol M; BPAP, bisphenol AP.

Effluents from treatment plants can be the primary source of BP in the environment, including BPA (Caban and Stepnowski 2020; Sun et al. 2017; Wang et al. 2022a, b; Zhang et al. 2019b). BPA, BPF, and BPS were predominant in water treatment plant sludge from Korea, China, and India (Lalwani et al. 2020; Hu et al. 2019; Sun et al. 2017). Besides, these three BP dominate water and sewage sludge samples from other countries (Wang et al. 2019a, b; Yamazaki et al. 2015). Lalwani et al. (2020) associated the highest concentration (14,800 ng L−1) of BPA in an Indian river with the discharge of untreated sewage effluent (Lalwani et al. 2020). Conversely, the analogues including BPB, BPZ, and BPAP were hardly reported in sludges (Hu et al. 2019). The analogues BPB, BPZ, BPAP, BPP, and BPAF were detected in sewage treatment plants in India (Karthikraj and Kannan 2017). In Slovenia, the analogue BPZ was detected in effluent samples in higher concentrations than other BP, including BPB, BPC, BPE, BPAP, and BPAF (Česen et al. 2018). In China, the sludge of water treatment plants in Xiamen City presented the highest concentrations of the analogues BPA, BPF, and BPS, including BPAF and BPE (Sun et al. 2017). Pieces of evidence report that the analogues BPB, BPE, BPAP, and BPAF are little degraded in treatment plants (Sun et al. 2017; Wang et al. 2019a; Česen et al. 2018). Therefore, research efforts to investigate the biodegradation of other BP and their ideal conditions, especially in sewage and industrial effluents, are imperative.

Nevertheless, Cydzik-Kwiatkowska et al. (2020) observed direct degradation and removal of bisphenol A...
in wastewater by aerobic granular sludge (AGS). AGS are more efficient than the activated sludge. It yields an operational economy of energy and a wastewater footprint reduction of up to 50% (Cydzik-Kwiatkowska et al. 2020). The AGS have round and dense granules with different layers of self-immobilized microbial communities. In each layer, there is a microenvironment with different oxygen conditions and bacterial species able to degrade distinct pollutants (Cydzik-Kwiatkowska et al. 2020). Therefore, AGS is a promising substitute technology for the activated sludge system (Cydzik-Kwiatkowska et al. 2020) and needs further attention for BP degradation.

Afterwards, sediment \((n = 19)\) was the third compartment most analysed on BP biodegradation (Fig. 4). Likewise, BPA was the most investigated analogue in sediment \((n = 18)\). Among the studies regarding BPA biodegradation in sediment, one included the BPF analogue (Chang et al. 2014) and the other the BPS (Moreira et al. 2021) (Fig. 3). Additionally, one single study (Fig. 3) focussed on the bacterial degradation of BPS analogue in sediments (Wang et al. 2019b). The presence of BPA in sediments was detected in various locations including India, Italy, and China (Li et al. 2019; Mukhopadhyay et al. 2020; Pignotti and Dinelli 2018; Wang et al. 2022b; Xie et al. 2022). A previous study reported higher concentrations of BPA in the sediment than in the water column (Flint et al. 2012). Conversely, Huang et al. (2012) related BPA concentrations in sediment with higher concentrations of BPA in water. Yamazaki et al. (2015) observed that BPF can deposit in the sediment, suggesting that more hydrophobic BP can accumulate in sediment. Nonetheless, the eventual release of bisphenol analogues from the sediment into the water can increase its concentration in the underlying water (Chen et al. 2020). Therefore, studies considering different BP should focus on sediments.

The soil was the fourth most researched compartment for BP biodegradation \((n = 15)\) and BPA was the most studied analogue \((n = 14)\). Nonetheless, after the water compartment, the soil was the second compartment with papers investigating biodegradation of different bisphenol analogues (Fig. 4). For example, coupled with BPA, four studies on bacterial degradation in soil included BPS (Choi and Lee 2017; Eltoukhy et al. 2020; Frankowski et al. 2020; Oshiman et al. 2007) and BPF analogues (Eltoukhy et al. 2020; Frankowski et al. 2020; Ren et al. 2016; Zühlke et al. 2020). Three papers studied the degradation of BPF analogue in soil (Eltoukhy et al. 2020; Oshiman et al. 2007; Zühlke et al. 2020). A single study (Fig. 4) focussed on the bacterial degradation of BPAF in soil (Choi and Lee 2017). Furthermore, few authors focused on the degradation of different bisphenol analogues in soil, excluding BPA from the investigation. Cao et al. (2020) studied the BPS. Lu et al. (2017) investigated the BPF. Likewise, Zühlke et al. (2020) analysed the biodegradation of seven bisphenol analogues, including BPB, BPC, BPE, BPF, BPZ, BPAP, and BPPH (Fig. 3). However, these authors published a previous paper addressing BPA biodegradation in soil under the same experimental conditions (Zühlke et al. 2017).

Bisphenol analogues can reach soil from the discharge of landfill leachate, application of sewage sludge and biosolids as fertilizers, irrigation with wastewater effluents, and waste disposal (Corrales et al. 2015; Flint et al. 2012). Pérez et al. (2017) detected BPA in higher concentrations than other BP in the soil. In addition, these authors detected BPF in samples of soil from an industrial source and agricultural land irrigated with water recycled from a treatment plant (Pérez et al. 2017). Conversely, the analogue BPAF was detected only in the samples from agricultural land, but not in industrial soils (Pérez et al. 2017). Consequently, given the different sources of soil contamination and potential crop production contamination, further studies considering the biodegradation of other bisphenol analogues in soil are vital for food safety.

Last but not least, twelve studies \((n = 12)\) investigated the bacterial biodegradation of bisphenol analogues in a bioreactor (Fig. 4). Again, BPA was the most popular bisphenol analogue in bioreactor studies. Eleven studies \((n = 11)\) focussed on BPA degradation. One paper included the analogues BPB and BPF (Chang et al. 2014) and another studied analogues BPA, BPF, BPS, BPB, BPE, BPZ, BPAP, and BPAF (Qian et al. 2021) (Fig. 3). Moreover, one single paper (Huang et al. 2019) focussed on BPS biodegradation (Figs. 3 and 4). The bioreactor is one of the methods approved for treatment stations. Bioreactor allows a longer retention time of the compost to be treated, higher biomass concentration, and, consequently, higher bacterial density, favouring biodegradation (Hu et al. 2019). Besides, bioreactors can be fed, for example, with water, sludge, and other matrices (Chang et al. 2014; Huang et al. 2019; Oh and Choi 2019; Sathyamoorthy et al. 2018). Therefore, it is important to identify the microorganisms capable of degrading bisphenols under the operating conditions characteristic of bioreactors, including the optimization of this process.

The number of papers published in each environmental compartment varied over time (Fig. 5). Water was the most studied compartment concerning the biodegradation of bisphenol analogues from 1987 to 2009 (Fig. 5). BPA has a water solubility of 120–300 mg/L at room temperature (Staples et al. 1997) and started to be detected in aquatic environments in the late 1990s (Corrales et al. 2015). Together, both factors may explain why the studies of bacterial biodegradation in water were carried out so
readily. Meanwhile, studies with other environmental compartments intensified after 2014, including sediment, soil, treatment plant, and bioreactor (Fig. 5). All these compartments are the source or destination of bisphenol analogues to the environment. Thus, approaching bacterial biodegradation of diverse bisphenol analogues in different compartments is imperative to understand this process and control their damage.

Bacterial biodegradation

One hundred and nine bacterial strains capable of BPA degradation were reported in the literature and listed in sheet SI3 of Online Resource (de Morais Farias and Krepsky 2022). Figure 6 summarizes the dominant groups of bacteria and indigenous microorganisms in studies on the biodegradation of BP between 1987 and June 2022.

Fig. 5 Number of papers per year considering bacterial biodegradation of bisphenol analogues in each environmental compartment published between 1987 and June 2022. Others include microorganisms from fermented food and laboratory culture.

Fig. 6 Number of bisphenol analogues assessed in biodegradation studies by bacterial groups and indigenous microorganisms studied in papers published between 1987 and June 2022. Legend: BPA, bisphenol A; BPS, bisphenol S; BPF, bisphenol F; BPB, bisphenol B; BPE, bisphenol E; BPZ, bisphenol Z; BPAF, bisphenol AF; BPP, bisphenol P; BPC, bisphenol C; BPPH, bisphenol PH; BPM, bisphenol M; BPAP, bisphenol AP
Indigenous microorganisms were the most studied group regarding bacterial biodegradation (Fig. 6). The main genera investigated for BPA degradation were *Pseudomonas*, *Sphingomonas*, and *Bacillus* (Fig. 6). Besides BPA, *Sphingomonas* species could biodegrade up to six bisphenol analogues, including BPS, BPF, BPB, BPE, BPZ, and BPC (Fig. 6). Likewise, *Cupriavidus* also biodegraded six different BP, besides BPA (Fig. 6). Meanwhile, *Sphingobium* was able to degrade six analogues including BPA, BPS, BPF, BPB, BPE, and BPZ (Fig. 6). *Bacillus* biodegradation comprised degradation of five analogues—BPA, BPF, BPE, BPZ, and BPC (Fig. 6)—and *Pseudomonas* presented degradation of only four analogues—BPA, BPS, BPF, and BPB (Fig. 6).

Pseudomonas

Despite the degradation of a limited list of bisphenol analogues (Fig. 6), *Pseudomonas* was the most studied genus for the degradation of BPA. *Pseudomonas* is known for its ability to degrade a variety of organic molecules, including aromatic compounds like toluene, biphenyl, naphthalene, phthalates, and others (Diaz et al. 2008; Goldberg 2000; Kimura et al. 2018; Kim and Park 2018; Palleroni 2015, 2010; Yu et al. 2020). This genus is an aerobic, Gram-negative, rod-shaped bacteria that can be found in different environments and are flexible to environmental changes (Palleroni 2015). Consequently, it was observed that a *Pseudomonas* consortium had the best percentages of degradation of BPA, BPF, and BPB (Chang et al. 2014). Likewise, *Pseudomonas* was predominant in a consortium able to degrade BPS (Huang et al. 2019; Wang et al. 2019b) and was identified in a consortium that degraded BPF (Lu et al. 2017). Moreover, when the strain *Pseudomonas* sp HS-2 was isolated from this consortium, it was still efficient in BPF degradation (Lu et al. 2017).

Pseudomonas also benefits plants, although it can be pathogenic to humans, animals, and plants (Palleroni 2015; Goldberg 2000). For example, *P. aeruginosa* is an opportunistic pathogen that can cause several infections and is resistant to several antibiotics (Hao et al. 2021). *P. aeruginosa* species can be used to improve BPA degradation, either by isolating it in nanofibre membranes (Liu et al. 2015) or by using it in bioreactors (Mita et al. 2015). *P. aeruginosa* Gb30 was able to degrade 60% of BPA in a concentration of 3 mM in 4 days (Louati et al. 2019). However, in the same study, the strain *P. putida* G320 presented the highest BPA degradation efficiency than other strains isolated from arid and desert soil (Louati et al. 2019). The Mn(II) oxidizing strain *P. putida* GB-1 could not degrade BPA in the absence of Mn(II). However, this strain degraded and enhanced the BPA degradation in the presence of Mn(II). Besides, the degradation using *P. putida* GB-1 with 10 μM of Mn(II) was more efficient than the degradation with the chemically synthesized manganese dioxide (Shobnam et al. 2021). Another study showed that the strain *Pseudomonas putida* YC-AE1, isolated from a soil sample, can degrade BPA at high (50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 mg/L) and low (0.5, 1, 2, 4, 6, 8, 10, 12 mg/L) concentrations (Eltoukhy et al. 2020). This strain showed variable efficiency of degradation according to the BP tested. For example, in a concentration of 100 mg/L, biodegradation of BPA in 72 h was 100%, BPS 30%, BPF 67%, and BPB 60% (Eltoukhy et al. 2020). Conversely, *P. putida* isolated from river water degraded in 10 days 87% of BPA in the concentration of 1 mg/L (Kang and Kondo 2002b). Besides, *Pseudomonas* sp. BG12 degraded only 35% of BPA in a concentration of 100 mg/L at pH 7 and 60% at pH 8 within 15 days, reaching 52 ± 4.58% of degradation with the addition of sodium glutamate (Noszczyńska et al. 2021). In contrast, the strain *P. palleroniana* GBPI_508 was able to degrade 97% of BPA in a concentration of 270 mg/L in 96 h (Thathola et al. 2022).

Sphingomonas

Sphingomonas was the second genus most studied on BP biodegradation until June 2022. *Sphingomonas* consists of aerobic, rod-shaped or ovoid, Gram-negative bacteria that can be mobile or not (Yabuuchi and Kosako 2015). They can reside in natural or modified environments and can be opportunistic pathogens (Yabuuchi and Kosako 2015). *Sphingomonas* possesses a wide metabolic versatility (Yabuuchi and Kosako 2015) and can degrade several recalcitrant aromatic compounds, including biphenyl, chlorinated furan, carbazole, chlorinated phenols, polyethylene glycol, different herbicides, and pesticides, in addition to endocrine disruptors such as estradiol and nonylphenol (Asaf et al. 2020; Yabuuchi and Kosako 2015; Stolz 2009; Willison 2004). Likewise, this genus can degrade BPA and other BP such as BPS, BPF, BPB, BPE, BPZ, and BPC (Fig. 6).

Regarding bisphenol analogues, the *Sphingomonas* sp BP-7 could degrade approximately 90%, 100%, 94%, and 100% of BPE, BPB, BPC, and BPZ, respectively, at a concentration of 100 mg/L (Sakai et al. 2007). However, this strain was not able to degrade BPF and BPS. Sakai et al. (2007) suggested that the biodegradation of BP relies on the methyl or methylene group present between the two aromatic rings in some BP. Although present in BPA, neither methyl nor methylene group is present in the BPF or BPS analogues (Table 1). Consequently, *Sphingomonas* degradation of BPA was reported in many studies. For example, the strains isolated from soil *Sphingomonas* sp SO11, *Sphingomonas* sp SO1a, and *Sphingomonas* sp SO4a could metabolize BPA at a concentration of 115 mg/L in a period of 12 to 48 h (Matsumura et al. 2009). Additionally, *Sphingomonas* sp. SP-7 can degrade 95% of BPA in a concentration of 30 mg/L in
40 days (Sakai et al. 2007). However, total BPA degradation could be much faster by coupling Sphingomonas sp. SP-7 with Pseudomonas sp. BP-14. For example, in 7 days this consortium degraded 100% of BPA in the concentration of 100 mg/L (Sakai et al. 2007). Likewise, increased BPA degradation was observed in a consortium of Sphingomonas and Pseudomonas (Yu et al. 2019). Moreover, the S. bisphenolicum strain AO1 degraded between 30 and 100% of BPA at a concentration of 100 mg/L in 44 h, according to the glucose concentration in the growth medium (Oshiman et al. 2007). The metabolism of Sphingomonas bisphenolicum AO1 was also analysed in other studies (Sasaki et al. 2005a, b; Sasaki et al. 2008). As a result, this strain increased the community of indigenous microorganisms and the efficiency of BPA degradation (Matsumura et al. 2015).

Bacillus

Bacillus was the third bacteria genus most studied on BP degradation, after *Pseudomonas* and *Sphingomonas* (Fig. 6). The genus *Bacillus* comprised aerobic, or anaerobic facultative, rod-shaped, Gram-positive bacteria. These bacteria can occur individually, in pairs, in chains, or as long filaments (Logan and Vos 2015). They are present in several environments such as freshwater, seawater, soil, air, plants, and animals. *Bacillus* can form endospores and resist adverse environmental conditions, including desiccation, radiation, and chemical substances (Logan and Vos 2015). Besides, *Bacillus* can overcome extreme conditions including high temperatures, acidic environments, and extremes of salinity (Logan and Vos 2015; Maughan and Van Der Auwera 2011). Some studies reported that *Bacillus* can degrade BPA, BPF, BPE, BPZ, and BPC (Fig. 6). However, most research focused on the *Bacillus* efficiency of BPA degradation. For example, the strain isolated from soil *Bacillus* sp YA27 took 60 h to degrade 100% of BPA at a concentration of 50 mg/L (Matsumura et al. 2009). Nonetheless, the strain *Bacillus* sp. KU3, isolated from the marine environment, showed 61% of efficiency in the degradation of BPA at a concentration of 1000 mg/L in 15 days (Kamaraj et al. 2014). Therefore, the degradation efficiency decreased as the concentration of BPA increased (Li et al. 2012).

In lower concentrations of BPA (10 and 25 mg/L), the strain *Bacillus pumilus*, isolated from fermented Kimchi food, were able to degrade 100% of BPA in 16 h and 3 days, respectively. Likewise, *B. pumilus* grown in a medium increased by 10% of NaCl degraded BPA at a concentration of 10 mg/L in 2 days. However, this strain was not able to degrade BPA at the concentration of 50 mg/L and 10 mg/L with more than 12.5% NaCl (Yamanaka et al. 2007). Additionally, the probiotic bacterium *B. subtilis* degraded 51.9% of BPA at a concentration of 50 μg/mL in 96 h (Kyrila et al. 2021). Moreover, some research reported increased BPA biodegradation associating *Bacillus* species with the macrophyte *Dracaena sanderiana*. For example, *B. thuringiensis* isolated from the endosphere of the plant *D. sanderiana* degraded 95% of BPA at a concentration of 100 μM in 24 h (Suyamud et al. 2018a, b). Likewise, the association of *Bacillus cereus* NL, *D. sanderiana*, and endophyte strains yielded a removal rate of 100% BPA in 5 days (Suyamud et al. 2020). Both strains belong to the *Bacillus cereus* group. *B. thuringiensis* is entomopathic and is used in the production of pesticides (Ehling-Schulz et al. 2019). *B. cereus* is responsible for poisoning food and infections (Ehling-Schulz et al. 2019).

Some studies associated the cytochrome P450 monoxygenase system with the hydroxylation of BPA during biodegradation with *Bacillus* sp. GZB (Das et al. 2018). *Bacillus* sp. GZB could degrade in 96 h, 100% of BPA at a concentration of 10 mg/L under aerobic and anaerobic conditions (Li et al. 2012). Genes encoding the cytochrome P450 monoxygenase system were detected in the genome of *Bacillus* sp. GZB (Das et al. 2018). The cytochrome P450 monoxygenase system comprises cytochrome P450, ferredoxin, and ferredoxin reductase. Das et al. (2018) affirmed this enzyme complex is vital for BPA degradation. The same investigation was conducted with *Sphingomonas bisphenolicum* AO1, and the cytochrome P450 monoxygenase system was also involved in the BPA biodegradation (Sasaki et al. 2005a, b; Sasaki et al. 2008). Additionally, it was reported that *Bacillus* produces other enzymes including the spore-laccase enzyme, which was responsible for the BPA biotransformation into less complex molecules (Das et al. 2018). Indeed, the genus *Bacillus* produces laccase and this enzyme are capable of catalysing the oxidation of aromatic compounds (Lu et al. 2012), including phenol and other recalcitrant compounds (Das et al. 2018; Lu et al. 2012; Le et al. 2006; Held et al. 2005).

Regarding the other BP, the *B. amyloliquefaciens* strain was able to degrade 77% of BPA, 69% of BPF, and 77% of BPE in concentrations of 60 mg/L (Zühlke et al. 2016). Likewise, *B. amyloliquefaciens* degraded 95% of BPC at a concentration of 20 mg/L (Zühlke et al. 2016). The degradation of BPZ by *B. amyloliquefaciens* was also investigated (Zühlke et al. 2016). However, BPZ was poorly soluble and only a small portion (one-sixth) of the soluble phase could be detected at the high-performance liquid chromatography (Zühlke et al. 2016). The degradation of bisphenol analogues resulted in the formation of bisphenol and phosphate conjugates. The authors suggested that this may be a mechanism to reduce the toxicity of BP and thus avoid the growth inhibition of the strain. However, the transformation of BP in these products proved to be reversible because after the formation of the products they returned to the initial structure of BP (Zühlke et al. 2016).
Sphingobium

Sphingobium was another important genus in the biodegradation of BP (Fig. 6). *Sphingobium* is one of three new genera derived from *Sphingomonas*, including *Novosphingobium*, *Sphingomonas stricta* sensu, and *Sphingopyxis* (Takeuchi et al. 2001). A fifth genus *Sphingosinicella* was proposed later (Maruyama et al. 2006). *Sphingobium* is characterized by grouping strictly aerobic, rod-shaped, Gram-negative bacteria with glycosphingolipids in their cell envelope, and chemoorganotrophic (Takeuchi et al. 2001). Members of this genus are capable of degrading aromatic compounds such as naphthalene, biphenyl, m-xylene, phenanthrene, herbicides, and pesticides (Cai et al. 2015; Liang and Lloyd-Jones 2010; Pinyakong et al. 2003; Révész et al. 2018; Önneby et al. 2014).

Furthermore, *Sphingobium* could degrade most bisphenol analogues, including BPA, BPF, BPS, BPB, BPE, and BPP (Fig. 6). For example, the strains *Sphingobium fuliginis* TIK1 and *Sphingobium* sp. IT4 were both isolated from the rhizosphere of plants and degraded 0.5 mmol/L of those six BP with 100% degradation efficiency in 24 h. However, the biodegradation efficiency of BPP was 78% for *S. fuliginis* TIK1 and 91% for *Sphingobium* sp. IT4 (Toyama et al. 2013). *Sphingobium* sp. IT4 degradation of BP resulted in the hydroquinone and p-benzoquinone metabolites. Meanwhile, *Sphingobium fuliginis* TIK1 generated metabolites resulting from hydroxylation and meta cleavage of BP, which were consistent with the findings from BPA degradation by *Sphingobium fuliginis* OMI (Toyama et al. 2013). Figure 7 was modified from Ogata et al. (2013) and describes two metabolic pathways for BPA degradation by *Sphingobium fuliginis* IMO. The metabolites (a) 3-hydroxy BPA; (c) 3-(4-hydroxyphenyl)-3-methyl-2-butanone; (d) 2,2-bis(3,4-dihydroxyphenyl) propane; and (f) 2,2-bis and 3-(3,4-dihydroxyphenyl)-3-methyl-2-butanone indicated the hydroxylation of one or two aromatic rings and further meta-cleavage of this molecule (Ogata et al. 2013). Therefore, it was proposed from this metabolic pathway that bisphenol like BPF and BPS could be degraded regardless of the chemical group present in the connection between the aromatic rings (Ogata et al. 2013). In addition, *Sphingobium fuliginis* OMI, also isolated from the rhizosphere, showed 100% of degradation efficiency for almost all BP cited in a
concentration of 1 mM in 24 h. However, the BPP for this strain was the exception and obtained about 67% degradation (Ogata et al. 2013).

In another study with strains isolated from the rhizosphere, the Sphingobium strain yanoikuyae TYF-1 was able to degrade 90% and 92% of BPA and BPF, respectively, at a concentration of 25 mg/L, over a long period of 42 days (Toyama et al. 2009). The products that originated from BPF degradation were ditrimethylsilyl (4HB), hydroquinone (1,4-HQ), and p-benzoquinone (1,4-BQ). It was suggested that Sphingobium strain yanoikuyae TYF-1 had a BPF degradation pathway similar to the Sphingobium yanoikuyae FM-2 strain (Toyama et al. 2009). Indeed, the Sphingobium yanoikuyae FM-2 isolated from riverine water was able to degrade 100% of BPF at a concentration of 0.5 mM in 9 h when previously acclimated with the BPF. This efficiency decreased to 95% of BPF in 16 h when acclimated with glucose. Toyama et al. (2009) proposed a degradation pathway in which the connection between the BPF rings undergoes a rearrangement, releasing 1,4-hydroquinone and p-hydroxybenzoic acid. Then, both generated metabolites could be completely degraded later (Inoue et al. 2008). However, despite BPF degradation, the Sphingobium yanoikuyae FM-2 could not degrade other BP including BPA, BPE, BPB, and BPS (Inoue et al. 2008). Therefore, Inoue et al. (2008) suggested that the Sphingobium yanoikuyae FM-2 strain could only degrade the BP with no methyl groups on the connection between the aromatic rings or in the aromatic rings. Therefore, there were differences in metabolic pathways for both strains Sphingobium fuliginis TIK1 and Sphingobium fuliginis OMI (Ogata et al. 2013; Toyama et al. 2009).

Cupriavidus

Despite few studies with Cupriavidus, this bacteria genus was relevant to BP degradation (Fig. 6). Some members of the Cupriavidus genus can resist heavy metals, and synthesize polychlorinated biphenyls and degrade xenobiotics (Wang et al. 2017). For example, the Cupriavidus basilensis is capable of degrading xenobiotics including biphenyl, dibenzofuran, ochratoxin A, 9H-carbazol, and others (Becher et al. 2000; Ferenczi et al. 2014; Suenaga et al. 2015; Waldau et al. 2009; Wang et al. 2017). Likewise, Cupriavidus basilensis could degrade BPA, BPE, BPB, BPC, and BPS (Fig. 6).

Regarding BPA degradation, Cupriavidus basilensis JF1 showed slow degradation of BPA as the single source of carbon. However, BPA degradation was accelerated with the addition of phenol as a co-substrate. Phenol acted as a degradation biostimulant. Almost 66% of BPA in the concentration of 0.21 mM was degraded in 150 h when phenol was added (Fischer et al. 2010). Similarly, the strain C. basilensis SBUG 290 obtained higher BPA degradation efficiency when previously cultivated with biphenyl, achieving 78% degradation of 0.26 mM in 48 h (Zühlke et al. 2017). Thus, Zühlke et al. (2017) cultivated C. basilensis strains in biphenyl to carry out degradation experiments with BPF, BPE, BPP, BPC, BPAP, and BPPH (Zühlke et al. 2020). Cupriavidus basilensis SBUG 290 showed 98% efficiency in the degradation of BPC, 62% of BPB, 31% of BPE, and 6% of BPF, in 216 h, at a concentration of 60 mg/L (Zühlke et al. 2020). Conversely, the low solubility of BPZ, BPAP, and BPPH made it impossible to investigate the degradation efficiency in Cupriavidus basilensis SBUG 290 (Zühlke et al. 2020). Investigations regarding the metabolic pathways for BP cleavage by C. basilensis were published previously and will not be discussed in our review. To our knowledge, the BP metabolic pathway is related to its chemical structure and involves bacterial actions in the aromatic ring, such as hydroxylation, oxidation, and cleavages (Zühlke et al. 2020, 2017; Fischer et al. 2010).

Indigenous microorganisms

Finally, the group of indigenous microorganisms was also related to the biodegradation of BP (Fig. 6). The biodegradation of BPA, BPP, BPE, BPB, and BPF by indigenous microorganisms was previously observed in freshwater (Ike et al. 2000; Ike et al. 2006; Kang and Kondo 2002a; Klecka et al. 2001). Accordingly, indigenous microorganisms were able to degrade BPA, BPE, BPB, BPZ, and BPF in the concentration of 0.1 mg/L in freshwater (Zhou et al. 2020). However, each bisphenol analogue presented different biodegradation efficiencies. For example, the analogues BPA, BPE, BPF, and BPS showed 70% of degradation. Nevertheless, BPP and BPM degraded, respectively, 60% and 30% (Zhou et al. 2020).

Moreover, the biodegradation of BPA, BPF, BPS, BPP, and BPE by indigenous microorganisms was evaluated in riverine water and activated sludge (Frankowski et al. 2020). Regarding the aerobic biodegradation of BPS in water, it was not detected in riverine water (Frankowski et al. 2021; Ike et al. 2006), nor in lake water after 49 days (Zhou et al. 2020) or in marine water within 60 days (Danzl et al. 2009). Conversely, BPS was degraded in a wastewater treatment plant in the concentration range of 0.1 to 5 mg/L (Kovačič et al. 2021). Moreover, BPS degradation reached 91% efficiency within the 28 days of consortium enrichment (Moreira et al. 2021). Additionally, 99% of BPS at a concentration of 50 mg/L was degraded in 10 days by a consortium isolated from a sediment microbial community after 28 days of acclimation (Wang et al. 2019b).

The biodegradation of indigenous microorganisms from activated sludge samples reached approximately 100% efficiency for BPA and BPF at the concentration of 10 mg/L (Frankowski et al. 2020). At this same concentration, biodegradation of BPS was between 40 and 50% and around
40% for BPB and BPE. However, the degradation of bisphenol analogues by indigenous microorganisms in riverine water was inefficient (Frankowski et al. 2020). For example, the efficiency of BPAF biodegradation was less than 20% under the same conditions at the concentration of 10 mg/L (Frankowski et al. 2020). Likewise, BPAF showed high persistence in lake water and its concentration remained unchanged after 49 days of monitoring (Zhou et al. 2020). This can indicate that BPM, BPS, and BPAF were not easily degraded in the water. Nevertheless, increased adsorption of BPM and BPAF to humic acid can increase its degradability (Zhou et al. 2020). Indeed, BPAF showed the highest affinity for humic acid and activated sludge particles than BPA, BPS, BPB, and BPM (Zhou et al. 2020; Choi et al. 2019).

Conversely, the removal of eight bisphenol analogues was studied in a bioreactor for 23 days at different pHs (Qian et al. 2021). The analogues BPA, BPS, BPB, and BPE reached the highest degradation efficiency at pH 7.0 and 9.0. At pH 7.0 their degradation ranged approximately from 98.5 to 88.6% and at pH 9.0 from 98.7 to 88.1% (Qian et al. 2021). However, the removal efficiency of the analogues BPZ, BPAF, and BPAP at pH 7.0 shifted approximately from 71.3 to 45.3% and from 61.6 to 32.8% at pH 9.0 (Qian et al. 2021). Therefore, chemical differences in the analogue structure (Qian et al. 2021) or microbial community can influence their removal efficiency from the bioreactor (Chen et al. 2022; Huang et al. 2017; Tong et al. 2021; Wang et al. 2021; Xiong et al. 2017).

Indigenous microorganisms comprise the microbial community native to the environment. Consequently, the addition of pollutants like BPS or BPA can modify the composition, diversity, and abundance of these microbial communities. For example, BPA can favour bacterial groups resistant to xenobiotics and inhibit sensible ones (Chen et al. 2022; Huang et al. 2017; Tong et al. 2021; Wang et al. 2021; Xiong et al. 2017). The acclimatization of bacteria with BPS for 28 days selected tolerant bacteria, including *Hyphomicrobium*, *Pandoraea*, and *Cupriavidus*, that could use this BP as a substrate for growth (Wang et al. 2019a, b). A similar observation was found during biodegradation in a bioreactor (Huang et al. 2019). BPS was degraded in 10 days and the microbial community was modified over this period time. Accordingly, there was an increase in the abundance of bacteria associated with BPS degradation, including *Pseudomonas, Devosia, Delftia, Acidovorax*, and *Rhodobacter* (Huang et al. 2019).

In addition to the presence of xenobiotics, environmental conditions interfere with bacterial metabolisms (Eltoukhy et al. 2020; Godiya and Park 2022; Kumar et al. 2018; Ren et al. 2016; Singh et al. 2020).

Compound	Matrix	Microorganism	T (°C)	pH	Reference
BPA	River water	Indigenous microorganisms	30	7	Kang and Kondo 2002a
BPA	Water marine sediment	*Pseudomonas sp. KU1*	n.d	7	Kamaraj et al. 2014
BPA	Water marine sediment	*Pseudomonas sp. KU2*	n.d	7	Kamaraj et al. 2014
BPA	Water marine sediment	*Bacillus sp. KU3*	n.d	7	Kamaraj et al. 2014
BPA	Seawater	*Croceicoccus bisphenolivorans* sp. nov	32	7	Li et al. 2021
BPA	Soil	*Arthrobacter sp. YC-RL1*	30	7	Ren et al. 2016
BPA	Soil	*Pseudomonas putida YC-AE1*	25–30	7.2	Eltoukhy et al. 2020
BPA	Soil	*Pseudomonas sp. BG12*	n.d	8	Noszczyńska et al. 2021
BPA	Soil	*Pseudomonas palleroniana GBPl_508*	25	9	Thathola et al. 2022
BPA	River sediment	*Sphingobium sp. YC-JY1*	30	5.5–8	Jia et al. 2020
BPA	River sediment	*Bacillus sp. GZB*	37	7	Li et al. 2012
BPA	Solid waste leachate	*Achromobacter xylosoxidans*	35	7	Zhang et al. 2007
BPA	Activated sludge, landfill, and water with sediment	*Acinetobacter sp. KIMN*	n.d	8	Noszczyńska et al. 2021
BPA	Activated sludge, landfill, and water with sediment	*Pseudomonas sp. BG12*	n.d	8	Noszczyńska et al. 2021
BPF	Soil	consortium	35	7	Lu et al. 2017
BPS	River sediment	consortium	30	7	Wang et al. 2019a, b
BPF	Soil	consortium	30	7	Wang et al. 2019a, b

Legend: BPA, bisphenol A; BPF, bisphenol F; BPS, bisphenol S
the available data on temperature and pH optimal for BP degradation by microorganisms and reference. However, investigations of the ideal conditions for bacterial degradation of bisphenols comprised only BPA, BPF, and BPS (Table 3). Papers that assess the ability of bacterial strains to degrade different concentrations of BP other than BPA are still scarce. Several studies have already identified differences in the efficiency of BPA degradation according to changes in compound concentration (Babatabar et al. 2019; Chang et al. 2011; Eltoukhy et al. 2020; Klecka et al. 2001; Li et al. 2012; Vijayalakshmi et al. 2018; Zhang et al. 2007). However, there are still few studies that investigate this difference in other bisphenol analogues (Table 3).

Conclusions

Most of the studies published until June 2022 focussed on the bacterial degradation of BPA, and then on the biodegradation of BPF and BPS. Indeed, BPA was the most studied analogue for all compartments and bacterial genera. Water was the preferred environmental compartment to access bacterial biodegradation of BPA and other analogues. Biodegradation studies of BPA on water treatment plants were the second most accessed after the water compartment. Furthermore, the soil was frequently accessed for the degradation of the other bisphenol analogues, whereas leachate was the compartment less studied. All the strains cited in published studies diminished bisphenol concentration in the environmental compartments. *Pseudomonas*, *Sphingomonas*, and *Bacillus* were the genera most investigated for biodegradation of BPA and other BP. Besides the number of publications, indigenous microorganisms, *Sphingomonas*, *Cupriavidus*, and *Sphingobium* showed the highest degradation variability. Those groups degraded more than six BP analogues, including BPA, BPB, and BPE. Meanwhile, *Pseudomonas* and *Bacillus* degraded up to three or four BP, respectively.

The degradation of BPA by bacterial consortia showed to be more efficient than with isolated strains (Chang et al. 2011; Kang and Kondo 2002b; Peng et al. 2015; Sakai et al. 2007; Sarma et al. 2019; Yu et al. 2019). However, only three studies evaluated the consortium degradation of an analogue different from BPA (Lu et al. 2017; Moreira et al. 2021; Wang et al. 2019b). Thereby, bacterial degradation efficiency varies greatly depending on the microorganisms involved in the process, the environmental conditions, and the chemical structure of the compound to be degraded. Accordingly, the biodegradation of bisphenol A does not guarantee the biodegradation of its analogue. Therefore, research comparing the degradation of isolated bacteria and consortia must be executed with other bisphenol analogues, considering the particularities of each microorganism and compartments.

Additionally, studies on the biodegradation of mixtures of bisphenol analogues are scarce. Nevertheless, these studies should combine other pollutants in the environment. Moreover, research analysing the degradation of bisphenol analogues with different chemical groups attached to the aromatic ring, such as BPAP and BPC, is rare. Consequently, studies covering various aspects of the bacterial biodegradation of bisphenol analogues are vital to better understanding its relationship with the chemical and molecular structures of each analogue. Future research efforts should focus on clarifying the capacity of bacterial strains or consortiums in degrading the different bisphenol analogues. This includes determining the optimum pH and temperature for biodegradation and the effect of previous bacteria acclimatization on each BP biodegradation, notably the hydrophobic analogues like BPAF and BPM in water compartments. All this knowledge could assist in the choice of the most suitable microorganisms for bioremediation whether it is a single BP or a mixture of BP.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11356-022-23035-3.

Acknowledgements The authors are grateful to R. A. F. Neves, S. G. M. Portugal, and E. A. Rojas for critical reviewing of the manuscript and suggestions.

Author contribution Both authors contributed to the conception and design of this study. Material preparation, data collection, and analysis were performed by J. de Morais Farias. The first draft of the manuscript was written by J. de Morais Farias and N. Krepsky critically revised the work. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding J. de Morais Farias received a grant from the initiation in the technological development and innovation program (PIBITI/CNPq) of the Directorate of Technological, Cultural and Social Innovation from the Federal University of the State of Rio de Janeiro (UNIRIO) and the Brazilian National Council for Scientific and Technological Development (CNPq).

Data availability All datasets analysed in this study are available as spreadsheets in online resource (de Morais Farias and Krepsky 2022).

Declarations

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Competing interests The authors declare no competing interests.
References

Akram R, Iqbal R, Hussain R et al (2021) Evaluation of oxidative stress, antioxidant enzymes and genotoxic potential of bisphenol A in freshwater bighhead carp (Aristichthys nobilis) fish at low concentrations. Environ Pollut 268:115896. https://doi.org/10.1016/j.envpol.2020.115896

Alexander HC, Dill DC (1998) Environmental toxicology. In: Philip Wexler (ed) Encyclopedia of Toxicology, 1st edn. Academic Press, San Diego and London, pp 210–212

Asaf S, Numan M, Khan AL, Al-Harrasi A (2020) Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth. Crit Rev Biotechnol 40:138–152. https://doi.org/10.1080/07388551.2019.1709793

Babatunde AK, Dillard DC (1998) Environmental toxicology. In: Philip Wexler (ed) Encyclopedia of Toxicology, 1st edn. Academic Press, San Diego and London, pp 210–212

Bahadori MK, de Boer J, Ballesteros-Gómez A (2017) Bisphenol A and its derivatives in river sediment. Environ Technol (united Kingdom) 38:172–184. https://doi.org/10.1080/01431002.2016.1129175

Cai S, Shi C, Zhao JD et al (2015) Sphingobium phenoxybenzoateivorans sp. nov., a 2-phenoxbenzoic-acid-degrading bacterium. Int J Syst Evol Microbiol 65:1986–1991. https://doi.org/10.1099/ijs.0.000209

Caban M, Stepnowski P (2020) The quantification of bisphenols and their analogues in wastewaters and surface water by an improved solid-phase extraction gas chromatography/mass spectrometry method. Environ Sci Pollut Res 27:28829–28839. https://doi.org/10.1007/s11356-020-09123-2

Cai S, Shi C, Zhao JD et al (2015) Sphingobium phenoxybenzoateivorans sp. nov., a 2-phenoxbenzoic-acid-degrading bacterium. Int J Syst Evol Microbiol 65:1986–1991. https://doi.org/10.1099/ijs.0.000209

Calafat AM, Ye X, Wong LY et al (2008) Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect 116:39–44. https://doi.org/10.1289/ehp.10753

Cao S, Wang S, Zhao Y, et al (2020) Fate of bisphenol S (BPS) and characterization of non-extractable residues in soil: insights into persistence of BPS. Environ Int 143. https://doi.org/10.1016/j.envint.2020.105908

Catenza CJ, Faria J, Rego J (2011) Environmental characterization of non-extractable residues in soil: insights into mechanisms of bisphenol A biodegradation in aerobic granular sludge. Energies 14. https://doi.org/10.3390/en14113263

Chen MY, Ike M, Fujita M (2002) Acute toxicity mutagenicity and estrogenicity of bisphenol-A and other bisphenols. Environ Toxicol 17(1):80–86. https://doi.org/10.1002/tox.10035

Chen D, Kannan K, Tan H et al (2016) Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity - a review. Environ Sci Technol 50:5438–5453. https://doi.org/10.1021/acs.est.6b03587

Chen J, Tong T, Yang Y et al (2022) In-situ active Bisphenol A-degrading microorganisms in mangrove sediments. Environ Res 206:112251. https://doi.org/10.1016/j.envres.2021.112251

Chen P, Zhong Y, Chen K, et al (2020) The impact of discharge reduction activities on the occurrence of contaminants of emerging concern in surface water from the Pearl River. Environ Sci Pollut Res 30:378–30389. https://doi.org/10.1007/s11356-020-09295-x

Chen Q, Yin D, Jia Y et al (2017) Enhanced uptake of BPA in the presence of nanoparticles can lead to neurotoxic effects in adult zebrafish. Sci Total Environ 609:1312–1321. https://doi.org/10.1016/j.scitotenv.2017.07.144

Choi YJ, Lee LS (2017) Aerobic soil biodegradation of bisphenol (BPA) alternatives bisphenol S and bisphenol AF compared to BPA. Environ Sci Technol 51:13698–13704. https://doi.org/10.1021/acs.est.7b03889

Choi YJ, Nies LF, Lee LS (2019) Persistence of three bisphenols and other trace organics of concern in anaerobic sludge under methanogenic conditions. Environ Technol 42:1373–1382. https://doi.org/10.1080/09593330.2019.1668966

Corrales J, Kristofo LA, Baylor Steele W et al (2015) Global assessment of bisphenol a in the environment: review and analysis of its occurrence and bioaccumulation. Dose-Response 13:1–29. https://doi.org/10.1177/1559325X15599308

Crain DA, Eriksen M, Iguchi T et al (2007) An ecological assessment of bisphenol-A: evidence from comparative biology. Reprod Toxicol 24:225–239. https://doi.org/10.1016/j.reprotox.2007.05.008

Cydzik-Kwiatkowska A, Gryzb M, Jachimowicz P (2021) Metatranscriptome analysis of bisphenol A-exposed aerobic granular sludge. Energies 14. https://doi.org/10.3390/en14113263

Cydzik-Kwiatkowska A, Zielinska M, Bernat K, et al (2020) Insights into mechanisms of bisphenol A biodegradation in aerobic granular sludge. Bioresource Technol 315. https://doi.org/10.1016/j.biortech.2020.123806

Das R, Li G, Bai M, An T (2018) Spore cells from BPA degrading bacteria Bacillus sp. GZB displaying high laccase activity and stability for BPA degradation. Sci Total Environ 640–641:798–806. https://doi.org/10.1016/j.scitotenv.2018.05.379

de Morais Farias J, Krepsky N (2022) Data for: Bacterial degradation of bisphenol analogues: an overview. Mendeley Data v2. https://doi.org/10.17632/5wxt7np3h.2

Diaz LF, Yuen R, Bordel S, Villaverde S (2008) Toluene biodegradation by Pseudomonas putida F1: targeting culture stability in long-term operation. Biodegradation 19:197–208. https://doi.org/10.1007/s10532-007-9126-6

Dodds EC, Lawson W (1938) Molecular structure in relation to oes- trogenic activity. Compounds without a phenanthrene nucleus. Proc R Soc London B 125:222–232. https://doi.org/10.1098/rspb.1938.0023

EFSA (2015) Scientific opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 13:3978. https://doi.org/10.2903/j.efsa.2015.3978

Ehling-Schulz M, Lerekus D, Koehler TM (2019) The bacillus cereus group: Bacillus species with pathogenic potential Microbiol Spectr 7. https://doi.org/10.1128/microbiolspec.GPP3-0032-2018
Eio AJ, Kawai M, Niwa C et al (2015) Biodegradation of bisphenol A by an algal-bacterial system. Environ Sci Pollut Res 22:15145–15153. https://doi.org/10.1007/s11356-015-4693-2

El-toukhy A, Jia Y, Nahuurira R et al (2020) Biodegradation of endocrine disruptor Bisphenol A by Pseudomonas putida strain YC-AE1 isolated from polluted soil, Guangdong, China. BMC Microbiol 20:1–14. https://doi.org/10.1186/s12866-020-1699-9

EPA (2015) Biophenol A alternatives in thermal paper. United States Environmental Protection Agency. https://www.epa.gov/sites/default/files/2015-08/documents/bpa_final.pdf. Accessed 07 Aug 2022

EU (2018) European Commission Regulation 2018/213. Off J Eur Union. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX-32018R0213&from=EL. Accessed 07 Aug 2022

Falcão VGO, Carneiro DC, Pereira SA, da Silva MRD, Candé AA, da Cunha Lima ST (2020) Analyzing the toxicity of bisphenol-A to microalgae for ecotoxicological applications. Environ Monit Assess 192:8. https://doi.org/10.1007/s10661-019-7984-0

Ferenczi S, Cserháti M, Krafonat C et al (2014) A new ochratoxin a biodegradation strategy using cupriavidus basiliscens Or16 strain. PLoS ONE 9:e109817. https://doi.org/10.1371/journal. pone.0109817

Fernandez MF, Arrebola JP, Taoufiki J et al (2007) Bisphenol-A and chlorinated derivatives in adipose tissue of women. Reprod Toxicol 24:259–264. https://doi.org/10.1016/j.reprotox.2007.06.007

Fischer J, Kappelmayer U, Kastner M et al (2010) The degradation of bisphenol A by the newly isolated bacterium Cupriavidus basiliscus J1 can be enhanced by biostimulation with phenol. Int Biodeterior Biodegrad 64:324–330. https://doi.org/10.1016/j.ibiod.2010.03.007

Flint S, Markle T, Thompson S, Wallace E (2012) Bisphenol A exposure, effects, and policy: a wildlife perspective. J Environ Manage 104:19–34. https://doi.org/10.1016/j.jenvman.2012.03.021

Frankowski R, Platkiewicz J, Stanisz E et al (2021) Biodegradation and photo-Fenton degradation of bisphenol A, bisphenol S and fluconazole in water. Environ Pollut 289:117947. https://doi.org/10.1016/j.envpol.2021.117947

Frankowski R, Zgola-Grezeskiowiai A, Smulek W, Grzeszkowiai T (2020) Removal of bisphenol A and its potential substitutes by biodegradation. Appl Biochem Biotechnol 191:1100–1114. https://doi.org/10.1007/s12010-020-03247-4

Gao Y, Li A, Zhang W, Pang S, Liang Y, Song M (2022) Assessing the biodegradation of bisphenol A and its six alternatives on zebrafish embryo/larvae. Aquat Toxicol 246:106–154

Geens T, Neels H, Covaci A (2012) Distribution of bisphenol-A, tri- chloroethane, tri- and tetra-vinsylphenol. Environ Chem Lett 10:245–250. https://doi.org/10.1007/s10311-012-0203-2

Huang C, Xu P, Zeng G et al (2017) The rapid degradation of bisphenol A induced by the response of indigenous bacterial communities in sediment. Appl Microbiol Biotechnol 101:3919–3928. https://doi.org/10.1007/s00253-017-8154-3

Huang C, Liu Y, Chen Y et al (2018a) New insights into the metabolism and toxicity of bisphenol A on marine fish under long-term exposure. Environ Pollut 242:914–921. https://doi.org/10.1016/j. envpol.2018.07.048

Huang R, ping, Liu Z hua, Yin H, et al (2018b) Bisphenol A concentrations in human urine, human intakes across six continents, and annual trends of average intakes in adult and child populations worldwide: a thorough literature review. Sci Total Environ 626:971–981. https://doi.org/10.1016/j.scitotenv.2018.01.144

Huang YQ, Wang CKC, Zheng JS et al (2012) Biodegradation of bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environ Int 42:91–99. https://doi.org/10.1016/j.envint.2011.04.010

Huang WC, Jia X, Li J, Li M (2019) Dynamics of microbial community in the bioconverter for bisphenol S removal. Sci Total Environ 662:15–21. https://doi.org/10.1016/j.scitotenv.2019.01.173

Ike M, Chen MY, Danzi E et al (2006) Biodegradation of a variety of bisphenols under aerobic and anaerobic conditions. Water Sci Technol 53:153–159. https://doi.org/10.2166/wst.2006.189

Ike M, Jin CS, Fujita M (2000) Biodegradation of bisphenol A in the aquatic environment. Water Sci Technol 42:31–38. https://doi.org/10.2166/wst.2000.054931-38

Im J, Löfler FE (2016) Fate of bisphenol A in terrestrial and aquatic environments. Environ Sci Technol 50:8403–8416. https://doi.org/10.1021/acs.est.6b00877

Inoue D, Hara S, Ishihara M et al (2008) Degradation of bis(4-hydroxyphenyl)methane (bisphenol F) by Sphingobium yanoikuyae strain FM-2 isolated from river water. Appl Environ Microbiol 74:352–358. https://doi.org/10.1128/AEM.01708-07

Jia Y, El-toukhy A, Wang J et al (2020) Biodegradation of bisphenol A by Sphingobium sp. YC-JY1 and the essential role of cytochrome P450 Monoxygenase. Int J Mol Sci 21:3588. https://doi.org/10.3390/ijms21103588

Kamaraj M, Sivaraj R, Venkatesh R (2014) Biodegradation of bisphenol A by the tolerant bacterial species isolated from coastal regions of Chennai, Tamil Nadu, India. Int Biodeterior Biodegrad 93:216–222. https://doi.org/10.1016/j.ibiod.2014.02.014

Kang JH, Kondo F (2002a) Effects of bacterial counts and temperature on the biodegradation of bisphenol A in river water. Environ Sci Technol 53:153–159. https://doi.org/10.2166/wst.2006.189

Kang JH, Kondo F (2002b) Degradation of bisphenol A by bacteria isolated from river water. Arch Environ Contam Toxicol 43(3):265–269. https://doi.org/10.1007/s00244-002-1209-0

Karthikraj R, Kannan K (2017) Mass loading and removal of benzotriazoles, benzothiazoles, benzenophenes and bisphenols in Indian sewage treatment plants. Chemosphere 181:216–223. https://doi.org/10.1016/j.chemosphere.2017.04.075

Kawa IA, Akbar M, Fatima Q et al (2021) Endocrine disrupting chemical bisphenol A and its potential effects on female health. Diabetes Metab Syndr Clin Res Rev 15:803–811. https://doi.org/10.1016/j.dsx.2021.03.031

Kim J, Park W (2018) Genome analysis of naphthalene-degrading Pseudomonas sp. AS1 harboring the megaplasmid pAS1. J Microbiol Biotechnol 28:330–337. https://doi.org/10.4014/jm.1709.09002

Kim SS, Hwang KS, Yang JY et al (2020) Neurobehavioural demerits and behavioral analysis by acute exposure to bisphenol A in zebrafish larvae model. Chemosphere 239:124751. https://doi.org/10.1016/j.chemosphere.2019.124751
Kimura N, Watanabe T, Suenaga H et al (2018) Pseudomonas furukawai sp. Nov., a polychlorinated biphenyl-degrading bacterium isolated from biphenyl-contaminated soil in Japan. Int J Syst Evol Microbiol 68:1429–1435. https://doi.org/10.1099/ijsem.0.002670

Klecka GARYMK, Gonsior S, West R et al (2021) Kinetics and biotransformation products of bisphenol F and S during aerobic degradation with activated sludge. J Hazard Mater 404. https://doi.org/10.1016/j.jhazmat.2020.124079

Kumar G, Shahi S, Singh S (2018) Bioremediation: an eco-sustainable approach for restoration of contaminated sites. Microbiol Bioprospsecting Sustain Dev 1–397. https://doi.org/10.1007/978-981-13-0053-0

Lalwani D, Ruan Y, Taniyasu S et al (2020) Nationwide distribution and potential risk of bisphenol analogues in Indian waters. Ecotoxicol Environ Saf 200:110718. https://doi.org/10.1016/j.ecosyst.2020.110718

Kyrila G, Katsoulas A, Schoretsaniti V et al (2021) Bisphenol A removal and degradation pathways in microorganisms with probiotic properties. J Hazard Mater 413:125363. https://doi.org/10.1016/j.jhazmat.2021.125363

Le TT, Eymann C, Albrecht D et al (2006) Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis. Environ Microbiol 8:1408–1427. https://doi.org/10.1111/j.1462-2920.2006.01034.x

Lee S, Liao C, Song GJ, Ra K, Kannan K, Moon HB (2015) Emission of bisphenol analogues including bisphenol A and bisphenol F from wastewater treatment plants in Korea. Chemosphere 119:1000–1006. https://doi.org/10.1016/j.chemosphere.2014.09.011

Lee S, Kim C, Shin H et al (2019) Comparison of thyroid hormone disruption potentials by bisphenols A, S, F, and Z in embryonal larval zebrafish. Chemosphere 221:115–123. https://doi.org/10.1016/j.chemosphere.2019.01.019

Li J, Hu A, Lv M, Yu CP (2021) Crocicoccus bisphenolivorans sp. nov., a bisphenol A-degrading bacterium isolated from seawater. Int J Syst Evol Microbiol 71:2004658. https://doi.org/10.1099/ijsem.0.004658

Li G, Zou L, Wone PK et al (2012) Biodegradation and detoxification of bisphenol A with one newly-isolated strain Bacillus sp. GZB: Kinetics, mechanism and estrogenic transition. Bioresour Technol 114:224–230. https://doi.org/10.1016/j.biortech.2012.03.067

Li Z, Zhang W, Shan B (2019) The effects of urbanization and rainfall on the distribution of, and risks from, phenolic environmental estrogens in river sediment. Environ Pollut 250:1010–1018. https://doi.org/10.1016/j.envpol.2019.04.108

Liang Q, Lloyd-Jones G (2010) Sphingobium sciensens sp. nov., an aromatic hydrocarbon-degrading bacterium isolated from contaminated sawmill soil. Int J Syst Evol Microbiol 60:413–416. https://doi.org/10.1099/ijsem.0.008144-0

Liu F, Liu Q, Zhang Y et al (2015) Molecularly imprinted nanofiber membranes enhanced biodegradation of trace bisphenol A by Pseudomonas aeruginosa. Chem Eng J 262:899–998. https://doi.org/10.1016/j.cej.2014.10.046

Lobos JH, Leib TK, Su TM (1992) Biodegradation of bisphenol A and other bisphenols by a gram-negative aerobic bacterium. Appl Environ Microbiol 58:1823–1831. https://doi.org/10.1128/aem.58.6.1823-1831.1992

Logan NA, Vos P D (2015) Bacillus. In: Trujillo ME et al (eds) Bergy’s manual of systematics of archaea and bacteria. Willey Online Library. https://doi.org/10.1002/9781118960608.gbm00530. Accessed 19 Sep 2022

Louati I, Dammak M, Nasri R et al (2019) Biodegradation and detoxification of bisphenol A by bacteria isolated from desert soils. J Biotech 9:1–11. https://doi.org/10.1016/s1320-5197-1576-y

Lu L, Zhao M, Wang TN, Zhao LY, Du MH, Li TL, Li DB (2012) Characterization and dye decolorization ability of an alkaline resistant and organic solvents tolerant laccase from Bacilluslicheniformis LS04. Bioreursor Technol 115:35–40. https://doi.org/10.1016/j.biortech.2011.07.111

Lu H, Weng Z, Wei H et al (2017) Simultaneous bisphenol F degradation, heterotrophic nitrification and aerobic denitrification by a bacterial consortium. J Chem Technol Biotechnol 92:854–860. https://doi.org/10.1002/jctb.5069

Lu H, Li J, Ma L, Weng Z, Zhou J (2022) Simultaneous removal of bisphenol F and nitrate by a novel isolated strain Pseudomonas sp. ZH-FAD. In AIP Conference Proceedings 2474:020003. AIP Publishing LLC

Ma Y, Liu H, Wu J, et al (2019) The adverse health effects of bisphenol A and related toxicity mechanisms. Environ Res 176. https://doi.org/10.1016/j.envres.2019.108575

Maruyama T, Park HD, Ozawa K et al (2006) Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 56:85–89. https://doi.org/10.1099/ijsem.0.037890

Matsumura Y, Akahira-Moriya A, Sasaki-Mori M (2015) Bioremediation of bisphenol-a polluted soil by Sphingomonas bisphenolicum AO1 and the microbial community existing in the soil. Biocontrol Sci 20:35–42. https://doi.org/10.4265/bio.20.35

Matsumura Y, Hosokawa C, Sasaki-Mori M et al (2009) Isolation and characterization of novel bisphenol - A-degrading bacteria from soils. Biocontrol Sci 14:161–169

Maughan H, Van der Auwera G (2011) Baoillus taxonomy in the genomic era finds phenotypes to be essential though often misleading. Infect Genet Evol 11:789–797. https://doi.org/10.1016/j.meegid.2011.02.001

Mercogliano R, Santonico S (2018) Investigation on bisphenol A levels in human milk and dairy supply chain: A review. Food Chem Toxicol 114:98–107. https://doi.org/10.1016/j.fct.2018.02.021

Michalowicz J (2014) Bisphenol A - sources, toxicity and biotransformation. Environ Toxicol Pharmacol 37:738–758. https://doi.org/10.1016/j.etap.2014.02.003

Mita L, Grumiro L, Rossi S et al (2015) Bisphenol A removal by a Pseudomonas aeruginosa immobilized on granular activated carbon and operating in a fluidized bed reactor. J Hazard Mater 291:129–135. https://doi.org/10.1016/j.jhazmat.2015.02.072

Intelligence M (2022) Bisphenol-A (BPA) market - growth, trends, COVID-19 impact, and forecasts (2022–2027). Report ID 5318392:150

Moreira IS, Lebel A, Peng X et al (2021) Sediments in the mangrove areas contribute to the removal of endocrine disrupting chemicals in coastal sediments of Macau SAR, China, and harbour microbial communities capable of degrading E2, EE2, BPA and BPS. Biodegradation 32:511–529. https://doi.org/10.1007/s10532-021-09948-9

Moreman J, Lee O, Trznadel M et al (2017) Acute toxicity, teratogenic, and estrogenic effects of bisphenol A and its alternative replacements bisphenol S, bisphenol F, and bisphenol AF in zebrafish embryo-larvae. Environ Sci Technol 51:12796–12805. https://doi.org/10.1021/acs.est.7b03283

Mu X, Huang Y, Li X et al (2018) Developmental effects and estrogenicity of bisphenol A alternatives in a zebrafish embryo model. Environ Sci Technol 52:3222–3231. https://doi.org/10.1021/acs.est.7b06255

Mukhopadhyay M, Sampath S, Muñoz-Arnanz J et al (2020) Plasticizers and bisphenol A in Adyar and Cooum riverine sediments, India: occurrences, sources and risk assessment. Environ Geochem Health 42:2789–2802. https://doi.org/10.1007/s10653-020-00516-3
Naderi M, Wong MYL, Gholami F (2014) Developmental exposure of zebrafish (Danio rerio) to bisphenol-S impairs subsequent reproduction potential and hormonal balance in adults. Aquat Toxicol 148:195–203. https://doi.org/10.1016/j.aquatox.2014.01.009

Noszczyńska M, Chodór M, Jawiecki L, Piotrowska-Seget Z (2021) A comprehensive study on bisphenol A degradation by newly isolated strains Acinetobacter sp. K1MN and Pseudomonas sp. BG12. Biodegradation 32:1–15. https://doi.org/10.1007/s10532-020-00991-6

Noszczyńska M, Piotrowska-Seget Z (2018) Bisphenols: application, occurrence, safety, and biodegradation mediated by bacterial communities in wastewater treatment plants and rivers. Chemosphere 201:214–223. https://doi.org/10.1016/j.chemosphere.2018.02.179

Oehlmann J, Schulte-Oehlmann U, Kloos W et al (2009) A critical analysis of the biological impacts of plasticiizers on wildlife. Philos Trans R Soc B Biol Sci 364:2047–2062. https://doi.org/10.1098/rstb.2008.0242

Ogata Y, Goda S, Toyama T et al (2013) The 4-tert-butylnaphenol-utilizing bacterium Sphingobium fuliginis OMI can degrade bisphenols via phenolic ring hydroxylation and meta-cleavage pathway. Environ Sci Technol 47:1017–1023. https://doi.org/10.1021/es303726h

Oh S, Choi D (2019) Microbial community enhances biodegradation of bisphenol A through selection of Sphingomonadaceae. Microb Ecol 77:631–639. https://doi.org/10.1007/s00248-018-1263-4

Önneby K, Hákansson S, Pizzul L, Stenström J (2014) Reduced leaching of the herbicide MCPA after bioaugmentation with a formulated and stored Sphingobium sp. Biodegradation 25:291–300. https://doi.org/10.1007/s10532-013-9660-3

Oshiman KL, Tsutsumi Y, Nishida T, Matsumura Y (2007) Isolation and characterization of a novel bacterium, Sphingomonas bispheno nolica strain AO1, that degrades bisphenol A. Biodegradation 18:247–255. https://doi.org/10.1007/s10532-006-9509-5

Ozhan K, Kocaman E (2019) Temporal and spatial distributions of bisphenol A in marine and freshwaters in Turkey. Arch Environ Contam Toxicol 76:246–254. https://doi.org/10.1007/s00244-018-00594-6

Palleroni NJ (2010) The pseudomonas story. Environ Microbiol 12:1377–1383. https://doi.org/10.1111/j.1462-2920.2009.02041.x

Palleroni NJ (2015) Pseudomonas. In: Trujillo ME et al (eds) Bergey’s manual of systematic of archaea and bacteria. Willey Online Library. https://doi.org/10.1002/9781118960608.gbm0120. Accessed 19 Sep 2022

Pelch K, Wignall JA, Goldstone AE et al (2019) A scoping review of the health and toxicological activity of bisphenol A and related compounds by Sphingomonas sp. strain AO1. Environ Sci Technol 47:1017–1023. https://doi.org/10.1021/acs.est.8b06506

Peng YH, Chen YJ, Chang YJ, Shih YH (2015) Biodegradation of bisphenol A with diverse microorganisms from river sediment. J Hazard Mater 286:285–290. https://doi.org/10.1016/j.jhazmat.2014.12.051

Pérez RA, Albero B, Férrez M, Tadeo JL (2017) Rapid multiside determination of bisphenol analogues in soil with on-line derivatization. Anal Bioanal Chem 409:4571–4580. https://doi.org/10.1007/s00216-017-0939-2

Petefi GP, Fleck JD, Kael IM et al (2019) Ecotoxicological risk assessment due to the presence of bisphenol A and caffeine in surface waters in the Sinos River Basin - Rio Grande do Sul - Brazil. Brazilian J Biol 79:712–721. https://doi.org/10.1590/1519-6984.189752

Pignetti E, Dinelli E (2018) Distribution and partition of endocrine disrupting compounds in water and sediment: case study of the Romagna area (North Italy). J Geochemical Explor 195:66–77. https://doi.org/10.1016/j.gexplo.2018.02.008

Pinyakong O, Habe H, Yoshiha T et al (2003) Identification of three novel salicylate 1-hydroxylases involved in the phenanthrene degradation of Sphingobium sp. strain P2. Biochem Biophys Res Commun 301:350–357. https://doi.org/10.1016/S0006-291X(02)03036-X

Pubchem (2021a) Bisphenol A. https://pubchem.ncbi.nlm.nih.gov/compound/6623. Accessed 07 Sept 2021

Pubchem (2021b) Bisphenol AF. https://pubchem.ncbi.nlm.nih.gov/compound/73864. Accessed 07 Sept 2021

Pubchem (2021c) Bisphenol AP. https://pubchem.ncbi.nlm.nih.gov/compound/6623849. Accessed 07 Sept 2021

Pubchem (2021d) Bisphenol B. https://pubchem.ncbi.nlm.nih.gov/compound/66166. Accessed 07 Sept 2021

Pubchem (2021e) Bisphenol C. https://pubchem.ncbi.nlm.nih.gov/compound/84677. Accessed 07 Sept 2021

Pubchem (2021f) Bisphenol E. https://pubchem.ncbi.nlm.nih.gov/compound/608116. Accessed 07 Sept 2021

Pubchem (2021g) Bisphenol F. https://pubchem.ncbi.nlm.nih.gov/compound/12111. Accessed 07 Sept 2021

Pubchem (2021h) Bisphenol M. https://pubchem.ncbi.nlm.nih.gov/compound/3292100. Accessed 07 Sept 2021

Pubchem (2021i) Bisphenol P. https://pubchem.ncbi.nlm.nih.gov/compound/630355. Accessed 07 Sept 2021

Pubchem (2021j) Bisphenol PH. https://pubchem.ncbi.nlm.nih.gov/compound/13059052. Accessed 07 Sept 2021

Pubchem (2021k) Bisphenol S. https://pubchem.ncbi.nlm.nih.gov/compound/6626. Accessed 07 Sept 2021

Pubchem (2021l) Bisphenol Z. https://pubchem.ncbi.nlm.nih.gov/compound/232446. Accessed 07 Sept 2021

Qian Y, Jia X, Ding T et al (2021) Occurrence and removal of bisphenol analogues in wastewater treatment plants and activated sludge bioreactor. Sci Total Environ 759:143606. https://doi.org/10.1016/j.scitotenv.2020.143606

Ramirez-García R, Gohil N, Singh V (2018) Chapter 21 - recent advances, challenges, and opportunities in bioremediation of hazardous materials. In: Pandey VC, Baudhh K (eds) Phyto-management of polluted sites. Elsevier. https://doi.org/10.1016/B978-0-12-813912-7.00021-1. Accessed 19 Sep 2022

Ren L, Jia Y, Ruth N et al (2016) Biotransformations of bisphenols mediated by a novel Arthrobacter sp. strain YC-RL1. Appl Microbiol Biotechnol 100:1967–1976. https://doi.org/10.1007/s00253-015-7076-1

Réveillaud E, Töth EM, Kriszt B et al (2018) Sphingobium aquiterrae sp. nov., a toluene-, meta- and para-xylene-degrading bacterium isolated from petroleum hydrocarbon-contaminated groundwater. Int J Syst Evol Microbiol 68:2807–2812. https://doi.org/10.1099/ijsem.0.028298

Rubin BS, Soto AM (2009) Bisphenol A: perinatal exposure and body weight. Mol Cell Endocrinol 304:55–62. https://doi.org/10.1016/j.mce.2009.02.023

Sakai K, Yamanaka H, Moriyoshi K et al (2007) Biodegradation of bisphenol A and related compounds by Sphingomonas sp. strain BP-7 isolated from seawater. Biosci Biotechnol Biochem 71:51–57. https://doi.org/10.1271/bbb.60351

Sarma H, Nava AR, Manriquez AME et al (2019) Biodegradation of bisphenol A by bacterial consortia isolated directly from river sediments. Environ Technol Innov 14:100314. https://doi.org/10.1016/j.eti.2019.01.008

Sasaki M, Akahira A, Oshimana KI et al (2005a) Purification of cytochrome P450 and ferredoxin, involved in bisphenol A degradation, from Sphingomonas sp. strain AO1. Appl Environ Microbiol 71:8024–8030. https://doi.org/10.1128/AEM.71.12.8024-8030.2005

Sasaki M, Maki JI, Oshimana KI et al (2005b) Biodegradation of bisphenol A by cells and cell lysate from Sphingomonas sp. strain AO1. Biodegradation 16:449–459. https://doi.org/10.1007/s10532-004-5023-4
Sasaki M, Tsuchido T, Matsumura Y (2008) Molecular cloning and characterization of cytochrome P450 and ferrodoxin genes involved in bisphenol a degradation in Sphingomonas bisphenolica strain A01. J Appl Microbiol 105:1158–1169. https://doi.org/10.1111/j.1365-2672.2008.03843.x

Sathyamoorthy S, Hoar C, Chandran K (2018) Identification of bisphenol A-assimilating microorganisms in mixed microbial communities using 13C-DNA stable isotope probing. Environ Sci Technol 52:9126–9135. https://doi.org/10.1021/acs.est.8b01976

Shobnam N, Sun Y, Mahmod M et al (2021) Biologically mediated abiotic degradation (BMAD) of bisphenol A by manganese- oxidizing bacteria. J Hazard Mater 417:1–7. https://doi.org/10.1016/j.jhazmat.2021.125987

Sigma-Aldrich (2021a) Bisphenol A. https://www.sigmaaldrich.com/BR/pt/substance/bisphenola2282980057. Accessed 07 Sept 2021a

Sigma-Aldrich (2021b) Bisphenol AF. https://www.sigmaaldrich.com/BR/pt/search/bisphenol-a-f?focus=products&page=1&perPage=30&sort=relevance&term=Bisphenol%20AF. Accessed 07 Sept 2021b

Sigma-Aldrich (2021c) Bisphenol AP. https://www.sigmaaldrich.com/BR/pt/search/bisphenol-ap?focus=products&epage=1&perPage=30&sort=relevance&term=Bisphenol%20AP&type. Accessed 07 Sept 2021c

Sigma-Aldrich (2021d) Bisphenol B. https://www.sigmaaldrich.com/BR/pt/search/bisphenol-b?focus=products&page=1&perPage=30&sort=relevance&term=Bisphenol%20B&type. Accessed 07 Sept 2021d

Sigma-Aldrich (2021e) Bisphenol C. https://www.sigmaaldrich.com/BR/pt/search/bisphenol-c?focus=products&page=1&perPage=30&sort=relevance&term=Bisphenol%20C. Accessed 07 Sept 2021e

Sigma-Aldrich (2021f) Bisphenol E. https://www.sigmaaldrich.com/BR/pt/search/bisphenol-e?focus=products&page=1&perPage=30&sort=relevance&term=Bisphenol%20E. Accessed 07 Sept 2021f

Sigma-Aldrich (2021g) Bisphenol F. https://www.sigmaaldrich.com/BR/pt/search/bisphenol-f7?focus=products&page=1&perPage=30&sort=relevance&term=Bisphenol%20F. Accessed 07 Sept 2021g

Sigma-Aldrich (2021h) Bisphenol M. https://www.sigmaaldrich.com/BR/pt/search/bisphenol-m?focus=products&epage=1&perPage=30&sort=relevance&term=Bisphenol%20M. Accessed 07 Sept 2021h

Sigma-Aldrich (2021i) Bisphenol P. https://www.sigmaaldrich.com/BR/pt/search/bisphenol-p7?focus=products&page=1&perPage=30&sort=relevance&term=Bisphenol%20P&type=product. Accessed 07 Sept 2021i

Sigma-Aldrich (2021j) Bisphenol PH. https://www.sigmaaldrich.com/BR/pt/search/bisphenol-ph7?focus=products&page=1&perPage=30&sort=relevance&term=Bisphenol%20PH. Accessed 07 Sept 2021j

Sigma-Aldrich (2021k) Bisphenol Z. https://www.sigmaaldrich.com/BR/pt/search/bisphenol-z?focus=products&page=1&perPage=30&sort=relevance&term=Bisphenol%20Z. Accessed 07 Sept 2021k

Singh P, Singh VK, Singh R, Borthakur A, Madhav S, Ahamad A, Kumar A, Pal DB, Tiwary D, Mishra PK (2020) Chapter 1 - Bioremediation: a sustainable approach for management of environmental contaminants. In: Singh P, Kumar A, Borthakur A (eds) Abatement of environmental pollutants. Elsevier, Amsterdam, pp 1–23. https://doi.org/10.1016/B978-0-12-818095-2.00001-1. Accessed 19 Sep 2022

Staples CA, Adams WJ, Parkerton TF et al (1997) Aquatic toxicity of eighteen phthalate esters. Environ Toxicol Chem 16:875–891. https://doi.org/10.1002/etc.5620160507

Stolz A (2009) Molecular characteristics of xenobiotic-degrading sphiogonomonads. Appl Microbiol Biotechnol 81:793–811. https://doi.org/10.1007/s00253-008-1752-3

Suenaga H, Atsushi Y, Hosoyama A et al (2015) Draft genome sequence of the polychlorinated biphenyl-degrading bacterium Cupriavidus basilensis KF708 (NBRC 110671) isolated from biphenyl-contaminated soil. Genome Announce 3:2–3. https://doi.org/10.1128/genomeA.01214-15

Sun Q, Wang Y, Li Y et al (2017) Fate and mass balance of bisphenol analogues in wastewater treatment plants in Xiamen City, China. Environ Pollut 225:542–549. https://doi.org/10.1016/j.envpol.2017.03.018

Suyambud B, Inthorn D, Panyapinyopohl B, Thiravetyan P (2018b) Biodegradation of bisphenol A by a newly isolated Bacillus megaterium strain ISO-2 from a polycarbonate industrial wastewater. Water Air Soil Pollut 229. https://doi.org/10.1007/s11270-018-3983-y

Suyambud B, Thiravetyan P, Panyapinyopohl B, Inthorn D (2018b) Draecaena sanderiana endophytic bacteria interactions: effect of endophyte inoculation on bisphenol A removal. Ecotoxicol Environ Saf 157:318–326. https://doi.org/10.1016/j.ecoenv.2018.03.066

Suyambud B, Thiravetyan P, Gadd GM et al (2020) Bisphenol A removal from a plastic industry wastewater by Draecaena sanderiana endophytic bacteria and Bacillus cereus NJ. Int J Phytoremediation 22:167–175. https://doi.org/10.1080/15226514.2019.1652563

Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417. https://doi.org/10.1099/00270713-51-4-1405

Tarafdar A, Sirohi R, Balakumaran PA et al (2022) The hazardous threat of bisphenol A: toxicity, detection and remediation. J Hazard Mater 423:127097. https://doi.org/10.1016/j.jhazmat.2021.127097

Thathola P, Agnihotri V, Pandey A, Upadhay SK (2022) Biodegradation of bisphenol A using psychrotolerant bacterial strain Pseudomonas pallorneriana GBP1_508. Arch Microbiol 204:1–12. https://doi.org/10.1007/s00203-022-02885-y

Tišler T, Krel A, Gerželj U et al (2016) Hazard identification and risk characterization of bisphenols A, F and AF to aquatic organisms. Environ Pollut 212:472–479. https://doi.org/10.1016/j.envpol.2016.02.045

Tong T, Li R, Chai M et al (2021) Metagenomic analysis of microbial communities continuously exposed to Bisphenol A in mangrove rhizosphere and non-rhizosphere soils. Sci Total Environ 792:148486. https://doi.org/10.1016/j.scitotenv.2021.148486

Toyama T, Ojima T, Tanaka Y et al (2013) Sustainable biodegradation of phenolic endocrine-disrupting chemicals by Phragmites australis rhizosphere bacteria association. Water Sci Technol 68:522–529. https://doi.org/10.2166/wst.2013.234

Toyama T, Sato Y, Inoue D et al (2009) Biodegradation of bisphenol A and bisphenol F in the rhizosphere sediment of Phragmites australis. J Biosci Bioeng 108:147–150. https://doi.org/10.1016/j.jbiosc.2009.03.011

Usman A, Ikilas S, Ahmad M (2019) Occurrence, toxicity and endocrine disrupting potential of Bisphenol-B and Bisphenol-F: a mini-review. Toxicol Lett 312:222–227. https://doi.org/10.1016/j.toxlet.2019.05.018

Vandenbergh LN, Hunt PA, Myers JP, Vom Saal FS (2013) Human exposures to bisphenol A: mismatches between data and assumptions. Rev Environ Health 28:37–58. https://doi.org/10.1515/reveh-2012-0034

Vijayalakshmi V, Senthilkumar P, Mophin-Kani K et al (2018) Biodegradation of bisphenol A by Pseudomonas aeruginosa PA1 isolated from effluent of thermal paper industry: kinetic modeling and process optimization. J Radiat Res Appl Sci 11:56–65. https://doi.org/10.1016/j.jrras.2017.08.003
Waldau D, Methling K, Mikolasch A, Schauer F (2009) Characterization of new oxidation compounds of 9H-carbazole and structure related compounds by phenyl-utilizing bacteria. Appl Microbiol Biotechnol 81:1023–1031. https://doi.org/10.1007/s00253-008-1723-8

Wang B, Lu L, Zhang Y et al (2021) Removal of bisphenol A by waste zero-valent iron regulating microbial community in sequencing batch biofilm reactor. Sci Total Environ 753:142073. https://doi.org/10.1016/j.scitotenv.2020.142073

Wang H, Liu Z, Zhang J et al (2019) Insights into removal mechanisms of bisphenol A and its analogues in municipal wastewater treatment plants. Sci Total Environ 692:107–116. https://doi.org/10.1016/j.scitotenv.2019.07.134

Wang H, Tang Z, Liu ZH, Zeng F, Zhang J, Dang Z (2022a) Occurrence, spatial distribution, and main source identification of ten bisphenol analogues in the dry season of the Pearl River, South China. Environ Sci Pollut Res 29:27352–27365

Wang S, Zhang MN, Bai NL et al (2017) Construction, properties, and application of the pCB5 plasmid, a novel conjugative shuttle vector with a Cupriavidus basilensis origin of replication. Appl Microbiol Biotechnol 101:1217–1226. https://doi.org/10.1007/s00253-016-7936-3

Wang Q, Zhang Y, Feng Q et al (2022b) Occurrence, distribution, and risk assessment of bisphenol analogues in Luoma Lake and its inflow rivers in Jiangsu Province, China. Environ Sci Pollut Res 29:1430–1445. https://doi.org/10.1007/s11356-021-15711-7

Wang X, Chen J, Ji R et al (2019b) Degradation of bisphenol S by a bacterial consortium enriched from river sediments. Bull Environ Contam Toxicol 105:630–635. https://doi.org/10.1007/s00128-019-02699-7

Willison JC (2004) Isolation and characterization of a novel sphenomonad capable of growth with chrysene as sole carbon and energy source. FEMS Microbiol Lett 241:143–150. https://doi.org/10.1016/j.femsle.2004.10.012

Xie J, Zhao N, Zhang Y et al (2022) Occurrence and partitioning of bisphenol analogues, trioclocarban, and tricosanol in seawater and sediment from East China Sea. Chemosphere 287:132218. https://doi.org/10.1016/j.chemosphere.2021.132218

Xiong J, An T, Li G, Peng P (2017) Accelerated biodegradation of BPA in water-sediment microcosms with Bacillus sp. GZB and the associated bacterial community structure. Chemosphere 184:120–126. https://doi.org/10.1016/j.chemosphere.2017.05.163

Yabuuchi E, Kosako Y (2015) Sphingomonadaceae ord. nov. In: Trujillo ME et al (eds) Bergey’s manual of systematics of Archaea and Bacteria, Wiley Online Library, New York. https://doi.org/10.1002/9781118960608.obm00075. Accessed 19 Sep 2022

Yamada H, Furuta I, Kato EH et al (2002) Maternal serum and amniotic fluid bisphenol A concentrations in the early second trimester. Reprod Toxicol 16:735–739. https://doi.org/10.1016/S0890-6238(02)00051-5

Yamanaka H, Moriyoshi K, Ohmoto T et al (2007) Degradation of bisphenol A by Bacillus pumilus isolated from kimchi, a traditionally fermented food. Appl Biochem Biotechnol 136:39–51. https://doi.org/10.1007/BF02685937

Yamazaki E, Yamashita N, Taniyasu S et al (2015) Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India. Ecotoxicol Environ Saf 122:565–572. https://doi.org/10.1016/j.ecoenv.2015.09.029

Yang Q, Yang X, Liu J et al (2017) Exposure to bisphenol B disrupts steroid hormone homeostasis and gene expression in the hypothalamic–pituitary–gonadal axis of zebrafish. Water Air Soil Pollut 228:112. https://doi.org/10.1007/s11270-017-3282-z

Yang Q, Zhu Z, Liu Q, Chen L (2021) Adverse effects of bisphenol B exposure on the thyroid and nervous system in early life stages of zebrafish. Comp Biochem Physiol Part - C Toxicol Pharmacol 250:109167. https://doi.org/10.1016/j.cbpc.2021.109167

Ye X, Pierik FH, Angerer J et al (2009) Levels of metabolites of organophosphate pesticides, phthalates, and bisphenol A in pooled urine specimens from pregnant women participating in the Norwegian Mother and Child Cohort Study (MoBa). Int J Hyg Environ Health 212:481–491. https://doi.org/10.1016/j.ijheh.2009.03.004

Yu H, Wang L, Lin Y et al (2020) Complete metabolic study by dibutyl phthalate degrading Pseudomonas sp. DNB-S1. Ecotoxicol Environ Saf 194:110378. https://doi.org/10.1016/j.ecoenv.2020.110378

Yu K, Yi S, Li B et al (2019) An integrated meta-omics approach reveals substrates involved in synergistic interactions in a bisphenol A (BPA)-degrading microbial community. Microbiome 7:1–13. https://doi.org/10.1186/s40168-019-0634-5

Zhang C, Lu J, Wu J, Luo Y (2019a) Phycoremediation of coastal waters contaminated with bisphenol A by green tidal alga Ulva prolifera. Sci Total Environ 661:55–62. https://doi.org/10.1016/j.scitotenv.2019.01.132

Zhang C, Zeng G, Yuan L et al (2021) Aerobic degradation of bisphenol A by Achromobacter xylosidans strain B-16 isolated from compost leachate of municipal solid waste. Chemosphere 68:181–190. https://doi.org/10.1016/j.chemosphere.2006.12.012

Zhang H, Zhang Y, Li J, Yang M (2019b) Occurrence and exposure assessment of bisphenol analogues in source water and drinking water in China. Sci Total Environ 655:607–613. https://doi.org/10.1016/j.scitotenv.2018.11.053

Zhang Y, Li T, Pan C, Khan IA, Chen Z, Yue Y, Yang M (2022) Inter-generational toxic effects of parental exposure to bisphenol AF on offspring and epigenetic modulations in zebrafish. Sci Total Environ 823:153–714

Zhang W, Yin K, Chen L (2013) Bacteria-mediated bisphenol A degradation. Appl Microbiol Biotechnol 97:5681–5689. https://doi.org/10.1007/s00253-013-4949-z

Zhou N, Liu Y, Cao S et al (2020) Biodegradation of bisphenol compounds in the surface water of Taihu Lake and the effect of humic acids. Sci Total Environ 723:138164. https://doi.org/10.1016/j.scitotenv.2020.138164

Zühlke MK, Schlüter R, Henning AK et al (2016) A novel mechanism of conjugate formation of bisphenol A and its analogues by Bacillus amyloliquefaciens: detoxification and reduction of estrogenicity of bisphenol. Int Biodeterior Biodegrad 109:165–173. https://doi.org/10.1016/j.ibiod.2016.01.019

Zühlke MK, Schlüter R, Mikolasch A et al (2017) Biotransformation and reduction of estrogenicity of bisphenol A by the biphenyl-degrading Cupriavidus basilensis. Appl Microbiol Biotechnol 101:3743–3758. https://doi.org/10.1007/s00253-016-8061-z

Zühlke MK, Schlüter R, Mikolasch A et al (2020) Biotransformation of bisphenol A analogues by the biphenyl-degrading bacterium Cupriavidus basilensis - a structure-biotransformation relationship. Appl Microbiol Biotechnol 104:3569–3583. https://doi.org/10.1007/s00253-020-10406-4

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.