Evaluating Dispersion Strategies in Growth Models Subject to Geometric Catastrophes

Valdivino Vargas Junior1 · Fábio Prates Machado2 · Alejandro Roldán-Correa3

Received: 1 January 2021 / Accepted: 15 April 2021 / Published online: 7 May 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
We consider stochastic growth models to represent population dynamics subject to geometric catastrophes. We analyze different dispersion schemes after catastrophes, to study how these schemes impact the population viability and comparing them with the scheme where there is no dispersion. In the schemes with dispersion, we consider that each colony, after the catastrophe event, has \(d\) new positions to place its survivors. We find out that when \(d = 2\) no type of dispersion considered improves the chance of survival, at best it matches the scheme where there is no dispersion. When \(d = 3\), based on the survival probability, we conclude that dispersion may be an advantage or not, depending on its type, the rate of colony growth and the probability that an individual will survive when exposed to a catastrophe.

Keywords Branching processes · Catastrophes · Extinction probability · Population dynamics

Mathematics Subject Classification 60J80 · 60J85 · 92D25

Communicated by Irene Giardina.

Fábio Prates Machado
fmachado@ime.usp.br
Valdivino Vargas Junior
vvjunior@ufg.br
Alejandro Roldán-Correa
alejandro.roldan@udea.edu.co

1 Institute of Mathematics and Statistics, Federal University of Goiás, Campus Samambaia, Goiânia, GO CEP 74001-970, Brazil
2 Statistics Department, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, SP CEP 05508-090, Brazil
3 Instituto de Matemáticas, Universidad de Antioquia, Calle 67, No 53-108, Medellín, Colombia
1 Introduction

Catastrophes and spatial restrictions are among biological and environmental forces that drive the size dynamics of a population. These forces can reduce the population size or even eliminate it. Dispersion of the survivors is a possible strategy that could help to increase the population viability.

Models for population growth (a single colony) subject to catastrophes are considered in Brockwell et al. [2] and later in Artalejo et al. [1]. In these models, the size of a colony increases according to a birth and death process subject to catastrophes. When a catastrophe strikes, the colony size is reduced according to some probability law and the survivors remain together in the same colony without dispersion. These authors study the probability distribution of the first extinction time, the number of individuals removed, the survival time of a tagged individual, and the maximum population size reached between two consecutive extinctions. For a comprehensive literature overview and motivation see for example Kapodistria et al. [7].

Schinazi [13] and Machado et al. [12] study stochastic models for population growth where individuals gather in independent colonies subject to catastrophes. When a catastrophe strikes a colony the survivors disperse, trying to build new colonies that may succeed settling down depending on the environment they encounter. Schinazi [13] and Machado et al. [12] conclude that for these models dispersion is the best strategy. Latter Junior et al. [6] focused on models that combine two types of catastrophes (binomial and geometric) and reached the conclusion that dispersion may not be the best strategy. They observe that the best strategy depends on the type of catastrophe, the spatial restrictions that the colony must deal with and the individual survival probability when it is exposed to a catastrophe. Machado et al. [11] considered a general set up for growth rates and types of catastrophes but with severe spatial restrictions in the sense that every colony, after the catastrophe event, has only up to \(d \) spots to move to.

The common point between these papers [6,11,12] is the way the survivors disperse when their colony is stricken by a catastrophe. They consider that each survivor choose independently and with equal probability among the options they have to disperse. In this paper we study a variety of dispersion possibilities and show that the survival probability of the whole population may be influenced by the scheme the individuals use when the dispersion occurs.

In Sect. 2 we define and characterize four models for the growth of populations subject to catastrophes considering different types of dispersion. In Sect. 3 we compare the four models introduced in Sect 2. Finally, in Sect. 4 we prove the results presented in Sects. 2 and 3.

2 Growth Models

Artalejo et al. [1] present a model for a population which sticks together in one colony, without dispersion. That colony gives birth to new individuals at rate \(\lambda > 0 \), while catastrophes happen at rate \(\mu \). If at a catastrophe time the size of the population is \(i \), it is reduced to \(j \) with probability

\[
\mu_{ij} = \begin{cases}
q^i, & j = 0, \\
pq^{i-j}, & 1 \leq j \leq i,
\end{cases}
\]
where $0 < p < 1$ and $q = 1 - p$. The form of μ_{ij} represents what is called *Geometric catastrophe*. Disasters reach the individuals sequentially and the effects of a disaster stop as soon as the first individual survives, if there is any survivor. The probability of next individual to survive, given that everyone fails up to that point, is p.

The population size (number of individuals in the colony) at time t is a continuous time Markov process $\{X(t) : t \geq 0\}$ that we denote by $C(\lambda_., p)$. We assume $\mu = 1$ and $X(0) = 1$.

Artalejo et al. [1] use the word *extinction* to describe the event that $X(t) = 0$, for some $t > 0$, for a process where state 0 is not an absorbing state. In fact the extinction time here is the first hitting time to the state 0. Throughout this paper we say that a process survives if the extinction probability is strictly smaller than one.

Theorem 2.1 (Artalejo et al. [1]) Let $X(t)$ a process $C(\lambda_., p)$, with $\lambda > 0$ and $0 < p < 1$. Then, extinction event occurs with probability

$$
\psi_A = \min \left\{ \frac{1 - p}{\lambda p}, 1 \right\}.
$$

The geometric catastrophe, represented by μ_{ij}, would correspond to cases where the decline in the population is halted as soon as any individual survives the catastrophic event. This may be appropriate for some forms of catastrophic epidemics or when the catastrophe has a sequential propagation effect like in the predator–prey models—the predator kills prey until it becomes satisfied. More examples can be found in Artalejo et al. [1], Cairns and Pollett [3], Economou and Gomez-Corral [4], Thierry Huillet [5], Kumar et al. [8] and Kumar and Gupta [9,10].

Based on the previous model we next define three models with dispersion on T_d^+.

2.1 Growth Model with Dispersion on T_d^+

Let T_d^+ be an infinite rooted tree whose vertices have degree $d + 1$, except the root that has degree d. Let us define a process with dispersion on T_d^+, starting from a single colony placed at the root of T_d^+, with just one individual. The number of individuals in a colony grows following a Poisson process of rate $\lambda > 0$. To each colony we associate an exponential time of mean 1 that indicates when the geometric catastrophe strikes a colony. The individuals that survived the catastrophe are dispersed between the d neighboring vertices furthest from the root to create new colonies. Among the survivors that go to the same vertex to create a new colony at it, only one succeeds, the others die. So in this case when a catastrophe occurs in a colony, that colony is replaced by 0, 1, ... or d colonies. We consider three types of dispersion:

- **Optimal dispersion** individuals are distributed, from left to right, in order to create the largest possible number of new colonies. If r individuals survive to a catastrophe, then the number of colonies that are created equals $\min\{r, d\}$. Let us denote the process with optimal dispersion by $C_d^O(\lambda_., p)$.

- **Independent dispersion** each one of the individuals that survived the catastrophe picks randomly a neighbor vertex and tries to create a new colony at it. When the amount of survivors is r, the probability of having $y \leq \min\{d, r\}$ vertices colonized is

$$
\frac{T(r, y)}{d^r} \binom{d}{y},
$$
where

\[T(r, y) = \sum_{i=0}^{y} \left(-1 \right)^{i} \binom{y}{i} (y-i)^r \]

is the number of surjective functions \(f : A \to B \), with \(|A| = r \) and \(|B| = y \). Observe that \(T(r, y) = y!S(r, y) \) where \(S(r, y) \) is a second-kind Stirling number. Let us denote the process with independent dispersion by \(C_d^i(\lambda, p) \).

- **Uniform dispersion** for every \(r \), the amount of survivors, each set of numbers \(r_1, r_2, \ldots, r_d \in \mathbb{N} \) (occupancy set of numbers), solution for

 \[r_1 + r_2 + \cdots + r_d = r \]

has probability \(\binom{r-1}{y-1} \binom{d}{y} \). So, the probability of having \(y \leq \min\{d, r\} \) vertices colonized when the amount of survivors is \(r \) is

\[\frac{(r-1)}{\binom{d+r-1}{y}} \binom{d}{y}. \]

Let us denote the process with uniform dispersion by \(C_d^u(\lambda, p) \).

The \(C_d^o(\lambda, p), C_d^i(\lambda, p) \) and \(C_d^u(\lambda, p) \) are continuous-time Markov processes with state space \(\mathbb{N}_0^d \). For each of these processes we say that it *survives* if with positive probability there are colonies for any time in that process. Otherwise, we say that the process *dies out*.

We denote by \(\psi_d^o \) (\(\psi_d^i \) and \(\psi_d^u \)) the extinction probability for \(C_d^o(\lambda, p) \) (\(C_d^i(\lambda, p) \) and \(C_d^u(\lambda, p) \), respectively) process. By coupling arguments one can see that the extinction probability, \(\psi_d^o \) (\(\psi_d^i \) and \(\psi_d^u \)), is a non-increasing function of \(d, \lambda \) and \(p \).

Remark 2.2 As the optimal dispersion maximizes the number of new colonies whenever there are individuals that survived from the latest catastrophe, that type of dispersion is the one which maximizes the survival probability. Moreover, for \(d = 2 \) and \(3 \), the survival probability for the model with independent dispersion is larger or equal than the survival probability for the model with uniform dispersion. The reason for that is because the cumulative distribution function of the number of new colonies created right after a catastrophe for the model with independent dispersion is smaller than the analogous for the model with uniform dispersion. In conclusion for \(d = 2 \) and \(3 \),

\[\psi_d^o \leq \psi_d^i \leq \psi_d^u. \] \((2.1) \)

The next results present necessary and sufficient conditions for population survival of the process \(C_2^o(\lambda, p) \).

Theorem 2.3 The process \(C_2^o(\lambda, p) \) survives \((\psi_2^o < 1) \) if and only if

\[\lambda > \frac{1-p}{p}. \]

Moreover

\[\psi_2^o = \min \left\{ 1, \frac{1-p}{\lambda p} \right\}. \]
Remark 2.4 From Theorems 2.1 and 2.3 one sees that extinction probabilities for the models $C(\lambda, p)$ and $C_2^o(\lambda, p)$, are the same ($\psi_A = \psi_2^o$). This is a big surprise and don’t see any intuitive reason for this. As a consequence, when $d = 2$, for fixed λ and p, it is not possible to increase the survival probability by any type of dispersion.

Theorem 2.5 The process $C_3^o(\lambda, p)$ survives ($\psi_3^o < 1$) if and only if

$$p > \frac{\lambda + 1}{2\lambda^2 + 2\lambda + 1}.$$

Moreover

$$\psi_3^o = \min \left\{ 1, \frac{\lambda + 1}{2\lambda} \left[-1 + \sqrt{1 - \frac{\lambda p + 4 - 3p}{(\lambda + 1)p}} \right] \right\}.$$

Theorem 2.6 The process $C_2^i(\lambda, p)$ survives ($\psi_2^i < 1$) if and only if

$$p > \frac{\lambda + 2}{\lambda^2 + 2\lambda + 2}.$$

Moreover

$$\psi_2^i = \min \left\{ 1, \frac{(1 - p)(\lambda + 2)}{\lambda p(\lambda + 1)} \right\}.$$

Theorem 2.7 The process $C_3^i(\lambda, p)$ survives ($\psi_3^i < 1$) if and only if

$$p > \frac{\lambda + 3}{2\lambda^2 + 3\lambda + 3}.$$

Moreover

$$\psi_3^i = \min \left\{ 1, \frac{1}{2\lambda} \left[-(\lambda + 3) + \sqrt{\frac{(\lambda + 3)(p\lambda^2 + 4\lambda + 6 - 3p)}{p(\lambda + 1)}} \right] \right\}.$$

Theorem 2.8 The process $C_2^u(\lambda, p)$ survives ($\psi_2^u < 1$) if and only if

$$\ln(\lambda + 1) < \frac{\lambda [\lambda^2 p + (4p - 1)\lambda + 2p]}{2(\lambda + 1)^2 p}.$$

Moreover

$$\psi_2^u = \min \left\{ 1, \frac{\lambda^2 (1 - p)}{(\lambda + 2)(\lambda + 1)\lambda p - 2p(\lambda + 1)^2 \ln(\lambda + 1)} \right\}.$$

Theorem 2.9 The process $C_3^u(\lambda, p)$ survives ($\psi_3^u < 1$) if and only if

$$\frac{3p(\lambda + 1)^2}{\lambda^2(\lambda p + 1)} \left[\lambda + 2 - \frac{2(\lambda + 1)}{\lambda} \ln(\lambda + 1) \right] > 1.$$

Moreover

$$\psi_3^u = \min \left\{ 1, \frac{1}{2} \left[\sqrt{3} - \frac{(k_2 + k_3) + (m_2 + m_3) \ln(\lambda + 1)}{k_3 - m_3 \ln(\lambda + 1)} \right] \right\}.$$
where

$$\Delta = (m_2 + m_3)^2 \ln^2(\lambda + 1) - 2[(k_2 + k_3)(m_2 + m_3)$$

$$+ 2\beta m_3] \ln(\lambda + 1) + [(k_2 + k_3)^2 + 4\beta k_3]$$

$$\beta = \frac{1 - p}{\lambda p + 1}, \quad k_2 = \frac{-3p(\lambda + 1)(5\lambda + 6)}{\lambda^2(\lambda p + 1)}, \quad k_3 = \frac{p(\lambda + 1)(\lambda^2 + 12\lambda + 12)}{\lambda^2(\lambda p + 1)}$$

$$m_2 = \frac{-6p(\lambda + 1)^2(\lambda + 3)}{\lambda^3(\lambda p + 1)} \quad \text{and} \quad m_3 = \frac{6p(\lambda + 1)^2(\lambda + 2)}{\lambda^3(\lambda p + 1)}.$$

The theorems presented in Sect. 2.1 show explicitly the formulae for the extinction probabilities $\psi_d^o, \psi_d^i, \psi_d^u$ for $d = 2, 3$. Following the reasoning presented in Sect. 4 one can see how to compute the extinction probability for any d. Observe that for $d = \infty$ the only model that makes sense is the optimal model, which corresponds to the scheme with no spatial restriction where each individual that survives a catastrophe, creates its own new colony independently of everything else. In that case $(d = \infty)$ the extinction probability equals

$$\psi^o_{\infty} = \min \left\{ \frac{(1 - p)(\lambda + 1)}{\lambda(1 + \lambda p)}, 1 \right\}$$

as Theorem 2.4 of Junior et al. [6] shows.

3 Dispersion as a Survival Strategy

Towards being able to evaluate dispersion as a survival strategy we define

$$\lambda_c(p) := \inf \{\lambda : C(\lambda, p) \text{ survives}\},$$

$$\lambda_o^c(d, p) := \inf \{\lambda : C_o^d(\lambda, p) \text{ survives}\},$$

$$\lambda_i^c(d, p) := \inf \{\lambda : C_i^d(\lambda, p) \text{ survives}\},$$

$$\lambda_u^o(d, p) := \inf \{\lambda : C_u^d(\lambda, p) \text{ survives}\}.$$

Remark 3.1 When $0 < \lambda_c(p) < \infty$ for $0 < p < 1$, the graph of $\lambda_c(p)$ splits the parametric space $\lambda \times p$ into two regions. For those values of (λ, p) above the curve $\lambda_c(p)$ there is survival in $C(\lambda, p)$ with positive probability, and for those values of (λ, p) below the curve $\lambda_c(p)$ extinction occurs in $C(\lambda, p)$ with probability 1. The analogous happens also for $\lambda_o^c(d, p)$, $\lambda_i^c(d, p)$ and $\lambda_u^o(d, p)$. For $d = 2$ and $d = 3$, from inequality (2.1) it follows that

$$\lambda_i^c(d, p) \leq \lambda_c(p) \leq \lambda_u^o(d, p).$$

For an illustration, see Figs. 1 and 2.

From Remark 2.4 and the fact that the extinction probability, $\psi_d^o (\psi_d^i$ and ψ_d^u), is a non-increasing function of d, λ and p, one sees that $\psi_3^o \leq \psi_2^o = \psi_A$. When analyzing the critical parameters one sees (Fig. 2) that $\lambda_c^o(3, p) < \lambda_c(p)$. This shows that when $d = 3$, for all $0 < p < 1$, the optimal dispersion is a superior strategy when compared to the non-dispersion scheme studied in Artalejo et al. [1].

However, dispersion is not always a better scenery for population survival, as one can see in Fig. 2. Observe that:

$$\lambda_i^c(3, p) \leq \lambda_c(p) \iff p \leq p_i^3 = \frac{1}{2} \quad (3.1)$$
and

$$\lambda_c^u(3, p) \leq \lambda_c(p) \iff p \leq p_3^u \approx 0.239139,$$

(3.2)

where the values p_3^i and p_3^u are obtained by plugging $\lambda = \lambda_c(p) = \frac{1-p}{p}$ in Eqs. (2.2) and (2.3), respectively, taken as equality.

In the region bounded by the curves $\lambda_c^i(3, p)$ and $\lambda_c(p)$, for $0 < p < p_3^i$, we obtain from (3.1) that $\psi_3^i < \psi_A = 1$. In this case, independent dispersion is a better strategy than non-dispersion. On the other hand, in the region bounded by the curves $\lambda_c^i(3, p)$ and $\lambda_c(p)$ when $p_3^i < p < 1$, we obtain that $\psi_A < \psi_3^i = 1$ and that non-dispersion is a better than independent dispersion. These two latter observations were also presented in Junior et al. [6].

Analogously, we can conclude from (3.2) that uniform dispersion is a better strategy than non-dispersion in the region bounded by $\lambda_c^u(3, p)$ and $\lambda_c(p)$ when $0 < p < p_3^u$. The opposite (non-dispersion is a better strategy than uniform dispersion) holds in the region bounded by $\lambda_c^i(3, p)$ and $\lambda_c(p)$ when $p_3^u < p < 1$.

An interesting question is to determine whether dispersion is an advantage or not for population survival in the region of parameters where both processes $C(\lambda, p)$ and $C_3^i(\lambda, p)$ [or $C_3^u(\lambda, p)$] survives. This question is answered by the following propositions.

Proposition 3.2 Assume that $\psi_3^i < 1$ and $\psi_A < 1$. Then, $\psi_3^i < \psi_A$ if and only if

$$p < \frac{2(\lambda + 1)}{3\lambda + 5}. \quad (3.3)$$

Moreover $\psi_3^i = \psi_A$ if and only if we have an equality in (3.3).

Proposition 3.2 is a direct consequence of Theorems 2.1 and 2.7. From (3.1) and Proposition 3.2 we can conclude that independent dispersion is a better strategy compared to
non-dispersion, when the parameters (λ, p) fall in the gray region of Fig. 3. The opposite (non-dispersion is a better strategy than independent dispersion) holds in the yellow region.

Remark 3.3 Consider the processes $C(\lambda, p)$ and $C_i^j(\lambda, p)$. From Theorems 2.1 and 2.7 and Proposition 3.2 it follows that,

- For $\lambda > 1$
 - If $p \in \left(0, \frac{\lambda+3}{2\lambda^2+3\lambda+3} \right]$, then $\psi_A = \psi_i^j = 1$.
 - If $p \in \left(\frac{\lambda+3}{2\lambda^2+3\lambda+3}, \frac{1}{\lambda+1} \right]$, then $\psi_i^j < \psi_A = 1$.
 - If $p \in \left(\frac{1}{\lambda+1}, \frac{2(\lambda+1)}{3\lambda+5} \right]$, then $\psi_A < \psi_i^j < 1$.
 - If $p = \frac{2(\lambda+1)}{3\lambda+5}$, then $\psi_i^j = \psi_A = \frac{\lambda+3}{2\lambda(\lambda+1)} < 1$.
 - If $p \in \left(\frac{2(\lambda+1)}{3\lambda+5}, 1 \right]$, then $\psi_A < \psi_i^j < 1$.

- For $\lambda = 1$
 - If $p \in \left(0, \frac{1}{2} \right]$, then $\psi_A = \psi_i^j = 1$.
 - If $p \in \left(\frac{1}{2}, 1 \right]$, then $\psi_A < \psi_i^j < 1$.

- For $\lambda < 1$
 - If $p \in \left(0, \frac{1}{\lambda+1} \right]$, then $\psi_A = \psi_i^j = 1$.
 - If $p \in \left(\frac{1}{\lambda+1}, \frac{\lambda+3}{2\lambda^2+3\lambda+3} \right]$, then $\psi_A < \psi_i^j = 1$.
 - If $p \in \left(\frac{\lambda+3}{2\lambda^2+3\lambda+3}, 1 \right]$, then $\psi_i^j < \psi_A < 1$.

Proposition 3.4 Assume that $\psi_A < 1$ and $\psi_A < 1$. Then, $\psi_A < \psi_A$ if and only if

$$\left[\left(\frac{1}{\lambda} + \frac{2(\lambda+1)}{\lambda^2+3\lambda+3} \right) m_3 + m_2 \right] \ln(\lambda + 1) < \left(\frac{1}{\lambda} + \frac{2(\lambda+1)}{\lambda^2+3\lambda+3} \right) k_3 + k_2 - \frac{\lambda p}{\lambda p + 1}. \quad (3.4)$$

Moreover, $\psi_A = \psi_A$ if and only if we have an equality in (3.4).

Proposition 3.4 is a consequence of Theorems 2.1 and 2.9. From (3.2) and Proposition 3.4 we can conclude that *uniform dispersion* is a better strategy compared to non-dispersion,
when the parameters \((\lambda, p)\) fall in the gray region of Fig. 4. The opposite (non-dispersion is a better strategy than uniform dispersion) holds in the yellow region. Analogous to what is presented in Remark 3.3 we have \(\lambda \approx 3.18\) splitting the cases.

Example 3.5 Consider the processes \(C(4, p)\) and \(C^u_3(4, p)\). From Theorems 2.1 and 2.9, and Proposition 3.4 follows that

- If \(p \in \left(0, \frac{32}{772 - 375 \ln(5)}\right]\), then \(\psi_A = \psi^u_3 = 1\).
- If \(p \in \left(\frac{32}{772 - 375 \ln(5)}, \frac{1}{3}\right]\), then \(\psi^u_3 < \psi_A = 1\).
- If \(p \in \left(\frac{1}{3}, \frac{380 - 225 \ln(5)}{676 - 375 \ln(5)}\right]\), then \(\psi^u_3 < \psi_A < 1\).
- If \(p = \frac{380 - 225 \ln(5)}{676 - 375 \ln(5)}\), then \(\psi^i_3 = \psi_A < 1\).
- If \(p \in \left(\frac{380 - 225 \ln(5)}{676 - 375 \ln(5)}, 1\right]\), then \(\psi_A < \psi^u_3 < 1\).

Remark 3.6 Observe that the model with only one colony has a catastrophe rate of 1 while the multiple colonies model has a catastrophe rate of \(n\) if there are \(n\) colonies. Moreover, a catastrophe is more likely to wipe out a smaller colony than a larger one. On the other hand multiple colonies give multiple chances for survival and this may be a critical advantage of the multiple colonies model over the single colony model. Therefore our analysis shows that for \(d = 3\), dispersion is an advantage or not for population survival depending on the dispersion type, \(\lambda\) and \(p\).

4 Proofs

Lemma 4.1 Let \((Z_n)_{n \geq 0}\) be a branching process with \(Z_0 = 1\), whose offspring distribution has probability generating function given by \(g(s) = p_0 + p_1 s + p_2 s^2 + p_3 s^3\) and with extinction probability denoted by \(\psi\). Then

(i) \(\psi < 1\) if and only if \(p_1 + 2p_2 + 3p_3 > 1\).

(ii) Assume \(p_3 \neq 0\). If \(p_1 + 2p_2 + 3p_3 > 1\) then

\[
\psi = \frac{1}{2} \left[-1 - \frac{p_2}{p_3} + \sqrt{\left(1 + \frac{p_2}{p_3}\right)^2 + \frac{4p_0}{p_3}} \right].
\]
(iii) Assume \(p_3 = 0 \). If \(p_1 + 2p_2 > 1 \) then
\[
\psi = \frac{p_0}{p_2}.
\]
(iv) Assume \(p_0 = \beta \) and \(p_y = k_y + m_y \ln v, y = 1, 2, 3 \). Then
\[
\psi < 1 \text{ if and only if } (m_1 + 2m_2 + 3m_3) \ln v < 1 - k_1 - 2k_2 - 3k_3.
\]
If \((m_1 + 2m_2 + 3m_3) \ln v < 1 - k_1 - 2k_2 - 3k_3 \) and \(p_3 \neq 0 \) then
\[
\psi = \frac{1}{2} \left[-1 + \sqrt{\Delta - k_2 - m_2 - \ln v} \right]
\]
where
\[
\Delta = (m_2 + m_3)^2 \ln^2 v + 2[(k_2 + k_3)(m_2 + m_3) + 2\beta m_3] \ln v + [(k_2 + k_3)^2 + 4\beta k_3].
\]
(v) Take \(k_3 = m_3 = 0 \) in (iv). Then
\[
\psi < 1 \text{ if and only if } (m_1 + 2m_2) \ln v < 1 - k_1 - 2k_2.
\]
Besides, if \((m_1 + 2m_2) \ln v < 1 - k_1 - 2k_2 \) and \(p_2 \neq 0 \) then
\[
\psi = \frac{\beta}{k_2 + m_2 \ln v}.
\]

Proof of Lemma 4.1

(i) \(\psi < 1 \) if and only if \(\mu = g'(1) > 1 \) where \(g'(1) = p_1 + 2p_2 + 3p_3 \).

(ii) \(\psi \) is the smallest non-negative solution of \(g(s) = s \). That is, one must solve the equation
\[
(s - 1)(p_3 s^2 + (p_2 + p_3)s - p_0) = 0.
\]

(iii) \(\psi \) is the smallest non-negative solution of \(g(s) = s \). Then when \(p_3 = 0 \), one has to solve the equation
\[
(s - 1)(p_2 s - p_0) = 0.
\]

(iv) The first part follows immediately from (i). For the second part, observe that in (ii)
\[
\psi = \frac{1}{2} \left[-1 + \sqrt{(p_2 + p_3)^2 + 4p_0 p_3 - p_2} \right].
\]

(v) The first part follows from (i) and the second part follows from (iii).

\[\square\]

Remark 4.2

The probability distribution of the number of survivals right after the catastrophe (but before the dispersion) is given by
\[
\mathbb{P}(N = 0) = \beta, \quad \mathbb{P}(N = n) = \alpha c^n, \quad n = 1, 2, \ldots,
\]
where
\[
\beta = \frac{1 - p}{\lambda p + 1}, \quad \alpha = \frac{(\lambda + 1) p}{\lambda (\lambda p + 1)} \quad \text{and} \quad c = \frac{\lambda}{\lambda + 1}.
\]

Observe that
\[
\beta = \frac{1 - (1 + \alpha)c}{(1 - c)}.
\]

For details see Machado et al. [11, Sect. 2.2].
Proof of Theorem 2.3 We start off considering an auxiliary model. For this we define \(Z_0 = 1 \), the number of colonies present at time 0 in \(C_3^2(\lambda, p) \). As soon as it collapses, a random number of colonies, call it \(Z_1 \), will be created. This is the first generation. Each one of these colonies will give birth (at different times) to a random number of new colonies. That is \(Z_2 \), the second generation. In general, for \(n \geq 1 \), if \(Z_{n-1} = 0 \) then \(Z_n = 0 \). On the other hand, if \(Z_{n-1} \geq 1 \), then \(Z_n \) is the number of colonies generated by the \((n-1)\)th generation of colonies.

From the fact that the numbers of descendants of different colonies are independent and have the same distribution, we claim that \(\{Z_n\}_{n \in \mathbb{N}} \) is a Galton–Watson process. Observe that \(C_3^2(\lambda, p) \) dies out if and only if \(\{Z_n\}_{n \in \mathbb{N}} \) dies out and the offspring distribution in \(\{Z_n\}_{n \in \mathbb{N}} \) is given by
\[
p_0 = \mathbb{P}(N = 0) = \beta, \quad p_1 = \mathbb{P}(N = 1) = \alpha c \quad \text{and} \quad p_2 = 1 - \beta - \alpha c.
\]
Next, apply Lemma 4.1, part (iii).

The strategy presented in the proof of Theorem 2.3 is used in the following proof.

Proof of Theorem 2.5 Here \(d = 3 \), then we have
\[
p_0 = \mathbb{P}(N = 0) = \beta, \quad p_1 = \mathbb{P}(N = 1) = \alpha c,
\]
\[
p_2 = \mathbb{P}(N = 2) = \alpha c^2 \quad \text{and} \quad p_3 = 1 - \beta - \alpha c - \alpha c^2.
\]
Next, applying Lemma 4.1, part ii)
\[
\psi = \frac{1}{2} \left[- \left(1 + \frac{\alpha c^2}{1 - \beta - \alpha c - \alpha c^2} \right) + \sqrt{\left(1 + \frac{\alpha c^2}{1 - \beta - \alpha c - \alpha c^2} \right)^2 + \frac{4\beta}{1 - \beta - \alpha c - \alpha c^2}} \right]
\]
\[
= \frac{1}{2(1 - \beta - \alpha c - \alpha c^2)} \left[-(1 - \beta - \alpha c) + \sqrt{(1 - \beta - \alpha c)^2 + 4\beta(1 - \beta - \alpha c - \alpha c^2)} \right].
\]
The result follows when one considers
\[
\beta = \frac{1 - p}{\lambda p + 1}, \quad \alpha = \frac{(\lambda + 1)p}{\lambda(\lambda p + 1)} \quad \text{and} \quad c = \frac{\lambda}{\lambda + 1}.
\]

Proof of Theorem 2.6 The first part can be seen as an application of Proposition 4.3 from Machado et al. [11]. As \(d = 2 \),
\[
\psi^* < 1 \quad \text{if and only if} \quad \mathbb{E} \left[\left(\frac{1}{2} \right)^N \right] < \frac{1}{2}.
\]
Observe that
\[
\mathbb{E} \left(s^N \right) = \beta + \sum_{n=1}^{\infty} s^n \alpha c^n = \frac{sc(\alpha - \beta) + \beta}{1 - sc}.
\]
Then, considering Proposition 4.3 from Machado et al. [11] we see that \(\psi^i_2 < 1 \) if and only if
\[
\frac{\frac{1}{2}c(\alpha - \beta) + \beta}{1 - \frac{1}{2}c} < \frac{1}{2},
\]
then, substituting \(\alpha, \beta \) and \(c \) accordingly we see that \(\psi^i_2 < 1 \) if and only if
\[
p > \frac{\lambda + 2}{\lambda^2 + 2\lambda + 2}.
\]
In order to obtain the extinction probability we consider Proposition 4.4 from Machado et al. [11]. There we have that when \(d = 2 \), \(\psi^i_2 \) is the smallest non-negative solution of
\[
\sum_{y=0}^{2} s^y \left(\frac{2}{y} \right) \sum_{n=y}^{\infty} \frac{T(n, y)}{2^n} \mathbb{P}(N = n) = s,
\]
where
\[
T(n, y) = \sum_{i=0}^{y} \left[(-1)^y \binom{y}{i} (y - i)^n \right].
\]
Then, to obtain \(\psi^i_2 \) we have to solve the equation
\[
\beta + 2s\alpha \sum_{n=1}^{\infty} \left(\frac{1}{2} \right)^n c^n + s^2 \sum_{n=2}^{\infty} \left(\frac{2^n - 2}{2^n} \right) \alpha c^n = s
\]
or equivalently
\[
\beta + \left(\frac{2ac + c - 2}{2 - c} \right) s + \frac{\alpha c^2}{(1 - c)(2 - c)} s^2 = 0.
\]
Then, substituting \(\alpha, \beta \) and \(c \) accordingly, we obtain
\[
\lambda p(\lambda + 1)s^2 + (2p - \lambda^2 p - \lambda - 2)s + (1 - p)(\lambda + 2) = 0
\]
or equivalently
\[
(s - 1)[\lambda p(\lambda + 1)s + (\lambda + 2)(p - 1)] = 0.
\]
Finally, we have that
\[
\psi^i_2 = \min \left\{ 1, \frac{(1 - p)(\lambda + 2)}{\lambda p(\lambda + 1)} \right\}.
\]
\(\square \)

Proof of Theorem 2.7 Proposition 4.3 from Machado et al. [11] \((d = 3) \) is to be considered in order to prove the first part. First of all observe that
\[
\psi^i_3 < 1 \text{ if and only if } \mathbb{E} \left[\left(\frac{2}{3} \right)^N \right] < \frac{2}{3}.
\]
Using Eq. (4.2) and applying Proposition 4.3 from Machado et al. [11] we see that \(\psi^i_3 < 1 \) if and only if
\[
\frac{c}{2} (\alpha - \beta) + \beta < \frac{1}{2} \left(1 - \frac{c}{2} \right).
\]
Then, substituting α, β and c accordingly, we see that $\psi^3_i < 1$ if and only if

$$p \geq \frac{\lambda + 3}{2\lambda^2 + 3\lambda + 3}.$$

In order to obtain the extinction probability we consider Proposition 4.4 from Machado et al. [11]. There we have that when $d = 3$, ψ^3_i is the smallest non-negative solution of

$$\beta + 3\alpha s \left[\sum_{n=1}^{\infty} \left(\frac{c}{3} \right)^n \right] + 3\alpha s^2 \left[\sum_{n=2}^{\infty} \frac{(2^n - 2)}{3^n} c^n \right] + \alpha s^3 \left[\sum_{n=3}^{\infty} \frac{(3^n - 3 \cdot 2^n + 3)}{3^n} c^n \right] = s.$$

So, we have to solve

$$2\alpha c^3 s^3 + 6\alpha c^2 (1 - c)s^2 + (3\alpha c + c - 3)(1 - c)(3 - 2c)s + \beta (1 - c)(3 - 2c)(3 - c) = 0,$$

or equivalently [see Eq. (4.1)], solve

$$(s - 1)[(2\alpha c^3)s^2 + (6\alpha c^2 - 4\alpha c^3)s + 2\alpha c^3 - 9\alpha c^2 + 9\alpha c + 2c^3 - 11c^2 + 18c - 9] = 0.$$

Substituting α and c, equivalently we have to solve

$$(s - 1) \left[s^2 + \frac{(\lambda + 3)}{\lambda} s + \frac{(p - 1)(2\lambda^2 + 9\lambda + 9)}{2(\lambda + 1)p\lambda^2} \right] = 0$$

obtaining

$$\psi^3_i = \min \left\{ 1, \frac{1}{2\lambda} \left[-\lambda + 3 + \sqrt{\frac{(\lambda + 3)(p\lambda^2 + 4\lambda + 6 - 3p)}{p(\lambda + 1)}} \right] \right\}.$$

\(\square \)

Proof of Theorem 2.8 Observe that the process $C^u_2(\lambda, p)$ behaves a branching process. Next we show that the distribution of Y, the number of new colonies right after a catastrophe, satisfies item v) of Lemma 4.1. First we see that

$$\mathbb{P}(Y = 0) = \mathbb{P}(N = 0) = \frac{1 - p}{\lambda p + 1}. $$

For $n \neq 0$,

$$\mathbb{P}(Y = y|N = n) = \binom{n-1}{y-1} \frac{1}{n+1}, \quad y = 1, 2; \quad y \leq n.$$

Then,

$$\mathbb{P}(Y = 1) = \sum_{n=1}^{\infty} \mathbb{P}(N = n)\mathbb{P}(Y = 1|N = n) = -2\alpha - \frac{2\alpha}{c} \ln(1 - c)$$

and

$$\mathbb{P}(Y = 2) = \sum_{n=2}^{\infty} \mathbb{P}(N = n)\mathbb{P}(Y = 2|N = n) = \frac{\alpha(2 - c)}{1 - c} - \frac{2\alpha}{c} \ln(1 - c).$$

Substituting α and c we see that

$$\mathbb{P}(Y = 1) = \frac{-2p(\lambda + 1)}{\lambda(\lambda p + 1)} - \frac{2p(\lambda + 1)^2}{\lambda^2(\lambda p + 1)} \ln \left(\frac{1}{\lambda + 1} \right)$$
and
\[\mathbb{P}(Y = 2) = \frac{p(\lambda + 1)(\lambda + 2)}{\lambda(\lambda p + 1)} + \frac{2(\lambda + 1)^2 p}{\lambda^2(\lambda p + 1)} \ln \left(\frac{1}{\lambda + 1} \right). \]

The result follows after identifying the parameters \(k_y, m_y\) and \(v\) in item (v) of Lemma 4.1. \(\square\)

Proof of Theorem 2.9 Observe that the process \(C^u_3(\lambda, p)\) behaves a branching process. Next we show that the distribution of \(Y\), the number of new colonies right after a catastrophe, satisfies item (iv) of Lemma 4.1. First we see that
\[\mathbb{P}(Y = 0) = \mathbb{P}(N = 0) = \frac{1 - p}{\lambda p + 1}. \]

For \(n \neq 0\):
\[\mathbb{P}(Y = y|N = n) = \frac{\binom{n - 1}{y - 1}}{\binom{n + 2}{2}}, \quad y = 1, 2, 3, \quad y \leq n. \]

Then,
\[\mathbb{P}(Y = 1) = \sum_{n=1}^{\infty} \mathbb{P}(N = n) \mathbb{P}(Y = 1|N = n) = \frac{3\alpha(2 - c)}{c} + \frac{6\alpha(1 - c)}{c^2} \ln(1 - c), \]
\[\mathbb{P}(Y = 2) = \sum_{n=2}^{\infty} \mathbb{P}(N = n) \mathbb{P}(Y = 2|N = n) = \frac{3\alpha(c - 6)}{c} + \frac{12\alpha(2c - 3)}{c^2} \ln(1 - c) \]
and
\[\mathbb{P}(Y = 3) = \sum_{n=3}^{\infty} \mathbb{P}(N = n) \mathbb{P}(Y = 3|N = n) = \frac{\alpha(c^2 - 12c + 12)}{c(1 - c)} + \frac{6\alpha(2 - c)}{c^2} \ln(1 - c). \]

Substituting \(\alpha\) and \(c\) we see that
\[\mathbb{P}(Y = 1) = \frac{3p(\lambda + 1)(\lambda + 2)}{\lambda^2(\lambda p + 1)} + \frac{6p(\lambda + 1)^2}{\lambda^3(\lambda p + 1)} \ln \left(\frac{1}{\lambda + 1} \right), \]
\[\mathbb{P}(Y = 2) = \frac{-3p(\lambda + 1)(5\lambda + 6)}{\lambda^2(\lambda p + 1)} - \frac{6p(\lambda + 1)^2(\lambda + 3)}{\lambda^3(\lambda p + 1)} \ln \left(\frac{1}{\lambda + 1} \right) \]
and
\[\mathbb{P}(Y = 3) = \frac{p(\lambda + 1)(\lambda^2 + 12\lambda + 12)}{\lambda^2(\lambda p + 1)} + \frac{6p(\lambda + 1)^2(\lambda + 2)}{\lambda^3(\lambda p + 1)} \ln \left(\frac{1}{\lambda + 1} \right). \]

The result follows after identifying the parameters \(k_y, m_y\) and \(v\) in item (iv) of Lemma 4.1. \(\square\)

Acknowledgements The authors are thankful for the two anonymous referees for a careful reading, many suggestions and corrections that helped to improve the paper. Fábio Machado was supported by CNPq (303699/2018-3) and Fapesp (17/10555-0) and Alejandro Roldan by Universidad de Antioquia.
References

1. Artalejo, J.R., Economou, A., Lopez-Herrero, M.J.: Evaluating growth measures in an immigration process subject to binomial and geometric catastrophes. Math. Biosci. Eng. 4(4), 573–594 (2007)
2. Brockwell, P.J., Gani, J., Resnick, S.I.: Birth, immigration and catastrophe processes. Adv. Appl. Probab. 14, 709–731 (1982)
3. Cairns, B., Pollet, P.K.: Evaluating persistence times in populations that are subject to local catastrophes. In: Post, D.A. (ed) MODSIM 2003 International Congress on Modelling and Simulation, pp 747–752. Modelling and Simulation Society of Australia and New Zealand (2003)
4. Economou, A., Gomez-Corral, A.: The batch Markovian arrival process subject to renewal generated geometric catastrophes. Stoch. Models 23(2), 211–233 (2007)
5. Huillet, T.: On random population growth punctuated by geometric catastrophic events. Contemp. Math. 1(5), 469 (2020)
6. Junior, V.V., Machado, F.P., Roldan-Corra, A.: Dispersion as a survival strategy. J. Stat. Phys. 164(4), 937–951 (2016)
7. Kapodistria, S., Phung-Duc, T., Resing, J.: Linear birth/immigration-death process with binomial catastrophes. Probab. Eng. Inf. Sci. 30(1), 79–111 (2016)
8. Kumar, N., Barbhuiya, F.P., Gupta, U.C.: Analysis of a geometric catastrophe model with discrete-time batch renewal arrival process. RAIRO Oper. Res. 54(5), 1249–1268 (2020)
9. Kumar, N., Gupta, U.C.: Analysis of a population model with batch Markovian arrivals influenced by Markov arrival geometric catastrophes. Commun. Stat. Theory Methods (2019). https://doi.org/10.1080/03610926.2019.1682166
10. Kumar, N., Gupta, U.C.: A renewal generated geometric catastrophe model with discrete-time Markovian arrival process. Methodol Comput. Appl. Probab. 22, 1293–1324 (2020)
11. Machado, F.P., Roldan-Corra, A., Junior, V.V.: Colonization and collapse on homogeneous trees. J. Stat. Phys. 173, 1386–1407 (2018)
12. Machado, F.P., Roldan-Corra, A., Schinazi, R.: Colonization and collapse. ALEA Latin American J. Probab. Math. Stat. 14, 719–731 (2017)
13. Schinazi, R.: Does random dispersion help survival? J. Stat. Phys. 159(1), 101–107 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.