Fusion of ACO and PSO Technique Based Optimized Routing for Intellectual Routing in Wireless Ad hoc Networks

A K Velmurugan*, E S Madhan, K Padmanaban, and A M Senthil Kumar
Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
Email: `velmuruganak@kluniversity.in

Abstract. Wireless Ad hoc network (WANET) is an assortment of mobile nodes, which energetically custom a provisional network lacking the dependence of any infrastructure. In Dijkstra-Ant Colony Optimization Algorithm (ACO) for Straight as well as Harmless Emigration is applied to finding the shortest and safest path. However, this method cannot work perform when nodes are movable. In addition, ACO algorithm increases the power consumption and execution time. To solve the above problem in this work, Fusion of ACO and PSO technique based Optimized Routing (FAPO) for Intellectual Routing in WANET. This approach ACO and Particle Swarm Optimization (PSO) technique is proposed to provide optimized routing and reduces link failures. The ACO and PSO techniques initiates with creating a great quantity of mobile nodes in the search space and selects the route with high quality link. The function of the introduced technique is measured using the network simulator tool NS-2.

Keywords: Ant Colony Optimization, Particle Swarm Optimization, Routing Efficiency, Wireless Network

1. Introduction
A WANET [1] is a collection of wireless mobile nodes associated through wireless media lacking centralized structure. The significant necessitates of a WANET is dependability of data communication, multipath choice [2], also offering security [3] that enhances the network function. The routing approaches [4] should be dependable, healthy, and flexible. Routing function is limited through dynamic topology as well as link failure of the nodes [5]. The movement of the nodes enhances the complexity of routing purpose since it induces of link failure among nodes. This recurrent link failure creates to routing overhead also topology management, diminishes the dependability of data communication, and also minimizes the effectiveness of the network. Therefore, the link failure in WANET turns a very important concern [6].

In Dijkstra-ACO(DACO) technique for Shortest as well as Safest Migration is applied to discovering the shortest as well as harmlessly route applying Dijkstra’s technique plus DACO technique. The Dijkstra’s technique is selected owing to its effectiveness in optimizing pitch to offer a harmless emigration. Dijkstra’s technique is capable to discover the shortest distance amongst a node to entirely other nodes. Though, this method cannot work perform when nodes are movable. In addition, ACO algorithm increases the power consumption and execution time [7].

To solve these problems, this paper Fusion of ACO and PSO technique based Optimized Routing for Intellectual Routing is introduced. To enhance the route dependability PSO is functional established on node fitness function which dilutes link failures through estimating the position and node velocity. Here, ACO and PSO techniques initiatives with creating a highest number of mobile nodes in the search space and selects route with high quality link.

2. Related Works

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd
The recurrent topology changes owing to the type the systemratherunbalanced. A respectful next hop collection approach is, thus, necessary that is capable for improve the lifespan as well asenhance the data transaction [8]. In [9] introduced a location based approach that supporting an energy efficient selection as well as data routing to extend the lifespan of network. The clustering approach sure equated size cluster arrangement with least amount of broadcast accepts functions. This approach developed to attain equates the energy utilization between the nodes within the cluster as a result extending the lifespan.

The LEACH (Low-Energy Adaptive Clustering Hierarchy) approach [10] is an extensivelyrecognizedas well asefficient one to diminish and equate the energy utilization. The LEACH approacharbitrarily rotates Cluster Heads (CHs) between nodes, so as to avoid rapid energy utilization of the set of CHs.

Modified routing throughcomprising signal-to noise ratio (SNR) [11] based active clustering. This approach that is a proficient routing approach via SNR-based active clustering that divides the nodes into clusters as well as choose the CHestablished on the power as well as non CH nodes link through a precise CH established on the SNR values [12]. Error revival had been enforced through the inter-cluster routing so as to evade error revival. In this approach, network region is separated into two parts: border area as well as inner area. This approach limits CHcollectionto only inner area of the nodes. An adaptable routing with the receptiveness of energy is applied to receive through an active situation. Although the transmitter communicates the data to a multicast group, the transmitter communicate the data through highest power among neighbourhood, therefore improve the life duration [13]. Throughput is improved with a data-aided estimation procedure through means of transmitting choice, channel next communicate responsibility.

Zonal approach is a prevalent WSN routing approach. Here, typically focussed on optimization of steady selection approach. Energy Efficient Fuzzy Based Cross Layer approach forecast the energy depletion of node. It attain longer sensor lifetime. Energy management system is concentrateon observe the existence of worker in the consistent office cubicle [14]. Optimization of energy aware routing approach that include the routing method With hop-based direction-finding nature Throughout procedure. Grey wolf optimization technique is combined to predicament the precise location of unidentified nodes, to switch the node localization difficult [15].

3. Proposed Method

Fusion of ACO and PSO technique is introduced to provide optimized routing also dilutes link failures. The ACO and PSO technique initiates with creating a highest quantity of mobile nodes in the examine space and selects the route with high quality link. Here, the PSO procedure to enhance the multicast tree. The algorithm starts with generating a large amount of mobile nodes in the examine space. The ACO algorithm leads nodes motion through pheromones in the mutual surroundings in the vicinity, as well as the overall highest of the feature values are received via the random communication among the nodes utilizing PSO technique. This diminishes link failures as well as delay in the network. Bandwidth of the nodes is computed also the routes among the source as well as destination nodes are recognized as efficient path. Between the numerous routes the shortest path is certain for data communication.

3.1. PSO (Particle Swarm Optimisation)

PSO is launched with a collection of arbitrary route (fitness value) next explores for goodnisses through revising generations. In each iteration, every node is informed through subsequent two best values that are pheromons well asgbest. The initial is the greatest fitness rate it takes attained so distant away and such value is known phbest. A newest rate which is chased through the PSO is the best rate, received thusfaraway throughsome node in the route. This best rate is a gbestas well as visited gbest. When an element accepts fraction of the populace as its topologic neighbours, the best rate is a restricted best as well as is known ibest.

Next discovering the twice best rates, the node informs its node fitness value with subsequent formula.

\[f[] = f[] + \lambda_1 * \text{rand()} * (\text{gbest}[] - \text{present}[]) + \lambda_2 * \text{rand()} * (\text{gbest}[] - \text{present}[]) \]

\[\text{present}[] = \text{present}[] + f[] \]

Here,
f[] → node fitness value
present[] → current node
rand () → arbitrary number among 0,1
λ_1 and λ_2 → knowledge elements

Here, the source computes the node fitness value. If the current node fitness rate is better than the history rate that node represented the selected rate. Here, the node fitness rate is computed by node velocity and node position.

3.2. Ant Colony Optimization algorithm
ACO is a Meta heuristic procedure derivative from the examination of actual ants’ behavior which utilizes a pheromone trail to mark routessince the nest to the food origin. A position of ants is positioned on the exit node alsosubsequent a possibilityreplica they changeamong nodes tillivery the necessary waypoints have been inspected. Formerlyever ant has established a solution; the pheromone trail is informedofferingextrastress to the most excellent solution establish so far away. The ACOattains a good function in terms of improving network transactions also equating the load between every node.

4. Simulation Parameters
The function of FAPC is evaluated using the tool NS-2. The performance analysis is done through estimating packet received rate, packet loss rate, delay and throughput. The FAPC through itself can be utilized as a proficient routing metric. We employ NS2.35 simulation results for a WANET. Here, the 50 mobile nodes are arbitrarily distributed in a 600x500m² topology area with required modification to preserve the property.

Figure 1 depicts the highest received rate of data packet for DACO and FAPO Scheme. It describes that the FAPO has the highest received rate than the DACO since DCRS form the route based on PCO and ACO technique.
Figure 2 demonstrates the Packet drop of DACO and FAPO approach. The FAPO scheme diminishes the drop of data packet since it chooses to select the forwarder node by ACO technique in the network. But, DACO utilizes more packet losses.

Figure 3 depicts the throughput of DACO and FAPO approach. It explains that the proposed scheme FAPO has the highest throughput than the DACO since FAPO form the route based on ACO and PSO technique.
Figure 4 illustrates the average delay explicitly around recognized with the time period essential to distribute the whole data. This figure proves the FAPO have minimum delay time than the existing scheme DACO.

5. Conclusion

In this paper Fusion of ACO-PSO technique based Optimized Routing for Intellectual Routing in WANET. To enhance the route dependability PSO is functionally established on node fitness function which dilutes link failures through estimating the position and node velocity. The ACO and PSO technique initiates with creating a highest quantity of agents in the examine space also chooses route with great quality link. The simulation evaluation is done for projected FAPO results are proved to be better throughput and lesser both packet losses and delay in the WANET.

References

1. Nagendram, S., Rao, K. R. H., & Bojja, P. (2017). A review on recent advances of routing protocols for development of manet. Journal of Advanced Research in Dynamical and Control Systems, 9(2 Special Issue), 114-122.
2. Rajendra Prasad, C., & Bojja, P. (2017). A review on bio-inspired algorithms for routing and localization of wireless sensor networks. Journal of Advanced Research in Dynamical and Control Systems, 9(Special Issue 18), 1366-1374.
3. Devikar, R. N., Patil, D. V., & Chandraprakash, V. (2016). Issues in routing mechanism for packet forwarding: A survey. International Journal of Electrical and Computer Engineering, 6(1), 421-430.
4. SreeDivya, N., Bobba, V., & Vatambeti, R. (2018). Enhanced cluster based ant colony optimization multipath routing in VANET’S. Journal of Advanced Research in Dynamical and Control Systems, 10(8), 279-287.
5. Sabri, N. A. M., Basari, ASH., Hussin, B., Samah K.A.F., 2015, Dijkstra-Ant Colony Optimization Algorithm For Shortest And Safest Evacuation In High Rise Building, 79:3 (2017) 69–77
6. Ashok Kumar, Vinod Kumar, Narottam Chand,” Energy Efficient Clustering and Cluster Head Rotation Scheme for Wireless Sensor Networks” (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 3, No.5, 2011.
7. Huang Lu, Jie Li, Mohsen Guizani, “Secure and Efficient Data Transmission for Cluster based Wireless Sensor Networks,” IEEE TRANS. ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012.
8. W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An application-specific protocol architecture for wireless microsensor networks,” IEEE Trans. Wireless Commun., vol. 1, no. 4, 2002.
9. Jan, Z., Azeem, N., & Zahoor, F. (2015, November). Digital watermarking using combination of Ranklets and wavelets. In 2015 First International Conference on Anti-Cybercrime (ICACC) (pp. 1-5). IEEE.

10. V. Pal, G. Singh and R. Yadav, "SCHS: Smart Cluster Head Selection Scheme for Clustering Algorithms in Wireless Sensor Networks," Wireless Sensor Network, Vol. 4 No. 11, 2012, pp. 273-280.

11. Santhakumar, R (2017) Resource Allocation In Wireless Networks By Channel Estimation And Relay Assignment Using Data-Aided Techniques. International Journal of MC Square Scientific Research, 9(3), 40-47

12. Keerthi Anand V D(2015), Power-Efficient Multicast Opportunistic Routing Protocol To Optimize Lifetime of MANET, Int. Jour. of MC Square Scientific Research, 7(1), 154-165.

13. Appala Raju, V., Sri Harsha, V., BhanuDeepthi, N., & Prasanth, N. (2018). Zonal stable election protocol for heterogeneous wireless sensor networks. International Journal of Engineering and Technology(UAE), 7, 725-728.

14. Dhage, M. R., & Vemuru, S. (2018). A effective cross layer multi-hop routing protocol for heterogeneous wireless sensor network. Indonesian Journal of Electrical Engineering and Computer Science, 10(2), 664-671. doi:10.11591/ijeecs.v10.i2.pp664-671

15. Kumar, M J & Baskaran, R (2017), Analyzing a Personalized Network System through NetFlow’, Institute of Integrative Omics and Applied Biotechnology (IIOAB), 7(7), pp. 1-7.