Possible Application of Urinary Analysis to Estimate Dissolution of Some Man-made Vitreous Fibers
Agnès Wastiaux, Olivier Blanchard, Patrick Sebastien, Sylvie Honnons

To cite this version:
Agnès Wastiaux, Olivier Blanchard, Patrick Sebastien, Sylvie Honnons. Possible Application of Urinary Analysis to Estimate Dissolution of Some Man-made Vitreous Fibers. Environmental Health Perspectives, 1994, 102 (suppl. 5), pp.217-219. ineris-00961845

HAL Id: ineris-00961845
https://ineris.hal.science/ineris-00961845
Submitted on 20 Mar 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Possible Application of Urinary Analysis to Estimate Dissolution of Some Man-made Vitreous Fibers

Agnès Wastiaux, Olivier Blanchard, and Sylvie Honnons
Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France

A preliminary study at the Institut National de l'Environnement Industriel et des Risques (INERIS) examined the dissolution of three man-made vitreous fiber samples (glasswool, rockwool, glass microfibers: JM 100) after intraperitoneal injections in male Wistar rats. The chemical composition of the original fibers was determined by inductively coupled plasma spectrometry (ICP). The urine of the rats was collected at fixed times between day 1 and day 204, and the ICP was used to look for elements known to be present in the original fibers. At day 204, a piece of omentum was removed at autopsy, ashed and analyzed by energy dispersive X-ray analysis (EDXA) to identify the elements remaining in the fibers. Silicon and aluminum were retained in the fibers from all samples at day 204. Losses in calcium, sodium, magnesium, and sulfur were observed, but these elements were not studied in the urine samples because they are naturally present in relatively high concentrations in rat cells and biological fluids. Although there was a loss of zinc from the glass microfibers, no corresponding difference was observed between the zinc levels excreted by the treated animals and by the controls. Similarly, despite the loss of manganese from the rockwool fibers at day 204, none was detectable in the urine samples. Titanium, present at the 0.3% level in rockwool, was not detectable by EDXA at day 204, but small quantities were detected in the first 2 weeks in the urine samples of rats treated with rockwool. The barium content of the retained glass microfibers (JM 100) had decreased at day 204, and this element was detectable in the corresponding urine samples. It was considered that Ti and Ba could be suitable biomarkers of exposure to rockwool and glass microfibers (JM 100). — Environ Health Perspect 102(Suppl 5):217-219 (1994)

Key words: man-made vitreous fibers, durability, exposure biological marker, urinary excretion, toxicology, intraperitoneal injections

Introduction

After inhalation, man-made vitreous fibers (MMVF) are deposited in the upper respiratory tract and the pulmonary alveoli. Certain fibers eventually are eliminated via bronchial or lymphatic action, though the time this takes may vary. Other fibers remain in the pulmonary fluids, undergoing transformation including fragmentation and partial dissolution (1-12). The chemical elements liberated by dissolution of fibers in the lungs can therefore spread throughout the organism before being eliminated (13,14), for example by urinary or biliary action.

If the elements normally are present in the organism in large quantities, as is the case for calcium, potassium, sodium, or magnesium, it is reasonable to assume that the additional contribution from inhaled fibers would be negligible; if the elements normally are present only in small quantities, any increase could prove harmful. At the same time, an increase in the urinary excretion of these elements could provide an indication of occupational exposure.

Most previous studies of natural or man-made vitreous fibers have focused on the transformation of the fibers or their by-products in the pulmonary system. Few authors have studied the other organs that might be affected (15).

In two epidemiological studies of MMVF workers, increased death rates due to bladder cancer (16) or to liver or bile duct cancer have been observed (17). The aim of this preliminary study was to explore the urinary excretion from rats that had received intraperitoneal injection of three MMVF samples.

Materials and Methods

The MMVF samples tested, were glasswool, rockwood and glass microfiber (JM 100). The chemical composition of the original fibers was determined quantitatively by inductively coupled plasma spectrometry (ICP) (Table 1). The fibers were ground prior to injection.

| Elements | Glasswool | Rockwool | JM 100 | Oxides |
|----------|-----------|----------|--------|--------|
| % by weight | % as oxide | % by weight | % as oxide | % by weight | % as oxide |
| Na | 10.50 | 14.2 | 0.22 | 0.3 | 13.30 | 17.9 | Na₂O |
| Mg | 0.10 | 0.2 | 2.00 | 3.3 | 0.30 | 0.5 | MgO |
| Al | 1.60 | 2.0 | 5.80 | 11.0 | 2.60 | 3.5 | Al₂O₃ |
| Si | 28.14 | 62.4 | 16.82 | 39.9 | 26.18 | 55.6 | SiO₂ |
| K | 1.20 | 1.5 | 0.33 | 0.4 | 1.95 | 2.4 | K₂O |
| Ca | 5.90 | 8.3 | 27.80 | 39.8 | 1.90 | 2.7 | CaO |
| Ti | 0.03 | 0.1 | 0.30 | 0.5 | — | — | TiO |
| Cr | — | — | 0.01 | — | — | — | Cr₂O₃ |
| Mn | 0.03 | — | 0.30 | 0.5 | — | — | MnO |
| Fe | 0.40 | 0.6 | 0.70 | 1.0 | 0.05 | 0.1 | Fe₂O₃ |
| Zn | — | — | — | — | 2.60 | 3.2 | ZnO |
| Sr | 0.01 | — | 0.04 | 0.1 | 0.07 | 0.1 | SrO |
| Ba | 0.04 | 0.1 | 0.05 | 0.1 | 4.29 | 4.7 | BaO |
| Total | 90.4 | 56.6 | 92.7 | — | — | — | — |

Table 1. Chemical composition of original fibers by ICP.
At day 204, the animals were sacrificed and the urine samples were collected at days 1, 7, 14, 28, 204 after injection. The kidney tumors in one animal treated with glass wool showed an increased K content and had retained Al and Si, but had lost Mg, Ca, S, and Mn. It was not possible to measure Ti. Glass microfiber (JM 100) retained Al, Si, and K, but lost Na, Ca, and Zn. Si, Ti, Mn, Zn, and Ba were determined by ICP in the urine samples (Table 2). Macroscopic examination of the urinary tract showed a kidney tumor in one animal treated with glass wool, but this was not significant because of the small number of rats in each group.

### Discussion

Al and Si were present in the omentum samples taken at day 204 from rats treated with all three fiber types, and were looked for in the urine samples. Si was excreted in considerable amounts in urines of both controls and treated animals, which would mask any slight increase due to fiber dissolution. Si, therefore, could not be used as a biological marker of exposure. Ca was low in all fibers retained at day 204; but because the Ca concentration in biological fluids is very high, the contribution from dissolved fibers to the total Ca pool would be negligible. Moreover, Ca urinary excretion is unimportant in the metabolic regulation of Ca. Relatively few elements were examined of the urinary tract showed a possible exposure marker.

### Conclusion

The “dissolution” of fibers could give rise to a number of complex biological mechanisms in which the different elements present in the fibers could be involved. The way that the presence of Ba in a fiber residing in the peritoneal cavity affects the level of K is a good example of this interaction.

It would be worthwhile to extend these preliminary studies, using intratracheal administration or inhalation of fibers and to explore the metabolism of the different component elements to determine the possible formation of toxic compounds and their routes of elimination via liver, kidney, or digestive tract.

---

**Table 2. ICP determination in rat urine of MMMF elements at five times.**

| Fiber type | Days | Si   | Ti  | Mn | Zn | Ba |
|------------|------|------|-----|----|----|----|
| Glasswool  | 1    | 2.8  | 9.2 | 7.6| 8.3| 5.5|
|            | 7    | 504  | 19.9| 10.8| 9.2| 10.2|
|            | 14   | 501  | 10.8| 9.2 | 10.2| 10.2|
|            | 204  | 3.4  | 28.6| 10.2| 28.6| 28.6|
|            | 500  | 5.5  | 16.5| 28.6| 16.5| 16.5|
| Rockwool   | 14   | 1.8  | 12.6| 8.3 | 8.3 | 8.3 |
|            | 28   | 9.2  | 15.1| 8.3 | 15.1| 15.1|
|            | 504  | 2.8  | 28.6| 8.3 | 28.6| 28.6|
|            | 357  | 3.4  | 28.6| 8.3 | 28.6| 28.6|
| JM 100     | 14   | 1.8  | 12.6| 8.3 | 12.6| 12.6|
|            | 28   | 9.2  | 15.1| 8.3 | 15.1| 15.1|
|            | 504  | 2.8  | 28.6| 8.3 | 28.6| 28.6|
| Control    | 504  | 2.8  | 10.2| 8.3 | 10.2| 10.2|

*Lower than detection limit.

Three groups of male Wistar rats (Strain ICO: WI-IOPS AF/H, Iffa Credo, L’Arbresle, France) received an intraperitoneal injection of 50 mg MMMF in 2 ml saline. A fourth control group of 4 rats received saline alone. The animals were housed in a protected zone. The 24 hr urine samples from the animals were collected at days 1, 7, 14, 28, 204 after injection. The urine samples were weighed and frozen. At day 204, the animals were sacrificed and a piece of omentum was preserved. A macroscopic examination of the peritoneal cavity was performed. The urine samples were dried and ashed, and the principal elements of the original fibers were determined by ICP. The omentum sample was ashed at low temperature, and the fibers present were examined by transmission electron microscopy (TEM) equipped with an energy dispersive X-ray analysis unit (EDXA). Spectra were compared with those of the original fibers.

### Results

The three fiber types recovered from the omentum samples after residing for 204 days in the peritoneal cavity were examined by EDXA.

Glasswool showed an increased K content and had retained Al and Si, but had lost Na, Ca, and Mn. Rockwool showed an increased K content and had retained Al and Si, but had lost Mg, Ca, S, and Mn. It was not possible to measure Ti. Glass microfiber (JM 100) retained Al, Si, and K, but lost Na, Ca, and Zn. Si, Ti, Mn, Zn, and Ba were determined by ICP in the urine samples (Table 2). Macroscopic examination of the urinary tract showed a kidney tumor in one animal treated with glass wool, but this was not significant because of the small number of rats in each group.

---

**REFERENCES**

1. Brown RC, Davis JMG, Douglas D, Ilgen EB, Johnson NF, Rossiter CE, Wagner JC. Carcinogenicity of the insulation woods: Reassessment of the IARC evaluation. Regul Toxicol Pharmacol 14:12–23 (1991).
2. Muhle H, Pott F, Bellman B, Takenaka S, Ziem U. Inhalation and injection experiments in rats to test the carcinogenicity of MMMF. Ann Occup Hyg 31:755–764 (1987).
3. Biological Effects of Man-Made Mineral Fibres, Vol 2. Proceedings of a WHO/IARC Conference held 20–22 April 1982 in Copenhagen. Copenhagen: World Health Organization, 1984.
4. Pigott GH, Ishmael J. A Strategy for the Design and Evaluation of a "Safe" Inorganic Fibre. Ann Occup Hyg 26:371–380 (1982).
5. Smith DM, Ortiz LW, Archuleta RF, Johnson NF. Long-term health effects in hamsters and rats exposed chronically to man-made vitreous fibers. Ann Occup Hyg 31:731–754 (1987).
6. Stanton MF, Layard M, Tegeris A, Miller E, May M, Kent E. Carcinogenicity of fibrous glass: pleural response in the rat in relation to fiber dimension. J Natl Cancer Inst 58:587–603 (1977).
7. Wagner JC, Berry G, Timbrell V. Mesothelioma in rats after inoculation with asbestos and other materials. Br J Cancer 28:173–185 (1973).
8. Wagner JC, Berry GB, Hill RJ, Munday DE, Skidmore JW. Animal experiments with MMMF. Effects of inhalation and intrapleural inoculation in rats. In: Biological Effects of Man-Made Mineral Fibres, Vol 2. Proceedings of a WHO/IARC Conference held 20–22 April 1982 in Copenhagen. Copenhagen: World Health Organization, 1984; 209–235.
9. Wheeler CS. Exposure to man-made mineral fibers: A summary of current animal data. Toxicol Ind Health 26:293–307 (1990).
10. Bellman B, Mulhe H, Pott F, König H, Klöppel H, Spurny K. Persistence of man-made mineral fibres (MMMF) and asbestos in rat lungs. Ann Occup Hyg 31:693–709 (1987).
11. Morgan A, Holmes A. Solubility of asbestos and man-made mineral fibres in vitro and in vivo: Its significance in lung disease. Environ Res 39:475–484 (1986).
12. Potter RM, Mattson SM. Glass fiber dissolution in a physiological saline solution. Int J Glass Sci Technol 64(1):16–28 (1991).
13. Port F, Schlipköter HW, Roller M, Rippe RM, Germann PG, Mohr U, Bellmann B. Karzinogenität von Glasfasern mit unterschiedlicher Beständigkeit. Zbl Hyg 189:563–566 (1990).
14. Bellmann B, Mulhe H, Port F. Untersuchung zur Beständigkeit chemisch unterschiedlicher Glasfasern in Rattenlungen. Zbl Hyg 190:310–314 (1990).
15. Evans JC, Evans RJ, Holmes A, Hounam RF, Jones DM, Morgan A, Walsh M. Study on deposition of inhaled fibrous material in the respiratory tract of the rat and its subsequent clearance using radioactive tracer techniques. UICC Crocidolite Asbestos. Environ Res 6:180–201 (1973).
16. Simonato L, Fletcher AC, Cherrie JW, Andersen A, Berruzzi P, Charnay N, Claude J, Dodgson J, Estève J, Frentzel-Beyme R, Gardner MJ, Jensen O, Olsen J, Teppo L, Winkelman R, Winterholm P, Zocchetti C, Saracci R. The International Agency for Research on Cancer Historical Cohort Study of MMMF production workers in seven European countries: Extension of the follow-up. Ann Occup Hyg. 31:603–623 (1987).
17. Lauwerys R. Toxicologie Industrielle et Intoxications Professionnelles. Paris: Masson, 1990.