TEMPLATE SYNTHESIS OF NOVEL 14-MEMBERED TETRAAZAMACROCYCLIC TRANSITION METAL COMPLEXES: DNA CLEAVAGE AND ANTIMICROBIAL STUDIES

N. RAMAN, * J. DHAVEETHU RAJA AND A. SAKTHIVEL

Research Department of Chemistry, VHNNSN College, Virudhunagar 626 001, India
(Received: June 31, 2007 - Accepted: March 5, 2008)

ABSTRACT

A new series of 14 membered tetraaza macrocyclic complexes of type \([ML]X_{2n} \) where \(M=\text{Ni(II)}, \text{Co(II)}, \text{Cu(II)}, \text{Zn(II)}, \text{Hg(II)}, \text{VO(IV)}, \text{Cd(II)} \) and \(\text{Mn(II)} \); \(X_2=2\text{Cl}; \text{SO}_4^2- \) have been synthesized by incorporating an \(N_n \) donor site \(\text{via} \) the template condensation of \(o \)-phenylenediamine, formaldehyde, \(p \)-anisidine and metal salt. The structural features of the complexes have been confirmed by spectral and analytical data. From the data, a square-planar geometry around the central metal ion has been suggested except \(\text{VO(IV)} \) complex which has square-pyramidal geometry. The antimicrobial screening data show good results. From the nuclease activity of the above metal complexes, it is inferred that only the copper and nickel complexes cleave DNA through redox chemistry.

Key words: \(o \)-phenylenediamine, \(p \)-anisidine, CT DNA, antimicrobial activity, nuclease activity

INTRODUCTION

Tetraaza metal complexes are considered to be models for metalloporphyrins and metallocorrins due to their intrinsic structural properties. The uses of macrocyclic metal complexes as bioinorganic models have able portrayed in many reviews such as that of Vogt \textit{et al}., McLendon \textit{et al}., Collman, Jones \textit{et al}., Niederhoffer \textit{et al}., Alexander and Busch \textit{et al}.

There has been considerable interest in the synthesis of new macrocyclic transition metal complexes which stabilize the unusual oxidation states of transition metals relative to that of open chain ligand complexes. The significant chemical behaviour of transition metal complexes very often depends on their facile redox properties. This is true to a good degree for the neutral and synthetic complexes involving macrocyclic ligands. During electrochemical reaction many tetradentate macroyclic amines stabilize the unusual oxidation states of the transition metals.\(^{1,2}\) The stabilization of the unusual oxidation states of metal ions usually depends on the nature of donor site. Olson and Vasilevskis\(^3\) have shown that the tetraaza macrocyclic complexes stabilize the unusual oxidation states of the metal species.

Synthetic tetraaza macrocycle (\(N_n \)) molecules are considered typically good models for oxygen carrier due to the presence of four nitrogen donor sites confined to a single four-fold or a slightly four fold plane in a ringed structure, appropriate for metal ligand binding. A survey of the tetraaza macrocyclic ligand systems reported so far by earlier workers indicates that the ring size of 12–16 is most common for molecular model studies\(^4,5\), although the quadridentate macrocycles of smaller ring sizes could also be accommodated by the metal ion by coordination in a folded form. Much work has been done on the electrochemical stabilization of the unusual oxidation states of the copper by macrocyclic ligand of a variety of types.

Transition metal complexes that are suitable for binding and cleaving double-stranded DNA are of considerable current interest due to their various applications in nucleic acid chemistry like foot-printing and sequence-specific binding agents, for modeling the restriction enzymes in genomic research, applications in nucleic acid chemistry like foot-printing and sequence-specific binding agents, as structural probes for therapeutic applications in cancer treatment\(^6,7\), the study of synthetic macrocyclic compounds is a very important area of chemistry in view of their presence in many biologically significant naturally occurring metal complexes, such as the metalloproteins, vitamin B\(_12\), chlorophyll etc. Tetraaza molecules, especially when coordinated to metal centers, are considerable to be model metalloporphyrins and metallocorrins due to the presence of four nitrogen donor sites in a ringed structure.\(^8,9\) A literature search reveals that a large number of tetraaza macrocyclic transition metal complexes have been prepared and characterized but no work has been done on DNA and antibacterial activity of transition metal complexes containing tetradeutate \(N_n \) donor type 14-membered tetraaza macrocyclic complexes using the template method. Hence, in this work, a new series of 14-membered tetraaza macrocyclic complexes has been synthesized by the template condensation of formaldehyde, \(o \)-phenylenediamine, \(p \)-anisidine and metal salts in ethanol medium. Their DNA cleavage study using calf thymus DNA (CT DNA) by gel electrophoresis technique has been carried out to understand the selectivity and efficiency of DNA and thus to develop new effective cleaving agents or useful DNA probes.

EXPERIMENTAL

Materials and Methods

All reagents and solvents were purchased commercially and used without further purification unless otherwise noted. Microanalytical data of the complexes were recorded at the Sophisticated Analytical Instrument Facility, Central Drug Research Institute (SAIF, CDRI), Lucknow. The mass spectra were done at the Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology, Mumbai. The IR spectra of the samples were recorded on a Perkin-Elmer 783 spectrophotometer in 4000-400 cm\(^{-1}\) range using KBr pellet. The UV-Vis. spectra were recorded on a Shimadzu UV-1601 spectrophotometer using DMF as solvent. The X-band ESR spectra of the complex was recorded at 300 K and 77 K at IIT, Mumbai using TCNE (tetracyanoethylenylene) as the g-marker. Magnetic susceptibility measurements of the complexes were carried out by Guoy balance using copper sulphate as the calibrant. Electrochemical studies were carried out using EG&G Princeton Applied Research Potentiostat / Galvanostat Model 273A, controlled by M270 software. CV measurements were performed using a glassy carbon working electrode, platinum wire auxiliary electrode and an Ag/AgCl reference electrode. All solutions were purged with \(N_2 \) for 30 min prior to each set of experiments. The molar conductance of the complexes was measured using a Systronic conductivity bridge. Solutions of CT DNA (calf thymus DNA) in 50 mM NaCl / 50 mM tris-HCl (pH=7.2) gave a ratio of UV absorbance at 260 and 280 nm, \(A_{260}/A_{280} \) of ca. 1.8-1.9, indicating that the DNA was sufficiently free of protein contamination. The DNA concentration was determined by the UV absorbance at 260 nm after 1:100 dilutions. The molar absorption coefficient was taken as 6600 M\(^{-1}\)cm\(^{-1}\). Stock solutions were kept at 4°C and used after not more than 4 days. Doubly distilled H\(_2\)O was used to prepare the buffer. The antimicrobial activities of the ligands and their complexes were carried out by well-diffusion method\(^21\).

General Procedure for the Syntheses of complexes

To a stirred ethanol solution of metal salts (0.01 M) slowly added \(o \)-phenylenediamine (0.02 M), formaldehyde (0.04 M) and \(p \)-anisidine (0.02 M). The mixture was heated under reflux for \(ca. \) 24 h. The solution was filtered under hot condition and the filtrate was allowed to stand at room temperature. The precipitate formed was filtered off, washed with ethanol and further dried in vacuo.

Copper complex synthesis

Yield: 58 %; Anal. calcd. for CuC\(_6\)H\(_6\)N\(_2\)O\(_4\)Cl\(_2\): Cu, 9.9; C, 55.9; H, 5.2; N, 13.0; Found: Cu, 9.8; C, 55.6; H, 5.0; N, 12.8.

Nickel complex

Yield: 62 %; Anal. calcd. for NiC\(_6\)H\(_6\)N\(_2\)O\(_4\)Cl: Ni, 9.2; C, 56.3; H, 5.3; N, 13.1; Found: Ni, 9.1; C, 56.1; H, 5.0; N, 12.9.

Cobalt complex

Yield: 54 %; Anal. calcd. for CoC\(_6\)H\(_6\)N\(_2\)O\(_4\)Cl: Co, 9.2; C, 56.3; H, 5.3; N, 13.1; Found: Co, 8.9; C, 56.1; H, 5.2; N, 12.8.

Manganese complex

Yield: 63 %; Anal. calcd. for MnC\(_6\)H\(_6\)N\(_2\)O\(_4\)Cl: Mn, 8.6; C, 56.6; H, 5.3;
N, 13.2; Found: Mn, 8.4; C, 56.3; H, 5.0; N, 12.9.

Zinc complex
Yield: 61 %; Anal. calcd. for ZnC
99.6; N, 5.3; N, 13.0; Found: Zn, 9.8; C, 55.2; H, 4.9; N, 12.7.

Vanadium complex
Yield: 64 %; Anal. calcd. for VC
99.3; V, 7.6; C, 53.5; H, 5.1; N, 12.5; Found: V, 7.3; C, 54.9; H, 4.9; N, 12.1.

Cadmium complex
Yield: 58 %; Anal. calcd. for CdC
99.8; Cd, 16.2; C, 51.9; H, 4.9; N, 12.1; Found: Cd, 15.8; C, 51.4; H, 4.6; N, 11.8.

Mercury complex
Yield: 56 %; Anal. calcd. for HgC
99.9; Hg, 25.6; C, 46.1; H, 4.3; N, 10.7; Found: Hg, 25.2; C, 45.7; H, 4.1; N, 10.4.

Antimicrobial activity
The in vitro biological screening effects of the investigated compounds were tested against the bacteria: *Salmonella typhi*, *Staphylococcus aureus*, *Escherichia coli*, and *Bacillus subtilis* by the well diffusion method, using agar nutrient as the medium. The antifungal activities of the compounds were evaluated by the well diffusion method against the fungi viz., *Aspergillus niger*, *Aspergillus flavus* and *Rhizoctonia bataicola* cultured on potato dextrose agar as medium. Streptomycin and nystatin were used as reference drugs for bacteria and fungi respectively. The stock solution (10
99.3; V, 7.6; C, 53.5; H, 5.1; N, 12.5; Found: V, 7.3; C, 54.9; H, 4.9; N, 12.1.

Gel electrophoresis
The gel electrophoresis experiments were performed by incubation at 35°C for 2 h as follows: CT DNA 30 µM, 50 µM each complex and 50 µM H₂O, in 50 mM tris-HCl buffer (pH=7.2) were electrophoresed for 2 h at 50 V on 1% agarose gel using tris-aceticacid-EDTA buffer, pH = 8.3. After electrophoresis, the gel was stained using 1µg/ml EB (Ethidiumbromide) and photographed under UV light.

RESULTS AND DISCUSSION
The synthesized complexes are found to be air stable and insoluble in water, but soluble in DMSO and DMF. The analytical data of the complexes together with some physical properties are summarized in Table 1. The mass, microanalytical data of the complexes correspond well with the general formula [MLIX] where M = Cu(II), Ni(II), Co(II), Cd(II), Zn(II), Hg(II), VO(IV), Cd(II) and Mn(II): X = 2Cl⁻; L = C₁₅H₁₃N₉O₂⁻. The higher conductance values of the chelates support their electrolytic nature of the metal complexes.

Compound	Molecular formula	Colour	Molar Conductance (A·X 10⁻³) (ohm⁻¹·cm²·mol⁻¹)	µ_eff (BM)
[CuL]Cl₂	CuC₁₅H₁₃N₁₀Cl₂	Black	98	1.78
[NiL]Cl₂	NiC₁₅H₁₃N₁₀Cl₂	Brown	110	----
[CoL]Cl₂	CoC₁₅H₁₃N₁₀Cl₂	Brown	97	3.57
[MnL]Cl₂	MnC₁₅H₁₃N₁₀Cl₂	Brown	95	5.42
[ZnL]Cl₂	ZnC₁₅H₁₃N₁₀Cl₂	Light yellow	112	----
[VOL]SO₄	VC₁₅H₁₃N₁₀SO₄	Green	98	1.67
[CdL]Cl₂	CdC₁₅H₁₃N₁₀Cl₂	Yellow	113	----
[HgL]Cl₂	HgC₁₅H₁₃N₁₀Cl₂	Yellow	97	----

Mass spectra
The FAB mass spectrum of the copper complex shows a molecular ion peak at m/z 644 which confirms the stoichiometry of metal chelates as [MLX] type. It is also supported by the “Nitrogen Rule”, since the compound possesses six nitrogen atoms. The mass spectra of the other complexes support the above stoichiometry. This stoichiometry is further supported by the microanalytical data of the complexes.

Infrared spectra
The preliminary identification of the macrocyclic complexes was done from their IR spectra. The complexes give no bands assignable to carboxyl group stretching modes. The sharp band observed around 3215 cm⁻¹ may be assigned to ν_c=O of the coordinated secondary amines. A medium intensity band appearing in the 2835-2970 cm⁻¹ region corresponds to ν_C-H. The bands observed at 1400-1440, 1060-1080 and 710-730 cm⁻¹ region can be assigned to phenyl ring vibrations. In all of the metal complexes, a band seen in the 450-500 cm⁻¹ region is probably due to the formation of M-N bonds. In addition to the other bands, the vanadyl complex shows an additional band at 960 cm⁻¹ attributed to the ν_V=O frequency.

Electronic absorption spectra
The electronic absorption spectra of Cu(II), Ni(II), Co(II) and VO(IV) complexes were recorded at 300 K. The absorption region assigned and the proposed geometry of the complexes are given in Table 2. The electronic spectrum of Cu(II) complex shows a band at 17310 cm⁻¹ which is assigned to 1E → 1A_g transition, characteristic for square-planar geometry. The absence of band below 10000 cm⁻¹ excludes the possibility of tetrahedral geometry. In the Co(II) complex, the band appearing at 19710 cm⁻¹ is attributed to 1A_g → 1B_1g which suggests a square-planar geometry. For Ni(II) complex, the two d-d bands appearing at 21611 and 18917 cm⁻¹ are assigned to 1A_g → 1A_g and 1A_g → 1B_2g transitions respectively, confirming the square-planar geometry for this complex. The observed zero magnetic moment confirms the square-planar environment for the Ni(II) complex in conformity with the fact that all known square-planar complexes of Ni(II) are diamagnetic. For VO(IV) complex, the two bands observed at 12545 and 18610 cm⁻¹ are assigned to 1B_2g → 1E and 1B_2g → 1A_g transitions respectively which are consistent with that of five coordinated square-pyramidal geometry. No transitions were observed in the visible region for Zn(II), Hg(II), Cd(II) complexes consistent with the d⁴ configuration of the Zn(II), Hg(II), Cd(II) ions. These complexes are also found to be diamagnetic as expected for d⁴ configuration. For Mn(II) complex, there is no allowed d-d transitions. These data are comparable with that of the other reported complexes.

Compound	Solvent	Absorption (cm³)	Band Assignment	Geometry
[CuL]Cl₂	DMF	37340	INCT	Square-planar
		28420	INCT	
		17310	1B_g → 1A_g	
[NiL]Cl₂	DMF	38325	INCT	Square-planar
		27972	INCT	
		19710	1A_g → 1A_g	
		18917	1A_g → 1B_2g	
[CoL]Cl₂	DMF	36824	INCT	Square-planar
		27972	INCT	
		19710	1A_g → 1A_g	
		18917	1A_g → 1B_2g	
[MnL]Cl₂	DMF	35534	INCT	Square-planar
		26746	INCT	
		18610	1B_2g → 1A_g	
		12545	1B_2g → 1E	

INCT-Intra-ligand Charge transfer transition
ESR spectra
The ESR spectrum of copper complex, recorded in DMSO at 77 K (LNT) and 300 K (RT), provides useful information which is important in studying the metal ion environment. The RT spectrum shows one intense absorption band in the high field region and it is isotropic, due to the tumbling motion of the molecule. But LNT spectrum shows four well resolved peaks with low field region and one intense peak in the high field region. The magnetic moment of the copper complex is 1.78 B.M which corresponds to one unpaired electron, indicating that the complex is mononuclear. This fact was also evident from the absence of half field signal at 1600 G due to the m_s = ±2 transitions, ruling out any Cu-Cu interaction. The complex exhibits the g_{ii} value of 2.34 and g value of 2.06. The g-tensor values of the copper complex can be used to derive the ground state. In square-planar complexes, the unpaired electron lies in the d_{xy} orbital giving {3B_1g} as the ground state with g_{xx} > g_y > 2, while the unpaired electron lies in the d_{zx} orbital giving {2A_1g} as the ground state with g_y > g_{xx} > 2.

From the observed values, it is clear that A_{1g} = 145 > A_1 = 36; g_{xx} = 2.34 > g_y = 2.06 > 2 and coincide well with related systems which suggest that the complex has square-planar geometry and system is axially symmetric. This is also supported by the fact that the unpaired electron lies predominantly in the d_{xy} orbital. In the axial spectra, the g-values are related with exchange interaction coupling constant (G) by the expression,

\[g = 2 + \frac{3}{2} \frac{4G^2}{4G^2 - 1} \]

According to Hathaway32, if the G value is larger than four, the exchange interaction is negligible because the local tetragonal axes are aligned parallel or are slightly misaligned. If the value of G is less than four, the exchange interaction is considerable and the local tetragonal axes are misaligned. For the present copper complex, the G value is 5.8 which suggest that the local tetragonal axes are aligned parallel or are slightly misaligned and consistent with d_{xy} ground state.

The ESR spectrum of the vanadyl complex, recorded in DMSO solution at 300 and 77 K shows a typical eight line and sixteen line patterns respectively. The isotropic ESR parameters g_{iso} = 1.96 and A_{iso} = 108 can be calculated from the position spacing of the resonance lines from the room temperature solution spectrum of the complex. The spectrum is like a typical eight line pattern which shows that a single vanadium is present in the molecule i.e., it is a monomer. In the frozen solid state, the spectrum shows two types of resonance components, one set due to the parallel features and the other set due to the perpendicular features, which indicate axially symmetric anisotropy with well resolved sixteen line hyperfine splitting, characteristic of an interaction between the electron and vanadium nuclear spin. From the anisotropic spectrum, the anisotropic parameters were calculated. The observed order (A_{1g} = 174 > A_1 = 73; g_{xx} = 2.02 > g_y = 1.97) indicates that the unpaired electron is present in the d_{xy} orbital with square-pyramidal geometry around the VO(IV) ion33,34.

Based on the above spectral and analytical data, the proposed structure of the metal complexes is given in Figure 1.

Redox studies
The cyclic voltammograms of copper and vanadyl complexes were recorded in DMSO solution. A noteworthy feature has been observed in the cyclic voltammograms of copper and vanadyl complexes which are shown in Figure 2 and Figure 3.

![Figure 2. Cyclic voltammogram of copper complex in DMSO solution at 300 K (0.1M TBAP). Scan rate 100 mVs-1.](image)

![Figure 3. Cyclic voltammogram of vanadyl complex in DMSO solution at 300 K (0.1M TBAP). Scan rate 100 mVs-1.](image)

The cyclic voltammogram of copper complex (0.1 M) shows a quasi reversible peak for the couple35 CuII/Cu0 at E_{p} = 0.40 V with the direct cathodic peak for CuIII/CuII at E_{p} = 0.34 V. Further, it shows two irreversible peaks characteristic for CuIII/CuII at E_{p} = -0.69 V and CuII/CuI at E_{p} = -1.03 V. In the anodic side the peak occurs due to the direct oxidation of CuII to CuIII at E_{p} = -0.24 V.

The cyclic voltammogram for the vanadyl complex, recorded in DMSO solution shows two well defined one-electron transfer redox peaks, corresponding to the formation of the VO(IV)/VO(V) couple at E_{p} = 0.46 V, E_{p} = 0.34 V and VO(IV)/VO(III) couple37 at E_{p} = -1.03 V and E_{p} = -0.21 V. The peak current functions of both waves in complex are different which indicate the involvement of two different electroactive species in solution corresponding to VO(V) and VO(III).

Antimicrobial activity
For in vitro antimicrobial activity, the investigated compounds were tested against the bacteria Salmonella typhi, Staphylococcus aureus, Escherichia coli and Bacillus subtilis and fungi Aspergillus niger, Aspergillus flavus and Rhizoctonia bataticola. The minimum inhibitory concentration (MIC) values of the investigated compounds with the standard drugs are summarized in Table 3. Antimicrobial activity of the metal chelates can be explained on the basis of chelation theory. On chelation, the polarity of the metal ion will be reduced to a greater extent due to the overlap of the ligand orbital and partial sharing of the positive charge of the metal ion with donor groups. Further, it increases the delocalization of π-electrons over the whole chelate ring and enhances the

J. Chil. Chem. Soc., 53, Nº 3 (2008)
penetration of the complexes into lipid membranes and blocking of the metal binding sites in the enzymes of microorganisms. These complexes also disturb the respiration process of the cell and thus block the synthesis of proteins, which restricts further growth of the organisms.

Table 3. Antimicrobial studies of investigated compounds (minimum inhibitory concentration x 10^{-2} M)

compound	S. typhi	S. aureus	E. Coli	B. subtilis	A. niger	A. flavus	R. batacicola
(CuL)Cl_2	3.3	3.8	4.1	3.9	4.8	4.7	4.9
(NiL)Cl_2	3.8	3.7	4.2	3.8	5.2	5.1	5.0
(CoL)Cl_2	3.9	4.1	4.3	4.4	5.3	5.4	5.5
(MnL)Cl_2	4.1	4.3	4.2	4.3	5.4	5.6	5.7
(ZnL)Cl_2	4.2	4.5	4.3	4.4	5.5	5.3	5.4
[VO(II)]Cl_2	4.0	4.2	4.1	4.2	5.3	5.5	5.2
[CdL]Cl_2	4.1	4.3	4.4	4.5	5.4	5.3	5.5
[HgL]Cl_2	4.3	4.5	4.6	4.5	5.6	5.4	5.3
Streptomycin	2.8	1.6	3.0	2.2	---	---	---
Nystatin	---	---	---	---	1.2	2.4	1.8

DNA studies

In the present study, the CT-DNA gel electrophoresis experiment was conducted at 35°C using our synthesized complexes in the presence of H_2O_2 as an oxidant. As can be seen from the results (Figure 4), at very low concentration, few complexes exhibit nuclease activity in the presence of H_2O_2. Control experiments using DNA alone do not show any significant cleavage of CT-DNA even on longer exposure time. From the observed results, it is observed that in the presence of H_2O_2 the copper (lane 2) and nickel complexes (lane 3) cleave DNA more efficiently than the other complexes (lanes 4-9) and the control DNA. Further, the presence of a smear in the gel diagram indicates the presence of radical cleavage.

CONCLUSIONS

In this work, few novel 14 membered tetraazamacrocyclic transition metal complexes have been synthesized and characterized on the basis of analytical and spectral data. All the complexes exhibit square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The antimicrobial screening data show good results. The interaction of these complexes with CT-DNA was investigated by gel electrophoresis. From the observation, it is found that the copper and nickel complexes cleave DNA more efficiently than the other complexes and the control DNA.

ACKNOWLEDGEMENTS

The authors express their sincere thanks to the Managing Board, Principal and Head of the Department of Chemistry, VHNSN College, Virudhunagar for their constant encouragement and providing research facilities. JD thanks the Tamilnadu Government and AS to the UGC, New Delhi for financial assistance.

REFERENCES

1. L.H. Vogt, H.M. Faigenbaum and S.E. Wiberley, *Chem. Rev.*, 63, 269, (1963).
2. G. McLendon and A.E. Martell, *Coord. Chem. Rev.*, 11, 1, (1976).
3. J.P. Collman, *Acc. Chem. Res.*, 9, 175, (1976).
4. R.D. Jones, D.A. Summerville and F. Basolo, *Chem. Rev.*, 79, 139, (1979).
5. E.C. Niederhofer, J.H. Timmons and A.E. Martell, *Chem. Rev.*, 84, 137, (1984).
6. V. Alexander, *Chem. Rev.*, 95, 273, (1995).
7. D.H. Bush and N.A. Stephenson, *Inclusion Compounds*, Eds. J.L. Atwood, J.E.D. Davies and D.D. Macnicol, Oxford University Press, 1991; 276.
8. N.F. Curtis, *Coord. Chem. Rev.*, 3, 3, (1968).
9. D.P. Rilema, J.F. Endicott and E. Papacostantinou, *Inorg. Chem.*, 10, 1739, (1971).
10. D.C. Olson and J. Vasilevskis, *Inorg. Chem.*, 8, 1611, (1969).
11. G.A. Nelson, *Coordination Chemistry of Macrocyclic Compounds*, Plenum Press, New York, 1979.
12. B.J. Hathaway and D.E. Billing, *Coord. Chem. Rev.*, 5, 143, (1970).
13. D.S. Sigman, A. Mazumdar and D.M. Perrin, *Chem. Soc., 93*, 2295, (1993).
14. K.E. Erkilla, D.T. Odom and J.K. Barton, *Chem. Sci.*, 99, 2777, (1999).
15. S. Szacilowski, W. Macyk, A. Drzewiecka-Matuszek, M. Brindell and G. Stochel, *Chem. Sci.*, 105, 2647, (2005).
16. J. Reedijk, *Inorg. Biochem.*, 86, 89, (2001).
17. J. Liu, T. B. Lu, H. Deng y L.N. Ji, *Transición Met. Chem.*, 28, 116, (2003).
18. D.S. Sigman, D.R. Graham, V. D’Aurora and A.M. Stern, *J. Biol. Chem.*, 254, 12269, (1979).
19. S. Srivivasan, P. Athappan and G. Rajagopal, *Transition Met. Chem.*, 26, 588, (2001).
20. Y. Nonomura, N. Yoshihiko and H. Inoue, *Inorg. Chim. Acta.*, 224, 181, (1994).
21. M.D. Glick, D.P. Gavel, L.L. Diaddario and D.B. Rorabacher, *Inorg. Chem.*, 15, 1190, (1976).
22. O.N. Irobi, M. Moo-Young and W.A. Anderson, *Int. J. Pharm.*, 34, 87, (1976).
23. M. Shakir, D. Kumar and S.P. Varkey, *Polyhedron*, 11, 2831, (1992).
24. N. Navaneetha, P.A. Nagarjun and S. Satyanarayan, *J. Chem. Sci.*, 119, 33, (2007).
25. K. Nakamoto, *Infrared and Raman Spectra of Inorganic and Coordination Compounds*, 3rd Edn., Wiley Interscience, New York, 1997.
26. E.K. Efthimiadou, Y. Sanakis, N. Katsaros, A. Karalioti and G. Psomas, *Polyhedron*, 26, 1148, (2007).
27. A.B.P. Lever, *Inorganic Electronic Spectroscopy*, 2nd Edn., Elsevier, New York, 1968.
28. L.N. Sharada and M.C. Ganorkar, *Indian J. Chem.*, 27A, 617, (1988).
29. D.U. Warad, C.D. Satish, V.H. Kulkarini and C.S. Bajgur, *Indian J. Chem.*, 617, (2001).
30. A.B.P. Lever, *Inorganic Electronic Spectroscopy*, 2nd Edn., Elsevier, New York, 1997.
31. E.K. Efthimiadou, Y. Sanakis, N. Katsaros, A. Karalioti and G. Psomas, *Polyhedron*, 26, 1148, (2007).
32. A.B.P. Lever, *Inorganic Electronic Spectroscopy*, 2nd Edn., Elsevier, New York, 1997.
33. L.N. Sharada and M.C. Ganorkar, *Indian J. Chem.*, 27A, 617, (1988).
34. D.U. Warad, C.D. Satish, V.H. Kulkarini and C.S. Bajgur, *Indian J. Chem.*, 617, (2001).
35. A.B.P. Lever, *Inorganic Electronic Spectroscopy*, 2nd Edn., Elsevier, New York, 1997.
36. L.N. Sharada and M.C. Ganorkar, *Indian J. Chem.*, 27A, 617, (1988).
37. D.U. Warad, C.D. Satish, V.H. Kulkarini and C.S. Bajgur, *Indian J. Chem.*, 617, (2001).
38. A.B.P. Lever, *Inorganic Electronic Spectroscopy*, 2nd Edn., Elsevier, New York, 1997.