Biofilm formation and its effect on the management of culture-positive bacterial endophthalmitis

Dimple Lodha¹,², Roshni Karolia¹, Savitri Sharma¹, Joveeta Joseph¹, Taraprasad Das¹, Vivek P Dave¹

Purpose: To compare the clinicomicrobiological features and outcomes in patients with infectious endophthalmitis caused by biofilm-positive (BP) and biofilm-negative (BN) bacteria.

Methods: This was a prospective, interventional, comparative, nonrandomized, consecutive case series. Culture-positive bacterial endophthalmitis cases from August 1, 2018 to July 31, 2019 were included. All vitreous samples were tested for biofilm using crystal violet plate and XTT (2,3-bis-(2-methoxy-4-nitro-5-sulphophenyl)-2H-tetrazolium-5-carboxanilide) methods and classified as BN and BP. The antibiotic susceptibility of all organisms was determined. Anatomic and functional success was defined as intraocular pressure ≥5 mm Hg and final best-corrected vision ≥20/400, respectively, at last visit. Results: There were 50 eyes in the BN group and 33 eyes in the BP group. BN group eyes required 2.86 ± 1.45 surgical interventions, and BP group eyes needed surgical interventions 6.36 ± 2.89 interventions, P < 0.0001, 95% Confidence Interval, CI: 0.4–1.7. Functional success was achieved in 44% and 21.2% (P = 0.03, 95% CI: 1.86%–40.08%) and anatomic success was achieved in 68% and 42.42%, respectively (P = 0.02, 95% CI: 3.85%–45.47%). The antimicrobial resistance patterns between the two groups were comparable.

Conclusion: Endophthalmitis caused by the biofilm-forming bacteria needs a greater number of surgical interventions. The anatomic and functional outcomes are poorer than non-biofilm-forming bacterial endophthalmitis. The increased virulence and poorer outcomes can be hypothesized to be due to the physical barrier effect of the biofilm on the antibiotics.

Key words: Bacterial endophthalmitis, biofilm, clinical outcome, endophthalmitis

Endophthalmitis is defined as inflammation of the inner coats of the eyeball, primarily involving the vitreous. It is one of the most dreaded eye conditions. Most cases occur either following surgery or trauma. The organisms gain entry either from exogenous sources such as trauma or surgery or from endogenous hematogenous spread from a distant site.[¹] Bacterial endophthalmitis is more common than fungal endophthalmitis. Staphylococcus epidermidis is the most common isolate in the USA,[²] Europe,[³] and India.[⁴]

Biofilm is one of the major causes of resistance to various antibiotics in systemic diseases.[⁵] Structurally, a biofilm is a slimy layer of an extracellular matrix made of polymeric substances produced by microorganisms [Fig. 1]. This forms an architectural colony providing resistance not only against antibiotics but also against the human immune system.[⁶] Role of biofilm has been studied in several ocular conditions where implants are used (such as intraocular lens, scleral buckles, punctal plugs, and lacrimal intubation devices) and not used (such as keratitis, chronic dacryocystitis, and endophthalmitis).[⁶] Microorganisms produce biofilm by various mechanisms related to biochemical, molecular, and altered host factors.[⁷] Leid et al.[⁸] demonstrated the development of histologically proven biofilm on the posterior surface of the lens capsule approximately 72 h after injecting 5000 cfu/ml of S. aureus RN 6390 into the mid-vitreous cavity in a murine model.

There are no reports on the impact of biofilm on the clinical management of endophthalmitis and its outcome in the existing literature. In the current communication, we present our results of evaluating bacterial biofilm and its role in the management outcome of endophthalmitis.

Methods

This was a prospective, comparative, nonrandomized, consecutive case series. Patients diagnosed with culture-positive bacterial endophthalmitis from August 1, 2018 to August 1, 2019 were recruited in the study. Data of patients with a minimum follow-up of 3 months were analyzed. The study was approved by the Institutional Review Board (LEC-7-18-118) and adhered to all the tenets of the Declaration of Helsinki on treating human subjects. Written informed consent was obtained from all patients, and from guardians when patients were younger than 18 years. The exclusion criteria included all culture-negative cases of infectious endophthalmitis, all cultures positive for fungus, and patients not consenting to the study.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

Cite this article as: Lodha D, Karolia R, Sharma S, Joseph J, Das T, Dave VP. Biofilm formation and its effect on the management of culture-positive bacterial endophthalmitis. Indian J Ophthalmol 2022;70:472-8.
was recorded in terms of reduction of vitreous echoes on B-scan intravitreal injections were repeated every 48 hours. Media clarity were left to the decision of the treating physicians. In principle, plana vitreous lavage depended on the response to treatment and procedures such as repeat intravitreal antibiotics or repeat pars ciprofloxacin 750 mg two times per day for 7–10 days. Additional corticosteroid (prednisolone acetate 1% one hourly) and oral ciprofloxacin 750 mg two times per day for 7–10 days.

All patients underwent a detailed, comprehensive ophthalmic evaluation, including uncorrected visual acuity (UCVA), best-corrected visual acuity (BCVA) using Log MAR chart, slit-lamp biomicroscopy, intraocular pressure (IOP) by Goldman application tonometry (GAT), a dilated fundus examination using 78/90/20D lens, and B-scan ultrasound evaluation when fundus was not visible. Endophthalmitis was diagnosed clinically (and with B-scan ultrasonography when required) from a combination of symptoms (pain, red eye, lid edema, and reduced presenting vision) and signs (corneal edema, exudates in the anterior chamber, hypopyon, vitreous exudates, medium to high reflective dot or membranous opacities in the vitreous cavity, and a thickened chorioid).

Undiluted vitreous was processed in microbiology laboratory for direct microscopy and culture for bacteria and fungi as per the institutional protocol. The bacterial isolates were identified using the Vitek 2 compact system (bioMerieux), and antibiotic susceptibility was tested by a combination of E test and Vitek 2 for minimum inhibitory concentration (MIC) of several antibiotics and interpreted as per Clinical and Laboratory Standards Institute (CLSI) guidelines. The bacterial isolate was then tested for biofilm formation in vitro using the crystal violet method and XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) method.

Functional success was defined as visual acuity logMAR 1.3 (Snellen ≥20/400) and anatomical success as IOP >8 mm Hg.

Clinical management protocol

As per institute protocol, the surgical management of endophthalmitis consisted of pars plana vitrectomy, microscopy and culture of undiluted vitreous, antimicrobial susceptibility testing of bacterial isolates, and intravitreal antibiotics (vancomycin (1 mg/0.01 ml) + ceftazidime (2.25 mg/0.01 ml)) with or without dexamethasone (400 µg/0.01 ml). The medical treatment also included intensive topical antibiotics (ciprofloxacin 0.3% one hourly) and corticosteroid (prednisolone acetate 1% one hourly) and oral ciprofloxacin 750 mg two times per day for 7–10 days. Additional procedures such as repeat intravitreal antibiotics or repeat pars plana vitreous lavage depended on the response to treatment and were left to the decision of the treating physicians. In principle, intravitreal injections were repeated every 48 hours. Media clarity was recorded in terms of reduction of vitreous echoes on B-scan at each subsequent visit and in terms of improvement in the visibility of the retina and retinal vessels. Repeat injections were discontinued once media clarity increased to at least second-order retinal vessels visible. In cases with hazy view due to corneal involvement, a vitreous biopsy was taken instead of a vitrectomy procedure. The topical and intravitreal antibiotics used were adjusted as per the culture sensitivity report.

Clinical management protocol

As per institute protocol, the surgical management of endophthalmitis consisted of pars plana vitrectomy, microscopy and culture of undiluted vitreous, antimicrobial susceptibility testing of bacterial isolates, and intravitreal antibiotics (vancomycin (1 mg/0.01 ml) + ceftazidime (2.25 mg/0.01 ml)) with or without dexamethasone (400 µg/0.01 ml). The medical treatment also included intensive topical antibiotics (ciprofloxacin 0.3% one hourly) and corticosteroid (prednisolone acetate 1% one hourly) and oral ciprofloxacin 750 mg two times per day for 7–10 days. Additional procedures such as repeat intravitreal antibiotics or repeat pars plana vitreous lavage depended on the response to treatment and were left to the decision of the treating physicians. In principle, intravitreal injections were repeated every 48 hours. Media clarity was recorded in terms of reduction of vitreous echoes on B-scan at each subsequent visit and in terms of improvement in the visibility of the retina and retinal vessels. Repeat injections were discontinued once media clarity increased to at least second-order retinal vessels visible. In cases with hazy view due to corneal involvement, a vitreous biopsy was taken instead of a vitrectomy procedure. The topical and intravitreal antibiotics used were adjusted as per the culture sensitivity report.

Statistical methods

The collected data was arranged on an excel spreadsheet. Statistical analysis was analyzed using the MedCalc Statistical Software version 19.7.2 (MedCalc, Ostend, Belgium). All continuous data were classified as either normative or non-normative in each group. Paired t test was used to compare normative data, and the Mann–Whitney U test was used to compare nonnormative data. Analysis of categorical data was done using the Chi-square test. Odd’s ratio was calculated wherever appropriate. Multivariate logistic regression analysis was done to assess the effect of various demographic and clinical factors on the final anatomic and functional outcome. P < 0.05 was assigned as statistically significant.

Results

Eighty-three patients satisfied the inclusion criteria in the study period of 1 year. Fifty patients were biofilm positive, and 33 patients were biofilm negative with either CVP or XTT method or both. Demographic details of the patients in both groups are presented in Table 1. There was no statistical difference in the presenting age, duration of vision loss, or...
Table 1: Comparative presentations and outcomes of biofilm-negative and biofilm-positive organisms

	Biofilm-negative	Biofilm-positive	P	95% C.I. for the difference
Number of eyes	50	33		
Males (%)	28 (56)	26 (78.8)	0.03	1.86%-40.08%
Mean age in years (median)	44.08±24.67 (50.5)	46.51±19.24 (49)	0.96	
Duration of vision loss in days (median)	4.48±5.63 (2.5)	4.83±7.44 (2)	0.45	
Post cataract surgery (%)	21 (42)	13 (39.4)	0.81	
Presenting vision in logMAR (median)	2.79±0.72 (3.3)	2.72±1.13 (3.3)	0.69	
Glaucoma at presentation	16 (32%)	10 (30.3%)	0.87	
Vitreous tap as first procedure	12 (24.5%)	7 (22.6%)	0.84	
Gram-negative etiology	24 (48%)	17 (51.51%)	0.75	
Mean number of surgical interventions (median)	2.86±1.45 (3)	6.36±2.89 (6)	<0.0001	2-4
Follow-up in months (median)	6.96±5.16 (6)	5.8±4.74 (5)	0.33	
Final vision in logMAR (median)	1.2±0.57 (1.2)	2.17±0.88 (1.9)	0.0005	0.4-1.7
Functional success	22 (44%)	7 (21.2%)	0.03	1.86%-40.08%
Anatomic success	34 (68%)	14 (42.42%)	0.02	3.85%-44.47%

Discussion

The current study discusses the role of biofilm in the treatment outcome of bacteria endophthalmitis. It was noted that bacteria with in vivo biofilm formation in endophthalmitis showed enhanced in vivo virulence, leading to an increased need for surgical intervention and reduced final anatomic and functional success. The current study also included cases that were post-trauma. Trauma by itself is a confounding factor that can directly affect final clinical outcomes irrespective of the severity of endophthalmitis. However, as the number of cases post-trauma in both groups was comparable (P = 0.82), the effect of this confounding variable was avoided. Griffiths et al.[13] reported biofilm formation on an IOL by S. epidermidis in 1989. Adherence of the bacteria to the lens with glyocalyx around it prevents both antibiotics and antibodies from reaching the bacteria. Increased adherence of S. epidermidis to intraocular polypropylene lenses compared to polymethylmethacrylate lenses is known.[14] It is proposed that biofilm production on IOLs after cataract surgery occurs due to the microorganism’s ability to adhere to these lenses via exopolysaccharides produced by them. This provides an extra shell and protects these bacteria from the antibiotics.[15,16] Need for multiple interventions and eventually the IOL explantation has also been reported in acute and chronic biofilm-producing Staphylococcal endophthalmitis.[17] However, biofilm formation is not always associated with antibiotic resistance but may affect virulence. Biofilm producing S. epidermidis produces extracellular polymeric substances and inhibits phagocytosis and antibiotics’ action, resulting in inadequate clearance of organisms.[18] Thus, in these situations, multiple interventions may be required to sterilize the vitreous cavity. The current study showed the need for significantly more interventions in biofilm-producing microorganisms causing endophthalmitis as compared to those that were biofilm-negative.

Biofilms have been known to have a virulent role in ophthalmology, especially in cases where some kind of implant has been used for management of the disease. A study conducted by Holand et al.[19] demonstrated biofilm in 65% of scleral buckles (solid silicone and sponge forms) removed for infection and extrusion by scanning electron microscopy. Biofilms on scleral buckles may function as reservoirs for pathogenic bacteria contributing to its extrusion.[20] A report by Yokoi et al.[21] showed association of biofilm in punctal...
plugs developing conjunctivitis that required removal of the plug and prolonged antibiotic treatment. Periorbital implants include orbital plates, porous polyethylene floor implant, orbital sphere implants, and anophthalmic socket sphere implants or metal screws. Scanning electron microscopy has demonstrated polymicrobial or mixed species biofilm on these implants. However, most commonly seen organism in orbital implants was *S. aureus*. Other organisms included *M. chelonae* and *Pantoaea agglomerans* found in polymicrobial cases, yeasts (*Candida* spp. and *Trichosporon* spp.), *Staphylococcus* spp., *M. chelonae*, and gram-negative bacilli (*Achromobacter xylosoxidans* and *P. aeruginosa*) in orbital plates.[22] Virulence related to biofilm formation has also been proposed in contact lens-related keratitis. One of the commonest organisms implicated in contact lens-associated keratitis is *Pseudomonas* species, which is also known to form biofilm. A study conducted by Abidi et al.[23] showed that all species of *Pseudomonas* were found to be potential biofilm formers and also concluded that the multidrug-resistant isolates displayed significant biofilm production as compared to susceptible isolates, indicating the antimicrobial resistance offered by the biofilm to these organisms.[23] Biofilm also forms with *Acanthamoeba* spp., which is another common organism involved in contact lens-associated keratitis.[24]

The current study has its strengths and limitations. Among strengths, this was a prospective consecutive case series where the patients were treated by a uniform institutional protocol, but the treating physicians were masked to the results of the biofilm. Among limitations, the biofilm formation was tested in vitro in cultures and not over IOLs because its exploitation was not needed in any of the patients. Thus, our study is an in vivo extrapolation of the in vitro observation. Furthermore, the cases in this study included etiologies other than intraocular surgery, such as open globe injury. This makes the instances

Table 3: Microorganisms isolated in the biofilm-positive and biofilm-negative groups

Microorganism	Biofilm-negative	Biofilm-positive	
Gram-positive			
Streptococcus species	*S pneumoniae*	7	1
	S anginosus	1	-
	S pyogenes	1	-
	S mitis	1	-
	S licheniformis	1	-
	S gordonii	-	1
	S agalactia	-	1
Staphylococcus species	*S epidermidis*	6	9
	S aureus	4	1
	S lugdunensis	-	1
Bacillus species	*B cereus*	4	1
	B licheniformis	1	-
Gemella species	*G morbillorum*	-	1
Total. n=42		26 (61.9%)	16 (38.1%)

Gram-negative			
Pseudomonas species	*P aeruginosa*	10	8
	P stutzeri	-	3
Stenotrophomonas species	*S maltophilia*	2	-
Aeromonas species	*A hydrophila*	1	-
Brevundimonas species	*B vesicularis*	1	-
Escherichia species	*E Coli*	1	-
Acinetobacter species	*Alwofii*	1	-
Klebsiella species	*K pneumoniae*	-	2
Enterobacter species	*E aerogenes*	-	1
	E cloacae	7	1
Serratia marcescens	*S marcescens*	-	1
Cronobacter sakazakii	*C sakazakii*	-	1
Pantoea species	1	-	
Total. n=41		24 (58.5%)	17 (41.5%)

Table 4: Comparison of antibiotic resistance patterns between the two groups

Antibiotic tested for resistance	Biofilm-negative	Biofilm-positive	*P*
Vancomycin	4.52% (n=22)	10% (n=10)	0.55
Ceftazidime	60.86% (n=23)	33.33% (n=15)	0.1
Ciprofloxacin	31% (n=29)	35.29% (n=17)	0.76
Amikacin	52.63% (n=19)	40% (n=15)	0.47
Chloramphenicol	20% (n=45)	34.48% (n=29)	0.16
Imipenem	66.66% (n=15)	30% (n=10)	0.07
heterogeneous, but a logistic regression analysis did not impact the etiological differences on the final clinical outcome.

Conclusion

In conclusion, we propose that early identification of biofilm-forming organisms may help decide a tailored management strategy for each patient. It would also help in proper prognosticating the outcome. These results can serve as a background for further research into anti-biofilm measures impacting clinical outcomes in patients with endophthalmitis.

Financial support and sponsorship

Hyderabad Eye Research Foundation, Hyderabad, India (LEC-7-18-118).

Conflicts of interest

There are no conflicts of interest.

References

1. Han DP, Wisniewski SR, Wilson LA, Barza M, Vine AK, Doft BH, et al. Spectrum and susceptibilities of microbiologic isolates in the Endophthalmitis Vitrectomy Study. Am J Ophthalmol 1996;122:1-17.

2. Endophthalmitis Study Group, European Society of Cataract and Refractive Surgeons. Prophylaxis of postoperative endophthalmitis following cataract surgery: Results of the ESCRS multicenter study and identification of risk factors. J Cataract Refract Surg 2007;33:978-88.

3. Lalitha P, Sengupta S, Ravindran RD, Sharma S, Joseph J, Ambiya V, et al. A literature review and update on the incidence and microbiology spectrum of postcataract surgery endophthalmitis over past two decades in India. Indian J Ophthalmol 2017;65:673-7.

4. Das T, Kunimoto DY, Sharma S, Jalali S, Majji AB, Rao TN, et al.; Endophthalmitis Research Group. Relationship between clinical presentation and visual outcome in postoperative and posttraumatic endophthalmitis in South central India. Indian J Ophthalmol 2005;53:5-16.

5. Harty DW, Handley PS. Expression of the surface properties of the fibrillar Streptococcus salivarius HB and its adhesion deficient mutants grown in continuous culture under glucose limitation. J Gen Microbiol 1989;135:2611-21.

6. Zegans ME, Becker HI, Budzik J, O'Toole G. The role of bacterial biofilms in ocular infections. DNA Cell Biol 2002;21:415-20.

7. Venkatesan N, Perumal G, Doble M. Bacterial resistance in biofilm-associated bacteria. Future Microbiol 2015;10:1743-50.

8. Leid JG, Costerton JW, Shirtliff ME, Gilmore MS, Engelbert M. Immunology of Staphylococcal biofilm infections in the eye: New tools to study biofilm endophthalmitis. DNA Cell Biol 2002;21:405-13.

9. Sharma S, Jalali S, Adiraju MV, Gopinathan U, Das T. Sensitivity and predictability of vitreous cytology, biopsy, and membrane filter culture in endophthalmitis. Retina 1996;16:525-9.

10. CLSI, Performance Standards for Antimicrobial Disk Susceptibility Tests. Approved standard, 7th ed. CLSI document M02-A11. Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA, 2012.

11. Corte L, Casagrande Piantoni D, Tascini C, Roscini L, Cardinali G. Biofilm specific activity: A measure to quantify microbial biofilm. Microorganisms 2019;7:73.

12. Dhale RP, Ghorpade MV, Dharmadhikari CA. Comparison of various methods used to detect biofilm formation of Candida species. J Clin Diagn Res 2014;8:DC18-20.

13. Griffitts PG, Elliot TS, McGarrett L. Adherence of Staphylococcus epidermidis to intraocular lenses. Br J Ophthalmol 1989;73:402-6.

14. Elder MJ, Stapleton F, Evans E, Dart JK. Biofilm-related infections in ophthalmology. Eye (Lond) 1995;9:102-9.

15. García-Sáenz MC, Arias-Puente A, Frenadadillo-Martinez MJ, Matilla-Rodriquez A. In vitro adhesion of Staphylococcus epidermidis to intraocular lenses. J Cataract Refract Surg 2000;26:1673-9.

16. Das D, Bhattacharjee H, Gogoi K, Das JK, Misra P, Dhir P, et al. Intraocular lens biofilm formation supported by scanning electron microscopy imaging. Indian J Ophthalmol 2019;67:1708-9.

17. Pichi F, Nucci P, Baynes K, Carrai P, Srivastava SK, Lowder CY. Acute and chronic Staphylococcus epidermidis post-operative endophthalmitis: The importance of biofilm production. Int Ophthalmol 2014;34:1267-70.

18. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: A common cause of persistent infections. Science 1999;284:1318-22.

19. Holland SP, Pullido JJS, Miller D, Ellis B, Alfonso E, Scott M, et al. Biofilm and scleral buckle-associated infections. A mechanism for persistence. Ophthalmology 1991;98:933-8.

20. Zegans ME, Becker HI, Budzik J, O’Toole G. The role of bacterial biofilms in ocular infections. DNA Cell Biol 2002;21:415-20.

21. Yokoi N, Okada K, Sugita K, Kinoshita S. Acute conjunctivitis associated with biofilm formation on a punctal plug. Jpn J Ophthalmol 2000;44:559-60.

22. Bispo PJ, Haas W, Gilmore MS. Biofilms in infections of the eye. Pathogens 2015;4:111-36.

23. Abidi SH, Shewari SK, Siddiqui TR, Bashir A, Kazmi SU. Drug resistance profile and biofilm forming potential of Pseudomonas aeruginosa isolated from contact lenses in Karachi-Pakistan. BMC Ophthalmol 2013;13:57. doi: 10.1186/1471-2415-13-57. PMID: 24134792; PMCID: PMC3852958.

24. Hashemian H, Mirshahi R, Khodaparast M, Jabbarvand M. Post-cataract surgery endophthalmitis: Brief literature review. J Curr Ophthalmol 2016;28:101-5.