Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
its detection upon arrival in hospital, which also contributed to a relative low prevalence of hypotension in our study. The median ages seem to be commensurate between our study and the study by Spaite and colleagues; however, the patients enrolled in these two large datasets are very different: patients with traumatic brain injury of all severities and all ages were considered in our study, whereas patients with mild traumatic brain injury or those aged younger than 10 years were excluded from Spaite and colleagues’ study. A better comparison is the CENTER-TBI study in Europe,5 for which the cohort had comparison is the CENTER-TBI study in Europe,5 for which the cohort had variation observed in our study raised and baseline characteristics are taken meaningful when individual trial design and between various clinical trials is truly We believe that comparative analysis than 65 years in our study in China.1 more feasible and anticipated than para international collaborations and com emphasis should be placed on current analyses based on contemporary cohort data and previous studies will be of great value, and greater emphasis should be placed on current international collaborations and comparative effectiveness studies, as they are more feasible and anticipated than ever in this field.

We declare no competing interests.

Junfeng Feng, Guoyi Gao, *Jiyao Jiang
jiyaojiang@126.com

Department of Neurosurgery, Renji Hospital,
School of Medicine, Shanghai Jiao Tong University,
Shanghai 200127, China (JF, GG, JJ); and Shanghai Institute of Head Trauma, Shanghai, China (JF, GG, JJ)

1. Gao G, Wu X, Feng J, et al. Clinical characteristics and outcomes in patients with traumatic brain injury in China: a prospective, multicentre, longitudinal, observational study. Lancet Neurol 2020; 19: 670–77.

2. Feng J, van Veen E, Yang C, et al. Comparison of care system and treatment approaches for patients with traumatic brain injury in China versus Europe: a CENTER-TBI survey study. J Neurotrauma 2020; 37: 1806–17.

3. Spaite DW, Hu C, Bobrow BJ, et al. The impact of combined prehospital hypotension and hypoxia on mortality in major traumatic brain injury. Ann Emerg Med 2017; 69: 62–72.

4. Stassen W, Welzl T. The prevalence of hypotension and hypoxaemia in blunt traumatic brain injury in the prehospital setting of Johannesburg, South Africa: a retrospective chart review. S Afr Med J 2014; 104: 424–27.

5. Steyerberg EW, Wiegens E, Sewalt C, et al. Case-mix, care pathways, and outcomes in patients with traumatic brain injury in CENTER-TBI: a European prospective, multicentre, longitudinal, cohort study. Lancet Neurol 2019; 18: 923–34.

Patient-centred management of Parkinson’s disease

The Personal View by Bloem and colleagues on integrated and patient-centred management of Parkinson’s disease proposes a health system organisation to address complex care in chronic neurological disorders, using Parkinson’s disease as an example. The proposed hub-and-spoke model envisions the integration of health professionals based on a Parkinson’s disease centre of excellence integrated with community hospitals. We share the values put forward as pillars for a framework change in the care of Parkinson’s disease and other chronic neurological diseases but would like to offer additional insights for their wider dissemination and implementation.

As mentioned by Bloem and colleagues, it is necessary to adapt any model of integrated health care to local circumstances. However, how the different components of the model might be implemented is unclear and, in our opinion, the most crucial barrier for the effective use of comprehensive care in Parkinson’s disease management.

For example, Bloem and colleagues make Parkinson’s disease specific training of allied health professionals a fundamental piece of the model. Although we agree with the need for training, this ideal scenario could be impractical in many health-care environments. The infrastructure needed for training these professionals is substantial and highly trained health professionals could become quickly overwhelmed with patients.

To overcome the practical limitations of multispecialty care for Parkinson’s disease, we propose a regional care network that starts by optimising existing allied health programmes and community resources (including primary care physicians) and allows for self-management. We believe this approach would enable implementation of care integration in most health-care models and could be a cost-effective alternative with positive outcomes. We envision a toolkit to guide the application of these care principles to local care settings. Its development requires a multinational, multidisciplinary effort with healthcare teams, clinical researchers, health economists, and sociologists. Patient-centredness is paramount to fulfil this vision, and co-designed methodologies should be a framework to develop a care model tailored to patient needs at disease onset and beyond.3,4

The COVID-19 pandemic has prompted a change in care delivery with increased uptake of telemedicine and online care resources. It is fundamental to address the question of what the most beneficial and feasible care delivery model is and, consequently, if Parkinson’s disease tertiary centres should remain the hub of care. The current scenario is an opportunity to test the hypothesis that a major component of Parkinson’s disease care has shifted to the home and community and that any care model must be pragmatic and tailored to the patient’s needs. Pragmatism is key in delivering chronic neurological care.

DG reports consultation fees from Valeo Pharma, Sandoz, Department of Justice Canada Government of Canada Clinical trials, CIHR, Biote Therapies, Genzyme Corporation, and Sanofi. DG reports grants from the Canadian Institute of Health Research, Parkinson Canada, Brain Canada, PSI Foundation, Parkinson Research Consortium, EU Joint Programme-Neurodegenerative Disease Research, and University of Ottawa Brain and Mind Research Institute (UOBMRI). JFJ owns stocks in and reports consultancy fees from Ipsen.
Correspondence

GlaxoSmithKline, Novartis, Teva, Lundbeck, Solvay, Abbott, BIAL, Merck-Serono and Merz. JF reports grants from GlaxoSmithKline, Grunenthal, Teva, and Fundação Merck Sharp Dome. AA reports consultancy and speaker fees from Union Chimique Belge (UCB), Boehringer Ingelheim, AbbVie, Zambon, Bial, Ever Pharma, Neurorad, Therevance, Biogen. AA reports research grants from Chiesi Pharmaceuticals, Lundbeck, Horizon, and the Italian Ministry of Education. AA serves as a consultant for Boehringer-Ingelheim for legal cases on pathological gambling. ÁS-F owns stocks in Leuko Labs and Leuko Imaging System and reports speaker fees from AbbVie, UCB, Novartis. 

AS-F reports grants from EU Joint Programme on Neurodegenerative Disease Research (JPNÖ), and European Institute of Innovation and Technology Health, and royalties from the Massachusetts Institute of Technology. TL is on the advisory boards for An2H, receives speaker fees from UCB, and reports grants from the Michael J Fox Foundation, Health Research Board Ireland, and JPNÖ. ER reports consultancy fees from AbbVie, Acadia, and Axon, and grants from Horizon 2020, JPNÖ, Michael J Fox Foundation, Czech Health Research Council, and Grant Agency of the Czech Republic. OR is on the advisory board for AbbVie, Adamas, Acorda, Addex, AlzProtect, Aephapharma, Astarnecc, Assoviant, Bial, Biogen, Britannia, Buckwango, Cerexep, Cervexel, Denali, INC Research, Lundbeck, Lupin, Merck, Mundipharma, Neuraxent, Neuroderm, Novartis, Ono Pharma, Osornica, Parseel, Pizer, Preston Therapeutics, Quintiles, Roche, Sanofi, Servier, Sunovion, Théranexx, Takeda, Teva, UCB, Vectura, Watermark Research, XenoPort, and Zambon. OR receives grants from Agence Nationale de la Recherche, CHU de Toulouse, France-Parkinson, INSERM-OHOS Recherches Cliniques Translatory, Michael J Fox Foundation, Programme Hospitalier de Recherche Clinique, European Commission, Cure Parkinson UK. OR has received a grant to participate in a symposium and contribute to the review of an article International Parkinson Disease and Movement Disorders Society. CE receives consultancy fees from AbbVie and Philyra, and speaker fees from AbbVie, Daiichi Sankyo, Bayer Vital, and Philyra. CE reports grants from Deutsche Parkinson Vereinigung, German Ministry for Education and Science, Horizon 2020, German Research Society, and German Parkinson Society. TM received speaker fees from AbbVie, and the International Parkinson and Movement Disorder Society. TM receives consultancy fees from CHDI Foundation, Sunovion, Valeo Pharma, and is part of the advisory board for AbbVie, Biogen, Roche, Medtronic, and received grants from EU Joint Programme on Neurodegenerative Disease Research, U0893R, Ontario Research Fund, Canadian Institute of Health Research, Michael J Fox Foundation, Parkinson Canada, Parkinson Disease Foundation/Parkinson Study Group, LesLois Foundation, Physicians Service Incorporated Foundation, and Parkinson Research Consortium.

David Grimes, Angelo Antonini, Joaquim J Ferreira, Álvaro Sanchez-Ferro, Timothy Lynch, Oliver Rasclo, Evžen Růžička, Carsten Eggers,* Tiago A Mestre

tmestre@toh.ca

Parkinson’s disease and Movement Disorders Center, Department of Medicine, The Ottawa Hospital Research Institute, University of Ottawa, Ottawa KY1-4E9, ON, Canada (DG, TM); Department of Neurosciences, Padova University, Padova, Italy (AA); Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal (JF); Campus Neurologico Sénior, Torres Vedras, Portugal (JF); HM CINAC, Hospital Universitario HM Puerta del Sol, Universidad CEU San Pablo, Madrid, Spain (ÁS-F); Dublin Neurological Institute, Mater Misericordiae University Hospital, Dublin, Ireland (TL); Services de Neurologie, Centre de Reference AMS, Centre d’Investigation Clinique, Reseau NS-Park/FCR1T et Centre de Excellence for Neurodegenerative Disorders, CHU de Toulouse, Toulouse, France (OR); Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic (ER), and Department of Neurology, University Hospital of Marburg, Marburg, Germany (CE)

1 Bloom BR, Henderson EJ, Dorsey ER, et al. Integrated and patient-centred management of Parkinson’s disease: a network model for reshaping chronic neurological care. Lancet Neurol 2020; 19: 625–34.

2 Craig P, Dieppe P, Macintyre S, Michie S, Nazareth I, Petticrew M. Developing and evaluating complex interventions: the new Medical Research Council guidelines. BMJ 2008; 337:a1655.

3 Mestre T, Gronjean S, Bonnville L, Grimes D, Bate E, Lé M. eCARE-PD, a digital health platform for patient empowerment and online health tracking: experiences with co-design. International Parkinson and Movement Society 2019 International Congress; Nice, France; Sept 22–26, 2019 (Abstr 2116).

4 Kessler D, Hauteclocque J, Grimes D, Mestre T, Côté D, Liddy C. Development of the integrated Parkinson’s care network (IPCN): using co-design to plan collaborative care for people with Parkinson’s disease. Qual Life Res 2019; 28: 1355-64.

We read with interest the Personal View by Bastiaan Bloem and colleagues on integrated and patient-centred management of Parkinson’s disease.1 We have designed the structure and operation of the Parkinson’s disease network in Lombardy, Italy,2 and wish to compare the two models. Both networks consider a hub-and-spoke model of distributed healthcare services and are designed to be implemented in high-income European regions with prevalently public health-care systems. However, there are some considerable differences between the two models.

Bloem and colleagues’ model derives from the ParkinsonNet, originally designed in 2004 as a low-cost network of physical therapists in the Netherlands.3 It consists of a collection of regional community-based networks of dedicated allied health professionals (physiotherapists, occupational therapists, speech-language therapists, dietitians, and nurses) who are specifically trained on Parkinson’s disease management. In this model, the personal case manager is a non-medical professional and there is one hub for the entire country (population of 17.28 million people, area of 31543 km2). The connection between a patient with Parkinson’s disease and their doctor is mediated by a caring nurse. By contrast, the Lombardy network was developed top-down. The regional health authority commissioned it in accordance with a national provision on chronic diseases. The model structure is based on data analysis done by the commissioning authority from statistics related to Parkinson’s disease and health-care providers in Lombardy. In this model, the personal case manager is the patient’s doctor and there are 12 hubs throughout the Lombardy region (population of 10.06 million, area of 23844 km2).

Bloem and colleagues did not clearly identify objective measures to monitor efficacy and efficiency of network operations. The Lombardy network described in detail criteria for Parkinson’s disease diagnosis and staging, referral of non-motor symptoms, management of device-aided therapies, data collection, and quality assessment and governance. Similar outcome measures should be used to compare these two networks. To this end, the Dutch model could possibly adopt the objective measures used in Lombardy and allow comparisons of the two European experiences.

Financial sustainability was a concern in both models. Structured networks could reduce costs, improve timely access to treatment, enable earlier diagnosis, enhance patient