Massive soybean expansion in South America since 2000 and implications for conservation

Xiao-Peng Song, Matthew C. Hansen, Peter Potapov, Bernard Adusei, Jeffrey Pickering, Marcos Adami, Andre Lima, Viviana Zalles, Stephen V. Stehman, Carlos M. Di Bella, Maria C. Conde, Esteban J. Copati, Lucas B. Fernandes, Andres Hernandez-Serna, Samuel M. Jantz, Amy H. Pickens, Svetlana Turubanova and Alexandra Tyukavina

A prominent goal of policies mitigating climate change and biodiversity loss is to achieve zero deforestation in the global supply chain of key commodities, such as palm oil and soybean. However, the extent and dynamics of deforestation driven by commodity expansion are largely unknown. Here we mapped annual soybean expansion in South America between 2000 and 2019 by combining satellite observations and sample field data. From 2000 to 2019, the area cultivated with soybean more than doubled from 26.4 Mha to 55.1 Mha. Most soybean expansion occurred on pastures originally converted from natural vegetation for cattle production. The most rapid expansion occurred in the Brazilian Amazon, where soybean area increased more than tenfold, from 0.4 Mha to 4.6 Mha. Across the continent, 9% of forest loss was converted to soybean by 2016. Soybean-driven deforestation was concentrated at the active frontiers, nearly half located in the Brazilian Cerrado. Efforts to limit future deforestation must consider how soybean expansion may drive deforestation indirectly by displacing pasture or other land uses. Holistic approaches that track land use across all commodities coupled with vegetation monitoring are required to maintain critical ecosystem services.

To feed a growing population, global food production needs to increase by 70–100% by 2050. The rising demand for food has caused massive deforestation across the tropics, leading to greenhouse gas emissions, loss of terrestrial biodiversity and deterioration of ecosystem services. Land used to produce soybean is rapidly expanding in the agricultural frontiers of South America, replacing natural vegetation, pastures and other cropland. Soybean, a major oil crop that originated from China, is the world's largest source of protein for animal feed and the second largest source of vegetable oil after palm. Global production of soybean has more than doubled since 2000 and more than quadrupled since 1980. About 70% of the production increase was from the expansion of harvested area and 30% from yield gain. More than half of the world's soybean production currently resides in South America, where soybean harvested area has increased since 2000 by 160% in Brazil and by 57% in Argentina, with relatively smaller yield growth (<30%) in both countries. Over the same period, China's soybean import from Brazil has surged by 2,000% (ref. 9), mostly for providing animal feed to meet the increasing meat consumption in China. The escalating trade tensions between the United States and China are expected to motivate China to seek more imports from South America, incentivizing deforestation, especially at the frontiers. To fill the US shortfall, as much as 13 million hectares of additional soybean land are needed.

Meanwhile, many regional and international initiatives are being developed to remove deforestation from commodity supply chains. A successful example is the Amazon Soy Moratorium, a voluntary agreement signed by traders who committed not to buy soybeans sowed on deforested lands in the Brazilian Amazon after 2008. A number of studies have investigated the role of soybean in driving deforestation in Brazil, as well as the effectiveness of forest-protection policies. For example, Gibbs et al. analysed satellite data from before and after the Amazon Soy Moratorium and demonstrated that it was effective in reducing deforestation. Soterroni et al. applied a land-use model and evaluated the potential deforestation-reduction effect of extending the soy moratorium to the Cerrado biome. The soy moratorium for the Amazon was renewed indefinitely in 2016, but the Cerrado biome was only recently covered by a voluntary manifesto signed by civil society organizations in 2017 without legal enforcement. Protection policies for other biomes lag even further behind the Amazon and Cerrado. These previous studies have generated valuable scientific insights into the regional dynamics of commodity-driven deforestation. However, a long-term, continental perspective does not exist, primarily due to the lack of spatially explicit data on commodity expansion. Mapping postdeforestation land uses for commodity production is critical for designing and implementing commodity-specific conservation policies. Ideally, such data should be derived at a high spatial resolution to match the scale of land use, over a long temporal span to establish a baseline, and over a large geographical extent to allow for the assessment of the potential issue of land-use displacement.
In our study, we mapped annual soybean extent at 30 m spatial resolution over the Southern Hemisphere of South America from 2000 to 2019. Our study area encompasses all major biomes where soybeans are cultivated: Amazonia, Atlantic Forest, Cerrado, Chaco, Chiquitania, Pampas, and more recently, the Pantanal and Caatinga biomes. Our maps were produced using wall-to-wall Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, a stratified random sample of Sentinel 2 satellite data and three years of continent-wide field observations. We assessed the accuracy of the maps using data collected from field visits obtained at sample pixels selected by a stratified two-stage cluster sampling design. The soybean classification map was then tailored so that the area of mapped soybean was constrained to match the field-based sample area estimates over South America. Our analysis revealed the extent and expansion of soybeans over the past two decades in South America with unprecedented precision. The high-resolution, annual soybean maps we generated provide valuable spatial information, which is absent in government statistics, for monitoring commodity crop growth. More importantly, complementary to the operational annual forest change mapping1,2,3, these soybean maps provide key historical baseline information for tracking commodity-driven deforestation.

To better understand the shifting dynamics of land-use change in South America in the twenty-first century, we quantified the area of primary forests, non-primary forests, non-forest natural vegetation, pre-existing croplands and pastures that were replaced by soybean. We also integrated the annual soybean maps with annual forest-loss maps, and quantified deforestation caused by soybean as a direct and latent driver, highlighting emerging hotspots of soybean expansion as a direct driver of deforestation. For simplicity in reporting subsequent results, we refer to a cropping year by the harvest year. For example, year 2001 indicates the 2000/2001 cropping year.

Continental and regional patterns of soybean expansion

On the basis of satellite observations, we found that soybean area in South America increased from 26.4 Mha in 2001 to 55.1 Mha in 2019 (Fig. 1). This doubling of soybean cultivated area was

Fig. 1 | Soybean expansion across South America in the twenty-first century. Annual soybean classification maps were generated at 30 m spatial resolution from 2001 to 2019. Data from the beginning and ending years are used in this visualization to show soybean expansion. To reduce the effect of annual crop rotation on data visualization, for this map we applied a 3-yr majority filter for the beginning and ending years to derive soybean layers ca. 2002 and 2018. The inset at the lower bottom corner shows annual soybean area statistics over South America, Brazil and Argentina, derived from the annual maps without filtering. Black boxes and labels on the map indicate the spatial extents of regional examples shown in Fig. 2.
mainly contributed by the two largest producing countries, Brazil and Argentina. Soybean area in Brazil increased by a factor of 2.6, from 13.4 Mha in 2001 to 34.2 Mha in 2019 (average growth rate, 1.2 Mha yr$^{-1}$). Soybean area in Argentina increased by a factor of 1.7, from 11.4 Mha in 2001 to 19.9 Mha in 2015 (average growth rate, 0.6 Mha yr$^{-1}$), which then gradually declined to 16.3 Mha in 2019.

The spatial extent of soybeans has been expanding from traditional cultivation regions in all directions across the continent (Fig. 1). In southern Brazil (the states of Paraná, Santa Catarina and Rio Grande do Sul), soybeans have been expanding into surrounding regions, most notably onto higher slopes. In the traditional breadbasket of Argentina (the provinces of Buenos Aires, Córdoba, Santa Fe and Entre Ríos), new soybean fields have been spreading to the south. However, in the agricultural frontiers in Brazil’s centre-west and northeastern states, the principal direction of soybean development is towards the Equator (Fig. 2a,b).

In northwestern Argentina, soybeans have been encroaching into Chaco ecosystems from both the western and eastern sides (Fig. 2c). In eastern Paraguay, an established agricultural landscape, the area of land under soybean cultivation continues to grow, threatening to replace remnant Atlantic Forests (Fig. 2d), whereas in the western Paraguayan Chaco, soybean fields have just started to emerge. In central Bolivia, soybeans are rapidly replacing the Chiquitania forests, and in southwestern Uruguay, vast areas of Campos pasture/grassland are being transformed for soybean production.

To attribute and quantify the original land source of new soybean fields, we first constructed a 30 m resolution, circa-2001 land-cover map, consisting of primary humid forests, non-primary forests and other land (mostly pasture/grassland). We then overlaid 2002–2019 annual soybean maps on the 2001 land-cover map, identified the 2001 land source of soybean pixels for each subsequent year and summarized results for every biome. We found that the rates of conversion of forests, pasture/grassland and pre-existing cropland to soybean varied substantially among biomes (Fig. 3).

Soybean cultivated areas in the Pampas, Cerrado and Atlantic Forest, the three biomes with the largest soybean cultivation, all nearly doubled over the past two decades (Fig. 3). While 18% (1.7 Mha) of new soybean fields in the Cerrado and 20% (1.0 Mha) of new soybean fields in the Atlantic Forest were sourced from dry forests and non-primary humid forests, respectively, almost all new soybean fields in the Pampas were converted from non-forest lands.
Forest cover and forest loss in the Pampas were relatively low compared with the Cerrado and the Atlantic Forest (Supplementary Table 1 and Supplementary Fig. 1). Our results for the Cerrado are consistent with previous studies\(^{17-19}\). Soybean cultivation has been rapidly developing in the Caatinga and the Pantanal since 2013, albeit at smaller magnitudes than in other biomes (Fig. 3). The main land source (87%, 11 kha) for new soybean fields in the Caatinga was semi-arid woodlands, whereas the main land source (76%, 11 kha) for new soybean fields in the Pantanal was pasture/grassland.

Our map-based attribution analysis indicated that substantial areas of both forest and non-forest vegetation were converted to soybean. To further distinguish conversion of native vegetation from conversion of pastures within non-forest vegetation, we conducted a sample-based attribution analysis using a time series

Fig. 3 | Year 2001 land source of annual soybean between 2002 and 2019 in major biomes in South America. The map in the centre shows the distribution of eight biomes where soybeans are cultivated: Brazilian Amazon, Chiquitania, Chaco, Cerrado, Atlantic Forest, Pampas, Pantanal and Caatinga. For each biome, annual soybean layers 2002–2019 were overlaid on the 2001 land-cover map (Fig. 1) to calculate the 2001 land source of new soybean fields.

Table 1 | Forest loss, soybean gain and deforestation driven by soybean cultivation from 2001 to 2016

Biome	Total forest loss (kha) (a)	Total soybean gain (kha)	Soybean gain as a direct driver of deforestation (kha) (time lag ≤ 3 yr) (b)	Soybean gain as a latent driver of deforestation (kha) (time lag > 3 yr) (c)	Percentage of forest loss converted to soybean (%) ((b + c)/a)
Brazilian Amazon	27,766	3,294	692	982	6.0
Atlantic Forest	6,935	4,689	291	250	7.8
Caatinga	2,759	7	4	1	0.2
Cerrado	14,316	7,536	1,493	885	16.6
Chaco	9,837	1,061	505	529	10.5
Chiquitania	1,724	354	220	104	18.8
Pampas	1,243	8,669	69	83	12.2
Pantanal	626	6	1	0	0.2

Brazilian Amazon covers the Southern Hemisphere portion of the Amazon in this study.
of satellite data and high-resolution images in Google Earth (see details in Methods). Of soybean area established on non-forest vegetation, 6% was converted from native vegetation and 94% replaced land uses such as pasturelands. Much of the converted pasturelands resulted from clearing of forest and non-forest natural vegetation that preceded the study period.

Soybean expansion as a direct versus latent driver of deforestation

To characterize the role of soybean expansion in driving deforestation, we combined our annual soybean data layers and the annual forest-loss dataset from 2001 to 2019, focusing on distinguishing direct versus latent drivers. We defined new soybean as any pixel that was mapped as soybean for two consecutive years for the first time after 2001. The time difference between forest loss and the first soybean appearance is a key metric indicating soybean as a direct or latent driver of deforestation. For soybean as a direct driver, the interval from clearing of forests to mechanized soybean cultivation is three years or less, depending on the market price, road accessibility, land clearing status and soil preparation (Supplementary Fig. 2). For soybean as a latent driver, defined as new soybean that appeared more than three years following forest loss, cattle ranching before soybean is the most common land-use pathway. For each 30 m pixel, we calculated the time lag between forest loss and the new appearance of soybean, and then computed the 25th percentile (Q_{25}), the median and the 75th percentile (Q_{75}) by biome. In the Cerrado, the median time lag was estimated to be three years ($Q_{25} = 2$ yr, $Q_{75} = 5$ yr), considerably shorter than the median of five years in the Brazilian Amazon ($Q_{25} = 3$ yr, $Q_{75} = 9$ yr) and the median of four years in the Chaco ($Q_{25} = 2$ yr, $Q_{75} = 6$ yr). The shorter time lag in the Cerrado suggests that soybean cultivation was a direct driver of clearing forests in this biome more often than it was in the Brazilian Amazon.

Direct soybean-driven deforestation reached a total of 3.4 Mha between 2001 and 2016. This dynamic accounted for 5% of the 71.9 Mha of total forest loss during this period. Of the 3.4 Mha directly converted from forest to soybean, 1.5 Mha (44%) was located in the Cerrado, 0.7 Mha in the Brazilian Amazon and 0.5 Mha in the Chaco (Table 1). The area of deforested land that experienced latent soybean cultivation (>3 yr after clearing) amounted to 2.9 Mha between 2001 and 2016, accounting for 4% of total forest loss. This relatively low total reinforces the fact of soybean largely replacing long-established pasture land uses. Of the latent-driven deforestation, 1.0 Mha (34%) was located in the Brazilian Amazon, 0.9 Mha in the Cerrado and 0.5 Mha in the Chaco (Table 1). In addition, from 2001 to 2016, new soybean fields directly converted from forests accounted for 13% of the total soybean gain over the continent, and soybean indirectly converted from forests accounted for 11% of total soybean gain. Relative to the total soybean gain within a biome, the majority of soybean gain in the Chiquitania (62%) and Caatinga (57%), and about half of soybean gain in Chaco (48%), was from direct deforestation (Table 1).

Temporally, direct soybean-driven deforestation in the Brazilian Amazon increased from 2001 to 2003, declined in 2004 and 2005, totalling 356 kha during 2001–2005, and remained relatively low thereafter, totalling 336 kha during 2006–2016 (Fig. 4). In the Cerrado, soybean-driven deforestation also increased before 2004 and declined in 2005, totalling 637 kha during 2001–2005, but stayed relatively high thereafter, totalling 856 kha during 2006–2016. A declining trend after an initial increase was also found in the Chaco, but annual soybean-driven deforestation stayed relatively flat in the Atlantic Forest and Chiquitania, albeit at smaller magnitudes.

These temporal trends were also apparent at the municipal scale. Between 2001 and 2016, 14 municipalities had more than 50 kha deforestation directly driven by soybean expansion, with Tapurah (137 kha) of Mato Grosso, Brazil leading the list (Supplementary Fig. 3a). Of the top 14 municipalities, five were in Mato Grosso, Brazil, five in the Cerrado and Amazon transition states—Maranhão, Tocantins, Piauí and Bahia (collectively known as ‘MATOPIBA’), two in Santa Cruz, Bolivia, one in Salta, Argentina and one in Santiago del Estero, Argentina. These municipalities represent the active frontiers of agricultural expansion in the twenty-first century. As the deforestation wave moved towards the Amazon interior, and with the onset of enforcement of the Amazon Soy Moratorium in 2008, soybean-driven deforestation in most municipalities in central Mato Grosso has been decreasing or stagnating (Supplementary Fig. 3b). We also observed decreasing soybean-driven deforestation in the Argentine Chaco. Soybean planted area in Argentina has stagnated after 2015 as farmers have switched from soybean to corn in response to a larger reduction in export taxes on grains. However, soybean-driven deforestation has been increasing in municipalities in MATOPIBA and eastern Pará. The largest increase occurred in Paragominas in the Brazilian state of Pará, from an average of 1,000 ha yr$^{-1}$ between 2006 and 2007 to an average of 3,300 ha yr$^{-1}$ between 2014 and 2016. Nevertheless, regardless of soybean as a direct or latent driver of deforestation, our results show that soybeans have been progressively encroaching onto previously forested lands at the active frontiers over the past two decades (Supplementary Fig. 4).

Implications for conservation policy

Quantification of soybean expansion as a direct driver of deforestation can facilitate commodity-specific conservation policy design, implementation and monitoring. The decline of soybean-driven deforestation in the Brazilian Amazon has been widely attributed to the implementation of the Amazon Soy Moratorium, to augment the voluntary moratorium, the Ministry of Environment and the Central Bank of Brazil eliminated agricultural credits to farmers and ranchers within counties with the highest deforestation rates. These measures, along with the Action Plan for the Prevention and Control of Deforestation in the Legal Amazon, played a key role in the success of reduced deforestation in the Brazilian Amazon. Our results confirm these trends in central Mato Grosso. However, our results also revealed increasing trends in some municipalities in the Amazon (for example, eastern Pará), indicating that these policies have met with varying success between regions (Supplementary Fig. 3b).

Fig. 4 Annual area of soybean-driven deforestation per biome 2001–2016. Soybean-driven deforestation is defined as conversion of forest to soybean cultivation within three years after forest clearing. The figure shows soybean-driven deforestation for six biomes from 2001 to 2016.
Single commodity policies aimed at mitigating deforestation face the challenge of land-use displacement, which can occur over a broad scale as well as on the property level, creating leakages of deforestation16,30,31. Risk of leakage of these emerging zero-deforestation commitments requires great traceability and transparency along commodity supply chains12. Our high-resolution, long-term annual soybean maps provide data to improve our understanding of the pathways of commodity expansion and thus help to address the issue of leakage24. Supply-chain monitoring in practice will depend on several factors beyond the technical features of our current dataset, including the availability and acceptance of official deforestation and soybean extent data, rules defined and enforced through specific policies, and political considerations that may compromise maintenance of monitoring and enforcement activities. Efforts to limit future deforestation will need to take into consideration other direct drivers of forest clearing to account for the latent conversion to commodity crops12,33. Since pasture extensification is the leading direct driver of deforestation in South America16,33, achieving a deforestation-free soybean commodity chain requires consideration of how expanding its production area may indirectly drive deforestation by increasing land demand for pasture or other land uses16,36,37.

The most important finding of our study concerns the attribution of soybean as the proximate cause of forest clearing in the context of overall forest loss across South America. Between 2000 and 2019, total forest loss amounted to 84 Mha within the study area, with less than 10% of these deforested lands converted to soybean, including both direct and latent drivers. Although the proportion is relatively small, these lands are highly concentrated in the active deforestation frontiers. More commonly, soybean replaces pasture land uses7,8,38, and this dynamic may be expected to continue. Future soybean production is projected to increase by 50\% by 2050, requiring an additional 20 Mha of soybean cultivation, and much of the growth is expected to occur in South America39. In the Brazilian legal Amazon, 22 Mha of forest were cleared from 1988 to 200025, providing potential areas for further soybean expansion or reforestation26,31. Recent research has also shown that by 2015, 23 Mha of cleared land in the Cerrado are considered highly suitable for potential soybean expansion17. Our analysis further suggests that the frontier regions such as Mato Grosso, Pará and Rondônia in Brazil, Santa Cruz in Bolivia, Boquerón in Paraguay, and Salta and Santiago del Estero in Argentina possess vast potential for continued soybean expansion to fulfil the projected need without incurring new deforestation (Fig. 5).

Our results quantified the large areas of pasture that have and continue to be converted to soybean cultivation. While deforestation has well-documented environmental impacts, the conversion of pasture to intensive row cropping also deleteriously impacts the environment. The increased use of machinery, agrochemicals and fertilizer can substantially alter the physical and chemical properties of terrestrial and aquatic systems, leading to soil erosion and water pollution with implications for long-term agricultural productivity and human health41. Converting pasture to cropland can also modify seasonal water balance, elevate the water table level and increase the risk of regional flooding in flat plains41. Although current policy discussion overwhelmingly focuses on protecting forests, protecting non-forest ecosystems, such as downstream aquatic systems, is essential for the maintenance of critical ecosystem services. Our
results show that soybean cultivation is rapidly developing in the Pantanal (Fig. 3), which may change the regional hydrological cycle and water quality, and cause biodiversity loss in the world’s largest freshwater wetland\(^4\). Moreover, soybean expansion can cause severe environmental and social impacts beyond the direct conversion area, as the massive infrastructure development required for soybean transportation paves the way for other land-use activities\(^{36,45}\). Comprehensive land-use monitoring, including tracking of all commodities and the extent and loss of natural land cover, is required. The targeting of single commodities and single geographies for monitoring omits leakage effects, intercommodity transitions and land banking, all of which may result in concurrent increased forest loss and increased soybean cultivated area.

More broadly, agricultural production and environmental conservation are two distinctive objectives with inherent trade-offs as both involve the use of land resources. Our results showed how such trade-offs were clearly unfolding in South America. While the expansion of soybean area in South America has boosted global food production, raised living standards and improved social well-being for the producing countries\(^4\), it also depleted natural ecosystems and caused environmental damage from local to global scales. Balancing society’s short-term need with long-term sustainability requires innovation from both the conservation and agricultural sectors. Sustainable intensification, a process where crop yields are increased without adverse environmental impact and without the conversion of non-agricultural land, is being advocated as a viable solution to address these trade-offs\(^3\). In the Brazilian state of Mato Grosso, the traditional single-cropping system is being intensified to double-cropping systems, partially driven by conservation restrictions, and has, in turn, reduced local deforestation in the short term\(^2\). Enhanced dialogue and coordination between conservation and agricultural sectors is necessary to devise and implement comprehensive policies that will achieve sustainable use of limited land resources.

Methods

Field data-based soybean area estimation, satellite-based annual soybean mapping, land source attribution and deforestation driver analysis are described as follows.

Field data collection and soybean area estimation. We implemented a stratified random sampling design for field data collection during the growing years of 2017, 2018 and 2019, following methodology implemented by Song et al.\(^{49}\). The land area of the Southern Hemisphere of South America was divided into 20 × 20 km\(^2\) equal-area blocks. For each year of field sampling, we mapped soybean coverage for South America using Landsat and MODIS observations of the year previous to the field visit. Each block was assigned to a high, medium or low stratum on the basis of the mapped area of soybean in the block. We randomly selected 25 blocks from each stratum as the primary sampling units (PSUs). Within each PSU, we randomly selected twenty 30 × 30 m\(^2\) pixels as the secondary sampling units (SSUs). Therefore, the sample set in each year consisted of 75 PSUs and 1,500 SSUs. This sampling design was implemented independently for each of the three field visit years. In total, we sampled 225 PSUs and 4,500 SSUs (Supplementary Fig. 5). For each sample pixel in each year, we conducted field visits and collected crop type information. On the basis of the field sample data, we applied a survey sampling regression estimator to estimate soybean area for 2017, 2018 and 2019\(^{19}\). These area estimates were used to constrain the total soybean area when generating the map-derived soybean area in the block. We randomly selected 25 blocks from each stratum as the primary sampling units (PSUs). Within each PSU, we randomly selected twenty 30 × 30 m\(^2\) pixels as the secondary sampling units (SSUs). Therefore, the sample set in each year consisted of 75 PSUs and 1,500 SSUs. This sampling design was implemented independently for each of the three field visit years. In total, we sampled 225 PSUs and 4,500 SSUs (Supplementary Fig. 5). For each sample pixel in each year, we conducted field visits and collected crop type information. On the basis of the field sample data, we applied a survey sampling regression estimator to estimate soybean area for 2017, 2018 and 2019\(^9\). These area estimates were used to constrain the total soybean area when generating the soybean classification maps (next section). The field data from this continuously distributed probability sample were also used to assess the accuracy of the annual soybean maps for 2017, 2018 and 2019. While collecting data over the probability sample in the field, we also recorded a large number of data points via a windshield survey, independent of the validation sample, as training data for soybean classification.

Satellite data processing and soybean mapping. The annual 30 m resolution soybean maps were derived using all Landsat and MODIS observations acquired between 1 November and 30 April in each growing year. The MODIS surface reflectance (SR) data were obtained from the 16-day MOD44C product. We applied an automated Landsat processing system to convert Landsat Thematic Mapper, Enhanced Thematic Mapper Plus, Operational Land Imager and Thermal Infrared Sensor observations from top-of-atmosphere reflectance to normalized surface reflectance (NSR). The system consists of a series of steps, including: at-sensor radiance calculation; cloud, shadow and haze masking; reflectance normalization and anisotropy correction using MODIS SR as the normalization target. The Landsat NSR was then processed to 16-day composites similar to the MODIS product. Both Landsat NSR and MODIS SR 16-day time series were used to create annual phenological metrics for land-cover and land-use mapping. For a complete description of the methodology, readers are referred to Potapov et al.\(^{31}\) and Potapov et al.\(^{15}\).

An effective strategy for mapping crop type across a continent must be capable of dealing with local crop diversity, varying crop phenology and changing environmental conditions (for example, latitudinal gradient). Capturing such variability requires accurate training data with sufficient spatial and temporal coverage. We applied a multiscale, multitemporal approach for mapping soybean over South America. First, we classified each of the 225 sampled PSUs using field training data and all Landsat and Sentinel 2 images. Each PSU was mapped into binary soybean and non-soybean classes using a decision tree classifier trained with both locally collected in-season field data and additional training data based on virtual interpretation of satellite imagery. Although the method was labor intensive, highly accurate results could be achieved and were ensured by experienced image analysts through an iterative fine-tuning procedure (PSU-level average accuracy 96%). We then pooled all 225 classified PSUs together and randomly selected 5% of the pixels as training for the continental classification (Supplementary Fig. 6). Since the training data were located in sampled PSUs, their random nature ensured that the training set contained representative signatures of soybeans over the continent. Moreover, as the training data were accumulated over three consecutive years, they captured the various spectral responses of soybean fields under different management practices as affected by local weather variation that occurred during those three years. The spatial and temporal coverage of the training data, therefore, enhanced the temporal generalization capability of the trained machine-learning model.

We trained a decision tree ensemble model using phenological metrics derived from both Landsat and MODIS, in addition to Shuttle Radar Topography Mission (SRTM)-based topographic features including elevations, slope and aspect. We applied this decision tree model to each growing year from 2001 to 2019 and generated 19 annual soybean probability maps at 30 m spatial resolution. Following the method reported in Song et al.\(^{49}\), we identified the empirical probability thresholds (instead of the default threshold of 0.5) that produced a match between the map-derived soybean area and the sample-based area estimates. These probability thresholds were determined for the years 2017, 2018 and 2019, for which we have sample-based area estimates. We applied the average threshold values of the three years to all years previous to 2017 to create binary soybean/non-soybean classifications. The classification maps were used to derive annual soybean area statistics (Supplementary Fig. 7). We also applied the lower and upper thresholds of the three years to the entire time series to derive the uncertainty range of annual area estimates (error bars in Supplementary Fig. 7).

For the most recent years 2017, 2018 and 2019, we validated the maps using field sample data as a reference. The overall accuracies were 96%, 94% and 96%, respectively, with high and balanced producer's and user's accuracies (Supplementary Table 2). For the years previous to 2017, we do not have field sample data for validation. Consequently, we compared our map-based annual soybean area estimates to annual harvest area statistics reported by the US Department of Agriculture Foreign Agricultural Service (Supplementary Fig. 7). The mean absolute deviations of the two time series were 3.3 Mha, 3.0 Mha and 1.9 Mha for South America, Brazil and Argentina, respectively. The root-mean-square deviations were 6.1 Mha, 3.3 Mha and 1.9 Mha, and the \(r^2\) values were 0.90, 0.95 and 0.66, for South America, Brazil and Argentina, respectively. As our maps were based on satellite observations and field surveys, they provided objective and consistent area estimates independent of government reports.

Land source attribution. As a type of agricultural land use, soybeans can be planted on existing cropland or on land converted from non-cropland. To attribute the original land source at the beginning of the study period, we constructed a 30-m-resolution land-cover map circa year 2001, consisting of primary humid forest, non-primary forest, cropland and other land (mostly pasture/grassland). The primary humid forest class was derived from Turubanova et al.\(^{17}\). Non-primary forest was derived on the basis of a percentage tree canopy cover layer. We applied a 10% threshold to convert tree canopy cover to a binary primary forest map. This 10% threshold was chosen to match the official definition of forest by the United Nations Food and Agriculture Organization\(^6\) and Brazil’s substitution of forest emission reference level to the United Nations Framework Convention on Climate Change\(^7\). The cropland class was derived from zalles et al.\(^{17}\). We overlaid the 2002–2019 annual cropland maps on the 2001 land cover map to compute the area of soybean sourced from primary humid forest, non-primary forest, cropland and pasture/grassland at the biome scale. Biome boundaries were produced by combining Brazil’s biome polygon file (available at http://data.globalforestwatch.org) for those biomes inside Brazil and the terrestrial ecoregions of the world\(^8\) (available at https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world) for those outside of Brazil.

We designed a sample-based attribution analysis to supplement map-based attribution analysis, focusing on distinguishing new soybeans converted from non-forest native vegetation versus soybeans converted from managed vegetation.
We created a 30 m spatial layer of soybeans developed on non-forest lands and randomly selected 50 pixels. We created annual, monthly and biweekly Landsat composites from 2000 to 2019 over each sample pixel, and extracted 16-day time series of red, near infrared and shortwave infrared reflectance, as well as normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) from MODIS over 2000 to 2019. We also employed high-resolution images in Google Earth and visually interpreted the land-cover type of the pixel before it was converted to soybean. On the basis of these sample data, we estimated the percentage of soybeans converted from non-forest native vegetation.

Deforestation driver analysis. Beef and soybean are the two major commodities driving deforestation in South America38. However, the pathways of land-use change have been changing. Direct conversion from forests to cropland was common in Mato Grosso during 2001–2004, peaking at 23% of deforestation39. From 2006 to 2010, cropland expansion in Mato Grosso increasingly occurred on previously cleared pastures, accounting for only 2% of forest to soybean13,14,28, we quantified both direct and indirect conversions of forest to soybean, with soybean as a direct driver, as a pixel that was classified as new deforestation ‘with soybean’ for two consecutive years for the first time after 2001. We defined ‘soybean-driven deforestation’ as the annual change in soybean-driven deforestation rate of the study period. In the case of the Amazon Soy Moratorium, we also computed changes in soybean-driven deforestation from 2008 to 2016, with 2001 to 2019. We computed the annual areas of soybean-driven deforestation, were derived from the Global Administrative Areas (GADM) database (v3.6, umd.edu/projects/commodity-crop-mapping-and-monitoring-south-america). The annual soybean maps generated in this study can be viewed and downloaded at https://glad.earthengine.app/view/south-america-soybean and https://glad.umd.edu/projects/commodity-crop-mapping-and-monitoring-south-america.

Forest change maps are available at https://glad.earthengine.app/view/global-forest-change.

Code availability
Satellite-based soybean classification was carried out using the GLAD Landstat Analysis Ready Data and Tools2 available at https://glad.geog.umd.edu/ar/.

References
1. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20620–20624 (2011).
2. Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).
3. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
4. Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).
5. Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).
6. Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1264752 (2014).
7. Graeser, I., Ramankutty, N. & Coomes, O. T. Increasing expansion of large-scale crop production onto deforested land in sub-Andean South America. Environ. Res. Lett. 13, 047012 (2018).
8. Zalles, V. et al. Near doubling of Brazil's intensive row crop area since 2000. Proc. Natl Acad. Sci. USA 116, 428–435 (2019).
9. FAOSTAT (FAO, 2019); http://www.fao.org/faostat
10. Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).
11. Fuchs, R. et al. Why the US–China trade war spells disaster for the Amazon. Nature 567, 451–454 (2019).
12. Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change 8, 109–116 (2018).
13. Rudorff, B. F. T. et al. The soy moratorium in the Amazon biome monitored by remote sensing images. Remote Sens. 3, 185–202 (2011).
14. Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change 8, 109–116 (2018).
15. Kastens, J. H., Brown, J. C., Coutinho, A. C., Bishop, C. R. & Esquerdo, J. Soy moratorium impacts on soybean and deforestation dynamics in Mato Grosso, Brazil. PLoS ONE 12, e0176168 (2017).
16. Gollnow, F., Hissa, L. B. V., Rufin, P. & Lakes, T. Property-level direct and indirect deforestation for soybean production in the Amazon region of Mato Grosso, Brazil. Land Use Policy 78, 377–385 (2018).
17. Rausch, L. L. et al. Soy expansion in Brazil’s Cerrado. Conserv. Lett. https://doi.org/10.1111/conl.12671 (2019).
18. Spera, S. A., Galford, G. L., Coe, M. T., Macedo, M. N. & Mustard, J. F. Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob. Change Biol. 22, 3465–3473 (2016).
19. Noojipady, P. et al. Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome. Environ. Res. Lett. 12, 025004 (2017).
20. Soterroni, A. C. et al. Expanding the soy moratorium to Brazil’s Cerrado. Sci. Adv. 5, eaaw7336 (2019).
21. Rajão, R. et al. The rotten apples of Brazil’s agribusiness. Science 369, 246–248 (2020).
22. Heilmayr, R., Rausch, L. L., Munger, J. & Gibbs, H. K. Brazil’s Amazon soy moratorium reduced deforestation. Nat. Food 1, 801–810 (2020).
23. Cerrado Manifesto. The Future of the Cerrado in the Hands of the Market: Deforestation and Native Vegetation Conversion Must Be Stopped (2017); http://dlnsnet6y9qo4.cloudfront.net/downloads/cerradoniswhyzero_ sept2017_2.pdf.
24. Meyfroidt, P. et al. Multiple pathways of commodity crop expansion in tropical forest landscapes. Environ. Res. Lett. 9, 047012 (2014).
25. PRODES (INPE, 2019); http://www.obt.inpe.br/ORT/assuntos/programas/amazonia/prodes
26. Trubanova, S., Potapov, P. V., Tyukavina, A. & Hansen, M. C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028 (2018).
27. Argentina: Oilseeds and Products Annual (USDA Foreign Agricultural Service, 2016).
28. Nepstad, D. et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344, 1118–1123 (2014).
29. Seymour, F. & Harris, N. L. Reducing tropical deforestation. Science 365, 756–757 (2019).

Received: 21 May 2020; Accepted: 23 April 2021; Published online: 7 June 2021

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
The annual soybean maps generated in this study can be viewed and downloaded at https://glad.earthengine.app/view/south-america-soybean and https://glad.umd.edu/projects/commodity-crop-mapping-and-monitoring-south-america.
30. Richards, P. D., Walker, R. T. & Arima, E. Y. Spatially complex land change: the indirect effect of Brazil’s agricultural sector on land use in Amazonia. *Glob. Environ. Change* **29**, 1–9 (2014).
31. Gasparri, N. J. & le Polain de Waroux, Y. The coupling of South American soybean and cattle production frontiers: new challenges for conservation policy and land change science. *Conserv. Lett.* **8**, 290–298 (2015).
32. Fehlenberg, V. et al. The role of soybean production as an underlying driver of deforestation in the South American Chaco. *Glob. Environ. Change* **45**, 24–34 (2017).
33. le Polain de Waroux, Y. et al. The restructuring of South American soy and beef production and trade under changing environmental regulations. *World Dev.* **121**, 188–202 (2019).
34. Tyukavina, A. et al. Types and rates of forest disturbance in Brazilian Legal Amazon, 2000–2013. *Sci. Adv.* **3**, e1601047 (2017).
35. De Sy, V. et al. Land use patterns and related carbon losses following deforestation in South America. *Environ. Res. Lett.* **10**, 124004 (2015).
36. Feursnide, P. M. Soybean cultivation as a threat to the environment in Brazil. *Environ. Conserv.* **28**, 23–38 (2002).
37. Barona, E., Ramankutty, N., Hyman, G. & Coomes, O. T. The role of pasture and soybean in deforestation of the Brazilian Amazon. *Environ. Res. Lett.* https://doi.org/10.1088/1748-9326/5/2/024002 (2010).
38. Macedo, M. N. et al. Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. *Proc. Natl Acad. Sci. USA* **109**, 1341–1346 (2012).
39. Alexandratos, N. & Bruinsma, J. *World Agriculture Towards 2030/2050: the 2012 Revision* (FAO, 2012).
40. Brandão, A. Jr et al. Estimating the potential for conservation and farming in the Amazon and Cerrado under four policy scenarios. *Sustainability* https://doi.org/10.3390/su12031277 (2020).
41. Martini, D. Z., Moreira, M. A., Cruz de Araçá, L. E. Oe, Formaggio, A. R. & Dalla-Nora, E. L. Potential land availability for agricultural expansion in the Brazilian Amazon. *Land Use Policy* **49**, 35–42 (2015).
42. Hunke, P., Mueller, E. N., Schröder, B. & Zeilhofer, P. The Brazilian Cerrado: assessment of water and soil degradation in catchments under intensive agricultural use. *Ecology and Hydrology* **8**, 1154–1180 (2014).
43. Nosetto, M. D., Paez, R. A., Ballesteros, S. I. & Jobbégy, E. G. Higher water-table levels and flooding risk under grain vs. livestock production systems in the subhumid plains of the Pampas. *Agric. Ecosyst. Environ.* **206**, 60–70 (2015).
44. Schulz, C. et al. Physical, ecological and human dimensions of environmental change in Brazil’s Pantanal wetland: synthesis and research agenda. *Sci. Total Environ.* **687**, 1011–1027 (2019).
45. Weinhold, D., Külkic, E. & Reis, E. J. Soybeans, poverty and inequality in the Brazilian Amazon. *World Dev.* **52**, 132–143 (2013).
46. Garrett, R. D. & Rausch, L. L. Green for gold: social and ecological tradeoffs influencing the sustainability of the Brazilian soy industry. *J. Peasant Stud.* **43**, 461–493 (2016).
47. Oliveira, G. & Hecht, S. Sacred groves, sacrifice zones and soy production: globalization, intensification and neo-south in North America. *J. Peasant Stud.* **43**, 251–285 (2016).
48. Garrett, R. D. et al. Intensification in agriculture-forest frontiers: land use responses to development and conservation policies in Brazil. *Glob. Environ. Change* **53**, 233–243 (2018).
49. Song, X.-P. et al. National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey. *Remote Sens. Environ.* **190**, 383–395 (2017).
50. King, L. et al. A multi-resolution approach to national-scale cultivated area estimation of soybeans. *Remote Sens. Environ.* **195**, 13–29 (2017).
51. Potapov, P. et al. Annual continuous fields of woody vegetation structure in the Lower Mekong region from 2000–2017 Landsat time-series. *Remote Sens. Environ.* **232**, 111278 (2019).
52. Potapov, P. et al. Land use analysis ready data for global land cover and land change mapping. *Remote Sens.* **12**, 426 (2020).
53. Global Forest Resources Assessment 2015 (FAO, 2015).
54. Brazil’s Submission of a Forest Reference Emission Level (FREL) for Reducing Emissions from Deforestation in the Amazonia Biome for REDD+ Results-Based Payments Under the UNFCCC from 2016 to 2020 (Ministry of Environment of Brazil, 2018); https://redunnfccc.int/files/2018_frel_submission_brazil.pdf
55. Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. *BioScience* **51**, 933–938 (2001).
56. Morton, D. C. et al. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. *Proc. Natl Acad. Sci. USA* **103**, 14637–14641 (2006).

Acknowledgements
This study was funded by the Gordon and Betty Moore Foundation (7864, M.C.H.), the NASA Land–Cover and Land–Use Change Program (NNX15AK65G, M.C.H. and 80NSSC20K1490, X.-P.S.), the USGS Landsat Science Team (140G0118C0013, M.C.H.) and the NASA Harvest Program (80NSSC18M0039, M.C.H.). M.A. was supported by CNPq (National Council for Scientific and Technological Development) Grant 306334/2020-8. We thank F. Monti, D. Saúll and P. Orlicchio for assisting with field data collection in Argentina. We thank V. F. Reno and L. V. Oldoni for assisting with field data collection in Brazil.

Author contributions
X.-P.S. and M.C.H. designed the study; X.-P.S., P.P., B.A., J.P., M.A., A.L. and V.Z. conducted satellite data analysis; S.V.S. and A.T. contributed ideas for statistical design and area estimation; X.-P.S., M.C.H., P.P., J.P., M.A., A.L., V.Z., C.M.D.B., M.C.C., E.J.C., L.B.F., A.H.-S., S.M.J., A.H.P. and S.T. collected field data. X.-P.S. and M.C.H. secured funding support. X.-P.S. wrote the initial draft with L.B.F., A.H.-S., S.M.J., A.H.P. and S.T. collected field data and area estimation; X.-P.S., M.C.H., P.P., B.A., J.P., M.A., A.L. and V.Z. conducted satellite data analysis; S.V.S. and A.T. contributed ideas for statistical design and area estimation; X.-P.S., M.C.H., P.P., J.P., M.A., A.L., V.Z., C.M.D.B., M.C.C., E.J.C., L.B.F., A.H.-S., S.M.J., A.H.P. and S.T. collected field data. A.H.P. designed online data visualization. M.C.H. secured funding support. X.-P.S. wrote the initial draft with substantial input from M.C.H., S.V.S. and M.A. All authors commented on drafts.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41439-021-00729-z.

Correspondence and requests for materials should be addressed to X.-P.S. or M.C.H.

Peer review information *Nature Sustainability* thanks the anonymous reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- n/a
- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted.
- Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

- Landsat data were downloaded from USGS website (www.usgs.gov). Sentinel 2 data were downloaded from Google Cloud (https://cloud.google.com/storage/docs/public-datasets/sentinel-2). Field data were collected using Google Earth and Locus Map Pro.

Data analysis

- Satellite-based soybean classification was carried out using the GLAD Landsat Analysis Ready Data and Tools (available at: https://glad.geog.umd.edu/ard/home) and PCI Geomatica 2017. Maps were made using ArcMap 10.5. Area estimation was done in MS Excel. Annual trends of forest loss and soybean area were plotted in RStudio with ggplot2.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

The annual soybean maps generated in this study can be viewed and downloaded at: https://glad.earthengine.app/view/south-america-soybean and https://glad.umd.edu/projects/commodity-crop-mapping-and-monitoring-south-america. Forest change maps are available at: https://earthenginepartners.appspot.com/science-2013-global-forest.
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

☐ Life sciences ☐ Behavioural & social sciences ☑ Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description	We mapped annual soybean cultivation at 30 meter spatial resolution in South America using satellite data and field surveys. We analyzed deforestation driven by soybean expansion between 2000 and 2019.
Research sample	Satellite data cover the entire study area from 2000 to 2019. In situ crop-type data were collected over a sample in the years of 2017, 2018 and 2019.
Sampling strategy	A stratified two-stage cluster sampling was implemented to collect field data in 2017, 2018 and 2019. The sample set of each year consists of 75 primary sampling units (PSU) and 20 secondary sampling units (SSU) in each PSU. PSUs were randomly selected from three soybean intensity strata derived from satellite observations. Each PSU is 20km by 20km in size. SSUs were randomly selected within each PSU. Each SSU is 30m by 30m in size.
Data collection	We recorded crop type information in the field over each sample.
Timing and spatial scale	We collected field data in January and February in the years of 2017, 2018 and 2019. This timing is within the crop growing season of South America.
Data exclusions	No data were excluded from the analysis.
Reproducibility	Stratification and sampling methods are reported in detail in Methods. Satellite-based soybean maps used for stratification are stored and shared online. Forest change maps for soybean-driven deforestation analysis are also stored and shared online.
Randomization	PSUs were selected by stratified random sampling and SSUs within PSUs were selected by simple random sampling.
Blinding	Blinding is not relevant as no experiments were involved.

Did the study involve field work? ☑ Yes ☐ No

Field work, collection and transport

Field conditions	Field condition varies according to specific sample locations.
Location	Field samples are distributed across South America shown in Supplementary Fig. 5.
Access & import/export	In situ crop type information was collected on public roads. A small number of SSUs (pixels) were inaccessible and the crop type information was inferred based on interpretation of time series of satellite images and local agronomic knowledge.
Disturbance	No disturbance was caused by the study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
Materials & experimental systems	Methods		
n/a	Involved in the study	n/a	Involved in the study
☒	Antibodies	☒	ChIP-seq
☒	Eukaryotic cell lines	☒	Flow cytometry
☒	Palaeontology and archaeology	☒	MRI-based neuroimaging
☒	Animals and other organisms		
☒	Human research participants		
☒	Clinical data		
☒	Dual use research of concern		