Fructose induces glucose-dependent insulinotropic polypeptide, glucagon-like peptide-1 and insulin secretion: Role of adenosine triphosphate-sensitive K⁺ channels

Yusuke Seino1*, Hidetada Ogata2, Ryuya Maekawa2, Takako Izumoto2, Atsushi Iida2, Norio Harada3, Takashi Miki4, Susumu Seino5, Nobuya Inagaki3, Shin Tsunekawa2, Yutaka Oiso2, Yoji Hamada1

Departments of 1Metabolic Medicine, and 2Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 3Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, 4Department of Medical Physiology, Graduate School of Medicine, Chiba University, Chiba, and 5Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan

Keywords
Adenosine triphosphate-sensitive K⁺ channel, Fructose, Hormone secretion

*Correspondence
Yusuke Seino
Tel.: +81-52-744-2191
Fax: +81-52-744-2191
E-mail address: yusuke@med.nagoya-u.ac.jp

J Diabetes Invest 2015; 6: 522–526
doi: 10.1111/jdi.12356

INTRODUCTION
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are incretin hormones secreted from enteroendocrine K-cells and L-cells by nutrients such as carbohydrate1,2.

Adenosine triphosphate-sensitive K⁺ (KATP) channels play an important role in glucose-induced insulin secretion from pancreatic β-cells3. It has been reported that K-cells and L-cells express glucokinase and KATP channels identical to those expressed in pancreatic β-cells4,5. In addition, facilitative glucose transporter 5 (GLUT5), which absorbs fructose from intestinal lumen to cytosol6, is abundantly expressed in K-cells, L-cells and β-cells. However, the role of fructose and the involvement of the KATP channel in the secretion of GIP, GLP-1 and insulin in vivo are poorly understood.

In the present study, we investigated the contributions of fructose and the KATP channel in the secretion of these hormones utilizing KATP channel-deficient mice.

MATERIALS AND METHODS
Mice
C57BL/6J mice (Kir6.2+/+ mice) and mice lacking the KATP channel (Kir6.2−/− mice) were used. We carried out all animal experiments according to the protocol approved by the Nagoya University Institutional Animal Care and Use Committee.

Plasma Biochemical Analyses
Blood glucose levels were measured with ANTISENSE II (Bayer Medical, Leverkusen, Germany). Plasma total GIP and GLP-1 levels were measured using the GIP (TOTAL) ELISA kit (Merck...
Millipore, Billerica, MA, USA) and an electrochemiluminescent sandwich immunoassay (Meso Scale Discovery, Gaithersburg, MD, USA) as previously described7,8. Plasma insulin levels were determined by an ELISA kit (Morinaga, Tokyo, Japan).

Induction of Diabetes

As described previously7, streptozotocin (STZ; 150 mg/kg body-weight) was given intraperitoneally to Kir6.2+/+ mice after a 16-h fast.

Diazoxide and Fructose Administration

After 16 h of food deprivation, 240 mg/kg bodyweight of diazoxide (Wako, Osaka, Japan) was given orally7.9. 90 min after diazoxide administration, 6 g/kg bodyweight of fructose was given orally.

MIN6 Experiment

MIN6-K8 β-cells were cultured and stimulated for 30 min by various materials after pre-incubation for 30 min in HEPES-Krebs buffer with 2.8 mmol/L glucose, and released insulin was evaluated by insulin assay kit as previously reported9.

Statistical Analysis

Statistical analysis was carried out by unpaired, two-tailed Student’s t-test or two-way ANOVA.

RESULTS

Fructose Induces GIP Secretion in the Diabetic State

We first examined whether fructose stimulates GIP secretion. In Kir6.2+/+ mice, fructose tended to, but not significantly, stimulate GIP secretion in a normal state, but significantly enhanced the GIP secretion in the STZ-induced diabetic state (Figure 1a). To investigate the involvement of the KATP channel in fructose-induced GIP secretion in the diabetic state, we examined the effect of the KATP channel activator, diazoxide, on fructose-induced GIP secretion. Pretreatment of diazoxide did not affect fructose-induced GIP secretion in the diabetic state (Figure 1b). Fructose-induced GLP-1 levels at 15 min were not different under the normoglycemic condition and hyperglycemic condition (Figure 1c).

KATP Channels Are Not Involved in Fructose-Induced GLP-1 Secretion In Vivo

We next investigated whether the KATP channel participates in fructose-induced GLP-1 secretion in vivo, by utilizing Kir6.2−/− mice. Both in Kir6.2+/+ and Kir6.2−/− mice, fructose significantly stimulated GLP-1 secretion more than twofold at 15 min of fructose administration (Figure 2b). In contrast, fructose did not stimulate GIP secretion in Kir6.2−/− mice at all (Figure 2a).

KATP Channels Are Involved in Fructose-Induced Insulin Secretion In Vivo and In Vitro

To assess whether fructose-induced insulin secretion requires the KATP channel pathway, we investigated blood glucose levels and serum insulin levels during oral fructose tolerance test in both Kir6.2+/+ and Kir6.2−/− mice. The blood glucose levels were significantly higher in Kir6.2+/+ mice than in Kir6.2−/− mice (Figure 2c). Fructose significantly stimulated insulin secretion in Kir6.2+/+ mice at 15 min, but not in Kir6.2−/− mice at...
all (Figure 2d). Basal levels of insulin were not decreased by pretreatment of diazoxide in Kir6.2+/− mice, but were decreased in Kir6.2+/+ mice (Figure 3a,b). Fructose significantly stimulated insulin secretion in Kir6.2+/+ mice pretreated with vehicle at 15 min, but did not stimulate insulin secretion in Kir6.2+/− mice pretreated with diazoxide or in Kir6.2−/− mice pretreated with vehicle and diazoxide at 15 min (Figure 3a,b). To assess whether fructose directly stimulates insulin secretion, we investigated insulin secretion using MIN6-K8 β-cells. Diazoxide tended to decrease insulin secretion at 8.3 mmol/L glucose \((P = 0.05)\). The addition of 20 mmol/L fructose significantly potentiated insulin secretion at 8.3 mmol/L glucose, and diazoxide completely blocked the insulin response (Figure 3c).

Pretreatment of diazoxide did not affect fructose-induced GLP-1 secretion at 15 min in either Kir6.2+/+ mice or Kir6.2−/− mice (Figure 3d).

DISCUSSION

The mechanism by which fructose stimulates gut hormone secretion is not well known. In the present study, we investigated the role of the K_{ATP} channels in fructose-induced GIP, GLP-1 and insulin secretion in vivo.

We previously reported that the K_{ATP} channels in K-cells are in a closed state under the normoglycemic condition in vivo, and are in an open state under the hyperglycemic condition. The increase of ATP produced by metabolism of glucose closes the K_{ATP} channels in the K-cells under the hyperglycemic condition and enhances glucose-induced GIP secretion, suggesting that K_{ATP} channels in K-cells contribute to glucose-induced GIP secretion under the hyperglycemic condition. However, the present results show that this mechanism is not involved in fructose-induced GIP secretion in the diabetic state and that the K_{ATP} channels in K-cells do not contribute to fructose-induced GIP secretion under the hyperglycemic condition. In previous reports, 3 g/kg fructose did not stimulate GIP secretion in C57BL/6j mice, but did stimulate GIP secretion in obese type 2 diabetic model ob/ob mice. The mechanism of such fructose-induced GIP secretion in various diabetic models remains to be elucidated.

In the present study, fructose was found to significantly induce GLP-1 secretion in Kir6.2+/+ mice, and pretreatment of diazoxide did not block fructose-induced GLP-1 secretion at 15 min and fructose-induced GLP-1 secretion was not enhanced under the hyperglycemic condition. These results show that the K_{ATP} channel is not required for fructose-induced GLP-1 secretion in vivo. However, a previous in vitro study using GLUTag cells found that fructose-induced GLP-1 secretion was entirely K_{ATP} channel-dependent. This discrepancy could be due to the nature of the GLUTag cell line and/
It is reported that activation of sweet taste receptors in pancreatic β-cells stimulates insulin secretion through the phospholipase C pathway. Kyriazis et al. also reported that insulin secretion was not induced by glucose catabolized from fructose, but by activation of the sweet taste receptor in a glucose-dependent manner through transient receptor potential cation channel, subfamily M, member 5. In the present study, the fructose-induced insulin secretion seen in Kir6.2+/− mice was not observed at all in Kir6.2+/+ mice, and diazoxide completely blocked fructose-induced insulin secretion in vivo and in vitro. These results show that the K_{ATP} channel in β-cells plays an essential role in the fructose-induced insulin secretion. In contrast, we previously showed that insulin secretion mediated by the vagal nerve was K_{ATP} channel-independent, and it was reported previously that insulin secretion through activation of the phospholipase C pathway differed from that induced by carbachol, the activator of the muscarinic receptor. These findings suggest that the K_{ATP} channel-dependent phospholipase C–transient receptor potential cation channel, subfamily M, member 5 pathway is involved in fructose-induced insulin secretion in vivo.

In conclusion, fructose stimulates GLP-1 secretion under normoglycemia, but enhances GIP secretion under the hyperglycemic condition, both of which modifications are in a K_{ATP} channel-dependent manner. K_{ATP} channels play an essential role in the insulin secretion induced by fructose in vivo.

ACKNOWLEDGMENTS
We thank Michiko Yamada and Mayumi Katagiri (Nagoya University Graduate School of Medicine) for their technical assistance, and Junichi Miyazaki (Osaka University) for providing MIN6-K8 β-cells. This study was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sport, Science and Technology, Japan.

DISCLOSURE
The authors declare no conflict of interest.

REFERENCES
1. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007; 132: 2131–2157.
2. Seino Y, Yabe D. Glucose-dependent insulino tropic polypeptide and glucagon-like peptide-1: incretin actions beyond the pancreas. J Diabetes Invest 2013; 4: 108–130.
3. Miki T, Nagashima K, Tashiro F, et al. Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc Natl Acad Sci USA 1998; 95: 10402–10406.
4. Parker HE, Habib AM, Rogers GJ, et al. Nutrient-dependent secretion of glucose-dependent insulino tropic polypeptide from primary murine K cells. Diabetologia 2009; 52: 289–298.
5. Reimann F, Habib AM, Tolhurst G, et al. Glucose sensing in L cells: a primary cell study. Cell Metab 2008; 8: 532–539.
6. Ferraris RP. Dietary and developmental regulation of intestinal sugar transport. Biochem J 2001; 2: 265–276.
7. Ogata H, Seino Y, Harada N, et al. KATP channel as well as SGLT1 participates in GIP secretion in the diabetic state. *J Endocrinol* 2014; 222: 191–200.

8. Sakamoto E, Seino Y, Fukami A, et al. Ingestion of a moderate high-sucrose diet results in glucose intolerance with reduced liver glucokinase activity and impaired glucagon-like peptide-1 secretion. *J Diabetes Invest* 2012; 3: 432–440.

9. Iwasaki M, Minami K, Shibasaki T, et al. Establishment of new clonal pancreatic β-cell lines (MIN6-K) useful for study of incretin/cyclic adenosine monophosphate signaling. *J Diabetes Invest* 2010; 1: 137–142.

10. Kuhre RE, Gribble FM, Hartmann B, et al. Fructose stimulates GLP-1 but not GIP secretion in mice, rats, and humans. *Am J Physiol Gastrointest Liver Physiol* 2014; 306: G622–G630.

11. Flatt PR, Kwasowski P, Bailey CJ. Stimulation of gastric inhibitory polypeptide release in ob/ob mice by oral administration of sugars and their analogues. *J Nutr* 1989; 119: 1300–1303.

12. Gribble FM, Williams L, Simpson AK, et al. A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line. *Diabetes* 2003; 52: 1147–1154.

13. Brubaker PL. Regulation of intestinal proglucagon-derived peptide secretion by intestinal regulatory peptides. *Endocrinology* 1991; 128: 3175–3182.

14. Roberge JN, Brubaker PL. Regulation of intestinal proglucagon-derived peptide secretion by glucose-dependent insulinotropic peptide in a novel enteroendocrine loop. *Endocrinology* 1993; 133: 233–240.

15. Persson K, Gingerich RL, Nayak S. Reduced GLP-1 and insulin responses and glucose intolerance after gastric glucose in GRP receptor-deleted mice. *Am J Physiol Endocrinol Metab* 2000; 279: E956–E962.

16. Rocca AS, Brubaker PL. Role of the vagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion. *Endocrinology* 1999; 140: 1687–1694.

17. Kyriazis Ga, Soundarapandian MM, Tyrberg B. Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. *Proc Natl Acad Sci USA* 2012; 109: E524–E532.

18. Nakagawa Y, Nagasawa M, Yamada S, et al. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. *PLoS One* 2009; 4: e5106.

19. Seino Y, Miki T, Fujimoto W, et al. Cephalic phase insulin secretion is KATP channel independent. *J Endocrinol* 2013; 218: 25–33.