The complete chloroplast genome of *Epimedium davidii* Franch. (Berberidaceae)

Qianru Yang\(^a\), Xiang Liu\(^a,b\), Cheng Zhang\(^a\), Yu Yao\(^a\), Yanjiao Luo\(^c\), Guoan Shen\(^a\) and Baolin Guo\(^a\)

\(^a\)Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, PR China; \(^b\)Chongqing Academy of Chinese Materia Medica, Chongqing, PR China; \(^c\)Shanxi Medical University, Taiyuan, China

ABSTRACT

Epimedium davidii, which belongs to Berberidaceae, is mainly distributed in the southwest of China. In this study, the complete chloroplast genome of *E. davidii* was sequenced and assembled. The circular genome is 159,715 bp in length, which comprises a large single-copy region (LSC, 85,862 bp), a small single-copy region (SSC, 17,081 bp), and a pair of inverted repeat regions (IRa and IRb, 28,386 bp). The chloroplast genome of *E. davidii* contains 112 unique genes, of which 78 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Phylogenetic analysis indicated that *E. davidii* was closely related to *Epimedium acuminatum*.

The sequencing was performed on an Illumina Novaseq PE150 platform (Illumina Inc., San Diego), and 150 bp paired-end reads were generated. The filtered reads were assembled into the complete chloroplast genome using the program GetOrganelle version1.5 (Jin et al. 2018) with *E. acuminatum* chloroplast genome (GenBank accession number: NC_029941) as a reference. The annotation of the chloroplast genome was conducted through the online program CPGAVAS 2 (Shi et al. 2019), followed by manual correction if required. The annotated genomic sequence has been registered in GenBank with an accession number (MN621353).

The chloroplast genome of *E. davidii* is 159,715 bp in length, which consists of a large single-copy region (LSC, 85,862 bp), a small single-copy region (SSC, 17,081 bp), and a pair of inverted repeat regions (IRa and IRb, 28,386 bp). The total GC content of *E. davidii* chloroplast genome is 38.81%, while the corresponding GC content of LSC, SSC, and IR regions is 37.34%, 32.79%, and 42.85%, respectively. The chloroplast genome of *E. davidii* contains 112 unique genes, including 78 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Intron-exon structure analysis indicated that nine protein-coding genes and five tRNA genes contained one intron, while three genes (ycf3, clpP, and rps12) had two introns. Eight protein-coding genes (i.e. rpl2, rpl22, rpl23, rps7, rps12, rps19, ndhB, and ycf2), seven tRNA genes (i.e. trnL-CAU, trnL-CAA, trnV-GAC, trnL-GAU, trnA-UGC, trnR-ACG, and trnN-GGU), and four rRNA genes (i.e. rrn4.5S, rrn5S, rrn16S, and rrn23S) are duplicated in the IR regions. Besides, one tRNA gene (trnQ-UUG) is duplicated in the LSC regions.

To identify the phylogenetic relationship of *E. davidii*, 17 complete chloroplast genomes of Berberidaceae species were used to reconstruct a maximum-likelihood (ML) phylogenetic tree.
tree using RAxML version 8.2.10 (Stamatakis 2014), with *Aconitum contortum* as the outgroup (Figure 1). Phylogenetic analysis indicated that *E. davidii* is closely related to *E. acuminatum*. The complete chloroplast genome of *E. davidii* provides useful perspectives into the evolutionary patterns in Berberidaceae family.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the CAMS Innovation Fund for Medical Sciences (CIFMS) [2017-12M-3-013], the National Science Foundation of China [81473302], the Chongqing Science and Technology Bureau [cstc2018jcyjAX031, cstc2018jxj-jbky130018], and the Traditional Chinese Medicine Science and the Technology Projects of Chongqing Health and Family Planning Commission [ZY201802117], and National Natural Science Foundation of China.

References

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 19:11–15.

Guo M, Xu Y, Ren L, He S, Pang X. 2018. A systematic study on DNA barcoding of medicinally important genus *Epimedium* L. (Berberidaceae). Genes. 9(12):637.

Jin JJ, Yu WB, Yang JB, Song Y, Yi TS, Li DZ. 2018. GetOrganelle: a simple and fast pipeline for de novo assembly of a complete circular chloroplast genome using genome skimming data. bioRxiv. 256479.

Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S. 2015. Plant DNA barcoding: from gene to genome. Biol Rev. 90(1):157–166.

Liu X, Yang Q, Zhang C, Shen G, Guo B. 2019. The complete chloroplast genome of *Epimedium sagittatum* (Sieb. Et Zucc.) Maxim. (Berberidaceae), a traditional Chinese herb. Mitochondrial DNA Part B. 4(2):2572–2573.

Ma H, He X, Yang Y, Li M, Hao D, Jia Z. 2011. The genus *Epimedium*: an ethnopharmacological and phytochemical review. J Ethnopharmacol. 134(3):519–541.

Nguyen PAT, Kim JS, Kim JH. 2015. The complete chloroplast genome of colchicine plants (*Colchicum autumnale* L. and *Gloriosa superba* L.) and its application for identifying the genus. Planta. 242(1):223–237.

Shi L, Chen H, Jiang M, Wang L, Wu X, Huang L, Liu C. 2019. CPGAVAS2, an integrated plastome sequence annotator and analyser. Nucleic Acids Res. 47:65–73.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30(9):1312–1313.

Yang Q, Pan J, Shen G, Guo B. 2019. Yellow light promotes the growth and accumulation of bioactive flavonoids in *Epimedium pseudowushanense*. J Photochem Photobiol B. 97:111550.

Zhang Y, Du L, Liu A, Chen J, Wu L, Hu W, Zhang W, Kim K, Lee SC, Yang TJ, et al. 2016. The complete chloroplast genome sequences of five *Epimedium* species: lights into phylogenetic and taxonomic analyses. Front Plant Sci. 7:306.