Non-universal Voronoi cell shapes in amorphous ellipsoid packs

Fabian M. Schaller1,2(a), Sebastian C. Kapper1,3, James E. Hilton5, Paul W. Cleary5, Klaus Mecke1, Cristiano De Michele6, Tanja Schilling7, Mohammad Saadatfar4, Matthias Schröter2, Gary W. Delaney5(b) and Gerd E. Schröder-Turk8,1,4(c)

1 Institut für Theoretische Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg - 91058, Erlangen, Germany
2 Max Planck Institute for Dynamics and Self-Organization (MPIDS) - 37077 Goettingen, Germany
3 Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC, CNRS - 75231 Paris Cedex 05, France
4 Applied Maths, RSPhysSE, The Australian National University, Canberra - Canberra, ACT 0200, Australia
5 CSIRO Computational Informatics - Private Bag 33, Clayton South, Victoria, 3168, Australia
6 Dipartimento di Fisica, “Sapienza” Università di Roma - P.le A. Moro 2, 00185 Roma, Italy
7 Université de Luxembourg, Physics and Materials Research Unit - L-1511 Luxembourg, Luxembourg
8 Murdoch University, School of Engineering & IT, Mathematics & Statistics - Murdoch, WA 6150, Australia

received 13 April 2015; accepted in final form 9 July 2015
published online 4 August 2015

PACS 45.70.-n – Classical mechanics of discrete systems: Granular systems
PACS 61.43.-j – Disordered solids

Abstract – In particulate systems with short-range interactions, such as granular matter or simple fluids, local structure determines the macroscopic physical properties. We analyse local structure metrics derived from the Voronoi diagram of oblate ellipsoids, for various aspect ratios α and global packing fractions φ. We focus on jammed static configurations of frictional ellipsoids, obtained by tomographic imaging and by discrete element method simulations. The rescaled distribution of local packing fractions φl, defined as the ratio of particle volume and its Voronoi cell volume, is found to be independent of the particle aspect ratio, and coincide with results for sphere packs. By contrast, the typical Voronoi cell shape, quantified by the Minkowski tensor anisotropy index β = β02,α, points towards a difference between random packings of spheres and those of oblate ellipsoids. While the average cell shape β of all cells with a given value of φl is similar in dense and loose jammed sphere packings, the structure of dense and loose ellipsoid packings differs substantially such that this does not hold true.

The universality of many features of disordered packings of spherical beads, with respect to preparation protocols and system parameters, is manifest in various properties, such as the universal value of the random close packing limit [1] and the universal distributions for contact numbers [2], free volumes [3,4] and Voronoi cell shape measures [5,6]. While ellipsoidal particles [6–14] and other aspherical particles [13–30] are receiving increasing attention, these questions of universality, including the independence of system parameters and preparation protocols, have not been comprehensively addressed yet. A qualitative difference between ellipsoid and sphere packings is revealed by the analysis of the Voronoi diagram of ellipsoid packings from various experimental and simulated origins.

Preparation protocols. – The experimental datasets (symbol □) comprise packings prepared by different protocols (fluidised beds, different funnels, grids, pouring particles, etc.) and compaction by vertical tapping. The ellipsoids have half-axes a : c : c with a ≤ c and the aspect ratio is defined as α = a/c. These datasets are the same as those used in ref. [31], comprising in total 73 datasets of jammed oblate ellipsoids of 5 different aspect ratios α and two different particle types (3D printed particles with α = 0.4, 0.6, 0.8, 1.0 and considerable surface roughness; and sugar-coated pharmaceutical placebo pills with α = 0.59 and lower friction coefficient μ, see table 1 and ref. [31]); the larger half-axis is c = 3 mm (smallest particles) to 4 mm (largest particles). The standard deviation of the particle volumes is 2–3%. The packings were imaged by X-ray tomography; image processing [32] was used to extract particle coordinates and orientations. The packings consisted of ≈5000 particles, of which 600–900

(a)E-mail: fabian.schaller@physik.uni-erlangen.de
(b)E-mail: gary.delaney@csiro.au
(c)E-mail: g.schroeder-turk@murdoch.edu.au
were sufficiently far from cylinder walls to be included in the analysis; for the sake of spatial homogeneity, packings where radial variations of the packing fraction about the mean exceed 0.66% were discarded (as in ref. [31]). Data is available online [33].

We compare our experimental packings to 120 configurations obtained from discrete element simulations (DEM, [10]), of ellipsoids sedimenting into a square box in a viscous fluid under the action of gravity. Packings generated with a very high friction coefficient and viscosity constitute our estimate of the loosest possible packing. Lower values of the friction coefficient and viscosity lead to denser packings (Fig. 1). Frictionless particles lead to the upper limit for the packing fraction, generated with a very high friction coefficient and viscosity.

The local packing fraction of particle \(i\) is defined as \(\phi_i = \nu_i/\nu_c\), where \(\nu_c = 4\pi a c^2/3\) is the volume of the particle and \(\nu_i\) the volume of the Voronoi cell \(K_i\) containing particle \(i\). We characterise the shape of the Voronoi cell \(K_i\) by its moment tensor \(W_i^{2,0} = \int_{K_i} x \otimes x \, dv\), where \(x\) is the position vector relative to the center of mass \(c_i\) of \(K\). Similar to the tensor of inertia, this tensor captures the distribution of mass; the notation \(W_i^{2,0}\) derives from the theory of Minkowski tensors and integral geometry [42,43]. The three eigenvalues of this tensor are \(\mu_i^{\min} \leq \mu_i^{\mid} \leq \mu_i^{\max}\). The ratio of minimal to maximal eigenvalue \(\beta_i = \mu_i^{\min}/\mu_i^{\max} \in (0,1]\) is an indicator of the shape anisotropy of the Voronoi cell \(K_i\) of particle \(i\). Small values of \(\beta_i\) indicate elongated (anisotropic) cells. Note the difference to measures of asphericity [3] that quantify deviations from a spherical shape; the measure \(\beta_i = 1\) (and \(K\) said to be isotropic) for any shape that has statistically identical mass distribution in all three orthogonal directions; this includes the sphere, but also regular polyhedra and the FCC, BCC and HCP Voronoi cells [44].

Table 1: Particle and packing properties.

Data set	Jammed	Gravity	Friction (\(\mu\))	Particles
□ Exp.	yes	yes	0.38–0.75	\(\approx 5000\)
▲ DEM	yes	no	9323	
♦ DEM	yes	yes	0.01–1	9323
♤ DEM	yes	yes	1000	9323
○ MD	no	no	no	512
● MC	no	no	no	512
○ ET	yes	no	no	1025

![Fig. 1](Color online) The Set Voronoi cells of ellipsoidal particles are, in general, non-convex with curved facets and edges. (a) Subset of an ellipsoid packing with Set Voronoi cells. (b) Single particle in its cell. (c) Principal axes (eigenvectors of \(W_i^{2,0}\)) of the cell.
the global packing fraction ϕ_g nor on the particle aspect ratio α. The probability for a Voronoi cell in a jammed configuration with global packing fraction ϕ_g to have local packing fraction ϕ_l is written as $P(\phi_l | \phi_g)$. When plotted as $\sigma P(\phi_l | \phi_g)$ vs. $(\phi_l - \langle \phi_l \rangle)/\sigma$, it is invariant for all values of ϕ_g and α, see also ref. [31]. This plot shows good agreement between the experimental packings and jammed packings from simulations across the range of accessible packing fractions (those between SLP and RCP, see fig. 3) and aspect ratios $0.3 \leq \alpha \leq 1$. By contrast, data from equilibrium configurations does not rescale to the same curve.

The shape and anisotropy of the typical Voronoi cell (global averages). – Treating the Voronoi cell volume, or equivalently the local packing fraction ϕ_l, as the leading term of a shape description of the Voronoi cells, we now proceed to higher-order terms. While other scalar quantities, such as surface area, integrated curvatures or asphericities may contain signatures of such higher-order terms, we here use the tensorial shape measure $W_{2.0}$, similar to the tensor of inertia, and its eigenvalue ratio β to quantify the elongation of a cell.

Figure 3 shows the average Voronoi cell shape anisotropy, quantified by $\langle \beta \rangle = \sum_{i=1}^{N} \beta(K_i)/N$, as a function of global packing fraction ϕ_g. Data is for equilibrium ellipsoid fluids, experiments and simulations of jammed random ellipsoid packings and for two dense crystalline configurations (the stretched fcc obtained by scaling the x-coordinate of the fcc sphere packing, and the densest known structures discussed by Donev et al. [7]).

For equilibrium fluids in the limit of vanishing density $\phi_g \to 0$, where the typical distance between particles is large compared to the particle size, the Voronoi cell shape is independent of the particle shape. Consequently, the shape anisotropy corresponds to the value $\beta \approx 0.37$ of the Poisson point process [54]. For denser equilibrium fluids [35,36] the trend of the Voronoi shape anisotropy $\langle \beta \rangle$ can be understood by realising that the shape of the Voronoi cells approaches that of the particle itself when ϕ_g increases (see dashes on the right-hand vertical axis in fig. 3, evaluated for an ellipsoidal particle itself, rather than its Voronoi cell, the ratio is $\beta = (a/c)^2 = \alpha^2$, see appendix of ref. [42]). For small α, the curve $\langle \beta(\phi_g) \rangle$ hence decreases, while for larger α, $\langle \beta(\phi_g) \rangle$ increases with ϕ_g.

For the jammed packings, between SLP and RCP, our results for spheres ($\alpha = 1$) are in quantitative agreement with previously published data [5], with the cells becoming less elongated upon compaction, i.e. β increases with increasing ϕ_g. For ellipsoids with smaller value of α, the slope of $\beta(\phi_g)$ becomes smaller and eventually even adopts slightly negative values for small $\alpha < 0.60$. There is an excellent agreement between the experimental packings (●, with different preparation protocols) and the numerical data points from DEM simulations (●, ●, ●). As previously found [42], sphere configurations exhibit a gap in shape anisotropy between the densest equilibrium configuration and the loosest jammed states. For ellipsoids, this discontinuity shrinks as the particle’s aspect ratio decreases.

The shape and anisotropy of the typical Voronoi cell of a given size (local analysis). – The global packing fraction ϕ_g represents a useful parameter, easily accessible in experiments. However, there is no conceivable mechanism by which a locally defined quantity, such as
Here, we use a local density-resolved analysis based on the idea that the physical mechanisms underlying granular matter occur at the particle scale. This idea was applied to contact numbers in ref. [31] and is applied here to Voronoi cell shapes. Observed correlations between a local structure metric and the local packing fraction ϕ_i are hence more likely to yield physical insight than those with the global average ϕ_k. A similar approach has been used for the analysis of sphere packings [2,5].

Figure 4 illustrates the concept of the local density-resolved analysis. Particles are grouped by their local packing fraction (ϕ_i), i.e. into sets $S(\phi_i)$ composed of all particles i with $\phi_i - \Delta/2 \leq (\phi_i) < \phi_i + \Delta/2$ for $\phi_i = \Delta, 2\Delta, 3\Delta, \ldots$ with a small interval Δ ($\Delta = 0.1$ in fig. 4, $\Delta = 0.02$ in fig. 5). We define the function $P(\beta \mid \phi_i, \alpha, X)$, which is the probability distribution of the shape measures β, restricted to the cells in $S(\phi_i)$, i.e. to those with local packing fraction ϕ_i. The unknown parameters X capture influences from the packing protocol, friction, etc. As a result, the X may correlate with ϕ_k, even though there need not be a causal dependence of the X on ϕ_k. The average $\langle \beta \rangle(\phi_i, \alpha, X) = \int \beta P(\beta \mid \phi_i, \alpha, X) d\beta$ over all cells in $S(\phi_i)$ provides information on how local structure changes depending on local packing fraction ϕ_i.

In general, $\langle \beta \rangle$ also depends on the aspect ratio α and the unknown parameters X.

Figure 5 shows the result of this local structure analysis of β of jammed ellipsoid configurations. The key result is the following difference between sphere and ellipsoid packings: in sphere packings, the average shape of the Voronoi cells of a given local packing fraction ϕ_i is, as far as it is captured by the anisotropy index β, almost identical in dense and loose packings. This is evidenced by the near-collapse of the curves $\langle \beta \rangle(\phi_i, \alpha = 1, X)$ for packings of different global packing fraction. $\langle \beta \rangle$ is a function of ϕ_i only, but is largely independent of the unknown parameters X, the packing protocol and the particle friction.

In ellipsoid packings, illustrated for $\alpha = 0.8$ in fig. 5(a), the curves for different ϕ_i do not collapse. The average $\langle \beta \rangle(\phi_i, \alpha, X)$ depends on both α and X. This indicates that packings with low and high ϕ_k exhibit differences in their local structures controlled by α and X. Figure 5(b) demonstrates the validity of this result for other aspect ratios. Except for $\alpha = 1.0$ (spheres) and $\alpha \approx 0.6$ (close to the densest random ellipsoid packing), the local curves $\langle \beta \rangle(\phi_i)$ for the loosest and densest simulated packings do not collapse, which is indicative of structural differences.

Discussion and conclusion. – We have analysed the Voronoi diagram of oblate ellipsoid packings, establishing which aspects of the Voronoi diagram are universal, i.e. independent of preparation protocol and particle aspect ratio α and further parameters X, and which ones are not. Considering the geometric nature of this packing problem, these results have ramifications for our understanding of jammed systems and disordered solids.
The results of fig. 5 emphasise an important distinction between random packings of spherical beads and those of aspherical beads. The structure of spherical bead packs is universal in the following sense: on average, the local structure of the typical particle of a given fixed but arbitrary local packing fraction ϕ_l is very similar in differently prepared packings, in particular with different ϕ_k. This observation, here made with respect to the Voronoi cell anisotropy of the volume moment tensor, is consistent with similar results for local contact numbers [2,31]. It implies that, at least with respect to averages of the volume tensor shape measure, the following interpretation of random jammed sphere packs is feasible. We consider a pool of local structure motifs for each value of the local packing fraction ϕ_l, given by the distributions in fig. 4(c). For spheres (but not for ellipsoids), these pools are universal in the sense that, for a fixed value of ϕ_l, the same pools can be used to construct packings of various global packing fractions ϕ_k. A jammed configuration can then be thought of as the composition of randomly drawn elements from the pools; the probability distribution $P(\phi_l)$ determines the fraction of cells to be drawn from each ϕ_l pool. While this clearly does not represent a constructive approach for the generation of disordered bead packs, it illustrates the universal nature of the sphere packing problem: the same pools of structural elements are used for all global packing fractions, just in different proportions. For ellipsoid packings, this universality breaks down and motifs in the ϕ_l pools depend on further parameters X and hence correlate with the global packing fraction.

We speculate that this geometric non-universality is paralleled by a significantly less universal nature of the random close packing problem in aspherical particles. More work is needed to identify the subtle origin of this non-universality. We have verified that it is neither solely an effect of particle orientation with the axis of gravity nor an obvious correlation with packing history. In particular the same non-universality is observed for two types of packings with different degrees of particle alignment with the axis of gravity (simulations and experiments).

Beyond these specific results for ellipsoidal particles, our analysis demonstrates the importance of the correct choice for the relevant parameters for the discussion of local structure metrics in granular matter. An analysis in terms of the local packing fraction ϕ_l, which may in principal directly relate to local physical processes, is more meaningful than the conventional analysis in terms of the global packing fraction ϕ_k.

We thank Weimer Pharma GmbH for the placebo pills, and Rolf Schilling for discussions. We acknowledge funding by the German Science Foundation through the research group “Geometry and Physics of Spatial Random Systems” under grant SCHR-1148/3-2. We thank Francesco Sciortino for the MD data.
REFERENCES

[1] Scott G. D., Knight K. R., Bernal J. D. and Mason J., Natur., 194 (1962) 956957.
[2] Asté T., Saadatfar M. and Senden T. J., J. Stat. Mech. (2006) P07010.
[3] Starr F. W., Sastri S., Douglas J. F. and Glotzer S. C., Phys. Rev. Lett., 89 (2002) 125501.
[4] Asté T., Matteo T. D., Saadatfar M., Senden T. J., Schröter M. and Swinney H., EPL, 79 (2007) 24003.
[5] Schröder-Turk G. E., Mickel W., Schröter M., Delaney G. W., Saadatfar M., Senden T. J., Mecke K. and Asté T., EPL, 90 (2010) 34001.
[6] Donev A., Cisse I., Sachs D., Variano E. A., Stillinger F. H., Connelly R., Torquato S. and Chaikin P. M., Science, 303 (2004) 990.
[7] Donev A., Stillinger F. H., Chaikin P. M. and Torquato S., Phys. Rev. Lett., 92 (2004) 255506.
[8] Baram R. M. and Lind P. G., Phys. Rev. E, 85 (2012) 041301.
[9] Xia C., Zhi K., Cao Y., Sun H., Kou B. and Wang Y., Soft Matter, 10 (2014) 990.
[10] Delaney G. W., Hilton J. E. and Cleary P. W., Phys. Rev. E, 83 (2011) 051305.
[11] Mailman M., Schreck C. F., O’Hern C. S. and Chakraborty B., Phys. Rev. Lett., 102 (2009) 255501.
[12] Zeravcic Z., Xu N., Liu J. A., Nagel S. R. and van Saarloos W., EPL, 87 (2009) 26001.
[13] Baule Adrian, Mari Romain, Bo Lin, Portal Louis and Makse Hernán A., Nat. Commun., 4 (2013) 2194.
[14] Wegener S., Stannarius R., Boese A., Rose G., Szabó B., Somfai E. and Börzsönyi T., Soft Matter, 10 (2014) 5157.
[15] Delaney G. W. and Cleary P. W., EPL, 89 (2010) 34002.
[16] Delaney G., Weaire D., Hutzler S. and Murphy S., Philos. Mag. Lett., 85 (2005) 89.
[17] Williams S. R. and Philipse A. P., Phys. Rev. E, 67 (2003) 051301.
[18] Athanassiadis A. G., Miskin M. Z., Kaplan P., Rodenberg N., Lee S. H., Merritt J., Brown E., Amend J., Lipson H. and Jaeger H. M., Soft Matter, 10 (2014) 48.
[19] Baker J. and Kudrolli A., Phys. Rev. E, 82 (2010) 061304.
[20] Haji-Akbari A., Engel M., Keys A. S., Zheng X., Petschek R. G., Palffy-Muhoray P. and Glotzer S. C., Nature, 462 (2009) 773.
[21] Jaeger H. M., Soft Matter, 11 (2015) 12.
[22] Neuedecker M., Ulrich S., Herminghaus S. and Schröter M., Phys. Rev. Lett., 111 (2013) 028001.
[23] Smith K. C., Sirvastava I., Fisher T. S. and Alam M., Phys. Rev. E, 89 (2014) 042213.
[24] Torquato S. and Jiao Y., Nature, 460 (2009) 876.
[25] Blouwolff J. and Fraden S., Europhys. Lett., 76 (2006) 1095.
[26] Börzsönyi T., Szabó B., Törös G., Wegner S., Török J., Somfai E., Bien T. and Stannarius R., Phys. Rev. Lett., 108 (2012) 228302.
[27] Fu Y., Xi Y., Cao Y. and Wang Y., Phys. Rev. E, 85 (2012) 061311.
[28] Kyrilyuk A. V., van de Haar M. A., Rossi L., Wouterse A. and Philipse A. P., Soft Matter, 7 (2011) 1671.
[29] Wouterse A., Luding S. and Philipse A. P., Granular Matter, 11 (2009) 169.
[30] Zhang Xiao-Dan, Xia Cheng-Jie, Xiao Xiang-Hui and Wang Yu-Jie, Chin. Phys. B, 23 (2014) 044501.
[31] Schaller F. M., Neudecker M., Saadatfar M., Delaney G. W., Schröder-Turk G. E. and Schröter M., Phys. Rev. Lett., 114 (2015) 158001.
[32] Schaller F. M., Neudecker M., Saadatfar M., Delaney G., Mecke K., Schröder-Turk G. E. and Schröter M., AIP Conf. Proc., 1542 (2013) 377.
[33] http://dx.doi.org/10.5661/dryad.rf623.
[34] De Michele C., J. Comput. Phys., 229 (2010) 3276.
[35] De Michele C., Schilling R. and Sciortino F., Phys. Rev. Lett., 98 (2007) 265702.
[36] Pfeiferer H., Milinkovic K. and Schilling T., EPL, 84 (2008) 16003.
[37] Newhall K. A., Jorjadze I., Vanden-Eijnden E. and Bruic J., Soft Matter, 7 (2011) 11518.
[38] Song C., Wang P. and Makse H. A., Nature, 453 (2008) 629.
[39] Schaller F. M., Kapfer S. C., Evans M. E., Hoffmann M. J., Asté T., Saadatfar M., Mecke K., Delaney G. W. and Schröder-Turk G. E., Philos. Mag., 93 (2013) 3993.
[40] Luchinov V., Medvedev N., Oger L. and Troadec J., Phys. Rev. E, 59 (1999) 7205.
[41] Luchinov V., Gavrilova M., Medvedev N. and Voloshin V., Future Gener. Comput. Syst., 18 (2002) 673.
[42] Schröder-Turk G. E., Mickel W., Kapfer S. C., Schaller F. M., Breidenbach B., Hug D. and Mecke K., New J. Phys., 15 (2013) 083028.
[43] Mickel W., Kapfer S. C., Schröder-Turk G. E. and Mecke K., J. Chem. Phys., 138 (2013) 044501.
[44] Kapfer S. C., Mickel W., Mecke K. and Schröder-Turk G. E., Phys. Rev. E, 85 (2012) 030301.
[45] Edwards S. F. and Oakeshott R. B. S., Physica A, 157 (1989) 1080.
[46] Anikeenko A. V., Medvedev N. N. and Asté T., Phys. Rev. E, 77 (2008) 031101.
[47] Zhao S.-C. and Schröter M., Soft Matter, 10 (2014) 4208.
[48] Pica Ciamarra R., Richard P., Schröter M. and Tighe B. P., Soft Matter, 8 (2012) 9731.
[49] Puckett J. G. and Daniels K. E., Phys. Rev. Lett., 110 (2013) 058001.
[50] Paillusson F. and Frenkel D., Phys. Rev. Lett., 109 (2012) 208001.
[51] Wu Y. and Teitel S., Phys. Rev. E, 91 (2015) 022207.
[52]阿森jo D., Paillusson F. and Frenkel D., Phys. Rev. Lett., 112 (2014) 098002.
[53] Kumar V. R. and Kumaran V., J. Chem. Phys., 123 (2005) 114501.
[54] Kapfer S. C., Mickel W., Schaller F. M., Spanner M., Goll C., Nogawa T., Ito N., Mecke K. and Schröder-Turk G. E., J. Stat. Mech. (2010) P11010.
[55] Note that this reference uses the particle center as the origin for the analysis of $W_i^{0.0}$ rather than the center of mass of the Voronoi cell.)
[56] O’Hern C. S., Silbert L. E., Liu A. J. and Nagel S. R., Phys. Rev. E, 68 (2003) 011306.