PURPOSE The HOLA COVID-19 study sought to evaluate the impact of COVID-19 on oncology practices across Latin America (LATAM), challenges faced by physicians, and how practices and physicians adapted while delivering care to patients with cancer.

METHODS This international cross-sectional study of oncology physicians in LATAM included a 43-item anonymous online survey to evaluate changes and adaptations to clinical practice. Multivariable logistic regression analyses were used to evaluate the association of caring for patients with COVID-19 and changes to clinical practice.

RESULTS A total of 704 oncology physicians from 19 countries completed the survey. Among respondents, the most common specialty was general oncology (34%) and 56% of physicians had cared for patients with COVID-19. The majority of physicians (70%) noted a decrease in the number of new patients evaluated during the COVID-19 pandemic when compared with prepandemic, and 73% reported adopting the use of telemedicine in their practice. More than half (58%) of physicians reported making changes to the treatments that they offered to patients with cancer. In adjusted models, physicians who had cared for patients with COVID-19 had higher odds of changing the type of chemotherapy or treatments that they offered (adjusted odds ratio 1.81; 95% CI, 1.30 to 2.53) and of delaying chemotherapy start (adjusted odds ratio 2.05; 95% CI, 1.49 to 2.81). Physicians identified significant delays in access to radiation and surgical services, diagnostic tests, and supportive care.

CONCLUSION The COVID-19 pandemic has significantly disrupted global cancer care. Although changes to health care delivery are a necessary response to this global crisis, our study highlights the significant disruption and changes to the treatment plans of patients with cancer in LATAM resulting from the COVID-19 health care crisis.
adequate medical care because of limited resources and fragmented systems that have been disproportionally affected by COVID-19. Given the expected growth in cancer burden in LATAM, we must understand how cancer care in the region has changed during these unprecedented times. Therefore, we sought to evaluate the impact of COVID-19 on oncology practices across LATAM, by assessing the challenges faced by physicians in diagnosing and treating cancer and the clinical practice modifications that they adopted during the pandemic.

METHODS

Collaborator Network and Participant Recruitment
This cross-sectional study was led by a group of researchers from LATAM and the United States. LATAM is a region consisting of 20 countries and 14 territories stretching from Mexico to Tierra del Fuego (Chile and Argentina) and including the Caribbean (Cuba, Dominican Republic, and Puerto Rico).

The HOLA COVID-19 study included oncology physicians practicing in LATAM. We identified local leaders from each country using social media and the ASCO membership directory. An electronic invitation was distributed to physicians from LATAM countries to become study ambassadors. Using snowball sampling, each ambassador recruited participants via a multimodal approach, which included social media, e-mail invitations, professional society directories and mailing lists, and other local physician communication networks. Ambassadors distributed the online survey via a personal link using the SurveyMonkey platform (SurveyMonkey, San Mateo, CA) during August 4-24, 2020. The target population was physicians specialized in hematology and/or oncology, surgical oncology, radiation oncology, or gynecologic oncology. All recruitment efforts and communications were available in Spanish, Portuguese, and English.

Survey Instrument
The survey consisted of 43 questions designed by the research team, who are native bilingual Spanish/English and Portuguese/English oncology physicians (Data Supplement). Questions were written in English and translated into Spanish and Portuguese by study team members.

Data Analysis
Only completed surveys were included in the analysis. Data were stratified according to whether oncology physicians had cared for patients with COVID-19 infection (on the basis of answers to “Have you taken care of cancer patients with COVID-19 infection?” Yes/No). Responses were summarized with descriptive statistics. To compare survey responses between groups, we used chi-square and Fisher’s exact tests for categorical variables and McNemar’s test for matched categorical variables. For ease of interpretation, chi-square tests comparing responses to questions with 5-item Likert scale answers were performed by collapsing responses to binary outcomes (ie, change in [some, most, or all cases] versus [minority of cases or no change]).

We used binary multivariable logistic regression to evaluate the association of caring for patients with COVID-19 with the primary outcome of change in clinical practice (on the basis of the survey question “Have you changed the type of chemotherapy or treatment that you offer to your cancer patients during the months of February-June 2020?” Yes/No). On the basis of expert input and significance on univariate regression (not shown), multivariable models were adjusted for physician specialty and age (used as surrogate for years in practice). Secondary exploratory outcomes included change to a less effective regimen with fewer complications or side effects, discontinuation of chemotherapy, and delay of chemotherapy start. We
performed generalized ordinal logistic regression16,17 to explore the association of our secondary outcomes with caring for patients with COVID-19; respondents who selected not applicable were excluded. We used marginal effects to estimate the probability of each secondary outcome. Statistical significance was assumed at a P value <0.05. Data were analyzed using Stata version 16 (StataCorp LLC, College Station, TX).

RESULTS

Between August 4 and 24, 2020, 913 oncology physicians initiated the survey, of which 704 (77%) completed the survey and were included in the analysis (Fig 1). Respondents originated from 19 LATAM countries, with the highest number practicing in Mexico (29%, $n = 205$), Brazil (11%, $n = 76$), and Chile (9%, $n = 61$). Most physicians were men (57%, $n = 402$), 31-40 years old (40%, $n = 284$), and practiced medical oncology (34%, $n = 239$). Table 1 shows physician demographics and workplace characteristics.

Table 1. Participant and Workplace Baseline Characteristics

Characteristic	Total Sample (N = 704), No. (%)	Cared for Patients With COVID-19	
	No. (%)	Yes (n = 397), No. (%)	No (n = 307), No. (%)
Sex			
Female	299 (43)	174 (44)	125 (41)
Male	402 (57)	221 (56)	181 (59)
Age, years			
21-30	33 (5)	19 (5)	14 (2)
31-40	284 (40)	174 (44)	110 (39)
41-50	179 (25)	107 (27)	72 (24)
51-60	124 (18)	65 (16)	59 (19)
61-70	70 (10)	28 (7)	42 (14)
> 71	14 (2)	4 (1)	10 (3)
SPECIALTY IN ONCOLOGY			
General oncology	239 (34)	141 (36)	98 (32)
Hematology	102 (15)	76 (19)	26 (9)
Hematology-oncology	82 (12)	58 (15)	24 (8)
Surgical oncology	174 (25)	84 (21)	90 (29)
Radiation oncology	83 (12)	29 (7)	54 (18)
Gynecologic oncology	23 (3)	9 (2)	14 (5)
Type of practice			
Academic/university hospital	280 (40)	172 (43)	108 (35)
State hospital	304 (43)	172 (43)	132 (43)
Private clinic	405 (58)	224 (56)	181 (59)
Community hospital	22 (3)	8 (2)	14 (5)
No. of physicians in practice			
1	28 (4)	13 (3)	15 (5)
2-10	408 (58)	232 (59)	176 (58)
> 10	266 (38)	151 (38)	113 (37)
Country			
Argentina	36 (5)	16 (4)	20 (7)
Bolivia	12 (2)	12 (3)	0
Brazil	76 (11)	56 (14)	20 (7)
Chile	61 (9)	32 (8)	29 (10)
Colombia	48 (7)	35 (9)	13 (4)
Costa Rica	2 (0.3)	0	2 (1)
Cuba	16 (2)	2 (1)	14 (5)
Ecuador	60 (9)	42 (11)	18 (6)
El Salvador	18 (3)	7 (2)	11 (4)

(Continued on following page)
most of their practices (85%, n = 574) implemented screening questionnaires for COVID-19 symptoms pre-chemotherapy. Notably, 29% (n = 201) of physicians reported that their practice had implemented COVID-19 testing for all patients before initiating chemotherapy, whereas 32% (n = 228) implemented testing only for symptomatic patients, and 28% (n = 200) had no pre-chemotherapy testing.

Most physicians (70%, n = 491) noted a decrease in the number of new patients evaluated during the pandemic when compared with before COVID-19 (pre-February 2020). The proportion of physicians who reported seeing less than five new patients per day increased from 40% (n = 279) before the pandemic to 73% (n = 513) during the pandemic (P < .001). Most physicians (72%, n = 505) reported fewer follow-up visits when compared with pre–COVID-19.

As shown in Table 2, physicians cared for patients in various settings, including hospitals, outpatient clinics, and telemedicine. Telemedicine was adopted broadly, with 73% (n = 512) of physicians using telemedicine in their oncology practice at the time of the survey, compared with only 14% (n = 98) before COVID-19 (P < .001). Physicians who cared for patients with COVID-19 were more likely to see patients in hospital settings than those who did not (67 vs 58%; P = .019).

Access to Resources and Specialty Care

Oncology physicians reported significant changes in access to diagnostic resources (Fig 2). Eleven percent (n = 77) reported having no access to positron emission tomography-computed tomography (CT) or CT during the pandemic, and 59% (n = 413) noted that the availability of these diagnostic tests decreased somehow or significantly. Lower access to CT and positron emission tomography-CT was reported more frequently by physicians who cared for patients with COVID-19 than those who did not (P = .001). Similar differences were noted in access to biopsies, supportive medications (ie, antiemetics and growth

TABLE 2. Telemedicine Use Among Oncology Physicians

Characteristic	Total Sample (N = 704), No. (%)	Cared for Patients With COVID-19	Yes (n = 397), No. (%)	No (n = 307), No. (%)
Have you ever used telemedicine?				
Yes	512 (73)	297 (75)	215 (70)	
No	188 (27)	98 (25)	90 (29)	
In your practice, did you use telemedicine before the pandemic?				
Yes	98 (14)	49 (12)	49 (16)	
No	605 (86)	347 (88)	258 (84)	
How have you been seeing patients during the pandemic?				
Clinic	433 (62)	243 (61)	190 (63)	
Hospital	444 (63)	266 (67)	178 (58)	
Telemedicine: telephone	272 (39)	152 (38)	120 (39)	
Telemedicine: video	201 (29)	119 (30)	82 (27)	
Telemedicine and clinic	292 (42)	176 (44)	116 (38)	

If you are using telemedicine, how much time passed from the closing of your practice to the implementation of telemedicine?

- Used telemedicine before the pandemic: 73 (10%) Yes, 31 (8%) No
- Days to 1 week: 150 (21%) Yes, 86 (22%) No
- 2-3 weeks: 122 (17%) Yes, 73 (19%) No
- 1 month or more: 160 (23%) Yes, 101 (26%) No
- We do not use telemedicine: 194 (28%) Yes, 103 (26%) No

© 2022 by American Society of Clinical Oncology
factors), and social work and supportive care staff. Most physicians had access to COVID-19 testing for their patients (72%, n = 504). In a minority of cases, COVID-19 testing was limited to patients who could pay out-of-pocket costs (9%, n = 64).

Physicians also noted delays in access to specialty care. Most (65%, n = 456) reported delays in referrals to surgical oncology, irrespective of whether they took care of patients with COVID-19 \((P = .051) \). However, 78% (n = 544) reported that their patients were evaluated by a surgical oncologist within 30 days of referral. Most physicians reported that cancer surgeries had been delayed (61%, n = 429), and 20% (n = 141) noted that surgeries had been canceled; 20% (n = 138) reported surgeries had been delayed for over a month. Regarding access to radiotherapy, that 49% (n = 343) of physicians reported delays in time to evaluation. Physicians who cared for patients with COVID-19 were more likely to report delays in radiotherapy assessments than those who did not care for patients with COVID-19 (55 v 44%; \(P = .004 \)). Most physicians reported that their patients were evaluated by radiation oncology within 30 days of referral (73%, n = 515).

Changes to Clinical Practice

Oncology physicians noted significant changes in their clinical practice (ie, patient management), with 58% (n = 404) reporting that they had changed the type of chemotherapy or treatments they offered to patients, 47% (n = 330) reporting that they held or delayed chemotherapy because of the pandemic, and 38% (n = 269) had delayed or canceled adjuvant chemotherapy. Significant differences were observed in the proportion of physicians who delayed or held chemotherapy for \(\geq 8 \) days between those who took care of patients with COVID-19 and those who did not (48 v 31%; \(P = .001 \)). As shown in Figure 3, there are variability and differences in the frequency of self-reported changes to patient management between physicians who cared for patients with COVID-19 and those who did not.

For example, physicians who cared for patients with COVID-19 were more likely to change chemotherapy regimens to decrease potential adverse events than physicians who did not care for patients with COVID-19 (57 v 46% changed chemotherapy in some, most, or all cases; \(P = .006 \)). Similarly, physicians who cared for patients with COVID-19 were more likely to change chemotherapy regimens to decrease potential adverse events than physicians who did not care for patients with COVID-19 (57 v 46% changed chemotherapy in some, most, or all cases; \(P = .006 \)).

Multivariable logistic regression models evaluated the association of caring for patients with COVID-19 and key changes to clinical practice. As shown in Table 3, after adjusting for age and specialty, physicians who cared for patients with COVID-19 had higher odds of changing the type of chemotherapy or treatments offered to their patients (adjusted odds ratio 1.81; 95% CI, 1.30 to 2.53). We observed significant differences in self-reported changes of type of chemotherapy among specialties, with hematologists...
and surgical specialists (surgical oncologists and gynecologic oncologists) having lower odds of changing chemotherapy. Older physician age was associated with lower odds of changing chemotherapy in the adjusted model. In Table 4, ordinal regression models explore the associations of caring for patients with COVID-19 and secondary outcomes of interest. Physicians who cared for patients with COVID-19 tended to have higher odds of reporting that they had stopped chemotherapy in patients previously on treatment and delayed chemotherapy starts. As shown in Figure 4, the probability of reporting having stopped or delayed chemotherapy in some or most/all cases was highest among those who cared for patients with COVID-19.

DISCUSSION

The results of HOLA COVID-19 highlight the impact of the COVID-19 pandemic on oncology practices across LATAM. Among a large sample of oncology physicians, we found that a significant proportion directly participated in the care of patients with COVID-19. Interestingly, physicians who took care of patients with COVID-19 were more likely to change their patterns of cancer care and to modify treatments than those who did not. In addition, most physicians adapted

Table 3. Binary Multivariable Logistic Regression Evaluating the Association of Caring for Patients With COVID-19 (yes vs no) With Change in Clinical Practice Changed the Type of Chemotherapy or Treatments Offered During February-July 2020

Variable	Comparison	aOR	95% CI	P
Taking care of patients with COVID-19	No (Ref)	—	—	—
	Yes	1.81	1.30 to 2.53	< .001
Specialty	General oncology (Ref)	—	—	—
	Hematology	0.60	0.36 to 0.99	.046
	Hematology-oncology	0.70	0.41 to 1.21	.200
	Surgical and gynecologic oncology	0.28	0.19 to 0.43	< .001
	Radiation oncology	1.00	0.57 to 1.73	.986
Age group, years	21-40* (Ref)	—	—	—
	41-50	1.02	0.66 to 1.52	.925
	51-60	0.84	0.53 to 1.32	.450
	≥ 61*	0.48	0.28 to 0.81	.006

NOTE. Respondents who selected not applicable were excluded. P values in bold represent statistically significant associations on the basis of P values < .05.

Abbreviations: aOR, adjusted odds ratio; Ref, reference.

*Age groups 21-30 and 31-40 were collapsed into one group, and groups 61-70 and > 70 were also collapsed into one group because of the sample size. Surgical and gynecologic oncology specialties collapsed because of the small sample size.

FIG 3. Frequency distribution of self-reported changes to clinical practice: (A) caring for patients with COVID-19 versus (B) not caring for patients with COVID-19. Respondents who selected not applicable were excluded. CTx, chemotherapy; G-CSF, granulocyte colony-stimulating factor; RT, radiation therapy.
Surgical and gynecologic oncology specialties collapsed because of the small sample size. Values in bold represent statistically significant associations on the basis of P values < .05.

Abbreviations: aOR, adjusted odds ratio.

*Age groups 21-30 and 31-40 were collapsed into one group, and groups 61-70 and > 70 were also collapsed into one group because of the sample size. Surgical and gynecologic oncology specialties collapsed because of the small sample size.

their clinical practice to provide care for patients via telemedicine, demonstrating that this strategy might be useful in resource-limited settings like LATAM. Worryingly, most participants reported seeing a significantly lower volume of new patients and follow-up visits during the pandemic.

Patients with cancer have a significantly higher risk of acquiring COVID-19 and worse outcomes, including increased mortality and severe illness requiring intensive care unit admission.18,19 Within this vulnerable group, older age, belonging to socially disadvantaged populations (eg, racial/ethnic minorities and people living in poverty), having poor performance status, and having active cancer are associated with worse outcomes, specifically increased mortality.19,20 The vulnerability of patients with cancer to COVID-19, compounded with overwhelmed health care systems, has led oncologists to make modifications to their practices on a case-by-case basis, hoping to minimize the risk of exposing patients with cancer to COVID-19. In our study, we observed important modifications in practice patterns, with more than half of the respondents reporting changing treatment regimens offered to patients. Changes in intensity and length of therapy were used to avoid potential adverse events and to decrease patient contact with health care settings, limiting potential exposures to COVID-19. Although in some cases, modifying, omitting, delaying, or shortening treatment regimens may be appropriate, in others, this might have deleterious impacts on survival or quality of life.21 Although we did not assess the specific changes in chemotherapy dosing or schedules made by oncology physicians in response to the pandemic, the fact that more than a third delayed or canceled adjuvant treatments shows that potentially curative treatments were interrupted, which could affect cancer outcomes in the region. This is also supported by the delays in surgical interventions and/or radiotherapy. Overall, our results provide evidence to the extent to which the global COVID-19 pandemic has created new challenges and amplified pre-existing barriers to the diagnosis, treatment, and supportive care of patients with cancer in LATAM.

Our study uniquely builds on previously published data showing changes and delays to cancer care across the world. In response to the COVID-19 pandemic, cancer centers have adopted restrictive visitation policies, mandated the use of personal protective equipment, implemented telemedicine, and separated patients with COVID-19 via established pathways.22 Survey studies of providers from cancer centers around the world reported significant alterations to care, with 44% of oncologic surgeries, 25% of chemotherapy sessions, and 14% of radiotherapy appointments being canceled or delayed.23 Medical oncologists reported using less intravenous agents, such as chemotherapy and immunotherapy, and the majority were less likely to recommend second- or third-line therapies to patients with metastatic disease.24 During the pandemic, oncologists considered factors such as patient’s age, performance status, and comorbidities when choosing cancer-directed therapies.24 Internationally, more than half...
of cancer centers had reduced assistance for patients, which not only affected treatment but also led to reduced appointments with support care staff, such as psychologists, nutritionists, social workers, and educators. Our findings highlight that changes and delays in therapy and decreased access to diagnostics and supportive and specialty care are heightened by physicians’ direct experience of caring for patients with COVID-19. This finding may reflect physician responses to their personal experience witnessing the effects of COVID-19 in ill patients and/or their response to working in overwhelmed health care systems.

Besides our study, little is known about the impact of COVID-19 on LATAM oncology practices. Data from LATAM radiation oncology practices showed that 80% of the practices described a reduction in patient volume. A survey of breast cancer specialists from LATAM countries reported that 42% of respondents worked in hospitals that were brought to a standstill during the pandemic. Similarly, an online survey of LATAM pediatric hematologist-

FIG 4. Predicted probabilities and 95% CIs for the four categories of self-reported frequency to changes to clinical practice, by caring for patients with COVID-19 (yes v no), on the basis of the generalized ordinal logistic regression. (A), (B) Self-reported frequency to changes to clinical practice when asked “Please choose the proportion of your practice that has been affected by the following changes since March 2020 compared to last year.” Among the proposed options, the most clinically relevant are shown: (A) change to a less effective regimen, but with fewer complications or side effects, (B) stop giving chemotherapy to the patients who were already on treatment, and (C) delay the start of chemotherapy. Reported frequencies are based on Likert scale options: in all cases, in most cases, in some cases, in the minority of cases, no changes, and not applicable. Because of the small sample size across categories, in all cases and most cases were collapsed into one category. Respondents who selected not applicable are excluded.
oncologists found that although ongoing chemotherapies were maintained, a significant proportion of outpatient procedures, surgeries, radiotherapy, and stem-cell transplantations were delayed indefinitely. Furthermore, 60% of respondents reported a significant decrease in workforce availability because of COVID-19 infection or quarantine. Understanding the effects of COVID-19 on cancer care in developing regions of the world, where access to health care is limited, is essential to prepare both for the post-pandemic recovery period and for future epidemic events. According to the United Nations Economic Commission for LATAM and the Caribbean, LATAM is the world region with highest income inequality, even pre-pandemic. These economic challenges are expected to worsen during the pandemic, leading to an increase in poverty, political instability, and long-lasting effects on the care of chronic diseases, such as cancer.

Strengths of HOLA COVID-19 include a large sample size with respondents from most LATAM countries, a multimodal recruitment approach, and the fact that, since the link was privately shared, the survey was likely only answered by oncology physicians. Limitations of our study include its cross-sectional nature, which allows us to capture data at a single timepoint and makes us unable to establish longitudinal relationships between exposure and outcomes. In addition, as there is no centralized governing body that guides oncology care and education in LATAM, the total number of oncologists in the region is unknown. Given this limitation, we used snowball sampling via a multimodal approach to increase our recruitment reach. Snowball sampling inherently introduces limitations and bias, which include the inability to estimate the number of individuals reached, unknown probability of selection, which can limit generalizability, and differential recruitment as evidenced by the small number of participants from Brazil when compared with Mexico. Other weaknesses include potential selection bias since physicians who were affected the most by COVID-19 could have been more inclined to answer the survey. However, the fact that almost half of respondents had not directly cared for patients with COVID-19 shows that this might not be the case. In addition, since our recruitment was primarily performed electronically, most participants were young physicians. Finally, we did not capture changes in treatment on a case-by-case basis, and therefore, we cannot say whether modifications led to undertreatment and/or worse outcomes. Despite these limitations, we believe that our findings provide a thorough overview of practice changes in the region and reflect the challenges experienced by LATAM oncologists during COVID-19.

During the past year, COVID-19 has affected the care of patients with cancer and oncologic practices throughout the world. Our study provides evidence of the impact and effects of the pandemic on oncology practices in LATAM, where health care systems are fragmented and access to cancer care is limited. Although the reported practice changes may seem like a reasonable response to the health care crisis created by the pandemic, significant disruptions in cancer care delivery and worsening outcomes across the regions could occur in the coming years. We hope that our data can serve as a guide to develop strategies focused on rebuilding cancer care in LATAM and avoiding disruptions during future health care crises.

AFFILIATIONS

1Essen Health Care, Bronx, NY
2Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
3National Clinician Scholars Program, Philip R. Lee Institute for Health Policy Studies, University of California, San Francisco, San Francisco, CA
4Sylvester Comprehensive Cancer Center at the University of Miami, Miami, FL
5Centro de Cáncer de Brasilia (CETTRO), Brasilia, DF, Brazil
6Instituto Nacional de Cancerología (INCAn), Mexico City, Mexico
7Hematology and Oncology Section, Dartmouth-Hitchcock Medical Center, Lebanon, NH
8Clinica Alemana, Santiago, Chile
9SOLCA, Instituto Oncologico Nacional, Guayaquil, Ecuador
10Montefiore Medical Center/Albert Einstein College of Medicine/Albert Einstein Cancer Center, Bronx, NY
11Universidad Nacional Autonoma de Nicaragua, Managua, Nicaragua
12Instituto Nacional Del Cancer Rosa Emilia Sanchez Perez de Taveras (INCART), Santo Domingo, Dominican Republic
13National Institute of Oncology and Radiobiology, Havana City, Cuba
14Hartford Healthcare, Hartford, CT
15Universidad del Valle, Cali, Colombia
16Hospital Teodoro Alvarez Caba, Buenos Aires, Argentina
17Instituto Oncologico Nacional, Panama City, Panama
18Hospital Universitario Dr Jose Maria Vargas, Caracas, Venezuela
19Clinical Oncology Department, Hospital San Juan de Dios, San José, Costa Rica
20Research Department, Liga Nacional Contra el Cáncer & Instituto de Cancerología, Guatemala City, Guatemala
21Tufts Medical Center, Boston, MA
22Hematology Oncology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA
23Centro Oncologico Integral in San Pedro Sula, Honduras
24Department of Medical Oncology, Oncology Hospital, Salvadoran Institute of Social Security, Rosales National Hospital, San Salvador, El Salvador
25Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires, Argentina
26Hospital de Clínicas, Montevideo, Uruguay
27Instituto Oncológico De Córdoba, Córdoba, Argentina
28Department of Geriatrics, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
29Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA

CORRESPONDING AUTHOR

Carolina Bernabe-Ramirez, MD, Essen Medical Health, 899 Elton Ave, Bronx, NY 10451; Twitter: @BernabeCarolina; e-mail: cbernaberamirez@gmail.com.
STUDY GROUPS
HOLA COVID-19 Study Group: Claudio Martin, Gonzalo Recondo, Clarissa Mathias, Priscila Goncalves, Gabriel Manfron, Lucia Richter, Andres F. Cardona, Lucia Viola, Bettina G. Müller, Pablo Munoz Schuffenegger, Elia Neninger, Brenner Sabando, Finlander Rosales, Maria Teresa Bourlon, Zuratzi Deneken, Cesar Samanze, Henry L. Gomez.

DISCLAIMER
The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of the National Cancer Institute, HIV/AIDS or cancer registries, or their contractors.

EQUAL CONTRIBUTION
C.B.-R. and A.I.V. contributed equally to this work.

SUPPORT
A.I.V. was supported by the UCSF National Clinician Scholars Program and by the National Institute on Aging of the National Institutes of Health (NIH) under award no. P30AG015272.

AUTHOR CONTRIBUTIONS
Conception and Design: Carolina Bernabe-Ramirez, Ana I. Velazquez, Coral Olazagasti, Jesus Anampa, Luis Corrales-Rodriguez, Enrique Soto-Perez-de-Celis, Narjust Duma
 Provision of study material or patients: Ana I. Velazquez, Jose Corona Cruz, Evelin Men, Alvaro Menendez, Raimundo Bezares, Omar Orlando Castillo Fernandez, Xinema Bruno, Gerardo Umanzor, Federico Losco, Eduardo Richardet, Enrique Soto-Perez-de-Celis
 Collection and assembly of data: Ana I. Velazquez, Coral Olazagasti, Cristiane Decat Bergerot, Paulo Gustavo Bergerot, Jose Corona Cruz, Ivy Riano, Christina Adaniel, Francisa Ramirez, Jesus Anampa, Carmen Cajina, Evelin Men, Elias Gracia, Alvaro Menendez, Henry ldrovo, Raimundo Bezares, Omar Orlando Castillo Fernandez, Liseth Duque, Glenda Ramos, Alba J. Kihn-Alarcón, Ilana Schlim, Xinema Bruno, Gerardo Umanzor, Jenny Lissette Castro, Federico Losco, Luis Ubillos, Eduardo Richardet, Enrique Soto-Perez-de-Celis, Narjust Duma
 Data analysis and interpretation: Ana I. Velazquez, Cristiane Decat Bergerot, Paulo Gustavo Bergerot, Jesus Anampa, Alvaro Menendez, Gerardo Umanzor, Enrique Soto-Perez-de-Celis, Narjust Duma
 Manuscript writing: All authors
 Final approval of manuscript: All authors
 Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please see the www.asco.org/rwc or ascopubs.org/go/authors/author-center.
Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Ana I. Velazquez
Employment: J&J Innovations
Stock and Other Ownership Interests: Portola Pharmaceuticals, Corbus Pharmaceuticals, Midatech Pharma

Jose Corona Cruz
Honoraria: AstraZeneca, Eisai, Roche

Consulting or Advisory Role: AstraZeneca
Travel, Accommodations, Expenses: AstraZeneca

Raimundo Bezares
Consulting or Advisory Role: Microsules Bernabo Argentina

Speakers’ Bureau: AstraZeneca Argentina

Omar Orlando Castillo Fernandez
Honoraria: Roche Pharma AG, AstraZeneca, Novartis, Pfizer
Consulting or Advisory Role: Janssen Oncology
Research Funding: Roche, Novartis
Travel, Accommodations, Expenses: Roche, Pfizer

Luis Corrales-Rodriguez
Consulting or Advisory Role: AstraZeneca, Roche, MSD Oncology, Pfizer
Speakers’ Bureau: Roche, AstraZeneca, MSD Oncology
Research Funding: Roche
Travel, Accommodations, Expenses: Roche, AstraZeneca, MSD Oncology

Glenda Ramos
Consulting or Advisory Role: AstraZeneca
Travel, Accommodations, Expenses: Roche

Alba J. Kihn-Alarcón
Honoraria: Bayer
Speakers’ Bureau: Eurofarma
Travel, Accommodations, Expenses: Servier, Abbott Laboratories, Eurofarma

Federico Losco
Honoraria: Janssen Oncology, Merck Serono, MSD Oncology, Grupo Biotoscana, Pfizer
Consulting or Advisory Role: Roche, Raffo, MSD Oncology, Janssen Oncology
Speakers’ Bureau: Raffo, Pfizer, Janssen Oncology, Merck Serono, Tecnofarma, MSD Oncology, Grupo Biotoscana
Research Funding: Raffo (Inst), AstraZeneca/Merck (Inst)
Travel, Accommodations, Expenses: Raffo, Pfizer

Jenny Lissette Castro
Honoraria: Roche, Bayer, Merck, Serono
Consulting or Advisory Role: Roche, Bayer
Speakers’ Bureau: Roche, Bayer

Luis Ubillos
Honoraria: Tecnofarma, Farmaco Uruguayo
Consulting or Advisory Role: Tecnofarma, Roche, Farmaco Uruguayo
Speakers’ Bureau: Tecnofarma, Roche
Travel, Accommodations, Expenses: GlaxoSmithKline, Roche, Pfizer, AstraZeneca, Tecnofarma

Eduardo Richardet
Consulting or Advisory Role: Boehringer Ingelheim, AstraZeneca, Pfizer, Roche, Bristol Myers Squibb
Speakers’ Bureau: Bristol Myers Squibb
Research Funding: Bristol Myers Squibb, Merck Sharp & Dohme, Janssen, Amgen, Astellas Pharma, Roche, Novartis/Pfizer
Travel, Accommodations, Expenses: Bristol Myers Squibb, Pfizer

Enrique Soto-Perez-de-Celis
This author is a member of the JCO Global Oncology Editorial Board. Journal policy recused the author from having any role in the peer review of this manuscript.
Research Funding: Roche

Narjust Duma
This author is a member of the JCO Global Oncology Editorial Board. Journal policy recused the author from having any role in the peer review of this manuscript.
REFERENCES

1. Johns Hopkins Coronavirus Resource Center: COVID-19 Map. Johns Hopkins Coronavirus Resource Center, 2020. https://coronavirus.jhu.edu/map.html
2. Chopra V, Toner E, Waidhorn R, et al: How should U.S. hospitals prepare for coronavirus disease 2019 (COVID-19)? Ann Intern Med 172:621-622, 2020
3. Czeisler ME, Marynak K, Clarke KEN, et al: Delay or avoidance of medical care because of COVID-19–related concerns—United States. MMWR Morb Mortal Wkly Rep 69:1250-1257, 2020.
4. Hanna TP, Evans GA, Booth CM: Cancer, COVID-19 and the precautionary principle: Prioritizing treatment during a global pandemic. Nat Rev Clin Oncol 17:268-270, 2020.
5. Lin DD, Meghal T, Murthy P, et al: Chemotherapy treatment modifications during the COVID-19 outbreak at a community cancer center in New York City. JCO Glob Oncol 6:1298-1305, 2020.
6. Wu JT-Y, Kwon DH, Glover MJ, et al: Changes in cancer management due to COVID-19 illness in patients with cancer in Northern California. JCO Oncol Pract 17:e377-e385, 2020.
7. Bakouny Z, Paciotti M, Schmidt AL, et al: Cancer screening tests and cancer diagnoses during the COVID-19 pandemic. JAMA Oncol 7:458-460, 2021.
8. Maringe C, Spicer J, Morris M, et al: The impact of the COVID-19 pandemic on cancer deaths due to delays in diagnosis in England, UK: A national, population-based, modelling study. Lancet Oncol 21:1023-1034, 2020.
9. Economic Commission for Latin America and the Caribbean (ECLAC): Social Panorama of Latin America, 2020. Santiago, Chile, 2021. https://www.cepal.org/
10. American Society for Radiation Oncology (ASTRO). ASTRO. https://www.astro.org/Daily-Practice/COVID-19—Recommendations-and-Information/Clinical-Guidance
11. COVID-19 Recommendations and Information—American Society for Radiation Oncology (ASTRO). ASTRO. https://www.astro.org/Daily-Practice/COVID-19—Recommendations-and-Information/Clinical-Guidance
12. Ferlay J, Ervik M, Lam F, et al: Latin America and the Caribbean: Fact Sheets. Lyon, France, International Agency for Research on Cancer, 2020
13. Sung H, Ferlay J, Siegel RL, et al: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209-249, 2021
14. Duma N, Moraes FY: Oncology training in Latin America: Are we ready for 2040? Lancet Oncol 21:1267-1268, 2020
15. Sierra MS, Sconjomataram I, Antoni S, et al: Cancer patterns and trends in Central and South America. Cancer Epidemiol 44:S23-S42, 2016
16. Williams R: Generalized ordered logit/partial proportional odds models for ordinal dependent variables. Stata J 6:58-82, 2006
17. Williams R: Understanding and interpreting generalized ordered logit models. J Math Sociol 40:7-20, 2016
18. Dai M, Liu D, Liu M, et al: Patients with cancer appear more vulnerable to SARS-CoV-2: A multicenter study during the COVID-19 outbreak. Cancer Discov 10:783-791, 2020
19. Wang Q, Berger NA, Xu R: Analyses of risk, racial disparity, and outcomes among US patients with cancer and COVID-19 infection. JAMA Oncol 7:220-227, 2021
20. Kuderer NM, Choueiri TK, Shah DP, et al: Clinical impact of COVID-19 on patients with cancer (CCC19): A cohort study. Lancet 395:1907-1918, 2020
21. Schrag D, Hershman DL, Basch E: Oncology practice during the COVID-19 pandemic. JAMA 323:2005-2006, 2020
22. Curigliano G, Banerjee S, Cervantes A, et al: Managing cancer patients during the COVID-19 pandemic: An ESMO multidisciplinary expert consensus. Ann Oncol 31:1320-1335, 2020
23. Onesti CE, Tagliamento M, Curigliano G, et al: Expected medium- and long-term impact of the COVID-19 outbreak in oncology. JCO Glob Oncol 7:162-172, 2021
24. Úrun Y, Hussain SA, Bakouny Z, et al: Survey of the impact of COVID-19 on oncologists' decision making in cancer. JCO Glob Oncol 6:1248-1257, 2020
25. Jazieh AR, Akbulut H, Curigliano G, et al: Impact of the COVID-19 pandemic on cancer care: A global collaborative study. JCO Glob Oncol 6:1428-1438, 2020
26. Martinez D, Sarria GJ, Wakefield D, et al: COVID-19 impact on radiation oncology: A Latin American survey study. Int J Radiat Oncol Biol Phys 108:374-378, 2020
27. Luis Pendola G, Elizalde R, Vargas PS, et al: Management of non-invasive tumours, benign tumours and breast cancer during the COVID-19 pandemic: Recommendations based on a Latin American survey. Ecanermedicscience 14:1115, 2020
28. Vasquez L, Sampor C, Villanueva G, et al: Early impact of the COVID-19 pandemic on paediatric cancer care in Latin America. Lancet Oncol 21:753-755, 2020
29. Economic Commission for Latin America and the Caribbean (ECLAC): Social Panorama of Latin America, 2020. Santiago, Chile, 2021. https://www.cepal.org/sites/default/files/publication/files/46688/S2100149_en.pdf
30. Sullivan MP, Bittell JS, Meyer PJ, et al: Latin America and the Caribbean: Impact of COVID-19. Congressional Research Service. https://fas.org/sgp/crs/row/IF11581.pdf
31. Cottani J: The Effects of Covid-19 on Latin America's Economy. Center for Strategic and International Studies. https://www.csis.org/analysis/effects-covid-19-latin-americas-economy
32. Garcia PJ, Alarcón A, Bayer A, et al: COVID-19 response in Latin America. Am J Trop Med Hyg 103:1765-1772, 2020