A novel approach of human embryonic stem cells therapy in treatment of Friedreich’s ataxia

Geeta Shroff

ABSTRACT

Introduction: Friedreich’s ataxia (FRDA) is an autosomal recessive inherited disease that damages nervous system and impairs muscle coordination. FRDA usually begins in childhood and is caused by expanded GAA triplet repeat within the first intron of the frataxin (FXN) gene leading to reduced level of mitochondrial protein frataxin. There is no effective treatment for FRDA. If stem cells are transplanted near the affected cells under oxidative stress in FRDA patients, they can produce tropic factors, thereby increasing the survival of the cells. In FRDA, the mechanism to remove the reactive oxygen species (ROS) is impaired leading to oxidative stress and cell death. Stem cells may have ability to protect cells susceptible to oxidative stress that occurs in FRDA. In our previous studies we have shown the improvement in the patients’ condition who were suffering from cerebral palsy and cortical visual impairment after human embryonic stem cells (hESCs) therapy.

Case Series: Herein, I report three cases of FRDA patients who were treated with hESCs therapy. All the patients were suffering from problems like difficulty in walking, standing or climbing stairs and muscle weakness. After undergoing hESCS therapy, improvement in condition of all the patients was observed.

Conclusion: The hESCs therapy was effective in treating patients with FRDA. Further research is required to understand the mechanism of action of hESCs.
A novel approach of human embryonic stem cells therapy in treatment of Friedreich’s ataxia

Geeta Shroff

ABSTRACT

Introduction: Friedreich’s ataxia (FRDA) is an autosomal recessive inherited disease that damages nervous system and impairs muscle coordination. FRDA usually begins in childhood and is caused by expanded GAA triplet repeat within the first intron of the frataxin (FXN) gene leading to reduced level of mitochondrial protein frataxin. There is no effective treatment for FRDA. If stem cells are transplanted near the affected cells under oxidative stress in FRDA patients, they can produce tropic factors, thereby increasing the survival of the cells. In FRDA, the mechanism to remove the reactive oxygen species (ROS) is impaired leading to oxidative stress and cell death. Stem cells may have ability to protect cells susceptible to oxidative stress that occurs in FRDA. In our previous studies we have shown the improvement in the patients’ condition who were suffering from cerebral palsy and cortical visual impairment after human embryonic stem cells (hESCs) therapy. Case Series: Herein, I report three cases of FRDA patients who were treated with hESCs therapy. All the patients were suffering from problems like difficulty in walking, standing or climbing stairs and muscle weakness. After undergoing hESCs therapy, improvement in condition of all the patients was observed.

Conclusion: The hESCs therapy was effective in treating patients with FRDA. Further research is required to understand the mechanism of action of hESCs.

Keywords: Friedreich’s ataxia, GAA triplet repeat human embryonic stem cells, Neurodegenerative diseases

INTRODUCTION

An autosomal recessive inherited disease Friedreich’s ataxia (FRDA) is the most common form of hereditary ataxia that damages nervous system and impairs muscle coordination (ataxia). FRDA usually begins in childhood and is characterized by movement problems such as gait ataxia, or walking difficulty that worsens over time. FRDA is a rare disorder [1] caused by expanded GAA triplet repeat within the first intron of the frataxin (FXN) gene leading to reduced level of frataxin, a mitochondrial protein. [2, 3] FXN protein is involved in regulation of iron homeostasis, biosynthesis of iron-sulfur clusters, energy conversion and stimulation of oxidative phosphorylation. FXN prevents highly redox-reactive metal from generating oxidative stress [4–6]. Lack of FXN causes iron overloading and increase free-radical production [7] that triggers a series of metabolic derangements [4]. The underlying molecular mechanisms for instability in GAA repeat are currently unknown [8].
There is no effective treatment for FRDA [1]. Only few treatments with free-radical scavengers or antioxidants are available that counteract oxidative stress in FRDA. But there is no proof of the positive results in the neurological aspects of the disorder. Thus, alternative approaches must be developed to treat FRDA [9]. Human embryonic stem cells (hESCs) have unlimited proliferative capacity and potential to differentiate into all types of somatic cells [10, 11]. According to Jones et al., if stem cells are transplanted near the affected cells that are under oxidative stress, they can produce trophic factors, thereby increasing the survival of the cells in FRDA patients [9].

In our previous studies we have shown the improvement in patient’s condition who were suffering from cerebral palsy and cortical visual impairment after hESCs therapy [12, 13]. Herein, I report three cases of FRDA patients who were treated with hESCs therapy. Two of these patients (Case I and II) were siblings.

In this study, animal free and chromosomally stable hESCs (NTECH 2000n/nn) were used. The cell lines are cultured and maintained as per our proprietary in-house patented technology in a GMP (Good manufacturing practices), GLP (Good Laboratory Practice) and GTP (Good Tissue Practices) certified Nutech Mediworld laboratory (Patent-WO 2007/141657A PCT/IB 2007 Published 13 December 2007). The evidence for the use of hESCs at Nutech Mediworld has been submitted and accepted at House of Lords, Regenerative Medicine, Science and Technology Committee [8].

Prior to start of the treatment all three patients provided a written informed consent. A thorough examination of the patients was done by the doctors and the rehabilitation team during the treatment. Video recordings were also made. The treatment consisted of three phases in which 0.25 mL hESCs were administered through intramuscular route twice daily and 1 mL of hESCs were administered through intravenous route twice every 7th day for 12 weeks initially and then four times over a period of 18 months (including gap phases). After the treatment, overall stamina and endurance was better, strength in upper limbs was improved. Her exercise endurance during physiotherapy and generalized weakness of whole body, balancing issues and frequent falls. The weakness in lower limbs, difficulty in walking and climbing stairs deteriorated gradually with time followed by generalized weakness of body. He was bound to wheelchair for last eight years. There was atrophy of upper limb and weakness of hand muscles. The speech was affected from last two years. He also had complaints of edema in right foot.

At our facility, both were given hESCs therapy as a primary treatment.

In Case 1, after the first treatment, overall stamina, lower limb strength and knee flexion was improved. She could stand without support for 20 seconds and stand and walk with the help of a stick.

After a gap of 45 days, patient was admitted second time with the complaints of weakness in lower limbs and sustained burns in legs while taking shower. On examination, difficulty in initiating knee flexion in prone position was observed, but she could stand without support or with help of stick for few seconds. Again treatment was given. After the treatment balance was improved and she was able to walk faster.

A gap of three months was given. She was again admitted for third time with complaints of tiredness after walking 5–10 steps, decrease control of urination especially in morning with no bladder filling sensation and generalized weakness. She could not walk or stand without support. Human embryonic stem cells treatment was given again. After the treatment, she could walk 10–20 steps without support, strength in lower limbs was increased and bladder filled sensation was improved.

At fourth visit, the patient presented with complaints of generalized weakness of whole body, balancing issues while walking, and difficulty in bending both knees. After the treatment, the patient reported further improvement in her condition. Her lower limb muscle strength was improved. She could stand and walk more confidently without the fear of falling down. She could perceive fullness of urinary bladder and her bladder control was improved. Her exercise endurance during physiotherapy increased and could do static cycling more effectively. The status of the patient before and after hESC therapy at visit 2, 3 and 4 is given in Table 1.

In Case 2, electrophysiology studies showed that lower limb was suggestive of severe motor sensory asymmetric peripheral neuropathy. After clinical examination, a brisk knee jerk, absence of ankle reflexes, pitting pedal edema, fasciculation in tongue, bilateral hypothenar wasting and dysdiadochokinesia was reported. Examination details of CNS and motor system is given in Table 2.

The patient was given hESC therapy as a primary treatment four times over a period of 18 months (including gap phases). After the treatment, overall stamina and endurance was better, strength in upper limbs was...
increased, he could flex his knees, and toes, walk in walkers with calipers, spasticity in legs was reduced and sitting balance was also improved. After 45 days, on visit 1, he was admitted with chief complains of weakness of limbs. hESC therapy was given again to this patient. The status of the patient before and after hESC therapy at visit 2, 3 is given in Table 1. At the end of the treatment, overall stamina and coordination was improved. The strength in limbs, trunk control, waking gait with walker, sitting, standing and walking with support was improved.

Case 3: A 35-year-old male was admitted at Nutech Mediworld on February 2006 with chief complaints of

| Table 1: Condition of the patients before and after the treatment |
|---|---|---|---|
| **Case 1** | **Case 2** |
| **Before treatment** | **After treatment** | **Before treatment** | **After treatment** |
| **Visit 2 (After 45 days)** | | | |
| Walking with help of crutches | Walk better and faster | Weakness of limbs (LL>UL), coordination difficulties in upper limb | Improved strength in limbs |
| Weakness in lower limbs (left-right) | Balance was improved | Difficulty in standing, walking and climbing stairs | Better trunk control and coordination, abdominal muscle strength increased |
| **Visit 3 (After 3 months)** | | | |
| Tiredness after walking 5-10 steps | Can walk 10-20 steps | Cannot walk | Standing up from sitting position and walking with support |
| Cannot walk without support | Walk without support | In coordinative upper limbs | Coordination of upper limbs improved |
| Decrease control of urination, no bladder filling sensation | Achieved bladder control and felt bladder filling | Speech slurred | Dysarthria reduced |
| Generalized weakness | Lower limb strength increased | | |
| **Visit 4 (After 8 months)** | | | |
| Weakness in both lower limbs | Lower limb strength improved | | |
| Walked with stick and had balancing issues | Stand and walked more confidently | | |

| Table 2: Examination of Motor system |
|---|---|---|
| **Parameters** | **Case** | **Upper limb** | **Lower limb** |
| | | Right | Left | Right | Left |
| **Tone** | I | Normal | Normal | Normal | Normal |
| | II | Normal | Normal | Normal | Normal |
| | III | Average | Average | Decreased | Decreased |
| **Power** | I | 4/5 | 4/5 | 2/5 | 2/5 |
| | II | 3 | 4 | 1 | 1 |
| | III | 3+ | 3+ | 2+ | 2+ |
| **Spasticity** | I | Absent | Absent | Present | Present |
| | II | Absent | Absent | Present | Present |
| | III | Absent | Absent | Present | Present |
progressive weakness of the body over the last 20 years. The patient had a history of choking sensation with liquids and cardiomyopathy (left ventricular ejection fraction, LVEF- 15–20%) for which he was taking medicines. His elder sister had same disorder and she died due to heart failure in 2004.

The patient was not able to stand, walk or sit. He used wheel chair and was unable to do his day to day activities. He managed to have food and dress by himself. His coordination and balance was lost and had slurred speech and hearing loss. A mild difficulty in swallowing with aspiration of liquids infrequently was also reported. The patient was given hESCs therapy as a primary treatment. The examination details of patient’s central nervous system and motor system is given in Table 2. After the treatment, spine curvature was improved, neck was more erect, leg movement was significantly increased, lower limbs spasticity was reduced and endurance was better. The patient was able to walk 5–7 steps forward and backward with full calipers.

DISCUSSION

In this study I observed that hESCs therapy was effective in treating patients with FRDA. Insufficiency of the protein frataxin in FRDA patients leads to spinocerebellar neurodegeneration along with associated movement disorders. FRDA patient also have increased risk of diabetes and cardiomyopathy, which are the leading cause of death [14]. In this cases, I observed that the patients were suffering from various problems like difficulty in walking, standing or climbing stairs and muscle weakness. After undergoing hESCs therapy, a marked improvement in the condition of all patients was noticed. At the end of the treatment, endurance of all patients was increased. They were able to stand and walk confidently. Other changes includes improved urinary bladder control in Case I, improved overall stamina and coordination in Case II and improved spine curvature in Case III. Our finding that the hESCs are capable of treating FRDA is supported by our previous studies, where hESCs have successfully treated the patients with cerebral palsy [12]. Human embryonic stem cells might have the potential to treat patients with neurodegenerative diseases such as cerebral palsy, Friedreich’s ataxia, etc.

Currently, there is no cure for FRDA. However, associated symptoms and complications can be treated [1]. Neurons and cardiomyocytes are the two affected cell types in FRDA [8]. As human stem cells have ability to migrate and home to the injury site [15], we could assume that hESCs might have also migrated to the affected brain and differentiated into neurons and cardiomyocytes. The size of the hESCs used in our study was < 1 µm, so it can be assumed that hESCs have permeated through the parenchyma via blood brain barrier.

Though neurodegenerative diseases like Parkinson’s disease, multiple sclerosis, multiple system atrophy, Alzheimer disease, FRDA and Huntington’s disease have different etiology, but all these disease share a common trait involving mitochondrial dysfunction that lead to iron accumulation and ultimately cell death [2, 16, 17]. Several studies have shown the clinical benefits of hESCs in treating neurodegenerative diseases such as Parkinson’s disease and multiple sclerosis [18–20]. In current cases, I expect that hESCs have similar clinical benefits in reducing the clinical symptoms associated with FRDA.

An efficient antioxidant system in our body removes the oxidative stress. In FA, the mechanism to remove the reactive oxygen species (ROS) is impaired leading to oxidative stress and cell death [7, 9]. Stem cells may have ability to protect cells susceptible to oxidative stress that occurs in many neurodegenerative diseases like FRDA [9]. Jones et al. cultured FRDA cells undergoing oxidative stress in healthy human adipose stem cell conditioned medium. Increased cell survival and frataxin expression and, unregulated oxidative-stress-related genes were observed. This result was due the presence of trophic factors such brain-derived neurotrophic factor (BDNF) expressed by the adipose stem cells in the conditioned medium [21]. Jones et al. in their another study isolated mouse bone marrow mesenchymal stem cell-conditioned medium and cultured dorsal root ganglia neurons isolated from an FRDA mouse model. The results showed that the conditioned medium increased the neurons cell survival, decreased apoptosis when exposed to oxidative stress. The transcription of certain oxidative stress-related genes was also activated. Thus, autologous stem cells transplantation in FRDA patients may protect the affected neurons [9]. Stem cells such as mesenchymal stem cell, ESCs, induced pluripotent stem cells are capable of producing trophic factors [22]. So it is possible to consider that hESCs might have produced trophic factors at the affected part, thereby increasing the frataxin expression and preventing the cells degeneration. However, studies supporting this assumption are lacking.

We can infer from our study that hESCs can lead to mild to moderate and short term improvement of few weeks in the patients with FRDA. In this study, the three patients did not come back on time after the therapy. FRDA is a progressive disease that requires regular injections of hESCs every three months in first year, every 4–8 months in second year and every 6–8 months in third years and thereafter yearly.

CONCLUSION

This case series provides a novel direction in which human embryonic stem cells (hESCs) therapy may be used in treatment of Friedreich’s ataxia (FRDA). I can postulate that hESCs have ability to modulate disease frequency and severity. I would continue to monitor the condition of the patients before retreatment is required. Further research is required to shed further light on
understanding the mechanism of action of hESCs.

LIST OF ABBREVIATIONS

- FRDA - Friedreich’s ataxia
- FXN - frataxin
- ROS - Reactive oxygen species
- hESCs - Human embryonic stem cells
- CNS - Central nervous system
- LVEF - Left ventricular ejection fraction
- BDNF - Brain-derived neurotrophic factor
- GMP - Good manufacturing practices
- GLP - Good Laboratory Practice
- GTP - Good Tissue Practices

Author Contributions

Geeta Shroff – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Acknowledgements

The author acknowledges the staff of NutechMediworld. The author acknowledges Knowledge Isotopes Pvt. Ltd. (http://www.knowledgeisotopes.com) for writing support.

Guarantor

The corresponding author is the guarantor of submission.

Conflict of Interest

Authors declare no conflict of interest.

Copyright

© 2015 Geeta Shroff. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.

REFERENCES

1. National Institute of neurological disorders ans stroke, Friedreich’s Ataxia, 2010 [Online]. Available at: http://www.ninds.nih.gov/disorders/friedreichs_ataxia/detail_friedreichs_ataxia.htm; Accessed November 2, 2014.
2. Campuzano V, Montermini L, Lutz Y, et al. Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Genet 1997 Oct;6(11):1771–80.
3. Campuzano V, Montermini L, Moltò MD, et al. Friedreich’s ataxia: Autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996 Mar 8;271(5254):1423–7.
4. Pandolfo M, Pastore A. The pathogenesis of Friedreich ataxia and the structure and function of frataxin. Journal of neurology 2009;256 Suppl 1:9–17.
5. Cavadini P, O’Neill HA, Benada O, Isaya G. Assembly and iron-binding properties of human frataxin, the protein deficient in Friedreich ataxia. Hum Mol Genet 2002 Feb 1;11(3):217–27.
6. Busi MV, Gomez-Casati DF. Exploring frataxin function. IUBMB Life 2012 Jan;64(1):56–3.
7. Sparaco M, Gaeta LM, Santorelli FM, et al. Friedreich’s ataxia: Oxidative stress and cytoskeletal abnormalities. J Neurol Sci 2009 Dec 15;287(1-2):111–8.
8. Hick A, Wattenhofer-Donzé M, Chintawar S, et al. Neurons and cardiomyocytes derived from induced pluripotent stem cells as a model for mitochondrial defects in Friedreich’s ataxia. Dis Model Mech 2013 May;6(3):608–21.
9. Jones J, Estirado A, Redondo C, Martinez S. Stem cells from wildtype and Friedreich’s ataxia mice present similar neuroprotective properties in dorsal root ganglia cells. PLoS One 2013 May 9;8(5):e62807.
10. Zhou WL, Medicine CN, Zhu L, Hay DC. Stem cell differentiation and human liver disease. World J Gastroenterol 2012 May 7;18(17):2018–5.
11. Rambhatla L, Chiu CP, Kundu P, Peng Y, Carpenter MK. Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplant 2003;12(1):1–11.
12. Shroff G, Gupta A, Barakatur J. Therapeutic potential of human embryonic stem cell transplantation in patients with cerebral palsy. J Transl Med 2014 Dec 12;12(1):318.
13. Shroff G, Das L. Human Embryonic Stem Cell Therapy in Cerebral Palsy Children with Cerebral Visual Impairment: A Case Series of 40 Patients. Journal of Cell Science & Therapy 2014;5(6):1–7.
14. Ku S, Soragni E, Campau E, et al. Friedreich’s ataxia induced pluripotent stem cells model intergenerational GAATTC triplet repeat instability. Cell Stem Cell 2010 Nov 5;7(5):631–7.
15. Kang SK, Shin IS, Ko MS, Jo JY, Ra JC. Journey of mesenchymal stem cells for homing: strategies to enhance efficacy and safety of stem cell therapy. Stem Cells Int 2012;2012:342968.
16. Dusek P, Jankovic J, Le W. Iron dysregulation in movement disorders. Neurobiol Dis 2012 Apr;46(1):1–18.
17. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative disorders. Nature 2006 Oct 19;443(7113):787–95.
18. Freed CR, Greene PE, Breeze RE, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001 Mar 8;344(10):710–9.
19. Roy NS, Cleren C, Singh SK, Yang L, Beal MF, Goldman SA. Functional engrafment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med 2006 Nov;12(11):1259–68.
20. Wang X, Kimbrel EA, Iijichi K, et al. Human ESC-derived MSCs outperform bone marrow MSCs in the
treatment of an EAE model of multiple sclerosis. Stem Cell Reports 2014 Jun 6;3(1):115–30.
21. Jones J, Estirado A, Redondo C, Bueno C, Martinez S. Human adipose stem cell-conditioned medium increases survival of Friedreich’s ataxia cells submitted to oxidative stress. Stem Cells Dev 2012 Oct 10;21(15):2817–6.
22. Baraniak PR, McDevitt TC. Stem cell paracrine actions and tissue regeneration. Regen Med 2010 Jan;5(1):121–43.

ABOUT THE AUTHOR

Article citation: Shroff G. A novel approach of human embryonic stem cells therapy in treatment of Friedreich’s ataxia. Int J Case Rep Images 2015;6(5):261–266.

Geeta Shroff, Founder of Nutech Mediworld, New Delhi, India, has developed hESCs therapy. She is a graduate in medicine from the University of Delhi and her postgraduation is in Gynecology & Obstetrics. Since 2002, more than 1300 patients suffering from various incurable conditions have been treated using hESCs. She has presented her work at various national and international forums. In 2014, she has published two studies on the use of hESC therapy in the treatment of patients with cortico visual impairment and cerebral palsy. Dr. Shroff envisions making hESC therapy available globally for many of mankind’s worst afflictions.

E-mail: geetashroff@hotmail.com
Edorium Journals: An introduction

Edorium Journals Team

About Edorium Journals
Edorium Journals is a publisher of high-quality, open access, international scholarly journals covering subjects in basic sciences and clinical specialties and subspecialties.

Invitation for article submission
We sincerely invite you to submit your valuable research for publication to Edorium Journals.

But why should you publish with Edorium Journals?
In less than 10 words - we give you what no one does.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day of every week of every month of every year.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testimony to this.

Editorial Review
All manuscripts submitted to Edorium Journals undergo pre-processing review, first editorial review, peer review, second editorial review and finally third editorial review.

Peer Review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early View version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates (minimum six times) about status of your manuscripts directly in your email.

Our Commitment

Six weeks
You will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this by even one day, we will publish your manuscript free of charge.

Four weeks
After we receive page proofs, your manuscript will be published in the journal within four weeks (31 days). If we fail to honor this by even one day, we will publish your manuscript free of charge and refund you the full article publication charges you paid for your manuscript.

Mentored Review Articles (MRA)
Our academic program “Mentored Review Article” (MRA) gives you a unique opportunity to publish papers under mentorship of international faculty. These articles are published free of charges.

Favored Author program
One email is all it takes to become our favored author. You will not only get fee waivers but also get information and insights about scholarly publishing.

Institutional Membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in fees make their research accessible to all.

Our presence
We have some of the best designed publication formats. Our websites are very user friendly and enable you to do your work very easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services.

We welcome you to interact with us, share with us, join us and of course publish with us.