Ab-initio Study of structural, elastic, electronic and optical properties of hexahalometallate single crystals $\text{K}_2\text{XBr}_6 (\text{X} = \text{Se}, \text{Pt})$

Y. Naceur¹, H. Bourbaba¹, M. A. Ghebouli²,³, L. Krache⁴, B. Ghebouli⁵, T. Chihi³, M. Fatmi⁵,⁶ & Sultan Alomairy⁶

Some physical properties of hexahalometallate $\text{K}_2\text{XBr}_6 (\text{X} = \text{Se}, \text{Pt})$ were computed in the zinc blend structure using GGA-PBESOL. The cell constant of K_2SeBr_6 and K_2PtBr_6 is consistent to the experiment value quoted in the literature, where the error is 0.95% and 1%. K_2SeBr_6 and K_2PtBr_6 present covalent bonding, high anisotropy and are ductile. The elastic constants of K_2SeBr_6 and K_2PtBr_6 are significantly smaller due to their larger reticular distances, lower Coulomb forces and then they are soft and damage tolerant. The interatomic separation is greater in K_2SeBr_6 than in K_2PtBr_6, hence the Coulomb interaction in K_2PtBr_6 is greater than that of K_2SeBr_6. The internal coordinate of Br atom in K_2PtBr_6 is lower than that of the same atom in K_2SeBr_6, and this can be explained by the fact that it is inversely proportional to the atom radius of Se and Pt. There are two major plasmonic processes, with intensities 3.7 and 1.35 located around 53.5 nm and 72.8 nm for K_2SeBr_6 and K_2PtBr_6.

Progress in experiment and theory, coupled with computational model is accelerating the discovery of new materials with useful physical parameters. The cubic antifluorite class $\text{K}_2\text{XBr}_6 (\text{X} = \text{Pt}, \text{Se})$ have received increased interest since they exhibit structural phase transitions at lower temperatures. The family of hexahalometallate attracts researchers due to their light-absorbing materials in photovoltaic applications. The hexahalometallate double perovskites $\text{K}_2\text{XBr}_6 (\text{X} = \text{Pt, Se})$ crystallize in the cubic antifluorite K_2PtCl_6 structure. They have the stoichiometric formula X_2MA_6, where X, M and A are alkaline metal, polyvalent or heavy transition metal and halogen. The K atom in $\text{K}_2\text{XBr}_6 (\text{X} = \text{Pt, Se})$ of the three-dimensional structure is bonded to twelve equivalents Br atoms to form KBr_{12} cuboctahedra. The faces contain six equivalents KBr_{12} cuboctahedra and four equivalents PtBr_6 (SeBr_6) octahedral. Studies conducted by other researchers, it is stated that, the investigation on elastic constants and compressibility of $\text{K}_2\text{XBr}_6 (\text{X} = \text{Pt, Se})$ has carried out experimentally by N. Wruk et al. using Brillouin scattering and ultrasonic wave velocity measurements¹. The study conducted by Walter Abriel and Mary Anne White on K_2SeBr_6 by x-ray powder diffraction in the temperature range 10 K to 290 K, and heat capacity measurements indicates three phases for K_2SeBr_6, K_2PtCl_6 cubic structure, Rb_2TeI_6 tetragonal structure and K_2TeBr_6 monoclinic structure². The phase-transition temperatures of hexahalometallate material K_2PtBr_6 (K_2SeBr_6) have been studied experimentally and found to be 209 K, 221 K and 249 K¹ (78 K, 105 K, 137 K, 143 K and 169 K). $\text{K}_2\text{XBr}_6 (\text{X} = \text{Pt, Se})$ hexahalometallate materials show a suitable energy gap, sufficient absorption, low reflectivity, weaker cost and therefore adequate performance for photovoltaic applications²,³. Our study confirms the characteristics of mentioned materials above, which have a band gap range of (0.98 eV to 2.25 eV), an absorption coefficient of 237,311 cm⁻¹ (211,556 cm⁻¹) and reflectivity of (0.1–0.3%) in the extreme ultraviolet light. The band gap range (1–2.25 eV) and the absorption of extreme ultraviolet light make K_2SeBr_6 and K_2PtBr_6 as absorber materials in solar cells. These compounds are poor reflector and can be used as an anti-reflection coating material.

The aim of this work is the use of GGA-PBESOL and HSE hybrid approximations to obtain adequate structural, elastic and optoelectronic properties of $\text{K}_2\text{XBr}_6 (\text{X} = \text{Pt, Se})$. The paper is organized such as the calculation

¹LPDS University of Tahri Mohamed, 08000 Béchar, Algeria. ²Department of Chemistry, Faculty of Technology, University of Mohamed Boudiaf, 28000 M’sila, Algeria. ³Research Unit On Emerging Materials (RUEM), University Ferhat Abbas of Setif 1, 19000 Setif, Algeria. ⁴QSD Laboratory, Department of Physics, Faculty of Science, University Ferhat Abbas of Setif 1, 19000 Setif, Algeria. ⁵Laboratory of Studies Surfaces and Interfaces of Solids Materials, Department of Physics, Faculty of Science, University Ferhat Abbas of Setif 1, 19000 Setif, Algeria. ⁶Department of Physics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia. *email: fatmimessaoud@yahoo.fr
Calculation scheme
Calculations were carried out using the DFT framework as implemented in the CASTEP code. The valence states of K₂XBr₆ (X = Se, Pt) are K: 4s¹, Se: 4p⁴, Pt: 5d⁹ and Br: 4p⁵. An ultra soft pseudo-potential type Vanderbilt describes the interaction of valence electrons and ions cores. The GGA-PBESOL of Perdew et al. is adopted for the non-local correlation exchange effect. The best convergence of the computed structures and energies requires the use of cut-off energy of 630 eV. The irreducible Brillouin zone was sampled up to 8 × 8 × 8 k-grid on the Monkhorst–Pack scheme. The tolerance of geometry optimization were a difference of total energy 5 × 10⁻⁶ eV/atom, a maximum ionic Hellmann–Feynman force 10⁻² eV/Å, maximum stress 2 × 10⁻² eV/Å³ and ionic displacement of 5 × 10⁻⁴ Å. The calculation of the optical parameters requires the use of uniform distribution of 20 × 20 × 20 k-points. The self-consistent calculations converge if the total energy is minimal. The structural parameters were estimated using the minimization technique of Broyden-Fletcher-Goldfarb-Shanno (BFGS), which provide a fast way to find the lowest energy structure. The basic idea behind the hybrid functionals is to mix exchange energies calculated in an exact (Hartree–Fock-like) manner with those obtained from DFT methods in order to improve performance. The accuracy of the electronic properties predicted by density functional theory depends on the used exchange–correlation functional. Non-local hybrid functionals gives more accurate results than semi-local functionals. The non-local Hartree–Fock exchange is an integral part of the hybrid functionals implemented in the FLAPW method. The non-local exchange in HSE enlarges the elements of the optical transition matrix and leads to better accuracy of HSE in calculating electronic properties. Omitting the non-local exchange in the transition operator for HSE leads to errors. The importance of non-local correction in the velocity gauge has been widely discussed for non-local pseudo potentials. The non-locality of the potential comes from the fact that the electron Hamiltonian is replaced by an approximate Hamiltonian in the independent electron approximation with an effective potential, which reintroduces the electron–electron interactions in the Kohn–Sham equations.

Results and discussion
Structure and morphology. The crystal structure of K₂PtBr₆ is illustrated in Fig. 1. The location of atoms is such that (Se, Pt) atom is placed at the center of the octahedron formed by the four atoms of Br. The K atoms occupy interstitial sites. The antifluorite class K₂XBr₆ (X = Se, Pt) adopt the cubic structure with space group Fm3m at ambient conditions. The occupied Wyckoff sites for K, (Se, Pt) and Br atoms are ± (1/4, 1/4, 1/4) a₀, (0, 0, 0) a₀ and ± (x, 0, 0) a₀, ± (0, x, 0) a₀, ± (0, 0, x) a₀. The lattice constant, bulk modulus and its pressure derivative of K₂XBr₆ (X = Se, Pt) are listed in Table 1. The cell constant of K₂SeBr₆ and K₂PtBr₆ is consistent to the experimental value quoted in the literature, where the error is 0.95% and 1%. The bulk modulus calculated for K₂SeBr₆ and K₂PtBr₆ using the fit scheme P(V/V₀) as reported in Fig. 2 is in good agreement with available experimental data. The interatomic distances dX-Br, dK-Br and dBr-Br in K₂SeBr₆ (K₂PtBr₆) at equilibrium are 2.5681 Å, 3.6769 Å and 3.6319 Å (2.4703 Å, 3.6306 Å and 3.4936 Å). It should be pointed that, bond lengths reported for K₂SeBr₆ are in good agreement with those found in the literature dSe-Br = 2.555 Å, dBr-Se = 2.50 Å, dK-Br = 3.685 Å and dBr-Br = 3.613 Å. Figure 3 shows the effect of pressure on dK-Br, dBr-Br and dBr-X (X = Se, Pt) bond lengths in K₂SeBr₆ and K₂PtBr₆. The bond lengths in K₂SeBr₆ are larger than those in K₂PtBr₆, hence, the
Coulomb interaction in K2PtBr6 is greater than that in K2SeBr6, which can be explained by the fact that the distances are inversely proportional to the lattice constant. Also, the distance d_{Br-Se} is greater than that of d_{Br-Pt}. All bond lengths decrease monotonously when the pressure increases. Figure 4 displays the effect of pressure on the internal coordinate of Br atom in K2SeBr6 and K2PtBr6. The internal coordinate of Br atom in K2PtBr6 is lower than that of the same atom in K2SeBr6, and this is explained by the fact that it is inversely proportional to the atom radius of Se (1.15 Å) and Pt (1.35 Å).

Table 1. The lattice constant, bulk modulus and its pressure derivative and elastic moduli of K2XBr6 (X = Se, Pt).

	K2SeBr6	K2PtBr6		
	This Work	Experiment	Other	
A (Å)	10.265	10.363 i	10.3995	10.293 i
x	0.24065	0.24695		
B0 (GPa)	15.35	16.70 i	15.43	15.20 i
B'	6.15	7.20		
C_{11} (GPa)	15.49	23.20 i	22.27	21.60 i
C_{12} (GPa)	11.95	13.50 i	8.97	12.0 i
C_{44} (GPa)	7.08	9.30 i	5.95	8.50 i

Figure 2. The pressure effect on normalized volume in K2SeBr6 and K2PtBr6.
Elastic constants and related parameters. The knowledge of elastic constants is essential for a better theoretical understanding of the properties of materials that are determined by the phonons density of states and the electron–phonon interaction processes. The three independent elastic constants C_{11}, C_{12} and C_{44} require for their elastic characterization. The elastic moduli of $K_2XBr_6 (X = \text{Se, Pt})$ computed at equilibrium using GGA-PBESOL are reported in Table 1. No theoretical value is reported in the literature, then our computation is prediction. The elastic constants of $K_2\text{SeBr}_6$ and $K_2\text{PtBr}_6$ are significantly small because of their quite large reticular distances, low Colombian forces, so they are quite soft and tolerant to damage. This result is qualitatively explained in these two materials by their binding forces, which are mainly ionic. It was noted that C_{11}, C_{12} and C_{44} agree reasonably with their experiment values\(^1\). The elastic stability of $K_2\text{SeBr}_6$ and $K_2\text{PtBr}_6$ was defined taking into account the Born's criteria, from which the following conditions must be satisfied for zinc blend structure\(^18\):

$$\sigma(C_{11} + 2C_{12}) = 0, \sigma(C_{44}) = 0, \sigma(C_{11} - C_{12}) = C_{12}(C_{11})$$ (1)

The bulk modulus calculated from the elastic constants is identical to that deduced from equation of state fitting $P(V/V_0)$. This makes our results as reliable. Figure 5 visualizes the dependence on pressure of $K_2XBr_6 (X = \text{Se, Pt})$ elastic moduli. It is observed that the elastic values of GGA-PBESOL increase as a function of the applied
pressure, from zero to 20 GPa. These compounds show weaker elastic constants, which explain their lower hardness. The bulk modulus, shear modulus, Young's modulus, Poisson's ratio, the universal anisotropy and $\frac{B_H}{G_H}$ ratio for isotropic polycrystalline materials of $K_2XBr_6 (X = Pt, Se)$ using the Voigt-Reuss-Hill approximation are reported in Table 2. The values of the Poisson coefficient between 0.25 and 0.5 are associated with the interatomic forces of central types and covalent bonding character. The nature of the bonds in a compound is described by the factor σ, either ionic-covalent ($0.16 \leq \sigma \leq 0.30$) in K_2PtBr_6 (0.29) and metallic ($\sigma \geq 0.33$) in K_2SeBr_6 (0.35). The Pugh's criterion ($\frac{B_H}{G_H}$) and universal anisotropy indicate that $K_2XBr_6 (X = Pt, Se)$ are ductile and anisotropic. The extreme values of Young's modulus, linear compressibility, shear modulus and Poisson's ratio for $K_2XBr_6 (X = Pt, Se)$ are listed in Table 3. These values prove the isotropic linear compressibility and confirm the anisotropy of the other parameters and the anisotropy is more pronounced in K_2SeBr_6. We represent in Fig. 6 using ELATE software the effect of orientation on mechanical parameters for K_2PtBr_6.

Table 2. The extreme values of Young's modulus (GPa), linear compressibility (GPa), shear modulus (GPa) and Poisson's ratio for $K_2XBr_6 (X = Pt, Se)$.

Material	Young's modulus E_{min}	Linear compressibility β_{min}	Shear modulus G_{min}	Poisson's ratio σ_{min}	Young's modulus E_{max}	Linear compressibility β_{max}	Shear modulus G_{max}	Poisson's ratio σ_{max}
K_2SeBr_6	5.0801	18.014	25.374	7.0839	15.565	24.857	6.6484	0.33683
K_2PtBr_6	15.565	17.117	24.857	5.9567	18.014	25.374	7.0839	0.22305

Figure 5. Elastic moduli of K_2SeBr_6 and K_2PtBr_6.

Band structure and states densities. Understanding the band structure and estimating band gap of $K_2XBr_6 (X = Pt, Se)$, we use both GGA (PBE-SOL) and HSE hybrid functional as shown in Fig. 7. The calcula-
tions were conducted on K_2XBr_6 ($X = Pt, Se$), by neglecting the presence of the K-state in the (Pt, Se) site. The electronic band structure of K_2SeBr_6 and K_2PtBr_6 were computed using the equilibrium lattice constant. The bottom of the conduction band is at Γ point for K_2SeBr_6 and K_2PtBr_6. The top of the valence band is at L and X points in K_2SeBr_6 and K_2PtBr_6 compounds, which indicate an indirect band gap $\Gamma-L$ ($\Gamma-X$) of 1.5089 eV and 2.250 eV (0.9818 eV and 1.531 eV) for K_2SeBr_6 (K_2PtBr_6). No experimental and theoretical value are present in the literature, and then our results are predictions. Note that the HSE approximation gives a value close to the experimental one. We report the various band gaps at equilibrium lattice constant for K_2SeBr_6 and K_2PtBr_6 using GGA and HSE in Table 4. By varying the applied pressure between 0 and 20 GPa, the fundamental band gap as shown in Fig. 8 decreases. K_2PtBr_6 becomes metallic at a pressure of 15 GPa. We visualize the plots of PDOS and TDOS of K_2SeBr_6 and K_2PtBr_6 in Fig. 9. The top of valence band region is -2.86 eV to E_F (-2 eV to E_F) for K_2SeBr_6 (K_2PtBr_6). The electronic contribution in this region is due mainly to Br: p orbital in K_2SeBr_6 and K_2PtBr_6. The first conduction band of K_2SeBr_6 (K_2PtBr_6) starts at 1.68 eV (4 eV), then the transitions occur between Br: p and K: p sites. It is noted that the Pt site does not participate in the electronic contribution at the conduction and valence bands.

Material	B$_H$ (GPa)	B$_V$ (GPa)	G$_V$ (GPa)	G$_H$ (GPa)	E_H (GPa)	σ_H	λ_H	B_H/G_H
K_2SeBr_6	13.137	13.137	13.137	4.9581	3.2179	4.088	11.111	0.35903
K_2PtBr_6	13.41	13.41	13.41	6.2334	6.2154	6.2244	16.171	0.29902

Table 3. The bulk modulus, shear modulus, Young's modulus, Poisson's ratio, anisotropy factor and B_H/G_H ratio for K_2XBr_6 ($X = Pt, Se$).

Figure 6. The orientation effect on Poisson's ratio, Young's modulus, linear compressibility and shear modulus in K_2PtBr_6.
Figure 7. Band structures of $K_2XBr_6 (X = \text{Pt, Se})$ in zinc blend structure performed with GGA (PBE-SOL) and HSE hybrid.

Material	E_{g} (eV)	$\alpha \times 10^{-2}$ (eV/GPa)	$\beta \times 10^{-3}$ (eV/GPa^2)
$K_2\text{PBr}_6$	2.323	0.98	1.88
$K_2\text{PtBr}_6$	2.56	1.5	1.902
$K_2\text{SeBr}_6$	2.29	2.56	2.58
$K_2\text{PtBr}_6$	2.58	2.56	1.56

Table 4. The various band gaps at zero pressure for $K_2\text{SeBr}_6$ and $K_2\text{PtBr}_6$.
Optical properties. The real dielectric constant is a measure of polarization, while the imaginary part is a measure of the dielectric losses. The complex dielectric function is the sum of real and imaginary parts.

$$\varepsilon(\omega) = \varepsilon_1(\omega) + i\varepsilon_2(\omega)$$

The optical quantities such as reflectivity, absorption, loss function and refractive index depend on the structure of the material. These parameters cited above are isotropic in a material with cubic structure. The reflectivity of any material is calculated by dielectric function through the equation:

$$R(\omega) = \left| \frac{(\varepsilon_1)^{1/2} - 1}{(\varepsilon_1)^{1/2} + 1} \right|$$

We display the plots of reflectivity, absorption and loss function as a function of wavelength for K$_2$SeBr$_6$ and K$_2$PtBr$_6$ in Fig. 10. The reflectivity is a measure of the ability of a material to reflect radiation. The reflectivity of K$_2$SeBr$_6$ and K$_2$PtBr$_6$ starts at wavelength around 60 nm and reaches several peaks of maxima (0.23) and minima (0.05) in the field of extreme ultraviolet light. In practice, the roughness, uniformity of thickness, inter diffusion, oxidation and thermal stability limit the reflectivity. We observe various absorption peaks in extreme ultraviolet light. These peaks are due to the electronic transitions from the top of the valence band to the bottom of the conduction band. The maximum absorption is between 234,720 cm$^{-1}$ and 229,405 cm$^{-1}$ at wavelength range 56 nm to 105 nm for K$_2$SeBr$_6$ and K$_2$PtBr$_6$. Indeed, K$_2$SeBr$_6$ and K$_2$PtBr$_6$ have a narrow gap and absorb extreme ultraviolet light and consequently, they are candidates in the fields of photocatalysis and photovoltaic. The loss function is calculated through the equation:

$$L(\omega) = \frac{\varepsilon_2(\omega)}{\varepsilon_1^2(\omega) + \varepsilon_2^2(\omega)}$$

The loss function demonstrates the existence of two major plasmonic processes, with intensity 3.7 and 1.35 located around 53.5 nm and 72.8 nm. There is no loss in the ultra violet and visible light domains. We present in Fig. 11 the refractive index of K$_2$SeBr$_6$ and K$_2$PtBr$_6$ as a function of energy. The static refractive index is 2.583 (2.407) for K$_2$SeBr$_6$ (K$_2$PtBr$_6$). It reaches a series of maxima 3.106 (2.678) and minima 0.383 (0.485) between 1.7 eV and 23 eV for K$_2$SeBr$_6$ (K$_2$PtBr$_6$). It is reported that an experimental refractive index 2.15 and 2.11 for K$_2$SeBr$_6$ and K$_2$PtBr$_6$ calculated by N. Wruk et al. The refractive index is given as:

$$n(\omega) = \frac{\sqrt{\varepsilon_2}}{2} \left[\varepsilon_1 + \sqrt{\varepsilon_1^2 + \varepsilon_2^2} \right]$$

The refractive index is more important when photons move through the material and when bonds between atoms are covalent. The static refractive index enhanced with the expansion of the electronic cloud and the increase in density on the structure. The general trend is that the decrease in reflectivity results from the increase...
in absorption and the decrease in refractive index. The plots of imaginary part and $E(k) = E_C(k) - E_V(k)$ for $K_2\text{SeBr}_6(X = \text{Se, Pt})$ are reported in Fig. 12 (right and left panel). The imaginary part and optical transitions are connected to the absorption coefficient. The main contribution to the optical transitions from six top valence bands to seven lower conduction bands for $K_2\text{SeBr}_6(X = \text{Se, Pt})$ are reported in Table 5. The isotropic optical parameters of $K_2\text{SeBr}_6$ and $K_2\text{PtBr}_6$ makes them as windows and lenses. The band gap range (1–2.25 eV) and absorption of extreme ultraviolet light make $K_2\text{SeBr}_6$ and $K_2\text{PtBr}_6$ as absorber materials.

Conclusion

Employing a plane-wave pseudo-potential using the DFT framework, within the generalized gradient approximation, we studied the structural, mechanical and optoelectronic parameters of $K_2\text{PtBr}_6$ and $K_2\text{SeBr}_6$ hexahalometallate materials. The bulk modulus of $K_2\text{SeBr}_6$ and $K_2\text{PtBr}_6$ agrees well with experiment value where the error
is 8% and 1.4%. The elastic constants of K$_2$SeBr$_6$ and K$_2$PtBr$_6$ are significantly smaller, then they are fairly soft and damage tolerant. An electronic study shows that K$_2$PtBr$_6$ is indirect band gap semiconductor and becomes metallic at a pressure of 15 GPa. The partial density of states indicates that the valence electrons are transferred from Br: p state to K: p site. The band gap size, optical absorption and reflectivity make K$_2$SeBr$_6$ and K$_2$PtBr$_6$ as candidate absorbers. The static refractive index increases with the expansion of the electronic cloud and the increase in density on the structure. The general trend is that the decrease in reflectivity results from the increase in absorption and the decrease in refractive index. There is no loss in the ultra violet and visible light domains. The compounds are poor reflector and can be used as an anti-reflection coating material.

Figure 10. The reflectivity, absorption and loss function in K$_2$SeBr$_6$ and K$_2$PtBr$_6$.

Figure 11. The refractive index in K$_2$SeBr$_6$ and K$_2$PtBr$_6$.
Figure 12. The imaginary part and transition energy in K₂SeBr₆ and K₂PtBr₆.
References

1. Wruck, N., Pelzl, J., Saundersen, G. A. & Haling, T. J. Phys. Chem. Solids 46(11), 1235–1242 (1985).
2. Abriel, W. & White, M. A. J. Chem. Phys. 93, 8321 (1990).
3. Eperon, G. E. et al. J. Mater. Chem. 3(39), 19688–19695. https://doi.org/10.1039/C5TA06398A (2015).
4. Green, M. A., Ho-Baillie, A. & Snaith, H. J. Nat. Photonics 8(7), 506–514. https://doi.org/10.1038/n photon.2014.134 (2014).
5. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. J. Am. Chem. Soc. 131, 6050–6051 (2009).
6. Yin, W. L., Shi, T. & Yan, Y. Adv. Mater. 26, 4653–4658 (2014).
7. Huang, X., Paudel, T. R., Dowben, P. A., Dong, S. & Tsymbal, E. Y. Phys. Rev. B 94, 195309 (2016).
8. Clark, S. J. et al. Zeitschrift Für Kristallographie. 220, 567–570. https://doi.org/10.1524/ zkri.220.5.567.65075 (2005).
9. Vanderbilt, D. Phys. Rev. B 41, 7892 (1990).
10. Perdew, J. P., Burke, K. & Ernzerhof, M. Phys. Rev. Lett. 77, 3865 (1996).
11. Monkhorst, H. J. & Pack, J. D. Phys. Rev. B 13, 5188 (1976).
12. Fischer, T. H. & Almlof, J. J. Phys. Chem. 96, 9768 (1992).
13. Marti, D., Dupupertuis, M.-A. & Deveaud, B. General theory for the interference of two-photon and one-photon processes in semiconductor heterostructures. Ann. Phys. 316, 234 (2005).
14. Packard, C. J. & Payne, M. C. Second-order kp perturbation theory with Vanderbilt pseudopotentials and plane waves. Phys. Rev. B 62, 4383 (2000).
15. Gajdoš, M., Hummer, K., Kresse, G., Furthmüller, J. & Bechstedt, F. Linear optical properties in the projector-augmented wave methodolgy. Phys. Rev. B 73, 045112 (2006).
16. Magdalena Laurien, Oleg Rubel, Cond-mat. mtrl-sci (2021).
17. Read, A. & Needs, R. J. Calculation of optical matrix elements with nonlocal pseudopotentials. Phys. Rev. B 44, 13071 (1991).
18. Sinks, C. V. & Smorohn, N. A. J. Phys.: Condens. Matter 14, 9989 (2002).
19. Voigt, W. Lehrbuch der Kristallographie (Teubner, 1928).
20. Reuss, A. & Angew. Z. Math. Mech. 9, 49–58 (1929).
21. Hill, R. Proc. Phys. Soc. London A 65, 349 (1952).
22. Guillec, R., Pullumbi, P. & Coudert, F.-X. ELATE: an open-source online application for adalization and visualization of elastic tanssors. J. Phys. Condens. Matter 28, 275201. https://doi.org/10.1088/0953-8984/28/27/275201 (2016).

Acknowledgements

We would like to thank Taif University Research Supporting Project number (TURSP-2020/63), Taif University, Taif, Saudi Arabia.

Author contributions

Manuscript title: Fundamental properties of hexahalometallate single crystals K2XBr6(X= Se, Pt). Ab initio study. All authors who have made substantial contributions to the work reported in the manuscript, the role of each author in the paper: Conceptualization, Data curation, Formal analysis: a. Investigation, Methodology, Project administration, Resources: c. - e. Software, Supervision, Validation, Visualization, Writing - original draft, Writing - review editing: c. f. This statement is approved by all the authors.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to M.F.
