Leptin serum levels are associated with GLP-1 receptor agonist-mediated effects on glucose metabolism in clozapine- or olanzapine-treated, prediabetic, schizophrenia patients

Jakub Tomasik¹, Nitin Rustogi¹, Julie R. Larsen²,³, Michelle I. Jakobsen², Camilla K. Svensson², Louise Vedtofte⁴, Mathilde S. L. Jakobsen², Hans R. Jespersen², Kamuran Koyuncu², Ole Schjerning⁵, Jimmi Nielsen⁶, Claus T. Ekström⁷, Christoph U. Correll⁸,⁹,¹⁰, Jens J. Holst¹¹, Tina Vilsbøl⁴,¹², Sabine Bahn¹, Anders Fink-Jensen*²,¹²

¹ Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom

² Psychiatric Centre Copenhagen, Rigshospitalet, Mental Health Services - Capital Region of Denmark, Copenhagen, Denmark

³ Novo Nordisk A/S, Bagsværden, Denmark

⁴ Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Denmark

⁵ Department of Psychiatry, Aalborg University, Aalborg, Denmark

© The Author(s) 2020. Published by Oxford University Press on behalf of the University of Maryland's school of medicine, Maryland Psychiatric Research Center. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
6 Psychiatric Centre Glostrup, University of Copenhagen, Copenhagen Denmark

7 Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark

8 The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA

9 Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA

10 Charité Universitätsmedizin, Department of Child and Adolescent Psychiatry, Berlin, Germany

11 NNF Center for Basic Metabolic Research, and Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Denmark

12 Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Corresponding author:

Anders Fink-Jensen, Psychiatric Centre Copenhagen, Rigshospitalet, University of Copenhagen, Edel Sauntes Allé 10, DK-2100 Copenhagen O, Denmark. Telephone: +45 22 75 58 43, Fax: +45 38647077. Email: anders.fink-jensen@regionh.dk
Abstract

Background: We previously demonstrated that the glucagon-like peptide-1 receptor agonist (GLP-1RA) liraglutide significantly reduced glucometabolic disturbances and body weight vs. placebo in prediabetic, overweight or obese schizophrenia-spectrum disorder patients treated with clozapine or olanzapine. Here, we aimed to identify potential biomarkers of prediabetes and the GLP-1RA-induced effects on glucose tolerance in schizophrenia patients treated with clozapine or olanzapine. **Methods:** Multiplexed immunoassays were used to measure eight proteins (adiponectin, C-reactive protein, interleukin-1 receptor antagonist, leptin, macrophage migration inhibitory factor, prolactin, receptor for advanced glycation end products, and vascular endothelial growth factor (VEGF)) in fasting prediabetic and non-prediabetic patients with schizophrenia-spectrum disorder, the prediabetic patients receiving 16-week randomized treatment with liraglutide or placebo. **Results:** Serum adiponectin (P=0.004) and VEGF (P=0.019) levels were significantly lower in prediabetic (n=81) than non-prediabetic schizophrenia-spectrum disorder patients (n=32). Adiponectin levels increased significantly (P=0.022) and leptin levels decreased significantly (P=0.017) following treatment with liraglutide (n=39) vs. placebo (n=42). Importantly, patients receiving liraglutide who had higher baseline leptin levels showed significantly larger reductions in the primary endpoint, the 75-g oral glucose tolerance test value, than patients with lower baseline leptin levels.
(P=0.009). **Conclusion:** These results provide new evidence for metabolic alterations associated with prediabetes and GLP-1RA treatment in the context of schizophrenia. They suggest that leptin may be a valuable biomarker predicting GLP-1RA-induced improvement in glucose tolerance in overweight or obese schizophrenia-spectrum disorder patients with prediabetes treated with clozapine or olanzapine. These findings require further validation in larger numbers of individuals.

Keywords: Adiponectin, biomarker, GLP-1RA, liraglutide, OGTT, prediabetes.
Introduction

The well-known reduced life expectancy of about 20 years for patients with schizophrenia\(^1\) is mainly due to an increased prevalence of cardiovascular morbidity and mortality\(^2\), most likely caused by genetic, lifestyle and treatment factors, including the use of antipsychotic medication\(^1,3,4\). Antipsychotic medication plays a central role in the acute and maintenance treatment of schizophrenia\(^5-8\), but is also linked to several side effects including overweight/obesity, metabolic abnormalities, type 2 diabetes (T2D) and ultimately cardiovascular disease\(^9-11\). Clozapine is predominantly prescribed to treat treatment-resistant patients with schizophrenia\(^12-15\). Both clozapine and olanzapine are efficacious antipsychotics but also the two drugs associated with the greatest body weight gain and metabolic disturbances\(^6,16\).

Glucagon-like peptide-1 (GLP-1) is an incretin hormone, which is secreted from the small intestine in response to intake of nutrients\(^17\). GLP-1 increases insulin secretion from the beta cells and decreases glucagon secretion from the alpha cells of the pancreas\(^17\). GLP-1 also exhibits an inhibitory effect on gastric emptying, appetite and food consumption and can reduce body weight, and by all these actions improves glycemic control in T2D\(^18\). Liraglutide is a GLP-1 receptor agonist (GLP-1RA) with 97% homology to naturally occurring GLP-1\(^18\) but with a longer half-life, making it suitable for a once-daily subcutaneous injection. Recently, we demonstrated that 16 weeks of treatment with liraglutide
in overweight or obese schizophrenia-spectrum disorder patients with prediabetes and on stable antipsychotic treatment with olanzapine or clozapine improved glucose tolerance and metabolic disturbances, and reduced body weight on average by 5.3 kg compared to placebo. A recent, patient-level meta-analysis confirmed the efficacy of GLP-1 agonists for antipsychotic-related weight gain, but the exact mechanism for these favorable effects has not been elucidated in this psychiatric patient group.

An increasing body of evidence suggests that inflammation is involved in the development of T2D, and changes in peripheral inflammatory biomarkers have been observed in prediabetic and diabetic patients as well as in overweight and obese individuals. In addition, a substantial number of proteins are involved in the complex regulation of satiety in the general population and in antipsychotic-treated patients, which may or may not be altered towards an anorexigenic balance by GLP-1RA treatment. Thus, we decided to measure several relevant inflammatory and appetite/satiety-regulating molecules in serum samples from schizophrenia-spectrum disorder patients treated with clozapine or olanzapine at baseline and after 16 weeks of treatment with either liraglutide or placebo. We aimed to identify potential biomarkers of prediabetes, as well as the GLP-1RA-induced effects on glucose tolerance and predictors of response to GLP-1RA, in schizophrenia patients treated with clozapine or olanzapine. Measured analytes were selected based on their
previously reported association with schizophrenia or prediabetes. We hypothesized that prediabetic vs. non-prediabetic patients had significantly altered levels of serum markers of inflammation and/or pro-orexigenic state, and that in prediabetic individuals liraglutide would, at least partly, normalize the levels of inflammatory and/or pro-orexigenic serum markers significantly more than placebo. We further hypothesized that baseline levels of inflammatory and/or pro-orexigenic serum markers would be significantly associated with subsequent response to liraglutide treatment.

Methods

Study population

This study population has been described in detail previously. In short, patients with schizophrenia-spectrum disorder (schizophrenia, schizophreniform disorder or psychotic disorder not otherwise specified), not previously diagnosed with diabetes, were examined from 05/2013 to 11/2015 as part of an investigator-initiated, randomized, placebo-controlled, double-blinded clinical trial (NCT01845259). The Scientific-Ethical Committee of the Capital Region of Denmark and the Danish Health Authority approved the study protocols. Informed consent was given in writing by all participants, and clinical investigations were conducted according to the Declaration of Helsinki and Good Clinical Practice. Key inclusion criteria for the patients with...
schizophrenia-spectrum disorders as per the International Classification of Diseases, 10th edition (ICD-10) or the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) were: 1) aged 18-65 years, 2) stable treatment with clozapine or olanzapine for ≥6 months without dose change within 30 days prior to inclusion, 3) body mass index (BMI) ≥27 kg/m², 4) no diabetes defined as glycated hemoglobin (HbA1c) ≥48 mmol/mol and/or receiving antidiabetic medication. For the purpose of the randomized trial and the present analyses, these non-diabetic patients were further subclassified into a) having prediabetes, i.e., fasting plasma glucose level of 6.1 to 6.9 mmol/l and/or HbA1c level of 43 to 47 mmol/mol and/or impaired glucose tolerance with a 2-hour plasma glucose level of >7.8 mmol/l during a 75-g oral glucose tolerance test (OGTT), which made them finally eligible for randomization to liraglutide vs. placebo, or b) not having prediabetes, which made them screen failures for that randomized trial, but made them eligible for the baseline comparison of pre-diabetic vs. non-prediabetic patients in the present study.

Assessments
A detailed description of the assessments has been published previously. In brief and with relevance for the current study, after ≥10 hours of fasting, potential study participants underwent blood sampling, including HbA1c and a 75-g OGTT, as well as measurements of blood pressure, height, body weight and waist circumference. Additionally, patients were rated on the Schizophrenia
Quality of Life Scale (SQLS)30, Clinical Global Impressions, Severity Scale (CGI-S)31, and Global Assessment of Functioning (GAF)32 and Alcohol Use Disorders Identification Test (AUDIT)33.

Serum sample collection

Blood was sampled into serum collection tubes at week 0 (non-prediabetic patients) and at week 0 and week 16 (prediabetic patients who were randomized to liraglutide or placebo). After the blood withdrawal, samples were allowed to clot for at least one hour and then centrifuged. Thereafter, 0.5 mL of serum was collected and stored at -80 degrees Celsius until analysis in batch.

Multiplexed immunoassays

Serum proteins were analyzed using the Luminex MAGPIX platform (Luminex Corporation, Austin, Texas, USA). Following initial testing and optimization of 13 protein assays (adiponectin, C-reactive protein (CRP), interferon gamma (IFN\(\gamma\)), interleukin-1\(\beta\) (IL-1\(\beta\)), IL-1 receptor antagonist (IL-1RA), IL-6, IL-10, leptin, macrophage migration inhibitory factor (MIF), prolactin, receptor for advanced glycation end products (RAGE), tumor necrosis factor alpha (TNF\(\alpha\)) and vascular endothelial growth factor (VEGF); kit cat. no. LXSAHM-02, LXSAHM-04 and FCSTM09-06, R&D Systems Inc., Minneapolis, Minnesota, USA), assays for nine analytes showed sensitivity within the physiological
protein concentration range and were used to analyze clinical samples. These included adiponectin, CRP, IL-1RA, leptin, MIF, prolactin, RAGE, TNFα and VEGF (kit cat. no. LXSAHM-02 and LXSAHM-07, R&D Systems Inc.). Analyses were performed according to the instructions provided by the manufacturer. Samples were assayed at optimized dilutions (Supplementary Table 1), along with 6-point standard curves and three quality control samples per plate. All samples were assayed in duplicate.

Data processing

Raw immunoassay data were processed using the xPONENT software 4.1 (Luminex Corporation). Mean value of the replicate samples was used for analysis. Protein concentration was calculated from a 5-parameter logistic standard curve, after subtracting background fluorescence. Supplementary Table 1 shows a summary of the immunoassay data, including between- and within-plate coefficients of variation (CVs), lower and upper limits of quantitation and number of missing and out-of-range values. Within-plate CVs were calculated as an average of the CVs derived for each assay plate from the triplicate quality control sample. Between-plate CVs were calculated as an average of the CVs derived for each of the triplicate quality control samples from across the plates. All assays showed CVs below the industry standard of 15%34, with CVs within plates ranging from 0.6% for adiponectin to 6.9% for
RAGE, and CVs between plates ranging from 1.1% for CRP to 11.5% for VEGF. All concentration values for TNFα were below the quantitation limit and were excluded from further analysis. For the remaining analytes, values below the lower limit of quantitation (0.9% of all data points) were replaced with half the value of the lowest standard35 and values above the upper limit of quantitation (i.e. 20% of CRP values) were extrapolated for analysis as more representative than truncated or substituted data36.

\textbf{Statistical analysis}

Statistical analysis was conducted in R software v.3.4.237. Demographic and clinical characteristics were compared between groups (prediabetic vs. non-prediabetic, liraglutide vs. placebo and low vs. high biomarker levels) using t-test for continuous variables and Fisher’s exact test/Pearson’s chi-squared test for categorical variables (R ‘tableone’ package). Protein levels were log\textsubscript{10} transformed for analysis to normalize distribution. Normality was assessed using Shapiro-Wilk’s test. Patients with missing outcome, covariate or biomarker level values (n=0 to n=4; for missing values refer to Table 1 and Supplementary Table 1) were excluded from analysis. Protein levels were compared between the prediabetic and non-prediabetic patient groups using fixed effects analysis of covariance adjusted for the single covariate differing significantly between the groups (other than the group-defining 2-h, 75-g OGTT.
variable), i.e., waist circumference. Concentrations before and after treatment with liraglutide or placebo were compared using mixed effects analysis of covariance (R ‘nlme’ package) adjusted for the single significant covariate, i.e., antipsychotic treatment with clozapine or olanzapine. Association of the primary and secondary clinical endpoints with baseline levels of selected biomarkers in the liraglutide treatment group was assessed using fixed effects analysis of (co)variance adjusted for significant covariates, i.e., sex, age, duration of diagnosis and body weight, when comparing patients with low and high baseline leptin levels (the model was not adjusted for the two remaining significant covariates, body mass index and waist circumference, which were correlated with body weight; P<0.001), and without covariates when comparing patients with low and high baseline adiponectin levels. Patients from the liraglutide treatment group were assigned to the ‘low’ and ‘high’ groups using a median biomarker concentration cut-off. The median-split approach is frequently used in biomarker research38-43, in particular when analyzing data with irregular distribution or where a clinically meaningful biomarker-based categorization is missing44. Sensitivity analyses were conducted by excluding covariates (n=0 to n=4) from the analysis of covariance models. All tests were two-sided and Bonferroni correction was used to adjust P values for multiple hypothesis testing. In a follow-up analysis of the liraglutide treatment group, association between changes in leptin levels and changes in body weight was assessed using fixed effects regression unadjusted for covariates, as none of the
baseline demographic or clinical variables was significantly associated with changes in body weight (P>0.075). Figures were prepared in R software, Adobe Illustrator CC 2017 v.21.0.0 (Adobe Systems Incorporated) and Inkscape v.0.92.4. Plots show mean ± standard error.

Results

Patient characteristics

We analyzed levels of eight serum proteins previously linked to schizophrenia and prediabetes in 32 non-prediabetic and 81 prediabetic patients with schizophrenia-spectrum disorder. We used the 2-h, 75-g OGTT value as the primary endpoint in lieu of the 4-h value used as the primary endpoint in the original investigation\(^{19}\), as the latter was not available for the non-prediabetic group that was not randomized. Not surprisingly, patients with prediabetes had significantly higher 2-h OGTT value compared to non-prediabetic patients (one of the criteria for prediabetes; 9.8±1.9 vs. 6.4±1.0 mmol/L, P<0.001; Table 1).

Except for a greater waist circumference in patients with prediabetes (115.9±13.1 vs. 110.2±14.5 cm, P=0.048), no other characteristics differed significantly between the prediabetes and non-prediabetes groups.

Patients with prediabetes (n=81) were randomized to 16 weeks of adjuncive treatment with the GLP-1RA liraglutide (n=39) or placebo (n=42)\(^{19}\). The liraglutide and placebo treatment groups were matched for all characteristics,
except for the antipsychotic treatment distribution (P=0.014; **Table 1**).

Variables which differed significantly between the groups were adjusted for in subsequent group comparison analyses.

Biomarkers of prediabetes

Levels of two serum proteins, adiponectin and VEGF, were significantly different between the non-prediabetic and prediabetic patient groups after adjusting for waist circumference. Compared to patients in the non-prediabetic group, patients in the prediabetic group had significantly lower levels of adiponectin (mean difference in log$_{10}$-transformed protein concentration in pg/mL of -0.17, with 95% confidence intervals (CI) from -0.28 to -0.06, P=0.004; **Figure 1** and **Supplementary Table 2**) and VEGF (-0.16 log$_{10}$ (pg/mL), 95% CI -0.29 to -0.03, P=0.019). Differences between the groups in adiponectin and VEGF levels were also significant without adjustment for the covariate (P=0.002 and 0.045, respectively; **Supplementary Table 3**) and the difference in adiponectin levels remained significant after Bonferroni correction (adjusted P=0.030; **Supplementary Table 2**).

Effects of liraglutide

After 16 weeks of treatment, levels of two serum proteins – leptin and adiponectin – changed significantly in the liraglutide group compared to the placebo group, after adjusting for treatment with clozapine or olanzapine.
Levels of leptin decreased more in the liraglutide treatment group compared to the placebo group, with mean difference between the groups of $-0.081 \log_{10} (\text{pg/mL})$ (95% CI -0.147 to -0.015, $P=0.017$; Figure 2 and Supplementary Table 4). In addition, concentrations of adiponectin decreased after treatment with placebo and increased after treatment with liraglutide, with a mean between-group difference of $0.140 \log_{10} (\text{pg/mL})$ (95% CI 0.021 to 0.259, $P=0.022$; Figure 2 and Supplementary Table 4). Differences between the groups in leptin and adiponectin levels were significant also without adjustment for the covariate ($P=0.017$ and 0.023, respectively; Supplementary Table 5), but not after Bonferroni correction (Supplementary Table 4). Baseline levels of leptin and adiponectin were not different between the liraglutide and the placebo groups ($P=0.842$ and 0.400 respectively, adjusted for specific antipsychotic drug treatment).

Subgroup analyses

Subgroup analyses were conducted in the liraglutide treatment group to investigate the association between baseline levels of biomarkers that were significantly associated with liraglutide treatment (Figure 2) and clinical outcomes at week 16. Patients were assigned to ‘low’ and ‘high’ groups using median biomarker concentration cut-off, i.e. 18.8 ng/mL for leptin and 2.4 µg/mL for adiponectin. Patients in ‘low’ and ‘high’ leptin groups differed...
significantly in sex, age, duration of diagnosis, body weight, body mass index and waist circumference (Supplementary Table 6), which were adjusted for in subsequent subgroup analysis, excluding collinear covariates. There were no significant differences in patient characteristics between the ‘low’ and ‘high’ adiponectin groups. After 16 weeks of treatment with liraglutide, patients who had higher leptin levels at baseline showed significantly larger reduction in the primary endpoint, 2-h OGTT value, than patients with lower baseline leptin levels (mean difference between the groups -2.62 mmol/L, 95% CI -4.54 to -0.70, P=0.009; Figure 3 and Supplementary Table 7). This association remained significant without adjustment for covariates (P=0.030; Supplementary Table 8), when additionally adjusted for baseline OGTT value to account for the potential ‘regression to the mean’ effect (P=0.040) and remained significant after adjusting for multiple comparisons of the primary endpoint (adjusted P=0.018; Supplementary Table 7). Additional analyses showed that baseline leptin levels in participants treated with liraglutide did not predict change in body weight (P>0.42; Supplementary Tables 7-8), although changes in leptin levels were positively correlated with changes in body weight (P=0.021).
Discussion

In the present study, we measured serum levels of eight proteins relevant to metabolic disturbances (adiponectin, CRP, IL-1RA, leptin, MIF, prolactin, RAGE and VEGF). When comparing baseline protein levels between prediabetic and non-prediabetic patients, significantly lower levels of adiponectin and VEGF were found in prediabetic patients. No other significant differences were observed.

Adiponectin is a hormone mainly secreted from adipose tissue. It is involved in glucose regulation by improving insulin sensitivity, but also exerts anti-inflammatory and anti-atherogenic properties associated with reduced risk for cardiovascular disease45. A large body of evidence suggests an inverse relationship between adiponectin levels and the presence of metabolic syndrome, obesity and T2D45. Our result is in accordance with the literature and
suggests that the same inverse relationship is observed in schizophrenia-spectrum disorder patients on stable antipsychotic treatment that have their own metabolic effects9.

VEGF is mainly produced in the kidney, and higher circulating levels of VEGF are observed in patients with metabolic syndrome, hyperglycemia, but not with obesity46. In schizophrenia, circulating VEGF levels are unaltered in antipsychotic drug-naïve and first-episode psychosis patients, and increased in medicated patients47. Surprisingly, we found lower serum levels of VEGF in prediabetic patients compared to non-prediabetic patients, despite similar antipsychotic treatment regime. The reason for this discrepancy remains unclear and requires further study.

Next, we investigated the prediabetic patient group for changes in protein levels following 16 weeks of treatment with liraglutide vs. placebo19. Since only prediabetic patients were included in the trial, we could not evaluate treatment effects in non-prediabetic patients. We observed a significant effect of liraglutide on serum levels of adiponectin and leptin compared to placebo. Adiponectin serum levels increased with liraglutide, which is in concordance with preclinical data48 and data from a clinical study where adiponectin was increased in Chinese patients with T2D following treatment with liraglutide49. However, no significant difference was observed in Spanish patients with T2D treated with liraglutide50. This discrepancy may be due to different patient...
population, i.e., prediabetic patients with schizophrenia in the present study as
compared to patients with T2D previously treated with metformin50.

Leptin serum levels in the liraglutide group decreased over the 16 weeks
treatment period compared to placebo. Leptin is produced in adipose tissue and
mediates regulation of energy balance, suppresses food intake and is thereby
associated with weight loss51. Leptin binds to the leptin receptor, which exists
either as membrane-bound isoforms or a circulating soluble form, the latter
believed to be the main leptin-binding entity in human blood51. When leptin or
its receptor is dysregulated, obesity and T2D are a common consequence51,52. At
baseline, we did not observe significantly higher serum leptin levels in
prediabetic patients compared to non-prediabetic patients, which is consistent
with comparable BMI and body weight between the two groups. However, 16
weeks of liraglutide treatment did reduce serum leptin levels compared to
placebo in our study, which could be explained by the significantly greater
weight reduction with liraglutide vs. placebo19, which results in lower leptin
levels due to decreased adipocytes. A similar effect was observed also prior to
changes in body weight in a study in patients with T2D, however it was not
significant after adjusting for covariates53. This may be due to different patient
populations, i.e., prediabetic patients with schizophrenia (present study) versus
patients with T2D as well as fewer participants and shorter duration of
intervention in the referenced study53.
In the third part of the experiment, we further investigated serum levels of adiponectin and leptin – the two biomarkers significantly affected by GLP-1RA treatment – for their association with the clinical endpoints in the liraglutide arm of the trial. Patients were divided by median split into groups with low or high baseline biomarker levels. Interestingly, we found that high baseline levels of serum leptin were associated with significantly better response in our primary endpoint, OGTT. This has, to our knowledge, not been observed earlier in schizophrenia or general patient population. We did not find evidence that this is an epiphenomenon of weight reduction, given that baseline leptin levels were unrelated to changes in body weight, however such possibility requires further evaluation. Our results suggest that serum leptin could be a potential predictive biomarker of improvement in glucose tolerance in prediabetic, antipsychotic treated, overweight or obese patients with schizophrenia. The mechanism behind this association is at present unknown. A possibility would be that GLP-1 and GLP-1RA act as “leptin-sensitizing agents” explaining why patients with high serum leptin levels respond better to GLP-1RA treatment than patients with low serum leptin levels. This hypothesis is in line with results from studies in animal models which show synergistic interactions between leptin and a GLP-1RA exendin-4 in reducing food intake and restoration of leptin responsiveness by a co-agonist of the GLP-1 and glucagon receptors. Interestingly, it has been demonstrated that another hormone, amylin, primarily secreted from pancreatic beta-cells to the blood stream, acts as a “leptin-
“sensitizer” enhancing leptin signaling. However, such mechanism of action has to our knowledge not previously been reported for GLP-1.

The results of this study must be interpreted within its limitations. First, these are post-hoc analyses from a study that had a different primary aim, i.e., testing the effect of liraglutide vs. placebo in prediabetic patients with schizophrenia-spectrum disorders on stable treatment with clozapine or olanzapine. Second, the sample size was still modest, especially in the non-prediabetic patients and in the subgroup analyses of the liraglutide-treated sample, reducing the power of the analyses. Third, only 8 of the initially selected and assessed 13 putative biomarkers were within the analytical range of the assays and could be analyzed, removing most inflammatory markers from the study. Furthermore, some of the measured values were substituted or extrapolated prior to analysis due to being outside of the linear range of the assays and might not represent true concentrations in the serum. Fourth, not all statistically significant results survived Bonferroni correction, making these results more hypothesis-generating than hypothesis-testing. Finally, many additional putative and potentially relevant biomarkers could have been examined but were unavailable to us. Nevertheless, despite these limitations, to our knowledge, this is the first study to investigate markers of satiety and energy homeostasis in relationship to prediabetes status, liraglutide treatment and biomarker distribution in patients with schizophrenia-spectrum disorders.
In summary, results from this study indicate the role for adiponectin and VEGF in prediabetes, and the involvement of adiponectin and leptin in response to treatment with GLP-1RA in prediabetic, overweight or obese schizophrenia-spectrum disorder patients treated with clozapine or olanzapine. Moreover, they suggest that leptin might be a predictive biomarker of GLP-1RA treatment efficacy in improving glucose tolerance in this patient population. Further studies are required to validate these findings, evaluate their potential for personalized management of prediabetes in the context of schizophrenia and investigate their application to other patient groups, e.g., prediabetic and diabetic patients without a diagnosis of schizophrenia.
Funding:

This work was supported by an unrestricted grant to AFJ and the supply of the liraglutide and the liraglutide placebo pens from Novo Nordisk A/S. This investigator-university initiated study received additional funding from the Capital Region Psychiatry Research Group and the foundation of King Christian X. JT, NR and SB were supported by grants to SB from the Stanley Medical Research Institute (SMRI). Furthermore, MSJ, HRJ and CKS have received a one-year pre-graduate research grant from the Lundbeck Foundation and MIJ received an equivalent amount of money from the unrestricted grant from Novo Nordisk during a pre-graduate research year.

Conflict of Interest:

Dr. Schjerning reports receiving speaker honoraria from Lundbeck Pharma. Dr. Nielsen reports receiving speaker honoraria from Hemocue, Lundbeck, and Bristol-Myers Squibb and research grants from H. Lundbeck and Pfizer. Dr. Holst reports consulting for Merck Sharp & Dohme, Novo Nordisk A/C, and Roche. Dr. Correll has been a consultant and/or advisor to or has received honoraria from: Alkermes, Allergan, Angelini, Boehringer-Ingelheim, Gedeon Richter, Gerson Lehrman Group, Indivior, IntraCellular Therapies, Janssen/J&J, LB Pharma, Lundbeck, MedAvante-ProPhase, Medscape, Merck, Neurocrine, Noven, Otsuka, Pfizer, Recordati, Rovi, Servier, Sumitomo Dainippon,
Sunovion, Supernus, Takeda, and Teva. He has provided expert testimony for
Bristol-Myers Squibb, Janssen, and Otsuka. He served on a Data Safety
Monitoring Board for Boehringer-Ingelheim, Lundbeck, Rovi, Supernus, and
Teva. He received royalties from UpToDate and grant support from Janssen and
Takeda. He is also a shareholder of LB Pharma. Dr. Vilsbøll reports receiving
lecture fees from Amgen, AstraZeneca, Boehringer Ingelheim Pharmaceuticals,
Bristol-Myers Squibb, Eli Lilly and Company, Merck Sharp & Dohme, Novo
Nordisk A/C, Sanofi, and Zealand Pharma and serving on the advisory boards
of AstraZeneca, Boehringer Ingelheim Pharmaceuticals, Bristol-Myers Squibb,
Eli Lilly and Company, Merck Sharp & Dohme, Novo Nordisk A/C, and
Sanofi. Dr. Fink-Jensen reports sponsoring the study and receiving an
unrestricted grant from Novo Nordisk A/S. Dr. Bahn is a director of Psynova
Neurotech Ltd. and Psyomics Ltd. Other authors have declared that there are no
conflicts of interest in relation to the subject of this study.

Acknowledgements:

We are thankful to Bente Bennike, Susie Brøndum and Britt Marie Droob,
Psychiatric Centre Copenhagen; Signe Foghsgaard and Sonja Snel, Aalborg
University Hospital; and Lene Brus Albæk, Panum Institute, University of
Copenhagen, who assisted in the trial as part of their employment.
References:

1. Laursen TM, Munk-Olsen T, Nordentoft M, Mortensen PB. Increased mortality among patients admitted with major psychiatric disorders: a register-based study comparing mortality in unipolar depressive disorder, bipolar affective disorder, schizophrenic disorder, and schizophrenia. *J Clin Psychiatry*. 2007;68(6):899-907. doi:10.4088/JCP.v68n0612

2. Correll CU, Solmi M, Veronese N, et al. Prevalence, incidence and mortality from cardiovascular disease in patients with pooled and specific severe mental illness: a large-scale meta-analysis of 3,211,768 patients and 113,383,368 controls. *World Psychiatry*. 2017;16(2):163-180. doi:10.1002/wps.20420

3. Correll CU, Lencz T, Malhotra AK. Antipsychotic drugs and obesity. *Trends Mol Med*. 2011;17(2):97-107. doi:10.1016/j.molmed.2010.10.010

4. Henderson DC, Vincenzi B, Andrea N V., Ulloa M, Copeland PM. Pathophysiological mechanisms of increased cardiometabolic risk in people with schizophrenia and other severe mental illnesses. *The Lancet Psychiatry*. 2015;2(5):452-464. doi:10.1016/S2215-0366(15)00115-7

5. Leucht S, Tardy M, Komossa K, et al. Antipsychotic drugs versus placebo for relapse prevention in schizophrenia: A systematic review and meta-analysis. *Lancet*. 2012;379(9831):2063-2071. doi:10.1016/S0140-6736(12)60239-6

6. Leucht S, Cipriani A, Spineli L, et al. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: A multiple-treatments meta-analysis. *Lancet*. 2013;382(9896):951-962. doi:10.1016/S0140-6736(13)60733-3

7. Kahn RS, Sommer IE, Murray RM, et al. Schizophrenia. *Nat Rev Dis Prim*. 2015;1:15067. doi:10.1038/nrdp.2015.67

8. Correll CU, Rubio JM, Kane JM. What is the risk-benefit ratio of long-term antipsychotic treatment in people with schizophrenia? *World Psychiatry*. 2018;17(2):149-160. doi:10.1002/wps.20516

9. De Hert M, Detraux J, van Winkel R, Yu W, Correll CU. Metabolic and cardiovascular adverse effects associated with antipsychotic drugs. *Nat Rev Endocrinol*. 2011;8(2):114-126. doi:10.1038/nrendo.2011.156

10. Vancampfort D, Stubbs B, Mitchell AJ, et al. Risk of metabolic syndrome and its components in people with schizophrenia and related psychotic disorders, bipolar disorder and major depressive disorder: a systematic review and meta-analysis. *World Psychiatry*. 2015;14(3):339-347. doi:10.1002/wps.20252

11. Vancampfort D, Correll CU, Galling B, et al. Diabetes mellitus in people with schizophrenia, bipolar disorder and major depressive disorder: A systematic review and large scale meta-analysis. *World Psychiatry*. 2016;15(2):166-174. doi:10.1002/wps.20309

12. Howes OD, McCutcheon R, Agid O, et al. Treatment-Resistant Schizophrenia: Treatment Response and Resistance in Psychosis (TRRIP) Working Group Consensus
Guidelines on Diagnosis and Terminology. *Am J Psychiatry*. 2017;174(3):216-229. doi:10.1176/appi.ajp.2016.16050503

13. Kane JM, Agid O, Baldwin ML, et al. Clinical guidance on the identification and management of treatment-resistant schizophrenia. *J Clin Psychiatry*. 2019;80(2):18com12123. doi:10.4088/JCP.18com12123

14. Siskind D, Siskind V, Kisely S. Clozapine Response Rates among People with Treatment-Resistant Schizophrenia: Data from a Systematic Review and Meta-Analysis. *Can J Psychiatry*. 2017;62(11):772-777. doi:10.1177/0706743717718167

15. Siskind D, McCartney L, Goldschlager R, Kisely S. Clozapine v. first- and second-generation antipsychotics in treatment-refractory schizophrenia: Systematic review and meta-analysis. *Br J Psychiatry*. 2016;209(5):385-392. doi:10.1192/bjp.bp.115177261

16. Kishimoto T, Hagi K, Nitta M, Kane JM, Correll CU. Long-term effectiveness of oral second-generation antipsychotics in patients with schizophrenia and related disorders: a systematic review and meta-analysis of direct head-to-head comparisons. *World Psychiatry*. 2019;18(2):208-224. doi:10.1002/wps.20632

17. Holst JJ. The physiology of glucagon-like peptide 1. *Physiol Rev*. 2007;87(4):1409-1439. doi:10.1152/physrev.00034.2006

18. Holst JJ. Incretin hormones and the satiation signal. *Int J Obes*. 2013;37(9):1161-1168. doi:10.1038/ijo.2012.208

19. Larsen JR, Vedtofte L, Jakobsen MSL, et al. Effect of liraglutide treatment on prediabetes and overweight or obesity in clozapine- or olanzapine-treated patients with schizophrenia spectrum disorder: A randomized clinical trial. *JAMA Psychiatry*. 2017;74(7):719-728. doi:10.1001/jamapsychiatry.2017.1220

20. Siskind D, Hahn M, Correll CU, et al. Glucagon-like peptide-1 receptor agonists for antipsychotic-associated cardio-metabolic risk factors: A systematic review and individual participant data meta-analysis. *Diabetes, Obes Metab*. 2019;21(2):293-302. doi:10.1111/dom.13522

21. Herder C, Schmitt A, Budden F, et al. Association between pro- and anti-inflammatory cytokines and depressive symptoms in patients with diabetes-potential differences by diabetes type and depression scores. *Transl Psychiatry*. 2018;7(11):1. doi:10.1038/s41398-017-0009-2

22. Akbari M, Hassan-Zadeh V. IL-6 signalling pathways and the development of type 2 diabetes. *Inflammopharmacology*. 2018;26(3):685-698. doi:10.1007/s10787-018-0458-0

23. Liu C, Feng X, Li Q, Wang Y, Li Q, Hua M. Adiponectin, TNF-α and inflammatory cytokines and risk of type 2 diabetes: A systematic review and meta-analysis. *Cytokine*. 2016;86:100-109. doi:10.1016/j.cyto.2016.06.028

24. Hogan AE, Gaoatswe G, Lynch L, et al. Glucagon-like peptide 1 analogue therapy directly modulates innate immune-mediated inflammation in individuals with type 2 diabetes mellitus. *Diabetologia*. 2014;57(4):781-784. doi:10.1007/s00125-013-3145-0

25. Correll CU, Malhotra AK. Pharmacogenetics of antipsychotic-induced weight gain.
26. Andermann ML, Lowell BB. Toward a Wiring Diagram Understanding of Appetite Control. *Neuron*. 2017;95(4):757-778. doi:10.1016/j.neuron.2017.06.014

27. Chan MK, Guest PC, Levin Y, et al. Converging evidence of blood-based biomarkers for schizophrenia: An update. *Int Rev Neurobiol*. 2011;101:95-144. doi:10.1016/B978-0-12-387718-5.00005-5

28. Srikanthan K, Feyh A, Visweshwar H, Shapiro JI, Sodhi K. Systematic review of metabolic syndrome biomarkers: A panel for early detection, management, and risk stratification in the West Virginian population. *Int J Med Sci*. 2016;13(1):25-38. doi:10.7150/ijms.13800

29. Larsen JR, Vedtofte L, Holst JJ, et al. Does a GLP-1 receptor agonist change glucose tolerance in patients treated with antipsychotic medications? Design of a randomised, double-blinded, placebo-controlled clinical trial. *BMJ Open*. 2014;4(3):e004227. doi:10.1136/bmjopen-2013-004227

30. Wilkinson G, Hesdon B, Wild D, et al. Self-report quality of life measure for people with schizophrenia: The SQLS. *Br J Psychiatry*. 2000;177:42-46. doi:10.1192/bjp.177.1.42

31. Busner J, Targum SD. The clinical global impressions scale: applying a research tool in clinical practice. *Psychiatry (Edgmont)*. 2007;4(7):28-37.

32. Aas IHM. Global Assessment of Functioning (GAF): properties and frontier of current knowledge. *Ann Gen Psychiatry*. 2010;9:20.

33. Saunders JB, Aasland OG, Babor TF, de la Fuente JR, Grant M. Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO Collaborative Project on Early Detection of Persons with Harmful Alcohol Consumption-II. *Addiction*. 1993;88(6):791-804.

34. Food and Drug Administration U.S. Department of Health and Human Services. Guidance for Industry: Bioanalytical Method Validation. 2001:1-22. doi:https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070107.pdf

35. Schwarz E, van Beveren NJM, Ramsey J, et al. Identification of subgroups of Schizophrenia patients with changes in either immune or growth factor and hormonal pathways. *Schizophr Bull*. 2014;40(4):787-795. doi:10.1093/schbul/sbt105

36. Breen EJ, Tan W, Khan A. The Statistical Value of Raw Fluorescence Signal in Luminex xMAP Based Multiplex Immunoassays. *Sci Rep*. 2016;6:26996. doi:10.1038/srep26996

37. R Core Team. R: A Language and Environment for Statistical Computing. 2019. https://www.r-project.org/

38. Torgerson JS, Carlsson B, Stenlöf K, Carlsson LMS, Bringman E, Sjöström L. A low serum leptin level at baseline and a large early decline in leptin predict a large 1-year weight reduction in energy-restricted obese humans. *J Clin Endocrinol Metab*. 1999;84(11):4197-4203. doi:10.1210/jc.84.11.4197
39. Kettaneh A, Heude B, Romon M, et al. High plasma leptin predicts an increase in subcutaneous adiposity in children and adults. *Eur J Clin Nutr.* 2007;61(6):719-726. doi:10.1038/sj.ejcn.1602579

40. Meyers JA, Liu AY, McTiernan A, et al. Serum leptin concentrations and markers of immune function in overweight or obese postmenopausal women. *J Endocrinol.* 2008;199(1):51-60. doi:10.1677/JOE-07-0569

41. Duggan C, Irwin ML, Xiao L, et al. Associations of insulin resistance and adiponectin with mortality in women with breast cancer. *J Clin Oncol.* 2011;29(1):32-39. doi:10.1200/JCO.2009.26.4473

42. Belcher BR, Chou CP, Nguyen-Rodriguez ST, et al. Leptin predicts a decline in moderate to vigorous physical activity in minority female children at risk for obesity. *Pediatr Obes.* 2013;8(1):70-77. doi:10.1111/j.2047-6310.2012.00091.x

43. Stengel A, Haas V, Elbelt U, Correll CU, Rose M, Hofmann T. Leptin and physical activity in adult patients with anorexia nervosa: Failure to demonstrate a simple linear association. *Nutrients.* 2017;9(11):1210. doi:10.3390/nu9111210

44. DeCoster J, Iselin AMR, Gallucci M. A Conceptual and Empirical Examination of Justifications for Dichotomization. *Psychol Methods.* 2009;14(4):349-366. doi:10.1037/a0016956

45. Von Frankenberg AD, Reis AF, Gerchman F. Relationships between adiponectin levels, the metabolic syndrome, and type 2 diabetes: A literature review. *Arch Endocrinol Metab.* 2017;61(6):614-622. doi:10.1590/2359-399700000316

46. Zafar MI, Zheng J, Kong W, et al. The role of vascular endothelial growth factor-B in metabolic homoeostasis: Current evidence. *Biosci Rep.* 2017;37(4):349-366. doi:10.1037/a0016956

47. Von Frankenberg AD, Reis AF, Gerchman F. Relationships between adiponectin levels, the metabolic syndrome, and type 2 diabetes: A literature review. *Arch Endocrinol Metab.* 2017;61(6):614-622. doi:10.1590/2359-399700000316

48. Wang A, Li T, An P, et al. Exendin-4 Upregulates Adiponectin Level in Adipocytes via Sirt1/Foxo-1 Signaling Pathway. *PLoS One.* 2017;12(1):e0169469.

49. Li D, Xu X, Zhang Y, et al. Liraglutide treatment causes upregulation of adiponectin and downregulation of resistin in Chinese type 2 diabetes. *Diabetes Res Clin Pract.* 2015;110(2):224-228. doi:10.1016/j.diabres.2015.05.051

50. Díaz-Soto G, de Luis DA, Conde-Vicente R, Izaola-Jauregui O, Ramos C, Romero E. Beneficial effects of liraglutide on adipokines, insulin sensitivity parameters and cardiovascular risk biomarkers in patients with Type 2 diabetes: A prospective study. *Diabetes Res Clin Pract.* 2014;104(1):92-96. doi:10.1016/j.diabres.2014.01.019

51. Friedman J. 20 years of leptin: leptin at 20: an overview. *J Endocrinol.* 2014;223(1):T1-8.

52. Xu J, Bartolome CL, Low CS, et al. Genetic identification of leptin neural circuits in energy and glucose homeostases. *Nature.* 2018;556(7702):505-509.
53. Farr OM, Tsoukas MA, Triantafyllou G, et al. Short-term administration of the GLP-1 analog liraglutide decreases circulating leptin and increases GIP levels and these changes are associated with alterations in CNS responses to food cues: A randomized, placebo-controlled, crossover study. *Metabolism*. 2016;65(7):945-953. doi:10.1016/j.metabol.2016.03.009

54. Andreoli MF, Donato J, Cakir I, Perello M. Leptin resensitisation: A reversion of leptin-resistant states. *J Endocrinol*. 2019;241(3):R81-R96. doi:10.1530/JOE-18-0606

55. Bojanowska E, Nowak A. Interactions between leptin and exendin-4, a glucagon-like peptide-1 agonist, in the regulation of food intake in the rat. *J Physiol Pharmacol*. 2007;58(2):349-360.

56. Clemmensen C, Chabenne J, Finan B, et al. GLP-1/glucagon coagonism restores leptin responsiveness in obese mice chronically maintained on an obesogenic diet. *Diabetes*. 2014;63(4):1422-1427. doi:10.2337/db13-1609

57. Hay DL, Chen S, Lutz TA, Parkes DG, Roth JD. Amylin: Pharmacology, physiology, and clinical potential. *Pharmacol Rev*. 2015;67(3):564-600. doi:10.1124/pr.115.010629

58. Levin BE, Lutz TA. Amylin and Leptin: Co-Regulators of Energy Homeostasis and Neuronal Development. *Trends Endocrinol Metab*. 2017;28(2):153-164. doi:10.1016/j.tem.2016.11.004
Figure legends:

Figure 1. Baseline differences in biomarker levels between non-prediabetic (NP; n=32) and prediabetic (PD; n=81) schizophrenia patients. Values represent mean log₁₀-transformed protein concentrations (in pg/mL) and standard error for A) adiponectin, B) C-reactive protein (CRP), C) interleukin-1 receptor antagonist (IL-1RA), D) leptin, E) macrophage migration inhibitory factor (MIF), F) prolactin, G) receptor for advanced glycation endproducts (RAGE) and H) vascular endothelial growth factor (VEGF). All values were derived from the fixed effects analysis of covariance adjusted for waist circumference (Supplementary Table 2). \(P_{\text{Bonferroni}} \) – Bonferroni-adjusted P value. *\(P<0.05 \), **\(P<0.01 \).

Figure 2. Change in biomarker levels from baseline (T0) to week 16 (T16) in the placebo (n=42) and liraglutide (n=39) treatment groups. Values represent mean log₁₀-transformed protein concentrations (in pg/mL) and standard error for A) adiponectin, B) CRP, C) IL-1RA, D) leptin, E) MIF, F) prolactin, G) RAGE and H) VEGF. All values were derived from the mixed effects analysis of covariance adjusted for antipsychotic treatment (olanzapine, clozapine or combined; Supplementary Table 4). P values refer to the
estimated liraglutide vs. placebo treatment difference. \(P_{\text{Bonferroni}} \) – Bonferroni-adjusted \(P \) value. *\(P<0.05 \).

Figure 3. Association of the change from baseline to week 16 in the primary clinical endpoint, 2-h 75-g oral glucose tolerance test (\(\Delta \text{OGTT} \)), with baseline A) adiponectin and B) leptin levels in the liraglutide treatment group. Baseline protein concentrations were categorized as ‘low’ or ‘high’ by median split. All values were derived from the fixed effects analysis of variance (adiponectin) or covariance (leptin; adjusted for sex, age, duration of diagnosis and body weight; **Supplementary Table 7**). Shown are adjusted means ± standard error. \(P_{\text{Bonferroni}} \) – Bonferroni-adjusted \(P \) value. *\(P<0.05 \), **\(P<0.01 \).
Table legend:

Table 1. Demographic and clinical characteristics of study participants at baseline. Statistical tests included t-test for continuous variables and chi-squared test for categorical variables. Abbreviations: AUDIT, Alcohol Use Disorders Identification Test; BMI, body mass index; CGI-S, Clinical Global Impressions Scale; GAF, Global Assessment of Functioning; OGTT, oral glucose tolerance test; SD, standard deviation; SQLS, Schizophrenia Quality of Life Scale; y – years. *P<0.05, ***P<0.001 (two-sided).
Table 1.

Characteristic	Diabetes status	Treatment group	P value	Missing (%)	Placebo (n=42)	Liraglutide (n=39)	P value	Missing (%)
Sex, No. (%)								
Male	17 (53.1)	50 (61.7)	0.531	0	25 (59.5)	25 (64.1)	0.845	0
Female	15 (46.9)	31 (38.3)			17 (40.5)	14 (35.9)		
Age, mean (SD), y	41.2 (10.9)	42.7 (10.9)	0.509	0	42.5 (10.7)	42.9 (11.3)	0.872	0
Duration of diagnosis, mean (SD), y	16.7 (9.4)	15.1 (8.9)	0.459	15.9	14.8 (8.5)	15.5 (9.4)	0.755	14.8
Treatment, No. (%)								
Clozapine	21 (67.7)	56 (69.1)	0.301	0.9	33 (78.6)	23 (59.0)	0.014	0
Olanzapine	10 (32.3)	20 (24.7)			5 (11.9)	15 (38.5)		
Combined	0 (0.0)	5 (6.2)			4 (9.5)	1 (2.6)		
Dose, mean (SD), mg								
Clozapine	376.2 (195.5)	329.1 (167.4)	0.290	0	347.3 (180.2)	301.0 (144.7)	0.296	0
Olanzapine	17.8 (9.9)	20.2 (17.3)	0.676	0	23.6 (26.0)	18.3 (10.5)	0.474	0
Clinical characteristics, mean (SD)								
Body weight, kg	99.3 (19.7)	102.4 (20.3)	0.464	0	102.0 (23.8)	102.8 (16.0)	0.865	0
BMI, kg/m²	32.4 (4.8)	33.5 (5.7)	0.344	0	33.6 (6.5)	33.5 (4.8)	0.931	0
Waist circumference, cm	110.2 (14.5)	115.9 (13.1)	0.048*	1.8	115.0 (14.6)	116.0 (11.4)	0.537	1.2
Systolic blood pressure, mm Hg	125.1 (14.4)	125.2 (12.2)	0.953	0	124.7 (13.9)	125.8 (10.2)	0.686	0
Diastolic blood pressure, mm Hg	84.0 (8.8)	84.4 (8.8)	0.829	0	84.5 (8.1)	84.3 (9.6)	0.921	0
2-h, 75-g OGTT value, mmol/L	6.4 (1.0)	9.8 (1.9)	<0.001**	0	9.8 (2.0)	9.7 (1.8)	0.734	0
Alcohol consumption, mean (SD)								
AUDIT score	5.2 (6.3)	4.8 (4.9)	0.747	0	4.8 (5.0)	4.9 (4.9)	0.973	0
Drunks/week	4.9 (11.7)	4.3 (10.0)	0.787	0	4.7 (11.9)	3.9 (7.5)	0.727	0
Rating scales, mean (SD), score								
SQLS								
Psychosocial	39.0 (22.7)	38.6 (25.3)	0.936	0	38.1 (26.5)	39.2 (24.3)	0.849	0
Motivation and energy	29.5 (25.6)	34.5 (26.0)	0.356	0	37.7 (27.2)	31.0 (24.4)	0.242	0
Adverse effects	23.3 (24.3)	26.4 (21.0)	0.491	0	25.4 (20.7)	27.5 (21.5)	0.654	0
GAF	49.6 (9.3)	49.2 (8.8)	0.843	1.8	48.1 (7.9)	50.5 (9.5)	0.224	1.2
CGI-S	3.7 (0.6)	3.6 (0.6)	0.524	1.8	3.7 (0.6)	3.5 (0.6)	0.152	1.2
Figure 1

A. Log₁₀ Adiponectin (pg/mL) with NP and PD groups, showing a significant difference (P=0.004**, P Bonferroni =0.030*).

B. Log₁₀ CRP (pg/mL) with NP and PD groups, showing no significant difference (P=0.431, P Bonferroni =1.000).

C. Log₁₀ IL-1RA (pg/mL) with NP and PD groups, showing no significant difference (P=0.338, P Bonferroni =1.000).

D. Log₁₀ Leptin (pg/mL) with NP and PD groups, showing no significant difference (P=0.487, P Bonferroni =1.000).

E. Log₁₀ MIF (pg/mL) with NP and PD groups, showing no significant difference (P=0.387, P Bonferroni =1.000).

F. Log₁₀ Prolactin (pg/mL) with NP and PD groups, showing no significant difference (P=0.114, P Bonferroni =0.910).

G. Log₁₀ RAGE (pg/mL) with NP and PD groups, showing no significant difference (P=0.389, P Bonferroni =1.000).

H. Log₁₀ VEGF (pg/mL) with NP and PD groups, showing a significant difference (P=0.019*, P Bonferroni =0.155).
Figure 2

A

Log$_2$ Adiponectin (pg/mL)

P = 0.022*, P$_{Bonferroni}$ = 0.176

T0 T16

B

Log$_2$ CRP (pg/mL)

P = 0.753, P$_{Bonferroni}$ = 1.000

T0 T16

C

Log$_2$ IL-1RA (pg/mL)

P = 0.978, P$_{Bonferroni}$ = 1.000

T0 T16

D

Log$_2$ Leptin (pg/mL)

P = 0.017*, P$_{Bonferroni}$ = 0.137

T0 T16

E

Log$_2$ MIF (pg/mL)

P = 0.365, P$_{Bonferroni}$ = 1.000

T0 T16

F

Log$_2$ Prolactin (pg/mL)

P = 0.506, P$_{Bonferroni}$ = 1.000

T0 T16

G

Log$_2$ RAGE (pg/mL)

P = 0.742, P$_{Bonferroni}$ = 1.000

T0 T16

H

Log$_2$ VEGF (pg/mL)

P = 0.323, P$_{Bonferroni}$ = 1.000

T0 T16

Treatment:

- Placebo (n=42)
- Liraglutide (n=39)
Figure 3

A

\[\Delta \text{OGTT (mmol/L)} \]

Low	High
-2.0 | -2.5

\(P = 0.497, P_{\text{Bonferroni}} = 0.994 \)

B

\[\Delta \text{OGTT (mmol/L)} \]

Low	High
-1.0 | -2.0

\(P = 0.009^{**}, P_{\text{Bonferroni}} = 0.018^{*} \)

Adiponectin | Leptin

Downloaded from https://academic.oup.com/schizbullopen/advance-article/doi/10.1093/schizbullopen/sgaa044/5905250 by guest on 27 September 2020