The Turán number for the edge blow-up of trees: the missing case

Cheng Chi∗ Long-Tu Yuan†

Abstract

The edge blow-up of a graph is the graph obtained from replacing each edge of it by a clique of the same size where the new vertices of the cliques are all different. Wang, Hou, Liu and Ma determined the Turán number of the edge blow-up of trees except one particular case. Answering an problem posed by them, we determined the Turán number of this particular case.

1 Introduction

Given a family of graphs \(H \), a graph \(G \) is said to be \(H \)-free (\(H \)-free if \(H = \{ H \} \)) if \(G \) does not contain any copy of \(H \in H \) as a subgraph. A typical problem in extremal combinatorics is the following Turán-type problem: what is the maximum number of edges in an \(H \)-free graph on \(n \) vertices? The aforementioned number is called the extremal number for \(H \) and denoted by \(\text{ex}(n, H) \). Denote by \(\text{EX}(n, H) \) the set of \(H \)-free graphs on \(n \) vertices with \(\text{ex}(n, H) \) edges and call a graph in \(\text{EX}(n, H) \) an extremal graph for \(H \). We use \(\text{ex}(n, H) \) and \(\text{EX}(n, H) \) instead of \(\text{ex}(n, H) \) and \(\text{EX}(n, H) \) respectively when \(H = \{ H \} \).

Much interests has been attracted to this problem during the last few decades. In 1907, Mantel [7] determined the extremal number for triangle for all \(n \geq 3 \). Turán [11] extended Mantel’s result to complete graph with any given order in 1941.

Our notations are standard, see [1]. Given a graph \(H \) and a set of vertices \(A \subseteq V(H) \), we denote \(\min\{\deg_H(x) ; x \in A\} \) by \(\delta_H(A) \). Given a graph \(H \) and a positive integer \(p \geq 2 \), the edge blow-up of \(H \), denoted by \(H^{p+1} \), is the graph obtained from \(H \) by replacing each edge of \(H \) by a clique of size \(p + 1 \) where the new vertices of the cliques are all distinct. In [6, 8] and [13], \(\text{ex}(n, H^{p+1}) \) has been investigated for a large family of graphs \(H \). In [12], Wang, Hou, Liu and Ma determined the extremal number when \(H \) is tree satisfies some conditions and \(p \geq 3 \). Furthermore, the authors of [12] posed the following question.

∗School of Mathematical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200240, China. Email: 52215500038@stu.ecnu.edu.cn.
†School of Mathematical Sciences and Shanghai Key Laboratory of PMMP, East China Normal University, 500 Dongchuan Road, Shanghai 200240, P.R. China. Email: ltyuan@math.ecnu.edu.cn. Supported in part by National Natural Science Foundation of China grant 11901554 and Science and Technology Commission of Shanghai Municipality (No. 18dz2271000).
Question 1.1. Give \(p \geq 3 \) and a tree \(T \) such that its two coloring classes \(A \) and \(B \) satisfying \(|A| \leq |B|\), determine \(\text{ex}(n,T^{p+1}) \) when \(\delta_T(A) = 1 \) and \(\alpha(T) > |B| \).

We solve this question. First we introduce some notations. Given two disjoint graphs \(G \) and \(H \), the disjoint union of \(G \) and \(H \), denoted by \(G \cup H \), is the graph with vertex set \(V(G) \cup V(H) \) and edge set \(E(G) \cup E(H) \). We use \(kG \) to denote the disjoint union of \(k \) copies of \(G \). The join of \(G \) and \(H \), denoted by \(G + H \), is the graph obtained from \(G \cup H \) by adding all edges of the form \(gh \), where \(g \in V(G) \) and \(h \in V(H) \). Denoted by \(P_n \), a path on \(n \) vertices, \(S_n \), a star on \(n \) vertices, \(C_n \), a cycle on \(n \) vertices, \(M_n \) a matching on \(n \) vertices and \(K_{n_1,...,n_p} \), the complete \(p \)-partite graph with the size of \(i \)-partite class \(n_i \). A \(p \)-partite Turán graph on \(n \) vertices, denoted by \(T(n,p) \), is a \(K_{n_1,...,n_p} \) with \(\sum_{i=1}^{p} n_i = n \) and \(|n_i - n_j| \leq 1 \) for \(1 \leq i,j \leq p \). Let \(H'(n,p,q) = \overline{K}_{q-1} + T(n-q+1,p) \) and \(h'(n,p,q) = e(H'(n,p,q)) \). Let \(e(T(n,p)) = t(n,p) \).

Definition 1.2 (Simonovits [10]). Given a family of graphs \(\mathcal{L} \) with \(p(\mathcal{L}) = p \geq 3 \), let \(\mathcal{M} := \mathcal{M}(\mathcal{L}) \) be a family of minimal graphs \(M \) up to subgraph senses such that there exist a large constant \(t = t(\mathcal{L}) \) depending on \(\mathcal{L} \) such that there exists a graph \(L \in \mathcal{L} \) such that \(L \) is a subgraph of \(M \cup I_v + T \), where \(T = T(t,p-2) \) and \(I_v \) is an independent set on \(v \) vertices. We call \(\mathcal{M}(\mathcal{L}) \) the decomposition family of \(\mathcal{L} \).

A covering of a graph is a set of vertices \(U \) such that every edge of this graph meets at least one vertices of \(U \). An independent covering of a bipartite graph is a covering \(U \) such that no two vertices of \(U \) are adjacent. The covering number \(\beta(T) \) of a graph \(T \) is the minimum order of a covering of \(T \). The independent covering number \(q(T) \) of a bipartite graph \(T \) is the minimum order of an independent covering of \(T \). The independent number \(\alpha(T) \) of a graph \(T \) is the maximum order of a set of vertices such that no two of which are adjacent. For a family of graphs \(\mathcal{F} \) which contains at least one bipartite graph, the independent covering number of \(\mathcal{F} \) is defined by

\[
q(\mathcal{F}) = \min\{q(F) : F \in \mathcal{F} \text{ and } F \text{ is bipartite.}\}
\]

Theorem 1.3 (Liu [6]). Let \(p \geq 3 \) be an integer and \(T \) be a tree. Let coloring classes of \(T \) be \(A \) and \(B \), where \(|A| \leq |B|\). When \(n \) is sufficiently large, we have that

- if \(\delta_T(A) = 1 \) and \(\alpha(T) = |B| \), then \(\text{ex}(n,T^{p+1}) = h(n,p,|A|) \);
- if \(\delta_T(A) \geq 2 \), then \(\text{ex}(n,T^{p+1}) = h(n,p,|A|) + 1 \).

Furthermore, extremal graphs are characterized.

Wang, Hou, Liu and Ma [12] extended Liu’s result to a larger family of trees very recently. Before stating their results, we need follow definitions.

Define

\[
g_1(k) = \begin{cases}
 k^2 - \frac{3}{2}k & \text{if } k \text{ is even;} \\
 k^2 - \frac{3k-1}{2} & \text{if } k \text{ is odd,}
\end{cases}
\]

and

\[
g_2(k) = \begin{cases}
 k^2 - \frac{3}{2}k & \text{if } k \text{ is even;} \\
 k^2 - k & \text{if } k \text{ is odd.}
\end{cases}
\]
Theorem 1.4 (Wang, Hou, Liu and Ma [12]). Let \(p \geq 3 \) be an integer and \(T \) be a tree. Let coloring classes of \(T \) be \(A \) and \(B \), where \(|A| \leq |B|\). Let \(A_0 = \{x \in A : \deg_T(x) = \delta_T(A)\} \) and \(B_0 = \{y \in B : |N(y) \cap A_0| \geq 2\} \). Denote by \(q = |A| \), \(k = \delta_T(A) \) and \(b + 2 = \delta(B_0) \). If \(k \geq 2 \), then for sufficiently large \(n \), we have \(\text{ex}(n, T^{p+1}) = \)

\[
\begin{cases}
 h(n, p, q) + g_1(k) & \text{if } k \text{ is even}; \\
 h(n, p, q) + g_2(k) & \text{if } k \text{ is odd and } B_0 = \emptyset; \\
 h(n, p, q) + g_1(k) & \text{if } k \text{ is odd and } 0 \leq b \leq q - 1 - \left\lceil \frac{k-1}{q-1} \right\rceil; \\
 h'(n, p, q) + g_2(k) + \lfloor (q-1)(b-1)/2 \rfloor & \text{if } k \text{ is odd and } b \geq \max \left\{ 1, q - 1 - \left\lceil \frac{k-1}{q-1} \right\rceil \right\}.
\end{cases}
\]

Furthermore, all extremal graphs are characterized.

Now we set \(\mathcal{M} = \mathcal{M}(T^{p+1}) \) and \(q = q(\mathcal{M}) \). If there exists a graph \(T' \in \mathcal{M} \) such that \(\beta(T') \leq q - 1 \), then we let \(\mathcal{B} := \mathcal{B}(T) \) be the family of graph \(T'[A_{T'}] \), where \(T' \in \mathcal{M} \) and \(A_{T'} \) is a covering set with size at most \(q - 1 \) of \(T' \). If \(\beta(T') \geq q \) for every \(T' \in \mathcal{M} \), then we set \(\mathcal{B} = \{K_q\} \).

Theorem 1.5. Let \(p \geq 3 \) be an integer and \(T \) be a tree. Let coloring classes of \(T \) be \(A \) and \(B \), where \(|A| \leq |B|\). If \(\delta_T(A) = 1 \) and \(\alpha(T) > |B| \), then for sufficiently large \(n \), we have

\[
\text{ex}(n, T^{p+1}) = h'(n, p, q) + \text{ex}(q - 1, \mathcal{B})
\]

where \(q \) and \(\mathcal{B} \) are defined as above. Furthermore, all extremal graphs are characterized.

Remark. Combining with the results in [6] and [8], the extremal number for \(T^{p+1} \) is determined, where \(T \) is an arbitrary tree and \(p \geq 3 \).

A double broom \(B(\ell, s, t) \) is a tree obtained from a path \(P_\ell \) by attaching \(s \) pendant edges to one end vertex of \(P_\ell \) and \(t \) pendant edges to the other end vertex of \(P_\ell \), where \(\ell, s, t \geq 2 \). The double broom \(B(7, 5, 3) \) is as in Figure 1.

![Double broom B(7, 5, 3)](image)

Corollary 1.6. Let \(p \geq 3 \) be an integer and \(T = B(2k, s, t) \) be a double broom satisfying \(k, s, t \geq 2 \). Then for sufficiently large \(n \), we have

\[
\text{ex}(n, T^{p+1}) = h(n, p, k + 1)
\]

Furthermore, \(H(n, p, k + 1) \) is the unique extremal graph.

Proof. It can be easily checked that \(q(\mathcal{M}(T^{p+1})) = k + 1 \) and \(\beta(T') \geq k + 1 \) holds for every \(T' \in \mathcal{M}(T^{p+1}) \). Furthermore, we have \(\alpha(T) = k - 1 + s + t > k + \min\{s, t\} = |B| \) and \(\delta_T(A) = 1 \). Therefore, the result holds by applying Theorem 1.5 with \(q = k + 1 \) and \(\mathcal{B} = \{K_q\} \).

2 Preliminaries

2.1 Technical lemmas

Given a graph T, a vertex split on some vertex $v \in V(T)$ is defined by replacing v by an independent set of size $\deg_T(v)$ in which each vertex is adjacent to exactly one distinct vertex in $N_T(v)$. The family of graphs that can be obtained by applying vertex split on some $U \subseteq V(T)$ is denoted by $\mathcal{H}(T)$. The following lemma can help us to determine the graphs in $\mathcal{M}(T^{p+1})$.

Lemma 2.1 (Liu [6]). Given $p \geq 3$ and any graph with $\chi(H) \leq p - 1$, we have $\mathcal{M}(H^{p+1}) = \mathcal{H}(H)$. In particular, a matching of size $e(H)$ is in $\mathcal{M}(H^{p+1})$.

Theorem 2.2 (Erdős and Stone [3]). For all integers $p \geq 1$, $N \geq 1$, and every $\varepsilon > 0$, there exists an integer $n_0(\varepsilon, N, p + 1)$ such that every graph with $n \geq n_0$ vertices and at least $t(n, p) + \varepsilon n^2$ edges contains $T(N, p + 1)$ as a subgraph.

3 Proof of Theorem 1.5

Given a tree T with coloring classes A and B satisfying $|A| \leq |B|$, $\delta_T(A) = 1$ and $\alpha(T) > |B|$. Now we set \mathcal{M} be the decomposition family of T^{p+1}. It follows from Lemma 2.1 that $\mathcal{M} = \mathcal{H}(T)$. Furthermore, \mathcal{M} contains a matching of size t, where $t = e(T)$.

Let \mathcal{U}_n be the family of graphs obtained from $H'(n,p,q)$ by embedding a copy of $Q \in \text{EX}(q-1,B)$ in K_{q-1} in $H'(n,p,q)$. The definition of \mathcal{B} implies every $H_n \in \mathcal{U}_n$ is T^{p+1}-free, and hence we have

$$\text{ex}(n,T^{p+1}) \geq h'(n,p,q) + \text{ex}(q-1,B) \quad (2)$$

Let $\phi(n) := \text{ex}(n,T^{p+1}) - h'(n,p,q) - \text{ex}(q-1,B)$ and $K = \max\{\phi(n) : n \leq n_0\}$, where n_0 is a large constant depending on p and T. Clearly, $\phi(n)$ is a non-negative integer. For the upper bound, we will show that if $n > n_0$ and $\phi(n) > 0$, then there exists an n_4 depending on p and T such that $\phi(n) < \phi(n - n_4p)$. This would imply that if $n = n_0 + mn_4p$, then $\phi(n) < K - m$, and hence the theorem holds for $n \geq n_0 + Kn_4p$.

Let n_1 be a sufficiently large constant. Let $n_0 = n_0(\varepsilon, n_1p,p)$ be the constant from Theorem 2.2, where $\varepsilon = 1/(2p(p-1))$. Let L_n be a T^{p+1}-free graph with $\text{ex}(n,T^{p+1})$ edges, where $n \geq n_0$. Equation 2 and Theorem 2.2 imply that L_n contains a $T = T(n_1p,p)$ with partite class $\tilde{B}^0_1, \cdots, \tilde{B}^0_p$ as a subgraph. Note that $M_{2t} \in \mathcal{M}$. It follows from the definition of decomposition family and the fact that L_n is T^{p+1}-free that $\nu(L_n[\tilde{B}^0_i]) \leq t$ for $i \in [p]$. Let the maximum matching in $L_n[\tilde{B}^0_0]$ be $\{x_1y_1, \cdots, x_iy_i\}$ with $t_i \leq t$. Let $B^0_i = \tilde{B}^0_i \setminus \{x_1y_1, \cdots, x_iy_i\}$. By the definition of B^0_i, there is no edge in $L_n[B^0_i]$. Hence there is an induced subgraph $T_0 = T(n_2p,p)$ of L_n with partite class B^0_1, \cdots, B^0_p obtained by deleting $2t$ vertices from each \tilde{B}_i, where $n_2 = n_1 - 2t$.

Let \(c < 1/(1 + t) \) be a sufficiently small constant. If there exists a vertex \(x_1 \in L_n - T_0 \) such that \(x_1 \) is adjacent to at least \(c^2n_2 \) vertices of each partite class of \(T_0 \), then \(T_0 \) contains a \(T_1 = T(c^2n_2p, p) \) such that each vertex of which is joint to \(x_1 \). Generally, if there exists a vertex \(x_i \in L_n - T_{i-1} - \{x_1, \cdots, x_{i-1}\} \) such that \(u \) is adjacent to at least \(c^2n_2 \) vertices of each partite class of \(T_{i-1} \), then \(T_{i-1} \) contains \(T_i = T(c^2n_2p, p) \) such that each vertex of which is joint to \(x_1, \cdots, x_i \). Thus we can define a sequence of graphs recursively. However, it follows from the definition of \(L_n \) and \(q \) that the above process stops at last after \(T_{q-1} \).

Suppose to the contrary, let \(V(T_q) = B_1^q \cup \cdots \cup B_p^q \). Note that the graph induced by \(B_1^q \cup \{x_1, \cdots, x_q\} \) contains some element of \(\mathcal{M} \) by the definition of \(q \). Then \(L_n \) contains a copy of \(T^{p+1} \) by the definition of decomposition family, a contradiction.

Now suppose that the above process ends with \(T_s \) with \(s \leq q - 1 \). Let \(E = \{x_1, \cdots, x_s\} \) and the partite class of \(T_s \) be \(B_1^s, \cdots, B_p^s \). Denote \(|B_i^s| \) by \(n_3 \) for convenience. We can partition the remaining vertices into following set: Let \(x \in V(L_n) \setminus (T_s \cup E) \). If there exists an \(i \in [p] \) such that \(x \) is adjacent to less than \(c^2n_3 \) vertices of \(B_i^s \) and is adjacent to at least \((1 - c)n_3 \) vertices of \(B_j^s \) for all \(j \neq i \), then let \(x \in C_i \). If there exists an \(i \in [p] \) such that \(x \) is adjacent to less than \(c^2n_3 \) vertices of \(B_i^s \) and is adjacent to less than \((1 - c)n_3 \) vertices of \(B_j^s \) for some \(j \neq i \), then let \(x \in D \). It follows from the definition of \(T_s \) that \(C_1 \cup \cdots \cup C_p \cup D \) is a partition of \(V(L_n) \setminus (T_s \cup E) \). Note that for a \(S \subset B_i^s \cup C_i \) with \(|S| \leq 2t \), the common neighbourhoods of \(S \) in \(B_j^s \) is at least \((1 - 2tc)n_3 \geq n_3/2 \), where \(c \neq i \). It follows from the definition of decomposition family and Lemma 2.1 that \(\nu(L_n[B_i^s \cup C_i]) \leq t \). Now consider the edges joining \(B_i^s \) and \(C_i \) and select a maximum matching, say \(y_1z_1, \cdots, y_tz_t \) with \(y_i, z_i \in B_i^s \), \(z_i \in C_i \) and \(1 \leq z_i \leq t \leq t_i \). Let \(X_i = \bigcup_{z_i=1}^{t_i} (N_{L_n}(z_i) \cap B_i^s) \). Then \(|X_i| \leq tc^2n_3 \) by the definition of \(C_i \). Let \(C_i = C_i \cup X_i \) and \(B_i^s \cap X_i \); then \(L_n[B_i^s \cup C_i] \) contains no edge by the maximality of \(y_1z_1, \cdots, y_tz_t \). Hence it is possible to move \(tc^2n_3 \) vertices from \(B_i^s \) to \(C_i \) to obtain \(B_i^s \) and \(C_i' \) such that \(B_i^s \subset B_i^s \) and \(C_i \subset C_i' \). Let \(n_4 = (1 - tc^2)n_3 = \left|B_i^s\right|, T_s^* = T(n_4p, p) \) and \(\hat{L} = L_n - T_s^* \). Then \(T_s^* \) is an induced subgraph of \(L_n \) and the vertices of \(\hat{L} \) can be partitioned into \(p + 2 \) sets \(C_1', \cdots, C_p', D \) and \(E \) such that

- every \(x \in E \) is adjacent to each vertex of \(T_s^* \) and \(|E| = s \),
- every \(x \in C_i' \) is adjacent to no vertex of \(B_i^s \) and is adjacent to at least \((1 - c - tc^2)n_3 \) vertices of \(B_j^s \) for all \(j \neq i \).
- every \(x \in D \) is adjacent to at most \(c^2n_3 \) vertices of \(B_i^s \) and is adjacent to at most \((1 - c)n_3 \) vertices of \(B_j^s \) for some \(i, j \in [p] \) with \(i \neq j \).

Let the number of edges joining \(T_s^* \) and \(\hat{L} \) in graph \(L_n \) denoted by \(e_L \). Then we have

\[
e(L_n) = e(\hat{L}) + e_L + e(T_s^*)
\]

Let \(H_n \in \mathcal{H}_n \) and \(T_s'' \) be an induced copy of \(T(n_4p, p) \) in \(H_n \). Let \(H_{n-n_4p} = H_n - T_s'' \) and \(e_H \) be the number of edges joining \(T_s'' \) and \(H_{n-n_4p} \) in graph \(H_n \). Then

\[
e(H_n) = e(H_{n-n_4p}) + e_H + e(T_s'')
\]
Since \(\hat{L} \) contains no copy of \(T^{p+1} \), we have \(e(\hat{L}) \leq e(L_{n-n_4p}) \), where \(L_{n-n_4p} \in EX(n-n_4p, T^{p+1}) \). Obviously we have \(e(T'_q) = e(T''_q) \). Simple calculation show that

\[
e_H = (q-1)n_4p + (n-n_4p-q+1)n_4(p-1) \\
= (q-1)n_4 + (n-n_4p)n_4(p-1)
\]

(3)

It follows from the definition of \(C'_i \), \(D \) and \(E \) that

\[
e_L \leq sn_4 + (n-n_4p-s-|D|)n_4(p-1) + |D|((p-2)n_4 + (1-c+c^2)n_3) \\
= sn_4 + (n-n_4p)n_4(p-1) - |D|(n_4 - (1-c+c^2)n_3) \\
\leq (q-1)n_4 + (n-n_4p)n_4(p-1) - |D|n_3(c - (t+1)c^2) \\
= e_H - |D|n_3(c - (t+1)c^2)
\]

(4)

Hence we have

\[\phi(n) = e(L_n) - e(H_n)\]
\[\leq e(L_{n-n_4p}) - e(H_{n-n_4p}) + e_L - e_H\]
\[= \phi(n-n_4p) + e_L - e_H\]

If \(e_L - e_H < 0 \), then we have \(\phi(n) < \phi(n-n_4p) \), where \(n_4 \leq n_2 \). Hence we suppose that \(e_L - e_H \geq 0 \). Combined with Equation 3 and 4 we conclude that \(e_L = e_H \). (Note that \(c < 1/(1+t) \) is sufficiently small.) Note that \(e_L = e_H \) holds if and only if \(|D| = 0, s = q-1 \) and \(C'_i \) is complete to \(B'_i \) for \(i \in [p] \) and \(j \neq i \).

If \(e(L_n[E]) \) contains some copy of \(B' \in \mathcal{B} \), then \(L_n \) contains a copy of \(T^{p+1} \) by the definition of \(\mathcal{B} \). Hence we conclude that \(L_n[E] \) is \(\mathcal{B} \)-free and \(e(L_n[E]) \leq \text{ex}(q-1, \mathcal{B}) \). The rest of the proof will be divided into two cases.

Case 1. \(q = q(T) \).

In this case, note that \(T \) is a tree. Clearly, \(T \) admits a unique proper 2-coloring and hence \(q(T) = \lfloor A \rfloor \) holds. Note that \(\delta_T(A) = \min \{ \deg_T(x) : x \in A \} = 1 \) by assumptions. Hence there exists a vertex \(u \in A \) such that \(N_T(u) = \{ v \} \). Since \(\lfloor A \rfloor = q(T) = q \), we can find a copy of \((T - \{ u \})^{p+1} \) using vertices in \(E \cup B'_1 \cup \cdots \cup B'_p \) in \(L_n \). Let \(\phi \) be an embedding from \((T - \{ u \})^{p+1} \) to \(L_n \) such that \(\text{Im} \psi \subseteq E \cup B'_1 \cup \cdots \cup B'_p \) and \(\psi(A \setminus \{ u \}) = E \).

Now we will show that \(B'_1 \cup C'_i \) is an independent set of \(L_n \) for each \(i \). It suffices to show \(C'_i \) is an independent set for each \(i \) since there is no edge incident with \(B'_i \). We assume that \(\psi(v) \in B'_i \), where \(i \neq i. \) In fact, if there is an edge \(u'u'' \) in \(L_n[C'_i] \), then we can choose \(u_j \in B'_j \) such that \(u_j \notin \text{Im} \psi \) for \(j \in [p] \setminus \{ i, i' \} \). It can be seen immediately from the definition of \(B'_i, C'_i \) and \(E \) that \(u', u'' \) and \(\psi(v) \) together with all \(u_j \) forms a copy of \(K_{p+1} \). Furthermore, it can be verified that the mapping constructed above is an embedding from \(T^{p+1} \) to \(L_n \). This completes the proof for this case.

Case 2. \(q < q(T) \).

Let \(F \in \mathcal{M} \) such that \(q(F) = q \). Let \(A_F \) and \(B_F \) be coloring classes of \(F \) such that \(q(F) = |A_F| \). Now we show that \(\min \{ \deg_F(x) : x \in A_F \} = 1 \). It follows from the definition of decomposition family that \(\min \{ \deg_F(x) : x \in A_F \} \geq 1 \).
If A_F contains a vertex u which is obtained by splitting a vertex in T, then the result follows since $\deg_F(u) = 1$. Now we assume that every $u \in A_F$ is not a vertex obtained by splitting a vertex in T. Then we have $u \in V(T)$ for every $u \in A_F$. By lemma 2.1, we may assume F is obtained by splitting $X \subseteq V(T)$. It is easy to see that $X \cap A_F = \emptyset$. Otherwise, we can find a vertex obtained by splitting a vertex in T, a contradiction. Let the vertices obtained by splitting X in T be Y and $Z = B_F \setminus X$. It is clear that $V(T)$ is the disjoint union of A_F, X and Z. Furthermore, $V(F)$ is the disjoint union of A_F, Y and Z. Note that we have $E_T(A_F, Z) = E_F(A_F, Z)$ by the definition of Z. It follows from the definition that $Y \cup Z$ is an independent set of F. Note that $\delta(F) \geq 1$ since F is obtained by splitting $X \subseteq V(T)$. Hence every $y \in Y$ is adjacent to some $v \in A_F$ in graph F. Therefore, A_F is an independent covering of T. Then we have $q(T) \leq |A_F| = q < q(T)$, a contradiction.

Hence we have $\min\{\deg_F(x) : x \in A_F\} = 1$. Then similar arguments in Case 1 show that $B'_i \cup C'_i$ is an independent set of L_n.

Note that $B'_i \cup C'_i$ is an independent set of L_n for each i in both cases, then we have

$$
\begin{align*}
\epsilon(L_n) & \leq L_n[E] + \epsilon_{L_n}(E, V(L_n) \setminus E) + \sum_{1 \leq i < j \leq p} \epsilon_{L_n}(B'_i \cup C'_i, B'_j \cup C'_j) \\
& \leq \text{ex}(q - 1, B) + (q - 1)(n - q + 1) + \sum_{1 \leq i < j \leq p} |B'_i \cup C'_i||B'_j \cup C'_j| \\
& \leq \text{ex}(q - 1, B) + (q - 1)(n - q + 1) + t(n - q + 1, p) \\
& = \text{ex}(q - 1, B) + h'(n, p, q)
\end{align*}
$$

which contradicts the fact that $\phi(n) > 0$. The theorem follows.

References

[1] J. A. Bondy and U. S. R. Murty, Graph theory, Graduate Texts in Mathematics, 244. Springer, New York, 2008. xii+651 pp.

[2] G. Chen, R. J. Gould, F. Pfender and B. Wei, Extremal graphs for intersecting cliques, *Journal of Combinatorial Theory. Series B.* 89 (2003) 159–171.

[3] P. Erdős and A. H. Stone, On the structure of linear graphs, *Bull. Amer. Math. Soc.* 52 (1946), 1087-1091.

[4] P. Erdős and M. Simonovits, A limit theorem in graph theory, *Studia Sci. Math. Hungar.* 1 (1966), 51-57.

[5] P. Erdős, Z. Füredi, R. J. Gould and D. S. Gunderson, Extremal graphs for intersecting triangles, *Journal of Combinatorial Theory. Series B.* 64 (1995), 89-100.

[6] H. Liu, Extremal graphs for blow-ups of cycles and trees, *Electronic Journal of Combinatorics.* 20(1) (2013), 65.
[7] W. Mantel, Problem 28, *Wiskundige Opgaven*. **10** (1907), 60-61.

[8] Z. Ni, L. Kang, E. Shan and H. Zhu, Extremal graphs for blow-ups of kxeypings, *Graphs and Combinatorics*. **36** (2020), 1827-1853.

[9] M. Simonovits, A method for solving extremal problems in graph theory, stability problems, *Theory of Graphs (Proc. Colloq., Tihany)* (1968), 279-319.

[10] M. Simonovits, Extremal graph problems with symmetrical extremal graphs: additional chromatic conditions, *Discrete Mathematics*. **7** (1974), 349-376.

[11] P. Turán, On an extremal problem in graph theory, *Mat. Fiz. Lapok*. **48** (1941), 436-452.

[12] A. Wang, X. Hou, B. Liu and Y. Ma, The Turán number for the edge blow-up of trees, *Discrete Mathematics*. **344** (2021), 112627.

[13] L. Yuan, Extremal graphs for edge blow-up of graphs, *Journal of Combinatorial Theory. Series B*. **152** (2022), 379-398.

[14] L. Yuan, Extremal graphs for odd wheels, *Journal of Graph Theory*. **98** (2021) 691-707.