Unexpected 3+ valence of iron in FeO$_2$, a geologically important material lying “in between” oxides and peroxides

Sergey S. Streltsov1,2, Alexey O. Shorikov1,2, Sergey L. Skornyakov1,2, Alexander I. Poteryaev1 & Daniel I. Khomskii3

Recent discovery of the pyrite FeO$_2$, which can be an important ingredient of the Earth’s lower mantle and which in particular may serve as an extra source of water in the Earth’s interior, opens new perspectives for geophysics and geochemistry, but this is also an extremely interesting material from physical point of view. We found that in contrast to naive expectations Fe is nearly 3+ in this material, which strongly affects its magnetic properties and makes it qualitatively different from well known sulfide analogue - FeS$_2$. Doping, which is most likely to occur in the Earth’s mantle, makes FeO$_2$ much more magnetic. In addition we show that unique electronic structure places FeO$_2$ “in between” the usual dioxides and peroxides making this system interesting both for physics and solid state chemistry.

Recent discovery of a new iron oxide FeO$_2$, which does not exist at normal conditions, but can be stabilized at a very high pressure (76 GPa) and temperature (1800 K)1 may dramatically shift our understanding of how Earth is formed and what was a source of oxygen and water in interior of our planet. FeO$_2$ is expected to appear in the Earth’s lower mantle below 1800 km, according to1 in the pyrite structure, and start to dominate over other Fe oxides at higher pressures. The composition of the mantle is extremely important for the seismology, since it determines convection processes. There were proposed a number of structural models based on different ratio of ferropericlase (a solid solution of FeO and MgO), bridgmanite (Mg,Fe,Al)(Al,Fe,Si)O$_3$, (Mg,Fe)$_2$SiO$_4$ olivine and other compounds$^{2-5}$, but none of them took into account the existence of FeO$_2$. Moreover, physical properties of this material are completely unexplored. One might expect that they can be highly unusual, since on one hand Fe ion in FeO$_2$ formally should have exceptionally high oxidation state, 4+. Since the O-O distance in FeO$_2$ is 1.89 Å it is not likely that there can be a strong bonding between the O ions, like in molecular oxygen (where the O-O bond distance is 1.21 Å) and one may indeed expect that Fe ions will adopt 4+ valence state and then FeO$_2$ is in a negative charge transfer regime$^{6-9}$. This may result in self-doping10 and also to bond or charge disproportionation11,12, inversion of the crystal field splitting13 or nontrivial magnetic structures. On the other hand, the presence of the ligand-ligand dimers may also strongly affect physical properties of FeO$_2$ as it does in the actual pyrite FeS$_2$ (“the fool’s gold”). However, O-O distance in FeO$_2$ is 1.89 Å, much larger than in molecular oxygen (1.21 Å) or (O$_2$)$^{2-}$ ion as in the usual peroxides like BaO$_2$, MgO$_2$ (1.49 Å).

Iron peroxide was found to have the same pyrite crystal structure as FeS$_2$, see Fig. 1a, and there is not much difference between oxygen and sulfur from chemical point of view. Thus, it is tempting to consider FeO$_2$ as a complete analogue of FeS$_2$. Since FeS$_2$ is known to be a diamagnetic insulator with Fe ions adopting 2+ valence state14, one might expect that the same is true for FeO$_2$. The first indication that such a picture is oversimplified follows from the recent theoretical study14, where FeO$_2$ was found to be metallic at the pressures where it does exist.

In the present paper we describe electronic and magnetic properties of FeO$_2$. We show that FeO$_2$ is completely different from FeS$_2$, and so are the physical properties of these compounds. The oxidation state of Fe ion in FeO$_2$ is not 2+, as in FeS$_2$, but close to 3+. This strongly affects magnetic properties of FeO$_2$, since having 3d^5 electronic configuration, Fe$^{3+}$ ions may have a magnetic moment. Our comprehensive theoretical calculations using

1M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia. 2Ural Federal University named after the first President of Russia B.N. Yeltsin, Theoretical Physics and Applied Mathematics Department, Ekaterinburg, Russia. 3II. Physikalisches Institut, Universität zu Köln, Köln, Germany. Correspondence and requests for materials should be addressed to S.S.S. (email: streltsov@imp.uran.ru)
Figure 1. (a) Crystal structure of FeO₂ and FeS₂ can be visualized as a rocksalt structure like FeO with O ions replaced by S₂ (in FeS₂) or O₂ (in FeO₂) dimers. Fe ions are yellow, while O (or S) ions, forming dimers, are shown in blue. (b) and (c) Schematic band structure of FeS₂ and FeO₂.

combination of the density functional and dynamical mean-field theories (DFT + DMFT) demonstrate that there is indeed a highly nontrivial temperature dependence of the magnetic susceptibility in FeO₂. We found out that the origin of the difference in magnetic properties between FeO₂ and FeS₂ and of the metallic character of FeO₂ is a much smaller bonding-antibonding splitting for ligand σ orbitals in the peroxide dimer O₂, as compared with S₂, and a total shift of oxygen 2p levels relative to 3p levels of sulfur. This feature of the electronic structure is rather general and important for other oxides, which can exist in Earth’s mantle or in inner parts of exoplanets.

We start with FeS₂ electronic and magnetic properties of which are well understood. As discussed above, one might naively expect to have Fe⁴⁺ ions with 3d⁶ electronic configuration in FeS₂, since usually sulfur has a valence 2-. This would shift Fe 3d band very low in energy, below S 3p, and would result in a self-doping and a metallic conductivity⁶, which strongly disagrees with the experimental fact that FeS₂ is a semiconductor⁷,⁸. The explanation of this contradiction lies in the specific features of its crystal structure, namely the presence of the S₂ dimers. There are sulfurs 3p orbitals, which are directed exactly to each other in these dimers. They form such a strong bond that the antibonding σ* orbitals turn out to be higher in energy than the Fe e_g orbitals, see Fig. 1(b2). This leads to a formal valency of sulfur 1− (or to (S₂)²⁺ dimers), and Fe ions become 2+ with the 3d⁶ electronic configuration. Fe ions are in the ligand octahedra in pyrite structure. Strong crystal field splitting between the t₂g and e_g bands (∼3.5 eV in case of FeS₂, see Supplemental materials - SM18) counteracts the Hund’s rule and stabilizes the low spin configuration with all six 3d electrons occupying t₂g sub-shell. This makes FeS₂ diamagnetic and insulating⁹.

The electronic structure of FeO₂ is rather different from a sulfide counterpart. We sketched how this difference appears in Fig. 1c (while the results of the actual calculations performed within generalized gradient approximation, GGA, as well as the details of such calculations are presented in Fig. S1 in SM18), starting from the hypothetical FeO₂ having FCC lattice (like NaCl), where O ions do not form dimers and where there are basically three combinations, which are labeled as t₂g⁰ and e_g⁰ in Fig. 1(c1) respectively. The density of states (DOS) plot in the vicinity of the Fermi energy as obtained in conventional GGA is presented in Fig. 2(a). These t₂g + σ* and t₂g − σ* bands are centered at ∼2 and 1 eV in Fig. 2(a). Note that these bands have nearly the same contributions from Fe t₂g and O 2p (σ*) states. Moreover, it is clear that peaks below and above the Fermi level are not bonding and antibonding, since there is no contribution from O 2p band below E_F. These are nonbonding and antibonding states.

This salient feature of FeO₂, that the antibonding σ* orbital falls exactly into the Fe t₂g band, determines the main physical properties of FeO₂, which are very different from FeS₂, see Table 1. First of all, since there appear additional bands at the Fermi level, while the number of electrons is the same, FeO₂ is not a band insulator (as FeS₂), but a metal.

There are eight t₂g bands, each doubly degenerate with respect to spin, below the Fermi energy for the unit cell consisting of four formula units (f.u.), which are occupied by 4 electrons per each Fe ion (Fig. S1 in SM18). In addition there are four bonding t₂g + σ* bands with nearly 50% contribution of the Fe t₂g states (see partial DOS presented in Fig. 2), which adds approximately one more electron to each Fe ions. As a result Fe ions in FeO₂ are nearly 3+ with 3d⁶ electronic configuration, while in FeS₂ they are 2+.

In contrast to Fe$^{2+}$, which is nonmagnetic with t_{2g}^6 configuration at large pressure, Fe$^{3+}$ ion even in the low-spin state has a magnetic moment. Moreover, the oxygen σ^* states are half-filled in FeO$_2$, and thus they can also contribute to the total magnetic moment.

Second, the Fermi level appears to be in a very specific position. On one hand it is almost in the pseudogap, so that the Stoner criterion for ferromagnetism (FM) is formally not fulfilled, and this is the reason why magnetic solutions do not survive in the GGA (we also checked stability of magnetic solutions at other q-vectors, corresponding to AFM-I and AFM-II magnetic structure of FCC lattice of Fe ions20). On the other hand it is just on the border line between bands corresponding to localized t_{2g} electrons and antibonding molecular σ^* states. This is very important for magnetic properties of stoichiometric and non-stoichiometric FeO$_2$ as we will show later.

While conventional DFT is exceptionally useful for understanding of the basics of the electronic structure in FeO$_2$, it does not take into account strong Coulomb correlations, which are known to be important for description of the physical properties of many transition metal compounds. We treated correlation effects using the DFT + DMFT method21. Hubbard U was calculated to be 6 eV, $J_0 = 0.9$ eV, other details can be found in SM18.

Correlation effects manifest themselves basically via the renormalization of the GGA DOS near the Fermi level, $m^*/m = 1.2 - 1.6$ (depending on the orbital), resulting spectral functions are shown in Fig. S2 of SM. FeO$_2$ is a bad metal for experimental pressure of 76 GPa. There are 4.8 electrons in the t_{2g} shell, which certifies that Fe is 3^+ in FeO$_2$. The local magnetic moment ($\sqrt{m^2_{2g}}$) was found to be $1.5\mu_B$. The contribution from the t_{2g} orbitals to the total local magnetic moment, $\langle m^2_{2g}\rangle = 1.08\mu_B^2$, exactly corresponds to the low spin state of $3d^5$ configuration. There is, however, also an additional contribution, $\langle m^2_{eg}\rangle = 1.04\mu_B^2$, due to a partial polarization of the ligand electrons residing e_g shell of transition metal (see detailed discussion in Supplemental materials). In spite of the fact that there are magnetic moments on Fe ions, they do not order, so that FeO$_2$ stays paramagnetic down to 190 K (we checked FM and AFM-I). Even lower temperatures can be reached in our calculations by using a truncated Hamiltonian, which includes only Fe t_{2g} and O 2p states (this choice of impurity orbitals gives the same spectral functions in vicinity of the Fermi level and very similar $\chi(T)$ as full 3d Hamiltonian). In this case we were able to go down to 60 K, and again FeO$_2$ does not order in our calculations even at these temperatures. This may seem somewhat surprising since having a rather large bandwidth (and hence hopping parameters) one might expect large superexchange interaction between Fe ions, if spins would have been localized.

In order to estimate the degree of the spin localization we calculated the analytical continuation on real frequency of the spin-spin correlator $S' (\Omega) = \int_0^{1/\hbar_T} d\tau \langle S'(\tau)S(0)\rangle \exp^{-\Omega\tau}$, where τ is an imaginary time, see right panel in Fig. 322,23. The width of this correlator is inversely proportional to the lifetime of a magnetic moment. For example in a pure metallic iron, where $t_{2g} = e_g$ crystal field splitting is small, iron ion is in a high-spin state. The magnetic moment can be considered to be localized, with the full width at half maximum (FWHM) of about 0.2 eV for the less localized γ-Fe and 0.1 eV for the more localized α-Fe22,24. From the inset of

Fe valence	Electric properties	Magnetic properties	
FeS$_2$	2+	insulator	diamagnetic
FeO$_2$	3+	metal	paramagnetic

Table 1. Comparison of different physical properties of FeS$_2$ and FeO$_2$, as follows from the DFT and DFT + DMFT calculations.

In order to estimate the degree of the spin localization we calculated the analytical continuation on real frequency of the spin-spin correlator $S' (\Omega) = \int_0^{1/\hbar_T} d\tau \langle S'(\tau)S(0)\rangle \exp^{-\Omega\tau}$, where τ is an imaginary time, see right panel in Fig. 322,23. The width of this correlator is inversely proportional to the lifetime of a magnetic moment. For example in a pure metallic iron, where $t_{2g} = e_g$ crystal field splitting is small, iron ion is in a high-spin state. The magnetic moment can be considered to be localized, with the full width at half maximum (FWHM) of about 0.2 eV for the less localized γ-Fe and 0.1 eV for the more localized α-Fe22,24. From the inset of

Figure 2. Total and partial density of states (DOS) in the nonmagnetic GGA calculations (a) for FeO$_2$ and (b) FeO$_2$ doped by Na (25%). Fermi energy is in zero.

Fe valence	Electric properties	Magnetic properties	
FeS$_2$	2+	insulator	diamagnetic
FeO$_2$	3+	metal	paramagnetic

Table 1. Comparison of different physical properties of FeS$_2$ and FeO$_2$, as follows from the DFT and DFT + DMFT calculations.
which resembles the behaviour of the pnictides\(^{25}\). Detailed analysis of these data\(^{18}\) shows that such an unusual state. At low temperature the particle-hole excitations occur within the localized Fe and O states. The direct calculation of orbital would significantly nontrivial temperature dependence. Namely, with \(T \) as a response to an external magnetic field, which is introduced via Zeeman splitting the system: unoccupied magnetic moments on Fe ions were found to be \(\sim 0.4 \mu_B \). In NaO\(_2\) superoxide the O\(_2^-\) molecule is 1-, see Fig. 4(b) and also ref.\(^ {27} \), and moments can hardly be considered as localized.

Fig. 3 one may see that in FeO\(_2\), FWHM of the spin-spin correlator is \(\sim 3 \) eV, which demonstrates that the magnetic moments can hardly be considered as localized.

In DMFT one can calculate the uniform magnetic susceptibility \(\chi_u(T) \) as a response to an external magnetic field, which is introduced via Zeeman splitting \(\delta E \) in the Hamiltonian:

\[
\chi_u(T) = \frac{\delta m}{\delta H} = \frac{n^\uparrow - n^\downarrow}{\delta E} \mu_B^2.
\]

Here \(m \) is the magnetization, \(n^\uparrow \) and \(n^\downarrow \) are total occupations for spin up and down. This direct calculation of the uniform magnetic susceptibility, \(\chi_u(T) \), shows that it has a nontrivial temperature dependence. Namely, with increasing temperature \(\chi_u \) first decreases (for \(T < T^* = 750 \) K), and then starts to increase almost linearly above \(T^* \), which resembles the behaviour of the pnictides\(^ {25} \). Detailed analysis of these data\(^ {18} \) shows that such an unusual 3D system behavior is due to a specific position of the Fermi level in between the localized \(t_{2g} \) and antibonding \(t_{2g} - \sigma^*_g \) states. At low temperature the particle-hole excitations occur within the localized Fe \(t_{2g} \) states and \(\chi_u(T) \) goes down with temperature, resembling the Curie-Weiss law. Increasing temperature further (\(T > T^* \) K), we start to excite molecular-like \(t_{2g} - \sigma^*_g \) states, which leads to a completely different temperature dependence.

This means that the electron and hole doping, which is likely to occur in Earth’s mantle, would result in a very different temperature dependences of magnetic susceptibility, since we shift the Fermi level to the peaks corresponding to qualitatively different states (localized and molecular-like). There are many different elements besides Fe (5.8%) and O (44.8%) in the Earth’s mantle, and one may expect that Mg (~22.8%), Si (~21.5%), Ca (~2.3%) or Na (0.3%)\(^6\) may dope FeO\(_2\) and change its properties dramatically. Indeed, the Fermi level in stoichiometric FeO\(_2\) is on the steep slope of a large peak in DOS, and changing its position we strongly affect both magnetic and electronic properties.

The electron doping will shift the Fermi level to antibonding molecular-like \(t_{2g} - \sigma^*_g \) states, which is unlikely to provide a large magnetic response in the simplest rigid-band shift model. Moreover, by doing this we transform Fe ion into the nonmagnetic low-spin \(3d^6 \) configuration, corresponding to the 2+ oxidation state, so that only a small electron doping can increase magnetic moment. In addition the electron doping is rather unfavourable from structural point of view: the population of the strongly antibonding \(t_{2g} - \sigma^*_g \) orbital would significantly weaken O\(_2\) dimers, existing in the pyrite structure. Thus, at first sight the hole doping is expected to be much more effective for making FeO\(_2\) magnetic: the Fermi level would then be shifted to the large peak corresponding to localized Fe \(t_{2g} \) electrons.

We checked different types of hole and electron dopings by the GGA calculations (for ferromagnetic order) performing full structural optimization, starting from the pyrite structure and substituting 25% of Fe by different ions such ions as Mg, Si, and Na. Mg doping formally changes valence of the peroxide O\(_2\) group from 3- in FeO\(_2\) to 2- in MgO\(_2\), (see Fig. 4(c) and (d)), but it has no influence either on band structure or on magnetic properties of the system: unoccupied \(\sigma^\ast \) band corresponding to the Mg(O\(_2\))^\(2^-\) unit appears just above the Fermi level and does not provide any holes to the Fe ions. In NaO\(_2\) peroxide the O\(_2^-\) ”molecule” is 1-, see Fig. 4(b) and also ref.\(^ {27} \), and hence by Na we depopulate O \(\pi^\ast \) bond, which will be immediately refilled by the Fe \(t_{2g} \) electrons. This leads to the shift of the Fermi level downwards, see Fig. 2b, and results in the magnetic instability. In the GGA calculations the magnetic moments on Fe ions were found to be \(\sim -0.4 \mu_B \). Si doping keeps FeO\(_2\):Si nonmagnetic, but only in unre-

Thus, we see that there are plenty of possibilities for FeO\(_2\) to be magnetic due to different types of doping or because of non-stoichiometry. It is hard to expect, however, that FeO\(_2\) would order magnetically in the Earth’s mantle, because of very high temperatures, \(\sim 1000–2000 \) K, but even in a paramagnetic state it may still provide local magnetic moments. The direct DFT + DMFT calculations within the rigid-band shift approximation (as one
Figure 4. Occupation of oxygen 2p orbitals in different compounds with O₂ dimers. The system gains (loses) energy by occupation of weak bonding (red antibonding) bonds.

can see from Fig. 2b, the band structure does not change dramatically with doping) show the drastic increase of the uniform magnetic susceptibility with hole doping, see Fig. 3, it is now Curie-Weiss like in a wide temperature range and the spin-spin correlation function demonstrates an increase of the local magnetic moments lifetime (i.e. decrease of the width of the correlator, see inset in Fig. 3) with doping.

In addition to a possible importance of our findings for geoscience, FeO₂ represents an exceptional interest also for physics and solid state chemistry, since it lies on the borderline between the stable dioxides of transition metals, such as TiO₂, VO₂, CrO₂ etc., and equally stable oxides and sulfides having pyrite structure, such as NaO₂, KO₂, FeS₂ etc. FeO₂ may thus be considered as a “bridge” between dioxides and peroxides/disulfides, and it displays properties of both.

There is a well known concept in physics, introduced by Zaanen, Sawatzky and Allen 9, that going along a row in the periodic table from the left to the right, or increasing valence of a metal in a transition metal oxide, we go over from the Mott insulator, where the band gap is defined by Hubbard U in the periodic table from the left to the right, or increasing valence of a metal in a transition metal oxide, we go over from the Mott insulator, where the band gap is defined by Hubbard U, to a charge-transfer regime, where it

5. Wang, X., Tsuchiya, T. & Hase, A. Computational support for a pyrolitic lower mantle containing ferric iron. Nature Geosci 8, 556–559, https://doi.org/10.1038/ngeo2458 (2015).
6. Khomskii, D. Unusual valence, negative charge-transfer gaps and self-doping in transition-metal compounds. *Lithuanian Journal of Physics* 37, 65 (1997).

7. Sawatzky, G., Green, R., Mall, E., Bc, V. & T, C. The Explicit Role of Anion States in High-Valence Metal OXides. In Pavarini, E., Koch, E., van den Brink, J. & Sawatzky, G. (eds.) *Quantum Materials: Experiments and Theory Modeling and Simulation*, vol. 6, 1–36 (Verlag des Forschungszentrum, Jülich, 2016).

8. Khomskii, D. I. *Transition Metal Compounds* (Cambridge University Press, 2014).

9. Zaamen, J., Sawatzky, G. & Allen, J. Band gaps and electronic structure of transition-metal compounds. *Physical Review Letters* 55, 418–421, https://doi.org/10.1103/PhysRevLett.55.418 (1985).

10. Korotin, M. A., Anisimov, V. I., Khomskii, D. I. & Sawatzky, G. A. CrO$_2$: A Self-Doped Double Exchange Ferromagnet. *Physical Review Letters* 80, 4305, https://doi.org/10.1103/PhysRevLett.80.4305 (1998).

11. Zaanen, J., Sawatzky, G. & Allen, J. Band gaps and electronic structure of transition-metal compounds. *Physical Review Letters* 80, 4305, https://doi.org/10.1103/PhysRevLett.80.4305 (1998).

12. Eyert, V., Höck, K.-H., Fiechter, S. & Tributsch, H. Electronic structure of FeS$_2$: The crucial role of electron-lattice interaction. *Physical Review B* 95, 075144, https://doi.org/10.1103/PhysRevB.95.075144 (2017).

13. Burgardt, P. & Seehra, M. S. Magnetic susceptibility of iron pyrite (FeS$_2$) between 4.2 and 620 K. *Solid State Communications* 22, 153 (1977).

14. Bullett, D. W., Khan, M. A., Schlegel, A. & Wachter, P. Optical properties, phonons and electronic structure of iron pyrite (FeS$_2$). *J. Phys. C: Solid State Phys.* 9, 3363 (1976).

15. Ferrer, I., Nevskaia, D. M., las Heras, C. & Sanchez, C. About the band gap nature of FeS$_2$ as determined from optical and photoelectrochemical measurements. *Solid State Communications* 74, 913–916 (1990).

16. See Supplemental materials.

17. Benfatto, J. E., Höck, K.-H., Fiechter, S. & Tributsch, H. Electronic structure of FeS$_2$: The crucial role of electron-lattice interaction. *Physical Review B* 57, 6350–6359, https://doi.org/10.1103/PhysRevB.57.6350 (1998).

18. Smart, J. S. *Effective Field Theories of Magnetism*. Studies in physics and chemistry, 216 (Saunders, 1966).

19. Katanin, A. A., Poteryaev, A. I., Korotin, M. A., Anokhin, A. O. & Kotliar, G. First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory. *Journal of Physics: Condensed Matter* 9, 7359 (1997). http://iopscience.iop.org/0953-8984/9/35/010

20. Katanin, A. A. et al. Orbital-selective formation of local moments in alpha-iron: First-principles route to an effective model. *Physical Review B* - Condensed Matter and Materials Physics 81, 045117, https://doi.org/10.1103/PhysRevB.81.045117 (2010).

21. Georges, A., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. *Reviews of Modern Physics* 68, 13–125, https://doi.org/10.1103/RevModPhys.68.13 (1996).

22. Skornyakov, S. L., Katanin, A. A. & Anisimov, V. I. Magnetic fluctuations and effective magnetic moments in γ-iron due to electronic structure peculiarities. *Phys. Rev. B* 88, 155120, https://doi.org/10.1103/PhysRevB.88.155120 (2013).

23. Skornyakov, S. L., Katanin, A. A. & Anisimov, V. I. Linear-Temperature Dependence of Static Magnetic Susceptibility in LaFeAsO from Dynamical Mean-Field Theory. *Physical Rev. Lett.* 106, 47007, https://doi.org/10.1103/PhysRevLett.106.47007 (2011).

24. Jackson, I. J., Nevskaia, D. M., las Heras, C. & Sanchez, C. About the band gap nature of FeS$_2$ as determined from optical and photoelectrochemical measurements. *Solid State Communications* 74, 913–916 (1990).

25. Vannerberg, N.-G. The Formation and Structure of Magnesium Peroxide. *CrysEngComm* 16, 522, https://doi.org/10.1039/b000000a (2014).

26. Vannerberg, N.-G. The Formation and Structure of Magnesium Peroxide. *Phys. C* Solid State Phys. 88, 155120, https://doi.org/10.1103/PhysRevB.88.155120 (2013).

27. Skornyakov, S. L., Katanin, A. A. & Anisimov, V. I. Linear-Temperature Dependence of Static Magnetic Susceptibility in LaFeAsO from Dynamical Mean-Field Theory. *Physical Rev. Lett.* 106, 47007, https://doi.org/10.1103/PhysRevLett.106.47007 (2011).

28. Skornyakov, S. L., Katanin, A. A. & Anisimov, V. I. Linear-Temperature Dependence of Static Magnetic Susceptibility in LaFeAsO from Dynamical Mean-Field Theory. *Physical Rev. Lett.* 106, 47007, https://doi.org/10.1103/PhysRevLett.106.47007 (2011).

29. Skornyakov, S. L., Katanin, A. A. & Anisimov, V. I. Linear-Temperature Dependence of Static Magnetic Susceptibility in LaFeAsO from Dynamical Mean-Field Theory. *Physical Rev. Lett.* 106, 47007, https://doi.org/10.1103/PhysRevLett.106.47007 (2011).

30. Skornyakov, S. L., Katanin, A. A. & Anisimov, V. I. Linear-Temperature Dependence of Static Magnetic Susceptibility in LaFeAsO from Dynamical Mean-Field Theory. *Physical Rev. Lett.* 106, 47007, https://doi.org/10.1103/PhysRevLett.106.47007 (2011).

Acknowledgements

We thank V. Irkhin and I. Mazin for various stimulating discussions. The study of electronic and magnetic properties of FeO$_2$ performed by S.V. S. was supported by the grant of the Russian Science Foundation (project no. 17-12-01207), while work of D.I.Kh. was supported by the Deutsch Forschungsgemeinschaft through the CRC 1238 program.

Author Contributions

S.V. conceived the model describing electronic structures of FeO$_2$ and FeS$_2$. S.V. and D.I.Kh. discussed and analysed implications of features of the electronic structure for physical properties of FeO$_2$. The DFT calculations were performed by S.V. and A.O.Sh. The DFT + DMFT calculations were carried out by A.O.Sh.; A.I.P., A.O.Sh., S.V., and S.L.S. analysed magnetic properties of FeO$_2$. S.V. and D.I.Kh. wrote the manuscript with help of all co-authors.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-13312-4.

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.