Red Blood Cell Distribution Width is Independently Correlated With Diurnal QTc Variation in Patients With Coronary Heart Disease

Yuanmin Li, MD, Qiang Xiao, MD, Wei Zeng, MD, Huimei Guo, MD, Ke Jiang, MD, Ming Zhong, PhD, and Jinquan Zhong, MD

Abstract: To investigate the relationship between red blood cell distribution width (RDW) and diurnal corrected QT (QTc) variation in patients with coronary heart disease.

This retrospective study included 203 patients who underwent coronary angiography between February 2013 and June 2014. RDW values and dynamic electrocardiography (Holter) results were collected to investigate the relationship between RDW and diurnal QTc variation.

Patients were separated into three groups (A, B, and C) by binning their RDW values in an ascending order. RDW values, coronary artery scores and diurnal QTc variations were significantly different among these groups ($P < 0.05$). While coronary artery scores gradually rose with increased RDW, diurnal QTc variation decreased. Pearson’s correlation analysis was applied to control for confounding factors, and multiple correlation analysis showed that coronary artery score was positively correlated with RDW ($r = 0.130$, $P = 0.020$), while it was not correlated with the diurnal QTc variation ($r = -0.226$, $P = 0.681$). RDW was negatively correlated with diurnal QTc variation ($r = -0.197$, $P = 0.035$).

RDW is independently associated with diurnal QTc variation in patients with coronary heart disease.

(Observational Study)
by two cardiovascular specialists. The data included patients’
disease histories: age, gender, diabetes, hypertension, hyperlipi-
demia, smoking, and laboratory results which included: RDW,
total cholesterol, high-density lipoprotein cholesterol (HDL-C),
low-density lipoprotein cholesterol (LDL-C), triglycerides, fast-
ing plasma glucose and clinical indicators (severity of coronary
disease). For all patients, 3 ml fasting blood was collected from
the medial cubital vein and stored in Eppendorf tubes. An
automatic hematology analyzer was used to test RDW, and a
Hitachi 7170-automatic biochemical analyzer and its correspond-
ing reagents were used to measure fasting plasma glucose, total
cholesterol, triglycerides, HDL-C, LDL-C and other indicators.
Based on the RWD grouping method by Özcan et al (2013)10
cases were divided into three groups (A, B and C, respectively),
by sorting the RDW values in an ascending order.

Dynamic Electrocardiography

Dynamic electrocardiography was conducted on all study
participants during hospitalization, and the data were recorded
using a MDS 300—4A ECG recorder (DMS Corporation, USA).
The playback recordings were performed by professionals using
software for advanced dynamic analysis of electrocardiograms by
Cardioscan Luxury (Tim software (Beijing) Limited). Artifacts or
interference were eliminated manually, and related data were
analyzed and calculated. The analysis process strictly followed
the single-blind principle, whereby the data analyzers were
blinded to the case grouping, and the clinicians were blinded
to the data analysis. Diurnal QTc calculations were done auto-
matically by the analysis software, including correction of QT
intervals using Bazett’s formula (QTc = QTRR). Daytime was set
from 06:00 to 22:00 and nighttime from 22:00 to 06:00, and the
diurnal QTc variation of each patient was obtained by subtracting
mean daytime QTc from mean nighttime QTc.

Coronary Angiography and Interpretation of
Results

All study participants underwent CAG during hospital-
ization, in which the Seldinger method for radial artery cath-
terization was adopted. The CAG procedure and the evaluation
of results were performed by two to three cardiovascular
specialists, and the Gensini grading method was applied to
assess the severity of coronary artery stenosis and the blood
vessels involved11 (Table 1)

![Table 1: Gensini Grading Method](https://www.md-journal.com)

Stenosis Score, %	1–25	26–50	51–75	76–90	91–99	100 (fully occluded)
Stenosis Severity Score	1	2	4	8	16	32
Location	Left main coronary artery	Left anterior descending or proximal circumflex	Medial left anterior descending	Distal left anterior descending	Medial and distal left circumflex	Right coronary artery
Lesion Score	5	2.5	1.5	1	1	0.5

Score of each lesion was stenosis severity score multiplied by lesion score, and the score of each patient was sum of each item score.

Statistical Analysis

The measurement data were expressed as mean ± standard
declaration, and measurement data were expressed as frequency or
percentages. Independent samples t-test was used to compare
the measurement data between two groups, and variance analysis was
used for comparison among groups. Fisher’s Least Significant
Difference and Student–Newman–Keuls tests were used for
multiple comparisons of mean values. Pearson’s correlation
analysis was used to analyze correlation of coronary artery score,
RDW and diurnal QTc variation. Receiver operating character-
istic (ROC) curves were used to determine the optimal threshold
RDW value for the diagnosis of acute coronary syndrome, and
areas under ROC curves and 95% confidence intervals (CI) were
calculated to compare the diagnostic efficiencies. All statistical
analyses were conducted using SPSS 20.0 software, and P < 0.05
was considered statistically significant.

RESULTS

Comparison of Baseline Data

By sorting RDW values in an ascending order, the patients
were divided into three groups, denoted as A, B and C groups.
The sex ratio, age, blood pressure, blood glucose, blood lipids,
night QTc and average heartbeat had no significant differences
among these groups (P > 0.05). However, the RDW value,
coronary artery score and diurnal QTc variation of these groups
were significantly different (P < 0.05). The coronary artery
score (Gensini score) gradually increased with RDW, while
diurnal QTc variation decreased with RDW value, as illustrated
in Table 2.

Pearson’s Correlation Analysis

Pearson’s correlation analysis was applied to assess
possible effects of other factors, and then multiple correlations
among coronary artery score, RDW, and diurnal QTc variation
were analyzed. Results showed that the coronary artery score
was positively correlated with RDW (r = 0.130, P = 0.020) but
was not correlated with the diurnal QTc variation (r = 0.226,
P = 0.681), while the RDW was negatively correlated with the
diurnal QTc variation (r = 0.197, P = 0.035), as shown in
Figure 1.

Selection of the Best Cutoff Value for RDW in
Acute Coronary Syndrome Patients

The RDW values in patients with or without acute coron-
ary syndrome were analyzed to determine the predictive value
of RDW for the diagnosis of acute coronary syndrome. The
ROCs curves suggest that RDW (area under the curve (AUC)
0.816 [95% CI 0.752–0.880]) has better sensitivity and speci-
ficity for predicting acute coronary syndrome than diurnal QTc
variation (AUC 0.570 [95% CI 0.490–0.651]) (Figure 2).

DISCUSSION

In the present study we explored a potential relationship
between the RDW and the diurnal QTc variations and its utility
in diagnosing and prognosticating CHD. Validating our dataset,
we confirmed the previous finding4,12 that the coronary artery
score was positively correlated with RDW. Several previous
 studies have shown that the RDW predictor is independent of
hemoglobin levels, indicating that the poor prognosis of cardio-
vacular disease associated with increased RDW may not be
related to anemia. The mechanism of RDW elevation in patients
with CHD is still unclear, but was proposed to be related to chronic inflammation, oxidative stress, renal dysfunction, and neuroendocrine system activation.13–19 Some studies have suggested that long-term activation of the neuroendocrine system can suppress bone marrow hematopoiesis and result in increased RDW. It was suspected that in CHD patients, increased RDW is associated with myocardial ischemia activating the sympathetic nervous system, which partially reflects the extent of myocardial ischemia. But this theory has not been supported by clinical and laboratory evidence. Recently, Özcan et al10 studied the correlation between heart rate variability (HRV) and RDW by conducting 24 h dynamic ECG examination and detecting RDW in blood samples of 180 patients with confirmed systolic heart failure. They found that RDW was independently negatively correlated with parameters of heart rate variability in patients with heart failure, where HRV parameters (SDNN, SDANN, RMSSD) decreased with increase in RDW, suggesting that RDW elevation coincided with autonomic nerve dysfunction.

Table 2. Baseline Data of the 3 Groups

	Group A: n = 68	Group B: n = 68	Group C: n = 67	P (ANOVA)
RDW	11.69 ± 0.579\%	12.86 ± 0.241\%	14.06 ± 0.888\%	< 0.001
Male/female	42/26	44/24	44/23	0.955
Age, y	61.88 ± 8.652	59.23 ± 8.585	60.82 ± 8.665	0.197
Systolic blood pressure, mmHg	133.76 ± 23.18	137.86 ± 19.42	138.36 ± 20.60	0.382
Diastolic blood pressure, mmHg	82.38 ± 13.87	85.19 ± 16.93	82.15 ± 15.57	0.445
Low density lipoprotein, mmol/L	2.60 ± 0.74	2.67 ± 0.67	2.67 ± 0.83	0.856
Triglycerides, mmol/L	1.74 ± 1.56	1.61 ± 0.91	1.86 ± 1.05	0.497
High density lipoprotein, mmol/L	1.21 ± 0.28	1.25 ± 0.35	1.12 ± 0.23	0.051
Fasting plasma glucose, mmol/L	6.41 ± 0.95	6.38 ± 2.04	6.45 ± 3.52	0.091
Total cholesterol, mmol/L	4.54 ± 0.90	4.68 ± 1.02	4.59 ± 1.08	0.728
Diurnal QTc variation	−0.82 ± 9.43	−2.66 ± 7.08	−3.37 ± 9.37	0.021
Night QTc variation	93.59 ± 31.18	105.84 ± 70.89	116.02 ± 71.59	0.106
Average heart rate, bpm	67.41 ± 7.94	65.39 ± 7.34	68.48 ± 9.39	0.088
Gensini score (coronary artery score)	37.68 ± 30.87	39.45 ± 33.23	43.04 ± 36.42	0.036

FIGURE 1. Correlation between diurnal QTc variation and RDW.

FIGURE 2. Receiver operating characteristic curve (ROC) analysis showing that RWD predicts the incidence of coronary heart disease patients.

Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.
Although QTc is normalized for heart rate, it can still reflect the status of autonomic nerve function to a certain extent. Normal individuals exhibit activated sympathetic nerves, weakened vagal nerves, faster heart rate and shorter QTc at daytime. The opposite pattern occurs during the night thus resulting in negative diurnal QTc variation. Myocardial ischemia in patients with coronary artery disease may lead to impaired autonomic nerve function and changes in cardiac ion channel properties, resulting in prolonged duration and increased dispersion of ventricular repolarization, thereby inducing malignant ventricular arrhythmia. Animal experiments and clinical studies have confirmed that diurnal QTc variation in subjects with CHD is more significant than in the healthy population.20–22 The present study showed that increased RDW values were related with the diurnal QTc variation decreased, which was the first reported. We also found that the differences in the night QTc variation among the three groups was not significant, indicating that the increased diurnal QTc variation may be related to increased sympathetic activity during daytime, especially its sudden increase in early morning.23

This retrospective study was conducted to explore the relationship of the RDW and diurnal QTc variation in patients with CHD, and the two indicators were found to be negatively correlated ($r = -0.197, P = 0.035$). With increased RDW values, the diurnal QTc variation decreased, indicating that increased RDW may be accompanied by autonomic nerve dysfunction in these patients.

After controlling the effects of other factors, Pearson’s correlation analysis showed that there was no correlation between coronary artery score and diurnal QTc variation ($r = -0.226, P = 0.681$), indicating that there could be more complex mechanisms governing the severity of coronary stenosis and autonomic nerve dysfunction. Limitations of this retrospective study include lack of repeated RDW data collection, possible errors in QTc measurement, and the relatively small sample size. This is the first report of a correlation between RDW and diurnal QTc variation, and further clinical and basic studies are required to substantiate this finding.

CONCLUSIONS

In conclusion, increased RDW is independently associated with diurnal QTc variation in patients with CHD. An easily obtained, cheap RDW test may aid in the diagnosis and prognostic assessment of CHD.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the contributions of Dr. Haifeng Hou to data analysis.

REFERENCES

1. Dzieciatkowski T, Przybylski M, Rusicka P, et al. Usefulness of wide-range microbiological diagnostics proceedings in case of simultaneous infection with four herpesviruses after allogeneic haematopoetic stem cell transplantation—a case report. Med Dosw Mikrobiol. 2014;66:23–28.

2. Tonelli M, Sacks F, Arnold M, et al. Relation between red blood cell distribution width and cardiovascular event rate in people with coronary disease. Circulation. 2008;117:163–168.

3. Uyarel H, Ergelen M, Cicek G, et al. Red cell distribution width as a novel prognostic marker in patients undergoing primary angioplasty for acute myocardial infarction. Coron Artery Dis. 2011;22:138–144.

4. Zalawadiya SK, Veeranna V, Niraj A, et al. Red cell distribution width and risk of coronary heart disease events. Am J Cardiol. 2010;106:988–993.

5. Felker GM, Allen LA, Pocock SJ, et al. Red cell distribution width as a novel prognostic marker in heart failure: data from the CHARM Program and the Duke Databank. J Am Coll Cardiol. 2007;50:40–47.

6. Celik A, Koc F, Kadi H, et al. Relationship between red cell distribution width and echocardiographic parameters in patients with diastolic heart failure. Kaohsiung J Med Sci. 2012;28:165–172.

7. Isik T, Uyarel H, Tanboga IH, et al. Relation of red cell distribution width with the presence, severity, and complexity of coronary artery disease. Coron Artery Dis. 2012;23:51–56.

8. Nishizaki Y, Yamagami S, Suzuki H, et al. Red blood cell distribution width as an effective tool for detecting fatal heart failure in super-elderly patients. Intern Med. 2012;51:2271–2276.

9. Gadaleta F, Llois S, Kaski JC. Corrected QT interval: a prognostic marker in patients with non-ST-segment elevation acute coronary syndrome? Trends Cardiovasc Med. 2011;21:129–135.

10. Özcan F, Turak O, Avci S, et al. Heart rate variability and red cell distribution width in patients with systolic left heart failure. Scand Cardiovasc J. 2013;47:225–229.

11. Genissini GG. A more meaningful scoring system for determining the severity of coronary heart disease. Am J Cardiol. 1983;51:606.

12. Lippi G, Filippozzi L, Montagnana M, et al. Clinical usefulness of measuring red blood cell distribution width on admission in patients with acute coronary syndromes. Clin Chem Lab Med. 2009;47:353–357.

13. Kaya MG, Yarlioglues M, Gunehukmaz O, et al. Platelet activation and inflammatory response in patients with non-dipper hypertension. Atherosclerosis. 2010;209:278–282.

14. Lippi G, Targher G, Montagnana M, et al. Relationship between red blood cell distribution width and kidney function tests in a large cohort of unselected outpatients. Scand J Clin Lab Invest. 2008;68:745–748.

15. Lorente L, Martin MM, Abreu-Gonzalez P, et al. Red blood cell distribution width during the first week is associated with severity and mortality in septic patients. PloS One. 2014;9:e105436.

16. Perlstein TS, Weuve J, Pfeffer MA, et al. Red blood cell distribution width and mortality risk in a community-based prospective cohort. Arch Intern Med. 2009;169:588–594.

17. Silverberg DS, Wexler D, Iaina A. The importance of anemia and its correction in the management of severe congestive heart failure. Eur J Heart Fail. 2002;4:681–686.

18. Solak Y, Yilmaz MI, Saglam M, et al. Red cell distribution width is independently related to endothelial dysfunction in patients with chronic kidney disease. Am J Med Sci. 2014;347:118–124.

19. Torre-Amione G, Anker SD, Bourge RC, et al. Results of a non-specific immunomodulation therapy in chronic heart failure (ACCLAIM trial): a placebo-controlled randomised trial. Lancet. 2008;371:228–236.

20. Hansen S, Rasmussen V, Torp-Pedersen C, et al. QT intervals and mortality. Atherosclerosis. 2010;209:278–282.

21. Piccirillo G, Moscucci F, D’Alessandro G, et al. Myocardial repolarization dispersion and autonomic nerve activity in a canine experimental acute myocardial infarction model. Heart Rhythm. 2014;11:110–118.

22. Yetkin E, Senen K, Ieri M, et al. Diurnal variation of QT dispersion in patients with and without coronary artery disease. Angiology. 2001;52:311–316.

23. Arnzt HR, Willich SN, Oeff M, et al. Circadian variation of sudden cardiac death reflects age-related variability in ventricular fibrillation. Circulation. 1993;88:2284–2289.