EXPERIMENTAL DETERMINATION OF THE RADIOACTIVE EQUILIBRIUM COEFFICIENT BETWEEN RADIONUCLIDES OF THE URANIUM DECAY CHAIN

Abstract: This paper describes an experimental method for determining the radioactive equilibrium coefficient between the uranium decay chain 226Ra/238U and 234U/238U and an analysis of the results obtained using this method. Geochemical, geotechnological, nuclear-physical and radiochemical factors affecting the radioactive imbalance between radionuclides of the uranium decay chain 226Ra/238U and 234U/238U have been identified.

Key words: uranium decay chain, radioactive equilibrium, radioactivity, radionuclide, experimental methods, radionuclide concentration, radioactive equilibrium distortion coefficient.

Language: English

Citation: Soliyev, T. I., Muzafarov, A. M., & Izbosarov, B. F. (2021). Experimental determination of the radioactive equilibrium coefficient between radionuclides of the uranium decay chain. ISJ Theoretical & Applied Science, 11(103), 801-804.

Soi: http://s-o-i.org/1.1/TAS-11-103-85 Doi: https://dx.doi.org/10.15863/TAS.2021.11.103.85

Scopus ASCC: 3100.

Introduction

ACTUALITY

The determination of the values of the radioactive equilibrium coefficient between radionuclides 226Ra/238U and 234U/238U in uranium ores allows to find answers to a number of questions about this ore, the conditions of its formation, which minerals it contains and its age [1-4].

Therefore, experimental determination of the radioactive equilibrium coefficient between radionuclides 226Ra/238U and 234U/238U in uranium ores, increase the accuracy of the results, create a database of results, compare the results with the results of other researchers, finding physical, radiochemical factors which affect the radioactive balance of radionuclides and finding the main cause of radioactive imbalance is the main current problem of nuclear physics [5-8].

OBJECTIVE OF THE RESEARCH:

Based on the above considerations, to develop a method for experimental determination of the radioactive equilibrium coefficient between radionuclides in uranium ores - 226Ra/238U and 234U/238U, the composition of the experimental device, to get acquainted with the principle of its operation and to apply in practice the theoretical basis of determining the age of ores on the basis of the obtained results is the goal of the research.
Impact Factor:

Country (Region)	Impact Factor
ISRA (India)	6.317
IS (Dubai, UAE)	1.582
PIHH (Russia)	3.939
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
ICR (Poland)	6.630
PIF (India)	1.940
ESJI (KZ)	9.035
BSI (India)	4.260
SJIF (Morocco)	7.184
OAJI (USA)	0.730

TABLE 1

Sample serial number	Sample content Mass fraction of isotope 226Ra (g / l)	Sample content Mass fraction of isotope 238U (g / l)	Radioactive equilibrium coefficient K_{ra}
1	13.49	32	1.24
2	2.81	32	0.26
3	4.24	32	0.39
4	15.97	35	1.34
5	12.05	44	0.80
6	4.11	33	0.37
7	4.84	31	0.46
8	15.16	41	1.09
9	6.79	33	0.60
10	6.87	33	0.61
11	0.95	32	0.09
12	20.35	36	1.66
13	18.24	37	1.45
14	3.03	32	0.28
15	3.08	35	0.26
16	4.11	33	0.37

DISCUSSION

The radioactive equilibrium coefficient between uranium decay chain radionuclides 226Ra/238U and 234U/238U is determined based on their activity. The radioactive equilibrium coefficient between the radionuclides 226Ra/238U and 234U/238U in this decay chain is determined as follows:

$$K_{eq} = \frac{m_{Ra\rightarrow 226}}{m_{U\rightarrow 238}} = \frac{m_{Ra}}{m_{U}} = 1$$ (1)

Here, A (226Ra) is the activity of the radionuclide radium-226, A (234U) is the activity of the radionuclide uranium-234, and A (238U) is the activity of the radionuclide uranium-238.

The equilibrium activity of each radionuclide is calculated as follows:

$$A_x = \frac{m_x}{t} \cdot n_2 \cdot N_A$$

Here A_x is the specific activity of radionuclide, m_x is the equilibrium mass of radionuclide, T_x is the half-life of radionuclide, μ_x-molar mass of radionuclide, N_A-Avogadro's number.

From Equation (2), the equilibrium mass of radionuclide is determined as follows:

$$m_x = A_x \cdot T_x \cdot \mu_x \cdot n_2 \cdot N_A$$ (3)

Based on formula (3), the equilibrium mass amounts of radionuclides are theoretically calculated.

It can be seen from formula (1) that radionuclides can be in equilibrium when the coefficient between radionuclides is 1. Nuclear-physical analysis of industrial products over many years shows that the value of the radioactive equilibrium coefficient varies between 226Ra/238U and 234U/238U radionuclides.

Experimental research device and its methodology

The uranium concentration in the selected samples was determined using an ARF-7 X-ray fluorescent analyzer. The concentration of radium in the sample was determined by gamma spectrometry using the device "PROGRESS-Gamma".

Samples containing radionuclides 226Ra, 238U, 238U are crushed and pulverized. The powder is placed in a cuvette and placed in the measuring chamber of the ARF-7 X-ray fluorescent analyzer. The measurement time is around 30 minutes. In the ARF-7 analyzer, the total amount of uranium-238 in the sample is determined by placing it in a cuvette and activating it using X-ray fluorescent rays.

The 100 gram sample is ground and pressed into a cuvette. Using PROGRESS-Gamma, we record the gamma radiation emitted from the sample and determine the amount of 226Ra. The energy range is measured in the range of 0.2 ÷ 2.8 MeV. Energy resolution is 9%.

Samples containing uranium radionuclides and other radioactive radionuclides were taken to measure the radioactive balance. The coefficient of radioactive equilibrium in 20 samples taken for the experiment was calculated.

For 226Ra and 238U, the radioactive equilibrium coefficient-mass at K_{ra} was calculated using the following formula:

$$K_{ra} = \frac{m(\text{Ra})}{m(\text{U}) \cdot 10^{-6}}$$ (4)

where, $m(\text{Ra})$ is the mass of radionuclide 226, $m(\text{U})$ is the mass of radionuclide 238U.

Table 1 below shows the values of the radioactive equilibrium coefficient between radionuclides 226Ra and 238U obtained experimentally.
As can be seen from Table 1, the radioactive equilibrium coefficient will have different values in samples belonging to the same object but taken from different points. From these results we can conclude that the radioactive balance between uranium radionuclides is disturbed. In Table 1 we can see that the radioactive equilibrium coefficient between radionuclides ^{226}Ra and ^{238}U is different.

These different values can be attributed to the age of the radionuclides in the ore. It can be concluded that in the case of $K_m>1$, the activity of ^{226}Ra is higher than the activity of uranium, and the age of the ore is smaller. In the case of $K_m<1$, the opposite is true, which means that the ore was formed much earlier and that most of the ^{226}Ra in it has undergone radioactive decay.

Figure 1. Changes in the values of the radioactive equilibrium coefficient between $^{226}\text{Ra} / ^{238}\text{U}$ and $^{234}\text{U} / ^{238}\text{U}$ radionuclides in uranium samples and products are given.

Conclusions
The results of the study showed that the radioactive balance between the radionuclides of the uranium decay chain is not always maintained. We can see this in the diagram in Figure 1. In this diagram, we have described in the diagram that the equilibrium amounts of blue-radionuclides are appropriate for the case where red is $K_m>1$ and for green-$K_m<1$.

From the results obtained, it was found that the value of the radioactive equilibrium coefficient varied in different samples. This is because uranium ores vary in age. It is also possible to develop a method for determining the age of the ore according to the radioactive equilibrium coefficient determined in the above studies. The application of this experimental evidence to individual cases will be the basis for future research.
Impact Factor:

Journal	JIF	SJIF (Morocco)	IAJI (USA)
ISRA (India)	6.317	7.184	0.350
ISI (Dubai, UAE)	1.582		
GIF (Australia)	0.564		
JIF	1.500		

References:

1. Shurygin, S.V., & Ovseychuk, V.A. (2016). «Influence of radioactive coefficient on sorting of ore by radiometric methods». Gornyy informatsionno-analiticheski bulletin, №4, pp. 376-381.

2. Domarenko, V.A., Kramorenko, S.V., Novgorodtsev, A.A., Mitrofanov, E.A., & Derevenets, V.G. (2013). “On the coefficient of radioactive equilibrium in ore-bearing deposits of the Khiagda ore cluster on the example of the Dybryn deposit Republic of Buryatia”. Materials of the IV International Conference, g. Tomsk, June 4–8, pp. 180-184.

3. Muzafarov, A.M. (2018). "Development of nuclear-physical methods of controlling the processes of extraction of gold, uranium and its technogenic contribution to the ecosystem". Dissertation. Tashkent.

4. Muzafarov, A.M., Kulmatov, R.A., & Allayarov, R.M. (2020). Investigation of the violation of the coefficient of radioactive leveling between 226Ra / 238U in the test of uranium objects. Gornyy Vestnik Uzbekistana, №4 (83), Navoi, pp.53-55.

5. Muzafarov, A.M., & Sattarov, G.S. (2005). Study of isotopic composition of uranium alpha-spectrometric method. Gornyy Vestnik Uzbekistana, №2 (21), pp. 94-98.

6. Muzafarov, A.M., Sattarov, G.S., & Glotov, G.N. (2011). On the question of the violation of the coefficient of radioactive equilibrium between the isotopes of uranium. Gornuy Vestnik Uzbekistana, №1 (44), pp.57-60.

7. Muzafarov, A.M., Allaberganova, G.M., Turobjonov, S.M., & Jurakulov, A.R. (2019). Method for conducting isotopic analysis of uranium in various natural waters of uranium-bearing regions of Uzbekistan. International Journal of Academic Multidisciplinary Research (IJAMR), October Washington DC, pp.52-55.

8. Soliev, T.I., & Muzafarov, A.M. (2021). Investigation of the causes of violations of the radioactive balance between radionuclides of the uranium decay chain. International journal multicultural and multireligious understanding, Volume 8, Issue 7, July, pp.95-101.

9. Muzafarov, A.M., Kulmatov, R.A., & Allayarov, R.M. (2020). Issledovanie narushenija koeficienta radioaktivnogo ravnovesija mezhdu 226Ra/238U v probah uranovyh ob#ektov. Gornuy vestnik Uzbekistana, №4 (83), pp.53-55.

10. Muzafarov, A.M., Huzhakulov, N.B., Temirov, B.R., & Sattarov, G.S. (2016). Issledovanie tehnogennogo vlijaniya hvostohranilishha GMZ-2 na okruzhaushhuu sredu. Gornuy vestnik Uzbekistana, №3 (66), pp.106-113.