THE MOTIVE OF A SMOOTH THETA DIVISOR

HUMBERTO A. DIAZ

ABSTRACT. We prove a motivic version of the Lefschetz hyperplane theorem for a smooth ample divisor Θ on an Abelian variety. We use this to construct a motive P that realizes the primitive cohomology of Θ.

1. Introduction

Let k be an algebraically closed field. Given a smooth projective variety X of dimension d over k and a Weil cohomology H^*, there is a decomposition of the diagonal $[\Delta_X] \in H^{2d}(X \times X)$ into its Künneth components:

$$\Delta_X = \Delta_{0,X} + \ldots + \Delta_{2d,X} \in H^{2d}(X \times X) \cong \bigoplus H^j(X) \otimes H^{2d-j}(X)$$

It is one of Grothendieck’s standard conjectures ([7] Section 4) that these Künneth components arise from algebraic cycles; i.e., that there exist correspondences $\pi_{j,X} \in CH^d(X \times X)$ for which $cl(\pi_{j,X}) = \Delta_{j,X}$ under the cycle class map $cl : CH^d(X \times X) \to H^{2d}(X \times X)$. We can state a stronger version of this conjecture as follows:

Conjecture 1.1 (Chow-Künneth). There exist correspondences $\pi_{j,X} \in CH^d(X \times X)$ satisfying:

(a) $\pi_{j,X}^2 = \pi_{j,X}$, $\pi_{j,X} \circ \pi_{j',X} = 0$ for $j \neq j'$

(b) $\sum \pi_{j,X} = \Delta_X$

(c) $cl(\pi_{j,X}) = \Delta_{j,X}$ for any choice of Weil cohomology.

In this stronger version, the correspondences $\pi_{j,X}$ are actually idempotents, which gives Chow motives $h^j(X) = (X, \pi_{j,X}, 0)$. Moreover, the decomposition of the diagonal into orthogonal components gives a decomposition of the motive of X as $\bigoplus h^j(X)$. An important problem in the theory of motives is to understand these “underlying” objects $h^j(X)$ that represent the various degrees of cohomology (for every choice of cohomology). The Chow-Künneth conjecture is known to hold in some important cases: curves, surfaces ([10] Chapter 6), Abelian varieties ([2]), elliptic modular varieties ([3]).

Suppose that A is an Abelian variety of dimension g and $i : \Theta \hookrightarrow A$ is a smooth ample divisor. The first goal of this note is then to prove the following:

The author would like to thank Chad Schoen, his advisor, and Bruno Kahn for their help with edits.
Theorem 1.1. There exist correspondences \(\pi_{j,\Theta} \in CH^{g-1}(\Theta \times \Theta) \) satisfying conjecture [14].

The Lefschetz hyperplane theorem gives isomorphisms \(i^*: H^j(A) \to H^j(\Theta) \) for \(j < g - 1 \) and \(i_*: H^j(\Theta) \to H^{j+2}(A) \) for \(j > g - 1 \). The proof of Theorem 1.1 gives a particular set of idempotents \(\pi_{j,\Theta} \) and we set \(h^j(\Theta) = (\Theta, \pi_{j,\Theta}, 0) \). We also set \(h^j(A) = (A, \pi_{j,A}, 0) \), where \(\pi_{j,A} \) are the canonical idempotents constructed in [2]. We are then able to prove the following partial result:

\[\text{Theorem 1.2. } \]

(a) The pull-back \(h^j(i) := \pi_{j,\Theta} \circ t^\Gamma_i \circ \pi_{j,A} : h^j(A) \to h^j(\Theta) \) is an isomorphism for \(j < g - 1 \).

(b) The push-forward \(t^\ast h^j(i) := \pi_{j+2,A} \circ \Gamma_i \circ \pi_{j,\Theta} : h^j(\Theta) \to h^{j+2}(A)(1) \) is an isomorphism for \(j > g - 1 \).

(c) \(\gamma^g-1(i) \) is split-injective and \(t^\ast \gamma^g-1(i) \) is split-surjective.

(d) There is an idempotent \(p \in CH^g(\Theta \times \Theta) \) which is orthogonal to \(\pi_{j,\Theta} \) for \(j \neq g - 1 \) and for which the motive \(P := (\Theta, p, 0) \) satisfies \(H^*(P) = K_{\Theta} := \ker(i_* : H^{g-1}(\Theta) \to H^{g+1}(A)) \).

We can specialize to the case that \(k = \mathbb{C} \) and \(H^* \) is singular cohomology with \(\mathbb{Q} \)-coefficients. The primitive cohomology of \(\Theta \),

\[K_{\Theta} = \ker(i_* : H^{g-1}(\Theta, \mathbb{Q}) \to H^{g+1}(A, \mathbb{Q})(1)), \]

is the only Hodge substructure of \(H^* \) not coming from \(A \). So, one should expect to encounter difficulty in analyzing the motive \(P \). The simplest nontrivial case is when \(A \) is a principally polarized Abelian fourfold and \([\Theta] \in CH^4(A)\) is its principal polarization. In this case, \(\Theta \) is generally a smooth divisor and \(H^*(P) = K_{\Theta} \) has Hodge level 1. Conjecturally, a motive over \(\mathbb{C} \) whose singular cohomology has Hodge level 1 should correspond to an Abelian variety ([?] Remark 7.12). We have the following partial result:

Proposition 1.1. There exists an Abelian variety \(J \) such that \(h^1(J)(-1) \cong P \Leftrightarrow p_*CH_0(\Theta) = 0 \).

2. Preliminaries

Let \(\mathcal{M}_k \) denote the category of Chow motives over \(k \) whose objects are triples \((X, \pi, n)\), where \(X \) is a smooth projective variety of dimension \(d \), \(\pi \in CH^d(X \times X) \) is an idempotent and \(n \in \mathbb{Z} \). The morphisms are defined as follows:

\[\text{Hom}_{\mathcal{M}_k}((X, \pi, n), (X', \pi', n')) := \pi' \circ Cor^{n'-n}(X, X') \circ \pi \]

\[= \pi' \circ CH^{d+n'-n}(X \times X') \circ \pi \]

Here, composition is defined in [3] Chapter 16.1. There is a functor \(\mathcal{Y}_k^{opp} \to \mathcal{M}_k \) from the category of smooth projective varieties over \(k \) with \(\mathcal{Y}(X) = (X, \Delta_X, 0) \) and with \(\mathcal{Y}(g) = t^\Gamma_g \).
for any morphism \(g : X \to X' \). A Weil cohomology theory is a functor \(H^* : Y_k^{opp} \to Vec_K \) (with \(K \) is a field of characteristic 0) satisfying certain axioms (described in [7] Section 4), one of which is the Lefschetz hyperplane isomorphism. Examples include singular, \(\ell \)-adic, crystalline, or de Rham cohomology. This extends to a functor \(H^* : \mathcal{M}_k \to Vec_K \), and for \(M = (X, \pi, m) \), we have
\[
H^j(M) = \pi_* H^{j+2m}(X).
\]
Also, there is the extension of scalars functor \((\cdot)_L : \mathcal{M}_k \to \mathcal{M}_L \) for any field extension \(k \subset L \).

For \(M = (X, \pi, m) \), we will use the notation \(\mathcal{M}(k, \Delta_k, n) \).

Lemma 2.1 (Liebermann). Let \(h_X : X' \to X, h_Y : Y \to Y' \) be correspondences of smooth projective varieties. Then, for \(\alpha \in CH^*(X \times Y), \beta \in CH^*(X' \times Y') \), we have
\[
(a) \ (h_X \times h_Y)_* (\alpha) = h_Y \circ \alpha \circ h_X
\]
\[
(b) \ \text{When } f : X \to X' \text{ and } g : Y \to Y' \text{ are morphisms, } (f \times g)_* (\alpha) = \Gamma_g \circ \alpha \circ \Gamma_f.
\]

Proof. See [3] Proposition 16.1.1. \(\square \)

Theorem 2.1 (Shermenev, Deninger-Murre). Let \(A \) be an Abelian variety of dimension \(g \) over \(k \). Then, there is a unique set of idempotents \(\{\pi_{j,A}\} \in CH^g(A \times A) \) satisfying conjecture [7.1] and the following relation for all \(n \in \mathbb{Z} \):
\[
(1) \quad \Gamma_n \circ \pi_{j,A} = n^j \cdot \pi_{j,A} = \pi_{j,A} \circ \Gamma_n
\]

Proof. See [2] Theorem 3.1. \(\square \)

Let \(i : \Theta \to A \) be a smooth ample divisor and let \(\mathfrak{h}^j(A) = (A, \pi_{j,A}, 0) \) be the motive for the idempotents in Theorem 2.1. Then, we define the \textit{Lefschetz operator}:
\[
L_{\Theta} := \Delta_* (\Theta) \in CH^{g+1}(A \times A).
\]
The most essential result for the proofs of theorems 1.1 and 1.2 is the following in [8], a motivic version of the Hard Lefschetz theorem:

Theorem 2.2 (Künemann). Assume that \([\Theta] = (-1)^g [\Theta] \in CH^1(A) \).

\[
(a) \ (L_{\Theta})_* \alpha = \alpha \cup [\Theta] \text{ for } \alpha \in H^*(A)
\]
\[
(b) \ \text{The operator } \pi_{2g-j,A} \circ L_{\Theta}^{g-j} \circ \pi_{j,A} : \mathfrak{h}^j(A)(g-j) \to \mathfrak{h}^{2g-j}(A) \text{ is an isomorphism of motives for } j \leq g. \text{ That is, there exists a correspondence } \Lambda_{\Theta} \in CH^{g-1}(A \times A) \text{ such that the following relations hold for } j \leq g:
\]
\[
(2) \quad \pi_{j,A} \circ \Lambda_{\Theta}^{g-j} \circ L_{\Theta}^{g-j} \circ \pi_{j,A} = \pi_{j,A}
\]
\[
\pi_{2g-j,A} \circ L_{\Theta}^{2g-j} \circ \Lambda_{\Theta}^{2g-j} \circ \pi_{2g-j,A} = \pi_{2g-j,A}
\]

\[
(c) \ \text{Set } \pi_{j,A} = 0 \text{ for all } j \notin \{0, 1, \ldots 2g\}. \text{ Then, we have } L_{\Theta} \circ \pi_{j,A} = \pi_{j+2,A} \circ L_{\Theta} \text{ and } \Lambda_{\Theta} \circ \pi_{j,A} = \pi_{j-2,A} \circ \Lambda_{\Theta}.
\]
Proof. See [8] Theorem 4.1. It should be noted that [b] holds more generally for Abelian schemes. It is a technical result that uses properties of the Fourier transform for Chow groups of Abelian schemes.

By Theorem 2.2[a] and the projection formula, we have \((L_\Theta)_* = \cup \Theta = i_* \circ i^* \). The result below shows that this is true on the level of correspondences:

Lemma 2.2. \(L_\Theta = \Gamma_i \circ \Gamma_i \in CH^{g+1}(A \times A) \).

Proof. From the obvious commutative diagram:

\[
\begin{array}{ccc}
\Theta & \xrightarrow{\Delta_\Theta} & \Theta \times \Theta \\
i & \downarrow & \downarrow i \times i \\
A & \xrightarrow{\Delta_A} & A \times A
\end{array}
\]

we have \(L_\Theta = (\Delta_A)_*(\Theta) = (\Delta_A)_*(i_* \circ i) = i \times i_*(\Delta_\Theta) = \Gamma_i \circ \Delta_\Theta \circ i_\Gamma_i = \Gamma_i \circ i_\Gamma_i \), where the penultimate step follows from Lemma 2.1(b).

3. Proofs of Theorems 1.1 and 1.2

Since \(k \) is algebraically closed, it’s possible to find some \(a \in A(k) \) such that \(t_a^* [\Theta] \in CH^1(A) \) is invariant under \((-1)^*\). So, we can assume that \((−1)^*A[Θ] = [Θ]\), so that the results of the previous section are applicable.

Proof of Theorem 1.1. For the proof, we will need to exhibit correspondences \(\pi_{j, \Theta} \in CH^{g−1}(\Theta \times \Theta) \) which satisfy conjecture 1.1. These are given as follows:

\[
\begin{align*}
\pi_{j, \Theta} &= t_\Gamma \circ \pi_{j, A} \circ \Lambda_{\Theta}^{g−j} \circ L_{\Theta}^{g−j−1} \circ \Gamma_i \quad \text{for } j < g − 1, \\
\pi_{g−1, \Theta} &= \Delta_\Theta − \sum_{j \neq g−1} \pi_{j, \Theta}.
\end{align*}
\]

(4)

Since \(\sum \pi_{j, \Theta} = \Delta_\Theta \) holds by definition, it suffices to check conditions [a] and [c] of conjecture 1.1. For \(j < g − 1 \), we have

\[
\begin{align*}
\pi^2_{j, \Theta} &= t_\Gamma \circ \pi_{j, A} \circ \Lambda_{\Theta}^{g−j} \circ L_{\Theta}^{g−j−1} \circ \Gamma_i \circ t_\Gamma \circ \pi_{j, A} \circ \Lambda_{\Theta}^{g−j} \circ L_{\Theta}^{g−j−1} \circ \Gamma_i \\
&= t_\Gamma \circ \pi_{j, A} \circ \Lambda_{\Theta}^{g−j} \circ L_{\Theta}^{g−j−1} \circ \pi_{j, A} \circ \Lambda_{\Theta}^{g−j} \circ L_{\Theta}^{g−j−1} \circ \Gamma_i \\
&= t_\Gamma \circ \pi_{j, A} \circ \Lambda_{\Theta}^{g−j} \circ L_{\Theta}^{g−j−1} \circ \Gamma_i = \pi_{j, \Theta}
\end{align*}
\]
Here, the second equality holds by Lemma 2.2, the third holds by Theorem 2.2(b). Similarly, for \(j > g - 1 \) we have:

\[
\pi_{j,\Theta}^2 = I_i \circ \pi_{j,A} \circ L_{\Theta}^{j-g+1} \circ L_{\Theta}^{j-g+1} \circ \pi_{j+2,A} \circ \Gamma_i \circ L_{\Theta}^{j-g+1} \circ \pi_{j+2,A} \circ \Gamma_i
\]

\[
= I_i \circ L_{\Theta}^{j-g+1} \circ L_{\Theta}^{j-g+2} \circ \pi_{j+2,A} \circ L_{\Theta}^{j-g+1} \circ L_{\Theta}^{j-g+2} \circ \pi_{j+2,A} \circ \Gamma_i
\]

\[
= I_i \circ L_{\Theta}^{j-g+1} \circ \pi_{j+2,A} \circ L_{\Theta}^{j-g+2} \circ \pi_{j+2,A} \circ \Gamma_i
\]

Thus, \(\pi_{j,\Theta} = \pi_{j,\Theta}^2 \) for \(j \neq g - 1 \). Before proving the same for \(j = g - 1 \), we show that the orthogonality condition of (a) (in conjecture 1.1) holds; that is, \(\pi_{j,\Theta} \circ \pi_{j',\Theta} = 0 \) for \(j \neq j' \) and \(j, j' \neq g - 1 \). We do this for the case of \(j = g - 1 \).

\[
\pi_{j,\Theta} \circ \pi_{j',\Theta} = I_i \circ \pi_{j,A} \circ L_{\Theta}^{g-j} \circ L_{\Theta}^{g-j-1} \circ \pi_{j',A} \circ L_{\Theta}^{g-j'} \circ L_{\Theta}^{g-j'-1} \circ \Gamma_i
\]

Again, the second equality holds by Lemma 2.2 and the last equality follows from the orthogonality condition in Theorem 2.1. The third equality holds because we have

\[
\pi_{j,A} \circ L_{\Theta}^{g-j} \circ L_{\Theta}^{g-j} = L_{\Theta}^{g-j} \circ \pi_{j,A}
\]

which follows by repeated application of Theorem 2.2(c). The remaining cases of orthogonality (\(j \neq j' \) and \(j, j' \neq g - 1 \)) are identical to (5).

What remains for the verification of condition (a) is to show that:

(i) \(\pi_{g-1,\Theta} = \pi_{g-1,\Theta}^2 \)

(ii) \(\pi_{g-1,\Theta} \circ \pi_{j,\Theta} = 0 = \pi_{j,\Theta} \circ \pi_{g-1,\Theta} \) for \(j \neq g - 1 \)

For (i) let \(\pi = \sum_{k \neq g-1} \pi_{j,\Theta} \). Since the summands are mutually orthogonal idempotents by the preceding verifications, it follows that \(\pi^2 = \pi \). Since \(\pi_{g-1,\Theta} = \Delta_{\Theta} - \pi \) by definition, we have

\[
\pi_{g-1,\Theta}^2 = (\Delta_{\Theta} - \pi)^2 = \Delta_{\Theta} + \pi^2 - 2\pi = \Delta_{\Theta} - \pi = \pi_{g-1,\Theta}
\]

For (ii) let \(j \neq g - 1 \) and note that

\[
\pi_{g-1,\Theta} \circ \pi_{j,\Theta} = (\Delta_{\Theta} - \pi) \circ \pi_{j,\Theta} = \pi_{j,\Theta} - \sum_{k \neq g-1} \pi_{k,\Theta} \circ \pi_{j,\Theta}
\]

\[
= \pi_{j,\Theta} - \pi_{j,\Theta} = 0
\]

where the third equality holds since \(\pi_{k,\Theta} \circ \pi_{j,\Theta} = 0 \) for \(j \neq k \). Similarly, one has \(0 = \pi_{j,\Theta} \circ \pi_{g-1,\Theta} \). This completes the verification of item (a) in conjecture 1.1.

Finally, we prove (c) in conjecture 1.1. It suffices to show that \(\pi_{j,\Theta} \) acts as the identity on \(H^j(\Theta) \) and trivially on \(H^{j'}(\Theta) \) for \(j \neq j' \) and any Weil cohomology \(H^* \). One easily reduces
this to the case that \(j \neq g - 1 \). We will verify this for \(j < g - 1 \). Since \(\pi_{j,A} \) acts as 0 on \(H^j(A) \) for \(j \neq j' \), we need only show that \(\pi_{j,\Theta} \) acts as the identity on \(H^j(\Theta) \). To this end, let \(\phi := \Lambda_{\Theta}^{g-j} \circ L_{\Theta}^{g-j-1} \circ \Gamma_i \) so that

\[
\pi_{j,\Theta} = i^* \Gamma_i \circ \pi_{j,A} \circ \phi
\]

Since \(H^* \) is a Weil cohomology, \(i^* \Gamma_i = i^* : H^j(A) \to H^j(\Theta) \) is an isomorphism (see [7]). Moreover, by Hard Lefschetz, \((\phi \circ i^* \Gamma_i) = (\Lambda_{\Theta}^{g-j})_* \circ (L_{\Theta}^{g-j})_* \) is the identity on \(H^j(A) \). Thus, \(i^* \) and \(\phi_* \) are inverses, from which it follows that \((\pi_{j,\Theta})_* \) is the identity on \(H^j(\Theta) \) for \(j < g - 1 \). The case of \(j > g - 1 \) is nearly identical, only that one uses the fact that \(i_* \) is an isomorphism.

Proof of Theorem 1.2. The statements of (a) and (b) are that \(h^j(i) \) and \(t h^j(i) \) are isomorphisms for \(j < g - 1 \) and \(j > g - 1 \), respectively. To show this, we need to construct their inverse isomorphisms:

\[
\phi_j := \pi_{j,A} \circ \Lambda_{\Theta}^{g-j} \circ L_{\Theta}^{g-j-1} \circ \Gamma_i \circ \pi_{j,\Theta} \text{ for } j < g - 1
\]

\[
\phi_j := \pi_{j,\Theta} \circ i^* \Gamma_i \circ L_{\Theta}^{j-g+1} \circ \Lambda_{\Theta}^{j-g+2} \circ \pi_{j+2,A} \text{ for } j > g - 1
\]

Then, for \(j < g - 1 \), we have

\[
\phi_j \circ h^j(i) = \pi_{j,A} \circ \Lambda_{\Theta}^{g-j} \circ L_{\Theta}^{g-j-1} \circ \Gamma_i \circ \pi_{j,\Theta} \circ i^* \Gamma_i \circ \pi_{j,A}
\]

\[
= \pi_{j,A} \circ \Lambda_{\Theta}^{g-j} \circ L_{\Theta}^{g-j-1} \circ \Gamma_i \circ \pi_{j,\Theta} \circ i^* \Gamma_i \circ \pi_{j,A}
\]

\[
= \pi_{j,\Theta} \circ i^* \Gamma_i \circ \pi_{j,A} \circ \Lambda_{\Theta}^{g-j} \circ L_{\Theta}^{g-j-1} \circ \Gamma_i \circ \pi_{j,A}
\]

\[
= \pi_{j,\Theta} \circ i^* \Gamma_i \circ \pi_{j,A}
\]

where the third and fourth equalities hold by Theorem 2.2(b). Similarly, we have

\[
h^j(i) \circ \phi_j = \pi_{j,\Theta} \circ i^* \Gamma_i \circ \pi_{j,A} \circ \Lambda_{\Theta}^{g-j} \circ L_{\Theta}^{g-j-1} \circ \Gamma_i \circ \pi_{j,\Theta}
\]

\[
= \pi_{j,\Theta} = \pi_{j,\Theta}
\]

We conclude that \(h^j(i) \) and \(\phi_j \) are inverses for \(j < g - 1 \), proving (a). For (b) we have

\[
t h^j(i) \circ \phi_j = \pi_{j+2,A} \circ \Gamma_i \circ \pi_{j,\Theta} \circ i^* \Gamma_i \circ L_{\Theta}^{j-g+1} \circ \Lambda_{\Theta}^{j-g+2} \circ \pi_{j+2,A}
\]

\[
= \pi_{j+2,A} \circ \Gamma_i \circ L_{\Theta}^{j-g+1} \circ \Lambda_{\Theta}^{j-g+2} \circ \pi_{j+2,A}
\]

\[
= \pi_{j+2,A} \circ \Gamma_i \circ \pi_{j+2,A}
\]

\[
= \pi_{j,A}
\]

Similarly, we have

\[
\phi_j \circ t h^j(i) = \pi_{j,\Theta} \circ i^* \Gamma_i \circ L_{\Theta}^{j-g+1} \circ \Lambda_{\Theta}^{j-g+2} \circ \pi_{j+2,A} \circ \Gamma_i \circ \pi_{j,\Theta}
\]

\[
= \pi_{j,\Theta} = \pi_{j,\Theta}
\]
As in the proof of Theorem 1.1, one can show that $\mathfrak{h}^{g-1}(i)$ and $\mathfrak{h}^{g-1}(i)$ are split-injective and split-surjective, respectively. Their left and right inverses will be:

$$
\phi_{g-1} = \pi_{g-1,A} \circ \Lambda_{\Theta} \circ \Gamma_i \circ \pi_{g-1,\Theta}
$$

$$
\psi_{g-1} = \pi_{g-1,\Theta} \circ \mathfrak{h}^{g-1} \circ \Lambda_{\Theta} \circ \pi_{g+1,A}.
$$

(6)

To this end, we begin by noting that for $j < g - 1$:

$$
\pi_j,\Theta \circ \mathfrak{h}^{g-1} = \mathfrak{h}^{g-1} \circ \Lambda_{\Theta} \circ \mathfrak{h}^{g-1} \circ \Lambda_{\Theta} \circ \pi_{g-1,A}
$$

(7)

Similarly, we have $\Gamma_i \circ \pi_j,\Theta = \pi_{j+2,A} \circ \Gamma_i$ for $j > g - 1$. So, we write $\pi = \sum_{j \neq g-1} \pi_j,\Theta$ as before and obtain:

$$
\Gamma_i \circ \pi \circ \mathfrak{h}^{g-1} \circ \pi_{g-1,A} = \sum_{j < g-1} \Gamma_i \circ \pi_{j,\Theta} \circ \mathfrak{h}^{g-1} \circ \Gamma_i \circ \pi_{g-1,A} + \sum_{j > g-1} \Gamma_i \circ \pi_{j,\Theta} \circ \mathfrak{h}^{g-1} \circ \Gamma_i \circ \pi_{g-1,A}
$$

$$
= \sum_{j < g-1} \Gamma_i \circ \mathfrak{h}^{g-1} \circ \pi_{j,A} \circ \pi_{g-1,A} + \sum_{j > g-1} \pi_{j+2,A} \circ \Gamma_i \circ \mathfrak{h}^{g-1} \circ \Gamma_i \circ \pi_{g-1,A}
$$

(8)

$$
= \sum_{j < g-1} \mathfrak{h}^{g-1} \circ \pi_{j,A} \circ \pi_{g-1,A} + \sum_{j > g-1} \mathfrak{h}^{g-1} \circ \pi_{j,A} \circ \pi_{g-1,A} = 0
$$

where the third equality holds by the mutual orthogonality of $\pi_{j,A}$ and the fourth holds because $L_{\Theta} \circ \pi_{j,A} = \pi_{j+2,A} \circ L_{\Theta}$. Thus, we have:

$$
\phi_{g-1} \circ \mathfrak{h}^{g-1}(i) = \pi_{g-1,A} \circ \Lambda_{\Theta} \circ \Gamma_i \circ \pi_{g-1,\Theta} \circ \mathfrak{h}^{g-1}(i)
$$

$$
= \pi_{g-1,A} \circ \Lambda_{\Theta} \circ \Gamma_i \circ \mathfrak{h}^{g-1}(i)
$$

$$
= \pi_{g-1,A} \circ \Lambda_{\Theta} \circ \Gamma_i \circ \pi_{g-1,A} \circ \Lambda_{\Theta} \circ \Gamma_i \circ \pi \circ \mathfrak{h}^{g-1}(i)
$$

$$
= \pi_{g-1,A} \circ \Lambda_{\Theta} \circ \pi_{g-1,A} \circ \pi_{g-1,\Theta} = \pi_{g-1,\Theta}
$$

Here, the second term on the third line vanishes by (8). So, $\mathfrak{h}^{g-1}(i)$ is split-injective. A similar calculation shows that $\mathfrak{h}^{g-1}(i)$ is split-surjective with right inverse ψ_j. The completes the proof of (c).

Finally, for (d) we define:

$$
\pi'_{g-1,\Theta} := \mathfrak{h}^{g-1}(i) \circ \pi_{g-1,A} \circ \Lambda_{\Theta} \circ \Gamma_i \in CH^{g-1}(\Theta \times \Theta)
$$

As in the proof of Theorem 1.1 one can show that $\pi'_{g-1,\Theta}$ is an idempotent, is orthogonal to $\pi_{j,\Theta}$ for $j \neq g - 1$. It follows that

$$
\pi'_{g-1,\Theta} \circ \pi_{g-1,\Theta} = \pi'_{g-1,\Theta} - \sum_{j \neq g-1} \pi'_{g-1,\Theta} \circ \pi_{j,\Theta} = \pi'_{g-1,\Theta}
$$
Similarly, one has \(\pi_{g-1, \Theta} \circ \pi'_{g-1, \Theta} = \pi'_{g-1, \Theta} \). Write \(h^{g-1}_1(\Theta) = (\Theta, \pi'_{g-1, \Theta}, 0) \) for the corresponding motive and define:

\[
p := \pi_{g-1, \Theta} - \pi'_{g-1, \Theta} \in CH^{g-1}(\Theta \times \Theta)
\]

We have

\[
p^2 = (\pi_{g-1, \Theta} - \pi'_{g-1, \Theta})^2 = \pi_{g-1, \Theta}^2 + (\pi'_{g-1, \Theta})^2 - 2\pi_{g-1, \Theta} \circ \pi'_{g-1, \Theta}
\]

\[
= \pi_{g-1, \Theta} + \pi'_{g-1, \Theta} - 2\pi'_{g-1, \Theta} = \pi_{g-1, \Theta} - \pi'_{g-1, \Theta} = p
\]

so that \(p \) is an idempotent. Write \(P := (\Theta, p, 0) \) for the corresponding motive. We also have

\[
p \circ \pi'_{g-1, \Theta} = (\pi_{g-1, \Theta} - \pi'_{g-1, \Theta}) \circ \pi'_{g-1, \Theta} = \pi'_{g-1, \Theta} \circ \pi'_{g-1, \Theta} = 0
\]

so that \(p \) and \(\pi'_{g-1, \Theta} \) are orthogonal. This gives a decomposition of motives:

(9) \[
h^{g-1}(\Theta) = P \oplus h^{g-1}_1(\Theta)
\]

The same argument for Theorem 1.1(c) shows that \(H^*(h^{g-1}_1(\Theta)) = i^*H^{g-1}(\Theta) \). Thus, applying \(H^* \) to (9), it follows that \(H^*(P) = K_\Theta \).

\[\square\]

4. The complementary motive \(P \)

Now, let \(k = \mathbb{C} \) and \(H^* \) be singular cohomology with \(\mathbb{Q} \)-coefficients. We consider the case of \(A \) a principally polarized Abelian variety, whose principal polarization is the class of \(i : \Theta \to A \). Since we are interested in the motive \(P \), we need \(\Theta \) to be nonsingular. The simplest nontrivial case is that of \(g = 4 \), where a well-known result of Mumford in [9] is that \(\Theta \) is generally nonsingular. Now, let \(K_{\Theta, \mathbb{Q}} := \ker(i_* : H^{g-1}(\Theta, \mathbb{Q}) \to H^{g+1}(A, \mathbb{Q})(1)) \) be the primitive cohomology. Then, we have the following:

Lemma 4.1. \(K_\Theta \) is a rational Hodge structure of level 1 and dimension 10.

Proof. Since \(H^3(\Theta) \) and \(H^3(A) \) both have Hodge level 3, we need to show that \(i_* : H^{3,0}(A) \to H^3(\Theta) \) is an isomorphism. Since this map is already injective, it will suffice to show that \(h^{3,0}(\Theta) = h^{3,0}(A) = 4 \). By adjunction, \(\omega_\Theta \cong \mathcal{O}_\Theta(\Theta) \), so \(h^0(\Theta, \mathcal{O}_\Theta(\Theta)) = h^{3,0}(\Theta) \). We can use the long exact sequence to compute \(h^0(\Theta, \mathcal{O}_\Theta(\Theta)) \):

\[
0 \to H^0(A, \mathcal{O}_A) \to H^0(A, \mathcal{O}_A(\Theta)) \xrightarrow{res} H^0(\Theta, \mathcal{O}_\Theta(\Theta)) \to H^1(A, \mathcal{O}_A) \to H^1(A, \mathcal{O}_A(\Theta)) = 0
\]

Since \(\Theta \) is a principal polarization, \(h^0(A, \mathcal{O}_A(\Theta)) = 1 \) so that the restriction arrow is 0. Moreover, \(h^1(A, \mathcal{O}_A) = 4 \), so it follows that \(h^{3,0}(\Theta) = 4 = h^{3,0}(A) \). Thus, \(i_* : H^{3,0}(A) \to H^{3,0}(\Theta) \) is an isomorphism and \(K_\Theta \) has Hodge level 1. To determine the dimension of \(K_\Theta \), we first compute \(\chi(\Theta) = c_3(T\Theta) \). Applying the Chern polynomial to the adjunction sequence in this case, one obtains that \(c_3(T\Theta) = -c_1(\mathcal{O}(\Theta))^4 = -4! = -24 \). Using the Lefschetz hyperplane theorem, one also computes that \(\chi(\Theta) = 42 - h^3(\Theta) \), so that \(h^3(\Theta) = 66 \). Since \(h^3(A) = \binom{8}{3} = 56 \), it follows that \(K_\Theta \) has dimension 10.\[\square\]
Thus, \(H^*(P, \mathbb{Q}) \) has Hodge level 1 when \(g = 4 \). Now, consider the intermediate Jacobian of \(K_{\Theta} \):

\[
J(K_{\Theta}) = K_{\Theta, \mathbb{C}}/(F^2 K_{\Theta, \mathbb{C}} \oplus K_{\Theta, \mathbb{Z}})
\]

This is a principally polarized Abelian variety of dimension 5, and we have an isomorphism of rational Hodge structures \(H^1(J(K_{\Theta}), \mathbb{Q})(-1) \cong H^3(P, \mathbb{Q}) \). The generalized Hodge conjecture predicts that this isomorphism arises from a correspondence \(\Gamma \subset J(K_{\Theta}) \times \Theta \). The existence of \(\Gamma \) was proved in [5]. One may take this a step further and ask whether \(h^1(J(K_{\Theta}))(−1) \) and \(P \) are isomorphic as motives. Proposition 1.1 provides a partial answer to this; i.e., we have

\[
h^1(J(K_{\Theta}))(−1) \cong P \text{ if } p \text{ acts trivially on } CH^0(\Theta_L) \text{ for all field extensions } \mathbb{C} \subset L \text{ (and conversely).}
\]

We will need the following definition for the proof:

Definition 4.1. We say that \(M = (X, \pi, 0) \in M_k \) has representable Chow group in codimension \(i \) if there exists a smooth complete (possible reducible) curve \(C \) and \(\Gamma \in CH^i(C \times X) \) such that \(CH^i_{\text{alg}}(M_L) = \pi_L^* CH^i_{\text{alg}}(X_L) \) lies in \(\Gamma_L \subset CH^i_{\text{alg}}(X_L) \) for every field extension \(k \subset L \).

Proof of Proposition 1.1. Suppose that we have some Abelian variety \(J \) for which \(h^1(J)(−1) \cong P \). Then, applying \(CH^3() \) to both sides we obtain

\[
p_\ast CH^0(\Theta) = p_\ast CH^3(\Theta) \cong CH^3(h^1(J)(−1)) = CH^2(h^1(J))
\]

From [2] Theorem 2.19, we have \(CH^2(h^1(J)) = 0 \) so that \(p_\ast CH^0(\Theta) = 0 \). For the converse, observe that \(\Theta \) can be defined over some field \(k \) which is the algebraic closure of a finitely generated over \(\mathbb{Q} \). So, let \(\Theta_k \) be a model for \(\Theta \) over \(k \). The operators used in the proof of Theorems 1.1 and 1.2 (\(\Pi \Theta \), \(\Lambda \Theta \), and \(\pi_{j,A} \)) are well-behaved upon passage to an overfield (see [2] and [8]); thus, so is the correspondence \(p_k \in Cor^0(\Theta_k \times \Theta_k) \) constructed above. This means that \(p_k \) coincides with \(p \) (as in the statement of Proposition 1.1), and the assumption that \(p \) acts trivially on \(CH_0 \) becomes the assumption that

\[
p_L \ast CH^3(\Theta_L) = 0
\]

for all overfields \(k \subset L \). Now, let \(P = (\Theta_k, p, 0) \). The task is then to find an Abelian variety \(J \) over \(k \) for which

\[
h^1(J)(−1) \cong P
\]

To this end, we begin with the following lemma:

Lemma 4.2. \(P \) has representable Chow group in codimension 2.

Proof of Lemma. We will drop the subscript \(k \). We use the same argument as in [1]. There is a localization sequence:

\[
(10) \quad \lim_{D \subset \Theta} CH^2(\Theta \times D) \xrightarrow{(id_\Theta \times j_D)^*} CH^3(\Theta \times \Theta) \xrightarrow{(id_\Theta \times K)^*} CH^3(\Theta_K) \longrightarrow 0
\]
where the limit runs over all (possibly reducible) subvarieties D of codimension 1 and $K = \mathbb{C}(\Theta)$ is the function field of Θ. We have $(id_\Theta \times K)^* \Delta_\Theta = \eta_K$, the generic point of Θ. From Lemma 2.2(a), we have
\[
\eta_K = (p \times id_\Theta)^* \Delta_\Theta = p_K^* (id_\Theta \times K)^* \Delta_\Theta = p_K^* (id_\Theta \times K)^* \eta_K
\]
Since $p_K^* (\eta_K) = 0$ by assumption, the exactness of (10) gives some subvariety D and $\alpha \in CH^2(\Theta \times D)$ for which $p_K^* = (id_\Theta \times j_D)^* \alpha$. After desingularizing, we can assume that D is smooth (although j_D may no longer be an inclusion). By Lemma 2.2(b), we have
\[
p = (id_\Theta \times j_D)^* \alpha = \Gamma_{j_D} \circ \alpha
\]
Thus, we see that the Chow group of P is representable in every codimension. By [12] Theorem 3.4, it follows that the motive of P decomposes as
\[
\bigoplus_i (i)^{\oplus n_i} \oplus h^1(J_i)(-i)
\]
for integers n_i and Abelian varieties J_i. Since the cohomology of P is 0 in all but degree 3, this means that $P \cong h^1(J)(-1)$ for some Abelian variety J. This gives the proposition. □

Remark 4.1. A more refined version of Proposition 1.1 is that the Abelian variety can be taken to be $J(K_\Theta)$ in the above notation. Indeed, since we have $H^1(J(K_\Theta), \mathbb{Q})(-1) \cong H^3(P, \mathbb{Q}) \cong H^1(J, \mathbb{Q})(-1)$ (as rational Hodge structures), it follows that J and $J(K_\Theta)$ are isogenous.

References

[1] S. Bloch, V. Srinivas. Remarks on correspondences and algebraic cycles, Amer. J. Math. 105 (1983), 1235-1253.
[2] C. Deninger, J. Murre. Motivic decomposition of abelian schemes and the Fourier transform, Compositio Math. 88 (3) (1993), 333-353.
[3] W. Fulton. Intersection Theory, Ergebnisse, 3. Folge, Band 2, Springer Verlag (1984).
[4] B. Brent Gordon, M. Hanamura, J.P. Murre. Relative Chow-K"unneth projectors for modular varieties, J. f. die reine u. angew. Math. 558 (2003), 1-14.
[5] E. Izadi, D. van Straten. The intermediate Jacobians of the theta divisors of four-dimensional principally polarized abelian varieties, J. Algebraic Geom. 4 (3) (1995), 557-590.
[6] U. Jannsen. On finite-dimensional motives and Murre’s conjecture, In Algebraic cycles and motives. Vol. 2, volume 344 of London Math. Soc. Lecture Note Ser., pages 112-142. Cambridge Univ. Press, Cambridge, 2007.
[7] S. L. Kleiman. The Standard Conjectures, In Motives (Seattle, WA, 1991), volume 55 of Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, (1994), 3-20.
[8] K. K"unnemann. A Lefschetz decomposition for Chow motives of abelian schemes, Inventiones Mathematicae \textbf{113.1} (1993), 85-102.

[9] D. Mumford. Prym varieties I, Contributions to Analysis, Academic Press, New York (1974).

[10] J. Murre. On the motive of an algebraic surface, Journal für die reine und angewandte Mathematik \textbf{409} (1990), 190-204.

[11] J. Murre, J. Nagel, C. Peters. Lectures on the Theory of Pure Motives, Amer. Mat. Soc., University Lecture Note Series \textbf{61} (2013).

[12] C. Vial. Pure Motives with Representable Chow Groups, Comptes Rendu \textbf{348} (2010), 1191-1195.

DEPARTMENT OF MATHEMATICS, DUKE UNIVERSITY, DURHAM, NC

\textit{E-mail address:} hdiaz123@math.duke.edu