Electroanalysis on an Interdigitated Electrode for High-Affinity Cardiac Troponin I Biomarker Detection by Aptamer–Gold Conjugates

Jintao Zhang, Thangavel Lakshmipriya, and Subash C. B. Gopinath*

ABSTRACT: The primary reasons for myocardial infarction (MI) are pericarditis, arrhythmia, and heart failure, causing predominant deaths worldwide. Patients need a potential diagnostic system and treatment before cardiomyocyte damage. Cardiac biomarkers are released from myocytes immediately after a heart attack. Troponin is an efficient biomarker released from dead cells within a few hours. Aptamers are artificial antibodies used effectively in the biosensor field for biomarker detection. Along with aptamers, the application of nanomaterials is also expected to enhance the detection limits of biosensors. In this investigation, selected aptamers against cardiac troponin I (cTnI) were conjugated with gold nanoparticles (GNPs) to diagnose MI and compared with an aptamer-only control group on an interdigitated electrode surface. Based on electroanalysis, cTnI was detected at concentrations as low as 1 fM, and the detection limit improved to 100 aM when the aptamer was conjugated with GNP. In addition, aptamer–GNP conjugates increased the current level at the tested concentrations of cTnI. Control experiments with noncomplementary aptamers and relevant proteins did not result in notable changes in the current, demonstrating the selective detection of cTnI.

1. INTRODUCTION

Cardiovascular disease is a major life-threatening global disease with a high morbidity and mortality worldwide. Myocardial infarction (MI) is commonly defined as a heart attack due to the reduction of blood flow to the heart. According to the WHO, it is expected that ~23 million people will die annually from MI by 2030. MI can be identified by electrocardiogram (ECG); however, it lacks sensitivity. ECG needs supporting evidence from blood-based cardiac biomarker analysis for the identification of cardiac-related diseases. MI is due to cell death in the heart; ultimately, myocytes cannot regenerate, which affects the cardiac function. During cell death, biomarkers, such as myoglobin, creatine-kinase MB, cardiac troponin, and C-reactive protein, will be released to the cytoplasm more rapidly from these dead cells than from normal cells. Cardiac troponin I (cTnI) is the subunit of troponin and has been found to be an efficient biomarker to diagnose MI. Cardiac troponin T (cTnT) and cTnI are specific and sensitive and are considered as standard biomarkers for MI diagnosis. These proteins are released from dead cells within 2−4 and 3−4 h upon MI onset. Their concentration reaches a peak after 1−2 days, and they remain in the bloodstream even after 10 days, which facilitates the diagnosis of MI. Various sensing methods, such as surface plasmon resonance, optical sensing, enzyme-linked immunosorbent assay, and electrochemistry, have been used to detect cTnI. Detection probes include antibodies, aptamers, DNA, and RNA, which are used to quantify the level of cTnI. Among these probes, aptamers have received great attention from researchers due to their selective binding affinity to their targets. In this research, an aptamer specifically binding cTnI was utilized to determine the level of cTnI by using an interdigitated electrode (IDE) sensor. IDE is desired for use in this study due to its advantage in improving the performance of the sensor by adjusting the gap and finger sizes. In addition, IDE tolerates a wide range of metals, which are used as both the substrate and the electrodes, is inexpensive, and easy to manufacture. Furthermore, because the fabricated substrate is a metal oxide material, it is highly suitable for surface chemical functionalization to capture a high number of biomolecules. This sensor is suitable for applications with a wide range of clinically relevant biomarkers.
An aptamer is a synthesized RNA/DNA oligonucleotide sequence selected from the randomized library through the steps of binding, partitioning, and amplification. Since the generated aptamers offer advantages over antibodies, they can be utilized for multiple applications. In particular, aptamers are more attractive as biosensors because of their unique features, such as their high performance to bind to targets. In this research, an aptamer generated against cTnI was used as the detection probe to diagnose MI on the IDE surface.

Along with aptamers as suitable probes, nanomaterials applied in the field of biosensors can improve the detection of targets. In particular, DNA can be easily conjugated with various nanomaterials and be used to detect diseases in an efficient way. Among different materials, gold is a well-established material and is utilized to immobilize biomolecules on sensing surfaces to improve detection. Due to the optical properties of gold, it is a widely accepted material in the construction of optical-based biosensors. Moreover, utilizing gold in piezoelectric and electrochemical sensors is attractive because of its excellent conductivity, high-surface-area-to-volume ratio, biocompatibility, and catalytic properties. In this research, electroanalysis was conducted using aptamers conjugated to gold nanoparticles (GNPs), which were used as the capture probe to detect cTnI and compared with aptamer-only immobilized IDE surfaces without GNPs.

2. RESULTS AND DISCUSSION

Early diagnosis of MI is a challenging task due to the lack of an efficient sensing system suitable for a wide range of applications. Current ECG and other diagnostic systems are not advantageous. In addition, it is required to diagnose MI in a short period of time. Circulating biomarkers have recently gained great attention for diagnosing MI efficiently. Troponin is a sensitive cardiac biomarker, which helps to diagnose MI immediately after its release from the cells. Researchers are focused on identifying a suitable effective diagnostic system to quantify the level of troponin. In this research, cardiac biomarker (cTnI) detection by its aptamer and aptamer−GNP was carried out on the IDE surface. Figure 1a shows the schematic illustration for the cTnI detection on aptamer- and aptamer−GNP-modified IDE surfaces. The aptamer exhibits strong stem regions with two loops, facilitating the high-affinity binding of cTnI. To attach aptamers on the IDE surface, a biotin−streptavidin pattern was utilized. Since it was indicated that biotin−streptavidin has a high binding affinity, it can be used to improve the immobilization process and conjugate other biomolecules onto the sensing surfaces. Streptavidin was attached to the IDE surface through a 1,1′-carbonyldiimidazole (CDI) chemical linker, and a biotinylated aptamer was attached to the streptavidin-modified IDE surfaces. CDI has been widely used for conjugating amino acids during peptide synthesis and aromatic amines to form amides. Similarly, this strategy was used to link the amine groups in streptavidin to the hydroxyl groups of the sensing surface. In this way, more aptamers can bind on the sensing surface, which can improve the detection of cTnI. In addition, to enhance the detection of cTnI, the aptamer for cTnI was complexed with GNPs. Gold-complexed biomolecules are stable, and on the surface of GNPs, a large number of biomolecules can bind and attract more target molecules.

The sensitive and selective detection mechanism is outlined in Figure 2 in which the current sensing system operates based on the dipole moment between the positive and negative electrodes in the presence of an electrical field. This electrical field is enhanced in the presence of molecular crowding, and it showed an apparent difference depending on whether aptamer−GNP or aptamer-only surfaces were present. The secondary folding pattern of the aptamer was predicted by mfold online software, which revealed the formation of stem and loop structures (Figure 1b).
In this research, the aptamer and GNP combined strategy reached a lower limit of cTnI detection on the IDE sensing surface to detect MI. After the fabrication process, the surface uniformity of the IDE surface with gap and finger regions was confirmed by a 3D nanoprofiler (Figure 3a,b).

2.1. Comparison of Aptamer-Only and Aptamer–GNP Immobilization on IDE Surfaces. Figure 4 shows the surface immobilization of aptamer and aptamer–GNP on CDI–streptavidin IDE surfaces. The current level was recorded for each modified surface to confirm the molecular assembly. The CDI-modified bare surface displayed a current level of 1.85 × 10⁻⁵ A; when streptavidin was attached to the surface, the current increased to 3.81 × 10⁻⁵ A. This enhancement in the current clearly indicated the immobilization of streptavidin on the CDI-modified surfaces. Before adding the biotinylated aptamer, the remaining surfaces were masked by ethanolamine to eliminate a biofouling effect originating from other molecules (Figure 4a). On these streptavidin-modified surfaces, the binding of aptamer and aptamer–GNP was individually carried out, and the alterations in current were compared. As stated elsewhere, single-stranded oligonucleotides/aptamers can attract gold by covalent binding, electrostatic attraction, and hydrophobic absorption.¹⁸ Due to these phenomena, more aptamers are attached to the GNPs. With only the aptamer, the current level was altered from 6.32 × 10⁻⁷ to 2.5 × 10⁻⁷ A; in the case of the aptamer–GNP surface, the current level changed to 2.09 × 10⁻⁸ A (Figure 4b). The difference in these changes might be due to the higher number of biotinylated aptamers attached to the surface of the GNPs, leading to a higher number of binding sites for the streptavidin-immobilized surface.

2.2. Comparative Detection of cTnI on Aptamer- and Aptamer–GNP-Modified IDE Surfaces: Electroanalysis. Since it was proven that aptamer–GNP resulted in a more pronounced change in the current on the IDE surface, it was expected that binding of cTnI onto this surface would result in a higher binding affinity compared to that of the surface modified by an aptamer only. Figure 5a,b shows the comparison of 10 pM of cTnI detection on aptamer- and aptamer–GNP-immobilized IDE surfaces. As shown in Figure 5a, after adding 10 pM cTnI, the current level increased from 2.5 × 10⁻⁵ to 6.18 × 10⁻⁵ A. The variation was found to be 3.68 × 10⁻⁵. When 10 pM cTnI interacted with the aptamer–GNP-modified IDE surface, the current level increased from 2.09 × 10⁻⁵ to 6.5 × 10⁻⁸ A. Compared with the aptamer-modified surface, cTnI binding to the aptamer–GNP-modified surface resulted in a greater current change at a similar concentration (Figure 5b). This may be due to more aptamer attachment on the surface when using GNP and aptamer conjugates, leading to more interactions of cTnI with the surface.

2.3. Comparison of the Detection Limit of cTnI on Aptamer- and Aptamer–GNP-Modified IDE Surfaces. The detection limits of cTnI on aptamer and aptamer–GNP surfaces were determined and compared by titrating different concentrations of cTnI. The diluted concentrations ranging from attomolar to picomolar were dropped individually on the aptamer-modified IDE surfaces. Before this comparison of 10 pM cTnI detection on aptamer- and aptamer–GNP-modified IDE surfaces. As shown in Figure 6a, when 100 aM cTnI was added to the aptamer surface, cTnI binding to the aptamer–GNP-immobilized IDE surfaces. Since it was proven that aptamer–GNP resulted in a more pronounced change in the current on the IDE surface, it was expected that binding of cTnI onto this surface would result in a higher binding affinity compared to that of the surface modified by an aptamer only. Figure 5a,b shows the comparison of 10 pM of cTnI detection on aptamer- and aptamer–GNP-immobilized IDE surfaces. As shown in Figure 5a, after adding 10 pM cTnI, the current level increased from 2.5 × 10⁻⁵ to 6.18 × 10⁻⁵ A. The variation was found to be 3.68 × 10⁻⁵. When 10 pM cTnI interacted with the aptamer–GNP-modified IDE surface, the current level increased from 2.09 × 10⁻⁵ to 6.5 × 10⁻⁸ A. Compared with the aptamer-modified surface, cTnI binding to the aptamer–GNP-modified surface resulted in a greater current change at a similar concentration (Figure 5b). This may be due to more aptamer attachment on the surface when using GNP and aptamer conjugates, leading to more interactions of cTnI with the surface.
the successful binding of cTnI at this low concentration to the aptamer−GNP-modified surface. Furthermore, with an increase in the concentration to 1 fM, 10 fM, 100 fM, 1 pM, and 10 pM, the current changes increased gradually to 4.77, 5.07, 5.58, 6.01, and 6.5×10^{-5}, respectively. Compared with the previous experiment (aptamer-only), cTnI binding to the aptamer−GNP-conjugated surface was high, and a more pronounced increase in the current for cTnI detection was observed. The difference in the current changes was plotted for these two experiments, and the detection limit was calculated by 3σ estimation. As shown in Figure 7a, the cTnI detection limits were 1 fM and 100 aM on the aptamer and aptamer−GNP surfaces, respectively. These values correspond to a 10-fold lower detection limit of cTnI on the aptamer−GNP surface. This experiment showed that the aptamer-conjugated GNP could improve the overall detection of cTnI.

2.4. Control Experiments for Selective Detection of cTnI.

Three control experiments were conducted to evaluate the selective detection of cTnI on aptamer- and aptamer−GNP-modified surfaces. In the first control experiment, instead of aptamer, complementary aptamer sequence was used, while the others used control proteins (cTnT and cTnC) instead of cTnI. As shown in Figure 7b, there were no noticeable changes in the current in these control experiments, confirming the specificity of our system.
specific interaction of aptamer with cTnI. Between specific (nonfouling) and nonspecific (biofouling) surfaces, large differences were found. Overall, the sensor displayed a high performance compared to the currently available sensors (Table 1).

3. CONCLUSIONS

Cardiovascular disease, a serious death-causing disease, occurs globally. MI is basically defined as heart failure. Diagnosing MI within a shorter period of time after mild heart failure is crucial for saving the life of a patient. cTnI is widely used as an efficient biomarker to diagnose MI. This research focused on quantifying the level of cTnI through its specific aptamer on an electroanalysis-based IDE sensing surface. Furthermore, a GNP-complexed aptamer was utilized to increase the detection limit of cTnI. At a 1 μM concentration, cTnI was efficiently detected by the aptamer on the IDE sensor. The detection of cTnI improved to 100 aM when aptamer–GNP conjugates were used. Control experiments with complementary aptamer sequences and control proteins did not show significant alterations in current, indicating the specific interaction of cTnI and aptamer on the IDE sensing surface. The major limitations of the sensor shown here are the short circuit with nanogaps (<100 nm) between the fingers and biofouling with nonmetal oxide substrates.

4. MATERIALS AND METHODS

4.1. Reagents and Biomolecules.

- CDI, cardiac troponin proteins (cTnI; cTnT; cTnC), phosphate-buffered saline (PBS), and GNPPs (15 nm) were purchased from Sigma-Aldrich (USA).
- Ethanolamine was ordered from Fisher Scientific (UK).
- The biotinylated aptamer for cTnI was synthesized and received from a local supplier (Apical Scientific Oligo, Malaysia).

The sequence of the specific aptamer was adapted from the study by Jo et al. (2015). The complementary aptamer sequence for the control experiment was also prepared. One micromolar of the diluted aptamer was mixed with one optical density of GNPPs and kept at room temperature (RT) for 30 min. The unbound GNPPs were separated by centrifugation at a speed of 10,000 g for 10 min, and the pellet was washed with PBS buffer. The conjugated capture probe with GNP was kept at 4 °C until further use. Mfold online software was utilized to predict the secondary structure of aptamers with stems and loops.

4.2. Interdigitated Surface Fabrication: Wet-Etching Process.

First, the silica wafer was cleaned by RCA2 and RCA1 solutions to eliminate unnecessary deposits. Then, thermal oxidation was performed for 1 h at 500 °C to form a layer of silicon dioxide (SiO₂). After that, aluminum (Al) was coated on the SiO₂ layer by using Al coil in a thermal evaporator. The electrode pattern was formed on an Al substrate by using the conventional photolithography technique. This process was performed by coating the positive Al-modified substrate with a spin coater and soft baking at 90 °C (1 min) to eliminate moisture. Then, the IDE pattern was transferred to the substrate by using an ultraviolet (UV) light exposure. The unexposed area was removed by dipping the wafer in a photoresist developer. The developed IDE electrode was hard baked (at 110 °C for 1 min) to remove the moisture content and to enhance the adhesion between the SiO₂ and the Al layers. Finally, the unexposed Al layer on the IDE was etched by immersing the wafer in etchant solution containing Al. The fabricated IDE was washed with acetone and distilled water and placed in the dry cabinet until further use. The structure of the fabricated IDE was observed under a 3D nanoparticle.
4.6. Selective Detection of cTnl by Its Specific Aptamer. The selective detection of cTnl was confirmed via three control experiments, namely, cTnl binding with complementary aptamer sequences and binding of specific aptamer sequences with control proteins (cardiac troponin C and cTnT). The current changes in these experiments were compared with those resulting from the specific interaction of the desired aptamer sequence and the target cTnl. All molecular assembly and interaction experiments on the IDE surface were performed under wet conditions at RT, and thorough washing was performed between each step unless otherwise stated. The current measurements (A) were performed in the presence of PBS (10 mM; pH 7.4) as the electrolyte using Keithley 6487 with a linear sweep from 0 to 2 V recorded the values at steps of 0.1 V (at 20 s).

■ AUTHOR INFORMATION

Corresponding Author
Subash C. B. Gopinath — Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar, Perlis 01000, Malaysia; Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Arau, Perlis 02600, Malaysia; orcid.org/0000-0002-8347-4687; Email: subash@unimap.edu.my

Authors
Jintao Zhang — Department of Children’s Heart Center, Fuwai Central China Cardiovascular Hospital, Henan Provincial People’s Hospital, Zhengzhou City, Henan Province 450000, China

Thangavel Lakshmipriya — Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar, Perlis 01000, Malaysia

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.0c03260

Notes
The authors declare no competing financial interest.

■ REFERENCES

The authors declare no competing financial interest.

(1) Qureshi, A.; Gurbuz, Y.; Nizai, J. H. Biosensors for Cardiac Biomarkers Detection: A Review. Sens. Actuators, B 2012, 171–172, 62–76.

(2) Chen, J.; Ran, F.; Chen, Q.; Luo, D.; Ma, W.; Han, T.; Wang, C.; Wang, C. A Fluorescent Biosensor for Cardiac Biomarker Myoglobin Detection Based on Carbon Dots and Deoxyribonucleic Acid Target Recycling Signal Amplification. RSC Adv. 2019, 9, 4463–4468.

(3) Sharma, A.; Jang, J. Flexible Electrical Aptasensor Using Dielectrophoretic Assembly of Graphene Oxide and Its Subsequent Reduction for Cardiac Biomarker Detection. Sci. Rep. 2019, 9, 5970.

(4) Shannugam, N. R.; Muthukumar, S.; Tanak, A. S.; Prasad, S. Multiplexed Electrochemical Detection of Three Cardiac Biomarkers cTnI, cTnT and BNP Using Nanostructured ZnO-Sensing Platform. Future Cardiol. 2018, 14, 131–141.

(5) Yola, M. L.; Atar, N. Development of Cardiac Troponin-1 Biosensor Based on Boron Nitride Quantum Dots Including Molecularly Imprinted Polymer. Biosens. Bioelectron. 2019, 126, 418–424.

(6) Palladino, P.; Minunni, M.; Scarano, S. Cardiac Troponin T Capture and Detection in Real-Time via Epitope-Imprinted Polymer and Optical Biosensing. Biosens. Bioelectron. 2018, 106, 93–98.

(7) Zhou, W.; Li, K.; Wei, Y.; Hao, P.; Chi, M.; Liu, Y.; Wu, Y. Ultrahighly Sensitive Label-Free Optical Microfiber Coupler Biosensor for Detection of Cardiac Troponin I Based on Interference Turning Point Effect. Biosens. Bioelectron. 2018, 106, 99–104.

(8) Honikel, M. M.; Lin, C.-E.; Probst, D.; La Belle, J. T. Facilitating Earlier Diagnosis of Cardiovascular Disease through Point-of-Care Biosensors: A Review. CRC Crit. Rev. Bioeng. 2018, 46, S3–S22.

(9) Negahdary, M.; Behjati-Ardakani, M.; Sattarrahmad, N.; Heli, H. An Aptamer-Based Biosensor for Troponin I Detection in Diagnosis of Myocardial Infarction. J. Biomed. Phys. Eng. 2018, 8, 167–178.

(10) Babuin, L.; Jaffe, A. S. Troponin: The Biomarker of Choice for the Detection of Cardiac Injury. CMAJ 2005, 173, 1191–1202.

(11) Han, X.; Li, S.; Peng, Z.; Othman, A. M.; Leblanc, R. Recent Development of Cardiac Troponin I Detection. ACS Sens. 2016, 1, 106–114.

(12) Abdolrahim, M.; Rabiee, M.; Alhosseinis, S. N.; Tahriri, M.; Yazdanpanah, S.; Tayebi, L. Development of Optical Biochemical Technologies for Cardiac Troponin Recognition. Anal. Biochem. 2015, 485, 1–10.

(13) Lakshmipriya, T.; Fujimaki, M.; Gopinath, S. C. B.; Awazu, K.; Horiguchi, Y.; Nagasaki, Y. A High-Performance Waveguide-Mode Biosensor for Detection of Factor IX Using PEG-Based Blocking Agents to Suppress Non-Specific Binding and Improve Sensitivity. Analyst 2013, 138, 2863–2870.

(14) Gopinath, S. C. B.; Kumar, P. K. R.; Tominaga, J. A BioDVD Media with Multilayered Structure Is Suitable for Analyzing Biomolecular Interactions. Biomol. Interact. 2011, 11, 5682–5688.

(15) Lakshmipriya, T.; Fujimaki, M.; Gopinath, S. C. B.; Awazu, K. Generation of Anti-Influenza Aptamers Using the Systematic Evolution of Ligands by Exponential Enrichment for Sensing Applications. Langmuir 2013, 29, 15107–15115.

(16) Holzinger, M.; Le Goff, A.; Cosnier, S. Nanomaterials for biosensing applications: a review. Front. Chem. 2014, 2, 63.

(17) Dorraj, G. S.; Rasaeie, M. J.; Latifi, A. M.; Pishgoo, B.; Tavallaei, M. Selection of DNA Aptamers against Human Cardiac Troponin I for Colorimetric Sensor Based Dot Blot Application. J. Biotecnol. 2015, 208, 80–86.

(18) Gopinath, S. C. B.; Lakshmipriya, T.; Awazu, K. Colorimetric Detection of Controlled Assembly and Disassembly of Aptamers on Unmodified Gold Nanoparticles. Biosens. Bioelectron. 2014, 51, 115–123.

(19) Jo, H.; Gu, H.; Jeon, W.; Youn, H.; Her, J.; Kim, S.-K.; Lee, J.; Shin, J. H.; Ban, C. Electrochemical Aptasensor of Cardiac Troponin I for the Early Diagnosis of Acute Myocardial Infarction. Anal. Chem. 2015, 87, 9869–9875.

(20) Wang, G.-K.; Zhu, J.-Q.; Zhang, J.-T.; Li, Q.; Li, Y.; He, J.; Qin, Y.-W.; Jing, Q. Circulating MicroRNA: A Novel Potential Biomarker for Early Diagnosis of Acute Myocardial Infarction in Humans. Eur. Heart J. 2010, 31, 659–666.

(21) Keller, T.; Zeller, T.; Peetz, D.; Tsikas, S.; Roth, A.; Cyzy, E.; Bickel, C.; Baldus, S.; Warmholtz, A.; Fröhlich, M.; Sinnen, C. R.; Eleftheriadis, M. S.; Wild, P. S.; Schnabel, R. B.; Lubos, E.; Jachmann, N.; Genth-Zotz, S.; Post, F.; Nicaud, V.; Tietz, L.; Lackner, K. J.; Müenzel, T. F.; Blankenberg, S. Sensitive Troponin I Assay in Early Diagnosis of Acute Myocardial Infarction. N. Engl. J. Med. 2009, 361, 868–877.

(22) Reichlin, T.; Hochholzer, W.; Bassetti, S.; Steuer, S.; Stelzig, C.; Hartwig, S.; Biedert, S.; Schaub, N.; Buerge, C.; Potocki, M.; Noveau, M.; Breidtardt, T.; Twernbold, R.; Winkler, K.; Bingisser, R.; Mueller, C. Early Diagnosis of Myocardial Infarction with Sensitive Cardiac Troponin I Assays. N. Engl. J. Med. 2009, 361, 858–867.

(23) Lin, J.; Gopinath, S. C. B.; Lakshmipriya, T.; Chen, Y.; Yuan, W. R.; Yang, M. Target DNA Detection of Human Papilloma Virus-16 E7 Gene by Capture-Target-Reporter Sandwich on Interdigitated Electrode Sensor. Int. J. Biol. Macromol. 2019, 141, 564–569.

(24) Lv, Q.; Wang, Y.; Su, C.; Lakshmipriya, T.; Gopinath, S. C. B.; Pandian, K.; Perumal, V.; Liu, Y. Human Papillomavirus DNA-Biomarker Analysis for Cervical Cancer: Signal Enhancement by Gold Nanoparticle-Coupled Tetralavalent Streptavidin-Biotin Strategy. Int. J. Biol. Macromol. 2019, 134, 354–360.

(25) Lakshmipriya, T.; Gopinath, S. C. B.; Tang, T.-H. Biotin-Streptavidin Competition Mediates Sensitive Detection of Biomole-
cules in Enzyme Linked Immunosorbent Assay. *PLoS One* 2016, 11, No. e0151153.

(26) Gopinath, S. C. B.; Awazu, K.; Fujimaki, M.; Shimizu, K.; Mizutani, W.; Tsukagoshi, K. Surface Functionalization Chemistries on Highly Sensitive Silica-Based Sensor Chips. *Analyst* 2012, 137, 3520.

(27) Nomura, K.-i.; Gopinath, S. C. B.; Lakshmipriya, T.; Fukuda, N.; Wang, X.; Fujimaki, M. An Angular Fluidic Channel for Prism-Free Surface-Plasmon-Assisted Fluorescence Capturing. *Nat. Commun.* 2013, 4, 2855.

(28) Zheng, S.; Zhang, H.; Lakshmipriya, T.; Gopinath, S. C. B.; Yang, N. Gold Nanorod Integrated Electrochemical Sensing for Hyperglycaemia on Interdigitated Electrode. *BioMed Res. Int.* 2019, 2019, 9726967.

(29) Wei, J.; Mu, Y.; Song, D.; Fang, X.; Liu, X.; Bu, L.; Zhang, H.; Zhang, G.; Ding, J.; Wang, W.; et al. A Novel Sandwich Immunensing Method for Measuring Cardiac Troponin I in Sera. *Anal. Biochem.* 2003, 321, 209–216.

(30) Cho, I.-H.; Paek, E.-H.; Kim, Y.-K.; Kim, J.-H.; Paek, S.-H. Chemiluminesimetric Enzyme-Linked Immunosorbent Assays (ELISA)-on-a-Chip Biosensor Based on Cross-Flow Chromatography. *Anal. Chim. Acta* 2009, 632, 247–255.

(31) Wu, W.-Y.; Bian, Z.-P.; Wang, W.; Wang, W.; Zhu, J.-J. PDMS Gold Nanoparticle Composite Film-Based Silver Enhanced Colorimetric Detection of Cardiac Troponin I. *Sens. Actuators, B* 2010, 147, 298–303.

(32) Kong, T.; Su, R.; Zhang, B.; Zhang, Q.; Cheng, G. CMOS-Compatible, Label-Free Silicon-Nanowire Biosensors to Detect Cardiac Troponin I for Acute Myocardial Infarction Diagnosis. *Biosens. Bioelectron.* 2012, 34, 267–272.

(33) Tuteja, S. K.; Priyanka; Bhatta, V.; Deep, A.; Paul, A. K.; Suri, C. R. Graphene-Gated Biochip for the Detection of Cardiac Marker Troponin I. *Anal. Chim. Acta* 2014, 809, 148–154.

(34) Jiang, S.-H.; Fan, T.; Liu, L. J.; Chen, Y.; Zhang, X. Q.; Sha, Z. L.; Liu, Y. L.; Zhang, J. K. The Detection of CTn I by the Aptamer Biosensor. *Prog. Biochem. Biophys.* 2014, 41, 916–920.

(35) Fathil, M. F. M.; Md Arshad, M. K.; Ruslinda, A. R.; Gopinath, S. C. B.; Nuzaihan M.N., M.; Adzhri, R.; Hashim, U.; Lam, H. Y. Substrate-Gate Coupling in ZnO-FET Biosensor for Cardiac Troponin I Detection. *Sens. Actuators, B* 2017, 242, 1142–1154.