q-analogs of group divisible designs

Marco Buratti∗, Michael Kiermaier†, Sascha Kurz‡, Anamari Nakić§, Alfred Wassermann¶

October 15, 2018

Abstract

A well known class of objects in combinatorial design theory are group divisible designs. Here, we introduce the q-analogs of group divisible designs. It turns out that there are interesting connections to scattered subspaces, q-Steiner systems, design packings and qr-divisible projective sets.

We give necessary conditions for the existence of q-analogs of group divisible designs, construct an infinite series of examples, and provide further existence results with the help of a computer search.

One example is a (6, 3, 2, 2)2 group divisible design over GF(2) which is a design packing consisting of 180 blocks that such every 2-dimensional subspace in GF(2)6 is covered at most twice.

1 Introduction

The classical theory of q-analogs of mathematical objects and functions has its beginnings as early as in the work of Euler [Eul53]. In 1957, Tits [Tit57] further suggested that combinatorics of sets could be regarded as the limiting case q → 1 of combinatorics of vector spaces over the finite field GF(q). Recently, there has been an increased interest in studying q-analogs of combinatorial designs from an applications’ view. These q-analog structures can be useful in network coding and distributed storage, see e.g. [GP18].

It is therefore natural to ask which combinatorial structures can be generalized from sets to vector spaces over GF(q). For combinatorial designs, this question was first studied by Ray-Chaudhuri [BRC74], Cameron [Cam74a, Cam74b] and Delsarte [Del76] in the early 1970s.

Specifically, let GF(q)v be a vector space of dimension v over the finite field GF(q). Then a t-(v, k, λ)q subspace design is defined as a collection of

∗Dipartimento di Matematica e Informatica, Universita degli Studi di Perugia, 06123 Perugia, Italy, buratti@dmi.unipg.it
†Department of Mathematics, University of Bayreuth, D-95440 Bayreuth, Germany, michael.kiermaier@uni-bayreuth.de
‡Department of Mathematics, University of Bayreuth, D-95440 Bayreuth, Germany, sascha.kurz@uni-bayreuth.de
§Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia, anamari.nakic@fer.hr
¶Department of Mathematics, University of Bayreuth, D-95440 Bayreuth, Germany, alfred.wassermann@uni-bayreuth.de
k-dimensional subspaces of $\text{GF}(q)^v$, called blocks, such that each t-dimensional subspace of $\text{GF}(q)^v$ is contained in exactly λ blocks. Such t-designs over $\text{GF}(q)$ are the q-analogs of conventional designs. By analogy with the $q \to 1$ case, a t-(v,k,1)$_q$ subspace design is said to be a q-Steiner system, and denoted $S(t, k, v)_q$.

Another well-known class of objects in combinatorial design theory are group divisible designs [MG07]. Considering the above, it therefore seems natural to ask for q-analogs of group divisible designs.

At first glance, this seems like a somewhat artificial task without much justification. But quite surprisingly, it turns out that q-analogs of group divisible designs have interesting connections to scattered subspaces which are central objects in finite geometry, as well as to coding theory via q^r-divisible projective sets. We will also discuss the connection to q-Steiner systems [BEO+16] and to design packings [EZ18].

Let K and G be sets of positive integers and let λ be a positive integer. A (v, K, λ, G)-group divisible design of index λ and order v — denoted as $(v, K, \lambda, G)_q$-GDD — is a triple (V, G, B), where V is a finite set of cardinality v, G, where $\# G > 1$, is a partition of V into parts (groups) whose sizes lie in G, and B is a family of subspaces (blocks) of V (with $\# B \in K$ for $B \in B$) such that every pair of distinct elements of V occurs in exactly λ blocks or one group, but not both. See—for example— [MG07, Han75] for details. We note that the “groups” in group divisible designs have nothing to do with group theory.

The q-analog of a combinatorial structure over sets is defined by replacing subsets by subspaces and cardinalities by dimensions. Thus, the q-analog of a group divisible design can be defined as follows.

Definition 1 Let K and G be sets of positive integers and let λ be a positive integer. A q-analog of a group divisible design of index λ and order v — denoted as $(v, K, \lambda, G)_q$-GDD — is a triple (V, G, B), where

- V is a vector space over $\text{GF}(q)$ of dimension v,
- G is a vector space partition of V into subspaces (groups) whose dimensions lie in G, and
- B is a family of subspaces (blocks) of V,

that satisfies

1. $\# G > 1$,
2. if $B \in B$ then $\dim B \in K$,
3. every 2-dimensional subspace of V occurs in exactly λ blocks or one group, but not both.

A $(v, K, \lambda, \{g\})_q$-GDD is called g-uniform. Subsequently, if K or G are one-element sets, we denote it by small letters, e.g. $(v, k, \lambda, g)_q$-GDD for $K = \{k\}$ and $G = \{g\}$.

1 A set of subspaces of V such that every 1-dimensional subspace is covered exactly once is called vector space partition.
In the rest of the paper we study the case $K = \{k\}$ and $G = \{g\}$. The latter implies that the vector space partition G is a partition of the 1-dimensional subspaces of V in subspaces of dimension g. In finite geometry such a structure is known as $(g-1)$-spread. Additionally, we will only consider so called simple group divisible designs, i.e. designs without multiple appearances of blocks.

A possible generalization would be to require the last condition in Definition 1 for every t-dimensional subspace of V, where $t \geq 2$. For $t = 1$ such a definition would make no sense.

An equivalent formulation of the last condition in Definition 1 would be that every block in B intersects the spread elements in dimension of at most one. The q-analog of concept of a transversal design would be that every block in B intersects the spread elements exactly in dimension one. But for q-analogs this is only possible in the trivial case $g = 1$, $k = v$. However, a related concept was defined in [ES13].

Among all 2-subspaces of V, only a small fraction is covered by the elements of G. Thus, a $(v, k, \lambda, g)_q$-GDD is “almost” a 2-$(v, k, \lambda)_q$ subspace design, in the sense that the vast majority of the 2-subspaces is covered by λ elements of G. From a slightly different point of view, a $(v, k, \lambda, g)_q$-GDD is a 2-$(v, k, \lambda, g)_q$ packing design of fairly large size, which are designs where the condition “each t-subspace is covered by exactly λ blocks” is relaxed to “each t-subspace is covered by at most λ blocks” [BKW18a]. In Section 6 we give an example of a (6, 3, 2, 2)$_2$-GDD consisting of 180 blocks. This is the largest known 2-$(6, 3, 2)_2$ packing design.

We note that a q-analog of a group divisible design can be also seen as a special graph decomposition over a finite field, a concept recently introduced in [BNW]. It is indeed equivalent to a decomposition of a complete m-partite graph into cliques where: the vertices are the points of a projective space $PG(n, q)$; the parts are the members of a spread of $PG(n, q)$ into subspaces of a suitable dimension; the vertex-set of each clique is a subspace of $PG(n, q)$ of a suitable dimension.

2 Preliminaries

For $1 \leq m \leq v$ we denote the set of m-dimensional subspaces of V, also called Grassmannian, by $[V]_m$. It is well known that its cardinality can be expressed by the Gaussian coefficient

$$\# \left[V \atop m \right]_q = \binom{v}{m}_q = \frac{(q^v - 1)(q^{v-1} - 1) \cdots (q^{v-m+1} - 1)}{(q^m - 1)(q^{m-1} - 1) \cdots (q - 1)}.$$

Definition 2 Given a spread in dimension v, let $[V]_k'$ be the set of all blocks that contain no 2-dimensional subspace which is already covered by the spread.

The intersection between a k-dimensional subspace $B \in [V]_k'$ and all elements of the spread is at most one-dimensional. In finite geometry such a subspace $B \in [V]_k'$ is called scattered subspace with respect to G [BBL00, BL00].

In case $g = 1$, i.e. $G = [V]_q$, no 2-dimensional subspace is covered by this trivial spread. Then, (V, B) is a 2-$(v, k, \lambda)_q$ subspace design. See [BKW18a].

3
for surveys about subspace designs and computer methods for their construction.

Let \(q \cdot s = v \) and \(V = \text{GF}(q)^v \). Then, the set of 1-dimensional subspaces of \(\text{GF}(q^s)^v \) regarded as \(s \)-dimensional subspaces in the \(q \)-linear vector space \(\text{GF}(q)^v \), i.e.

\[
\mathcal{G} = \left[\text{GF}(q^s)^v \right]_{q^s}^1,
\]

is called Desarguesian spread.

A \(t \)-spread \(\mathcal{G} \) is called normal or geometric, if \(U, V \in \mathcal{G} \) then any element \(W \in \mathcal{G} \) is either disjoint to the subspace \(\langle U, V \rangle \) or contained in it, see e.g. \(\text{Lun99} \).

Since all normal spreads are isomorphic to the Desarguesian spread \(\text{Lun99} \), we will follow \(\text{Lav16} \) and denote normal spreads as Desarguesian spreads.

If \(s \in \{1, 2\} \), then all spreads are normal and therefore Desarguesian. The automorphism group of a Desarguesian spread \(\mathcal{G} \) is \(\text{PGL}(s, q^s) \).

“Trivial” \(q \)-analogs of group divisible designs. For subspace designs, the empty set as well as the the set of all \(k \)-dimensional subspaces in \(\text{GF}(q)^v \) always are a designs, called trivial designs. Here, it turns out that the question if trivial \(q \)-analogs of group divisible designs exist is rather non-trivial.

Of course, there exists always the trivial \((v, k, 0, g) \)-GDD \((V, G, \{\}) \). But it is not clear if the set of all scattered \(k \)-dimensional subspaces, i.e. \((V, G, \left[V \right]_{q}^k) \), is always a \(q \)-GDD. This would require that every subspace \(L \in \left[V \right]_{q}^k \) that is not covered by the spread, is contained in the same number \(\lambda_{\text{max}} \) of blocks of \(\left[V \right]_{q}^k \).

If this is the case, we call \((V, \left[V \right]_{q}^k, \mathcal{G}) \) the complete \((v, k, \lambda_{\text{max}}, g) \)-GDD.

If the complete \((v, k, \lambda_{\text{max}}, g) \)-GDD exists, then for any \((v, k, \lambda, g) \)-GDD \((V, G, B) \) the triple \((V, G, \left[V \right]_{q}^k \setminus B) \) is a \((v, k, \lambda_{\text{max}} - \lambda, g) \)-GDD, called the supplementary \(q \)-GDD.

For a few cases we can answer the question if the complete \(q \)-GDD exists, or in other words, if there is a \(\lambda_{\text{max}} \). In general, the answer depends on the choice of the spread. In the smallest case, \(k = 3 \), however, \(\lambda_{\text{max}} \) exists for all spreads.

Lemma 1 Let \(\mathcal{G} \) be a \((g - 1)\)-spread in \(V \) and let \(L \) be a 2-dimensional subspace which is not contained in any element of \(\mathcal{G} \). Then, \(L \) is contained in

\[
\lambda_{\text{max}} = \left(\frac{v - 2}{3 - 2} \right) \left(\frac{g - 1}{1} \right)
\]

blocks of \(\left[V \right]_{q}^k \).

Proof. Every 2-dimensional subspace \(L \) is contained in \(\left[v - 2 \right]_{3 - 2} \) 3-dimensional subspaces of \(\left[V \right]_{q}^k \). If \(L \) is not contained in any spread element, this means that \(L \) intersects \(\left[V \right]_{q}^k \) different spread elements and the intersections are 1-dimensional.

Let \(S \) be one such spread element. Now, there are \(\left[g - 1 \right]_{1} \) choices among the 3-dimensional subspaces in \(\left[V \right]_{q}^k \) which contain \(L \) to intersect \(S \) in dimension two. Therefore, \(L \) is contained in

\[
\lambda_{\text{max}} = \left(\frac{v - 2}{3 - 2} \right) \left(\frac{g - 1}{1} \right)
\]
blocks of $\left[\begin{array}{c}v \\ 1 \end{array}\right]_q$.

In general, the existence of λ_{\max} may depend on the spread. This can be seen from the fact that the maximum dimension of a scattered subspace depends on the spread, see [BL00]. However, for a Desarguesian spread and $g = 2$, $k = 4$, we can determine λ_{\max}.

Lemma 2 Let \mathcal{G} be a Desarguesian $(g - 1)$-spread in V and let L be a 2-dimensional subspace which is not contained in any element of \mathcal{G}. Then, L is contained in

$$\lambda_{\max} = \left[\frac{v - 2}{4 - 2}\right]_q - 1 - q \left[\frac{2}{1}\right]_q \left[\frac{v - 4}{1}\right]_q - \left[\frac{v}{1}\right]_q / \left[\frac{2}{1}\right]_q + \left[\frac{4}{1}\right]_q / \left[\frac{2}{1}\right]_q$$

blocks of $\left[\begin{array}{c}v \\ 1 \end{array}\right]_q$.

Proof. Every 2-dimensional subspace L is contained in $\left[\frac{v - 2}{4 - 2}\right]_q$ 4-dimensional subspaces. If L is not covered by the spread this means that L intersects $\left[\frac{2}{1}\right]_q$ spread elements S_1, \ldots, S_{q+1}, which span a 4-dimensional space F. All other spread elements are disjoint to L. Since $L \subseteq F$, we have to subtract one possibility. For each $1 \leq i \leq q + 1$, (S_i, L) is contained in $q^{\left[\frac{v - 4}{1}\right]}_q$ 4-dimensional subspaces with a 3-dimensional intersection with F. All other spread elements S' of F satisfy $(S', L) = F$. If S'' is one of the $q^{\left[\frac{v - 4}{1}\right]}_q, q^{\left[\frac{4}{1}\right]}_q, q^{\left[\frac{2}{1}\right]}_q$ spread elements disjoint from F, then $F'' := (S'', L)$ intersects F in dimension 2. Moreover, F'' does not contain any further spread element, since otherwise F'' would be partitioned into $q^2 + 1$ spread elements, where $q + 1$ of them have to intersect L. Thus, L is contained in exactly λ_{\max} elements from $\left[\begin{array}{c}v \\ 1 \end{array}\right]_q$. □

3 Necessary conditions on $(v, k, \lambda, g)_q$

The necessary conditions for a $(v, k, \lambda, g)_q$-GDD over sets are $g \mid v$, $k \leq v/g$, $\lambda(\frac{v}{g} - 1)g \equiv 0 \pmod{k - 1}$, and $\lambda(\frac{v}{g} - 1)g^2 \equiv 0 \pmod{k(k - 1)}$, see [Han75].

For q-analogues of GDDs it is well known that $(g - 1)$-spreads exist if and only if g divides v. A $(g - 1)$-spread consists of $\left[\begin{array}{c}v \\ 1 \end{array}\right]_q / \left[\begin{array}{c}g \\ 1 \end{array}\right]_q$ blocks and contains

$$\left[\begin{array}{c}g \\ 2 \end{array}\right]_q, \left[\begin{array}{c}v \\ 1 \end{array}\right]_q / \left[\begin{array}{c}g \\ 1 \end{array}\right]_q$$

2-dimensional subspaces.

Based on the pigeonhole principle we can argue that if B is a block of a $(v, k, \lambda, g)_q$-GDD then there can not be more points in B than the number of spread elements, i.e. if $\left[\begin{array}{c}k \\ 1 \end{array}\right]_q \leq \left[\begin{array}{c}v \\ 1 \end{array}\right]_q / \left[\begin{array}{c}g \\ 1 \end{array}\right]_q$. It follows that (see [BL00], Theorem 3.1)

$$k \leq v - g. \quad (1)$$

This is the q-analog of the restriction $k \leq v/g$ for the set case.

If \mathcal{G} is a Desarguesian spread, it follows from [BL00], Theorem 4.3] for the parameters $(v, k, \lambda, g)_q$ to be admissible that

$$k \leq v/2.$$
By looking at the numbers of 2-dimensional subspaces which are covered by spread elements we can conclude that the cardinality of B has to be

$$
\#B = \lambda \frac{\binom{v-1}{1}_q - \binom{g-1}{1}_q \cdot \binom{k}{1}_q / \binom{v}{1}_q}{\binom{2}{1}_q}.
$$

A necessary condition on the parameters of a g-uniform q-(k, λ) GDD is that the cardinality in (2) is an integer number.

Any fixed 1-dimensional subspace P is contained in $\binom{v-1}{1}_q$ 2-dimensional subspaces. Further, P lies in exactly one block of the spread and this block covers $\binom{g-1}{1}_q$ 2-dimensional subspaces through P. Those 2-dimensional subspaces are not covered by blocks in B. All other 2-dimensional subspaces containing P are covered by exactly λ k-dimensional blocks. Such a block contains P and there are $\binom{k-1}{1}_q$ 2-dimensional subspaces through P in this block. It follows that P is contained in exactly

$$
\lambda \frac{\binom{v-1}{1}_q - \binom{g-1}{1}_q \cdot \binom{k}{1}_q / \binom{v}{1}_q}{\binom{k-1}{1}_q}
$$

k-dimensional blocks and this number must be an integer. The number (3) is the replication number of the point P in the q-GDD.

Up to now, the restrictions (1), (2), (3), as well as g divides v, on the parameters of a $(v, k, \lambda, g)_q$-GDD are the q-analogs of restrictions for the set case. But for q-GDDs there is a further necessary condition whose analog in the set case is trivial.

Given a multiset of subspaces of V, we obtain a corresponding multiset P of points by replacing each subspace by its set of points. A multiset $P \subseteq \binom{v}{1}_q$ of points in V can be expressed by its weight function w_P: For each point $P \in V$ we denote its multiplicity in P by $w_P(P)$. We write

$$
\#P = \sum_{P \in V} w_P(P) \quad \text{and} \quad \#(P \cap H) = \sum_{P \in H} w_P(P)
$$

where H is an arbitrary hyperplane in V.

Let $1 \leq r < v$ be an integer. If $\#P \equiv \#(P \cap H) \pmod{q^r}$ for every hyperplane H, then P is called q^r-divisible. In [KK17, Lemma 1] it is shown that the multiset P of points corresponding to a multiset of subspaces with dimension at least k is q^{k-1}-divisible.

Lemma 3 ([KK17, Lemma 1]) For a non-empty multiset of subspaces of V with m_i subspaces of dimension i let P be the corresponding multiset of points. If $m_i = 0$ for all $0 \leq i < k$, where $k \geq 2$, then

$$
\#P \equiv \#(P \cap H) \pmod{q^{k-1}}
$$

for every hyperplane $H \leq V$.

2Taking the elements of P as columns of a generator matrix gives a linear code of length $\#P$ and dimension k whose codewords have weights being divisible by q^r.

Proof. We have \(\#\mathcal{P} = \sum_{i=0}^{v} m_i \binom{v}{i} \). The intersection of an \(i \)-subspace \(U \leq V \) with an arbitrary hyperplane \(H \leq V \) has either dimension \(i \) or \(i - 1 \). Therefore, for the set \(\mathcal{P}' \) of points corresponding to \(U \), we get that \(\#\mathcal{P}' = \binom{v}{i} \) and that \(\#(\mathcal{P}' \cap H) \) is equal to \(\binom{v}{i} \) or \(\binom{v-1}{i-1} \). In either case, it follows from \(\binom{v}{i} = \binom{v-1}{i-1} \) (mod \(q^{i-1} \)) that
\[
\#(\mathcal{P}' \cap H) \equiv \binom{i}{1} \text{ (mod } q^{i-1}).
\]
Summing up yields the proposed result. \(\square \)

If there is a suitable integer \(\lambda \) such that \(w_{\mathcal{P}}(P) \leq \lambda \) for all \(P \in V \), then we can define for \(\mathcal{P} \) the complementary weight function
\[
\bar{w}(P) = \lambda - w(P)
\]
which in turn gives rise to the complementary multiset of points \(\bar{\mathcal{P}} \). In [KK17, Lemma 2] it is shown that a \(q^r \)-divisible multiset \(\mathcal{P} \) leads to a multiset \(\bar{\mathcal{P}} \) that is also \(q^r \)-divisible.

Lemma 4 ([KK17, Lemma 2]) If a multiset \(\mathcal{P} \) in \(V \) is \(q^r \)-divisible with \(r < v \) and satisfies \(w_{\mathcal{P}}(P) \leq \lambda \) for all \(P \in V \) then the complementary multiset \(\bar{\mathcal{P}} \) is also \(q^r \)-divisible.

Proof. We have
\[
\#\bar{\mathcal{P}} = \binom{v}{1} \lambda - \#\mathcal{P} \quad \text{and} \quad \#(\bar{\mathcal{P}} \cap H) = \binom{v-1}{1} \lambda - \#(\mathcal{P} \cap H)
\]
for every hyperplane \(H \leq V \). Thus, the result follows from \(\binom{v}{1} \equiv \binom{v-1}{1} \) (mod \(q^r \)) which holds for \(r < v \). \(\square \)

These easy but rather generally applicable facts about \(q^r \)-divisible multiset of points are enough to conclude:

Lemma 5 Let \((V, G, B) \) be a \((v, k, \lambda, g)_q \)-GDD and \(2 \leq g \leq k \), then \(q^{k-g} \) divides \(\lambda \).

Proof. Let \(P \in \binom{[v]}{1} \) be an arbitrary point. Then there exists exactly one spread element \(S \in G \) that contains \(P \). By \(B_P \) we denote the elements of \(B \) that contain \(P \). Let \(S' \) and \(B'_P \) denote the corresponding subspaces in the factor space \(V/P \).

We observe that every point of \(\binom{[S']}{} \) is disjoint to the elements of \(B'_P \) and that every point in \(\binom{[v]}{1} \setminus \binom{[S']}{} \) is met by exactly \(\lambda \) elements of \(B'_P \) (all having dimension \(k - 1 \)). We note that \(B'_P \) gives rise to a \(q^{k-2} \)-divisible multiset \(\mathcal{P} \) of points. So, its complement \(\bar{\mathcal{P}} \), which is the \(\lambda \)-fold copy of \(S' \), also has to be \(q^{k-2} \)-divisible. For every hyperplane \(H \) not containing \(S' \), we have \(\#(\mathcal{P} \cap H) = \lambda \binom{g-2}{1} \) and \(\#(\mathcal{P} \cap H) = \lambda \binom{g-2}{1} \). Thus, \(\lambda q^{k-2} = \#\mathcal{P} - \#(\mathcal{P} \cap H) \equiv 0 \) (mod \(q^{k-2} \)), so that \(q^{k-g} \) divides \(\lambda \). \(\square \)

We remark that the criterion in Lemma 5 is independent of the dimension \(v \) of the ambient space. Summarizing the above we arrive at the following restrictions.

7
Theorem 1 Necessary conditions for a $(v,k,\lambda,g)_q$-GDD are

1. g divides v,
2. $k \leq v - g$,
3. the cardinalities in (2), (3) are integer numbers,
4. if $2 \leq g \leq k$ then q^{k-g} divides λ.

If these conditions are fulfilled, the parameters $(v,k,\lambda,g)_q$ are called admissible.

Table 1 contains the admissible parameters for $q = 2$ up to dimension $v = 14$. Column λ_Δ gives the minimum value of λ which fulfills the above necessary conditions. All admissible values of λ are integer multiples of λ_Δ. In column $\#B$ the cardinality of B is given for $\lambda = \lambda_\Delta$. Those values of λ_{\max} that are valid for the Desarguesian spread only are given in italics, where the values for $(v,g,k) = (8,4,4)$ and $(9,3,4)$ have been checked by a computer enumeration.

For the case $\lambda = 1$, the online tables [HKKW16]
http://subspacecodes.uni-bayreuth.de
may give further restrictions, since B is a constant dimension subspace code of minimum distance $2(k-1)$ and therefore

$$\#B \leq A_q(v,2(k-1);k).$$

The currently best known upper bounds for $A_q(v,d;k)$ are given by [HHK+17] Equation (2) referring back to partial spreads and $A_2(6,4;3) = 77$ [HKK15], $A_2(8,6;4) = 257$ [HHK+17] both obtained by exhaustive integer linear programming computations, see also [KK17].

4 q-GDDs and q-Steiner systems

In the set case the connection between Steiner systems $2-(v,k,1)$ and group divisible designs is well understood.

Theorem 2 ([Han75, Lemma 2.12]) A $2-(v+1,k,1)$ design exists if and only if a $(v,k,1,k-1)$-GDD exists.

There is a partial q-analog of Theorem 2.

Theorem 3 If there exists a $2-(v+1,k,1)_q$ subspace design, then a $(v,k,q^2,k-1)_q$-GDD exists.

Proof. Let V' be a vector space of dimension $v+1$ over $\text{GF}(q)$. We fix a point $P \in \left[V' \right]_q$ and define the projection

$$\pi : \text{PG}(V') \to \text{PG}(V'/P), \ U \mapsto (U + P)/P.$$

For any subspace $U \leq V'$ we have

$$\dim(\pi(U)) = \begin{cases}
\dim(U) - 1 & \text{if } P \leq U, \\
\dim(U) & \text{otherwise}.
\end{cases}$$
Table 1: Admissible parameters for $(v, k, g)_2$-GDDs with $v \leq 14$.

v	g	k	λ_Δ	λ_{max}	#B	#G
6	2	3	2	12	180	21
6	3	3	3	6	252	9
8	2	3	2	60	3060	85
8	2	4	4	480	1224	85
8	4	3	7	42	10200	17
8	4	4	7	14	2040	17
9	3	3	1	118	6132	73
9	3	4	10	1680	12264	73
10	2	3	14	252	347820	341
10	2	4	28	10080	139128	341
10	2	5	8		8976	341
10	5	3	21	210	507408	33
10	5	4	35		169136	33
10	5	5	15		16368	33
12	2	3	2	1020	797940	1365
12	2	4	28	171360	2234232	1365
12	2	5	40		720720	1365
12	2	6	16		68640	1365
12	3	3	3	1014	1195740	585
12	3	4	2		159432	585
12	3	5	1860		33480720	585
12	3	6	248		1062880	585
12	4	3	1	1002	397800	273
12	4	4	7		556920	273
12	4	5	62		1113840	273
12	4	6	124		530400	273
12	6	3	1	930	393120	65
12	6	4	1		78624	65
12	6	5	155		2751840	65
12	6	6	31		131040	65
14	2	3	2	4092	12778740	5461
14	2	4	4	2782560	5111496	5461
14	2	5	248		71560944	5461
14	2	6	496		34076640	5461
14	2	7	32		536640	5461
14	7	3	21	3906	133161024	129
14	7	4	35		44387008	129
14	7	5	465		133161024	129
14	7	6	651		44387008	129
14	7	7	63		1048512	129
Let $\mathcal{D} = (V', B')$ be a 2-$(v + 1, k, 1)_q$ subspace design. The set
\[\mathcal{G} = \{ \pi(B) \mid B \in B', P \in B \} \]
is the derived design of \mathcal{D} with respect to P. It is shown that if a group G acts transitively on the subsets of cardinality A. A very successful approach to construct designs, since in [CK79, Prop. 8.4] it is shown that if a group G acts transitively on the subsets of cardinality A, in other words, it is a $(k - 2)$-spread in V'/P. Now define
\[B = \{ \pi(B) \mid B \in B', P \notin B \} \]
and $V = V'/P$.

We claim that (V, \mathcal{G}, B) is a $(v, k, q^2, k - 1)_q$-GDD.

In order to prove this, let $L \in [V']_{(2)}$ be a line not covered by any element in \mathcal{G}. Then $L = E/P$, where $E \in [V']_{q}$, $P \leq E$ and E is not contained in a block of the design \mathcal{D}. The blocks of \mathcal{B} covering L have the form $\pi(B)$ with $B \in B'$ such that $B \cap E$ is a line in E not passing through P. There are q^2 such lines and each line is covered in a unique block in B'. Since these q^2 blocks B have to be pairwise distinct and do not contain the point P, we get that there are q^2 blocks $\pi(B) \in B$ containing L.

Since there are 2-(13, 3, 1)$_2$ subspace designs, by Theorem 3 there are also 2-(13, 3, 4, 2)$_2$-GDDs. The smallest admissible case of a 2-$(v, 3, 1)_q$ subspace design is $v = 7$, which is known as a q-analog of the Fano plane. Its existence is a notorious open question for any value of q. By Theorem 3 the existence would imply the existence of a $(6, 3, q^2, 2)_q$-GDD, which has been shown to be true in [EH17] for any value of q, in the terminology of a “residual construction for the q-Fano plane”. In Theorem 4 we will give a general construction of q-GDDs covering these parameters. The crucial question is if a $(6, 3, q^2, 2)_q$-GDD can be “lifted” to a 2-$(7, 3, 1)_q$ subspace design. While the GDDs with these parameters constructed in Theorem 3 have a large automorphism group, for the binary case $q = 2$ we know from [BKN18] that the order of the automorphism group of a putative 2-$(7, 3, 1)_2$ subspace design is at most two. So if the lifting construction is at all possible for the binary $(6, 3, 4, 2)_2$-GDD from Theorem 4 necessarily many automorphisms have to “get destroyed”.

In Table 2 we can see that there exists a $(8, 3, 4, 2)_2$-GDD. This might lead in the same way to a 2-$(9, 3, 1)_2$ subspace design, which is not known to exist.

5 A general construction

A very successful approach to construct t-(v, k, λ) designs over sets is to prescribe an automorphism group which acts transitively on the subsets of cardinality t. However for q-analogues of designs with $t \geq 2$ this approach yields only trivial designs, since in [CK79, Prop. 8.4] it is shown that if a group $G \leq \text{PGL}(v, q)$ acts transitively on the t-dimensional subspaces of V, $2 \leq t \leq v - 2$, then G acts transitively also on the k-dimensional subspaces of V for all $1 \leq k \leq v - 1$.

The following lemma provides the counterpart of the construction idea for q-analogues of group divisible designs. Unlike the situation of q-analogues of designs, in this slightly different setting there are indeed suitable groups admitting the general construction of non-trivial q-GDDs, which will be described in the sequel. Itoh’s construction of infinite families of subspace designs is based on a similar idea [Itoh].
Lemma 6 Let \(\mathcal{G} \) be a \((q - 1)\)-spread in \(\text{PG}(V) \) and let \(G \) be a subgroup of the stabilizer \(\text{PGL}(v, q)_{\mathcal{G}} \) of \(\mathcal{G} \) in \(\text{PGL}(v, q) \). If the action of \(G \) on \(\bigcup_{S \in \mathcal{G}} \binom{S}{2} \) is transitive, then any union \(\mathcal{B} \) of \(G \)-orbits on the set of \(k \)-subspaces which are scattered with respect to \(\mathcal{G} \) yields a \((v, k, \lambda, g)_{\mathcal{G}}\)-\(\text{GDD} \) \((V, \mathcal{G}, \mathcal{B})\) for a suitable value \(\lambda \).

Proof. By transitivity, the number \(\lambda \) of blocks in \(\mathcal{B} \) passing through a line \(L \in \binom{V}{2} \setminus \bigcup_{S \in \mathcal{G}} \binom{S}{2} \) does not depend on the choice of \(L \). \(\square \)

In the following, let \(V = \text{GF}(q^2)^s \), which is a vector space over \(\text{GF}(q) \) of dimension \(v = gs \). Furthermore, let \(\mathcal{G} = \binom{V}{1}_{q^g} \) be the Desarguesian \((g - 1)\)-spread in \(\text{PG}(V) \). For every \(\text{GF}(q) \)-subspace \(U \leq V \) we have that

\[
\dim_{\text{GF}(q)}((U)_{\text{GF}(q^2)}) \leq \dim_{\text{GF}(q)}(U).
\]

In the case of equality, \(U \) will be called fat. Equivalently, \(U \) is fat if and only if one (and then any) \(\text{GF}(q) \)-basis of \(U \) is \(\text{GF}(q^2) \)-linearly independent. The set of fat \(k \)-subspaces of \(V \) will be denoted by \(\mathcal{F}_k \).

We remark that for a fat subspace \(U \), the set of points \(\{x_{\text{GF}(q^s)} : x \in U\} \) is a Baer subspace of \(V \) as a \(\text{GF}(q^s) \)-vector space.

Lemma 7

\[
\#\mathcal{F}_k = q^{g(q-1)}\binom{q}{2} \prod_{i=0}^{k-1} \frac{q^{g(s-i)} - 1}{q^{k-i} - 1}.
\]

Proof. A sequence of \(k \) vectors in \(V \) is the \(\text{GF}(q) \)-basis of a fat \(k \)-subspace if and only if it is linearly independent over \(\text{GF}(q^2) \). Counting the set of those sequences in two ways yields

\[
\#\mathcal{F}_k \cdot \prod_{i=0}^{k-1} (q^q - q^i) = \prod_{i=0}^{k-1} ((q^q)^s - (q^q)^i),
\]

which leads to the stated formula. \(\square \)

We will identify the unit group \(\text{GF}(q)^* \) with the corresponding group of \(s \times s \) scalar matrices over \(\text{GF}(q^2) \).

Lemma 8 Consider the action of \(\text{SL}(s, q^2)/\text{GF}(q)^* \) on the set of the fat \(k \)-subspaces of \(V \). For \(k < s \), the action is transitive. For \(k = s \), \(\mathcal{F}_k \) splits into \(\frac{q^s-1}{q-1} \) orbits of equal length.

Proof. Let \(U \) be a fat \(k \)-subspace of \(V \) and let \(B \) be an ordered \(\text{GF}(q) \)-basis of \(U \). Then \(B \) is an ordered \(\text{GF}(q^2) \)-basis of \((U)_{\text{GF}(q^2)} \).

For \(k < s \), \(B \) can be extended to an ordered \(\text{GF}(q^2) \)-basis \(B' \) of \(V \). Let \(A \) be the \((s \times s)\)-matrix over \(\text{GF}(q^2) \) whose columns are given by \(B' \). By scaling one of the vectors in \(B' \setminus B \), we may assume \(\det(A) = 1 \). Now the mapping \(V \rightarrow V, x \mapsto Ax \) is in \(\text{SL}(s, q^2) \) and maps the fat \(k \)-subspace \(\langle e_1, \ldots, e_k \rangle \) to \(U \langle e_i \rangle \) denoting the \(i \)-th standard vector of \(V \). Thus, the action of \(\text{SL}(s, q^2)/\text{GF}(q)^* \) is transitive on \(\mathcal{F}_k \).

It remains to consider the case \(k = s \). Let \(A \) be the \((s \times s)\)-matrix over \(\text{GF}(q^2) \) whose columns are given by \(B \). As any two \(\text{GF}(q) \)-bases of \(U \) can be
mapped to each other by a GF(q)-linear map, we see that up to a factor in GF(q^*), det(A) does not depend on the choice of B. Thus,

$$\det(U) := \det(A) \cdot \text{GF}(q^*) \in \text{GF}(q^*)^*/\text{GF}(q)^*$$

is invariant under the action of $\text{SL}(s,q^*)$ on \mathcal{F}_k. It is readily checked that every value in $\text{GF}(q^*)^*/\text{GF}(q)^*$ appears as the invariant $\det(U)$ for some fat s-subspace U, and that two fat s-subspaces having the same invariant can be mapped to each other within $\text{SL}(s,q^*)$. Thus, the number of orbits of the action of $\text{SL}(s,q^*)$ on \mathcal{F}_s is given by the number $\#(\text{GF}(q^*)^*/\text{GF}(q)^*) = \frac{q^s - 1}{q^i - 1}$ of invariants. As $\text{SL}(s,q^*)$ is normal in $\text{GL}(s,q^*)$ which acts transitively on \mathcal{F}_s, all orbits have the same size. Modding out the kernel $\text{GF}(q)^*$ of the action yields the statement in the lemma.

\[\square\]

Theorem 4 Let V be a vector space over $\text{GF}(q)$ of dimension gs with $g \geq 2$ and $s \geq 3$. Let \mathcal{G} be a Desarguesian $(g-1)$-spread in $\text{PG}(V)$. For $k \in \{3, \ldots, s-1\}$, $(V, \mathcal{G}, \mathcal{F}_k)$ is a $(gs, k, \lambda, g)_q$-GDD with

$$\lambda = q^{(g-1)((s^2)-1)} \prod_{i=2}^{k-1} \frac{q^{(s-i)} - 1}{q^{k-i} - 1}.$$

Moreover, for each $\alpha \in \{1, \ldots, \frac{q^s - 1}{q^i - 1}\}$, the union \mathcal{B} of any α orbits of the action of $\text{SL}(s,q^*)/\text{GF}(q)^*$ on \mathcal{F}_s gives a $(gs, s, \lambda, g)_q$-GDD $(V, \mathcal{G}, \mathcal{B})$ with

$$\lambda = \alpha q^{(g-1)((s^2)-1)} \prod_{i=2}^{s-2} \frac{q^{gi} - 1}{q^i - 1}.$$

Proof. We may assume $V = \text{GF}(q^*)^*$ and $\mathcal{G} = \{V_{\mathcal{H}}\}_{i=2}^{s}$. The lines covered by the elements of \mathcal{G} are exactly the non-fat $\text{GF}(q)$-subspaces of V of dimension 2. By Lemma 8 and Lemma 9 $(V, \mathcal{G}, \mathcal{F}_k)$ is a GDD. Double counting yields $\#\mathcal{F}_2 \cdot \lambda = \#\mathcal{F}_k \cdot \frac{V}{\mathcal{H}}$. Using Lemma 7 this equation transforms into the given formula for λ.

In the case $k = s$, by Lemma 8 each union \mathcal{B} of $\alpha \in \{1, \ldots, \frac{q^s - 1}{q^i - 1}\}$ orbits under the action of $\text{SL}(s,q^*)/\text{GF}(q)^*$ on \mathcal{F}_s yields a GDD with

$$\lambda = \alpha q^{(g-1)((s^2)-1)} \frac{q - 1}{q^i - 1} \prod_{i=2}^{s-1} \frac{q^{(s-i)} - 1}{q^{i-1} - 1} = \alpha q^{(g-1)((s^2)-1)} \prod_{i=2}^{s-2} \frac{q^{gi} - 1}{q^i - 1}.$$

\[\square\]

Remark 1 In the special case $q = 2$, $s = 3$ and $\alpha = 1$ the second case of Theorem 4 yields $(6,3,q^2,2)_q$-GDDs. These parameters match the “residual construction for the q-Fano plane” in [EH17].

Remark 2 A fat k-subspace ($k \in \{3, \ldots, s\}$) is always scattered with respect to the Desarguesian spread $\{V_{\mathcal{H}}\}_{i=2}^{s}$. The converse is only true for $g = 2$. Thus, Theorem 4 implies that the set of all scattered k-subspaces with respect to the Desarguesian line spread of $\text{GF}(q)^{2s}$ is a $(2s, k, \lambda_{\text{max}}, 2)_q$-GDD.
Table 2: Existence results for \((v, k, \lambda, g)_{q}\)-GDD for \(q = 2\).

\(v\)	\(g\)	\(k\)	\(\lambda\)	\(\lambda_{\text{max}}\)	\(\lambda\)	comments
6	2	3	2	12	4	EHL7
6	3	3	6	3, 6	\(\langle \sigma^{7} \rangle\)	
8	2	3	2	60	2, 58	\(\langle \sigma, \phi^{4} \rangle\)
8	2	4	4	480	20, 40, \ldots, 480	\(\langle \sigma, \phi \rangle\)
8	4	3	7	42	7, 21, 35	Thm. 4
8	4	4	7	14	14, 28, 42	\(\langle \sigma, \phi \rangle\)
9	3	3	1	118	2, 3, \ldots, 115, 116, 118	\(\langle \sigma, \phi \rangle\)
9	3	4	10	1680	30, 60, \ldots, 1680	\(\langle \sigma \rangle\)
10	2	3	14	252	14, 28, \ldots, 252	\(\langle \sigma \rangle\)
10	5	3	21	210	105, 210	\(\langle \sigma, \phi^{2} \rangle\)
12	2	3	2	1020	4	BEÖ+16
12	2	6	16	12533760	\(\alpha = 1, \ldots, 3\)	Thm. 4
12	3	4	2	21504	\(\alpha = 1, \ldots, 7\)	Thm. 4
12	4	3	1	1002	64 \(\alpha = 1, \ldots, 15\)	Thm. 4

6 Computer constructions

An element \(\pi \in \text{PGL}(v, q)\) is an automorphism of a \((v, k, \lambda, g)_{q}\)-GDD if \(\pi(G) = G\) and \(\pi(B) = B\).

Taking the Desarguesian \((g - 1)\)-spread and applying the Kramer-Mesner method [KM76] with the tools described in [BKL05, BKW18b, BKW18a] to the remaining blocks, we have found \((v, k, \lambda, g)_{q}\)-GDDs for the parameters listed in Tables 2. In all cases, the prescribed automorphism groups are subgroups of the normalizer \(\langle \sigma, \phi \rangle\) of a Singer cycle group generated by an element \(\sigma\) of order \(q^{v} - 1\) and by the Frobenius automorphism \(\phi\), see [BKW18a]. Note that the presented necessary conditions for \(\lambda_{\Delta}\) turn out to be tight in several cases.

Example. We take the primitive polynomial \(1 + x + x^{3} + x^{4} + x^{6}\), together with the canonical Singer cycle group generated by

\[
\sigma = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

For a compact representation we will write all \(\alpha \times \beta\) matrices \(X\) over \(\text{GF}(q)\).
Table 3: Existence results for \((v, k, \lambda, g)_q\)-GDD for \(q = 3\).

\(v\)	\(g\)	\(k\)	\(\lambda_\Delta\)	\(\lambda_{\text{max}}\)	\(\lambda\)	comments
6	2	3	3	36	9	\([\text{EH}17]\)
						\(9\alpha, \alpha = 1, \ldots, 4\) Thm. 4
6	3	3	4	24	12, 24	\(\langle \sigma^{13}, \phi \rangle\)
8	2	4	9	9720	2430\(\alpha\), \(\alpha = 1, \ldots, 4\) Thm. 4	
8	4	3	13	312	52, 104, 156, 208, 260, 312	\(\langle \sigma, \phi \rangle\)
9	3	3	1	1077	81\(\alpha\), \(\alpha = 1, \ldots, 13\) Thm. 4	
10	2	5	27	22044960	5511240\(\alpha\), \(\alpha = 1, \ldots, 4\) Thm. 4	
12	2	6	81	439267872960	109816968240\(\alpha\), \(\alpha = 1, \ldots, 4\) Thm. 4	
12	3	4	3	5373459\(\alpha\), \(\alpha = 1, \ldots, 13\) Thm. 4		
12	4	3	1	29472	729\(\alpha\), \(\alpha = 1, \ldots, 40\) Thm. 4	

with entries \(x_{i,j}\), whose indices are numbered from 0, as vectors of integers

\[\sum_j x_{0,j}q^j, \ldots, \sum_j x_{\alpha-1,j}q^j, \]

i.e. \(\sigma = [2, 4, 8, 16, 32, 27]\).

The block representatives of a \((6, 3, 2, 2)_2\)-GDD can be constructed by pre-
scribing the subgroup \(G = \langle \sigma^7 \rangle\) of the Singer cycle group. The order of \(G\) is
9, a generator is \([54, 55, 53, 49, 57, 41]\). The spread is generated by \([1, 14]\), under
the action of \(G\) the 21 spread elements are partitioned into 7 orbits. The blocks
of the GDD consist of the \(G\)-orbits of the following 20 generators.

\[[3, 16, 32], [15, 16, 32], [4, 8, 32], [5, 8, 32], [19, 24, 32], [7, 24, 32], [10, 4, 32],
\[[18, 28, 32], [17, 20, 32], [1, 28, 32], [17, 10, 32], [25, 2, 32], [13, 6, 32], [29, 30, 32],
\[[33, 12, 16], [38, 40, 16], [2, 36, 16], [1, 36, 16], [11, 12, 16], [19, 20, 8]\]

Acknowledgements

The authors are grateful to Anton Betten who pointed out the connection to
scattered subspaces.

References

[BBL00] Simeon Ball, Aart Blokhuis, and Michel Lavrauw. Linear \((q+1)\)-fold
blocking sets in \(\text{PG}(2, q^4)\). Finite Fields and Their Applications,
6(4):294–301, 2000.

[BEÖ+16] Michael Braun, Tuvi Etzion, Patric R. J. Östergård, Alexander
Vardy, and Alfred Wassermann. Existence of \(q\)-analogs of Steiner
systems. Forum of Mathematics, Pi, 4:e7 (14 pages), 2016.
[BKL05] Michael Braun, Adalbert Kerber, and Reinhard Laue. Systematic construction of q-analogs of t-(v, k, λ)-designs. *Designs, Codes and Cryptography*, 34(1):55–70, 2005.

[BKN16] Michael Braun, Michael Kiermaier, and Anamari Nakić. On the automorphism group of a binary q-analog of the Fano plane. *European Journal of Combinatorics*, 51:443–457, 2016.

[BKW18a] Michael Braun, Michael Kiermaier, and Alfred Wassermann. Computational methods in subspace designs. In *Network Coding and Subspace Designs*, Signals and Communication Technology, pages 213–244. Springer, Cham, 2018.

[BKW18b] Michael Braun, Michael Kiermaier, and Alfred Wassermann. q-analogs of designs: Subspace designs. In *Network Coding and Subspace Designs*, Signals and Communication Technology, pages 171–211. Springer, Cham, 2018.

[BL00] Aart Blokhuis and Michel Lavrauw. Scattered spaces with respect to a spread in PG(n, q). *Geometriae Dedicata*, 81(1):231–243, Jul 2000.

[BNW] Marco Buratti, Anamari Nakić, and Alfred Wassermann. Graph decompositions in projective geometries. in preparation.

[BRC74] Claude Berge and Dijen Ray-Chaudhuri. Unsolved problems. In Claude Berge and Dijen Ray-Chaudhuri, editors, *Hypergraph Seminar: Ohio State University 1972*, number 411 in Lecture Notes in Mathematics, pages 278–287. Springer, Berlin, Heidelberg, 1974.

[Cam74a] Peter J. Cameron. Generalisation of Fisher’s inequality to fields with more than one element. In T. P. McDonough and V. C. Mavron, editors, *Combinatorics - Proceedings of the British Combinatorial Conference 1973*, number 13 in London Mathematical Society Lecture Note Series, pages 9–13. Cambridge University Press, Cambridge, 1974.

[Cam74b] Peter J. Cameron. Locally symmetric designs. *Geometriae Dedicata*, 3:65–76, 1974.

[CK79] Peter J. Cameron and William M. Kantor. 2-transitive and antiflag transitive collineation groups of finite projective spaces. *Journal of Algebra*, 60(2):384–422, 1979.

[Del76] Philippe Delsarte. Association schemes and t-designs in regular semilattices. *Journal of Combinatorial Theory, Series A*, 20(2):230–243, 1976.

[EH17] Tuvi Etzion and Niv Hooker. Residual q-Fano planes and related structures. *ArXiv e-prints*, April 2017.

[ES13] Tuvi Etzion and Natalia Silberstein. Codes and designs related to lifted MRD codes. *IEEE Transactions on Information Theory*, 59(2):1004–1017, 2013.
16
[Lun99] Guglielmo Lunardon. Normal spreads. *Geometriae Dedicata*, 75(3):245–261, May 1999.

[MG07] Ronald C. Mullin and Hans-Dietrich O. F. Gronau. PBDs and GDDs: The basics. In Charles J. Colbourn and Jeffrey H. Dinitz, editors, *Handbook of Combinatorial Designs*, chapter IV.1, pages 231–236. Chapman & Hall/CRC, 2 edition, 2007.

[Tit57] Jacques L. Tits. Sur les analogues algébriques des groupes semi-simples complexes. In *Colloque d’algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956*, Centre Belge de Recherches Mathématiques, pages 261–289. Établissements Ceuterick, Louvain; Librairie Gauthier-Villars, Paris, 1957.