Model error and its estimation, with particular application to loss reserving

Greg Taylor
School of Risk and Actuarial Studies, UNSW Australia
Sydney, Australia

ASTIN Colloquium, 21-24 June 2022
Acknowledgements

• This is joint work with Gráinne McGuire, Taylor Fry, Sydney, Australia

• It has received financial support under Australian Research Council’s Linkage Projects funding scheme (project number LP130100723)

• I have benefited from discussions with colleagues:
 – Benjamin Avanzi
 – Bernard Wong
 – David Yu
Overview

• Motivation
• Components of forecast error
• Internal model error
• Model set generation
• LASSO
• Bootstrapping the LASSO
• Numerical illustrations
• Conclusions
Overview

- **Motivation**
- Components of forecast error
- Internal model error
- Model set generation
- LASSO
- Bootstrapping the LASSO
- Numerical illustrations
- Conclusions
Motivation (1)

• Loss reserve risk margins
 – Often set according to Value at Risk (VaR)
 • e.g. probability of sufficiency of loss reserve including risk margin = 75%
 • VaR a function of the distribution of liability
 • The variation about the mean of this distribution represents forecast error
 • Model error is a component of forecast error
 • This address discusses model error
Motivation (2)

• My ASTIN 2021 keynote address discussed the role of **model error** in formulation of a risk margin
 – Gave theoretical background
 – That was a work in progress
• The current address is a sequel and completes the earlier work
• The work draws heavily on
 – McGuire G, Taylor G, & Miller H (2021). Self-assembling insurance claim models using regularized regression and machine learning. (with G McGuire & H Miller). **Variance**, 14(1).
Overview

• Motivation
• **Components of forecast error**
• Internal model error
• Model set generation
• LASSO
• Bootstrapping the LASSO
• Numerical illustrations
• Conclusions
Forecast error and its components

- Definition:
 \[\text{forecast error} = \text{observation} - \text{forecast} \]

- Forecast error may be decomposed as follows:

\[
\text{Forecast error} = \text{Process error} + \text{Parameter error} + \text{Model error}
\]

\[
\text{Model error} = \text{Model structure error} + \text{Model distribution error}
\]

\[
\text{Model structure error} = \text{Internal} + \text{External}
\]

\[
\text{Model distribution error} = \text{Internal} + \text{External}
\]
Forecast error components: definitions

• **Process error**: irreducible error due to stochastic nature of process
• **Parameter error**: sampling error in model parameter estimates
• **Model error**: error induced by incorrect model specification
 – **Model structure error**: error induced by incorrect specification of algebraic form of mean
 – **Model distribution error**: error induced by incorrect specification of model distribution
 • **Internal model error**: model error internal to past data
 • **External model error**: model error relating to future conditions (e.g. future superimposed inflation)
Forecast error components: definitions

- **Process error**: irreducible error due to stochastic nature of process
- **Parameter error**: sampling error in model parameter estimates
- **Model error**: error induced by incorrect model specification
 - **Model structure error**: error induced by incorrect specification of algebraic form of mean
 - **Model distribution error**: error induced by incorrect specification of model distribution
 - **Internal model error**: model error internal to past data
 - **External model error**: model error relating to future conditions (e.g. future superimposed inflation)
Overview

• Motivation
• Components of forecast error
• **Internal model error**
• Model set generation
• LASSO
• Bootstrapping the LASSO
• Numerical illustrations
• Conclusions
Internal model error (Bayesian setting): essential ingredients (1)

- **Model set**: population of candidate models
 - containing **primary model**
 - Model whose error is to be measured
- **Prior distribution**: on model set
- **Posterior distribution** follows from:
 - Prior distribution
 - Model likelihood (of data y)
- Form of **Bayesian Model Average**
Internal model error (Bayesian setting): essential ingredients (2)

• The posterior distribution on the model set ensures consistency with past data
 – Models that fit poorly are assigned low posterior probability
• However, some models may fit past data well, but extrapolate the future poorly
 – Hence a need to prune the model set to exclude models that do not extrapolate credibly
Overview

• Motivation
• Components of forecast error
• Internal model error
• **Model set generation**
• LASSO
• Bootstrapping the LASSO
• Numerical illustrations
• Conclusions
Source of model set

• Can we find anything that generates a set of models from which the primary model can be regarded as a 1-sample, e.g.
 – Neural Network
 • Different models generated by different sets of hyperparameters
 – LASSO
 • We use LASSO (more to come)
Overview

• Motivation
• Components of forecast error
• Internal model error
• Model set generation
• **LASSO**
• Bootstrapping the LASSO
• Numerical illustrations
• Conclusions
LASSO: formulation

- Model form (same as GLM)
 \[y = h^{-1}(X\beta) + \varepsilon \]

where
 - \(y \) = data vector
 - \(h \) = link function
 - \(\beta \) = parameter vector
 - \(X \) = design matrix
 - \(\varepsilon \) = stochastic disturbance with \(\mathbb{E}[\varepsilon] = 0 \)

- Estimate \(\beta \) by minimization of regularized negative log-likelihood
 \[\hat{\beta}(\lambda) = \arg\min_{\beta} [\ell(y|\beta) + \lambda^T|\beta|] \]

where
 - \(\ell \) = negative log-likelihood (NLL)
 - | \(\beta \) | operates elementwise on \(\beta \)
 - \(\lambda \) = penalty parameter vector with non-negative components
LASSO: Bayesian interpretation

• Assume parameter vector β subject to Laplace prior distribution

$$\pi(\beta) \propto \exp(-\lambda^T |\beta|)$$

where

– $|.|$ operates elementwise on β

• Prior distribution:

 – Consists of a two-sided exponential distribution for each β_j

 – $Var[\beta_j] = 2/\lambda_j^2$ (small variance \Rightarrow large penalty)

• In this framework, maximum a posteriori (MAP) estimator of β is same as LASSO estimator
LASSO: selection of penalty parameter (1)

\[\hat{\beta}(\lambda) = \arg \min_\beta [\ell(y|\beta) + \lambda^T|\beta|] \]

- In practice, \(\lambda \) vector is unknown
- We choose \(\lambda^T = (0, 1, \ldots, 1) \)
 - \(\lambda \) now a scalar
 - No penalty on intercept parameter; equal penalties on all other parameters
- Selection of value for scalar \(\lambda \) still required
- \(\lambda = 0 \iff \) maximum likelihood
 - As \(\lambda \uparrow \), model simplifies, NLL increases
LASSO: selection of penalty parameter (2)

- For given \(\lambda \), let
 - \(C(\lambda) \) denote the average k-fold cross-validation error (we use \(k = 8 \)) for parameterization \(\hat{\beta}(\lambda) \)
 - \(S(\lambda) \) denote standard deviation of the cross-validation error across the \(k \) folds
- 4 alternative values of scalar \(\lambda \) are selected:
 1) “\texttt{lambda.min}”: \(\lambda_{\texttt{min}} = \arg \min_{\lambda} C(\lambda) \)
 2) “\texttt{1se}”: \(\lambda_{\texttt{1se}} = \arg \max_{\lambda} \{ C(\lambda) \leq C(\lambda_{\texttt{min}}) + S(\lambda_{\texttt{min}}) \} \)
 3) “\texttt{simple}”: \(\lambda_{\texttt{simp}} = \max \{ \lambda: p(M_{\texttt{1se}}|y; \lambda) > \delta \} \)
 4) “\texttt{complex}”: \(\lambda_{\texttt{comp}} = \min \{ \lambda: p(M_{\texttt{1se}}|y; \lambda) > \delta \} \)

We use \(\delta = 0.0005 \)
LASSO: selection of penalty parameter (3)

- Examples of “1se” and “lambda.min” models
LASSO: selection of penalty parameter (4)

- Examples of “simple” and “complex” models
LASSO: as generator of model set

• The LASSO generates one model for each value of λ
 – The model set may be taken as the set of all models generated by the values of λ considered
• Now consider a single selected λ
 – This defines a prior \(\pi(M), M \in \mathcal{M} \) on the model set \(\mathcal{M} \)
 – Together with data \(y \), this defines a posterior \(p(M|y), M \in \mathcal{M} \) on the model set \(\mathcal{M} \)
• For each model \(M \), there is an associated expected loss reserve \(E_M \)
 – The posterior \(p(M|y) \) induces a distribution on \(E_M, M \in \mathcal{M} \)
 – This is the distribution of internal model error around primary estimate \(E_M^* \)
Overview

- Motivation
- Components of forecast error
- Internal model error
- Model set generation
- LASSO
- **Bootstrapping the LASSO**
- Numerical illustrations
- Conclusions
Bootstrap: motivation and process

• The LASSO generates an estimated distribution of internal model error, as described
 – However, this estimate is “thin” because it typically depends on a relatively small sample of models, perhaps 10-30
• Hence **bootstrap** to obtain multiple replications of the internal model error distributions
 – Re-sample **centred** standardized residuals from primary model
 • Checking carefully that they appear iid
Bootstrap: interpretation of results

- Generate a **bootstrap matrix**
 - One row per bootstrap replication
 - Columns contain models for different values of λ
 - Columns can be reduced to summary statistics over the posterior distribution of models (dependent on selected prior), e.g. for each row
 - $E[M;p]$ = posterior mean of the loss reserves E_M
 - $Var[M;p] = \text{posterior variance of the loss reserves } E_M$
 - Any other stuff of interest

- Interpretation
 - $Var[M;p]$ measures **internal model error** (for the relevant replication)
 - $E_p Var[M;p] = \text{internal model error}$
 - $Var_p E[M;p] = \text{parameter error}$

E_p, Var_p taken over rows
Bootstrap: pruning of results

The most delinquent forms of extrapolation are likely to relate to:

- The most recent accident periods
 - Where there is little accumulated data
- Future payment periods

We therefore set **inclusion gates** according to the following ratios of bootstrap replication future cash flows to those of the primary model:

Accident periods	Gate	Payment periods	Gate
Last 2	[0.75,1.33]	Next 2	[0.91,1.10]
Last 5	[0.80,1.25]	Next 5	[0.87,1.15]
Last 10	[0.83,1.20]	Next 10	[0.83,1.20]

- Note the subjective nature of the gates
Overview

• Motivation
• Components of forecast error
• Internal model error
• Model set generation
• LASSO
• Bootstrapping the LASSO
• **Numerical illustrations**
• Conclusions
Numerical illustrations: data

- 4 synthetic data sets from McGuire, Taylor & Miller (2021):
 - Full details there
 - **Data set 1**: chain ladder compatible
 - **Data set 2**: payment quarter effect included
 - **Data set 3**: AQ-DQ interaction added but only in 10 cells out of 820
 - **Data set 4**: superimposed inflation included, but with rate of SI depending on DQ
Numerical results: data set 1

Model	Prior	True reserve ($B)	Forecast ($B)	Estimated internal model error
Primary	Simple	190	193	0.51%
	1se	190	191	0.30%
	Lambda.min	190	194	0.82%
	Complex	190	190	1.14%
Boot-	Simple	190	191	0.37%
Strap	1se	190	189	0.32%
	Lambda.min	190	192	0.41%
	Complex	190	188	0.53%

- Very small model error for data compatible with chain ladder

Not too much difference over priors
Numerical results: data set 1: posterior cdf's
Numerical results for all data sets 1-4

- Bootstrap results for 1se and lambda.min

Data set	Prior	True ($B)	Mean ($B)	Internal model error (CoV)	Parameter error (CoV)	Process error (CoV)	Total error (CoV)
1	1se	190	189	0.32%	5.30%	3.29%	6.24%
	lambda.min	190	192	0.41%	5.15%	2.75%	5.85%
2	1se	238	252	1.45%	10.00%	3.93%	10.84%
	lambda.min	238	240	1.79%	8.83%	4.69%	10.16%
3	1se	608	703	2.27%	11.23%	5.71%	12.80%
	lambda.min	608	589	2.12%	11.19%	5.27%	12.54%
4	1se	216	243	1.37%	8.63%	4.01%	9.62%
	lambda.min	216	252	1.81%	12.54%	5.08%	13.65%
Numerical results for all data sets 1-4: comparison of LASSO and GLM forecasts

- GLM fitted to data containing same covariates as LASSO 1se model
- Forecast and estimated parameter error extracted

Data set	Prior	Forecast	Parameter error (CoV)	
		True (B)	Mean (B)	
1	LASSO 1se	190	189	5.30%
	GLM	190	212	4.94%
2	LASSO 1se	238	252	10.00%
	GLM	238	284	7.49%
3	LASSO 1se	608	703	11.23%
	GLM	608	1007	3.56%
4	LASSO 1se	216	243	8.63%
	GLM	216	274	8.40%

Law of total variance:

\[
\text{Var} [\hat{R}] = E_M [\text{Var} [\hat{R} | M]] + \text{Var}_M [E [\hat{R} | M]]
\]

where

- \(\hat{R} = \) forecast
- \(M = \) bootstrap pseudo-model

Apply to parameter error to see that bootstrap estimate will usually be greater
Sensitivity to selected inclusion gates

- Recall the selected inclusion gates

Accident periods	Gate	Payment periods	Gate
Last 2	[0.75,1.33]	Next 2	[0.91,1.10]
Last 5	[0.80,1.25]	Next 5	[0.87,1.15]
Last 10	[0.83,1.20]	Next 10	[0.83,1.20]

- Suppose we multiply (divide) each upper (lower) bound by 1.1

| Dataset | Prior Gate | Total error (CoV) | | | |
|---------|------------|--------------------|---|---|
| 1 | LASSO 1se | 6.24% | 7.50% | 5.85% | 7.03% |
| 2 | LASSO 1se | 10.84% | 15.23% | 10.16% | 17.57% |
| 3 | LASSO 1se | 12.80% | 17.86% | 12.54% | 19.22% |
| 4 | LASSO 1se | 9.62% | 15.00% | 13.65% | 19.43% |
Overview

• Motivation
• Components of forecast error
• Internal model error
• Model set generation
• LASSO
• Bootstrapping the LASSO
• Numerical illustrations
• Conclusions
Conclusions (1)

• An estimate of internal model error of a loss reserve has been constructed that is
 – Rigorous
 – Based on Bayesian Model Averaging
• It is objective in all respects except one
 – The inclusion gates
 • One must be willing to select limits on credible extrapolations of claim experience
 • These must be selected carefully, as the estimated internal model error is sensitive to them
Conclusions (2)

• Part of model error leaks into parameter error
 – Both are estimated
 – They appear broadly reasonable relative to GLM estimation

• “Total” forecast error (model + parameter + process) has been estimated in numerical examples, but
 – WARNING: external model error not considered
 • This requires study by different means
Thank you