IL-4Rα-Associated Antigen Processing by B Cells Promotes Immunity in *Nippostrongylus brasiliensis* Infection

William G. C. Horsnell1,* Matthew G. Darby1,* Jennifer C. Hoving1, Natalie Nieuwenhuizen1, Henry J. McSorley2, Hlumani Ndlovu1, Saeeda Bobat3, Matti Kimberg1, Frank Kirstein1, Anthony J. Cutler1*aa, Benjamin DeWals1*ab, Adam F. Cunningham3, Frank Brombacher1*a

1 International Centre for Genetic Engineering and Biotechnology (ICGEB) and Institute of Infectious Disease and Molecular Medicine (IIDMM), Division of Immunology, University of Cape Town, Cape Town, South Africa, 2 Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom, 3 School of Immunity and Infection and Medical Research Council Centre for Immune Regulation, University of Birmingham, Birmingham, United Kingdom

Abstract

In this study, B cell function in protective Th2 immunity against *N. brasiliensis* infection was investigated. Protection against secondary infection depended on IL-4Rα and IL-13; but not IL-4. Protection did not associate with parasite specific antibody responses. Re-infection of B cell-specific IL-4Rα/− mice resulted in increased worm burdens compared to control mice, despite their equivalent capacity to control primary infection. Impaired protection correlated with reduced lymphocyte IL-13 production and B cell MHC class II and CD86 surface expression. Adoptive transfer of in vivo *N. brasiliensis* primed IL-4Rα expressing B cells into naïve BALB/c mice, but not IL-4Rα or IL-13 deficient B cells, conferred protection against primary *N. brasiliensis* infection. This protection required MHC class II compatibility on B cells suggesting cognate interactions by B cells with CD4+ T cells were important to co-ordinate immunity. Furthermore, the rapid nature of these protective effects by B cells suggested non-BCR mediated mechanisms, such as via Toll Like Receptors, was involved, and this was supported by transfer experiments using antigen pulsed Myd88−/− B cells. These data suggest TLR dependent antigen processing by IL-4Rα-responsive B cells producing IL-13 contribute significantly to CD4+ T cell-mediated protective immunity against *N. brasiliensis* infection.

Citation: Horsnell WGC, Darby MG, Hoving JC, Nieuwenhuizen N, McSorley HJ, et al. (2013) IL-4Rα-Associated Antigen Processing by B Cells Promotes Immunity in *Nippostrongylus brasiliensis* Infection. PLoS Pathog 9(10): e1003662. doi:10.1371/journal.ppat.1003662

Editor: William C. Gause, University of Medicine and Dentistry New Jersey, United States of America

Received December 13, 2012; Accepted August 4, 2013; Published October 24, 2013

Copyright: © 2013 Horsnell et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from the National Research Foundation (NRF) South Africa, the Medical Research Council (MRC) South Africa and the South African Research Chair Initiative of the Department of Science and Technology (DST) to FB and the International Centre for Genetic Engineering and Biotechnology. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: fbrombac@mweb.co.za

These authors contributed equally to this work.

*a Current address: Histocompatibility and Immunogenetics, NHSBT, Colindale Centre, London, United Kingdom.

*b Current address: Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.

Introduction

Parasitic nematode infections are a significant global public health burden. Infections with *Ascaris lumbricoides*, *Trichuris trichiura* and the hookworms *Ancylostoma duodenale* and *Necator americanus* occur in a third of the world’s population [1]. Individuals frequently suffer from repeated infections and do not develop robust immunity against re-infection [2]. Such infections are significant causes of morbidity, with hookworm infections, for example, being a major cause of childhood anemia in many endemic areas [3]. Effects on cognitive development, as a result of repeated childhood infections have been reported [4], and parasitic larval migrations through the host may exacerbate chronic lung pathologies in endemic areas [5,6]. To date no licensed vaccines exist against these parasites. To accelerate their development a detailed understanding of host immunity is essential, especially extra intestinal immunity against infective stage larvae [7]. Studies in humans and experimental models of infection have established that Th2 immune responses drive host resolution of primary infections [8,9].

Key to effective expulsion of murine model parasites, such as *Nippostrongylus brasiliensis*, *Heligmosomoides polygyrus* and *Trichurus muris*, is host expression of IL-4Rα [10]. IL-4Rα is an essential component of the heterodimeric receptors required for IL-4 and IL-13 signalling, which ultimately drive host immune polarisation to Th2. Use of IL-4Rα−/− mice has clearly demonstrated an absolute requirement for IL-4Rα expression in resolving primary nematode infections. This is dependent on IL-4Rα expression on non-hematopoietic cells [11] including smooth muscle cells [12] and epithelial cells [13,14]. However, IL-4Rα expression on hematopoietic cells does impact on the magnitude of the hosts Th2 response to *N. brasiliensis*. For example, disruption of IL-4Rα expression on CD4+ T-cells results in a significantly reduced Th2 response to primary *N. brasiliensis* infection [15] and contributes to optimal control of secondary infection [16]. However, it is not known how IL-4Rα expression
Author Summary

Parasitic nematode infections are an extremely important global public health problem. Infections by hookworms and roundworms for example cause anemia, widespread developmental problems and devalued immunity against bacterial infections such as salmonella and tuberculosis. Although treatable with drugs, parasitic nematode re-infections occur as humans do not develop protective immunity. Ultimately, the public health burden caused by these infections will be best controlled by the development of vaccines against nematode infections. For these to be effective, it is important to understand how the various components of the immune system can respond to infection. In this study, we show that B cells, which typically protect against infection by producing antibodies, can also protect against an experimental hookworm like nematode infection by additional mechanisms. This form of protection instead depended on B cells producing cytokines associated with parasitic nematode expulsion and also by providing T cells with specific instruction. Together, these B cell driven responses lead to a rapid resolution of the infection. These important findings indicate that vaccination strategies against nematode parasites such as hookworms need to understand immune responses other than antibody to be optimally protective.

Results

IL-4Rx is essential for immunity against re-infection with N. brasiliensis

To identify a possible role for IL-4Rx in generating protective immunity IL-4Rx−/−/lox (IL-4Rx sufficient) and IL-4Rx−/− mice were infected with N. brasiliensis. Infection was subsequently cleared by drug treatment before re-infection with 500 L3 larva. Intestinal worm burden was quantified at different time points post-secondary infection (Figure 1A). IL-4Rx−/− mice had significantly higher intestinal worm burdens compared to IL-4Rx−+/lox mice at day 5 or 7 post-secondary infection (Figure 1B). Loss of IL-4Rx was associated with multiple defects in known effectors of host Th2 immunity, including decreased mucus production in the lung (Supplementary Figure S1A), decreased IgG1 production and decreased IL-13 production by CD4+ T cells and B cells in the lung draining lymph node (Figure 1C-E).

IL-4Rx-dependent immunity to N. brasiliensis re-infection is driven by IL-13 signalling

To investigate whether resolution of secondary N. brasiliensis infection was dependent on IL-4 and/or IL-13 signalling via IL-4Rx re-infection studies were repeated in IL-4−/− and IL-13−/− mice. Here, the significantly higher intestinal worm burden at day 5 secondary infection in IL-13−/− mice compared to IL-4−/− mice (Figure 1F), demonstrated IL-13 signalling during IL-4Rx-mediated immunity against re-infection with N. brasiliensis. This higher worm burden could occur also be associated with an absence in goblet cell mucus production in IL-13−/− mice, but not IL-4−/− mice (Figures 1G and Figure S1B). IL-13−/− mice demonstrated equivalent N. brasiliensis specific IgG1 antibody titers as IL-4Rx−/− mice. Conversely, IL-4−/− mice demonstrated reduced specific IgG1 responses (Figure 1H). Taken together, these data (Figures 1) indicate that IL-4-dependent antigen specific IgG1 antibody responses may not be required for optimal immunity to re-infection, but that IL-4Rx-mediated IL-13 signalling is required.

IL-4Rx-responsive B cells producing IL-13 are required for effective immunity to N. brasiliensis re-infection

IL-4Rx-mediated effects on B cell function during N. brasiliensis re-infection were investigated in MBFΔIl-4Rx−/lox, Balb/c, mice, which have B cell-specific abrogation of IL-4Rx expression [26]. Secondary infection resulted in a significantly higher intestinal worm burden in MBFΔIl-4Rx−/lox mice compared to IL-4Rx+lox mice (Figure 2A). Whilst goblet cell hyperplasia in MBFΔIl-4Rx−/lox mice was equivalent to that seen in control IL-4Rx+lox mice (Figure 2B and Figure S1C). Antigen specific IgG1 was significantly drastically reduced (Figure 2C). Interestingly, IL-13 cytokine production by T and B cells was also reduced in MBFΔIl-4Rx−/lox mice, when compared to IL-4Rx−/lox mice (Figure 2D and Figure S2). Together, these studies show that a loss of IL-4Rx on B cells is sufficient to impair immunity to N. brasiliensis re-infection.

To demonstrate if IL-4Rx responsive and IL-13 competent B cells can directly confer protection against primary N. brasiliensis infection, we adoptively transferred B cells isolated from infected IL-4Rx−/lox, IL-13−/− or MBFΔIl-4Rx−/lox mice into naive Balb/c mice (Figure 2E and Figure S3). Transfer of antigen-experienced IL-4Rx-responsive B cells into naive Balb/c mice (WT+WT B-cells) reduced intestinal worm burdens. In contrast, transfer of primed B cells deficient for either the IL-4Rx or IL-13 did not reduce intestinal worm burden (Figure 2F).
Established by PAS staining (infected for 5 days post-secondary infection) and also antigen presentation may contribute to optimal immunity against *N. brasiliensis*. Nevertheless, this does not exclude the possibility that antigen-experienced B cells are able to modulate the response in normal mice. To test this experimentally, we transferred B cells from infected IL-4Rα^{−/−} or infected B^{Brg^{Cre}}IL-4Rα^{−/−} mice into naive μMT mice. Transferred *N. brasiliensis* primed IL-4Rα responsive B cells augmented protection in μMT mice, whereas transferred B cells from infected B^{Brg^{Cre}}IL-4Rα^{−/−} mice did not. This B cell IL-4Rα-dependent protection correlated with significant increases in MST CD4⁺ T cell IL-13 production (Figures 3C). Together these results show that the immune response can compensate for the absence of B cells, but the introduction of pathogen-experienced IL-4Rα-responsive B cells can accelerate protective immunity against *N. brasiliensis*.

Enhanced B cell ability to interact with T helper cells is required for optimal immunity to *N. brasiliensis* re-infection

Optimal host control of *N. brasiliensis* re-infection was associated with B cell IL-13 production and enhanced CD4⁺ T cell Th2 responses. A further way B cells could contribute to T cell responses is through cognate, physical interactions that are associated with antigen-presentation through MHCII and co-stimulatory molecule expression. As a first step in demonstrating, if such an interaction is also a feature of IL-4Rα-dependent immunity to *N. brasiliensis* re-infection, we initially assessed expression of CD86 and MHCII on CD19⁺ B cells from naive and *N. brasiliensis*-infected mice. CD86 and MHCII expression was equivalent between naive mice of both groups (Figure 4A, lower panel). In re-infected mice, CD86 and MHCII surface expression in B^{Brg^{Cre}}IL-4Rα^{−/−} mice was reduced when compared with IL-4Rα^{+/−} mice (Figure 4B, lower panel). CD4⁺ T cells showed no differences between the mouse strains in expression of CD28 and TCR (Figure 4A and B, upper panel). Thus, IL-4Rα expression in B cells can help enhance the expression of B cell markers of activation after *N. brasiliensis* infection.

These findings indicated B cell cognate interactions with T cells and also antigen presentation may contribute to optimal immunity against *N. brasiliensis* re-infection. Our data presented in Figures 1 and 2 also indicates that B cell immunity may be independent of antibody class switching. This may exclude involvement of highly specific clonally expanded populations of B cells. We therefore hypothesized that protection may instead be mediated by a rapidly modified B cell antigen presenting response to *N. brasiliensis* infection. To demonstrate the possible role for antigen presentation, we adoptively transferred MHCII^{−/−} B cells from 1 day *N. brasiliensis* infected mice (Figure 4G) into naive mice. At the next day, mice were infected and days 5 post infection, recipients of MHCII^{−/−} B cells showed significantly higher worm burdens than mice, which received control WT B cells (Figure 4D). Protection was associated with increased IL-13 production by both B and T cell populations in the mediastinal lymph node (Figure 4E). To further control MHCII dependency, similar infection experiments were carried out in BALB/c mice, which are unable to present antigen via MHCII to BALB/c B cells. BALB/c recipients of adoptively transferred *N. brasiliensis*-experienced BALB/b B cells showed also significantly higher worm burdens, when compared to mice which received BALB/c B cells from *N. brasiliensis* infected mice (Figure 4F). These results further support that MHCII-dependent antigen presentation by B cells does contribute to host immunity to *N. brasiliensis*. Again, protection was associated with increased IL-13 production by both B and T cell populations in the mediastinal lymph node (Figure 4G). Together, these results suggest that MHCII expression contributes to the B cell protective response to *N. brasiliensis* re-infection.

B cells can rapidly launch protective antigen-dependent responses to *N. brasiliensis* infection

Our results presented in Figure 4 suggested that antigen-experienced B cells can rapidly contribute to protection. We therefore tested in vivo whether immunity induced early in infection with *N. brasiliensis* is dependent on IL-4Rα-responsive B cells. Adoptive transfer of IL-4Rα responsive B cells from IL-4Rα^{−/−} mice isolated from mice 1 day post *N. brasiliensis* infection into wild type mice (Figure 4C) [27,28] enhanced protection (Figure 5A), but not adoptive transfer of IL-4Rα unresponsive B cells from B^{Brg^{Cre}}IL-4Rα^{−/−} mice. Furthermore, only transfer of IL-4Rα responsive B cells enhanced B and CD4⁺ T cell IL-13 responses in the lung (Figure 5B, C) and mediastinal lymph node (Figure 5D), strengthen the necessity of IL-4Rα-responsive B cells for protective immunity.

This ability of B cells to confer protection so rapidly after parasite exposure further supports this response being independent of BCR. Other mechanisms of more rapid and possibly less stringent/polyfunctional antigen recognition by B cells may therefore play a role. Initial analysis does not support these transferred B cells conferring protection via an early production of IL-13 (Figure 5S). However, rapid antigen processing and presentation may be mediated by B cells directly loading soluble peptide onto MHCII [29,30] or via antigen internalisation and processing by Toll like receptors (TLR) [31,32,33].

To assess if rapid TLR mediated antigen processing contributed to reduced worm burdens, we repeated transfer experiments using B cells isolated from MyD88^{−/−} mice at one day post infection. Mice, which received MyD88^{−/−} B cells displayed significantly higher worm burdens than those which received B cells from WT 1 day infected recipients (Figure 6A). Protection was associated with increased IL-13 production by T cell populations in the mediastinal lymph node (Figure 6B). We then examined whether these effects were due to direct exposure of antigen by B cells by pulsing naive WT or MyD88^{−/−} B cells overnight with *N. brasiliensis* antigen (Figure 6C). Transfer of B cells from MyD88^{−/−} mice into naive mice resulted in impaired control of infection (Figure 6D), associated with lower IL-13 production by
T cells in the mediastinal lymph node (Figure 6E). To rule out non-specific effects, we also pulsed wild type B cells with a range of antigens. We found that only B cells pulsed with *N. brasiliensis* antigen conferred a reduction in host intestinal worm burdens. Recipients of B cells pulsed with LPS (a potential bacterial contaminant during *N. brasiliensis* infection), ovalbumin and soluble *Leishmania major* antigen did not show any reduction in intestinal worm burden when compared to wild type controls (Figure 6E). This data indicated that the reduction in worm burden that we see in recipients of *N. brasiliensis* pulsed B cells is pathogen specific. Moreover, pulsing of MHCII^+/−^ B cells with *N. brasiliensis* also resulted in impaired reduction in worm burdens (Figure 6F). Together these data suggest an association between rapid pathogen specific MyD88 dependent antigen processing and MHCII antigen presentation by B cells underlying the accelerated host immunity to *N. brasiliensis* infection.

Discussion

This study demonstrated that IL-4R^+^ responsive B cells coordinate optimal immunity to secondary *N. brasiliensis* infection. This was related to B cell IL-13 expression, not IL-4 expression. B cell IL-4R^+^ mediated protection was associated with increased B cell and CD4 T cell IL-13 production. MHCII dependent B cell priming of T cells associated with this effect. Our data also demonstrated a rapid poly-functional antigen processing associated with B cell MyD88 expression. B cell responses to *N. brasiliensis* have been suggested to be largely redundant [20]. Both our current study and that of Liu et al. (18) demonstrate an absence of B cells per se does not alter host ability to control *N. brasiliensis* infection. However, we now show that a molecular change in B cell function, such as cell specific disruption of IL-4R^+^ expression on B cells, significantly impairs host ability to resolve *N. brasiliensis* infection. These findings also demonstrate important differences between B cell dependent immunity to *N. brasiliensis* and *H. polygyrus*. B cell Be2 immunity to *H. polygyrus* is dependent on B cell IL-4 production, B cell IL-4R^+^ expression and antigen presentation. As with *H. polygyrus*, *N. brasiliensis* re-infection is also dependent on B cell IL-4R^+^ expression and antigen presentation, however, B cell IL-13 production appears to play a functional role and not IL-4.

The protective B cell response we demonstrate may be independent of antibody and instead mediated through a B effector response. Such responses are particularly important in controlling CD4^+^ T cell driven immunity [34] via direct B and T cell interactions [35] as well as B cell cytokine production [36]. These B effector responses have an equivalent diversity in immune polarisation as T cells; producing Be1 (Th1) [35], Be2 (Th2) [36] and Breg (Treg) [37,38] effector B cells respectively. Functionally Be1 cells contribute significantly to immunity to bacterial infections, such as Salmonella [39,40,41]. In helminth infections Be2 cells have been demonstrated to be important for immunity to *H. polygyrus* [21], although humoral contributions also play a significant role [19,20]. Evidence of Breg induced by both

![Figure 2](image2.png) **Figure 2.** B cell IL-4R^a^ expression is required for optimal immunity to *N. brasiliensis* re-infection. MB1^Cre^IL-4R^a^lox^/lox^ and IL-4R^a^lox^/lox^ mice were infected for 5 or 7 days post-secondary *N. brasiliensis* infection and intestinal worm burdens were then quantified (A). Pulmonary mucus production was established by PAS staining (B). Serum Antibody titers of *N. brasiliensis* IgG1 were determined by ELISA (C). Mediastinal lymph node IL-13 responses were established by intracellular FACS staining in CD4^+^ T-cell and B220^+^ B cell populations (D). B cells were isolated from *N. brasiliensis* infected BALB/c, MB1^Cre^IL-4R^a^lox^/lox^ and IL-13^−/−^ and transferred into naive BALB/c mice (E). Mice were then infected with 500xL3 *N. brasiliensis* larvae and worm burdens were then established at day 5 post infection (F & G). The results shown represent 2–4 independent experiments. n = 4–7 mice per group.

doi:10.1371/journal.ppat.1003662.g002

![Figure 3](image3.png) **Figure 3.** Transfer of *N. brasiliensis* experienced B cells enhances immunity to *N. brasiliensis* independently of endogenous B cell populations. *N. brasiliensis* infected μMT and BALB/c mice were re-injected with 500xL3 larvae and at day 5 post-secondary infection, the intestinal worm burdens were quantified (A). The possible role for IL-4R^+^ expressing B cells in boosting immunity independently of endogenous B cells was determined by transfer of B cells isolated from *N. brasiliensis* infected IL-4R^a^lox^/lox^ (WT B cells) or MB1^Cre^IL-4R^a^lox^/lox^ (IL-4R^a^lox^/lox^) B cells into naive μMT mice. These mice were then infected with 500xL3 *N. brasiliensis* and worm burdens quantified at day 5 post infection (B). Mediastinal lymph node CD3^+^CD4^+^ T cell populations IL-13 responses (C) were established by FACS staining. Results shown represent 2 independent experiments. n = 4–7 mice per group.

doi:10.1371/journal.ppat.1003662.g003
Heligmosomoides polygyrus and Schistosoma mansoni infection have elegantly shown helminth elicited B cell control of allergy [38,42]. In this study we show that B cells develop a rapid and potent protective response against \textit{N. brasiliensis} infection. This rapid protection precludes BCR-dependent clonal expansion following antigen exposure. Instead, it appears B cells are capable of responding to antigen via less stringent mechanisms than the BCR, such as direct peptide loading and Toll like receptors [29,30]. Antigen binding by TLRs is established as an important regulator of B cell function [32]. TLR-dependent B cell responses can increase BCR-dependent antigen presentation [31], B cell cytokine production [39,40] and play pivotal roles in B cell ability to interact with T cells [33]. These TLR mediated responses to antigen by B cells can be rapid and may not require clonal expansion of B cells [27].

In addition to antigen presentation we also demonstrate IL-4Rα-dependent increases in IL-13 production by endogenous B cells to be associated with control of secondary infection. This along with B cell-dependent induction of IL-13 production by endogenous CD4+ T cell and B cells would provide an important source of IL-13 to activate potent effector cell populations, including epithelial [13,43], smooth muscle [12,44] and innate immune cells [24,45,46].

In summary this study demonstrates IL-4Rα-responsive B cells playing an important role resolving secondary \textit{N. brasiliensis} infection. We suggest the protective role played by B cells develops from antigen encounter with TLR driving an increase in CD86 and MHCII dependent interactions with CD4 T cells. This drives increased IL-13 production by CD4 T cells and B cells, facilitating host launching of protective mechanisms against \textit{N. brasiliensis} infection.

\textbf{Methods}

\textbf{Animals used}

In this study the following BALB/c background mice were used: BALB/c, BALB/b, IL-4Rα⁻/⁻ [described as \textit{Il4rαwt/IL4rα}\textit{Lox/Lox}], IL-13⁻/⁻, IL-4⁻/⁻ and μMT. BALB/c background B cell specific IL-4Rα deficient MB\textit{Cre}\textit{IL-4Rα}\textit{Lox/Lox} [described as \textit{Il4rαwt/IL4rα}\textit{Lox/Lox}\textit{MB1Cre} \textit{IL-4Rα}\textit{Lox/Lox}] were generated as previously described [26]. MHCII⁻/⁻, MyD88⁻/⁻ and C57BL/6 mice were on C57BL/6 genetic background. Mice were bred and housed in specific pathogen-free conditions at the University of Cape Town, South Africa, and used in accordance with University Ethical Committee guidelines. All experimental mice were sex matched and used between 6–12 weeks of age with appropriate littermate controls of the same generation.

\textbf{Ethics statement}

All studies were carried out under protocol 008/019 approved by the University of Cape Town Faculty of Health Sciences Animal Ethics Committee in accordance national guidelines laid down by the South African Board of Standards.
FcγII/III receptors and dead cells were excluded from analysis by 7-AAD staining (Sigma). Antibodies were from BD Pharmingen (San Diego, CA). Cells were acquired using a FACSCalibur (Beckton-Dickinson, Ferndale, South Africa) and data were analysed with Flowjo software (Treestar).

Intracellular cytokine staining was performed on mediastinal lymph node cells re-suspended in complete media (IMDM (GIBCO/Invitrogen; Carlsbad, CA), 10% FCS, P/S) at 2.5 x 10⁷/ml and stimulated with 10 μg/ml of N. brasiliensis antigen and GolgiStop (as per manufacturer’s protocol; BD Pharmingen).

Figure 5. Rapid IL-Rα dependent B cell mediated protection against N. brasiliensis occurs in the lung. MB^{cre}IL-4R_α^{-lox} and IL-4R_α^{-lox} mice were infected for 1 day with N. brasiliensis before spleen B cells were isolated and transferred into naive wild type mice (As in Figure 4C). These were infected with 500xL3 N. brasiliensis and intestinal worm burdens were quantified at day 5 post infection (A). Lung CD3⁺CD4⁺ and CD3⁺CD4⁺CD44^{hi} T cell populations were analysed by FACS staining (B). Lung CD4⁺ T cell (C) and mediastinal lymph node CD4⁺ T cell and B220⁺ B cell population (D) IL-13 responses were established by intracellular FACS staining. Data is representative of 2 independent experiments. n = 4–6 mice per group. doi:10.1371/journal.ppat.1003662.g005
at 37°C for 4 hours. After re-stimulation, cells were surface stained for CD3 (clone 500A2), CD4 (clone GK1.5) and B220 (clone RA3-6B2), then fixed and permeabilized with Cytofix/Cytoperm Plus (as per manufacturer’s instructions; BD Pharlmagen). Intracellular staining was performed by staining cells with IL-13-PE (ebio 13a) or appropriately labelled isotype control (eBioscience) [47].

Sorting of B cells for adoptive transfer

Single cell suspensions from spleen were surface labelled with CD19 and B220 antibodies described above, re-suspended at 1×10⁷ cells/ml in media and sorted with a BD FACSARIA cell sorter (Supplementary Figure S3A). The purity of the isolated population was confirmed by flow cytometry, and samples showing <95% positive cells were discarded (Supplementary...
Figure S3B: Then the isolated B cells from naïve or infected mice were adoptively transferred to naïve mice. The cells were re-suspended at 2.5 x 10⁶ cells/ml in media. Each mouse received 6 x 10⁶ B cells injected intravenously into the tail vein 24 h prior to infection with *N. brasiliensis*.

In vitro B cell antigen pulsing

Naïve B cells were isolated from a single spleenocyte suspension by FACSARIA as described above. Purity was confirmed by flow cytometry, samples showing <95% B220 positive cells were discarded (Supplementary Figure S3). Cells were incubated (pulsed) with 10 μg/ml *N. brasiliensis* antigen, ovalbumin, LPS or soluble Leishmania antigen for 16 h at 37°C. Cells were then washed 3x in media by centrifugation and then re-suspended in media at 2.5 x 10⁶/ml. 0.5 x 10⁶ cells were then transferred intravenously into naïve mice 24 h prior to infection with *N. brasiliensis* [27,28].

Generating *N. brasiliensis* somatic antigen

L3 larvae were washed from filter paper into H₂O/50 μg/ml Penicillin+Streptomycin and allowed to stand for an hour during which the larvae settle to the bottom of the container, after which the larvae washed once more in H₂O/Pen./Strep and once in H₂O. Then the larvae were concentrated into 2 ml of distilled H₂O and snap frozen in liquid nitrogen. Following this the preparation was homogenized for 5 to 10 minutes before the whole solution is centrifuged at 10 000 rpm for 10 minutes. The supernatant contains the soluble fraction of the L3 larvae proteins which is measured and standardised using a BCA protein assay (Pierce; Chicago, IL). Antigen was added to the cells in solution at 10 μg/ml.

Statistics

Values are expressed below as means ± standard deviations and significant differences were determined using either Mann-Whitney U test or ANOVA (GraphPad Prism 4).

Supporting Information

Figure S1 Lung epithelial mucous production is reduced in IL-4/lox and IL-13/lox mice but not in IL-4/- or MB1creIL-4Rα/lox mice. IL-4/lox, IL-4/-, IL-13/-, MB1creIL-4Rα/lox and IL-4Rα/-lox mice were infected for 5 days post-secondary *N. brasiliensis* infection. Pulmonary mucus production was established by PAS staining (**Figure 1** and **2**). The Histological Mucus Index (HMI) [15] was used to quantify the numbers of PAS positive epithelial cells. (TIF)

References

1. Hotz PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, et al. (2008) Helminth infections: the great neglected tropical diseases. J Clin Invest 118: 1311–1321.
2. Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, et al. (2006) Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367: 1521–1532.
3. Hotz PJ (2005) Hookworm and Poverty. Ann N Y Acad Sci 1136: 38–44.
4. Jardim-Botelho A, Raff S, Rodrigues Rde A, Hoffman JJ, Diemert DJ, et al. (2005) Hookworm, Ascaris lumbricoides infection and polyparasitism associated with poor cognitive performance in Brazilian schoolchildren. Trop Med Int Health 13: 994–1004.
5. Marsland BJ, Kurrer M, Reissmann R, Harris NL, Kopf M (2008) Cutting edge: IL-4 receptor expression by non-bone marrow-derived cells is an important site for priming CD4 T cell mediated protective immunity against gastrointestinal helminth parasites. Infect Immun 76(9): 3755–62.
6. Wright V, Bickle Q (2005) Immune responses following experimental human hookworm infection. Clin Exp Immunol 142: 390–403.
7. Turner JD, Faulkner H, Kamgno J, Cormont F, Van Snick J, et al. (2005) Th2 cytokines are associated with reduced worm burdens in a human intestinal helminth infection. J Infect Dis 188: 1768–1775.
8. Finkelman FD, Urban JF, Jr. (2001) The other side of the coin: the protective role of the TH2 cytokines. J Allergy Clin Immunol 107: 772–780.
9. Horsnell WG, Cutler AJ, Hoving JC, Mearns H, Myburgh E, et al. (2007) Delayed goblet cell hyperplasia, acetylcholine receptor expression, and worm expulsion in SMc-specific IL-4Rα-deficient mice. PLoS Pathog 3: e1.
13. Herbert DR, Yang JQ, Hogan SP, Groschwitz K, Khodoun M, et al. (2009) Intestinal epithelial cell secretion of RELM-beta protects against gastrointestinal worm infection. J Exp Med 206: 2947–2957.

14. Niwano Y, Hornbacher F, Lopata AL. (2009) Differential requirements for interleukin (IL)-4 and IL-13 in protein contact dermatitis induced by Anisakis. Allergy 64: 1309–1318.

15. Mears H, Horneff WG, Hoving JC, Dewals B, Gutier AJ, et al. (2008) Interleukin-4-promoted T helper 2 responses enhance Nippostrongylus brasiliensis-induced pulmonary pathology. Infect Immun 76: 5535–5542.

16. Thawer SG, Horneff WG, Darby M, Hoving JC, Dewals B, et al. (2013) Lung-resident CD4 T cells are sufficient for IL-4-Ralphalp-dependent recall immunity to Nippostrongylus brasiliensis infection. Microb Immunol [epub ahead of print]. doi: 10.1038/mi.2013.40.

17. Anthony RM, Urban JF, Jr., Alem F, Hamed HA, Raza CT, et al. (2006) Memory TH2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. Nat Med 12: 955–960.

18. Morimoto M, Whitmore J, Xiao S, Anthony RM, Mizakami H, et al. (2004) Peripheral CD4 T cells rapidly accumulate at the host-parasite interface during an inflammatory Th2 memory response. J Immunol 172: 2424–2430.

19. McCoy KD, Stool M, Sestier R, Merky P, Fink K, et al. (2006) Polyclonal and specific antibodies mediate protective immunity against enteric helminth infection. Cell Host Microbe 4: 362–373.

20. Liu Q, Kreider T, Bowdridge S, Liu Z, Song Y, et al. (2010) B cells have distinct roles in host protection against different nematode parasites. J Immunol 184: 5213–5223.

21. Wojciechowski W, Harris DP, Sprague F, Mousau M, Makris M, et al. (2009) Cytokine-producing effector B cells regulate type 2 immunity to H. polygyrus. Immunity 30: 421–431.

22. Knott ML, Matthaei KI, Giacomini PR, Wang H, Foster PS, et al. (2007) Impaired resistance in early secondary Nippostrongylus brasiliensis infections in mice with defective coinformats. J Exp Parasitol 37: 1367–1378.

23. Giacomini PR, Gordon DI, Botto M, Daha MR, Sanderson SD, et al. (2008) The role of complement in innate, adaptive and coinform-dependent immunity to the nematode Nippostrongylus brasiliensis. Mol Immunol 45: 446–455.

24. Ohnacht C, Voehringer D (2009) Basophil effector function and homeostasis during helminth infection. Blood 113: 2816–2825.

25. Voehringer D, Shinkai K, Lockley RM (2004) Type 2 immunity reflects orchestrated recruitment of cells committed to IL-4 production. Immunity 20: 267–277.

26. Hoving JC, Kirstein F, Niwano Y, Fick LC, Hobeika E, et al. (2011) B Cells That Produce Immunoglobulin E Mediate Colitis in BALB/c Mice. Gastroenterology 142(1):96–108.

27. Chappell CP, Draves KE, Giltiay NV, Clark EA (2012) Extrafollicular B cell responses. J Exp Med 209: 1825–1840.

28. Flores-Langarica A, Marshall JL, Bobat S, Mohr E, Hitchcock J, et al. (2011) T-cell-independent presentation of viral antigen. Eur J Immunol 37: 119–128.

29. Pasare C, Medzhitov R (2005) Control of B-cell responses by Toll-like receptors. Nature 438: 364–368.

30. Ruprecht CR, Lanzavecchia A (2006) Toll-like receptor stimulation as a third signal required for activation of human naive B cells. Eur J Immunol 36: 810–814.

31. Sayi A, Kohler E, Toller IM, Flavell RA, Muller W, et al. (2011) TLR-2-activated B cells suppress Helicobacter-induced preneoplastic gastric immunopathology by inducing T regulatory-1 cells. J Immunol 186: 878–888.

32. Land F (2008) Cytokine-producing B lymphocytes-key regulators of immunity. Curr Opin Immunol 20: 332–338.

33. Harris DP, Haynes L, Sayles PC, Dusko DK, Eaton SM, et al. (2000) Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat Immunol 1: 475–482.

34. Harris DP, Goodrich S, Mohrs K, Mohrs M, Land F (2005) Cutting edge: the development of IL-4-producing B cells (effector 2 cells) is controlled by IL-4, IL-13 receptor alpha, and Th2 cells. J Immunol 175: 7105–7107.

35. Bosassa JD, Yanaba K, Tedder TF (2008) Regulatory B cells as inhibitors of immune responses and inflammation. Immunol Rev 224: 201–214.

36. Annu S, Saunders SP, Kronenberg M, Mangan NE, Arzberger A, et al. (2010) Regulatory B cells prevent and reverse allergic airway inflammation via FoxP3-positive T regulatory cells in a murine model. J Allergy Clin Immunol 125: 1114–1124 e1118.

37. Barr TA, Brown S, Mastroeni P, Gray D (2009) B cell intrinsic MyD88 signals drive IFN-gamma production from T cells and control switching to IgG2c. J Immunol 183: 1005–1012.

38. Harris DP, Brown S, Mastroeni P, Gray D (2010) DLLR and B cell receptor signals drive the development of IL-4-producing B cells (effector 2 cells) is controlled by IL-4, IL-13 receptor alpha, and Th2 cells. J Immunol 175: 2783–2789.

39. Morrison VL, Barr TA, Brown S, Gray D (2010) TLR and B cell receptor signals drive the development of IL-4-producing B cells (effector 2 cells) is controlled by IL-4, IL-13 receptor alpha, and Th2 cells. J Immunol 175: 2783–2789.

40. Wilson MS, Taylor MD, O’Gorman MT, Baler A, Barr TA, et al. (2010) Helminth-induced CD19+CD23hi B cells mediate experimental allergic and autoimmune inflammation. Eur J Immunol 40: 1682–1696.

41. Cliffe JJ, Humphreys NE, Lane TE, Potten CS, Booth C, et al. (2005) Accelerated intestinal epithelial cell turnover: a new mechanism of parasite regulation. Science 308: 1463–1465.

42. Hornell WG, Vira A, Kirstein F, Mears H, Hoving JC, et al. (2010) IL-4-Ralphalp-responsive smooth muscle cells contribute to initiation of TH2 immunity and pulmonary pathology in Nippostronglyus brasiliensis infections. Microbiol Immunol 41(1):65–72.

43. Voehringer D, Reese T, Huang X, Shinkai K, Lockley RM (2006) Type 2 immunity is controlled by IL-4/IL-13 expression in hematopoietic non-coinform cells of the innate immune system. J Exp Med 203: 1433–1446.

44. Ruprecht CR, Hornell WG, Vira A, Kirstein F, Mears H, Hoving JC, et al. (2010) TH2 cytokine-induced alterations in intestinal smooth muscle function depend on alternatively activated macrophages. Gastroenterology 135: 217–225 e211.

45. Mohr E, Cunningham AF, Toellner KM, Bobat S, Coughlan RE, et al. (2010) IL-4 gamma (gamma) produced by CD6 T cells induces T-bet-dependent and - independent class switching in B cells in responses to alumin-precipitated protein vaccine. Proc Natl Acad Sci U S A 107: 17292–17297.