Energy dependence of the quark masses and mixings*

S.R. Juárez W.,‡, S.F. Herrera H.,‡, P. Kielanowski‡ and G. Mora H.‡

1Departamento de Física, Escuela Superior de Física y Matemáticas, IPN, México
2Departamento de Física, Centro de Investigación y Estudios Avanzados, México
3Institute of Theoretical Physics, University of Białystok, Poland

The one loop Renormalization Group Equations for the Yukawa couplings of quarks are solved. From the solution we find the explicit energy dependence on \(t = \ln E/\mu \) of the evolution of the down quark masses \(q = d, s, b \) from the grand unification scale down to the top quark mass \(m_t \). These results together with the earlier published evolution of the up quark masses completes the pattern of the evolution of the quark masses. We also find the energy dependence of the absolute values of the Cabibbo-Kobayashi-Maskawa (CKM) matrix \([V_{ij}]\). The interesting property of the evolution of the CKM matrix and the ratios of the quark masses: \(m_u,c/m_t \) and \(m_d,s/m_b \) is that they all depend on \(t \) through only one function of energy \(h(t) \).

12.15.Ff, 12.15.Hh, 11.30.Hv

In a recent paper Ref. [1], a systematical investigation of the evolution of the CKM matrix and the quark Yukawa couplings \(y_u(t) \) and \(y_d(t) \) was performed. Exact solutions of the one loop Renormalization Group Equation (RGE) and some general properties of the RGE evolution for the quark masses \(m_q, q = u, c, t, d, s, b \), and CKM matrix, compatible with the observed hierarchy Ref. [2], were obtained.

The objective of this talk is to present some complementary results to the previous ones. We show here the explicit solutions for the masses of the quarks of the down sector and how they are derived.

The quark masses are the eigenvalues of the Yukawa couplings obtained after its diagonalization by biunitary transformations with the help of the unitary matrices \((U_u,d)_{L,R}\).

\[
\text{Diag}(m_u, m_c, m_t) = (U_u)_L y_u(U_u)_{L,R}^t, \quad \text{Diag}(m_d, m_s, m_b) = (U_d)_L y_d(U_d)_{L,R}^t.
\]

From the diagonalizing matrices we obtain the flavor mixing described by the CKM matrix

\[
V_{\text{CKM}} = (U_u)_L (U_d)_{L,R}^t.
\]

The Yukawa couplings are scale dependent. Very frequently one makes various assumptions about their properties at the Grand Unification (GU) scale and then one has to compare the predictions with the measured values at low energies Ref. [3]. The RGE are an important tool for the search of the properties of the quark masses and the CKM matrix at different energy scales. We also find the energy dependence of the absolute values of the Yukawa couplings \(y_u, d, c, \nu \) and the ratios of the quark masses:

\[
\frac{m_{u,c}}{m_t} \quad \text{and} \quad \frac{m_{d,s}}{m_b}.
\]

The RGE have been worked out by various authors Ref. [4, 7]. The structure of the one loop RGE for the gauge coupling constants \(g_k \) and the Yukawa couplings \(y_{u,d,c,\nu} \) is the following

\[
\frac{dg_k}{dt} = \frac{1}{(4\pi)^2} b_k g_k^3, \quad \frac{dy_{u,d,c,\nu}}{dt} = \left[\frac{1}{(4\pi)^2} \beta^{(1)}_{u,d,c,\nu} \right] y_{u,d,c,\nu}.
\]

Here \(t = \ln(E/\mu) \) is the energy scale parameter, the coefficients \(b_k \) are defined in Table 1 and the functions \(\beta^{(1)}_{u,d,c,\nu} \) are defined for various models in the Appendix. The approximate form of the equations for the quark Yukawa couplings, neglecting all the terms of \(\lambda^4 \) and higher (\(\lambda = 0.22 \)) have the following form

\[
\begin{align*}
\frac{dy_u}{dt} &= \frac{1}{(4\pi)^2} \left[\alpha_1^u(t) + \alpha_2^u y_u^t + \alpha_3^u \text{Tr}(y_u y_u^t) \right] y_u, \\
\frac{dy_d}{dt} &= \frac{1}{(4\pi)^2} \left[\alpha_1^d(t) + \alpha_2^d y_d^t + \alpha_3^d \text{Tr}(y_d y_d^t) \right] y_d.
\end{align*}
\]

The explicit solutions for \(m_q(t) \) with \(q = u, c, t \) and \(y_d(t) \) previously obtained in Ref. [6] are:

\[
\begin{align*}
m_{u,c}(t) &= m_{u,c}(t_0) \sqrt{r_g(t)(h(t))^{b/c}}, \\
m_{t}(t) &= m_{t}(t_0) \sqrt{r_g(t)(h(t))^{(k+2)/c}}, \\
y_d(t) &= \sqrt{r_g(t)(h(t))^{2a/c}} (U_u)_{L,R} Z(t)(U_u)_{L,R} y_d(t_0),
\end{align*}
\]

*Talk presented at the IX Mexican School on Particles and Fields, August 9–19, Metepec, Pue., Mexico. To be published in the AIP Conference Proceedings.

where the \((a, b, c)\) are equal to \((0, 2, 2/3), (0, 1, 1/3), (1, 1, -1)\) in the MSSM, DHS and SM, respectively,

\[
h(t) = \exp\left(\frac{1}{(4\pi)^2} \frac{3c}{2} \int_{t_0}^{t} m_i^2(\tau)d\tau\right)
= \left(1 - \frac{3(b+2)}{(4\pi)^2} m_i^2(t_0) \int_{t_0}^{t} r_g(\tau)d\tau\right)^\frac{1}{2(\nu+2)}.
\]

and

\[
[Z(t)]_{ij} = \delta_{ij} + (h(t) - 1)\delta_{i3}\delta_{j3}.
\]

These solutions Eqs. (2) do depend on the energy through the overall factors \(r_g(t), r_g'(t)\) (see Appendix) and the matrix \(Z(t)\).

The procedure Ref. 8. to obtain the energy dependence of the masses for the down sector is the following:

Step 1.- Differentiate with respect to \(t\) the following equation

\[
(U_u)_{L}y_d(t)y_d(t)\dagger(U_u)_{L}^\dagger = \left(r_g'(t)(h(t))^{(2\alpha_d^2/\alpha_s^2)}\right)Z(t)(U_u)_{L}y_d(t_0)y_d(t_0)\dagger(U_u)_{L}^\dagger Z(t),
\]

which can be written in this way

\[
(U_u)_{L}y_d(t)y_d(t)\dagger(U_u)_{L}^\dagger = V_{CKM}(t)M_d^2(t)V_{CKM}^\dagger(t)
\]

where \(M_d^2(t)\) is the diagonal matrix with the squares of the physical down quarks Yukawa couplings on the diagonal, that become the squares of the down quark masses after the spontaneous symmetry breaking. Next we obtain the following matrix differential equation

\[
V_{CKM}^\dagger(t)\frac{dV_{CKM}}{dt} = (M_d^2(t))^{-1}V_{CKM}^\dagger(t)\frac{dV_{CKM}}{dt} M_d^2(t)
- (M_d^2(t))^{-1}V_{CKM}^\dagger(t)\frac{d}{dt}((U_u)_{L}y_d(t)y_d(t)\dagger(U_u)_{L}^\dagger)V_{CKM}(t) + (M_d^2(t))^{-1}\frac{dM_d^2}{dt}.
\]

Eq. (4) becomes simpler after using the following relation (see Eq. (3))

\[
(M_d^2(t))^{-1}V_{CKM}^\dagger(t)\frac{d}{dt}((U_u)_{L}y_d(t)y_d(t)\dagger(U_u)_{L}^\dagger)V_{CKM}(t)
= \frac{h'}{h}\left[R\left[R + (M_d^2(t))^{-1}R^\dagger R M_d^2(t)\right]\right] + \frac{d\ln r_g'(t)(h(t))^{(2\alpha_d^2/\alpha_s^2)}}{dt}I,
\]

where the vector \(R = (V_{td}, V_{ts}, V_{tb})\).

Step 2.- Extract the differential equations for the diagonal matrix elements of Eq. (4):

\[
\frac{d}{dt}\ln m_d(t) = \frac{1}{2}\frac{d}{dt}\left[\ln r_g'(t)(h(t))^{(2\alpha_d^2/\alpha_s^2)}\right] + \left[\frac{d}{dt}\ln h(t)\right]|V_{td}(t)|^2,
\]

\[
\frac{d}{dt}\ln m_s(t) = \frac{1}{2}\frac{d}{dt}\left[\ln r_g'(t)(h(t))^{(2\alpha_d^2/\alpha_s^2)}\right] + \left[\frac{d}{dt}\ln h(t)\right]|V_{ts}(t)|^2,
\]

\[
\frac{d}{dt}\ln m_b(t) = \frac{1}{2}\frac{d}{dt}\left[\ln r_g'(t)(h(t))^{(2\alpha_d^2/\alpha_s^2)}\right] + \left[\frac{d}{dt}\ln h(t)\right]|V_{tb}(t)|^2.
\]

Step 3.- From the off diagonal matrix elements of Eq. (4) we deduce equations for the squares of the CKM matrix elements \(|V_{ij}|^2\). We solve equations for the \(|V_{td}|^2, |V_{ts}|^2\) and \(|V_{tb}|^2\) matrix elements that are needed in Eq. (6):

\[
\frac{d}{dt}|V_{td}(t)|^2 = -2\left[\frac{d}{dt}\ln h(t)\right]|V_{td}(t)|^2(1 - |V_{td}(t)|^2),
\]

\[
\frac{d}{dt}|V_{tb}(t)|^2 = 2\left[\frac{d}{dt}\ln h(t)\right]|V_{tb}(t)|^2(1 - |V_{tb}(t)|^2),
\]

\[
\frac{d}{dt}|V_{ts}(t)|^2 = -2\left[\frac{d}{dt}\ln h(t)\right]|V_{ts}(t)|^2\left[|V_{ts}(t)|^2 - |V_{td}(t)|^2\right].
\]
Obtaining

\[|V_{td}(t)|^2 = \frac{|V_{td}^0|^2}{h^2(t) + (1 - h^2(t))|V_{td}^0|^2}, \]

\[|V_{tb}(t)|^2 = \frac{|V_{tb}^0|^2 h^2(t)}{1 + |V_{tb}^0|^2 (h^2(t) - 1)}, \]

\[|V_{ts}(t)|^2 = \frac{|V_{ts}^0|^2}{h^2(t) \left[h^2(t) + \frac{1 - |V_{td}^0|^2}{|V_{td}^0|^2} \right] \left[h^2(t) + \frac{|V_{tb}^0|^2}{1 - |V_{td}^0|^2} \right]}, \]

(7)

where

\[V_{ij}^0 = V_{ij}(t_0). \]

Step 4.- Finally, Eqs. (7) are used to solve in an analytical way the differential equations (5).

The formulas which give the explicit energy dependence of the quark masses for the down sector are

\[\frac{m_d(t)}{m_d(t_0)} = \sqrt{r'_g(t)} \frac{(h(t))^{(c+2a)/c}}{\sqrt{h^2(t) + |V_{td}^0|^2 (1 - h^2(t))}}, \]

\[\frac{m_s(t)}{m_s(t_0)} = \sqrt{r'_g(t)} \frac{(h(t))^{2a/c}}{\sqrt{1 + |V_{tb}^0|^2 (h^2(t) - 1) (h(t))^{2a/c}}}, \]

\[\frac{m_b(t)}{m_b(t_0)} = \sqrt{r'_g(t)} \frac{(h(t))^{2a/c}}{\sqrt{1 + |V_{tb}^0|^2 (h^2(t) - 1) (h(t))^{2a/c}}}. \]

(8)

FIG. 1. Evolution of the quark masses in the Standard Model

The results presented in this paper together with those of Ref. [1] form the complete set of the renormalization group evolution predictions for the observables derived from the quark Yukawa couplings. The consistent approximation scheme based on the hierarchy of the quark masses and the CKM matrix is strictly observed in all the derivations and it is shown that the final results for the ratios of the quark masses and the CKM matrix depend only on one function of energy in agreement with the theorem presented in Ref. [1].

As an illustration we show in Fig. 1 the evolution of the quark masses for the energy range from \(E = m_t \) to \(E = 10^{14} \) GeV for the Standard Model.

The explicit form of the evolution given here can be very useful for the phenomenological analysis of the models that specify the properties of the Yukawa interactions at the GU scale.
We acknowledge the financial support from CONACYT (México) projects 3512P-E9608 and 26247E. S.R.J.W. also thanks to “Comisión de Operación y Fomento de Actividades Académicas” (COFAA) from Instituto Politécnico Nacional.

APPENDIX

\[\beta^{(1)}_l = \alpha^{l(1)}_1(t) + \alpha^{l(1)}_2 H^u + \alpha^{l(1)}_3 \text{Tr}(H^u) + \alpha^{l(1)}_4 H^d + \alpha^{l(1)}_5 \text{Tr}(H^d) + \alpha^{l(1)}_6 H^e + \alpha^{l(1)}_7 \text{Tr}(H^e) + \alpha^{l(1)}_8 H^\nu + \alpha^{l(1)}_9 \text{Tr}(H^\nu), \quad H^{(1)}_l = y_l y_l^\dagger. \]

\[\text{for } l = u, d, e, \nu. \]

The \(\alpha^{l(1)}_i(t) \) and the \(\alpha^{l(1)}_i, i = 2, \ldots, 9 \) are given in Tables 2 and 3.

\[
\begin{align*}
 r_g(t) &= \exp\left(\frac{2}{(4\pi)^2} \int_{t_0}^{t} \alpha^{u(1)}_i(\tau) d\tau\right) = \Pi_{k=3}^{k=3} \left[\frac{g^2_k(t_1)}{g_k^2(t)} \right]^{\frac{\sqrt{2}}{4}} \\
 r'_g(t) &= \exp\left(\frac{2}{(4\pi)^2} \int_{t_0}^{t} \alpha^{d(1)}_i(\tau) d\tau\right) = \Pi_{k=1}^{k=3} \left[\frac{g^2_k(t_1)}{g_k^2(t)} \right]^{\frac{\sqrt{2}}{4}} ,
\end{align*}
\]

\[\text{where} \]

\[
g_k(t) = \frac{g_k(t_0)}{\sqrt{1 - \frac{2b_k g^2_k(t_0)(t-t_0)}{(4\pi)^2}}}.
\]

The coefficients \(b_k, c_k \) and \(c'_k \) are defined in Table 1.

TABLE I. The parameters for the various models.

Model	\(b_1 \)	\(b_2 \)	\(b_3 \)	\(c_1 \)	\(c_2 \)	\(c_3 \)	\(c'_1 \)	\(c'_2 \)	\(c'_3 \)
MSSM	\(\frac{3}{10} \)	1	-3	\(\frac{4}{5} \)	3	\(\frac{2}{5} \)	\(\frac{7}{5} \)	3	\(\frac{4}{5} \)
DHM	\(\frac{21}{20} \)	-3	-7	\(\frac{17}{20} \)	\(\frac{9}{1} \)	8	\(\frac{1}{4} \)	\(\frac{9}{4} \)	8
SM	\(\frac{41}{10} \)	-\(\frac{19}{9} \)	-7	\(\frac{17}{20} \)	\(\frac{9}{4} \)	8	\(\frac{1}{4} \)	\(\frac{9}{4} \)	8

TABLE II. The coefficients \(\alpha^{l(1)}_i \) for various models.

Model	SM and DHM	MSSM
\(\alpha^{u(1)}_1(t) = \)	\(-(\frac{17}{20} g_1^2 + \frac{9}{4} g_2^2 + 8 g_3^2) \)	\(-(\frac{13}{10} g_1^2 + 3 g_2^2 + \frac{15}{2} g_3^2) \)
\(\alpha^{d(1)}_1(t) = \)	\(-(\frac{4}{7} g_1^2 + \frac{9}{4} g_2^2 + 8 g_3^2) \)	\(-(\frac{13}{10} g_1^2 + 3 g_2^2 + \frac{15}{2} g_3^2) \)
\(\alpha^{e(1)}_1(t) = \)	\(-(\frac{9}{20} g_1^2 + \frac{9}{4} g_2^2) \)	\(-(\frac{7}{10} g_1^2 + 3 g_2^2) \)
\(\alpha^{\nu(1)}_1(t) = \)	\(-(\frac{9}{20} g_1^2 + \frac{9}{4} g_2^2) \)	\(-(\frac{7}{10} g_1^2 + 3 g_2^2) \)
TABLE III. The coefficients α_l^i for various models; the constants (a, b, c) are equal to $(0, 2, 2/3), (0, 1, 1/3), (1, 1, -1)$ in the MSSM, DHS and SM.

l	α_2^i	α_3^i	α_4^i	α_5^i	α_6^i	α_7^i	α_8^i	α_9^i
u	$\frac{3}{2}b$	3	$\frac{3}{2}c$	3a	0	a	0	1
d	$\frac{1}{2}c$	3a	$\frac{1}{2}b$	3	0	1	0	a
e	0	3a	0	3	$\frac{3}{2}b$	1	$\frac{3}{2}c$	a
ν	0	3	0	3a	$\frac{3}{2}c$	a	$\frac{3}{2}b$	1

[1] P. Kielanowski, S.R. Juárez W. and G. Mora, Phys. Lett. B479, 181 (2000); S.R. Juárez W., P. Kielanowski and G. Mora, New Properties of the Renormalization Group Equations of the Yukawa Couplings and CKM Matrix in the Proceedings of the Eighth Mexican School Particles and Fields, Oaxaca, México, AIP Conference Proceedings 490, 351–354 (1998), ed. J.C. D’Olivo, G. López C. and M. Mondragón, L.C. Catalog Card No. 99-067150, ISBN 1-56396-895-9, ISSN 0094-243X., DOE CONF-981188.
[2] L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).
[3] R.D. Peccei and K. Wang, Phys. Rev. D53, 2712 (1996); H. González et al., Phys. Lett. B440 94 (1998); H. González et al., A New symmetry of Quark Yukawa Couplings in the Proceedings of the International Europhysics Conference on High Energy Physics, Jerusalem 1997, Eds. Daniel Lellouch, Giora Mikenberg, Eliezer Rabinovici, Springer-Verlag 1999, p. 755.
[4] K.S. Babu, Z. Phys. C 35, 69 (1987); P. Binetruy and P. Ramond, Phys. Lett. B350, 49 (1995); K. Wang, Phys. Rev. D54, 5750 (1996).
[5] B. Grzadkowski and M. Lindner, Phys. Lett. B193, 71 (1987); B. Grzadkowski, M. Lindner and S. Theisen, Phys. Lett. B198, 64 (1987); M. Olechowski and S. Pokorski, Phys. Lett. B257, 388 (1991).
[6] H. Arason et al., Phys. Rev. D46, 3945 (1992).
[7] H. Fusaoka and Y. Koide, Phys. Rev. D57, 3986 (1998).
[8] K. Sasaki, Z. Phys. C 32, 146 (1986).