SrFe$_{12}$O$_{19}$-doped nano-layered double hydroxide/chitosan layered scaffolds with a nacre-mimetic architecture guide in situ bone ingrowth and regulate bone homeostasis

Yu-Wei Gea,1, Zhang-Hao Fanb,1, Qin-Fei Keb, Ya-Ping Guob,***, Chang-Qing Zhanga,**, Wei-Tao Jiaa,*

a Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China

b The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China

ARTICLE INFO

Keywords:
Bone regeneration
Bone homeostasis
Inflammatory
Nacre-mimetic
Layered double hydroxides

ABSTRACT

Osteoporotic bone defects result from an imbalance in bone homeostasis, excessive osteoclast activity, and the weakening of osteogenic mineralization, resulting in impaired bone regeneration. Herein, inspired by the hierarchical structures of mollusk nacre, nacre exhibits outstanding high-strength mechanical properties, which are in part due to its delicate layered structure. SrFe$_{12}$O$_{19}$ nanoparticles and nano-layered double hydroxide (LDH) were incorporated into a bioactive chitosan (CS) matrix to form multifunctional layered nano-SrFe$_{12}$O$_{19}$-LDH/CS scaffolds. The compressive stress value of the internal ordered layer structure matches the trabecular bone (0.18 MPa). The as-released Mg$^{2+}$ ions from the nano-LDH can inhibit bone resorption in osteoclasts by inhibiting the NFkB signaling pathway. At the same time, the as-released Sr$^{2+}$ ions promote the high expression of osteoblast collagen 1 proteins and accelerate bone mineralization by activating the BMP-2/SMAD signaling pathway. In vivo, the Mg$^{2+}$ ions released from the SrFe$_{12}$O$_{19}$-LDH/CS scaffolds inhibited the release of pro-inflammatory factors (IL-β and TNF-α), while the as-released Sr$^{2+}$ ions promoted osteoblastic proliferation and the mineralization of osteoblasts inside the layered SrFe$_{12}$O$_{19}$-LDH/CS scaffolds. Immunofluorescence for OPG, RANKL, and CD31, showed that stable vasculature could be formed inside the layered SrFe$_{12}$O$_{19}$-LDH/CS scaffolds. Hence, this study on multifunctional SrFe$_{12}$O$_{19}$-LDH/CS scaffolds clarifies the regulatory mechanism of osteoporotic bone regeneration and is expected to provide a theoretical basis for the research, development, and clinical application of this scaffold on osteoporotic bone defects.

1. Introduction

Bone defect regeneration and repair (such as trauma [1], tumor removal [2], infection [3] and periprosthetic osteolysis [4]) have always been a challenging yet important issue in the field of orthopedics. The aging of bone marrow mesenchymal stem cells, the decrease in bone mineralization ability, and excessive osteoclast activity cause severe loss of bone mass, especially in patients with osteoporosis [5,6]. This results in an imbalance in bone homeostasis, so the regeneration and repair of bone defects become even more important [7]. At present, preferred criteria for clinical treatment of bone defects caused by the above factors is autologous bone transplantation; however, the source and size of autologous bone are limited, making it difficult to meet clinical needs [3,8]. Autologous bone transplantation is scarce, especially for patients with osteoporotic bone defects. At present, various artificial bone materials created from tissue engineering have problems such as insufficient mechanical strength, easy to cause acute inflammatory response [9,10], promote osteoclast differentiation [11], form fibrous encapsulations, and

*** Corresponding author.
** Corresponding author.
* Corresponding author. Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China.

E-mail addresses: ypguo@shnu.edu.cn (Y.-P. Guo), zhangqo@sjtu.edu.cn (C.-Q. Zhang), jiaweitao@shsmu.edu.cn (W.-T. Jia).

1 These authors contributed equally to this work.

https://doi.org/10.1016/j.mtbio.2022.100362

Received 2 May 2022; Received in revised form 20 June 2022; Accepted 9 July 2022

Available online 19 July 2022

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
promote bone resorption, significantly reducing the performance of the implanted material.

Most of the current research focuses on changing the morphology and structure of bio-scaffolds, or applying modification techniques such as surface modification chemical bonds to achieve the ability to promote bone regeneration [12–14]. Especially in recent years, a lot of studies have focused on building various material delivery tools to load pro-osteogenic or osteoclast-inhibiting drugs, and targeted therapy through local application or intravenous injection [15,16]. But for patients with osteoporosis, due to the imbalance of osteogenic mineralization and osteoclast bone resorption, and the synergistic imbalance of osteogenesis is purely through the transient release of pro-osteogenic or osteoclast-inhibiting drugs, without starting from the source of its pathophysiology, ignoring the management of the local immune microenvironment, and failing to fully consider the two aspects of osteogenesis and osteoclasts. Therefore, it is difficult to achieve the purpose of clinical treatment.

Layered double hydroxides (LDHs) have been reported as drug delivery system and antibacterial platforms, owing to their good biocompatibility and positive charge [17–19]. The LDH material is rich in Mg2+ ions, which are indispensable in the regulation of bone homeostasis. Magnesium ions promote bone regeneration by activating osteoblast differentiation and adhesion. In addition, Mg2+ plays a critical role in inhibiting the RANKL-mediated differentiation of macrophages into osteoclasts [20,21]. Studies have shown that Mg2+ also inhibits the differentiation and maturation of osteoclast cells by inhibiting three common osteoclast pathways: NF-κB, ERK, and AKT [22–24]. Therefore, Mg metal implants and their derivatives have been used clinically. However, magnesium metal implants also have many shortcomings, such as the mismatch between the material degradation and the bone formation, the generation of a large amount of hydrogen, and the formation of a magnesium oxide coating on the implant surface [25–27].

Static magnetic fields (SMFs) are proved as a novel physical stimulus strategy to induce cellular proliferation and osteogenic differentiation [28,29]. During the process of bone regeneration and reconstruction, the SMFs could activate the NF-κB, integrin, MAPK and BMP-2/Smad pathways [29,30]. Upon to now, magnetic Fe3O4 nanoparticles have been incorporated in bone scaffolds for the enhanced cell viability and bone regeneration [31,32]. However, Fe3O4 nanoparticles lack strong magnetic properties because of their superparamagnetic feature. To overcome this disadvantage, M-type SrFe12O19 ferrite becomes an alternative magnetic materials because of its great saturation magnetization and coercivity [30]. The incorporation of SrFe12O19 nanoparticles in bone scaffolds plays an important role in recruiting endogenous stem cells and facilitating bone regeneration [30,33].

The nano-LDH powders were fabricated via chemical precipitation. Mg(NO3)2-6H2O and Al(NO3)3-9H2O (Mg/Al molar ratio of 3.0) were added to the deionized water to get a salt solution. And an alkali solution was prepared by adding NaOH into deionized water. Then the salt and alkali solutions were simultaneously dropped into a three-necked flask with deionized water (150 ml) at 40 °C under constant stirring. The PH value of the mixture was maintained to be 10–11. Finally, the LDH products were washed with deionized water, collected by filtration, and dried at 60 °C for 48 h.

2.2. Preparation of SrFe12O19-LDH/CS scaffold

The nano-LDH powders were fabricated via chemical precipitation. Mg(NO3)2-6H2O and Al(NO3)3-9H2O (Mg/Al molar ratio of 3.0) were added to the deionized water to get a salt solution. And an alkali solution was prepared by adding NaOH into deionized water. Then the salt and alkali solutions were simultaneously dropped into a three-necked flask with deionized water (150 ml) at 40 °C under constant stirring. The PH value of the mixture was maintained to be 10–11. Finally, the LDH products were washed with deionized water, collected by filtration, and dried at 60 °C for 48 h.

Inspired by the brick-and-mortar structures of nacre in nature, the layers are interconnected by a biopolymer matrix [48,49]. In this experiment, nano-SrFe12O19 and nano-LDH were deposited on the surface of chitosan to prepare a multi-layer structure to enhance its biological strength. And the characteristics of Sr and Mg jointly involved in regulating bone homeostasis were used to treat a clinical osteoporotic bone defect disease model. The root cause of the difficulty in repairing osteoporotic bone defects is the imbalance in bone homeostasis and the synergistic effect of osteogenesis and osteoclast destruction, which is manifested as the enhanced bone resorption of osteoclasts and weakened bone mineralization ability of osteoblasts. To overcome these problems, we first constructed a multifunctional nano-SrFe12O19-LDH/CS scaffold that can inhibit the hyperactive state of osteoclasts, which could reduce the pro-inflammatory factors. And then the fabricated multifunctional layered nano-SrFe12O19-LDH/CS scaffold regulated the mineralization of osteoblasts, restored the normal synergistic effect between osteogenesis and osteoclast activity, and reversed local bone homeostasis imbalance to promote bone ingrowth and regeneration.

2.3. Characterization

The phase structures of the CS, SrFe12O19, LDH powder, and SrFe12O19-LDH/CS scaffolds were characterized via X-ray powder diffraction (XRD, D/MAX-111C, Japan). And fourier transform infrared spectroscopy (FTIR; Frontier, PerkinElmer, USA) at a voltage of 100–230 V in the wavenumber range 4000–500 cm−1 was used to detect the functional groups. The morphologies were investigated using scanning electron microscopy (SEM, JSM-6380LV) with energy-dispersive spectrometry (EDS). A vibrating sample magnetometer (VSM, YP Magnetic Technology Development Co., LTD, Jilin, China) was used to detect the hysteresis loops of SrFe12O19 nanoparticles and SrFe12O19-LDH/CS scaffolds. The compressive strengths of the LDH/CS and SrFe12O19-LDH/CS scaffolds (r = 0.75 cm, h = 1.5 cm) were tested using a microcomputer-controlled electronic universal testing machine (WDW-0.5C, Shanghai Hualong Microelectronics Co. Ltd., China) at a compression speed of 5 mm/min. For in vitro degradation assays, the SrFe12O19-LDH/CS scaffolds were cut into small pieces. 0.4 g SrFe12O19-LDH/CS scaffolds were soaked in a centrifuge tube with 9.0 ml deionized water. At different time points (12 h, 24 h, 48 h, 72 h, 96 h, 120 h, 144 h), 5 ml immersion solution was extract, and the corresponding ion concentrations were detected by an inductively coupled plasma/optical emission spectrometry (ICP; iCAP 7000, Thermo Fisher, USA). In addition, 5 ml fresh
immersion medium was added again to keep the same volume during the whole release process.

2.4. Cell culture, toxicity and adhesion

Bone marrow macrophages (BMM) and MC3T3-E1 were cultured as previously reported [50,51]. Eight-week-old C57BL/6 mice were sacrificed by cervical dislocation. Soak them in 75% alcohol for 20 min. Then use sterile ophthalmic scissors and forceps to separate and remove the muscle and fascia, and take out the tibia, fibula and femur. Finally, we cultured BMMs in medium containing recombinant M-CSF protein (30 ng/ml). They were considered for use when the BMM cell density was approximately 80%. In the osteoclast induction differentiation experiment, we chose the medium containing M-CSF (30 ng/ml) and Rankl (50 ng/ml) to continue to culture macrophages. The extracts were prepared according to the ISO 10993-5. The ratio of mass to extraction medium was 0.2 g/mL, and the immersed samples were kept in a humidified atmosphere with 5% CO2 at 37 °C for 24 h. After 24 h, the above-mentioned extraction solution was taken out and placed in a 4 °C refrigerator for subsequent use, and an equal amount of the above-mentioned volume of culture medium was added to soak the cells. For the cell toxicity test, we chose the cell counting kits-8 (CCK-8; Dojindo, Kumamoto, Japan). The medium was changed to extraction solutions for the LDH/CS and SrFe12O19-LDH/CS scaffolds. MC3T3-E1 cells were seeded at a density of 10^4 in 96-well plates for 1, 2, 3 and 4 days, respectively. After that, the culture environment was changed to the above-mentioned extraction of scaffold (100μl/well). Finally, according to the instructions of CCK-8 reagent, the reagent was added and the incubation was continued for 1 h. Then the samples were tested for absorbance on the machine (OD value was set at 450/630). We placed sterile scaffolds (LDH/CS and SrFe12O19-LDH/CS scaffolds) in a 24-well plate in advance. Three replicates were prepared for each group of samples. The hBMSCs (10^4 per well) were seeded on the surface of the scaffold to examine cell adhesion. Then, the scaffolds were dehydrated in a graded manner. The above samples were freeze-dried again. Finally, the morphology of the hBMSCs on the scaffolds was characterized using SEM (Sirion 200, FEI, Hillsboro, OR, USA).

2.5. ALP and alizarin red

MC3T3-E1 cells were seeded in 24-well plates at a density of 5 × 10^4. After that, we use 1 ml of conditioned medium per well (extraction of the LDH/CS scaffolds and SrFe12O19-LDH/CS scaffolds). Control, LDH/CS, and SrFe12O19-LDH/CS groups were prepared, and the cells were further cultured for 7 and 21 d. After that, the cells were fixed with 4% paraformaldehyde. Then the samples were washed three times with PBS for 10 min each time. Finally, the samples were stained using an ALP kit (Hongqiao, Shanghai, China) and an Alizarin Red staining kit (Sigma-Aldrich, Darmstadt, Germany) according to the reagent manufacturer's instructions.

2.6. TRAP and F-actin staining

Bone marrow macrophages (BMMs) were seeded in a 96-well plate at a density of 10^5. After that, we use 100 μl of conditioned medium containing 30 ng/ml M-CSF and 50 ng/ml RANKL protein (extraction of the LDH/CS scaffolds and SrFe12O19-LDH/CS scaffolds). Control, LDH/CS, and SrFe12O19-LDH/CS groups were prepared. The BMMs were cultured for 7 days, and the medium was changed every 2 days. Afterward, the BMM cells were fixed with 4% paraformaldehyde. Then the samples were washed three times with PBS for 10 min each time. Finally, the cells were stained using a TRAP kit (Sigma-Aldrich) and rhodamine-conjugated phalloidin (Cytoskeleton Inc., Denver, CO, USA). Finally, the TRAP staining was observed under a light microscope. Cells with > 3 nuclei indicate TRAP positivity. The cytoskeleton was visualized using an LSM5 confocal microscope.

2.7. RT-qPCR and WB

MC3T3-E1 cells were seeded in a 6-well plate at a density of 4 × 10^5 for 24 h and grouped into Control, LDH/CS, and SrFe12O19-LDH/CS groups. After that, the extraction solution of the scaffold material was changed every 2 days. The above samples were further cultured for 7 days. Total RNA was extracted using the EZ-press RNA Purification Kit. SYBR Green qPCR Master Mix and ABI 7500 Sequencing Detection System (Applied Biosystems; Thermo Fisher Scientific, Inc.) were used to perform qPCR. The PCR primers were designed to amplify the genes of interest are shown Table 1.

To verify osteoblast differentiation protein expression, MC3T3-E1 cells were seeded in a 6-well plate at a density of 4 × 10^5 for 24 h. After that, the extraction solution of the scaffold material was changed every 2 days. The expression of osteoblast-associated proteins Bmp-2, Runx-2, Coll-1, and P-Smad1/5 was measured. To verify the expression of osteoclast differentiation proteins, BMMs were seeded in a 6-well plate at a density of 10^4 for 24 h. After that, the extraction solution of the scaffold material was changed every 2 days. The expression of osteoclast-associated proteins NFATc1, C-fos, Cath, p-IBKα and p-NFκB proteins was measured. All the above samples were cultured for 7 days. Then 200 μl of radioimmunoprecipitation assay (RIPA) lysis buffer (1 μM phosphatase inhibitor; Sangon Biotech Co., Ltd.) was added and centrifuged at a speed of 12,000 rpm for 15 min. After centrifugation, the pellet was removed, and the protein concentration was detected by the bicinchoninic acid assay (BCA). The samples were subjected to SDS-PAGE. Then, electrophoresis, transfer membrane, and incubate with primary antibody at 37 °C. An Odyssey infrared imaging system was used to detect protein expression.

2.8. Animal model, microCT and histological evaluation

All procedures were approved by the Animal Ethical of the Shanghai Jiao Tong University Affiliated Sixth People's Hospital (approval number: SYXK2011-0128). Twelve female Sprague-Dawley rats, weighing an average of 200–250 g, were used as bilateral critical-size calvarial defect models to assess bone regeneration. The parameters for bilateral skull defects were set to be 5 mm in diameter and 2 mm in thickness. LDH/CS (n = 4) and SrFe12O19-LDH/CS scaffolds (n = 4) were used to fill the defects site, the periosteum was removed, and the scalp of the rats were sutured. The rats were then injected intraperitoneally with fluorescently labeled alizarin red (30 mg/kg, Sigma-Aldrich) and calcine (30 mg/kg, Sigma-Aldrich) at 3, 21 days before euthanasia, respectively [50]. All rats were euthanized after 12 weeks. The operators then removed the bone defect at the top of the skulls and placed them in 4% paraformaldehyde for 7 days. Finally, the bone defects were investigated using a micro-CT system (Skyscan 1076). Bone mineral density (BMD) and new bone volume/tissue volume (BV/TV) ratios were calculated using appropriate analysis software. After that, a part of the sample was fixed with PMMA, cut with a hard tissue microtome, and the fluorescence was observed using confocal microscopy. The distance between alizarin red and calcine indicates the growth of new bone tissue. Another part of the sample was placed in an EDTA decalcification solution and subjected to immunohistochemistry and fluorescence analysis.

Table 1

PCR primers	GAPDH	RUNX-2	COL-1	BMP-2
F5-G: CACCACTGTTGACAGGCG-3	R5: ATGATGCCTGCGGACCCTC-3	F5: TGGGAGAGGTATCAGATGGG-3	R5: GAGACGTGAACAGGCTCCG-3	F5: GAGACGACATTCCGCTCTTT-3
R5: GGAACGGACATTCGGTCCTT-3	F5: TGGGAGAGGTATCAGATGGG-3	R5: GAGACGTGAACAGGCTCCG-3	R5: GAGACGACATTCCGCTCTTT-3	R5: GAGACGACATTCCGCTCTTT-3
2.9. Statistical analysis

The results were presented as the mean ± standard deviation (SD). Comparisons between groups were analyzed using one-way analysis of variance (ANOVA). Statistical analyses were performed using GraphPad Prism 6 software (CA, USA), **P < 0.01 and *P < 0.05.

3. Results

3.1. Structure and morphology of SrFe12O19-LDH/CS scaffold

The phase structure and functional groups present in the SrFe12O19 nanoparticles and SrFe12O19-LDH/CS scaffolds were observed by XRD and FTIR spectroscopy (Fig. 1). CS is a semicrystalline material; therefore, the characteristic peak of pure CS was located at 2θ = 20°. The (003) and (006) planes of LDH represent a double-layered structure (JCPDS No. 14–0191), which depends on the spacing between the adjacent bimetallic hydroxide layers in the LDH lattice. The XRD pattern of SrFe12O19 nanoparticles indicated that the characteristic peaks corresponded well to hexagonal phase (JCPDS 80–1157). The characteristic peaks of LDH and M-type ferrite were still detected in the SrFe12O19-LDH/CS composite scaffold (Fig. 1a), indicating that the layered structure was not destroyed. Clear peaks of the (110) and (113) planes were still present, showing good long-range order in the a and b directions of the layered structure.

Fig. 1b–d showed the FTIR spectra of the CS powders, LDH nanoplates and SrFe12O19-LDH/CS scaffolds. For the CS powders (Fig. 1b), the –OH or –NH2 stretching vibration and amide-I vibration peaks located at 3506 cm⁻¹ and 1661 cm⁻¹, respectively [30,33]. The N–H deformation vibration and wagging vibration peaks located at 1593 cm⁻¹ and 895 cm⁻¹, respectively. The C–N characteristic peaks in the primary and secondary amide groups located at 1423/1379 cm⁻¹ and 1315/1252 cm⁻¹, respectively [30,33]. The C–O stretching vibration and bridge oxygen stretching vibration peaks located at 1061/1030 cm⁻¹ and 1154 cm⁻¹, respectively [30,33]. The peak at 661 cm⁻¹ corresponded to the OCO(δ) vibration due to the residual CH3COOH in the scaffolds [30,33]. For the LDH nanoplates (Fig. 1c), the peak at 3506 cm⁻¹ corresponded to the stretching vibration of –OH group and interlamellar water. The strong peak at 1380 cm⁻¹ and weak peak at 661 cm⁻¹ were ascribed to the intercalated NO3 ions and metal-oxygen vibrations in the LDHs, respectively [52]. The main characteristic peaks of both CS and LDH were detected in the FTIR spectrum of the SrFe12O19-LDH/CS scaffolds (Fig. 1d).

The SrFe12O19-LDH/CS composite scaffolds were prepared from a mixed solution containing CS, LDH powder, and SrFe12O19 nanoparticles via freeze-drying (Fig. 2). The low-resolutional SEM images indicates that the LDH/CS and SrFe12O19-LDH/CS composite scaffolds possessed layered macropores with sizes of 50–100 μm (Fig. 2a and e). The layers in the SrFe12O19-LDH/CS scaffolds were 10.5 ± 0.8 per millimetre. It was found that the plate-like LDH nanoparticles had a thickness of approximately 30 nm, and the pieces were stacked to form flower clusters at a high resolution (Fig. 2b and f). The SrFe12O19 nanoparticles exhibited a flake-like structure with a thickness of approximately 40 nm and a width between 50 and 130 nm (Fig. 2c and d). The above data was confirmed through the Mg, Al, Sr, and Fe distribution images (Fig. 3a–d). The EDS patterns indicate that the SrFe12O19-LDH/CS scaffold was composed of C, O, Mg, Al, Sr, and Fe. The C element was mainly ascribed to CS, while the O element originated from LDH, CS, and SrFe12O19 (Fig. 3e and f).

3.2. Magnetic property, mechanical property and ion-release performance of SrFe12O19-LDH/CS scaffold

Magnetic fields play a key role in promoting cell proliferation and osteogenic differentiation [28,29]. In order to enhance the

![Fig. 1. (a) XRD pattern of CS powders, SrFe12O19 nanoparticles, LDH/CS scaffolds and SrFe12O19-LDH/CS scaffolds. FTIR spectra of different samples: (b) CS powders, (c) LDH nanoplates and (d) SrFe12O19-LDH/CS scaffolds.](image-url)
pro-osteogenesis property, M-type SrFe$_{12}$O$_{19}$ hexagonal ferrites with high magnetocrystalline anisotropy were added in the bone scaffolds. The magnetic properties of SrFe$_{12}$O$_{19}$ nanoparticles and SrFe$_{12}$O$_{19}$-LDH/CS composite scaffolds were evaluated by a VSM (Fig. 4a and b). According to hysteresis loop, the coercivity values of SrFe$_{12}$O$_{19}$ nanoplates and SrFe$_{12}$O$_{19}$-LDH/CS scaffolds were 5756 Oe and 4800 Oe, respectively. The incorporation of SrFe$_{12}$O$_{19}$ nanoparticles endowed the SrFe$_{12}$O$_{19}$-LDH/CS scaffolds with the saturation magnetization of 3.82 emu/g (Fig. 4a).

The curves in Fig. 4d and e indicated the release characteristics of Mg$^{2+}$ and Sr$^{2+}$ ions from the SrFe$_{12}$O$_{19}$-LDH/CS composite scaffolds. The release rate of the two ions increased rapidly in the first 12 h, gradually decreased, then finally reached an equilibrium state. After soaking for 100 h, the concentration of the ions in the solution remained unchanged. The concentration of Mg$^{2+}$ and Sr$^{2+}$ ions after 120 h were determined to be 6.0 μM and 2.6 μM, respectively. Although the Mg$^{2+}$, Al$^{3+}$, Sr$^{2+}$ and Fe$^{3+}$ metal cations existed in the SrFe$_{12}$O$_{19}$-LDH/CS scaffolds, the concentrations of Al$^{3+}$ and Fe$^{3+}$ ions were lower than the detection limit of ICP. Under physiological conditions with pH = 7.4, the excess Al$^{3+}$ and Fe$^{3+}$ ions may react with OH$^{-}$ ions to form Al(OH)$_3$ and Fe(OH)$_3$. The solubility product constants (K_{sp}) of Al(OH)$_3$ and Fe(OH)$_3$ are 1.3×10^{-33} and 4.0×10^{-36} at a room temperature, respectively. The saturated concentrations of Al$^{3+}$ and Fe$^{3+}$ ions were calculated as 8.20×10^{-15} M and 2.52×10^{-18} M, respectively. Such the low Al$^{3+}$ and Fe$^{3+}$ concentrations did not cause any toxicity to human cells and organs [53, 54].

The macro pores in bone scaffolds played an important role in osteogenesis, osteoconductive and osteoinductive [30]. In order to avoid destroying the layered macro pores, the nacre-mimetic porous scaffolds should have appropriate mechanical strengths. The compressive strengths of the LDH/CS and SrFe$_{12}$O$_{19}$-LDH/CS scaffolds were tested under the same conditions (Fig. 4c). As the compression displacement increased, the compression stress of the LDH/CS and SrFe$_{12}$O$_{19}$-LDH/CS scaffolds gradually increased. The ordered layer structure could be damaged at the first stage with the increase of the compression stress. Fig. 4c indicated that the compressive strengths to destroy the layered macro pores were approximately 0.16–0.18 MPa. Because both the LDH/CS and SrFe$_{12}$O$_{19}$-LDH/CS scaffolds were organic-inorganic nano-hybrid materials, their failure points were not reached even under much high compression stress.

3.3. Cytotoxicity and osteoinductivity of the SrFe$_{12}$O$_{19}$-LDH/CS scaffold in vitro

The above-mentioned extraction of scaffold (100μl/well) was cultured in MC-3T3-E1 cells (104 in 96-well) for 1, 2, 3 and 4 days, and the cytotoxicity and proliferation were detected after using CCK-8. CCK-8 experiment showed that the SrFe$_{12}$O$_{19}$-LDH/CS scaffold was not toxic to cells as cell proliferation was unaffected (Fig. 5a). In vitro, in order to

Fig. 2. (a, b) SEM images of the LDH/CS scaffold. (c, d) SEM images of SrFe$_{12}$O$_{19}$ nanoparticles. (e, f) SEM images of SrFe$_{12}$O$_{19}$-LDH/CS scaffolds.

Fig. 3. (a–d) Element distribution images of Mg, Al, Sr, and Fe. (e–f) EDS spectra of (e) LDH/CS scaffolds. (f) SrFe$_{12}$O$_{19}$-LDH/CS scaffolds.
further verify the bone-inducing and mineralizing abilities of each group of scaffolds. ALP and ARs staining were performed. Fig. 5b shows the ALP staining of the control, the LDH/CS and the SrFe$_{12}$O$_{19}$-LDH/CS for 7 d. Compared to the other groups, the cells in the SrFe$_{12}$O$_{19}$-LDH/CS scaffolds showed the highest activity (Fig. 5d). The LDH/CS scaffold group had higher activity than the control group but was less than that of the SrFe$_{12}$O$_{19}$-LDH/CS scaffold group. Similar results were observed with Alizarin red staining for 21 d (Fig. 5c). It indicates the late mineralization of osteoblasts. The LDH/CS and SrFe$_{12}$O$_{19}$-LDH/CS scaffolds showed higher Alizarin activity than the control, with the SrFe$_{12}$O$_{19}$-LDH/CS scaffolds showing the highest activity (Fig. 5e). Scanning electron microscope observation of hBMSCs morphology on the LDH/CS and SrFe$_{12}$O$_{19}$-LDH/CS scaffolds (Fig. 5f). The hBMSCs on the LDH/CS scaffold had protruded filamentous pseudopodia and are closely bound to the surface of the scaffold. The morphology of the hBMSCs on the scaffold was well-distributed, similar to that on the LDH/CS scaffold. These results showed that SrFe$_{12}$O$_{19}$-LDH/CS scaffolds had no significant effect on cell adhesion.

The above phenomenon observed that SrFe$_{12}$O$_{19}$-LDH/CS scaffolds can promote osteoblast differentiation. To this end, we further explore the molecular mechanism of the above phenomenon. By RT-PCR and WB, the osteoblast-specific genes (Fig. 5g-i) and proteins (Fig. 5j-n) were detected, respectively. Compared to the control, the genes expression (Col1, Bmp-2, and Runx2) in the LDH/CS and SrFe$_{12}$O$_{19}$-LDH/CS were higher. Similarly, the osteoblast-related proteins (Bmp-2, Runx2, Col-1, and P-Smad1/5) were higher in the LDH/CS and SrFe$_{12}$O$_{19}$-LDH/CS. Col1 is an important part of bone tissue formation, which promotes calcium and phosphorus deposition and accelerates the calcification of new bone tissue. Runt-related transcription factor 2 (Runx2) is a specific transcription factor that regulates the differentiation of mesenchymal stem cells into osteoblasts. Bmp-2 and P-Smad1/5 are target proteins in the classical pathway of osteoblast differentiation. We speculated that it was possible that the Mg$^{2+}$ and Sr$^{2+}$ ions from the SrFe$_{12}$O$_{19}$-LDH/CS scaffolds promoted osteoblast differentiation by activating the P-Smad signaling pathway [55-58]. In terms of osteoinductive-related genes and proteins, the osteoinductive ability presents: the control group < the LDH/CS group < the SrFe$_{12}$O$_{19}$-LDH/CS group. At the same time, the SrFe$_{12}$O$_{19}$-LDH/CS scaffold had a more obvious effect on promoting osteoblast differentiation, which may be due to the synergistic effect of Mg$^{2+}$ and Sr$^{2+}$.

3.4. The effect of SrFe$_{12}$O$_{19}$-LDH/CS scaffolds on osteoclast differentiation in vitro

Considering the host as a whole organism, the implantation of bioscaffolds may disrupt bone homeostasis. The maintenance of bone homeostasis requires both the mineralization of osteoblasts and bone resorption of osteoclasts. Therefore, our group further investigated the effect of the LDH/CS and SrFe$_{12}$O$_{19}$-LDH/CS scaffolds on osteoclast differentiation. Tartrate-resistant acid phosphatase (TRAP) is a marker protease during osteoclast differentiation and is evenly distributed in osteoclasts. We cultured BMMs (96-well, 104/per) for 7 d using the above-mentioned extract. Then use the TRAP kit to detect. TRAP-positive cells are marked by three fused nuclei. TRAP staining (Fig. 5a-c) revealed that the TRAP-positive and the area in the LDH/CS and SrFe$_{12}$O$_{19}$-LDH/CS groups were notably reduced. At the same time, the osteoclast cytoskeleton F-actin has also been verified, which is an important marker of osteoclast fusion. Similar results were observed for F-actin staining (Fig. 5d and e). The inhibitory effect of SrFe$_{12}$O$_{19}$-LDH/CS on osteoclasts was significantly stronger than that of LDH/CS. This indicated that the Sr$^{2+}$ released from the SrFe$_{12}$O$_{19}$-LDH/CS scaffolds would further inhibit the formation of osteoclasts. Therefore, our group further detected the expression of osteoclast-specific proteins (C-FOS, NFATc1, Cath-K, p-NP-xB and p-IκBα) via western blotting (Fig. 6f-k). C-FOS protein, NFATc1 protein and NF-xB protein jointly participate in the classical pathway regulating osteoclast differentiation. C-FOS, NFATc1 and Cath-K protein expression was suppressed in the LDH/CS scaffolds.
and SrFe$_{12}$O$_{19}$-LDH/CS groups. C-FOS and NFATc1 are critical factors in the early differentiation of osteoclasts. The study found that the \(p\)-IKB\(\alpha \) protein and the \(p\)-NF\(\kappa \)B protein were significantly inhibited in the LDH/CS and SrFe$_{12}$O$_{19}$-LDH/CS groups (Fig. 6f). \(p\)-IKB\(\alpha \) is a key protein in the NF-\(\kappa \)B signaling pathway. The above results suggest that Mg$^{2+}$ and Sr$^{2+}$ released in the LDH/CS and SrFe$_{12}$O$_{19}$-LDH/CS groups inhibited osteoclast differentiation by inhibiting the phosphorylation of the IKB\(\alpha \) protein. Experiments also showed that the inhibitory effect of SrFe$_{12}$O$_{19}$-LDH/CS was significantly stronger than that of LDH/CS (Fig. 6g–k). In the experiment of inhibiting osteoclast differentiation, it was found that its effect was presented: control group < LDH/CS group < SrFe$_{12}$O$_{19}$-LDH/CS group. Therefore, Mg$^{2+}$ and Sr$^{2+}$ may have a synergistic effect.

3.5. Osteogenic activities of the SrFe$_{12}$O$_{19}$-LDH/CS scaffolds in vivo

Bilateral critical-size calvarial defect models were used to evaluate the osteogenic activity of the control, LDH/CS, and SrFe$_{12}$O$_{19}$-LDH/CS in vivo (Fig. 7). The diameter of the skull transfora is 5 mm and the thickness
is 2 mm. The red dotted circle indicates the size of the trans-hole, which matches the scaffold material. All rats were housed in a uniform environment setting: temperature: 20–26 °C, relative humidity: 70%, light intensity ≥200 lux, and free access to water and food. All rats were kept in this environment for 3 months. After three months, they were euthanized. After that, the part of the skull of interest at the top of the soft tissue separation was removed and placed in 4% paraformaldehyde, waiting for subsequent experiments.

Fig. 7a shows a μCT image. New bone tissue formed in all three groups. The amount of new bone in the LDH/CS and SrFe12O19-LDH/CS groups was higher than that in the control. Moreover, the amount of new bone tissue in the SrFe12O19-LDH/CS group was higher than that in the LDH/CS group. Once again, it was demonstrated that Mg²⁺ and Sr²⁺ could accelerate bone formation in vivo and that they may have synergistic effects. Compared to the control (9.21 ± 5.23%), the BV/TV values in the LDH/CS (35.31 ± 3.15%) and SrFe12O19-LDH/CS (59.21 ± 4.01%) groups were significantly greater (Fig. 7b). Additionally, the LDH/CS (0.35 ± 0.09 g/cm³) and SrFe12O19-LDH/CS (0.54 ± 0.06 g/cm³) groups had higher BMD values than the control (0.16 ± 0.06 g/cm³) group (Fig. 7c). The growth rates of the new bones were also analyzed using sequence fluorescence Analysis (Fig. 7d). The distance between these two fluorescent lines represents the new bone tissue that formed during this time. After data analysis (Fig. 7e), the new bone growth rate in the LDH/CS and SrFe12O19-LDH/CS groups reached 0.36 ± 0.07 μm/d and 0.58 ± 0.12 μm/d, respectively, which were higher than that of the control group (0.14 ± 0.06 μm/d). HE staining (Fig. 7f) showed results similar to those of the μCT experiment. In HE staining, a large number of collagen fibers can be found aggregated between the lamellar scaffolds.

The above demonstrated that the SrFe12O19-LDH/CS scaffolds could promote bone mineralization. However, the bone homeostasis depends on the OPG/RANKL ratio. Thus, we investigated whether SrFe12O19-LDH/CS scaffolds affected the expression of OPG/RANKL by immunofluorescence. Fig. 8a and b shows that the fluorescence of OPG protein and RANKL protein. The green picture represents the OPG protein content: SrFe12O19-LDH/CS group > LDH/CS group > CS group; while the red picture represents the RANKL protein content: SrFe12O19-LDH/CS group < LDH/CS group < CS group. The trend is just opposite to the OPG protein expression. Therefore, we speculate that the trend of OPG/RANKL will be SrFe12O19-LDH/CS group > LDH/CS group > CS group, similar to the trend in the expression of neovascularization indicators (Fig. 8c). Finally, the samples for the expression of osteoblast differentiation-related proteins (Runx-2 and COL-1) and inflammatory factors (IL-1β and TNF-α) (Fig. 8d–g) were tested. It showed that the protein expression of RUNX-2 and COL-1 (Fig. 8d and e) in the LDH/CS and SrFe12O19-LDH/CS groups increased while the expression of inflammation-related proteins IL-1β and TNF-α (Fig. 8f and g) decreased.
4. Discussion

The repair of different bone defects has always been an important yet difficult problem in orthopedics, especially in patients with bone homeostasis imbalance [7]. A preferred criteria for clinical treatment of bone defects caused by the above factors is autologous bone transplantation, but it is difficult to meet these needs owing to limited bone sources for transplantation [3,8]. However, allogeneic bone transplantation has shortcomings, such as slow healing, immune rejection, susceptibility to infection, and an increased risk of spreading diseases. In recent years, the addition of different metal elements into biomaterials and the formation of scaffolds into morphological structures conducive to cell growth have been rapidly developed [16]. However, further improvement of the osteogenic ability of biomaterials, the expression of effective biomolecules, and the clinical safety of these materials is a problem to be solved.

Inspired by the layered features of nacre, several fabrication approaches such as shear-flow-induced alignment [59], fluidics-enabled assembling [60] and freeze-casting [61] have been developed to construct layered nanohybrid materials. In this work, nacre-mimetic
SrFe$_{12}$O$_{19}$-LDH/CS layered scaffolds were fabricated according to the following steps: (i) the preparation of the composite slurry by the addition of SrFe$_{12}$O$_{19}$ nanoplates and LDH nanoplates in a CS solution, and (ii) the formation of nacre-mimetic SrFe$_{12}$O$_{19}$-LDH/CS layered scaffolds via the freeze-drying treatment of the composite slurry. During the freezing procedure, the as-formed ice crystals expelled the SrFe$_{12}$O$_{19}$ and LDH nanoparticles, and thus produced lamellar structure parallel to the movement of freezing front [61]. The freeze-drying treatment caused the sublimation of the layered ice crystals, leading to the formation of layered macrocopes (Fig. 2e). Because the hydroxyl groups and crystal water in LDHs could be combined with CS via hydrogen bonding (Fig. 2b), the LDH nanoplates were embed in the CS matrix through a self-assembly process. The LDH/CS and SrFe$_{12}$O$_{19}$-LDH/CS scaffolds were arranged in a layered structure (Fig. 2), indicating that the SrFe$_{12}$O$_{19}$ did not affect the layered structure. The pure CS porous scaffolds showed the ductile characteristic, so their compressive strength was not great enough to meet the clinical demand [30]. Interestingly, the SrFe$_{12}$O$_{19}$-LDH/CS layered scaffolds displayed a “brick and mortar” structure with the SrFe$_{12}$O$_{19}$ nanoparticles and LDH nanosheets as inorganic fillers and CS as organic matrices. The organic-inorganic nanohybrid architecture endowed the nacre-mimetic scaffolds with appropriate mechanical property. The compressive strengths to destroy the layered macrocopes of the LDH/CS and SrFe$_{12}$O$_{19}$-LDH/CS layered scaffolds arrived at 0.16–0.18 MPa. Our previous work indicated that the La-doped LDH/CS porous scaffolds had the similar compressive strength of approximately 0.21 MPa [20]. Fortunately, the layered macrocopes of the LDH/CS and SrFe$_{12}$O$_{19}$-LDH/CS layered scaffolds provided enough mechanical strength for the invasion and migration of macrophages and osteoblasts. Even after 12 weeks of post-operation, the undegraded scaffolds still possessed a layered structure (Fig. 7f).

In this article, scholars also mention that biomaterials entering the body need to recruit a large number of macrophages, centrocyte, and lymphocytes to aggregate, which will trigger a local immune response and inhibit the differentiation and mineralization of osteoblasts [62,63]. One of the goals of our group was to develop layered SrFe$_{12}$O$_{19}$-LDH/CS nanohybrid scaffolds to prevent the aggregation of macrophages and avoid triggering local immune response through the release of inflammatory factors. Inflammatory factors promote the differentiation of

![Fig. 8. (a, b) DAPI is shown in blue; OPG is shown in green; RANKL is shown in red; (c) CD31 is shown in pink and represents new blood vessels. (d, e) Osteogenesis-related proteins (RUNX-2 and COL1) immunohistochemistry; (f, g) IL-1β and TNF-α immunohistochemistry](image-url)
The ion release profile of the SrFe$_{12}$O$_{19}$-LDH/CS nanohybrid scaffolds showed that the Sr$^{2+}$ ion concentration reached approximately 2.6 mM and the Mg$^{2+}$ ion concentration reached 5.8 mM after 120 h. The study found that Mg$^{2+}$ and Sr$^{2+}$ can synergistically inhibit osteoclast differentiation. Animal experiments showed that the OPG/RANKL protein ratio is a crucial factor in regulating osteoclast differentiation. Immunohistochemical evaluation of the bone tissue also showed the inhibition of inflammatory factors.

Another goal of our group in developing layered SrFe$_{12}$O$_{19}$-LDH/CS nanohybrid scaffolds was to accelerate osteoblast differentiation and mineralization to induce endochondral ossification. As mentioned in our background section, static magnetic field (SMF) was shown to be a new physical stimulation strategy to induce cell proliferation and osteogenic differentiation. Hiroko Kotani et al. demonstrated intragranular and ectopic bone formation upon SMF stimulation. Interestingly, the direction in which the bone is formed is parallel to the magnetic field.

In addition, the breakthrough point of our research group is the osteoinductive effect of Sr ions on osteoblasts. Osteogenesis is divided into main processes: endochondral ossification and intraperitoneal osteosynthesis. Collagen fibers were pale pink in tissue sections, and elastic fibers were bright pink. These results show the formation of the extracellular matrix in the layered SrFe$_{12}$O$_{19}$-LDH/CS nanohybrid scaffolds. Collagen fibers are an important component of the extracellular matrix, while the cartilage is composed of many collagen fibers. HE staining revealed that the collagen in the scaffold material might be an important extracellular matrix component in later endochondral ossification. Therefore, the designed layered space structure in the SrFe$_{12}$O$_{19}$-LDH/CS nanohybrid scaffold (Fig. 2a, e) was conducive to the growth of collagen fibers and provided a more suitable growth environment for bone. In addition, the layered SrFe$_{12}$O$_{19}$-LDH/CS nanohybrid scaffold contained LDH and Sr$^{2+}$ ions. Zhai and Wu et al. reported that Mg$^{2+}$ and Sr$^{2+}$ ions in LDH could regulate osteoblast differentiation. The results showed that the Sr$^{2+}$ ion concentration reached approximately 2.6 mM and the Mg$^{2+}$ ion concentration reached 5.8 mM after 120 h (Fig. 4d and e). The study found that Mg$^{2+}$ and Sr$^{2+}$ can synergistically inhibit osteoclast differentiation. Animal experiments showed that the OPG/RANKL ratio (Fig. 8a and b) could also be regulated by the SrFe$_{12}$O$_{19}$-LDH/CS nanohybrid scaffolds. The local OPG/RANKL protein ratio is a crucial factor in regulating osteoclast differentiation. Immunohistochemical evaluation of the bone tissue also showed the inhibition of inflammatory factors (Fig. 8f and g).

The authors declare that they have no known competing interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This research was supported by The National Key Research and Development Program of China (No. 2018YFC1106300), National Natural Science Foundation of China (No. 82002270).
[48] H. Bai, F. Walsh, B. Gludovatz, B. Delattre, C. Huang, Y. Chen, A.P. Tomsia, R.O. Ritchie, Bioinspired hydroxyapatite/poly(methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method, Adv. Mater. 28 (1) (2016) 50–56.

[49] R.L. Yang, Y.J. Zhu, F.F. Chen, D.D. Qin, Z.C. Xiong, Bioinspired macroscopic ribbon fibers with a nacre-mimetic architecture based on highly ordered alignment of ultralong hydroxyapatite nanowires, ACS Nano 12 (12) (2018) 12284–12295.

[50] Y.W. Ge, X.L. Liu, D.G. Yu, Z.A. Zhu, Q.F. Ke, Y.Q. Mao, Y.P. Guo, J.W. Zhang, Graphene-modified GeP3 nanorods effectively treat breast cancer-induced bone metastases and regulate macrophage polarization to improve osteo-inductive ability, J. Nanobiotechnol. 19 (1) (2021) 11.

[51] Y.W. Ge, J.W. Lu, Z.Y. Sun, Z.Q. Liu, J. Zhou, Q.F. Ke, Y.Q. Mao, Y.P. Guo, Z.A. Zhu, Uroic acid loaded-mesoporous bioglass/chitosan porous scaffolds as drug delivery system for bone regeneration, Nanomedicine 18 (2019) 336–346.

[52] L.Z.Y.L.S.R.L.X.Z.F. Zhang, Intercalation of perfluorobutane sulfonate into layered double hydroxides Appl, Clay Sci. 48 (2010) 5.

[53] J.M. Coulson, B.W. Hughes, Dose-response relationships in aluminium toxicity in humans, Clin. Toxicol. 60 (4) (2022) 415–428.

[54] J. Zhang, Y. Li, C. Liu, J. Sun, Y. Zhao, Effects of Fe3+ and Fe2+ on proliferation, differentiation and mineralization function of primary osteoblasts in vitro, Chin. J. Inorg. Chem. 25 (2009) 6.

[55] Y. Kong, X. Hu, Y. Zhong, K. Xu, B. Wu, J. Zheng, Magnesium-enriched microenvironment promotes odontogenic differentiation in human dental pulp stem cells by activating ERK/BMP2/Smads signaling, Stem Cell Res. Ther. 10 (1) (2019) 37.

[56] S. Kokabu, J. Nojima, K. Kanomata, S. Ohte, T. Yoda, T. Katagiri, Protein phosphatase magnesium-dependent 1A-mediated inhibition of BMP signaling is independent of Smad dephosphorylation, J. Bone Miner. Res. 25 (3) (2010) 653–660.

[57] W. Zhang, Y. Tian, H. He, R. Chen, Y. Ma, H. Guo, Y. Yuan, C. Liu, Strontium attenuates rhBMP-2-induced osteogenic differentiation via formation of Sr-rhBMP-2 complex and suppression of Smad-dependent signaling pathway, Acta Biomater. 33 (2016) 290–300.

[58] S.S. Singh, A. Roy, B. Lee, P.N. Kumta, Study of hMSC proliferation and differentiation on Mg and Mg-Sr containing biphasic beta-tricalcium phosphate and amorphous calcium phosphate ceramics, Mater Sci Eng C Mater Biol Appl 64 (2016) 219–228.

[59] C. Zhao, P. Zhang, J. Zhou, S. Qi, Y. Yamauchi, R. Shi, R. Fang, Y. Ishida, S. Wang, A.P. Tomsia, M. Liu, L. Jiang, Layered nanocomposites by shear-flow-induced alignment of nanosheets, Nature 580 (7802) (2020) 210–215.

[60] G. Xin, W. Zhu, Y. Deng, J. Cheng, L.T. Zhang, A.J. Chung, S. De, J. Linan, Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres, Nat. Nanotechnol. 14 (2) (2019) 168–175.

[61] S. Deville, E. Saiz, R.K. Nalla, A.P. Tomsia, Freezing as a path to build complex composites, Science 311 (5760) (2006) 515–518.

[62] J. Lee, H. Byun, S.K. Madhurakkat Perikamana, S. Lee, H. Shin, Current advances in immunomodulatory biomaterials for bone regeneration, Adv Healthc Mater 8 (4) (2019), e1801106.

[63] X. Liu, M. Chen, J. Luo, H. Zhao, X. Zhou, Q. Gu, H. Yang, X. Zhu, W. Cui, Q. Shi, Immunopolarization-regulated 3D printed-electrospun fibrous scaffolds for bone regeneration, Biomaterials 276 (2021), 121037.

[64] D. Yang, J. Xiao, B. Wang, L. Li, X. Kong, J. Liao, The immune reaction and degradation fate of scaffold in cartilage/bone tissue engineering, Mater Sci Eng C Mater Biol Appl 104 (2019), 109927.

[65] Y. Sheng, J. Yang, X. Zhao, H. Liu, S. Cui, L. Chen, R. Zeng, X. Wang, C.H. Huang, W. Li, Development and in vitro biodegradation of biomimetric zwitterionic phosphorylcholine chitosan coating on Zn1Mg alloy, ACS Appl. Mater. Interfaces 12 (49) (2020) 54445–54458.

[66] M.S. Cortizo, M.S. Molinuevo, A.M. Cortizo, Biocompatibility and biodegradation of polyester and polyfumarate based-scaffolds for bone tissue engineering, J Tissue Eng Regen Med 2 (1) (2008) 33–42.