A 6.3-ppm/°C, 100-nA Current Reference With Active Trimming in 28-nm Bulk CMOS Technology

ANDREA BALLO, (Member, IEEE), ALFIO DARIO GRASSO, (Senior Member, IEEE), AND MARCO PRIVITERA, (Member, IEEE)

Dipartimento di Ingegneria Elettrica Elettronica e Informatica, University of Catania, 95125 Catania, Italy

Corresponding author: Alfio Dario Grasso (agrasso@dieei.unict.it)

This work was supported by the Brain28nm Project (Prot.20177MEZ7T)-Italian Minister of University and Research, and in part by the Piano di incentivi per la ricerca di Ateneo 2020/2022 (Pia.ce.ri) Linea 2-D through University of Catania.

ABSTRACT This paper introduces a current reference based on ΔVGS generation principle and adopts integrated poly-p+ resistors and a nW-power OTA to reduce the line sensitivity. Implemented in a 28-nm standard CMOS technology, the circuit provides a nominal current equal to 100nA and operates down to 0.6 V with a line sensitivity equal to 1.2 %/V in the range [0.8-1.8] V and a temperature coefficient equal to 6.3 ppm/°C in the range [10-90]°C. Comparison with the state-of-the-art confirms the validity of the proposed solution and its suitability to be exploited in ultra-low-power and area-constrained applications.

INDEX TERMS Current reference, low voltage, low power, area-efficient, Internet of Things, sensor nodes, implanted biomedical devices.

NOMENCLATURE

\(q \) = 1.602\(\times \)10\(^{-19} \) C, elementary charge of electrons.

\(k_B \) = 1.38\(\times \)10\(^{-23} \) J/K, Boltzman constant.

\(I_D \) = drain current.

\(\delta_i \) = \(W_i/L_i \) aspect ratio of the \(i \)-th transistor.

\(\mu \) = mobility of carriers in the channel.

\(V_{TH} \) = threshold voltage.

\(K_T \) = temperature coefficient for threshold voltage.

\(b_R \) = 1\(^{st} \)-order temperature coefficient of resistors.

\(c_R \) = 2\(^{nd} \)-order temperature coefficient of resistors.

\(\beta_R \) = \(b_R/R \) relative temperature coefficient of resistors.

\(V_T \) = \(k_B T/q \), thermal voltage.

\(T_0 \) = room temperature, \(T = 300 \) K.

\(\varepsilon_{OX} \) = electrical permittivity of the oxide, SiO\(_2\).

\(t_{OX} \) = thickness of the oxide.

\(C_{OX} \) = \(\varepsilon_{OX}/t_{OX} \), gate-oxide specific capacitance.

\(N_{CH} \) = channel doping concentration.

\(n_i \) = intrinsic carrier concentration.

\(N_C \) = density of state in the conduction band at \(T = 300 \) K.

\(N_V \) = density of state in the valence band at \(T = 300 \) K.

\(E_g \) = energy band-gap of silicon.

\(n \) = 1 + \(C_d/C_{OX} \) sub-threshold slope factor.

I. INTRODUCTION

The last decade technological improvements in the fabrication of nanometer-scale integrated active devices is doubtless the key factor that has given birth to the paradigm of the Internet-of-Things (IoT). The reduction of cost per transistors has paved the way, for sub-mm\(^2\) electronic devices, to their pervasive use in smartphones, cars, houses, industrial tools and, more recently, implantable medical devices (IMDs) [1], [2], [3].

These lasts, more specifically than the others, are dominated by low invasiveness as main feature. Since most of the area of an electronic device is occupied by its battery, the always growing demand of battery-less and energy-autonomous IoT nodes has led to the concept of Energy Harvesting for IMDs [3], [4]. This concept is intended as the ability of scavenge energy from the external environment (i.e., light, heat and vibrations) and/or from externally coupled energy sources as electromagnetic fields or acoustic ultrasonic pressure waves [3]. In addition, being the harvested...
energy limited in terms of power density and being the maximum overall power budget lower than few mW, the ultra-low power (ULP) consumption (i.e., μW or better, nW-power level [5], [6], [7], [8]) is the second key-factor that enables to disseminate complex electronic systems in human bodies.

The ability to collect data and measurements of vital signs with long-term monitoring wireless sensors networks (WSNs) in implanted or wearable devices requires high accuracy in both analog and digital circuits against variations of temperature and supply voltages [9], [10]. Current references (CRs) ([11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34]) belong to these high-precision analog circuits and are mainly adopted for digital-to-analog converters (DACs) ([35], [36]), biasing block for amplifiers and filters ([40], [41], [42], [43], [44]), current-mode analog-to-digital converters (ADCs) ([45], [46]) and, more recently, they have been adopted to control the output voltage of integrated DC/DC converters (i.e., charge-pumps [47]) or as auxiliary circuits in communication sub-systems (i.e., BPSK demodulators [48], [49]).

Similarly to the review in [34], it is possible to classify the literature on the generation of constant-with-temperature (CWT) currents into four categories:

1) β-multipliers: starting from the results of the Widlar current generator reported in [50], it is possible to divide a proportional-to-absolute-temperature (PTAT)-voltage with a poly resistance with the same temperature coefficient (TC), obtaining thus a CWT current as in [11], [16], [20], [21], [22], [23], [25], [26], [28], and [30].

2) ZTC: since all the transistors show a zero-temperature-coefficient (ZTC) gate-to-source voltage bias point, these temperature insensitive currents are generated through a $V_{GS}(T)$. Indeed, when working in strong-inversion transistors a slightly PTAT bias is required to obtain a ZTC-working transistor, while when in weak-inversion, a complementary-to-absolute-temperature (CTAT) bias point is needed for the same purpose [13], [17], [18], [51]. Also 2T-based current reference belong to this methods, since they generate CTAT (or PTAT) bias voltage by exploiting the 2T-voltage reference structure [29], [33].

3) PTAT+CTAT: they exploit the weighted sum between PTAT and CTAT current generators. The principle of the PTAT generation relies on $\Delta V_{BE}/R$ (using BJTs); on the other hand, the CTAT temperature dependency is obtained by using the ratio between ΔV_{GS} (or V_{BE} of a BJT) of NMOS transistors and a resistor [12], [14], [15], [19], [24], [27], [31], [32].

This work aims to present a novel current reference implemented in the 28-nm Bulk CMOS technology provided by TSMC. It is based on ΔV_{GS} generation principle and adopts integrated poly-p+ resistors and a nW-power, self-biased, single-stage OTA to reduce the line sensitivity of the circuit that provides a reference current, $I_{REF} = 100$ nA. Moreover, it is well-suitable to work down-to 0.6-V supply voltage, revealing very-low TC comparable to that of a Bandgap Current reference (BGCR), while the overall power consumption can be reduced down to 180 nW, when $V_{DD} = 0.6$ V and 230 nW with $V_{DD} = 0.8$ V. Furthermore, an active trimming network is added to reduce the PVT variation and compensate for the TC in all the five simulated process corners.

The current reference is designed for an implanted biomedical device, where the average operating temperature is [20-50]$^\circ$C. However, it is capable of working with better performance as compared to the state-of-the-art in the range [0-100]$^\circ$C. The paper is organized as follows. Section II illustrates the working principle of the proposed current reference. Section III explains the proposed current reference with the active trimming network, while Section IV reports the layout and the post-layout simulations of the circuit. Section V presents the comparison of the proposed CR with the previous arts and, finally, in Section VI concluding remarks and comments are reported.

II. WORKING PRINCIPLE

A. BEHAVIOUR OF V_{TH} IN SUB-THRESHOLD SHORT-CHANNEL DEVICES

The working principle of the proposed CMOS CR and its temperature stability is explained starting from two main considerations on the variations of the threshold voltage of transistors and with the support of Fig. 1, where the threshold voltage variation of thin-oxide n-type transistors operating in sub-threshold region is reported. The first variation relies on V_{TH} vs. temperature, when transistors work in sub-threshold region. Indeed, as explained in [13] and [52], the behaviour of V_{TH} as function of the temperature is identified and...
approximated with the following linear equation

\[V_{TH}(T) = V_{TH0} - K_T \Delta T \]

(1)

where \(V_{TH0} \) is the threshold voltage at room temperature and \(K_T \) is positive when working in sub-threshold region, as reported in Fig. 1. Furthermore, as it can be observed in Fig. 1, while varying the channel lengths of n-type SVT09 transistors, the decreasing slopes of the curves remain almost equal each other and about \(K_T \approx 446 \, \mu V/\degree C \). In addition, after having defined the sub-threshold slope factor \(n = 1 + C_d/C_{OX} \), it is possible to give out the equation for the temperature coefficient of \(V_{TH} \) as [53]

\[K_T = -(2n - 1) \frac{k_B}{T} \left[\ln \left(\frac{N_e N_N}{N_{CH}} \right) + \frac{3}{2} \right] + \frac{n - 1}{q} \frac{dE_g}{dT} \]

(2)

From Eq. (2), it is observed that \(K_T \) just depends on the process and does not present any significant process variations.

On the other hand, the second variation of the threshold voltage of the transistors is experimentally observed by simulation results in Fig. 1 and Fig. 2; indeed, while increasing the channel length of short-channel NMOS devices, \(L_N \), the value of \(V_{THN} \) increases too. In conclusion, it is possible to exploit this last dependency of \(V_{TH} \) on the channel length without using devices with different threshold voltages as in Fig. 2 and as adopted by [18], [20], [22], [29], [32], [33]. This last design option leads, as main counterpart, to a more complex layout, to an increase in the number of photo-lithographic masks required for the realization and an increase to the overall cost of the chip.

![FIGURE 2. Threshold voltages of different n-type thin-oxide transistors vs. normalized channel lengths, \(L_N/L_{min} \), where \(L_{min} = 30 \, \text{nm} \) and \(W_N = 10 \, \mu \text{m} \). The figure refers to a 28-nm Bulk CMOS technology provided by TSMC and adopted in this work.](image)

B. SIMPLIFIED CIRCUIT CONFIGURATION AND ANALYSIS

The simplified circuit for the proposed CR is shown in Fig. 3. It is a 4-transistors (4T), \(\Delta V_{GS} \)-based, sub-threshold and self-biased current reference, as the one proposed by [22] with the main difference, for the simplified schematic, of the use of the same type of transistors for \(M_1 \) and \(M_2 \).

The circuit is essentially made-up by a PMOS current mirror, with thick-oxide (SVT18) transistors, \(M_3 \) and \(M_4 \). The analysis of the CR is based on the Kirchhoff’s Voltage Law (KVL) inside of the loop made by \(R_1 \), \(V_{GS2} \) and \(V_Y \). Indeed, by using KVL it is possible to carry-out the following equation

\[V_{R1} = R_1 I_{REF} = V_{GS1} - V_{GS2} \]

(3)

Suppose that both \(M_1 \) and \(M_2 \) are working in sub-threshold region and that their drain currents are given by

\[I_{D1} = I_{D0} S_1 e^{\frac{V_{GS1} - V_{TH1}}{V_{VT}}}, \quad 1 - e^{-\frac{V_{GS1}}{V_{VT}}} \]

(4a)

\[I_{D1} = I_{D0} S_e^{\frac{V_{GS2} - V_{TH2}}{V_{VT}}}, \quad 1 - e^{-\frac{V_{GS2}}{V_{VT}}} \]

(4b)

where \(I_{D0} = \mu_n C_{OX} (n - 1) V_T^2 \). Moreover, by supposing that \(V_{DS1} = V_X > 4V_T \) and \(V_{DS2} > 4V_T \) it is possible to simplify the previous equations neglecting the channel length modulation effect as follows

\[I_{D1} \approx I_{D0} S_1 e^{\frac{V_{GS1} - V_{TH1}}{V_{VT}}}, \quad 1 - e^{-\frac{V_{GS1}}{V_{VT}}} \]

(5a)

\[I_{D1} \approx I_{D0} S_e^{\frac{V_{GS2} - V_{TH2}}{V_{VT}}}, \quad 1 - e^{-\frac{V_{GS2}}{V_{VT}}} \]

(5b)

In addition, taking into account that both \(M_1 \) and \(M_2 \) are implemented using the same type of transistors (SVT09), it was supposed, in Eq.(4a) and Eq.(5a), that \(n_1 = n_2 = n \) and \(C_{OX1} = C_{OX2} = C_{OX} \).

By solving Eq. (5a) and Eq. (5b) for the gate-source voltages of \(M_1 \) and \(M_2 \) and substituting these in Eq. (3) it is found out that

\[I_{REF} = \frac{1}{R_1} \left[(V_{TH1} - V_{TH2}) + n V_T \ln \left(\frac{S_2}{S_1} \cdot \frac{S_3}{S_4} \right) \right] \]

(6)
Since M_1 and M_2 are selected of the same type of transistors (SVT09), in order to obtain a positive quantity for $V_{TH1} - V_{TH2}$, to simplify Eq. (6), it was chosen $S_1 = W_1/L_1 = \alpha S_2$, with α a positive multiplicative factor. As a result, Eq. (6) becomes the following

$$I_{REF} = \frac{1}{R_1} \left[(V_{TH1} - V_{TH2}) + nV T \ln \left(\frac{S_3}{S_4} \right) \right]$$

(7)

where I_{REF} just depends on design choices as the value of the resistance, R_1, the difference $V_{TH1} - V_{TH2}$ and the ratio S_3/S_4. Moreover, it is important to underline that also the integrated resistor, R_1, varies with temperature with the following expression

$$R_1(T) = R_{10} + b_T T + c_T T^2$$

(8)

where R_{10} is the value of R_1 at $T = 0 \K$ and b_T and c_T are positive coefficients. In addition, for a sake of conciseness, it is possible to neglect the 2^{nd}-order term in Eq. (8), leading to a 1^{st}-order linear approximation.

The temperature stability of a CR is measured by its temperature coefficient, TC with the equation

$$TC = \frac{1}{I_{REF}} \frac{\partial I_{REF}(T)}{\partial T} = \frac{1}{I_{REF}} \left(I_{REF,max} - I_{REF,min} \right) \Delta T$$

(9)

where I_{REF} is the nominal value of the DC reference current at T_0. While $I_{REF,max}$ and $I_{REF,min}$ are the maximum and the minimum value, respectively, of the reference current within the temperature range, ΔT. Then, by using the following equation is possible to carry-out the minimum value for TC

$$\frac{\partial I_{REF}(T)}{\partial T} = 0$$

(10)

While R_1 and $V_{TH1} - V_{TH2}$ are chosen to obtain the desired nominal value of I_{REF}, on the other hand, applying the definition of Eq. (10) to Eq. (7), it is possible to find out the optimum ratio, $(S_3/S_4)_{opt}$, to minimize the TC. The math passages are here summarized

$$\left[\Delta K_{T2,1} + \frac{k_B}{q} \ln \left(\frac{S_3}{S_4} \right) \right] \cdot R_1 - (V_{R1} \cdot b_T) = 0$$

(11)

where $\Delta K_{T2,1} = K_{T2} - K_{T1}$ (for a sake of brevity) and V_{R1} is derived out from Eq. (3) and Eq. (7). By expanding the intermediate passages reported in Eq. (11) it results that

$$\frac{S_3}{S_4}_{opt} = \exp \left[\frac{q}{nk_B} \left(\frac{\beta_T \Delta V_{TH1,2} - \Delta K_{T2,1}}{1 - \beta_T T_0} \right) \right]$$

(12)

where, for a sake of conciseness, it was indicated $\Delta V_{TH1,2} = V_{TH1} - V_{TH2}$. In a more intuitive way, Eq. (7) suggests that an increase in $\Delta V_{TH1,2}$ leads to an increase in the CTAT behaviour of the CR, while an increase in the ratio S_3/S_4 increases the PTAT component of I_{REF}. Furthermore, as can be appreciated from Fig. 1, $\Delta K_{T2,1} = K_{T2} - K_{T1}$ could be neglected in Eq. (12) when using the same type of transistors for both M_1 and M_2. Finally, by substituting the result of Eq. (12) into Eq. (7) is found out the optimum nominal value of the reference current, $I_{REF,opt}$ that minimize the TC

$$I_{REF,opt} = \frac{1}{R_1} \left[\Delta V_{TH1,2} + T_0 \left(\frac{\beta_T \Delta V_{TH1,2} - \Delta K_{T2,1}}{1 - \beta_T T_0} \right) \right]$$

(13)

Moreover, by evaluating $\beta_T T_0 \ll 1$ and $\Delta K_{T2,1} \simeq 0$, Eq. (13) is approximated as follows

$$I_{REF,opt} \approx \frac{\Delta V_{TH1,2}}{R_1}$$

(14)

FIGURE 4. Normalized I_{REF} vs. V_{DD} for the simulated simplified schematic of the proposed CR in Fig. 3 and the ideal case.

C. LINE SENSITIVITY

The Line Sensitivity (LS) quantifies the static sensitivity of the output on the DC variations of the power supply line voltage, namely V_{DD}. The equation that allows to evaluate the LS is the following

$$LS = \frac{1}{I_{REF}} \frac{\partial I_{REF}}{\partial V_{DD}} = \frac{1}{I_{REF}} \left(I_{REF,max} - I_{REF,min} \right)$$

(15)

This quantity is a useful tool for characterizing the robustness of the CR in the presence of variations of V_{DD} as in the case battery discharge or various regulated power supply voltages ($V_{DD,L}$ and $V_{DD,H}$) inside the same SoC [54]. Since, the reference current in the simplified CR in Fig. 3 depends on the current ratio of I_D3/I_D4 provided by the linear current mirror M_3-M_4, it is important to investigate on this ratio when varying V_{DD}.

$$\frac{I_D3}{I_D4} = \frac{S_3}{S_4} \left[1 - \exp \left(\frac{V_{DD}}{V_T} \right) \right] \left[1 - \exp \left(\frac{V_{DD}}{V_T} \right) \right]$$

$$\frac{V_{DD}}{V_T}$$

$$\frac{I_D3}{I_D4} = \frac{S_3}{S_4} \left[1 - \exp \left(\frac{V_{DD}}{V_T} \right) \right] \left[1 - \exp \left(\frac{V_{DD}}{V_T} \right) \right]$$

$$\frac{V_{DD}}{V_T}$$
$$\frac{I_{D3}}{I_{D4}} \approx \frac{S_3}{S_4} \cdot \frac{V_X - V_{DD}}{V_Y - V_{DD}}$$

(17)

From Eq. (17) is possible to understand that just if \(V_X = V_Y\) it is true that \(I_{D3}/I_{D4} = S_3/S_4\); otherwise, this above mentioned current ratio will vary with \(V_{DD}\) as reported in Fig. 4 with the red curve. Indeed, while \(V_{DD}\) increases, the drain current of \(M_3\) increases too, leading to an increase of \(V_{G1} = V_X\), but also \(I_{REF}\) increases lowering the voltage on node \(V_Y\).

III. THE ACTIVE TRIMMING NETWORK

The schematic in Fig. 5 shows the complete circuit of the proposed CR without the trimming network. It takes into account the advantages of the solution depicted with Fig. 3 in the previous section with the addition of a self-biased single-stage OTA (shown in Fig. 6) to improved the line sensitivity and a start-up circuit to avoid any zero bias point. The used technology is the 28-nm Bulk CMOS provided by TSMC and the simulation environment is Cadence Virtuoso.

The nominal value of the reference current is set equal to \(I_{REF} = 100\, \text{nA}\). It was realized making a \(\Delta V_{TH1,2} \approx 18\, \text{mV}\) drops on a nominal \(R_1 = 180\, \text{k} \Omega\). This last integrated resistor was realized in poly-p+ and presents a specific resistance-over-square equals to \(R_s = 576 \Omega/\square\), while \(\beta_R \approx 0.0275\%/\degree\). The theoretical value for \((S_3/S_4)_{th}\) kept from Eq. (12) was about 1.1, while the simulated one is \((S_3/S_4)_{th} = 1.185\). The other components’ values are summarized in Tab. 2.

The addition of the OTA provides a negative feedback control on the voltage \(V_G\) and allows keeping \(V_X = V_Y \approx 330\, \text{mV}\) whatever it will be the variation on \(V_{DD}\). Moreover, since it does not require any stringent specification in terms of bandwidth and gain, it was implemented with a simple differential pair, as shown in Fig. 6. The OTA is biased by the reference current itself, by exploiting transistor \(M_7\) and the 1:8 current mirror made up by \(M_8\)-\(M_9\), leading to a static current consumption of about \(I_{DD,OTA} = 90\, \text{nA}\). The transconductance efficiency \(g_m/I_D \approx 29\, \text{V}^{-1}\) since all the transistors are working in weak-inversion region. Finally, a MOM-capacitor, \(C_1 = 1.5\, \text{pF}\), was added on the output node, \(V_G\), to provide stability to the entire CR. The AC simulations results show a DC open-loop gain, \(A_v \approx 30\, \text{dB}\) and a bandwidth \(f_{GBW} \approx 120\, \text{kHz}\).

Corner analysis reported in Fig. 8 and Tab. 1 shows that without any trimming sub-circuit the variations around the reference current are in the order of \(\pm 40\%\). Although this high inaccuracy, the minimum TC results about \(10-50\, \text{ppm/\degree C}\) for \(V_{DD} \approx 0.8\, \text{V}\) in the temperature range \(T \in [0 - 100]\, \degree\).
The schematic shown in Fig. 9a) and b) depicts the adopted trimming network for the proposed CR. The sub-circuit in Fig. 9a) allows to reduce the variations of the nominal value of I_{REF} under the simulated corners. Indeed, by using NMOS switches ($M_{B0} \ldots M_{B3}$) it modifies the value of the resistance R_1 by properly adding series integrated poly-p$^+$ resistances as a function of the measured corner (e.g., in the SS corner, all the switches are closed, in the FF corner, all the switches are open). It is also worth noticing that ON-resistances of switches, R_{ON}, have been taken into account. On the other side, the sub-circuit in Fig. 9b) compensates for the TC by properly modifying the ratio S_3/S_4 (see Eq. (12)). After post-layout simulations, it was found out that just two bits are required for this purpose. When $B_{4(5)}$ is high ($B_{4(5)}$ is low), $M_{3A/3B}$ is connected in parallel with M_3 increasing its aspect ratio; on the contrary, when $B_{4(5)}$ is low ($B_{4(5)}$ is high), thanks to switches $M_{B4/B5N}$ the gate of $M_{3A/3B}$ is short-circuited to V_{DD} and no current (except from leakage one) passes through it. In addition, the trimming circuit is driven by $B_0 \ldots B_5$ signals in the range of [0; V_{DD}] and the negated ones are internally generated by exploiting minimum sized inverters.

TABLE 2. Aspects and component dimensions for the proposed CR in Fig. 5, 6 and 9.

Component	Size	Unit
M_1	4/4	-
M_2	2/0.5	-
M_{A1},M_{A2}	5/0.5	-
C_2	18	fF
M_7	1.2/1.8	μA
M_8	2.5/0.5	-
M_9	20/0.5	-
$M_{10,11}$	33.75/0.5	μA
$M_{12,13}$	10/2	-
C_1	1.5	pF

$M_{B0,B1,B2,B3}$	1.5/0.3	μA
M_{3A}	0.92/0.5	-
M_{3B}	0.91/0.5	-
$M_{B4,B5N}$	3/0.3	-
$R_{1,0}$	112.5	kΩ
$R_{1,1}$	27.0	-
$R_{1,2}$	32.5	-
$R_{1,3}$	32.5	-
$R_{1,4}$	37.5	-

IV. POST-LAYOUT SIMULATIONS

The layout of the circuit is shown in Fig. 10, where different areas have been enclosed in yellow boxes. It is important to underline that the CR Core area includes also the start-up circuit and the Active Trimming embeds the minimum size inverters for the generation of negated trimming signals, B_4 and B_5.

Fig. 11a) reports the power breakdown of the proposed CR circuit, referring to the static power consumption of the OTA,
the reference current, I_{REF} and the left branch of the CR, namely I_{D1}, since it depends on the current passing through transistor M_1 (see Fig. 5). On the other side, Fig. 11a) shows the area breakdown of circuit referring to the layout reported in Fig. 10. As regard the post-layout simulations, they can be divided in two sets, since they mainly concentrate on the temperature stability and on the line sensitivity.

FIGURE 10. Layout of the proposed CR. The occupied area is equal to $5000 \, \mu m^2$.

FIGURE 11. a) Power breakdown of the proposed CR. b) Area breakdown of the proposed CR.

A. CORNER ANALYSIS

As it possible to observe from Fig. 12, the TT-corner manifests a $TC_{TT} = 13 \, ppm/\degree C$ over the temperature range $T \in [0-100] \degree C$, while it reduces down to $TC_{TT}^* = 6.3 \, ppm/\degree C$ over the temperature range $T^* \in [10-90] \degree C$; in both this cases, the power supply is $V_{DD} = 0.8 \, V$, but, as can be appreciated from Fig. 12, when $V_{DD} = 0.6 \, V$, $TC_{TT} = 250 \, ppm/\degree C$ for $T \in [0-100] \degree C$. Hence, for the higher nominal power supply, the temperature behaviour of the CR meets the typical specification of the more power-wasting BGCRs with 2nd-order temperature compensation.

FIGURE 12. Temperature coefficient, TC of the proposed CR around the TT-corner in two different temperature ranges, $T \in [0-100] \degree C$ and $T^* \in [10-90] \degree C$; $TC_{TT} = 13 \, ppm/\degree C$ for the former and $TC_{TT}^* = 6.3 \, ppm/\degree C$ for the latter.

Fig. 13 reports the behaviour of the proposed CR around all the five corners, when $V_{DD} = 0.8 \, V$, in terms of TC. This last parameters spans from $87 \, ppm/\degree C$ for the SF corner to $13 \, ppm/\degree C$ for the TT corner. In a more restricted temperature range, namely $T^* \in [10-90] \degree C$, it could be seen that the TC is reduced in all the corners, as summarized in Tab. 4.

FIGURE 13. Temperature coefficients, TCS of the proposed CR around all the corners when $V_{DD} = 0.8 \, V$. The temperature range is $T \in [0-100] \degree C$. Results are obtained after trimming.

Finally, Fig. 14 reports the transient step-response of the proposed CR in the temperature range $T \in [0-100] \degree C$. It was simulated by applying a V_{DD} step-signal from 0 V to 0.8 V to emulate the start-up phase of the CR, for four different temperatures within the indicated range. The rise/fall time of the supply are supposed equal to 1 ms, since they
are typically provided by LDOs with this time delays. The simulated settling time for $I_{\text{REF,TT}}$ is around 200 μs.

B. LINE SENSITIVITY

The second set of results concentrates on the variation of the power-supply V_{DD}. Indeed, Fig. 15 shows that the minimum temperature coefficient for all the five corners is obtained around $V_{\text{DD}} = 0.8$ V, so it is possible to take this last value as the optimum one to guarantee the maximum temperature stability of the proposed CR.

As concern the results shown in Fig. 16, they manifest an overall variation of the reference current at room temperature about equal to 4 nA, that is extremely low if compared to Fig. 8, where the variation of I_{REF} (w.o. the trimming circuit) was around 70 nA, from the SS to the FF corner. In addition, it is possible to notice that the line sensitivity for the SS and the SF corner is higher than other cases; this is due to the active trimming circuit, since, in these corners, all the switches are closed, but they are driven by V_{DD}-amplitude signals. By increasing V_{DD}, it will reduce the R_{ON} of switches and, thus, the nominal value of R_1. This will lead to an increase of the reference current. Nevertheless, it is also possible to change the binary word used for the trimming in Tab. 3 to increase the overall R_1 value.

C. MONTE CARLO SIMULATIONS

Monte Carlo simulations have been executed on the proposed CR to demonstrate the robustness of the implemented system. The results of 200 simulations taking into account global and local variations around TT corner are summarized in Fig. 17. In particular, Fig. 17(left) reports the DC value of the reference current, I_{REF}. The mean value is $\mu = 99.8$ nA, while the standard deviation is $\sigma = 5.12$ nA, leading to a relative percentage variation of $\sigma/\mu \approx 5\%$. Fig. 17(right) shows the TC evaluated in the range $T \in [0 - 100]$ °C. The mean value is equal to $\mu = 24.7$ ppm/°C, while it not possible
to evaluate a standard deviation, since the distribution is not a Gaussian one. On the other hand, it is possible to observe that the minimum and maximum TC value is equal to 7.6 ppm/°C and 152.3 ppm/°C, respectively.

V. COMPARISON

The state-of-the-art comparison is proposed in Tab. 5 and Tab. 6. The first table summarizes the works in literature regarding CRs with $I_{REF} \in [7.5 - 100]$ nA, while the second one shows the solutions with $I_{REF} \in [100 - 1000]$ nA. In both tables the best parameters are highlighted in cyan, while the worst ones are reported in red. It is possible to observe that the proposed CR presents the most scaled technology and the lowest TC, in particular in the restricted temperature range [10-90] °C. Indeed, the proposed solution shows a TC 1.58X lower than the minimum in Tab. 5 and 4.6X lower than the minimum in Tab. 6. The Figure-of-Merit

$$FOM = \frac{T.C.}{T. \text{ Range} \cdot I_{DD} / I_{REF}} (\text{ppm}/^\circ \text{C}^2)$$

proposed in [31] is also included in Tab. 5 and Tab. 6 which takes into account the TC and the temperature range, but also the ratio I_{DD}/I_{REF}, where I_{DD} is the overall static current consumption of the CR. The proposed CR shows the lowest FOM (1.2X lower than the best one in the state-of-the-art comparison tables), while maintaining one of the lowest area occupation. Note, however, that the temperature range of the proposed CR it is not the widest one, since it was designed to be used in IMD or in IoT wearable nodes, where the usual temperature is in the range of [0-100] °C (or [10-90] °C). For these properties, it is seen from that the proposed solution is
A novel current reference has been introduced in this work. The reference current is generated exploiting the voltage difference of the threshold voltage of MOS transistors operating in weak inversion. Designed in a standard 28-nm CMOS technology, post-layout simulations show high stability over time in the literature, to simultaneously reduce the effects of process variations on the nominal reference current and the temperature variations leading to a very low TC within the five process corners.

VI. CONCLUSION

A novel current reference has been introduced in this work. The reference current is generated exploiting the voltage difference of the threshold voltage of MOS transistors operating in weak inversion. Designed in a standard 28-nm CMOS technology, post-layout simulations show high stability over process, corner and voltage variations thanks to the adoption of an embedded trimming circuit. As highlighted by comparison with the state-of-the-art, the proposed solution is a good candidate for area- and power-constrained applications, such as IoT sensor nodes and IMDs. As compared to other solutions exploiting the same principle of operation, the main innovations of the proposed circuit and the contribution of the work can be summarized as follows:

1) the same kind of transistor is exploited in the CR and the adopted technology is the most scaled compared to previous works;
2) the adoption of an OTA in the reference core increases the performance in terms of line sensitivity;
3) a theoretical analysis of the line sensitivity is carried out providing design guidelines to increase the performance;
4) an active trimming circuit is introduced, for the first time in the literature, to simultaneously reduce the effects of process variations on the nominal reference current and the temperature variations leading to a very low TC within the five process corners.

REFERENCES

[1] W. Greatbatch and C. F. Holmes, “History of implantable devices,” IEEE Eng. Med. Biol. Mag., vol. 10, no. 3, pp. 38–41, Sep. 1991.
[2] P. R. Kinget, “Scaling analog circuits into deep nanoscale CMOS: Obstacles and ways to overcome them,” in Proc. IEEE Custom Integ. Circuits Conf. (CICC), Sep. 2015, pp. 1–8.
[3] M. Alioto, Enabling the Internet of Things: From Integrated Circuits to Integrated Systems, 1st ed. Cham, Switzerland: Springer, 2017.
[4] M. Alioto, “From less batteries to battery-less alert systems with wide power adaptation down to nW—Toward a smarter, greener world,” IEEE Design Test, vol. 38, no. 5, pp. 90–133, Oct. 2021.
[5] A. D. Grasso and S. Pennisi, “Ultra-low power amplifiers for IoT nodes,” in Proc. 25th IEEE Int. Conf. Electron., Circuits Syst. (ICECS), Dec. 2018, pp. 497–500.
[6] O. Aiello, P. Crovetti, and M. Alioto, “Minimum-effort design of ultra-low power interfaces for the Internet of Things,” in Proc. 26th IEEE Int. Conf. Electron., Circuits Syst. (ICECS), Nov. 2019, pp. 105–106.
[7] A. Ballo, A. D. Grasso, and G. Palumbo, “A high-performance charge pump topology for very-low-voltage applications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 7, pp. 1304–1308, Jul. 2020.
[8] A. Ballo, A. D. Grasso, G. Palumbo, and T. Tansawa, “Charge pumps for ultra-low-power applications: Analysis, design, and new solutions,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 68, no. 8, pp. 2895–2901, Aug. 2021.
[9] S. Chatterjee, Y. Tsividis, and P. Kinget, “0.5-V analog circuit techniques and their application in OTA and filter design,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2373–2387, Dec. 2005.
[10] J. Georgiou and C. Toumazou, “A 126-mW cochlear chip for a totally implantable system,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 430–443, Feb. 2005.
[11] G. De Vita and G. Iannaccone, “A 109 nW, 44 ppm/◦C CMOS current reference circuit with low sensitivity to process variations,” in Proc. IEEE Int. Symp. Circuits Syst., May 2007, pp. 3804–3807.
[12] T. Hirose, Y. Osaki, N. Kuroki, and M. Numa, “A nano-ampere current reference circuit and its temperature dependence control by using temperature characteristics of carrier mobilities,” in Proc. ESSCIRC, Sep. 2010, pp. 114–117.
[13] K. Ueno, T. Hirose, T. Asai, and Y. Amemiya, “A 1-μW 600-ppm/◦C CMOS current reference circuit consisting of subthreshold CMOS circuits,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 9, pp. 681–685, Sep. 2010.
[14] F. Cucci, S. Di Pascoli, and G. Iannaccone, “Design of a nanopower current reference with reduced process variability,” Anal. Integ. Circuits Signal Process., vol. 77, no. 1, pp. 45–53, Oct. 2013.
[15] A. Far, “Subthreshold current reference suitable for energy harvesting: 20 ppm/◦C and 0.1%/V at 140 nW,” in Proc. IEEE Int. Autumn Meeting Power, Electron. Comput. (ROPEC), Nov. 2015, pp. 1–4.
A. Ballo et al.: 6.3-ppm/°C, 100-nA Current Reference With Active Trimming in 28-nm Bulk CMOS Technology
ALFIO DARIO GRASSO (Senior Member, IEEE) was born in Catania, Italy, in 1978. He received the Laurea (summa cum laude) and Ph.D. degrees in electronic engineering from the University of Catania, Catania, in 2003 and 2006, respectively. From 2006 to 2011, he worked as a Freelance Engineer in the field of electronic systems. From 2009 to 2010, he was an Adjunct Professor of electronics at the Kore University of Enna, Italy. In 2011, he became a Researcher (Assistant Professor) and in 2015, he was appointed as an Associate Professor at the University of Catania. He teaches graduate courses on advanced VLSI digital design, microelectronics and basic electronics. He has coauthored more than 100 papers on refereed international journals and conference proceedings. His current research interests include low-voltage low-power analog circuit design and analog and mixed signal processing for energy harvesting applications. In 2017, he received the Italian National Scientific Qualification for the position of a Full Professor. He is an Associate Editor of IET Electronics Letters, International Journal of Circuits Theory and Applications (Wiley), and Journal of Circuits, Systems and Computers, and is a Member of the Editorial Board of Sensors (MDPI).

MARCO PRIVITERA (Member, IEEE) was born in Piazza Armerina, Italy, in 1997. He received the bachelor’s and master’s degrees (summa cum laude) in electronic engineering from the University of Catania, Italy, in 2019 and 2021, respectively, where he is currently pursuing the Ph.D. degree in electronic engineering with the University of Catania. His current research interests include power management integrated circuits, data communication sub-systems, and ultra-low power analog blocks for energy harvesting applications.

Open Access funding provided by ‘Università degli Studi di Catania’ within the CRUI CARE Agreement