The Logarithmic Spiral Conjecture

STEVEN R. FINCH

March 12, 2016

Abstract. When searching for a planar line, if given no further information, one should adopt a logarithmic spiral strategy (although unproven).

This brief paper is concerned entirely with geometry in the plane and continues a thought in [1]. If a line intersects a circle in one or two points, we say that the line strikes the circle. If a line intersects a circle in exactly one point (that is, if the line is tangent to the circle), we say that the line touches the circle.

Let f be a nonnegative, continuously differentiable function on \mathbb{R} satisfying
\[
\lim_{\theta \to -\infty} f(\theta) = 0, \quad \lim_{\theta \to \infty} f(\theta) = \infty.
\]
The polar curve $r = f(\theta)$ intersects every line in the plane, that is, f is a spiral. (Reason: for each $R > 0$, there exists Θ so large that $\theta > \Theta$ implies $f(\theta) > R$. Any line striking the circle $r = R$ must therefore intersect the curve $r = f(\theta)$. Since R was arbitrary, the statement follows.) Existence of intersection points is only the beginning of our study.

Consider the set Σ of all lines that strike the circle $r = R$. The spiral $r = f(\theta)$ possesses a first intersection point θ with each line in Σ; let θ_1 denote the supremum of all such θ. Loosely put, θ_1 constitutes the worst case scenario when seeking all members of Σ via the search strategy $r = f(\theta)$. Clearly θ_1 depends on R and $\theta_1 = -\infty$ when $R = 0$.

The cost of finding all lines in Σ, starting from the origin, can be quantified by the arclength
\[
\Lambda(f) = \int_{-\infty}^{\theta_1} \sqrt{f(\theta)^2 + f'(\theta)^2} \, d\theta.
\]
We naturally wish to minimize $\Lambda(f)$ as a function of f, for fixed R. Our focus is on the following asymptotic inequality.

Conjecture 1.
\[
\lim_{R \to \infty} \frac{\Lambda(f)}{R} \geq 13.8111351795\ldots
\]

Copyright © 2005, 2016 by Steven R. Finch. All rights reserved.
with equality if and only if \(f(\theta) \sim C e^{\kappa \theta} \) as \(\theta \to \infty \), where \(\kappa = 0.2124695594 \ldots \) and \(C > 0 \) is arbitrary.

The two numerical constants appear precisely in [2], along with detailed treatment of the special case of a logarithmic spiral \(f(\theta) = e^{\kappa \theta} \). Difficulties arise in the general case, owing to the vast variety of spirals permitted.

A sketch of a geometric proof of Conjecture 1 was published in [3, 4, 5]. The first part claimed that an optimal spiral must be similar with respect to both rotations and dilations about the origin; the second part claimed that such a highly symmetric spiral must necessarily be a logarithmic spiral. The second part, in fact, is true via the solution of a well-known functional equation [6]. We doubt, however, that any purely geometric proof of the first part can be rigorously correct (although appealing). A more careful analysis, based on the calculus of variations, is perhaps mandatory.

0.1. Examples. We repeat certain steps employed in [2], suitably generalized.

Lemma 2. The distance between the line \(Ax + By + C = 0 \) and the origin is \(\frac{|C|}{\sqrt{A^2 + B^2}} \).

Lemma 3. The equation of a line tangent to the spiral \(r = f(\theta) \) is \(y - f(\theta) \sin(\theta) = m(x - f(\theta) \cos(\theta)) \), where \(\theta \) corresponds to the point of tangency and the slope is given by

\[
 m = \frac{f'(\theta) \sin(\theta) + f(\theta) \cos(\theta)}{f'(\theta) \cos(\theta) - f(\theta) \sin(\theta)}.
\]

Proof of Lemma 3. Clearly

\[
 \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{(f(\theta) \sin(\theta))'}{(f(\theta) \cos(\theta))'} = \frac{f'(\theta) \sin(\theta) + f(\theta) \cos(\theta)}{f'(\theta) \cos(\theta) - f(\theta) \sin(\theta)}.
\]

Theorem 4. Let \(L \) denote the first line that is both tangent to the spiral \(r = f(\theta) \) and tangent to the circle \(r = R \). The tangency point \(\theta_0 \) of \(L \) with the spiral satisfies the equation

\[
 R^2(f(\theta)^2 + f'(\theta)^2) = f(\theta)^4.
\]

Proof of Theorem 4. Apply Lemma 2 with \(A = m, B = -1 \) and \(C = f(\theta)(\sin(\theta) - m \cos(\theta)) \) to obtain \((1 + m^2)R^2 = f(\theta)^2(\sin(\theta) - m \cos(\theta))^2 \). Substituting the expression for \(m \) from Lemma 3 gives the desired equation.

We emphasize that, on the one hand, \(\theta_0 \) is where the spiral first intersects a line that touches the circle \(r = R \) (the touching occurs elsewhere). On the other hand, \(\theta_1 \) is just above where the spiral last intersects a new line that strikes the circle \(r = R \) (the striking, again, occurs elsewhere). If the function \(f \) is strictly increasing, then
in the interval \(\theta_0 < \theta < \theta_1 \), the spiral intersects all other lines that touch \(r = R \); at \(\theta = \theta_1 \), repetition begins so we stop there. Suppose that we are given a spiral \(r = f(\theta) \) for which \(f(\theta) \neq C e^{\kappa \theta} \) for any \(\kappa > 0, C > 0 \). Clearly

\[
\frac{\Lambda(f)}{R} \geq \frac{1}{R} \int_{-\infty}^{\theta_0} \sqrt{f(\theta)^2 + f'(\theta)^2} \, d\theta,
\]

and thus if we demonstrate that the right hand side \(\to \infty \) or is at least > 13.82, then this is consistent with Conjecture 1.

As a first example, consider Archimedes’ spiral

\[
f(\theta) = \begin{cases}
\kappa \theta & \text{if } \theta \geq 0, \\
0 & \text{if } \theta < 0.
\end{cases}
\]

From Theorem 4, it follows that \(R^2 (1 + \theta^2) = \kappa^2 \theta^4 \) and hence

\[
\theta_0 = \frac{R}{\kappa} \sqrt{\frac{1}{2} \left(1 + \sqrt{1 + \frac{4\kappa^2}{R^2}}\right)} \geq \frac{R}{\kappa} \sqrt{\frac{1}{2} (1 + 1)} \geq \frac{R}{\kappa}.
\]

Consequently, the normalized arclength is bounded from below by

\[
\frac{\kappa}{R} \int_0^{\theta_0} \sqrt{1 + \theta^2} \, d\theta \geq \frac{\kappa}{R} \int_0^{\theta_0} \theta \, d\theta = \frac{\kappa}{2R} \theta_0^2 \geq \frac{R^2}{2\kappa} \to \infty
\]
as \(R \to \infty \). Alternatively, we can avoid solving for \(\theta_0 \) altogether: From \(R^2 (1 + \theta^2) = \kappa^2 \theta^4 \), deduce that

\[
R = \frac{\kappa \theta^2}{\sqrt{1 + \theta^2}} \leq \kappa \theta^2
\]
and hence that \(\theta \to \infty \) as \(R \to \infty \). Here we obtain

\[
\frac{\kappa}{R} \int_0^{\theta_0} \theta \, d\theta = \frac{\kappa}{2R} \theta_0^2 = \frac{\kappa}{2} \frac{1 + \theta_0^2}{2} \theta_0^2 = \frac{1}{2} \frac{1 + \theta_0^2}{\kappa \theta_0^2} \geq \frac{\theta_0}{2} \to \infty
\]
as \(\theta_0 \to \infty \) (and thus as \(R \to \infty \)). This latter device will be useful in the following examples. See Figure 1 for an illustration.

Consider next the spiral

\[
f(\theta) = \begin{cases}
e^{\theta^a} & \text{if } \theta \geq 0, \\
-ne^{-|\theta|^a} & \text{if } \theta < 0.
\end{cases}
\]
Figure 1: The first contact point that the spiral $r = \theta$ has with a line tangent to the circle $R = 6$ is at $\theta_0 = 348.4^\circ$. The second contact point with the line is at $\theta_1 = 641.5^\circ$. Incidentally, the line is tangent to $R = 6$ at $339.1^\circ < \theta_0$.

for a fixed exponent $a > 0$. From Theorem 4, it follows that $R^2(1 + a^2 \theta^{2a-2}) = e^{2\theta^a}$, that is,

$$R = \frac{e^{\theta^a}}{\sqrt{1 + a^2 \theta^{2a-2}}} \leq e^{\theta^a}.$$

Hence $\theta \to \infty$ as $R \to \infty$. If $a > 1$, the normalized arclength is bounded from below by

$$\frac{1}{R} \left(\int_{-\infty}^{0} \sqrt{1 + a^2 |\theta|^{2a-2}} e^{-\theta^a} d\theta + \int_{0}^{\theta_0} \sqrt{1 + a^2 \theta^{2a-2}} e^{\theta^a} d\theta \right)$$

$$\geq \frac{1}{R} \left(\int_{-\infty}^{0} a |\theta|^{a-1} e^{-\theta^a} d\theta + \int_{0}^{\theta_0} a \theta^{a-1} e^{\theta^a} d\theta \right)$$

$$= \frac{1}{R} \left(1 + e^{\theta_0^a} - 1 \right) = \sqrt{1 + a^2 \theta_0^{2a-2}} \geq a \theta_0^{a-1} \to \infty$$

as $\theta_0 \to \infty$ (and thus as $R \to \infty$). If $0 < a < 1$, the normalized arclength is bounded by

$$\frac{1}{R} \left(\int_{-\infty}^{0} e^{-|\theta|^a} d\theta + \int_{0}^{\theta_0} e^{\theta^a} d\theta \right)$$

$$\geq \frac{1}{R} \left(\int_{-\infty}^{0} e^{-|\theta|^a} d\theta + \int_{0}^{\theta_0} e^{\theta^a} d\theta \right) \geq \frac{1}{R} \left(0 + \int_{0}^{\theta_0} e^{\theta^a} d\theta \right)$$

and we have asymptotics

$$\frac{1}{R} \int_{0}^{\theta_0} e^{\theta^a} d\theta \sim \frac{1}{R} \left(\frac{1}{a} \theta_0^{1-a} e^{\theta_0^a} \right) = \frac{1}{a} \sqrt{1 + a^2 \theta_0^{2a-2}} \theta_0^{1-a} \to \infty$$

as $\theta_0 \to \infty$ (and thus as $R \to \infty$). Only the case $a = 1$ remains, which is covered in [2]. This is compelling (but not completely convincing) evidence that the Logarithmic Spiral Conjecture is valid.

Consider finally the spiral

$$f(\theta) = \begin{cases} \theta^b e^\theta & \text{if } \theta \geq 0, \\ 0 & \text{if } \theta < 0 \end{cases}$$

for a fixed exponent $b > 0$. From Theorem 4, we obtain

$$R = \frac{\theta^{b+1} e^\theta}{\sqrt{\theta^2 + (b+\theta)^2}} \leq \frac{1}{\sqrt{2}} \theta^b e^\theta,$$
hence \(\theta \to \infty \) as \(R \to \infty \). Clearly \(\theta_1 \geq \theta_0 + \pi \) on geometric grounds. Therefore the normalized arclength is bounded from below by

\[
\frac{1}{R} \int_{0}^{\theta_0 + \pi} \sqrt{\theta^2 + (b + \theta)^2} \theta^{b-1} e^{\theta} d\theta \geq \frac{\sqrt{2}}{R} \int_{0}^{\theta_0 + \pi} \theta^{b} e^{\theta} d\theta
\]

and we have asymptotics

\[
\frac{\sqrt{2}}{R} \int_{0}^{\theta_0 + \pi} \theta^{b} e^{\theta} d\theta \sim \frac{\sqrt{2}}{R} \left((\theta_0 + \pi)^{b} e^{\theta_0 + \pi} \right)
\]

\[= \sqrt{2} \frac{(\theta_0 + \pi)^{b} e^{\theta_0 + \pi}}{\theta_0^{b+1} e^{\theta_0}} \sqrt{\theta_0^2 + (b + \theta_0)^2}
\]

\[\to 2e^\pi > 13.82
\]

as \(\theta_0 \to \infty \).

The logarithmic spiral appears with regard to another planar search problem \[7\], but the techniques of Gal & Chazan do not seem to apply here. A min-mean analog of our Conjecture 1 could also be formulated, starting with \[2\].

0.2. Acknowledgements. I am grateful to Ricardo Baeza-Yates, Li-Yan Zhu and John Shonder for their assistance. A discussion during my Visiting Lecture at Oberlin College in November 2004 was also very helpful.

References

[1] S. R. Finch and J. E. Wetzel, Lost in a forest, Amer. Math. Monthly 11 (2004) 645-654; MR2091541 (2006d:51016).

[2] S. R. Finch and L.-Y. Zhu, Searching for a shoreline, math.OC/0501123.

[3] R. A. Baeza-Yates, J. C. Culberson and G. J. E. Rawlins, Searching in the plane, Inform. and Comput. 106 (1993) 234–252; MR1241311 (94h:90019).

[4] R. A. Baeza-Yates, J. C. Culberson and G. J. E. Rawlins, Searching with uncertainty (extended abstract), First Scandinavian Workshop on Algorithm Theory, Proc. 1988 Halmstad conf., ed. R. Karlsson and A. Lingas, Lecture Notes in Comput. Sci. 318, Springer-Verlag, 1988, pp. 176–189.

[5] R. A. Baeza-Yates, J. C. Culberson and G. J. E. Rawlins, Searching with uncertainty (full report), Research Report CS–87–68, Dept. of Computer Sci., Univ. of Waterloo, 1987.
[6] R. M. Young, *Excursions in Calculus. An Interplay of the Continuous and the Discrete*, Math. Assoc. Amer., 1992, pp. 144–153; MR1184144 (93k:00007).

[7] S. Gal and D. Chazan, On the optimality of the exponential functions for some minimax problems, *SIAM J. Appl. Math.* 30 (1976) 324–348; errata 32 (1977) 520; MR0391997 (52 #12815) and MR0456579 (56 #14803).

Steven R. Finch
Clay Mathematics Institute
One Bow Street
Cambridge, MA 02138
steven_finch@harvard.edu