Multidrug-resistant *Klebsiella pneumoniae* harboring extended spectrum β-lactamase encoding genes isolated from human septicemias

Isabel Carvalho,1,2,3,4,5 Nadia Safia Chenouf6, José António Carvalho6, Ana Paula Castro6, Vanessa Silva1,2,3,4, Rosa Capita7,8, Carlos Alonso-Calleja7,8, Maria de Lurdes Nunes Enes Dapkevicius9,10, Gilberto Igerejas2,3,4, Carmen Torres8, Patricia Poeta1,4,*

1 Department of Veterinary Sciences, Microbiology and Antibiotic Resistance Team (MicroART), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal, 2 Department of Genetics and Biotechnology, UTAD, Vila Real, Portugal, 3 Functional Genomics and Proteomics Unit, UTAD, Vila Real, Portugal, 4 Laboratory Associated for Green Chemistry (LAQV-REQUIMTE), New University of Lisbon, Montre da Caparica, Portugal, 5 Area Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain, 6 Medical Center of Trás-os-Montes e Alto Douro E.P.E., Vila Real, Portugal, 7 Department of Food Hygiene and Technology, Veterinary Faculty, University of Leon, Leon, Spain, 8 Institute of Food Science and Technology, University of Leon, Leon, Spain, 9 University of the Azores, Faculty of Agricultural and Environmental Sciences (M.L.E.D.), Angra do Heroismo, Portugal, 10 Institute of Agricultural and Environmental Research and Technology (IIAIA), University of the Azores, Angra do Heroismo, Portugal

Abstract

Klebsiella pneumoniae is a major pathogen implicated in nosocomial infections. Extended-spectrum β-lactamase (ESBL)-producing *K. pneumoniae* isolates are a public health concern. We aim to characterize the type of β-lactamases and the associated resistance mechanisms in ESBL-producing *K. pneumoniae* isolates obtained from blood cultures in a Portuguese hospital, as well as to determine the circulating clones. Twenty-two cefotaxime/ceftazidime-resistant (CTX/CAZ) *K. pneumoniae* isolates were included in the study. Identification was performed by MALDI-TOF MS and the antimicrobial susceptibility testing by disk-diffusion. The screening test for ESBL-production was performed and ESBL-producer isolates were further characterized. The presence of different beta-lactamase genes (*bla*_{CTX-M}, *bla*_{SHV}, *bla*_{KPC}, *bla*_{NDM}, *bla*_{VI}, *bla*_{CMY-2}, *bla*_{DHA-1}, *bla*_{FOX}, *bla*_{MOX}, and *bla*_{ACC}) was analyzed by PCR/sequencing in ESBL-producer isolates, as well as the presence of other resistance genes (*aac(6’)-Ib-cr*, *tetA/B*, *dfrA*, *qnr*, *sul*/1/2/3) or integron-related genes (*intI1/2/3*). Multilocus-sequence-typing (MLST) was performed for selected isolates. ESBL activity was detected in 12 of the 22 CTX/CAZ *K. pneumoniae* isolates and 11 of them carried the *bla*_{CTX-M-15} gene (together with *bla*_{TEM}) and the remaining isolates carried the *bla*_{SHV-106} gene. All the *bla*_{CTX-M-15} harboring isolates also contained a *bla*_{SHV} gene (*bla*_{SHV-1}, *bla*_{SHV-11} or *bla*_{SHV-27} variants). Both *bla*_{SHV-27} and *bla*_{SHV-106} genes correspond to ESBL-variants. Two of the CTX-M-15 producing isolates carried a carbapenemase gene (*bla*_{KPC27} and *bla*_{OX-48}) and showed imipenem resistance. The majority of the ESBL-producing isolates carried the *intI1* gene, as well as sulphonamide-resistance
1. Introduction

During the last decades, the selective pressure exerted by antibiotics has given rise to bacterial species which are increasingly resistant to these agents, and this increase in multi-resistant pathogenic strains has been extremely high [1, 2].

Klebsiella pneumoniae is a major pathogen implicated in nosocomial infections that is known to spread easily, and it is frequently associated with resistance to the highest-priority critically important antimicrobial agents [3, 4]. During the last years, the diffusion of broad-spectrum cephalosporin-, carbapenem- and colistin-resistant *K. pneumoniae* isolates is now reducing treatment options and the containment of infections. Recently, the World Health Organization (WHO) [5] published a global priority list of antibiotic resistant bacteria, where third-generation cephalosporin- and/or carbapenem-resistant *Enterobacteriaceae (K. pneumoniae* and others), were included in the Priority 1 group. According to Amit, Mishali [6], carbapenem-resistant *K. pneumoniae* isolates implicated in bloodstream infections are associated with a high mortality rate of 40% to 70%.

K. pneumoniae isolates can acquire different mechanisms that confer antibiotic resistance to commonly used antibiotics. Among the most common mechanisms, the Extended-spectrum β-lactamases (ESBLs) and Acquired AmpC enzymes (qAmpCs) are widely reported [6–8]. One of the main concerns is that resistance caused by these enzymes may result in efficacy reduction of antimicrobial therapy, or in failed treatment [9]. Carbapenems are considered a last-resort antibiotic group for the treatment of infections caused by multidrug-resistant (MDR) *Enterobacteriaceae* [10]. ESBL- and carbapenemase-producing *K. pneumoniae* isolates are usually found after prolonged hospital stay and tends to affect debilitated patients with poor functional status [11]. Antimicrobial resistance is commonly related to the spread of plasmids, and the acquisition of resistance genes that normally occur by horizontal gene transfer (HGT) [12, 13]. International high-risk clones of *K. pneumoniae* are frequently detected not only among humans’ infections but also in those of companion animals [14–21].

Previous studies have been performed in Portugal analyzing the diversity of ESBLs in clinical *K. pneumoniae* isolates [4, 22–26], but none of them have been performed in our geographical region among invasive infections. The aim of this study was to characterize the type of ESBLs and the associated resistance mechanisms in broad-spectrum cephalosporin-resistant *K. pneumoniae* isolates recovered from blood cultures in a Portuguese hospital, as well as to determine the genetic lineages of these isolates.

2. Materials and methods

2.1 Bacterial isolates

A collection of 22 cefotaxime/ceftazidime-resistant (CTX/CAZ8) *K. pneumoniae* isolates obtained from blood cultures of hospitalized patients (one isolate/patient) in a Portuguese...
hospital (Centro Hospitalar de Trás os Montes e Alto Douro, CHTMAD) between January 2017 and September 2018, were included in this study. Identification was confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry method (MALDI-TOF MS, Bruker).

2.2 Susceptibility testing
Antimicrobial susceptibility testing was performed by Kirby–Bauer disk diffusion method on Mueller-Hinton agar, according with Clinical Laboratory Standards Institute guidelines (CLSI, 2019) [27]. The susceptibility of

K. pneumoniae

isolates was tested for the following antibiotics (μg/disk): amoxicillin + clavulanic acid (20+10), cefoxitin (30), ceftazidime (30), cefotaxime (30), imipenem (10), tetracycline (30), gentamicin (10), streptomycin (10), tobramycin (10), ciprofloxacin (5) and trimethoprim-sulfamethoxazole (SXT, 1.25+23.75). The screening of phenotypic ESBL production was carried out by the double disk synergy test using cefotaxime, ceftazidime and amoxicillin/clavulanic acid discs [27]. Isolates showing a positive ESBL-screening test were selected for further characterization in this study.

2.3 DNA extraction and quantification
Genomic DNA from ESBL-producing

K. pneumoniae

isolates was extracted using the InstaGene Matrix (Bio-Rad), according to the manufacturer’s instructions.

2.4 Antibiotic resistance genes
PCR (polymerase chain reaction) was the selected methodology to analyze the presence of resistance genes.

K. pneumoniae

isolates were screened by PCR and sequencing for the presence of genes encoding beta-lactamases:

blaCTX-M,

blaSHV,

blaTEM,

blaCMY-2,

blaDHA-1,

blaFOX,

blaMOX,

blaACC,

blaKPC,

blaOXA-48,

blaVIM and

blaNDM

[28, 29]. The isolates were also screened by PCR (and sequencing when required) for the presence of the genes encoding for resistance to tetracycline (tetA, tetB), fluoroquinolones (aac(6′)-Ib-cr, qnrA, qnrB, and qnrS), sulfamethoxazole (sul1, sul2 and sul3), and trimethoprim (dfrA genes) [28]. The presence of the integrase gene of class 1, class 2 and class 3 integrons (int1, int2 and int3, respectively) were analyzed by PCR [30]. Furthermore, the

mcr-1

colistin resistance gene was tested in all

K. pneumoniae

isolates [31]. Analysis of DNA sequences was performed with the BLAST program, available at the National Center for Biotechnology Information. Positive controls of the University of La Rioja were used in all PCR assays.

2.5 Multilocus sequence typing of

K. pneumoniae

isolates
The multilocus-sequence-typing (MLST) with seven housekeeping genes (gapA, phoE, infB, pgi, rpoB, tonB and mdh) was performed by PCR and sequencing in selected

K. pneumoniae

isolates (https://biggdb.pasteur.fr/klebsiella/klebsiella.html); the allelic combination of the seven genes allowed the determination of the sequence type (ST).

3. Results
3.1 Antimicrobial resistance phenotype in CTX/CAZR

K. pneumoniae

isolates
Amongst the 22 CTX/CAZR

K. pneumoniae

isolates, twelve of them showed a positive ESBL screening test (54.5%) and these isolates were considered for further genetic resistance analysis.
Considering the 12 ESBL-positive isolates, different levels of resistance were recorded towards amoxicillin-clavulanic acid, trimethoprim/sulfamethoxazole and ciprofloxacin (100%), tobramycin (91.7%), gentamicin (75%), tetracycline (66.7%), streptomycin (41.7%) or cefoxitin (25%). Accordingly, all these K. pneumoniae isolates showed a MDR-phenotype.

3.2 Genetic determinants in ESBL-producing K. pneumoniae isolates

As shown in Table 1, most of the ESBL-producing K. pneumoniae isolates (11 out of 12) carried the bla_{CTX-M-15} gene and co-harbored a β-lactamase gene of SHV-type, with the following variants (number of isolates): bla_{SHV-1} (9 isolates), bla_{SHV-11} (1 isolate) and bla_{SHV-27} (1 isolate, ESBL-variant). Moreover, the remaining ESBL-producing isolate carried the bla_{SHV-106} gene, a genetic variant that confers an ESBL phenotype. A bla_{TEM} gene was found among most of the ESBL-producing isolates (all except one). Three of the ESBL-positive isolates showed resistance to cefoxitin and amoxicillin-clavulanic acid, but all were negative by PCR for the genes encoding qAmpC β-lactamases (bla_{CMY-2}, bla_{SHV-1}, bla_{FOX}, bla_{MOX}, and bla_{ACC}). Moreover, four of the ESBL-positive isolates also were IMP^R; a carbapenemase gene was detected in two of these isolates: 1) one of them carried the bla_{KPC2/3} gene (it was not possible to distinguish between both variants after sequencing the PCR amplicon), together with bla_{CTX-M-15}, bla_{SHV-27} and bla_{TEM} genes; 2) the other one carried the bla_{OXA-48} gene, together with bla_{CTX-M-15}, bla_{SHV-11} and bla_{TEM} genes (Table 1); the two remaining IMP^R isolates were negative for all carbapenemase genes tested.

Tetracycline resistance was mediated in all eight resistant isolates by the tet_A gene and the int₁ gene, encoding the integrase of class 1 integrons, was present in 11 out of 12 ESBL-producing isolates (Table 1). The int₂ and int₃ genes (encoding the integrase of class 2 and 3 integrons, respectively) were not detected in this study. Furthermore, sulfamethoxazole-resistance was mediated by sul₂ (n = 10) and sul₃ genes (n = 5) in ESBL-producers. The aac(6′)-Ib-cr

Table 1. Resistance phenotype and genotype present in K. pneumoniae isolates from human septicemias in Portugal.

Samples	Resistance phenotype	ESBL production	Beta-lactamases	MLST	Other genes	Integrate
X1089	AMC, CAZ, CTX, IMP, CIP, SXT, TET, S	P	CTX-M-15, TEM, SHV-11, OXA-48	ST11	tetA, sul2, aac(6′)-Ib-cr	int1
X1090	AMC, FOX, CAZ, CTX, IMP, CIP, SXT, TET, GN, S, TOB	P	CTX-M-15, TEM, SHV-27, KPC2/3	ST348	tetA, sul2, aac(6′)-Ib-cr, qnrS	int1
X1091	AMC, FOX, CAZ, CTX, IMP, CIP, SXT, TET, GN, S, TOB	P	CTX-M-15, TEM, SHV-1	tetA, sul2, aac(6′)-Ib-cr, qnrS	int1	
X1096	AMC, CAZ, CTX, CIP, SXT, TET, GN, TOB	P	CTX-M-15, TEM, SHV-1	tetA, sul2, qnrS	int1	
X1097	AMC, CAZ, CTX, CIP, SXT, TET, TOB	P	CTX-M-15, TEM, SHV-1	tetA, sul2	int1	
X1098	AMC, CAZ, CTX, CIP, SXT, TET, GN, TOB	P	CTX-M-15, TEM, SHV-1	tetA, sul2, qnrS	int1	
X1099	AMC, CAZ, CTX, CIP, SXT, TET, GN, TOB	P	CTX-M-15, SHV-1	tetA, qnrS	int1	
X1100	AMC, CAZ, CTX, CIP, SXT, GN, TOB	P	CTX-M-15, SHV-1	sul2, sul3, qnrS	int1	
X1101	AMC, CAZ, CTX, CIP, SXT, GN, TOB	P	CTX-M-15, SHV-1	sul2, sul3, qnrS	int1	
X1102	AMC, CAZ, CTX, CIP, SXT, GN, TOB	P	CTX-M-15, SHV-1	sul2, sul3, qnrS	int1	
X1103	AMC, CAZ, CTX, CIP, SXT, GN, S, TOB	P	CTX-M-15, SHV-1	sul2, sul3, qnrS	int1	
X1088	AMC, FOX, CAZ, CTX, IMP, CIP, SXT, S, TOB	P	SHV-106, TEM	sul2, sul3, aac(6′)-Ib-cr, qnrS	ST15	

*AMC: amoxicillin-clavulanic acid; FOX: cefoxitin; CTX: cefotaxime; CAZ: ceftazidime; ATM: aztreonam; IMP: imipenem; TET: tetracycline; CIP: ciprofloxacin; SXT: trimethoprim-sulfamethoxazole; GN: gentamicin; TOB: tobramycin; S: streptomycin; FOX: cefoxitin.

–Positive, **N**- Negative.

*MLST–MultiLocus Sequence Typing.

https://doi.org/10.1371/journal.pone.0250525.t001
gene was detected in four ciprofloxacin-resistant isolates and qnrS was identified among 10 isolates (Table 1).

MLST analysis was performed in four representative K. pneumoniae isolates (based on the antimicrobial resistance genotype), and revealed three different lineages: ST348 (in one ESBL and IMPβ isolate carrying the genes encoding CTX-M-15, TEM, SHV-27, and KPC2/3 enzymes), ST11 (in two isolates, one of them carried CTX-M-15+TEM+SHV-1 and the other CTX-M-15+TEM+SHV-11+OXA-48) and ST15 (in one ESBL-positive isolate with SHV-106 +TEM) (Table 1).

4. Discussion

The mechanisms of resistance implicated in a collection of ESBL-producing K. pneumoniae isolates obtained from invasive infections (blood cultures) in a Portuguese hospital have been analyzed in this study. In agreement with the current global epidemiology based on the blaCTX-M, we detected the CTX-M-15 β-lactamase in most of ESBL-producer isolates (11 out of 12). This enzyme is widely disseminated among human isolates, particularly in Portugal [8, 23–26, 32]. It is worth noting that the first report of the CTX-M-15 enzyme isolated from blood culture in Portuguese hospitals goes back to 2005 [33]. Since then, the occurrence of this genotype was announced from K. pneumoniae isolates of various environments in Portugal, more recently in sick and healthy dogs [20], which can be explained by the close contact between humans and pets. Actually, it has been claimed that the blaCTX-M-15 among humans has, outstandingly, increased over time in most countries. Our finding seems to match completely with surveys conducted on hospitals located in different parts of Europe [19, 34–36]. Likewise, it was shown that this genotype has been disseminated in Asia [37] and Africa [38]. This study constitutes additional evidence that the CTX-M-15 remains the most important CTX-M enzyme in K. pneumoniae due to its large diffusion and relation to infections in human settings. Accordingly, this global spread could be, mostly, explained by the HGT between bacteria, mediated by conjugative plasmids [24]. Other ESBL variants of SHV-type were detected, either associated (SHV-27) or not associated to CTX-M-15 (SHV-106). Similarly, other authors detected SHV-106 producing K. pneumoniae isolates in Portuguese health institutions [24, 25, 39]. Moreover, SHV-27-producing K. pneumoniae isolates have been reported among human clinical infections [40, 41] and also in companion animals in Japan and Germany [42, 43]. This ESBL gene is frequently associated to other ESBL genes of the CTX-M-type, both in human and in animal settings.

Interestingly, two of the ESBL-producing isolates (with the blaCTX-M-15 gene, associated or not to blaSHV-27) also carried a carbapenemase encoding gene (blaKPC2/3 or blaOXA-48) as well as other beta-lactamase genes (blaTEM and blaSHV-11). In this respect, the blaOXA-48 gene was found in one ESBL-producer isolate (recovered in 2017), in association with blaCTX-M-15, blaTEM and blaSHV-11 genes. Moreover, another isolate carried the blaKPC2/3 gene, together with two ESBL encoding genes (blaCTX-M-15 and blaSHV-27). Similarly, some international reports showed the presence of blaOXA-48 gene among hospitalized patients [44]. This gene had been reported in human isolates, mainly in Iberian Peninsula [45–48]. Particularly in Portugal, the OXA-181 carbapenemase was detected among K. pneumoniae isolates of hospitalized patients [8].

Moreover, carbapenemases of the KPC-2, KPC-3 and OXA-48 type have been recently reported among carbapenem resistant K. pneumoniae isolates of different origins from the same hospital analyzed in our study, few of them of blood origin [46, 49]. Carbapenems are generally considered the most effective antibacterial agents and the first-choice treatment for infections caused by ESBL-producing Enterobacteriaceae. The current study emphasizes the relevance of co-occurrence of ESBL and carbapenemase encoding genes in K. pneumoniae
isolates implicated in invasive infections with the difficulties that could have for effective therapeu-
tic options.

Three different sequence types belonging to major international high-risk *K. pneumoniae* clones were identified in this study among four selected *K. pneumoniae* producer isolates (ST11, ST15 and ST348), revealing clonal diversity, in line with previous reports [3, 14]. The ST11 lineage has been frequently detected worldwide among CTX-M-15- [50] and KPC-producing *K. pneumoniae* isolates [51]. In addition, isolates of ST348 or ST15 lineages producing CTX-M-15 and/or KPC-2/3 enzymes have been reported either in humans or animals in different studies performed in Portugal [21, 32, 46]. The ST15 lineage was identified in our study in a SHV-106-producing *K. pneumoniae* isolate, and similar isolates were previously circulating in a Portuguese hospital [24].

Rodrigues, *et al.* [24] considered that the dissemination of CTX-M-15 and the persistence of diverse ESBLs of SHV-type among *K. pneumoniae* isolates was mainly linked to a few epidemic and international clones (as ST15), in line with our study. It is important to note that this ST15 lineage has been disseminated in different settings. The ST15 lineage was found in an intensive care unit in Brazil [12] and among CAZ R clinical isolates in France, Poland and Portugal [52]. Moreover, ertapenem-resistance associated with ST11, ST15 and ST348 *K. pneumoni-
ae* lineages have been previously found in another hospital in the same region [32]. *K. pneumoniae* ST15, which is a high-risk clonal lineage, seems to predominate among clinical CTX-M-15-producing isolates from companion animals [3, 42, 53]. All these findings indicate that these clonal lineages are frequently circulating, suggesting their important contribution to the expansion of β-lactamases in Portuguese hospitals.

5. Conclusions

Antimicrobial resistance can make infections difficult to treat, which represents a public health problem due to the negative consequences for human health.

Enterobacteriaceae isolated from septicemias in this human population study were frequently MDR and harbored clinically relevant antimicrobial resistance genes. The findings demonstrate that CTX-M-15-and ESBL-variants of SHV-type (SHV-106 and SHV-27) (associated in two cases with carbapenemases) are the most frequent mechanisms of resistance in ESBL-producing *K. pneumoniae* isolates implicated in bacteremia in the tested hospital. Additionally, our study demonstrates the presence of high-risk international clones (ST11, ST15 and ST348) among these ESBL-producing *K. pneumoniae* isolates. More studies should be carried out in the future to track the evolution of these type of β-lactamases in different environments.

Supporting information

S1 File.
(PDF)

S2 File.
(PDF)

S3 File.
(PDF)

Author Contributions

Conceptualization: Isabel Carvalho, Gilberto Igrejas, Carmen Torres, Patricia Poeta.
Data curation: Isabel Carvalho, Nadia Safia Chenouf, Gilberto Igrejas, Carmen Torres, Patricia Poeta.

Funding acquisition: Rosa Capita, Carlos Alonso-Calleja, Gilberto Igrejas, Carmen Torres, Patricia Poeta.

Investigation: Isabel Carvalho, Nadia Safia Chenouf.

Methodology: Isabel Carvalho, José António Carvalho, Ana Paula Castro, Gilberto Igrejas, Carmen Torres, Patricia Poeta.

Project administration: Gilberto Igrejas, Carmen Torres, Patricia Poeta.

Resources: Isabel Carvalho, Gilberto Igrejas, Carmen Torres, Patricia Poeta.

Supervision: Gilberto Igrejas, Carmen Torres, Patricia Poeta.

Validation: Rosa Capita, Carlos Alonso-Calleja, Maria de Lurdes Nunes Enes Dapkevicius, Gilberto Igrejas, Carmen Torres, Patricia Poeta.

Visualization: Gilberto Igrejas, Carmen Torres, Patricia Poeta.

Writing – original draft: Isabel Carvalho.

Writing – review & editing: Nadia Safia Chenouf, Vanessa Silva, Gilberto Igrejas, Carmen Torres, Patricia Poeta.

References
1. David S, Reuter S, Harris SR, Glasner C, Feltwell T, Argimon S, et al. Epidemic of carbapenem-resistant *Klebsiella pneumoniae* in Europe is driven by nosocomial spread. Nat. Microbiol. 2019; 4:1919–29. https://doi.org/10.1038/s41564-019-0492-8 PMID: 31358985
2. Spagnolo AM, Orlando P, Panatto D, Perdelli F, Cristina ML. An overview of carbapenem-resistant *Klebsiella pneumoniae*: epidemiology and control measures. Rev Med Microbiol. 2014; 25(1):7–14.
3. Marques C, Belas A, Aboim C, Cavaco-Silva P, Trigueiro G, Gama LT, et al. Evidence of Sharing of *Klebsiella pneumoniae* Strains between Healthy Companion Animals and Cohabitating Humans. J Clin Microbiol. 2019; 57(6). https://doi.org/10.1128/JCM.01537-18 PMID: 30944193
4. Marques C, Menezes J, Belas A, Aboim C, Cavaco-Silva P, Trigueiro G, et al. *Klebsiella pneumoniae* causing urinary tract infections in companion animals and humans: population structure, antimicrobial resistance and virulence genes. J. Antimicrob. Chemother. 2019; 74(3):594–602. https://doi.org/10.1093/jac/dky499 PMID: 30535393
5. WHO. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. 2017. Accessed on 20th February 2021.
6. Amit S, Mishali H, Koltovsky T, Schwaber MJ, Carmeli Y. Bloodstream infections among carriers of carbapenem-resistant *Klebsiella pneumoniae*: etiology, incidence and predictors. Clin Microbiol Infect. 2015; 21(1):30–4. https://doi.org/10.1016/j.cmi.2014.08.001 PMID: 25636924
7. Carvalho I, Silva N., Carrola J., Silva V., Currie C., Igrejas G. et al. Antibiotic Resistance. JLC and GI editors. Antibiotic Drug Resistance. Hoboken: John Wiley & Sons; 2019. p. 239–59.
8. Aires-de-Sousa M, Lopes E, Gonçalves ML, Pereira AL, Machado e Costa A, de Lencastre H, et al. Intestinal carriage of extended-spectrum beta-lactamase–producing *Enterobacteriaceae* at admission in a Portuguese hospital. Eur. J. Clin. Microbiol. Infect. Dis. 2020; 39(4):783–90. https://doi.org/10.1007/s10096-019-03798-3 PMID: 31873683
9. Hordijk J, Schoormans A, Kwakernaak M, Duijn B, Broens E, Dierikx C, et al. High prevalence of fecal carriage of extended spectrum β-lactamase/AmpC-producing *Enterobacteriaceae* in cats and dogs. Front. Microbiol. 2013; 4:242. https://doi.org/10.3389/fmicb.2013.00242 PMID: 23966992
10. Poulou A, Voulgaris E, Vrioni G, Xidopoulos G, Pliagkos A, Chatzipantazi V, et al. Imported *Klebsiella pneumoniae* carbapenemase-producing *K. pneumoniae* clones in a Greek hospital: impact of infection control measures for restraining their dissemination. J Clin Microbiol. 2012; 50(8):2618–23. https://doi.org/10.1128/JCM.00459-12 PMID: 22649010
11. Alekshun MN, Levy SB. Molecular mechanisms of antibacterial multidrug resistance. Cell. 2007; 128(6):1037–50. https://doi.org/10.1016/j.cell.2007.03.004 PMID: 17382878
12. Ferreira RL, da Silva BCM, Rezende GS, Nakamura-Silva R, Pirondo-Silva A, Campanini EB, et al. High Prevalence of Multidrug-Resistant *Klebsiella pneumoniae* Harboring Several Virulence and β-Lactamase Encoding Genes in a Brazilian Intensive Care Unit. Front. Microbiol. 2019; 9(3198).

13. Derakhshandeh A, Eragli V, Borojeni AM, Niaki MA, Zare S, Naziri Z. Virulence factors, antibiotic resistance genes and genetic relatedness of commensal *Escherichia coli* isolates from dogs and their owners. Microb. Pathog. 2018; 116:241–5. https://doi.org/10.1016/j.micpath.2018.01.041 PMID: 29410122

14. Domokos J, Damjanova I, Kristof K, Ligeti B, Kocsis B, Szabo D. Multiple Benefits of Plasmid-Mediated Quinolone Resistance Determinants in *Klebsiella pneumoniae* ST11 High-Risk Clone and Recently Emerging ST307 Clone. Front. Microbiol. 2019; 10(157). https://doi.org/10.3389/fmicb.2019.00157 PMID: 30889206

15. Cristina ML, Sartini M, Ottria G, Schinca E, Cenderello N, Crisalli MP, et al. Epidemiology and biomolecular characterization of carbapenem-resistant *Klebsiella pneumoniae* in an Italian hospital. J Prev Med Hyg. 2016; 57(3):E149–E56. PMID: 27903379

16. Sartori L, Sellera FP, Moura Q, Cardoso B, Cerdeira L, Lincopan N. Multidrug-resistant CTX-M-15-positive *Klebsiella pneumoniae* ST307 causing urinary tract infection in a dog in Brazil. J. Glob. Antimicrob. Resist 2019; 19:96–7. https://doi.org/10.1016/j.jgr.2019.09.003 PMID: 31520809

17. Ulstad CR, Solheim M, Berg S, Lindbaek M, Dahle UR, Wester AL. Carriage of ESBL/AmpC-producing or ciprofloxacin non-susceptible *Escherichia coli* and *Klebsiella* spp. in healthy people in Norway. Antimicrob. Resist. Infect. Control. 2016; 5:57. https://doi.org/10.1186/s13756-016-0156-x PMID: 28018582

18. Valencia Bacca J, Silva M, Cerdeira L, Esposito F, Cardoso B, Muñoz M, et al. Detection and Whole-Genome Analysis of a High-Risk Clone of *Klebsiella pneumoniae* ST340/CG258 Producing CTX-M-15 in a Companion Animal. Microb. Drug Resist. 2019.

19. Vilila L, Feudi C, Fortini D, Brisse S, Passet V, Bonura C, et al. Diversity, virulence, and antimicrobial resistance of the KPC-producing *Klebsiella pneumoniae* ST307 clone. Microb. genom. 2017; 3(4): e000110-e. https://doi.org/10.1093/mgen/0.000110 PMID: 28795421

20. Carvalho I, Alonso C, Silva V, Pimenta P, Cunha R, Martins C, et al. Extended-Spectrum Beta-Lactamase-Producing *Klebsiella pneumoniae* Isolated from Healthy and Sick Dogs in Portugal. Microb. Drug Resist. 2020; 26(6):709–15. https://doi.org/10.1016/j.mdr.2019.02.005 PMID: 31895642

21. Trigo da Roza F, Couto N, Carneiro C, Cunha E, Rosa T, Magalhães M, et al. Commonality of Multidrug-Resistant *Klebsiella pneumoniae* ST348 Isolates in Horses and Humans in Portugal. Front. Microbiol. 2019; 10(1657). https://doi.org/10.3389/fmicb.2019.01657 PMID: 31379799

22. Manageiro V, Romao R, Moura IB, Sampaio DA, Vieira L, Ferreira E, et al. Molecular Epidemiology and Risk Factors of Carbapenem-Producing Enterobacteriaceae Isolates in Portuguese Hospitals: Results From European Survey on Carbapenem-Producing Enterobacteriaceae (EuSCAPE). Front. Microbiol. 2018; 9:2834. https://doi.org/10.3389/fmicb.2018.02834 PMID: 30538682

23. Gabriel Caneiras CS, Mayoralas Alises S, Lito L, Melo Cristina J, Duarte A. Molecular Epidemiology of *Klebsiella pneumoniae*: multilocus dissemination of CTX-M-15 Extended Spectrum β-lactamase. Eur. Respir. J. 2018; 52 (suppl 62):PA3912.

24. Rodrigues C, Machado E, Ramos H, Peixe L, Novais A. Expansion of ESBL-producing *Klebsiella pneumoniae* in hospitalized patients: a successful story of international clones (ST15, ST147, ST336) and epidemic plasmids (IncR, IncFIIK). Int. J. Med. Microbiol. 2014; 304(8):1100–8. https://doi.org/10.1016/j.ijmm.2014.08.003 PMID: 25190354

25. Mendonca N, Ferreira E, Louro D, Canica M. Molecular epidemiology and antimicrobial susceptibility of extended- and broad-spectrum beta-lactamase-producing *Klebsiella pneumoniae* isolated in Portugal. Int. J. Antimicrob. Agents. 2009; 34(1):29–37. https://doi.org/10.1016/j.ijantimicag.2008.11.014 PMID: 19272757

26. Caneiras C, Lito L, Melo-Cristino J, Duarte A. Community- and Hospital-Acquired *Klebsiella pneumoniae* Urinary Tract Infections in Portugal: Virulence and Antibiotic Resistance. Microorganisms. 2019; 7 (5). https://doi.org/10.3390/microorganisms7050138 PMID: 31100810

27. CLSI. Clinical and Laboratory Standards Institute. Performed Standards for Antimicrobial Susceptibility Testing. 29th edition. CLSI supplement. Wayne, PA.; 2019.

28. Ruiz E, Saenz Y, Zarazaga M, Rocha-Gracia R, Martinez-Martinez L, Arlet G, et al. qnr, aac(6’)-Ib-cr and qepA genes in *Escherichia coli* and *Klebsiella* spp.: genetic environments and plasmid and chromosomal location. J. Antimicrob. Chemother. 2012; 67(4):866–97. https://doi.org/10.1093/jac/dkr548 PMID: 22232228

29. Pérez-Pérez FJ, Hanson ND. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 2002; 40(6):2153–62. https://doi.org/10.1128/jcm.40.6.2153-2162.2002 PMID: 12037080
30. Lévesque C, Piché L, Larose C, Roy PH. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob. Agents Chemother. 1995; 39(1):185–91. https://doi.org/10.1128/aac.39.1.185 PMID: 7695304

31. Hassen B, Abbassi MS, Ruiz-Ripa L, Mama OM, Hassen A, Torres C, et al. High prevalence of merA encoding colistin resistance and first identification of blaCTX-M-55 in ESBL/CMY-2-producing Escherichia coli isolated from chicken faeces and retail meat in Tunisia. Int. J. Food Microbiol. 2019; 318:108478. https://doi.org/10.1016/j.ijfoodmicro.2019.108478 PMID: 31855787

32. Vubil D, Figueiredo R, Reis T, Canha C, Boaventura L, Gu DAS. Outbreak of KPC-3-producing ST15 and ST348 Klebsiella pneumoniae in a Portuguese hospital. Epidemiol Infect. 2017; 145(3):595–9. https://doi.org/10.1017/S0950268816002442 PMID: 27788691

33. Conceição T, Brizó A, Duarte A, Lito LM, Cristino JM, Salgado MJ. First description of CTX-M-15-producing Klebsiella pneumoniae in Portugal. Antimicrob. Agents Chemother. 2005; 49(1):477–8. https://doi.org/10.1128/aac.49.1.477-478.2005 PMID: 15616344

34. Mshana SE, Fritzenwanker M, Falgenhauer L, Domann E, Hain T, Chakraborty T, et al. Molecular epidemiology and characterization of an outbreak causing Klebsiella pneumoniae clone carrying chromosomally located blaCTX-M-15 at a German University-Hospital. BMC Microbiol. 2015; 15:122-. https://doi.org/10.1186/s12866-015-0460-2 PMID: 26077154

35. Younes A, Hamouda A, Dave J, Amyes SG. Prevalence of transferable blaCTX-M-15 from hospital- and community-acquired Klebsiella pneumoniae isolates in Scotland. J. Antimicrob. Chemother. 2011; 66(2):313–8. https://doi.org/10.1093/jac/dko453 PMID: 21131694

36. Zhou K, Lokate M, Deurenberg RH, Arends J, Lo-Ten Foe J, Grundmann H, et al. Characterization of a Klebsiella pneumoniae isolate from chicken faeces and retail meat in Tunisia. Int. J. Food Microbiol. 2019; 318:108478. https://doi.org/10.1186/s12866-019-185 PMID: 7695304

37. Lee MY, Ko KS, Kang CI, Chung DR, Peck KR, Song JH. High prevalence of CTX-M-15-producing Klebsiella pneumoniae in Asian countries: diverse clones and clonal dissemination. Int. J. Antimicrob. Agents. 2011; 38(2):160–3. https://doi.org/10.1016/j.ijantimicag.2011.03.020 PMID: 21605960

38. Nouria L, Djamel E, Hassaine H, Frderic R, Richard B. First characterization of CTX-M-15 and DHA-1-lactamases among clinical isolates of Klebsiella pneumoniae in Laghouat Hospital, Algeria. Afr. J. Microbiol. Res. 2014; 8:1221–7.

39. Liakopoulos A, Mevius D, Ceccarelli D. A Review of SHV Extended-Spectrum beta-Lactamases: Neglected Yet Ubiquitous. Front. Microbiol. 2016; 7:1374. https://doi.org/10.3389/fmicb.2016.01374 PMID: 27656166

40. Corkill JE, Cuevas LE, Gurgel RQ, Greensill J, Hart CA. SHV-27, a novel cefotaxime-hydrolysing β-lactamase, identified in Klebsiella pneumoniae isolates from a Brazilian hospital. J. Antimicrob. Chemother. 2001; 47(4):463–5. https://doi.org/10.1093/jac/dkq453 PMID: 11266422

41. Breurec S, Guessennd N, Timinouni M, Le TAH, Cao V, Ngandjio A. K. pneumoniae ST2-Producin g Klebsiella pneumoniae in Laghouat Hospital, Algeria. Afr. J. Microbiol. Res. 2014; 8:1221–7.

42. Harada K, Shimizu T, Mukai Y, Kuwajima K, Sato T, Usui M, et al. Phenotypic and Molecular Characterization of Antimicrobial Resistance in Klebsiella spp. Isolates from Companion Animals in Japan: Clonal Dissemination of Multidrug-Resistant Extended-Spectrum beta-Lactamase-Producing Klebsiella pneumoniae. Front. Microbiol. 2016; 7:1021. https://doi.org/10.3389/fmicb.2016.01021 PMID: 27446056

43. Pulss S, Stolle I, Stamm I, Leidner U, Heydel C, Semmler T, et al. Multispecies and Clonal Dissemination of OXA-48 Carbenapenemase in Enterobacteriaceae From Companion Animals in Germany, 2009–2016. Front. Microbiol. 2018; 9:1265-. https://doi.org/10.3389/fmicb.2018.01265 PMID: 29963026

44. Ben Tanfous F, Alonso CA, Achour W, Ruiz-Ripa L, Torres C, Ben Hassen A. First Description of KPC-2-Producing Escherichia coli and ST15 OXA-48-Positive Klebsiella pneumoniae in Tunisia. Microb. Drug Resist. 2017; 23(3):365–75. https://doi.org/10.1089/mdr.2016.0090 PMID: 27754776

45. Díaz-Agero Pérez C, López-Fresneña N, Rincon Carlavilla AL, Hernandez Garcia M, Ruiz-Garbayos P, Aranaz-Andrés JM, et al. Local prevalence of extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae intestinal carriers at admission and co-expression of ESBL and OXA-48 carbapenemase in Klebsiella pneumoniae: a prevalence survey in a Spanish University Hospital. BMJ Open. 2019; 9(3):e024879. https://doi.org/10.1136/bmjopen-2018-024879 PMID: 30826764

46. Lopes E, Saavedra MJ, Costa E, de Lencastrê H, Poirel L, Aires-de-Sousa M. Epidemiology of carbapenemase-producing Klebsiella pneumoniae in northern Portugal: Predominance of KPC-2 and OXA-48. J. Glob. Antimicrob. Resist 2020; 22:349–53. https://doi.org/10.1016/j.jgar.2020.04.007 PMID: 32348902

47. Machuca J, López-Cerero L, Fernández-Cuenca F, Mora-Nava L, Mediavilla-Gradolph C, López-Rodriguez I, et al. OXA-48-Like-Producing Klebsiella pneumoniae in Southern Spain in 2014–2015.
48. Rivera-Izquierdo M, Láinez-Ramos-Bossini AJ, Rivera-Izquierdo C, López-Gómez J, Fernández-Martínez NF, Redruello-Guerrero P, et al. OXA-48 Carbapenemase-Producing Enterobacterales in Spanish Hospitals: An Updated Comprehensive Review on a Rising Antimicrobial Resistance. Antibiotics. 2021; 10(1):89. https://doi.org/10.3390/antibiotics10010089 PMID: 33477731

49. Perdigão J, Caneiras C, Elias R, Modesto A, Spadar A, Phelan J, et al. Genomic Epidemiology of Carbapenemase Producing Klebsiella pneumoniae Strains at a Northern Portuguese Hospital Enables the Detection of a Misidentified Klebsiella variicola KPC-3 Producing Strain. Microorganisms. 2020; 8(12):1986.

50. Kim SY, Ko KS. Diverse Plasmids Harborin blaCTX-M-15 in Klebsiella pneumoniae ST11 Isolates from Several Asian Countries. Microb. Drug Resist. 2019; 25(2):227–32. https://doi.org/10.1089/mdr.2018.0020 PMID: 30212274

51. Li Y, Shen H, Zhu C, Yu Y. Carbapenem-Resistant Klebsiella pneumoniae Infections among ICU Admission Patients in Central China: Prevalence and Prediction Model. Biomed Res Int. 2019; 2019:9767313. https://doi.org/10.1155/2019/9767313 PMID: 31032370

52. Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol. 2005; 43(8):4178–82. https://doi.org/10.1128/JCM.43.8.4178-4182.2005 PMID: 16081970

53. Ewers C, Stamm I, Pfeifer Y, Wieler LH, Kopp PA, Schonning K, et al. Clonal spread of highly successful ST15-CTX-M-15 Klebsiella pneumoniae in companion animals and horses. J. Antimicrob. Chemother. 2014; 69(10):2676–80. https://doi.org/10.1093/jac/dku217 PMID: 24974381