Minimum Dominating Set for a Point Set in \mathbb{R}^2

Ramesh K. Jallu∗ Prajwal R. Prasad † Gautam K. Das ∗

Abstract

In this article, we consider the problem of computing minimum dominating set for a given set S of n points in \mathbb{R}^2. Here the objective is to find a minimum cardinality subset S' of S such that the union of the unit radius disks centered at the points in S' covers all the points in S. We first propose a simple 4-factor and 3-factor approximation algorithms in $O(n^6 \log n)$ and $O(n^{11} \log n)$ time respectively improving time complexities by a factor of $O(n^2)$ and $O(n^4)$ respectively over the best known result available in the literature [M. De, G.K. Das, P. Carmi and S.C. Nandy, Approximation algorithms for a variant of discrete piercing set problem for unit disk, Int. J. of Comp. Geom. and Appl., to appear]. Finally, we propose a very important shifting lemma, which is of independent interest and using this lemma we propose a $\frac{5}{2}$-factor approximation algorithm and a PTAS for the minimum dominating set problem.

Keywords: minimum dominating set, unit disk graph, approximation algorithm.

1 Introduction

A minimum dominating set S' for a set S of n points in \mathbb{R}^2 is defined as follows: (i) $S' \subseteq S$ (ii) each point $s \in S$ is covered by at least one unit radius disk centered at a point in S', and (iii) size of S' is minimum. The minimum dominating set (MDS) problem for a point set S of size n in \mathbb{R}^2 involves finding a minimum dominating set S' for the set S. We call this problem as a geometric version of MDS problem. The MDS problem for a point set can be modeled as an MDS problem in unit disk graph (UDG) as follows: A unit disk graph $G = (V,E)$ for a set U of n unit diameter disks in \mathbb{R}^2 is the intersection graph of the family of disks in U i.e., the vertex set V corresponds to the set U and two vertices are connected by an edge if the corresponding disks have common intersection. The minimum dominating set for the graph G is a minimum size subset V' of V such that for each of the vertex $v \in V$ is either in V' or adjacent to a node in V' in G. Several people have done research on MDS problem because of its wide applications such as wireless networking, facility location problem, to name a few. Our interest in this problem arose from the following reason: suppose in a city we have a set S of n important locations (houses, etc.); the objective is to provide some emergency services (ambulance, fire station, etc.) to each of the locations in S so that each location is within a predefined distance of at least one service center. Note that positions of the emergency service centers are from the predefined set S of locations only.

∗Indian Institute of Technology Guwahati, India
†National Institute of Technology Karnataka, India
1.1 Related Work

The MDS problem can be viewed as a general set cover problem, but it is an NP-hard problem \cite{16, 20} and not approximable within $c \log n$ for some constant c unless P = NP \cite{26}. Therefore $O(\log n)$-factor approximation algorithm is possible for MDS problem by applying the algorithm for general set cover problem \cite{4}. Some exciting results for the geometric version of MDS problem are available in the literature.

In the discrete unit disk cover (DUDC) problem, two sets P and Q of points in \mathbb{R}^2 are given, the objective is to choose minimum number of unit disks D' centered at the points in Q such that the union of the disks in D' covers all the points in P. Johnson \cite{20} proved that the DUDC problem is NP-hard. Mustafa and Ray in 2010 \cite{22} proposed a $(1 + \delta)$-approximation algorithm for $0 < \delta \leq 2$ (PTAS) for the DUDC problem using ε-net based local improvement approach. The fastest algorithm is obtained by setting $\delta = 2$ for a 3-factor approximation algorithm, which runs in $O(m^{65}n)$ time, where m and n are number of unit radius disks and number of points respectively \cite{11}. The high complexity of the PTAS leads to further research on constant factor approximation algorithms for the DUDC problem. A series of constant factor approximation algorithms for DUDC problem are available in the literature:

- 108-approximation algorithm \cite{C˘ alinescu et al., 2004} \cite{5}
- 72-approximation algorithm \cite{Narayanappa and Voytechovsky, 2006} \cite{24}
- 38-approximation algorithm in $O(m^2n^4)$ time \cite{Carmi et al., 2007} \cite{6}
- 22-approximation algorithm in $O(m^2n^4)$ time \cite{Claude et al., 2010} \cite{9}
- 18-approximation algorithm in $O(mn + n \log n + m \log m)$ time \cite{Das et al., 2012} \cite{11}
- 15-approximation algorithm in $O(m^6n)$ time \cite{Fraser and López-Ortiz, 2012} \cite{13}
- $(9 + \varepsilon)$-approximation algorithm in $O(m^{3(1+\frac{\varepsilon}{2})}n \log n)$ time \cite{Acharyya et al., 2013} \cite{1}

The DUDC problem is a geometric version of MDS problem for $P = Q$. Therefore all results for the DUDC problem are applicable to MDS problem.

The geometric version of MDS problem is known to be NP-hard \cite{8}. Nieberg and Hurink \cite{23} proposed $(1 + \varepsilon)$-factor approximation algorithm for $0 < \varepsilon \leq 1$. The fastest algorithm is obtained by setting $\varepsilon = 1$ for a 2-approximation result, which runs in $O(n^{81})$ time \cite{10}, which is not practical even for $n = 2$. Another PTAS for dominating set of arbitrary size disk graph is available in the literature proposed by Gibson and Pirwani \cite{17}. The running time of this PTAS is $n^{O\left(\frac{1}{\varepsilon^2}\right)}$.

Marathe et al. \cite{21} proposed a 5-factor approximation algorithm for the MDS problem. Ambühl et al. \cite{2} proposed 72-factor approximation algorithm for weighted dominating set (WDS) problem. In the WDS problem, each node has a positive weight and the objective is to find the minimum weight dominating set of the nodes in the graph. Huang et al. \cite{19}, Dai and Yu \cite{12}, and Zou et al. \cite{27} improved the approximation factor for WDS problem to $6 + \varepsilon, 5 + \varepsilon$, and $4 + \varepsilon$ respectively. First, they proposed γ-factor ($\gamma = 6, 5, 4$ in \cite{19}, \cite{12}, and \cite{27} respectively) approximation algorithm for
a subproblem and using the result of their corresponding sub-problems they proposed \((\gamma + \epsilon)\)-factor approximation algorithms. The time complexity of their algorithms are \(O(\alpha(n) \times \beta(n))\), where \(O(\alpha(n))\) is the time complexity of the algorithm for the sub-problem and \(O(\beta(n)) = O(n^{4(\frac{\alpha}{2})^2})\) is the number of times the sub-problem needs to be invoked to solve the original problem. The \((\gamma + 1)\)-factor approximation algorithm can be obtained by setting \(\epsilon = 1\), but the time complexity becomes a very high degree polynomial function in \(n\). Carmi et al. [7] proposed a 5-factor approximation algorithm of the MDS problem for arbitrary size disk graph. Fonseca et al. [14] proposed a \(\frac{11}{5}\)-factor approximation algorithm for the MDS problem in UDG which can be achieved in \(O(n + m)\) time, when the input is a graph with \(n\) vertices and \(m\) edges, and in \(O(n \log n)\) time, in the geometric version of the problem. The same set of authors also proposed a \(\frac{10}{9}\)-factor approximation algorithm for the MDS problem in UDG which runs in \(O(n^2m)\) time [15]. Recently, De et al. [10] considered the geometric version of MDS problem and proposed 12-factor, 4-factor, and 3-factor approximation algorithms with running time \(O(n \log n)\), \(O(n^8 \log n)\), and \(O(n^{15} \log n)\) respectively. They also proposed a PTAS with high degree polynomial running time.

1.2 Our Contribution

In this paper, we consider the geometric version of MDS problem and propose a series of constant factor approximation algorithms. We first propose 4-factor and 3-factor approximation algorithms with running time \(O(n^6 \log n)\) and \(O(n^{11} \log n)\) respectively improving the time complexities by a factor of \(O(n^2)\) and \(O(n^4)\) respectively over the best known result in the literature [10]. Finally, we propose a new shifting strategy lemma. Using our shifting strategy lemma we propose \(\frac{5}{2}\)-factor and \((1 + \frac{1}{k})^2\)-factor (i.e., PTAS) approximation algorithms for the MDS problem. The running time of proposed \(\frac{5}{2}\)-factor and \((1 + \frac{1}{k})^2\)-factor approximation algorithms are \(O(n^{20} \log n)\) and \(n^{O(k)}\) respectively. Though the time complexity of the proposed PTAS is same as the PTAS proposed by De et al. [10] in terms of \(O\) notation, but the constant involved in our PTAS is smaller than the same in [10].

2 4-Factor Approximation Algorithm for the MDS Problem

In this section, a set \(S\) of \(n\) points in \(\mathbb{R}^2\) is given inside a rectangular region \(\mathcal{R}\). The objective is to find an MDS for \(S\). Here we propose a simple 4-factor approximation algorithm. The running time of our algorithm is \(O(n^6 \log n)\), which is an improvement by a factor of \(O(n^2)\) over the best known existing result [10]. In order to obtain a 4-factor approximation algorithm, we consider a partition of \(\mathcal{R}\) into regular hexagons of side length \(\frac{1}{2}\) (see Figure 1(a)). We use \(cell\) to denote a regular hexagon of side length \(\frac{1}{2}\).

Lemma 1 All points inside a single cell can be covered by an unit radius disk centered at any point inside that cell.

Proof: The lemma follows from the fact that the distance between any two points inside a regular hexagon of side length \(\frac{1}{2}\) is at most 1 (for demonstration see the Figure 1(b)).
Figure 1: (a) Regular hexagonal partition (b) single regular hexagon of side length $\frac{1}{2}$ contained in an unit radius disk, and (c) a septa-hexagon

Definition 1 A septa-hexagon is a combination of 7 adjacent cells such that one cell is inscribed by six other cells as shown in Figure 1(c).

For a point set U, we use $\Delta(U)$ to denote the set of unit radius disks centered at the points in U. Let U_1 and U_2 be two point sets such that $U_1 \subseteq U_2$. We use $\chi(U_1, U_2)$ to denote the set of points such that $\chi(U_1, U_2) \subseteq U_2$ and an unit radius disk centered at any point in $\chi(U_1, U_2)$ covers at least one point of U_1.

2.1 Algorithm overview

Let us consider a septa-hexagon C. Recall that C is a combination of 7 cells (regular hexagon of side length $\frac{1}{2}$). Let $S_1 = S \cap C$ and $S_2 = \chi(S_1, S)$. For the 4-factor approximation algorithm, we first find minimum size subset $S' \subseteq S_2$ such that $S_1 \subseteq \bigcup_{d \in \Delta(S')} d$. Call this problem as single septa-hexagon MDS problem. Using the optimum (minimum size) solution of single septa-hexagon MDS problem, we present our main 4-factor approximation algorithm. The Lemma 2 gives an important feature to design optimum algorithm for single septa-hexagon MDS problem.

Lemma 2 If OPT_C is a minimum cardinality subset of S_2 such that $S_1 \subseteq \bigcup_{d \in \Delta(OPT_C)} d$, then $|OPT_C| \leq 7$.

Proof: The septa-hexagon C has at most 7 non-empty cells. From Lemma 1, we know that an unit radius disk centered at a point in a cell covers all points in that cell. Therefore one point from each of the non-empty cells is sufficient to cover all the points in C. Thus the Lemma follows. □

Lemma 3 For a given set S of n points and a septa-hexagon C, the Algorithm computes an MDS for $S \cap C$ using the points of S in $O(n^6 \log n)$ time.

Proof: The optimality of the Algorithm follows from the fact that Algorithm considers all possible set of sizes $0, 1, \ldots, 7$ (see Lemma 2) as its solution and reports minimum size solution. The line number 7 of the algorithm can be computed in $O(n \log n)$ time as follows: (i) computation of the set S_1 takes $O(n)$ time, (ii) computation of S_2 can be done in $O(n \log n)$ time using nearest
Algorithm 1: Algorithm 4 Factor(S, C, n)

1: **Input:** A set S of n points and a septa-hexagon C
2: **Output:** A set $S' (\subseteq S)$ such that $(S \cap C) \subseteq \bigcup_{d \in \Delta(S')} d$.
3: $S' \leftarrow \emptyset$
4: if $(S \cap C \neq \emptyset)$ then
5: Choose one arbitrary point from each non-empty cell of C and add to S'.
6: $m \leftarrow |S'| /* m$ is at most 7 */
7: Let $S_1 = S \cap C$ and $S_2 = \chi(S_1, S)$.
8: for $(i = m - 1, m - 2, \ldots, 1)$ do
9: if $(i = 6)$ then
10: for (Each possible combination of 5 points $X = \{p_1, p_2, \ldots, p_5\}$ of S_2) do
11: Find $Y \subseteq S_1$ such that no point in Y is covered by $\bigcup_{d \in \Delta(X)} d$.
12: Compute the farthest point Voronoi diagram of Y. \[3\]
13: Find a point p (if any) from $S_2 \setminus X$ (using planar point location algorithm \[25\]) such that the farthest point in Y from p is less than or equal to 1. If such p exists, then set $S' \leftarrow X \cup \{p\}$ and exit for loop.
14: end for
15: else
16: for (Each possible combination of i points $X = \{p_1, p_2, \ldots, p_i\}$ of S_2) do
17: if $(S_1 \subseteq \bigcup_{d \in \Delta(X)} d)$ then
18: Set $S' \leftarrow X$ and exit from for loop
19: end if
20: end for
21: end if
22: end for
23: end if
24: Return S'

point Voronoi diagram of S_1 in $O(n \log n)$ time and for each point $p \in S$ apply planar point location algorithm to find the nearest point in S_1 in $O(\log n)$ time.

The running time of the else part in the line number 15 of the algorithm is at most $O(n^6)$ time. The worst case running time of the algorithm comes from line numbers 9-14. The complexity of line numbers 11-13 is $O(n \log n)$ time. Therefore the running time of the line numbers 9-14 is $O(n^6 \log n)$ time. Thus the overall worst case running time of the proposed Algorithm [1] is $O(n^6 \log n)$. \[5\]

Let us consider a septa-hexagonal partition of \mathbb{R} such that no point of S is on the boundary of any septa-hexagon and a 4 coloring scheme of it (see Figure 2). Consider an unicolor septa-hexagon of color A (say). Its adjacent septa-hexagons are assigned colors B, C and D (say) such that opposite septa-hexagons are assigned the same color (see Figure 2).

Lemma 4 If C' and C'' are two same colored septa-hexagons, then $(C' \cup C'') \cap S \cap d = \emptyset$ for any unit radius disk d.

\[5\]
Proof: According to the 4-coloring scheme, size of the septa-hexagons, and no point of S is on the boundary of C' and C'' the minimum distance between two points $s_1 \in C' \cap S$ and $s_2 \in C'' \cap S$ is greater than 2 (see Figure 2). Thus the lemma follows.

Theorem 1 The 4-coloring scheme gives a 4-factor approximation algorithm for the MDS problem in $O(n^6 \log n)$ time, where n is the input size.

Proof: Let $N_1, N_2, N_3,$ and N_4 be the sets of septa-hexagons of colors $A, B, C,$ and D respectively. Let $S'_i = S \cap \bigcup_{C \in N_i} C$ and $S'_2 = \chi(S'_i, S)$ for $1 \leq i \leq 4$. By Lemma 4, the pair (S'_1, S'_2) can be partitioned into $|N_i|$ pairs (S'_{1j}, S'_{2j}) such that for each pair Algorithm 1 is applicable for solving the covering problem optimally to cover S'_i using S'_2, where $1 \leq j \leq |N_i|$. Let N'_i be the optimum solution for the set S'_i ($1 \leq i \leq 4$) using the Algorithm 1. If OPT is the optimum solution for the set S, then $|N'_i| \leq |OPT|$. Therefore $\sum_{i=1}^{4} |N'_i| \leq 4 \times |OPT|$. Thus the approximation factor of the algorithm follows.

The time complexity result of the theorem follows from Lemma 5 and the fact that each point in S can participate in the Algorithm 1 at most constant number of times.

3 3-Factor Approximation Algorithm for the MDS Problem

Given a set S of n points in a rectangular region R, we wish to find an MDS for S. Here we present a 3-factor approximation algorithm in $O(n^{11} \log n)$ time for the MDS problem, which is an improvement by a factor of $O(n^4)$ over the best known result available in the literature [10].

Definition 2 A super-cell is a combination of 15 regular hexagons of side length $\frac{1}{2}$ arranged in three consecutive rows as shown in Figure 3.
3.1 Algorithm overview

Let us consider a super-cell \mathcal{D}. Let $S_1 = S \cap \mathcal{D}$ and $S_2 = \chi(S_1, S)$. In order to obtain 3-factor approximation algorithm for the MDS problem, we first find a minimum size subset $S' \subseteq S_2$ such that $S_1 \subseteq \bigcup_{d \in \Delta(S')} d$. Call this problem as a single super-cell MDS problem. Using the optimum solution of single super-cell MDS problem, we present our main 3-factor approximation algorithm.

Lemma 5 If OPT_D is the minimum cardinality subset of S_2 such that $S_1 \subseteq \bigcup_{d \in \Delta(OPT)} d$, then $|OPT_D| \leq 15$.

Proof: The lemma follows from the Lemma 1 and the fact that the super-cell \mathcal{D} has at most 15 non-empty cells.

We decompose a super-cell \mathcal{D} into 3 regions namely G_1^D, G_2^D, and G_3^D (see Figure 4 where G_1^D, G_2^D, and G_3^D correspond to unshaded, light shaded, and dark shaded regions respectively).

Lemma 6 For any unit radius disk d and a super-cell \mathcal{D}, $(G_1^D \cup G_3^D) \cap d = \emptyset$.

Proof: The lemma follows from the fact that if s and t are two arbitrary points of G_1^D and G_3^D respectively, then the Euclidean distance between s and t is greater than 2.
Let $S_1 = S \cap D$ and $S_2 = \chi(S_1, S)$, where D is a super-cell. Our objective is to find a minimum cardinality set $S' \subseteq S_2$ such that $S_1 \subseteq \bigcup_{d \in \Delta(S')} d$.

Let $S'_1 = S_1 \cap G_D^1$, $S'_2 = S_1 \cap G_D^2$, and $S'_3 = S_1 \cap G_D^3$. A point on a boundary can be assigned to any set associated with that boundary. Let $S'_2 = \chi(S'_1, S_2)$, $S'_3 = \chi(S'_1, S_2)$, and $S'_3 = \chi(S'_1, S_2)$. The Lemma 6 says that $S'_1 \cap S'_3 = \emptyset$.

Algorithm 2: Algorithm 3_Factor(S, D, n)

1: **Input:** A set S of n points and a super-cell D
2: **Output:** A set $S' \subseteq S$ such that $(S \cap D) \subseteq \bigcup_{d \in \Delta(S')} d$
3: $S' \leftarrow S$
4: Find the sets $S'_1, S'_2, S'_3, S'_2, S'_2,$ and S'_3 as defined above.
5: **for** (Each possible combination $X = \{p_1, p_2, \ldots, p_j\}$ of $j (0 \leq j \leq 9)$ points in S'_2) **do**
6: **if** ($S'_2 \subseteq \bigcup_{d \in \Delta(X)} d$) **then**
7: Let U and V be the subsets of S'_1 and S'_3 respectively such that no point in $U \cup V$ is covered by $\bigcup_{d \in \Delta(X)} d$.
8: Let Z be the minimum size subset of S'_1 such that $U \subseteq \bigcup_{d \in \Delta(Y)} d$.
9: Let Z be the minimum size subset of S'_2 such that $V \subseteq \bigcup_{d \in \Delta(Z)} d$.
10: **if** ($|S'_2| > |X| + |Y| + |Z|$) **then**
11: Set $S' \leftarrow X \cup Y \cup Z$
12: **end if**
13: **end if**
14: **end for**
15: **Return** S'

Lemma 7 For a given set S of n points and a super-cell D, the Algorithm 2 computes an MDS for $S \cap D$ using the points of S in $O(n^{11} \log n)$ time.

Proof: In the case of selecting 3 points in S'_2 in line number 8 of the algorithm, we can choose one point from each of the non-empty cells of G_D^1. Therefore, the worst case of line number 8 appears for the case of choosing all possible combinations of two points in S'_2. This can be done in $O(n^2 \log n)$ using the technique of the Algorithm 1 (line numbers 12-13). Similar analysis is applicable to line number 9. Line numbers 6-7 and 10-12 can be implemented in $O(n)$ time.

The worst case running time of the algorithm depends on the for loop in the line number 5. In this for loop, we are choosing all possible 9 points from a set of n points in worst case. Therefore the time complexity of the Algorithm 2 is $O(n^{11} \log n)$.

The optimality of the algorithm follows from the Lemma 6 and fact that Algorithm 2 considers all possible combinations as its solution and returns minimum size solution.

Note that Algorithm 2 checks if condition in line number 6 because of the definition of S'_2, S'_2, and S'_3.

Let us consider a super-cell partition of \mathcal{R} such that no point of S lies on the boundary and a 3-coloring scheme (see Figure 5). Consider an unicolor super-cell which has been assigned color A (say). Its adjacent super-cells are assigned colors B, and C alternately (see Figure 5).
Lemma 8 If D' and D'' are two same colored super-cells, then $(D' \cup D'') \cap S \cap d = \emptyset$ for any unit radius disk d.

Proof: The lemma follows from the following facts: (i) size of the super-cells D' and D'' (ii) no point of S on the boundary of D' and D'', and (iii) the 3-coloring scheme.

Theorem 2 The 3-coloring scheme gives a 3-factor approximation algorithm for the MDS problem in $O(n^{11} \log n)$ time, where n is the input size.

Proof: The follows by the similar argument of Theorem [1].

4 Shifting Strategy and its Application to the MDS Problem

In this section, we first propose a shifting strategy for the MDS problem, which is a generalization of the shifting strategy proposed by Hochbaum and Maass [18]. Next we propose $\frac{2}{3}$-factor approximation algorithm and a PTAS algorithm for MDS problem using our shifting strategy.

4.1 The Shifting Strategy

Our shifting strategy is very similar to the shifting strategy in [18]. We include a brief discussion here for completeness. Let a set S of n points be distributed inside an axis aligned rectangular region R. Our objective is to find an MDS for S.

Definition 3 A monotone chain c with respect to line L is a chain of line segments such that any line perpendicular to L intersect it only once. We define the distance between two monotone chains c' and c'' as the minimum Euclidean distance between any two points p' and p'' on the chains c' and c'' respectively. A monotone strip denoted by M_s and is defined by the area bounded by any two monotone chains c' and c'' such that the area is left closed and right open.

Consider a set c_1, c_2, \ldots, c_r of r monotone chains with respect to the line parallel to y-axis from left to right dividing the region R such that distance between each pair of monotone chains is at least
\(D(> 0) \), where \(c_l \) and \(c_r \) are the left and right boundary of \(R \) respectively (see Figure 6). Let \(\mathcal{A} \) be an \(\alpha \)-factor approximation algorithm, which provides a solution of any \(\ell \) consecutive monotone strips for the MDS problem.

![Figure 6: Demonstration of shifting strategy](image)

Theorem 3 We can design an \(\alpha(1 + \frac{1}{\ell}) \)-factor approximation algorithm for finding an MDS for \(S \).

Proof: The algorithm is exactly same as the algorithm proposed by Hochbaum and Maass [18]. The approximation factor follows from exactly the same argument proved in the shifting lemma [18]. \(\square \)

4.2 \(\frac{5}{2} \)-Factor Approximation Algorithm for the MDS Problem

Here we propose a \(\frac{5}{2} \)-factor approximation algorithm for MDS problem for a given set \(S \) of \(n \) points in \(\mathbb{R}^2 \) using shifting strategy discussed in Subsection [4.1].

Definition 4 A duper-cell is a combination of 30 cells (regular hexagon of side length \(\frac{1}{2} \)) as shown in Figure 7. A duper-cell \(\mathcal{E} \) generates four monotone chains with respect to vertical and horizontal lines along its boundary. See Figure 7 where \(uv, vw, wx, \) and \(xu \) are the monotone chains. We rename them as **left**, **bottom**, **right**, and **top** monotone chains.

The basic idea is as follows: first optimally solve the subproblem **duper-cell** i.e., find an MDS for the set \(S \cap \mathcal{E} \), where \(\mathcal{E} \) is a duper-cell and then apply shifting strategy in both horizontal and vertical directions separately. The Lemma [4] leads to restriction on the size of the MDS, which is at most 30. Therefore an easy optimum solution for MDS can be obtained in \(O(n^{30}) \) time. Here we propose a different technique for the MDS problem leading to lower time complexity as follows:

We divide the duper-cell \(\mathcal{E} \) into 2 groups unshaded region \((U_R) \) and shaded region \((S_R) \) as shown in Figure 7. Let \(\mu \) be the common boundary of the regions and two extended lines (see Figure 7).
Algorithm 3: \texttt{MDS_for_duper-cell}(S, E, n)

1: \textbf{Input:} A set S of n points and a duper-cell E.
2: \textbf{Output:} A set $S' (\subseteq S)$ for an MDS of $S \cap E$.
3: Find Q_1 and Q_2 as described above.
4: Let S_L^1 and S_R^2 be the set of points in $S \setminus (Q_1 \cup Q_2)$ such that each disk in $\Delta(S_L^1)$ and $\Delta(S_R^2)$
 covers at least one point in $S \cap U_R$ and $S \cap S_R$ respectively.
5: $S' \leftarrow \emptyset, X \leftarrow \emptyset$
6: \textbf{for} ($i = 0, 1, \ldots, 9$) \textbf{do}
7: \hspace{1em} choose all possible i disks in $\Delta(Q_1)$ (resp. $\Delta(Q_2)$) and for each combination of i disks find
 S_L^1 and S_R^2 such that $S_L^1 \subseteq (S \cap U_R)$ and uncovered by that i disks, and $S_R^2 \subseteq (S \cap S_R)$ and
 uncovered by that i disks.
8: \hspace{1em} Call Algorithm 2 for finding an MDS for the sets S_L^1 and S_R^2 separately.
9: \textbf{end for}
10: Return S'

Let Q_1 and Q_2 be two sets of points in the left (resp. right) of μ such that each disk in $\Delta(Q_1)$ and
$\Delta(Q_2)$ intersects μ.

Lemma 9 An MDS for the set of points inside a duper-cell E can be computed optimally in
$O(n^{20} \log n)$ time, where n is the input size.

Proof: The time complexity of line number 8 of the Algorithm 3 is $O(n^{11} \log n)$ (see Lemma 7).
The line number 8 executes at most $O(n^9)$ time by the \textbf{for} loop in line number 6. Therefore the time complexity of the lemma follows.

In the \textbf{for} loop (line number 6 of the algorithm), we considered all possible i ($0 \leq i \leq 9$) disks in $\Delta(Q_1)$ and $\Delta(Q_2)$ separately. Since the number of cells that can intersect with such i disks is
at most 9, therefore the range of i is correct. For each combination of i disks, we considered all
possible combinations to solve the problem for S_L^1 and S_R^2 separately. Therefore the correctness of
the algorithm follows. \hfill \Box

Theorem 4 The shifting strategy discussed in Subsection 4.1 gives a $\frac{5}{2}$-factor approximation algo-

rithm, which runs in $O(n^{20} \log n)$ time for the MDS problem, where n is the input size.

Figure 7: Demonstration of $\frac{5}{2}$-factor approximation algorithm.
Proof: The distance between the monotone chains left and right of E is greater than 8, the distance between the monotone chains bottom and top is 2, and the diameter (D) of the disks is 2. Now, if we apply shifting strategy in horizontal and vertical directions separately, then we get $(1 + \frac{1}{4})(1 + \frac{1}{2})$-factor i.e. $\frac{5}{2}$-factor approximation algorithm in $O(n^{20} \log n)$ time (see Lemma 9) for the MDS problem. □

4.3 A PTAS for MDS Problem

In this section, we present a $(1 + \frac{1}{k})^2$-factor approximation algorithm in $n^{O(k)}$ time for a positive integer k. Suppose a set S of n points within a rectangular region R is given. Consider a partition of R into regular hexagonal cells of side length $\frac{1}{2}$. The idea of our algorithm is to solve the MDS problem optimally for the points inside regular hexagons (say F) such that the distance between left and right (resp. bottom and top) monotone chains is $2k$ (see Figure 8) and using our proposed shifting strategy carefully (see Subsection 4.1).

To solve the MDS problem in $S \cap F$ we further decompose F into four parts using the monotone chains L_1 and L_2 as shown in Figure 8. The number of disks in the optimum solution intersecting the chain L_1 with centers left (resp. right) side of L_1 is at most $\lceil 3 \times 3 \times \frac{2k}{4} \rceil$ which is less than $10k$ and the number of disks in the optimum solution intersecting the chain L_2 with centers bottom (resp. top) side of L_2 is at most $\lceil 5 \times 3 \times \frac{2k}{4} \rceil$ which is less than $8k$. Next we apply recursive procedure to solve four independent sub-problems of size $k \times k$. If $T(n, 2k)$ is the running time of the recursive algorithm for the MDS problem for $S \cap F$, then using the technique of [10] we have the following recurrence relation: $T(n, 2k) = 4 \times T(n, k) \times n^{10k+8k}$, which leads to the following theorem.

Theorem 5 For a given set S of n points in \mathbb{R}^2, the proposed algorithm produces an MDS of S in $n^{O(k)}$ time, whose size is at most $(1 + \frac{1}{k})^2 \times |OPT|$, where k is a positive integer and OPT is the optimum solution.
5 Conclusion

In this paper, we proposed a series of constant factor approximation algorithms for the MDS problem for a given set S of n points. Here we used hexagonal partition very carefully. We first presented a simple 4-factor and 3-factor approximation algorithms in $O(n^6 \log n)$ and $O(n^{11} \log n)$ time respectively, which improved the time complexities of best known result by a factor of $O(n^2)$ and $O(n^4)$ respectively [10]. Finally, we proposed a very important shifting lemma and using this lemma we presented a $\frac{5}{2}$-factor approximation algorithm and a PTAS for the MDS problem. Though the complexity of the proposed PTAS is same as that of the PTAS proposed by De et al. [10] in terms of O notation, but the constant involved in our PTAS is smaller than the same in [10].

References

[1] R. Acharyya, M. Basappa and G.K. Das. Unit disk cover problem in 2D. In ICCSA, LNCS - 7972, pp. 73–85, 2013.
[2] C. Ambühl, T. Erlebach, M. Mihaláč and M. Nunkesser. Constant-factor approximation for minimum-weight (connected) dominating sets in unit disk graphs. In APPROX-RANDOM, pp. 3–14, 2006.
[3] M. de Berg, O. Cheong, M. van kreveld and M. H. Overmars. Computational Geometry: Algorithms and Applications (3. ed.). Springer-Verlag, 2008.
[4] V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of Operations Research, 4(3):233–235, 1979.
[5] G. Călinescu, I. I. Mandoiu, P. J. Wan and A. Zelikovsky. Selecting forwarding neighbors in wireless ad hoc networks. Mobile Network Applications, 9(2):101–111, 2004.
[6] P. Carmi, M. J. Katz and N. Lev-Tov. Covering points by unit disks of fixed location. In ISAAC, pp. 644–655, 2007.
[7] P. Carmi, M. J. Katz and N. Lev-Tov. Polynomial-time approximation schemes for piercing and covering with applications in wireless networks. Comput. Geom., 39(3):209–218, 2008.
[8] B. N. Clark, C. J. Colbourn and D. S. Johnson. Unit disk graphs. Discrete Mathematics, 86(1-3):165–177, 1990.
[9] F. Claude, G. K. Das, R. Dorrigiv, S. Durocher, R. Fraser, A. López-Ortiz, B. G. Nickerson and A. Salinger. An improved line-separable algorithm for discrete unit disk cover. Discrete Math. Alg. and Appl., 2(1):77–88, 2010.
[10] M. De, G. K. Das, P. Carmi and S.C. Nandy. Approximation algorithms for a variant of discrete piercing set problem for unit disks. Int. J. of Comput. Geom. and Appl., 2013 (to appear).
[11] G. K. Das, R. Fraser, A. López-Ortiz and B. G. Nickerson. On the discrete unit disk cover problem. Int. J. of Comput. Geom. and Appl., 22:407–419, 2012.

[12] D. Dai and C. Yu. A $5+\epsilon$-approximation algorithm for minimum weighted dominating set in unit disk graph. Theor. Comput. Sci., 410(8-10):756–765, 2009.

[13] R. Fraser and A. López-Ortiz. The within-strip discrete unit disk cover problem. In CCCG, pp. 53–58, 2012.

[14] G.D. da Fonseca, C. M. H. de Figueiredo, V. G. P. de Sá and R. Machado. Linear time approximation for dominating sets and independent dominating sets in unit disk graphs. In WAOA 2012, LNCS 7846, pp. 82–92, 2013.

[15] G. D. da Fonseca, C. M. H. de Figueiredo, V. G. P. de Sá and R. Machado. Linear-time sub-5 approximation for dominating sets in unit disk graphs. preprint, arXiv:1204.3488, 2012.

[16] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[17] M. Gibson and I. A. Pirwani. Algorithms for dominating set in disk graphs: breaking the logn barrier. In ESA, pp. 243–254, 2010.

[18] D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM, 32(1):130–136, 1985.

[19] Y. Huang, X. Gao, Z. Zhang and W. Wu. A better constant-factor approximation for weighted dominating set in unit disk graph. Journal of Combinatorial Optimization, 18:179–194, 2008.

[20] D. S. Johnson. The np-completeness column: an ongoing guide. J. Algorithms, 3(2):182–195, 1982.

[21] M. V. Marathe, H. Breu, H. B. H. III, S. S. Ravi and D. J. Rosenkrantz. Simple heuristics for unit disk graphs. Networks, 25(2):59–68, 1995.

[22] N. H. Mustafa and S. Ray. Improved results on geometric hitting set problems. Discrete & Computational Geometry, 44(4):883–895, 2010.

[23] T. Nieberg and J. Hurink. A PTAS for the minimum dominating set problem in unit disk graphs. In WAOA, pages 296–306, 2005.

[24] S. Narayanappa and P. Vojtechovský. An improved approximation factor for the unit disk covering problem. In CCCG, pp. 15–18, 2006.

[25] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, 2009.

[26] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In STOC, pp. 475–484, 1997.
[27] F. Zou, Y. Wang, X. Xu, X. Li, H. Du, P. J. Wan and W. Wu. New approximations for minimum-weighted dominating sets and minimum-weighted connected dominating sets on unit disk graphs. *Theor. Comput. Sci.*, 412(3):198–208, 2011.