X-ray fluorescence spectrum of highly charged Fe ions driven by strong free-electron-laser fields

Natalia S Oreshkina, Stefano M Cavaletto, Christoph H Keitel and Zoltán Harman

Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany

E-mail: Natalia.Oreshkina@mpi-hd.mpg.de

Received 29 October 2015, revised 11 January 2016
Accepted for publication 13 January 2016
Published 13 April 2016

Abstract

The influence of nonlinear dynamical effects is analyzed on the observed spectra of controversial 3C and 3D astrophysically relevant x-ray lines in neonlike Fe\(^{16+}\) and the A, B, and C lines in natriumlike Fe\(^{15+}\) ions. First, a large-scale configuration-interaction calculation of oscillator strengths is performed with the inclusion of higher-order electron-correlation effects. Also, quantum-electrodynamic corrections to the transition energies are calculated. Further considered dynamical effects provide a possible resolution of the discrepancy between theory and experiment found by recent x-ray free-electron-laser measurements of these controversial lines. We find that, for strong x-ray sources, the modeling of the spectral lines by a peak with an area proportional to the oscillator strength is not sufficient and nonlinear dynamical effects have to be taken into account. Thus, we advocate the use of light–matter-interaction models also valid for strong light fields in the analysis and interpretation of the associated astrophysical and laboratory spectra. We investigate line-strength ratios distinguishing between the coherent and incoherent parts of the emission spectrum. In addition, the spectrum of Fe\(^{15+}\), an autoionizing ion which was also present in the recent laboratory experiment, is analyzed as well.

Keywords: 3C/3D lines in Fe, dynamical processes, QED corrections, atomic-structure calculations, ion–x-ray interaction, line-strength ratio

(Some figures may appear in colour only in the online journal)

1. Introduction

During recent decades, highly charged ions have become an object of interest in a wide range of fields of physics. Well-developed theoretical models allow for highly accurate predictions, which, together with modern experimental techniques, enable the benchmarking of atomic properties, tests of quantum electrodynamics in strong electric and magnetic fields [1–3], the determination [4, 5] and the search for possible variations [6–10] of the fundamental constants. In astrophysical research, atomic data of highly charged ions, e.g., transition energies and probabilities, oscillator strengths, collisional and recombination cross sections, together with astrophysically measured spectra, allow one to determine the temperature, density, velocity, and element composition of various distant objects such as stars, x-ray binaries, black-hole accretion discs, or active galactic nuclei [11–14].

The x-ray emission lines of highly charged Fe ions are among the brightest in astrophysical spectra [15]. Several observations were performed with the space laboratories Chandra and XMM–Newton (see, e.g., [15–18]). Particular interest has been focused on two strong 2p \(\rightarrow\) 3d E1 transitions in Fe\(^{16+}\), customarily denoted as 3C and 3D, at 826 and 812 eV, respectively. For both lines the initial state is spherically symmetric, with a total angular momentum \(J = 0\), and excited states have the same symmetry, \(J = 1\). The line-strength ratio of those two lines was observed to disagree with theoretical predictions [19–22]. In an astrophysical setting, this disagreement was considered for a long time to originate from plasma effects and from the co-existence of different
charge states of Fe ions; and in laboratory measurements, the unavoidable electron-impact excitation of the ions was considered a possible cause of the discrepancy. To exclude those effects, a laser spectroscopic experiment in the x-ray regime [23] was recently carried out at the Linac Coherent Light Source (LCLS) x-ray free-electron-laser (XFEL) facility [24]. As a result of this experiment, a disagreement between all state-of-the-art theoretical predictions (a ratio of the 3C and 3D oscillator strengths around 3.5 and above) and an experimental line-strength ratio of 2.61(23) was stated [23], which could be explained either by incorrect or insufficient knowledge of many-body atomic-structure theory, or by the presence of additional unknown effects.

In a recent letter [25], motivated by the above discrepancy, we reported on a possible mechanism to reduce the current disagreement between theoretical predictions and experimental results [23]. Similar conclusions were later drawn by another theoretical study [26]. Here, we present a more complete theory of x-ray–ion interactions by calculating higher-order electron-correlation and quantum-electrodynamic (QED) corrections, along with nonlinear dynamical effects contributing to the 3C/3D line-strength ratio. We also present calculations on the coherent and incoherent parts of the resonance fluorescence spectrum, whereby a method for checking the limitations of the applicability of the weak-field atomic theory is proposed. Finally, we analyze the presence of autoionizing Fe$^{15+}$ ions in the trap and show that a wide XFEL intensity range has to be considered.

The paper is structured as follows: in subsection 2.1 we discuss the many-body atomic-structure calculations for the energies and Einstein coefficients of the transitions under consideration including higher-order contributions. Screened QED corrections to the transition energies are presented in subsection 2.2. In section 3 we present a theoretical model for non-linear dynamical effects (3.1, 3.2), results of our simulations compared with current experimental data [23] (3.3), and possible additionally contributing effects (3.4, 3.5).

Standard notations for the fundamental constants are used in the paper.

2. Improvement of atomic-structure parameters

As a first step towards resolving the discrepancy between theoretical predictions and experimental results, atomic-structure parameters, such as transition energies and Einstein coefficients, need to be refined. The calculation of the transition energies and Einstein coefficients with the configuration-interaction Dirac–Fock–Sturm (CI-DFS) method is considered in subsection 2.1. Additionally, QED corrections to the transition energies are taken into account in an ab initio manner in subsection 2.2.

2.1. Higher-order electron-correlation correction to the oscillator strengths

In our calculations, the CI-DFS method [27–29] was used for atomic-structure-theory calculations of the transition energies and dipole-transition rates in a large-scale setting. In the Breit approximation, the Hamiltonian of the relativistic N_e-electron system is given as the sum of the single-particle Dirac Hamiltonians h^D and the interelectronic-interaction operator u_{ij}, which can be written as

$$H = \sum_i h^D_i + \frac{1}{2} \sum_{i,j} u_{ij},$$

$$h^D = c(\bar{\alpha} \cdot \hat{p}) + (\beta - 1)mc^2 + V_{\text{nacl}}(r),$$

$$u_{ij} = \alpha/\hbar \left[\frac{1}{r_{ij}} - \frac{\bar{\alpha}_i \cdot \bar{\alpha}_j}{2r_{ij}} - \frac{(\bar{\alpha}_i \cdot \vec{r}_j)(\bar{\alpha}_j \cdot \vec{r}_j)}{2r_{ij}^3} \right].$$

Here $\bar{\alpha}$ and β are Dirac matrices, V_{nacl} stands for the nuclear potential. The numerical solution of the Dirac–Fock equation gives one-electron radial wave functions for the occupied orbitals, while solutions of the generalized Dirac–Fock–Sturm equation are used as virtual orbitals with positive and negative energies. Configuration state functions are built from jj-coupled Slater determinants with such one-electron wave functions. The total many-electron wave function $|\Psi_j\rangle$ with a total angular momentum J is given as a linear combination of a large number of N_c configuration state functions $|\Phi_j^c\rangle$:

$$|\Psi_j\rangle = \sum_{c=1}^{N_c} c_c |\Phi_j^c\rangle,$$

with the configuration coefficients c_c. The Einstein coefficients A_{eg} and oscillator strengths f_{eg} are calculated with such many-electron wave functions representing the $2p^6$ ground (g) and $2p^53d$ excited (e) states of the ion [30]:

$$A_{eg} = \frac{4\pi^2 e^2 c^2}{(2J_g + 1)\omega_{eg} M_e M_k \hbar/k/\sigma} \sum \left| \langle e|\pi \hat{q}_e e^{-i\vec{r}\cdot\vec{r}}|g\rangle \right|^2,$$

$$f_{eg} = \frac{2J_g + 1}{2J_g + 1} \frac{A_{eg} \hbar c^3}{2J_g + 1}.$$

Here, \hat{q}_e stands for the photon polarization unit vector, and $\omega_{eg} = \omega_e - \omega_g$ stands for the transition energy. The summation goes over the magnetic quantum numbers of the excited state M_e and ground state M_g over the polarization $\sigma = 1, 2$ of the emitted photon, and the integration goes over the direction k/\hbar of the emitted photon. The line strength is given as the integrated peak area of the resonance fluorescence cross section [30, 31]:

$$S_{eg} = \pi \hbar^2 c^3 \omega_{eg}^2 \sum \frac{A_{eg} \hbar c^3}{2J_g + 1}.$$

Table 1. Transitions of Fe$^{16+}$, with their notations, energies, and spontaneous-decay rates Γ_{eg} calculated with the CI-DFS method.

Line	Transition	Energy, eV	Γ_{eg}, 1/s
3D	(2p6)\rightarrow ((2p5)\rightarrow3d\rightarrow3h)	812	6.02×10^{13}
3C	(2p6)\rightarrow ((2p5)\rightarrow3d\rightarrow3h)	826	2.21×10^{14}
Thus for low driving-field intensities the oscillator strength is proportional to the line strength. To build the configuration space, the restricted-active-space [32] approach was used. In our calculations, all orbitals up to 2s form the occupied shells’ space, orbitals from 2p to 3d belong to the active space, and orbitals from 4s form the open shells’ space. Single and double excitation from the occupied shells’ space and from the open shells’ space as well as triple excitations within the active space were included in the calculations, leading to a huge number of configurations of the order of $N_c = 100\,000$. The results of our CI-DFS calculations are presented in table 1. To estimate the accuracy of our results, we performed a series of calculations with the one-electron functions up to $n = 6,\, 7,\, 8$, where n is the principal quantum number. Thereby, our calculated oscillator-strength ratio converged with three-digit precision. As a result, for the case where single and double excitations are included, the 3C/3D oscillator-strength ratio is 3.57, while the contribution of the triple excitation is as low as 0.01. Thus, our results confirm earlier theoretical calculations and disprove the significance of remaining higher-order correlation effects such as triple excitations, suggesting that the discrepancy of theory and experiment is not founded in an inaccurate description of the ions’ electronic structure.

2.2. Screened quantum-electrodynamic corrections to the transition energies

In order to match the accuracy of the experimental transition energies $\omega_{ex} = \omega_c - \omega_p$, additional QED corrections were taken into account in an ab initio manner. The QED corrections in first order in the fine-structure constant α consist of the self-energy (SE) and vacuum-polarization (VP) terms. The SE correction to the single-electron state $|\alpha\rangle$ with energy ε_{α} is given by the expression

$$\Delta E_{SE}^{\alpha} = \frac{\alpha}{2\mu} \int d\omega \sum_n \left\langle \alpha | \gamma^\mu D_{\omega}(\omega, x_1 - x_2) | \nu \right\rangle \varepsilon_{\nu} - \left\langle \alpha | \nu \right\rangle \varepsilon_{\nu} (1 - \delta \theta)$$

(7)

where ω is the variable frequency of the emitted and reabsorbed virtual photon, D_{ω} is the photon propagator with μ and ν being Minkowski indexes, γ^μ and γ^0 are Dirac matrices, δm is the mass counter-term, and the summation goes over the complete Dirac spectrum, including the positive and negative continua. To separate the ultraviolet divergences, equation (7) is decomposed into zero-, one-, and many-potential terms following the procedure from [33]. The zero-potential and one-potential terms are calculated in momentum space employing numerical Fourier transforms of bound-state wave functions. The residual part of the SE correction, the so-called many-potential term, is calculated in coordinate space. The angular integrations and the summation over the intermediate angular-momentum projections are carried out in a standard algebraic manner. The many-potential term involves an infinite summation over the relativistic angular quantum number $\kappa = \pm (j + 1/2)$. The summation is terminated at a maximum value $|\kappa| = 15 - 20$, while the residual part of the sum is approximated by a least-square inverse-polynomial fit. For any given κ, the summation over the Dirac spectrum is performed using the dual-kinetic-balance approach [34] with basis functions constructed from B-splines, taking into account the finite distribution ρ_{nucl} of the nuclear charge with atomic number Z. The VP correction was calculated in the Uehling approximation [35, 36] with the potential

$$U_{VP}(r) = -\frac{\alpha Z}{3\pi} \int_0^\infty dr^{\prime} \frac{r^{\prime}}{r^{\prime}} \rho_s(r^{\prime})$$

(8)

In this work, the interelectronic-interaction effects contributing to the QED corrections were approximated by evaluating the single-electron QED terms with wave functions belonging to an effective potential accounting for the screening of the remaining nine electrons. We used different screening potentials for the assessment of the uncertainty: the core-Hartree (CH) potential

$$V_{\text{CH},\alpha}(r) = \frac{\alpha}{\hbar c} \int_0^\infty dr^{\prime} \frac{1}{\max(r, r^{\prime})} \rho_s(r^{\prime}),$$

the Kohn–Sham (KS) potential

$$V_{\text{KS}}(r) = \frac{\alpha}{\hbar c} \int_0^\infty dr^{\prime} \frac{1}{\max(r, r^{\prime})} \rho_s(r^{\prime}) - \frac{2}{3} \frac{1}{r} \left[81 \frac{1}{32\pi^2} \rho_s(r) \right]^{1/3} - \frac{\alpha}{\hbar c} \left[1 - e^{-i\theta r} \right],$$

(9)

and the Dirac–Slater (DS) potential

$$V_{\text{DS}}(r) = \frac{\alpha}{\hbar c} \int_0^\infty dr^{\prime} \frac{1}{\max(r, r^{\prime})} \rho_s(r^{\prime}) - \frac{1}{r} \left[81 \frac{1}{32\pi^2} \rho_s(r) \right]^{1/3} - \frac{\alpha}{\hbar c} \left[1 - e^{-i\theta r} \right].$$

(10)

Here, ρ_s is the density of all one-electron orbitals excluding that of the electron participating in the transition, labeled by a:

$$\rho_s(r) = \frac{m}{\hbar} \sum_{b=a} q_b [G_{ab}^2(r) + F_b^2(r)],$$

$$\rho_s(r) dr = \sum_{b=a} q_b,$$

(11)

with non-integer occupation numbers q_b taken from the results of the CI-DFS calculation. Analogously, ρ_{tot} is the total electron density

$$\rho_{\text{tot}}(r) = \frac{m c}{\hbar} \sum_b q_b [G_b^2(r) + F_b^2(r)].$$

(12)

The last term in the KS and DS potentials stands for the Latter correction [37] to provide a proper asymptotic behavior at
large radial distances. The parameter A in equations (9) and (10) was chosen here to be $mc^2/h \cdot \alpha Z/10$, found by numerical optimization. The CH potential was calculated in one step, while the KS and DS potentials were evaluated in a self-consistent manner. The total QED result is determined as the sum of the one-electron contributions weighted by the occupation numbers q_a, taken from the CI-DFS calculations:

$$\Delta E_{\text{QED}} = \sum_a q_a \Delta E_{a \text{QED}}.$$

In table 2 results of the calculations in the independent-particle approximation (i.e., without the inclusion of inter-electronic-interaction effects by the screening potential), and for CH, KS, and DS screening potentials are presented. Our total QED correction result is defined as the average of the results with these three screening potentials. The difference between the results for the QED corrections with various screening potentials can be considered as an approximate uncertainty. As one can see from table 2, screened QED corrections to the transition energies for both 3C and 3D lines ΔE_{QED} contribute less than 0.03 eV, therefore, with the transition energies on a level of 800 eV, they can be safely neglected.

3. Strong-field effects

In the present section, nonlinear dynamical effects of light-matter interaction are investigated. By showing how these may have played an important role in the experiment of [23], we provide a possible explanation of the discrepancy with theory reported therein.

The general theoretical model is introduced in 3.1, while in 3.2 we show how to calculate the line-strength ratios measured in [23], distinguishing also between coherent and incoherent contributions to the total detected electromagnetic energy. Theoretical predictions for Fe$^{16+}$ 3C and 3D lines are presented in 3.3 and compared with the experimental results of [23]. While in 3.4 we discuss the influence of atomic-calculation uncertainties, in 3.5 we conclude this section by considering strong-field effects on the strengths of Fe$^{15+}$ lines, which in [23] were also measured and subsequently disentangled from the reported Fe$^{16+}$ lines.

3.1. Modeling of ion–x-ray interaction

In order to account for nonlinear dynamical effects dependent upon the intensity of the x-ray pulses, we model the time evolution of the driven ions via a master-equation approach. The atomic system is therefore described as a two-level system with a ground state $|g\rangle$ and an excited state $|e\rangle$, with a transition energy ω_{ge}. This is used to model the x-ray transitions responsible for the 3C and 3D lines in Fe$^{16+}$, as well as the A, B, and C lines in Fe$^{15+}$. In both ionic systems, the excited states are sufficiently separated, with transition energies differing by more than the x-ray-pulse bandwidth and the natural linewidths, such that we are allowed to treat each transition as an independent two-level system. More details on the validity of this two-level approximation are provided in appendix A.

The ionic system is described via the density matrix $\hat{\rho}(t)$, of elements $\rho_{ij} = \langle \hat{\rho}(t) | j \rangle$, $i, j \in \{ g, e \}$, evolving in time under the master equation [38, 39]

$$\frac{d\hat{\rho}}{dt} = -\frac{i}{\hbar} [\hat{H}, \hat{\rho}(t)] + \hat{L}(t) + \hat{D}(t).$$

The first term $-\frac{i}{\hbar} [\hat{H}, \hat{\rho}(t)]$ models the coherent evolution of the two-level system interacting with an external electric field. The total Hamiltonian

$$\hat{H} = \hat{H}_0 + \hat{H}_{\text{int}}$$

is the sum of the electronic-structure Hamiltonian

$$\hat{H}_0 = \sum_{i \in \{ g, e \}} \omega_i | i \rangle \langle i |$$

and of the interaction Hamiltonian

$$\hat{H}_{\text{int}} = -\frac{\hbar}{2} \Omega_{ge}(t) \langle g| \hat{e}^\dagger | e \rangle e^{i\omega_{ge}t} - \frac{\hbar}{2} \Omega_{ge}^2(t) \langle e| \hat{e}^\dagger | g \rangle e^{i\omega_{ge}t}.$$

describing, in the rotating-wave approximation, the interaction of the two-level system with an external time-dependent electric field $E(t) = E(t) \cos(\omega_{X}\tau + \psi(t))$ of x-ray carrier frequency ω_X, envelope $E(t)$, and phase $\psi(t)$. In equation (17), we introduced the complex time-dependent Rabi frequency

$$\Omega_{ge}(t) = \frac{\hbar}{\hbar} E(t) \langle g| \hat{e}^\dagger | e \rangle e^{i\omega_{ge}t},$$

which is proportional to the dipole-moment matrix element $\langle g| \hat{e}^\dagger | e \rangle$ and to the square root of the x-ray intensity

$$I(t) = \frac{1}{8\pi c^2} E^2(t).$$

Here, \hat{e} is the position operator along the quantization axis. The Lindblad superoperator $\hat{L}(t)$ models the norm-conserving spontaneous decay from the excited state $| e \rangle$ to the ground state $| g \rangle$ at a decay rate $\Gamma_{ge} = \hbar \Gamma_{ge}$. While both excited states in Fe$^{16+}$ are nonautoionizing, Auger decay must be taken into account for the three excited states of Fe$^{15+}$ modeled here. This is included in the norm-nonconserving term $\hat{D}(t)$, which would not be present in the Lindblad form of the master equation. Auger decay destroys the two-level system by further ionization of Fe$^{15+}$ to levels which, however,
do not have to be accounted for explicitly. Here, we model this autoionization process as a loss of population and coherence from the excited state $|e\rangle$ at the Auger-decay rate Γ_{A}. The total decay rate $\Gamma_{tot} = \Gamma_{eg} + \Gamma_{A}$ is hence given by the sum of the spontaneous- and Auger-decay rates.

We introduce the vector $\vec{R}(t)$ of the slowly varying components of the density matrix,

$$\vec{R}(t) = (\rho_{gg}(t), \rho_{ge}(t)e^{-i\omega_{gg}t}, \rho_{eg}(t)e^{i\omega_{eg}t}, \rho_{ee}(t))^T,$$

such that the master equation (14) can be written in the matrix form

$$\frac{d\vec{R}(t)}{dt} = M(t)\vec{R}(t),$$

with the 4×4 time-dependent matrix

$$M(t) = \begin{pmatrix}
0 & -\frac{i}{2}\Omega_{eg}(t) & \frac{i}{2}\Omega_{ge}(t) & \Gamma_{eg} \\
-\frac{i}{2}\Omega_{eg}(t) & i\Delta - \frac{\Gamma_{tot}}{2} & 0 & \frac{i}{2}\Omega_{ge}(t) \\
\frac{i}{2}\Omega_{ge}(t) & 0 & -i\Delta - \frac{\Gamma_{tot}}{2} & \frac{i}{2}\Omega_{eg}(t) \\
0 & \frac{i}{2}\Omega_{ge}(t) & -\frac{i}{2}\Omega_{eg}(t) & -\Gamma_{tot}
\end{pmatrix},$$

where $\Delta = \omega_{eg} - \omega_{ge}$ denotes the detuning of the laser frequency from the transition energy.

3.2. Calculation of the line-strength ratio

In order to calculate the line-strength ratios reported in [23] and compare our theoretical predictions with the experimental results presented therein, we solve the system of differential equations (21) for time-dependent x-ray driving pulses, assuming natural initial conditions $\vec{R}_0 = (1, 0, 0, 0)^T$. In the following we directly refer to the 3C and 3D transitions in Fe$^{16+}$. Analogous formulas apply to the A, B, and C transitions in Fe$^{15+}$ investigated in subsection 3.5. Further details are provided in appendix B.

At fixed detuning Δ, the total detected x-ray energy can be directly inferred from the time evolution of the two-level system. The total detected energy consists of two different contributions, which in the context of resonance fluorescence are usually referred to as coherent and incoherent energies. These two contributions exhibit different space-dependent features, i.e., their energies differently depend upon the position of the photon detector [38–40].

The electromagnetic energy due to the coherent part of the spectrum of resonance fluorescence is proportional to

$$\mathcal{E}_{coh}(\Delta) \propto \Gamma_{eg} \omega_{eg} \int_{-\infty}^{\infty} |R_{eg}(t)|^2 dt,$$

where the time evolution of the coherence $R_{eg}(t)$ also depends on Δ. In a linear sample with length L larger than the other two dimensions, due to the superposition of the radiation emitted by N different ions along the forward direction, i.e., along the propagation direction of the driving x-ray field, \mathcal{E}_{coh} features a high degree of directionality [41, 42]. As a result of these many-particle effects, inside an emission cone centered around the forward direction and with an opening angle $\phi = \sqrt{2\pi e/\omega_{eg} L}$, \mathcal{E}_{coh} is proportional to N^2 and thus represents the main contribution to the total detected energy, $\mathcal{E} \approx \mathcal{E}_{coh}$.

Out of this emission cone, however, the detected energy results from the independent superposition of the radiation emitted by N two-level ions acting as oscillating dipoles. Both coherent and incoherent parts are proportional to N and feature the angular distribution of an oscillating dipole, such that, along directions different from the forward direction, both contributions must be included (see figure 1). This total detected energy can be calculated from the atomic dynamics,

$$\mathcal{E}(\Delta) \propto \Gamma_{eg} \omega_{eg} \int_{-\infty}^{\infty} R_{eg}(t) dt,$$

where the time-dependent population $R_{eg}(t)$ of the excited state depends on Δ. Along directions different from the forward direction, where $\mathcal{E} = \mathcal{E}_{coh} + \mathcal{E}_{inc}$, it is therefore possible to calculate the contribution of the incoherent energy $\mathcal{E}_{inc}(\Delta)$ via the difference of equations (23) and (22).

For Fe$^{16+}$ ions, the ratio of emitted energies is given by

$$S_{3C} / S_{3D} = \frac{\int d\Delta \mathcal{E}_{3C}(\Delta)}{\int d\Delta \mathcal{E}_{3D}(\Delta)},$$

where $\mathcal{E}_{3C}(\Delta)$ and $\mathcal{E}_{3D}(\Delta)$ are the detected energies as a function of the detuning Δ from the transition frequencies ω_{3C} and ω_{3D}, respectively. In the forward direction, these are given by the coherent energies in equation (22), while outside of the emission cone in the forward direction they are obtained from the sum of coherent and incoherent energies given by equation (23), see also figure 1.

In equations (22) and (23), the dependence upon the detection direction was not included explicitly. For Fe$^{16+}$, however, this is not necessary when line-strength ratios are calculated. The excited states associated with the 3C and 3D lines feature identical symmetry (total angular momentum $J = 1$), while the ground state is spherically symmetric ($J = 0$). As a result, the angular distribution of the emitted radiation is the same for both transitions [23] and does not affect the ratio in equation (24).

Finally, in the case of Fe$^{16+}$ ions, when no Auger decay is present, it is interesting to further investigate the limit of infinitely long coherent pulses. The state of a system driven by a continuous-wave driving field $E(t) = \hat{E}$, $\psi(t) = 0$, $I(t) = \hat{I}$, with correspondingly constant Rabi frequency Ω_R, converges for $t \to \infty$ to the stationary solution [31, 38]

$$R_{eg}(\Delta) = \frac{\Omega_R^2}{4\Delta^2 + \Gamma_{eg}^2 + 2\Omega_R^2}.$$

Far from the forward direction, where both coherent and incoherent energies are measured, the energy detected per unit time for a given detuning Δ is equal to

$$\mathcal{T}(\Delta) \propto \Gamma_{eg} \omega_{eg} R_{eg}(\Delta).$$
yielding the intensity ratio

\[S_{3C}/S_{3D} = \frac{\int d\Delta T_{3C}(\Delta)}{\int d\Delta T_{3D}(\Delta)} = \frac{\Gamma_{3C} \omega_{3D}^2}{\Gamma_{3D} \omega_{3C}^2} \frac{1 + I/I_{sat,3D}}{1 + I/I_{sat,3C}}, \tag{27} \]

where for each line we have introduced the saturation intensity

\[I_{sat} = \frac{\Gamma_{eg}^2}{2 \hbar \omega_R} = \frac{\hbar}{16\pi \omega_R} \frac{\Gamma_{eg}^2}{\vert \langle g \vert e \rangle \vert^2} = \frac{\hbar}{c^2 e^2} \frac{\Gamma_{eg} \omega_{eg}^2}{12\pi}. \tag{28} \]

For a weak exciting field \(I \ll I_{sat} \), equation (27) agrees with the linear theory of resonance fluorescence, predicting a line-strength ratio of 3.56, equal to the ratio of the oscillator strengths. This weak-field limit was the implicit assumption of [23] and previous studies, where observed line-strength ratios were compared to the ratio of the oscillator strengths. However, for field intensities \(I \) comparable to or larger than the saturation intensity \(I_{sat} \), equation (27) shows that nonlinear effects become important and the line-strength ratio converges to \(S_{3C}/S_{3D} \rightarrow 7.03 \), significantly different from the ratio of the oscillator strengths. For the Fe transitions studied here, with \(I_{sat} \approx 10^{11} \text{ W cm}^{-2} \), the intensity of LCLS pulses is typically on or above this order of magnitude. This justifies a thorough investigation of nonlinear dynamical effects.

3.3. Results and comparison with experimental line-strength ratios

In this subsection we present theoretical results for a range of XFEL pulse intensities, durations, and bandwidths. Since in the experiment of [23] the detected electromagnetic energy was measured off the forward direction, we will first focus on this particular setup, studying the ratio (24) of the line strengths given by equation (23). We will subsequently discuss the different contributions owing to coherent and incoherent parts of the emitted energy, showing that the comparison of observations in and out of the forward direction may provide an additional hint for the relevance of nonlinear dynamical effects in the prediction of Fe\(^{16+} \) line-strength ratios.

3.3.1. Off the forward direction

In figure 2, we show the time evolution of the population of the excited 3C and 3D states in the presence of a Gaussian pulse of duration \(T = 200 \) fs and for different intensities. This corresponds to typical LCLS parameters, with nominal intensities in the range of \(I = 10^{11} - 10^{13} \text{ W cm}^{-2} \) and pulse durations in the range of \(T = 200 - 2000 \) fs [23, 43]. For Gaussian pulses we use the pulse envelope \(E(t) = E_{max} e^{-t^2 \sigma_2^2 \ln(2)} \) and a constant phase \(\psi(t) = 0 \). In figures 2(a) and 2(b), for \(I = 10^{10} \text{ W cm}^{-2} \) and \(I = 10^{11} \text{ W cm}^{-2} \) respectively, one is still in the weak-field regime and the emitted energy is low.

The figures exhibit almost identical overall shapes, with maximal values of population proportional to the pulse intensity and thus differing by one order of magnitude. This agrees with the linear theory of resonance fluorescence. For an intensity of \(I = 10^{12} \text{ W cm}^{-2} \), displayed in figure 2(c), the shape of the curve differs from the previous ones and a decrease in the 3C/3D ratio starts to be visible. For an intensity of \(I = 10^{13} \text{ W cm}^{-2} \), shown in figure 2(d), Rabi oscillations appear, implying a high sensitivity of the 3C/3D ratio to the pulse parameters.

The 3C/3D ratio as a function of pulse intensity is plotted in figure 3 for Gaussian pulses of different durations. At low intensities, a value of 3.56 is approached for every pulse duration, in agreement with the linear (weak-field) theory. However, at increasing intensities different nonlinear features are exhibited for different pulse durations. In particular, at decreasing values of the pulse duration, oscillations in the line-strength ratio are shown for high intensities. Shorter pulses are associated with larger oscillations in the line-strength ratio, implying a larger sensitivity to the intensity. For the longest pulse duration considered, \(T = 2000 \) fs, there are no visible oscillations in the ratio and the behavior approaches the one predicted for a continuous-wave field, given by equation (27). Furthermore, we notice that, for approximately \(I = 1 - 5 \times 10^{12} \text{ W cm}^{-2} \) and \(T = 200 \) fs, the resulting line-strength ratio agrees with the measured value of 2.61 ± 0.23 [23].

These results confirm the importance of strong-field dynamical effects in a relatively intense XFEL field, suggesting that the linear model may not have been appropriate for the interpretation of the experimental results from [23]. We point out that the linear model is applicable for intensities that are low compared to the dipole-moment-dependent saturation intensity \(I_{sat} \). This implies that, for smaller values of the dipole-moment matrix elements, nonlinear dynamical effects would appear at larger intensities.

Because of the chaotic nature of XFEL pulses, Gaussian pulses are not sufficient for an adequate simulation of the true experimental scenario. Experimental XFEL pulses generated via self-amplified spontaneous emission [44] are here
modeled via the partial-coherence method from [45, 46]. In the simulations, we employ a series of such randomized pulses to integrate the equations of motion (14). The results of our simulations are shown in figure 4 for different pulse durations and intensities. The bandwidth of the pulses was chosen to be 1 eV, which approximately corresponds to the experimentally observed line width. For each point in figure 4, an average over ten independent random chaotic pulses was taken. The simulation uncertainty can be estimated to be on the 1–2% level. As in the case of Gaussian pulses, the

Figure 2. Population of the excited $2p^33d$ states for the 3C and 3D lines, as a function of time. The curves are given for a short pulse duration of 200 fs and different pulse intensities, and display the time evolution of the system in the presence of the pulse.

Figure 3. The line-strength ratio S_{3C}/S_{3D} as a function of the intensity and duration of the Gaussian pulse. The analytical result for a continuous-wave field is shown with a black line. The gray shaded area shows the experimental ratio 2.61(23) [23].

Figure 4. The line-strength ratio S_{3C}/S_{3D} as a function of the intensity I and duration T of chaotic pulses with a bandwidth of $B = 1$ eV. The gray shaded area shows the experimental ratio 2.61(23) [23].
The line-strength ratio S_{3C}/S_{3D} clearly depends on the pulse parameters. Also here, for small intensities, the value of 3.56 is approached, in agreement with the weak-field limit. We notice that, for chaotic pulses, the effect of the decrease of the $3C/3D$ line-strength ratio can be observed within a wider range of pulse intensities than for Gaussian pulses, as well as for a significantly larger interval of pulse durations. However, in contrast to the case of driving Gaussian pulses, no visible increase in the ratio towards the limit of continuous-wave fields from equation (27) can be distinguished. Due to the fixed bandwidth of $B=1$ eV, all chaotic pulses present a series of short spikes with a coherence time of $\approx \hbar/B$. As a result, line-strength ratios calculated for long chaotic pulses are much lower than those calculated for correspondingly long Gaussian pulses. This is mainly due to the short coherence time, such that the effect of a long chaotic pulse should be rather compared to the results obtained with many uncorrelated, short, and weak Gaussian pulses.

In order to understand the effect of the XFEL pulse bandwidth, in figure 5 we present results for (a) short $T=200$ fs, and (b) long $T=2000$ fs chaotic pulses with different bandwidths, comparing them with results obtained from Gaussian pulses with the same duration. For the long pulses in figure 5(b), the continuous-wave-field limit (27) is also plotted. The results show that incoherence effects become more significant at increasing values of the bandwidth of the chaotic pulse, i.e., for larger FWHM of the energy spectrum. The decrease in bandwidth (increase in coherence time) corresponds to a more coherent pulse, approaching a behavior closer to that displayed by fully coherent, i.e., transform-limited Gaussian pulses. In the experiment, a monochromator was used to obtain pulses with better coherence, i.e., smaller bandwidth, which also leads to a decrease in pulse intensities. However, our simulations show that for smaller bandwidths also smaller intensities are needed to reach the experimentally observed ratio of 2.61 ± 0.23. Therefore, we can conclude that effects due to the use of the monochromator can be accounted for within our modeling.

We finally point out that parameters of XFEL pulses are not fixed from pulse to pulse because of their chaotic nature, yet we estimate an average peak intensity lying in the range of $10^{11} - 10^{14}$ W cm$^{-2}$. The previous results were obtained by averaging over different pulses of fixed duration T and intensity I. In the experiment, however, the measured line-strength ratio may have originated from an average over pulses differing in I and T. In order to better model the experimental conditions, we calculated the line-strength ratio by averaging with equal weight over pulses of fixed duration and varying intensity. Thereby, we observed that the main contribution to this averaged line-strength ratio comes from pulses of larger intensity, associated with lower values of the ratio. This is an additional point hinting toward the relevance of nonlinear dynamical effects in the modeling of the experimental results.

3.3.2. In the forward direction. In order to further investigate the dependence of the above results upon the position of the x-ray detector, the different contributions of coherent, incoherent, and total emission to the line-strength ratio (24) are shown in figure 6(a) for Gaussian pulses of fixed duration and varying peak intensity. As displayed in figure 1, out of the forward direction, where $E = E_{\text{coh}} + E_{\text{inc}}$, both coherent and incoherent parts must be included. In this case, as already known from the theory of the spectrum of resonance fluorescence [38, 40], $E_{\text{coh}}/E \rightarrow 1$ for low peak intensities, while $E_{\text{coh}}/E \rightarrow 0$ at high peak intensities. This is confirmed by figure 6(a), where the line-strength ratios including only E_{coh} approach the total-line-strength ratios for low intensities, while they diverge for high intensities. As previously discussed, however, in the forward direction one has $E \approx E_{\text{coh}}$: the emitted energy due to the coherent part of the spectrum of resonance fluorescence dominates and determines the measured line-strength ratio. We notice that, at sufficiently high intensities, all three curves displayed in figure 6(a) enter the shaded area, corresponding to line-strength ratios measured in the experiment. Interestingly, line-strength ratios calculated from E_{coh} approach the experimental values for lower peak intensities than when computed from the total.
emitted energy $E_{\text{coh}} + E_{\text{inc}}$. A similar behavior is exhibited by figure 6(b) for ten realizations of chaotic pulses of fixed duration and bandwidth and varying intensity.

The contribution of the incoherent energy E_{inc} to the total energy increases with the intensity of the x-ray pulse. By comparing measurement results in the forward direction, with the only contribution of the coherent energy E_{coh}, and in any other direction, where $E_{\text{coh}} + E_{\text{inc}}$ is detected, differences in the line-strength ratios should be apparent, as predicted in figure 6 as a consequence of nonlinear dynamical effects. This additional indication of the presence of strong-field effects could be easily verified experimentally.

3.4. Influence of the uncertainty of atomic-structure calculations

Theoretical predictions for the Einstein coefficients of the 3C and 3D lines and, therefore, for the weak-field value of the ratio under consideration S_{3C}/S_{3D}, are generally in agreement. However, small differences in the results obtained from distinct atomic many-body calculations were reported. Our CI-DFS method predicts a value of 3.56, and other recent theoretical predictions are in the range 3.43–3.66 [23, 47–51]. We plot, for Gaussian pulses in figure 7(a) and for chaotic pulses in figure 7(b), intensity-dependent line-strength ratios for different values of the atomic parameters, such as Einstein coefficients. By either decreasing A_{3C} by 5%, or by increasing A_{3D} by 5% with respect to their CI-DFS predicted values, the S_{3C}/S_{3D} ratio decreases by 5%, whereas the minimal intensity needed to reach the value measured experimentally decreases by 20%, from 1.1×10^{13} to 8×10^{12} W cm$^{-2}$. When both A_{3C} and A_{3D} are modified, S_{3C}/S_{3D} decreases by 10% and the minimal intensity decreases by 40% to 6×10^{12} W cm$^{-2}$. This shows that an uncertainty in atomic-structure parameters would increase the acceptable range of intensities for which our calculations predict results in agreement with the experiment of [23].

3.5. Analysis of the Fe$^{15+}$ spectrum

In the experiment of [23] not only Fe$^{16+}$, but also Fe$^{15+}$ ions (and also other charge states which are not relevant in the current discussion) were present in the electron-beam ion trap. After measuring a spectrum of Fe$^{15+}$ only, the electron acceleration voltage of the trap was increased and Fe$^{16+}$ ions

Figure 6. Total, coherent and incoherent parts of the line-strength ratio S_{3C}/S_{3D} as a function of the intensity I for (a) Gaussian and (b) chaotic pulses with duration $T = 200$ fs. For chaotic pulses an average over ten realizations with a bandwidth of $B = 1$ eV was employed. The gray shaded area shows experimental results as usual, with the measured total contribution off the forward direction.

Figure 7. Influence of the theoretical uncertainty of calculated Einstein coefficients on the line-strength ratio S_{3C}/S_{3D} as a function of the intensity I for (a) Gaussian and (b) chaotic pulses with duration $T = 200$ fs. The minus and plus signs in the legend stand for the Einstein coefficients being 5% less or more, correspondingly, than our CI-DFS prediction. For chaotic pulses an average over ten realizations with bandwidth $B = 1$ eV was employed. The gray shaded area shows experimental results as usual.
were also produced. The amount of each type of ion in the trap is not known exactly. Then, a new spectrum with both types of Fe ions was recorded. In order to have an Fe$^{16+}$ spectrum only, the normalized Fe$^{15+}$ spectrum was subtracted. The line B is the strongest line of both spectra.

We analyzed the behavior of the Fe$^{15+}$ spectrum as a function of intensity. In this case, in addition to spontaneous decay, Auger decay is possible. Spontaneous-decay rates Γ_{eg} calculated with the CI-DFS method and Auger-decay rates Γ_A calculated with the multiconfiguration Dirac–Fock (MCDF) method [23, 52–54] are shown in table 3. The calculated rates are in good agreement with experimental resonant photo-ionization spectra [55] and with other calculations [56]. The most relevant lines here are line B at 815 eV and line C at 812 eV. The line C of Fe$^{15+}$ is mixed with the 3D line of Fe$^{16+}$ in a spectrum of both ions; therefore, it should be subtracted. The line B is the strongest line of both spectra and was used for normalization.

The parameters of Fe$^{15+}$ transitions are close to the parameters of Fe$^{16+}$. As a result, the saturation intensities I_{sat} are on the same order of magnitude, i.e., 10^{13} W cm$^{-2}$ and a similar sensitivity of the line-strength ratio to the interaction parameters is expected. In figure 8 the C/B line-strength ratio as a function of intensity is presented. In figure 9 spectra of both ions are displayed for an intensity of 10^{13} W cm$^{-2}$.

As apparent from figures 3, 4, and 8, both spectra are sensitive to the intensity, though the sensitivity of the Fe$^{15+}$ spectrum is lower. In the wide range $I = 10^{10} - 10^{14}$ W cm$^{-2}$ the C/B ratio changes by only 20% and, within the experimental error bars, it can be regarded as constant, as found in [23], see supplementary figure S3 therein. Therefore, an analogously wide range of intensities in the case of Fe$^{16+}$ cannot be excluded.

4. Summary

In summary, we conclude that dynamical processes can modify the x-ray fluorescence spectra of highly charged Fe$^{15+}$ and Fe$^{16+}$ ions when driven with strong and short x-ray free-electron-laser pulses. Oscillator strengths were calculated with a large-scale configuration-interaction Dirac–Fock–Sturm method including single, double, and partially triple excitations, confirming previous theoretical calculations and their discrepancy with the experiment. QED corrections to transition energies were estimated with an effective screening potential and found to be negligible. A strong dependence of the observed 3C/3D ratio on experimental parameters, such as XFEL pulse intensity, duration, and bandwidth was stated. By decreasing atomic calculation results of the S_{3C}/S_{3D} by 5%, we decrease the minimal intensity needed to reach the experimental measured value by 20%. We also find that the line-strength ratio of the C and B lines in Fe$^{15+}$ is less sensitive to the XFEL intensities due to the autoionization channel. As a result, a wide interval of the intensities may be considered as possible for Fe$^{16+}$ as well. Furthermore, we

Line	Transition	Energy, eV	Γ_{eg}, 1/ s	Γ_A, 1/ s
C	$(2p^6 3 s)\frac{3}{2} \rightarrow (2p^7 3 s 3 d)\frac{1}{2}$	812	1.41×10^{13}	2.1×10^{13}
B	$(2p^6 3 s)\frac{1}{2} \rightarrow (2p^7 3 s 3 d)\frac{3}{2}$	815	2.19×10^{13}	1.7×10^{10}
A	$(2p^6 3 s)\frac{3}{2} \rightarrow (2p^7 3 s 3 d)\frac{3}{2}$	820	6.80×10^{12}	4.0×10^{13}
propose that comparing the energy emitted in the forward direction and in any other direction can give a hint for the limitations in the applicability of the weak-field atomic theory.

Concluding, we would like to stress that accurate control of the pulse parameters such as intensity, duration, and bandwidth is required for the analysis of experimental data. Furthermore, dynamical effects may be relevant both for laboratory measurements and for astrophysical observations with naturally incoherent x-ray sources. Approaching the saturation intensity, the weak-field atomic theory employed so far is shown not to be applicable anymore, which is equally valid for corresponding astrophysical scenarios. For example, in the accretion disk of stellar-mass black holes in x-ray binaries [56], the Eddington luminosity of 10^{38} erg/s at a distance around the innermost stable orbit of three Schwarzschild radii yields an intensity of approximately 3×10^{15} W cm$^{-2}$ for a line at 1 keV with a 1 eV width, requiring the inclusion of nonlinear dynamics.

Acknowledgments

We acknowledge helpful advice and computer codes from Ilya I Tupitsyn and insightful conversations with Sven Bernitt, José R Crespo López-Urrutia, Alberto Benedetti, and Jörg Evers.

Appendix A. Two-level-model approach

The level schemes of the atomic transitions considered throughout the paper are displayed in figure 10. We denote with $[eM]$ one of the degenerate excited states associated with energy ω_e and total angular-momentum quantum numbers J_e and its projection M_e. We similarly write $[gM]$ for one of the degenerate ground states of energy ω_g and angular-momentum quantum numbers J_g and M_g. We describe the atomic system via the density matrix

$$\hat{\rho}(t) = \sum_{i,j \in \{e,g\}} \rho_{M_i,M_j}^{ij} |iM_i\rangle \langle jM_j|,$$

(A.1)

whose time evolution is given by the master equation (14).

For an external electric field

$$\hat{E}(t) = E(t) \cos(\omega_0 t + \psi(t)) \hat{\mathbf{e}}_z,$$

linearly polarized along the z quantization axis, only transitions with the same quantum number M are driven, as displayed by the straight arrows in figure 10. In the rotating-wave approximation, the resulting light–ion-interaction Hamiltonian is given by

$$\hat{H}_{\text{int}} = \sum_M \left[-\frac{i\hbar}{2} \Omega_{gM}(t) \langle eM| \mathbf{d} |gM\rangle + \text{H.c.} \right] + \frac{\hbar}{2} \left(\frac{\partial}{\partial t} \right) \langle eM| \mathbf{\Sigma}_{gM\rightarrow eM} (t) |eM\rangle,$$

(A.2)

with the M-dependent Rabi frequency

$$\Omega_{R,M}(t) = \frac{e}{\hbar} E(t) \langle eM| \mathbf{\Sigma}_{gM\rightarrow eM} |eM\rangle e^{i\psi(t)}.$$

Here, $\langle gM| eM \rangle$ is the dipole-moment matrix element, with $\mathbf{\Sigma}_{gM\rightarrow eM}$ being the position operator along the quantization axis. For the atomic systems displayed in figure 10 [$\langle gM| eM \rangle$] does not depend on M.

Spontaneous decay from the excited to the ground level is described by the Liouville superoperator

$$\mathcal{L} \hat{\rho}(t) = \sum_{M, M'} \frac{\Gamma_{M \rightarrow M'}}{2} [\langle eM| \mathbf{\Sigma}_{gM\rightarrow eM} |eM\rangle + \text{H.c.}]$$

(A.4)

Here, $\Gamma_{M \rightarrow M'}$ is the E1 decay rate from the excited state $|eM\rangle$ to the ground state $|gM\rangle$.

$$\Gamma_{M \rightarrow M'} = 4\alpha \omega^2_{0} |\langle gM| \mathbf{\Sigma}_{gM\rightarrow eM} |eM\rangle|^2 / 3e^2,$$

(A.5)

with $|\langle gM| \mathbf{\Sigma}_{gM\rightarrow eM} |eM\rangle|$ being the electric-dipole-moment matrix element written in terms of the position operator \mathbf{r}. We denote with \mathbf{r} the three standard spherical components of the first-order irreducible tensor operator $\mathbf{\hat{r}}$. The Wigner–Eckart theorem allows one to write the dipole-moment matrix element $\langle gM| \mathbf{\Sigma}_{gM\rightarrow eM} |eM\rangle$ as the product of the Clebsch–Gordan coefficient $C_{Jg,Mg}^{J,e,M}$ times a term which is independent of the

J_e	J_g
0	0
1	0
-1/2	1/2
1/2	1/2
-3/2	1/2
1/2	3/2
-1/2	1/2
1/2	1/2

Figure 10. Level schemes for the x-ray transitions responsible for (a) the 3C and 3D lines in Fe$^{16+}$; (b) the B line in Fe$^{15+}$; and (c) the A and C lines in Fe$^{15+}$.
projections, i.e.,
\[
(gM_f | \hat{r}_M | eM_L) = \frac{(gJ_f | \rho^{\text{tot}} | eJ_L)}{\sqrt{2J_f + 1}} C_{J_f M_f}^{L J_M M_L}
\] (A.6)
where \((gJ_f | \rho^{\text{tot}} | eJ_L) \) stands for the reduced matrix element. As a result,
\[
\Gamma_{eM,FeM} \sim \frac{|(gJ_f | \rho^{\text{tot}} | eJ_L)|^2}{2J_f + 1} (C_{J_f M_f}^{L J_M M_L})^2.
\] (A.7)

By exploiting the general properties of the Clebsch–Gordan coefficients, one can conclude that the decay rate
\[
\Gamma_{eM,FeM} = \sum_{M_f} \Gamma_{eM,FeM_f},
\] (A.8)
from the excited state \(|eM_f\rangle \) to the ground level, is independent of the quantum number \(M_f \) of the initial excited state, namely,
\[
\Gamma_{eM,FeM} \sim \frac{|(gJ_f | \rho^{\text{tot}} | eJ_L)|^2}{2J_f + 1},
\] (A.9)
and it hence coincides with the total decay rate
\[
\Gamma_{eF} = \frac{1}{2J_f + 1} \sum_{M_f} \Gamma_{eM,FeM} = \Gamma_{eM,FeM_f}
\] (A.10)
from the excited level to the ground level. Furthermore, by comparing equations (A.7), (A.9), and (A.10), it follows that
\[
\Gamma_{eM,FeM} = \Gamma_{eF} = \frac{2J_f + 1}{2J_f + 1} (C_{J_f M_f}^{L J_M M_L})^2.
\] (A.11)

Autoionization from the excited level results in the emission of a free electron and the generation of a bound system with lower charge. We denote with \(|\rho_{M,M_f}\rangle \) this total final state, with given angular-momentum quantum numbers \(J_f \) and \(M_f \), implicitly assuming a sum over the quantum numbers of the free ionized electron. In the master equation (14) this is modeled by
\[
\mathcal{D} \hat{\rho}(t) = \sum_{M_f} \frac{\Gamma_{AM,M_f}}{2} (eM_f | \hat{r} | eM) \hat{\rho}(t) + \text{H. c.},
\] (A.12)
describing an effective loss of population from the bound excited state \(|eM_f\rangle \) at the Auger-decay rate
\[
\Gamma_{AM,M_f} \sim \sum_{M_f} (|M_f | \hat{V} | eM_f\rangle |^2,
\] (A.13)
with \(\hat{V} \) being the electron–electron Coulomb-interaction operator. In the cases under consideration, the leading term of the operator \(\hat{V} \) has rank 0. This implies that the Auger-decay rate \(\Gamma_{AM,M_f} \) is independent of \(M_f \) and, therefore, identical to the total Auger-decay rate
\[
\Gamma_A = \frac{1}{2J_f + 1} \sum_{M_f} \Gamma_{AM,M_f} = \Gamma_{AM}. \] (A.14)

We write down the master equation (14) for the different elements of the density matrix:
\[
\frac{d\rho_{M,M'}}{dt} = \frac{i}{2} \Omega_{R,M,M'} \rho_{M,M'} e^{i\omega_M t} - \frac{i}{2} \Omega^*_{R,M,M'} \rho_{M,M'} e^{-i\omega_M t} + \sum_{M''} \Gamma_{M,M''} \rho_{M,M''} e^{i\omega_M t}.
\] (A.15)

\[
\frac{d\rho_{M,M'}}{dt} = \frac{i}{2} \Omega_{R,M,M'} \rho_{M,M'} e^{-i\omega_M t} + \frac{i}{2} \Omega^*_{R,M,M'} \rho_{M,M'} e^{i\omega_M t} + \sum_{M''} \Gamma_{M,M''} \rho_{M,M''} e^{i\omega_M t}.
\] (A.16)

\[
\frac{d\rho_{M,M'}}{dt} = \frac{-i}{2} \Omega_{R,M,M'} \rho_{M,M'} e^{i\omega_M t} - \frac{i}{2} \Omega^*_{R,M,M'} \rho_{M,M'} e^{-i\omega_M t} + \sum_{M''} \Gamma_{M,M''} \rho_{M,M''} e^{-i\omega_M t}.
\] (A.17)

We assume that the atomic system is initially in the ground level, such that each one of the \((2J_f + 1) \) ground states \(|g,M_f\rangle \) is occupied with equal probability \(1/(2J_f + 1) \). We also assume that the initial coherences—also among ground states differing in the angular-momentum quantum number \(M \)—vanish. By closely inspecting equations (A.15), (A.16), and (A.17), one can notice that, with such natural initial conditions, if \(M = M' \) then \(\rho_{M,M'}(t) = 0 \) at any time. Among all the differential equations from equations (A.15), (A.16), and (A.17), we can therefore focus exclusively on \((2J_f + 1) \) sets of four differential equations, each set describing the evolution of the \(M \)th transition, \(|M| \leq J = \min(J_f, J_r) \).

By bearing in mind equations (A.8), (A.10), and (A.14), we can write equations (A.15), (A.16), and (A.17) as follows:
\[
\frac{d\rho_{M,M'}}{dt} = \frac{i}{2} \Omega_{R,M,M'} \rho_{M,M'} e^{i\omega_M t} - \frac{i}{2} \Omega^*_{R,M,M'} \rho_{M,M'} e^{-i\omega_M t} + \sum_{M''} \Gamma_{M,M''} \rho_{M,M''} e^{i\omega_M t}.
\] (A.18)

\[
\frac{d\rho_{M,M'}}{dt} = \frac{-i}{2} \Omega_{R,M,M'} \rho_{M,M'} e^{i\omega_M t} - \frac{i}{2} \Omega^*_{R,M,M'} \rho_{M,M'} e^{-i\omega_M t} + \sum_{M''} \Gamma_{M,M''} \rho_{M,M''} e^{-i\omega_M t}.
\] (A.19)
We notice that the term describing spontaneous decay from all \((2J + 1)\) excited states to the \(M\)th ground state is the only term connecting the dynamics of the \(M\)th transition to those of the remaining \(2J\) ones. Yet, for the atomic systems displayed in figure 10, the Rabi frequencies \(\Omega_{R}(t)\) are (up to a minus sign) independent of \(M\). Along with the \(M\)-independent initial conditions \(\rho_{M,M}(0) = \delta_{M,J}(2J + 1)\), one can easily conclude that \(\rho_{M,M}(t) = \rho_{M,M}(t_{0})\) for any \(M, M'\), and for any time. Furthermore, for the three atomic systems depicted in figure 10, equation (A.11) implies that \(\sum_{M'}\Gamma_{MM'} = \Gamma_{eg}\). As a result, equation (A.18) reads

\[
\frac{d\rho_{M,M}(t)}{dt} = \frac{-i}{2} \Omega_{R}(t) e^{-iN(t)}\rho_{M,M} + \Gamma_{eg}\rho_{M,M}.
\]

leading to \((2J + 1)\) identical, independent sets of differential equations, each one describing the two-level system associated with the \(M\)th transition. This justifies the two-level approximation presented in subsection 3.1.

Appendix B. Simulation of the observed \(\text{Fe}^{15+}\) line-strength ratios

In contrast to the 3C and 3D lines in \(\text{Fe}^{16+}\) ions – both originating from the \(1 \rightarrow 0\) transition displayed in figure 10(a) – the A, B, and C lines in \(\text{Fe}^{15+}\) result from transitions with different angular-momentum quantum numbers \(J\). As shown in table 3, the A and C lines result from a \(3/2 \rightarrow 1/2\) transition, see figure 10(c), while the B line results from a \(1/2 \rightarrow 1/2\) transition, see figure 10(b). Hence, the angular distribution of the emitted radiation is not the same for the three transitions and \(\text{Fe}^{15+}\) x-ray line-strength ratios are affected by the position of the detector.

In the following, we derive the formulas used for the numerical calculations presented in subsection 3.5. We assume the geometry depicted in figure 1 and a detector positioned along the \(z\)-axis, in accordance with the experimental measurement from [23]. In order to calculate the detected emitted energy, we first relate the electric-field operator to the dipole response of the excited atomic system. In the far-zone approximation and in terms of the ladder operators \(\hat{\sigma}_{MM'} = |M\rangle \langle M'|\), the positive-frequency electric-field operator at time \(t\) and along the \(\hat{e}_{z}\) unit vector is proportional to

\[
\hat{E}^{\uparrow}(\hat{e}_{z}, t) = \langle \hat{E}(t) - \hat{E}(t) \cdot \hat{e}_{z} \rangle \omega_{eg}.
\]

Here, \(\hat{E}(t) = \hat{\sigma}_{M,M}(t) (g M_{J} |\hat{E}| e M_{e}) \hat{e}_{M} \omega_{eg}\).

Further use of equation (A.11) allows one to write equation (B.6) as

\[
\mathcal{E}(\hat{e}_{z}) \sim \frac{2}{2J_e + 1} \left[\langle C_{J_e}^{1/2}|C_{J_e}^{1/2}\rangle^{2} + \langle C_{J_e}^{1/2}|C_{J_e}^{1/2}\rangle^{2} \right] \times \Gamma_{eg} \omega_{eg} \int_{-\infty}^{\infty} \rho_{d\hat{e}_{z}\hat{e}_{z}}(t) dt.
\]

This implies that \(\mathcal{E}(\hat{e}_{z})\) is explicitly dependent on the angular-momentum quantum numbers \(J_{e}\) and \(J_{e}\) of the excited and
ground levels, respectively. Hence, the multiplication factor
\[
\frac{2J_e + 1}{2J_h + 1} \left[(C_{-1/2}^{L,1/2 \rightarrow -1/2})^2 + (C_{1/2}^{L,1/2 \rightarrow -1/2})^2 \right]
\]
must be included when calculating strength ratios of lines with different \(J_e\). For the B line (1/2 \(\rightarrow\) 1/2) this factor equals 4/3, while for the A and C lines (3/2 \(\rightarrow\) 1/2) it is equal to 2/3, so one should include a factor of 1/2 into the C/B line-strength ratio to simulate the experimentally observed one [23] in the far-zone approximation.

In contrast to the case described above, the 3C and 3D lines in Fe\(^{16+}\) are both associated with 1 \(\rightarrow\) 0 transitions as depicted in figure 10(a). Line-strength ratios are therefore not dependent upon the position of the detector and are not affected by the \(J\)-dependent factors appearing in equation (B.7). This justifies the use of equations (23) and (24) for Fe\(^{16+}\) ions, as discussed in subsection 3.2.

References

[1] Beiersdorfer P, Chen H, Thorn D B and Träbert E 2005 Phys. Rev. Lett. 95 233003

[2] Brandau C et al 2008 Phys. Rev. Lett. 100 073201

[3] Shabaev V, Andreev O, Artemyev A, Baturin S, Elizarov A, Kozhedub Y, Oreshkina N, Tupitsyn I, Yerokhin V and Zherebtsov O 2006a Int. J. Mass Spectr. 251 109

[4] Shabaev V M, Glazov D A, Oreshkina N S, Volotka A V, Plunien G, Kluge H-J and Quint W 2006b Phys. Rev. Lett. 96 253002

[5] Sturm S, Köhler F, Zatorski J, Wagner A, Harman Z, Werth G, Quint W, Keitel C H and Blaum K 2014 Nature 506 467

[6] Berengut J, Dzuba V A and Flambaum V V 2010 Phys. Rev. Lett. 105 120801

[7] Safronova M S, Dzuba V A, Flambaum V V, Safronova U I, Porsev S G and Kozlov M G 2014 Phys. Rev. Lett. 113 030801

[8] Andreev O V, Labzowsky L N, Plunien G and Soff G 2005 Phys. Rev. Lett. 94 243002

[9] Windberger A et al 2015 Phys. Rev. Lett. 114 150801

[10] Bekker H et al 2015 J. Phys. B: At. Mol. Opt. Phys. 48 144018

[11] Simon M C et al 2010a J. Phys. B: At. Mol. Opt. Phys. 43 065003

[12] Simon M C et al 2010b Phys. Rev. Lett. 105 183001

[13] Schnorr K, Mückel V, Oreshkina N S, Augustin S, Brunner F, Harman Z, Keitel C H, Ullrich J and Crespo López-Urrutia J R 2013 Astrophys. J. 776 121

[14] Steinbrügge R et al 2015 Phys. Rev. A 91 032502

[15] Paeres F B S and Kahn S M 2003 Annu. Rev. Astron. Astrophys. 41 291

[16] Huenemoerder D P et al 2011 Astron. J. 141 129

[17] Xu H, Kahn S M, Peterson J R, Behar E, Paeres F B S, Mushotzky R F, Jernigan J G, Brinkman A C and Makishima K 2002 Astrophys. J. 579 600

[18] Mewe R, Raassen A J J, Drake J J, Kaاستra J S, van der Meer R L J and Porquet D 2001 Astron. Astrophys. 368 885

[19] Bhatia A K 1992 At. Data and Nucl. Data Tables 52 1

[20] Cornille M, Dubau J and Jacquetom S 1994 At. Data and Nucl. Data Tables 58 1

[21] Safronova U I, Namba C, Murakami I, Johnson W R and Safronova M S 2001a Phys. Rev. A 64 012507

[22] Chen G-X 2001 Phys. Rev. A 76 062708

[23] Bermitt S et al 2012 Nature 492 225

[24] Emma P et al 2010 Nat. Photon. 4 641

[25] Oreshkina N S, Cavaletto S M, Keitel C H and Harman Z 2014 Phys. Rev. Lett. 113 143001

[26] Loch S D, Ballance C P, Li Y, Fogle M and Fontes C J Astrophys. J. Lett. 801 L13

[27] Tupitsyn I I, Shabaev V M, Crespo López-Urrutia J R, Draganic I, Soria Orts R and Ullrich J 2003 Phys. Rev. A 68 022511

[28] Tupitsyn I I, Volotka A V, Glazov D A, Shabaev V M, Plunien G, Crespo López-Urrutia J R, Lapierre A and Ullrich J 2005 Phys. Rev. A 72 062503

[29] Soria Orts R et al 2006 Phys. Rev. Lett. 97 105002

[30] Grant P 1974 J. Phys. B 7 1458

[31] Foot C J 2005 Atomic Physics (Oxford: Oxford University Press)

[32] Malmaqvist P A, Roos B O and Schimmelpfennig B 2002 Chem. Phys. Lett. 357 230

[33] Yerokhin V A and Shabaev V M 1999 Phys. Rev. A 60 800

[34] Shabaev V M, Tupitsyn I I, Yerokhin V A, Plunien G and Soff G 2004 Phys. Rev. Lett. 93 130405

[35] Uehling E A 1935 Phys. Rev. 48 55

[36] Mohr P J, Plunien G and Soff G 1998 Phys. Rep. 293 227

[37] Latter R 1955 Phys. Rev. 99 510

[38] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)

[39] Kiffner M, Macovet J, Evers J and Keitel C H 2010 Progress in Optics vol 55 ed E Wolf p 85 ch 3

[40] Jentschura U D and Keitel C H 2004 Annu. Phys. 310 1

[41] Eberly J H and Fedorov M V 1992 Phys. Rev. A 45 4706

[42] Gauthey F I, Keitel C H, Knight P L and Maquet A 1995 Phys. Rev. A 52 525

[43] Linac Coherent Light Source (http://lcls.slac.stanford.edu).

[44] Biondiaco F, Pellegrini C and Narducci L 1984 Opt. Commun. 50 373

[45] Pfeifer T, Jiang Y, Dürstner S, Moshammer R and Ullrich J 2010 Opt. Lett. 35 3441

[46] Cavalletto S M, Buth C, Harman Z, Kanter E P, Southworth S H, Young L and Keitel C H 2012 Phys. Rev. A 86 033402

[47] Safronova U I, Namba C, Murakami I, Johnson W R and Safronova M S 2001b Phys. Rev. A 64 012507

[48] Chen G-X 2007 Phys. Rev. A 76 062708

[49] Kramida A, Ralchenko Yu, Reader J and NIST ASD Team 2014 NIST Atomic Spectra Database (ver. 5.2) (http://physics.nist.gov/asd) National Institute of Standards and Technology, Gaithersburg, MD

[50] Santana J A, Lespoon J K, Träbert E and Beiersdorfer P 2015a Phys. Rev. A 91 012502

[51] Goddefroid M and Liegeois D Private communication

[52] Jönsson P, He X, Fischer C F and Grant I 2007 Comput. Phys. Commun. 177 597

[53] Harman Z, Tupitsyn I I, Artemyev A N, Jentschura U D, Keitel C H, Crespo López-Urrutia J R, González Martínez A J, Tawara H and Ullrich J 2006 Phys. Rev. A 73 052711

[54] Zimmerer P, Grünn N and Scheid W 1990 Phys. Lett. A 148 457

[55] Beilman C 2012 Über die Stärke mehrelektronischer Resonanzen bei der Photorekombination und -ionisation PhD Thesis Ruprecht-Karls-Universität Heidelberg

[56] Shapiro S L and Teukolsky S A 1983 Black Holes, White Dwarfs and Neutron Stars: the Physics of Compact Objects (New York, NY: Wiley)

[57] Perri M F, Holzer T, Behar E and Kahn S M 2006 Astrophys. J. 641 1227