The nonlinear Schrödinger equation on the half-line

A S Fokas\(^1\), A R Its\(^2\) and L-Y Sung\(^3\)

\(^1\) Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, UK
\(^2\) Department of Mathematical Sciences, Indiana University–Purdue University Indianapolis, Indianapolis, IN 46202-3216, USA
\(^3\) Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA

Received 30 April 2004, in final form 30 March 2005
Published 20 May 2005
Online at stacks.iop.org/Non/18/1771

Recommended by E S Titi

Abstract

Assuming that the solution \(q(x, t)\) of the nonlinear Schrödinger equation on the half-line exists, it has been shown in Fokas (2002 Commun. Math. Phys. 230 1–39) that \(q(x, t)\) can be represented in terms of the solution of a matrix Riemann–Hilbert (RH) problem formulated in the complex \(k\)-plane. The jump matrix of this RH problem has explicit \(x, t\) dependence and it is defined in terms of the scalar functions \(\{a(k), b(k), A(k), B(k)\}\) referred to as spectral functions. The functions \(a(k)\) and \(b(k)\) are defined in terms of \(q_0(x) = q(x, 0)\), while the functions \(A(k)\) and \(B(k)\) are defined in terms of \(g_0(t) = q(0, t)\) and \(g_1(t) = q_x(0, t)\). The spectral functions are not independent but they satisfy an algebraic global relation. Here we first prove that if there exist spectral functions satisfying this global relation, then the function \(q(x, t)\) defined in terms of the above RH problem exists globally and solves the nonlinear Schrödinger equation, and furthermore \(q(0, t) = q_x(0, t) = 0\). We then show that, given appropriate initial and boundary conditions, it is possible to construct such spectral functions through the solution of a nonlinear Volterra integral equation whose solution exists globally. We also show that for a particular class of boundary conditions it is possible to bypass this nonlinear equation and to compute the spectral functions using only the algebraic manipulation of the global relation; thus for this particular class of boundary conditions, which we call linearizable, the problem on the half-line can be solved as effectively as the problem on the line. An example of a linearizable boundary condition is \(q_x(0, t) - \rho q(0, t) = 0\) where \(\rho\) is a real constant.

Mathematics Subject Classification: 37K10, 37K15, 35Q55
1. Introduction

A general method for solving boundary value problems for two-dimensional linear and integrable nonlinear PDEs was announced in [2] and further developed in [3,4]. For nonlinear evolution equations on the half-line, the starting point of this method is the simultaneous spectral analysis of the two eigenvalue equations defining the associated Lax pair. Under the assumption of the existence of a solution \(q(x,t) \), this yields \(q(x,t) \) in terms of the solution of a matrix Riemann–Hilbert (RH) problem formulated in the complex \(k \)-plane, where \(k \) is the spectral parameter of the two eigenvalue equations. The jump matrix of this RH problem has explicit \(x,t \) dependence and it is uniquely defined in terms of some functions of \(k \) called the spectral functions. These functions can be expressed in terms of the boundary values of \(q \) and of its spatial derivatives. However, these boundary values are in general related and only some of them can be prescribed as boundary conditions. The most difficult step in the solution of boundary value problems is the determination of those spectral functions which involve the unknown boundary values. This can be achieved using the fact that the spectral functions in the complex \(k \)-plane satisfy a simple algebraic global relation. For linear evolution equations this relation is linear and this step involves only algebraic manipulations [5]. However, for nonlinear equations this relation is nonlinear.

In this paper we present the rigorous implementation of the method of [2–4] to the nonlinear Schrödinger equation on the half-line. Furthermore, we identify a particular class of boundary conditions for which the global relation can be analysed using only algebraic manipulations.

This paper is organized as follows: in section 2 we first review the general methodology introduced in [2–4]. Namely, we assume that there exists a solution \(q(x,t) \) with sufficient smoothness and decay and we indicate how this solution can be expressed through the solution of a \(2 \times 2 \) matrix RH problem, which is uniquely characterized in terms of certain spectral functions satisfying an appropriate global relation. In sections 3 and 4 we rigorously study the RH problem: in section 3 we show that given initial data \(q(x,0) = q_0(x) \) and assuming that there exists an admissible set of boundary values \(\{g_0(t), g_1(t)\} \), it is possible to define an equivalent class of spectral functions. A set of boundary values is called admissible iff it gives rise to spectral functions satisfying the global relation obtained in section 2. In section 4 we define \(q(x,t) \) in terms of the solution of a matrix \(2 \times 2 \) RH problem uniquely characterized in terms of the spectral functions defined in section 3. We then show that \(q(x,t) \) satisfies the nonlinear Schrödinger equation, and furthermore \(q(x,0) = q_0(x) \), \(q(0,t) = g_0(t) \), \(q_x(0,t) = g_1(t) \). In section 5 we show that, given appropriate boundary conditions, the admissible set of boundary values can be uniquely constructed in terms of the given initial and boundary conditions through the solution of a nonlinear Volterra integral equation which can be solved globally. In section 6 we show that for a particular class of boundary conditions it is possible to bypass this nonlinear equation. These boundary conditions are determined by analysing the transformations in the complex \(k \)-plane which leave the global relation invariant. In section 7 we discuss these results further.

2. The exact 1-form

The nonlinear Schrödinger (NLS) equation

\[
\dot{q} + q_{xx} - 2\lambda |q|^2 q = 0, \quad \lambda = \pm 1
\]

admits the Lax pair [6] formulation [7]

\[
\begin{align*}
\mu_x + ik[\sigma_3,\mu] &= Q(x,t)\mu, \quad (2.2a) \\
\mu_t + 2ik^2[\sigma_3,\mu] &= \tilde{Q}(x,t,k)\mu, \quad (2.2b)
\end{align*}
\]
where $\sigma_3 = \text{diag}(1, -1)$,

$$Q(x, t) = \begin{bmatrix} 0 & q(x, t) \\ \lambda \tilde{q}(x, t) & 0 \end{bmatrix}, \quad \tilde{Q}(x, t, k) = 2kQ - iQ_x\sigma_3 - i\lambda q|q|^2\sigma_3. \quad (2.3)$$

Assuming that $q(x, t)$ is known, equations (2.2a) and (2.2b) can be considered two equations for the single function $\mu(x, t, k)$. These two equations are compatible provided that $q(x, t)$ satisfies the NLS equation (2.1). Indeed, computing μ_{xt} from equation (2.2a) and μ_{tx} from equation (2.2b), it can be shown that $\mu_{xt} = \mu_{tx}$ provided that $q(x, t)$ solves the NLS.

Let $\hat{\sigma}_3$ denote the commutator with respect to σ_3, then

$$(\exp^{\hat{\sigma}_3}) \ A$$

can be computed easily:

$$\hat{\sigma}_3 A = [\sigma_3, A], \quad e^{\hat{\sigma}_3} A = e^{\sigma_3} A e^{-\sigma_3}, \quad (2.4)$$

where A is a 2×2 matrix.

Equations (2.2a) and (2.2b) can be rewritten as

$$d(e^{i(k(\xi-x)+2k^2(\tau-t))} \mu(x, t, k)) = W(x, t, k), \quad (2.5)$$

where the exact 1-form W is defined by

$$W = e^{i(k(\xi-x)+2k^2(\tau-t))} (Q \mu \ dx + \tilde{Q} \mu \ dt). \quad (2.6)$$

The advantage of this formalism is that it provides a straightforward method of obtaining an expression for $\mu(x, t, k)$ using the fundamental theorem of calculus (see section 2.1).

2.1. Bounded and analytic eigenfunctions

Let equation (2.1) be valid for

$$0 < x < \infty, \quad 0 < t < T,$$

where $T \leq \infty$ is a given positive constant; unless otherwise specified, we suppose that $T < \infty$. Assume that the function $q(x, t)$ has sufficient smoothness and decay. A solution of equation (2.5) is given by

$$\mu_+(x, t, k) = I + \int_{(x_*, t_*)}^{(x, t)} e^{-i(kx+2k^2t)\hat{\sigma}_3} W(\xi, \tau, k), \quad (2.7)$$

where I is the 2×2 identity matrix, (x_*, t_*) is an arbitrary point in the domain $0 < \xi < \infty, \ 0 < \tau < T$, and the integral is over a (piecewise) smooth curve from (x_*, t_*) to (x, t). Since the 1-form W is exact, μ_+ is independent of the path of integration. The analyticity properties of μ_+ with respect to k depend on the choice of (x_*, t_*). It was shown in [3] that for a polygonal domain there exists a canonical way of choosing the points (x_*, t_*), namely they are the corners of the associated polygon. Thus we define three different solutions μ_1, μ_2, μ_3, corresponding to $(0, T), (0, 0), (\infty, t)$, see figure 1. We also choose the particular contours shown in figure 1.

This choice implies the following inequalities on the contours,

$$\mu_1: \xi - x \leq 0, \quad \tau - t \geq 0,$$

$$\mu_2: \xi - x \leq 0, \quad \tau - t \leq 0,$$

$$\mu_3: \xi - x \geq 0.$$

The second column of the matrix equation (2.7) involves $\exp[i2(k(\xi-x)+2k^2(\tau-t))]$. Using the above inequalities it follows that this exponential is bounded in the following regions of the complex k-plane:

$$\mu_1: \{\text{Im } k \leq 0 \cap \text{Im } k^2 \geq 0\},$$

$$\mu_2: \{\text{Im } k \leq 0 \cap \text{Im } k^2 \leq 0\},$$

$$\mu_3: \{\text{Im } k \geq 0\}.$$
Thus the second column vectors of μ_1, μ_2 and μ_3 are bounded and analytic for $\arg k$ in $(\pi, 3\pi/2)$, $(3\pi/2, 2\pi)$ and $(0, \pi)$, respectively. We will denote these vectors with superscripts (3), (4) and (12) to indicate that they are bounded and analytic in the third quadrant, fourth quadrant and the upper half of the complex k-plane, respectively. Similar conditions are valid for the first column vectors, thus

$$
\mu_1(x, t, k) = (\mu_1^{(2)}, \mu_1^{(3)}), \quad \mu_2(x, t, k) = (\mu_2^{(1)}, \mu_2^{(4)}) \quad \text{and} \quad \mu_3(x, t, k) = (\mu_3^{(34)}, \mu_3^{(12)}).
$$

We note that the functions μ_1 and μ_2 are entire functions of k. Equations (2.8), together with the estimate

$$
\mu_j(x, t, k) = I + O\left(\frac{1}{k}\right), \quad k \to \infty, \quad j = 1, 2, 3,
$$

implies that the functions μ_j are the fundamental eigenfunctions needed for the formulation of an RH problem in the complex k-plane. Indeed, in each quadrant of the complex k-plane there exist two column vectors which are bounded and analytic. For example, in the first quadrant these two vectors are $\mu^{(1)}_2$ and $\mu^{(12)}_3$. Hence, in order to derive an RH problem, one only needs to compute the ‘jumps’ of these vectors across the real and the imaginary k-axis. It turns out that the relevant jump matrices can be uniquely defined in terms of the 2×2-matrix valued functions

$$
s(k) = \mu_3(0, 0, k) \quad \text{and} \quad S(k) = [e^{2ik^2T\hat{\sigma}_3}\mu_2(0, T, k)]^{-1}. \quad (2.10)
$$

This is a direct consequence of the fact that any two solutions of (2.7) are simply related,

$$
\mu_3(x, t, k) = \mu_2(x, t, k)e^{-ikx+2k^2t}\hat{\sigma}_3\mu_3(0, 0, k). \quad (2.11)
$$

Similarly,

$$
\mu_1(x, t, k) = \mu_2(x, t, k)e^{-ikx+2k^2t}\hat{\sigma}_3[e^{2ik^2T\hat{\sigma}_3}][e^{2ik^2T\hat{\sigma}_2}\mu_2(0, T, k)]^{-1}. \quad (2.12)
$$

The functions $s(k)$ and $S(k)$ follow from the evaluations at $x = 0$ and $t = T$, respectively of the function $\mu_3(x, 0, k)$ and of $\mu_2(0, t, k)$ which satisfy the following linear integral equations:

$$
\mu_3(x, 0, k) = I + \int_{-\infty}^{T} e^{i(kx-\xi)\hat{\sigma}_3}(\hat{Q}\mu_3)(\xi, 0, k) \, d\xi, \quad (2.13)
$$

$$
\mu_2(0, t, k) = I + \int_{0}^{T} e^{i2k^2(t-\tau)\hat{\sigma}_3}(\hat{Q}\mu_2)(0, \tau, k) \, d\tau. \quad (2.14)
$$
It is also worth noticing that the matrix valued function \(S(k) \) can be alternatively defined by the equation,

\[
S(k) = \mu_1(0, 0, k),
\]

which is more convenient in the case when \(T = \infty \).

2.2. The spectral functions

The fact that \(Q \) and \(\tilde{Q} \) are traceless together with (2.9) imply \(\det \mu_j(x, t, k) = 1 \) for \(j = 1, 2, 3 \). Thus

\[
\det s(k) = \det S(k) = 1.
\]

From the symmetry properties of \(Q \) and \(\tilde{Q} \) it follows that

\[
(\mu(x, t, k))_{11} = e^{-4i k^2 T A(k)}
\]

and thus

\[
\begin{align*}
\mu_1(0, t, k) &= \mu_1(0, t, \bar{k}), \\
\mu_2(0, t, k) &= \mu_2(0, t, \bar{k}), \\
\mu_3(x, 0, k) &= \mu_3(x, 0, \bar{k}).
\end{align*}
\]

We will use the following notation for \(s \) and \(S \):

\[
\begin{align*}
s(k) &= \begin{bmatrix} a(k) & b(k) \\ \lambda b(k) & a(k) \end{bmatrix}, \\
S(k) &= \begin{bmatrix} A(k) & B(k) \\ \lambda B(k) & A(k) \end{bmatrix}.
\end{align*}
\]

The definitions of \(\mu_j(0, t, k) \), \(j = 1, 2 \), and of \(\mu_2(x, 0, k) \) imply that these functions have larger domains of boundedness,

\[
\begin{align*}
\mu_1(0, 0, k) &= (\mu_1^{(24)}(0, 0, t, k), \mu_1^{(13)}(0, 0, t, k)), \\
\mu_2(0, 0, k) &= (\mu_2^{(13)}(0, 0, t, k), \mu_2^{(24)}(0, 0, t, k)), \\
\mu_3(x, 0, k) &= (\mu_3^{(12)}(x, 0, k), \mu_3^{(34)}(x, 0, k)).
\end{align*}
\]

The definitions of \(s(k) \), \(S(k) \) and the notation (2.16) imply

\[
\begin{align*}
\begin{bmatrix} b(k) \\ a(k) \end{bmatrix} &= \mu_3^{(12)}(0, 0, k), \\
\begin{bmatrix} -e^{-4i k^2 T B(k)} \\ \lambda A(k) \end{bmatrix} &= \mu_2^{(24)}(0, T, k),
\end{align*}
\]

where the vectors \(\mu_3^{(12)}(x, 0, k) \) and \(\mu_2^{(24)}(0, t, k) \) satisfy the following ODEs:

\[
\begin{align*}
\partial_x \mu_3^{(12)}(x, 0, k) + 2i k \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \mu_3^{(12)}(x, 0, k) &= Q(x, 0) \mu_3^{(12)}(x, 0, k), \\
0 & \leq \arg k \leq \pi, \\
0 & < x < \infty,
\end{align*}
\]

and

\[
\begin{align*}
\partial_t \mu_2^{(24)}(0, t, k) + 4i k \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \mu_2^{(24)}(0, t, k) &= \tilde{Q}(t, k) \mu_2^{(24)}(0, t, k), \\
\arg k & \in \left[\frac{\pi}{2}, \pi \right] \cup \left[\frac{3\pi}{2}, 2\pi \right], \\
0 & < t < T,
\end{align*}
\]

\[
\mu_2^{(24)}(0, 0, k) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.
\]
The above definitions imply the following properties:

a(k), b(k):

- \(a(k), b(k)\) are defined and analytic for \(\arg k \in (0, \pi)\).
- \(|a(k)|^2 - \lambda|b(k)|^2 = 1, \quad k \in \mathbb{R}\).
- \(a(k) = 1 + O\left(\frac{1}{k}\right), \quad b(k) = O\left(\frac{1}{k}\right), \quad k \to \infty. \quad (2.21)\)

A(k), B(k):

- \(A(k), B(k)\) are entire functions bounded for \(\arg k \in [0, \pi/2] \cup [\pi, 3\pi/2]\). If \(T = \infty\), the functions \(A(k)\) and \(B(k)\) are defined and analytic in the quadrants \(\arg k \in (0, \pi/2) \cup (\pi, 3\pi/2)\).
- \(A(k)A(\bar{k}) - \lambda B(k)B(\bar{k}) = 1, \quad k \in \mathbb{C} \quad (k \in \mathbb{R} \cup i\mathbb{R}, \text{ if } T = \infty).\)
- \(A(k) = 1 + O\left(\frac{1}{k}\right) + O\left(\frac{e^{4ik^2T}}{k}\right), \quad B(k) = O\left(\frac{1}{k}\right) + O\left(\frac{e^{4ik^2T}}{k}\right), \quad k \to \infty. \quad (2.22)\)

All of the above properties, except for the property that \(B(k)\) is bounded for \(\arg k \in [0, \pi/2] \cup [\pi, 3\pi/2]\), follow from the analyticity and boundedness of \(\mu_3(x, 0, k)\), \(\mu_2(0, t, k)\), from the conditions of unit determinant, and from the large \(k\) asymptotics of these eigenfunctions. Regarding \(B(k)\) we note that \(B(k) = B(T, k)\), where \(B(t, k) = -\exp(i4k^2t)(\mu_2(24)(0, t, k))_1\). Equations (2.20) implies a linear Volterra integral equation for the vector \(\exp(i4k^2t)(\mu_2(24))(0, t, k)\), from which it immediately follows that \(B(t, k)\) is an entire function of \(k\) bounded for \(\arg k \in [0, \pi/2] \cup [\pi, 3\pi/2]\).

2.3. The RH problem

Equations (2.11) and (2.12) can be rewritten in a form expressing the jump condition of a 2 \(imes\) 2 RH problem. This involves only tedious but straightforward algebraic manipulations (see [1] for details). The final form is

\[
M_-(x, t, k) = M_+(x, t, k)J(x, t, k), \quad k \in \mathbb{R} \cup i\mathbb{R}, \quad (2.23)
\]

where the matrices \(M_-, M_+, J\) are defined as follows

\[
M_+ = \begin{pmatrix} \mu_2^{(1)}(a(k), \mu_3^{(12)}) \end{pmatrix}, \quad \arg k \in \left[0, \frac{\pi}{2}\right]; \quad M_- = \begin{pmatrix} \mu_1^{(2)}(d(k), \mu_3^{(12)}) \end{pmatrix}, \quad \arg k \in \left[\frac{\pi}{2}, \pi\right];
\]

\[
M_+ = \begin{pmatrix} \mu_3^{(34)}(\mu_1^{(3)}(d(k)), \mu_3^{(12)}) \end{pmatrix}, \quad \arg k \in \left[\pi, \frac{3\pi}{2}\right]; \quad M_- = \begin{pmatrix} \mu_3^{(34)}(\mu_2^{(4)}(a(k)), \mu_3^{(12)}) \end{pmatrix}, \quad \arg k \in \left[\frac{3\pi}{2}, 2\pi\right].
\]

\[
d(k) = a(k)A(\bar{k}) - \lambda b(k)B(\bar{k}); \quad (2.24)
\]

\[
J(x, t, k) = \begin{cases} J_4, & \text{arg } k = 0 \\ J_1, & \text{arg } k = \pi \\ J_2 = J_3J_4^{-1}J_1, & \text{arg } k = \frac{\pi}{2} \\ J_3, & \text{arg } k = \frac{3\pi}{2} \end{cases} \quad (2.25)
\]
The contour for the RH problem is depicted in figure 2.

Remark 2.1. The function $\Gamma(k)$ is a meromorphic function in the upper half-plane (in the second quadrant if $T = \infty$).

The matrix $M(x, t, k)$, defined by equations (2.24), is in general a meromorphic function of k in $\mathbb{C} \setminus \{ \mathbb{R} \cup i\mathbb{R}\}$. The possible poles of M are generated by the zeros of $a(k), d(k)$, and by the complex conjugate of these zeros.

Assume that
1. $a(k)$ has n simple zeros $\{k_j\}_1^n$, $n = n_1 + n_2$, where $\arg k_j \in (0, \pi/2)$, $j = 1, \ldots, n_1$;
 $\arg k_j \in (\pi/2, \pi)$, $j = n_1 + 1, \ldots, n_1 + n_2$.
2. $d(k)$ has Λ simple zeros $\{\lambda_j\}_1^\Lambda$, where $\arg \lambda_j \in (\pi/2, \pi)$, $j = 1, \ldots, \Lambda$.
3. None of the zeros of $a(k)$ for $\arg k \in (\pi/2, \pi)$ coincides with a zero for $d(k)$.

In order to evaluate the associate residues we introduce the following notation:

$[A]_1$ (resp. $[A]_2$) denote the first (resp. second) column of A and $\dot{a}(k) = \frac{d a}{d k}$.

The following formulae are valid:

$$\text{Res}_{k_j} [M(x, t, k)] = \frac{1}{\dot{a}(k_j) b(k_j)} e^{2i\theta(k_j)} [M(x, t, k)]_2, \quad j = 1, \ldots, n_1, \quad (2.29a)$$

$$\text{Res}_{k_j} [M(x, t, k)]_2 = \frac{\lambda}{\dot{a}(k_j) b(k_j)} e^{-2i\theta(k_j)} [M(x, t, \bar{k}_j)]_1, \quad j = 1, \ldots, n_1, \quad (2.29b)$$

$$\text{Res}_{\lambda_j} [M(x, t, k)] = \frac{\lambda B(\lambda_j)}{\dot{a}(\lambda_j) d(\lambda_j)} e^{2i\theta(\lambda_j)} [M(x, t, \lambda_j)]_2, \quad j = 1, \ldots, \Lambda, \quad (2.29c)$$

$$\text{Res}_{\lambda_j} [M(x, t, k)]_2 = \frac{B(\bar{\lambda}_j)}{\dot{a}(\lambda_j) d(\lambda_j)} e^{-2i\theta(\lambda_j)} [M(x, t, \bar{\lambda}_j)]_1, \quad j = 1, \ldots, \Lambda, \quad (2.29d)$$
where
\[\theta(k_j) = k_j x + 2k_j^2 t. \]

(2.30)

Remark 2.2. The column \([\mu_3(x, 0, k_j)]_2\) is a nontrivial vector solution of (2.2a). Therefore, \(a(k)\) and \(b(k)\) cannot have common zeros and hence \(b(k_j) \neq 0\). Similar arguments, together with the third assumption above, imply that \(B(\lambda_j) \neq 0\).

In order to derive equation (2.29a) we note that the second column of equation (2.11) is
\[\mu_3^{(1)}(k_j) = a \mu_2^{(2)} + b \mu_2^{(1)} e^{-2i\theta}. \]
Recalling that \(\mu_2\) is an entire function and evaluating this equation at \(k = k_j, j = 1, \ldots, n_1\), we find
\[\mu_3^{(1)}(k_j) = b(k_j) e^{-2i\theta(k_j)} \mu_2^{(1)}(k_j), \]
where, for simplicity of notation, we have suppressed the \(x, t\) dependence. Thus
\[\text{Res}_{k_j} [M]_1 = \frac{\mu_3^{(1)}(k_j)}{\bar{\alpha}(k_j)} = \frac{e^{2i\theta(k_j)} \mu_3^{(1)}(k_j)}{\bar{a}(k_j) b(k_j)}, \]
which is equation (2.29a), since \(\mu_3^{(2)}(k_j) = [M]_2(k_j)\).

In order to derive equation (2.29c) we note that the first column of equation \(M_- = M_+ J_1\) yields
\[a \mu_1^{(2)} = d \mu_2^{(1)} + \lambda \bar{B} e^{2i\theta} \mu_3^{(2)}. \]
Evaluating this equation at \(k = \lambda_j\) (each term has an analytic continuation into the second quadrant) and using
\[\text{Res}_{\lambda_j} [M]_1 = \frac{\mu_3^{(2)}(\lambda_j)}{d(\lambda_j)}, \quad [M]_2 = \mu_3^{(1)}, \]
we find equation (2.29c).

Remark 2.3. By extending \(q_0(x)\) to the whole axis, \(q_0(x) = 0, x < 0\), we can identify the set \([k_j]_{n_1}\) of zeros of \(a(k)\) as the discrete spectrum of the Dirac operator associated with the nonlinear Schrödinger equation considered on the whole axis (cf [8]). If \(\lambda = 1\) this operator is selfadjoint. This implies the emptiness of the set \([k_j]_{n_1}\) when \(\lambda = 1\). However, we do not have a similar argument for the function \(d(k)\). Therefore, in order to ensure the solvability of the RH problem in the defocusing case, we shall assume that \(d(k)\) has no zeros if \(\lambda = 1\), see section 4.

2.4. The global relation

We now show that the spectral functions are not independent but satisfy an important global relation. Indeed, the integral of the 1-form \(W(x, t, k)\) around the boundary of the domain \([\xi, \tau) : 0 < \xi < \infty, 0 < \tau < t\) vanishes. Let \(W\) be defined by (2.6) with \(\mu = \mu_3\). Then
\[\int_{-\infty}^{0} e^{i k \xi} \sigma_3(Q(\mu_3))(\xi, 0, k) \, d\xi + \int_0^t e^{2i k^2 \tau} \sigma_3(Q(\mu_3))(0, \tau, k) \, d\tau + e^{2i k^2 t} \sigma_3 \times \int_{0}^{\infty} e^{ik \xi} \sigma_3(Q(\mu_3))(\xi, t, k) \, d\xi = \lim_{x \to \infty} e^{ik x} \int_{0}^{t} e^{2i k^2 \tau} \sigma_3(Q(\mu_3))(x, \tau, k) \, d\tau. \]

(2.32)
Using the definition of $s(k)$ in (2.10) it follows from (2.13) that the first term of this equation equals $s(k) - I$. Equation (2.11) evaluated at $x = 0$ gives
\[\mu_3(0, \tau, k) = \mu_2(0, \tau, k)e^{-2ik^2\tau \delta_3}s(k), \]
thus
\[e^{2ik^2\tau \delta_3}(\hat{Q}\mu_3)(0, \tau, k) = [e^{2ik^2\tau \delta_3}(\hat{Q}\mu_2)(0, \tau, k)]s(k), \]
this equation, together with (2.14), implies that the second term of (2.32) equals
\[[e^{2ik^2\tau \delta_3}\mu_2(0, t, k) - I]s(k). \]
Hence assuming that q has sufficient decay as $x \to \infty$ equation (2.32) becomes
\[-I + S(t, k)^{-1}s(k) - e^{2ik^2t \delta_3}\int_0^{\infty} e^{ik\xi}\hat{(Q}\mu_3)(\xi, T, k) d\xi = 0, \] (2.33)
where the first and second columns of this equation are valid for arg k in the lower and the upper half of the complex k-plane, respectively, and $S(t, k)$ is defined by
\[S(t, k) = [e^{2ik^2t \delta_3}\mu_2(0, t, k)]^{-1}. \]
Letting $t = T$ and noting that $S(k) = S(T, k)$, equation (2.33) becomes
\[-I + S(k)^{-1}s(k) - e^{2ik^2T \delta_3}\int_0^{\infty} e^{ik\xi}\hat{(Q}\mu_3)(\xi, T, k) d\xi = 0. \]
The (12) component of this equation is
\[B(k)a(k) - A(k)b(k) = e^{4ik^2T}c^*(k) \quad \text{arg} k \in [0, \pi], \]
\[c^*(k) = \int_0^{\infty} e^{ik\xi}\hat{(Q}\mu_3)_{12}(\xi, T, k) dk. \] (2.34)
We shall refer to equation (2.34) as the global relation.

3. The spectral functions

The analysis of section 2 motivates the following definitions for the spectral functions.

Definition 3.1 (the spectral functions $a(k)$ and $b(k)$).

Given $q_0(x) \in S(\mathbb{R}^+)$, we define the map
\[\mathcal{S} : \{q_0(x)\} \mapsto \{a(k), b(k)\} \] (3.1)
as follows:
\[a(k) = \varphi_2(0, k), \quad b(k) = \varphi_1(0, k), \quad \text{Im} k \geq 0, \] (3.2)
where the vector $\varphi(x, k) = (\varphi_1, \varphi_2)^T$ is the unique solution of
\[\varphi_{1, x} + 2ik\varphi_1 = q_0(x)\varphi_2, \] (3.3a)
\[\varphi_{2, x} + \lambda \bar{q}_0(x)\varphi_1, \quad \text{Im} k \geq 0, \quad 0 < x < \infty, \] (3.3b)
\[\lim_{x \to \infty} \varphi = (0, 1)^T. \] (3.3c)

The functions a and b are well defined. Indeed, equations (3.3) are equivalent to the Volterra linear integral equation,
\[\varphi_1(x, k) = -\int_x^{\infty} e^{-2ik(x-y)}q_0(y)\varphi_2(y, k) dy, \quad \text{Im} k \geq 0, \] (3.4a)
\[\varphi_2(x, k) = 1 - \lambda \int_x^{\infty} \bar{q}_0(y)\varphi_1(y, k) dy, \quad \text{Im} k \geq 0. \] (3.4b)
The spectral functions $a(k)$ and $b(k)$ have the following properties:

Properties of $a(k)$ and $b(k)$.

(i) $a(k)$ and $b(k)$ are analytic for $\text{Im } k > 0$ and continuous and bounded for $\text{Im } k \geq 0$.

(ii) $a(k) = 1 + O(1/k), \ b(k) = O(1/k), \ k \to \infty$.

(iii) $|a(k)|^2 - \lambda |b(k)|^2 = 1, \ k \in \mathbb{R}$.

(iv) The map $\mathbb{Q} : [a(k), b(k)] \mapsto \{q_0(k)\}$, inverse to S, is defined as follows:

$$q_0(x) = 2i \lim_{k \to \infty} (kM^{(x)}(x, k))_{12},$$

where $M^{(x)}(x, k)$ is the unique solution of the following RH problem:

- $M^{(x)}(x, k) = \begin{cases} M^{(x)}_0(x, k), & \text{Im } k \leq 0, \\ M^{(x)}_+(x, k), & \text{Im } k \geq 0 \end{cases}$

is a sectionally meromorphic function.

- $M^{(x)}_0(x, k) = M^{(x)}(x, k)J^{(x)}(x, k), \ k \in \mathbb{R}$, (3.6b)

where

$$J^{(x)}(x, k) = \begin{bmatrix} 1 & \frac{b(k)}{a(k)} e^{-2i\kappa} \\ \frac{-\lambda \bar{b}(k)}{a(k)} e^{2i\kappa} & \frac{1}{|a|^2} \end{bmatrix}. \quad (3.6c)$$

- $M^{(x)}(x, k) = I + O\left(1/k\right), \ k \to \infty$. (3.6d)

- We assume that if $\lambda = -1$, $a(k)$ has n simple zeros $\{k_j\}_1^n$, $n = n_1 + n_2$, where $\text{arg } k_j \in (0, \pi/2)$, $j = 1, \ldots, n_1$; $\text{arg } k_j \in (\pi/2, \pi)$, $j = n_1 + 1, \ldots, n_1 + n_2$.

- If $\lambda = -1$, the first column of $M^{(x)}_0$ has simple poles at $k = k_j$, $j = 1, \ldots, n$ and the second column of $M^{(x)}_0$ has simple poles at $k = \bar{k}_j$, where $\{k_j\}_1^n$ are the simple zeros of $a(k)$, $\text{Im } k > 0$. The associated residues are given by

$$\text{Res}_{k_j} [M^{(x)}_0(x, k)]_1 = \frac{e^{2ik_jx}}{\bar{a}(k_j)\bar{b}(k_j)} [M^{(x)}(x, k)]_1, \quad \text{Res}_{\bar{k}_j} [M^{(x)}_0(x, k)]_2 = \frac{\lambda e^{-2i\bar{k}_jx}}{a(k_j)b(k_j)} [M^{(x)}(x, \bar{k}_j)]_1. \quad (3.6e)$$

(v) We have

$$S^{-1} = \mathbb{Q}.$$ \quad (3.7)

Proof. (i)--(iii) follow from the definition; the derivation of (iv), (v) is given in appendix A. \hfill \Box

Remark 3.2. The properties of $a(k)$ and $b(k)$ imply that $a(k)$ can be expressed in terms of $b(k)$. Indeed, if $a(k) \neq 0$, for $\text{Im } k \geq 0$, then

$$a(k) = \exp\left\{\frac{1}{2\pi i} \int_{-\infty}^{\infty} \ln(1 + \lambda |b(k')|^2) \frac{dk'}{k' - k}\right\}, \quad \text{Im } k > 0.$$

Also, the upper-half plane analyticity of $b(k)$ implies that

$$b(k) = \int_{0}^{\infty} \hat{b}(s)e^{iks} \, ds,$$
where \(\hat{b}(s) \) is a complex valued function of Schwartz type on \(\mathbb{R}^+ \) (if the same behaviour is assumed for \(q_0(x) \)). Thus, if \(a(k) \neq 0 \), the maps \(\hat{S} \) and \(\hat{Q} \) define the bijection

\[
g_0(x) \leftrightarrow b(k). \tag{3.8}
\]

If \(\lambda = -1 \) and \(a(k) \) has zeros, the equation for \(a(k) \) must be replaced by

\[
a(k) = \prod_{j=1}^n \frac{k - k_j}{k - \bar{k}_j} \exp \left\{ \frac{1}{2\pi i} \int_{-\infty}^{\infty} \ln(1 + \lambda |b(k')|^2) \frac{dk'}{k' - k} \right\}, \quad \text{Im } k > 0
\]

and a discrete component, \(\{k_j\} \), must be added to the right-hand side (rhs) of (3.8).

Definition 3.3 (the spectral functions \(A(k) \) and \(B(k) \)).

Let

\[
\hat{Q}(t, k) = 2k \begin{bmatrix} 0 & g_0(t) \\ \lambda \overline{g_0(t)} & 0 \end{bmatrix} - i \begin{bmatrix} 0 & g_1(t) \\ \lambda \overline{g_1(t)} & 0 \end{bmatrix} \sigma_3 - i\lambda |g_0(t)|^2 \sigma_3, \quad \lambda = \pm 1. \tag{3.9}
\]

Let \(g_0(t) \) and \(g_1(t) \) be smooth functions. The map

\[
\hat{S} : \{g_0(t), g_1(t)\} \mapsto \{A(k), B(k)\} \tag{3.10}
\]

is defined as follows:

\[
\begin{bmatrix} -e^{-4ik^2T} B(k) \\ A(k) \end{bmatrix} = \Phi(T, k), \quad k \in \mathbb{C}, \tag{3.11}
\]

where the vector \(\Phi(t, k) = (\Phi_1, \Phi_2)' \) is the unique solution of

\[
\Phi_1, + 4ik^2 \Phi_1 = \hat{Q}_{11} \Phi_1 + \hat{Q}_{12} \Phi_2, \tag{3.12a}
\]

\[
\Phi_2 = \hat{Q}_{21} \Phi_1 + \hat{Q}_{22} \Phi_2, \quad 0 < t < T, \quad k \in \mathbb{C}, \tag{3.12b}
\]

\[
\Phi(0, k) = (0, 1)', \tag{3.12c}
\]

The functions \(A(k) \) and \(B(k) \) are well defined, since equations (3.12a)–(3.12c) are equivalent to the linear Volterra integral equations

\[
\Phi_1(t, k) = \int_0^t e^{-4ik^2(t-\tau)} (\hat{Q}_{11} \Phi_1 + \hat{Q}_{12} \Phi_2)(\tau, k) \, d\tau, \tag{3.13a}
\]

\[
\Phi_2(t, k) = 1 + \int_0^t (\hat{Q}_{21} \Phi_1 + \hat{Q}_{22} \Phi_2)(\tau, k) \, d\tau. \tag{3.13b}
\]

If \(T = \infty \), we assume that the functions \(g_0(t) \) and \(g_1(t) \) belong to \(S(\mathbb{R}_+) \), and we use the alternative, based on the solution \(\mu_1(0, t, k) \), definition of the spectral functions \(A(k) \) and \(B(k) \). In other words, we put

\[
\begin{bmatrix} B(k) \\ A(k) \end{bmatrix} = \Phi(0, k), \quad \text{Im } k^2 \geq 0,
\]

where the vector \(\hat{\Phi}(t, k) = (\hat{\Phi}_1, \hat{\Phi}_2)' \) is the unique solution of

\[
\hat{\Phi}_1, + 4ik^2 \hat{\Phi}_1 = \hat{Q}_{11} \hat{\Phi}_1 + \hat{Q}_{12} \hat{\Phi}_2, \tag{3.14a}
\]

\[
\hat{\Phi}_2 = \hat{Q}_{21} \hat{\Phi}_1 + \hat{Q}_{22} \hat{\Phi}_2, \quad t > 0, \quad \text{Im } k^2 \geq 0,
\]

\[
\lim_{t \to \infty} \hat{\Phi}(t, k) = (0, 1)',
\]
In the case $T < \infty$, this definition is equivalent to (3.11). Also note, that the functions $\tilde{A}(t, k)$ and $\tilde{\Phi}_2(t, k)$ satisfy the system of linear Volterra integral equations,

$$
\tilde{\Phi}_1(t, k) = -\int_t^\infty e^{-4i\tilde{t}k} (\tilde{Q}_1(t) \tilde{\Phi}_1 + \tilde{Q}_2(t) \tilde{\Phi}_2)(\tau, k) d\tau,
$$

$$
\tilde{\Phi}_2(t, k) = 1 - \int_t^\infty (\tilde{Q}_1(t) \tilde{\Phi}_1 + \tilde{Q}_2(t) \tilde{\Phi}_2)(\tau, k) d\tau.
$$

Therefore, in the case $T = \infty$ the spectral functions $A(k)$ and $B(k)$ are well defined and analytic for $\arg k \in [0, \pi/2] \cup [\pi, 3\pi/2]$ only.

The spectral functions $A(k)$ and $B(k)$ have the following properties:

Properties of $A(k)$ and $B(k)$

(i) $A(k), B(k)$ are entire functions bounded for $\arg k \in [0, \pi/2] \cup [\pi, 3\pi/2]$. If $T = \infty$, the functions $A(k)$ and $B(k)$ are defined only for k in these quadrants.

(ii) $A(k) = 1 + O\left(\frac{1}{k}\right) + O\left(\frac{e^{4it^2}T}{k}\right)$, $B(k) = O\left(\frac{1}{k}\right) + O\left(\frac{e^{4it^2}T}{k}\right)$, $k \to \infty$.

(iii) $A(k)A(k) - \lambda B(k)B(k) = 1$, $k \in \mathbb{C}$ ($k \in \mathbb{R} \cup i\mathbb{R}$, if $T = \infty$).

(iv) The map $\tilde{Q} : (A(k), B(k)) \mapsto (g_0(t, g_1(t))$, inverse to \tilde{S}, is defined as follows:

$$
\begin{align*}
 g_0(t) &= 2i \lim_{k \to \infty} (kM^{(1)}(t, k))_{12}, \\
 g_1(t) &= \lim_{k \to \infty} [4(k^2M^{(2)}(t, k))_{12} + 2ig_0(t)k(M^{(2)}(t, k))_{22}].
\end{align*}
$$

where $M^{(1)}(t, k)$ is the unique solution of the following RH problem:

- $M^{(1)}(t, k) = \begin{bmatrix} M^{(1)}(t, k), & \arg k \in \left[0, \frac{\pi}{2}\right] \cup \left[\pi, \frac{3\pi}{2}\right] \\
M^{(1)}(t, k), & \arg k \in \left[\frac{\pi}{2}, \pi\right] \cup \left[\frac{3\pi}{2}, 2\pi\right] \end{bmatrix}$.

- $M^{(2)}(t, k) = M^{(1)}(t, k)J^{(2)}(t, k)$, $k \in \mathbb{R} \cup i\mathbb{R}$,

where

$$
J^{(2)}(t, k) = \begin{bmatrix}
1 & \frac{B(k)}{A(k)}e^{-4it^2} \\
\lambda B(k) & \frac{1}{A(k)A(k)}
\end{bmatrix}.
$$

- $M^{(0)}(t, k) = I + O\left(\frac{1}{k}\right)$, $k \to \infty$.

- We assume that $A(k)$ has N simple zeros $\{K_j\}_{j=1}^N$, $\arg K_j \in (0, \pi/2) \cup (\pi, 3\pi/2)$. The first column of $M^{(1)}(t, k)$ has simple poles at $k = K_j$, $j = 1, \ldots, N$, and the second column of $M^{(1)}(t, k)$ has simple poles at $k = \tilde{K}_j$, where $\{K_j\}_{j=1}^N$ are the simple zeros of $A(k)$, $\arg k \in (0, \pi/2) \cup (\pi, 3\pi/2)$. The associated residues are given by

$$
\begin{align*}
\text{Res}_{K_j} [M^{(1)}(t, k)]_1 &= \frac{\exp[i4K_j^2\tau]}{A(K_j)B(K_j)} [M^{(1)}(t, K_j)]_2, \quad j = 1, \ldots, N, \\
\text{Res}_{\tilde{K}_j} [M^{(1)}(t, k)]_2 &= \frac{\lambda \exp[-i4\tilde{K}_j^2\tau]}{A(\tilde{K}_j)B(\tilde{K}_j)} [M^{(1)}(t, \tilde{K}_j)]_1, \quad j = 1, \ldots, N.
\end{align*}
$$

1782

A S Fokas et al
(v) We have
\[\tilde{S}^{-1} = \tilde{Q}. \] (3.16)

Proof. (i)–(iii) follow from the definition; the derivation of (iv), (v) is given in appendix A. □

Remark 3.4. The properties of \(A(k) \) and \(B(k) \) imply that \(A(k) \) can be expressed in terms of \(B(k) \). Indeed, if \(A(k) \neq 0 \), then
\[
A(k) = \prod_{j=1}^{N} \left(\frac{k}{k_j} - \frac{1}{k_j} \right) \exp \left\{ \frac{1}{2i\pi} \int_{L} \ln(1 + \lambda B(k')B(1/k')) \frac{dk'}{k' - k} \right\},
\]
for \(\arg k \in (0, \pi/2) \cup (\pi, 3\pi/2) \), where the contour \(L \) is the union of the real and the imaginary axis with the orientation shown in figure 2. Also,
\[
B(\pm k) = \int_{0}^{\infty} \hat{B}(s) e^{ik's} ds, \quad \arg k \in \left[0, \frac{\pi}{2} \right].
\]
Thus, the maps \(\tilde{S} \) and \(\tilde{Q} \) define the bijection
\[
\{g_0(t), g_1(t)\} \leftrightarrow \{B(k), K_1, \ldots, K_N, N < \infty\}. (3.17)
\]

The global relation suggests the following notion of an admissible set of boundary values.

Definition 3.5 (an admissible set of functions).
Given \(q_0(x) \in S(\mathbb{R}^+) \), define \(a(k) \) and \(b(k) \) according to definition 3.1. Suppose that there exist smooth functions \(g_0(t) \) and \(g_1(t) \), such that:

(i) The associated \(A(k) \), \(B(k) \) defined according to definition 3.3 satisfy the relation
\[
a(k)B(k) - b(k)A(k) = e^{4ik^2T}c^+(k), \quad \arg k \in [0, \pi],
\] (3.18)
where \(c^+(k) \) is analytic for \(\Im k > 0 \) and continuous and bounded for \(\Im k \geq 0 \) and \(c^+(k) = O(1/k), k \rightarrow \infty \).

(ii) The functions \(q(0, t) = g_0(t), q_x(0, t) = g_1(t) \) and \(q(x, 0) = q_0(x) \) are compatible with the NLS equation at \(x = t = 0 \), i.e. they satisfy
\[
\begin{align*}
g_0(0) &= q_0(0), \\
g_1(0) &= q'_0(0), \\
ig'_0(0) + q''_0(0) - 2\lambda(|q_0|^2q_0)(0) &= 0, \\
iq''_0(0) - 2\lambda(|q_0|^2q_0)'(0) &= 0, \ldots.
\end{align*}
\]
(The exact number of conditions depends on the regularity of the solution that is to be constructed using \(g_0 \) and \(g_1 \).) Then we call \(\{g_0(t), g_1(t)\} \) an admissible set of functions with respect to \(q_0(x) \).

Remark 3.6. If \(T = \infty \), then the functions \(g_0(t) \) and \(g_1(t) \) are assumed to belong in \(S(\mathbb{R}^+) \), and the global relation (3.18) transforms into
\[
a(k)B(k) - b(k)A(k) = 0, \quad \arg k \in \left[0, \frac{\pi}{2} \right]. \quad (3.19)
\]

\(^1\) We note that this condition is similar to the restrictions on the scattering data that appear in the boundary problem for the elliptic version of the sine-Gordon equation [9].
4. The Riemann–Hilbert problem

Theorem 4.1. Let \(q_0(x) \in S(\mathbb{R}^+) \). Suppose that the set of functions \(g_0(t) \) and \(g_1(t) \) is admissible with respect to \(q_0(x) \), see definition 3.5. Define the spectral functions \(a(k) \), \(b(k) \), \(A(k) \) and \(B(k) \), in terms of \(q_0(x) \), \(g_0(t) \), \(g_1(t) \) according to definitions 3.1 and 3.3. Assume that

1. If \(\lambda = -1 \), \(a(k) \) has at most \(n \) simple zeros \(\{k_j\}^n_1 \), \(j = 1, \ldots, n \); the second column of \(M \) has simple poles at \(k_j \), \(j = 1, \ldots, n \); \(\arg k_j \in (0, \pi/2) \), \(j = 1, \ldots, n \); \(\arg a(k) \in (\pi/2, \pi) \), \(j = 1, \ldots, n \). The associated residues satisfy the relations in (2.29).

2. \(M \) satisfies the jump condition
 \[
 M_-(x, t, k) = M_+(x, t, k)J(x, t, k), \quad k \in \mathbb{R} \cup i\mathbb{R},
 \]
 where \(M \) is \(M_+ \) for \(\arg k \in [\pi/2, \pi] \cup [3\pi/2, 2\pi] \), \(M \) is \(M_+ \) for \(\arg k \in [0, \pi/2] \cup [\pi, 3\pi/2] \), and \(J \) is defined in terms of \(a \), \(b \), \(A \) and \(B \) by equations (2.25)–(2.28), see figure 2.

3. At \(\infty \) we have
 \[
 M(x, t, k) = I + O \left(\frac{1}{k} \right), \quad k \to \infty.
 \]

Then \(M(x, t, k) \) exists and is unique.

Define \(q(x, t) \) in terms of \(M(x, t, k) \) by
 \[
 q(x, t) = 2i \lim_{k \to \infty} (kM(x, t, k))_{12}.
 \]

Then \(q(x, t) \) solves the NLS equation (2.1). Furthermore,
 \[
 q(x, 0) = q_0(x), \quad q(0, t) = g_0(t) \quad \text{and} \quad q_x(0, t) = g_1(t).
 \]

Proof. If \(\lambda = 1 \), the function \(a(k) \neq 0 \) for \(\Im k > 0 \) (see remark 2.3) and by assumption \(d(k) \neq 0 \) for \(\arg k \in (\pi/2, \pi) \). In this case the unique solvability of the RH problem is a consequence of the existence of a ‘vanishing lemma’, i.e. the RH obtained from the above RH by replacing (4.2) with \(M = O(1/k), k \to \infty \), has only the trivial solution. The vanishing lemma can be established using the symmetry properties of \(J \), see [10]. If \(\lambda = -1 \), \(a(k) \) and \(d(k) \) can have zeros; this ‘singular’ RH problem can be mapped to a ‘regular’ RH problem (i.e. to an RH problem for holomorphic functions) coupled with a system of algebraic equations [10]. The unique solvability of the relevant algebraic equations and the proof of the associated vanishing lemma are based on the symmetry properties of \(J \), see [10].

Proof that \(q(x, t) \) solves the NLS. It is straightforward to prove that if \(M \) solves the above RH problem and if \(q(x, t) \) is defined by (4.4) then \(q(x, t) \) solves the NLS equation. This proof is based on ideas from the dressing method, see [11].
Proof that $q(x, 0) = q_0(x)$. Define $M^{(t)}(x, k)$ by:

\[
M^{(1)} = M(x, 0, k), \quad \arg k \in \left[0, \frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2}, 2\pi\right], \quad (4.4a)
\]

\[
M^{(2)} = M(x, 0, k) J_1^{-1}(x, 0, k), \quad \arg k \in \left[\frac{\pi}{2}, \pi\right], \quad (4.4b)
\]

\[
M^{(3)} = M(x, 0, k) J_3(x, 0, k), \quad \arg k \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]. \quad (4.4c)
\]

We first discuss the case where the sets $\{k_j\}$ and $\{\lambda_j\}$ are empty. The function $M^{(x)}$ is sectionally meromorphic in $\mathbb{C} \setminus \mathbb{R}$. Furthermore,$M^{(x)}(x, k) = M^{(1)}(x, k) J^{(x)}(x, k), \quad k \in \mathbb{R},$

\[
M^{(x)}(x, k) = I + O \left(\frac{1}{k}\right), \quad k \to \infty,
\]

where $J^{(x)}(x, t)$ is defined in (3.6c). Thus according to (3.5),

\[
q_0(x) = 2i \lim_{k \to \infty} k (M^{(x)}(x, k))_{12} \quad (4.5)
\]

Comparing this equation with equation (4.3) evaluated at $t = 0$, we conclude that $q_0(x) = q(x, 0)$.

We now discuss the case that the sets $\{k_j\}$ and $\{\lambda_j\}$ are not empty. The first column of $M(x, t, k)$ has poles at $|k_j|_{n+1}^n$ for $\arg k \in (0, \pi/2)$, and has poles at $|\lambda_j|_{n+1}^n$ for $\arg k \in (\pi/2, \pi)$. On the other hand, the first column of $M^{(x)}(x, k)$ should have poles at $|k_j|_{n+1}^n$, $n = n_1 + n_2$.

We will now show that the transformations defined by (4.4) map the former poles to the latter ones. Since $M^{(x)} = M(x, 0, k)$ for $\arg k \in [0, \pi/2]$, $M^{(x)}$ has poles at $|k_j|_{n+1}^n$ with the correct residue condition. Letting $M = (M_1, M_2)$, equation (4.4b) can be written as

\[
M^{(x)}(x, k) = (M_1(x, 0, k) - \Gamma(k)e^{2ikx} M_2(x, 0, k), M_2(x, 0, k)).
\]

The residue condition at λ_j implies that $M^{(x)}$ has no poles at λ_j; on the other hand, this equation shows that $M^{(x)}$ has poles at $|k_j|_{n+1}^n$ with residues given by

\[
\text{Res}_{k_j} [M^{(x)}(x, k)]_1 = - \text{Res}_{k_j} \Gamma(k)e^{2ikx} [M^{(x)}(x, k)]_{12}, \quad j = n_1 + 1, \ldots, n,
\]

which, using the definition of $\Gamma(k)$ (and the equation $d(k_j) = -\lambda_b(k_j) \bar{B}(\bar{k}_j)$), becomes the residue condition of (3.6e). Similar considerations apply to \bar{k}_j and $\bar{\lambda}_j$.

Proof that $q(0, t) = g_0(t)$ and $q_\infty(0, t) = g_1(t)$. Let $M^{(1)}(x, t, k), \ldots, M^{(4)}(x, t, k)$ denote $M(x, t, k)$ for $\arg k \in [0, \pi/2], \ldots, [3\pi/2, 2\pi]$. Recall that M satisfies

\[
M^{(2)} = M^{(1)} J_1, \quad M^{(2)} = M^{(3)} J_2, \quad (4.6)
\]

on the respective parts of the contour $\mathcal{L} = \mathbb{R} \cup i \mathbb{R}$ (cf figure 2).

Let $M^{(t)}(t, k)$ be defined by

\[
M^{(t)}(t, k) = M(0, t, k) G(t, k), \quad (4.7)
\]

where G is given by $G^{(1)}, \ldots, G^{(4)}$ for $\arg k \in [0, \pi/2], \ldots, [3\pi/2, 2\pi]$. Suppose we can find matrices $G^{(1)}$ and $G^{(2)}$ holomorphic for $\text{Im } k > 0$ (and continuous for $\text{Im } k \geq 0$), matrices $G^{(3)}$ and $G^{(4)}$ holomorphic for $\text{Im } k < 0$ (and continuous for $\text{Im } k \leq 0$), which tend to I as $k \to \infty$, and which satisfy

\[
J_1(0, t, k) G^{(2)}(t, k) = G^{(1)}(t, k) J^{(1)}(t, k), \quad k \in i \mathbb{R}^+, \quad (4.8a)
\]

\[
J_3(0, t, k) G^{(4)}(t, k) = G^{(3)}(t, k) J^{(3)}(t, k), \quad k \in i \mathbb{R}^-, \quad (4.8b)
\]

\[
J_4(0, t, k) G^{(4)}(t, k) = G^{(1)}(t, k) J^{(1)}(t, k), \quad k \in \mathbb{R}^+, \quad (4.8c)
\]
where $J^{(1)}(t, k)$ is the jump matrix in (3.15c). Then the equations in (4.8) yield

$$J_2(0, t, k) G^{(2)}(t, k) = G^{(3)}(t, k) J^{(1)}(t, k), \quad k \in \mathbb{R}^-$$

and equations (4.6) and (4.7) imply that $M^{(i)}$ satisfies the RH problem defined in (3.15). If the sets $\{k_j\}$ and $\{\lambda_j\}$ are empty, this immediately yields the desired result.

We will show that such $G^{(j)}$ matrices are:

$$G^{(1)}(k) = \begin{pmatrix} a(k) & A(k) c^* e^{4i k^2 (T-t)} \\ 0 & a(k) \end{pmatrix}, \quad G^{(4)}(k) = \begin{pmatrix} A(k) & 0 \\ \lambda c^* (k) e^{-4i k^2 (T-t)} & \frac{a(k)}{A(k)} \end{pmatrix},$$
$$G^{(2)}(k) = \begin{pmatrix} d(k) & -b(k) e^{-4i k^2 t} \\ 0 & 1 \end{pmatrix}, \quad G^{(3)}(k) = \begin{pmatrix} 1 & 0 \\ d(k) A(k) & e^{4i k^2 t} \end{pmatrix}. \quad (4.9)$$

We first verify (4.8a): The (12) element is proportional to the global relation; the (21) and (22) elements are satisfied identically. The (11) element is satisfied iff

$$d = \frac{a}{A} + \frac{\lambda B}{A} c^* e^{4i k^2 T}. \quad (4.10)$$

Using $A\bar{A} - \lambda B \bar{B} = 1$, we find

$$d = \frac{a}{A} A\bar{A} - \lambda B \bar{B} = \frac{a}{A} (1 + \lambda B \bar{B}) - \lambda b \bar{B} = \frac{a}{A} + \frac{\lambda B}{A} (a B - b A),$$

which equals the rhs of equation (4.10) in view of the global relation (3.18).

Equation (4.8b) follows from the first one and the symmetry relations,

$$G^{(4)}(k) = \sigma_\lambda G^{(1)}(k) \sigma_\lambda, \quad G^{(3)}(k) = \sigma_\lambda G^{(2)}(k) \sigma_\lambda, \quad J_3(k) = \sigma_\lambda J_1^{-1}(k) \sigma_\lambda,$$

where

$$\sigma_\lambda = \begin{cases} \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \text{if } \lambda = 1, \\ \sigma_2 = \begin{pmatrix} 0 & -i \\ 1 & 0 \end{pmatrix}, \quad \text{if } \lambda = -1. \end{cases}$$

The third equation (4.8c) can be verified in a way similar to (4.8a). In fact, in this case one has to use all three basic algebraic identities which hold on the real axis, i.e. both the determinant relations, $|a|^2 - \lambda |b|^2 = 1$ and $|A|^2 - \lambda |B|^2 = 1$, and the global relation, $a(k) B(k) - b(k) A(k) = c^* e^{4i k^2 T}$. \hfill \Box

Remark 4.2. In the case $T = \infty$, the matrices $G^{(j)}(t, k)$ are defined and analytic only in the respective quadrants of the complex plane k. Moreover, the global relation holds only in the first quadrant (see (3.19)). Therefore, one cannot use (4.8) to establish the relation $J_4(0, t, k) G^{(2)}(t, k) = G^{(3)}(t, k) J^{(1)}(t, k), \quad k < 0$. The latter, however, can be verified independently, with the use of the determinant relations.

We now consider the case that the sets $\{k_j\}$ and $\{\lambda_j\}$ are not empty.
Let $M = (M_1, M_2)$, then equations (4.7) and (4.9) imply
\[
M^{(t)}(t, k) = \left(\frac{a(k)}{\Lambda(k)} M_1(0, t, k), e^{\frac{i}{2} k(T-t)} M_1(0, t, k) + \frac{A(k)}{a(k)} M_2(0, t, k) \right).
\]

Suppose that $k_0 \in \{k_j\}_{j=1}^{N}$ and $k_0 \notin \{K_j\}_{j=1}^{N}$, where $\{K_j\}_{j=1}^{N}$ denotes the set of zeros of $A(k)$ in the first quadrant. Then, $M^{(t)}(t, k)$ does not have a pole at k_0. Indeed,
\[
\text{Res}_{k_0} [M^{(t)}(t, k)]_2 = c^*(k_0) e^{\frac{i}{2} k_0^2 (T-t)} \text{Res}_{k_0} M_1(0, t, k) + \frac{A(k_0)}{a(k_0)} M_2(0, t, k_0).
\]
Using
\[
\text{Res}_{k_0} M_1(0, t, k) = \frac{M_2(0, t, k_0) e^{\frac{i}{2} k_0^2 t}}{\dot{a}(k_0) b(k_0)},
\]
we find
\[
\text{Res}_{k_0} [M^{(t)}(t, k)]_2 = \frac{M_2(0, t, k_0)}{\dot{a}(k_0) b(k_0)} \left(c^*(k_0) e^{\frac{i}{2} k_0^2 T} + b(k_0) A(k_0) \right).
\]
From the global relation, the term in the parentheses equals $a(k_0) B(k_0)$, hence
\[
\text{Res}_{k_0} [M^{(t)}(t, k)]_2 = 0.
\]
Suppose that $K_0 \in \{K_j\}_{j=1}^{N}$ and $K_0 \notin \{k_j\}_{j=1}^{N}$. Then, $[M^{(t)}(t, k)]_1$ has a pole at K_0. In order to compute the associated residues we note that
\[
\text{Res}_{K_0} [M^{(t)}(t, k)]_1 = \frac{a(K_0)}{\Lambda(K_0)} M_1(0, t, K_0).
\]
Using the definition of the second column of $M^{(t)}$ evaluated at $k = K_0$
\[
M_1(0, t, K_0) = \frac{e^{\frac{i}{2} K_0^2 T} [M^{(t)}(t, K_0)]_2}{c^*(K_0) e^{\frac{i}{2} K_0^2 T}},
\]
and the global relation evaluated at $k = K_0$,
\[
a(K_0) B(K_0) = c^*(K_0) e^{\frac{i}{2} K_0^2 T},
\]
we find
\[
\text{Res}_{K_0} [M^{(t)}(t, k)]_1 = \frac{e^{\frac{i}{2} K_0^2 T} [M^{(t)}(t, K_0)]_2}{\dot{a}(K_0) B(K_0)},
\]
which is the residue condition in (3.15e). (Note that since K_0 is not a common zero for $a(k)$ and $A(k)$, the inequality, $c^*(K_0) \neq 0$, holds.)

Suppose that $k_0 \equiv K_0$ is a common (simple) zero of the functions $a(k)$ and $A(k)$. Then necessarily
\[
c^*(k_0) = 0 \quad (4.11)
\]
and the second column of $M^{(t)}(t, k)$ does not have a pole at k_0. The first column has a pole at $k_0 \equiv K_0$, and for the residue condition we have,
\[
\text{Res}_{k_0} [M^{(t)}(t, k)]_1 = \frac{\dot{a}(K_0)}{\dot{A}(K_0)} \text{Res}_{k_0} M_1(0, t, k) = \frac{e^{\frac{i}{2} K_0^2 t}}{\dot{A}(K_0) b(K_0)} M_2(0, t, K_0). \quad (4.12)
\]
Using, as before, the definition of the second column of \(M^{(t)} \) evaluated at \(k = K_0 \) we obtain the equation,

\[
[M^{(t)}(t, k)]_2 = \frac{\hat{c}^+(K_0)e^{4ik_0\bar{t}}}{\hat{a}(K_0)} \text{Res}_{K_0} M_1(0, t, k) + \frac{\hat{A}(K_0)}{\hat{a}(K_0)} M_2(0, t, K_0)
\]

\[
= M_2(0, t, K_0) \left(\frac{\hat{A}(K_0)}{\hat{a}(K_0)} + \frac{\hat{c}^+(K_0)e^{4ik_0\bar{t}}}{\hat{a}(K_0)} b(K_0) \right) \equiv M_2(0, t, K_0) \frac{B(K_0)}{b(K_0)}, \quad (4.13)
\]

where in the last step we have used the equation

\[
\hat{c}^+(K_0)e^{4ik_0\bar{t}} = \hat{a}(K_0)B(K_0) - \hat{A}(K_0)b(K_0),
\]

which follows from the global relation and from equation (4.11). By virtue of (4.13), equation (4.12) can be rewritten as

\[
\text{Res}_{K_0} [M^{(t)}(t, k)]_1 = \frac{e^{4ik_0\bar{t}}}{\hat{A}(K_0)B(K_0)} [M^{(t)}(t, K_0)]_2,
\]

which again reproduces the residue condition in (3.15e).

We note that the last arguments, further simplified by \(\hat{c}^+(K_0)e^{4ik_0\bar{t}} \mapsto 0 \), are precisely the ones we need in the case \(T = \infty \), when the global relation takes the form (3.19) so that \(\{k_j\}_1^N = \{K_j\}_1^N \).

(b) \(\arg k \in (\pi/2, \pi) \)

Equations (4.7) and (4.9) imply

\[
M^{(t)}(t, k) = \left(d(k)M_1(0, t, k), -\frac{b(k)}{A(k)} e^{-4ik_0\bar{t}} M_1(0, t, k) + \frac{M_2(0, t, k)}{d(k)} \right).
\]

Suppose that \(\lambda_0 \in \{\lambda_j\}_1^N \) and \(\lambda_0 \not\in \{\bar{K}_j\}_N_{N+1} \), where \(\{K_j\}_{N+1}^N \) denotes the set of zeros of \(A(k) \) in the third quadrant. Then, \(M^{(t)}(t, k) \) does not have a pole at \(\lambda_0 \). Indeed,

\[
\text{Res}_{\lambda_0} [M^{(t)}(t, k)]_2 = -\frac{b(\lambda_0)}{A(\lambda_0)} \text{Res}_{\lambda_0} M_1(0, t, k) + \frac{M_2(0, t, \lambda_0)}{d(\lambda_0)}.
\]

Using

\[
\text{Res}_{\lambda_0} M_1(0, t, k) = \frac{\lambda B(\lambda_0)e^{4i\lambda_0\bar{t}} M_2(0, t, \lambda_0)}{\lambda(\lambda_0) d(\lambda_0)} \quad (4.14)
\]

and taking into account that under the assumption on \(\lambda_0 \),

\[
d(\lambda_0) = 0 \quad \Rightarrow \quad \frac{\lambda B(\lambda_0)}{\lambda(\lambda_0)} = \frac{\lambda B(\lambda_0)}{\lambda(\lambda_0)},
\]

it follows that \(\text{Res}_{\lambda_0} [M^{(t)}(t, k)]_2 = 0 \).

Suppose that \(K_0 \in \{K_j\}_{N+1}^N \) and \(\bar{K}_0 \not\in \{\lambda_j\}_1^N \). Then, \([M^{(t)}(t, k)]_2 \) has a pole at \(\bar{K}_0 \). In order to compute the associated residues we note that

\[
\text{Res}_{\bar{K}_0} [M^{(t)}(t, k)]_2 = -\frac{\lambda B(\bar{K}_0)e^{-4i\bar{K}_0\bar{t}}}{A(\bar{K}_0)} M_1(0, t, \bar{K}_0).
\]

Using the definition of the first column of \(M^{(t)} \) at \(k = \bar{K}_0 \) and recalling that \(d(\bar{K}_0) = -\lambda B(\bar{K}_0)b(\bar{K}_0) \) (and hence, in particular, \(B(\bar{K}_0)b(\bar{K}_0) \neq 0 \)), we find

\[
[M^{(t)}(t, \bar{K}_0)]_1 = -\lambda B(\bar{K}_0)b(\bar{K}_0) M_1(0, t, \bar{K}_0).
\]
Thus
\[
\text{Res}_{\bar{\lambda}_0} [\mathcal{M}^{(i)}(t, k)]_2 = \frac{\lambda e^{-4 ik\bar{\lambda}_0^2} [\mathcal{M}^{(i)}(t, \bar{\lambda}_0)]_1}{\bar{\lambda}_0 A(\bar{\lambda}_0) B(\bar{\lambda}_0)},
\]
which is the residue condition in (3.15e).

Suppose that \(\lambda_0 \equiv \bar{\lambda}_0\) is a common (simple) zero of the functions \(d(k)\) and \(\bar{\lambda}(k)\). Then necessarily
\[
b(\lambda_0) = 0
\]
and for the residue of \([\mathcal{M}^{(i)}(t, k)]_2\) at \(\bar{\lambda}_0\) we have,
\[
\text{Res}_{\bar{\lambda}_0} [\mathcal{M}^{(i)}(t, k)]_2 = \frac{-\bar{b}(\bar{\lambda}_0) e^{-4 ik\bar{\lambda}_0^2} \text{Res}_{\bar{\lambda}_0} M_1(t, k)}{\bar{\lambda}_0 A(\bar{\lambda}_0)} + \frac{M_2(0, t, \bar{\lambda}_0)}{\bar{d}(\bar{\lambda}_0)}
\]
\[
= \frac{1}{\bar{\lambda}_0 A(\bar{\lambda}_0) a(\bar{\lambda}_0)} M_2(0, t, \bar{\lambda}_0), \tag{4.15}
\]
where we have used the residue condition (4.14) for \(M_1(0, t, k)\) at \(\lambda_0 \equiv \bar{\lambda}_0\) and the equation,
\[
\bar{d}(\bar{\lambda}_0) = \bar{\lambda}_0 A(\bar{\lambda}_0) a(\bar{\lambda}_0) - \bar{\lambda}_0 B(\bar{\lambda}_0) \bar{b}(\bar{\lambda}_0).
\]
Using the definition of the first column of \(\mathcal{M}^{(i)}\) at \(k = \bar{\lambda}_0\) and the residue equation (4.14) one more time, we conclude that
\[
M_2(0, t, \bar{\lambda}_0) = \lambda \frac{a(\bar{\lambda}_0)}{B(\bar{\lambda}_0)} e^{-4 ik\bar{\lambda}_0^2} [\mathcal{M}^{(i)}(t, \bar{\lambda}_0)]_1,
\]
which, together with (4.15), again yields the residue condition in (3.15e).

Similar considerations are valid for \(\arg k \in [3\pi/2, 2\pi]\) and \(\arg k \in [\pi, 3\pi/2]\). Alternatively, one can use the symmetry relations generated by the anti-involution \(\bar{k} \mapsto k\).

Let \(0 < T_0 < T\). Since the solution of the NLS equation for \(0 < t < T_0\) depends only on the boundary data between \(0 < t < T_0\) the RH problems corresponding to \(T_0\) and \(T\) must be related. This is confirmed by the following proposition.

Proposition 4.3. Let \(A(T_0, k), B(T_0, k)\) be defined by (3.11) with \(T\) replaced by \(T_0 < T\), \(\bar{J}_{1}(x, t, k)\) and \(\bar{J}_{2}(x, t, k)\) denote the jump matrices obtained from (5.27) by replacing \(A(k)\) and \(B(k)\) with \(A(T_0, k)\) and \(B(T_0, k)\), and \(\bar{J}_{2} = \bar{J}_{1} \bar{J}_{-1}\). Let \(M(x, t, k)\) satisfy an RH problem defined by (4.1) but with jump matrices \(\bar{J}_{1}, \bar{J}_{2}, \bar{J}_{3}\) and \(\bar{J}_{4}\). Then for \(0 < t < T\) the restrictions of \(M(x, t, k)\) and \(\bar{M}(x, t, k)\) to the four quadrants (cf figure 2) satisfy
\[
M_1 = \bar{M}_1, \quad M_4 = \bar{M}_4, \quad M_2 = \bar{M}_2 \bar{J}_{-1}^{-1} J_1, \quad M_3 = \bar{M}_3 \bar{J}_{3} J_{-1}^{-1}. \tag{4.16}
\]

Proof. Using equation (4.16) it is straightforward to verify that the jump condition for \(M\), i.e. equation (4.1), yields a similar jump condition for \(\bar{M}\) with \(J_1, J_2\) and \(J_3\) replaced by \(\bar{J}_{1}, \bar{J}_{2}\) and \(\bar{J}_{3}\). Assuming the solitonless case it remains to show that the functions \(\bar{J}_{1}^{-1} J_1\) and \(\bar{J}_{2}^{-1} J_2\) are analytic and bounded for \(\arg k \in (\pi/2, \pi)\) and \(\arg k \in (\pi, 3\pi/2)\), respectively, and that both tend to the identity matrix as \(k \to \infty\). We will show this fact for the function \(\bar{J}_{1}^{-1} J_1\), the proof for \(\bar{J}_{2}^{-1} J_2\) follows from symmetry considerations.

The diagonal elements of \(\bar{J}_{1}^{-1} J_1\) are 1, its (21) element is 0, and its (12) element equals
\[
\lambda(\Gamma(\bar{k}) - \Gamma(T_0, \bar{k})) e^{-2ik\bar{k}} = \frac{B(k) A(T_0, k) - A(k) B(T_0, k)}{d(\bar{k})} e^{-4ik^2 \Gamma(T_0, k)} e^{-2ikx + 4ik^2(T_0, k)}, \tag{4.17}
\]
where the rhs of this equation follows from the left-hand side (lhs) using the definitions of \(\Gamma(k)\), \(\Gamma(T_0, k)\) and the notation
\[
d(T_0, k) = a(k) A(T_0, \bar{k}) - b(k) B(T_0, \bar{k}).\]
The definition of $A(T_\ast, k)$ and $B(T_\ast, k)$ implies that they have the same properties as $A(k)$, $B(k)$, where T is replaced by T_\ast in the second property. Thus since $d(k)$ is bounded and analytic for $k \in D_3$ the same is true for $d(T_\ast, k)$. Also, the definition of $A(T_\ast, k)$ and $B(T_\ast, k)$ implies that

$$[B(k)A(T_\ast, k) - B(T_\ast, k)A(k)]e^{-4ik^2T_\ast} = \Phi_2(T, \bar{k})\Phi_1(T_\ast, k) - \Phi_1(T, k)\Phi_2(T_\ast, \bar{k})e^{4ik^2(T-T_\ast)}.$$ \hfill (4.18)

We will show that the rhs of equation (4.18) is bounded and analytic for $k \in D_1 \cup D_3$, and that it goes to zero as $k \to \infty$, $k \in D_1 \cup D_3$. This result, together with the fact that $\exp[-2ikx + 4ik^2(T_\ast - t)]$ is bounded for $k \in D_3$, imply that the rhs of equation (4.17) is bounded and analytic for $k \in D_3$, and it goes to zero as $k \to \infty$, $k \in D_3$.

In order to prove that the rhs of (4.18) is bounded and analytic for $k \in D_1 \cup D_3$ we introduce the notation

$$\chi_1(t, k) = \Phi_2(T, \bar{k})\Phi_1(t, k) - \Phi_1(T, k)\Phi_2(t, k)e^{4ik^2(T-t)},$$ \hfill (4.19)

$$\chi_2(t, k) = \Phi_2(T, \bar{k})\Phi_2(t, k) - \lambda\Phi_1(T, k)\overline{\Phi_1(t, \bar{k})}e^{4ik^2(T-t)}.$$ \hfill (4.20)

We will prove that the functions χ_1 and χ_2 satisfy the following system of linear integral equations

$$\chi_1(t, k) = -\int_t^T \left[\tilde{Q}_{11}(\tau, k) \chi_1(\tau, k) + \tilde{Q}_{12}(\tau, k) \chi_2(\tau, k) \right] e^{4ik^2(\tau-t)} \, d\tau,$$

$$\chi_2(t, k) = 1 - \int_t^T \left[\tilde{Q}_{22}(\tau, k) \chi_2(\tau, k) + \tilde{Q}_{21}(\tau, k) \chi_1(\tau, k) \right] \, d\tau,$$

where \tilde{Q}_{ij} denote, as usual, the entries of the matrix $\tilde{Q}(t, k)$. Indeed, the symmetry properties of $\tilde{Q}(t, k)$ imply that if the vector $\Phi(t, k)$ with the two components Φ_1 and Φ_2 satisfies equation (3.12), the vector $(\lambda\Phi_1(t, \bar{k}), \Phi_1(t, \bar{k}))e^{-4ik^2t}$ also satisfies the same equation. Hence the vector $\chi(t, k)$ with the two components χ_1 and χ_2 defined by equations (4.19) satisfies equation (3.12). Furthermore,

$$\chi_1(T, k) = \Phi_2(\bar{k})\Phi_1(k) - \Phi_1(k)\Phi_2(k) = 0,$$

$$\chi_2(T, k) = \Phi_2(k)\Phi_2(k) - \lambda\Phi_1(k)\Phi_1(k) = 1.$$ \hfill (5.1)

The unique solution of equation (3.12) with the boundary condition $\{\chi_1(T, k) = 0, \chi_2(T, k) = 1\}$ satisfies equations (4.20).

Equations (4.20) imply that $\chi_1(t, k)$ is bounded and analytic for $k \in D_1 \cup D_3$, and that it goes to zero as $k \to \infty$, $k \in D_1 \cup D_3$ uniformly for all $0 < t < T$. Since the rhs of equation (4.18) equals $\chi_1(T_\ast, k)$, $T_\ast < T$, it follows that the rhs of equation (4.18) is also bounded and analytic for $k \in D_1 \cup D_3$, and that it goes to zero as $k \to \infty$, $k \in D_1 \cup D_3$.

5. Construction of admissible sets of functions

For simplicity we consider the special case where $g_0 = 0$ and a function $g_0 \in C^\infty([0, T])$ is given such that

$$\frac{d^\ell g_0}{dt^\ell}(0) = 0 \quad \text{for } \ell = 0, 1, 2, \ldots.$$ \hfill (5.1)

We will show that there exists a unique $g_1 \in C^\infty([0, T])$ such that $\{g_0, q_1\}$ is an admissible set of functions with respect to q_0.\hfill □
Since \(q_0 = 0 \), we have \(a(k) = 1 \) and \(b(k) = 0 \) for all \(k \in \mathbb{C} \). It follows from (3.9)–(3.11) that in this case the global relation (3.18) is reduced to

\[
\Phi_1(T, k) = -c^+ (k),
\]

where the function \(\Phi_1 \) is determined by

\[
\begin{align*}
\Phi_{1, t} + 4ik^2 \Phi_1 &= -i\lambda |g_0(t)|^2 \Phi_1 + (2kg_0(t) + ig_1(t)) \Phi_2, \\
\Phi_{2, t} &= \lambda (2kg_0(t) - ig_1(t)) \Phi_1 + i\lambda |g_0(t)|^2 \Phi_2, \\
\Phi_1(0, k) &= 0,
\end{align*}
\]

Substituting

\[
\Phi_1 = \exp \left(-i\lambda \int_0^t |g_0(s)|^2 \, ds \right) \tilde{\Phi}_1 \quad \text{and} \quad \Phi_2 = \exp \left(i\lambda \int_0^t |g_0(s)|^2 \, ds \right) \tilde{\Phi}_2
\]

into (5.3), we find

\[
\begin{align*}
\tilde{\Phi}_{1, t} + 4ik^2 \tilde{\Phi}_1 &= [2kf_0(t) + if_1(t)] \tilde{\Phi}_2, \\
\tilde{\Phi}_{2, t} &= \lambda [2kf_0(t) - if_1(t)] \tilde{\Phi}_1, \\
\tilde{\Phi}_1(0, k) &= 0,
\end{align*}
\]

where

\[
\begin{align*}
f_0(t) &= g_0(t) \exp \left(2i\lambda \int_0^t |g_0(s)|^2 \, ds \right), \\
f_1(t) &= g_1(t) \exp \left(2i\lambda \int_0^t |g_0(s)|^2 \, ds \right).
\end{align*}
\]

We can rewrite (5.5) into a system of integral equations:

\[
\begin{align*}
\tilde{\Phi}_1(t, k) &= \int_0^t e^{-4ik^2(t-t')} [2kf_0(t') + if_1(t')] \tilde{\Phi}_2(t', k) \, dt', \\
\tilde{\Phi}_2(t, k) &= 1 + \int_0^t \lambda [2kf_0(t') - if_1(t')] \tilde{\Phi}_1(t', k) \, dt'.
\end{align*}
\]

It follows easily from (5.7) that \(\tilde{\Phi}_1(t, k) \) (and hence \(\Phi_1(t, k) \)) is bounded and analytic for \(k \) in the second quadrant and it decays at the order of \((1/k) \) as \(k \to \infty \). Therefore the only condition imposed by the global relation (5.2) is for \(k \) in the first quadrant.

Now we let

\[
\begin{align*}
\phi(t, k) &= e^{4ik^2 t} \tilde{\Phi}_1(t, k) \\
\psi(t, k) &= e^{4ik^2 t} \tilde{\Phi}_2(t, k)
\end{align*}
\]

and transform (5.7) into

\[
\begin{align*}
\phi(t, k) &= \int_0^t [2kf_0(t') + if_1(t')] \psi(t', k) \, dt', \\
\psi(t, k) &= e^{4ik^2 t} + \int_0^t e^{4ik^2(t-t')} \lambda [2kf_0(t') - if_1(t')] \phi(t', k) \, dt'.
\end{align*}
\]

From (5.2), (5.4) and (5.8), we can write the global relation as

\[
\phi(T, k) = e^{4ik^2 T} c_1(k),
\]

where \(c_1(k) \) is bounded and analytic in the first quadrant, and it decays at the order of \((1/k) \) as \(k \to \infty \). So the analysis of the global relation involves exactly the equations (5.9) and (5.10), where \(f_0 \in C^\infty([0, T]) \) (which vanishes to all orders at 0) is given and \(f_1 \) (equivalently \(g_1 \)) is the unknown to be constructed.
We define the Sobolev space
\[H^m_0 = \{ v \in H^m(0, T) : v(0) = v'(0) = \ldots = v^{(m-1)}(0) = 0 \} \]
and assume at first that
\[g_1 \text{ (equivalently } f_1) \in H^1_0(0, T) = \{ v \in H^1(0, T) : v(0) = 0 \}. \quad (5.11) \]
Note that the Poincaré inequality
\[\max_{a \leq t \leq b} |g(t)| \leq |g(a)| + \sqrt{T} \| g' \|_{L^2(a, b)} \quad \forall g \in H^1(\alpha, \beta), \]
implies that
\[\max_{0 \leq t \leq T} |g(t)| \leq \sqrt{T} \| g' \|_{L^2(0, T)} \quad \forall g \in H^1_0(0, T). \quad (5.13) \]

By eliminating \(\phi \) from (5.9) we have
\[\psi = e^{ik\lambda} + F(k, g_1)\psi, \]
where the operator \(F(k, g_1) \) is given by
\[F(k, g_1)\psi = \int_0^t e^{ik\lambda(t')} \lambda [2k\rho(t') - i f_1(t')] \left[\int_0^t [2k\rho(s) + i f_1(s)]\psi(s, k)\, ds \right] \, dt' \]
and \(f_1 \) is given by (5.6b).

Let \(Q = \{ k \in \mathbb{C} : \text{Re } k > 0, \text{ Im } k > 0 \} \) be the first quadrant of the complex plane and \(\mathbb{R}_+ = (-\infty, -1) \cup (1, \infty) \). The proofs of the following lemmas on the solution of (5.14) can be found in appendix C.

Lemma 5.1. Under the condition (5.11), the integral equation (5.14) has a unique solution in \(C([0, T]) \) for each \(k \in \overline{Q} \) (the closure of \(Q \)), \(\psi(t, k) \) is bounded on \([0, T] \times \overline{Q} \) and the map \(k \mapsto \psi(\cdot, k) \) is analytic in \(Q \) and continuous on \(\overline{Q} \). Moreover, the map \(g_1 \mapsto \psi \) from \(H^1_0(0, T) \) into \(C([0, T] \times \overline{Q}) \) is locally Lipschitz continuous.

Remark 5.2. More precisely, a map \(M \) from the normed linear space \(X \) to the normed linear space \(Y \) is locally Lipschitz continuous if
\[\| M(x_1) - M(x_2) \|_Y \leq B(\| x_1 \|_X, \| x_2 \|_X)\| x_1 - x_2 \|_X \quad \forall x_1, x_2 \in X, \]
where the function \(B(\cdot, \cdot) : X \times X \to \mathbb{R}^+ \) is continuous.

Lemma 5.3. Under condition (5.11), we have the following asymptotic expansion for \(\psi \):
\[\psi(t, k) = e^{ik\lambda t} \left(\chi_0(t) + \frac{\chi_1(t)}{k} + \frac{\chi_2(t)}{k^2} + \frac{\chi_3(t)}{k^3} + \frac{\chi_4(t)}{k^4} \right) + \psi_4(t, k) \quad (5.17) \]
for \(k \in \overline{Q} \) and \(|k| > 1 \), where
\[\chi_0 = e^{-ik\int_0^t \rho(s)^2 \, ds}, \quad \chi_1, \chi_2, \chi_3, \chi_4 \in H^2(0, T) \cap H^1_0(0, T), \]
\[\chi_1, \chi_2, \chi_3, \chi_4 \in H^1_0(0, T). \quad (5.18) \]
\[\psi_4(t, k) = O \left(\frac{1}{k^3} \right) \quad (5.19) \]
and
\[\psi_4(t, k) \text{ belongs to } C([0, T], L^2(\mathbb{R}_+, |\xi|^3 \, d\xi)). \quad (5.20) \]
Here \(k = \sqrt{\xi} \) is the inverse of \(\xi = k^2 \) for \(k \in \overline{Q} \).
We will denote by $\tilde{\psi}_4$ the map in $C([0, T], L_2(\mathbb{R}_+, |\xi|^3 \, d\xi))$ defined by
\[[\tilde{\psi}_4(t)](\xi) = \psi_4(t, \sqrt{\xi}). \]
(5.21)

Given $g_1 \in H^1_{0a}(0, T)$, we define the maps $E_1, E_2 : H^1_{0a}(0, T) \to H^2(0, T)$ by
\[E_1(g_1) = \chi_1 \quad \text{and} \quad E_2(g_1) = \chi_2, \]
the maps $E_3, E_4 : H^1_{0a}(0, T) \to H^1(0, T)$ by
\[E_3(g_1) = \chi_3 \quad \text{and} \quad E_4(g_1) = \chi_4 \]
and the map $E : H^1_{0a}(0, T) \to C([0, T], L_2(\mathbb{R}_+, |\xi|^3 \, d\xi))$ by
\[E(g_1) = \tilde{\psi}_4, \]
where χ_j and $\tilde{\psi}_4$ are the functions that appear in the asymptotic expansion (5.17) and (5.21).

Lemma 5.4. The maps E_j $(1 \leq j \leq 4)$ and E are locally Lipschitz continuous.

We now examine the global relation (5.10) and note immediately that it implies
\[\int_{\mathcal{L}} e^{-4ikT} \phi(T, k) 8k \, dk = 0 \quad \forall t < T, \]
(5.22)
where \mathcal{L} is the positively oriented boundary of \mathcal{Q} and the integral is taken in the sense of Cauchy principal value.

On the other hand, from (5.9a) we have
\[\phi(T, k) = \int_0^T [2kf_0(t') + i f_1(t')] \psi'(t', k) \, dt'. \]
(5.23)
The asymptotic expansion (5.17) and (5.23) implies that
\[\phi(T, k) = 2k \int_0^T e^{4ikT} f_0(t') \chi_0(t') \, dt' + R(T, k), \]
(5.24)
where the function $R(T, k)$ is analytic in \mathcal{Q}, continuous on $\partial \mathcal{Q}$ and decays at the order of $1/k^2$ as $k \to \infty$. Let $\alpha_0(T) = f_0(T) \chi_0(T)$. We can rewrite (5.24) as
\[\phi(T, k) = \frac{\alpha_0(T)}{2i} \frac{e^{4ikT}}{(k + i)} = 2k \int_0^T e^{4ikT} f_0(t') \chi_0(t') \, dt' - \frac{\alpha_0(T)}{2i} \frac{e^{4ikT}}{(k + i)} + R(T, k), \]
which shows that
\[\text{the function} \quad \xi \mapsto \phi(T, \sqrt{\xi}) - \frac{\alpha_0(T)}{2i} \frac{e^{4ikT}}{(\sqrt{\xi} + i)} \quad \text{belongs to} \quad L_2(\mathbb{R}). \]
(5.25)

Under condition (5.22), we have
\[\int_{\mathcal{L}} e^{-4ikT} \left(\phi(T, k) - \frac{\alpha_0(T)}{2i} \frac{e^{4ikT}}{(k + i)} \right) 8k \, dk = 0 \quad \forall t < T. \]
Let
\[\phi_1(T, k) = e^{-4ikT} \left(\phi(T, k) - \frac{\alpha_0(T)}{2i} \frac{e^{4ikT}}{(k + i)} \right). \]

Then (5.25) and the Paley–Wiener theorem imply that the function $\xi \mapsto \phi_1(T, \sqrt{\xi})$ belongs to the Hardy space $H^2(\mathbb{C}_+)$. Further regularization of $\phi(T, k)$ yields the global relation (5.10).

In view of (5.24) and Jordan’s lemma, equation (5.22) holds automatically for $-\infty < t \leq 0$. Therefore, the global relation is equivalent to
\[\int_{\mathcal{L}} e^{-4ikT} \phi(T, k) 8k \, dk = 0 \quad \text{for} \quad 0 < t < T. \]
(5.26)
We now substitute (5.23) into (5.26) and use (5.6), (C.8) and the Fourier inversion formula to obtain the following equation:

\[
g_1(t) = \left(\frac{4i}{\pi}\right) e^{-im(t)} \int_\mathcal{L} e^{-4ik^2t} k \left[\int_0^T e^{2im(t')} [2kg_0(t') + ig_1(t')] \right. \times \left[\psi(t', k) - e^{4ik^2t'} \chi_0(t') \right] \, dk \left. + g_*(t) \right) \quad \text{for } 0 < t < T, \tag{5.27}
\]

where

\[
s(t) = \lambda \int_0^t |g_0(s)|^2 \, ds, \tag{5.28}
\]

\[
g_*(t) = \left(\frac{8i}{\pi}\right) e^{-im(t)} \int_\mathcal{L} e^{-4ik^2t} k^2 \left[\int_0^T e^{4ik^2t'} g_0(t') \, dt' \right] \, dk. \tag{5.29}
\]

Note that \(g_* \in H^1_0(0, T)\) and (5.27) is a nonlinear integral equation on \(H^1_0(0, T)\) for the unknown \(g_1\) (since \(\psi(t, k)\) and \(\chi_0(t)\) also depend on \(g_1\)). Below we will first show by a contraction mapping argument that it has a unique solution in \(H^1_0(0, T)\) if \(T\) is sufficiently small.

Let \(\mathcal{L}_0\) be the part of \(\mathcal{L}\) that is inside the unit circle, and \(\mathcal{L}_\infty\) be the part of \(\mathcal{L}\) that is outside. We define

\[
\mathbf{L}_0(g_1) = \left(\frac{4i}{\pi}\right) e^{-im(t)} \int_\mathcal{L}_0 e^{-4ik^2t} k \left[\int_0^T e^{2im(t')} [2kg_0(t') + ig_1(t')] \right. \times \left[\psi(t', k) - e^{4ik^2t'} \chi_0(t') \right] \, dk, \tag{5.30}
\]

\[
\mathbf{L}_\infty(g_1) = \left(\frac{4i}{\pi}\right) e^{-im(t)} \int_\mathcal{L}_\infty e^{-4ik^2t} k \left[\int_0^T e^{2im(t')} [2kg_0(t') + ig_1(t')] \right. \times \left[\psi(t', k) - e^{4ik^2t'} \chi_0(t') \right] \, dk. \tag{5.31}
\]

The integral equation (5.27) can then be written concisely as

\[
g_1 = \mathbf{L}_0(g_1) + \mathbf{L}_\infty(g_1) + g_*. \tag{5.32}
\]

Remark 5.5. In the following analysis of the nonlinear operators \(\mathbf{L}_0\) and \(\mathbf{L}_\infty\), we present estimates that are applicable in a more general setting (cf (5.54)). For example, we do not take advantage of the fact that \(g_0(0) = 0\).

The estimate for the nonlinear map \(\mathbf{L}_0\) is straightforward. From lemma 5.1, (C.8), (5.13), (5.28) and (5.30), we have

\[
\|\mathbf{L}_0(g_1)\|_{C^1([0, T])} \leq T \cdot \mathcal{B}_0(\|g_1\|_{H^1(0, T)}), \tag{5.33}
\]

\[
\|\mathbf{L}_0(g_1) - \mathbf{L}_0(g_2)\|_{C^1([0, T])} \leq T \cdot \mathcal{B}_0(\|g_1\|_{H^1(0, T)}, \|g_2\|_{H^1(0, T)}) \|g_1 - g_2\|_{H^1(0, T)}, \tag{5.34}
\]

for all \(g_1, g_2 \in H^1_0(0, T)\), where \(\mathcal{B}_0(\cdot)\) (respectively \(\mathcal{B}_*(\cdot, \cdot)\)) from now on denote continuous functions from \(\mathbb{R}^+ \cup \{0\}\) (respectively \(\mathbb{R}^+ \cup \{0\}\) \times \((\mathbb{R}^+ \cup \{0\})\) into \(\mathbb{R}^+\).

In order to estimate the nonlinear map \(\mathbf{L}_\infty\) we substitute the expansion (5.17) into (5.31) and write

\[
\mathbf{L}_\infty = \sum_{j=1}^{4} \mathbf{L}_{\infty,j}, \tag{5.35}
\]
where

\[
\mathbf{L}_{\infty,1}(g_1) = \frac{8i}{\pi} e^{-i\pi(t)} \int_{L_\infty} e^{-4i k^2 t} \left[\int_0^T e^{2i t \varphi(t')} g_0(t') \sum_{j=1}^4 e^{4i k^2 r} \frac{X_j(t')}{{k^j}} \, dt' \right] dk, \tag{5.36}
\]

\[
\mathbf{L}_{\infty,2}(g_1) = -\frac{4}{\pi} e^{-i\pi(t)} \int_{L_\infty} e^{-4i k^2 t} \left[\int_0^T e^{2i t \varphi(t')} g_1(t') \sum_{j=1}^4 e^{4i k^2 r} \frac{X_j(t')}{{k^j}} \, dt' \right] dk, \tag{5.37}
\]

\[
\mathbf{L}_{\infty,3}(g_1) = \frac{8i}{\pi} e^{-i\pi(t)} \int_{L_\infty} e^{-4i k^2 t} \left[\int_0^T e^{2i t \varphi(t')} g_0(t') \varphi_3(t', k) \, dt' \right] dk, \tag{5.38}
\]

\[
\mathbf{L}_{\infty,4}(g_1) = -\frac{4}{\pi} e^{-i\pi(t)} \int_{L_\infty} e^{-4i k^2 t} \left[\int_0^T e^{2i t \varphi(t')} g_1(t') \varphi_4(t', k) \, dt' \right] dk. \tag{5.39}
\]

Using integration by parts and Jordan’s lemma, we can rewrite (5.36) as

\[
\mathbf{L}_{\infty,1}(g_1) = \frac{2}{\pi} e^{-i\pi(t)} \int_{C_1} e^{4i k^2 (T-t)} e^{2i \varphi(T)} g_0(T) \sum_{j=1}^2 \frac{X_j(T)}{{k^j}} \, dk
\]

\[
- \frac{2}{\pi} e^{-i\pi(t)} \int_{L_\infty} e^{-4i k^2 t} \left[\int_0^T e^{2i \varphi(t')} g_0(t') \sum_{j=1}^2 e^{2i \varphi} \frac{g_0 X_j(t')}{{k^j}} \, dt' \right] dk,
\]

(5.40)

where \(C_1\) is the part of the unit circle in the first quadrant connecting 1 to i. From the Plancherel theorem, lemma 5.4, (5.40) and the Poincaré inequality (5.12), we obtain the following estimate for \(\mathbf{L}_{\infty,1}\):

\[
\|\mathbf{L}_{\infty,1}(g_1)\|_{H^1(0,T)} \leq \|g_0\|_{H^1(0,T)} \sum_{j=1}^4 \|X_j\|_{H^1(0,T)} \leq B_{1,1}(\|g_1\|_{H^1(0,T)}), \tag{5.41}
\]

\[
\|\mathbf{L}_{\infty,1}(g_1) - \mathbf{L}_{\infty,1}(g_2)\|_{H^1(0,T)} \leq \|g_0\|_{H^1(0,T)} B_{1,2}(\|g_1\|_{L_2(0,T)}, \|g_2\|_{L_2(0,T)}) \times \|g_1 - g_2\|_{H^1(0,T)}, \tag{5.42}
\]

for all \(g_1, g_2 \in H^1(0,T)\).

We can similarly rewrite (5.37) using integration by parts and Jordan’s lemma to obtain

\[
\mathbf{L}_{\infty,2}(g_1) = \frac{i}{\pi} e^{-i\pi(t)} \int_R e^{4i k^2 (T-t)} e^{2i \varphi(T)} g_1(T) \frac{X_1(T)}{k^2} \, dk
\]

\[
+ \frac{i}{\pi} e^{-i\pi(t)} \int_1^R e^{4i k^2 (T-t)} e^{2i \varphi(T)} g_1(T) \frac{X_1(T)}{k^2} \, dk
\]

\[
+ \frac{i}{\pi} e^{-i\pi(t)} \int_{C_1} e^{4i k^2 (T-t)} e^{2i \varphi(T)} g_1(T) \frac{X_1(T)}{k^2} \, dk
\]

\[
- \frac{i}{\pi} e^{-i\pi(t)} \int_{L_{|k|>R}} e^{-4i k^2 t} \left[\int_0^T e^{4i k^2 r} |e^{2i \varphi} g_1 X_1| k^2 \, dr' \right] dk
\]

\[
- \frac{4}{\pi} e^{-i\pi(t)} \int_{L_{|k|<R}} e^{-4i k^2 t} \left[\int_0^T e^{4i k^2 r} |e^{2i \varphi} g_1 X_1| k^2 \, dr' \right] dk,
\]

(5.43)
where C_R is the part of the circle of radius R in the first quadrant connecting R to iR. From (5.43) and lemma 5.4 we find
\[
\|L_{\infty, 2}(g_1)\|_{H^1(0,T)} \leq C \left(\frac{1}{R} + R\sqrt{T} \right) \|g_1\|_{H^1(0,T)} \sum_{j=1}^4 \|x_j\|_{H^1(0,T)}
\]
\[
\leq \left(\frac{1}{R} + R\sqrt{T} \right) B_{2,1}(\|g_1\|_{H^1(0,T)}),
\]
(5.44)
\[
\|L_{\infty, 2}(g_1) - L_{\infty, 2}(g_2)\|_{H^1(0,T)} \leq \left(\frac{1}{R} + R\sqrt{T} \right) B_{2,2}(\|g_1\|_{H^1(0,T)}, \|g_2\|_{H^1(0,T)})
\]
\[
\times \|g_1 - g_2\|_{H^1(0,T)},
\]
(5.45)
for all $g_1, g_2 \in H^1_0(0, T)$, where we have used the Plancherel theorem, the Cauchy–Schwarz inequality and the Poincaré inequality (5.12).

Using (5.38), the change of variable $\xi = k^2$, the Plancherel theorem and lemma 5.4, we can derive the following estimates for $L_{\infty, 3}$:
\[
\|L_{\infty, 3}(g_1)\|_{H^1(0,T)} \leq C T \|g_1\|_{C[0,T]} \max_{0 \leq t \leq T} \|\psi(t, \sqrt{k})\|_{L^2(B_{2,1}(g_1) \setminus \{g_1\})} \leq T B_{3,1}(\|g_1\|_{H^1(0,T)}),
\]
(5.46)
\[
\|L_{\infty, 3}(g_1) - L_{\infty, 3}(g_2)\|_{H^1(0,T)} \leq T B_{3,2}(\|g_1\|_{H^1(0,T)}, \|g_2\|_{H^1(0,T)}) \|g_1 - g_2\|_{H^1(0,T)},
\]
(5.47)
for all $g_1, g_2 \in H^1_0(0, T)$.

Similarly, we have the following estimates for $L_{\infty, 4}$:
\[
\|L_{\infty, 4}(g_1)\|_{H^1(0,T)} \leq C T \|g_1\|_{H^1(0,T)} \max_{0 \leq t \leq T} \|\psi(t, \sqrt{k})\|_{L^2(B_{3,1}(g_1) \setminus \{g_1\})} \leq T B_{4,1}(\|g_1\|_{H^1(0,T)}),
\]
(5.48)
\[
\|L_{\infty, 4}(g_1) - L_{\infty, 4}(g_2)\|_{H^1(0,T)} \leq T B_{4,2}(\|g_1\|_{H^1(0,T)}, \|g_2\|_{H^1(0,T)}) \|g_1 - g_2\|_{H^1(0,T)},
\]
(5.49)
for all $g_1, g_2 \in H^1_0(0, T)$.

It follows from (5.33)–(5.35), (5.41), (5.42) and (5.44)–(5.49) that $L_0(\cdot) + L_{\infty}(\cdot)$ is a contraction map from $H^1_0(0, T)$ into itself, provided $T > 0$ is sufficiently small. We have therefore established the following lemma on the existence and uniqueness of a local solution (5.32).

Lemma 5.6. For $T_1 > 0$ sufficiently small, there exists a unique solution of (5.27) (with $T = T_1$) in $H^1_0(0, T_1)$.

We can apply the same technique to establish a unique solution of (5.27) in the space $H^2_0(0, T_2)$ for $T_2 > 0$ sufficiently small. Furthermore, it can be checked that the magnitudes of T_2 and $\|g_1\|_{H^1(0,T_2)}$ are controlled by the magnitude of $\|g_1\|_{H^1(0,T_1)}$. Similarly, there is a unique solution of (5.27) in the space $H^3_0(0, T_3)$ for $T_3 > 0$ sufficiently small, where the magnitudes of T_3 and $\|g_1\|_{H^1(0,T_3)}$ are controlled by $\|g_1\|_{H^2(0,T_2)}$, and so on.

Therefore, we have the following generalization of lemma 5.6.

Lemma 5.7. Given any positive integer m, the integral equation (5.27) has a unique solution in $H^m_0(0, T_m)$, where $T_m \geq B_{m,1}(\|g_1\|_{H^1(0,T_1)})$. $\|g_1\|_{H^m(0,T_m)} \leq B_{m,2}(\|g_1\|_{H^1(0,T_1)})$ and $B_{m,j} : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ is a continuous function for $j = 1, 2$.

Next we consider the question of extending the solution g_1 of (5.27) in lemma 5.7. From the results of section 4, we see that $g_0 = q(0, t)$ and $g_1 = q_1(0, t)$, where q is a solution of (2.1) with $q_0 = 0$, and, for m sufficiently large, q has high order of regularity and decay. Hence, the global relation is valid for any $t \leq T_m$, i.e. we have
\[
\phi(t, k) = e^{ik\xi} e^*(t, k).
\]
(5.50)
where $c^+(t, \cdot)$ is analytic and bounded on the first quadrant and $c^+(t, k) = O(1/k)$ as $k \to \infty$.

For $t > T_m$, we can therefore rewrite (5.9) as

$$
\phi(t, k) = e^{ik T_m} c^+(T_m, k) + \int_{T_m}^{t} e^{ik [2k f_0(t') + i f_1(t')]} \psi(t', k) \, dt',
$$

(5.51a)

$$
\psi(t, k) = e^{ik T_m} c^c(k) + \int_{T_m}^{t} e^{ik [2k f_0(t') - i f_1(t')]} \chi(T_m) \, dt',
$$

(5.51b)

where $c^c(k)$ is also analytic and bounded on the first quadrant. It is not difficult to see that the solution of (5.51) obtained by the Neumann series has the property that

$$
\int_{\mathcal{L}} e^{-ik \tau} \phi(t, k) \, dk = 0 \quad \text{for } 0 < s < T_m < t.
$$

(5.52)

Therefore, for $T > T_m$, the global relation (5.26) is equivalent to

$$
\int_{\mathcal{L}} e^{-ik \tau} \phi(T, k) \, dk = 0 \quad \text{for } T_m < t < T.
$$

(5.53)

So the problem of extending the solution from $(0, T_m)$ to $(0, T)$ is reduced to solving the integral equation (5.27) for $T_m < t < T$, which can be written in the form

$$
g_t(t) = G(t) + \left(\frac{8i}{\pi}\right) e^{-im(t)} \int_{\mathcal{L}} e^{-ik^2 \tau} \left\{ \int_{T_m}^{T} e^{ik \tau} e^{2im(t')} g_0(t') \right\} \, dk
$$

$$
\times \left(\sum_{j=1}^{2} \left[\chi_j(t') - \chi_j(T_m) \right] k^{2-j} \right) \, dt' \, dk
$$

$$
+ \left(\frac{8i}{\pi}\right) e^{-im(t)} \int_{\mathcal{L}} e^{-ik^2 \tau} \left\{ \int_{T_m}^{T} e^{ik \tau} e^{2im(t')} g_0(t') \right\} \left(\psi_4(t', k) + e^{ik^2 \tau} \sum_{j=3}^{4} \frac{X_j(t')}{k^j} \right) \, dt' \, dk
$$

$$
- \left(\frac{4}{\pi}\right) e^{-im(t)} \int_{\mathcal{L}} e^{-ik^2 \tau} \left\{ \int_{T_m}^{T} e^{ik \tau} e^{2im(t')} g_0(t') \right\} \left(g_1(t') \chi_1(t') - g_1(T_m) \chi_1(T_m) \right) \, dt' \, dk
$$

$$
- \left(\frac{4}{\pi}\right) e^{-im(t)} \int_{\mathcal{L}} e^{-ik^2 \tau} \left\{ \int_{T_m}^{T} e^{ik \tau} e^{2im(t')} g_0(t') \right\} \left(\psi_2(t', k) + e^{ik^2 \tau} \sum_{j=2}^{4} \frac{X_j(t')}{k^j} \right) \, dt' \, dk
$$

(5.54)

where

$$
G(t) = g_+(t) + \left(\frac{8i}{\pi}\right) e^{-im(t)} \int_{\mathcal{L}} e^{-ik^2 \tau} \left\{ \int_{0}^{T} e^{ik \tau} e^{2im(t')} g_0(t') \right\} \left(\sum_{j=1}^{2} \frac{X_j(t')}{k^j} \right) \, dt' \, dk
$$

$$
+ \left(\frac{8i}{\pi}\right) e^{-im(t)} \int_{\mathcal{L}} e^{-ik^2 \tau} \left\{ \int_{0}^{T} e^{ik \tau} e^{2im(t')} g_0(t') \right\} \left(\psi_4(t', k) + e^{ik^2 \tau} \sum_{j=3}^{4} \frac{X_j(t')}{k^j} \right) \, dt' \, dk
$$

$$
- \left(\frac{4}{\pi}\right) e^{-im(t)} \int_{\mathcal{L}} e^{-ik^2 \tau} \left\{ \int_{0}^{T} e^{ik \tau} e^{2im(t')} g_0(t') \right\} \left(g_1(t') \chi_1(t') - g_1(T_m) \chi_1(T_m) \right) \, dt' \, dk
$$

$$
- \left(\frac{4}{\pi}\right) e^{-im(t)} \int_{\mathcal{L}} e^{-ik^2 \tau} \left\{ \int_{0}^{T} e^{ik \tau} e^{2im(t')} g_0(t') \right\} \left(\psi_2(t', k) + e^{ik^2 \tau} \sum_{j=2}^{4} \frac{X_j(t')}{k^j} \right) \, dt' \, dk
$$

(5.55)

and $\tilde{\chi}_1$ (respectively $\tilde{\chi}_2$ and \tilde{g}_1) are extensions of χ_1 (respectively χ_2 and g_1) from $(0, T_m)$ to $(0, T)$ that takes the constant value $\chi_1(T_m)$ (respectively $\chi_2(T_m)$ and $g_1(T_m)$) on (T_m, T).

The nonlinear Schrödinger equation on the half-line 1797
Suppose there exists a RH problem, which is uniquely defined in terms of the spectral functions linearizable for which it is possible to compute $A(k)$ and $B(k)$. A general methodology which identifies a nonlinear Volterra integral equation, see definitions 3.1, 3.3 and section 5. In what follows we present a general methodology which identifies a particular class of boundary value problems for which it is possible to compute $A(k)$ and $B(k)$ using only the algebraic manipulation of the global relation. We will refer to this class of boundary value problems as linearizable.

6. Linearizable boundary conditions

It was shown in section 4 that $q(x,t)$ can be expressed in terms of the solution of a 2×2 RH problem, which is uniquely defined in terms of the spectral functions $a(k)$, $b(k)$, $A(k)$, $B(k)$. The functions $a(k)$ and $b(k)$ are defined in terms of $q_0(x)$ through the solution of a linear Volterra integral equation, see definition 3.1. However, the functions $A(k)$ and $B(k)$ are, in general, defined in terms of the initial and boundary conditions through the solution of a nonlinear Volterra integral equation, see definitions 3.1, 3.3 and section 5. In what follows we present a general methodology which identifies a particular class of boundary value problems for which it is possible to compute $A(k)$ and $B(k)$ using only the algebraic manipulation of the global relation. We will refer to this class of boundary value problems as linearizable.

Recall that $A(k)$ and $B(k)$ are defined in terms of $\mu_2(t,k)$. Let $M(t,k) = \mu_2(t,k)e^{-2ik^2t\sigma_3}$, i.e.

$$M(t,k) = \begin{bmatrix}
M_2(t,k) & M_1(t,k) \\
\lambda M_1(t,k) & M_2(t,k)
\end{bmatrix}, \quad M_1 = \Phi_1e^{2ik^2t}, \quad M_2 = \Phi_2e^{2ik^2t}.$$

Then $M(t,k)$ satisfies

$$M_t + 2ik^2\sigma_3 M = \tilde{Q}(t,k)M, \quad M(0,k) = I. \quad (6.1)$$

The function $M(t, -k)$ satisfies a similar equation where $\tilde{Q}(t,k)$ is replaced by $\tilde{Q}(t, -k)$. Suppose there exists a t-independent, nonsingular matrix $N(k)$ such that

$$M(t, -k) = N(k)N(k)^{-1}. \quad (6.3)$$

This equation evaluated at $t = 0$ defines a relation between the spectral functions at k and the spectral functions at $-k$.

Equation (5.54) is an integral equation for $g_1 \in H^1_{as}$ and it can be analysed in the same way as (5.27) (cf remark 5.5). We can therefore extend the solution g_1 from $(0, T_m)$ to $(0, T_m + \Delta T_1)$ provided ΔT_1 is small enough, where the magnitudes of $\Delta T_1 > 0$ and $\|g_1\|_{H^1(0,T_m + \Delta T_1)}$ are controlled by $\|g_1\|_{H^1(0,T_m)}$. Similarly we can extend g_1 to a solution in $H^m_{as}(0, T_m + \Delta m)$, where the magnitudes of ΔT_m and $\|g_1\|_{H^m(0,T_m + \Delta m)}$ are both controlled by $\|g_1\|_{H^m(0,T_m)}$.

Hence the extension procedure can be repeated until a solution on $H^m_{as}(0, T)$ is reached provided there is an a priori bound for $\|g_1\|_{H^m(0,T)}$. It turns out that in the case where $\lambda = 1$, such an a priori bound exists for any given g_0, and it also exists in the case where $\lambda = -1$ if $\|g_0\|_{L^1(0,T)}$ is sufficiently small (see appendix D for details).

We have therefore established the following theorem.

Theorem 5.8. Given any $g_0 \in C^\infty([0, T])$ such that g_0 vanishes to all orders at $t = 0$, there exists $g_1 \in C^\infty([0, T])$, also vanishing to all orders at $t = 0$, such that $\{g_0, g_1\}$ form an admissible pair for (2.1) with $\lambda = 1$ and initial value $q_0 = 0$. This is also true for $\lambda = -1$ if $\|g_0\|_{L^1(0,T)}$ is sufficiently small.
We note that a necessary condition for the existence of $N(k)$ is that the determinant of the matrix $2i k^2 \sigma_3 - \bar{Q}(t, k)$ depends on k in the form of k^2. This condition implies

$$q(0, t) \bar{q}_t(0, t) - \bar{q}(0, t) q_t(0, t) = 0.$$ (6.4)

If this condition is satisfied, equation (6.2) yields

$$(2kq - i\bar{q} x) N_3 = -\lambda (2k^2 + i\lambda |q|^2) N_2,$$ (6.5a)

$$(2kq + i\bar{q} x) N_1 + (2k^2 - i\lambda) N_4 = -2(2i k^2 + i\lambda |q|^2) N_2,$$ (6.5b)

where we have used the notation

$$N_1 = N_{11}, \quad N_2 = N_{12}, \quad N_3 = N_{21}, \quad N_4 = N_{22}.$$ (6.6)

We now discuss in detail three particular cases of (6.5).

(a) $q(0, t) = 0$

In this case $\bar{Q}(t, k)$ is a function of t and k^2, thus there is no need to introduce $N(k)$, i.e. $N(k) = I$. Then the second column of equation (6.3) evaluated at $t = T$ yields

$$A(k) = A(-k), \quad B(k) = B(-k), \quad k \in \mathbb{C}.$$ (6.7)

(b) $q_x(0, t) = 0$

Equation (6.5) implies that $N(k)$ does not depend on $q(0, t)$ provided that $N_2 = N_3 = 0$ and $N_4 = -N_1$. Then the second column of equation (6.3) evaluated at $t = T$ yields

$$A(k) = A(-k), \quad B(k) = -B(-k), \quad k \in \mathbb{C}.$$ (6.8)

(c) $q_x(0, t) - \rho q(0, t) = 0$, ρ positive constant

Equations (6.5) imply that $N(k)$ does not depend separately on $q(0, t)$ and on $q_x(0, t)$ provided that $N_2 = N_3 = 0$ and

$$(2k^2 - i\rho) N_4 + (2k + i\rho) N_1 = 0.$$

Then the second column of equation (6.3) evaluated at $t = T$ yields

$$A(k) = A(-k), \quad B(k) = -\frac{2k + i\rho}{2k - i\rho} B(-k), \quad k \in \mathbb{C}.$$ (6.9)

Using the transformations (6.7)–(6.9), together with the global relation, it is possible to express $A(k)$ and $B(k)$ in terms of $a(k)$ and $b(k)$.

For convenience we assume $T = \infty$. It can be shown that a similar analysis is valid if $T < \infty$. If $T = \infty$, the global relation becomes

$$a(k) B(k) - b(k) A(k) = 0, \quad \arg k \in \left[0, \frac{\pi}{2}\right].$$ (6.10)

We note again that since $T = \infty$, $A(k)$ and $B(k)$ are not entire functions but are defined for

$$\arg k \in \left[0, \frac{\pi}{2}\right] \cup \left[\pi, \frac{3\pi}{2}\right].$$ (6.11)

(a) $q(0, t) = 0$

Letting $k \mapsto -k$ in the definition of $\bar{d}(k)$ and using the symmetry relation (6.7) we find

$$A(k) a(-k) - \lambda B(k) b(-k) = \bar{d}(-k), \quad \arg k \in \left[0, \frac{\pi}{2}\right].$$ (6.12)

This equation and the global relation (6.10) are two algebraic equations for $A(k)$ and $B(k)$. Their solution yields

$$A(k) = \frac{a(k) d(-k)}{\Delta_0(k)}, \quad B(k) = \frac{b(k) d(-k)}{\Delta_0(k)}, \quad \arg k \in \left[0, \frac{\pi}{2}\right].$$
\[\Delta_0(k) := a(k)a(-\bar{k}) - \lambda b(k)b(-\bar{k}). \] (6.13)

The function \(d(\bar{k}) \) can be computed explicitly in terms of \(a(k) \) and \(b(k) \). However, it does not affect the solution of the RH problem of theorem 4.1. Indeed, this RH problem is defined in terms of \(\gamma(k) = b(k)/\bar{a}(k), k \in \mathbb{R} \) and of \(\Gamma(k) \) which involves \(a(k), b(k) \) and \(A(k)/B(k) \),

\[\Gamma(k) = \frac{\lambda(\bar{B}(k)/A(\bar{k}))}{a(k)(a(k) - \lambda b(k)(\bar{B}(\bar{k})/A(\bar{k})))} = \frac{\lambda b(-\bar{k})}{a(k)\Delta_0(k)}, \quad k \in \mathbb{R}^- \cup i\mathbb{R}^+. \] (6.14)

The function \(\Delta_0(k) \) is an analytic function in the upper half \(k \) plane, and it satisfies the symmetry equation,

\[\Delta_0(k) = \Delta_0(-\bar{k}). \] (6.15)

It can be shown that the zero set of \(\Delta_0(k) \) is the union

\[\{\lambda_j\}_{j=1}^\Lambda \cup \{-\bar{\lambda}_j\}_{j=1}^\Lambda. \] (6.16)

Indeed, the global relation (6.10) implies that the zero sets of the functions \(a(k) \) and \(A(k) \) coincide in the first quadrant. It also implies that if the zeros of \(a(k) \) are simple the zeros of \(A(k) \) have the same property. This and equation (6.11) imply that the zero sets of \(d(\bar{k}) \) and \(\Delta_0(k) \) coincide in the first quadrant as well. Equation (6.15) implies that the zero set of \(\Delta_0(k) \) is the set given in (6.16).

Since the zeros \(\lambda_j \) of \(d(k) \) coincide with the second quadrant zeros of \(\Delta_0(k) \), equations (6.12) and (6.7) imply the following modification of the residue conditions in (2.29):

\[\text{Res}_{k_{j}}[M(x, t, k)]_{1} = \frac{1}{a(k_{j})b(k_{j})}e^{2i\theta(k_{j})}[M(x, t, k_{j})]_{2}, \quad j = 1, \ldots, n_{1}, \] (6.17a)

\[\text{Res}_{k_{j}}[M(x, t, k)]_{2} = \frac{\lambda}{a(k_{j})b(k_{j})}e^{-2i\theta(k_{j})}[M(x, t, k_{j})]_{1}, \quad j = 1, \ldots, n_{1}, \] (6.17b)

\[\text{Res}_{\lambda_{j}}[M(x, t, k)]_{1} = \frac{\lambda b(-\bar{\lambda}_{j})}{a(\lambda_{j})\Delta_{0}(\lambda_{j})}e^{2i\theta(\lambda_{j})}[M(x, t, \lambda_{j})]_{2}, \quad j = 1, \ldots, \Lambda, \] (6.17c)

\[\text{Res}_{\lambda_{j}}[M(x, t, k)]_{2} = \frac{b(-\bar{\lambda}_{j})}{a(\lambda_{j})\Delta_{0}(\lambda_{j})}e^{-2i\theta(\lambda_{j})}[M(x, t, \bar{\lambda}_{j})]_{1}, \quad j = 1, \ldots, \Lambda, \] (6.17d)

where

\[\theta(k_{j}) = k_{j}x + 2k_{j}^2t. \] (6.18)

(b) \(q_0(0, t) = 0 \)

Equations (6.12) are valid but \(\Delta_0(k) \) is replaced by

\[\Delta_1(k) = a(k)a(-\bar{k}) + \lambda b(k)b(-\bar{k}). \] (6.19)

The zeros \(\lambda_{j} \) are now the second quadrant zeros of \(\Delta_1(k) \), and equation (6.14) should be replaced by

\[\Gamma(k) = -\frac{\lambda b(-\bar{k})}{a(k)\Delta_1(k)}, \quad k \in \mathbb{R}^- \cup i\mathbb{R}^+. \] (6.20)
The modified residue conditions are given by the equations

\[
\text{Res}_{kj} [M(x, t, k)]_1 = \frac{1}{a(k_j)b(k_j)} e^{2i\theta(k_j)} [M(x, t, k_j)]_2, \quad j = 1, \ldots, n_1, \quad (6.21a)
\]

\[
\text{Res}_{kj} [M(x, t, k)]_2 = \frac{\lambda}{a(k_j)b(k_j)} e^{-2i\theta(k_j)} [M(x, t, \bar{k}_j)]_1, \quad j = 1, \ldots, n_1, \quad (6.21b)
\]

\[
\text{Res}_{\lambda_j} [M(x, t, k)]_1 = -\frac{\lambda b(-\lambda_j)}{a(\lambda_j)\Delta_\rho(\lambda_j)} e^{2i\theta(\lambda_j)} [M(x, t, \bar{\lambda}_j)]_2, \quad j = 1, \ldots, \Lambda, \quad (6.21c)
\]

\[
\text{Res}_{\lambda_j} [M(x, t, k)]_2 = -\frac{b(-\bar{\lambda}_j)}{a(\lambda_j)\Delta_\rho(\lambda_j)} e^{-2i\theta(\bar{\lambda}_j)} [M(x, t, \bar{\lambda}_j)]_1, \quad j = 1, \ldots, \Lambda. \quad (6.21d)
\]

(c) \(q_0(0, t) - \rho q(0, t) = 0, \ \rho \text{ constant}
\)

In this case, \(\Delta_0(k)\) is replaced by

\[
\Delta_\rho(k) = a(k)a(-\bar{k}) + \lambda((2k - i\rho)/(2k + i\rho))b(k)b(-\bar{k}). \quad (6.22)
\]

The zeros \(\lambda_j\) are now the second quadrant zeros of \(\Delta_\rho(k)\), and

\[
\Gamma(k) = -\frac{\lambda((2k - i\rho)/(2k + i\rho))b(-\bar{k})}{a(k)\Delta_\rho(k)}, \quad k \in \mathbb{R}^- \cup i\mathbb{R}^+. \quad (6.23)
\]

The modified residue conditions are given by the equations

\[
\text{Res}_{kj} [M(x, t, k)]_1 = \frac{1}{a(k_j)b(k_j)} e^{2i\theta(k_j)} [M(x, t, k_j)]_2, \quad j = 1, \ldots, n_1, \quad (6.24a)
\]

\[
\text{Res}_{kj} [M(x, t, k)]_2 = \frac{\lambda}{a(k_j)b(k_j)} e^{-2i\theta(k_j)} [M(x, t, \bar{k}_j)]_1, \quad j = 1, \ldots, n_1, \quad (6.24b)
\]

\[
\text{Res}_{\lambda_j} [M(x, t, k)]_1 = -\frac{\lambda((2k_j - i\rho)/(2k_j + i\rho))b(-\bar{k}_j)}{a(\lambda_j)\Delta_\rho(\lambda_j)} e^{2i\theta(\lambda_j)} [M(x, t, \bar{\lambda}_j)]_2, \quad j = 1, \ldots, \Lambda, \quad (6.24c)
\]

\[
\text{Res}_{\lambda_j} [M(x, t, k)]_2 = -\frac{((2\bar{\lambda}_j + i\rho)/(2\bar{\lambda}_j - i\rho))b(-\bar{\lambda}_j)}{a(\lambda_j)\Delta_\rho(\lambda_j)} e^{-2i\theta(\bar{\lambda}_j)} [M(x, t, \bar{\lambda}_j)]_1, \quad j = 1, \ldots, \Lambda. \quad (6.24d)
\]

Theorem 4.1 and the above results imply the following.

Theorem 6.1. Let \(q(x, t)\) satisfy the NLS equation (2.1), the initial condition

\[
q(x, 0) = q_0 \in S(\mathbb{R}^+), \quad 0 < x < \infty
\]

and any of the following boundary conditions

(a) \(q(0, t) = 0, \quad t > 0, \)

(b) \(q_x(0, t) = 0, \quad t > 0, \)

or

(c) \(q_x(0, t) - \rho q(0, t) = 0, \quad \rho > 0, \quad t > 0.\)
Assume that the initial and boundary conditions are compatible at $x = t = 0$. Furthermore, assume if $\lambda = -1$:

(i) $a(k)$, which is defined in definition 3.1, has a finite number of simple zeros for $\text{Im } k > 0$.

(ii) $\Delta_0(k)$ in case (a), or $\Delta_1(k)$ in case (b) or $\Delta_\rho(k)$ in case (c), have a finite number of simple zeros in the second quadrant which do not coincide with the possible zeros of $a(k)$ (Δ_0, Δ_1, Δ_ρ are defined in equations (6.13), (6.19), (6.22)).

The solution $q(x, t)$ can be constructed through equation (4.3), where M satisfies the RH problem defined in theorem 4.1, with $\Gamma(k)$ given by equation (6.14) in case (a), by equation (6.20) in case (b) and by equation (6.23) in case (c). The relevant residue conditions are given by equation (6.17) in case (a), by equation (6.21) in case (b) and by equation (6.24) in case (c).

Remark 6.2. Linearizable boundary value problems have been studied via techniques based on an appropriate continuation of the boundary problem to the problem on the line in [12–17]. The solutions are given via the RH problems corresponding to the extended initial value problems. These continuations are described by explicit conditions on the scattering data associated with the initial value problem on the line (see [12, 14–17]). In the case of the first two boundary problems studied here, these conditions can be easily translated to the even or odd continuation of the initial data $q_0(x)$ (see [12]). Although a continuation is still possible for the third boundary problem, this procedure is more complicated. Furthermore, what is more important is that the procedure introduced here is also valid for PDEs involving third order derivatives [1]. Theorem 6.1 presents the solution of linearizable boundary value problems with the same level of efficiency as the one for the full axis problem. Indeed, the relevant RH problem is formulated in terms of the spectral data, $a(k), b(k)$, which are calculated directly via the given initial data $q_0(x), x > 0$. The only difference, which does not affect the effectiveness of the solution, is that the RH problem is now formulated on a cross and not on the real line. It is also worth noting that in this case (as well as in other linearizable cases) the RH problem can be deformed back in to the real line and then coincides with the RH problem of [18] (see [19]).

Remark 6.3. Linearizable boundary value problems have infinitely many conserved quantities [20, 21].

7. Conclusions

We have introduced a rigorous methodology for solving boundary value problems for nonlinear integrable evolution equations. This involves the following steps: (1) **Assume** that there exists a smooth, global solution $q(x, t)$, and perform the simultaneous spectral analysis of the associated Lax pair. This yields a representation of $q(x, t)$ in terms of the solution $M(x, t, k)$ of a matrix RH problem. This RH problem is uniquely defined in terms of certain spectral functions $a(k), b(k), A(k), B(k)$, which satisfy a simple global relation. (2) **Motivated from** the results of (1), **postulate** the global relation and **define** the spectral functions: $a(k), b(k)$ are defined in terms of the initial conditions $q_0(x)$, and $A(k), B(k)$ are defined in terms of an admissible set of functions $g_0(t), g_1(t)$, where a set is called admissible if $A(k), B(k)$ satisfy the postulated global relation. (3) **Motivated from** the results of (1), define $M(x, t, k)$ as the solution of a matrix RH problem, uniquely defined in terms of $a(k), b(k), A(k), B(k)$. **Prove** that this RH problem has a unique, global solution. Define $q(x, t)$ in terms of $M(x, t, k)$ and prove that $q(x, t)$ solves the nonlinear PDE, and it satisfies $q(x, 0) = q_0(x), q(0, t) = g_0(t)$,
Investigate the existence of the admissible set. For example, show that given \(q_0(x) \) and \(g_0(t) \), there exists a unique \(g_1(t) \). This involves the investigation of a nonlinear Volterra integral equation.

We have also introduced a methodology for analysing a particular class of boundary value problems, which we call linearizable. This class is distinctive in the sense that \(A(k), B(k) \) can be computed directly in terms of \(a(k), b(k) \) using the algebraic manipulation of the global relation, without the need to analyse the nonlinear Volterra integral equation. Thus, for linearizable boundary conditions, boundary value problems can be solved as effectively as initial value problems. Although for this class of boundary conditions there exists a substantial simplification in the solution method, the long time asymptotics appear to be similar to the generic situation.

We conclude with some remarks.

Remark 7.1. It was noted by Fokas [22] that for the solution of initial boundary value problems of integrable nonlinear evolution equations one needs to perform, in addition to the spectral analysis of the \(x \) part of the Lax pairs, the spectral analysis of the \(t \)-part. For the NLS equation this was done in [10]. However, the importance of performing the simultaneous spectral analysis, as well as the key role played by the global relation was not understood at that time.

Remark 7.2. A rigorous characterization of the properties of the spectral functions associated with the NLS on the half-line is given in [8].

Remark 7.3. Under the assumption of existence of solutions, a rigorous determination of the long time behaviour of the solution of the NLS equation on the half-line is given in [10], using the Deift–Zhou approach [23]. In particular, it is shown in [10] that the long time asymptotics is dominated by the solitonic part of the solution. These results, together with the results presented here, imply that for the linearizable class of boundary conditions, the long time asymptotics is explicitly determined in terms of the initial and boundary conditions. The asymptotic results are summarized in appendix B (the poles generated by the zeros of \(a(k) \), \(\arg k \in (\pi/2, \pi) \) were missed in [10] but are included here).

Remark 7.4. In recent years there have been important developments in the analysis of boundary value problems of nonlinear PDEs using PDE techniques [24–27]. It is remarkable that some of these techniques yield global results. It is satisfying that now there exists a rigorous theory using the integrability machinery, so that it is possible to make comparisons between these different approaches. Although at the moment the PDE results are proven in less restrictive functional spaces, the advantage of our method is that it yields rigorous asymptotic results. We reiterate that this is a consequence of our representation of the solution in terms of the RH problem, whose jump matrices depend on the \(x \) and \(t \) in a simple oscillatory way, which, in turn, allows us to apply the Deift–Zhou method.

Acknowledgments

The authors are grateful to A Boutet de Monvel and V Kotlyarov for pointing out the missing part of the discrete spectral data in [10]. The work of ASF was partially supported by EPSRC. The work of ARI was partially supported by EPSRC and NSF under grants DMS-9801608 and DMS-0099812. The work of LYS was partially supported by EPSRC. Part of this work was carried out when ARI and LYS visited the Mathematics Department of Imperial College. They are grateful to the staff of the department for their hospitality during the visits.
Appendix A. The inverse problems

Appendix A.1. The x-inverse problem

Consider the functions $q_0(x), \varphi(x, k), a(k), b(k)$ introduced in definition 3.1. Let the vector function, $\psi(x, k) = (\psi_1, \psi_2)^t$, be defined as the unique solution of

\[
\begin{align*}
\psi_1, & = q_0(x)\psi_2, \\
\psi_2, & - 2ik\psi_2 = \lambda\bar{q}_0(x)\psi_1,
\end{align*}
\]

$0 < x < \infty, \quad k \in \mathbb{C},$
\[
\psi(0, k) = (1, 0)^t.
\]

Note that the vector ψ satisfies the linear Volterra equations,

\[
\begin{align*}
\psi_1(x, k) = & 1 + \int_0^x q_0(y)\psi_2(y, k)\, dy, \quad k \in \mathbb{C}, \quad (A.1a) \\
\psi_2(x, k) = & \lambda\int_0^x e^{2ik(x-y)}\bar{q}_0(y)\psi_1(y, k)\, dy, \quad k \in \mathbb{C}. \quad (A.1b)
\end{align*}
\]

Denote $\varphi^* = (\varphi_2(x, \bar{k}), \lambda\varphi_1(x, \bar{k}))^t$ and $\psi^* = (\bar{\psi}_2(x, \bar{k}), \lambda\bar{\psi}_1(x, \bar{k}))^t$.

Define $\mu_3(x, k)$ and $\mu_2(x, k)$ by

\[
\begin{align*}
\mu_3(x, k) = & (\varphi^*(x, k), \varphi(x, k)) \quad \text{and} \quad \mu_2(x, k) = (\psi(x, k), \lambda\psi^*(x, k)).
\end{align*}
\]

They satisfy the matrix equation,

\[
\mu_x + ik[\sigma_3, \mu] = \begin{bmatrix}
0 & q_0 \\
\lambda\bar{q}_0 & 0
\end{bmatrix} \mu. \quad (A.2)
\]

This in turn implies that the above vectors are simply related,

\[
(\varphi^*(x, k), \varphi(x, k)) = (\varphi(x, k), \lambda\varphi^*(x, k))e^{-ikx}\gamma_3(k)
\]

\[
= (\psi(x, k), \lambda\psi^*(x, k)) \begin{bmatrix}
\tilde{a}(k) & b(k)e^{-2ikx} \\
\lambda\tilde{b}(k)e^{2ikx} & a(k)
\end{bmatrix}, \quad k \in \mathbb{R}. \quad (A.3)
\]

Let

\[
M^{(2)}_-(x, k) = \begin{bmatrix}
\varphi & \lambda\psi^* \\
\tilde{a}(k) & b(k)
\end{bmatrix} \quad \text{Im} k \leq 0, \quad (A.4a)
\]

\[
M^{(2)}_+(x, k) = \begin{bmatrix}
\psi & a(k) \\
\tilde{a}(k) & \varphi
\end{bmatrix} \quad \text{Im} k \geq 0. \quad (A.4b)
\]

Equation (A.3) can be rewritten as

\[
M^{(2)}_-(x, k) = M^{(2)}_+(x, k)J^{(2)}(x, k), \quad k \in \mathbb{R},
\]

where $J^{(1)}(x, k)$ is the jump matrix defined by (3.6c). Furthermore, $M^{(2)}$ satisfies the RH problem defined in (3.6). Indeed, we only need to prove the residue conditions at the possible simple zeros, $\{k_j\}_1^n$, of $a(k)$. To this end we note that in virtue of (A.3) the equation,

\[
\varphi = b(k)e^{-2ikx}\varphi + a(k)\lambda\psi^*
\]

holds. The function ψ and hence the function ψ^* are entire functions of k. Therefore, we can evaluate (A.6) at $k = k_j$. This yields the relation,

\[
\varphi(x, k_j) = \bar{\psi}(x, k_j)b(k_j)e^{-2ik_jx}
\]
or, taking into account the definition \((A.4)\) of the function \(M^{(1)}(x, k)\),

\[
\text{Res}_{k_j} [M^{(1)}(x, k_j)]_1 = \frac{e^{2ik_jx}}{\tilde{a}(k_j)b(k_j)} [M^{(1)}(x, k_j)]_2.
\]

The residue condition at \(k = \bar{k}_j\) is derived similarly.

A substitution of the asymptotic expansion,

\[
M(x)(x, k) = I + m_1(x)k + O\left(\frac{1}{k^2}\right), \quad k \to \infty,
\]

into equation \((A.2)\) yields

\[
q_0(x) = 2i(m_1(x))_{12} = 2i \lim_{k \to \infty} (kM(x)(x, k))_{12}.
\] \((A.7)\)

Our next task is to show that this relation defines the map,

\[
\mathbb{Q} : [a(k), b(k)] \mapsto [q_0(x)],
\]

which is inverse to the spectral map,

\[
\mathbb{S} : [q_0(x)] \mapsto [a(k), b(k)].
\]

In more detail, this problem is formulated as follows. Given \([a(k), b(k)]\), construct the jump matrix \(J^{(1)}(x, k)\) according to equation \((3.6c)\) and define the RH problem by \((3.6)\). Let \(q_0(x)\) be the function defined by \((A.7)\) in terms of the solution \(M^{(1)}(x, k)\) of this RH problem. Denote the spectral data corresponding to \(q_0(x)\) by \([a_0(k), b_0(k)]\). We have to show that

\[
a_0(k) = a(k) \quad \text{and} \quad b_0(k) = b(k).
\] \((A.8)\)

Using the standard arguments of the dressing method [11], it is straightforward to prove that \(M^{(1)}(x, k)\) satisfies equation \((A.2)\) with the potential \(q_0(x)\) defined by \((A.7)\). This means, in particular, that the matrix solution \(\mu_3(x, k)\), \(k \in \mathbb{R}\) corresponding to the potential \(q_0(x)\) is given by the equation,

\[
\mu_3(x, k) = M^{(1)}(x, k)e^{-ik\bar{y}_0}C_+(k), \quad k \in \mathbb{R},
\] \((A.9)\)

for an appropriate matrix \(C_+(k)\). This matrix does not depend on \(x\) and hence can be evaluated by letting \(x \to \infty\) in \((A.9)\).

It follows from the theory of the inverse scattering problem for the Dirac equation \((A.2)\) (see, e.g., [28]; or from the direct use of the nonlinear steepest descent method [23, 29]) that

\[
M^{(1)}(x, k) = \begin{bmatrix} 1 & 0 \\ \frac{-\lambda \bar{b}(k)x}{\tilde{a}(k)} e^{2ikx} & 1 \end{bmatrix} + o(1), \quad x \to \infty, \quad k \in \mathbb{R}
\]

(under the usual assumptions on the RH data \([a(k), b(k)]\)). Since \(\mu_3 \to I\) as \(x \to \infty\), it follows that

\[
C_+(k) = \begin{bmatrix} 1 & 0 \\ \frac{\lambda \bar{b}(k)}{\tilde{a}(k)} & 1 \end{bmatrix}.
\] \((A.11)\)

Equations \((A.9)\) and \((A.11)\) imply that the scattering data,

\[
s_0(k) = \begin{bmatrix} \bar{a}_0(k) & \bar{b}_0(k) \\ \lambda \bar{b}_0(k) & a_0(k) \end{bmatrix} = \mu_3(0, k),
\]
corresponding to the potential \(q_0(x) \) defined in (A.8) are given by the equation,

\[
s_0(k) = M^{(x)}(0, k) \begin{bmatrix} 1 & 0 \\ \frac{\lambda \tilde{b}(k)}{a(k)} & 1 \end{bmatrix}.
\]

If \(x = 0 \) (in fact, for all \(x \leq 0 \)) the above RH problem can be solved explicitly. Indeed,

\[
J(x)(0, k) = \begin{bmatrix} 1 & -\frac{b(k)}{\lambda} \\ -\frac{\lambda \tilde{b}(k)}{a(k)} & \frac{1}{|a|^2} \end{bmatrix} = \begin{bmatrix} a(k) & b(k) \\ -\frac{\lambda \tilde{b}(k)}{a(k)} & 1 \end{bmatrix}.
\]

This implies,

\[
M^{(x)}(0, k) = \begin{bmatrix} 1 & b(k) \\ \frac{1}{a(k)} & a(k) \end{bmatrix}
\]

(note that the residue conditions are satisfied), and hence

\[
s_0(k) = \begin{bmatrix} 1 & b(k) \\ \frac{1}{a(k)} & a(k) \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \frac{\lambda \tilde{b}(k)}{a(k)} & 1 \end{bmatrix} = \begin{bmatrix} \tilde{a}(k) & b(k) \\ \lambda \tilde{b}(k) & a(k) \end{bmatrix} = s(k),
\]

i.e. equation (A.8) follows.

Appendix A.2. The \(t \)-inverse problem

Consider the functions \(g_0(t), g_1(t), \Phi(x, k), A(k), B(k) \) introduced in definition 3.3. Let the vector function, \(\Psi(x, k) = (\Psi_1, \Psi_2)' \), be defined as the unique solution of

\[
\Psi_1(t, k) = \tilde{Q}_{11} \Psi_1 + \tilde{Q}_{12} \Psi_2,
\]
\[
\Psi_2(t, k) = 4i k^2 \Psi_2 = \tilde{Q}_{21} \Psi_1 + \tilde{Q}_{22} \Psi_2,
\]

\(0 < t < T, \ k \in \mathbb{C}, \)

\(\Psi(T, k) = (1, 0)', \)

where (cf (3.9))

\[
\tilde{Q}(t, k) = 2k \begin{bmatrix} 0 & g_0(t) \\ \lambda \tilde{g}_0(t) & 0 \end{bmatrix} - i \begin{bmatrix} 0 & g_1(t) \\ \lambda \tilde{g}_1(t) & 0 \end{bmatrix} \sigma_3 - i\lambda |g_0(t)|^2 \sigma_3, \quad \lambda = \pm 1.
\]

(A.12)

Note that the vector \(\Psi \) satisfies the linear Volterra equations,

\[
\Psi_1(t, k) = 1 + \int_T^t (\tilde{Q}_{11} \Psi_1 + \tilde{Q}_{12} \Psi_2)(\tau, k) d\tau, \tag{A.13a}
\]
\[
\Psi_2(t, k) = \int_T^t e^{4ik^2(t-\tau)} (\tilde{Q}_{21} \Psi_1 + \tilde{Q}_{22} \Psi_2)(\tau, k) d\tau. \tag{A.13b}
\]

Denote, as before,

\[
\Phi^*(t, k) = (\Phi_2(t, \tilde{k}), \lambda \tilde{\Phi}_1(t, \tilde{k}))' \quad \text{and} \quad \Psi^*(t, k) = (\tilde{\Psi}_2(t, \tilde{k}), \lambda \tilde{\Psi}_1(t, \tilde{k}))'.
\]

Define

\[
\mu_1(t, k) = (\Psi(t, k), \lambda \Psi^*(t, k)) \quad \text{and} \quad \mu_2(t, k) = (\Phi^*(t, k), \Phi(t, k)).
\]
They satisfy the matrix equation,
\[
\mu_t + 2i k^2 \sigma_3 \mu = \tilde{Q}(t, k) \mu.
\]
(A.14)

This in turn implies (cf (2.12)) that
\[
(\Phi(t, k), \Phi(t, k)) = (\Psi(t, k), \lambda \Psi^*(t, k)) e^{-2i k^2 t} e^{\frac{\pi}{2} \sigma_3 S(k)},
\]
\[
= (\Psi(t, k), \lambda \Psi^*(t, k)) \left[\begin{array}{cc} \tilde{A}(k) & B(k) e^{-4i k^2 t} \\ \frac{\lambda}{2} \tilde{B}(k) e^{4i k^2 t} & A(k) \end{array} \right], \quad k \in \mathbb{R} \cup i \mathbb{R}.
\]
(A.15)

Remark A.1. We recall that the function $\Phi(t, k)$, as a function of k, is analytic and bounded in the second and fourth quadrants, while the function $\Psi(t, k)$ is analytic for all k and bounded in the first and third quadrants. Also, if $T < \infty$ all of the above functions are entire functions of k. This means, in particular, that in this case equation (A.15) is valid for all complex values of k.

Let
\[
M(t)^{\pm} = \left(\Phi^\pm \frac{\lambda \Psi^*}{A(k)} \right), \quad \arg k \in \left[\frac{\pi}{2}, \pi \right] \cup \left[\frac{3\pi}{2}, 2\pi \right],
\]
(A.16a)
\[
M(t)^{\pm} = \left(\frac{\Psi}{A(k)} \Phi \right), \quad \arg k \in \left[0, \frac{\pi}{2} \right] \cup \left[\pi, \frac{3\pi}{2} \right].
\]
(A.16b)

Equation (A.15) can be rewritten as
\[
M(t)^{\pm}(t, k) = M(t)^{\pm}(t, k) J(t)(t, k), \quad k \in \mathbb{R} \cup i \mathbb{R},
\]
(A.17)
where $J(t)(t, k)$ is the jump matrix defined in (3.15c). Furthermore, $M(t)$ satisfies the RH problem defined in (3.15). Indeed, as in the x-case, we only need to prove the residue conditions at the possible simple zeros, $[K_i]^n$, of $A(k)$. The proof is the same as in the case of the function $M(t)(x, k)$.

The substitution of the asymptotic expansion,
\[
M(t)^{\pm}(t, k) = I + \frac{m_1(t)}{k} + \frac{m_2(t)}{k^2} + O \left(\frac{1}{k^3} \right), \quad k \to \infty,
\]
into equation (A.14) leads to the relations,
\[
g_0(t) = 2i (m_1(t))_{12} = 2i \lim_{k \to \infty} (k M^{(\pm)}(t, k))_{12},
\]
(A.18)
\[
g_1(t) = 4(m_2(t))_{12} + 2i g_0(t)(m_1(t))_{22} = \lim_{k \to \infty} \left[4(k^2 M^{(\pm)}(t, k))_{12} + 2i g_0(t) k (M^{(\pm)}(t, k))_{22} \right].
\]
(A.19)

We will show that these relations define the map,
\[
\tilde{Q} : [A(k), B(k)] \mapsto \{g_0(t), g_1(t)\},
\]
which is inverse to the spectral map,
\[
\tilde{S} : \{g_0(t), g_1(t)\} \mapsto [A(k), B(k)].
\]

Similar to the x-case, we have to prove that
\[
A_0(k) = A(k) \quad \text{and} \quad B_0(k) = B(k),
\]
(A.20)
where the lhs is the spectral data corresponding to \(g_0(t) \) and \(g_1(t) \). We follow precisely the same procedure as the one used for \(x \)-problem: using arguments of the dressing method [11], it follows that if \(M^{(1)}(t, k) \) is the solution of the RH problem then it satisfies equation (A.14) with potentials \(g_0(t) \) and \(g_1(t) \) defined by (A.18) and (A.19). This means, in particular, that the matrix solution \(\mu_1(t, k) \), \(k \in \mathbb{C} \) (we assume that \(T < \infty \)) corresponding to the potentials \(g_0(t) \) and \(g_1(t) \) is given by the equation,

\[
\mu_1(t, k) = M^{(1)}(t, k)e^{-2ik^2t}D_s(k), \quad k \in \mathbb{C},
\]

for an appropriate matrix \(D_s(k) \). This matrix does not depend on \(t \) and hence can be evaluated by letting \(t = T \) in (A.21).

Observe that for all \(t \) the jump matrix \(J(t)(t, k) \) can be factorized as

\[
J(t)(t, k) = \begin{pmatrix}
1 & 0 \\
\frac{\lambda \tilde{B}(\bar{k})}{A(k)}e^{4ik^2T} & 1
\end{pmatrix}
\]

(A.22)

Recall that \(A(k) \) and \(B(k) \) are entire functions satisfying the asymptotic relations,

\[
A(k) = 1 + O \left(\frac{1}{k} \right) + O \left(\frac{e^{4ik^2T}}{k} \right), \quad B(k) = O \left(\frac{1}{k} \right) + O \left(\frac{e^{4ik^2T}}{k} \right), \quad k \to \infty.
\]

Hence,

\[
\frac{\lambda \tilde{B}(\bar{k})}{A(k)}e^{4ik^2T} \to 0, \quad k \to \infty, \quad \arg k \in \left[0, \frac{\pi}{2} \right] \cup \left[\frac{3\pi}{2}, 2\pi \right]
\]

(A.23)

and

\[
\frac{B(k)}{A(k)}e^{-4ik^2T} \to 0, \quad k \to \infty, \quad \arg k \in \left[\frac{\pi}{2}, \pi \right] \cup \left[\frac{3\pi}{2}, 2\pi \right].
\]

(A.24)

Also, taking into account that

\[
A(k)A(\bar{k}) - \lambda B(k)\overline{B(\bar{k})} = 1, \quad k \in \mathbb{C},
\]

it follows that if \(K_j \) is a zero of \(A(k) \) then

\[
\text{Res}_{K_j} \left[\frac{1}{\frac{\lambda \tilde{B}(\bar{k})}{A(k)}e^{4ik^2T}} \right] = \frac{1}{A(K_j)B(K_j)}e^{4iK_j^2T} \begin{bmatrix} 0 \\ 1 \end{bmatrix}.
\]

Similarly, at \(k = \bar{K}_j \),

\[
\text{Res}_{\bar{K}_j} \left[\frac{\frac{B(k)}{A(k)}e^{-4ik^2T}}{1} \right] = \frac{1}{A(K_j)B(K_j)}e^{-4iK_j^2T} \begin{bmatrix} 1 \\ 0 \end{bmatrix}.
\]

These equations, together with (A.22) and the estimates (A.23), (A.24) imply that for \(t = T \) the RH problem defined in (3.15) can be solved explicitly:

\[
M^{(1)}(T, k) = \begin{pmatrix}
1 & 0 \\
\frac{\lambda \tilde{B}(\bar{k})}{A(k)}e^{4ik^2T} & 1
\end{pmatrix}.
\]

(A.25)

Thus

\[
D_s(k) = \begin{pmatrix}
1 & 0 \\
\frac{\lambda \tilde{B}(\bar{k})}{A(k)} & 1
\end{pmatrix}.
\]

(A.26)
Remark A.2. In the case \(T = \infty \), the factorization (A.22) does not provide the exact solution for the \(t \)-RH problem. However, the methodology of the nonlinear steepest descent method [23] can be applied. The factorization (A.22) can be used to deform the jump contour \(\mathcal{L} = \mathbb{R} \cup i \mathbb{R} \) to the hyperbola \((\text{Re} \, k)(\text{Im} \, k) = \delta > 0\) (cf [29, 30]). Since \(\text{Re}(i k^2) > 0 \) in the first and third quadrants, the jump matrix of the deformed RH problem tends exponentially fast to the identity matrix as \(t \to \infty \). The possible error terms coming from the zeros of \(A(k) \) are exponentially small. This implies that instead of the exact equation (A.25), the following asymptotic relation (cf (A.10)) is valid,

\[
M^+(t, k) = \begin{bmatrix}
1 & 0 \\
\frac{\lambda \tilde{B}(\tilde{k})}{A(k)} e^{4i k^2 t} & 1
\end{bmatrix} + o(1), \quad t \to \infty, \quad k \in \mathbb{R} \cup i \mathbb{R}.
\] (A.27)

Indeed, the \(t \)-RH problem is a particular case of the oscillatory RH problem corresponding to the NLS equation on the whole axis. The asymptotics (A.27) is the leading term of the known asymptotics of the solution of the NLS Riemann–Hilbert problem (see [29, 30] and the earlier works [31, 32]). Equation (A.27) implies that the formula (A.26) for the matrix \(D_+(k) \) is valid for \(T = \infty \) as well.

Equations (A.21) and (A.26) imply that the scattering data,

\[
S_0(k) = \begin{bmatrix}
\bar{A}_0(\bar{k}) & B_0(k) \\
\lambda \bar{B}_0(\bar{k}) & \bar{A}_0(k)
\end{bmatrix} = \mu_1(0, k),
\]

corresponding to the potentials \(g_0(t) \) and \(g_1(t) \) defined in (A.18) and (A.19), are given by the equation,

\[
S_0(k) = M^+_0(0, k) \begin{bmatrix}
1 & 0 \\
\frac{\lambda \tilde{B}(\tilde{k})}{A(k)} & 1
\end{bmatrix}.
\]

If \(t = 0 \) (in fact, for all \(t \leq 0 \)) the factorization,

\[
\begin{bmatrix}
1 & -\frac{B(k)}{A(k)} \\
\frac{\lambda \tilde{B}(\tilde{k})}{A(k)} & \frac{1}{A(k)\bar{A}(\bar{k})}
\end{bmatrix} = \begin{bmatrix}
A(k) & -B(k) \\
0 & \frac{1}{A(k)}
\end{bmatrix} \begin{bmatrix}
\tilde{A}(\tilde{k}) & 0 \\
\lambda \tilde{B}(\tilde{k}) & \frac{1}{\bar{A}(\bar{k})}
\end{bmatrix},
\]

yields a (unique) solution to the RH problem defined in (3.15). This implies,

\[
M^+_0(0, k) = \begin{bmatrix}
1 & B(k) \\
A(k) & 0
\end{bmatrix}
\]

and hence

\[
S_0(k) = \begin{bmatrix}
\frac{1}{A(k)} & B(k) \\
0 & A(k)
\end{bmatrix} = \begin{bmatrix}
\tilde{A}(\tilde{k}) & B(k) \\
\lambda \tilde{B}(\tilde{k}) & \bar{A}(\bar{k})
\end{bmatrix} = S(k),
\]

i.e. equation (A.20) follows.

\(^2\text{In general, the error term in (A.27) is not exponentially small; the deformation process includes a certain rational approximation of the function } \bar{B}(\bar{k}) \text{ which produces an additional error (cf again [23, 29]).}\)
Appendix B. Long time asymptotics

The formulation presented in this paper is very convenient for computing the long time asymptotics of the solution \(q(x,t) \) in the case \(T = \infty \). Indeed the function \(q(x,t) \) is given in terms of the solution \(M(x,t,k) \) of the RH problem formulated in theorem 4.1.

The corresponding jump matrix, \(J(x,t,k) \), depends on the parameters \(x, t \) according to the explicit formula,

\[
J(x,t,k) = e^{-ikx\sigma_3} - 2i t^2 \sigma_3 J(0,0,k) e^{ikx\sigma_3} + 2i t^2 \sigma_3 J(0,0,k) e^{-ikx\sigma_3},
\]

which is perfectly suited to the application of the nonlinear steepest descent method of [23] (see also [29, 30] and earlier works [31, 32]). Moreover, a similar RH problem has already been analysed via the steepest descent method in [10]. In fact, there exists the following correspondence between the RH problem considered here and the one of [10]:

\[
\hat{Z}_p^{(9)}(x,t,k) = M(x,t,k),
\]

\[
b^{(9)}(k) = \gamma(k),
\]

\[
c^{(9)}(k) = \Gamma(k),
\]

\[
\{ k^{(9)}_j \}_{j=1}^{N_{(9)}} = \{ \lambda_j \}_{j=1}^{\Lambda}.
\]

Let

\[
N = n_1 + \Lambda;
\]

define \(c_j, j = 1, \ldots, N \), by

\[
c_j = \frac{\lambda B (\lambda_j)}{a(\lambda_j)d(\lambda_j)}, \quad j = 1, \ldots, \Lambda, \quad c_{\Lambda+j} = \frac{1}{a(k_j)b(k_j)}, \quad j = 1, \ldots, n_1.
\]

Then,

\[
\{ c_j^{(9)} \}_{j=1}^{N_{(9)}} = \{ c_j \}_{j=1}^{\Lambda}.
\]

The zeros \(k_j \) of the function \(a(k)(=s_2^{(9)}(k)) \) were missed in [10] (see [8]). Nevertheless, if we just make the extensions,

\[
\{ c_j^{(9)} \}_{j=1}^{N_{(9)}} \rightarrow \{ c_j \}_{j=1}^{N},
\]

\[
\{ k_j^{(9)} \}_{j=1}^{N_{(9)}} \rightarrow \{ k_j \}_{j=1}^{N},
\]

\[
k_j = \lambda_j, \quad j = 1, \ldots, \Lambda,
\]

\[
k_{\Lambda+j} = k_j, \quad j = 1, \ldots, n_1,
\]

then all the asymptotic considerations of the work [10] can be repeated word for word, and we arrive at the following result.

Theorem B.1. Suppose that the conditions of theorem 4.1 are satisfied. Then the solution \(q(x,t) \) of the NLS equation on the half-line corresponding to the initial-boundary data \(q_0(x), g_0(t) \) and \(g_1(t) \) exhibits the following large \(t \) behaviour.

(i) If the set \(\{ k_j \}_{j=1}^{n_1} = \{ \lambda_j \}_{j=1}^{\Lambda} \) is empty then the asymptotics has a quasilinear dispersive character, i.e. it is described by the Zakharov–Manakov type formulae,

\[
q(x,t) = t^{-1/2} \alpha \left(-\frac{x}{4t} \right) \exp \left\{ \frac{i x^2}{4t} - 2i \lambda^2 \left(-\frac{x}{4t} \right) \log t + i \phi \left(-\frac{x}{4t} \right) \right\} + o(t^{-1/2}),
\]

\[
t \rightarrow \infty, \quad \frac{x}{4t} = O(1),
\]

(B.3)
with the amplitude α and the phase ϕ given by the equations (cf [33])

$$\alpha^2(k) = -\frac{\lambda}{4\pi} \log(1 - \lambda |\gamma(k) - \lambda \Gamma(k)|^2), \quad (B.4)$$

$$\phi(k) = -6\lambda \alpha^2(k) \log 2 + \frac{\pi (2 - \lambda)}{4} \arg(\gamma(k) - \lambda \Gamma(k)) + \arg(2i\lambda \alpha^2(k)) - 4\lambda \int_{-\infty}^{k} \log |\mu - k| \alpha^2(\mu) \, d\mu, \quad (B.5)$$

where $\Gamma(z)$ denotes Euler's gamma-function.

(ii) If $\lambda = -1$ and the set $\{\kappa_j\}_{j=1}^{n_1} = \{\lambda_j\}_{j=1}^{n_1}$ is not empty then solitons, which are moving away from the boundary, are generated. This means that there are Λ directions on the (x, t)-plane, namely

$$t \to \infty, \quad -\frac{x}{4t} = \xi_j + O\left(\frac{1}{t}\right), \quad j \in \{1, \ldots, \Lambda\}, \quad (B.6)$$

along which the asymptotics is given by the one-soliton formula,

$$q(x, t) = -\frac{2\eta_j \exp(-2i\xi_j x - 4i(\xi_j^2 - \eta_j^2)t - i\phi_j)}{\cosh(2\eta_j (x + 4\xi_j t) - \Delta_j)} + O(t^{-1/2}), \quad (B.7)$$

where

$$\eta_j = \text{Im}(\kappa_j), \quad \xi_j = \text{Re}(\kappa_j)$$

and the parameters ϕ_j and Δ_j are described by the following equations:

$$\phi_j = -\frac{\pi}{2} + \arg c_j + \sum_{l=1, l\neq j}^{N} (1 - \text{sign}(\xi_l - \xi_j)) \arg \left(\frac{\lambda_j - k_l}{\lambda_j - \bar{k}_l}\right) + \frac{1}{\pi} \int_{-x/4t}^{-\infty} \log(1 - \lambda |\gamma(k) - \lambda \Gamma(k)|^2) \, d\mu \left(\frac{\mu - \xi_j}{\xi_j^2 + \eta_j^2}\right), \quad (B.8)$$

$$\Delta_j = -\log 2\eta_j + \log |c_j| + \sum_{l=1, l\neq j}^{N} (1 - \text{sign}(\xi_l - \xi_j)) \log \left|\frac{\lambda_j - k_l}{\lambda_j - \bar{k}_l}\right| - \frac{\eta_j}{\pi} \int_{-\infty}^{-x/4t} \log(1 - \lambda |\gamma(k) - \lambda \Gamma(k)|^2) \, d\mu \left(\frac{\mu - \xi_j}{\xi_j^2 + \eta_j^2}\right). \quad (B.9)$$

Away from the rays (B.6) the asymptotics again has dispersive character, and it can be described by formulae (B.3)–(B.5), evaluated at $\lambda = -1$, and with the term,

$$\phi_{\text{solitons}} = \sum_{j=1}^{N} \arg(\kappa_j - k) \text{sign}(\xi_j - k),$$

added to the rhs of (B.5).

Remark B.2. The zeros $k_j, j = 1, \ldots, n_1$, of the function $a(k)$ lying in the first quadrant, although they participate in the residue conditions of the RH problem, do not generate solitons (there are exactly Λ but not $N = n_1 + \Lambda$ soliton rays indicated in (B.6)). They, however, do participate in formulae (B.8) and (B.9) describing the parameters of the soliton (B.7) (the summations in the rhs of these formulae run from 1 to $N = \Lambda + n_1$). A qualitative explanation of the absence in the asymptotics of the solitons corresponding to k_j is quite simple: these solitons move to the left, and hence after a finite time disappear from the first quadrant.
Remark B.3. In the cases of the linearizable boundary conditions all the parameters in the above formulae can be expressed in terms of the spectral functions $a(k)$ and $b(k)$, i.e. in terms of the initial data only. Indeed we have,

$$c_j = \frac{\lambda b(-\lambda_j)}{a(\lambda_j) \Delta_0(\lambda_j)}, \quad j = 1, \ldots, \Lambda,$$

or

$$c_j = -\frac{\lambda b(-\lambda_j)}{a(\lambda_j) \Delta_1(\lambda_j)}, \quad j = 1, \ldots, \Lambda,$$

or

$$c_j = -\frac{\lambda ((2\lambda_j - i\rho)/(2\lambda_j + i\rho)) b(-\lambda_j)}{a(\lambda_j) \Delta_\rho(\lambda_j)}, \quad j = 1, \ldots, \Lambda.$$

Also,

$$\Gamma(k) = \frac{\lambda b(-k)}{a(k) \Delta_0(k)}, \quad k \in \mathbb{R}^- \cup i \mathbb{R}^+,$$

or

$$\Gamma(k) = -\frac{\lambda b(-k)}{a(k) \Delta_1(k)}, \quad k \in \mathbb{R}^- \cup i \mathbb{R}^+,$$

or

$$\Gamma(k) = -\frac{\lambda ((2k - i\rho)/(2k + i\rho)) b(-k)}{a(k) \Delta_\rho(k)}, \quad k \in \mathbb{R}^- \cup i \mathbb{R}^+.$$

Appendix C. Proofs of lemmas 5.1, 5.3 and 5.4

Proof of lemma 5.1. For $|k| > 1$, we can write

$$\mathbf{F}(k, g_1)\psi = \sum_{j=1}^{3} \mathbf{F}_j(k, g_1)\psi,$$ \hfill (C.1)

where

$$\mathbf{F}_1(k, g_1)(e^{ik_1\chi}) = \left(\frac{\lambda}{1}\right) e^{ik_1} \int_0^t |f_0(t')|^2 \chi(t') \, dt' + \left(\frac{\lambda}{2k}\right) e^{ik_1} \int_0^t f_0(t') f_1(t') \chi(t') \, dt' - \left(\frac{\lambda}{2k}\right) e^{ik_1} \int_0^t |f_1(t')|^2 \chi(t') \, dt',$$ \hfill (C.2a)

$$\mathbf{F}_2(k, g_1)(e^{ik_1\chi}) = -\left(\frac{\lambda}{1}\right) f_0(t) \int_0^t e^{ik_1} f_0(t') \chi(t') \, dt' + \left(\frac{\lambda}{2k}\right) f_0(t) \int_0^t e^{ik_1} f_1(t') \chi(t') \, dt' \times \int_0^t e^{ik_1} f_1(t') \chi(t') \, dt' + \left(\frac{\lambda}{2k}\right) \overline{f_1(t)} \int_0^t e^{ik_1} f_0(t') \chi(t') \, dt' + \left(\frac{i\lambda}{4k^2}\right) \overline{f_1(t)} \int_0^t e^{ik_1} f_1(t') \chi(t') \, dt' \left(\overline{f_1(t)} \int_0^t e^{ik_1} f_0(t') \chi(t') \, dt' \right).$$ \hfill (C.2b)
and

\[F_3(k, g_1)(e^{ik_2^2} \chi) = \left(\frac{\lambda}{i} \right) \int_0^t e^{i k_2^2 (t-t')} f_0(t') \left[\int_0^t e^{ik_2^2 s} f_0(s) \chi(s) \, ds \right] \, dt' + \frac{\lambda}{2k} \int_0^t e^{ik_2^2 (t-t')} f_0(t') \left[\int_0^t e^{ik_2^2 s} f_0(s) \chi(s) \, ds \right] \, dt' - \frac{\lambda}{2k} \int_0^t e^{ik_2^2 (t-t')} f_0(t') \left[\int_0^t e^{ik_2^2 s} f_0(s) \chi(s) \, ds \right] \, dt' - \frac{i \lambda}{4k^2} \int_0^t e^{ik_2^2 (t-t')} f_1(t') \left[\int_0^t e^{ik_2^2 s} f_0(s) \chi(s) \, ds \right] \, dt' \] (C.2c)

Indeed, using (5.9), (5.11), (5.14), (5.15) and integration by parts, we find

\[\psi(t, k) = e^{ik_2^2 t} - \left(\frac{\lambda}{2i k} \right) f_0(t) \phi(t, k) + \left(\frac{\lambda}{2i k} \right) \int_0^t e^{i k_2^2 (t-t')} f_0(t') \phi(t', k) \, dt' - i \lambda \int_0^t e^{i k_2^2 (t-t')} f_0(t') \phi(t', k) \, dt' \]

\[= e^{ik_2^2 t} - \left(\frac{\lambda}{2i k} \right) f_0(t) \phi(t, k) + \left(\frac{\lambda}{2i k} \right) \int_0^t e^{i k_2^2 (t-t')} f_0(t') \phi(t', k) \, dt' + \left(\frac{\lambda}{2i k} \right) \int_0^t e^{i k_2^2 (t-t')} f_0(t') [2k f_0(t') + i f_1(t')] \phi(t', k) \, dt' + \left(\frac{\lambda}{4k^2} \right) f_1(t) \phi(t, k) - \left(\frac{\lambda}{4k^2} \right) \int_0^t e^{i k_2^2 (t-t')} f_1(t') \phi(t', k) \, dt' \] (C.3)

Using (5.9a), we can further eliminate \(\phi(t, k) \) from (C.3):

\[\psi(t, k) = e^{ik_2^2 t} - \left(\frac{\lambda}{2i} \right) f_0(t) \left[\int_0^t 2 f_0(t') \psi(t', k) \, dt' + \frac{i}{k} \int_0^t f_1(t') \psi(t', k) \, dt' \right] + \left(\frac{\lambda}{2i k} \right) \int_0^t e^{i k_2^2 (t-t')} f_0(t') \left[\int_0^t 2 f_0(s) \psi(s, k) \, ds + \frac{i}{k} \int_0^t f_1(s) \psi(s, k) \, ds \right] \, dt' \]

\[+ \left(\frac{\lambda}{k} \right) \int_0^t e^{i k_2^2 (t-t')} f_0(t') \left[\int_0^t e^{ik_2^2 s} f_0(s) \chi(s) \, ds \right] \, dt' \]

\[+ \left(\frac{\lambda}{4k^2} \right) f_1(t) \left[\int_0^t 2 f_0(t') \psi(t', k) \, dt' + \frac{i}{k} \int_0^t f_1(t') \psi(t', k) \, dt' \right] + \left(\frac{\lambda}{4k^2} \right) \int_0^t e^{i k_2^2 (t-t')} f_0(t') f_1(t') \psi(t', k) \, dt' \]

\[- \left(\frac{\lambda}{2k} \right) \int_0^t e^{i k_2^2 (t-t')} f_1(t') \left[\int_0^t 2 f_0(s) \psi(s, k) \, ds + \frac{i}{k} \int_0^t f_1(s) \psi(s, k) \, ds \right] \, dt' \]

\[- \left(\frac{\lambda}{2k} \right) \int_0^t e^{i k_2^2 (t-t')} f_1(t') f_0(t') \psi(t', k) \, dt' - \left(\frac{i \lambda}{4k^2} \right) \int_0^t e^{i k_2^2 (t-t')} f_1(t') \psi(t', k) \, dt', \]

which is equivalent to (C.1) and (C.2).
Let $v \in C([0, T])$. From (5.15), (C.1), (C.2) and the embedding $H^1(0, T) \hookrightarrow C([0, T])$, we find
\[
\|F(k, g_1)v(t)\| \leq B_1(\|g_1\|_{H^1(0, T)}) \int_0^t |K_1(g_1)(t')| \max_{0 \leq s \leq t} |v(s)| \, dt' \quad \forall k \in Q, \tag{C.4}
\]
where $B_1(\cdot) : \mathbb{R}^+ \to \mathbb{R}^+$ is continuous, $K_1(g_1) \in L_2(0, T)$ and there exists a continuous function $B_2(\cdot) : \mathbb{R}^+ \to \mathbb{R}^+$ such that
\[
|K_1(g_1)|_{L_2(0, T)} \leq B_2(\|g_1\|_{H^1(0, T)}). \tag{C.5}
\]

It follows immediately from (C.4) that the Neumann series $\sum_{j=0}^{\infty} [F(k, g_1)]^j$ is convergent in the space of bounded operators on $C([0, T])$, uniformly with respect to $k \in Q$. Therefore, the operator $I - F(k, g_1)$ is invertible on $C([0, T])$ and
\[
\|F(k, g_1)\|_{L_2(0, T)} \leq B_2(\|g_1\|_{H^1(0, T)}).
\]

Moreover, the map $k \mapsto [I - F(k, g_1)]^{-1}$ is analytic in Q and continuous on \bar{Q}. These properties of $I - F(k, g_1)$ imply the analytic properties of $\psi(t, k)$. Finally, we observe that, from (5.6b), (5.15), (C.1) and (C.2), the dependence of the operator $F(k, g_1)$ on g_1 is locally Lipschitz continuous. The local Lipschitz continuity of the map $g_1 \mapsto \psi$ then follows immediately. \hfill \Box

Proof of Lemma 5.3. The following calculations are based on (C.1), (C.2) and integration by parts.

We define χ_0 to be the solution of
\[
\chi_0(t) = 1 + \left(\frac{\lambda}{1}\right) \int_0^t |f_0(t')|^2 \chi_0(t') \, dt', \tag{C.7}
\]
i.e.
\[
\chi_0(t) = e^{-i\int_0^t |g_0(x)|^2 \, dx}. \tag{C.8}
\]
Then we have
\[
e^{i4k^2t} + F(k, g_1)(e^{i4k^2t} \chi_0) = e^{i4k^2t} \left(\chi_0(t) + \frac{\omega_1(t)}{k}\right) + R_1(\chi_0)(t, k), \tag{C.9}
\]
where
\[
\omega_1 = G_1 \chi_0, \tag{C.10}
\]
\[
(G_1 \chi)(t) = \left(\frac{\lambda}{2}\right) \int_0^t \left[f_0(t') f_1(t') - f_1(t') f_0(t') \right] \chi(t') \, dt' \tag{C.11}
\]
and
\[
R_1(\chi)(t, k) = -\left(\frac{i\lambda}{4k^2}\right) e^{i4k^2t} \int_0^t |f_1(t')|^2 \chi(t') \, dt' + \sum_{j=2}^{3} F_j(k, g_1)(e^{i4k^2t} \chi). \tag{C.12}
\]

Let χ_1 be defined by the Volterra integral equation
\[
\chi_1(t) = \omega_1(t) + \left(\frac{\lambda}{1}\right) \int_0^t |f_0(t')|^2 \chi_1(t') \, dt', \tag{C.13}
\]
then we have $\chi_1(0) = 0$ and
\[
e^{i4k^2t} + F(k, g_1)(e^{i4k^2t}(\chi_0 + \chi_1)) = e^{i4k^2t} \left(\chi_0(t) + \frac{\chi_1(t)}{k} + \frac{\omega_2(t)}{k^2}\right) + R_2(\chi_0) + \frac{R_1(\chi_1)}{k}. \tag{C.14}
\]
where

\[\omega_2 = \mathcal{G}_2 \chi_0 + \mathcal{G}_1 \chi_1, \quad (C.15) \]

\[(\mathcal{G}_2 \chi)(t) = -\left(\frac{i \lambda}{4} \right) \int_0^t \left| f_1(t') \right|^2 \chi(t') \, dt' + \left(\frac{\lambda}{4} \right) \int_0^t f_0(t') \chi(t') \, dt' \]

\[\quad - \left(\frac{\lambda}{4} \right) \int_0^t \bar{f}_0(t') f_0(t') \chi(t') \, dt' \quad (C.16) \]

and

\[R_2(\chi)(t, k) = -\left(\frac{\lambda}{4k^2} \right) f_0(t) \int_0^t e^{i4ikr} f_0(t') \chi(t') \, dr' \]

\[- \left(\frac{\lambda}{2k} \right) \int_0^t e^{i4ikr} f_1(t') \chi(t') \, dr' + \left(\frac{\lambda}{2k} \right) \int_0^t e^{i4ikr} f_0(t') \chi(t') \, dr' \]

\[+ \left(\frac{\lambda}{4k^2} \right) \int_0^t e^{i4ikr} f_1(t') \chi(t') \, dr' \]

\[+ \left(\frac{\lambda}{2k} \right) \int_0^t e^{i4ikr} f_0(t') \chi(t') \, dr' \]

\[+ \left(\frac{\lambda}{4k^2} \right) \int_0^t e^{i4ikr} f_1(t') \chi(t') \, dr' \]

\[+ \left(\frac{\lambda}{2k} \right) \int_0^t e^{i4ikr} f_0(t') \chi(t') \, dr' \]

\[- \left(\frac{\lambda}{2k} \right) \int_0^t e^{i4ikr} f_1(t') \chi(t') \, dr' \]

\[- \left(\frac{\lambda}{2k} \right) \int_0^t e^{i4ikr} f_0(t') \chi(t') \, dr' \]

\[+ \left(\frac{\lambda}{4k^2} \right) \int_0^t e^{i4ikr} f_1(t') \chi(t') \, dr' \]

\[(C.17) \]

The function \(\chi_2 \) is then defined by the Volterra integral equation

\[\chi_2(t) = \omega_2(t) + \left(\frac{\lambda}{i} \right) \int_0^t \left| f_0(t') \right|^2 \chi_2(t') \, dt' \quad (C.18) \]

and we have \(\chi_2(0) = 0 \) and

\[e^{4ikr} + F(k, g_1) \left(e^{4ikr} \sum_{\ell=0}^2 \frac{\chi_\ell}{k^\ell} \right) \]

\[= e^{4ikr} \left(\sum_{\ell=0}^2 \frac{\chi_\ell}{k^\ell} + \frac{\omega_3(t)}{k^3} \right) + R_3(\chi_0) + \frac{R_3(\chi_1)}{k} + \frac{R_3(\chi_2)}{k^2}, \quad (C.19) \]

where

\[\omega_3 = \mathcal{G}_3 \chi_0 + \mathcal{G}_2 \chi_1 + \mathcal{G}_1 \chi_2, \quad (C.20) \]

\[\mathcal{G}_3 \chi(t) = -\left(\frac{\lambda}{8i} \right) f_0(t) f_1(t) \chi(t) + \left(\frac{\lambda}{8i} \right) \bar{f}_1(t) f_0(t) \chi(t) + \left(\frac{\lambda}{8i} \right) \int_0^t \bar{f}_0(t') f_1(t') \chi(t') \, dt' \]

\[- \left(\frac{\lambda}{8i} \right) \int_0^t \bar{f}_1(t') f_0(t') \chi(t') \, dt' \quad (C.21) \]

and

\[R_3(\chi) = -\left(\frac{\lambda}{4k^2} \right) f_0(t) \int_0^t e^{i4ikr} f_0(t') \chi(t') \, dr' + \left(\frac{\lambda}{8ik^3} \right) \int_0^t e^{i4ikr} f_0(t') \chi(t') \, dr' \]

\[- \left(\frac{\lambda}{8ik^3} \right) \int_0^t e^{i4ikr} f_0(t') \chi(t') \, dr' \]

\[+ \left(\frac{\lambda}{4k^2} \right) \int_0^t e^{i4ikr} f_0(t') \chi(t') \, dr' \]

\[- \left(\frac{\lambda}{4k^2} \right) \int_0^t e^{i4ikr} f_0(t') \chi(t') \, dr' \]

\[(C.18) \]
Next we define χ_3 by the Volterra integral equation
\[\chi_3(t) = \omega_3(t) + \left(\frac{\lambda}{16} \right) \int_0^t |f_0(t')|^2 \chi_3(t') \, dt'. \] (C.23)

It follows that $\chi_3(0) = 0$ and
\[
e^{4ikz} + F(k, g_1) \left(e^{4ikz} \sum_{\ell=0}^3 \frac{\chi_\ell}{k^\ell} \right) = e^{4ikz} \sum_{\ell=0}^3 \frac{\chi_\ell}{k^\ell} + \frac{\omega_4(t)}{k^4} + R_4(\chi_0)
+ \frac{R_3(\chi_1)}{k^2} + \frac{R_2(\chi_2)}{k} + \frac{R_1(\chi_3)}{k^3}, \] (C.24)

where
\[
\omega_4(t) = G_4\chi_0 + G_3\chi_1 + G_2\chi_2 + G_1\chi_3, \] (C.25)

\[
(G_4\chi)(t) = -\left(\frac{\lambda}{16i} \right) \frac{f_0(t)}{f_0} \int_0^t |f_0(t')|^2 \chi(t') \, dt' - \left(\frac{\lambda}{16i} \right) \int_0^t f_0(t')f_0(t') \chi(t') \, dt'. \] (C.26)

and
\[
R_4(\chi)(t, k) = \left(\frac{\lambda}{16i} \right) \frac{f_0(t)}{f_0} \int_0^t e^{4ikz} \int_0^t f_0(t') \chi(t') \, dt' \, dt' - \left(\frac{\lambda}{16i} \right) \frac{f_0(t)}{f_0} \int_0^t e^{4ikz} \int_0^t f_0(t') \chi(t') \, dt' \, dt'
- \left(\frac{\lambda}{16i} \right) \frac{f_0(t)}{f_0} \int_0^t e^{4ikz} \int_0^t f_0(t') \chi(t') \, dt' \, dt'
- \left(\frac{\lambda}{16i} \right) \frac{f_0(t)}{f_0} \int_0^t e^{4ikz} \int_0^t f_0(t') \chi(t') \, dt' \, dt'
+ \left(\frac{\lambda}{16i} \right) \frac{f_0(t)}{f_0} \int_0^t e^{4ikz} \int_0^t f_0(t') \chi(t') \, dt' \, dt'. \] (C.27)

Finally, we define χ_4 by the Volterra integral equation
\[
\chi_4(t) = \omega_4(t) + \left(\frac{\lambda}{16} \right) \int_0^t |f_0(t')|^2 \chi_4(t') \, dt'. \] (C.28)
Then we have \(\chi_4(0) = 0 \) and
\[
e^{i4k^2t} + F(k, g_1) \left(\sum_{\ell=0}^{4} \frac{\chi_{\ell}(t)}{k^{\ell}} \right) = e^{i4k^2t} \left(\sum_{\ell=0}^{4} \frac{\chi_{\ell}(t)}{k^{\ell}} \right) + \tau(t, k),
\]
(C.29)
where
\[
\tau(t, k) = \frac{e^{i4k^2t}}{k^5} (\tilde{G}_1 \chi_4)(t) + \frac{R_1(\chi_1)}{k^4} + \frac{R_1(\chi_3)}{k^3} + \frac{R_2(\chi_2)}{k^2} + \frac{R_3(\chi_1)}{k} + R_4(\chi_0).
\]
(C.30)

Using the assumptions on \(f_0 \) and \(f_1 \), (C.8), (C.10), (C.11), (C.13), (C.15), (C.16), (C.18), (C.20), (C.21), (C.23), (C.25), (C.26) and (C.28), we can easily establish successively \(\chi_0 \in C^\infty([0, T]), \omega_1 \in H^2([0, T]), \chi_1 \in H^2([0, T]), \omega_2 \in H^2([0, T]), \chi_2 \in H^2([0, T]), \omega_3 \in H^1([0, T]), \chi_3 \in H^1([0, T]), \omega_4 \in H^1([0, T]) \) and \(\chi_4 \in H^1([0, T]) \).

Let
\[
\psi_4(t, k) = \psi(t, k) - e^{i4k^2t} \sum_{\ell=0}^{4} \frac{\chi_{\ell}(t)}{k^{\ell}}.
\]
Combining (C.29) and (5.14), we find
\[
\tau + F(k, g_1) \psi_4 = \psi_4.
\]
(C.31)

From (C.11), (C.12), (C.17), (C.22), (C.27) and (C.30), we immediately have
\[
\tau(t, k) = O \left(\frac{1}{k^3} \right).
\]
(C.32)
The estimate (5.19) then follows from (C.6), (C.31) and (C.32).

Observe that
\[
t \mapsto |\xi|^{3/2} \tau(t, \sqrt{\xi})
\]
is a continuous map from \([0, t]\) into \(L_2(\mathbb{R}_s) \), (C.33)
where \(\mathbb{R}_s = (-\infty, -1) \cup (1, \infty) \). Indeed, the map
\[
t \mapsto |\xi|^{3/2} \frac{e^{i4\tilde{\xi}t}}{\tilde{\xi}^{5/2}} (\tilde{G}_1 \chi_4)(t)
\]
belongs to \(C([0, T], L_2(\mathbb{R}_s)) \) because \(\tilde{G}_1 \chi_4 \in C([0, T]) \) (cf (C.11)), and the map
\[
t \mapsto |\xi|^{3/2} \left[\frac{R_1(\chi_4)(t, \sqrt{\xi})}{\xi^{3/2}} + \frac{R_1(\chi_3)(t, \sqrt{\xi})}{\xi^{3/2}} + \frac{R_2(\chi_2)(t, \sqrt{\xi})}{\xi^{3/2}} + \frac{R_3(\chi_1)(t, \sqrt{\xi})}{\xi^{3/2}} + R_4(\chi_0)(t, \sqrt{\xi}) \right]
\]
belongs to \(C([0, T], L_2(\mathbb{R}_s)) \) because of the (negative) powers of \(k \) that appear in (C.12), (C.17), (C.22) and (C.27), and because
\[
t \mapsto \int_0^t e^{i4\tilde{\xi}t} v(t') \, dt'
\]
defines a continuous map from \([0, T]\) into \(L_2(\mathbb{R}) \) for any \(v \in L_2(0, T) \).

For \(\xi \in \mathbb{R}_s \), we obtain from (C.31),
\[
\tau(t, \sqrt{\xi}) + F(\sqrt{\xi}, g_1) \psi_4(t, \sqrt{\xi}) = \psi_4(t, \sqrt{\xi}),
\]
(C.34)
which in view of (C.33) can be considered an integral equation on \(C([0, T], L_2(\mathbb{R}_s, |\xi|^{3} d\xi)) \).

Using (C.1) and (C.2a)–(C.2e), we have the following analogue of (C.4):
\[
\| F(\sqrt{\xi}, g_1) v(t) \|_{L_2(\mathbb{R}_s, |\xi|^{3} d\xi)} \leq \mathcal{B}_2(\|g_1\|_{H^1([0, T])}) \int_0^t |\mathcal{K}_2(g_1)(t')| \max_{0 \leq s \leq t} \| v(s) \|_{L_2(\mathbb{R}_s, |\xi|^{3} d\xi)} \, dt',
\]
(C.35)
where \(B_2(\cdot) : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \) is continuous and \(K_2(g_1) \in L_2(0, T) \) satisfy an estimate similar to (C.5). It follows from (C.35) that the operator \(I - \hat{F}(\sqrt{\xi}, g_1) \) is invertible on the space \(C([0, T], L_2(\mathbb{R}_+, |\xi|^3 d\xi)) \), and (5.20) follows.

\[\square \]

Proof of lemma 5.4. We use the standard notation \(L(X, Y) \) to denote the space of bounded linear operators from the normed linear space \(X \) to the normed linear space \(Y \), which is simplified to \(L(X) \) in the case \(Y = X \).

The operators \(G_1, \ldots, G_4 \) defined by (C.11), (C.16), (C.21) and (C.26) depend on the function \(g_1 \). Henceforth we will denote them as \(G_i(g_1) \).

It is easy to see from (C.11) that the map \(g_1 \mapsto G_i(g_1) \) from \(H^1(0, T) \) into the space \(L(H^1(0, T), H^2(0, T)) \) is bounded and linear. It then follows from (C.10) and (C.13) that \(E_1 : H^1_{0a}(0, T) \rightarrow H^2(0, T) \) is also bounded and linear, and thus locally Lipschitz continuous.

Similarly, we see from (C.16) that the map \(g_1 \mapsto G_2(g_1) \) from \(H^1(0, T) \) into the space \(L(H^2(0, T), H^2(0, T)) \) is locally Lipschitz continuous, and then (C.15) and (C.18) imply that \(E_2 : H^1_{0a}(0, T) \rightarrow H^2(0, T) \) is also locally Lipschitz continuous.

From (C.21) we obtain the local Lipschitz continuity of the map \(g_1 \mapsto G_3(g_1) \) from \(H^1(0, T) \) into \(L(H^1(0, T), H^1(0, T)) \), and then the local Lipschitz continuity of the map \(E_3 : H^1_{0a}(0, T) \rightarrow H^1(0, T) \) follows from (C.20) and (C.23).

Finally, we see from (C.26) that the map \(g_1 \mapsto G_4(g_1) \) from \(H^1(0, T) \) into the space \(L(H^2(0, T), H^1(0, T)) \) is locally Lipschitz continuous. Combining (C.25) and (C.28), we then obtain the local Lipschitz continuity of \(E_4 : H^1_{0a}(0, T) \rightarrow H^1(0, T) \). To see the local Lipschitz continuity of the map \(E : H^1_{0a}(0, T) \rightarrow C([0, T], L_2(\mathbb{R}_+, |\xi|^3 d\xi)) \), we first observe that

\[
[\tilde{r}(g_1)(t)](\xi) = \tau(t, \sqrt{\xi})
\]

and the integral equation (C.34) can be written as

\[
\tilde{r}(g_1) + \hat{F}(\sqrt{\xi}, g_1)\tilde{\psi}_4 = \tilde{\psi}_4.
\]

Since the map \(g_1 \mapsto \tilde{r}(g_1) \) from \(H^1_{0a}(0, T) \) into \(C([0, T], L_2(\mathbb{R}_+, |\xi|^3 d\xi)) \) is locally Lipschitz continuous by (C.11), (C.12), (C.17), (C.22), (C.27) and (C.30), the local Lipschitz continuity of \(E \) follows from (C.36) and (C.37).

\[\square \]

Appendix D. A priori bounds

Appendix D.1. A priori bound for \(\|q_i(0, \cdot)\|_{L_2(0,T)} \)

Let \(q \) be a smooth solution of (2.1) for \(0 \leq t \leq T \) with sufficient decay as \(x \rightarrow \infty \) and let \(q(x, 0) = 0 \). Multiplying (2.1) by \(\tilde{q} \) and integrating over \(\mathbb{R}^+ \) we obtain

\[
\frac{d}{dt}(q, q) + (q_{xx}, q) - 2\lambda|q|^2q, q) = 0,
\]

where \((u, v) = \int_0^\infty u\bar{v} \, dx \). The imaginary part of (D.1) is equivalent to

\[
\frac{d}{dt}(q, q) - 2 \Im [q_i(0, t)q(0, t)] = 0 \quad \text{for} \; 0 < t < T.
\]
Integration of (D.2) over \((0, T)\) yields the following estimate
\[
\|q(\cdot, t)\|_{L^2_x(0,\infty)}^2 \leq 2 \|q_t(0, \cdot)\|_{L^1_x(0,\infty)} \|q(0, \cdot)\|_{L_x^1(0,\infty)} \quad \text{for } 0 \leq t \leq T. \tag{D.3}
\]
We now multiply (2.1) by \(\bar{q}_t\) and integrate the resulting equation over \(\mathbb{R}^+\) to arrive at
\[
i(q_t, q_t) + (q_{xx}, q_t) - 2\lambda(|q|^2 q - q) = 0. \tag{D.4}
\]
The real part of (D.4) gives
\[
-2 \text{Re} \left[q_t(0, t)q_t(0, t) - \frac{d}{dt} (q_x, q_x) - \lambda \frac{d}{dt} (|q|^2, |q|^2)\right] = 0 \quad \text{for } 0 < t < T. \tag{D.5}
\]
Integration of (D.5) over \((0, T)\) then yields
\[
\|q_x(\cdot, t)\|_{L^2_x(0,\infty)}^2 + \lambda \|q(\cdot, t)\|_{L^2_x(0,\infty)}^4 \leq 2 \|q_t(0, \cdot)\|_{L^1_x(0,\infty)} \|q(0, \cdot)\|_{L_x^1(0,\infty)} \quad \text{for } 0 \leq t \leq T. \tag{D.6}
\]
Multiplying (2.1) by \(q_x\) and integrating over \(\mathbb{R}^+\) gives
\[
i(q_t, q_t) + (q_{xx}, q_x) - 2\lambda(|q|^2 q - q) = 0. \tag{D.7}
\]
The real part of (D.7) can be written as
\[
i \frac{d}{dt} \|q_x(\cdot, t)\|_{L^2_x(0,\infty)}^2 + \lambda \|q_t(\cdot, t)\|_{L^2_x(0,\infty)}^4 = 0 \quad \text{for } 0 < t < T. \tag{D.8}
\]
Integration of (D.8) over \((0, T)\) then yields the following estimate:
\[
\|q_t(0, \cdot)\|_{L^2_x(0,\infty)}^4 + \|q(0, \cdot)\|_{L^2_x(0,\infty)}^4 \leq 2 \|q_t(0, \cdot)\|_{L^1_x(0,\infty)} \|q(0, \cdot)\|_{L^2_x(0,\infty)} + \|q(\cdot, T)\|_{L^2_x(0,\infty)} \|q_t(\cdot, T)\|_{L^2_x(0,\infty)}. \tag{D.9}
\]
In the case where \(\lambda = 1\), it follows immediately from (D.3), (D.6) and (D.9) that
\[
\|q_t(0, \cdot)\|_{L^2_x(0,\infty)} \leq B_2(\|q(0, \cdot)\|_{H^1_x(0,\infty)}), \tag{D.10}
\]
where \(B_2(\cdot)\) is a (generic) continuous map from \(\mathbb{R}^+ \cup \{0\}\) into \(\mathbb{R}^+\) satisfying \(B_2(0) = 0\).

On the other hand, the Sobolev embedding \(H^s(0, \infty) \hookrightarrow L^4_x(0,\infty)\) implies that
\[
\|u\|_{L^4_x(0,\infty)} \leq \|u\|_{L^s_x(0,\infty)} \|u_x\|_{L^2_x(0,\infty)}. \tag{D.11}
\]
Therefore, in the case where \(\lambda = -1\), we conclude from (D.3), (D.6), (D.9) and (D.11) that (D.10) remains valid provided \(\|q(0, \cdot)\|_{L^2_x(0,\infty)}\) is sufficiently small.

We note that the estimates (D.3), (D.6) and (D.10) (and (D.11) when \(\lambda = -1\)) also imply
\[
\max_{0 \leq t \leq T} \|q(\cdot, t)\|_{H^1_x(\infty, \infty)} \leq B_2(\|q(0, \cdot)\|_{H^1_x(0,\infty)}). \tag{D.12}
\]

Appendix D.2. A priori bound for \(\|q_{xx}(0, \cdot)\|_{L^2_x(0,\infty)}\)

Let \(v = q_t\). The following equation for \(v\) is derived by differentiating (2.1) in \(t\):
\[
i v_t + v_{xx} - 4\lambda |q|^2 v - 2\lambda q^2 \bar{v} = 0. \tag{D.13}
\]
Multiplying (D.13) by \(\bar{v}\) and integrating over \(\mathbb{R}^+\) we find
\[
i(v_t, v) + (v_{xx}, v) - 4\lambda |q|^2 (v, v) - 2\lambda (q^2 \bar{v}, v) = 0 \quad \text{for } 0 < t < T. \tag{D.14}
\]
The imaginary part of (D.14) then gives
\[
\frac{d}{dt} (v, v) - 2 \text{Im} [v_t(0, t)v(0, t)] - 4\lambda \text{Im} (q^2 \bar{v}, v) = 0. \tag{D.15}
\]

Note that we have the Sobolev inequality
\[
\|v\|_{L^2_x(0,\infty)}^2 \leq \|u\|_{L^s_x(0,\infty)} \|u_x\|_{L^2_x(0,\infty)}. \tag{D.16}
\]
Integrating (D.15) in \(t \), we obtain from (D.12) and (D.16) that
\[
\|v(\cdot,t)\|_{L^2([0,\infty))}^2 \leq 2\|v_t(0,\cdot)\|_{L^2([0,T])}\|q_t(0,\cdot)\|_{L^2([0,T])} + B_5(\|q(0,\cdot)\|_{H^1([0,T])}) \int_0^t \|v(\cdot,s)\|_{L^2([0,\infty))}^2 ds \quad \text{for } 0 \leq t \leq T.
\] (D.17)

Gronwall’s inequality and (D.17) imply the following estimate:
\[
\|v(\cdot,t)\|_{L^2([0,\infty))}^2 \leq B_6(\|q(0,\cdot)\|_{H^1([0,T])})\|v_t(0,\cdot)\|_{L^2([0,T])} \quad \text{for } 0 \leq t \leq T.
\] (D.18)

We now multiply (D.13) by \(\bar{v}_t \) and integrate the resulting equation over \(\mathbb{R}^+ \) to obtain
\[
i(v_t, v_t) + (v_{xx}, v_x) - 4\lambda(|q|^2 v, v_t) - 2\lambda(q^2 \bar{v}, v_t) = 0.
\] (D.19)

The real part of (D.19) yields the estimate
\[
\frac{d}{dt}[\langle v_x, v_x \rangle + 4\lambda(|q|^2, |v|^2) + 2\lambda(\text{Re}(q^2), v^2)]
\leq 2\|v_t(0,\cdot)\|_{L^2([0,T])} + 12 \int_0^\infty |q(x,t)| |v(x,t)|^3 dx.
\] (D.20)

We have, by (D.16),
\[
\int_0^\infty |q(x,t)| |v(x,t)|^3 dx \leq \|v(\cdot,t)\|_{L^2([0,\infty))}^2 \|q(\cdot,t)\|_{L^2([0,\infty))} \|v(\cdot,t)\|_{L^2([0,\infty))}^2 \leq \|q(\cdot,t)\|_{L^2([0,T])}^2 \|v(\cdot,t)\|_{L^2([0,T])}^2 \|v_t(0,\cdot)\|_{L^2([0,T])} + \|v_x(0,\cdot)\|_{L^2([0,T])}^2
\] + \int_0^t \|v_x(\cdot,t)\|_{L^2([0,\infty))}^2 ds.
\] (D.21)

Gronwall’s inequality and (D.22) imply
\[
\|v_x(\cdot,t)\|_{L^2([0,\infty))}^2 \leq B_6(\|q(0,\cdot)\|_{H^1([0,T])})\|v_t(0,\cdot)\|_{L^2([0,T])} + \|v_x(0,\cdot)\|_{L^2([0,T])}^2
\] for \(0 \leq t \leq T.
\] (D.23)

Finally we multiply (D.13) by \(\bar{v}_x \) and integrate over \(\mathbb{R}^+ \) to obtain
\[
i(v_t, v_x) + (v_{xx}, v_x) - 4\lambda(|q|^2 v, v_x) - 2\lambda(q^2 \bar{v}, v_x) = 0.
\] (D.24)

Taking the real part of (D.24), we find the estimate
\[
|v_x(0,t)|^2 \leq 12 \int_0^\infty |q(x,t)|^2 |v(x,t)| |v_x(x,t)| dx + i \left[q_t(0,t)q_{tt}(0,t) + \frac{d}{dt}(v_x, v_x) \right].
\] (D.25)

Integrating (D.25) over \(0, T \) we have, by (D.18) and (D.23),
\[
|v_x(0,\cdot)|_{L^2([0,T])}^2 \leq B_6(\|q(0,\cdot)\|_{H^1(\mathbb{R}^+))})\|v_t(0,\cdot)\|_{L^2([0,T])} + \|v_x(0,\cdot)\|_{L^2([0,T])}^2
\] + \|q(0,\cdot)\|_{H^2([0,T])}^2.
\] (D.26)

It follows from (D.26) that
\[
\|q_t(0,\cdot)\|_{L^2([0,T])} = \|v_t(0,\cdot)\|_{L^2([0,T])} \leq B_6(\|q(0,\cdot)\|_{H^1([0,T])}),
\] (D.27)

which holds for arbitrary \(q(0,\cdot) \) when \(\lambda = 1 \) and for \(\|q(0,\cdot)\|_{L^2([0,T])} \) sufficiently small when \(\lambda = -1 \).

Note added in proof: An important simplification regarding the characterization of the unknown boundary values has been reported in [34, 35]. In these papers it is shown that, using the Gelfand–Levitan–Marchenko representation of \(\Phi(t, k) \), it is possible to solve the global relation in closed form for \(q_1 \), in terms of \(\Phi(t, k) \) and \(g_0 \). However, for the rigorous analysis of this new significant development, some of the estimates derived in this paper are needed.
The nonlinear Schrödinger equation on the half-line

References

[1] Fokas A S 2002 Integrable nonlinear evolution equations on the half-line Commun. Math. Phys. 230 1–39
[2] Fokas A S 1997 A unified transform method for solving linear and certain nonlinear PDEs Proc. R. Soc. Lond. A 453 1411–43
[3] Fokas A S 2001 Two dimensional linear PDEs in a convex polygon Proc. R. Soc. Lond. A 457 371–93
[4] Fokas A S 2000 On the integrability of linear and nonlinear partial differential equations J. Math. Phys. 41 4188–237
[5] Fokas A S and Sung L-Y 1999 Initial-boundary value problems for linear dispersive evolution equations on the half line IMI Research Report 1999:11 Department of Mathematics, University of South Carolina (http://math.berkeley.edu/~holmer/)
[6] Lax P D 1968 Integrals of nonlinear equations of evolution and solitary waves Commun. Pure Appl. Math. 21 467–90
[7] Zakharov V E and Shabat A B 1972 Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media Sov. Phys.—JETP 34 62–9
[8] Boutet de Monvel A and Kotlyarov V 2000 Scattering problem for the Zakharov–Shabat equations on the semi-axis Inverse Problems 16 1813–37
[9] Gutshabash E S and Lipovsky V D 1990 A boundary problem for the two dimensional elliptic sine-Gordon equation and its application to the theory of the stationary Josephson effect Zap. Nauchn. Sem. LOMI 180 53–62
[10] Fokas A S and Its A R 1996 The linearization of the initial-boundary value problem of the nonlinear Schrödinger equation SIAM J. Math. Anal. 27 738–64
[11] Zakharov V E and Shabat A B 1974 A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. Part I Funct. Anal. Appl. 8 226–35
Zakharov V E and Shabat A B 1979 A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. Part II Funct. Anal. Appl. 13 66–74
[12] Ablowitz MJ and Segur H 1975 The inverse scattering transform: semi-infinite interval J. Math. Phys. 16 1054–6
[13] Sklyanin E K 1987 Boundary conditions for integrable equations Funct. Anal. Appl. 21 86–7
[14] Tarasov V O 1988 An initial-boundary value problem for the nonlinear Schrödinger equation Zap. Nauchn. Sem. LOMI 169 151–65
[15] Fokas A S 1989 An initial-boundary value problem for the nonlinear Schrödinger equation Physica D 35 167–85
[16] Habibullin I T 1990 Bäcklund transformations and integrable initial-boundary value problems Nonlinear and Turbulent Processes vol 1 (Singapore: World Scientific) pp 130–8
[17] Bikbau R F and Tarasov V O 1991 Initial-boundary value problem for the nonlinear Schrödinger equation J. Phys. A: Math. Gen. 24 2507–16
[18] Tarasov V O 1991 The integrable initial-boundary value problem on a semiline: nonlinear Schrödinger and sine-Gordon equation Inverse Problems 7 435–49
[19] Fokas A S and Kamvissis S 2004 Zero-dispersion limit for integrable equations on the half-line with linearizable data Abstract Appl. Anal. 2004 361–70
[20] Adler V E, Habibullin I T and Shabat A B 1997 A boundary value problem for the KdV equation on a half-line Teor. Mat. Fiz. 110 98–113
[21] Adler V E, Gürel B, Güres M and Habibullin I 1997 Boundary conditions for integrable equations J. Phys. A: Math. Gen. 30 3505–13
[22] Fokas A S 1992 Initial-boundary value problems for soliton equations Proc. 3rd Potsdam-V Kiev Int. Workshop (Berlin: Springer)
[23] Deift P A and Zhou X 1993 A steepest descent method for oscillatory Riemann–Hilbert problems Ann. Math. 137 245–338
[24] Colliander J E and Kenig C E 2000 The generalized Korteweg–de Vries equation on the half line Commun. Partial Diff. Eqs 25 2187–266
[25] Bona J, Sun S and Zhang B Y 2002 A non-homogeneous boundary-value problem for the Korteweg–de Vries equation in a quarter plane Trans. Am. Math. Soc. 354 427–90
[26] Faminskii A V 2004 An initial boundary-value problem in a half-strip for the Korteweg–de Vries equation in fractional order Sobolev spaces Commun. Partial Diff. Eqs 29 1653–95
[27] Holmer J 2004 The initial-boundary value problem for the 1D nonlinear Schrödinger equation on the half-line Preprint
[28] Faddeev L D and Takhtadjan L A 1987 Hamiltonian Methods in the Soliton Theory (Springer Series in Soviet Mathematics) (Berlin: Springer)
Deift P A and Zhou X 1994 Long-time behaviour of the non-focusing nonlinear Schrödinger equation—a case study Lectures in Mathematical Sciences The University of Tokyo, ISSN 0919-8180

Deift P A, Its A R and Zhou X 1993 Long-time asymptotics for integrable nonlinear wave equations Important Developments of Soliton Theory ed A S Fokas and V E Zakharov (Berlin: Springer)

Manakov S V 1974 Nonlinear Fraunhofer diffraction Sov. Phys.—JETP 38 693–6

Its A R 1981 Asymptotics of solutions of the nonlinear Schrödinger equation and isomonodromic deformations of systems of linear differential equations Sov. Math. Dokl. 24 452–6

Zakharov V E and Manakov S V 1976 Asymptotic behaviour of nonlinear wave systems integrated by the inverse method Sov. Phys.—JETP A 4 106–12

Boutet de Monvel A, Fokas A S and Shepelsky D 2003 The analysis of the global relation for the nonlinear Schrödinger equation on the half-line Lett. Math. Phys. 64 199–212

Fokas A S 2005 The generalized Dirichlet to Neumann map for certain nonlinear evolution PDEs Commun. Pure Appl. Math. LVIII 639–70