SUPPLEMENTARY MATERIAL

Xanthones from the herb of *Swertia elata* and their Anti-TMV Activity

Wei jiang, a Dong-Lai Zhu, b Ming-Feng Wang, b Qing-Song Yang, a Ma-Yi Zuo, a Liang Zeng a and Gan-Peng Li a,*

a Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, Yunnan, 650500, P.R.China.

b Technology Center, China Tobacco Yunnan Industry Company (Ltd.), Kunming 650000, P.R. China.

*Corresponding author. Tel.: +86 871 5913043. E-mail addresses: ganpeng_li@sina.com (G.-P. Li).
ABSTRACT

Two new xanthones (1-2), together with four known ones (3-6), were isolated from whole herb of Swertia elata. Their structures were elucidated by spectroscopic methods including extensive 1D- and 2D-NMR techniques. Compounds 1-6 were also evaluated for their anti-tobacco mosaic virus (Anti-TMV) activities. The results revealed that that 1-6 showed weak anti-TMV activities with inhibition rate in the range of 15.2–28.8%.

Keywords: Swertia elata, Xanthones, Anti-TMV activity
Contents of Supporting Information

No.	Contents:	Pages:
Table S1	1H and 13C NMR Data of Compounds 1 and 2	4
Figure S1-S2	13C NMR, 1H NMR spectrum of Compounds 1	5-6
Figure S3-S4	13C NMR, and 1H NMR spectrum of Compounds 2	7-8
Table S1. 1H and 13C NMR Data of Compounds 1 and 2 (δ in ppm, in C$_5$D$_5$N, 500 and 125 MHz).

No.	1C (δ)	1H (m. J, Hz)	1C (δ)	1H (m. J, Hz)
1	155.0 s		154.8 s	
2	118.4 d	7.09 d (2.2)	118.0 d	7.00 d (2.2)
3	158.9 s		158.4 s	
4	120.9 d	6.70 d (2.2)	120.6 d	6.70 d (2.2)
5	120.5 d	7.72 s	122.1 d	7.70 s
6	140.5 s		134.0 s	
7	159.9 s		162.9 s	
8	109.0 d	7.43 s	109.1 d	7.74 s
9	176.5 s		176.1 s	
4a	155.8 s		156.0 s	
8a	113.5 s		115.9 s	
9a	112.7 s		111.2 s	
10a	147.0 s		148.0 s	
1’	36.3 t	2.62 t (7.2)		198.6 s
2’	63.8 t	3.62 t (7.2)	30.7 q	2.51 s
1-OMe	55.9 q	3.87 s	56.0 q	3.86 s
3-OMe	56.2 q	3.83 s	56.3 q	3.81 s
7-OMe	56.1 q	3.89 s	56.2 q	3.88 s
Figure S1. 13C NMR spectrum of Compounds 1
Figure S2. 1H NMR spectrum of Compounds 1
Figure S3. 13C NMR spectrum of Compounds 2
Figure S4. 1H NMR spectrum of Compounds 2