Reduce growth rate of light-duty vehicle travel to meet 2050 global climate goals

Jalel Sager¹, Joshua S Apte¹, Derek M Lemoine¹,² and Daniel M Kammen¹,³,⁴,⁵

¹ Energy and Resources Group, University of California, Berkeley, CA, USA
² Department of Economics, University of Arizona, AZ, USA
³ Goldman School of Public Policy, University of California, Berkeley, CA, USA
⁴ Renewable and Appropriate Energy Laboratory, University of California, Berkeley, CA, USA

E-mail: jalel.sager@berkeley.edu, japte@berkeley.edu, dlemoine@berkeley.edu and daniel.kammen@gmail.com

Received 10 February 2011
Accepted for publication 31 May 2011
Published 17 June 2011
Online at stacks.iop.org/ERL/6/024018

Abstract

Strong policies to constrain increasing global use of light-duty vehicles (cars and light trucks) should complement fuel efficiency and carbon intensity improvements in order to meet international greenhouse gas emission and climate targets for the year 2050.

Keywords: transportation, sustainability

Online supplementary data available from stacks.iop.org/ERL/6/024018/mmedia

Transportation systems require fundamental change to meet greenhouse gas (GHG) emission and climate reduction goals for the year 2050. International agreements have advocated limiting temperature increase to 2°C or less [1, 2], which limits the total amount of carbon that can be moved to the atmosphere [3, 4]. Under plausible assumptions and emissions pathways, year 2050 global carbon dioxide (CO₂) emissions levels consistent with a 2°C temperature limit can be close to 80% below year 2007 emissions [5]. Even greater emission reductions may be sought in sectors such as electricity generation and light-duty vehicle (LDV) transportation, given both their relatively large range of mitigation options [6] and their impacts for long- and near-term climate change [7, 8]. We show that reducing LDV emissions by 80% becomes much more feasible if policies and infrastructure are put in place today that ultimately reduce demand for LDV travel.

Reducing LDV emissions is often framed as a technological challenge [9, 10]. Low-carbon fuel standards aim to stimulate production of fuels that produce fewer GHGs per unit energy; vehicle efficiency policies aim to reduce the fuel used and emissions produced per distance traveled. However, by decomposing transport sector emissions into technological and behavioral drivers, we show that even significant technological advances will be insufficient to meet climate goals, unless the growth in LDV use slows or reverses. While policy options aimed to reduce the need for LDV travel typically receive far less attention than do technological measures [11], we find such demand avoidance options are likely essential to meeting mid-century GHG reduction goals [12, 13].

Emissions from LDV fleets are rapidly increasing in many emerging economies and already account for about 6% of total global CO₂-eq emissions (or about 45% of the transport sector’s emissions). As much current research suggests that ‘limiting (climate change) impacts to acceptable levels by mid-century and beyond’ will likely require an 80% cut in global emissions by 2050 (relative to 1990), we set our 2050 LDV emissions targets at this level [14]. Assuming 9 billion people in 2050, these targets imply per capita annual LDV emissions of only 50–100 kg CO₂-eq (see tables S3–S6 available at stacks.iop.org/ERL/6/024018/mmedia). This range, today seen only in the world’s poorest countries, would need to be the global average while providing dramatically better services. Some developed countries (e.g., the US) have LDV emission rates 30–60 times higher than this target. Many other countries with historically low vehicle ownership (e.g., India and China) are rapidly motorizing, increasing such emissions by more than 5% yr⁻¹.
When considering the prospect of rapidly increasing LDV use, the Stern Review (Economics of Climate Change) found:

\[\ldots \text{at the global level, in the absence of policy interventions, the long-run positive relationship between income growth and emissions per head is likely to persist. Breaking the link requires significant changes in preferences, relative prices of carbon-intensive goods and services and/or breaks in technological trends. But all of these are possible with appropriate policies [15].} \]

We concur with this assessment, and here lay out a set of interrelated targets needed to achieve low-carbon mobility.

We find that innovation in a single area such as fuel economy does not offer a realistic, affordable, or resilient pathway to the LDV emission reductions necessary by mid-century. Instead, as social, technical, and infrastructural drivers of LDV GHG emissions interact multiplicatively, the responsibility should be spread over a portfolio of achievable improvements across the transport system. The following analytic decomposition identifies five potential areas for improvement:

\[\tilde{C} = \frac{C/E \times E/V}{(V/D \times D/T \times T)} \times \text{Per capita LDV transport use} \]

(1)

In this equation, the per capita LDV GHG emission rate (\(\tilde{C} \)) is expressed as the product of two sets of variables representing the GHG intensity and per capita rate of LDV use. Current policy discussion is dominated by attention to the first set, propulsion GHG intensity (\(g \text{ CO}_2 \text{ VKT}^{-1} \)), where VKT is vehicle-kilometers traveled. This set can be improved by decreasing fuel carbon intensity, \(C/E \) (\(g \text{ CO}_2 \text{ MJ}^{-1} \)), and decreasing energy intensity, \(E/V \) (\(\text{MJ VKT}^{-1} \)). The second set, representing LDV use, has three components, offering three broad strategies for improvement: increasing the vehicle occupancy rate, here expressed as its inverse (\(V/D \)) (VKT PKT\(^{-1} \), where PKT is person-kilometers traveled); decreasing the mean per-trip distance \(D/T \) (PKT trip\(^{-1} \); and reducing the per capita trip rate \(T \) (trips yr\(^{-1} \) person\(^{-1} \)). In principle, the analytical relationship in equation (1) can be extended to encompass mode shifting. However, for the purposes of illustration, we constrain our quantitative discussion to the LDV sector.

In order to quantify the \(\text{CO}_2 \) mitigation challenge for the transport sector, we surveyed 2007 LDV usage and fuel economy in an economically diverse set of countries (see figure 1, and tables S1 and S2 available at stacks.iop.org/ERL/6/024018/mmedia). We find that the large differences in per capita LDV GHG emissions (range: \(~100\text{–}400 \text{ kg CO}_2\text{-eq yr}^{-1} \)) are principally explained by differing national per capita LDV use (range: \(300\text{–}13\text{,}000 \text{ VKT} \text{ yr}^{-1} \)), rather than by fleet average fuel efficiency and carbon intensity factors, which reflect broadly similar car technology worldwide. In upper-income countries, intensive LDV use results in present-day emissions that exceed the 2050 target range of 50\text{–}100 \text{ kg CO}_2\text{-eq yr}^{-1} \) by a factor of 10\text{–}80.

Global growth of per capita LDV use to levels on a par with contemporary high-income countries would likely be incompatible with climate goals. For example, with global per capita LDV use of 10\text{,}000 \text{ km yr}^{-1}, GHG propulsion intensity would need to decline from current levels of \(~300 \text{ to } \sim5\text{–}10 \text{ g CO}_2\text{-eq km}^{-1} \) on a ‘well-to-wheel’ (WTW, fuel lifecycle) basis. As the matrix of vehicle technology options in figure 2 shows, this performance level would require universal deployment of one or more of the following clusters: electric vehicles (EVs) running on nearly zero-carbon electricity, cellulosic-biofuel-powered vehicles achieving 300 miles per gallon (mpg; \(0.78 \text{ L 100 km}^{-1} \)), or gasoline-fueled vehicles achieving in excess of 1000 mpg (\(0.24 \text{ L 100 km}^{-1} \)). Such levels of performance exceed optimistic technology scenarios for the year 2050 [16, 17].

It is likely that 2050 climate targets will be feasible only with global implementation of robust policies to slow the growth rate of LDV VKT in low-income countries, and...
reduce VKT in high-income countries [18]. For example, if global 2050 per capita LDV VKT instead converges at levels currently typical of middle-income countries such as Mexico (≈3000 km yr⁻¹), a per capita LDV GHG target of 100 kg CO₂-eq yr⁻¹ could be met with medium-term technologies, such as 100 mpg (2.35 L 100 km⁻¹) plug-in hybrid electric cars fueled on a mix of cellulosic biofuels and low-carbon grid electricity. This strategy would require constraining the cumulative global PKT 2010–50 increase to 60% (1.25% annual growth) against the baseline projections of a 100% increase (1.8% annual, see table S11 available at stacks.iop.org/ERL/6/024018/mmedia). It would further require load factor convergence to around 1.65 persons per vehicle, typical of European averages in 2000. Our sensitivity analysis (table S11 available at stacks.iop.org/ERL/6/024018/mmedia) shows that even with a 85% reduction in GHG propulsion intensity (to ≈50 g CO₂-eq km⁻¹, 160 MPG on gasoline) over the next 40 years, per capita LDV GHG emissions (140 kg CO₂-eq yr⁻¹) would still exceed the target ceiling by 40% under current baseline estimates. It is important to note that these baselines already assume declining rates of PKT growth over the next 40 years.

Developed countries already have VKT-intensive infrastructure in place; adjustments would be incremental at first, undertaken jointly and over time. Consider for example a high-income country attempting to reduce LDV use from ≈10000 to ≈3000 km yr⁻¹. The multiplicative effects of equation (1) suggest that a threefold reduction in LDV VKT can be achieved by coordinated policies. For example, reducing average trip length and frequency by ≈33% each while increasing the average load factor from ≈1.5 to ≈2 people per vehicle would be sufficient for the goal. While likely challenging, such efforts would not imply privation.

In fact, mid-range levels of LDV use can support a very high standard of living, given sufficient attention to urban planning and viable public or non-motorized (‘alternative’) transport. Citizens of Hong Kong, Seville, Turin, Valencia, Lisbon, Bologna, and Moscow use between 5000 and 11 000 MJ capita⁻¹ yr⁻¹ for travel through relatively compact development, with more than half of all trips taken by foot, bicycle, or public transport (assuming a 2.5 MJ VKT⁻¹ ratio and the fact that only a portion of this energy is used in LDV travel, this range of energy expenditure indicates LDV use of 3000 km yr⁻¹ or less). Meanwhile, in cities with higher personal vehicle use, such as Chicago, Houston, San Diego, or Washington, inhabitants use 44 000–86 000 MJ capita⁻¹ yr⁻¹, with less than 16% of all journeys accomplished through non-motorized or public means [19].

The order-of-magnitude variation in per capita urban LDV energy consumption among this sample of high-income cities suggests that currently developing regions may have a wide range of potential infrastructure trajectories to choose from. LDV ownership is relatively low in middle- and low-income countries, with transport requirements met in large part through alternative modes (that may operate at inadequate service levels) [20]. Such nations can avoid the recent...
development trend of locking in VKT-intensive models [21], choosing low-carbon infrastructure choices that will enable cheaper and easier future abatement. Leaving aside climate considerations, wise investment in low-carbon mobility can also have compelling near-term co-benefits for air pollution, congestion, energy security, noise, aesthetics, economy, health, and equity [22–25].

Strategies for a less VKT-intensive trajectory over the next half century must contend with formidable obstacles. Fast, cheap personal transportation based on liquid fossil fuels was a cornerstone of 20th century economic growth. Personal mobility grew in lockstep with GDP [26]; in high-income nations LDVs became the dominant mode of personal transportation, with alternative transport’s modal share declining almost everywhere [27, 28]. The US and its freeway system exemplify this trend: the share of trips on public transportation in US cities has shrunk to 3%, while LDVs account for 80–90% of personal travel [29]. This car-centered model has recently dominated international development, aided by financial support from multilateral institutions that privileged LDVs and road infrastructure over other forms of transport. Such well-established path dependencies in the global political economic system—especially institutional investment in autos and their infrastructure—will require policy aimed at several leverage points at once, in order to shift global transport from what might be thought of as a ‘hard’ to a ‘soft’ path (see Lovins, 1976) [30]. In short, the difficulty of getting people out of their cars corresponds to the degree to which economic and urban/inter-urban systems make cars an optimal solution.

Recognizing the latter, some cities (San Francisco, Milwaukee (US), and Seoul) have dismantled or declined to rebuild city highways as a way of revitalizing fading urban cores and shifting passengers to mass transit [31]. Many early local modal shift policies, such as those of Portland, Oregon (US), were attempts to enhance local energy and economic security in the face of 1970s oil price shocks [29]. Yet smart growth policies that reduce the role of automobiles have been urged for nearly five decades [32] as a way of protecting the global economic system—especially institutional investment in autos and their infrastructure—will require policy aimed at several leverage points at once, in order to shift global transport from what might be thought of as a ‘hard’ to a ‘soft’ path (see Lovins, 1976) [30]. In short, the difficulty of getting people out of their cars corresponds to the degree to which economic and urban/inter-urban systems make cars an optimal solution.

The successful Transmilenio project in Bogota, Colombia provides a good example of a project that reversed expected sharp gains in VKT over the last decade, while earning GHG mitigation credits under the UN’s Clean Development Mechanism. CO₂ emissions there cost $13–$66 dollars per ton eliminated, compared to $148–$3500 per ton for vehicle technology changes [27].

While the analytic decomposition above (equation (1)) helps identify the mix of high-level technical and social factors that influence LDV emissions, there are different policy levers for constraining VKT. Vehicle activity is not a single variable to be manipulated but emerges from the supply of, and demand for, travel. Technology policies focus on reducing emissions for a given intersection of supply and demand, while activity policies focus on moving this intersection. The LDV demand curve tends to shift outward as populations increase and less-developed nations become wealthier; this challenging trend can be opposed in two main ways. Policies that reduce the benefits from LDV travel—this includes providing better substitutes in the form of mass transit and urban design—tend to shift demand inward, as would policies that increase the cost of LDV propulsion. A carbon tax would not only shift the mix of technologies used to power LDVs, but would also tend to decrease the supply of LDV power at a given fuel cost. Finally, note that technology policies such as improved vehicle efficiency and cheap substitutes for oil tend to shift supply outward (technologies such as smart highways could also shift demand outward), which would counteract some of the gains produced by lower per-mile emissions.

In the United States, LDV demand-shifting goals would utilize four decades of innovation on long-term, transit-oriented land-use policy; new public transport options; and smart growth. Pricing policies, such as fuel carbon, parking, and congestion fees [33], also influence travel behavior— and can offset the social costs of congestion, pollution, and other externalities of LDV use. Steadily increasing fuel taxes have proven especially useful in many developed countries, for example Germany, in reducing VKT and encouraging automakers to increase fuel efficiency over time [34]. The United States, with some of the lowest fuel taxes in the developed world, seems ripe for such a measure; while many US economists see it as beneficial [35], political barriers are substantial. Yet both road pricing and subsidies for public transportation have been shown to produce substantial emissions gains (the evidence for driving restrictions is less clear) [36].

Reduction in the rate of LDV growth requires action at all levels of government. California’s Senate Bill 375, enacted in 2008, provides an important example of forward-looking state policy, requiring regional transport planners to cut 5 million metric tons of CO₂-eq through integrated land-use planning—a small, but positive step [37]. Meanwhile, strengthening the mandate of municipal planning organizations (MPOs) or regional planning agencies is also vital. The ultimately unsuccessful American Clean Energy and Security Act of 2009 mandated an economy-wide 83% GHG reduction by 2050, yet relied on technological fixes—which we have shown to be insufficient by themselves—to meet this goal in the LDV sector. While the bill mandated MPOs make ‘efforts to increase public transportation ridership’ and the use of other alternative transportation [38], more concrete measures are needed. Hard annual and long-term modal shift targets for MPOs should be set. Innovative guidelines, such as a minimum 50% combined modal share for walking, cycling, and public transport in US cities for the medium term, would require policies that contain VKT. Such measures would also necessitate a strengthening and standardization of data collection on personal travel.

We have quantified the need for complementary policies required to achieve global climate targets in the light-duty vehicle sector. A truly unified framework would also account
Acknowledgments

We thank Timothy Searchinger for early discussions of this work and later comments, and Lee Schipper for commenting and sharing current work. This work was funded by the German Marshall Fund of the United States, the US National Science Foundation’s Graduate Research Fellowship Program (JS), the US EPA STAR Fellowship Program (JSA) and the Robert and Patricia Switzer Foundation Environmental Fellowship Program (DML). The results and opinions expressed herein have been neither endorsed nor rejected by funding sources.

Author Contributions. JS and JSA collected data. All authors helped design the study, interpret results, draft the paper, and revise the manuscript.

References

[1] 2009 Responsible Leadership for a Sustainable Future G8, L’Aquila (Italy) (available at http://www.g8italia2009.it/static/G8_Allegato/G8_Declaration_08_07_09_final_0.pdf)
[2] Copenhagen Accord 2009 UNFCCC Conf. (Copenhagen) (available at http://unfccc.int/files/meetings/cop_15/application/pdf/cop15_cph_auv.pdf)
[3] Matthews H et al 2009 The proportionality of global warming to cumulative carbon emissions Nature 459 829–32
[4] Allen M R et al 2009 Warming caused by cumulative carbon emissions towards the trillionth tonne Nature 458 1163–6
[5] National Research Council 2011 Climate Stabilization Targets: Emissions, Concentrations, and Impacts over Decades to Millennium (Washington, DC: The National Academies Press)
[6] Lutsey N and Sperling D 2009 Greenhouse gas mitigation supply curve for the United States for transport versus other sectors Transp. Res. D 14 222–9
[7] Jackson S C 2009 Parallel pursuit of near-term and long-term climate mitigation Science 326 526–7
[8] Unger N et al 2010 Attribution of climate forcing to economic sectors Proc. Natl Acad. Sci. 107 3382–7
[9] Heywood J et al 2009 An Action Plan for Cars: The Policies Needed to Reduce US Petroleum Consumption and Greenhouse Gas Emissions Massachusetts Institute of Technology (available at http://web.mit.edu/mitei/docs/research/actionplan.pdf)
[10] Kammen D M, Arons S, Lemoine D and Hummel H 2009 Cost-effectiveness of greenhouse gas emission reductions from plug-in hybrid electric vehicles Plug-in Electric Vehicles: What Role for Washington? ed D B Sandalow (Washington, DC: Brookings Institute) pp 170–91
[11] Ewing R and Cervero R 2001 Travel and the built environment: a synthesis Transp. Res. Rec.: J. Transp. Res. Board 1780 87–114
[12] Grimes-Casey H G, Keoleian G A and Willcox B 2009 Carbon emission targets for driving sustainable mobility with US light-duty vehicles Environ. Sci. Technol. 43 585–90
[13] 2010 Transportation’s Role in Reducing US Greenhouse Gas Emissions US Department of Transportation (available at http://ntl.bts.gov/lib/32000/32700/32779/DOT_Clim ate_Change_Report-_April_2010_02 volum e1_and_2.pdf)
[14] Parry M, Patulitikj J, Hanson C and Lowe J 2008 Squaring up to reality Nat. Rep. Clim. Change 2 68–70
[15] Stern N 2007 The Economics of Climate Change: The Stern Review (London: UK Treasury) p 181 part 3
[16] Yeh S, Lutsey N P and Parker N C 2009 Assessment of technologies to meet a low carbon fuel standard Environ. Sci. Technol. 43 6907–14
[17] McCollum D and Yang C 2009 Achieving deep reductions in US transport greenhouse gas emissions: scenario analysis and policy implications Energy Policy 37 5580–96
[18] Johansson B 2009 Will restrictions on CO2 emissions require reductions in transport demand? Energy Policy 37 3212–20
[19] 2005 Mobility in Cities Database: Recommendations and Analysis (Brussels: International Association of Public Transport) p 13
[20] Tiwari G 2003 Transport and land-use policies in Delhi Bull. World Health Org. 81 444–50
[21] Dargay J, Gately D and Sommer M 2007 Vehicle ownership and income growth, worldwide: 1960–2030 Energy J. 28 143–70
[22] Walsh M P 2008 Ancillary benefits for climate change mitigation and air pollution control in the world’s motor vehicle fleets Annu. Rev. Pub. Health 29 1–9
[23] Woodcock J et al 2009 Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport Lancet 374 1930–43
[24] Cambridge Systematics 2009 Moving Cooler: An Analysis of Transportation Strategies for Reducing Greenhouse Gas Emissions Collaborative Strategies Group
[25] Farrell A E and Brandt A R 2006 Risks of the oil transition Environ. Res. Lett. 1 014004
[26] Schaffer A 1998 The global demand for motorized mobility Transp. Res. A 32 455–77
[27] Wright L and Fulton L 2005 Climate change mitigation and transport in developing nations Transp. Rev. 25 691–717
[28] 2004 Mobility 2030: Meeting the Challenges to Sustainability (Geneva, Switzerland: World Business Council for Sustainable Development)
[29] Kenworthy J 2007 Urban planning and transport paradigm shifts for cities of the post-petroleum age J. Urban Technol. 14 47–60
[30] Lovins A B 1976 Energy strategy: the road not taken Foreign Aff. 55 65–96
[31] Hook W 2008 Mitigating the risk of climate change by reducing travel by light-duty vehicles Proc. OECD/ITF Global Forum on Transport and Environment in a Globalizing World
[32] Jacobs J 1961 The Death and Life of Great American Cities (New York: Vintage)
[33] Litman T 2005 Efficient vehicles versus efficient transportation. Comparing transportation energy conservation strategies Transp. Policy 12 121–9
[34] Sterner T 2007 Fuel taxes: an important instrument for climate policy Energy Policy 35 3194–202
[35] Fuchs V R, Krueger A B and Poterba J M 1998 Economists’ views about parameters, values and policies: survey results in labor and public economics J. Econ. Literature 36 1387–425
[36] Schmuitzer A 2010 Local transportation policy and the environment Environ. Res. Econ. 48 511–35
[37] Adopted AB 32 Scoping Plan California Air Resources Board (available at http://www.arb.ca.gov/cc/scopingplan/document/adopted_scoping_plan.pdf)

[38] The American Clean Energy and Security Act of 2009, HR 2454 2009 111th Congr., 1st Session Washington, DC, section 841

[39] Chester M V and Horvath A 2009 Environmental assessment of passenger transportation should include infrastructure and supply chains Environ. Res. Lett. 4 024008

[40] Nemet G F, Holloway T and Meier P 2010 Implications of incorporating air-quality co-benefits into climate change policymaking Environ. Res. Lett. 5 014007