FREE SPACES
OVER COUNTABLE COMPACT METRIC SPACES

A. DALET

(Communicated by Thomas Schlumprecht)

Abstract. We prove that the Lipschitz-free space over a countable compact metric space is isometric to a dual space and has the metric approximation property.

1. Introduction

Let \((M, d)\) be a pointed metric space, that is to say, a metric space equipped with a distinguished origin, denoted 0. The space \(\text{Lip}_0(M)\) of Lipschitz functions from \(M\) to \(\mathbb{R}\) vanishing at 0 is a Banach space equipped with the Lipschitz norm:

\[
\|f\|_{\text{L}} = \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)}.
\]

Its unit ball is compact with respect to the pointwise topology, thus \(\text{Lip}_0(M)\) is a dual space. In [3], its predual is called the Lipschitz-free space over \(M\), denoted \(F(M)\), and it is the closed linear span of \(\{\delta_x, x \in M\}\) in \(\text{Lip}_0(M)^*\). One can prove that the map \(\delta : M \to F(M)\) is an isometry. For more details on the basic theory of the spaces of Lipschitz functions and their preduals, called Arens-Eells space there, see [14].

Very little is known about the structure of Lipschitz-free spaces. For instance \(F(\mathbb{R})\) is isomorphically isometric to \(L_1\), but A. Naor and G. Schechtman [11] proved that \(F(\mathbb{R}^2)\) is not isomorphic to any subspace of \(L_1\). The study of the Lipschitz-free space over a Banach space is useful to learn more about the structure of this Banach space. For example G. Godefroy and N. Kalton [3] proved, using this theory, that if a separable Banach space \(X\) isometrically embeds in a Banach space \(Y\), then \(Y\) contains a linear subspace which is linearly isometric to \(X\).

We recall that a Banach space \(X\) is said to have the approximation property (AP) if for every \(\varepsilon > 0\) and every compact set \(K \subset X\), there is a bounded finite-rank linear operator \(T : X \to X\) such that \(\|Tx - x\| \leq \varepsilon\) for every \(x \in K\). If moreover there exists \(1 \leq \lambda < +\infty\) not depending on \(\varepsilon\) or \(K\) such that \(\|T\| \leq \lambda\), then \(X\) has the \(\lambda\)-bounded approximation property (\(\lambda\)-BAP) and \(X\) has the bounded approximation property (BAP) if it has the \(\lambda\)-BAP for some \(\lambda\). Finally \(X\) has the metric approximation property (MAP) if \(\lambda = 1\).

Received by the editors July 22, 2013 and, in revised form, March 11, 2014.
2010 Mathematics Subject Classification. Primary 46B10, 46B28.
Key words and phrases. Lipschitz-free space, duality, bounded approximation property.
The first author was partially supported by PHC Barrande 26516YG.
It is already known that $\mathcal{F}(\mathbb{R}^n)$ has the MAP \cite{3} and that if M is a doubling metric space, then $\mathcal{F}(M)$ has the BAP \cite{9}. Moreover, E. Pernecká and P. Hájek \cite{7} proved that $\mathcal{F}(\ell_1)$ and $\mathcal{F}(\mathbb{R}^n)$ have a Schauder basis. However, Godefroy and N. Ozawa \cite{4} constructed a compact metric space K such that $\mathcal{F}(K)$ fails the AP.

In the first part of this article we will prove that the Lipschitz-free space over a countable compact metric space K is isometrically isomorphic to the dual space of $lip_0(K) \subset Lip_0(K)$. Let ω_1 be the first uncountable ordinal. We will prove, by induction on $\alpha < \omega_1$ such that $K^{(\alpha)}$ is finite, that $\mathcal{F}(K)$ has the MAP. This will rely on a theorem of A. Grothendieck \cite{6} asserting that any separable dual having the BAP has the MAP, and a decomposition of the space K due to Kalton \cite{8}. This provides a negative answer to Question 2 in \cite{4}, which was originally asked by G. Aubrun to G. Godefroy during a seminar in Lyon about his paper with N. Ozawa.

\section{Duality}

For any pointed metric space (M, d) we denote by $lip_0(M)$ the subspace of $Lip_0(M)$ defined as follows: $f \in lip_0(M)$ if and only if for every $\varepsilon > 0$, there is a $\delta > 0$ such that for $x, y \in M$, $d(x, y) < \delta$ implies $|f(x) - f(y)| \leq \varepsilon d(x, y)$.

The main result of this section is the following:

Theorem 2.1. If (K, d) is a countable compact metric space, then $\mathcal{F}(K)$ is isometrically isomorphic to a dual space, namely $lip_0(K)^*$.

Definition 2.2.

1. Let X be a Banach space. A subspace S of X^* is called separating if $x^*(x) = 0$ for all $x^* \in S$ implies $x = 0$.
2. For (M, d) a pointed metric space, $lip_0(M)$ separates points uniformly if there exists a constant $c \geq 1$ such that for every $x, y \in M$, some $f \in lip_0(M)$ satisfies $\|f\|_L \leq c$ and $|f(x) - f(y)| = d(x, y)$.

Mimicking an argument from \cite{2} we will use a theorem due to Petunin and Plíchko \cite{13} saying that if $(X, \|\cdot\|)$ is a separable Banach space and S a closed subspace of X^* contained in $NA(X)$ (the subset of X^* consisting of all linear forms which attain their norm) and separating points of X, then X is isometrically isomorphic to S^*. Theorem 3.3.3 in \cite{14} gives the same result but in a less general case.

We start with two lemmas taken from \cite{2}.

Lemma 2.3. For any (K, d) compact pointed metric space, the space $lip_0(K)$ is a subset of $NA(\mathcal{F}(K))$.

Proof. We can see $lip_0(K)$ as the subset of $Lip_0(K)$ containing all f such that for every $\varepsilon > 0$, the set $K^2 := \{(x, y) \in K^2, x \neq y, |f(x) - f(y)| \geq \varepsilon d(x, y)\}$ is compact.

Let $f \in lip_0(K)$; we may assume that $f \neq 0$. Then there exists $\varepsilon > 0$ such that

$$
\|f\|_L = \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)} = \sup_{(x, y) \in K^2} \frac{|f(x) - f(y)|}{d(x, y)} = \max_{(x, y) \in K^2} \frac{|f(x) - f(y)|}{d(x, y)}.
$$

Thus there exist $x \neq y$ such that $\|f\|_L = \frac{|f(x) - f(y)|}{d(x, y)}$, and setting $\gamma = \frac{1}{d(x, y)}(\delta_x - \delta_y)$ we obtain $\gamma \in \mathcal{F}(K)$ and $\|f\|_L = |f(\gamma)|$, with $\|\gamma\|_{\mathcal{F}(K)} = 1$ because δ is an isometry. Then f is norm attaining and $lip_0(K) \subset NA(\mathcal{F}(K))$. \qed
Lemma 2.4. For any \((K, d)\) compact pointed metric space, if \(\text{lip}_0(K)\) separates points uniformly, then it is separating.

Proof. Using the Hahn-Banach theorem, one can prove that \(\text{lip}_0(K)\) is separating if and only if it is weak*- dense in \(\text{Lip}_0(K)\).

Now assume \(\text{lip}_0(K)\) separates points uniformly. Then there exists \(c \geq 1\) such that for every \(F \subset K\), \(F\) finite, and every \(f \in \text{lip}_0(K)\), \(\|g\|_L \leq c\|f\|_L\), such that \(f|_F = g|_F\) (see Lemma 3.2.3 in [14]), and it is easy to deduce that \(\overline{\text{lip}_0(K)}^{\text{wo}} = \text{Lip}_0(K)\).

These lemmas allow us to reduce the problem. We need to prove that the little Lipschitz space over a countable compact metric space separates points uniformly.

For this proof we will use a characterization of countable compact metric spaces with the Cantor-Bendixon derivation: for a metric space \((M, d)\) we denote

- \(M'\) the set of accumulation points of \(M\).
- \(M^{(\alpha)} = (M^{(\alpha-1)})'\), for a successor ordinal \(\alpha\).
- \(M^{(\alpha)} = \bigcap_{\beta < \alpha} M^{(\beta)}\), for a limit ordinal \(\alpha\).

A compact metric space \((K, d)\) is countable if and only if there is a countable ordinal \(\alpha\) such that \(K^{(\alpha)}\) is finite.

Proof of Theorem 2.1. Let us prove that

\[\exists c \geq 1, \forall x \neq y \in K, \exists h \in \text{lip}_0(K), \|h\|_L \leq c, |h(x) - h(y)| = d(x, y). \]

Let \(x \neq y \in K\) and set \(a = d(x, y)\). Since \(K\) is countable and compact, the closed ball \(\overline{B}(x, \frac{a}{2})\) of center \(x\) and radius \(\frac{a}{2}\) is countable and compact and there exists a countable ordinal \(\alpha_0\) such that \(\overline{B}(x, \frac{a}{2})^{(\alpha_0)}\) is finite and nonempty: there exist \(k_1 \in \mathbb{N}, y_1^1, \ldots, y_1^{k_1} \in K\) such that \(\overline{B}(x, \frac{a}{2})^{(\alpha_0)} = \{y_1^1, \ldots, y_1^{k_1}\}\). We denote \(a_1^i = d(y_1^i, x)\), for \(1 \leq i \leq k_1\). Then we can find \(r_1\) and \(v_1^1 < \cdots < v_1^{r_1}\) such that \(\{a_1^1, \ldots, a_1^{k_1}\} = \{v_1^1, \ldots, v_1^{r_1}\}\). Now set

\[v_1 = \begin{cases} \frac{a}{2}, & \text{if } \overline{B}(x, \frac{a}{2})^{(\alpha_0)} = \{x\} \\ \min \left(\{v_1^1, \frac{a}{2} - v_1^{r_1}\}\{0\}\right) \cup \{v_1^i - v_1^{i-1}, 2 \leq i \leq r_1\}, & \text{otherwise} \end{cases} \]

and define \(\varphi_1 : [0, +\infty] \to [0, +\infty] \) by

\[\varphi_1(t) = \begin{cases} 0, & t \in \left[0, v_1^1\right] \, \left[0, \frac{a}{12}\right] := V_1^0 \\ v_1^1, & t \in \left[v_1^1 - \frac{a}{12}, v_1^1 + \frac{a}{12}\right] := V_1^1, 1 \leq i \leq r_1 \\ v_1^i - v_1^{i-1}, & t \in \left[v_1^i, v_1^i + \frac{a}{12}\right], 1 \leq i \leq r_1 \end{cases} \]

and \(\varphi_1\) is continuous on \([0, +\infty]\) and affine on each interval of \([0, +\infty] \setminus \bigcup_{i=0}^{r_1+1} V_i^i\).

One can check that the slope of \(\varphi_1\) is at most 2 on each of these intervals, so \(\|\varphi_1\|_L \leq 2\).

With \(f(\cdot) = d(\cdot, x)\) we set \(C_1 = f^{-1}\left([0, +\infty] \setminus \bigcup_{i=0}^{r_1+1} V_i^i\right)\).

If \(C_1\) is finite or empty define \(h(\cdot) = 2 \varphi_1 \circ d(\cdot, x) - \varphi_1(d(0, x))\). It is clear from the definition of \(\varphi_1\) that \(\|h\|_L \leq 4\), \(h(x) = h(y) = d(x, y)\) and \(h(0) = 0\). Now we set

\[\delta = \begin{cases} v_1/2, & \text{if } C_1 = \emptyset \\ 1/2 \min\{\{v_1, \text{sep}(C_1)\} \cup \{\text{dist}(z, K \setminus C_1), z \in D_1\}\}, & \text{otherwise} \end{cases} \]
where \(\text{sep}(C_1) = \inf\{d(z, t), \ z \neq t, \ z, t \in C_1 \} \) and \(D_1 = f^{-1}\left([0, +\infty \setminus \bigcup_{i=0}^{r_1+1} V_1^i]\right) \).

Note that \(\delta > 0 \). Indeed \(v_1 > 0 \), \(C_1 \) is finite, thus \(\text{sep}(C_1) > 0 \); for any \(z, t \in D_1 \), \(\text{dist}(z, K \setminus C_1) > 0 \) and \(D_1 \) is finite.

It follows that every \(z \neq t \in K \) such that \(d(z, t) \leq \delta \) are not in \(D_1 \) and there exists \(i \leq r_1 \) such that \(z, t \in f^{-1}\left(V_1^i\right) \), so the equality \(h(z) = h(t) \) holds, i.e. \(h \in \text{lip}_0(K) \).

Assume that \(C_1 \) is infinite. Since \(C_1 \subset \overline{B}\left(x, \frac{\alpha}{2}\right) \) we have that for every ordinal \(\alpha, C_1^{(\alpha)} \subset \overline{B}\left(x, \frac{\alpha}{2}\right)^{(\alpha)} \). But \(C_1 \cap \overline{B}\left(x, \frac{\alpha}{2}\right)^{(\alpha_0)} = \emptyset \) so \(C_1^{(\alpha_0)} = \emptyset \). However \(C_1 \) is compact; thus there exists \(1 \leq \alpha_1 < \alpha_0 \) so that \(C_1^{(\alpha_1)} \) is finite and nonempty. Then there exist \(k_2 \in \mathbb{N} \) and \(y_1^{(k_2)} \cdots y_2^{(k_2)} \in K \) such that \(C_1^{(\alpha_1)} = \{y_1^{(k_2)}, \cdots, y_2^{(k_2)}\} \).

For \(1 \leq i \leq k_2 \), we denote \(a_2^i = d(y_2^i, x) \). We can find \(r_2 \) and \(v_2 \) such that
\[
\{a_2^1, \cdots, a_2^{k_2}\} = \{v_2^1, \cdots, v_2^{r_2}\}.
\]

Now set
\[
v_2 = \min\left(\{v_1, v_1^1\} \cup \{v_2^i - v_2^{i-1}, \ 2 \leq i \leq r_2\}\right)
\]
and define \(\varphi_2 : [0, +\infty[\to [0, +\infty] \) continuous by
\[
\varphi_2(t) = \begin{cases} \varphi_1(t), & t \in \bigcup_{i=0}^{r_1+1} V_1^i \\ \varphi_1(v_2^i), & t \in [v_2^i - \frac{v_2}{2}, v_2^i + \frac{v_2}{2}] \end{cases}
\]
and \(\varphi_2 \) is affine on each interval of \([0, +\infty] \setminus (\bigcup_{i=0}^{r_1+1} V_1^i) \cup (\bigcup_{i=0}^{r_2} V_2^i) \).

The Lipschitz constant of \(\varphi_2 \) equals the maximum between \(\|\varphi_1\|_L \) and new slopes of \(\varphi_2 \). It is easy to check that \(\|\varphi_2\|_L \leq 2 \times \left(1 + \frac{1}{3}\right) = \frac{8}{3} \).

Set \(C_2 = f^{-1}\left(\left[\frac{v_1}{2}, \frac{v_2}{2} - \frac{v_1}{4}\right]\setminus (\bigcup_{i=0}^{r_2} V_2^i) \cup (\bigcup_{i=1}^{r_2} V_2^i)\right) \).

If \(C_2 \) is finite or empty, then setting \(h(\cdot) = 2 (\varphi_2 \circ d(\cdot, x) - \varphi_2(d(0, x))) \), we obtain \(\|h\|_L \leq \frac{16}{3} \), \(|h(x) - h(y)| = d(x, y), h(0) = 0 \), and with
\[
0 < \delta = \begin{cases} v_2/2, & \text{if } C_2 = \emptyset \\ \frac{1}{2} \min\{\{v_2, \text{sep}(C_2)\} \cup \{\text{dist}(z, K \setminus C_2), z \in D_2\}\}, & \text{otherwise}
\end{cases}
\]
where \(D_2 = f^{-1}\left(\left[\frac{v_2}{4}, \frac{v_2}{2} - \frac{v_1}{4}\right]\setminus (\bigcup_{i=1}^{r_2} V_1^i) \cup (\bigcup_{i=1}^{r_2} V_1^i)\right) \).

When \(z, t \in K \) are such that \(d(z, t) \leq \delta \), then \(h(z) = h(t) \), i.e. \(h \in \text{lip}_0(K) \).

If \(C_2 \) is infinite we proceed inductively in a similar way until we get \(C_n \) finite, which eventually happens because we have a decreasing sequence of ordinals.

The function \(h \) we obtain verifies \(h(0) = 0, \ |h(y) - h(x)| = d(x, y) \) and
\[
\|h\|_L \leq 2 \prod_{j=1}^{n} \left(1 + \frac{1}{2j - 1}\right) \leq 2 \prod_{j=1}^{+\infty} \left(1 + \frac{1}{2j - 1}\right) := c
\]
where \(c \) does not depend on \(x \) and \(y \). Moreover, setting
\[
0 < \delta = \begin{cases} v_n/2, & \text{if } C_n = \emptyset \\ \frac{1}{2} \min\{v_n, \text{sep}(C_n)\} \cup \{\text{dist}(z, K \setminus C_n), z \in D_n\}, & \text{otherwise}
\end{cases}
\]
if \(z, t \in K \) are such that \(d(z, t) \leq \delta \), then \(h(z) = h(t) \), i.e. \(h \in \text{lip}_0(K) \). This concludes the proof. \(\square \)
3. Metric approximation property

Theorem 3.1. Let \((K,d)\) be a countable compact metric space. Then \(\mathcal{F}(K)\) has the metric approximation property.

Before starting the proof let us recall a construction due to Kalton \[8\]. Let \((K,d)\) be an arbitrary pointed metric space and set

\[K_n = \{x \in K, \ d(0,x) \leq 2^n\}\] and \(O_n = \{x \in K, \ d(0,x) < 2^n\}\), \(n \in \mathbb{Z}\),

\[F_N = K_{N+1} \setminus O_{-N-1}, \ N \in \mathbb{N}.\]

Then, for every \(n \in \mathbb{Z}\), we can define a linear operator \(T_n : \mathcal{F}(K) \to \mathcal{F}(K)\) by

\[T_n \delta(x) = \begin{cases}
0 & , x \in K_{n-1} \\
(\log d(0,x) - (n-1)) \delta(x) & , x \in K_{n} \setminus K_{n-1} \\
(\log d(0,x) - n) \delta(x) & , x \in K_{n+1} \setminus K_{n} \\
0 & , x \notin K_{n+1}.
\end{cases}\]

If we set for \(N \in \mathbb{N}\), \(S_N = \sum_{n=-N}^{N} T_n\), then Lemma 4.2 in \[8\] gives:

Lemma 3.2. For every \(N \in \mathbb{N}\), we have \(\|S_N\| \leq 72\), \(S_N (\mathcal{F}(K)) \subset \mathcal{F}(F_N)\) and for every \(\gamma \in \mathcal{F}(K)\), \(\lim_{N \to +\infty} S_N \gamma = \gamma.\)

In order to prove Theorem 3.1 we need the following classical lemma. We will give its proof for the sake of completeness.

Lemma 3.3. If for \(\alpha\) countable ordinal there exist \(F_1, \cdots, F_n\) clopen subsets of \(K^{(\alpha)}\), mutually disjoint, such that \(K^{(\alpha)} = F_1 \cup \cdots \cup F_n\), then there exist \(G_1, \cdots, G_n\) clopen subsets of \(K\), mutually disjoint, such that \(K = G_1 \cup \cdots \cup G_n\) and \(G_i^{(\alpha)} = F_i\).

Proof. We proceed by induction on \(\alpha < \omega_1\) such that \(K^{(\alpha)} = F_1 \cup \cdots \cup F_n\), for all \(1 \leq i \neq j \leq n\), \(F_i\) is clopen in \(K^{(\alpha)}\) and \(F_i \cap F_j = \emptyset\).

The result is clear for \(\alpha = 0\).

Assume that the result is true for \(\alpha < \omega_1\) and suppose that \(\{F_i\}_{1 \leq i \leq n}\) is a clopen partition of \(K^{(\alpha+1)}\). Each \(F_i\) is closed in \(K^{(\alpha)}\) which is compact; then we can find \(O_i\) open subset of \(K^{(\alpha)}\) such that \(F_i \subset O_i\), \(O_i' = F_i\), and \(O_i \cap O_j = \emptyset\), for \(i \neq j\). Set \(O = K^{(\alpha)} \setminus \bigcup_{i=1}^{n} O_i\), \(U_1 = O_1 \setminus O\) and \(U_i = O_i\), for \(2 \leq i \leq n\). Then \(K^{(\alpha)} = \bigcup_{i=1}^{n} U_i\), \(U_i' = F_i\), and every \(U_i\) is clopen in \(K^{(\alpha)}\). Indeed we defined \(O_i\), \(2 \leq i \leq n\), as open subsets of \(K^{(\alpha)}\) so every \(U_i\) is open in \(K^{(\alpha)}\). Moreover points in \(O\) are isolated points of \(K^{(\alpha)}\), thus \(O\) and then \(U_1\) are open in \(K^{(\alpha)}\). Finally \(K^{(\alpha)} = \bigcup_{i=1}^{n} U_i\); then every \(U_i\) is closed.

We can apply the induction hypothesis to find \(G_1, \cdots, G_n\) clopen subsets of \(K\), mutually disjoint, such that \(K = G_1 \cup \cdots \cup G_n\) and \(G_i^{(\alpha)} = U_i\); that is, \(G_i^{(\alpha+1)} = F_i\), \(1 \leq i \leq n\).

Finally we assume \(\alpha\) is a limit ordinal and \(K^{(\alpha)} = F_1 \cup \cdots \cup F_n\), disjoint union of clopen sets in \(K^{(\alpha)}\). There exist \(O_1, \cdots, O_n\) open subsets of \(K\) such that \(F_i \subset O_i\), \(O_i^{(\alpha)} = F_i\), and \(O_i \cap O_j = \emptyset\) for \(i \neq j\).

Set \(F = K^{(\alpha)} \setminus \bigcup_{i=1}^{n} O_i\); then \(\bigcap_{\beta < \alpha} F \cap K^{(\beta)} = F \cap K^{(\alpha)} = \emptyset\). But \(F\) is compact, so there exists \(\beta < \alpha\) such that \(F \cap K^{(\beta)} = \emptyset\), that is to say, \(K^{(\beta)} \subset \bigcup_{i=1}^{n} O_i\).
Finally $K^{(β)}$ is the disjoint union of $O_i \cap K^{(β)}$, $1 \leq i \leq n$, clopen sets in $K^{(β)}$, so we can use the induction hypothesis to write $K = G_1 \cup \cdots \cup G_n$, G_i mutually disjoint and clopen in K and $G_i^{(β)} = O_i \cap K^{(β)} = O_i^{(β)}$. Moreover we have $β < α$; thus $G_i^{(α)} = \bigcap_{γ < α} G_i^{(γ)} = \bigcap_{γ < α} O_i^{(γ)} = F_i$. □

Proof of Theorem 3.1. We proceed by induction on $α < ω_1$ such that $K^{(α)}$ is finite.

- If K is finite, then $F(K)$ is finite dimensional, so has trivially the MAP, and the property is true for $α = 0$.
- Let $α$ be a countable ordinal and assume that for every $β < α$, if (K, d) is a compact metric space so that $K^{(β)}$ is finite, then $F(K)$ has the MAP.

Now let (K, d) be a compact metric space such that $K^{(α)}$ is finite.

First $F(K)$ is linearly isometric to $lip_0(K)^*$, and a theorem of Grothendieck [6] (see also Theorem 1.e.15 in [10]) asserts that a separable Banach space which is isometric to a dual space and which has the AP has the MAP, so it is enough to prove that $F(K)$ has the BAP.

Secondly, if K is such that $K^{(α)} = \{a_1, \cdots, a_n\}$, singletons $\{a_i\}$ are clopen in $K^{(α)}$ and Lemma 3.3 gives G_1, \cdots, G_n mutually disjoint clopen subsets of K such that $∀i ≤ n, G_i^{(α)} = \{a_i\}$ and $K = G_1 \cup \cdots \cup G_n$. Moreover $F(K)$ is isomorphic to $(\bigoplus_{i=1}^n F(K_i))_{ℓ_1}$, where $K_i = G_i \cup \{0\}$, $1 ≤ i ≤ n$.

Indeed if $a = \min dist(G_i, G_j), where$

$$dist(G_i, G_j) = \inf \{d(x, y) : x \in G_i, y \in G_j\},$$

by compactness we have $a ≥ 0$. Then the operator

$$Φ : Lip₀(K) → (\bigoplus_{i=1}^n Lip₀(K_i))_{∞}$$

$$f → (f|_{K_i})_{i=1}^n$$

is onto, linear, weak*-continuous, and for $f \in Lip₀(K)$, we have

$$a \over 2 diam(K)||f||_L ≤ ||Φ(f)||_∞ ≤ ||f||_L.$$

Hence $F(K)$ is isomorphic to $(\bigoplus_{i=1}^n F(K_i))_{ℓ_1}$.

The BAP is stable with respect to finite $ℓ_1$-sums and isomorphisms; then it is enough to prove that for any $i ∈ \{1, \cdots, n\}, F(K_i)$ has the BAP. In other words we need to prove that when $K^{(α)}$ is a singleton, then $F(K)$ has the BAP.

Suppose as we may that $K^{(α)} = \{0\}$. Using the construction due to Kalton [8] we have a sequence of linear operators $S_N : F(K) → F(FN)$, $||S_N|| ≤ 72$ and for every $γ ∈ F(K)$, \lim_{N→+∞} S_Nγ = γ.

Moreover, for every $N ∈ \mathbb{N}$, there exists $β < α$ such that $F_N^{(β)}$ is finite and then $F(F_N)$ has the MAP: since $F(F_N)$ is separable, for every $N ∈ \mathbb{N}$, there exists a sequence of finite-rank linear operators $R_p^N : F(F_N) → F(F_N)$ so that for every $γ ∈ F(F_N)$, \lim_{p→+∞} R_p^Nγ = γ and $||R_p^N|| ≤ 1$ for every $p ∈ \mathbb{N}$ [12]; see also Theorem 1.e.13 in [10].

Setting $Q_{N,p} = R_p^N ∘ S_N$ we deduce that the range of $Q_{N,p}$ is finite dimensional as the range of R_p^N, $||Q_{N,p}|| ≤ ||R_p^N|| ||S_N|| ≤ 72$ and for every
Corollary 4.1. Let K be a compact metric space which is not perfect (i.e. $K \neq K'$). Then for every countable ordinal $\alpha \geq 1$, the space $F(K/K(\alpha))$ has the MAP.

Proof. Remark that for every compact metric space (K,d) and every countable ordinal $\alpha \geq 1$, the quotient space $K/K(\alpha)$ is compact and countable because $(K/K(\alpha))^{(\alpha)}$ is empty or $\{0\}$. Then this result is a consequence of Theorem 3.1.

Remark 4.2. (1) If K is perfect, then $F(K/K(\alpha)) = \{0\}$.

(2) Otherwise $F(K)/F(K(\alpha))$ is linearly isometric to $F(K/K(\alpha))$. (We write $F(K)/F(K(\alpha)) \equiv F(K/K(\alpha))$.)

Indeed we can assume that $0 \in K(\alpha)$. Then
\[
\{ f \in Lip_0(K) ; \forall x,y \in K(\alpha), f(x) = f(y) \}
= \{ f \in Lip_0(K) ; \forall x \in K(\alpha), f(x) = 0 \}.
\]

And since $F(K(\alpha)) = \text{vect} \{ \delta_x, x \in K(\alpha) \}$, we have
\[
\{ f \in Lip_0(K) ; \forall x \in K(\alpha), f(x) = 0 \} = F(K(\alpha))^{\perp},
\]
which is isometric to $(F(K)/F(K(\alpha)))^*$. To sum up,
\[
\{ f \in Lip_0(K) ; \forall x,y \in K(\alpha), f(x) = f(y) \} \equiv \left(F(K)/F(K(\alpha)) \right)^*.
\]

From Propositions 1.4.3 and 1.4.4 in [14], there exists an isometry Φ from $\{ f \in Lip_0(K) ; \forall x,y \in K(\alpha), f(x) = f(y) \}$ onto $Lip_0(K/K(\alpha))$. Moreover $Lip_0(K/K(\alpha))$ is linearly isometric to $F(K/K(\alpha))^*$, so the space $(F(K)/F(K(\alpha))^*$ is isomorphically isometric to $F(K/K(\alpha))^*$. One can easily check that Φ is weak*-continuous, and finally $F(K)/F(K(\alpha))$ is linearly isometric to $F(K/K(\alpha))$.

To finish this paper we will use Corollary 4.1 and the previous remark to prove the following: in order to obtain that every countable compact metric space has the BAP it is not possible to use the three-space property due to Godefroy and Saphar [5], asserting:

If M is a closed subspace of a Banach space X so that M^\perp is complemented in X^* and X/M has the BAP, then X has the BAP if and only if M has the BAP.
Indeed we can construct a compact metric space K so that $K^{(2)} = \{0\}$; in particular $\mathcal{F}(K)$, $\mathcal{F}(K')$ and $\mathcal{F}(K) / \mathcal{F}(K')$ have the MAP, but $\mathcal{F}(K')$ is not complemented in $\text{Lip}_0(K)$.

To construct this space we need a proposition similar to Proposition 7 in [4]:

Proposition 4.3. For any $\lambda > 0$, there exist a finite metric space H_λ and a subset G_λ of H_λ such that if $P : \text{Lip}_0(H_\lambda) \to \mathcal{F}(G_\lambda)^\perp$ is a bounded linear projection, then $\|P\| \geq \lambda$.

Proof. Assume that for some $\lambda_0 > 0$ and for all pairs (G, H) of finite metric spaces with $G \subset H$ we can construct $P : \text{Lip}_0(H) \to \mathcal{F}(G)^\perp$ linear projection with norm bounded by λ_0.

Let K be the compact metric space such that $\mathcal{F}(K)$ fails AP appearing in Corollary 5 of [4]. There exists $(G_n)_{n \in \mathbb{N}}$ an increasing sequence of finite subsets of K such that $\bigcup_{n \in \mathbb{N}} G_n = K$.

Then for every $n \in \mathbb{N}$ and every $k \geq n$, there exists $P_n^k : \text{Lip}_0(G_k) \to \mathcal{F}(G_n)^\perp$ a linear projection of norm less than λ_0, where $\mathcal{F}(G_n)^\perp \subset \text{Lip}_0(G_k)$.

Fix $n \in \mathbb{N}$. For $k \in \mathbb{N}$, let $E_k : \text{Lip}_0(G_k) \to \text{Lip}_0(K)$ be the nonlinear extension operator which preserves the Lipschitz constant given by the inf-convolution formula:

$$\forall f \in \text{Lip}_0(K), \forall x \in K, E_k f(x) = \inf_{y \in G_k} \{ f(y) + \| f \| \text{Lip}_0 d(x, y) \}.$$

For $f \in \text{Lip}_0(K)$, we set

$$\widetilde{P}_n^k(f) = \left\{ \begin{array}{ll} E_k P_n^k(f|_{G_k}) & , k \geq n, \\ 0 & , k < n. \end{array} \right.$$

Then $\| \widetilde{P}_n^k(f) \| \text{Lip}_0 \leq \lambda_0 \| f \| \text{Lip}_0$, for every $f \in \text{Lip}_0(K)$.

If U is a nontrivial ultrafilter on \mathbb{N}, for every $f \in \text{Lip}_0(K)$ we can define $P_n f$ as the pointwise limit of $\widetilde{P}_n^k(f)$ with respect to $k \in U$. Then P_n is a linear projection onto $\mathcal{F}(G_n)^\perp \subset \text{Lip}_0(K)$ because P_n^k is a projection onto $\mathcal{F}(G_n)^\perp \subset \text{Lip}_0(G_k)$. Moreover $\| P_n f \| \text{Lip}_0 \leq \lambda_0 \| f \| \text{Lip}_0$ and $P_n f$ pointwise converges to 0 for any $f \in \text{Lip}_0(K)$.

Set $Q_n = \text{Id}_{\text{Lip}_0(K)} - P_n : \text{Lip}_0(K) \to \text{Lip}_0(K)$. Then Q_n is a continuous linear projection of finite rank and $\text{Ker} \ Q_n = \mathcal{F}(G_n)^\perp$ is weak*-closed. Therefore Q_n is weak*-continuous. Moreover $\| Q_n \| \leq 1 + \lambda_0$ and for every $f \in \text{Lip}_0(K)$, $Q_n f$ converges pointwise to f.

Using Theorem 2 in [1] we deduce that $\mathcal{F}(K)$ has the $(1+\lambda_0)$-BAP, contradicting our assumption on K.

Thanks to that proposition we will construct a compact metric space K such that $K^{(2)} = \{0\}$ and $\mathcal{F}(K')$ is not complemented in $\text{Lip}_0(K)$.

For every $n \in \mathbb{N}$ there exist $A_n \subset B_n$ finite such that for every continuous linear projection $P_n : \text{Lip}_0(B_n) \to \mathcal{F}(A_n)^\perp$, we have $\| P_n \| \geq n$.

Set $\alpha_n = \min \{ d(x, y) \mid x \neq y \in B_n \} > 0$. If we see B_n as a subspace of ℓ^m_{∞}, with m_n the cardinality of B_n, we can find for every $a \in A_n$, L_n^a a sequence converging to a such that $L_n^a \subset B(a, 2\alpha_n)$.

Define $K_n = \bigcup_{a \in A_n} L_n^a \cup B_n$. We obtain $A_n \subset B_n \subset K_n$ and $K'_n = A_n$. We can assume that the diameter of K_n is less than 8^{-n}.
Finally we define $K := \left(\bigcup_{n \in \mathbb{N}} \{n\} \times K_n \right) \cup \{0\}$ equipped with the distance:

$$d(0, (n, x)) = 2^{-n},$$
$$d((n, x), (m, y)) = \begin{cases} d_{K_n}(x, y), & n = m \\ |2^{-n} - 2^{-m}|, & n \neq m. \end{cases}$$

Then $K^{(2)} = \{0\}$.

Now assume that there exists $P : \text{Lip}_0(K) \to \mathcal{F}(K') ^{\perp}$ a continuous linear projection. Let $E_n : \text{Lip}_0(B_n) \to \text{Lip}_0(K_n)$, $F_n : \text{Lip}_0(B_n) \to \text{Lip}_0(K)$ and $R_n : \text{Lip}_0(K) \to \text{Lip}_0(B_n)$ be defined as follows:

$$\forall f \in \text{Lip}_0(B_n), \quad (E_n f)(x) = \begin{cases} f(x), & x \in B_n \\ f(a), & x \in L^a_n \end{cases}$$
$$\forall f \in \text{Lip}_0(B_n), \quad (F_n f)(m, x) = \begin{cases} (E_n f)(x), & n = m \\ 0, & n \neq m \end{cases}$$
$$\forall f \in \text{Lip}_0(K), \quad R_n f = f|_{\{n\} \times B_n}.$$

We set $P_n := R_n \circ P \circ F_n : \text{Lip}_0(B_n) \to \mathcal{F}(A_n) ^{\perp}$ and we have that P_n is a continuous linear projection. From Proposition 4.3 we deduce that $\|P_n\| \geq n$. Moreover our choice of α_n implies that $\|F_n\| \leq 3$; then finally $\|P\| \geq n/3$ holds for every $n \in \mathbb{N}$. Therefore P is unbounded and $\mathcal{F}(K') ^{\perp}$ is not complemented in $\text{Lip}_0(K)$.

Acknowledgements

The author would like to thank Gilles Godefroy for fruitful discussions and Gilles Lancien for useful conversations and comments.

References

[1] Laetitia Borel-Mathurin, Approximation properties and non-linear geometry of Banach spaces, Houston J. Math. 38 (2012), no. 4, 1135–1148. MR3019026
[2] Gilles Godefroy, The use of norm attainment, Bull. Belg. Math. Soc. Simon Stevin 20 (2013), no. 3, 417–423. MR3129049
[3] G. Godefroy and N. J. Kalton, Lipschitz-free Banach spaces, Studia Math. 159 (2003), no. 1, 121–141. Dedicated to Professor Aleksander Pelczyński on the occasion of his 70th birthday, DOI 10.4064/sm159-1-6. MR2030906 [2004m:46027]
[4] Gilles Godefroy and Narutaka Ozawa, Free Banach spaces and the approximation properties, Proc. Amer. Math. Soc. 142 (2014), no. 5, 1681–1687, DOI 10.1090/S0002-9939-2014-11933-2. MR3168474
[5] Gilles Godefroy and Pierre David Saphar, Three-space problems for the approximation properties, Proc. Amer. Math. Soc. 105 (1989), no. 1, 70–75, DOI 10.2307/2046736. MR0930249 [89e:46015]
[6] Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires (French), Mem. Amer. Math. Soc. 1955 (1955), no. 16, 140. MR0075539 [17,763c]
[7] Petr Hájek and Eva Pernecká, On Schauder bases in Lipschitz-free spaces, J. Math. Anal. Appl. 416 (2014), no. 2, 629–646, DOI 10.1016/j.jmaa.2014.02.060. MR3188728
[8] N. J. Kalton, Spaces of Lipschitz and Hölder functions and their applications, Collect. Math. 55 (2004), no. 2, 171–217. MR2068973 [2005c:46113]
[9] G. Lancien and E. Pernecká, Approximation properties and Schauder decompositions in Lipschitz-free spaces, J. Funct. Anal. 264 (2013), no. 10, 2323–2334, DOI 10.1016/j.jfa.2013.02.012. MR3035057
[10] Joram Lindenstrauss and Lior Tzafriri, *Classical Banach spaces. I*, Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. Springer-Verlag, Berlin-New York, 1977. MR0500056 (58 #17766)

[11] Assaf Naor and Gideon Schechtman, *Planar earthmover is not in L_1*, SIAM J. Comput. 37 (2007), no. 3, 804–826 (electronic), DOI 10.1137/05064206X. MR2341917 (2008g:46011)

[12] A. Pełczyński, *Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis*, Studia Math. 40 (1971), 239–243. MR0308753 (46 #7867)

[13] Ju. I. Petunin and A. N. Pličko, *Some properties of the set of functionals that attain a supremum on the unit sphere* (Russian), Ukrain. Mat. Ž. 26 (1974), 102–106, 143. MR0336299 (49 #1075)

[14] Nik Weaver, *Lipschitz algebras*, World Scientific Publishing Co., Inc., River Edge, NJ, 1999. MR1832645 (2002g:46002)

Laboratoire de Mathématiques de Besançon, CNRS UMR 6623, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon Cedex, France

E-mail address: aude.dalet@univ-fcomte.fr