Driver Drowsiness Prediction Based on Multiple Aspects Using Image Processing Techniques

Uma Maheswari V¹(MIEEE), Rajanikanth Aluvalu²(SMIEEE), MV Prasad Kantipudi³(SMIEEE), Krishna Keerthi Chennam⁴, Ketan Kotecha⁵, Jatinderkumar R. Saini⁶

¹Department of computer Science and Engineering, Vardhaman College of Engineering, Hyderabad, India (Email: umamaheshwariv999@gmail.com)
²Department of Information Technology, Chaitanya Bharathi Institute of Technology, Hyderabad, India (Email: rajanikanth.aluvalu@ieee.org)
³,⁵Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India (Email: mvprasad.kantipudi@ieee.org)
⁴Department of computer Science and Engineering, Matrusri Engineering College, Hyderabad, India (Email: krishnakeerthi@gmail.com)
⁵Symbiosis Centre of Applied A.I. (SCAAI), Symbiosis International (Deemed University), Pune, India (Email: head@scaai.siu.edu.in)
⁶Symbiosis Institute of Computer Studies and Research, Symbiosis International (Deemed University), Pune, India (Email: saini_expert@yahoo.com)

Corresponding author: Ketan Kotecha (email: head@scaai.siu.edu.in), Uma Maheswari V (email: umamaheshwariv999@gmail.com)

ABSTRACT The majority of the accidents were happening perpetually due to driver drowsiness over the decades. Automation has been playing key role in many fields to provide conformity and improve the quality of life of the users. Though various drowsiness detection systems have been developed during last decade based on many factors, still the systems were demanding an improvement in terms of efficiency, accuracy, cost, speed, and availability, etc. In this paper, proposed an integrated approach depends on the Eye and mouth closure status (PERCLOS) along with the calculation of the new proposed vector FAR (Facial Aspect Ratio) similarly to EAR and MAR. This helps to find the status of the closed eyes or opened mouth like yawning, and any frame finds that has hand gestures like nodding or covering opened mouth with hand as innate nature of humans when trying to control the sleepiness. The system also integrated the methods and textural-based gradient patterns to find the driver’s face in various directions identify the sunglasses on the driver’s face and the scenarios like hands-on eyes or mouth while nodding or yawning were also recognized and addressed. The proposed work tested on datasets such as NTHU-DDD, YawDD, and a proposed dataset EMOCDS (Eye and Mouth Open Close Data Set) and proved better in terms of accuracy and provides results in general by considering various circumstances.

INDEX TERMS: EAR (Eye Aspect Ratio), MAR (Mouth Aspect Ratio), FAR (Face Aspect Ratio), advanced driver movement tracking system, Spatio-temporal interest points, eye gaze tracking, deep neural networks.

I. INTRODUCTION

A large number of people across the world want to buy vehicles. It is noteworthy that the menace of road accidents is also increasing rapidly with the increase in the number of vehicles plying on the roads. The number of road accidents is very high in countries having highly crowded streets and roads. The National Crime Records Bureau (NCRB) conducted a survey and reported that around 0.13 million lives were lost due to road accidents in India in the year 2020 alone [1]. This represents the foremost cause of deaths worldwide. The average mortality is high in the middle-income countries compared to the low-income countries, which is an alarming condition to think towards the hitch. The World Health Organization (WHO) has published an article that pointed out that the risk factors leading to accidents are speeding, intoxicated driver, distracted driving, etc. [2]. Almost all of these factors reveal that most road accidents are happening due to the carelessness of the driver, and the negligence in following the traffic rules as well as the safety precautions. Drowsiness may occur due to lack of sleep or continuous driving at night or both, ultimately making the vehicle driver tired and diverted from the concentration on driving. In the transportation industry, where the bus and truck drivers drive overnight, it is very common for them to fall asleep, particularly in the wee hours, due to exhaustion, while the vehicle is in motion. The circumstances mentioned above demand that people get alerted to avoid these situations to save many previous lives. Technology is advancing at a very fast pace and automation is easing the people’s busy lives while providing them with services with perfection and that too in less time and more safety. Though top companies are already investing a lot of money to identify the state of a driver’s drowsiness, it is still a challenging task with open research avenues. Hence, an automatic and efficient drowsiness detection and driver mood prediction-based system is required to be implement for real-time applications [20]. This will help to reduce road accidents and increase the people’s safety [3].

The development of technologies required to implement the driver drowsiness tools becomes a tedious task in the area of accident prevention or accident-avoidance systems [50]. Due to the intensity of the problem, the industry has developed many systems based on various aspects. The driver's
inattention may be because of the lack of sleep or negligence, or other parameters that might draw the driver’s attention away from driving. Alkinaniet al. has done a comprehensive survey on human driving behavior using deep learning techniques and challenges [12].

![Sample images of drowsiness gestures](image)

FIGURE 1. Sample drowsiness captured images with various postures such as closing eyes, yawning, and controlling with hand while nodding and yawning.

A. LIMITATIONS:

A person may fall asleep while driving for various reasons. The same is exhibited in different ways such as nodding, closing eyes, rubbing eyes to control drowsiness, closing eyes with a hand, and keeping hand automatically on the mouth while yawning. Figure 1 presents the sample images of these gestures.

1) Multiple face detection:

Generally, the camera captures the whole scenario that may consist of everything around the driver. Hence, in addition to the face of the driver, the faces of the passengers as well as other objects in the surrounding are also captured. Identification of the driver’s face from the various entities in the image is an activity that needs to be performed. Further, the face can be cropped and processed to predict the scenario and to alert the driver.

2) Face orientation:

When the driver is drowsy, his face may be captured in any orientation because he may turn to the side while yawning or trying not to fall asleep [8]. So, the proposed system must be intelligent enough to analyze the situation from the given orientations.

3) Expression differentiation:

A person exhibits different expressions depending on different situations. These expressions include excitement, disgust, and sadness. They can easily divert the driver’s attention and must be differentiated from each other for further processing from the research perspective. Feature extraction techniques are applied to extract the differentiated features [4][55].

4) Illumination:

As stated earlier, most drivers tend to fall asleep more during the timings of night driving and early morning. It is notable that this timing, unlike normal lighting condition timing, also coincides with low illumination for the camera captured images. Hence, the system to be designed for drivers must also take care of sufficient lighting condition by use of sources like Light Emitting Diode (LED) light or by using the Infrared (IR) cameras [8].

The proposed method is the integration of possible cases arises while driving generally. Still, the state-of-the-art systems are addressing the one problem or two only. The proposed method addresses the many issues instead of one based on various parameters simultaneously. It motivated to combine the different circumstances aforementioned. The paper organized as follows: section I and II presented the introduction and literature review. Section III represents the proposed method. In
section IV discussed about the results and analysis. Section V and VI were presented with conclusion and references as well.

II. LITERATURE SURVEY

Dasgupta et al. [4] proposed a three-stage drowsiness detection system having PERCLOS (eyelid closure calculation), speech handling data taken from the microphone, and feature extraction. Lin et al. [5] and Budak et al. [14] have developed a system for drowsiness detection depending on the EEG (electroencephalogram) integrated with ICA and power spectrum analysis, and linear regression that was used for classifying the state of the driver’s drowsiness. Feature extraction, multi-view, and EEG-based systems were introduced and implemented on the training system to overcome the challenges given by dynamic behavior [6][7]. In addition, functional near-infrared spectroscopy (fNIRS) has been used to investigate brain function using positive signals released. In contrast, the classification algorithms like DNN and CNN have been used to classify the drowsiness and alert states [9][39]. In similar but different research works Lee and Chung [10], and Deng and Wu [15] proposed an integrated framework for facial changes and sensor data based on bio signals.

Kahlon and Ganesan [11] introduced a drowsiness detection system using binary eyes data with images. Various fusion methods have also been experimented by the researchers. Such methods include fusion of blood, volume and pleasure (BVP) [13], bio-signals of blinking and yawning [16][27] and addition of nodding too [19][30]. Valsanet al. [17] and Singh [18] have proposed a fusion-based method utilizing eye and mouth closing status. Multi features are used for detecting the state of drowsiness by Wang and Shen [20]. Bhowmick and Kumar [22] used the thresholding technique for face recognition. They also used facial landmarks to locate the eye’s position. Many research works [21][23][24][40] have done drowsiness detection using facial expressions and facial features. Kulkarni et al. [25] proposed an embedded system to sense the state of the driver. Their Raspbian OS-based camera supported system was interfaced serially with RS232. Miranda et al. [26] focused on eyelid movement to monitor the driver’s state. Wongphanngam and Pumrin [28] as well as Lin et al.[35] proposed a method that converts images into gradient images and used random regression forest algorithm to find the head orientation. Anilkumar et al. [29] proposed a system based on heartbeat detection using R-peak detection, face movement etc., which were detected with the help of a frame difference algorithm.

The majority of the research works are done based on the eye status of the driver [31][32][37][41]. Drowsiness detection was done using LBPH [33][48]. Cheon and Kang [34] worked on the bio-data gathered from PPG (PhotoPlethysmography) and processed with segmentation and averaging. They completed classification using. Tateno et al. [36] developed a drowsiness detection system based on the heart rate and respiration changes. Wang and Qin [38] implemented a system based on the FPGA to detect the driver's drowsiness. Ishii et al. [41] have proposed High-order Local Auto-Correlation (HLAC) for extracting the shape features and identified the attention, stress, drowsiness. Ling et al. [42] has introduced a discriminative local feature vector for facial expression recognition using the sparse coefficients. Maheswari et al. [53] presented a comprehensive survey on texture-based local patterns such as LBP, LTP, LTrP, DBC, and DLEP. Hong and Wang [43] has introduced the integrated feature vector-based multiple features along with the LSTM. Hammendi et al. [44] discussed various driver drowsiness detection methods. Cristiani et al.[45] have presented the work of the project REFLECT and have discussed the differences in detecting drowsiness and fatal crashes of cars. Lashkov et al. [46] and Joshi et al. [47] advocated that OpenCV libraries are useful to retrieve the required features to detect the driver drowsiness.

III. PROPOSED METHOD

Drowsiness detection is a system that helps to provide safety and accident prevention. The proposed system is a driver drowsiness prediction system that will identify various scenarios. It will capture closed eyes, open mouth, hands-on eyes or mouth while nodding or yawning etc. It will also detect whether the person is yawning or trying not to fall asleep by the innate actions such as making eyes broad from normal size and rubbing eyes with a hand. An image of the driver captured through the camera serves as the system's input. Furthermore, the face will be identified and cropped from the image with created Region of Interest (ROI). This will be followed by detection of eyes from ROI which in turn will serve as the input to the CNN algorithm for classification of various states of sleepiness.

A. GRADIENT AND MAGNITUDE CALCULATION

Gradient and magnitude calculation is used to recognize the edges of a given face and orientation. Therefore, to calculate the texture based gradient magnitude [54] and the orientations, we use Robinson's operator in four orientations such as $0^\circ, 45^\circ, 90^\circ$ and 135°.

The given 3x3 image can be convolved with their four possible orientations to gather the gradient responses were calculated using the equation (1) and designated as G_D, G_{45}, G_{90} and G_{135}, respectively [53].

$$G_D = \mathbb{R}(x, y) \big|_{D=0^\circ, 45^\circ, 90^\circ, 135^\circ}$$ (1)
Here, R_0, R_{45}, R_{90} and R_{135} are Robinson's convolutional mask operators for 0°, 45°, 90° and 135° orientations.

$$\mathcal{R}_0 = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \quad \mathcal{R}_{45} = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0 \end{bmatrix}$$

$$\mathcal{R}_{90} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} \quad \mathcal{R}_{135} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & -2 \end{bmatrix}$$

Magnitudes are calculated using equation (2) from the above responses.

$$|\mathcal{M}| = \sqrt{(G_0 + G_{45} + G_{90} + G_{135})} \quad (2)$$

and the orientations are calculated for each pixel using the following formula:

$$\theta = \arctan\left(\frac{G_{90}}{G_0}\right) \quad (3)$$

With the use of equations (2) and (3), we could find the driver's face position as well as, similar to [49], the orientation of the driver's face. We could also find the facial expressions like sad, disgust, and excitement, which may lead a driver to have diverted concentration from his work.

B. FINDING THE EYE, MOUTH, AND FACE STATUS:

Identifying prominent facial features on the face is a fundamental process that helps analyze complex problems such as expression recognition. Various applications can then use the status of the specific features for further processing. Automated facial landmarking generally describes the unique process to find the effective differences to construct the appropriate model. This method uses the dlib68 point model to point the landmarks on the face to compute the Eye Aspect Ratio (EAR), Mouth Aspect Ratio (MAR), and the newly proposed Face Aspect Ratio (FAR) parameters. These parameters are depicted in Figure 2. After finding the landmarks on face, EAR, MAR, and FAR were calculated using equations (4), (5), and (6) to find the status of eyes and mouth.

$$EAR = \frac{\|v - z\| + \|w - y\|}{2\|u - x\|} \quad (4)$$

$$MAR = \frac{\|t - z\| + \|u - y\| + \|v - x\|}{3\|s - w\|} \quad (5)$$

$$FAR = \frac{\|p_{22} - p_8\| + \|p_{28} - p_9\| + \|p_{23} - p_{10}\|}{3\|p_6 - p_{12}\|} \quad (6)$$

Eye gaze state classification: EAR determines the status of the eye, whether it is open or close, and helps to classify it. The existing methods have generated the features for the classification of eye status. Still, they are not up to the mark as they do not cover the micro-level gestures like the eyeball orientations in the open eye, which has a vital role to play. Statistical methods can also compute the orientation of the eyeball. Compared to the closed eye, the open eye produces more edge information and can separate the eyeball based on the shape and texture. To find the mid-point from an image having captured the eyeball centered, let us assume that $C(x_1, y_1)$ is the center of the circle and the radius
Later, compare the eyeball radius with radius and displacement of the earlier circle corner position. If it is high, it indicates that the eyeball is rotated in that orientation.

TABLE 1. VARIOUS EXPRESSIONS EXHIBITED BY THE PEOPLE FOR DESCRIBING SLEEPINESS

Actions and Expressions	
A1: Left eye close	E2: Disgust
A2: Right eye close	U1: Eyes not found
A3: Left and Right eyes closed	U2: Mouth not found
A4: Mouth open	U3: Left eye not found
E1: Sad expression	U4: Right eye not found

The above expressions or actions were given by the people usually in a sleepiness mood.

ALGORITHM 1:

Input: Image frames from a surveillance camera

\[\mathcal{R} - \text{Closure, Set of actions, expressions, and rules} \]

\[\mathcal{R} = \{R_1, R_2, \ldots, R_n \land E_1, E_2, \ldots, E_n \land U_1, U_2, \ldots, U_n\} \]

\[R_1 : \{A_1 \lor A_2 \lor A_3 \lor A_4 \lor E_1 \lor E_2\} \]

\[R_2 : \{(A_1 \land A_4) \lor (A_2 \land A_4) \lor (A_3 \land A_4) \mid E_1 \land E_2 \text{ not mandatory}\} \]

Output: Drowsiness prediction

If \(R_1 \lor R_2 \lor U_1 \lor U_2 \lor U_3 \lor U_4 \): Drowsiness is detected due to some actions

Else if \(U_1 \):
The driver may wear glasses or cover his eyes with hands or rub his eyes

Else if \(U_2 \):
The driver may be yawning or covering his mouth while yawning

FIGURE 3. An integrated driver drowsiness prediction framework with various factors

FAR is calculated from the facial landmarks pointed vertically in the middle 3 points using the Equation (6) parallel equation, which impacts distance while the mouth opens. The gap between the points beside the mouth is reduced while the mouth opens, and the vertical gap increases so that yawning status can be found out even if the person covers their mouth with a hand or something while yawning as innate nature. The proposed prediction framework is presented in Figure 3 while the corresponding Algorithm 1 is presented below and makes use of symbols listed in Table I. Following are formulas used for calculating the semantics of the face based on the given landmark positions:
Else if (U3):
The driver may be rubbing/covering his left eye with his hand due to sleep or anything
Else if (U2):
The driver may be rubbing/covering his right eye with a hand due to sleep or anything
Else if (U1 ∧ U2):
The driver may wear glasses and yawn but may be controlled with a hand
Else:
Driver is steady

IV. THRESHOLD VALUES FOR EAR, MAR, AND FAR

Eye Aspect Ratio (EAR)

Table II. Threshold ranges and status of eye based on EAR.

Range	Status
< 0.23	low (Drowsy, eyes are closed)
0.25 - 0.30	Normal
>0.32	High (Eyes wide open)

Mouth Aspect Ratio (MAR)

Table III. Threshold ranges and status of mouth based on MAR.

Range	Status
0 – 0.3	Normal
>0.35	High (Yawning, mouth open wide)

Face Aspect Ratio (FAR)

Table IV. Threshold ranges and status of face based on FAR.

Range	Status
FAR + 0.35 >=	(Yawning)

Table II, III and IV are holding the threshold values required to analyze the status of the eye, mouth, and face to predict the drowsiness of a driver.

The below formats are for calculating the semantics of the face based on the given landmark positions as follows:

Left Eye Image (LEI) from the given image:

\[(x_1, y_1), (x_2, y_2) = (shape[43][0], shape[44][1]), (shape[46][0], shape[47][1])\]

\[LEI(x, y) = cv2.resize (frame [y_1 - 15: y_2 + 15, x_1 - 15: x_2 + 15], (86, 86))\]

Right Eye Image (REI) from the given image:

\[(x_1, y_1), (x_2, y_2) = (shape[37][0], shape[38][1]), (shape[40][0], shape[41][1])\]

\[REI(x, y) = cv2.resize (frame [y_1 - 15: y_2 + 15, x_1 - 15: x_2 + 15], (86, 86))\]

Mouth Image (MI) from the given image:

\[MI(x, y) = cv2.resize (frame [y_1 - 15: y_2 + 15, x_1 - 15: x_2 + 15], (86, 86))\]

Similarly, the computes of the mouth and facial cropped images were calculated in size. Detection of hand, when it is found on the face in an image that has been captured while yawning or nodding, is the prominent step in the present research work. A camera is used to capture the image which is then processed further. A training algorithm is used to train with the samples. Whenever hands are detected on the face, it can be cropped and used along with the training data.

V. RESULT ANALYSIS

A. DATASETS:

1. **NTHU DDD:** National Tsing Hua University (NTHU) dataset consists of 22 various subsets with different ethnicities at various levels. It has images capturing various scenarios while driving, such as yawning, blinking, dozing, and laughing, in various illuminations. Each scenario is considered from the video consisting of 30 frames/sec [13][52]. The videos are also simulated with various scenarios like glasses-wearing in the daytime or nighttime, sleepy or non-sleepy, etc.

2. **YawDD:** This dataset is constructed from videos of driving in real-time. The images are captured by cameras fixed either in the front mirror or dashboard. Images of people driving have been collected in color 24-b (RGB) with resolution 640 X 480 from the 30 frames/sec [51]. Images consist of people of all ages, different facial features, ethnicities, etc. All mouth postures are taken in various illumination conditions while talking, singing, etc.

3. **EMOCDS (Eye and Mouth Open Close Data Set):** The dataset is comprises of cropped eye and mouth images with open and closed status. The images were taken from Google and it has around 12k images of various people’s images.

4. **UTA-RLDD (University of Texas at Arlington Real-Life Drowsiness Dataset)[56]:** It consists of 180 videos of 60 different participants. Each participant given in three classes drowsiness, alertness, and vigilance with low.
B. CLASSIFICATION:
The model we used is built with Keras using Convolutional Neural Networks (CNN). A convolutional neural network is a special type of deep neural network which performs extremely well for image classification purposes. A CNN basically consists of an input layer, an output layer and a hidden layer which can have multiple numbers of layers. A convolution operation is performed on these layers using a filter that performs 2D matrix multiplication on the layer and filter. The CNN model architecture consists of the following layers:
1. Convolutional layer; 75 nodes, kernel size 3
2. MaxPolling layer: (5,5)
3. Convolutional layer; 64 nodes, kernel size 3
4. MaxPolling layer: (5,5)
5. Convolutional layer; 128 nodes, kernel size 3
6. MaxPolling layer: (5,5)
7. Fully connected layer; 64 nodes

The final layer is also a fully connected layer with 2 nodes. In all the layers, a Relu activation function is used except the output layer in which we used Softmax.

C. PERFORMANCE ANALYSIS:
The performance of the proposed system can be analyzed using following parameters for measuring classification accuracy:
True Positive (TP): Yawning / closed eye status is detected as correct one yawning, and the eye is closed.
True Negative (TN): Non-yawning / opened eye status is detected as the correct one as non-yawning, and the eye is opened.
False Positive (FP): Non-yawning / opened eye status is incorrectly detected as yawning / closed eye.
False Negative (FN): Yawning / closed eye status is incorrectly detected as non-yawning / open eye.

Table VI in particular presents the comparison results with different state-of-the-art algorithms and using the same dataset. The accuracy is calculated in percentage using equation (7):

\[
\text{Accuracy} = \frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}} \times 100
\]

The experiments were executed on datasets of NHTU DDD YawDD, and an additional dataset created by us. The dataset consists of 45000 images of human beings collected from various sources such as Kaggle, Google images, pixel.com, etc. The eyes and mouth areas were cropped from the images and grouped into four categories to detect the drowsiness based on the closed eye and open mouth status images using EAR, MAR, and FAR calculations. In addition, gradient and orientations were used to find the expression and orientation of the face of the driver while driving. Hand gestures or identification and glasses detection has done with appropriate algorithms such as convex hull etc. This depicts the driver's concentration on the task of driving. Classification has done with CNN deep learning algorithm to check the status of the possible cases mentioned in algorithm 1.

Another dataset created by us having 2685 number of images contains scenarios like eye open, eye close, mouth open, mouth close, hands ‘on’ / ‘not on’ mouth, eye, face, etc. This dataset called EMOCDS (Eye and Mouth Open Close Data Set) is used for experimenting and calculating the accuracy in the prediction of right state from the nine different cases as mentioned in Figure 4. The corresponding results are listed in Table V.

TP	FP	TN	FN	Accuracy in %
32	6	1	1	95
32	5	1	2	92.5
35	2	2	1	92.5
36	2	1	1	95
34	2	1	3	90
33	4	2	1	92.5
34	3	2	1	92.5
35	2	1	2	92.5
32	3	3	2	87.5
Table VI: Comparison of the state-of-the-art methods with proposed method. Results were worked on various datasets such as NTHU-DDD, YawDD, and EMOCDS in terms of accuracy in %.

Methods	Benchmark Datasets	Accuracy in %	Proposed Dataset	Accuracy in %
LRCN	NTHU - DDD	62.9	EMOCDS	64.5
LSTM	UTA-RLDD	64.0	EMOCDS	67.0
FlowImageNet	NTHU - DDD	65.9	EMOCDS	64.56
3D DCNN	NTHU - DDD	71.2	EMOCDS	72.8
KNN	NTHU – DDD	72.5	EMOCDS	75.45
FaceNet + SVM	UTA-RLDD	90.0	EMOCDS	94.0
CNN (LeNet)	UTA-RLDD	92.0	EMOCDS	92.89
SVM	YawDD	92.5	EMOCDS	94.7
FaceNet + KNN	UTA-RLDD	95.0	EMOCDS	96
Proposed method	YawDD	94.78	EMOCDS	
Proposed method	UTA-RLDD	95.0	EMOCDS	95.67
Proposed method	NTHU – DDD	79.98	EMOCDS	

VI. CONCLUSIONS

The major issue in the framework is extracting the efficient features from the images that have been cropped and cut from the video sequence. The proposed work has detected the driver's drowsiness based on various aspects such as closed eyes, opened mouth, nodding with hand, and putting hand on mouth while yawning. The methods such as EAR, MAR, and the proposed novel FAR were used for feature extraction. Also, orientation of the faces was identified and gradient-based patterns were used to identify the various scenarios created by different states of face parts and hands. Moreover, unlike the feature extraction, threshold has been defined based on the gestures given generally. Finally, integrated all the features to generate the efficient feature vector and adopted CNN to classify various scenarios that describe the drowsiness state. The proposed method has been validated on the proposed dataset called EMOCDS (Eye and Mouth Open Close Data Set), a dataset of the chaos of all possible cases of sleepiness, and the benchmark datasets NHTU-DDD and YawDD to examine the accuracy and efficiency of the system. The proposed work has proved better compared to the state-of-the-art methods. However,
The proposed work can also be improved by focusing on more features extracted based on the various feature extraction techniques and adopting ensemble classification algorithms and CNNs.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

[1] National Crime Records Bureau (NCRB), 2021 October. Accidental Deaths and Suicides in India. Ministry of Home Affairs, Govt. of India. [Online]. Available: https://nrcb.gov.in/sites/default/files/ADSI_2020_FULL_REPORT.pdf

[2] World Health Organization, 2011. Mobile Phone Use: A growing problem of driver distraction. WHO Report. [Online]. Available: https://www.who.int/violence_injury_prevention/publications/road_traffic/distracted_driving_en.pdf

[3] Ramzan, M., Khan, H.U., Awan, S.M., Imsaif, A., Ilyas, M. and Mahmood, A., 2019. A survey on state-of-the-art drowsiness detection techniques. IEEE Access, 7, pp.61904-61919. doi: 10.1109/ACCESS.2019.2914373.

[4] Dasgupta, A., Rahman, D. and Routray, A., 2018. A smartphone-based drowsiness detection and warning system for automotive drivers. IEEE transactions on intelligent transportation systems, 20(11), pp.4045-4054. doi:10.1109/TITS.2018.2879609.

[5] Lin, C.T., Wu, R.C., Liang, S.F., Chao, W.H., Chen, Y.J. and Jung, T.P., 2005. EEG-based drowsiness estimation for safety driving using independent component analysis. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(12), pp.2726-2738. doi: 10.1109/TCSI.2005.857555.

[6] Cui, Y., Xu, Y. and Wu, D., 2019. EEG-based driver drowsiness estimation using feature weighted episodic training. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(11), pp.2263-2273. doi: 10.1109/TNSRE.2019.2945794.

[7] Jiang, Y., Zhang, Y., Lin, C., Wu, D. and Lin, C.T., 2020. EEG-based driver drowsiness estimation using an online multi-view and transfer TSFCF fuzzy system. IEEE Transactions on Intelligent Transportation Systems, 22(3), pp.1752-1764. doi:10.1109/TITS.2020.2973673.

[8] Zhang, W., Cheng, B. and Lin, Y., 2012. Driver drowsiness recognition based on computer vision technology. Tsinghua Science and Technology, 17(3), pp.354-362. doi: 10.1109/TST.2012.6216768.

[9] Tanveer, M.A., Khan, M.J., Qureshi, M.J., Naseer, N. and Hong, K.S., 2019. Enhanced drowsiness detection using deep learning: an NIRS study. IEEE Access, 7, pp.137920-137929. doi: 10.1109/ACCESS.2019.2942838.

[10] Lee, B.G. and Chung, W.Y., 2012. Driver alertness monitoring using fusion of facial features and bio-signals. IEEE Sensors Journal, 12(7), pp.2416-2422. doi:10.1109/JSEN.2012.2190505.

[11] Kahlon, M. and Ganesan, S., 2018, May. Driver drowsiness detection system based on binary eye image data. In 2018 IEEE International Conference on Electro/Information Technology (EIT) (pp. 0209-0215). IEEE. doi: 10.1109/EIT.2018.8500272.

[12] Alkhatib, M.H., Khan, W.Z. and Arshad, Q., 2020. Detecting human driver inattentive and aggressive driving behavior using deep learning: Recent advances, requirements and open challenges. IEEE Access, 8, pp.105008-105030. doi:10.1109/ACCESS.2020.2999829.

[13] Zhang, C., Wu, X., Zheng, X. and Yu, S., 2019. Driver drowsiness detection using multi-channel second order blind identifications. IEEE Access, 7, pp.11829-11843. doi: 10.1109/ACCESS.2019.2891971.

[14] Budak, U., Cihan, A., Akbulut, Y., Kayil, O. and Cengiz, A., 2019. An effective hybrid model for EEG-based drowsiness detection. IEEE sensors journal, 19(17), pp.7624-7631. doi: 10.1109/JSEN.2019.2917758.

[15] Deng, W. and Wu, R., 2019. Real-time driver-drowsiness detection system using facial features. IEEE Access, 7, pp.118727-118738. doi: 10.1109/ACCESS.2019.2936663.

[16] Omideyeganeh, M., Javدادتالاب, A. and Shirmohammadi, S., 2011, September. Intelligent driver drowsiness detection through fusion of yawning and eye closure. In 2011 IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurement Systems Proceedings (pp. 1-6). IEEE. doi: 10.1109/VEICS.2011.6053857.

[17] Valsan, V., Mathai, P.P. and Babu, I., 2021, February. Monitoring Driver’s Drowsiness Status at Night Based on Computer Vision. In 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS) (pp. 989-993). IEEE. doi: 10.1109/ICCCIS51004.2021.9397180.

[18] Singh, J., 2020, December. Learning based Driver Drowsiness Detection Model. In 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS) (pp. 698-701). IEEE. doi: 10.1109/ICISS49785.2020.9316131.

[19] Ghorabi, A., Ghaouani, H. and Barhoumi, W., 2020, September. Driver drowsiness detection based on joint monitoring of yawning, blinking andnodding. In 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCCP) (pp. 407-414). IEEE. doi: 10.1109/ICCCPS1029.2020.9266160.

[20] Wang, P. and Shen, L., 2012, October. A method of detecting driver drowsiness state based on multi-features of face. In 2012 5th International Congress on Image and Signal Processing (pp. 1171-1175). IEEE. doi: 10.1109/CISP.2012.6469987.

[21] Manu, B.N., 2016, November. Facial features monitoring for real time drowsiness detection. In 2016 12th International Conference on Innovations in Information Technology (IIT) (pp. 1-4). IEEE. doi: 10.1109/INNOVATIONS.2016.7880030.

[22] Bhomick, B. and Kumar, K.C., 2019, September. Detection and classification of eye state in I.R. camera for driver drowsiness identification. In 2009 IEEE International Conference on Signal and Image Processing Applications (pp. 340-345). IEEE. doi: 10.1109/ICSIPA.2009.5478674.

[23] Hassani, M.A. and Rahmati, M., 2011, November. Driver drowsiness detection using face expression recognition. In 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIIP-A) (pp. 337-341). IEEE. doi: 10.1109/ICSIIP.2011.6144162.

[24] Deng, W. and Wu, R., 2019, Real-time driver-drowsiness detection system using facial features. IEEE Access, 7, pp.118727-118738. doi: 10.1109/ACCESS.2019.2936663.

[25] Kulkarni, S.S., Harale, A.D. and Thakur, A.V., 2017, September. Image processing for driver's safety and vehicle control using raspberry Pi and websocket. In 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCS) (pp. 1288-1291). IEEE. doi: 10.1109/ICPCS.2017.8391917.

[26] Miranda, M., Villanueva, A., Bao, M.J., Merabite, R., Perez, S.P. and Rodriguez, J.M., 2018, Portable Prevention and Monitoring of Driver’s Drowsiness Focuses to Eyelid Movement Using Internet of Things. In 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) (pp. 1-5). IEEE. doi: 10.1109/HNICEM.2018.8666334.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3176451, IEEE Access
HLAC towards driver drowsiness detection. In December. Real
Ishii, Y., Ogitsu, T., Takemura, H. and Mizoguchi, H., 2014,
10.1109/ICBAKE.2013.89
Biometrics and
detection by facial expression. In
Hachisuka, S., 2013, July. Human and vehicle
10.1109/ICTC.2017.8364253
distraction detection using single convolutional neural network.
Vehicula
10.23919/SICE.2018.8492599
Development of drowsiness detection system based on respiration
detection. In
Cheon, S.P. and Kang, S.J., 2017, June. Sensor
Processing
10.1109/ICCE.2018.8448874.1
2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW) (pp. 1-2). IEEE. doi: 10.1109/ICCE-China.2018.8448874.

Tateno, S., Guan, X., Cao, R. and Qu, Z., 2018, September. Development of drowsiness detection system based on respiration changes using heart rate monitoring. In 2018 57th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE) (pp. 1664-1669). IEEE. doi: 10.23991/SICE.2018.8492599.

Ahmed, J., Li, J.P., Khan, S.A. and Shaikh, R.A., 2015, December. Eye behaviour based drowsness Detection System. In 2015 12th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP) (pp. 268-272). IEEE. doi: 10.1109/ICCWAMTIP.2015.7493990.

Wang, F. and Qin, H., 2005, October. A FPGA based driver drowsiness detecting system. In IEEE International Conference on Vehicular Electronics and Safety, 2005. (pp. 358-363). IEEE. doi: 10.1109/ICVES.2005.1563673.

Kim, W., Choi, H.K., Jang, B.T. and Lim, J., 2017, October. Driver distraction detection using single convolutional neural network. In 2017 international conference on information and communication technology convergence (ICTC) (pp. 1203-1205). IEEE. doi: 10.1109/ICTC.2017.8190898.

Hachisuka, S., 2013, July. Human and vehicle-driver drowsiness detection by facial expression. In 2013 International Conference on Biometrics and Kansei Engineering (pp. 320-326). IEEE. doi: 10.1109/ICBAKE.2013.89.

Ishii, Y., Ogitu, T., Takemura, H. and Mizoguchi, H., 2014, December. Real-time eyelid open/closed state recognition based on HLAG towards driver drowsiness detection. In 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO2014) (pp. 2449-2454). IEEE. doi: 10.1109/ROBIO.2014.7090707.

Ling, Z., Lu, X., Wang, Y., Zhou, Y., Wang, G. and Li, J., 2013, November. Local sparse representation for driver drowsiness expression recognition. In 2013 Chinese Automation Congress (pp. 733-737). IEEE. doi: 10.1109/CAC.2013.6775831.

Hong, L. and Wang, X., 2020, December. Towards Drowsiness Driving Detection Based on Multi-Feature Fusion and LSTM Networks. In 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV) (pp. 732-736). IEEE. doi: 10.1109/ICARCV50220.2020.9305393.

Hamed, J., Ameer, I.B., Bazine, S. and Abdelali, A.B., 2020, July. Performance Benchmarking of Drowsiness Detection Methods. In 2020 17th International Multi-Conference on Systems, Signals & Devices (SSD) (pp. 179-184). IEEE. doi: 10.1109/SSD49366.2020.9364253.

Cristiani, A., Porta, M., Gandini, D., Bertolotti, G.M. and Serbedzija, N., 2010, September. Driver drowsiness identification by means of passive techniques for eye detection and tracking. In 2010 Fourth IEEE International Conference on Self-Adaptive and Self-Organising Systems Workshop (pp. 142-146). IEEE. doi: 10.1109/SASOW.2010.30.

Lashkiv I, Chervenik A, Shilov N, Parfenov V, Shabaev A. Driver dangerous state detection based on OpenCV & dlib libraries using mobile video processing. In 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC) 2019 Aug 1 (pp. 74-79). IEEE. doi: 10.1109/CSE/EUC.2019.00024.

Joshi, A., Kyal, S., Banerjee, S. and Mishra, T., 2020. In-the-wild drowsiness detection from facial expressions. In 2020 IEEE Intelligent Vehicles Symposium (IV) (pp. 207-212). IEEE. doi: 10.1109/IV47440.2020.9304579.

Rajvenecelha, J., Gaidhane, V.H. and Anjana, V., 2019, November. A novel approach for Drowsiness Detection using Local Binary Patterns and Histogram of Gradients. In 2019 International Conference on Electrical and Computing Technologies and Applications (ICECTA) (pp. 1-6). IEEE. doi: 10.1109/ICECTA.2019.8959669.

Celenk, M., Eren, H. and Poyraz, M., 2009, June. Prediction of driver head movement via Bayesian Learning and ARMA modeling. In 2009 IEEE Intelligent Vehicles Symposium (pp. 542-547). IEEE. doi: 10.1109/IVS.2009.5164336.

Keerthana, M., Prasath, M.V. and Yaswanthkumar, S.K., 2021, June. A Computer Vision Approach for Automated Driver Assistance System. In 2021 International Conference on Intelligent Traffic (IT) (pp. 1-5). IEEE. doi: 10.1109/CONIT1480.2021.9498356.

Abtahi, S., Omidyeganeh, M., Shimohammadi, M. and Harirli, B., 2014, March. YawDD: A yawning detection dataset. In Proceedings of the 5th ACM multimedia systems conference (pp. 24-28). doi: 10.1145/2627787.2627810.

Omidyeganeh, M., Shimohammadi, S., Abtahi, S., Khurshid, A., Farhan, M., Scharcanski, J., Hariri, B., Laroche, D. and Martel, L., 2016. Yawning detection using embedded smart cameras. IEEE Transactions on Instrumentation and Measurement, 65(3), pp.570-582. doi: 10.1109/TIM.2015.2507378.

Maheswari, V.U., Varaprasad, G. and Raju, S.V., 2021. Local directional maximum edge patterns for facial expression recognition. Journal of Ambient Intelligence and Humanized Computing, 12(5), pp.4775-4783. doi: 10.1007/s12652-020-1886-3.

Prasad, G.V. and Raju, S.V., 2018. A survey on local textural patterns for facial feature extraction. International Journal of Computer Vision and Image Processing (IJCVIP), 8(2), pp.1-26. doi: 10.4018/ijcvip.2018040101.

Lee, K.H., Kim, W., Choi, H.K. and Jang, B.T., 2019, February. A study on feature extraction methods used to estimate a driver’s level of drowsiness. In 2019 21st International Conference on Advanced Communication Technology (ICAC'T) (pp. 710-713). IEEE. doi: 10.23919/ICAC'T.2019.8701928.

Magán, E., Sesmero, M.P., Alonso-Weber, J.M. and Sanchis, A., 2022. Driver Drowsiness Detection by Applying Deep Learning
Techniques to Sequences of Images. Applied Sciences, 12(3), p.1145.

UMA MAHESWARI V is working as an Assistant Professor, Department of CSE, Vardhaman College of Engineering, Hyderabad. She received her Ph.D. from Visvesvaraya Technological University, Belgaum, in Image Analytics and Data Science. She has published 20+ research articles in SCI, ESCI, WoS, DBLP, and SCOPUS indexed journals and conferences. She has also published 4 Indian patents on facial expression analysis in the fields of medical, e-Commerce, Education, and security. She is a Member of IEEE. She has done an enormous study and given contributions in facial expression analysis and applications. She constructed feature vector for a given image based on the directions and introduced dynamic threshold values while comparing the images, which helps to analyze any image. She has researched the similarity of images in a given database to retrieve the relevant images. She also worked with Convolutional Neural Networks by giving the pre-processed input image to improve the accuracy. It has been proved that the maximum edge intensity values are enough to retrieve the required feature from the image instead of working on total image data. She is the coordinator for TEDxVCE. She has organized various technical programs and served as a technical committee member and reviewer for various conferences. She has delivered sessions in various capacities. She received the Best Faculty Award under the innovation category from the CSI Mumbai chapter for the year 2019.

RAJANKANTH ALVALU is a Senior Member of IEEE and working as Associate Professor, Department of IT, Chaitanya Bharathi Institute of Technology, Hyderabad, India. Formerly, he had held positions including, Professor and Head, Department of CSE, Vardhaman College of Engineering, Hyderabad, Vice-chair, Entrepreneurship and Startup committee, and Treasurer and Secretary, IEEE Computer Society, Hyderabad Section. He is having more than 17 years of teaching experience. He obtained Ph.D. With Cloud Computing as specialization. He has also been the co-coordinator for AICTE ‘Margaradshan’ Scheme, Google Cloud Facilitator, Editor of IJDMMM journal published by Inderscience, and the Academic Editor for Peer Computer Science journal, in addition to being the reviewer for several Scopus indexed and SCI indexed journals. He has published more than 60 research articles in various peer-reviewed journals and conferences. He is the recipient of the Best Advisor Award from IEEE Hyderabad Section as well as the IUCCE Faculty Fellow Award (2018). He is Life Member of ISTE and Member of ACM and MIR Labs. He has organized various international conferences and delivered keynote addresses.

KANTIPUDI MVV PRASAD is working as an Associate Professor in the Dept. of E&TC, Symbiosis Institute of Technology, Pune. He received his B.Tech. (Electronics and Communications) (2009) & M.Tech. (Digital Electronics and Communication Systems) (2011) degrees from Jawaharlal Nehru Technological University, Kakinada. He received his Ph.D. (Signal Processing specialization) from BITS, VTU, Belagavi (2018). He, previously, worked as the Director of Advancements for Sreyas Institute of Engineering & Technology, Hyderabad, and also as an Associate Professor with R.K. University, Rajkot. He is having teaching experience of around 11.2 years. His current research interests are in Signal Processing with Machine Learning, Education and Research. He is recognized as a technical resource person for Telangana state by the IIT Bombay Spoken tutorial team. He conducted key Training Workshops on Open-Source Tools for education, Signal Processing and Machine Learning focused topics, Educational Technology, etc. He has authored and co-authored many papers in International Journals, International Conferences, National Conferences and published five Indian Patents. Prasad is a Senior Member of IEEE (Membership ID: #92673961) and an active member of Machine Intelligence Research Labs and USERN (Universal Scientific Education and Research Network) (April 2020 – present). He is one of the active reviewers for Wireless Networks, Journal of Springer Nature. His name is listed at 19th position in Top 100 Private University’s Authors Research Productivity Rankings given by the Confederation of Indian Industry (CII) based on the “Indian Citation Index” Database 2016.

KRISHNA KEERTHI CHENNAM is working as Associate Professor, Department of CSE, Matsrusri Engineering College, Hyderabad, and has 14+ years of experience in teaching and research. She obtained B.Tech. and M.Tech. from JNTUH and Ph.D. from Gitam (Deemed to be University), Hyderabad. She is the WiE Chair of ACM Hyderabad Deccan Chapter and former in-charge of the IEEE-CS student branch. Dr Chennam is expanding research in Cloud Computing and Data Security in Cloud Computing. Her research contributions are confined to her subject area and extended to other related domains arising out of the new education system and Accreditations and their impact on Higher Education. She worked as NBA, NAAC, and IQAC committee member. She has one patent on Smart City Initiatives on Secure Public Cloud using Open Hardware and Software Standards. She has guided 10+ M.Tech. scholars besides guiding other students. She has published one book and 20+ research publications in International Journals, International Book Chapters and International Conferences. She has 34 citations and h-index of 3.

KETAN KOTECHA: An Administrator and a teacher of Deep learning, his interest areas are Artificial Intelligence, Computer Algorithms, Machine Learning, Deep Learning. Dr. Kotecha has expertise and experience of cutting-edge research and projects in A.I. and Deep Learning for last 25 + years. He has published widely with 100+ publications in several excellent peer-reviewed journals on various topics ranging from cutting edge A.I., education policies, teaching learning practices, and A.I. for all. He is a recipient of the two SPARC projects in A.I. and worth INR 166 lacs from MHRD, Govt.of India, in collaboration with Arizona State Univ., USA and the University of Queensland, Australia. He is also a recipient of numerous prestigious awards like Erasmus+ faculty mobility grant to Poland, DUO-India professors fellowship for research in Responsible A.I. in collaboration with Brunel University, U.K., LEAP grant at Cambridge University U.K., UKIERI grant with Aston University U.K., and a grant from Royal Academy of Engineering, U.K. under Newton Bhabha Fund. Dr Kotecha has published three patents and delivered keynote speeches at various national and international forums, including at Machine Intelligence Labs, USA, IIT Bombay under the World Bank project, the International Indian Science Festival organized by the Department of Science and Technology, Govt. of India and many more. He is currently the Academic Editor of Peerj Computer Science journal and Associate Editor of IEEE Access journal.

JATINDERKUMAR R. SAINI received Ph.D. degree in 2009. He secured Gold Medals and 1st rank at Univ. level in all years of post-graduation, preceded by Silver Medal in the final year of graduation. He is recipient of DAAD Fellowship (Germany). He has h-index of 16, 110 index of 30 and 200+ research publications in various journals and conferences. 10 candidates have been awarded Ph.D. under his supervision. He has reviewed 500+ papers, with 50+ papers for journals of ACM Transactions and IEEE Transactions. He has been
included in Top 1% Computer Science Reviewers in World by WoS. He has completed more than 50 physical or MOOC certifications from different organizations including IBM, Google, Massachusetts Institute of Technology, Stanford Univ., Univ. of Texas, Johns Hopkins Univ., Cambridge Univ., Pennsylvania State Univ., Rice Univ., Vanderbilt Univ., and Univ. of California. He is Jt. Secretary and Executive Committee Member of ISRS, Pune Chapter. Formerly, he has been an active executive committee member in various capacities with chapters of different professional bodies like CSI, IETE and ISG. He is working as Professor and Director at SICSR, Symbiosis International (Deemed University), Pune, India. Formerly, he has also worked at one of only four licensed Certifying Authorities of Min. of Info. Tech., Govt. of India.