NAFLD and Physical Exercise: Ready, Steady, Go!

Maja Cigrovski Berkovic 1,2, Ines Bilic-Curcic 3,4, Anna Mrzljak 5,6,* and Vjekoslav Cigrovski 7

1 Department of Kinesiological Anthropology and Methodology, Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia, 2 Department of Endocrinology, Diabetes, Metabolism and Clinical Pharmacology, Clinical Hospital Dubrava, Zagreb, Croatia, 3 Department of Pharmacology, Faculty of Medicine, University of J. J. Strossmayer Osijek, Osijek, Croatia, 4 Department of Endocrinology, Clinical Hospital Center Osijek, Osijek, Croatia, 5 Department of Gastroenterology and Hepatology, University Hospital Center Zagreb, Zagreb, Croatia, 6 School of Medicine, University of Zagreb, Zagreb, Croatia, 7 Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia

Along with the increase in obesity and type 2 diabetes, the non-alcoholic fatty liver disease (NAFLD) incidence is escalating, thus becoming a leading cause of liver cirrhosis and a significant burden of liver-related outcomes. Since there is no pharmacotherapy available to address the NAFLD, the most effective solutions seem to be lifestyle changes centered on physical activity. Exercise could mediate its beneficial effects directly on the liver and indirectly via extrahepatic pathways, forming a dose-response relationship with NAFLD in terms of prevalence and disease severity. Health-enhancing physical activity (HEPA) levels are mainly needed to exert beneficial effects in obese subjects, while even a small amount of exercise can be beneficial for lean individuals to prevent NAFLD. This mini-review addresses three major points regarding physical activity and NAFLD: prevention, treatment, and extrahepatic benefits, offering recommendations on type and intensity of exercise in liver disease.

Keywords: non-alcoholic fatty liver disease, sedentary activities, physical activity, aerobic exercise, high-intensity interval training, strength training

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is an umbrella term inclosing a spectrum of clinical and pathological fatty liver disease entities which may lead to cirrhosis and hepatocellular carcinoma (HCC) (1). The prevalence of NAFLD is increasing worldwide and is estimated at around 25% (2). However, the true prevalence of NAFLD seems to be much higher, given the global rise of metabolic syndrome due to changes in eating habits and inclination toward a sedentary lifestyle.

Metabolic syndrome has become a growing morbidity cluster epidemic resulting in a sharp rise in obesity, type 2 diabetes mellitus (T2DM), hypertension, and dyslipidemia. Its liver manifestation—NAFLD has become the most common cause of the chronic liver disease (2). Moreover, the prevalence of NAFLD among patients with T2DM is even higher, 56%, while the overall prevalence of non-alcoholic steatohepatitis (NASH), a progressive form of NAFLD, reaches 37% (3). Finally, the incidence of NAFLD-related HCC, accompanied by life-threatening complications, is continuously increasing (4). Furthermore, lean individuals with NAFLD share the same severe histological phenotype as obese subjects and are associated with metabolic syndrome and an increased risk of all-cause mortality (5).

A recent meta-analysis assessing RCTs with dietary interventions but without any added physical activity tried to establish the effect of different dietary modifications on intrahepatic lipid content (IHL), liver fibrosis, and liver function in patients with NAFLD. The study showed Mediterranean...
diet without energy restriction leads to significant reduction of IHL. However, it is important to note that the diet without exercise did not lead to significant changes in liver enzymes, lipid profile, fasting glucose or insulin, or homeostatic assessment for insulin resistance. On the other hand, hypocaloric diet with foods high in unsaturated fatty acids significantly decreases ALT and AST, but its effects on steatosis remain to be established (6).

NAFLD development in obese and non-obese individuals is closely related to a sedentary lifestyle and a western diet (7). Physical activity, especially structured exercise, has been shown to improve hepatic steatosis and is the core treatment during the whole NAFLD disease spectrum. Physical activity has an essential role in weight reduction and maintenance, influences healthier body composition, reduces hepatic steatosis and NAFLD-associated cardiovascular and malignant burden (8). Importantly, modest weight gain in lean individuals has deleterious effects on metabolic disturbances primarily through increased visceral adipose tissue (9, 10). Bodyweight and waist circumference reduction achieved through lifestyle intervention are independent predictors of NAFLD resolution in lean patients (11).

**PHYSICAL ACTIVITY IN CONTEXT OF LIVER DISEASE**

Health-enhancing physical activity defined as either vigorous activity at least 3 days/week and accumulating at least 1,500 metabolic equivalents (METs)-minutes per week (MET-min/week) or seven or more days/week of any combination of walking, moderate, or vigorous activities accumulating at least 3,000 MET-min/week has been recently independently (after adjusted for confounders such as diet and obesity) associated with a lower risk of both NAFLD and lean NAFLD (9, 10). Bodyweight and waist circumference reduction achieved through lifestyle intervention are independent predictors of NAFLD resolution in lean patients (11).

**EXERCISE AND NAFLD: WHAT IS KNOWN ON THE MECHANISM(S)**

In many of the published studies, the effect of exercise on improvement of liver fat content was seen even in patients who did not achieve the weight loss therefore suggesting the direct effects on liver (22, 23). Although this direct relation is still largely elusive, the available evidence implies different metabolic and molecular pathways which are involved in the reduction of hepatic fat induced by exercise.

One of the most prominent and studied mechanisms is certainly related to insulin resistance (IR). Mechanistically, IR in peripheral tissues such as adipose tissue results in an incomplete suppression of lipase, leading to enhanced lipolysis and release of free fatty acids (FFAs), which are taken up by the liver (24). Therefore, an improvement in IR might reduce the FFA flux to the liver. Moreover, IR in skeletal muscle causes the glucose transport to the liver, which is the fuel for FFA de novo synthesis (25). The main transcription factor controlling liver fatty acid metabolism, sterol regulatory element-binding protein 1 (SREBP-1), which is elevated in the NASH can be decreased by frequent aerobic exercise of high intensity or resistance training through the increase of AMPK, leading to reduction of de novo lipogenesis in hepatocytes (26, 27). Moreover, exercise might also induce epigenetic mechanisms such as reduction of DNA hypermethylation which positively effects de novo lipogenesis (28).

In addition, exercise might also influence liver fatty acid metabolism by increasing expression of peroxisome proliferator-activated receptor-gama (PPAR-gama), in a similar way as the thiazolidinediones (29). Besides, animal models and small scale studies suggest exercise impacts liver mitochondrial function, and can influence inflammation through up-regulation of antioxidant enzymes and anti-inflammatory markers (24, 30).

**THE ROLE OF PHYSICAL ACTIVITY IN THE NAFLD PREVENTION**

Sitting for ≥3h per day has been associated with increased all-cause mortality (relative risk 1.30; 95% CI 1.06–1.56), and sedentary behavior, in general, was reported higher in people predisposed to develop obesity T2DM, NAFLD, and metabolic syndrome (31). There is a strong association between increased hepatic triglyceride content and each hour spent sedentary during a day, while prospective cohort studies identified sedentary behavior as an independent risk factor for NAFLD development and potentially progression (32, 33). A large prospective randomized Da Quing study including 110,660 men and women with glucose impairment showed exercise
was associated with 46% ($P < 0.0005$) reduction of risk in developing diabetes, irrespective of baseline glucose levels and body mass index (BMI), suggesting a vital role of physical activity in the prevention of metabolic disorders associated with insulin resistance (34). The results of the HELENA study suggest that high cardiorespiratory fitness (CRF) might have protective effects on liver enzyme levels in adolescents with high waist circumference and that the exercise focusing on increasing CRF and decreasing abdominal fat might be a good tool in the prevention and treatment of NAFLD during adolescence (35). A study by Sung and co-workers following 169,347 men and women by ultrasound for 5 years provided the first longitudinal epidemiological data supporting the role of exercise in both the prevention and treatment of NAFLD. During follow-up, out of 126,811 adults without NAFLD at baseline, 23% developed NAFLD at follow-up. On the other hand, of the 42,536 individuals with NAFLD at baseline, 34% of cases resolved. After adjusting for potential confounders, any moderate to vigorous exercise level was associated with a reduced risk of new NAFLD and resolution of already present NAFLD. The most significant benefits were seen while exercising 5 days per week and in the case of increasing the frequency of exercise bouts over time (36). Similar results were confirmed by another more recent longitudinal follow-up study where people who were already active or became physically active during the course of follow-up were less likely to develop NAFLD compared with those that remained inactive (OR = 0.75, $p = 0.03$ and 0.75, $p = 0.04$, respectively), irrespective of BMI (37).

THE ROLE OF PHYSICAL ACTIVITY IN THE NAFLD TREATMENT

Growing evidence highlights the need for physical activity in reducing the body weight (at best >10%) in order to improve liver histology and reduce fibrosis in NAFLD patients (38, 39). Weight loss achieved through physical activity improves hepatic and peripheral insulin sensitivity, but physical activity, regardless of the effects on body mass, also directly decreases the pro-inflammatory and oxidative stress markers and improves liver enzymes. According to the data from a recently published systemic review encompassing 24 exercise-only studies in

![FIGURE 1](https://example.com/figure1.png)

**FIGURE 1** | Direct and indirect effects of physical exercise on NAFLD.

- improves sacroptena and encephalopathy
- increases β-oxidation
- improves insulin sensitivity
- improves mitochondrial function
- reduces ROS

- reduces FFA uptake and lipogenesis
- reduces intrahepatic fat
- helps NAFLD resolution
- reduces inflammation and lipotoxicity
- slows down progression to NASH

EXTRAHEPATIC BENEFITS

↓visceral fat, ↓whole-body fat, ↑muscle strength and bulk; ↑bone density, ↑flexibility, ↓blood pressure, ↑cardiorespiratory fitness, improved mood and sleep patterns, ↑energy levels
NAFLD, structured exercise leads to a 20–30% relative reduction in hepatic steatosis, independent of weight loss (40). In addition, exercise might also affect the gut microbiota and modulate the liver inflammatory response and NASH progression (41) (Figure 1).

There is currently a gap in knowledge of the type, duration, and/or intensity of physical activity that would bring the best results for patients with NAFLD. It seems that both aerobic and anaerobic training for at least 4 months decrease to the same extent the overall adipose tissue, hepatic fat, and BMI, while no data exists on their potentially differential effects on liver histology (22). On the other hand, liver histology tends to depend on the exercise intensity and, according to some data, improves more with high-intensity activity (22, 42).

EXTRAHEPATIC BENEFITS OF PHYSICAL ACTIVITY AND HOW IT AFFECTS NAFLD PROGNOSIS

In a randomized control trial recruiting NAFLD patients, exercise was associated with improved endothelial function, evaluated by flow-mediated dilatation of the brachial artery (43). Mentioned NO-dependent vascular dilatation is an important protective mechanism for cardiovascular health. Moreover, with its effect on muscle mass, physical activity reduces the risk of sarcopenia and improves cardiorespiratory fitness, which is low, especially in patients with advanced liver disease such as cirrhosis (19). Physical activity improves insulin sensitivity on the peripheral tissues and the liver and improves glucose metabolism (or glycemic control in clinically manifest diabetes), slowing down NAFLD progression and reducing overall cardiovascular risk. Moreover, it reduces systemic inflammation, lowers arterial blood pressure, and improves dyslipidemia (44). The established beneficial effect of physical activity on cardiovascular health reported in the general population is also applicable for the NAFLD patients, and given that cardiovascular disease remains the leading cause of death in NAFLD patients, encouraging regular exercise should be advocated and prescribed to all NAFLD patients, and during the entire disease course (45).

RECOMMENDATIONS FOR PHYSICAL ACTIVITY IN THE NAFLD PATIENTS

Physical activity and specially structured exercises offer benefits independent of weight loss and represent the core treatments for NAFLD patients. Both aerobic and resistance training effectively reduce hepatic steatosis and reduce the NAFLD-associated cardiovascular risk (46). The exercise program should be tailored to a patient’s preference and capacity, depending on physical fitness level, stage of the liver disease, and other comorbidities. High-intensity interval training (HIIT) is an attractive exercise modality for treating patients with NAFLD, especially those who lack time to exercise, while it reduces visceral adipose tissue, intrahepatic fat, and fibrosis (47). General recommendations include 150 min of weekly accumulated moderate-intensity aerobic exercise, accompanied by strength and endurance training at least two to three times weekly, avoiding consecutive days and including 8–10 exercises using the major muscle groups, with 10–15 repetitions in a moderate to high intensity. In addition, just reducing or breaking up sedentary time by few minutes of walking should also be a therapeutic target for patients who cannot attend the structured exercise programs. To assure the therapeutic effects, attention should be paid to patients’ compliance to exercise and attain exercise goals (48, 49).

As majority of NAFLD patients are obese, special attention must be put on an exercise program which would be doable and also lead to a meaningful weight loss (10%) and improvements in cardiorespiratory fitness to provide health benefits (39). Current literature supports the evidence that both aerobic and anaerobic exercise with a duration of 20–60 min per session when performed in moderate intensity and practiced 4–7 days weekly for at least 6 months (with and without diet restriction) can lead to improvements in liver histology and therefore reversal of liver damage in NASH patients (50), while recently published study on overweight and obese patients supports the beneficial role of aerobic exercise regardless of dose and intensity (low-intensity/ high-volume, high-intensity/low-volume, low-intensity/low-volume) on the reduction of liver fat content (42). Therefore, recent guidelines emphasize the importance of exercise but leave the choice of training to be individually tailored according to patients’ preferences and likelihood of adherence to exercise program in the long term (51).

AUTHOR CONTRIBUTIONS

MC: drafted and wrote and reviewed the manuscript. IB-C and AM: collected data and wrote and reviewed the manuscript. VC: critically reviewed the manuscript. All authors contributed to the article and approved the submitted version.

REFERENCES

1. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. American gastroenterological association; american association for the study of liver diseases; american college of gastroenterology. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology. (2012) 142:1592–609. doi: 10.1053/j.gastro.2012.04.001

2. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. (2016) 64:73–84. doi: 10.1002/hep.28431

3. Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, Fukui N, et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol. (2019) 71:793–801. doi: 10.1016/j.jhep.2019.06.021
4. Younossi Z, Stepanova M, Ong JP, Jacobson IM, Bugianesi E, Duseja A, et al. Global nonalcoholic steatohepatitis council. Nonalcoholic steatohepatitis is the fastest growing cause of hepatocellular carcinoma in liver transplant candidates. *Clin Gastroenterol Hepatol.* (2019) 17:748–55.e3. doi: 10.1016/j.cgh.2018.10.057

5. Golabi P, Paik J, Fukui N, Locklear CT, de Avilla L, Younossi ZM. Patients with lean nonalcoholic fatty liver disease are metabolically abnormal and have a higher risk for mortality. *Clin Diabetes.* (2019) 37:65–72. doi: 10.2337/cd18-0026

6. Houptu V, Csader S, Nieuwdorp M, Holleboom AG, Schwab U. Dietary interventions in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis. *Front Nutr.* (2021) 8:716783. doi: 10.3389/fnut.2021.716783

7. Bilic-Curcic I, Cigrovski Berkovic M, Virovic-Jukic L, Mrzljak A. Shifting perspectives - interplay between non-alcoholic fatty liver disease and insulin resistance in lean individuals. *World J Hepatol.* (2013) 13:80–93. doi: 10.4254/wjh.v13.i1.80

8. Orci LA, Gariani K, Deluca M, Li M, Oldani G, Delaune V, Morel P, Toso C. Exercise-induced insulin resistance in lean individuals. *Clin Gastroenterol Hepatol.* (2010) 8:1370–9. doi: 10.1016/j.jhep.2010.10.017

9. Zelber-Sagi S, Lotan R, Shlomai A, Webb M, Harrari G, Buch A, et al. Predictors for incidence and remission of NAFLD in the general population during a seven-year prospective follow-up. *J Hepatol.* (2012) 56:1145–51. doi: 10.1016/j.jhep.2012.04.001

10. Chang Y, Ryu S, Sung E, Woy HY, Cho SI, Yoo SH, et al. Weight gain within the normal weight range predicts ultrasonographically detected fatty liver in healthy Korean men. *Gut.* (2009) 58:1419–25. doi: 10.1136/gut.2008.161885

11. Wong VW, Wong GL, Chan RS, Shu SS, Cheung BH, Li LS, et al. Beneficial effects of lifestyle intervention in non-obese patients with non-alcoholic fatty liver disease. *J Hepatol.* (2018) 69:1349–56. doi: 10.1016/j.jhep.2018.08.011

12. Jang DK, Lee JS, Lee JK, Kim YH. Independent association of physical activity with nonalcoholic fatty liver disease and alanine aminotransferase levels. *J Clin Med.* (2019) 8:1013. doi: 10.3390/jcm8071013

13. Caloire M, Kersten S. The search for exercise factors in humans. *FASEB J.* (2015) 29:1615–28. doi: 10.1096/fj.14-263699

14. Berzigotti A, Saran U, Dufour JF. Physical activity and liver diseases. *Hepatology.* (2016) 63:1026–40. doi: 10.1002/hep.28132

15. Houghton D, Thoma C, Hallsworth K, Cassidy S, Hardy T, Burt AD, et al. Predictors of incidence and remission of nonalcoholic fatty liver disease: a systematic review and meta-analysis. *Front Nutr.* (2021) 8:716783. doi: 10.3389/fnut.2021.716783

16. Zenith L, Meena N, Ramadi T, Yavari M, Harvey A, Carbonneau M, et al. Exercise reduces liver lipids and visceral adiposity in patients with nonalcoholic fatty liver disease in a randomized controlled trial. *Clin Transl Gastroenterol.* (2017) 8:e180. doi: 10.1038/ctg.2016.38

17. Keating SE, Hackett DA, Parker HM, Way KL, O’Connor HT, Sainsbury A, et al. Effect of resistance training on liver fat and visceral adiposity in adults with obesity: a randomized controlled trial. *Hepatol Res.* (2017) 47:622–31. doi: 10.1111/hepr.12781

18. Lavoie JM, Gauthier MS. Regulation of fat metabolism in the liver: link to non-alcoholic hepatic steatosis and impact of physical exercise. *Cell Mol Life Sci.* (2006) 63:1399–409. doi: 10.1007/s00018-006-6600-y

19. Rabol R, Petersen KE, Dufour S, Flannery C, Shulman GL. Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individuals. *Proc Natl Acad Sci USA.* (2011) 108:13705–9. doi: 10.1073/pnas.1110105108

20. Oh S, Shida T, Yamagishi K, Tanaka K, So R, Tsujiimoto T, et al. Moderate to vigorous physical activity volume is an important factor for managing nonalcoholic fatty liver disease: a retrospective study. *Hepatology.* (2015) 61:2015–18. doi: 10.1002/hep.27544

21. Oh S, So R, Shida T, Matsuo T, Kim B, Akiyama K, et al. High-intensity aerobic exercise improves both hepatic fat content and stiffness in sedentary obese men with nonalcoholic fatty liver disease. *Sci Rep.* (2017) 7:43029. doi: 10.1038/srep43029

22. Zhou D, Hlady RA, Schafer MJ, White TA, Liu C, Choi JH, et al. High fat diet and exercise lead to a disrupted and pathogenic DNA methylation in mouse liver. *Epigenetics.* (2017) 12:55–69. doi: 10.1007/15929.2016.1261239

23. Liu H, Jin M, Han D, Zhou M, Mei X, Guan Y, et al. Protective effects of aerobic swimming training on high-fat diet induced nonalcoholic fatty liver disease: regulation of lipid metabolism via PANDER-AKT pathway. *Biochem Biophys Res Commun.* (2015) 458:862–8. doi: 10.1016/j.bbrc.2015.02.046

24. Farzanegi P, Dana A, Ebrahimpour Z, Asadi M, Azarbayjani MA, Mechanisms of beneficial effects of exercise training on non-alcoholic fatty liver disease (NAFLD): roles of oxidative stress and inflammation. *Eur J Sport Sci.* (2019) 19:999–1003. doi: 10.1016/j.ejss.2019.1571114

25. Keating SE, Hackett DA, George J, Johnson NA. Exercise and non-alcoholic fatty liver disease: a systematic review and meta-analysis. *J Hepatol.* (2012) 57:157–66. doi: 10.1016/j.jhep.2012.02.023

26. Bowden Davies KA, Sprung VS, Norman JA, Thompson A, Mitchell KL, Harrold JOA, et al. Physical activity and sedentary time: association with metabolic health and liver fat. *Med Sci Sports Exerc.* (2019) 51:1169–77. doi: 10.1249/MSS.0000000000001901

27. Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. *The Da Qing IGT and diabetes study. Diabet Care.* (1997) 20:537–44. doi: 10.2337/diacare.20.2.537

28. Medrano M, Labayan I, Ruiz JR, Rodriguez G, Breidnessel C, Castillo M, et al. Cardiorespiratory fitness, waist circumference and liver enzyme levels in European adolescents: the HELENA cross-sectional study. *J Sci Med Sport.* (2017) 20:932–6. doi: 10.1016/j.jsams.2017.04.006

29. Sung KC, Ryu S, Lee JY, Kim JY, Wild SH, Byrne CD. Effect of exercise on the development of new fatty liver and the resolution of existing fatty liver. *J Hepatol.* (2016) 65:791–9. doi: 10.1016/j.jhep.2016.05.026

30. Gerage AM, Ritti-Dias RM, Balagopal PB, Conceição RDO, Umpierre A, Gra-Oramas B, Gonzalez-Fabian L, et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. *Liver Transpl.* (2015) 21:985–93. doi: 10.1002/lt.24101

31. Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, Torres-Gonzalez A, Gra-Oramas B, Gonzalez-Fabian L, et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. *Gastroenterology.* (2015) 149:367–78.e8; quiz e14-5. doi: 10.1053/j.gastro.2015.04.005
40. Hashida R, Kawaguchi T, Bekki M, Omoto M, Matsuse H, Nago T, et al. Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: a systematic review. J Hepatol. (2017) 66:142–52. doi: 10.1016/j.jhep.2016.08.023

41. Clarke SF, Murphy EF, O’Sullivan O, Lucey AJ, Humphreys M, Hogan A, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. (2014) 63:1913–20. doi: 10.1136/gutjnl-2013-306541

42. Keating SE, Hackett DA, Parker HM, O’Connor HT, Geroﬁl JA, Sainsbury A, et al. Effect of aerobic exercise training dose on liver fat and visceral adiposity. J Hepatol. (2015) 63:174–82. doi: 10.1016/j.jhep.2015.02.022

43. Pugh CJ, Spring VS, Kemp GJ, Richardson P, Shojaee-Moradie F, Umpleby AM, et al. Exercise training reverses endothelial dysfunction in nonalcoholic fatty liver disease. Am J Physiol Heart Circ Physiol. (2014) 307:H1298–306. doi: 10.1152/ajpheart.00306.2014

44. Garber CE, Blissmer B, Deschene MR, Franklin BA, Lamonte MJ, Lee IM, et al. American college of sports medicine. American college of sports medicine position stand: Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. (2011) 43:1334–59. doi: 10.1249/MSS.0b013e318213fe6b

45. Berlin JA, Colditz GA. A meta-analysis of physical activity in the prevention of coronary heart disease. Am J Epidemiol. (1990) 132:612–28. doi: 10.1093/oxfordjournals.aje.a115704

46. Keating SE, Adams LA. Exercise in NAFLD: Just do it. J Hepatol. (2016) 65:671–3. doi: 10.1016/j.jhep.2016.06.022

47. Hamasaki H. Perspectives on interval exercise interventions for non-alcoholic fatty liver disease. Medicines. (2019) 6:83. doi: 10.3390/medicines6030083

48. Carles RA, Darby LA, Rydin S, Douglass OM, Cacciapaglia HM, O’Brien WH. The relationship between self-monitoring, outcome expectancies, difﬁculties with eating and exercise, and physical activity and weight loss treatment outcomes. Ann Behav Med. (2005) 30:182–90. doi: 10.1207/s15324796abm3003_2

49. Hallsworth K, Adams LA. Lifestyle modiﬁcation in NAFLD/NASH: facts and ﬁgures. JHEP Rep. (2019) 1:468–79. doi: 10.1016/j.jhepr.2019.10.008

50. Eckard C, Cole R, Lockwood J, Torres DM, Williams CD, Shaw JC, et al. Prospective histopathologic evaluation of lifestyle modiﬁcation in nonalcoholic fatty liver disease: a randomized trial. Therap Adv Gastroenterol. (2013) 6:249–59. doi: 10.1177/1756283X13484078

51. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. (2016) 64:1388–402. doi: 10.1016/j.jhep.2015.11.004

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or ﬁnancial relationships that could be construed as a potential conﬂict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their afﬁliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Cigrovski Berkovic, Bilic-Curcic, Mrzljak and Cigrovski. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.