Comparative evaluation of the saving of binder WITH fine ground slag

V. I. Ochkurov¹, M. Yu. Vilenskii²
¹Saint-Petersburg Mining University, Russia, 199106, Saint-Petersburg, 21-st Line V.O., 2.
²St. Petersburg State University of Architecture and Civil Engineering, Russia 1190005, Saint-Petersburg, 2-nd Krasnoarmejskaja, 4
E-mail: och.valerij2010@yandex.ru

Abstract. The use of ground granulated blast furnace slag is one of significant reserves to enhance the cost and technical properties of cement composites. slag corresponding to the portland cement fineness is often used. ultra-fine slags from industrial by-products with high specific surface area can be used with grinding technology development. two types of ultra-fine ground granulated blast furnace slag were studied in portland cement-slag compositions. the results of reduction of total binder amount per 1 kg of plasticizing admixture were obtained and discussed. reduction of binder amount was explained by water-reducing effects of plasticizing admixture in portland cement-slag compositions depending on type, quantity and fineness of slag.

Keywords. Ground granulated blast furnace slag, binder, plasticizing admixture, fineness, water-reducing.

1. Introduction
Cement production is increasingly passing to the production of cements based on by-products and mineral additives of various origins as this saves fuel and natural raw materials [1-4]. Production of cements based on by-products and mineral additives of various origins allows to increase volumes of cement production and concretes and also to receive high-quality concrete with the low amount of Portland cement per 1 MPa of strength [1,3,5-7]. The following factors of positive effects of fine mineral fillers on structure and physic-mechanical characteristics of cement compositions are distinguished in the literature: increase of the packing density of binder particles due to the placement of micro-filler particles among cement particles [8-10]; increase of pozzolanic activity of filler due to its finer grinding [11-13]; acceleration of the initial stage of hardening of cement pastes with ultra-fine particles of mineral filler that can serve as centres of crystallization [14,15]; increase of plasticizing effect of superplasticizer in some compositions of Portland cement-mineral filler [14-16,31].

There are various technological methods to reduce the Portland cement amount and improve the technical properties of fresh and hardened cement composites [18-22]. The introduction of superplasticizer is one of the techniques. Polycarboxylate-based superplasticizers are used to produce modern types of concrete. The following tasks that are solved due to the introduction of superplasticizer can be distinguished: improving fluidity of paste and workability of fresh concrete [3,24,25], increasing strength at the early ages
[3,8,12], reducing Portland cement amount [12,26], increasing rheological activity of mineral additives [14,23-26], improving distribution of fibers in cement composite structure [27,28]. Superplasticizer quantity to obtain equal-flowing cement pastes depends on the type and amount of ground granulated blast furnace slag (ggbfs) [10,14].

Compatibility of polycarboxylate superplasticizer and Portland cement was considered in the papers [29,30]. Good compatibility of superplasticizer and Portland cement is the high value of plasticizing or water-reducing effect of superplasticizer without reducing the concrete strength in the required time of hardening [29]. Reduction of water-reducing effect of superplasticizer can occur in Portland cement with tricalcium aluminate C\textsubscript{3}A more than 6.3% and alkali metal oxides R\textsubscript{2}O more than 0.79% that was stated in paper [29]. Under good compatibility the author of paper [29,34,35] understands the high water-reducing effect of superplasticizer in mixtures with very low water-to-cement ratio for high-strength concrete of transport constructions.

The study of possible water reduction using polycarboxylate superplasticizers with Ordinary Portland cement, in which the amount of C\textsubscript{3}A and R\textsubscript{2}O can vary widely as well as water reduction at replacing part of Portland cement with various fine ggbfs are relevant. Significant reduction of water quantity can be used to reduce Portland cement. [36-38] The published data of the combined effect of mineralogical compositions of Portland cement and the properties of ggbfs on the water reduction introducing polycarboxylate superplasticizer is not enough.

Studies of the paper are aimed to assess the reduction of binder based on Portland cement-ggbfs introducing polycarboxylate superplasticizer into the fresh concrete. The objectives of the study are assessment of water-reducing effect of superplasticizer depending on type, quantity and fineness of ggbfs, depending on type and quantity of Portland cement as well as estimation of binder reduction per 1 kg of superplasticizer. It is necessary to determine the conditions under which the slag and superplasticizer provide significant savings of Portland cement clinker and binder.

2. Materials and Methods

Two types of Portland cements with different C\textsubscript{3}A and R\textsubscript{2}O amounts were used in the research. The compositions of Portland cements are presented in Table 1. Two types of ggbfs with modulus of basicity Mo=1.05 and Mo=0.66 that were designated as S1 (basic slag) and S2 (acid slag), respectively, were used. The slags had the residues on the No.008 sieve that were 9% and 8% respectively and after further grinding slags had no residues on the No.008 sieve. Slag with Mo=1.05 was designated as S1-8 and S1-0 by the residues on the sieve. Slag with Mo=0.66 was designated as S2-8 and S2-0 by the residues on the sieve. Modern grinding equipment such as centrifugal-elliptical mill and centrifugal dynamic classifier were used.

The use of an efficient classifier to separate ultra-fine slag particles in the air flow makes it possible to obtain suitable particle size distribution of mineral additives as shown in Figure 1.

| Table 1. Mineralogical compositions of cements |
|-------|-------|-------|-------|-------|-------|
| DESIGNATION | C\textsubscript{3}S | C\textsubscript{2}S | C\textsubscript{3}A | C\textsubscript{4}AF | R\textsubscript{2}O |
| CEM 42.5I (OPC-1) | 62.4 | 14.6 | 5.8 | 13.4 | 0.62 |
| CEM 42.5I (OPC-2) | 63.9 | 15.4 | 8.2 | 11.1 | 0.91 |
Particles size distributions of slags after additional grinding were determined using laser diffraction particle size analyzer and are shown in Figure 1. The average diameter of the slag particles was approximately 4.5 µm.

3. RESULTS AND DISCUSSION

Reduction of water quantity in equal-flow pastes based on OPC-1 and ggbs with introduction of superplasticizer in the amount of 0.4% is shown in Figure 2.

The water-reducing effect of superplasticizer largely depends on type and quantity of slag and increases slightly with increasing fineness that one can see from the analysis of Figure 2. The water-reducing effect of superplasticizer has increased from 15.2% to 31.1%, i.e. more than twice when using slag with Mo=0.66 in the amount of 40% of Portland cement mass. The maximum value of the water-reducing effect of superplasticizer was obtained in the Portland cement-slag composition with the ratio of 50:50 that confirms the results of paper [10]. Water-reducing effect of superplasticizer has not changed when using slag with Mo=1.05.

Evaluation of the water-reducing effect of superplasticizer in Portland cement-slag compositions where Portland cement had the high contents of C₃A and R₂O was the next task of this study. The results are shown in Figure 3.
It can be concluded by comparing the data in Figures 2 and 3 that the character of the curves varies significantly with the change of the mineralogical composition of Portland cement in the Portland cement-slag binder. The water-reducing effect of superplasticizer significantly depends on type and quantity of slag and increases slightly with increasing fineness that one can see from the analysis of Fig.3. The water-reducing effect of superplasticizer has increased from 9% to 24%, i.e. two and a half times when using slag with Mo=0.66 in the amount of 60% of Portland cement mass. The maximum value of the water-reducing effect of superplasticizer was obtained in the Portland cement-slag composition with the ratio of 40:60 with decrease of OPC-2 amount. When using slag with Mo=1.05, the water-reducing effect of superplasticizer increases with decrease of OPC-2 amount. As noted above, OPC-2 contains the increased quantity of C_3A and R_2O. Thus, the increase of water-reducing effect of superplasticizer at the OPC-2 reduction may be explained by the decrease of C_3A and R_2O amounts in the Portland cement-slag binder.

Reduction of binder amount per 1 kg of superplasticizer was estimated using Portland cement – S2 slag compositions with the ratio of 50:50. Two series in which three laboratorial batches using OPC-1 and OPC-2 were made to evaluate the possible reduction of binder. One control composition without superplasticizer and two compositions with superplasticizer in the amount of 0.4 and 0.8% of binder mass were made in each series (Tables 2 and 3).

Table 2. Estimation of savings of the binder based on OPC-1

No	SP, %	OPC, kg/m³	SP, kg/m³	W/B	Slump, cm	Compressive strength at 28 days, MPa	Binder reduction, kg/m³	Binder reduction per 1 kg of SP, kg
1	0	430	0	0.38	9	59.1	-	-
2	0.4	390	1.62	0.38	9	59.8	40	24.7
3	0.8	330	2.76	0.38	9	59.5	100	36.2

Table 3. Estimation of savings of the binder based on OPC-2

No	SP, %	OPC, kg/m³	SP, kg/m³	W/B	Slump, cm	Compressive strength at 28 days, MPa	Binder reduction, kg/m³	Binder reduction per 1 kg of SP, kg
1	0	430	0	0.38	9	59.5	-	-
2	0.4	405	1.62	0.38	9	59.9	25	15.4
3	0.8	350	2.80	0.38	9	59.3	80	28.5

Fresh concrete mixes with the slump equal to 9 cm and the same water-to-binder ratio (W/B) were manufactured. Fine and coarse aggregates with the fixed ratio was introduced in the fresh concrete mixes after the introduction of superplasticizer to achieve the initial
workability of the mixes, namely slump equal to 9 cm. Binder amount per 1 m3 was recalculated using the calculation-experimental method of concrete design. The samples were steamed at the temperature of 50°C.

From the analysis of Tables 2 and 3 it can be concluded that the binder reduction per 1 kg of superplasticizer increases with the increase of superplasticizer amount. It is possible to achieve greater binder reduction per 1 kg of superplasticizer using binder based on OPC-1. This was to be expected as the higher water-reducing effect of superplasticizer was obtained on this Portland cement. Comparative evaluation of the saving of binder per 1 kg of superplasticizer (SP) is presented in Figure 4.

![Figure 4. Comparative evaluation of the saving of binder per 1 kg of superplasticizer](image)

It is necessary to take into account the content of C$_3$A and R$_2$O in Portland cement to obtain significant reduction of water when using polycarboxylate modifier that can be concluded from Figures 1 and 2. Reduction of water quantity through the use of polycarboxylate superplasticizer leads to the increase of concrete strength that can be used to reduce the binder quantity in concretes with the same strength. However, the reduction of the binder per 1 kg of superplasticizer depends significantly on the type of slag and Portland cement as well as their ratio in the composite binder.

4. Conclusion

The reduction of the binder per 1 kg of polycarboxylate plasticizing admixture has been stated. Firstly, the water reduction using polycarboxylate plasticizing admixtures in binders based on Ordinary Portland cement with different amounts of C$_3$A and R$_2$O as well as with different types and amounts of ground granulated blast furnace slag were studied. The combined effect of mineralogical compositions of Portland cement and the properties of ggbs on the water reduction introducing polycarboxylate plasticizing admixture was stated. Assessment of water-reducing effect of superplasticizer depending on type, quantity and fineness of ggbs, depending on type and quantity of Portland cement were carried out. Significant reduction of water quantity can be used to reduce binder quantity. Then, estimation of binder reduction per 1 kg of superplasticizer is calculated.

The result has shown that it is necessary to take into account the mineralogical composition of Portland cement to obtain high reduction of water introducing superplasticizer and, accordingly, high reduction of binder. For example, the maximum water reduction was obtained for binder at cement-to-slag ratio of 50:50 provided the use of Portland cement with normalized mineralogical composition. In the case of Portland cement with the high content of C$_3$A and R$_2$O most of this Portland cement should be replaced with slag.

References

[1] Asgharian, H., Chang, P. L., Lysenkov, S., Scobeyeva, V. A., Reisen, W. K., & Nuzhdin, S. V. (2015). Evolutionary genomics of culex pipiens: Global and local adaptations associated with climate, life-history traits and anthropogenic factors. Proceedings of the Royal Society B: Biological Sciences, 282(1810) doi:10.1098/rspb.2015.0728
[2] Barabanshchikov, Y. G., Belyaeva, S. V., Arkhipov, I. E., Antonova, M. V., Shkolnikova, A. A., & Lebedeva, K. S. (2017). Influence of superplasticizers on the concrete mix properties. Magazine of Civil Engineering, 74(6), 140-146. doi:10.18720/MCE.74.11

[3] Kozlov, K., Chebotarev, D., Hassan, M., Triska, M., Triska, P., Flegontov, P., & Tatarinova, T. V. (2015). Differential evolution approach to detect recent admixture. BMC Genomics, 16(8) doi:10.1186/1471-2164-16-S8-S9

[4] Kropotina, J. A., Bykov, A. M., Krassilchtchikov, A. M., & Levenfish, K. P. (2018). Evolution of anisotropic distributions of weakly charged heavy ions downstream collisionless quasiperpendicular shocks. Paper presented at the Journal of Physics: Conference Series, , 1038(1) doi:10.1088/1742-6596/1038/1/012014 Retrieved from www.scopus.com

[5] Kukushkin, S. A., & Osipov, A. V. (2016). Determining polytype composition of silicon carbide films by UV ellipsometry. Technical Physics Letters, 42(2), 175-178. doi:10.1134/S1063785016020280

[6] Barabanshchikov, Y. G., Belyaeva, S. V., Arkhipov, I. E., Antonova, M. V., Shkolnikova, A. A., & Lebedeva, K. S. (2017). Influence of superplasticizers on the concrete mix properties. Magazine of Civil Engineering, 74(6), 140-146. doi:10.18720/MCE.74.11

[7] Bazhenov, Y., Kozlova, I., Nechaev, K., & Kryuchkova, A. (2019). The use of finely ground slag in portland cement with mineral additives. In E3S Web of Conferences (Vol. 91, p. 02044). EDP Sciences.

[8] L.F. Kazanskaya and O.M. Smirnova. Supersulphated Cements with Technogenic Raw Materials. International Journal of Civil Engineering and Technology, 9(11), 2018, pp.3006–3012.

[9] Smirnova, Olga. Concrete mixtures with high-workability for ballastless slab tracks. Journal of King Saud University-Engineering Sciences, 29.4 (2017): 381-387.

[10] Kharitonov, A., Ryabova, A., & Pukharenko, Y. (2016). Modified GFRC for durable underground construction. Procedia engineering, 165, 1152-1161.

[11] Kazakov, A., Kur, A., Kazakova, E., & Kiselev, D. (2016). Quantitative characterization of hypoeutectic aluminum-silicon-copper as-cast alloy microstructures. Materials Performance and Characterization, 5(5) doi:10.1520/MPC20160025

[12] Belyakov N.A. Influence of Ways of Microfiber Introduction on the Properties of Fresh and Hardened Concrete, International Journal of Civil Engineering and Technology, 9(13), 2018, pp. 1223-1228

[13] Alexey Kharitonov, Marina Korobkova, Olga Smirnova. The influence of low-hard dispersed additives on impact strength of concrete. Procedia Engineering, Volume 108, 2015, pp. 239-244.

[14] Alexey Lobiatk, Andrii Plugin, Larisa Kravtsov, and Oksana Kovalova. Modelling of motorway bridge spans under modernization with consideration of rheological properties of the materials. Matec Web of Conferences, 234 (2018) 04004.

[15] O.M. Smirnova, Rheologically Active Microfillers for Precast Concrete, International Journal of Civil Engineering and Technology, 9(8), 2018, pp. 1724–1732.

[16] Denisov A.V. The impact of superplasticizers on the radiation changes in Portland cement stone and concretes. Magazine of Civil Engineering. 2017. No. 5. Pp. 70–87.

[17] O.M. Smirnova and D.A.Potyomkin, Influence of Ground Granulated Blast Furnace Slag Properties on The Superplasticizers Effect, International Journal of Civil Engineering and Technology, 9(7), 2018, pp. 874–880.
[18] Shangina, N., Pukharenko, Y., Kharitonov, A., & Kharitonova, T. (2017). Dry mixes for the restoration: basic principles of design. In MATEC Web of Conferences (Vol. 106, p. 03021). EDP Sciences.

[19] Smirnova O.M. Obtaining the High-performance Concrete for Railway Sleepers in Russia. Procedia Engineering, Volume 172, 2017, pp. 1039-1043.

[20] O.M. Smirnova, Evaluation of Superplasticizer Effect in Mineral Disperse Systems Based on Quarry Dust, International Journal of Civil Engineering and Technology, 9(8), 2018, pp. 1733–1740.

[21] O.M. Smirnova, Development of Classification of Rheologically Active Microfillers for Disperse Systems With Portland Cement and Superplasticizer. International Journal of Civil Engineering and Technology, 9(10), 2018, pp. 1966–1973.

[22] Belentsov, Y., Shangina, N., Larisa, M., & Kharitonov, A. (2017, October). Brickwork structure influence on reliability of structures being constructed. In IOP Conference Series: Earth and Environmental Science (Vol. 90, No. 1, p. 012086). IOP Publishing.

[23] Ezziane, K., & Soualhi, H. Study of the Rheological Behavior of Mortar with Silica Fume and Superplasticizer Admixtures According to the Water Film Thickness. KSCE Journal of Civil Engineering, 22(7), 2018, pp.2480-2491.

[24] Kherraf, L., Belachia, M., Hebhoub, H., Abdelouched, A., Effects of the Incorporation of Combined Additions in Cement on the Properties of Concretes, International Review of Civil Engineering (IRECE), 9(1), 2018, pp. 31-39.

[25] A. Kharitonov and V. Prokofieva. Theoretical and Experimental Justification of Low-Rigid Components’ Use for Concrete Dynamic Strength Enhancement. Materials Science Forum, Vol. 871, pp. 154-159, 2016

[26] Fedorov, M. P., Makarova, E. I., & Titova, T. S. (2017). Recycling of spent battery electrolytes for construction material production. Magazine of Civil Engineering, 71(3), 3-9. doi:10.18720/MCE.71.1

[27] Namsone, Eva, Genadijs Šahmenko, and Aleksandrs Korjakins. Durability Properties of High Performance Foamed Concrete. Procedia Engineering, 172 (2017): 760-767.

[28] Samchenko, S., Kozlova, I., Zemskova, O., Potaev, D., & Tsakhilova, D. (2019). Efficiency of stabilization of slag suspensions by polycarboxylate. In E3S Web of Conferences (Vol. 91, p. 02039). EDP Sciences.

[29] O.M. Smirnova, Technology of Increase of Nanoscale Pores Volume in Protective Cement Matrix, International Journal of Civil Engineering and Technology, 9(10), 2018, pp.1991–2000.

[30] A.A. Plugin, T.O. Kostiuk, O.A. Plugin, D.O. Bondarenko, Yu.A. Sukhanova, N.N. Partala, Interaction of Mineral and Polymer Fibers with Cement Stone and their Effect on the Physical-Mechanical Properties of Cement Composites. International Journal of Engineering Research in Africa, 31 (2017) 59-68.

[31] Shaybadullina, Arina, Yuliya Ginchitskaya and Olga Smirnova. Decorative Coating Based on Composite Cement-Silicate Matrix. Solid State Phenomena. Vol. 276. Trans Tech Publications, 2018, pp. 122-127

[32] Protosenya A. G., Karasev M. A., Belyakov N. A., Procedure of Geomechanically Safe Development of Megalopolis Underground Space. International Journal of Applied Engineering Research, No.22. 2016. pp.10857 - 10866.

[33] Yu.A. Belentsov and O.M. Smirnova, Influence of Acceptable Defects On Decrease of Reliability Level of Reinforced Concrete Structures. International Journal of Civil Engineering and Technology, 9(11), 2018, pp. 2999–3005.

[34] Olga Smirnova. Compatibility of shungisite microfillers with polycarboxylate admixtures in cement compositions. ARPN Journal of Engineering and Applied Sciences. 2019. Vol. 14, No. 3. pp.600-610.
[35] Smirnova O. M., Belentsov Y. A., Kharitonov A. M., Influence of polyolefin fibers on the strength and deformability properties of road pavement concrete. *Journal of Traffic and Transportation Engineering (English Edition)*, 2018.

[36] Heravi A.A., Smirnova O., Mechtcherine V. Effect of strain rate and fiber type on tensile behavior of high-strength strain-hardening cement-based composites (HS-SHCC). *RILEM Bookseries*. 2018. V. 15. pp.266-274.

[37] Smirnova O.M. Compatibility of Portland cement and polycarboxylate-based superplasticizers in high-strength concrete for precast constructions. *Magazine of Civil Engineering*, No. 6, 2016. pp.12-22

[38] Yoon, J. Y., & Kim, J. H. Evaluation on the consumption and performance of polycarboxylates in cement-based materials. *Construction and Building Materials*, 158, 2018, pp.423-431.