Draft-genome sequence of *Shewanella algae* strain C6G3

Axel Aigle, Valerie Michotey and Patricia Bonin*

Abstract

Shewanella algae strain C6G3, isolated from the 2 uppermost centimeters of muddy sediment of Arcachon Bay (SW Atlantic French coast, sampled in October 2007) has the capability to use a large panel of terminal electron acceptors under anaerobic condition, such as nitrate, nitrite and metal-oxide, and presents a great metabolic versatility. Here, we present the non-contiguous draft-genome sequence of *Shewanella algae* C6G3, which consists of a 4,879,425 bp. The chromosome contains 5,792 predicted genes. In total, the genome consists of 24 rRNA genes, 86 tRNA genes and 5,660 genes assigned as protein-coding genes.

Keywords: *Shewanella*, *Shewanella algae*, *Shewanella oneidensis*, Nitrate reduction, Dissimilative reduction of nitrite into ammonium, Metal-oxide reduction

Introduction

The genus *Shewanella* comprises several Gram-negative species which are widely distributed in marine and freshwater environments. *Shewanella algae* (formerly classified as *S. putrefaciens*) has been frequently isolated from marine water samples and spoiling fish [1–3]. They are capable of reducing trimethylamine N-oxide (TMAO) to trimethylamine and producing hydrogen sulfide, both of which are main components of the fishy odor present during low temperature storage. They were also isolated from human feces, skin and other clinical samples [4, 5]. The collected strains were heterogeneous with G + C values ranging from 43 % to 55 %. However, there were differences between environmental and clinical isolates. Most of the strains isolated from human clinical specimens and identified as *S. putrefaciens* showed beta-hemolysis on sheep blood agar whereas environmental strains were nonhemolytic [6, 7]. During a screening study of heterotrophic bacteria from the sediment of Arcachon Bay [8], a large set of isolates was obtained from different sampling sites and years (2). Among the 24 isolates, 15 strains belong to *Shewanella* genus and were able to reduce Mn(III/IV) and/or nitrate. The genus seems to play an important role in the turnover of organic matter coupled to anaerobic respiration electron acceptors, such as Fe(III), Mn(III/IV) and NO_2/3. Here we report on further taxonomic and physiological studies on strain *Shewanella algae* strain C6G3 and present its main genomic features.

Organism information

Classification and features

The genus *Shewanella* currently contains 62 species [9] including *Shewanella algae* ATCC 51192^T^, the first described [2]. Ribosomal gene of strain C6G3 exhibits 99 % similarity with available ribosomal gene of *Shewanella algae* (strains ATCC 51192^T^, ACDC [3], BrY [10] and FeRed [11]) and was affiliated to this specie (Fig. 1). Cells of strain C6G3 are straight rods (Fig. 2), Gram-negative, motile, free-living and non-sporulating. Different growth temperatures, pH and % NaCl were tested (Table 1). Optimal growth occurs at 30 °C, pH 8 and 10 % NaCl (w/v). For strain C6G3, ATCC 51192^T^ and *S. oneidensis* MR-1^T^ [12], the use of 95 carbon sources was tested with Biolog GN2 microplate™ (Microlog) (Additional file 1: Table S1). Strain C6G3 presents 32 positive results: 5/30 carbohydrates, 14/29 organic acids, 8/19 amino-acids. Similar results were obtained for strain ATCC 51192^T^ and *S. oneidensis* MR-1^T^ [12], the use of 95 carbon sources was tested with Biolog GN2 microplate™ (Microlog) (Additional file 1: Table S1). Strain C6G3 presents 32 positive results: 5/30 carbohydrates, 14/29 organic acids, 8/19 amino-acids. Similar results were obtained for strain ATCC 51192^T^ and *S. oneidensis* MR-1^T^ [12], the use of 95 carbon sources was tested with Biolog GN2 microplate™ (Microlog) (Additional file 1: Table S1). Strain C6G3 presents 32 positive results: 5/30 carbohydrates, 14/29 organic acids, 8/19 amino-acids. Similar results were obtained for strain ATCC 51192^T^ and *S. oneidensis* MR-1^T^ [12], the use of 95 carbon sources was tested with Biolog GN2 microplate™ (Microlog) (Additional file 1: Table S1).
Chemotaxonomic data

The fatty acid analysis was performed on two strains of *S. algae* (C6G3, ATCC 51192T) and on *S. oneidensis* MR-1T (Additional file 1: Table S2). At the end of aerobic culture, fatty acids were extracted from cell pellet by alkaline hydrolysis and analyzed using chromatography-electron ionization mass spectrometry (GC-EIMS) following the protocol described in Zabeti et al., [13]. The overall fatty acid pattern of *S. algae* C6G3 is rather common for the genus *Shewanella*. The major ones were C16:1ω7 (35.2 %), C16:0 (34.6 %) (generally reported between 16–55 % and 5–31 %, respectively [14]) and 3OH-C12:0 (7.7 %). Interestingly, the C15:0 br is much lower in strain C6G3 (2.3 %) than in *S. algae* ATCC 51192T and *S. oneidensis* MR-1T (27.4 % and 20.4 %, respectively).
respectively). *S. algae* C6G3 presents also a relatively higher percentage of short-chain fatty acids (shorter than C15, 16.0 %) than both *S. oneidensis* MR-1 and *S. algae* ATCC 51192 (8.5 %).

Genome sequencing information

Genome project history

S. algae C6G3 was isolated from intertidal marine sediment on the basis of its ability to use large range of electron acceptors particularly nitrate, nitrite and metal-oxides [8]. The genome of *S. algae* C6G3 is the second to be reported from that species, the other one being *S. algae* ACDC [15]. The genome project of *S. algae* C6G3 is deposited in the Genome On Line Database [16]. A summary of the project and information on compliance with MIGS version 2.0 [17] are shown (Table 2).

Growth conditions and DNA isolation

S. algae C6G3 was grown aerobically at 30 °C under stirring condition on artificial sea water [18] amended with lactate (3 g/L), yeast extract (1 g/L) and tryptone (5 g/L). DNA was extracted from cells collected in exponential growth phase using the protocol of Marteinsson et al. [19]. DNA concentration and purity were checking on biophotometer* (Eppendorf) before sequencing.

Genome sequencing and assembly

The genome sequencing of *S. algae* C6G3 was generated at the Molecular Research LP MR DNA Laboratory (USA). De novo whole-genome shotgun sequencing was performed using the Ion Torrent PGM (Life Technologies [20]) sequencing platform. This produced 1,444,981 reads with an average length of 200 bp for a total number of sequenced bases of 288,996,200 representing a sequencing

MIGS ID	Property	Term
	Classification	Domain Bacteria
		Phylum Proteobacteria
		Class Gammaproteobacteria
		Order Alteromonadales
		Family Shewanellaceae
		Genus Shewanella
	Species Shewanella algae	
	(Type) strain: C6G3	
	Gram stain	Negative
	Cell shape	Straights rods
	Motility	Motile
	Sporulation	Nonsporulating
	Temperature range	10–40 °C (die at 45 °C)
	Optimum temperature	30 °C
	pH range; Optimum	6–9; 8
	Carbon source	Disaccharides, some organic acids, amino acids
MIGS-6	Habitat	Muddy intertidal sediments
MIGS-6.3	Salinity	0-10 % NaCl (w/v); 10 % NaCl (w/v)
MIGS-22	Oxygen requirement	Facultative anaerobic
MIGS-15	Biotic relationship	Free-living
MIGS-14	Pathogenicity	Biosafety level 1 for ATCC 51192
MIGS-4	Geographic location	Arcachon Bay, Aquitaine, France
MIGS-5	Sample collection	October, 2007
MIGS-4.1	Latitude	N44° 40'
MIGS-4.2	Longitude	W1° 10'
MIGS-4.3	Depth	Top 10 cm of sediment
MIGS-4.4	Altitude	Sea level

Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [55]. You will find the table of associated MIGS Record in additional file (Additional file 2)

MIGS ID	Property	Term
	Classification	Domain Bacteria
		Phylum Proteobacteria
		Class Gammaproteobacteria
		Order Alteromonadales
		Family Shewanellaceae
		Genus Shewanella
	Species Shewanella algae	
	(Type) strain: C6G3	
	Gram stain	Negative
	Cell shape	Straights rods
	Motility	Motile
	Sporulation	Nonsporulating
	Temperature range	10–40 °C (die at 45 °C)
	Optimum temperature	30 °C
	pH range; Optimum	6–9; 8
	Carbon source	Disaccharides, some organic acids, amino acids
MIGS-6	Habitat	Muddy intertidal sediments
MIGS-6.3	Salinity	0-10 % NaCl (w/v); 10 % NaCl (w/v)
MIGS-22	Oxygen requirement	Facultative anaerobic
MIGS-15	Biotic relationship	Free-living
MIGS-14	Pathogenicity	Biosafety level 1 for ATCC 51192
MIGS-4	Geographic location	Arcachon Bay, Aquitaine, France
MIGS-5	Sample collection	October, 2007
MIGS-4.1	Latitude	N44° 40'
MIGS-4.2	Longitude	W1° 10'
MIGS-4.3	Depth	Top 10 cm of sediment
MIGS-4.4	Altitude	Sea level

Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [55]. You will find the table of associated MIGS Record in additional file (Additional file 2)
depth of 50-fold. The assembly of *S. algae* C6G3 genome was generated at MR DNA Laboratory using the SeqMan NGen® software assembler (DNASTAR). The final assembly identified 43 contigs generating a genome size of 4.9 Mb.

Table 3 Genome statistics of *S. algae* C6G3 (IMG/ER DOE-JGI)

Attribute	Value	% of Total
Genome size (bp)	4,879,425	100.00
DNA coding (bp)	4,205,943	86.20
DNA G + C (bp)	2,589,944	53.08
DNA scaffolds	43	-
Total genes	5792	100
Protein coding genes	5660	97.72
RNA genes	132	2.28
Pseudo genes	0	0
Genes in internal clusters	4072	70.30
Genes with function prediction	4098	70.75
Genes assigned to COGs	2275	39.28
Genes with Pfam domains	4318	74.55
Genes with signal peptides	519	8.96
Genes with transmembrane helices	1268	21.89
CRISPR repeats	3	-

The total is based on either the size of the genome in base pairs or the total number of protein coding genes in the annotated genome.

Table 4 Number of genes associated with general COG functional categories

Code	Value	% age	Description
J	145	5.71	Translation, ribosomal structure and biogenesis
A	2	0.08	RNA processing and modification
K	190	7.49	Transcription
L	111	4.37	Replication, recombination and repair
B	0	0	Chromatin structure and dynamics
D	25	0.99	Cell cycle control, Cell division, chromosome partitioning
V	42	1.65	Defense mechanisms
T	176	6.93	Signal transduction mechanisms
M	142	5.59	Cell wall/membrane biogenesis
N	104	4.10	Cell motility
U	92	3.62	Intracellular trafficking and secretion
O	130	5.12	Posttranslational modification, protein turnover, chaperones
C	176	6.93	Energy production and conversion
G	85	3.35	Carbohydrate transport and metabolism
E	182	7.17	Amino acid transport and metabolism
F	60	2.36	Nucleotide transport and metabolism
H	129	5.08	Coenzyme transport and metabolism
I	90	3.55	Lipid transport and metabolism
P	136	5.36	Inorganic ion transport and metabolism
Q	43	1.69	Secondary metabolites biosynthesis, transport and catabolism
R	237	9.34	General function prediction only
S	241	9.50	Function unknown
-	3517	60.72	Not in COGs

The total is based on the total number of protein coding genes in the genome.

Genome annotation

Genome annotation was performed on two platforms: on RAST [21] and on IMG/ER [22] (DOE Joint Genome Institute [23]). The tRNAscan-SE tool [24] (RAST and IMG/ER) was used to find tRNA genes, whereas ribosomal RNAs were detected using RMAnner [25] (IMG/ER) and tool “search_for_rnas” (developed by Niels Larsen (available by the author), RAST). Open Reading Frames (ORFs) were predicted using GLIMMER2 [26] in RAST and using GeneMark (v.2.6.r) [27] and GenePRIMP [28] as a part of the DOE-JGI genome annotation pipeline. Gene prediction analyses and functional annotations were performed in RAST with a series of BLAST against FIG hands-curated subsystems [29]. They were also analyzed with FIGfams collection databases, and through comparative approaches with Integrated Microbial Genome – Expert Review platform (RPS-BLAST, BLAST, BLASTp, Hmmsearch (HMMER)) against non-redundant databases including COGs, Pfam [30], TIGR-fam [31], KEEG [32], IMG.
Additional functional annotations were performed within the SEED framework (RAST) [33] and the IMG/ER (DOE-JGI) platform.

Genome properties
The assembly of non-contiguous finished draft genome consists of 43 contigs representing overall 4,879,425 pb. The DNA G + C content was 53.08 %. Using RAST and IMG/ER, 5770 and 5795 genes were respectively predicted. Among them 4149 and 5660 protein-coding genes and 108 and 135 RNAs were identified by RAST and IMG/ER, respectively. The properties and the statistics of the genome (IMG/ER data) are summarized in Table 3 and Fig. 3. Putative COG functions were assigned for 39.28 % of the protein-coding genes. The distribution of genes into COGs functional categories is presented in Table 4.

Insights into the genome sequence
Genome of *S. algae* C6G3 encodes genes for complete glycolysis and tricarboxylic acid (TCA) cycle. A focus has been made on the enzymes involved in the reductive metabolism of nitrate and nitrite. The proposed electron-transfer pathway of periplasmic nitrate reductase and membrane bound electron donors is shown in Fig. 4.

Fig. 3 Graphical map of 6 contigs containing ORF involved in nitrate, nitrite and metal oxides utilization. Nitrate reduction (contig #203 and #65), dissimilative reduction of nitrite into ammonium, (contig #82 and #35) and metal reduction (contig #105 and #166). From bottom to the top: genes on forward strand (color by COG), genes on reverse strand (color by COG), operon/gene cited (pointed red), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.

Fig. 4 NAP complex functioning. The proposed electron-transfer pathway of periplasmic nitrate reductase and membrane bound electron donors of *S. algae* C6G3 (NAP-α-β) (a) and *S. oneidensis* MR-1 (NAP-β) (b). Colored proteins are annotated from KEGG and putatively functional.
respiratory reactions of the N-cycle (NAP, NRFA) and in extracellular electron transfer through the outer-membrane (Metal Transfer Reducing such as Fe(III) and Mn(III/IV)) on the basis of protein system described in S. oneidensis MR-1T.

Nitrate reduction

Nitrate respiration involves two distinct enzyme systems: the NapAB localized in the periplasm and the membrane-bound nitrate reductase NarGHI enzyme localized on the cytoplasmic face of the cytoplasmic membrane. The sole nitrate reductase of S. algae C6G3 is NapAB (Fig. 4). As most of the Shewanella species, S. algae C6G3 genome encodes the two NAP isoforms, each comprising three catalytic subunits: NapA where nitrate reduction takes place, a di-haem cytochrome NapB and a maturation chaperone NapD. The two isoforms present different membrane-intrinsic subunits [34] named NAP-α (NapE-DABC) and NAP-β (NapLAGHB). Nap-β (NapDAGBH) possesses NapGH, an iron–sulfur cluster ferredoxins instead of NapC. The functional differences between these systems may be explained by differential regulation in the composition of the available quinol pool. S. oneidensis MR-1T encodes only Nap-β isoform in which NapC is lacking (Fig. 4). This membrane-anchored tetrahem c-Cyt mediates electron transport from the quinol pool to NapB. The function of NapC in Nap-β in S. oneidensis MR-1T may be met by CymA, an homologue of periplasmic tetrahem c-Cyt of the NapC/NirT family, which is also found in S. algae C6G3 genome.

Dissimilative reduction of nitrite into ammonium

Nitrite can be reduced to ammonium (NH\textsubscript{4}+) by a periplasmic nitrite reduction system (NRF) [35]. As NAP

Fig. 5 NRF complex functioning. The proposed electron-transfer pathway of dissimilatory nitrite reduction to ammonium of S. algae C6G3 (a) and S. oneidensis MR-1T (b). Colored proteins are annotated from KEGG and putatively functional. Streaked genes are annotated but probably not functional.

![Diagram of NRF complex functioning](image)

Fig. 6 MTR pathway functioning. The proposed MTR extracellular electron-transfer pathway of S. algae C6G3 (a) and S. oneidensis MR-1T (b). Colored proteins are annotated from KEGG and putatively functional.
systems, there are two types of NRF: NrfABCD and NrfAH types. NrfA is the terminal reductase while NrfB/CD/NrfH are responsible for electron transfer from menaquinol pool to NrfA. Shewanella strains are known for encoding NrfABCD system only. Genome annotations of S. algae C6G3 and S. oneidensis MR-1\(^T\) identify nrfA in both cases but nrfBCD were found in S. algae C6G3 only (Fig. 5). As previously described for NAP system, S. oneidensis MR-1\(^T\) genome lacks genes encoding for the specific compounds that deliver electrons to the terminal reductase (nrfBCD). Indeed, nrfB is lacking and nrfCD are present but proposed to be pseudogene because of truncation [36]. Gao et al., [37] suggested that the tetraheme \(\epsilon\)-Cyt CymA, a cytoplasmic membrane electron transport protein, is likely to be the functional replacement of both NapC and NrfBCD/NrfH allowing to NrfAH-like system to be efficient in S. oneidensis MR-1\(^T\).

Metal oxide reduction

S. algae C6G3 can utilize extracellular mineral metal oxides of Fe(III) and Mn(III/IV) as respiratory electron acceptors (unpublished data). Inspection of its genome confirmed the presence of genes involved in pathway (i.e. metal-reducing or MTR pathway) for transferring electrons from the inner membrane through the periplasm and across the outer membrane where metal oxides are reduced [38]. In S. algae C6G3 genome, genes that encode MtrCBA and OmcA are located in the same region, which also includes mtrD (an mtrA homologue), mtrE (an mtrB homologue) and mtrF (an mtrC homologue) (Fig. 6).

Table 5 shows the BLASTP for amino acid sequences of MTR pathway [41] is not located in the MTR gene cluster in S. algae C6G3 as described in S. oneidensis MR-1\(^T\). Furthermore, S. algae C6G3 has an additional protein encoding for decahem \(\epsilon\)-Cyt of the OmcA/MtrC family. The role of this cytochrome is not defined. On RAST platform, this ORF has been annotated as mtrH in S. algae C6G3 and S. halifaxensis HAW-EB4\(^T\).

Conclusion

The Shewanella genus comprises a diverse group of facultative anaerobes. Their ability to couple the oxidation of various carbon sources to the reduction of a broad range of terminal electron acceptors imparts a respiratory flexibility that allows colonization of varied and changeable marine and freshwater environments [39, 42, 43]. The occurrence of the two different NAP operons, NRF, and that of CymA in S. algae C6G3 accords with the renowned anaerobic respiratory flexibility of Shewanella. S. algae C6G3 is also capable of using solid Fe(III) and Mn(III/IV) as terminal electron acceptors. Reduction of these particulates occurs at the cell surface and is catalyzed by multiheme cytochromes whose properties are beginning to emerge.

Additional files

Additional file 1: Table S1. Presentation of positives carbon sources (Biolog GN2 microplate™) & electron acceptors for S. algae strain C6G3 and ATCC 51192T and S. oneidensis MR-1\(^T\) (differences are distinct in bold type). **Table S2.** Main fatty acids composition (90.6 %) of S. algae C6G3 and S. oneidensis MR-1\(^T\). S. oneidensis MR-1\(^T\) differences are distinct in bold type. **Table S3.** Differences of total pattern between S. algae C6G3 and ATCC 51192T and S. oneidensis MR-1\(^T\) (differences are distinct in bold type).

Abbreviation

TMAO: Trimethylamine N-oxide.

Competing interests

The authors declare that they have no competing interest.

Authors’ contributions

AA carried out the molecular genetic studies, the sequence alignment and participated in write manuscript. VM and PB conceived the study, and participated in design and coordination and drafted the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We are grateful to Dr. Scot E. Dowd (Molecular Research LP MR DNA Laboratory) for sequencing, assembly and annotation on RAST of our genome. We are grateful to the U.S. Department of Energy Joint Genome Institute for annotation on IMG/ER platform of our genome. And, we are also grateful to Jean-François Rontani (Researcher at Mediterranean Institute of Oceanography (M. I. O., Marseille, France) and Rémi Amiraux (phD at M. I. O.) for extraction and analysis of fatty acid. This work has been support by ANR-IZOFILUX (ANR-10-BLAN-0612) and PROTIDAL (ANR-06-BLAN-0040) grants.

Received: 16 July 2014 Accepted: 20 May 2015
Published online: 23 July 2015
45. Woese CR, Kandler O, Wheelis ML. Towards a Natural System of Organisms - Proposal for the Domains Archaea, Bacteria, and Eucarya. P Natl Acad Sci USA. 1990;87(12):4576–9. doi:10.1073/pnas.87.12.4576.

46. Baumann L, Baumann P, Mandel M, Allen RD. Taxonomy of aerobic marine eubacteria. J Bacteriol. 1972;110:402–29.

47. Skerman VB, McGowan V, Sneath PHA. Approved lists of bacterial names. Int J Syst Bacteriol. 1980;30(1):225–420.

48. Garrity GM, Bell JA, Phylum LT, XIV. Proteobacteria phyl. nov. Bergey’s Manual of Systematic Bacteriology. New York: Springer; 2005.

49. Garrity GM, Bell JA, Class LT, III. Gammaproteobacteria class. nov. Bergey’s Manual of Systematic Bacteriology. New York: Springer; 2005.

50. Editor L. Validation list no. 106. Validation of publication of new names and new combinations previously effectively published outside the IJSEM. Int J Syst Evol Micr. 2005;55:2235–8.

51. Bowman JP, McMeekin TA. Order X. Alteromonadales ord. nov. New York: Springer; 2005.

52. Ivanova EP, Flavier S, Christen R. Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shevanellaceae fam. nov., Montellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov and Psychromonadaceae fam. nov. Int J Syst Evol Micr. 2004;54:1773–88. doi:10.1099/ijs.0.02997-0.

53. Macdonnell MT, Colwell RR. Phylogeny of the Vibionaceae, and Recommendation for 2 New Genera, Listonella and Shevanella. Syst Appl Microbiol. 1985;6(2):171–82.

54. Editor L. Validation list no. 20. Validation of publication of new names and new combinations previously effectively published outside the IJSB. Int J Syst Evol Micr. 1986;36:354–6.

55. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9.