Perimeter Variance of Uniform Random Triangles

Steven Finch

July 1, 2010

Abstract. Let T be a random triangle in a disk D of radius R (meaning that vertices are independent and uniform in D). We determine the bivariate density for two arbitrary sides a, b of T. In particular, we compute that $E(ab) = (0.837...) R^2$, which implies that $\text{Var}(\text{perimeter}) = (0.649...) R^2$. No closed-form expression for either coefficient is known. The Catalan numbers also arise here.

Let A, B, C denote three independent uniformly distributed points in the disk

$$D = \{(\xi, \eta) : \xi^2 + \eta^2 \leq R^2\}.$$

Let T denote the triangle with sides a, b, c opposite the vertices A, B, C. We are interested in the perimeter $a + b + c$ of triangle T. The univariate density $f(x)$ for side a is

$$f(x) = \frac{4x}{\pi R^2} \arccos \left(\frac{x}{2R} \right) - \frac{x^2}{\pi R^4} \sqrt{4R^2 - x^2}, \quad 0 < x < 2R$$

and

$$E(a) = \frac{128}{45\pi} R = (0.9054147873672267990407609...) R, \quad E(a^2) = R^2.$$

Clearly

$$E(\text{perimeter}) = 3E(a) = \frac{128}{15\pi} R = (2.7162443621016803971222828...) R$$

but to compute $\text{Var}(\text{perimeter}) = E(\text{perimeter}^2) - E(\text{perimeter})^2$, we will further need to consider cross-correlation ρ between sides.

The bivariate density $f(x, y)$ for sides a, b is

$$f(x, y) = \begin{cases}
\varphi(x, y) & \text{if } x + y \leq 2R, \\
\psi(x, y) & \text{if } x + y > 2R \text{ and } x \leq 2R
\end{cases}$$

when $0 \leq y \leq x$ (use symmetry otherwise) where

$$\varphi(x, y) = \frac{2xy}{\pi R^6} \left\{-\sqrt{(2R - x - y)(x - y)(2R + x - y)(x + y)} +
2(R - y)^2 \arccos \left(\frac{x^2 - 2Ry + y^2}{2x(R - y)} \right) + 2R^2 \arccos \left(\frac{x^2 + 2Ry - y^2}{2Rx} \right) \right\} +$$

$$\frac{8xy}{\pi^2 R^6} \int_{R-y}^{R} t \arccos \left(\frac{t^2 + x^2 - R^2}{2tx} \right) \arccos \left(\frac{t^2 + y^2 - R^2}{2ty} \right) dt,$$

0 Copyright © 2010 by Steven R. Finch. All rights reserved.
\[\psi(x, y) = \frac{8xy}{\pi^2 R^6} \int_{x-R}^{x+R} t \arccos \left(\frac{t^2 + x^2 - R^2}{2tx} \right) \arccos \left(\frac{t^2 + y^2 - R^2}{2ty} \right) dt. \]

It follows by numerical integration that

\[\mathbb{E}(ab) = (0.8378520652962219016710654...)R^2 \]

hence

\[\rho(a, b) = \frac{\mathbb{E}(ab) - \mathbb{E}(a) \mathbb{E}(b)}{\sqrt{\text{Var}(a) \text{Var}(b)}} = 0.100298083565900175822627..., \]

\[\mathbb{E}((\text{perimeter})^2) = 3\mathbb{E}(a^2) + 6\mathbb{E}(ab) = (8.027112391777314100263929...)R^2, \]

\[\text{Var}(\text{perimeter}) = (0.6491289571281667551974101...)R^2. \]

Exact evaluation of \(\mathbb{E}(ab) \) remains an open problem. We review derivation of the univariate case in section 1, imitating the analysis in [8, 9] very closely. (Parry’s thesis [8] is concerned with triangles in three-dimensional space; it is surprising that our two-dimensional analog has not yet been examined.) The bivariate case is covered in section 2. An experimental consequence of our work is the formula

\[\mathbb{E}(a^2 b^2) = \frac{13}{12}R^4 \]

which we prove via a different approach in section 3. Finally, in section 4, the Catalan numbers from combinatorics appear rather unexpectedly.

1. **Univariate Case**

We omit geometric details, referring to [8, 9] instead. The distance \(t \) between point \(C \) and the origin has density \(2t/R^2 \) for \(0 < t < R \). Let \(f(x \mid t) \) be the conditional density for distance \(x \) between points \(C \) and \(B \), given \(t \). We will compute the sought-after density \(f(x) \) for side \(a \) via

\[f(x) = \int_0^R f(x \mid t) \frac{2t}{R^2} dt. \]

There are two subcases.

1.1. \(0 < x < R \).

\[f(x) = \int_0^{x} \frac{2x}{R^2} \frac{2t}{R^2} dt + \int_{-x}^{R-x} \frac{2x}{\pi R^2} \arccos \left(\frac{t^2 + x^2 - R^2}{2tx} \right) \frac{2t}{R^2} dt \]

which corresponds to formula (1.12) in Parry’s thesis [8]. The arccos term arises since, if the portion of a circle of radius \(x \), center \(C \) contained within \(D \) has arclength \(2\theta x \), then \(f(x \mid t) = (2\theta x)/(\pi R^2) \); the Law of Cosines gives \(\theta \).
1.2. \(R < x < 2R \).

\[
f(x) = \int_{x-R}^{R} \frac{2x}{\pi R^2} \arccos \left(\frac{t^2 + x^2 - R^2}{2tx} \right) \frac{2t}{R^2} dt
\]

which corresponds to Parry’s (1.18). Straightforward integration provides the desired result (valid in both of the preceding regions).

2. **Bivariate Case**

We omit geometric details, referring to [8] instead. The distance \(t \) between point \(C \) and the origin has density \(\frac{2}{R^2} \) for \(0 < t < R \). Let \(f(x,y|t) \) be the conditional density for distance \(x \) between points \(B \) and \(C \), and distance \(y \) between points \(A \) and \(C \), given \(t \). We will compute the sought-after density \(f(x,y) \) for sides \(a, b \) via

\[
f(x,y) = \int_{0}^{R} f(x,y|t) \frac{2t}{R^2} dt.
\]

There are six subcases.

2.1. \(y < x \) and \(0 < x < R \).

\[
f(x,y) = \int_{0}^{R-y} \frac{2x}{R^2} \frac{2y}{R^2} \frac{2t}{R^2} dt + \int_{R-x}^{R-y} \frac{2x}{\pi R^2} \arccos \left(\frac{t^2 + x^2 - R^2}{2tx} \right) \frac{2y}{R^2} \frac{2t}{R^2} dt + \int_{R-y}^{R} \frac{2x}{\pi R^2} \arccos \left(\frac{t^2 + x^2 - R^2}{2tx} \right) \frac{2y}{\pi R^2} \arccos \left(\frac{t^2 + y^2 - R^2}{2ty} \right) \frac{2t}{R^2} dt
\]

which corresponds to formula (4.26) in Parry’s thesis [8].

2.2. \(R < x < 2R \) and \(0 < y < 2R - x \).

\[
f(x,y) = \int_{x-R}^{R-y} \frac{2x}{\pi R^2} \arccos \left(\frac{t^2 + x^2 - R^2}{2tx} \right) \frac{2y}{R^2} \frac{2t}{R^2} dt + \int_{R-y}^{R} \frac{2x}{\pi R^2} \arccos \left(\frac{t^2 + x^2 - R^2}{2tx} \right) \frac{2y}{\pi R^2} \arccos \left(\frac{t^2 + y^2 - R^2}{2ty} \right) \frac{2t}{R^2} dt
\]

which corresponds to Parry’s (4.29). Straightforward integration gives \(\varphi(x,y) \) (valid in both of the preceding regions).
2.3. \(R < x < 2R \) and \(2R-x < y < x \).

\[
f(x, y) = \int_{x-R}^{R} 2x \frac{2y}{\pi R^2} \frac{2y}{\pi R^2} \arccos \left(\frac{t^2 + x^2 - R^2}{2tx} \right) \frac{2t}{R^2} dt
\]

which corresponds to Parry’s (4.32). This is, of course, \(\psi(x, y) \).

2.4. \(x < y \) and \(0 < y < R \).

\[
f(x, y) = \int_{0}^{R-y} \frac{2x}{R^2} \frac{2y}{R^2} \frac{2t}{R^2} dt + \int_{R-y}^{R} \frac{2x}{R^2} \frac{2y}{R^2} \frac{2t}{R^2} dt + \int_{R-x}^{R} 2 \frac{x}{\pi R^2} \frac{2y}{\pi R^2} \frac{2t}{R^2} dt
\]

which corresponds to Parry’s (4.35). This is, of course, \(\phi(y, x) \).

2.5. \(R < y < 2R \) and \(0 < x < 2R-y \).

\[
f(x, y) = \int_{y-R}^{R-x} \frac{2x}{R^2} \frac{2y}{\pi R^2} \frac{2t}{R^2} dt + \int_{y-R}^{R} \frac{2x}{R^2} \frac{2y}{\pi R^2} \frac{2t}{R^2} dt
\]

which corresponds to Parry’s (4.38). This is, of course, \(\phi(y, x) \).

2.6. \(R < y < 2R \) and \(2R-y < x < y \).

\[
f(x, y) = \int_{y-R}^{R} \frac{2x}{R^2} \frac{2y}{\pi R^2} \frac{2t}{R^2} dt
\]

which corresponds to Parry’s (4.41). This is, of course, \(\psi(y, x) \).

3. Characteristic Function

We follow an approach found in [10, 11]. Let \(u, v, w \) denote the squared distances between \(A, B, C \) and the origin \(O \). Let \(\varphi \) denote the angle between vectors \(\overrightarrow{OA}, \overrightarrow{OB} \) and \(\psi \) denote the angle between vectors \(\overrightarrow{OA}, \overrightarrow{OC} \). We have

\[
a^2 = v + w - 2\sqrt{vw} \cos(\psi - \varphi),
\]
by the Law of Cosines, where \(u, v, w\) are independent uniform on \([0, R]^2\) and \(\varphi, \psi\) are independent uniform on \([0, 2\pi]\). The characteristic function for \((a^2, b^2, c^2)\) is thus

\[
g(r, s, t) = \frac{1}{R^6} \frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{2\pi} d\varphi d\psi \int_0^{R^2} \int_0^{R^2} du dv dw \exp \left[ir \left(v + w - 2\sqrt{uv} \cos(\psi - \varphi) \right) + is \left(u + w - 2\sqrt{uw} \cos(\psi) \right) + it \left(u + v - 2\sqrt{uv} \cos(\varphi) \right) \right].
\]

It is well-known that

\[
E(c^2) = \frac{1}{i} \frac{\partial g}{\partial t} \bigg|_{r=s=t=0}, \quad E(b^2 c^2) = \frac{1}{i^2} \frac{\partial^2 g}{\partial s \partial t} \bigg|_{r=s=t=0}
\]

and the former becomes

\[
E(c^2) = \frac{1}{i} \frac{\partial}{\partial t} R^4 \int_0^{2\pi} \int_0^{2\pi} d\varphi d\psi \int_0^{R^2}\int_0^{R^2} du dv \exp \left(it \left(u + v - 2\sqrt{uv} \cos(\varphi) \right) \right) J_0 \left(2t\sqrt{uv} \right) du dv \bigg|_{t=0}
\]

where \(J_0(\theta)\) is the zeroth Bessel function of the first kind; hence

\[
E(c^2) = \frac{1}{i} \frac{1}{R^4} \int_0^{2\pi} \int_0^{2\pi} \exp \left(it \left(u + v \right) \right) J_0 \left(2t\sqrt{uv} \right) du dv \bigg|_{t=0}
\]

\[
= \frac{1}{i} \frac{1}{R^4} \int_0^{2\pi} \int_0^{2\pi} \left(u + v \right) du dv = R^2
\]

which is consistent with before. The latter becomes

\[
E(b^2 c^2) = \frac{1}{i^2} \frac{\partial^2}{\partial s \partial t} R^6 \frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{2\pi} d\varphi d\psi \int_0^{R^2} \int_0^{R^2} du dv dw \exp \left[is \left(u + w - 2\sqrt{uw} \cos(\psi) \right) + it \left(u + v - 2\sqrt{uv} \cos(\varphi) \right) \right] \bigg|_{s=t=0}
\]

\[
= - \frac{\partial^2}{\partial s \partial t} R^6 \int_0^{2\pi} \int_0^{2\pi} \exp \left(is \left(u + w \right) \right) J_0 \left(2s\sqrt{uw} \right) \exp \left(it \left(u + v \right) \right) J_0 \left(2t\sqrt{uv} \right) du dv dw \bigg|_{s=t=0}
\]
\[\int \int \frac{\partial^2}{\partial s \partial t} \exp \left(is (u + w) \right) J_0 \left(2s \sqrt{uw} \right) \exp \left(it (u + v) \right) J_0 \left(2t \sqrt{uv} \right) \bigg|_{s=t=0} \, du \, dv \, dw \]

\[= - \frac{1}{R^6} \int \int \int \frac{\partial^2}{\partial s \partial t} \exp \left(is (u + w) \right) J_0 \left(2s \sqrt{uw} \right) \exp \left(it (u + v) \right) J_0 \left(2t \sqrt{uv} \right) \bigg|_{s=t=0} \, du \, dv \, dw \]

\[= - \frac{1}{R^6} \int \int \int - (u + v)(u + w) du \, dv \, dw = \frac{13}{12} R^4 \]

as was to be shown. The fact that \(\frac{13}{12} - 1 = \frac{1}{12} \neq 0 \) offers the simplest proof we know that arbitrary sides of a random triangle in \(D \) must be dependent.

4. Catalan Numbers

Let \(R = 1 \) for the remainder of our discussion. From

\[P \left(a^2 < x \right) = P \left(a < \sqrt{x} \right) = \int_0^{\sqrt{x}} \left(\frac{4\xi}{\pi} \arccos \left(\frac{\xi}{2} \right) - \frac{\xi^2}{\pi} \sqrt{4 - \xi^2} \right) \frac{1}{2\sqrt{x}} \, d\xi \]

we obtain that the density for \(a^2 \) is

\[\left(\frac{4\sqrt{x}}{\pi} \arccos \left(\frac{\sqrt{x}}{2} \right) - \frac{x}{\pi} \sqrt{4 - x} \right) \frac{1}{2\sqrt{x}}, \quad 0 < x < 4. \]

On the one hand, the characteristic function for \(a^2 \) is

\[\int_0^1 \int_0^1 \exp \left(it (u + v) \right) J_0 \left(2t \sqrt{uv} \right) \, du \, dv \]

by the preceding section; on the other hand, it is

\[\int_0^4 \exp(itx) \left(\frac{4\sqrt{x}}{\pi} \arccos \left(\frac{\sqrt{x}}{2} \right) - \frac{x}{\pi} \sqrt{4 - x} \right) \frac{1}{2\sqrt{x}} \, dx \]

\[= \frac{i}{t} \left[1 - \exp(2it) \left(J_0(2t) - iJ_1(2t) \right) \right] \]

\[= \frac{i}{t} \left[1 - h(t) \right] \]

where \(J_1(\theta) = -J_0'(\theta) \). A direct evaluation of the double integral seems to be difficult. Boersma \[12\], using work of Zernike & Nijboer \[13, 14, 15\], gave a rapidly-convergent series for the inner integral:

\[\int_0^1 \exp(itu) J_0 \left(2t \sqrt{uv} \right) \, du = \frac{\sqrt{\pi}}{t^{3/2}v^{1/2}} \exp \left(\frac{it}{2} \right) \sum_{n=0}^{\infty} (-i)^n (2n+1) J_{n+1/2} \left(\frac{t}{2} \right) J_{2n+1} \left(2t \sqrt{v} \right) \]
but this apparently does not help with the outer integral.

Let $I_0(\theta)$ be the zeroth modified Bessel function of the first kind and $I_1(\theta) = I_0'(\theta)$. We note that the exponential generating function for the Catalan numbers [16]:

$$
\exp(2t) (I_0(2t) - I_1(2t)) = \sum_{n=0}^{\infty} \frac{1}{(n+1)!} \left(\frac{2n}{n}\right) t^n
$$

is remarkably similar to the expression for $h(t)$. Replacing t by it, we obtain

$$
h(t) = \exp(2it) (J_0(2t) - iJ_1(2t)) = \sum_{n=0}^{\infty} \frac{1}{(n+1)!} \left(\frac{2n}{n}\right) (it)^n
$$

because $J_0(i\theta) = I_0(\theta)$, $J_1(i\theta) = iI_1(\theta)$. Therefore the Catalan numbers are associated with the characteristic function for a^2. We wonder if a two-dimensional integer array, suitably generalizing the Catalan numbers, can be associated with the characteristic function for (a^2, b^2):

$$
\int_0^1 \int_0^1 \int_0^1 \exp(is(u+w)) J_0(2s\sqrt{uw}) \exp(it(u+v)) J_0(2t\sqrt{uv}) \, du \, dv \, dw.
$$

Since the bivariate density $f(x, y)$ for (a, b) is much more complicated than the univariate density $f(x)$ for a, an answer to our question may be a long time coming.

5. Acknowledgement

I am thankful to Michelle Parry for her correspondence. Much more relevant material can be found at [17, 18], including experimental computer runs that aided theoretical discussion here.

References

[1] R. Deltheil, Probabilités Géométriques, t. 2, Traité du calcul des Probabilités et de ses Applications, f. 2, ed E. Borel, Gauthier-Villars, 1926, pp. 40–42, 114–120.

[2] J. M. Hammersley, The distribution of distance in a hypersphere, Annals Math. Statist. 21 (1950) 447–452; MR0037481 (12,268e).

[3] R. D. Lord, The distribution of distance in a hypersphere, Annals Math. Statist. 25 (1954) 794–798; MR0065048 (16,377d).

[4] V. S. Alagar, The distribution of the distance between random points, J. Appl. Probab. 13 (1976) 558–566; MR0418183 (54 2#6225).

[5] H. Solomon, Geometric Probability, SIAM, 1978, pp. 35–36, 128–129; MR0488215 (58 #7777).
[6] S. R. Dunbar, The average distance between points in geometric figures, *College Math. J.* 28 (1997) 187–197; MR1444006 (98a:52007).

[7] S.-J. Tu and E. Fischbach, Random distance distribution for spherical objects: general theory and applications to physics, *J. Phys. A* 35 (2002) 6557–6570; MR1928848.

[8] M. Parry, *Application of Geometric Probability Techniques to Elementary Particle and Nuclear Physics*, Ph.D. thesis, Purdue Univ., 1998.

[9] M. Parry and E. Fischbach, Probability distribution of distance in a uniform ellipsoid: theory and applications to physics, *J. Math. Phys.* 41 (2000) 2417–2433; MR1751899 (2001j:81267).

[10] Y. Isokawa, Limit distributions of random triangles in hyperbolic planes, *Bull. Faculty Educ. Kagoshima Univ. Natur. Sci.* 49 (1997) 1–16; MR1653095 (99k:60020).

[11] Y. Isokawa, Geometric probabilities concerning large random triangles in the hyperbolic plane, *Kodai Math. J.* 23 (2000) 171–186; MR1768179 (2001f:60014).

[12] J. Boersma, On the computation of Lommel’s functions of two variables, *Math. Comp.* 16 (1962) 232–238; MR0146419 (26 #3941).

[13] F. Zernike and B. R. A. Nijboer, Théorie de la diffraction des aberrations, *La Théorie des Images Optiques*, Proc. 1946 Paris colloq., ed. P. Fleury, A. Maréchal and C. Anglade, La Revue d’Optique, 1949, pp. 227–235.

[14] B. R. A. Nijboer, *The Diffraction Theory of Aberrations*, Ph.D. thesis, Univ. of Groningen, 1942, available online at http://www.nijboerzernike.nl/_html/intro.html.

[15] A. J. E. M. Janssen, J. J. M. Braat and P. Dirksen, On the computation of the Nijboer-Zernike aberration integrals at arbitrary defocus, *J. Mod. Optics* 51 (2004) 687–703; available online at http://www.nijboerzernike.nl/_html/biblio.html.

[16] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A144186.

[17] S. Finch, *Random triangles. I–IV*, unpublished essays (2010), http://algo.inria.fr/bsolve/
[18] S. Finch, Simulations in R involving triangles and tetrahedra,
http://algo.inria.fr/csolve/rsimul.html

Steven Finch
Dept. of Statistics
Harvard University
Cambridge, MA, USA
Steven.Finch@inria.fr