Early CT imaging markers of COVID-19 progression

CURRENT STATUS: POSTED

Name	Affiliation
Yanqing Chen	People’s Hospital of Guangxi Zhuang Autonomous Region
Ningning Tang	People's Hospital of Guangxi Zhuang Autonomous Region
Zhao Fu	People’s Hospital of Guangxi Zhuang Autonomous Region
Youyong Wei	People’s Hospital of Guangxi Zhuang Autonomous Region
Longbai Ma	People's Hospital of Guangxi Zhuang Autonomous Region
Yumin Lu	People's Hospital of Guangxi Zhuang Autonomous Region
kun Ye	People’s Hospital of Guangxi Zhuang Autonomous Region
Xin Liao	People's Hospital of Guangxi Zhuang Autonomous Region
Yuandong Su	The People’s Hospital of Fangchenggang
Guangyi Huang	People's Hospital of Guangxi Zhuang Autonomous Region
Jun Yuan	People's Hospital of Guangxi Zhuang Autonomous Region
Qiuxia Wu	People’s Hospital of Guangxi Zhuang Autonomous Region
Fan Xu	
People's Hospital of Guangxi Zhuang Autonomous Region

Yingxia Yang
People's Hospital of Guangxi Zhuang Autonomous Region

✉ gx_yyx@163.comCorresponding Author
ORCiD: https://orcid.org/0000-0002-1956-4696

DOI: 10.21203/rs.3.rs-23851/v1

SUBJECT AREAS
Infectious Diseases Pulmonology

KEYWORDS
Coronavirus disease 2019 (COVID-19), Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Pneumonia, Progression, Early Marker, Computed tomography (CT)
Abstract

Background: Early recognition of patients who are prone to develop severe or critical COVID-19 pneumonia may improve its management and modify its outcome by better treatment regimens.

Objective: To investigate Computed Tomography (CT)-based early markers of COVID-19 progression.

Material and methods: Thirty-two COVID-19 patients were retrospectively enrolled, including 23 moderate cases who remained moderate until being cured and discharged from hospital, and 9 progressive cases who started with moderate pneumonia and later progressed to severe or critical pneumonia. Clinical and CT data in the early course of disease were reviewed and compared. The association between early features and progression of COVID-19 were analyzed.

Results: The multivariate logistic regression analysis revealed that the progression of COVID-19 were significantly associated with older age and higher CT score of the right lower lobe in the early CT images. After adjustment for relevant covariates, the relationship between CT score of the right lower lobe and COVID-19 progression persisted (odds ratio 19.28, 95% confidence interval 1.07 - 348.34).

Conclusions: Higher CT Score of the right lower lobe in early images and older age appeared to be promising biomarkers for early prediction of COVID-19 prognosis. Extensive involvement of the right lower lobe at the early stage may suggest a high risk of progression.

Introduction

Emerging in late December 2019 in Wuhan, China, coronavirus disease 2019 (COVID-19) has rapidly spread to 199 countries around the world and become a global health threat. As of March 28, 2020, there had been 522343 confirmed cases and 24531 deaths worldwide [1, 2]. The causative agent was identified to be a novel coronavirus currently termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [3]. Although most of people with COVID-19 have a mild clinical course, severe pneumonia occurred in 15.7% of cases [4]. Severe and critical COVID-19 patients have higher incidences of acute respiratory distress syndrome (ARDS) and serious complications, and have a high likelihood of admission to intensive care [5]. It has been reported that the mortality of severe COVID-19 is high (28%- 62%) [6–8], and even higher (81%) among those requiring mechanical ventilation [6, 9]. Treatment of severe and critical COVID-19 patients remains an arduous challenge in current
clinical practice [6].

Early recognition of patients who are prone to develop severe and critical COVID-19 may improve its management and modify its outcome by better treatment regimens. Therefore, early prediction of progression is of utmost importance. Practicable biomarkers of evolving illness severity are urgently required to enable timely intervention. Chest computerized tomography (CT) provides a powerful noninvasive mean for the diagnosis and treatment monitoring for COVID-19, which shows diverse patterns with both lung parenchyma and interstitium involved. However, the correlation between CT findings and clinical progression, and the predictive value of baseline CT for disease outcome are not well understood as of to date [10–13]. Therefore, in this study, we compared the differences of baseline CT features of moderate and progressive patients at the onset of COVID-19 pneumonia, exploring potential imaging marker tracking COVID-19 progression since the early stage of the disease.

Material And Methods
This retrospective study was approved by the Institutional Review Board of People’s Hospital of Guangxi Zhuang Autonomous Region, and the requirement for informed consent was waived.

Study Subjects
We performed a retrospective review of 32 consecutive patients with COVID-19 in People’s Hospital of Guangxi Zhuang Autonomous Region from January 2020 to March 2020. The diagnosis was established according to the Diagnosis and Treatment Guidelines of COVID-19 in China (trial version fifth) [14], and confirmed by positive real time reverse transcriptase polymerase chain reaction of SARS-CoV-2 in throat swabs or samples from lower respiratory tract. Inclusion criteria required clinical and chest CT data at the beginning of symptoms to evaluate characteristics in the early course of disease. Patients without abnormal manifestations on CT were excluded.

The patients were grouped based on the illness severity defined by the National Health Commission of China. The severe/critical cases met at least one of the following [14]: 1) breathing rate ≥ 30 breaths per minute; 2) pulse oximeter oxygen saturation ≤ 93% in a resting state; 3) arteria oxygen tension (PaO₂)/inspiratory oxygen fraction (FiO₂) ≤ 300 mmHg; 4) respiratory failure (PaO₂ < 60 mmHg when
breathing ambient air) occurred and mechanical ventilation required; 5) hemodynamic shock; 6) patients with other organ failure needed intensive care unit monitoring and treatment. Five mild patients with normal CT were not included in the study, so the rest cases were place in moderate group.

Data Collection
Data included age, gender, comorbidities (hypertension, diabetes mellitus, heart disease, cerebrovascular diseases, and chronic obstructive pulmonary disease), symptoms, clinical sign, laboratory findings, and CT images were obtained from medical records. Both clinical and radiological parameters at the initial stage were used to gather information on early features that may be related to COVID-19 progression. Time from initial CT examination to severe/critical pneumonia development, and time from symptom onset to severe/critical pneumonia development were calculated.

Ct Scanning Protocol
CT examinations were performed on a 64-detector row SOMATOM go. Top (Siemens Healthineers, Erlangen, Germany), or a 64-detector row Revolution Frontier ES (GE Healthcare, China Branch, Beijing, China), with the following parameters: tube voltage: 120 kVp, tube current with the automatic milliamper technology: 32–250 mAs, pitch: 1.5 or 1, tube rotation time: 0.5 s or 0.75 s, matrix: 512 × 512, slice thickness: 0.6 mm, reconstruction thickness: 1.0 mm. Unenhanced CT scans were obtained for all patients.

Image Viewing And Evaluation
Three chest radiologists with 6, 9 and 11 years of experience who were blinded to the clinical data evaluated the CT findings in consensus. For each of the 32 patients, the initial chest CT images were analyzed for the following points: 1) number of the lesions, indicated as single lesion or multiple lesions; 2) site of the lesions, indicated as right upper lobe (RUL), right middle lobe (RML), right lower lobe (RLL), left upper lobe (LUL), and left lower lobe (LLL); 3) range of lobe involvement: indicated as single lobe involvement, 2 lobes involvement, 3 lobes involvement, 4 lobes involvement, and 5 lobes involvement; 4) transverse distribution of the lesion: described as peripheral, central, and peripheral and central; 5) lesion density, described as ground glass opacity (GGO), consolidation, mixed GGO and consolidation; 6) types of lesion density: classified as 1, 2, and 3; 7) shape of the lesion:
described as round, fan-shaped, rectangular, bat-wing, and irregular; 8) other following characteristics: interlobular septal thickening, air bronchogram, microvascular dilation sign, fibrotic streaks, pulmonary emphysema, thickening of pleura, pleural retraction sign, pleural effusion, and lymphadenopathy; 9) extent of lesions: to quantify the extent of lesions and the degree of involvement, a thin section CT score was assigned on the basis of all abnormal areas involved. Each lobe was assigned a score that was based on the following: score 0, denoted no involvement; score 1, < 25% involvement; score 2, 25% to less than 50% involvement; score 3, 50% to less than 75% involvement; and score 4, ≥ 75% involvement. There was a score of 0-4 for each lobe, with a total possible score of 0-20 (Figs. 1 and 2).

Statistical Analysis
All statistical analyses were performed with the SPSS 17.0 software package (SPSS Inc., Chicago, IL, United States). Categorical variables were described as frequency rates and percentages, and quantitative variables were described using mean ± SD or median (inter quartile range, IQR) values. The Fisher exact test were used for categorical variables. For quantitative variables, independent sample t test was used for normally distributed data, and Mann-Whitney U test was used for non-normally distributed data. Subsequent univariate and multivariate logistic regression analysis were performed to further identify the initial clinical parameters and baseline CT features associated with the progression of COVID-19 pneumonia. P-values < 0.05 were considered significant.

Results
Clinical Characteristics
A total of 32 patients were included in the study, 9 (28.1%) were progressive cases who later progressed from moderate cases to severe/critical cases, and 23 (71.9%) were moderate cases who remained moderate until being cured and discharged. The clinical characteristics of the patients are shown in Table 1. The mean time from initial CT examination to severe/critical pneumonia development was 5 days, and that from symptom onset to severe/critical pneumonia development was 9 days.
Parameter	Moderate (n = 23)	Progressive (n = 9)
Age (y)*	35.8 ± 13.6	61.1 ± 15.2
Sex (male)	5 (22%)	3 (30%)
Onset of symptoms to severe/critical pneumonia hospital (d)	0	9
Baseline CT examination to severe/critical pneumonia (d)	0	5
Comorbidities*	1 (4%)	4 (44%)
Hypertension	1 (4%)	2 (22%)
Diabetes mellitus	0	1 (11%)
Cerebrovascular diseases	0	1 (11%)
Oxygenation index (mmHg)	489.5 ± 192.6	502.9 ± 341.9
White blood cell count (× 10⁹/L)	6.6 ± 2.0	6.9 ± 1.8
Hemoglobin (g/L)	116.6 ± 16.9	109.2 ± 24.3
Neutrophil ratio (%)	54.9 ± 14.8	58.3 ± 12.4
Lymphocyte ratio (%)	33.3 ± 13.7	26.4 ± 14.7
Creatinine (µmol/L)	59.9 ± 14.8	67.4 ± 15.1
Erythrocyte sedimentation rate (s)	33.7 ± 21.2	47.5 ± 29.2

Data are expressed as mean ± SD or n (%).

* Significance of difference between parameters from moderate and progressive groups.

Compared with the moderate group, the progressive cases were significantly older (mean age 61.1 ± 15.2 years vs 35.8 ± 13.6 years; P < 0.01) and had more comorbidities of hypertension, diabetes mellitus, and cerebrovascular diseases (P = 0.02). No significant differences were observed in gender, oxygenation index, white blood cell count, hemoglobin, neutrophil ratio, lymphocyte ratio, creatinine, and erythrocyte sedimentation rate between the two groups.

Ct Findings

There were significant differences between the two groups in the total CT score of both lungs (P < 0.01), the CT scores of each lung lobe, and incidence of right middle lobe involvement (P < 0.01) and all lobes involvement (P < 0.01).

No significant differences were observed in number of the lesions, transverse distribution of the lesion, lesion density, shape of the lesion, interlobular septal thickening, air bronchogram, microvascular dilation sign, fibrotic streaks, pulmonary emphysema, thickening of pleura, pleural retraction sign, pleural effusion, and lymphadenopathy between the two groups. The CT Features were present in Table 2.

Parameter	Moderate (n = 23)	Progressive (n = 9)																																	
Number of lesions																																			
Single	2 (9%)	1 (11%)																																	
Multiple	21 (91%)	8 (89%)																																	
Lesion distribution																																			
Peripheral	17 (74%)	4 (44%)																																	
Peripheral and central	6 (26%)	5 (56%)																																	
Density	1 type of density	Only GGO	Only mixed	Only consolidation	2 types of density	GGO + mixed	GGO + consolidation	3 types of density	Total CT score of the pulmonary involvement*	CT score of RUL*	CT score of RML*	CT score of RLL*	CT score of LUL*	CT score of LLL*	Interlobular septal thickening	Air bronchogram sign	Microvascular dilation sign	Pulmonary emphysema	Thickening of pleura	Pleural retraction sign	Pleural effusion	Unilateral pleural effusion	Bilateral pleural effusion	Lymphadenopathy	pulmonary artery enlargement	Frequency of lobe involvement	Number of lobes involved								
------------------	------------------	----------	------------	------------------	-------------------	-------------	---------------------	-------------------	---	----------------	---------------	---------------	----------------	----------------	----------------------------	-------------------	--------------------------	---------------------	------------------	------------------------	-----------------	-----------------	----------------	----------------	------------------------	-----------------	-------------------------								
GGO	12 (52%)	5 (22%)	0	0	10 (43%)	0	0	1 (4%)	4 (2–5)	1 (0–1)	1 (0–1)	1 (1–1)	0	20 (87%)	22 (96%)	1 (4%)	19 (83%)	1 (4%)	14 (61%)	12 (52%)	1 (17%)	1 (13%)	1 (4%)	4 (17%)	0	1 (17%)	1 (13%)	1 (13%)	0	1 (13%)	0	0	0	0	1 (13%)
Mixed	19 (83%)	1 (11%)	0	0	4 (17%)	0	0	0	10 (5.5–15.5)	1 (0–1)	1 (0–1)	1 (1–1)	0	5 (22%)	22 (96%)	1 (4%)	19 (83%)	1 (4%)	5 (56%)	12 (52%)	1 (17%)	3 (30%)	0	0	0	0	0	0	0	0	0				
Table 3 showed the results of univariate and multivariate logistic regression analyses on relationship to the progression of COVID-19 pneumonia. Based on univariate logistic regression analyses, the clinical characteristics and CT features of age, comorbidities, total CT score of both lungs, CT scores of each lung lobe, and incidence of all lobes involvement were corelated with the progression of COVID-19 pneumonia. However, only the CT score of right lower lobe and age were confirmed to be associated with COVID-19 progression in subsequent multivariate logistic regression analyses. After adjustment for age and other relevant covariates, the relationship between CT score of right lower lobe and COVID-19 progression persisted, odds ratio = 19.28 (95% confidence interval 1.07–348.34).

Factors Associated With Progression

Table 3

Univariate and Multivariate Logistic Regression Analyses of Baseline Clinical and CT features for Progression of COVID-19 pneumonia

Parameter	Univariate								
	OR	95% CI	P Value	OR	95% CI	P Value			
Age (y)	1.18	1.05-1.32	<0.01	1.25	1.01-4.53	0.04			
Comorbidities	17.6	160-193.4	0.02						
CT score of RUL	3.86	1.24-11.95	0.02						
CT score of RML	2.78	1.10-7.08	0.03						
CT score of RLL	6.84	1.83-25.54	<0.01	19.28	1.07-348.34	0.04			
CT score of LUL	2.71	1.21-6.06	0.02						
CT score of LLL	4.28	1.44-12.74	<0.01						
Total CT score	1.55	1.11-2.17	0.01						
RML involved	7.33	0.78-68.48	0.08						
All lobes involved	18.29	1.91-175.34	0.01						

Odds Ratio = OR, CI = Confidence interval

Discussion

Data are expressed as n (%) and median (interquartile range). GGO = ground-glass opacity. Mixed = GGO and consolidation. RUL = right upper lobe, RML = right middle lobe, RLL = right lower lobe (RLL), LUL = left upper lobe, LLL = left lower lobe.

* Significance of difference between parameters from moderate and progressive groups.
The severe/critical patients have worse prognosis and higher mortality than the moderate patients. Therefore, it is essential to perform active intervention for COVID-19 cases who are more likely to progress before developing into severe/critical stages, and the key lies in the early assessment of potential risk of progression [15]. This study demonstrated that older age and higher CT score of right lower lobe in the early images were risk factors for the progression of COVID-19. They may be promising biomarkers for predicting the progression of COVID-19. Such an early identification of patient at risk of progression would be of paramount clinical importance, because it could allow for the design and implementation of personalized preventive and therapeutic strategies, thereby improving the prognosis and reducing the mortality.

In this study, we found that older age was risk factor for the progression of COVID-19 pneumonia. Previous studies have generally assumed that the elderly were more seriously ill after infection [1, 6, 7, 16, 17]. Older people are more likely to develop disease progression, which may be the result of their weakened immune function [5]. In our study, the rate of underlying disease was significantly associated with the progression based on univariate logistic regression analyses, but subsequent multivariate analysis negated the significance of it. Some previous studies on COVID-19 pneumonia showed that the rate of underlying disease was not significantly different between nonemergency group and emergency group [17]. However, some other previous studies showed that people with underlying disease were more seriously ill after infection [16]. The differences between these studies may have been due to patients selection bias, sample sizes, different research parameters, and different statistical methods (e.g., some of these studies did not use multivariate analysis).

Most patients with COVID-19 pneumonia had GGO or mixed GGO and consolidation, interlobular septal thickening, and vascular enlargement in the lesion, and the lesions were more likely peripheral distribution, bilateral involvement, and multifoca [12, 13, 18–22]. In our study, above CT features of COVID-19 pneumonia were not associated with the progression, indicating that above CT features in early-phase were not risk factors of the progression of COVID-19 pneumonia. Some previous studies showed that the CT findings of consolidation, linear opacities, crazy paving pattern, bronchial wall thickening, high total CT scores of involvement, lymphnode enlargement, pericardial effusion, and
pleural effusion were features of severe/critical COVID-19 pneumonia, and were related to the severity of disease [16]. In this study, above CT features of severe/critical COVID-19 pneumonia were not associated with the progression based on initial baseline Chest CT. However, the CT score of right lower lobe in the early images was strongly related to the progression, independently of the age. It is unclear at this time why more severe involvement of right lower lobe in the early images was associated with COVID-19 deterioration. The phenomenon may be related to the deeper location and higher load of the culprit virus. Since the right mainstem bronchus is shorter, wider, and more vertical in direction than the left, the anatomical feature may facilitate the invasion of virus, which has been proposed in the cases of influenza pneumonia [23] and H7N9 pneumonia [24]. Besides, the right lower lobe, which included 5 lung segments, seemed to make the largest contribution to ventilation, thus facilitating aspiration of SARS-CoV-2 [25]. The extensive lesions of the right lower lung in the early phase may reflect more viral colonization that leads to further dissemination and progression of the infection. Another possible explanation was the exudation process of COVID-19, which was more obvious than in SARS. Pathological autopsy in COVID-19 patients showed massive foam mucus exudates in the lung [26]. In addition, acute exudation was especially evident among rapidly progressing cases [26]. Based on these observations [27], we deduced that exudation in the early phase of severe COVID-19 may be active. The massive exudate may easily accumulate in the right lower lung through the vertical right bronchus, resulting in more extensive lesions of right lower lung in CT images. Accordingly, in the early course of COVID-19, high CT Score of the right lower lobe may also suggest an active exudative inflammation that constituted the pathophysiological basis of pulmonary dysfunction.

Previous studies showed that there were many differences in laboratory indicators between COVID-19 pneumonia and non-COVID-19 pneumonia patients, or between the moderate and severe/critical COVID-19 pneumonia patients [1, 5–7, 12, 16]. However, in our study, these initial laboratory indicators of oxygenation index, white blood cell count, hemoglobin, neutrophil ratio, lymphocyte ratio, creatinine, and erythrocyte sedimentation rate were not associated with the progression of COVID-19 pneumonia.
This study has several limitations. Firstly, data of the two groups were not balanced. The sample size of the progressive group was limited because most severe/critical patients presented with rapid deterioration and their early data was unavailable. Further studies with more patients especially progressive cases are warranted. Secondly, we had not performed further investigation of the pulmonary lesions early in the course of the disease, due to the lack of inspection equipment in temporary isolation wards. Bronchoscopy, bronchoalveolar lavage and lung biopsy are required to further confirm the nature of the lesions.

Conclusion

According to our findings, Higher CT Score of the right lower lobe in the early images and older age appeared to be promising biomarkers that may potentially be useful for early prediction of COVID-19 prognosis. Extensive involvement of the right lower lobe at the early stage may suggest a high risk of progression. Further prospective studies are required to confirm and interpret the association.

Declarations

Acknowledgements

The authors wish to thank the medical, nursing and support staff at The First People's Hospital of Fangchenggang, The Fourth People's Hospital of Nanning, People’s Hospital of Guigang, People’s Hospital of Duan, People’s Hospital of Huanjiang, People’s Hospital of Nandan, People’s Hospital of Yizhou, People’s Hospital of Laibin, for their help and support during the outbreak of COVID-19.

Authors’ contributions

Y. Wei, Y. Lu, K. Ye, Y. Su, J. Yuan collected the clinical and CT imaging dataset. Y. Chen, Z. Fu, Y. Yang processed and analyzed the data. Y. Yang, X. Liao provided statistical analysis. Y. Chen, F. Xu, L. Ma, Q. Wu conceived the project. Y. Chen, N. Tang, G. Huang edited the paper.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Availability of data and materials

Data sharing requests from appropriate researchers and entities will be considered on a case-by-case
basis. Interested parties should contact the corresponding author.

Ethics approval and consent to participate

This retrospective study was approved by the Institutional Review Board of People’s Hospital of Guangxi Zhuang Autonomous Region, and the requirement for informed consent was waived.

Consent for publication

All authors gave their consent for publication.

Conflicts of Interest

The authors have no potential conflicts of interest to disclose.

References

1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet* 2020, **395**:497-506.

2. World Health Organization: Novel Coronavirus (2019-nCoV) Situation report-68. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200328-sitrep-68-covid-19pdf?sfvrsn=384bc74c_6.

3. Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, Haagmans BL, Lauber C, Leontovich AM, Neuman BW, et al: The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. *Nature Microbiology* 2020, **5**:536-544.

4. Wu Z, McGoogan JM: Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. *JAMA* 2020.

5. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, et al: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. *Lancet* 2020,
Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, Wu Y, Zhang L, Yu Z, Fang M, et al: Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020.

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, et al: Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. Jama 2020.

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, et al: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020, 395:1054-1062.

Zhu W, Xie K, Lu H, Xu L, Zhou S, Fang S: Initial clinical features of suspected coronavirus disease 2019 in two emergency departments outside of Hubei, China. J Med Virol 2020.

Zhu Y, Liu YL, Li ZP, Kuang JY, Li XM, Yang YY, Feng ST: Clinical and CT imaging features of 2019 novel coronavirus disease (COVID-19). J Infect 2020.

Zhou S, Wang Y, Zhu T, Xia L: CT Features of Coronavirus Disease 2019 (COVID-19) Pneumonia in 62 Patients in Wuhan, China. AJR Am J Roentgenol 2020:1-8.

Yang W, Cao Q, Qin L, Wang X, Cheng Z, Pan A, Dai J, Sun Q, Zhao F, Qu J, Yan F: Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): A multi-center study in Wenzhou city, Zhejiang, China. J Infect 2020, 80:388-393.

Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, Diao K, Lin B, Zhu X, Li K, et al: Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology 2020:200463.
14. National Health Commission of the People’s Republic of China: Diagnosis and treatment protocols of pneumonia caused by a novel coronavirus (trial version 5).

http://wwwnhcgovcn/yzygj/s7653p/202002/3b09b894ac9b4204a79db5b8912d4440shtml.

15. Wang C, Horby PW, Hayden FG, Gao GF: A novel coronavirus outbreak of global health concern. Lancet 2020, 395:470-473.

16. Li K, Wu J, Wu F, Guo D, Chen L, Fang Z, Li C: The Clinical and Chest CT Features Associated with Severe and Critical COVID-19 Pneumonia. Invest Radiol 2020.

17. Zhao W, Zhong Z, Xie X, Yu Q, Liu J: Relation Between Chest CT Findings and Clinical Conditions of Coronavirus Disease (COVID-19) Pneumonia: A Multicenter Study. AJR Am J Roentgenol 2020:1-6.

18. Song F, Shi N, Shan F, Zhang Z, Shen J, Lu H, Ling Y, Jiang Y, Shi Y: Emerging 2019 Novel Coronavirus (2019-nCoV) Pneumonia. Radiology 2020, 295:210-217.

19. Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X, Cui J, Xu W, Yang Y, Fayad ZA, et al: CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV). Radiology 2020, 295:202-207.

20. Zhang S, Li H, Huang S, You W, Sun H: High-resolution CT features of 17 cases of Corona Virus Disease 2019 in Sichuan province, China. Eur Respir J 2020.

21. Wu J, Wu X, Zeng W, Guo D, Fang Z, Chen L, Huang H, Li C: Chest CT Findings in Patients with Corona Virus Disease 2019 and its Relationship with Clinical Features. Invest Radiol 2020.

22. Xiong Y, Sun D, Liu Y, Fan Y, Zhao L, Li X, Zhu W: Clinical and High-Resolution CT Features of the COVID-19 Infection: Comparison of the Initial and Follow-up Changes. Invest Radiol 2020.
23. Koo HJ, Lim S, Choe J, Choi SH, Sung H, Do KH: Radiographic and CT Features of Viral Pneumonia. *Radiographics* 2018, 38:719-739.

24. Wang Q, Zhang Z, Shi Y, Jiang Y: Emerging H7N9 influenza A (novel reassortant avian-origin) pneumonia: radiologic findings. *Radiology* 2013, 268:882-889.

25. Cukic V: Preoperative prediction of lung function in pneumonectomy by spirometry and lung perfusion scintigraphy. *Acta Inform Med* 2012, 20:221-225.

26. Liu Q, Wang RS, Qu GQ, Wang YY, Liu P, Zhu YZ, Fei G, Ren L, Zhou YW, Liu L: Gross examination report of a COVID-19 death autopsy. *Fa Yi Xue Za Zhi* 2020, 36:21-23.

27. Chen J: [How to understand the histopathology of SARS and COVID-19 associated with acute respiratory distress syndrome]. *Zhonghua Bing Li Xue Za Zhi* 2020, 49:E007.

Figures
CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT
images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT
images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT
images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT
images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present.CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present.CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman.
images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow).
images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT
images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT
images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT
images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT
images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT
images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow).
images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT
images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT
images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT
images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT
images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I–L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present. CT features of COVID-19 Pneumonia. This figure shows CT features indicating the number, involvement, distribution, shape, and density of the lesions, pleura and interstitial changes caused by COVID-19 Pneumonia. A–D. 15-year-old woman. Baseline CT images showed multifocal round pure ground-glass opacities (GGO), consolidation, and mixed GGO lesions in peripheral and central area of right upper lobe and right lower lobe (white arrow). Thickening of pleura and pleural retraction (white arrowhead, A) were also present. E, F. 32-year-old man. Baseline CT images showed round and fan-shaped pure GGO lesions in peripheral area of both lower lobes (white arrow). G, H. 38-year-old woman. Baseline CT
images showed multifocal irregular and fan-shaped pure GGO, mixed GGO and consolidation, and consolidation lesions in peripheral and central area of all the lobes of both lungs (white arrow). I-L. 47-year-old woman. Baseline CT images showed multifocal rectangular, fan-shaped, round, and irregular mixed GGO lesions in peripheral area of all the lobes of both lungs (white arrow). The interlobular septal thickening in regions of lesions and microvascular dilation sign were also present.
Figure 2

Extent of lesions and the degree of involvement in three patients with COVID-19 Pneumonia.

A–D. 59-year-old woman, progressive case. Baseline CT images showed multifocal mixed GGO and consolidation lesions involved in all the lobes of both lungs (white arrow). The CT score of right upper lobe, right middle lobe, right lower lobe, left upper lobe and left lower lobe was 1, 1, 3, 1 and 1, respectively. The total CT score of both lungs was 7.

E–H. 56-year-old woman, moderate case. Baseline CT images showed multifocal mixed GGO and consolidation lesions involved in all the lobes of both lungs (white arrow). The CT score of right upper lobe, right middle lobe, right lower lobe, left upper lobe and left lower lobe was 1, 1, 1, 3 and 1, respectively. The total CT score of both lungs was 7.

I–L. 30-year-old woman, moderate case. Baseline CT images showed multiple pure GGO lesions with obscure boundary involved in all the lobes of both lungs (white arrow). The CT score of right upper lobe, right middle lobe, right lower lobe, left upper lobe and left lower lobe was 3, 1, 1, 2 and 1, respectively. The total CT score of both lungs was 8.
