Traditional chinese medicine in coronary microvascular disease

Zhihua Yang1,2†, Shanshan Lin1†, Yangxi Liu1, Qian Ren1, Zhao Ge1, Ci Wang1, Yingfei Bi1, Xianliang Wang1* and Jingyuan Mao1*

1National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China, 2Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China

Coronary microvascular disease (CMVD) is common in patients with cardiovascular risk factors and is associated with an increased risk of adverse cardiovascular events. Although the study of CMVD in modern medicine is ongoing, there is still no effective treatment for it. Traditional Chinese medicine (TCM) has some clinical advantages based on syndrome differentiation and individualized treatment. In this review, we review the clinical significance, pathogenesis, and current treatments of CMVD and systematically summarize the clinical efficacy and potential action mechanisms of TCM for CMVD. In addition, the scientific problems that need to be solved urgently and the research strategy of TCM for CMVD are described. CMVD has great clinical significance, but there are still many gaps in the related research. This review aims to attract the attention of clinicians to CMVD and promote research on CMVD in TCM.

KEYWORDS
traditional Chinese medicine, clinical evidence, coronary microvascular disease, coronary microvascular dysfunction, coronary flow reserve, potential mechanism

1 Introduction

Coronary microvascular disease (CMVD) is a clinical syndrome that exhibits objective evidence of exertional angina pectoris or myocardial ischemia caused by structural and/or functional abnormalities of the coronary artery microvasculature under the action of many pathogenic factors (Zhang et al., 2017). The disease tends to occur in women (Crea et al., 2014; Murthy et al., 2014; Sara et al., 2015; Mileva et al., 2022) and is also prevalent in certain populations, such as those with obesity, hypertension, insulin resistance, diabetes, metabolic syndrome, smoking, myocardial injury, cardiomyopathy, ejection fraction-preserved heart failure, and obstructive and nonobstructive coronary heart disease (Crea et al., 2014; Labazi and Trask, 2017; Taqueti and Di Carli, 2018). In addition, the incidences of major adverse cardiovascular events (MACEs) and all-cause mortality associated with the disease are high (Murthy et al., 2014). In 1973, Kemp HG first referred to CMVD as syndrome X (Kemp et al., 1973). In 1985, Cannon RO referred to the disease as microvascular angina (Cannon et al., 1985). In 2007, Camici PG referred to the disease as microvascular dysfunction. In 2013, the
European Society of Cardiology (ESC) issued guidelines that formally named the disease coronary microvascular dysfunction and defined it as one of the types of stable coronary heart disease (Task Force et al., 2013). In 2017, the Chinese Expert Consensus on Diagnosis and Treatment of Coronary Microvascular Disease called the disease “coronary microvascular disease” (Zhang et al., 2017), and CMVD was divided into three types: 1) coronary artery disease without obstruction; 2) coronary artery disease with obstruction; and 3) other types of CMVD, including hypertrophic cardiomyopathy, dilated cardiomyopathy, myocarditis, aortic stenosis, and myocardial amyloidosis. In 2020, the ESC Working Group on Coronary Pathophysiology and Microcirculation published a paper on “coronary microvascular dysfunction in cardiovascular disease,” in which CMVD was divided into 1) CMVD in nonobstructive chronic coronary syndromes, 2) CMVD in obstructive chronic coronary syndromes, 3) CMVD in nonobstructive acute coronary syndromes (ACS), 4) CMVD in obstructive ACS, and 5) CMVD and coronary no-reflow CMVD in reperfused acute myocardial infarction (AMI). The last of these has recently been recognized as the major cause of angina or heart failure following successful reperfusion therapy in AMIs (Padro et al., 2020). Although these drugs have certain clinical efficacy, many patients still require repeated hospitalization and coronary angiography because of chest pain, which seriously affects patients’ quality of life (Zhuang et al., 2020). Therefore, more effective therapies for CMVD are still needed (Marinescu et al., 2015; Vink et al., 2021). Clinical studies have shown that TCM has good clinical efficacy in treating CMVD and can significantly improve the symptoms of angina pectoris, TCM syndrome, ECG ischemia, quality of life, exercise tolerance, and other related physical and chemical indicators (Zhong et al., 2020; Wang M. X. et al., 2021). In this study, the clinical significance, pathogenesis, and current treatments of CMVD, as well as the clinical efficacy and mechanism of TCM for CMVD, are systematically summarized and discussed to attract the attention of clinicians to CMVD and promote basic and clinical research on CMVD in TCM.

2 Clinical significance of CMVD

At present, there are no large-scale epidemiological data for CMVD, and its incidence and prognostic significance have not

![FIGURE 1](https://example.com/figure1.png)

FIGURE 1 Development and research progress of CMVD.
been clear. A study of predictive models of coronary artery disease in patients with chest pain showed that up to 70% of angina patients had no obstructive coronary stenosis, as observed by coronary angiography. In most of these patients, the coronary angiography results were normal or nearly normal (Reeh et al., 2019). Recent studies have shown that CMVD is an independent predictor of adverse cardiovascular events, and there are significant associations with the incidence of cardiovascular events such as ejection fraction (EF) reserved heart failure, myocardial ischemia, acute coronary syndrome, myocardial infarction, stroke, and cardiogenic death (Gulati et al., 2009; Lind et al., 2011; Jespersen et al., 2012; Crea et al., 2014; Maddox et al., 2014; Petersen et al., 2014; Brainin et al., 2018; Herscovici et al., 2018). In people with chest pain and normal coronary angiography results, the incidence of CMVD was as high as 45%–60%, and the incidence and mortality due to myocardial ischemia, angina, myocardial infarction, and other cardiovascular events were significantly increased (Crea et al., 2014). A 7.5-year follow-up study of 11,223 patients with stable angina showed that nearly one-third of the men and two-thirds of the women admitted to the hospital had no coronary artery disease, and both men and women had significantly higher rates of major cardiovascular events and all-cause mortality in patients with normal and nonobstructive coronary artery disease than in the controls. Researchers speculate that CMVD may be an important cause of poor prognoses in these patients (Jespersen et al., 2012).

Coronary flow reserve (CFR), first proposed by Gould in 1974, is an important physiological measure of coronary microcirculation and can be used to evaluate the reserve function of both subepicardial coronary arteries and microcirculation (Gould et al., 1974). In CMVD without obstructive coronary artery disease, a decrease in CFR is a marker of coronary microcirculatory disturbance (Gould, 2009). At present, there is no consensus on the optimal CFR cut-off value for diagnosing CMVD. CFR values <2.0 are generally recommended as the critical value for diagnosing coronary microvascular dysfunction (Murthy et al., 2014), whereas CFR values <2.5 indicate coronary microvascular disease (Driessen et al., 2017). Decreases in CFR were associated with adverse cardiovascular events (Murthy et al., 2012; Murthy et al., 2014). Decreased CFRs (<1.6) in women were found to predict higher incidences of adverse cardiovascular events (Taqueti et al., 2017). Taqueti et al. (2018) found that patients with nonobstructive coronary artery stenosis who had chest pain and normal left ventricular EFs appeared to be at low risk of heart failure, and a decrease in CFR could lead to an increase in the number of adverse cardiac events. The poor prognosis and pathogenesis of heart failure with preserved EF (HFpEF) are closely related to CMVD. Gadowski et al. published a meta-analysis of 6,631 patients with suspected myocardial ischemia but without coronary artery occlusion, which showed that compared to patients with normal CFRs, CFR decreased the mortality of patients by 3.93 times, whereas the incidence of adverse cardiovascular events increased by 5.16 times (Gadowski et al., 2020). Because CMVD is common in patients with cardiovascular risk factors, CFR measurements should be performed early to determine the presence of CMVD even in people without coronary artery disease to help with early diagnosis and intervention to prevent further progression of CMVD and adverse cardiac events (Del Buono et al., 2021; Tjoe et al., 2021; Lopez et al., 2022). CMVD has a complex etiology, involves a wide range of people, and lacks standardized and effective means of detection, which causes the systematic prevention and management of coronary heart disease to be difficult and seriously affects the prognosis of patients. Therefore, the early diagnosis and treatment of CMVD have important clinical significance (Taqueti et al., 2018; Bairey Merz et al., 2020).

3 Pathogenesis of CMVD

At present, the pathogenesis of CMVD is not completely clear and is mainly divided into structural and functional abnormalities of coronary microvessels.

3.1 Coronary microvascular structural abnormalities

Abnormal structures of the coronary artery microvasculature are closely related to increases in left ventricular mass (Huo and Kassab, 2012), which is common in hypertrophic cardiomyopathy and hypertension (Camici et al., 2020); it is often accompanied by intimal thickening, which results in a mild reduction in the lumen area of the arterioles (Taqueti et al., 2018; Camici et al., 2020). Arteriosclerosis can exacerbate this change and lead to microvascular occlusion, narrowing of intramural arterioles and capillary lumen, and capillary thinning (Labuzi and Trask, 2017).

3.2 Coronary microvascular dysfunction

Coronary microvascular dysfunction (CMD) includes endothelial cell-dependent vascular abnormalities, which are commonly seen in people with diabetes, obesity, smoking, and other cardiovascular risk factors, and dependent vasodilation abnormalities, microvascular spasms, microvascular embolisms, and extravascular mechanisms (Zhang et al., 2017; Ford et al., 2018). These physiological and pathological changes in the development of CMD play roles to varying degrees.

During CMVD development, injury to coronary microvascular endothelial cells (CMECs) is the key link (Yin et al., 2021). Current studies suggest that angina in patients with CMVD is associated with myocardial ischemia, and a CMD-
induced decrease in CFR is thought to be the main cause of CMVD (Sucato et al., 2017; Pardo et al., 2020). CMEC accounts for approximately 1/3 of the total number of cardiac cells and plays an important role in maintaining the normal function of coronary microvessels (Li et al., 2001). CMEC dysfunction often precedes myocardial injury (Scarabelli et al., 2001). Related studies show that the normal proliferation, adhesion, migration, apoptosis, and secretion of CMECs are impaired by risk factors such as old age (Moreau et al., 1998), hypertension (Rizzoni et al., 2003), hyperlipidemia (Kaufmann et al., 2000b), smoking (Kaufmann et al., 2000a), obesity (Chen et al., 2017), insulin resistance (Dagres et al., 2004), and diabetes mellitus (Pitkanen et al., 1998), which leads to CMD, decreased CFRs, insufficiency of myocardial blood supply, and finally occurrence of CMVD (Baumgart et al., 1999; Camici and Crea, 2007).

Microvascular spasms are one of the important mechanisms of CMVD. In some patients with atypical angina but with normal coronary angiography results, abnormal activation of the myocardial α2 adrenergic receptor at rest due to sympathetic nervous system dysfunction leads to coronary microvascular contraction and reduced myocardial perfusion, which cause myocardial ischemia (Baumgart et al., 1999). Microvascular embolization is also an important mechanism of CMVD. Due to interventional therapy or plaque rupture, microthrombi, atheromatous plaque fragments, and thromboemboli block the blood flow in microvessels, which leads to distal microvascular occlusion and causes CMVD (Crea et al., 2014). The extravascular mechanism can be seen in diseases with significantly elevated left ventricular diastolic pressures, such as left ventricular hypertrophy and left ventricular fibrosis, and diseases that can directly decrease coronary diastolic pressures, such as aortic stenosis, severe coronary stenosis, anterior arteriole stenosis, and hypotension (Giacco and Brownlee, 2010). In addition, the formation and development of CMVD is a cumulative process in which metabolic disorders, oxidative stress, and inflammatory reactions play important roles (Labazi and Trask, 2017; Long et al., 2017; Zhang et al., 2017; Oikonomou et al., 2018; Du et al., 2019).

4 Modern drug therapy of CMVD

4.1 Classic anti-myocardial ischemia drugs

Beta-blockers and short-acting nitrates are first-line drugs used to control the symptoms of CMVD (Task Force et al., 2013). Patients who cannot tolerate beta-blockers can be treated with ivabradine instead (Mumma and Flacke, 2015). In the absence of adequate symptom control, the use of calcium antagonists and/or long-acting nitrates in addition to beta-blockers may contribute to improved control of patient symptoms (Task Force et al., 2013). RAAS inhibitors (including ACEIs and ARBs) can also improve coronary artery microvascular function by blocking vasoconstriction due to angiotensinogen II (Task Force et al., 2013). Coronary revascularization is a reasonable approach for CMVD patients with epicardial coronary artery occlusion and may improve the clinical symptoms and prognosis of CMVD patients (Task Force et al., 2013; Taqueti et al., 2015). For patients with cardiogenic chest pain who show signs of ischemia in perfusion tests, beta-blockers reduce myocardial oxygen consumption and improve symptoms. However, in patients with variant angina, beta-blockers should be avoided, and calcium channel blockers should be used as first-line drugs (Pardo et al., 2020).

4.2 Non-classic anti-myocardial ischemia drugs

A variety of nonclassical antianginal agents have been used in CMVD patients, including nicorandil, ivabradine, trimetazidine, and ranolazine (Villano et al., 2013; Cattaneo et al., 2015; Bairey Merz et al., 2016; Shah et al., 2017). Nicorandil is one of the most studied drugs, and some studies have shown that nicorandil can effectively improve exercise-induced myocardial ischemia without altering cardiac autonomic nerve activity. It is suggested that nicorandil may have a direct vasodilative effect on coronary microvessels in patients with CMVD (Lanza et al., 2014). In addition, studies have shown that nicorandil can improve the symptoms of CMVD patients by inhibiting inflammatory factors and improving vascular endothelial function (He et al., 2017).

4.3 Other drugs

Statins are commonly used in the treatment of CMVD. In addition to lowering cholesterol levels, statins inhibit vascular inflammation, increase eNOS levels, and increase NO availability in blood vessels (Pardo et al., 2020). Data analysis for eight thrombolytics in myocardial infarction (TIMI) trials found lower 30-day mortalities or reinfarction rates in patients with non-ST-segment elevation acute coronary syndromes (NSTE-ACS) and nonobstructive CAD who received statins (De Ferrari et al., 2014). In addition, long-term follow-up data from the Swedish Web-system for enhancement and development of evidence-based care in heart disease evaluated according to recommended therapy study confirmed that statins can decrease the number of major cardiovascular events (e.g., all-cause mortality, myocardial infarction, ischemic stroke, and heart failure) in patients with CMVD (Lindahl et al., 2017). Statins and ACE inhibitors are recommended for patients with cardiovascular risk factors associated with arteriosclerosis.
or endothelial dysfunction (Padro et al., 2020). Long-term L-arginine supplementation can improve vascular endothelial function, coronary flow, and symptoms in patients with CMVD (Lerman et al., 1998).

The treatment goals for CMVD include minimizing angina attacks and their associated symptoms, maximizing improvements in patients’ physical functions and quality of life, and extending their lifespans. The treatment options available to patients are very limited due to a lack of standardized diagnoses, nonstandard clinical designs, small sample sizes, and insufficient evidence for clinical improvement of CMVD. At present, most of the drug therapies used for CMVD are empirically based. Although they have certain clinical effects, many patients are still repeatedly hospitalized for chest pain and coronary angiography studies, which seriously affect the quality of life of patients (Zhuang et al., 2020). Modern medicine lacks a definitive treatment for CMVD (Taqueti and Di Carli, 2018).

A clinical study indicated that CMVD treatments by integrating traditional Chinese and Western medicine (WM) were superior to those using Western medicine alone (Li and Ren, 2009; Li and Yu, 2010; Sun and Wu, 2012; Wu et al., 2013; Chen and Ma, 2014; Lv et al., 2014; Wang et al., 2014; Luo et al., 2017; Qin et al., 2017; Wei, 2018; Yan et al., 2018; Zhang, 2019; Qiu et al., 2021; Sun, 2021; Zhang, 2021; Cao et al., 2022; Chen et al., 2022). A systematic review and meta-analysis of randomized controlled trials (RCTs) involving 1,903 patients with CMVD revealed that integrated Chinese and Western medicine therapies were more effective than Western medicine alone regarding the indicators of frequency of angina pectoris attacks, electrocardiography (ECG), nitroglycerin amounts needed, treadmill exercise tests, TCM syndrome scores, and levels of C-reactive protein (CRP), endothelin-1 (ET-1), and nitric oxide (NO) (Zhong et al., 2020). Another systematic review and meta-analysis of RCTs that included 1,075 CMVD patients showed consistent results that compared to Western medicine treatments alone, TCM with WM treatment could further increase CFRs, decrease the index of microvascular resistance (IMR), increase NO levels, and decrease levels of high-sensitivity C-reactive protein (hs-CRP) (Wang M. X. et al., 2021).

5 TCM in the treatment of CMVD

5.1 Understanding CMVD in TCM theory

There is no specific record of CMVD in ancient Chinese literature. In view of the typical symptoms of angina pectoris, in traditional Chinese medicine, most doctors classify it as “Xiong Bi” and “Xin Tong.” However, considering the microvascular anatomy of coronary arteries, some doctors think that CMVD should belong to the “Luo Bing” described in TCM (Chang et al., 2016). The etiology and pathogenesis of CMVD in TCM have not been universally recognized, but most doctors believe that CMVD is mainly caused by emotional discomfort, stagnation of liver-qi, and the interaction of phlegm and blood stasis in the chest (Bi et al., 2013).

5.2 Clinical evidence of TCM for CMVD

A total of 71 representative RCTs, including 34 Chinese patent medicines (CPMs), 11 TCM injections, and 26 TCM decoctions, were compiled and summarized. According to the available clinical data, there have been many clinical trials on the clinical advantages of TCM in the prevention and treatment of CMVD, as shown in Figure 2. The clinical evidence of TCM for CMVD, including the outcomes of 1) clinical manifestations, 2) coronary microcirculation, and 3) laboratory results, are analyzed and summarized in Table 1. Based on Table 1, the clinical evidence of TCM for the typical manifestations of CMVD is summarized in Table 2.

5.2.1 CPMs for CMVD treatment

Several clinical studies have shown that CPMs injections can play an important role in improving clinical symptoms, improving exercise tolerance, enhancing coronary microcirculation function, and regulating abnormal biomarkers and other aspects in CMVD patients.

1) Tongxinluo capsules (Liu et al., 2013; Wang, 2016; Fang et al., 2018), Shexiang Baoxin pills (Zhang W. N. et al., 2013; Wu et al., 2019), Qishen capsules (Zhang Y. L. et al., 2013; Shen, 2021), Qishen Yiqi dropping pills (Kang et al., 2021), Yinxing Mihuan oral solutions (Xuan et al., 2020), Yixinshu capsules (Zhu and Chen, 2014), Xinkeshu tablets (Feng et al., 2017; Jia W. M. et al., 2019), Danlou tablets (Zheng et al., 2019), Yinadan Xinnaojiong soft capsules (Wang et al., 2019; Wang and Li, 2022), Yuxintong capsules (Wu et al., 2018), Wide chest aerosols (Liu T. H. et al., 2021), Le Mai pills (Zhang and Xie, 2020), Naoxintong capsules (Cheng, 2011), Liqi Huoxue dropping pills (Li, 2019), Ginkgo Biloba capsules (Zou et al., 2016), Maixuekang capsules (Li et al., 2017), Wuling pills (Zhou, 2021), Xinhaoning capsules (Ren et al., 2018), Pushen capsules (Cao et al., 2021), Qili Qiangxin capsules (Zhang et al., 2021), compound Danshen dripping pills (Zhang and Chen, 2020), Guanxin Danshen dropping pills (Fang et al., 2013), Guanxin Shutong capsules (Li, 2014), Dengzhan Shenmai capsules (Liu et al., 2017), Naoxintong capsules (Wei et al., 2010), and Shexiang Tongxin dropping pills (Gong et al., 2021) relieved angina symptoms and improved ECG results; Shexiang Baoxin pills (Zhang W. N. et al., 2013; Wu et al., 2019), Qishen capsules (Zhang Y. L. et al., 2013; Shen, 2021), and Naoxintong capsules (Cheng, 2011) decreased the nitroglycerin dosage needed; and Tongxinluo capsules (Fang et al., 2018), Shexiang Tongxin dropping pills (Gong et al., 2021), Qishen capsules (Zhang Y. L. et al., 2013), and Yuxintong capsules (Wu et al., 2018) improved exercise tolerance. 2)
Shexiang Baoxin pills (Zhang, 2019), Qishen Yiqi dropping pills (Kang et al., 2021), compound Danshen dropping pills (Zhang and Chen, 2020), Guanxin Danshen dropping pills (Fang et al., 2013), Guanxin Shutong capsules (Li, 2014), and Shexiang Tongxin dropping pills (Gong et al., 2021) effectively improved CFRs; Yindan Xinnaotong soft capsules (Wang and Li, 2022) and Yixin Tongluo capsules (Meng, 2018) improved IMR values; and Guanxin Danshen dropping pills (Fang et al., 2013), Guanxin Shutong capsules (Li, 2014), compound Danshen dropping pills (Zhang and Chen, 2020), and Naoxintong capsules (Wei et al., 2010) improved TIMI blood flow grading. 3) Tongxinluo capsules (Wang, 2016), Shexiang Baoxin pills (Jin, 2018), Qishen capsules (Shen, 2021), Xinkeshu tablets (Feng et al., 2017; Jia W. M. et al., 2019), Yuxintong capsules (Wu et al., 2018), wide chest aerosols (Liu T. H. et al., 2021), Yindan Xinnaotong soft capsules (Wang et al., 2019; Wang and Li, 2022), and Yuxintong capsules (Wu et al., 2018) decreased the levels of hs-CRP, IL-6, IL-1, and tumor necrosis factor-α (TNF-α); Liqi Huoxue dropping pills (Li, 2019) decreased the levels of cTnI, creatine kinase-MB (CK-MB), and malondialdehyde (MDA); and Shexiang Baoxin Pills (Zhang W. N. et al., 2013; Wu et al., 2019), Qishen capsules (Shen, 2021), Ginkgo Biloba capsules (Zou et al., 2016), and Pushen capsules (Cao et al., 2021) increased high-density lipoprotein cholesterol (HDL-C) levels and decreased the levels of triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C).

5.2.2 TCM injections for CMVD treatment

Many clinical studies have shown that TCM injections can play an important role in improving clinical symptoms, enhancing coronary microcirculation function, and regulating abnormal biomarkers and other aspects in CMVD patients.

1) Danhong injection (Hu et al., 2014), Shuxuening injection (Wu et al., 2010), Shuxuetong injection (Mao et al., 2021), and Qishen Yiqi Fumai Lyophilized injection (Guo et al., 2020) improved symptoms and ECGs. 2) Ginkgo Damo injection (Wang et al., 2010) improved TIMI blood flow grading. 3) FIGURE 2: Clinical evidence of TCM for CMVD.
| No. | Location | Name of traditional Chinese medicine | Compositions | Duration of treatment | Intervention group vs control group | Sample size (T/C) | Main clinical symptoms | Laboratory finding |
|-----|----------|--------------------------------------|--------------|----------------------|-------------------------------------|-----------------|----------------------|------------------|
| 1 | Liaoning Provincial People’s Hospital | Tongxin capsule (TXL) | Paonia avensiana subsp. velutina (Lynch) D.V.Hong & E.S.Pan (Chubai), Dalbergia odorifera T.C.Chen (Yangpi), Buxus sarce Black (Ranian), Pericranium Cuscuta (Chuanzhi), Scopulis (Qiaotou), Baphiopogon Maltophaga (Taisichuang), Panax pseudoginseng C.A.Mey (Renshen), Cypripedium (Chenlin) Bacc. (Wangpeng), Hibiscus (Shabai), Sematium albus L. (Yunlang), Ziziphus Jujube Mill. (Smarturen), Borsukella Synthetica (Ringuai) | 3 months | (RCT) TXL + CT vs CT | 60 (29/31) | ↓ I 95.10% vs. C 87.10% (p < 0.05) | Unreported |
| 2 | Shenzhen People’s Hospital, Guangdong Province | Tongxin capsule (TXL) | — | 3 months | (RCT) TXL + CT vs CT | 68 (34/34) | I 82.35% vs. C 84.0% (p < 0.05) | Increase the level of NO and decrease the levels of ET-1 and ET-1/NO (p < 0.05) |
| 3 | Liaoning Provincial People’s Hospital | Tongxin capsule (TXL) | — | 3 months | (RCT) TXL + CT vs CT | 56 (28/28) | I 89.5% vs. C 71.43% (p < 0.05) | Decrease the level of hs-cTnI and increase the level of HDL-C (p < 0.05) |
| 4 | Shandong Provincial People’s Hospital | Tongxin capsule (TXL) | — | 3 months | (RCT) TXL + CT vs CT | 76 (38/38) | I 97.57% vs. C 78.3% (p < 0.05) | Decrease the level of NO and reduce the level of ET-1 (p < 0.05) |
| 5 | The First Hospital of Fuzhou University of Traditional Chinese Medicine | Shu Shen capsule (YXNT) | — | 3 months | (RCT) YXNT + CT vs CT | 87 (43/44) | I 95.38% vs. C 83.08% (p < 0.05) | Decrease the level of NO and reduce the level of ET-1 (p < 0.05) |
| 6 | The First People’s Hospital of Liaoning Province | Shu Shen capsule (YXNT) | — | 3 months | (RCT) YXNT + CT vs CT | 86 (43/44) | I 95.38% vs. C 83.08% (p < 0.05) | Increase the levels of NO and VEGF and reduce the level of ET-1 (p < 0.05) |
| 7 | The First Hospital of Fuzhou University of Traditional Chinese Medicine | Shu Shen capsule (YXNT) | — | 3 months | (RCT) YXNT + CT vs CT | 124 (62/62) | I 95.38% vs. C 83.08% (p < 0.05) | Decrease the level of NO and reduce the level of ET-1 (p < 0.05) |

(Continued on following page)
No.	Location	Name of traditional Chinese medicine	Compositions	Duration of treatment	Intervention group vs control group	Sample size (T/C)	Main clinical symptoms	Laboratory finding	
11	The Third Affiliated Hospital of Shandong First Medical University	Compound Salvia miltiorrhiza injection (CSM)	Salvia miltiorrhiza Bunge (Danshen), Dillenia osbecki fructus	14 days	(RCT) CMII + CT vs CT	106 (55/53)	Unreported	Improve the level of NO and reduce the level of ET-1 ($p < 0.05$); Improve FMD ($p < 0.05$)	Liu and Gu. (2021)
12	The First Affiliated Hospital of Heilongjiang University of Chinese Medicine	Danggui Shuanti decoction (DGSN)	Angelica sinesis (Oliv.) & Tode (Danggui), Convolvulus cassis (L.) & Fructus (Shuanti), Arcturus sieboldii Maj. (Shuanti), Equisetum hyemale L. (Shuanti), Polygonum multiflorum Fisch. ex DC. (Zhimagai)	3 weeks	(RCT) DGSN + CT vs CT	68 (34/34)	† Increase the levels of CRP, IL-6, and TNF-α ($p < 0.05$)	† Decrease the levels of CRP, IL-6, and TNF-α ($p < 0.05$)	Cai et al. (2021)
13	The Fourth Affiliated Hospital of Harbin Medical University	Dansheng injection (DRI)	Salvia miltiorrhiza Bunge (Danshen), Cornus fruticosus L. (Honghua)	10 days	(RCT) DH + CT vs CT	60 (30/30)	† Increase the levels of CRP, IL-6, and TNF-α ($p < 0.05$)	Decrease the levels of NO and reduce the level of ET-1 ($p < 0.05$); Improve NOB ($p < 0.05$)	Hu et al. (2012)
14	East Branch of Shanghai Sixth People’s Hospital	Dansheng injection (DRI)	—	2 weeks	(RCT) DH + CT vs CT	92 (47/45)	† Increase the levels of CRP, IL-6, and TNF-α ($p < 0.05$)	Decrease the levels of NO and reduce the level of ET-1 ($p < 0.05$); Improve NOB ($p < 0.05$)	Chen et al. (2021)
15	Zhengdong Hospital	Dansheng tablets (DET)	Triplanta koreensis Maxim. (Galsieg), Althaea officinalis G.Don (Xiahe), Paeonia lactiflora Wall. & S.M.Ahlborn ex S.S.H.C.Barrett & P.Browne (Samis), Smilacaceae arborescens “Chinolepis” (Chamolang), Salvia miltiorrhiza Bunge (Danshen), Paeonia axillaris subsp. veitchii (Yunn)	12 weeks	(RCT) DET + CT vs CT	80 (40/40)	† Increase the levels of CRP, IL-6, and TNF-α ($p < 0.05$)	Decrease the levels of NO and reduce the level of ET-1 ($p < 0.05$); Improve NOB ($p < 0.05$)	Zhong et al. (2018)
16	Chang’an District Hospital of Xi’an Jiaotong University	Dansheng capsule (DCF)	Salvia miltiorrhiza Bunge (Danshen), Astragalus membranaceus (Bunge)	4 weeks	(RCT) DTC + CT vs CT	84 (42/42)	† Increase the levels of CRP, IL-6, and TNF-α ($p < 0.05$)	Decrease the levels of NO and reduce the level of ET-1 ($p < 0.05$); Improve NOB ($p < 0.05$)	Han et al. (2019)
17	The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine	Dansheng decoction (DSD)	Salvia miltiorrhiza Bunge (Danshen), Salvia miltiorrhiza Bunge (Danshen), Scolopendrella alba L. (Tanigaki), Withania somnifera var. samuk изготовленных (Wall. et Balbis) Skurnikov, & A.D.Poobha (Sharen)	4 weeks	(RCT) DSD + CT vs CT	60 (30/30)	† Increase the levels of CRP, IL-6, and TNF-α ($p < 0.05$)	Decrease the levels of NO and reduce the level of ET-1 ($p < 0.05$); Improve NOB ($p < 0.05$)	Chen et al. (2021)
18	The Third Hospital of Fuzhou Medical University	Dansheng Shennan capsule (DSC)	Epimedium brevicornum (Yamani) Hand.-Mazz. (Donggoucian), Panax quinquefolius L. (Cao), Schisandra chinensis (Trunck.) Baill. (Wenmai)	6 months	(RCT) DSC + CT vs CT	120 (60/60)	† Increase the levels of CRP, IL-6, and TNF-α ($p < 0.05$)	Decrease the levels of NO and reduce the level of ET-1 ($p < 0.05$); Improve NOB ($p < 0.05$)	Liu et al. (2017)
19	Nijing Hospital, the Fourth Military Medical University	Epimedium decoction (ED)	Cimicifuga racemosa Gaertn. (Shuang), Euphorbia sagittata (Subhul & Zucc.) Mamm. (Yamunzun), Gynostemma plicatum (F.C.Howe) Rattach. & B.Brunet (Bajun), Angelica sinensis (Oliv.) & Fructus (Danshen), Phellodendron amurense Rehie (Zhigang), Arctium lappa (Zizhi)	4 weeks	(RCT) ED + CT vs CT	80 (40/40)	† Increase the levels of CRP, IL-6, and TNF-α ($p < 0.05$)	Decrease the levels of NO and reduce the level of ET-1 ($p < 0.05$); Improve NOB ($p < 0.05$)	Zhang et al. (2012)
No.	Location	Name of traditional Chinese medicine	Compositions	Duration of treatment	Intervention group vs. control group	Sample size (T/C)	Main clinical symptoms	Laboratory finding	Reference
-----	----------	--------------------------------------	--------------	----------------------	-------------------------------------	------------------	----------------------	----------------------	----------
20	Tongzhou District Hospital of Traditional Chinese Medicine	Fuling Weishan decoction (FFWB)	*Cyperus esculentus* (Rhubb.) Blume (Weishan), *Poncirus trifoliata* (Oxalis) (Fuling), *Atractylodes macrocephala* Koidz (Kougu), *Citrus reticulata* (Fuling)	1 month	(RCT) FFWB + CT vs. CT	86 (43/43)	I: 95.02% vs. C: 79.07% (p < 0.05)	Improve the level of NO and reduce the level of ET-1 (p < 0.01)	Jiang (2011)
21	Harbin Hospital of Traditional Chinese Medicine	Guizhi Nixiu capsule (GNC)	*Acanthopanax palmatus* (Zhuzi), *Euphorbia pekinensis* (Chaoxu), *Solanum nigrum* (Zhitian), *Citrus sinensis* (Weishi), *Poria cocos* (Shanmai)	30 days	(RCT) GNC + CT vs. CT	80 (40/40)	I: 92.50% vs. C: 75.08% (p < 0.05)	Reduce the levels of TG, TC, and LDL-C and increase the level of HDL-C (p < 0.05)	Zuo et al. (2016)
22	Harbin Medical University	Guizhi Dantu injection (GDI)	*Cinnamomum camphora* (Zhuzi), *Euphorbia pekinensis* (Chaoxu), *Tripterygium wilfordii* (Chaoxu), *Bamboo shoot* (Zhitian), *Citrus reticulata* (Weishi), *Citrus medica* (Weishi)	3 months	(RCT) GDI + CT vs. CT	60 (30/30)	I: 85.6% vs. C: 53.08% (p < 0.05)	Improve coronary blood flow (p < 0.05)	Wang et al. (2016)
23	Wuhan No. 1 Hospital	Guizhi Dantu Drop pills (GDDP)	*Saussurea involucrata* (Baihe), *Poria cocos* (Shanmai), *Acanthopanax palmatus* (Zhuzi), *Citrus reticulata* (Weishi), *Citrus sinensis* (Weishi), *Euphorbia pekinensis* (Chaoxu)	6 months	(RCT) GDDP + CT vs. CT	30 (15/15)	I: 81.90% vs. C: 46.78% (p < 0.05)	Improve coronary blood flow (p < 0.05)	Fang et al. (2013)
24	Guangdong Provincial Hospital	Guizhi Dantu Drop pills (GDDP)	*Saussurea involucrata* (Baihe), *Poria cocos* (Shanmai), *Acanthopanax palmatus* (Zhuzi), *Citrus reticulata* (Weishi), *Citrus sinensis* (Weishi), *Euphorbia pekinensis* (Chaoxu)	6 months	(RCT) GDDP + CT vs. CT	40 (21/19)	I: 75.5% vs. C: 56.8% (p < 0.05)	Improve coronary blood flow (p < 0.05)	Li (2014)
25	Nantong Traditional Chinese Medicine Hospital	Huayu Fufang capsule (HYFF)	*Bacopa monnieri* (Bacopa), *Corydalis yanhusuo* (Yanhusuo), *Glycyrrhiza uralensis* (Chaihu), *Jatropha curcas* (Chaoxu), *Citrus reticulata* (Weishi)	2 months	(RCT) HYFF + CT vs. CT	62 (31/31)	I: 68.86% vs. C: 66.7% (p < 0.05)	Reduce the level of NO and reduce the level of ET-1 (p < 0.05)	Wu et al. (2020)
26	Harbin First People’s Hospital Affiliated to Harbin University	Huayu Tongmai Yixin decoction (HTY)	*Glycyrrhiza uralensis* (Chaihu), *Euphorbia pekinensis* (Chaoxu), *Citrus reticulata* (Weishi), *Citrus medica* (Weishi), *Euphorbia pekinensis* (Chaoxu), *Citrus reticulata* (Weishi)	4 weeks	(RCT) HTY + CT vs. CT	140 (70/70)	I: 80.0% vs. C: 75.0% (p < 0.05); angina pectoris duration: I: 0.80 ± 0.25 vs. C: 4.25 ± 0.96 (p < 0.05)	Improve treadmill exercise test (p < 0.05)	Mao et al. (2022)
27	The First Affiliated Hospital of Henan University	Huayu Xuanmai decoction (HXZY)	*Glycyrrhiza uralensis* (Chaihu), *Euphorbia pekinensis* (Chaoxu), *Citrus reticulata* (Weishi), *Citrus medica* (Weishi), *Euphorbia pekinensis* (Chaoxu), *Citrus reticulata* (Weishi)	12 weeks	(RCT) HXZY + CT vs. CT	88 (44/44)	I: 57.75% vs. C: 50.10% (p < 0.05), angina pectoris duration: I: 2.17 ± 0.45 vs. C: 2.31 ± 0.45 (p < 0.05); angina pectoris duration: I: 4.04 ± 0.87 vs. C: 3.15 ± 1.33 (p < 0.05)	Improve treadmill exercise test (p < 0.05)	Gao et al. (2020)
28	Shaanxi Provincial Hospital of Traditional Chinese Medicine	Le Mai pill (LMP)	*Saussurea involucrata* (Baihe), *Glycyrrhiza uralensis* (Chaihu), *Citrus reticulata* (Weishi), *Citrus medica* (Weishi), *Euphorbia pekinensis* (Chaoxu), *Citrus reticulata* (Weishi)	6 weeks	(RCT) LMP + CT vs. CT	87 (43/43)	I: 54.76% vs. C: 43.84% (p < 0.05)	Unreported	Zhang and Liu (2020)
29	Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine	Ligustri lucidi injection (LI)	*Glycyrrhiza uralensis* (Chaihu), *Citrus reticulata* (Weishi), *Citrus medica* (Weishi), *Euphorbia pekinensis* (Chaoxu)	7 days	(RCT) LI + CT vs. CT	60 (30/30)	I: 19.67% vs. C: 33.93% (p < 0.05)	Improve FMD (p < 0.05); Decrease the level of CRP (p < 0.05)	Yue et al. (2018)

(Continued on following page)
TABLE 1 (Continued) Clinical evidence of TCM for CMVD.

No.	Location	Name of traditional Chinese medicine	Compositions	Duration of treatment	Intervention group vs control group	Sample size (T/C)	Main clinical symptoms	Laboratory finding	Reference	
30	First Teaching Hospital of Tianjin University of Traditional Chinese Medicine	Liqiu Huoxue Formula (LHBF)	Bupleurum chinense DC (Xiahu), Citrus aurantium L. (Zhiqiao), Trichosanthes kiwi (Zhiqiao), Allium schoenoprasum (Shiuhua), Salvia miltiorrhiza Bunge (Danshen), Atractylodes macrocephala (Baizhu), Angelica sinensis Bunge (Danshen), Carthamus tinctorius L. (Honghua), Cinnamomum cassia (Zhiqiao), Citrus aurantium L. (Zhiqiao), Glycyrrhiza uralensis (Gugao), Angelica sinensis Bunge (Danshen)	2 weeks	(RCT) LHBF + CT vs CT	55 (26/27)	I) Increase the level of NO and reduce the level of ET-1 (p < 0.05); II) Decrease the maximum heartbeat amplitude 1.74 ± 0.67 vs. C 2.2 ± 0.72 (p < 0.05); III) Average time prolonged: I 3.94 ± 3.76 vs. C 2.95 ± 3.57 (p < 0.05); the sum of ET segments depression decreased: I 5.3 ± 3.8 vs. C 6.2 ± 1.7 (p < 0.05); IV) Increase the level of NO and reduce the level of ET-1 (p < 0.05)	Wang et al. (2008)		
31	People’s Hospital of Hainan Province	Liqiu Huoxue dropping pills (LHDP)	Bupleurum chinense DC (Xiahu), Citrus aurantium L. (Zhiqiao), Trichosanthes kiwi (Zhiqiao), Allium schoenoprasum (Shiuhua), Salvia miltiorrhiza Bunge (Danshen), Atractylodes macrocephala (Baizhu), Angelica sinensis Bunge (Danshen), Carthamus tinctorius L. (Honghua), Cinnamomum cassia (Zhiqiao), Citrus aurantium L. (Zhiqiao), Glyceria uralensis (Gugao), Angelica sinensis Bunge (Danshen)	8 weeks	(RCT) LHDP + CT vs CT	102 (51/51)	I) Angina pectoris attack times: I 1.45 ± 0.51 vs. C 2.20 ± 0.64 (timetrial), (p < 0.05); II) Decrease the level of hs-CRP (p < 0.05); III) Decrease the level of ET-1, HA, HS, and syndecan 1 (p < 0.05)	Li (2019)		
32	Bengongjiang Provincial Hospital of Traditional Chinese Medicine	Maixuekang capsule (MKX)	Bupleurum chinense DC (Xiahu), Citrus aurantium L. (Zhiqiao), Trichosanthes kiwi (Zhiqiao), Allium schoenoprasum (Shiuhua), Salvia miltiorrhiza Bunge (Danshen), Atractylodes macrocephala (Baizhu), Angelica sinensis Bunge (Danshen), Carthamus tinctorius L. (Honghua), Cinnamomum cassia (Zhiqiao), Citrus aurantium L. (Zhiqiao), Glyceria uralensis (Gugao), Angelica sinensis Bunge (Danshen), Carthamus tinctorius L. (Honghua), Cinnamomum cassia (Zhiqiao), Citrus aurantium L. (Zhiqiao), Glyceria uralensis (Gugao), Angelica sinensis Bunge (Danshen)	28 days	(RCT) MKX + CT vs CT	60 (30/30)	I) 80.0% vs. C 53.3% (p < 0.05); II) 93.3% vs. C 78.6% (p < 0.05)	Li et al. (2017)		
33	The Provincial People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine	Nasintong capsule (NXT)	Bupleurum chinense DC (Xiahu), Citrus aurantium L. (Zhiqiao), Trichosanthes kiwi (Zhiqiao), Allium schoenoprasum (Shiuhua), Salvia miltiorrhiza Bunge (Danshen), Atractylodes macrocephala (Baizhu), Angelica sinensis Bunge (Danshen), Carthamus tinctorius L. (Honghua), Cinnamomum cassia (Zhiqiao), Citrus aurantium L. (Zhiqiao), Glyceria uralensis (Gugao), Angelica sinensis Bunge (Danshen), Carthamus tinctorius L. (Honghua), Cinnamomum cassia (Zhiqiao), Citrus aurantium L. (Zhiqiao), Glyceria uralensis (Gugao), Angelica sinensis Bunge (Danshen)	2 weeks	(RCT) NXT + CT vs CT	62 (31/31)	I) Increase the level of NO and reduce the level of ET-1 (p < 0.05); II) Decrease the level of hs-CRP (p < 0.05); III) Decrease the level of whole blood viscosity (p < 0.05)	Cheng (2011)		
34	Luan Group General Hospital	Nasintong capsule (NXT)	Bupleurum chinense DC (Xiahu), Citrus aurantium L. (Zhiqiao), Trichosanthes kiwi (Zhiqiao), Allium schoenoprasum (Shiuhua), Salvia miltiorrhiza Bunge (Danshen), Atractylodes macrocephala (Baizhu), Angelica sinensis Bunge (Danshen), Carthamus tinctorius L. (Honghua), Cinnamomum cassia (Zhiqiao), Citrus aurantium L. (Zhiqiao), Glyceria uralensis (Gugao), Angelica sinensis Bunge (Danshen), Carthamus tinctorius L. (Honghua), Cinnamomum cassia (Zhiqiao), Citrus aurantium L. (Zhiqiao), Glyceria uralensis (Gugao), Angelica sinensis Bunge (Danshen)	3 months	(RCT) NXT + CT vs CT	40 (20/20)	I) 75.0% vs. C 50.0% (p < 0.05); II) Improve coronary blood flow (p < 0.05)	Wu et al. (2009)		
35	Jining First People’s Hospital	Pushun capsule (PSC)	Bupleurum chinense DC (Xiahu), Citrus aurantium L. (Zhiqiao), Trichosanthes kiwi (Zhiqiao), Allium schoenoprasum (Shiuhua), Salvia miltiorrhiza Bunge (Danshen), Atractylodes macrocephala (Baizhu), Angelica sinensis Bunge (Danshen), Carthamus tinctorius L. (Honghua), Cinnamomum cassia (Zhiqiao), Citrus aurantium L. (Zhiqiao), Glyceria uralensis (Gugao), Angelica sinensis Bunge (Danshen), Carthamus tinctorius L. (Honghua), Cinnamomum cassia (Zhiqiao), Citrus aurantium L. (Zhiqiao), Glyceria uralensis (Gugao), Angelica sinensis Bunge (Danshen)	12 weeks	(RCT) PSC + CT vs CT	64 (32/32)	I) 95.66% vs. C 68.75% (p < 0.05)	Cao et al. (2012)		
36	Chinese Medicine Hospital Affiliated to Xiangji Medical University	Qinghong powder (QHP)	Bupleurum chinense DC (Xiahu), Citrus aurantium L. (Zhiqiao), Trichosanthes kiwi (Zhiqiao), Allium schoenoprasum (Shiuhua), Salvia miltiorrhiza Bunge (Danshen), Atractylodes macrocephala (Baizhu), Angelica sinensis Bunge (Danshen), Carthamus tinctorius L. (Honghua), Cinnamomum cassia (Zhiqiao), Citrus aurantium L. (Zhiqiao), Glyceria uralensis (Gugao), Angelica sinensis Bunge (Danshen), Carthamus tinctorius L. (Honghua), Cinnamomum cassia (Zhiqiao), Citrus aurantium L. (Zhiqiao), Glyceria uralensis (Gugao), Angelica sinensis Bunge (Danshen)	6 months	(RCT) QHP + CT vs CT	186 (92/92)	I) Angina pectoris attack times: I 1.0 ± 0.2 vs. C 0.6 ± 0.2 (p < 0.05); II) Decrease the level of ET-1 (p < 0.05); III) Decrease the levels of IL-6 and hs-CRP (p < 0.05); IV) Decrease coronary blood flow (p < 0.05)	Jiang et al. (2021)		
37	Cangzhou Central Hospital	Qiugui capsule (QGC)	Bupleurum chinense DC (Xiahu), Citrus aurantium L. (Zhiqiao), Trichosanthes kiwi (Zhiqiao), Allium schoenoprasum (Shiuhua), Salvia miltiorrhiza Bunge (Danshen), Atractylodes macrocephala (Baizhu), Angelica sinensis Bunge (Danshen), Carthamus tinctorius L. (Honghua), Cinnamomum cassia (Zhiqiao), Citrus aurantium L. (Zhiqiao), Glyceria uralensis (Gugao), Angelica sinensis Bunge (Danshen), Carthamus tinctorius L. (Honghua), Cinnamomum cassia (Zhiqiao), Citrus aurantium L. (Zhiqiao), Glyceria uralensis (Gugao), Angelica sinensis Bunge (Danshen)	6 months	(RCT) QGC + CT vs CT	60 (30/30)	I) Angina pectoris attack times: I 1.7 ± 0.8 vs. C 1.1 ± 0.7 (p < 0.05); II) Decrease the level of NO and reduce the level of ET-1, HA, HS, and syndecan 1 (p < 0.05); III) Decrease the levels of hs-CRP and TNF-α (p < 0.05); IV) Decrease coronary blood flow (p < 0.05)	Zhang et al. (2021)		
No.	Location	Name of traditional Chinese medicine	Compositions	Duration of treatment	Intervention group vs control group	Sample size (T/C)	Main clinical symptoms	Laboratory finding	Reference	
-----	----------	-------------------------------------	--------------	----------------------	------------------------------------	-----------------	-----------------------	-------------------	----------	
38	Hospital of Zhejiang, Affiliated to Guangzhou University of Chinese Medicine	Qingliang decoction (QLD)	Ilex pubescens Hook & Arn. (Mandinggong), Zamia pyriformis (Buch.-Ham. DC. (Huanggang)), Sinocalycanthus kwangtungensis Gagnep (Huangyou), Hovenia dulcis Franch & Savat (Xingzi), Carthamus tinctorius L. (Huanghualian)	4 weeks (RCT)	QLD + CT vs CT	30 (15/15)	① Angina pectoris attack times: I 3.15 ± 2.65 vs. C 37.37 ± 4.41 (p < 0.05). ⑤ Improve Chinese medical syndrome (p < 0.05).	① Reduce the level of ET-L (p < 0.05). ② Reduce the level of CRP (p < 0.05).	Lin et al. (2011)	
39	Beijing Hospital of Integrated Traditional Chinese and Western Medicine	Qishen capsule (QS)	Ilex pubescens Hook & Arn. (Mandinggong), Paeonia suffruticosa Aiton (Maodongqing), Ilex pubescens Hook & Arn. (Maodongqing), Panax ginseng C.A.Mey. (Qiling), Chrysanthemum coronarium L. (Bubalens), Scutellaria baicalensis Georgi (Chuanxiong), Callicarpa arguta (Shanzha), Carthamus tinctorius L. (Huanghualian)	12 weeks (RCT)	QS + CT vs CT	120 (60/60)	① Decrease the frequency of angina pectoris attacks (p < 0.05). ⑤ Improve Chinese medical syndrome (p < 0.05).	① Improve the result of the treadmill exercise test (p < 0.05). ⑤ Reduce the dosage of nitroglycerin required (p < 0.05).	Zhang et al. (2019)	
40	The Central Hospital of Jiaotong City	Qishen capsule (QS)	① 188.24% vs. C 67.65% (p < 0.01). ② Reduce the dosage of nitroglycerin required (p < 0.05).	2 months (RCT)	QS + CT vs CT	68 (34/34)	① 188.24% vs. C 67.65% (p < 0.01). ② Reduce the dosage of nitroglycerin required (p < 0.05).	① Improve the result of the treadmill exercise test (p < 0.05).	Sun. (2021)	
41	The First Hospital of Hunan University	Qishen capsule (QS)	—	3 months (RCT)	QSYQ + CT vs CT	60 (30/30)	① 8.63% vs. C 33.3% (p < 0.05). ④ Improve Chinese medical syndrome (p < 0.05).	① 76.9% vs. C 43.5% (p < 0.05).	Kang et al. (2022)	
42	Affiliated Hospital of Inner Mongolia Medical University	Safflower yellow pigment injection (SYPJ)	Carthamus tinctorius L. (Huanghualian)	16 days (RCT)	SYPJ + CT vs CT	68 (36/32)	① 75.00% vs. C 46.8% (p < 0.05). ④ Reduce the level of hs-CRP (p < 0.05).	① 75.00% vs. C 46.8% (p < 0.05). ④ Reduce the level of hs-CRP (p < 0.05).	Wang and Wang. (2013)	
43	The Second People's Hospital of Fujian District, Tangshan	Salvia miltiorrhiza Bunge (SMLH)	—	2 weeks (RCT)	SMLH + CT vs CT	104 (52/52)	① 96.15% vs. C 51.82% (p < 0.05). ② Improve Chinese medical syndrome (p < 0.05).	Unreported	Yang and Zhang. (2013)	
44	Affiliated Hospital of Traditional Chinese Medicine Research Institute in Heilongjiang Province	Shenwu Guanxin granule (SSG)	Panax ginseng C.A.Mey. (Huangqi), Astragalus membranaceus Bunge (Baiqi), Eucommia ulmoides Oliv. (Huangqin), Glycyrrhiza uralensis Fisch. ex DC. (Gancao), Salvia miltiorrhiza Bunge (Shanzha), Scutellaria baicalensis Georgi (Shexiang Tongxin), Zanthoxylum nitidum Roxb. (Huangjian), Panax ginseng C.A.Mey. (Huangqi), Paeonia suffruticosa Aiton (Maodongqing), Carthamus tinctorius L. (Huanghualian)	2 months (RCT)	SSG + CT vs CT	64 (34/30)	① Angina pectoris attack times: I 4.14 ± 0.22 vs. C 9.38 ± 0.43 (p < 0.05). ⑥ Reduce the total exercise time: I 609 ± 72 vs. C 421 ± 48 (p < 0.05). ⑨ Improve the result of the treadmill exercise test (p < 0.05).	Unreported	Sun et al. (2007)	
45	Department of Cardiology, Seventh Medical Center of Chinese PLA General Hospital	Shenxiu Jiangtang dropping pills (SJT)	Berberine Sulfoxide Injection (Shenxiu), Panax ginseng C.A.Mey. (Baiqi), Zanthoxylum nitidum Roxb. (Huangjian), Panax ginseng C.A.Mey. (Huangqi), Scutellaria baicalensis Georgi (Baiqian), Eucommia ulmoides Oliv. (Huangqin), Carthamus tinctorius L. (Huanghualian)	3 months (RCT)	STP + CT vs CT	106 (52/54)	① 96.22% vs. C 78.84% (p < 0.05). ⑥ Reduce the total exercise time: I 542 ± 87 vs. C 473 ± 78 (p < 0.05). ⑨ Improve the result of the treadmill exercise test (p < 0.05).	① 96.22% vs. C 78.84% (p < 0.05). ⑥ Reduce the total exercise time: I 542 ± 87 vs. C 473 ± 78 (p < 0.05). ⑨ Improve the result of the treadmill exercise test (p < 0.05).	Gong et al. (2022)	
46	Department of Pharmacy, Avariation Hospital	Shenxin injection (SSI)	Goldseinde L. (Yangmeng)	15 days (RCT)	SXX + CT vs CT	50 (26/24)	① Reduce the frequency of angina pectoris attacks (p < 0.05). ⑥ Reduce the frequency of typical angina occurrence (p < 0.05). ⑨ Improve the result of the treadmill exercise test (p < 0.05).	① Reduce the frequency of angina pectoris attacks (p < 0.05). ⑥ Reduce the frequency of typical angina occurrence (p < 0.05). ⑨ Improve the result of the treadmill exercise test (p < 0.05).	Wu et al. (2010)	
No.	Location	Name of traditional Chinese medicine	Compositions	Duration of treatment	Intervention group vs control group	Sample size (T/C)	Main clinical symptoms	Laboratory finding	Reference	
-----	----------	-------------------------------------	--------------	----------------------	-------------------------------------	-----------------	----------------------	----------------------	-----------	
47	Longhua Hospital, Shanghai University of Traditional Chinese Medicine	Shiunanshang injection (SST)	Puerariae (Dingdang), Rhizoma (Shihuang)	7 days	(RCT) SST x CT vs CT	64 (32/32)	I 93.75% vs. C 90.00% (p < 0.05)	I 93.75% vs. C 75.00% (p < 0.05)	Reduce the levels of hs-CRP, IL28-a (p < 0.05)	Mao et al. (2022)
48	Capital Medical University affiliated Beijing Anzhen Hospital	Sodium taurocholate II.A selenite injection (SSI)	Salviae miltiorrhizae (Shansha), Aconiti zuccatae rhizoma (Chuanxiong), Angelicae sinensis (Oliv.) Dode (Danshen), Panax notoginseng (Burkill) F.H.Chen (Sanqi), Glycyrrhiza uralensis (Gingseng)	14 days	(RCT) SSI x CT vs CT	70 (35/35)	I 94.2% vs. C 90.0% (p < 0.05)	Reduce the level of ET-1 (p < 0.05)	Decrease the levels of CRP and Fb (p < 0.05)	Zu et al. (2012)
49	Zhejiang Hospital of traditional Chinese Medicine	Tongling Nungun recipe (TNB)	Atractyloides mongolicus (Shangguo), Aconiti zuccatae rhizoma (Chuanxiong), Angelicae sinensis (Oliv.) Dode (Danshen), Panax notoginseng (Burkill) F.H.Chen (Sanqi), Glycyrrhiza uralensis (Gingseng), Salviae miltiorrhizae (Shansha), Rhizoma (Shihuang)	3 months	(RCT) TNB x CT vs CT	70 (35/35)	I 94.29% vs. C 77.14% (p < 0.05)	Decrease the levels of hs-CRP and IL-6 (p < 0.05)	Improve coronary blood flow (p < 0.05)	Li (2018)
50	The Second Affiliated People’s Hospital of JMU University of Traditional Chinese Medicine	Tingmai Zhaopu decoction (TMZD)	Panaxe notoginseng (Baishao), Salviae miltiorrhizae (Shansha), Aconiti zuccatae rhizoma (Chuanxiong), Angelicae sinensis (Oliv.) Dode (Danshen), Ophiopogonis (Ophiopogon)	4 weeks	(RCT) TMZD x CT vs CT	40 (20/20)	I 80% vs. C 50% (p < 0.05)	Unreported	Su and Lan. (2016)	
51	Shanggao Hospital Affiliated to Shanghai University of Traditional Chinese Medicine	Weiyang Huajun recipe (WHR)	Euphorbiae pechhamiana (L.) Donum (Fuji), Angelicae sinensis (Oliv.) Dode (Danshen), Tephrosiae angustifolia (L.) Polonarev	1 month	(RCT) WHR x CT vs CT	40 (20/20)	I 80% vs. C 50% (p < 0.05)	Unreported	Yan et al. (2014)	
52	First Hospital Affiliated to the University of Shanghai for Science and Technology	Wule shesuo aerosol (WCSA)	Sarsaparilla aborescens L (Zhimu), Piper longum L (Baishao), Artemisia annua L (Tanxiang), Piper retrofractum (Ya) A.D.C. (Lingpi), Panax notoginseng subsp. veitchii (Chuanxiong), Angelicae sinensis (Oliv.) Dode (Danshen), Panax notoginseng (Burkill) F.H.Chen (Sanqi), Glycyrrhiza uralensis (Gingseng)	1 month	(RCT) WCSA x CT vs CT	72 (36/36)	I 91.7% vs. C 72.2% (p < 0.05)	Increase the level of NO and reduce the level of ET-1 (p < 0.05)	Decrease the levels of TG, TC, LDL-C and increase the level of HDL-C (p < 0.05)	Liu et al. (2018)
53	The Second Hospital of Shanghai University Medical College	Wuling capsule (WLC)	Euphorbiae pechhamiana (L.) Donum (Fuji), Angelicae sinensis (Oliv.) Dode (Danshen), Tephrosiae angustifolia (L.) Polonarev	1 month	(RCT) WLC x CT vs CT	62 (31/31)	I 96.6% vs. C 88.2% (p < 0.05)	Unreported	Zuo. (2021)	
54	Liuhe Second People’s Hospital Affiliated to Shanghai Medical University	Xinkeshu tablets (XKS)	Crataegeosyosyiifoliae Renge (Shanzha), Salviae miltiorrhizae Renge (Danshen), Paeoniae reniformis var. levis (Wild) Masson & S.M.Almaida ex Sanjappa & Padupay (Egadi), Panaxe notoginseng (Baishao) F.H.Chen (Sanqi), Dendralon cortex (Fuk.) Kaoza & A.K.Pandey (Moxing)	6 months	(RCT) XKS x CT vs CT	90 (45/45)	I 86.4% vs. C 63.3% (p < 0.05)	Improve the level of NO and reduce the level of ET-1 (p < 0.05), improve FMD (p < 0.05)	Fang et al. (2017)	
55	The Second Hospital of Shijiazhuang	Xinkeshu tablets (XKS)	Crataegeosyosyiifoliae Renge (Shanzha), Salviae miltiorrhizae Renge (Danshen), Paeoniae reniformis var. levis (Wild) Masson & S.M.Almaida ex Sanjappa & Padupay (Egadi), Panaxe notoginseng (Baishao) F.H.Chen (Sanqi), Dendralon cortex (Fuk.) Kaoza & A.K.Pandey (Moxing)	3 months	(RCT) XKS x CT vs CT	60 (30/30)	I 80% vs. C 70% (p < 0.05)	Improve the level of NO (p < 0.05), Decrease the level of hs-CRP (p < 0.05)	Jia et al. (2018)	

(Continued on following page)
No.	Location	Name of traditional Chinese medicine	Compositions	Duration of treatment	Intervention group vs. control group	Sample size (T/C)	Main clinical symptoms	Laboratory finding	Reference
56	First Hospital of Shijiazhuang	Xiameng capsule (SNN)	Grojde mube L (Yingxue), Baecca lepida (Xiaoyingye), Salvia miltiorrhiza Bunge (Dangshan), Lonicera Lutea Merr. (Dingjaimingqi), Alismum chinense G.Don (Xiaohua)	3 months	(RCT) YNN + CT vs. CT	48 (25/23)	□ Angina pectoris attack times: I 5.3 ± 1.7 vs. C 8.8 ± 2.6 (< p < 0.05)	Unreported	Ren et al. (2018)
57	Zhengzhou Central Hospital Affiliated to Zhengzhou University	XiuZhi Zhenyu decoction (XFZT)	^Ajilium regia L. (Taoren), Cornus officinalis Siebold & Zucc. (Shanhuay), Panax ginseng Carr. (Xiaoyehuang), Rehmannia glutinosa Pall. (Baishao), Broussonetia papyrifera (Zhishe), Fructus bennettii (Shuizhi), Zingiber officinale Rosc. (Zhigancao), Eurycoma longifolia Jack (Kudzu)	4 weeks	(RCT) XFZT + CT vs. CT	102 (51/51)	□ I 94.2% vs. C 78.4% (< p < 0.05)	□ Increase the level of NO and decrease the level of ET-1 (< p < 0.05)	Zhai (2019)
58	The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine	Yiming Milian Oral Liquid (YMXM)	Grojde mube L (Yingxue), Gastrodia elata (Yinxingye), Schisandra chinensis (G.Don (Xiebai), Citrus aurantium L. (Yinre), Citrus reticulata (Qingbanxia), Allium sativum L. (Xiaoye), Piper longum L. (Zhiqiao), Zingiber officinale Rosc. (Zhigancao), Astragalus mongholicus Bunge (Huangqi), Aconitum delavayi Fisch. ex DC. (Danggui), Paeonia lactiflora Pall. (Baishao), Poria cocos (Oliv.) Diels (Dangshen), Angelica sinensis (Oliv.) Diels (Dangdai)	2 weeks	(RCT) YMXM + CT vs. CT	84 (42/42)	□ I 89.2% vs. C 76.6% (< p < 0.05)	□ Increase the level of NO and decrease the levels of ET-1 and AngII (< p < 0.05)	Xuan et al. (2022)
59	Hebei General Hospital for Retired Soldiers	YuJi Wanli Synthetical injection (YJSM)	Panax ginseng C.A.Mey (Shanhuay), Oplopanax japonicus (Thunb.) Ker Gawl. (Yinxing), Astragalus chinensis (Zhang) Ball. (Weixi)	14 days	(RCT) YJSM + CT vs. CT	80 (40/40)	□ I 87.5% vs. C 65.0% (< p < 0.05)	Unreported	Gao et al. (2020)
60	Jin Academy of Traditional Chinese Medicine	YuJi Heiwan formula granules (YHFG)	Trichosanthes kirilowii Maxim. (Guanzi), Allan chine G.Don (Danbai), Paeonia lactiflora (Taoren) Malvaceae (Liping), Astragalus mongholicus (Bayuirgen), Salvia miltiorrhiza Bunge (Dangshan), Lonicera Lutea Merr. (Dingjaimingqi), Panax notoginseng Bunge (Shuizhi), Hirudo medicinalis (Fuzhong)	4 weeks	(RCT) YHFG + CT vs. CT	68 (34/34)	□ I 92.9% vs. C 78.6% (< p < 0.05)	□ Increase the level of NO and reduce the levels of ET-1 and AngII (< p < 0.05)	Zhu (2018)
61	Shangqiu Hospital Affiliated to Shanghai University of Traditional Chinese Medicine	YuJi Heiwan recipe (YHHR)	Astragalus mongholicus Bunge (Huangqi), Salvia miltiorrhiza Bunge (Dangshan), Trichosanthes kirilowii Maxim. (Guanzi), Prunus persica (Taihe), Citrus chinensis (Shuanglan)	3 months	(RCT) YHHR + CT vs. CT	44 (22/22)	□ I 87.10% vs. C 73.33% (< p < 0.05)	□ Decrease the levels of hs-CRP (< p < 0.05); angina pectoris attack times: I 1.7 ± 0.8 vs. C 5.1 ± 1.2 (< p < 0.05); angina pectoris duration: I 1.7 ± 0.6 vs. C 3.8 ± 1.2 (< p < 0.05)	Shang et al. (2019)
62	Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine	YuJi Heiwan recipe (YHHR)	Astragalus mongholicus Bunge (Huangqi), Satureja Guriense (Yerba), Sophora flavescens (Huanglian), Cinnamomum cassia (Guang)	2 months	(RCT) YHHR + CT vs. CT	61 (31/30)	□ I 94.10% vs. C 75.30% (< p < 0.05)	□ Improve coronary blood flow (p < 0.05)	Feng et al. (2013)
63	Linyi Hospital of Traditional Chinese Medicine	YuJi Heiwan (YQHX)	Astragalus mongholicus Bunge (Huangqi), Oplopanax japonicus (Thunb.) Ker Gawl. (Yinxing), Pogostemon cablin (L.) Benth. (Chenpi), Glycyrrhiza radix (Jiujiang), Fructus Castaneae (Ziwen), Salvia miltiorrhiza Bunge (Dangshan)	2 weeks	(RCT) YQHX + CT vs. CT	80 (40/40)	□ I 92.5% vs. C 75% (< p < 0.05)	□ Decrease the level of ET-1 (< p < 0.05)	Tian et al. (2013)
64	Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine	YuJi Tongfa recipe (YTR)	Astragalus mongholicus Bunge (Huangqi), Satureja Guriense (Yerba), Angelica sinensis (Oliv.) Diels (Dangdai), Fructus Schisandrae (Shiwei), Salvia miltiorrhiza Bunge (Dangshan), Carthamus tinctorius L. (Honghong), Panax ginseng Carr. (Xiaoye), Zingiber officinale Rosc. (Zhigancao), Coptis chinensis (Zhiqiao), Poria cocos (Oliv.) Diels (Dangshen)	3 months	(RCT) YTR + CT vs. CT	59 (30/29)	□ I 93.30% vs. C 75.50% (< p < 0.05)	□ Improve MDI (p < 0.05); □ Decrease the level of the hs-CRP (< p < 0.05); □ Improve coronary blood flow (p < 0.05)	Wu et al. (2014)

(Continued on following page)
No.	Location	Name of traditional Chinese medicine	Compositions	Duration of treatment	Intervention group vs control group	Sample size (T/C)	Main clinical symptoms	Laboratory finding	
65	Linhai Hospital of Traditional Chinese Medicine	Yuhu (six Tongmai decoction (YFT))	Rehmannia glutinosa (Gaertn.) DC. (Shudihuang), Cornus officinalis Sieb. & Zucc. (Zhiwuwei), Ophiopogon japonicus (Thunb.) Kar. Grol. (Maizu), Lycium barbarum L. (Genqizi), Baptisiae tinctoriae DC. (Zhaxu), Cynanchum auriculatum Sukk. (Yinlian), Astragalus mongholicus Bunge (Huangqi), Angelicae sinensis (P. Br.) Dru (Danggeng), Glycyrrhiza uralensis Fisch. ex DC. (Gancao)	4 weeks (RCT)	YJT + CT vs CT	106 (53/53)	↓I 98.5% vs. C 97.9% (p < 0.05)	Decrease the level of CRP (p < 0.05)	Chen and Song (2019)
66	Ta'an Hospital of Traditional Chinese Medicine	Yincheng capsule (YTC)	Astragalus mongholicus Bunge (Huangqi), Panax ginseng C.A.Mey. (Renshen), Ophiopogon japonicus (Thunb.) Kar. Grol. (Maizu), Salvia miltiorrhiza Bunge (Danshen), Euphorbia adscendens T.C. Chen (Jingjiang), Citrus aurantium L. (Zhiqiao), Cinnamomum cassia (Cinnamon), Pericarpium citri (Shiying), Wallichia tridentata (Thunb.) Makino (Ruan), Ruscus aculeatus L. (Chuanxiong), Paeonia lactiflora Pall. (Pome), Paeonia suffruticosa Pall. (Shan)	4 weeks (RCT)	YTC + CT vs CT	120 (60/60)	↓I 94.67% vs. C 68.33% (p < 0.05)	Coronary blood flow significantly improved	Chen and Song (2019)
67	Linzhou Hospital of Traditional Chinese Medicine	Yixin (YXX)	Astragalus mongholicus Bunge (Huangqi), Salvia miltiorrhiza Bunge (Danshen), Cornus officinalis Sieb. & Zucc. (Zhiwuwei), Ophiopogon japonicus (Thunb.) Kar. Grol. (Maizu), Salvia miltiorrhiza Bunge (Danshen), Euphorbia adscendens T.C. Chen (Jingjiang), Ficus uhemia subsp. virchovi (Lynch) D.Y. Hong & K.Y. Pan (Chishao), Cinnamomum cassia (Cinnamon), Pericarpium citri (Shiying), Fritillaria meleagris var. jubata (Fritila), Moxun & S.M. Almeida ex Sanjappa & Predeep (Gegen), Allium neapolitanum G.D. Don (Shiitake), Cinnamomum cassia (Cinnamon) L.	6 months (RCT)	YXX + CT vs CT	40 (30/10)	↓I 80.00% vs. C 33.3% (p < 0.05)	Exercise tolerance improved	Long et al. (2010)
68	Beijing Anhui Hospital, Capital Medical University	Yinxin capsule (YXC)	Panax ginseng C.A.Mey. (Renshen), Salvia miltiorrhiza Bunge (Danshen), Ophiopogon japonicus (Thunb.) Kar. Grol. (Maizu), Astragalus mongholicus Bunge (Huangqi), Cinnamomum cassia (Cinnamon), Salvia miltiorrhiza Bunge (Danshen), Euphorbia adscendens T.C. Chen (Jingjiang), Ficus uhemia subsp. virchowi (Lynch) D.Y. Hong & K.Y. Pan (Chishao), Cinnamomum cassia (Cinnamon), Pericarpium citri (Shiying), Fritillaria meleagris var. jubata (Fritila), Moxun & S.M. Almeida ex Sanjappa & Predeep (Gegen), Allium neapolitanum G.D. Don (Shiitake), Cinnamomum cassia (Cinnamon) L., Paeonia lactiflora Pall. (Pome), Paeonia suffruticosa Pall. (Shan)	4 weeks (RCT)	YXX + CT vs CT	366 (200/166)	↓I 88.50% vs. C 82.53% (p < 0.05), angina pectoris attack time: I 2.33 ± 1.26 vs. C 4.53 ± 2.13 (p < 0.05),	Decrease the level of NO and reduce the level of ET-1 (p < 0.05); Decrease the levels of CRP, IL-1, and IL-6 (p < 0.05)	Zhu and Chen (2014)
69	The Third People's Hospital of Dukou	Yuxintong capsule (YXT)	Corydalis yanhusuo (H.T.Chen & Chen CHH) ex W.T.Wang et Z.Y.Zhu & C.Y.Wu (Yinhusuo), Panax ginseng C.A.Mey. (Renshen), Fritillaria meleagris var. jubata (Fritila), Rhus verniciflua (Rulishen)	4 weeks (RCT)	YXT + CT vs CT	82 (41/41)	↓I 97.56% vs. C 80.48% (p < 0.05), The total exercise time: I 10.18 ± 3.33 vs. C 6.45 ± 2.51 (p < 0.05), the time when the ST segment was depressed by > 0.05 mV: I 4.07 ± 0.54 vs. C 3.56 ± 0.35 (p < 0.05), the ST segment depression I 0.51 ± 0.06 vs. C 0.45 ± 0.04 (p < 0.05)	Increase the level of NO and reduce the level of ET-1 (p < 0.05); Decrease the levels of CRP, IL-1, and IL-6 (p < 0.05)	Wu et al. (2018)

(Continued on following page)
TABLE 1 (Continued) Clinical evidence of TCM for CMVD.

No.	Location of Traditional Chinese Medicine	Name of traditional Chinese medicine decoction	Intervention vs. control group	Sample size (T/C)	Location	Duration	Main clinical symptoms	Main laboratory finding	Reference
70	The First Affiliated Hospital of Harbin Medical University	Liqi Huatan Huoxue formula	2 months (RCT)	ZXB + CT vs. CT	Wuhan, China	1 month (RCT)	Improvement of angina symptom, Hemodynamic indexes, Coronary flow reserve, Clinical efficacy	Improvement of angina symptom, Hemodynamic indexes, Coronary flow reserve, Clinical efficacy	Wang et al., 2009
71	The First Affiliated Hospital of Harbin Medical University	Huoxue Tongmai Yixin decoction	2 weeks (RCT)	ZXB + CT vs. CT	Wuhan, China	2 weeks (RCT)	Improvement of angina symptom, Hemodynamic indexes, Coronary flow reserve, Clinical efficacy	Improvement of angina symptom, Hemodynamic indexes, Coronary flow reserve, Clinical efficacy	Chen et al., 2010

5.2.3 TCM decoctions for CMVD treatment

Many clinical studies have shown that TCM decoctions can play an important role in improving clinical symptoms, improving exercise tolerance and quality of life, enhancing coronary microcirculation function, and regulating abnormal biomarkers and other aspects in CMVD patients.

1) Liqi Huatan Huoxue formula (Wang et al., 2009), Huayu Fuyuan capsule (Peng and Yao, 2019), Huoxue Tongmai Yixin decoction (Li et al., 2020), Huoxue Zhuyu decoction (He et al., 2020), Fufang Wenban decoction (Jiang, 2021), Shenwu Guanxin granule (Sun et al., 2007), Bushen Huoxue granule (Wen et al., 2016), Tongmai Zhyu decoction (Su and Luo, 2014), Yiqi Huoxue formula granule (Zhou, 2018), Qihong decoction (Lin et al., 2011), Yishen Jieyu Tongmai decoction (Chen et al., 2014), and Shuxuetong injection (Mao et al., 2018) improved quality of life. 2) Huoxue Tongmai Yixin decoction (Li et al., 2020) and Qihong powder (Wang et al., 2016) improved quality of life. 3) Huoxue Tongmai Yixin decoction (Li et al., 2020) and Qihong powder (Wang et al., 2016) improved quality of life. 4) Huoxue Tongmai Yixin decoction (Li et al., 2020) and Qihong powder (Wang et al., 2016) improved quality of life. 5) Huoxue Tongmai Yixin decoction (Li et al., 2020) and Qihong powder (Wang et al., 2016) improved quality of life. 6) Huoxue Tongmai Yixin decoction (Li et al., 2020) and Qihong powder (Wang et al., 2016) improved quality of life. 7) Huoxue Tongmai Yixin decoction (Li et al., 2020) and Qihong powder (Wang et al., 2016) improved quality of life. 8) Huoxue Tongmai Yixin decoction (Li et al., 2020) and Qihong powder (Wang et al., 2016) improved quality of life. 9) Huoxue Tongmai Yixin decoction (Li et al., 2020) and Qihong powder (Wang et al., 2016) improved quality of life. 10) Huoxue Tongmai Yixin decoction (Li et al., 2020) and Qihong powder (Wang et al., 2016) improved quality of life. 11) Huoxue Tongmai Yixin decoction (Li et al., 2020) and Qihong powder (Wang et al., 2016) improved quality of life. 12) Huoxue Tongmai Yixin decoction (Li et al., 2020) and Qihong powder (Wang et al., 2016) improved quality of life.
TABLE 2 Clinical evidence of TCM for typical manifestations of CMVD.

Clinical evidence	TCM
Angina pectoris	Tongxinluo capsule, Shexiang Baoxin pill, Qishen capsule, Yiqi dropping pills, Yinxing Mihuian oral solution, Yixinshu capsule, Xinkeshu tablets, Danlou tablets, Yinda Xinnaoantong soft capsule, Yuxintong capsule, Wide chest aerosol, Le Mai pill, Naoxintong capsule, Liq Huoxue dropping pills, Ginkgo Biloba capsule, Mainaean capsule, Wuling capsule, Xinnaoantong capsule, Pushen capsule, Qili Qiangxin capsule, compound Danshen dripping pills, Guanxin Danshen drop pills, Guanxin Slutong capsule, Naoxintong capsule, Shexiang Tongxin dripping pills, Danhong injection, Shuxuening injection, Yiqi Fujui Lyophilized injection, Salvia miltiorrhiza and ligustrazine hydrochloride injection, Ginkgo Damo injection, ligustrazine injection, safflower yellow pigment injection, sodium tanshionine B fractionate injection, Liq Huatan Huoxue formula, Huayu Fuyuan capsule, Huoxue Zhyu decoction, Fufang Wenban decoction, Shennu Guanxin granules, Bushe Huoxue granules, Tongmai Zhyu decoction, Yiqi Huoxue, Yiqi Huoxue Huatan formula granules, Qingling decoction, Yishen Jiyu Tongmai decoction, Yixin yin, Yiqi Tongluo recipe, Yiqi Huoxue Huatan recipe, Yiqi Huoxue recipe, Wenyang Huoxue decoction, Tongluo Ninxin recipe, Danshen decoction, Daoguian Sini decoction, Erxian decoction, Zhihong Xiebai Guizhi decoction, Xuefu Huoxue decoction
Anxiety and depression	Xinkeshu tablets, Wuling capsule, Xinnaoantong capsule, Shexiang Baoxin pill, Naoxintong capsule, Yiqi Huoxue Huatan recipe, Wenyang Huoxue decoction
ECG	Tongxinluo capsule, Danlou tablets, Le Mai pill, Ginkgo Biloba capsule, Mainaean capsule, Danhong injection, Shuxuening injection, Shuxueningtong injection, Ginkgo Damo injection, Huoxue Tongmai Yixin decoction, Bushe Huoxue granules, Tongmai Zhyu decoction, Yiqi Huoxue Huatan formula granules, Qingling decoction, Yiqi Tongluo recipe, Yiqi Huoxue recipe, Tongluo Ninxin recipe, Danshen decoction, Zhihong Xiebai Guizhi decoction
TCM syndrome	Qishen capsule, Xinkeshu tablets, Liq Huoxue dropping pills, compound Danshen dripping pills, Yixin Tongluo capsule, Shexiang Tongxin dripping pills, compound Danshen formula, Yiqi Fujui Lyophilized injection, Liq Huatan Huoxue formula, Huoxue Tongmai Yixin decoction, Yiqi Zhyu decoction, Huoxue Zhyu decoction, Yiqi Huoxue Huatan recipe, Wenyang Huoxue decoction, Danshen decoction, Daoguian Sini decoction
The dosage of nitroglycerin	Shexiang Baoxin pill, Qishen capsule, Naoxintong capsule, Yiqi Huoxue Huatan recipe, Wenyang Huoxue decoction
The total time of treadmill exercise	Tongxinluo capsule, Shexiang Baoxin pill, Qishen capsule, Yuxintong capsule, Shexiang Tongxin dripping pills, Danhong injection, Huayu Fuyuan capsule, Huoxue Tongmai Yixin decoction, Shennu Guanxin granules, Yiqi Huoxue Huatan formula granules, Yiqi Fujui Lyophilized injection, Huoxue Tongmai Yixin decoction, Huoxue Zhyu decoction, Yiqi Huoxue Huatan recipe, Wenyang Huoxue decoction, Danshen decoction, Daoguian Sini decoction
The time of ST-segment depression of 1 mm	Tongxinluo capsule, Shexiang Baoxin pill, Yuxintong capsule, compound Danshen dripping pills, Huayu Fuyuan capsule, Huoxue Tongmai Yixin decoction, Huoxue Zhyu decoction, Fufang Wenban decoction, Bushe Huoxue granules, Yenyang Huoxue decoction, Xuefu Huoxue decoction, Danshen decoction, Daoguian Sini decoction
The maximum amplitude of ST-segment depression	Xinyunshu capsule, Shexiang Baoxin pill, Yuxintong capsule, compound Danshen dripping pills, Huayu Fuyuan capsule, Huoxue Tongmai Yixin decoction, Daoguian Sini decoction, Erxian decoction
Coronary microcirculation	Yinxinhu capsule, Xinkeshu tablets, Liq Huoxue dropping pills, ligustrazine injection, compound Salvia miltiorrhiza injection, Yiqi Tongluo decoction
FMD	Yinxinhu capsule, Xinkeshu tablets, Liq Huoxue dropping pills, ligustrazine injection, compound Salvia miltiorrhiza injection, Yiqi Tongluo decoction
CFR	Qishen Yiqi drooping pills, Compound Danshen dripping pills, Shexiang Tongxin dripping pills, Huoxue Tongmai Yixin decoction, Qihong powder
IMR	Yinda Xinnaoantong soft capsule Yinxin Tongluo capsule
TIMI	Compound Danshen dripping pills, Guanxin Danshen drop pills, Guanxin Slutong capsule, Naoxintong capsule, Ginkgo Damo injection, Yixin yin, Yiqi Tongluo recipe, Yiqi Huoxue Huatan recipe, Tongluo Ninxin recipe, Zhihong Xiebai Guizhi decoction, Danshen decoction, Daoguian Sini decoction
Laboratory finding	Xinyunshu capsule, Shexiang Baoxin pill, Qishen capsule, Yuxintong capsule, compound Danshen dripping pills, Huayu Fuyuan capsule, Huoxue Tongmai Yixin decoction, Huoxue Zhyu decoction, Fufang Wenban decoction, Bushe Huoxue granules, Yenyang Huoxue decoction, Xuefu Huoxue decoction, Danshen decoction, Daoguian Sini decoction
NO	Tongxinluo capsule, Shexiang Baoxin pill, Qishen capsule, Yinxing Mihuian oral solution, Xinkeshu tablets, Yinda Xinnaoantong soft capsule, Yuxintong capsule, wide chest aerosol, Liq Huoxue dropping pills, Qili Qiangxin capsule, compound Danshen dripping pills, Huayu Fuyuan capsule, Huoxue Tongmai Yixin decoction, Huoxue Zhyu decoction, Fufang Wenban decoction, Bushe Huoxue granules, Yenyang Huoxue decoction, Xuefu Huoxue decoction, Yishen Jiyu Tongmai decoction
ET-1	Tongxinluo capsule, Shexiang Baoxin pill, Qishen capsule, Qishen Yiqi dropping pills, Yinxing Mihuian oral solution, Xinkeshu tablets, Yinda Xinnaoantong soft capsule, Yuxintong capsule, wide chest aerosol, Liq Huoxue dropping pills, Qili Qiangxin capsule, compound Danshen dripping pills, Huayu Fuyuan capsule, Huoxue Tongmai Yixin decoction, Huoxue Zhyu decoction, Fufang Wenban decoction, Bushe Huoxue granules, Yenyang Huoxue decoction, Xuefu Huoxue decoction, Yishen Jiyu Tongmai decoction
CRP	Shexiang Baoxin pill, Yinxing Mihuian oral solution, Yinda Xinnaoantong soft capsule, Yuxintong capsule, Liq Huoxue dropping pills, Shuxuening injection, compound Salvia miltiorrhiza injection, Yiqi Huoxue, Qingling decoction, Yishen Jiyu Tongmai decoction
hs-CRP	Shexiang Baoxin pill, Xinkeshu tablets, Yinda Xinnaoantong soft capsule, Pushen capsule, Qili Qiangxin capsule, compound Danshen dripping pills, Dangzhan Shenmai capsule, Shexiang Baoxin pill, compound Danshen dripping pills, Huayu Fuyuan capsule, Huoxue Tongmai Yixin decoction, Huoxue Zhyu decoction, Fufang Wenban decoction, Bushe Huoxue granules, Yenyang Huoxue decoction, Xuefu Huoxue decoction, Zhihong Xiebai Guizhi decoction, Xuefu Huoxue decoction (Continued on following page)
TABLE 2 (Continued) Clinical evidence of TCM for typical manifestations of CMVD.

Clinical evidence	TCM
IL-1	Shexiang Baoxin pill, Yindan Xinnao tong soft capsule, Yuxintong capsule
IL-6	Shexiang Baoxin pill, Yindan Xinnao tong soft capsule, Yuxintong capsule, ligustrazine injection, compound Salvia miltiorrhiza injection, Qihong powder, Tongluo Ningxin recipe, Xuefu Zhiyu decoction, Zhihua Xiaoan Huoxue recipe
TNF-α	Qili Qiangxin capsule, Shaxuettong injection, ligustrazine injection, compound Salvia miltiorrhiza injection, Xuefu Zhiyu decoction
Ang II	Yinxing Mihuan oral solution, Danshi Tongmai capsule
BNP	Ginkgo Biloba capsule, Qihong powder, Zhihua Xiaoan Huoxue recipe
cTnI	Ginkgo Biloba capsule, compound Danshen dripping pills
MDA	Compound Danshen dripping pills, compound Salvia miltiorrhiza injection
Endothelial glycocalyx	Qili Qiangxin capsule, Zhihua Xiaoan Huoxue recipe
Blood lipid	Shexiang Baoxin pill, Ginkgo Biloba capsule, Pushen capsule, Wenyang Huoxue decoction, Xuefu Zhiyu decoction
Hemorheology	Maixuekang capsule, compound Salvia miltiorrhiza injection
Cardiac function	Danlou tablets, Dengehe Shenmai capsule, Yixin Tonglou capsule, Zhihua Xiaoan Huoxue recipe, Danshi Tongmai capsule

et al., 2009), Huayu Fuyuan capsule (Peng and Yao, 2019), Huoxue Tongmai Yixin decoction (Li et al., 2020), Huoxue Zhiyu decoction (He et al., 2020), Fufang Wenban decoction (Jiang, 2021), Bushen Huoxue granule (Wu et al., 2016), Yiqi Huoxue (Tian et al., 2015), Qingling decoction (Lin et al., 2011), Qihong powder (Jiang et al., 2021), Yiqi Huoxue Huatan recipe (Huang et al., 2019), Wenyang Huoxue decoction (Xue et al., 2014), and Xuefu Zhiyu decoction (Zhu, 2019) increased NO levels and decreased ET-1 levels; Yiqi Tongluo recipe (Wu et al., 2016) improved FMD; Danshi Tongmai capsule (Ren et al., 2019) significantly decreased the levels of plasma ET-1, AngII, and IL-6; Zhihua Xiaoan Huoxue recipe (Liu Q. et al., 2021), Qihong powder (Jiang et al., 2021), Tongluo Ningxin recipe (Li, 2018), and Xuefu Zhiyu decoction (Jiang, 2021) significantly decreased the levels of IL-6 and hs-CRP; and Wenyang Huoxue decoction (Xue et al., 2014) and Xuefu Zhiyu decoction (Zhu, 2019) significantly decreased the TG, TC, and LDL-C levels and increased HDL-C levels.

In summary, clinical evidence indicates that TCM is beneficial for treating CMVD in 1) relieving the main clinical symptoms of angina pectoris, including decreasing the frequency of angina pectoris attacks, shortening the duration of angina pectoris, and alleviating the pain due to angina pectoris; improving the total effective rates of TCM syndromes; improving the quality of life of patients, including improving Seattle Angina Questionnaire scores and improving anxiety and depression; improving ECG results, including extending the total treadmill exercise times, enhancing the time of ST-segment depression of 1 mm, decreasing the maximum amplitude of ST-segment depression, and reducing the descending degree of the ST-T segment; and reducing the nitroglycerin dosage needed; 2) enhancing coronary microcirculation functions, including decreasing TIMI blood flow grading, increasing CFRs, and reducing IMRs; improving cardiac function, including decreasing cTnI and CK-MB levels and increasing EF levels; and 3) protecting vascular endothelial functions, including decreasing ET-1 levels, increasing NO levels, and improving FMDs; inhibiting inflammatory responses; decreasing the levels of hs-CRP, CRP, TNF-α, IL-1, IL-2, and IL-6; and improving blood lipids, which include decreasing the TG, TC, and LDL-C levels and increasing HDL-C levels.

6 Frequency of commonly used Chinese herbs from TCM compounds

According to the statistics provided in Table 1, the most frequently used herb among the 107 Chinese herbs studied was Danshen (Salvia miltiorrhiza Bunge). The top 10 Chinese herbs that are ranked by their relatively high usage frequencies are shown in Table 3. Table 3 shows that the top ten Chinese herbs are mainly blood-activating and stasis-removing drugs.

7 Potential action mechanisms of TCM for CMVD

7.1 Exploring the potential action mechanisms of TCM for CMVD based on clinical research

Coronary microcirculation disturbance (CMCD) is the main cause of myocardial ischemia in patients with CMVD (Padro et al., 2020). Vascular endothelial dysfunction is the main pathological mechanism of CMVD, and improving vascular endothelial dysfunction is one of the most important
strategies in the treatment of CMVD (Ford et al., 2018; Kaski et al., 2018; Mangiacapra et al., 2020). CFRs, IMRs, and TIMI blood flow grading are commonly used methods to evaluate coronary microvascular function (Gibson et al., 2000; Gould, 2009; Cuculi et al., 2014). CFR is one of the sensitive indices that reflect changes in coronary hemodynamics, and it is also an index to evaluate the reserve functions of the coronary arteries and microcirculation. In CMVD without occlusive epicardial coronary artery disease, a decrease in CFR is a marker of CMCD (Gould, 2009). A decrease in CFR was associated with adverse cardiovascular events (Gibson et al., 2000; Cuculi et al., 2014). IMR can accurately reflect the pathological changes in microcirculation, and it is a specific method used for assessing CMCD (Murthy et al., 2014). IMR can specifically evaluate the microvascular functions of the distal ends of stenotic lesions and can accurately predict myocardial perfusion levels, ventricular remodeling, and cardiac function recovery after reperfusion therapy in AMI (Murthy et al., 2012; Choi et al., 2021). The normal value of IMR has not been universally determined, and IMRs >25 indicate the presence of CMD (Fearon et al., 2008). Clinical studies show that TCM can increase CFRs, decrease IMRs, and improve TIMI blood flow grading and correct TIMI frames in patients with CMVD, which suggests that the mechanism of TCM treatment of CMVD may be related to the improvement of CMCD.

The endothelium is key to maintaining intravascular homeostasis, and endothelial function impairment is the main etiological basis for the occurrence and development of arteriosclerosis. Therefore, determinations of vascular endothelial function are of great clinical significance in the prevention and treatment of cardiovascular diseases (Godo and Shimokawa, 2017). ET-1 and NO, a pair of antagonistic vasoactive substances synthesized by the endothelium, are commonly used markers of endothelial cell function. The dynamic equilibrium between them is important for maintaining vascular tension and stability of the cardiovascular system. The brachial artery FMD technique was first developed by Celermajer et al. (1992). It is a noninvasive, high-frequency ultrasound method used to evaluate vascular endothelial function. FMD can reflect the overall functional changes of the vascular endothelium, and early detection can reveal the early progression of arteriosclerosis. Clinical studies have shown that TCM can significantly increase NO and NO/ET levels, decrease ET-1 levels, and improve FMD and vascular endothelial function. It is suggested that the protection of vascular endothelial function may be one of the mechanisms of TCM treatment of CMVD.

Inflammatory reactions play an important role in the development of CMD. Inflammatory factors not only cause endothelial injury and intimal thickening but also decrease NO and prostacyclin synthesis in endothelial cells and activate immune cells to release human ET and ET-like immune complexes, ultimately leading to endothelial dysfunction (Marroquin et al., 2005; Arroyo-Espliguero and Kaski, 2006). Clinical studies have shown that the levels of IL-6, hs-CRP, WBC, and neutrophil-lymphocyte in the peripheral blood of patients with CMVD are significantly higher than those of healthy subjects, which suggests that endothelial dysfunction induced by inflammatory reactions may be one of the pathogenic mechanisms of CMVD (Demirkol et al., 2014; Jia J. Z. et al., 2019). TCM can significantly reduce the levels of CRP, hs-CRP, IL-1, IL-6, TNF-α, and other inflammatory factors, suggesting that the inhibition of inflammatory reactions and protection of vascular endothelial function may be one of the mechanisms of TCM treatments of CMVD.

7.2 Exploring the potential action mechanisms of TCM for CMVD based on basic experimental research

Table 3 shows that the top ten Chinese herbs used to treat CMVD consist mainly of blood-activating, stasis-removing, and qi-reinforcing drugs. Next, we discuss the potential mechanisms...
of Chinese herbs such as Danshen (Salvia miltiorrhiza Bunge), Honghua (Carthamus tinctorius L.), Huangqí (Astragalus mongholicus Bunge), and Dànhuí (Angelica sinensis (Oliv.) Diels) in the treatment of CMVD.

7.2.1 Danshen (salvia miltiorrhiza bunge)

Salvia miltiorrhiza Bunge is the most commonly used traditional Chinese medicine for the clinical treatment of CMVD. Modern pharmacological studies have shown that Salvia miltiorrhiza Bunge has anti-inflammatory, antioxidant, anti-atherosclerotic, anti-coagulant, and anti-thrombotic effects, which regulate blood lipids, increase coronary blood flow, improve microcirculation, and protect vascular endothelial function. Liu et al. (2008) reported that Salvia miltiorrhiza Bunge could inhibit platelet aggregation and activation, prevent microthrombosis, promote nitric oxide production, dilate blood vessels, increase blood flow, and improve blood hypercoagulability, thus playing an anticoagulant role. Tanshinone IIA, one of the most abundant components of tanshinone, can alleviate pathological injury of cardiac tissue, attenuate myocardial damage, reduce myocardial infarct sizes, and promote the recovery of cardiac function (Zhang et al., 2010). In addition, tanshinone IIA sodium sulfonate could increase coronary flow, improve myocardial hypoxia tolerance, improve myocardial metabolic disorders, and effectively inhibit platelet aggregation and antithrombosis in patients with coronary heart failure (Wang and Liu, 2013; Qu et al., 2016). Salvianolic acid B is a water-soluble phenolic acid extracted from Salvia miltiorrhiza Bunge that significantly reduced cardiomyocyte injury, reduced myocardial inflammatory cell infiltration, and protected the myocardium in a rat model of myocardial ischemia–reperfusion injury (Qiu et al., 2017). Meng et al. (2014) found that salvianolic acid salt plus vitamin D3 injections could alleviate atherosclerosis induced by high-fat diets by inhibiting the inflammatory process. Its protective mechanism in atherosclerosis is closely related to the inhibition of oxidative stress and inflammatory responses and the improvement of endothelial dysfunction (Song et al., 2019). In addition, it was found (Wang et al., 2018) that the polysaccharides of Salvia miltiorrhiza Bunge also exhibited good antioxidant activities. Compared with vitamin C, Salvia miltiorrhiza polysaccharides could scavenge more than 90% of free radicals and could be used to prevent cell damage caused by free radicals and intracellular reactive oxygen species (ROS). Cong and Yu (2015) reported that Danshensu could reduce MDA contents, increase SOD activities, enhance cellular oxygen radical scavenging abilities, and improve vascular endothelial cell viabilities in vascular endothelial cells with H2O2-induced injuries and play a protective role against H2O2-induced oxidative damage in vascular endothelial cells. Salvianolic acid B, as one of the main water-soluble components of Salvia miltiorrhiza Bunge, has significant anti-inflammatory and cardiovascular protective effects. Hu et al. (2020) established a myocardial ischemia model and H9C2 cell inflammation model in rats and treated them with different concentrations of salvianolic acid B. Results showed that salvianolic acid B could significantly decrease acute myocardial ischemic injury in rats, significantly inhibit the production of ROS in H9C2 cells, and increase the mitochondrial membrane potential, inhibit activation of the NLRP3 inflammasome, and inhibit apoptosis. Animal experiments revealed that salvianolic acid A could exert antiapoptotic effects during myocardial ischemia–reperfusion by activating extracellular signal-regulated kinase 1/2 (ERK1/2) and inhibiting Jun kinase (JNK) (Xu et al., 2014). In addition, Salvia miltiorrhiza Bunge also has hypolipidemic effects. Lim et al. (2017) established a hyperlipidemic mouse model with a high-fat diet and investigated the lipid-regulating mechanisms of methanol extracts of Salvia miltiorrhiza Bunge. It was found that the methanol extracts of Salvia miltiorrhiza Bunge ameliorated hyperlipidemia in mice fed a high-fat diet mainly by inhibiting the increase in serum triacylglycerol levels.

7.2.2 Honghua (carthamus tinctorius L.)

Salvia miltiorrhiza Bunge and Carthamus tinctorius L. were used as a herb pair to treat cardiovascular diseases. Bai et al. (2021) reported that they could reduce the sizes of myocardial infarcts, alleviate ischemic injuries, and inhibit cardiomyocyte apoptosis in a myocardial ischemia/reperfusion injury (MIRI) model in vitro. Danhong injections are composed of Salvia miltiorrhiza Bunge and Carthamus tinctorius L. Modern research has found that Danhong injections can protect against cardiomyocyte injury, inhibit cardiomyocyte apoptosis, and improve the cell survival rates of myocardial cells (Duan et al., 2015). In addition, Yuan (2019) reported that Danhong injections protected against myocardial ischemia–reperfusion injuries in rabbits via antioxidation and the inhibition of cardiomyocyte apoptosis. Hydroxyafflov yellow A, one of the main active ingredients of Carthamus tinctorius L., alleviates MI/R damage to both heart structures and functions (Ye et al., 2021). In addition, saffranal, an active ingredient extracted from saffron, exerts a protective effect on the cardiovascular system. Wang H. et al. (2021) reported that safranal could increase the viability of H9c2 cardiac myoblasts and alleviate H/R-induced H9c2 cardiac myoblast injuries via the PI3K/AKT/GSK3β signaling pathway.

7.2.3 Huangqi (astragalus mongholicus bunge) and danghui (angelica sinensis (Oliv.) diels)

Astragalus mongholicus Bunge and Angelica sinensis (Oliv.) Diels are commonly used as couplet medicine in the clinical treatment of CMVD. Modern pharmacological studies have shown that Astragalus mongholicus Bunge–Angelica sinensis (Oliv.) Diels improved blood circulation, had anti-inflammation and antioxidation effects, and protected the vascular endothelium. By promoting the expression of endothelial nitric oxide synthase (eNOS) and phosphorylation
and reduce apoptosis levels due to H/R injury (Xie et al., 2016). Astragalus polysaccharide can significantly increase human cardiac microvascular endothelial cell viabilities (Yin et al., 2019). Astragaloside IV is one of the major active components of *Astragalus membranaceus*, which can reduce cardiomyocyte injuries and attenuate cardiomyocyte apoptosis induced by hypoxia/reoxygenation (H/R) via the inhibition of the calcium-sensing receptor (CaSR)/extracellular signal-regulated kinase 1/2 (ERK1/2), and related apoptotic signaling pathways (Yin et al., 2019). Astragalus polysaccharide can significantly increase human cardiac microvascular endothelial cell viabilities and reduce apoptosis levels due to H/R injury (Xie et al., 2016).

7.2.4 Other Chinese Herbs

Conioselium anthriscoides “Chuanxiong,” *Paonia lactiflora Pall*, *Panax notoginseng* (Burkill) F.H. Chen, and *Hirudo* are all blood-activating and stasis-resolving medicines. Modern pharmacological studies have shown that they all exhibit anti-myocardial ischemia–reperfusion injury, blood flow alteration, anti-atherosclerosis, platelet aggregation inhibition effects, and scavenges oxygen free radicals and also have anti-inflammatory, vasodilation, protection of vascular endothelium, and promotion of angiogenesis effects (Liu Y. C. et al., 2021; Wu et al., 2021; Zhang and Ma, 2021; Jiang et al., 2022). Tetramethylpyrazine is one of the main active components of *Conioselium anthriscoides* “Chuanxiong.” Tetramethylpyrazine can significantly reduce myocardial infarction sizes, improve myocardial function, reduce cardiomyocyte apoptosis, and provide significant protective effects on cardiomyocytes after ischemia–reperfusion. Its mechanism may be through the regulation of Janus kinase signal transducers 2/signal transducers, activators of the transcription 3 signaling pathway, and mitochondrial autophagy (Cheng et al., 2021). Total paony glycoside improved the survival rate of cardiomyocytes, inhibited cardiomyocyte apoptosis, and protected H9c2 cardiomyocytes from H/R injury (Shen et al., 2018). Ginsenoside Rb1, ginsenoside Rg1, ginsenoside Re, and notoginsenoside R1 are the major, active components of *Panax notoginseng* (Burkill) F.H. Chen. Studies have reported (Cai et al., 2017; Li et al., 2018) that ginsenoside Rb1 and ginsenoside Rg1 can decrease I/R-induced myocardial infarct sizes, ameliorate cardiomyocyte injuries, restore myocardial blood flow, and improve heart function. Ginsenoside Re and notoginsenoside R1 can increase NO release in vascular endothelial cells and stimulate vasodilation (Huang et al., 2005; Wang et al., 2016). As a representative TCM for breaking blood and expelling blood stasis, *Hirudo* has a significant antithrombotic effect. Li et al. (2021) found that *Hirudo* extracts could inhibit venous thrombosis through antioxidant effects, thus achieving antithrombotic effects. Atherosclerosis is the pathological basis of many cardiovascular diseases. *Hirudo* and its extracts can exert anti-atherosclerotic effects by regulating lipid metabolism, protecting endothelial cells, and inhibiting smooth muscle proliferation. Chen et al. (2013) found that hirudin could exert an anti-atherosclerotic effect by decreasing the levels of inflammatory factor TNF-α and inhibiting the proliferation of smooth vascular muscle cells.

In conclusion, TCM may achieve the purpose of CMVD treatment through anti-inflammatory and antioxidant effects, improve vascular endothelial function, protect cardiomyocytes, and improve coronary microcirculation.

8 Scientific Problems and Research Directions of CMVD

Although significant progress has been made in the basic and clinical research of CMVD, many scientific issues in this field remain to be solved. 1) Nonuniform clinical classifications: in the early literature, patients exhibiting chest pain without significant coronary angiography abnormalities were classified as having syndrome X. With the improvements in clinical research and diagnostic techniques, the clinical classification of CMVD has become increasingly detailed. Reasonable clinical classifications are helpful to elucidate the pathogenesis, establish diagnostic criteria and treatment choices, and determine prognoses. Establishing a more reasonable clinical classification of CMVD needs further study. 2) Unknown pathogeneses: because the clinical phenotype of CMVD is very complex, many CMVD mechanisms have been proposed, including endothelial cell-dependent and non-dependent vasodilation abnormalities, microvascular spasms, microvascular embolization, extravascular compression, and other mechanisms (Ford et al., 2018). What are the pathogenic differences among the clinical phenotypes of CMVD? What are the key factors that influence these mechanisms? Do interventions involving these mechanisms improve clinical symptoms and patient prognoses? These questions remain unanswered. In order to explore the mechanisms of CMVD, it is necessary to establish an animal model similar to pathological CMVD changes in humans. However, there is still a lack of animal models that can simulate human CMVD. 3) Inadequate clinical diagnoses: because the diameters of coronary microvessels are smaller than the resolution of existing imaging techniques, the morphology of these vessels cannot be observed by clinicians. Therefore, laboratory diagnoses of CMVD are mainly based on measurements of coronary microvascular function. Although the value of invasive examinations in the diagnosis of coronary artery function is well known, there are a few clinical applications for various reasons, which lead to a lack of CMVD diagnoses. 4) Unclear drug efficacies: currently, although there are small
randomized clinical studies or nonrandomized observational studies in the literature that focus on CMVD and end-point coronary microvascular function, there is still a lack of results from large randomized clinical trials with CMVD as the subject and cardiovascular events as the endpoint of the observations (Crea et al., 2014). CMVD treatments are still limited to controlling the traditional risk factors for arteriosclerosis, improving lifestyles, and relieving angina symptoms. Therefore, the treatments that can decrease the incidence of cardiovascular events in CMVD have not been determined.

In view of the above scientific challenges, we suggest that future research should focus on the following areas: 1) studying animal models that can simulate human CMVD; 2) exploring the key molecules and targets of CMVD development and studying CMVD pathogenesis by using genomics, transcriptomics, and proteomics techniques to search for molecular markers and intervention targets; 3) developing highly sensitive and specific serological markers that can predict and detect CMVD and developing molecular imaging techniques that can reveal the extent of CMVD; and 4) conducting large-sample, multicenter, randomized clinical trials with cardiovascular event endpoints to validate the potential for new CMVD-specific drugs and therapies to improve clinical endpoints and establish evidence-based medical treatments. Objective and accurate evaluations of CMVD are of great value for both CMVD diagnosis and searching for new intervention measures. In the future, more in-depth research on the diagnosis, treatment, and pathological mechanism of CMVD is expected to be conducted to establish a better and more accurate diagnosis and treatment strategies.

9 Conclusion and perspectives

Cardiovascular disease is one of the main causes of human death. Previous studies have shown that myocardial ischemia is mainly caused by epicardial coronary artery occlusion. However, in some patients with angina pectoris, coronary angiography (CAG) did not reveal occlusive disease, which suggested that myocardial ischemia may be the cause of coronary microcirculation dysfunction (Padro et al., 2020). Although the CAG technique has resulted in great progress in recent decades and the diagnostic accuracy of subepicardial coronary artery stenosis has been improved, the diagnostic sensitivity of CAG for myocardial ischemia is still limited. Studies have shown that half of the patients with known or suspected angina who receive CAG have nonobstructive coronary stenosis, which may be related to CMVD (Ford et al., 2020). CMVD is associated with an increased risk of MACEs (Jespersen et al., 2012; Maddox et al., 2014). The coronary angiography results were associated with significantly higher rates of cardiovascular events and all-cause mortality in patients with angina and with nonobstructive coronary artery disease than in the controls. The main cause of the poor prognoses in these angina patients may be related to CMVD, as researchers have determined (Taqueti et al., 2017; Taqueti and Di Carli, 2018). Therefore, the detection and treatment of CMVD have important clinical significance. There are no consensus on CMVD treatments, clinical practices for patients to improve symptoms, and intervention strategies for cardiovascular risk factors. Although CMVD has received increasing attention in the cardiovascular field, the etiological screening of myocardial ischemia is still limited to assessments of the epicardial coronary arteries, and assessments of coronary microcirculation have not received enough attention.

At present, there is no large-scale clinical study of CMVD with cardiovascular outcomes. In summary, CMVD is an important problem in the cardiovascular field. Although the study of CMVD has been deepened in modern medicine, the diagnosis, evaluation, and treatment of CMVD still face great challenges.

In recent years, the understanding of CMVD with respect to traditional Chinese medicine has been greatly improved, and many clinical studies have been conducted. Treatments based on syndrome differentiation using CPMs, TCM injections, and TCM decoctions can effectively relieve the clinical symptoms of patients, improve their quality of life and exercise tolerance, improve their long-term prognoses, and decrease their readmission rates, which provide new ideas and directions for the study of CMVD. However, due to the flexibility of treatment based on syndrome differentiation, the standards for syndrome differentiation and reasonable diagnosis and treatment schemes have not been unified, making it difficult to introduce TCM in clinics. At present, most clinical studies of traditional Chinese medicine for CMVD are characterized by inconstant designs, small sample sizes, short observation times, and a lack of large-scale multicenter prospective randomized control studies; therefore, the results of such studies cannot be extended to a wide range of clinical applications.

In addition, TCM compounds have multicomponent, multitarget, and multi-pathway synergistic actions. At present, research on CMVD mainly focuses on the action of one extract or one part of a single drug, which lays a foundation for research on the material basis of TCM compound prescriptions. Studying single ingredients ignores the relationships among drug taste, drug properties, and symptoms, and studies of compound prescriptions have mostly remained at the pharmacodynamic stage. Pharmacodynamic evaluations mostly use the evaluation system of a single target of chemical drugs for reference and neglect the characteristics of synergistic effects and multipoint fine-tuning. However, it should be noted that compound TCM prescriptions are the main form of clinical TCM use, and the clinical applications of TCM should be based on syndrome differentiation. At present, little attention has been paid to the compatibility of effective components, interactions among components, and the differences among different components. As a result, the current approach fails to emphasize the concept of compatibility of TCM to increase efficacy and decrease toxicity.

Therefore, future studies of TCM treatment of CMVD should begin from the following three perspectives. 1) For the theoretical...
research aspect, it is necessary to systematize and summarize the relevant ancient books and existing research to further improve the understanding of CMVD in TCM. 2) With regard to clinical research, we need to strengthen scientific and normative research and conduct large-sample, multicenter randomized clinical trials with the endpoints of cardiovascular events, evaluate the potential for CMVD-specific new drugs and therapies to improve clinical endpoints, and conduct efficacy and safety evaluations to provide stronger evidence-based medical evidence. 3) In basic research, we should use network pharmacology, metabolomics, molecular biology, proteomics, and other new research methods to explain the mechanisms of TCM in treating CMVD at the metabolite, gene, and protein levels to provide a new strategy for controlling CMVD.

In summary, CMVD still presents a thorny clinical problem. TCM has great therapeutic potential with respect to CMVD, but more large-scale and in-depth clinical and animal studies are needed to promote the clinical applications of TCM in CMVD.

Author contributions

ZY, SL, YL, QR, ZG, CW, and YB performed the literature search, selected relevant articles, interpreted data, and wrote the report; ZY and SL contributed equally to this work and shared the first authorship; ZY and SL were responsible for the entire manuscript; XW and JM designed and supervised this work. All authors have read and approved the final submission.

References

Arroyo-Espliguero, R., and Kaskan, J. C. (2006). Microvascular dysfunction in cardiac syndrome X: The role of inflammation. CMAJ 174, 1833–1834. doi:10.1503/cmaj.051331

Bai, J., Wang, X., Du, S., Wang, P., Wang, Y., Quan, L., et al. (2021). Study on the protective effects of danshen-honghua herb pair (DHHP) on myocardial ischemia/reperfusion injury (MI/R) and potential mechanisms based on apoptosis and mitochondria. Pharm. Biol. 59, 355–346. doi:10.1080/13880209.2021.1895346

Bairey Merz, C. N., Handberg, E. M., Shufelt, C. L., Mehta, P. K., Minissian, M. B., Wei, J., et al. (2016). A randomized, placebo-controlled trial of late Na current inhibition (ranolazine) in coronary microvascular dysfunction (CMD): Impact on angina and myocardial perfusion reserve. Eur. Heart J. 37, 1504–1513. doi:10.1093/eurheartj/ehw647

Bairey Merz, C. N., Pepine, C. J., Shimskawa, H., and Berry, C. (2020). Treatment of coronary microvascular dysfunction. Cardiovasc. Res. 116, 856–870. doi:10.1093/cvr/cva006

Baumgart, D., Haude, M., Görg, G., Liu, F., Ge, J., Grosse-Eggebrecht, C., et al. (1992). Non-invasive detection of endothelial dysfunction in children and adults using a simple non-invasive test. Circulation 99, 2090–2097. doi:10.1161/01.cir.99.16.2090

Bi, Y. F., Mao, J. Y., Zhang, Z. P., Wang, X. L., Wang, H. H., Ge, Y. B., et al. (2013). Research progress of traditional Chinese medicine treatment for cardiac syndrome X. Shanghai J. Traditional Chin. Med. 47, 77–80.

Brainin, P., Frestad, D., and Prescott, E. (2018). The prognostic value of coronary endothelial and microvascular dysfunction in subjects with normal or non-obstructive coronary artery disease: A systematic review and meta-analysis. Int. J. Cardiol. 254, 1–9. doi:10.1016/j.ijcard.2017.10.052

Camici, P. G., and Crea, F. (2007). Coronary microvascular dysfunction. N. Engl. J. Med. 356, 830–840. doi:10.1056/NEJMra061889

Camici, P. G., Tschöpe, C., Di Carlo, M. F., Rimoldi, O., and Van Linhout, S. (2020). Coronary microvascular dysfunction in hypertrophy and heart failure. Cardiovasc. Res. 116, 806–816. doi:10.1093/crv/cva023

Cannon, R. O., 3rd, Leon, M. B., Watson, R. M., Rosing, D. R., and Epstein, S. E. (1985). Chest pain and "normal" coronary arteries—role of small coronary arteries. Am. J. Cardiol. 55, 50B–60B. doi:10.1016/0002-9149(85)90613-7

Cao, X. C., Zhao, H. Z., Kong, D. Y., Yi, S. W., Wu, Z. Y., and Sun, W. (2021). Observation of curative effect of Puhens capsule combined with rosuvastatin calcium in the treatment of coronary slow blood flow dyslipidemia. Chin. J. Integr. Med. Cardio-Cerebrovascular Dis. 19, 1861–1863.

Cao, Y., Wang, H. F., Yuan, R. H., Wang, Y., He, R., Cheng, Y., et al. (2022). Systematic review and meta-analysis of treating both Qp and Blood Flow in adjuvant treatment of microvascular angina pectoris. J. Shandong Univ. Traditional Chin. Med. 46, 54-63.

Cattaneo, M., Porretta, A. P., and Gallino, A. (2015). Ranolazine: Drug overview and possible role in primary microvascular angina management. Int. J. Cardiol. 181, 376–381. doi:10.1016/j.ijcard.2014.12.035

Celermajer, D. S., Sorensen, K. E., Gooch, V. M., Spiegelhalter, D. J., Miller, O. I., Sullivan, I. D., et al. (1992). Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 340, 1111–1115. doi:10.1016/0140-6736(92)93147-f

Chang, C. C., Wei, C., and Wu, Y. L. (2016). “Minute Collaterals and Microvesels” concept and its clinical guiding significance in meridian and collateral theory. J. Traditional Chin. Med. 57, 7–11. doi:10.13288/11-2166/t.2016.01.002

Funding

This work was supported by the National Natural Science Foundation of China (no. 82174326), the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (No: ZYYCXTD-C-202203), the “Innovation Team Development Plan” of the Ministry of Education-Research on the prevention and treatment of cardiovascular diseases in traditional Chinese medicine (no. IRT_16R54), the Tianjin Research Innovation Project for Postgraduate Students (no. 2021YJSB294), and the Graduate Research Innovation Project of Tianjin University of Traditional Chinese Medicine (no. YJSKC-20211012).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Lisa Y, et al. (2013). Ranolazine in symptomatic diabetic patients without obstructive coronary disease: A pilot study from the NHLBI-sponsored women's trial. JAMA: J. Am. Med. Assoc. 310, 1093–1099. doi:10.1001/jama.2013.197882

Meng, X. L. (2018). Clinical study of Yixin Tongluo capsule in the treatment of hypokinetic cardiac syndrome. Chin. J. Integr. Med. Cardio-Cerebrovascular 34, 38–43. doi:10.3969/j.issn.1672-1349.2018.02.008

Murthy, V. L., et al. (2017). Prevalence of coronary microvascular disease and coronary vaasospasm in patients with nonobstructive coronary artery disease: Systematic review and meta-analysis. J. Am. Heart Assoc. 11. doi:10.1161/JAHA.112.012307

Moreau, P., D’usco, L. V., and Lüscher, T. F. (1998). Structure and reactivity of small arteries in aging. Cardiovasc. Res. 37, 247–253. doi:10.1093/eurheartj/ehj100

Mumma, B., and Flacke, N. (2015). Current diagnostic and therapeutic strategies in microvascular angina. Curr. Emerg. Hosp. Med. Rep. 3, 30–37. doi:10.1007/s40138-014-0059-1

Murphy, V. L., Naya, M., Foster, C. R., Gaber, M., Hainer, J., Klein, J., et al. (2012). Association between coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus. Circulation 126, 1858–1868. doi:10.1161/CIRCULATIONAHA.112.124042

Murphy, V. L., Naya, M., Taqueti, V. R., Foster, C. R., Gaber, M., Hainer, J., et al. (2014). Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation 129, 2518–2527. doi:10.1161/CIRCULATIONAHA.113.008067

Niccoli, G., Scalone, G., Lerman, A., and Crea, F. (2016). Coronary microvascular obstruction in acute myocardial infarction. Eur. Heart J. 37, 1024–1033. doi:10.1093/eurheartj/ehv484

Okonemouno, E., Mourouzis, K., Vogiatzi, G., Siaos, G., Deftereos, S., Pagoulatou, S., et al. (2018). Coronary microcirculation and the No-reflow phenomenon. Curr. Pharm. Des. 24, 2934–2942. doi:10.2174/1381612824661180911122230

Padro, T., Manfrini, O., Bugiardini, R., Carty, J., Jenko, E. D., De Luca, G., et al. (2020). ESC Working Group on Coronary Pathophysiology and Microcirculation position paper on ‘coronary microvascular dysfunction in cardiovascular disease’. Cardiovasc. Res. 116, 741–755. doi:10.1093/ctrvca/vaa003

Peng J. Y., and Yao X. P. (2019). Clinical observation of Huayu Fuyuan capsule for coronary microvascular disease angina pectoris. Yunnan J. Traditional Chin. Med. Mater. Medica 40, 32–34. doi:10.16255/cnks.53-112087F.2019.10.012

Peterson, J. W., Johnson, B. D., Kip, K. E., Anderson, R. D., Handberg, E. M., Sharaf, B., et al. (2014). TIMI frame count and adverse events in women with No obstructive coronary disease: A pilot study from the NHLBI-sponsored women’s ischemia syndrome evaluation (WISE). PLoS One 9, e96830. doi:10.1371/journal.pone.0096830

Pitakran, O. P., Nuutila, P., Raitakari, O. T., Ronnemaa, T., Koskinen, P. J., Iida, H., et al. (1998). Coronary flow reserve is reduced in young men with IDDM. Diabetes 47, 248–254. doi:10.2337/diab.47.2.248

Qin, H. F., Liu, X. C., Xing, D. M., and Zhang, L. T. (2017). Clinical observation of Shengqi Baoxin Pill in the treatment of microvascular angina pectoris. J. Med. Forum 38, 147–148.

Qiu, C. P., Xu, M. X., Hao, R. R., Zhang, M. X., Zhaung, P. W., Cui, G. Z., et al. (2017). Protective effects of salvianolic acid on myocardial ischemic injury of rats from the aspect of inhibiting inflammatory reaction. Chin. J. Pharmacol. 33, 794–799. doi:10.1093/cjph/e5182.2017.09.007

Qiu, Z. C., Deng, Y., Chen, Y. T., Zhang, Y. I., Liu, G. B., and Yuan, Y. Q. (2021). Observation on the curative effect of Yinxing Mihan oral solution in the treatment of microvascular angina pectoris. Chin. J. Integr. Med. Cardio-Cerebrovascular 19, 3956–3958. doi:10.1002/jcip.2019.22.026

Qiu, Z. Q., Lin, Q. X., He, X. R., Zhou, D. H., Zhan, Y. F., and Tang, Y. (2016). Effect analysis of tanshinone IIA sulfonate sodium on the coronary artery hemodynamics of patients with chronic heart failure. Chin. J. Clin. Med. 8, 167–170. doi:10.3969/j.issn.1674-7860.2016.06.008

Reeh, J., Therming, C. B., Heitmann, M., Hofjerg, S., Sørum, B., Bech, J., et al. (2019). Prediction of obstructive coronary artery disease and prognosis in patients with suspected stable angina. Eur. Heart J. 40, 1426–1435. doi:10.1093/eurheartj/ehy086

Ren, J., Li, T. T., and Guo, W. J. (2019). Relieving effect of Dangui Tongmai capsule on impairment of coronary microcirculation in patients with STEMI after PCI. Chin. J. Evidence-Based Cardiovasc. Med. 11, 1233–1235. doi:10.16744/j.1746-4055.2019.10.20

Ren, Y. C., Zhao, Y. F., Zhang, X. L., Wang, S., Dong, J. J., and Yang, Y. (2018). Clinical observation of Xianmaotang capsule in the treatment of cardiac syndrome X patients with anxiety state. J. Tradit. Chin. Med. 36, 12–13.

Rizzioli, D., Palombo, C., Porteri, E., Muiesan, M. L., Kozików, L., La Canna, G., et al. (2003). Relationships between coronary flow vasodilator capacity and small artery remodelling in hypertensive patients. J. Hypertens. 21, 625–631. doi:10.1097/01.HYP.0000065472.20030800.000030

Sara, J. D., Widmer, R. J., Matsuzawa, Y., Lennon, R. L., Lerman, L. O., and Lerman, A. (2015). Prevalence of coronary microvascular dysfunction among patients with chest pain and nonobstructive coronary artery disease. J. Cardiovasc. Interv. 8, 1445–1453. doi:10.1161/JCINT.2015.06.017

Scarabelli, T., Stephenson, A., Rayment, N., Pasini, E., Comina, L., Curello, S., et al. (2001). Apoptosis of endothelial cells precedes myocardial cell apoptosis in ischemia/ reperfusion injury. Circulation 104, 253–256. doi:10.1161/01.CIR.104.253.235

Shah, N. R., Cheezum, M. K., Veeranna, V., Horgan, S. J., Taqueti, V. R., Murthy, V. L., et al. (2017). Ranolazine in symptomatic diabetic patients without obstructive coronary artery disease: Impact on microvascular and diastolic function. J. Am. Heart Assoc. 6, e00527. doi:10.1161/JAHA.116.005270

Shen, P., Chen, J., and Pan, M. (2018). The protective effects of paeony glycoside on ischemia/reperfusion injury in H9C2 cells via inhibition of the PI3K/Akt signalling pathway. Mol. Med. Rep. 18, 3332–3340. doi:10.3892/mmr.2018.9335

Shen, X. (2021). Effect of Qihen capsule combined with Nicorandil on elderly patients with qi deficiency and blood stasis syndrome of microvascular angina pectoris. Med. J. Chin. People’s Health 33, 62–64. doi:10.3969/j.issn.1672-0369.2021.08.025

Shi, L. C., and Cui, J. K. (2019). Clinical observation on Zhishi Xiebai Guizhi decotion for microvascular angina pectoris. Chin. J. Traditional Med. Sci. Technol. 26, 560–562.
Wang, X., Gao, A., Jiao, Y., Zhao, Y., and Yang, X. (2018). Antitumor effect and molecular mechanism of antioxidant polysaccharides from Salvia miltiorrhiza Bunge in human colorectal carcinoma LoVo cells. Int. J. Biol. Macromol. 108, 625–634. doi:10.1016/j.ijbiomac.2017.12.006

Wang, X. L., Mao, J. Y., Wang, H. H., Yu, D. L., Wang, Q., Zhang, Y., et al. (2009). Clinical study on Liqiu Huanuxue formula for cardiac syndrome X. Shanghai J. Traditional Chin. Med. 43, 35–35. doi:10.1007/s1097009040049

Wang, Y., Ren, Y., Xing, L., Dai, X., Liu, S., Yu, B., et al. (2016). Endothelium-dependent vasodilation effects of Panax notoginseng and its main components are mediated by nitric oxide and cyclooxygenase pathways. Exp. Ther. Med. 12, 3998–4006. doi:10.3892/etm.2016.3890

Wang, Y. L., Li, X. Q., Wang, X. F., and Luo, M. (2010). Clinical study on ginkgo damole for coronary slow blood flow. J. Pract. Med. 26, 3028–3030. doi:10.7661/JCM.2010.08.1138

Wang, Y. X. (2017). Clinical observation of Tongxinluo capsule on the treatment of female microvascular angina. J. Liaoning Univ. Traditional Chin. Med. 18, 175–176. doi:10.13194/j.issn.1673-842x.2016.03.061

Wang, Z. Q., Li, Y., and Xiao, W. L. (2014). Effect of Tungxiao capsule on the vascular endothelial function in patients with coronary slow flow. Chin. J. Traditional Chin. Med. Pharmacol. 29, 2034–2036.

Wang, Z., Xin, D., Peng, K., Wang, Q., and Li, D. (2019). Effect of Yindan Xinnaotong capsule on slow coronary flow disease in patients with stable coronary artery disease. Chin. J. Integr. Traditional West. Med. 39, 418–422. doi:10.7661/j.issn.20180907.177

Wei, H. S., Gao, H. W., Wang, L. L., Wang, C. P., Niu, Z. S., Wang, Q. M., et al. (2010). Study on the treatment of slow coronary blood flow with Buchang Naxintong capsule. Pract. J. Cardiac Cerebrovascular. 18, 1443–1446.

Wei, Y. (2018). Clinical study of compound Danshen dripping pills in adjunctive treatment of patients with cardiac syndrome X. Contemp. Med. 24, 100–102. doi:10.36969/1000-7369.2018.07.040

Wen, Y. N., Ma, J., Shi, F. F., Luo, W. P., Li, R., and Wang, Y. G. (2016). Therapeutic effect of Bushen Huoxue Granules for postmenopausal microvascular angina pectoris and its effect on serum NO and ET-1. Shanghai J. Traditional Chin. Med. 37, 987–998. doi:10.1007/s10739-016-0852-2

Wu, C. Y., Wang, G. M., and Sun, Z. J. G. (2019). Effect of Shexiang Baoxin pill combined with nicorandil in treatment of patients with coronary slow flow angina. Shanghai Med. Pharm. J. 40, 26–28–43.

Wu, L. F., Wang, Z. M., Hao, K. Q., Li, W. Y., Jia, B. T., Jia, F., et al. (2021). Chemical constituents and pharmacological effects of paonie radix rubra.A review. Chin. J. Exp. Traditional Med. Formulae 27, 198–206. doi:10.14322/cjett.20211770

Wu, L. H., Sun, J. L., Wang, C. Y., Liu, Y. X., Shi, S. F., and Liu, F. (2010). Clinical study on Shuxuening injection in treating cardiac syndrome X. Contemp. Med. 26, 100–102. doi:10.3969/j.issn.1674-0947.2010.07.040

Xie, L., Wu, Y., Fan, Z., Liu, Y., and Zeng, J. (2016). AstraGAL radix-Angelicae Sinensis Radix. Traditional Herb. Drugs 53, 2196–2213. doi:10.1016/j.tdr.2015.11.005

Xu, T., Wu, X., Chen, Q., Zhu, S., Liu, Y., Pan, D., et al. (2014). The anti-apoptotic and cardioprotective effects of salvinorin a on rat cardiacmyocytes following ischemia/reperfusion by DUSP-mediated regulation of the ERK1/2/JNK pathway. PLoS One 9, e102292. doi:10.1371/journal.pone.0102292

Xuan, J., Zhang, L., Li, Z. Y., and Buan, Y. (2020). Effect of Yinxian Mihua capsule on treated with slow coronary blood flow disease. Front. Pharmacol. 11, 909–910. doi:10.3389/fphar.2020.00934
