Contactless Rheology of Soft Gels Over a Broad Frequency Range

Zaicheng Zhang,1 Muhammad Arshad,1 Vincent Bertin,1,2,3 Samir Almohamad,1,4 Elie Raphael,2 Thomas Salez,1 and Abdelhamid Maali1,*

1 Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France
2 UMR CNRS Galliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France
3 Physics of Fluids Group, Faculty of Science and Technology, Mesa+ Institute, University of Twente, 7500 AE Enschede, Netherlands
4 Univ. Lille, CNRS, Centrale Lille, Yncra ISEN, Univ. Polytechnique Hauts-de-France, UMR 8520 – IEMN, F-59000 Lille, France

(Received 10 February 2022; revised 12 April 2022; accepted 5 May 2022; published 23 June 2022)

We report contactless measurements of the viscoelastic rheological properties of soft gels. The experiments are performed using a colloidal-probe atomic force microscope in a liquid environment and in dynamic mode. The mechanical response is measured as a function of the liquid gap thickness for different oscillation frequencies. Our measurements reveal an elastohydrodynamic coupling between the flow induced by the probe oscillation and the viscoelastic deformation of the gels. The data are quantitatively described by a viscoelastic lubrication model. The frequency-dependent storage and loss moduli of the polydimethylsiloxane gels are extracted from fits of the data to the model and are in good agreement with the Chasset-Thirion law. Our results demonstrate that contactless colloidal-probe methods are powerful tools that can be used for probing soft interfaces finely over a wide range of frequencies.

DOI: 10.1103/PhysRevApplied.17.064045

I. INTRODUCTION

Mechanical properties of thin, soft solids are of great interest for many emerging applications including surface coatings [1–3], photonics [4,5], microelectronics [6,7], and biosensors [8–10]. Methods like tensile or bending tests and direct indentation are commonly used for the characterization of soft materials [11–14]. The atomic force microscope (AFM) is a widely used device for surface topography and is also used for mechanical measurements with a nanometric resolution. AFM probes, with known shapes, can be used as nanoindenters to measure the mechanical response of thin films under applied normal compression [15–23]. With such a device, one can perform nanomechanical characterization of materials with elastic moduli in the range from kPa to GPa.

However, there are limitations in the measurement of elastic moduli for soft samples using the direct contact method due to the adhesion between sample and probe, which is inevitable at the nanoscale [23–26]. It is difficult not only to accurately measure adhesion, but also to measure the area of an adhesive contact [12,27,28]. Sample damage and probe contamination may also occur during measurements of soft samples [29].

Contactless measurements are an alternative to direct-contact methods. More precisely, elastohydrodynamic (EHD) interactions between a probing sphere and a soft sample in a liquid environment provide a precise method to assess mechanical properties [30,31]. At small liquid-gap thickness between the sphere and the soft substrate, the vibration of the former generates a hydrodynamic stress field that might be large enough to deform the substrate, which in turn perturbs the flow leading to an EHD coupling. Based on this coupling, some tools have been developed to probe the mechanical properties of soft interfaces without contact. Using surface force apparatus, the mechanical properties of substrates of various rigidities, ranging from soft elastomeric samples to hard glasses, have been measured at low frequencies (less than 100 Hz) [32,33]. Guan et al. have used a vibrating nanoneedle glued onto an AFM cantilever to probe the viscoelastic properties of polydimethylsiloxane (PDMS) samples [34] and living cells [35]. However, in the AFM measurements of Guan et al. [34,35], the experimental setup restricts the probed frequency to a single value given by the resonance frequency of the cantilever and usually in the range of tens of kilohertz. With the setup proposed by Guan et al., the viscoelastic properties of a sample can only be measured at a single high frequency. Nanomechanical resonators were also used to directly probe the stiffnesses of various samples [36,37], but the measurements were limited to the resonance frequencies of the resonators.

Usually, the frequency-dependent rheology of soft solids is probed at the macroscale with conventional shear
The stiffness of the cantilever is determined by the drainage " cate sphere with a radius \(R \) of the experimental setup is shown in Fig. 1. A borosili-

tation spectrum (free from spurious peaks). A schematic

DDHE) that allows one to perform measurements in a

scope, Brucker) equipped with a liquid cell (DTFML-

± thickness of the sample is 125

viscosity of \(\eta \) linking. The employed viscous liquid is dodecane with a

ratio of 70:1. Following a degassing process in vacuum, a

follows. First, uncrosslinked PDMS (Sylgard 184, Dow

368) are prepared as

2.8

±

1.34 mPa s. After swelling, the measured

3

m. The sample is then annealed in

\(\phi \) and phase

\(\omega \) respectively, and where

\(\mu \) and \(\omega \) are the amplitude and angular frequency of the base oscillation,

respectively, and where \(t \) denotes time. The amplitude \(A \) and phase \(\phi \) of the oscillation of the cantilever are measured by a lock-in amplifier (Model 7280, signal recovery) versus the piezo displacement. In addition, the dc com-

ponent of the cantilever’s deflection is also recorded to determine the distance between the sphere and the sample surface.

The system is modeled as a forced damped harmonic oscillator, and the vertical displacement \(Z(t) \) of the sphere satisfies [45,47]

\[
m^* \ddot{Z} + \gamma_b \dot{Z} + k_c Z = F_d + F_h, \tag{1}
\]

where \(m^* \) is the effective mass of the probe, \(\gamma_b \) is the damping coefficient in the bulk liquid, \(k_c \) is the cantilever’s stiffness, \(F_d \) is the driving force acting on the cantilever, and \(F_h \) is the EHD force induced by the flow between the sphere and the deformable sample. Using the ansatz \(Z(t) = A \exp(i(\omega t - \phi)) + A \exp(-i\omega t) \), the complex mechanical impedance \(G = G' + jG'' \) can be defined and determined by [45,48]

\[
G = -\frac{\ddot{Z}}{Z} = -k_c \left[1 - \left(\frac{\omega}{\omega_0} \right)^2 + j \frac{\omega}{\omega_0} \right] \left\{ \frac{A \exp(-i\phi) - A \exp(i\phi)}{A \exp(-i\phi) + A \exp(i\phi)} \right\}, \tag{2}
\]

where \(A_{\infty} \) and \(\omega_{\infty} \) are respectively the amplitude and phase measured far from the surface, i.e., where the EHD force vanishes.

Figure 2 shows typical acquired data. Figure 2(a) presents the amplitude and phase \((A_{\infty}, \omega_{\infty}) \) versus the oscillation frequency, far from the surface \((D > 400 \mu m) \), where the EHD interaction between the substrate and the sphere can be neglected. We observe the presence of spu-

rious peaks (related to the mechanical resonances of the AFM) superimposed on the resonance excitation spectrum of the cantilever. The experiments are performed with frequency values avoiding such spurious peaks. Figure 2(b) presents the measured amplitude \(A \) (red dots) and phase \(\phi \) (green dots) as functions of the average separation distance \(D \) for an oscillation frequency \(\omega / (2\pi) = 500 \) Hz. Additional measurements (blue dots and black dots, respecti-

vely) on a hard surface (silicon) are used to obtain the base oscillation \(A_b \). Indeed, the silicon surface is hard enough for us to neglect the sample deformation. Thus, in that case, the interaction is purely viscous and can be modeled by a Reynolds force \((G' = 0, G'' = 6\pi \eta R^2 \omega / D) \) [45,49]. Very close to the silicon surface, the imagi-

ary component \(G'' \) of the impedance tends to infinity \((D \to 0, G'' \to \infty) \), and the amplitude [blue dots in
Abej
Ab
amplitude is measured, the complex mechanical impedance given by the Reynolds equation [49]:

\[\frac{\partial h(r, t)}{\partial t} = \frac{1}{12\pi \rho} \frac{1}{r} \left(r h(r, t) \right)^{3/2} \frac{\partial}{\partial r} p_e(r, t), \]

where \(p_e(r, t) \) is the excess hydrodynamic pressure with respect to the atmospheric pressure, with \(r \) and \(t \) the radial coordinate and time, respectively. The liquid-gap thickness [see Fig. 1(b)] is related to the substrate’s deformation \(u(r, t) \) and the sphere’s vibration \(Z(t) \), through [49]

\[h(r, t) = D + \frac{r^2}{2\pi} + Z(t) + u(r, t). \]

The amplitude of the base oscillation and the sample deformation are very small compared with the average gap distance \(D \), and thus Eq. (3) can be linearized to get

\[\frac{\partial Z(t)}{\partial t} + \frac{\partial u(r, t)}{\partial t} = \frac{1}{12\pi \rho} \frac{1}{r} \left(r \left(D + \frac{r^2}{2\pi} \right) \right)^{3/2} \frac{\partial}{\partial r} p_e(r, t). \]

The cantilever’s motion, the substrate’s deformation, and the excess pressure are assumed to have harmonic time dependences, in the form \(Z(t) = Z_0 e^{j\omega t} + U(r, t) = U(r) e^{j\omega t} \) and \(p_e(r, t) = P(r) e^{j\omega t} \), respectively. Equation (5) then becomes

\[12j \eta \rho \omega (Z_0 + U(r)) = \frac{d}{dr} \left(D + \frac{r^2}{2\pi} \right)^{3/2} \frac{d}{dr} P(r). \]

Integrating Eq. (6) once, we get [49]

\[\frac{d}{dr} P(r) = \frac{6j \eta \rho \omega Z_0}{(D+(r^2/2\pi))^{3/2}} + \frac{12j \eta \rho \omega}{r(D+(r^2/2\pi))^{3/2}} \int_0^r U'(r') dr'. \]

The substrate is assumed to be a semi-infinite viscoelastic medium with Poisson ratio \(\nu \) and complex Young’s modulus \(E(\omega) \), including the frequency-dependent storage modulus \(E'(\omega) \) (real part) and loss modulus \(E''(\omega) \) (imaginary part). Therefore, the deformation is related to the pressure field through [34,49,50]

\[\hat{U}(k) = \frac{2P(k)}{E^+(\omega)k}, \]

where \(E^+(\omega) = E(\omega)/(1 - \nu^2) \) is the reduced Young’s modulus, and where \(\hat{U}(k) \) and \(\hat{P}(k) \) are the zeroth-order Hankel transforms of the deformation \(U(r) \) and the pressure \(P(r) \), respectively, defined as \(\hat{U}(k) = \int_0^{\infty} J_0(kr) U(r) dr \) and \(\hat{P}(k) = \int_0^{\infty} J_0(kr) P(r) dr \), with \(J_0 \) the zeroth-order Bessel function of the first kind. For incompressible materials, \(\nu = 0.5 \) and thus \(E^* = 4/E(\omega) \). In such a case, and inverting the transformation, we get

\[U(r) = \int_0^{\infty} J_0(kr') \hat{U}(k) dk = \int_0^{\infty} J_0(kr') \frac{3P(k)}{2E(\omega)} dk. \]

Injecting Eq. (9) into Eq. (7) and using the relation between the zeroth-order and first-order (\(J_1 \)) Bessel functions of the first kind, i.e., \(\int_0^{\infty} J_0(kr') \) \(r' \) \(dr' = rJ_1(kr)/k \), we get

\[\frac{d}{dr} P(r) = \frac{6j \eta \rho \omega Z_0}{(D+(r^2/2\pi))^{3/2}} + \frac{18j \eta \rho \omega}{(D+(r^2/2\pi))^{3/2} E(\omega)} \int_0^{\infty} J_1(kr') \frac{\hat{P}(k)}{k} dk. \]
FIG. 2. (a) Amplitude and phase of the cantilever’s oscillation versus oscillation frequency measured far from the surface \((D > 400 \mu m)\). (b) Amplitude and phase measured as functions of the average separation distance between the sphere and either a soft PDMS substrate or a rigid silicon substrate. When the sphere is very close to the silicon surface, the amplitude \(A\) is equal to the base amplitude \(A_b = 3.1 \text{ nm}\).

We further introduce the following dimensionless variables:

\[
x = \frac{r}{\sqrt{2RD}}, \quad q = k\sqrt{(2RD)}, \quad p = \frac{PD^2}{\eta RZ_0(\omega)},
\]

\[
D_c = 8R \left(\frac{3\eta\omega}{4E'(\omega)} \right)^{2/3}, \quad B(\omega) = \frac{E''(\omega)}{E'(\omega)}.
\]

Using these variables, Eq. (10) becomes

\[
d\frac{\hat{p}(x)}{dx} = \frac{12\pi p(x)}{(1+x^2)3} + \frac{3j}{(1+x^2)^3} \left(\frac{D_c}{DB} \right)^{3/2} \frac{1-\beta}{1+B^2} \int_0^{+\infty} \hat{p}(q') dq',
\]

(11)

where \(\hat{p}(q)\) is the zeroth-order Hankel transform of \(p(x)\). A first-order Hankel transform of Eq. (11) leads to a Fredholm integral equation for \(\hat{p}(q)\):

\[
\hat{p}(q) = \frac{3j}{2} qK_1(q) + 3j \left(\frac{D_c}{DB} \right)^{3/2} \frac{1-\beta}{1+B^2} \int_0^{+\infty} \hat{p}(q') dq' \times \int_0^{+\infty} J_1(q'x)J_1(qx) dx
\]

\[
\times (1+x^2)^{-3} qdq',
\]

(12)

where \(K_1\) is the first-order modified Bessel function of the second kind. The mechanical impedance is then given by [49]

\[
G(D) = -\frac{1}{\pi} \int_0^{+\infty} 2\pi rP(r) dr = -\frac{4\pi R^2(2\omega)}{D_Dc} \hat{p}(0),
\]

(13)

which can be rescaled as

\[
G(D) = \frac{6\pi R^2(2\omega)}{D_Dc} \left(\frac{D}{D_c} \right), \quad G(\left(\frac{D}{D_c} \right), B) = -\frac{4Dc}{6\pi} \hat{p}(0).
\]

(14)

The dimensionless function \(G(D/D_c, B)\) can be computed numerically from Eq. (12) [49]. Doing so, we obtain the mechanical impedance. In particular, at large distance, the mechanical response is dominated by the viscous contribution; hence, we get the asymptotic expression of the impedance:

\[
G(D) \simeq \frac{6\pi R^2(2\omega)}{D_Dc} \left(\frac{D}{D_c} \right)^{3/2} \frac{1}{1+B^2}.
\]

(15)

IV. RESULTS AND DISCUSSION

Figure 3 shows the dimensionless mechanical impedance \(GDc/(6\pi R^2(2\omega))\) as a function of the dimensionless distance \(D/D_c\), for two frequencies. Figure 3(a) shows the results obtained from the data shown in Fig. 2(b) and using Eq. (2), where the oscillation frequency is \(\omega/(2\pi) = 500\) Hz. The solid black lines correspond to Eq. (14), where the values of the storage modulus \(E' = 3.2 \pm 0.5\) kPa and loss modulus \(E'' = 2.0 \pm 0.2\) kPa are the fitting parameters. Figure 3(b) shows the results for the frequency \(\omega/(2\pi) = 50\) Hz. Similarly, we obtain the values of the storage modulus \(E' = 1.6 \pm 0.4\) kPa and loss modulus \(E'' = 0.6 \pm 0.2\) kPa.

Furthermore, at large distances \((D > D_c)\), the viscous component \(G''\) of the mechanical impedance dominates and follows an approximately \(D^{-1}\) scaling law [see Eq. (15)], corresponding to the asymptotic expression of the hydrodynamic damping between a sphere and a rigid plane [49]: \(G''(D) = 6\pi \eta R^2(2\omega)/D\). Nevertheless, the deformation of the substrate leads to a nonzero elastic component \(G'\) of the mechanical impedance, that follows an approximately \(D^{-5/2}\) scaling law, in good agreement with the asymptotic prediction of the viscoelastic lubrication model [see Eq. (15)].

At small distances \((D < D_c)\), both \(G'\) and \(G''\) saturate to constant values that are independent of the average gap thickness. This is due to the fact that the deformation of the soft sample cannot exceed the oscillation amplitude of the sphere, and thus saturates, leading to a saturation
of the excess pressure. In this near-contact regime, the sample deformation accommodates the sphere motion, and the liquid is no longer expelled from the gap. Besides a residual damping that occurs outside the gap due to the viscous flow therein, another part of the damping occurs inside the soft substrate itself due to the loss modulus of the PDMS gel. This latter contribution increases as the oscillation frequency increases and dominates at high frequencies. From the numerical evaluation of Eq. (14), and in the small B case (i.e., $B < 2$, which is valid for the samples employed here), the limiting value of G'' at small distances ($D/Dc \rightarrow 0$) is found to depend on the moduli of the viscoelastic substrate via the relation

$$
\begin{align*}
G' &\approx \frac{6\pi R^2 \omega}{D} (2.01 - 0.77B(\omega)), \\
G'' &\approx \frac{6\pi R^2 \omega}{Dc} (1.16 + 1.34B(\omega)).
\end{align*}
$$

Moreover, comparing Figs. 3(a) and 3(b), we observe that for the lower oscillation frequency, the real and imaginary parts of the mechanical impedance merge and saturate to the same value at small distances, whereas for the higher frequency the imaginary part remains larger than the real part at all distances. Furthermore, the imaginary part of the mechanical impedance increases as the frequency increases. The dissipation is thus more pronounced at large frequency.

The extracted storage modulus E' and loss modulus E'' for various oscillation frequencies are shown in Fig. 4. Both moduli increase as the frequency increases. In our experiment, the PDMS sample is a viscoelastic material, and the frequency dependence of its complex Young’s modulus can be modeled by the Chasset-Thirion law [39, 44,51,52]:

$$E(\omega) = E'(\omega) + jE''(\omega) = E_0(1 + (j\omega\tau)^n),$$

where E_0 indicates the static ($\omega = 0$) Young’s modulus, τ is the relaxation time, and n is an empirical exponent, which all depend on the sample preparation (i.e., curing procedure, stoichiometric ratio between PDMS and curing agent).

To characterize the static modulus E_0 of the substrate, the dc component of the cantilever’s deflection versus the piezo displacement is also recorded, which allows us to construct the force-indentation curve. The static force F is obtained by multiplying the dc component of the deflection by the spring constant k_c of the cantilever. The indentation depth δ is obtained by subtracting the cantilever’s deflection from the piezo displacement. The relation between the

![FIG. 4. Storage modulus E' (red) and loss modulus E'' (blue) obtained from the fit in Fig. 3 versus the frequency. The green dashed line represents the value of static modulus $E_0 = 1.3 \pm 0.1$ kPa measured from the independent indentation measurement. The solid lines are fits from Eq. (17), from which we get two free parameters: $n = 0.55 \pm 0.05$ and $\tau = 0.9 \pm 0.1$ ms.](image-url)
between 1 colloidal probe attached to the AFM cantilever is vibrated using a contactless AFM method. Specifically, a spherical of cross-linked PDMS substrates at several frequencies, typically takes values typically takes values 0.1 ms. The empirical exponent poroelastic response.ing the Chasset-Thirion law, with no clear evidence of behave mechanically as a viscoelastic material follow-
ponents that may flow across the pores of the network fore, the PDMS layer contains a large amount of dodecane of approximately 5 when immersed in dodecane. There-
observed to swell and to increase in thickness by a factor E the static Young’s modulus = 1.3 ± 0.1 kPa.

force and indentation is given by the well-known Hertz model:

\[F = \frac{16}{9} E_0 R^{1/2} \delta^{3/2}. \] (18)

Figure 5 shows the measured force \(F \) as a function of the indentation depth \(\delta \). The solid line represents the best fit from Eq. (18). From the fit, we obtain the static Young’s modulus \(E_0 = 1.3 \pm 0.1 \) kPa. To fit from Eq. (18), from which we obtain the static Young’s modulus \(E_0 = 1.3 \pm 0.1 \) kPa. In order to neglect the hydrodynamic force due to the velocity of the substrate approaching the probe, we only perform the fitting at large indentation depths.

With the obtained value of the static modulus \(E_0 \), the extracted storage and loss moduli are fitted by Eq. (17) where the relaxation time \(\tau \) and the exponent \(n \) are taken as fitting parameters. In Fig. 4, the solid lines are the best fits, from which we obtain \(n = 0.55 \pm 0.05 \) and \(\tau = 0.9 \pm 0.1 \) ms. The empirical exponent \(n \) typically takes values between 1/2 and 2/3 [53].

As a final remark, we recall that the PDMS layer is observed to swell and to increase in thickness by a factor of approximately 5 when immersed in dodecane. Therefore, the PDMS layer contains a large amount of dodecane molecules that may flow across the pores of the network upon compression. Remarkably, the gel appears here to behave mechanically as a viscoelastic material following the Chasset-Thirion law, with no clear evidence of poroelastic response.

V. CONCLUSION

In conclusion, we have studied the viscoelastic response of cross-linked PDMS substrates at several frequencies, using a contactless AFM method. Specifically, a spherical colloidal probe attached to the AFM cantilever is vibrated in a liquid environment close and normally to a PDMS gel, in order to generate a nanoscale lubrication flow within the gap. This viscous flow generates a hydrodynamic pressure that deforms the soft substrate, leading to an EHD coupling. Based on soft-lubrication theory, we develop a model to calculate the resulting mechanical force exerted on the colloidal probe, including the viscoelasticity of the substrate. Using this model, the storage and loss elastic moduli of the PDMS gel are measured as functions of the frequency. The frequency dependencies of the storage and loss moduli are found to be in good agreement with the Chasset-Thirion law for viscoelastic solids. Altogether, this work demonstrates the robustness of broadband contactless AFM rheological methods. Such methods might be of interest for the gentle and precise frequency-dependent investigation of the mechanical behavior of thin, soft, fragile, immersed and/or alive systems, such as polymer coatings, bubbles, biological membranes, etc. These methods can be used to simultaneously image samples and measure their viscoelastic properties with a lateral spatial resolution limited only by the hydrodynamic radius.

ACKNOWLEDGMENTS

The authors thank Elisabeth Charlaix, Hamid Kellay, Dongshi Guan, Yacine Amarouchene, and Nicolas Fares for fruitful discussions. They acknowledge financial support from the Agence Nationale de la Recherche (Grants No. ANR-19-CE30-0012, No. ANR-18-CE06-0009-03, No. ANR-21-ERCC-0010-01 EMetaBrown, No. ANR-21-CE06-0039 Fricolas and No. ANR-21-CE06-0029 Softer) and the China Scholarship Council. They also thank the Soft Matter Collaborative Research Unit, Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science at Hokkaido University, Sapporo, Japan.

[1] C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H.-C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, A buckling-based metrology for measuring the elastic moduli of polymeric thin films, Nat. Mater. 3, 545 (2004).
[2] A. P. S. Alexopoulos and T. C. O’Sullivan, Mechanical properties of thin films, Annu. Rev. Mater. Sci. 20, 391 (1990).
[3] W. Allers, C. Hahn, M. Löhndorf, S. Lukas, S. Pan, U. Schwarz, and R. Wiesendanger, Nanomechanical investigations and modifications of thin films based on scanning force methods, Nanotechnology 7, 346 (1996).
[4] M. Kolle and S. Lee, Progress and opportunities in soft photonics and biologically inspired optics, Adv. Mater. 30, 1702669 (2018).
[5] Z. Zhang, D. Felipe, V. Katopodis, P. Groumas, C. Kouloumentas, H. Avramopoulos, J.-Y. Dupuy, A. Konczykowska,
A. Dede, and A. Beretta et al., Hybrid photonic integration on a polymer platform, Photonics 2, 1005 (2015).
[6] K. Xie, A. Glasser, S. Shinde, Z. Zhang, J. M. Rampnoux, A. Maali, E. Cloutet, G. Hadzioannou, and H. Kellay, Delamination and wrinkling of flexible conductive polymer thin films, Adv. Funct. Mater. 31, 2009039 (2021).
[7] A. I. Hofmann, E. Cloutet, and G. Hadzioannou, Materials for transparent electrodes: From metal oxides to organic alternatives, Adv. Electron. Mater. 4, 1700412 (2018).
[8] A. Mateescu, Y. Wang, J. Dostalek, and U. Jonas, Thin hydrogel films for optical biosensor applications, Membranes 2, 40 (2012).
[9] P. C. Jerónimo, A. N. Araújo, and M. C. B. Monteiro, Optical sensors and biosensors based on sol–gel films, Talanta 72, 13 (2007).
[10] A. Härtl, E. Schmich, J. A. Garrido, J. Hernando, S. C. R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmüller, and M. Stutzmann, Protein-modified nanocrystalline diamond thin films for biosensor applications, Nat. Mater. 3, 736 (2004).
[11] S. S. Asif, K. Wahl, and R. Colton, Nanoindentation and contact stiffness measurement using force modulation with a capacitive load-displacement transducer, Rev. Sci. Instrum. 70, 2408 (1999).
[12] P. McGuigan, J. S. Wallace, D. T. Smith, I. Sridhar, Z. Zheng, and K. Johnson, Contact mechanics of layered elastic materials: Experiment and theory, J. Phys. D: Appl. Phys. 40, 5984 (2007).
[13] X. Chen and J. J. Vlassak, Numerical study on the measurement of thin film mechanical properties by means of nanoindentation, J. Mater. Res. 16, 2974 (2001).
[14] W. C. Oliver and G. M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res. 19, 3 (2004).
[15] R. García, R. Magerle, and R. Perez, Nanoscale compositional mapping with gentle forces, Nat. Mater. 6, 405 (2007).
[16] D. Wang and T. P. Russell, Advances in atomic force microscopy for probing polymer structure and properties, Macromolecules 51, 3 (2018).
[17] Y. F. Dufrêne, T. Ando, R. Garcia, D. Alsteens, D. Martinez-Martin, A. Engel, C. Gerber, and D. J. Müller, Imaging modes of atomic force microscopy for application in molecular and cell biology, Nat. Nanotechnol. 12, 295 (2017).
[18] R. García, Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications, Chem. Soc. Rev. 49, 5850 (2020).
[19] M. Heuberger, G. Dietler, and L. Schlapbach, Mapping the local Young’s modulus by analysis of the elastic deformations occurring in atomic force microscopy, Nanotechnology 6, 12 (1995).
[20] M. R. VanLundingham, J. S. Villarrubia, W. F. Guthrie, and G. F. Meyers, Nanoindentation of polymers: An overview, Macromol. Symp. 167, 15 (2001).
[21] H.-J. Butt, B. Cappella, and M. Kappl, Force measurements with the atomic force microscope: Technique, interpretation and applications, Surf. Sci. Rep. 59, 1 (2005).
[22] E. K. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, and R. S. Chadwick, Determination of elastic moduli of thin layers of soft material using the atomic force microscope, Biophys. J. 82, 2798 (2002).
[23] J. T. Pham, F. Schellenberger, M. Kappl, and H.-J. Butt, From elasticity to capillarity in soft materials indentation, Phys. Rev. Mater. 1, 015602 (2017).
[24] K. L. Johnson, J. Kendall, and A. Roberts, Surface energy and the contact of elastic solids, Proc. R. Soc. London, Ser. A 324, 301 (1971).
[25] K. Johnson, Contact Mechanics (Cambridge University Press, London, UK, 1985).
[26] H.-J. Butt, J. T. Pham, and M. Kappl, Forces between a stiff and a soft surface, Curr. Opin. Colloid Interface Sci. 27, 82 (2017).
[27] E. Barthel and A. Perriot, Adhesive contact to a coated elastic substrate, J. Phys. D: Appl. Phys. 40, 1059 (2007).
[28] K. R. Shull, Contact mechanics and the adhesion of soft solids, Mater. Sci. Eng., R 36, 1 (2002).
[29] Y.-S. Chu, S. Dufour, J. P. Thiery, E. Perez, and F. Pincet, Johnson-Kendall-Roberts Theory Applied to Living Cells, Phys. Rev. Lett. 94, 028102 (2005).
[30] F. Kaveh, J. Ally, M. Kappl, and H.-J. R. Butt, Hydrodynamic force between a sphere and a soft, elastic surface, Langmuir 30, 11169 (2014).
[31] L. García, C. Barraud, C. Picard, J. Giraud, E. Charlaix, and B. Cross, A micro-nano-rheometer for the mechanics of soft matter at interfaces, Rev. Sci. Instrum. 87, 113906 (2016).
[32] S. Leroy, A. Steinberger, C. Cottin-Bizonne, F. Restagno, L. Léger, and É Charlaix, Hydrodynamic Interaction Between a Spherical Particle and an Elastic Surface: A Gentle Probe for Soft Thin Films, Phys. Rev. Lett. 108, 264501 (2012).
[33] R. Villey, E. Martinot, C. Cottin-Bizonne, M. Planer-Gourtofske, L. Léger, F. Restagno, and E. Charlaix, Effect of Surface Elasticity on the Rheology of Nanometric Liquids, Phys. Rev. Lett. 111, 215701 (2013).
[34] D. Guan, C. Barraud, E. Charlaix, and P. Tong, Noncontact viscoelastic measurement of polymer thin films in a liquid medium using long-needle atomic force microscopy, Langmuir 33, 1385 (2017).
[35] D. Guan, E. Charlaix, R. Z. Qi, and P. Tong, Noncontact Viscoelastic Imaging of Living Cells Using a Long-Needle Atomic Force Microscope with Dual-Frequency Modulation, Phys. Rev. Appl. 8, 044010 (2017).
[36] K. Eom, H. S. Park, D. S. Yoon, and T. Kwon, Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles, Phys. Rep. 503, 115 (2011).
[37] C. M. Dominguez, D. Ramos, J. I. Mendieta-Moreno, J. L. G. Fierro, J. Mendieta, J. Tamayo, and M. Calleja, Effect of water-DNA interactions on elastic properties of DNA self-assembled monolayers, Sci. Rep. 7, 536 (2017).
[38] J. Vega, A. Santamaria, A. Munoz-Escalona, and P. Lafuente, Small-amplitude oscillatory shear flow measurements as a tool to detect very low amounts of long chain branching in polyethylenes, Macromolecules 31, 3639 (1998).
[39] M. Zhao, J. Dervaux, T. Narita, F. Lequeux, L. Limat, and M. Roché, Geometrical control of dissipation during the...
spreading of liquids on soft solids, Proc. Natl. Acad. Sci. U. S. A. 115, 1748 (2018).

[40] M. Gardel, J. H. Shin, F. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A. Weitz, Elastic behavior of cross-linked and bundled actin networks, Science 304, 1301 (2004).

[41] R. H. Ewoldt, A. Hosoi, and G. H. McKinley, New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear, J. Rheol. 52, 1427 (2008).

[42] H. T. Banks, S. Hu, and Z. R. Kenz, A brief review of elasticity and viscoelasticity for solids, Adv. Appl. Math. Mech. 3, 1 (2011).

[43] D. T. Chen, Q. Wen, P. A. Janmey, J. C. Crocker, and A. G. Yodh, Rheology of soft materials, Annu. Rev. Condens. Matter Phys. 1, 301 (2010).

[44] E. Rolley, J. H. Snoeijer, and B. Andreotti, A flexible rheometer design to measure the visco-elastic response of soft solids over a wide range of frequency, Rev. Sci. Instrum. 90, 023906 (2019).

[45] A. Maali and R. Boisgard, Precise damping and stiffness extraction in acoustic driven cantilever in liquid, J. Appl. Phys. 114, 144302 (2013).

[46] V. S. Craig and C. Neto, In situ calibration of colloid probe cantilevers in force microscopy: Hydrodynamic drag on a sphere approaching a wall, Langmuir 17, 6018 (2001).

[47] C. Jai, T. Cohen-Bouhacina, and A. Maali, Analytical description of the motion of an acoustic-driven atomic force microscope cantilever in liquid, Appl. Phys. Lett. 90, 113512 (2007).

[48] A. Maali, R. Boisgard, H. Chraibi, Z. Zhang, H. Kellay, and A. Würger, Viscoelastic Drag Forces and Crossover from No-Slip to Slip Boundary Conditions for Flow Near Air-Water Interfaces, Phys. Rev. Lett. 118, 084501 (2017).

[49] S. Leroy and E. Charlaix, Hydrodynamic interactions for the measurement of thin film elastic properties, J. Fluid Mech. 674, 389 (2011).

[50] E. Gacoin, C. Fretigny, A. Chateauminois, A. Perriot, and E. Barthel, Measurement of the mechanical properties of thin films mechanically confined within contacts, Tribol. Lett. 21, 245 (2006).

[51] R. Chasset and P. Thirion, in Proceedings of the International Conference, edited by Prins J. A. (North-Holland Publishing Co., Amsterdam, 1965), pp. 345.

[52] D. C. Agudelo, L. E. Roth, D. A. Vega, E. M. Vallés, and M. A. Villar, Dynamic response of transiently trapped entanglements in polymer networks, Polymer 55, 1061 (2014).

[53] J. C. Scanlan and H. H. Winter, Composition dependence of the viscoelasticity of end-linked poly(dimethylsiloxane) at the gel point, Macromolecules 24, 47 (1991).