HbA1c, blood pressure, and cholesterol control in adults with diabetes: A report card for Kuwait

Abdullah Alkandari1*, Unjali P Gujral2, Abdullah Bennakhi1, Sarah Qabazard1, Rihab Al-Wotayan3, Qais Al Duwairi1, Hessa Al-Kandari1,3, KM Venkat Narayan2, Monira Alarouj1

1Dasman Diabetes Institute, Kuwait City, Kuwait, 2Rollins School of Public Health, Hubert Department of Global Health, Emory University, Atlanta, GA, USA, and 3Ministry of Health, Kuwait City, Kuwait

Keywords
Management, Risk factors, Targets

*Correspondence
Abdullah Alkandari
Tel.: 00965 2224 2999 (ext. 2253)
Fax: 00965 2249 2436
E-mail address: abdullah.alkandari@dasmaninstitute.org

J Diabetes Investig 2022; 13: 1732–1739
doi: 10.1111/jdi.13832

ABSTRACT

Aim: To assess the level of glycemic, blood pressure, and cholesterol control (the 'ABCs') nationally amongst adults with diabetes living in Kuwait.

Materials and Methods: Using data from two national cross-sectional surveys, the levels of risk factor control were assessed in 1,801 adults with diabetes, aged 18–82 years. Glycemic control was defined as HbA1c < 7%, blood pressure control as systolic and diastolic blood pressures of <140/90 mmHg, and non-HDL cholesterol control as <3.4 mmol/L.

Results: The percentage of adults with diabetes achieving control was 39.2% (95% CI, 37.0–41.5) for glycemia, 58.4% (95% CI, 56.0–60.7) for blood pressure, and 28.3% (95% CI, 26.3–30.4) for non-HDL cholesterol. The percentage of adults who were non-smokers was 77.6% (95%, CI 75.6–79.4). The percentage of adults with diabetes achieving control on all three risk factors was 7.4% (95% CI, 6.3–8.8), and only 5.8% (95% CI, 4.8–7.0) achieved ABC control and were nonsmokers. ABC control was 30% higher in women compared with men. Non-Kuwaitis were almost twice as likely to have uncontrolled ABC factors compared with Kuwaitis.

Conclusions: Only 1 in 13 people with diabetes in Kuwait achieved good control of glycemia, blood pressure, and cholesterol. Only 2 in 5 achieved glycemic control, 6 in 10 blood pressure control, and 2 in 7 cholesterol control. A national diabetes quality improvement program is urgently needed to improve the quality of care and to prevent long-term complications.

INTRODUCTION

Diabetes affects 463 million people worldwide1. The Middle East and North Africa (MENA) region is especially at risk. As of 2019 there were approximately 55 million people living with diabetes in the MENA region, and this number is expected to increase by 96% to 108 million by 20451. The prevalence of diabetes is high in Kuwait, where two national cross-sectional studies reported the adult diabetes prevalence to be 19%2,3. Furthermore, a recent analysis indicated that adults with diabetes in Kuwait are more likely to have multiple chronic co-morbidities, including hypertension and cardiovascular disease, compared with individuals without diabetes4. Diabetes is therefore a serious public health problem in Kuwait, with mounting socioeconomic and human costs. It is estimated that Kuwait spends more than $1,000 a year per adult with diabetes each year5.

The Diabetes Control and Complications Trial (DCCT) and the United Kingdom Prospective Diabetes Study (UKPDS) found that improved glycemic control can reduce both microvascular and macrovascular complications in patients with diabetes5,6. Subsequent studies have shown that in addition to glycemic control, improved blood pressure and lipid control also improved health outcomes in patients with diabetes5,7.
especially when achieved in unison. Conversely, smoking has been shown to increase the risk of cardiovascular death and mortality in patients with diabetes. Therefore, the successful management of risk factors, including HbA1c, blood pressure, and non-HDL cholesterol (the ‘ABCs’), as well as the cessation of smoking (the ‘ABCDs’), is the benchmark of clinical care and population medicine for people with diabetes. Evidence from several high-income nations also indicate that effective control of ABCDs is feasible and that benchmarking and monitoring of the quality of care and attention to diabetes care quality improvement can reduce the rates of complications and death in people with diabetes at the population level.

We have previously reported that the percentage of Kuwaiti adults with diabetes treated with glucose-lowering medication who achieved glycemic control was 34.5%. However, the proportion of adults with diabetes in Kuwait that are achieving target care goals across all cardiovascular risk factors remains unclear. Therefore, we assessed the level of glycemic, blood pressure, cholesterol control, and smoking status in adults with diabetes living in Kuwait.

MATERIALS AND METHODS

Surveys

Data on adults with diabetes aged 18–82 years from two nationally representative cross-sectional studies were pooled and analyzed: the Eastern Mediterranean Approaches to Non-Communicable Diseases (EMAN) and the Kuwait Diabetes Epidemiology Program (KDEP). The two surveys were pooled to ensure a large diabetes population including a non-Kuwaiti sample. The two surveys have been described in detail previously, and are outlined in Table S1.

Briefly, EMAN was conducted by the Ministry of Health in collaboration with the World Health Organization (WHO) in 2014. The target population was Kuwaiti adults aged 18–69 years residing in all six governates in Kuwait. The survey utilized the WHO STEP-Wise Approach to Surveillance methodology. Data were collected between March and September 2014 by a multidisciplinary team of health care workers in four consecutive steps: (i) a demographics questionnaire, (ii) diet, lifestyle, and medical and family history, (iii) physical measurements, and (iv) blood biochemistry measurements. A random sample, stratified by age, sex, and nationality was provided by PACI. The number of participants who completed steps 1–3 was 5,291 (85.1% response rate). The number of participants who completed all four steps, including an HbA1c fasting plasma glucose measurement was 4,947 (79.6%). The mean age of KDEP participants who completed all four steps, including a blood sample, was identical to those who only completed steps 1–3 (Table S2). However, participants who did not complete all four steps in KDEP were 68.0% male, compared with 56.1% in participants who did complete all four steps.

Measurements

Height, weight, blood pressure, and waist circumference measurements were obtained for participants in both studies. In EMAN, height and weight were measured using an electronic Growth Management Scale. In KDEP, calibrated portable electronic scales were used to measure weight and inflexible bars were used to measure height. The body mass index (BMI) was calculated as weight in kilograms divided by height in meters squared. Waist and hip circumference were measured using a non-stretch tape in both studies. A clinical mercury sphygmomanometer and a stethoscope with a universal cuff was used to measure blood pressure in EMAN, while an Omron HEM-907XL digital sphygmomanometer was used in KDEP. Blood pressure was measured three times in both studies. The average of the second and third reading or the average of the first and second if a third measurement was not taken was recorded and used in EMAN. For KDEP, the average of the three readings was recorded and used.

In EMAN, a blood sample was taken following a 12 h overnight fast. Blood glucose and lipid profiles were assessed using an Auto-analyzer Architect at the clinical laboratories of the Kuwait Cancer Control Center. In KDEP, blood samples were taken following a 10 h overnight fast. Blood glucose and lipid profiles were assessed at the clinical laboratories of the Dasman Diabetes Institute using a Siemens Dimension RXL chemistry analyzer, except for HbA1c which was measured using a Variant Device.

Definitions

The prevalence of diabetes in both surveys has been reported previously. Diabetes was defined using the WHO criteria of fasting plasma glucose (FPG) ≥7 mmol/L or HbA1c ≥6.5% (48 mmol/mol). Participants were considered to have diabetes if they met either the FPG or the HbA1c criteria, or if they self-reported a previous diagnosis of diabetes with concurrent prescribed glucose-lowering medication. Undiagnosed diabetes was defined as a survey measured FPG ≥7 mmol/L or Hba1c
≥6.5% without a previous self-reported diagnosis. Participants who self-reported a previous diabetes diagnosis but did not report receiving any treatment for diabetes and recorded a FPG <7 mmol/L and a HbA1c <6.5%, were considered to be false-positives and reclassified as having either normal glycemia or pre-diabetes based on their FPG or HbA1c value.

Glycemic control was defined as HbA1c <7% (<53 mmol/mol). A less stringent HbA1c <8% (<64 mmol/mol) was also considered. Blood pressure control was defined as systolic and diastolic blood pressures of <140/90 mmHg. A more stringent target of <130/80 mmHg was also considered. Lipid control was defined as a non-HDL cholesterol <3.4 mmol/L (<130 mg/dL). A lipid control definition of low-density (LDL) cholesterol <2.6 mmol/L (100 mg/dL) was also considered. Current smoking status was self-reported. ABC control was defined as HbA1c <7%, blood pressure < 140/90 mmHg, and non-HDL cholesterol <3.4 mmol/L. ABCD control was defined as control of the ABC factors in addition to not being a current smoker. Normal weight was defined as a BMI <25 kg/m², overweight was defined as a BMI 25.0–29.9 kg/m² and obesity was defined as a BMI ≥30 kg/m². An elevated waist-hip ratio was defined as ≥0.9 in men and ≥0.85 in women.

Statistical analysis

Statistical analyses were performed using GraphPad Prism and IBM SPSS Statistics 25. Sample weights were calculated independently for each survey. Sample weights were calculated as the product of the sample selection weight (population n/sample n), the non-response weight (1/response rate), and the population weight (population proportion/sample proportion), as described previously. For EMAN, sample weights were calculated for Kuwaiti men and women for four age-groups (18–29, 30–44, 45–59 and 60–69 years). For KEP, sample weights were calculated for Kuwaiti men, Kuwaiti women, non-Kuwaiti men, and non-Kuwaiti women for four age groups (18–29, 30–44, 45–59, and 60–82 years). Weighted levels of glycemia, hypertension, and dyslipidemia control were reported as percentages with corresponding 95% confidence intervals (CI), and were estimated by sex, age, nationality, and treatment status. Treatment status for diabetes, hypertension, or dyslipidemia were self-reported. Treatment for diabetes was defined as individuals prescribed oral glucose-lowering drugs, insulin, or both. Weighted levels of control of all three ABC factors were also estimated, as were the levels of control of all four ABCD factors. Continuous variables were presented as mean ± standard deviation. Factors associated with uncontrolled glycemia, blood pressure, non-HDL cholesterol, ABC, and ABCD were determined using binary logistic regression. Models included sex, nationality, age, obesity status, waist–hip ratio, treatment status, and smoking (smoking was not included for ABCD).

RESULTS

The total number of adults with diabetes in this pooled analysis was 1,801; 494 from EMAN and 1,307 from KEP. Details on the characteristics of the populations are provided in Table 1: 58.9% male, 56.5% Kuwaiti nationals; mean age 50.1 years (±10.7). The majority were obese (39.0%) and the mean BMI was 32.0 kg/m² (±6.3). Approximately two-thirds of adults with diabetes self-reported a previous diagnosis (67.5%) and were under treatment (65.5%); the rest were survey. The proportion of adults with diabetes and self-reported hypertension was 43.3% and 37.0% were being treated for hypertension. A similar proportion self-reported a diagnosis of dyslipidemia (42.3%), however, only 30.3% were being treated. Over a fifth (21.2%) of adults with diabetes were current smokers.

The percentage of adults with diabetes achieving an HbA1c <7% was 39.2% (95% CI, 37.0–41.5, Figure 1a). Only 35.7% (95% CI, 31.3–40.3) of participants who were on glucose-lowering medication achieved an HbA1c <7%, compared with 40.6% (95% CI, 38.0–43.2) of untreated adults with diabetes.

Table 1 | Characteristics of adults with diabetes in EMAN and KEP

Characteristic	Pooled population	EMAN	KEP
N	1,801	494	1,307
Male	1,060	210	850
Age			
18–44	511	185	326
45–59	946	219	727
60+	344	90	254
Nationality			
Kuwaiti	1,011	494	517
Non-Kuwaiti	780	0	780
Current smoker	382	84	298
Married	1,554	385	1,169
Education			
Less than high school	538	176	362
High school	433	101	332
University	811	199	612
BMI category			
BMI <25 kg/m²	158	43	115
BMI 25–299 kg/m²	567	129	438
BMI ≥30 kg/m²	1,044	293	751
Diabetes			
Self-reported diagnosis	1,215	293	922
Self-reported treatment	1,179	275	904
Hypertension			
Self-reported diagnosis	780	212	568
Self-reported treatment	667	186	481
Dyslipidemia			
Self-reported diagnosis	762	195	567
Self-reported treatment	545	156	389

The total number of adults with diabetes in this pooled analysis was 1,801; 494 from EMAN and 1,307 from KEP. Details on the characteristics of the populations are provided in Table 1: 58.9% male, 56.5% Kuwaiti nationals; mean age 50.1 years (±10.7). The majority were obese (39.0%) and the mean BMI was 32.0 kg/m² (±6.3). Approximately two-thirds of adults with diabetes self-reported a previous diagnosis (67.5%) and were under treatment (65.5%); the rest were survey. The proportion of adults with diabetes and self-reported hypertension was 43.3% and 37.0% were being treated for hypertension. A similar proportion self-reported a diagnosis of dyslipidemia (42.3%), however, only 30.3% were being treated. Over a fifth (21.2%) of adults with diabetes were current smokers.

The percentage of adults with diabetes achieving an HbA1c <7% was 39.2% (95% CI, 37.0–41.5, Figure 1a). Only 35.7% (95% CI, 31.3–40.3) of participants who were on glucose-lowering medication achieved an HbA1c <7%, compared with 40.6% (95% CI, 38.0–43.2) of untreated adults with diabetes.
Using a less stringent HbA1c (<8%) definition of glycemic control, 62.0% (95% CI, 59.8–64.2) achieved the target overall, including 55.3% (95% CI, 50.6–59.9) of treated participants, and 64.4% (95% CI, 61.8–66.9) of untreated participants. The percentage of adults with diabetes who achieved a blood pressure control of <140/90 mmHg was 58.4% (95% CI 56.0–60.7), and was 44.0% (95% CI, 40.2–47.9) in those treated for hypertension compared with 65.1% (95% CI, 62.2–67.9) in those untreated for hypertension. The percentage of adults who achieved blood pressure control using a more stringent <130/80 mmHg target was 28.5% (95% CI, 26.4–30.7), and was 16.2% (95% CI, 13.5–19.3) in those who were treated for hypertension and 34.3% (95% CI, 31.5–37.2) in those who were untreated. The percentage of adults with diabetes who achieved non-HDL cholesterol control (<3.4 mmol/L) was 28.3% (95% CI, 26.3–30.4), and was 45.0% (95% CI, 40.9–49.2) in those treated for dyslipidemia and 22.6% (95% CI, 20.4–25.1) in those untreated for dyslipidemia. A similar percentage of adults with diabetes achieved LDL cholesterol control (<2.6 mmol/L). Overall, 26.0% (95% CI, 24.0–28.1) achieved LDL cholesterol control, including 45.2% (95% CI, 41.0–49.5) of those under treatment and 19.4% (95% CI, 17.2–21.7) of those who did not.
receive treatment. Non-smoking was achieved by 77.6% of participants (95% CI, 75.6–79.4).

The percentage of adults with diabetes who achieved control in all three ABC risk factors (HbA1c < 7%, blood pressure < 140/90 mmHg and non-HDL cholesterol <3.4 mmol/L) was 7.4% (95% CI, 6.3–8.8). The percentage of adults who achieved ABCD control (ABC plus nonsmoking) was 5.8% (95% CI, 4.8–7.0). The level of ABC risk factor control in men with diabetes was 7.1% (95% CI, 5.6–8.8), which was lower than the 9.2% (95% CI, 7.2–11.6) control in women with diabetes (Table 2). The percentage of men with ABCD control was 4.6% (95% CI, 3.5–6.1), which was almost half of the 8.4% (95% CI, 6.6–10.8) of women with ABCD control. Younger adults with diabetes had higher levels of ABC control than older adults. The ABC control was 9.2% (95% CI, 6.9–12.1) in those aged 18–44 compared with 5.9% (95% CI, 4.5–7.6) and 7.6% (95% CI, 5.2–10.9) in those aged 45–59 years and 60 years or more, respectively. The level of ABC control in Kuwaitis with diabetes was 10.2% (95% CI, 8.4–12.4) compared with 5.2% (95% CI, 3.9–7.0) amongst non-Kuwaiti nationals living in Kuwait.

Figure 2 illustrates the percentage of adults with diabetes who achieved control in 0, 1, 2, 3, or 4 ABCD risk factors. The percentage of adults who did not achieve control in any of these four factors was 3.4% (95% CI, 2.7–4.4). The percentage of adults who achieved control in one factor was 27.7% (95% CI, 25.6–29.8), two factors was 37.9% (95% CI, 35.6–40.2), and three factors was 25.3% (95% CI, 23.3–27.4). The percentage of adults achieving control in at least two risk factors was 68.9% (95% CI, 66.7–71.1), and of at least three risk factors was 31.1% (95% CI, 28.9–33.3).

In binary logistic regression models, after adjusting for age, sex, and nationality, the only factor associated with uncontrolled glycemia (HbA1c ≥7%) was the waist-hip ratio (Table 3). Adults with an elevated waist-hip ratio were almost twice as likely to have uncontrolled glycemia as adults with a normal waist-hip ratio (AOR = 1.96, 95% CI 1.52–2.53). In contrast, sex, nationality, age, obesity, smoking, and treatment status were all significantly associated with uncontrolled blood pressure (BP ≥140/90 mmHg). Non-Kuwaitis (AOR = 2.33, 95% CI 1.85–2.93) and adults treated for blood pressure (AOR = 2.30, 95% CI 1.81–2.92) were more than twice as likely to have uncontrolled blood pressure as Kuwaitis and untreated adults, respectively. Nationality, smoking, and treatment status (with anti-lipid medication) were also associated with uncontrolled non-HDL cholesterol levels (non-HDL ≥3.4 mmol/L). Non-Kuwaitis were twice as likely to have uncontrolled cholesterol as Kuwaitis (AOR = 1.99, 95% CI 1.57–2.53). A non-Kuwaiti nationality was also associated with poor control of all three ABC factors (AOR = 1.95, 95% CI 1.29–2.94). Men were significantly more likely to have all four ABCD factors uncontrolled (AOR = 1.71, 95% CI 1.10–2.66).

Table 2 | Achievement of HbA1c, blood pressure, non-HDL cholesterol, ABC, nonsmoking, and ABCD targets by demographic

Sex	HbA1c <7%	BP <140/90 mmHg	Non-HDL <3.4 mmol/L	ABC	Nonsmoker	ABCD
Total	39.2 [37.0–41.5]	58.4 [56.0–60.7]	28.3 [26.3–30.4]	7.4 [6.3–8.8]	77.6 [75.6–79.4]	5.8 [4.8–7.0]
Male	37.9 [35.1–40.9]	56.9 [53.9–60.0]	29.5 [26.8–32.3]	7.1 [5.6–8.8]	69.5 [66.7–72.2]	4.6 [3.5–6.1]
Female	39.5 [36.1–43.1]	63.8 [60.1–37.3]	32.3 [30.0–35.8]	9.2 [7.2–11.6]	92.8 [90.8–94.5]	8.4 [6.6–10.8]
Nationality						
Kuwaiti	38.8 [35.8–41.8]	65.8 [62.7–68.8]	39.2 [36.2–42.2]	10.2 [8.4–12.4]	82.4 [79.9–84.6]	7.6 [6.0–9.5]
Non-Kuwaiti	38.4 [35.0–41.8]	52.6 [49.1–56.1]	19.8 [17.2–22.8]	5.2 [3.9–7.0]	74.9 [71.8–77.8]	4.5 [3.2–6.1]
Age						
18–44	44.0 [39.8–48.4]	66.7 [62.4–70.9]	24.1 [20.6–28.0]	9.2 [6.9–12.1]	71.8 [67.8–75.5]	6.8 [4.9–9.5]
45–59	35.1 [32.1–38.2]	56.8 [53.6–60.0]	27.8 [25.0–30.7]	5.9 [4.5–7.6]	77.4 [74.6–79.9]	4.6 [3.4–6.1]
60+	38.7 [33.7–43.9]	40.5 [35.3–45.9]	38.7 [33.7–43.9]	7.6 [5.2–10.9]	87.8 [83.9–90.8]	6.0 [3.9–9.1]
DISCUSSION

The results of our analyses indicate that most individuals living with diabetes in Kuwait receive less than optimal diabetes care. Overall, only 39.2% of participants had well controlled HbA1c, 58.4% had well controlled blood pressure, and 28.3% had well controlled non-HDL cholesterol. Furthermore, only 7.4% of participants with diabetes were well controlled on all three measures, and 5.8% met all three measures and were also nonsmokers. Evidence indicates that appropriate diabetes control can significantly lower the risk of microvascular and macrovascular complications as well as mortality in individuals with diabetes. Therefore, there is substantial room for improvement in diabetes care in Kuwait, and such improvement may lead to extensive long term health benefits and improvements in the quality of life.

Previous studies have reported that glycemic control amongst Kuwaiti individuals with diabetes is low. Our study confirms these findings and adds that the achievement of diabetes care targets for blood pressure and lipids is also lacking. We found that while the achievement of target care goals was poor amongst the entire sample, there were differences by sex, age, and nationality. The percentage of women who achieved all target care ABCD goals was almost twice that compared with men. While sex was not significantly associated with glycemic and lipid control, men were 1.6 times more likely to have uncontrolled blood pressure than women, and smoking rates were four times higher in men compared with women. Additionally, there was a higher proportion of those who did not achieve adequate care goals amongst individuals who were aged 45 and older compared with those who were under age 45. There was also a greater percentage of inadequate care amongst those aged 45–59 years old compared with those aged 60 and over.

Our results are similar to findings from the United States in that those who are middle aged have poorer control than those who are elderly. However, in our study we found that those who were elderly had an overall worse glycemic control than the youngest age group of 18–44 years, which is contrary to previous findings. While those in the youngest age group have the most to benefit from adequate diabetes care due to their longer life span and the potential longer duration of disease, additional efforts should also be focused on improving diabetes care targets for those who are middle aged and elderly in Kuwait.

We also found differences in achievement of targeted care goals by nationality in our sample. There was a higher proportion of care targets across all parameters amongst those who were Kuwaiti compared with non-Kuwaiti residents, who are predominately migrants from other Middle Eastern countries or from South or South East Asia. Non-Kuwaitis were twice as likely to have uncontrolled blood pressure, non-HDL cholesterol levels, and ABC factors, and were 1.5 times as likely to have uncontrolled ABCD factors than Kuwaiti citizens. While the reasons behind this are not clear, a previous study noted that while 92% of Kuwaiti nationals were registered in the primary health care center system, which is the basis of most primary care in the country, only 62% of migrants from other Middle Eastern
countries, and 39% of migrants from Asian countries were registered in the system. Therefore, a lack of access to care may be a reason for poorer diabetes control amongst non-Kuwait nationals in Kuwait. Another possible factor is that the age of onset of diabetes and hypertension is lower in Asian expatriates in Kuwait than in Kuwaiti nationals.

Studies from the United States have examined differences in population subgroups in meeting targeted goals for diabetes care and have noted that disease severity may be a marker for poor achievement. A study examining national estimates on the percentage of people with diabetes who meet ABC goals in the United States found that individuals not taking glucose lowering medications were more likely to achieve an HbA1c <7.0%. Similarly, results from the Look AHEAD (Action for Health in Diabetes) trial found that those not taking hypertensive medication were more likely to achieve blood pressure goals. These results are in line with our study results in that those who were untreated for diabetes and hypertension were more likely to achieve HbA1c and blood pressure goals compared with those who were treated. However, further exploration of the relationship between the duration of disease and achievement of control targets is necessary to better understand this relationship amongst people with diabetes in Kuwait.

The strengths of our study include the representative, population-based, random sampling design, and the use of standardized methods of two surveys based on WHO methodology, and the inclusion of KDEP allowed for the assessment of diabetes care targets in expatriates living in Kuwait. However, as the EMAN survey only included Kuwaiti nationals, the sample used in this present analysis oversampled Kuwaiti nationals. Over half of the study’s population were Kuwaiti, who account for only 30% of the overall Kuwaiti population. Additionally, neither study distinguished between type 1 and type 2 diabetes and the surveys did not collect information on the duration of diabetes which may impact the ability to achieve control targets.

Although unified glycemic, blood pressure, and lipid control in adults with diabetes in Kuwait is very low, the rates are similar to estimates from Europe where 6.5% of participants with diabetes achieved all three targets. However, they lag behind estimates from the United States, where 22.2% of individuals with diabetes achieved all three targets between 2015–2018. Risk factor control was only 7.3% in the United States in 2000, and the three-fold increase in the preceding decades was accompanied by large reductions in the incidence of a broad spectrum of diabetes-related complications in the country. These results were likely due to advances in acute clinical care, improvements in the healthcare system, and health promotion and education efforts aimed at people with diabetes, paralleled with diabetes prevention efforts. Diabetes and other non-communicable diseases were the cause of 72% of deaths in Kuwait in 2016. Improved risk factor control in Kuwait could likewise reduce the rates of diabetes-related morbidity and mortality in the population.

In summary, the level of risk factor control in individuals with diabetes living in Kuwait is suboptimal. Only 1 in 13 adults with diabetes achieved good control of glycemia, blood pressure, and cholesterol. Only 2 in 5 achieved good glycemic control, 6 in 10 good blood pressure control, and 2 in 7 good cholesterol control. While all subgroups had suboptimal care, special attention may need to be focused on expatriate populations, those who are middle aged or elderly, as well as those who are receiving treatment and may have increased disease severity. Clear gaps still exist between the knowledge of effective methods to reduce the risk of complications in individuals with diabetes and their implementation in clinical practice. Improvements in care will involve modifications at the patient, provider, and health care system level. This calls for a national diabetes quality improvement program in Kuwait.

ACKNOWLEDGMENTS

The EMAN survey was funded and conducted by the Kuwaiti Ministry of Health and supported by the World Health Organization. KDEP was funded by the Kuwait Foundation for the Advancement of Sciences and conducted by the Dasman Diabetes Institute, Kuwait.

DISCLOSURE

The authors declare no conflict of interest.

Approval of the research protocol: EMAN was approved by the Kuwaiti Ministry of Health Standing Ethics Committee for the Coordination of Medical and Health Research. KDEP was approved by the Ethical Review Committee at the Dasman Diabetes Institute.

Informed consent: Both EMAN and KDEP adhered to the Declaration of Helsinki ethical standards. In both studies, a written, informed consent was obtained from each participant prior to their inclusion.

Registry and the registration no. of the study/trial: N/A.

Animal studies: N/A.

REFERENCES

1. Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international Diabetes federation Diabetes atlas, (9th) edition. Diabetes Res Clin Pract 2019; 157: 107843.
2. Alkandari A, Longenecker JC, Barengo NC, et al. The prevalence of pre-diabetes and diabetes in the Kuwaiti adult population in 2014. Diabetes Res Clin Pract 2018; 144: 213–223.
3. Alkandari A, Alarouj M, Elkum N, et al. Adult Diabetes and prediabetes prevalence in Kuwait: Data from the cross-sectional Kuwait Diabetes epidemiology program. J Clin Med 2020; 9: 3420.
4. Nikoloski Z. Determinants of Diabetes in Kuwait: Evidence from the World Health Survey. Kuwait Programme Paper Series (6). London, UK: LSE Middle East Centre, 2020.
5. Effect of intensive diabetes management on macrovascular events and risk factors in the Diabetes control and complications trial. Am J Cardiol 1995; 75: 894–903.
6. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ 1998; 317: 703–713.

7. Cholesterol Treatment Triallists, C, Kearney PM, Blackwell L, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 2008; 371: 117–125.

8. Gaede P, Lund-Andersen H, Parving HH, et al. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 2008; 358: 580–591.

9. Qin R et al. Excess risk of mortality and cardiovascular events associated with smoking among patients with diabetes: meta-analysis of observational prospective studies. Int J Cardiol 2013; 167: 342–350.

10. Introduction: Standards of medical Care in Diabetes-2021. Diabetes Care 2021; 44(Suppl 1): S1–S2.

11. Saaddine JB, Engelgau MM, Beckles GL, et al. A diabetes report card for the United States: quality of care in the 1990s. Ann Intern Med 2002; 136: 565–574.

12. Ali MK, Bullard KM, Gregg EW, et al. A cascade of care for diabetes in the United States: visualizing the gaps. Ann Intern Med 2014; 161: 681–689.

13. Fang M, Wang D, Coresh J, et al. Trends in Diabetes treatment and control in U.S. adults, 1999-2018. N Engl J Med 2021; 384: 2271–2228.

14. Hermans MP, Elisaf M, Michel G, et al. Benchmarking is associated with improved quality of care in type 2 diabetes: The OPTIMISE randomized, controlled trial. Diabetes Care 2013; 36: 3388–3395.

15. Abdullah A, Alkandari A, Longenecker JC, et al. Glycemic control in Kuwaiti diabetes patients treated with glucose-lowering medication. Prim Care Diabetes 2020; 14: 311–316.

16. World Health Organization. WHO STEPS Instrument (Core and expanded): The WHO STEPwise Approach to Chronic Disease Risk Factor Surveillance (STEPS). Geneva: WHO, 2009.

17. The World Health Organization. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a WHO/IDF Consultation. Geneva: WHO, 2006.

18. American Diabetes, A. 6. Glycemic targets: Standards of medical care in Diabetes-2021. Diabetes Care 2021; 44(Suppl 1): S73–S84.

19. American Diabetes, A. 10. Cardiovascular disease and risk management: standards of medical care in Diabetes-2021. Diabetes Care 2021; 44(Suppl 1): S125–S150.

20. World Health Organization. Obesity Preventing and Managing the Global Epidemic. Geneva: WHO, 2000.

21. World Health Organization. Waist circumference and waist-hip ratio: Report of a WHO expert consultation, Geneva, 8-11 December 2008. Geneva: WHO, 2011.

22. Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000; 321: 405–412.

23. Vijan S, Hayward RA. P. American college of, pharmacologic lipid-lowering therapy in type 2 diabetes mellitus: background paper for the American college of physicians. Ann Intern Med 2004; 140: 650–658.

24. Channanath AM, AlWotayan R, Alkandari H, et al. Glycaemic control in native Kuwait Arab patients with type 2 diabetes. Prim Care Diabetes 2018; 12: 526–532.

25. Stark Casagrande S, Fradkin JE, Saydah SH, et al. The prevalence of meeting A1C, blood pressure, and LDL goals among people with diabetes, 1988-2010. Diabetes Care 2013; 36: 2271–2279.

26. Kazemian P, Shebl FM, McCann N, et al. Evaluation of the Cascade of Diabetes Care in the United States, 2005-2016. JAMA Intern Med 2019; 179: 1376–1385.

27. Shah NM, Shah MA, Behbehani J. Ethnicity, nationality and health care accessibility in Kuwait: a study of hospital emergency room users. Health Policy Plan 1996; 11: 319–328.

28. Channanath AM, Farran B, Behbehani K, et al. State of diabetes, hypertension, and comorbidity in Kuwait: showcasing the trends as seen in native versus expatriate populations. Diabetes Care 2013; 36: e75.

29. Bertoni AG, Clark JM, Feeeny P, et al. Suboptimal control of glycemia, blood pressure, and LDL cholesterol in overweight adults with diabetes: the look AHEAD study. J Diabetes Complications 2008; 22: 1–9.

30. Stone MA, Charpentier G, Doggen K, et al. Quality of care of people with type 2 diabetes in eight European countries: findings from the guideline adherence to enhance care (GUIDANCE) study. Diabetes Care 2013; 36: 2628–2638.

31. Saydah SH, Fradkin J, Cowie CC. Poor control of risk factors for vascular disease among adults with previously diagnosed diabetes. JAMA 2004; 291: 335–342.

32. Gregg EW, Li Y, Wang J, et al. Changes in Diabetes-related complications in the United States, 1990–2010. N Engl J Med 2014; 370: 1514–1523.

33. World Health Organization. Noncommunicable Diseases Country Profiles. Geneva: WHO, 2018.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1 | Outlines of the EMAN and KDEP surveys

Table S2 | Sex and age of participants who completed all steps of EMAN and KDEP compared with those who did not