Introduction. One of the directions of the development of engineer durability calculations of structural elements theory is consideration of their rheonomous properties in order to describe the processes of long-term deformation and destruction. From the one hand, for calculating creep and long-term durability of structural elements it is necessary to use the equation of mechanical states which describes complicated deformation processes. From the other hand, kinematic equation of damages should be used in deformation type. The materials show rheonomous and hereditary features in deformation processes as well as in long-term destruction. Despite of the fact that there are a lot of theoretical and experimental researches, the question of choosing adequate description method of deformational processes for different classes of polymer materials under non-stationary loading and complex stress cannot be finally solved.
especially in the most complex thermomechanical loadings [1–7]. The requirements of practical applicability for the resulting mechanical state equation in some cases of cyclic loading makes us to make a compromise in accuracy while describing complex deformation processes. The task is to reduce this compromise to the logical minimum.

The development of cyclic creep model provides new opportunities for experimental research task formulation, makes experiment purposeful and allows to choose test program for checking the theory.

Research targets. Studies of creep of partially crystal polymer and composite materials on polymer base remain topical. The influence of complex static and cyclic stress state and non-stationary loading conditions on deformation process mostly remains unclear.

Research targets are:
1. According to the short-term monotonic loading tests data, to make up an equation of mechanical states in terms of real stresses and deformations under complex stress state for direct and reverse creep for three modifications of tetrafluoroethylene.
2. To research and to describe creep of the same materials under non-stationary static and cyclic stationary and non-stationary loading.
3. To make a conclusion about the possibility of formalization of destruction deformation criteria for studied materials.

Materials and testing method with predetermined intensity of real stresses. The samples were made of pipe blanks of polytetrafluoroethylene F-4, F-4D by turning on the lathe tool and part of F-4D blanks were annealed; F-4D blanks were heated until 80 °C with the following cooling in the heating stove. The degree of materials’ crystallinity was detected by German – Weidinger’s method and it is: 30% for F-4, 45% for F-4D, 38% for inner surface of F-4D, 25% for outer surface of F-4D.

The thickness of the wall was measured from the condition of constant value. The ratio between main stress values is close to equiaxial tension and the lowest – tangential stresses (\(n = \sigma_{x}/\sigma_{0} \)) were measured with considering current values of outer diameter (\(D \)) and thickness of the wall (t). The thickness of the wall was measured from the condition of constant value.

The intensity of real (logarithmic) stresses were obtained by formula:

\[
\sigma_{l} = \frac{1}{\sqrt{2}} \sqrt{(\sigma_{x} - \sigma_{0})^{2} + (\sigma_{y} - \sigma_{0})^{2} + (\sigma_{z} - \sigma_{0})^{2}}. \tag{1}
\]

Real stress components (axial \(\sigma_{x} \) and tangential \(\sigma_{0} \)) were measured with considering current values of outer diameter (\(D \)) and thickness of the wall (t). The thickness of the wall was measured from the condition of constant value. The ratio between main stress components \(n = \sigma_{x}/\sigma_{0} \) was established by choice of equipment plunger pair [25]. The delay time of equipment adjustment was not exceed 2 minutes, besides the fluctuations of stress intensity were not exceed 5% from set value of stress intensity \(\sigma_{l} \) and fluctuations \(n \) were not exceed 6%.

Obtained experimental data under short time loading and creep with static loading are presented in the form of deformation curves in coordinates \(\varepsilon_{l} - \varepsilon_{0} \) and creep curves in coordinates \(\varepsilon_{l}^{\max} - \tau \). The intensity of real (logarithmic) stresses were obtained by formula:

\[
\varepsilon_{l} = \frac{1}{2} \sqrt{(\varepsilon_{x} - \varepsilon_{0})^{2} + (\varepsilon_{y} - \varepsilon_{0})^{2} + (\varepsilon_{z} - \varepsilon_{0})^{2}}. \tag{3}
\]

Real deformation components \(\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{z} \) were obtained by following dependences, considering current sample dimensions \(D, t \) and current base \(l \) (the sample length):

\[
\varepsilon_{x} = \ln \frac{l}{l_{0}}; \quad \varepsilon_{y} = \ln \frac{D - r}{D_{0} - r}; \quad \varepsilon_{z} = \ln \frac{D}{D_{0}}. \tag{4}
\]

Lode’s parameter for stresses is calculating:

\[
\mu_{s} = 2 \frac{\sigma_{z}}{\sigma_{0}} - 1 \mu_{s} = 2 \frac{\sigma_{z}}{\sigma_{l}} - 1, \tag{5}
\]

where \(\sigma_{l} \) and \(\sigma_{0} \) – the main stresses.

Tests results. Polytetrafluoroethylene deformation under short time loading. Short time loading PTFE deformation tests were held under linear and flat stress states with various ratios of axial and tangential stresses \(n = \sigma_{x}/\sigma_{0} \) in conditions of proportional loading. For PTFE there is an influence of stress state type on deformation curve, besides the material shows the highest rigidity when the ratio \(\sigma_{x}/\sigma_{0} \) is close to equiaxial tension and the lowest – when it is under linear stress state. The variation of
the loading speed from 0.03 MPa/sec. to 0.3 MPa/sec. influences on the deformation curves insignificantly.

The law of immediate deformation was studied by tests on the fast sample unloading from the fixed level of stress intensity under various types of stress state. Non-linear dependences of instantly elastic deformation from stress intensities for studied fluoroplastics are presented in an article [26]. According to the results of the measurements, the transverse deformation coefficient values under axial tension are vary from 0.3 to 0.48.

For the selection of the law of instant plastic deformation (the term is conditional) the data of the tests on the multiple loading with the speed \(d\sigma_i/dt = 0.1–0.3 \) MPa/sec., with the registration of the \(\sigma_i \) and \(\varepsilon_i \) levels and further instant sample unloading was used. After exposure of at least one hour, permanent (instant elastic) deformations were measured. The dependence of instant plastic fluoroplastics deformations from the stress intensity is presented in the article [27]. Instant plastic deformations of fluoroplastics depend on the type of the stress state.

Direct and reverse creep under static loading. Direct creep is the increase of deformations in time under permanent real stresses (i.e. under constantly decreasing loads) (fig. 1–3). Complete deformation is the sum of four components: instant elastic, instant plastic, viscoplastic, viscoelastic [7–13]. To study viscoelastic creep deformation the tests on reverse creep (fig. 4–6) were held (returning after loading).
As a result, the complete equation of mechanical states in stress and deformation intensities (σ_i, ε_i) under stationary loading was obtained, besides the condition of deformation speeds and stress deviators similarity is observed [27]:

$$
\varepsilon_i = \frac{2(1+\nu)\sigma_i}{3E_0(1-2\nu)} + \gamma \left[(\alpha - \beta \mu) e^{m(\sigma_i)} - 1 \right] + \\
+ \int_0^\gamma (\nu - \mu_5) e^{\frac{\sigma_i}{\sigma}} \left[A_1 e^{-t \gamma} + A_2 e^{-\frac{t}{\mu_5}} \right] d\theta + \\
+ \int_0^\gamma (d - \mu_5) k \left(\frac{\sigma_i}{\sigma} - \delta \right) \left[A_3 e^{\frac{\gamma}{\sigma}} \right] d\tau. \tag{6}
$$

Table 1

Parameters	Studied materials		
E_0, MPa	F-4	F-4D	F-4D_0
800	900	615	
σ_{∞}, MPa	27.5	28.5	22.5
ν	0.48/0.50	0.48/0.50	0.48/0.50
γ	1·10^{-2}	1·10^{-2}	1·10^{-2}
α	0.05	0.20	0.25
β	0.03	0.06	0.08
m	2.80	1.65	2.20
σ_{∞}, MPa	10	10	10
a	1	1	1
b	0.1	0.1	0.6
c	0.30	0.08	0.26
n	3.2	3.7	2.8
A_1	5.5·10^{-2}	11·10^{-4}	9.5·10^{-4}
A_2	1.7·10^{-2}	1.8·10^{-4}	1.8·10^{-4}
μ_1, sec.	110	110	85
μ_2, sec.	2475	3200	3000
A_3	7·10^{-6}	14·10^{-6}	26·10^{-6}
δ	1.05	1.18	1.17
A_4	14.0·10^{-3}	14.1·10^{-3}	1.5·10^{-3}

Non-stationary static loading modes of studying materials. Non-stationary static loading modes are presented on the fig. 7–10. Here also the dependences of real deformations from time are shown. According to the comparison of experimental and calculated data, generally, the calculation reproduces the creep process under complex loading mode with satisfactory accuracy. The experiment showed, that the differences are mostly connected with insufficient accuracy in approximation of functions $A_1 e^{-t \gamma} + A_2 e^{-\frac{t}{\mu_5}}$. To describe viscoelastic component of the complete deformation in this function, it is necessary to take more than two exponents. One of the additional exponents has to have the relaxation time in the following interval: 10^{-10} sec. $\leq \mu \leq 15·10^3$ sec.
Creep under cyclic loading with various frequencies. Fluoroplastics F-4, F-4D, F-4D₀ creep under cyclic loading with the frequencies 2.4 Hz, 5.0 Hz and 10.0 Hz were tested in the conditions of maximum per cycle intensity constancy with the cycle asymmetric coefficient \(\tau = \frac{\sigma_{i}^{\min} - \sigma_{i}^{\max}}{\sigma_{i}^{\max} - \sigma_{i}^{\min}} = 0.5 \) and temperature 22 ± 1 °C (fig. 14–16). The form of the cycle is sinusoidal. To compare creep complete deformations under static and cyclic loadings, isochronous dependences were made \(\sigma - \varepsilon \) and \(\sigma_{\max}^{\max} - \varepsilon_{\max}^{\max} \) while obtaining the creep time \(t = 5 \cdot 10^3 \text{ sec.} \) (fig. 11–13).
Огородов Л.И., Николаева И.П., Яковлева Е.Л., Фоминых О.В. Строительная механика инженерных конструкций и сооружений. 2018. Т. 14. № 3. С. 216–225

Строительная механика инженерных конструкций и сооружений. 2018. Т. 14. № 3. С. 216–225

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

Fig. 16. The maximum stress intensity dependence from the maximum deformation intensity F-4D with $\tau_1 = 5000$ sec. ($n = \infty$):
- $f = 0$; \bullet - $f = 0$ Hz; \circ - $f = 1.2$ Hz; Δ - $f = 10$ Hz; ∇ - $f = 5$ Hz with $n = 2.8$

Thus, experimental points of the same material and type of stress state under frequencies of 2.5 and 5.0 Hz do not completely match to the experimental ones under stationary static loading. It is also noticeable that the material rigidity tends to increase under cyclic loading in comparison with static one, if the maximum variable stress intensity during the cycle equals to the intensity of permanent stresses under stationary loading. Besides, in comparison with static loading and frequencies of 2.5 Hz and 5.0 Hz, under frequencies of 10 Hz there is a significant rigidity increase. The most valuable increase of the material rigidity is when $n = \sigma_\infty / \sigma_0$ is close to $n = \infty$ (linear tension), i.e. under conditions, when under static loading there is the most intensive development of viscoplastic deformations.

The examples of the creep curves under cyclic loading are presented on the fig. 11–13, 17, 18. The nature of the curves differs from one for the static loading. Let us apply for cyclic loading the same equation as for various cases of static loading from the previous section. The instant elastic and instant plastic intensity deformation components are calculated from the maximum stresses per cycle and viscoelastic component is calculated directly by substitution of a variable σ_∞ values in the equation:

$$\varepsilon_t^{VE} = (a - b\mu_\infty) \int_0^\tau C \left(\frac{\sigma_{max}}{\sigma_c} \right)^n k(\tau - \Delta) d\theta. \quad (7)$$

The calculation of the first three complete deformation components does not occur logical issues, but the calculation of viscoplastic component is not so obvious. After drafting series of attempts, the following empirical dependence for that component under cyclic loading was suggested:

$$\varepsilon_t^{max} = \frac{2(1+\psi)\sigma_{max}}{3E_1(1-2\nu_2)} + \gamma[(\alpha - \beta\mu_\infty)\alpha^m(\sigma_{max} - \sigma_\infty) - 1] +$$
$$+ (a - b\mu_\infty)\lambda_\infty C \left(\frac{\sigma_{max}}{\sigma_c} \right)^n \int_0^\tau A_1 e^{-\frac{\tau}{\tau_2}} + A_2 e^{-\frac{\tau}{\tau_4}} d\theta +$$
$$+ (a - b\mu_\infty)\lambda_\infty C \left(\frac{\sigma_{max}}{\sigma_c} \right)^n \int_0^\tau A_2 e^{-\frac{\tau}{\tau_6}} + A_4 e^{-\frac{\tau}{\tau_8}} d\tau,$$ \quad (8)

where λ_∞ – is an empirical coefficient (for F-4 $\lambda_\infty = 0.58$, for F-4D $\lambda_\infty = 0.65$, for F-4D $\lambda_\infty = 0.5$).

The calculated according to this equation creep curves are presented on the fig. 20, 21.

Moreover, there was made an attempt to use that empirical dependency also for creep deformation presentation under non-stationary modes of cyclic loading as a several cycle blocks with variable values of $\sigma_{max}^{\infty}[30]$.

Discussions. Ultimate deformation of fluoro-plastics under static and cyclic loading. First of all, studying of ultimate deformation is important from an opportunity of formulation some deformation destruction criteria for polymer materials [7]. Experimental data about ultimate material deformation al-
allows to estimate objectively admissible creep deformation of structural elements. For the fluoroplastics in wide range of n there is no ultimate deformation constancy [30]. In whole series of non-stationary loading cases the current deformations $\varepsilon_i (\varepsilon_{i,\text{max}})$ already reach the ultimate value zone on the first loading steps (fig. 19). That also attests against deformation destruction criteria.

![Fig. 19. Creep curves and loading mode ($n = 1.25$) of cyclic loading with the frequency of 5 Hz](image)

The study of PTFE F-4 sample failure mode is interesting. Under static loading with mostly tensile axial stress the destruction occurs along the transversal section of the tubular sample without visible localization of viscoplastic deformation (with the maintaining the assigned real stress considering the deformation changes). Under biaxial stress state, when $n = 1.25$, in the destruction place pores occurs, which means that the material is strongly loosened. Sometimes pores occurs in samples under axial tension. Probably, the loosening precedes the sample disruption along the plane of transverse section. Under cyclic loading the same material loosening occurs and only in some cases when $n = 1.25$ the failure mode differs from described. Under that conditions before the pores appearance a small bubble occurs on the surface of the damaged sample.

Experimental results can be used for estimation of structural elements rigidity.

Conclusion. Creep deformation of fluoroplastics (F-4, F-4D, F-4D$_0$) under stationary and non-stationary loading is satisfactory described by the equation of mechanical states, which considers instant elastic, viscoelastic, instant plastic and viscoplastic deformation components with the use of the volume constancy condition and the condition of stress and deformation deviators similarity. Also that deformations can be described with addition of special parameters, which are functions of the stress deviator form.

The speed of creep under cyclic loading with the constant sign of real stress intensities is lower, than the one under the same static loading when the intensity of permanent stresses σ_i equals to the intensity of the maximum variable stresses $\sigma_{i,\text{max}}$. Frequency changing from 2.5 to 10 Hz does not cause any significant changing of polytetrafluoroethylene deformation properties, except the case of uniaxial tension with the frequency of 10 Hz, when the increase of the material rigidity occurs, in comparison with other frequencies and $n = \sigma_i / \sigma_0$ values during the experiment.

An application of the mechanical states equation, based on results of statistical test results, to the cyclic loading mode gives quite lower results of designed deformation creep values. Thus, an empirical amendment was suggested to that equation of mechanical states.

For fluoroplastics in quite wide range n there is no constancy in ultimate deformations. The current deformations already reach the ultimate value zone on the first stages of loading, however, destruction does not occur. That also attests against deformation criteria of failure.

© Ogorodov L.I., Nickolaeva I.P., Yakovleva E.L., Fominykh O.V., 2018

References

1. Moskvitin V.V. (1972). *Soprotivlenie vyazkoprugikh materialov* [Resistance of the viscoelastic materials. Moscow: Nayka Publ., 327. (In Russ.)

2. Bugakov I.I. (1973). *Polzychest polimernykh materialov* [Creep of polymer materials]. Moscow: Nayka Publ., 288. (In Russ.)

3. Goldman A.Y. (1979). *Prochnost konstruktionnykh plastmass* [Strength of structural plastics]. Leningrad: Mashinostroenie Publ., 320. (In Russ.)

4. Pavlov P.A. (1980). *Mehanicheskie sostoyaniya I prochnost materialov* [Mechanical states and materials strength]. Leningrad: izd-vo LGY Publ., 176. (In Russ.)

5. Aibinder S.B., Tunina E.L., Tsirule K.I. (1981). *Svoistva polimerov pri razlichnykh napryazhennykh sostoyaniyah* [Material properties under various stress states]. Moscow: Himiya, 232. (in Russ.)

6. Goldman A.Y. (1988). *Prognozirovanie deformatsionno-prochnostnykh svoistv polymernykh I kompozitsionnykh materialov* [Forecastation of the polimer and composite materials strength-deformation properties]. Leningrad: Himiya, 272. (In Russ.)

7. Pavlov P.A. (1988). *Osnyv inzhenernykh raschetov elementov mashin na ystalost I dlitelnyiy prochnost* [The basics of engineering calculations of fatigue and long-term strength of machine elements]. Leningrad: Mashinostroenie, 252. (In Russ.)

EXPERIMENTAL RESEARCHES
8. Pavlov P.A., Andreev A.V. (1976). Issledovanie polychresty fibroplasta-4 v usloviyakh ploskogo tsitselskogo napryazhennogo sostoyaniya [The study of the luoro-polzychesty ftreoplasta-4 creep under flat cyclic stress state]. Mehanica polimerov, (6), 1099–1103. (In Russ.)

9. Pavlov P.A., Krutskih N.A. (1984). Phenomenologicheske opisanie i experimentealnoe issledovanie deformatsionnykh protsessov pri slozhnom termomehanicheskom nagruzhenii chastichno cristallicheskih materialov [Phenomenological description and experimental study of the deformation processes in partially crystal materials under complex thermomechanical loading]. Mehanika kompozitnykh materialov, (6), 974–979. (In Russ.)

10. Pavlov P.A., Yakovleva E.L., Krutskih N.A. (1983). Analiticheske opisanie protsessov deformirovaniya i razrzhennyh elementov konstruktksii iz polimermykh materialov [Analytical description of deformation processes and destruction of the structural polymer elements]. Trudy LPI, (393), 3–7. (In Russ.)

11. Pavlov P.A., Kosov K.A. (1986). Soprotivlenie chastichno cristallicheskih polimermykh materialov cyclcheskomu nagruzheniu pri ploskom napryazhennom sostoyaniy [Resistance of partially crystal polymer composite materials to the cyclic loading under flat stress state]. Mechanica kompozitnykh materialov, (6), 978–986. (In Russ.)

12. Belan-Gaiko V.N. (1992). Experimentalnoe issledovanie polychresty polimermyhnogo materiala pri proporionalnom nesstatistichkom nagruzhenii v usloviyakh ploskogo napryazhennogo sostoyaniya [Experimental study of polymer material creep under proportional non-stationary loading and flat stress state]. Problemy mashinostroenya I nadezhnosti mashin, (1), 105–109. (In Russ.)

13. Nickolaeva I.P., Ogorodov L.I., Krasikov S.V. (2015). Polychrest polylehena vysokoy plotnosti pri razlichnyh rezhamah nagruzheniya [Creep of high density polyethylene under various loading modes]. Construction of Unique Buildings and Structures, 12(27), 50–63. (In Russ.)

14. Krollmann N. (2006). Verhalten von EPS-Hart- schaumstoffen unter langzeitriger Druckbeanspruchung [Behavior of EPS rigid foams under long-term compressive stress]. Bauphysik, 28(3), 184–191. (In Germ.)

15. Beake B. (2006). Modelling indentation creep of polymers: a phenomenological approach. J. Phys. D., 39(20), 4478–4485.

16. Demidov A.V., Makarov A.G., Stolevich A.M. (2006). Varianty matematicheskogo modellirovaniya deformatsionnykh protsessov poliymernykh materialov [Mathematical modeling variants of polymer material deformation processes]. Voprosy materialovedeniya, (3), 101–110. (In Russ.)

17. Sherstnev V.A., Goldman A.Y. (1976). Ustanovka dlya ispytany poliermyhnikh materialov na ustalost v usloviyakh polistylogo napryazhennogo sostoyaniya [Equipment for polymer material testing on fatigue under flat stress state]. Problemy prochnosty, (12), 111–113. (In Russ.)

18. Yoda M., Nakamura T., Saito Yu., Nakamura T. (2008). Creep crack growl characteristics in polyethylene film at various stresses and temperatures. Nihon rairyo kyodo gakkashi. J. Jap. Soc. Strength and Fract. Mat.-, 40(2), 27–34.

19. Girard D., Castagnet S., Gacougnolle J.L., Hohlstetter G. (2007). On the relevance of a notch creep test for the comprehension and prediction of slow crack growth in PVDE. Polym. Test., 26(7), 937–948.

20. Dian G. (2007). Modelling non-linear creep behavior of an epoxy adhesive. Int. J. Adhes and Adhes., 27(8), 636–646.

21. Rostovska N.G., Litvinov A.M., Fedorov S.V., Makarov A.G. (2009). Prognozirovание deformatsionnykh protsessov polimermykh materialov v usloviyakh menyau-shheya temperatury [Forecasting of the polymer material deformation processes under changing temperature conditions]. Disain. Materialy. Technologii, (3), 69–71. (In Russ.)

22. Goludin E.P. (2009). Variant staticskogo modeli neizotermicheksky polychrest polyvinilhloridnogo plastica [Variant of non-isothermal creep static polyvinyl chloride plastic model]. Vest. Samar. gos. tehn. un-ta. Ser. Fiz.-mat. nauki, (1), 114–121. (In Russ.)

23. Mourad A.-H. J., Fouad H., Elleithy R. (2010). Impact of some environmental conditions on the tensile, creep-recovery, relaxation, melting and crystallinity behavior of UHMWPE-GUR 410-medical grade. Mater. and Des., 30(10), 4112–4119.

24. Elksnite J., Maksimov R.D., Zicsans J., Mevi R. (2010). The effect of small additions of a lignid-crystalline polymer on the mechanical properties of polyethylene. Mech. Compos. Mater., 46(1), 77–88.

25. Sherstnev V.A., Goldman A.Y. (1976). Ustanovka dlya ispytany poliermyhnikh materialov na ustalost v usloviyakh polistylogo napryazhennogo sostoyaniya [Equipment for polymer material testing on fatigue under flat stress state]. Problemy prochnosty, (12), 111–113. (In Russ.)

26. Ogroodov L.I. (1979). Ustanovka dlya ispytany polimermyhnikh materialov v usloviyakh ploskogo napryazhennogo sostoyaniya pri staticskome i tiscleskom nagruzhenii [Equipment for polymer material testing under flat and cyclic loadings]. Mechanica. RZH, (1096). (In Russ.)

27. Ogroodov L.I., Kotyakov L.F., Kyrilovich N.N. (2006). Deformirovaniy polycristallicheskikh polimermykh materialov v usloviyakh kratkovremenного nagruzheniya [Deformation of polycrystalline polymer materials under short-time loading]. Nauchno-technicheskoe proizvodstva hminicheskih volokon v Belarasi. Materialy tretei Belorusskoy naucho-practiceskoy konferentsii, 329–333. (In Russ.)

28. Belan-Gaiko V.N., Ogroodov L.I. (2012). Geomechaniceske podobiy deviatorov napryazhennyy v skorostyy deformatsii polichresty polimermykh materialov v usloviyakh lineinogo, slozhnogo proporcionalnogo i tiscleskogo regimov nagruzheniya [Geometrical similarity of stress deviators and creep deformation speeds of polymer materials under linear, complex proportional and cyclic loading modes]. Vazovskaya nauka – regionu. Materialy desyatoi Vserossiiskoy konferentsii. Vologda: VSTU Publ., 305–310. (In Russ.)

29. Loginova I.I., Artamonoova D.A., Stolyarov O.N., Melnikov B.E. (2015). Viyanie struktury v nayzokouprugie svoista goosynteticheskikh materialov [Structure influence on the viscoelastic properties of geosynthetic materials]. Magazine of Civil Engineering, 4(56), 11–18. (In Russ.)
Список литературы

1. Московин В.В. Сопротивление вязкоупругих материалов. М.: Наука, 1972. 327 с.
2. Бугзов И.И. Ползучесть полимерных материалов. М.: Наука, 1973. 288 с.
3. Гольдман А.Я. Прочность конструкционных пластмасс. Л.: Машиностроение, 1979. 320 с.
4. Павлов П.А. Механические состояния и прочность материалов. Л.: Изд-во ЛГУ, 1980. 176 с.
5. Лапин С.Б., Павлов П.А., Цируле К.И. Свойства полимеров при различных напряженных состояниях. М.: Химия, 1981. 232 с.
6. Гольдман А.Я. Прогнозирование деформационно-прочностных свойств полимерных и композиционных материалов. Л.: Химия, 1988. 272 с.
7. Павлов П.А. Основы инженерных расчетов элементов машин на усталость и длительную прочность. Л.: Машиностроение, 1988. 252 с.
8. Павлов П.А., Андреев А.В. Исследование ползучести фторопласт-4 в условиях плоского циклического напряженного состояния // Механика полимеров. 1976. № 6. С. 1099–1103.
9. Павлов П.А., Крупских Н.А. Феноменологическое описание и экспериментальное исследование деформационных процессов при сложном термомеханическом нагружении частиц кристаллических материалов // Механика композиционных материалов. 1984. № 6. С. 974–979.
10. Павлов П.А., Яковлева Е.Л., Крупских Н.А. Аналитическое описание процессов деформирования и разрушения элементов конструкций из полимерных материалов // Труды ЛПИ. 1983. № 393. С. 3–7.
11. Павлов П.А., Косов К.А. Сопротивление частично кристаллических полимерных материалов циклическому нагружению при плоском напряженном состоянии // Механика композиционных материалов. 1986. № 6. С. 978–986.
12. Белан-Гайко В.Н. Экспериментальное исследование ползучести полимерного материала при пропорциональном нестационарном нагружении в условиях плоского напряженного состояния // Проблемы машиностроения и надежности машин. 1992. № 1. С. 105–109.
13. Николаева И.П., Огородов Л.И., Красиков С.В. Ползучесть полизетилена высокой плотности при различных режимах нагружения // Строительство уникальных зданий и сооружений. 2015. № 12 (27). С. 50–63.
14. Krollmann N. Verhalten von EPS-Hartschaumsstoffen unter langzeitiger Druckbeanspruchung. Bauphysik. 2006. 28. № 3. Pp. 184–191.
15. Beake B. Modelling indentation creep of polymers: a phenomenological approach // J. Phys. D. 2006. 39. № 20. Pp. 4478–4485.
16. Демидов А.В., Макаров А.Г., Столяевич А.М. Варианты математического моделирования деформационных процессов полимерных материалов // Вопросы материаловедения. 2006. № 3. С. 101–110.
17. Шерстнев В.А., Гольдман А.Я. Установка для испытания полимерных материалов на усталость в условиях плоского напряженного состояния // Проблемы прочности. 1976. № 12. С. 111–113.
18. Yoda M., Nakamura T., Saito Yu., Nakamura T. Creep crack growl characteristics in polyethylene film at various stresses and temperatures // Nihon rairyo kyodo gakkashi. J. Jap. Soc. Strength and Fract. Ma-ter. 2006. 40. Nº 2. Pp. 27–34.
19. Girard D., Castagnet S., Gacougnolle J.L., Hoehstetter G. On the relevance of a notch creep test for the comprehension and prediction of slow crack growth in PVDE // Polym. Test. 2007. 26. Nº 7. Pp. 937–948.
20. Dian G. Modelling non-linear creep behavior of an epoxy adhesive // Int. J. Adhes and Adhes. 2007. 27. № 8. Pp. 636–646.
21. Ростовцева Н.Г., Литвинов Г.Ф., Федорова С.В., Макаров А.Г. Прогнозирование деформационных процессов полимерных материалов в условиях меняющейся температуры // Дизайн. Материалы. Технологии. 2009. № 3. С. 69–71.
22. Гольдман Э.П. Вариант статической модели неизометрической ползучести полиэтиленлала/пластиката // Вестник Самарского государственного технического университета. Серия: Физико-математические науки. 2009. № 1. С. 114–121.
23. Mourad A.-H. J., Fougat H., Elleithy R. Impact of some environmental conditions on the tensile, creep-recovery, relaxation, melting and crystallinity behavior of UHMWPE-GUR 410-medical grade // Mater. and Des. 2009. 30. No 10. Pp. 4112–4119.
24. Elksnite J., Maksimov R.D., Zicans J., Mevi R. The effect of small additions of a lignid-crystalline polymer on the mechanical properties of polyethylene // Mech. Compos. Mater. 2010. 46. Nº 1. Pp. 77–88.
25. Шерстнев В.А., Гольдман В.А. Установка для испытаний полимерных материалов на усталость в условиях плоского напряженного состояния // Проблемы прочности. 1976. № 12. C. 11–113.
26. Огородов Л.И. Установка для испытаний полимерных материалов в условиях плоского напряженного состояния при статическом и циклическом нагружении // Механика. РЖ. 1979. № 1096. C. 65–82.
27. Огородов Л.И., Котков Л.Ф., Курлович Н.Н. Деформирование поликристиаллических полимерных материалов в условиях кратковременного нагружения // Научно-технические проблемы развития производства химических волокон в Беларуси: Материалы III Белорусской научно-практической конференции. 2006. С. 329–333.
28. Белан-Гайко В.Н., Огородов Л.И. Геометрическое подобие деформаторов напряжений и скоростей деформации ползучести полимерных материалов в условиях линейного, сложного, пропорционального и циклического режимов нагружения // Вузовская наука – региону: материалы X Всероссийской конференции. Вологда: ВоГТУ, 2012. С. 305–310.
29. Логанова И.И., Артамонова Д.А., Стоялов О.Н., Мельников В.Е. Влияние структуры на взаимоотношения свойства геосинтетических материалов // Инженерно-строительный журнал. 2015. № 4 (56). С. 11–18.
30. Николаева И.П., Огородов Л.И., Яковлева Е.Л. Ползучесть модификаций политетрафторэтилена при различных режимах нагружения // Строительство уникальных зданий и сооружений. 2017. № 3 (54). С. 7–17.

About the authors

Ogorodov Leonid – Associate Professor, Candidate of Technical Sciences, Hydraulic and Strength Department, Peter the Great Saint-Petersburg Polytechnic University. *Scientific interests:* polymer and composite materials, material resistance, creep, material ageing, material durability, long-term fracture. *Contact information:* e-mail – L.ogorodov@mail.ru. *eLibrary SPIN-code:* 1514-6380.

Nickolaeva Inna – Associate Professor, Candidate of Technical Sciences, Hydraulic and Strength Department, Peter the Great Saint-Petersburg Polytechnic University. *Scientific interests:* polymer and composite materials, material resistance, creep, material durability. *Contact information:* e-mail – inna4i4n@mail.ru. *eLibrary SPIN-code:* 8949-8906.

Yakovleva Elena – Associate Professor, Candidate of Technical Sciences, Hydraulic and Strength Department, Peter the Great Saint-Petersburg Polytechnic University. *Scientific interests:* polymer and composite materials, material resistance, creep, material ageing, material durability, long-term fracture. *Contact information:* e-mail – helena47@mail.ru. *eLibrary SPIN-code:* 4575-6835.

Fominykh Olga – Master’s Degree Student, Construction Mechanics and Structures Department, Peter the Great Saint-Petersburg Polytechnic University. *Scientific interests:* polymer and composite materials, material resistance, creep, material ageing, material durability, long-term fracture. *Contact information:* e-mail – luola94@mail.ru. *eLibrary SPIN-code:* 8237-1707.

For citation

Ogorodov L.I., Nickolaeva I.P., Yakovleva E.L., Fominykh O.V. (2018). Creep of polytetrafluoroethylene under various loading conditions. Structural Mechanics of Engineering Constructions and Buildings, 14(3), 216–225. DOI: 10.22363/1815-5235-2018-14-3-216-225.

Для цитирования

Ogorodov L.I., Nickolaeva I.P., Yakovleva E.L., Fominykh O.V. Creep of polytetrafluoroethylene under various loading conditions // Строительная механика инженерных конструкций и сооружений. 2018. Т. 14. № 3. С. 216–225. DOI: 10.22363/1815-5235-2018-14-3-216-225.