Efficient Resource Oblivious Algorithms for Multicores

Richard Cole ∗ Vijaya Ramachandran †

January 15, 2013

Abstract

We consider the design of efficient algorithms for a multicore computing environment with a global shared memory and p cores, each having a cache of size M, and with data organized in blocks of size B. We characterize the class of ‘Hierarchical Balanced Parallel (HBP) ’ multi-threaded computations for multicores. HBP computations are similar to the hierarchical divide & conquer algorithms considered in recent work, but have some additional features that guarantee good performance even when accounting for the cache misses due to false sharing. Most of our HBP algorithms are derived from known cache-oblivious algorithms with high parallelism, however we incorporate new techniques that reduce the effect of false-sharing.

Our approach to addressing false sharing costs (or more generally, block misses) is to ensure that any task that can be stolen shares O(1) blocks with other tasks. We use a gapping technique for computations that have larger than O(1) block sharing. We also incorporate the property of limited access writes analyzed in [13], and we bound the cost of accessing shared blocks on the execution stacks of tasks.

We present the Priority Work Stealing (PWS) scheduler, and we establish that, given a sufficiently ‘tall’ cache, PWS deterministically schedules several highly parallel HBP algorithms, including those for scans, matrix computations and FFT, with cache misses bounded by the sequential complexity, when accounting for both traditional cache misses and for false sharing. We also present a list ranking algorithm with almost optimal bounds. PWS schedules without using cache or block size information, and uses knowledge of processors only to the extent of determining the available locations from which tasks may be stolen; thus it schedules resource-obliviously.

1 Introduction

We consider the efficient scheduling of multithreaded algorithms [14] in a multicore computing environment. We model a multicore as consisting of p cores (or processors) with an arbitrarily large shared memory, where each core has a private cache of size M. Data is organized in blocks of size B, and the initial input of size n is in the main memory, in n/B blocks. Recently, there has been considerable work on developing efficient algorithms for multicores [18, 9, 5, 10, 11, 6, 20, 2, 15]; many of these algorithms are multithreaded. An efficient multicore algorithm attempts to obtain both work-efficient speed-up as well as cache-efficiency. However, none of these prior results have addressed false sharing costs when considering cache-efficiency.

∗Computer Science Dept., Courant Institute of Mathematical Sciences, NYU, New York, NY 10012. Email: cole@cs.nyu.edu. This work was supported in part by NSF Grant CCF-0830516.
†Dept. of Computer Science, University of Texas, Austin, TX 78712. Email: vlr@cs.utexas.edu. This work was supported in part by NSF Grant CCF-0830737.
Cache Misses, False Sharing, and Block Misses. When a core C needs a data item x that is not in its private cache, it reads in the block β that contains x from main memory at the cost of one cache miss. This new block replaces an existing block in the private cache, which is evicted using an optimal cache replacement policy (LRU suffices for our algorithms). If another core C' modifies an entry in block β, then with cache coherence, β is invalidated in C’s cache, and the next time core C needs to access data in β, an updated copy of β is brought into C’s cache. In the absence of cache coherence, some method of assigning ownership to a block is needed so that the updates to items in a block are correctly performed. For concreteness we will assume the above cache coherence protocol.

The delay caused by different cores writing into the same block can be quite significant, and this is a caching delay that is present only in the parallel context. In particular, consider a parallel execution in which two or more cores between them perform multiple accesses to a block β, which include $x \geq 1$ writes. These accesses could cause $\Omega(b \cdot x)$ delay at every core accessing β, where b is the delay due to a single cache miss. These costs might arise if two cores are sharing a block (which occurs for example if data partitioning does not match block boundaries) or if many cores access a single block (which could occur if the cores are all executing very small tasks). Further, x can be arbitrarily large unless care is taken in the algorithm design. We refer to any access of a block that is not in cache due to the block being shared by multiple cores as a block miss.

False-sharing is a common example of a block being shared across cores with the result that block misses occur. This term is usually applied to the case when two cores write into different segments of an array where the two segments share a block. In this case, as mentioned above, each of the two cores may incur $\Theta(B)$ cache misses when writing their portion of this block due to the block ‘ping-ponging’ between the two cores. We use the term block miss in this paper as a more general term to include all types of delays due to block-sharing.

Schedulers and Resource Obliviousness. We consider multithreaded algorithms that expose parallelism by forking (or spawning) tasks, but make no mention of the processor (or core) that needs to execute any given task, and do not tailor the size of the task being executed to the cache size or block size. Such an algorithm is called a multcore-oblivious algorithm in [11]. The multcore algorithms in [9, 5, 10, 11] are all multcore-oblivious; however, these papers design run-time schedulers which use their knowledge of cache and task sizes in order to obtain efficient multcore performance.

In this paper, we use the term resource-obliviousness to refer to an execution of a multcore-oblivious algorithm by a scheduler that does not use knowledge of cache sizes or other parameters of the multcore in its execution. Earlier examples of resource-oblivious algorithms are in [18, 6], which use RWS (the randomized work-stealing scheduler), but these do not address the cost of false sharing. However, it appears that if we want resource oblivious execution, we must consider the effect of block misses, since we cannot avoid steals of tasks of size smaller than B unless the scheduler knows the block size. But if such small tasks are stolen when writes occur within such tasks, block misses can be expected to occur. The bounds obtained in [18, 6] for RWS are weaker than those we obtain for our scheduler, PWS, even if we ignore block misses. In a companion paper [13] we analyze the performance of RWS considering both cache and block misses.

Our Contributions. The contributions of this paper are two-fold.

1. First, we set up a framework to analyze -- and optimize for -- the caching overhead of both cache misses and block misses while also allowing for high parallelism.

 We identify a basic primitive, the balanced parallel (BP) computation. The BP computation is
the basic building block in **Hierarchical Balanced Parallel (HBP)** computations, which are obtained through sequencing and parallel recursion. HBP computations have the \textit{limited access} property for writes, which requires that any variable is written at most a constant number of times. We present techniques for reducing the cost of block misses, such as \textit{O(1)}-block sharing, and \textit{gapping}. We also use a result presented in our companion paper [13] which bounds the number of access to any given block in a class of algorithms with limited access writes that includes HBP computations.

HBP computations are similar to the Hierarchical Divide and Conquer (HD&C) class in [5]. But they have important differences, notably the limited access requirement. We analyze HBP algorithms for scans, matrix transposition (MT), Strassen’s matrix multiplication, converting a matrix between row major (RM) and bit interleaved (BI) layouts, FFT, list ranking and graph connected components. Most of these are known algorithms, but some are new and others are modified to conform to HBP and to achieve low block miss cost.

On the algorithm analysis side, our analyses are in terms of certain structural parameters of the algorithms. On an input of length \(n\), these include the work \(W(n)\), the depth or critical path length \(T_\infty\), the cache complexity in a sequential execution \(Q(n, M, B)\), and new parameters: \(f(r)\), the cache-friendliness, and \(L(r)\), a block sharing measure. It suffices to determine these parameters in order to analyze the algorithms. Further, the algorithm design problem can focus on minimizing these parameters\(^1\).

2. Our second contribution is a new deterministic work-stealing scheduler, the \textit{Priority Work-Stealing Scheduler (PWS)}, which is tailored to perform well on HBP computations. It achieves a lower caching overhead due to steals than the bounds derived for RWS in [18, 6] for the case when block misses are not considered, and in our companion paper [13] when both cache and block misses are considered. For most of the algorithms we consider, we obtain \textit{optimal} cache miss overhead with a sufficiently tall cache, considering both cache and block misses, when the input is larger than the combined sizes of the caches. PWS is also a deterministic scheduler, for which we give a reasonably simple distributed implementation.

2 Computation Model

We consider a class of multithreaded parallel computations that expose their parallelism through binary forking of parallel tasks (see, e.g., [14], Chapter 27). Parallel tasks are scheduled on cores using a \textit{work stealing} scheduler.

The basic unit in our formulation is a computation tree \(T\) with binary forking of tasks, which forms the \textit{downpass} of the computation. The downpass is followed by an \textit{up-pass} on a reverse tree where two forked tasks join, and once the execution of the two forked tasks is completed, the computation is continued by the task that forked them. A simple example, M-Sum, is shown below, which computes the sum of the \(n\) elements in array \(A\).

\[
\text{M-Sum}(A[1..n], s) \quad \% \text{ Returns } s = \sum_{i=1}^{n} A[i] \\
\text{if } n = 1 \text{ then return } s := A[1] \quad \text{fi} \\
\text{fork(M-Sum}(A[1..n/2], s_1); \text{ M-Sum}(A[n/2 + 1..n], s_2)) \\
\text{return } s = s_1 + s_2
\]

Initially the root task for M-Sum’s computation is given to a single core. This root task corresponds to the entire computation of M-Sum on array \(A[1..n]\). In a sequential execution, this

\(^1\) We note that the recent sorting algorithm in [12] uses the scheduling bounds developed here in its analysis.
computation proceeds by ignoring fork commands. In a work stealing multicore execution, subtasks are acquired by other cores via task stealing. To this end, each core \(C \) has a task queue. It adds forked tasks to the bottom of the queue, while tasks are stolen from the top of the queue. So in particular, when \(C \), on executing a task \(\tau \), generates forked tasks \(\tau_1 \) and \(\tau_2 \), it places \(\tau_2 \) on its queue, and continues with the execution of \(\tau_1 \). When \(C \) completes \(\tau_1 \), if \(\tau_2 \) is still on its queue, it resumes the execution of \(\tau_2 \), and otherwise there is nothing on its queue so it seeks to steal a new task. The core executing the last of \(\tau_1 \) and \(\tau_2 \) to finish will complete the execution of \(\tau \) in the up-pass. While \(C \) is executing task \(\tau \) other cores will be acquiring work by stealing tasks from \(C \)’s task queue, and then in turn will be generating their own task queues from which further subtasks can be stolen. We will refer to the portion of task \(\tau \) executed by \(C \) as the kernel of task \(\tau \).

We have outlined the mechanism of work-stealing for a simple tree-structured computation. However, work-stealing applies to general DAG-structured computations, and randomized work stealing has been analyzed for DAGs represented by series-parallel graphs and more general structures (e.g., [7, 11]). In this paper, we consider algorithms whose computation DAG represents a Hierarchical Balanced Parallel (HBP) computation, which is defined in Section 3.2, and we establish that they perform very well when executed under the Priority Work Stealing (PWS) scheduler, which we introduce in Section 4.

2.1 Cache Misses

Work stealing causes execution of a multithreaded algorithm to incur additional cache misses over those incurred in a sequential execution, and it also introduces block misses. We introduce two parameters to express these costs, the cache-friendliness function \(f(r) \) and the block-sharing function \(L(r) \). We introduce \(f(r) \) here. We define \(L(r) \) and discuss block misses further in Section 2.2.

Definition 2.1. A collection of \(r \) words of data is \(f \)-cache friendly if they are contained in \(O(r/B + f(r)) \) blocks. An HBP computation is \(f \)-cache friendly if for every task \(\tau \) in the computation, the sequence of words accessed by \(\tau \) is \(f(|\tau|) \)-cache friendly.

For instance, \(f(r) = 1 \) if \(\tau \) accesses an array stored in contiguous locations; if \(\tau \) access a \(\sqrt{r} \times \sqrt{r} \) submatrix of a matrix stored in RM (i.e., row major), then \(f(r) = \sqrt{r} \).

Let \(\tau \) be a task in a multithreaded algorithm \(A \). We will use the size of \(\tau \) to denote the number of words accessed by \(\tau \). If \(\tau \) is stolen by a core \(C \), then \(C \) incurs additional cache misses over the sequential execution, since it will have to read the possibly previously read data needed to execute \(\tau \). Define \(Q_\tau \) to be the number of cache misses incurred by task \(\tau \) in the sequential execution of \(A \). The excess cache miss caused by the steal of \(\tau \) is defined to be the number of cache misses incurred by \(C \) in its execution of \(\tau \) minus \(c \cdot Q_\tau \), for a suitable constant \(c \geq 1 \).

A stolen task of size \(M \) could have incurred no cache misses in an execution in which it was not stolen, but once the size of the stolen task reaches \(2M \), its execution when not stolen would incur at least \(M/B \) cache misses. The following lemma makes this precise.

Lemma 2.1. A stolen task \(\tau \) incurs at most \(O(\min\{\frac{M}{B}, |\tau|\} + f(|\tau|)) \) additional cache misses compared to the steal-free sequential computation. If \(f(|\tau|) = O(|\tau|/B) \) and \(|\tau| \geq 2M \), this is an excess of 0 cache misses.

Proof. In the sequential execution of the algorithm, the execution of \(\tau \) incurs at least \(Q_\tau = \max\{0, |\tau| - \frac{M}{B}\} \) cache misses since \(|\tau| \) data has to be accessed, of which at most \(M \) is in cache. \(C \)’s
execution of \(\tau \) incurs \(O(|\tau| + f(|\tau|)) = O(Q_\tau + \min\{|\tau|, \frac{M}{B}\} + f(|\tau|)) \) cache misses. For \(|\tau| \geq 2M\),
\(Q_\tau \geq \frac{|\tau|}{2B} \), and if \(f(|\tau|) = O(|\tau|/B) \), then \(\min\{|\tau|, \frac{M}{B}\} + f(|\tau|) = O(Q_\tau) \).

\[\blacksquare\]

2.2 Block Misses

We discuss here our basic set-up for coping with block misses. As mentioned earlier, we assume that block misses are handled under a cache coherence protocol whereby a write into a location in a shared block \(\beta \) by core \(C \) invalidates the copy of \(\beta \) in every other cache that holds \(\beta \) at the time of the write. This is done so that data consistency is maintained within the elements of a block across all copies in caches at all times. There are other ways of dealing with block misses (see, e.g., [19]), but we believe that the block miss cost with our invalidation rule is likely as high as (or higher than) that incurred by other mechanisms. Thus, our upper bounds should hold for most of the coping mechanisms known for handling block misses.

A block miss occurs at a core \(C \) when it has a block \(\beta \) which it shares with one or more other cores, and it needs to read \(\beta \) again because another core wrote into a location in \(\beta \), thereby invalidating the copy of \(\beta \) in \(C \)'s cache. The cost of such a block miss is at least that of one cache miss, but it could be much larger, depending on the number of cores that share \(\beta \) and write into it; in fact, the cost of a block miss could be unbounded in a scenario where several cores repeatedly write into locations in the block, if the system mechanism for transferring access to the block does not ensure fairness. Our analysis for bounding the cost of block misses does not make any assumptions about the mechanism used for transferring accesses to a shared block under writes. Hence the bounds we obtain are truly worst-case.

Definition 2.2. Suppose that block \(\beta \) is moved \(m \) times from one cache to another (due to cache or block misses) during a time interval \(T = [t_1, t_2] \). Then \(m \) is defined to be the block delay incurred by \(\beta \) during \(T \).

The block wait cost incurred by a task \(\tau \) on a block \(\beta \) is the delay incurred during the execution of \(\tau \) due to block misses when accessing \(\beta \), measured in units of cache misses.

Note that the block wait cost incurred by a task \(\tau \) on a block \(\beta \) is the delay incurred as measured in units of cache misses. Clearly, the block delay of a block \(\beta \) during a time interval \(T \) is an upper bound on the block wait cost incurred by any task on block \(\beta \) during \(T \).

We now define \(L \)-block sharing.

Definition 2.3. A task \(\tau \) of size \(r \) is \(L \)-block sharing, if there are \(O(L(r)) \) blocks which \(\tau \) can share with all other tasks that could be scheduled in parallel with \(\tau \) and could access a location in the block (these other tasks do not include subtasks of \(\tau \)). A computation has block sharing function \(L \) if every task in it is \(L \)-block sharing.

The following definition is from [13]

Definition 2.4. [13] An algorithm is limited-access if each of its writable variables is accessed \(O(1) \) times.

The two main algorithmic techniques that we use to reduce the cost of block misses are to enforce \(O(1) \)-block sharing and the limited access. In some of the algorithms, we also use a gapping technique to reduce the block miss cost. We will also assume the following system property. Whenever a core requests space it is allocated in block sized units; naturally, the allocations to different cores are disjoint and entail no block sharing.
3 HBP Computations and Algorithms

Balanced parallel (BP) computations, defined below, form the backbone of our HBP algorithms. Recall that the size $|\tau|$ of a task τ as the amount of data accessed by τ. Note that the size of a task is a positive integer.

It will also be helpful to specify the notions of local and global variables.

Definition 3.1. A variable x declared in a procedure P is called a local variable of P. A variable y accessed by P and declared in a procedure Q calling P or used for the inputs or outputs of the algorithm A containing P is said to be global with respect to P. However, note that y would be a local variable of Q if declared in Q.

Definition 3.2. A BP computation π is a limited access algorithm that is formed from the downpass of a binary forking computation tree T followed by its up-pass, and satisfies the following properties.

i. A task that is not a leaf performs only $O(1)$ computation before it forks its two children in the downpass of the computation.

ii. In the up-pass each task performs only $O(1)$ computation after the completion of its forked subtasks.

iii. Each leaf node performs $O(1)$ computation.

iv. Each node declares at most $O(1)$ local variables.

v. π may also use size $O(|T|)$ global arrays for its input and output.

vi. Balance Condition. Let the height of T is h; let the root task, which is at level 0 in T, have size r; let α be a constant less than 1; and let c_1, c_2 be constants with $c_1 \leq 1 \leq c_2$. Then, the size of any task τ at level i in T satisfies $c_1 \cdot \alpha^i \cdot r \leq |\tau| \leq c_2 \cdot \alpha^i \cdot r$.

The task head of a task τ is the computation it performs in part (i) in the above definition.

This definition of a BP computation requires sibling tasks to have essentially the same size to within a constant factor. However, a computation in which these sizes are upper bounds on the actual size is sufficient for our results, as long as this upper bound on the actual size is what is used to compute the resource bounds. Also, note that any BP computation will have $\alpha \geq 1/2$; all of our algorithms have $\alpha = 1/2$.

Later, in Section 4.7, in order to reduce the block wait costs in our scheduler implementation, we will employ a variant of BP computations which we call padded BP computations.

Definition 3.3. A padded BP computation is a BP computation in which each node v in the down-pass declares an array: let v corresponds to the start of a subtask τ; then v’s array is of size $\sqrt{|\tau|}$.

These arrays are present to ensure that the space used by successive nodes to store their variables (other than the new array) are well separated; this is what enables a reduction in block wait costs.

In Section 4.2 we will use the following observation on the nature of stolen tasks in a BP computation under work-stealing. (This observation holds more generally for series-parallel computation dags.)
Observation 3.1. Let D be the computation dag for a BP computation Π executing at a core C under work stealing. Let v be the node in D corresponding to the last task τ_v that was stolen from C while it was executing Π, and let P be the path in D from the root of D to the parent of v. Then, the set of tasks stolen from C during its execution of Π consists of some or all of the tasks corresponding to those nodes of D that are the right child of a node in P but are not themselves on P. Further, they are stolen in top-down order with respect to the path P.

3.1 HBP Computations

We now define the class of HBP Computations.

Definition 3.4. A Hierarchical Balanced Parallel Computations (HBP) is a limited access algorithm that is one of the following:

1. A Type 0 Algorithm, a sequential computation of constant size.

2. A Type 1, or BP computation.

3. A Type $i + 1$ HBP, for $i \geq 1$. An algorithm is a Type $i + 1$ HBP if, on an input of size n, it calls, in succession, a sequence of $c \geq 1$ collections of $v(n) \geq 1$ parallel recursive subproblems, where each subproblem has size $s(n) \leq n/b(n)$, with $b(n) > 1$; further, each of these collections can be preceded and/or followed by calls to HBP algorithms of type at most t.

 Data is transferred to and from the recursive subproblems by means of variables (arrays) declared at the start of the calling procedure.

4. A Type $\max\{t_1, t_2\}$ HBP computation results if it is a sequence of two HBP algorithms of types t_1 and t_2.

A Padded HBP computation is an HBP computation in which each BP subcomputation is padded.

Definition 3.5. An HBP computation of type $t > 1$ is balanced if the recursive problems at each level of recursion all have sizes within a constant factor of each other.

For convenience, we will assume this constant factor in balanced HBP computations to be c_2/c_1, where c_1 and c_2 are the constants in Definition 3.2.

All HBP algorithms we consider here are balanced, but the sorting algorithm SPMS in our recent paper [12] is unbalanced.

The HBP class is closely related to the Hierarchical Divide and Conquer (HD&C) class in [3] (after the parallelism is exposed in the HD&C algorithms). The HD&C class was used in [5] for a 3-level cache hierarchy with a special scheduler that is not oblivious to cache parameters. The main differences between HBP and HD&C are that we allow sequencing of HBP computations even at the top level, and we do not restrict the number of subproblems that are called recursively to be bounded by a constant; on the other hand we restrict the computation to be limited access.

Forking recursive tasks. The recursive forking of $v(n)$ parallel tasks in an HBP computation is incorporated into the binary forking in our multithreaded set-up by a BP-like tree of depth $\log_2 v(n)$. All nodes at a given level have the same number of recursive subproblems, to within a constant factor. Each leaf of this tree is a recursive subproblem. By its construction such a BP-like tree will have $\alpha = 1/2$ in a balanced HBP.
Table 1: Basic parameters of the HBP algorithms we analyze. Type refers to the HBP type, $f(r)$ is the cache-friendliness function, and $L(r)$ is the block-sharing function. The bounds with $f(r) = \sqrt{r}$ assume a tall cache. The input size is n, except for matrix computations, where the input size is n^2. For completeness, we include the known bounds for work ($W(n)$), critical pathlength (T_∞), and sequential cache complexity ($Q(n)$).

Algorithm	Type	$f(r)$	$L(r)$	$W(n)$	T_∞	$Q(n, M, B)$
Scans (MA, PS)	1	1	1	$O(n)$	$O(\log n)$	$O(n/B)$
MT	1	1	1	$O(n^2)$	$O(\log n)$	$O(n/B)$
Strassen	2	1	1	$O(n^3)$	$O(\log^2 n)$	$n^3/(B \cdot M^2 - 1)$
RM to BI	\sqrt{r}	1	$O(n^2)$	$O(\log n)$	$O(n^2/B)$	
Direct BI to RM	\sqrt{r}	\sqrt{r}	$O(n^2)$	$O(\log n)$	$O(n^2/B)$	
BI-RM (gap RM)	\sqrt{r}	gap	$O(n^2)$	$O(\log n)$	$O(n^2/B)$	
BI-RM for FFT	\sqrt{r}	1	$O(n^2 \log n)$	$O(\log n)$	$O(n^2 \log M n)$	
FFT	\sqrt{r}	1	$O(n \log n)$	$O(\log n \cdot \log \log n)$	$O(n^2 \log M n)$	
LR	\sqrt{r}	gap	$O(n \log n)$	$O(\log^2 n \cdot \log \log n)$	$O(n \log_M n \cdot \log n)$	
CC	\sqrt{r}	gap	$O(n \log^2 n)$	$O(\log^4 n \cdot \log^2 n)$	$O(n \log_M n \cdot \log n)$	
Depth-n-MM [13]	2	1	1	$O(n^3)$	$O(n)$	$n^3/(B \sqrt{M})$
Sort [12]	2	\sqrt{r}	1	$O(n \log n)$	$O(\log n \cdot \log \log n)$	$O(n^2 \log M n)$

3.2 HBP Algorithms

Our results in for PWS in Section 4 establish that $L(r) = O(1)$ is desirable, while $f(r) = O(\sqrt{r})$ suffices if a standard tall cache $M \geq B^2$. Table 1 lists the HBP algorithms that we present and analyze in this paper. Most of these algorithms are adapted from known HD&C algorithms. All of them are limited access and have $f(r) = O(\sqrt{r})$; for Depth-n-MM, the original algorithm in [13] is not limited access, but it is converted to being limited access by using local arrays for copying in [13]. Many of these algorithms also inherently have $L(r) = O(1)$ (e.g., Scans, MT (Matrix Transposition) and Strassen (Matrix Multiplication)), while others are modified through the gapping technique to reduce the block miss cost.

Scans, including M-Sum seen earlier, and MA (Matrix Addition) [5] can be implemented as a single BP computation. Prefix sums (PS) can be implemented as a sequence of two BP computations, where the first BP computation computes sums of disjoint subarrays of size 2^i, for $i < \log n$, and the second BP computation computes the final output. These are type 1 HBP computations with $f(r) = O(1)$, $L(r) = O(1)$.

Matrix Computations. For matrix computations, we assume that the matrix is in the bit interleaved (BI) layout, which recursively places the elements in the top-left quadrant, followed by recursively placing the top-right, bottom-left, and bottom-right quadrants. The advantage of the BI layout is that it results in BP tasks that are $O(1)$-friendly, and have $O(1)$-block sharing, which allows us to obtain good cache and block miss bounds. We describe several methods to convert between the standard row major (RM) layout and BI; these methods can be used in conjunction with our algorithms for BI if the input and output matrices are to be in RM.
MT is matrix transposition when the $n \times n$ matrix is given in the BI layout. When we expose the parallelism in the recursive algorithm in [17] we obtain a BP computation with $f(r) = O(1)$ and $L(r) = O(1)$.

Strassen. We expose the parallelism in Strassen’s matrix multiplication algorithm that multiplies two $n \times n$ matrices by recursively multiplying seven $n/2 \times n/2$ matrices, and performs the matrix additions for the divide and combine steps using MA. This results in an HBP computation that is of type 2, with $c = 1$ collection of $v = 7$ subproblems of size $s(m) = m/4$, where $m = n^2$ is the size of the matrix. This algorithm computes the 7 recursive submatrices in new subarrays. These matrices are then combined with matrix additions and subtractions (performed using MA) according to Strassen’s algorithm, and the final four submatrices are written back to the four quadrants in the parent matrix. Thus each variable in this algorithm is written only a constant number of times, and the algorithm is inherently limited access. When the matrices are in the BI layout, this computation has $f(r) = O(1)$ and $L(r) = O(1)$. The sequential cache complexity is $\Theta(\frac{n^\lambda}{BM})$, where $\lambda = \log_2 7$ and $\gamma = (\lambda/2) - 1$.

Since we have assumed in the above algorithms that matrices are in the BI layout, we need methods to convert between the traditional RM (row major) layout and the BI layout. It turns out that RM to BI is easy to execute with $O(1)$ block-sharing, while BI to RM requires more effort.

RM to BI. We use a simple BP computation that recursively converts each quadrant in parallel, with all writes in BI order. The writes are thereby arranged so that tasks share $L(r) = O(1)$ blocks for writing. Reading, however, is only $f(r) = \sqrt{r}$-friendly. This is a BP computation, so it is a type 1 HBP.

By employing RM to BI initially and suitable versions of BI to RM conversion at the end (described below), we obtain algorithms RM-MT (use BI-RM (gap RM)), and RM-Strassen (use BI-RM for FFT). We now describe several different methods for converting from BI to RM.

Direct BI to RM. This simple method uses the same recursion as the direct RM to BI method mentioned above. However, since the writes are to an output matrix in RM, both $L(r)$ and $f(r)$ are \sqrt{r}.

We now present two improved algorithms for this (with respect to block misses), of which only the first method performs $O(n^2)$ work.

1. **BI-RM (gap RM).** This is an $O(\log n)$ parallel running time, $O(n^2)$ operation algorithm.

 This is the same as Direct BI to RM, but to mitigate the block miss cost, we use a *gapping* technique. The destination array representing the RM matrix will be given gaps as follows: between $r \times r$ subarrays (for values of r corresponding to recursive subproblems) the rows will be given a length $r/\log^2 r$ gap. Now, tasks of size r^2 for $r = \Omega(B \log^2 B)$ share zero blocks for their writing. This gives a cost of $O(Br)$ for the block misses for a size r^2 task, for $r = O(B \log^2 B)$. So $L(r^2) = O(r)$, but only for $r \leq B \log^2 B$.

 The justification for this choice of size is that it only increases the size of the array by a constant multiplicative factor (for $\sum_{r=2}^{\infty} \frac{1}{\log^2 r} = O(1)$).

 Indeed a gap of $r/\log r[\log \log r]^2$, or any analogous sequence of iterates, also works, reducing the block miss cost correspondingly.

 Having written to an array with gaps one needs to compress the array using a standard scan. This is a BP computation which has $f(r) = O(1)$ and $L(r) = O(1)$.

2We correct a typo in the cache bound for Strassen found in many papers, starting with [17].
2. BI-RM for FFT. This is an \(O(\log n)\) parallel running time, \(O(n^2 \log \log n)\) operation algorithm. The algorithm divides the input BI array of length \(n^2\) into \(n\) subproblems, each of which it recursively converts to the RM order. Then, using a BP computation, it copies the \(n\) subarrays into one subarray, accessing data according to the RM order in the target output. This is a type 2 HBP computation that calls \(c = 1\) collection of \(v(n^2) = n\) subproblems of size \(s(n^2) = n\). The BP computation for the copying is organized so that the writes are in RM order, and hence \(L(r) = O(1)\).

We now show that \(f(r) = O(\sqrt{r})\), assuming \(M \geq B^2\). Consider a size \(r\) task \(\tau\) performing a portion of the computation on a \(k \times k\) subproblem. The input to this \(k \times k\) subproblem consists of \(\sqrt{k}\) rows of \(\sqrt{k}\) submatrices that are \(\sqrt{\sqrt{k}}\times\sqrt{k}\). Each of these \(\sqrt{k}\times\sqrt{k}\) matrices has already been converted to RM by recursive calls.

Let \(r = s \cdot k + s' \cdot \sqrt{k} + s''\), where \(0 \leq s', s'' < \sqrt{k}\). We consider here the case when \(s \geq 1\); the case when \(s = 0\) is handled similarly.

The task \(\tau\) reads in \(s\) full rows of the output \(k \times k\) matrix, plus part of the \((s + 1)\)st row.

If \(B > \sqrt{k}\) then by the tall cache assumption, \(M \geq B^2 > k\). Hence, when the data is read row by row according to the output \(k \times k\) matrix, one block will be read from each of the \(\sqrt{k}\times\sqrt{k}\) matrices in a given row. Further, under LRU, the \(\sqrt{k}\) blocks will be all in cache when the data for the next row of the output matrix is read, and hence, within each \(\sqrt{k}\times\sqrt{k}\) matrix, the number of blocks read is the scan bound, leading to a bound of \(\leq \frac{(s + 1)\sqrt{k}}{B} + \sqrt{k}\) cache misses for this computation. Hence the number of cache misses is \(O(r/B + \sqrt{k})\).

If \(B < \sqrt{k}\), then reading a single row in one of the \(\sqrt{k}\times\sqrt{k}\) matrices will incur \(O(\sqrt{k}/B)\) cache misses, and hence the total number of cache misses is \(O(r/B)\).

FFT. We expose the parallelism in the six-step variant of the FFT algorithm [11, 21] which is shown to have optimal \(Q(n, M, B)\) in [17]. As noted in [11], this is also a low-depth multicore algorithm. The algorithm views the input as a square matrix, which it transposes, then performs a sequence of two recursive FFT computations on independent parallel subproblems of size \(\Theta(\sqrt{n})\), and finally performs MT on the result. The sequential time is \(O(n \log n)\) and the sequential cache complexity is \(O(\frac{n}{B} \cdot \log_M n)\) [17], and the parallel depth is readily seen to be \(O(\log n \cdot \log \log n)\).

We keep the matrices in the BI representation. Thus, the HBP algorithm FFT, when called on an input of length \(n\), makes a sequence of \(c = 2\) calls to FFT on \(v(n) = \sqrt{n}\) subproblems of size \(s(n) = \sqrt{n}\) with a constant number of BP computations (mainly MT) performed before and after each recursive call. We have \(f(r) = O(1)\) and \(L(r) = O(1)\), outside of the cost to convert between BI and RM formats. At the end, to convert to the RM format we use BI-RM for FFT. Thus \(f(r) = \sqrt{r}\) for the overall FFT algorithm due to the need to use RM to BI and BI-RM for FFT.

List Ranking (LR). The list ranking problem is known to require \(\min\{n, \frac{n}{B} \log_M n\}\) cache misses even in a sequential computation. We match the second term, since it determines the bound for the normal range of parameter values. Our algorithm for LR uses the resource oblivious sorting algorithm SPMS in our recent paper [12], whose bounds are the same as those for FFT. The Euler tour and tree computation algorithms have the same complexity as LR.

Efficient multicore algorithms for LR based on eliminating large independent sets are given in [3, 11, 6]. As in [6] we adapt the PRAM algorithm that performs \(O(\log \log n)\) stages of eliminating a constant fraction of the elements in the linked list, and then switches to the basic pointer jumping algorithm when the size of the linked list falls below \(n/\log n\). To find a large independent set,
we use the method MO-IS in [11] that constructs an $O(\log^{(k)} r)$-size coloring of the linked list, and then extracts an independent set of size at least $r/3$ (where r is the current length of the linked list) by examining elements of each color class in turn. A phase on a list of length r performs $O(\log^{(k)} r)$ calls to SPMS on inputs whose combined length is r. Thus it can be shown [11] that a phase on a list of length r completes with $O(rB \log M r)$ cache misses sequentially, and in $O(\log r \cdot \log \log r \cdot \log^{(k)} r)$ parallel time when using SPMS for sorting, since SPMS has parallel time complexity $O(\log r \cdot \log \log r)$. Once the algorithm switches to pointer jumping, each pointer jumping stage can be performed with $O(1)$ calls to SPMS and scans on a list of length $O(n/\log n)$, hence overall this incurs $O(n \log n)$ work and has $O((n/B) \log M n)$ cache misses and $O(\log^2 n \log \log n)$ parallel time. This pointer jumping phase of the algorithm gives rise to the dominant cost for the basic parameters of LR listed in Table 1.

Since LR makes calls to the type 2 HBP sorting algorithm SPMS before calling itself recursively on $c = 1$ sequence of $v(n) = 1$ subproblem of size $s(n) \leq 2r/3$, this is a type 3 HBP algorithm.

To reduce the number of block misses in the recursive calls, we introduce gaps between the elements of the contracted linked list as follows: When the list has size n/x^2, it is written in space n/x, using every xth location only. Thus, when the list has size n/B^2 or less, no more block misses occur. Note that this modification of the list ranking algorithm does not affect the cache miss cost beyond a constant factor. This is because each of the BP computations from which the sorting algorithm SPMS is built has a cache miss cost no larger than the cost on an array of equal length with all entries occupied. Hence this holds for SPMS as well, and hence for each recursive call in the list ranking algorithm. As the space used is still shrinking by a factor of at least 2 every 4 iterations, the same geometrically shrinking costs occur, leading to the same asymptotic bounds.

CC. We use the connected components algorithm in [11]. The dominant cost in this algorithm is $\log n$ stages of list ranking, so our resource-oblivious implementation increases each of the work, parallel time, cache complexity, and block miss cost by a factor of $\log n$.

3.3 Data Layout and Block Wait Costs

By definition, an HBP algorithm is a limited-access computation. Additionally, all of the HBP algorithms we have considered are are either $O(1)$-block sharing, or incorporate gapping. These features are useful in reducing block wait costs. However, space gets reused on the execution stacks of the cores, and this may cause block misses beyond those that can be inferred by analyzing accesses to variables in the algorithm.

Execution Stacks. Each core C, when it starts executing a task τ, will create an execution stack S_{τ} to keep track of the procedure calls and variables in the work it performs on τ. The variables on S_{τ} may be accessed by stolen subtasks also. As S_{τ} grows and shrinks it may use and then stop using a block β repeatedly. Thus, it could be the case that a computation with limited-access and $O(1)$-block sharing still incurs a large block wait cost due to accesses to the execution stacks.

Lower and upper bounds on the space used for the variables declared in an HBP procedure affect the block wait as shown in our companion paper [13]. To obtain our bounds, we need that the space used by the local variables of a Type 2 HBP procedure dominate the logarithmic space used by its BP subtasks. For simplicity in our presentation, we make this a requirement that linear space be used by these local variables. All of our algorithms satisfy this property.

Accordingly, we make the following definition.
Definition 3.6. A Type 2 HBP algorithm is Exactly Linear Space Bounded if the variables declared by each Type 2 task τ use space $\Theta(|\tau|)$.

In our companion paper [13] we prove the following lemma.

Lemma 3.1. (i) Let A be a limited-access BP Algorithm and let τ be either the original task in the computation of A or a task which is stolen during the execution of A. Let β be a block used for τ's execution stack S_τ. Then β incurs a block delay of $O(\min\{B, \log(|\tau|)\})$ during τ's execution.

(ii) Let A be a limited-access, exactly linear space bounded Type 2 HBP algorithm, for which each collection of recursive calls consists of subproblems of size at most $s(n) \leq (1 - \gamma)n$, for some constant $0 < \gamma < 1$. Let $s^{(i)}(n)$ be the function s iterated i times. Let τ be either the original task in the computation of A or a task which is stolen during the execution of A. Let β be a block used for τ's execution stack S_τ. Then the number of transfers of block β during the execution of τ is bounded by

$$Y(|\tau|, B) = \begin{cases} \ O(cb) & \text{if } s(|\tau|) \geq B \\ O(\sum_{i \geq 0} c^i \cdot s^{(i)}(|\tau|)) & \text{otherwise} \end{cases}$$

If $s(n) \leq (1 - \gamma)n/c$ this is an $O(\min\{cB, |\tau|\})$ bound.

All of our HBP algorithms satisfy the requirements of the above lemma.

Data Layout in a BP Computation. The computation at a node u during the up-pass in a BP computation involves updating $O(1)$ data on its execution stack, spread across at most $c = O(1)$ blocks, and possibly $O(1)$ updates to the output data. In the case of output data we assume that the data for each size r BP computation is in an array of size $O(r)$, and is stored according to an in-order traversal of its up-tree. So, for instance, in M-Sum, the output data at each node in the up-tree is the value of the sum of the input values at the leaves of the node’s subtree, and these values are stored in the order of an in-order traversal of the up-tree. The advantage of this layout is that it will result in no block misses for accessing output data at levels in the BP tree where the number of leaves in each subtree is greater than B.

4 Priority Work Stealing Scheduler (PWS)

In this section we present PWS, a deterministic work stealing scheduler. We show that the excess cache misses over the sequential cache miss cost in a BP computation when scheduled under PWS is $O(pM/B)$ with a standard tall cache $M \geq B^2$ if $f(r) = O(\sqrt{r})$. For block misses, we bound the block wait cost for a size n BP computation with $L(r) = O(1)$ by $O(Bp \log B)$. We build on these results to obtain bounds for our HBP algorithms. In our analysis, we also bound other costs, including usurpation costs and idle time. In Section 4.7 we give a distributed implementation of PWS.

PWS assigns to each task a priority that decreases with increasing depth in the computation dag, so there are up to T_∞ different priorities. Steals in PWS proceed in rounds, one for each priority, and are performed in non-increasing priority order.

When a core C executes a task τ, the tasks it places on its task queue will have lower priority (i.e., larger computation depth) than τ, hence it is not difficult to see that at most $p - 1$ tasks of any given priority are stolen under PWS. Further, the priorities are assigned so that all tasks with a
given priority have the same size, to within a constant factor; note that this is readily accomplished for BP and balanced HBP computations.

In this section we bound the various costs incurred by a balanced HBP computation when scheduled under PWS. We establish that the main costs arise from the cache and block misses, which we bound in terms of their excess, which is the amount by which these costs exceed the sequential cache complexity of the computations. The following two lemmas give the bounds we derive for the cache and block miss excess for the Type 2 HBP algorithms we consider. We analyze LR (Type 3) and CC (Type 4) separately, building on these results. These lemmas are established in Sections 4.2 and 4.3 respectively.

Given a function \(s(n) < n \), recall that \(s^*(n) \) is the minimum \(i \) such that \(s^{(i)}(n) \leq c \), for a suitable constant \(c \); here, \(s^{(0)}(n) = n \), and \(s^{(i)}(n) = s(s^{(i-1)}(n)) \), if \(i > 0 \). We also define \(s^*(n, M) \) as the minimum \(i \) such that \(s^{(i)}(n) \leq M \).

Lemma 4.1. Let \(\Pi \) be a balanced Type 2 HBP computation of size \(n \geq M p \), and let \(c, s(n), \) and \(f(r) \) be as defined earlier. Then, the cache miss excess for \(\Pi \) when scheduled under PWS has the following bounds with a tall cache \(M \geq B^2 \).

(i) If \(c = 1 \), \(f(r) = O(\sqrt{n}) : O\left(p\frac{M}{B} s^*(n, M)\right) \).

(ii) If \(c = 2 \), \(f(r) = O(\sqrt{n}) \), and \(s(n) = \sqrt{n} : O\left(p\frac{M}{B} \log \frac{n}{\log M}\right) \).

(iii) If \(c = 2 \), \(f(r) = O(\sqrt{n}) \), and \(s(n) = n/4 : O\left(p\left(\frac{nM}{B} + \sqrt{\frac{n}{M}} \sum_{i \geq 0} 2^i f(M/4^i)\right)\right) \).

Lemma 4.2. Let \(\Pi \) be a balanced Type 2 HBP computation of size \(n \geq M p \) with \(\alpha = 1/2 \) and \(L(r) = O(1) \), which is exactly linear space bounded, and let \(c, s(n), \) and \(L(r) \) be as defined earlier. Then, the block miss excess for \(\Pi \) when scheduled under PWS has the following bounds.

(i) \(c = 1 \): a cost of \(O(pB \log B \cdot s^*(n)) \) cache misses.

(ii) \(c = 2 \) and \(s(n) = \sqrt{n} \): a cost of \(O(pB \log n \log \log B) \) cache misses.

(iii) \(c = 2 \) and \(s(n) = n/4 \): a cost of \(O(pB\sqrt{n}) \) cache misses.

4.1 PWS Scheduling

As mentioned earlier, the PWS scheduling requires tasks to have integer priorities with the property that on any root to leaf path in the computation tree \(T \) the priorities are strictly decreasing. PWS proceeds in rounds, one for each integer priority. The steals under PWS are performed in decreasing priority order, which, loosely speaking, is also a size-based breadth-first search order (since the priorities will be a function of the sizes).

The first round starts when the core \(C \) that began computation \(\Pi \) places its first task \(\tau_1 \) on its task queue. Let this task have priority \(d_1 \). The priority of round 1 is \(d_1 \), and during this first round, any of the other cores can steal \(\tau_1 \). Round 1 concludes when \(\tau_1 \) has been removed from the head of \(C \)'s task queue and assigned to an idle core \(C' \).

In general, a round with priority \(d \) concludes when no task queue has a task of priority \(d \) at its head and every non-idle core has generated a task on its task queue. This starts the next round whose priority \(d' \) is the priority of the highest-priority task at the head of a task queue. During this round, tasks of priority \(d' \) at the heads of task queues are stolen by idle cores until no task at the head of a task queue has priority \(d' \).

Observation 4.1. The priorities of tasks in the task queue of a core at any point in time are strictly decreasing from top (i.e., the head) to bottom.
Observation 4.2. If a steal request by a core is unsuccessful in a round with priority \(d \), then any remaining task has smaller priority.

Observation 4.3. For each task priority, there are at most \(p - 1 \) tasks of that priority that are stolen.

Corollary 4.1. Let the number of distinct task priorities be \(D' \). The total number of steal attempts (including both successful and unsuccessful steals) across all cores is at most \(2 \cdot p \cdot D' \).

4.2 Cache Misses under PWS

In a BP computation, the priority of a node at depth \(i \) is \(i \), and priorities decrease with increasing depth. By the definition of a BP computation, all tasks with a given priority have the same size, to within a constant factor.

We start with the following useful lemma, which uses \(c_1 \), \(c_2 \) from the definition of a BP computation.

Lemma 4.3. Consider the downpass of an \(f \)-cache friendly BP computation \(\Pi \) scheduled under PWS on \(p \) cores, each with a cache of size \(M \). Let \(d \) be the number of distinct priorities in \(\Pi \), and \(Q \) its sequential cache complexity.

If \(f(r) = O(r/B) \) for \(r \geq (2c_1/c_2) \cdot M \), then the number of additional cache misses incurred by all stolen tasks of size greater than \(2M \) is \(O(Q) \).

Proof. By Lemma 2.1 and since \(c_1 \leq c_2 \), a stolen task of size greater than \(2M \) has zero cache miss excess. What remains to be argued is that for each task \(\tau \) of size greater than \(2M \), the additional cache miss cost of the task kernel \(p_\tau \) that remains after tasks of size \(2M \) or larger are stolen at a core can also be bounded. For this, consider a task \(\tau \) (either the root task or a stolen task) executing at a core \(C \). If there are no steals then the result holds vacuously. Otherwise let \(\tau_v \) be the last task of size \(2M \) or larger stolen from \(C \) while executing \(\tau \), and let \(v \) be the node in the computation tree for \(\tau \) corresponding to \(\tau_v \). Then, by Observation 3.1, the task \(\tau_w \) at the sibling of \(v \) is not a stolen task and is part of the task kernel \(p_\tau \). But \(\tau_w \) has size at least \((c_1/c_2) \cdot |\tau_v| \geq (2c_1/c_2) \cdot M \). Further, \(p_\tau \) consists of a sequence of maximal sub-tasks in \(\tau \), all of which have size at least \(2c_1/c_2 \cdot M \) (since \(\tau_w \) is the last and smallest of these tasks). Hence since \(f(r) = O(r/B) \) for \(r \geq (2c_1/c_2) \cdot M \), the sum of the costs of \(f(r_i) \), where \(r_i \) is the size of the \(i \)th maximal task in \(p_\tau \), is bounded by \(p_\tau \)'s sequential cache complexity.

The \(O(1) \) cache miss cost at each task-head at the parent of a stolen task can be bounded as follows. Consider the tree formed by the nodes for stolen tasks of size \(2M \) or larger, the ancestors of these nodes, and all siblings of such nodes and their ancestors. This tree is defined with respect to the tasks computed at all the cores. This is a binary tree in which each non-leaf has two children, and each leaf has size at least \((2c_1/c_2) \cdot M \). Thus each of these leaves incurs \(\Omega(M/B) \) cache miss cost. It follows that each leaf can safely be allocated a further \(O(1) \) cache misses. As there are more leaves than internal nodes, the \(O(1) \) cache-miss cost for each each internal node can be allocated to a distinct leaf; this includes the nodes for each task-head at the parent of a stolen task.

Hence by the observation that any sequential execution of a task of size \(r \geq 2M \) will incur at least \(r/B \) cache misses, we can bound the cache miss cost of executing the task kernels by the sequential cache complexity \(O(Q) \).
The above lemma bounds the additional cache misses incurred when a task is stolen. We note that there is another source for cache misses incurred due to steals, and this occurs when control of a task transfers to a stolen task after a join in the computation. This motivates the following definition of usurpation.

Definition 4.1. Let \(\tau \) be a task whose kernel is being executed by core \(C \). Let \(C \) complete its execution of a subtask \(\tau'' \) in \(\tau \)'s kernel, and suppose that the join is performed after \(\tau'' \) by its sibling task \(\tau' \), which is a stolen subtask executed by another core \(C' \). Then, \(C' \) will take over the remainder of the execution of \(\tau \)'s kernel. This change in the core executing \(\tau \)'s kernel is called a usurpation of \(\tau \) by \(C' \).

A usurpation of \(\tau \)'s kernel by core \(C' \) could result in additional cache misses over the sequential computation. We will compute this cost separately in Section 4.2.1. For the remainder of the current section, we will bound the cache miss excess due to steals as reflected in Lemma 4.3. We start by bounding the number of cache misses incurred by all stolen tasks in a BP computation.

Lemma 4.4. Let \(\Pi \) be an \(f \)-cache friendly BP computation of size \(n \), and consider its execution on \(p \) cores, each with a cache of size \(M \). In addition, let \(Q \) be the number of cache misses in a sequential execution of \(\Pi \). Finally, suppose that \(f(r) = O(r/B) \) for \(r \geq (2c_1/c_2) \cdot M \). Then, when executed using PWS,

(i) The number of cache misses is bounded by

\[
O(Q + p(M/B + \log B) + \sum_{j \geq 0} p \cdot f(2M\alpha^j)).
\]

(ii) If \(M \geq B \log B \) and \(f(r) = O(1) \), the number of cache misses is bounded by \(O(Q + p \cdot M/B) \).

(iii) If \(M \geq B^2 \) and \(f(r) = O(\sqrt{r}) \), the number of cache misses is bounded by \(O(Q + p \cdot M/B) \).

Proof. (i) By Lemma 4.3, it suffices to bound the cache misses incurred by stolen tasks of size less than \(2M\alpha^j \). Each such task incurs \(O(\lceil M\alpha^j/B \rceil + f(2M\alpha^j)) \) cache misses. Summing over all tasks yields \(O(p(M/B + \log B) + p \sum_{j \geq 0} f(2M\alpha^j)) \) cache misses.

(ii) The summation is \(O(pM/B) \) in this case, and the bound follows.

(iii) Since \(f(r) = O(\sqrt{r}) \), for \(r \geq M \) we have \(f(r) = O(r/\sqrt{M}) = O(r/B) \). Thus part (i) applies. It remains to observe that \(p \sum_{j \geq 0} f(2M\alpha^j) \leq O(p\sqrt{M}) = O(p \cdot M/B) \), which yields the claimed bound. \(\square \)

Let \(Q(\pi) \) be the sequential cache complexity of a computation \(\pi \), and let \(Q_{PWS}(\pi) \) be the number of cache misses incurred by \(\pi \) when it is scheduled under PWS. Then define the PWS cache miss excess, \(Q_C(\pi) \), as follows: \(Q_C(\pi) = Q_{PWS}(\pi) \) if \(Q_{PWS}(\pi) = \omega(Q(\pi)) \), and \(Q_C(\pi) = 0 \) if \(Q_{PWS}(\pi) = O(Q(\pi)) \). Thus for instance, in parts (ii) and (iii) of the above lemma, the PWS cache miss excess for any BP computation with \(f(r) = O(\sqrt{r}) \) and \(M \geq B^2 \) is \(Q_C(\pi) = O(Mp/B) \). In particular, when \(n \geq Mp \), i.e., when the input does not fit into the caches, the PWS cache miss excess is zero.

The following corollary addresses smaller input sizes \((n < Mp) \) for a case that arises in our list ranking and graph algorithms.
Corollary 4.2. Let \(\pi \) be an \(f \)-friendly BP computation of size \(n < Mp \) and suppose that \(\alpha = 1/2 \) and \(f(r) = O(1) \). Then, the PWS cache miss excess \(Q_C(\pi) \) is:

(i) For \(Bp \leq n < Mp \), \(Q_C(\pi) = O\left(\frac{p}{B} \log B + \frac{\log \sqrt{4M}}{n} \right) \).

(ii) For \(p \leq n < Bp \), \(Q_C(\pi) = O\left(\frac{p}{B} \log 2 \left\lfloor \frac{\min\{n,M\}}{B} \right\rfloor + \frac{\log n}{p} \right) \).

(iii) For \(n < p \), \(Q'' = O\left(\frac{p}{B} \log 2 \left\lfloor \frac{\min\{n,M\}}{B} \right\rfloor + n \right) \).

Proof. We proceed as in the proof of Lemma 4.4. As before, we need to sum the cache misses due to stolen tasks of size smaller than \(2M \). There are \(\min\{p, \frac{n}{2M\alpha}\} \) tasks of size \(2M\alpha \), each generating \(O\left(\log \frac{p}{B} + \frac{\log \sqrt{4M}}{n} \right) \) cache misses. Summed over all \(j \), in Case (i) this gives \(O\left(\frac{p}{B} \log B + \frac{\log \sqrt{4M}}{n} \right) \) cache misses, in Case (ii), \(O\left(\frac{p}{B} \log 2 \left\lfloor \frac{\min\{n,M\}}{B} \right\rfloor + \frac{\log n}{p} \right) \) cache misses, and in Case (iii), \(O\left(\frac{p}{B} \log 2 \left\lfloor \frac{\min\{n,M\}}{B} \right\rfloor + n \right) \) cache misses. We argue only Case (i). Summing over the increasing values of \(j \), starting at \(j = 0 \), there are terms \(O(n/B) \) for \(\left\lfloor \frac{\log p}{n/2M\alpha} \right\rfloor \) values of \(j \), followed by terms \(p \left(\log \frac{2M\alpha^{j-1}}{B} \right) \) up to the first value of \(j \) for which \(M\alpha^{j} \leq B \), which total \(O(n/B) \), followed by terms \(p \cdot O(1) \) for \(\log B \) values of \(j \). The bound in (i) now follows readily. ■

A BP collection is a collection of parallel independent BP computations; similarly, an HBP collection is a collection of parallel independent HBP computations. Such collections are generated when parallel recursive calls are made in an HBP computation. The size of a BP or HBP collection is the maximum size among the independent computations in the collection and its total size is the sum of the sizes of the independent computations in the collection. It follows from the definition of a balanced HBP computation that in any BP or HBP collection that occurs in it, every independent computation in the collection will have the same size, to within a constant factor (or \(c_2/c_1 \)).

As our cache miss bounds for a single BP computation depend only on the binary forking and priorities based on size, the previous bounds apply unchanged to a BP collection, yielding the following corollary.

Corollary 4.3. Let \(\Pi' \) be an \(f \)-friendly BP collection of size \(r \), whose total size is \(n \geq Mp \). Then the PWS cache miss excess for \(\Pi' \) is bounded by

\[
O\left(\frac{p}{B} \log 2 \left\lfloor \frac{\min\{n,M,r\}}{B} \right\rfloor + \log \min\{r,B\} + f(r) \right).
\]

Proof. The argument is similar to that of Lemma 4.4. The one change is that \(f(r) \) cannot be bounded by \(r/B \). ■

Cache Misses in the Up-pass. In the up-pass that follows a down-pass, the computation involving the activation of a suspended task \(\tau \) follows the mirror image of the initial pass that forked the children of that suspended task. Since we have assumed that there is only \(O(1) \) computation at each suspended task-head, the PWS cache miss cost of the up-pass is readily bounded. The main additional cost arises because a stolen task may assume the remaining work of its parent due to usurpation, in which case it needs to read data from its parent’s local stack. The cost is bounded by the total size of these stacks divided by \(B \), which is \(O(\text{number of nodes in the BP tree}/B) \), plus
an additional $O(1)$ cache misses per steal. This is subsumed by the cost of the downpass. Thus there is zero contribution from the up-pass of a BP computation π to the PWS cache miss excess for π. Note, however, that these reads may interleave with writes to these same execution stacks by other cores, and we will analyze their costs as part of the block miss analysis.

4.2.1 HBP computations

We extend priorities to a balanced HBP computation C in a natural way. Priorities decrease with depth, and in each BP collection in C, all nodes at depth i in the collection have the same priority, $i \geq 0$. Thus, all nodes with the same priority will have the same size, to within a factor of c_2/c_1.

We now bound the cache miss excess in the HBP computations we consider. First, by the same argument as for Lemma 4.3 we obtain:

Lemma 4.5. Consider an f-cache friendly balanced HBP computation Π scheduled under PWS on p cores, each with a cache of size M. If $f(r) = O(r/B)$ for $r \geq (2c_1/c_2) \cdot M$, there is zero PWS cache miss excess due to stolen tasks of size $2M$ or more.

Usurpations. Consider two successive HBP collections $H_1 = \{h_{11}, h_{12}, \ldots, h_{1k}\}$ and $H_2 = \{h_{21}, h_{22}, \ldots, h_{2k}\}$, where, for each i, h_{2i} follows h_{1i} in the sequential computation. Let h_{1i}, for some i, start its computation on some core C. Because of usurpation it may be that a core C', that stole a subtask from C within h_{1i}, will be the one starting the computation h_{2i}; we call C' a usurper. Further, even if C starts the computation of h_{2i}, it may be that, due to steals, C has not read in some of the data for h_{1i} that potentially gets reused in h_{2i}. In this case we say that C is semi-usurped. In both cases (usurped and semi-usurped) we need to bound the cost of the additional reads needed to execute h_{2i} since our analysis in Lemma 4.4 assumed that the core starting the BP computation had the same state as in the sequential computation. If k is large, then conceivably there could be a large number of usurpers or semi-usurpers at H_2 resulting in a large cache miss cost. We now argue that this is not the case for balanced HBP collections.

Lemma 4.6. Let $H_1 = \{h_{11}, h_{12}, \ldots, h_{1k}\}$ and $H_2 = \{h_{21}, h_{22}, \ldots, h_{2k}\}$ be successive balanced HBP computations. Then, there are at most $p - 1$ usurpers and semi-usurpers.

Proof. Let the first sub-task stolen from H_1 be h', and let it be a sub-task of h_{1j}, for some j. At the time h' is stolen, all of the h_{1i} have started their execution, since otherwise there would be a task of higher priority than h' available for stealing. But then, at most $p - 1$ of the h_{1i} can still be in the process of being executed. These are the only tasks that can be usurped or semi-usurped. \blacksquare

As noted earlier, all of our HBP algorithms are balanced, hence the above lemma applies to them. The sorting algorithm SPMS in [12] is not a balanced HBP computation, however a different argument bounds the cost of usurpations in that algorithm.

Cache Misses in Balanced HBP Computations. By Lemma 4.5 stolen tasks of size $2M$ or larger in an HBP computation incur no cache miss excess under PWS. In the following lemma, we bound the excess due to steals of smaller tasks in an HBP computation using Lemma 4.3 and Corollary 4.3, and we bound the cost of usurpations using Lemma 4.6.

Lemma 4.7. Let π be an f-friendly balanced HBP computation with $f(r) = O(\sqrt{r})$. If $M \geq B^2$, the PWS cache miss excess for π is
\[O(p \cdot v'(M/B + \log B) + p \cdot \sum_i (n_i/B + \log B + f(n_i)) + p \cdot \sum_j (\log n_j + f(n_j))) , \]

where \(v' \) is the number of BP collections of size at least \(2M \), the first sum is over BP collections whose size is \(n_i \), \(B < n_i < 2M \), and the second sum is over BP collections whose size is \(n_j < B \).

Proof. The cost of stealing small tasks is bounded by applying Lemma 4.4 to the initial computation, and then applying Corollary 4.3 to the BP collections in the computation.

To bound the cost of usurpers we apply Lemma 4.6. Since there are at most \(p - 1 \) usurpers and semi-usurpers for each BP collection, and we have already charged for \(p - 1 \) steals at the start level for this collection, the usurpations increase this cost by at most a factor of 2 for each collection. □

Using Lemma 4.7 we obtain the following Lemma 4.11 which was stated at the beginning of Section 4.

Lemma 4.11. Let \(\Pi \) be a balanced Type 2 HBP computation of size \(n \geq Mp \), and let \(c, s(n) \), and \(f(r) \) be as defined earlier. Then, the cache miss excess for \(\Pi \) when scheduled under PWS has the following bounds with a tall cache \(M \geq B^2 \).

(i) If \(c = 1 \), \(f(r) = O(\sqrt{r}) : O(pM/Bs^*(n, M)) \).

(ii) If \(c = 2 \), \(f(r) = O(\sqrt{r}) \), and \(s(n) = \sqrt{n} : O(pM/B \log M) \).

(iii) If \(c = 2 \), \(f(r) = O(\sqrt{r}) \), and \(s(n) = n/4 : O(p[\sqrt{\frac{nM}{B}} + \sqrt{\frac{n}{M}} \sum_{i \geq 0} 2^i f(M/4^i)]) \).

4.3 Block Misses Under PWS

Let \(\pi \) be a BP collection of size \(r \) and total size \(n \) in which each task \(\tau \) shares at most \(L(|\tau|) \) blocks with other tasks. There are at most \(\frac{\alpha^2 n}{r} \) BP trees of size \(r \) in the collection, hence each level below level \(\log(pr/n) \) will have at least \(p \) tasks. Under PWS, there are at most \(p \) steals at any level, hence the total number of shared blocks across all cores due to steals under PWS in this computation is \(X(r) \), where

\[
X(r) \leq \sum_{\log(n/r) \leq i \leq \log \min\{p, r^{1/\log 1/\alpha}\}} 2^i \cdot L(ra^i) + \sum_{\log p \leq i \leq \log p^{1/\log 1/\alpha}} L(ra^i)
\]

Hence, using Lemma 3.11 we obtain that the sum of the block waits across all cores during this computation is bounded by \(Z(r) = Y(B) \cdot X(r) \), for \(r \geq B \), and by \(Z(r) = Y(r) \cdot X(r) \), for \(r < B \).

For a computation \(\pi \) scheduled under PWS, let \(Q_{PWS,B}(\pi) \) be the block wait cost of \(\pi \), and as before, let \(Q(\pi) \) be the sequential cache complexity of \(\pi \). As with the PWS cache miss excess, we define the PWS block miss excess, \(Q_B(\pi) \), as \(\pi \)'s block wait cost \(Q_{PWS,B}(\pi) \) if \(Q_{PWS,B}(\pi) = \omega(Q(\pi)) \), and \(Q_B(\pi) = 0 \) otherwise.

Lemma 4.8. Let \(\pi \) be the downpass of a BP collection of size \(r \). Suppose that \(Y(|\tau|) = O(\min\{B, |\tau|\}) \).

(i) If the block-sharing function \(L(|\tau|) = O(1) \), then, for \(r \geq B \), the PWS block miss excess for \(\pi \) is \(O(p \cdot B \log B) \); for \(r < B \), the block miss excess is \(O(p \cdot r \log r) \).

(ii) If the block-sharing function \(L(|\tau|) = \sqrt{|\tau|} \), and \(\alpha = \frac{1}{2} \), then, for \(r \geq B \), the PWS block miss excess for \(\pi \) is \(O(B \cdot \sqrt{pr}) \); for \(r < B \), it is \(O(r \cdot \sqrt{pr}) \).
Proof. (i) For $r \geq B^2$, we first consider the stolen tasks of size B^2 or larger. Similar to the proof of Lemma 4.3, we can see that the kernel of task τ (either a stolen subtask or an original task in this BP collection) after all its stolen subtasks of size B^2 or larger are removed still has size $\Omega(B^2)$. Consequently, its execution (which may include further steals of smaller subtasks) will incur a cache miss cost of $\Omega(B)$. As the block wait cost for a stolen task is $O(B)$, we can conclude that the block miss excess for all original and stolen tasks of size B^2 or larger is zero. If $r \geq B^2$, then the remaining cost is bounded by

$$B \cdot p \sum_{i > \log_{1/\alpha} r/B^2} L(r\alpha^i) = O(Bp\log B). \quad (2)$$

For $r < B^2$, the cost is bounded by $O(\min\{r, B\} \cdot p \sum_{i \geq 0} L(r\alpha^i)) = O(p \min\{r, B\} \log r)$.

(ii) This follows directly from Equation (1). \hfill \blacksquare

Block Misses in the Up-pass. Recall that there are no steals during the up-pass. Instead, as mentioned in Section 2 at any non-leaf node u in a BP tree, of the tasks at its two children, the later finishing one will continue the up-pass from u toward the root of its BP tree. The following lemma assumes the data layout given in Section 3.3.

Lemma 4.9. Let ρ be the up-pass of a BP collection of size r and total size n, scheduled under PWS. Then, for $\min\{r, B\} \cdot p \geq \log^{1/\alpha} r$, the block miss excess for ρ is $O(\min\{r, B\} \cdot p \log\log(\max\{2, pr/n\}) + \log\min\{r, B\})$; for $\min\{r, B\} \cdot p < \log^{1/\alpha} r$, it is $O(\min\{r, B\} p)$. For $\alpha = 1/2$, and $r \geq B$, the block miss excess is $O(Bp \log B)$, if $n \geq pM$ and $M \geq B^2$; for $\alpha = 1/2$ and $r < B$ it is $O(rp \log r)$.

Proof. We first note that the computation at each node in the up-pass is of constant size, hence by the limited-access property there is an $O(\min\{r, B\})$ block wait cost at each node regardless of the nature of the block-sharing function $L(|\tau|)$.

Recall that the two children of an internal node in a BP tree have size between $c_1 \alpha \cdot r$ and $c_2 \alpha \cdot r$, for some α with $1/2 \leq \alpha < 1$ and constants $0 < c_1 \leq 1 \leq c_2$. Hence the height of the tree is $\log_{1/\alpha} r + O(1) = \log_2 r^y + O(1)$, where $y = 1/\log_2(1/\alpha)$. Then, the number of nodes in the top level is at least n/r and this number increases to p by level $l = \log q$, where $q = \max\{2, pr/n\}$. (We assume that $M \geq c_2/c_1$ so that leaves are not encountered before level q.)

We first consider the total block wait cost at the top l levels of the BP tree collection. There are at most $2p - 1$ nodes in this portion of the BP tree collection, and the tasks at the two children of a node u are the only ones that access u for their computation. By the limited access property, each of these $4p - 1$ tasks incurs a block wait cost no more than $O(\min\{r, B\})$. Hence the contribution of the top $\log p$ levels of the up-pass to the total block wait cost is $O(\min\{r, B\} p)$. For $q > r^y$, this cost reduces to $O(\min\{r, B\} r^y)$ over all the $\log_{1/\alpha} r + O(1)$ levels of the up-pass.

Only in the case that $q \leq r^y$ are there further levels to consider. We now consider these bottom $\log(r^y/q) + O(1)$ levels. Under PWS, there are at most $p \log(r^y/q)$ stolen tasks in these levels. Further, consider a block β on an execution stack that is accessed by x stolen tasks. Each of these stolen tasks could incur a block wait cost of up to x due to its accesses to β. But only one of these tasks would continue computing further up its computation tree. This is because the block β contains the execution stack data for a sequence of ancestors in the BP tree, and only the task that completes the computation at the highest ancestor will continue...
the computation up the tree. Hence, if there are \(s \) different blocks accessed on the execution stacks across all tasks during this computation, and if \(r_i, 1 \leq i \leq s \), is the number of tasks accessing the \(i \)th block, then \(1 + \sum_{i=1}^{s} (r_i - 1) \) is bounded by \(c_2/c_1 \) times the total number of steals in the \(\log(r^y/q) \) levels, which is at most \(c p \log(r^y/q) \). Since \(s = O(p \log(r^y/q)) \) it follows that \(\sum_{i=1}^{s} r_i = O(p \log(r^y/q)) \), hence by the limited access property, the total block wait cost incurred in these \(\log(r^y/q) \) levels is \(O(Bp \log(r^y/q)) \). The block wait cost for accessing other data items also satisfies this bound since each task will access \(O(1) \) data with \(O(\min\{r, B\}) \) block wait cost, which is accounted for in the above bound. Since \(y = 1/\log_2(1/\alpha) \), this establishes that the block miss excess is \(O(\min\{r, B\} p(\log_{1/\alpha}(r) - \log(\max(2, pr/n)))) \).

For \(r \geq B \), when \(\alpha = 1/2 \), the block miss excess is \(O(Bp \log n/p) \).

We now show that \(Bp \log(n/p) = O(n/B + Bp \log B) \) if \(n \geq pB^2 \) (which holds if \(n \geq pM \) and \(M \geq B^2 \)).

\[
Bp \log(n/p) \leq Bp(\log(n/(pB^2)) + \log B^2)
\leq \frac{n/B}{n/(pB^2)} \cdot \log(n/(pB^2)) + Bp \log B^2 \leq n/B + 2Bp \log B
\]

Hence the block miss excess for the up-pass is \(O(Bp \log B) \) in this case.

For \(r < B \), the claimed bound is immediate.

We can now prove Lemma 4.2 by applying Lemmas 4.8 and 4.9.

Lemma 4.2. Let \(\Pi \) be a balanced Type 2 HBP computation of size \(n \geq M p \) with \(\alpha = 1/2 \), which is exactly linear space bounded, and let \(c, s(n), \) and \(L(r) \) be as defined earlier. Then, the block miss excess for \(\Pi \) when scheduled under PWS has the following bounds if \(L(r) = O(1) \).

(i) \(c = 1 \): a cost of \(O(pB \log B \cdot s^*(n)) \) cache misses.

(ii) \(c = 2 \) and \(s(n) = \sqrt{n} \): a cost of \(O(pB \log n \log \log B) \) cache misses.

(iii) \(c = 2 \) and \(s(n) = n/4 \): a cost of \(O(pB \sqrt{n}) \) cache misses.

Proof. The bounds are obtained by summing over the cost of the successive collections of BP computations.

(i) follows from Lemmas 4.8 and 4.9 as there are \(s^*(n) \) successive collections of BP computations each collection costing \(O(Bp \log B) \) cache misses.

(ii) The cost of the BP computations is bounded by

\[
O(Bp \sum_{i=0}^{\log \log n - \log \log B} 2^i \log B + p \sum_{j \geq 1} 2^j \log \log n \log \log B \log B^{1/2j}) = O(Bp \log n \log \log B).
\]

(iii) The cost of the BP computations is bounded by

\[
O(Bp \sum_{i=0}^{1/4 \log(n/B)} 2^i \log B + \sum_{j \geq 1} Bp \cdot 2^{j + 1/2 \log(n/B)} \log(B/2^{2j})) = O(p \cdot \sqrt{nB \log B} + pB \sqrt{n}) = O(pB \sqrt{n}).
\]

4.4 Idle Time and Scheduling Costs

We now bound the total work during a computation \(\pi \) that could be attributed to idle cores (i.e., when a core is neither computing, nor waiting on a cache miss, block miss, or steal initiated by that core).
Idle time can occur when some cores are executing the up-pass of a BP computation. Consider the up-pass ρ of a BP computation of size n. We bounded the block miss excess in Lemma 4.9. Here we consider the idle time incurred by such an up-pass. For this, we need to account for the time that some of the cores may need to wait in order for the up-pass to complete so that new tasks can be generated on the task queues and become available for stealing. This wait time starts at the time T when the last task in the downpass starts its computation, and it ends when the computation completes at the root of the up-pass tree.

Lemma 4.10. Let ρ be the up-pass of a limited-access BP collection of total size n. The total idle time incurred during the up-pass is bounded by $O(bp \cdot (\log n + B \log B))$, where b is an upper bound on the delay due to a cache miss.

Proof. Let t be an upper bound on the computation time at a leaf in the downpass of the BP computation, followed by the computation from the leaf for $\log(c_2 B/c_1)$ levels up along the path to the root of the up-tree. We note that $t = O(b B \log B)$ by the limited access property, and the fact that base case tasks and up-pass nodes perform $O(1)$ computation. Also, once the up-tree computation is above the lowest $l = \log(c_2 B/c_1)$ levels of the up-tree, a write to each output data has zero block wait cost, since by the in-order organization of the output data, the writes at any two nodes are separated by at least a distance of B in the output. Thus, at levels above l in the up-tree we only need to consider block sharing on the execution stacks of the tasks.

Let the number of blocks accessed at each node in the up-tree be $c = O(1)$. Let the last task in the downpass start its computation at time T. We establish the following assertion by induction on the height of a node u in the BP tree.

Idle Time Assertion. Let u be a node at height $h_u \geq \log(c_2 B/c_1)$ in the up-tree. The up-pass computation at u is completed by time $T_u = T + t + b(ch - k_u)$, where h is the height of the up-tree, and k_u is the number of writes not yet performed at proper ancestors of u in the up-tree.

The proof is by induction on the height of u in the up-pass tree, and takes into account the fact that the entries on any given execution stack is a sequence of data on successive ancestors in the tree.

Base Case. The node u is at height $\log(c_2 B/c_1)$. Then, it is done by time $T + t$. Since ch is the total number of writes that need to be performed at all nodes on a path from a leaf to the root, we have $ch \geq k_w$ for every node w in the up-tree, hence $T + t \leq T_u$, and hence u’s computation is done by time T_u.

Induction Step. Assume inductively that the result holds for all nodes at height up to $h - 1 \geq \log(c_2 B/c_1)$. Let u be a node at height $h - 1$, let v be u’s sibling, and let w be u’s parent, which is at height h.

By the inductive assumption, node u’s computation is completed by time T_u. Further, since u and v have the same proper ancestors, v’s computation is also completed by time T_u, as is the computation at all descendants of u and v.

Now consider the computation at w. It is completed by time $t_w = T_u + b \cdot (x + y')$, where x is the number of accesses performed by the task at w, and y' is the number of accesses performed by tasks that write into blocks shared by w. By the inductive assumption all nodes at height $h - 1$ and lower have completed by time T_u, hence all of these writes are to locations at proper ancestors of w. Let y be the number of writes performed at all proper ancestors of w during this time. Then,
\(y' \leq y \), and \(k_w = k_u - (x + y) \), hence,

\[
t_w = T + t + b(ch - k_u) + b(x + y') \leq T + t + b(ch - (k_u - (x + y))) = T_w.
\]

This establishes the induction step.

With this claim we have the result that the delay for the up-pass beyond time \(T \) is \(O(b(B \log B + \log n)) \), and this establishes the lemma. \(\blacksquare\)

Let \(s_P \) be the delay at a core due to the cost of a steal under PWS. When a computation with critical pathlength \(D \) is scheduled under PWS, it incurs a total scheduling cost of \(O(p \cdot s_P \cdot D) \) by Corollary 4.1. We can expect \(s_P \geq b \), since at least one cache miss is incurred when a core attempts to steal a task from another core.

Lemma 4.11. Let \(\pi \) be a BP computation on an input of size \(n \). If \(s_P = \Omega(b) \), then the total time spent on idle work by all \(p \) cores in executing \(\pi \) is bounded by the sum of the bounds of \(O(s_P \cdot p \log n) \) on the scheduling cost and \(O(bBp \log B) \) on the block delay costs.

Proof. As shown above, the idle time for the up-pass is \(O(pb(B \log B + \log n)) \). The first term is dominated by the cost \(O(pB \log B) \) we established for the PWS block miss excess and the second term is dominated by the PWS scheduling cost if \(s_P \geq b \). The idle time that occurs in the top few levels of the downpass, until \(p \) tasks are generated, is part of the steal cost \(s_P \), since the priority increases with each unsuccessful steal. Hence the idle work is dominated by the sum of block delay and scheduling costs. \(\blacksquare\)

4.5 Analysis of HBP Algorithms under PWS

We apply our results for PWS to the HBP algorithms discussed in Section 3.2. Here, we assume that each core performs a single operation in \(O(1) \) time, and a cache miss takes at most \(b \) time. We assume that the input is of size \(n \geq Mp \) (the input size is \(n^2 \) for matrix computations), and it is in the shared memory at the start of computation.

Caches Misses Only. If we ignore block misses, then for all all Type 1 and Type 2 HBP algorithms we consider, PWS achieves the following run time, where \(s_C \) is the cost of a steal when only cache misses are considered. We show that \(s_C = b \log p \) for our PWS implementation (Section 4.7)

\[
O \left(\frac{1}{p} \left(W(n) + b \cdot Q(n, M, B) \right) + s_C \cdot T_{\infty}(n) \right) \quad \text{if } M \geq B^2.
\]

This is a new result, which is not known to be achievable using RWS.

Cache and Block Misses. If we consider both cache and block misses, and \(s_P \) is the cost of a steal when both cache and block miss costs are considered, we achieve the following bound with PWS for Type 1 and Type 2 HBP algorithms we consider, where \(s_P = O(b \log p) \) for our PWS implementation if we use a *padded* version of BP and HBP computations (see Section 4.7), and is \(O(b(B + \log p)) \) with standard HBP computations.

\[
O \left(\frac{1}{p} \left(W(n) + b \cdot Q(n, M, B) \right) + s_P \cdot T_{\infty}(n) \right) \quad \text{if } M \geq \Gamma(B).
\]

22
Here the tall cache requirement $\Gamma(B)$ depends on the problem, and varies between $B^2 \log B$ and B^4.

We now present our results for our Type 1 and Type 2 HBP algorithms, when scheduled under PWS. For convenience of notation, we will ignore constant factors in our analyses, and we will use \geq and \leq in place of O and Ω.

Lemma 4.12. When scheduled using PWS, the following algorithms have the stated running times when the input size is $\Omega(Mp)$, considering both cache and block misses.

(i) **Scans:** $O((1/p) \cdot (n + b \cdot (n/B) + s_P \cdot \log n)$ with $\Gamma(B) = B^2 \log B$.

(ii) **MT (BI) and RM to BI:** The bounds from (i) apply, with n^2 replacing n.

(iii) **Strassen (BI):** $O((1/p) \cdot (n^\lambda + b \cdot (n^\lambda/(B \cdot M^{2/3}))) + s_P \cdot \log^2 n)$ with $\Gamma(B) = B^2 \log^2 B$.

(iv) **Depth-n-MM (BI):** $O((1/p) \cdot (n^3 + b \cdot (n^3/(B\sqrt{M}))) + s_P \cdot n)$ with $\Gamma(B) = B^4$.

(v) **BI-RM for FFT:** $O((1/p) \cdot (n^2 \log n + (b/B) \cdot (n^2 \log M) + s_P \cdot \log n)$ with $\Gamma(B) = B^2 \log B \log^2 B$.

(vi) **FFT:** $O((1/p) \cdot (n \log n + (b/B) \cdot n \log M + s_P \cdot \log n)$ with $\Gamma(B) = B^2 \log B \log B$.

All of these bounds hold with the standard tall cache $M \geq B^2$ if only cache misses are considered.

Proof. (i, ii) **Scans, MT (BI), RM to BI.** As noted in Section 3.2 we have a single BP computation with $\alpha = 1/2$, $f(r) = O(1)$, and $L(r) = O(1)$. Hence by Lemma 4.1, the PWS cache miss excess is $O(Mp/B + p \log B)$, and by Lemma 4.8 the PWS block miss excess is $O(Bp \log B)$.

RM to BI has $f(r) = \sqrt{r}$, however, Lemma 4.4 continues to hold for all $f(r) = O(\sqrt{r})$, hence this computation has the same bounds as MT. Hence the cache and block miss excess is dominated by the sequential cache complexity when $n \geq Mp$ if $M \geq \Gamma(B)$, for $\Gamma(B) = B^2 \log B$.

(iii) **Strassen (bit-interleaved layout).** From Section 3.2 this is an HBP computation with $c = 1$, $r(m) = m/4$, where $m = n^2$ is the size of the matrix, $f(r) = O(1)$ and $L(r) = O(1)$. As noted there, the sequential work is $O(n^\lambda)$, the critical pathlength is $O(\log^2 n)$, and the sequential cache complexity is $O(n^\lambda/(BM^\gamma))$. By Lemma 4.1 substituting $s(n^2) = n^2/4$, and $c = 1$, the PWS cache miss excess is $O(p(M/B \log n^2 + \log^2 B))$, and by Lemma 4.2 the PWS block miss excess is $Q_B = O(pB \log B \log n^2)$.

The most constraining constraint is the block miss excess Q_B. We now derive a bound for $\Gamma(B)$ based on Q_B. We need $Q_B = pB \log B \log n^2 \leq \frac{n^\lambda}{BM^{\lambda/2-1}}$, which is satisfied if $pB^2 \log B \cdot M^{\lambda/2-1} \leq \frac{n^\lambda}{\log^2 n^2}$, thus $pB^2 \log B \cdot M^{\lambda/2-1} \leq \log(pBM) \leq n^\lambda$ suffices.

Since we have assumed that $n^2 \geq Mp$, we have $n^\lambda \geq (Mp)^{\lambda/2}$.

Thus it suffices to have $\frac{B^2 \log B \log p + \log M + \log B}{p^{\lambda/2-1}} \leq (Mp)^{\lambda/2}$, and this is met if $\frac{B^2 \log B \log M}{p^{\lambda/2-1}} \leq 1$. As $\log M \geq \log B$ and $p^{\lambda/2-1} \geq \log p$ (as $\lambda > 2.5$), $\log(p + \log M + \log B) \leq \log M$. Thus $\frac{B^2 \log B \log M}{p^{\lambda/2-1}} \leq 1$ suffices, and for this the following stronger tall cache condition $\Gamma(B) = B^2 \log^2 B \leq M$ suffices.

(iv) **Depth-n-MM (BI layout).** Here we use the cache-oblivious n^3-work MM algorithm in [17], as modified in [13] to enforce limited access variables. This is an HBP computation with $c = 2$, and $r(n^2) = n^2/4$, with $f(r) = O(1)$ and $L(r) = O(1)$, hence by part (iii) of Lemma 4.1 the cache miss excess is $O(p(1 + \frac{n^3}{B\sqrt{M}}))$. The block wait cost is $O(pnbB)$ by Lemma 4.2. The cache miss excess and block delay cost are bounded by the sequential cache complexity of $\Theta(n^3)$ for input size $n^2 \geq Mp$ with a taller cache having $\Gamma(B) \geq B^4$.

23
(v) **BI-RM (gap RM).** This is an $O(\log n)$ parallel running time, $O(n^2)$ operation algorithm.

This is a sequence of two BP computations where the second computation has the bounds of a standard scan, so the cost is dominated by the first BP computation. As described in Section 3.2, this first BP computation has $f(r) = O(1)$, and the cache miss excess remains $O(Mp/B)$ for $M \geq B^2 \log B$. For the block miss excess we have $L(r) = \sqrt{r}$. However, its effect is reduced using a gapping technique, the result of which is that there is no block miss cost for tasks of size greater than $\sigma = B^2 \log^4 B$. The total block miss cost for stolen tasks of size σ or less is dominated by the stolen tasks of size s due to the geometrically decreasing sizes in the BP computation. Hence the block miss excess is $O(p \cdot B^2 \log^2 B)$. Since the sequential cache complexity is n^2/B, this dominates the block miss excess for input size $n^2 \geq pM$ with a taller cache $\Gamma(B) \geq B^3 \log^2 B$.

(vi) **BI-RM for FFT.** $O(\log n)$ parallel running time, $O(n^2 \log \log n)$ operation algorithm.

Recall from Section 3.2 that this is a type 2 HBP computation with $c = 1$, with $s(n^2) = n$. From Section 3.2 we have $f(r) = O(\sqrt{r})$ and $L(r) = O(1)$. This gives a cache miss excess of $O(p M \log_M n^2)$. By Lemma 4.2 the excess block wait cost is $O(pB \log B \log \log B)$. This is dominated by the sequential cache complexity of FFT (on an input of size n^2) if $(n^2/B) \log_M n^2 \geq pB \log B \log B$, and this is satisfied if $n^2 \geq pB^2 \log B \log B$. Hence a tall cache $M \geq B^2 \log B \log \log B$ suffices.

We will see below that as the costs of this method are dominated by those for FFT in all dimensions (work, parallel time, and cache and block misses) this algorithm can be used for FFT. **(vi) FFT.** This is a Type 2 HBP computation with $c = 2$ and $s(n) = \sqrt{n}$. We have $O(1)$-friendly tasks with $L(r) = O(1)$ (outside of the cost to finally convert the BI matrix into the RM output format). By Lemma 4.2 the excess block wait cost is $O(pB \log n \log \log B)$. At the end, to convert to the RM format we use **BI-RM for FFT**.

4.6 List Ranking

We now analyze the cache miss, block miss and idle time cost overheads for the list ranking algorithm LR presented in Section 3.2 when scheduled by PWS. For this, we need the following extension to the results for SPMS in [12].

Lemma 4.13. The excess cache miss costs for sorting x items, $p < x < pM$, using SPMS, when scheduled under PWS is bounded by

$$O\left(\frac{x}{B} \log \frac{pM}{x} \log x + \frac{\sqrt{p}}{x} \log x/p\right).$$

Proof. The excess cache miss cost of a BP collection of size r and total size x is given by

$$O\left(\frac{y}{B} \log \frac{pM}{y} + \frac{\sqrt{y}}{p} + p \log y/p\right) \quad r \geq y/p$$

$$O(p\sqrt{r} + p \log r) \quad r < y/p$$

For the sorting problem, there are some $c = O(1)$ collections of size x, $2c$ of size \sqrt{x}, and in general, $2^i c$ of size $x^{1/2^i}$, for $1 \leq i \leq \log \log x$. All these collections have total size $O(x)$. Summing over all values of i yields an excess cache miss cost of

$$O\left(\frac{x}{B} \log \frac{pM}{x} \log x + \frac{\sqrt{p}}{x} \log x/p + p \log x \log \log x/p\right).$$

24
The result follows, because the second term dominates the third one.

\[\text{Corollary 4.4.} \text{ The cache miss cost in the list ranking algorithm is } O\left(\frac{n \log n}{\log M} + \frac{M \log n}{B \log M} \log(k) n\right), \text{ for inputs of size } n \geq M \log(k) n, \text{ assuming that } M \geq B^2 \log B \log B. \]

Proof. In each iteration of the list ranking algorithm there are \(O(\log(k) n) \) invocations of the sorting algorithm. As shown in [11], the \(O(Q) \) terms over all invocations of the sort procedure sum to \(O\left(\frac{n \cdot \log n}{\log M}\right) \). Thus it suffices to add the costs given by Lemma 4.13 for halving values of \(x \), starting at \(x = n \), and then multiply the resulting sum by \(\log(k) n \).

We consider this sum in more detail. For \(x \leq p \), these terms contribute a total of \(O(\log p) = O\left(\frac{M \log n}{B \log M} \log M\right) = O\left(\frac{M \log n}{B \log M}\right) \).

For \(p \leq x \leq Mp \), the terms \(O\left(\sqrt{px} \log x\right) \) contribute \(O\left(p \sqrt{M \log n}\right) = O\left(\log M \log n\right) \). The terms \(O\left(\frac{4}{B \log M} M / x\right) \log x \log(M/x) + \log 2 \log(Mp/2) \log M \log M/p + \log 4 \log Mp M \log M/p + \cdots + \log M \log M/p \) contribute to \(O\left(\frac{M \log n}{B \log M}\right) \).

For the block wait cost, we note that with the gapping method, no more block misses occur once the list has size at most \(n/B^2 \). Recalling that the sort algorithm has a block miss cost of \(O(Bp \log n \log\log(n/p)) \) to sort a set of \(n \) items [12], we obtain the following block delay cost for the list ranking algorithm.

\[\text{Lemma 4.14.} \text{ The list ranking algorithm has a block wait cost of } O\left(Bp \log n \log\log(n/p) \log(k) n \log B\right). \]

Proof. This bound follows from observing that there are \(O(\log(k) n) \) sorts on sets of size at most \(n \) in each iteration of the list ranking algorithm. Further, only the first \(O(\log B) \) iterations incur block misses.

\[\text{Lemma 4.15.} \text{ The cache and block wait costs of the list ranking algorithm are bounded by the sequential cache miss cost of } O\left(\frac{n \log n}{B \log M}\right) \text{ if } Mp \leq n/\log(k-1) n \text{ and } B^2 \log^2 B \log B \leq M. \]

Proof. The claim regarding the cache miss cost is immediate from Corollary 4.4. To show the claim for the block miss cost, by Lemma 4.14 it suffices to show that \(O(Bp \log n \log\log(n/p) \log(k) n \log B) \leq O\left(\frac{n \log n}{B \log M}\right) \). That is, \(O\left(B^2 \log M \log(k) n \log B\right) \leq O\left(\frac{n \log n}{\log\log n/p}\right) \). Then it suffices to show that \(O\left(B^2 \log M \log(k) n \log B \log\log B + \log^{(3)} M + \log^{(k+2)} n\right) \leq O(n/p) \). If \(Mp \leq n/\log(k-1) n \), then it suffices that \(O\left(B^2 \log M \log B \log\log B + \log^{(3)} M\right) \leq M \), for which \(B^2 \log^2 B \log B = O(M) \) suffices.

Finally, we obtain the following result for the list ranking algorithm when scheduled under PWS.

\[\text{Theorem 4.1.} \text{ If } M \geq B^2 \log^2 B \log B \text{ and } n \geq M \cdot \log(k-1) n, \text{ then the list ranking algorithm runs in time } \]

\[O\left(\frac{1}{p} \left(\log n + b \cdot \text{sort}(n) + s_B \cdot \log^2 n \log n \right) \right) \]
Proof. We only need to bound the idle time. For this, we note that the idle time for computation on each contracted list of size greater than \(p \) is bounded by the corresponding bounds for sorting and for scans. When the contracted list has size \(x < p \), the computation proceeds with full parallelism, and the idle time is \(O((b \cdot p \log x \log \log x)) \), for a total cost of \(O((b \cdot p \log^2 p \log \log p)) \) for computation on all contracted lists of size at most \(p \). Since \(p < n \), this is bounded by the inherent cost of each parallel step in the computation, and this establishes the bound in the theorem since it is obtained by the bounds derived earlier for the work, critical path length, cache miss cost and block miss cost.

The Euler tour and tree computation algorithms have the same complexity since they are simple applications of the parallel list ranking algorithm.

Finally, the dominant cost in the connected components algorithm in [11] is \(\log n \) stages of list ranking, and we obtain resource-oblivious implementation under PWS with both parallel time and cache complexity increased by a factor of \(\log n \).

4.7 Distributed PWS implementation

We present a simple distributed implementation of PWS. This implementation assumes that each core context switches from its actual computation to perform \(O(1) \) computation on the distributed implementation every \(k \) time units, for a suitable \(k \). If \(k \) is a constant, then each core will devote a constant fraction of its run time to tending to scheduling issues.

Our implementation supports steals by maintaining two full binary trees on \(p \) leaves, the steal tree \(S \) and the task tree \(T \), with the \(i \)th leaf in each tree for the \(i \)th core. The steal tree and task tree support a prefix sums BP computation on a steal array \(S[1..p] \) and task array \(T[1..p] \) respectively. There is a pointer from \(S[i] \) to a location that is set to 1 if process \(i \) needs to steal, and similarly there is a pointer from \(T[i] \) to the task at the head of core \(i \)'s task queue that is available to be stolen.

The scheduling proceeds in phases, each taking \(O(\log p) \) steps, and a steal request by a core will be processed in the phase that starts after the current phase completes. The \(i \)th core is responsible for the computation at leaf \(i \), and at most one pre-assigned internal node in each tree. A scheduling phase starts in tree \(S \), where each active core \(i \) (i.e., core that needs to steal) assigns a 1 to \(S[i] \). The remaining positions are assigned 0. The \(p \) cores compute prefix sums in \(O(\log p) \) steps, after which each active core knows its rank among the active cores. Then, the computation proceeds to the task tree. Those tasks in \(T[i] \) with priority matching the priority of the current round are assigned a 1, and the remaining leaves are assigned 0. A prefix sums computation on this tree assigns ranks to the tasks available to be stolen. The steals and tasks then match up by rank and the steals proceed to be executed, while the scheduling moves to the next phase.

One additional case that can occur in the task tree computation arises when a non-idle core \(i \) needs to assign the priority of task \(T[i] \) in the task tree, but the task queue of core \(i \) is empty, and the core has not yet generated its next forked task, if any. In this case core \(i \) assigns the priority of the node it is currently executing minus 1 as the priority of the task for \(T[i] \), and it sets a flag to indicate that this value is an upper bound on the priority of a task that has not yet been generated on the task queue. If this priority matches the priority of the current round, then the stealing cores wait till either a task is generated on core \(i \)'s task queue or core \(i \) becomes idle; otherwise this flagged task is ignored since its priority is lower than that for the current phase.
4.7.1 Analysis

Since each step may entail a non-local read, the time for a step is at least the time for \(\Theta(1) \) cache misses. The only block miss costs are those that occur in accessing the arrays storing \(S \) and \(T \). At the beginning of the computation, each core requests space to store the entries at the leaves and internal nodes in \(S \) and \(T \) that it accesses. This is a total of at most four items to a core, and a different block is assigned to each core by our space allocation property. Hence accessing any item incurs \(O(1) \) block wait cost. Thus, the delay to a stealing core is \(O(b \log p) \) within this scheduling computation.

Block Wait Time at Execution Stacks. As mentioned above, there could be an additional delay associated with a steal, and this is the block wait time that could be incurred by the stealing core while it waits for a core to place a task on a task queue when that queue is empty. Our analysis on block wait costs in an HBP computation bounds this delay to \(O(B) \), thus resulting in the total delay due to block waits in an HBP computation with critical pathlength \(T_\infty \) being \(O(pB \cdot T_\infty) \). Hence the overall cost of all steals is \(O(pb(B + \log p)T_\infty) \).

Reducing the Block Wait Cost of Steals. We describe here a method to reduce the overhead of the cost of steals in HBP computations by using padded BP and HBP computations, which were defined in Definitions 3.3 and 3.4.

All of our analyses for cache and block misses continue to hold for padded BP and HBP computations, since each empty array is placed between two different segments on an execution stack, and this can only reduce the access costs. Additionally, block wait costs are reduced to \(O(1) \) at nodes of height \(\Omega(\log B) \) in any BP computation, since when the allocated empty arrays are of length greater than \(B \), there is no interaction between accesses to segments for different nodes on the stack. As a result, the total block wait of all steals under PWS in a padded BP computation of size \(r \) reduces to \(O(pb(\min\{r \log r, B \log B\}) \). This cost is absorbed in the block miss cost of the actual execution of the BP computation as shown in Lemmas 4.8 and 4.9. Similarly, by Lemma 4.2, the block wait cost of steals under PWS in Type 2 padded HBP computations for all algorithms we consider in this paper is dominated by the block wait cost incurred by the actual computations.

Thus, if we use padded BP and HBP computations for our algorithms then the overhead for the scheduling and the steals under our PWS distributed implementation is \(O(pb \log p \cdot T_\infty) \). Hence, the excess in the cost of cache and block misses in this PWS implementation over the cost of the cache and block misses in the HBP computation is the same as its cache miss excess when considering only the cost of cache misses in the HBP computation.

We note that if we use padded BP and HBP computations in place of standard BP and HBP computation, the block miss costs decrease even in the actual computations. However, the reduction in block misses in the downpass of each BP computation occurs only at higher levels of the BP tree, where the inherent cache miss cost of the computation is high, as shown in our analysis in Section 4.3. In the up-pass, again as shown in Section 4.3, the total block miss cost in a standard BP computation is dominated by the block miss cost of the downpass, at least for \(\alpha = 1/2 \), and a padded BP computation offers no benefit beyond a constant factor. Padded computations may come in useful in other HBP algorithms, for instance those that use \(\alpha > 1/2 \).

Other simple implementations are possible for PWS, and may be more practical when the input size is much larger than the number of cores. For instance, by using a ‘prisoner type’ computation [16], each scheduling round can complete in \(O(\log p) \) steps, with only the active cores involved in the computation (in contrast to the first method where each core would need to devote a constant
fraction of its time to the scheduling process). Here an active core is one that needs to steal or one for which the task at the head of its task queue has changed. The available tasks will be grouped in sets, one for each priority. This second method would be more efficient as long as variation in processor delays is not too large, since each core would need to wait the maximum time at each level of the tree where its sibling is not active, in order to ensure that no value is being propagated up the tree by the sibling.

There is one more point to note: if computation by the cores can continue during the execution of steal requests, a task available at the start of a phase may no longer be available when it is assigned to be stolen. We observe that this does not affect our algorithmic analysis. Let us call such a task a pseudo-stolen task. Then, for each priority \(d \), there will be at most \(p - 1 \) tasks of priority \(d \) that are stolen or pseudo-stolen. The remainder of the analysis now proceeds as before.

5 Discussion

5.1 Other Mechanisms to Handle Block Interference

For many of our algorithms, the tall cache requirement that \(\Gamma(B) \) be in excess of \(B^2 \) is imposed by the block misses. Here we consider some strategies that could be utilized by the system hardware or software that could potentially mitigate this cost.

1. 2-Core Block Sharing. It would be helpful if the operating system could help prevent ping-pong by allowing one core to do all its writes before the other core accesses a pairwise shared block. The second core would then face a more acceptable delay of \(O(B) \) operations and one cache miss. This might be implemented by a lock with a delayed release, though one would need to be careful to avoid deadlock. However, this is beyond the scope of the present paper.

2. Many-Core Block Sharing. This occurs when there are tasks with very small memory footprint. Then, inevitably, multiple tasks will be writing into the same block. This seems to be unavoidable in an oblivious setting, for the algorithm designer cannot set a minimum task size in terms of the block size.

In fact, this issue seems to be even more salient in the context of a hierarchically organized collection of cores (see below), an organization that seems inevitable as the number of cores grows. For that scenario, a mechanism was proposed in [11] whereby the algorithm provides the run time scheduler a space bound for each task, and using this, a method for scheduling tasks effectively on a multi-level memory hierarchy was given. (see also the discussion in Section 5.2). A similar mechanism could be used to avoid stealing unduly small tasks, thereby eliminating the multi-way block sharing costs for the most part.

5.2 Hierarchy of Caches

We have so far assumed that the caching environment in the multicore consists of a private cache for each core, all of which access data from an infinite shared memory. As the number of cores \(p \) gets large it is to be expected that a caching hierarchy of \(d \) levels would be present, where each cache at level \(i \) is shared by some number of caches at level \(i - 1 \), \(d \geq i \geq 2 \). In actual practice

\[\text{Of course, the algorithms designer may create a minimum size to balance the operation overhead of task creation; these would be costs found even in a uniprocessor execution of that algorithm and even without considering a cache-oblivious execution.}\]
$d = 2$ is a common configuration currently, where each core has a private cache (L_1) of size M_1 and all p caches share a shared cache L_2 of size $M_2 > p \cdot M_1$, and this shared cache accesses data from the infinite global shared memory.

A simple (but non-optimal way) of utilizing a level-i cache Q_i that is shared by k level-$(i-1)$ caches is to consider Q_i as being partitioned into k disjoint segments of equal size, and assigning each segment to one of the level-$(i-1)$ caches. If the properties assumed by the sequential cache oblivious analysis hold at every cache in this hierarchy, then our algorithms can guarantee optimal use of this partitioned cache hierarchy. This follows from the results for sequential cache-oblivious algorithms, since each private cache can be viewed as having its own cache hierarchy consisting of a proportionate portion of each cache it shares at each level of the hierarchy. This observation is also noted in [6]. However, one could hope to do much better by having all cores that share a given level-i cache compute on different parts of the same subproblem so that the data is utilized more effectively. Given the competing demand for private versus shared caches, this appears to be a challenging task in a completely resource-oblivious environment. It appears that a mechanism, such as that proposed in [11], is needed. The approach there is to have a resource-oblivious specification of the algorithm along with some basic ‘hints’ to the run-time scheduler, which allows for optimal utilization of shared caches at all levels of the cache hierarchy by a scheduler that is aware of the cache sizes.

5.3 HBP Algorithms in a Bulk-Synchronous Environment

A bulk-synchronous environment is used in [2, 20] to develop efficient, parameter-aware multicore algorithms. We observe here that balanced HBP algorithms can be mapped efficiently on to these models, as described below.

If the computation is a pure BP computation of size n, then we fork $\log p$ levels of recursion to obtain p tasks of size n/p which are mapped on to the p cores. There is a synchronization after the p cores complete this part of the computation, followed by $\log p$ supersteps to complete the computation for the top $\log p$ levels. (This can be further refined to obtain a better bound as a function of L and g, using the usual BSP methodology, if these parameters are used in the model).

For an HBP computation, we unravel recursive calls until the first level of recursion where the size of the subproblem becomes smaller than the cache size, and at least p parallel recursive tasks have been generated, where p is the number of cores if only private caches are considered, and is the number of parallel caches at this level of the cache hierarchy, otherwise. We then complete the entire computation in terms of subproblems of this size, each of which is computed cache efficiently on the cores. The larger BP computations within this sequence of computations are handled as described in the above paragraph. On a multi-BSP we perform this process of determining recursion level at each level of the cache hierarchy, starting with the top level. On a multicore with a private cache, executing bulk-synchronously, this computation can be made cache-oblivious by unfolding the recursion to the first level where the total number of subproblems become p or greater (rather than using the cache size to determine the level of recursion).

We note that multicore-oblivious versions of many of the HBP algorithms we have presented are given in [11] for multi-level cache hierarchies, and some of these algorithms are quite similar to the corresponding algorithms in [20]; all of these algorithms operate along the lines of the method we have described above.
6 Conclusion

Our results are essentially optimal, subject to the algorithm with which we are starting, except for the modest overhead for the steals (the cost for s_P).

We have observed that many well-known algorithms are intrinsically HBP algorithms (and hence limited access). The one exception is Depth-n-MM, where we used the modified version given in [13] instead of the algorithm in [17] because the latter, being in-place, has n writes to each of the n^2 output locations, and hence is not limited access. The modified algorithm in [13] has the same work and cache complexity, but achieves limited access by using local variables, and BP computations for copying. The same approach can be used to obtain limited access versions of I-GEP and LCS [8]. In all cases, we retain the work and cache bounds, while losing the in-place property, though the additional space used is for local variables, and this space is re-used during the computation.

References

[1] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data locality of work stealing. *Theory of Computing Systems*, 35(3), 2002. Springer.

[2] L. Arge, M. T. Goodrich, M. Nelson, and N. Sitchinava. Fundamental parallel algorithms for private-cache chip multiprocessors. In *Proc. ACM SPAA*, pages 197–206, 2008.

[3] L. Arge, M. T. Goodrich, and N. Sitchinava. Parallel external-memory graph algorithms. Proc. IPDPS, 2010.

[4] D. Bailey. FFTs in external or hierarchical memory. *Journal of Supercomputing*, 4:23–35, 1990.

[5] G. Blelloch, R. Chowdhury, P. Gibbons, V. Ramachandran, S. Chen, and M. Kozuch. Provably good multicore cache performance for divide-and-conquer algorithms. In *Proc. SODA*, pages 501–510, 2008.

[6] G. Blelloch, P. Gibbons, and H. Simhadri. Low depth cache-oblivious algorithms. In *Proc. ACM SPAA*, pages 189–199, 2010.

[7] R. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work stealing. *JACM*, pages 720–748, 1999.

[8] R. Chowdhury and V. Ramachandran. Cache-oblivious dynamic programming. In *Proc. SODA*, pages 591–600, 2006.

[9] R. Chowdhury and V. Ramachandran. The cache-oblivious Gaussian Elimination Paradigm: Theoretical framework, parallelization and experimental evaluation. In *Theory of Computing Systems Special Issue for SPAA ’07*, 2010.

[10] R. A. Chowdhury and V. Ramachandran. Cache-efficient dynamic programming algorithms for multicores. In *Proc. SPAA*, pages 207–216, 2008.

[11] R. A. Chowdhury, F. Silvestri, B. Blakeley, and V. Ramachandran. Oblivious algorithms for multicores and network of processors. In *Proc IPDPS*, 2010.
[12] R. Cole and V. Ramachandran. Resource oblivious sorting on multicore. In Proc. ICALP, Track A, 2010.

[13] R. Cole and V. Ramachandran. Analysis of randomized work stealing with false sharing. Submitted, 2011.

[14] T. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Third Edition. MIT Press, 2009.

[15] R. Dorrigiv, A. Lopez-Ortiz, and A. Salinger. Brief announcement: Optimal speedup on a low-degree multi-core parallel architecture (LoPRAM). In ACM SPAA, pages 185–187, 2008.

[16] F. Fich, P. Ragde, and A. Wigderson. Simulations among concurrent-write PRAMs. Algorithmica, 3:43–51, 1988.

[17] M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms. In Proc. FOCS, pages 285–297, 1999.

[18] M. Frigo and V. Strumpen. The cache complexity of multithreaded cache oblivious algorithms. In Proc. of the 18th ACM Symposium on Parallelism in Algorithms and Architectures, pages 271–280, New York, NY, USA, 2006. ACM.

[19] J. L. Hennessy and D. A. Patterson. Computer Architecture, A Quantitative Approach, 4th Edition. Elsevier, 2007.

[20] L. G. Valiant. A bridging model for multi-core computing. Jour of Computer and System Sciences, 77:1:154–166, 2011.

[21] J. Vitter and M. Shriver. Algorithms for parallel memory II: Hierarchical multilevel memories. Algorithmica, 12:148–169, 1994.