FINITE-DIMENSIONAL SUBALGEBRAS
IN POLYNOMIAL LIE ALGEBRAS OF RANK ONE*

Let $W_n(K)$ be the Lie algebra of derivations of the polynomial algebra $K[[X]] := K[x_1, \ldots, x_n]$ over an algebraically closed field K of characteristic zero. A subalgebra $L \subseteq W_n(K)$ is called polynomial if it is a submodule of the $K[[X]]$-module $W_n(K)$. We prove that the centralizer of every nonzero element in L is abelian provided that L is of rank one. This fact allows to classify finite-dimensional subalgebras in polynomial Lie algebras of rank one.

Introduction. Let K be an algebraically closed field of characteristic zero and $K[[X]] := K[x_1, \ldots, x_n]$ the polynomial algebra over K. Recall that a derivation of $K[[X]]$ is a linear operator $D: K[[X]] \to K[[X]]$ such that

$$D(fg) = D(f)g + fD(g)$$

for all $f, g \in K[[X]]$.

Every derivation of the algebra $K[[X]]$ has the form

$$P_1 \frac{\partial}{\partial x_1} + \ldots + P_n \frac{\partial}{\partial x_n}$$

for some $P_1, \ldots, P_n \in K[[X]]$.

A derivation D may be extended to the derivation \overline{D} of the field of rational functions $K((X)) := K((x_1, \ldots, x_n))$ by

$$\overline{D} \left(\frac{f}{g} \right) := \frac{D(f)g - fD(g)}{g^2}.$$

The kernel S of \overline{D} is an algebraically closed subfield of $K((X))$, cf. [6] (Lemma 2.1).

Denote by $W_n(K)$ the Lie algebra of all derivations of $K[[X]]$ with respect to the standard commutator. The study of the structure of the Lie algebra $W_n(K)$ and of its subalgebras is an important problem appearing in various contexts (note that in case $K = \mathbb{R}$ or $K = \mathbb{C}$ we have the Lie algebra $W_n(K)$ of all vector fields with polynomial coefficients on \mathbb{R}^n or \mathbb{C}^n). Since $W_n(K)$ is a free $K[[X]]$-module (with the basis $\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}$), it is natural to consider the subalgebras $L \subseteq W_n(K)$ which are

*The first author was supported by the RFBR, grant 09-01-90416-Ukr-f-a. The third author was supported by the DFFD, grant P28.1/026.
Let L be a subalgebra of the Lie algebra $W_n(\mathbb{K})$. Assume that L is a submodule of rank one in the $\mathbb{K}[X]$-module $W_n(\mathbb{K})$. Then the centralizer of any nonzero element in L is abelian.
Proof. By Lemma 2, the subalgebra \(L \) has the form \(ID_0 \) for some reduced derivation \(D_0 \in W_n(\mathbb{K}) \). Denote by \(\overline{D_0} \) the extension of \(D_0 \) to the field \(\mathbb{K}(X) \), and let \(S \) be the kernel of \(\overline{D_0} \). Take any nonzero element \(fD_0 \in L, f \in I \), and consider its centralizer \(C = C_L(fD_0) \). For every nonzero element \(gD_0 \in C \) one has

\[
[fD_0, gD_0] = (fD_0(g) - gD_0(f))D_0 = 0.
\]

This implies \(D_0(f)g - fD_0(g) = 0 \), thus \(\overline{D_0}(f/g) = 0 \) and \(f/g \in S \). Take another nonzero element \(hD_0 \in C \). By the same arguments we get \(f/h \in S \). This shows that \(g/h \in S \). The latter condition is equivalent to \([gD_0, hD_0] = 0 \), so the subalgebra \(C \) is abelian.

Proposition 1 is proved.

The next proposition seems to be known, but having no precise reference we supply it with a complete proof. By \(Z(F) \) we denote the center of a Lie algebra \(F \).

Proposition 2. Let \(F \) be a finite-dimensional Lie algebra over an algebraically closed field \(\mathbb{K} \) of characteristic zero. Assume that the centralizers of all nonzero elements in \(F \) are abelian. Then either \(F \) is abelian, or \(F \cong A \ltimes \langle b \rangle \), where \(b \in F, A \subset F \) is an abelian ideal and \(Z(F) = 0 \), or \(F \cong \mathfrak{sl}_2(\mathbb{K}) \).

Proof. If the centralizers of all nonzero elements of a Lie algebra \(F \) are abelian, then the same property holds for every subalgebra of \(F \). Assume that \(F \) is not abelian and the centralizers of all elements of \(F \) are abelian. Then the center \(Z(F) \) is trivial.

Case 1. \(F \) is solvable. Then \(F \) contains a non-central one-dimensional ideal \(\langle a \rangle \), see [3] (II.4.1, Corollary B). Let \(A \) be the centralizer of \(a \) in \(F \). Clearly, \(A \) is an abelian ideal of codimension one in \(F \). Then \(F \cong A \ltimes \langle b \rangle \) for any \(b \in F \setminus A \).

Case 2. \(F \) is semisimple. Then \(F = F_1 \oplus \ldots \oplus F_k \) is the sum of simple ideals. Since the centralizer of every element \(x \in F_1 \) contains \(F_2 \oplus \ldots \oplus F_k \), we conclude that \(F \) is simple. Let \(H \) be a Cartan subalgebra in \(F \) and \(F = N_- \oplus H \oplus N_+ \) the Cartan decomposition with opposite maximal nilpotent subalgebras \(N_- \) and \(N_+ \) in \(F \), see [3] (II.8.1). Since the centralizer of every element in \(N_+ \) is abelian, either the subalgebra \(N_+ \) is abelian or \(Z(N_+) = 0 \). The second possibility is excluded because \(N_+ \) is nilpotent. Thus \(N_+ \) is abelian. This is the case if and only if the root system of the Lie algebra \(F \) has rank one, or, equivalently, \(F \cong \mathfrak{sl}_2(\mathbb{K}) \).

Case 3. \(F \) is neither solvable nor semisimple. Consider the Levi decomposition \(F = R \ltimes G \), where \(G \) is a maximal semisimple subalgebra and \(R \) is the radical of \(F \). By Case 2, the algebra \(G \) is isomorphic to \(\mathfrak{sl}_2(\mathbb{K}) \). Denote by \(A \) the ideal of \(R \) which coincides with \(R \) if \(R \) is abelian, and \(A = [R, R] \) otherwise. By Case 1, the ideal \(A \) is abelian. Consider the decomposition \(A = A_1 \oplus \ldots \oplus A_\ell \) into simple \(G \)-modules with respect to the adjoint representation. If \(\dim A_1 = 1 \), then the centralizer of a nonzero element in \(A_1 \) contains \(G \), a contradiction. Suppose that \(\dim A_1 \geq 2 \). Fix an \(\mathfrak{sl}_2 \)-triple \(\{e, h, f\} \) in \(G \) and take a highest vector \(x \in A_1 \) with respect to the Borel subalgebra \(\langle e, h \rangle \). Then \([e, x] = 0 \) and the centralizer \(C_F(x) \) contains the subalgebra \(A \ltimes \langle e \rangle \). The latter is not abelian because the adjoint action of the element \(e \) on \(A_1 \) is not trivial. This contradiction concludes the proof.

2. Main results. In this section we get a classification of finite-dimensional subalgebras in polynomial Lie algebras of rank one.

Theorem 1. Let \(L \) be a polynomial Lie algebra of rank one in \(W_n(\mathbb{K}) \), where \(\mathbb{K} \) is an algebraically closed field of characteristic zero, and \(F \subset L \) a finite-dimensional subalgebra. Then one of the following conditions holds:

\[\text{ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 5}\]
(1) F is abelian;
(2) $F \cong A \times \langle b \rangle$, where $A \subset F$ is an abelian ideal and $[b, a] = a$ for every $a \in A$;
(3) F is a three-dimensional simple Lie algebra, i.e., $F \cong sl_2(K)$.

Proof. By Propositions 1 and 2, every finite-dimensional subalgebra $F \subset L$ is either abelian, or has the form $A \times \langle b \rangle$, or is isomorphic to $sl_2(K)$. It remains to prove that in the second case we may find $b \in F$ with $[b, a] = a$ for every $a \in A$. Take any element b with $F = A \times \langle b \rangle$.

Let us prove that the operator $ad(b)$ is diagonalizable. Assuming the converse, let $a_0, a_1 \in A$ be nonzero elements with $[b, a_1] = \lambda a_1 + a_0$, $[b, a_0] = \lambda a_0$ for some $\lambda \in K$. By Lemma 2, the subalgebra L has the form ID_0 for some ideal $I \subseteq K[X]$ and some reduced derivation $D_0 \in W_n(K)$. Set $a_0 = fD_0$, $a_1 = gD_0$, $b = hD_0$, $f, g, h \in I$. The relations $[b, a_1] = \lambda a_1 + a_0$, $[b, a_0] = \lambda a_0$, and $[a_0, a_1] = 0$ are equivalent to

$$hD_0(g) - gD_0(h) = \lambda g + f, \quad hD_0(f) - fD_0(h) = \lambda f, \quad fD_0(g) - gD_0(f) = 0.$$

Multiplying the second relation by g, we get $hD_0(f) - fD_0(h) = \lambda f g$. This and the third relation imply $hD_0(g) - gD_0(h) = \lambda f g = hD_0(g) - gD_0(h) = \lambda g$. Together with the first relation it gives $f = 0$, a contradiction.

Now assume that $[b, a_1] = \lambda a_1$ and $[b, a_2] = \lambda a_2$ for some $\lambda_1, \lambda_2 \in K$. If $a_1 = fD_0$, $a_2 = gD_0$, $b = hD_0$, then we obtain the relations

$$hD_0(f) - fD_0(h) = \lambda_1 f, \quad hD_0(g) - gD_0(h) = \lambda_2 g, \quad fD_0(g) - gD_0(f) = 0.$$

Consequently,

$$ghD_0(f) = gf(\lambda_1 + D_0(h)) = fhD_0(g) = fg(\lambda_2 + D_0(h)).$$

This proves that $\lambda_1 = \lambda_2$ and hence $ad(b)$ is a scalar operator. Since F is not abelian, $ad(b)$ is nonzero and, multiplying by a suitable scalar, we may assume that $ad(b)$ is the identical operator.

Theorem 1 is proved.

Let us show that all three possibilities indicated in Theorem 1 are realizable. Take a derivation $D_0 \in W_n(K)$ such that there exist non-constant polynomials $p, q \in K[X]$ with $D_0(p) = 0$ and $D_0(q) = 1$. For example, one may take $D_0 = \frac{\partial}{\partial x_2} + P_1 \frac{\partial}{\partial x_3} + \ldots + P_n \frac{\partial}{\partial x_n}$ with arbitrary $P_1, \ldots, P_n \in K[X]$, and $p = x_1, q = x_2$.

The subalgebra $\langle D_0, pD_0, \ldots, p^{m-1}D_0 \rangle$ is an m-dimensional abelian subalgebra in $K[X]D_0$ for every positive integer m.

The subalgebra $A \times \langle b \rangle$ with $\dim A = m$ may be obtained by setting $A = \langle D_0, pD_0, \ldots, p^{m-1}D_0 \rangle$ and $b = -qD_0$. Indeed,

$$[-qD_0, f(p)D_0] = (-D_0(f(p)) + f(p)D_0(q))D_0 = f(p)D_0$$

for every $f(p) \in K[p]$.

Finally, the derivations $e = q^2D_0$, $h = 2qD_0$ and $f = -D_0$ form an sl_2-triple in $K[X]D_0$.

Remark 1. The structure of finite-dimensional subalgebras in a polynomial Lie algebra $L = ID_0$ depends on properties of the derivation D_0. In particular, if $\text{Ker}(D_0) = K$, then all abelian subalgebras in $K[X]D_0$ are one-dimensional.
Our last result concerns finite-dimensional subalgebras in the Lie algebra $W_1(\mathbb{K})$.

By Lemma 2, every polynomial Lie algebra in $W_1(\mathbb{K})$ has the form $L = q(x)\mathbb{K}[x] \frac{\partial}{\partial x}$
with some polynomial $q(x) \in \mathbb{K}[x]$.

Proposition 3. Let $L = q(x)\mathbb{K}[x] \frac{\partial}{\partial x}$ be a polynomial algebra.

1. If $\deg q(x) \geq 2$, then every finite dimensional Lie subalgebra in L is one-dimensional.

2. If $\deg q(x) = 1$, then every finite dimensional Lie subalgebra in L is either one-dimensional or coincides with $F_k = \left\langle q(x)\frac{\partial}{\partial x}, q(x)k \frac{\partial}{\partial x} \right\rangle$ for some $k \geq 2$.

3. If $q(x) = \text{const} \neq 0$ (i.e., $L = W_1(\mathbb{K})$), then every finite dimensional Lie subalgebra in L is either one-dimensional, or coincides with $F_{k,\beta} = \left\langle (x + \beta)^k \frac{\partial}{\partial x}, (x + \beta)^{k+1} \frac{\partial}{\partial x} \right\rangle$ for some $\beta \in \mathbb{K}$ and $k = 0, 2, 3, \ldots$, or is a three-dimensional subalgebra
$$\left\langle \frac{\partial}{\partial x}, (x + \beta) \frac{\partial}{\partial x}, (x + \beta)^2 \frac{\partial}{\partial x} \right\rangle,$$
where $\beta \in \mathbb{K}$.

Proof. Let us describe all two-dimensional subalgebras in $W_1(\mathbb{K})$. Every such subalgebra has the form
$$\left\langle f(x) \frac{\partial}{\partial x}, g(x) \frac{\partial}{\partial x} \right\rangle \quad \text{with} \quad f(x), g(x) \in \mathbb{K}[x] \quad \text{and} \quad fg' - f'g = g. \quad (\ast)$$
If $\deg(f) \geq 2$, then looking at the highest terms of fg' and $f'g$, we get $\deg(f) = \deg(g)$. But the polynomials $(f + \lambda g, g)$ satisfy relation (\ast) for every $\lambda \in \mathbb{K}$, and thus we may assume that f is linear. Each root of g is also a root of f, so g is proportional to f^k for some $k = 0, 2, 3, \ldots$. This observation together with Theorem 1 and Remark 1 proves all the assertions.

Proposition 3 is proved.

If we consider obtained in Proposition 3 realizations up to automorphisms of the polynomial ring $\mathbb{K}[x]$, then in case $\deg q(x) = 1$ for the Lie algebra F_k one can take $q(x) = x$, and in case $q(x) = \text{const} \neq 0$ one can take $\beta = 0$.

1. Buchstaber V. M., Leykin D. V. Polynomial Lie algebras // Funk. Anal. Pril. – 2002. – 36, № 4. – S. 18 – 34 (in Russian) (English transl.: Funct. Anal. and Appl. – 2002. – 36, № 4. – P. 267 – 280).
2. González-López A. Kamran N., Oliver P. J. Lie algebras of vector fields in the real plane // Proc. London Math. Soc. Third Ser. – 1992. – 64, № 2. – P. 339 – 368.
3. Humphreys J. E. Introduction to Lie algebras and representation theory. – New York: Springer, 1972.
4. Jordan D. A. On the ideals of a Lie algebra of derivations // J. London Math. Soc. – 1986. – 33, № 1. – P. 33 – 39.
5. Lie S. Theorie der Transformationsgruppen. – Leipzig, 1888, 1890, 1893. – Vols 1–3.
6. Nowicki A., Nagata M. Rings of constants for k-derivations of $k[x_1, \ldots, x_n]$ // J. Math. Kyoto Univ. – 1988. – 28, № 1. – P. 111 – 118.

Received 18.05.10

ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 5