Nitric oxide is involved in appetitive but not aversive olfactory learning in the land mollusk *Limax valentianus*

Taiki Yabumoto, Fumihito Takanashi, Yutaka Kirino, and Satoshi Watanabe

Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan

The land slug *Limax* performs both aversive and appetitive olfactory learning, and we investigated neurotransmitters involved in each type of learning. Slugs were conditioned by presenting a vegetable juice (appetitive conditioning) or a mixture of vegetable juice and quinidine (aversive conditioning), and the latency to reach the juice became shorter (appetitive conditioning) or longer (aversive conditioning) after conditioning. L-NAME injected either before conditioning or testing blocked the reduction in latency in appetitive conditioning but had no significant effects in aversive conditioning. 5,7-dihydroxytryptamine had no significant effects in appetitive conditioning. These results suggest different mechanisms for appetitive and aversive learning.

The land mollusk *Limax* has a highly developed olfactory system and performs olfactory learning. Both aversive (Gelperin 1975; Sahley et al. 1981) and appetitive (Sahley et al. 1990) olfactory learning have been reported, and therefore, it is possible to compare these two forms of learning in *Limax*. Aversive learning occurs when an odor is associated with an aversive chemical or electrical shock, and appetitive learning occurs when an odor is associated with food. So far, aversive learning has been more extensively studied than appetitive learning. Our previous study showed using the serotonergic neurotoxin 5,7-dihydroxytryptamine (DHT), which reduces the serotonin content in the CNS to less than half, that serotonin is essential for aversive learning (Shirahata et al. 2006). However, it is not known whether appetitive learning also depends on serotonin, or whether it requires other neurotransmitters.

Nitric oxide (NO) synthase is abundant in the procerebrum (PC) (Fujie et al. 2002, 2005), which is a region of the cerebral ganglion essential for olfactory learning (Kasai et al. 2006). NO applied extrinsically modulates the rhythmic activity of the local field potential (LFP) of the PC (Gelperin 1994; Gelperin et al. 2000). These observations suggest significance of NO in olfactory processing in *Limax*. In *Helix pomatia*, a related land mollusk, appetitive learning is blocked by N^ω^-nitro-L-arginine methyl ester (L-NAME), a blocker of NO synthase. In the present work, we examine using L-NAME whether NO is involved in appetitive and aversive learning in *Limax*. We examine dependence of the acquisition and retrieval stages on NO separately. We also examine dependence of appetitive learning on serotonin using DHT. *Limax valentianus* 2–4 mo old from the laboratory colony were used. The slugs were freely fed with a mixture of rat chow (Oriental Yeast), wheat starch (Wako Pure Chemical), and mixed vitamins (Oriental Yeast), until 5 d before the experiment. The slugs were used. The slugs were freely fed with a mixture of rat chow (Oriental Yeast), wheat starch (Wako Pure Chemical), and mixed vitamins (Oriental Yeast), until 5 d before the experiment. The slugs were kept under the light/dark cycle of 10 h/14 h, and the conditioned or testing were done within 4 h from the onset of the dark period. Five days before conditioning, the slugs were moved to individual boxes and allowed to ingest the juice, and it was then moved back in the box. The slugs that did not touch the juice within 30 sec were excluded from the experiment. In the testing session on the next day, the time to reach the juice was recorded again (post-conditioning latency) (Fig. 1A). All the slugs reached the juice within 150 sec in the testing session.

When the conditioned slugs were tested with the same stimulus as in the conditioning, the post-conditioning latency was significantly shorter than that previously shown to block the LFP oscillation in vitro (Shirahata et al. 2006). However, it is not known whether appetitive learning also depends on serotonin, or whether it requires other neurotransmitters.

7-18 mM) and injected into the body cavity at 100 μL/g body weight (final dose 0.5 mg/g body weight) 1 h before conditioning or testing. The same volume of saline was used for control. The saline solution contained (in mM) 70 NaCl, 2 KCl, 4.9 CaCl₂, 4.7 MgCl₂, 5 glucose, and 5 HEPES (pH 7.6). This concentration of L-NAME is identical with that used in a previous study (Sakura et al. 2007) and is higher than that used in behavioral study in *H. pomatia* (0.075 mg/g body weight) (Teyke 1996), but it is lower than that previously shown to block the LFP oscillation in vitro (20 mM) (Gelperin 1994), if L-NAME is assumed to be uniformly distributed in the body.

Injection of L-NAME 1 h before appetitive conditioning blocked the reduction in the post-conditioning latency, while injection of saline did not block the reduction (Fig. 2A). The pre-conditioning latencies were not significantly different be-
We next examined effects of DHT on appetitive learning. DHT (Sigma) was dissolved in saline at 10 mg/mL together with ascorbic acid as antioxidant (10 mg/mL) and injected into the body cavity at 200 µL/g body weight (final dose 2 mg/g body weight) 5 d before conditioning. The same volume of saline containing ascorbic acid was used for control. DHT gradually reduces the serotonin content in the CNS to -40% at 5 d after injection (Shirahata et al. 2006). Because of the slow time course of DHT effect, DHT may affect both conditioning and testing.

The slugs injected with DHT 5 d before appetitive conditioning showed a significant reduction in the post-conditioning latency (Fig. 2E). The pre-conditioning latencies were not significantly different between the control and DHT groups. These results suggest that appetitive learning is possible in DHT-injected slugs.

The amount of L-NAME remaining in the CNS after injection was evaluated by recording modulation of the LFP oscillation in the PC, which is presumably mediated by NO. Stimulation of the superior tentacle nerve evoked an increase in the LFP frequency (Fig. 3A), and this was blocked by L-NAME. Although it is not yet clear whether the modulation of the LFP is related to odor processing or learning, we utilized this phenomenon merely to monitor effects of L-NAME in the CNS. After the injection of L-NAME, we dissected out the brain at various times and recorded the LFP frequency changes induced by stimulation of the superior tentacle nerve, within 20 min from dissection. The LFP was recorded from the posterior surface of the PC with a glass electrode filled with saline, which was connected to an amplifier (MEZ-2100, Nihon-Kohden) with a band pass filter of 0.5–30 Hz. Electrical stimulation was applied to the superior tentacle nerve from a glass suction electrode connected to an isolator (SS-403J, Nihon Kohden). The stimulus was a single pulse of 0.5 V, 1-msec duration. The timing of the stimulus was adjusted at the center of the interval between LFP peaks. The details of the protocols for dissection and LFP recording are explained elsewhere (Watanabe et al. 2003). The normalized frequency change was calculated using the average of the four LFP intervals before the stimulus, T_{pre}, and the interval between the first LFP peak that occurred at least 0.5 sec after the stimulus and the next peak, T_{post}, as $(T_{pre}/T_{post} - 1) \times 100$.

In the preparations from untreated slugs, stimulation of the superior tentacle nerve transiently increased the frequency of the LFP oscillation of the PC (Fig. 3A). In the preparations from the slugs injected with L-NAME and dissected 1–5 h later, the frequency increase was significantly smaller than those from saline-injected controls. In contrast, the preparations made 23–25 h after injection of L-NAME showed similar levels of frequency increase as the controls (Fig. 3B). This indicates that CNS effects of L-NAME are absent at 24 h after injection, and suggests that L-NAME injected before conditioning does not affect the testing on the next day.

In the present work, we showed that L-NAME impairs both acquisition and retrieval of memory in appetitive learning but has no significant effect on aversive learning. In a previous report, L-NAME injected before testing impaired discrimination between asexively conditioned odors, but avoidance behavior to the conditioned odor was intact (Sakura et al. 2004). Also, motor responses recorded in an in vitro preparation from asexively conditioned slugs showed impaired odor selectivity in the presence of L-NAME, but the conditioned motor response itself was intact (Teyke and Gelperin 1999). Whether the effects of L-NAME on appetitive learning and discrimination have a common neural basis is an interesting question, which might be solved by future studies. The present results are partially consistent with a previous report in H. pomatia, in which L-NAME blocked the acquisition of food attraction learning (Teyke 1996). In H. pomatia, however, retrieval of memory was not blocked by L-NAME. It appears that L-NAME may selectively impair appetitive conditioning.
should be noted that the dose of L-NAME used in the present study was higher, and one possible explanation for the discrepancy is that the acquisition and retrieval processes have different sensitivity to L-NAME. Differences in the species and the learning tasks could also account for the different results.

The electrophysiological experiment suggested that NO is released in the PC following stimulation of the odor input pathway (Fig. 3). Although NO synthase is also present in other regions of the nervous system (Fujie et al. 2002), NO released in the PC is a strong candidate for a mechanism involved in olfactory learning. NO is abundant in olfactory centers of both invertebrates and vertebrates, and in some animals, NO is involved in olfactory learning. For example, NO is released in the antennal lobe of insects, the first order olfactory center (Collmann et al. 2004) and modulates neural activity (Wilson et al. 2007). In the honeybee, NO is involved in habituation (Muller and Hildebrandt 2002) and long-term memory in associative olfactory learning (Muller 1996). NO also plays an important role in olfactory learning in infant rats (Samama and Boehm 1999) and sheep (Kendrick et al. 1997). Besides olfactory learning, NO is involved in various types of learning, including appetitive learning for chemical stimuli in Lymnaea (Kemenes et al. 2002) and tactile (Robertson et al. 1994) and visual (Robertson et al. 1996) learning in the octopus. In Aplysia, NO is involved in memory on food (Katzoff et al. 2002). NO is also involved in other types of learning in vertebrates (Li et al. 1995; Kendrick et al. 1997; Qiang et al. 1997; Samama and Boehm 1999) and is known as essential for long-term changes in synaptic transmission (Schuman and Madison 1991; Daniel et al. 1993).

The effects of L-NAME in appetitive learning revealed in the present study are not due to its effect on locomotion, because the preconditioning latency was not different between saline and L-NAME groups (Fig. 2A,C). Also, since the animals injected with L-NAME avoided odors in aversive learning, the ability of the slug to sense odors is unlikely to be impaired.

Appetitive learning still occurred in animals injected with DHT. This suggests that, at least with the level of serotonin remaining after DHT administration, neither acquisition nor retrieval of appetitive memory is impaired. In contrast, DHT blocked the acquisition of aversive learning (Shirahata et al. 2006). Although DHT reduced the serotonin content in the central ganglia only partially, DHT may reduce serotonin in the synaptic regions more selectively and may severely impair serotonergic transmission (Gadotti et al. 1986). Therefore, the effects of L-NAME before learning is suggested to be either independent of serotonin or dependent on serotonin to a much lower extent than aversive learning. A previous report also showed absence of DHT effect on appetitive learning (Teyke 1996).

Differential contribution of neurotransmitter systems in appetitive and aversive learning has been known in insects; octopamine is involved in appetitive learning, whereas dopamine is involved in aversive learning (Farooqui et al. 2003; Schwarzel et al. 2003; Keene and Waddell 2005; Unoki et al. 2005; Kim et al. 2007). In some forms of learning, mechanisms of acquisition and retrieval of memory are independent. In appetitive conditioning in
Nitric oxide in appetitive olfactory learning

Figure 3. Effect of L-NNAME on the LFP oscillation recorded in isolated brain preparations made at various times after injection. (A) The superior tentacle nerve (STN) was stimulated with a suction electrode, and the LFP was recorded from the PC. An example of LFP in an untreated slug is shown. A single electrical pulse was applied to the superior tentacle nerve at the arrow (0.5 V, 1-msec duration). This induces an increase in the LFP frequency. The stimulus-induced frequency change is calculated from the post-stimulus interval (right horizontal bar) and the average of the four prestimulus intervals (left horizontal bar). (B) Normalized frequency changes in preparations made at various times after injection of saline or L-NNAME. Up to 5 h after injection, the frequency increase was significantly diminished by L-NNAME, whereas at 23–25 h, there was no difference between the saline and L-NNAME groups. The numbers above the bars indicate the number of samples. Student’s t-test, *P < 0.05.

Linax, DHT blocked the acquisition of memory but did not block retrieval (Shirahata et al. 2006). In other acquisition or retrieval seem to share the same mechanisms. In the proboscis extension learning in the honeybee, for example, octopamine is necessary for both acquisition and retrieval (Farooqui et al. 2003), and the same reinforcing neuron is activated during both processes (Hammer 1993). The function of NO in the appetitive learning of Linax can be another example of common mechanisms for acquisition and retrieval.

Acknowledgments

This work was supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan (No. 17790032).

References

Collmann, C., Carlson, M.A., Hansson, B.S., and Nighorn, A. 2004. Odorant-evoked nitric oxide signals in the antennal lobe of Manduca sexta. J. Neurosci. 24: 6070–6077.
Daniel, H., Hemart, N., Jaillard, D., and Crepel, F. 1993. Long-term depression requires nitric oxide and guanosine 3'-5' cyclic monophosphate production in rat cerebellar Purkinje cells. Eur. J. Neurosci. 5: 1079–1082.
Farooqui, T., Robinson, K., Vaessen, H., and Smith, B.H. 2003. Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. J. Neurosci. 23: 5370–5380.
Fujie, S., Aonuma, H., Ito, I., Gelperin, A., and Ito, E. 2002. The nitric oxide/cyclic GMP pathway in the olfactory processing system of the terrestrial slug Limax marginatus. Zool. Sci. 19: 15–26.
Fujie, S., Yamamoto, T., Murakami, J., Hatakeyama, D., Shiga, H., Suzuki, N., and Ito, E. 2005. Nitric oxide synthase and soluble guanylyl cyclase underlying the modulation of electrical oscillations in a central olfactory organ. J. Neurobiol. 62: 14–30.
Gadotti, D., Baeze, L.G., Lukowiski, K., and Bulloch, A.G. 1986. Transient depletion of serotonin in the nervous system of Helisoma. J. Neurobiol. 17: 431–447.
Gelperin, A. 1975. Rapid food-aversion learning by a terrestrial mollusk. Science 189: 567–570.
Gelperin, A. 1994. Nitric oxide mediates network oscillations of olfactory interneurons in a terrestrial mollusc. Nature 369: 61–63.
Gelperin, A., Flores, J., Raccuia-Behling, F., and Cooke, I.R. 2000. Nitric oxide and carbon monoxide modulate oscillations of olfactory interneurons in a terrestrial mollusk. J. Neurophysiol. 83: 116–127.
Hammer, M. 1993. An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366: 59–63.
Kasai, Y., Watanabe, S., Kirino, Y., and Matsuo, R. 2006. The proceere is necessary for odor-aversion learning in the terrestrial slug Limax palustris. Learn. Mem. 13: 482–488.
Katzoff, A., Ben-Gedalya, T., and Sussewein, A.J. 2002. Nitric oxide is necessary for multiple memory processes after learning that a food is inedible in Aplysia. J. Neurosci. 22: 9581–9594.
Keene, A.C. and Waddell, S. 2005. Drosophila memory: Dopamine signals punishment? Curr. Biol. 15: R932–R934.
Kemones, J., Kemenes, G., Andrew, R.J., Benjamin, R.P.R., and O’Shea, M. 2002. Critical time window for NO-cGMP-dependent long-term memory formation after one-trial appetitive conditioning. J. Neurosci. 22: 1414–1425.
Kendrick, K.M., Guevara-Guzman, R., Zorrilla, J., Hinton, M.R., Broad, K.D., Mimmac, M., and Okhura, S. 1997. Formation of olfactory memories mediated by nitric oxide. Nature 388: 670–674.
Kim, Y.C., Lee, H.G., and Han, K.A. 2007. D1 dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila. J. Neurosci. 27: 7640–7647.
Li, J., Smith, S.S., and McElligott, J.G. 1995. Cerebellar nitric oxide is necessary for vestibulo-ocular reflex (VOR) adaptation in a sensorimotor model of learning. J. Neurophysiol. 74: 489–494.
Muller, U. 1996. Inhibition of nitric oxide synthase impairs a distinct form of long-term memory in the honeybee, Apis mellifera. Neuron 16: 541–549.
Muller, U. and Hildebrand, H. 2002. Nitric oxide/cGMP-mediated protein kinase A activation in the antennal lobes plays an important role in appetitive reflex habituation in the honeybee. J. Neurosci. 22: 8739–8747.
Qiang, M., Chen, Y.C., Wang, R., Wu, F.M., and Qiao, J.T. 1997. Nitric oxide is involved in the formation of learning and memory in rats: studies using passive avoidance response and Morris water maze task. Behav. Pharmacol. 8: 183–187.
Robertson, J.D., Bonaventura, J., and Kohm, A.P. 1994. Nitric oxide is required for tactile learning in Octopus vulgaris. Proc. Biol. Sci. 256: 269–273.
Robertson, J.D., Bonaventura, J., Kohm, A., and Hiscat, M. 1996. Nitric oxide is necessary for visual learning in Octopus vulgaris. Proc. Biol. Sci. 263: 1739–1743.
Saheley, C., Gelperin, A., and Rudy, J.W. 1981. One-trial associative learning modifies food odor preferences of a terrestrial mollusc. Proc. Natl. Acad. Sci. 78: 640–642.
Saheley, C.L., Martin, K.A., and Gelperin, A. 1990. Analysis of associative learning in the terrestrial mollusc Limax maximus. II. Appetitive learning. J. Comp. Physiol. 147: 339–345.
Sakura, M., Kabetani, M., Watanabe, S., and Kirino, Y. 2004. Impairment of olfactory discrimination by blockade of nitric oxide activity in the terrestrial slug Limax palustris. Neurosci. Lett. 370: 257–261.
Samana, B. and Bochm, N. 1999. Inhibition of nitric oxide synthase impairs early appetitive associative learning in newborn rats. Neurobiol. Learn. Mem. 71: 219–231.
Schuman, E.M. and Madison, D.V. 1991. A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 254: 1503–1506.
Schwarzel, M., Monastriotiri, M., Scholz, H., Friggi-Gedlin, F., Birman, S., and Heisenberg, M. 2003. Dopamine and octopamine differentiate between appetive and appetitive olfactory memories in Drosophila. J. Neurosci. 23: 10495–10502.
Shirahata, T., Tsunoda, M., and Heisenberg, M. 2006. Depletion of serotonin selectively impairs short-term memory without affecting long-term memory in odor learning in the terrestrial slug Limax palustris. Learn. Mem. 13: 267–270.
Teyke, T. 1996. Nitric oxide, but not serotonin, is involved in acquisition of food-atraction conditioning in the snail Helix pomatia. Neurosci. Lett. 206: 29–32.
Teyke, T. and Gelperin, A. 1999. Olfactory oscillations augment odor discrimination not odor identification by Limax CNS. Neuroreport 10: 1061–1068.
Uno, A., Tsuchiya, T., and Muzumami, M. 2005. Participation of octopaminergic reward system and dopaminergic punishment system in insect olfactory learning revealed by pharmacological study. Eur. J. Neurosci. 22: 1409–1416.
Watanabe, S., Inoue, T., and Kirino, Y. 2003. Contribution of excitatory chloride conductance in the determination of the direction of traveling waves in an olfactory center. J. Neurosci. 23: 2932–2938.
Wilson, C.H., Christensen, T.A., and Nighorn, A.J. 2007. Inhibition of nitric oxide and soluble guanylyl cyclase signaling affects olfactory neuron activity in the moth, Manduca sexta. J. Comp. Physiol. A 193: 715–728.

Received January 28, 2008; accepted in revised form February 1, 2008.
Nitric oxide is involved in appetitive but not aversive olfactory learning in the land mollusk Limax valentianus

Taiki Yabumoto, Fumihito Takanashi, Yutaka Kirino, et al.

Learn. Mem. 2008, 15:
Access the most recent version at doi:10.1101/lm.936508

References
This article cites 34 articles, 15 of which can be accessed free at:
http://learnmem.cshlp.org/content/15/4/229.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.