Quadrupole and octupole softness in the $N = Z$ nucleus 64Ge

Kazumari Kaneko,1 Munetake Hasegawa,2 and Takahiro Mizusaki3

1Department of Physics, Kyushu Sangyo University, Matsukadai, Fukuoka 813-8503, Japan
2Laboratory of Physics, Fukuoka Dental College, Fukuoka 814-0193, Japan
3Institute of Natural Sciences, Senshu University, Higashimita, Tama, Kawasaki, Kanagawa, 214-8580, Japan

(Received November 8, 2018)

Quadrupole and octupole softness in the even-even $N = Z$ nucleus 64Ge is studied on the spherical shell model basis. We carry out the shell model calculation using the pairing plus quadrupole (QQ) plus octupole (OO) interaction with monopole corrections. It is shown that 64Ge is an unstable nucleus with respect to both the quadrupole and octupole deformations, which is consistent with the previous discussions predicting the γ softness and octupole instability. It is demonstrated that proton-neutron part Q_pQ_n of the QQ interaction is important for the γ softness or triaxiality.

PACS: 21.60.Cs, 21.60.Ev, 23.20.-g, 27.50.+e

Heavy $N = Z$ nuclei with $A = 56 \sim 80$ show strong shape variations such as prolate shape, oblate shape, prolate-oblate shape coexistence, and γ softness, depending on the mass number. These nuclei lie in transitional regions from spherical shape (e.g., 56Ni$^{\text{I}}$) to strong prolate deformation (e.g., 80Zr$^{\text{I}}$). The $N = Z = 32$ nucleus 64Ge32 is known to be a typical example showing γ-soft structure in $N = Z$ proton-rich unstable nucleus, according to theoretical calculations based on the mean-field approximation. The calculations predict probable γ instability in the ground state, and triaxiality in the excited states, i.e., the quadrupole deformation $\beta_2 \sim 0.22$ and $\gamma \sim 27^\circ$.

Deformed shell model calculations predict that the nucleon numbers 34, 56, 88, and 134 are strongly octupole driving in nuclei where the Fermi surface lies near single-particle levels with $\Delta l = \Delta j = 3$. We can expect that nuclei with $N = Z$ near the octupole magic numbers exhibit an especially strong octupole effect, because neutrons and protons contribute cooperatively. This does not necessarily mean a permanent octupole deformation. The level pattern of negative-parity states in 64Ge is not a rotational one, and the sequence of the $3^-\sim 7^-$ levels is irregularly spaced. Thus, 64Ge is an $N = Z$ proton-rich unstable nucleus manifesting a soft structure with respect to quadrupole and octupole deformations, from experimental and theoretical evidences. In fact, inclusion of the γ deformation improves the $E2$ transitions of negative-parity states in 68Ge.

The spherical shell model approach could be more appropriate for describing various aspects of nuclear structure. It is desirable to add the $g_{9/2}$ orbital to the full pf shell ($f_{7/2}, p_{3/2}, f_{5/2}, p_{1/2}$) for studying both positive and negative parity states of 64Ge, but the shell model calculation in this space is impractical at present because of the huge dimension. So we restrict the model space to the $p_{3/2}, f_{5/2}, p_{1/2}$, and $g_{9/2}$ orbitals, and carry out the shell model calculation with the recently developed shell model code. There are few effective shell-model interactions in this model space.

Recently, an extended $P + QQ$ force was applied to the $f_{7/2}$-shell nuclei. This interaction is schematic but works remarkably well. The conventional $P + QQ$ force was first suggested by Bohr and Mottelson, and widely used by Kisslinger and Sorensen, Baranger and Kumar, and many authors. Unlike the original application to heavy nuclei, the extended $P + QQ$ interaction is isospin-invariant. In this Rapid Communication, we introduce the octupole-octupole (OO) force into the extended $P + QQ$ force model to describe negative-parity states. This interaction is quite useful for studying not only the γ softness but also the octupole instability mentioned above. The QQ and OO forces are the long-range and the deformation-driving part of the effective interaction. Contrary to this, the monopole pairing force can be associated with short-range force, and restores the spherical shape. Thus, the competitions among the QQ, OO, and monopole pairing forces are expected to be important for shape transitions of quadrupole and octupole deformations in 64Ge. The $P + QQ$ force with the OO interaction will be suitable for studying the monopole pairing, quadrupole, and octupole correlations. Recently, the fp shell model calculation with the FPD6 interaction has been performed in 64Ge as a test case for quantum Monte Carlo diagonalization (QMC) method. The projected shell model calculation has been performed in 64Ge modifying the standard Nilsson parameters.

Since protons and neutrons in the $N = Z$ nuclei occupy the same levels, one would expect strong proton-neutron ($p-n$) interactions. In particular, one of the most interesting questions in the study of nuclear structure is what role the $p-n$ interaction play in the nuclear deformation. The long-range $p-n$ isoscalar ($T = 0$) interaction between valence nucleons has been suggested to be a source of the nuclear deformation. On the other hand, the isoscalar QQ interaction used in the $P + QQ$ force model has very strong $p-n$ component Q_pQ_n, which gives rise to nuclear quadrupole deformation. The Q_pQ_n interaction is expected to be important for quadrupole collectivity in 64Ge. The rotational
behavior of $T = 0$ and $T = 1$ bands in the odd-odd $N = Z$ nucleus 62Ga is recently studied using the spherical shell model and the cranked Nilsson-Strutinsky model \cite{8}.

In order to study the octupole correlation, let us introduce an isoscalar octupole interaction H_{OO} with the force strength χ_3 to the extended $P + QQ$ model \cite{8} with monopole corrections H_{m}^{corr}:

$$H = H_0 + H_{P0} + H_{P2} + H_{QQ} + H_{OO} + H_{m}^{\text{corr}} = \sum_\alpha \varepsilon_\alpha c_\alpha^\dagger c_\alpha - \sum J = 0,2 \sum_{M\kappa} P_{JM}^{\alpha} P_{JM\kappa} + \frac{1}{2} \sum_{M} \chi_2 : Q_{2M}^\dagger Q_{2M} : - \frac{1}{2} \sum_{M} \chi_3 : O_3^{\alpha} O_{3M} : + H_{m}^{\text{corr}}, $$

(1)

where ε_α is a single-particle energy, $P_{JMT\kappa}$ is the pair operator with angular momentum J and isospin T, and Q_{2M} (O_{3M}) is the isoscalar quadrupole (octupole) operator. Due to the isospin-invariance, each term of the above Hamiltonian includes $p-n$ components, which play important roles in $N = Z$ nuclei.

We carried out shell model calculations in a model space restricted to the $2p_{3/2}, 1f_{5/2}, 2p_{1/2},$ and $1g_{9/2}$ orbitals (called pfg-shell henceforth). The model assumes a closed 56Ni$_{28}$ core and does not allow for core breaking. The neutron single-particle energies of $2p_{3/2}, 1f_{5/2}, 2p_{1/2},$ and $1g_{9/2}$ in this pfg-shell region can be read from the low-lying states of 57Ni, because the low-lying states of 57Ni are well characterized as pure single-particle levels when 56Ni is a closed shell core. The adopted single-particle energies relative to the $2p_{3/2}$ are $\varepsilon_{p3/2} = 0.0$, $\varepsilon_{f5/2} = 0.77$, $\varepsilon_{p1/2} = 1.11$, and $\varepsilon_{g9/2} = 3.70$ in MeV \cite{19}. Since the above Hamiltonian is assumed to be an isospin-invariant, the proton single-particle energies are taken as the same values as the neutron single-particle energies. The force strengths of the extended $P + QQ$ interaction are taken so as to reproduce the energy levels of low-lying states in 64Ge as follows:

$$g_0 = 0.426(42/A), \quad g_2 = 0.274(42/A)^{5/3},$$

$$\chi_2 = \chi_2^{0}(42/A)^{5/3}/b^2 = 0.567(42/A)^{5/3}/b^2,$$

$$\chi_3 = \chi_3^{0}(42/A)^2/b^6 = 0.275(42/A)^2/b^6,$$

(2)

where g_0, g_2, χ_2, and χ_3 are the monopole pairing, quadrupole-pairing, QQ, and OO force strengths, respectively. We adopt the harmonic-oscillator range parameter $b \sim A^{-1/3}$, the effective charge $e_p = 1.50e$ for proton and $e_n = 0.50e$ for neutron. We adjust phenomenologically force strengths of several monopole corrections so as to approximately reproduce the low-lying energy levels of 64Ge. These force strengths can also reproduce the low-lying energy levels of $^{58-66}$Ni, $^{60-64}$Zn, 66Ge, and 68Se.

In Fig. 1, calculated energy spectra are compared with experimental data for 64Ge. Two side bands are shown in addition to the ground-state band, i.e., positive-parity band on the band head 2^+ and negative-parity band on the band head 3^-. The calculations reproduce the observed three bands at good energies. The agreement between theory and experiment for the ground-state band up to spin $I = 8$ is good. The calculated $B(E2)$ value between the ground state and the first excited $I = 2^+$ state is $B(E2; 2^+ \rightarrow 0^-) = 245.3 \text{ e}^2\text{fm}^4$ corresponding to the quadrupole deformation $\beta \sim 0.2$. This value is consistent with the predictions of $\beta \sim 0.22$ by Möller and Nix \cite{20} and of $\beta \sim 0.22$ by Ennis et al. \cite{8}, and is comparable to the experimental data 12 W.u. of 66Ge nucleus.

The calculated occupation numbers of the $p_{3/2}$, $f_{5/2}$, $p_{1/2}$, and $g_{9/2}$ orbitals in the ground-state band are 3.6, 3.2, 0.6, and 0.6 on the average, respectively. More than four nucleons are excited from the unperturbed configuration $(p_{3/2})^8$. The full fp shell model calculation \cite{11} with the FPD6 interaction \cite{12} using the QMCD method has recently been performed for low-lying $I = 0^+, 2^+, 2^-$, and 4^+_1 states of positive parity in 64Ge. The FPD6 calculation predicts the deformation $\beta_2 \sim 0.28$ which is somewhat larger than the other predictions $\beta_2 \sim 0.22$, and gives the triaxiality $\gamma \sim 27^\circ$ which is consistent with the others predictions. The FPD6 interaction seems too strong to yield appropriate collectivity \cite{12}, due to its drawback \cite{13}.

This can be seen from the occupation numbers of $f_{7/2}, p_{3/2}, f_{5/2},$ and $p_{1/2}$ which are 15.1, 2.6, 5.5, and 0.8, respectively. Two more nucleons are jumping to the orbitals above $p_{1/2}$ as compared with our result. The stronger collectivity caused by the FPD6 interaction is probably attributed to the mixture of the three orbitals $(f_{7/2}, p_{3/2},$ and $f_{5/2})$ due to the large matrix elements between $(f_{7/2}, p_{3/2})$ and $f_{5/2}$. This is the reason

FIG. 1. Comparison of experimental and calculated energy levels of 64Ge. The arrows designate $E2$ transitions with the calculated $B(E2)$ values indicated by their widths.
why \(B(E2; 2_1^+ \rightarrow 0_1^+) = 5 \times 10^2 (e^2\text{fm}^4) \) obtained in Ref. [10] is almost twice that of ours 245.3 (e^2\text{fm}^4).

\[\frac{I}{2} = \frac{3}{2} \]

\[\frac{I}{2} = \frac{3}{2} \]
and its position lies in the deformed region but near the critical point. We can also see that the \(B(E2; 2_1^+ \rightarrow 2_1^+) \) value is large for \(\chi_2^0 > 0.45 \text{ MeV} \). This is consistent with the \(\gamma \) softness or the triaxiality discussed above.

This suggests that a phase transition occurs near the critical point \(\chi_{2\text{pn}}^0 \sim 0.35 \text{ MeV} \). The \(B(E2) \) value of the \(2_2^+ \rightarrow 2_1^+ \) transition also becomes large for \(\chi_2^0 > 0.35 \text{ MeV} \), which results in the expected triaxiality \(\gamma \sim 26^\circ \) when \(\chi_{2\text{pn}}^0 = 0.567 \text{ MeV} \). Thus, the \(Q_pQ_n \) interaction plays an important role for the \(\gamma \) softness or the triaxiality in \(^{64}\text{Ge} \).

Let us lastly study the negative-parity states as a function of the octupole force strength in Fig. 4. The other force strengths are fixed to those of Eq. (2). As mentioned above, the \(I = 3_{-1} \) state is very collective, and the excitation energy of the \(I = 3_{+1} \) state decreases as the octupole force strength increases until \(\chi_3^0 \sim 0.3 \text{ MeV} \), and increases as it goes beyond this point. The other negative-parity states have an insignificant dependence with respect to the force strength \(\chi_3^0 \) until the critical point, and increase for \(\chi_3^0 > 0.3 \). The ground-state energy is almost constant for \(0 < \chi_{3\text{cr}}^0 < 0.3 \text{ MeV} \) and decreases quickly when going beyond this critical point. It seems that a phase transition occurs near the critical force strength \(\chi_{3\text{cr}}^0 \sim 0.3 \text{ MeV} \). The octupole force strength \(\chi_{3\text{cr}}^0 = 0.275 \text{ MeV} \) adopted in Fig. 1 is very close to the critical point \(\chi_{3\text{cr}}^0 \). Thus, \(^{64}\text{Ge} \) seems to be near an octupole instability.

In summary, we have studied quadrupole and octupole correlations in the even-even \(N = Z \) nucleus \(^{64}\text{Ge} \) by means of spherical shell model calculations. The \(P + QQ \) force model including octupole interaction and monopole corrections, which is schematic but realistic, is adopted for describing the quadrupole and octupole correlations. It is shown that \(^{64}\text{Ge} \) is an unstable nucleus with respect to both the quadrupole and octupole deformations. The present results reveal that the \(p-n QQ \) interaction \((Q_pQ_n) \) induces an onset of quadrupole deformation and \(\gamma \) softness. It can be expected to play an important role in the prolate-oblate shape coexistence of the neighboring even-even \(N = Z \) nucleus \(^{66}\text{Se} \), which has been recently observed [22,23].

FIG. 4. Excitation energies of the negative-parity states (in the upper figure) and the \(0^+ \) ground-state energy (in the lower figure) as a function of the octupole force strength. The solid circles show the energies for the adopted force strength.

As mentioned earlier, it is very interesting to study roles of the proton-neutron part of the \(QQ \) force \((Q_pQ_n) \). We make the study by varying the strength of \(Q_pQ_n \) \((\chi_{2\text{pn}}^0) \) and keeping the other force strengths of Eq. (2). This is effective in seeing the dependence of quadrupole deformation on \(Q_pQ_n \), though the Hamiltonian without the isovector type of \(QQ \) interaction stops being isospin invariant. Figure 3 shows the excitation energies of the first and second \(2^+ \) states and the \(B(E2) \) values as a function of \(\chi_{2\text{pn}}^0 \). The first \(I = 2_1^+ \) state is flat in energy with respect to the force strength \(\chi_{2\text{pn}}^0 \). However, the second excited \(I = 2_2^+ \) state strongly depends on \(\chi_{2\text{pn}}^0 \), and becomes lowest near \(\chi_{2\text{pn}}^0 \sim 0.35 \text{ MeV} \). In the isoscalar \(QQ \) force, \(\chi_{2\text{pn}}^0 \) is equal to the magnitude of proton-proton (\(pp \)) and neutron-neutron (\(nn \)) force strengths due to the isospin-invariance, i.e., \(\chi_{2\text{pn}}^0 = \chi_{2pp}^0 = \chi_{2nn}^0 \). The force strength \(\chi_{2\text{pn}}^0 = 0.567 \text{ MeV} \) which is adopted in Fig. 1 leads to the large \(B(E2) \) value \(B(E2; 2_1^+ \rightarrow 0_1^+) = 245.3 \text{ (e}^2\text{fm}^4 \) corresponding to the quadrupole deformation \(\beta \sim 0.2 \), as mentioned above. We can see, however, that \(B(E2; 2_1^+ \rightarrow 0_1^+) \) is very small for \(0 < \chi_{2\text{pn}}^0 < 0.35 \text{ MeV} \).

[1] D. Rudolph et al., Phys. Rev. Lett. 82, 3763 (1999).
[2] C. J. Lister et al., Phys. Rev. Lett. 59, 1270 (1987).
[3] P. J. Ennis, C. J. Lister, W. Gelletly, H. P. Price, B. J. Varley, P. A. Butler, T. Hoare, S. Cwoik, and W. Nazarewicz, Nucl. Phys. A535, 392 (1991).
[4] P. A. Butler and W. Nazarewicz, Rev. Mod. Phys. 68, 349 (1996).
[5] A. Petrovici and A. Faessler, Nucl. Phys. A395, 44 (1983).
[6] T. Mizusaki, RIKEN Accel. Prog. Rep. 33, 14 (2000)
[7] E. Caurier, F. Nowacki, A. Poves, J. Retamosa, Phys. Rev. Lett. 77, 1954 (1996); S. M. Vincent, et al., Phys. Rev. C 60, 064308 (1999).
[8] M. Hasegawa, K. Kaneko, and S. Tazaki, Nucl. Phys.
A674, 411 (2000); A688, 765 (2001).
[9] K. Kaneko, M. Hasegawa, and J. Y. Zhang, Phys. Rev. C 59, 740 (1999).
[10] M. Honma, T. Mizusaki, and T. Otsuka, Phys. Rev. Lett. 77, 3315 (1996).
[11] W. A. Richter, M. G. van der Merwe, R. E. Julies, and B. A. Brown, Nucl. Phys. A523, 325 (1991).
[12] M. Honma (private communication).
[13] M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, Phys. Rev. C 65, 061301(R) (2002).
[14] Y. Sun, J.-Ye Zhang, M. Guidry, J. Meng, and S. Im, Phys. Rev. C 65, 061301(R) (2002).
[15] A. L. Goodman, Adv. Nucl. Phys. 11, 263 (1979).
[16] P. Federman and S. Pittel, Phys. Rev. C 20, 820 (1979).
[17] J. Dobaczewski, W. Nazarewicz, J. Skalski, and T. Werner, Phys. Rev. Lett. 60, 2254 (1988).
[18] A. Juodagalvis and S. Aberg, Nucl. Phys. A683, 207 (2001).
[19] D. Rudolph et al., Eur. Phys. J. A 6, 377 (1999).
[20] P. Möller and J. R. Nix, At. Data Nucl. Data Tables 26, 165 (1981).
[21] A. S. Davydov and G. F. Filippov, Nucl. Phys. 8, 237 (1958).
[22] S. Skoda et al., Phys. Rev. C 58, R5 (1998).
[23] S. M. Fischer, D. P. Balamuth, P. A. Hausladen, C. J. Lister, M. P. Carpenter, D. Seweryniak, and J. Schwartz, Phys. Rev. Lett. 84, 4064 (2000).