A NOTE ON SYZYGIES AND NORMAL GENERATION FOR TRIGONAL CURVES

MICHAEL HOFF

Abstract. Let \(C \) be a trigonal curve of genus \(g \geq 5 \) and let \(T \) be the unique trigonal line bundle inducing a map \(\pi : C \rightarrow \mathbb{P}^1 \). This note provides a short and easy proof of the normal generation for the residual line bundle \(K_C \otimes T^{-1} \) for curves of genus \(g \geq 7 \). Moreover, we compute the minimal free resolution of the embedded curve \(C \subset \mathbb{P}(H^0(C, K_C \otimes T^{-n})^*) \) for the residual line bundle \(K_C \otimes T^{-n} \) for \(n \geq 1 \) and \(g \geq 3n + 4 \).

1. Introduction

In this short note we show how to determine the minimal free resolution of a trigonal curve lying on a rational normal surface scroll following [Sch86]. This was studied in a general context (arithmetic Cohen-Macaulay and non-arithmetic Cohen-Macaulay divisors on rational normal scrolls) by [Nag99] or [Par14], but we could not find any application for trigonal curves\(^1\). In particular, for a trigonal curve \(C \) of genus \(g \geq 5 \) with trigonal bundle \(T \) the shape of the minimal free resolution implies normal generation for line bundles of the form \(K_C \otimes T^{-n} \) (by our knowledge, the latter seems to be unknown for \(n = 1 \) and small genus or for \(n \geq 2 \)). We present a short and selfcontained proof (see also Remark 1.3).

We summarize known result about normal generation of line bundles on trigonal curves. Let \(C \) be a curve of genus \(g \). A line bundle \(L \) on \(C \) is said to be normally generated if \(L \) is very ample and the embedded curve \(C \subset \mathbb{P}(H^0(C, L)^*) \) is projectively normal (equivalently, the natural maps \(S^mH^0(C, L) \rightarrow H^0(C, L^m) \) are surjective for all \(m \geq 0 \)). In their seminal paper [GL86], Green and Lazarsfeld prove that a very ample line bundle \(L \) with \(h^1(C, L) \geq 2 \) of degree \(\deg(L) = 2g - 2 \cdot h^1(C, L) - c \) is normally generated.

Theorem. [GL86, Theorem 2] There exists an explicit constant \(N(c) \) such that if \(C \) is a curve of Clifford index \(c \) and of genus \(g > N(c) \), then every very ample line bundle \(L \) with \(h^1(C, L) \geq 2 \) of degree \(\deg(L) = 2g - 2 \cdot h^1(C, L) - c \) is normally generated.

\(^1\)A trigonal curve is a non-hyperelliptic smooth curve \(C \) of genus \(g \) with a line bundle \(T \) inducing a \(3:1 \) morphism to \(\mathbb{P}^1 \). For \(g \geq 5 \), the line bundle \(T \) is unique.

\(^2\)For \(g \geq 4 \) the Clifford index is defined as \(\min\{\deg L - 2 \cdot h^0(C, L) - 2 : L \in \text{Pic}(C), h^i(C, L) \geq 2, i = 0, 1\} \).
They furthermore showed the existence of non-special line bundles which are not normally generated, and classified not normally generated line bundles with $h^1(C, L) = 1$.

Example 1.1. For a trigonal curve C (⇒ Clifford index 1) let T be the trigonal bundle. We set $L = K_C \otimes T^{-1}$ in the above theorem. Then $K_C \otimes T^{-1}$ is normally generated if $g > N(1) = 16$. We could not find any further result in the literature concerning the normal generation of the line bundle $K_C \otimes T^{-1}$ for trigonal curves of genus $16 \geq g \geq 7$ (the low genus cases are trivial by a Bézout argument). We close the remaining gap in the genus with our theorem and furthermore describe the whole minimal free resolution of $C \subset \mathbb{P}(H^0(C, K_C \otimes T^{-1})^*)$.

Given a projective variety $Y \subset \mathbb{P}^n$, we can resolve the structure sheaf of Y by free $\mathcal{O}_{\mathbb{P}^n}$-modules, that is, a minimal free resolution

$$\mathcal{O}_Y \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_m \leftarrow 0,$$

where $F_i = \bigoplus_j \mathcal{O}_{\mathbb{P}^n}(-j)^{\beta_{ij}}$. We call the numbers β_{ij} the Betti numbers of Y. The shape of the minimal free resolution will be encoded in the so-called Betti table $(\beta_{ij})_{ij}$ (see [Eis95] for an introduction).

Our main theorem is the following (see also Theorem 3.4 for its generalization).

Theorem 1.2. Let C be a trigonal curve of genus $g \geq 7$ and let T be the unique trigonal bundle inducing the map $\pi : C \to \mathbb{P}^3$. The Betti table of a minimal free resolution of $C \subset \mathbb{P}(H^0(C, K_C \otimes T^{-1})^*) = \mathbb{P}^{g-3}$ has the following shape

$$
\begin{array}{cccccc}
0 & 1 & \cdots & g-6 & g-5 & g-4 \\
0 & 1 & 0 & \cdots & 0 & 0 & 0 \\
1 & 0 & \ast & \cdots & \ast & \ast & 0 \\
2 & 0 & \ast & \cdots & 0 & 0 & 0 \\
3 & 0 & 0 & \cdots & 0 & \ast & \ast \\
\end{array}
$$

where \ast indicates nonzero entries. In particular, the embedded curve is projectively normal.

Remark 1.3. Given a trigonal curve C of genus g and a positive number n, we provide a sharp range for g and n where $K_C \otimes T^{-n}$ is very ample in Section 3.1. Hence the embedded curve $C \subset \mathbb{P}(H^0(C, K_C \otimes T^{-n})^*)$ is smooth. One can show that projective normality of $K_C \otimes T^{-n}$ follows already from the classical Castelnuovo lemma [Cas89].

We note that trigonal curves $C \subset \mathbb{P}(H^0(C, K_C \otimes T^{-n})^*)$ are extremal in the sense of Castelnuovo’s bound and refer to [ACGH85, Chapter III, §2, pp 120] for a detailed analysis. Furthermore the statement of Theorem 1.2 also follows from [Nag99, Theorem 2.4 and Corollary 2.5] using the smoothness assumption. We recall that we present a new self-contained proof where our method of the proof is exactly valid in the range for g and n where $K_C \otimes T^{-n}$ is very ample.

In [MS86], Martens and Schreyer classified non-special not normally generated line bundles on trigonal curves. They used the extrinsic geometry of the embedding $C \subset \mathbb{P}(H^0(C, L)^*)$ depending on the Maroni-invariant (see Section 2.1 for the definition).
Remark 1.4. In [LN13], Lange and Newstead determined all vector bundles on trigonal curves which compute all higher Clifford indices (see for the definition e.g., [LN10]). Their main theorem [LN13, Theorem 4.7] relies on the normal generation of $K_C \otimes T^{-1}$ and is thus true for all trigonal curves of genus $g \geq 5$ by our main theorem.

Remark 1.5. The nonzero Betti numbers in Theorem 1.2 are:

\[\beta_{j,j+1} = j \cdot \binom{g-4}{j+1}, \quad \text{for } 1 \leq j \leq g-5 \quad (\text{first row}) \]
\[\beta_{j,j+2} = (g - 5 - j) \cdot \binom{g-4}{j-1}, \quad \text{for } 1 \leq j \leq g-6 \quad (\text{second row}) \]
\[\beta_{j,j+3} = (j - g + 6) \cdot \binom{g-4}{j}, \quad \text{for } g-5 \leq j \leq g-4 \quad (\text{third row}) \]

These are exactly the numbers as in [Nag99, Theorem 2.4].

In Section 2 we present the proof of Theorem 1.2 and introduce the necessary background. In Section 3 we give a bound for the very ampleness of $K_C \otimes T^{-n}$ in terms of n and the genus of the trigonal curve C. At the end we proof the generalization of Theorem 1.2.

2. Proof of the main theorem

Our proof follows the strategy of [Sch86]:

- $C \subset \mathbb{P}(H^0(C, K_C \otimes T^{-n})^*)$ lies on a rational normal surface X swept out by T,
- resolve \mathcal{O}_C as an \mathcal{O}_X-module by direct sums of line bundles on X and take the minimal free resolution of each of these line bundles as $\mathcal{O}_{\mathbb{P}^g-3}$-modules,
- a mapping cone construction induces a minimal free resolution of \mathcal{O}_C as an $\mathcal{O}_{\mathbb{P}^g-3}$-module.

2.1. A rational normal surface associated to the trigonal bundle. Let C be a trigonal curve of genus $g \geq 5$. An important invariant associated to any trigonal curve - classically used to describe its Brill–Noether locus - is the so-called Maroni-invariant. It is defined as follows. Let $\pi : C \to \mathbb{P}^1$ be the map associated to the trigonal bundle T. The direct image $\pi_* K_C$ of the canonical bundle on C splits into a direct sum of line bundles

$$\pi_* K_C = \mathcal{O}_{\mathbb{P}^1}(a) \oplus \mathcal{O}_{\mathbb{P}^1}(m) \oplus \mathcal{O}_{\mathbb{P}^1}(-2)$$

where m is the Maroni-invariant. It is known that

\[0 < \frac{g - 4}{3} \leq m \leq \frac{g - 2}{2}, \tag{2.1} \]

and $a = g - 2 - m$. Furthermore, $m + 2$ and $a + 2$ describe the two jumps of the function $f : \mathbb{N} \to \{0, 1, 2\}$ with $f(n) := h^1(C, T^{n-1}) - h^1(C, T^n)$. Hence,

\[m + 2 = \min\{n \in \mathbb{N} : h^0(C, T^n) > n + 1\}. \tag{2.2} \]

Maroni [Mar46] introduced m as a geometrical invariant determining a smooth rational normal scroll which is swept out by the trigonal bundle in the canonical space $\mathbb{P}(H^0(C, K_C)^*)$.

We will explain this procedure for our purpose in the following setting. We assume that \(g \geq 6 \). Let \(C \subset \mathbb{P}^{g-3} := \mathbb{P}(H^0(C, K_C \otimes T^{-1})) \) be embedded by the very ample linear series \(|K_C \otimes T^{-1}| \) (see Section 3.1 and note that for \(g = 5 \), \(K_C \otimes T^{-1} \) maps \(C \) to a plane quintic with one node). We consider the scroll swept out by the unique pencil \(|T| \), that is, \(X = \bigcup_{D \in |T|} D \subset \mathbb{P}^{g-3} \)

where \(D \) is the linear span of the divisor \(D \) defined by the linear forms \(H^0(C, K_C \otimes T^{-1})(-D)) \rightarrow H^0(C, K_C \otimes T^{-1}) \).

Since \(H^0(C, K_C \otimes T^{-2}) \) is \((g - 4)\)-dimensional (by (2.1) and (2.2) for \(g \geq 6 \)), the linear span \(D \) is a line and \(X \) is a rational normal surface of degree \(g - 4 \). In particular, \(X \) is the image of a projective bundle \(\mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(e_1) \oplus \mathcal{O}_{\mathbb{P}^1}(e_2)) \) where \(e_1 = g - 3 - m \) and \(e_2 = m - 1 \geq 0 \). We will explain this fact in the next section.

2.2. Resolution of the curve on the rational normal surface. Let \(C \) be a trigonal curve with Maroni-invariant \(m \). Let \(X \) be the rational normal surface of degree \(g - 4 \) as above and let \(\pi : \mathcal{E} = \mathcal{O}_{\mathbb{P}^1}(e_1) \oplus \mathcal{O}_{\mathbb{P}^1}(e_2) \rightarrow \mathbb{P}^1 \) be the rank two bundle on \(\mathbb{P}^1 \) with \(e_1 = g - 3 - m \) and \(e_2 = m - 1 \). By [Har81], if \(e_1, e_2 > 0 \), then \(j : \mathbb{P}(\mathcal{E}) \rightarrow X \subset \mathbb{P}(\mathcal{E}, \mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)) = \mathbb{P}^{g-3} \)

is an isomorphism. Otherwise it is a resolution of singularities. Since \(R^i j_* \mathcal{O}_{\mathbb{P}(\mathcal{E})} = 0 \), it is convenient to consider \(\mathbb{P}(\mathcal{E}) \) instead of \(X \) for cohomological considerations. Note that this may happen for \(g = 6, 7 \) and \(m = 1 \).

It is furthermore known that the Picard group Pic(\(\mathbb{P}(\mathcal{E}) \)) is generated by the ruling \(R = [\pi^* \mathcal{O}_{\mathbb{P}^1}(1)] \) and the hyperplane class \(H = [j^* \mathcal{O}_{\mathbb{P}^{g-3}}(1)] \) with intersection products \(H^2 = e_1 + e_2 = g - 4 \), \(H \cdot R = 1 \), \(R^2 = 0 \).

Since \(C \subset X \) and \(T \) is base point free, we consider \(C \subset \mathbb{P}(\mathcal{E}) \) as a subvariety of the projectivised bundle. Note that \(\mathcal{O}_{\mathbb{P}(\mathcal{E})}(H) \otimes \mathcal{O}_C = K_C \otimes T^{-1} \) and \(\mathcal{O}_{\mathbb{P}(\mathcal{E})}(R) \otimes \mathcal{O}_C = T \).

Since the curve \(C \) is a codimension one subvariety of \(\mathbb{P}(\mathcal{E}) \), the ideal sheaf \(\mathcal{I}_{C/\mathbb{P}(\mathcal{E})} \) is generated by an element in \(H^0(\mathbb{P}(\mathcal{E}), \mathcal{O}_{\mathbb{P}(\mathcal{E})}(aH - bR)) \). Since the ruling on \(C \) has degree \(3 \) (\(a = 3 \)) and the degree of \(C \subset \mathbb{P}^{g-3} \) is \(\deg(C) = 2g - 5 \) (\(b = g - 7 \)), the resolution of \(\mathcal{O}_C \) as an \(\mathcal{O}_{\mathbb{P}(\mathcal{E})} \)-module is

\[
\begin{align*}
0 & \longrightarrow \mathcal{O}_C \longrightarrow \mathcal{O}_{\mathbb{P}(\mathcal{E})} \longrightarrow \mathcal{O}_{\mathbb{P}(\mathcal{E})}(-3H + (g - 7)R) \longrightarrow 0
\end{align*}
\]

In the next step we will resolve the line bundles in the above resolution in terms of \(\mathcal{O}_{\mathbb{P}^{g-3}} \)-modules. Therefore we recall the definition of Eagon–Northcott type resolutions whereby we restrict to our case.

We have a natural multiplication map \(H^0(\mathbb{P}(\mathcal{E}), \mathcal{O}_{\mathbb{P}(\mathcal{E})}(R)) \otimes H^0(\mathbb{P}(\mathcal{E}), \mathcal{O}_{\mathbb{P}(\mathcal{E})}(H - R)) \rightarrow H^0(\mathbb{P}(\mathcal{E}), \mathcal{O}_{\mathbb{P}(\mathcal{E})}(H)) \),
and the equations of the rational normal surface X are given by the 2×2-minors of the matrix Φ. We define
\[
F := H^0(\mathbb{P}(E), \mathcal{O}_{\mathbb{P}(E)}(H-R)) \otimes \mathcal{O}_{\mathbb{P}^3} = \mathcal{O}_{\mathbb{P}^3}^{-4},
\]
and regard Φ as a map $\Phi : F \to G$ (where we identify $G = G^*$).

For $b \geq -1$ we can resolve $\mathcal{O}_{\mathbb{P}(E)}(aH+bR)$ as an $\mathcal{O}_{\mathbb{P}^3}(a)$-module by an Eagon-Northcott type complex $\mathcal{C}^b \otimes \mathcal{O}_{\mathbb{P}^3}(a)$ where the j^{th} term of \mathcal{C}^b is defined as
\[
\mathcal{C}^b_j = \begin{cases}
\bigwedge^j F \otimes S_{b-j} \mathcal{O}_{\mathbb{P}^3}(-j) & \text{for } 0 \leq j \leq b \\
\bigwedge^{j+1} F \otimes D_{j-b-1} G^* \otimes \mathcal{O}_{\mathbb{P}^3}(-j-1) & \text{for } j \geq b+1
\end{cases}
\]
and whose differentials $\delta_j : \mathcal{C}^b_j \to \mathcal{C}^b_{j-1}$ are given by the multiplication by
\[
\Phi \in H^0(\mathbb{P}(E), F^* \otimes G) \quad \text{for } j \neq b+1
\]
\[
\bigwedge^2 \Phi \in H^0(\mathbb{P}(E), \lambda^2 F^* \otimes \lambda^2 G) \quad \text{for } j = b+1
\]
(see [BE75]). The resolution in (2.3) induces a double complex of Eagon–Northcott type resolutions
\[
(2.4) \quad \mathcal{C}^0 \leftarrow \mathcal{C}^{g-7} \otimes \mathcal{O}_{\mathbb{P}^3}(-3).
\]

2.3. Mapping cone construction and examples. Since all maps in the double complex in (2.4) are minimal, the mapping cone $[\mathcal{C}^0 \leftarrow \mathcal{C}^{g-7} \otimes \mathcal{O}_{\mathbb{P}^3}(-3)]$ of this double complex induces a minimal free resolution of $C \subset \mathbb{P}^3$ (see [Eis95]).

Example 2.1. For a trigonal curve of genus $g = 7$ the double complex is
\[
\begin{array}{cccc}
0 & \mathcal{O}_C & \mathcal{O}_{\mathbb{P}(E)} & \mathcal{O}_{\mathbb{P}(E)}(-3H) & 0 \\
& \mathcal{O}_{\mathbb{P}^4} & \mathcal{O}_{\mathbb{P}^4}(-3) & \\
& \bigwedge^2 F \otimes \mathcal{O}_{\mathbb{P}^4}(-2) & \bigwedge^2 F \otimes \mathcal{O}_{\mathbb{P}^4}(-5) & \\
& \bigwedge^3 F \otimes D G^* \otimes \mathcal{O}_{\mathbb{P}^4}(-3) & \bigwedge^3 F \otimes D G^* \otimes \mathcal{O}_{\mathbb{P}^4}(-6) & \\
0 & 0 & 0 & \\
\end{array}
\]

In the mapping cone construction we sum up the terms on the diagonal in the double complex (with the right differentials). This yields
\[
\begin{array}{cccc}
0 & \mathcal{O}_C & \mathcal{O}_{\mathbb{P}^4} & \mathcal{O}_{\mathbb{P}^4}(-2) & \mathcal{O}_{\mathbb{P}^4}(-3) & \mathcal{O}_{\mathbb{P}^4}(-5) & \mathcal{O}_{\mathbb{P}^4}(-6) & 0 \\
& \bigwedge^2 F \otimes \mathcal{O}_{\mathbb{P}^4}(-3) & \bigwedge^3 F \otimes D G^* \otimes \mathcal{O}_{\mathbb{P}^4}(-3) & \bigwedge^3 F \otimes D G^* \otimes \mathcal{O}_{\mathbb{P}^4}(-6) & 0, \\
\end{array}
\]
and the Betti table of the minimal free resolution of $C \subset \mathbb{P}^4$ is

0	1	2	3	
0	1	0	0	
1	0	3	2	
2	0	1	0	
3	0	0	3	2

For $g \geq 8$ the construction of Section 2.2 yields the following double complex

$$
\begin{array}{cccc}
0 & \rightarrow & \mathcal{O}_C & \rightarrow \mathcal{O}_{\mathbb{P}(E)} & \rightarrow \mathcal{O}_{\mathbb{P}(E)}(-3H + (g - 7)R) & \rightarrow 0 \\
\uparrow & & \uparrow & & \uparrow & \\
\mathcal{O}_{\mathbb{P}_g(-3)} & \rightarrow & S_{g-7}G \otimes \mathcal{O}_{\mathbb{P}_g(-3)}(-3) & \rightarrow & F \otimes S_{g-8}G \otimes \mathcal{O}_{\mathbb{P}_g(-3)}(-4) \\
\uparrow & & \uparrow & & \uparrow & \\
\bigwedge^2 F \otimes \mathcal{O}_{\mathbb{P}_g(-3)}(-2) & \rightarrow & F \otimes S_{g-8}G \otimes \mathcal{O}_{\mathbb{P}_g(-3)}(-4) \\
\uparrow & & \uparrow & & \uparrow & \\
\bigwedge^3 F \otimes DG^* \otimes \mathcal{O}_{\mathbb{P}_g(-3)}(-3) & \rightarrow & \vdots \\
\end{array}
$$

and the mapping cone induces the minimal free resolution

$$
0 \leftarrow \mathcal{O}_C \leftarrow \mathcal{O}_{\mathbb{P}_g(-3)} \leftarrow \bigwedge^2 F \otimes \mathcal{O}_{\mathbb{P}_g(-3)}(-2) \oplus S_{g-7}G \otimes \mathcal{O}_{\mathbb{P}_g(-3)}(-3) \leftarrow \bigwedge^3 F \otimes DG^* \otimes \mathcal{O}_{\mathbb{P}_g(-3)}(-3) \oplus F \otimes S_{g-8}G \otimes \mathcal{O}_{\mathbb{P}_g(-3)}(-5) \leftarrow \ldots
$$

The shape of the minimal free resolution of C as an $\mathcal{O}_{\mathbb{P}_g(-3)}$-module is given as stated in the main theorem. Indeed, we note that the second last map in $\mathcal{O}_{\mathbb{P}_g(-3)}(-3)$ is of degree 2 and occurs in the $(g-6)^{th}$ step in the mapping cone construction. The theorem follows.

Example 2.2. We end this section with a trigonal curve C of genus 6. The minimal free resolution of $C \subset \mathbb{P}^3 = \mathbb{P}(H^0(C, K_C \otimes T^{-1})^*)$ has the following shape

0	1	2	
0	1	0	
1	0	1	
2	0	0	
3	0	2	
4	0	0	1

We can still apply the above method to compute a minimal free resolution. Note that C has quartic generators induced by $\mathcal{O}_{\mathbb{P}^3}(-3)$.
3. Higher residuals of T with respect to the canonical bundle

In this section we extend Theorem 1.2 to trigonal curves of genus g embedded by line bundles of the form $K_C \otimes T^{-n}$ for $n \geq 1$ and $g \geq 3n + 4$. We fix the notation of this section. For a trigonal curve C of genus $g \geq 5$ let T be the unique trigonal bundle and let m be the Maroni-invariant (and $a = g - 2 - m$).

3.1. Very ampleness of $K_C \otimes T^{-n}$. We have the following two lemmata.

Lemma 3.1. For $n > m$ the line bundle $K_C \otimes T^{-n}$ does not separate points of the morphism $C \dashrightarrow \mathbb{P}^1$ induced by T. In particular, $K_C \otimes T^{-n}$ is not very ample.

Proof. We may assume that $n = m + 1$ since $H^0(C, K_C \otimes T^{-n_1}) \subset H^0(C, K_C \otimes T^{-n_2})$ for $n_1 \geq n_2$. Let $D = p + q + r \in |T|$ be a divisor. There is a short exact sequence

$$0 \to T^{m+1} \to T^{m+1}(D) \to T^{m+1}(D)|_D \to 0.$$

The long exact sequence

$$0 \to H^0(C, T^{m+1}) \to H^0(C, T^{m+2}) \to \Gamma(T^{m+1}(D)|_D) \to H^1(C, T^{m+1}) \to H^1(C, T^{m+2}) \to 0$$

is induced by the global section functor. Since $m + 2 = \min\{n \in \mathbb{N} : h^0(C, T^n) > n + 1\}$, the difference is

$$h^0(C, T^{m+2}) - h^0(C, T^{m+1}) \geq 2.$$

Hence, by the long exact sequence $h^1(C, T^{m+1}) - h^1(C, T^{m+2}) \leq 1$ and for $p, q \in \text{Supp}(D)$

$$h^0(C, K_C \otimes T^{-m-1}) - h^0(C, K_C \otimes T^{-m-1}(-p - q)) \leq h^0(C, K_C \otimes T^{-m-1}) - h^0(C, K_C \otimes T^{-m-2})$$

$$= h^1(C, T^{m+1}) - h^1(C, T^{m+2}) \leq 1.$$

Thus, we cannot find a section separating the point p and q. The lemma follows. □

Lemma 3.2. [Har77, V, Theorem 2.17] or [MS86, Lemma 1, p. 176] For $n < m$ the line bundle $K_C \otimes T^{-n}$ on C is very ample. The line bundle $K_C \otimes T^{-m}$ is generated by global sections and separates points of the morphism $C \dashrightarrow \mathbb{P}^1$ induced by T.

Remark 3.3. For $g \geq 3m + 3$ the line bundle $K_C \otimes T^{-m}$ is very ample since $h^0(C, T^m(p + q)) = h^0(C, T^m) = m + 1$. Indeed, by [Mar46] or [MS86, Proposition 1] the Brill–Noether locus $W^3_{3m+2}(C)$ is empty for $g \geq 3m + 3$ and that implies $h^0(C, T^m(p + q)) = m + 1$. This can only happen in few cases since $g \leq 3m + 4$ always holds by the inequalities (2.1). Furthermore, the bound $g \geq 3m + 3$ is satisfied for our assumptions in the next section.

3.2. The minimal free resolution of $C \subset \mathbb{P}(H^0(C, K_C \otimes T^{-n})^*)$. We fix an integer $n \geq 1$. In order to ensure that the linear system $K_C \otimes T^{-n}$ on a curve C of genus g is very ample, we have to assume that n is less than or equal to the minimal possible Maroni-invariant of a curve of genus g. By (2.1), this yields the bound $n \leq \frac{g - 4}{3}$, or equivalently

$$g \geq 3n + 4.$$
We use the same strategy as in the previous section to show that the curve \(C \) is projectively normal in \(\mathbb{P}(H^0(C, K_C \otimes T^{-n})) \). We have the following generalisation of Theorem 1.2.

Theorem 3.4. Let \(n \geq 1 \) be an integer. Let \(C \) be a trigonal curve of genus \(g \geq 3n + 4 \) and let \(T \) be the unique trigonal bundle. The Betti table of a minimal free resolution of \(C \subset \mathbb{P}(H^0(C, K_C \otimes T^{-n})) = \mathbb{P}^{g-2n-1} \) has the following shape

	0	1	\ldots	2	0						
0	1	0	\ldots	0	\ldots	0	\ldots	0	\ldots	0	0
1	0	*	\ldots	*	\ldots	*	\ldots	*	\ldots	0	0
2	0	*	\ldots	0	\ldots	0	\ldots	0	0	0	0
3	0	0	\ldots	0	\ldots	*	\ldots	*	\ldots	*	*

where * indicates nonzero entries. In particular, the embedded curve is projectively normal.

The nonzero Betti numbers are given as in [Nag99, Theorem 2.4] for \(c = g - 2n - 2 \) and \(p = g - 3n - 3 \).

Proof. By Section 3.1, let \(C \subset \mathbb{P}(H^0(C, K_C \otimes T^{-n})) =: \mathbb{P}^{g-2n-1} \) be a smooth embedded curve of genus \(g \) and of degree \(\deg(C) = 2g - 3n - 2 \). Note that \(g - 2n - 1 \geq n + 3 \geq 4 \).

Let

\[X = \bigcup_{D \in |T|} \overline{D} \subset \mathbb{P}^{g-2n-1} \]

be the rational normal scroll swept out by the trigonal bundle. Since \(n + 1 < m + 2 \),

\[h^0(C, K_C \otimes T^{-n}) - h^0(C, K_C \otimes T^{-n-1}) = 2 \]

by (2.2). Hence, \(X \) is a rational normal surface of degree \(g - 2n - 2 \). Let \(\mathcal{E} = \mathcal{O}_{\mathbb{P}^1}(g - 2 - m - n) \oplus \mathcal{O}_{\mathbb{P}^1}(m - n) \) be a rank 2 bundle. Then the rational normal surface \(X \) is the image of \(\mathbb{P}(\mathcal{E}) \) as in Section 2.2. Since \(T \) is base point free, we consider \(C \subset \mathbb{P}(\mathcal{E}) \). We denote again \(H \) and \(R \) the generators of the Picard group of \(\mathbb{P}(\mathcal{E}) \) as in Section 2.2 such that \(H^2 = g - 2n - 2, H.R = 1 \) and \(R^2 = 0 \) as well as \(\mathcal{O}_{\mathbb{P}(\mathcal{E})}(H) \otimes \mathcal{O}_C = K_C \otimes T^{-n} \) and \(\mathcal{O}_{\mathbb{P}(\mathcal{E})}(R) \otimes \mathcal{O}_C = T \).

The resolution of \(\mathcal{O}_C \) as an \(\mathcal{O}_{\mathbb{P}(\mathcal{E})} \)-module is

\[
\begin{array}{cccccc}
0 & \to & \mathcal{O}_C & \to & \mathcal{O}_{\mathbb{P}(\mathcal{E})} & \to & \mathcal{O}_{\mathbb{P}(\mathcal{E})}(-aH + bR) & \to & 0
\end{array}
\]

for integers \(a, b \) since \(C \) is a divisor on \(\mathbb{P}(\mathcal{E}) \). We have

\[
(aH - bR).R = 3 \quad \text{and} \quad (aH - bR).H = \deg(C) = 2g - 3n - 2.
\]

Hence, \(a = 3 \) and \(b = g - 3n - 4 \geq 0 \) and thus the \(\mathcal{O}_{\mathbb{P}(\mathcal{E})} \)-modules in

\[
\begin{array}{cccccc}
0 & \to & \mathcal{O}_C & \to & \mathcal{O}_{\mathbb{P}(\mathcal{E})} & \to & \mathcal{O}_{\mathbb{P}(\mathcal{E})}(-3H + (g - 3n - 4)R) & \to & 0
\end{array}
\]

can be resolved as \(\mathcal{O}_{\mathbb{P}^{g-2n-1}} \)-modules by Eagon–Northcott type resolutions (see Section 2.2). As in Section 2.3, the mapping cone of the induced double complex

\[
[\mathcal{E}^0 \leftarrow \mathcal{E}^{3-4} \otimes \mathcal{O}_{\mathbb{P}^{g-2n-1}}(-3)]
\]
is a minimal free resolution of $C \subset \mathbb{P}^{g-2n-1}$. The shape of its Betti table is given as in Theorem 3.4. Indeed, the length of \mathcal{C}^0 is $g-2n-3$ and the degree 2 syzygies in \mathcal{C}^{g-3n-4} are in the step $j = b + 1 = g - 3n - 3$. Since \mathcal{C}^{g-3n-4} is homologically shifted by 1 in the mapping cone construction, these syzygies appear in step $g - 3n - 2$ as stated in the theorem.

\[\square \]

References

[ACGH85] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris. Geometry of algebraic curves. Vol. I, volume 267 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1985.

[BE75] David A. Buchsbaum and David Eisenbud. Generic free resolutions and a family of generically perfect ideals. Adv. Math., 18:245–301, 1975.

[Cas89] G. Castelnuovo. Ricerche di geometria sulle curve algebriche. Torino Atti, 24:346–373, 1889.

[Eis95] David Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. With a view toward algebraic geometry.

[GL86] Mark Green and Robert Lazarsfeld. On the projective normality of complete linear series on an algebraic curve. Invent. Math., 83:73–90, 1986.

[Har77] R. Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.

[Har81] J. Harris. A bound on the geometric genus of projective varieties. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 8(1):35–68, 1981.

[LN10] Herbert Lange and Peter E. Newstead. Clifford indices for vector bundles on curves. In Affine flag manifolds and principal bundles, Trends Math., pages 165–202. Birkhäuser/Springer Basel AG, Basel, 2010.

[LN13] Herbert Lange and P. E. Newstead. Bundles computing Clifford indices on trigonal curves. Arch. Math., 101(1):21–31, 2013.

[Mar46] Arturo Maroni. Le serie lineari speciali sulle curve trigonali. Ann. Mat. Pura Appl. (4), 25:343–354, 1946.

[MS86] G. Martens and F.-O. Schreyer. Line bundles and syzygies of trigonal curves. Abh. Math. Semin. Univ. Hamb., 56:169–189, 1986.

[Nag99] Uwe Nagel. Arithmetically Buchsbaum divisors on varieties of minimal degree. Trans. Amer. Math. Soc., 351(11):4381–4409, 1999.

[Par14] Euisung Park. On syzygies of divisors on rational normal scrolls. Math. Nachr., 287(11-12):1383–1393, 2014.

[Sch86] Frank-Olaf Schreyer. Syzygies of canonical curves and special linear series. Math. Ann., 275:105–137, 1986.

Universität des Saarlandes, Campus E2 4, D-66123 Saarbrücken, Germany

Email address: hahn@math.uni-sb.de