How does the control logic influence the establishment of a data-driven chiller model?

Shunian Qiu¹, Zhenhai Li¹, Ruikai He¹, Jiajie Li² and Zhengwei Li¹, ³*

¹ School of Mechanical Engineering, Tongji University, Shanghai, Shanghai, 201804, China
² China Academy of Building Research, Beijing, Beijing, 100013, China
³ Key Laboratory of Performance Evolution and Control for Engineering Structures of Ministry of Education, Tongji University, Shanghai, Shanghai, 201804, China
*Corresponding author’s e-mail: zhengwei_li@tongji.edu.cn

Abstract. The modelling of chiller performance is critical for chiller optimal control, and fault detection and diagnosis (FDD). Different kinds of chiller models including sophisticated mechanistic models (white-box models), purely data-driven models (black-box models like artificial neural networks, ANN), and semi-physical models (grey-box models like empirical equations) have been proposed and tested. Due to the development of machine learning techniques, data-driven models have become more popular recently. The performance of the established data-driven model (accuracy, robustness, generalization) could significantly affect the model application. To enhance the model performance, a lot of studies have been carried out on investigating and modifying the model structure. However, the influence of the data quality on model training has not been sufficiently studied. When adopting historical data to train models, the data distribution is highly correlated to the control logic. So how does the control logic influence the establishment of data-driven chiller models by affecting the data distribution? In this study, experiments are conducted on an air-cooled chiller under model-free stochastic control to acquire rich and variable operational dataset; then the dataset is grouped into three corresponding to different chiller control logics. Finally, three models trained by three training datasets are evaluated, and the results suggest that when establishing data-driven chiller models, preliminary stochastic operation is cost-effective to acquire rich data for robust chiller modelling.

1. Introduction

In the operation and maintenance of building HVAC systems, the modelling of chiller performance is critical for model-based chiller optimal control and chiller fault detection and diagnosis (FDD). With an established chiller performance model, the chiller power and COP could be estimated with given input variables including chilled water temperature, cooling water (condenser water) temperature, and chiller cooling load.

In order to modelling the chiller performance, different kinds of chiller performance models were proposed, evaluated and validated. Chiller models could be categorized into three types: models based on physical mechanisms (white box models), pure data-driven models (black-box models like random forest, artificial neural networks), and semi-physical models which consider physical mechanisms in chillers’ working cycle but still require operational data to determine the model coefficients. Specifically, selected data-driven model frameworks are listed in Table 1.
The application of data-driven models typically includes three steps: (1) Collect equipment operation data (historical data or experimental data); (2) train a model framework with the collected data to determine the model coefficients; (3) utilize the established model in the online optimal control or FDD.

Table 1 Selected review of existing chiller models.

References	Output variable	Input variables	Model framework
[1-4]	$P_{chiller}$	PLR	Polynomial equation $P_{chiller} = \beta_0 + \beta_1 PLR + \beta_2 PLR^2 + \beta_3 PLR^3$
[5]	$P_{chiller}$	$CC, T_{chwr}, T_{air}, F_{chwr}$	$P_{chiller} = f(T_{chwr}, T_{air}, F_{chwr} PLR)$
[6, 7]	COP	T_{chws}, T_{cerr}, CL	Simplified Multivariate Polynomial model (SMP model) $COP = \beta_0 + \beta_1 CL + \beta_2 T_{chws} + \beta_3 T_{cerr} + \beta_4 CL^2 + \beta_5 CL \times T_{chws} + \beta_6 CL \times T_{cerr} + \beta_7 T_{chws} T_{cerr}$
[8]	COP	T_{chwr}, T_{cerr}, CL	Gordon-Ng model $COP = \beta_0 + \beta_1 CL + \beta_2 T_{chwr} + \beta_3 T_{cerr} + \beta_4 CL^2 + \beta_5 T_{chwr}^2 + \beta_6 T_{cerr}^2 + \beta_7 CL \times T_{chwr} + \beta_8 CL \times T_{cerr} + \beta_9 T_{chwr} T_{cerr}$
[8, 9]	COP	T_{chwr}, T_{cerr}, CL	Multivariate Polynomial model (MP model) $COP = \beta_0 + \beta_1 CL + \beta_2 T_{chwr} + \beta_3 T_{cerr} + \beta_4 CL^2 + \beta_5 T_{chwr}^2 + \beta_6 T_{cerr}^2 + \beta_7 CL \times T_{chwr} + \beta_8 CL \times T_{cerr} + \beta_9 T_{chwr} T_{cerr}$
[8]	$P_{chiller}$	CL	VT model $CL = log(P_{chiller}) = \beta_0 + \beta_1 CL + \beta_2 CL^2$

* $P_{chiller}$—Chiller input electrical power (kW)

* CL—Chiller cooling load (kW)

* PLR—Chiller partial load ratio

* COP—Chiller coefficient of performance

* F_{chwr}—Chilled water flowrate (m³/h)

* T_{chwr}—Chilled water return temperature (°C)

* T_{chws}—Chilled water supply temperature (°C)

* T_{air}—Outdoor air temperature (°C)

* T_{cerr}—Condenser water return temperature (°C)

It could be seen that all the selected model frameworks contain coefficients (β_i) to be determined, and typically they are determined with chiller operational data regression. In order to enhance the model accuracy, three approaches are available: improve model framework, improve the solver (optimizer) used in the regression procedure, improve the quality of the data for regression. Swider [9] compared the performance of different chiller model frameworks (linear model, multivariate polynomial model, bi-quadratic model, artificial neural network, etc.) with one operation data sample. Reddy and Anderson [8] analysed the influence of regression solvers (ordinary least squares, ridge) on the model estimation accuracy. They also investigated the model accuracy under different training/testing dataset (sequential dataset and extreme dataset).

When historical operational data is used for regression, the former control strategy of chillers could influence the historical data distribution and furtherly, the establishment of chiller models. Hence, in this study, it is investigated how the control logic influences the data-driven chiller modelling.

2. Workflow overview

The workflow of this study is illustrated in Figure 1:
1. Operation experiments are implemented to an air-cooled chiller under model-free stochastic control to acquire rich operational data including chilled water supply temperature \(T_{chws}\), chilled water return temperature \(T_{chwr}\), chilled water flowrate \(F_{chw}\), outdoor air temperature \(T_{outdoor}\), the setpoint of chilled water supply temperature \(T_{chws,set}\), and chiller electrical input power (P).

2. Pre-process the original data, group the pre-processed data with certain rules to generate datasets corresponding to different chiller control logics. For instance, selecting the data items where \(T_{chws,set}\) equals 8 ℃ generates the chiller operational dataset corresponding to a constant \(T_{chws}\) control logic (conventional chiller operation strategy in most buildings).

3. Train a common chiller model framework with generated datasets corresponding to different control logics.

4. Evaluate the performance of models trained with different datasets.

Figure 1 Workflow of this study.

3. **Experimental case study**

3.1. **Case system**

The air-conditioning system in a factory building in Jiangsu province is adopted as the experimental case system. The system is composed of two air source heat pumps, three identical chilled water pumps, three air handling units (AHUs) and one open chilled water tank. The characteristics of the equipment above are listed in Table 2. The layout of the system is illustrated in Figure 2. It should be noted that the open water tank is designated to cool the returned chilled water with outdoor air (free cooling), this design would cause the gap between system cooling load and chiller cooling load. In this study, when it comes to “cooling load”, the chiller cooling load is the studied variable.
Table 2 Characteristics of the case system.

Equipment	Number	Nominal characteristics
Screw air source heat pump	1 big, 1 small	Big: COP = 3.57, Cooling capacity = 785 kW, Input power = 220 kW, Variable speed, $T_{chws} = 7^\circ C$ (could be adjusted from 4 to 18 $^\circ C$)
		Small: COP = 3.50, Cooling capacity = 623 kW, Input power = 178 kW, Variable speed, $T_{chws} = 7^\circ C$ (could be adjusted from 4 to 18 $^\circ C$)
Chilled water pump	3	Power = 15 kW, Flowrate = 126 m³/h, Head = 25 m, Variable speed
Air handling unit	3	1#: Fan power = 30.15kW, Air flow volume = 52000 m³/h, Cooling capacity = 205.06 kW
		2#: Fan power = 30.43kW, Air flow volume = 42000 m³/h, Cooling capacity = 162.68 kW
		3#: Fan power = 66.40kW, Air flow volume = 95000 m³/h, Cooling capacity = 453.11 kW

3.2. Experiments on chiller operation

In this study, Chiller 2# is selected as the experimental chiller, and the operation of Chiller 2# is controlled over March to acquire data for the follow-up analysis. In most time of March 2021, the case system operated at cooling mode, and the cooling load is merely dealt by Chiller 2#. Chiller 1# only operated intermittently during 15:00 – 20:00 on March 2nd, and the whole system only operated at heating mode during 10:30 – 11:40 on March 4th.

Over March, a model-free control method based on reinforcement learning (RL) was implemented to control the chilled water supply temperature of Chiller 2# ($T_{chws,set}$) within (6, 7, 8, 9, 10 $^\circ C$). This model-free controller is intended to explore and learn from the real environment to achieve energy conservation, and in the beginning of the application (March), the control is still pretty stochastic, which could enhance the richness of the chiller operational data. Figure 3 shows the data flow of the model-free control implementation. Table 3 shows the format of the acquired operational data of Chiller 2#, the control interval and data collection interval are both 10 minutes.

Table 3 Example of the operational data under stochastic control.

Time	T_{chws} ($^\circ C$)	T_{chwr} ($^\circ C$)	On/Off status	Heating/Cooling mode (0: Cooling, 1: Heating)	$T_{chws,set}$ ($^\circ C$)	$T_{outdoor}$ ($^\circ C$)	Power (kW)	F_{chw} (m³/h)
2021-03-01 00:00:00	17.5	17.6	1	0 (Cooling)	10	12.7	0.952	70.75
4. Data processing

4.1. Data pre-processing
In this study, the data pre-processing procedure is pretty simple. Data items with chiller input power less than 20% of the nominal power are dropped since the compressor may not work at these time steps. After the data cleaning, 1132 data points remained. Then, chiller cooling load (CL) and chiller COP are calculated using equations (1) and (2) [10]:

\[
CL = C_p \times F_{chw} \times \rho \times (T_{chwr} - T_{chws}) \\
COP = \frac{CL}{P}
\]

where \(CL \) is the chiller cooling load (kW), \(C_p \) is the specific thermal capacity of water (kJ \cdot kg^{-1} \cdot K^{-1}), \(F_{chw} \) is the measured chilled water flow rate (m³/h), \(T_{chwr} \) is chilled water return temperature (°C), \(\rho \) is the water density (kg/m³), \(T_{chws} \) is chilled water supply temperature (°C), and \(P \) is the input electrical power of the chiller (kW).

Figure 4 indicates that the chilled water temperature distribution is pretty wide, which could validate the effectiveness of the model-free stochastic control in generating operational data of high richness.

4.2. Data grouping
In order to analyze how the control logic could influence the operational data distribution and chiller modelling, the pre-processed operational data is grouped into three training datasets corresponding to
three control logics: (1) constant T_{chws} control logic; (2) variable T_{chws} control logic based on outdoor temperature ($T_{chws, set}$ is adjusted by on-site operator to save chiller energy); (3) stochastic control logic intended for rich data and robust chiller modelling.

For the first case, the data items with $T_{chws, set}$ equaling to 8 °C (the median of the T_{chws} control range) are selected as the training dataset. The quantity of the training dataset is 231.

For Case 2#, data items where $T_{chws, set}$ and $T_{outdoor}$ are close to negative linear correlation are selected as the training dataset, the specific threshold is described with equation (3):

$$\{ T_{chws, set, ref} = -0.2 \times T_{outdoor} + 11 $$
$$-0.6 \leq T_{chws, set} - T_{chws, set, ref} \leq 0.6$$

where $T_{chws, set, ref}$ is the exact setpoint value of T_{chws} when T_{chws} is simply controlled based on ambient temperature; all data items matching equation (3) would be included in the training dataset of Case 2#. The selection of training data for Case 2# is illustrated in Figure 5, where blue data points covered by the green shadow are selected. The quantity of the training dataset is 235. Note, the threshold in equation (3) is set to 0.6 in order to guarantee the training set quantity of Case 2# is close to that of Case 1#; in doing so, the influence of data size on model training won’t affect the case comparison.

For Case 3#, 231 data items are randomly sampled from the preprocessed dataset as the training set.

And it should be noted that all three cases use the rest of the preprocessed dataset (apart from their training set, respectively) as the test set. The data quantity of each case is addressed in Table 4; the data distributions of each case are illustrated in Figure 6. Covariance matrices listed in Table 4 indicate that in all three cases, the variance of $T_{outdoor}$ is larger than that of T_{chws}, and the variance of T_{chwr} is the smallest. Moreover, variances of T_{chws} and T_{chwr} of Case 3# are evidently larger than those of the other two cases, which verifies the effect of model-free stochastic controller.

Case No.	$T_{chws, set}$	Training set quantity	Test set quantity	Dataset quantity	Covariance matrix $(T_{chwr}, T_{chws}, T_{outdoor})$
1	8	231	901	1132	$\begin{bmatrix} 5.23 & 3.20 & -0.35 \\ 3.20 & 2.73 & -0.54 \\ -0.35 & -0.54 & 22.45 \end{bmatrix}$
2	Vary with $T_{outdoor}$	235	897	1132	$\begin{bmatrix} 4.59 & 3.03 & 0.32 \\ 3.03 & 2.83 & -0.28 \\ 0.32 & -0.28 & 14.10 \end{bmatrix}$
3	Stochastic	231	901	1132	$\begin{bmatrix} 7.30 & 6.09 & -0.28 \\ 6.09 & 6.37 & 0.19 \\ -0.28 & 0.19 & 19.91 \end{bmatrix}$

Figure 5 Training dataset selection for Case 2#.
Figure 6 Data distributions of three cases.

4.3. Chiller model framework
As introduced in Section 2, the generated datasets will be used to train a common chiller model framework. In this study, a modified version of multivariate polynomial (MP) model is adopted as the framework. MP model is a classical data-driven chiller model which has been adopted in many studies [8, 9]. The original MP model (equation (4)) is designed for water-cooled chillers with T_{chwr}, T_{cwr}, and CL as input independent variables. Since the case chiller in this study is an air-cooled chiller, the MP model is modified before usage in this case study (equation (5)).

$$\begin{align*}
\text{COP} &= \beta_{0} + \beta_{1} CL + \beta_{2} T_{chwr} + \beta_{3} T_{cwr} + \beta_{4} CL^{2} + \beta_{5} T_{chwr}^{2} + \beta_{6} T_{cwr}^{2} \\
&+ \beta_{7} CL \times T_{chwr} + \beta_{8} CL \times T_{cwr} + \beta_{9} T_{chwr} T_{cwr} \\
\end{align*}
$$

(4)

$$\begin{align*}
\text{COP} &= \beta_{0} + \beta_{1} CL + \beta_{2} T_{chwr} + \beta_{3} T_{cwr} + \beta_{4} CL^{2} + \beta_{5} T_{chwr}^{2} + \beta_{6} T_{cwr}^{2} \\
&+ \beta_{7} CL \times T_{chwr} + \beta_{8} CL \times T_{cwr} + \beta_{9} T_{chwr} T_{cwr}
\end{align*}
$$

(5)

where T_{cwr} is the cooling water (condenser water) return temperature (°C), $T_{outdoor}$ is the outdoor air temperature (°C), and β_{i}s are coefficients determined with regression.

5. Results and discussion
The coefficient of variation of the root-mean-square error (CV(RMSE), equation (6)) is adopted as the error indicator herein to evaluate model accuracy. The accuracy of three trained models is illustrated in Figure 7 and Table 5.

$$CV(\text{RMSE}) = \sqrt{n \sum_{i=1}^{n} (y_{i} - \bar{y}_{i})^{2} / \sum_{i=1}^{n} y_{i}}$$

(6)

where n is the number of data points, y_{i} is the i^{th} measured COP value, and \bar{y}_{i} is the i^{th} estimated COP value.

Table 5 suggests that (1) the accuracy indicator on training set is always better than test set, especially on Case 1#; (2) the CV(RMSE) of Case 3# on test set is better than those of the other cases, which indicates that the generalization performance of Case 3# is the best of these three. Moreover, the operational data acquired from stochastic control is best for robust chiller modelling; (3) Although the quantity of the training dataset of Case 3# is only 20% of the total dataset, the accuracy of model estimation on test set is still acceptable, which infers that the operational data under stochastic control for a short term is already OK to establish data-driven multivariate polynomial chiller models. Figure 7 shows that when the richness of training dataset is limited (Case 1# and 2#), extreme outliers (i.e., the data points with estimated COP over 20) may occur during the application of the trained model, which infers unrobust generalization and application performance.
Table 5 Modelling accuracy results.

Case No.	CV(RMSE)	
	Training set	Test set
1	14.96%	31.88%
2	18.00%	43.41%
3	21.61%	21.01%

Figure 7 Modelling accuracy of three cases.

6. Conclusion
The influence of former control logic on operational data distribution and chiller modelling is analyzed in this study. An online experiment is conducted on a real chiller in the HVAC system of a factory, under the stochastic control of a model-free controller. The operational data of high richness is then grouped into three training datasets corresponding to three different chiller control logics. The model training and testing results indicate that compared to the constant T_{chws} control logic and $T_{outdoor}$-based T_{chws} control logic, the model-free controller could generate more variable training dataset, which could enhance the accuracy, generalization, and robustness of established data-driven chiller models. Moreover, the operational data of one week is already enough to train an MP chiller model with acceptable accuracy. Hence, when establishing data-driven chiller models, a preliminary operation under stochastic control is suggested to be conducted in advance to collect better data for model training; it’s cost-effective.
References

[1] Lee, W. and Lin, L. (2009) Optimal chiller loading by particle swarm algorithm for reducing energy consumption. Applied Thermal Engineering, 29(8): 1730-1734.

[2] Chang, Y.C., Lin, J.K., and Chuang, M.H. (2005) Optimal chiller loading by genetic algorithm for reducing energy consumption. Energy & Buildings, 37(2): 147-155.

[3] Ardakani, A.J., Ardakani, F.F., and Hosseinian, S.H. (2008) A novel approach for optimal chiller loading using particle swarm optimization. Energy & Buildings, 40(12): 2177-2187.

[4] Coelho, L.d.S., Klein, C.E., Sabat, S.L., and Mariani, V.C. (2014) Optimal chiller loading for energy conservation using a new differential cuckoo search approach. Energy, 75: 237-243.

[5] Beghi, A., Cecchinato, L., and Rampazzo, M. (2011) A multi-phase genetic algorithm for the efficient management of multi-chiller systems. Energy Conversion and Management, 52(3): 1650-1661.

[6] Cui, J. (2006) A robust fault detection and diagnosis strategy for centrifugal chillers. HVAC & R Research, 12(3): 407-428.

[7] Cui, J. and Wang, S. (2005) A model-based online fault detection and diagnosis strategy for centrifugal chiller systems. International Journal of Thermal Sciences, 44(10): 986-999.

[8] Reddy, T.A. and Andersen, K.K. (2002) An Evaluation of Classical Steady-State Off-Line Linear Parameter Estimation Methods Applied to Chiller Performance Data. HVAC&R Research, 8(1): 101-124.

[9] Swider, D.J. (2003) A comparison of empirically based steady-state models for vapor-compression liquid chillers. Applied Thermal Engineering, 23(5): 539-556.

[10] Li, Z., Huang, G., and Sun, Y. (2014) Stochastic chiller sequencing control. Energy & Buildings, 84(84): 203-213.