ON THE ASYMPTOTIC BEHAVIOR OF THE COLORED JONES POLYNOMIAL OF THE FIGURE-EIGHT KNOT ASSOCIATED WITH A REAL NUMBER

HITOSHI MURAKAMI AND ANH T. TRAN

Dedicated to the memory of Toshie Takata

Abstract. We study the asymptotic behavior of the \(N \)-dimensional colored Jones polynomial evaluated at \(\exp(\xi/N) \) for a real number \(\xi \) greater than a certain constant. We prove that, from the asymptotic behavior, we can extract the \(\text{SL}(2; \mathbb{C}) \) Chern–Simons invariant and the Reidemeister torsion twisted by the adjoint action both associated with a representation determined by \(\xi \).

1. Introduction

Let \(N \geq 2 \) be an integer.

In [10], R. Kashaev introduced a link invariant \(\langle K \rangle_N \) for a knot \(K \) in the three-sphere \(S^3 \) by using the so-called quantum dilogarithm. In [11], he studied its asymptotic behavior when \(N \to \infty \) for several hyperbolic knots and conjectured that it would determine its hyperbolic volume for any hyperbolic knot, where a knot is called hyperbolic if its complement possesses a complete hyperbolic structure with finite volume. More precisely he conjectured

Conjecture 1.1 (Kashaev’s conjecture). Let \(H \) be a hyperbolic knot in \(S^3 \). Then the following equality holds.

\[
\lim_{N \to \infty} \frac{\log |\langle H \rangle_N|}{N} = \frac{\text{Vol}(S^3 \setminus H)}{2\pi},
\]

where \(\text{Vol}(S^3 \setminus H) \) is the hyperbolic volume.

Let \(J_N(K; q) \) be the colored Jones polynomial associated with the \(N \)-dimensional irreducible representation of the Lie algebra \(\text{sl}(2; \mathbb{C}) \) [12, 32]. We normalize it so that \(J_N(U; q) = 1 \) for the unknot \(U \), and that \(J_2(K; q) \) is the ordinary Jones polynomial [9]. In [23], J. Murakami and the first author proved that Kashaev’s invariant \(\langle K \rangle_N \) coincides with the \(N \)-dimensional colored Jones polynomial \(J_N(K; q) \) evaluated at \(q = e^{2\pi \sqrt{-1}/N} \). They also generalized Kashaev’s conjecture for general knots:

Conjecture 1.2 (Volume Conjecture). For any knot \(K \subset S^3 \), we have

\[
\lim_{N \to \infty} \frac{\log |J_N(K; e^{2\pi \sqrt{-1}/N})|}{N} = \frac{\text{Vol}(S^3 \setminus K)}{2\pi},
\]

Here, \(\text{Vol}(S^3 \setminus K) \) is the simplicial volume, also known as the Gromov norm [6] (see also [33]), which is normalized so that \(\text{Vol}(S^3 \setminus H) = \text{Vol}(S^3 \setminus H) \) if \(H \) is hyperbolic.
Kashaev’s conjecture was complexified by T. Takata, J. Murakami, M. Okamoto, Y. Yokota and the first author in [24] by dropping the absolute value symbol (and replacing \((H_N)\) with \(J_N\left(H; e^{2\pi \sqrt{-1}/N}\right)\)) in (1.1).

Conjecture 1.3 (Complexification of Kashaev’s conjecture). For a hyperbolic knot \(H\), we have

\[
\lim_{N \to \infty} \frac{\log J_N\left(H; e^{2\pi \sqrt{-1}/N}\right)}{N} = \frac{V(S^3 \setminus H) + \sqrt{-1} \text{CS}(S^3 \setminus H)}{2\pi},
\]

where \(\text{CS}\) is the \(\text{SO}(3)\) Chern–Simons invariant of \(H\) associated with the Levi-Civita connection \([16]\).

More detailed asymptotic formulas are known for several knots \([1, 28, 30]\):

\[
\langle H \rangle_N \sim C \frac{\omega(H)N^{3/2}}{\sinh(\xi)} \times \tau(\xi)^{1/2} \left\{\frac{N}{\xi}\right\}^d \exp \left(\frac{N}{\xi} S(\xi)\right),
\]

where \(\text{CV}(H) := \text{Vol}(S^3 \setminus H) + \sqrt{-1} \text{CS}(S^3 \setminus H)\) is the complex volume and \(2\sqrt{-1} \omega(H)^2\) is the adjoint (cohomological) Reidemeister torsion twisted by the holonomy representation of \(\pi_1(S^3 \setminus H)\) to \(\text{SL}(2; \mathbb{C})\) \([29]\).

It was also generalized by replacing \(2\pi \sqrt{-1}\) with another complex number \(\xi\) \([2, 21]\).

Conjecture 1.4 (Generalized Volume Conjecture). Let \(\xi \neq 2\pi \sqrt{-1}\) be a complex number close to \(2\pi \sqrt{-1}\), and \(H\) a hyperbolic knot. Then we have

\[
J_N\left(H; e^{\xi/N}\right) N \sim C \frac{\omega(H)N^{3/2}}{\sinh(\xi)} \times \tau(\xi)^{1/2} \left\{\frac{N}{\xi}\right\}^d \exp \left(\frac{N}{\xi} S(\xi)\right)
\]

with \(d\) a constant. Here \(S(\xi)\) and \(\tau(\xi)\) are related to the \(\text{SL}(2; \mathbb{C})\) Chern–Simons invariant and the adjoint Reidemeister torsion, respectively, both associated with a certain representation of \(\pi_1(S^3 \setminus H)\) to \(\text{SL}(2; \mathbb{C})\).

In this paper, we are mainly interested in the figure-eight knot. We first list known results for the asymptotic behavior of the colored Jones polynomial of the figure-eight knot \(E\).

We define a function \(\varphi\) as

\[
\varphi(\xi) := \arccosh\left(\cosh(\xi) - \frac{1}{2}\right)
\]

for a complex number \(\xi\), where we use the following branch of \(\arccosh\):

\[
\arccosh(x) := \log \left(x - \sqrt{1 - x^2}\right),
\]

and we choose the branch cut of \(\log\) as \((-\infty, 0)\). Note that \(\varphi(0) = -\pi \sqrt{-1}/3\) and \(\varphi(\kappa) = 0\), where \(\kappa := \log \left(\frac{3\pi \sqrt{3}}{4}\right)\). We also define

\[
S(\xi) := \text{Li}_2(e^{-\xi - \varphi(\xi)}) - \text{Li}_2(e^{-\xi + \varphi(\xi)}) + \xi \varphi(\xi),
\]

\[
\tilde{S}(\xi) := \text{Li}_2(e^{-\xi - \varphi(\xi)}) - \text{Li}_2(e^{-\xi + \varphi(\xi)}) + (\xi - 2\pi \sqrt{-1})(\varphi(\xi) + 2\pi \sqrt{-1}),
\]

\[
T(\xi) := \frac{2}{\sqrt{(2\cosh(\xi) + 1)(2\cosh(\xi) - 3)}},
\]

where

\[
\text{Li}_2(z) := -\int_0^z \frac{\log(1 - x)}{x} dx
\]

is the dilogarithm function, where we choose the branch cut as \((1, \infty)\). Note that

\[
S(0) = \tilde{S}(2\pi \sqrt{-1}) = \text{Li}_2(e^{\pi \sqrt{-1}/3}) - \text{Li}_2(e^{-\pi \sqrt{-1}/3}) = \sqrt{-1} \times 2.02988.
\]
The quantities $S(\xi)$, $\tilde{S}(\xi)$, and $T(\xi)$ are related to the Chern–Simons invariant and the adjoint Reidemeister torsion associated with a certain representation of $\pi_1(S^3 \setminus E)$ to $SL(2; \mathbb{C})$. See Section 5 for details.

(1) $\xi = 2\pi \sqrt{-1}$:
This corresponds to the case of the Volume Conjecture. Kashaev sketched a proof of (1.2) in [11], and then T. Ekholm gave a detailed proof of (1.2). See for example [27, Section 3.2] for Ekholm’s proof. Later, J.E. Andersen and S.K. Hansen [1, Theorem 1] followed Kashaev’s method to prove the following asymptotic formula.

$$J_N \left(E; e^{2\pi \sqrt{-1}/N} \right) \sim \frac{2\pi^{3/2}}{N} \left(\frac{N}{2\pi \sqrt{-1}} \right)^{3/2} T(2\pi \sqrt{-1})^{1/2} \exp \left(\frac{N}{2\pi \sqrt{-1}} \tilde{S}(2\pi \sqrt{-1}) \right).$$

Since $S(0) = \sqrt{-1} \text{Vol} (S^3 \setminus E)$, this refines the Volume Conjecture for the figure-eight knot.

(2) ξ is close to $2\pi \sqrt{-1}$ and not purely imaginary:
Y. Yokota and the first author proved the following formula [26].

$$\lim_{N \to \infty} \frac{\log J_N(E; e^{\xi/N})}{N} = \frac{\tilde{S}(\xi)}{\xi}.$$

(3) ξ is purely imaginary with $5\pi/3 < |\xi| < 7\pi/3$, and $2\pi/|\xi|$ is irrational with finite irrationality measure:
In [17] (see [22] for correction), the first author proved the following formula.

$$\lim_{N \to \infty} \frac{\log J_N(E; e^{\xi/N})}{N} = \frac{\tilde{S}(\xi)}{\xi}.$$

See also [19, 6.2.2].

(4) ξ is of the form $2\pi \sqrt{-1} + u$ for a real number u with $0 < |u| < \kappa$:
The first author proved the following asymptotic formula [21, Theorem 1.4]:

$$J_N \left(E; e^{\xi/N} \right) \sim \frac{\sqrt{-1}}{2 \sinh(u/2)} T(\xi)^{1/2} \left(\frac{N}{\xi} \right)^{1/2} \exp \left(\frac{N}{\xi} \tilde{S}(\xi) \right).$$

Note that this refines (1.5) when ξ is as above.

(5) ξ satisfies the inequalities $|2 \cosh \xi - 2| < 1$ and $|\text{Im} \xi| < \pi/3$:
In this case, $J_N(E; e^{\xi/N})$ converges. In fact, we have

$$\lim_{N \to \infty} J_N \left(E; e^{\xi/N} \right) = \frac{1}{\Delta(E; e^{\xi})},$$

where $\Delta(E; t) = -t + 3 - t^{-1}$ is the normalized Alexander polynomial of the figure-eight knot E [18, Theorem 1.1].

See [5] for general knots.

(6) $\xi = \pm \kappa$:
In this case, $J_N(E; e^{\xi/N})$ grows polynomially. More precisely, we have

$$J_N \left(E; e^{\xi/N} \right) \sim \frac{\Gamma(1/3)}{(3\kappa)^{2/3}} N^{2/3},$$

where $\Gamma(z)$ is the Gamma function [8, Theorem 1.1].

(7) ξ is real and $|\xi| > \kappa$:
The first author proved the following formula [17, Theorem 8.1] (see also [20, Theorem 3.2] and [19, Lemma 6.7]).

$$\lim_{N \to \infty} \frac{\log J_N(E; e^{\xi/N})}{N} = \frac{S(\xi)}{|\xi|}.$$
The purpose of this paper is to refine (1.7). We will show

Theorem 1.5. If ξ is real and $|\xi| > \kappa$, then we have

$$J_N \left(E; e^{\xi/N} \right) \sim \frac{\sqrt{\pi}}{2 \sinh(|\xi|/2)} T(\xi)^{1/2} \left(\frac{N}{|\xi|} \right)^{1/2} \exp \left(\frac{N}{|\xi|} S(\xi) \right).$$

Moreover, we can show that $T(\xi)$ is the Reidemeister torsion twisted by the adjoint action of a representation ρ of $\pi_1(S^3 \setminus E)$ to $\text{SL}(2; \mathbb{C})$ determined by ξ, and that $S(\xi) - \xi \eta/2$ is the Chern–Simons invariant of ρ associated with the meridian and the preferred longitude of $E \subset S^3$. See Section 5 for details.

Remark 1.6. Suppose that $u := \xi - 2\pi \sqrt{-1}$ is a small complex number or a real number with $|u| < \kappa$. In this case $\text{Im} \varphi(u) < 0$. By using a well-known formula

$$\text{Li}_2(z) + \text{Li}_2(z^{-1}) + \frac{\pi^2}{6} + \frac{1}{2} (\log(-z))^2 = 0,$$

we have

$$\tilde{S}(\xi) = - \text{Li}_2(e^{\xi + \varphi(\xi)}) + \text{Li}_2(e^{\xi - \varphi(\xi)}) - \frac{1}{2} \left(\log(-e^{\xi + \varphi(\xi)}) \right)^2 + \frac{1}{2} \left(\log(-e^{\xi - \varphi(\xi)}) \right)^2 + u(\varphi(\xi) + 2\pi \sqrt{-1})$$

$$= - \text{Li}_2(e^{u + \varphi(u)}) + \text{Li}_2(e^{u - \varphi(u)}) - \frac{1}{2} (u + \varphi(u) + \pi \sqrt{-1})^2 + \frac{1}{2} (u - \varphi(u) - \pi \sqrt{-1})^2 - (2\pi \sqrt{-1} + u)\varphi(u)$$

$$= - \text{Li}_2(e^{u + \varphi(u)}) + \text{Li}_2(e^{u - \varphi(u)}) - u\varphi(u).$$

In the second equality, we use the fact that $\text{Im} \varphi(u) < 0$. Therefore (1.6) coincides with the formula appearing in [21, Theorem 1.4].

Remark 1.7. In [21], the first author followed [1] to obtain the asymptotic formula, but in the current paper we follow [28].

2. Preliminaries

In this section, we first introduce the colored Jones polynomial, and then we define a quantum dilogarithm, and variants of the logarithm and the dilogarithm. We also describe some of their properties.

For a knot K in the three-sphere S^3, we denote by $J_N(K; q)$ the colored Jones polynomial of K associated with the N-dimensional irreducible representation of the Lie algebra $\mathfrak{sl}(2; \mathbb{C})$ [12, 32]. We normalize it so that $J_N(U; q) = 1$ for the unknot $U \subset S^3$. Note that $J_2(K; q)$ is the original Jones polynomial [9].

Let E be the figure-eight knot. We use the following formula obtained by K. Habiro [7, P. 36 (1)] and T.T.Q. Le [14, P. 129]. See also [15].

$$J_N(E; q) = \sum_{k=0}^{N-1} \prod_{l=1}^{k} \left(\frac{q^{(N-l)/2} - q^{-(N-l)/2}}{q^{(N+l)/2} - q^{(N-l)/2}} \right) \left(\frac{q^{(N+l)/2} - q^{(N+l)/2}}{1 - q^{N-l}} \right) \left(1 - q^{N+l} \right).$$

(2.1)

Next, we define functions $T_N(z)$, $L_0(z)$, $L_1(z)$, and $L_2(z)$, which are related as

$$T_N(z) = \frac{N}{\xi} L_2(z) + O(1/N) \quad (N \to \infty),$$
\[
\frac{d L_2}{dz}(z) = -2\pi\sqrt{-1}L_1(z), \\
\frac{d L_1}{dz}(z) = -L_0(z).
\]

Let \(\xi\) be a positive real number. We define \(C_0 := (-\infty, -1] \cup \{e^{\tau\sqrt{-1}} \mid 0 \leq \tau \leq \pi\} \cup [1, \infty)\) and \(C_\theta := e^{\tau\sqrt{-1}}C_0\), where \(\theta\) is a positive real number with \(\tan \theta < \frac{\pi}{2}\) and we orient \(C_0\) from left to right.

Consider the following integrals:
\[
\int_{C_\theta} e^{(2z-1)x} dx, \quad \int_{C_\theta} x^{m} \sinh(x) dx,
\]
where \(m = 0, 1, 2\), \(\gamma := \frac{\xi}{2N\pi\sqrt{-1}}\) for an integer \(N \geq 2\), and \(z\) is a complex number with \(0 < \Re(ze^{\sqrt{-1}\theta}) < \cos \theta\). Here we follow [4] to introduce \(T_N(z)\), which plays an important role in the paper. Note that the set of the poles of the integrands are
\[
\{k\pi\sqrt{-1} \mid k \in \mathbb{Z}\} \cup \{2N\pi^2/\xi \mid l \in \mathbb{Z}\} \quad \text{and} \quad \{k\pi\sqrt{-1} \mid k \in \mathbb{Z}\},
\]
respectively. Therefore, if \(N\) is large enough, then the only pole inside the unit circle centered at the origin is \(0 \in \mathbb{C}\) and so the path of integral \(C_\theta\) avoids the poles. Proofs of their convergences (Lemmas 2.1 and 2.2 below) are given in Section 6.

Lemma 2.1. The integral \(\int_{C_\theta} e^{(2z-1)x} x \sinh(x) dx\) converges if \(z \in \mathbb{C}\) satisfies \(-\frac{\xi \sin \theta}{4N\pi} < \Re(ze^{\theta\sqrt{-1}}) < \cos \theta + \frac{\xi \sin \theta}{4N\pi}\).

Lemma 2.2. If \(z \in \mathbb{C}\) satisfies \(0 < \Re(ze^{\theta\sqrt{-1}}) < \cos \theta\), then the integral \(\int_{C_\theta} e^{(2z-1)x} x^{m} \sinh(x) dx\) converges for \(m = 0, 1, 2\).

Now define functions \(T_N(z)\) and \(L_m(z)\) \((m = 0, 1, 2)\) by using the integrals above.

Definition 2.3. Fix an integer \(N \geq 2\) and put \(\gamma := \frac{\xi}{2N\pi\sqrt{-1}}\). We define
\[
T_N(z) := \frac{1}{4} \int_{C_\theta} e^{(2z-1)x} x \sinh(x) dx,
\]
for a complex number \(z\) with \(-\frac{\xi \sin \theta}{4N\pi} < \Re(ze^{\theta\sqrt{-1}}) < \cos \theta + \frac{\xi \sin \theta}{4N\pi}\).

Definition 2.4. For a complex number \(z\) with \(0 < \Re(ze^{\sqrt{-1}\theta}) < \cos \theta\), we define
\[
L_0(z) := \int_{C_\theta} e^{(2z-1)x} \sinh(x) dx, \quad L_1(z) := -\frac{1}{2} \int_{C_\theta} e^{(2z-1)x} x \sinh(x) dx, \quad L_2(z) := \frac{\pi\sqrt{-1}}{2} \int_{C_\theta} e^{(2z-1)x} x^{2} \sinh(x) dx.
\]

Lemma 2.5. For \(m = 0, 1, 2\), we calculate \(L_m(z)\) as follows.

\[
L_0(z) = \frac{-2\pi\sqrt{-1}}{1 - e^{-2\pi\sqrt{-1}z}},
\]
\[
L_1(z) = \begin{cases}
\log (1 - e^{2\pi\sqrt{-1}z}) & \text{if } \Im z \geq 0, \\
\pi\sqrt{-1}(2z - 1) + \log (1 - e^{-2\pi\sqrt{-1}z}) & \text{if } \Im z < 0,
\end{cases}
\]
(2.4) \[
 \mathcal{L}_2(z) = \begin{cases}
 \text{Li}_2 \left(e^{2\pi \sqrt{-1}z} \right) & \text{if } \Im z \geq 0, \\
 \pi^2 \left(2z^2 - 2z + \frac{1}{4} \right) - \text{Li}_2 \left(e^{-2\pi \sqrt{-1}z} \right) & \text{if } \Im z < 0.
 \end{cases}
\]

Proofs are also given in Section 6.

Remark 2.6. In (2.3) and (2.4), we use \(\log(1-x) \) and \(\text{Li}_2(x) \) only for \(|x| \leq 1 \) \((x \neq 1)\).

Since
\[
 T_N(z - \gamma/2) - T_N(z + \gamma/2) = \int_{C_\theta} \frac{e^{(2z-\gamma-1)x} - e^{(2z+\gamma-1)x}}{4x \sinh(x) \sinh(\gamma x)} \, dx
\]
\[
 = - \int_{C_\theta} \frac{e^{(2z-1)x}}{2x \sinh(x)} \, dx
\]
\[
 = \mathcal{L}_1(z),
\]
we have the following corollary.

Corollary 2.7. If \(0 < \Re (ze^{\theta \sqrt{-1}}) < \cos \theta \), then we have
\[
 \frac{\exp(T_N(z - \gamma/2))}{\exp(T_N(z + \gamma/2))} = 1 - e^{2\pi \sqrt{-1}z}.
\]

We will show relations among the functions \(T_N(z) \) and \(\mathcal{L}_m(z) \) \((m = 0, 1, 2)\). We can prove that \(\frac{1}{N}T_N(z) \) uniformly converges to \(\frac{1}{x} \mathcal{L}_2(z) \). More precisely, we have the following proposition. See [28, Proposition A.1].

Proposition 2.8. For any positive real number \(M \) and a sufficiently small positive real number \(\nu \), we have
\[
 T_N(z) = \frac{N}{\xi} \mathcal{L}_2(z) + O(1/N) \quad (N \to \infty)
\]
in the region
\[
 \{ z \in \mathbb{C} \mid \nu \leq \Re (ze^{\theta \sqrt{-1}}) \leq \cos \theta - \nu, \, |\Im z| \leq M \}.
\]
In particular, the function \(\frac{1}{N}T_N(z) \) uniformly converges to \(\frac{1}{x} \mathcal{L}_2(z) \) in the region above.

A proof is given in Section 6. Since we may regard \(\mathcal{L}_2(z) \) as a variant of the dilogarithm from Lemma 2.5, the function \(T_N(z) \) is another quantum dilogarithm.

The functions \(\mathcal{L}_0(z) \), \(\mathcal{L}_1(z) \), and \(\mathcal{L}_2(z) \) are related as follows.

Lemma 2.9. The derivatives of \(\mathcal{L}_1(z) \) and \(\mathcal{L}_2(z) \) are given as follows:
\[
 \frac{d \mathcal{L}_2}{dz}(z) = -2\pi \sqrt{-1} \mathcal{L}_1(z),
\]
\[
 \frac{d \mathcal{L}_1}{dz}(z) = -\mathcal{L}_0(z).
\]

Proof. We have
\[
 \frac{d \mathcal{L}_2}{dz}(z) = \frac{\pi \sqrt{-1}}{2} \int_{C_\theta} \left(\frac{d}{dz} \frac{e^{(2z-1)x}}{x^2 \sinh(x)} \right) \, dx
\]
\[
 = \pi \sqrt{-1} \int_{C_\theta} \frac{e^{(2z-1)x}}{x \sinh(x)} \, dx
\]
\[
 = -2\pi \sqrt{-1} \mathcal{L}_1(z),
\]
and
\[
\frac{d \mathcal{L}_1}{dz}(z) = -\frac{1}{2} \int_{C_n} \left(\frac{d}{dz} e^{(2z-1)x} \right) dx
\]
\[
= -\int_{C_n} e^{(2z-1)x} \sinh(x) dx
\]
\[
= -\mathcal{L}_0(z),
\]
completing the proof. \(\square\)

3. Summation

In this section, we use the quantum dilogarithm \(T_N(z)\) to express \(J_N(E; \xi^{1/N})\) without the product of a sequence.

Since the figure-eight knot \(E\) is amphicheiral, its colored Jones polynomial is symmetric, that is, \(J_N(E; q) = J_N(E; q^{-1})\). So we have \(J_N(E; \xi^{1/N}) = J_N(E; \xi^{-1/N})\) and we do not need to consider the case where \(\xi < 0\).

Recall that we choose a positive real number \(\theta\) so that \(\tan \theta < \frac{\pi}{2}\) and that we put \(\gamma := \frac{\xi}{2\pi \sqrt{-1}}\). Putting \(z := \frac{\xi}{2\pi \sqrt{-1}}(1 - l/N)\) \((0 < l < N)\) in (2.5), we have
\[
\exp \left(T_N \left(\frac{\xi}{2\pi \sqrt{-1}}(1 - l/N) - \frac{\xi}{4N\pi \sqrt{-1}} \right) \right) = 1 - e^{\xi(1-l/N)}
\]
since
\[
\Re \left(\frac{\xi}{2\pi \sqrt{-1}} \left(1 - \frac{l}{N} \right) e^{\theta \sqrt{-1}} \right) = \frac{\xi}{2\pi} \left(1 - \frac{l}{N} \right) \sin \theta < \frac{1}{2} \left(1 - \frac{l}{N} \right) \cos \theta,
\]
which is between 0 and \(\cos \theta\). Therefore we have
\[
\prod_{l=1}^{k} (1 - e^{(N-l)\xi/N}) = \prod_{l=1}^{k} \exp \left(T_N \left(\frac{\xi}{2\pi \sqrt{-1}}(1 - \frac{2l+1}{2N}) \right) \right)
\]
\[
= \exp \left(T_N \left(\frac{\xi}{2\pi \sqrt{-1}}(1 - \frac{1}{2N}) \right) \right).
\]

Similarly, putting \(z := \frac{\xi}{2\pi \sqrt{-1}}(1 + l/N)\) \((0 < l < N)\) in (2.5), we have
\[
\exp \left(T_N \left(\frac{\xi}{2\pi \sqrt{-1}}(1 + l/N) - \frac{\xi}{4N\pi \sqrt{-1}} \right) \right) = 1 - e^{\xi(1+l/N)}
\]
since
\[
\Re \left(\frac{\xi}{2\pi \sqrt{-1}} \left(1 + \frac{l}{N} \right) e^{\theta \sqrt{-1}} \right) = \frac{\xi}{2\pi} \left(1 + \frac{l}{N} \right) \sin \theta < \frac{1}{2} \left(1 + \frac{l}{N} \right) \cos \theta,
\]
which is between 0 and \(\cos \theta\). So we have
\[
\prod_{l=1}^{k} (1 - e^{(N+l)\xi/N}) = \prod_{l=1}^{k} \exp \left(T_N \left(\frac{\xi}{2\pi \sqrt{-1}}(1 + \frac{2l+1}{2N}) \right) \right)
\]
\[
= \exp \left(T_N \left(\frac{\xi}{2\pi \sqrt{-1}}(1 + \frac{1}{2N}) \right) \right).\]
Therefore we have from (2.1)
\[J_N(E; \exp(\xi/N)) = \frac{\exp\left(T_N \left(\frac{\xi}{2\pi \sqrt{-1}} (1 + \frac{1}{2N}) \right) \right)}{\exp\left(T_N \left(\frac{\xi}{2\pi \sqrt{-1}} (1 - \frac{1}{2N}) \right) \right)} \times \sum_{k=0}^{N-1} e^{-k\xi} \frac{\exp\left(T_N \left(\frac{\xi}{2\pi \sqrt{-1}} (1 - \frac{2k+1}{2N}) \right) \right)}{\exp\left(T_N \left(\frac{\xi}{2\pi \sqrt{-1}} (1 + \frac{2k+1}{2N}) \right) \right)} \]
We use the following lemma, a proof of which is given in Section 6.

Lemma 3.1. We have
\[\frac{\exp\left(T_N \left(\frac{\xi}{2\pi \sqrt{-1}} (1 + \frac{1}{2N}) \right) \right)}{\exp\left(T_N \left(\frac{\xi}{2\pi \sqrt{-1}} (1 - \frac{1}{2N}) \right) \right)} = \frac{1}{1 - e^{\xi}} = \frac{1}{2 \sinh(\xi/2)}. \]

Now we define
\[f_N(z) := \frac{1}{N} \left(T_N \left(\frac{\xi (1 - z)}{2\pi \sqrt{-1}} \right) - T_N \left(\frac{\xi (1 + z)}{2\pi \sqrt{-1}} \right) \right) - \xi z + 2\pi \sqrt{-1}z \]
so that
\[J_N(E; \exp(\xi/N)) = \frac{1}{2 \sinh(\xi/2)} \sum_{k=0}^{N-1} \exp\left(N \times f_N \left(\frac{2k + 1}{2N} \right) \right). \]

Since \(T_N(z) \) is defined for \(z \) with \(0 < \Re(ze^{\theta \sqrt{-1}}) < \cos \theta \), the function \(f_N(z) \) is defined for \(z \) with
\[\left| \frac{\Im z}{\tan \theta} + \Re z \right| < 1 \]
from the assumption \(\tan \theta < \frac{\pi}{\xi} \).

From Proposition 2.8, \(f_N(z) \) converges to the following function:
\[F(z) := \frac{1}{\xi} \left(\mathcal{L}_2 \left(\frac{\xi (1 - z)}{2\pi \sqrt{-1}} \right) - \mathcal{L}_2 \left(\frac{\xi (1 + z)}{2\pi \sqrt{-1}} \right) \right) - \xi z + 2\pi \sqrt{-1}z \]
in the region
\[\left\{ z \in \mathbb{C} \mid \left| \frac{\Im z}{\tan \theta} + \Re z \right| \leq 1 - \frac{2\pi \nu}{\xi \sin \theta} \left| \Re z \right| \leq \frac{2\pi M}{\xi} - 1 \right\}. \]

Since \(\left(\frac{\xi (1 + z)}{2\pi \sqrt{-1}} \right) = \frac{\pi}{\xi} (1 \pm \Re z) \),
\[F(z) = \frac{1}{\xi} \left(\mathcal{L}_2 \left(e^{-\xi (1+z)} \right) - \mathcal{L}_2 \left(e^{-\xi (1-z)} \right) \right) + \xi z \]
when \(-1 < \Re z < 1 \) from (2.4).

Remark 3.2. When \(x \) is real and \(-1 < x < 1 \), then \(F(x) \) is also real.

From Lemma 2.9, the first and the second derivatives of \(F(z) \) are given as follows:
\[F'(z) = \mathcal{L}_1 \left(\frac{\xi (1 - z)}{2\pi \sqrt{-1}} \right) + \mathcal{L}_1 \left(\frac{\xi (1 + z)}{2\pi \sqrt{-1}} \right) - \xi + 2\pi \sqrt{-1}, \]
\[F''(z) = \frac{\xi}{2\pi \sqrt{-1}} \left(\mathcal{L}_0 \left(\frac{\xi (1 - z)}{2\pi \sqrt{-1}} \right) - \mathcal{L}_0 \left(\frac{\xi (1 + z)}{2\pi \sqrt{-1}} \right) \right) \]
\[= \frac{\xi (e^{-\xi z} - e^{\xi z})}{e^{\xi} + e^{-\xi} - e^{\xi z} - e^{-\xi z}}. \]
Note that when $-1 < \Re z < 1$, we have

\[
F'(z) = \log(1 - e^{-\xi(1-z)}) + \log(1 - e^{-\xi(1+z)}) + \xi \\
= \log(e^\xi + e^{-\xi} - e^{\xi z} - e^{-\xi z})
\]

(3.2)

from (2.3), since $\Im \left(\frac{\xi(1+z)}{2\pi} \right) = -\frac{\xi}{2\pi}(1 \pm \Re z)$.

We assume that $\xi > \kappa$, where $\kappa := \text{arccosh}(3/2) = \log(\frac{3}{\sqrt{2}}) = 0.962 \ldots$. Put $\varphi(\xi) := \text{arccosh} \left(\cosh(\xi) - \frac{1}{2} \right) = \log \left(\cosh(\xi) - \frac{1}{2} + \frac{1}{2} \sqrt{2\cosh(\xi) - 1 \pm 4} \right)$.

Note that since $\xi > \kappa$, we have $\cosh(\xi) > \cosh(\varphi(\xi))$ and $\cosh(\kappa) = \frac{3}{\sqrt{2}}$. So we have $0 < \varphi(\xi) < \xi$. Note also that this definition is the same as that in Section 1.

Since $0 < \varphi(\xi < \xi$, we have

\[
F(\varphi(\xi) / \xi) = \frac{1}{\xi} \left(\text{Li}_2(e^{-\xi - \varphi(\xi)}) - \text{Li}_2(e^{-\xi + \varphi(\xi)}) \right) + \varphi(\xi),
\]

(3.3)

\[
F'(\varphi(\xi) / \xi) = 0,
\]

(3.4)

\[
F''(\varphi(\xi) / \xi) = -\xi \sqrt{2\cosh(\xi) - 1} \pm 4.
\]

(3.5)

The second equality follows since

\[
e^{\varphi(\xi)} + e^{-\varphi(\xi)} = e^\xi + e^{-\xi} - 1.
\]

Put

\[
S(\xi) := \xi F(\varphi(\xi) / \xi) = \text{Li}_2(e^{-\xi - \varphi(\xi)}) - \text{Li}_2(e^{-\xi + \varphi(\xi)}) + \xi \varphi(\xi).
\]

Since

\[
\frac{dS(\xi)}{d\xi} = (1 + \varphi'(\xi)) \log(1 - e^{-\xi - \varphi(\xi)}) - (1 - \varphi'(\xi)) \log(1 - e^{-\xi + \varphi(\xi)}) + \varphi(\xi) + \xi \varphi'(\xi) \\
= \log \frac{e^{\varphi(\xi)} - e^{-\xi}}{1 - e^{-\xi + \varphi(\xi)}} + \varphi(\xi) \log \left(e^\xi + e^{-\xi} - e^{\varphi(\xi)} - e^{-\varphi(\xi)} \right) \\
= \log \frac{e^{\varphi(\xi)} - e^{-\xi}}{1 - e^{-\xi + \varphi(\xi)}} > 0
\]

and $S(\kappa) = 0$, $S(\xi) > 0$ for $\xi > \kappa$.

Recalling that $F(x) \in \mathbb{R}$ when x is real and $-1 < x < 1$, we have the following lemma.

Lemma 3.3. As a function of a real variable x, the real-valued function $F(x)$ takes its maximum $S(\xi)/\xi$ at $x = \varphi(\xi)/\xi$ in the half open interval $[0, 1)$. Moreover, it is strictly increasing (decreasing, respectively) when $x < \varphi(\xi)/\xi$ ($x > \varphi(\xi)/\xi$, respectively).

Proof. Since we have

\[
F'(x) = \log(e^\xi + e^{-\xi} - e^{\xi x} - e^{-\xi x}),
\]

we see that $F''(x)$ is strictly decreasing. Since $F'(0) = 0$ and $F''(x)$ becomes 0 when $x = \varphi(\xi)/\xi < 1$, the lemma follows. \(\square\)

We have the following corollary.

Corollary 3.4. For any c_- and c_+ with $0 < c_- < \varphi(\xi)/\xi < c_+ < 1$, there exists $\delta > 0$ such that $F(x) < S(\xi)/\xi - \delta$ if $x < c_-$ or $x > c_+$.
So we have $e^{N \times F(x)} < e^{N(S(\xi)/\xi - \delta)}$ if $x \notin [c_-, c_+]$. Since $f_N(x)$ uniformly converges to $F(x)$ from Proposition 2.8, we also have $|e^{N \times f_N(x)}| < e^{N(S(\xi)/\xi - \delta')}$ for some $\delta' > 0$ if $x \notin [c_-, c_+]$ and N is sufficiently large.

Therefore we have

$$\left| \sum_{0<k/N<c_-} \exp \left(N \times f_N \left(\frac{2k+1}{2N} \right) \right) \right| < c_-N e^{N(S(\xi)/\xi - \delta')}$$

and

$$\left| \sum_{<c_+<k/N<1} \exp \left(N \times f_N \left(\frac{2k+1}{2N} \right) \right) \right| < (1-c_+)Ne^{N(S(\xi)/\xi - \delta')}.$$

As a result, we have

$$\sum_{k=0}^{N-1} \exp \left(N \times f_N \left(\frac{2k+1}{2N} \right) \right) \left| \sum_{c_-<k/N<c_+} \right| \exp \left(N \times f_N \left(\frac{2k+1}{2N} \right) \right) = O \left(Ne^{N(S(\xi)/\xi - \delta')} \right).$$

From (3.1), we also have

$$J_N \left(E; \exp(\xi/N) \right) = \frac{1}{2 \sinh(\xi/2)} \sum_{c_-<k/N<c_+} \exp \left(N \times f_N \left(\frac{2k+1}{2N} \right) \right) + O \left(Ne^{N(S(\xi)/\xi - \delta')} \right).$$

4. Integration

In this section, we use the Poisson summation formula (see [28, Proposition 4.2]) to change the summation in (3.6) into an integration. Then by using the saddle point method (see also [28, Proposition 3.2]) to prove Theorem 1.5.

Define

$$\psi(z) := F(z + \varphi(\xi)/\xi) - F(\varphi(\xi)/\xi)$$

in the region

$$\left\{ z \in \mathbb{C} \left| \frac{\varphi(\xi)}{\xi} \leq \text{Re} z < 1 - \frac{\varphi(\xi)}{\xi}, -1 - \frac{\varphi(\xi)}{\xi} < \frac{\text{Im} z}{\tan \theta} + \text{Re} z < 1 - \frac{\varphi(\xi)}{\xi} \right. \right\}.$$

Then since $\psi(0) = 0$, $\psi'(0) = 0$, and $\psi''(0) = -\xi \sqrt{2 \cosh(\xi) - 1}^2 - 4$ from (3.4) and (3.5), $\psi(z)$ is of the form

$$\psi(z) = -\frac{\xi}{2} \sqrt{2 \cosh(\xi) - 1}^2 - 4 \times z^2 + a_3z^3 + a_4z^4 + \cdots$$

in (4.1).

Lemma 4.1. If $x \neq 0$ is real and satisfies $-\varphi(\xi)/\xi \leq x < 1 - \varphi(\xi)/\xi$, then $\psi(x) < 0$.

Proof. Since $e^x + e^{-x} = e^{x} - e^{-x}$, we have

$$\psi'(x) = \log e^{\varphi(\xi) - e^x + \varphi(\xi)} - e^{\varphi(\xi)}$$

$$= \log (e^{\varphi(\xi)} - e^{x} + \varphi(\xi)) - e^{\varphi(\xi)}$$

$$= \log \left(e^{\varphi(\xi)}(1 - e^{x}) - e^{\varphi(\xi)} + 1 \right)$$

(4.2)
from (3.2). Therefore we see that \(\psi'(x) = 0 \) if \(x = 0 \) or \(-2\varphi(\xi)/\xi, \psi'(x) > 0 \) if \(-2\varphi(\xi)/\xi < x < 0 \), and \(\psi'(x) < 0 \) otherwise.

Therefore for \(-\varphi(\xi)/\xi < x < 0 \), \(\psi(x) \) is monotonically increasing and for \(0 < x < 1 - \varphi(\xi)/\xi \) it is monotonically decreasing. So \(\psi(x) \) takes its unique maximum 0 at \(x = 0 \), which shows that \(\psi(x) < 0 \) when \(x \neq 0 \).

□

Now we use the following proposition.

Proposition 4.2 ([28, Proposition 4.2]). Let \(b_- \) and \(b_+ \) be real numbers with \(b_- < 0 < b_+ \). Put

\[
\Lambda := \left\{ \frac{k}{N} \mid k \in \mathbb{Z}, b_- \leq \frac{k}{N} \leq b_+ \right\},
\]

\[
C := \{ t \in \mathbb{R} \mid b_- \leq t \leq b_+ \},
\]

\[
D := \{ z \in \mathbb{C} \mid \text{Re} \psi(z) < 0 \}.
\]

Assume that \(\psi(z) \) is a holomorphic function of the form

\[
\psi(z) = az^2 + a_3z^3 + a_4z^4 + \cdots
\]

with \(\text{Re}(a) < 0 \), defined in a neighborhood \(P \) of \(0 \in \mathbb{C} \) that includes the \(\delta_0 \)-neighborhood \(N_{\delta_0} \) of 0 for \(\delta_0 > 0 \). We choose \(P \) so that the region \(D \cap P \) has two connected components. We also assume the following:

1. \(b_- \) and \(b_+ \) are in different components of \(D \cap P \) and moreover \(\text{Re} \psi(b_{\pm}) < -\varepsilon_0 \) for some \(\varepsilon_0 > 0 \),
2. Both \(b_- \) and \(b_+ \) are in a connected component of

\[
\{ x + y\sqrt{-1} \mid x \in [b_-, b_+], y \in [0, \delta_0], \text{Re} \psi(x + y\sqrt{-1}) < 2\pi y \}
\]

3. Both \(b_- \) and \(b_+ \) are in a connected component of

\[
\{ x - y\sqrt{-1} \mid x \in [b_-, b_+], y \in [0, \delta_0], \text{Re} \psi(x - y\sqrt{-1}) < 2\pi y \}
\]

Then there exists \(\varepsilon > 0 \), depending on \(a \) and \(\varepsilon_0 \), such that

\[
\frac{1}{N} \sum_{z \in \Lambda} e^{N\psi(z)} = \int_C e^{N\psi(z)} \, dz + O(e^{-N\varepsilon}).
\]

We will show that \(\psi(z) \) satisfies the assumptions of Proposition 4.2.

Put \(b_- := -\varphi(\xi)/(2\xi), b_+ := (1 - \varphi(\xi)/\xi)/2, \delta_0 := \frac{1}{2}(1 - \varphi(\xi)/\xi) \sin \theta \). Define the following regions:

\[
P := \left\{ z \in \mathbb{C} \mid -\frac{\varphi(\xi)}{\xi} < \text{Re} z < 1 - \frac{\varphi(\xi)}{\xi}, -1 - \frac{\varphi(\xi)}{\xi} < \frac{\text{Im} z}{\tan \theta} + \text{Re} z < 1 - \frac{\varphi(\xi)}{\xi} \right\},
\]

\[
D_- := \{ z \in \mathbb{C} \mid \text{Re} \psi(z) < 0, \text{Re} z < 0 \},
\]

\[
D_+ := \{ z \in \mathbb{C} \mid \text{Re} \psi(z) < 0, \text{Re} z > 0 \}.
\]

Note that \(P \) is just the region (4.1) and so \(\psi(z) \) is holomorphic in \(P \). See Figure 1.

Then, we show the following lemma, from which the assumptions of Proposition 4.2 hold.

Lemma 4.3. We assume that \(\sin \theta < \frac{\varphi(\xi)}{\xi - \varphi(\xi)} \) and that \(\tan \theta < \frac{\pi}{2\varepsilon} \). Then, the function \(\psi(z) \) satisfies the following:

1. \(\psi(z) \) is a holomorphic function of the form (4.3) defined in the \(\delta_0 \)-neighborhood \(N_{\delta_0} \) of \(0 \in \mathbb{C} \),
2. Both \(D_+ \cap P \) and \(D_- \cap P \) are connected, and \(b_{\pm} \in D_{\pm} \cap P \). Moreover, \(\text{Re} \psi(b_{\pm}) < -\varepsilon_0 \) for some \(\varepsilon_0 > 0 \),
3. Condition (2) in Proposition 4.2 is satisfied.
12 HITOSHI MURAKAMI AND ANH T. TRAN

\[\frac{1}{\xi} \sin \theta < \frac{\varphi(\xi)}{\xi}, \]

\[-\varphi(\xi)/\xi \leq b_- < 0, \quad b_+ > 0, \quad b_\pm \in P. \]

The inequality \(\text{Re} \psi(b_\pm) < 0 \) follows from Lemma 4.1. So, we can choose \(\delta_0 > 0 \) so that \(\text{Re} \psi(b_\pm) < -\delta_0. \)

Next, we will show that for each \(x \neq 0 \) with \(-\varphi(\xi)/\xi < x < 1 - \varphi(\xi)/\xi, \) the set \(\{ y \in \mathbb{R} \mid \text{Re} \psi(x + y\sqrt{-1}) < 0 \} \cap P \) is an open interval containing 0. Then, we can see that \(D_\pm \cap P \) is connected.

If we put

\[g(x, y) := e^\xi + e^{-\xi} - e^{\xi(x + y\sqrt{-1}) + \varphi(\xi)} - e^{-\xi(x + y\sqrt{-1}) - \varphi(\xi)}, \]

then we have

\[\frac{d}{dy} \text{Re} \psi(x + y\sqrt{-1}) = -\arg g(x, y) \]

from (4.2). Now we have

\[\text{Re} g(x, y) = 2 \cosh \xi - 2 \cosh \left(\xi \left(x + \frac{\varphi(\xi)}{\xi} \right) \right) \cos(\xi y), \]
Proof of Theorem 1.5. From Proposition 4.2, there exists \(\varepsilon > 0 \) such that

\[
\frac{1}{N} \sum_{-\varphi(\xi)/(2\xi) \leq k/N \leq (1-\varphi(\xi)/(2\xi))} e^{N\psi(k/N)} = \int_{-\varphi(\xi)/(2\xi)}^{(1-\varphi(\xi)/(2\xi))} e^{N\psi(z)} \, dz + O(e^{-N\varepsilon}).
\]

Since \(f_{N}(z + \varphi(\xi)/\xi + 1/(2N)) - S(\xi)/\xi \) uniformly converges to \(\psi(z) \), we have

\[
\frac{1}{N} \sum_{-\varphi(\xi)/(2\xi) \leq k/N \leq (1-\varphi(\xi)/(2\xi))} e^{N(f_{N}(k/N + \varphi(\xi)/\xi + 1/(2N)) - S(\xi)/\xi)}
\]
from [28, Remark 4.4]. Putting \(l/N := k/N + \varphi(\xi)/\xi \), we also have
\[
\sum_{-\varphi(\xi)/(2\xi) \leq k/N \leq (1-\varphi(\xi)/\xi)/2} e^{N(f_N(k/N+\varphi(\xi)/\xi+1/(2N))-S(\xi)/\xi)} = e^{-NS(\xi)/\xi} \sum_{\varphi(\xi)/(2\xi) \leq 1/N \leq (1+\varphi(\xi)/\xi)/2} \exp \left(N \times f_N \left(\frac{2l+1}{2N} \right) \right).
\]
Thus we obtain
\[
\sum_{\varphi(\xi)/(2\xi) \leq k/N \leq (1+\varphi(\xi)/\xi)/2} \exp \left(N \times f_N \left(\frac{2k+1}{2N} \right) \right)
= N \times e^{NS(\xi)/\xi} \left(\int_{-\varphi(\xi)/(2\xi)}^{(1-\varphi(\xi)/\xi)/2} e^{N\varphi(z)} dz + O \left(e^{-N\xi} \right) \right).
\]
Now by using the saddle point method [28, Proposition 3.2] (see also [28, Remark 3.3]), we have
\[
\int_{-\varphi(\xi)/(2\xi)}^{(1-\varphi(\xi)/\xi)/2} e^{N\varphi(z)} dz = \frac{\sqrt{\pi}}{\sqrt{\frac{2}{2\sinh(\xi/2)^2}} - 4\sqrt{N}} \left(1 + O(N^{-1}) \right).
\]
Putting \(c_- := \varphi(\xi)/(2\xi) \) and \(c_+ := (1+\varphi(\xi)/\xi)/2 \) in (3.6), we finally have
\[
J_N(\varphi; \exp(\xi/N)) = \frac{N \times e^{NS(\xi)/\xi}}{2\sinh(\xi/2)} \left(\int_{-\varphi(\xi)/(2\xi)}^{(1-\varphi(\xi)/\xi)/2} e^{N\varphi(z)} dz + O \left(e^{-N \min\{\varepsilon, \delta\}} \right) \right)
= \frac{\sqrt{\pi}}{2\sinh(\xi/2) \sqrt{\frac{2}{2\sinh(\xi/2)^2}} - 4} \left(1 + O(N^{-1}) \right).
\]
where we use (4.7) at the first equality and (4.8) at the second. Letting \(T(\xi) \) denote \(\frac{\sqrt{\pi}}{2\sinh(\xi/2)^2-4} \), we have
\[
J_N(\varphi; \exp(\xi/N)) = \frac{\sqrt{\pi}}{2\sinh(\xi/2)} \sqrt{T(\xi)} \left(\frac{N}{\xi} \times e^{\frac{N}{\xi}S(\xi)} \right) \left(1 + O(N^{-1}) \right).
\]
Since \(J_N(\varphi; e^{-\xi/N}) = J_N(\varphi; e^{\xi/N}) \) we obtain the required formula. \(\square \)

5. Topological interpretations

In this section we give topological interpretations for \(T(\xi) \) and \(S(\xi) \).

5.1. Representations. Let \(X \) be the complement of the open tubular neighborhood of \(E \subset S^3 \). The fundamental group \(\pi_1(X) \) is presented as
\[
\langle x, y \mid wx = yw \rangle,
\]
with \(w := xy^{-1}x^{-1}y \). Let \(\rho \) be a non-Abelian representation of \(\pi_1(X) \) to \(SL(2; \mathbb{C}) \) given by
\[
\rho(x) = \begin{pmatrix} e^{\xi/2} & 1 \\ 0 & e^{-\xi/2} \end{pmatrix}, \quad \rho(y) = \begin{pmatrix} e^{\xi/2} & 0 \\ -d & e^{-\xi/2} \end{pmatrix},
\]
where \(d \) annihilates the Riley polynomial
\[
d^2 - (2\cosh(\xi) - 3)d - 2\cosh(\xi) + 3.
\]
The preferred longitude λ is presented by $y^{-1}xy^{-2}yxy^{-1}$ and it is sent to

$$\rho(\lambda) = \begin{pmatrix} e^{\eta/2} & * \\ 0 & e^{-\eta/2} \end{pmatrix},$$

where

$$\eta := \log \left(\frac{1}{2} \left(e^{2\xi} - e^{-\xi} - e^{-\xi} + e^{2\xi} - 2 + (e^{-\xi} - e^{\xi}) \sqrt{(e^{\xi} + e^{-\xi} - 3)(e^{\xi} + e^{-\xi} + 1)} \right) \right).$$

5.2. **Adjoint Reidemeister torsion.** For a representation $\rho: \pi_1(X) \to \mathrm{SL}(2; \mathbb{C})$, one can consider the cochain complex $C^*(X; \mathfrak{sl}(2; \mathbb{C})_{\rho}) := \text{Hom}_{\mathbb{Z}[\pi_1(X)]}(C_*(X; \mathbb{Z}), \mathfrak{sl}(2; \mathbb{C}))$ twisted by the adjoint action of ρ. Here \tilde{X} is the universal cover of X, $\pi_1(X)$ acts on \tilde{X} as the deck transformation, and the Lie algebra $\mathfrak{sl}(2; \mathbb{C})$ is regarded as a $\mathbb{Z}[\pi_1(X)]$-module by the adjoint action of ρ. The Reidemeister torsion $T_\mu(\rho) \in \mathbb{C}$ associated with the meridian μ, twisted by the adjoint action of ρ, is defined as the torsion of the cochain complex $C^*(X; \mathfrak{sl}(2; \mathbb{C})_{\rho})$. The following formula is known for the case of the figure-eight knot:

$$T_\mu(\rho) = \pm \frac{2}{\sqrt{(e^{\xi} + e^{-\xi} + 1)(e^{\xi} + e^{\xi} - 3)}}.$$

See [31, 3, 21].

5.3. **Chern–Simons invariant.** Let M be a three-manifold with boundary a torus T, and $\{\mu, \lambda\}$ be generators of $\pi_1(T)$. For a representation $\rho: \pi_1(M) \to \mathrm{SL}(2; \mathbb{C})$, we can define the Chern–Simons invariant as follows.

Let A be an $\mathfrak{sl}(2; \mathbb{C})$-valued 1-form A on M that defines the flat connection corresponding to ρ. Assume that $\rho \big|_T$ is diagonalizable for simplicity. Then by a suitable conjugation, one has

$$\rho(\mu) = \begin{pmatrix} e^{2\sqrt{-1}\alpha} & 0 \\ 0 & e^{-2\sqrt{-1}\alpha} \end{pmatrix}, \quad \rho(\lambda) = \begin{pmatrix} e^{2\sqrt{-1}\beta} & 0 \\ 0 & e^{-2\sqrt{-1}\beta} \end{pmatrix}.$$

Then up to gauge equivalence, we can assume that A is of the form

$$\left(\begin{array}{cc} \sqrt{-1}\alpha & 0 \\ 0 & -\sqrt{-1}\alpha \end{array} \right) dx + \left(\begin{array}{cc} \sqrt{-1}\beta & 0 \\ 0 & -\sqrt{-1}\beta \end{array} \right) dy$$

near T, where dx and dy are the 1-forms corresponding to μ and λ respectively. Then the Chern–Simons invariant $\text{cs}_M(\rho; \alpha, \beta)$ of ρ associated with (α, β) is defined by

$$\text{CS}_M(\rho; \alpha, \beta) := -\frac{1}{8} \int_M \text{Tr} \left(dA \wedge A + \frac{2}{3} A \wedge A \wedge A \right) \in \mathbb{C}/(\pi^2 \mathbb{Z}).$$

Note that $\text{Im} \text{CS}_M(\rho_0; 0, 0)$ coincides with the hyperbolic volume if the interior of M possesses a complete hyperbolic structure, where ρ_0 is the Levi–Civita connection. See [13] for details.

In [25], we proved the following theorem.

Theorem 5.1 ([25]). The Chern–Simons invariant $\text{CS}_E(\rho; \xi, \eta)$ of the representation ρ associated with (ξ, η) is given by

$$\text{CS}_E(\rho; \xi, \eta) = S(\xi) - \frac{\xi \eta}{2}.$$
Here we choose μ and λ to be the meridian and the preferred longitude of E respectively, and we assume that ρ sends
\[
\mu \mapsto \begin{pmatrix} e^{\xi/2} & 0 \\ 0 & e^{-\xi/2} \end{pmatrix}, \quad \lambda \mapsto \begin{pmatrix} e^{\eta/2} & 0 \\ 0 & e^{-\eta/2} \end{pmatrix}.
\]
up to conjugation.

6. PROOFS OF LEMMAS

In this section, we give proofs of lemmas used in this paper.

Proof of Lemma 2.1. Putting $x := ye^{\theta\sqrt{-1}}$, the integral becomes
\[
\int_{C_0} \exp \left((2z - 1)ye^{\theta\sqrt{-1}} \right) \frac{1}{y \sinh(ye^{\theta\sqrt{-1}}) \sinh(\gamma ye^{\theta\sqrt{-1}})} \, dy.
\]
Noting that
\[
\sinh(as) \sim \begin{cases} \frac{1}{2} e^{as} & \text{as } s \to \infty \\ -\frac{1}{2} e^{-as} & \text{as } s \to -\infty \end{cases}
\]
and that
\[
\sinh(as) \sim \frac{1}{2} e^{as}
\]
for a complex number a with $\Re(a) > 0$, we have
\[
\exp \left((2z - 1)ye^{\theta\sqrt{-1}} \right) \frac{1}{y \sinh(ye^{\theta\sqrt{-1}}) \sinh(\gamma ye^{\theta\sqrt{-1}})} \sim \frac{1}{y} \exp \left((2z - 2 - \gamma)ye^{\theta\sqrt{-1}} \right)
\]
and
\[
\exp \left((2z - 1)ye^{\theta\sqrt{-1}} \right) \frac{1}{y \sinh(ye^{\theta\sqrt{-1}}) \sinh(\gamma ye^{\theta\sqrt{-1}})} \sim \frac{1}{y} \exp \left((2z + \gamma)ye^{\theta\sqrt{-1}} \right)
\]
where $\Re(e^{\theta\sqrt{-1}}) = \cos \theta > 0$ and $\Re(e^{\theta\sqrt{-1}}) = \frac{\xi}{2\pi} \sin \theta > 0$. So we have
\[
\left| \exp \left((2z - 1)ye^{\theta\sqrt{-1}} \right) \frac{1}{y \sinh(ye^{\theta\sqrt{-1}}) \sinh(\gamma ye^{\theta\sqrt{-1}})} \right| < \frac{C'}{y} \exp \left(\Re \left((2z - 2 - \gamma)ye^{\theta\sqrt{-1}} \right) \right)
\]
when $y > 0$ for a positive constant C', and
\[
\left| \exp \left((2z - 1)ye^{\theta\sqrt{-1}} \right) \frac{1}{y \sinh(ye^{\theta\sqrt{-1}}) \sinh(\gamma ye^{\theta\sqrt{-1}})} \right| < \frac{C'}{|y|} \exp \left(-\Re \left((2z + \gamma)ye^{\theta\sqrt{-1}} \right) \right)
\]
when $y < 0$ for a positive constant C'. Therefore, if $-\frac{\xi \sin \theta}{4N\pi} < \Re(ze^{\theta\sqrt{-1}}) < \cos \theta + \frac{\xi \sin \theta}{4N\pi}$, then the integrals
\[
\int_{1}^{\infty} \exp \left((2z - 1)ye^{\theta\sqrt{-1}} \right) \frac{1}{y \sinh(ye^{\theta\sqrt{-1}}) \sinh(\gamma ye^{\theta\sqrt{-1}})} \, dy
\]
and
\[
\int_{-\infty}^{-1} \exp \left((2z - 1)ye^{\theta\sqrt{-1}} \right) \frac{1}{y \sinh(ye^{\theta\sqrt{-1}}) \sinh(\gamma ye^{\theta\sqrt{-1}})} \, dy
\]
converge and the lemma follows. \[\square\]
Proof of Lemma 2.2. Putting \(x = ye^{\sqrt{-1} \theta} \), we have
\[
\int_{C_y} e^{(2z-1)x} \frac{x^m \sin x}{dx} = \frac{1}{e^{(m-1)\sqrt{-1} \theta}} \int_{C_0} e^{(2z-1)ye^{\sqrt{-1} \theta}} dy.
\]
So we need to show that
\[
\int_1^r e^{(2z-1)ye^{\sqrt{-1} \theta}} dy
\]
and
\[
\int_{-r}^{-1} e^{(2z-1)ye^{\sqrt{-1} \theta}} dy
\]
converge when \(r \to \infty \) for \(m = 0, 1, 2 \).

We have
\[
\left| \int_1^r e^{(2z-1)ye^{\sqrt{-1} \theta}} dy \right| \leq \int_1^r \frac{2e^{2y \text{Re}(y e^{\sqrt{-1} \theta})} - y \cos \theta}{y^m (e^{y \cos \theta} - e^{-y \cos \theta})} dy
\]
\[
= \int_1^r \frac{2e^{2y \text{Re}(y e^{\sqrt{-1} \theta})} - y \cos \theta}{y^m (1 - e^{-2y \cos \theta})} dy,
\]
which converges when \(r \to \infty \) since \(\text{Re}(ye^{\sqrt{-1} \theta}) < \cos \theta \).

We also have
\[
\left| \int_{-r}^{-1} e^{(2z-1)ye^{\sqrt{-1} \theta}} dy \right| \leq \int_{-r}^{-1} \frac{2e^{2y \text{Re}(y e^{\sqrt{-1} \theta})} - y \cos \theta}{y^m (e^{y \cos \theta} - e^{-y \cos \theta})} dy
\]
\[
= \int_{-r}^{-1} \frac{2e^{2y \text{Re}(y e^{\sqrt{-1} \theta})} - y \cos \theta}{y^m (e^{y \cos \theta} - 1)} dy,
\]
which converges when \(r \to \infty \) since \(\text{Re}(ye^{\sqrt{-1} \theta}) > 0 \). \(\square \)

Now we calculate the integrals in Lemma 2.2 to prove Lemma 2.5. The following lemma shows (2.2).

Lemma 6.1. If \(0 < \text{Re}(ye^{\sqrt{-1} \theta}) < \cos \theta \), then we have
\[
\int_{C_y} e^{(2z-1)x} \frac{x}{\sinh(x)} dx = \frac{-2\pi \sqrt{-1}}{1 - e^{-2\pi \sqrt{-1} z}}.
\]

Proof. Put \(C_y^r := C_0 \setminus \left((-\infty, -r) \cup (r, \infty) \right) \) for \(r > 1 \), \(C_y := e^{\sqrt{-1} \theta} C_y^r \), and \(C_y^{\pi} := \{ w + \pi \sqrt{-1} | \ w \in C_y^r \} \). We first note that
\[
\int_{C_y} e^{(2z-1)x} \frac{x}{\sinh(x)} dx = \int_{C_y^{\pi} + \pi \sqrt{-1}} e^{(2z-1)(x - \pi \sqrt{-1})} d(x - \pi \sqrt{-1})
\]
\[
= e^{-2\pi \sqrt{-1} z} \int_{C_y^{\pi} + \pi \sqrt{-1}} e^{(2z-1)x} \frac{x}{\sinh(x)} dx.
\]
Hence we have
\[
(1 - e^{-2\pi \sqrt{-1}z}) \int_{C^r_\theta} e^{(2z-1)x} \sinh(x) \, dx
= e^{-2\pi \sqrt{-1}z} \left(- \int_{C^r_\theta} e^{(2z-1)x} \sinh(x) \, dx + \int_{C^r_\theta + \pi \sqrt{-1}} e^{(2z-1)x} \sinh(x) \, dx \right)
= e^{-2\pi \sqrt{-1}z} \left(\int_{V^+_r} e^{(2z-1)x} \sinh(x) \, dx - \int_{V^-_r} e^{(2z-1)x} \sinh(x) \, dx \right)
= e^{-2\pi \sqrt{-1}z} 2\pi \sqrt{-1} \text{Res} \left(\frac{e^{(2z-1)x}}{\sinh(x)} ; x = \pi \sqrt{-1} \right),
\]
where \(V^+_r \) is the vertical segment connecting \(\pm r e^{\sqrt{-1} \theta} \) and \(\pm r e^{\sqrt{-1} \theta + \pi \sqrt{-1}} \), oriented upward. Since \(\text{Res} \left(\frac{e^{(2z-1)x}}{\sinh(x)} ; x = \pi \sqrt{-1} \right) = \lim_{x \to \pi \sqrt{-1}} e^{(2z-1)x} (x - \pi \sqrt{-1}) = -e^{(2z-1)\pi \sqrt{-1}} \), we have
\[
(1 - e^{-2\pi \sqrt{-1}z}) \int_{C^r_\theta} e^{(2z-1)x} \sinh(x) \, dx
= e^{-2\pi \sqrt{-1}z} \left(\int_{V^+_r} e^{(2z-1)x} \sinh(x) \, dx - \int_{V^-_r} e^{(2z-1)x} \sinh(x) \, dx \right) - 2\pi \sqrt{-1}.
\]
We will show that \(\lim_{r \to \infty} \int_{V^+_r} \frac{e^{(2z-1)x}}{\sinh(x)} \, dx = 0 \).

Since
\[
\int_{V^+_r} \frac{e^{(2z-1)x}}{\sinh(x)} \, dx = \pi \sqrt{-1} \int_0^1 \frac{e^{(2z-1)(\pm r e^{\sqrt{-1} \theta + \pi \sqrt{-1}s})}}{\sinh(\pm r e^{\sqrt{-1} \theta + \pi \sqrt{-1}s})} \, ds
\]
and \(|\sinh(w)| = \frac{1}{2r} |e^w - e^{-w}| \geq \frac{1}{r} |e \text{Re}w - e^{-\text{Re}w}| \) for any \(w \in \mathbb{C} \), we have
\[
\left| \int_{V^+_r} \frac{e^{(2z-1)x}}{\sinh(x)} \, dx \right| \leq \pi \int_0^1 \left| \frac{e^{(2z-1)(\pm r e^{\sqrt{-1} \theta + \pi \sqrt{-1}s})}}{\sinh(\pm r e^{\sqrt{-1} \theta + \pi \sqrt{-1}s})} \right| \, ds
\leq \pi \int_0^1 \left| \frac{2e \text{Re}((2z-1)(\pm r e^{\sqrt{-1} \theta + \pi \sqrt{-1}s}))}{e^{\text{Re}((2z-1)(\pm r e^{\sqrt{-1} \theta + \pi \sqrt{-1}s}))} - e^{-\text{Re}((2z-1)(\pm r e^{\sqrt{-1} \theta + \pi \sqrt{-1}s}))}} \right| \, ds
= \frac{2\pi e^{\pm \text{Re}(2z-1)e^{\sqrt{-1}\theta}}}{e^{r \cos \theta} - e^{-r \cos \theta}} \int_0^1 e^{-\pi s \text{Im}(2z-1)} \, ds.
\]
From the assumption \(0 < \text{Re}(ze^{\sqrt{-1}\theta}) < \cos \theta \), we have \(|\text{Re}((2z-1)e^{\sqrt{-1}\theta})| < \cos \theta \). Therefore we see that
\[
\left| \int_{V^+_r} \frac{e^{(2z-1)x}}{\sinh(x)} \, dx \right| \to 0
\]
and so we have
\[
\int_{C^r_\theta} \frac{e^{(2z-1)x}}{\sinh(x)} \, dx = \lim_{r \to \infty} \int_{C^r_\theta} \frac{e^{(2z-1)x}}{\sinh(x)} \, dx = \frac{-2\pi \sqrt{-1}}{1 - e^{-2\pi \sqrt{-1}z}}.
\]
\[\square \]

The following lemma shows (2.3) and (2.4).
Lemma 6.2. If $0 < \text{Re}(ze^{\theta \sqrt{-1}}) < \cos \theta$, then we have
\[
\int_{C_o} \frac{e^{(2z-1)x}}{x \sinh(x)} \, dx = \begin{cases}
-2 \log \left(1 - e^{2\pi \sqrt{-1} x} \right) & \text{if } \text{Im } z \geq 0, \\
-2\pi \sqrt{-1} (2z - 1) - 2 \log \left(1 - e^{-2\pi \sqrt{-1} x} \right) & \text{if } \text{Im } z < 0.
\end{cases}
\]
and
\[
\int_{C_o} \frac{e^{(2z-1)x}}{x^2 \sinh(x)} \, dx = \begin{cases}
-\frac{2\sqrt{-1}}{\pi} \text{Li}_2 \left(e^{2\pi \sqrt{-1} x} \right) & \text{if } \text{Im } z \geq 0, \\
-2\pi \sqrt{-1} (2z^2 - 2z + \frac{1}{2}) + \frac{2\sqrt{-1}}{\pi} \text{Li}_2 \left(e^{-2\pi \sqrt{-1} x} \right) & \text{if } \text{Im } z < 0.
\end{cases}
\]

Proof. First we assume that $\text{Im } z \geq 0$.

For a real number $r > 1$, let U_r^\pm be the vertical segment connecting $\pm re^{\theta \sqrt{-1}}$ and $\pm re^{\theta \sqrt{-1}} + r \sqrt{-1}$, and ∂f_r be the segment connecting $re^{\theta \sqrt{-1}} + r \sqrt{-1}$ and $re^{\theta \sqrt{-1}} + r \sqrt{-1}$. Here we assume that r is not an integer multiple of π so that ∂f_r avoids the poles of $\frac{e^{(2z-1)x}}{x^{m \sinh(x)}}$ ($m = 1, 2$) as a function of x. We orient U_r^\pm upward and ∂f_r from left to right. Note that the distance between the origin and the line containing U_r^\pm is $r \cos \theta$, and that the distance between the origin and the line containing ∂f_r is also $r \cos \theta$.

By the residue theorem we have
\[
\int_{C_o} \frac{e^{(2z-1)x}}{x^m \sinh(x)} \, dx - \int_{\partial f_r} \frac{e^{(2z-1)x}}{x^m \sinh(x)} \, dx
\]
\[
+ \int_{U_r^+} \frac{e^{(2z-1)x}}{x^m \sinh(x)} \, dx - \int_{U_r^-} \frac{e^{(2z-1)x}}{x^m \sinh(x)} \, dx
\]

for $m = 1, 2$, where $|r|$ is the greatest integer less than or equal to r. Since the order of the pole $x = k\pi \sqrt{-1}$ of $\frac{e^{(2z-1)x}}{x^{m \sinh(x)}}$ for $k = 1, 2, 3, \ldots$ is one, we have
\[
\text{Res} \left(\frac{e^{(2z-1)x}}{x^m \sinh(x)} ; x = k\pi \sqrt{-1} \right) = \lim_{t \to k\pi \sqrt{-1}} \frac{(x - k\pi \sqrt{-1})e^{(2z-1)x}}{x^m \sinh(x)} = \frac{e^{2k\pi \sqrt{-1}}}{k\pi \sqrt{-1}}
\]
and
\[
\text{Res} \left(\frac{e^{(2z-1)x}}{x^m \sinh(x)} ; x = k\pi \sqrt{-1} \right) = \lim_{x \to \pm k\pi \sqrt{-1}} \frac{(x \pm k\pi \sqrt{-1})e^{(2z-1)x}}{x^m \sinh(x)} = -\frac{e^{2k\pi \sqrt{-1}}}{k^2 \pi^2}.
\]

Next, we calculate integrals along ∂f_r and U_r^\pm. Note that since the distance between the origin and any point on these segments is greater than or equal to $r \cos \theta$, we have
\[
\left\lfloor \int_{\partial f_r} \frac{e^{(2z-1)x}}{x^m \sinh(x)} \, dx \right\rfloor \leq \frac{1}{(r \cos \theta)^m} \left\lfloor \int_{\partial f_r} \frac{e^{(2z-1)x}}{x^m \sinh(x)} \, dx \right\rfloor
\]
and
\[
\left\lfloor \int_{U_r^\pm} \frac{e^{(2z-1)x}}{x^m \sinh(x)} \, dx \right\rfloor \leq \frac{1}{(r \cos \theta)^m} \left\lfloor \int_{U_r^\pm} \frac{e^{(2z-1)x}}{x^m \sinh(x)} \, dx \right\rfloor
\]
for $m = 1, 2$.

Putting \(x = ye^{\sqrt{-1} \theta} + r \sqrt{-1} \), we have

\[
\left| \int_{\mathbb{R}} \frac{e^{(2\pi-1)x}}{x^m \sinh(x)} \, dx \right|
\leq \frac{1}{(r \cos \theta)^m} \left| \int_{-r}^{r} e^{(2\pi-1)(ye^{\sqrt{-1} \theta} + r \sqrt{-1})} \times e^{\sqrt{-1} \theta} \, dy \right|
\]

\[
\leq \frac{1}{(r \cos \theta)^m} \left| \int_{-r}^{r} e^{(2\pi-1)(ye^{\sqrt{-1} \theta} + r \sqrt{-1})} \, dy \right|
\]

\[
= \frac{e^{-2r \Im z}}{(r \cos \theta)^m} \int_{-r}^{r} e^{\theta \Re(z e^{\sqrt{-1} \theta})} \sinh(ye^{\sqrt{-1} \theta} + r \sqrt{-1}) \, dy
\]

\[
(M := \max_{1 \leq y \leq 1} \frac{\sinh(ye^{\sqrt{-1} \theta} + r \sqrt{-1})}{\sinh(ye^{\sqrt{-1} \theta} + r \sqrt{-1})} > 0)
\]

\[
\leq \frac{e^{-2r \Im z}}{(r \cos \theta)^m} \left(2M + \int_{-r}^{1} e^{y \cos \theta} \rho \cos \theta \, dy + \int_{-1}^{1} e^{y \cos \theta} \rho \cos \theta \, dy \right)
\]

\[
= 2 e^{-2r \Im z} \frac{(r \cos \theta)^m}{(r \cos \theta)^m} \left(M + \frac{\int_{-r}^{1} e^{y \cos \theta} \rho \cos \theta \, dy}{1 - e^{2y \cos \theta}} \right)
\]

\[
\leq \frac{e^{-2r \Im z}}{(r \cos \theta)^m} \left(M + \frac{\int_{-r}^{1} e^{y \cos \theta} \rho \cos \theta \, dy}{1 - e^{-2 \cos \theta}} \right)
\]

\[
= \frac{2e^{-2r \Im z}}{(r \cos \theta)^m} \left(M + \frac{\int_{-r}^{1} e^{y \cos \theta} \rho \cos \theta \, dy}{1 - e^{-2 \cos \theta}} \right)
\]

This converges to zero as \(r \to \infty \) since \(0 < \Re(z e^{\sqrt{-1} \theta}) < \cos \theta \) and \(\Im z \geq 0 \). Note that \(M \) depends on \(r \) but that it is bounded because it is periodic with respect to \(r \).

Putting \(x = r(e^{\sqrt{-1} \theta} + y \sqrt{-1}) \), we have

\[
\left| \int_{\mathbb{R}} \frac{e^{(2\pi-1)x}}{x^m \sinh(x)} \, dx \right|
\leq \frac{1}{(r \cos \theta)^m} \left| \int_{0}^{1} r e^{(2\pi-1)r(e^{\sqrt{-1} \theta} + y \sqrt{-1})} \times \sqrt{-1} \, dy \right|
\]

\[
\leq \frac{1}{(r \cos \theta)^m} \left| \int_{0}^{1} r e^{(2\pi-1)r(e^{\sqrt{-1} \theta} + y \sqrt{-1})} \, dy \right|
\]

\[
= \frac{2r e^{-2r \Im z}}{(r \cos \theta)^m} \left(M + \frac{\int_{0}^{1} e^{y \cos \theta} \rho \cos \theta \, dy}{1 - e^{-2 \cos \theta}} \right)
\]

\[
= \frac{2e^{-2r \Im z}}{(r \cos \theta)^m} \left(M + \frac{\int_{0}^{1} e^{y \cos \theta} \rho \cos \theta \, dy}{1 - e^{-2 \cos \theta}} \right)
\]

\[
= \frac{2e^{-2r \Im z}}{(r \cos \theta)^m} \left(M + \frac{\int_{0}^{1} e^{y \cos \theta} \rho \cos \theta \, dy}{1 - e^{-2 \cos \theta}} \right)
\]

\[
\to 0 \quad (r \to \infty)
\]
since \(\text{Re}(ze^{\sqrt{-1}r}) < \cos \theta \), noting that the last integral becomes either \(1\) (if \(z\) is real) or \(\frac{1-e^{-2\pi \text{Im} z}}{2\pi \text{Im} z}\) (otherwise).

Similarly, putting \(x = r(-e^{\sqrt{-1}r} + y\sqrt{-1})\), we have

\[
\left| \int_{C_{\theta}} e^{(2z-1)x} \frac{x^m \sinh(x)}{\sinh(r(e^{\sqrt{-1}r} - y\sqrt{-1}))} \right| \leq \frac{1}{(r \cos \theta)^m} \left| \int_{0}^{1} e^{-(2z-1)r(e^{\sqrt{-1}r} - y\sqrt{-1})} \sinh(r(e^{\sqrt{-1}r} - y\sqrt{-1})) \right| dy \\
\leq \frac{1}{(r \cos \theta)^m} \left| \int_{0}^{1} e^{-(2z-1)r(e^{\sqrt{-1}r} - y\sqrt{-1})} \sinh(r(e^{\sqrt{-1}r} - y\sqrt{-1})) \right| dy \\
\leq \frac{2r e^{-2r} \text{Re}(ze^{\sqrt{-1}r}) + r \cos \theta}{(r \cos \theta)^m} \left| \int_{0}^{1} e^{-2r \text{Im} z} dy \right| \\
= \frac{2r e^{-2r} \text{Re}(ze^{\sqrt{-1}r})}{(r \cos \theta)^m} \left| \int_{0}^{1} e^{-2r \text{Im} z} dy \right| \\
\to 0 \quad (r \to \infty)
\]

since \(0 < \text{Re}(ze^{\sqrt{-1}r})\). Therefore from (6.1) we have

\[
\lim_{r \to \infty} \int_{C_{\theta}} e^{(2z-1)x} \frac{x^m \sinh(x)}{x \sinh(x)} \, dx = \lim_{r \to \infty} \sum_{k=1}^{[r]} e^{2k\pi \sqrt{-1}} k,
\]

which converges to \(-2 \log(1 - e^{2\pi \sqrt{-1}})\) as \(r \to \infty\) when \(e^{2\pi \sqrt{-1}} < 1\), or \(e^{2\pi \sqrt{-1}} \neq 1\) (\(z \in \mathbb{R}\)), that is, when \(\text{Im} z \geq 0\) (Recall that we assume \(0 < \text{Re}(ze^{\sqrt{-1}r}) < \cos \theta\)).

We also have

\[
\lim_{r \to \infty} \int_{C_{\theta}} e^{(2z-1)x} \frac{x^m \sinh(x)}{x^2 \sinh(x)} \, dx = -\frac{2\sqrt{-1}}{\pi} \lim_{r \to \infty} \sum_{k=1}^{[r]} e^{2k\pi \sqrt{-1}} k^2,
\]

which converges to \(-\frac{2\sqrt{-1}}{\pi} \text{Li}_2(e^{2\pi \sqrt{-1}})\) as \(r \to \infty\) when \(\text{Im} z \geq 0\) from Lemma 6.3 below.

This completes the case where \(\text{Im} z \geq 0\).

Next we assume that \(\text{Im} z < 0\).

For \(r > 1\), let \(U^{\pm}_{r}\) be the vertical segment connecting \(\pm r(e^{\sqrt{-1}r} \text{Im} z - r\sqrt{-1})\) and \(H_r\), be the segment connecting \(-r(e^{\sqrt{-1}r} - r\sqrt{-1})\) and \(r(e^{\sqrt{-1}r} - r\sqrt{-1})\). We orient \(U^{\pm}_{r}\) upward and \(H_r\) from left to right. Note that the distance between the origin and the line containing \(U^{\pm}_{r}\) is \(r \cos \theta\), and that the distance between the origin and the line containing \(H_r\) is also \(r \cos \theta\).

For \(m = 1, 2\), we have

\[
\begin{align*}
-\int_{C_{\theta}} e^{(2z-1)x} \frac{x^m \sinh(x)}{x \sinh(x)} \, dx + \int_{U^+_{r}} e^{(2z-1)x} \frac{x^m \sinh(x)}{x \sinh(x)} \, dx \\
+ \int_{U^-_{r}} e^{(2z-1)x} \frac{x^m \sinh(x)}{x \sinh(x)} \, dx - \int_{H_r} e^{(2z-1)x} \frac{x^m \sinh(x)}{x \sinh(x)} \, dx \\
\leq 2\pi \sqrt{-1} \sum_{k=0}^{[r]} \text{Res}(e^{(2z-1)x} \frac{x^m \sinh(x)}{x \sinh(x)}; x = -k\pi \sqrt{-1}) .
\end{align*}
\]

Since the order of the pole \(x = -k\pi \sqrt{-1}\) of \(e^{(2z-1)x} \frac{x^m \sinh(x)}{x \sinh(x)} (m = 1, 2)\) for \(k = 1, 2, 3, \ldots\) is one, we have

\[
\text{Res}(e^{(2z-1)x} \frac{x^m \sinh(x)}{x \sinh(x)}; x = -k\pi \sqrt{-1}) = \lim_{x \to -k\pi \sqrt{-1}} \frac{(x + k\pi \sqrt{-1})e^{(2z-1)x}}{x \sinh(x)} = -e^{-2k\pi \sqrt{-1}} \frac{k\pi \sqrt{-1}}{k\pi \sqrt{-1}}.
\]
Since $e^{(2z-1)x} = 1 + (2z-1)x + \frac{(2z-1)^2x^2}{2} + \cdots$ and $\frac{1}{\sinh(x)} = \frac{1}{x} - \frac{x}{6} + \cdots$, we have

$$\text{Res}\left(\frac{e^{(2z-1)x}}{x\sinh(x)}; x = 0\right) = 2z - 1$$

and

$$\text{Res}\left(\frac{e^{(2z-1)x}}{x^2\sinh(x)}; x = 0\right) = 2z^2 - 2z + \frac{1}{3}.$$

We can prove the integrals along \mathcal{H}_r^- and \mathcal{U}_r^- converge to zero as $r \to \infty$ in similar ways to the cases of \mathcal{H}_r^+ and \mathcal{U}_r^+. Putting $x = ye^{\sqrt{-1}y} - r\sqrt{-1}$ and assuming $r > 1$, we have

$$\left|\int_{\mathcal{H}_r^-} \frac{e^{(2z-1)x}}{x^{m}\sinh(x)} \, dx\right| \leq \frac{1}{(r \cos \theta)^m} \left|\int_{-r}^{r} e^{(2z-1)(ye^{\sqrt{-1}y} - r\sqrt{-1})} \times e^{\sqrt{-1}y} \frac{dy}{\sinh(ye^{\sqrt{-1}y} - r\sqrt{-1})}\right|,$$

$$\leq \frac{e^{2r \Im z}}{(r \cos \theta)^m} \int_{-r}^{r} \left|\frac{e^{2y \Re (2z-1)e^{\sqrt{-1}y}}}{\sinh(ye^{\sqrt{-1}y} - r\sqrt{-1})}\right| \, dy,$$

$$\leq \frac{e^{2r \Im z}}{(r \cos \theta)^m} \left(2M + \int_{-r}^{r} \frac{2e^{2y \Re (ze^{\sqrt{-1}y} - y\cos \theta)}}{ie^{y \cos \theta} - e^{-y \cos \theta}} \, dy + \int_{1}^{r} \frac{2e^{2y \Re (ze^{\sqrt{-1}y} - y\cos \theta)}}{ie^{y \cos \theta} - e^{-y \cos \theta}} \, dy\right),$$

which converges to zero as $r \to \infty$.

Putting $x = r(e^{\sqrt{-1}y} - y\sqrt{-1})$, we have

$$\left|\int_{\mathcal{U}_r^+} \frac{e^{(2z-1)x}}{x^{m}\sinh(x)} \, dx\right| \leq \frac{1}{(r \cos \theta)^m} \left|\int_{0}^{1} e^{(2z-1)(r(e^{\sqrt{-1}y} - y\sqrt{-1}))} \times (-r\sqrt{-1}) \frac{dy}{\sinh(r(e^{\sqrt{-1}y} - y\sqrt{-1}))}\right|,$$

$$\leq \frac{2r e^{2r \Im z}}{(r \cos \theta)^m} \left|\int_{0}^{1} e^{-r \cos \theta} \, dy\right|,$$

$$= \frac{2e^{2r \Im z}}{r^{m-1} \cos \theta(1 - e^{-2r \cos \theta})} \times \int_{0}^{1} e^{2r \Im z} \, dy,$$

since $0 < \Re(ze^{\sqrt{-1}y}) < \cos \theta$, noting that the last integral becomes either 1 (if z is real) or $\frac{e^{2r \Im z}}{2r \Im z}$ (otherwise).
Similarly, putting \(x = -r(e^{\sqrt{-1}y} + y\sqrt{-1}) \), we have
\[
\left| \int_{\mathbb{U}} \frac{e^{(2z-1)x}}{x^m \sinh(x)} \, dx \right| \leq \frac{1}{(r \cos \theta)^m} \left| \int_0^1 e^{-r(2z-1)(e^{\sqrt{-1}y} + y\sqrt{-1})} \times (-r \sqrt{-1}) \, dy \right|
\]
\[
\leq 2re^{-2r \Re(z e^{\sqrt{-1}y}) + r \cos \theta} \left| \int_0^1 e^{2ry \Im z} \, dy \right|
\]
\[
= \frac{2e^{-2r \Re(z e^{\sqrt{-1}y})}}{r^{m-1} \cos \theta (1 - e^{-2r \cos \theta})} \times \int_0^1 e^{2ry \Im z} \, dy
\]
\[
\to 0 \quad (r \to \infty)
\]
since \(0 < \Re(ze^{\sqrt{-1}y}) \). So from (6.2) we have
\[
\lim_{r \to \infty} \int_{C_\delta} \frac{e^{(2z-1)x}}{x \sinh(x)} \, dx = -2\pi \sqrt{-1}(2z - 1) + 2 \lim_{r \to \infty} \sum_{k=1}^{\lfloor r \rfloor} e^{-2k\pi \sqrt{-1}r/k}.
\]

Since this series converges to \(-\log(1 - e^{-2\pi \sqrt{-1}})\) as \(r \to \infty \) if \(\Im z < 0 \) from Lemma 6.3, we finally have
\[
\int_{C_\delta} \frac{e^{(2z-1)x}}{x \sinh(x)} \, dx = -2\pi \sqrt{-1}(2z - 1) - 2 \log(1 - e^{-2\pi \sqrt{-1}}),
\]
completing the proof when \(\Im z < 0 \).

Similarly, we have
\[
\lim_{r \to \infty} \int_{C_\delta} \frac{e^{(2z-1)x}}{x^2 \sinh(x)} \, dx = -2\pi \sqrt{-1} \lim_{r \to \infty} \sum_{k=0}^{\lfloor r \rfloor} \text{Res} \left(\frac{e^{(2z-1)x}}{x^2 \sinh(x)} ; x = -k\pi \sqrt{-1} \right).
\]
\[
= -2\pi \sqrt{-1} \left(2z^2 - 2z + \frac{1}{3} \right) + \frac{2\sqrt{-1}}{\pi} \lim_{r \to \infty} \sum_{k=1}^{\lfloor r \rfloor} e^{-2k\pi \sqrt{-1}r/k^2}.
\]
The series converges to \(\text{Li}_2 \left(e^{-2\pi \sqrt{-1}} \right) \) and so
\[
\int_{C_\delta} \frac{e^{(2z-1)x}}{x^2 \sinh(x)} \, dx = -2\pi \sqrt{-1} \left(2z^2 - 2z + \frac{1}{3} \right) + \frac{2\sqrt{-1}}{\pi} \text{Li}_2 \left(e^{-2\pi \sqrt{-1}} \right),
\]
completing the proof when \(\Im z < 0 \). \(\square \)

We give a proof for the following well-known lemma.

Lemma 6.3. For a complex number \(w \) with \(|w| \leq 1 \), the series \(\sum_{k=1}^{\infty} \frac{w^k}{k} \) converges to \(\text{Li}_2(w) \). Here we use \(\text{Li}_2(w) := -\int_0^w \frac{\log(1-t)}{t} \, dt \) as the definition of the dilogarithm.

Proof. Put \(a_k := \frac{1}{k^2} \).

Then we have
\[
\left| \frac{a_{k+1}}{a_k} \right| = \left(\frac{k}{k + 1} \right)^2 \to 1
\]
as \(k \to \infty \). Therefore from d’Alembert’s ratio test, the radius of convergence of the power series \(\sum_{k=1}^{\infty} a_k w^k \) is 1. So we can differentiate it term by term if \(|w| < 1 \),
and we obtain
\[
\frac{d}{dw} \left(\frac{\sum_{k=1}^{\infty} w^k}{k^2} \right) = \sum_{k=1}^{\infty} \frac{w^{k-1}}{k} = -\frac{\log(1-w)}{w}.
\]

Therefore we conclude that \(\sum_{k=1}^{\infty} \frac{w^k}{k^2} = -\int_0^w \frac{\log(1-t)}{t} \, dt\).

If \(w = 1\), the series \(\sum_{k=1}^{\infty} a_k\) converges by the integral test.

Finally, we assume that \(|w| = 1\) with \(w \neq 1\), and apply Abel’s test. Since the sequence \(\{a_k\}\) is positive and monotonically decreasing with \(\lim_{k \to \infty} a_k = 0\), the power series \(\sum_{k=1}^{\infty} a_k w^k\) converges if \(|w| = 1\) (\(w \neq 1\)). We can also apply Abel’s theorem to conclude that \(\sum_{k=1}^{\infty} a_k z^k\) converges to \(\sum_{k=1}^{\infty} a_k w^k\) provided that \(z\) approaches \(w\) along the radius. Note that this includes the case \(w = 1\). Therefore we also conclude that \(\sum_{k=1}^{\infty} \frac{w^k}{k^2} = -\int_0^w \frac{\log(1-t)}{t} \, dt\) for the case \(|w| = 1\) by choosing the integral path as the radius connecting \(0\) and \(w\). \(\square\)

We prove that \(\frac{1}{N} T_N(z)\) uniformly converges to \(\frac{1}{\xi} L_2(z)\).

Proof of Proposition 2.8. We have

\[
\left| T_N(z) - \frac{N}{\xi} L_2(z) \right| = \frac{1}{4} \left| \int_{C_\theta} \left(\frac{e^{(2\xi-1)x}}{x \sinh(x) \sinh(\gamma x)} - \frac{e^{(2\xi-1)x}}{\gamma x^2 \sinh(x)} \right) \, dx \right|
\]

\[
= \frac{1}{4} \left| \int_{C_\theta} e^{(2\xi-1)x} \frac{\gamma x}{x^2 \sinh(x)} - 1 \, dx \right|
\]

\[
\leq \frac{\pi N}{2|\xi|} \int_{C_\theta} \left| \frac{e^{(2\xi-1)x}}{x^2 \sinh(x)} - 1 \right| \, dx.
\]

Since \(\frac{\gamma^2 x}{\sinh(\gamma x)} = 1 - \frac{(\gamma x)^2}{6} + O((\gamma x)^4), \left| \frac{\gamma x}{\sinh(\gamma x)} - 1 \right| < \frac{C|\gamma|^3}{N^2}\) for a positive constant \(C\) since \(\gamma = \frac{\xi}{2N^2} - 1\). So we have

\[
\left| T_N(z) - \frac{N}{\xi} L_2(z) \right| \leq \frac{C'}{N} \int_{C_\theta} \left| \frac{e^{(2\xi-1)x}}{x \sinh(x)} \right| \, dx,
\]

where \(C' := \frac{C\pi}{2N^2}\). Put

\[
I_+ := \lim_{r \to \infty} \int_{r e^{\gamma \pi i}} e^{-\gamma \pi i} \left| \frac{e^{(2\xi-1)x}}{x \sinh(x)} \right| \, dx,
\]

\[
I_- := \lim_{r \to \infty} \int_{-r e^{-\gamma \pi i}} e^{-\gamma \pi i} \left| \frac{e^{(2\xi-1)x}}{x \sinh(x)} \right| \, dx,
\]

\[
I_0 := \int_{|x|=1, \theta \leq \arg x \leq \pi + \theta} \left| \frac{e^{(2\xi-1)x}}{x \sinh(x)} \right| \, dx.
\]
Putting $x := e^{\sqrt{-1} \theta} y$, we have

$$I_+ = \int_{1}^{\infty} \frac{e^{(2z-1)ye^{\sqrt{-1} \tau}}}{\sinh(ye^{\sqrt{-1} \tau})} \, dy \leq \int_{1}^{\infty} \frac{2e^{2y \text{Re}(ze^{\sqrt{-1} \tau}) - y \cos \theta}}{e^{y \cos \theta} - e^{-y \cos \theta}} \, dy = \int_{1}^{\infty} \frac{2e^{2y \text{Re}(ze^{\sqrt{-1} \tau}) - \cos \theta}}{1 - e^{-2y \cos \theta}} \, dy \leq \frac{2}{1 - e^{-2 \cos \theta}} \int_{1}^{\infty} e^{-2\nu y} \, dy \leq \frac{e^{2\nu}}{(1 - e^{-2 \cos \theta}) \nu}.$$

Here we use the assumption $\text{Re}(ze^{\sqrt{-1} \tau}) \leq \cos \theta - \nu$.

Similarly, we have

$$I_- = \int_{-\infty}^{-1} \frac{e^{(2z-1)ye^{\sqrt{-1} \tau}}}{\sinh(ye^{\sqrt{-1} \tau})} \, dy \leq \int_{-\infty}^{-1} \frac{2e^{2y \text{Re}(ze^{\sqrt{-1} \tau}) - y \cos \theta}}{e^{-y \cos \theta} - e^{y \cos \theta}} \, dy = \int_{-\infty}^{-1} \frac{2e^{2y \text{Re}(ze^{\sqrt{-1} \tau})}}{1 - e^{2y \cos \theta}} \, dy \leq \frac{2}{1 - e^{-2 \cos \theta}} \int_{-\infty}^{-1} e^{2\nu y} \, dy \leq \frac{e^{2\nu}}{(1 - e^{-2 \cos \theta}) \nu}.$$

Here we use the assumption $\text{Re}(ze^{\sqrt{-1} \tau}) \geq \nu$.

Finally, putting $x = e^{\sqrt{-1} \tau}$ ($\theta \leq \tau \leq \theta + \pi$) and $L := \min_{\theta \leq \tau \leq \theta + \pi} |\sinh(e^{\sqrt{-1} \tau})| > 0$, we have

$$I_0 = \int_{\theta}^{\theta + \pi} \frac{e^{(2z-1)e^{\sqrt{-1} \tau}}}{|\sinh(e^{\sqrt{-1} \tau})|} |\sqrt{e^{\sqrt{-1} \tau}}| \, d\tau \leq \frac{1}{L} \int_{\theta}^{\theta + \pi} e^{2 \text{Re}(ze^{\sqrt{-1} \tau}) - \cos \tau} \, d\tau = \frac{1}{L} \int_{\theta}^{\theta + \pi} e^{(2 \text{Re} z - 1) \cos \tau - 2 \sin \tau \text{Im} z} \, d\tau,$$

which is bounded from the above because both $\text{Re} z$ and $\text{Im} z$ are bounded.

Therefore we conclude that $|T_N(z) - \frac{N}{2} L_2(z)| \leq C'' N^{-\epsilon}$ for some constant C'' that does not depend on z. \hfill \square

Proof of Lemma 3.1. Recall that $\gamma = \frac{\epsilon}{2N\sqrt{-1}}$.

The colored Jones polynomial of the figure-eight knot 25
By the definition of $T_N(z)$, we have
\[
T_N \left(\frac{\xi}{2\pi \sqrt{1 - 1/N}} (1 + \frac{1}{2N}) \right) = \frac{1}{4} \int_{C_\alpha} \frac{e^{\left(\frac{\xi}{2\pi \sqrt{1 - 1/N}} (1 + \frac{1}{2N}) + 1 \right) x} - e^{\left(\frac{\xi}{2\pi \sqrt{1 - 1/N}} (1 + \frac{1}{2N}) - 1 \right) x}}{x \sinh(x) \sinh(\gamma x)} \, dx
\]
\[
= \frac{1}{2} \int_{C_\alpha} \frac{e^{\left(\frac{\xi}{2\pi \sqrt{1 - 1/N}} + 1 \right) x}}{x \sinh(x)} \, dx,
\]
which equals $\pi \sqrt{1 - \xi} - \xi - \log(1 - e^{-\xi})$ from Lemma 6.2.

Remark 6.4. The proof of Lemma 2.3 in [21] is wrong, which was informed by Ka Ho Wong.

References

[1] J. E. Andersen and S. K. Hansen, *Asymptotics of the quantum invariants for surgeries on the figure 8 knot*, J. Knot Theory Ramifications 15 (2006), no. 4, 479–548. MR 2221531

[2] T. Dimofte, S. Gukov, J. Lenells, and D. Zagier, *Exact results for perturbative Chern-Simons theory with complex gauge group*, Commun. Number Theory Phys. 3 (2009), no. 2, 363–443. MR 2551896 (2010k:58038)

[3] J. Dubois, *Non abelian twisted Reidemeister torsion for fibered knots*, Canad. Math. Bull. 49 (2006), no. 1, 55–71. MR 2198719

[4] L. D. Faddeev, *Discrete Heisenberg-Weyl group and modular group*, Lett. Math. Phys. 34 (1995), no. 3, 249–254. MR 1345554 (96i:46075)

[5] S. Garoufalidis and T. T. Q. Lê, *Asymptotics of the colored Jones function of a knot*, Geom. Topol. 15 (2011), no. 4, 2135–2180. MR 2860990

[6] M. Gromov, *Volume and bounded cohomology*, Inst. Hautes Études Sci. Publ. Math. (1982), no. 56, 5–99 (1983). MR 686042

[7] K. Habiro, *On the colored Jones polynomials of some simple links*, Sūrikaisekikenkyūsho Kōkyūroku (2000), no. 1172, 34–43. MR 1 805 727

[8] K. Hikami and H. Murakami, *Colored Jones polynomials with polynomial growth*, Commun. Contemp. Math. 10 (2008), no. suppl. 1, 815–834. MR 2468365

[9] V. F. R. Jones, *A polynomial invariant for knots via von Neumann algebras*, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103–111. MR 766964

[10] R. M. Kashaev, *A link invariant from quantum dilogarithm*, Modern Phys. Lett. A 10 (1995), no. 19, 1409–1418. MR 1341338

[11] , *The hyperbolic volume of knots from the quantum dilogarithm*, Lett. Math. Phys. 39 (1997), no. 3, 269–275. MR 1434238

[12] R. Kirby and P. Melvin, *The 3-manifold invariants of Witten and Reshetikhin-Turaev for sl(2, C)*, Invent. Math. 105 (1991), no. 3, 473–545. MR 1117149

[13] P. Kirk and E. Klassen, *Chern-Simons invariants of 3-manifolds decomposed along tori and the circle bundle over the representation space of T^2*, Comm. Math. Phys. 153 (1993), no. 3, 521–557. MR 1218931

[14] T. T. Q. Lê, *Quantum invariants of 3-manifolds: integrality, splitting, and perturbative expansion*, Topology Appl. 127 (2003), no. 1-2, 125–152. MR MR1953323 (2005b:57026)

[15] G. Masbaum, *Skein-theoretical derivation of some formulas of Habiro*, Algebr. Geom. Topol. 3 (2003), 537–556 (electronic). MR MR1997328 (2004f:57013)

[16] R. Meyerhoff, *Density of the Chern-Simons invariant for hyperbolic 3-manifolds*, Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 112, Cambridge Univ. Press, Cambridge, 1986, pp. 217–239. MR 903867

[17] H. Murakami, *Some limits of the colored Jones polynomials of the figure-eight knot*, Kyungpook Math. J. 44 (2004), no. 3, 369–383. MR 2095421
[18] _____, The colored Jones polynomials and the Alexander polynomial of the figure-eight knot, J. Geom. Topol. 7 (2007), no. 2, 249–269. MR 2349300
[19] _____, Various generalizations of the volume conjecture, The interaction of analysis and geometry, Contemp. Math., vol. 424, Amer. Math. Soc., Providence, RI, 2007, pp. 165–186. MR 2316336
[20] _____, An introduction to the volume conjecture and its generalizations, Acta Math. Vietnam. 33 (2008), no. 3, 219–253. MR 2501844
[21] _____, The coloured Jones polynomial, the Chern-Simons invariant, and the Reidemeister torsion of the figure-eight knot, J. Topol. 6 (2013), no. 1, 193–216. MR 3029425
[22] _____, Erratum to ‘Some limits of the colored Jones polynomials of the figure-eight knot’, Kyungpook Math. J. 56 (2016), no. 2, 639–645.
[23] H. Murakami and J. Murakami, The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186 (2001), no. 1, 85–104. MR 1828373
[24] H. Murakami, J. Murakami, M. Okamoto, T. Takata, and Y. Yokota, Kashaev’s conjecture and the Chern-Simons invariants of knots and links, Experiment. Math. 11 (2002), no. 3, 427–435. MR 1959752
[25] H. Murakami and A. T. Tran, The colored Jones polynomial of a cable of the figure-eight knot, arXiv:2010.03698 [math.GT], 2020.
[26] H. Murakami and Y. Yokota, The colored Jones polynomials of the figure-eight knot and its Dehn surgery spaces, J. Reine Angew. Math. 607 (2007), 47–68. MR 2338120
[27] _____, Volume conjecture for knots, SpringerBriefs in Mathematical Physics, vol. 30, Springer, Singapore, 2018. MR 3837111
[28] T. Ohtsuki, On the asymptotic expansion of the Kashaev invariant of the 5_2 knot, Quantum Topol. 7 (2016), no. 4, 669–735. MR 3593566
[29] T. Ohtsuki and T. Takata, On the Kashaev invariant and the twisted Reidemeister torsion of two-bridge knots, Geom. Topol. 19 (2015), no. 2, 853–952. MR 3336275
[30] T. Ohtsuki and Y. Yokota, On the asymptotic expansions of the Kashaev invariant of the knots with 6 crossings, Math. Proc. Cambridge Philos. Soc. 165 (2018), no. 2, 287–339. MR 3834003
[31] J. Porti, Torsion de Reidemeister pour les variétés hyperboliques, Mem. Amer. Math. Soc. 128 (1997), no. 612, x+139. MR 1396960
[32] N. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547–597. MR 1091619
[33] T. Soma, The Gromov invariant of links, Invent. Math. 64 (1981), no. 3, 445–454. MR 632984

Graduate School of Information Sciences, Tohoku University, Aramaki-aza-Aoba 6-3-09, Aoba-ku, Sendai 980-8579, Japan
Email address: hitoshi@tohoku.ac.jp

Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
Email address: att140830@utdallas.edu