Citation
Jong, R. S. de. (2010). Admissible constants for genus 2 curves. Bulletin Of The London Mathematical Society, 42(3), 405-411. doi:10.1112/blms/bdp132

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/61746

Note: To cite this publication please use the final published version (if applicable).
ADMISSIBLE CONSTANTS FOR GENUS 2 CURVES

ROBIN DE JONG

ABSTRACT. S.-W. Zhang recently introduced a new adelic invariant \(\phi \) for curves of genus at least 2 over number fields and function fields. We calculate this invariant when the genus is equal to 2.

1. Introduction

Let \(X \) be a smooth projective geometrically connected curve of genus \(g \geq 2 \) over a field \(k \) which is either a number field or the function field of a curve over a field. Assume that \(X \) has semistable reduction over \(k \). For each place \(v \) of \(k \), let \(N_v \) be the usual local factor connected with the product formula for \(k \).

In a recent paper [11] S.-W. Zhang proves the following theorem:

Theorem 1.1. Let \((\omega, \omega)_a \) be the admissible self-intersection of the relative dualizing sheaf of \(X \). Let \(\langle \Delta_\xi, \Delta_\xi \rangle \) be the height of the canonical Gross-Schoen cycle on \(X^3 \). Then the formula:

\[
(\omega, \omega)_a = \frac{2g-2}{2g+1} \left(\langle \Delta_\xi, \Delta_\xi \rangle + \sum_v \phi(X_v) \log N_v \right)
\]

holds, where the \(\phi(X_v) \) are local invariants associated to \(X \otimes k_v \), defined as follows:

- if \(v \) is a non-archimedean place, then:
 \[
 \phi(X_v) = -\frac{1}{4} \delta(X_v) + \frac{1}{4} \int_{R(X_v)} g_v(x, x)((10g+2)\mu_v - \delta_{K_{X_v}}),
 \]
 where:
 - \(\delta(X_v) \) is the number of singular points on the special fiber of \(X \otimes k_v \),
 - \(R(X_v) \) is the reduction graph of \(X \otimes k_v \),
 - \(g_v \) is the Green’s function for the admissible metric \(\mu_v \) on \(R(X_v) \),
 - \(K_{X_v} \) is the canonical divisor on \(R(X_v) \).

In particular, \(\phi(X_v) = 0 \) if \(X \) has good reduction at \(v \);

- if \(v \) is an archimedean place, then:
 \[
 \phi(X_v) = \sum_{\ell} \frac{2}{\lambda_\ell} \sum_{m,n=1}^g \left| \int_{X(k_v)} \phi_\ell \omega_m \overline{\omega_n} \right|^2,
 \]
 where \(\phi_\ell \) are the normalized real eigenforms of the Arakelov Laplacian on \(X(k_v) \) with eigenvalues \(\lambda_\ell > 0 \), and \((\omega_1, \ldots, \omega_g) \) is an orthonormal basis for the hermitian inner product \((\omega, \eta) \mapsto \frac{i}{2} \int_{X(k_v)} \omega \overline{\eta} \) on the space of holomorphic differentials.

The author is supported by a VENI grant from the Netherlands Organisation for Scientific Research (NWO). He thanks the Max Planck Institut für Mathematik in Bonn for its hospitality during a visit.
Apart from giving an explicit connection between the two canonical invariants
\((\omega, \omega)\) and \(\langle \Delta_\xi, \Delta_\xi \rangle\), Zhang’s theorem has a possible application to the effective Bogomolov conjecture, i.e., the question of giving effective positive lower bounds for \((\omega, \omega)\). Indeed, the height of the canonical Gross-Schoen cycle \(\langle \Delta_\xi, \Delta_\xi \rangle\) is known to be non-negative in the case of a function field in characteristic zero, and should be non-negative in general by a standard conjecture of Gillet-Soulé (op. cit., Section 2.4). Further, the invariant \(\varphi\) should be non-negative, and Zhang proposes, in the non-archimedean case, an explicit lower bound for it which is positive in the case of non-smooth reduction (op. cit., Conjecture 1.4.2). Note that it is clear from the definition that \(\varphi\) is non-negative in the archimedean case; in fact it is positive (op. cit., Remark after Proposition 2.5.3).

Besides \(\varphi(X_v)\), Zhang also considers the invariant \(\lambda(X_v)\) defined by:

\[
\lambda(X_v) = \frac{g-1}{6(2g+1)} \varphi(X_v) + \frac{1}{12} \left(\epsilon(X_v) + \delta(X_v) \right),
\]

where:

- if \(v\) is a non-archimedean place, the invariant \(\delta(X_v)\) is as above, and:
\[
\epsilon(X_v) = \int_{R(X_v)} g_v(x, x)((2g-2)\mu_v + \delta_{K_X,v}),
\]

- if \(v\) is an archimedean place, then:
\[
\delta(X_v) = \delta_F(X_v) - 4g \log(2\pi)
\]

with \(\delta_F(X_v)\) the Faltings delta-invariant of the compact Riemann surface \(X(\bar{k}_v)\), and \(\epsilon(X_v) = 0\).

The significance of this invariant is that if \(\deg \det R\pi_* \omega\) denotes the (non-normalized) geometric or Faltings height of \(X\) one has a simple expression:

\[
\deg \det R\pi_* \omega = \frac{g-1}{6(2g+1)} \langle \Delta_\xi, \Delta_\xi \rangle + \sum_v \lambda(X_v) \log N_v
\]

for \(\deg \det R\pi_* \omega\), as follows from the Noether formula:

\[
12 \deg \det R\pi_* \omega = (\omega, \omega) + \sum_v (\epsilon(X_v) + \delta(X_v)) \log N_v.
\]

Now assume that \(X\) has genus \(g = 2\). Our purpose is to calculate the invariants \(\varphi(X_v)\) and \(\lambda(X_v)\) explicitly. For the \(\lambda\)-invariant we obtain:

- if \(v\) is non-archimedean, then:
\[
10\lambda(X_v) = \delta_0(X_v) + 2\delta_1(X_v),
\]

where \(\delta_0(X_v)\) is the number of non-separating nodes and \(\delta_1(X_v)\) is the number of separating nodes in the special fiber of \(X \otimes k_v\);

- if \(v\) is archimedean, then:
\[
10\lambda(X_v) = -20 \log(2\pi) - \log \|\Delta_2\|(X_v),
\]

where \(\|\Delta_2\|(X_v)\) is the normalized modular discriminant of the compact Riemann surface \(X(\bar{k}_v)\) (see below).

Thus, the \(\lambda(X_v)\) are precisely the well-known local invariants corresponding to the discriminant modular form of weight 10 \([6][9][10]\). In particular we have:

\[
\deg \det R\pi_* \omega = \sum_v \lambda(X_v) \log N_v
\]
and we recover the fact that the height of the canonical Gross-Schoen cycle vanishes for X.

2. The non-archimedean case

Let k be a complete discretely valued field. Let X be a smooth projective geometrically connected curve of genus 2 over k. Assume that X has semistable reduction over k. In this section we give the invariants $\phi(X)$ and $\lambda(X)$ of X.

The proof of our result is based on the classification of the semistable fiber types in genus 2 and consists of a case-by-case analysis. The notation we employ for the various fiber types is as in [8]. We remark that there are no restrictions on the residue characteristic of k.

Theorem 2.1. The invariant $\phi(X)$ is given by the following table, depending on the type of the special fiber of the regular minimal model of X:

Type	δ_0	δ_1	ε	ϕ
I	0	0	0	0
II(a)	0	a	a	a
III(a)	a	0	$\frac{1}{6}a$	$\frac{1}{12}a$
IV(a,b)	b	a	$a + \frac{1}{6}b$	$a + \frac{1}{12}b$
V(a,b)	$a + b$	0	$\frac{1}{6}(a + b)$	$\frac{1}{12}(a + b)$
VI(a,b,c)	$b + c$	a	$a + \frac{1}{6}(b + c)$	$a + \frac{1}{12}(b + c)$
VII(a,b,c)	$a + b + c$	0	$\frac{1}{6}(a + b + c) + \frac{1}{6 \frac{abc}{ab+bc+ca}}$	$\frac{1}{12}(a + b + c) + \frac{5}{12 \frac{abc}{ab+bc+ca}}$

For $\lambda(X)$ the formula:

$$10\lambda(X) = \delta_0(X) + 2\delta_1(X)$$

holds.

Let us indicate how the theorem is proved. Let r be the effective resistance function on the reduction graph $R(X)$ of X, extended bilinearly to a pairing on $\text{Div}(R(X))$. By Corollary 2.4 of [2] the formula:

$$\phi(X) = -\frac{1}{4}(\delta_0(X) + \delta_1(X)) - \frac{3}{8}r(K,K) + 2\varepsilon(X)$$

holds, where K is the canonical divisor on $R(X)$. The invariant $r(K,K)$ is calculated by viewing $R(X)$ as an electrical circuit. The invariant ε is calculated on the basis of explicit expressions for the admissible measure and admissible Green’s function; see [7] and [8] for such computations. The results we find are as follows:
The values of φ follow.

The formula for $\lambda(X)$ is verified for each case separately.

3. The archimedean case

Let X be a compact and connected Riemann surface of genus 2. In this section we calculate the invariants $\varphi(X)$ and $\lambda(X)$ of X. Let $\text{Pic}(X)$ be the Picard variety of X, and for each integer d denote by $\text{Pic}^d(X)$ the component of $\text{Pic}(X)$ of degree d. We have a canonical theta divisor Θ on $\text{Pic}^1(X)$, and a standard hermitian metric $\| \cdot \|$ on the line bundle $\mathcal{O}(\Theta)$ on $\text{Pic}^1(X)$. Let ν be its curvature form. We have:

$$\int_{\text{Pic}^1(X)} \nu^2 = \Theta^2 = 2.$$

Let K be a canonical divisor on X, and let P be the set of 10 points P of $\text{Pic}^1(X) - \Theta$ such that $2P \equiv K$. Denote by $\| \theta \|$ the norm of the canonical section θ of $\mathcal{O}(\Theta)$. We let:

$$\| \Delta_2 \| (X) = 2^{-12} \prod_{P \in P} \| \theta \|^2 (P),$$

the normalized modular discriminant of X, and we let $\| H \| (X)$ be the invariant of X defined by:

$$\log \| H \| (X) = \frac{1}{2} \int_{\text{Pic}^1(X)} \log \| \theta \| \nu^2.$$

These two invariants were introduced in [1].

Theorem 3.1. For the φ-invariant and the λ-invariant of X, the formulas:

$$\varphi(X) = -\frac{1}{2} \log \| \Delta_2 \| (X) + 10 \log \| H \| (X)$$

and

$$10\lambda(X) = -20 \log(2\pi) - \log \| \Delta_2 \| (X)$$

hold.

The key to the proof is the following lemma. Let Φ be the map:

$$X^2 \to \text{Pic}^1(X), \quad (x, y) \mapsto [2x - y].$$

Lemma 3.2. The map Φ is finite flat of degree 8.
Proof. Let $y \mapsto y'$ be the hyperelliptic involution of X. We have a commutative diagram:

$$
\begin{array}{ccc}
X^2 & \xrightarrow{\Phi} & \text{Pic}^1(X) \\
\alpha \downarrow & & \beta \downarrow \\
X^2 & \xrightarrow{\Phi'} & \text{Pic}^3(X)
\end{array}
$$

where α and β are isomorphisms, with:

- $\alpha : X^2 \to X^2$, $(x, y) \mapsto (x, y')$
- $\Phi' : X^2 \to \text{Pic}^3(X)$, $(x, y) \mapsto [2x + y]$
- $\beta : \text{Pic}^3(X) \to \text{Pic}^1(X)$, $[D] \mapsto [D - K]$.

It suffices to prove that Φ' is finite flat of degree 8. Let $p : X^{(3)} \to \text{Pic}^3(X)$ be the natural map; then p is a \mathbb{P}^1-bundle over $\text{Pic}^3(X)$, and Φ' has a natural injective lift to $X^{(3)}$. A point D on $X^{(3)}$ is in the image of this lift if and only if D, when seen as an effective divisor on X, contains a point which is ramified for the morphism $X \to \mathbb{P}^1$ determined by the fiber $|D|$ of p in which D lies. Since every morphism $X \to \mathbb{P}^1$ associated to a D on $X^{(3)}$ is ramified, the map Φ' is surjective. As every morphism $X \to \mathbb{P}^1$ associated to a D on $X^{(3)}$ has only finitely many ramification points, the map Φ' is quasi-finite, hence finite since Φ' is proper. As X^2 and $\text{Pic}^3(X)$ are smooth and the fibers of Φ' are equidimensional, the map Φ' is flat.

By Riemann-Hurwitz the generic $X \to \mathbb{P}^1$ associated to a D on $X^{(3)}$ has 8 simple ramification points. It follows that the degree of Φ' is 8. □

Let $G : X^2 \to \mathbb{R}$ be the Arakelov-Green’s function of X, and let Δ be the diagonal divisor on X^2. We have a canonical hermitian metric on the line bundle $\mathcal{O}(\Delta)$ on X^2 by putting $\|1\|(x, y) = G(x, y)$, where 1 is the canonical section of $\mathcal{O}(\Delta)$. Denote by h_Δ the curvature form of $\mathcal{O}(\Delta)$. We have:

$$
\int_{X^2} h_\Delta^2 = \Delta . \Delta = -2.
$$

Restricting $\mathcal{O}(\Delta)$ to a fiber of any of the two natural projections of X^2 onto X and taking the curvature form we obtain the Arakelov $(1, 1)$-form μ on X. We have $\int_X \mu = 1$ and:

$$
\int_X \log G(x, y) \mu(x) = 0
$$

for each y on X. Let (ω_1, ω_2) be an orthonormal basis of $\mathcal{H}^0(X, \omega_X)$, the space of holomorphic differentials on X. We can write explicitly:

$$
h_\Delta(x, y) = \mu(x) + \mu(y) - i \sum_{k=1}^2 (\omega_k(x) \bar{\omega}_k(y) + \omega_k(y) \bar{\omega}_k(x))
$$

and:

$$
\mu(x) = \frac{i}{4} \sum_{k=1}^2 \omega_k(x) \bar{\omega}_k(x).
$$

By [11, Proposition 2.5.3] we have:

$$
\varphi(X) = \int_{X^2} \log G h_\Delta^2.
$$

We compute the integral using our results from [11] and [13]. Let W be the divisor of Weierstrass points on X, and let $p_1 : X^2 \to X$ be the projection onto the first
ROBIN DE JONG

coordinate. The divisor \(W \) is reduced effective of degree 6. According to [3, p. 31] there exists a canonical isomorphism:
\[
\sigma : \Phi^* \mathcal{O}(\Theta) \xrightarrow{\cong} \mathcal{O}(2\Delta + p^*_1 W)
\]
of line bundles on \(X^2 \), identifying the canonical sections on both sides. In [4, Proposition 2.1] we proved that this isomorphism has a constant norm over \(X^2 \). Thus, the curvature forms on both sides are equal:
\[
\Phi^* \nu = 2h\Delta + 6\mu(x) \quad \text{on} \quad X^2.
\]

Squaring both sides of this identity we get:
\[
h^2\Delta = \frac{1}{4} \Phi^*(\nu^2) - 6h\Delta \mu(x),
\]
since \(\mu(x)^2 = 0 \). Denote by \(S(X) \) the norm of \(\sigma \). Then we have:
\[
2 \log G(x, y) + \sum \log G(x, w) = \log \|\theta\|(2x - y) + \log S(X)
\]
for generic \((x, y) \in X^2\), where \(w \) runs through the Weierstrass points of \(X \). By fixing \(y \) and integrating against \(\mu(x) \) on \(X \) we find that:
\[
\log S(X) = -\int_X \log \|\theta\|(2x - y) \mu(x).
\]

By integrating against \(h^2\Delta \) on \(X^2 \) we obtain:
\[
2\varphi(X) + \sum \int_X \log G(x, w) h^2_\Delta = -2 \log S(X) + \int_X \log \|\theta\|(2x - y) h^2_\Delta.
\]

As we have:
\[
h^2_\Delta = 2\mu(x)\mu(y) - \sum_{k,l=1}^2 (\omega_k(x)\bar{\omega}_l(x)\omega_k(y)\bar{\omega}_l(y) + \bar{\omega}_k(x)\omega_l(x)\omega_k(y)\bar{\omega}_l(y))
\]
it follows that:
\[
\int_X \log G(x, w) h^2_\Delta = 0
\]
for each \(w \) in \(W \) and hence we simply have:
\[
2\varphi(X) = -2 \log S(X) + \int_X \log \|\theta\|(2x - y) h^2_\Delta.
\]

Using our earlier expression for \(h^2_\Delta \) this becomes:
\[
2\varphi(X) = -2 \log S(X) + \int_X \log \|\theta\|(2x - y) \left(\frac{1}{4} \Phi^*(\nu^2) - 6h\Delta \mu(x) \right).
\]

It is easily verified that \(h_\Delta \mu(x) = h_\Delta \mu(y) = \mu(x)\mu(y) \) and hence:
\[
\int_X \log \|\theta\|(2x - y) h_\Delta \mu(x) = \int_X \log \|\theta\|(2x - y) \mu(x)\mu(y) = -\log S(X).
\]

From Lemma 3.2 it follows that:
\[
\int_X \log \|\theta\|(2x - y) \Phi^*(\nu^2) = 8 \int_{\text{Pic}^1(X)} \log \|\theta\| \nu^2 = 16 \log \|H\|(X).
\]

All in all we find:
\[
\varphi(X) = 2 \log S(X) + 2 \log \|H\|(X).
\]
Let $\delta_F(X)$ be the Faltings delta-invariant of X. According to [5, Corollary 1.7] the formula:

$$\log S(X) = -16 \log(2\pi) - \frac{5}{4} \log \|\Delta_2\|(X) - \delta_F(X)$$

holds, and in turn, according to [1, Proposition 4] we have:

$$\delta_F(X) = -16 \log(2\pi) - \log \|\Delta_2\|(X) - 4 \log \|H\|(X).$$

The formula:

$$\varphi(X) = -\frac{1}{2} \log \|\Delta_2\|(X) + 10 \log \|H\|(X)$$

follows.

By definition we have:

$$\lambda(X) = \frac{1}{30} \varphi(X) + \frac{1}{12} \delta_F(X) - \frac{2}{3} \log(2\pi)$$

so we obtain:

$$10\lambda(X) = -20 \log(2\pi) - \log \|\Delta_2\|(X)$$

by using [1, Proposition 4] once more.

References

[1] J.-B. Bost, *Fonctions de Green-Arakelov, fonctions thêta et courbes de genre 2*. C.R. Acad. Sci. Paris Ser. I 305 (1987), 643–646.

[2] X. Faber, *The geometric Bogomolov conjecture for small genus curves*. Preprint, arXiv:0803.0855.

[3] J. D. Fay, *Theta functions on Riemann surfaces*. Lect. Notes in Math. vol. 352, Springer-Verlag 1973.

[4] R. de Jong, *Arakelov invariants of Riemann surfaces*. Doc. Math. 10 (2005), 311–329.

[5] R. de Jong, *Faltings’ delta-invariant of a hyperelliptic Riemann surface*. In: G. van der Geer, B. Moonen, R. Schoof (eds.), Proceedings of the Texel Conference “The analogy between number fields and function fields”, Birkhäuser Verlag 2005.

[6] Q. Liu, *Conducteur et discriminant minimal de courbes de genre 2*. Compositio Math. 94 (1994), 51–79.

[7] A. Moriwaki, *Bogomolov conjecture over function fields for stable curves with only irreducible fibers*. Compositio Math. 105 (1997), 125–140.

[8] A. Moriwaki, *Bogomolov conjecture for curves of genus 2 over function fields*. J. Math. Kyoto Univ. 36 (1996), 687–695.

[9] T. Saito, *The discriminants of curves of genus 2*. Compositio Math. 69 (1989), 229–240.

[10] K. Ueno, *Discriminants of curves of genus 2 and arithmetic surfaces*. In: Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata, Kinokuniya, Tokyo 1987.

[11] S.-W. Zhang, *Gross-Schoen cycles and dualising sheaves*. Preprint, arXiv:0812.0371.

Address of the author:

Robin de Jong
Mathematical Institute
University of Leiden
PO Box 9512
2300 RA Leiden
The Netherlands
Email: rdejong@math.leidenuniv.nl