Data Article

Dataset on the expression level of the genes involved in the synthesis of structural molecules in carbon-deficient microalgae

Cheng Qilu a, Xu Ligen b, Cheng Fangmin b, Pan Gang b, Zhou Qifa a,*

a College of Life Sciences, Zhejiang University, Hangzhou 310058, China
b College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China

\textbf{A R T I C L E I N F O}

Article history:
Received 11 August 2018
Received in revised form 14 August 2018
Accepted 17 September 2018
Available online 20 September 2018

\textbf{A B S T R A C T}

The data presented in this article are related to the research article entitled “Bicarbonate-rich wastewater as a carbon fertilizer for culture of Dictyosphaerium sp. of a giant pyrenoid” (Cheng et al., 2018) [1]. This article provides data about the expression levels of the genes involved in the synthesis of structural molecules in the carbon-deficient algal cell and the carbon-treated algal cell, which can be helpful for analyzing the observed disruption of the structural integrity in the carbon-deficient microalgae at molecular level.

& 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

\textbf{Specifications table}

Subject area Environmental science and Biology
More specific subject area Wastewater; Algal culture and Algal physiology
Type of data Table, image and figure

DOI of original article: https://doi.org/10.1016/j.jclepro.2018.08.066
* Corresponding author.
E-mail addresses: qiluch316@163.com (C. Qilu), xuligeng@126.com (X. Ligen), chengfm@zju.edu.cn (C. Fangmin), pagang@zju.edu.cn (P. Gang), zzqqqq@zju.edu.cn (Z. Qifa).

https://doi.org/10.1016/j.dib.2018.09.045
2352-3409/© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
How data was acquired	Microscope and RNA-sequence
Data format	Raw and filtered.
Experimental factors	The microalgae was isolated from wastewater.
Experimental features	Algae culture in an incubator, microscopic observation and RNA-sequence.
Data source location	Hangzhou City, Zhejiang Province, China
Data accessibility	The data is available within this article
Related research article	Cheng et al. 2018. Bicarbonate-rich wastewater as a carbon fertilizer for culture of Dictyosphaerium sp. of a giant pyrenoid. Journal of Cleaner Production (in press).

Value of the data

- The data provided comparative transcriptomic analysis for the related Dictyosphaerium sp. genes encoding synthesis of structural molecules in the algae cultured in the modified Hoagland + Wastewater medium and the modified Hoagland medium.
- The obtained data from the RNA-seq analysis can be used for analysis of the disruption of structural integrity in the carbon-deficient microalgae at molecular level.

1. Data

The dataset of this article provides information on the expression levels of the genes involved in synthesis of structural molecules in the microalgae. Tables 1–3 show the expression levels of extensin protein genes, proline-rich structural protein genes, gline-rich structural protein genes, and soluble starch synthase genes and granule-bound starch synthase genes, respectively. Figs. 1 and 2 show the expression levels of lipid synthase genes and cellulose synthase catalytic subunit genes and cellulose synthase genes, respectively.

2. Experimental design, materials, and methods

The green algae strain Dictyosphaerium sp. was isolated from wastewater originating from the Experimental Farm at Zhejiang University. Prior to cultivation experiments, the species was cultured in BG11 medium until reaching log phase. A batch of algal culture experiments were conducted in a model ACM–168 algal incubator (Jiangnan Instrument Co., Ningbo, China). Two treatments with three replications were conducted with 0 and 0.25 L/L of the autoclaved swine wastewater to modified Hoagland solution [2], and the wastewater-added medium contained 0.8 g/L bicarbonate. Microalgae seeds were added to different culture media in 250 mL triangular glass flasks with 200 mL of working solution, and with initial optical density values adjusted to between 0.05 and 0.07 absorbance at a wavelength of 680 nm (OD680).

RNA sampling and extraction was performed according to methods described in [3]. On the 13th day, 10 mL of cultures were collected by centrifugation (10,000 g, 7 min) from each replicate. The supernatant was discarded and the resulting cell pellets were immediately flash-frozen with liquid nitrogen and stored at −80 °C. Prior to RNA extraction, cell pellets were resuspended in lysis buffer and then ground using a micropestle. Total RNA was then extracted following the manufacturer’s instructions. Total RNA was maintained as replicates, rather than pooling, and then stored at −80 °C. An Agilent 2100 Bioanalyzer (Agilent RNA 6000 Nano Kit) was used to determine QC:RNA concentrations, RIN values, 28 S/18 S, and fragment length distributions. A NanoDropTM spectrophotometer was used to assess the purity of the RNA. Aliquots from mRNA samples were used to construct cDNA libraries.
GI	Length(bp)	Protein	Cwc-EL	C0-EL	log2FC	Padj
XP_011043443.1	502	L-R repeat E-P 4	0.43	1.50	1.81	0.44
XP_014660371.1	502	E-P-like	8.81	0.26	-5.07	0.016
NP_001147655.1	303	E-P	0.26	1.15	2.13	0.40
XP_010691715.1	1029	L-R repeat E-P 3	210.29	1447.15	2.78	2.76E-10
XP_008224469.1	733	L-R repeat E-P 3	0.16	0.11	-0.62	0.76
XP_009113077.1	2139	L-R repeat E-P 2 isoform X1	1239.01	234.56	5.07	0.016
XP_010691715.1	485	L-R repeat E-P 3	241.40	385.51	0.68	0.12
XP_014660371.1	841	E-P-like	0.47	39.44	6.40	5.98E-07
XP_010691715.1	1067	L-R repeat E-P 3	240.82	6.79	4.27	0.025
XP_014660371.1	2004	E-P-like	226.18	11.70	4.27	0.06
XP_014660371.1	1889	E-P-like	203.96	364.59	0.84	0.23
XP_010257306.1	485	pollen-specific L-R repeat E-P 3 isoform X1	0.15	3.59	4.62	0.032

C. Qilu et al. / Data in Brief 20 (2018) 1870–1876
GI	Length(bp)	Protein	Cw-EL	Cq-EL	log2FC	Padj
XP_007013165.1	346	PR-P E-P-like receptor kinase 1	0.17	13.30	6.30	0.00075
XP_014660371.1	3836	E-P-like	0.71	33.83	5.58	0.00067
XP_010448887.1	727	L-R repeat E-P 4	0.86	0.26	-1.72	0.50
XP_009118855.1	319	E-P-like	0.13	2.11	3.97	0.081
XP_015057744.1	831	E-P-like	0.15	5.85	5.26	0.0099
XP_014660371.1	1605	E-P-like	1.30	0.31	-2.05	0.42
XP_014660371.1	1672	E-P-like	3.69	86.21	4.55	1.19e-14
XP_010448982.1	477	L-R repeat E-P 5	0.40	5.55	3.81	0.020
XP_013743627.1	950	pollen-specific L-R repeat E-P 1	148.85	286.64	0.95	0.18
XP_008224469.1	1413	L-R repeat E-P 3	306.51	31.40	-3.29	8.98e-26
XP_007013165.1	346	PR-P E-P-like receptor kinase 1	0.17	13.30	6.30	0.00075
XP_014660371.1	711	E-P-like	42.98	3.81	-3.50	0.15
XP_010448982.1	972	L-R repeat E-P 4	111.37	30.23	-1.83	2.20e-07
XP_006480071.1	249	pollen-specific L-R repeat E-P 4	0.48	0.20	-1.25	0.61
XP_008224469.1	2210	L-R repeat E-P 3	3.76	626.49	7.38	2.57e-16
XP_014660371.1	779	E-P-like	0.68	2.66	1.97	0.36
XP_010647090.1	377	E-P-like	0.19	16.62	6.42	0.00067
XP_009348443.1	1192	L-R repeat E-P 4	178.48	127.98	-0.48	0.081
XP_014660371.1	1192	E-P-like	42.98	3.81	-3.50	0.15
XP_006480071.1	249	pollen-specific L-R repeat E-P 4	0.48	0.20	-1.25	0.61
XP_008224469.1	2210	L-R repeat E-P 3	3.76	626.49	7.38	2.57e-16
XP_014660371.1	779	E-P-like	0.68	2.66	1.97	0.36
XP_010647090.1	377	E-P-like	0.19	16.62	6.42	0.00067
XP_009348443.1	1192	L-R repeat E-P 4	178.48	127.98	-0.48	0.081
XP_014660371.1	1192	E-P-like	42.98	3.81	-3.50	0.15
XP_006480071.1	249	pollen-specific L-R repeat E-P 4	0.48	0.20	-1.25	0.61
XP_008224469.1	2210	L-R repeat E-P 3	3.76	626.49	7.38	2.57e-16
XP_014660371.1	779	E-P-like	0.68	2.66	1.97	0.36
XP_010647090.1	377	E-P-like	0.19	16.62	6.42	0.00067
XP_009348443.1	1192	L-R repeat E-P 4	178.48	127.98	-0.48	0.081
XP_014660371.1	1192	E-P-like	42.98	3.81	-3.50	0.15
After quality filtering sequence reads, clean reads were mapped to the genomic reference using Bowtie2 [2], and gene expression levels were calculated with RSEM [4]. Differentially expressed genes (DEGs) were determined with DEseq. 2 [5].

Table 2
Comparative transcriptomic analysis for the related *Dictyosphaerium* sp. genes encoding gline-rich structural proteins (GR-Ps) in the algae cultured in the modified Hoagland + Wastewater medium (Cwc, Control treatment) and the Hoagland medium (C0). Data are means of three replications. GI-gene ID, length-gene length, log2FC-log2 transformed fold change between control and treat samples, Padj- Statistic of adjusted p value (DEseq. 2 method used).

GI	Length(bp)	Protein	Cwc-EL	CO-EL	log2FC	Padj
XP_015574762.1	351	GR-P-like	0.13	0.17	0.42	0.83
XP_006651317.1	1054	GR-P-like	1.41	2.92	1.05	0.70
XP_008666361.1	444	GR-P 1.0-like	0.25	0.27	0.11	0.97
XP_010466892.1	514	GR-P 1-like	0.23	0.39	0.77	0.77
XP_010466892.1	497	GR-P 1-like	0.60	0.81	0.42	0.87
XP_013681405.1	480	GR-P 1.8-like isoform X1	24.21	138.83	2.52	0.33
XP_015574762.1	841	GR-P-like	0.35	3.03	3.10	0.20
XP_012570960.1	630	GR-P-like isoform X6	0.24	2.46	3.34	0.15
XP_015574762.1	4268	GR-P-like	0.23	0.39	0.77	0.77
XP_015165590.1	510	GR-P 1.8-like	0.13	0.17	0.42	0.83
XP_010467102.1	722	GR-P 1.0-like isoform X10	5.08	11.83	1.22	0.29
XP_015167339.1	3234	GR-P 1	73.83	153.22	1.05	0.43
XP_010688958.1	854	GR-P-like isoform X1	8.55	52.39	2.62	0.012
XP_009143614.1	249	GR-P 1	1.09	1.83	0.75	0.80
XP_009143614.1	594	GR-P 1	1.69	7.46	2.14	0.13
XP_013668804.1	1666	GR-P 1-like	0.97	1.97	1.02	0.66
XP_013731827.1	1381	GR-P-like	349.42	289.25	0.27	0.77
XP_010424670.1	359	GR-like	0.22	0.37	0.76	0.77
XP_008671409.1	1553	GR-P 1.0-like	16.78	103.53	2.63	0.00082
XP_008671490.1	385	GR-P 1.8-like	0.18	1.01	4.25	0.35
XP_010467104.1	890	GR-P 1.0-like isoform X12	0.50	2.75	2.44	0.29
XP_010466892.1	853	GR-P 1-like	125.17	288.18	1.20	0.15
XP_014628139.1	392	GR-P 1.8	27.57	16.66	0.73	0.58
XP_010467093.1	1047	GR-P 1.8-like isoform X1	99.08	5.45	14.19	0.0052
XP_014628139.1	369	GR-P 1.8	57.90	52.71	0.14	0.88
XP_015580618.1	923	GR-P 1.8 isoform X2	0.21	0.34	0.71	0.78
XP_011465792.1	254	GR-P 1.8	38.54	28.54	0.43	0.77
XP_012570962.1	906	GR-P-like isoform X10	61.95	77.82	0.33	0.77
XP_010317299.1	478	putative GR-P 1	0.37	0.88	1.25	0.66
XP_015389986.1	418	putative GR-P 1	0.16	0.41	1.39	0.63
XP_006490141.1	952	GR-P-like	1173.51	5692.52	2.28	6.05E−07
XP_008229859.1	950	GR-P	1.82	2.83	0.64	0.77
XP_010466892.1	554	GR-P 1-like	45.86	40.86	0.17	0.85
XP_010432984.1	328	putative GR-P 1	0.21	0.68	1.71	0.54
XP_010467093.1	1149	GR-P 1.8-like isoform X1	29.54	0.36	6.35	0.00014
XP_010456984.1	1304	GR-P 1-like	0.83	0.23	1.84	0.51
XP_012570964.1	1671	GR-P-like isoform X12	0.29	0.29	0.02	0.99
XP_009336768.1	1071	putative GR-P 1	186.65	605.46	1.70	0.092
XP_015574762.1	707	GR-P-like	0.16	0.41	1.39	0.63
XP_010424670.1	454	GR-P-like	0.66	0.62	0.10	0.98
XP_010680074.1	1244	GR-P-like	2.88	22.39	2.96	0.014
XP_0104961.1	998	GR-P 1.8; Short=GRP 1.8; Flags: Precursor	282.59	1011.12	1.84	0.00066
XP_010424670.1	925	GR-P-like	0.73	3.77	2.36	0.25
XP_012570964.1	473	GR-P-like isoform X12	76.32	100.18	0.39	0.65
Table 3
Comparative transcriptomic analysis for the related *Dictyosphaerium* sp. genes encoding soluble starch synthase (SSS) and granule-bound starch synthase (GBSS) in the algae cultured in the modified Hoagland+Wastewater medium (*C*wc, Control treatment) and the modified Hoagland medium (*C*0). Data are means of three replications. GI-gene ID, length-gene length, log2FC-log2 transformed fold change between control and treat samples, Padj- Statistic of adjusted pvalue (DEseq. 2 method used).

GI	Length(bp)	Protein	Cwc-EL	CO-EL	log2FC	Padj
BAE79814.1	376	GBSS	1043.71	236.79	−2.14	4.30E−12
XP_011398759.1	5924	SSS 3, chloroplastic/amyloplastic	2879.90	930.15	−1.63	2.71E−15
BAE79814.1	357	GBSS	3.01	223.15	6.21	3.60E−17
XP_001697117.1	1674	GBSS-I	559.29	1833.07	1.71	0.014
BAE79814.1	562	GBSS	0.95	12.94	3.76	0.0015
BAE79814.1	292	GBSS	744.96	148.47	−2.33	4.62E−17
BAE79814.1	292	GBSS	744.96	148.47	−2.33	4.62E−17
BAE79814.1	2113	GBSS	4963.46	2460.34	−1.01	4.80E−05
XP_011401562.1	2260	putative GBSS 1, chloroplastic/amyloplastic	2.83	82.37	4.86	4.57E−13
BAE79814.1	562	GBSS	0.95	12.94	3.76	0.0015
XP_001697117.1	1030	GBSS-I	49.21	94.50	0.94	0.041
BAE79814.1	376	GBSS	1043.71	236.79	−2.14	4.30E−12
BAE79814.1	4024	GBSS	1101.80	2197.76	1.00	0.011
BAE79814.1	537	GBSS	3.01	223.15	6.21	3.60E−17
XP_001697117.1	1674	GBSS-I	559.29	1833.07	1.71	0.014
BAE79814.1	2113	GBSS	4963.46	2460.34	−1.01	4.80E−05
XP_011398759.1	6692	SSS 3, chloroplastic/amyloplastic	12.72	384.67	4.92	2.36E−22
XP_005642568.1	375	SSS	14.16	3.84.67	−3.02	0.0026
XP_011398759.1	496	SSS 3, chloroplastic/amyloplastic	41.16	9.23	−2.16	0.00011
AAC17970.2	259	SSS	9.10	8.88	−0.036	0.97
XP_011398759.1	6692	SSS 3, chloroplastic/amyloplastic	12.72	384.67	4.92	2.36E−22
XP_005642568.1	375	SSS	14.16	3.84.67	−3.02	0.0026
XP_001695327.1	248	SSS- III	4.19	4.55	0.12	0.92
XP_011398759.1	5924	SSS 3, chloroplastic/amyloplastic	2879.90	930.15	−1.63	2.71E−15
XP_011398759.1	496	SSS 3, chloroplastic/amyloplastic	41.16	9.23	−2.16	0.00011

Fig. 1. The expression level of the genes encoding the lipid synthases in the algae cultured in the modified Hoagland+Wastewater medium (*C*wc) and the Hoagland medium (*C*0). Data are means of three replications. SS- sulfolipid synthase, CFAPS- cyclopropane-fatty-acyl-phospholipid synthase, MFAPS- /methylene-fatty-acyl-phospholipid synthase.
Acknowledgments

This work is supported by the National Key Research and Development Program of China (Grant number, 2017YFD0300103) and Huzhou Municipal Science and Technology Bureau (Grant number, 2015GZ08).

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.09.045.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.09.045.

References

[1] Q.L. Cheng, L.G. Xu, F.M. Cheng, G. pan, Q.F. Zhou, Bicarbonate-rich wastewater as a carbon fertilizer for culture of Dictyosphaerium sp. of a giant pyrenoid, J. Clean. Prod. 202 (2018) 439–443.
[2] J. Zhang, X. Wang, Q. Zhou, Co-cultivation of Chlorella spp and tomato in a hydroponic system, Biomass- Bioenergy 97 (2017) 132–138.
[3] B. Langmead, S.L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods 9 (2012) 357–359.
[4] B. Li, C.N. Dewey, RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome, BMC Bioinform. 12 (2011) 323.
[5] M.I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq. 2, Genome Biol. 5 (2014) 550.