Heart failure with preserved ejection fraction in humans and mice: embracing clinical complexity in mouse models

Coenraad Withaar 1, Carolyn S.P. Lam 1,2, Gabriele G. Schiattarella 3,4,5,6,7, Rudolf A. de Boer 1*†, and Laura M.G. Meems 1†

1Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; 2National University Heart Centre, Singapore and Duke-National University of Singapore; 3Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; 4Department of Cardiology, Center for Cardiovascular Research (CCR), Charité - Universitätsmedizin Berlin, Berlin, Germany; 5DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; 6Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy; and 7Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA

Received 16 February 2021; revised 15 April 2021; editorial decision 25 May 2021; accepted 2 June 2021; online publish-ahead-of-print 20 August 2021

Heart failure (HF) with preserved ejection fraction (HfPEf) is a multifactorial disease accounting for a large and increasing proportion of all clinical HF presentations. As a clinical syndrome, HfPEf is characterized by typical signs and symptoms of HF, a distinct cardiac phenotype and raised natriuretic peptides. Non-cardiac comorbidities frequently co-exist and contribute to the pathophysiology of HfPEF. To date, no therapy has proven to improve outcomes in HfPEF, with drug development hampered, at least partly, by lack of consensus on appropriate standards for pre-clinical HfPEF models. Recently, two clinical algorithms (HFA-PEFF and H2FPEF scores) have been developed to improve and standardize the diagnosis of HfPEF. In this review, we evaluate the translational utility of HfPEF mouse models in the context of these HfPEF scores. We systematically recorded evidence of symptoms and signs of HF or clinical HfPEF features and included several cardiac and extra-cardiac parameters as well as age and sex for each HfPEF mouse model. We found that most of the pre-clinical HfPEF models do not meet the HfPEF clinical criteria, although some multifactorial models resemble human HfPEF to a reasonable extent. We therefore conclude that to optimize the translational value of mouse models to human HfPEF, a novel approach for the development of pre-clinical HfPEF models is needed, taking into account the complex HfPEF pathophysiology in humans.
Heart failure (HF) with preserved ejection fraction (HFpEF) is a complex clinical syndrome that is characterized by both extra-cardiac and cardiac features.1-3 Prevalence is still rising4-8 and survival of patients with HFpEF is poor, with a 5-year survival rate after first hospitalization of 35-40%.9,10 So far no treatment has been proven successful in reducing morbidity and mortality rates in HFpEF, potentially due to the large pathophysiological heterogeneity and diversity in HFpEF phenotypes.11 Recent studies have identified HFpEF as a systemic disease that is associated with, or may be triggered by a wide range of comorbidities such as aging, female sex, hypertension,12,13 pulmonary congestion, metabolic syndrome, obesity,7,12,14-16 type 2 diabetes mellitus (T2DM), hyperlipidaemia, renal disease, atrial fibrillation (AF), and skeletal muscle weakness.11 These risk factors and comorbidities give rise to intertwining disease mechanisms in the pathophysiology of HFpEF.17,18 Due to the wide range of comorbidities and clinical presentations, potential underlying aetiology of HFpEF is diverse; HFpEF can result from various structural abnormalities of the myocardium, or may result from abnormal loading conditions, e.g. as seen in hypertension, valvular diseases, volume overload, or rhythm disorders.19

Although HFpEF patients thus represent a heterogeneous group with a broad extent of extra-cardiac features, the cardiac phenotype has less interpatient variability and includes (concentric) left ventricular (LV) hypertrophy,20 LV diastolic dysfunction,21 cardiac stiffening, atrial dilatation, fibrosis,22 (systemic) inflammation, microvascular endothelial dysfunction,23,24 and elevated natriuretic peptides.19,25,26

The definition of HFpEF as a clinical syndrome, based on typical symptoms and signs, presents challenges due to non-specificity of cardinal symptoms such as breathlessness and effort intolerance. Recently, two diagnostic HFpEF algorithms, the HFA-PEFF20 and
H2FPEF scores, were developed to standardize and improve the accuracy of HFpEF diagnosis. Both of these scores (Figure 1) use a stepwise diagnostic approach to score and evaluate probability of HFpEF presence. The H2FPEF score uses functional echocardiographic data and places emphasis on the presence of comorbidities (e.g. hypertension, obesity) and the effect of age, while not including natriuretic peptide levels. The HFA-PEFF algorithm also assesses pretest probability based on clinical features (including age and comorbidities) and similarly includes a score based on both functional and structural echocardiographic data, including morphological aspects of the left atrium and LV, as well as levels of natriuretic peptides, such as N-terminal pro brain natriuretic peptide (NT-proBNP).

Both HFpEF scores have recently been validated in various patient cohorts and communities studies and it was concluded that both HFpEF scores categorized patients well, especially in those patients with intermediate and high scores. These scores, however, are not without controversy, with criticisms ranging from over-simplification of the diagnostic challenges to over-complicating the diagnostic process by requiring expensive tests or the scores largely disagree. In addition, misclassification has been reported, especially in those patients with low HFpEF scores, potentially due to the fact that both scores use resting parameters in a phenotype in which physiological abnormalities augment during exercise. Nevertheless, both scores have been shown to have prognostic utility in human patients, suggesting that they capture key pathophysiologic components that determine outcomes in HFpEF.

Figure 1 Diagnostic HFpEF scoring algorithms used to score HFpEF animal models. Both algorithms first include a pretest assessment to evaluate signs and symptoms and clinical features of HFpEF that include congestion, increased comorbidity burden and reduced exercise tolerance. The second step of the HFA-PEFF score assesses three domains that include functional aspects (echocardiographic diastolic function \(E/e'\) and GLS), morphological aspects (left atrial enlargement, LV mass and wall thickness and concentric hypertrophy) as well as levels of circulating natriuretic peptides. The H2FPEF score combines clinical and echocardiographic patient characteristics: obesity, hypertension, AF, pulmonary hypertension, age >60 years and diastolic function \((E/e')\). A higher score represents a higher likelihood of having HFpEF (HFA-PEFF >5 points; H2FPEF >6 points), while a lower score is used to rule out HFpEF. For patients with an intermediate score, both algorithms recommend additional testing to refine the diagnosis by exercise echocardiography or invasive measurements of cardiac filling pressures in a non-resting state. AF, atrial fibrillation; GLS, global longitudinal strain; HF, heart failure; LV, left ventricle; PASP, pulmonary artery systolic pressure.
HFpEF in mice: where do we stand?

Over the last decades, development of HfPfEF specific treatments has been disappointing. Standard, successful, HF with reduced ejection fraction (HFrEF), treatment options, such as angiotensin-converting enzyme inhibitors (ACEi), angiotensin receptor 1 blockers and mineralocorticoid receptor antagonists (MRA) did not convincingly reduce mortality and morbidity rates in HfPfEF patients.\(^4^0\)–\(^4^2\) Trials with other types of drugs, such as nitric oxide donors and cyclic guanosine monophosphate (cGMP) stimulating therapies failed to improve clinical status,\(^3^3\)–\(^4^7\) or were neutral for the primary endpoint (angiotensin receptor–neprilysin inhibitor, PARAGON-HF trial\(^4^8\)\(^4^9\)).

To date, no HfPfEF specific treatment options exist and there is an unmet need to improve morbidity and mortality rate in these patients.

Drug development typically progresses in stages, from pre-clinical to clinical. Valuable HfPfEF animal models presenting clinical HfPfEF phenotypes are crucial for the successful design of new therapies. This has been neglected so far, which has led to the failure of many clinical studies. Sildenafil, for example, successfully reduced LV hypertrophy and cardiac remodelling in mice that suffered from angiotensin II (ANGII)-induced or transverse aortic constriction (TAC) induced HfPfEF.\(^5^0\)–\(^5^1\) Clinical studies of sildenafil in HfPfEF patients, however, did not observe these beneficial effects on clinical or hemodynamic parameters.\(^4^5\) Studies with ACEi in myocardial infarction models (MI)\(^5^2\)–\(^5^3\) successfully reduced hypertrophy and fibrosis with a concomitant improvement of cardiac function. However, studies in patients with HfPfEF have yielded inconsistent results.\(^4^0\)

This was also the case for the MRA spironolactone: in pre-clinical studies in diet induced\(^5^4\)–\(^5^5\) and myocardial infarction (MI)\(^5^5\)–\(^5^6\) models this drug improved systolic and diastolic cardiac function. A subsequent large randomized controlled trial on the other hand, remained neutral and did not meet its endpoint.\(^4^1\) The unsuccessful bench-to-bedside translation may, at least partly, be explained by the fact that pre-clinical animal models do not fully recapitulate the clinical HfPfEF phenotype and TAC or MI models cannot be considered as HfPfEF model.

In this review we discuss and score several pre-clinical HfPfEF models using the HFA-PEFF and H2FPEF scores. We found that several major discrepancies exist between pre-clinical HF models and clinical HfPfEF. Pre-clinical HfPfEF models do not always recognize the importance of signs and symptoms of HfPfEF, or clinical HfPfEF characteristics (graphical abstract). Several so-called HfPfEF models would have obtained high scores according to the HFA-PEFF and H2FPEF risk scores (Figure 2) due to functional or morphological features, while signs of lung congestion or exercise impairment were absent and levels of natriuretic peptides low (Table 1). Thus, a model without pulmonary congestion may relate to hypertensive heart disease in humans rather than clinical HfPfEF (for example db/db or ab/ab models). The currently developed HFA-PEFF and H2FPEF scores both emphasize typical symptoms and signs of HF, or clinical HfPfEF characteristics as key for the diagnosis of HfPfEF. Although the assessment of signs and symptoms or diagnostic HF criteria may be more challenging in animals than in humans, it is not impossible. Pulmonary congestion can be demonstrated by increased lung weight, and reduced exercise tolerance can be measured via voluntary or forced exercise testing. Reduced exercise tolerance is one of the hallmarks in human HfPfEF and should ideally be part of phenotyping HfPfEF animal models.

Importantly, the demonstration of LV diastolic dysfunction has been the cornerstone of validation of a HfPfEF animal model; however, the presence of diastolic dysfunction alone is neither synonymous nor sufficient for a diagnosis of HfPfEF. Indeed, diastolic dysfunction, as occurs with aging, can exist without the presence of symptomatic HF. Nonetheless, aging is a potent risk factor for HfPfEF.\(^5^7\)–\(^5^8\) Aging itself is associated with ventricular-vascular stiffening and fibrosis, key mechanisms in the pathogenesis of HfPfEF.\(^5^9\)–\(^6^0\)

The aging process also exacerbates chronic systemic inflammation, dysregulation of energy supply,\(^6^1\)–\(^6^3\) and increased cardiomyocyte stiffness and increased hypertrophy that may all result in HfPfEF specific diastolic dysfunction and cardiac remodelling.\(^6^4\)–\(^6^6\) We realize that aging itself can have major practical limitations (>20 months to produce the phenotype); however, because it is such an important factor, we encourage researchers to include it.

Another major difference between animal and human HfPfEF can be found in disease complexity and disease heterogeneity. In humans, HfPfEF is considered a multifactorial and heterogeneous disease with a plethora of clinical manifestations.\(^1^1\) For many years, pre-clinical HfPfEF models have relied upon a single perturbation. The development of several recent multifactorial models has shown that it is feasible to develop a HfPfEF-like phenotype in mice by using multiple perturbations, and these models may represent a new era of multifactorial pre-clinical HfPfEF models.

HFpEF in mice: fundamental checklist

We do not believe that ‘one-size-fits-all’ pre-clinical HfPfEF model exists. Several animal models of HfPfEF have been developed that only focused on a limited aspect of this multifactorial syndrome. This strategy has been proven unsuccessful and the recent development of combinatorial models is very promising.\(^6^6\)–\(^6^8\) Although recent multifactorial HfPfEF models have been proven valuable, and may improve bench-to-bedside translation, these models also focus on specific HfPfEF phenotypes and do not recapitulate the entire heterogeneity of the clinical HfPfEF syndrome. In addition, technical challenges remain in developing mouse models. AF, for example, has not been included in any of the pre-clinical HfPfEF models so far.

We therefore suggest that all pre-clinical HfPfEF studies should include a mouse model that fulfils (a majority of) the following requirements in order to perform a reliable and accurate pre-clinical HfPfEF study. This has been schematically presented in Figure 3.

Pretest assessment of signs and symptoms and clinical HfPfEF features

First of all, ejection fraction should be preserved. Assessment of symptoms such as shortness of breath, fatigue, oedema, tachycardia, and exercise impairment in animals may be less straightforward than in humans, but various parameters are available to provide a global...
impression if signs and symptoms and clinical HFpEF features are present:

- **Increased natriuretic peptide levels.** Natriuretic peptide levels should be measured in plasma or LV tissue. Elevated natriuretic peptide levels play an important part in the HFA-PEFF score and also provide a global impression if HFpEF is likely to be present in animals.

- **Impaired exercise performance.** Impaired exercise capacity caused by skeletal muscle weakness, fatigue, or cardiovascular to muscle mismatch should be measured by voluntary or forced exercise. This is a typical feature of HFpEF, and analysis of exercise capacity, including assessment of skeletal muscle function, will provide essential information regarding HFpEF severity.69–71

- **Lung congestion.** Analysis of lung weight and pulmonary vasculature will be helpful to determine increased diastolic filling pressures and presence of diastolic dysfunction.

In case surrogate measurements of signs and symptoms and clinical HFpEF features (increased natriuretic peptides, preserved ejection fraction and increased comorbidity burden) are not present, the preclinical model does not meet the HFpEF criteria as suggested by the two scores and should therefore not be regarded as a pre-clinical HFpEF model.

A distinct cardiac phenotype with preserved systolic LV function with concentric hypertrophy and diastolic dysfunction

- **Assessment of systolic cardiac function.** Systolic cardiac function should be assessed by transthoracic echocardiography and should include measurement of LV dimensions to assess concentric hypertrophy and LV systolic function. Post-mortem analysis (weighing and staining) of the total heart and LV should take place to assess amount of cardiac hypertrophy and fibrosis.

- **Assessment of diastolic function.** Diastolic function should be determined by morphological criteria (atrial enlargement) or functional parameters. In mice, evaluation of diastolic function is complex and the E/A and \(E'/e' \) ratio is difficult to assess and highly variable.72 Global longitudinal strain (GLS) and reverse peak longitudinal strain rate (RPLSR) are easily obtained, highly reproducible, and

Figure 2 HFA-PEFF and \(H_2 \)FPEF scores obtained by HF models. All HF models have been scored for cardiac and extra-cardiac domains of HFA-PEFF and \(H_2 \)FPEF scores. Based upon these scores, mouse HF models are differentiated into more or less likely to fulfil the criteria of the HFA-PEFF or \(H_2 \)FPEF score. If we solely record the scores, several of so-called HFpEF models would have obtained high scores due to functional or morphological features, while signs of lung congestion or exercise impairment were absent and levels of natriuretic peptides low. ANGII, angiotensin II; DOCA, deoxycorticosterone acetate; DOCP, desoxycorticosterone pivalate; db/db, leptin receptor-deficient model; HFpEF, heart failure with preserved ejection fraction; \(L \)-NAME, \(\text{N}(-\text{x}) \)-nitro-\(\text{L} \)-arginine methyl ester; \(\text{ob/ob} \), leptin-deficient model.
Table 1: Validation of HFpEF mouse models by HFA-PEFF and H$_2$FPEF scores

Model	Pretest assessment of signs and symptoms, clinical HFpEF features and biological factors (age and sex)	HFA-PEFF score	H$_2$FPEF score
	Preserved EF		
	Sex	Age (months)	
	Lung congestion	Impaired Exercise capacity	
	Comorbidity burden	Hyper-tension	
	Obesity	T2DM	
	Renal Dysfunction	Diastolic dysfunction	
	Increased wall thickness	LV wall thickness	
	Concentric hypertrophy	LV mass	
	Total points	Increased natriuretic peptides	
	Obesity	Hyper-tension	
	Hypertension	Atrial Fibrillation	
	Pulmonary hypertension	Hypertension	
	Age	Diastolic function	
	Total points		

Low HFpEF likelihood

- **Aldosterone uninephrectomy mouse**
 - Yes
 - M
 - 3
 - No
 - No
 - Yes
 - Yes
 - N/A
 - Yes
 - Yes
 - Yes
 - Yes
 - Yes
 - Yes
 - 6
 - No
 - Yes
 - No
 - N/A
 - No
 - Yes
 - 4

- **High fat diet/Western diet**
 - Yes
 - M/F
 - 3–16
 - Yes
 - Yes
 - No
 - Yes
 - N/A
 - Yes
 - Yes
 - Yes
 - Yes
 - Yes
 - No
 - 4
 - Yes
 - No
 - No
 - N/A
 - No
 - Yes
 - 4

- **Aged mice (24–30 months)**
 - Yes
 - M
 - 24–30
 - Yes
 - No
 - No
 - No
 - Yes
 - N/A
 - Yes
 - Yes
 - Yes
 - Yes
 - Yes
 - 6
 - No
 - No
 - No
 - N/A
 - Yes
 - Yes
 - 4

- **Angiotensin-II infusion models**
 - Yes
 - M/F
 - 3
 - Yes
 - Yes
 - No
 - No
 - Yes
 - N/A
 - Yes
 - Yes
 - Yes
 - Yes
 - Yes
 - 6
 - No
 - Yes
 - No
 - N/A
 - No
 - Yes
 - 4

- **Accelerated senescence model (SAMP)**
 - Yes
 - F
 - 3–12
 - No
 - Yes
 - No
 - No
 - Yes
 - N/A
 - Yes
 - Yes
 - Yes
 - Yes
 - Yes
 - 6
 - No
 - Yes
 - No
 - N/A
 - Yes
 - Yes
 - 4

- **Leptin receptor-deficient model (db/db)**
 - Yes
 - M/F
 - 3
 - No
 - Yes
 - Yes
 - Yes
 - Yes
 - No
 - Yes
 - Yes
 - Yes
 - Yes
 - No
 - 4
 - Yes
 - No
 - N/A
 - No
 - Yes
 - 4

- **Leptin-deficient model (ob/ob)**
 - Yes
 - M/F
 - 3
 - No
 - Yes
 - No
 - Yes
 - Yes
 - Yes
 - Yes
 - No
 - Yes
 - Yes
 - Yes
 - Yes
 - 4
 - No
 - Yes
 - No
 - No
 - Yes
 - 3

- **(DOCA) salt-sensitive model**
 - Yes
 - M
 - 3
 - No
 - Yes
 - No
 - Yes
 - No
 - Yes
 - No
 - Yes
 - Yes
 - Yes
 - Yes
 - Yes
 - 6
 - No
 - No
 - No
 - N/A
 - Yes
 - Yes
 - 1

- **High fat diet and angiotensin II**
 - Yes
 - M/F
 - 3
 - No
 - No
 - Yes
 - 6
 - No
 - Yes
 - No
 - N/A
 - No
 - Yes
 - 3

- **High HFpEF likelihood**
 - **High fat diet and L-NAME**
 - Yes
 - M/F
 - 3
 - Yes
 - Yes
 - Yes
 - Yes
 - Yes
 - No
 - Yes
 - Yes
 - Yes
 - Yes
 - Yes
 - 6
 - Yes
 - No
 - N/A
 - No
 - Yes
 - 4

 - **Aging, high fat diet and angiotensin II**
 - Yes
 - M/F
 - 22
 - Yes
 - 6
 - Yes
 - No
 - N/A
 - Yes
 - 5

 - **Aging, high fat and DOCP**
 - Yes
 - M/F
 - 18
 - Yes
 - 6
 - Yes
 - No
 - N/A
 - Yes
 - 5

HF models are scored for signs and symptoms or clinical HFpEF features, including age, sex, as well as cardiac and extracardiac domains of HFA-PEFF and H$_2$FPEF scores. Based upon these scores, mouse HF models were differentiated into more or less likely to fulfill the criteria of the human HFpEF situation, with higher scores representing pre-clinical HF models that most resembled clinical HFpEF. Models that presented full signs and symptoms and clinical HFpEF features are shown in the high HFpEF likelihood box.

db/db, leptin receptor-deficient model; DOCA, deoxycorticosterone acetate; DOCP, deoxycorticosterone pivalate; EF, Ejection fraction; L-NAME, N$_{(x)}$-nitro-L-arginine methyl ester; ob/ob, leptin-deficient model; T2DM, type 2 diabetes mellitus.
have therefore to be integrated as indices of diastolic dysfunction in mice73,74. Post-mortem analysis (weighing) of atria should take place to evaluate atrial enlargement.

- **Assessment of cardiac hemodynamics.** Although considered as gold standard for diagnosis of HFpEF, invasive hemodynamic measurements are performed to a limited scale in humans due to a lack of expertise, availability, risks, and costs. A distinct advantage in animal models is that this gold standard assessment can be done more easily and more frequently but requires experience to be reliable. Invasive hemodynamic measurements provide information on intracardiac volumes, filling pressures, contractile and relaxation forces and derive measures such as tau, dP/dT of the LV. Although measurements of systolic pulmonary artery pressure and pulmonary capillary wedge pressure yield additional information about diastolic function and pulmonary hypertension, measuring right-sided invasive hemodynamics presents more of a challenge in pre-clinical models and may not be required if gold standard left-sided invasive hemodynamics are already evaluated.

- **Extra-cardiac comorbidities such as hypertension, obesity, type 2 diabetes mellitus, and renal dysfunction**

 Assessment of extra-cardiac features of HFpEF should take place in all pre-clinical HFpEF models. This assessment should include evaluation of several comorbidities that are closely related to the development of HFpEF.

 - **Hypertension.** Assessment of hypertension can be performed in several ways, including invasive hemodynamic measurements at sacrifice or by using tail-cuff measurements or continuous registrations throughout the study period.
 - **Renal function.** Plasma should be obtained to determine kidney function. Post-mortem analysis of kidneys should take place (weighing + staining).
 - **Obesity.** Mice should be repeatedly weighed during the experiment. Body mass composition should be determined throughout the experiment and prior to sacrifice.
 - **T2DM.** Fasting plasma glucose levels or glycated hemoglobin should be obtained throughout the experiment. Glucose tolerance can be evaluated by oral glucose tolerance test and insulin sensitivity can be tested by insulin tolerance test.
 - **Skeletal muscle weakness.** Post-mortem analysis of skeletal muscle should take place to evaluate reduced mass, and address impaired skeletal oxidative metabolism and abnormal skeletal muscle composition.

AF is a well-known comorbidity for HFpEF and represents an important part of the H\textsubscript{2}FPEF score (three points if AF is present). Unfortunately, induction of AF in mice is challenging and so far none
Validation and translation of the H2FPEF and HFA-PEFF scores in animal models

For most experimental HfPEF models, mice are preferred small animals since they are easy to handle, quick to breed, allow genetic experiments, and are known to produce reliable and highly reproducible outcomes. Larger animal models of HfPEF, such as rat, dogs, and pigs, also exist (summarized in Supplementary material online, Table S1); nevertheless, ethical issues, difficulty in introducing high throughput genetic and molecular studies, cost, and duration of study limit large animal models. We included mice models that were widely used in HF research, and are presented as ‘HFPEF models,’ or were used to evaluate HFPEF treatment options in the pre-clinical phase, often without translational success.

All models were scored for pre-clinical signs and symptoms or clinical HFPEF features (including age and sex), as well as cardiac and extra-cardiac domains of HFA-PEFF and H2FPEF scores (Table 1). Based upon these scores, mouse HF models have been differentiated into more or less likely to fulfill the criteria of the HFA-PEFF or H2FPEF score, schematically presented in Figure 2. In the Graphical abstract, we presented the models in less or high likelihood for HFPEF, including whether models with higher scores also present pre-clinical signs and symptoms or clinical HFPEF characteristics.

Angiotensin-II infusion models

Chronic stimulation of the ANGII type 1 receptor with ANGII infusion by osmotic mini-pumps is a well-known and reliable model to induce HF with cardiac hypertrophy and increased remodelling. Remodelling takes place with hypertrophy depending on the dosage of ANGII. The ANGII effects seems to be strain specific: treatment with ANGII in Balb/c mice typically results in lung congestion and LV dilatation, whereas treatment with ANGII in C57BL6 mice results in lung congestion, as well as exercise intolerance, concentric remodelling with fibrosis, and increased levels of natiuretic peptides. ANGII treated mice develop diastolic dysfunction that includes worsening LV isovolumetric relaxation time, increased LV end-diastolic pressure and increased E/e'. In mice, exogenous ANGII administration does not interfere with kidney function, but may induce skeletal muscle alterations. ANGII models, and especially the ANGII induced hypertension models, resemble cardiac features of human HfPEF to a large extent. Effects of age and obesity, however, are neglected in this model resulting in the following scores:

- Pretest assessment of signs and symptoms and clinical HfPEF features: lung congestion, hypertension and reduced exercise capacity.
- Total HFA-PEFF score: 6 (diastolic dysfunction, LV hypertrophy, increased natriuretic peptide levels);
- Total H2FPEF score: 2 (hypertension and increased filling pressures).

Leptin receptor-deficient model (db/db)

Genetically modified db/db mice have a point mutation in the gene encoding for the leptin receptor that leads to malfunctioning of this receptor. These mice are typically used for cardiometabolic research, especially for studies in the field of non-insulin dependent T2DM. Young db/db mice develop obesity, hyperglycaemia and severe dyslipidemia without hypertension. The onset of symptoms in mice is severe and early in life, and therefore not directly translatable to the human situation in which progression of obesity and T2DM is a slower and chronic process. db/db mice have been from different strains, different ages and different sex, and results from studies performed in these mice are therefore not always comparable.

In general, db/db mice develop diastolic dysfunction including atrial enlargement, concentric hypertrophy, and fibrosis at older ages. LV ejection fraction remains preserved, with decreased GLS rates after 16 weeks. Hypertension may be present, with or without ANGII infusion. Development of cardiac hypertrophy may already be present at early age (8–9 weeks) or develops at a later point in time (up to 16 weeks). Most db/db mice develop concentric hypertrophy, although eccentric hypertrophy has been observed as well. Signs of congestion are usually not present in these mice, and natriuretic peptide levels are not elevated.

- Pretest assessment of signs and symptoms and clinical HfPEF features: elevated comorbidity burden (obesity and diabetes) and reduced exercise capacity.
- Total HFA-PEFF score: 4 (diastolic dysfunction, LV hypertrophy);
- Total H2FPEF score: 4 (obesity, hypertension, diastolic dysfunction).
Leptin-deficient model (ob/ob)
The ob/ob is a leptin-deficient mouse that spontaneously develops obesity (within 4 weeks) and T2DM secondary to hyperglycaemia and hyperinsulinemia. The mice develop concentric hypertrophy with diastolic dysfunction possible due to lipid accumulation. The ejection fraction is preserved without congestion or exercise impairment and natriuretic peptide levels are unchanged or reduced. The observed maladaptive cardiac alterations appear to be related to the loss of leptin mediated signaling and are reversed by recombinant leptin treatment. However, obese HfPcEF patients with leptin deficiency are rarely observed, so the ob/ob mice do not mimic the human HfPcEF phenotype.

- Pretest assessment of signs and symptoms and clinical HfPcEF features: increased comorbidity burden (obesity and diabetes) and reduced exercise capacity.
- Total HFA-PEFF score: 6 (diastolic dysfunction, LV hypertrophy);
- Total H2FPEF score: 2 (age, diastolic dysfunction).

High fat diet/western diet
Obesity is an important comorbidity in patients with HfPcEF and has been suggested to play an import role in (development of) HfPcEF. In pre-clinical models, unhealthy food consumption is mimicked by a high fat diet (HFD) (>60% fat of daily caloric intake) or by a Western diet (36% fat and 36% sucrose of daily intake). Both of these models are able to induce an unfavourable cardiometabolic phenotype with obesity and glucose intolerance in young male and female animals albeit in a strain-specific manner. In older animals, the HFD appears to result in more profound cardiometabolic changes including hyperglycaemia and insulin resistance and more profound inflammation. There may also be sex-specific effect as female mice tend to gain more weight than age-matched male littermates.

Besides an unfavourable cardiometabolic phenotype, these models result in concentric LV hypertrophy with preserved ejection fraction, and mild to moderate diastolic dysfunction. Furthermore, pulmonary hypertension has been described as well as increased levels of cardiac fibrosis. Pulmonary congestion is absent and levels of natriuretic peptides are usually not elevated. Renal dysfunction may occur after long term diet (>20 weeks) in young mice or at earlier point in time in aged mice. Mice fed on an HFD or Western diet typically show reduced exercise capacity, most likely related to their obese state as skeletal muscle weakness is not observed in these mice.

- Pretest assessment of signs and symptoms and clinical HfPcEF features: increased comorbidity burden (obesity and pre-diabetes) and reduced exercise capacity.
- Total HFA-PEFF score: 4 (diastolic dysfunction, LV hypertrophy).
- Total H2FPEF score: 3 (obesity, diastolic dysfunction).

Aged mice (24–30 months)
Similar to humans, natural aging in mice (with or without dietary intervention) is a main driver of development of a maladaptive cardiac HfPcEF phenotype. At an age of 24–30 months, mice recapitulate many hallmarks of human HfPcEF pathophysiology, including diastolic dysfunction, concentric hypertrophy with fibrosis and reduced exercise capacity. This mice furthermore have lung congestion and increased natriuretic peptide levels. Hypertension or T2DM, however, have not been described.

- Pretest assessment of signs and symptoms and clinical HfPcEF features: lung congestion, increased natriuretic peptide levels, reduced exercise capacity, but no comorbidity burden.
- Total HFA-PEFF score: 6 (diastolic dysfunction, LV hypertrophy);
- Total H2FPEF score: 2 (age, diastolic dysfunction).

Accelerated senescence model (SAMP)
Senescence accelerated prone (SAMP) mice belong to a strain of mice that were generated by selective inbreeding of AKR/J mice. These mice show accelerated senescence and age-related pathological phenotypes, similar to aging disorders seen in humans. In addition, they start displaying features of aging at younger age (10 months) than normal mice (8 months). Deleterious mutations in the DNA repair genes are to be involved in their genetic vulnerability for enhanced aging, and specific gene analyses show involvement of oxidative and stress response pathways. SAMP mice develop age-related diastolic dysfunction with atrial enlargement and adverse cardiac remodelling including LV hypertrophy and fibrosis. Levels of natriuretic peptides are elevated in these mice. When fed a Western diet, SAMP mice also develop hypertension and lung congestion, albeit without obesity or T2DM. It has not been described if female or male SAMPs age differently.

- Pretest assessment of signs and symptoms and clinical HfPcEF features: increased natriuretic peptide levels, lung congestion and reduced exercise capacity.
- Total HFA-PEFF score: 6 (diastolic dysfunction, LV hypertrophy, elevated natriuretic peptides).
- Total H2FPEF score: 4 (hypertension, effect of aging, increased filling pressures).

Progress in pre-clinical HF models: development of multifactorial models
The abovementioned models are mostly unifactorial disease models that use one perturbation to induce HF. More recently, progress has been made in the development of pre-clinical HfPcEF models and this has led to multifactorial models that use two or more perturbations to mimic the human HfPcEF phenotype. In the following section, we will again use the HFA-PEFF and H2FPEF score to describe and validate a traditional multifactorial model as well as newer multifactorial HfPcEF models.

Deoxycorticosterone acetate salt-sensitive model
The deoxycorticosterone acetate (DOCA) salt-sensitive model was already developed in 1969 to study hypertension in young mice and rats. This model relies upon a combination of multiple perturbations including administration of doxycorticosterone acetate, increased salt intake (addition of 1% NaCl to drinking water) and...
uninephrectomy. This typically results in cardiac hypertrophy with fibrosis, increased levels of natriuretic peptides, while blood pressure remains unchanged or only mildly increased.178,179 LV function remains preserved while moderate diastolic dysfunction can be observed.180 Nevertheless, these mice do not display lung congestion.181 Again, the effect of age and sex has not been described in this model.

- Pretest assessment of signs and symptoms and clinical HFpEF features: increased natriuretic peptide levels, and reduced exercise capacity.
- Total HFA-PEFF score: 6 (diastolic dysfunction, LV hypertrophy, increased levels of natriuretic peptides);
- Total H2FPEF score: 1 (diastolic dysfunction).

Aldosterone uninephrectomy mouse

Impaired renal function is frequently observed in patients with HFpEF. Renal dysfunction may be attributed to fluid overload, blood pressure elevation, and thus congestion.182 In C57BL6 or FB/N background, the combination of uninephrectomy and aldosterone infusion results in the development of hypertension, lung congestion, and reduced exercise capacity without obesity or T2DM.183,184 Preserved LV ejection fraction is observed with concentric remodeling, mild-to-moderate diastolic dysfunction, and increased levels of natriuretic peptides.185–188 The effect of female sex or aging is unknown and obesity or T2DM is not observed.

- Pretest assessment of signs and symptoms and clinical HFpEF features: lung congestion, increased natriuretic peptide levels and reduced exercise capacity.
- Total HFA-PEFF score: 6 (diastolic dysfunction, LV hypertrophy, increased levels of natriuretic peptides);
- Total H2FPEF score: 2 (hypertension, increased filling pressures).

Combinatory model of high fat diet and L-NAME

Schiattarella et al.169 were the first to present a two-hit pre-clinical mouse model that resembles human HFpEF. In short, C57BL/6N wild-type mice were subjected to a combination of HFD and hypertension that was induced by L-NAME (constitutive nitric oxide synthase inhibitor). They observed that mice that were subjected to both stress factors developed a typical HFpEF phenotype, including lung congestion and reduced exercise tolerance and increased natriuretic peptides. On the contrary, mice that were only exposed to one stressor did not develop this phenotype.169 More recently, sex-dependent effects have also been shown: young female mice were more resilient for development of HFpEF, as the combination of high-fat and L-NAME resulted in a more attenuated cardiac phenotype as compared to young male mice.189 The effect of aging was not studied.

- Pretest assessment of signs and symptoms and clinical HFpEF features: increased natriuretic peptides, lung congestion, reduced exercise capacity, and increased comorbidity burden (hypertension, obesity and pre-diabetes).
- Total HFA-PEFF score: 6 points (increased natriuretic peptides, diastolic dysfunction, concentric LV hypertrophy).
- Total H2FPEF score: 4 (obesity, hypertension, increased filling pressures).

Combinatory model of high fat diet and ANGII infusion

The combination of HFD and ANGII infusion induces hypertension, obesity and T2DM in young male mice.151,190,191 This intervention also results in preserved LV function with diastolic dysfunction, concentric hypertrophy with fibrosis and increased natriuretic peptides. However, signs and symptoms or clinical features of HFpEF, if any, appear to be very mild since lung congestion in young animals is absent and effect on exercise capacity is unknown.151,190–192

- Pretest assessment of signs and symptoms and clinical HFpEF features: increased natriuretic peptide levels, increased comorbidity burden (hypertension and pre-diabetes);
- Total HFA-PEFF score: 6 (diastolic dysfunction, LV hypertrophy, elevated levels of natriuretic peptides);
- Total H2FPEF score: 4 (obesity, hypertension, increased filling pressures).

Combinatory model of aging, high fat diet, and ANGII infusion

We have recently developed a multifactorial mouse model that combines aging (18–22 months) with HFD and ANGII infusion.193 In these older female C57BL6/J mice, a HFpEF-like phenotype is present including concentric LV hypertrophy and LV fibrosis, diastolic dysfunction, lung congestion, increased natriuretic peptide levels, and elevated blood pressures. The effect of sex has not been studied yet.

- Pretest assessment of signs and symptoms and clinical HFpEF features: lung congestion, increased natriuretic peptide levels, reduced exercise capacity, and increased comorbidity burden (hypertension, obesity and pre-diabetes);
- Total HFA-PEFF score: 6 (diastolic dysfunction, concentric LV hypertrophy, elevated natriuretic peptide levels);
- Total H2FPEF score: 5 (obesity, hypertension, elderly, increased filling pressures).

Combinatory model of aging, high fat diet and desoxytocorticosterone pivalate

A very recent study by Deng et al.194 used a combinatory model of 16 months of ageing, long-term HFD (13 months) and 3 months of desoxytocorticosterone pivalate challenge in mice to induce a HFpEF-like phenotype. Their model resulted in many typical HFpEF features, including lung congestion, hypertension and impaired exercise tolerance. They also showed diastolic dysfunction, LV hypertrophy, fibrosis and increased levels of natriuretic peptides. Both sexes were included but not further studied.

- Pretest assessment of signs and symptoms and clinical HFpEF features: lung congestion, increased natriuretic peptide levels, reduced exercise capacity and increased comorbidity burden (hypertension, obesity and pre-diabetes);
- Total HFA-PEFF score: 6 (diastolic dysfunction, LV hypertrophy, elevated natriuretic peptide levels);
- Total H2FPEF score: 5 (obesity, hypertension, elderly, increased filling pressures).
Conclusion

HfPcEF remains a major public health problem worldwide with still increasing prevalence and incidence. So far, HfPcEF treatment mostly focuses on symptom reduction since HfPcEF-specific drugs do not exist. Despite numerous efforts to develop HfPcEF-specific drugs, bench-to-bedside translation has not been successful, and this may, at least partly, be due to the lack of pre-clinical HfPcEF models that adequately recapitulate the complexities of the human condition.

HfPcEF is a multifactorial disease in which comorbidities contribute to the pathophysiology of the clinical syndrome. While this complicates the development of preclinical models, progress in the field will be aided by consensus on key elements that a HfPcEF animal model should manifest. The recent development of two clinical HfPcEF scores has led to a novel clinical standard for defining the key clinical features of HfPcEF. This state-of-the-art review is the first to apply clinical scores to HfPcEF mouse models to improve putative applicability and translational value of pre-clinical HfPcEF research. It proposes a novel approach to follow when performing a pre-clinical HfPcEF study to optimize bench-to-bed translation and provide a checklist for small HfPcEF animal models. Although this checklist may not capture all human HfPcEF variables, it will help to provide better and more relevant small animal HfPcEF models with better putative application and translational value. So far, most of the pre-clinical models do not fully meet these criteria (presented in Graphical abstract). Of course, pathophysiology of the mouse heart cannot be translated to humans 1 on 1, and translation of pre-clinical findings to human conditions should always be done cautiously. Of note, clinical studies should be challenged as well to account for diverse HfPcEF physiology to optimize bench-to-bed translation.

This review furthermore describes some multifactorial models that resemble human HfPcEF to a large extent, and suggests that these small animal models remain attractive models for future HfPcEF research. Based on this review, we advocate that future HfPcEF pre-clinical studies that test potential new therapeutic agents should consider use of multiple HfPcEF animal models so that their effects can be tested on multiple HfPcEF phenotypes. Following this approach we believe that pre-clinical HfPcEF models will be able to fill major gaps in HfPcEF pathophysiology and will eventually facilitate development of novel HfPcEF therapeutics.

Supplementary material

Supplementary material is available at European Heart Journal online.

Funding

C.W. and C.S.L are supported by the University of Groningen (Rosalind Franklin fellowship). G.G.S. is supported by the German Center for Cardiovascular Research (DZHK) Junior Research Group Excellence Grant. C.S.L. is supported by a Clinician Scientist Award from the National Medical Research Council of Singapore. This work was supported by grants from the Netherlands Heart Foundation (CVON SHE-Predicts-HF, grant 2017-21; CVON RED-CVD, grant 2017-11; CVON Predict2, grant 2018-30; and CVON DOUBLE DOSE, grant 2020B005), by a grant from the LeDucq Foundation (Cure PhosphoLambNa induced Cardiomyopathy (Cure-PLaN)), and by a grant from the European Research Council (ERC CoG 818715, SECRETE-HF).

Conflict of interest: C.W. reports grants from NovoNordisk and AstraZeneca, outside the submitted work. In addition, G.G.S. has a patent PCT/US17/37019 pending. C.S.P.L reports grants from Boston Scientific, Bayer, Roche Diagnostics, AstraZeneca, Medtronic, and Vifor Pharma, personal fees from Abbott Diagnostics, Amgen, Applied Therapeutics, AstraZeneca, Bayer, Biothermics, Boehringer Ingelheim, Boston Scientific, Corvia Medical, Cytokinetics, Darma Inc., Us2.ai, JanaCare, Janssen Research & Development LLC, Medtronic, Menarini Group, Merck, MyoKardia, Novartis, Novo Nordisk, Radcliffe Group Ltd, Roche Diagnostics, Santofi, Stealth BioTherapeutics, The Corpus, Vifor Pharma, and WebMD Global LLC, outside the submitted work. In addition, C.S.P.L. has a patent PCT/SG2016/050217 pending and a patent 16/216,929 issued. R.A.d.B. reports grants from Abbott, grants from AstraZeneca, grants from Boehringer Ingelheim, grants from Cardior Pharmaceuticals Gmbh, grants from ionis Pharmaceuticals, Inc., grants from Novo Nordisk, grants from Roche, personal fees from Abbott, personal fees from AstraZeneca, personal fees from Bayer, personal fees from Novartis, and personal fees from Roche, outside the submitted work. L.M.G.M. reports grants from Mandemaa Stipendium (UMCG), outside the submitted work.

References

1. Borlaug BA. Evaluation and management of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2016;13:595–602.
2. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JF, Rosano GMC, Ruloph LM, Ruschitzka F, Rutten FH, van der Meer P, ESC Scientific Document Group. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 37:2129–2200.
3. Dunlay SM, Roger VL, Redfield MM. Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 2017;14:591–602.
4. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chiuve SE, Cushman M, Delling FN, Dey R, De FS, Ferguson JF, Fornage M, Gillespie C, Issi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Livingston CT, Luty SL, Mackey JS, Matchar DB, Matsushita K, Mussolino ME, Naas K, O’Flaherty M, Palaniappan LP, Pandey A, Pandey DK, Reeves MJ, Ritchey MD, Rodriguez CJ, Roth GA, Rosamond WD, Sampson UKA, Satou GM, Shah SH, Spartanio NL, Tirschwell DL, Tsao CW, Voeks JH, Willey ZJ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P. Heart disease and stroke statistics - 2018 update: a report from the American Heart Association. Circulation 2018;137:E67–E492.
5. Gottdiener JS, de Boer RA, Larson MG. Predicting heart failure with preserved ejection fraction. Eur J Heart Fail 2014;16:535–542.
6. Boonman-de Winter LJH, Rutten FH, Cramer MJM, Landman MJ, Liem AH, Rutten GEHM, Hoes AW. High prevalence of previously unknown heart failure and left ventricular dysfunction in patients with type 2 diabetes. Diabetologia 2012;55:2154–2162.
7. Ho JE, Enserro D, Brouwers FP, Kiser JR, Shah SJ, Patsy BM, Bartz TM, Santhanakrishnan R, Lee DS, Chan C, Liu K, Baha MJ, Hillege HL, van der Harst P, van Gilst WH, Kop WJ, Gansevoort RT, Vasan RS, Gardin JM, Levy D, Gottsdiner JS, de Boer RA, Larson MG. Predicting heart failure with preserved ejection fraction and reduced ejection fraction. Circ Heart Fail 2016;9:e003116.
8. Packer M, Kitzman DW. Obesity-related heart failure with a preserved ejection fraction. JACC Heart Fail 2018;6:633–639.
9. Oktay AA, Rich JD, Shah SJ. The emerging epidemic of heart failure with preserved ejection fraction. Curr Heart Fail Rep 2013;10:401–410.
10. Tribouilloy C, Rusinard D, Mahjoub H, Souléve V, Lévy P, Pelletier M, Slama M, Massy Z. Prognosis of heart failure with preserved ejection fraction: a 5 year prospective population-based study. Eur Heart J 2008;29:329–347.
11. Shah SJ, Kitzman DW, Borlaug BA, van Heerenbeek L, Zile MR, Kass DA, Paulus WJ. Phenotype-specific treatment of heart failure with preserved ejection fraction. Circulation 2016;134:73–90.
12. Goyal P, Paul T, Almarzaq ZI, Peterson JC, Krishnan U, Swaminathan RV, Feldman DN, Wells MT, Karas MG, Sobol I, Maurer MS, Horn EM, Kim LC. Sex- and race-related differences in characteristics and outcomes of hospitalization for heart failure with preserved ejection fraction. J Am Heart Assoc 2017;6:e003330.

13. Egan OB, Pettinger M, Rossouw J, Martin LW, Foraker R, Quidus A, Liu S, Wangler NS, Hank Wu WC, Manson JE, Margolis K, Johnson KC, Allison M, Corbie-Smith G, Rosamond W, Breaux G, Klein L. Risk factors for incident hospitalized heart failure with preserved versus reduced ejection fraction in a multiracial cohort of postmenopausal women. Circ Heart Fail 2016;9:e002883.

14. Savji N, Mejers WC, Bartz TM, Bhamhani V, Cushman M, Nayor M, Kizer JR, Syrjanen A, Markova S, Broberg MA, Gan LM, Lund LH. Association of obesity and cardiometabolic traits with incident HFpEF and HFrEF. JACC Heart Fail 2018;6:701–709.

15. De Boer RA, Nayor M, DeFilippi CR, Ensorro D, Bhamhani V, Kizer JR, Blaha MJ, Bowers FF, Cushman M, Lima JAC. Bahrami H, Van Der Haelt P, Wong TJ, Gagneuort CV, Fox CS, Gaggin HK, Kop WJ, Liu J, Vanas RS, Pusztay BM, van der Harst P, Levy D, Hillege HL, Bartz TM, Benjamini E, Chan C, Allison M, Gokmen JM, Januzzi JL, Shah SJ, Levy D, Harrington DM, Larson MG, Van Gilst WH, Gottsacker JS, Bertoni AG, Ho JE. Association of cardiovascular biomarkers with incident heart failure with preserved and reduced ejection fraction. JAMA Cardiol 2018;3:215–224.

16. Cantor R, Caballeria B. Global gender disparities in obesity: a review. Adv Nutr 2012;3:491–498.

17. Marechaux S, Six-Carpentier MM, Bouabdallaoui N, Montaigne D, Bauchart JJ, Artar AS, Date J, borlas BA, Redfield MM, Shah SJ, Sprague M, Asahina K, Asseman P, Lejemtel TH, Ennezat PV. Prognostic importance of comorbidities in heart failure with preserved left ventricular ejection fraction. Heart Vessels 2011;26:313–320.

18. Mentz RJ, Kelly JP, Von Luder TG, Voors AA, Lam CSP, Cowie MR, Kjeldsen SE, Blaha MJ, Gaggin HK, Kop WJ, Liu J, Vanas RS, Pusztay BM, Lee DS, Hillege HL, Bartz TM, Benjamini EJ, Chan C, Allison M, Gokmen JM, Januzzi JL, Shah SJ, Levy D, Harrington DM, Larson MG, Van Gilst WH, Gottsacker JS, Bertoni AG, Ho JE. Association of cardiovascular biomarkers with incident heart failure with preserved and reduced ejection fraction. JAMA Cardiol 2018;3:215–224.

19. Pieske B, Tschöpe C, De Boer RA, Fraser AG, Anker SD, Donal E, Edelmann F, Mentz RJ, Kelly JP, Von Luder TG, Voors AA, Lam CSP, Cowie MR, Kjeldsen SE, Blaha MJ, Gaggin HK, Kop WJ, Liu J, Vanas RS, Pusztay BM, Lee DS, Hillege HL, Bartz TM, Benjamini EJ, Chan C, Allison M, Gokmen JM, Januzzi JL, Shah SJ, Levy D, Harrington DM, Larson MG, Van Gilst WH, Gottsacker JS, Bertoni AG, Ho JE. Association of cardiovascular biomarkers with incident heart failure with preserved and reduced ejection fraction. JAMA Cardiol 2018;3:215–224.

20. Pieske B, Tschöpe C, De Boer RA, Fraser AG, Anker SD, Donal E, Edelmann F, Mentz RJ, Kelly JP, Von Luder TG, Voors AA, Lam CSP, Cowie MR, Kjeldsen SE, Blaha MJ, Gaggin HK, Kop WJ, Liu J, Vanas RS, Pusztay BM, Lee DS, Hillege HL, Bartz TM, Benjamini EJ, Chan C, Allison M, Gokmen JM, Januzzi JL, Shah SJ, Levy D, Harrington DM, Larson MG, Van Gilst WH, Gottsacker JS, Bertoni AG, Ho JE. Association of cardiovascular biomarkers with incident heart failure with preserved and reduced ejection fraction. JAMA Cardiol 2018;3:215–224.
on exercise capacity among patients with heart failure with preserved ejection fraction: the INDIE-HFpEF Randomized Clinical Trial. JAMA 2018;320:1764–1773.

47. Komajda M, Isnard R, Cohen-Solal A, Metra M, Pieske B, Schultheiss H-P, Tschope C. Selective PDE5A inhibition with sildenafil rescues left ventricular dysfunction, inflammatory immune response and cardiac remodeling in angiotensin II-induced heart failure in vivo. Basic Res Cardiol 2012;107:308.

48. Takimoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER, Bedja D, Gabrielson KL, Wang Y, Kass DA. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 2005;11:214–222.

49. Pfeffer JM, Mauserwald E, Finn P. Survival after an experimental myocardial infarction: beneficial effects of long-term therapy with captopril. Circulation 1985;72:406–412.

50. Westermann D, Becher PM, Lindner D, Savvatis K, Xia Y, Frohlich M, Hoffmann M, Komajda M, Isnard R, Cohen-Solal A, Metra M, Pieske B, Ponikowski P, Voors AA, Dominjon F, Henon-Goburdhun C, Pannaux M, Bohn M; on behalf of the prSYDNEY I trial. Effect of ivabradine in patients with heart failure with preserved ejection fraction: the prSYDNEY randomized placebo-controlled trial. Eur J Heart Fail 2017;19:1495–1503.

51. Kitzman DW, Nicklas B, Kraus WE, Lyles MF, Egggenburg J, Morgan TM, Haykowsky M. Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved ejection fraction. Am J Physiol Heart Circ Physiol 2014;306:H1364–70.

52. Schnelle M, Catibog N, Zhang M, Nabeebaccus AA, Anderson G, Richards DA, Sawyer G, Zhang X, Toischer K, Hasenfuss G, Monaghan MJ, Shah AM. Echocardiographic evaluation of diastolic function in mouse models of heart disease. J Mol Cell Cardiol 2018;114:20–28.

53. Fajardo TA, Van den Bergh A, Claus P, Jasaityte R, La Gerche A, Remmers F, Herigors D, Hofago J. Assessment of strain and strain rate by two-dimensional speckle tracking in mice: comparison with tissue Doppler echocardiography and conductance catheter measurements. Eur J Heart Cardiovasc Imaging 2013;17:665–673.

54. Anand IS, Lam CSP, Maggioni AP, Martinez F, Solomon SD, McMurray JJV, Pires A, Remme WJ, Rodrigues A, Ryan D, Rosenzweig A, Struijker Boudier HA, Thompson HJ, Torp-Pedersen C, Udelson JE, Zannad F, Zile MR, Desai AS, Claggett B, Godwin M, Hahn M, Krumholz HM, Kurl S, Redfield MM, Saran R, Shaw L, Solomon SD. Effect of ivabradine and metoprolol CR/XL on exercise capacity among patients with heart failure with preserved ejection fraction: the EDIFY randomized placebo-controlled trial. J Am Coll Cardiol 2017;68:394–408.

55. Valero-Muñoz M, Backman W, Sam F. Murine models of heart failure with preserved ejection fraction: a “Fishing Expedition”. JACC Basic Trans Sci 2017;2:770–789.

56. Balaguer KA, White K, Li W, Claypool MD, Lang W, Alcantara R, Singh BK, Friera AM, McLaughlin J, Hansen D, McLaughy K, Nguyen H, Smith J, Godinez G, Shaw J, Goff D, Singh R, Markovtsov V, Sun T-Q, Jenkins Y, Li Y, Li P, Auran J, Razzuola A, Gani Y, Li V, Shi LC, Lewkowicz MP, PAPADON-HF Investigators and Committee. Angiotensin- antagonists in heart failure with preserved ejection fraction. N Engl J Med 2019;381:1609–1620.

57. Fraccarollo D, Galuppo P, Sieweke JT, Napp LC, Grobbecker P, Bauersachs J. Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theoretical framework and potential importance. Aging Cell 2019;18:503–535.

58. Krumholz HM, Larson M, Levy D. Sex differences in cardiac adaptation to isometric overload in mice. Am J Physiol Heart Circ Physiol 2013;304:H1128–H1145.

59. Brunjes DL, Kenten PJ, Christian Schultze P. Exercise capacity, physical activity, and morbidity. Heart Fail Rev 2017;22:133–139.

60. Redfield MM. Cardiomyopathy: a three-dimensional disease. Circ Res 2010;107:856–864.

61. Gabrielson KL, Wang Y, Kass DA. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 2005;11:214–222.

62. Brouwers FP, de Boer RA, van der Harst P, Voors AA, Dominjon F, Henon-Goburdhun C, Pannaux M, Bohn M; on behalf of the prSYDNEY I trial. Effect of ivabradine in patients with heart failure with preserved ejection fraction: the prSYDNEY randomized placebo-controlled trial. Eur J Heart Fail 2017;19:1495–1503.

63. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun E, Gabrielson KL, Wang Y, Kass DA. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 2005;11:214–222.

64. Fraccarollo D, Galuppo P, Sieweke JT, Napp LC, Grobbecker P, Bauersachs J. Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theoretical framework and potential importance. Aging Cell 2019;18:503–535.

65. Komajda M, Isnard R, Cohen-Solal A, Metra M, Pieske B, Schultheiss H-P, Tschope C. Selective PDE5A inhibition with sildenafil rescues left ventricular dysfunction, inflammatory immune response and cardiac remodeling in angiotensin II-induced heart failure in vivo. Basic Res Cardiol 2012;107:308.

66. Balaguer KA, White K, Li W, Claypool MD, Lang W, Alcantara R, Singh BK, Friera AM, McLaughlin J, Hansen D, McLaughy K, Nguyen H, Smith J, Godinez G, Shaw J, Goff D, Singh R, Markovtsov V, Sun T-Q, Jenkins Y, Li Y, Li P, Auran J, Razzuola A, Gani Y, Li V, Shi LC, Lewkowicz MP, PAPADON-HF Investigators and Committee. Angiotensin- antagonists in heart failure with preserved ejection fraction. N Engl J Med 2019;381:1609–1620.

67. Fraccarollo D, Galuppo P, Sieweke JT, Napp LC, Grobbecker P, Bauersachs J. Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theoretical framework and potential importance. Aging Cell 2019;18:503–535.

68. Roh J, Houstis N, Rosenzweig A. Why Don’t We Have Proven Treatments for HFpEF? Circ Res 2017;120:1243–1245.

69. Brunjes DL, Kenten PJ, Christian Schultze P. Exercise capacity, physical activity, and morbidity. Heart Fail Rev 2017;22:133–139.

70. Redfield MM. Cardiomyopathy: a three-dimensional disease. Circ Res 2010;107:856–864.
87. Shioura KM, Geenen DL, Goldspink PH. Sex-related changes in cardiac function following myocardial infarction in mice. Am J Physiol Integr Comp Physiol 2008; 295:R528–R534.

88. Petterson US, Wälden TB, Carlsson P-O, Jansson L, Phillipson M. Female mice are protected against high-fat diet induced metabolic syndrome and increase the regulatory T cell population in adipose tissue. PLoS One 2012;7:e46057.

89. Kajstura J, Gurusamy N, Ogo´rek B, Goichberg P, Clavo-Rondon C, Hosoda T, Shioura KM, Geenen DL, Goldspink PH. Sex-related changes in cardiac function in rats with heart failure with preserved ejection fraction. Circ Res 2010;107:1374–1386.

90. Kubch M, Muscholl M, Luchner A, Döring A, Rieger GA, Schunkert H, Hense HW. Gender specific differences in left ventricular adaptation to obesity and hypertension. Hypertension 1998;31:685–693.

91. Nguyen ITN, Brandt MM, van de Wouw J, van Drie RW, Wesseling C, Mram M, de Jager SCA, Merkus D, Duncker DJ, Cheng C, Joles JA, Verhaar MC. Both male and female obese ZSF1 rats develop cardiac dysfunction in obesity-induced heart failure with preserved ejection fraction. PLoS One 2020;15:e0232399.

92. Lekarvanijt S, Kompa AR, Manabe M, Wang BH, Langham RG, Nishijima F, Kelly DJ, Krum H. Chronic kidney disease-induced cardiac fibrosis is ameliorated by reducing circulating levels of a non-dialysable uric acid toxin, indoxyl sulphate. PLoS One 2012;7:e41281.

93. Suzuki H, Schaefer L, Ling H, Schaefer RM, Dammrich J, Teschner M, Heidland A. Prevention of cardiac hypertrophy in experimental chronic renal failure by long-term ACE inhibitor administration: Potential role of lysosomal proteases. Am J Nephrol 1995;15:129–136.

94. Kreukels BD, Vetters J, Periasamy SM, Kan J, Fedorova L, Khouri S, Kahaleh MB, Xie Z, Malhotra D, Kolodkin NL, Lakatta EG, Fedorova OV, Bagrov AY, Shapiro J. Central role for the cardiac fibronectin marionbouginin in the pathogenesis of experimental uremic cardiomyopathy. Hypertension 2006;47:488–495.

95. Bongartz LG, Bram B, Verhaar MC, Cramer MJ, de Jager SCA, Merkus D, Duncker DJ, Cheng C, Joles JA, Verhaar MC. Both male and female obese ZSF1 rats develop cardiac dysfunction in obesity-induced heart failure with preserved ejection fraction. Am J Physiol Regul Integr Comp Physiol 2019;317:R815–R823.

96. Hartman N, Francson C, Lorenou A, Farsa S, Fontoura D, Leit, S, Plettig L, Lopez B, Ottenheijm CA, Bechmer P, Gonzalez A, Tscho Pe C, Diez J, Linke WA, Leite-Moreira AF, Paulus WJ. Myocardial titin hypophosphorylation importantly contributes to heart failure with preserved ejection fraction in a rat model of heart failure. Circ Heart Fail 2013;6:1239–1249.

97. Van Dijk CGM, Oosterhuis NR, Xu YJ, Brandt M, Paulus WJ, Van Heerebeek L, Duncker DJ, Verhaar MC, Fontoura D, Lorenou AP, Leite-Moreira AF, Falcio-Pires, I, Joles JA, Cheng C. Distinct endothelial cell responses in the heart and kidney microvasculature characterize the progression of heart failure with preserved ejection fraction in the obese ZSF1 rat with cardiometabolic syndrome. Circ Heart Fail 2016;9:e002760.

98. Groble JL, Mecca AP, Mao H, Katohji M. Chronic angiotensin-1(–7) prevents cardiac fibrosis in DOCA-salt model of hypertension. Am J Physiol Circ Physiol 2006;290:H2417–H2423.

99. Schauer A, Adams V, Augstein A, Jannasch A, Draskowski R, Kirchhoff V, Schauer S, Eller K, Maechler H, Pieske BM, Linke WA, Joles JA, Verhaar MC, van der Velden J, Menkus D, Duncker DJ, Cheng C, Joles JA, Verhaar MC. A porcine model of heart failure with preserved ejection fraction: magnetic resonance imaging and metabolic energetics. ESC Heart Fail 2020;7:92–102.

100. Gyongyosi M, Pavo N, Lukovic D, Zlabinger K, Spannbauer A, Traxler D, Gyo ´ngyo ´si M, Pavo N, Lukovic D, Zlabinger K, Spannbauer A, Traxler D, Ichihara S, Senbonmatsu T, Price E, Ichiki T, Gaffney FA, Inagami T. Angiotensin II inhibition is distinctive—A new preclinical model. Circ Heart Fail 2015;8:H1407–H1418.

101. Sharpe TE, Scarborough AL, Li Z, Polhemus DJ, Hidalgo HA, Schumacher JD, Matsuda TR, Jenkins JS, Kelly DP, Goodchild TT, Lefer DJ. Novel Göttingen Miniswine model of heart failure with preserved ejection fraction integrating multiple comorbidities. JACC Basic Trans Sci 2021;6:154–170.

102. Zhang N, Feng B, Ma X, Sun X, Gu Z, Zhou Y. Dapagliflozin improves left ventricular remodeling and assorts sympathetic tone in a pig model of heart failure with preserved ejection fraction. Cardiovasc Diabetol 2019;18:107.

103. Oliver TD, Edwards JC, Jurissen TJ, Veteto AB, Jones JL, Gao C, Rau C, Warren CM, Kluh TJ, Alex L, Ferreira-Nichols SC, Ivey JR, Thorne PK, McDonald KS, Krezen M, Banes CP, Solaro RJ, Wang Y, Ford DA, Demeirle TT, Pelttig J, Rector RS, Enter CA. Western diet-fed, aortic-banded Ossabaw Swine: A preclinical model of cardiac-metabolic heart failure. JACC Basic Trans Sci 2020;5:404–421.

104. Charles CJ, Lee P, Li RR, Yeung T, Ibrahim MZ, Tai ZW, Abdurrahim D, Teo XQ, Wang WH, de Kleijn DPV, Cozzone PJ, Lam CSP, Richards AM. A porcine model of heart failure with preserved ejection fraction: magnetic resonance imaging and metabolic energetics. JACC Heart Fail 2019;7:92–102.

105. Yoon HS, Kim J, Seo Y, Ahn SB, Kwon J, Park C, Hwang S. Sacubitril/valsartan prevents cardiac hypertrophy in experimental chronic renal failure by dual SGLT1 and SGLT2 inhibition. J Mol Cell Cardiol 2019;135:10–19.

106. Ome M, Morimoto M, Nakamura K, Ono T, Nishino T, Ueda S, Inatomi Y, Ikegami T, Kato T, Ishikawa T, Takashima T, Takashima K. Treatment of heart failure with preserved ejection fraction through proinflammatory effects and endothelial-mesenchymal transition. J Am Coll Cardiol 2015;65:1074–1086.

107. Ichihara S, Senbonmatsu T, Price E, Ishchi T, Gaffney FA, Inagami T. Angiotensin II type 2 receptor is essential for left ventricular hypertrophy and cardiac fibrosis in chronic angiotensin II inhibition. Hypertension 2001;38:364–369.

108. Glenn DJ, Cardema MC, Ni W, Zhang Y, Yeghiazarians Y, Graupov D, Fiehn O, Gardner DG. Cardiac steatosis potentiates angiotensin II effects in the heart. J Biol Chem 2016;291:20183–20194.

109. Bird D, Holzinger H, Döring A, Schmuck B, Wielopolski PA, Kreten GP, van den Meiracker AH, Verheijen R, Bilsen V, Danser AHJ, Paulus WJ, Cheng C, Linke WA, Joles JA, Verhaar MC, van der Velden J, Merkus D, Duncker DJ. Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffness. Cardiovasc Res. 2018;114:954–964.

110. Desh Y, Cheng F, Sharma M, Merkoulova Y, Rathatha SA, Parkinson LG, Zhoa H, Westendorf JK, Bohnke N, Bozin T, Zoth L, Garamvölgyi R, Maurer G, Jaiser F, Zannad F, Thum T, Bátási S, Winkler J. Porcine model of progressive cardiac hypertrophy and fibrosis with secondary postcapillary pulmonary hypertension. J Transl Med 2017;15:202.

111. Sorop O, Heinenon I, van Kranenburg M, van de Wouw J, de Beer VJ, Nguyen NT, Octavia Y, van Duin RWB, Stamm K, van Geuns RJ, Wielopolski PA, Krestin GP, van den Meiracker AH, Verheijen R, Bilsen V, Danser AHJ, Paulus WJ, Cheng C, Linke WA, Joles JA, Verhaar MC, van der Velden J, Merkus D, Duncker DJ. Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffness. Cardiovasc Res. 2018;114:954–964.

112. Ichihara S, Senbonmatsu T, Price E, Ishchi T, Gaffney FA, Inagami T. Angiotensin II type 2 receptor is essential for left ventricular hypertrophy and cardiac fibrosis in chronic angiotensin II inhibition. Hypertension 2001;38:364–369.

113. Glenn DJ, Cardema MC, Ni W, Zhang Y, Yeghiazarians Y, Graupov D, Fiehn O, Gardner DG. Cardiac steatosis potentiates angiotensin II effects in the heart. J Biol Chem 2016;291:20183–20194.

114. Bird D, Holzinger H, Döring A, Schmuck B, Wielopolski PA, Kreten GP, van den Meiracker AH, Verheijen R, Bilsen V, Danser AHJ, Paulus WJ, Cheng C, Linke WA, Joles JA, Verhaar MC, van der Velden J, Merkus D, Duncker DJ. Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffness. Cardiovasc Res. 2018;114:954–964.
123. Regan JA, Mauro AG, Carbono S, Marchetti C, Gill R, Mezzaroma E, Raleigh JV, Salloum FN, Van Tassell BW, Abbate A, Toldo S, Mauro AG, Carbono S, Marchetti C, Gill R, Mezzaroma E, Valle Raleigh J, Salloum FN, Van Tassell BW, Abbate A, Toldo S. A mouse model of heart failure with preserved ejection fraction due to chronic infusion of a low subpressor dose of angiotensin II. Am J Physiol Heart Circ Physiol 2015;309:H1771–8.

124. Peeters B, Vang XD, Verhaeghe OA, Nakagawa P, D’Ambrosio M, Meurig P, Xu J, Peterson EL, Gonzalez GE, Harding P, Rhael N-E. Angiotensin II-induced dilated cardiomyopathy in Balb/c but not C57BL/6 mice. Exp Physiol 2011;96:756–764.

125. Kadoguchi T, Kinugawa T, Takada S, Fukuhisa A, Funihata T, Homma T, Masaki Y, Mazushima W, Nishikawa M, Takahashi M, Yokota T, Matsushima S, Okita K, Tatsui H. Angiotensin II can directly induce mitochondrial dysfunction, decrease oxidative fibre number and induce atrophy in mouse hindlimb skeletal muscle. Exp Physiol 2015;100:312–322.

126. Chen H, Charlat O, Tartaglia LA, Wooll EF, Weng X, Ellis SJ, Lacey ND, Culpepper J, More KJ, Breitbart RE, Dyuk GM, Tepper R, Morgenstern JP. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 1996;84:491–495.

127. Reil J-C, Hohl M, Reil G-H, Granzier HL, Kratz MT, Kazakov A, Fries P, Muller C. Hypertension is a conditional factor for the development of cardiac hypertrophy in young db/db mice. Am J Physiol Heart Circ Physiol 2018;315:H934–H949.

128. Barouch LA, Berkowitz DE, Harrison RW, O’Donnell CP, Hare JM. Disruption of ACE-2/ANG 1–7/Mas receptor cascade. orates diabetic cardiomyopathy in young db/db mice through the modulation of angiotensin-converting enzyme 2 inhibition. Eur Heart J 2013;34:2839–2849.

129. Yue P, Arai T, Terashima M, Sheikh AY, Cao F, Charo D, Hoyt G, Robbins RC, Gutkowska J, Broderick TL, Jankowski M, Wang D, Danalache BA, Parrott CR, Gutkowska J. Bostick B, Aroor AR, Habibi J, Durante W, Ma L, DeMarco VG, Garro M, Hayden MR, Booth FW, Sowers JR. Daily exercise prevents diastolic dysfunction and oxidative stress in a female mouse model of western diet induced obesity by maintaining cardiac heme oxygenase-1 levels. Metabolism 2017;66:14–22.

130. Broderick TL, Wang D, Jankowski M, Gutkowska J. Unexpected effects of voluntary exercise training on natriuretic peptide and receptor mRNA expression in the ob/ob mouse heart. Regul Pep 2014;188:52–59.

131. Christoffersen C, Bartels ED, Nielsen LB. Heart specific up-regulation of genes for B-type and C-type natriuretic peptide receptors in diabetic mice. Eur J Clin Invest 2006;36:69–75.

132. Manolescu DC, Jankowski M, Danalache BA, Wang D, Broderick TL, Chiasson JL, Gutkowska J. All-trans retinoic acid stimulates gene expression of the cardio-protective natriuretic peptide system and prevents fibrosis and apoptosis in cardiomyocytes of obese ob/ob mice. Appl Physiol Nutr Metab 2014;39:1127–1136.

133. Dong F, Zhang X, Yang X, Esberg LB, Yang H, Zhang Z, Culver B, Ren J. Impaired cardiac contractile function in ventricular myocytes from leptin-deficient ob/ob obese mice. J Endocrinol 2006;206:29–36.

134. Clément K. Genetics of human obesity. C R Biol 2006;329:608–622.

135. Sorimachi H, Obokata M, Takahashi N, Reddy YNV, Jain CC, Verbrugge FH, Hoepp KE, Khosla S, Jensen MD, Borlaug BA. Pathophysiologic importance of visceral adipose tissue in women with heart failure and preserved ejection fraction. Eur Heart J 2021;42:1295–1305.

136. Withaar V, Meems LM, De Boer RA. Fighting HifPEF in women: taking aim at belly fat. Eur Heart J 2021;42:1606–1608.

137. Piek A, Koonen DPYY, Schouten EMM, Lindstedt EL, Michaelsson E, de Boer RA, Sillijt HHWW. Pharmacological myolipolyolysis (MPO) inhibition in an obese/hypertensive mouse model attenuates obesity and liver damage, but not cardiac remodeling. Sci Rep 2019;9:18765.

138. Tarnow-Jek J, Wan F, Sawaki D, Surenraadt M, Pini M, Mercedez R, Lernande E, Audureau E, Dubois-Rande JL, Adnot S, Hue S, Szibki G, Derumeaux G. Short-term high-fat diet compromises myocardial function: a radial strain imaging study. Eur J Cardiovasc Imaging 2017;19:1283–1291.

139. Bostick B, Aroor AR, Habibi J, Durante W, Ma L, DeMarco VG, Garro M, Hayden MR, Booth FW, Sowers JR. Obesity and insulin resistance induce early development of diabetic cardiomyopathy in young female mice fed a western diet. J Mol Cell Cardiol 2018;116:106–114.

140. Agrawal V, Fortune N, Yu S, Fuentes J, Shi F, Nichols D, Gleaves L, Pookey E, Wang TJ, Brittain EL, Collins S, West JD, Henners RA. Natriuretic peptide receptor C contributes to disproportionate right ventricular hypertrophy in a rodent model of obesity-induced heart failure with preserved ejection fraction with pulmonary hypertension. PLoS One 2019;14:e0258941.

141. Aboumsallem JP, Muthuramu I, Mishra M, De Geest B. Cholesterol-lowering B-blocking therapy reduces cardiac systolic and diastolic dysfunction in a mouse model of metabolic syndrome. Arch Physiol Biochem 2019;127:9.

142. Ingalls AM, Dickie MM, Snell GD. Obese, a new mutation in the house mouse. C. Withaar 4430d.
165. Cannon MV, Sijllev HH-W, Sijbsema JWA, Khan MAF, Steffensen KR, van Gilst WH, de Boer RA. LXRα improves myocardial glucose tolerance and reduces cardiac hyper trophy in a mouse model of obesity-induced type 2 diabetes. Diabetologia 2016;59:634–643.

166. Bartels ED, Nielsen JM, Biggart LS, Goetze JP, Nielsen LB. Decreased expression of natriuretic peptides associated with lipid accumulation in cardiac ventricle of obese mice. Endocrinology 2010;151:5218–5225.

167. Bruder-Nascimento T, Eklebo OJ, Anderson R, Le HB, Belin de Chantemele E. Long Term High Fat Diet Treatment: An Appropriate Approach to Study the Sex-Specificity of the Autonomic and Cardiovascular Responses to Obesity in Mice. Front Physiol 2017;8.

168. Gai Z, Hiller C, Chin SH, Hofstetter L, Stieger B, Konrad D, Kullak-Ublick GA. Uninephrectomy augments the effects of high fat diet induced obesity on gene expression in mouse kidney. Biochem Biophys Acta Mol Basis Dis 2014;1842:1870–1878.

169. Schiattarella GG, Altamirano F, Tong D, French KM, Villalobos E, French KM, Villalobos E, Kim SY, Luo ML, Burnett JC, Redfield MM. Mineralocorticoid accelerates transition to heart failure with preserved ejection fraction via “nongenomic effects”. Circulation 2010;122:370–378.

170. Jeong EM, Monakya MM, Gu L, Taglieri DM, Patel BG, Liu H, Wang Q, Greener I, Dudley SC, Solano RJ. Tetrahydrobiopterin improves diastolic dysfunction by reversing changes in myocardial properties. J Mol Cell Cardiol 2013;56:44–54.

171. Bowen TS, Eisenholz S, Drobnj J, Fischer T, Werner S, Linke A, Mangner N, Schuler G, Adams V. High-intensity interval training prevents oxidometabolite diaphragm muscle in hypertensive mice. FASEB J 2017;31:60–71.

172. Tanaka K, Valero-Munoz M, Wilson RM, Essick EE, Fowler CT, Nakamura K, van den Hoff M, Ouchi N, Sam F. Exploring the sex difference in heart failure with preserved ejection fraction. JACC Basic Transl Sci 2016;1:207–221.

173. Valero-Munoz M, Li S, Wilson RM, Hulsmans M, Aphramatian T, Fuster J, Nahrendorf M, Scherer PE, Sam F. Heart failure with preserved ejection fraction induces Beiging in adipose tissue. Circ Heart Fail 2016;9:e002724.

174. Valero-Munoz M, Li S, Wilson RM, Boldbaatar B, Ilgarz M, Sam F. Dual endothelin-A/endothelin-B receptor blockade and cardiac remodeling in heart failure with preserved ejection fraction. Circ Heart Fail 2016;9:e003381.

175. Tanaka K, Wilson RM, Essick EE, Duffen JL, Scherer PE, Ouchi N, Sam F. Effects of fixed-dose isosorbide dinitrate/hydrazine on diastolic function and exercise capacity in hypertension-induced diastolic heart failure. Hypertension 2009;54:583–590.

176. Garcia AG, Wilson RM, Heo J, Murthy NR, Baid S, Ouchi N, Sam F. Interferon-γ ablation exacerbates myocardial hypertrophy in diastolic heart failure. Am J Physiol Heart Circ Physiol 2012;303:H587–H596.

177. Tong D, Schiattarella GG, Jing J, Nay M, Hli HV, Lavandero S, Gillette TG, Hill JA. Female sex is protective in a preclinical model of heart failure with preserved ejection fraction. Circulation 2019;140:1769–1771.

178. Reddy SS, Agarwal H, Barthwal MK. Cilostazol ameliorates heart failure with preserved ejection fraction and diastolic dysfunction in obese and non-obese hypertensive mice. J Mol Cell Cardiol 2019;133:46–57.

179. Gaspar T, Brdar M, Lee HW, Spizzo I, Hu Y, Widdop RE, Simpson RW, Dear AE. Molecular and cellular mechanisms of glucagon-like peptide-1 receptor agonist-mediated attenuation of cardiac fibrosis. Diabetes Vasc Dis Res 2016;13:56–68.

180. Du W, Peck A, Marloes Schouten E, van de Kolk CWA, Mueller C, Mebazaa A, Voors AA, de Boer RA, Sijllev HH-W. Plasma levels of heart failure biomarkers are primarily a reflection of extracardiac production. Therapeutics 2018;8:4155–4169.

181. Witwaar C, Meems LMG, Markoussi-Maurogenis G, Boogerd CJ, Sijllev HH-W, Schouten EM, Dokter MM, Voors AA, Westenbrink BD, Lam CSP, de Boer RA. The effects of liraglutide and dapagliflozin on cardiac function and structure in a multi-hit mouse model of heart failure with preserved ejection fraction. Cardiovasc Res 2020;13:21350–213526. doi: 10.1093/cvr/cvaa256 [Epub ahead of print].

182. Deng Y, Xie M, Li Q, Xu X, Ou W, Zhang Y, Xiao H, Yu H, Zheng Y, Liang Y, Jiang C, Chen G, Du D, Zheng W, Song M, Chen Y, Tian R, Li T. Targeting mitochondria-inflammation circuit by β-hydroxybutyrate mitigates HfEF. Circ Res 2021;128:232–245.