Contrast-induced nephropathy in patients undergoing percutaneous coronary intervention, iso-osmolar non-ionic contrast agent versus low-osmolar ionic contrast agent

Nefropatia induzida por contraste não iônico isosmolar versus iônico de baixa osmolaridade em pacientes após intervenção coronária percutânea

Rodrigo de Moura Joaquim1iD, Rafaela Penalva1, Roberto Léo da Silva1, Alexandre Abizaid1, Sérgio Navarro Braga1, Luiz Fernando Tanajura1, Amanda Guerra de Moraes Rego Sousa1, Fausto Feres1, José de Ribamar Costa Júnior1

ABSTRACT – Background: Coronary angiography is an advance in the management of a variety of heart conditions, but iodinated contrast injection can lead to contrast-induced nephropathy, especially in high-risk populations. There is still no consensus on the best type of contrast agent to be used. The objective of this study was to evaluate the occurrence of contrast-induced nephropathy in patients undergoing percutaneous coronary intervention, comparing a low-osmolar contrast agent with an iso-osmolar contrast agent. Methods: This was a single center, longitudinal, prospective and non-concurrent study. The type of contrast agent used in the procedure and the clinical variables of the patients were associated with the occurrence of contrast-induced nephropathy using the Chi-square test. A logistic regression model was developed for multivariate analysis. Results: A total of 374 percutaneous coronary interventions were performed with only one type of contrast agent, 275 using a low-osmolar contrast agent, and 99 using an iso-osmolar contrast agent. The mean age was 61.86 years; 66.3% of patients were male, 38.5% were diabetic, 24.3% had chronic kidney disease, and 44.7% had acute coronary syndrome. The iso-osmolar contrast agent was associated with a higher occurrence of nephropathy when compared to the low-osmolar contrast agent (12.1% versus 5.8%; p=0.041, p=0.047 in multivariate analysis), with a 2.3 times greater chance of complication. Age (p=0.045) and diabetes (p=0.088) were also relevant for the occurrence of nephropathy. One patient in each group progressed to hemodialysis during the in-hospital period. Conclusion: The iso-osmolar non-ionic contrast agent is associated with a higher occurrence of contrast-induced nephropathy when compared to the low-osmolar ionic contrast agent.

Keywords: Kidney diseases; Percutaneous coronary intervention; Contrast media

RESUMO – Introdução: A angiofria coronária é um avanço no manejo de uma série de condições cardiológicas, porém a injeção de contraste iodado pode levar à nefropatia induzida por contraste, principalmente em populações de alto risco. Ainda não há consenso sobre qual o melhor tipo de contraste a ser utilizado. O objetivo deste estudo foi avaliar a ocorrência de nefropatia induzida por contraste em pacientes submetidos à intervenção coronária percutânea, comparando contraste de baixa osmolaridade com contraste isosmolar. Métodos: Estudo unicêntrico, longitudinal, prospectivo e não concurrente. O tipo de contraste utilizado no procedimento e as variáveis clínicas dos pacientes foram associados à ocorrência de nefropatia induzida por contraste, utilizando teste qui-quadrado; um modelo de regressão logística foi desenvolvido para a análise multivariada. Resultados: Um total de 374 intervenções coronárias percutâneas utilizou apenas um dos tipos de contraste, sendo 275 o de baixa osmolaridade e 99 o isosmolar. A média de idade foi 61,86 anos; 66,3% dos pacientes eram do sexo masculino, 38,5% eram diabéticos, 24,3% tinham doença renal crônica e a apresentação clínica foi de síndrome coronariana aguda em 44,7%. O contraste isosmolar foi associado a maior ocorrência de nefropatia quando comparado ao de baixa osmolaridade (12,1% versus 5,8%; p=0,041; p=0,047 na análise multivariada), com chance 2,3 vezes maior da complicação. Idade (p=0,045) e diabetes...
Coronary angiography for diagnostic or therapeutic purposes is an advance in the management and risk stratification of a variety of heart conditions.1-4 Despite the benefits, this method requires iodinated contrast injection, which in some patients may lead to contrast-induced nephropathy (CIN), one of its main complications.3,5-12

The overall incidence of CIN has been declining in recent decades, but still reaches 12% to 28% in high-risk populations such as elderly patients with diabetes mellitus (DM) and chronic kidney disease (CKD), and even 50% in very high risk patients with multiple comorbidities.1,2,3,5-10

The osmolarity of the contrast medium apparently plays a role in the occurrence of this complication, with a benefit of use of low-osmolar non-ionic and iso-osmolar non-ionic contrast agents. However, there is no consensus on which contrast agent is associated with lower occurrence of CIN.1,4-8,13

Studies like RECOVER6 (Renal Toxicity Evaluation and Comparison Between Visipaque and Hexabrix in Patients With Renal Insufficiency Undergoing Coronary Angiography) and NEPHRIC8 (Nephrotoxicity in High-Risk Patients Study of Iso-Osmolar and Low-Osmolar Non-Ionic Contrast Media) demonstrated a benefit of use of iso-osmolar contrast agents in high risk populations, but these are small studies with 300 and 129 patients, respectively, and there are still uncertainties regarding the existence and significance of this benefit.1,2,11,14-20

The results of clinical studies and the lack of consensus regarding the superiority of one type of contrast agent over another, especially in the Brazilian population, require further research on the subject.

The objective of this study was to evaluate the occurrence of contrast-induced nephropathy in patients undergoing percutaneous coronary intervention comparing a low-osmolar contrast agent with an iso-osmolar contrast agent.

METHODS

This study was evaluated and approved by the Research Ethics Committee of the Instituto Dante Pazzanese de Cardiologia (protocol 4689/2016; CAAE 58593116.2.0000.5462).

Population

We conducted a longitudinal, prospective, non-concurrent evaluation of the percutaneous coronary intervention (PCI) data from January to December 2016 in our organization, where only one type of contrast agent was used in each procedure, namely ioxaglate (Hexabrix®, Guerbet), a low-osmolar ionic contrast agent, or iodixanol (Visipaque™, GE Helathcare), an iso-osmolar non-ionic contrast agent. Since there were no specific protocols in the organization for choosing either contrast agent, the contrast agent was chosen at the operator’s discretion, and the cases were included consecutively and not randomly.

We included patients older than 18 years with PCI for stable coronary artery disease (CAD), stable angina or silent ischemia, or acute coronary syndrome (ACS), non-ST-segment elevation myocardial infarction (NSTEMI), unstable angina (UA), and ST-segment elevation myocardial infarction (STEMI). We excluded patients who used more than one type of contrast agent during the procedure or used a high-osmolar contrast medium; patients who were already on hemodialysis; and patients who had no data regarding creatinine values before or after the procedure.

Outcomes

The primary endpoint was to compare the incidence rate of CIN, defined as creatinine elevation above 25% or a 0.5 mg/dL increase from baseline, in patients undergoing PCI,14 comparing the use of an iso-osmolar non-ionic contrast agent with the use of a low-osmolar ionic contrast agent.

As secondary endpoints, we evaluated the association of CIN with the clinical variables of the population, age, hypertension (HTN), DM, dyslipidemia, CKD, clinical presentation, stable ACS or CAD, smoking, and control creatinine collection time after PCI. We also evaluated the need for hemodialysis in the short-term follow-up of 30 days.

Renal function assessment

To determine pre-procedural creatinine levels, blood samples were collected in the week of the procedure as a routine test for patients undergoing PCI. As for post-procedural creatinine levels, blood samples were collected on the days following the procedure, in most cases while the patient was still hospitalized. To determine the occurrence of CIN, we preferably used the creatinine levels measured from 48 hours up to 72 hours after the procedure. The creatinine collection time after PCI was counted in hours from procedure completion to laboratory collection time. All tests were collected and analyzed by the organization laboratory, regardless of the time of collection. Creatinine clearance (CrCl) was calculated using the Modification of Diet in Renal Disease (MDRD) formula.21 CKD was defined as CrCl <60mL/minute before the procedure.

Statistical analysis

Continuous variables were expressed as mean and standard deviation, and a Wilcoxon-Man-Whitney test was used when a comparison of subgroups was required. Categorical
variables were described as frequencies and/or percentages and compared with the Chi-square test. Multiple linear regression model was performed to assess the association of variables with the primary endpoint. The variables associated with the endpoint and those closely related (p<0.1) were included in the model. No specific subgroups other than the variables described were determined. A p value <0.05 was considered statistically significant. The analysis was performed using the IBM Statistical Package for Social Science (SPSS) software, version 22.

RESULTS

From January to December 2016, we evaluated 382 PCI procedures. Of these, 280 (73.3%) were performed using a low-osmolar ionic contrast agent (ioxaglate), and 102 (26.7%) were performed using an iso-osmolar non-ionic contrast agent (iodixanol). Eight procedures were excluded from the analysis, 5 for not having pre-procedural creatinine data and 3 for being on hemodialysis regimen, resulting in a total of 374 procedures included in the final analysis.

The mean age of patients was 61.8±10 years, ranging from 29 to 93 years; 66% were male, 86% had HTN, and 38.5% were diabetic. ACS was present in 44.7%, and 44.1% of patients had previous acute myocardial infarction (MI). Table 1 shows the clinical characteristics of the total population, and the clinical characteristics according to the type of contrast agent used. Patients who used a low-osmolar contrast agent had a higher incidence of hypertension, whereas those who used an iso-osmolar contrast agent had a higher incidence of prior PCI and peripheral obstructive arterial disease.

The mean pre-procedural creatinine value was 0.98±0.47 (0.95±0.44 for low-osmolar versus 1.05±0.54 for iso-osmolar; p=0.731) and the mean post-procedural creatinine value was 1.03±0.55 (0.99±0.46 for low-osmolar versus 1.12±0.71 for iso-osmolar; p=0.316). There was a significant increase in serum creatinine levels before and after the procedure, both in the total population and when comparing the use of the two types of contrast agent (p<0.001 for the three interactions). The CrCl was higher in patients who used the low-osmolar ionic contrast agent (85.8±31.9mL/minute versus 72.5±38.2mL/minute; p<0.001). It is noteworthy that, on average, patients were at the same stage of CKD and there was no difference between the groups among those with CrCl <60mL/minute (p=0.059).

Although relatively low when compared to the expected amounts during PCI procedures, the mean contrast agent volume used was higher in the low-osmolar ionic contrast agent group (93.4±56mL versus 86.4±46mL; p<0.001). Most patients had the procedure performed radially (52.7% in the low-osmolar group versus 58.6% in the iso-osmolar group), and 54% of patients in each group had multivessel disease. Data regarding PCI are found in table 2.

The primary endpoint, CIN, occurred in 28 (7.5%) patients. Of these, 16 (4.3%) used low-osmolar ionic contrast agent, and 12 (3.2%) used iso-osmolar non-ionic contrast agent.
The major findings of our study were that in patients undergoing PCI, the use of an iso-osmolar non-ionic contrast agent, ioxixanol, was associated with a higher incidence of CIN, when compared to the use of a low-osmolar ionic contrast agent, ioxaglate (12.1% versus 5.8%; p=0.041; p=0.047 in the multivariate analysis), with a 2.3-fold increase in the incidence of CIN in patients who used the former contrast agent. The total incidence of CIN in our population was low considering its high risk, with a total of 28 patients (7.5%) presenting the outcome. Patients who developed CIN in our population were older than those without the endpoint.

Our data do not coincide with the RECOVER study results, which showed reduction in the incidence of CIN with the use of iso-osmolar contrast agent, when compared with the use of low-osmolar contrast agent (7.9% versus 17.0%; p=0.021). In that study, the use of ioxaglate was associated with a 2.65-fold increase in CIN – virtually the opposite of our findings, which showed a 2.3-fold increase in CIN incidence in those using an iso-osmolar contrast agent. Aspelin et al. also found such results in the NEPHRIC, a prospective, multicenter, double-blind study, which demonstrated a reduction in the occurrence of CIN (3% versus 26%; p=0.002) in patients using iodixanol, when compared to the use of iohexol, a low-osmolar contrast agent. Both studies showed significant reduction in high-risk subgroups, as in CKD and diabetics patients.

Despite these data, Morcos conducted a meta-analysis of prospective, randomized, double-blind studies, and concluded that all types of contrast agents are nephrotoxic and, due to the methodological heterogeneity of different studies, it is difficult to determine if one contrast agent is truly superior to the other. Biondi-Zoccai et al. recently evaluated 42 studies, with a total of 10,048 patients and 7 types of contrast agents. In this analysis, iodixanol showed low risk of CIN, similarly to the low-osmolar contrast agents.

We found a low total incidence of CIN in our study (7.5%), which differs from the literature, in which the mean incidence rates found ranges from 12.3% to 15.9% in high risk populations. Using meta-analysis, McCullough et al. demonstrated that the incidence rate of CIN in a sample of 2,727 patients was 4.9%, with an increase to 11.2% in patients with CKD, and to 19% in patients with CKD and DM. Mehran et al. evaluated patients who were divided
Nephropathy induced by iso-osmolar non-ionic versus low-osmolar ionic contrast agent

Journal of Transcatheter Interventions

findings,6,8 they are small studies (<300 patients) and their though the literature presents studies which contradict our occurrence of CIN, but does not appear to have specifically influenced any of the contrast agent groups, as there was no difference between them.

Age is considered a risk factor for the development of CIN. Studies often consider patients over 75 years to be at increased risk,5,9,10 but the risk increases continually with age, and even patients from 60 to 75 years old are already at high risk.22,23 In our study, older patients developed CIN, and an association with the occurrence of this event was found in patients from 70 years old onwards, though, in the multivariate analysis, this association was not significant.

Our finding is clinically relevant because the occurrence of CIN is associated with prolonged hospital length-of-stay, delayed treatment and procedures, increased bleeding, MI, and death in the short and long-term follow-up.3,5,6,11 Although the literature presents studies which contradict our findings,6,8 they are small studies (<300 patients) and their main meta-analysis does not show clear benefit of one type of contrast agent over others.14 We still lack data from a large randomized, long-term follow-up study to confirm benefits, such as reduced CIN incidence and possible clinical benefits in this population, with each type of contrast agent.

Our study has some limitations. First, it is a single center study, with local specific protocols for PCI and CIN prophylaxis. All patients with CrCl <60mL/minute were hydrated with 0.9% saline at an infusion rate of 0.5 to 1mL/kg/hour, 12 to 24 hours before and after the procedure. Second, an early blood sample collection for measuring creatinine levels after the procedure, averaging 29 hours, may have influenced the occurrence of low CIN for a high-risk population. This is due to the blood collection and hospital discharge routine of the organization on the day following the intervention in elective patients, with only a few patients having elective blood collections or more prolonged hospital length-of-stay. Although there was a difference in collection time between patients with CIN and those without CIN, there was no significant difference between both contrast agent groups, attenuating its influence on the results. Finally, we cannot exclude the possibility that these findings are due to chance and possibly related to an imbalance in the characteristics of the population, to the total number of patients and to the low occurrence of events. To this end, a study of more than 2,000 patients is being conducted at our institution to assess which type of contrast agent has the best renal and clinical protection profile.

CONCLUSION

The use of an iso-osmolar non-ionic contrast agent, ioxidan, in the scenario of PCI was associated with a higher incidence of contrast-induced nephropathy, when compared to the use of a low-osmolar ionic contrast agent, ioxaglate.

SOURCE OF FINANCING

None.

CONFLICTS OF INTEREST

The authors declare there are no conflicts of interest.

AUTHORS’ CONTRIBUTION

Conception and design of the study: RMJ, AA, FF, LFT and JRCJ; data collection: RMJ and RP; data interpretation: RMJ and RLS; writing of the text: RMJ, SNB, AGMRS and RLS; approval of the final version to be published: RMJ and JRCJ.

REFERENCES

1. Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, Chambers CE, Ellis SC, Guyton RA, Hollenberg SM, Khot UN, Lange RA, Mauri L, Mehran R, Moussa ID, Mulherjee D, Nallamothu BK, Ting HH; American College of Cardiology Foundation; American Heart Association Task Force on Practice Guidelines; Society for Cardiovascular Angiography and Interventions. 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. J Am Coll Cardiol. 2011;58(24):e44-122.
2. Windecker S, Kolh P, Alfonsor F, Collet JP, Cremers J, Falk V, et al. Authors/Task Force members. 2014 ESC/EACTS guidelines on myocardial revascularization: the task force on myocardial revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014;35:2541-619.
3. Tsai TT, Patel UD, Chang TI, Kennedy KP, Masoudi FA, Matheny ME, et al. Contemporary incidence, predictors, and outcomes of acute kidney injury in patients undergoing percutaneous coronary interventions: insights from the NCDR Cath-PCI Registry. JACC Cardiovasc Interv. 2014;7(1):1-9.
4. Seeliger E, Sendeski M, Rihal CS, Persson PB. Contrast-induced kidney injury: mechanisms, risk factors, and prevention. Eur Heart J. 2012;33(16):2007-15.
5. Rear R, Bell RM, Hausenloy DJ. Contrast-induced nephropathy following angiography and cardiac interventions. Heart. 2016;102(8):638-48.
6. Jo SH, Youn TJ, Koo BK, Park JS, Kang HJ, Cho YS, et al. Renal toxicity evaluation and comparison between visipaque (iodixanol) and hexabrix (ioxaglate) in patients with renal insufficiency undergoing coronary angiography: the RECOVER study: a randomized controlled trial. J Am Coll Cardiol. 2006;48(5):924-30.

7. Nunag M, Brogan M, Garrick R. Mitigating contrast-induced acute kidney injury associated with cardiac catheterization. Cardiol Rev. 2009;17(6):263-9.

8. Aspelén P, Aubry P, Fransson SG, Strasser R, Willenbrock R, Berg KJ; Nephrotoxicity in High-Risk Patients Study of Iso-Osmolar and Low-Osmolar Non-Ionic Contrast Media Study Investigators. Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med. 2003;348(6):491-9.

9. Mehran R, Aymong ED, Nikolsky E, Laksyvou I, Fahy M, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol. 2004;44(7):1393-9.

10. Budano C, Levis M, D’Amico M, Usmani T, Fava A, Sbarra P, et al. Impact of contrast-induced acute kidney injury definition on clinical outcomes. Am Heart J. 2011;161(5):963-71.

11. McCullough PA, Choi JP, Feghali GA, Schussler JM, Stoler RM, Vallabhan RC, et al. Contrast-Induced Acute Kidney Injury. J Am Coll Cardiol. 2006;48(2):692-9.

12. Rudnick MR, Goldfarb S, Wexler L, Ludbrook PA, Murphy MJ, Halpern EF, et al. Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial. The Iohexol Cooperative Study. Kidney Int. 1995;47(1):254-61.

13. McCullough PA, Bertrand ME, Brinker JA, Stacul F. A meta-analysis of the renal safety of isosmolar iodixanol compared with low-osmolar contrast media. J Am Coll Cardiol. 2006;48(2):692-9.

14. Biondi-Zoccai G, Lotriente M, Thomsen HS, Romagnoli E, D’Ascenzo F, Giordano A, et al. Nephropathy after administration of iso-osmolar and low-osmolar contrast media: evidence from a network meta-analysis. Int J Cardiol. 2014;172(2):375-80.

15. Marcus SK. Contrast-induced nephropathy: are there differences between low osmolar and iso-osmolar iodinated contrast media? Clin Radiol. 2009;64(5):468-72.

16. Mehran R, Nikolsky E, Kirtane AJ, Caixeta A, Wong SC, Teirstein PS, et al. Ionic low-osmolar versus nonionic iso-osmolar contrast media to obviate worsening nephropathy after angioplasty in chronic renal failure patients: the ICON (Ionic versus non-ionic Contrast to Obviate worsening Nephropathy after angioplasty in chronic renal failure patients) study. JACC Cardiovasc Interv. 2009;2(5):415-21.

17. Solomon RJ, Natarajan MK, Doucet S, Sharma SK, Staniloae CS, Katholi RE, Gelormini JL, Labinae M, Moreyra AE; Investigators of the CARE Study. Cardiac Angiography in Renally Impaired Patients (CARE) study: a randomized double-blind trial of contrast-induced nephropathy in patients with chronic kidney disease. Circulation. 2007;115(25):3189-96.

18. Solomon RJ, Mehran R, Natarajan MK, Doucet S, Katholi RE, Staniloae CS, et al. Contrast-induced nephropathy and long term adverse events: cause and effect? Clin J Am Soc Nephrol. 2009;4(7):1151-69.

19. Rudnick MR, Davidson C, Laskey W, Stafford JL, Sherwin PF; VALOR Trial Investigators. Nephrotoxicity iodixanol versus ioversol in patients with chronic kidney disease: the Visipaque Angiography/Interventions with Laboratory Outcomes in Renal Insufficiency (VALOR) Trial. Am Heart J. 2008;156(4):776-82.

20. Cernigliaro JG, Haley WE, Adolphson DP, Pejerson MA, Crook JE, Thomas CS, et al. Contrast-induced nephropathy in outpatients with preexisting renal impairment: a comparison between intravenous iohexol and iodixanol. Clin Imaging. 2016;40(5):902-6.

21. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D; Modification of Diet in Renal Disease Study Group. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Ann Intern Med. 1999;130(6):461-70.

22. Siddhu RB, Brown JR, Robb JF, Jayne JE, Friedman BJ, Hettleman BD, et al. Interaction gender and age on post cardiac catheterization contrast-induced acute kidney injury. Am J Cardiol. 2008;102(11):1482-6.

23. Maioli M, Toso A, Gallopini M, Leoncini M, Tedeschi D, Micheletti C, et al. Preprocedural score for risk of contrast-induced nephropathy in elective coronary angiography and intervention. J Cardiovasc Med (Hagerstown). 2010;11(6):444-9.