Research Article

Prognostic Value of Serum Albumin at Admission for Neurologic Outcome with Targeted Temperature Management after Cardiac Arrest

Soo Hyun Kim,1 Chun Song Youn2, Hyo Joon Kim,2 and Seung Pill Choi1

1Department of Emergency Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
2Department of Emergency Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea

Correspondence should be addressed to Chun Song Youn; ycs1005@catholic.ac.kr

Received 18 July 2019; Accepted 25 July 2019; Published 2 September 2019

1. Introduction

Cardiac arrest (CA) is a health problem worldwide and is associated with high rates of mortality and morbidity [1]. Although the major pathophysiologic mechanisms after CA have not yet been elucidated, systemic inflammation after ischemic reperfusion injury contributes to hypoxic brain injury, the major leading cause of death after CA [2]. To protect the brain and other critical organs from systemic inflammation, targeted temperature management (TTM) at 32–36°C for 24 hrs is considered the standard of care after CA [3–5]. Optimizing cardiopulmonary function and minimizing reperfusion injury should be focused during post-cardiac arrest care [6].

Albumin is the main protein of human plasma, playing several important physiologic roles, including maintenance of plasma oncotic pressure and microvascular integrity and regulating vascular functions, antioxidant activities, and anticoagulant effects [7–9]. The systemic inflammatory response has been associated with decreased synthesis and increased catabolism of albumin [10]. Hypoalbuminemia has been shown to increase blood viscosity and cause endothelial dysfunction [11–13]. It is well known that hypoalbuminemia is associated with adverse outcomes in various
critical illnesses, especially cardiovascular disease, stroke, sepsis, and coronary artery bypass grafting [14–18]. However, there are few studies specifically measuring the association between the albumin level and neurologic outcomes after CA with TTM.

Therefore, the aim of this study was to test the hypothesis that the serum albumin level on admission was associated with neurologic outcomes of out-of-hospital CA patients treated with TTM. We combined this association with other clinical variables to assess the value of albumin in predicting neurologic outcomes.

2. Materials and Methods

2.1. Study Population. This retrospective analysis using prospectively collected data was conducted at the Seoul St. Mary’s Hospital, a tertiary urban teaching hospital, from 2009 to 2016. Our institutional review board approved this study. The requirement for informed consent was waived because of the retrospective nature of this study. All comatose patients who were resuscitated and brought to the emergency department were treated with post-cardiac arrest care protocols including TTM [19]. The inclusion criteria were as follows: older than 18 years of age; resuscitated from out-of-hospital CA and treated with TTM; and having an albumin level measured within 1 hr after ROSC. Patients were excluded if the cardiac arrest was caused by trauma or if TTM was not initiated or was interrupted due to hemodynamic instability, recurrent lethal arrhythmia, or severe bleeding.

2.2. Clinical Variables. The study participants’ medical records were reviewed. The following demographic and clinical data were collected for each patient: age, sex, pre-existing disease (e.g., hypertension, diabetes mellitus, coronary artery disease, renal disease, liver disease, stroke, and malignancy), cause of arrest, witnessed collapse, bystander cardiopulmonary resuscitation (CPR), rhythm initially presenting after arrest, time from collapse to restoration of spontaneous circulation (ROSC), post-ROSC neurologic examinations (e.g., pupillary light reflex (PLR), self-respiration, and Glasgow Coma Scale (GCS)), hemodynamic status, and length of stay. Definitions were based on Utstein-style guidelines [20]. Serum albumin was measured within 1 hr after ROSC, and hypoalbuminemia was defined as admission serum albumin <3.5 g/dl.

2.3. Outcome. The primary outcome of this study was 6-month neurologic outcome. Neurologic outcome was assessed using the cerebral performance category (CPC) score [21]. The five categories of the CPC are as follows: CPC 1, conscious and alert with good cerebral performance; CPC 2, conscious and alert with moderate cerebral performance; CPC 3, conscious with severe cerebral disability; CPC 4, comatose or in persistent vegetative state; and CPC 5, brain dead, circulation preserved, or death at discharge. Favorable neurologic outcomes were defined as CPC scores of 1 and 2.

2.4. Statistical Analysis. We tested the distributions of the continuous variables for normality using visual inspection and the Shapiro–Wilks test. Normally distributed data were expressed as the means and standard deviations using Student’s t-test. Nonnormally distributed data were assessed using the Mann–Whitney U test. Categorical variables were presented as frequency with percentage and were compared using the χ² test or Fisher’s exact test, as appropriate. Multivariate binary logistic regression analysis was used to assess independent predictors of 6-month poor neurologic outcome. All variables with a significance level <0.1 by univariate analysis were entered into the multivariate logistic regression model to create a crude model. The factors with p values <0.05 on the multivariate logistic regression model were considered statistically significant for all comparisons.

3. Results

3.1. Characteristics of the Study Population. During the study period, a total of 410 consecutive patients with nontraumatic out-of-hospital cardiac arrest (OHCA) were admitted to our ED. Sixty-six patients did not receive TTM, 7 had no serum albumin data, and 255 were eligible for our analyses, of whom 106 (41.6%) survived to 6 months; 84 (32.9%) achieved favorable neurologic outcomes.

The mean patient age was 54.7 ± 16.2 years, and 180 patients (71%) were male; 107 patients (42.0%) died during their hospital stay, and the mean serum albumin level was 3.5 ± 0.6 mg/dl. Table 1 presents the characteristics and prerescuscitation and postresuscitation data of eligible patients. The hypoalbuminemia group had a higher proportion of older age and history of diabetes or renal disease and had a longer time from collapse to ROSC. The hypoalbuminemia group was less likely to have first documented shockable rhythm and positive results for post-ROSC neurologic examination (e.g., PLR, GCS motor, and self-respiration). The mean arterial pressure immediately after ROSC was significantly lower in the hypoalbuminemia group than that in the normal albumin group. Regarding outcomes, the normal serum albumin group had the highest proportion of favorable neurological outcome and 6-month survival (Table 1).

3.2. Univariate and Multivariate Analysis of Factors Associated with 6-Month Neurologic Outcome. The mean albumin values were significantly lower in the poor neurologic
outcome group than in the good neurologic outcome group (3.3 ± 0.6 vs. 3.9 ± 0.4, respectively; \(p < 0.001 \)) (Table 2). On univariate analysis, age, history of HTN, diabetes mellitus, renal disease and malignancy, cause of arrest, initial documented rhythm, witnessed collapse, and time from collapse to ROSC, PLR, self-respiration, and GCS motor, mean arterial pressure, and temperature were all significantly associated with 6-month neurologic outcome. Variables with \(p \) values < 0.1 on univariate analysis were entered into the multivariate logistic regression model to create a crude model, and the factors with \(p \) values < 0.05 in the multivariate logistic regression model were entered into the crude model. The crude model included the following variables: cardiac etiology, initial rhythm, time from collapse to ROSC, and GCS motor.

After adjusting the crude model, albumin levels still showed an association with 6-month poor neurologic outcome. Patients in the hypoalbuminemia group were 2.7 times more likely to have poor neurologic outcome than were those in the normal albumin group (model II, Table 3). When serum album was examined as a continuous variable, there were significant associations with 6-month poor neurologic outcome after adjusting for model I covariates (OR = 0.222, 95% CI = 0.095–0.516) and after model II covariates (OR = 0.275, 95% CI = 0.116–0.651) (Table 3). These findings suggested that there was 77.8% and 72.8% more favorable neurologic outcome for every 1mg/dl of serum albumin (Table 3).

3.3. Prognostic Value of Hypoalbuminemia.

Kaplan–Meier analysis revealed that the survival rate of patients with hypoalbuminemia was significantly lower than in those with serum albumin levels at or above 3.5g/dL (\(p < 0.001 \); Figure 1).

In receiver operating characteristic (ROC) curve analysis, the area under the curve (AUC) of crude model I was 0.930 (95% CI 0.892–0.958). Figure 2 shows the AUCs combined with hypoalbuminemia in crude models I and II (AUC 0.938 for crude model I with hypoalbuminemia and 0.944 for crude model II with hypoalbuminemia).
4. Discussion

The main finding of this study was that hypoalbuminemia immediately after ROSC was common and was associated with neurologic outcome at 6 months after CA in patients treated with TTM. This association persisted after adjusting for patient-level covariates. However, we could not identify whether correction of hypoalbuminemia improved patient outcome.

Albumin is synthesized in the liver and has a half-life of approximately 3 weeks, and an albumin concentration less than 3.5 g/dl is generally referred to as hypoalbuminemia. Albumin plays important physiologic functions, and hypoalbuminemia is a well-known risk factor for coronary artery disease, acute myocardial infarction, heart failure, stroke, and sepsis [14–17, 22]. In addition, albumin is an indirect indicator of nutritional status. Matsuyama et al. first reported that a higher serum albumin concentration at hospital admission was associated with favorable neurologic outcome after OHCA in a concentration-dependent manner [23]. However, the authors could not analyze the underlying diseases of individual patients (e.g., chronic renal disease) that are commonly associated with hypoalbuminemia.

Table 2: Comparison of patients according to 6-month neurologic outcome.

Demographics	Good neurologic outcome (n = 84)	Poor neurologic outcome (n = 171)	p
Male	64 (76.2)	116 (67.8)	0.169
Age, years	48.3 ± 15.2	57.9 ± 16.5	<0.001
Comorbidities			
CAD	12 (14.3)	19 (11.1)	0.466
CHF	3 (3.6)	5 (2.9)	0.721
Stroke	0 (0.0)	5 (2.9)	0.175
Hypertension	16 (19.0)	60 (35.1)	0.008
Diabetes mellitus	5 (6.0)	50 (29.2)	<0.001
Renal disease	0 (0.0)	17 (9.9)	0.001
Liver disease	0 (0.0)	2 (1.2)	0.449
Malignancy	1 (1.2)	10 (5.8)	0.074
Resuscitation variables			
Cardiac cause	79 (94.0)	96 (56.1)	<0.001
Shockable rhythm	68 (81.0)	30 (17.5)	<0.001
Witnessed	72 (85.7)	110 (64.7)	<0.001
Bystander CPR	52 (61.9)	90 (52.9)	0.176
Anoxic time (min)	23.6 ± 15.0	38.6 ± 20.3	<0.001
Post-ROSC N/Ex			
PLR	64 (76.2)	31 (18.1)	<0.001
Self-respiration	73 (86.9)	58 (33.9)	<0.001
GCS motor, yes	47 (56.0)	13 (7.6)	<0.001
Hemodynamic status			
MAP	99.2 ± 25.2	87.6 ± 26.9	0.001
HR	101.2 ± 25.7	104.3 ± 28.4	0.407
Temperature	35.8 ± 0.9	35.5 ± 1.4	0.060
Hypoalbuminemia	14 (16.7)	95 (55.6)	<0.001
Albumin (mg/dl)	3.9 ± 0.4	3.3 ± 0.6	<0.001
Outcomes			
Pneumonia	26 (31.0)	83 (48.5)	0.008
Septic shock	4 (4.8)	22 (12.9)	0.049
HD (days)	7 (4–20)	15 (9–23)	<0.001

Table 3: Odds ratios for hypoalbuminemia in the prediction of 6-month poor neurologic outcome.

Hypoalbuminemia	OR (95% CI)	p	Adjusted OR (95% CI)	p
Crude model I	6.250 (3.268–11.951)	<0.001	3.526 (1.388–8.956)	0.008
Crude model II	2.658 (1.017–6.949)	0.046	2.275 (0.116–6.511)	0.003

Crude model I: cardiac etiology + initial rhythm + anoxic time + GCS motor score. Crude model II: crude model I + liver disease + kidney disease + malignancy.
Here are several possible underlying mechanisms explaining the relationship between hypoalbuminemia and poor neurologic outcomes in OHCA patients treated with TTM. First, the most important pathophysiologic mechanism leading to morbidity and mortality after CA is systemic inflammation after ischemic reperfusion injury. Albumin is known as a negative acute-phase protein whose concentration decreases in response to inflammation [10]. Therefore, a low serum-albumin level could be a marker of severe systemic inflammatory responses that could lead to worse outcomes after CA. Second, another possible link between hypoalbuminemia and poor neurologic outcomes in patients with CA treated with TTM is oxidative stress. Albumin constitutes the major plasma protein target of oxidative stress because of reactive oxygen species [24]. Albumin contains a rich thiol group that accounts for 80% of total thiol in plasma-depleting reactive oxygen species [25]. For this reason, reduced serum albumin may be associated with increased oxidative stress conditions. Third, serum albumin is one of the biochemical markers of nutritional status. Serum albumin is closely correlated with the degree of malnutrition, considered a general risk factor in critically ill conditions. Finally, albumin has neuroprotective properties. Experimental studies showed that human albumin administration was highly neuroprotective in reducing infarct volume and cerebral edema in animals with acute stroke [26–28]. Despite the fact that clinical trials have failed to show efficacy of human serum albumin administration after acute ischemic stroke, further studies should be performed to prove the neuroprotective effect of human serum albumin [29].

In our study, the hypoalbuminemia group was older than the normal serum albumin group and had longer anoxic time, lower incidence of initial shockable rhythm, lower mean arterial blood pressure, and higher incidence of pneumonia than did the normal serum albumin group. Although the exact mechanism could not be explained in this study, it is thought that the abovementioned various hypotheses are a synthesized result. Chronic renal disease, known as an independent risk factor for mortality after CA, was more common in the hypoalbuminemia group. Although we adjusted for chronic renal disease in the multivariate logistic regression model, this factor could affect neurological outcomes after CA with TTM.

This study has several limitations. First, this was a single-center study, which limits the generalizability of our findings. Second, only albumin levels at the time of admission were analyzed, and subsequent albumin levels were not analyzed. In addition, we could not determine whether albumin replacement was performed in the hypalbuminemia group, and we do not know whether albumin replacement improved neurologic prognosis. Third, most patients in our cohort were managed with TTM at 33°C for 24 h regardless of their initial rhythm, and our finding may thus not be applicable to other management strategies.

5. Conclusion

Hypoalbuminemia was common after CA, and the serum albumin level at admission was associated with poor neurologic outcomes at 6 months after CA in patients treated with TTM. Further studies should be performed to determine whether the correction of hypoalbuminemia improves neurological outcomes.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.
Ethical Approval

The study was approved by the Institutional Review Board of the Catholic University of Korea at Seoul Saint Mary’s Hospital and conducted with a waiver of patient consent because of the noninterventional, retrospective design of the study.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this article.

References

[1] D. Mozaffarian, E. J. Benjamin, A. S. Go et al., “Executive summary: heart disease and stroke statistics—2016 update: a report from the American heart association,” Circulation, vol. 133, no. 4, pp. 447–454, 2016.
[2] C. Adrie, M. Adib-Conquy, I. Laurent et al., “Successful cardiopulmonary resuscitation after cardiac arrest as a “sepsis-like” syndrome,” Circulation, vol. 106, no. 5, pp. 562–568, 2002.
[3] Hypothermia after Cardiac Arrest Study Group, “Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest,” New England Journal of Medicine, vol. 346, no. 8, pp. 549–556, 2002.
[4] S. A. Bernard, T. W. Gray, M. D. Buist et al., “Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia,” New England Journal of Medicine, vol. 346, no. 8, pp. 557–563, 2002.
[5] N. Nielsen, J. Wetterslev, T. Cronberg et al., “Targeted temperature management at 33°C versus 36°C after cardiac arrest,” New England Journal of Medicine, vol. 369, no. 23, pp. 2197–2206, 2013.
[6] C. W. Callaway, M. W. Donnino, E. L. Fink et al., “Part 8: post-cardiac arrest care,” Circulation, vol. 132, no. 18, pp. S465–S482, 2015.
[7] P. Cairoini, G. Tognoni, S. Masson et al., “Albumin replacement in patients with severe sepsis or septic shock,” New England Journal of Medicine, vol. 370, no. 15, pp. 1412–1421, 2014.
[8] J.-L. Vincent, M.-J. Dubois, R. Navickis, and M. Wilkes, “Hypoalbuminemia in acute illness: is there a rationale for intervention? A meta-analysis of cohort studies and controlled trials,” Annals of Surgery, vol. 237, no. 3, pp. 319–334, 2003.
[9] S.-C. Chien, C.-Y. Chen, C.-F. Lin, and H.-I. Yeh, “Critical appraisal of the role of serum albumin in cardiovascular disease,” Biomarker Research, vol. 5, no. 1, p. 31, 2017.
[10] B. R. Don and G. Kayser, “Poor nutritional status and inflammation: serum albumin: relationship to inflammation and nutrition,” Seminars in Dialysis, vol. 17, no. 6, pp. 432–437, 2004.
[11] J. A. Joles, N. Willekes-Koolshijn, and H. A. Koomans, “Hypoalbuminemia causes high blood viscosity by increasing red cell lysophosphatidylcholine,” Kidney International, vol. 52, no. 3, pp. 761–770, 1997.
[12] E. McGinley, G. Lowe, M. Boulton-Jones, C. Forbes, and C. Prentice, “Blood viscosity and haemostasis in the nephrotic syndrome,” Thrombosis and Haemostasis, vol. 50, no. 3, pp. 155–157, 1983.
[13] J. F. Keaney Jr., D. I. Simon, J. S. Stamler et al., “NO forms an adduct with serum albumin that has endothelium-derived relaxing factor-like properties,” Journal of Clinical Investigation, vol. 91, no. 4, pp. 1582–1589, 1993.
[14] Y. Plakht, H. Gilutz, and A. Shiyovich, “Decreased admission serum albumin level is an independent predictor of long-term mortality in hospital survivors of acute myocardial infarction. Soroka acute myocardial infarction II (SAMII-II) project,” International Journal of Cardiology, vol. 219, pp. 20–24, 2016.
[15] A. Kurtul, S. N. Murat, M. Yarlioglu et al., “Usefulness of serum albumin concentration to predict high coronary SYNTAX score and in-hospital mortality in patients with acute coronary syndrome,” Angiology, vol. 67, no. 1, pp. 34–40, 2016.
[16] T. Dziedzic, A. Slowik, E. A. Gryz, and A. Szczudlik, “Lower serum triglyceride level is associated with increased stroke severity,” Stroke, vol. 35, no. 6, pp. e156–e158, 2004.
[17] M. Yin, L. Si, W. Qin et al., “Predictive value of serum albumin level for the prognosis of severe sepsis without exogenous human albumin administration,” Journal of Intensive Care Medicine, vol. 33, no. 12, pp. 687–694, 2016.
[18] C. M. Bhamidipati, D. J. LaPar, G. S. Mehta et al., “Albumin is a better predictor of outcomes than body mass index following coronary artery bypass grafting,” Surgery, vol. 150, no. 4, pp. 626–634, 2011.
[19] C. S. Youn, S. H. Kim, S. H. Oh, Y. M. Kim, H. J. Kim, and K. N. Park, “Successful implementation of comprehensive packages of postcardiac arrest care after out-of-hospital cardiac arrest: a single institution experience in South Korea,” Therapeutic Hypothermia and Temperature Management, vol. 3, no. 1, pp. 17–23, 2013.
[20] I. Jacobs, V. Nadkarni, J. Bahr et al., “Cardiac arrest and cardiopulmonary resuscitation outcome reports,” Circulation, vol. 110, no. 21, pp. 3385–3397, 2004.
[21] L. B. Becker, T. P. Aufderheide, R. G. Geocadin et al., “Primary outcomes for resuscitation science studies,” Circulation, vol. 124, no. 19, pp. 2158–2177, 2011.
[22] S.-C. Chien, C.-Y. Chen, H.-B. Leu et al., “Association of low serum albumin concentration and adverse cardiovascular events in stable coronary heart disease,” International Journal of Cardiology, vol. 241, pp. 1–5, 2017.
[23] T. Matsuyma, T. Iwami, T. Yamada et al., “Prognostic impact of serum albumin concentration for neurologically favorable outcome in patients treated with targeted temperature management after out-of-hospital cardiac arrest: a multicenter prospective study,” Therapeutic Hypothermia and Temperature Management, vol. 8, no. 3, pp. 165–172, 2018.
[24] M. E. Sitar, S. Aydin, and U. Cakatay, “Human serum albumin and its relation with oxidative stress,” Clinical Laboratory, vol. 59, no. 9-10, pp. 945–952, 2013.
[25] G. J. Quinlan, G. S. Martin, and T. W. Evans, “Albumin: biochemical properties and therapeutic potential,” Hepatology, vol. 41, no. 6, pp. 1211–1219, 2005.
[26] L. Belayev, Y. Liu, W. Zhao, R. Busto, and M. D. Ginsberg, “Human albumin therapy of acute ischemic stroke,” Stroke, vol. 32, no. 2, pp. 553–560, 2001.
[27] L. Belayev, W. Zhao, P. M. Pattany et al., “Diffusion-weighted magnetic resonance imaging confirms marked neuroprotective efficacy of albumin therapy in focal cerebral ischemia,” Stroke, vol. 29, no. 12, pp. 2587–2599, 1998.
[28] M. Ginsberg, L. Belayev, N. Bazan et al., “Albumin-based neurotherapeutics for acute ischemic stroke: from bench to bedside,” in Pharmacology of Cerebral Ischemia, J. Kriegstein.
[29] R. H. Martin, S. D. Yeatts, M. D. Hill, C. S. Moy, M. D. Ginsberg, and Y. Y. Palesch, “ALIAS (albumin in acute ischemic stroke) trials,” Stroke, vol. 47, no. 9, pp. 2355–2359, 2016.