Relativistic analysis of stochastic kinematics

Massimiliano Giona

Dipartimento di Ingegneria Chimica, Materiali, Ambiente
La Sapienza Università di Roma
Via Eudossiana 18, 00184 Roma, Italy
E-mail: massimiliano.giona@uniroma1.it

Abstract

The relativistic analysis of stochastic kinematics is developed in order to determine the transformation of the effective diffusivity tensor in inertial frames. Poisson-Kac stochastic processes are initially considered. For one-dimensional spatial models, the effective diffusion coefficient D measured in a frame Σ moving with velocity w with respect to the rest frame of the stochastic process can be expressed as $D = D_0 \gamma^{-3}(w)$. Subsequently, higher dimensional processes are analyzed, and it is shown that the diffusivity tensor in a moving frame becomes non-isotropic with $D_\parallel = D_0 \gamma^{-3}(w)$, and $D_\perp = D_0 \gamma^{-1}(w)$, where D_\parallel and D_\perp are the diffusivities parallel and orthogonal to the velocity of the moving frame. The analysis of discrete Space-Time Diffusion processes permits to obtain a general transformation theory of the tensor diffusivity, confirmed by several different simulation experiments. Several implications of the theory are also addressed and discussed.

1 Introduction

Merging stochastic dynamics within the formal structure of relativity (special or general) is a relevant issue in theoretical physics (field theory) with important implication in high-energy physics and cosmology [1][2]. It is a challenging issue, due to causality and to the formal constraints of the Minkowskian structure of the space-time, imposed by the boundedness of the propagation velocity of physical processes, that forces to consider space and time variable on equal footing.

The limit imposed by the constant value of the velocity of light in vacuo, implies the any consistent relativistic stochastic process should possess bounded propagation velocity and, as a consequence of this, an almost everywhere smooth structure of the space-time trajectories.
The works by Dudley [3, 4, 5] and Hakim [6, 7, 8] elucidated further the subtleties of the relativistic formulation of stochastic processes. The most relevant constraint is the impossibility of a strictly Markovian process in the Minkowski space-time. As observed by Dudley [4], the structure of the Minkowski space-time forces to include information on the velocity in specifying the state of a stochastic process. This general and significant observation can be interpreted and followed in two conceptually different ways in order to define relativistic models of Brownian motion.

The first strategy is to build up a relativistic version of Ornstein-Uhlenbeck processes in the \(\mu \)-space [6], that is the Cartesian product of the Minkowski space-time \(\mathcal{M}_4 \) times the \(\mathbb{R}^4 \) space of the 4-velocities. This is the strategy adopted in defining the so-called Relativistic Ornstein-Uhlenbeck process by Debbasch et al. [9, 10], and the Relativistic Brownian Motion by Dunkel and Hänggi [11, 12]. These classes of models represent Ornstein-Uhlenbeck processes, i.e., Langevin equations for the position and the momentum of a particle driven by a stochastic force in the presence of a friction contribution. The stochastic force is modelled in the form of a Wiener process, and the momentum-dependent prefactors accounting for the Lorentz covariance, modulating both the friction and the intensity of the stochastic perturbations, can be derived from the stationary relativistic velocity distribution, expressed by the Juttner distribution [13] (or by the modified Juttner distribution), corresponding to the stationary solution of the relativistic Boltzmann equation [14, 15, 16]. A central limit theorem for these families of relativistic processes is developed in [17].

All these models describe a stochastic dynamics but not a stochastic kinematics, i.e., a stochastic process involving exclusively space-time coordinates that, according to the above observation by Dudley and Hakim cannot be grounded on a strict Markovian model. The way for approaching a relativistically consistent stochastic kinematic model, is to consider a system of bounded velocities, the selection of which is controlled by a Markov-chain process. This is the essence of Poisson-Kac processes, introduced by Marc Kac [18] and further elaborated by many authors [19, 20, 21, 22]. For a general review of the different approaches in relativistic stochastic analysis see [23].

The aim of this article is to analyze the (special) relativistic transformation of stochastic kinematics, and specifically the transformation of the tensor diffusivity induced by a Lorentz boost. Albeit this issue is of general relevance both in theory and applications, it has never been addressed in the literature, to the best of the author’s knowledge. A possible explanation of this lack stems from the fact that for relativistic stochastic processes a \(\mu \)-space formulation has been followed, and the resulting nonlinear Langevin equations in \(\mathcal{M}_4 \times \mathbb{R}^4 \) are fairly complex and not easily amenable to a closed-form analysis of the associated diffusivity tensor.

In this article, using different approaches and relativistic stochastic pro-
cesses (Poisson-Kac processes, discrete Space-Time Diffusion models recently studied in [24, 25], etc.) the relativistic transformation of the tensor diffusivity is derived and some of its implications explored.

The article is organized as follows. Section 2 reviews briefly the class of Poisson-Kac processes, and Section 3 their relativistic transformation. Section 4 develops the moment analysis of the spatial one-dimensional Poisson-Kac process in order to obtain the expression for the effective diffusivity measured in two inertial frames in relative motion. Section 5 extends the analysis to higher dimensions, showing the occurrence of two different scalings for the longitudinal and transversal diffusivities. Scaling analysis and numerical simulations are developed in Sections 6 and 7 respectively. Section 8 discusses a by-product of the transformation analysis of tensor diffusivity, associated with the relativistic invariance of the stochastic action. Section 9 addresses the general transformation theory of tensor diffusivity, by considering discrete Space-Time Diffusion models as a prototypical example of stochastic processes amenable to closed-form analysis due to the homogenization theory developed in [24]. Finally, Section 10 discusses some implications of the theory, including also a brief analysis of the concept of deterministic vs stochastic motion in a Minkowskian space-time.

2 Poisson-Kac processes

Let \(\Sigma' \) (space-time coordinates \(x', t' \)) be a frame in which a Poisson-Kac process is “at rest”, i.e., it possesses vanishing effective (long-term) velocity. \(\Sigma' \) can be referred to as the rest frame of the process. In \(\Sigma' \) the free Poisson-Kac process is described by the stochastic equation

\[
dx'(t') = b'_0 (-1)^\chi(t') \, dt'
\]

(1)

where \(\chi(t') \) is the realization of a Poisson process possessing transition rate \(a_0 \), i.e., such that the probability density function \(p_\tau'(\tau') \) for the switching times of the Poisson process is given by the exponential distribution \(p_\tau'(\tau') = a_0 e^{-a_0 \tau'}, \tau' \in [0, \infty) \).

The parameter \(b'_0 \) is the characteristic local velocity of the Poisson-Kac perturbation, \(0 < b' \leq c \), where \(c \) is the light velocity in vacuo.

Let \(p'(x', t') \) be the probability density function associated with the stochastic evolution (1), and \(p^{\pm}(x', t') \) the partial probabilities characterizing the statistical evolution of the Poisson-Kac process (also referred to as partial probability waves). In \(\Sigma' \), the equations for \(p^{\pm}(x', t') \) read

\[
\frac{\partial p'^{+}}{\partial t'} = -b'_0 \frac{\partial p'^{+}}{\partial x'} - a'_0 p'^{-} + a'_0 p'^{+},
\]

\[
\frac{\partial p'^{-}}{\partial t'} = b'_0 \frac{\partial p'^{-}}{\partial x'} + a'_0 p'^{+} - a'_0 p'^{-}
\]

(2)
where \(p' = p'^+ + p'^- \). The parameter \(D_0 \) given by

\[
D_0 = \frac{(b'_0)^2}{2 a'_0}
\]

represents the diffusion coefficient of the Poisson-Kac process in the rest frame (rest diffusion coefficient). It is well known from the work by Kac \[15\] that in the limit of \(b'_0 \) and \(a'_0 \) tending to infinity, keeping fixed the ratio \(D_0 \), the solution of eq. (2) converges in the long-term limit to that of a pure diffusion equation for \(p'(x', t') \) characterized by the diffusivity \(D_0 \).

3 Inertial transformations

Let \(\Sigma \) be an inertial frame moving with constant velocity \(w \), \(|w| \leq c\) with respect to \(\Sigma' \) and \((x, t)\) its space-time coordinates. Enforcing the Lorentz transformation between \(\Sigma \) and \(\Sigma' \),

\[
x = \gamma(w) \left(x' - w t' \right), \quad t = \gamma(w) \left(t - w x'/c^2 \right)
\]

where \(\gamma(w) = (1 - w^2/c^2)^{-1/2} \) is the Lorentz factor, eqs. (1) become

\[
g(w) \left(1 - \frac{b'_0 w}{c^2} \right) \frac{\partial p'^+}{\partial t} = -g(w) \left(b'_0 - w \right) \frac{\partial p'^+}{\partial x} - a'_0 p'^+ + a'_0 p'^-
g(w) \left(1 + \frac{b'_0 w}{c^2} \right) \frac{\partial p'^-}{\partial t} = g(w) \left(b'_0 + w \right) \frac{\partial p'^-}{\partial x} + a'_0 p'^+ - a'_0 p'^-
\]

Let us define the transformed partial probability densities \(p^+(x, t) \), \(p^-(x, t) \) in \(\Sigma \) as

\[
p^+ = g(w) \left(1 - \frac{b'_0 w}{c^2} \right) p'^+, \quad p^- = g(w) \left(1 + \frac{b'_0 w}{c^2} \right) p'^-
\]

The quantities \(p^+(x, t) \) and \(p^-(x, t) \) are the representation of the partial probability densities for the stochastic process eq. (1) in \(\Sigma \), and their balance equations read as

\[
\frac{\partial p^+}{\partial t} = -b^+ \frac{\partial p^+}{\partial x} - a^+ p^+ + a^- p^- \\
\frac{\partial p^-}{\partial t} = b^- \frac{\partial p^+}{\partial x} + a^+ p^+ - a^- p^-
\]

where

\[
b^+ = \frac{b'_0 - w}{1 - b'_0 w/c^2}, \quad b^- = \frac{b'_0 + w}{1 + b'_0 w/c^2}
\]

and

\[
a^+ = \frac{a'_0}{g(w) (1 - b'_0 w/c^2)}, \quad a^- = \frac{a'_0}{g(w) (1 + b'_0 w/c^2)}
\]

\[4\]
The physical interpretation of eq. (6) based on the covariance of the Poisson-Kac process is given in [26].

From eq. (7), the overall probability density $p = p^+ + p^−$ in Σ is a conserved quantity. Moreover, from the definition (6) it follows that the transformation for the probability densities/fluxes in the two systems is given by

$$p = \gamma(w) \left(p' - \frac{w}{c_t} J' \right)$$

$$J = \gamma(w) \left(J' - wp' \right)$$

(10)

where $J' = b'_0 (p'^+ - p'^−)$, $J = b^+ p^+ - b^− p^−$ are the probability fluxes in the two reference systems. Eq. (10) corresponds to the Lorentz boost for the two-dimensional (as we consider a $1 + 1$ Minkowski space-time) 4-vector $j'_\nu = (c p', J')$. Observe from eq. (8) that the transformations for the coefficient b^+, $b^−$ are consistent with the relativistic composition of the velocities.

4 Moment analysis and diffusivity transformation

The statistical properties of the stochastic process considered in the moving reference system Σ can be conveniently approached by considering the associated moment hierarchy

$$m_n(t) = \int_{-\infty}^{\infty} x^n p(x,t) dx = m^+_n(t) + m^-_n(t)$$

(11)

where the partial moments

$$m^\pm_n(t) = \int_{-\infty}^{\infty} x^n p^\pm(x,t) dx$$

(12)

satisfy the system of equations

$$\frac{d m^+_n}{dt} = nb^+ m^+_{n-1} - a^+ m^+_n + a^- m^-_n$$

$$\frac{d m^-_n}{dt} = -nb^- m^-_{n-1} + a^+ m^+_n - a^- m^-_n$$

(13)

For $n = 0$ (zero-th order moment) eqs. (13) reduce to:

$$\frac{d m^0_0}{dt} = \mp a^+ m^+_0 \pm a^- m^-_0$$

(14)

In the long-term limit, (here the concept of long-term or asymptotic property refers to times larger than the characteristic timescale characterizing the recombination dynamics between the two probability waves p^+ and $p^−$ describing statistically the Poisson-Kac process, and corresponds to timescales
\(t \gg \max\{1/a^+, 1/a^-\} \), the zero-th order moments converge to steady values satisfying the relation

\[
m_0^+ = \frac{a^-}{a^+ + a^-} m_0^-
\]

(15)

Enforcing the consistency condition \(m_0^+ + m_0^- = 1 \), one thus obtains

\[
m_0^\pm = \frac{a^\pm}{a^+ + a^-} = \frac{1 \mp b'w/c^2}{2}
\]

(16)

Next, consider the first-order moments, i.e., \(n = 1 \), for which eqs. (13) provide

\[
\frac{dm_1^+}{dt} = b^+ m_0^+ - a^+ m_1^+ + a^- m_1^-
\]

\[
\frac{dm_1^-}{dt} = -b^- m_0^- + a^+ m_1^+ - a^- m_1^-
\]

(17)

The long-term behavior of \(m_1^\pm(t) \) is at most linear in time, i.e.,

\[
m_1^\pm(t) = \mu_1^\pm t + \delta_1^\pm
\]

(18)

Substituting these expressions into eqs. (17), and equating the coefficients of equal powers of \(t^p \), \(p = 0, 1 \), one obtains the algebraic relations

\[
a^+ \mu_1^+ - a^- \mu_1^- = 0
\]

(19)

and

\[
\mu_1^- = b^+ m_0^+ - a^+ \delta_1^+ + a^- \delta_1^-
\]

\[
\mu_1^- = -b^- m_0^- + a^+ \delta_1^+ - a^- \delta_1^-
\]

(20)

Summing the two expressions (20), a further linear equation in \(\mu_1^\pm \) is obtained,

\[
\mu_1^+ + \mu_1^- = b^+ m_0^+ - b^- m_0^-
\]

(21)

Enforcing eq. (16), it follows readily that

\[
\mu_1 = \mu_1^+ + \mu_1^- = -w
\]

(22)

where \(\mu_1 \) is the effective velocity measured in the moving reference system, \(m_1(t) \sim \mu_1 t \). Eq. (22) is physically straightforward, implying that the effective mean velocity of the stochastic process measured in the moving system is just the reverse velocity \(-w\). Eqs. (19) and (21) provide a linear system in the two unknown \(\mu_1^\pm \), yielding as a solution

\[
\mu_1^\pm = \frac{a^\pm (b^+ m_0^+ - b^- m_0^-)}{a^+ + a^-}
\]

(23)
Finally, in order to derive dispersion properties, consider the second-order moments m_{2}^{\pm}, which satisfy the system of equations

$$\frac{dm_{2}^{+}}{dt} = 2b^{+}m_{1}^{+} - a^{+}m_{2}^{+} + a^{-}m_{2}^{-}$$

$$\frac{dm_{2}^{-}}{dt} = -2b^{-}m_{1}^{-} + a^{+}m_{2}^{+} - a^{-}m_{2}^{-}$$

(24)

In the long-term limit, $m_{2}^{\pm}(t)$ attains a quadratic expression in t,

$$m_{2}^{\pm}(t) = \sigma_{2}^{\pm}t^{2} + \zeta_{2}^{\pm}t + \eta_{2}^{\pm}.$$

(25)

The substitution of eq. (25) into eq. (24) provides the system of linear relations in the long-term coefficients

$$a^{+}\sigma_{2}^{+} - a^{-}\sigma_{2}^{-} = 0$$

(26)

$$2\sigma_{2}^{+} = 2b^{+}\mu_{1}^{+} - a^{+}\zeta_{2}^{+} + a^{-}\zeta_{2}^{-}$$

$$2\sigma_{2}^{-} = -2b^{-}\mu_{1}^{-} + a^{+}\zeta_{2}^{+} - a^{-}\zeta_{2}^{-}$$

(27)

and,

$$\zeta_{2}^{+} = 2b^{+}\delta_{1}^{+} - a^{+}\eta_{2}^{+} + a^{-}\eta_{2}^{-}$$

$$\zeta_{2}^{-} = -2b^{-}\delta_{1}^{-} + a^{+}\eta_{2}^{+} - a^{-}\eta_{2}^{-}$$

(28)

Summing together the two expressions (27), and using eq. (26), a system of two linear equations for σ_{2}^{\pm} is obtained, the solution of which is

$$\sigma_{2}^{\pm} = \frac{a^{+}}{a^{+} + a^{-}} \left(b^{+}\mu_{1}^{+} - b^{-}\mu_{1}^{-} \right)$$

(29)

We are mainly interested in the scaling of the mean square displacement $\sigma^{2}(t)$,

$$\sigma^{2}(t) = m_{2}(t) - [m_{1}(t)]^{2}$$

$$= m_{2}^{+}(t) + m_{2}^{-}(t) - \left[m_{1}^{+}(t) + m_{1}^{-}(t) \right]^{2}$$

(30)

Asymptotically, i.e., for time-scales in which the recombination process between backward and forward probability waves has reached a stationary behavior, the expression for $\sigma^{2}(t)$ attains the form

$$\sigma^{2}(t) = A_{2}t^{2} + \Sigma(v) t + \Delta$$

(31)

where

$$A_{2} = \sigma_{2}^{+} + \sigma_{2}^{-} - (\mu_{1}^{+} + \mu_{1}^{-})^{2}$$

$$\Sigma(v) = (\zeta_{2}^{+} + \zeta_{2}^{-}) - 2(\mu_{1}^{+} + \mu_{1}^{-})(\delta_{1}^{+} + \delta_{1}^{-})$$

$$\Delta = (\eta_{2}^{+} + \eta_{2}^{-}) - (\delta_{1}^{+} + \delta_{1}^{-})^{2}$$

(32)
From the expressions obtained for σ_2^\pm and μ_1^\pm it follows identically that $A_2 = 0$, so that, as expected,

$$\sigma_2^2(t) \sim \Sigma(w) t$$ \hspace{1cm} (33)

Summing together the two equations (28) one obtains

$$\zeta_2^+ + \zeta_2^- = 2(b^+ \delta_1^+ - b^- \delta_1^-)$$ \hspace{1cm} (34)

This equation, together with eq. (21) provide, after some algebra, the following expression for $\Sigma(w)$

$$\Sigma(w) = 2 \left(b^+ - \mu_1^+ - \mu_1^- \right) \left(\frac{\mu_1^- + b^- m_0^-}{a^+} \right)$$ \hspace{1cm} (35)

Substituting the expressions for μ_1^\pm, m_0^-, b^\pm and a^+ into eq. (35), one finally arrives to the compact expression

$$\frac{\Sigma(w)}{2} = \frac{(b_0')^2}{2a_0'} \left(1 - \frac{w^2}{c^2} \right)^{3/2}$$ \hspace{1cm} (36)

But $\Sigma(v)/2$ is the diffusion coefficient D in the moving reference frame, while, from eq. (3), $(b_0')^2/2a_0'$ is the rest diffusion coefficient D_0. Consequently, eq. (36) can be expressed in a compact way as

$$D = D_0 \left(1 - \frac{w^2}{c^2} \right)^{3/2} = D_0 \gamma^{-3}(w)$$ \hspace{1cm} (37)

which is the transformation connecting the diffusion coefficients in the two inertial frames.

5 Extension to higher spatial dimensions

The analysis developed in the previous Section is extended to higher spatial dimensions. Without loss of generality, two spatial coordinates are considered.

5.1 Kolesnik-Kac stochastic process

As a two-dimensional model of a Poisson-Kac stochastic process we consider that proposed by Kolesnik and Turbin [27] and Kolesnik [28], and therefore referred to as the Kolesnik-Kac model. It is a particular case of the class of Generalized Poisson-Kac processes introduced in [29].

Consider a system of $N > 2$ uniform velocity vectors

$$\mathbf{b}^{\tau,\alpha} = b_0' \left(\cos(2\pi \alpha/N), \sin(2\pi \alpha/N) \right) = (b_x^{\tau,\alpha}, b_y^{\tau,\alpha})$$, \hspace{1cm} $\alpha = 0, \ldots, N - 1$ \hspace{1cm} (38)
where \(b_0 \) is the reference velocity, since \(|\mathbf{b}'(\alpha)| = b_0 \) for any \(\alpha \), and the stochastic process

\[
dx'(t') = w(t') \, dt'
\]

(39)

\(\mathbf{x}' = (x', y') \), where \(w(t') \) is a stochastic velocity vector that changes its value, amongs the \(N \) possible states \(\mathbf{b}'(\alpha) \) in a equiprobable way, at random time intervals characterized by an exponential distribution defined by the transition rate \(a'_0 > 0 \). The mathematical properties of this process have been studied by Kolesnik [27].

In the stationary system \(\Sigma' \) (space-time coordinates \(x', y', t' \)), a system of \(N \) partial probability density functions \(p'(\alpha)(x', y', t') \), \(\alpha = 0, \ldots, N \), fully describes the statistical properties of the Kolesnik-Kac model, and the overall probability density function of the process is \(p'(x', y', t') = \sum_{\alpha=0}^{N-1} p'(\alpha)(x', y', t') \).

In the stationary frame the partial probabilities satisfy the system of hyperbolic equations

\[
\frac{\partial p'(\alpha)}{\partial t} = -b'_x(\alpha) \frac{\partial p'(\alpha)}{\partial x'} - b'_y(\alpha) \frac{\partial p'(\alpha)}{\partial y'} - a'_0 p'(\alpha) + a'_0 \sum_{\beta=0}^{N-1} p'(\beta)
\]

(40)

\(\alpha = 0, \ldots, N - 1 \). In an inertial frame \(\Sigma \) (space-time coordinates \(x, y, t \)) moving with respect to \(\Sigma' \) at constant velocity \(\mathbf{w} \mathbf{e}_x \) along the \(x \)-axis, the process is characterized by the \(N \) partial probability densities \(p'(x, y, t) \), \(\alpha = 0, \ldots, N - 1 \), defined as

\[
p'(\alpha) = \gamma(w) \kappa(\alpha) p'(\alpha), \quad \alpha = 0, \ldots, N - 1,
\]

(41)

where

\[
\kappa(\alpha) = 1 - \frac{b'_x(\alpha) \mathbf{w}}{c^2}\n\]

(42)

The balance equation for the partial probability system \(\{p'(\alpha)\}_{\alpha=0}^{N-1} \) is obtained from eq. (40) enforcing the Lorentz transform (4) and \(y = y' \), leading to

\[
\frac{\partial p'(\alpha)}{\partial t} = -b_x(\alpha) \frac{\partial p'(\alpha)}{\partial x} - b_y(\alpha) \frac{\partial p'(\alpha)}{\partial y} - a'(\alpha) p'(\alpha) + \frac{1}{N} \sum_{\beta=0}^{N-1} a'(\beta) p'(\beta)
\]

(43)

\(\alpha = 0, \ldots, N - 1 \). The coefficients entering these equations are defined by

\[
b'_x(\alpha) = \frac{b'_x(\alpha) - \mathbf{w}}{\kappa(\alpha)}, \quad b'_y(\alpha) = \frac{b'_y(\alpha)}{\gamma(w) \kappa(\alpha)}, \quad a'(\alpha) = \frac{a'_0}{\gamma(w) \kappa(\alpha)}
\]

(44)

\(\alpha = 0, \ldots, N - 1 \).
5.2 Moment hierarchy

As in the one-dimensional spatial case previously analyzed, moment analysis provides the simplest tool to extract the statistical properties associated with eqs. (43). Let

\[m_{m,n}^{(\alpha)}(t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^m y^n p^{(\alpha)}(x, y, t) \, dx \, dy \]

\(m, n = 0, 1, \ldots, \alpha = 0, \ldots, N - 1 \) be the \((m, n)\)-th partial moment. The global moment hierarchy \(\{m_{m,n}^{(\alpha)}(t)\}_{m,n=0}^{\infty} \) defined with respect to \(p(x, y, t) \) is readily given by the sum over \(\alpha \) of the \((m, n)\)-th partial moments. From the definition (45) and from eqs. (43), it follows that the partial moments satisfy the linear system of differential equations

\[\frac{dm_{m,n}^{(\alpha)}}{dt} = m_b^{(\alpha)} m_{m-1,n}^{(\alpha)} + n b^{(\alpha)} m_{m,n-1}^{(\alpha)} - a^{(\alpha)} m_{m,n}^{(\alpha)} + \frac{1}{N} \sum_{\beta=0}^{N-1} a^{(\beta)} m_{m,n}^{(\beta)} \]

(46)

where the regularity condition at infinity for \(p^{(\alpha)}(x, y, t) \) has been enforced.

5.3 Zero-th and first-order moments

To begin with, consider the zero-th order moments \(m_{0,0}^{(\alpha)} \), satisfying the system of equations

\[\frac{dm_{0,0}^{(\alpha)}}{dt} = -a^{(\alpha)} m_{0,0}^{(\alpha)} + \frac{1}{N} \sum_{\beta=0}^{N-1} a^{(\beta)} m_{0,0}^{(\beta)} \]

(47)

\(\alpha = 0, \ldots, N - 1 \). In the long-term (asymptotic) limit, i.e., once the recombination amongst the partial waves has reached a steady-state, \(dm_{0,0}^{(\alpha)} / dt = 0 \), which implies \(m_{0,0}^{(\alpha)} = C' / a^{(\alpha)} = C \kappa^{(\alpha)} \), where the constant \(C \) is determined by the probabilistic consistency condition \(\sum_{\alpha=0}^{N-1} m_{0,0}^{(\alpha)} = 1 \), leading to the expression

\[m_{0,0}^{(\alpha)} = \frac{\kappa^{(\alpha)}}{N}, \quad \alpha = 0, \ldots, N - 1 \]

(48)

Next, consider the first-order moments. For \(m = 1, n = 0 \), eqs. (46) become

\[\frac{dm_{1,0}^{(\alpha)}}{dt} = b_x^{(\alpha)} m_{0,0}^{(\alpha)} - a^{(\alpha)} m_{1,0}^{(\alpha)} + \frac{1}{N} \sum_{\beta=0}^{N-1} a^{(\beta)} m_{1,0}^{(\beta)} \]

(49)

\(\alpha = 0, \ldots, N - 1 \). In the long-term limit eqs. (48) become a non-homogeneous linear system driven by a constant contribution \(b_x^{(\alpha)} m_{0,0}^{(\alpha)} \), where \(m_{0,0}^{(\alpha)} \) is given by eq. (48). Consequently, the asymptotic solution for \(m_{1,0}^{(\alpha)} \) grows linearly in time, i.e.,

\[m_{1,0}^{(\alpha)} = \mu_x^{(\alpha)} t + \delta_x^{(\alpha)} \]

(50)
Substituting these expressions into eqs. (49) and equating the coefficients of equal powers of t, one obtains the system of relations for the asymptotic coefficients $\mu^{(\alpha)}_x$, $\delta^{(\alpha)}_x$

$$a^{(\alpha)} \mu^{(\alpha)}_x = \frac{1}{N} \sum_{\beta=0}^{N-1} a^{(\beta)} \mu^{(\beta)}_x$$ \hspace{1cm} (51)

$$\mu^{(\alpha)}_x = b^{(\alpha)}_x m^{(\alpha)}_{0,0} - a^{(\alpha)} \delta^{(\alpha)}_x + \frac{1}{N} \sum_{\beta=0}^{N-1} a^{(\beta)} \delta^{(\beta)}_x$$ \hspace{1cm} (52)

$\alpha = 0, \ldots, N-1$, where $m^{(\alpha)}_{0,0}$ equals its long-term expression (48).

Summing over α in eq. (52) the expression for the effective velocity V_x

$$m_{1,0}(t) \sim V_x t$$ \hspace{1cm} (53)

is obtained

$$V_x = \sum_{\alpha=0}^{N-1} \mu^{(\alpha)}_x = \sum_{\alpha=0}^{N-1} b^{(\alpha)}_x m^{(\alpha)}_{0,0} = -w$$ \hspace{1cm} (54)

and from eqs. (51), (54) it follows that the expression for $\mu^{(\alpha)}_x$ takes the form

$$\mu^{(\alpha)}_x = - \frac{w \kappa(\alpha)}{N}$$ \hspace{1cm} (55)

$\alpha = 0, \ldots, N-1$. From eqs. (52) one also obtains the functional form of $\delta^{(\alpha)}_x$, that plays a central role in the estimate of diffusional properties. Let $C_x = \sum_{\alpha=0}^{N-1} a^{(\alpha)} \delta^{(\alpha)}_x$, eqs. (52) can be rewritten as

$$\delta^{(\alpha)}_x = \frac{1}{a^{(\alpha)}} \left[b^{(\alpha)}_x m^{(\alpha)}_{0,0} - \mu^{(\alpha)}_x + \frac{C_x}{N} \right]$$ \hspace{1cm} (56)

$\alpha = 0, \ldots, N-1$. Substituting the long-term expressions (48), (55) one finally arrive to

$$\delta^{(\alpha)}_x = \frac{\gamma(w)}{N a_0} \left(b^{(\alpha)}_x - w \right) \kappa(\alpha) + \frac{w \gamma(w)}{N a_0} \kappa^2(\alpha) + \frac{\gamma(w) C_x}{N a_0} \kappa(\alpha)$$ \hspace{1cm} (57)

$\alpha = 0, \ldots, N-1$. The expressions for $\delta^{(\alpha)}_x$ contain the unknown constant C_x. As we shall see in the next paragraph, this constant is totally immaterial in the estimate of the diffusional properties.

Finally, consider the other family of first-order partial moments $m^{(\alpha)}_{0,1}$. The analysis is completely specular to that developed above for $m^{(\alpha)}_{1,0}$ so that solely the final results are reported.

In the long-term limit, $m^{(\alpha)}_{0,1}(t)$ attains a linear expression analogous to eq. (50), namely,

$$m^{(\alpha)}_{0,1}(t) = \mu^{(\alpha)}_y t + \delta^{(\alpha)}_y$$ \hspace{1cm} (58)
\(\alpha = 0, \ldots, N - 1 \). From the balance equations it follows that

\[\mu_y^{(\alpha)} = 0 \] \hspace{1cm} (59)

\(\alpha = 0, \ldots, N - 1 \), which implies for \(V_y \), \(m_{0,1}(t) \sim V_y t \) that

\[V_y = 0 \] \hspace{1cm} (60)

As it regards the factors \(\delta_y^{(\alpha)} \) entering the asymptotic functional form of these first-order partial moments, one obtains

\[\delta_y^{(\alpha)} = \frac{1}{a^{(\alpha)}} \left[b_y^{(\alpha)} m_{0,0}^{(\alpha)} + \frac{C_y}{N} \right] = \frac{1}{N a_0} \beta_y^{(\alpha)} \kappa(\alpha) + \frac{\gamma^{(w)} C_y}{N a_0} \kappa(\alpha) \] \hspace{1cm} (61)

\(\alpha = 0, \ldots, N - 1 \). In deriving eqs. (61), eqs. (59) have been used. The coefficients \(\delta_y^{(\alpha)} \) contain the constant \(C_y = \sum_{\alpha=0}^{N-1} a^{(\alpha)} \delta_y^{(\alpha)} \), which is immaterial in the estimate of the long-term diffusional properties, that are addressed in the next paragraph.

5.4 Second-order moments and diffusion tensor

To begin with, consider \(m_{2,0}^{(\alpha)} \), i.e., \(m = 2 \) and \(n = 0 \). Eqs. (46) specialize into

\[\frac{d m_{2,0}^{(\alpha)}}{dt} = 2 b_x^{(\alpha)} m_{1,0}^{(\alpha)} - a^{(\alpha)} m_{2,0}^{(\alpha)} + \frac{1}{N} \sum_{\beta=0}^{N-1} a^{(\beta)} m_{2,0}^{(\beta)} \] \hspace{1cm} (62)

\(\alpha = 0, \ldots, N - 1 \). In the long-term limit, since the forcing term \(b_x^{(\alpha)} m_{1,0}^{(\alpha)} \) is linear in time, \(m_{2,0}^{(\alpha)}(t) \) should be, at most, a quadratic function of \(t \)

\[m_{2,0}^{(\alpha)}(t) = K_{x,x}^{(\alpha)} t^2 + g_{x,x}^{(\alpha)} t + \zeta_{x,x}^{(\alpha)} \] \hspace{1cm} (63)

\(\alpha = 0, \ldots, N - 1 \). Substituted into eq. (62), it provides the following relations amongst the expansion coefficients

\[a^{(\alpha)} K_{x,x}^{(\alpha)} = \frac{1}{N} \sum_{\beta=0}^{N-1} a^{(\beta)} K_{x,x}^{(\beta)} \] \hspace{1cm} (64)

\[2K_{x,x}^{(\alpha)} = 2 b_x^{(\alpha)} \mu_x^{(\alpha)} - a^{(\alpha)} g_{x,x}^{(\alpha)} + \frac{1}{N} \sum_{\beta=0}^{N-1} a^{(\beta)} g_{x,x}^{(\beta)} \] \hspace{1cm} (65)

\[g_{x,x}^{(\alpha)} = 2 b_x^{(\alpha)} \delta_x^{(\alpha)} - a^{(\alpha)} \zeta_{x,x}^{(\alpha)} + \frac{1}{N} \sum_{\beta=0}^{N-1} a^{(\beta)} \zeta_{x,x}^{(\beta)} \] \hspace{1cm} (66)
\(\alpha = 0, \ldots, N - 1 \). Summing over \(\alpha \) in eq. (65), and enforcing eqs. (55), it follows that

\[
\sum_{\alpha=0}^{N-1} K_{x,x}^{(\alpha)} = \sum_{\alpha=0}^{N-1} b_x^{(\alpha)} \mu_x^{(\alpha)} = w^2
\]

(67)

that, together with eqs. (64), provides for \(K_{x,x}^{(\alpha)} \) the expression

\[
K_{x,x}^{(\alpha)} = \frac{w^2 \kappa(\alpha)}{N}
\]

(68)

\(\alpha = 0, \ldots, N - 1 \). The variance \(\sigma_{x,x}^2(t) \) along the \(x \)-coordinate is given by

\[
\sigma_{x,x}^2(t) = \sum_{\alpha=0}^{N-1} m_{2,0}^{(\alpha)}(t) - \left[\sum_{\alpha=0}^{N-1} m_{1,0}^{(\alpha)}(t) \right]^2
\]

(69)

Substituting the long-term expressions and enforcing eqs. (55) and (68), it follows that \(\sigma_{x,x}^2(t) \) is asymptotically a linear function of time

\[
\sigma_{x,x}^2(t) \sim 2 D_{x,x} t
\]

(70)

where the diffusivity along \(x \) is given by the expression

\[
2 D_{x,x} = \sum_{\alpha=0}^{N-1} g_{x,x}^{(\alpha)} + 2 w \sum_{\alpha=0}^{N-1} \delta_x^{(\alpha)}
\]

(71)

The first sum entering eq. (71) can be explicited by summing eqs. (66) over \(\alpha \), providing the compact expression for \(D_{x,x} \)

\[
D_{x,x} = \sum_{\alpha=0}^{N-1} \left(b_x^{(\alpha)}/w \right) \delta_x^{(\alpha)}
\]

(72)

where

\[
b_x^{(\alpha)} + w = \frac{b_x^{\ell(\alpha)}}{\gamma^2(w) \kappa(\alpha)}
\]

(73)

\(\alpha = 0, \ldots, N - 1 \). From the latter expression, and from the expression (72), it follows that the term contain the unknown constant \(C_x \) in the expression (56) gives a vanishing contribution in the estimate of \(D_{x,x} \). Therefore,

\[
D_{x,x} = \frac{1}{\gamma^2(w)} \frac{N-1}{a_0} \sum_{\alpha=0}^{b_x^{\ell(\alpha)}/w} \left[\frac{\gamma(w)}{N a_0} \left(b_x^{\ell(\alpha)} - w \right) \kappa(\alpha) + \frac{w \gamma(w) a_0 \kappa^2(\alpha)}{N a_0 \kappa(\alpha)} \right]
\]

\[
= \frac{1}{\gamma(w) N a_0^2} \left[\sum_{\alpha=0}^{N-1} \left(b_x^{\ell(\alpha)} - w \right) + w \sum_{\alpha=0}^{N-1} b_x^{\ell(\alpha)} \kappa(\alpha) \right]
\]

\[
= \frac{1}{\gamma(w) N a_0^2} \left(1 - \frac{w^2}{c^2} \right) \sum_{\alpha=0}^{N-1} \left[b_x^{\ell(\alpha)} \right]^2 = \frac{(b_0)^2}{2 a_0} \gamma^{-3}(w)
\]

(74)
where we have used the identities
\[\sum_{\alpha=0}^{N-1} b^{(\alpha)} = 0, \quad \sum_{\alpha=0}^{N-1} b^{(\alpha)}_{y} = (b_0)^2 N/2. \]
Equation \((74)\) implies the transformation of the diffusion coefficient \(D_{xx}\) parallel to the frame-velocity direction
\[D_{x,x} = D_0 \gamma^{-3}(w) \quad \text{(75)} \]
consistently with the corresponding expression \((31)\) derived for the one-dimensional spatial Poisson-Kac process.

Consider now the other family \(m^{(\alpha)}_{0,2}\), corresponding to \(m = 0\) and \(n = 2\). Details are skipped as the algebra is identical to the \(m^{(\alpha)}_{2,0}\)-case. In the long-term regime, \(m^{(\alpha)}_{0,2}\) is quadratic in time
\[m^{(\alpha)}_{0,2} = K^{(\alpha)}_{y,y} t^2 + g^{(\alpha)}_{y,y} t + \zeta^{(\alpha)}_{y,y} \quad \text{(76)} \]
\(\alpha = 0, \ldots, N - 1\). From the moment balance equation one obtains
\[K^{(\alpha)}_{y,y} = 0 \quad \text{(77)} \]
\(\alpha = 0, \ldots, N - 1\). As regards \(\sigma^2_{y,y}(t) = m_{0,2}(t) - [m_{0,1}(t)]^2\) one obtains
\[\sigma^2_{y,y}(t) \sim 2 D_{y,y} t \quad \text{(78)} \]
where the diffusion coefficient \(D_{y,y}\) is given by
\[2 D_{y,y} = \sum_{\alpha=0}^{N-1} g^{(\alpha)}_{y,y} = 2 \sum_{\alpha=0}^{N-1} b^{(\alpha)}_{y} \delta^{(\alpha)}_{y} \quad \text{(79)} \]
Substituting the expressions \((14)\) and \((61)\) for \(b^{(\alpha)}_{y}\) and \(\delta^{(\alpha)}_{y}\) into eq. \((79)\) one gets
\[D_{y,y} = \sum_{\alpha=0}^{N-1} \frac{b^{(\alpha)}_{y}}{\gamma(w) \kappa(\alpha)} \left[\frac{1}{N a_0} b^{(\alpha)}_{y} \kappa(\alpha) + \frac{\gamma(w) C_y}{N a_0} \kappa(\alpha) \right] \]
\[= \frac{1}{\gamma(w) N a_0^2} \sum_{\alpha=0}^{N-1} \left[b^{(\alpha)}_{y} \right]^2 = \frac{(b_0)^2}{2 a_0} \gamma^{-1}(w) \quad \text{(80)} \]
which implies that
\[D_{y,y} = D_0 = D_0 \gamma^{-1}(w) = D_0 \sqrt{1 - \frac{w^2}{c^2}} \quad \text{(81)} \]
i.e., the effective diffusion coefficient perpendicular to the frame direction of motion is proportional to the reciprocal of the Lorentz factor.
Finally, consider the mixed moments \(m_{1,1}^{(\alpha)} \), i.e., \(m = n = 1 \). Also in this case, in the long-term
\[
m_{1,1}^{(\alpha)} = K_{x,y}^{(\alpha)} t^2 + g_{x,y}^{(\alpha)} t + \zeta_{x,y}^{(\alpha)}
\]
\(\alpha = 0, \ldots, N - 1 \). From the moment balance equation it follows that
\[
K_{x,y}^{(\alpha)} = 0
\]
\(\alpha = 0, \ldots, N - 1 \), and
\[
\sigma_{x,y}^2(t) = m_{1,1}(t) - m_{0,1}(t) m_{0,1}(t) \sim 2D_{x,y} t
\]
where
\[
2D_{x,y} = \sum_{\alpha=0}^{N-1} g_{x,y}^{(\alpha)} - \sum_{\alpha=0}^{N-1} \mu_x^{(\alpha)} \sum_{\beta=0}^{N-1} \delta_x^{(\beta)}
\]
\[
= \sum_{\alpha=0}^{N-1} \left(b_x^{(\alpha)} + w \right) \delta_y^{(\alpha)} + \sum_{\alpha=0}^{N-1} b_y^{(\alpha)} \delta_x^{(\alpha)}
\]
Using the expressions previously derived for the quantities entering eq. (85), one derives after some algebra that
\[
D_{x,y} = 0
\]
which completes the diffusional analysis of the Kolesnik-Kac process.

6 Scaling analysis

The transformations of the diffusion coefficient in inertial systems can be physically interpreted on the basis of time-dilation and length-contraction phenomena using the classical Einstein scaling for the diffusion coefficient. The analysis is not mathematically rigorous and it is aimed at highlighting the physical origin of the diffusivity transformations, at least in these simple cases. The diffusivity \(D' \) is proportional to the ratio of the mean square displacement \(\langle (\Delta x')^2 \rangle \) divided by the time-scale \(\Delta t' \)
\[
D' = \frac{1}{2} \frac{\langle (\Delta x')^2 \rangle}{\Delta t'} = D_0
\]
which is the Einstein equation for diffusion. Similarly, in the reference frame \(\Sigma \), the diffusion coefficient is given by
\[
D = \frac{1}{2} \frac{\langle (\Delta x)^2 \rangle}{\Delta t}
\]
But Δt, and Δx are related to $\Delta x'$ and Δt via the Lorentz transformation, which implies length contraction

$$\Delta x = \Delta x' \sqrt{1 - \frac{w^2}{c^2}} = \gamma^{-1}(w) \Delta x'$$

and time dilation

$$\Delta t = \frac{\Delta t'}{\sqrt{1 - \frac{w^2}{c^2}}} = \gamma(w) \Delta t'$$

Therefore,

$$\langle (\Delta x)^2 \rangle = \gamma^{-2}(w) \langle (\Delta x')^2 \rangle$$

Substituting eqs. (90) and (91) into eq. (88), eq. (37) follows. Therefore, the scaling of D with the third power of $\gamma^{-1}(w)$ can be viewed as a direct consequence of the space-time contraction/dilation properties of the Lorenz transformation.

In higher-dimensional spaces,

$$D_{x_i,x_i} = \frac{1}{2} \frac{\langle (\Delta x_i)^2 \rangle}{\Delta t'}$$

$i = 1, \ldots d$, where $d = 2, 3$, two cases should be considered separately depending whether x_i is a spatial coordinate in the direction of the frame velocity or not. In the first case, namely for a frame velocity directed along x_i, $D_{x_i,x_i} = D_\parallel$, $\langle (\Delta x_i)^2 \rangle$ satisfies eq. (91) and eq. (75) is recovered for D_\parallel. Conversely, if x_i is a coordinate in a direction orthogonal to the frame velocity, $D_{x_i,x_i} = D_\perp$, then $\langle (\Delta x_i)^2 \rangle = \langle (\Delta x'_i)^2 \rangle$, so that solely time dilation contributes to D_\perp, returning $D_\perp = D_0 \gamma^{-1}(w)$ as derived in previous Section.

For generic stochastic processes, scaling analysis is not sufficient to provide the expression for the complete transformation of the tensor diffusivity. This analysis is developed in Section 9.

7 Numerical examples

It is useful to illustrate the main results developed in the previous Sections with the aid of numerical examples of stochastic dynamics. Throughout this Section, a normalized light velocity is assumed, i.e., $c = 1$.

To begin with, consider the one-dimensional spatial (1d, for short) Poisson-Kac process eq. (1). Set $b_0' = c = 1$, $a_0' = 1$, so that the rest diffusivity equals $D_0 = 1/2$. Figure 1 depicts a portion of a realization of this process in the rest frame Σ', and in an inertial frame moving with respect to Σ' at constant velocity w. Consider an ensemble of N_p realizations of the Poisson-Kac process. Each realization can be viewed as a stochastic particle, the dynamics of which follows the microscopic dynamics eq. (1). At time $t' = t = 0$ set $x' = 0$ for all the elements of the ensemble. Figure 2 depicts
Figure 1: Graph of the evolution of a realization of a Poisson-Kac process ($b_0 = c = 1$, $a_0 = 1$) in the rest frame Σ' (line a, i.e., $x'(t')$), and in the inertial system Σ moving with constant velocity $w/c = 0.8$ with respect to Σ' (line b, i.e., $x(t)$).
the overall probability density function \(p(x, t) \) vs the spatial coordinate \(x \) of the moving inertial frame obtained numerically from the stochastic simulations over this ensemble for different values of \(t \) and for two different relative velocity of the frame \(\Sigma: w/c = 0.8 \) (panel a), \(w/c = 0.95 \) (panel b). All the simulations refer to a statistics over \(N_p = 10^5 \) particles. As expected, the

\[
\begin{align*}
\text{pdf's } p(x, t) \text{ are characterized by a mean values that equals } -wt, \text{ and by a variance } \sigma^2(t) \text{ that becomes narrower as } w \text{ increases up to the limit value } c = 1 \text{ (compare the corresponding curves in the two panels).}
\end{align*}
\]

The graph of the variances \(\sigma^2(t) \) vs \(t \) for different values of the relative frame velocity \(w \) is depicted in figure 3. The arrow in this figure indicates increasing value of \(w \) from \(w = 0 \) (upper curve), up to \(w = 0.8 \) (lower curve).
For $w = 0$, $D_0 = 1/2$ as expected from eq. (3), i.e. $\sigma^2(t) = t$, while as w increases the diffusion coefficient D, corresponding to half of the slope of the asymptotic linear plot of $\sigma^2(t)$ vs t, decreases.

Observe that the concept of long-term properties referred to the recombination dynamics amongst the partial probability waves p^+ and p^- refers to time-scales $t \gg t_{\text{min}}$, where $t_{\text{min}} = 1/a^-$. For instance at $v = 0.8$, $t_{\text{min}} = 3$, corresponding to a very fast relaxation towards the asymptotic properties compared to the time-scales reported in the abscissa of figure 3.

The behavior of the diffusion coefficient D vs the relative frame velocity w is depicted in figure 4 and it is in perfect agreement with eq. (37). Next, consider higher dimensional stochastic processes. The first example is given by the two-dimensional Kolesnik-Kac model eqs. (38)-(39). We have chosen $N = 5$, $b'_0 = c = 1$, $a'_0 = 1$, by considering an ensemble of $N_p = 10^5$ stochastic particles. Figure 5 panel (a) shows the behavior of the diagonal entries $D_{x,x}$, $D_{y,y}$, obtained from stochastic simulations confirming the theoretical expressions eqs. (75) and (81). The off-diagonal entry is not depicted for the sake of brevity, but is vanishing for any value of the frame velocity w.

Finally, let us consider a three-dimensional model, namely the Poisson-Kac process

$$dx'_i(t') = b'_0 (-1)^{\chi_i(t')}) dt' , \quad i = 1, 2, 3$$

(93)

where $\chi_i(t')$, $i = 1, 2, 3$ are three Poisson processes, statistically independent of each other, characterized by the same values of the reference velocity b'_0 and of the transition rate a'_0. This model, statistically described by means
Figure 4: D/D_0 vs w ($c = 1$) for a 1d Poisson-Kac process ($b'_0 = c = 1$, $a'_0 = 1$). Symbols (\bullet) represent the results of stochastic simulations, solid line the curve $D/D_0 = \gamma^{-3}(w) = (1 - w^2)^{3/2}$.

of eight partial probability density functions, converges - for $b'_0, a'_0 \to \infty$, keeping fixed the ratio $(b'_0)^2/a'_0$ - to an isotropic three-dimensional parabolic diffusion equation for the overall pdf $p(x', t')$ with diffusion coefficient equal to D_0 given by eq. (3).

Let Σ be an inertial frame moving with a constant velocity along the direction x'_1 with respect to Σ'. It is expected that eqs. (75) and (81) apply also in this case, providing for the diffusivity tensor D_{x_i,x_j} in Σ the following expression

$$
(D_{x_i,x_j}) = D_0 \begin{pmatrix}
\gamma^{-3}(v) & 0 & 0 \\
0 & \gamma^{-1}(v) & 0 \\
0 & 0 & \gamma^{-1}(v)
\end{pmatrix}
$$

(94)

The results of stochastic simulations over an ensemble of $N_p = 10^5$ particles are depicted in panel (b) of figure 5 confirming the theoretical prediction. Off-diagonal entries (not shown) prove to be vanishing.

8 Stochastic action invariance

There is a striking analogy between the results expressed by eq. (94) and the scaling of the longitudinal and transversal masses. Albeit the concepts of
longitudinal and transversal masses, introduced by Einstein [30] in the early
days of relativity theory (see also [31]), are nowadays considered obsolete,
their use in the present context is convenient in order to derive an interesting
by-product of eq. (94).

Consider the equation of motion of a particle of rest mass $m_0 = E_0/c^2$
in an inertial frame Σ moving with velocity w along the x_1-axis. Introduce
the diagonal mass tensor $m = \text{diag}(m_\perp, m_\parallel, m_\parallel)$, where m_\perp and m_\parallel are the
longitudinal and transversal masses, respectively (the mass tensor enters
the three-dimensional expression of the relativistic Newton equation). The
relativistic scaling of m is expressed by

$$m = m_0 \begin{pmatrix} \gamma^3(w) & 0 & 0 \\
0 & \gamma(w) & 0 \\
0 & 0 & \gamma(w) \end{pmatrix} \quad (95)$$

From eq. (94) it follows that the product mD of a particle performing
purely diffusive stochastic motion is an isotropic tensor

$$mD = m_0 D_0 I \quad (96)$$

and the non-vanishing diagonal entries are relativistically invariant, i.e., they
do not depend on the velocity w.

This observation, can be expressed as follows: if a particle possessing rest
mass m_0 evolves according to a relativistically stochastic process admitting
in a given inertial frame Σ' no convective contribution and an isotropic diffu-
sivity tensor $D' = D_0 I$ (this specific inertial frame can be referred to as the
rest frame for the stochastic motion), then in all the inertial frames Σ mov-
ing with respect to Σ' at constant velocity w, say along the x_1-coordinate,
the product mD of the mass tensor times the diffusivity tensor is invariant
with respect to w and equal to $m_0 D_0 I$.

The quantity $h_m = m_0 D_0$ has the physical dimension of kg m2/s, i.e., it
corresponds to an action, so that eq. (97) implies that the stochastic action
h_m is relativistically invariant. It does not depend on the relative frame
velocity, but eventually it can depend on the particle rest mass.

We can develop further this concept by introducing quantum mechanical
considerations. From the well known correspondence between the Schrödinger
equation and stochastic processes [32, 33], usually obtained via an analytic
continuation of the time coordinate towards the imaginary axis, the quantum
mechanical representation of the kinetic energy of a free particle corresponds
to an effective quantum diffusivity D_{quantum} expressed by

$$D_{\text{quantum}} = \frac{\hbar}{2 m_0} \quad (97)$$

Therefore, for a free quantum particle, $D_0 = D_{\text{quantum}}$, and eqs. (96)-(97)
provide

$$h_m = \frac{\hbar}{2} \quad (98)$$
i.e., the stochastic action is not only relativistically invariant but also independent of the particle rest mass. It indicates that in a stochastic representation of quantum motion, the basic constraint induced by quantization and by the Lorentz transformation is the relativistic invariance of the product of the mass tensor times the effective diffusivity tensor that, in any inertial frame, returns an isotropic tensor with eigenvalues equal to $\hbar/2$.

$$mD = \frac{\hbar}{2}I$$ \hspace{1cm} (99)

Equation (99) can be viewed as a stochastic quantization rule emerging from special relativity. Its implication will be explored elsewhere. However, a qualitative indication emerging from eq. (99) is that, even in the low-energy limit, i.e., for the Schrödinger equation (not speaking of the Dirac counterpart), a stochastic interpretation of its formal structure could be properly grounded on a relativistic covariant framework. This implies that the source of stochasticity originating quantum uncertainty, should also possess covariant properties. The natural candidate possessing all these requirements is the zero-point energy fluctuations of the electromagnetic field [34]. A thorough analysis of this issue will be addressed in forthcoming works.

9 Analysis of the diffusivity tensor: Space-Time Diffusion

The results obtained for Poisson-Kac processes are confirmed and generalized by the study of discrete stochastic space-time dynamics which is addressed in this Section. This extension provides a general expression for the relativistic transformation of the diffusivity tensor.

9.1 Space-Time Diffusion

Discrete Space-Time Diffusion (henceforth STD) processes in \mathbb{R}^N has been originally introduced in [24] in order to describe in a compact way particle transport in periodic arrays of obstacles or localized repulsive potentials. A STD process is defined by the quintuple $(N, S, \pi, \{A_\alpha\}_{\alpha=1}^S, \tau)$, where N is the space-dimension, S the number of states the random space-time displacements can attain, $\pi = (\pi_1, \ldots, \pi_S)$ a S-dimensional probability vector, $\pi_\alpha > 0$, $\alpha = 1, \ldots, S$, $\sum_{\alpha=1}^S \pi_\alpha = 1$, A_α, $\alpha = 1, \ldots, S$, are given (constant) space-displacements in \mathbb{R}^N, and $\tau = (\tau_1, \ldots, \tau_S)$ the corresponding time intervals $\tau_\alpha > 0$.

Consider an inertial system Σ defined by the space-time coordinates (x, t). The dynamics of a STD process in Σ is defined with respect to a discrete “iteration time” $n = 0, 1, \ldots$ as

$$(x_{n+1}, t_n) = (x_n + A_\alpha, t_n + \tau_\alpha) \quad \text{Prob. } \pi_\alpha$$ \hspace{1cm} (100)
α = 1, . . . , S. Suppose that the process is defined at $n = 0$ such that $x_0 = 0$, $t_0 = 0$, so that no issues of simultaneity arise. Eq. (100) can be viewed as a stroboscopic sampling of a stochastic process in the reference system Σ.

From the theory of STD processes developed in [24], the long-term evolution for the probability density $p(x, t)$, $x = (x_1, . . . , x_N)$, associated with eq. (100) converges to the solution of an effective constant-coefficient advection-diffusion equation

$$\partial_t p(x, t) = - \sum_{k=1}^{N} v_k \partial_{x_k} p(x, t) + \sum_{h,k=1}^{N} D_{h,k} \partial_{x_h} \partial_{x_k} p(x, t)$$

(101)

where $\partial_t = \partial/\partial t$, $\partial_{x_k} = \partial/\partial x_k$, and $v = (v_1, \ldots, v_N)$, $D = (D_{h,k})_{n=1}^{N}$ represent the constant effective velocity vector and tensor diffusivity, respectively.

Introducing the quantities

$$V_t^{(n)} = \sum_{\alpha=1}^{S} \pi_\alpha \tau_\alpha, \quad V_k^{(n)} = \sum_{\alpha=1}^{S} \pi_\alpha A_{\alpha,k}, \quad k = 1, \ldots, N$$

$$D_t^{(n)} = \frac{1}{2} \left[\sum_{\alpha=1}^{S} \pi_\alpha \tau_\alpha^2 - \left(V_t^{(n)} \right)^2 \right]$$

$$D_{t,k}^{(n)} = \frac{1}{2} \left[\sum_{\alpha=1}^{S} \pi_\alpha A_{\alpha,k} - V_t^{(n)} V_k^{(n)} \right], \quad k = 1, \ldots, N$$

$$D_{h,k}^{(n)} = \frac{1}{2} \left[\sum_{\alpha=1}^{S} \pi_\alpha A_{\alpha,h} A_{\alpha,k} - V_h^{(n)} V_k^{(n)} \right], \quad h, k = 1, \ldots, N$$

(102)

where $A_{\alpha,k}$ is the k-th entry of the space-displacement vector A_{α}, the effective transport parameters attain the expression

$$v_k = \frac{V_k^{(n)}}{V_t^{(n)}}, \quad k = 1, \ldots, N$$

(103)

and

$$D_{h,k} = \frac{D_t^{(n)} V_h^{(n)} V_k^{(n)}}{\left(V_t^{(n)} \right)^3} - \frac{D_{t,h}^{(n)} V_k^{(n)} + D_{t,k}^{(n)} V_h^{(n)}}{\left(V_t^{(n)} \right)^2} + \frac{D_{h,k}^{(n)}}{V_t^{(n)}}$$

(104)

$h = k = 1, \ldots, N$. Observe that the quantities expressed by eqs. (102) represent the effective space-time velocity and diffusivities parametrized with respect to the discrete iteration time n.

23
9.2 Relativistic analysis

Let eq. (100) be the dynamic description of a stochastic process in \(\Sigma \), and let \(\Sigma' \) another inertial frame, the space-time coordinate of which are \((x', t')\), moving with respect to \(\Sigma \) with constant relative velocity \(w \) along the \(x_1 \)-axis. Set \(c = 1 \) for the light speed in vacuo, so that \(w \in (-1, 1) \).

By the requirements of special relativity, the velocities of the STD process \(\Sigma \) should be bounded by \(c \), which implies that

\[
|A|_{\alpha} < \tau_{\alpha} \quad \alpha = 1, \ldots, S
\]

(105)

For simplicity, consider the case \(N = 2 \), i.e., a spatial two-dimensional model. In \(\Sigma' \) the STD process \(\Sigma \) is described by the evolution equation

\[
(x'_{n+1}, t'_{n}) = (x'_{n} + A'_{\alpha}, t_{n} + \tau'_{\alpha}) \quad \text{Prob. } \pi_{\alpha}
\]

(106)

\(\alpha = 1, \ldots, S \), expressed with respect to the space-time coordinates of \(\Sigma' \), where the displacements \(A'_{\alpha} \), \(\tau'_{\alpha} \) are related to \(A_{\alpha}, \tau_{\alpha} \) by a Lorentz boost

\[
\tau'_{\alpha} = \gamma(w) (\tau_{\alpha} - w A_{\alpha,1})
\]

\[
A'_{\alpha,1} = \gamma(w) (A_{\alpha,1} - w \tau_{\alpha})
\]

\[
A'_{\alpha,2} = A_{\alpha,2}
\]

(107)

Given \(A'_{\alpha} \) and \(\tau'_{\alpha} \), \(\alpha = 1, \ldots, S \), eqs. (102)-(104) can be applied to derive the effective transport parameters measured in \(\Sigma' \).

As regards the effective parameters with respect to the iteration time \(n \), elementary algebra provides

\[
V_{t}^{(n)} = \gamma(w) (V_{t}^{(n)} - w V_{1}^{(n)}), \quad V_{1}^{(n)} = \gamma(w) (V_{1}^{(n)} - w V_{t}^{(n)}), \quad V_{2}^{(n)} = V_{2}^{(n)}
\]

and

\[
D_{t}^{(n)} = \gamma^2(w) \left[D_{t}^{(n)} - 2 w D_{t,1}^{(n)} + w^2 D_{t,1}^{(n)} \right]
\]

\[
D_{t,1}^{(n)} = \gamma^2(w) \left[(1 + w^2) D_{t,1}^{(n)} - w \left(D_{t}^{(n)} + D_{t,1}^{(n)} \right) \right]
\]

\[
D_{t,2}^{(n)} = \gamma(w) \left[D_{t,2}^{(n)} - w D_{t,1}^{(n)} \right]
\]

\[
D_{1,1}^{(n)} = \gamma^2(w) \left[D_{1,1}^{(n)} - 2 w D_{t,1}^{(n)} + w^2 D_{t}^{(n)} \right]
\]

\[
D_{1,2}^{(n)} = \gamma(w) \left[D_{1,2}^{(n)} - w D_{t}^{(n)} \right]
\]

\[
D_{2,2}^{(n)} = D_{2,2}^{(n)}
\]

(108)

For the effective velocities \(v'_{k} \) measured in \(\Sigma' \), from eqs. (103) and (108) one obtains

\[
v'_{1} = \frac{V'_{t}^{(n)}}{V_{t}^{(n)}} = \frac{v_{1} - w}{1 - w v_{1}} \quad v'_{2} = \frac{V'_{2}^{(n)}}{V_{t}^{(n)}} = \frac{v_{2} \sqrt{1 - w^2}}{1 - w v_{1}}
\]

(110)
that correspond to the velocity transformations of special relativity.

More interesting is the transformation of the effective tensor diffusivity, i.e., how D' measured in Σ' is related to D. To begin with, consider $D'_{1,1}$. Eq. (104), expressed in Σ', can be written in the form of an Euclidean scalar product $\langle \cdot, \cdot \rangle$, as

$$D'_{1,1} = \frac{1}{(V'^{(n)}_t)^3} \langle \tilde{V}', \tilde{D}' \tilde{V}' \rangle$$

(111)

where

$$\tilde{V}' = \begin{pmatrix} V'^{(n)}_1 \\ V'^{(n)}_t \end{pmatrix}, \quad \tilde{D}' = \begin{pmatrix} D'^{(n)}_t \\ -D'^{(n)}_{t,1} \\ -D'^{(n)}_{1,1} \\ D'^{(n)}_{1,1} \end{pmatrix}$$

(112)

\tilde{V}' is related to $\tilde{V} = (V^{(n)}_1, V^{(n)}_t)$ by a Lorentz boost $\hat{\mathcal{L}}_w \tilde{V}$,

$$\hat{\mathcal{L}}_w = \begin{pmatrix} \gamma & -\gamma w \\ -\gamma w & \gamma \end{pmatrix}$$

(113)

The transformation for the entries of \tilde{D}' stemming from eq. (109) is compactly expressed by

$$\begin{pmatrix} D'^{(n)}_t \\ -D'^{(n)}_{t,1} \\ -D'^{(n)}_{1,1} \\ D'^{(n)}_{1,1} \end{pmatrix} = \gamma^2(w) \begin{pmatrix} 1 & w & w & w^2 \\ w & \frac{1+w^2}{2} & \frac{1+w^2}{2} & w \\ v^2 & w & w & 1 \end{pmatrix} \begin{pmatrix} D^{(n)}_t \\ -D^{(n)}_{t,1} \\ -D^{(n)}_{1,1} \\ D^{(n)}_{1,1} \end{pmatrix}$$

(114)

The latter transformation can be expressed in tensorial form as $D'_{h,k} = \Lambda^{h,m}_{m,n} D_{m,n}$, where the fourth-order tensor $\Lambda^{m,n}_{h,k}$ accounts for the transformation (114) and Einstein summation notation has been adopted. Consequently, eq. (111) becomes

$$D'_{1,1} = \frac{1}{\gamma^3(w) (1 - w v_1)^3} \frac{M_{h,k}^p q \tilde{V}^h \tilde{V}^k \tilde{D}_{p,q}}{(V'^{(n)}_t)^3}$$

(115)

where $\tilde{V}^h, \tilde{D}_{p,q}$ are the entries of \tilde{V} and \tilde{D}, above defined, and $M_{h,k}^p q = \hat{\mathcal{L}}_{w,h} \Lambda_{p,q}^h, \hat{\mathcal{L}}_{w,k} \Lambda_{p,q}^k$ being the entries of the Lorentz boost (113). Developing the algebra, eq. (115) yields the following expression for $D'_{1,1}$

$$D'_{1,1} = \frac{1}{\gamma^3(w) (1 - w v_1)^3} \left[\frac{D^{(n)}_t (V'^{(n)}_t)^2 - 2 D^{(n)}_{t,1} V^{(n)}_1 V'^{(n)}_t + D^{(n)}_{1,1} (V'^{(n)}_t)^2}{(V'^{(n)}_t)^3} \right]$$

(116)
finally consider

\[D_{1,1}' = \frac{D_{1,1}}{\gamma^3(w)(1 - w v_1)^3} \]

(117)

Next, consider \(D_{1,2}' \) that in \(\Sigma' \) is given by

\[D_{1,2}' = \frac{D_{t,1}' V_1' V_2' - D_{t,1}' V_2' V_1' - D_{t,2}' V_1 V_2 + D_{t,2}' (V_t')^2}{(V_t')^3} \]

(118)

Substituting the expressions (108)–(109) for the transport parameters in \(\Sigma \), elementary algebra provides the expression

\[D_{1,2}' = \frac{D_{1,2} + w Q_{1,2}}{\gamma^2(w)(1 - w v_1)^3} \]

(119)

where

\[Q_{1,2} = \frac{D_{t,1}' V_2'(n) V_t' - D_{t,2}' V_1(n) V_t' - D_{t,1}' V_1(n) V_2 + D_{t,2}' (V_t'(n))^2}{(V_t'(n))^3} \]

(120)

Eq. (114) can be used to express \(D_{1,1}' \) and \(D_{1,2}' \) as a function of \(D_{1,1} \) and \(D_{1,2} \). In this way, the expression for \(Q_{1,2} \) greatly simplifies, providing \(Q_{1,2} = D_{1,1} v_2 - D_{1,2} v_1 \), and consequently the transformation relation for \(D_{1,2}' \) becomes

\[D_{1,2}' = \frac{D_{1,1} v_2 - D_{1,2} v_1}{\gamma^2(w)(1 - w v_1)^3} \]

(121)

Finally, consider \(D_{2,2}' \). From its definition

\[D_{2,2}' = \frac{D_{t,2}' (V_2'(n))^2 - 2 D_{t,2}' V_2' V_t' + D_{t,2}' (V_t'(n))^2}{(V_t'(n))^3} \]

(122)

which can be rearranged in the form

\[D_{2,2}' = \frac{D_{2,2} + 2 w P_{2,2} + w^2 R_{2,2}}{\gamma(w)(1 - w v_1)^3} \]

(123)

where

\[P_{2,2} = \frac{D_{t,1}' V_1 V_2'(n) - D_{t,2}' V_1 V_2' + D_{t,1}' V_2'(n)^2 + D_{t,2}' V_1 V_2}{(V_t'(n))^3} \]

(124)

\[R_{2,2} = \frac{D_{t,1}' (V_2'(n))^2 - 2 D_{t,2}' V_1 V_2' + D_{t,2}' (V_1'(n))^2}{(V_t'(n))^3} \]

(124)
Using eq. (104) to express $D_{h,k}^{(n)}$ as a function of the diffusivities $D_{h,k}$ expressed with respect to the physical time, the expressions for $P_{2,2}$ and $R_{2,2}$ simplifies to obtain for $D_{2,2}'$ the transformation

$$D_{2,2}' = D_{2,2} + 2w(D_{1,2} v_2 - D_{2,2} v_1) + w^2(D_{1,1} v_2^2 - 2D_{1,2} v_1 v_2 + D_{2,2} v_1^2)$$

$$\frac{1}{\gamma(w)(1 - w v_1)^3}$$

(125)

9.3 The three-dimensional case

The extension of the transformations developed in the previous paragraph to three-dimensional spatial coordinates in straightforward. As before, suppose that Σ' moves relatively to Σ with a constant velocity w along the x_1-axis.

As regards $D'_{1,1}$, $D'_{1,h} = D'_{1,h}', D_{h,h}'$, with $h = 2, 3$ the expressions follow from eqs. (111), (121) and (125), namely

$$D'_{1,1} = \frac{D_{1,1}}{\gamma^3(w)(1 - w v_1)^3}$$

$$D'_{1,h} = \frac{D_{1,h} + w(D_{1,1} v_h - D_{1,h} v_1)}{\gamma^2(w)(1 - w v_1)^3} h = 2, 3$$

$$D'_{h,h} = \frac{D_{h,h} + 2w(D_{1,h} v_h - D_{h,h} v_1) + w^2(D_{1,1} v_h^2 - 2D_{1,h} v_1 v_h + D_{h,h} v_1^2)}{\gamma(w)(1 - w v_1)^3} h = 2, 3$$

(126)

The entry $D'_{2,3} = D'_{3,2}'$ requires some additional calculations that, following the same approach outlined in the previous paragraph, returns the expression

$$D'_{2,3} = \frac{D_{2,3} + w(D_{1,2} v_3 + D_{1,3} v_2 - 2D_{2,3} v_1) + w^2(D_{1,1} v_2 v_3 - D_{1,2} v_1 v_3 - D_{1,2} v - 1v_3 + D_{2,3} v_1^2)}{\gamma(w)(1 - w v_1)^3}$$

(127)

This completes the analysis of the Lorentzian transformation of the tensor diffusivity referred to two inertial frame in relative motion.

9.4 Numerical simulations

In this paragraph, a numerical validation of the transformation theory for the effective tensor diffusivities is provided. Consider a spatially two-dimensional STD model, $N = 2$ and $S = 3$, with $\pi = (0.5, 0.1, 0.3)$, $\tau = (1, 0.6, 0.5)$, and $A_1 = (0.8, 0.4)$, $A_2 = (-0.4, 0.3)$ and $A_3 = (0.48, -0.05)$.

Numerical simulations of STD dynamics have been performed by considering an ensemble of 10^7 particles, initially located at the same space-time point $(x_0, t_0 = 0)$ evolving according to eq. (100). Using the Lorentz boost, the corresponding coordinates x'_n, t'_n in Σ' can be derived, and from the linear scaling of the first and second-order (central) moments with respect to t', the values v'_k and $D'_{h,k}$ can be estimated.
Figure 1 depicts the scaling of the second-order central moments $\sigma^{'2}_{h,k}(t') = \langle (x'_h(t') - \langle x_h(t') \rangle) (x'_k(t') - \langle x_k(t') \rangle) \rangle$ for $w = 0.7$. Solid lines represent the theoretical predictions $\sigma^{'2}_{h,k}(t') = 2D^{'h,k}(t')$, where $D^{'h,k}$ are given by eqs. (117), (121) and (125), while symbols refer to the results of the numerical simulations of the stochastic STD model.

The review of the value of the effective transport parameters measured in Σ' vs the relative velocity w can be found in figure 7. Panel (a) refers to the effective velocity entries, and panel (b) to the effective tensor diffusivities.

Apart from the excellent agreement between theory (lines) and simulations (symbols), the behavior of $D^{'h,k}$ vs w is highly non-trivial, and the effective diffusivities display a local maximum at some values $w^*_{h,k}$ of the relative velocity that depend on h and k. This phenomenon is a consequence of the presence in the STD model considered of an advective contribution, accounted for by the effective velocity v_1, that is significantly greater than zero. Consequently, the factor $(1 - w v_1)^3$ at the denominator of the expressions for $D^{'h,k}$ modulates their behavior, determining non-monotonic effects vs w. For example, in the case of $D^{'1,1}$, the absissa $w^*_{1,1}$ of the local maximum equal v_1 itself, in the present case $v_1 \simeq 0.726$, and $D^{'1,1}(w^*_{1,1})$ is almost three times larger than $D_{1,1}$.

For $w \to 1$, all the diffusivities $D^{'h,k}$ decay to zero, as $D^{'1,1} \sim \gamma^{-3}(w)$, $D^{'2,2} \sim \gamma^{-1}(w)$, $D^{'1,2} \sim \gamma^{-2}(w)$.

The behavior of the tensor diffusivities in Σ' for a spatially three-dimensional STD model ($N = 3$) is depicted in figure 8. The STD model considered admits $S = 6$ states with $\pi = (0, 1, 0.2, 0.3, 0.1, 0.2, 0.1)$, $\tau = (1, 2, 0.5, 5, 3, 0.8)$ and $A_1 = (0.5, -0.3, 0.2)$, $A_2 = (1, -0.4, 0.2)$, $A_3 = (1, 0.05, -0.05)$, $A_4 = (-1.5, 0.4, 0.2)$, $A_5 = (1.5, 1, 0.6)$, $A_6 = (0.3, -0.2, 0.3)$. Also in this case, the agreement of the theoretical predictions (solid lines) based on eqs. (120), (121) with respect to the stochastic simulation data (symbols) is excellent.

10 Discussion and implications

In this Section, some implications and observations related to the transformation theory of tensor diffusivities are addressed.

10.1 Observation I - Generality of the transformation

Although we have considered specific stochastic kinematics - Poisson-Kac processes and STD dynamics - eqs. (125), (127) are of general validity. To support and confirm this claim let us consider a totally different problem, fairly unusual in a relativistic context.

Consider a classical Langevin equation in \mathbb{R}^3

$$dx_h(t) = v_h \, dt + \sqrt{2} \hat{D}_h \, dw_h(t), \quad h = 1, 2, 3 \quad (128)$$
where \(w_h(t) \), \(h = 1, 2, 3 \) are the realizations of three independent Wiener processes, and \(v_h, D_h \) are constant. This model is obviously relativistically inconsistent as, by definition, a Wiener process possesses infinite propagation velocity (and so do the \(x_h(t) \) defined by eq. (128)), due to its Gaussian distribution of increments. Therefore, in order to use eq. (128) in the present analysis, this process should be somehow “cured”. The “cure” we apply is conceptually similar to the classical Wong-Zakai mollification of Brownian motion [35, 36], see also [37].

Let \(\{\tilde{x}_p(t)\}_{p=1}^{N_p} \) be an ensemble of \(N_p \) particles moving according to the stochastic kinematics (128), starting from \(x_0(t=0) = 0 \), and let \(\{\tilde{x}_p^{(n)} = x_\alpha(nT)\}_{p=1}^{N_p} \), \(n = 0, 1, \ldots \) be their stroboscopic sampling at multiples of the time interval \(T > 0 \). In order to make the sampling \(\{\tilde{x}_p^{(n)}\}_{p=1}^{N_p} \) of the stochastic dynamics relativistically consistent, particle positions should be filtered in order to ensure a propagation velocity less than \(c \) (\(c = 1 \) in the present analysis). Let \(\{x_\alpha^{(n)}\}_{p=1}^{N_p} \) be the filtered stroboscopic sampling of \(\{\tilde{x}_p^{(n)}\}_{p=1}^{N_p} \), obtained in the following way: (i) \(x_\alpha^{(0)} = \tilde{x}_\alpha^{(0)} = 0 \), for all \(\alpha = 1, \ldots, N \); (ii) choose a reference maximum velocity \(v_{\text{max}} < c \), say \(v_{\text{max}} = 0.99 \); (iii) if \(\delta_\alpha^{(n)} = ||\tilde{x}_\alpha^{(n)} - x_\alpha^{(n-1)}|| > v_{\text{max}} T \), i.e., if the relativistic velocity constraint could be locally violated, set for \(x_\alpha^{(n)} \) the value

\[
x_\alpha^{(n)} = \frac{v_{\text{max}} T}{\delta_\alpha^{(n)}} \tilde{x}_\alpha^{(n)} + \left(1 - \frac{v_{\text{max}} T}{\delta_\alpha^{(n)}} \right) x_\alpha^{(n-1)}
\]

(129)
corresponding to a local propagation velocity equal to \(v_{\text{max}} \). By definition, the filtered stroboscopic sampling \(\{x_\alpha^{(n)}\}_{p=1}^{N_p} \), \(n = 0, 1, 2, \ldots \) is relativistically consistent and can be viewed as a form of Wong-Zakai mollification of the original process, by considering the stochastic trajectories between time instants \((n - 1)T \) and \(nT \) represented by straight lines connecting \(x_\alpha^{(n-1)} \) to \(x_\alpha^{(n)} \).

Consequently, \(\{x_\alpha^{(n)}\}_{p=1}^{N_p} \) can be viewed as an ensemble of realizations of a relativistically plausible stochastic process defined in an inertial system \(\Sigma \), out of which its transport parameters can be estimated. If the velocities and the diffusivities are small enough, the effective transport parameters estimated in \(\Sigma \) practically coincide with \(v_h \) and \(D_h \), i.e., with the velocity and diagonal entries of the diffusivity tensor entering eq. (128). Enforcing the Lorentz boost, the effective transport parameters estimated in a reference \(\Sigma' \) moving with respect to \(\Sigma \) with constant relative velocity \(w < 1 \) along the \(x_1 \)-axis can be obtained.

Consider for the velocities and diffusivities entering eq. (129) the values \(v_1 = a, v_2 = -0.2, v_3 = 0, D_1 = 0.05, D_2 = 0.03, D_3 = 0.01 \), where \(a \) is a parameter, and let \(d_{h,h}(w) = D'_{h,h}(w)/D_h \), for \(h = 1, 2, 3 \), and \(d_{h,k}(w) = D'_{h,h}(w) \) for \(h \neq k \). Figure 4 panels (a) to (f) depict the six independent entries of \(d_{h,k}(w) \) as a function of the frame velocity \(w \) at four different
values of the parameter \(a = 0, 0.2, 0.4, 0.6 \) controlling convective particle motion along the \(x_1 \)-direction.

Simulation results refer to the ensemble \(\{ x_\alpha^{(n)} \}_{\alpha=1}^{N_p} \) obtained from eq. (128) using the Wong-Zakai filtering discussed above with a sampling time \(T = 20 \), and \(N_p = 10^5 \). Stochastic trajectories have been obtained from eq. (129) using a classical Euler-Langevin algorithm with a time step \(\Delta t = 10^{-3} \).

In the present simulations, involving a rather small ensemble of particles, eq. (129) has never been used, and solely the Wong-Zakai linear interpolation between \(x_\alpha^{(n-1)} \) and \(x_\alpha^{(n)} \) has been applied in order to obtain the particle position at constant value of time \(t' \) measured in \(\Sigma' \). Solid lines in figure 9 refer to the theoretical predictions based on eqs. (126)-(127), where \(D_{h,k} = D_h \delta_{h,k} \), and \(D_h \) are the diagonal diffusivity entering eq. (128).

An excellent agreement between theory and stochastic simulations can be observed, confirming the general validity of eqs. (126)-(127).

10.2 Observation 2 - Poisson-Kac processes and the limit for \(w \to c \)

The analysis developed for STD processes is in agreement with the results obtained for the relativistic kinematics of Poisson-Kac processes. In the latter case \(D_{1,2} = 0 \), and the convective contributions are absent, i.e. \(v_1 = v_2 = 0 \). Correspondingly, eqs. (126)-(127) predict the scaling of the longitudinal \(D'_{1,1} \) and transversal \(D'_{2,2} \) diffusivities given by eq. (33).

Particularly interesting is the limit of these equations for \(w \) approaching \(c = 1 \). In this case the measured diffusivities in \(\Sigma' \) vanish identically. For an observer that moves close to the velocity of light the contribution of external stochastic perturbations, the intensity of which are related to the diffusivities \(D'_{h,k} \), becomes progressively irrelevant as \(w \to c \). This issue is discussed in greater detail in [26] which addresses the relativistic relevance of Poisson-Kac processes as the prototype of a covariant stochastic kinematics.

In point of fact, the vanishing properties of \(D'_{h,k} \) for \(w \to c \) could have a deeper physical meaning: it indicates that in a reference system moving with a velocity approaching that of light all the external dissipative and irreversible processes associated with stochastic fluctuations decay to zero.

10.3 Observation 3 - Relativity of stochasticity and determinism

There is another interesting implication of the transformation theory of the tensor diffusivity. From eqs. (126)-(127) it follows that the effective diffusivities \(D'_{h,k} \) measured in \(\Sigma' \) depends on convective velocities \(v_h \). Apart from the term \((1 - wv_1)^{-3} \), this dependence enters as factors multiplying the \(\mathcal{O}(w) \), and \(\mathcal{O}(w^2) \) terms in the expressions for \(D'_{h,k} \). The only diffusivity entry that is not influenced by these convective contributions is the
longitudinal diffusivity since $D'_{1,1} = D_{1,1}/\gamma^3(w)(1 - w v_1)^3$.

This observation suggests that it may happen that a process that is regarded as fully deterministic in a reference system Σ appears to possess a stochastic nature in Σ' and vice versa. To clarify this concept it is convenient to consider a simple example. Consider a STD process in Σ (model I) with $N = 2, S = 2$ characterized by the following parameters

$$\pi_1 = \pi_2 = \frac{1}{2}, \quad \tau_1 = \tau_2 = 1, \quad A_1 = \begin{pmatrix} 0.8 \\ 0.5 \end{pmatrix}, \quad A_2 = \begin{pmatrix} -0.8 \\ 0.5 \end{pmatrix}.$$ \hspace{1cm} (130)

For this process $v_1 = 0, v_2 = 0.5, D_{1,1} = 0.32, D_{1,2} = D_{2,1} = D_{2,2} = 0$. Let $x = x_1, y = x_2$. In the long-term limit, the dynamic of this process in Σ is described by the probability density function $p(x, y, t)$ that approaches the solution of the parabolic transport equation

$$\partial_t p(x, y, t) = -v_2 \partial_y p(x, y, t) + D_{1,1} \partial^2_x p(x, y, t)$$ \hspace{1cm} (131)

The marginal probability density $p_y(y, t) = \int_{-\infty}^{\infty} p(x, y, t) \, dx$ of the y-process satisfies a strictly deterministic advection equation

$$\partial_y p_y(y, t) = -v_2 \partial_y p_y(y, t)$$ \hspace{1cm} (132)

which follows directly from the inspection of the structure of the space-time displacements characterizing this model. Viewed from Σ, the evolution of the y-dynamics defines a strictly deterministic process.

Consider the same process viewed by Σ' moving with respect to Σ with constant relative velocity $w > 0$ along the x axis. In this case the entries $D'_{1,2}$ and $D'_{2,2}$ of the diffusivity tensor are different from zero, and specifically

$$D'_{2,2} = \frac{D_{1,1} \, w_2^2 v_2^2}{\gamma(w)(1 - w v_1)^2} > 0.$$ \hspace{1cm} (133)

This phenomenon is depicted in figure where the theoretical expressions for $D'_{1,2}$ and $D'_{2,2}$ (solid lines) are compared with numerical simulations of the STD.

Therefore, the marginal probability density function $p'_{y'}(y', t')$ for the transversal y'-process in Σ' approaches the solution of the advection-diffusion equation

$$\partial_t p'_{y'}(y', t') = -v_2' p_{y'} + D'_{2,2} \partial_{y'}^2 p'_{y'}(y', t')$$ \hspace{1cm} (134)

corresponding to the evolution of a stochastic process characterized by an effective diffusivity $D'_{2,2} > 0$.

The reverse is also true, by adopting the same argument. Consider a stochastic process in Σ for which $D_{2,2} \neq 0$. By tuning the relative velocity w of Σ', it can happen that $D'_{2,2} = 0$. Consequently, what appears in Σ as a stochastic dynamics, is qualified in Σ' as strictly deterministic.
phenomenon is depicted in figure 11, where v_h and $D_{h,k}$ are given by $v_1 = -0.5$, $v_2 = 0.433$, $D_{1,1} = 0.208$, $D_{1,2} = 0.060$, $D_{2,2} = 0.0173$ (referred to as model II), corresponding to the values of v'_h and $D'_{h,k}$ obtained in the STD model depicted in figure 9 at $w = 0.5$, and Σ' moves with respect to Σ with a negative relative velocity w.

10.4 Observation 4 - Diffusivity and Markovian processes in the Minkowski space-time

The concept of tensor diffusivity for a relativistic stochastic process is a long-term emerging property, exactly as for Poisson-Kac processes that are characterized by an effective diffusivity for time-scales much larger than the characteristic recombination time amongst its partial probability waves.

A local (pointwise) diffusivity (possessing the dimension of m^2/s) cannot be defined in a Minkowski space-time \mathcal{M}_4 as it would be necessarily associated with fluctuations possessing a local almost everywhere non-differentiable structure as a function of time, and consequently an unbounded local propagation velocity.

There is another general observation arising from the analysis developed in Section 9, related to the Markovian nature of a stochastic process in a Minkowski space-time.

From the works by Dudley and Hakim quoted in the Introduction, the impossibility of defining a strictly Markovian stochastic kinematics (continuous in time) in \mathcal{M}_4 follows.

The case of STD processes introduced in Section 9 provides a concrete example of a random dynamics for which the choice of a discrete time parametrization (the iteration time n) makes it possible to define a strictly Markovian process in \mathcal{M}_4, where space and time variables are strictly treated on equal footing by defining the space-time displacements (A_h, τ_h). The example of STD processes does not contradict the Dudley-Hakim condition, as the extension with respect to a continuous time variable of STD processes, associated with the concept of hyperbolic homogenization [25], leads to non-strictly Markovian processes in (x, t) analogous to Poisson-Kac and Generalized Poisson-Kac processes.

10.5 Observation 5 - Skewed structure of the transformation

Given a stochastic process characterized by bounded propagation velocity less than c, let v and D be its effective (long-term) transport properties in a reference frame Σ, and v' and D' the corresponding quantities measured in Σ', moving with respect to Σ with constant velocity w along the x_1-axis. Here D and D' are the diffusivity tensors in the two reference frames.

As regards the effective velocity, the transformation from v to v' is the
classical velocity transformation of special relativity

\[v' = \gamma_w[v] \] \hspace{1cm} \text{(135)}

for a relative velocity \(w \). For the tensor diffusivity the transformation expressed by eqs. \((126)-(127)\) can be compactly indicated as

\[D' = D_w[D, v] \] \hspace{1cm} \text{(136)}

Observe the skew-product structure of eq. \((136)\) in which the transformation for the diffusivity tensors depends on \(v \). In a more compact form, eqs. \((135)-(136)\) can be summarized by the complete transformation of the effective transport parameters \((v, D)\),

\[(v', D') = T_w[(v, D)] \] \hspace{1cm} \text{(137)}

Obviously,

\[T_0 = \text{id}, \quad T_w^{-1} = T_{-w} \] \hspace{1cm} \text{(138)}

Furthermore, the skew product nature of eq. \((137)\) implies

\[D_{-w}[D_w[D, v], \gamma_w[v]] = D \quad \forall \, v \in (-c, c)^3 \] \hspace{1cm} \text{(139)}

11 Concluding remarks

The purely kinematic investigation of stochastic processes in the Minkowski space-time opens up interesting perspectives in the analysis of the relativistic implications of stochasticity and determinism. Using Poisson-Kac processes first, and STD dynamics subsequently, the relativistic transformation of the tensor diffusivity has been derived.

Particularly interesting are the conceptual implications on the meaning of stochasticity in a relativistic framework, which in some sense is frame dependent, i.e., it depends on the observer’s velocity.

Two main observations should be pinpointed. The first is the relativistic invariance of a quantity having the dimension of an action, for a particle of rest mass \(m_0 \) moving of purely “diffusive” motion, i.e., in the case where the effective convective contributions are vanishing. Further analysis will clarify whether this is just a nice coincidence or it admits more fundamental quantum mechanical implications associated with the definition of the Planck constant \(h \). The second observation is the fading of diffusivities measured in inertial systems \(\Sigma' \) moving with a relative velocity \(w \) approaching that of light, i.e., \(\lim_{w \to c} D'_{h,k}(w) = 0 \). For an observer in \(\Sigma' \) all the effects associated with stochasticity (e.g. irreversibility, dissipation, etc.) are suppressed for \(w \to c \). In this framework, the concept of light velocity seems to acquire a new thermodynamic meaning as the threshold velocity at which external stochastic irreversible processes lose their dissipative nature and approach
a strictly deterministic dynamics. The extension of this, purely kinematic analysis of stochastic processes within the Riemannian space-time of general relativity will be considered in a forthcoming contribution.

References

[1] J. Herrmann, Phys. Rev. E 80, 051110 (2009).
[2] J. Herrmann, Phys. Rev. D 82, 024026 (2010).
[3] R. M. Dudley, Arkiv Matem. 6, 241 (1966).
[4] R. M. Dudley, Arkiv Matem. 6, 575 (1967).
[5] R. M. Dudley, Proc. Nat. Acad. Sci. USA 70, 3551 (1973).
[6] R. Hakim, J. Math. Phys. 6, 1482 (1965).
[7] R. Hakim, J. Math. Phys. 9, 1805 (1968).
[8] R. Hakim, Lett. Nuovo Cimento 25, 108 (1979).
[9] F. Debbasch, K. Mallik and J. P. Rivet, J. Stat. Phys. 88, 945 (1997).
[10] F. Debbasch and J. P. Rivet, J. Stat. Phys. 90, 1179 (1998).
[11] J. Dunkel and P. Hänggi, Phys. Rev. E 71, 016124 (2005).
[12] J. Dunkel and P. Hänggi, Phys. Rev. E 72, 036106 (2006).
[13] F. Juttner, Ann. Phys. 34, 856 (1911).
[14] R. Hakim, Introduction to Relativistic Statistical Mechanics (World Sci., Singapore, 2011).
[15] C. Cercignani and G. M. Kremer, Relativistic Boltzmann Equation: Theory and Applications (Birkhäuser Verlag, Basel, 2002).
[16] R. L. Liboff, Kinetic theory: classical, quantum and relativistic descriptions (Springer, New Work, 2003).
[17] J. Angst and J. Franchi, J. Math. Phys. 48, 083101 (2007).
[18] M. Kac, Rocky Mount. J. Math. 4, 497 (1974).
[19] W. Horsthemke and R. Lefever, Noise-Induced Transitions (Springer-Verlag, Berlin, 2006).
[20] G. H. Weiss, Physics A 311, 381 (2002).
[21] I. Bena, Int. J. Mod. Phys. B 20, 2825 (2006).
[22] M. Giona, A. Brasiello and S. Crescitelli, Europhys. Lett. 112, 30001 (2015).

[23] J. Dunkel and P. Hänggi, Phys. Rep. 471, 1 (2009).

[24] M. Giona, Space-time transport schemes and homogenization. I General theory of Markovian and non-Markovian processes, J. Stat. Mech., submitted (2016).

[25] M. Giona, Space-time transport schemes and homogenization. II Extension of the theory and applications, J. Stat. Mech., submitted (2016).

[26] M. Giona, Covariance and spinorial statistical description of simple relativistic stochastic kinematics, Phys. Rev. Lett., submitted (2016).

[27] A. D. Kolesnik and A. F. Turbin, Stoc. Proc. Appl. 75, 67 (1998).

[28] A. D. Kolesnik, J. Theor. Prob. 14, 485 (2001).

[29] M. Giona, A. Brasiello and S. Crescitelli, J. Non-Equil. Thermodyn. 41, 107 (2016).

[30] A. Einstein, Ann. Phys. 322, 891 (1905).

[31] H. Goldstein, Classical Mechanics (Addison-Wesley Publ., Reading, 1965).

[32] F. Guerra and R. Marra, Phys. Rev. D 28, 1916 (1983).

[33] N. C. Petroni, S. De Martino and S. De Siena, Phys. Lett. A 245, 1 (1998).

[34] P. W Milonni, The quantum vacuum: an introduction to quantum electrodynamics (Academic Press, New York, 2003).

[35] E. Wong and M. Zakai, Int. J. Engng. Sci. 3, 213 (1965).

[36] E. Wong and M. Zakai, Z. Warsch. verw. Gebiete 12, 87 (1969).

[37] K. Twardowska, Acta Appl. Math. 43, 317 (1996).
Figure 5: Panel (a): $D_{x,x}/D_0$ (symbols •) and line (a), and $D_{y,y}/D_0$ (symbols □) and line (b)) vs the relative frame velocity w for a two-dimensional Kolesnik-Kac process ($N = 5$, $b'_0 = c = 1$, $a'_0 = 1$). Line (a) represents the function $\gamma^{-3}(w)$, eq. (75), line (b) the function $\gamma^{-1}(w)$, eq. (81). Symbols (•) and (□) depict the results of stochastic simulations for $D_{x,x}$ and $D_{y,y}$, respectively. Panel (b): Diagonal diffusivities for the three-dimensional Poisson-Kac process eq. (93) with $b_0' = c = 1$, $a_0 = 1$. Symbols represent the results of stochastic simulations: (•) refer to D_{x_1,x_1}, (□) and (■) to D_{x_2,x_2} and D_{x_3,x_3}, respectively. Lines (a) and (b) are the same as in panel (a).
Figure 6: Behavior of the second order central moments $\sigma^{'2}_{h,k}(t')$ measured in Σ' vs t' for the two-dimensional spatial model described in the main text. Symbols are the results of numerical simulation of the stochastic dynamics, solid lines are the theoretical predictions based on the Einstein scaling $\sigma^{'2}_{h,k}(t') = 2D'_{h,k}t'$, where $D'_{h,k}$ are given by eqs. 117, 121, 125. Line (a) and (□) refer to $\sigma^{'2}_{1,1}$, line (b) and (○) to $\sigma^{'2}_{1,2}$, line (c) and (●) to $\sigma^{'2}_{2,2}$.
Figure 7: Effective transport parameters of the spatial two-dimensional STD model described in the main text measured in Σ' as a function of the relative frame velocity w. Panel (a): effective velocity entries. Line (a) and (□) refer to v'_1, line (b) and (○) to v'_2. Panel (b): effective tensor diffusivities. Line (a) and (□) refer to $D'_{1,1}$, line (b) and (○) to $D'_{1,2}$, line (c) and (●) to $D'_{2,2}$.
Figure 8: Effective tensor diffusivities $D'_{h,k}$ vs the relative frame velocity w for the spatial three-dimensional model described in the main text. Panel (a): $D'_{1,1}$ vs w. Panel (b): $D'_{h,k}$ vs w. Line (a) and (□) refer to $D'_{1,2}$, line (b) and (■) to $D'_{1,3}$, line (c) and (○) to $D'_{2,2}$, line (d) and (●) to $D'_{2,3}$, line (e) and (△) to $D'_{3,3}$.
Figure 9: $d_{h,k}(w)$ vs w for the filtered Wong-Zakai mollification of the process (128) sampled at $T = 20$. Lines refer to eqs. (126)-(127), symbols to numerical simulations: lines (a) $a = 0$, (b) $a = 0.2$, (c) $a = 0.4$, (d) $a = 0.6$. Panel (a) refers to $d_{1,1}(w)$, panel (b) to $d_{2,2}(w)$, panel (c) to $d_{3,3}(w)$, panel (d) to $d_{1,2}(w) = d_{2,1}(w)$, panel (e) to $d_{1,3}(w) = d_{3,1}(w)$, panel (f) to $d_{2,3}(w) = d_{3,2}(w)$.
Figure 10: Diffusivities $D'_{1,2}$ and $D'_{2,2}$ measured in Σ' vs the relative frame velocity w for model I discussed in the main text. Solid lines represent the theoretical predictions (126)-(127), symbols the results of the numerical simulations of the stochastic STD dynamics (130). Line (a) and (o) refer to $D'_{1,2}$, line (b) and (●) to $D'_{2,2}$.

Figure 11: Diffusivities $D'_{h,k}$ vs the relative frame velocity w measured in Σ' for model II discussed in the main text. Line (a) refers to $D'_{1,1}$, line (b) to $D'_{1,2}$, line (c) to $D'_{2,2}$.