Decoding the Genetic Alteration in Genes of PARP Family and the Possible Association with HNSCC

Harita Ravikumar a, J. Vijayashree Priyadharsini a*, A. S. Smiline Girija a**, P. Sankar Ganesh a# and Nidhi Poddar b#

a Department of Microbiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai - 600 077, Tamil Nadu, India.

b Clinical Genetics Laboratory, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai - 600 077, Tamil Nadu, India.

Authors’ contributions
This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information
DOI: 10.9734/JPRI/2021/v33i64A35692

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/74420

ABSTRACT

Introduction: Genetic alterations have long been associated with the transformation of normal cells into malignant cells. Several genes are related to exhibiting the phenotype. The PARP gene family is mainly involved in maintaining genome stability. They play an important role in DNA repair and the programmed cell death process.

Aim: To analyse the genetic alteration in PARP family and to determine its association with HNSCC.

Materials and Methods: Cbioportal was used as the primary database for identifying the mutations and variations. The data generated in the form of oncoprint was further assessed for frequency of occurrence, type and novelty.

Results and Discussion: It can be observed that greater amplification was found in the TIPARP gene which is 14% among all the 17 genes of the family. Also to add on, PARP 14 and PARP 15 show amplification patterns in similar groups of patients. Several types of mutations such as truncated, splicing deep deletion were found in most of the genes. The TIPARP gene was up-regulated in HNSCC patients. The Caucasians experiencing low/medium expression of TIPARP...
Conclusion: TIPARP could be a promising prognostic marker for screening populations vulnerable to acquiring HNSCC.

Keywords: HNSCC; PARP gene family; genetic alteration; gene expression; novel variants; polymorphism; innovative techniques and innovative technologies.

1. INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) which is the major type of cancer that is most common world wide. Mutation in the TP53 gene sequence which is the somatic genomic alteration that potentially gives rise to HNSCC. Several other gene mutations have also been implicated in the development of oral cancer. The treatment procedure involves surgery, chemotherapy, radiotherapy etc. [1]. HNSCC occurs majorly in 5 anatomical sites which consist of oral cavity, oropharynx, Nasopharynx, hypopharynx and larynx. HNSCC is the cancer that can be cured if it is detected early and often there won’t be any symptoms visible, hence it can be avoided at the earliest and detected only when it becomes severe [2]. Tobacco smoking is the primary reason for HNSCC and it is mainly seen in males rather than females. The detection and the diagnosis involves immunohistochemistry, PCR, in situ hybridisation [3].

Poly (ADP-ribose) polymerases (PARPs) are a family of enzymes that exhibit the ability to catalyze the transfer of ADP-ribose to target proteins. Cellular processes, transcription, replication, recombination and DNA repair are a few pathways to mention where PARPs play a vital role. With a special emphasis on the involvement of PARP proteins in DNA repair is of great interest, because certain transformed cells principally rely on PARP mediated DNA repair for survival. Several reports on PARP inhibitors have been shown to increase tumor sensitivity to DNA-damaging agents [3,4]. It is seen that among PARP, PARP1 and PARP2 has a catalytic activity and is useful when there is DNA breakage [5]. Genetic alteration has a different pathway and is seen when there is high DNA damage and it is also the multistep accumulation in the genomic landscapes which develops into HNSCC due to overexpression of oncogenes, silenced tumor suppressor [6].

Numerous in silico methods have been used to identify potential variations or mutations in the genome, which could act as potential drivers in triggering disease phenotypes. In the study conducted by Aparna et al, it was seen that matrix metalloproteinases and their association in HNSCC since MMP are involved in malignant transformation of a tumor and studied the expression of MMP in HNSCC patients [7]. The PARP inhibitors have been found to be useful in HNSCC treatment and the study conducted by Wurtser showed the association of the PARP gene family with HNSCC [8]. Based on the previous research it can be seen that there was very little study on the PARP gene family and also negligible research done on its association with HNSCC. Our team has extensive knowledge and research experience that has translate into high quality publications [9–20,21–25,26,27,28]. This research aims to decode the genetic alteration in the genes of the PARP gene family and their association with HNSCC.

2. MATERIALS AND METHODS

2.1 Data Source

It is a retrospective study and the patient's data has been derived from cBiportal [29] which contains all the patient's details obtained from different cohorts. Information about the genetic alterations throughout the genomic landscape of HNSCC patients are deposited in the repository [30]. The complete profiling of each case in the data set and the demographic details are given in Table 1. Genes used in this study were PARP1, PARP2, PARP3, PARP4, TNKS, TNKS2, PARP6, TIPARP, PARP8, PARP9, PARP10, PARP11, PARP12, ZC3HAV1, PARP14, PARP15, PARP16. The genes were queried among the HNSCC dataset and the results were used for further analysis.

2.2 Oncoprint Data Analysis

The information obtained includes the allele frequency, variation, protein coding, amino acid, deletion, insertion etc. the putative association
involving the variations, genome, novel variation and the disease phenotype [29,31].

2.3 gnomAD Data Analysis

This type of investigation involves the large scale sequencing projects and the dataset containing unrelated sequences and public release and compares the variants documented and reported gnomAD repository [29,31].

2.4 Gene Expression and Survival Analysis

The expression of the gene presenting with highest frequency of gene alteration in HNSCC was analysed using the UALCAN (http://ualcan.path.uab.edu/cgi-bin/TCGA-survival) database. Survival curve analysis based on the tumor grade and expression profile was performed to demonstrate the putative role of PARP family of genes with HNSCC. Combined survival effect analysis of gene expression and other clinical parameters such as race, gender, tumor grade, cancer subtypes were assessed using a log-rank test that generated a p value which was further used to indicate statistical significance of survival correlation between groups. The test that was used is log rank test [32].

3. RESULTS

cBioportal database was the primary source to obtain the information of patients with head and neck squamous cell carcinoma. The Table 1 shows the demographic details of the patients and the age group of patients was between 19-90 years. Table 2 shows the gene alteration in PARP family and it contains total of 17 genes including PARP1, PARP2, PARP3, PARP4, TNKS, TNKS2, PARP6, TIPARP, PARP8, PARP9, PARP10, PARP11, PARP12, ZC3HAV1, PARP14, PARP15, PARP16. Among these genes it was found that TIPARP showed 14% of genetic alterations and which is greatest. The PARP8 gene contains 16 gene alterations and is highest on comparing all the 17 genes. PARP1, PARP2, PARP6, TIPARP, PARP9, PARP10, PARP11, PARP14, PARP15 shows amplification of genes, PARP3, PARP4 shows deep deletion. TNKS, TNKS2, PARP8, PARP12, ZC3HAV1 have both amplification and deep deletion. Under PARP2, the N129K gene shows already existing mutation. Under PARP4, E216Q, P120L, EL067K; under TNKS, R245C, V697M, S132F; under PARP8, R488H; under PARP9, R617Q; under PARP10, R753C, ZC3HAV1, R455T, I574V; under PARP14, P988L shows already existing mutation others contain novel mutation.

Table 1. Showing the demographic details of patients analyzed in the present study (as obtained from the cBioportal site)

Gender	Male (n = 386)	Female (n = 142)
Mutation count	6-3181	
Diagnosis age	19-90 years	
Smoking status	Smokers: 515	Data not available: 12
	Unknown: 1	
Alcohol history	Yes – 352	No – 165
	Data not available: 11	
Neoplasm Histologic grade	Grade 1: 63	Grade 2: 311
	Grade 3: 125	Grade 4: 7
	Grade GX: 18	
	Data not available: 4	
Race category	White: 452	African: 48
	Asian: 11	American Indian or Alaska native: 2
	Data not available: 15	
Table 2. Showing the gene alteration in the PARP family of genes

Gene	Protein encoded	Cytogenetic loci	% of genetic alterations	Gene alterations	Variant allele frequency	gnomAD frequency	
PARP 1	Poly(ADP-ribose) polymerase 1	1q42.12	2	Amplification			
				S274F	0.23	Novel	
				P881L	0.04	Novel	
				F586L	0.01	Novel	
				E456Q	0.27	Novel	
				P174T	0.54	Novel	
PARP 2	Poly(ADP-ribose) polymerase 2	14q11.2	2.4	Amplification			
				A541dup	0.26	Novel	
				M432I	0.10	Novel	
				N129K	0.16	rs139090502	
PARP 3	Poly(ADP-ribose) polymerase family member 3	3p21.2	1.2	Deep deletion			
				E277D	0.67	Novel	
				R472Q	0.11	Novel	
PARP 4	Poly(ADP-ribose) polymerase family member 4	13q12.12	2.6	Deep deletion			
				E216Q	0.72	rs145170390	
				A637T	0.16	Novel	
				H803Q	0.22	Novel	
				D952N	0.24	Novel	
				W1573R	0.19	Novel	
				P120L	0.31	rs199585627	
				E1067K	0.06	rs372126761	
				P1336S	0.13	Novel	
				Q174*	0.13	Novel	
TNKS	Tankyrase	8p23.1	5	Amplification			
				Deep deletion			
				E441K	0.23	Novel	
				G1013C	0.28	Novel	
				R245C	0.26	rs773491393	
				V697M	0.85	rs104347769	
				N555KFS*2	0.15	Novel	
				S1264N	0.43	Novel	
				S132F	0.18	rs774407820	
TNKS2	Tankyrase 2	10q23.32	1.8	Amplification			
				Deep deletion			
				G677D	0.05	Novel	
				N271S	0.16	Novel	
				H597N	0.23	Novel	
				V246E	0.52	Novel	
				A1062V	0.29	Novel	
				A219V	0.45	Novel	
PARP6	Poly(ADP-ribose) polymerase family member 6	15q23	0.6	Amplification			
				I213V	0.37	Novel	
				E568=	0.63	Novel	
TIPARP	TCDD inducible poly(ADP-ribose) polymerase	3q25.31	14	Amplification			
				G239E	0.15	Novel	
				H354Y	0.07	Novel	
Gene	Poly(ADP-ribose) polymerase family member	Chromosome	Amplification	Variants	Frequency	Novelty	
---------	--	------------	---------------	---------------------------	-----------	---------	
PARP8	8	5q11.1	Amplification	Deep deletion	S761G	0.79	Novel
					R416T	0.14	Novel
					H426Y	0.12	Novel
					I183S	0.26	Novel
					X476_splice	0.16	Novel
					R488H	0.29	Novel
					R616K	0.16	Novel
					S468C	0.08	Novel
					R88K	0.16	Novel
					E443Q	0.25	Novel
					E532Q	0.47	Novel
					Y581F	0.18	Novel
					Q556*	0.19	Novel
					F340L	0.03	Novel
PARP9	9	3q21.1	Amplification		H408Q	0.26	Novel
					G17C	0.49	Novel
					E824Q	0.57	Novel
					R617Q	0.51	Novel
PARP10	10	8q24.3	Amplification		F906L	0.16	Novel
					R753C	0.22	Novel
					A781S	0.23	Novel
					P98S	0.24	Novel
PARP11	11	12p13.32	Amplification		T160M	0.21	Novel
					T29K	0.37	Novel
					R296*	0.32	Novel
PARP12	12	7q34	Amplification	Deep deletion	W381C	0.36	Novel
					Q157*	0.28	Novel
					R531*	0.11	Novel
					K428R	0.30	Novel
					C195R	0.27	Novel
					G19Afs*16	0.33	Novel
ZC3HAV1	1	7q34	Amplification	Deep deletion	R455T	0.37	rs1403439859
	Zinc finger CCCH-type containing,				L126H	0.70	Novel
	antiviral 1				I574V	0.27	rs150148096
					Q255*	0.07	Novel
TIPARP showed higher frequency of gene amplification, TNKS showed more deep deletion. PARP4, TNKS, PARP8, PARP11, PARP12, ZC3HAV1, PARP14, PARP16 showed truncating mutations. PARP2 showed inframe mutation. PARP6, PARP8 showed splice-site mutation. Except PARP16, all the other genes had missense mutations. PARP12 and ZC3HAV1 showed amplification and deep deletion in the same patients. PARP14 & PARP15 showed the same pattern amplification in the same patients.

The expression of TIPARP was upregulated in HNSCC individuals in comparison to normal individuals. The p value was found to be 1.82×10^{-1} which was found to be insignificant (Fig. 2). Upon analysing survival probability based on the Kaplan Meier analysis of TIPARP gene expression classified based on race, it was found that low/medium expression in caucasian individuals showed maximum survival rate when compared to the high expression African-American. The p value was found to be $p = 0.045$ (Fig. 3a). The Kaplan Meier analysis of TIPARP expression level classified based on gender showed that low/medium expression male have greater survival rate when compared to high expression females and the p value was found to be $p = 0.027$ (Fig. 3b).

Fig. 1. Showing the oncoprint data that is demonstrating the alterations in the PARP gene family in the HNSCC patients
Fig. 2. Box-Whisker plot showing relative expression profile of *TIPARP* gene (Normal vs primary tumor). The X axis denotes the TCGA samples (blue bar indicates normal and red bar indicates primary tumor) and Y axis denotes the transcripts per million values. The comparison of gene expression patterns between normal vs primary tumor was insignificant (*p* = 1.82 x 10^-1). A *p* value less than 0.05 was considered to be significant.

Fig. 3(a). Kaplan Meier plot showing the effect of *TIPARP* expression level classified based on gender of HNSCC patients. The x-axis represents the time in days and the y-axis represents the survival probability. The blue line indicates low expression of *TIPARP* in males and the red line indicates high expression in females. A significant difference in the level of gene expression between the two groups was observed (*p*=0.027); *p*<0.05- significant.
4. DISCUSSION

Head and neck squamous cell carcinoma is the most common type of cancer which is diagnosed every year [33]. The study is done to understand the alterations that were observed in the PARP gene family and their involvement in HNSCC. This study provides us with information that is already not available and usage of data sources to easily obtain information about patients and perform basic research to accumulate preliminary data. Genetic alteration is a very time consuming procedure when done manually and expensive too. PARP plays an important role in DNA repair pathways (Vyas et al., 2013), with a special emphasis on base excision repair (BER), which is involved in DNA repair of single strand breaks (SSBs). Since in most of the cancer types BER is impaired eventually leading to inhibition of poly (ADP-ribose) polymerase (PARP). This results in the conversion of SSBs to double strand breaks (DSBs).

The expression of PARP1 is increased in oral squamous cell carcinoma. The expression of PARP was seen at subcellular level. The overexpression in premalignant tumors also paved the way for diagnosed OSCC in the future [34]. According to the study conducted by Maria et al, it was found that the expression of PROX1 gene was found to be expressed as tumor suppressor gene [35]. A study conducted by Gesche indicated that XIAP is involved in the oral squamous cell carcinoma and also the Kaplan Meier curve indicated the XIAP association in unfavourable prognosis of oral squamous cell carcinoma and other curve showing the survival rate that was insignificant [35,36]. The study that was conducted by Yao et al, found that usage of microRNAs in association with OSCC and observed that fibroblast transfers microRNA to oral squamous cell carcinoma cells. Overexpression of miR-34a-5p could lead to tumorigenesis and contribute to the aggressiveness of the cells [37]. Usage of Rab5a was seen in many different types of cancer. A study conducted by Dizhang et al. showed that in 49.3% of OSCC patients Rab5a was overexpressed [37,38]. The gene alteration studies on various genes have also been done for HNSCC and other cancers as well [39,40,41,42,43,44,45].

5. CONCLUSION

The present study brings in a conclusion that TIPARP could be considered as a prognostic marker in the case of HNSCC. Although the gene expression pattern between normal and tumor tissues do not produce a significant variation, the
expression level in different races and genders contributed to significant change in the survival of HNSCC patients. More clinical studies have to be carried out to derive an association between TIPARP and HNSCC.

CONSENT

As per international standard or university standard, patients’ written consent has been collected and preserved by the author(s).

ETHICAL APPROVAL

As per international standard or university standard written ethical approval has been collected and preserved by the author(s).

ACKNOWLEDGEMENT

We thank Saveetha Dental College and Hospitals for providing us the support to conduct the study.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Yin Z-X, Hang W, Liu G, Wang Y-S, Shen X-F, Sun Q-H, et al. PARP-1 inhibitors sensitize HNSCC cells to APR-246 by inactivation of thioredoxin reductase 1 (TrxR1) and promotion of ROS accumulation. Oncotarget. 2018 Jan 5; 9(2):1885–97.
2. Chai RC, Lambie D, Verma M, Punyadeera C. Current trends in the etiology and diagnosis of HPV-related head and neck cancers. Cancer Med. 2015;4(4):596–607.
3. D’Souza G, Cullen K, Bowie J, Thorpe R, Fakhry C. Differences in Oral Sexual Behaviors by Gender, Age, and Race Explain Observed Differences in Prevalence of Oral Human Papillomavirus Infection [Internet]. PLoS ONE. 2014;9:e86023. Available:http://dx.doi.org/10.1371/journal.pone.0086023
4. Citarelli M, Teotia S, Lamb RS. Evolutionary history of the poly (ADP-ribose) polymerase gene family in eukaryotes. BMC Evol Biol. 2010;10:308.
5. Amé J-C, Spenlehauer C, de Murcia G. The PARP superfamily. Bioessays. 2004; 26(8):882–93.
6. Ha PK, Chang SS, Glazer CA, Califano JA, Sidransky D. Molecular techniques and genetic alterations in head and neck cancer [Internet]. Oral Oncology. 2009;45:335–9. Available:http://dx.doi.org/10.1016/j.oraloncology.2008.05.015
7. Aparna J, Smiline-Girija AS, Paramasivam A, Vijayashree-Priyadharsini J. Deciphering the genetic alterations in matrix metallo-proteinase gene family and its putative association with head and neck squamous cell carcinoma. Mol Biol Res Commun. 2021;10(1):13–22.
8. Wurster S, Hennes F, Parplys AC, Seelbach JI, Mansour WY, Zielinski A, et al. PARP1 inhibition radiosensitizes HNSCC cells deficient in homologous recombination by disabling the DNA replication fork elongation response. Oncotarget. 2016;7(9):9732–41.
9. Priyadharsini JV, Vijayashree Priyadharsini J, Smiline Girija AS, Paramasivam A. In silico analysis of virulence genes in an emerging dental pathogen A. baumannii and related species [Internet]. Archives of Oral Biology. 2018;94:93–8. Available:http://dx.doi.org/10.1016/j.archoralbio.2018.07.001
10. Vijayashree Priyadharsini J. In silico validation of the non-antibiotic drugs acetaminophen and ibuprofen as antibacterial agents against red complex pathogens. J Periodontol. 2019;90(12):1441–8.
11. Paramasivam A, Vijayashree Priyadharsini J, Raghunandhakumar S. N6-adenosine methylation (m6A): a promising new molecular target in hypertension and cardiovascular diseases. Hypertens Res. 2020;43(2):153–4.
12. Vijayashree Priyadharsini J, Smiline Girija AS, Paramasivam A. An insight into the emergence of Acinetobacter baumannii as an oro-dental pathogen and its drug resistance gene profile - An in silico approach. Heliyon. 2018;4(12):e01051.
13. Paramasivam A, Vijayashree Priyadharsini J. Novel insights into m6A modification in circular RNA and implications for immunity. Cell Mol Immunol. 2020;17(6):668–8.
14. Paramasivam A, Priyadharsini JV, Raghunandhakumar S. Implications of m6A modification in autoimmune
disorders. Cell Mol Immunol. 2020;17(5):550–1.
15. Girja ASS, Shankar EM, Larsson M. Could SARS-CoV-2-Induced Hyperinflammation Magnify the Severity of Coronavirus Disease (CoVId-19) Leading to Acute Respiratory Distress Syndrome? Front Immunol. 2020;11:1206.
16. Jayaseelan VP, Arumugam P. Exosomal microRNAs as a promising theragnostic tool for essential hypertension. Hypertens Res. 2020;43(1):74–5.
17. Ushanthika T, Smiline Girja AS, Paramasivam A, Priyadharsini JV. An in silico approach towards identification of virulence factors in red complex pathogens targeted by reserpine. Nat Prod Res. 2021;35(11):1893–8.
18. Ramalingam AK, Selvi SGA, Jayaseelan VP. Targeting prolyl tripeptidyl peptidase from Porphyromonas gingivalis with the bioactive compounds from Rosmarinus officinalis. Asian Biomed. 2019;13(5):197–203.
19. Kumar SP, Girja ASS, Priyadharsini JV. Targeting NM23-H1-mediated inhibition of tumour metastasis in viral hepatitis with bioactive compounds from Ganoderma lucidum: A computational study. Pharmaceutical-sciences [Internet]. 2020;82(2).
Available:https://www.ipisonline.com/article/s/targeting-nm23h1-mediated-inhibition-of-tumour-metastasis-in-viral-hepatitis-with-bioactive-compounds-from-ganoderma-lucidum-a-comp-3883.html
20. Mathivadani V, Smiline AS, Priyadharsini JV. Targeting Epstein-Barr virus nuclear antigen 1 (EBNA-1) with Murraya koenigii bio-compounds: An in-silico approach. Acta Virol. 2020;64(1):93–9.
21. Samuel SR, Kuduruthullah S, Khair AMB, Shayeb MA, Elkaseh A, Varma SR. Dental pain, parental SARS-CoV-2 fear and distress on quality of life of 2 to 6 year-old children during COVID-19. Int J Paediatr Dent. 2021;31(3):436–41.
22. Samuel SR. Can 5-year-olds sensibly self-report the impact of developmental enamel defects on their quality of life? Int J Paediatr Dent. 2021;31(2):285–6.
23. Barma MD, Muthupandiyam I, Samuel SR, Amaechi BT. Inhibition of Streptococcus mutans, antioxidant property and cytotoxicity of novel nano-zinc oxide varnish. Arch Oral Biol. 2021;126:105132.
24. Teja KV, Ramesh S. Is a filled lateral canal - A sign of superiority? J Dent Sci. 2020;15(4):562–3.
25. Reddy P, Krithikadatta J, Srinivasan V, Raghu S, Velumurugan N. Dental Caries Profile and Associated Risk Factors Among Adolescent School Children in an Urban South-Indian City. Oral Health Prev Dent. 2020;18(1):379–86.
26. Jayaseelan VP, Paramasivam A. Emerging role of NET inhibitors in cardiovascular diseases. Hypertens Res. 2020;43(12):1459–61.
27. Iswarya Jaisankar A, Smiline Girja AS, Gunasekaran S, Vijayashree Priyadharsini J. Molecular characterisation of csgA gene among ESBL strains of A. baumannii and targeting with essential oil compounds from Azadirachta indica. Journal of King Saud University - Science. 2020;32(8):3380–7.
28. Girja AS. Fox3 (+) CD25 (+) CD4 (+) T-regulatory cells may transform the nCoVs final destiny to CNS! Comment. Wiley 111 River St, Hoboken 07030-5774, NJ USA; 2021.
29. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):l1.
30. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.
31. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfeldt J, Wang Q, et al. Author Correction: The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2021:590(7846):E53.
32. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodrigo I, Balabhadrapatruni V S, et al. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses [Internet]. Neoplasia. 2017;19:649–58.
Available:http://dx.doi.org/10.1016/j.neo.2017.05.002
33. Song J, Chang I, Chen Z, Kang M, Wang C-Y. Characterization of side populations in HNSCC: highly invasive, chemoresistant and abnormal Wnt signaling. PLoS One. 2010;5(7):e11456.
34. Kossatz S, Weber WA, Reiner T. Optical Imaging of PARP1 in Response to Radiation in Oral Squamous Cell Carcinoma. PLoS One. 2016;11(1):e0147752.

35. Rodrigues MFSD, de Oliveira Rodini C, de Aquino Xavier FC, Paiva KB, Severino P, Moyses RA, et al. PROX1 gene is differentially expressed in oral cancer and reduces cellular proliferation. Medicine. 2014;93(28):e192.

36. Frohwitter G, Buerger H, Korschning E, van Diest PJ, Kleinheinz J, Fillies T. Site-specific gene expression patterns in oral cancer. Head Face Med. 2017;13(1):6.

37. Lin J, Lin Y, Fan L, Kuang W, Zheng L, Wu J, et al. miR-203 inhibits cell proliferation and promotes cisplatin induced cell death in tongue squamous cancer. Biochem Biophys Res Commun. 2016;473(2):382–7.

38. Zhang D, Lu C, Ai H. Rab5a is overexpressed in oral cancer and promotes invasion through ERK/MMP signaling. Mol Med Rep. 2017;16(4):4569–76.

39. J VP, Paramasivam A. Virtual screening of mutations in antioxidant genes and its putative association with HNSCC: An in silico approach [Internet]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2020;821:111710. Available: http://dx.doi.org/10.1016/j.mrfmm.2020.111710.

40. Sivarajan M, Smiline Girija AS, Paramasivam A, Vijayashree Priyadharsini J. Computational Approach to Identify Mutations in Genes of Notch Signaling Pathway and Its Association with OSCC [Internet]. Journal of Pharmaceutical Research International. 2020;84–92. Available: http://dx.doi.org/10.9734/jpri/2020/v32i2030732

41. Jaikumarr Ram A, Girija As S, Jayaseelan VP, Arumugam P. Overexpression of BASP1 Indicates a Poor Prognosis in Head and Neck Squamous Cell Carcinoma. Asian Pac J Cancer Prev. 2020;21(11):3435–9.

42. Anita R, Paramasivam A, Priyadharsini JV, Chittra S. The m6A readers and aberrations associated with metastasis and predict poor prognosis in breast cancer patients. Am J Cancer Res. 2020;10(8):2546–54.

43. Jayaseelan VP. Emerging role of exosomes as promising diagnostic tool for cancer. Cancer Gene Ther. 2020;27(6):395–8.

44. Fathima T, Arumugam P, Girija As S, Priyadharsini JV. Decoding the Genetic Alterations in Genes of DNMT Family (DNA Methyl-Transferase) and their Association with Head and Neck Squamous Cell Carcinoma. Asian Pac J Cancer Prev. 2020;21(12):3605–12.

45. Arumugam P, George R, Jayaseelan VP. Aberrations of m6A regulators are associated with tumorigenesis and metastasis in head and neck squamous cell carcinoma. Arch Oral Biol. 2021;122:105030.