Toward User-Centric Feature Composition for the Internet of Things

Pamela Zave
AT&T Laboratories—Research
Bedminster, New Jersey, USA
pamela@research.att.com

Eric Cheung
New York, New York, USA
cheungeric@yahoo.com

Svetlana Yarosh
University of Minnesota
Minneapolis, Minnesota, USA
lana@umn.edu

Abstract—Many user studies of home automation, as the most familiar representative of the Internet of Things, have shown the difficulty of developing technology that users understand and like. It helps to state requirements as largely-independent features, but features are not truly independent, so this incurs the cost of managing and explaining feature interactions. We propose to compose features at runtime, resolving their interactions by means of priority. Although the basic idea is simple, its details must be designed to make users comfortable by balancing manual and automatic control. On the technical side, its details must be designed to allow meaningful separation of features and maximum generality. As evidence that our composition mechanism achieves its goals, we present three substantive examples of home automation, and the results of a user study to investigate comprehension of feature interactions. A survey of related work shows that this proposal occupies a sensible place in a design space whose dimensions include actuator type, detection versus resolution strategies, and modularity.

I. INTRODUCTION

For twenty years the idea of “ubiquitous” or “pervasive” computing has captured the imaginations of researchers and entrepreneurs [8]. Recent improvements in wireless connectivity and inexpensive network-enabled devices have created a surge of interest in the (similar) concept of the Internet of Things, in which widespread sensors and actuators connect many previously unconnected things through the Internet [2], [4], [14]. Many people are thinking about what can be done with sensors and actuators in homes, workplaces, schools, hospitals, public spaces, and transportation. The number of commercial offerings is increasing rapidly.

Of all automatable environments, the home is undoubtedly the best-studied so far. The literature reports on a large number of “smart home” prototypes and user studies, e.g., [1], [7], [10], [12], [24], [28].

The results of these studies show that there is much work to be done before the potential of the Internet of Things can be fully realized in homes, let alone more challenging environments such as workplaces and hospitals. In the cited papers, complaints and deficiencies far outnumber satisfied users. Typically, one hobbyist in a home plays with home automation, while everyone else hates it [24].

In this paper we focus on the problems of how systems that interact constantly with people—shaping the environments in which they live—should behave. We know their behavior will be complex, because peoples’ lives are complex. They should do what people find intuitive and trustworthy. They should be flexible and extensible (and possibly programmable by the users themselves). The help they give should be worth more than the time and trouble needed to manage and configure the systems. They should make people feel they are gaining, rather than losing, control. As put by Edwards and Grinter, “The challenge for smart home designers is to create systems that ensure that users understand the pragmatics of sensors, interpretation, and machine action as well as they understand the pragmatics of devices in their homes now. From a technical perspective, the challenge of developers is . . . to ensure that inference—when performed at all—is done in a way that is predictable, intelligible, and recoverable” [12].

The complexity of these systems is a result of the diversity of their environments and their requirements. Requirements serve a diversity of purposes, including security, convenience, energy conservation, fun, and independent living for the elderly. Requirements come from a diversity of stakeholders, including each resident of the home, caretakers who live elsewhere, utility companies, and the community. System functions are triggered by a variety of situations, including scheduled events, human requests, sensed or predicted events, and emergencies. Some requirements are optional, and some evolve over time.

A requirement that is stated separately and mostly independently of other requirements is called a feature. It is a well-established practice to document most complex consumer products and services in terms of features. People can understand and remember individual features, if they are cohesive, and can learn them incrementally. New features can be added over time. In this paper we will consider only systems in which features are implemented separately as well as specified separately, because separate implementation extends the benefits of features to the development and deployment process.

The cost of using features for specification and implementation is that not all requirements are truly independent, and features often interact. A feature interaction is a conflict or inconsistency between requirements. Feature interactions are an implicit property of feature specifications and the way that feature implementations are composed to make an executable system. Because interactions are inconsistencies, they must be resolved either by refining the features to avoid conflicts, or by defining a feature-composition mechanism that automatically
resolves conflicts at runtime.

This paper proposes a mechanism for runtime composition of features that control actuators in real time. Section II describes the context in which this mechanism runs, and the actuators for which it is suited.

The composition mechanism was designed with users in mind. It is intended to have three user-centric properties:

• To result in system behavior that users want. When adding automation to human spaces, which have always been controlled manually, it is most important to provide a good balance between manual and fully automatic control.

• To be comprehensible to users. Ultimately users must understand the feature interactions, at least somewhat, in addition to the features themselves.

• To allow simple feature specifications and implementations, and offers guidance in avoiding mistakes. This increases the quality and robustness of the system.

Section III presents the composition mechanism and explains the user-centric concepts in its design.

In Section IV we present evidence that the composition mechanism satisfies or may satisfy these properties within its boundaries of applicability. The evidence is of three kinds:

• Formal modeling and analysis guarantee that the mechanism has the expected, straightforward semantics. There is also a prototype implementation.

• Examples of controlling three different actuators show that feature specifications are simple and that a wide variety of feature functions can be handled.

• The results of a user study support the claims that composition results in behavior that users want, and that feature interactions are comprehensible. Equally important, the results suggest better ways to explain feature composition to users.

As elaborated by the section on related work (Section V), the feature-composition mechanism proposed in this paper represents a point in a design space with several dimensions. The first dimension is the kind of actuator being controlled, which constrains what composition can do. The second dimension is whether to emphasize detection or resolution (composition) as the means of handling feature interactions. A detection approach tends to view feature interactions as something that must be eliminated, while a resolution approach expects them and resolves conflicts dynamically. A third dimension concerns modularity: whether functionality is divided into features, and how this affects the quality of implementations. Section V will show that our choices make sense from this multi-dimensional perspective, and compare well to other work on feature interaction.

The user-centric properties are big goals, and it will take far more to achieve them than a single feature-composition mechanism for a single class of actuator. Nevertheless, it is a contribution toward reaching the goals, and an example of how domain-specific design of a computational mechanism can help with the challenges of user interfaces. Similarly, Edwards, Grinter, Mahajan, and Wetherall [13] stress the point that the problems of home networking straddle human and technical challenges, so that they cannot be solved by systems and networking researchers focusing only on new technology, nor by HCI researchers focusing only on the user interface.

II. CONTEXT AND EXAMPLES

Figure 1 shows the high-level organization of a control system for the Internet of Things. Outside the system boundary there are sensors and actuators. Real sensor values enter the system as streams of timestamped records. Real actuator values also leave the system as streams of timestamped records.

We will assume for simplicity that all modules within the system run concurrently, and communicate through streams of timestamped records, as is standard for this kind of system (e.g., see [3], [21], [22]).

In the center of the system there are feature modules, each implementing a separate feature as described in Section I. Within the system, real sensor values are distributed to all the modules that are interested in them. In addition to feature modules, real sensor values are used by simulators that simulate parts of the real world for the purpose of computing values of virtual sensors. Virtual sensors are sensors that do not exist but are needed by features. For example, a simulator might combine values from multiple real sensors in a room to detect (with high probability) that there is a person in the

Fig. 1. The organization of a control system for the Internet of Things.
room. Machine learning is often used to compute virtual sensor values. Virtual sensor values are distributed to all the feature modules that are interested in them, and feature modules treat real and virtual sensor values alike.

Each feature attempts to control one or more actuators by producing a stream of values (i.e., commands or settings) for each actuator. These are called virtual actuator values in the figure because each stream represent the viewpoint of a single feature only.

Each actuator has a coordinator that performs feature composition for that actuator. It receives a merged stream of virtual actuator values from all the features that attempt to control the actuator. The coordinator handles the stream according to the algorithm in Section III, emitting a stream of real actuator values that goes to the actuator.

Humans interact with the system in two ways. They can set configuration variables to customize how features work; these are treated as constants and not shown in Figure 1. For real-time interaction with the system, input devices are regarded as sensors, and output devices are regarded as actuators.

In this paper we consider only actuators whose commands are single values of some type. They are called settings because when the actuator receives a value, some part of the state of the actuator is set to that value, overriding the previous setting. Equally important, the actuator can receive and adopt a new setting at any time. Our examples include a door lock whose settings are locked and unlocked, a thermostat whose settings are degrees of temperature, a furnace switch whose settings are off and on, and a dimmer switch for lighting fixtures whose settings are fractions between 0 and 1, inclusive.

Although many actuators are included in this class, it excludes some useful ones. An output display would not be included because it can display several messages at a time; if each actuator command contains a message to display, a new message need not displace all previous ones. An actuator is also excluded if a command to it initiates an action or sequence of actions that takes time to complete. For this kind of actuator, it would not make sense to send new commands at arbitrary times, because the actuator might still be busy completing another action.

Referring to Figure 1, a real sensor event (value change) can propagate through the system from left to right, generating new virtual sensor values and fanning out to multiple features. Multiple features can respond by producing multiple virtual actuator values, some of which fan in to the same coordinator.

Although it is not shown in the figure, often real actuator values on the right are fed back to the system as sensor values on the left, so that features can respond to how the actuators are set. Furthermore, the environment of the system is a simple or complex causal structure that can feed the system’s effect on actuators back to the system in the form of new sensor values.

In the general case, this raises questions of race conditions, transient effects, and reaching quiescence. Although reasoning about quiescence is outside the scope of this paper, we have done some examples showing that simple heuristics and reasoning will suffice in many cases [32].

Concerning race conditions and transient effects, those that arise in the environment are inevitable and the system must be programmed to cope with them. Inside the system, an effect (actuator value) must always be given a later timestamp than its cause (sensor value). If necessary, tighter synchronization may be implemented inside the system to ensure that modules read from input streams in timestamp order, and possibly even that modules read all inputs with the same timestamp as a batch. For simplicity, these implementation details will not be considered further.

Section III uses the home door lock as a running example to illustrate the concepts it introduces. This electronic lock is fitted to the front door of a house. There are two access panels mounted by the door, one outside the house and one inside. Each panel has buttons to request that the door be locked or unlocked, a keypad for entering passcodes, and a message display.

The requirements/features for the door lock are typical, being drawn from real sources. These informal descriptions will become formal feature specifications in Section III:

- **Electronic Operation (EO):** When a person requests a lock or unlock operation from an access panel, if that operation from that panel requires a passcode, read and check it. If the operation is refused, send a message to the access panel. Otherwise, perform the requested operation.
- **Hands-Free Entry (HFE):** When sensors detect that a resident’s car is arriving on the property, unlock the door so that the resident can enter easily even carrying packages.
- **Intruder Defense (ID):** When sensors behind the house detect the possible presence of an intruder, lock the door and send “possible intruder detected” messages to the access panels. Keep the door locked until the sensors provide an “all clear” signal, at which time “all clear” messages are sent to the access panels.
- **Night Lock (NL):** Residents configure the time when night begins and ends. At night, automatically lock the door and also relock it if it becomes unlocked.

These features control the door lock actuator, and also the message displays on both access panels. We will consider only composition of the virtual actuator settings for the door lock, as sequential messages to the displays do not conflict.

III. Feature Composition

Like an actuator, each feature controlling an actuator has a current setting which is its view of what the real setting should be. When a feature’s current setting changes it sends a new value to the coordinator. The coordinator for an actuator maintains a list of the current settings of all features attempting to control that actuator.

A setting is in force if it is the coordinator’s most recent output to the actuator, and therefore the setting of the actuator. The basic composition idea is that each feature has a distinct numerical priority based on its importance or urgency. At all
times, the setting in force is the setting of the highest-priority feature.

This basic idea is very simple, but it is far from complete. It requires a number of user-centric details and generalizations to work well.

A. Some user-centric concepts

Concept: Features correspond to situations, and should only constrain the actuator while the situation is occurring.

Most features are naturally associated with particular situations that they handle. When the situation is not occurring, the feature should have no effect on the actuator. For example, Intruder Defense (ID) concerns only the situation when sensors behind the house are detecting a possible intruder, and Night Lock (NL) concerns only the nighttime.

To achieve this, it must be possible for a feature to have no current setting when its situation is not occurring. The type of a virtual setting must be the type of the corresponding real setting extended with a distinguished value `dontCare`, meaning that the feature does not care what the actuator setting is. To cancel its current setting without replacing it with a new current setting, the feature sends the pseudo-setting `dontCare`. When a high-priority feature has no current setting, there is a window of opportunity for lower-priority features to take effect.

Concept: Control systems are concerned with both manual and automatic control.

By manual control we mean actuator control that is caused by a deliberate human action or request. Manual control can be mechanical, such as unlocking a door with a key or turning a light on with a mechanical switch. Manual control can also be mediated by the computer system; for example Electronic Operation (EO) receives user requests through sensors, validates them if necessary, and then responds to them electronically.

It is worth noting that manual control is usually persistent. If a door is unlocked with a key, it stays unlocked until another person locks it.

Automatic control occurs when the computer system infers the need to take action on its own; for example ID infers the possibility of an intruder from several different sensors, and NL locks the door at a certain time each day.

The boundary between manual and automatic control is not always absolute. In our running example Hands-Free Entry (HFE) is somewhat in the middle, as the feature is triggered by an inference that a resident is coming home. Because the inference must be very reliable (or else the door unlocks at unpredictable times!), and residents will come to expect it, we classify HFE as manual control.

The distinction between manual and automatic control is worth making, even if it is not perfectly defined in all cases, because the guaranteed presence of a person should affect features and feature interaction. This will be most clear in Section B. Generalization to ranges

Concept: To balance manual and automatic control, if all features cease to have a current setting, the real actuator setting is left unchanged.

To satisfy its users, a control system must both allow feature composition, and must provide a reasonable balance between manual and automatic control. For feature composition to work, high-priority settings must not persist for an undetermined amount of time. For example, the specification of EO (which will be the highest-priority feature, see Section III-E) will say that after a successful unlock request, the door will be unlocked for 1 minute. This allows composition with NL, which will be the lowest-priority feature. During the night time, a person can unlock the door, which will stay unlocked for 1 minute while someone passes through it. After 1 minute the EO `unlocked` setting expires, NL's low-priority setting of `locked` becomes in force, and the door locks automatically.

Residents of the house can reconfigure the duration of EO if 1 minute seems too long or short to them. Nevertheless, it is uncomfortable for people to specify a fixed duration for an unpredictable human situation. If they did not have the extra features provided by home automation, they would not need to make any such decision.

The solution to this dilemma is the rule that if all features cease to have a current setting, the real actuator setting is left unchanged. This has no effect on the composition of EO and NL, because NL has a setting of `locked` all night. Consider, on the other hand, what happens during the day, when there is no such “default” feature setting—and unless something happens to trigger EO, ID, or HFE, no feature has a current setting. If the residents wake up late, hours after the official end of nighttime, the door will still be locked, because it was locked at nighttime and nothing else has happened. If a resident locks the door and leaves home, after 1 minute expires the door will remain locked (and will stay locked until a person unlocks it through EO or HFE). If a resident comes home after much shopping, and is still making trips between house and car after the 3-minute HFE duration has expired, the door will remain unlocked because nothing else has happened to lock it.

Other households may prefer to keep the door locked by default at all times, not just nighttime. This goal is easily accomplished with a lowest-priority feature whose setting is `locked` at all times. The point of “no setting means no change” is that feature sets can contain a default setting or not, as the users prefer.

B. Generalization to ranges

So far we have assumed that a virtual actuator value is a member of an enumerated set. Even so, if two features controlling an actuator both have current settings, the lower-priority feature may have its setting in force. This happens whenever the current settings of the two features agree.

Some real actuator settings are drawn from a numerical range rather than an enumerated set. For example, a dimmer switch for lighting fixtures may be set to any integer from 0 to 100, each number indicating a percentage of the total light available. For these actuators, virtual actuator settings could be subranges, preferences (“lower is better than higher”), or possibly other constraints.
For these actuators, the coordinator’s algorithm on receiving a new virtual setting must be generalized as follows. After updating the priority-ordered list of current settings, the coordinator traverses the list in descending order of priority, accumulating constraints. Lower-priority constraints are admitted if they are consistent with all higher-priority constraints, and ignored if they are not consistent. After the entire list is traversed, the controller chooses a real actuator value that is consistent with the accumulated constraints. As with enumerated actuator values, the highest-priority virtual setting and possibly some lower-priority settings will be in force. See Section [V-E] for features and constraints to control a lighting dimmer switch.

C. Ineffectual settings

At any time, a feature’s current setting is ineffectual if it is not in force.

Although our goal is to specify and implement features as independently as possible, some accommodation to feature interaction is inevitable. In our proposal feature modules learn about feature interactions only by learning whether their current setting is in force or ineffectual. This is implemented by feeding replicated streams of real actuator values from the coordinator back to the features as if they were sensor values, as described in Section II. Simpler features do not care whether their settings are in force or not, and these can ignore the replicated streams.

Another user-centric concept: Features that implement manual control should cancel their settings when they are immediately ineffectual or become ineffectual.

If a user requests a setting, it is acceptable for the system to refuse the request (hopefully providing an explanation). For example, if a user tries to unlock the door from outside but gives the wrong passcode, EO will send a message “invalid passcode” to the access panel, and not unlock the door.

What is not acceptable is for the system to ignore a manual request, allow the user to walk away disappointed, and then honor the request at a later time when the user may not even be aware of it. This is what could happen if a feature implementing manual control allows an ineffectual setting to persist.

For example, a resident of a household may drive home, triggering HFE to unlock the door. Around the same time, motion detectors in the back of the house could trigger ID to lock the door. ID has higher priority than HFE (see Section III-E), so the door remains locked and HFE’s unlocked setting (which will persist for 3 minutes) is ineffectual.

The homecoming user finds that the door is locked and sees an intruder alert on the door panel, so goes to the back of the house, where a squirrel has been sensed as an intruder. Almost immediately the intrusion detection is cleared, and ID cancels its locked setting. The user sees that all is well and goes in the back door, assuming that the front door is still locked. However, the HFE unlocked setting now goes into force, and the front door unlocks. This problem would be prevented if HFE, learning that its unlocked setting is ineffectual, cancels it.

In other cases, features make alternative plans on learning that their settings are ineffectual. For example, if the actuator can be viewed as a resource, and there are alternative resources, the feature can try another resource instead.

Features might also use the knowledge of when their settings are in force or ineffectual without actually changing settings. For example, features controlling the lighting dimmer switch might include a feature to keep the lights on at a certain level for a certain amount of time each day, to ensure that some houseplants get enough light. The houseplant feature can keep track of its minutes in force, and cancel its setting only when the lights have been on long enough.

D. Example of feature specification

A feature controlling a primary actuator can be partially or wholly specified as a finite-state machine whose state is the feature’s current setting of the actuator (even if feature also controls secondary actuators). Whenever the machine changes state, the state change implicitly sends a new setting to the coordinator for the primary actuator. For example, Figure 2 shows a possible specification for Electronic Operation. This specification can also be considered a program in a domain-specific language.

In Figure 2, reading a record from a stream is streamName ? recordType, while writing is streamName ! record. The guard of a transition is separated from its actions by a slash. In the figure, panelOut is a shorthand for the display of the same panel that the corresponding request came in on. Setting a timer and getting a timeout look like writing and reading a stream, respectively.

Whenever there is an authorized request for a setting different from the current setting, the program changes state and (implicitly) sends the new setting to the coordinator. It also sets a local timer for 1 minute. If there is an authorized request for the current setting, nothing is sent to the coordinator because the program state does not change, but the timer is reset to a full 1 minute. If there is a timeout, the program reverts to the dontCare setting.

This program benefits from the simplifying assumption that it will run at the highest priority, which means that its settings will always be in force. Because it implements manual control, a more robust program—one that can run at any priority—might check for ineffectual settings and take appropriate action. See Section VI on future work for further discussion of this issue.

E. Priority

The priority of a feature refers to its priority in controlling a particular actuator; it may have different priorities for different actuators. Feature priority is encoded in signed integer values (unsigned integers would also work). A larger integer encodes a higher priority than a smaller integer. In this section we mention some heuristics for assigning priorities to features, and use them to assign priorities to the four door lock features.
If the settings of two features can never conflict, then they do not interact and their relative priority is irrelevant. Two features could be non-conflicting because they have current settings only at disjoint times. Two features could also be non-conflicting because they never contradict one another. For instance, ID and NL cannot contradict one another because they only lock the door, never unlock it.

In general we would give features that assist manual control priority over purely automatic control, because these are the features for which people are waiting. This heuristic favors EO and HFE, with EO having priority over HFE because EO is “more manual” than HFE is (see Section III-A).

As explained in Section III-A, NL is meant to function as a default. Typically a default feature would have the lowest priority.

Security is important and ID should have high priority, but there are important reasons to put its priority below that of EO. Intrusion detection is likely to have low fidelity, with many false positives. Having a false positive intrusion detection prevent manual operation of the lock would be very annoying. Much more importantly, even in the case of a true positive, people know more about the overall situation than the feature can. If there is an intruder and he is chasing a resident, then people must be able to unlock the door to let the resident in. The resulting priority order is EO > ID > HFE > NL.

Assigning priorities to features may not always be this easy, but difficulty in assigning priority usually reflects genuine complexity in the requirements that must be dealt with one way or another. Nevertheless, our examples show the need for another generalization.

Generalization to a many-to-many feature/priority association:

So far we have assumed for simplicity that the mapping between features controlling a particular actuator and priorities is one-to-one. This is normal, but there are exceptional cases in which multiple features must have the same priority, or a feature must send settings of the same actuator with multiple priorities.

To implement this generalization, each virtual actuator setting is sent to the coordinator with a (feature, priority) pair, and the coordinator maintains a current setting for each such pair.

If there are two distinct settings at the highest priority, the coordinator chooses the latest one (with the most recent timestamp) to go into force. This means that two features using the same priority have almost the same semantics as if they were unified into one feature in which a more recent setting overwrites an older setting. This is a good rule because software-development and modularity concerns may make it necessary to merge two features or split a feature into two. See Section IV-B for an example of two features at the same priority.

In the same vein, modularity constraints might cause a feature to implement several different requirements. When analyzed according to heuristics, the different requirements might need different priorities to fit into the priority order. In these cases the different requirements can simply be implemented as sub-features with different priorities under one feature name. Each sub-feature is uniquely identified by a (feature, priority) pair.

F. The composition algorithm

The composition algorithm is the program run by every coordinator. We have seen in Section II that records sent to a coordinator must contain a timestamp `time` of type `Time` and a setting of type `Setting`. We have seen in Section III-E that records sent to a coordinator must also contain a feature of type `Feature` and a priority of type `Integer`. These are the four fields in each record sent to a coordinator. Except for different `Setting` and `Feature` types appropriate to their actuators, all coordinators are alike.

The coordinator has two pieces of local state:

- A list of records from the input stream, initialized to the empty list. This record list contains the current settings of
all unique (feature, priority) pairs, with dontCare settings excluded. The list is in descending priority order. Among records with the same priority, the list is in descending timestamp order.

- A variable oldSet: Setting, whose value is the last setting sent to the actuator. This excludes its initial value dontCare, which is not sent to the actuator.

Each input record is processed in three steps, as follows.

Step 1: Insert record in list. The input record matches a record in the list if the list record has the same feature and priority. The cases for Step 1 are:

- No matching record, input setting is dontCare: discard input record.
- No matching record, input setting is not dontCare: insert record in list at correct place for its priority and time.
- Matching record, input setting is dontCare: delete matching record.
- Matching record, input setting is not dontCare: delete matching record, insert input record in list at correct place for its priority and time.

Step 2: Choose actuator setting. The chosen setting is stored in the temporary variable newSet: Setting. If the record list is empty, newSet = dontCare.

If the list is not empty, for a setting from an enumerated set, newSet is the setting of its first record. Note that the list can have more than one record with the top priority and timestamp, in which case the choice between them based on list order is a nondeterministic choice of setting.

If the list is not empty, for a setting from a numerical range, the elements of Setting may be constraints or preferences rather than values. For constraints, initiate a constraint set to the constraint in the first record. Traverse the list, adding to the set each new constraint that is consistent with all the previous constraints. The value of newSet is a subrange that satisfies all the constraints in the accumulated set. If there are preferences in the form of “highest” and “lowest”, choose as newSet the highest/lowest number in the subrange, depending on which preference has the highest priority.

Step 3: Decide if output needed. If newSet is a value or number, is not dontCare, and is not equal to oldSet, send it to the actuator and assign its value to oldSet. If newSet is a subrange and oldSet is not in the subrange, choose a value from the subrange, send it to the actuator, and assign its value to oldSet. Otherwise, leave oldSet unchanged and set no output.

It is possible to make feature implementations simpler by adding more functionality to the coordinator. For one example, a feature could send a setting with an expiration time. The coordinator would set a timer for the setting, and cancel the setting if it is still current when the timer goes off. For another example, a feature could send a setting with an “immediate” tag. The coordinator would automatically cancel this setting if it becomes ineffectual.

IV. Evaluation of feature composition

A. Formal semantics

A formal model of the composition algorithm for enumerated settings has been written in Alloy and checked with the Alloy Analyzer [16]. The full model can be found on the Web at http://www2.research.att.com/~pamela/pfcalg.als. We have checked several invariants on the coordinator’s record list, along with other simple behavioral properties. Overall behavior is characterized by the following theorem.

Behavior Theorem:

“A feature’s current setting (if any) at a priority p and with a timestamp t is in force unless:

- some feature has a different current setting at a priority greater than p, or
- some feature has a different current setting at priority p, and with time t or greater than t.

The Alloy Analyzer performs exhaustive enumeration of model instances over bounded scopes. The invariants, behavior theorem, and other properties have all been checked for all model instances up to 3 features, 3 priorities, 3 settings, and 6 input records to the coordinator. Although this would not be enough to interpret as a proof of a significant theorem, it seems sufficient to eliminate simple flaws and establish these very basic properties. The coordinator and some prototype features have also been implemented in Scala, and tested without surprises.

The behavior theorem is weak because it does not answer the crucial question of which features have which current settings at time t. As we shall see in Section V this question has been answered by other researchers with model checking. It would be useful to check global invariants of our control systems, e.g., safety conditions or properties of multiple actuators. Model checking both could and should be applied to this problem.

On the other hand, Section V will show that model checking is often used to detect feature conflicts that must be removed, or to find bugs. With our form of feature composition it is not necessary to remove conflicts, because they are expected and the coordinator resolves them. Also, features have a natural structure that helps eliminate common bugs. Single-actuator constraints can be guaranteed by giving them high-enough priority. The point of all this is that global model checking or verification are less essential than with other approaches to feature interaction.

B. Examples

More on the door lock: Figure 2 shows the program for one of the four door lock features. The others are much simpler. For example, NL simply transitions to a locked setting at the beginning of nighttime, and a dontCare setting at the end of nighttime. This illustrates that our automated conflict resolution is a kind of exception mechanism that keeps features simple because they can be specified without exceptions.
Door lock control is complicated by the fact that the door lock can also be operated mechanically, using a key as a credential. (This is a necessary backup mechanism, in case of power failure.) Because of mechanical operation, there is a sensor to tell the control system whether the door is locked or unlocked.

Mechanical operation gives rise to a new requirement and a new feature. Mechanical operations are manual operations as defined in Section II-A and should interact with the other features in the same way that manual electronic operations do. For example, if the door is unlocked mechanically at night, the door should stay unlocked for 1 minute and then be locked by NL. It should not stay open all night, nor should it be re-locked immediately by NL so that whoever unlocked it has no time to pass through.

The first step in satisfying this requirement is to detect mechanical operations. This is accomplished by a simulator (as in Figure 1) that compares the actuator values sent to the door lock with the sensor values received from it, thus detecting changes in the lock state that are not caused by actuator values. A program for the simulator is given in Figure 3.

The program reads two data streams: toDoor is a replica of the real actuator values sent by the coordinator to the door, while fromDoor is the stream of sensor values (encoding state changes) from the door sensor. For simplicity, the program assumes that lock response to the actuator is fast and reliable, so a new actuator value is followed by a new sensor value within a very short time. The program generates a stream of virtual sensor values mechLock and mechUnlock that is input to a new feature Mechanical Operation (MO). Figure 3 omits state initialization from sensor values.

MO has a program that is very similar to EO’s. The only difference between its program and Figure 2 is that a typical transition is triggered by toMO ? mechUnlock instead of panelIn ? requestUnlock & opAuthorized. When MO receives mechUnlock, it echoes the mechanical operation electronically by sending an unlocked setting to the coordinator. That record will join the record list in the coordinator, probably causing the coordinator to produce an unlocked setting that will be useless because the door is already unlocked. More importantly, it will block lower-priority locked settings until the 1-minute duration is over. When the 1-minute duration is over MO will send a dontCare setting. If this occurs at night, dontCare will stimulate the coordinator to lock the door in accordance with the setting of NL.

Another interesting characteristic of MO is that it must have the same priority as EO, because both forms of manual operation are equally important, and the most recent operation should prevail.

Lighting dimmer switch: Control of lighting a bedroom corridor in a home is described in [31]. The actuator is a dimmer switch that can deliver any percentage from 0 to 100 of the total output of the light fixtures in the corridor.

The control system is sensitive to the amount of illumination coming through a skylight in the corridor, and to motion detectors in the corridor. There are also several configuration variables to be set by the family.

The system has four requirements, each implemented as a separate feature:

- The safety requirement sets a minimum artificial light level for when people are in the corridor. The level is different depending on whether it is the usual sleep time or the usual awake time.
- The health requirement says that when residents are usually sleeping, the maximum light level in the corridor should be 0. When residents are usually awake, there is a minimum light level in the corridor. Because its purpose is to prevent seasonal affective disorder, it varies for sunny and dark seasons, and also depends on how much light is coming through the skylight.
- The pleasantness requirement sets a minimum level of ambient light whenever people are likely to be in the corridor. It depends on how much light is coming through the skylight.
- The energy requirement always prefers less light to more light.

These features are prioritized in the order listed (highest-priority first). The settings of the first three features are subranges of 0...100.

The feature settings are composed as in Section III-B. When it is the usual sleeping time and motion is detected in the corridor, the safety requirement takes precedence and turns the lights on. When motion is no longer detected, the health requirement takes over and turns the lights completely off.

A home furnace: Furnace control concerns two major actuators: a thermostat whose settings are degrees of temperature, and an on/off switch for the furnace.

In our example, three features control the thermostat. Manual control enables users to set the thermostat. Learning control is a fully automatic feature that attempts to learn how users control the thermostat and to anticipate their actions so that they will have less to do. Both of these features have current settings at all times, and run at the same priority so that each one can override the other. At a higher priority, vacation
mode sets the thermostat to default values when the residents are away.

In our example, four features control the furnace switch. The basic operation feature continually compares the house temperature with the thermostat setting (now interpreted as a sensor value as well as an actuator value), turning the furnace on when the house is too cold and off when it is warm enough. Running at higher priorities there is an emergency shutoff feature and an energy-saving feature that makes sure the furnace is off when the air-conditioning is on.

It is said that learning thermostats can damage heating or cooling equipment by cycling them on and off faster than the equipment is designed to tolerate. To prevent such damage, our example includes a high-priority furnace protection feature to guarantee that whenever the furnace is given a new setting, no newer setting can be sent within 5 minutes (not counting an emergency shutoff, which has higher priority).

Furnace protection is interesting for two reasons. First, its program is conceptually very similar to that of the door lock’s MO feature. On learning that the furnace switch has a new real setting, it echoes that setting as its own current setting, which can only be overridden by emergency shutoff. After 5 minutes it cancels the setting with don’t Care, so that lower-priority features can change the real furnace setting.

Second, furnace protection is an exception to the rule, stated in Section I that an actuator can adopt a new setting at any time. This exception, which protects the actuator or controlled object, is conveniently specified and enforced as a feature.

C. User study

To gain some insight into user comprehension of feature interaction, we recruited participants for a pilot user study. The participants were all employees of a large U.S. enterprise, with occupations in the areas of administration, law, finance, marketing, and technology (non-research). They were evenly distributed with respect to gender, comfort with technology, and experience with technical troubleshooting at home.

All participants met with a researcher for an interview session. In this session, the participant read a 350-word “manual” about the door lock and its four features. He or she then answered the following questions about 20 scenarios:

- What is the current state of the door lock?
- Why do you think this?
- If this system were ideal, what would you want the state of the door lock to be?

The session ended with a few more general questions. We terminated the study after interviewing 20 participants, as we began seeing the same patterns of responses repeat, and no new ones arise.

The results of the study were analyzed to understand the mental models that users naturally apply to reasoning about feature interactions. This information may be helpful in designing control systems, documentation or training materials, and further user studies. The results of the study are reported in detail in [29], and we summarize some of them briefly here.

The overall accuracy of responses was 88% (although the answers were binary, so random guesses would have yielded 50%). Gender, occupation, and comfort/experience with technology made almost no difference in the performance of a participant, which is encouraging because our goal is to make technology comprehensible to everyone.

It was also encouraging that the behavior of our feature set was in almost perfect agreement with what most people wanted. The only discrepancy arose from questions concerning triggering of the Intrusion Detection feature during a party. Obviously it should be possible to turn the feature off during a party, but we did not include that capability to keep the features simple and to devise more interesting questions.

The study yielded much insight into how to explain feature composition to users. People understand easily that an operation such as unlocking the door has a fixed duration such as 1 minute. The crucial question is what happens when the minute is over: does the lock state toggle? return to previous? return to a default? not change? Two or three simple, well-chosen examples might make the right general answer (which depends on other features) clear to most people.

One of our final questions was, “How would you explain the system to a guest who is staying at your house for a week?” The most common answer was, “Tell them the keypad always works.” This illustrates that simple guarantees can be achieved by programming them into the highest-priority features.

V. Related work

There is a long history of research on feature interaction and composition in telecommunication services. This is a more difficult problem because the controlled object, a telephone call, has a complex actuator state. The actions preferred by competing features take time to complete, during which other actions must be excluded. After an action has completed, the actuator state may or may not have changed, so that other competing actions are ineligible. With these and other complications, the major solutions to the feature-interaction problem in telecommunications are much more elaborate [5], [15], [17], [20], [30].

It is also possible to view home automation in terms of high-level actions that must be completed over time [26]. In the remainder of this section, however, we turn to the more typical approach to the Internet of Things, in which actuators can change settings at any time (as described in Section I).

Currently many new networked devices (“things” in the Internet of Things) are being offered to consumers by enterprises large and small. As reported in [23], these offers almost always promise that users can program control of these devices with “if-then” or “trigger-action” rules. This assumption is also adopted in some research projects [9], [18], [25].

Trigger-action rules are independent and inherently unstructured, so it is no surprise that even experienced programmers find sets of trigger-action rules difficult to write and reason about (a hobbyist says, “...it has taken me literally YEARS of these types of mistakes to iron out all the kinks” [9]).
With programs in the form of independent trigger-action rules, there is little choice but to build tools to explore the behavior of these programs, and hope that users will be able to provide invariants to be checked, or detect bugs by scanning the output for anomalies [9].

The alternative is to—in effect—group related rules into more cohesive modules such as finite-state machines. For example, the program in Figure 2 can be viewed as a group of related trigger-action rules, one per state transition; the states of the machine are values of an internal variable relating the effects of the individual rules. The enhanced structure provides guidelines about robust programming. For example, a well-structured feature that turns a switch on for some reason also includes the logic to turn it off when the reason has passed. It is interesting to note that the self-transitions on the locked and unlocked states in Figure 2 prevent the bug detected in [9], which is to forget to refresh a timer when two events causing the same setting occur close together.

Some work with features or at least cohesive functional modules also focuses on detecting feature interactions by finding logical conflict over shared variables, by model checking or other means [19], [23]. This approach deprives users and programmers of the feature simplification that comes from using automatic resolution of feature interactions as a domain-specific exception mechanism.

The work closest to ours is [27], in which features interact by controlling the same object, resource, or environment variable such as air temperature. A feature can claim exclusive access to a resource for some period of time, some claims are not conflicting, and priority is used to resolve conflicting claims. It is difficult to make a closer comparison because their composition is not completely defined, and there is no formal semantics. Certainly the only kind of control considered in [27] is automatic control as defined in Section III-A so there is no consideration of manual control or user-centric concepts.

Some currently available platforms for the Internet of Things include Spitfire [21], Perla [22], and HomeOS [6], [11]. Our feature composition is compatible with the goals and capabilities of all of these, and could be implemented straightforwardly in any of them.

VI. Future Work

Although this approach to feature composition for the Internet of Things looks promising, it is still preliminary, and there is much work yet to be done.

First, there is a need to investigate larger examples, including unified control of a number of diverse actuators. This should be done in a lab setting, with real controlled objects, sensors, and actuators. We already know that this approach will not work with control commands that take time to complete. Larger studies should hasten discovery of other limitations, showing where additional mechanisms and integration of mechanisms are needed.

Second, we have gained just enough insight into user acceptance and comprehension to start asking really interesting questions. Here is a sample:

- Users have simple mental models of feature interaction [29], all of which work sometimes to explain feature composition as we have defined it, but none of which work all the time. Is there a way to classify and/or reorganize situations, features, coordinators, and actuators so that a simple mental model suffices for each case?
- The door lock features take an ad hoc approach to explaining themselves to users (sending messages to display panels), especially when they are interacting. Is there an organized approach that would be better?
- How do users feel about these features when they have used them for a week, rather than talked about them for an hour?

Finally, there are questions of how static analysis, model checking, and verification can be used to complement runtime feature composition. Static analysis of features might reveal the potential for conflicts, which would feed into priority decisions as discussed in Section III-E. It might also be helpful in proving eventual quiescence, as discussed in [32]. The feature structure, in conjunction with static conflict analysis, might provide cues that reduce the computational complexity of model checking and/or verification for establishing global properties. Ultimately models of the environment must participate in closed-world reasoning about these systems.

VII. Conclusion

While new networked devices proliferate, consumers are being sold on a vision of the Internet of Things as easily programmed with a few trigger-action rules. Experience suggests that disappointment is in store for many of them.

This paper has presented an approach to specifying and implementing complex control of the Internet of Things. It is well-defined, as established by formal semantics. It is quite general for controlling actuators in a particular class, as demonstrated by numerous examples. It allows descriptions of desired behavior to be simple and provides guidance that reduces errors, as shown by examples and comparisons to related work.

Most importantly, it was designed with users in mind, both in the actuator behavior that it produces and in the way that behavior can be explained. A small user study indicated complete success in producing desirable behavior, and partial success in explaining it.

Although this approach is preliminary and its results should be extended in many directions, it is clearly worth pursuing. It also illustrates the point that human and technical challenges are so intertwined in the Internet of Things that neither can be addressed successfully in isolation.

Acknowledgments

This work has been improved greatly by comments from Joanne Atlee, Josh Auzins, Greg Bond, Michael Jackson, Ratul Mahajan, and Tom Smith.
REFERENCES

[1] Ryan Aippersbach, Ben Hooker, and Allison Woodruff. The heterogeneous home. In Proceedings of UsbComp, pages 222–231. ACM, 2006.

[2] The Internet of Things Comic Book. http://www.alexandra.dk/uk/services/Publications/Documents/IT_Comic_Book.pdf

[3] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL Continuous Query Language: Semantic foundations and query execution. International Journal on Very Large Data Bases, 15(2):121–142, June 2006.

[4] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A survey. Computer Networks, 54(15):2787–2805, 2010.

[5] Kenneth H. Braithwaite and Joanne M. Atlee. Towards automated detection of feature interactions. In Feature Interactions in Telecommunications Systems, pages 36–59. Amsterdam, 1994. IOS Press.

[6] A. J. Bernheim Brush, Jae Yeon Jung, Ratul Mahajan, and James Scott. Homelab: Shared infrastructure for home technology field studies. In Proceedings of the Workshop on Systems and Infrastructure for the Internet of Things: A survey, Computer Networks, 54(15):2787–2805, 2010.

[7] A. J. Bernheim Brush, Bongshin Lee, Ratul Mahajan, Sharad Agarwal, Stefan Saroiu, and Colin Dixon. Home automation in the wild: Challenges and opportunities. In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI), ACM, 2011.

[8] Ramón Cáceres and Adrian Friday. Ubicomp systems at 20: Progress, opportunities, and challenges. IEEE Pervasive Computing, 11(1):14–21, January 2012.

[9] Jason Croft, Ratul Mahajan, Matthew Caesar, and Madan Musuvathi. Back to the future: Forecasting program behavior in automated homes. Technical report, Microsoft Research MSR-TR-2012-131, 2012.

[10] Scott Davidoff, Min Kyung Lee, Charles Yu, John Zimmerman, and Anind K. Dey. Principles of smart home control. In Proceedings of UsbComp. ACM, 2006.

[11] Colin Dixon, Ratul Mahajan, Sharad Agarwal, A. J. Brush, Bongshin Lee, Stefan Saroiu, and Paramvir Bahl. An operating system for the home. In Proceedings of the 9th USENIX/ACM Symposium on Networked Systems Design and Implementation (NSDI ‘12), 2012.

[12] W. Keith Edwards and Rebecca E. Grinter. At home with ubiquitous computing: Seven challenges. In Proceedings of UsbComp. ACM, 2001.

[13] W. Keith Edwards, Rebecca E. Grinter, Ratul Mahajan, and David Wetherall. Advancing the state of home networking. Communications of the ACM, 54(6):62–71, June 2011.

[14] Mohamed Ali Feki, Fahim Kawser, Mathieu Bousard, and Lieven Trappeniers. The Internet of Things: The next technological revolution (Introduction to special issue). IEEE Computer, 46(2):24–25, February 2013.

[15] Jonathan D. Hay and Joanne M. Atlee. Composing features and resolving interactions. In Proceedings of the 8th ACM SIGSOFT Symposium on Foundations of Software Engineering, pages 110–119. ACM, 2000.

[16] Michael Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press, 2006, 2012.

[17] Michael Jackson and Pamela Zave. Distributed Feature Composition: A virtual architecture for telecommunications services. IEEE Transactions on Software Engineering, 24(10):831–847, October 1998.

[18] Mario Kolberg, Evan Magill, Dave Marples, and Simon Tsang. Feature interactions in services for Internet personal appliances. In Proceedings of the IEEE International Conference on Communications, pages Volume 4, 2613–2618, 2002.

[19] Pattara Leelaprute, Takaumi Matsuo, Tatsumihiro Tsuchiya, and Tohru Kikono. Detecting feature interactions in home appliance networks. In Proceedings of the 9th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, pages 895–903. IEEE, 2008.

[20] Dave Marples and Evan H. Magill. The use of rollback to prevent incorrect operation of features in Intelligent Network based systems. In Feature Interactions in Telecommunications and Software Systems V, pages 115–134, Amsterdam, 1998. IOS Press.

[21] Dennis Pfisterer, Kay Römer, Daniel Bimschas, Henning Hasemann, Manfred Hauswirth, Marcel Karnstedt, Oliver Kleine, Alexander Kröller, Myriam Leggieri, Richard Mietz, Max Pagel, Alexandre Passant, Ray Richarson, and Cuong Truong. SPITFIRE: Towards a Semantic Web of Things. IEEE Communications, 49(11):40–48, November 2011.

[22] Fabio A. Schreiber, Romolo Camplani, Marco Fortunato, Marco Marelli, and Guido Rota. Perla: A language and middleware architecture for data management and integration in pervasive information systems. IEEE Transactions on Software Engineering, 38(2):478–496, March 2011.

[23] Christophe Soares, Rui S. Moreira, Ricardo Morla, José Torres, and Pedro Sobral. Graph-based approach for interference free integration of pervasive applications. In Proceedings of the 7th International Symposium on Wireless and Pervasive Computing, 2012.

[24] Leila Takayama, Caroline Pantofaru, David Robson, Bianca Soto, and Michael Barry. Making technology homey: Finding sources of satisfaction and meaning in home automation. In Proceedings of UsbComp. ACM, 2012.

[25] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L. Littman. Practical trigger-action programming in the smart home. In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI). ACM, 2014.

[26] Feng Wang and Kenneth J. Turner. Policy conflicts in home care systems. In Feature Interactions in Software and Communication Systems IX, pages 54–65. Amsterdam, 2008. IOS Press.

[27] Michael Wilson, Mario Kolberg, and Evan H. Magill. Considering side effects in service interaction in home automation—an online approach. In Feature Interactions in Telecommunications and Software Systems IX, pages 172–187. IOS Press, 2008.

[28] Allison Woodruff, Sally Augustin, and Brooke Foucault. Sabbath day home automation: “it’s like mixing technology and religion”. In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI). ACM, 2007.

[29] Svetlana Yarosh and Pamela Zave. Locked or unlocked: Mental models of feature-interaction resolution for home automation. Submitted for publication to CHI 2015.

[30] Pamela Zave. Modularity in Distributed Feature Composition. In Bashar Nuseibeh and Pamela Zave, editors, Software Requirements and Design: The Work of Michael Jackson, pages 267–290. Good Friends Publishing, 2010.

[31] Pamela Zave. A Digital Life challenge problem and proposed solution. Technical report, AT&T Laboratories—Research, March 2013.

[32] Pamela Zave and Eric Cheung. A modular programming abstraction for ubiquitous computing. Technical report, AT&T Laboratories—Research, March 2014.