The blending of *Hibiscus Cannabinus* (Kenaf) with *Bohemeria nivea* (Ramie) and evaluation of its physical properties

Ankita Kakoty, Dr. Ava Rani Phukan, Dr. Binita Kalita, and Dr. Sunita Boruah

DOI: https://doi.org/10.22271/chemi.2020.v8.i3am.9620

Abstract

The growing importance of fiber blends in apparels are due to many reasons such as it will be cost effective by blending them with other fibers that produce fabrics with a better combination of performance characteristics in the product. The aim of the blends are reduce economic and enhanced the durability, physical properties, colour and appearance. To produce fabrics with a better combination of performance characteristics in the product and to obtain better hand on fabric appearance and colour dyed effect. Hence the present work has been undertaken with an aim to blend the *Hibiscus Cannabinus* with Ramie for value added products. Different blending ratios were followed such as Kenaf: Ramie 75:25, 50:50 and 25:75 to produce different blended yarns as well as fabrics. Ramie yarn showed highest tenacity (20.87g/tex) while lowest tenacity was observed in controlled Kenaf (13.09g/tex). In case of blended yarn, maximum tenacity was seen in (25:75) kenaf: ramie (16.18g/tex). Plain weave structure fabrics was prepared from the controlled and blended yarns.

Keywords: Blending, kenaf, ramie, tenacity and elongation

Introduction

The natural fibers are renewable resource, thus providing a better solution of sustainable supply, like it has low cost, low density, least processing expenditure, no health hazards, and better mechanical and physical properties (Satyanarayana et al., 1990 and Yan et al., 2014) [1]. The most important property of natural fibre is biodegradability and non-carcinogenic which brings it back into fashion, with an advantage of being cost-effective. Kenaf has been cultivated in India since prehistoric times. Kenaf, derived its name from a Persian word for flax or hemp, and its botanical name is *Hibiscus cannabinus*. It is an annual plant of the *malvaceae* family. The importance of the crop is mostly with regard to paper pulp production, the kenaf fiber is characterized as a multipurpose crop because it has a number of further industrial applications (Alexopoulou and Monti 2013) [2]. Kenaf fibers in the manufacture of pulp, paper, and paperboard products, and as synthetic fiber substitutes. Thus, production of kenaf as an industrial raw material will necessarily be localized in the same region as processing facilities (LeMahieu, P. J., E. S. Oplinger, and D. H. Putnam. 2003) [3]. Actually, kenaf is a feasible source of cellulose which is economically viable and ecologically friendly. The idea of making fabrics from kenaf has been practiced since the early 1990s. Kenaf fibers have a long staple, meaning very fine and strong fiber which can be spun. Kenaf textiles are also naturally very absorbent, and even fire-retardant, making it especially ideal for outerwear or shoes. Bast fibers are simple to process. Blended with cotton, kenaf fibers can be made into yarn and woven into fabrics. These textiles are aesthetically pleasing, lightweight, and have a soft feel. This makes them suitable for quality textiles. Ramie fibre comes under bast fibre category, which can be classified as underutilized fibres. The high potential of ramie fibre is not fully exploited due to various techno-economic reasons. It is one of the strongest natural fibres having rich cellulose content. Apart from textile uses, ramie fibre can be utilised for the production of various diversified products (Seiko Jose, S. Rajna and P. Ghosh, 2017) [4]. Ramie which is a natural cellulose fiber abundantly found in northeastern region can easily be
blended with Kenaf fiber to make clothing and other value added products. So the purpose of the study is to enables the technician to combine fibers so that the good qualities are emphasized and poor qualities are minimized by blending both the fibers that produce fabrics with a better combination of performance.

Methodology

For this study the blending of kenaf (*Hibiscus Cannabinus*) and ramie fiber were done at carding stage at the ratio and 75:25 (kenaf: Ramie) 50:50 (kenaf: ramie) and 25:75 (kenaf: ramie). Along with the blending proportions controlled kenaf and controlled ramie fibers were also used to preparing the yarns.

Scanning Electron Microscopy (SEM) analysis

The surface morphology of raw, degummed and bleached fibers were examined using emission scanning electron microscope (SEM) (marke-Carl Zeiss. Modal-Sigma) with 500x magnification.

Evaluation of the physical properties of the yarns

The blended and controlled yarns were tested to observe the following parameters:

Determination of Twist

Twist is the measure of spiral turns given to a yarn in order to hold the constituent fibers or threads together. Yarn twist is expressed in terms of twist per inch (tpi).

Results and Discussion

SEM analysis

![SEM image of bleached Ramie fiber](image_url)

Fig 1a: Bleached Ramie fiber
Scanning electron micrographs of fiber surface revealed that after bleaching treatment entire gum was removed from the fiber which enhanced the individualization of fiber entity (Fig 1a & 1b). This bleached fiber were utilized for blending of yarns.

Controlled and Blended yarns

Fig 1b: Bleached Kenaf fiber

Fig 2a: Controlled Kenaf yarn

Fig 2b: Controlled Ramie yarn

Fig 2c: Blended Kenaf:Ramie yarns 75:25, 50:50 & 25:75

Physical properties of controlled and blended yarn

Twist, count and density of controlled and blended yarns

The physical properties of yarn such as twist, count and density were evaluated and presented in the Table 1. It was apparent from the Table, that Z twist direction and single ply were maintained for all the yarns during the investigation. The same yarn count (40s) was used for all the samples. Among the controlled yarns, highest twist (tpi) was registered in controlled ramie yarns (6.38 tpi) and density (4.20 g/cm³) and lowest was observed in controlled kenaf yarns (6.22 tpi) and density (4.04g/cm³). In terms of blended yarns, maximum twist per inch was seen in blend proportion (25:75) kenaf:ramie as (6.28tpi) and density (4.08g/cm³) and 50:50 kenaf:ramie (6.18 tpi) and density (4.07g/cm³).

It was also noted that, controlled ramie exhibited highest density (4.20g/cm³) in the controlled yarn and among the blended yarn (25:75) kenaf:ramie exhibited highest density (4.12g/cm³) followed by (75:25) kenaf:ramie (4.08g/cm³) density and 50:50 kenaf:ramie and density (4.07g/cm³). The twist per inch depends on the density of fibers in yarn. Usually in finery yarn, fiber density is higher. The density is changing according to the number of twist in the yarn. Higher the twist more finer will be the yarn (Kumar and Mitra, 2005) [7].
Tenacity (g/tex), Elongation (%) of controlled and blended yarns
The tenacity (g/tex), elongation (%) of yarns were analyzed both for controlled and blended yarns and presented in the Table 2. The elongation and strength are the primary properties of fiber and are useful for spinning quality, which ultimately enhances the cohesiveness of the fiber during spinning process. It was evident from the Table 2 that among the controlled yarns, ramie showed highest tenacity (20.87g/tex) while lowest tenacity was observed in controlled kenaf (13.09g/tex). The high tenacity of ramie yarn might be due to the high tensile strength of ramie in its fiber stage as fiber properties had significant effect on yarn strength (Doraiswami and Chellani, 1994)(8).

And in case of elongation highest elongation (%) was seen in controlled kenaf yarns (14.05%) followed by controlled ramie yarns (6.71%) because elongation is inversely proportional to tensile strength of the yarn, also ramie is high cellulosic fiber so prolonged treatment with strong alkali and strong acids causes loss in fiber properties and also decrease the elongation percentage as suggested by (Mazumdar, 1976)(9).

In case of blended yarn, maximum tenacity was seen in (25:75) kenaf: ramie (16.18g/tex) and minimum in elongation (11.44%) followed by (50:50) kenaf: ramie (13.13g/tex) and elongation (11.44%) was recorded and minimum was seen in (75:25) kenaf: ramie (10.09g/tex) and more elongation (13.06%) was observed. As strength of ramie is more than kenaf, so higher the percentage of ramie in blend proportion exhibited better strength compared to other blend proportions.

Wicking height of controlled and blended yarns
The wicking height of yarns were analyzed both for controlled and blended yarns and presented in the Table 3. Ramie fibers have better absorbency than other cellulosic fibers, so wicking height is good in controlled ramie (2.25cm) followed by kenaf (2.00cm). The blended fabrics of 25:75 kenaf: ramie has highest wicking height (1.65cm) followed by 50:50 kenaf: ramie (1.62cm) and 75:25 kenaf: ramie (1.57cm) wicking height. Ramie fibers have good porosity that makes it better wicking behavior.

From the above findings it could be concluded that the differences in wicking height of the controlled and blended yarns might be due to the different processes involved in blending of yarns.

References
1. Satyanarayana KG, Sukumaran K, Mukherjee PS, Pavitharan C, Pillai SGK. Natural fibre-polymer composites. Cement and Concrete Compo. 1990; 22(5):379-384.
2. Alexopoulou E, Monti Kenaf A. A Multi-Purpose Crop for Several Industrial Applications, 203. London: New Insights from the Biokenaf Project Springer-Verlag, 2013.
3. LeMahieu PJ, Oplinger ES, Putnam DH. Kenaf. In Alternative Field Crops Manual. University of Wisconsin-Extension, Cooperative Extension; University
4. Seiko Jose, Rajna S, Ghosh P. Ramie Fibre Processing and Value Addition. Asian Journal of Textile. 2017; 7:1-9.

5. ASTM Test Methods. Breaking load and elongation of textile fibres. ASTM Year Book (1970). American Standard on Textiles Materials. 1964; 24:15.

6. Booth JE. Principle of Textile Testing. Third Edn, Newnes Butterword London, 1967; 353-354.

7. Kumar DS, Mitra A. A comparative study on some mechanical properties of eri and cotton fabrics. Man Made Textiles in India. 2005; 48(11):430-434.

8. Doraiswamy P, Chellani P. Study on spinning system. 1994; 36(11):41-45.

9. Mazumdar MC, Sen SK, Oasgupta PC. Effect of gum content on physical properties of ramie. Indian Textile J, 1976, 67.