The uniform normal form of a linear mapping

Richard Cushman

Dedicated to my friend and colleague Arjeh Cohen on his retirement

Let V be a finite dimensional vector space over a field k of characteristic 0. Let $A : V \to V$ be a linear mapping of V into itself with characteristic polynomial χ_A. The goal of this paper is to give a normal form for A, which yields a better description of its structure than the classical companion matrix. This normal form does not use a factorization of χ_A and requires only operations in the field k to compute.

1 Semisimple linear mappings

We begin by giving a well known criterion to determine if the linear mapping A is semisimple, that is, every A-invariant subspace of V has an A-invariant complementary subspace.

Suppose that we can factor χ_A, that is, find monic irreducible polynomials $\{\pi_i\}_{i=1}^m$, which are pairwise relatively prime, such that $\chi_A = \prod_{i=1}^m \pi_i^{n_i}$, where $n_i \in \mathbb{Z}_{\geq 1}$. Then

$$\chi'_A = \sum_{j=1}^m (n_j \pi_j^{n_j-1}) \prod_{i \neq j} \pi_i^{n_i} = (\prod_{\ell=1}^m \pi_\ell^{n_\ell-1}) \left(\sum_{j=1}^m (n_j \pi'_j) \prod_{i \neq j} \pi_i \right).$$

Therefore the greatest common divisor χ_A and its derivative χ'_A is the polynomial $d = \prod_{\ell=1}^m \pi_\ell^{n_\ell-1}$. The polynomial d can be computed using the Euclidean algorithm. Thus the square free factorization of χ_A is the polynomial $p = \prod_{\ell=1}^m \pi_\ell = \chi_A/d$, which can be computed without knowing a factorization of χ_A.

The goal of the next discussion is to prove

Claim 1.1 The linear mapping $A : V \to V$ is semisimple if $p(A) = 0$ on V.

\footnotetext{Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada, T2N 1N4.}
Let $p = \prod_{j=1}^{m} \pi_j$ be the square free factorization of the characteristic polynomial χ_A of A. We now decompose V into A-invariant subspaces. For each $1 \leq j \leq m$ let $V_j = \{ v \in V \mid \pi_j(A)v = 0 \}$. Then V_j is an A-invariant subspace of V. For if $v \in V_j$, then $\pi_j(A)Av = A\pi_j(A)v = 0$, that is, $Av \in V_j$.

The following argument shows that $V = \bigoplus_{j=1}^{m} V_j$. Because for $1 \leq j \leq m$ the polynomials $\prod_{i \neq j} \pi_i$ are pairwise relatively prime, there are polynomials f_j, $1 \leq j \leq m$ such that $1 = \sum_{j=1}^{m} f_j \left(\prod_{i \neq j} \pi_i \right)$. Therefore every vector $v \in V$ can be written as

$$v = \sum_{j=1}^{m} f_j(A) \left(\prod_{i \neq j} \pi_i(A)v \right) = \sum_{j=1}^{m} f_j(A)v_j.$$

Since $\pi_j(A)\left(\prod_{i \neq j} \pi_i(A)v \right) = p(A)v = 0$, the vector $v_j \in V_j$. Therefore $V = \sum_{j=1}^{m} V_j$. If for $i \neq j$ we have $w \in V_i \cap V_j$, then for some polynomials F_i and G_j we have $1 = F_i \pi_i + G_j \pi_j$, because π_i and π_j are relatively prime. Consequently, $w = F_i(A)\pi_i(A)w + G_j(A)\pi_j(A)w = 0$. So $V = \sum_{j=1}^{m} \oplus V_j$.

We now prove

Lemma 1.2 For each $1 \leq j \leq m$ there is a basis of the A-invariant subspace V_j such that that matrix of A is block diagonal.

Proof. Let W be a minimal dimensional proper A-invariant subspace of V_j and let w be a nonzero vector in W. Then there is a minimal positive integer r such that $A^r w \in \text{span}_k \{ w, Aw, \ldots, A^{r-1}w \} = U$. We assert: the vectors $\{ A^i w \}_{i=0}^{r-1}$ are linearly independent. Suppose that there are $a_i \in k$ for $1 \leq i \leq r-1$ such that $0 = a_0 w + a_1 Aw + \cdots + a_{r-1}A^{r-1}w$. Let $t \leq r-1$ be the largest index such that $a_t \neq 0$. So $A^t w = -\frac{a_{t-1}}{a_t} A^{t-1}w - \cdots - \frac{a_0}{a_t} w$, that is, $A^t w \in \text{span}_k \{ w, \ldots, A^{t-1}w \}$ and $t < r$. This contradicts the definition of the integer r. Thus the index t does not exist. Hence $a_i = 0$ for every $0 \leq i \leq r-1$, that is, the vectors $\{ A^i w \}_{i=0}^{r-1}$ are linearly independent.

The subspace U of W is A-invariant, for

$$A(\sum_{j=0}^{r-1} b_j A^j w) = \sum_{j=0}^{r-2} b_j A^{j+1} w + b_{r-1} A^r w, \quad \text{where } b_j \in k$$

$$= \sum_{j=1}^{r-1} b_j A^j w + b_{r-1} \left(\sum_{\ell=0}^{r-1} a_{\ell} A^{\ell} w \right), \quad \text{since } A^r w \in U$$

$$= b_{r-1} a_0 w + \sum_{j=1}^{r-1} \left(b_{j-1} + b_{r-1} a_j \right) A^j w \in U.$$
Next we show that there is a monic polynomial \(\mu \) of degree \(r \) such that \(\mu(A) = 0 \) on \(U \). With respect the basis \(\{A^iw\}_{i=0}^{r-1} \) of \(U \) we can write \(A^r w = -a_0 w - \cdots - a_{r-1}A^{r-1}w \). So \(\mu(A)w = 0 \), where

\[
\mu(\lambda) = a_0 + a_1 \lambda + \cdots + a_{r-1} \lambda^{r-1} + \lambda^r.
\]

Since \(\mu(A)A^iw = A^i(\mu(A)w) = 0 \) for every \(0 \leq i \leq r - 1 \), it follows that \(\mu(A) = 0 \) on \(U \).

By the minimality of the dimension of \(W \) the subspace \(U \) cannot be proper. But \(U \neq \{0\} \), since \(w \in U \). Therefore \(U = W \). Since \(U \subseteq V_j \), we obtain \(\pi_j(A)u = 0 \) for every \(u \in U \). Because \(\pi_j \) is irreducible, the preceding statement shows that \(\pi_j \) is the minimum polynomial of \(A \) on \(U \). Thus \(\pi_j \) divides \(\mu \). Suppose that \(\deg \pi_j = s < \deg \mu = r \). Then \(A^su' \in \text{span}_k \{w', \ldots, A^{s-1}w'\} = Y \) for some nonzero vector \(w' \) in \(U \). By minimality, \(Y = U \). But \(\dim Y = s < \dim U = r \), which is a contradiction. Thus \(\pi_j = \mu \).

Note that the matrix of \(A|U \) with respect to the basis \(\{A^iw\}_{i=0}^{r-1} \) is the \(r \times r \) companion matrix

\[
C_r = \begin{pmatrix}
0 & \cdots & \cdots & 0 & -a_0 \\
1 & 0 & \cdots & 0 & -a_1 \\
\vdots & 1 & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & 0 & -a_{r-2} \\
0 & \cdots & \cdots & 1 & -a_{r-1}
\end{pmatrix},
\]

where \(\pi_j = a_0 + a_1 \lambda + \cdots + a_{r-1} \lambda^{r-1} + \lambda^r \).

Suppose that \(U \neq V_j \). Then there is a nonzero vector \(w' \in V_j \setminus U \). Let \(r' \) be the smallest positive integer such that \(A^{r'} w' \in \text{span}_k \{w', Aw', \ldots, A^{r'-1}w'\} = U' \). Then by the argument in the preceding paragraph, \(U' \) is a minimal \(A \)-invariant subspace of \(V_j \) of dimension \(r' = r \), whose minimal polynomial is \(\pi_j \). Suppose that \(U' \cap U \neq \{0\} \). Then \(U' \cap U \) is a proper \(A \)-invariant subspace of \(U' \). By minimality \(U' \cap U = U' \), that is, \(U \subseteq U' \).

But \(r = \dim U = \dim U' = r' \). So \(U = U' \). Thus \(w' \in U' \) and \(w' \notin U \), which is a contradiction. Therefore \(U' \cap U = \{0\} \). If \(U \oplus U' \neq V_j \), we repeat the above argument. Using \(U \oplus U' \) instead of \(U \), after a finite number of repetitions we have \(V_j = \sum_{i=1}^{\ell} \oplus U_i \), where for every \(0 \leq i \leq \ell \) the subspace \(U_i \) of \(V_j \) is \(A \)-invariant with basis \(\{A^ku_i\}_{k=0}^{r-1} \) and the minimal polynomial of \(A|U_i \) is \(\pi_j \). With respect to the basis \(\{A^ku_i\}_{(i,k)=(1,0)}^{(\ell,r-1)} \) of \(V_j \) the matrix of \(A \) is \(\text{diag}(C_r, \ldots, C_r) \), which is block diagonal.

\[\Box\]

For each \(1 \leq j \leq m \) applying lemma 1.2 to \(V_j \) and using the fact that \(V = \sum_{j=1}^{m} \oplus V_j \) we obtain
Corollary 1.3 There is a basis of V such that the matrix of A is block diagonal.

Proof of claim 1.1 Suppose that U is an A-invariant subspace V. Then by corollary 1.3, there is a basis ε_U of U such that the matrix of $A|U$ is block diagonal. By corollary 1.3 there is a basis ε_V of V which extends the basis ε_U such that the matrix of A on V is block diagonal. Let W be the subspace of V with basis $\varepsilon_W = \varepsilon_V \setminus \varepsilon_U$. The matrix of $A|W$ is block diagonal. Therefore W is A-invariant and $V = U \oplus W$ by construction. Consequently, A is semisimple. \qed

2 The Jordan decomposition of A

Here we give an algorithm for finding the Jordan decomposition of the linear mapping A, that is, we find real semisimple and commuting nilpotent linear maps S and N whose sum is A. The algorithm we present uses only the characteristic polynomial χ_A of A and does \textit{not} require that we know \textit{any} of its factors. Our argument follows that of [1].

Let p be the square free factorization of χ_A. Let M be the smallest positive integer such that χ_A divides p^M. Then $M \leq \deg \chi_A$. Assume that $\deg \chi_A \geq 2$, for otherwise $S = A$. Write

$$S = A + \sum_{j=1}^{M-1} r_j(A)p(A)^j,$$ \hfill (3)

where r_j is a polynomial whose degree is less than the degree of p. From the fact that χ_A divides p^M, it follows that $p(A)^M = 0$.

We want to determine S in the form (3) so that

$$p(S) = 0.$$ \hfill (4)

From claim 1.1 it follows that S is semisimple.

We have to find the polynomials r_j in (3) so that equation (4) holds. We begin by using the Taylor expansion of p. If (3) holds, then

$$p(S) = p\left(A + \sum_{j=1}^{M-1} r_j(A)p(A)^j\right)$$

$$= p(A) + \sum_{i=1}^{M-1} p^{(i)}(A)\left(\sum_{j=1}^{M-1} r_j(A)p(A)^j\right)^i,$$
where $p^{(i)}$ is $\frac{1}{n}$ times the ith derivative of p

$$= p(A) + \sum_{i=1}^{M-1} \sum_{k=1}^{M-1} c_{k,i} p(A)^k p^{(i)}(A). \tag{5}$$

Here $c_{k,i}$ is the coefficient of z^k in $(r_1 z + \cdots + r_{M-1}z^{M-1})^i$. Note that $c_{k,i} = 0$ if $k > i$. A calculation shows that when $k \leq i$ we have

$$c_{k,i} = \sum_{\alpha_1 + \cdots + \alpha_k = i \atop \alpha_1 + 2\alpha_2 + \cdots + (k-1)\alpha_k = k} \frac{i!}{\alpha_1! \cdots \alpha_{k-1}!} r_1^{\alpha_1} \cdots r_{k-1}^{\alpha_{k-1}}. \tag{6}$$

Interchanging the order of summation in (5) we get

$$p(S) = p(A) + \sum_{i=1}^{M-1} \left(r_i(A)p^{(1)}(A) + e_i(A) \right)p(A)^i,$$

where $e_1 = 0$ and for $i \geq 2$ we have $e_i = \sum_{j=1}^i c_{i,j} p^{(j)}$. Note that e_i depends on r_1, \ldots, r_{i-1}, because of (6).

Suppose that we can find polynomials r_i and b_i such that

$$r_i p^{(1)} + e_i = b_i p - b_{i-1}, \tag{7}$$

for every $1 \leq i \leq M - 1$. Here $b_0 = 1$. Then

$$\sum_{i=1}^{M-1} \left(r_i(A)p^{(1)}(A)+e_i(A) \right)p(A)^i = \sum_{i=1}^{M-1} \left(b_i(A)p(A)-b_{i-1}(A) \right)p(A)^i = -p(A),$$

since $p^M(A) = 0$ and $b_0 = 1$, which implies $p(S) = 0$, see (5).

We now construct polynomials r_i and b_i so that (7) holds. We do this by induction. Since the polynomials p and $p^{(1)}$ have no common nonconstant factors, their greatest common divisor is the constant polynomial 1. Therefore by the Euclidean algorithm there are polynomials g and h with the degree of h being less than the degree of p such that

$$gp - hp^{(1)} = 1. \tag{8}$$

Let $r_1 = h$, and $b_1 = g$. Using the fact that $b_0 = 1$ and $e_1 = 0$, we see that equation (8) is the same as equation (7) when $i = 1$. Let $d_1 = 0$ and $q_0 = q_1 = 0$. Now suppose that $n \geq 2$. By induction suppose that the polynomials
\(r_1, \ldots, r_{n-1}, e_1, \ldots, e_{n-1}, q_1, \ldots, q_{n-1} \) and \(b_1, \ldots, b_{n-1} \) are known and that \(r_i \) and \(b_i \) satisfy (7) for every \(1 \leq i \leq n-1 \). Using the fact that the polynomials \(r_1, \ldots, r_{n-1} \) are known, from formula (6) we can calculate the polynomial \(e_n = \sum_{j=2}^{n} c_{i,n} p^{(j)} \). For \(n \geq 2 \) define the polynomial \(d_n \) by

\[
d_n = q_{n-1} + h \sum_{i=1}^{n} g^{n-i} e_i.
\]

Note that the polynomials \(q_{n-1}, g = b_1, h = r_1, \) and \(e_i \) for \(1 \leq i \leq n-1 \) are already known by the induction hypothesis. Thus the right hand side of (9) is known and hence so is \(d_n \). Now define the polynomials \(q_n \) and \(r_n \) by dividing \(d_n \) by \(p \) with remainder, namely

\[
d_n = q_n p + r_n.
\]

Clearly, \(q_n \) and \(r_n \) are now known. Next for \(n \geq 2 \) define the polynomial \(b_n \) by

\[
b_n = -p^{(1)} q_n + g \sum_{i=1}^{n} g^{n-i} e_i.
\]

Since the polynomials \(p^{(1)}, q_n, g = b_1, \) and \(e_i \) for \(1 \leq i \leq n \) are known, the polynomial \(b_n \) is known. We now show that equation (7) holds.

Proof. We have already checked that (7) holds when \(n = 1 \). By induction we assumed that it holds for every \(1 \leq i \leq n-1 \). Using the definition of \(b_n \) (11) and the induction hypothesis we compute

\[
b_n p - b_{n-1} = \left[-p^{(1)} pq_n + pg \sum_{i=1}^{n} g^{n-i} e_i \right] - \left[-p^{(1)} q_{n-1} + g \sum_{i=1}^{n-1} g^{n-1-i} e_i \right]
\]

\[
= -p^{(1)} (q_n p - q_{n-1}) + pg \sum_{i=1}^{n} g^{n-i} e_i - \sum_{i=1}^{n-1} g^{n-i} e_i
\]

\[
= -p^{(1)} (-r_n + d_n - q_{n-1}) + (hp^{(1)} + 1) \sum_{i=1}^{n} g^{n-i} e_i - \sum_{i=1}^{n-1} g^{n-i} e_i,
\]

using (8) and (10)

\[
= p^{(1)} r_n - hp^{(1)} \sum_{i=1}^{n} g^{n-i} e_i + hp^{(1)} \sum_{i=1}^{n} g^{n-i} e_i + \sum_{i=1}^{n} g^{n-i} e_i - \sum_{i=1}^{n-1} g^{n-i} e_i,
\]

using (9)

\[
= p^{(1)} r_n + e_n.
\]

\[\square\]
This completes the construction of the polynomial \(r_n \) in (3). Repeating this construction until \(n = M - 1 \) we have determined the semisimple part \(S \) of \(A \). The commuting nilpotent part of \(A \) is \(N = A - S \).

\[\square\]

3 Uniform normal form

In this section we give a description of the uniform normal form of a linear map \(A \) of \(V \) into itself. We assume that the Jordan decomposition of \(A \) into its commuting semisimple and nilpotent summands \(S \) and \(N \), respectively, is known.

3.1 Nilpotent normal form

In this subsection we find the Jordan normal form for a nilpotent linear transformation \(N \).

Recall that a linear transformation \(N : V \to V \) is said to be nilpotent of index \(n \) if there is an integer \(n \geq 1 \) such that \(N^{n-1} \neq 0 \) but \(N^n = 0 \). Note that the index of nilpotency \(n \) need not be equal to \(\dim V \). Suppose that for some positive integer \(\ell \geq 1 \) there is a nonzero vector \(v \), which lies in \(\ker N^{\ell} \setminus \ker N^{\ell-1} \). The set of vectors \(\{v, Nv, \ldots, N^{\ell-1}v\} \) is a Jordan chain of length \(\ell \) with generating vector \(v \). The space \(V^\ell \) spanned by the vectors in a given Jordan chain of length \(\ell \) is a \(N \)-cyclic subspace of \(V \). Because \(N^\ell v = 0 \), the subspace \(V^\ell \) is \(N \)-invariant. Since \(\ker N|V^\ell = \ker N|V^\ell = \text{span}_k\{N^{\ell-1}v\} \), the mapping \(N|V^\ell \) has exactly one eigenvector corresponding to the eigenvalue 0.

Claim 3.1.1 The vectors in a Jordan chain are linearly independent.

Proof. Suppose not. Then \(0 = \sum_{i=0}^{\ell-1} \alpha_i N^i v \), where not every \(\alpha_i \in k \) is zero. Let \(i_0 \) be the smallest index for which \(\alpha_{i_0} \neq 0 \). Then

\[0 = \alpha_{i_0} N^{i_0}v + \cdots + \alpha_{\ell-1} N^{\ell-1}v. \quad (12) \]

Applying \(N^{\ell-1-i_0} \) to both sides of (12) gives \(0 = \alpha_{i_0} N^{\ell-1}v \). By hypothesis \(v \not\in \ker N^{\ell-1} \), that is, \(N^{\ell-1}v \neq 0 \). Hence \(\alpha_{i_0} = 0 \). This contradicts the definition of the index \(i_0 \). Therefore \(\alpha_i = 0 \) for every \(0 \leq i \leq \ell - 1 \). Thus the vectors \(\{N^i v\}_{i=0}^{\ell-1} \), which span the Jordan chain \(V^\ell \), are linearly independent.

\[\square\]

With respect to the standard basis \(\{N^{\ell-1}v, N^{\ell-2}v, \ldots, Nv, v\} \) of \(V^\ell \) the
matrix of \(N|V^\ell \) is the \(\ell \times \ell \) matrix
\[
\begin{pmatrix}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & \ldots & \ldots & 1 \\
\end{pmatrix},
\]
which is a Jordan block of size \(\ell \).

We want to show that \(V \) can be decomposed into a direct sum of \(N \)-cyclic subspaces. In fact, we show that there is a basis of \(V \), whose elements are given by a dark dot \(\bullet \) or an open dot \(\circ \) in the diagram below such that the arrows give the action of \(N \) on the basis vectors. Such a diagram is called the Young diagram of \(N \).

![Young diagram of N](https://via.placeholder.com/150)

Figure 3.1.1. The Young diagram of \(N \).

Note that the columns of the Young diagram of \(N \) are Jordan chains with generating vector given by an open dot. The black dots form a basis for the image of \(N \), whereas the open dots form a basis for a complementary subspace in \(V \). The dots on or above the \(\ell^{th} \) row form a basis for \(\ker N^\ell \) and the black dots in the first row form a basis for \(\ker N \cap \im N \). Let \(r_\ell \) be the number of dots in the \(\ell^{th} \) row. Then \(r_\ell = \dim \ker N^\ell - \dim \ker N^{\ell-1} \). Thus the Young diagram of \(N \) is unique.

Claim 3.1.2 There is a basis of \(V \) that realizes the Young diagram of \(N \).

Proof. Our proof follows that of Hartl [2]. We use induction of the dimension of \(V \). Since \(\dim \ker N > 0 \), it follows that \(\dim \im N < \dim V \). Thus by
the induction hypothesis, we may suppose that \(\text{im} N \) has a basis which is the union of \(p \) Jordan chains \(\{w_i, Nw_i, \ldots, N^{m_i}w_i\} \) each of length \(m_i \). The vectors \(\{N^{m_i}w_i\}_{i=1}^p \) lie in \(\text{im} N \cap \ker N \) and in fact form a basis of this subspace. Since \(\ker N \) may be larger than \(\text{im} N \cap \ker N \), choose vectors \(\{y_1, \ldots, y_q\} \) where \(q \) is a nonnegative integer such that \(\{N^{m_i}w_1, \ldots, N^{m_p}w_p, y_1, \ldots, y_q\} \) form a basis of \(\ker N \).

Since \(w_i \in \text{im} N \) there is a vector \(v_i \) in \(V \) such that \(w_i = Nv_i \). We assert that the \(p \) Jordan chains

\[
\{v_i, Nv_i, \ldots, N^{m_i+1}v_i\} = \{v_i, w_i, Nw_i, \ldots, N^{m_i}w_i\}
\]

each of length \(m_i + 2 \) together with the \(q \) vectors \(\{y_j\} \), which are Jordan chains of length 1, form a basis of \(V \). To see that they span \(V \), let \(v \in V \). Then \(Nv \in \text{im} N \). Using the basis of \(\text{im} N \) given by the induction hypothesis, we may write

\[
Nv = \sum_{i=1}^p \sum_{\ell=0}^{m_i} \alpha_{i\ell} N^\ell w_i = N\left(\sum_{i=1}^p \sum_{\ell=0}^{m_i} \alpha_{i\ell} N^\ell v_i \right).
\]

Consequently,

\[
v - \sum_{i=1}^p \sum_{\ell=0}^{m_i} \alpha_{i\ell} N^\ell v_i = \sum_{i=1}^p \beta_i N^{m_i+1} v_i + \sum_{\ell=1}^q \gamma_{i\ell} y_{i\ell},
\]

since the vectors

\[
\{N^{m_1}w_1, \ldots, N^{m_p}w_p, y_1, \ldots, y_q\} = \{N^{m_1+1}v_1, \ldots, N^{m_p+1}v_p, y_1, \ldots, y_q\}
\]

form a basis of \(\ker N \). Linear independence is a consequence of the following counting argument. The number of vectors in the Jordan chains is

\[
\sum_{i=1}^p (m_i + 2) + q = \sum_{i=1}^p (m_i + 1) + (p + q) = \dim \text{im} N + \dim \ker N = \dim V.
\]

\[\square\]

We note that finding the generating vectors of the Young diagram of \(N \) or equivalently the Jordan normal form of \(N \), involves solving linear equations with coefficients in the field \(k \) and thus only operations in the field \(k \).
3.2 Some facts about S

We now study the semisimple part A.

Lemma 3.2.1 $V = \ker S \oplus \im S$. Moreover the characteristic polynomial $\chi_S(\lambda)$ of S can be written as a product of λ^n, where $n = \dim \ker S$ and $\chi_{S|\im S}$, the characteristic polynomial of $S|\im S$. Note that $\chi_{S|\im S}(0) \neq 0$

Proof. $\ker S$ is an S-invariant subspace of V. Since $Sv = 0$ for every $v \in \ker S$, the characteristic polynomial of $S|\ker S$ is λ^n.

Because S is semisimple, there is an S-invariant subspace Y of V such that $V = \ker S \oplus Y$. The linear mapping $S|Y : Y \to Y$ is invertible, for if $Sy = 0$ for some $y \in Y$, then $S(y + u) = 0$ for every $u \in \ker S$. Therefore $y + u \in \ker S$, which implies that $y \in \ker S \cap Y = \{0\}$; that is, $y = 0$. So $S|Y$ is invertible. Suppose that $y \in Y$, then $y = S((S|Y)^{-1}y) \in \im S$. Thus $Y \subseteq \im S$. But $\dim \im S = \dim V - \dim \ker S = \dim Y$. So $Y = \im S$.

Since $\ker S \cap \im S = \{0\}$, we see that λ does not divide the polynomial $\chi_{S|\im S}(\lambda)$. Consequently, $\chi_{S|\im S}(0) \neq 0$. Since $V = \ker S \oplus \im S$, where $\ker S$ and $\im S$ are S-invariant subspaces of V, we obtain

$$\chi_S(\lambda) = \chi_{\ker S}(\lambda) \cdot \chi_{S|\im S}(\lambda) = \lambda^n \chi_{S|\im S}(\lambda).$$

Lemma 3.2.2 The subspaces $\ker S$ and $\im S$ are N-invariant and hence A-invariant.

Proof. Suppose that $x \in \im S$. Then there is a vector $v \in V$ such that $x = Sv$. So $Nx = N(Sv) = S(Nv) \in \im S$. In other words, $\im S$ is an N-invariant subspace of V. Because $\im S$ is also S-invariant and $A = S + N$, it follows that $\im S$ is an A-invariant subspace of V. Suppose that $x \in \ker S$, that is, $Sx = 0$. Then $S(Nx) = N(Sx) = 0$. So $Nx \in \ker S$. Therefore $\ker S$ is an N-invariant and hence A-invariant subspace of V.

3.3 Description of uniform normal form

We now describe the uniform normal form of the linear mapping $A : V \to V$, using both its semisimple and nilpotent parts.

Since $A|\ker S = N|\ker S$, we can apply the discussion of §3.1 to obtain a basis of $\ker S$ which realizes the Young diagram of $N|\ker S$, which say has r columns. For $1 \leq \ell \leq r$ let $F_{q\ell}$ be the space spanned by the generating vectors of Jordan chains of $N|\ker S$ in $\ker S$ of length m_ℓ.

By lemma 3.2.1 $A|\im S$ is a linear mapping of $\im S$ into itself with invertible semisimple part $S|\im S$ and commuting nilpotent part $N|\im S$. Using
the discussion of §3.1 for every $r + 1 \leq \ell \leq p$ let F_{ℓ} be the set of generating vectors of the Jordan chains of $N|\text{im} S$ in $\text{im} S$ of length m_ℓ, which occur in the $p - (r + 1)$ columns of the Young diagram of $N|\text{im} S$.

Now we prove

Claim 3.3.1 For each $1 \leq \ell \leq p$ the space F_{ℓ} is S-invariant.

Proof. Let $v^\ell \in F_{\ell}$. Then $\{v^\ell, Nv^\ell, \ldots, N^{m_{\ell}-1}v^\ell\}$ is a Jordan chain in the Young diagram of N of length m_ℓ with generating vector v^ℓ. For each $1 \leq \ell \leq r$ we have $F_{\ell} \subseteq \ker S$. So trivially F_{ℓ} is S-invariant, because $S = 0$ on F_{ℓ}. Now suppose that $r + 1 \leq \ell \leq p$. Then $F_{\ell} \subseteq \text{im} S$ and $S|\text{im} S$ is invertible. Furthermore, suppose that for some $\alpha_j \in k$ with $0 \leq j \leq m_\ell - 1$ we have $0 = \sum_{j=0}^{m_{\ell}-1} \alpha_j N^j(Sv^\ell)$. Then $0 = S(\sum_{j=0}^{m_{\ell}-1} \alpha_j N^j v^\ell)$, because $S|\text{im} S$ and $N|\text{im} S$ commute. Since $S|\text{im} S$ is invertible, the preceding equality implies $0 = \sum_{j=0}^{m_{\ell}-1} \alpha_j N^j v^\ell$. Consequently, by lemma 3.1.1 we obtain $\alpha_j = 0$ for every $0 \leq j \leq m_\ell - 1$. In other words, $\{Sv^\ell, N(Sv^\ell), \ldots, N^{m_{\ell}-1}(Sv^\ell)\}$ is a Jordan chain of $N|\text{im} S$ in $\text{im} S$ of length m_ℓ with generating vector Sv^ℓ. So $Sv^\ell \in F_{\ell}$. Thus F_{ℓ} is an S-invariant subspace of $\text{im} S$ and hence is an S-invariant subspace of V, since $V = \text{im} S \oplus \ker S$.

An A-invariant subspace U of V is uniform of height $m - 1$ if $N^{m-1}U \neq \{0\}$ and $N^mU = \{0\}$ and $\ker N^{m-1}U = NU$. For each $1 \leq \ell \leq r$ let U_{ℓ} be the space spanned by the vectors in the Jordan chains of length m_ℓ in the Young diagram of $N|\ker S$ and for $r + 1 \leq \ell \leq p$ let U_{ℓ} be the space spanned by the vectors in the Jordan chains of length m_ℓ in the Young diagram of $N|\text{im} S$.

Claim 3.3.2 For each $1 \leq \ell \leq p$ the subspace U_{ℓ} is uniform of height $m_{\ell} - 1$.

Proof. By definition $U_{\ell} = F_{\ell} \oplus NF_{\ell} \oplus \cdots \oplus N^{m_{\ell}-1}F_{\ell}$. Since $N^{m_{\ell}} F_{\ell} = \{0\}$ but $N^{m_{\ell}-1} F_{\ell} \neq \{0\}$, the subspace U_{ℓ} is A-invariant and of the height $m_{\ell} - 1$. To show that U_{ℓ} is uniform we need only show that $\ker N^{m_{\ell}-1} \cap U_{\ell} \subseteq NU_{\ell}$ since the inclusion of NU_{ℓ} in $\ker N^{m_{\ell}-1}$ follows from the fact that $N^{m_{\ell}} F_{\ell} = 0$. Suppose that $u \in \ker N^{m_{\ell}-1} \cap U_{\ell}$, then for every $0 \leq i \leq m_{\ell} - 1$ there are unique vectors $f_i \in F_{\ell}$ such that $u = f_0 + Nf_1 + \cdots + N^{m_{\ell}-1}f_{m_{\ell}-1}$. Since $u \in \ker N^{m_{\ell}-1} \cap U_{\ell}$ we get $0 = N^{m_{\ell}-1}u = N^{m_{\ell}-1}f_0$. If $f_0 \neq 0$, then the preceding equality contradicts the fact that f_0 is a generating vector of a Jordan chain of N of length m_ℓ. Therefore $f_0 = 0$, which means that $u = N(f_1 + \cdots + N^{m_{\ell}-2}f_{m_{\ell}-1}) \in NU_{\ell}$. This shows that $\ker N^{m_{\ell}-1} \cap U_{\ell} \subseteq NU_{\ell}$. Hence $\ker N^{m_{\ell}-1} \cap U_{\ell} = NU_{\ell}$, that is, the subspace U_{ℓ} is uniform of height $m_{\ell} - 1$.

11
Now we give an explicit description of the uniform normal form of the linear mapping A. For each $1 \leq \ell \leq p$ let $\chi_{S|F_{q\ell}}$ be the characteristic polynomial of S on $F_{q\ell}$. From the fact that every summand in $U_{q\ell} = F_{q\ell} \oplus NF_{q\ell} \oplus \cdots \oplus N^{m_{\ell}-1}F_{q\ell}$ is S-invariant, it follows that the characteristic polynomial $\chi_{S|U_{q\ell}}$ of S on $U_{q\ell}$ is $\chi_{S|F_{q\ell}}^{m_{\ell}}$. Since $V = \sum_{\ell=1}^{p} \oplus U_{q\ell}$, we obtain

$$\chi_S = \prod_{\ell=1}^{p} \chi_{S|F_{q\ell}}^{m_{\ell}}.$$

Choose a basis $\{u_{j,\ell}^{\ell}\}_{j=1}^{q_{\ell}}$ of $F_{q\ell}$ so that the matrix of $S|F_{q\ell}$ is the $q_{\ell} \times q_{\ell}$ companion matrix $C_{q_{\ell}}$ associated to the characteristic polynomial $\chi_{S|F_{q\ell}}$. When $1 \leq \ell \leq r$ the companion matrix $C_{q_{\ell}}$ is 0 since $S|F_{q_{\ell}} = 0$. With respect to the basis $\{u_{j,\ell}^{\ell}, Nu_{j,\ell}^{\ell}, \ldots, N^{m_{\ell}-1}u_{j,\ell}^{\ell}\}_{j=1}^{q_{\ell}}$ of $U_{q\ell}$ the matrix of $A|U_{q\ell}$ is the $m_{q_{\ell}}q_{\ell} \times m_{q_{\ell}}q_{\ell}$ matrix

$$D_{m_{q_{\ell}}} = \begin{pmatrix} C_{q_{\ell}} & 0 & 0 & \cdots & 0 \\ I & C_{q_{\ell}} & 0 & \cdots & 0 \\ 0 & I & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & I & C_{q_{\ell}} \\ 0 & \cdots & 0 & 0 & I \end{pmatrix}.$$

Since $V = \sum_{\ell=1}^{p} \oplus U_{q\ell}$, the matrix of A is $\text{diag}(D_{m_{q_{1}}}, \ldots, D_{m_{q_{p}}})$ with respect to the basis $\{u_{j,\ell}^{\ell}, Nu_{j,\ell}^{\ell}, \ldots, N^{m_{\ell}-1}u_{j,\ell}^{\ell}\}_{j=1}^{q_{\ell}}$. We call preceding matrix the uniform normal form for the linear map A of V into itself. We note that this normal form can be computed using only operations in the field k of characteristic 0.

Using the uniform normal form of A we obtain a factorization of its characteristic polynomial χ_A over the field k.

Corollary 3.3.3 $\chi_A(\lambda) = \prod_{\ell=1}^{p} \chi_{S|F_{q\ell}}^{m_{\ell}}(\lambda) = \lambda^n \prod_{\ell=r+1}^{p} \chi_{S|F_{q\ell}}^{m_{\ell}}(\lambda)$, where $n = \sum_{\ell=1}^{r} m_{\ell} = \dim \ker S$.

References

[1] N. Burgoyne and R. Cushman, *The decomposition of a linear mapping*, J. Lin. Alg. & Appl., 8 (1974) 515–519.

[2] J. Hartl, *Ein einfacher Induktionsbeweis für die Existenz der Jordan-Normalform*, Arch. Math. (Basel) 50 (1988) 323–327.