A comparison of the neuroprotective efficacy of newly developed oximes (K117, K127) and currently available oxime (obidoxime) in tabun-poisoned rats

Jiri Kassa¹, Jana Zdarova Karasova¹, Kamil Musilek¹, Kamil Kuca², and Young-Sik Jung³

¹Department of Toxicology, Faculty of Military Health Sciences, Trebesska, Hradec Kralove, Czech Republic
²Center of Advanced Studies, Faculty of Military Health Sciences, Trebesska, Hradec Kralove, Czech Republic
³Medicinal Science Division, Korea Research Institute of Chemical Technology, Yusong, Daejeon, Korea

Abstract

The potency of newly developed bispyridinium compounds (K117, K127) to reduce tabun-induced acute neurotoxic signs and symptoms was compared with currently available oxime (obidoxime) using functional observational battery. The neuroprotective effects of atropine alone and atropine combined with one of three bispyridinium oximes (K117, K127, obidoxime) on rats poisoned with tabun at a sublethal dose (180 μg/kg i.m.; 80% of LD₅₀ value) were studied. Tabun-induced neurotoxicity was monitored using a functional observational battery and automatic measurement of motor activity at 24 h following tabun challenge. The results indicated that all tested oximes combined with atropine enabled tabun-poisoned rats to survive 24 h following tabun challenge while one tabun-poisoned rats died within 24 h after tabun poisoning when the rats were treated with atropine alone. Newly developed oxime K127 combined with atropine was the most effective in decreasing tabun-induced neurotoxicity in the case of sublethal poisonings among all oximes tested. Nevertheless, the differences of neuroprotective efficacy between K127 and obidoxime are not sufficient to replace obidoxime by K127 for the treatment of acute tabun poisonings.

Keywords: Atropine, Functional observational battery, Neurotoxicity, Oximes, Tabun

Introduction

Organophosphorus nerve agents are considered to be the most dangerous chemical warfare agents. These compounds pose potential neurotoxic threats to both military and civilian populations as evidenced by terrorist attacks in Japan (Ohtomi et al. 1996). Their acute toxic effects are based on the phosphorylation of acetylcholinesterase (AChE, EC 3.1.1.7), leading to the irreversible inhibition of its active site and subsequent overstimulation of postsynaptic cholinergic receptors due to the accumulation of the neurotransmitter acetylcholine in synapses of the central and peripheral nervous systems (Marrs 1993; Lotti 2000).

The medical countermeasures of nerve agent poisonings include the administration of the antidotes that are able to counteract the main toxic effects of nerve agents. The standard antidotal treatment of nerve agent poisoning usually includes an anticholinergic agent to block the overstimulation of cholinergic receptors and an oxime to reactivate nerve agent-inhibited AChE (Dawson 1994; Taylor 1996). The compounds with nucleophilic oximate anion were discovered and considered to be able to reactivate nerve agent-inhibited AChE by dephosphonylating the enzyme active site and restoring its activity. However, some nerve agents were found to be resistant to standard antidotal treatment. One of the most resistant nerve agents is tabun (O-ethyl-N,N-dimethyl phosphoramidocyanidate). Deleterious effects of tabun are extraordinarily difficult to antagonize because of the changes in hydrogen bonding and the conformational

The authors would like to thank Mrs E. Reslova and Mrs J. Uhlirova for their skilful technical assistance. The study was supported by the grant of Ministry of Defense, No FVZ0000501.

Address for Correspondence: Professor Jiri Kassa, MD, CSc, Trebesska 1575, Faculty of Military Health Sciences, 500 01 Hradec Kralove, Czech Republic.
Tel: +420 973251500. Fax: +420 495518094. E-mail: kassa@pmfhk.cz

(Received 4 August 2008; revised 3 September 2008; accepted 6 September 2008)

ISSN 1537-6516 print/ISSN 1537-6516 online © 2009 Informa UK Ltd
DOI: 10.1080/15376510802455362 http://www.informapharmascience.com/txm
changes of AChE-tabun complex prior to an aging process in the AChE active site (Cabáň and Bajgar 1999; Ekström et al. 2006).

Tabun can produce centrally-mediated seizure activity, that rapidly progresses to status epilepticus and contributes to profound brain damage (Marrs 1993; Taylor 1996). The exposure of experimental animals to tabun in convulsions-inducing doses may result in irreversible lesions in the central nervous system (CNS) that can be manifested as behavioral effects in survivors that have convulsed (Jokanovic 1993). Therefore, the ability of antidotes to block the acute neurotoxic effects of tabun and prevent development of irreversible lesions in the CNS is important for successful antidotal treatment. Generally, the oximes exert more potent effects in the peripheral compared to central system due to their poor penetration into the CNS. Nevertheless, there are published results demonstrating the penetration of oximes into CNS and subsequent reactivation of nerve agent-inhibited AChE in the brain (Cassel et al. 1997; Sakurada et al. 2003). Although the rate of the reactivation of nerve agent-inhibited AChE in the brain is lower compared to the peripheral system, the role of CNS is important for survival from nerve agent exposure (Marrs 1993; Kassa 2002).

As the ability of currently used monopyridinium (e.g. pralidoxime) and bispipridinium oximes (e.g. obidoxime) to counteract the neurotoxic effects of tabun is generally poor (Kassa et al. 2005), the replacement of commonly used oximes with a more effective oxime has been a long-standing goal for the treatment of tabun poisoning (Dohnal et al. 2005). For this purpose, new bispipridinium oximes K117 [1,5-bis(4-hydroxyiminomethylpyridinium)-3-oxapentane dibromide] and K127 [1-(4-hydroxyiminomethylpyridinium)-5-(4-carboxamoylpyridinium)-3-oxapentane dibromide] (Fig. 1) were synthesized (Kim et al. 2005; Musilek et al. 2006) to improve the efficacy of antidotal treatment in eliminating tabun-induced neurotoxicity.

The aim of this study was to compare the neuroprotective potency of newly developed oximes (K117, K127) with currently available oxime (obidoxime) in combination with an anticholinergic drug atropine in tabun-poisoned rats. The tabun-induced neurotoxic signs were determined using a functional observational battery, a non-invasive and relatively sensitive type of neurological examination for a wide range of neurobiological functions including measurements of sensory, motor, and autonomic nervous functions.

Materials and methods

Animals
Male albino Wistar rats weighing 200–230 g were purchased from Konarovice (Czech Republic). They were kept in an air-conditioned room (22 ± 2°C and 50 ± 10% relative humidity, with lights from 7.00 to 19.00 h) and allowed access to standard food and tap water ad libitum. The rats were divided into groups of eight animals. Handling of the experimental animals was performed in compliance with relevant laws and institutional guidelines and done under the supervision of the Ethics Committee of the Faculty of Military Health Sciences in Hradec Kralove (Czech Republic).

Enzymes and chemicals
Tabun was obtained from Military Technical Institute in Brno (Czech Republic) and was 96% pure as assayed by acidimetric titration. All oximes studied of 98.5% purity were synthesized at the Department of Toxicology of the Faculty of Military Health Sciences in Hradec Kralove (Czech Republic). Their purities were analyzed using HPLC. All other drugs and chemicals of analytical grade were obtained commercially and used without further purification. All substances were administered intramuscularly (i.m.) at a volume of 1 mL/kg body weight (b.w.).

In vivo experiments
Tabun was administered at a sublethal dose (180 µg/kg b.w. 80% LD50). One minute following tabun challenge, the rats were treated with atropine (21 mg/kg b.w.) alone or in combination with obidoxime, K117 or K127 in equitoxic doses corresponding to 5% of their LD50 values (Kassa et al. 2008). The neurotoxicity of tabun was monitored using the functional observational battery at 24 h following tabun poisoning. The evaluated markers of tabun-induced neurotoxicity in experimental animals were compared with the parameters obtained from control rats given saline instead of tabun and antidotes at the same volume.

The functional observational battery consists of 47 measurements of sensory, motor and autonomic nervous functions. Some of them are scored (Table 1), the others are measured in absolute units (Frantík and Hornýchova 1995; Hornýchova et al. 1995; Moser et al. 1997). The first evaluation was obtained when tabun-poisoned rats were in the home cage. The observer evaluated each animal’s posture, palpebral closure, and involuntary motor movements. Then, each rat was removed from the home cage and briefly hand-held. The exploratory activity, piloerection, and other skin abnormalities were noted. Salivation and nose secretion were also

![Figure 1](image-url)
Marker	Scored values only
Posture	sitting or standing, rearing, asleep, flattened, lying on side, crouched, head bobbing
Catch difficulty	passive, normal, defense, flight, escape, aggression
Ease of handling	very easy, easy, moderately difficult, difficult
Muscular tonus	atonia, hypotonia, normal, rigidity, fasciculations
Lacrimation	slight, severe, crista, colored crista
Palpebral closure	open, slightly drooping, half-way drooping, completely shut, ptosis
Endo-exophthalmus	endo, normal, exo
Piloerection	no, yes
Skin abnormalities	normal, pale, erythema, cyanosis, pigmented, cold, injury
Salivation	slight, severe, colored
Nose secretion	slight, severe, colored
Clonic movements	normal, repetitive movements of mouth and jaws, nonrhythmic quivers, mild tremors, severe tremors, myoclonic jerks, clonic convulsions
Tonic movements	normal, contraction of extensors, opisthotonus, emprosthotonus, explosive jumps, tonic convulsions
Gait	normal, ataxia, overcompensation of hindlimbs movements, feet point outwards from body, forelimbs are extended, walks on tiptoes, hunched body, body is flattened against surface
Gait score	normal, slightly impaired, somewhat impaired, totally impaired
Mobility score	normal, slightly impaired, somewhat impaired, totally impaired
Activity	very low, sporadic, stupor, reduced, normal, enhanced, permanent
Tension	none, partial (ears), stupor
Stereotypy	none, head weaving, grooming, circling, others
Bizarre behavior	none, head weaving, self-mutilation, abnormal movements, others
Approach response	no reaction, normal, slow reaction, energetic reaction, exaggerated reaction
Touch response	no reaction, normal, slow reaction, energetic reaction, exaggerated reaction
Click response	no reaction, normal, slow reaction, energetic reaction, exaggerated reaction
Tail-pinch response	no reaction, normal, slow reaction, energetic reaction, exaggerated reaction
Pupil size	miosis, normal, mydriasis
Pupil response	no reaction, normal reaction, normal reaction, slightly uncoordinated
Righting reflex	normal, slightly uncoordinated, lands on side, lands on back
registered and scored. Then, the rats were placed on a flat surface which served as an open field. A timer was started for 3 min during which the frequency of rearing responses was recorded. Rearing is the special kind of movement characterized by raising (both forelimbs are put up). This kind of movement is typical for exploratory behavior of rats. At the same time, gait characteristics were noted and ranked, and arousal, stereotypy, and bizarre behaviors and abnormal posture were evaluated. At the end of the third minute, the number of fecal boluses and urine pools on the adsorbent pad was registered. Reflex testing comprising recording each rat’s response to the frontal approach of the blunt end of a pen, a touch of the pen to the posterior flank, and an auditory clic stimulus was also used. The response to a pinch on the tail and the ability of pupils to constrict in response to light were then assessed. These measures were followed by a test for the aerial righting reflex and by the measurements of forelimb and hindlimb grip strength, body weight, rectal temperature, and finally hindlimb landing foot splay. The whole battery of tests required approximately 6–8 min per rat. The observer of behavior did not know about the design of experiments. Motor activity data were collected shortly after finishing of the functional observational battery, using an apparatus for testing of a spontaneous motor activity of laboratory animals (constructed at the Faculty of Military Health Sciences, Hradec Kralove, Czech Republic). The animals were placed for a short period (10 min) in the measuring cage and their movements (total, horizontal, and vertical activity) were recorded.

Table 2. The values of tabun-induced activity and neuromuscular neurotoxic markers measured at 24 h following tabun challenge by the functional observational battery. (No 1–2, 4–14 scored values, No 3, 15–21 values in absolute units).

24 hours	Controls (n = 8)	Tabun-A + K117 (n = 8)	Tabun-A + K127 (n = 8)	Tabun-A + obidoxime (n = 8)	Tabun-A (n = 7)	Tabun (n = 6)
1 posture	1.00 ± 0.00	3.00* ± 0.00	3.00* ± 0.00	3.00* ± 0.00	3.00* ± 0.00	3.00* ± 0.00
2 muscular tonus	0.00 ± 0.00	−2.00* ± 0.00	0.00 ± 0.00	0.00 ± 0.00	−2.00* ± 0.00	−2.00* ± 0.00
3 rearing	8.25 ± 4.27	0.63* ± 1.77	5.00 ± 5.71	1.63* ± 0.92	0.75* ± 1.75	2.25* ± 3.11
4 hyperkinesis	0.00 ± 0.00	2.00* ± 0.00	0.00 ± 0.00	5.00* ± 0.00	0.00 ± 0.00	0.00 ± 0.00
5 tremors	0.00 ± 0.00	2.00* ± 0.00	0.00 ± 0.00	2.00* ± 0.00	0.00 ± 0.00	0.00 ± 0.00
6 clonic movements	0.00 ± 0.00	1.00* ± 0.00	0.00 ± 0.00	1.00* ± 0.00	0.00 ± 0.00	0.00 ± 0.00
7 tonic movements	0.00 ± 0.00	3.00* ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
8 gait	0.00 ± 0.00	7.00* ± 5.00	0.00 ± 0.00	7.00* ± 1.00	1.00* ± 0.00	1.00 ± 1.00
9 ataxia	0.00 ± 0.00	2.00* ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	2.00* ± 0.00
10 gait score	0.00 ± 0.00	2.00* ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
11 mobility score	1.00 ± 0.00	3.00* ± 1.00	0.00 ± 0.00	1.00 ± 1.00	1.00 ± 1.00	1.00 ± 1.00
12 activity	4.00 ± 1.00	1.00* ± 4.00	1.00* ± 1.00	2.00* ± 1.00	1.00* ± 1.00	1.00 ± 1.00
13 RRF	1.00 ± 1.00	1.00 ± 1.00	1.00 ± 1.00	1.00 ± 1.00	1.00 ± 1.00	1.00 ± 1.00
14 RRV	1.00 ± 1.00	1.00 ± 1.00	1.00 ± 1.00	1.00 ± 1.00	1.00 ± 1.00	1.00 ± 1.00
15 landing foot splay (mm)	94.00 ± 12.47	78.63* ± 12.64	105.50 ± 20.26	111.13* ± 15.97	89.31 ± 40.57	59.88 ± 39.66
16 forelimb grip strength (kg)	5.75 ± 0.82	4.26* ± 1.06	5.39 ± 1.11	5.98 ± 0.90	5.13 ± 2.05	4.95 ± 1.01
17 hindlimb grip strength (kg)	1.14 ± 0.22	0.49* ± 0.20	1.06 ± 0.16	1.06 ± 0.23	0.81* ± 0.31	0.67* ± 0.10
18 grip strength of all limbs (kg)	19.01 ± 1.41	11.96* ± 2.92	19.55 ± 3.79	20.23 ± 2.40	12.93* ± 6.33	11.30* ± 2.71
19 vertical activity	121.00 ± 112.29	16.75* ± 28.22	30.13* ± 38.04	10.50* ± 6.55	25.25* ± 29.49	30.13* ± 30.34
20 horizontal activity	12.63 ± 17.82	1.88 ± 4.55	2.63 ± 3.11	0.13 ± 0.35	3.25 ± 7.23	3.50 ± 7.21
21 total motor activity	133.63 ± 127.29	18.63* ± 32.46	32.75 ± 40.70	10.63* ± 6.67	28.50* ± 35.94	33.63 ± 36.33

*p < 0.05 (comparison with the control values).

Data analysis

Data collected with the functional observational battery and motor activity assessment include categorial, ordinal, and continuous values. Statistical analyses were performed on a PC with a special interactive program NTX (Frantik and Hornychova 1995). The categorial and ordinal values were formulated as contingency tables and judged consecutively by Chi-squared test of homogeneity, Concordance-Discordance test, and Kruskal-Wallis test, respectively. The continual data were assessed by successive statistical tests: CI for Delta, Barlett test for Equality of Variance, Williams test and Test for Distribution Functions (Roth et al. 1962). The differences were considered significant when *p* < 0.05.

Results

Six of eight tabun-poisoned rats survived till the end of experiment (24 h following the intoxication). When tabun-poisoned rats were treated with atropine alone, seven of eight tabun poisoned rats survived within 24 h after tabun challenge. On the other hand, all tabun-poisoned rats treated with atropine in combination with one of the tested oximes survived till the end of experiment.

The results of the experiments related to the measurement of tabun-induced neurotoxicity at 24 h following tabun poisoning are divided into three parts (activity and neuromuscular measures, sensorimotor and excitability measures, and autonomic measures—Moser et al. 1997) and summarized in Tables 2–4. The observation of neurotoxic...
signs indicated that many functional disorders in poisoned rats lasted at least 24 h not only in tabun-poisoned rats but also in tabun-poisoned rats treated with atropine alone or in combination with K117 and obidoxime. Tabun produced passive behavior of rats during handling and retention, miosis, and a decrease in muscle tone at 24 h following tabun administration. The exploratory and rearing activity were significantly decreased and gait was severely impaired. In addition, no reaction during recording each rat’s response to an auditory clic stimulus was observed. Non-treated tabun-poisoned rats and tabun-poisoned rats treated with atropine alone or atropine combined with K117 were not able to constrict their pupils in response to light due to tabun-induced miosis. A marked decrease in limb grip strength, food receiving, body temperature, and spontaneous horizontal as well as vertical motor activity were also observed at 24 h following tabun challenge (Tables 2–4). On the other hand, K127 in combination with atropine was able to prevent some tabun-induced signs of neurotoxicity observed at 24 h following tabun challenge with the exception of passive behavior of rats during handling and retention, miosis, gait impairment, a decrease in food receiving, body temperature, and spontaneous horizontal as well as vertical motor activity (Tables 2–4).

Discussion

The potency of atropine alone to decrease tabun-induced acute neurotoxic signs is very low and corresponds to previously published results demonstrating that atropine alone is not able to prevent tabun-induced seizures and subsequent neurotoxic effects including brain damage following...
an exposure to tabun at sublethal and lethal doses (Kassa and Koupilova 2000; McDonough et al. 2000; Kassa and Kunesova 2006). Therefore, anticholinergic drugs such as atropine need to be combined with an AChE reactivator for more effective antidotal treatment of tabun poisonings. To combine atropine with an oxime, the efficacy of antidotal treatment of tabun poisonings is increased, although the central reactivating efficacy of oximes is lower compared to peripheral reactivating efficacy (Kassa 2002). Pralidoxime, a currently available oxime for the treatment of poisonings with highly toxic organophosphates (Dawson 1994), seems to be practically ineffective in preventing tabun-induced neurotoxicity (Kassa and Krejcová 2003). Another commonly used oxime (obidoxime) is able to partly eliminate tabun-induced acute neurotoxicity following i.m. administration of tabun at a lethal dose, nevertheless, its neuroprotective efficacy is not satisfactory (Kassa and Krejcová 2003; Kassa and Karasova 2007). The oxime HI-6 was demonstrated to be significantly less efficacious to block tabun-induced acute neurotoxicity than obidoxime (Kassa and Krejcová 2003; Kassa and Karasova 2007). The unsatisfactory efficacy of the above mentioned oximes to prevent tabun-induced acute neurotoxicity can be explained due to low potency of these oximes in reactivating tabun-inhibited AChE in vitro and in vivo (Puu et al. 1986; Jokanovic et al. 1996; Worek et al. 1998).

Our results demonstrate that the newly developed oxime K117 is completely ineffective to reduce tabun-induced acute neurotoxic signs and symptoms while the neuroprotective efficacy of another newly developed oxime K127 is markedly higher. The difference between neuroprotective efficacy of both newly developed oximes corresponds to the difference between their reactivating and therapeutic efficacy (Kassa et al. 2008). The low neuroprotective, reactivating, and therapeutic efficacy of K117 can be caused by low dosage due to its high acute toxicity (Kassa et al. 2008). The different toxicity of both newly developed oximes is probably caused by the differences in their chemical structure. The oxime K127 differs from K117 by the presence of carbamoyl group that diminishes its toxicity. On the other hand, the oxime K117 has two oxime groups that are responsible for its higher toxicity in comparison with K127.

The reason for a relatively high efficacy of K127 to reduce tabun-induced acute neurotoxic signs and symptoms is probably a chemical structure of its molecule because the potency of oximes to counteract the acute toxicity of nerve agents depends upon their chemical structure. The main structural features which influence their efficacy are the oxime functional group (its position and amount), the connecting linker for bisquaternary reactivators and other substituent(s) on the second heteroaromatic ring (Cabal et al. 2004; Kuca et al. 2006; Musilek et al. 2007). For tabun poisonings, at least one oxime in position four on the heteroaromatic ring is necessary for substantial reactivating, therapeutic, and neuroprotective potency, whilst an oxime in position two has a low or no capability to counteract acute toxicity of tabun (Kuca et al. 2006). Additionally, the optimal linker length suitable for tabun intoxication varies from three to four carbon–carbon bonds (Cabal et al. 2004).

The neuroprotective efficacy of the oxime K127 is slightly better compared to obidoxime, although its therapeutic and reactivation efficacy does not prevail the effects of obidoxime (Kassa et al. 2008). Additionally, the difference of neuroprotective efficacy between K127 and obidoxime is not sufficient to replace currently used oximes by K127 for the treatment of acute tabun poisonings.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References

Cabal, J., and Bajgar, J. 1999. Tabun—reappearance 50 years later (in Czech). Chem. Listy 93:27–31.

Cabal, J., Kuca, K., and Kassa, J. 2004. Specification of the structure of oximes able to reactivate tabun-inhibited acetylcholinesterase. Pharmacol. Toxicol. 95:81–86.

Cassel, G., Karlsson, L., Waara, L., Wei Ang, K., and Goransson-Nyberg, A. 1995. Pharmacokinetics and effects of HI-6 in blood and brain of soman-intoxicated rats: a microdialysis study. Eur. J. Pharmacol. 323:43–52.

Dawson, R. M. 1994. Review of oximes available for treatment of nerve agent poisoning. J. Appl. Toxicol. 14:317–331.

Dohnal, V., Kuca, K., and Jun, D. 2005. Prediction of a new broad-spectrum reactivator capable of reactivating acetylcholinesterase inhibited by nerve agents. J. Appl. Toxicol. 3:139–145.

Ekström, F., Aftur, C., Tunemalm, A. K., and Lundberg, S. 2006. Structural changes of phenylalanine 338 and histidine 447 revealed by the crystal structures of tabun-inhibited murine acetylcholinesterase. Biochemistry 45:74–81.

Frantik, E., and Hornychova, M. 1995. Clustering of neurobehavioral measures of toxicity. Homeostasis 36:19–25.

Hornychova, M., Frantik, E., Kubat, J., and Formanek, J. 1995. Neurotoxicity profile of supermethylrin, a new pyrethroid insecticide. Cent. Eur. J. Publ. Health 3:210–218.

Jokanovic, M. 1993. Anticholinesterase activity and delayed neurotoxic effects of tabun in hens. Vojnosanit. Pregl. 50:451–456.

Jokanovic, M., Maksimovic, M., Kilibarda, V., Jovanovic, D., and Savic, D. 1996. Oxime-induced reactivation of acetylcholinesterase inhibited by phosphoryramides. Toxicol. Lett. 85:35–39.

Kassa, J. 2002. Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve agents. J. Toxicol. Clin. Toxicol. 40:803–816.

Kassa, J., and Karasova, J. 2007. The evaluation of the neuroprotective effects of bispyridinium oximes in tabun-poisoned rats. J. Toxicol. Environ. Health A 70:1556–1567.

Kassa, J., and Koupilova, M. 2000. The importance of anticholinergic drug selection for the neuroprotective effects of antidotes in soman-poisoned rats. Homeostasis 1:252–33.

Kassa, J., and Krejcová, G. 2003. Neuroprotective effects of currently used antidotes in tabun-poisoned rats. Pharmacol. Toxicol. 92:258–264.

Kassa, J., and Kunesova, G. 2006. Comparison of the neuroprotective effects of the newly developed oximes (K027, K048) with trimedoxime in tabun-poisoned rats. J. Appl. Biomed. 4:123–134.

Kassa, J., Cabal, J., and Kuca, K. 2005. A comparison of the efficacy of currently available oximes against tabun in rats. Biologia 60(Suppl. 17):77–79.

Kim, T.-H., Kuca, K., Jun, D., and Jung, Y.-S. 2005. Design and synthesis of new bis-pyridinium oxime reactivators for acetylcholinesterase inhibited by organophosphorus nerve agents. Bioorg. Med. Chem. Lett. 15:2914–2917.
Kuca, K., Jun, D., and Musilek, K. 2006. Structural requirements of acetylcholinesterase reactivators. *Mini Rev. Med. Chem.* 6:269–277.

Lotti, M. 2000. Organophosphorus compounds. In: Spencer, P. S., and Schaumburg, H. H. (Eds.), *Experimental and Clinical Neurotoxicology*, Oxford University Press, New York, pp. 898–925.

Marrs, T. C. 1993. Organophosphate poisoning. *Pharmacol. Ther.* 58:51–66.

McDonough, J. H. Jr., Zoefel, L. D., McMonagle, J., Copeland, T. L., Smith, C. D., and Shih T.-M. 2000. Anticonvulsant treatment of nerve agent seizures: anticholinergics versus diazepam in soman-intoxicated guinea-pigs. *Epilepsy Res.* 38:1–14.

Moser, V. C., Tilson, H., McPhail, R. C., Becking, G. C., Cuomo, V., Frantik, E., Kulig, B. M., and Winneke, G. 1997. The IPCS collaborative study on neurobehavioral screening methods: II. Protocol design and testing procedures. *Neurotoxicology* 18:929–938.

Musilek, K., Kuca, K., Jun, D., Dohnal, V., Kim, T.-H., Jung, Y.-S., and Dolezal, M. 2006. Synthesis of reactivators of phosphorylated acetylcholinesterase of bis-pyridinium dialdoxime type with a 3-oxapentane connecting chain and their testing in vitro on a model of the enzyme inhibited by chlorpyrifos and methylchlorpyrifos. (in Czech) *Ces. Slov. Farm.* 55:115–119.

Musilek, K., Kuca, K., Jun, D., and Dolezal, M. 2007. Progress in synthesis of new acetylcholinesterase reactivators during the period 1990–2004. *Curr. Org. Chem.* 11:229–238.

Ohtomi, S., Takase, M., and Kumagai, F. 1996. Sarin poisoning in Japan. A clinical experience in Japan Self Defense Force (JSDF) Central Hospital. *Int. Rev. Arm. Ser.* 60:97–102.

Puu, G., Artursson, E., and Bucht, G. 1986. Reactivation of nerve agent inhibited acetylcholinesterase by HI-6 and obidoxime. *Biochem. Pharmacol.* 35:1505–1510.

Roth, Z., Josifko, M., Maly, V., and Trcka, V. 1962. *Statistical Methods in Experimental Medicine* (in Czech), SZN, Prague.

Sakurada, K., Matsubara, K., Shimizu, K., Shiono, H., Seto, Y., Tsuge, K., Toshibo, M., Sakai, I., Mukoyama, H., and Takatori, T. 2003. Pralidoxime iodide (2-PAM) penetrates across the blood-brain barrier. *Neurochem. Res.* 28:1401–1407.

Taylor, P. 1996. Anticholinesterase agents. In: Hardman, J. G., and Limbird, L. E. (Eds.), *The Pharmacological Basis of Therapeutics*, McGraw Hill, New York, pp. 161–176.

Worek, F., Widmann, R., Knopf, O., and Szinicz, L. 1998. Reactivating potency of obidoxime, pralidoxime, HI-6 and HL6-7 in human erythrocyte acetylcholinesterase inhibited by highly toxic organophosphorus compounds. *Arch. Toxicol.* 72:237–243.