Sterile neutrino self-interactions: H_0 tension and short-baseline anomalies

Maria Archidiaconoa,b, Stefano Gariazzoc, Carlo Giuntid, Steen Hannestade, Thomas Trame

aUniversitá degli Studi di Milano, via G. Celoria 16, 20133 Milano, Italy
bINFN, Sezione di Milano, Milano, Italy
cInstituto de Física Corpuscular (CSIC-Universitat de València), Parc Científic UV, C/Catedrático José Beltrán, 2, E-46980 Paterna (Valencia), Spain
dINFN, Sezione di Torino, Via P. Giuria 1, I–10125 Torino, Italy
eDepartment of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark

E-mail: maria.archidiacono@unimi.it, gariazzo@ific.uv.es, giunti@infn.to.it, sth@phys.au.dk, thomas.tram@phys.au.dk

Abstract. Sterile neutrinos with a mass in the eV range have been invoked as a possible explanation of a variety of short baseline (SBL) neutrino oscillation anomalies. However, if one considers neutrino oscillations between active and sterile neutrinos, such neutrinos would have been fully thermalised in the early universe, and would be therefore in strong conflict with cosmological bounds. In this study we first update cosmological bounds on the mass and energy density of eV-scale sterile neutrinos. We then perform an updated study of a previously proposed model in which the sterile neutrino couples to a new light pseudoscalar degree of freedom. Consistently with previous analyses, we find that the model provides a good fit to all cosmological data and allows the high value of H_0 measured in the local universe to be consistent with measurements of the cosmic microwave background. However, new high ℓ polarisation data constrain the sterile neutrino mass to be less than approximately 1 eV in this scenario. Finally, we combine the cosmological bounds on the pseudoscalar model with a Bayesian inference analysis of SBL data and conclude that only a sterile mass in a narrow range around 1 eV remains consistent with both cosmology and SBL data.
Recent cosmological results have confirmed the success of the Lambda Cold Dark Matter (ΛCDM) model over a wide range of redshifts and scales. Nevertheless, as the precision of cosmological data increases, tensions among different data sets appear, most notably the 4.4σ tensions between the value of the Hubble constant H_0 in the early Universe and the one in the late Universe. The former is inferred from the Cosmic Microwave Background (CMB) data by Planck [1]. The latter comes from direct measurement of various observables with different techniques:\footnote{See Ref. [2, 3] for recent reviews on the H_0 tension.} building a cosmic distance ladder by calibrating the SuperNovae luminosity distance with variable stars (e.g., the Cepheids of the SHOES project [4], and the Mira variables [5]) or with the Tip of the Red Giant Branch [6], using gravitational waves from neutron star mergers as standard sirens [7], or the different ages of galaxies as cosmic clocks [8, 9], estimating the time delay distance between multiple images of distant quasars induced by strong gravitational lensing (H0LiCOW [10]), measuring the angular diameter distance by observing water maser in an accretion disk of supermassive black holes [11], or using the baryonic Tully-Fisher relation [12]. This tension has generated a strong debate whether it is caused by unaccounted systematics [13] or it is the signal of new physics\footnote{For a discussion of possible solutions see [14] and references therein.} either in the early Universe [15] or in the late Universe, with the latter option being less viable due to the SN and Baryonic Acoustic Oscillations (BAO) constraints at $z \lesssim 2$ [16, 17].

One possibility which modifies both the early- and late-time Universe is the addition of light sterile neutrinos. Such particles have been hinted at by a number of terrestrial experiments. The effect of such neutrinos on cosmological observables has been investigated numerous times in the literature (see e.g. [18–31]). With the advent of precision CMB measurements by the Planck mission it became clear that light sterile neutrinos in themselves do not resolve the H_0 tension. However, we previously demonstrated that sterile neutrinos
with a coupling to a new, massless pseudoscalar alleviate the H_0 tension and lead to a significantly improved fit to observables $[32–34]^3$.

Here we re-examine the effect of sterile neutrinos, both with and without additional self-interactions, on cosmology. The aim is to provide updated constraints on our Pseudoscalar model in light of the latest Planck measurements, and in combination with recent results from ground-based sterile neutrino searches. To this end we proceed as follows: Section 2 contains an outline of the model framework we use. Section 3 provides a description of our parameter estimation methodology. In Section 4 we present our main cosmological results, and in Section 5 we combine them with an up-to-date global fit of neutrino oscillation experiments. Finally in Section 6 we draw our conclusions.

2 Pseudoscalar sterile neutrino interactions

The models we investigate all have a light, sterile neutrino in addition to the standard neutrino sector. Besides providing updated constraints on the presence of such particles from the latest cosmological data, we will also reinvestigate constraints on a model in which the sterile neutrinos are coupled to a new, very light pseudoscalar degree of freedom.

2.1 “Vanilla” sterile neutrinos

We take the simple model which has a non-coupled sterile neutrino to be described in terms of only two parameters: the physical sterile neutrino mass, m_s, and the effective contribution to the energy density in the relativistic regime, ΔN_{eff}. While this parametrisation does not completely capture all physical aspects of the sterile sector (for example the exact relation between ΔN_{eff}, m_s, and the late-time contribution to the energy density Ω depends on the specific late-time sterile distribution function), it is adequate for the analysis of current cosmological data. We will assume that the sterile neutrino has the same temperature as standard model neutrinos5 so that the energy density in the relativistic regime is given by

$$\rho_s = \Delta N_{\text{eff}} \rho_{\nu},$$ \hspace{1cm} (2.1)$$

and in the non-relativistic regime by

$$\rho_s = \Delta N_{\text{eff}} m_s n_{\nu},$$ \hspace{1cm} (2.2)$$

where ρ_{ν} and n_{ν} are the energy density and number density of completely decoupled standard model neutrinos.

2.2 Pseudoscalar interactions

Next, we will derive current constraints on a model first proposed in $[32]$. In this model the sterile neutrinos couple to a new, and effectively massless pseudoscalar degree of freedom.

3Neutrino interactions either of a different kind (vector-like sterile neutrino self-interactions $[35, 36]$) or extended to the active neutrino sector $[37–40]$ have been extensively studied over the past few years. However, most of these models turn out to be severely constrained either by cosmological bounds on the sum of neutrino masses and on the free-streaming of active neutrinos $[41–46]$, or by laboratory limits $[47, 48]$.

4A sterile neutrino is a flavor eigenstate and it has no definite mass. Here we approximate $m_s \simeq m_4$ thanks to the fact that, in 3+1 models, the fourth mass eigenstate is mainly mixed with the sterile flavour eigenstate.

5This assumption is corroborated by results obtained e.g. in $[49]$.

– 2 –
Such an additional interaction leads to rapid pair-annihilation and disappearance of the sterile neutrinos below a temperature corresponding to the mass. This was first suggested as a way of reconciling a large mass in the active neutrino sector with cosmological measurements, a model dubbed the “neutrinoless universe” [50]. However, while this model does avoid an overly large suppression of the matter power spectrum, it leads to very significant changes to the CMB spectrum, and at present it is unclear whether the model can be reconciled with cosmological data.

Contrary to this, it was shown in [32] that if the pseudoscalar couples only to the sterile neutrino a very good fit to cosmological data can be obtained. Furthermore, it was demonstrated that the model predicts a value of the Hubble parameter almost exactly identical to the one measured in the local universe. This finding was confirmed in [33, 34] which considered more recent data sets.

Our parameterisation of the model is as follows (see [33] for a more detailed discussion):

- Around the epoch of standard model neutrino freeze-out the total energy density in standard model neutrinos, sterile neutrinos, and pseudoscalars is given by N_{eff}, where $N_{\text{eff}}^\text{std} = 3.046$ [51] (see also [49, 52–54]) for pure standard model neutrinos. However, we will in general allow for extra energy density in the combined fluid so that N_{eff} can be larger.

- Subsequent to neutrinos decoupling from the electromagnetically interacting plasma, the energy in the neutrino-pseudoscalar sector is redistributed by oscillations, so that the sterile plus pseudoscalar sector ends up with a fraction of $(4/7+1)/(4/4+4) = 11/32$ of the total energy density, while the remaining fraction $21/32$ goes in the active sector.

- After this happens, the active and the sterile-pseudoscalar components are completely separated and do not exchange neither energy nor momentum, provided that the dimensionless coupling is larger than $g \sim 10^{-6}$. In this case the sterile neutrinos and pseudoscalars become very strongly coupled prior to the sterile neutrinos becoming non-relativistic. Therefore, the combined system can be treated as a single fluid with a well-defined energy density and equation of state. Once the temperature drops below the sterile neutrino mass, its entropy is transferred to the pseudoscalar so that any sterile rest mass is converted to additional energy in the pseudoscalar component.

3 Methodology and data

We compute the theoretical predictions for the cosmological quantities by means of the Boltzmann solver CLASS [55–57], while its python counterpart MontePython [58, 59] is responsible for computing the cosmological likelihoods and performing the Markov Chain Monte Carlo (MCMC). In order to consider the model described in subsection 2.2, we modified the public CLASS code to take into account the presence of the new particle.

We compute the constraints with the MCMC generator provided by MontePython and scan the parameter space of our cosmological models. Being both models based on the standard ΛCDM model, they have six free parameters in common: the baryon and cold dark matter energy densities (ω_b, ω_c), the angular size of the sound horizon at recombination (θ_s), the reionization optical depth (τ), the amplitude and tilt of the spectrum of primordial curvature fluctuations (A_s, n_s). All these parameters are sampled with a uniform prior without bounds. The additional parameters used to describe the neutrino sector are the
mass of the sterile neutrino m_s, and the number of additional relativistic degrees of freedom ΔN_{eff}.

Within this extended ensemble of parameters we explore three different neutrino scenarios:

Vanilla: the active neutrino sector is described by massless neutrinos providing the standard $N_{\text{eff}}^{\text{std}} = 3.046$ [51], which is kept fixed; the effect of sterile neutrinos is embedded into $\Delta N_{\text{eff}} \geq 0$, which is free to vary, as well as its mass $0 \leq m_s / \text{eV} \leq 10$;

Thermal: same as Vanilla, but here ΔN_{eff} is fixed to 1 to reproduce the case of one fully thermalized sterile neutrino;

Pseudoscalar: (sometimes abbreviated to “Pseudo”): as in the Vanilla case, we have a total $N_{\text{eff}} = N_{\text{eff}}^{\text{std}} + \Delta N_{\text{eff}}$ given by the fixed $N_{\text{eff}}^{\text{std}} = 3.046$ plus the varying $\Delta N_{\text{eff}} \geq 0$, however here the total $N_{\text{eff}} = N_{\text{eff}}^{\text{std}} + \Delta N_{\text{eff}}$ energy density is split into a fraction 21/32 for the active (massless) sector and a fraction 11/32 that represents the pseudoscalar - sterile fluid. The sterile neutrino has again a mass $0 \leq m_s / \text{eV} \leq 10$ (see Section 2).

The constraints on our parameters are computed by fitting CMB and H_0 observations. We use the most recent measurements of the CMB temperature and polarisation spectra by Planck [1, 60]. The computational details on the Planck likelihood are extensively reported in [61]. In particular, we consider two data combinations: “Planck TT”, which includes low multipoles information on temperature and polarisation and only temperature measurements at high multipoles, and “Planck TTTEEE”, which also includes polarisation at high multipoles. In some runs, we also include a prior that takes into account the most recent determination of the Hubble parameter today, $H_0 = 74.03 \pm 1.42 \text{ km/s/Mpc}$ from [4] (hereafter we will refer to this prior as R19).

4 Results

In Table 1 we report the mean values with 68% intervals or the 95% upper limits for the neutrino parameters, for H_0 and for n_s obtained by fitting three data combinations (Planck TT-only, Planck TTTEEE, and Planck TTTEEE plus R19) to the three models described above.

The 95% upper bounds on ΔN_{eff} are about a factor 3 tighter in the Vanilla case with respect to the Pseudoscalar model, and in both scenarios the inclusion of high-ℓ E-mode polarisation makes them more stringent than when considering Planck TT only. As expected,

Parameter	Planck TT	Planck TTTEEE	Planck TTTEEE + R19
ΔN_{eff}	< 0.28	< 0.20	< 0.47
$m_s [\text{eV}]$	< 8.77	< 3.1	< 7.58
$H_0 [\text{km/s/Mpc}]$	67.5$^{+1.0}_{-1.1}$	74.2$^{+2.1}_{-1.2}$	74.1$^{+0.9}_{-0.7}$
n_s	0.964$^{+0.005}_{-0.004}$	0.965$^{+0.006}_{-0.006}$	0.975$^{+0.006}_{-0.006}$

Table 1: 68% intervals or 95% upper limits for neutrino parameters, H_0 and n_s, obtained by fitting Planck TT-only, Planck TTTEEE, and Planck TTTEEE plus R19, to the Vanilla, Pseudoscalar, and Thermal models.
the inclusion of R19 relaxes the limit on ΔN_{eff} in the Vanilla case, while in the Pseudoscalar model it leads to a $> 2\sigma$ evidence in favor of a non-zero value of the extra relativistic component.

In the Vanilla case, the physical mass is either unconstrained (Planck TTTEEE) or it has a limit that is very much affected by the prior boundaries, as a consequence of the well known fact that large m_s values are allowed if ΔN_{eff} is close to zero. In the Thermal case, the 95% upper bound on m_s from TTTEEE is a factor 2 larger than with TT-only, simply because looser constraints help to resolve tensions that are more dramatic in the presence of polarization data; the most stringent bound is obtained with the R19 prior because of the anti-correlation between the hot dark matter density and the Hubble constant.

In the Pseudoscalar model, there is an evidence for a non zero sterile neutrino mass when fitting only TT: $m_s = 3.1^{+1.3}_{-1.1} \text{eV (68\% c.l.)}$. This evidence is removed by the inclusion of the high-ℓ E-mode polarisation data, which restricts the range of the sterile neutrino mass values to $m_s < 1.14 \text{eV at 95\% c.l.}$. The additional R19 prior does not change the result significantly ($m_s < 1.19 \text{eV at 95\% c.l.}$). This point has an impact on the consistency between cosmology and sterile neutrino searches with oscillation experiments, thus, it deserves a dedicated discussion (see next Section 4.1). It should also be noted here that the constraint on the pseudoscalar mass is much tighter than found in our previous analysis [34] due to the addition of the new high-ℓ polarisation data.

The slope of the primordial power spectrum is consistent with the ΛCDM values from Planck 2018 [1] in the Vanilla case, while the Thermal case prefers a scale-invariant Harrison-Zeldovich power spectrum. Notice that in the Pseudoscalar fit of TT-only the n_s mean value is slightly shifted towards larger values and, what is most, the 1σ uncertainty is twice larger than in the Vanilla and Thermal cases. This broader range of allowed n_s values shrinks once polarization is taken into account; we will further elaborate on this, in connection with the m_s bounds, in the next Section 4.1.

In Figure 1 we show the unnormalized posterior for H_0 obtained by fitting Planck TTTEEE to the three models. Concerning the mean values of H_0, for every data combination we have $H_{\text{Vanilla}}^0 < H_{\text{Pseudoscalar}}^0 < H_{\text{Thermal}}^0$. The opposite inequality holds for the number of σ of tension with R19: the Vanilla scenario has a tension of 3.8σ (3.9σ) when fitting TT (TTTEEE) that remains significant (2.7σ) even including the R19 prior; in our Pseudoscalar model the tension is below 1σ when fitting TT only, while it becomes slightly larger 1.3σ including polarisation, and then obviously decreases again below 1σ with the R19 prior;
finally in the Thermal case there is no tension at all. These considerations are confirmed by the χ^2 values in the last three columns of Table 2: the Thermal case perfectly reproduces the local value of H_0, thus, the R19 prior has $\chi^2 = 0$ in such case. However, the χ^2 values also show that the Thermal case pays the price of a very poor fit of CMB data, thus, the total $\Delta \chi^2$ with respect to the Vanilla case is still large. On the contrary, in our Pseudoscalar model the fit of CMB data, although worse than in the Vanilla scenario (see Figure 2), is still reasonable enough to yield a total $\Delta \chi^2 = -1$ in combination with the R19 prior. Notice that the largest contribution to the Pseudoscalar $\Delta \chi^2$ comes from the high-ℓ E-mode polarisation data, which is also responsible for the reduced upper bound on m_s that we already mentioned and that will be further discussed in the next Section.

4.1 CMB phenomenology in the pseudoscalar model

In order to better understand why the addition of high-ℓ polarisation data so severely constrains the mass of the sterile neutrino we have investigated the effect of the pseudoscalar model on CMB anisotropies in more detail. In the left panel of figure 3 we show the angular scale of the sound horizon, θ_s, for three different cases:

Pseudoscalar: The full Pseudoscalar model with $N_{\text{pseudo}} = 1$ and $m_s = 1$ eV.
Figure 3: Left panel: The effective angular sound horizon as a function of conformal time in the early Universe with $h = 0.7$ for the three cases “Pseudoscalar”, “Sterile” and “Massless” described in the text. The vertical lines mark the conformal time of recombination. Right panel: Hubble rate for the same models in the late Universe with fixed angular scale of the sound-horizon at recombination $100 \times \theta_s = 1.04$.

Figure 4: Relative differences in C_{ℓ}^{TT} (left panels) and C_{ℓ}^{EE} (right panels). The upper panels have $h = 0.7$, and the “Sterile” case is clearly more different due to its different late-time behaviour. The lower panels show the case where the angular sound-horizon at recombination has been fixed, and this reduces the scatter by a factor 5. Now the “Massless” and the “Sterile” case are much more similar while the “Pseudoscalar” case stands out.

Massless: The Thermal model with one massless sterile neutrino, corresponding to $N_\nu = 4.046$ massless, non-interacting neutrinos.

Sterile: The Thermal model with one massive sterile neutrino, with the same mass as in the Pseudoscalar model ($m_s = 1$ eV), but no interactions.

Let us first consider the case where the value of the Hubble parameter is $h = 0.7$. As
can be seen from the left panel of Figure 3, the Sterile case has a different angular scale of the sound-horizon due to the additional late-time energy density. In the upper panels of Figure 4 we show the corresponding relative difference in the C_{ℓ}^{TT} and C_{ℓ}^{EE} spectra for fixed $h = 0.7$. The differences of both the Massless and the Pseudoscalar are oscillating, indicating that the peak-structure of the models does not align.

In order to better compare the impact on observables we may also fix the angular scale of the sound-horizon at recombination, θ_s, to be identical in the three cases (which then leads to different values of h). The Hubble rate as a function of redshift for the three cases is shown in the right panel of Figure 3, and the resulting relative differences in CMB spectra are shown in the lower panels of Figure 4. Now, while the residual deviation of the Massless is within the observational error, the Pseudoscalar case stands out in two different ways:

1. There is a residual horizontal peak-shift in both C_{ℓ}^{TT} and C_{ℓ}^{EE} even after θ_s has been fixed.

2. The C_{ℓ}^{TT} spectrum shows a coherent increase in power at large ℓ compared to the other two cases.

The first is a non-trivial phase-shift of the acoustic oscillations in the photon-baryon plasma due to the fact that in the Pseudoscalar model the sterile sector behaves as fluid rather than a free-streaming component (see e.g. [62–64] for a discussion of the phase-shift effect). The second effect is a reduction in Silk damping at fixed θ_s due to the different expansion histories which is also responsible for the well-known n_s-N_{eff} correlation [65].

When only C_{ℓ}^{TT}-data is included, the second effect may be compensated by a change in n_s. We can see this in Figure 5, where it is clear that there is a relatively strong correlation between n_s, m_s, and ΔN_{eff}. Once polarisation is included, n_s is much more tightly constrained and this in turn severely restricts both m_s and ΔN_{eff}.

It is now clear why the sterile neutrino mass becomes tightly constrained when polarisation data is added, even in the pseudoscalar model where there are no direct late-time effects of the mass.

5 Short-baseline neutrino oscillations

It is interesting to investigate the implications of the cosmological constraints on the sterile neutrino mass for short-baseline (SBL) neutrino oscillations. Several SBL neutrino oscillation experiments are operating or in preparation (see the recent reviews in Refs. [66–68]), motivated by the following three well-known anomalies: 1) the LSND observation of short-baseline $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ transitions [69] (the LSND anomaly), somewhat supported by the results of the Mini-BooNE experiment [70]; 2) the indication of short-baseline ν_e disappearance [71, 72] in the GALLEX [73] and SAGE [74] gallium source experiments (the gallium neutrino anomaly); 3) the short-baseline $\bar{\nu}_e$ disappearance of reactor $\bar{\nu}_e$ [75] with respect to the theoretical prediction of the reactor $\bar{\nu}_e$ fluxes [76, 77] (the reactor antineutrino anomaly). Recent global fits of SBL oscillation data in terms of 3+1 active-sterile mixing found a strong appearance-disappearance tension [78, 79], mainly due to the stringent MINOS/MINOS+ limits on ν_μ disappearance combined with the reactor limits on ν_e disappearance. However, the oscillation explanation of the SBL anomalies still cannot be dismissed, taking into account that it is the only general one that avoids a multitude of different exotic ad-hoc solutions of each experimental anomaly. It is possible that the appearance-disappearance tension is due to a
misleading interpretation of the data of one or more experiments for which some systematic effect has been overlooked. For example, the appearance-disappearance tension due to the MiniBooNE data [70] on SBL $\nu_\mu \rightarrow \nu_e$ oscillations can be reduced by increasing the photon background from $\Delta^+/0$ decay as discussed in Refs. [80, 81]. Moreover, the experiments searching for SBL neutrino oscillations need an indication of the most likely region of the oscillation parameter space for tuning their sensitivities. Therefore, it is useful to perform a global fit of the SBL data in the 3+1 active-sterile mixing in spite of the appearance-disappearance tension. This strategy is also in agreement with the Bayesian philosophy that considers the experimental observations as means to improve our knowledge on a model. A model can be rejected only if there is a better alternative. Since at present we do not have a general alternative model that can explain the SBL anomalies, it is appropriate to increase our Bayesian knowledge of 3+1 active-sterile mixing by performing a Bayesian global analysis of the SBL neutrino oscillation data that can be compared and combined with Bayesian analyses of cosmological data.

In our analysis we considered the following sets of SBL oscillation data:

ν_e disappearance: The ratio of the spectra measured at different distance from the source in the Bugey-3 [82], NEOS [83], DANSS [84], and PROSPECT [85] reactor neutrino experiments. The ratio of the KARMEN [86] and LSND [87] $\nu_e + ^{12}$C $\rightarrow ^{12}$N$_{g.s.} + e^-$ scattering data at 18 m and 30 m from the source [88, 89]. The solar neutrino bound [90].

Figure 5: Marginalized 2D 1 σ (dim) and 2 σ (light) contours and 1D posterior for a subset of cosmological parameters (n_s, ΔN_{eff}, m_s, H_0).
Figure 6: Marginalized 1D posteriors of m_s, for SBL, cosmology (corresponding to the Pseudoscalar model fit of Planck 2018 TTTEEE), and for the combined analysis.

ν_μ disappearance: The constraints from the analyses of the data of the CDHSW [91], CCFR [92], SciBooNE-MiniBooNE [93, 94], IceCube [95], MINOS/MINOS+ [98], and atmospheric [99] neutrino experiments.

$\nu_\mu \to \nu_e$ appearance: The constraints of the BNL-E776 [100], KARMEN [101], NOMAD [102], ICARUS [103] and OPERA [104] experiments. The LSND data [69] with the χ^2 map calculated by the LSND collaboration taking into account the decay-at-rest and the decay-in-flight data. The MiniBooNE data [70] with the increased photon background from $\Delta^+/0$ decay that partially explains the large low-energy excess of ν_e-like events [80, 81].

We calculated the posterior probability for m_s shown in Fig. 6. One can see that there are peaks of the SBL probability (orange) for $m_s \approx 0.64$ eV and $m_s \approx 1.1$ eV, but also larger values of m_s have a significant probability and cannot be excluded. As we can see, the posterior obtained considering the Pseudoscalar model and Planck TTTEEE data (blue) has some overlapping with the peaks at small m_s, hence it is useful to combine the results of the cosmological and SBL analyses in order to restrict the allowed range of m_s. The combined fit (green) exhibits a maximum at $m_s \approx 1.1$ eV, where there is a local maximum of the SBL probability. Notice, however, that the combination with cosmological constraints disfavors all the peaks at higher masses that are allowed by oscillation data alone. We verified that the situation is approximately the same if instead of the posterior obtained with Planck TTTEEE data alone we also include a prior on H_0. We conclude that the Pseudoscalar model still allows to find a reasonable fit to SBL and cosmological data together, and the best-fit of the sterile neutrino mass remains around 1 eV.

6 Conclusions

We presented an updated analysis of how light sterile neutrino parameters can be constrained using cosmological data. The simplest case we studied is the one we refer to as “Thermal”, in which the additional sterile state is assumed to be completely thermalised prior to active

6 We cannot take into account of the new interesting results of the IceCube experiment [96, 97] that appeared in arXiv during the completion of this work.
neutrino decoupling so that it has the same temperature as the active species. This would be e.g. the case for the masses and mixings required for a sterile neutrino explanation of the observed SBL anomalies. In this case we find that the sterile mass is constrained to be below 0.2-0.9 eV, depending on the combination of data used. Consistent with other recent analyses we found that, although the presence of a fully thermalised extra neutrino pushes the value of H_0 inferred from CMB up, making it consistent with local measurements, it comes at the cost of a much poorer fit of CMB data. Without the inclusion of the R19 [4] Hubble data, the $\Delta \chi^2$ is larger than 30 compared to the standard ΛCDM. Even when the R19 prior is included the thermal case is disfavoured by $\Delta \chi^2 \sim 16$.

The second case we considered is one where the contribution of steriles to N_{eff} is allowed to vary (we refer to this as the “Vanilla” case). Not surprisingly we recover the well-known warm dark matter limit in which the physical mass is poorly constrained because a small value of ΔN_{eff} allows for a very large sterile neutrino mass. Furthermore, in this case the preferred value of H_0 reverts to the ΛCDM value because ΔN_{eff} is allowed to be small.

Finally, we considered the model studied in [32–34], in which the steriles are charged under a new pseudoscalar interaction. In this case the sterile neutrinos and pseudoscalars form a strongly self-interacting fluid long before photon decoupling, but after neutrino decoupling. The model provides a specific prediction for the ratio of energy density in the sterile+pseudoscalar sector to the energy density in standard model neutrinos. However, the total energy density in the two components can be modified by e.g. early production of steriles or pseudoscalars, and we therefore treated ΔN_{eff} as a free parameter in this case. The pseudoscalar model is qualitatively different from models with non-interacting steriles, both because of the lack of free-streaming in the sterile+pseudoscalar component, and because of the annihilation of steriles to pseudoscalars when the temperature drops below the mass of the sterile. In the pseudoscalar model we found that when only CMB temperature measurements are used the mass bound essentially disappears. This is completely consistent with an earlier analysis using a previous Planck data release [34]. However, once polarisation data at high ℓ is added, a large part of the sterile neutrino parameter space is excluded, because the degeneracy between m_s, ΔN_{eff}, and n_s is broken. This leads to a cosmological upper bound in the 1 eV range. Consistent with previous analyses, we still find that the pseudoscalar model is in good agreement with the local H_0 measurement, since it predicts a value of H_0 around 72 km s$^{-1}$ Mpc$^{-1}$. As a consequence, the combined CMB+R19 fit is slightly better than the one obtained for the simpler ΛCDM model.

We also performed an analysis of available short baseline data in combination with cosmology for the pseudoscalar model. Contrary to our previous analyses, the addition of high-ℓ polarisation data now excludes a large part of the mass range suggested by SBL data. In fact, the combined posterior now singles out a narrow region around 1.1 eV as the only viable mass range for the sterile neutrino.

Acknowledgments

C.G. would like to thank W.C. Louis for kindly providing the LSND χ^2 map. S.G. acknowledges financial support by the “Juan de la Cierva-Incorporación” program (IJC2018-036458-I) of the Spanish MINECO, and from the Spanish grants FPA2017-85216-P (AEI/FEDER, UE), PROMETEO/2018/165 (Generalitat Valenciana) and the Red Consolider MultiDark FPA2017-90566-REDC. The work of C.G. was partially supported by the research grant “The Dark Universe: A Synergic Multimessenger Approach” number 2017X7X85K under
the program PRIN 2017 funded by the Ministero dell’Istruzione, Università e della Ricerca (MIUR). T.T. was supported by a research grant (29337) from VILLUM FONDEN.

References

[1] Planck collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, 1807.06209.

[2] A. G. Riess, The Expansion of the Universe is Faster than Expected, Nature Rev. Phys. 2 (2019) 10–12, [2001.03624].

[3] L. Verde, T. Treu and A. G. Riess, Tensions between the Early and the Late Universe, in Nature Astronomy 2019, 2019. 1907.10625. DOI.

[4] A. G. Riess, S. Casertano, W. Yuan, L. M. Macri and D. Scolnic, Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM, Astrophys. J. 876 (2019) 85, [1903.07603].

[5] C. D. Huang, A. G. Riess, W. Yuan, L. M. Macri, N. L. Zakamska, S. Casertano et al., Hubble Space Telescope Observations of Mira Variables in the Type Ia Supernova Host NGC 1559: An Alternative Candle to Measure the Hubble Constant, 1908.10883.

[6] W. Yuan, A. G. Riess, L. M. Macri, S. Casertano and D. Scolnic, Consistent Calibration of the Tip of the Red Giant Branch in the Large Magellanic Cloud on the Hubble Space Telescope Photometric System and a Re-determination of the Hubble Constant, Astrophys. J. 886 (2019) 61, [1908.00993].

[7] LIGO Scientific, Virgo, 1M2H, Dark Energy Camera GW-E, DES, DLT40, Las Cumbres Observatory, VINROUGE, MASTER collaboration, B. P. Abbott et al., A gravitational-wave standard siren measurement of the Hubble constant, Nature 551 (2017) 85–88, [1710.05835].

[8] R. Jimenez and A. Loeb, Constraining cosmological parameters based on relative galaxy ages, Astrophys. J. 573 (2002) 37–42, [astro-ph/0106145].

[9] M. Moresco, L. Pozzetti, A. Cimatti, R. Jimenez, C. Maraston, L. Verde et al., A 6% measurement of the Hubble parameter at z ∼ 0.45: direct evidence of the epoch of cosmic re-acceleration, JCAP 1605 (2016) 014, [1601.01701].

[10] K. C. Wong et al., H0LiCOW XIII. A 2.4% measurement of H0 from lensed quasars: 5.3σ tension between early and late-Universe probes, 1907.04869.

[11] D. W. Pesce et al., The Megamaser Cosmology Project. XIII. Combined Hubble constant constraints, Astrophys. J. 891 (2020) L1, [2001.09213].

[12] J. Schombert, S. McGaugh and F. Lelli, Using The Baryonic Tully-Fisher Relation to Measure H0, 2006.08615.

[13] J. Luis Bernal and J. A. Peacock, Conservative cosmology: combining data with allowance for unknown systematics, JCAP 1807 (2018) 002, [1803.04470].

[14] L. Knox and M. Millea, Hubble constant hunters guide, Phys. Rev. D101 (2020) 043533, [1908.03663].

[15] T. L. Smith, V. Poulin and M. A. Amin, Oscillating scalar fields and the Hubble tension: a resolution with novel signatures, 1908.06995.

[16] G. Benevento, W. Hu and M. Raveri, Can Late Dark Energy Transitions Raise the Hubble constant?, 2002.11707.

[17] P. Lemos, E. Lee, G. Efstathiou and S. Gratton, Model independent H(z) reconstruction using
the cosmic inverse distance ladder, \textit{Mon. Not. Roy. Astron. Soc.} \textbf{483} (2019) 4803–4810, [1806.06781].

[18] J. Hamann, S. Hannestad, G. G. Raffelt, I. Tamborra and Y. Y. Y. Wong, Cosmology seeking friendship with sterile neutrinos, \textit{Phys. Rev. Lett.} \textbf{105} (2010) 181301, [1006.5276].

[19] H. Motohashi, A. A. Starobinsky and J. Yokoyama, Cosmology Based on $f(R)$ Gravity Admits 1 eV Sterile Neutrinos, \textit{Phys. Rev. Lett.} \textbf{110} (2013) 121302, [1203.6828].

[20] E. Giusarma, M. Archidiacono, R. de Putter, A. Melchiorri and O. Mena, Sterile neutrino models and nonminimal cosmologies, \textit{Phys. Rev.} \textbf{D85} (2012) 083522, [1112.4661].

[21] J. Hamann, S. Hannestad, G. G. Raffelt and Y. Y. Y. Wong, Sterile neutrinos with eV masses in cosmology: How disfavoured exactly?, \textit{JCAP} \textbf{1109} (2011) 034, [1108.4136].

[22] E. Giusarma, M. Corsi, M. Archidiacono, R. de Putter, A. Melchiorri, O. Mena et al., Constraints on massive sterile neutrino species from current and future cosmological data, \textit{Phys. Rev.} \textbf{D83} (2011) 115023, [1102.4774].

[23] S. Hagstotz, P. F. de Salas, S. Gariazzo, M. Gerbino, M. Lattanzi, S. Vagnozzi et al., Bounds on light sterile neutrino mass and mixing from cosmology and laboratory searches, [2003.02289].

[24] L. Feng, D.-Z. He, H.-L. Li, J.-F. Zhang and X. Zhang, Constraints on active and sterile neutrinos in an interacting dark energy cosmology, [1910.03872].

[25] S. Vegetti, G. Despali, M. R. Lovell and W. Enzi, Constraining sterile neutrino cosmologies with strong gravitational lensing observations at redshift $z \sim 0.2$, \textit{Mon. Not. Roy. Astron. Soc.} \textbf{481} (2018) 3661–3669, [1801.01505].

[26] M.-M. Zhao, D.-Z. He, J.-F. Zhang and X. Zhang, Search for sterile neutrinos in holographic dark energy cosmology: Reconciling Planck observation with the local measurement of the Hubble constant, \textit{Phys. Rev.} \textbf{D96} (2017) 043520, [1703.08456].

[27] Y. Tang, More Is Different: Reconciling eV Sterile Neutrinos with Cosmological Mass Bounds, \textit{Phys. Lett.} \textbf{B750} (2015) 201–208, [1501.00059].

[28] A. C. Vincent, E. F. Martinez, P. Hernandez, M. Lattanzi and O. Mena, Revisiting cosmological bounds on sterile neutrinos, \textit{JCAP} \textbf{1504} (2015) 006, [1408.1956].

[29] M. Archidiacono, N. Fornengo, C. Giunti, S. Hannestad and A. Melchiorri, Sterile neutrinos: Cosmology versus short-baseline experiments, \textit{Phys. Rev.} \textbf{D87} (2013) 125034, [1302.6720].

[30] S. Joudaki, K. N. Abazajian and M. Kaplinghat, Are Light Sterile Neutrinos Preferred or Disfavored by Cosmology?, \textit{Phys. Rev.} \textbf{D87} (2013) 065003, [1208.4354].

[31] M. Archidiacono, N. Fornengo, C. Giunti and A. Melchiorri, Testing 3+1 and 3+2 neutrino mass models with cosmology and short baseline experiments, \textit{Phys. Rev.} \textbf{D86} (2012) 065028, [1207.6515].

[32] M. Archidiacono, S. Hannestad, R. S. Hansen and T. Tram, Cosmology with self-interacting sterile neutrinos and dark matter - A pseudoscalar model, \textit{Phys. Rev.} \textbf{D91} (2015) 065021, [1404.5915].

[33] M. Archidiacono, S. Hannestad, R. S. Hansen and T. Tram, Sterile neutrinos with pseudoscalar self-interactions and cosmology, \textit{Phys. Rev.} \textbf{D93} (2016) 045004, [1508.02504].

[34] M. Archidiacono, S. Gariazzo, C. Giunti, S. Hannestad, R. Hansen, M. Laveder et al., Pseudoscalar-sterile neutrino interactions: reconciling the cosmos with neutrino oscillations, \textit{JCAP} \textbf{1608} (2016) 067, [1606.07673].

[35] S. Hannestad, R. S. Hansen and T. Tram, How Self-Interactions can Reconcile Sterile Neutrinos with Cosmology, \textit{Phys. Rev. Lett.} \textbf{112} (2014) 031802, [1310.5926].
[36] B. Dasgupta and J. Kopp, *Cosmologically Safe eV-Scale Sterile Neutrinos and Improved Dark Matter Structure*, *Phys. Rev. Lett.* **112** (2014) 031803, [1310.6337].

[37] M. Archidiacono and S. Hannestad, *Updated constraints on non-standard neutrino interactions from Planck*, *JCAP* **1407** (2014) 046, [1311.3873].

[38] F. Forastieri, M. Lattanzi and P. Natoli, *Cosmological constraints on neutrino self-interactions with a light mediator*, *Phys. Rev.* **D100** (2019) 103526, [1904.07810].

[39] F. Forastieri, M. Lattanzi and P. Natoli, *Cosmological constraints on neutrino self-interactions with a light mediator*, *Phys. Rev.* **D100** (2019) 103526, [1904.07810].

[40] M. Park, C. D. Kreisch, J. Dunkley, B. Hadzhiyska and F.-Y. Cyr-Racine, *ΛCDM or self-interacting neutrinos: How CMB data can tell the two models apart*, *Phys. Rev.* **D100** (2019) 063524, [1904.02625].

[41] A. Mirizzi, G. Mangano, O. Pisanti and N. Saviano, *Collisional production of sterile neutrinos via secret interactions and cosmological implications*, *Phys. Rev.* **D91** (2015) 025019, [1410.1385].

[42] N. Saviano, O. Pisanti, G. Mangano and A. Mirizzi, *Unveiling secret interactions among sterile neutrinos with big-bang nucleosynthesis*, *Phys. Rev.* **D90** (2014) 113009, [1409.1680].

[43] X. Chu, B. Dasgupta and J. Kopp, *Sterile neutrinos with secret interactions lasting friendship with cosmology*, *JCAP* **1510** (2015) 011, [1505.02795].

[44] N. Song, M. C. Gonzalez-Garcia and J. Salvado, *Cosmological constraints with self-interacting sterile neutrinos*, *JCAP* **1810** (2018) 055, [1805.08218].

[45] X. Chu, B. Dasgupta, M. Dentler, J. Kopp and N. Saviano, *Sterile neutrinos with secret interactions: cosmological discord?*, *JCAP* **1811** (2018) 049, [1806.10629].

[46] E. Grohs, G. M. Fuller and M. Sen, *Consequences of neutrino self interactions for weak decoupling and big bang nucleosynthesis*, 2002.08557.

[47] G. Arcadi, J. Heeck, F. Heizmann, S. Mertens, F. S. Queiroz, W. Rodejohann et al., *Tritium beta decay with additional emission of new light bosons*, *JHEP* **01** (2019) 206, [1811.03530].

[48] N. Blinov, K. J. Kelly, G. Z. Krnjaic and S. D. McDermott, *Constraining the Self-Interacting Neutrino Interpretation of the Hubble Tension*, *Phys. Rev. Lett.* **123** (2019) 191102, [1905.02727].

[49] S. Gariazzo, P. F. de Salas and S. Pastor, *Thermalisation of sterile neutrinos in the early Universe in the 3+1 scheme with full mixing matrix*, *JCAP* **07** (2019) 014, [1905.11290].

[50] J. F. Beacom, N. F. Bell and S. Dodelson, *Neutrinoless universe*, *Phys. Rev. Lett.* **93** (2004) 121302, [astro-ph/0404585].

[51] G. Mangano, G. Miele, S. Pastor, T. Pinto, O. Pisanti and P. D. Serpico, *Relic neutrino decoupling including flavor oscillations*, *Nucl.Phys.* **B729** (2005) 221–234, [hep-ph/0506164].

[52] P. F. de Salas and S. Pastor, *Relic neutrino decoupling with flavour oscillations revisited*, *JCAP* **07** (2016) 051, [1606.06986].

[53] J. J. Bennett, G. Buldgen, M. Drewes and Y. Y. Wong, *Towards a precision calculation of the effective number of neutrinos N_eff in the Standard Model I: The QED equation of state*, *JCAP* **2003** (2020) 003, [1911.04504].

[54] K. Akita and M. Yamaguchi, *A precision calculation of relic neutrino decoupling*, 2005.07047.

[55] J. Lesgourgues, *The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview*, 1104.2932.

[56] D. Blas, J. Lesgourgues and T. Tram, *The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes*, *JCAP* **1107** (2011) 034, [1104.2933].
[57] J. Lesgourgues and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) IV: efficient implementation of non-cold relics, JCAP 1109 (2011) 032, [1104.2935].

[58] B. Audren, J. Lesgourgues, K. Benabed and S. Prunet, Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code, JCAP 02 (2013) 001, [1210.7183].

[59] T. Brinckmann and J. Lesgourgues, MontePython 3: boosted MCMC sampler and other features, Phys.Dark Univ. 24 (2019) 100260, [1804.07261].

[60] Planck collaboration, Y. Akrami et al., Planck 2018 results. I. Overview and the cosmological legacy of Planck, 1807.06205.

[61] Planck collaboration, N. Aghanim et al., Planck 2018 results. V. CMB power spectra and likelihoods, 1907.12875.

[62] Z. Pan, L. Knox, B. Mulroe and A. Narimani, Cosmic Microwave Background Acoustic Peak Locations, Mon. Not. Roy. Astron. Soc. 459 (2016) 2513–2524, [1603.03091].

[63] S. Bashinsky and U. Seljak, Neutrino perturbations in CMB anisotropy and matter clustering, Phys. Rev. D69 (2004) 083002, [astro-ph/0310198].

[64] D. Baumann, D. Green, J. Meyers and B. Wallisch, Phases of New Physics in the CMB, JCAP 01 (2016) 007, [1508.06342].

[65] Z. Hou, R. Keisler, L. Knox, M. Millea and C. Reichardt, How Massless Neutrinos Affect the Cosmic Microwave Background Damping Tail, Phys. Rev. D87 (2013) 083008, [1104.2333].

[66] C. Giunti and T. Lasserre, eV-scale Sterile Neutrinos, Ann. Rev. Nucl. Part. Sci. 69 (2019) 163–190, [1901.08330].

[67] A. Diaz, C. Argüelles, G. Collin, J. Conrad and M. Shaevitz, Where Are We With Light Sterile Neutrinos?, 1906.00045.

[68] S. Böser, C. Buck, C. Giunti, J. Lesgourgues, L. Ludhova, S. Mertens et al., Status of Light Sterile Neutrino Searches, Prog. Part. Nucl. Phys. 111 (2020) 103736, [1906.01739].

[69] LSND collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of $\bar{\nu}_e$ appearance in a $\bar{\nu}_\mu$ beam, Phys. Rev. D 64 (2001) 112007, [hep-ex/0104049].

[70] MiniBooNE collaboration, A. Aguilar-Arevalo et al., Significant Excess of ElectronLike Events in the MiniBooNE Short-Baseline Neutrino Experiment, Phys. Rev. Lett. 121 (2018) 221801, [1805.12028].

[71] M. Laveder, Unbound neutrino roadmaps, Nucl. Phys. B Proc. Suppl. 168 (2007) 344–346.

[72] C. Giunti and M. Laveder, Short-Baseline Active-Sterile Neutrino Oscillations?, Mod. Phys. Lett. A 22 (2007) 2499–2509, [hep-ph/0610352].

[73] F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685 (2010) 47–54, [1001.2731].

[74] J. Abdurashitov et al., Measurement of the response of a Ga solar neutrino experiment to neutrinos from an Ar-37 source, Phys. Rev. C 73 (2006) 045805, [nucl-ex/0512041].

[75] G. Mention, M. Fechner, T. Lasserre, T. Mueller, D. Lhuillier, M. Cribier et al., The Reactor Antineutrino Anomaly, Phys. Rev. D 83 (2011) 073006, [1101.2755].

[76] T. Mueller et al., Improved Predictions of Reactor Antineutrino Spectra, Phys. Rev. C 83 (2011) 054615, [1101.2663].

[77] P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C 84 (2011) 024617, [1106.0687].

[78] S. Gariazzo, C. Giunti, M. Laveder and Y. Li, Model-independent $\bar{\nu}_e$ short-baseline oscillations
from reactor spectral ratios, Phys. Lett. B 782 (2018) 13–21, [1801.06467].

[79] M. Dentler, Á. Hernández-Cabezudo, J. Kopp, P. A. Machado, M. Maltoni, I. Martínez-Soler et al., Updated Global Analysis of Neutrino Oscillations in the Presence of eV-Scale Sterile Neutrinos, JHEP 08 (2018) 010, [1803.10661].

[80] A. Ioannisian, A Standard Model explanation for the excess of electron-like events in MiniBooNE, 1909.08571.

[81] C. Giunti, A. Ioannisian and G. Ranucci, A new analysis of the MiniBooNE low-energy excess, 1912.01524.

[82] Y. Declais et al., Search for neutrino oscillations at 15-meters, 40-meters, and 95-meters from a nuclear power reactor at Bugey, Nucl. Phys. B 434 (1995) 503–534.

[83] NEOS collaboration, Y. Ko et al., Sterile Neutrino Search at the NEOS Experiment, Phys. Rev. Lett. 118 (2017) 121802, [1610.05134].

[84] DANSS collaboration, M. Danilov, Recent results of the DANSS experiment, in 2019 European Physical Society Conference on High Energy Physics, 11, 2019. 1911.10140.

[85] PROSPECT collaboration, J. Ashenfelter et al., First search for short-baseline neutrino oscillations at HFIR with PROSPECT, Phys. Rev. Lett. 121 (2018) 251802, [1806.02784].

[86] B. Armbruster et al., KARMEN limits on electron-neutrino —¿ tau-neutrino oscillations in two neutrino and three neutrino mixing schemes, Phys. Rev. C 57 (1998) 3414–3424, [hep-ex/9801007].

[87] LSND collaboration, L. Auerbach et al., Measurements of charged current reactions of nu(e) on 12-C, Phys. Rev. C 64 (2001) 065501, [hep-ex/0105068].

[88] J. Conrad and M. Shaevitz, Limits on Electron Neutrino Disappearance from the KARMEN and LSND νe - Carbon Cross Section Data, Phys. Rev. D 85 (2012) 013017, [1106.5552].

[89] C. Giunti and M. Laveder, Implications of 3+1 Short-Baseline Neutrino Oscillations, Phys. Lett. B 706 (2011) 200–207, [1111.1069].

[90] S. Gariazzo, C. Giunti, M. Laveder and Y. Li, Updated Global 3+1 Analysis of Short-BaseLine Neutrino Oscillations, JHEP 06 (2017) 135, [1703.00860].

[91] F. Dydak et al., A Search for Muon-neutrino Oscillations in the Delta m**2 Range 0.3-eV**2 to 90-eV**2, Phys. Lett. B 134 (1984) 281.

[92] I. Stockdale et al., Limits on Muon Neutrino Oscillations in the Mass Range 55-eV**2 ¡ Delta m**2 ¡ 800-eV**2, Phys. Rev. Lett. 52 (1984) 1384.

[93] SciBooNE, MiniBooNE collaboration, K. Mahn et al., Dual baseline search for muon neutrino disappearance at 0.5eV^2 < Δm^2 < 4eV^2, Phys. Rev. D 85 (2012) 032007, [1106.5685].

[94] MiniBooNE, SciBooNE collaboration, G. Cheng et al., Dual baseline search for muon antineutrino disappearance at 0.1eV^2 < Δm^2 < 100eV^2, Phys. Rev. D 86 (2012) 052009, [1208.0322].

[95] ICECUBE collaboration, M. Aartsen et al., Searches for Sterile Neutrinos with the IceCube Detector, Phys. Rev. Lett. 117 (2016) 071801, [1605.01990].

[96] M. Aartsen et al., An eV-scale sterile neutrino search using eight years of atmospheric muon neutrino data from the IceCube Neutrino Observatory, 2005.12942.

[97] M. Aartsen et al., Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube neutrino telescope, 2005.12943.

[98] MINOS+ collaboration, P. Adamson et al., Search for sterile neutrinos in MINOS and MINOS+ using a two-detector fit, Phys. Rev. Lett. 122 (2019) 091803, [1710.06488].
[99] M. Maltoni and T. Schwetz, Sterile neutrino oscillations after first MiniBooNE results, *Phys. Rev. D* **76** (2007) 093005, [0705.0107].

[100] L. Borodovsky et al., Search for muon-neutrino oscillations muon-neutrino \rightarrow electron-neutrino (anti-muon-neutrino \rightarrow anti-electron-neutrino in a wide band neutrino beam, *Phys. Rev. Lett.* **68** (1992) 274–277.

[101] KARMEN collaboration, B. Armbruster et al., Upper limits for neutrino oscillations muon-anti-neutrino \rightarrow electron-anti-neutrino from muon decay at rest, *Phys. Rev. D* **65** (2002) 112001, [hep-ex/0203021].

[102] NOMAD collaboration, P. Astier et al., Search for $\nu_{\mu}(\bar{\nu}_{\mu})$ \rightarrow $\nu_{e}(\bar{\nu}_{e})$ oscillations in the NOMAD experiment, *Phys. Lett. B* **570** (2003) 19–31, [hep-ex/0306037].

[103] ICARUS collaboration, M. Antonello et al., Search for anomalies in the ν_{e} appearance from a ν_{μ} beam, *Eur. Phys. J. C* **73** (2013) 2599, [1307.4699].

[104] OPERA collaboration, N. Agafonova et al., Search for ν_{μ} \rightarrow ν_{e} oscillations with the OPERA experiment in the CNGS beam, *JHEP* **07** (2013) 004, [1303.3963].