Research Article

Research on the Use of Open Teaching Mode Based on IoT Applications in College Piano Courses

Wanrong Zhang

School of Music, Huaibei Normal University, Huaibei 235000, China

Correspondence should be addressed to Wanrong Zhang; 19402331@masu.edu.cn

Received 12 July 2022; Revised 25 July 2022; Accepted 4 August 2022; Published 17 August 2022

Academic Editor: Hamurabi Gamboa Rosales

Copyright © 2022 Wanrong Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The existing piano curriculum education system in colleges has been very backward. With the rapid economic development, it is also necessary to add new teaching technical means to meet the teaching needs of the new era and study the application of open teaching mode in the piano curriculum in colleges. This paper examines the current state of piano instruction in colleges and puts forward some problems, such as the serious lag of teaching mode, the backwardness of curriculum design education, and the failure of evaluation mechanism to keep pace with the times. The design is based on the open teaching mode, designs the piano course in colleges, establishes the open teaching mode, designs the open and inclusive teaching content, improves the piano teaching evaluation mechanism, and obtains a new teaching method of piano course in colleges. In the case analysis, the test results of this teaching mode and traditional teaching mode are compared. The results of the pretest and posttest show that the open teaching mode can greatly improve the teaching performance of piano courses and can be applied to practical teaching.

1. Introduction

The 21st century is a century of information explosion. With the rapid dissemination and expansion of information, education also puts forward new requirements in the face of the new era and is ready to get rid of the shackles of tradition. Personalized learning has undoubtedly become an important feature of the current educational development for a Chinese nation that needs lifelong learning and national learning. The state also issued relevant documents on this, which clearly pointed out the serious deficiencies in the construction of educational resources in China: “we must clearly realize that accelerating the promotion of educational informatization still faces many difficulties and challenges, the effective mechanism of coconstruction and sharing of digital educational resources has not been formed, and high-quality educational resources are particularly scarce....” Based on this situation, many researchers put forward the teaching reform opinions of steadily promoting the reform of the contemporary university curriculum system. In the process of reform, there must be a strong guarantee. The development of a teaching quality assurance system suitable for the professional development needs of colleges and universities is the college education reform’s insurance belt and uses the advantages of relevant mature assurance modes to construct a comprehensive teaching quality assurance mode [1, 2]. It can be seen that educational digital informatization has been paid more and more attention by relevant national departments, but China’s development in this regard has encountered unprecedented experience. The disadvantages of the “large and comprehensive” resource construction model are gradually highlighted. This model is based on unit or 40-45-minute class hours. In order to match the development pulse of the times, a new teaching form was born soon.

The piano has a history of nearly 300 years since its birth in 1709. It has always played an important role in the world of music and art. Up to now, people’s research on piano teaching has never stopped. A piano course is not only a professional basic course for music students to use piano for music practice but also an art cultivation course. It can not only cultivate students’ comprehensive abilities such as music understanding and expression but also improve students’ music quality and music cultivation. Therefore, the spread and development of the piano in China must be
clearly and accurately understood by conservatory students in order to support their cognitive creation of the piano module curricular system. Colleges and universities are the cradle of cultivating excellent piano talents, but if they blindly adopt the traditional oral and heart-to-heart teaching mode, they cannot effectively stimulate students' interest in learning and cannot effectively improve the efficiency and level of piano teaching [3, 4]. Therefore, we should actively adopt a more scientific and advanced teaching mode in piano teaching in colleges. Open teaching can teach students piano knowledge in more colorful ways and create an interesting and efficient learning environment for students, so as to help students master more theoretical knowledge and piano skills in a fun environment, so as to cultivate more excellent music talents for the society.

The word “open” is relative to closed. Open teaching is put forward in view of the traditional closed, rigid, and lack of vitality model. It removes closed constraints from the links between teaching objectives, teaching contents, teaching time and space, teaching process, and teaching evaluation and reorganizes and optimizes all aspects of the teaching system to promote the development of students’ open quality. In a broad sense, open teaching includes two levels: the opening of teaching organization forms and the opening of teaching methods. The popular teaching organization form of nonfixed classes and nonfixed classes in primary and secondary schools and kindergartens in Britain and the United States, as well as China’s social open universities, distance education, and online schools, can be called an organization form of open teaching [5]. Generally speaking, open teaching is based on the needs of quality education and social development, starting from the teaching objectives, methods, contents, means, evaluation and other aspects, microanalysis of each link, and exploration of the basic mode of open teaching, so as to optimize the quality of classroom teaching and improve the practical benefits of quality education in classroom teaching. The introduction of big data has significantly altered people’s lives, work habits, and business operations and even profoundly altered science. There is presently no unifying definition of big data due to the vast amount of material and components involved. Big data is a phenomenon that has emerged in the digital era and is neither a product nor a technology. Information technology and big data technology are supported in the context of the big data age.

2. Current Situation of Piano Teaching in Colleges

2.1. The Teaching Mode Lags behind Seriously. Generally speaking, during piano teaching, students’ playing is the first part of the teaching process, and the other part is teachers’ evaluation and guidance. If the main factors in the above dynamic process are expressed separately from the perspective of information presentation and feedback, it can be understood as the following: “students’ return to class is information presentation,” “teachers’ analysis and evaluation are information processing and analysis,” and “information feedback and secondary processing.” Then, we can further understand this traditional model as the following: information presentation is extraction—information processing and analysis are information feedback and secondary processing [6–8]. Therefore, in the process of information processing in the traditional piano teaching mode, the teaching content is a closed information linear processing process. Some scholars classify this information processing and processing process in traditional teaching as “behavior model,” “emotion model,” “comprehensive model,” and “cognitive model”; that is, this process shows more teachers’ initiative and students’ passivity. However, with the advancement of the economy and society, as well as the general improvement of national musical literacy, and with the advancement of quality education, more students majoring in musicology in traditional colleges and universities already have a certain level of performance level before entering the school. According to the survey, the piano learning progress of students before entering the school is shown in Figure 1.

As shown in Figure 1, the previous effective teaching model for “baiding” students no longer meets the current students’ teaching expectations. Through the above circumstances, we can know that there must be an obvious gap between students’ expectations and teaching effect no matter which of the traditional above models is adopted [9–11]. This gap is mainly reflected in that the students have their own playing and appreciation experience and a certain degree of learning and thinking, which cannot be stated and displayed in the teaching process in time and fully, so that the piano teaching process depends too much on the teachers’ existing experience and thinking under the guidance of the established model.

2.2. Backward Curriculum Design Education. For a long time, the piano courses of music education majors in China simply copy and imitate the piano performance majors in professional colleges. The cultivation of students blindly pursues the difficulty of performance skills and ignores the cultivation of piano basic knowledge and theoretical knowledge. They are not good at guiding students to accurately grasp the most basic and common knowledge and content in piano learning. At this time, the teaching course structure for a piano major in the conservatory of music is shown in Figure 2.

As shown in Figure 2, students majoring in musicology are adults. Their learning purpose is very clear, and they have strong understanding and thinking ability, perseverance, and acceptance ability. In terms of teaching content, we should strengthen the study of piano theoretical knowledge, guide practice with theory, and not overemphasize basic skills and skills; otherwise, students will only play a few works when they graduate [12–16]. At the same time, we should set up courses such as piano teaching methods, systematically teach the basic principles of piano teaching, and understand the selection and application of basic piano teaching materials, so that students can master the basic teaching methods of piano learning and deepen their understanding in teaching practice. In the process of teaching the piano curriculum system of musicology majors in China, teachers pay too much attention to the training of piano skills and the indoctrination of piano knowledge and theory.
and lack practical training for students. As a result, although students have learned many piano performance courses and Piano theory courses, Students often seem very astringent when they are asked to practice impromptu performance or actually play piano tracks on time, which shows that piano teaching is divorced from practice in the usual process of piano teaching. This needs to attract the strong attention of colleges and universities, teachers and students, because “learning for application” is one of the ideas and objectives of running colleges and universities in China. If the teaching and practice are seriously derailed, it will be very detrimental to the healthy and rational development of China’s college teaching system, especially the disconnection between the piano course of musicology major and practice, which will be detrimental to the improvement of the learning quality of musicology students and even their future employment. Especially in the collective piano class, many students find it difficult to accurately grasp the melody, lines, strength, and speed of piano performance during a piano solo. After investigation, their performance in these three aspects is shown in Figure 3.

As shown in Figure 3, the result is obtained when testing the performance effect of students [12]. The probability that the effect of the three kinds of indicators is good is only 8%; this demonstrates that the existing piano course has a poor teaching effect.

2.3. The Evaluation Mechanism Has Not Kept Pace with the Times. The evaluation mechanism of piano teaching mainly includes the evaluation of students’ cognitive level, academic achievement, and teachers’ teaching quality. Due to the long-term influence of exam-oriented education, China’s teaching evaluation method is single, and there are phenomena of low cost, high efficiency, and low efficiency in education and teaching. Some students have good grades but poor learning ability, which are embodied in the following points.

First, traditional teaching is relatively simple in the formulation of evaluation standards. Teachers use empiricism to evaluate teaching, and the evaluation of teaching depends on their own subjective imagination or preferences; teachers follow a series of provisions and use test scores, pass rates, and other data to evaluate teaching in a dogmatic manner, which is the mainstream of teaching evaluation [17–22]. The traditional evaluation standard is limited to the quantitative standard of “morality, diligence, ability, and performance” or “three virtues of morality, intelligence, and physique,” which is actually a one-sided summative evaluation and an evaluation that is not objective and conclusive.

Second, because the traditional teaching evaluation is a kind of summative evaluation, most schools go through the formality when organizing the evaluation process, and the final evaluation is unfair and not open. For example, in teaching, everyone participates in class listening and evaluation, but at the critical moment of class evaluation, teachers look like they are afraid to offend others, flatter, point out that the problems are not painful, or not form a good teaching and research atmosphere, and the evaluation is not
objective and in-depth, which violates the principle of class listening and evaluation. Another example is the assessment and evaluation of teachers, which is divided into two forms: student questionnaire survey and leadership appraisal. The former uses student scoring to quantify the evaluation, and the latter evaluates according to the impression of leaders. Every year, it will inevitably be unfair [22, 23]. The evaluation of students cannot reflect the people-oriented principle and lacks personalization, and the mechanization and modularization of the evaluation process directly lead to the unfairness of the evaluation.

3. Design of Piano Curriculum in Colleges Based on Open Teaching Mode

3.1. Reestablishing the Open Teaching Mode. In open piano teaching in colleges, teachers should change the previous "indoctrination" teaching mode and adopt a more open and diversified teaching mode. The open teaching mode designed in this paper is shown in Figure 4.

As shown in Figure 4, the group discussion teaching mode is adopted. This can help students understand relevant knowledge and skills in the form of groups, so as to better master piano knowledge and relevant skills; a layered teaching mode can be adopted. Piano teachers can carry out layered teaching according to students' learning situation and ability, so that students are taught according to their aptitude and students as various levels progress. The questioning teaching mode can be adopted; that is, piano teachers can ask students questions and guide students to learn relevant piano knowledge and skills with questions. The multimedia teaching mode can be adopted. Teachers can play excellent piano music works for students with the help of multimedia equipment, so as to attract students' attention through video and bring visual and auditory enjoyment to students, so that they can better perceive music and improve their interest in learning the piano and their learning effect. The independent learning mode can be adopted. Piano teachers can arrange corresponding homework for students in advance, so that they can find relevant materials for some problems in their spare time and carry out independent research and learning, so that they can better understand and digest piano music knowledge [23].

3.2. Design Open and Inclusive Teaching Content. In order to comprehensively improve the piano teaching level in colleges and universities and cultivate more excellent piano talents for the society, it is necessary to continuously optimize and improve the teaching content in piano teaching, so as to make it more open. We should help students explore a wider range of teaching contents and enrich their horizons. Usually, the existing teaching content is often not very comprehensive, so when choosing teaching materials, teachers must fully meet the actual needs of music teaching and realize the effective expansion of teaching content based on the training objectives of music education and teaching and specialty. Choose some teaching contents with different styles from different countries and regions. We should choose not only modern works but also contemporary works [24]. We should choose some cooperative tracks such as double piano works and piano concertos. During the practical education and teaching process, we must pay close attention to the cultivation of students' piano impromptu accompaniment ability, add some local national music in teaching, and realize the horizontal connection of disciplines, including composition and harmony. This can make the teaching content more diversified and open and make the content contacted by students more colorful.

3.3. Improving the Evaluation Mechanism of Piano Teaching. In order to get a more representative evaluation mechanism, the weight attribute of information gain can be constructed based on the decision tree algorithm. Let the test sample set be A, and there are n different decision values \{H_1, H_2, \cdots, H_n\} in set A. Let the subset in sample set H be \{$H_{i1}, H_{i2}, \cdots, H_{in}$\}, then the information calculation formula of the sample is

$$f(h) = \frac{\sum_{j=1}^{n}(h_{ij} + h_{ij-1} + \cdots + h_{ij})}{N_i}.$$ (1)

In the formula, $f(h)$ represents the gain attribute of information calculation in the sample set and N_i indicates the number of samples in the sample set. By dividing the sample set, the information entropy of each attribute can be obtained:
In the formula, \(P_k = \sum_{i=1}^{n} |T_i| \cdot f_k \).

(2)

In the formula, \(P_k \) represents the information entropy of set \(f_k \) in category condition \(H_i \) and \(T_i \) indicates category attribute. On the premise of ensuring the change of strategy, the inertia weight can be calculated:

\[
\begin{align*}
& \begin{cases}
 f_{\min} - (f_{\max} - f_{\min}) \times (k_n - k_{\min}) / (k_p - k_{\min}), & k_n \leq k_p, \\
 f_{\max}, & k_n > k_p.
\end{cases} \\
& \text{(3)}
\end{align*}
\]

In the formula, \(f_{\min} \) and \(f_{\max} \), respectively, represent the minimum and maximum values of decision evaluation weight under the convergence performance, \(k_n \) represents the \(n \)-th fitness function in particle swarm optimization, \(k_{\min} \) represents the minimum value of fitness function, and \(k_p \) represents the average value of the fitness function. At this time, the comprehensive evaluation formula can be obtained:

\[
\begin{align*}
& f_i = \sum_{j=1}^{21} b_j x_i. \\
& \text{(4)}
\end{align*}
\]

In the formula, \(f_i \) represents the existing evaluation coefficient, \(b_j \) represents the weight of the evaluation index, and \(x_i \) represents the ordinal number of evaluation indicators. Through the above methods, more scientific piano course assessment results can be obtained [25].

4. Experimental Analysis

Nowadays, learning piano is becoming more and more common, and there are more and more good pianists, which makes it difficult for people to accept the insipid piano performance. Therefore, even if you only perform a piece of moderately difficult music in an amateur concert, you have to learn for eight years and ten years. But in fact, not many people can spend so many years learning this instrument. Because of this, people’s basic skills are not deep enough. When playing the piano, there are often nonstandard actions or wrong methods. When playing through the sound group with certain difficulty, the left hand is always astringent, and the fourth and fifth fingers hardly work. Due to the lack of special practice, they are always weaker than other fingers. When encountering octave progression, tremor, or vibrato, it is often very reluctant and tired. Such performance is not in harmony and has no expressiveness. This paper investigates the piano curriculum based on the use of an open teaching mode in order to improve its efficiency. The experiment tests the effectiveness of the curriculum in this paper.

4.1. Experimental Contents

4.1.1. Subjects. The students of classes (1) and (2) and classes (3) and (4) in the Piano Department of a college of music are selected as the experimental objects of this experiment. Classes (1) and (2) are selected as the experimental classes, and the open teaching method is used to cultivate students’ autonomous learning ability; classes (3) and (4) are the control class, which implements the traditional teaching mode. In many data projects, there are data inconsistencies. At this time, it is necessary to change the data format through data normalization. The normalized formula is
According to the data, there is little difference in the number of students in the four classes is close. Take 100 as the full score, 3, and 21 in control group 1, 21 in experimental group 2, 20 in control group 3 and 22 in control group 4. The proportion of men and women in the four classes is shown in Table 1.

As shown in Table 1, there are 21 students in experimental group 1, 21 in experimental group 2, 20 in control group 3 and 22 in control group 4. The proportion of men and women in the four classes is close. Take 100 as the full score, divide the students’ scores into four stages, and set the scores below 60 as D, 60-75 as C, 75-90 as B, and 90-100 as A. According to the data, there is little difference in the number of students in the four classes at different intervals. Among them, the number of people who get the grade of section C is the most, all of them are more than 10, and the number of people who get the grade of section A is the least, only 0-2.

4.1.2. Experimental Variable Control. The control class uses the traditional skill teaching mode in the setting of independent variables, while the experimental class uses the open teaching mode. The teaching materials are the same, but the teaching methods and teaching means are different. Without violating the syllabus, teachers expand the teaching content of the experimental class (including piano art history, improvisation, accompaniment, and cooperative repertoire) and carry out creative processing and processing, so as to make it suitable for teaching activities and activate teaching materials. The control class uses the teaching plan based on explanation and practice (explanation, demonstration, student practice, teacher correction of wrong actions, consolidation, and improvement).

4.2. Experimental Process

4.2.1. Pretest. The students in the experimental class and the control class are tested in the form of pretest and posttest, so as to prove whether the open teaching mode will have an impact on the students’ learning results in the piano course. The evaluation relationship matrix A_{ij} of expert level index teaching plan, teaching attitude, teaching means, and classroom performance is calculated:

$$A_{ij} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{bmatrix}. \quad (6)$$

The teaching evaluation indexes at each stage in the formula can determine that the teaching reform method has different teaching effects. When combined with the above evaluation value and evaluation relationship matrix, the evaluation formula B_{ij} can be obtained:

$$B_{ij} = (B_{11}, B_{12}, B_{13}, B_{14}). \quad (7)$$

According to formulas (6) and (7), the total score $f(w)$ of teacher evaluation can be obtained as follows:

$$f(w) = (a_{11} + a_{12} + a_{13} + a_{14}) \times \begin{bmatrix} b_{11} \\ b_{12} \\ b_{13} \\ b_{14} \end{bmatrix}. \quad (8)$$
According to the above formula, the average scores of various test items in the pretest can be obtained, as shown in Table 3.

As shown in Table 3, in the pretest, the average scores of the four classes are between 68 and 70. It can be seen that the average score difference between the four classes is small. The score of improvisation is only 20%-30% of the total score of the project, and the score rate is very low. The scores of theoretical subjects such as Chinese and Western music history and piano art history are generally high, and the scores of solo and accompaniment are about the passing line.

4.2.2. Posttest. After four months of study, the final test of this semester, namely, the postexperiment test, will be conducted. At this time, the test scores of the four classes are shown in Table 4.

There is a significant difference between the experimental group and the control group after learning in the open teaching mode, as shown in the posttest results in Table 4. The two experimental groups had total average scores of 84.39 and 83.04, respectively, while the two control groups had total average scores of 67.85 and 71.02. The scores of Chinese and Western music history, piano art history, and music theory have not been significantly improved, but the scores of solo assessment have been increased from 6 and 7 to 8 and 9, and the scores of such assessment items have been greatly improved. In particular, improvisation and accompaniment projects have increased by about 3 points. From the above data, it can be seen that the teaching method of piano courses in colleges based on open teaching designed in this paper has a better teaching effect than the traditional teaching method.

5. Conclusion

Compared with the traditional “indoctrination” teaching mode, the open teaching mode used in the piano course of the university conservatory of music can promote the students majoring in music, fully mobilize the students’ subjective initiative, and let them construct their own learning ideas and framework. It is possible to effectively promote communication between teachers and students, promote each other, and achieve the effect of teaching and learning by implementing open teaching to students. The implementation of the open teaching mode has effectively promoted the students’ enthusiasm for learning action skills and theoretical knowledge. However, the implementation of the open teaching mode requires higher teaching venues. Moreover, the use of this teaching mode needs the key link of teaching—“music teachers” have excellent professional knowledge, proficient professional skills, and a certain level of teaching and scientific research. Therefore, the implementation of the open teaching mode in colleges also requires a
The author declares that they have no conflicts of interest.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The author declares that they have no conflicts of interest.

References

[1] P. M. Hernandez-Diaz, J.-A. Polanco, and M. Escobar-Sierra, “Building a measurement system of higher education performance: evidence from a Latin-American country,” The International Journal of Quality & Reliability Management, vol. 38, no. 6, pp. 1278–1300, 2021.

[2] F. Efrat, S. Benzi, D. Gideon, and B. Schwarz Baruch, “Quality of dialogue and emotion regulation in contentious discussions in higher education,” Learning, Culture and Social Interaction, vol. 30, no. 4, article 100535, 2021.

[3] R. Wang, M. B. Alazzam, F. Allassery, A. Almulihi, and M. White, “Innovative research of trajectory prediction algorithm based on deep learning in car network collision detection and early warning system,” Mobile Information Systems, vol. 2021, Article ID 100535, 8 pages, 2021.

[4] M.-R. Kiomi and R.-M. M. Soledad, “Core practices in practice-based teacher education: a systematic literature review of its teaching and assessment process,” Studies in Educational Evaluation, vol. 70, no. 9, article 101047, 2021.

[5] M. B. Alazzam, F. Allassery, and A. Almulihi, “A novel smart healthcare monitoring system using machine learning and the internet of things,” Wireless Communications and Mobile Computing, vol. 2021, 7 pages, 2021.

[6] Z. Zulkarnain, H. Zulnaidi, S. Heleni, and M. Syafri, “Effects of sscs teaching model on students’ mathematical problem-solving ability and self-efficacy,” International Journal of Instruction, vol. 14, no. 1, pp. 475–488, 2021.

[7] A. I. Youssef, “Massive open online course (MOOCs) acceptance: the role of task-technology fit (TTF) for higher education sustainability,” Sustainability, vol. 13, no. 13, pp. 7374–7374, 2021.

[8] J. Miranda, C. Navarrete, J. Noguez et al., “The core components of education 4.0 in higher education: three case studies in engineering education,” Computers and Electrical Engineering, vol. 93, no. 7, article 107278, 2021.

[9] S. Ramoutar, “Open education resources: supporting diversity and sharing in education,” Tech Trends, vol. 65, no. 4, pp. 410–412, 2021.

[10] M. Abdulllah, S. B. Thalib, and G. D. Dirawan, “The quality of integrating, rationale & approach participation (ira) teaching model based on environmental education: a research & development,” Universal Journal of Educational Research, vol. 9, no. 8, pp. 1560–1571, 2021.

[11] M. Bader Alazzam, F. Allassery, and A. Almulihi, “Identification of diabetic retinopathy through machine learning,” Mobile Information Systems, vol. 2021, Article ID 1155116, 8 pages, 2021.

[12] H. H. Hsu, C. F. Wu, W. J. Cho, and S. B. Wang, “Applying computer graphic design software in a computer-assisted instruction teaching model of makeup design,” Symmetry, vol. 13, no. 4, pp. 654–660, 2021.

[13] C. A. Salazar, C. I. Cantillo, and H. Muoz, “Contribution of the implementation of an alternative teaching model in the teaching of mathematics: solving arithmetic problems in primary basics,” Espacios, vol. 42, no. 1, pp. 119–130, 2021.

[14] K. Lei, “The effectiveness of special apps for online piano lessons,” Interactive Learning Environments, vol. 11, pp. 1–12, 2022.

[15] D. D. Ece, “An interactive instruction model design with role play technique in distance education: a case study in open education system,” International Journal of Computational and Engineering, vol. 27, article 100268, 2020.

[16] M. A. Cabasag, B. L. Batan, J. Thomas, S. Canonigo, and R. B. Inocian, “The culture and economic attributes of puso street food industry: basis for a contextualized framework of puso teaching model,” Rehabilitation Research Policy and Education, vol. 11, no. 1, pp. 63–79, 2021.

[17] F. M. Tehrani, C. McComb, and S. Scott, “A quantitative approach to evaluate the application of the extended situational teaching model in engineering education,” Stat, vol. 4, no. 1, pp. 46–61, 2021.

[18] A. M. Abdumatalibovich, “Methods of working with studies in piano lessons at the university,” Asian Journal of Multidimensional Research, vol. 9, no. 7, pp. 49–55, 2020.

[19] I. Männikkö and J. Hsu, “Examining teachers’ adaptive expertise through personal practical theories,” Teaching and Teacher Education, vol. 77, no. 1, pp. 126–137, 2019.

[20] H. Gao, “Reform of college english teaching model under the background of artificial intelligence,” Journal of Physics Conference Series, vol. 2021, no. 4, article 042161, 2021.

[21] F. Nascimbeni and D. Burgos, “Unveiling the relationship between the use of open educational resources and the adoption of open teaching practices in higher education,” Sustainability, vol. 11, no. 20, pp. 5637–5637, 2019.

[22] D. M. Makhmudova, B. R. Tadjibaev, G. K. Dusmurodova, and G. T. Yuldasheva, “Information and communication technologies for developing creative competence in the process of open teaching physics and maths,” International Journal of Psychosocial Rehabilitation, vol. 24, no. 9, pp. 434–439, 2020.

[23] C. Bossu and T. Heck, “Special issue: engaging with open science in learning and teaching,” Education for Information, vol. 36, no. 3, pp. 211–225, 2020.

[24] C. Ozgur, S. Jha, and Y. Shen, “Software programming languages for teaching using open source languages such as python and r,” Technology, vol. 4, no. 2, pp. 285–307, 2021.

[25] H. Gao, “Engineering training based on virtual simulation technology,” Computer Simulation, vol. 37, no. 7, pp. 391–393, 2020, 408.

[26] G. Comeau, Y. Lu, and M. Swirp, “On-site and distance piano teaching: an analysis of verbal and physical behaviours in a teacher, student and parent,” Journal of Music, Technology & Education, vol. 12, no. 1, pp. 49–77, 2019.

[27] J. Wang, “Innovative research on the teaching mode of piano group lessons under the background of big data,” Journal of Physics: Conference Series, vol. 1744, no. 3, article 032031, 2021.