Density and Surface Tension of CaO–SiO₂–Al₂O₃–R₂O (R=Li, Na, K) Melts

Sohei SUKENAGA, Shinichiro HARUKI, Yoshitaka NOMOTO, Noritaka SAITO and Kunihiko NAKASHIMA

Department of Materials Science and Engineering, Kyushu University, 744, Motooku, Nishi-ku, Fukuoka, 819-0395 Japan.
E-mail: sukenaga.zaiko.kyushu-u.ac.jp, haruki@melts.zaiko.kyushu-u.ac.jp, nomoto@melts.zaiko.kyushu-u.ac.jp, saito@zaiko.kyushu-u.ac.jp, nakasima@zaiko.kyushu-u.ac.jp

(Received on January 26, 2011; accepted on March 9, 2011)

In the present work, we measured the density and the surface tension of CaO–SiO₂–Al₂O₃–R₂O (CaO/SiO₂=0.67, Al₂O₃=20 mass%, R₂O=10.8 mol%, R=Li, Na, K) quaternary melts at elevated temperature using the double-bob Archimedean method and the ring method, respectively. The density of the CaO–SiO₂–Al₂O₃–R₂O melts decreased with temperature due to the thermal expansion of the melts. In addition, the density of the CaO–SiO₂–Al₂O₃ ternary melt decreased with the addition of the alkali oxides. We converted the density into the molar volume to have a consideration on the micro-structure of the melts. The molar volumes of the CaO–SiO₂–Al₂O₃–R₂O melts are proportional to cube of the cationic radius for the alkali ions, which indicates the structural roles of the alkali oxides are mainly charge compensator to AlO₄⁻ anions.

The surface tension of the CaO–SiO₂–Al₂O₃–R₂O melts changed only slightly with temperature. The surface tension of the CaO–SiO₂–Al₂O₃ ternary melt increased with the addition of Li₂O. In contrast, the surface tension decreased with the addition of Na₂O or K₂O. As for quaternary system, the surface tension increased with the ionic potential of the additive alkali ions; it is the same tendency with the binary alkali silicate melts. However, the mechanism of the surface tension change with the addition of the alkali oxides has not been clarified in the present study.

KEY WORDS: density; surface tension; structure of aluminosilicate melts and glasses; CaO–SiO₂–Al₂O₃ based slags; physical property; alkali oxides; charge compensating cation.

1. Introduction

It is well known the cohesive zone is a main gas-permeability resistance in the blast furnace. Therefore, decreasing the temperature intervals of the cohesive zone would have a significant effect on the operation efficiency of the blast furnace and productivity of pig iron. Generally, the formation of the cohesive zone involves softening and melting of the ferrous burden, separation of the metal and slag, and finally dripping of the both phases.10 Higher separation and dripping rate of molten slag from metal phase would result in the shorter intervals of the cohesive zone. Density and surface tension of the molten slags are known to play important roles on the separation and the dripping behavior of molten slag from metal in the cohesive zone. For instance, Hino et al.21 reported that dripping behavior of molten slag from metallic iron depends on the surface tension and the density of the slag melts. Additionally, the density and the surface tension of the molten slag are important physical properties to understand the microstructure of the slags at elevated temperature for the fundamental aims of the scientific study on molten slags.

According to these practical and fundamental backgrounds, the density and the surface tension of binary silicate and ternary aluminosilicate slags have been measured by a large number of researchers.3–10 However, the practical slags formed at the cohesive zone are multi-component systems, which are known to be mainly composed of CaO, SiO₂ and Al₂O₃ with some extent of MgO, Fe₂O₃ and alkali oxides.11 Few studies have been conducted on the multi-component aluminosilicate systems and reliable data of these physical properties for multi-component slags have been strongly desired.

The basicity (CaO/SiO₂) of typical blast furnace type slags is known to be 0.8–1.2.12 However, we employed the slags with the basicity of 0.67 because the microstructure of the melts have been clarified in the previous study.13,14 In the present paper, we measured the density and the surface tension of CaO–SiO₂–Al₂O₃–R₂O (CaO/SiO₂=0.67, Al₂O₃=20 mass%; R=Li, Na, K) quaternary melts at elevated temperature using the double-bob Archimedean method and the ring method, respectively. Effect of the alkali oxide addition on the density and the surface tension of CaO–SiO₂–Al₂O₃ melt were mainly explored.

2. Experimental

2.1. Sample Preparation

CaO–SiO₂–Al₂O₃ (CaO (mass%)/SiO₂ (mass%) = 0.67, Al₂O₃=20mass%–R₂O (R=Li, Na, K) slags were employed
for the density and the surface tension measurements. The R$_2$O additives were replaced with CaO and SiO$_2$; the CaO (mass%)/SiO$_2$ (mass%) ratio was fixed as 0.67. Mass percentages of the chemical compositions are converted into molar percentage listed in Table 1. To make clear the effect of the kinds of R$_2$O additives on density and surface tension, the content of R$_2$O (10.8 mol%) additives in these slags was kept constant; the molar fraction of CaO, SiO$_2$ and Al$_2$O$_3$ changes only slightly with the kinds of the alkali oxides. The samples were prepared from reagent grade SiO$_2$, CaCO$_3$, Al$_2$O$_3$, Li$_2$CO$_3$, Na$_2$CO$_3$ and K$_2$CO$_3$ powders (suppliers: Sigma Aldrich, Inc.). These reagents were precisely weighed to form given compositions and mixed in a mullite mortar thoroughly. The mixtures were placed in a Pt crucible and then melted at 1873 K in a resistance furnace for 30 minutes under air. Finally, the melts were quenched on a copper plate. Then these quenched samples were employed for density and surface tension measurements.

2.2. Density Measurement

Densities of the sample melts were measured by the double-bob Archimedean method.\(^5\)\(^,\)\(^,\)\(^10\) Figure 1 represents the schematic illustrations of the apparatus for density measurements. An electric resistance furnace with six U-shape MoSi$_2$ heating elements was employed for heating and melting (Fig. 1(a)). A Pt crucible (inner diameter: 65 mm, height: 27 mm) and two kinds of Pt bobs with different size were used in the experiments. The dimensions of these bobs are given in Figs. 1(b) and 1(c). The density of the sample melts, ρ, was determined by the following equation:

$$\rho = \frac{B_1 - B_2}{V_1 - V_2} \quad \text{..................................} \quad (1)$$

where B_1 and B_2 are buoyancies, and V_1 and V_2 are the submerged volume of the large and the small bobs, respectively. The buoyancies were measured by using a commercial electric balance. The thermal expansion of the large and the small bobs are corrected by Eq. (2):

$$V_1 - V_2 = (V_1' - V_2') \cdot (1 + 3\alpha \Delta T) \quad \text{.............} \quad (2)$$

where V_1' and V_2' are the submerged volume of the large and the small bobs at room temperature determined by the Archimedean method using distilled water as immersion liquid. α and ΔT are linear expansion coefficient of Pt and a difference between room and measuring temperature, respectively.

Measurements were conducted at temperature intervals of 50 K on cooling under air (temperature range: 1623–1773 K). We measured the buoyancies 5 times at each of the examined temperature. The scatter of the measured density value was estimated to be within \pm1.8%; the scatter was due to the repetitive error of the buoyancies measurements.

2.3. Surface Tension Measurements

Surface tension of the sample melts was measured by the ring method.\(^10\) Figure 2 shows the schematic illustrations of the apparatus for surface tension measurements. A heating system of the apparatus is the same as the apparatus for density measurements (Fig. 2(a)). A Pt crucible (inner diameter: 65 mm, height: 27 mm) and a Pt-10mass%Rh-0.16mass%ZrO$_2$ ring were used in the experiments. The dimension of the ring is given in Fig. 2(b). Determination of the surface tension, γ, is based on measurements of the maximum force, W_{max}, exerted on a ring body as the ring is withdrawn from the surface of the liquid. γ is expressed by Eq. (3):

$$\gamma = \frac{W_{\text{max}} \cdot g}{4 \pi R_0 (1 + \alpha \Delta T)} \cdot S \quad \text{.............} \quad (3)$$

where R_0 is the radius of the ring. S is an empirical correc-

Table 1. Chemical compositions (mol%) of the CaO–SiO$_2$–Al$_2$O$_3$–R$_2$O slags for density and surface tension measurements.

Sample	CaO	SiO$_2$	Al$_2$O$_3$	Li$_2$O	Na$_2$O	K$_2$O
CAS	36.5	51.0	12.5	–	–	–
CAS-Li	32.2	45.1	11.9	10.8	–	–
CAS-Na	31.9	44.7	12.6	–	10.8	–
CAS-K	31.6	44.2	13.4	–	–	10.8

Fig. 1. Schematic illustrations for (a) the apparatus for density measurements, (b) the large Pt bob and (c) the small Pt bob.

Fig. 2. Schematic illustrations for (a) the apparatus for surface tension measurements and (b) the Pt-10mass%Rh-0.16mass%ZrO$_2$ ring.
tion factor known as Harkins and Jordan’s correction factor,\(^{15}\) which is dependent on \(W_{\text{max}}/\rho\). In the present work, an empirical relationship between \(S\) and \(W_{\text{max}}/\rho\) was determined by using the molten salts (PbCl\(_2\), KNO\(_3\), KCl, NaNO\(_3\), K\(_2\)SO\(_4\), and Na\(_2\)SO\(_4\)) as reference samples; the density and the surface tension of these molten salts are known.\(^{16}\) The relationship between \(S\) and \(W_{\text{max}}/\rho\) of these molten salts are shown in Fig. 3. We employ the linear relationship in Fig. 3 to determine the correction factor \(S\) that is expressed by the following equation.

\[
S = 0.65 + 0.2229 \times 10^6 \frac{W_{\text{max}}}{\rho} \quad \text{(4)}
\]

The sample slag was placed in the Pt crucible and heated up to 1 823 K under air. The ring was touched on the surface of the sample melts, and then pulled up slowly. The force exerted on the ring was detected by using a commercial strain gauge as the potential difference; \(W_{\text{max}}\) was calculated based on the reference relationship between the exerted force and the potential difference, which was obtained by using various standard weights beforehand. The measurements were made at temperature intervals of 50 K on cooling under air (temperature range: 1 623–1 823 K). We measured the \(W_{\text{max}}\) 5 times at each of the examined temperature. The scatter of the measured surface tension value was estimated to be within \(\pm 0.9\%\); the scatter was due to the repetitive error of the measured \(W_{\text{max}}\) and the density value.

3. Results and Discussion

3.1. Density

Figure 4 shows temperature dependences for the density of the CaO–SiO\(_2\)–Al\(_2\)O\(_3\)–R\(_2\)O melts. Density of all the samples decreased with temperature due to the thermal expansion of the melts. The density of the CAS melts decreased with the addition of the alkali oxides. The decrease in density was larger in the order of cationic radius of the alkali ion. Density of the melt is not only dependent on the structure of the slag but also dependent on the molecular weight of the component oxides. Therefore, we converted the density into the molar volume by Eq. (5) to have a structural consideration.

\[
V_m = \sum n_i \cdot M_i \rho \quad \text{(5)}
\]

\(n_i\) and \(M_i\) are the molar fraction and molar weight (10\(^{-3}\) kg/mol) of a component \(i\), respectively.

Figure 5 represents the molar volume of the CaO–SiO\(_2\)–Al\(_2\)O\(_3\)–R\(_2\)O quaternary melts. The molar volume of the CAS melts increased with the addition of the alkali oxides. It should be also noted that the molar volume of the CaO–SiO\(_2\)–Al\(_2\)O\(_3\)–R\(_2\)O quaternary melts was in the order of the cationic radius of alkali ion (CAS–K > CAS–Na > CAS–Li).

It is well known that Al\(_2\)O\(_3\) is an amphoteric oxide and its behavior depends on the basicity of the melts to which it is added. When an AlO\(_4^{5-}\) is incorporated into the silicate network, it is necessary that the electrical charge balance is

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig3.png}
\caption{The relationship between \(W_{\text{max}}/\rho\) and the empirical correction factor \(S\) for the several kinds of molten salts.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig4.png}
\caption{Temperature dependences of the density for the CaO–SiO\(_2\)–Al\(_2\)O\(_3\)–R\(_2\)O melts.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig5.png}
\caption{Temperature dependences of the molar volume for the CaO–SiO\(_2\)–Al\(_2\)O\(_3\)–R\(_2\)O melts.}
\end{figure}
maintained. Namely, an AlO$_4^{5-}$ tetrahedra requires a charge compensating alkali or alkaline earth cation as shown in Fig. 6, otherwise Al$^{3+}$ ions behave as network modifying cation. In the previous paper, we performed the 27Al MAS NMR spectra of the glasses in the same composition as the present samples. 27Al MAS NMR spectra indicated that most of Al$^{3+}$ was in four-fold coordination in the glasses. Since the sample was in the percalcic region (CaO (mol%)/Al$_2$O$_3$ (mol%)>1), there are enough calcium or alkali ions to charge-compensate the AlO$_4^{5-}$ tetrahedron. Roy et al. reported the stability of aluminosilicate framework is inversely related to the cationic field strength (CFS) of charge compensating cations for AlO$_4^{5-}$ tetrahedrons. CFS is expressed by the following equation (6):

$$CFS = \frac{Z}{r^2}$$

where Z is the valence number of the cation, r is the cationic radius. Since the CFS of the alkali ions is smaller than that of calcium ion (Li: 1.73, Na: 0.96, K: 0.53, Ca: 2.00)*, the negative charges of AlO$_4^{5-}$ tetrahedrons would be preferentially compensated by the alkali ions in the CaO–SiO$_2$–Al$_2$O$_3$–R$_2$O system. Lee and Sung examined the effect of the ratio of Na$_2$O to CaO on the cation distribution in (18.75-X)CaO–XNa$_2$O–6.25Al$_2$O$_3$–75SiO$_2$ (mol%) quaternary aluminosilicate glasses (X=18.75·Na$_2$O/(CaO+Na$_2$O)) by using 17O 3QMAS NMR. They reported that Na ion plays a preferential role of a charge compensator, while Ca ion can act as a network modifier. Additionally, in their study, most of Na ions behave as a charge compensator to AlO$_4^{5-}$ anions in the glass with [Na$_2$O/(CaO+Na$_2$O)]=0.250; the ratio, [Na$_2$O/(CaO+Na$_2$O)], is comparable to that of the CAS-Na melts. Therefore, we assumed the structural role of Na ions was charge compensator to AlO$_4^{5-}$ anions in the CAS-Na melt in the present study. If the structural roles of Li and K ions were the same as Na ions (charge compensator), the molar volume of the melts would be linearly related to the cationic volume of the alkali ions. Figure 7 shows the relationship between the cube of alkali ion radius and the molar volume of the CaO–SiO$_2$–Al$_2$O$_3$–R$_2$O quaternary melts at 1773 K. The molar volume of the melts increased linearly with the cube of the radius for the alkali ions, which indicates that all kinds of the alkali ions would mainly behave as the charge compensator for AlO$_4^{5-}$ tetrahedron in the CaO–SiO$_2$–Al$_2$O$_3$–R$_2$O quaternary melts. Therefore, the addition of the alkali oxides to the CAS melts means the formation of AlO$_4^{5-}$ tetrahedrons compensated by the alkali ions and the non-bridging oxygen bonded with calcium ions.

The molar volume of CaO–SiO$_2$ melts has been reported to decrease with the addition of CaO. However, the molar volume of the CaO–SiO$_2$–Al$_2$O$_3$–R$_2$O melts increased with formation of Si–O–Ca bonding in the present study. Hence, the formation of AlO$_4^{5-}$ tetrahedrons compensated by alkali ions dominates the change in the molar volume of the CaO–SiO$_2$–Al$_2$O$_3$–R$_2$O melts with the addition of the alkali oxides. Tomlinson et al. reported that the occupied volume of the two monovalent cations was approximately 3 times a divalent cation which has the same cationic radius as the monovalent cation. Since the charge compensating cation changed from calcium to alkali cation with the addition of the alkali oxide to the CAS melt, the occupied volume of the charge compensating cation increased. Therefore, the molar volume of the CAS melt was thought to increase with the addition of the alkali oxide.

3.2. Surface Tension

Figure 8 shows temperature dependences of the surface tension of the CaO–SiO$_2$–Al$_2$O$_3$–R$_2$O melts. The surface tension of the CAS (36.5CaO–51.0SiO$_2$–12.5Al$_2$O$_3$ (mol%)) melt is consistent with the surface tension of the 35.9CaO–51.2SiO$_2$–12.9Al$_2$O$_3$ (mol%) melt measured by Mukai et al.; the chemical compositions of these melts are comparable. In addition, the surface tension of the CaO–SiO$_2$–Al$_2$O$_3$–R$_2$O melts changed only slightly with temperature. The surface tension of the CAS melt increased with the addition of Li$_2$O. In contrast, the surface tension of the CAS melt decreased with the addition of Na$_2$O or K$_2$O. The mechanisms of the surface tension change for silicate and aluminosilicate melts with addition of the oxides compo-

*Cationic radii reported by Shannon et al. are employed for calculation of the CFS.
Al₂O₃–R₂O melts increased with the melts at 1773 K. The surface tension of the CaO–SiO₂–ions and the surface tension of the CaO–SiO₂–Al₂O₃–R₂O kinds of network modifier cation. Boni and Derge suggested silicate melts, the surface tension is known to depend on the nents have not been well understood. However, as for binary silicate melts, the surface tension is known to depend on the kinds of network modifier cation. Boni and Derge suggested that surface tension of the binary silicate melts increased with an increase in the ionic potential \(I_p \) of the network modifier cation. \(I_p \) is expressed by the following equation (7):

\[
I_p = \frac{Z}{r} \quad \text{(7)}
\]

Figure 9 represents the relationship \(I_p \) of the additive alkali ions and the surface tension of the CaO–SiO₂–Al₂O₃–R₂O melts at 1773 K. The surface tension of the CaO–SiO₂–Al₂O₃–R₂O melts increased with the \(I_p \) of the alkali ions. The order of Li > Na > K found in Fig. 9 is the same tendency as the surface tension of the binary alkali silicate melts. As we have described previously, the alkali ions would mainly behave as charge compensator to the AlO₄⁻ anions in the CaO–SiO₂–Al₂O₃–R₂O system. Hence, the alkali ions behaving as charge compensator had similar contribution to the surface tension with those ions behaving as a network modifier. However, the mechanism of the surface tension change with the addition of the alkali oxides was not clarified in the present study.

4. Concluding Remarks

In the present study, the effect of the alkali oxide (Li₂O, Na₂O, K₂O) addition on the density and the surface tension of the 36.5mol%CaO–51.0mol%SiO₂–12.5mol%Al₂O₃ (CAS) melt have been explored. The density of the CAS melt decreased with the addition of the alkali oxides. We could have a consideration on the microstructure of the melts by converting the density into the molar volume. The molar volume of the CaO–SiO₂–Al₂O₃–R₂O melts is proportional to cube of the cationic radius for the alkali ions, which indicates the structural roles of the alkali oxides are mainly charge compensator to AlO₄⁻ anions. The direct observation of the cation distribution in the CaO–SiO₂–Al₂O₃–R₂O quaternary melts by using spectroscopic method is desired for understanding of the microstructure for the melts.

The surface tension of the CAS melt increased with the addition of Li₂O. In contrast, the surface tension decreased with the addition of Na₂O or K₂O. As for quaternary system, the surface tension order Li > Na > K is same as that of binary alkali silicate melts. However, the mechanism of the surface tension change with the addition of the alkali oxides has not been clarified in the present study. More of the measurements for the surface tension of the ternary and quaternary aluminosilicate melts are desired to understand the mechanism of the surface tension change with the addition of the alkali oxides.

REFERENCES

1) P. A. Tanskanelen, S. M. Huttunen, P. H. Mannila and J. J. Harkki: Ironmaking Steelmaking, 29 (2002), 281.
2) M. Hino, T. Nagasaka, A. Katsumata, K. Higuchi, K. Yamaguchi and N. Kon-no: Metall. Mater. Trans. B, 30B (1999), 671.
3) L. Shartsis and S. Spinner: J. Res. Natl. Bur. Stand., 46 (1951), 385.
4) T. B. King: J. Soc. Glass Technol., 35 (1951), 241.
5) J. W. Tomlinson, M. S. R. Heynes and J. O'M. Bockriss: Trans. Faraday Soc., 54 (1958), 1822.
6) L. R. Barrett and A. G. Thomas: J. Soc. Glass Tech., 43 (1959), 1797.
7) W. D. Kingery: J. Am. Ceram. Soc., 42 (1959), 6.
8) R. Kammerl and H. Winterhager: ERZMETALL, 18 (1965), 9.
9) M. Mukai and T. Ishikawa: J. Met., 45 (1981), 147.
10) S. Fujiwara, C. Hwang and K. Morinaga: J. Am. Ceram. Soc., 87 (2004), 10.
11) K. Kodama, H. Kanoshima and R. Takahashi: Tetsu-to-Hagané, 53 (1967), 260.
12) K. Kanbara, T. Hagiwara, M. Sasaki, Y. Okuno, T. Katayama and K. Yoshizawa: Tetsu-to-Hagané, 59 (1973), A77.
13) S. Sukenaga, N. Saito, K. Kawakami and K. Nakashima: ISIJ Int., 46 (2006), 352.
14) S. Sukenaga, T. Nagahisa, K. Kaneshishi, N. Saito and K. Nakashima: ISIJ Int., 51 (2011), 333.
15) W. D. Harkins and H. F. Jordan: J. Am. Chem. Soc., 52 (1930), 1751.
16) J. Shiokawa and N. Watanabe: Physico-Chemical Constants of Fused Salts, ed. by T. Ishino, The Committee of Fused Salt Chemistry, The Electrochemical Society of Japan, Osaka, (1963), 223.
17) B. N. Roy and A. Navrotsky: J. Am. Ceram. Soc., 67 (1984), 606.
18) R. D. Shanon and C. T. Prewitt: Acta Crystallogr., B25 (1969), 925.
19) S. K. Lee and S. Sung: Chem. Geol., 256 (2008), 326.
20) R. E. Boni and G. Derge: J. Met., 8 (1956), 53.

1289 © 2011 ISIJ