THE OPLAX LIMIT OF AN ENRICHED CATEGORY

In memory of our colleague Marta Bunge

SOICHIRO FUJII AND STEPHEN LACK

Abstract. We show that 2-categories of the form \(\mathcal{B}\text{-Cat} \) are closed under slicing, provided that we allow \(\mathcal{B} \) to range over bicategories (rather than, say, monoidal categories). That is, for any \(\mathcal{B}\text{-category} \ X \), we define a bicategory \(\mathcal{B}/X \) such that \(\mathcal{B}\text{-Cat}/X \cong (\mathcal{B}/X)\text{-Cat} \). The bicategory \(\mathcal{B}/X \) is characterized as the oplax limit of \(X \), regarded as a lax functor from a chaotic category to \(\mathcal{B} \), in the 2-category \(\text{BICAT} \) of bicategories, lax functors and icons. We prove this conceptually, through limit-preservation properties of the 2-functor \(\text{BICAT} \to \text{2-CAT} \) which maps each bicategory \(\mathcal{B} \) to the 2-category \(\mathcal{B}\text{-Cat} \). When \(\mathcal{B} \) satisfies a mild local completeness condition, we also show that the isomorphism \(\mathcal{B}\text{-Cat}/X \cong (\mathcal{B}/X)\text{-Cat} \) restricts to a correspondence between fibrations in \(\mathcal{B}\text{-Cat} \) over \(X \) on the one hand, and \(\mathcal{B}/X \)-categories admitting certain powers on the other.

1. Introduction

It is well-known that for any monoidal category \(\mathcal{V} \) and monoid \(M = (M, e: I \to M, m: M \otimes M \to M) \) therein, the slice category \(\mathcal{V}/M \) has a canonical monoidal structure; the unit is \(e \) and the monoidal product of objects \((s: S \to M) \) and \((t: T \to M) \) is

\[
S \otimes T \xrightarrow{s \otimes t} M \otimes M \xrightarrow{m} M.
\]

Moreover, there is a canonical isomorphism of categories

\[
\text{Mon}(\mathcal{V}/M) \cong \text{Mon}(\mathcal{V})/M.
\]

This paper originated from a natural generalization of this, replacing the notion of monoid in \(\mathcal{V} \) by that of \(\mathcal{V} \)-category. That is, for any \(\mathcal{V} \)-category \(X \), there is an appropriate “base” \(\mathcal{V}/X \) admitting a canonical isomorphism of 2-categories

\[
(\mathcal{V}/X)\text{-Cat} \cong \mathcal{V}\text{-Cat}/X.
\] (1)

Here, the “base” \(\mathcal{V}/X \) is in general not a monoidal category but a bicategory. Enriched category theory over bicategories is developed in, e.g., \([\text{BCSW83}, \text{Str83}]\). We recall that, for a bicategory \(\mathcal{B} \), a \(\mathcal{B} \)-category \(X \) is given by

\[
\begin{align*}
\text{The authors acknowledge with gratitude the support of an Australian Research Council Discovery Project DP190102432. The first author is a JSPS Overseas Research Fellow.} \\
2020 Mathematics Subject Classification: 18D20, 18N10. \\
Key words and phrases: Enriched categories, bicategories. \\
© Soichiro Fujii and Stephen Lack, 2024. Permission to copy for private use granted.
\end{align*}
\]
• a set \(\text{ob}(X) \);

• a function \(|-| : \text{ob}(X) \to \text{ob}(\mathcal{B}) \) (\(|x| \) is called the *extent* of \(x \));

• for all \(x, x' \in \text{ob}(X) \), a 1-cell \(\mathcal{X}(x, x') : |x| \to |x'| \) in \(\mathcal{B} \);

• for all \(x \in \text{ob}(X) \), a 2-cell

\[
\begin{array}{c}
|x| \\
\downarrow \mathcal{X}(x, x) \\
|x|
\end{array}
\]

in \(\mathcal{B} \), where \(1_{|x|} \) is the identity 1-cell on \(|x|\); and

• for all \(x, x', x'' \in \text{ob}(X) \), a 2-cell

\[
\begin{array}{c}
|x| \\
\downarrow \mathcal{X}(x, x') \\
|x'| \\
\downarrow \mathcal{X}(x', x'') \\
|X(x, x'')| \\
\downarrow \mathcal{X}(x, x''') \\
|x''|
\end{array}
\]

in \(\mathcal{B} \), subject to the associativity and identity laws, generalizing the usual axioms for a category.

Since the isomorphism (1) already forces us to consider enrichment over bicategories, it is natural to wonder whether there is a generalization of the isomorphism involving a bicategory \(\mathcal{B} \) in place of the monoidal category \(\mathcal{V} \). Indeed this turns out to be the case: for any bicategory \(\mathcal{B} \) and \(\mathcal{B} \)-category \(\mathcal{X} \), there is a bicategory \(\mathcal{B}/\mathcal{X} \) with a canonical isomorphism of 2-categories \((\mathcal{B}/\mathcal{X})\text{-Cat} \cong \mathcal{B}\text{-Cat}/\mathcal{X}\). Thus 2-categories of the form \(\mathcal{B}\text{-Cat} \) are closed under slicing, provided that we allow \(\mathcal{B} \) to range over bicategories.

The construction of \(\mathcal{B}/\mathcal{X} \) is simple enough to carry out at this point; see also Remark 4.8 for a more abstract point of view. We set \(\text{ob}(\mathcal{B}/\mathcal{X}) = \text{ob}(\mathcal{X}) \) and, for all \(x, x' \in \text{ob}(\mathcal{B}/\mathcal{X}) \), the hom-category \((\mathcal{B}/\mathcal{X})(x, x') \) is the slice category \(\mathcal{B}(|x|, |x'|)/\mathcal{X}(x, x') \). The identity 1-cell at \(x \) is \(j_x \), and the composite of 1-cells \((s : S \to \mathcal{X}(x, x')) : x \to x'\) and \((t : T \to \mathcal{X}(x', x'')) : x' \to x''\) is the pasting composite

\[
\begin{array}{c}
|X| \\
\downarrow \mathcal{X}(x, x') \\
|x'| \\
\downarrow \mathcal{X}(x', x'') \\
|x''|
\end{array}
\]

Of course, when both \(\mathcal{B} \) and \(\mathcal{X} \) have only one object, the construction of \(\mathcal{B}/\mathcal{X} \) reduces to that of the slice of a monoidal category over a monoid.

This observation allows one to view (enriched) functors as (enriched) categories, and suggests new perspectives even on notions which are not directly related to enrichment.
For example, for any \((\text{Set})\)-category \(X\), there is a bicategory \(\text{Set} / X\) with an isomorphism \((\text{Set} / X)-\text{Cat} \cong \text{Cat} / X\). Thus we can view functors into \(X\) as enriched categories (see Example 4.6 below and [Gar14] for a related construction), and we may potentially interpret properties of functors via enriched categorical terms. Indeed, we shall show that a functor \(Y \to X\) is a Grothendieck fibration if and only if the corresponding \(\text{Set} / X\)-category \(Y\) has powers by a certain class of 1-cells in \(\text{Set} / X\), as well as a \(\mathcal{B}\)-enriched version of this result.

The notation \(\mathcal{B} / X\) is justified by its characterization as the oplax limit of a 1-cell in a suitable 2-category. To explain this, recall that a \(\mathcal{B}\)-category \(X\) can be given equivalently as a lax functor \(X: X_c \to \mathcal{B}\), where \(X_c\) is the chaotic category with the same set of objects as \(X\).\(^1\) Thus we can view the \(\mathcal{B}\)-category \(X\) as a 1-cell in the 2-category \(\text{BICAT}\) of bicategories, lax functors and icons [Lac10]. The bicategory \(\mathcal{B} / X\) is the oplax limit of this 1-cell in \(\text{BICAT}\):

\[
\begin{tikzcd}
X_c & \text{BICAT} \\
\mathcal{B} / X \\
\mathcal{B}
\end{tikzcd}
\]

(Although \(\text{BICAT}\) is not complete, it does have oplax limits of 1-cells [Lac05, LS12].) This generalizes the characterization of the slice monoidal category \(\mathcal{V} / M\) as the oplax limit of the monoid \(M\) in \(\mathcal{V}\), regarded as a lax monoidal functor from the terminal monoidal category to \(\mathcal{V}\), in the 2-category of monoidal categories, lax monoidal functors and monoidal natural transformations.

In this paper, we study properties of the 2-functor \(\text{Enr}: \text{BICAT} \to \text{2-CAT}\) mapping each bicategory \(\mathcal{B}\) to the 2-category \(\mathcal{B}\)-\text{Cat}, in order to understand the isomorphism \((\mathcal{B} / X)-\text{Cat} \cong \mathcal{B}\)-\text{Cat} / X\) conceptually, as well as to establish further closure properties of 2-categories of the form \(\mathcal{B}\)-\text{Cat}. To this end, it is useful to factorize \(\text{Enr}\) as

\[
\begin{tikzcd}
\text{BICAT} & \text{2-CAT} \\
\text{2-CAT}/\text{Enr}(1) \ar[swap]{u}{\text{Enr}} \ar{u}{\text{Enr}_1}
\end{tikzcd}
\]

where \(1\) is the terminal bicategory. The 2-functor \(\text{Enr}_1\) maps each bicategory \(\mathcal{B}\) to \(\mathcal{B}\)-\text{Cat} equipped with the 2-functor \(\text{Enr}(!): \mathcal{B}\)-\text{Cat} \to \text{Enr}(1)\) induced from the unique lax functor \(!: \mathcal{B} \to 1\). The underlying category of \(\text{Enr}(1)\) is \(\text{Set}\), and \(\text{Enr}(!)\) can be regarded as \(\text{ob}(-)\), mapping each \(\mathcal{B}\)-category \(X\) to its set of objects \(\text{ob}(X)\). (Although \(\text{Enr}\) is usually denoted simply as \((-)\)-\text{Cat}, we adopted the current notation in order to avoid the potentially misleading expression \(1\)-\text{Cat}.)

In our main theorem (Theorem 2.1), we show that \(\text{Enr}_1: \text{BICAT} \to \text{2-CAT}/\text{Enr}(1)\) preserves any limit which happens to exist in \(\text{BICAT}\). This implies that \(\text{Enr}\) preserves

\(^1\)Lax functors of this form were studied by Bénabou [Bén67] under the name \textit{polyad}; for the connection with enriched categories see [Str83].
any limit which happens to exist in \textbf{BICAT} and is preserved by the forgetful 2-functor \textbf{2-CAT}/Enr\((1)\) \to \textbf{2-CAT}; the latter condition is satisfied whenever the limit in question is small enough to exist in \textbf{2-CAT} and is created by the forgetful 2-functor. In ordinary category theory, the limits created by the forgetful functors from slice categories are precisely the connected limits. In Section 3 we generalize this to 2-categories (or in fact to \(\mathcal{V}\)-categories where \(\mathcal{V}\) is any complete and cocomplete cartesian closed category), introducing the class of \textbf{Cat}-connected limits with several characterizations. Thus \(\text{Enr}: \textbf{BICAT} \to \textbf{2-CAT}\) preserves any \textbf{Cat}-connected limit which happens to exist in \textbf{BICAT}. This includes Eilenberg–Moore objects of comonads, for example. Although oplax limits of 1-cells are not \textbf{Cat}-connected, the isomorphism \((\mathcal{B}/\mathcal{X})\text{-Cat} \cong \mathcal{B}\text{-Cat}/\mathcal{X}\) is explained via the limit-preservation property of \(\text{Enr}\) and a 2-categorical argument in Section 4.

Finally, in Section 5, we investigate (internal) fibrations in the 2-category \(\mathcal{B}\text{-Cat}\) of \(\mathcal{B}\)-categories. Specifically, we show that (assuming a mild local completeness condition on \(\mathcal{B}\)) a \(\mathcal{B}\)-functor \(\mathcal{Y} \to \mathcal{X}\) is a fibration in \(\mathcal{B}\text{-Cat}\) if and only if the corresponding \(\mathcal{B}/\mathcal{X}\)-category \(\overline{\mathcal{Y}}\) admits certain powers.

We intend to revisit the results of this paper in the future, in the context of enrichment over pseudo double categories.

2. The limit-preservation theorem

Size does not play a significant role in this paper; nonetheless we make a few comments here about the issues which arise and our approach to them. The typical \textit{monoidal} categories over which one enriches, such as \textbf{Set}, \textbf{Cat}, or \textbf{Ab}, have small hom-sets but are not themselves small. Thus the corresponding bicategories will not even have small hom-categories. We do still need some control of the size of these bicategories, and therefore fix two Grothendieck universes \(\mathcal{U}_0\) and \(\mathcal{U}_1\) with \(\mathcal{U}_0 \in \mathcal{U}_1\). Sets, categories, etc. in \(\mathcal{U}_0\) and \(\mathcal{U}_1\) are called \textit{small} and \textit{large} respectively.

Let \textbf{BICAT} be the 2-category of large bicategories, lax functors and icons [\textit{Lac10}, Theorem 3.2], and \textbf{2-CAT} be the 2-category of large 2-categories, 2-functors and 2-natural transformations. We have a 2-functor \(\text{Enr}: \textbf{BICAT} \to \textbf{2-CAT}\) sending each bicategory \(\mathcal{B}\) to the 2-category \(\mathcal{B}\text{-Cat}\) of all small \(\mathcal{B}\)-categories, \(\mathcal{B}\)-functors and \(\mathcal{B}\)-natural transformations. It is the limit-preservation properties of this 2-functor \(\text{Enr}\) that is our main focus. The limits in question will be 2-limits weighted by 2-functors of the form \(F: \mathcal{D} \to \textbf{CAT}\), where \(\mathcal{D}\) is a large 2-category and \textbf{CAT} is the 2-category of large categories.

The bicategory \(\mathbf{1}\) with a single 2-cell is the terminal object of \textbf{BICAT}, and hence \(\text{Enr}\) induces the 2-functor \(\text{Enr}_1: \textbf{BICAT} \to \textbf{2-CAT}/\text{Enr}(1)\), where \(\textbf{2-CAT}/\text{Enr}(1)\) denotes the (strict) slice 2-category of \textbf{2-CAT} over \(\text{Enr}(1) \in \textbf{2-CAT}\). The 2-category \(\text{Enr}(1)\) is the locally chaotic 2-category whose underlying category is \textbf{Set}. More precisely, the objects of \(\text{Enr}(1)\) can be identified with the small sets, and for each pair of small sets \(X\) and \(Y\)
we have $\text{Enr}(1)(X, Y) = \mathbf{Set}(X, Y)_c$, where $(-)_c$ appears in the string of adjunctions

\[
\begin{array}{ccc}
\pi_0 & \Downarrow & \mathbf{CAT}_0. \\
\downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow \\
\mathbf{SET} & \xleftarrow{(-)_d} & \mathbf{CAT}. \\
\downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow \\
\mathbf{SET} & \xleftarrow{(-)_l} & \mathbf{CAT}. \\
\end{array}
\]

Here, \mathbf{SET} and \mathbf{CAT}_0 denote the categories of large sets and of large categories respectively. The (finite-product-preserving) functors in (2) induce 2-adjunctions

\[
\begin{array}{ccc}
\pi_0 & \Downarrow & \mathbf{CAT}_2. \\
\downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow \\
\mathbf{CAT} & \xleftarrow{(-)_d} & \mathbf{2-CAT}. \\
\downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow \\
\mathbf{2-CAT} & \xleftarrow{(-)_l} & \mathbf{SET}. \\
\end{array}
\]

Thus we shall write the 2-category $\text{Enr}(1)$ as \mathbf{Set}_c.

Explicitly, the 2-functor $\text{Enr}_1 : \mathbf{BICAT} \to \mathbf{2-CAT}/\mathbf{Set}_c$ maps each bicategory B to the 2-category $B\text{-Cat}$ equipped with the 2-functor $\text{ob}(-) : B\text{-Cat} \to \mathbf{Set}_c$ which extracts the set of objects of a B-category.

2.1. Theorem. The 2-functor $\text{Enr}_1 : \mathbf{BICAT} \to \mathbf{2-CAT}/\mathbf{Set}_c$ preserves all weighted limits which happen to exist in \mathbf{BICAT}.

Proof. We shall show the following.

(a) The set G of all objects of $\mathbf{2-CAT}/\mathbf{Set}_c$ of the form $(\mathbf{2}_2 \to \mathbf{Set}_c)$, where $\mathbf{2}_2$ denotes the free 2-category on a single 2-cell, is a strong generator of the 2-category $\mathbf{2-CAT}/\mathbf{Set}_c$.

(b) For each object $A \in G$, the 2-functor $\mathbf{2-CAT}/\mathbf{Set}_c(A, \text{Enr}_1(-)) : \mathbf{BICAT} \to \mathbf{CAT}$ is a 2-limit of representable 2-functors, and hence preserves all weighted limits which happen to exist in \mathbf{BICAT}.

From these, the main claim follows. Indeed, let \mathbf{D} be a large 2-category, $F : \mathbf{D} \to \mathbf{CAT}$ be a 2-functor (the weight) and $S : \mathbf{D} \to \mathbf{BICAT}$ be a 2-functor such that the weighted limit $\{F, S\}$ exists in \mathbf{BICAT}. Then the weighted limit $\{F, \text{Enr}_1 \circ S\}$ exists in $\mathbf{2-CAT}/\mathbf{Set}_c$, because $\mathbf{2-CAT}/\mathbf{Set}_c$ has all (large) weighted limits. We have a comparison 1-cell $M : \text{Enr}_1\{F, S\} \to \{F, \text{Enr}_1 \circ S\}$ in $\mathbf{2-CAT}/\mathbf{Set}_c$. Now for each $A \in G$, the functor

\[
\mathbf{2-CAT}/\mathbf{Set}_c(A, M) : \mathbf{2-CAT}/\mathbf{Set}_c(A, \text{Enr}_1\{F, S\}) \to \mathbf{2-CAT}/\mathbf{Set}_c(A, \{F, \text{Enr}_1 \circ S\})
\]

is an isomorphism by (b), from which we conclude that M is an isomorphism by (a).
\mathcal{G} is a strong generator of $2\text{-}\text{CAT}/\text{Set}_{lc}$ because, given any 1-cell $T: (\mathcal{X} \to \text{Set}_{lc}) \to \mathcal{Y}$, i.e., a 2-functor $T: \mathcal{X} \to \mathcal{Y}$ between 2-categories \mathcal{X} and \mathcal{Y} over Set_{lc}, the condition that $2\text{-}\text{CAT}/\text{Set}_{lc}(A,T)$ be an isomorphism for all $A \in \mathcal{G}$ means that T is bijective on 2-cells.

To show (b), observe that a 2-functor $2_2 \to \text{Set}_{lc}$ corresponds to a parallel pair of functions $f_0, f_1: X \to Y$. Such a 2-functor can be seen as an object of $2\text{-}\text{CAT}/\text{Set}_{lc}$. Given $((f_0, f_1): 2 \to \text{Set}_{lc})$ where $f_0, f_1: X \to Y$, first consider the category $2 \times X_c$ where $2 = \{0 < 1\}$ is the two-element chain. We regard $2 \times X_c$ as a bicategory as well. We have the projection functor $\pi: 2 \times X_c \to X_c$ and the functor $[(f_0, f_1): 2 \times X_c \to Y_c$ defined by $[f_0, f_1](i, x) = f_i(x)$; these can also be regarded as lax functors, i.e., morphisms in BICAT. The 2-functor

$$2\text{-}\text{CAT}/\text{Set}_{lc}((f_0, f_1), \text{Enr}_1(-)): \text{BICAT} \to \text{CAT}$$

is the comma object (in $[\text{BICAT}, \text{CAT}]$) as in

$$\xymatrix{ 2\text{-}\text{CAT}/\text{Set}_{lc}((f_0, f_1), \text{Enr}_1(-)) \ar[d] \ar[r] & \text{BICAT}(X_c, -) \ar[d] \ar[dr] \ar[dd] & \text{BICAT}(\pi, -) \ar[d] \ar[dr] \ar[dd] \\
\text{BICAT}(Y_c, -) & & \text{BICAT}(2 \times X_c, -).}
$$

Indeed, for any bicategory $\mathcal{B} \in \text{BICAT}$, an object of the comma category of the functors $\text{BICAT}([f_0, f_1], \mathcal{B})$ and $\text{BICAT}(\pi, \mathcal{B})$ consists of lax functors $\mathcal{C}: X_c \to \mathcal{B}$ and $\mathcal{D}: Y_c \to \mathcal{B}$ together with an icon

$$
\xymatrix{ 2 \times X_c \ar[d]^{[f_0, f_1]} \ar[r]^\pi & X_c \ar[d]^\mathcal{C} \\
Y_c & \mathcal{B} \ar[l]_\mathcal{D} }
$$

This corresponds to \mathcal{B}-categories \mathcal{C} and \mathcal{D} with $\text{ob}(\mathcal{C}) = X$ and $\text{ob}(\mathcal{D}) = Y$ such that $|x|_\mathcal{C} = |f_i(x)|_\mathcal{D}$ for all $x \in X$ and $i \in \{0, 1\}$, together with a 2-cell $\alpha_{(i, x), (i', x')} : \mathcal{C}(x, x') \to \mathcal{D}(f_i(x), f_i'(x'))$ in \mathcal{B} for all $(i, x), (i', x') \in 2 \times X_c$ with $i \leq i'$, satisfying some equations. These latter data in turn correspond to \mathcal{B}-functors $F_0: \mathcal{C} \to \mathcal{D}$ and $F_1: \mathcal{C} \to \mathcal{D}$ (with $\text{ob}(F_i) = f_i$) together with a \mathcal{B}-natural transformation $\alpha: F_0 \to F_1$. (We record in Lemma 2.2 below an observation which is useful for the verification.)

This gives a bijective correspondence on objects of $2\text{-}\text{CAT}/\text{Set}_{lc}((f_0, f_1), \text{Enr}_1(\mathcal{B}))$ and the comma category of $\text{BICAT}([f_0, f_1], \mathcal{B})$ and $\text{BICAT}(\pi, \mathcal{B})$, which routinely extends to an isomorphism of categories natural in \mathcal{B}. \blacksquare
2.2. Lemma. Let \(\mathcal{B} \) be a bicategory, \(\mathcal{C}, \mathcal{D} \) be \(\mathcal{B} \)-categories and \(T, S : \mathcal{C} \to \mathcal{D} \) be \(\mathcal{B} \)-functors. To give a \(\mathcal{B} \)-natural transformation \(\alpha : T \to S \), i.e., a family of 2-cells

\[
\begin{array}{c}
\xymatrix{
1_{|x|} \\
\mathbb{D}(T x, S x) \ar@{|->}[rr]^\alpha_x & & |x| \\
|x| \ar@{|->}[rr]_{1_{|x|}} & & |x|
}
\end{array}
\]

in \(\mathcal{B} \) for all \(x \in \mathcal{C} \), satisfying the naturality axiom saying that for all \(x, x' \in \mathcal{C} \),

\[
\begin{align}
1_{|x'|}.\mathbb{C}(x, x') & \xrightarrow{\alpha_{x', T x, x'}} \mathbb{D}(T x', S x').\mathbb{D}(T x, T x') \\
\cong & \\
\mathbb{C}(x, x') & \xrightarrow{\alpha_{x, S x, S x}} \mathbb{D}(T x, S x') \quad (3)
\end{align}
\]

commutes, is equivalent to giving a family of 2-cells

\[
\begin{array}{c}
\xymatrix{
\mathbb{C}(x, x') \\
\mathbb{D}(T x, S x') \ar@{|->}[rr]^\alpha_{x, x'} & & |x'| \\
|x| \ar@{|->}[rr]_{1_{|x'|}} & & |x'|
}
\end{array}
\]

in \(\mathcal{B} \) for all \(x, x' \in \mathcal{C} \), such that for all \(x, x', x'' \in \mathcal{C} \),

\[
\begin{align}
\mathbb{C}(x', x'').\mathbb{C}(x, x') & \xrightarrow{\alpha_{x', x'', x'}} \mathbb{C}(x, x'') \\
S_{x', x'', x'}, \alpha_{x, x'} & \\
\mathbb{D}(S x', S x'').\mathbb{D}(T x, S x') & \xrightarrow{\alpha_{x, x''}} \mathbb{D}(T x, S x'') \\
\cong & \\
\mathbb{C}(x', x'').\mathbb{C}(x, x') & \xrightarrow{\alpha_{x', x'', x'}} \mathbb{C}(x, x'') \\
\alpha_{x', x'', T x, x'} & \\
\mathbb{D}(T x', S x'').\mathbb{D}(T x, T x') & \xrightarrow{\alpha_{x, x''}} \mathbb{D}(T x, S x'')
\end{align}
\]

commute; the correspondence is given by mapping \((\alpha_x) \) to \((\alpha_{x, x'}) \) whose component at \((x, x') \) is the composite (3).

As observed in [Lac10, Section 6.2], the 2-category \(\text{BICAT} \) can be seen as the 2-category of strict algebras, lax morphisms, and algebra 2-cells for a 2-monad \(T \) on a
certain locally presentable 2-category of \textsc{cat}-enriched graphs, and so by [Lac05] has oplax limits, Eilenberg–Moore objects of comonads, and limits of diagrams containing only strict morphisms; this last class includes in particular products and powers. It also has various other sorts of limits where certain parts of the diagram are required to be pseudofunctors. For a more precise characterization see [LS12].

The case of oplax limits of 1-cells is our motivating example, and is formalized in Section 4, specifically in Theorem 4.5. The case of Eilenberg–Moore objects of comonads is treated in Example 3.9. As a final example, we consider products. In this case, Theorem 2.1 says that, for bicategories \(\mathcal{B} \) and \(\mathcal{C} \), the diagram

\[
\begin{array}{ccc}
\mathcal{B} \times \mathcal{C} \text{-Cat} & \longrightarrow & \mathcal{C} \text{-Cat} \\
\downarrow & & \downarrow \text{ob} \\
\mathcal{B} \text{-Cat} & \longrightarrow & \text{Set}_{lc}
\end{array}
\]

is a pullback of 2-categories. In particular, to give a \(\mathcal{B} \times \mathcal{C} \)-category is equivalent to giving a \(\mathcal{B} \)-category and a \(\mathcal{C} \)-category with the same set of objects.

2.3. Remark. It is possible to remove any size-related conditions on the notion of weighted limit in Theorem 2.1. That is, for any (possibly larger than “large”) 2-category \(\mathcal{D} \) and a weight \(F: \mathcal{D} \rightarrow \text{cat}' \), where \(\text{cat}' \) is a 2-category of categories in a universe containing \(\mathcal{U}_1 \), \(\text{Enr}_1 \) preserves all \(F \)-weighted limits which happen to exist in \(\text{bicat} \). Indeed, let \(S: \mathcal{D} \rightarrow \text{bicat} \) be a 2-functor such that \(\{F, S\} \) exists in \(\text{bicat} \). Then, although a priori we do not know if \(\{F, \text{Enr}_1 \circ S\} \) exists in \(\text{bicat}'/\text{set}_{lc} \) or not, we can certainly consider a large enough variant \(2\text{-cat}'/\text{set}_{lc} \) in which it does. Then by the above discussion we have \(\text{Enr}_1 \{F, S\} \cong \{F, \text{Enr}_1 \circ S\} \) in \(2\text{-cat}'/\text{set}_{lc} \). Since the fully faithful 2-functor \(2\text{-cat}'/\text{set}_{lc} \rightarrow 2\text{-cat}'/\text{set}_{lc} \) reflects limits, and \(\text{Enr}_1 \) does land in \(2\text{-cat}'/\text{set}_{lc} \), we see that the limit \(\{F, \text{Enr}_1 \circ S\} \) actually exists in \(2\text{-cat}'/\text{set}_{lc} \).

3. Weighted limits created by forgetful 2-functors \(\mathcal{K}/A \rightarrow \mathcal{K} \)

Theorem 2.1 implies that the 2-functor \(\text{Enr}: \text{bicat} \rightarrow \text{2-cat} \) preserves all weighted limits preserved by the forgetful 2-functor \(\text{2-cat}'/\text{set}_{lc} \rightarrow \text{2-cat} \). We now investigate these.

A large part of this section (until the end of Example 3.7) is devoted to the study of this class of limits, which we shall call \text{cat}-connected. Since this notion does not require two separate universes, and since it may be of interest in other contexts, we work with a single universe \(\mathcal{U} \), whose elements we call \textit{small} sets. (We temporarily ignore \(\mathcal{U}_0 \) introduced at the beginning of Section 2.) When we later return to the study of \(\text{bicat} \) and \(\text{2-cat}'/\text{set}_{lc} \), we apply our results in the case \(\mathcal{U} = \mathcal{U}_1 \), and so speak of \text{cat}-connected limits.
In the literature there are (at least) two definitions of creation of limit. Given 2-functors $F: \mathcal{D} \to \mathbf{Cat}$, $S: \mathcal{D} \to \mathcal{A}$, and $G: \mathcal{A} \to \mathcal{B}$, the phrase “$G$ creates the F-weighted limit of S” could mean either of the following.

- For any F-weighted limit $\{F, GS\}, \mu: F \to \mathcal{B}(\{F, GS\}, GS_\cdot)$ of GS, there exists a unique F-cylinder $(L, \nu: F \to \mathcal{A}(L, S_\cdot))$ over S in \mathcal{A} such that $\{F, GS\} = GL$ and $\mu = G_{L,S_\cdot} \circ \nu$ hold. Moreover, (L, ν) is an F-weighted limit of S.

- For any F-weighted limit $\{F, GS\}, \mu$ of GS, there exists an F-cylinder (L, ν) over S in \mathcal{A} such that the mediating 1-cell $GL \to \{F, GS\}$ is an isomorphism. Moreover, such an F-cylinder (L, ν) is always an F-weighted limit of S.

These two conditions are equivalent when G is the forgetful 2-functor $\mathcal{K}/A \to \mathcal{K}$ from a slice 2-category, since such 2-functors reflect identities and lift invertible 1-cells.

In the following, 1 and $\mathbf{1}$ denote the terminal category and the terminal 2-category, respectively.

3.1. Theorem. Let \mathcal{D} be a small 2-category and $F: \mathcal{D} \to \mathbf{Cat}$ be a 2-functor. Then the following are equivalent.

1. All F-weighted limits are created by the forgetful 2-functor $\mathcal{K}/A \to \mathcal{K}$ for any locally small 2-category \mathcal{K} and $A \in \mathcal{K}$.

2. All F-weighted limits commute with copowers in \mathbf{Cat}. In other words, F-weighted limits are preserved by the 2-functor $X \times (-): \mathbf{Cat} \to \mathbf{Cat}$ for any $X \in \mathbf{Cat}$.

3. The F-weighted limit of the unique 2-functor $\mathcal{D} \to 1$ is preserved by any 2-functor $1 \to \mathbf{Cat}$: that is, $X \cong [\mathcal{D}, \mathbf{Cat}](F, \Delta X)$ for any $X \in \mathbf{Cat}$.

4. The F-weighted limit of the unique 2-functor $\mathcal{D} \to 1$ is preserved by any 2-functor $1 \to \mathcal{K}$: that is, $A \cong \{F, \Delta A\}$ for any locally small 2-category \mathcal{K} and $A \in \mathcal{K}$.

5. $F \ast (-)[\mathcal{D}^{op}, \mathbf{Cat}] \to \mathbf{Cat}$ preserves the terminal object. In other words, the F-weighted colimit of $\Delta 1: \mathcal{D}^{op} \to \mathbf{Cat}$ is the terminal category: $F \ast \Delta 1 \cong 1$.

6. The (conical) colimit of F is the terminal category: $\Delta 1 \ast F \cong 1$.

Proof.

1. $(1 \implies 2)$ For any $X \in \mathbf{Cat}$, copowers by X are given by $X \times (-): \mathbf{Cat} \to \mathbf{Cat}$, which is the composite of the right adjoint 2-functor $X \times (-): \mathbf{Cat} \to \mathbf{Cat}/X$ and the forgetful 2-functor $\mathbf{Cat}/X \to \mathbf{Cat}$.

2. $(2 \implies 3)$ Note that we have $1 \cong \{F, \Delta 1\}$ in \mathbf{Cat}. Since $X \times (-): \mathbf{Cat} \to \mathbf{Cat}$ preserves the F-weighted limit $\{F, \Delta 1\}$, we have $X \cong \{F, \Delta X\}$.

3. $(3 \implies 4)$ For any $B \in \mathcal{K}$ we have $\mathcal{K}(B, A) \cong [\mathcal{D}, \mathbf{Cat}](F, \Delta \mathcal{K}(B, A))$. This shows that $A \in \mathcal{K}$ is the weighted limit $\{F, \Delta A\}$.

[(4) \implies (1)] Let \(T : \mathcal{D} \to \mathcal{K}/A \) be a 2-functor, with the corresponding oplax cone

\[
\begin{array}{c}
1 \\
\downarrow^{\gamma} \\
A \\
\downarrow \\
\mathcal{K}.
\end{array}
\]

In particular, \(S \) is the composite of \(T \) and the forgetful 2-functor \(\mathcal{K}/A \to \mathcal{K} \). Suppose that the weighted limit \(\{ F, S \} \) exists in \(\mathcal{K} \). We have a 1-cell \(\{ F, \gamma \} : \{ F, S \} \to \{ F, \Delta A \} \approx A \) in \(\mathcal{K} \). We claim that the object \((\{ F, \gamma \} : \{ F, S \} \to A) \) is the limit \(\{ F, T \} \) in \(\mathcal{K}/A \).

[(4) \implies (5)] Applying (4) to \(1 : \mathbf{1} \to \mathbf{Cat}^{op} \), we obtain \(F \ast \Delta 1 \cong 1 \) in \(\mathbf{Cat} \).

[(5) \implies (3)] For any \(X \in \mathbf{Cat} \), we have

\[
X \cong [1, X] \cong [F \ast \Delta 1, X] \cong [\mathcal{D}, \mathbf{Cat}](F, \Delta 1(-), X) \cong [\mathcal{D}, \mathbf{Cat}](F, \Delta X).
\]

[(5) \iff (6)] By \(F \ast \Delta 1 \cong \Delta 1 \ast F \).

A 2-functor \(F : \mathcal{D} \to \mathbf{Cat} \) is called \textit{Cat-connected} if \(F \) satisfies the equivalent conditions of Theorem 3.1. Similarly, a weighted limit is \textit{Cat-connected} if its weight is so. Note that \(F : \mathcal{D} \to \mathbf{Cat} \) is connected (in the sense that \([\mathcal{D}, \mathbf{Cat}](F, -) : [\mathcal{D}, \mathbf{Cat}] \to \mathbf{Cat} \) preserves small coproducts) if and only if \([\mathcal{D}, \mathbf{Cat}](F, \Delta X) \cong X \) for any small discrete category \(X \), or equivalently just for \(X = 1 + 1 \); on the other hand it is \textit{Cat-connected} if this holds for all small categories \(X \).

3.2. Remark. Theorem 3.1 can be proved more generally for categories enriched over a complete and cocomplete cartesian closed category \(\mathcal{V} \) in place of \(\mathbf{Cat} \), indeed the proof carries over essentially word-for-word upon replacing each instance of \(\mathbf{Cat} \) by \(\mathcal{V} \).

We now give a few simple results about \textit{Cat-connected} weights in order to clarify the scope of the notion.

3.3. Proposition. If \(\mathcal{D} \) has a terminal object, then \(F : \mathcal{D} \to \mathbf{Cat} \) is \textit{Cat-connected} if and only if \(F \) preserves the terminal object.

Proof. If \(\mathcal{D} \) has a terminal object \(1 \) then the colimit of \(F \) is \(F(1) \).

3.4. Proposition. Let \(\mathcal{C} \) be a small ordinary category, and \(G : \mathcal{C} \to \mathbf{Set} \) a functor. This determines a 2-functor \(G_d : \mathcal{C} \times \mathbf{1} \to \mathbf{Cat} \), where now \(\mathcal{C} \times \mathbf{1} \) is regarded as a locally discrete 2-category. This \(G_d \) sends an object \(C \) to the discrete category \(G(C)_d \) with object-set \(G(C) \).

Then \(G_d \) is \textit{Cat-connected} if and only if the corresponding \(G \) is connected.

Proof. Since the functor \((-)_d : \mathbf{Set} \to \mathbf{Cat}_0 \) preserves colimits, \(\text{colim}(G_d) = \text{colim}(G)_d \).
3.5. Proposition. $\Delta 1: \mathcal{D} \to \textbf{Cat}$ is \textbf{Cat}-connected if and only if \mathcal{D}_0 is connected.

Proof. The colimit of $\Delta 1: \mathcal{D} \to \textbf{Cat}$ is the discrete category corresponding to the set of connected components of \mathcal{D}_0. □

3.6. Example. Equifiers are \textbf{Cat}-connected: here it is easiest to verify directly that equifiers in \textbf{Cat} commute with copowers. Similarly, one verifies that Eilenberg–Moore objects of monads and of comonads are \textbf{Cat}-connected. Equalizers and pullbacks are \textbf{Cat}-connected by Proposition 3.5.

3.7. Example. Non-trivial products are not \textbf{Cat}-connected: they are not even connected. Powers by a category X are limits weighted by $X: 1 \to \textbf{Cat}$; since the colimit of such a weight is just X, powers by X are \textbf{Cat}-connected if and only if $X = 1$. Inserters, comma objects and oplax limits of 1-cells are not \textbf{Cat}-connected: in particular they are not preserved by the 2-functor $\mathbb{N}: 1 \to \textbf{Cat}$ which picks out the additive monoid \mathbb{N} of natural numbers. More generally, inserters are not preserved by $X: 1 \to \textbf{Cat}$ if X has a non-identity endomorphism, while comma objects and oplax limits of 1-cells are not preserved by $X: 1 \to \textbf{Cat}$ unless X is discrete.

As anticipated at the beginning of the section, we now take U to be U_1, and use the resulting notion of \textbf{Cat}-connected limit, involving a large 2-category \mathcal{D} and a 2-functor $F: \mathcal{D} \to \textbf{CAT}$ as weight. Since the inclusion $\textbf{Cat} \to \textbf{CAT}$ preserves small limits and small colimits, \textbf{Cat}-connected limits are also \textbf{CAT}-connected. As an immediate consequence of Theorems 2.1 and 3.1, we have:

3.8. Corollary. The 2-functor $\text{Enr}: \textbf{BICAT} \to \textbf{2CART}$ preserves all \textbf{CAT}-connected limits which happen to exist in \textbf{BICAT}.

3.9. Example. Eilenberg–Moore objects of comonads are \textbf{Cat}-connected (as well as \textbf{CAT}-connected), and exist in \textbf{BICAT} by the results of [Lac05, LS12], thus they are preserved by Enr. In more detail, a comonad G in \textbf{BICAT} on a bicategory \mathcal{B} consists of a comonad $G = G_{a,b}$ on each hom-category $\mathcal{B}(a,b)$, together with 2-cells $G_2: GgGf \to G(gf)$ for all $f: a \to b$ and $g: b \to c$, and 2-cells $G_0: 1_{Ga} \to G1_a$ for all objects a, subject to various conditions, which say that the $G_{a,b}$, the G_2 and the G_0 can be assembled into an identity-on-objects lax functor $\mathcal{B} \to \mathcal{B}$, in such a way that the counits and comultiplications for the comonads become icons. The Eilenberg–Moore object \mathcal{B}^G is the bicategory with the same objects as \mathcal{B}, and with hom-category $\mathcal{B}^G(a,b)$ given by the Eilenberg–Moore category $\mathcal{B}(a,b)^{G_{a,b}}$ of $G_{a,b}$. Corollary 3.8 then says that $\mathcal{B}^G\text{-Cat}$ is the Eilenberg–Moore 2-category for the induced 2-comonad on $\mathcal{B}\text{-Cat}$.
4. Oplax limits and fibrations

A 1-cell \(f: A \to B \) in a 2-category \(\mathcal{K} \) is called a \textit{fibration}, when \(\mathcal{K}(C, f): \mathcal{K}(C, A) \to \mathcal{K}(C, B) \) is a Grothendieck fibration for each \(C \in \mathcal{K} \), and

\[
\begin{array}{c}
\mathcal{K}(C, A) \xrightarrow{\mathcal{K}(c, A)} \mathcal{K}(D, A) \\
\downarrow \quad \downarrow \\
\mathcal{K}(C, B) \xrightarrow{\mathcal{K}(c, B)} \mathcal{K}(D, B)
\end{array}
\]

is a morphism of fibrations for each \(c: D \to C \) in \(\mathcal{K} \), in the sense that \(\mathcal{K}(c, A) \) sends cartesian morphisms (with respect to \(\mathcal{K}(C, f) \)) to cartesian morphisms (with respect to \(\mathcal{K}(D, f) \)). If \(q: F \to B \) and \(p: E \to B \) are fibrations in \(\mathcal{K} \) with the common codomain \(B \), then a 1-cell \(r: (F, q) \to (E, p) \) in \(\mathcal{K}/B \) is a \textit{morphism of fibrations} if for each \(C \in \mathcal{K} \), \(\mathcal{K}(C, r) \) is a morphism of fibrations, i.e., preserves cartesian morphisms.

As explained by Street [Str74], these notions can be reformulated if the 2-category \(\mathcal{K} \) has oplax limits of 1-cells, as we shall henceforth suppose. Recall that the oplax limit of a 1-cell \(f: A \to B \) in \(\mathcal{K} \) is the universal diagram

\[
\begin{array}{c}
B/f \xrightarrow{u_f} A \\
\downarrow \quad \downarrow \\
B \xrightarrow{v_f} B
\end{array}
\]

wherein we often drop the subscripts \(f \) unless multiple oplax limits are being used.

If \(\mathcal{K} = \text{Cat} \), then these oplax limits are comma categories, as the notation suggests. On the other hand, we have:

4.1. \textbf{Example}. Let \(X \) be a small set, seen as a chaotic bicategory \(X_c \) (that is, \((X_c)_{id} \) or equivalently \((X_c)_{lc} \)). To give an \(X_c \)-enriched category is just to give a set of objects with a map into \(X \). Similar calculations involving \(X_c \)-enriched functors and natural transformations show that the diagram

\[
\begin{array}{c}
X_c-\text{Cat} \xrightarrow{\land} 1 \\
\downarrow \quad \downarrow x \\
\text{Set}_{lc} \xrightarrow{\text{ob}}
\end{array}
\]

is an oplax limit in \(2\text{-CAT} \); in other words, the 2-category \(X_c-\text{Cat} \) is isomorphic to the slice 2-category \(\text{Set}_{lc}/X \); this in turn is isomorphic to \((\text{Set}/X)_{lc} \).
The fibrations in \mathcal{K} with codomain B can be understood in terms of a 2-monad T_B on \mathcal{K}/B whose underlying 2-functor maps $f: A \to B$ to $v_f: B/f \to B$; the component at $f: A \to B$ of its unit is the unique map $d = d_f: A \to B/f$ with $ud = 1_A$, $vd = f$, and λd equal to the identity 2-cell on f. This 2-monad is colax idempotent (has the dual of the “Kock–Zöberlein property”), and so an object $f: A \to B$ of \mathcal{K}/B admits the structure of a pseudo T_B-algebra if and only if $d: (A, f) \to (B/f, v_f)$ has a right adjoint in \mathcal{K}/B; and this in turn is the case if and only if f is a fibration. See for example [Str74, Proposition 3(a)] and [Web07, Theorem 2.7].

Also, if $q: F \to B$ and $p: E \to B$ are fibrations in \mathcal{K}, then a 1-cell $r: (F, q) \to (E, p)$ in \mathcal{K}/B admits the structure of a (pseudo) morphism of pseudo T_B-algebras if and only if the mate of the identity 2-cell

$$
\begin{array}{ccc}
(F, q) & \xrightarrow{r} & (E, p) \\
\downarrow d_q & & \downarrow d_p \\
(B/q, v_q) & \xrightarrow{T_B r} & (B/p, v_p)
\end{array}
$$

is invertible; and this in turn is the case if and only if r is a morphism of fibrations.

Likewise, the strict T_B-algebras are the split fibrations in \mathcal{K}: those $f: A \to B$ for which each $\mathcal{K}(C, f): \mathcal{K}(C, A) \to \mathcal{K}(C, B)$ is a split fibration, and each $\mathcal{K}(c, A): \mathcal{K}(C, A) \to \mathcal{K}(D, A)$ preserves the chosen cartesian lifts.

In particular, $v: B/f \to B$ is a split fibration for any $f: A \to B$, and d exhibits $v: B/f \to B$ as the free (split) fibration on f. Thus if $p: E \to B$ is a fibration, and $g: A \to E$ defines a morphism $(A, f) \to (E, p)$ in \mathcal{K}/B, there is an essentially unique morphism of fibrations $r: (B/f, v) \to (E, p)$ extending g.

4.2. Proposition. The 2-functor $\text{Enr}_1: \text{BICAT} \to \text{2-CAT}/\text{Set}_{lc}$ factors through the locally full sub-2-category of $\text{2-CAT}/\text{Set}_{lc}$ having

- the fibrations in 2-CAT to Set_{lc} as objects, and
- the fibration morphisms as 1-cells.

Proof. First we describe fibrations in 2-CAT explicitly. Given a 2-functor $F: \mathcal{Y} \to \mathcal{X}$ between 2-categories, a 1-cell $h: y' \to y$ in \mathcal{Y} is called cartesian (with respect to F) if

$$
\begin{array}{ccc}
\mathcal{Y}(z, y') & \xrightarrow{\mathcal{Y}(z, h)} & \mathcal{Y}(z, y) \\
F_{z, y'} \downarrow & & \downarrow F_{z, y} \\
\mathcal{X}(Fz, Fy') & \xrightarrow{\mathcal{X}(Fz, Fh)} & \mathcal{X}(Fz, Fy)
\end{array}
$$

is a pullback in CAT for each $z \in \mathcal{V}$. Then F is a fibration if and only if, for each object $y \in \mathcal{V}$ and each 1-cell $g: x \to Fy$ in \mathcal{X}, there is a cartesian morphism $\overline{g}: g^*y \to y$ in \mathcal{V} with $F\overline{g} = g$; such a \overline{g} is called a cartesian lifting of g to y. Moreover, given fibrations $F: \mathcal{V} \to \mathcal{X}$ and $G: \mathcal{Z} \to \mathcal{X}$ over \mathcal{X}, a 2-functor $H: \mathcal{V} \to \mathcal{Z}$ satisfying $F = G \circ H$ is a morphism of fibrations if and only if H preserves cartesian 1-cells. (This is a special case of Proposition 5.3 below, whose proof does not depend on the current proposition.)

For any $\mathcal{B} \in \text{BICAT}$, a \mathcal{B}-functor $S: \mathcal{V}' \to \mathcal{V}$ is called fully faithful when the 2-cell $S_{y,y'}: \mathcal{V}(y, y') \to \mathcal{V}'(Sy, Sy')$ in \mathcal{B} is invertible for all $y, y' \in \mathcal{V}$. It is easy to see that a \mathcal{B}-functor is cartesian with respect to $\text{ob}(-): \mathcal{B}\text{-Cat} \to \text{Set}_{llc}$ if it is fully faithful, and indeed by essential uniqueness of cartesian lifts the reverse implication also holds. The claim follows at once. \hfill \blacksquare

4.3. REMARK. In the above proposition, we used fibrations in the 2-category 2-CAT, called 2-categorical fibrations in [Gra74, I.2.9]. These were also called 2-fibrations in [Gra74], but for the purposes of this remark we shall save that name for the more restrictive notion studied by Hermida [Her99]; see also [Bak, Buc14]. In general, $\text{ob}(-): \mathcal{B}\text{-Cat} \to \text{Set}_{llc}$ is not a 2-fibration in the sense of [Her99]. Indeed, a 2-fibration is a 2-functor which among other things is locally a fibration, but the forgetful functor $\mathcal{B}\text{-Cat}(\mathcal{X}, \mathcal{V}) \to \text{Set}_{llc}(\text{ob}(\mathcal{X}), \text{ob}(\mathcal{V}))$ induced by $\text{ob}(-)$ is rarely a fibration of categories.

In general, oplax limits of 1-cells are not preserved by the projection $\mathcal{K}/\mathcal{B} \to \mathcal{K}$, but to some extent fibrations can be used to remedy this, as the following result shows.

4.4. PROPOSITION. Let $p: A \to B$ be a fibration in \mathcal{K}, and consider a morphism g in \mathcal{K}/\mathcal{B} into p, and the (essentially unique) induced morphism r of fibrations, as below

```
    C  B
  p|    |
 A/ \ vpg
  p
    A
```

Then the oplax limit of g in \mathcal{K} is the oplax limit of r in \mathcal{K}/\mathcal{B}.

PROOF. As usual we write A/g for the oplax limit of g in \mathcal{K}. We also write $(A,p)/r$ for the oplax limit of r in \mathcal{K}/\mathcal{B}.

A morphism $D \to A/g$ consists of morphisms $a: D \to A$, $c: D \to C$, and a 2-cell $\alpha: a \to gc$.

A morphism $D \to B/pg$ consists of morphisms $b: D \to B$, $c: D \to C$, and a 2-cell $\beta: b \to pgc$, and composing with r gives the domain of the cartesian lifting $\overline{\beta}: \beta^*gc \to gc$ of β. A morphism $(D,b) \to (A,p)/r$ in \mathcal{K}/\mathcal{B} consists of $(b,c,\beta): D \to B/pg$, $a: D \to A$, and a 2-cell $\alpha': a \to \beta^*gc$ with $pa' = b$. But by the fibration property of p, to give such an α' is equivalent to give $\alpha: a \to gc$ with $pa = \beta$.

This shows that the one-dimensional aspect of the universal properties of A/g and $(A,p)/r$ agree, and similarly the two-dimensional aspects also agree. \hfill \blacksquare
4.5. **Theorem.** Let \mathcal{B} be a bicategory and \mathcal{X} a \mathcal{B}-category. Then the slice 2-category $\mathcal{B}-\text{Cat}/\mathcal{X}$ is isomorphic to $(\mathcal{B}/\mathcal{X})-\text{Cat}$ for a bicategory \mathcal{B}/\mathcal{X}.

Proof. If we regard \mathcal{X} as a lax functor $\mathcal{X}: \mathcal{X}_c \to \mathcal{B}$, where $\mathcal{X}_c = \text{ob}(\mathcal{X})$, we may take its oplax limit \mathcal{B}/\mathcal{X} in BICAT. Explicitly, $\text{ob}(\mathcal{B}/\mathcal{X}) = \text{ob}(\mathcal{X}) = \mathcal{X}_c$, while the hom-category $(\mathcal{B}/\mathcal{X})(x, x')$ is given by the slice category $\mathcal{B}(|x|, |x'|)/\mathcal{X}(x, x')$ for all $x, x' \in \mathcal{X}_c$.

It follows by Theorem 2.1 that $(\mathcal{B}/\mathcal{X})-\text{Cat}$ is the oplax limit

$$
\begin{array}{c}
\mathcal{B}/\mathcal{X} \\
\searrow \downarrow \mathcal{X} \\
\mathcal{B}
\end{array}
$$

in BICAT. Explicitly, $\text{ob}(\mathcal{B}/\mathcal{X}) = \text{ob}(\mathcal{X}) = \mathcal{X}_c$, while the hom-category $(\mathcal{B}/\mathcal{X})(x, x')$ is given by the slice category $\mathcal{B}(|x|, |x'|)/\mathcal{X}(x, x')$ for all $x, x' \in \mathcal{X}_c$.

It follows by Theorem 2.1 that $(\mathcal{B}/\mathcal{X})-\text{Cat}$ is the oplax limit

$$
\begin{array}{c}
\mathcal{X}_c-\text{Cat} \\
\downarrow \mathcal{B}/\mathcal{X} \quad \text{ob} \\
\mathcal{B}-\text{Cat}
\end{array}
$$

in $\text{2-CAT}/\text{Set}_{lc}$.

Now $\text{ob}(\mathcal{B}/\mathcal{X}): X_{\mathcal{X}}-\text{Cat} \to \text{Set}_{lc}$ is the free fibration on $X: 1 \to \text{Set}_{lc}$ by Example 4.1, while $\text{Enr}(\mathcal{X})$ is the morphism of fibrations induced by $\mathcal{X}: 1 \to \mathcal{B}-\text{Cat}$ by Proposition 4.2, and so by Proposition 4.4 the diagram

$$
\begin{array}{c}
\mathcal{B}/\mathcal{X} \\
\downarrow \mathcal{X} \\
\mathcal{B}-\text{Cat}
\end{array}
$$

is an oplax limit in 2-CAT. But this says precisely that $(\mathcal{B}/\mathcal{X})-\text{Cat} \cong \mathcal{B}-\text{Cat}/\mathcal{X}$.

4.6. **Example.** In particular, when \mathcal{B} is the cartesian monoidal category Set regarded as a one-object bicategory, we have for each (Set)-category \mathcal{X} the bicategory Set/\mathcal{X} whose set of objects is $\text{ob}(\mathcal{X})$ and whose hom-category $(\text{Set}/\mathcal{X})(x, x')$ is the slice category $\text{Set}/\mathcal{X}(x, x')$. Each functor $F: \mathcal{Y} \to \mathcal{X}$ corresponds to a Set/\mathcal{X}-category \mathcal{Y} given as follows: the objects of \mathcal{Y} are the same as those of \mathcal{Y}, the extent of y in \mathcal{Y} is Fy, and the hom $\mathcal{Y}(y, y')$ is $F_{y, y'}$: $\mathcal{Y}(y, y') \to \mathcal{X}(Fy, Fy')$. Note that since $\text{Set}/\mathcal{X}(x, x') \cong \text{Set}^{\mathcal{X}(x, x')}$, Set/\mathcal{X} is (biequivalent to) the free local cocompletion of \mathcal{X} regarded as a locally discrete bicategory, as pointed out to us by Ross Street.
A variant of \(\text{Set/}X \) is the free quantaloid \(\mathcal{P}X \) over \(X \). Specifically, \(\mathcal{P}X \) is also a bicategory with the same objects as \(X \), but whose hom-category \((\mathcal{P}X)(x, x') \) is the powerset lattice \(\mathcal{P}(X(x, x')) \), which is equivalent to the full subcategory of the slice category \(\text{Set/}X(x, x') \) consisting of the injections to \(X(x, x') \). Accordingly, the \(\mathcal{P}X \)-categories correspond to the faithful functors \(Y \to X \) [Gar14, Proposition 3.5].

4.7. Example. Let \(\mathcal{B} \) be a bicategory with all right liftings. Then for each \(b \in \mathcal{B} \), we have a \(\mathcal{B} \)-category \(\mathcal{B}_b \) whose objects are the 1-cells \(f: x \to b \) in \(\mathcal{B} \) with codomain \(b \), with extent \(|(x, f)| = x \), and whose hom \(\mathcal{B}_b((x, f), (y, g)) : x \to y \) is the right lifting of \(f \) along \(g \):

\[
\begin{array}{ccc}
x & \xrightarrow{\mathcal{B}_b((x, f), (y, g))} & y \\
f \downarrow & < & g \\
x & \downarrow & y \\
\end{array}
\]

(See [GP97, Section 2] for the dual construction.) Given a \(\mathcal{B} \)-category \(X \), the \(\mathcal{B} \)-functors \(X \to \mathcal{B}_b \) correspond to the \(\mathcal{B} \)-presheaves on \(X \) with extent \(b \). Hence if we consider the bicategory \(\mathcal{B}/\mathcal{B}_b \), then a \(\mathcal{B}/\mathcal{B}_b \)-category can be identified with a \(\mathcal{B} \)-category equipped with a \(\mathcal{B} \)-presheaf with extent \(b \).

By the universality of right liftings, the bicategory \(\mathcal{B}/\mathcal{B}_b \) is canonically isomorphic to the lax slice bicategory \(\mathcal{B}/b \): this has 1-cells with codomain \(b \) as objects, and diagrams of the form

\[
\begin{array}{ccc}
x & \xrightarrow{\mathcal{B}/((x, f), (y, g))} & y \\
f \downarrow & < & g \\
\end{array}
\]

as 1-cells from \(f \) to \(g \). Unlike \(\mathcal{B}_b \), this lax slice bicategory \(\mathcal{B}/b \) can be defined even when \(\mathcal{B} \) does not have right liftings, and it is true in general that a \(\mathcal{B}/b \)-category corresponds to a \(\mathcal{B} \)-category equipped with a \(\mathcal{B} \)-presheaf with extent \(b \). (For a general bicategory \(\mathcal{B} \), the notion of \(\mathcal{B} \)-presheaf can be defined in terms of actions; see [Str83] for a definition of the more general notion of module.)

4.8. Remark. The bicategory \(\mathcal{B}/X \) can be obtained from \(X \) via a change-of-base process for bicategories enriched in a tricategory. Since the theory of tricategory-enriched bicategories, let alone change-of-base for them, has not really been developed in detail, we merely sketch the details. (See [GS16, Section 13] for change-of-base for bicategories enriched over monoidal bicategories.)

We regard \(\mathcal{B} \) as a tricategory with no non-identity 3-cells, and we regard the cartesian monoidal 2-category \(\text{Cat} \) as a one-object tricategory \(\Sigma(\text{Cat}) \). There is a lax morphism of tricategories \(\Theta: \mathcal{B} \to \Sigma(\text{Cat}) \) sending each object \(b \in \mathcal{B} \) to the unique object of \(\Sigma(\text{Cat}) \), and sending a 1-cell \(f: b \to b' \) in \(\mathcal{B} \) to the category \(\mathcal{B}(b, b')/f \). Composition with \(\Theta \)
then sends each \mathcal{B}-enriched bicategory to a $\Sigma(\mathbf{Cat})$-enriched bicategory. Since \mathcal{B} has no non-identity 3-cells, a \mathcal{B}-enriched bicategory is just a \mathcal{B}-enriched category; on the other hand, a $\Sigma(\mathbf{Cat})$-enriched bicategory is just a bicategory in the ordinary sense. Applying this to the \mathcal{B}-category \mathcal{X} gives the bicategory \mathcal{B}/\mathcal{X}.

5. Variation through enrichment

In the paper [BCSW83], the authors showed how fibrations with codomain \mathcal{X} can be seen as certain categories enriched over a bicategory $\mathcal{W}(\mathcal{X})$ depending on the category \mathcal{X}. In this section we give a result of the same type, although it differs in several important respects. The bicategory we use is \mathbf{Set}/\mathcal{X} (see Example 4.6), which is like $\mathcal{W}(\mathcal{X})$ in having as objects the objects of \mathcal{X}: see Remark 5.1 below for the relationship between the two bicategories. Then we show that fibrations over \mathcal{X} can be identified with \mathbf{Set}/\mathcal{X}-categories which have certain powers.

5.1. Remark. Given objects $x, x' \in \mathcal{X}$, a 1-cell in $\mathcal{W}(\mathcal{X})$ from x to x' consists of a presheaf E on \mathcal{X} equipped with maps to $\mathcal{X}(-, x)$ and $\mathcal{X}(-, x')$; in other words, it consists of a span of presheaves from $\mathcal{X}(-, x)$ to $\mathcal{X}(-, x')$. Now a 1-cell $S \to \mathcal{X}(x, x')$ in \mathbf{Set}/\mathcal{X} from x to x' determines, via Yoneda, a map $S \cdot \mathcal{X}(-, x) \to \mathcal{X}(-, x')$ of presheaves, where $S \cdot \mathcal{X}(-, x)$ denotes the copower of $\mathcal{X}(-, x)$ by S: the coproduct of S copies of $\mathcal{X}(-, x)$. On the other hand there is the codiagonal $S \cdot \mathcal{X}(-, x) \to \mathcal{X}(-, x)$, and so we obtain a span

$$
\mathcal{X}(-, x) \xleftarrow{\text{copower}} S \cdot \mathcal{X}(-, x) \xrightarrow{\text{coproduct}} \mathcal{X}(-, x')
$$

of presheaves; that is, a 1-cell in $\mathcal{W}(\mathcal{X})$ from x to x'. This defines the 1-cell part of a homomorphism of bicategories $\mathbf{Set}/\mathcal{X} \to \mathcal{W}(\mathcal{X})$ which is the identity on objects and locally fully faithful. Just as we characterize fibrations over \mathcal{X} as \mathbf{Set}/\mathcal{X}-categories with certain limits, so in [BCSW83] these fibrations are seen as $\mathcal{W}(\mathcal{X})$-categories with certain limits; one key difference is that in the case of $\mathcal{W}(\mathcal{X})$ the limits in question are absolute.

In fact we work not just with fibrations of ordinary categories, but rather fibrations in the 2-category $\mathcal{B}\mathbf{-Cat}$ of \mathcal{B}-enriched categories, as in Section 4. One recovers the case of ordinary categories upon taking \mathcal{B} to be the one-object bicategory $\Sigma(\mathbf{Set})$. We have seen in Theorem 4.5 that, for a \mathcal{B}-category \mathcal{X}, \mathcal{B}-functors with codomain \mathcal{X} correspond to \mathcal{B}/\mathcal{X}-enriched categories. We shall see in this section that a \mathcal{B}-functor $F: \mathcal{Y} \to \mathcal{X}$ is a fibration in $\mathcal{B}\mathbf{-Cat}$ if and only if the corresponding \mathcal{B}/\mathcal{X}-category \mathcal{Y} has certain powers.

First, however, we give an elementary characterization of fibrations in $\mathcal{B}\mathbf{-Cat}$. To do this, we start with the fact that every \mathcal{B}-category \mathcal{X} has an underlying ordinary category \mathcal{X}_0 with the same objects; a morphism $x \to x'$ in \mathcal{X}_0 can exist only if x and x' have the same extent ($|x| = |x'|$), in which case it amounts to a 2-cell $1_{|x|} \to \mathcal{X}(x, x')$ in \mathcal{B}.

2The assignment $\mathcal{X} \mapsto \mathcal{X}_0$ is the object-part of a 2-functor $\mathcal{B}\mathbf{-Cat} \to \mathbf{Cat}$, arising via change-of-base with respect to a lax functor from \mathcal{B} to the cartesian monoidal category \mathbf{Set}, seen as a one-object bicategory. The lax functor sends each object b to this unique object; it sends a 1-cell $f: b \to c$ to the set $\mathcal{B}(b, c)(1_b, f)$ if $b = c$ and the empty set otherwise; with the evident action on 2-cells.
shall sometimes refer to such morphisms in \(X_0 \) simply as morphisms in \(X \). If \(f: x' \to x'' \) is a morphism in \(X \) and \(x \) is an object, there is an induced 2-cell \(\Xi(x, f): \Xi(x, x') \to \Xi(x, x'') \) defined by pasting \(f: 1_{|x'|} \to \Xi(x', x'') \) together with the composition 2-cell \(M_{x, x', x''}: \Xi(x', x'') \Xi(x, x') \to \Xi(x, x'') \).

5.2. Definition. Let \(F: \mathcal{Y} \to \mathcal{X} \) be a \(\mathcal{B} \)-functor. A morphism \(h: y' \to y \) in \(\mathcal{Y}_0 \) is said to be cartesian with respect to \(F \) if the square

\[
\begin{array}{ccc}
\mathcal{Y}(z, y') & \xrightarrow{\mathcal{Y}(z, h)} & \mathcal{Y}(z, y) \\
F_{z, y'} \downarrow & & \downarrow F_{z, y} \\
\Xi(Fz, Fy') & \xrightarrow{\Xi(Fz, Fh)} & \Xi(Fz, Fy)
\end{array}
\]

is a pullback in \(\mathcal{B}(|z|, |y|) \) for all objects \(z \) in \(\mathcal{Y} \).

This implies in particular that \(h \) is cartesian with respect to the ordinary functor \(F_0: \mathcal{Y}_0 \to \mathcal{X}_0 \), but in general is stronger than this.

5.3. Proposition. Suppose that the bicategory \(\mathcal{B} \) has pullbacks in each hom-category \(\mathcal{B}(a, b) \). A \(\mathcal{B} \)-functor \(F: \mathcal{Y} \to \mathcal{X} \) is a fibration in \(\mathcal{B} \)-Cat if and only if, for each object \(y \in \mathcal{Y} \) and each morphism \(g: x \to Fy \) in \(\mathcal{X} \) there is a cartesian morphism \(\overline{g}: g^*y \to y \) in \(\mathcal{Y} \) with \(F\overline{g} = g \). Given fibrations \(F: \mathcal{Y} \to \mathcal{X} \) and \(G: \mathcal{Z} \to \mathcal{X} \), a \(\mathcal{B} \)-functor \(H: \mathcal{Y} \to \mathcal{Z} \) with \(F = G \circ H \) is a morphism of fibrations if and only if \(H: \mathcal{Y} \to \mathcal{Z} \) preserves cartesian morphisms.

Proof. The pullbacks in the hom-categories of \(\mathcal{B} \) can be used to construct oplax limits in \(\mathcal{B} \)-Cat, as we shall now show. Let \(F: \mathcal{Y} \to \mathcal{X} \) be a \(\mathcal{B} \)-functor; then the oplax limit \(\mathbb{L} = \mathcal{X}/F \) has:

- objects given by pairs \((g, y)\), with \(y \in \mathcal{Y} \) and \(g: x \to Fy \) in \(\mathcal{X}_0 \)
- the extent of \((g, y)\) equal to the extent of \(y \) (which is also the extent of \(x \))
- homs given by pullbacks as in

\[
\begin{array}{ccc}
\mathbb{L}(((g', y'), (g, y))) & \xrightarrow{U((g', y'), (g, y))} & \mathcal{Y}(y', y) \\
V((g', y'), (g, y)) \downarrow & \downarrow F_{y', y} & \downarrow \Xi(Fy', Fy) \\
\mathcal{X}(x', x) & \xrightarrow{\Xi(g', Fy)} & \mathcal{X}(x', Fy)
\end{array}
\]
* projections $V : \mathbb{L} \to \mathbb{X}$ and $U : \mathbb{L} \to \mathbb{Y}$ sending an object (g, y) to x and to y, and defined on homs as in the diagram above.

The diagonal \mathcal{B}-functor $D : \mathbb{Y} \to \mathbb{L}$ sends an object $z \in \mathbb{Y}$ to $(1_{Fz}, z) \in \mathbb{L}$. Taking $(g', y') = Dz$ in the above diagram gives a pullback

$$
\begin{array}{ccc}
\mathbb{L}(Dz, (g, y)) & \xrightarrow{U} & \mathbb{Y}(z, y) \\
V \downarrow & & \downarrow F_{z, y} \\
\mathbb{X}(Fz, x) & \xrightarrow{\mathbb{X}(Fz, g)} & \mathbb{X}(Fz, Fy).
\end{array}
$$

Now F is a fibration just when D has a right adjoint in \mathcal{B}-\mathbf{Cat}/\mathbb{X}. Such an adjoint is given on objects by a lifting of $g : Fx \to y$ to some $g^*y \to y$, and the universal property says that this lifting is cartesian. \hfill \blacksquare

We now turn to the characterization of fibrations of \mathcal{B}-categories in terms of \mathcal{B}/\mathbb{X}-categories. First recall that if \mathcal{W} is a bicategory and \mathcal{Z} is a \mathcal{W}-category then powers in \mathcal{Z} involve an object y of \mathcal{Z} and a 1-cell $v : x \to \|y\|$ in \mathcal{W} with codomain the extent of y. The power of y by v consists of an object $v \pitchfork y$ of \mathcal{Z} with extent $\|v \pitchfork y\| = x$, together with a 2-cell

$$
\begin{array}{ccc}
\|v \pitchfork y\| & \xrightarrow{v} & \|y\| \\
\downarrow \eta & & \downarrow \\
\mathcal{Z}(v \pitchfork y, y)
\end{array}
$$

such that for all $z \in \mathcal{Z}$ and all

$$
\begin{array}{ccc}
\|v \pitchfork y\| & \xrightarrow{v} & \|y\| \\
\downarrow \alpha & & \downarrow \\
\|z\| & \xrightarrow{\mathcal{Z}(z, y)} & \|y\|
\end{array}
$$

there exists a unique γ making the pasting composite
equal to α. (In other words, the pasting of η and M exhibits $Z(z, v \pitchfork y)$ as the right lifting of $Z(z, y)$ along v.)

We consider this in the case where $W = B/X$ and Z is the B/X-category \mathcal{Y} corresponding to a B-functor $F: \mathcal{Y} \to X$. Then an object y of \mathcal{Y} is just an object of \mathcal{Y}, and the extent of y, as an object of B/X, is the object Fy of X. A general 1-cell $x \to Fy$ in B/X has the form

$$
\begin{array}{c}
v \\
\downarrow \\
\mathcal{X}(x, Fy)
\end{array}
\quad
\begin{array}{c}
|Fy| \\
\downarrow \\
\mathcal{X}(Fz, Fy)
\end{array}
\quad
\begin{array}{c}
|x| \\
\downarrow \\
\mathcal{X}(Fz, Fy)
\end{array}
$$

but we shall only consider the special case where $|x| = |Fy|$ and $v = 1_{|x|}$, so that in fact we are dealing with a morphism $w: x \to Fy$ in X_0. In general, we call a 1-cell $(w: v \to \mathcal{X}(x, x')): x \to x'$ in B/X a singleton 1-cell if $|x| = |x'|$ and $v = 1_{|x|}$. Note that the category X_0 can be regarded as a sub-bicategory of B/X whose 1-cells are the singleton 1-cells. When $B = \text{Set}$, a 1-cell $x \to x'$ in Set/X corresponds to a set v equipped with a function $w: v \to \mathcal{X}(x, x')$; in this case, the singleton 1-cells in Set/X can be identified with those 1-cells with v a singleton, whence the name singleton.

A power of y by $w: 1 \to \mathcal{X}(x, Fy)$ then consists of an object $w \pitchfork y$ of \mathcal{Y} with $F(w \pitchfork y) = x$ together with a morphism $\overline{w}: w \pitchfork y \to y$ in Y_0 with $F\overline{w} = w$ — that is, a lifting \overline{w} of w — subject to the universal property stating that for all $z \in Y$, $b: |z| \to |y|$, α, and β making

$$
\begin{array}{c}
|z| \\
\downarrow \\
\mathcal{X}(Fz, Fy)
\end{array}
\quad
\begin{array}{c}
|w \pitchfork y| \\
\downarrow \\
\mathcal{X}(Fz, x)
\end{array}
\quad
\begin{array}{c}
|z| \\
\downarrow \\
\mathcal{X}(Fz, Fy)
\end{array}
\quad
\begin{array}{c}
|w \pitchfork y| \\
\downarrow \\
\mathcal{X}(Fz, x)
\end{array}
$$

there exists a unique γ making the pasting composites

$$
\begin{array}{c}
|z| \\
\downarrow \\
\mathcal{X}(Fz, Fy)
\end{array}
\quad
\begin{array}{c}
|w \pitchfork y| \\
\downarrow \\
\mathcal{X}(Fz, x)
\end{array}
\quad
\begin{array}{c}
|z| \\
\downarrow \\
\mathcal{X}(Fz, Fy)
\end{array}
\quad
\begin{array}{c}
|w \pitchfork y| \\
\downarrow \\
\mathcal{X}(Fz, x)
\end{array}
$$
equal respectively to β and α. But this says exactly that if the exterior of the diagram

\[\begin{array}{ccc}
\beta & \vdash & \alpha \\
Y(z, w \vdash y) & \xrightarrow{\gamma} & Y(z, y) \\
F_{y, w \vdash y} & \downarrow & F_{y, y} \\
X(F_z, x) & \xrightarrow{\chi(F_z, w)} & X(F_z, F_y)
\end{array} \]

in $\mathcal{B}(|z|, |y|)$ commutes, then there is a unique γ making the triangular regions commute; in other words, that the internal square is a pullback. This in turn says that \overline{w} is a cartesian lifting of w. This now proves:

5.4. Proposition. Let \mathcal{B} be a bicategory in which each hom-category has pullbacks. A \mathcal{B}-functor $F : \mathcal{Y} \to \mathcal{X}$ is a fibration if and only if the corresponding \mathcal{B}/\mathcal{X}-category $\overline{\mathcal{Y}}$ has powers by morphisms in \mathcal{X}_0; that is, powers by singleton 1-cells.

We conclude by strengthening this correspondence to an isomorphism between suitable 2-categories. Let \mathcal{W} be a bicategory and $H : \mathcal{Z} \to \mathcal{Z}'$ a \mathcal{W}-functor. Suppose that the power $v \vdash y$ of $y \in \mathcal{Z}$ by $v : x \to |y|$ exists in \mathcal{Z}, with the associated 2-cell $\eta : v \to \mathcal{Z}(v \vdash y, y)$. Then H is said to preserve the power $v \vdash y$ if the 2-cell $H_{v\vdash y, y} \circ \eta : v \to \mathcal{Z}'(H(v \vdash y), Hy)$ exhibits $H(v \vdash y)$ as the power $v \vdash Hy$ in \mathcal{Z}'.

5.5. Theorem. Let \mathcal{B} be a bicategory in which each hom-category has pullbacks. The canonical isomorphism of 2-categories $(\mathcal{B}/\mathcal{X})$-$\text{Cat} \cong \mathcal{B}$-$\text{Cat}$/\mathcal{X}$ restricts to an isomorphism between the locally full sub-2-category of $(\mathcal{B}/\mathcal{X})$-$\text{Cat}$ having

- the \mathcal{B}/\mathcal{X}-categories with powers by singleton 1-cells as objects, and
- the \mathcal{B}/\mathcal{X}-functors preserving these powers as 1-cells,

and the locally full sub-2-category of \mathcal{B}-Cat/\mathcal{X}$ having

- the fibrations to \mathcal{X} as objects, and
- the fibration morphisms as 1-cells.

References

[Bak] Igor Baković. Fibrations of bicategories. Preprint available at http://www.irb.hr/korisnici/ibakovic/groth2fib.pdf.
[BCSW83] Renato Betti, Aurelio Carboni, Ross Street, and Robert Walters. Variation through enrichment. *J. Pure Appl. Algebra*, 29(2):109–127, 1983.

[Bén67] Jean Bénabou. Introduction to bicategories. In *Reports of the Midwest Category Seminar*, pages 1–77. Springer, Berlin, 1967.

[Buc14] Mitchell Buckley. Fibred 2-categories and bicategories. *J. Pure Appl. Algebra*, 218(6):1034–1074, 2014.

[Gar14] Richard Garner. Topological functors as total categories. *Theory Appl. Categ.*, 29(15):406–422, 2014.

[GP97] R. Gordon and A. J. Power. Enrichment through variation. *J. Pure Appl. Algebra*, 120(2):167–185, 1997.

[Gra74] John W. Gray. *Formal category theory: adjointness for 2-categories*. Lecture Notes in Mathematics, Vol. 391. Springer-Verlag, Berlin-New York, 1974.

[GS16] Richard Garner and Michael Shulman. Enriched categories as a free cocompletion. *Adv. Math.*, 289:1–94, 2016.

[Her99] Claudio Hermida. Some properties of *Fib* as a fibred 2-category. *J. Pure Appl. Algebra*, 134(1):83–109, 1999.

[Lac05] Stephen Lack. Limits for lax morphisms. *Appl. Categ. Structures*, 13(3):189–203, 2005.

[Lac10] Stephen Lack. Icons. *Appl. Categ. Structures*, 18(3):289–307, 2010.

[LS12] Stephen Lack and Michael Shulman. Enhanced 2-categories and limits for lax morphisms. *Adv. Math.*, 229(1):294–356, 2012.

[Str74] Ross Street. Fibrations and Yoneda's lemma in a 2-category. In *Category Seminar (Proc. Sem., Sydney, 1972/1973)*, Lecture Notes in Math., Vol. 420, pages 104–133. Springer, Berlin, 1974.

[Str83] Ross Street. Enriched categories and cohomology. *Repr. Theory Appl. Categ.*, (14):1–18, 2005. Reprinted from Quaestiones Math. *6* (1983), no. 1-3, 265–283, with new commentary by the author.

[Web07] Mark Weber. Yoneda structures from 2-toposes. *Appl. Categ. Structures*, 15(3):259–323, 2007.

School of Mathematical and Physical Sciences, Macquarie University, NSW 2109, Australia

Email: s.fujii.math@gmail.com

steve.lack@mq.edu.au