Steiner Decomposition Number of Complete n –Sun graph

E Ebin Raja Merly1 and M Mahiba2

1Associate Professor, 2Research Scholar (Reg.No: 20213112092013),
Department of Mathematics, Nesamony Memorial Christian College, Marthandam,
Tamilnadu-629165, India.
Affiliated to Manonmanium Sundaranar University, Abishekapatti, Tirunelveli,
Tamilnadu-627012, India.

Email: ebinmerly@gmail.com, mahibakala@gmail.com

Abstract: If each subgraph of the decomposition π of the graph G has the Steiner number same as G then π is said to be a Steiner decomposition of G. The maximum cardinality among the Steiner decomposition π of G is the Steiner decomposition number of G and is denoted by $\pi_{st}(G)$. In this paper, we present the Steiner decomposition number for Complete n –Sun graph.

Keywords: Steiner number, Steiner decomposition number, Complete n –Sun graph

AMS Subject Classification: 05C12, 05C70.

1. Introduction

Let $G = (V,E)$ be a simple, undirected, connected graph. Charland & Zhang introduced the concept of Steiner number of a graph.

Definition 1.1[1] Let G be a connected graph. For a set $W \subseteq V(G)$, a tree contained in G is a Steiner tree with respect to W if T is a tree of minimum order with $W \subseteq V(T)$. The set $S(W)$ consists of all vertices in G that lie on some Steiner tree with respect to W. The set W is a Steiner set for G if $S(W) = V(G)$. The minimum cardinality among the Steiner sets of G is the Steiner number $s(G)$.

Definition 1.2[4] If $G_1, G_2, ..., G_n$ are connected edge-disjoint subgraphs of G with $E(G) = E(G_1) \cup E(G_2) \cup ... \cup E(G_n)$, then $\pi = \{G_1, G_2, ..., G_n\}$ is said to be a decomposition of G.

In [6] we introduced the concept Steiner decomposition number of graphs.

Definition 1.3[6] Let $\pi = \{G_1, G_2, ..., G_n\}$ be a decomposition of a graph G. If $s(G) = s(G_i), (1 \leq i \leq n)$ then π is said to be a Steiner decomposition of G. The maximum cardinality of Steiner decomposition π of G is called the Steiner decomposition number of G and is denoted as $\pi_{st}(G)$. This paper investigates and presents the Steiner decomposition number of Complete n –Sun graph.

2. Steiner decomposition number of Complete n –Sun graph

Definition 2.1 Complete n –Sun graph is a graph on $2n$ vertices consisting of a central complete graph K_n with an outer ring of n vertices, each of which is joined to both endpoints of the closest outer edge of K_n. Let us denote the Complete n –Sun graph as CS_n.

Definition 2.2 A vertex of degree one is called a pendant vertex and its incident edge is said to be a pendant edge. The vertex adjacent to the pendant vertex is called as support vertex.

Definition 2.3 $B_{m,n} (m, n \geq 2)$ denotes the graph bistar which is obtained by joining the central vertices of stars $K_{1,m}$ and $K_{1,n}$ with an edge.
Definition 2.4 \(U_{3,k}\) denote a unicyclic graph created from the cycle \(C_3\) by attaching \(k\) pendant edges to a vertex of \(C_3\).

Remark 2.5 Let \(G\) be a graph with \(s(G) \geq 3\). Each subgraph in the Steiner decomposition \(\pi\) of \(G\) has at least \(s(G)\) number of edges.

Theorem 2.6 Steiner decomposition number of \(CS_n\) \((n \geq 3)\) is

\[
\pi_{st}(CS_n) = \begin{cases}
3 & \text{if } n = 3 \\
\frac{n+1}{2} & \text{if } n \text{ odd and } n > 3 \\
\frac{n}{2} + 1 & \text{if } n \text{ even}
\end{cases}
\]

Proof:

Let \(V(CS_n) = \{v_r/1 \leq r \leq n\} \cup \{u_r/1 \leq r \leq n\}\) where \(u_r, 1 \leq r \leq n\) the vertices on the outer ring of \(CS_n\). Let \(E(CS_n) = \{v_r v_s/r \neq s\} \cup \{u_r v_r/1 \leq r \leq n\} \cup \{u_r v_{r+1}/1 \leq r \leq n-1\} \cup \{u_nv_1\}\). The minimum Steiner set of \(CS_n = \{u_r/1 \leq r \leq n\}\) and so \(s(CS_n) = n\).

Case 1: \(n = 3\)

\(CS_3\) can be decomposed into either three copies of \(K_3\) or three copies of \(K_{1,3}\). Since \(s(K_3) = s(K_{1,3}) = 3 = s(CS_3)\), both decompositions are Steiner decompositions and these are the Steiner decompositions of maximum cardinality. Hence \(\pi_{st}(CS_3) = 3\).

Case 2: \(n\) odd and \(n > 3\)

Subcase 1: \(n = 5\)

A decomposition \(\pi\) of \(CS_5\) is given in figure 1.

Since \(s(G_1) = s(G_2) = s(G_3) = 5 = s(CS_5)\), \(\pi = \{G_1, G_2, G_3\}\) is a Steiner decomposition.

Moreover, it is easily verified that \(\pi\) is the Steiner decomposition of maximum cardinality and so \(\pi_{st}(CS_5) = 3\).
Subcase 2: \(n > 5 \)

Decompose \(CS_n \) as follows:

Step 1:

Construct a subgraph \(K_{1,n} \) of \(CS_n \) by considering \(v_n \) as central vertex and \(v_2, v_3, ..., v_{n-2}, v_{n-1}, u_{n-1}, u_n \) as pendant vertices. The Steiner number of \(K_{1,n} \) is \(n \).

Step 2:

Construct a subgraph \(U_{3,n-2} \) from \(CS_n \) by taking vertices \(v_1, v_{n-2}, v_{n-1} \) as vertices of the cycle and \(v_2, v_3, ..., v_{n-3}, u_{n-2}, u_{n-1} \) as \((n-2)\) pendant vertices attached to the vertex \(v_{n-1} \). The minimum Steiner set of \(U_{3,n-2} = \{ v_r / 1 \leq r \leq n-2 \} \cup \{ u_{n-2}, u_{n-1} \} \) and hence \(s(U_{3,n-2}) = n \).

Step 3:

Construct \(\binom{n-5}{2} \) copies of bistar \(B_{\frac{n+1}{2}, \frac{n-1}{2}} \) as given below:

Let \(S_i = \{ v_i, v_{n-1+i} \} \), \(1 \leq i \leq \frac{n-5}{2} \). Each \(S_i \) denote the set which consists of the central vertices of \(i^{th} \)

While constructing \(B_{\frac{n+1}{2}, \frac{n-1}{2}} \),

- \(v_1 \) is the support vertex of \(v_{n-1}, v_{n-2}, ..., v_{n-3}, v_n, u_n, u_1 \).
- \(v_i, 2 \leq i \leq \frac{n-5}{2} \), is the support vertex of \(v_{n-1+i}, v_{n-2+i+2}, ..., v_{n-2}, v_{n-1+i}, v_1, v_2, ..., v_{i-1}, u_{i-1}, u_i \).
- \(v_{n-1+i}, 1 \leq i \leq \frac{n-5}{2} \), is the support vertex of \(v_{i+1}, v_{i+2}, ..., v_{n-1+i-2}, u_{n-1+i-2}, u_{n-1+i-1} \).

The Steiner number of \(B_{\frac{n+1}{2}, \frac{n-1}{2}} = n \).

Step 4:

Construct the edge induced subgraph from the remaining \(\frac{3(n+1)}{2} \) edges. This results in the following graph \(G^* \).

![Figure 2: G*](image)
Minimum Steiner set of $G^* = \{v_1, v_2, \ldots, v_{n-5}, u_{n-5}, u_{n-3}, u_{n-2}, u_{n-3}, u_{n-4}, v_2, \ldots, v_{n-3}, v_2, \ldots\}$ and hence $s(G^*) = n$. Thus CS_n gets decomposed into a star graph $K_{1,n}$, a copy of $U_{3,n-2}$, $(\frac{n-5}{2})$ copies of bistar $B_{\frac{n+1}{2}, \frac{n-1}{2}}$ and a copy of graph G^*. Let this decomposition of CS_n be denoted as π. Since $s(K_{1,n}) = s(U_{3,n-2}) = s(B_{\frac{n+1}{2}, \frac{n-1}{2}}) = s(G^*) = n = s(CS_n)$, π is a Steiner decomposition. Also the cardinality of the Steiner decomposition π is $\frac{n+1}{2}$.

Now to prove π is the Steiner decomposition of maximum cardinality. If not $\pi_{st}(CS_n) = \frac{n+3}{2}$. This implies that each subgraph in the decomposition is a star graph $K_{1,n}$. But this contradicts to the fact that atmost three disjoint copies of $K_{1,n}$ only can be obtained in any decomposition of CS_n. Therefore $\pi_{st}(CS_n) \neq \frac{n+3}{2}$. Hence π is the Steiner decomposition of maximum cardinality and so $\pi_{st}(CS_n) = \frac{n+1}{2}$.

Case 3: n even

Subcase 1: $n = 4$

A decomposition π of CS_4 is given in figure 3.

![Diagram of CS4](image)

Figure 3: Steiner decomposition of CS4

Since $s(G_1) = s(G_2) = s(G_3) = 4 = s(CS_4)$, $\pi = \{G_1, G_2, G_3\}$ is a Steiner decomposition. Also it is the Steiner decomposition of maximum cardinality and so $\pi_{st}(CS_4) = 3$.

Subcase 2: $n > 4$

Construct a decomposition π of CS_n by following the steps given.

Step 1:

Similar to step 1 of subcase 2 in case 2.

Step 2:

Similar to step 2 of subcase 2 in case 2.
Step 3:

Obtain \(\left(\frac{n}{2} - 1 \right) \) copies of \(B_{\frac{n}{2}} \) from \(CS_n \) as given below:

Let \(S_i = \{ v_i, v_{\frac{n}{2}+i-1} \}, \; 1 \leq i \leq \frac{n}{2} - 1 \). Each \(S_i \) denote the set which consists of the central vertices of \(i^{th} \)
copy of \(B_{\frac{n}{2}} \).

While constructing \(B_{\frac{n}{2}} \),

- \(v_1 \) is the support vertex of \(v_{\frac{n}{2}+1}, v_{\frac{n}{2}+2}, ..., v_{n-3}, v_n, u_n, u_1 \).
- \(v_{\frac{n}{2}+2}, ..., v_{\frac{n}{2}-2}, u_{\frac{n}{2}-2}, u_{\frac{n}{2}-1} \) is the support vertex of \(v_1, v_2, ..., v_{\frac{n}{2}-2}, u_{\frac{n}{2}-2}, u_{\frac{n}{2}-1} \).
- \(v_{\frac{n}{2}+1}, v_{\frac{n}{2}+2}, ..., v_{\frac{n}{2}+i-2}, u_{\frac{n}{2}+i-2}, u_{\frac{n}{2}+i-1} \) is the support vertex of \(v_{i+1}, v_{i+2}, ..., v_{\frac{n}{2}+i-2}, u_{\frac{n}{2}+i-2}, u_{\frac{n}{2}+i-1} \).

The Steiner number of \(B_{\frac{n}{2}} \) is \(n \).

The decomposition \(\pi \) of \(CS_n \) consists of a star graph \(K_{1,n} \), a copy of \(U_{3,n-2} \) and \(\left(\frac{n}{2} - 1 \right) \) copies of bistar \(B_{\frac{n}{2}} \). Also \(s(K_{1,n}) = s(U_{3,n-2}) = s \left(B_{\frac{n}{2}} \right) = n = s(CS_n) \). Hence \(\pi \) is a Steiner decomposition and the cardinality of \(\pi \) is \(\left(\frac{n}{2} \right) + 1 \).

Now to prove \(\pi_{st}(CS_n) = \frac{n}{2} + 1 \). If \(\pi_{st}(CS_n) = \left(\frac{n}{2} \right) + m \) where \(m \geq 2 \) then the requirement of edges in \(CS_n \geq \frac{n(n+2m)}{2} \). This is not possible since the required edges exceeds the number of edges of \(CS_n \). Hence \(\pi \) is a Steiner decomposition of maximum cardinality and so \(\pi_{st}(CS_n) = \frac{n}{2} + 1 \).

Thus Steiner decomposition number of \(CS_n \) \((n \geq 3) \) is

\[
\pi_{st}(CS_n) = \begin{cases}
3 & \text{if } n = 3 \\
\frac{n+1}{2} & \text{if } n \text{ odd and } n \geq 3 \\
\frac{n}{2} + 1 & \text{if } n \text{ even}
\end{cases}
\]

References

[1] Chartrand G and Zhang P 2002 The Steiner number of a graph Discrete Mathematics 242 41-54.
[2] Harary F 1988 Graph Theory (New Delhi: Narosa Publishing House).
[3] ISGCI: Information System on Graph Class Inclusions v2.0. "List of Small Graphs" https://www.graphclasses.org/smallgraphs.html.
[4] Merly E E R and Gnanadhas N 2013 Arithmetic Odd Decomposition of Spider Tree Asian Journal of Current Engineering and Maths 2 99-101.
[5] Merly E E R and Jothi D J 2017 Connected Domination Path Decomposition of Triangular Snake Graph International Journal of Pure and Applied Mathematics 116 105-113.
[6] Merly E E R and Mahiba M 2021 Steiner Decomposition Number of Graphs Malaya Journal of Matematik Special Issue 560-563.
[7] Pelayo I M 2004 Comment on “The Steiner number of a graph” by Chartrand G and Zhang P:[Discrete Mathematics 242 (2002) 41-54] *Discrete mathematics* **280** 259-263.

[8] Yero I G and Rodriguez-Velazquez J A 2015 Analogies between the geodetic number and the Steiner number of some classes of graphs *Filomat* **29** 1781-1788.