Schur-Weyl type duality for quantized $\mathfrak{gl}(1|1)$, the Burau representation of braid groups and invariants of tangled graphs

NICOLAI RESHETIKHIN
University of California at Berkeley and KDV Institute for Mathematics, Universiteit van Amsterdam

CATHARINA STROPPEL
Mathematik Zentrum, Universität Bonn

BEN WEBSTER
Massachusetts Institute of Technology and University of Oregon

Abstract
We show that the Schur-Weyl type duality between $\mathfrak{gl}(1|1)$ and GL_n gives a natural representation-theoretic setting for the relation between reduced and non-reduced Burau representations.

Introduction
The goal of this note is to clarify the relation between reduced Burau representations of braid groups, non-reduced Burau representations, and the representation of the braid group defined by R-matrices related to $U_q(\mathfrak{gl}(1|1))$.

A lot is known about the relation between the quantized universal enveloping algebra $U_q(\mathfrak{gl}(1|1))$ of the Lie superalgebra of $\mathfrak{gl}(1|1)$, multivariable Alexander-Conway polynomials on links, and the Burau-Magnus representations of braid groups.

In this paper we show that the Schur-Weyl type duality between $\mathfrak{gl}(1|1)$ and GL_n gives a natural representation-theoretic setting for the relation between reduced and non-reduced Burau representations. We use this simple fact as an excuse to sum up some known (but partly folklore) facts about these representations and the invariants of knots.

In Section 1 we recall the definition of and basic facts about quantized $\mathfrak{gl}(1|1)$. Section 2 describes the duality between GL_n and $U_q(\mathfrak{gl}(1|1))$. In Section 3 we show how the Burau representation naturally reduces on the space of multiplicities. Section 4 relates the Alexander-Conway polynomial to the trace on the multiplicity space.

\footnote{Supported by the NSF grant DMS-0601912, and by DARPA}

\footnote{Supported by an NSF postdoctoral fellowship.}
Acknowledgements: The authors are grateful for the hospitality at the Mathematics Department of Aarhus University where this work was completed and to the Niels Bohr grant from the Danish National Research Foundation for the support. We are also grateful to H. Queffelec for carefully reading the first draft of this paper and correcting an important sign error.

1 Quantum $\mathfrak{gl}(1|1)$ and its representations

1.1

Consider the Lie superalgebra $\mathfrak{g} = \mathfrak{gl}(1|1)$. Explicitly, this means we consider the super vector space M of all complex 2×2-matrices with even part M_0 spanned by the matrix units $E_{1,1}$ and $E_{2,2}$, and odd part M_1 spanned by the matrix units $E_{1,2}$ and $E_{2,1}$, equipped with the Lie superalgebra structure given by the super commutator. The universal enveloping super algebra $U(\mathfrak{g})$ has a quantum version $U_h(\mathfrak{gl}(1|1))$ defined as follows (see e.g. [7]):

Let $\mathbb{C}[[h]]$ denote the ring of formal power series in h. The $\mathbb{C}[[h]]$-super algebra $U_h(\mathfrak{gl}(1|1))$ is generated freely as a $\mathbb{C}[[h]]$-algebra by (odd) elements X,Y and (even) elements G,H modulo the defining relations:

\[
\{X,Y\} = e^{hH} - e^{-hH}, \quad X^2 = Y^2 = 0,
\]

\[
[G,X] = X, \quad [G,Y] = -Y
\]

\[
[H,X] = 0, \quad [H,Y] = 0, \quad [H,G] = 0
\]

, (using the common abbreviation $[A,B] := AB - BA$ and $\{A,B\} = AB + BA$.)

$U_h(\mathfrak{gl}(1|1))$ is a Hopf superalgebra with the comultiplication

\[
\Delta X = X \otimes e^{\frac{hH}{2}} + e^{-\frac{hH}{2}} \otimes X, \quad \Delta Y = Y \otimes e^{\frac{hH}{2}} + e^{-\frac{hH}{2}} \otimes Y
\]

\[
\Delta H = H \otimes 1 + 1 \otimes H, \quad \Delta G = G \otimes 1 + 1 \otimes G
\]

The Hopf superalgebra is quasi-triangular with R-matrix

\[
R = \exp(h(H \otimes G + G \otimes H))(1 - e^{\frac{hH}{2}}X \otimes e^{-\frac{hH}{2}}Y)
\]

That is this element satisfies the following identities:

\[
\Delta(a)^{op} = R\Delta(a)R^{-1}
\]

and

\[
(\Delta \otimes \text{id})(R) = R_{13}R_{23}, \quad (\text{id} \otimes \Delta)(R) = R_{13}R_{12}
\]

There is an integral form $U_q(\mathfrak{gl}(1|1)) \subset U_h(\mathfrak{gl}(1|1))$, which is generated by X,Y,G and the invertible element $t = e^{\frac{hH}{2}}$ as a $\mathbb{C}[e^h, e^{-h}]$-algebra. As usual, we write $q = e^h$.

2
1.2

Recall that there is up to isomorphism precisely one irreducible \(\mathfrak{gl}(2) \)-module of a fixed dimension \(n \) (for instance the natural representation for \(n = 2 \)). In contrast, the algebra \(U_q(\mathfrak{gl}(1|1)) \) has 2-(complex) parameter family of irreducible representations on \(\mathbb{C}^{1|1} \) for \(z \in \mathbb{C}^* \), \(n \in \mathbb{C} \) denote by \(V_{z,n} \) the irreducible 2-dimensional representation \(V_{z,n} = \mathbb{C}v \oplus \mathbb{C}u \) with \(v \) even and \(u \) odd such that

\[
Xv = u, \quad Yv = 0, \quad Gv = nv, \quad tv = zv, \quad (2)
\]

(from which \(Xu = 0, \, Gu = (n + 1)u, \, Yu = (z^2 - z^{-2})v \) and \(tu = zu \) follows). Obviously, one can also consider the representation \(\Pi V_{z,n} \) with the parity of the elements reversed. The representation \(\Pi V_{z,n} \) can be realized as \(\epsilon \otimes V_{z,n} \) where \(\epsilon \) is an odd one-dimensional representation. These representations and their tensor products will in fact be essentially the only \(\mathfrak{gl}(1|1) \)-representations of interest to us. For more details on the representation theory see e.g. [13, §11].

1.3

Let \(V \) be a finite dimensional representation of \(U_q(\mathfrak{gl}(1|1)) \). It decomposes into a direct sum of weight spaces for \(G \),

\[
V = \bigoplus_{n \in \mathbb{C}} V(n).
\]

Note that we do not assume the weights to be integral. As usual, the elements \(X \) and \(Y \) act from one weight space to another

\[
X : V(n) \to V(n + 1), \quad Y : V(n) \to V(n - 1),
\]

and we have \(X^2 = Y^2 = 0 \). Hence, \(V \) can be viewed as a complex with two differentials acting in opposite directions. The DeRham complex of any Kähler manifold carries an action of \(\mathfrak{gl}(1|1) \), such that the element \(H \) acts as the Laplace operator. Thus, the algebra \(U_h(\mathfrak{gl}(1|1)) \), and for the same reasons \(U(\mathfrak{gl}(1|1)) \), is in a certain sense, an abstraction of the structures of Hodge theory.

These are, in fact, isomorphic as algebras; the difference between them lies in the action of the differential on \(V \otimes W \): the usual, diagonal action for \(U(\mathfrak{gl}(1|1)) \), the comultiplication for \(U_q(\mathfrak{gl}(1|1)) \) gives another action.

Alternatively, any \(\mathfrak{gl}(1|1) \)-representation can be thought of as a matrix factorization with extra structure (primarily, an upgrade of the \(\mathbb{Z}_2 \)-grading to a \(\mathbb{Z} \)-grading). The underlying super vector space remains unchanged, with \(X + Y \) giving the differential, and

\[
(X + Y)^2 = \{X, Y\} = t^2 - t^{-2}
\]

as the potential.
The decomposition of the tensor product

2.1

Let \(\text{Cl}_N \) be the Clifford algebra (over \(\mathbb{C} \)) with 2\(N \) generators:

\[
\text{Cl}_N = \langle a_i, b_i; i = 1, \ldots, N | \{a_i, a_j\} = \{b_i, b_j\} = 0, \{a_i, b_j\} = \delta_{ij} \rangle
\]

The algebra \(\text{Cl}_N \) has an irreducible 2\(N \)-dimensional representation \(U_N \) generated by a cyclic vector \(v \) with \(b_i v = 0 \). We might identify the basis vectors with the set of \(\{0, 1\} \)-sequences of length \(N \), such that \(v = (0, 0, 0, \ldots) \) and \(a_i \) annihilates all basis vectors \(S = (s_1, s_2, \ldots, s_N) \) with \(s_i = 1 \), and otherwise sends \(S \) to \((-1) \sum_{i=1}^{N-1} s_i S'\) where \(S' \) differs from \(S \) exactly in the \(i \text{th} \) entry. If we consider the subspace \(U = \text{span}(a_1, \ldots, a_n) \) of \(\text{Cl}_N \), then there is a natural isomorphism of graded vector spaces:

\[
U_N \longrightarrow \bigwedge U
\] \((3) \)

where \(s_{j_1}, s_{j_2}, \ldots, s_{j_k} \) are precisely the 1’s appearing (in this order) in \(S \). The action of \(a_i \) gets turned into \(x \mapsto a_i \wedge x \).

In case \(N = 1 \), \(U_N \) is 2-dimensional, and the irreducible 2-dimensional representation \(\text{(2)} \) is obtained by pulling back the Clifford algebra action to \(U_q(\mathfrak{gl}(1|1)) \) via the algebra homomorphism \(U_q(\mathfrak{gl}(1|1)) \to \text{Cl}_1 \)

\[
X \mapsto a_1, \quad Y \mapsto (z - z^{-1}) b_1, \quad t \mapsto z, \quad G \mapsto n + a_1 b_1
\]

This formalism can be extended to the \(N \)-fold tensor product (via the comultiplication \(\Delta \)) of these representations:

Proposition 2.1. Let \(V(n, z) = V_{z_1, n_1} \otimes \cdots \otimes V_{z_N, n_N} \). Then the mapping

\[
X \mapsto \sum_{i=1}^{N} z_i^{-1} \ldots z_{i+1}^{-1} z_{i+1} \ldots z_N a_i, \quad t \mapsto z_1 \ldots z_N, \\
Y \mapsto \sum_{i=1}^{N} z_i^{-1} \ldots z_{i+1}^{-1}(z_i^2 - z_i^{-2}) z_1 \ldots z_N b_i, \quad G \mapsto \sum_{i=1}^{N} (n_i + a_i b_i).
\]

defines uniquely an algebra homomorphism \(\Phi_{n, z} : U_q(\mathfrak{gl}(1|1)) \to \text{Cl}_N \). Pulling back via this map the representation \(U_N \) of \(\text{Cl}_N \) gives the tensor product representation \(V(n, z) \).

Proof. One easily verifies that the map is compatible with the relations of \(U_q(\mathfrak{gl}(1|1)) \). The second statement follows then also by explicit calculations. \(\square \)

2.2

The vector \(v_N = v \otimes \cdots \otimes v \in V(n, z) \) is a lowest weight vector of lowest weight \(\lambda = \sum_{i=1}^{N} n_i \), i.e. \(Y v_N = 0 \) and \(G v_N = \lambda v_N \).

The subspaces \(U = \text{span}(a_1, \ldots, a_N) \) and \(U' = \text{span}(b_1, \ldots, b_N) \) of \(\text{Cl}_N \) can be paired via \(U \otimes U' \to \mathbb{C}, \ a_j \otimes b_i \mapsto \delta_{i,j} \). Abbreviate \(\Phi = \Phi_{n, z} \) and let \(W = (\mathbb{C} \Phi(Y))^\perp \) and \(W' = (\mathbb{C} \Phi(X))^\perp \).
Lemma 2.2. Let \(z := z_1 z_2 \cdots z_N \). Assume \(z^2 - z^{-2} \neq 0 \). Then

1. \(U = C \Phi(X) \oplus W \), and \(U' = C \Phi(Y) \oplus W' \).

2. The subspaces \(W, W' \) generate a subalgebra \(C(X,Y) \) of \(\text{Cl}_N \) isomorphic to \(\text{Cl}_{ \text{dim}(W) } \), which is the super-commutant of the subalgebra generated by \(X \) and \(Y \).

Proof. The inclusion \(U \subseteq C \Phi(X) \oplus W \) holds by definition. For the inverse it is enough to find (for \(1 \leq i \leq N \)) \(\beta_i \in \mathbb{C} \) such that \(a_i - \beta_i \Phi(X) \in W \).

One easily verifies that \(\beta_i = \frac{z^2 (1 - z^{-4})}{z - z^{-2}} \) does the job. The sum is direct, since an element \(u \) in the intersection is of the form \(u = \sum_{i=1}^{N} \gamma_i \Phi(X) \), hence with our assumption \(\alpha = 0 \) and so \(u = 0 \). The argument for \(U' \) is similar. Part 1 follows.

Now \(C(X,Y) \) is clearly contained in the commutant of \(X \) and \(Y \). Since \(\text{dim}(X,Y) = 4 \), and the action of this subalgebra on \(U_N \) is semi-simple, by \(2^{N-1} \) copies of the unique 2-dimensional irreducible representation of \((X,Y) \). Thus, its commutant is of dimension \(2^{2(N-1)} \). Since \(C(X,Y) \) has this dimension, it must be the entire commutant, obviously isomorphic to the Clifford algebra as claimed.

In order to find the super-commutant not just of \(\Phi(X) \) and \(\Phi(Y) \), but all of \(U_q(\mathfrak{gl}(1|1)) \), we must find the subalgebra which also commutes with \(\Phi(G) \).

Proposition 2.3 (Schur-Weyl duality). Let still \(z^2 - z^{-2} \neq 0 \). The subalgebra of \(\text{Cl}_W \) commuting with \(\Phi(G) \) is that of Euler degree 0, i.e. that generated by elements of the form \(W \cdot W' \). There is a natural map \(U(\mathfrak{gl}(W)) \rightarrow \text{Cl}_W \subset \text{Cl}_N \) whose image is this subalgebra.

Proof. The first statement is obvious. Recall that \(W \) and \(W' \) generate a Clifford algebra, say with generators \(a'_i, b'_j \). Note that \(W \cdot W' \) forms a Lie subalgebra of \(\text{Cl}_W \) isomorphic to \(\mathfrak{gl}(W) \) (by mapping \(a'_i b'_j \) to the matrix unit \(E_{i,j} \)), hence this extends to an algebra map \(U(\mathfrak{gl}(W)) \rightarrow \text{Cl}_W \subset \text{Cl}_N \) The image of this map is precisely the commutant, because by the PBW theorem for Clifford algebras, the subspace of Euler degree 0 is that of the form \(\bigoplus_n W^n \cdot (W')^n = \bigoplus_n (W \cdot W')^n \).

Under the action of \(\text{Cl}_W \), \(U_N \) decomposes into two copies of \(U_W = \bigwedge W \), one with parity reversed. Thus, \(V(z,n) \) is completely decomposable and, up to grading shift and parity-reversal, the summands are precisely the 2-dimensional simple modules from above. Of course, the highest weight vector \(v_N \) generates a copy of \(V_{z,\lambda} \), so all simple submodules must be of the form \(V_{z,\lambda+k} \) for some \(k \) (possibly with parity reversed). Thus,
Proposition 2.4 (Tensor space decomposition).

The multiplicity space of $V_{z,\lambda+k}$ in $V(n,z)$ is the space of weight k (for G) in UW. That is

$$V(z,n) \simeq \bigoplus_{k=0}^{N-1} \bigwedge^k W \otimes \Pi^k V_{z,\lambda+k} \quad (5)$$

where Π is the shift of parity, $\Pi^2 = id$.

2.3

This decomposition of the tensor product can be made more explicit if we chose a basis c_i, $i = 1, \ldots, N-1$ in the subspace $W \subset U$ complementary to $C\Phi(X)$, hence fixing a decomposition $U = C\Phi(X) \oplus \bigoplus_{i=1}^{N-1} Cc_i$. From now on we will just write X, Y instead of $\Phi(X), \Phi(Y)$.

Lemma 2.5. We have the following formulas

$$Xc_{i_1} \ldots c_{i_k} w = (-1)^k c_{i_1} \ldots c_{i_k} Xw$$

$$Yc_{i_1} \ldots c_{i_k} w = (-1)^k c_{i_1} \ldots c_{i_k} Yw + \sum_{j=1}^{k} y_{i_j} (-1)^{j-1} c_{i_1} \ldots \widehat{c_{i_j}} \ldots c_{i_k} w$$

where $w \in U$ and the y_i's are defined by $YC_i + c_i Y = y_i$.

Proof. Obvious.

For a vector $v \in U$ define

$$(v)_{i_1,\ldots,i_k} = c_{i_1} \ldots c_{i_k} v + (-1)^k \frac{1}{z - z^{-1}} \sum_{a=1}^{k} y_a (-1)^{a-1} c_{i_1} \ldots \widehat{c_{i_a}} \ldots c_{i_k} v$$

Proposition 2.6. The space

$$V_{i_1,\ldots,i_k} = C(v_N)_{i_1,\ldots,i_k} \oplus C X(v_N)_{i_1,\ldots,i_k}$$

where v_N is the highest weight vector (see section 2.2), is an irreducible submodule isomorphic to $V_{z, (\sum_{i=1}^{N} n_i) + k}$. This submodule corresponds to the monomial $c_{i_1} \wedge \cdots \wedge c_{i_k}$ in the decomposition (5).

Proof. We have

$$X(v_N)_{i_1,\ldots,i_k} = (Xv_N)_{i_1,\ldots,i_k}$$

and since $Yv_N = 0$, we have

$$Y(v_N)_{i_1,\ldots,i_k} = 0, \quad YX(v_N)_{i_1,\ldots,i_k} = (z^2 - z - 2)(v_N)_{i_1,\ldots,i_k}$$

The statement follows directly from the action of t and G and [2].
3 The relation to the Burau representation

3.1
The action of the universal R-matrix Π in the tensor product representation $V_{2_1,n_1} \otimes V_{2_2,n_2}$ can easily be computed explicitly. Namely, in terms of the weight basis (by abuse of language we use the basis $\{v, Xv\}$ for either module) this right action looks as follows:

\[
R(v \otimes v) = z_1^{2n_2} z_2^{2n_1} v \otimes v \\
R(v \otimes Xv) = z_1^{2n_2+2} z_2^{2n_1} v \otimes Xv - z_2^{-1} z_1 (z_2^2 - z_2^{-2}) z_1^{2n_2+2} z_2^{2n_1} Xv \otimes v \\
R(Xv \otimes v) = z_1^{2n_2} z_2^{2n_1+2} Xv \otimes v \\
R(Xv \otimes Xv) = z_1^{2n_2+2} z_2^{2n_1+2} Xv \otimes Xv
\]

In the tensor product basis $v \otimes v, v \otimes Xv, Xv \otimes v, Xv \otimes Xv$ it produces the 4×4 matrix $R^{(z_1, z_2)} = z_1^{-2n_2} z_2^{-2n_1} (R)$,

\[
R^{(z_1, z_2)} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & z_1^2 & -(z_2^{-2} - z_2^2) z_1^3 z_2^{-1} & 0 \\
0 & 0 & z_2^2 & z_1 z_2 \\
0 & 0 & 0 & z_1^{-2} z_2^{-2}
\end{bmatrix}
\]

with

\[
R^{(z_1, z_2)}^{-1} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & z_1^{-2} & (z_2^{-2} - z_2^2) z_1^{-3} z_2 & 0 \\
0 & 0 & z_2^{-2} & z_1^{-1} z_2 \\
0 & 0 & 0 & z_1^{-2} z_2^{-2}
\end{bmatrix}
\]

3.2
Consider the groupoid of braids whose strands are labeled by elements in $\mathbb{C} \times \mathbb{C}^*$. Each N-braid with colors $(z_i, n_i), 1 \leq i \leq N$ on its N strands defines a morphism from the tuple (z, n) to the permuted tuple $(\sigma z, \sigma n)$ given by the braid. Assigning to a tuple (z, n) the representation $V(z, n) = V_{2_1,n_1} \otimes \cdots \otimes V_{2_N,n_N}$ and to the single (positive) braid β, with strands colored by $a := (z_i, n_i)$ and $b := (z_{i+1}, n_{i+1})$ the mapping

\[
\pi(\beta_i)(a, b) : V(z, n) \to V(s_i z, s_i n)
\]

\[
\pi(\beta_i)(a, b) = -z_1^{-3} z_2^{-1} P_{i,i+1} \circ \left(1 \otimes \cdots \otimes 1 \otimes R^{(z_1, z_2)} \otimes 1 \otimes \cdots \otimes 1 \right)
\]

defines a representation π of the colored braid groupoid. Here $R^{(z_1, z_2)}$ is as above, hence up to a multiple, the universal R-matrix Π acting on $V_{n_{\sigma_1}, z_{\sigma_1}} \otimes V_{n_{\sigma_2}, z_{\sigma_2}}$ and $P_{i,i+1}$ is the flip map of simply swapping the two tensor factors as $x \otimes y \mapsto (-1)^{im} y \otimes x$. To verify the claim note that the braid relations amount to the relations

\[
\pi(\beta_i)(a, b) \circ \pi(\beta_{i+1})(a, c) \circ \pi(\beta_i)(b, c) = \pi(\beta_{i+1})(b, c) \circ \pi(\beta_i)(a, c) \circ \pi(\beta_{i+1})(a, b),
\]

\[
\pi(\beta_i)(a, b) \circ \pi(\beta_j)(c, d) = \pi(\beta_j)(c, d) \circ \pi(\beta_i)(a, b).
\]
for $j \neq i - 1, i, i + 1$ and a, b, c, d arbitrary colors. These relations can easily be checked by direct calculations. In particular, the subgroup \mathbb{E}_n of the braid group that preserves (z, n) acts on $V(z, n)$. Because the operators $\pi(\beta_i)$ commute with the action of $U_q(\mathfrak{gl}(1|1))$, the action is determined by the action on multiplicity spaces.

The first interesting multiplicity space is W considered as a subspace of U:

Proposition 3.1. In the case where $z_1 = \cdots = z_n$, this braid group representation on U is isomorphic to the Burau representation. Similarly, the action on W gives rise to the reduced Burau representation in case $z_1 = \cdots = z_n$.

Proof. Choose the basis $b_i = v \otimes v \otimes \cdots \otimes v \otimes Xv \otimes v \otimes \cdots \otimes v$, where X is applied to the i-th factor. Then $\pi(\beta_i)$ defined in (8) acts on this basis as follows:

$$\pi(\beta_i) b_j = b_j \quad \text{for} \quad j \neq i, i + 1, \quad \text{and on} \quad b_i \text{ and } b_{i+1} \text{ it acts as the matrix }$$

$$- z_i^{-3} z_{i+1}^{-1} \begin{pmatrix} 0 & z_i^2 & z_{i+1} (z_i^2 - (z_i^2 - z_{i+1}^2) z_i z_{i+1}) \\ z_i^2 & - (z_i^2 - z_{i+1}^2) z_i z_{i+1} \end{pmatrix}$$

(9)

Change the basis as $b_i = A_i b'_i$ where $A_i a_i = -z_i z_{i+1}$, then $\pi(\beta_i)(b'_j) = b'_j$ for $j \neq i, i + 1$ and $\pi(\beta_i)$ acts on b'_i, b'_{i+1} by

$$\begin{pmatrix} 0 & z_i^{-4} \\ 1 & (1 - z_i^{-4}) \end{pmatrix}$$

(10)

In case $z_i = z_j$ for any i, j, we set we $t := z_i^{-4}$ and obtain that $\pi(\beta_i)$ acts on b_j an identity when $j \neq i, i + 1$ and on b_i and b_{i+1} by the matrix:

$$\begin{pmatrix} 0 & t^{-1} \\ t & 1 - t^{-1} \end{pmatrix}$$

But this is exactly the Burau representation, see for example [11, p.118 Example 3]. The invariant subspace is $\mathbb{C} X v$. The reduced Burau representation acts in the quotient space $W = U / \mathbb{C} X v$.

In general, we obtain a colored version of the Magnus representation of \mathbb{E}_n obtained from an action on the free group on N generators (see [2] p.102 ff for the non-colored version and for colored version see [3, Section 4]) and thus, Gassner representation of the pure braid group. In other words we proved the following.

Theorem 3.2. The mapping $\beta_i \mapsto \pi(\beta_i)(a_i, a_{i+1})$ gives the Magnus-Gassner representation of the pure braid group.

4 Multivariable Alexander-Conway polynomial

In this section we will use Theorem 2.4 to obtain the Alexander-Conway polynomial of a knot in terms of R-matrices for quantum $\mathfrak{gl}(1|1)$. These results are very closely related to the results in [6] and [8].
4.1

To construct invariants of links and tangled graphs let us start with the explicit decomposition of the two-folded tensor product. We abbreviate

$$
\gamma := (z_1^2 z_2^2 - z_1^{-2} z_2^{-2})^{-1},
$$

(assuming from now on this inverse exists). The following linear maps explicitly describe the decomposition of the tensor product of two generic irreducible two-dimensional representations:

$$
\varphi : V_{z_1, z_2, n + m} \oplus V_{z_1, z_2, n + m + 1} \to V_{z_1, n} \otimes V_{z_2, m}
$$

and

$$
\psi : V_{z_1, n} \otimes V_{z_2, m} \to V_{z_1, z_2, n + m} \oplus V_{z_1, z_2, n + m + 1}
$$

We denote by $w_1, X w_1$ (resp. $w_2, X w_2$) the standard basis in $V_{z_1, z_2, n + m + 1}$ and in $V_{z_1, z_2, n + m}$, and by $v_1, X v_1$ (resp. $v_2, X v_2$) the standard basis in $V_{z_1, n}$ and in $V_{z_2, m}$, respectively. Then the maps are defined as follows:

$$
\begin{align*}
\varphi(w_1) &= v_1 \otimes v_2, \\
\varphi(X w_1) &= z_2 X v_1 \otimes v_2 + (-1)^n z_1^{-1} v_1 \otimes X v_2, \\
\varphi(w_2) &= (-1)^{n+1} z_1^{-1} (z_2^2 - z_2^{-2}) \gamma X v_1 \otimes v_2 + z_2 (z_1^2 - z_1^{-2}) \gamma v_1 \otimes X v_2, \\
\varphi(X w_2) &= X v_1 \otimes X v_2
\end{align*}
$$

and

$$
\begin{align*}
\psi(v_1 \otimes v_2) &= w_1, \\
\psi(X v_1 \otimes v_2) &= z_2 (z_1^2 - z_1^{-2}) \gamma X w_1 + (-1)^n z_1^{-1} z_2^{-1} w_2, \\
\psi(v_1 \otimes X v_2) &= (-1)^n z_1^{-1} (z_2^2 - z_2^{-2}) \gamma X w_1 + z_2 w_2, \\
\psi(X v_1 \otimes X v_2) &= X w_2
\end{align*}
$$

One easily verifies that they are inverse to each other:

$$
\psi \circ \varphi = \text{id}_{V \otimes V}, \quad \varphi \circ \psi = \text{id}_{V \otimes V}
$$

Let $P_0, P_1 \in \text{End}(V_{z_1, z_2, n + m} \oplus V_{z_1, z_2, n + m + 1})$ be the natural orthogonal projections to the first and the second summand respectively.

For any $A \in \text{End}(M)$ with M an arbitrary super space, define the super trace to be $\text{str}(A)$ to be the trace of A restricted to the even part of M minus the trace of A restricted to the odd part of M. For instance, if $M = V$, then $\text{str}(A) = A_{v, v} - A_{v, X v}$ where $v, X v = u$ is the weight basis in V.

We have the following identities for the super traces:

$$
\begin{align*}
\text{str}_2(\phi P_0 \psi) &= z_2^2 (z_1^2 - z_1^{-2}) \gamma \text{id}_{V_{z_1, n}}, \\
\text{str}_2(\phi P_1 \psi) &= -z_2^2 (z_1^2 - z_1^{-2}) \gamma \text{id}_{V_{z_1, n}}, \\
\text{str}_1(\phi P_0 \psi) &= z_1^{-2} (z_2^2 - z_2^{-2}) \gamma \text{id}_{V_{z_2, n}}, \\
\text{str}_1(\phi P_1 \psi) &= -z_1^{-2} (z_2^2 - z_2^{-2}) \gamma \text{id}_{V_{z_2, n}},
\end{align*}
$$

(11)
Here $\text{str}_{1,2}$ are partial super traces:

$$\text{str}_2(a \otimes b) = a \text{str}(b), \quad \text{str}_1(a \otimes b) = \text{str}(a)b$$

The matrix $PR(z; z)$ has the spectral decomposition:

$$PR(z; z) = z^2 \phi P_0 \psi - z^{-2} \phi P_1 \psi.$$

We also have

$$\text{str}_2(PR(z; z)) = z^2 \text{id}, \quad \text{str}_2((PR(z; z))^{-1}) = z^2 \text{id},$$

and it is easy to check that these identities agree with the spectral decomposition and super trace identities above.

4.2

Let π be the representation from above and β a braid. The partial trace $\text{tr}_{23...N}(\pi(\beta))$ is the evaluation of a central element in $U_h(\mathfrak{gl}(1|1))$ in the irreducible representation V_{z_1, n_1}. This is a general fact about the construction of link invariants from quasitriangular Hopf algebras [10], [14, Definition 2.1]. Therefore this partial trace is proportional to the identity. We will write

$$\text{str}_{23...N}(\beta) = \langle \text{str}_{23...N}(\pi(\beta)) \rangle I_1$$

where I_1 is the identity operator in $V(z_1, n_1)$.

Theorem 4.1. Abbreviating $z = z_1 \ldots z_N$, the following holds:

$$\langle \text{str}_{23...N}(\pi(\beta)) \rangle = \frac{z^2 - z^{-2}}{z^2 - z^{-2}} \sum_{m=0}^{N-1} \text{tr}_{\wedge^m W}(\pi_{W}(\beta))$$

Proof. This theorem follows immediately from Proposition 4.1. The decomposition of the tensor product $V(z, n)$ defines linear maps $f_m : \wedge^m W \rightarrow \wedge^m W$ for each element $f \in \text{End}(V(z, n))$. Using the explicit formulae for the decomposition of two irreducible 2-dimensional representations from the previous section and the formulae for partial traces $\text{str}_a(\phi_P \psi)$ from the previous subsection we arrive to the identity:

$$\langle \text{str}_{23...N}(f) \rangle = \sum_{m=0}^{N-1} \text{tr}_{\wedge^m W}(f_m) \frac{z^2_1 - z^{-2}}{z^2 - z^{-2}} z^2$$

Let $\hat{\beta}$ be the link which is the closure of the braid β. We number its connected components by $1 \leq i \leq k$ and denote by $w_i(\beta)$ the winding number of the i-th component of $\hat{\beta}$. Then the following holds:
Theorem 4.2. The function
\[\tau(\beta) = \langle \text{tr}_{23...N}(\beta) \rangle z^2 \sum_{i=1}^{k} w_i(\beta) \]
\[(13) \]
is an invariant of the link \(\hat{\beta} \).

Proof. We have to verify the invariance with respect to Markov moves. The invariance with respect to the first Markov move means \(\tau(\sigma \beta \sigma^{-1}) = \tau(\beta) \). But this identity follows immediately from the conjugation invariance of the ordinary trace and Theorem 4.1. The second Markov move means that \(\tau(\beta s_{n-1}^{\pm 1}) = \tau(\beta) \) where \(\beta \) is a braid which has no factors \(s_{n-1}^{\pm 1} \). But this identity follows immediately from the property (12) of \(R \)-matrices.

As it was shown in [8] the invariant (13) is the Alexander-Conway polynomial \(\Delta_{z_1,...,z_N} \):
\[\langle \text{tr}_{23...N}(\pi(\beta)) \rangle = z_1^2 - z_{1}^{-2}z_2^2 z_{2}^{-2} \Delta_{z_1,...,z_N}(\hat{\beta}) \]

Remark 4.3. For any \(U_q(\mathfrak{gl}(1|1))\)-linear map \(f \in \text{End}(V(z_1,n_1) \otimes V(z_2,n_2)) \) we have the following identity:
\[z_1^{-2} \text{str}_2(f) = z_2^2 \text{str}_1(f) \]
This follows immediately from (11). This property is a projective version of the ambidextrous [15] property of \(U_q(\mathfrak{gl}(1|1))\)-modules. Using this formula the Alexander-Conway polynomial in terms of \(U_q(\mathfrak{gl}(1|1)) \) can be written as a state sum and as a state sum, it can be extended to invariants of framed graphs (see [6] Section 3).

References

[1] J. Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82. Princeton University Press, 1974

[2] J. Birman, D. D. Long, J. Moody, Finite-dimensional representations of Artin's braid group, In: The Mathematical Legacy of Wilhelm Magnus: Groups, Geometry and Special Functions, Contemporary Math. 169, Amer. Math. Soc., 1994, pp. 123–132.

[3] F. Constantinescu, F. Toppan, On the linearized Artin braid representation. J. Knot Theory Ramifications 2 (1993), no. 4, 399–412.

[4] N. Geer, B. Patureau-Mirand, An invariant supertrace for the category of representations of Lie superalgebras Pacific J. Math, Vol. 238 (2008), No. 2, 331-348.

[5] N. Geer, B. Patureau-Mirand, V. Turaev, Modified quantum dimensions and re-normalized link invariants, Compos. Math. 145 (2009), no. 1, 196–212.
[6] L. H. Kauffman, L. H., H. Saleur, *Free fermions and the Alexander-Conway polynomial*, Comm. Math. Phys. 141 (1991), no. 2, 293–327.

[7] P. P. Kulish, *Quantum Lie superalgebras and supergroups*, Problems of Modern Quantum Field Theory (Alushta, 1989) Springer, 1989, pp. 1421.

[8] J. Murakami, *A state model for multi-variable Alexander polynomial*, Pacific J. Math. Volume 157, Number 1 (1993), 109-135.

[9] N. Reshetikhin, *Quantum Supergroups*, Proceedings of the NATO advanced research workshop, Quantum Field Theory, Statistical Mechanics, Quantum Groups, and Topology. (Coral Gables, FL, 1991), 264-282.

[10] N. Reshetikhin, V. Turaev, *Ribbon graphs and their invariants derived from quantum groups*, Comm. Math. Phys. Volume 127, Number 1 (1990), 1-26.

[11] M. Rosso, *Alexander polynomial and Koszul resolution*, Algebra Monpellier Announcements, 1999.

[12] V. Turaev, *Quantum invariants of knots and 3-manifolds*. de Gruyter Studies in Mathematics, 18. Walter de Gruyter & Co., Berlin, (1994).

[13] O. Viro, *Quantum relatives of the Alexander polynomial*, Algebra i Analiz 18:3 (2006) 63-157 (in Russian), St. Petersburg Math. J. 18 (2007), no. 3, 391–457 (in English).

[14] N. Geer, B. Patureau-Mirand, *An invariant supertrace for the category of representations of Lie superalgebras* Pacific J. Math, Vol. 238 (2008), No. 2, 331-348.

[15] N. Geer, B. Patureau-Mirand, V. Turaev, *Modified quantum dimensions and re-normalized link invariants*, Compos. Math. 145 (2009), no. 1, 196–212.