A Review on the Role of SPRY4-IT1 in the Carcinogenesis

Soudeh Ghafouri-Fard¹, Tayyebeh Khoshbakht², Mohammad Taheri³* and Seyedpouzhia Shojaei⁴*

¹ Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
² Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
³ Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
⁴ Department of Critical Care Medicine, Imam Hossein Medical and Educational Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Sprouty RTK signaling antagonist 4-intronic transcript 1 (SPRY4-IT1) is a long non-coding RNA (lncRNA) encoded by a gene located on 5q31.3. This lncRNA has a possible role in the regulation of cell growth, proliferation, and apoptosis. Moreover, since SPRY4-IT1 controls levels of lipin 2, it is also involved in the biosynthesis of lipids. During the process of biogenesis, SPRY4-IT1 is produced as a primary transcript which is then cleaved to generate a mature transcript which is localized in the cytoplasm. SPRY4-IT1 has oncogenic roles in diverse tissues. A possible route of participation of SPRY4-IT1 in the carcinogenesis is through sequestering miRNAs such as miR-101-3p, miR-6882-3p and miR-22-3p. The sponging effect of SPRY4-IT1 on miR-101 has been verified in colorectal cancer, osteosarcoma, cervical cancer, bladder cancer, gastric cancer and cholangiocarcinoma. SPRY4-IT1 has functional interactions with HIF-1α, NF-κB/p65, AMPK, ZEB1, MAPK and PI3K/Akt signaling. We explain the role of SPRY4-IT1 in the carcinogenesis according to evidence obtained from cell lines, xenograft models and clinical studies.

Keywords: SPRY4-IT1, cancer, biomarker, expression, carcinogenesis

INTRODUCTION

SPRY4 Intronic Transcript 1 (SPRY4-IT1) is a long non-coding RNA (lncRNA). This transcript is encoded by a gene on the cytogenetic band 5q31.3. During the process of biogenesis, SPRY4-IT1 is produced as a primary transcript which is then cleaved to generate a mature transcript which is localized in the cytoplasm (1). Since the complete size and structure of the primary and cleaved transcripts of SPRY4-IT1 are not clear, it has been speculated that the primary transcript is an alternatively spliced variant of SPRY4 (https://www.ncbi.nlm.nih.gov/gene/100642175).

A pioneer study in this field has suggested that SPRY4-IT1 is originated from an intronic region of the SPRY4 gene. In silico studies have predicted that SPRY4-IT1 has numerous long hairpins in its secondary configuration. Based on the results of RNA-FISH experiments in the melanoma cells, SPRY4-IT1 is mainly localized in the cytoplasm. Since SPRY4-IT1 silencing has altered growth, differentiation, and apoptosis in melanoma cells, it has been suggested that SPRY4-IT1 has a role in the etiology of melanoma (2). Subsequent studies have provided further evidence for participation of SPRY4-IT1 in other types of cancers as well. In normal cells, this lncRNA can regulate cell cycle
progression and cell proliferation. In the current review, we explain the role of SPRY4-IT1 in the carcinogenesis based on evidence obtained from cell lines, xenograft models and clinical studies.

CELL LINE STUDIES

SPRY4-IT1 has been found to up-regulated in colorectal cancer cells. SPRY4-IT1 regulates growth and glycolysis of these cells through enhancing expression of PDK1. SPRY4-IT1 has affected glucose intake, lactic acid synthesis, and levels of ATP in colorectal cancer cells (3). SPRY4-IT1 has also been demonstrated to increase proliferation, migratory potential and invasiveness of colorectal cancer cells. Most notably, SPRY4-IT1 enhances expression of epithelial-mesenchymal transition (EMT)-associated genes. Mechanistically, SPRY4-IT1 negatively regulates expression of miR-101-3p in these cells through binding with this miRNA (4). SPRY4-IT1 up-regulation in a colorectal cancer cell line has resulted in differential expression of several genes among them has been TCEB1. This transcription elongation factor subunit can interact with the Alu element in the 3′ untranslated region (UTR) of SPRY4-IT1. Besides, SPRY4-IT1 binds with STAU1 to increase STAU1 recruitment to the 3′-UTR of TCEB1 transcript. It subsequently modulates stability and expression of TCEB1, leading to up-regulation of HIF-1α. STAU1 is attributed to the family of double-stranded RNA-binding proteins. It participates in the transport of transcripts to various subcellular localizations. Expression of SPRY4-IT1 is also activated by NF-κB/p65 (5).

SPRY4-IT1 has also been reported to be over-expressed in MCF-7 cancer stem cells compared with MCF-7 cells. Up-regulation of SPRY4-IT1 has enhanced proliferation and stemness of breast cancer cells. Moreover, SPRY4-IT1 silencing has inhibited renewal capacity of breast cancer stem cells and maintenance of their stemness. Mechanistically, SPRY4-IT1 acts as a sponge for miR-6882-3p to affect expression of TCF7L2 (6). SPRY4-IT1 silencing in breast cancer cells has significantly inhibited their proliferation and prompted cell apoptosis. ZNF703 has been found to be a target of SPRY4-IT1 in these cells (7). The encoded protein by this gene is involved in nucleic acid binding and DNA-binding transcription factor binding. Figure 1 shows the oncogenic effect of SPRY4-IT1 in colorectal and breast cancers.

Cao et al. has shown that SPRY4-IT1 silencing significantly constrains proliferation of gastric cancer cells through inducing G1 arrest and enhancing apoptosis. SPRY4-IT1 acts as a sponge for miR-101-3p to increase expression of AMPK (8). On the other hand, Xie et al. have shown tumor suppressor role of SPRY4-IT1 in gastric cancer. DNA methylation has been found to be the main mechanism of control of SPRY4-IT1 expression in these cells. Besides, SPRY4-IT1 has been shown to affect EMT in gastric cancer cells (9). In osteosarcoma cells, SPRY4-IT1 has been shown to promote cancer progression through sequestering miR-101 and enhancing expressions of ZEB1 and ZEB2 (10). Figure 2 shows the effect of SPRY4-IT1 in the pathogenesis of gastric cancer and osteosarcoma.

FIGURE 1 | Oncogenic effect of SPRY4-IT1 in colorectal and breast cancers.
In lung cancer, SPRY4-IT1 has been shown to reverses resistance to cisplatin through decreasing expression of MPZL-1 and suppression of EMT process (11). MPZL-1 is functionally related with tyrosine kinases/adaptors and adhesion. Moreover, EZH2-related epigenetic down-regulation of SPRY4-IT1 has promoted proliferation and metastatic ability of lung cancer cells through influencing EMT (12). Contrary to these studies, Zhang et al. have stated that SPRY4-IT1 increases migration and invasiveness of lung adenocarcinoma cells (13).

In cervical cancer, SPRY4-IT1 can increase EMT influencing activity of the miR-101-3p/ZEB1 axis (14). In testicular germ cell tumors, SPRY4-IT1 has been found to suppress growth of cancer cells and phosphorylation of Akt (15). Figure 3 shows the role of SPRY4-IT1 in the pathogenesis of lung, cervical and testicular cancers.

SPRY4-IT1 levels have been found to be elevated in melanoma cells lines when compared to the normal skin cell line. Up-regulation of this lncRNA has been attended by down-regulation of miR-22-3p. Dual luciferase reporter assay has confirmed the interaction between SPRY4-IT1 and miR-22-3p. Under-expression of SPRY4-IT1 has blocked proliferation, invasiveness, migration, and EMT of melanoma cells. Overexpression of miR-22-3p has been shown to decelerate phosphorylation of p38MAPK, MAPKAPK and Hsp27, thus miR-22-3p decreases activity of the p38MAPK/MAPKAPK/Hsp27 signaling (16). In glioma, SPRY4-IT1 has been revealed to stimulate cell proliferation and invasion via up-regulating SKA2 (17). It has a role in enhancement of EMT of glioma cells as well (18). Moreover, SPRY4-IT1 enhances proliferation and invasiveness of pancreatic cancer cells through regulation of Cdc20 (19). Figure 4 shows oncogenic role of SPRY4-IT1 in melanoma, glioma and pancreatic cancer.

In bladder cancer cells, SPRY4-IT1 sequesters miR-101-3p to increase proliferation and metastatic ability of neoplastic cells via enhancing expression of EZH2 (20). In hepatocellular carcinoma cells, SPRY4-IT1 silencing has attenuated cell proliferation, colony formation, invasiveness and migratory potential. SPRY4-IT1 silencing has led to cell cycle arrest at G0/G1 stage and stimulated cell apoptosis. Moreover, SPRY4-IT1 silencing has inhibited expression of estrogen-related receptor α (ERRα) at transcript and protein level (21). Upregulation of SPRY4-IT1 has also been shown to increase viability of esophageal squamous cell carcinoma cells through inducing expression of zinc finger 703 (22). Figure 5 shows impact of SPRY4-IT1 in the pathoetiology of bladder, liver and esophageal cancers.

Table 1 summarizes the effect of SPRY4-IT1 in cancers based on cell line studies.

ANIMAL STUDIES

Experiments in animal models of cancers have verified the influence of SPRY4-IT1 in the carcinogenesis. For instance, up-regulation of SPRY4-IT1 has enhanced proliferation and stemness of breast cancer cells in animal models. Besides, investigations in animal models have shown that SPRY4-IT1 silencing inhibits renewal capacity of breast cancer stem cells and reduces their stemness (6). In xenograft models of gastric cancer, two different studies have reported conflicting results. While in BALB/c nude mice, SPRY4-IT1 silencing has decreased...
FIGURE 3 | Effect of SPRY4-IT1 in the pathogenesis of lung, cervical and testicular cancers.

FIGURE 4 | Oncogenic role of SPRY4-IT1 in melanoma, glioma and pancreatic cancer.
malignant behavior of neoplastic cells (8), another study in male athymic mice has shown the reverse results (9). In animal models of lung cancer, concomitant up-regulation of SPRY4-IT1 and cisplatin treatment has attenuated tumor growth and metastasis (11). However, in other types of cancers, xenograft models have shown oncogenic roles of SPRY4-IT1 (Table 2).

HUMAN STUDIES

Using a panel of colon, breast, and ovarian cancer tissues, Zhao et al. have found that elevation of SPRY4-IT1 expression is associated with aggressive behavior and poor clinical outcome of patients (5). Another study has shown that SPRY4-IT1 overexpression in breast cancer tissues is associated with a larger neoplasm bulk and higher pathological stage (7).

SPRY4-IT1 has also been reported to be increased in gastric cancer tissues and serum exosomes. Notably, up-regulation of SPRY4-IT1 in serum exosomes has been correlated with metastatic ability of this cancer (8). On the other hand, Xie et al. have reported down-regulation of SPRY4-IT1 in gastric cancer tissues in association with greater tumor dimension, higher pathological stage, higher depth of tumor invasion and lymphatic metastasis. Down-regulation of SPRY4-IT1 has been associated with poor prognosis of gastric cancer patients in this cohort (9).

Elevation of SPRY4-IT1 in patients with hepatocellular carcinoma has been associated with poor five year survival of patients. Besides, expression of SPRY4-IT1 in these patients has been correlated with TNM stage (21). Table 3 summarizes the role of SPRY4-IT1 in cancers based on clinical studies.

Expression of SPRY4-IT1 in tissues and peripheral blood might be used for separation of healthy tissues/blood samples from those obtained from patients with neoplastic conditions (Table 4).

DISCUSSION

SPRY4-IT1 has oncogenic roles in diverse tissues. A possible path of participation of SPRY4-IT1 in the carcinogenesis is through decreasing bioavailability of miRNAs such as miR-101-3p, miR-6882-3p and miR-22-3p. The sponging effect of SPRY4-IT1 on miR-101 has been verified in colorectal cancer, osteosarcoma, cervical cancer, bladder cancer, gastric cancer and cholangiocarcinoma. Thus, this miRNA is the main target of SPRY4-IT1 in the carcinogenesis process. In spite of the bulk of evidence pointing to the oncogenic roles of SPRY4-IT1 in diverse tissues, single studies in lung, ovarian and gastric cancers have reported a tumor suppressor role for this lncRNA. Notably, in gastric cancer, animal studies have also shown contradictory results. The number of passages of the cancer cell lines and other in vitro and in vivo conditions should be compared between these studies to find the underlying causes of such inconsistent results.
TABLE 1 | Effect of SPRY4-IT1 in cancers based on cell line studies.

Tumor type	Targets/Regulators and Signaling Pathways	Cell line	Function	Reference
Colorectal cancer	PDK1, NCM460, T84, HT-29, SW480	HCT116, LoVo, RKO, SW620, SW480, 293T	Δ SPRY4-IT1: ↓ growth, ↓ viability, ↓ colony formation, ↓ glycolysis	(3)
	mR-101-3p	LoVo, RKO, SW620, and SW480	Δ SPRY4-IT1: ↓ proliferation, ↓ growth, ↓ invasion, ↓ EMT process, ↑ G0/G1 phase arrest, ↑ apoptosis	(23)
	TCEB1, HIF-1 signaling pathways, Nf2/p65	HCT116, Caco-2, HT-29, SW480, SW620	Δ SPRY4-IT1: ↓ proliferation, ↓ invasion, ↓ EMT process	(4)
Breast cancer	mR-6882-3p, TCF7L2, SDF-1/CXCR4 axis, NT21MP, SKA2	MCF-7, T47D	Δ SPRY4-IT1: ↑ stemness	(6)
	TCEB1, HIF-1 signaling pathways, Nf2/p65	MCF-7, T-47D, MDA-MB-231	Δ SPRY4-IT1: ↓ proliferation, ↓ migration, ↓ invasion, ↓ G0/G1 phase arrest, ↓ apoptosis	(25)
Gastric cancer	mR-101-3p, AMPK	MCF-7, T47D, MDA-MB-231	Δ SPRY4-IT1: ↓ proliferation, ↓ migration, ↓ invasion, ↓ G0/G1 phase arrest, ↓ apoptosis	(7)
Ovarian cancer	mR-101, ZEB1, ZEB2	MCF-7, T47D, MDA-MB-231	Δ SPRY4-IT1: ↓ proliferation, ↓ migration, ↓ invasion, ↓ G0/G1 phase arrest, ↓ apoptosis	(5)
Osteosarcoma	mR-101, ZEB1, ZEB2, ZNF703, SKA2	Caov-3, SK-OV-3, HEK293T, OVCAR-3	Δ SPRY4-IT1: ↓ proliferation, ↓ migration, ↓ invasion, ↓ G0/G1 phase arrest, ↓ apoptosis	(9)
Lung cancer	MP2L-1, A549, A549	HOS, Saos-2, U2OS, MG-63, NH osteosarcoma	Δ SPRY4-IT1: ↓ proliferation, ↓ migration, ↓ invasion, ↓ G0/G1 phase arrest, ↓ apoptosis	(10)
Pancreatic cancer	Cdc20	H23, H1299, A549, SPC-A1, HLF	Δ SPRY4-IT1: ↓ proliferation, ↓ migration, ↓ invasion, ↓ G0/G1 phase arrest, ↓ apoptosis	(11)
Pancreatic ductal adenocarcinoma	mR-101-3p, EZH2, Dnmt1	BxPC-3, Panc-1, Capan-2, Panc-1, SW1990	Δ SPRY4-IT1: ↓ proliferation, ↓ migration, ↓ invasion, ↓ G0/G1 phase arrest, ↓ apoptosis	(12)
Cholangiocarcinoma	Sp1, mR-101-3p, Klf2, Lats2, EzH2, Lsd1, Dnmt1	RBE and HCC-9810, HIBEC, CCLP-1, HuCCT1, Huh-28, HMBC, BCC939	Δ SPRY4-IT1: ↓ proliferation, ↓ migration, ↓ invasion, ↓ G0/G1 phase arrest, ↓ apoptosis	(13)
Gastric cancer	mR-101-3p, EZH2	EH-G8, GBC-SO, SGC-996, NOZ, 293T	Δ SPRY4-IT1: ↓ proliferation, ↓ migration, ↓ invasion, ↓ G0/G1 phase arrest, ↓ apoptosis	(14)
Bladder cancer	mR-101-3p, EZH2	SV-HUC-1, EJ, UMUC3, T24T	Δ SPRY4-IT1: ↓ proliferation, ↓ migration, ↓ invasion, ↓ G0/G1 phase arrest, ↓ apoptosis	(15)
Hepatocellular carcinoma	ERα	J82, T24, SW780, SV-40, SV-HUC-1	Δ SPRY4-IT1: ↓ proliferation, ↓ migration, ↓ invasion, ↓ G0/G1 phase arrest, ↓ apoptosis	(16)

(Continued)
SPRY4-IT1 has functional interactions with HIF-1α, NF-κB/p65, AMPK, ZEB1, MAPK and PI3K/Akt signaling, thus it can influence the carcinogenesis from different aspects.

Diagnostic value of SPRY4-IT1 has been assessed in cervical malignancy, melanoma and esophageal squamous cell carcinoma, with the best values being reported in the malignancy, melanoma and esophageal squamous cell carcinoma. Since this lncRNA has been identified in serum exosomes of patients with cancer, it represents a possible candidate in non-invasive diagnostic strategies. Yet, these results should be confirmed in large cohorts of patients with different stages of cancers to appraise this potential application.

Except for three types of cancers, namely lung, ovarian and gastric cancers which have contradictory results, elevation of SPRY4-IT1 in other types of cancers has been associated with poor prognosis of patients.

Cumulatively, SPRY4-IT1 is a potential cancer-related lncRNA which can be used as a possible therapeutic target for diverse malignancies. Several issues should be solved before

TABLE 1 | Continued

Tumor type	Targets/Regulators and Signaling Pathways	Cell line	Function	Reference	
Esophageal squamous cell carcinoma	_	KYSE-450, KYSE-510, KYSE-150, KYSE-180, KYSE-70s, and KYSE-140	Δ SPRY4-IT1: ↓ proliferation, ↓ migration, ↓ invasion	(32)	
Clear cell renal cell carcinoma	ZNF703	TE-13	786-O, ACHN, Caki-1, Caki-2, HK-2	Δ SPRY4-IT1: ↓ proliferation, ↓ viability	(22)
				Δ SPRY4-IT1: ↓ proliferation, ↓ migration, ↓ invasion	(33)

Δ, knock-down or deletion; DDP, cisplatin.

TABLE 2 | Role of SPRY4-IT1 in cancers based on animal studies.

Tumor Type	Animal models	Results	Reference		
Breast cancer	3- to 4-week-old female BALB/c nu/nu mice	Mice were divided into the four groups (n = 6 per group): NC-cDNA with MCF-7; SPRY4-IT1-cDNA with MCF-7; sh-NC with MCF-7 GSCs; and sh-SPRY4-IT1 with MCF-7 GSCs	Δ SPRY4-IT1: ↓ tumor weight, ↑ stemness, ↑ self-renewal capacity	(8)	
Gastric cancer	3- to 4-week-old male BALB/c nude mice	Mice injected with BGC823 cells transfected with sh-SPRY4-IT1 or sh-NC	Δ SPRY4-IT1: ↓ tumor weight, ↓ tumor growth, ↓ tumor size, ↓ metastasis	(9)	
Osteosarcoma	24 nude mice were divided into 4 groups (n=6/group); MG-63/shNC (control), MG-63/shSPRY4-IT1 (treatment), U2OS/shNC (control) and U2OS/shSPRY4-IT1 (treatment).	Mice were injected with MG-63 or U2OS cells transfected with shNC or shSPRY4-IT1.	Δ SPRY4-IT1: ↓ tumor volume, ↓ tumor weight	(10)	
Lung cancer	4-week old female athymic BALB/c nude mice	10 Mice (n = 5 per group) were injected with A549/DDP cells transfected with pCDNA-SPRY4-IT1 and empty vector.	Δ SPRY4-IT1 + DDP Treatment: ↓ tumor volume, ↓ tumor weight	(11)	
		4-week old female athymic BALB/c nude mice	Mice were injected with SPC-A1 cells transfected with pCDNA-SPRY4-IT1 and empty vector.	Δ SPRY4-IT1: ↓ tumor volume, ↓ tumor weight, ↓ metastasis	(12)
		4-week old male athymic mice	9 mice were injected with A549 cells transfected with pCDNA-SPRY4-IT1 or empty vector.	Δ SPRY4-IT1: ↓ tumor volume, ↓ tumor weight, ↓ metastasis	(14)
Cervical cancer	4-week old female BALB/c nude mice	Mice (n=6 per group) were injected with HeLa and CaSki cells transfected with SPRY4-IT1 shRNA or negative control.	Δ SPRY4-IT1: ↓ tumor volume, ↓ tumor weight, ↓ metastasis	(14)	
Pancreatic ductal adenocarcinoma	6-week old female nude mice	Mice (n=4 per group) were injected with PANCl cells transfected with control shRNA or SPRY4-IT1 shRNA.	Δ SPRY4-IT1: ↓ tumor weight	(28)	
Cholangiocarcinoma	6-week old female BALB/c nude mice	Mice (n=6 per group) were injected with HuCCT1 cells transfected with shSPRY4-IT1 or the scrambled control.	Δ SPRY4-IT1: ↓ tumor weight, ↓ tumor growth	(29)	
Bladder cancer	4-week old female BALB/c nude mice	Mice (n=6 per group) were injected with T24T cells transfected with SPRY4-IT1 shRNA or negative control.	Δ SPRY4-IT1: ↓ tumor volume, ↓ tumor weight	(23)	
Esophageal squamous cell carcinoma	4-week old male BALB/c nude mice	Mice (n=5 per group) were injected with KYSE-30 cells transfected with si-SPRY4-IT1 or si-NC.	Δ SPRY4-IT1: ↓ tumor weight, ↓ tumor growth	(33)	

Δ, knock-down or deletion.
TABLE 3 | Effect of SPRY4-IT1 in cancers based on clinical studies.

Tumor type	Samples	Expression (Tumor vs. Normal)	Kaplan-Meier analysis (impact of SPRY4-IT1 up-regulation)	Univariate/Multivariate cox regression	Association of SPRY4-IT1 expression with Clinicopathologic characteristics	Reference	
Colorectal cancer (CRC)	72 CRC tissues and normal tissues up poorer OS _ _	(3)					
	106 CRC tissues and ANCTs up poorer OS SPRY4-IT1 levels are independent factors for CRC prognosis.					(23)	
	96 pair of CRC tissues and ANCTs up _ _					(34)	
	84 pair of CRC tissues and ANCTs up worse OS SPRY4-IT1 level is an independent prognostic indicator for OS.					(24)	
	88 CRC serum samples and 98 healthy controls up _ _						
	88 pair of CRC tissues and ANCTs up _ _					(4)	
	113 CRC tissues up shorter OS and DFS _ _					(5)	
Breast cancer	101 breast cancer patients TCGA analysis: up in patients with CD44+/CD24-						
	102 pairs of tumor tissues and ANCTs up poorer OS and DFS SPRY4-IT1 level is an independent prognostic factor for both OS and DFS.					(35)	
	48 pairs of tumor tissues and ANCTs up _ _					(7)	
	101 breast cancer tissues up shorter OS and DFS _ _					(5)	
Ovarian cancer	96 ovarian cancer tissues up shorter OS and DFS _ _					(5)	
	15 pairs of tumor tissues and ANCTs down higher OS and DFS _ _					(26)	
Gastric cancer (GC)	68 pairs of GC tissues and ANCTs up _ _					(8)	
	61 pairs of GC tissues and ANCTs down higher OS and DFS _ _					(9)	
Osteosarcoma	56 pairs of tumor tissues and ANCTs up _ _					(27)	
Lung cancer	TCGA analysis: up shorter OS _ _					(13)	
	412 LUAD patients Levels of SPRY4-IT1 and histological grade were independent prognostic factors for OS.						
	88 pairs of tumor tissues and ANCTs up poorer prognosis _ _ _ _						(Continued)
Tumor type	Samples	Expression (Tumor vs. Normal)	Kaplan-Meier analysis (impact of SPRY4-IT1 up-regulation)	Univariate/Multivariate cox regression	Association of SPRY4-IT1 expression with Clinicopathologic characteristics	Reference	
-------------------------------	--	-------------------------------	--	---------------------------------------	---	-----------	
Cervical cancer	121 pairs of NSCLC tissues and ANCTs	down	higher OS	Low levels of SPRY4-IT1 were independent predictors of poor survival for NSCLC.	tumor size, advanced pathological stage, and lymph node metastasis	(12)	
	100 pairs of cervical cancer tissues and ANCTs	up	shorter OS	Expression of SPRY4-IT1 was an independent prognostic factor for OS of cervical cancer patients.	tumor size, PGO stage, SCC-Ag, and lymph node metastasis	(36)	
Testicular germ cell tumor	13 TGCTs and 11 normal testis samples	up	_	_	_	(15)	
Melanoma	70 cases of malignant melanoma and 79 normal controls	up	poorer prognosis	SPRY4-IT1 was found to be an independent prognostic factor for OS in patients.	tumor site and TNM stage	(37)	
Glioma	64 glioma specimens and 9 normal brain tissue specimens	up	_	_	_	(17)	
	163 glioma tissues and ANCTs	up	poorer OS	Expression of SPRY4-IT1 and WHO grade were independently significant prognostic factors.	WHO grade, and tumor size	(38)	
	18 pairs of glioma tissues and ANCTs	up	_	_	_	(18)	
Pancreatic ductal adenocarcinoma (PDAC)	46 pairs of PDAC tissues and ANCTs	up	worse 5-year OS	SPRY4-IT1 was an independent predictor of poor OS.	advanced tumor stages and poor differentiation grade	(28)	
Cholangiocarcinoma (CCA)	70 pairs of CCA tissues and ANCTs	up	worse OS and PFS	SPRY4-IT1 was an independent predictor of poor PFS and OS.	late tumor stage and advanced TNM stage	(29)	
Gallbladder carcinoma (GBC)	38 pairs of GBC tissues and ANCTs	up	_	_	_	(30)	
Bladder cancer	60 pairs of bladder cancer tissues and ANCTs	up	_	_	_	(23)	
	68 pairs of UCB tissues and ANCTs	up	shorter OS	Expression of SPRY4-IT1, histological grade, cancer stage and lymph node involvement were found to be independent prognostic factors for patients with UCB.	advanced tumor stage, higher histological grade, and positive lymph node metastasis	(31)	
Hepatocellular carcinoma (HCC)	87 pairs of HCC tissues and ANCTs	up	_	_	_	(39)	
	Plasma of 60 HCC cases, 85 hepatitis B and cirrhosis patients, and 63 controls	up	higher in pre-operation than that at post-operation, hepatitis B and cirrhosis, and the control groups	_	_		
	82 pairs of HCC tissues and ANCTs	up	poor 5-year OS	_	TNM stage and metastasis	(21)	
Esophageal squamous cell	92 pairs of ESCC tissues and ANCTs	up	shorter OS	SPRY4-IT1 expression, lymph node metastasis, and TNM stage were found to be independent	tumor differentiation, T classification, lymph node metastasis	(32)	

(Continued)
application of SPRY4-IT1-targeting strategies in the clinical setting the most important one being the possible tissue-specific effect of this lncRNA in the carcinogenesis. Moreover, the impact of genetic variants within SPRY4-IT1 coding gene on susceptibility to cancer and response to therapeutic options should be appraised in future investigations.

REFERENCES

1. Mazar J, Zhao W, Khalil AM, Lee B, Shelley J, Govindarajan SS, et al. The Functional Characterization of Long Noncoding RNA SPRY4-IT1 in Human Melanoma Cells. *Oncotarget* (2014) 5:8959–69. doi: 10.18632/oncotarget.1863
2. Khaitan D, Dinger ME, Mazar J, Crawford J, Smith MA, Mattick JS, et al. The Melanoma-Upregulated Long Noncoding RNA SPRY4-IT1 Modulates Apoptosis and Invasion. *Cancer Res* (2011) 71:3852–62. doi: 10.1158/0008-5472.CAN-10-4460

AUTHOR CONTRIBUTIONS

SG-F wrote the draft and revised it. MT designed and supervised the study. SS and TK collected the data and designed the figures and tables. All authors contributed to the article and approved the submitted version.

3. Liu S, Huang F, Ye Q, Li Y, Chen J, Huang H. SPRY4-IT1 Promotes Survival of Colorectal Cancer Cells Through Regulating PDK1-Mediated Glycolysis. *Anim Cells Syst* (2020) 24:220–7. doi: 10.1080/19783544.2020.1784274
4. Jin J, Chu Z, Ma P, Meng Y, Yang Y. Long Non-Coding RNA SPRY4-IT1 Promotes Proliferation and Invasion by Acting as a CeRNA of miR-101-3p in Colorectal Cancer Cells. *Tumor Biol* (2017) 39:1010428317716250. doi: 10.1177/1010428317716250
5. Zhao L, Jiang L, Zhang M, Zhang Q, Guan Q, Li Y, et al. Nf-kb-Activated SPRY4-IT1 Promotes Cancer Cell Metastasis by Downregulating TCEB1
mRNA via Staufen-Mediated mRNA Decay. Oncogene (2021) 1–11. doi: 10.1038/s41388-021-01900-8

6. Song X, Zhang X, Wang X, Chen L, Jiang L, Zheng A, et al. LncRNA SPRY4-IT1 Regulates Breast Cancer Stemness Through Competitively Binding Mir-6882-3p With TCF7L2. J Cell Mol Med (2020) 24:772–84. doi: 10.1111/jcmm.14786

7. Shi Y, Li J, Liu Y, Ding J, Fan Y, Tian Y, et al. The Long Noncoding RNA SPRY4-IT1 Increases the Proliferation of Human Breast Cancer Cells By Upregulating ZNF703 Expression. Mol Cancer (2015) 14:1–13. doi: 10.1186/s12943-015-0318-0

8. Cao S, Lin L, Xia X, Wu H, LncRNA SPRY4-IT1 Regulates Cell Proliferation and Migration by Sponging Mir-101-3p and Regulating AMPK Expression in Gastric Cancer. Mol Ther Nucleic Acids (2019) 17:453–64. doi: 10.1016/j.ymthe.2019.04.030

9. Xie M, Nie F-q, Sun M, Xia R, Liu Y-w, Zhou P, et al. Decreased Long Non-Coding RNA SPRY4-IT1 Contributing to Gastric Cancer Cell Metastasis Partially via Affecting Epithelial–Mesenchymal Transition. J Trans Med (2015) 13:1–11. doi: 10.1186/s12967-015-0595-9

10. Yao H, Hou G, Wang QY, Xu WB, Zhao HQ, Xu YC. LncRNA SPRY4 Promotes Progression of Osteosarcoma by Regulating ZEB1 and ZEB2 Expression Through Sponging of Mir-101 Activity. Int J Oncol (2020) 56:85–100. doi: 10.3892/ijo.2019.4910

11. Ye Y, Gu J, Liu P, Wang H, Jiang L, Lei T, et al. Long Non-Coding RNA SPRY4-IT1 Reverses Resistance by Downregulating MPZL-1 via Suppressing EMT in NSCLC. Oncotargets Ther (2020) 13:2783. doi: 10.2147/OTT.S32769

12. Sun M, Liu X, Lu K, Nie F, Xia R, Kong R, et al. EZH2-Mediated Epigenetic Suppression of Long Noncoding RNA SPRY4-IT1 Promotes sNSCLC Cell Proliferation and Metastasis By Affecting the Epithelial–Mesenchymal Transition. Cell Death Dis (2014) 5:e12298–8. doi: 10.1038/cddis.2014.256

13. Zhang X, Chi Q, Zhao Z. Up-Regulation of Long Non-Coding RNA SPRY4-IT1 Promotes Tumor Cell Migration and Invasion in Lung Adenocarcinoma. Oncotarget (2017) 8:10508. doi: 10.18632/oncotarget.16918

14. Fan M-J, Zou Y-H, He P-J, Zhang S, Sun X-M, Li C-Z. Long Non-Coding RNA SPRY4-IT1 Promotes Epithelial–Mesenchymal Transition of Cervical Cancer by Regulating the Mir-101-3p/ZEB1 Axis. Biosci Rep (2019) 39: BS20181339. doi: 10.1042/BSR20181339

15. Das MK, Furu K, Evesen HF, Haugen Ø.P., Haugen TB. Knockdown of SPRY4-IT1 Promotes Development of Hepatic Cellular Carcinoma by Interacting with Ezrin and Predicts Poor Prognosis. Sci Rep (2017) 7:1–9. doi: 10.1038/s41598-017-0761-9

16. Li Z, Tang X, Duan S. Interference From Lncrna SPRY4-IT1 Restrains the Inactivating MAPK Pathway by Up-Regulating Mir22-3p. Cell Death Dis (2014) 5:e1298. doi: 10.1038/cddis.2014.256

17. Li X, Yao J, Han Q, Cui Y. Decreased Long Non-Coding RNA SPRY4-IT1 Contributes to Ovarian Cancer Cell Metastasis Partly via Affecting Epithelial–Mesenchymal Transition. Tumor Biol (2019) 39:1010428317709129. doi: 10.1177/1010428317709129

18. Xu J, Ding R, Xu Y. Effects of Long Non-Coding RNA SPRY4-IT1 on Osteosarcoma Cell Biological Behavior. Am J Trans Res (2016) 8:5330.

19. Yao Y, Gao P, Chen L, Wang W, Zhang J, Li Q, et al. Upregulated Long Non-Coding RNA SPRY4-IT1 Predicts Dismal Prognosis for Pancreatic Ductal Adenocarcinoma and Regulates Cell Proliferation and Apoptosis. Gene (2018) 656:552–8. doi: 10.1016/j.gene.2018.03.048

20. Xu Y, Yao Y, Jiang X, Zhong X, Wang Z, Li C, et al. SP1-Induced Upregulation of Lncrna SPRY4-IT1 Exerts Oncogenic Properties by Scaffolding EZH2/ LSD1/DNMT1 and Sponging Mir-101-3p in Cholangiocarcinoma. J Exp Clin Cancer Res (2018) 37:1–13. doi: 10.1186/s13046-018-0747-x

21. Yang L, Cheng X, Ge N, Guo W, Feng F, Wan F. Long Non-Coding RNA SPRY4-IT1 Promotes Gastric Cancer Progression. Oncotarget (2017) 8:3104. doi: 10.18632/oncotarget.13621

22. Zhao X-L, Zhao Z-H, Xu W-C, Hou J-Q, Du X-Y. Increased Expression of SPRY4-IT1 Predicts Poor Prognosis and Promotes Tumor Growth and Metastasis in Bladder Cancer. Int J Clin Exp Pathol (2015) 8:1954.

23. Xie H-W, Wu Q-Q, Zhu B, Chen F-J, Li L, Li-S-Q, et al. Long Non-Coding RNA SPRY4-IT1 Is Upregulated in Esophageal Squamous Cell Carcinoma and Associated With Poor Prognosis. Tumor Biol (2014) 35:7743–54. doi: 10.1007/s13277-014-3137-9

24. Zhang H-M, Yang F-Q, Yan Y, Che J-P, Zheng J-H. High Expression of Long Non-Coding RNA SPRY4-IT1 Promotes Poor Prognosis of Clear Cell Renal Cell Carcinoma. Int J Clin Exp Pathol (2014) 7:5801.

25. Chen F, Cai W-S, Feng Z, Chen J-w, Feng J-h, Liu Q-c, et al. Long Non-Coding RNA SPRY4-IT1 Pormotes Colorectal Cancer Metastasis By Regulate epithelial–mesenchymal transition. Oncotarget (2017) 8:14479. doi: 10.18632/oncotarget.10462

26. Zhang Y, Chen Y, Shi Y, Wu X, Hao R, Li Q, et al. Upregulation of the Long Non-Coding RNA SPRY4-IT1 Predicts Poor Prognosis in Breast Cancer. Int J Clin Exp Pathol (2019) 12:1003.

27. Cao Y, Liu Y, Lu X, Wang Y, Qiao H, Liu M. Upregulation of Long Noncoding RNA SPRY4-IT1 Correlates With Tumor Progression and Poor Prognosis in Cervical Cancer. FEBS Open Bio (2016) 6:958–60. doi: 10.1002/2211-5463.12102

28. Liu T, Shen SK, Xiong JG, Xu Y, Zhang HQ, Liu HJ, et al. Clinical Significance of Long Noncoding RNA SPRY4-IT1 in Melanoma Patients. FEBS Open Bio (2016) 6:147–54. doi: 10.1002/2211-5463.12030

29. Zhou Y, Wang D, Pang Q. Long Noncoding RNA SPRY4-IT1 Is a Prognostic Factor for Poor Overall Survival and has an Oncogenic Role in Glioma. Eur Rev Med Pharmacol Sci (2016) 20:3035–9.

30. Jing W, Gao S, Zhu M, Luo P, Jing X, Chai H, et al. Potential Diagnostic Value of Lncrna SPRY4-IT1 in Hepatocellular Carcinoma. Oncol Rep (2016) 36:1085–92. doi: 10.3892/or.2016.4859

31. Tong Y-S, Wang W-Z, Zhou X-L, Liu Z-H, Yang T-X, Shi H-W, et al. Identification of the Long Non-Coding RNA POUS3F3 in Plasma as a Novel Biomarker for Diagnosis of Esophageal Squamous Cell Carcinoma. Mol Oncol (2015) 9:1–13. doi: 10.1016/j.molonc.2014.11.007

32. Qie P, Yin Q, Xun X, Song Y, Zhou S, Liu H, et al. Long Non-Coding RNA SPRY4-IT1 as a Promising Indicator for Three Field Lymph-Node Dissection...
of Thoracic Esophageal Carcinoma. J Cardiothoracic Surg (2021) 16:1–9. doi: 10.1186/s13019-021-01433-x

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Ghafouri-Fard, Khoshbakht, Taheri and Shojaei. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.