A restriction theorem for torsion-free sheaves on some elliptic manifolds

Victor VULETESCU

Abstract

We prove that if X is the total space of an elliptic principal bundle $\pi : X \to B$ which is non-kähler, then the restriction of any torsion-free sheaf on X to the general fiber of π is semi-stable.

1 Introduction

In the study of holomorphic vector bundles over a given compact complex manifold X, especially in the study of (semi)stable ones, a very useful tool is the study of their restrictions to general members of a given family of subvarieties of X. However, the restriction of a (semi)stable vector bundle to a submanifold is not always semistable. Still, under some strong hypothesis, such as X is projective and the family of subvarieties is a family of divisors "ample enough", the restriction of a stable vector bundle to the general member remains (semi)stable: this is "Flenner’s restriction theorem", see [5]. Flenner’s theorem has been extended to the more general context of algebraic varieties in arbitrary characteristic (see e.g [6]), but, to the author’s knowledge, there is no such extension to the case of non-projective manifolds. The present note tackles this case.

2 Notations and basic facts

The context we are working is the following. We fix a compact complex manifold B and an elliptic curve F. To every principal elliptic bundle $\pi : X \to B$ one can associate (up to the obvious action of $SL(2, \mathbb{Z})$) a couple of elements

$$(c'_1(\pi), c''_1(\pi)) \in H^2(B, \mathbb{Z}) \times H^2(B, \mathbb{Z})$$
called the Chern classes of the bundle π (see e.g. [2]).

If at least one of the Chern classes is non vanishing in $H^2(B, \mathbb{R})$, one can prove by a standard argument using the Leray spectral sequence of the fibration that the homology class of any fiber $[F] \in H_2(X, \mathbb{R})$ vanishes; as the fibers are compact complex submanifolds, this shows that X is not of Kähler type.

We also recollect the notion of stability; since we will use this concept for vector bundles on curves, we will only recall the definition in this case. Hence, a vector bundle E on a smooth projective curve will be called stable (respectively semistable) if for any subbundle $\mathcal{F} \subset E$ with $0 < \text{rank}(\mathcal{F}) < \text{rank}(E)$ one has

$$\frac{\text{deg}(\mathcal{F})}{\text{rank}(\mathcal{F})} < \frac{\text{deg}(E)}{\text{rank}(E)}$$

(resp " $\leq $" for semistability). A vector bundle which is not semistable is called unstable.

Eventually, let us recall a concept which is of relevance only on non-algebraic complex manifolds. If X is compact complex manifold and \mathcal{F} is a coherent sheaf on X, then \mathcal{F} is called reducible if there exist a coherent subsheaf $\mathcal{F}' \subset \mathcal{F}$ with $0 < \text{rank}(\mathcal{F}') < \text{rank}(\mathcal{F})$; if no such subsheaf exist then \mathcal{F} is called irreducible. Notice that on projective manifolds all coherent sheaves are reducible; still, on general compact complex manifolds this is not always the case, as one can see for instance looking at the tangent bundle of a K3 surface X with $\text{Pic}(X) = 0$ (the general K3 surface is so).

3 Some Lemmas

In the following we some lemmas, which are most likely classical and well-known; but since we don’t have any precise reference, we include the proofs here.

Lemma 1 Let $\pi : X \to B$ be an elliptic principal bundle. If the homology class $[F] \in H_2(X, \mathbb{R})$ vanishes (i.e the Poincaré dual PD_F is zero), then any proper closed analytic subset $Y \subset X, \text{dim}(Y) < \text{dim}(X)$, does not meet the general fiber.

Proof. The only non-obvious case is when Y is a hypersurface. But in this case, if Y meets all the fibers, then it meets the general fiber transversely in finitely many points. But then

$$0 < \#(Y \cap F) = \int_X PD_Y \wedge PD_F = 0$$
since $PD_F = 0$ by the assumption that $0 = [F] \in H_2(X, \mathbb{R})$.

Lemma 2 For X as in the previous Lemma and for any torsion-free sheaf E on X we have

$$\text{deg}(E|_F) = 0$$

for $F =$ general fiber of π.

Proof. Indeed, as E is torsion-free, we see $\text{Sing}(E)$ has codimension at least two. Let $L = \text{det}(E)^{\vee\vee}$ be the bidual of the determinant of E; it is a reflexive sheaf of rank one on X, so it is a line bundle (cf e.g. [7]). Moreover, the map $\text{det}(E) \to L$ is an isomorphism outside $\text{sing}(E)$, so if F is any fiber not meeting $\text{Sing}(E)$ we have

$$\text{deg}(E|_F) = \text{deg}(\text{det}(E)|_F) = \text{deg}(L|_F) = i^*(c_1(L))$$

where $i : F \to X$ is the inclusion of the fiber F. But as $[F] = 0$ in $H_2(X, \mathbb{R})$ we see $i^*(c_1(L)) = 0$, Q.E.D. Lemma.

Lemma 3 If F is an elliptic curve and if E is a vector bundle of degree zero on F which is generated by its global sections, then E is trivial.

We use the following argument from L. Ein (cf [4], Proposition 1.1):

"**Lemma.** If X is a compact complex manifold, and E is a globally generated vector bundle on E such that its dual E^\vee has a section, then E splits as $E = \mathcal{O}_X \oplus F$."

We do induction of $\text{rank}(E)$. For $\text{rank}(E) = 1$ the assertion is immediate. If $\text{rank}(E) \geq 2$, letting $K = \text{Ker}(H^0(F, E) \otimes \mathcal{O}_F \to E)$ we get an extension:

$$0 \to K \to H^0(F, E) \otimes \mathcal{O}_F \to E \to 0. \quad (1)$$

Now, either the extension splits (and hence E is trivial), or

$$H^1(F, E^\vee \otimes K) \neq 0.$$

As $\text{deg}(E) = 0$ we have also $\text{deg}(K) = 0$ so we further get by Riemann-Roch on F that

$$H^0(F, E^\vee \otimes K) \neq 0. \quad (2)$$

Twisting the above extension (1) by E^\vee we get

$$0 \to K \otimes E^\vee \to H^0(F, E) \otimes E^\vee \to E \otimes E^\vee \to 0$$
hence, from (2), we get
\[H^0(F, E') \neq 0 \]
Applying Ein’s Lemma, we get \(E = O_F \oplus E_1 \). But \(E_1 \) has degree zero and is generated by its global sections too, so by the induction hypothesis, \(E_1 \) is trivial. Consequently, \(E \) is trivial too.

Lemma 4 Let \(F \) be an elliptic curve and \(L \) a semistable vector bundle on \(F \) such that \(\text{deg}(L) = 0 \). Then there is a Zariski-open subset \(U \subset \text{Pic}_0(F) \) such that \(H^0(F, L \otimes I) = 0 \) for all \(I \in U \).

Proof. (See also [3]). Again, we do induction on \(\text{rank}(L) \). For \(\text{rank}(L) = 1 \) the claim is immediate (take \(U = \text{Pic}_0(F) \setminus \{ L' \} \)), so assume \(\text{rank}(L) > 0 \).

In the case \(H^0(F, L) = 0 \), from the existence of the Poincaré bundle and Grauert’s upper continuity theorem we get \(H^0(F, L \otimes I) = 0 \) for all \(I \) in a Zariski neighborhood of \(O_F \).

In the case \(h^0(F, L) > 0 \) take some \(s \in H^0(F, L) \), \(s \neq 0 \); it defines a map
\[0 \to O_F \to L \]
We infer that this map has torsion-free cokernel; since otherwise, moding out by the torsion of the cokernel, we would get a nontrivial map into \(L \) from a nontrivial, effective divisor on \(F \), contradicting the hypothesis that \(L \) is semistable. So \(L \) sits in an exact sequence
\[0 \to O_F \to L \to L' \to 0 \]
with \(L' \) =torsion-free (hence locally free, as \(F \) is a curve); in particular, \(\text{deg}(L') = 0 \). It is easy to see that \(L' \) is semistable too, so by the induction hypothesis \(H^0(F, L' \otimes I) = 0 \) for all \(I \) is some open subset \(U \subset \text{Pic}_0(F) \). So
\[H^0(F, L \otimes I) = 0 \]
for all \(I \in U \setminus \{ O_F \} \), Q.E.D. Lemma.

Eventually, we recollect a fact which is true more generally

Lemma 5 Let \(F \) be an elliptic curve and
\[0 \to L \to M \to R \to 0 \]
an exact sequence of vector bundles of \(F \) with
\[\text{deg}(L) = \text{deg}(R) = 0. \]
If \(L \) and \(R \) are semistable, then \(M \) is semistable too.
Proof. Using Lemma 4 we get a line bundle $I \in \text{Pic}_0(F)$ such that

$$H^0(F, R \otimes I) = H^0(F, L \otimes I) = 0;$$

this implies $H^0(F, M \otimes I) = 0$ as well.

So, replacing M by $M \otimes I$ we can further assume $H^0(F, M) = 0$. Now, if M would be unstable, we would get a destabilizing vector subbundle $D \subset M$ with $\deg(D) > 0$. But $\deg(D) > 0$ implies $H^0(F, D) \neq 0$; so $H^0(F, M) \neq 0$ as well, contradiction, Q.E.D. Lemma.

4 The main result

We are now in position to state and prove the main result.

Theorem 1 Let $\pi : X \to B$ be an elliptic principal bundle with at least one of the Chern classes non-vanishing in $H^2(B, \mathbb{R})$ (in particular, X is nonK"ahler). Then the restriction of any torsion-free sheaf E on X to the general fiber of π is semi-stable.

Before proving it, let us make a small comment. As one can see, the theorem gives the semi-stability of the restriction of E to the general fiber of π with no apriori assumptions like (semi)stability for E. This is not completely surprising; in the non-projective context, more exactly on non-projective surfaces, the "Bogomolov inequality" $\Delta(E) \geq 0$, holds similarly for all torsion-free sheaves E (cf [1], or [3] for a simpler proof), in contrast to the projective case, when it holds mainly for stable vector bundles.

Proof of the theorem. We do induction on the rank $r = rk(E)$. For $r = 1$ there is nothing to prove, so we assume $r \geq 2$.

Case 1: E is reducible. That is, E sits in an exact sequence

$$0 \to L \to E \to R \to 0$$

By the Lemma 2 we see that for a general fiber F of π, $L|_F, R|_F$ are locally free of degree zero. More, by the induction hypothesis, both $L|_F, R|_F$ are also semistable, so $E|_F$ is semistable too, by Lemma 5.

Case 2: E is irreducible. We distinguish again two subcases:

Subcase 2.1: $\pi_*(E) = 0$. In this case, $H^0(F, E|_F) = 0$ for the general fiber. But as also $\deg(E|_F) = 0$ for the general fiber F, we see at once that $E|_F$ is semistable. Indeed, if this is not the case, then a destabilizing subsheaf $D \subset E$ would have $\deg(D) > 0$; but then $h^0(F, D) > 0$ so $h^0(F, E|_F) > 0$ too, contradiction.
Subcase 2.2: $\pi_*(E) \neq 0$. Let $\alpha : \pi^*\pi_*(E) \to E$ be the canonical morphism and let $F = \text{Im}(\alpha)$. As E is irreducible and as α is non-trivial, we see we have

$$\text{rank}(F) = \text{rank}(E).$$

Let $Y = \text{Supp}(E/F)$; by Lemma [1] Y cannot meet all the fibers of π so for the general fiber F we have $F|_F = E|_F$; more, by Lemma [2] we can assume $\deg(E|_F) = 0$.

So, for the general fiber F we have a surjection

$$\pi^*\pi_*(E)|_F \to E|_F.$$

But

$$\pi^*\pi_*(E)|_F$$

is trivial, so $E|_F$ is spanned by its global sections. As it is also of degree zero, it follows by Lemma [3] that $E|_F$ is trivial, in particular semi-stable.

Acknowledgements. The author would like to thank V. Brînzănescu for asking the question of the semistability of restrictions in the non-Kähler context and for a careful reading of some firsts drafts of the paper. The elaboration of paper was funded by the grant ”Vector Bundle Techniques in the Geometry of Complex Varieties”, PN-II-ID-PCE-2011-3-0288, Contract 132/05.10.2011.

References

[1] C. Bănică; J. Le Potier, Sur l’existence des fibrés vectoriels holomorphes sur les surfaces non-algébriques. (On the existence of holomorphic vector bundles on non-algebraic surfaces). J. Reine Angew. Math. 378, 1-31 (1987).

[2] V. Brînzănescu, Neron-Severi group for nonalgebraic elliptic surfaces. I: Elliptic bundle case. Manuscr. Math. 79, No.2, 187-195 (1993).

[3] V. Brînzănescu, A simple proof of a Bogomolov type inequality in the case of nonalgebraic surfaces. Rev. Roum. Math. Pures Appl. 38, No.7-8, 631-633 (1993).

[4] L. Ein, An analogue of Max Noether’s theorem. Duke Math. J. 52, 689-706 (1985).

[5] H. Flenner, Restrictions of semistable bundles on projective varieties, Comment. Math. Helv. 59 (1984), 635-650.
[6] A. Langer, *A note on restriction theorems for semistable sheaves*, Math.Res.Lett.17(2010),no.05,823832

[7] Ch. Okonek; M. Schneider; H. Spindler, *Vector bundles on complex projective spaces*. Progress in Mathematics. 3. Boston - Basel - Stuttgart: Birkhuser. VII, 389 p.

[8] M. Raynaud, *Sections des fibrés vectoriels sur une courbe*, Bulletin de la S.M.F., tome 110 (1982), p.103-125

UNIVERSITATEA BUCUREȘTI, FACULTATEA DE MATEMATICĂ ȘI INFORMATICĂ, and "SIMION STOILOW" INSTITUTE OF MATHEMATICS OF THE ROMANIAN ACADEMY