Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends

Manuel Ferrer,1* Mónica Martínez-Martínez,1 Rafael Bargiela,1 Wolfgang R. Streit,2 Olga V. Golyshina3 and Peter N. Golyshin**
1Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Marie Curie 2, 28049 Madrid, Spain.
2Biozentrum Klein Flottbek, Universität Hamburg, Ohnhorststraße 18, D-22609 Hamburg, Germany.
3School of Biological Sciences, Bangor University, LL57 2UW Gwynedd, UK.

Summary
Recent reports have suggested that the establishment of industrially relevant enzyme collections from environmental genomes has become a routine procedure. Across the studies assessed, a mean number of approximately 44 active clones were obtained in an average size of approximately 53 000 clones tested using naïve screening protocols. This number could be significantly increased in shorter times when novel metagenome enzyme sequences obtained by direct sequencing are selected and subjected to high-throughput expression for subsequent production and characterization. The pre-screening of clone libraries by naïve screens followed by the pyrosequencing of the inserts allowed for a 106-fold increase in the success rate of identifying genes encoding enzymes of interest. However, a much longer time, usually on the order of years, is needed from the time of enzyme identification to the establishment of an industrial process. If the hit frequency for the identification of enzymes performing at high turnover rates under real application conditions could be increased while still covering a high natural diversity, the very expensive and time-consuming enzyme optimization phase would likely be significantly shortened. At this point, it is important to review the current knowledge about the success of fine-tuned naïve- and sequence-based screening protocols for enzyme selection and to describe the environments worldwide that have already been subjected to enzyme screen programmes through metagenomic tools. Here, we provide such estimations and suggest the current challenges and future actions needed before environmental enzymes can be successfully introduced into the market.

Introduction
Currently there is a great demand for suitable enzymatic biocatalysts that have high process performances and are ‘greener’ alternatives to chemical synthesis (Adrio and Demain, 2003; Fernández-Arrojo et al., 2010; Bornscheuer et al., 2012; Turner and Truppo, 2013; Vergne-Vaxelaire et al., 2013). It was expected that up to 40% of bulk chemical synthesis processes that now require environmentally damaging bulk organic solvents and elevated energy inputs could use enzymatic catalysis by 2030 (Adrio and Demain, 2003; Sawaya and Arundel, 2010; Zúñiga et al., 2014). However, we have already surpassed the maximum rate of oil extraction (‘peak oil’), implying not only that we should look for sustainable
sources of non-fossil fuel but that we should also seek alternative 'greener' structural units within a molecule (synthons) for biopolymers and biomaterials (Timmis et al., 2014). Currently, the turnover of about USD 5 billion is produced by the application of enzymes in different markets (Sawaya and Arundel, 2010; Zúñiga et al., 2014; and the World Enzymes to 2017 Report in http://www.rnmarketresearch.com/world-enzymes-to-2017-market-report.html), and the world enzyme demand is forecasted to rise from USD 6.4 to 6.9 billion p.a. in 2017. Accordingly, the demand for biocatalysts in the form of free or immobilized enzymes, whole cell catalysts or cell-free systems, with a high applicability potential in industry is increasing (Schrewe et al., 2013; You and Zhang, 2013; Jeon et al., 2015; Schmidt et al., 2015).

The existing and recognized potential of environmental microbiology to substantially improve the commercial potential of biotechnology has recently been greatly strengthened by the advent of the molecular enzyme technology and metagenomics (Drepper et al., 2014). Although there is a breakthrough in protein design, and novel catalytic activities are now in reach that match those of natural enzymes (Woodley, 2013; Höhne and Bornscheuer, 2014), this technology provides the capacity to discover entirely new enzymes in microorganisms and their communities without the technically challenging need to culture them as individual species (Lee et al., 2010; Mora et al., 2011; Kyrpides et al., 2014; Yarza et al., 2014). In fact, Yarza and colleagues (2014) provided an estimation of the uncultured microbial diversity. To date, only ~11 000 bacterial and archaeal species have been described; however, at the current rate of ~600 new descriptions per year, it has been predicted that it would take >1000 years to classify all remaining microbial species. It thus remains unknown how long it would take to investigate the genomic information and enzymatic arsenals of these microbial species.

The metagenomic mining of enzymatic activities for biotechnological applications from microbial biodiversity (Niehaus et al., 2011), with an emphasis on microbes from extreme habitats, has recently been brought to a new technological level (Feller, 2013; Vester et al., 2014; Alcaide et al., 2015). However, despite the considerable progress made through the application of high-throughput metagenomic sequencing and screening, the effective identification of existing enzymatic activities has only been completed in a rather limited number of environmental sites (Fig. 1 and Table S1). As an example, microbial communities from approximately 2192 different sites distributed across the planet have been examined for their metagenomic content. They include habitats such as terrestrial (topsoil, forest soil, plant rhizosphere soil, desert

![Fig. 1. A survey of the metagenomic studies performed worldwide. The map has been created through the R language (2008) and the OPENSTREETMAP package (Eugster and Schlesinger, 2012) using the world map type 'mappquest-aerial' and drawing the samples as points using the basic R tools. The figure is based on studies that were published over the last two decades and for which GPS coordinates were given. The databases used were SCOPUS, PubMed, WOK and the IMG/M webpage of the US Department of Energy Joint Genome Institute (http://www.jgi.doe.gov/). As shown, of the 2192 sites for which metagenomic studies (named ‘metagenomes’) have been reported (accounting only those for which GPS coordinates are available), only 256 (11.6%) were related to sites where enzymes or the clones containing them (red spots in the figure) have been isolated and partially characterized. As shown, only a tiny fraction of the sites have been subjected to studies on enzyme discovery from environmental resources. For details on sampling sites with indication of GPS coordinates, type of study (direct DNA sequencing or enzyme discovery) and habitat type, see Table S1.](image-url)
soil, Antarctic soil, compost, etc.), marine (tidal flat and coastal sediments, superficial and deep seawater, hydrothermal vents, etc.) habitats; other types of habitats included non-marine saline and alkaline lakes, acid mine drainage systems, wastewater treatment sludges, compost (consortia bred on plant biomass) and eukaryotic-associated microbiomes (marine sponge, termite and earthworms gut, shrimp gill, rumen, human microbiota, etc.) (for details, see Table S1). This suggests that we have apparently undersampled all representative types of habitats. Within the investigated sites, clones containing new enzyme activities or purified enzymes (a total of approximately 6100 described to date) were isolated and (mostly partially) characterized (Fig. 2) only in approximately 256 (or 11.6% of the total). Thus, although the global natural microbial diversity is known to be the major resource of new enzymes (Kyrpides et al., 2014; Yarza et al., 2014), this resource remains undersampled both at the level of habitats being explored and the number of new enzymes isolated from them.

Bottlenecks in the metagenomic enzyme discovery process

The majority of metagenomics studies in the literature have identified enzyme variants that catalyse previously resolved reactions (Singh, 2010). There are very few cases in which a new enzyme has been translated into a process (Fernández-Arrojo et al., 2010) or has shown reactivity (Alcaide et al., 2013) or physicochemical (Alcaide et al., 2015) properties that are significantly different from those previously reported. As example, an unusual ability to hydrolyse C-O bonds in a broad spectrum of esters as well C-C bonds in the aromatic ring fission products has been demonstrated for α/β hydrolases; they were isolated from crude-oil enrichment cultures established with seawater and from a polycyclic aromatic hydrocarbon degrading bacterium (Alcaide et al., 2013). Also, moderately low temperature environments were shown to contain microbes with enzymes that are mostly active at temperatures as high as 70°C (Alcaide et al., 2015). However, there are some challenges in streamlining the transition from the discovery stage of an enzyme through its metagenomic analysis, and ultimately towards its end-user applications (Jemli et al., 2014). The major technological bottlenecks include (i) a low proportion of coding metagenomic DNA accessible for expression (Guazzaroni et al., 2014), (ii) a low proportion of enzymes selected from screens perform well in industrial settings (Martínez-Martínez et al., 2013), (iii) a lack of relevant substrates for screening (Fernández-Arrojo et al., 2010), (iv) insufficient screening methods for rare enzymatic activities (Singh, 2010), (v) a poor performance of enzymes under non-natural conditions (Fernández-Arrojo et al., 2010), (vi) the existence of enzymes that are inactive after expression in the widely used host *Escherichia coli* (Loeschcke et al., 2013), (vii) the lack of reliable bioinformatics pipelines for analysis of next-generation sequencing data generated from positive hits or direct sequencing (Nyyssönen et al., 2013), and (viii) the lack of reliable functional prediction of hypothetical proteins (Mende et al., 2012; Anton et al., 2013; Bastard et al., 2014; Chistoserdova, 2014). In addition, the minimization of amplification of annotation mistakes (sequence/activity incoherence) in databases (Fernández-Arrojo et al., 2010) is among the more
challenging issues to be solved. For example, using metagenomics approaches, Jiménez and colleagues (2012) reported a novel cold-tolerant esterase; however, this protein was annotated in the database as a MarR family transcriptional regulator. This indicates that database entries are not fully reliable.

A number of corresponding solutions have been attempted or suggested. These include (i) the selective focusing on activity-based enzyme mining, and the establishment of larger and diverse clone libraries (Alcaide et al., 2015), as well as the selective trapping of the activity-encoding genes in two-step selection processes (Yoon et al., 2007); (ii) the enrichment of environmental samples under conditions mimicking the application settings (Jiménez et al., 2014) and the consequent selection of microbes containing enzymes with high turnover rates under process conditions and industrial substrates; alternatively, harvesting of genes (through metatranscriptome analysis using cDNA sequencing approach) and proteins (through proteomic analysis) being most expressed under these conditions may also help in identifying not only highly active and novel enzymes but also those that can be expressed at high level, which is desired for their industrial production (Akeroyd et al., 2013; Chang et al., 2013); (iii) prioritizing the screening and characterization of metagenomic sequences from uncultured microbes (Mackenzie et al., 2015) and single enzymes (Alcaide et al., 2013) with multiple activities, broad substrate spectra and stability across a broad range of physical and chemical conditions; (iv) the a-la-carte de novo synthesis of small molecules, chemical scaffolds and/or substrates (or dummies with functionalities similar to the target substrate of industrial interest) (Lim et al., 2013; Najah et al., 2013); in relation to this, the development of multi-substrate approaches for high-throughput functional screenings and/or design of new proxy chromogenic-compounds that can mimic the real complex target substrates (Kračun et al., 2015) should be of high interest; (iv) the development of tailor-made vectors and hosts for screening and expression (Loeschcke et al., 2013; Terrón-González et al., 2013; Furubayashi et al., 2014; Liebl et al., 2014); (v) the in silico design and directed evolution of newly identified enzymes towards the most favourable biotechnological features (Brugger et al., 2014); (vi) the development of a computational workflow for gene discovery in full-length inserts in positive clones and a protein product annotation system integrating state-of-the-art and custom bioinformatics modules, with room for further refinements and improvements (Tasse et al., 2010; Schallmey et al., 2014) to generate hypothesis about enzyme functions in a similar fashion like in the Pfam database (Finn et al., 2014); and (vii) the development of an ‘unknown

BLAST’ tool that implements the mapping of orthologous unknown enzymes (Ye and Doak, 2009; Anton et al., 2013).

Quantifying the success of the screening protocols for enzyme discovery

Regardless of the advances in the above directions, enzymes can currently be efficiently identified and screened from metagenomic libraries or through homology searches in databases. In addition, the genomes of cultivable microbes or metagenomes are generally inspected for such enzymes that can be cloned and biochemically and structurally characterized (Lee et al., 2010; Hess et al., 2011; Kube et al., 2013).

The available literature on the application of high-throughput screening methods in environmental clone libraries revealed that the production of readily screenable clone libraries poses a minimal challenge when searching for enzyme activities with high biotechnological potential and using simple substrates. In fact, a set of a few hundred enzymes can relatively easily be established within few months using a simple/single substrate. However, the incidence rate, or the measure of the frequency by which a positive clone with a desired activity occurs in the total screened clones (not the total number of clones in a library), depends on the enzyme activity under screening and the substrates used in the search, among other potential factors. Of note, the abundance level of the corresponding genes encoding the enzyme activities of interest in microbial genomes (see comments below) and the activity level of the enzymes are important factors affecting the efficiency of the screening programmes. Having said that, other key potential driving factors, such as the metagenome source, the DNA extraction method, the cloning vector, the expression system or host cells, the screening technique and screening conditions, to cite some, are additional factors influencing the success of the enzyme identification process. As example, enhanced expression systems based on viral components that prevent transcription termination at metagenomic terminators resulted in a sixfold increase in the frequency of carbenicillin resistant clones (Terrón-González et al., 2013). Also, under the same screening conditions, the frequency of clones with carboxyl-esterase activity varies from 1 each 667 to 1 each 15 000 clones when different deep-sea habitats were examined (Alcaide et al., 2015).

Common targets in metagenomic investigations are enzymes that are predominantly used in biocatalysis and industrial sectors (i.e. food, laundry, biofuels), such as acylases, phosphatases, proteases, oxido-reductases, glycosyl hydrolases and lipases/esterases.
(Fernández-Arrojo et al., 2010). Other enzymes of industrial interest, such as nitrilases and transaminases, albeit being of industrial relevance (Bayer et al., 2011; Gong et al., 2013; Vergne-Vaxelaire et al., 2013), have been scarcely examined by metagenomic approaches. For this reason, considering the most popular activity screens described in the specialized literature for those six industrially relevant types of enzymes, the following order could be established in relation to the mean incidence rate of positive clones when performing a naïve screen in the environmental clone libraries: acylases (1 active clone per 333 total clones; or 1:333), phosphatases (1:2843), oxidoreductases (1:6670), proteases (1:9388), esterase/lipases (1:17 320) and glycosidases (1:31 190) (Fig. 3).

Note that these values are according to references provided in Table S1 for the 256 sites from which environmental enzymes have been isolated. In summary, the incidence rate for all of these activities has been shown to range from 1:11 to 1:193 200 (Fig. 3, inset), depending on the activity, substrate and habitat from which the library was constructed. Clearly, some activities are much more abundant than others (see comments below), and this should be considered when designing appropriate screening programmes.

Concerning the substrate-dependent efficiency of screening programmes, a number of interesting patterns could be observed. Thus, it was demonstrated that the incidence rate decreased from 1:188 (2661 out of a total of 500 000 clones tested) to 1:3937 (127 clones) depending on the activity, substrate and habitat from which the library was constructed. Clearly, some activities are much more abundant than others (see comments below), and this should be considered when designing appropriate screening programmes.

Note that actually at least 200 distinct substrate molecules have been successfully applied in assays for esterases/lipases biocatalysts at high throughput scale for selection in metagenomic clone libraries.
Fig. 4. Box plots of the incidence rate of positive clones (referred to the total number of clones screened) with esterase-lipase (A), oxidoreductase (B) or glycosidase (C) activity by substrate after naïve screens. The results are based on values published in previous metagenomic studies (see Fig. 1 legend), accounting for only those for which quantitative values are available. Note: As the incidence rate depends on the type of the clone library, only data regarding studies in which metagenomic fosmid clone libraries were screened were considered. Results of single references for (B) and (C) are given in Table S2. Abbreviations are as follows: AZCL, cross-linked azurine; AZCL-HE, azurine cross-linked hydroxyethyl cellulose; CMC, carboxymethyl cellulose; X-Gal, 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside; X-caprylate, 5-bromo-4-chloro-3-indolyicaprylate; α-NA, α-naphthyl acetate; OXIDRED, oxidoreductase; PET, polyethylene terephthalate; pNP-dodecanoate, p-nitrophenyl-dodecanoate; pNP-sugars, p-nitrophenylsugars; XOS, xylo-oligosaccharides.
For oxidoreductases, among the seven distinct substrates that are commonly tested, phenol has been shown to achieve the highest relative number of positives (1:32), whereas p-nitrosoaniline complemented with D-glucose and used in combination for screening of α-glucose dehydrogenase activity has been shown to exhibit the lowest hit rate (1:20 000) (Fig. 4B; see details in references given in Table S1). At least 15 distinct chromogenic and fluorimetric substrates, for which extensive frequency data are available, have been commonly and successfully employed for the screening of clones with glycosidase activity (from references given in Table S1). Cross-linked azurine hydroxyethyl cellulose, a unique substrate for the measurement of endo-cellulase, provided a major incidence rate (1:108) (93 out of a total of 10 000 clones tested) (Nguyen et al., 2012). In contrast, 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal), a common substrate for the screening of β-galactosidase activity at high frequency, is the substrate providing in some cases the lowest number of positive hits (Wang et al., 2014) (1:700 000) (Fig. 4C).

Taken together, these findings suggest that in naïve screening programmes, the substrate may cause biases in the selection of the activities of interest. Clearly, the selection of the appropriate substrate is highly recommended. Recently, it has been demonstrated that the initial selection of active clones with general substrates followed by a more specific one is the most desired approach. This protocol has been successfully applied to the selection of (S)-ketoprofen-specific hydrolytic activities (Yoon et al., 2007). Here, the common esterase/lipase substrate α-naphthyl acetate was employed as the initial screening substrate, followed by specific activity tests with (S)-ketoprofen. Additionally, 5-bromo-4-chloro-3-indolylcaprylate, whose hydrolysis produces blue colonies, was successfully applied as a primary substrate to screen 93 000 clones from the topsoil samples from vegetable soil. The positive clones (six in total) were further screened with a secondary substrate, pyrethroid, to identify one pyrethroid hydrolysing esterase, whose activity is difficult to test in the whole clone libraries (Li et al., 2008).

It is also plausible that screen conditions also produce biases in the rate of success, especially when the clone libraries were generated from microbial communities inhabiting extreme habitats. As an example, the incidence rate of positive clones for esterase/lipase activity for libraries originated from low-salt habitats (1.1–38.6 g/kg total salinity) such as Lake Arreo (1:1152) or deep-sea Matapan–Vavilov basin (1:667) (Martínez-Martínez et al., 2013; Alcaide et al., 2015) was much higher than that in the same type of libraries from hypersaline environments, e.g. 1:2624 for Medee Basin and 1:5280 (Kryos Basin) (Alcaide et al., 2015). Since naïve screens are typically performed at 0.15 M NaCl, i.e. at salinities far below than in extreme hypersaline environments (e.g. 348 g/kg for Medee Basin), under these conditions extremozymes may exhibit lower activities, which leads to the reduction in hit rates. This has been recently demonstrated by examination of novel chitobiosidase from soil and by showing a better functioning at raised NaCl levels (Cretoiu et al., 2015). Therefore, selecting appropriate physical-chemical parameters for naïve screens should carefully be considered in extensive screening programmes.

Quantifying the success of sequence data mining for enzyme discovery

The recent revolution in high-throughput DNA sequencing technologies has resulted in a significant reduction in the sequencing costs, leading to an explosion of the in silico data production and a dramatic expansion of the databases (Mende et al., 2012). In contrast, the pipelines for functional protein analysis operate at much lower rates and throughputs (Chistoserdova, 2014), opening the gap between the numbers of proteins/enzymes predicted in silico and those experimentally characterized in the lab with the proportion of the latter asymptotically approaching 0% (Anton et al., 2013; Bastard et al., 2014). There is a growing appreciation that this emerging gap between the high-throughput metagenomic sequencing data and the experimentally characterized proteins must be considered (Bastard et al., 2014). For example, there are a few existing US National Institutes of Health (NIH)- and Department of Energy (DOE)-sponsored initiatives to address this issue, including the large NIH-funded Structural Genomics Consortium (supported since 2000) and the more recent COMBREX initiative (Anton et al., 2013), which looks into the systematic characterization of proteins from few dozens of reference microorganisms. These reference microorganisms include the best-studied microbes E. coli and Helicobacter pylori, which – combined – have only 0.33% of their proteins characterized. Extending the knowledge to key industrial producer organisms beyond E. coli and H. pylori, such bacterial species of the genera Bacillus, Pseudomonas, Rhodobacter, Burkholderia, Streptomyces, eukaryotic models such as Saccharomyces and Pichia, fungi models such as Trichoderma, and model organisms in the domain Archaea, including methanogens, halophiles, Thermococccales and Sulfolobales, together with microorganisms residing in environmental samples, may be of interest. Through this investigation, one can produce data directly applicable to biotechnology while having important implications for our understanding of ecosystem and protein functioning.

Next-generation sequencing for the identification of enzymes in metagenomes is therefore becoming
increasingly important to generate enzyme collections (Wang et al., 2010; Nyyssönen et al., 2013) because it provides a rapid and cost-efficient technology for enzyme discovery. Thus, a number of bioinformatics tools have been designed for the rapid pre-selection of enzyme candidates after examining the sequence data obtained from different platforms. Predicted protein-coding genes are filtered according to their similarity with general protein databanks (UniProt, NCBI NR), or to their similarity to conserved domains according to the Pfam and Common Domains database (e.g. Fajardo and Fiser, 2013), or specific updated enzyme sequence resources, such as the Carbohydrate-Active Enzyme (CAZyme) (Cantarel et al., 2009), the Lipase-Esterase (Barth et al., 2004), the Laccase (Sirim et al., 2011), the PeroxiBase (Fawal et al., 2013), the metallo-β-lactamase (Widmann and Pleiss, 2014), the amine transaminases (Steffen-Munsberg et al., 2015) and the AromaDeg (Duarte et al., 2014) databases.

In a second step, it is possible to obtain the general features of the proteins (mass, pKa, motifs, existence or absence of a secretion signal) for each type of sequences, and the protein sequences can be analysed in detail to identify the domains or motifs that are specific for the desired activity or structurally classified by the active site modelling and clustering method (Marsh et al., 2012). Further, selected genes that encode enzymes of interest may be subjected to high-throughput expression analysis for their subsequent production and characterization; this approach, the so-called synthetic metagenomics, is being extensively used (Wang et al., 2010; Dougherty et al., 2012; Gladden et al., 2014).

Bioinformatic tools applied to the screening of sequence data have been successfully used to identify epoxide hydrolases (Jiménez et al., 2015), haloaalkane dehalogenases (Barth et al., 2004) and carbohydrate esterases (Tasse et al., 2010). Recently, Schallmey and colleagues (2014) used specific sequence motifs to identify 37 novel halohydrin dehalogenases, very rare promiscuous enzymes, in public databases. All of the enzymes were expressed, and their catalytic performances were successfully tested. However, one of the problems in using such an approach, other than the inconvenience of identifying entirely new enzymes with sequences far distant from those in repository databases, the quality of the assembly and the problems in protein expression, is the limited rate of success. As an example, Schallmey and colleagues (2014) retrieved only 37 novel enzymes that catalysed halohydrin dehalogenase reactions from 35,448 available public sequences. This means that they had an incidence rate of 1:958, which is similar to the rate that is commonly achieved by naïve screens. For comparison, the screening of 704,000 clones from microbial communities isolated from human faecal material identified 310 positives. This was followed by the pyrosequencing of the insert, and a total of 662 complete genes were predicted. Of these, 73 were CAZyme proteins, making an incidence rate of 1:9 (1 gene encoding an enzyme of interest per 9 total genes). This number is much more favourable than that obtained from selection via direct DNA sequencing or the use of public databases.

Occurrence of industrial enzymes across genomes

One further question that may arise is how the incidence rate during naïve or in silico screen programmes in metagenome libraries or meta-sequences related to incidences of gene targets within bacterial, archaeal or even fungal genomes. Is there any bias in the screen efficiency due to the differences in the occurrence of particular genes in microbial genomes? To answer this question, we revised the bibliographic records for the genes encoding the six most popular industrially relevant enzymes mentioned above: acylases, phosphatases, proteases, oxidoreductases, glycosyl hydrolases and lipases/esterases. Comparative genomics has revealed that glycosyl hydrolase-related genes comprise 0.05–6% (referred to the total number of genes) in bacterial genomes (Coutinho et al., 2003), and up to 1.7% in archaeal (Werner et al., 2014) and 1.5% in fungal (Islam et al., 2012) genomes. This indicates high differences in gene abundance across genomes. Similar scenario can be seen with esterases/lipases, ubiquitous enzymes widespread in nature whose frequency have been shown to range from at least 0.05% to 0.35% in bacterial and fungal genomes (Wang et al., 2010; Barriuso et al., 2013). For proteases, bacterial and archaeal genomes contain 4–29 per genome (Tripathi and Sowdhamin, 2008), while in fungal genomes 1–178 per genome (Budak et al., 2014). For phosphatases, the number ranges from 0.06% to 7.5% referred to the total genes (Galperin et al., 2010). No data are available for acylases and oxidoreductases.

Taken together, it is plausible that biases in the screen efficiency may be also partially due to the fact that the enzyme class of interest occurs sparsely in the genomes of microbial members residing in an environmental sample. Clearly, the community structure and metagenome sequence diversity and divergence may thus play a role in screen programmes.

Success stories for introducing environmental enzymes into the market

Funding agencies, worldwide companies and laboratories have adopted a number of actions, and research activities are ongoing to decrease the time frame for enzyme
identification (see comments below) and the very expensive and time-consuming biocatalysts optimization phase while increasing the efficiency of the processes. However, there are very few cases in which a new environmental biocatalyst has been translated to a process in recent times (Fernández-Arrojo et al., 2010). In fact, only few metagenomics-based enzyme products have been patented and translated to market. Having said that, industrial enzymes will have to be novel and not found in the patented literature, since this is the only chance for new enzymes to make an impact ‘beyond the state of the art’. In this sense several metagenomic enzymes have been patented, e.g. nitrile hydratases (EP2369009A3), soil metagenome-derived gene wese (WO2013125808A1), caw rumen-derived esterases (EP04015920.4), cellulases (EP04015680.4) and laccases (GB01P006EP), and an esterase from uncultured microorganisms able to degrade terephthalate esters, important component of bioplastics (WO 2007017181). It is important to note that independently of the novelty of the sequence encoding an enzyme, the key is the application. The use of the new enzyme for exactly the same application would violate the ‘inventive’ portion of any new IP to be generated, while violation of the ‘novelty’ is permitted.

Final considerations: backbones of interest for finding marketable enzymes

It usually takes several (typically, approximately seven) years from the time when a gene is identified until the industrial process is established (Fig. 5) (Fernández-Arrojo et al., 2010). This is not only because of the technical issues around the process of enzyme discovery, but also because enzymes only end up in industrial processes if they comply with the industrial criteria. They included the following: (i) harsh and broad reaction conditions such as a high substrate load (necessary to reduce the costs to be competitive), broad range of temperatures (at least should be stable at room temperature for a period of time as also storage might be an additional issue – think in detergent enzymes applied in warmer countries), broad range of pHs, water-deficient reaction conditions, very high solvent concentrations (which for example might be necessary for subsequent
downstream processing) and process stability (e.g. active for 12–24 h) (Spickermann et al., 2014; Zuhse et al., 2015); and (ii) the high stereoselectivity and high turnover rates (Singh, 2010). As example, enzymes applied in feed must be thermostable (due to the pelleting process) and must be stable or active at low pH (stomach of animals) (Viader-Salvadó et al., 2010). Also, additives such as salts to a high concentration can be used as additives for enzyme stabilization under industrially relevant conditions, and therefore the halophilic enzymes, such as alcohol dehydrogenases, may be desired for certain applications (Spickermann et al., 2014). Clearly, novel backbones from metagenomes might meet these requirements. One further aspect should be considered: an enzyme will enter to the market if discovered in a reasonable time frame; actually, 3 years is the desired time frame for the introduction of new enzymes into the market (Fig. 5).

To improve the selection process of industrially relevant enzyme, a number of protocols have been suggested. The first one is based on the fact that a correlation between gene expression and the turnover rate for substrate transformation has been observed (Helbling et al., 2012). Accordingly, enrichment procedures with model (proxy) substrates relevant to industry under the desired conditions might be useful in designing more efficient industrially relevant enzyme discovery approaches (Jacquiod et al., 2013; Verastegui et al., 2014; Vester et al., 2014). Clearly, the examination of cDNA or metaproteomes by shotgun metatranscriptomic and proteomic approaches, rather than direct DNA sequencing, could be used to query the most active clones or enzymes. The identification depends heavily on gene and protein abundance, and although we are aware that a large part of the transcriptome and proteome remains unseen, it can be assumed that the identified genes and enzymes might represent the predominant (in terms of dosage per cell and expression levels) and the most active genes and enzymes under the tested conditions. A further evaluation of enzyme performance under multiple conditions using high-throughput parameter (Kunze et al., 2014) may allow sorting out the possibility to identify highly active, efficient and promiscuous (Pandya et al., 2014) enzymes under real or close-to-real process conditions, independently of the further optimization phase to which the enzyme can be subjected (Bornscheuer et al., 2012).

Acknowledgement

We thank Dr. Christian C. Leggewie for his excellent comments regarding the selection process of industrially relevant enzymes and industrial criteria.

Conflict of Interest

The authors declare that they have no competing interests.

References

Adrio, J.L., and Demain, A.L. (2003) Fungal biotechnology. Int Microbiol 6: 191–199.
Akeroyd, M., Olsthoorn, M., Gerritsma, J., Gutker-Vermaas, D., Ekkelkamp, L., van Rij, T., et al. (2013) Searching for microbial protein over-expression in a complex matrix using automated high throughput MS-based proteomics tools. J Biotechnol 164: 112–120.
Akutsu-Shigeno, Y., Teeraphatpornchai, T., Teamtisong, K., Nomura, N., Uchiyama, H., Nakahara, T., and Nakajima-Kambe, T. (2003) Cloning and sequencing of a poly(DL-lactic acid) depolymerase gene from Paeenibacillus amylolyticus strain TB-13 and its functional expression in Escherichia coli. Appl Environ Microbiol 69: 2498–2504.
Alcaide, M., Torrés, J., Stogios, P.J., Xu, X., Gertler, C., Di Leo, R., et al. (2013) Single residues dictate the co-evolution of dual esterases: MCP hydrolases from the α/β hydrolase family. Biochem J 454: 157–166.
Alcaide, M., Stogios, P.J., Lafraya, A., Tchigvintsev, A., Flick, R., Bargiela, R., et al. (2015) Pressure adaptation is linked to thermal adaptation in salt-saturated marine habitats. Environ Microbiol 17: 332–345.
Anton, B.P., Chang, Y.C., Brown, P., Choi, H.P., Faller, L.L., Guléria, J., et al. (2013) The COMBREX project: design, methodology, and initial results. PLoS Biol 11: e1001638.
Barriuso, J., Prieto, A., and Martinez, M.J. (2013) Fungal genomes mining to discover novel sterol esterases and lipases as catalysts. BMC Genomics 14: 712.
Barth, S., Fischer, M., Schmid, R.D., and Pleiss, J. (2004) The database of epoxide hydrolases and haloalkane dehalogenases: one structure, many functions. Bioinformatics 20: 2845–2847.
Bastard, K., Smith, A.A., Vergne-Vaxelaire, C., Perret, A., Zaparucha, A., De Melo-Minardi, R., et al. (2014) Revealing the hidden functional diversity of an enzyme family. Nat Chem Biol 10: 42–49.
Bayer, S., Birkemeyer, C., and Ballschmiter, M. (2011) A nitritase from a metagenomic library acts regioselectively on aliphatic dinitriles. Appl Microbiol Biotechnol 89: 91–98.
Bornscheuer, U.T., Huisman, G.W., Kazlauskas, R.J., Lutz, S., Moore, J.C., and Robins, K. (2012) Engineering the third wave of biocatalysis. Nature 485: 185–194.
Brugger, D., Krondorfer, I., Zahma, K., Stoisser, T., Bolivar, J.M., Nidetzky, B., et al. (2014) Convenient microtiter plate-based, oxygen-independent activity assays for flavin-dependent oxidoreductases based on different redox dyes. Biotechnol J 9: 474–482.
Budak, S.O., Zhou, M., Brouwer, C., Wiebenga, A., Benoît, I., Di Falco, M., et al. (2014) A genomic survey of proteases in Aspergilli. BMC Genomics 15: 523.
Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V., and Henrissat, B. (2009) The Carbohydrate-Active EnZymes database (CAZY): an expert resource for glycogenomics. Nucleic Acids Res 37: D233–D238.
Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., et al. (2013) Pfam: the protein families database. Nucleic Acids Res 42: D222–D230.

Feller, G. (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica (Cairo) 2013: 512840.

Fernández-Arrojo, L., Guazzaroni, M.E., López-Cortés, N., Beloqui, A., and Ferrer, M. (2010) Metagenomic era for biocatalyst identification. Curr Opin Biotechnol 21: 725–733.

Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., et al. (2014) Pfam: the protein families database. Nucleic Acids Res 42: D222–D230.

Furubayashi, M., Ikezumi, J., Kawahara, Y., Watabe, H., and Fujii, A. (2008) Isolation and identification of a lipase producing Monascus puerculi. J Ferment Bioeng 106: 563–565.

Gao, J., Li, L., Yang, L., Wang, Y., and Li, Y. (2016) High-throughput colorimetric screening assay for terpene synthase activity based on substrate consumption. PLoS ONE 11: e0155689.

Galperin, M.Y., Higdon, R., and Kolker, E. (2010) Interplay of heritage and habitat in the distribution of bacterial signal transduction systems. Mol BioSys 6: 721–728.

Gladden, J.M., Park, J.I., Bergmann, J., Reyes-Ortiz, V., D’haeseleer, P., Quirino, B.F., et al. (2014) Discovery and characterization of ionic liquid-tolerant thermophilic cellulases from a switchgrass-adapted microbial community. Biotech Biofuels 7: 15.

Glogauer, A., Martini, V.P., Faoro, H., Couto, G.H., Müller-Santos, M., Monteiro, R.A., et al. (2011) Identification and characterization of a new true lipase isolated through metagenomic approach. Microb Cell Fact 10: 54–68.

Gong, J.S., Lu, Z.M., Li, H., Zhou, Z.M., Shi, J.S., and Xu, Z.H. (2013) Metagenomic technology and genome mining: emerging areas for exploring novel nitrilases. Appl Microbiol Biotechnol 97: 6603–6611.

Guazzaroni, M.E., Silva-Rocha, R., and Ward, R.J. (2014) Synthetic biology approaches to improve biocatalyst identification in metagenomic library screening. Microb Biotechnol 8: 52–64.

Hebling, D.E., Ackermann, M., Fenner, K., Kohler, H.P., and Johnson, D.R. (2012) The activity level of a microbial community function can be predicted from its metatranscriptome. ISME J 6: 902–904.

Hervani, K.M., Eftekhari, F., Yakhchali, B., and Tabandeh, F. (2008) Isolation and identification of a lipase producing Bacillus sp. from soil. Pak J Biol Sci 11: 740–745.

Hess, M., Sczyrba, A., Egan, R., Kim, T.W., Chokhawala, H., Schroth, G., et al. (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331: 463–467.

Höhne, M., and Bornscheuer, U.T. (2014) Protein engineering from ‘scratch’ is maturing. Angew Chem Int Ed Engl 53: 1200–1202.

Islam, M.S., Haque, M.S., Islam, M.M., Emdad, E.M., Halim, A., Hossen, O.M., et al. (2012) Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. BMC Genomics 13: 493.

Jacquier, S., Franqueville, L., Cécillon, S., Vogel, T.M., and Simonet, P. (2013) Soil bacterial community shifts after chitin enrichment an integrative metagenomic approach. PLoS ONE 8: e79699.

Jemli, S., Ayadi-Zouari, D., Hlima, H.B., and Bejar, S. (2014) Biocatalysts: application and engineering for industrial purposes. Crit Rev Biotechnol 36: 1–13.

Jean, E.Y., Baek, A.H., Bornscheuer, U.T., and Park, J.B. (2015) Enzyme fusion for whole-cell biotransformation of long-chain sec-alcohols into esters. Appl Microbiol Biotechnol 99: 6267–6275.

Jiménez, D.J., Montaña, J.S., Alvarez, D., and Baena, S. (2012) A novel cold active esterase derived from Colombian high Andean forest soil metagenome. World J Microbiol Biotechnol 28: 361–370.

Jiménez, D.J., Dini-Andreote, F., and van Elsas, J.D. (2014) Metat演omics profiling and prediction of functional behaviour of wheat straw degrading microbial consortia. Biotechnol Biofuels 7: 92.

Jiménez, D.J., Dini-Andreote, F., Ottoni, J.R., de Oliveira, V.M., van Elsas, J.D., and Andreote, F.D. (2015) Compositional profile of α / β-hydrolase fold proteins in mangrove soil metagenomes: prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites. Microb Biotechnol 8: 604–613.

Kračun, S.K., Schückel, J., Westereng, B., Thygesen, L.G., Monrad, R.N., Eijsink, V.G., and Willats, W.G. (2015) A new generation of versatile chromogenic substrates for high-throughput analysis of biomass-degrading enzymes. Biotech Biofuels 8: 70.

Kube, M., Chernikova, T.N., Al-Ramahi, Y., Beloqui, A., Lopez-Cortez, N., Guazzaroni, M.E., et al. (2013) Genome
sequence and functional genomic analysis of the oil-degrading bacterium Oleispira antarctica. Nat Commun 4: 2156.

Kunze, M., Lattermann, C., Diederichs, S., Kroutil, W., and Büchs, J. (2014) Minireactor-based high-throughput temperature profiling for the optimization of microbial and enzymatic processes. J Biol Eng 8: 22.

Kyrpides, N.C., Hugenholtz, P., Eisen, J.A., Woyke, T., Göker, M., Parker, C.T., et al. (2014) Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains. PLoS Biol 12: e1001920.

Lee, H.S., Kwon, K.K., Kang, S.G., Cha, S.S., Kim, S.J., and Lee, J.H. (2010) Approaches for novel enzyme discovery from marine environments. Curr Opin Biotechnol 21: 353–357.

Li, G., Wang, K., and Liu, Y.H. (2008) Molecular cloning and characterization of a novel pyridrolyl hydrolyzing esterase originating from the metagenome. Microb Cell Fact 7: 38–47.

Liebl, W., Angelov, A., Juergensen, J., Chow, J., Loeschcke, A., Drepper, T., et al. (2014) Alternative hosts for functional (meta)genome analysis. Appl Microbiol Biotechnol 98: 8099–8109.

Lim, J., Vrignon, J., Bruner, P., Karamitros, C.S., Konrad, M., and Baret, J.-C. (2013) Ultra-high throughput detection of single cell β-galactosidase activity in droplets using micro-optical lens array. App Phys Lett 103: 203704.

Loeschcke, A., Markert, A., Wilhelms, S., Wirtz, A., Rosenau, F., Jaeger, K.E., and Drepper, T. (2013) TREX: a universal tool for the transfer and expression of biosynthetic pathways in bacteria. ACS Synth Biol 2: 22–23.

Mackenzie, A.K., Naas, A.E., Krakuc, S.K., Schückel, J., Fangel, J.U., Agger, J.W., et al. (2015) A polysaccharide utilization locus from an uncultured bacteroidetes phylotype suggests ecological adaptation and substrate versatility. Appl Environ Microbiol 81: 187–195.

Marsh, J.A., Teichmann, S.A., and Forman-Kay, J.D. (2012) Probing the diverse landscape of protein flexibility and binding. Curr Opin Struct Biol 22: 643–650.

Martínez-Martínez, M., Alcaide, M., Tchigvintsev, A., Reva, O., Polainia, J., Bargiela, R., et al. (2013) Biochemical diversity of carboxyl esterases and lipases from Lake Arreo (Spain): a metagenomic approach. Appl Environ Microbiol 79: 3553–3562.

Martínez-Martínez, M., Lores, I., Peña-García, C., Bargiela, R., Reyes-Duarte, D., Guazzaroni, M.E., et al. (2014) Biochemical studies on a versatile esterase that is most catalytically active with polyaromatic esters. Microb Biotechnol 7: 184–191.

Mende, D.R., Waller, A.S., Sunagawa, S., Järvelin, A.I., Chan, M.M., Anumugam, M., et al. (2012) Assessment of metagenomic assembly using simulated next generation sequencing data. PLoS ONE 7: e31386.

Mora, C., Tittensor, D.P., Adl, S., Simpson, A.G., and Worm, B. (2011) How many species are there on Earth and in the ocean? PLoS Biol 9: e1001127.

Najah, M., Mayot, E., Mathendra-Wijaya, I.P., Griffiths, A.D., Ladame, S., and Drevelle, A. (2013) New glycosidase substrates for droplet-based microfluidic screening. Anal Chem 85: 9807–9814.

Nguyen, N.H., Maruset, L., Uengwetawit, T., Muangtong, W., Harnpichanchai, P., Champreda, V., et al. (2012) Identification and characterization of a cellulase-encoding gene from the buffalo rumen metagenomic library. Biosci Biotechnol Biochem 76: 1075–1084.

Niehaus, F., Gabor, E., Wieland, S., Siepert, P., Maurer, K.H., and Eck, J. (2011) Enzymes for the laundry industries: tapping the vast metagenomic pool of alkaline proteases. Microb Biotechnol 4: 767–776.

Nyyssönen, M., Tran, H.M., Karaoz, U., Weihe, C., Hadi, M.Z., Martiny, J.B.H., et al. (2013) Coupled high-throughput functional screening and next generation sequencing for identification of plant polymer decomposing enzymes in metagenomic libraries. Front Microbiol 4: 282.

Okamura, Y., Kimura, T., Yokouchi, H., Meneses-Osorio, M., Katoh, M., Matsunaga, T., and Takeyama, H. (2010) Isolation and characterization of a GDSL esterase from the metagenome of a marine sponge associated bacteria. Mar Biotechnol 12: 395–402.

Pandya, C., Farelli, J.D., Dunaway-Mariano, D., and Allen, K.N. (2014) Enzyme promiscuity: engine of evolutionary innovation. J Biol Chem 289: 30229–30236.

Rashamuse, K., Magomani, V., Ronneburg, T., and Brady, D. (2009) A novel family VIII carboxylesterase derived from a leachate metagenome library exhibits promiscuous beta-lactamase activity on nitrocefin. Appl Microbiol Biotechnol 83: 491–500.

Sawaya, D., and Arndel, A. (2010) La evolución de la bioeconomía hasta 2030: diseño de una agenda política. Monografico. Nota d’economia 97–98. 3.er cuatrimestre 2010. Sawaya, D., and Arndel, A. (eds.).

Schallmey, M., Koopmeiners, J., Wells, E., Wardenga, R., and Schallmey, A. (2014) Expanding the halohydrin dehalogenase enzyme family: identification of novel enzymes by database mining. Appl Environ Microbiol 80: 7303–7315.

Schmidt, S., Scherkus, C., Muschiol, J., Menyes, U., Winkler, T., Hummel, W., et al. (2015) An enzyme cascade synthesis of ε-caprolactone and its oligomers. Angew Chem Int Ed Engl 54: 2784–2787.

Schrewe, M., Julsing, M.K., Bühler, B., and Schmid, A. (2013) Whole-cell biocatalysis for selective and productive C-O functional group introduction and modification. Chem Soc Rev 42: 6346–6377.

Singh, B.K. (2010) Exploring microbial diversity for biotechnology: the way forward. Trends Biotechnol 28: 111–116.

Sirim, D., Wagner, F., Wang, L., Schmid, R.D., and Pleiss, J. (2011) The Laccase Engineering Database: a classification and analysis system for laccases and related multicyper oxidases. Database 2011: bar006.

Spickermann, D., Kara, S., Barackov, I., Hoffmanns, F., Schwaneberg, U., Duenkelmanns, P., and Leggewie, C. (2014) Alcohol dehydrogenase stabilization by additives under industrially relevant reaction conditions. J Mol Catal B Enzym 103: 24–28.

Steffen-Munsberg, F., Vickers, C., Kohls, H., Land, H., Mallin, H., Nobili, A., et al. (2015) Bioinformatic analysis of a PLP-dependent enzyme superfamily suitable for biocatalytic applications. Biotechnol Adv 33: 566–604.

Sulaiman, S., Yamato, S., Kanaya, E., Kim, J.J., Koga, Y., Takano, K., and Kanaya, S. (2012) Isolation of a novel
cutinase homolog with polyethylene terephthalate degrading activity from leaf-branch compost by using a metagenomic approach. *Appl Environ Microbiol* **78**: 1556–1562.

Tasse, L., Bercovici, J., Pizzut-Serin, S., Robe, P., Tap, J., Klopp, C., *et al.* (2010) Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. *Genome Res* **20**: 1605–1612.

Terrón-González, L., Medina, C., Limón-Martés, M.C., and Santero, E. (2013) Heterologous viral expression systems in fosmid vectors increase the functional analysis potential of metagenomic libraries. *Sci Rep* **3**: 1107.

Timmis, K., de Lorenzo, V., Verstraate, W., García, J.L., Ramos, J.L., Santos, H., *et al.* (2014) Pipelines for new chemicals: a strategy to create new value chains and stimulate innovation-based economic revival in Southern European countries. *Environ Microbiol* **16**: 9–18.

Tirawongsaroj, P., Srirang, R., Hampicharnchai, P., Thongaram, T., Champreda, V., Tanapongpipat, S., *et al.* (2008) Novel thermophilic and thermostable lipolytic enzymes from a Thailand hot spring metagenomic library. *J Biotechnol* **133**: 42–49.

Tripathi, L.P., and Sowdhamini, R. (2008) Genome-wide survey of prokaryotic serine proteases: analysis of distribution and domain architectures of five serine protease families in prokaryotes. *BMC Genomics* **9**: 549.

Turner, N.J., and Trippo, M.D. (2013) Biocatalysis enters a new era. *Curr Opin Chem Biol* **17**: 212–214.

Verastegui, Y., Cheng, J., Engel, K., Kolczynski, D., Mortimer, S., Lavigne, J., *et al.* (2014) Multisubstrate isotope labeling and metagenomic analysis of active soil bacterial communities. *MBio* **5**: e01157–14.

Vergne-Vaxelaire, C., Bordier, F., Fossey, A., Besnard-Gonnet, M., Debard, A., Mariage, A., *et al.* (2013) Nitrilase activity during isotope screening on structurally diverse substrates: providing biocatalytic tools for organic synthesis. *Adv Synth Catal* **355**: 1763–1777.

Vester, J.K., Golyshina, O.V., and Liu, Y.H. (2014) Identification and characterization of an unusual glycosyltransferase-like enzyme with β-galactosidase activity from a soil metagenomic library. *Enzyme Microb Technol* **57**: 26–35.

Werner, J., Ferrer, M., Michel, G., Mann, A.J., Huang, S., Juarez, S., *et al.* (2014) *Halorhabdus tiamatea*: proteogenomics and glycosidase activity measurements identify the first cultivated euryarchaeon from a deep-sea anoxic brine lake as potential polysaccharide degrader. *Environ Microbiol* **16**: 2525–2537.

Woodley, J.M. (2013) Protein engineering of enzymes for process applications. *Curr Opin Chem Biol* **17**: 310–316.

Ye, Y., and Doak, T.G. (2009) A parsimony approach to biophysical pathway reconstruction/inference for genomes and metagenomes. *PLoS Comput Biol* **5**: e1000465.

You, C., and Zhang, Y.H. (2013) Cell-free biosystems for biomanufacturing. *Adv Biochem Eng Biotechnol* **131**: 89–119.

Zúñiga, C., Dios, R., Duran, O., and Sol, Á. (2014) Estado del arte de la bioeconomía y el cambio climático. In Red CYTED, *Red de Bioeconomía y Cambio Climático* (REBICAMCLI). Zúñiga, C., Dios, R., Duran, O., and Sol, Á. (eds). Nicaragua: Editorial Universitaria, Universidad Nacional Autónoma de Nicaragua-León, pp. 3–25.

Zuhse, R., Leggenwie, C., Hoffmann, F., and Kara, S. (2015) Scaling-up of ‘smart cosubstrate’ 1,4-butanol promoted asymmetric reduction of ethyl-4,4,4-trifluoroacetacetate in organic media. *Org Process Res Dev* **19**: 369–372.

Supporting information

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Table S1. List of sites worldwide where metagenomic studies have been performed. These sites corresponds to those summarized in Fig. 1. The exact GPS (latitude and longitude) location of sites together with appropriated references and site characteristics are specifically described. Whether the habitats have been subjected to direct sequencing [for community structure analysis and gene content by high throughput (HTP) sequencing] or enzyme screening (analysis of target genes either by naive or in silico screens) is also cited.

Table S2. Results of single references for the incidence rates of positive clones or enzymes. Examples are provided for the screening of oxidoreductase and glycosidase activity by using multiple substrates after naive screens. The number of clones tested, the number of positive clones, the incidence rate, the substrate used and the reference are given. For abbreviations, see Fig. 4 legend.

© 2015 The Authors. *Microbial Biotechnology* published by John Wiley & Sons Ltd and Society for Applied Microbiology, *Microbial Biotechnology*, **9**, 22–34.