A property of Petrov’s diffusion

S. N. Ethier∗

Abstract

Petrov constructed a diffusion process in the Kingman simplex whose unique stationary distribution is the two-parameter Poisson–Dirichlet distribution of Pitman and Yor. We show that the subset of the simplex comprising vectors whose coordinates do not sum to 1 acts like an entrance boundary for the diffusion.

AMS 2010 subject classification: Primary 60J60.

Key words and phrases: infinite-dimensional diffusion process, transition density, two-parameter Poisson–Dirichlet distribution, entrance boundary.

1 Introduction

Petrov (2009) constructed an infinite-dimensional diffusion process in the compact Kingman simplex

\[\mathcal{V}_\infty := \{ x = (x_1, x_2, \ldots) : x_1 \geq x_2 \geq \cdots \geq 0, \sum_{i=1}^{\infty} x_i \leq 1 \} \]

depending on two parameters, \(\alpha \) and \(\theta \) with \(0 \leq \alpha < 1 \) and \(\theta > -\alpha \). Its generator is\(^1\)

\[A := \frac{1}{2} \sum_{i,j=1}^{\infty} x_i (\delta_{ij} - x_j) \frac{\partial^2}{\partial x_i \partial x_j} - \frac{1}{2} \sum_{i=1}^{\infty} (\theta x_i + \alpha) \frac{\partial}{\partial x_i} \]

acting on the subalgebra of \(C(\mathcal{V}_\infty) \) generated by the sequence of functions \(\varphi_1, \varphi_2, \varphi_3, \ldots \) defined by

\[\varphi_m(x) := \sum_{i=1}^{\infty} x_i^m, \quad m = 2, 3, \ldots \quad \varphi_1(x) := 1. \]

*Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 84112, USA. e-mail: ethier@math.utah.edu. Partially supported by a grant from the Simons Foundation (209632).

\(^1\)Petrov omitted the common factor of \(\frac{1}{2} \) for simplicity but we include it so that formulas are consistent with those in the literature.
More precisely, for \(\varphi \in \mathcal{D}(A) \), \(A\varphi \) is evaluated on the dense subset

\[
\nabla_\infty := \left\{ x = (x_1, x_2, \ldots) : x_1 \geq x_2 \geq \cdots \geq 0, \sum_{i=1}^{\infty} x_i = 1 \right\}
\]

and extended to \(\nabla_\infty \) by continuity. For example,

\[
A\varphi_m = \frac{1}{2} m[(m - 1 - \alpha) \varphi_{m-1} - (m - 1 + \theta) \varphi_m], \quad m = 2, 3, \ldots
\]

The unique stationary distribution of Petrov’s diffusion is Pitman and Yor’s (1997) two-parameter generalization of the Poisson–Dirichlet distribution, which we denote by \(\text{PD}_{\alpha,\theta} \) and regard as a Borel probability measure on \(\nabla_\infty \) that is concentrated on \(\nabla_\infty \).

The special case \(\alpha = 0 \) (and hence \(\theta > 0 \)) is the unlabeled infinitely-many-neutral-alleles diffusion model of population genetics; see Ethier and Kurtz (1981). Its unique stationary distribution is of course the (one-parameter) Poisson–Dirichlet distribution, \(\text{PD}_{0,\theta} \), of Kingman (1975). Petrov’s diffusion was not motivated by population genetics; however, see De Blasi, Ruggiero, and Spanò (2014).

Feng, Sun, Wang, and Xu (2011) derived an explicit formula for the transition density \(p(t, x, y) \) of Petrov’s diffusion with respect to \(\text{PD}_{\alpha,\theta} \), which had earlier been done in the special case \(\alpha = 0 \) by Ethier (1992). Recently, Zhou (2013) found an elegant simplification of this formula. However, all we will need here is the fact that the Feller semigroup \(\{T(t)\} \) on \(C(\nabla_\infty) \) generated by the closure of \(A \) can be expressed as

\[
T(t)f(x) = \int_{\nabla_\infty} f(y) p(t, x, y) \text{PD}_{\alpha,\theta}(dy), \quad x \in \nabla_\infty, \ t > 0,
\]

for all \(f \in C(\nabla_\infty) \).

In particular, letting \(\{X_t, t \geq 0\} \) denote Petrov’s diffusion, it follows that

\[
P_x(X_t \in \nabla_\infty) = 1 \text{ for every } x \in \nabla_\infty \text{ and } t > 0,
\]

where the subscript \(x \) denotes the initial state. A question left open by Petrov (2009) is whether the stronger statement,

\[
P_x(X_t \in \nabla_\infty \text{ for all } t > 0) = 1, \quad x \in \nabla_\infty,
\]

holds.

In the special case \(\alpha = 0 \), (2) was proved by Ethier and Kurtz (1981). It was later realized that this result has a simple interpretation. The unlabeled infinitely-many-neutral-alleles diffusion model has a more informative labeled version, namely the Fleming–Viot process in \(\mathcal{P}(S) \) (the set of Borel probability measures on the compact set \(S \) with the topology of weak convergence) with mutation operator

\[
B_g(z) := \frac{1}{2} \theta \int_S (g(\zeta) - g(z)) \nu_0(d\zeta),
\]

and extended to \(\nabla_\infty \) by continuity. For example,

\[
A\varphi_m = \frac{1}{2} m[(m - 1 - \alpha) \varphi_{m-1} - (m - 1 + \theta) \varphi_m], \quad m = 2, 3, \ldots
\]
where $\nu_0 \in \mathcal{P}(S)$ is nonatomic. The unlabeled model is a transformation of the labeled one. The transformation takes $\mu \in \mathcal{P}(S)$ to $x \in \nabla_\infty$, where x is the vector of descending order statistics of the sizes of the atoms of μ. Then (2) is equivalent to the assertion that the Fleming–Viot process, regardless of its initial state, instantly becomes purely atomic and remains so forever.

If $\alpha > 0$, there is no such interpretation of (2) because whether there is a Fleming–Viot process corresponding to Petrov’s diffusion is unknown. In fact, this is an open problem that was posed by Feng (2010, p. 112).

Notice that another way to express (2) is to say that $\nabla_\infty - \nabla_\infty$ acts like an entrance boundary for the diffusion. Technically, this is not quite accurate because ∇_∞ has no interior, so its boundary is all of ∇_∞. But what we mean is simply that, starting at a state $x \in \nabla_\infty - \nabla_\infty$, the process instantly enters ∇_∞ and never exits.

A weaker version of (2) was obtained by Feng and Sun (2010) using the theory of Dirichlet forms. They showed that

$$\int_{\nabla_\infty} P_y(X_t \in \nabla_\infty \text{ for all } t > 0) \mathcal{D}(\alpha, \theta)(dy) = 1,$$

which is to say that the stationary version of Petrov’s diffusion has ∇_∞ as its natural state space.

In the next section we will use (1) and (3) to prove (2).

2 Entrance boundary

Let us begin by showing why Ethier and Kurtz’s (1981) proof of (2) when $\alpha = 0$ fails when $\alpha > 0$.

First, we extend the domain of A. Let $\mathcal{H} := \{ h \in C^2[0,1] : h(0) = h'(0) = 0 \}$, and for $h \in \mathcal{H}$ define $\psi_h \in C(\nabla_\infty)$ by

$$\psi_h(x) := \sum_{i=1}^\infty h(x_i).$$

Let A^+ be A acting on the subalgebra of $C(\nabla_\infty)$ generated by $\{1\} \cup \{\psi_h : h \in \mathcal{H}\}$. Again, for $\varphi \in \mathcal{D}(A^+)$, $A^+ \varphi$ is evaluated on ∇_∞ and extended to ∇_∞ by continuity. It is easy to see that $A^+ \subseteq \mathcal{A}$. We also notice that $\varphi_m \in \mathcal{D}(A^+)$ for all real $m \geq 2$ (not just integers), where

$$\varphi_m(x) := \sum_{i=1}^\infty x_i^m, \quad m \in (0,1) \cup (1, \infty), \quad \varphi_1(x) := 1.$$

This leads to the conclusion that, for every real $m \geq 2$,

$$Z_m(t) := \varphi_m(X_t) - \varphi_m(X_0)$$

$$- \frac{1}{2} m \int_0^t [(m - 1 - \alpha)\varphi_{m-1}(X_s) - (m - 1 + \theta)\varphi_m(X_s)] ds$$

3
is a continuous square-integrable martingale with increasing process
\[I_m(t) = m^2 \int_0^t (\varphi_{2m-1} - \varphi_m^2)(X_s) \, ds. \]

A difficulty occurs when trying to extend this last conclusion to \(1 < m < 2\). Fix such an \(m\) and define \(h_\varepsilon \in \mathcal{H}\) for \(\varepsilon > 0\) by \(h_\varepsilon(u) := (u + \varepsilon)^m - \varepsilon^m - m\varepsilon^{m-1}u\). Then \(A^+ \psi_{h_\varepsilon}\) converges pointwise as \(\varepsilon \to 0^+\) but not boundedly because of two awkward terms:
\[
\frac{1}{2} \sum_{i=1}^\infty x_i h''_\varepsilon(x_i) \quad \text{and} \quad -\frac{1}{2} \alpha \sum_{i=1}^\infty h'_\varepsilon(x_i).
\]

Both sums are monotonically increasing as \(\varepsilon\) decreases to 0, but their coefficients have opposite signs, so the monotone convergence theorem does not apply if \(\alpha > 0\), and we cannot show that \(\int_0^t \varphi_{m-1}(X_s) \, ds \in L^2\) for all \(t > 0\).

We are now ready for the proof of (2).

Theorem 1. Eq. (2) holds for Petrov’s diffusion.

Proof. It is enough to show that
\[P_x(X_t \in \nabla_\infty \text{ for all } t \geq s) = 1 \]
for every \(x \in \nabla_\infty\) and \(s > 0\). By (3),
\[P_y(X_t \in \nabla_\infty \text{ for all } t \geq 0) = 1 \text{ a.e.-PD}_{\alpha, \theta}(dy). \tag{4} \]

Let \(s > 0\) be arbitrary. Then, for every \(x \in \nabla_\infty\),
\[
P_x(X_t \in \nabla_\infty \text{ for all } t \geq s)
= E_x[P_x(X_t \in \nabla_\infty \text{ for all } t \geq s \mid X_r, 0 \leq r \leq s)]
= E_x[P_{X_s}(X_t \in \nabla_\infty \text{ for all } t \geq 0)]
= \int_{\nabla_\infty} P_y(X_t \in \nabla_\infty \text{ for all } t \geq 0) p(s, x, y) \text{ PD}_{\alpha, \theta}(dy)
= \int_{\nabla_\infty} p(s, x, y) \text{ PD}_{\alpha, \theta}(dy)
= P_x(X_s \in \nabla_\infty)
= 1,
\]
where the third equality uses (1) and the fourth equality uses (4). \(\square\)

References

De Blasi, P., Ruggiero, M., and Spanò, D. (2014) Inhomogeneous Wright–Fisher construction of two-parameter Poisson–Dirichlet diffusions. http://arxiv.org/pdf/1404.1781.pdf.
Ethier, S. N. (1992) Eigenstructure of the infinitely-many-neutral-alleles diffusion model. *J. Appl. Probab.* **29** (3) 487–498.

Ethier, S. N. and Kurtz, T. G. (1981) The infinitely-many-neutral-alleles diffusion model. *Adv. Appl. Probab.* **13** (3) 429–452.

Feng, S. (2010) *The Poisson–Dirichlet Distribution and Related Topics: Models and Asymptotic Behaviors*. Springer, Berlin and Heidelberg.

Feng, S. and Sun, W. (2010) Some diffusion processes associated with two parameter Poisson–Dirichlet distribution and Dirichlet process. *Probab. Theory Related Fields* **148** (3–4) 501–525.

Feng, S., Sun, W., Wang, F.-Y., and Xu, F. (2011) Functional inequalities for the two-parameter extension of the infinitely-many-neutral-alleles diffusion. *J. Funct. Anal.* **260** (2) 399–413.

Kingman, J. F. C. (1975) Random discrete distributions. *J. R. Statist. Soc. B* **37** (1) 1–22.

Petrov, L. A. (2009) Two-parameter family of infinite-dimensional diffusions on the Kingman simplex. *Funct. Anal. Applic.* **43** (4) 279–296.

Pitman, J. and Yor, M. (1997) The two-parameter Poisson–Dirichlet distribution derived from a stable subordinator. *Ann. Probab.* **25** (2) 855–900.

Zhou, Y. (2013) Ergodic inequality of three population genetic models. *http://arxiv.org/abs/1307.0883*.