Form factors of twist fields in the lattice Dirac theory

P Gavrylenko1, N Iorgov2 and O Lisovyy3

1 Department of Physics, Kyiv National University, 03022 Kyiv, Ukraine
2 Bogolyubov Institute for Theoretical Physics, 03680 Kyiv, Ukraine
3 Laboratoire de Mathématiques et Physique Théorique CNRS/UMR 6083, Université de Tours, Parc de Grandmont, 37200 Tours, France

E-mail: iorgov@bitp.kiev.ua and lisovyi@lmpt.univ-tours.fr

Received 26 September 2011
Published 8 December 2011
Online at stacks.iop.org/JPhysA/45/025402

Abstract
We study $U(1)$ twist fields in a two-dimensional lattice theory of massive Dirac fermions. Factorized formulas for finite-lattice form factors of these fields are derived using elliptic parametrization of the spectral curve of the model, elliptic determinant identities and theta functional interpolation. We also investigate the thermodynamic and infinite-volume scaling limit, where the corresponding expressions reduce to form factors of the exponential fields of the sine-Gordon model at the free-fermion point.

PACS numbers: 05.50+q, 02.30.Ik

1. Introduction

It is a general property of two-dimensional quantum field theories that their symmetries give rise to new local fields, whose correlation functions are nontrivial even if the underlying theory is free. Two paradigmatic examples are given by the disorder variables in the Ising field theory \cite{16, 32} and $U(1)$ twist fields in the massive Dirac theory \cite{25, 31, 33}, directly related to the exponential fields in the sine-Gordon model at the free-fermion point.

Correlation functions of twist fields in the Dirac theory, as well as in its generalizations to curved space and non-zero background magnetic field \cite{6, 7, 19, 29}, are also interesting from a mathematical point of view. They satisfy nonlinear differential equations \cite{1, 8, 31}, which in the simplest cases can be solved in terms of Painlevé functions. Knowledge of the long- and short-distance behavior of the two-point correlators provides solutions to nontrivial asymptotic and connection problems of Painlevé theory. Recently, it has also been observed \cite{20} that such correlators coincide with the gap probabilities for the classical kernels arising in the representation theory of big groups \cite{2}.

The aim of this paper is to construct lattice analogs of $U(1)$ twist fields in the Dirac model, satisfying the following properties: (i) they should be defined via the branching of lattice fermion fields, (ii) one should be able to calculate their form factors explicitly, and (iii) these...
form factors should reproduce the known expressions in the scaling limit. Besides full control of the theory, such an integrable finite-lattice regularization can be used for investigations at non-zero temperature and for a mathematically sound derivation of the relative normalization of conformal and infrared asymptotics of the two-point correlator [5, 23]. It may also be instrumental in going beyond the free-fermion point.

While the Ising field theory possesses a natural lattice regularization, only a few results are available in the Dirac case. The first attempt to introduce twist fields on the infinite lattice was made in [27]. The corresponding definition was supported by the computation of the vacuum expectation value (reproducing the expected scaling dimension) and was further strengthened by the analysis of correlations at the critical point [28]. Another seemingly unrelated definition was used in [5, 21] to derive a number of determinant representations for the two-point function of lattice twist fields. This work is devoted to the computation of their form factors, i.e. matrix elements of the field operators in the basis of transfer matrix eigenstates.

The paper is planned as follows. In subsections 2.1 and 2.2, we introduce a one-parameter generalization of the lattice Dirac operator considered in [5, 21] and explain the definition of twist fields in the functional integral framework. Transition to the operator formalism is performed in the next subsection. Using the coherent state approach, the transfer matrix and the twist field operator are written as exponentials of fermion bilinears, see formulas (9) and (11) below. Subsection 2.4 is devoted to the construction of multiparticle Fock states simultaneously diagonalizing the transfer matrix and the operator of translations.

In subsection 3.1, it is explained how form factors of twist fields can be found from the linear transformations relating fermionic creation–annihilation operators of different periodicity. In particular, the vacuum expectation value and two-particle form factors are expressed in terms of two square matrices \(C \) and \(D \) of dimension equal to the lattice size. Essentially, one needs to compute the quantities \(D^{-1}, C D \) and \(\det D \), cf (25)–(32). This task is solved in subsection 3.2 by first noting that in the elliptic parametrization of the spectral curve of the model, \(C \) and \(D \) are given (up to diagonal factors) by elliptic Cauchy matrices, and then using the Frobenius determinant identity and theta functional interpolation along the lines of [13]. The corresponding expressions are further simplified in subsection 3.3. Finite-lattice two-particle form factors are given by (42), (44) and (45), and the multiparticle ones have the factorized form (46), (49). These formulas represent the main result of the paper. In subsection 3.4, we analyze the thermodynamic (infinite-lattice) limit. The final answer has a remarkably simple expression in terms of the Jacobi theta functions, see (54)–(56). We remark that the vacuum expectation value (54) reproduces the earlier result of [27]. Field theory limit is considered in subsection 3.5. It is shown that the scaled form factors coincide with those of the exponential fields of the sine-Gordon model at the free-fermion point [1, 25, 33]. We conclude with a brief discussion of results and open problems.

2. Lattice Dirac theory

2.1. Fermions

Let \(\psi, \bar{\psi} \) denote two 2-component Grassmann fields on an \(M \times N \) square lattice. Consider the standard free-fermion action \(S[\psi, \bar{\psi}] = \bar{\psi}D\psi \), where the lattice Dirac operator is chosen as

\[
D = \frac{1}{c^2} \begin{pmatrix}
 c^*_x s_y - s^*_y c^*_x \nabla_y & -c_y + c^*_x \nabla_x \\
 c_y - c^*_x \nabla_{-x} & c^*_y - s^*_y c^*_y \nabla_{-y}
\end{pmatrix},
\]

(1)
Here $\nabla_{x,y}$ denote the shifts by one lattice site in the horizontal and vertical directions, so that e.g. $\nabla_x \psi_{x,y} = \psi_{x+1,y}$, $\nabla_y \psi_{x,y} = \psi_{x,y+1}$. The boundary conditions with respect to x and y are antiperiodic and α-periodic, respectively. This means that

$$
\begin{align*}
\psi_{x \pm M,y} &= -\psi_{x,y}, & \psi_{x,y \pm N} &= e^{2\pi i \alpha} \psi_{x,y}, \\
\bar{\psi}_{x \pm M,y} &= -\bar{\psi}_{x,y}, & \bar{\psi}_{x,y \pm N} &= e^{-2\pi i \alpha} \bar{\psi}_{x,y},
\end{align*}
$$

The parameters $c_i, s_i, c_i^*, s_i^*(i = x, y)$ are expressed in terms of two constants $K_{x,y} \in \mathbb{R} > 0$ as

$$
c_i = \cosh 2K_i, \quad s_i = \sinh 2K_i, \quad c_i^* = \cosh 2K_i^*, \quad s_i^* = \sinh 2K_i^*,
$$

where the dual couplings are given by $K_i^* = \arctanh e^{-2K_i}$. They satisfy the Ising-type relations

$$
s_i^* = s_i^{-1}, \quad c_i^* = c_i s_i^{-1}.
$$

2.2. Twist fields

It is instructive to start with an example. Choose a closed path P on the dual lattice (figure 1) and make the transformation $\psi \mapsto e^{2\pi i \nu} \psi$, $\bar{\psi} \mapsto e^{-2\pi i \nu} \bar{\psi}$ with $\nu \in \mathbb{R}$ at all lattice sites inside this contour. Because of the global $U(1)$-symmetry, the action $S[\psi, \bar{\psi}]$ will change only at the edges intersected by P. The Fermion propagator can be found using Fourier transform. One obtains

$$
\langle \bar{\psi}_{x,y} \psi_{x',y'} \rangle = \frac{1}{MN} \sum_{\phi,\theta} e^{i\phi(x-x') + i\theta(y-y')} \left(c_i^* s_i - s_i^* c_i e^{-i\theta} \quad c_i - c_i^* e^{-i\phi} \quad c_i^* s_i - s_i^* c_i e^{i\phi} \right),
$$

where

$$
cosh \gamma_0 = c_i^* s_i - s_i^* c_i \cos \theta.
$$

The multipoint correlations are readily computable from the Wick theorem. The summation in (2) is performed over $\phi = \frac{2\pi}{M} (j + \frac{1}{2})$, $j = 0, \ldots, M - 1$, and $\theta = \frac{2\pi}{N} (k + \alpha)$, $k = 0, \ldots, N - 1$. In the thermodynamic limit $M, N \to \infty$, one has $\frac{1}{MN} \sum_{\phi,\theta} \to \frac{1}{2\pi} \int_0^{2\pi} d\phi \int_0^{2\pi} d\theta$ and the answer can be expressed in terms of elliptic integrals.
Figure 2. Open path \(P_{AB} \).

If the corresponding changes are made along an open path \(P_{AB} \) joining two points \(A \) and \(B \) on the dual lattice, the resulting functional integral will depend on the positions of these points and homotopy class of the path, but not on its shape. One way to choose \(P_{AB} \) is shown in figure 2. In this case, the action is modified by

\[
\delta S_{AB} = \delta S_A + \delta S_B + \delta S_{b.c.},
\]

where \(\delta S_{A,B} \) correspond to the vertical segments and \(\delta S_{b.c.} \) to the horizontal one. Explicitly,

\[
\delta S_A = 2i \sin \pi \nu \sum_{y'=0}^{y-1} (e^{i\pi \bar{\psi}^{1}_{x-1,y'}\psi^{2}_{x,y'} + e^{-i\pi \bar{\psi}^{2}_{x,y'}\psi^{1}_{x-1,y'}}),
\]

\[
\delta S_B = -2i \sin \pi \nu \sum_{y'=0}^{y-1} (e^{-i\pi \bar{\psi}^{1}_{x',y'}\psi^{2}_{x',y'} + e^{i\pi \bar{\psi}^{2}_{x',y'}\psi^{1}_{x'-1,y'}}),
\]

\[
\delta S_{b.c.} = -2i \sin \pi \nu \frac{\nu}{c} \sum_{x'=\alpha}^{\alpha'-1} (e^{i\pi \bar{\psi}^{1}_{x',N-1-1}\psi^{2}_{x',0} - e^{-i\pi \bar{\psi}^{2}_{x',N-1-1}\psi^{1}_{x',0}}),
\]

with \(\alpha' = \alpha + \nu \). Without any loss of generality, we assume that \(0 \leq \alpha, \alpha' < 1 \).

Twist fields live on the dual lattice. Their two-point correlation function is defined as the normalized partition function of the Dirac theory with the defect contribution (4):

\[
\langle O_{\alpha,\alpha'}(A)O_{\alpha',\alpha}(B) \rangle = \frac{\int D\psi D\bar{\psi} e^{i\psi\bar{\psi} + \delta S_{\alpha}}}{\int D\psi D\bar{\psi} e^{i\psi\bar{\psi}}}. \tag{5}
\]

Note that the effect of \(\delta S_{b.c.} \) amounts to the change of the vertical boundary conditions for fermions from the horizontal interval \([x, x' - 1]\) from \(\alpha \)- to \(\alpha' \)-periodic ones. More generally, the appearance of twist field \(O_{\alpha,\alpha'}(A) \) in an arbitrary correlation function means that

- the vertical boundary conditions for fermions to the left and right of \(A \) are \(\alpha \)- and \(\alpha' \)-periodic, respectively;

- the term \(\delta S_A \) should be added to the action.

In the heuristic continuum limit, this corresponds to integrating over field configurations having counterclockwise monodromy \(e^{2\pi i\nu} \psi \) (resp. \(e^{-2\pi i\nu} \bar{\psi} \)) around \(A \).
2.3. Coherent states and the operator formalism

Locality of twist fields becomes manifest in the operator formalism, which also provides a convenient framework for the computation of correlation functions.

Let us introduce two sets of fermionic creation–annihilation operators satisfying canonical anticommutation relations,

\[\{ a_i, a_i^\dagger \} = \{ b_i, b_i^\dagger \} = \delta_{ii'}, \quad i, i' = 0, \ldots, N - 1, \]

with all other anticommutators vanishing. Define in the usual way the vacuum vectors \(\langle \text{vac} \rangle \) and \(|\text{vac}\rangle \), normalized as \(\langle \text{vac}|\text{vac}\rangle = 1 \), and the corresponding \(2^{2N} \)-dimensional Fock space \(\mathcal{F} \). Further, introduce the coherent states

\[|\psi_x^1, \psi_x^2\rangle = \exp \sum_{y=0}^{N-1} (a_y^\dagger \psi_x^1 + b_y \psi_x^2)|\text{vac}\rangle, \]

\[|\psi_x^2, \psi_x^1\rangle = \langle \text{vac} | \exp \sum_{y=0}^{N-1} (\psi_x^2 a_y + \psi_x^1 b_y), \]

where \(\{ |\psi_x^1\rangle, |\psi_x^2\rangle \} \) denote Grassmann variables anticommuting with all creation–annihilation operators. These states satisfy the following standard properties:

- for \(y = 0, \ldots, N - 1 \), one has
 \[\begin{align*}
 &a_y |\psi_x^1, \psi_x^2\rangle = \psi_x^{1\dagger} |\psi_x^1, \psi_x^2\rangle, \\
 &b_y |\psi_x^1, \psi_x^2\rangle = \psi_x^{1\dagger} |\psi_x^1, \psi_x^2\rangle, \\
 &\{ |\psi_x^1, \psi_x^2\rangle, |\psi_x^2, \psi_x^1\rangle \} = \{ |\psi_x^2, \psi_x^1\rangle, |\psi_x^1, \psi_x^2\rangle \} = |\psi_x^2, \psi_x^1\rangle, \\
 &\{ |\psi_x^1, \psi_x^2\rangle, \bar{b}_y \} = \langle \psi_x^1, \psi_x^2 | \bar{b}_y |\psi_x^2, \psi_x^1\rangle, \\
 &\{ |\psi_x^1, \psi_x^2\rangle, \bar{a}_y \} = \langle \psi_x^1, \psi_x^2 | \bar{a}_y |\psi_x^2, \psi_x^1\rangle.
 \end{align*} \]

- the scalar product of two coherent states is given by
 \[\langle \psi_x^2, \psi_x^1 | \psi_y^1, \psi_y^2 \rangle = \exp \sum_{y=0}^{N-1} (-\psi_y^{1\dagger} \psi_x^2 + \psi_y^{2\dagger} \psi_x^1); \] (6)

- the identity operator can be represented as a \(4N \)-fold Grassmann integral
 \[1_{\mathcal{F}} = \int D\psi_x^1 D\bar{\psi}_x^1 D\psi_x^2 D\bar{\psi}_x^2 |\psi_x^1, \bar{\psi}_x^1 \rangle|\psi_x^2, \bar{\psi}_x^2 \rangle \exp \sum_{y=0}^{N-1} (\bar{\psi}_x^{1\dagger} \psi_y^2 - \bar{\psi}_x^{2\dagger} \psi_y^1); \] (7)

- the trace of any operator \(\mathcal{O} \) can be written as an integral of its matrix element in the basis of coherent states with a Gaussian kernel:
 \[\text{Tr} \mathcal{O} = \int D\psi_x^1 D\bar{\psi}_x^1 D\psi_x^2 D\bar{\psi}_x^2 \langle \psi_x^2, \bar{\psi}_x^2 | \mathcal{O} |\psi_x^1, \bar{\psi}_x^1 \rangle \exp \sum_{y=0}^{N-1} (-\bar{\psi}_x^{1\dagger} \psi_y^2 + \bar{\psi}_x^{2\dagger} \psi_y^1). \] (8)

- the matrix elements \(\langle \psi_x^2, \psi_x^1 | \mathcal{O} |\psi_y^1, \psi_y^2 \rangle \) can be obtained by writing \(\mathcal{O} \) in normally ordered form, making therein the replacements
 \[a_y \rightarrow \psi_y^{1\dagger}, \quad b_y \rightarrow \psi_y^1, \quad a_y^\dagger \rightarrow \psi_y^{2\dagger}, \quad b_y^\dagger \rightarrow \bar{\psi}_y^2, \]

and multiplying the result by (6).
Now consider the operator
\[
V_\alpha =: \exp \sum_{y=0}^{N-1} \left[b^+_y (s_y - c^{-1}_y c_y \nabla_{-y}) a^+_y + (c^{-1}_y c_y - 1) (a^+_y a_y + b^+_y b_y) + a_y (s_y - c^{-1}_y c_y \nabla_y) b_y \right],
\]
where it is understood that
\[
\begin{align*}
\left(\begin{array}{c} a^+_y \\ a_y \\ b^+_y \\ b_y \end{array} \right) &= e^{2\pi i \alpha} \left(\begin{array}{c} a^+_y \\ a_y \\ b^+_y \\ b_y \end{array} \right), \\
\left(\begin{array}{c} a^+_y \\ a_y \\ b^+_y \\ b_y \end{array} \right) &= e^{-2\pi i \alpha} \left(\begin{array}{c} a^+_y \\ a_y \\ b^+_y \\ b_y \end{array} \right).
\end{align*}
\]
(9)

Rewrite the quantity \(Z = \text{Tr} V_\alpha^M \) using at the first stage (8) with \(x = N - 1, x' = 0 \) to calculate the trace, and inserting \(M - 1 \) resolutions of unity (7) (with \(x = k - 1 \) and \(x' = k \) between the \(k \)th and \((k+1)\)th factor of \(V_\alpha \)). Then, computing matrix elements of \(V_\alpha \) in the basis of coherent states, the reader may easily check that \(Z \) coincides with the partition function of the Dirac theory described by (1).

In fact \(V_\alpha \) is the transfer matrix characterizing discrete time evolution of twist fields. Vertical defects of the action associated with them divide the horizontal axis into intervals. The evolution in different intervals is governed by the matrices \(V_\alpha \) with appropriate values of \(\alpha \). Twist fields are represented by the operators
\[
O_{\alpha, \alpha'} (\gamma^*) = \exp 2\pi i \nu \sum_{y=0}^{y-1} (-a^+_y a_y + b^+_y b_y),
\]
(11)
where \(\gamma^* = \gamma - \frac{1}{2} \). This can be seen by noting that
\[
\exp \left\{ \delta S_A + \sum_{y=0}^{N-1} \left(\bar{\psi}^1_{x-1,y} \psi^2_{x,y} - \bar{\psi}^2_{x-1,y} \psi^1_{x,y} \right) \right\} = \int D\xi D\bar{\xi} \langle \xi^2, \bar{\xi}^2 | O_{\alpha, \alpha'} (\gamma^*) | \bar{\bar{\xi}}, \bar{\xi} \rangle \]
\[
\times \exp \sum_{y=0}^{N-1} \left(\bar{\psi}^1_{x-1,y} \xi^2_y - \xi^1_y \bar{\bar{\psi}}^1_{x-1,y} + \bar{\psi}^2_{x,y} \xi^1_y - \xi^2_y \bar{\bar{\psi}}^2_{x,y} \right),
\]
and repeating the procedure used above for the computation of \(Z \). For example, the two-point correlator (5) can be expressed as
\[
\langle O_{\alpha, \alpha'} (A) O_{\alpha', \alpha} (B) \rangle = Z^{-1} \text{Tr} (O_{\alpha, \alpha'} (\gamma^*) V_\alpha^{y_{\alpha'}-1} O_{\alpha', \alpha} (\gamma^{*_{\alpha}}) V_\alpha^{M-(y_{\alpha'}-1)}).
\]

The problem of effective calculation of the correlation functions of twist fields therefore reduces to the computation of form factors of operator (11) between the eigenstates of \(V_\alpha \) and \(V_\alpha' \). Observe that e.g. \(O_{\alpha, \alpha'} (0^*) \) is given by the identity operator on \(\mathcal{F} \). However, its form factors are nontrivial since the corresponding bra and ket states diagonalize different transfer matrices.

2.4. Transfer matrix diagonalization

Define Fourier transforms of the creation–annihilation operators:
\[
\left(\begin{array}{c} a^+_y \\ a_y \\ b^+_y \\ b_y \end{array} \right) = \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} \left(\begin{array}{c} a^+_y \\ a_y \\ b^+_y \\ b_y \end{array} \right) e^{-i\theta y},
\]
\[
\left(\begin{array}{c} a_0 \\ a_y \\ b_0 \\ b_y \end{array} \right) = \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} \left(\begin{array}{c} a_0 \\ a_y \\ b_0 \\ b_y \end{array} \right) e^{i\theta y},
\]

where \(\theta \) belongs to the set \(\theta_n = \{ \frac{2\pi}{N} (k + \alpha) | k = 0, \ldots, N - 1 \} \). The only nonvanishing anticommutators are given by \(\{ a_{\gamma}, b_{\nu}' \} = \{ b_{\gamma}, b_{\nu}' \} = \delta_{\gamma \nu} \). The transfer matrix \(V_{\alpha} \) is block-diagonal in the Fourier basis,

\[
V_{\alpha} =: \exp \left\{ (s_\gamma - c_\gamma^{-1} c_\gamma e^{-i\theta}) b_{\gamma}' a_{\gamma} + (c_\gamma^{-1} c_\gamma - 1) (a_{\gamma} b_{\gamma} + b_{\gamma}' a_{\gamma}) + (s_\gamma - c_\gamma^{-1} c_\gamma e^{i\theta}) a_{\gamma} b_{\gamma} \right\}.
\]

The conjugation of fermions by \(V_{\alpha} \) induces linear transformations

\[
V_{\alpha} \begin{pmatrix} a_{\gamma} \\ b_{\gamma} \end{pmatrix} V_{\alpha}^{-1} = \Lambda(\theta) \begin{pmatrix} a_{\gamma} \\ b_{\gamma} \end{pmatrix}, \quad V_{\alpha} \begin{pmatrix} a_{\gamma} \\ b_{\gamma} \end{pmatrix} V_{\alpha}^{-1} = (\Lambda^{-1})^T(\theta) \begin{pmatrix} a_{\gamma} \\ b_{\gamma} \end{pmatrix},
\]

where \(\Lambda(\theta) \) is a Hermitian matrix with unit determinant, explicitly given by

\[
\Lambda(\theta) = \frac{1}{c_\gamma} \begin{pmatrix} c_\gamma^* (c_\gamma^2 + s_\gamma^2) - 2x_\gamma^* x_\gamma c_\gamma \cos \theta & -c_\gamma^* x_\gamma + x_\gamma^* c_\gamma e^{i\theta} \\ -c_\gamma^* x_\gamma + x_\gamma^* c_\gamma e^{-i\theta} & c_\gamma^* \end{pmatrix}.
\]

It can be brought to the diagonal form, \(\Lambda(\theta) = U(\theta) \begin{pmatrix} e^{-\gamma_\theta} & 0 \\ 0 & e^{i\gamma_\theta} \end{pmatrix} U^T(\theta) \), by a unitary transformation. Here \(\gamma_\theta \) is defined as the positive solution of (3), and the columns of \(U(\theta) = \left(f_1(\theta), f_2(\theta) \right) \) are the eigenvectors of \(\Lambda(\theta) \) normalized so that \(|f_1(\theta)|^2 + |f_2(\theta)|^2 = 1 \). The freedom in the choice of the phase can be used to set

\[
\left(f_1(\theta), f_2(\theta) \right) = \frac{1}{2 \sqrt{c_\gamma}} \begin{pmatrix} e^{c_\gamma} & -e^{-s_\gamma} \\ e^{-s_\gamma} & e^{c_\gamma} \end{pmatrix} \chi_\theta, \quad \chi_\theta = \chi_{-\theta}^{-1} = \left[(1 - \alpha e^{i\theta})(1 - \beta e^{-i\theta}) \right]^{-\frac{1}{2}} \left[(1 - \beta e^{i\theta})(1 - \alpha e^{-i\theta}) \right]^{1/2}
\]

and \(\alpha = \tanh K_\gamma \coth K_\gamma, \beta = \tanh K_\gamma \tanh K_\gamma \). Note that under the above conventions, one has \(\beta < \alpha < 1 \). The root function in (13) is taken on the principal branch.

A new set of the creation–annihilation operators,

\[
\left(c_{\gamma}' \right)_0 = U^T(\theta) \begin{pmatrix} a_{\gamma} \\ b_{\gamma} \end{pmatrix}, \quad \left(c_{\gamma}' \right)_0 = U^T(\theta) \begin{pmatrix} a_{\gamma} \\ b_{\gamma} \end{pmatrix},
\]

satisfies the canonical anticommutation relations \(\{ c_{\gamma}, c_{\nu}' \} = \{ b_{\gamma}, b_{\nu}' \} = \delta_{\gamma \nu} \) (the other anticommutators being equal to zero) and diagonalizes the transfer matrix \(V_{\alpha} \):

\[
V_{\alpha} = \left(c_{\gamma}' \right)_0 N \exp \left\{ -\sum_{\gamma \in \theta_n} \gamma_\theta (c_{\gamma}')_0 c_{\gamma} + d_\gamma' d_\gamma - 1 \right\}.
\]

Introduce the vacua, \(\langle \text{vac} | \rangle \) and \(| \text{vac} \rangle \), annihilated by all \(\{ c_{\gamma}', d_{\gamma}' \} \) and \(\{ c_{\gamma}, d_{\gamma} \} \), respectively, and normalized as \(\langle \text{vac} | \text{vac} \rangle = 1 \). The left and right eigenvectors of \(V_{\alpha} \) are then given by the multiparticle Fock states,

\[
\langle \alpha; \phi | \rangle = \langle \text{vac} | c_{\alpha_0} \ldots c_{\alpha_n} d_{\phi_0} \ldots d_{\phi_n}, \quad | \alpha; \phi \rangle = c_{\phi_0}^\dagger \ldots c_{\phi_n}^\dagger d_{\phi_0} \ldots d_{\phi_n} \langle \text{vac} |, \quad | \theta; \phi \rangle_{\alpha} = c_{\phi_0}^\dagger \ldots c_{\phi_n}^\dagger d_{\phi_0} \ldots d_{\phi_n} | \text{vac} \rangle_{\alpha},
\]

and the corresponding eigenvalue is equal to \(\left(\frac{c_{\gamma}^*}{c_{\gamma}} \right)^N \exp \left\{ \sum_{\gamma \in \theta_n} \gamma_\theta - \sum_{\gamma \in \theta_n} \gamma_\phi \right\} \).

States (14) and (15) simultaneously diagonalize the $U(1)$-charge and the translation operator,

$$ Q = \sum_{\theta \in \Theta_a} \left(c^\dagger_{\theta} c_{\theta} - d^\dagger_{\theta} d_{\theta} \right) = \sum_{\theta \in \Theta_a} \left(a^\dagger_{\theta} a_{\theta} - b^\dagger_{\theta} b_{\theta} \right) = \sum_{y=0}^{N-1} \left(a^\dagger_y a_y - b^\dagger_y b_y \right), $$

$$ T_a = \exp \sum_{\theta \in \Theta_a} i \theta \left(-c^\dagger_{\theta} c_{\theta} + d^\dagger_{\theta} d_{\theta} \right) =: \exp \sum_{y=0}^{N-1} \left(a^\dagger_y a_{y+1} - a^\dagger_y a_y + b^\dagger_y b_{y+1} - b^\dagger_y b_y \right). $$

The latter satisfies, e.g.,

$$ T_a \left(\begin{array}{c} a^\dagger_y \\ b_y \end{array} \right) T_a^{-1} = \left(\begin{array}{c} a^\dagger_{y+1} \\ b_{y+1} \end{array} \right), \quad T_a \left(\begin{array}{c} a_y \\ b_y \end{array} \right) T_a^{-1} = \left(\begin{array}{c} a_{y-1} \\ b_{y-1} \end{array} \right) $$

under boundary conditions (10).

It is useful to note that the twist field (11) is $U(1)$-neutral and coincides with the identity operator twisted by translations of different periodicity:

$$ O_{\alpha,\alpha'} \left(y^{\ast} \right) = \left[O_{\alpha,\alpha'} \left(y^{\ast} \right) \right]^{-1} = T_{\alpha^{\ast}}^{-1} T_{\alpha'}. $$

This can be seen by comparing linear transformations of fermions induced by the left and right side of this relation, and using that their action leaves the vector $|\text{vac}\rangle$ invariant. The form factors of $O_{\alpha,\alpha'} \left(y^{\ast} \right)$ are therefore given, up to simple multiplicative factors, by the scalar products of the Fock states (14) and (15):

$$ \langle \alpha; \phi|O_{\alpha,\alpha'} \left(y^{\ast} \right)|\theta; \phi' \rangle_{\alpha'} = \exp \left(\sum_{\theta \notin \Theta_a} \theta - \sum_{\theta \in \Theta_a} \theta \right) \langle \alpha; \phi|O_{\alpha,\alpha'} \left(0^{\ast} \right)|\theta; \phi' \rangle_{\alpha'}. $$

where $\theta, \phi \subset \Theta_a$ and $\theta', \phi' \subset \Theta_{a'}$. Such scalar products normalized by the product of the vacua will be denoted by

$$ F_{\alpha,\alpha'}(\theta; \phi|\theta'; \phi') = \langle \alpha; \phi|O_{\alpha,\alpha'} \left(0^{\ast} \right)|\theta; \phi' \rangle_{\alpha'}/\langle \text{vac}|O_{\alpha,\alpha'} \left(0^{\ast} \right)|\text{vac}\rangle_{\alpha'}. $$

3. Form factors

3.1. General setting

Let us first recall a few results from [11, 13, 30]. Consider two sets of $2L$ fermionic creation–annihilation operators generating equivalent Fock representations in the same space. Denote the corresponding $2^L \times 2^L$ matrices by $\{\psi_i\}, \{\psi'_i\}$ and $\{\phi_i\}, \{\phi'_i\}$ with $i = 1, \ldots, L$ and combine them into L-columns ψ, ψ', ϕ, ϕ'. Suppose that there exists a unitary operator σ such that

$$ \sigma \left(\begin{array}{c} \psi' \\ \phi' \end{array} \right) = \left(\begin{array}{c} A & B \\ C & D \end{array} \right) \left(\begin{array}{c} \psi \\ \phi \end{array} \right), $$

where A, B, C, D are some $L \times L$ matrices. The unitarity of σ and canonical anticommutation relations imply that $B = C$, $A = D$ and

$$ DC^T + CD^T = 0, \quad DD^T + CC^T = 1. $$

Suppose that D is invertible. Then, up to the inessential phase factor related to the choice of the vacua, one has

$$ \langle \text{vac}|\sigma|\text{vac}\rangle_{\psi} = |\det D|^{1/2}. $$

8
The general matrix elements of σ between Fock states of different types can be expressed as

$$\langle \psi_1 | \ldots | \psi_n, \sigma | \psi_1' \ldots \psi_n' \rangle | \psi_1' \ldots \psi_n' \rangle = |\det D|^{\frac{1}{2}} \cdot \text{PF},$$

(18)

$$R = \left(\begin{array}{cc} R_{IJ} & R_{I,J} \\ R_{J,I} & R_{J,J} \end{array} \right),$$

(19)

where the entries of the blocks of the $(m+n) \times (m+n)$ skew-symmetric matrix R are given by the normalized two-particle form factors

$$(R_{IJ})_{kl} = (D^{-1} C)_{ik,l}, \quad k, l = 1, \ldots, m,$$

(20)

$$(R_{I,J})_{kl} = -(R_{IJ})_{lk} = D^{-1}_{k,l}, \quad k = 1, \ldots, m, \quad l = 1, \ldots, n,$$

(21)

$$(R_{J,I})_{kl} = (\tilde{C} D^{-1})_{k,l}, \quad k, l = 1, \ldots, n.$$

(22)

In the case of interest here, σ is the identity operator and $L = 2N$. The creation–annihilation operators in each set are labeled by their momenta. Thus, e.g. ψ and φ are given by the $2N$-columns $\left(\begin{array}{c} c_1 \\ d_0 \end{array} \right)$ built from the operators c_θ, d_θ with $\theta \in \theta_d$ and $\theta \in \theta_c$, respectively. A, B, C and D can therefore be seen as block 2×2 matrices with block entries indexed by $\theta \in \theta_d, \theta' \in \theta_c$. To find their explicit form, note that for $\theta \in \theta_d$, one has

$$\left(\begin{array}{c} c_\theta \\ d_\theta \end{array} \right) = \frac{1}{N} \sum_{\theta' \in \theta_c} \frac{1 - e^{2\pi i \nu}}{1 - e^{i(\theta - \theta')}} U^{\dagger}(\theta) U(\theta') \left(\begin{array}{c} c_{\theta'} \\ d_{\theta'} \end{array} \right),$$

(23)

and

$$\left(\begin{array}{c} c_\theta \\ d_\theta \end{array} \right) = \frac{1}{N} \sum_{\theta' \in \theta_c} \frac{1 - e^{2\pi i \nu}}{1 - e^{i(\theta' - \theta)}} U(\theta) U^{\dagger}(\theta') \left(\begin{array}{c} c_{\theta'} \\ d_{\theta'} \end{array} \right),$$

(24)

where $U(\theta)$ is defined by (12). Therefore, introducing the notation

$$\Lambda_{\theta,\theta'} = e^{i(\pi \nu + \theta')/2} \delta_{\theta,\theta'}, \quad \theta, \theta' \in \theta_d,$$

$$\Lambda_{\theta,\theta'} = e^{i(\pi \nu - \theta')/2} \delta_{\theta,\theta'}, \quad \theta, \theta' \in \theta_c,$$

$$C_{\theta,\theta'} = \frac{\sin \pi \nu}{N} f_1(\theta) f_2(\theta') - f_2(\theta) f_1(\theta'), \quad \theta \in \theta_d, \theta' \in \theta_c,$$

$$D_{\theta,\theta'} = \frac{\sin \pi \nu}{N} f_1(\theta) f_2(\theta') + f_2(\theta) f_1(\theta'), \quad \theta \in \theta_d, \theta' \in \theta_c,$$

we find that

$$C = \left(\begin{array}{cc} 0 & \Lambda^{\dagger} C A \\ -\Lambda C A & 0 \end{array} \right), \quad D = \left(\begin{array}{cc} -\Lambda^{\dagger} D A & 0 \\ 0 & -\Lambda D A \end{array} \right).$$

This in turn implies that the vacuum expectation value of twist field and its non-zero two-particle form factors are given by

$$\langle \psi_1 | O_{\alpha,\alpha'} (0^+) | \psi_1 \rangle = |\det D|,$$

(25)

$$F_{\alpha,\alpha'} (\theta; \theta') = -e^{i(\theta' - \theta - 2\pi \nu)/2} D^{-1}_{\alpha,\alpha'},$$

(26)
\[\mathcal{F}_{a,a'}(\theta; \theta') = -e^{i(\theta-\theta' + 2\pi v)/2}D_{a,a'}^{-1}. \]
\[\mathcal{F}_{a,a'}(\theta; \theta') = -e^{i(\theta-\theta')/2}(D^{-1}C)_{a,a'}. \]
\[\mathcal{F}_{a,a'}(\theta; \theta') = -e^{i(\theta-\theta')/2}(CD^{-1})_{a,a'}. \]

One also has
\[\mathcal{F}_{a,a'}(\theta; \theta') = -\mathcal{F}_{a',a}(\theta; \theta'), \]

although this is not immediately obvious from (28) and (29). This reduces our task to the computation of determinant and inverse of \(D \) and of the product \(D^{-1}C \).

Relations (23) and (24) imply that the elements of \(C \) and \(D \) remain invariant if one multiplies \(U(\theta) \) from the left by a unitary matrix independent of \(\theta \). Together with (12), this gives
\[C_{a,a'} = \frac{\sin \pi v}{2N} \frac{\chi_{\theta} \chi_{-a'} - \chi_{\theta} \chi_{a'}}{\sin \frac{\pi v}{2}}, \]
\[D_{a,a'} = \frac{\sin \pi v}{2N} \frac{\chi_{\theta} \chi_{-a'} + \chi_{\theta} \chi_{a'}}{\sin \frac{\pi v}{2}}. \]

The matrices \(C \) and \(D \) are therefore very simply related to the ones appearing in the Ising model theory, see lemma 3.3 in [13]; the main and almost only difference between the two cases is the change in the spectrum of quasimomenta. We will now follow [13] to establish elliptic representations for \(C \) and \(D \), which then will be used to calculate \(\det D \), \(D^{-1} \) and \(D^{-1}C \).

3.2. Elliptic parametrization

Spectral curve (3) is a torus which can be conveniently uniformized by the Jacobi elliptic functions of modulus \(k = \frac{\sinh 2K_c}{\sinh 2K_c} \). Let us denote \(K = K(k) \), \(K' = K(\sqrt{1-K^2}) \), where \(K(k) \) stands for the complete elliptic integral of the first kind. Then [13, 26] the functions
\[z(u) = \frac{\sinh(u + i\eta)}{\sinh(u - i\eta)}, \]
\[\lambda(u) = [k \sinh(u + i\eta) \sinh(u - i\eta)]^{-1}, \]
with \(\eta \in (-\frac{K}{2}, 0) \) determined by \(\sinh 2K_c = i \sin 2\eta \), satisfy relation (3) written in the form
\[s_2(\lambda + \lambda^{-1}) + s_2(z + z^{-1}) = 2c_2c_4. \]

Formulas (33) and (34) bijectively map the real interval \(C_\theta = [u \mid \Re u \in [-K, K], \Im u = 0] \) to \(C_\theta = \{(z, \lambda) = (e^{i\theta}, e^{i\nu}) \mid \theta \in [0, 2\pi]\} \). The inverse image of the point \((e^{i\theta}, e^{i\nu}) \in C_\theta \) in \(C_\theta \) will be denoted by \(u_\theta \). Note that for \(\theta \in (0, \pi) \), one has \(u_\theta = -u_{2\pi-\theta} \). It is also useful to define the function \(x_\theta = \frac{\pi u_\theta}{2K} \) which continuously increases from \(-\frac{\pi}{2} \) to \(\frac{\pi}{2} \) when \(\theta \) varies from 0 to \(2\pi \).

Lemma 4.1 in [13] shows that under the above parametrization, the matrix elements (31) and (32) can be written as
\[C_{a,a'} = \frac{-i\pi \eta \sin \pi v}{\eta^2 \sinh \chi_{a} \sinh \chi_{a'}} \cosh \gamma_{a} \cosh \gamma_{a'}. \]
\[D_{0,\theta'} = \frac{-s_y \sin \pi \nu}{N \sqrt{\sinh \gamma_0 \sinh \gamma_0}} \frac{dn(u_0 - u_{\theta'})}{sn(u_0 - u_{\theta'})}. \]

(36)

We will also need the Jacobi theta functions \(\vartheta_{1,4}(z) \) of nome \(q = e^{i \pi \tau} \), which are related to the elliptic modulus and half-periods by

\[k = \frac{\vartheta_2^2}{\vartheta_3^2}, \quad 2K = \pi \vartheta_3^2, \quad 2iK' = \pi \vartheta_3^2, \]

where \(\vartheta_i = \vartheta_i(0) \) for \(i = 2, 3, 4 \). The quantities \(\det D \) and \(D^{-1} \) can be computed in terms of these functions using the Frobenius determinant identity, while \(D^{-1} C \) can be found from a theta functional analog of the Lagrange interpolation formula (see section 5 of [13] for the details of a similar cumbersome calculation). The result is as follows:

\[
\det D = \left(\frac{\vartheta_3(X_{\theta'} - X_\theta)}{\vartheta_3} \right) \left(\frac{s_y \sin \pi \nu \vartheta_2 \vartheta_4}{N} \right)^N (-1)^{N(N-1)/2} \prod_{\theta \in \theta_n} \sin \gamma_{\theta} \prod_{\theta \in \theta_n} \sin \gamma_{\theta} \left[\prod_{\theta \in \theta_n} \prod_{\theta' \in \theta_n} \vartheta_1(x_{\theta'} - x_{\theta}) \right]^{-\frac{1}{2}},
\]

(37)

\[
D^{-1} = \left(\frac{\vartheta_3(X_{\theta'} - X_\theta) + x_{\theta} - x_{\theta'}}{\vartheta_3} \right) \left(\frac{s_y \sin \pi \nu \vartheta_2 \vartheta_4}{N} \right)^{-1} \prod_{\theta \in \theta_n} \sin \gamma_{\theta} \prod_{\theta \in \theta_n} \sin \gamma_{\theta} \left[\prod_{\theta \in \theta_n} \prod_{\theta' \in \theta_n} \vartheta_1(x_{\theta'} - x_{\theta}) \right]^{-\frac{1}{2}},
\]

(38)

\[
(D^{-1} C)_{\theta,\theta'} = -\left(\frac{\vartheta_3(X_{\theta'} - X_\theta) + x_{\theta} + x_{\theta'}}{\vartheta_3} \right) \left(\frac{s_y \sin \pi \nu \vartheta_2 \vartheta_4}{N} \right)^{-1} \prod_{\theta \in \theta_n} \sin \gamma_{\theta} \prod_{\theta \in \theta_n} \sin \gamma_{\theta} \left[\prod_{\theta \in \theta_n} \prod_{\theta' \in \theta_n} \vartheta_1(x_{\theta'} - x_{\theta}) \right]^{-\frac{1}{2}},
\]

(39)

with \(X_{\theta} = \sum_{\theta \in \theta_n} x_{\theta} \). In the following subsection, answer (37)–(39) is rewritten in a somewhat different form, which turns out to be more suitable for the analysis of the thermodynamic limit and for the computation of multiparticle form factors.

3.3. VEV and form factors

We illustrate the procedure by transforming the expression for \((D^{-1} C)_{\theta,\theta'} \). First, rewrite the second line of (39) as

\[
\frac{\vartheta_2 \vartheta_4}{\vartheta_3} \frac{G_{\theta}^{-1}}{G_{\theta}^0} \prod_{\theta' \in \theta_n} \sn(u_0 - u_{\theta'}) \prod_{\theta' \in \theta_n} \stn(u_0 - u_{\theta'}) \left[\prod_{\theta \in \theta_n} \prod_{\theta' \in \theta_n} \vartheta_1(x_{\theta'} - x_{\theta}) \right]^{-\frac{1}{2}},
\]

(40)

where the functions \(G_{\theta}^{\pm} \) are defined by

\[
G_{\theta}^{\pm} = G_{2\theta - \theta'}^{\pm} = \prod_{\theta' \in \theta_n} \vartheta_2(x_{\theta} \pm x_{\theta'}) \prod_{\theta' \in \theta_n} \vartheta_2(x_{\theta} \pm x_{\theta'}). \]

The last factor in (40) can be rewritten using the relation \(\sn(u_0 - u_{\theta'}) = \frac{s_y \sin \theta - \theta'}{\sinh \frac{\theta + \theta'}{2}} \), see e.g. formula (4.5) in [13]. The resulting products of sine functions can be calculated explicitly: for
the following equivalent form:

$$m$$

if the charge preserving condition

and non-crossed two-particle form factors are determined by (26), (27), (45) and (28), (30), (42), respectively.

Analogous manipulations with (37) and (38) lead to the representations

$$\eta_\theta = \frac{2 \ln G_\theta}{G_\theta} - \ln H_\theta.$$

(43)

The remaining products of sinhs can be combined into the function

$$H_\theta = \prod_{\theta' \in \theta_\nu} \sinh \frac{\gamma_\theta + \gamma_{\theta'}}{2} \prod_{\theta' \in \theta_\nu} \sinh \frac{\gamma_\theta - \gamma_{\theta'}}{2}.$$

There exists a simple combination of

with $G_\theta = G_\pi^\theta$. Identity (41) can be proven using the standard addition formulas for theta functions, their relation to the elliptic functions and formula (4.8) in [13], relating elliptic and trigonometric parametrization.

Summarizing the above transformations and using (41), we can rewrite formula (39) in the following equivalent form:

$$\left(D^{-1}C\right)_{\theta,\theta'} = \frac{ix_\nu \sin \pi v e^{(\eta_\theta + \eta_{\theta'})/2} \partial_2 \partial_4 \partial_3 (X_{\theta'} - X_\theta + x_\theta + x_{\theta'})}{N \sqrt{\sinh \gamma_\theta \sinh \gamma_{\theta'}} \partial_3 (X_{\theta'} - X_\theta) \partial_4 (x_\theta + x_{\theta'})},$$

where the function η_θ is given by

$$\eta_\theta = 2 \ln \frac{G_\theta}{G_\pi} - \ln H_\theta.$$

(42)

(43)

(44)

(45)

By (25), formula (44) gives the vacuum expectation value of the twist field. Non-zero crossed and non-crossed two-particle form factors are determined by (26), (27), (45) and (28), (30), (42), respectively.

Multiparticle form factors (16) can be obtained from (18)–(22). They do not vanish only if the charge preserving condition $m - m' = n - n'$ is satisfied, where $m = \#(\theta)$, $n = \#(\phi)$, $m' = \#(\theta')$ and $n' = \#(\phi')$. Under this restriction, one has

$$\mathcal{F}_{a,a'}(\theta, \phi|\theta', \phi') = \left(\frac{\partial_2 \partial_4}{\partial_3} x_\nu \sin \pi v \right)^{m+n'} \prod_{\theta \in \theta} e^{-i(\theta + \phi)/2 + \nu_{\theta}/2} \prod_{\phi \in \phi} e^{i(\phi + \phi')/2 + \nu_{\phi}/2} \prod_{\theta' \notin \theta} e^{i(\theta' + \phi')/2} \prod_{\phi' \notin \phi} e^{-i(\theta' + \phi')/2} \cdot \det \mathcal{R},$$

(46)
where the \((m+n') \times (m+n')\) matrix \(\mathcal{R}\) has 2 \times 2 block form, \(\mathcal{R} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}\), and is explicitly given by

\[
\begin{align*}
A_{jk} &= -i\vartheta(X_{\omega} - X_{\alpha} + x_{\omega} + x_{\alpha}), \\
B_{jk} &= -i\vartheta(X_{\omega} - X_{\alpha} + x_{\omega} - x_{\alpha}), \\
C_{jk} &= \vartheta(X_{\omega} - X_{\alpha} + x_{\omega} + x_{\alpha}), \\
D_{jk} &= \vartheta(X_{\omega} - X_{\alpha} + x_{\omega} - x_{\alpha}),
\end{align*}
\]

for \(j = 1, \ldots, m\) and \(k = 1, \ldots, n\), \(j = 1, \ldots, m\) and \(k = 1, \ldots, n'\), \(j = 1, \ldots, n\) and \(k = 1, \ldots, n\), \(j = 1, \ldots, n'\) and \(k = 1, \ldots, m'\).

The determinant of \(\mathcal{R}\) in (46) can be evaluated in a closed form using the Frobenius identity. Given \(2L\) indeterminates \(z_1, \ldots, z_L\) and \(z'_1, \ldots, z'_L\), it expresses the determinant of the elliptic Cauchy matrix \(\Omega\) with elements

\[
\Omega_{jk} = \frac{\vartheta_1(z_j - z'_j + r)}{\vartheta_1(r)\vartheta_1(z_j - z'_j)}
\]

for \(j, k = 1, \ldots, L\), \(r \in \mathbb{C}\), in the product form

\[
\det \Omega = \frac{\vartheta_1(\sum_j z_j - \sum_j z'_j + r)}{\vartheta_1(r)} \prod_{j,k}^L \vartheta_1(z_j - z'_j).
\]

(47)

Setting \(L = m + n', r = X_{\omega} - X_{\alpha} + \frac{\pi i}{2} - \frac{\pi i}{2}\) and

\[
\begin{align*}
z_j &= \begin{cases} x_{\omega} + \frac{\pi i}{2} & \text{for } j = 1, \ldots, m, \\
-x_{\omega} & \text{for } j = m + 1, \ldots, m + n', \\
-x_{\omega} & \text{for } j = 1, \ldots, n, \\
-x_{\omega} + \frac{\pi i}{2} & \text{for } j = n + 1, \ldots, n + m',
\end{cases}
\]

one can check that \(\Omega\) coincides with \(\mathcal{R}\) up to diagonal matrix factors. It then follows from (48) that

\[
\det \mathcal{R} = (-1)^{m'(n' + 1) + (m - m')} \prod_{j<k}^{m+n} \vartheta_1(x_{\omega} - x_{\omega}) \prod_{j<k}^{m+n'} \vartheta_1(x_{\omega} - x_{\omega'}) \prod_{j<k}^{m+n} \vartheta_1(x_{\alpha} - x_{\alpha'}) \prod_{j<k}^{m+n'} \vartheta_1(x_{\alpha} - x_{\alpha'}) \prod_{j<k}^{m+n} \vartheta_1(x_{\omega} - x_{\omega'}) \prod_{j<k}^{m+n'} \vartheta_1(x_{\omega} - x_{\omega'})
\]

(49)

where \(p = 2\) for \(m - m' \in 2\mathbb{Z} + 1\) and \(p = 3\) for \(m - m' \in 2\mathbb{Z}\). Together with (46), this gives our main result—a completely explicit factorized formula for any multiparticle matrix element of twist field.
3.4. Thermodynamic limit

The form factors found above simplify in the thermodynamic limit \(N \to \infty \). To explain these simplifications, consider e.g. expression (44) for the vacuum expectation value (25). We need to evaluate the asymptotics of (i) \(X_{\alpha'} - X_{\alpha} \) and (ii) \(\eta_{\theta} \). Both quantities can be written in the same form

\[
\sum_{\theta' \in \Theta_{\alpha'}} f_{\theta'} = \sum_{\theta' \in \Theta_{\alpha}} f_{\theta'} ,
\]

where the function \(f_{\theta'} \) is defined for \(\theta' \in [0, 2\pi] \). In case (i), one has \(f_{\theta'} = x_{\theta'} \), while in case (ii), \(f_{\theta'} \) is given by

\[
f_{\theta'} = 2 \ln \frac{\partial_4(x_{\theta'})}{\partial_4(x_{\theta} + x_{\theta'})} - \ln \frac{\gamma_{\theta'} + \gamma_{\theta'}}{2} .
\]

The most important distinction between the two situations is that in the first case one has \(f_{2\pi} = f_0 = \pi \), whereas (51) extends to a continuous \(2\pi \)-periodic function on the real line.

As \(N \to \infty \), one has the estimate

\[
f_{2\pi k + \alpha'}/f_{2\pi k + \alpha} \sim \frac{2\pi \nu}{N} f_{\tilde{2}\pi}
\]

with \(k = 0, \ldots, N - 1 \). The sum \(\frac{2\pi}{N} \sum_{k=0}^{N-1} f_{2\pi k + \alpha} \) transforms into the integral \(\int_{0}^{2\pi} f_{\tilde{2}\pi} \, d\theta \), which yields

\[
\lim_{N \to \infty} (X_{\alpha'} - X_{\alpha}) = \pi \nu, \quad \lim_{N \to \infty} \eta_{\theta} = 0.
\]

In the same way one shows that

\[
\lim_{N \to \infty} \left(\sum_{\theta' \in \Theta_{\alpha'}} \eta_{\theta'} - \sum_{\theta \in \Theta_{\alpha}} \eta_{\theta} \right) = 0 .
\]

Rigorous mathematical proofs of (52)–(53) and explicit error estimates can be obtained using a kind of Sommerfeld–Watson transform of the sums (50).

It then follows from (25), (44) that the thermodynamic limit of the vacuum expectation value of twist field is given by the simple expression

\[
\langle \mathcal{O}_v \rangle \overset{\text{def}}{=} \lim_{N \to \infty} \langle \text{vac}\mid \mathcal{O}_{\alpha,\alpha'}(0^+)\rangle\langle \text{vac} \rangle_{\alpha} = \frac{\partial_2(\pi \nu | \tau)}{\partial_3(0 | \tau)} .
\]

where the arguments of theta functions and the half-period ratio are now indicated explicitly for further convenience. As one could expect on general grounds, the rhs of (54) depends on \(\alpha, \alpha' \) only via the difference \(\nu = \alpha' - \alpha \). Note that this relation has the same form as the first formula on page 187 of [27].

Particle quasimomenta in the thermodynamic limit uniformly fill the interval \([0, 2\pi]\). Summation over each of them in the form factor expansions of correlation functions transforms into integration: \(\frac{1}{N} \sum_{\theta} \to \frac{1}{2\pi} \int_{0}^{2\pi} d\theta \). Although this naive procedure is plagued by the appearance of annihilation poles in the crossed form factors, it suggests considering

\[
F_{\nu}(\theta; \phi|\theta'; \phi') \overset{\text{def}}{=} \lim_{N \to \infty} N^{2\pi\nu \alpha' | \nu} F_{\alpha,\alpha'}(\theta; \phi|\theta'; \phi') .
\]

Asymptotics (52) implies that the limiting two-particle form factors are given by

\[
F_{\nu}(\theta; |\theta'; \theta'') = F_{\nu}(|\theta; |\theta') \frac{s_{\nu} \sin \pi \nu e^{i(\theta' - \theta - 2\pi \nu)/2}}{\sqrt{\sinh \gamma_{\theta'} \sinh \gamma_{\theta'}}} \frac{\partial_2(0 | \tau) \partial_4(0 | \tau)}{\partial_3(0 | \tau) \partial_3(\pi \nu | \tau)} \frac{\partial_3(x_{\theta'} - x_{\theta'} + \pi \nu | \tau)}{\partial_3(x_{\theta} - x_{\theta'} | \tau)} ,
\]

(55)
The limit of multiparticle form factors can be found in a similar way: it suffices to remove the functions η_0 from (46) and to replace $X_o - X_c$ in (49) by $\nu \tau$.

In the case $\nu = \pm \frac{1}{2},$ formulas (54)–(56) reduce to simpler expressions

$$\langle O_{\pm \frac{1}{2}} \rangle = (1 - k^2)\tilde{v},$$

$$F_{\pm \frac{1}{2}}(\theta; \theta'; \nu) = -i e^{i(\theta - \theta')/2} \frac{\sin \frac{\nu + \nu'}{4}}{\sqrt{\sinh \gamma_0 \sinh \gamma'}} \frac{\sinh \frac{\nu + \nu'}{2}}{\sin \frac{\nu - \nu'}{2}},$$

$$F_{\pm \frac{1}{2}}(\theta; \theta'; \nu) = -i e^{i(\theta - \theta')/2} \frac{\sin \frac{\nu + \nu'}{2}}{\sqrt{\sinh \gamma_0 \sinh \gamma'}} \frac{\sin \frac{\nu + \nu'}{2}}{\sin \frac{\nu - \nu'}{2}}.$$

They can be proved using the relations $\vartheta_1(z + \frac{\tau}{2}) = \vartheta_2(z), \vartheta_3(z + \frac{\tau}{2}) = \vartheta_4(z),$ rewriting the theta function ratios in terms of elliptic functions and finally passing to the trigonometric parametrization.

3.5. Scaling limit

The gap in the energy spectrum closes as $\gamma_0 \to 0.$ Since $\gamma_0 = 2(K_o - K_c),$ this corresponds to $k \to 1$ (or, equivalently, $\tau \to \infty$ or $q \to 1$) in terms of elliptic parameters. Also note that

$$-\tau^{-1} = \frac{iK_o}{K} = -\frac{i}{\pi} \ln \frac{1 - k^2}{16} + o(1), \quad \text{as} \quad k \to 1.$$

In order to obtain the asymptotics of the vacuum expectation value (54) in the vicinity of the critical point, recall the modular transformation

$$\vartheta_3(z|\tau) = (-i\tau)^{-1/2} e^{-\frac{z^2}{\tau^2}} \vartheta_3\left(-\frac{z}{\tau}\right) - \frac{1}{\tau},$$

and the product formula

$$\vartheta_3(z|\tau) = \prod_{j=1}^{\infty} \left(1 - q^{2j} \right)(1 + q^{2j-1} e^{2ic})(1 + q^{2j-1} e^{-2ic}).$$

Rewrite the theta functions in (54) using (61). The nome of the transformed functions vanishes as $k \to 1.$ Representation (62) therefore implies that

$$\lim_{\tau \to 0} \vartheta_3\left(-\frac{\nu \tau}{\tau} - \frac{1}{\tau}\right) = \begin{cases} 1 & \text{for } |\nu| < \frac{1}{2}, \\ 2 & \text{for } \nu = \pm \frac{1}{2}. \end{cases}$$

This in turn can be used together with (60) to show that, as $k \to 1,$

$$\langle O_{\nu} \rangle = \begin{cases} 2^{-4\pi^2} (1 - k^2)^\nu \left[1 + o(1)\right] & \text{for } |\nu| < \frac{1}{2}, \\ (1 - k^2)^\frac{\nu}{2} \left[1 + o(1)\right] & \text{for } \nu = \pm \frac{1}{2}. \end{cases}$$

The second approximation is in fact exact, cf (57). As the rhs of (54) is periodic in ν with period 1, the critical asymptotics of the vacuum expectation value for any ν can be deduced from (63). Note that the scaling dimension of the twist field for $|\nu| < \frac{1}{2}$ has the expected value ν^2.

In the vicinity of the critical point, our initial lattice model becomes equivalent to a field theory of free massive Dirac fermions. Correlation functions of twist fields in this theory are
determined by momenta at the scale of inverse correlation length (for convenience, we change
the domain of definition of lattice momenta from \([0, 2\pi] \) to \([-\pi, \pi] \)).

More formally, denote \(\varepsilon = \frac{1 - k^2}{2} \), set \(\theta = \varepsilon \sinh \xi \) and let \(k \to 1 \). The dispersion relation (3) then implies that
\[\gamma \theta \to \varepsilon \sinh \xi \cosh \xi. \]

One also has
\[-\xi \theta - \xi' \to i(\xi - \xi'). \]

Normalized scaled two-particle form factors of twist fields are determined by
\[F_\nu (\xi; |\xi'|) = \lim_{k \to 1} \varepsilon F_\nu (\varepsilon \sinh \xi; |\varepsilon \sinh \xi'|), \]
\[F_\nu (\xi; \xi'|) = \lim_{k \to 1} \varepsilon F_\nu (\varepsilon \sinh \xi; -\varepsilon \sinh \xi'); \]

where the variables \(\xi, \xi' \) have the meaning of particle rapidities.

To compute the corresponding limits, one can adopt the same approach as in the above
asymptotic analysis of the VEV. Transform the theta functions in (55) and (56) using Jacobi’s
imaginary transformations, rewrite the result using product formulas and then let \(\tau \to i0 \). For
\(|\nu| < \frac{1}{2} \), one finds
\[F_{\pm \frac{1}{2}} (\xi; |\xi'|) = \frac{1}{2} [F_{-\frac{1}{2}} (\xi; |\xi'|) + F_{\frac{1}{2}} (\xi; |\xi'|)] = \frac{-i \coth \xi - \xi}{\sqrt{\cosh \xi \cosh \xi}}, \]
\[F_{\pm \frac{1}{2}} (\xi; \xi') = \frac{1}{2} [F_{-\frac{1}{2}} (\xi; \xi') + F_{\frac{1}{2}} (\xi; \xi')] = \frac{i \tanh \xi - \xi}{\sqrt{\cosh \xi \cosh \xi}}. \]

The fact that \(F_{-\frac{1}{2}} \neq F_{\frac{1}{2}} \) can be understood as follows. Monodromy conditions for fermion
fields in the continuum give a system of integral equations for the two-particle form factors
[1]. This system has a unique admissible solution for \(|\nu| < \frac{1}{2} \), and two solutions for \(\nu = \pm \frac{1}{2} \).

Each of the two solutions gives rise to a twist field operator. Any linear combination of these
operators leads to the required fermion branching.

4. Concluding remarks

Finite-lattice form factors in the conventional free-fermion models (triangular Ising lattice,
XY quantum spin chain, BBS_2 model) can be obtained [12, 14] from those of the Ising spin
on the square lattice [3, 4, 9, 10, 13]. The fields considered in this paper are more general; in
particular, their scaling dimension continuously depends on a real parameter \(\nu \). We compute
their form factors explicitly in terms of the Jacobi theta functions and show that in the scaling
limit they reduce to form factors of the exponential fields of the sine-Gordon model at the
free-fermion point.

The determinantal form of form factors is also encountered in some of the interacting
integrable models, see e.g. Slavnov’s formula for scalar products of Bethe states in the spin-\frac{1}{2}
XXZ chain [17, 34]. An intriguing question is therefore if it is possible to go beyond the free-fermion point and calculate form factors of twist fields in the integrable lattice regularization of the massive Thirring model [24] (related to the eight-vertex statistical model). We believe that the present work takes a step in this direction. It would also be interesting to compare our results with the infinite-lattice form factors of the spin operators of the XYZ chain, obtained in the vertex operator approach [18, 22].

Another challenge is to complete form factor derivation for the Z_N-symmetric superintegrable chiral Potts quantum chain. It was recently shown that they have Ising form up to unknown scalar factors labeled by the pairs of the so-called Onsager sectors [15]. The putative free-fermion part of the integrable structure of this model is yet to be elucidated.

Acknowledgments

The authors are grateful to S Pakuliak and V Shadura for useful discussions. This work was partially supported by the Program of Fundamental Research of the Physics and Astronomy Division of NASU, by the joint Ukrainian-Russian SFFR-RFBR project F40.2/108, the joint PICS project of CNRS and NASU and IRSES project ‘Random and Integrable Models in Mathematical Physics’.

References

[1] Bernard D and LeClair A 1994 Differential equations for sine-Gordon correlation functions at the free fermion point Nucl. Phys. B 426 534–58 (arXiv:hep-th/9402144v2)
[2] Borodin A and Deift P 2002 Fredholm determinants, Jimbo–Miwa–Ueno tau-functions, and representation theory Commun. Pure Appl. Math. 55 1160–230 (arXiv:math-ph/0111007v1)
[3] Bugrij A I and Lisovyy O 2003 Spin matrix elements in 2D Ising model on the finite lattice Phys. Lett. A 319 390–4 (arXiv:0708.3625 [nlin.SI])
[4] Bugrij A I and Lisovyy O 2004 Correlation function of the two-dimensional Ising model on a finite lattice: II Theor. Math. Phys. 140 987–1000 (arXiv:0708.3643 [nlin.SI])
[5] Bugrij A I and Shadura V N 1999 Asymptotic expression for the correlation function of twisted fields in the two-dimensional Dirac model on a lattice Theor. Math. Phys. 121 1535–49 (arXiv:hep-th/9907040v3)
[6] Doyon B 2003 Two-point correlation functions of scaling fields in the Dirac theory on the Poincaré disk Nucl. Phys. B 675 607–30 (arXiv:hep-th/0304190v2)
[7] Doyon B and Fonseca P 2004 Ising field theory on a pseudosphere J. Stat. Mech. 0407 P07002 (arXiv:hep-th/0404136v1)
[8] Doyon B and Silk J 2011 Correlation functions of twist fields from Ward identities in the massive Dirac theory J. Phys. A: Math. Theor. 44 295402 (arXiv:1103.2328v1 [hep-th])
[9] von Gehlen G, Iorgov N, Pakuliak S, Shadura V and Tykhyy Y 2007 Form-factors in the Baxter–Bazhanov–Stroganov model I: norms and matrix elements J. Phys. A: Math. Theor. 40 14117–38 (arXiv:0708.4342 [nlin.SI])
[10] von Gehlen G, Iorgov N, Pakuliak S, Shadura V and Tykhyy Y 2008 Form-factors in the Baxter–Bazhanov–Stroganov model II: Ising model on the finite lattice I. Phys. A: Math. Theor. 41 095003 (arXiv:0711.0457 [nlin.SI])
[11] Hystad G 2011 Periodic Ising correlations J. Math. Phys. 52 013302 (arXiv:1011.2223v1 [math-ph])
[12] Iorgov N 2011 Form-factors of the finite quantum XY-chain J. Phys. A: Math. Theor. 44 335005 (arXiv:1012.4466v2 [cond-mat.stat-mech])
[13] Iorgov N and Lisovyy O 2011 Ising correlations and elliptic determinants J. Stat. Phys. 143 33–59 (arXiv:1012.2856v2 [math-ph])
[14] Iorgov N and Lisovyy O 2011 Finite-lattice form factors in free-fermion models J. Stat. Mech. P04011 (arXiv:1102.2145v2 [cond-mat.stat-mech])
[15] Iorgov N, Pakuliak S, Shadura V, Tykhyy Y and von Gehlen G 2010 Spin operator matrix elements in the superintegrable chiral Potts quantum chain J. Stat. Phys. 139 743–68 (arXiv:0912.5027 [cond-mat.stat-mech])
[16] Kadanoff L P and Ceva H 1971 Determination of an operator algebra for the two-dimensional Ising model Phys. Rev. B 3 3918–39
[17] Kitanine N, Maillet J M and Terras V 1998 Form factors of the XXZ Heisenberg spin-1/2 finite chain Nucl. Phys. B 554 647–78 (arXiv:math-ph/9807020)
[18] Lashkevich M 2002 Free field construction for the eight-vertex model: representation for form factors Nucl. Phys. B 621 587–621 (arXiv:hep-th/0103144)
[19] Lisovyy O 2008 On Painlevé VI transcendents related to the Dirac operator on the hyperbolic disk J. Math. Phys. 49 093507 (arXiv:0710.5744v1 [math-ph])
[20] Lisovyy O 2011 Dyson’s constant for the hypergeometric kernel New Trends in Quantum Integrable Systems: Proceedings of the Infinite Analysis 09 ed B Feigin, M Jimbo and M Okado (Singapore: World Scientific) pp 243–67 (arXiv:0910.1914v2 [math-ph])
[21] Lisovyy O 2009 Finite-volume correlation functions of monodromy fields on the lattice: Toepplitz representation Systèmes Intégrables et Théorie des Champs Quantiques ed P Baird, F Helein, J Kouneiher, F Pedit and V Roubtsov (Paris: Hermann) pp 170–86
[22] Lukyanov S and Terras V 2003 Long-distance asymptotics of spin–spin correlation functions for the XXZ spin chain Nucl. Phys. B 654 323–36 (arXiv:hep-th/0206093)
[23] Lukyanov S and Zamolodchikov A 1997 Exact expectation values of local fields in the quantum sine-Gordon model Nucl. Phys. B 493 571–87 (arXiv:hep-th/9611238)
[24] Lüscher M 1976 Dynamical charges in the quantized renormalized massive Thirring model Nucl. Phys. B 117 475–92
[25] Marino E C, Schroer B and Swieca J A 1982 Euclidean functional integral approach for disorder variables and kinks Nucl. Phys. B 200 473–97
[26] Palmer J 2007 Planar Ising Correlations (Prog. Math. Phys. vol 49) (Boston: Birkhäuser)
[27] Palmer J 1985 Monodromy fields on \mathbb{Z}_2 Commun. Math. Phys. 102 175–206
[28] Palmer J 1986 Critical scaling for monodromy fields Commun. Math. Phys. 104 353–85
[29] Palmer J, Beatty M and Tracy C A 1994 Tau functions of the Dirac operator on the Poincaré disk Commun. Math. Phys. 165 97–173 (arXiv:hep-th/9309017v1)
[30] Palmer J and Hystad G 2010 Spin matrix for the scaled periodic Ising model J. Math. Phys. 51 123301 (arXiv:1008.0352v2 [nlin.SI])
[31] Sato M, Miwa T and Jimbo M 1979 Holonomic quantum fields III–IV Publ. RIMS Kyoto Univ. 15 577–629
[32] Schroer B and Truong T T 1978 The relativistic quantum fields of the $D = 2$ Ising model Phys. Lett. B 72 371–4
[33] Schroer B and Truong T T 1978 The order/disorder quantum field operators associated with the two-dimensional Ising model in the continuum limit Nucl. Phys. B 144 80–122
[34] Slavnov N 1989 Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz Theor. Math. Phys. 79 502–8