Concentration mechanism of fluorine, arsenic, and uranium in groundwater of the Hailar Basin, China

Shengfeng Liu1 · Bai Gao1,2 · Huanhuan Qin1,2 · Qin Ge1,2 · Huilan Ling1 · Zheng Fang1 · Yan Ding1 · Tiancheng Shi1

Received: 20 November 2021 / Accepted: 23 August 2022 / Published online: 7 September 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

Located in a semiarid region of the Hulun Buir League in China’s Inner Mongolia Autonomous Region, the Hailar Basin is a region with less precipitation, where groundwater is the most important water supply source. It is important to study groundwater characteristics and hydrogeochemical processes for the better management of groundwater resources. Fluorine (F), arsenic (As), and uranium (U) cocontamination currently exists in the groundwater of the Hailar Basin, China. To understand the concentration mechanism of F, As, and U in groundwater in the study area, groundwater samples were collected for detection and analysis. The results showed that the main hydrochemical types in the study area were Cl–Na, HCO₃–Na, and HCO₃–Ca. The median values of F, As, and U were 3.32 mg/L, 0.029 mg/L, and 0.066 mg/L, respectively, which all exceeded the World Health Organization (WHO) guidelines. Through a Gibbs diagram and endmember diagram, it can be seen that the groundwater in the study area is mainly affected by the hydrogeochemical effects of evaporative crystallization, rock weathering mechanisms, and the dissolution of silicate rock and evaporative salt rock minerals. Mineral dissolution, cation exchange, and weakly alkaline environments are important factors affecting F concentrations. Low NO₃⁻ and SO₄²⁻ concentrations cause a reducing environment, and the competitive adsorption of HCO₃⁻ promotes As pollution. The concentrations of Ca²⁺, Mg²⁺, SO₄²⁻, and NO₃⁻ have a great influence on the concentration of U.

Keywords Hydrogeochemistry · Groundwater contamination · Potentially toxic elements (PTEs) · Semiarid regions

Introduction

In recent years, understanding the occurrence, mobility, transport, and fate of potentially toxic elements (PTEs) in natural water has been of great concern due to their widespread distribution and potential toxicity (Pourret et al. 2021; Pourret and Hursthouse 2019); specifically, fluorine (F), arsenic (As), and uranium (U) in groundwater are being widely studied in many countries (Alarcón-Herrera et al. 2013; Das et al. 2018; Farooqi et al. 2007; Finneran et al. 2002; Smedley et al. 2003). The cocontamination of F, As, and U in groundwater has become an increasingly serious global problem. This phenomenon is especially critical in semiarid regions, where groundwater is used as a major water source for domestic and agricultural use.

Drinking groundwater with a high-arsenic concentration (> 0.01 mg/L) for a long time can induce cancer and chronic kidney disease risks to humans (Jayasumana et al. 2015; WHO 2011), while drinking groundwater with a high fluorine concentration (> 1.5 mg/L) (Handa 1975; WHO 2011; Ripa 1993) can induce dental fluorosis and bone diseases. Groundwater with excessive uranium concentrations (> 0.03 mg/L) easily causes nephritis and other diseases (WHO 2011; Wu et al. 2014). In particular, the chemical toxicity of U absorbed through ingestion is more serious than its radiation risk (EFSA 2009). Uranium entering the human body can cause damage to tissues and organs such as the kidneys, bones, lungs, liver, brain, and reproductive system (Ma et al. 2020).

The concentrations of F and As in groundwater are mainly affected by natural factors such as geological and
topographic conditions. The major sources of As are arsenopyrite (FeAsS), orpiment (As₂S₃), and realgar (As₄S₄) (Kim et al. 2003). F is mainly released from minerals such as fluorspar (CaF₂), sellaite (MgF₂), and fluorapatite (Ca₅(PO₄)₃F) (Sarma and Rao 1997). Numerous studies have been conducted on groundwater pollution with the coexistence of F and As, especially in arid and semiarid areas such as China’s Datong Basin (Pi et al. 2015), Pakistan’s Lahore and Kasur regions (Farooqi et al. 2007), the Comarca Lagunera region in Mexico (Armienta and Segovia 2008), and the Diphu region in India (Kumar et al. 2016). However, few studies have focused on the hydrochemistry of groundwater cocontaminated by F, As, and U (Table 1). The Hailar Basin, located in the western Hulun Buir League in China’s Inner Mongolia Autonomous Region, is an arid to semiarid region that is prone to high F and As concentrations (Wen et al. 2013). Previous studies have shown that the Hailar Basin is rich in sandstone-type uranium deposits (Huang et al. 2021), and the groundwater in the Hailar Basin is at potential risk of contamination by F, As, and U. Therefore, government management departments have funded certain environmental research projects to solve and investigate related environmental problems in this area.

In the present study, shallow groundwaters were collected within the Hailar Basin. The concentrations of major ions were analyzed to understand the solute geochemistry and the hydrochemical process of shallow groundwater within the Basin, and the formation mechanism of F, As, and U in groundwater in the Hailar Basin is preliminarily understood based on the analysis of groundwater pollution. The results can provide scientific and useful implications for groundwater environmental management in the Hailar Basin and other similar basins.

Sampling location	Range of U (μg/L)	Range of As (μg/L)	Range of F (mg/L)	Prevailing environmental conditions	References
The semiarid region of SW Punjab, India	9.6–282.9	0.33–30.99	0.20–2.41	Unconsolidated quaternary alluvial plain	Paikaray and Chander (2022)
The case of the Gerania Mountains, NE Peloponnese, Greece	BDL ~ 2.22	0.9–15	–	The karstic aquifer; The fractured ultramafic aquifer; The granular alluvial unconfined coastal aquifer	Papazotos et al. (2020)
The central Gangetic Plain, Uttar Pradesh, India	BDL ~ 21.60	BDL ~ 68.00	0.16–1.28	The deposition of Quaternary River born alluvium	Yadav et al. (2020)
The Brahmaputra River floodplain	–	0.80–22.1	0.01–1.31	Alluvial flood plains, high precipitation and groundwater recharge rates	Nilotpal et al. (2018)
The Dawukou area	–	0.25–22	0.06–2.8	Evaporation strong; Rare precipitation	Chen et al. (2017)
The Jorhat district of Assam	–	0.19–73.0	–	Flood Plains; Tropical Monsoon Climate	Das et al. (2015)
The Datong Basin	–	5.6–2680	0.40–3.32	Arid regions; Alluvial lacustrineplains; Quaternaryaquifers	Pi et al. (2015)
The Chacho and Diplo districts of Tharparkar	–	2.0–1390	0.966–60.5	Sediment-filled basin; Low precipitation	Brahman et al. (2013)
The western Jilin province	–	0.11–12.04	0.16–14	Semiarid; Confined aquifers; Phreatic aquifers	Bian et al. (2012)
The Datong basin	BDL ~ 470	BDL ~ 10.4	–	Arid regions; Alluvial lacustrineplains; Quaternaryaquifers	Li et al. (2012)
The Lahore and Kasur districts	–	BDL ~ 1900	0.16–21.1	Quaternary sediments; semiarid and subtropical continental climate	Farooqi et al. (2007)
The Huhhot Basin	0.01–53	0.91–1290	0.25–6.60	Arid regions; poorly permeable sediments	Smedley et al. (2003)

“–” is untested data, BDL is below the detection limit.
Study area

The Hailar Basin is located in the transition zone between the Great Xing’an Mountains and the Mongolian Plateau from longitudes E115°20′–E120°10′ and latitudes N46°00′–N49°50′. The study area has a temperate continental climate, with cold and dry winters, hot and rainy summers, four distinct seasons, and large annual temperature differences (the average temperatures in summer and winter are 21.3 °C and –22.5 °C, respectively), with an average annual temperature of 0.2 °C and annual precipitation of approximately 280 mm. The Hailar Basin is a Mesozoic–Cenozoic fault-depression basin developed on the Hercynian fold basement, located on the suture line between the Sino-Korean plate and the Siberian plate (Guo et al. 2014a, b; Wu et al. 2006). The Hailar Basin has experienced multiple periods of tectonic movement and different degrees of damage and transformation, forming a relatively complex tectonic pattern. Therefore, the thickness of aquifers in different areas of the Beier Lake depression varies greatly and is not uniformly distributed, mainly in the Cretaceous Yimin Formation strata, and the lithology is all sandstone, mainly composed of sandstones with different particle sizes, such as silt, fine sand, medium sand, coarse sand and glutenite. The aquitard (weakly permeable layer) is mainly mudstone and clay with stable thickness and is a regional aquitard. The diving in the study area is recharged by atmospheric precipitation in the southeast and southwest directions and runs from south to north, moving to the vicinity of the Wuerxun River, where the burial depth of the groundwater table gradually decreases until it is close to the surface, forming a strong evaporation area. The clastic rock-like fracture pore pressurized water moves from southeast to northwest to Hulun Lake and the Hailar River, and the groundwater system is continuous and complete. Hulun Lake, the Cuogang Uplift, the Beier Lake Depression, the Hilly Uplift, and the Bayan Mountain Uplift lie from west to the east in the study area. The sampling points are mainly distributed around the surrounding area centered on the Beier Lake Depression (Fig. 1).

Materials and methods

Field sampling was carried out in accordance with the Technical Specifications for Environmental Monitoring of Groundwater (HJ 164-2020), with a total of 35 shallow well groundwater samples (Fig. 1). At least three well-bore volumes of groundwater were purged before taking samples. Water samples were collected only after pH and EC stabilized and when the fluctuations in pH and relative EC were less than 0.1% and 5%, respectively. We used 500 mL
polyethylene bottles on site to collect chemical samples of groundwater. The polyethylene bottles were washed with 10% nitric acid solution, control dried, filled with 10% nitric acid solution, sealed and stored for 24 h, and then washed three times with deionized water. After fully pumping and washing the well for sampling, the polyethylene bottles were washed with the water sample to be collected 2–3 times to ensure that the sampling bottle was filled with water, air was expelled, and the bottle was sealed. When sampling, after filtering with a 0.45 μm membrane, 500 mL polyethylene bottles were filled. Then, the cationic samples were acidified to pH < 2 with HNO₃. Water samples used for the analysis of anions were only treated with filtration during sampling. To ensure that the samples were not affected during storage, all samples were stored in a refrigerator (1–5 °C). The instrument was calibrated according to standard methods before testing. The pH, redox potential (Eh), total dissolved solids (TDS), electrical conductance (EC), and HCO₃⁻ hydrochemical parameters were tested on site. The pH and Eh were determined by a portable acidity meter (HI8424HANNA). The reference electrode of Eh was the AgCl electrode; TDS and EC were determined by a portable water quality multiparameter analyzer. HCO₃⁻ was determined with the acid–base indicator titration method. K⁺, Na⁺, Mg²⁺, Ca²⁺, U, As, and total Fe were measured using an inductively coupled plasma spectrometer (Agilent 5100 ICP–OES); F, Cl⁻, SO₄²⁻, and NO₃⁻ were tested using ion chromatography (ICS–1100). For all parameters, blank and check samples were sequentially measured, and the variance of duplicate measurements was less than 3%. The accuracy of the analyses was estimated for major ions using an electrical balance (Goldberg 2006; Hallouche et al. 2017). The normalized inorganic charge balance of most of the samples was less than 10%, indicating the accuracy of our data. A significant imbalance between negative and positive charges was observed for some samples, with a deficit of negative charge. The cause of imbalance may be attributed to the influence of organic anions (Xiao et al. 2012).

All data statistical analyses were performed using Excel 2010 (Microsoft Office), the sampling point map was drawn using ArcGIS 10.0 and Corel DRAW X4, and the experimental analysis figures were made using Origin 2018 and Aq-QA.

Results and discussion

Characteristics of the groundwater environment

Table 2 lists the physicochemical parameters of the groundwater samples. The main anions in groundwater are HCO₃⁻ and Cl⁻; the main cations are Na⁺ and Ca²⁺. The pH values are slightly alkaline, ranging from 7.12 to 8.63, the median value is 7.77, the coefficient of variation is small (0.04), and the degree of fluctuation is relatively stable. HCO₃⁻ ranges from 90.04 to 803.11 mg/L, with a median value of 409.10 mg/L. The TDS content is relatively high, the concentration ranges from 244 to 3690 mg/L, the median value is 1090.00 mg/L, and 51.43% of groundwater samples are brackish water (Huang et al. 2005). Cl⁻ ranges from 4.16 to 909.33 mg/L, the median value is 185.61 mg/L, and 28.57% of groundwater samples exceed national standards for drinking water quality (GB5749-2006) (> 250 mg/L) (Ministry of Environmental Protection of P.R. China 2006). The median concentrations of SO₄²⁻, NO₃⁻, and total Fe are 82.05, 5.80, and 0.17 mg/L, respectively. Eh ranges from –133 to 329 mV, indicating that there is a transition from a reducing environment to an oxidizing environment in the study area.

Index	Min	Max	Mean	Median	Standard Deviation	Coefficient of Variation
pH	7.12	8.63	7.77	7.77	0.34	0.04
TDS (mg/L)	244	3690	1195.44	1090.00	819.06	0.69
EC (μS/cm)	330	5240	1675.21	1526.50	1172.50	0.70
Eh (mV)	–133	329	188.52	221.00	100.86	0.54
K⁺ (mg/L)	0.67	49.17	5.28	3.95	7.98	1.51
Na⁺ (mg/L)	12.87	625.79	240.83	233.17	175.62	0.73
Ca²⁺ (mg/L)	5.79	123.11	49.85	43.23	26.62	0.53
Mg²⁺ (mg/L)	5.23	164.03	42.35	38.06	28.78	0.68
Cl⁻ (mg/L)	1.16	909.33	224.41	185.61	230.55	1.03
SO₄²⁻ (mg/L)	4.17	417.82	97.44	82.05	94.47	0.97
NO₃⁻ (mg/L)	0.00	32.81	7.59	5.80	6.96	0.92
HCO₃⁻ (mg/L)	90.04	803.11	405.36	409.10	160.13	0.40
Total Fe (mg/L)	0.124	4.609	0.46	0.17	0.87	1.88
Based on the Piper diagram (Fig. 2) (Piper 1944), five main hydrochemical types are identified in groundwater: Cl–Na (40.00%), HCO₃–Na (34.29%), HCO₃–Ca (14.29%), HCO₃–Mg (8.57%), and Cl–Ca (2.86%). Obviously, Cl–Na and HCO₃–Na are the main hydrochemical types in the Hailar Basin. The HCO₃–Na (Mg) hydrochemical type is predominant in the Bayan Mountain Uplift. Because of the large terrain drop and steeper hydraulic gradients in this area, dissolution and filtration easily occur, which dissolve the carbonate in the water.

In the Beier Lake Depression, the Cl–Na hydrochemical type is predominant because the area is flat, the water flow speed is slow and shallow, the buried depth of the groundwater level has an obvious concentration effect, and evaporation becomes the main discharge path of groundwater. Due to evaporation and concentration bicarbonate by constant rock saturated exhalation of sulfuric acid, Cl⁻ and Na⁺ are the mainly components in the Beier Lake Depression. The junction of the Cuogang Uplift, Bayan Mountain Uplift, Beier Lake Depression and Hill Uplift belongs to the runoff area, where the groundwater depth is general, the terrain changes greatly, the soil particle size changes from coarse to fine, and the contained hydrochemical types are complex.

Hydrogeochemical processes

Reactions between groundwater and aquifer minerals play a significant role in water quality, which is also useful for understanding the genesis of groundwater (Xiao et al. 2012). The chemical characteristics of water and the relative abundance of chemical species may be used to determine the source from which the majority of the ions originate and the mechanism controlling groundwater chemistry (Haritash et al. 2017). Using the Gibbs diagram method, Paikaray and Chander (2022) demonstrated the significance of rock dominance and evaporation dominance on the contamination of PTEs in groundwater in a semiarid region of SW Punjab, India. Gibbs diagrams were drawn (Fig. 3) (Gibbs 1970), and the controlling effect and source of groundwater chemical composition in the Hailar Basin can be preliminarily discussed. Obviously, in the study area, groundwater is mainly controlled by both evaporation dominance and rock dominance. Because the topography of the study area is relatively flat, the hydraulic gradient is small, the groundwater velocity is relatively slow, and the groundwater level is shallow. Meanwhile, the study area is a semiarid region and subject to obvious evaporation and concentration, further concentrating the ionic components in the water and increasing the
concentration of TDS and pH value, resulting in the replacement of OH⁻ with F, As and U, indirectly promoting the release of F, As and U in the minerals (Dong et al. 2015).

To further study, the rock dominance in the Hailar Basin, the relationships among the ratios of Mg²⁺/Na⁺, Ca²⁺/Na⁺ and HCO₃⁻/Na⁺ are used to explain the interactions between groundwater and various rock bodies (Fig. 4) (Gaillardet et al. 1999). The groundwater samples are mainly distributed between silicate rocks, and evaporative salt rocks control the endmember, indicating that the chemical composition of the groundwater in the study area is mainly controlled by silicate rocks and evaporative salt rocks. The weathering of silicate rocks has a greater impact on water chemical composition than evaporative salt rocks. Silicate rocks are mainly composed of feldspar, in which Na⁺ is abundant. Most samples had higher TDS values and higher Na⁺ and Cl⁻ concentrations and hence low Ca²⁺/Na⁺ and Mg²⁺/Na⁺ ratios. Meanwhile, Na⁺ and Cl⁻ were significantly correlated at the 0.01 level (p = 0.895), which suggests that salt rock input is the main source for their Na⁺ and Cl⁻ (Xiao et al. 2012).

Fluorine

The content of F in the groundwater of the Hailar Basin was relatively high, ranging from 0.14 to 13.89 mg/L, with a median value of 3.32 mg/L, which exceeded the Chinese
guidelines and WHO guidelines (Table 3) (Ministry of Environmental Protection of P.R. China 2006; WHO 2017). The Pourbaix diagram of F species (Fig. 5a) demonstrates that F is mainly located in the HCO₃⁻ and CaCO₃/CaMg(CO₃)₂ regions. For 7 < pH < 8, the groundwater samples are mainly distributed in the HCO₃⁻ area; as the pH increases, they transition to the CaCO₃/CaMg(CO₃)₂ area. Studies have proposed that a pH increase could promote F release from host surfaces due to the competitive adsorption effect of OH⁻ (Pi et al. 2015; Saxena and Ahmed 2003). Meanwhile, high HCO₃⁻ and low Ca²⁺/Mg²⁺ were conducive to F concentration (Adimalla and Li 2019). As shown in Fig. 5b, there was a certain positive correlation between F and HCO₃⁻ because with the increase in HCO₃⁻ concentration, Ca²⁺/Mg²⁺ in water reacted with HCO₃⁻ to generate Ca₂CO₃/CaMg(CO₃)₂ (Formulas 1 and 2). There is a negative correlation between F and Ca²⁺ (Fig. 5c), and the decrease in Ca²⁺ concentration is beneficial to promote the reaction of Formula 3 and increase the concentration of F in water. As shown in Fig. 5d, there was a significant positive correlation between F and Na⁺. To further verify the reason, we calculated the chloro-alkaline indices (CAI 1 and CAI 2) (Fig. 5e) (Schorr 1965). The chloro-alkaline indices of most sampling points were under 0, indicating that Na⁺ and K⁺ in the surrounding rock exchange with Ca²⁺ and Mg²⁺ in the groundwater (Eq. 4). This reduced the concentration of Ca²⁺ in the groundwater and promoted the dissolution of CaF₂ to release F⁻ (Eq. 3), which increased the concentration of F in the groundwater. As revealed in Fig. 2, the content of F in HCO₃⁻-Na water exceeds that of the Chinese guidelines and WHO Guidelines, which further verifies that HCO₃⁻, Na⁺ and F ions are positively correlated, which is consistent with the research results of Chae et al. (2007) and Li et al. (2014). Combining the results of the analysis in Fig. 4, the groundwater in the study area experiences large silicate mineral weathering. Formula (5) shows that dissolved silicate minerals can produce HCO₃⁻, which will promote Formulas (1) and (2) in the right direction and induce calcite and dolomite formation. The Ca²⁺ concentration in water becomes low. Finally, the reaction of Formula (3) is promoted to the right, resulting in the dissolution of fluoride and an increase in the fluoride concentration in water. Meanwhile, F can be adsorbed on the surface of hydrous ferric oxide (HFO) to form hydrous ferric oxide-fluorine (HFO-F), but in a weakly alkaline environment, HCO₃⁻ will compete with F for adsorption and then release F.

\[
\text{Ca}^2+ + 2\text{HCO}_3^- \rightarrow \text{Ca}_2\text{CO}_3 \downarrow + \text{CO}_2 \uparrow + \text{H}_2\text{O} \quad (1)
\]

\[
\text{Ca}^2+ + \text{Mg}^2+ + 4\text{HCO}_3^- \rightarrow \text{CaMg(CO}_3)_2 \downarrow + 2\text{CO}_2 \uparrow + 2\text{H}_2\text{O} \quad (2)
\]

\[
\text{CaF}_2 \rightarrow \text{Ca}^2+ + 2\text{F}^- \quad (3)
\]

\[
\text{Ca}^2+ + 2\text{NaX} \rightarrow 2\text{Na}^+ + \text{CaX}_2 \quad (4)
\]

\[
\text{Silicate mineral} + \text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{Kaolinite} + \text{HCO}_3^- + \text{Cation} + \text{H}_2\text{SiO}_4 \quad (5)
\]

Arsenic

Obviously, the High-As groundwater in the Hailar Basin was more serious. As shown in Table 3, in the groundwater of the study area, the concentration of As ranged from 0.005 to 0.123 mg/L, with a median value of 0.029 mg/L, and the 94.29% samples exceeded drinking water guideline (the limit is 0.01 mg/L) (Ministry of Environmental Protection of P.R. China 2006; WHO 2017). As can occur in the environment in several oxidation states, but the most prevalent forms are As(III) and As(V). As(V) is generally more soluble than the more toxic As(III) but also has a higher sorption affinity (Swift Bird et al. 2020). The Pourbaix diagram of As species indicates that HAsO₄²⁻ mainly existed in groundwater (Fig. 6). Mobility in groundwater is often controlled by sorption/desorption reactions with iron (Fe) and manganese (Mn) oxides, which are common components of sandstone (Bowell 1994). The near-neutral pH and relatively reducing conditions promote the retention of As(V) onto Fe minerals.

Parameters	Min	Max	Mean	Median	Standard deviation	Coefficient of variation	Chinese guidelines	WHO guidelines	Percentage of samples exceeding the standards (%)
F (mg/L)	0.14	13.89	3.94	3.32	2.88	0.73	1.0	1.5	88.57^{ab}
As (mg/L)	0.005	0.123	0.036	0.029	0.025	0.689	0.01	0.01	94.29^{ab}
U (mg/L)	0.017	0.257	0.075	0.066	0.048	0.637	–	0.03	94.29^b

^aChinese guidelines (Ministry of Environmental Protection of P.R. China 2006)

^bWHO guidelines (WHO 2017)
(in the form of FeO≡HAsO₄). As(III) and As(V) can occur together in groundwater due to redox disequilibrium (Bowell et al. 2014). As the Eh value decreases, As(V) on Fe mineral surfaces can be reduced into the more mobile As(III) and further strengthen As mobilization from sediment (Pi et al. 2015). Studies have shown that As(V) was released from HFO under reducing conditions without any prereduction of As(V) to As(III), especially over pH 8.5. As largely desorbed from HFO surfaces to substantially elevate the aqueous As concentration (Smedley and Kinniburgh 2002). The phenomenon of some high-As appeared in low NO₃⁻ and SO₄²⁻ groundwater samples (Fig. 6b, c). Low NO₃⁻ and SO₄²⁻ values usually represent a strong reducing environment, and a strong reducing environment may benefit As
activation and enrichment (He et al. 2021). There are also studies that show that groundwater with high concentrations of NO$_3^-$ exhibits low concentrations of As, suggesting that As remains adsorbed in Fe/Mn-oxyhydroxides in sediments/soils in a NO$_3^-$ stable environment (Guo et al. 2014a, b; Papazotos et al. 2020). If the NO$_3^-$ concentration is high, the groundwater is in an oxidizing environment, which is not conducive to the reduction and dissolution of Fe/Mn-oxyhydroxide (Weng et al. 2017). As shown in Fig. 6d, there was a significant positive correlation between As and HCO$_3^-$, which might be due to the competitive adsorption relationship between As and HCO$_3^-$, which enhances As
mobility (Swift Bird et al. 2020). However, the As concentration decreased with increasing HCO$_3^-$ concentration at some sampling points, indicating that HCO$_3^-$ was not the key factor causing high-arsenic groundwater. There was no significant correlation between As and total Fe (Fig. 6e), which might be due to the partially dissolved total Fe derived from weathering of minerals such as biotite (McArthur et al. 2001; Pal et al. 2002). Meanwhile, the release of As (III) might mediate the reduction of As (V) in a microbial manner using sulfide as the electron donor (Couture et al. 2010; Pi et al. 2015).

Uranium

As shown in Table 3, in the groundwater of the study area, the concentration of U ranged from 0.017 to 0.257 mg/L, with a median value of 0.066 mg/L, and the 94.29% samples exceeded drinking water guideline (the limit is 0.03 mg/L) (WHO 2017). According to the topographical conditions of the basin, the middle is low, and the surroundings are high, which provides dynamic conditions for water–rock interactions and promotes the migration and concentration of U in groundwater. The Pourbaix diagram of U species indicates that all hydrous ferric oxide -uranium (HFO-U), UO$_2$(CO$_3$)$_3^{4-}$, and uraninite (c) (Fig. 7a). Under oxidation conditions, it mainly exists in the form of HFO-U, UO$_2$(CO$_3$)$_3^{4-}$. For $7 < $ pH < 8, HFO-U is the main existing form; for $pH > 8$, UO$_2$(CO$_3$)$_3^{4-}$ is the main existing form. Under reducing conditions, it mainly exists in the form of uraninite(c). Therefore, under relatively alkaline oxidation conditions, it is more conducive to the desorption of uranium, and alkaline pH is more favorable for uranium mineral dissolution activity and increases the concentration of U in groundwater. Meanwhile, there was a significant positive correlation between U and Ca$^{2+}$ + Mg$^{2+}$ (Fig. 7b). With the increase in Ca$^{2+}$ + Mg$^{2+}$ concentration, U in the uranium mine would be released into water, while Ca$_2$CO$_3$ and CaMg(CO$_3$)$_2$ would be formed, which is consistent with the research results of (Liesch et al. 2015). The average concentration of SO$_4^{2-}$ was 97.44 mg/L, and there was a certain positive correlation between U and SO$_4^{2-}$ (Trend 1) (Fig. 7c), indicating that the oxidation conditions were

![Pourbaix diagram (Eh–pH) of uranium species in aqueous solutions at 25 °C and 1 atmospheric pressure](image1)

![U versus (Ca$^{2+}$ + Mg$^{2+}$) diagram](image2)

![U versus SO$_4^{2-}$ diagram](image3)

![U versus NO$_3^-$ diagram](image4)

Fig. 7 a Pourbaix diagram (Eh–pH) of uranium species in aqueous solutions at 25 °C and 1 atmospheric pressure, b U versus (Ca$^{2+}$ + Mg$^{2+}$) diagram, c U versus SO$_4^{2-}$ diagram and d U versus NO$_3^-$ diagram for groundwater in the Hailar Basin

© Springer
more conducive to the concentration of U. With the further increase in SO_4^{2-} concentration (Trend 2), the combination of desulfurization bacteria with organic matter promoted the reduction of SO_4^{2-} to H_2S, increased HCO_3^- and increased the pH value (Formula 6), and U reacted with H_2S to produce uranium mines (UO_2) (Formula 7). A low SO_4^{2-} content appeared in groundwater. It can be used as an auxiliary marker to judge the structure of uranium mines. Studies have shown that NO_3^- plays an important role in the concentration and migration of U (Fig. 7d) (Beaucaire and Toulhoat 1987; Nolan and Weber 2015). With the development of agricultural production in the Hailar Basin, the concentration of U(IV) could be increased by providing conditions for the oxidation of U(IV) into U(VI). Additionally, the likely reason for the strong uranium–nitrate correlation in groundwater could be due to increased fertilization of agricultural land using phosphate fertilization. Phosphate fertilization remains the main source of uranium contamination of agricultural land, primarily due to impurities in the phosphate rock used for fertilizer manufacture (Kratz et al. 2016; Papazotos et al. 2019; Schnug and Lottermoser 2013).

Meanwhile, the other is the release and enhanced mobility of geogenic uranium triggered by agricultural nitrate and phosphate fertilization (Banning et al. 2013; Wu et al. 2010).

\[
SO_4^{2-} + 2C + 2H_2O \rightarrow H_2S + 2HCO_3^-
\]

\[
UO_2(CO_3)_2^{2-} + H_2S \rightarrow UO_2 \downarrow + S^0 + 2HCO_3^-
\]

Comobilization of fluoride, arsenic, and uranium

In this study, the copollution of F, As and U occurred in the Hailar Basin. Figure 8a–c was drawn to study whether there was a synergistic effect among the three. The correlation coefficients of As and U and As and F were 0.090 and 0.237, respectively, but the relationship between U and F was more significant, with a correlation coefficient of 0.665. Because Ca$^{2+}$/Mg$^{2+}$ acts together between U-containing minerals and F-containing minerals, high HCO_3^- is also

Fig. 8 a U versus As diagram, b F versus As diagram and c U versus F diagram for groundwater in the Hailar Basin
the reason for the significant relationship between U and F. Meanwhile, with the build-up of oxidizing conditions, Fe(II) oxidation and organic degradation caused the precipitation of Fe(III) (hydr) oxides and the production of inorganic salts and \(\text{HCO}_3^- \) (Christensen et al. 2000). Newly formed Fe(III) minerals show high affinity for As(V), resulting in As retention to the solid phase (Pi et al. 2015), and newly formed \(\text{HCO}_3^- \) promotes the desorption of U and F.

Conclusions

This study investigated the basic hydrogeochemical characteristics of F, As, and U in the groundwater of the Hailar Basin, China. The following conclusions can be summarized.

(1) The main hydrochemical types in the study area were Cl–Na, \(\text{HCO}_3^-–\text{Na} \), and \(\text{HCO}_3^-–\text{Ca} \). The pH median value is 7.77, the median value of \(\text{HCO}_3^- \) is 409.10 mg/L, and the groundwater is in a slightly alkaline environment, which is conducive to the enrichment of F, As, and U. Gibbis analysis shows that groundwater hydrochemistry in the Hailar Basin is affected by evaporation dominance and rock dominance, and dissolution of silicate rocks and evaporative salt rocks are the main hydrogeochemical processes in the study area, which provide basic conditions for the concentrations of F, As, and U.

(2) The median value of F was 3.32 mg/L, which exceeded the Chinese guidelines and WHO guidelines. Mineral dissolution, cation exchange, and a slightly alkaline environment were factors that affected the F concentration. The concentration of As had a median value of 0.029 mg/L, and the 94.29% samples exceeded drinking water guideline, because low \(\text{NO}_3^- \) and \(\text{SO}_4^{2-} \) would cause a reduction environment, and \(\text{HCO}_3^- \) competition adsorption had a positive effect on As pollution. The median value of U was 0.066 mg/L, and the 94.29% samples exceeded drinking water guideline. The concentrations of \(\text{Ca}^{2+} + \text{Mg}^{2+} \) and \(\text{SO}_4^{2-} \) had a great influence on the concentration of U. In addition, fertilization of agricultural land is also an important source of uranium in groundwater, and the other is the release and enhanced mobility of geogenic uranium triggered by agricultural nitrate and phosphate fertilization. The correlation between U and F is good because \(\text{Ca}^{2+}/\text{Mg}^{2+}/\text{HCO}_3^- \) plays a similar role between U-containing minerals and F-containing minerals.

This study investigates the concentration mechanism of F, As, and U in groundwater in the Hailar Basin, which is of great importance for groundwater resource management in the study area, and this study could also be used as a basis for future studies.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s12665-022-10560-0.

Acknowledgements This work was supported by the National Natural Science Foundation of China (41162007, 41362011); Graduate Student Innovation Fund of Jiangxi Province (YC2021-S626); East China University of Technology “National Defense Key Discipline Laboratory of Radioactive Geology and Prospecting Technology”, Open Fund (RGET1904). Last but not least, the authors are truly grateful to Prof. Wenjie Ma and Dr. Dandan Huang for their helpful support and suggestions to accomplish this research paper.

Declarations

Competing interests The authors have not disclosed any competing interests.

References

Adimalla N, Li P (2019) Occurrence, health risks, and geochemical mechanisms of fluoride and nitrate in groundwater of the rockdominant semi-arid region, Telangana State, India. Human Ecol Risk Assess 25(1–2):81–103

Alarcón-Herrera MT, Bundschuh J, Nath B, Nicoll JB, Gutierrez M, Reyes-Gomez VM, Nuñez D, Martin-Dominguez IR, Sraect O (2013) Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: Genesis, mobility and remediation. J Hazard Mater 262:960–969

Armienta MA, Segovia N (2008) Arsenic and fluoride in the ground-water of Mexico. Environ Geochem Health 30(4):345–353

Banning A, Demmel T, Rüde TR, Wrobel M (2013) Groundwater uranium origin and fate control in a river valley aquifer. Environ Sci Technol 47(24):13941–13948

Beaucaire C, Toulhoat P (1987) Redox chemistry of uranium and iron, radium geochemistry, uranium isotopes in the groundwater of the Lodève Basin, Massif Central, France. Appl Geochem 2:417–426

Bian J, Tang J, Zhang L, Ma H, Zhao J (2012) Arsenic distribution and geological factors in the western Jilin province, China. J Geochem Explor 112:347–356

Bowell RJ (1994) Sorption of arsenic by iron oxides and oxyhydroxides in soils. Appl Geochem 9(3):279–286

Bowell RJ, Alpers CN, Jamieson HE, Nordstrom DK, Majzlan J, Bowell RJ, Alpers CN, Jamieson HE, Nordstrom DK, Majzlan J (2014) The environmental geochemistry of arsenic; an overview. Rev Mineral Geochem 79(1):1–16

Brahman KD, Kazi TG, Afriidi HI, Naseem S, Arain SS, Ullah N (2013) Evaluation of high levels of fluoride, arsenic species and other physicochemical parameters in underground water of two sub districts of Tharparkar, Pakistan: a multivariate study. Water Res 47(3):1005–1020

Chae G, Yun S, Mayer B, Kim K, Kim S, Kwon J, Kim K, Koh Y (2007) Fluorine geochemistry in bedrock groundwater of South Korea. Sci Total Environ 385(1):272–283

Chen J, Qian H, Wu H, Gao Y, Li X (2017) Assessment of arsenic and fluoride pollution in groundwater in Dawukou area, Northwest
China, and the associated health risk for inhabitants. Environ Earth Sci 76(8):314–328

Christensen TH, Bjerg PL, Banwart SA, Jakobsen R, Heron G, Albrechtsen HJ (2000) Characterization of redox conditions in groundwater contaminant plumes. J Contam Hydrol 45(3):165–241

Couture R, Gobeil C, Tessier A (2010) Arsenic, iron and sulfur co-dissolution in lake sediments. Geochim Cosmochim Acta 74(4):1238–1255

Das N, Patel AK, Deka G, Das A, Sarma KP, Kumar M (2015) Geochemical controls and future perspective of arsenic mobilization for sustainable groundwater management: a study from Northeast India. Groundw Sustain Dev 1(1–2):92–104

Das N, Das A, Sarma KP, Kumar M (2018) Provenance, prevalence and health perspective of co-occurrences of arsenic, fluoride and uranium in the aquifers of the Brahmaputra River floodplain. Chemosphere 194:755–772

Dong S, Liu B, Shi X, Zhang W, Li Z, Fiorillo F, Stevanovic Z (2015) The spatial distribution and hydrogeological controls of fluoride in the confined and unconfined groundwater of Tuoketou County, Hohhot, Inner Mongolia, China. Environ Earth Sci 74(1):325–335

EFSA (2009) Uranium in foodstuffs, in particular mineral water. Scientific opinion of the panel on contaminants in the food chain. EFSA Farooqi A, Masuda H, Firdous N (2007) Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. Environ Pollut 145(3):839–849

Finneran KT, Anderson RT, Nevin KP, Lovley DR (2002) Potential for bioremediation of uranium-contaminated aquifers with microbial U(VI) reduction. Soil Sediment Contamin 11(3):339–357

Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159(1–4):3–30

Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090

Goldberg S (2006) Geochemistry, groundwater and pollution, vol S. Soil Science Society, Madison, p 510

Guo B, Shao L, Zhang Q, Ma S, Wang D, Zhou Q (2014a) Sequence stratigraphy and coal accumulation pattern of the Early Cretaceous coal measures in Hailar Basin Inner Mongolia. J Palaeogeogr 16(5):631–640

Guo H, Wen D, Liu Z, Jia Y, Guo Q (2014b) A review of high arsenic groundwater in Mainland and Taiwan, China: distribution, characteristics and geochemical processes. Appl Geochem 41:196–217

Halboutche B, Mareo A, Benaabidate L, Berrahal Y, Hadji F (2017) Geochemical and qualitative assessment of groundwater of the High Mekerra watershed, NW Algeria. Environ Earth Sci 76(9):340–351

Handa BK (1975) Geochemistry and genesis of fluoride-containing groundwater in India. Groundwater 13(3):275–281

Haritash AK, Mathur K, Singh P, Singh SK (2017) Hydrochemical characterization and suitability assessment of groundwater in Baga-Calangute stretch of Goa, India. Environ Earth Sci 76(9):341–350

He X, Li P, Wu J, Wei M, Ren X, Wang D (2021) Poor groundwater quality and high potential health risks in the Datong Basin, northern China: research from published data. Environ Geochem Health 43(2):791–812

Huang Z, Zhang L. Editorial Board of “A Dictionary of Earth Sciences” (2005) A dictionary of earth sciences, applied sciences. Geological Publishing House, Beijing (in Chinese)

Huang S, Zhou W, Dong Y, Qin M (2021) Characteristics of host sandbody and its uranium metallicogenic potential of the upper member of Yimin Formation in Be’er depression, Hailar Basin. Northwestern Geol 54(2):166–178 (in Chinese)

Jayasumana C, Fonseka S, Fernando A, Jayalath K, Amarasinghe M, Siribaddana S, Gunatilake S, Paranagama P (2015) Phosphate fertilizer is a main source of arsenic in areas affected with chronic kidney disease of unknown etiology in Sri Lanka. Springerplus 4(1):90–98

Kim M, Nriagu J, Haack S (2003) Arsenic behavior in newly drilled wells. Chemosphere 52(3):623–633

Kratz S, Schick J, Schnug E (2016) Trace elements in rock phosphates and P containing mineral and organo-mineral fertilizers sold in Germany. Sci Total Environ 542:1013–1019

Kumar M, Das A, Das N, Goswami R, Singh UK (2016) Co-occurrence perspective of arsenic and fluoride in the groundwater of Diphu, Assam, Northeastern India. Chemosphere 150:227–238

Li J, Wang Y, Xie X, Su C (2012) Hierarchical cluster analysis of arsenic and fluoride enrichments in groundwater from the Datong basin, Northern China. J Geochim Explor 118:77–89

Li P, Qian H, Wu J, Chen J, Zhang Y, Zhang H (2014) Occurrence and hydrogeochemistry of fluoride in alluvial aquifer of Weihai River, China. Environ Earth Sci 71(7):3133–3145

Liesch T, Hinrichsen S, Goldscheider N (2015) Uranium in groundwater—fertilizers versus geogenic sources. Sci Total Environ 536:981–995

Ma M, Wang R, Xu L, Xu M, Liu S (2020) Emerging health risks and underlying toxicological mechanisms of uranium contamination: Lessons from the past two decades. Environ Int 145:106107

McArthur JM, Ravenscroft P, Safiulla S, Thirwall MF (2001) Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour Res 37(1):109–117

Ministry of Environmental Protection of P.R. China (2006) Standards for drinking water quality (GB5749-2006), China Standard Press, Beijing (in Chinese)

Nilotpal D, Aparna D, Kali PS, Manish K (2018) Provenance, prevalence and health perspective of co-occurrences of arsenic, fluoride and uranium in the aquifers of the Brahmaputra River floodplain. Chemosphere 194:755–772

Nolan J, Weber KA (2015) Natural uranium contamination in major U.S. aquifers linked to nitrate. Environ Sci Technol 2(8):215–220

Paikaray S, Chander S (2022) Geochemostratigraphic analysis of fluoride contamination in groundwater in the semi-arid region of SW Punjab, India. Appl Geochem 136:105167

Pal T, Mukherjee PK, Sengupta S, Bhattacharyya AK, Shome S (2002) Arsenic pollution in groundwater of West Bengal, India—an insight into the problem by subsurface sediment analysis. Gondwana Res 5(2):501–512

Papazotos P, Vasileiou E, Perraki M (2019) The synergistic role of agricultural activities in groundwater quality in ultramafic environments: the case of the Psachna basin, central Euboea, Greece. Environ Monit Assess 191(5):1–32

Papazotos P, Vasileiou E, Perraki M (2020) Elevated groundwater concentrations of arsenic and chromium in ultramafic environments controlled by seawater intrusion, the nitrogen cycle, and anthropogenic activities; the case of the Gerania Mountains, NE Peloponnese, Greece. Appl Geochem 121:104697

Pi K, Wang Y, Xie X, Su C, Ma T, Li J, Liu Y (2015) Hydrogeochemistry of co-occurring geogenic arsenic, fluoride and iodine in groundwater at Datong Basin, northern China. J Hazard Mater 300:652–661

Piper AM (1944) A graphic procedure for the geo-chemical interpretation of water analysis. USGS Groundw Earth Space Sci 300:652–661

Pourret O, Hursthouse A (2019) It’s time to replace the term “Heavy Term” with “Potentially Toxic Elements” when reporting environmental research. Int J Environ Res Public Health 16(22):4446

Pourret O, Bollinger J, Hursthouse A (2021) Heavy metal: a misused term? Acta Geochimica 40(3):466–471
Ripa LW (1993) A half-century of community water fluoridation in the United States: review and commentary. J Public Health Dent 53(1):17–44

Sarma DRR, Rao SLN (1997) Fluoride concentrations in ground waters of Visakhapatnam, India. Bull Environ Contam Toxicol 58(2):241–247

Saxena V, Ahmed S (2003) Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environ Geol 43(6):731–736

Schlug E, Lottermoser BG (2013) Fertilizer-derived uranium and its threat to human health. Environ Sci Technol 47(6):2433–2434

Schoeller (1965) Hydrodynamical karst (ecoulementedemmagusinemen). Actes Colloques doublonik 1 AIHS et UNESCO 3–20

Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568

Smedley PL, Zhang M, Zhang G, Luo Z (2003) Mobilisation of arsenic and other trace elements in fluvialacustrine aquifers of the Huhhot Basin, Inner Mongolia. Appl Geochem 18(9):1453–1477

Swift Bird K, Navarre-Sitchler A, Singha K (2020) Hydrogeological controls of arsenic and uranium dissolution into groundwater of the Pine Ridge Reservation, South Dakota. Appl Geochem 114:104522

Wen D, Zhang F, Zhang E, Wang C, Han S, Zheng Y (2013) Arsenic, fluoride and iodine in groundwater of China. J Geochem Explor 135:1–21

Weng T, Liu C, Kao Y, Hsiao SS (2017) Isotopic evidence of nitrogen sources and nitrogen transformation in arsenic-contaminated groundwater. Sci Total Environ 578:167–185

World Health Organization (WHO) (2017) Guidelines for drinking water quality: fourth edition incorporating the first addendum. World Health Organization, Geneva

Wu G, Feng Z, Yang J, Wang Z, Zhang L, Guo Q (2006) Tectonic setting and geological evolution of Mohe basin in Northeast China. Oil Gas Geol 27(4):528–535 (in Chinese)

Wu G, Jie J, Luo J, Kelly SD, Nostrand JV, Lowe K, Mehnhorn T, Carroll S, Boonchayanant B, Löffler FE, Watson D, Kemner KM, Zhou J, Kitanidis PK, Kostka JE, Jardine PM, Criddle CS (2010) Effects of nitrate on the stability of uranium in a bioreduced region of the subsurface. Environ Sci Technol 44(13):5104–5111

Wu Y, Wang Y, Xie X (2014) Occurrence, behavior and distribution of high levels of uranium in shallow groundwater at Datong basin, northern China. Sci Total Environ 472:809–817

Xiao J, Jin Z, Zhang F, Wang J (2012) Major ion geochemistry of shallow groundwater in the Qinghai Lake catchment, NE Qinghai-Tibet Plateau. Environ Earth Sci 67(5):1331–1344

Yadav SK, Ramanathan AL, Kumar M, Chidambaram S, Gautam YP, Tiwari C (2020) Assessment of arsenic and uranium co-occurrences in groundwater of central Gangetic Plain, Uttar Pradesh, India. Environ Earth Sci 79(6):154–167

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.