Insights into the Evolution of Neoteny from the Genome of the Asian Icefish *Protosalanx chinensis*

HIGHLIGHTS
- Generated chromosome-level genome of the Asian icefish *Protosalanx chinensis*
- Larval features present in adult *P. chinensis* (neoteny)
- Identified genes underlying icefish neoteny, including an adult cartilaginous skeleton
- Valuable resource for wet-lab and genome research on icefishes
Insights into the Evolution of Neoteny from the Genome of the Asian Icefish Protosalanx chinensis

Jie Zhang, Jiwei Qi, Fanglei Shi, Hujuan Pan, Meng Liu, Ran Tian, Yuepan Geng, Huaying Li, Yujie Qu, Jinping Chen, Inge Seim, and Ming Li

SUMMARY

Salangids, known as Asian icefishes, represent a peculiar radiation within the bony fish order Protacanthopterygii where adult fish retain larval characteristics such as a cartilaginous endoskeleton and cartilaginous ossification throughout life. Here, we report a de novo genome of Protosalanx chinensis, the most widely distributed salangid lineage. The P. chinensis genome assembly is more contiguous and complete than a previous assembly. We estimate that P. chinensis, salmons, trouts, and pikes diverged from a common ancestor 185 million years ago. A juxtaposition of other fish genomes revealed loss of the genes encoding ectodysplasin-A receptor (EDAR), SCPP1, and four Hox proteins and likely lack of canonical fibroblast growth factor 5 (FGF5) function. We also report genomic variations of P. chinensis possibly reflecting the immune system repertoire of a species with a larval phenotype in sexually mature individuals. The new Asian icefish reference genome provides a solid foundation for future studies.

INTRODUCTION

Bony vertebrates develop a mineralized endoskeleton from a cartilaginous larval scaffold (endochondral ossification), whereas chondrichthysans (chimeras, sharks, skates, and rays) retain a cartilaginous endoskeleton throughout life (Hirasawa and Kuratani, 2015). The two bony fish lineages, lobe-finned fishes (lungfishes and coelacanthas) and ray-finned fishes, are collectively also known as teleosts, derived from the Greek teleios + osteon, “complete bone” (Brazeau and Friedman, 2015). A peculiar radiation is observed in order Osmeriformes of Protacanthopterygii, a teleost superorder that also includes Esociformes (e.g., pikes) and Salmoniformes (e.g., salmons and trouts). Osmeriformes comprises the six genera (~17 species) family Salangidae of short-lived (lifespan ~12 months; sexual maturity at 7 months of age), morphologically similar fishes endemic to East Asia and mainly distributed in China (Zhang et al., 2007). Members of Salangidae are known by many colloquial names (e.g., Asian icefishes, salangids, whitefishes, and noodlefishes) (Roberts, 1984). Adult Asian icefishes are small, transparent, and scaleless. They possess several larval features, including a cartilaginous endoskeleton and notochords throughout life (Nelson, 2006; Wu and Lin, 1965; Roberts, 1984). Such morphological and structural variants, or “developmental deviations,” are thought to be of great significance in fish (Wu and Lin, 1965). The present study aimed to explore the genetic features the enigmatic Asian icefish Protosalanx chinensis (Figure 1A). P. chinensis is one of the most ecologically plastic Asian icefish species (Roberts, 1984; Kang et al., 2015) and has the broadest geographical distribution (China, Korea, and Vietnam) (Kang et al., 2015). Freshwater stocks of P. chinensis occur in the inland lakes, reservoirs, and out-flowing rivers in China, whereas marine stocks are distributed in estuarine and coastal areas in east Asia (Zhang et al., 2007). We report an improved genome assembly and transcriptomes of P. chinensis and identify genomic variations that may be associated with its unusual features.

RESULTS AND DISCUSSION

Genome Assembly and Annotation

By integrating PacBio technology, 10X Genomics linked-read sequencing, and Illumina short-read sequencing, we constructed a 484.1 Mb P. chinensis genome assembly with a contig N50 size of 103 kb and a scaffold N50 size of 5.1 Mb (Tables S1–S3, Figures S1A and S1B). Our long-read assembly is superior to a previously published assembly (genome size 525 Mb; contig N50 17.2 kb, scaffold N50 1.16 Mb).
The *P. chinensis* genome has an average GC content of 47.25%, higher than most other sequenced fishes (Table S4, Figures S1C and S1D). We mapped short-insert (250–500 bp) reads to the *P. chinensis* genome and found that 97.89% could be aligned (Table S5). The *P. chinensis* genome contains 31.97% repeat elements, the majority (10.77%) DNA transposons (Tables S6 and S7, Figure S1E). The assembly is of high quality, as >98% of *de novo* assembled transcripts could be mapped (Table S8). Moreover, CEGMA (Parra et al., 2007) and BUSCO (Waterhouse et al., 2017) completeness scores are 93% and 94%, respectively. The scores of the previous *P. chinensis* assembly (Liu et al., 2017) are 87% CEGMA and 85% BUSCO (Tables S9 and S10). We predicted 23,645 genes in the genome of *P. chinensis* by combining *ab initio* gene prediction, protein-based homology, and transcript-mapping strategies.

Figure 1. *P. chinensis* and a Phylogenetic Tree Showing Gene/Family Expansions/Contractions Analysis Compared with 17 Representative Fish Species

(A) Top: an adult female *P. chinensis*, an Asian icefish, collected from Chaohu lake, Anhui province. Bottom: skeletal features of *P. chinensis*. In contrast to other bony fishes, and similar to distantly related cartilaginous fishes such as the elephant fish (*Callorhinchus milii*), *P. chinensis* cannot produce a mineralized endoskeleton (e.g., neurocranium, vertebrae) from larval cartilage precursors. Prominent exoskeletal features (dermal bones, such as fin rays and teeth) of *P. chinensis* are indicated.

(B) Consensus phylogenetic tree of 18 teleost fishes. The tree was generated from 627 single-copy genes. The divergence times (million years ago; mya; shown in green) for all nodes were estimated based on the six red nodes with fossil records as calibration times and are marked in each node with error ranges. Gene family expansion events are marked in blue, and gene family contraction events in red. A gene duplication event at the base of teleosts (TGD) is indicated. The type of adult endoskeletal bone (cartilaginous or mineralized) is indicated in pink and yellow, respectively.

See also Figures S1–S3 and Tables S1–S14.

(Liu et al., 2017). The *P. chinensis* genome has an average GC content of 47.25%, higher than most other sequenced fishes (Table S4, Figures S1C and S1D). We mapped short-insert (250–500 bp) reads to the *P. chinensis* genome and found that 97.89% could be aligned (Table S5). The *P. chinensis* genome contains 31.97% repeat elements, the majority (10.77%) DNA transposons (Tables S6 and S7, Figure S1E). The assembly is of high quality, as >98% of *de novo* assembled transcripts could be mapped (Table S8). Moreover, CEGMA (Parra et al., 2007) and BUSCO (Waterhouse et al., 2017) completeness scores are 93% and 94%, respectively. The scores of the previous *P. chinensis* assembly (Liu et al., 2017) are 87% CEGMA and 85% BUSCO (Tables S9 and S10). We predicted 23,645 genes in the genome of *P. chinensis* by combining *ab initio* gene prediction, protein-based homology, and transcript-mapping strategies.
The gene length in *P. chinensis* assembly averages 8,530 kb. Average exon and intron sizes are 0.17 and 0.91 kb, respectively, similar to other teleost fish. Non-coding RNA annotation revealed 95 rRNA, 1,382 tRNA, 1,327 miRNA, and 1,025 snRNA genes. *Phylogenetic Placement of* *P. chinensis* Protosalanx is a monotypic genus, with reported species in addition to *P. chinensis* (e.g., *P. hyalocranius* and *P. anderssoni*) attributed to reports of *P. chinensis* under different species names and misclassification with other Asian icefishes (Roberts, 1984). *P. hyalocranius* and *P. chinensis* are synonyms (Zhang et al., 2007). Thus, the previously reported (Liu et al., 2017) Asian icefish genome of *P. hyalocranius* is the same species sequenced in our study. By examining 627 single-copy gene families from 18 sequenced fish genomes, we generated a phylogenetic tree in agreement with the fossil record (Benton et al., 2009; Bian et al., 2016; Schartl et al., 2013; Yang et al., 2016) (Figure 1B). The phylogeny places Osmeriformes (*P. chinensis*) as a sister order to Salmoniformes (*Salmo salar*) and Esociformes (*Esox lucius*). The divergence time between these orders was estimated to be about 185.5 million years ago (mya), the Jurassic period (Figures 1Ba n dS3; Table S14).

Molecular Basis for Bone and Scale Formation

P. chinensis belongs to the bony fishes (Osteichthyes), but its endoskeleton is composed of cartilage (Figure S4). In this sense, it is more similar to cartilaginous fishes such as sharks. In order to understand the genetic mechanism underlying the cartilaginous skeleton of *P. chinensis*, we next identified genes involved in bone formation and maintenance from a set of 166 genes (Venkatesh et al., 2014). We found that *P. chinensis* possesses intact orthologs for most genes involved in bone formation (Table S15). However, genes encoding matrix Gla protein (*MGP*) and osteocalcin (*BGLAP*, also known as bone Gla protein), and several secretory calcium-binding phosphoproteins (SCPPs) are absent in *P. chinensis*. *MGP* and osteocalcin are important regulators of calcium metabolism and skeletal development (Kawasaki et al., 2009). *MGP* and osteocalcin control bone mineralization, whereas SCPP genes have crucial functions in the mineralization of bone, dentin, enamel, and enamelon (Kawasaki and Weiss, 2003). The SCPP gene family arose by gene duplication from a common ancestor, *SPARCL1*. The SCPP family has two subclasses: acidic SCPPs and Pro/Gln (P/Q)-rich SCPPs (Kawasaki, 2009, 2011). Interrogation of the *P. chinensis* genome and transcriptomes showed that it has two acidic SCPP genes (PARCL1 and SPP1) and four P/Q-rich SCPP genes (SCPP2, SCPP5, SCPP9, and FA93E10) (Figure 2A). We found three copies of SCPP2 located on different
 Loss of Hox Cluster Ca Genes in Distantly Related Fish Species with a Larval Phenotype

Homeobox (Hox) genes are highly conserved transcription factors organized into chromosomal clusters (Mallo, 2018). Extensive Hox gene loss (10 genes) was recently reported in two species of the Southeast Asian dwarf minnow genus Paedocypris (P. caribunculus and P. micromegethes) (Malmstrom et al., 2018). Similar to P. chinensis, adult fish in this genus retain larval features (developmental truncation). Four of 62 Hox genes are pseudogenized in P. chinensis (validated by PCR and Sanger sequencing) (Figure 3; Table S17). Two of the genes are also lost in Paedocypris (HOXCa5 and HOXCa3a) and are located in the same Hox cluster (HOXCa). These genes are expressed in the neural tube of fish embryos (Davis and Stellwag, 2010; le Pabic et al., 2009; Lyon et al., 2013). P. chinensis (Roberts, 1984) and Paedocypris (Kottelat et al., 2006) have a roofless skull (posterior portions are open throughout life); however, we are not aware of studies that have examined the effect of HOXCa5 and HOXCa3a loss on the development of the skeletal system of teleost fish. An assignment of function, and whether HOXCa5 acts alone or in concert with HOXCa3a, awaits further investigation.

No Canonical Fibroblast Growth Factor 5 in P. chinensis

The gene family history analysis software CAFE (Computational Analysis of gene Family Evolution) cannot identify families created after the most recent common ancestor of the analyzed species (De Bie et al., 2006), that is, gene families that are lineage specific and created in a particular lineage and that may contribute to unique traits (Martin et al., 2010). We identified homologous gene families across 18 fish species using OrthoMCL (Li et al., 2003). When we compared the gene families of 18 fish species (see Figure 1B), we identified 86 single-copy gene families unique to P. chinensis (Figure S6; Table S18). Pfam (El-Gebali et al., 2019) and BLAST (Johnson et al., 2008) searches revealed that one of these gene families contain a fibroblast growth factor (FGF) domain (Pfam PF00167) with sequence similarity to FGF5. Further manual inspection of the genome assembly and Sanger sequencing of PCR amplicons showed that P. chinensis has two distinct FGF5 gene types (Figure 4A). A three-exon ortholog to FGF5 to the other fish species was found on scaffold189 (i.e., the canonical P. chinensis FGF5 gene, denoted FGF5A). An FGF5 gene tree reflected the expected phylogenetic relationship between species (Figure S7). In total, we detected 13 additional copies of FGF5 in P. chinensis (Data S1). Intron sizes of the duplicates ranged from 53 to 6,313 bp. Our data provide an estimate for the number of FGF5 duplicates in P. chinensis; there is a possibility that our analyses did not recover all copies. To determine whether the P. chinensis FGF5 duplicates are transcribed, we interrogated 14.14Gb RNA sequencing data from a whole animal. Although the number of reads matching FGF5 was low (2–12 reads), we identified reads corresponding to the exon-intron junction of FGF5A, as well as several gene duplicates (Table S19). Therefore, we conclude that P. chinensis FGF5 duplicates can be transcribed. All P. chinensis FGF5 genes, including the canonical P. chinensis FGF5, would encode scaffolds) in the P. chinensis genome. Further analysis of gene synteny—comparing P. chinensis, fugu (T. rubripes), and zebrafish (D. rerio) genomes—revealed that SCPP4, SCPP3A, SCPP3B, SCPP3C, SCPP6, SCPP7, and SCPP8 are absent in the P. chinensis genome (Figure 2A). SCPP1 sequence was identified in a highly syntenic region. However, only two of eight exons could be identified, and we could not detect its expression, indicating that it is a pseudogene. We found that two other species with cartilaginous skeletons, the elephant fish (Callorhinus miliii) (Venkatesh et al., 2014) and ocean sunfish (Mola mola) (Pan et al., 2016), have also lost SCPP genes. Loss of SCPP1 or SCPP5, or both, may result in a scaleless phenotype in bony fishes. A scaleless three-spine stickleback (Gasterosteus aculeatus) has intact SCPP1 but lacks SCPP5, a scaleless electric eel (Electrophorus electricus) (Gallant et al., 2014) has SCPP5 but lost SCPP1; and a scaleless channel catfish (Ictalurus punctatus) has lost both SCPP5 and SCPP1 (Liu et al., 2016). The gene encoding the ectodysplasin-A receptor (EDAR) has deletions in the signal peptide and extracellular regions in P. chinensis (Figure 2B). Similarly, the gene lacks a signal peptide in the scaleless channel catfish (Ictalurus punctatus) (Kellogg, 1975) and cavefish (Sinocyclocheilus asanshuiensis) (Yang et al., 2016), and EDAR mutations in the gene exon region lead to complete scale loss in medaka (Kondo et al., 2001) and zebrafish (Harris et al., 2008). To complement the genome analysis, we profiled the P. chinensis transcriptome at four development stages (pharyngula, hatching, larva, and adult). The expression of most genes involved in ossification showed different levels among the stages. At the adult stage, highly expressed genes included proteoglycans and bone differentiation gene families (Figure S5; Table S16). Furthermore, although SCPP2, SCPP5, SCPP9, and F93E10 are intact in P. chinensis, their expression is low at all developmental stages. Taken together, we speculate that the cartilaginous skeleton of P. chinensis is manifested by various gene variations, with loss of EDAR and SCPP emerging as the leading cause of complete scale loss.
C-terminally truncated peptides missing three to eleven of the highly conserved β strands involved in the interaction between FGF5 and its receptor (see Mohammadi et al., 2005) (Figure 4B). Interestingly, the P. chinensis FGF5 duplicates are conceptually similar to FGF5-short (also known as FGF5-S), a mammalian exon 2-deleted isoform that encodes a peptide that prevents FGF1R activation by wild-type FGF5 (Daverio et al., 2017; He et al., 2016; Higgins et al., 2014; Ozawa et al., 1998). FGF5 is broadly expressed in embryonic, but not adult, tissues of vertebrates. FGF5 and its receptor play a role in zebrafish development, including neural development during the transition from a larva to an adult (Leerberg et al., 2019; Vemaraju et al., 2012). It is also plausible that FGF5 is required for scale development, given that there is evidence to suggest that shared development pathways regulate the scales of bony fishes and the hair of mammals. For example, EDAR (see above section) regulates hair development in mammals and adult structures such as scales and fins in fish (Aman et al., 2018; Brunson and Patton, 2018). Similarly, FGF5 is a regulator of hair growth in mammals (Daverio et al., 2017; He et al., 2016; Higgins et al., 2014; Ozawa et al., 1998). We speculate that a blunted FGF5 axis contributes to the retention of larval features by P. chinensis but appreciate the need for further studies.

Figure 3. Phylogeny of Hox Gene Clusters of Six Teleosts
Overview of the Hox gene clusters of Anguilla anguilla (European eel) (Minegishi et al., 2005), Danio rerio (zebrafish) (Bian et al., 2016), Paedocypris carunculus (an Asian dwarf minnow; common name yet to be assigned) (Malmstrom et al., 2018), Protosalanx chinensis (Asian icefish), Salmo salar (Atlantic salmon) (Mungpakdee et al., 2008), and Takifugu rubripes (fugu) (Bian et al., 2016). Each horizontal black line refers to a Hox cluster. Solid rectangles represent complete HoxA (red), HoxB (orange), HoxC (green), and HoxD (blue) genes, whereas hollow rectangles indicate pseudogenes or partial genes. Paralogs generated by TGD (a teleost whole-genome duplication event) are denoted “a” and “b,” whereas paralogs produced by lineage-specific SGD (a salmonid whole-genome duplication event) are denoted “a” and “b.” See also Table S17.
Contraction of Immune System Genes

Fish larvae have a poorly developed immune system (Vadstein et al., 2013). We found no evidence of positive selection of immune-associated genes, or the skeletal system and other gene ontologies and pathways, in *P. chinensis* (Table S20). In order to gain additional insights into the immune system of *P. chinensis*, we performed gene family gain-and-loss analysis using CAFE (De Bie et al., 2006) and observed four expanded and 69 contracted gene families in *P. chinensis* (Figure 1B; Tables S21 and S22). The contracted gene families include the immune signaling pathways NOD-like receptor signaling ($\times 10^{-5}$), autoimmune thyroid disease ($\times 10^{-46}$), NF-kappa β signaling ($\times 10^{-40}$), and B cell (antigen) receptor signaling ($\times 10^{-45}$). *P. chinensis* and other teleosts have a similar number of genes in most immune system signaling pathways, except for three pathways.

![Diagram](image)

Figure 4. Fibroblast Growth Factor 5 Gene Copy Number Increase and a Unique Amino Acid Change of the Fish Pigmentation Gene Mitochondrial Inner Membrane Protein 17 in *P. chinensis*

(A) One of the 86 gene families gained by *P. chinensis* include fibroblast growth factor 5-like genes. *P. chinensis* has two distinct FGF5 gene types: a three-exon ortholog to FGF5 of other fish species was found on scaffold189 (denoted FGF5A), whereas duplicated genes are part of a novel gene (FGF5B to FGF5N).

(B) The domain structure of human, zebrafish, and *P. chinensis* FGF5-derived proteins is shown. The canonical FGF5 domain (shown in blue) has a highly conserved core region with 12 β strands (shown by green bars) within the core region of FGF family polypeptides. If translated, all *P. chinensis* FGF5 genes (denoted FGF5A to FGF5N) would encode a C-terminally truncated FGF5 form.

(C) Partial alignment of mitochondrial inner membrane protein 17 (MPV17) sequences in vertebrates. MPV17 transmembrane domain four is shaded in green. An amino acid change (Gln142Val) unique to *P. chinensis* is highlighted in red. Representative species from fishes (zebrafish, *Danio rerio*; icefish, *Protosalanx chinensis*; Australian ghostshark, *Callorhinchus milii*; sea lamprey, *Petromyzon marinus*), amphibians (western clawed frog, *Xenopus tropicalis*), reptiles (mainland tiger snake, *Notechis scutatus*), birds (chicken, *Gallus gallus*), and mammals (human, *Homo sapiens*) are shown. See also Figures S6 and S7 and Tables S18 and S19 and Data S1.

Contraction of Immune System Genes

Fish larvae have a poorly developed immune system (Vadstein et al., 2013). We found no evidence of positive selection of immune-associated genes, or the skeletal system and other gene ontologies and pathways, in *P. chinensis* (Table S20). In order to gain additional insights into the immune system of *P. chinensis*, we performed gene family gain-and-loss analysis using CAFE (De Bie et al., 2006) and observed four expanded and 69 contracted gene families in *P. chinensis* (Figure 1B; Tables S21 and S22). The contracted gene families include the immune signaling pathways NOD-like receptor signaling ($\times 10^{-5}$), autoimmune thyroid disease ($\times 10^{-46}$), NF-kappa β signaling ($\times 10^{-40}$), and B cell (antigen) receptor signaling ($\times 10^{-45}$). *P. chinensis* and other teleosts have a similar number of genes in most immune system signaling pathways, except for three pathways.
where *P. chinensis* has a lower number of genes: complement and coagulation cascades (KEGG pathway map04610; 61 genes), antigen processing and presentation (map04612; 61 genes), and intestinal immune network for IgA production (map04672; 28 genes) (Table S23).

Toll-like receptors (TLRs) of the innate immune system recognize various pathogen-associated molecular patterns (PAMPs) to activate downstream immune responses (Rebl and Goldammer, 2018). The TLR multi-gene family comprises a large and variable number (10–15) of genes, and there are substantial sequence differences within and between vertebrate groups, including within teleost fish species (Rebl and Goldammer, 2018; Roach et al., 2005). *P. chinensis* is no exception. For example, TLR4 is highly divergent in zebrafish and is lost in most teleost species, including, albeit distant, sister taxa to *P. chinensis* (i.e., salmon, trout) (Rebl and Goldammer, 2018; Roach et al., 2005). Based on homology alignment and RefSeq annotations, 11 TLR genes in five sub-families were identified in the *P. chinensis* genome: TLR1, TLR2, TLR2-1, TLR2-2, TLR3, TLR5, TLR7, TLR8, TLR9, TLR21, and TLR22 (Figure 5A). We assessed the expression of *P. chinensis* TLR genes by RNA sequencing from four different development stages (pharyngula, hatching, larva, and adult). TLR2-3, TLR3, TLR5, and TLR7 were the most highly expressed TLR genes at all stages, suggesting that they play essential roles in the innate immune system of *P. chinensis* (Figure 5B).

The immune response is costly (energy demanding) and comes with life-history trade-offs. Consequently, some small, short-lived animals may have a suppressed or poorly developed immune system and employ terminal investment strategies, i.e., produce as many offspring as possible before an inevitable death (Brace et al., 2017). We counted the genes immune-related families. Short-lived fish species *P. chinensis* (lifespan ~1 year) and the African turquoise killifish (*Nothobranchius furzeri*; lifespan ~4 months) have a
smaller number of genes in the major histocompatibility complex (MHC) I and II of the adaptive immune system and the NOD-like receptor family of the innate immune system (Figure 5C; Table S24). T cells are at the center of the adaptive immune system. The MHC I machinery allows activation of CD8+ T cells upon bacterial infection. IFN-γ (IFNG), TNF-α (TNFA), and interleukin 7 (IL-7) are absent in P. chinensis (Figure 5D), whereas IFNG and IL-7 are absent in N. furzeri (Figure S8). Genes encoded by T helper cells (Tl, or CD4+) that recognize MHC class II molecules (IL-2, IL-4, IL-5, IL-13, IL-21, IL-22, IL-23, TSLP, FOXP3, and NKG2D) are lost in both P. chinensis and N. furzeri (and CD40 and CD40L are also lost in P. chinensis) (Figures 5D and S8). We speculate that the loss of central immune-related genes and lack of associated immunological innovation, as observed in longer-lived teleost (e.g., Malmstrom et al., 2016), reflects the annual life-history strategy of P. chinensis and N. furzeri. However, given the plasticity of the vertebrate immune system, phylogenetic distances, and the limited number of species examined in this study, larger-scale studies are warranted.

A Unique Amino Acid Change in the Fish Pigmentation Gene MPV17 of P. chinensis
One of the striking features of Asian icefishes is their transparent body, appearing white postmortem (Roberts, 1984). Loss of pigmentation, a complete loss of pigmentation of either skin and eyes (albinism) or skin alone (leucism), is observed in various fish. These include cave-dwelling species (Borowsky, 2018), as well as lines of zebrafish (D’Agati et al., 2017; Krauss et al., 2013; Tsetskhladze et al., 2012) and medaka (Fukamachi et al., 2001). Melanin-based pigmentation genes are highly conserved in vertebrates (Hubbard et al., 2010), offering an opportunity for comparative genomics analyses. We employed the P. chinensis genome assembly and whole-body transcriptome data to examine various genes previously associated with pigmentation loss in fish, including SLC45A2 (also known as AIM1 or MATP) (Fukamachi et al., 2001; Tsetskhladze et al., 2012), OCA2 (Gross and Wilkens, 2013; Protas et al., 2006; Yang et al., 2016), LYST (Link et al., 2009), and MPV17 (D’Agati et al., 2017; Krauss et al., 2013; Yang et al., 2016). MPV17 (mitochondrial inner membrane protein 17) encodes a mitochondrial channel-forming protein (Calvo et al., 2006; Spinazzola et al., 2006). MPV17 transmembrane domain missense mutations are pathogenic in mammals and cause mitochondrial disorders with which affected individuals die at a young age (El-Hattab et al., 2018; Kim et al., 2016; Lollgen and Weiher, 2015). Mutations of the gene appear to be better tolerated in fish, where they also affect melanin-containing cells (Borowsky, 2018; D’Agati et al., 2017; Martorano et al., 2019). In P. chinensis MPV17, we found an amino acid substitution (Q142V) in the terminal fourth transmembrane domain. The glutamine residue is conserved in all other vertebrates examined, from sea lamprey to humans, species with a common ancestor approximately 500 mya (Smith et al., 2013) (Figure 4C). MPV17 transcripts are expressed but have unique changes in transparent zebrafish lines (D’Agati et al., 2017; Krauss et al., 2013) and the cavefish Sinocyclocheilus anshuiensis (Yang et al., 2016). A 19-bp deletion of MPV17 coding exons 1 and 2 likely results in pigmentation loss in zebrafish (D’Agati et al., 2017; Krauss et al., 2013). Cavefish in genus Sinocyclocheilus have two copies of MPV17, one of which has an in-frame exon deletion and codes for a protein lacking transmembrane four in the albino S. anshuiensis (Yang et al., 2016). Similarly, P. chinensis MPV17 is transcribed (data not shown). The P. chinensis MPV17 mutation, a change from a polar glutamine to a non-polar valine, is predicted to affect protein stability by I-Mutant 2.0 (Capriotti et al., 2005) and protein function by PANTHER-PSEP (Tang and Thomas, 2016), PolyPhen2 (Adzhubei et al., 2010), and SIFT (Kumar et al., 2009). Missense residue mutations in transmembrane domains may cause membrane protein disassembly (Ng et al., 2012). Taken together, in particular, given the highly conserved nature of MPV17 Gln142 in vertebrates, we speculate that the unique amino acid change in P. chinensis contributes to its ostensibly transparent, pigmentless, skin phenotype by encoding a non-functional or dysfunctional protein in the melanin synthesis pathway.

Limitations of the Study
There are currently no genome assemblies of other species in the neotenic Asian salmoniform family Salangidae (salangids; Asian icefishes), somewhat limiting the scope of current comparative genomic analyses. The neotenic salamander the Mexican axolotl (Ambystoma mexicanum) has been studied in the laboratory for centuries and has amassed a significant body of research (including population genomic studies of wild-type and mutant strains) that can be supported by comparative genome research (Crowner et al., 2019; Nowoshilow et al., 2018; Smith et al., 2019). In contrast, no such studies of Asian icefishes exist. Fortunately, as the number of high-quality fish genomes is increasing, with more than 10,000 species projected (including several species of order Osmeriformes) to be sequenced by 2030 (Fan et al., 2019), the genetic basis of enigmatic but less studied species, such as Asian icefishes, is sure to be realized. Karyotype data are not available for P. chinensis or other Asian icefish species, but future efforts will include such data and
provide chromosome-level genome assemblies. Finally, although gene loss was called after examining the genome assembly and transcriptome data (assembled from short reads), additional methods, such as de novo assembly of long-read RNA sequencing reads (e.g., on the PacBio or Nanopore platforms) (de la Rubia et al., 2020), should be performed to further validate our results. Our improved P. chinensis genome assembly provides a valuable resource and steppingstone toward this goal. With a new genome assembly in hand, the use of P. chinensis as a laboratory animal can proceed in earnest.

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ming Li (lim@ioz.ac.cn).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

The NCBI BioProject accession number for the P. chinensis genome project reported in this paper is PRJNA604876. The accession numbers for FGF5 gene PCR amplicon sequences are GenBank: MT416578–MT416594. The accession numbers for Hox gene clusters gene PCR amplicon sequences are GenBank: MT394613–MT394616.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101267.

ACKNOWLEDGMENTS

The project was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31000000, XDA19050200, and XDA19050202), the National Natural Science Foundation of China (31670383), the GDAS Special Project of Science and Technology Development (2019GDASYL-0302007), and the Planning Funds for Science and Technology of Guangdong Province (2016B070701016). I.S. is supported by the National Natural Science Foundation of China (31950410545), the Priority Academic Program Development of Jiangsu Higher Education Institutions (IS), and a Young Foreign Experts in Economic and Technological Sector grant. R.T. is a recipient of a National Natural Science Foundation of China postdoctoral fellowship (31900310). We appreciate valuable suggestions from Professors Xuming Zhou, Hanlin Wu, Yong Ni, and Chun-guang Zhang. The authors thank Mr. Xinming Feng, Mr. Jianhua Gu, Mr. Feng Lin, Mr. Zhong Yi, Ms. Kechong Qi, and Mr. Yuehai Zhao, who either helped us with sampling or provided fertilized eggs from Hongze Lake, and Dr. Zhijin Liu, Ms. Xinxin Tan, Mr. Liye Zhang, and Mr. Ziming Wang for assistance with data analysis.

AUTHOR CONTRIBUTIONS

M.L., J.Z., I.S., and J.C. supervised the study and managed the project. J.Z., J.Q., and F.S. collected samples. F.S., I.S., H.P., H.L., R.T., Y.G., Y.Q., M.L., and J.C. performed genome sequencing, assembly, annotation, and genetic data analyses. I.S., F.S., J.Q., J.Z., H.L., H.P., and J.C. wrote the drafted manuscript. I.S., F.S., J.Q., J.Z., H.L., H.P., J.C., and M.L. discussed the data. I.S., J.Q., and F.S. finished the final manuscript with contributions from M.L., J.Z., I.S., and J.C. All authors contributed to data interpretation.

DECLARATION OF INTERESTS

The authors declare no competing interests.
REFERENCES

Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S., and Sunyaev, S.R. (2010). A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249.

Aman, A.J.; Fulbright, A.N., and Parichy, D.M. (2018). Wnt/beta-catenin regulates an ancient signaling network during zebrafish scale development. Elife 7, e37001.

Benton, M.J.; Donoghue, P.C.J., and Asher, R.J. (2018). Wnt/beta-catenin regulates an ancient loss of function mutations. Anim. Genet. 49, 101267, July 24, 2020

Borowsky, R. (2018). Cavefishes. Curr. Biol. 28, R60–R64.

Brace, A.J.; Lajeunesse, M.J.; Ardia, D.R.; Hawley, D.M.; Adelman, J.S.; Buchanan, K.L.; Fasli, J.M.; Grindstaff, J.L.; Matson, K.D., and Martin, L.B. (2017). Costs of immune responses are related to host body size and lifespan. J. Exp. Zool. A Ecol. 327, W306–W310.

Capriotti, E.; Fariselli, P., and Casadio, R. (2005). I-identified of human mitochondrial disease mutation from the protein sequence or structure. PLoS Comput. Biol. 11, 101267, July 24, 2020

Carr, S.A., and Mootha, V.K. (2006). Systematic ancestry. Elife 7, 248–250.

Chen, C.; Hu, Y.; Ravi, V.; Kuznetsova, I.S.; Shen, X.; Mu, X.; Sun, Y.; You, X.; Li, J.; Li, X., et al. (2016). The Asian arowana (Scleropages formosus) genome provides new insights into the evolution of an early lineage of teleosts. Sci. Rep. 6, 24,501.

De Bie, T., Cristiani, N., Demuth, J.P., and Hahn, M.W. (2006). CAPE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271.

de la Rubia, I., Indu, J.A.; Carbonell, S.; Lagarde, J.; Alba, M.M., and Eyres, E. (2020). Reference-free reconstruction and quantification of transcriptomes from long-read sequencing. bioRxiv. https://doi.org/10.1101/2020.02.08.999492.

El-Gebali, S.; Mistry, J.; Bateman, A.; Eddy, S.R.; Luciani, A.; Potter, S.C., Qureshi, M.; Richardson, L.L.; Salazar, G.A.; Smart, A., et al. (2019). The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432.

El-Hattab, A.W.; Wang, J.; Dai, H.; Almannai, M.; Stauffer, C.; Affaldelh, M.; Gambello, M.J.; Prasun, P.; Raza, S.; Lyons, H.J., et al. (2018). MPV17-related mitochondrial DNA maintenance defect: new cases and review of clinical, biochemical, and molecular aspects. Hum. Mutat. 39, 461–470.

Fan, G.; Song, Y.; Huang, X.; Yang, L.; Zhang, S.; Zhang, M.; Yang, X.; Chang, Y.; Zhang, H.; Li, Y., et al. (2019). Initial data release and announcement of the Fish10K: fish 10,000 genomes project. bioRxiv. https://doi.org/10.1101/780259.

Fukamachi, S., Shimada, A., and Shima, A. (2001). Mutations in the gene encoding B, a novel transporter protein, reduce melanin content in medaka. Nat. Genet. 28, 381–385.

Gallant, J.R.; Traeger, L.L.; Volkeng, J.D.; Moffitt, H.; Chen, P.H.; Novina, C.D.; Phillips, G.N.; Jr., Anand, R.; Wells, G.B.; Pinch, M., et al. (2014). Genomic basis for the convergent evolution of electric organs. Science 344, 1522–1525.

Gross, J.B., and Wilkins, H. (2013). Albinism in phylogenetically and geographically distinct populations of Astyanax cavelis arises through the same loss-of-function Oca2 allele. Heredity 111, 122–130.

Harris, M.P.; Rohner, N.; Schwarz, H.; Perathoner, S.; Konstantinidis, P., and Nusslein-Volhard, C. (2006). Paedocypris, a new genus of Southeast Asian cyprinid fish with the world's smallest vertebrate. J. Exp. Zool. 308, 1301–1319.

Huang, X.; Smith, M., and Yoo, H.W. (2016). MPV17 mutations in patients with hepatocerebral mitochondrial DNA depletion syndrome. Mol. Genet. Metab. Rep. 8, 74–76.

Ikezawa, S.; Kuwahara, Y.; Kondo, M.; Narsue, K.; Mitani, H.; Wakamatsu, Y.; Ozato, K.; Asakawa, S.; Shimizu, N., and Shima, A. (2001). The medaka rs-3 locus required for scale development encodes ectodysplasin-A receptor. Curr. Biol. 11, 1202–1206.

Kim, J.; Kang, E.; Kim, Y.; Kim, J.M., Lee, B.H.; Murayama, K.; Kim, G.H., Choi, I.H., Kim, K.M., and Yoo, H.W. (2016). MPV17 mutations in patients with hepatocerebral mitochondrial DNA depletion syndrome. Mol. Genet. Metab. Rep. 8, 74–76.

Kondo, S.; Kuwahara, Y.; Kondo, M.; Narsue, K.; Mitani, H.; Wakamatsu, Y.; Ozato, K.; Asakawa, S.; Shimizu, N., and Shima, A. (2001). The medaka rs-3 locus required for scale development encodes ectodysplasin-A receptor. Curr. Biol. 11, 1202–1206.

Kottelat, M.; Britz, R., Hui, T.H., and Witte, K.E. (2006). Paedocypris, a new genus of Southeast Asian cyprinid fish with a remarkable sexual dimorphism, comprises the world's smallest vertebrate. Proc. Biol. Sci. 273, 895–899.

Krauss, J.; Astinidis, P.; Astinides, P.; Frohnhöfer, H.G., Walderich, B., and Nusslein-Volhard, C. (2013). transparent, a gene affecting stripe formation in Zebrafish, encodes the mitochondrial protein Mpv17 that is required for indophosphate survival. Biol. Open. 2, 703–710.

Kumar, P.; Henikoff, S., and Ng, P.C. (2009). Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081.

le Pabic, P., Stellwag, E.J., and Scemama, J.L. (2009). Embryonic development and skeletogenesis of the pharyngeal jaw apparatus in the cichlid Nile tilapia (Oreochromis niloticus). Anat. Rec. (Hoboken) 292, 1780–1800.

Leenberg, D.M.; Hopton, R.E., and Draper, B.W. (2019). Fibroblast growth factor receptors function Redundantly during zebrafish embryonic development. Genetics 212, 1301–1319.

Li, L.; Stoeckert, C.J., and Roos, D.S. (2003). OrthoMCL: identification of orthologous groups for...
Mohammadi, M., Olsen, S.K., and Ibrahimi, O.A. (2005). Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev. 16, 107–137.

Mungripee, S., See, H.C., Angotzi, A.R., Dong, X., Akalin, A., and Chourrout, D. (2008). Differential evolution of the 13 Atlantic salmon FGF clusters. Mol. Biol. Evol. 25, 1333–1343.

Nelson, J.S. (2006). Fishes of the World, Fourth Edition (John Wiley).

Ng, D.P., Poulsen, B.E., and Deber, C.M. (2012). Membrane protein misassembly in disease. Biochem. Biophys. Acta 1817, 1115–1122.

Nowoshilow, S., Schlossing, S., Fei, J.F., Dahl, A., Pang, A.W.C., Pippel, M., Winkler, H., Hastie, A.R., Young, G., Roscito, J.G., et al. (2018). The axolotl genome and the evolution of key tissue formation regulators. Nature 550, 50–55.

Ozawa, K., Suzuki, S., Asada, M., Tomooka, Y., Li, A.J., Yoneda, A., Komi, A., and Imamura, T. (1998). An alternatively spliced fibroblast growth factor (FGF)-5 mRNA is abundant in brain and translates into a partial agonist/antagonist for FGF-5 neurotrophic activity. J. Biol. Chem. 273, 29262–29271.

Pan, H., Yu, H., Ravi, V., Li, C., Lee, A.P., Lian, M.M., Tay, B.H., Brenner, S., Wang, J., Yang, H., et al. (2016). The genome of the largest bony fish, ocean sunfish (Mola mola), provides insights into its fast growth rate. Gigascience 5, 36.

Peri, G., Bradnam, K., and Korff, I. (2007). CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067.

Protas, M.E., Hersey, C., Kochanek, D., Zhou, Y., Rebl, A., and Goldammer, T. (2018). Under control: the innate immunity of fish from the “inhibitors’ perspective. Fish Shellfish Immunol. 77, 328–349.

Roach, J.C., Glusman, G., Rowen, L., Kaur, A., Purnell, M.K., Smith, K.D., Hood, L.E., and Aderem, A. (2005). The evolution of vertebrate Toll-like receptors. Proc. Natl. Acad. Sci. U S A 102, 9571–9576.

Roberts, T.R. (1984). Skeletal anatomy and classification of the neotenic Asian Salmoniform superfamily Salangidae (icefishes or noodle fishes). Proc. Calif. Acad. Sci. 43, 179–220.

Schartl, M., Walter, R.B., Shen, Y., García, T., Catchen, J., Amores, A., Braasch, I., Chalopin, D., Voll, J.N., Lesh, K.P., et al. (2013). The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits. Nat. Genet. 45, 567–572.

Smith, J.J., Kuraku, S., Holt, C., Sauka-Spengler, T., Jiang, N., Campbell, M.S., Yandell, M.D., Manousaki, T., Meyer, A., Bloom, O.E., et al. (2013). Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat. Genet. 45, 415–421, 421e1–2.

Smith, J.J., Timosheskaya, N., Timosheskyy, V.A., Keinath, M.C., Hardy, D., and Voss, S.R. (2019). A chromosome-scale assembly of the axolotl genome. Genome Res. 29, 317–324.

Spinazzola, A., Viscomi, C., Fernandez-Vizarra, E., Carrara, F., D’Adamo, P., Calvo, S., Marsano, R.M., Donini, C., Wehner, H., Strisciuglio, P., et al. (2006). MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion. Nat. Genet. 38, 570–573.

Tang, H., and Thomas, P.D. (2016). PANTHER- PSEP: predicting disease-causing genetic variants using position-specific evolutionary preservation. Bioinformatics 32, 2230–2232.

Tsetsishlawze, Z.R., Canfield, V.A., Ang, K.C., Wentzell, S.M., Reid, K.P., Berg, A.S., Johnson, S.L., Kawakami, K., and Cheng, K.C. (2012). Functional assessment of human coding mutations affecting skin pigmentation using zebrafish. PLoS One 7, e47398.

Vadstein, O., Bergh, O., Gatesoupe, F.J., Galindo-Villegas, J., Mulero, V., Picchietti, S., Scapigliati, G., Makridis, P., Olsen, Y., and Dierckx, K. (2013). Microbiology and immunology of fish larvae. Rev. Aquaculture 5, S1–S25.

Vemaraju, S., Kantarci, H., Padanad, M.S., and Riley, B.B. (2012). A spatial and temporal gradient of Fgf differentially regulates distinct stages of neural development in the zebrafish inner ear. PLoS Genet. 8, e1003068.

Venkatesh, B., Lee, A.P., Ravi, V., Muruga, A.K., Lian, M.M., Swann, J.B., Ohta, Y., Flajnik, M.F., Sutoh, Y., Kasahara, M., et al. (2014). Elephant shark genome provides unique insights into gnathostome evolution. Nature 505, 174–179.

Waterhouse, R.M., Seppey, M., Simao, F.A., Manni, M., Ioannidis, P., Kloutetchnik, G., Kivrventseva, E.V., and Zdobnov, E.M. (2017). BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548.

Wu, X., and Lin, R. (1965). Occurrence of neoteny in Hemisalanx and its evolutionary significance. Acta Hydrobiol. Sin. 5, 239–245.

Yang, J., Chen, X., Bai, J., Fang, D., Qiu, Y., Jiang, W., Yuan, H., Bian, C., Lu, J., He, S., et al. (2016). The Sinocyclocheilus cavefish genome provides insights into cave adaptation. BMC Biol. 14, 1–13.

Zhang, J., Li, M., Xu, M.Q., Takita, T., and Wei, F.W. (2007). Molecular phylogeny of icefish Salangidae based on complete mtDNA cytochrome b sequences, with comments on estuarine fish evolution. Biol. J. Linn. Soc. 91, 325–340.
Supplemental Information

Insights into the Evolution

of Neoteny from the Genome

of the Asian Icefish Protosalanx chinensis

Jie Zhang, Jiwei Qi, Fanglei Shi, Huijuan Pan, Meng Liu, Ran Tian, Yuepan Geng, Huaying Li, Yujie Qu, Jinping Chen, Inge Seim, and Ming Li
Supplemental Figure S1. *P. chinensis* genome assembly assessment, Related to Figure 1.
(A) Distribution of 17-mer frequency of filtered Illumina reads mapped to the *P. chinensis* genome. The y-axis shows frequency (in millions); the x-axis, k-mer depth.

(B) Depth distribution of fraction bases. Short-insert reads were mapped to the *P. chinensis* genome assembly using bwa82. The x-axis shows sequencing depth, the y-axis the fraction of bases.

(C) The GC content of the *P. chinensis* genome. The x-axis represents GC content; the y-axis average sequencing depth. We used a 50 kb non-overlapping sliding window. A lower depth ‘island’ on the scatter plot is due to sex chromosomes with half the sequencing depth of autosomes.

(D). GC content in the genomes of *P. chinensis* and six other fish species

Pch, *Protosalanx chinensis*; Dre, *Danio rerio*; Elu, *Esox lucius*; Gac, *Gasterosteus aculeatus*; Ola, *Oryzias latipes*; Xma, *Xiphophorus maculatus*; Tru, *Takifugu rubric*.

(E) Divergence distribution of transposable elements families in the *P. chinensis* genome. The divergence rate was calculated based on an alignment between RepeatMasker-annotated repeat copies and the consensus sequence in the repeat library.

(F). Orthology delineation among the protein-coding gene family repertoires of *P. chinensis* and 18 other fish species. Pch, *Protosalanx chinensis*; Gac, *Gasterosteus aculeatus*; Dre, *Danio rerio*; Loc, *Lepisosteus oculatus*; Gmo, *Gadus morhua*; Tru, *Takifugu rubripes*; Nfu, *Nothobranchius furzeri*; Elu, *Esox lucius*; Oni, *Oreochromis niloticus*; Xma, *Xiphophorus maculatus*; Ola, *Oryzias latipes*; Ssa, *Salmo salar*; Sfo, *Scleropages formosus*; Aro, *Anguilla rostrata*; Lch, *Latimeria chalumnae*; Hco, *Hippocampus comes*; Ipu, *Ictalurus punctatus*; Cmi, *Callorhinchus milii*.
Supplemental Figure S2. A comparison of teleost gene parameters. Characteristic of predicted protein-coding genes in *P. chinensis* genome, Related to Figure 1. Note that mRNA includes untranslated regions (UTRs).
Supplemental Figure S3. Phylogenetic relationship of *P. chinensis* with 17 other fish species.

Related to Figure 1.

(A) A maximum likelihood tree generated using RaxML (100 bootstrap replicates) from a 627 single-copy orthologs (coding sequence, CDS) concatenated into a 1,414,350 bp alignment.

(B) Estimated divergence times of 18 fish species. The numbers on nodes represent the divergence times from present (million years ago, Mya).
Supplemental Figure S4. *P. chinensis* transparent bone stained specimens, Related to Figure 2.

After alizarin red and alcian blue staining, endoskeleton of *P. chinensis* is composed of cartilage stained with alcian blue.
Supplemental Figure S5. Heat map of the expression of 276 involved in the regulation of bone at four *P. chinensis* development stages, Related to Figure 2.

Expression of 276 genes in regulation of bone at four development stages (pharyngula, hatching, larva, and adult). Numbered suffixes (e.g., pharyngula1 and pharyngula2) indicate biological replicates. Mark “#” after gene symbol (e.g., RAC1#1) indicate numbered gene copy number. Gene expression values (TMM-normalized RPKM) were scaled across all samples for each gene. The gene set was obtained from (Venkatesh *et al.*, 2014). The picture is split into two columns.
Supplemental Figure S6. Gene family profiles of 18 fish species reveals that 86 single-copy gene families are unique to P. chinensis, Related to Figure 4.

Each column represents a species. Gene family presence is indicated in green; absence in white. Pch, *Protosalanx chinensis*; Gac, *Gasterosteus aculeatus*; Dre, *Danio rerio*; Loc, *Lepisosteus oculatus*; Gmo, *Gadus morhu*; Tru, *Takifugu rubripes*; Nfu, *Nothobranchius furzeri*; Elu, *Esox lucius*; Oni, *Oreochromis niloticus*; Xma, *Xiphophorus maculatus*; Ola, *Oryzias latipes*; Ssa, *Salmo salar*; Sfo,
Scleropages formosus; Aro, Anguilla rostrata; Lch, Latimeria chalumnae; Hco, Hippocampus comes;
Ipu, Ictalurus punctatus; Cmi, Callorhinchus milii. Clustering was performed using Euclidean distance and average linkage parameters.
Supplemental Figure S7. **FGF5 phylogenetic tree and multiple sequence alignment of fish FGF5 proteins**, Related to Figure 4.

The tree was generated from FGF5 protein sequences. The numbers above branches are ML bootstrap proportion. Protein sequences were aligned using MAFFT.
Supplemental Figure S8. Overview of the *N. furzeri* Toll-like receptor family, Related to Figure 5.

Schematic diagram summarizing genes related to different T-cell lineages in *N. furzeri*. Genes absent in the genome assembly are indicated in red.
Supplemental Table S1. Summary of genome sequencing strategy, Related to Figure 1.

Paired-end libraries	mate distance	Total data (Gb)	Read length (bp)	Sequence coverage (x)
Illumina	250	26.03		53.77
	350	10.67		22.04
	500	14.59	150	30.14
	2K	32.86		67.88
	5K	12.08		24.95
	10K	17.74		36.64
PacBio	—	10.57	—	21.83
10X Genomics	—	81.92	150	169.22
Total	—	206.46	—	426.48
Supplemental Table S2. Estimated genome size of *P. chinensis* from k-mer analysis, Related to Figure 1.

k-mer	No. k-mers	k-mer Depth	Genome Size (Mbp)	Revised Genome Size (Mbp)	Heterozygous Ratio (%)	Repeat (%)
17	38,879,079,724	78	498.45	484.10	0.38	35.43
Supplemental Table S3. *P. chinensis* genome assembly summary statistics, Related to Figure 1.

	Length (bp)	Number		
	Contig (bp)	Scaffold(bp)	Contig	Scaffold
Total	444,877,745	466,695,321	20,856	1,776
Max	2,137,849	44,188,582	-	-
Number>=2000	-	-	16,493	1,087
N50	103,007	5,188,763	876	23
N60	60,712	4,029,931	1,443	33
N70	34,288	2,574,500	2,425	48
N80	17,547	1,626,991	4,260	71
N90	8,371	794,666	7,943	110
Supplemental Table S4. DNA base composition of the *P. chinensis* genome, Related to Figure 1.

	Number (bp)	% of genome
A	117,329,580	25.14
T	117,357,538	25.14
C	105,042,150	22.51
G	105,148,477	22.53
N	21,817,576	4.67
Total (bp)	466,695,321	100
GC	210,190,627	47.25
Supplemental Table S5. Alignment information of reads mapping to the *P. chinensis* genome,

Related to Figure 1.

Reads	Mapping rate	97.89%
	Average sequencing depth	105.77×
	Coverage	92.99%
Genome	Coverage at least 4×	92.27%
	Coverage at least 10×	91.71%
	Coverage at least 20×	91.10%
SNP	Heterozygosis	656,664
	Percent (%)	0.16534
	Homology	19,671
	Percent (%)	0.00164
Supplemental Table S6. Proportion of repeats in the *P. chinensis* genome estimated by various methods, Related to Figure 1.

Type	Repeat size (bp)	% of genome
TRF	60,936,119	13.06
RepeatMasker	123,163,090	26.39
RepeatProteinMask	13,882,973	2.97
Total	149,204,790	31.97
Supplemental Table S7. Statistic of repeat content in the *P. chinensis* genome, Related to Figure 1.

Repeatmasker (de novo + Repbase)	TE Proteins	Combined TEs				
Length (bp)	**% in Genome**	**Length** (bp)	**% in Genome**	**Length** (bp)	**% in Genome**	
DNA	48,992,395	10.50	3,856,759	0.83	50,280,383	10.77
LINE	28,924,483	6.20	7,805,974	1.67	30,957,635	6.63
SINE	5,878,163	1.26	0	0.00	5,878,163	1.26
LTR	15,363,100	3.29	2,261,950	0.48	15,787,959	3.38
Other	0	0.00	0	0.00	0	0.00
Satellite	13,959,798	2.99	0	0.00	13,959,798	2.99
Simple repeat	29,638,635	6.35	0	0.00	29,638,635	6.35
Unknown	4,635,326	0.99	0	0.00	4,635,326	0.99
Total	123,163,090	26.39	13,882,973	2.97	125,206,960	26.83
Supplemental Table S8. Assessment of *P. chinensis* genome assembly by mapping of de novo assembled transcripts, Related to Figure 1.

Dataset	Number	Total length (bp)	Sequences Covered by assembly (%)	with >90% sequence in one scaffold	with >50% sequence in one scaffold		
				Number	Percent (%)	Number	Percent (%)
>0bp	63,983	44,981,816	98.040	59,229	92.679	62,365	97.471
>200bp	63,983	44,981,816	98.040	59,299	92.679	62,365	97.471
>500bp	26,362	33,379,243	99.560	24,270	92.064	26,083	98.942
>1k	12,418	23,668,832	99.903	11,261	90.683	12,333	99.316
>2k	3,939	11,805,674	99.949	3,464	87.941	3,911	99.289
Supplemental Table S9. CEGMA (Core Eukaryotic Genes Mapping Approach) analysis of *P. chinensis* assemblies, Related to Figure 1.

Species	Reference	Complete	# Proteins	Score (%)	Complete + Partial	# Proteins	Score (%)
Protosalanx	this study		230	92.74		235	94.76
chinensis	Liu *et al.* (2017)		209	84.27		216	87.10
Supplemental Table S10. BUSCO (Benchmarking Universal Single-Copy Orthologs) analysis of *P. chinensis* assemblies, Related to Figure 1.

Species	Reference	Size (Mbp)	Gene number	BUSCO notation assessment results
Protosalanx chinensis	This study	466.70	23,587	C:93.7%[S:89.6%,D:4.1%],F:2.7%,M:3.6%,n:4584
Protosalanx chinensis	Liu et al.	536.56	19,884	C:85.6%[S:79.8%,D:5.8%],F:3.5%,M:10.9%,n:4584
Supplemental Table S11. Functional annotation of protein coding genes in the *P. chinensis* genome, Related to Figure 1.

	Number	Percent (%)
Total	23,645	-
Swiss-Prot	21,757	92.0
NR	22,891	96.8
KEGG	19,864	84.0
all	21,299	90.1
InterPro		
Pfam	18,987	80.3
GO	15,558	65.8
Annotated	22,936	97.0
Supplemental Table S12. Summary of the predicted protein-coding genes in *P. chinensis* genome, Related to Figure 1.

Note that the final gene set includes untranslated (UTR) regions.

Gene set	Number	Average transcript length (bp)	Average CDS length (bp)	Average exons per gene	Average exon length (bp)	Average intron length (bp)							
De novo													
Augustus	27,786	5,123.06	1,124.17	6.3	178.44	752.31							
Geneid	27,556	11,428.85	1,213.68	6.0	202.28	2,026.79							
Genscan	21,391	15,855.64	1,759.49	9.8	179.54	1,601.94							
GlimmerHMM	84,488	4,703.75	680.05	3.8	178.96	1,418.51							
SNAP	66,823	7,053.04	820.44	5.5	149.17	1,397.18							
Homology													
Danio rerio	21,052	7,802.52	1,515.81	8.1	188.09	890.60							
Oryzias latipes	22,166	6,470.85	1,334.08	7.2	186.35	834.00							
Oreochromis niloticus	22,250	7,392.61	1,452.00	7.9	184.56	865.03							
Gasterosteus aculeatus	22,689	6,821.71	1,334.68	7.5	178.78	848.65							
Takifugu rubripes	20,467	7,572.05	1,456.79	8.0	182.77	877.30							
Cynoglossus semilaevis	20,645	8,144.30	1,572.06	8.4	187.66	890.88							
Species	RNASeq		Cufflinks		PASA		EVM		PASA		Final set		
-------------------	--------	---------	-----------	---------	------	---------	-----	---------	------	---------	-----------	---------	
Tetraodon nigroviridis	19,276	7,630.55	1,445.56	8.2	176.21	858.61		41,385	11,009.96	2,757.41	10.1	273.73	909.52
Larimichthys crocea	21,743	7,832.77	1,531.19	8.2	186.01	871.36		26,639	7,428.80	1,365.34	8.4	162.64	819.93
Salmo salar	26,808	6,669.82	1,417.00	7.1	199.53	860.88		30,832	7,011.59	1,261.33	7.2	175.72	930.75
RNASeq													
Cufflinks	41,385	11,009.96	2,757.41	10.1	273.73	909.52		30,187	7,327.46	1,318.74	7.5	175.63	923.22
PASA	26,639	7,428.80	1,365.34	8.4	162.64	819.93		30,832	7,011.59	1,261.33	7.2	175.72	930.75
Final set	23,645	8,529.84	1,509.75	8.7	173.09	909.08							
Supplemental Table S13. Summary of predicted RNA genes and their characteristics, Related to Figure 1.

Type	Copy	Average length (bp)	Total length (bp)	% of genome
miRNA	1,327	127.20	168,800	0.036169
tRNA	1,382	75.64	104,534	0.022399
rRNA	95	249.18	23,672	0.005072
18S	29	331.69	9,619	0.002061
rRNA	28S	265.02	12,191	0.002612
5.8S	4	148.25	593	0.000127
5S	16	79.31	1,269	0.000272
snRNA	520	175.74	91,387	0.019582
snRNA	CD-box	106.92	18,818	0.004032
snRNA	HACA-box	240.58	55,574	0.011908
snRNA	splicing	143.31	14,044	0.003009
Supplemental Table S14. Divergence time between species, Related to Figure 1.

Mya denotes million years ago.

Taxon A	Taxon B	Time-range (Mya)
Gasterosteus aculeatus	Takifugu rubripes	97-151
Scleropages formosus	Lepisosteus oculatus	374-390
Nothobranchius furzeri	Oryzias latipes	128-153
Gadus morhua	Gasterosteus aculeatus	139-153
Latimeria chalumnae	Danio rerio	416-422
Callorhinchus milii	Latimeria chalumnae	422-463
Supplemental Table S16. Expression of genes involved in scale formation in *P. chinensis*, Related to Figure 2.

Transcripts were assessed by interrogating raw RNA-seq reads and a Trinity assembly.

Gene ID	Gene symbol	Name	Transcript detected?
evm.model.scaffold110.338	*EDA*	ectodysplasin A	✓
evm.model.scaffold5.21_evm.	*EDA*	ectodysplasin A	✓
evm.model.scaffold5.24	*EDAR*	ectodysplasin A receptor	✗
evm.model.scaffold93.206	*EDAR*	ectodysplasin A receptor	✓
evm.model.scaffold22.181	*FGFR1A*	fibroblast growth factor receptor 1a	✓
evm.model.scaffold171.50	*LEF1*	lymphoid enhancer-binding factor 1	✓
evm.model.scaffold34.272	*TCF7*	transcription factor 7 (T-cell specific, HMG-box)	✓
evm.model.scaffold1622.4	*LAMB3*	laminin, beta 3	✓
evm.model.scaffold159.552	*COL7A1*	collagen, type VII, alpha 1	✓
Supplemental Table S19. Summary of BLAST of FGF5 exon sequences against raw RNA-seq reads from mixed *P. chinensis* tissue, Related to Figure 4.

Sequences were obtained from a multiple sequence alignment (see Supplemental Data 1). Raw RNA-seq reads (150 bp) were queried using a local instance of sequenceserver v1.0.11 and various regions of *P. chinensis* FGF5 genes: the 142 bp 3’ region of exon 1, the 142 bp 5’ region of exon 2, and their exon intron junction (82 bp of the 3’ region of exon 1 and 47 bp of exon 2). Note that FGF5A exon 2 is distinct from exon 2 of FGF5B to FGF5N.

gene	exon 1	exon 2	exon 1-exon 2 junction
FGF5A	4	12	2
FGF5B	0	0	0
FGF5C	0	0	0
FGF5D	12	0	4
FGF5E	8	4	4
FGF5F	2	4	4
FGF5G	12	4	4
FGF5H	0	4	0
FGF5I	0	0	0
FGF5J	0	0	0
FGF5K	0	0	0
FGF5L	0	0	0
FGF5M	0	0	0
FGF5N	0	0	0
Supplemental Table S21. KEGG enrichment of gene families contracted in *P. chinensis*, Related to Figure 5.

MapID	MapTitle	P-value
map04621	NOD-like receptor signaling pathway	9.65E-218
map05133	Pertussis	6.17E-168
map04740	Olfactory transduction	2.30E-107
map05164	Influenza A	2.59E-100
map05322	Systemic lupus erythematosus	4.83E-66
map04640	Hematopoietic cell lineage	2.61E-63
map05320	Autoimmune thyroid disease	5.82E-60
map05416	Viral myocarditis	1.23E-54
map05323	Rheumatoid arthritis	2.45E-49
map04064	NF-kappa B signaling pathway	5.68E-48
map04662	B cell receptor signaling pathway	3.76E-45
map05162	Measles	3.86E-37
map04672	Intestinal immune network for IgA production	1.41E-35
map05310	Asthma	1.58E-35
map05140	Leishmaniasis	2.04E-31
map04145	Phagosome	4.53E-31
map05330	Allograft rejection	1.35E-28
map05150	Staphylococcus aureus infection	2.32E-28
map04650	Natural killer cell mediated cytotoxicity	4.42E-27
map05202	Transcriptional misregulation in cancer	1.11E-22
map05143	African trypanosomiasis	1.60E-22
map05340	Primary immunodeficiency	1.60E-22
map04666	Fc gamma R-mediated phagocytosis	9.62E-21
map05146	Amoebiasis	8.77E-20
map05414	Dilated cardiomyopathy	2.00E-18
map04020	Calcium signaling pathway	8.52E-18
map04664	Fc epsilon RI signaling pathway	1.17E-17
map04072	Phospholipase D signaling pathway	2.75E-12
map05169	Epstein-Barr virus infection	8.48E-12
map05152	Tuberculosis	7.58E-11
map04530	Tight junction	8.15E-06
map04514	Cell adhesion molecules (CAMs)	2.65E-05
map05130	Pathogenic Escherichia coli infection	5.67E-05
map05144	Malaria	9.38E-05
map05332	Graft-versus-host disease	0.0001135
map04940	Type I diabetes mellitus	0.0003764
map05321	Inflammatory bowel disease (IBD)	0.0004392
MapID	Pathway	p-value
--------	--	----------
map04612	Antigen processing and presentation	0.0022873
map04151	PI3K-Akt signaling pathway	0.0022942
map04540	Gap junction	0.0028647
map04360	Axon guidance	0.0138875
Supplemental Table S22. Gene Ontology enrichment of gene families contracted in *P. chinensis*.

Related to Figure 5.

GO_ID	GO_Term	GO_Class	P-value	Adjusted P-value
GO:0006915	apoptotic process	BP	0.002995896	0.009705454
GO:0005488	Binding	MF	5.13E-20	1.99E-18
GO:0030246	carbohydrate binding	MF	4.57E-25	2.84E-23
GO:0007155	cell adhesion	BP	1.83E-11	1.68E-10
GO:0007049	cell cycle	BP	0.001330008	0.004809681
GO:0007166	cell surface receptor signaling pathway	BP	7.54E-26	5.87E-24
GO:0034622	cellular macromolecular complex assembly	BP	1.03E-06	5.70E-06
GO:0044430	cytoskeletal part	CC	4.28E-13	5.11E-12
GO:0015074	DNA integration	BP	1.83E-11	1.68E-10
GO:0007186	G-protein coupled receptor signaling pathway	BP	5.77E-21	2.56E-19
GO:0005525	GTP binding	MF	6.11E-09	4.63E-08
GO:0003924	GTPase activity	MF	0.008251113	0.021746576
GO:0020037	heme binding	MF	0.000103518	0.000487787
GO:0005833	hemoglobin complex	CC	0.00123812	0.00463922
GO:0007156	homophilic cell adhesion	BP	5.24E-18	1.25E-16
GO:0043232	intracellular non-membrane-bounded organelle	CC	0.000520827	0.002131278
GO:0044446	intracellular organelle part	CC	0.001858952	0.006569705
GO:0043167	ion binding	MF	3.56E-13	4.42E-12
GO:0005506	iron ion binding	MF	0.000706633	0.002713122
GO:0046872	metal ion binding	MF	1.26E-16	2.60E-15
GO:0005874	Microtubule	CC	4.22E-07	2.38E-06
GO:0003774	motor activity	MF	8.13E-11	7.23E-10
GO:0016459	myosin complex	CC	5.37E-14	7.95E-13
GO:0003956	NAD(P)+-protein-arginine	MF	1.76E-07	1.09E-06
GO:0017111	nucleoside-triphosphatase activity	MF	0.013076943	0.032277217
GO:0000786	Nucleosome	CC	0.007361972	0.019737702
GO:0006334	nucleosome assembly	BP	0.014565938	0.03511633
GO:0004984	olfactory receptor activity	MF	3.14E-135	9.77E-133
GO:0019825	oxygen binding	MF	0.003111349	0.009880125
GO:0015671	oxygen transport	BP	0.00221137	0.007484359
GO:0006471	protein ADP-ribosylation	BP	3.17E-06	1.73E-05
GO:0005515	protein binding	MF	1.61E-11	1.57E-10
GO:0006461	protein complex assembly	BP	0.000371058	0.001580808
GO:0051258	protein polymerization	BP	2.71E-07	1.62E-06
GO:0032550	purine ribonucleoside binding	MF	0.016652344	0.038875768
GO:0035639	purine ribonucleoside triphosphate binding	MF	0.016410404	0.038875768
GO:0032555	purine ribonucleotide binding	MF	0.017907593	0.039780438
GO:0004872	receptor activity	MF	2.77E-15	5.06E-14
GO:0042981	regulation of apoptotic process	BP	0.003208658	0.009880125
GO:0003964	RNA-directed DNA polymerase activity	MF	0.022639537	0.047897251
GO:0007165	signal transduction	BP	0.00609246	0.017069867
GO:0005200	structural constituent of cytoskeleton	MF	1.47E-10	1.20E-09
GO:0001594	trace-amine receptor activity	MF	6.36E-08	4.50E-07
GO:0046914	transition metal ion binding	MF	0.00626301	0.017391036
GO:0004888	transmembrane signaling receptor activity	MF	3.58E-22	1.86E-20
Supplemental Table S23. Number of genes related to KEGG immunity pathways in \textit{P. chinensis} and eight fish species, Related to Figure 5.

Bold denotes lower number of genes in \textit{P. chinensis}

Immune pathway	\textit{P. chinensis}	\textit{D. rerio}	\textit{I. punctatus}	\textit{T. rubripes}	\textit{T. nigroviridis}	\textit{L. crocea}	\textit{M. zebra}	\textit{O. latipes}	\textit{X. maculatus}	
Map04640 Hematopoietic cell lineage	71	71	97	83	70	90	127	96	75	
Map04610 Complement and coagulation cascades										
Map04610 Platelet activation	202	171	176	182	195	204	197	192	189	
Map04620 Toll and Imd signaling pathway	66	49	52	46	55	53	56	49	49	
Map04624 Toll-like receptor signaling pathway	110	97	106	103	97	122	142	100	102	
Map04621 NOD-like receptor signaling pathway	175	157	213	172	165	212	244	177	192	
Map04622 RIG-I-like receptor signaling pathway	76	63	71	68	68	86	85	66	65	
Map04623 Cytosolic DNA-sensing pathway	53	42	51	40	43	54	66	46	50	
Map04650 Natural killer cell mediated cytotoxicity	126	98	132	121	107	131	146	117	132	
Map04660 T cell receptor signaling pathway	156	125	131	125	140	149	144	127	125	
Map04612 Antigen processing and presentation										
Map04658 Th1 and Th2 cell differentiation	106	98	101	108	102	114	133	108	99	
Map04659 Th17 cell differentiation	137	112	133	123	124	137	159	125	118	
Map04657 IL-17 signaling pathway	104	81	102	94	85	114	119	95	95	
Map	Pathway	105	87	101	97	109	108	108	100	94
--------	---	-----	-----	-----	-----	-----	-----	-----	-----	-----
Map04662	B cell receptor signaling pathway									
Map04664	Fc epsilon RI signaling pathway	92	78	72	85	98	91	82	72	75
Map04666	Fc gamma R-mediated phagocytosis	149	119	127	129	150	134	139	126	136
Map04670	Leukocyte transendothelial migration	202	147	182	196	194	232	212	207	207
Map04672	Intestinal immune network for IgA production									
		28	41	62	37	38	43	73	39	33
Map4062	Chemokine signaling pathway	247	199	219	206	219	237	268	215	236
Total		2327	1985	2336	2185	2194	2473	2721	2232	2233
Supplemental Table S24. Overview of the number of genes in four immunity families in *P. chinensis* and seven fish species, Related to Figure 5.

Species	MHCI	MHCII	NLRCs	C3 family
P. chinensis	5	7	11	3
E. lucius	11	16	34	7
N. furzeri	4	2	11	5
S. salar	17	11	33	17
D. rerio	30	18	52	10
O. latipes	15	9	28	7
O. niloticus	55	34	90	7
Supplemental Data 1. Duplicated fibroblast growth factor 5 genes in Protosalanx chinensis, Related to Figure 4.

(A) Overview of P. chinensis FGF5 genes. A neighbor joining tree was generated from conserved sites of a multiple sequence alignment using MAFFT. FGF5A denotes the canonical FGF5 gene (exon 1 in brown; exon 2 in green; exon 3 in yellow). Duplicated FGF5 genes (FGF5B to FGFBN) have a novel exon 2 (shown in blue).

(B) Alignment of proteins encoded by fibroblast growth factor 5 genes in P. chinensis and related species in superorder Protacanthopterygii, zebrafish, and human. Homo sapiens denotes human; Danio rerio, zebrafish, Salmo salar, Atlantic salmon; Esox lucius, Northern pike. All other sequences are P. chinensis genome scaffolds or PCR amplicons. Scaffold189 is the P. chinensis FGF5A, the ortholog to teleost FGF5, while the sequences below indicate various duplicated FGF5 genes with a novel exon 2 [see (B)]. The FGF5 domain is indicated by dark blue line underneath the alignment (reside 85 to 219). The location of the 12 -strands are indicted by green boxes. Four residues shared by all FGF genes are indicated in red. Annotations derived from (Mohammadi et al., 2005).

(C) Multiple sequence alignment of P. chinensis FGF5 genes. MAFFT (using the G-INS-i Iterative refinement method) was used to generate multiple sequence alignments of PCR amplicons and genome scaffolds. Exon 1, common to all FGF5 genes, is highlighted in yellow. Alignments from exon 1 onwards exclude FGF5A, which employs a different exon 2. The aligned sequence corresponds to the region amplified by PCR of genomic DNA (see transparent Methods). Part of the intron has been omitted.
Species	Peptide	Peptide Length	Beta1	Beta2	Beta3	Beta4	Beta5	Beta6	Beta7	Beta8	Beta9	Beta10	Beta11	Beta12
Homo sapiens	121		LEIFAVSQ											
Danio rerio	75		LEIFAVSQ											
Salmo salar	87		LEIFAVSQ											
Esox lucius	85		LEIFAVSQ											
scaffold189	72		LEIFAVSQ											
scaffold32	72		DMST---											
scaffold34	72													
scaffold482_DNA														
1-800-1														
1-800-7.seq														
1-800-2.seq														
1-800-6	72		DMST---											
1-800-5	72		DMST---											
1-800-9.qi	47													
1-800-5.SEQ	47													
1-800-6.seq	47													
1-500-1.TOPO-F	72													
1-500-5.TOPO-F	72													
1-500-2.TOPO-F	72													
1-500-7.TOPO-F	72													
1-500-9.TOPO-F	72													
1-500-4.TOPO-F	72													
1-500-8.TOPO-F	72													
1-500-10.TOPO-F	72													
1-500-3.TOPO-F	72													

Homo sapiens	181		TEKTGREWYA											
Danio rerio	135		NHRTGREWYA											
Salmo salar	147		NHRTGREWYA											
Esox lucius	145		NHRTGREWYA											
scaffold189	129													
scaffold32														
scaffold34														
scaffold482_DNA														
1-800-1														
1-800-7.seq														
1-800-2.seq														
1-800-6														
1-800-9.qi														
1-800-5.SEQ														
1-800-6.seq														
1-500-1.TOPO-F														
1-500-5.TOPO-F														
1-500-2.TOPO-F														
1-500-7.TOPO-F														
1-500-9.TOPO-F														
1-500-4.TOPO-F														
1-500-8.TOPO-F														
1-500-10.TOPO-F														
1-500-3.TOPO-F														
<The 5940bp sequences of intron is omitted here>
I

D

E

F

H

B

J

G

N

C acttctctgagggagcaagggccagccagctcaagtccagct

M

ctctcctcccctcccctttactcctctcctccttcact

M

ctctcctcccctcccctttactcctctcctccttcact

M

ctctcctcccctcccctttactcctctcctccttcact

M

ctctcctcccctcccctttactcctctcctccttcact

L

ctctcctcccctcccctttactcctctcctccttcact

L

ctctcctcccctcccctttactcctctcctccttcact

K

ctctcctcccctcccctttactcctctcctccttcact

I

ctctcctcccctcccctttactcctctcctccttcact

D

ctctcctcccctcccctttactcctctcctccttcact

E

ctctcctcccctcccctttactcctctcctccttcact

F

ctctcctcccctcccctttactcctctcctccttcact

H

ctctcctcccctcccctttactcctctcctccttcact

B cccctcctcccctcccctcccctttactcctctcctccttcact

B cccctcctcccctcccctcccctttactcctctcctccttcact

J

ctcctcccctcccctttactcctctcctccttcact

J

ctcctcccctcccctttactcctctcctccttcact

G

ctcctcccctcccctttactcctctcctccttcact

N ccactctcccctcccctcccctttactcctctcctccttcact

C cagcccctcccctcccctttactcctctcctccttcact

[EXON 2]

M etc-------tgctttcagaccttaaacgagtacctgaaadaagggaggaccccctccct

M etc-------tgctttcagaccttaaacgagtacctgaaadaagggaggaccccctccct

M etc-------tgctttcagaccttaaacgagtacctgaaadaagggaggaccccctccct

M etc-------tgctttcagaccttaaacgagtacctgaaadaagggaggaccccctccct

M etc-------tgctttcagaccttaaacgagtacctgaaadaagggaggaccccctccct

L etc-------tgctttcagacctgaacaagagtacctgaaadaagggaggaccccctccct

L etc-------tgctttcagacctgaacaagagtacctgaaadaagggaggaccccctccct

L etc-------tgctttcagacctgaacaagagtacctgaaadaagggaggaccccctccct
L ctcctccgaggtcagatgcctccaaccagctcagtgcccatgctgagagggaccccc
L ctcctccgaggtcagatgcctccaaccagctcagtgcccatgctgagagggaccccc
K ctcctccagaggtcagatgcctccaaccagctcagtgcccatgctgagagggaccccc
I ctcctccagaggtcagatgcctccaaccagctcagtgcccatgctgagagggaccccc
D ctcctccagaggtcagatgcctccaaccagctcagtgcccatgctgagagggaccccc
E ctcctccagaggtcagatgcctccaaccagctcagtgcccatgctgagagggaccccc
F ctcctccagaggtcagatgcctccaaccagctcagtgcccatgctgagagggaccccc
H ctcctccagaggtcagatgcctccaaccagctcagtgcccatgctgagagggaccccc
B ctcctccagaggtcagatgcctccaaccagctcagtgcccatgctgagagggaccccc
B ctcctccagaggtcagatgcctccaaccagctcagtgcccatgctgagagggaccccc
J ctcctccagaggtcagatgcctccaaccagctcagtgcccatgctgagagggaccccc
J ctcctccagaggtcagatgcctccaaccagctcagtgcccatgctgagagggaccccc
G ctcctccagaggtcagatgcctccaaccagctcagtgcccatgctgagagggaccccc
N ctcctccagaggtcagatgcctccaaccagctcagtgcccatgctgagagggaccccc
C ctcctccagaggtcagatgcctccaaccagctcagtgcccatgctgagagggaccccc
**********.********* ***************
M aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta
M aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta
M aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta
M aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta
M aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta
L aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta
L aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta
L aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta
L aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta
L aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta
K aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta
I aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta
I aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta
D aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta
E aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta
F aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta
H aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta
B aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta
B aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta
J aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta
J aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta
G aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta
G aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta
N aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta
N aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta
C aggacccccaggtgtatccgatggcagacagctgcgtctgtcgaacgggagttcagatta

M gattagattaacccaaaaccagcaaccctcaaaacc--tgtattgtcttgtatcatttga
M gattagattaacccaaaaccagcaaccctcaaaacc--tgtattgtcttgtatcatttga
M gattagattaacccaaaaccagcaaccctcaaaacc--tgtattgtcttgtatcatttga
M gattagattaacccaaaaccagcaaccctcaaaacc--tgtattgtcttgtatcatttga
M gattagattaacccaaaaccagcaaccctcaaaacc--tgtattgtcttgtatcatttga
TRANSPARENT METHODS

Sample collection and identification.

The methods were carried out in accordance with the approved guidelines of the Good Experimental Practices adopted by the Institute of Zoology, Chinese Academy of Sciences (CAS). All procedures described in this study were approved by the Committee for Animal Experiments at the Institute of Zoology, Chinese Academy of Sciences. An adult male *P. chinensis* was collected from the Guanting Reservoir in Hebei province for de novo sequencing. The specimen was confirmed to be *P. chinensis* by DNA barcoding analysis [as outlined by (Ward et al., 2005)]. Specimens for transcriptome (RNA-seq) sequencing were collected from Hongze Lake, Jiangsu province. We followed the method of Kimmel (Kimmel et al., 1995) to define four development stages: the pharyngula stage, the hatching stage, larval fish stage, and the adult stage.

Genome sequencing and assembly

Genomic DNA was extracted from a whole-animal using a DNeasy Blood & Tissue Kit (QIAGEN). To sequence the *P. chinensis* genome, we employed PacBio Sequel long-read sequencing and 10X Genomics Chromium linked reads sequencing, coupled with short-read sequencing of 250bp, 350bp, 2kb, 5kb, 10kb paired-end libraries on the Illumina platform (Table S1). Pacific Biosciences SMRTbell libraries were prepared using 10 kb and 20 kb preparation protocols. The main steps for library preparation were: (1) gDNA shearing; (2) DNA damage repair; (3) blunt end-ligation with hairpin adapters from the SMRTbell Template Prep Kit 1.0 (Pacific Biosciences); (4) size selection; and (5) binding to polymerase. Sequencing was performed on a PacBio Sequel instrument with Sequel Sequencing Kit 1.2.1. A total of 10.57 Gb (21.83×) PacBio reads were generated. 10X Genomics Chromium sequencing (also known as
the Chromium Genome Solution) allows long-range sequence information to be generated on a short-read Illumina sequencer by barcoding long DNA molecules before preparation of short-read fragment DNA libraries (Zheng et al., 2016). The barcodes (also known as linked-reads) can be used to obtain ‘synthetic long reads’. A total of 81.92 Gb (169.22×) 10X Genomics linked-reads were generated. The initial assembly was generated using Allpaths-LG v44080 (Butler et al., 2008) and 250 bp, 350 bp, 2 kb, 5 kb, and 10 kb Illumina data, followed by PacBio data and gap filling using PBJelly v14.1 (English et al., 2012) and two-rounds of polishing using Pilon v1.18 (Walker et al., 2014) and Illumina reads. Finally, 10X Genomics linked-reads were used to link scaffolds using fragScaff v140324 (Adey et al., 2014). Genome completeness was assessed by mapping de novo assembled transcripts to the genome (see below), and by CEGMA v2.5 (Parra et al., 2007) and BUSCO v1.1 (Waterhouse et al., 2017) evolutionary conserved gene set analysis.

Experimental model and subject details

A broodstock of *P. chinensis* was collected from Hongze Lake, Jiangsu province. After artificial insemination, eggs were transported (at 4-10°C) to the Chinese Academy of Sciences Institute of Zoology in Beijing for incubation experiments on 7 Jan 2017. The eggs were hatched in an experimental glass tank (200-300 eggs per 3L tank), with a 12:12-hour light:dark regime. The water temperature was 10-15°C. Water changes were performed daily (70% exchanged).

Transcriptome sequencing

Total RNAs was isolated from four different development stages: the pharyngula stage, the hatching stage, larval fish stage, and the adult stage. RNA sequencing libraries were constructed using the Illumina
mRNA-Seq Prep Kit. Briefly, oligo(dT) magnetic beads were used to mRNA molecules. Paired-end libraries were sequenced on the Illumina HiSeq platform, and 150 bp paired-end reads were generated. Raw sequencing reads were filtered for base quality >15 and read length >30 bp using the Novogene-developed application ng_QC v2.0 with default parameters (i.e., L:5 -p:0.5 -N:0.1). We used TopHat v1.3.1 (Trapnell et al., 2009) to align RNA-seq reads to the genome. Gene expression was quantified as reads per kilobase of gene per million mapped reads (RPKM). RPKM values were scaled using the TMM (trimmed mean of M values; M values mean the log expression ratios) method (Robinson and Oshlack, 2010). A *P. chinensis* transcriptome was also generated (*de novo* assembled) from pooled RNA-seq samples using Trinity v2.1.1 (Haas et al., 2013) with the parameters '-ss 0.5 -jc 0 -minkmercov 2 -minglue 2'.

Estimation of genome size using k-mer method

Genome size can be estimated by k-mer frequency analysis (Liu et al., 2013). Error-corrected [NGS QC Toolkit v2.3.3 (Patel et al., 2012)] 180 bp to 270 bp Illumina genome sequencing reads (~229.86 Gb data) were used to estimate the genome size of *P. chinensis*. The distribution of 17 k-mers showed a major peak at 78-fold depth (Table S2; Figure S1A). Based on the total number of reads (38,879,079,724) and corresponding to a k-mer depth of 78, the *P. chinensis* genome size was estimated to be ~484.10Mbp using the formula ‘Genome size= kmer_Number/Peak_Depth’.

Genome assembly assessment

The *P. chinensis* assembly was evaluated by mapping Illumina short-insert library genome sequencing reads (see the section above) to the assembly using BWA v0.7.8 (Li and Durbin, 2010) (Table S5; Figure
De novo transcriptome reads were mapped to the assembly using BLAT v0.35 (Kent, 2002) (Table S8). We also employed two methods which employ core gene sets to assess genome completeness (Table S9 and S10): CEGMA v2.5 (Core Eukaryotic Genes Mapping Approach) (Parra et al., 2007) compares a set of 248 core eukaryotic genes to an assembled genome, while BUSCO v1.1 (Benchmarking Universal Single-Copy Orthologs) (Seppey et al., 2019; Simao et al., 2015) compares near-universal single-copy orthologs. To assess GC bias, we plotted the distribution of GC content against sequencing depth (Figure S1C and S1D).

Genome annotation

Repeats, including repetitive sequences and transposable elements, were identified using RepeatMasker v4.0.5 (Tarailo-Graovac and Chen, 2009) and either the RepBase vertebrate library (Bao et al., 2015) or a de novo repeat library [built using RepeatModeler] (Figure S1E). Tandem repeats were identified by searching for two or more contiguous, approximate copies of a pattern of nucleotides using Tandem Repeats Finder v407 (Benson, 1999).

Homology-based predictions, de novo predictions, and transcriptome-based prediction methods were used to annotate the protein-coding genes of *P. chinensis*. For homology-based gene prediction, protein sequences from nine other sequenced teleost genomes [*Danio rerio* (zebrafish), *Tetraodon nigroviridis* (pufferfish), *Gasterosteus aculeatus* (stickleback), *Oryzias latipes* (medaka), *Salmo salar* (salmon), *Cynoglossus semilaevis* (flatfish), *Takifugu rubripes* (fugu), *Oreochromis niloticus* (tilapia), and *Larimichthys crocea* (yellow croaker)] were used to query the *P. chinensis* genome using tBLASTn v2.2.26 (*E*-value ≤ 10⁻⁵) (Camacho et al., 2009). Next, the homologous genome sequences were aligned against the matching proteins using GeneWise V2.4.1 (Birney et al., 2004) to take into account splice site
variation. Three de novo gene prediction tools Augustus v3.1 (Stanke et al., 2006), GlimmerHMM v3.0.4 (Majoros et al., 2004), and SNAP (Korf, 2004) were employed to predict genes in the repeat-masked *P. chinensis* genome. RNA-seq reads from *P. chinensis* [whole-fish from four development stages given the small size of *P. chinensis*, several individuals were pooled for each sample type] were aligned to the genome using TopHat v2.0.11 (Trapnell et al., 2009) and Cufflinks v2.1.1 (Trapnell et al., 2014) was used to produce assembled transcripts and predict transcript structures. Data from the three prediction methods were merged into CDS models using EVM v1.1.1 (Haas et al., 2008), and untranslated (UTR) and isoforms were constructed using PASA v2.0.2 (Haas et al., 2003).

We next performed functional annotation of protein-coding genes in the *P. chinensis* genome. The predicted protein sequences of *P. chinensis* were assessed using publicly available databases – Swiss-Prot (Artimo et al., 2012), NR (non-redundant nucleotides) (O'Leary et al., 2016), KEGG (Kanehisa et al., 2017), and InterPro (Zdobnov and Apweiler, 2001) using BLASTp (Camacho et al., 2009) (*E*-value ≤ 10⁻⁵) – and the best hit for each query retained. For each gene, its Gene Ontology (GO) term(s) and Pfam accession were used to query various additional databases (ProDom, HAMAP, PANTHER, TIGRFAMs, PRINTS, PIRSF, Gene3D, COILS, PROSITE, Pfam, and SMART) (Attwood et al., 2003; Corpet et al., 2000; Falquet et al., 2002; Haft et al., 2003; Lees et al., 2014; Lupas et al., 1991; Punta et al., 2012; Schultz et al., 1998; Tania et al., 2009; Thomas et al., 2003; Wu et al., 2004). Non-coding RNA genes were also identified. The tRNAscan-SE (Lowe and Eddy, 1997) software (v1.3.1) was used to predict tRNA sequences. We aligned the *P. chinensis* genome to the rRNA sequences of *Homo sapiens* using BLASTn (*E*-value ≤ 10⁻⁵) (Camacho et al., 2009). The miRNA and snRNA genes of *P. chinensis* were extracted using v1.1rc4 Infernal (Nawrocki and Eddy, 2013) and against the Rfam database (Griffiths-Jones et al., 2005).
Orthology and phylogenomics

A total of 18 fish species, including *P. chinensis*, were selected for orthology analysis. Orthology was determined using the OrthoMCL (Li et al., 2003) pipeline. Briefly, we first filtered out redundant splice variants – retaining the longest isoform of each protein set – followed by all-against-all protein comparisons using BLASTp (Camacho et al., 2009) (E-value $\leq 10^{-5}$). High-scoring Segment Pair (HSPs) were processed by MCL v10-201 (Enright et al., 2002) to define orthologs, inparalogs, and co-orthologs. Alignments with high-scoring segment pairs (HSPs) were conjoined for each gene pair using SOLAR (Sorting Out Local Alignment Results). More than 30% coverage of the aligned region in both homologous genes was required to assign homologous gene-pairs.

To generate a phylogenetic tree, 627 single-copy ortholog nucleotide alignments (coding sequence; CDS) from 18 species (*P. chinensis, Gasterosteus aculeatus, Danio rerio, Lepisosteus oculatus, Gadus morhu, Takifugu rubripes, Nothobranchius furzeri, Esox lucius, Oreochromis niloticus, Xiphophorus maculatus, Oryzias latipes, Salmo salar, Scleropages formosus, Anguilla rostrata, Latimeria chalumnae, Hippocampus comes, Ictalurus punctatus, and Callorhinchus milii*) were concatenated into a super-alignment. Multiple alignments of coding sequences (CDS) for each ortholog group were performed using MUSCLE v3.7 (Edgar, 2004). jModelTest v2.1.2 was used to select the best substitution model by Akaike information criterion (AIC). The species tree was obtained using RAxML v704 (Stamatakis, 2014) and the GTR+GAMMA model, with 100 replicates of bootstrap analysis. Species divergence times were inferred using MCMCTree (Donoghue et al., 2009), included in PAML v4.7a (Yang, 2007), with the parameters ‘RootAge = <500 model = REV (GTR) alpha = 0.666853 clock = 3’, and the calibration points as prior [obtained from (Benson, 1999; Bian et al., 2016; Schartl et al.,]
2013; Yang et al., 2016)] are provided in (Table S14).

Expansion and contraction of gene families

We determined the expansion and contraction of gene families by comparing the cluster size differences between the of the *P. chinensis* and 17 other fish species using CAFE (Version 1.6) (De Bie et al., 2006). A random birth and death model was used to study changes of gene families along each lineage of phylogenetic tree. A probabilistic graphical model (PGM) was introduced to calculate the probability of transitions in gene family size from parent to child nodes in the phylogeny. Using conditional likelihoods as the test statistics, we calculated the corresponding *P*-values in each lineage. A *P*-value of 0.05 was used to denote families significantly expanded in the *P. chinensis* genome.

Identification of single-copy gene families gained by *P. chinensis*

We clustered paralogs and orthologs using the OrthoMCL method (Li et al., 2003) (BLASTp *E*-value ≤ 10^{-5}) and 18 sequenced fish species (*P. chinensis*, *Gasterosteus aculeatus*, *Danio rerio*, *Lepisosteus oculatus*, *Gadus morhu*, *Takifugu rubripes*, *Nathobranhichus furzeri*, *Esox lucius*, *Oreochromis niloticus*, *Xiphophorus maculatus*, *Oryzias latipes*, *Salmo salar*, *Scleropages formosus*, *Anguilla rostrata*, *Latimeria chalumnae*, *Hippocampus comes*, *Ictalurus punctatus*, and *Callorhinus milii*).

Identification of positively selected genes

Positive selection on an ORF-wide level was estimated using in-frame codon alignments and the Branch-site Unrestricted Statistical Test for Episodic Diversification (BUSTED) method implemented in HyPhy v2.5.9 (Pond et al., 2005). BUSTED requires a prior partitioning of branches into foreground and
background branches and considered to more accurately identify episodic (acting only on particular lineages) positive selection (Murrell et al., 2015; Spielman et al., 2019). In the species tree, the *P. chinensis* lineage was marked as ‘foreground’ and the rest of the fish species (*Gadus morhua, Gasterosteus aculeatus, Danio rerio, Oreochromis niloticus, Esox lucius, Oryzias latipes, Xiphophorus maculatus, and Scleropages formosus*) as ‘background’.

Prediction of bone and scale genes

Genes involved in vertebrate bone formation were obtained from (Venkatesh et al., 2014). If a gene could not be found by searching *P. chinensis* gene names and symbols, we obtained the gene (CDS and protein sequence) from a dataset of *O. latipes, G. aculeatus, T. rubripes, E. Lucius, I. punctatus, and D. rerio* and queried the *P. chinensis* genome using BLAST (Camacho et al., 2009) or GeneWise (Birney et al., 2004) [using protein sequences as query]. Predictions were also made using *ab initio* methods, such as FGENESH (Solovyev et al., 2006), when no *P. chinensis* sequence could be obtained. All predictions were manually curated.

Staining of the *P. chinensis* skeleton

Adult bones and cartilage were stained with Alizarin red and Alcian blue, respectively. Briefly, a fish specimen was fixed in formalin (10% formaldehyde), briefly dehydrated in 70% ethanol, decolorized with 3% hydrogen peroxide for 6 hours, and placed in Alcian blue for 12 hours. The specimen was dehydrated using 50% ethanol for 48 hours, and bones were next stained with 2 g/l Alizarin red and detained with 1% KOH until background stain was lost.
Hox gene analysis

Hox genes from zebrasfish, as well as Atlantic salmon (*Salmo salar*) and Northern pike (*Esox Lucius*) were used to query the *P. chinensis* genome using GeneWise v2.4.1 (Birney et al., 2004). *Hox* gene clusters were next manually curated. We performed PCR and Sanger sequencing of the following *P. chinensis* pseudogenes to rule out genome sequencing or assembly errors: *HOXB3b* (5'—AGAGATTGACCGGATGG-3' and 5'-TGATAGATGGTGCCACTGTG-3'; $T_a=56$ °C), *HOXB8b* (5'-CCTAAGTGATCTAAAGCT-3 and 5'-ATTCTACATTCTACATTT-3; $T_a=55$ °C), *HOXC3a* (5'-CCACAGACATTTAGAGGC-3 and 5'-TAAGGGCATAATCCAGTCGA-3; $T_a=55$ °C), and *HOXC5a* (5'-CCTGGATTATTTTGGGGCAGG-3 and 5'-TGAAATTCACAACCACGTG-3; $T_a=58$ °C).

Sequencing and analysis of *P. chinensis* fibroblast growth factor 5 genes

P. chinensis FGF5-derived genes were amplified from whole-fish genomic DNA using PrimeSTAR HS DNA Polymerase (TaKaRa) – with a forward primer in exon 1 and a reverse primer in an exon unique to a novel *P. chinensis* FGF5 exon (5'-GTTCCTCTTGTCTTTATACCGTC-3' and 5'-GTGAACCAAACCTGATCAAATC-3'; $T_a=52$ °C) – on a ABI-9700 (ABI) thermal cycler and Sanger sequenced. The MAFFT online server v7.452 (http://mafft.cbrc.jp) (Katoh et al., 2019; Kuraku et al., 2013) was used to generate multiple sequence alignments of amplicons and FGF5 genome scaffolds (using the G-INS-i Iterative refinement method). The settings for local instances of MAFFT are ‘mafft --thread 5 --threadit 0 --reorder --leavegappyregion --maxiterate 1000 --retree 1 --globalpair’) and a phylogenetic tree (neighbor joining tree generated from conserved sites, maximum likelihood (ML) analysis was generated using RaxML v8 (Stamatakis, 2014) with the search strategy set to rapid
bootstrapping and 1,000 bootstrap replicates]. The deduced amino acid sequences were predicted using the ExPASy translate tool (https://web.expasy.org/translate) (Artimo et al., 2012). In addition, the FGF5 phylogenetic tree was generated from FGF5 protein sequences of P. chinensis and other 10 species (Scleropages Formosus, Letalurus punctatus, Danio rerio, Sinocyclocheilus anshuensis, Esox lucius, Salmo salar, Xiphophorus maculatus, Larimichthys crocea, Oryzias latipes, Takifugu rubripes). The maximum likelihood (ML) analysis was generated using RaxML v8 (Stamatakis, 2014) with the ProtCAT model search strategy set to rapid bootstrapping and 1,000 bootstrap replicates. Protein sequences were aligned using MAFFT with default parameter.

Immune system analysis

We retrieved immunity-related genes in the P. chinensis from our annotation pipeline as well as by manual curation. Sequence alignments were obtained using ClustalX v2.1 (Larkin et al., 2007). A neighbor-joining phylogenetic tree of the TLR gene family was conducted from multiple sequence alignments of proteins using MAGE6 (Tamura et al., 2013).

Assessment of pigmentation genes

Pigmentation genes of interest in P. chinensis were interrogated by BLAST (Camacho et al., 2009) analysis of the genome assembly and whole-fish RNA-seq data (raw reads and Trinity assembly) on a local instance of sequenceserver v1.1.0 (Priyam et al., 2015), using zebrafish gene sequences as the query. Regions with unique changes in P. chinensis were next investigated by BLAST searches against the NCBI databases RefSeq (curated genomes, transcripts, and proteins) and NR (O’Leary et al., 2016), and the ~15,000-proteome database UniProt (The UniProt, 2017) [the number of output alignments was set
to 1,000]. Obtained sequences were aligned with the *P. chinensis* query using the MAFFT web server (Katoh et al., 2019). The impact of amino acid residue changes on protein function, structure, and stability was assessed using the online tools PANTHER-PSEP (Tang and Thomas, 2016), PolyPhen2 (Adzhubei et al., 2010), SIFT (Kumar et al., 2009), and I-Mutant 2.0 (Capriotti et al., 2005).

Quantification and statistical analyses

Statistics details are provided in the Methods Details section.
SUPPLEMENTAL REFERENCES

Adey, A., Kitzman, J.O., Burton, J.N., Daza, R., Kumar, A., Christiansen, L., Ronaghi, M., Amini, S., Gunderson, K.L., Steemers, F.J., et al. (2014). In vitro, long-range sequence information for de novo genome assembly via transposase contiguity. Genome Res 24, 2041-2049.

Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gerasimova, A., Bork, P., Kondrashov, A.S., and Sunyaev, S.R. (2010). A method and server for predicting damaging missense mutations. Nat Methods 7, 248-249.

Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., de Castro, E., Duvaud, S., Flegel, V., Fortier, A., Gasteiger, E., et al. (2012). ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40, W597-603.

Attwood, T.K., Bradley, P., Flower, D.R., Gaulton, A., Maudling, N., Mitchell, A.L., Moulton, G., Nordle, A., Paine, K., Taylor, P., et al. (2003). PRINTS and its automatic supplement, prePRINTS. Nucleic Acids Research 31, 400-402.

Bao, W.D., Kojima, K.K., and Kohany, O. (2015). Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA-Uk 6.

Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research 27, 573-580.

Bian, C., Hu, Y., Ravi, V., Kuznetsova, I.S., Shen, X., Mu, X., Sun, Y., You, X., Li, J., Li, X., et al. (2016). The Asian arowana (Scleropages formosus) genome provides new insights into the evolution of an early lineage of teleosts. Sci Rep 6, 24501.

Birney, E., Clamp, M., and Durbin, R. (2004). GeneWise and genomewise. Genome Research 14, 988-995.
Butler, J., MacCallum, I., Kleber, M., Shlyakhter, I.A., Belmonte, M.K., Lander, E.S., Nusbaum, C., and Jaffe, D.B. (2008). ALLPATHS: de novo assembly of whole-genome shotgun microreads. Genome Research 18, 810-820.

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T.L. (2009). BLAST+: architecture and applications. BMC Bioinformatics 10, 421.

Capriotti, E., Fariselli, P., and Casadio, R. (2005). I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33, W306-310.

Corpet, F., Servant, F., Gouzy, J., and Kahn, D. (2000). ProDom and ProDom-CG: tools for protein domain analysis and whole genome comparisons. Nucleic Acids Research 28, 267-269.

De Bie, T., Cristianini, N., Demuth, J.P., and Hahn, M.W. (2006). CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269-1271.

Donoghue, P., Benton, M., Yang, Z.H., and Inoue, J. (2009). Calibrating and Constraining the Molecular Clock. J Vertebr Paleontol 29, 89a-89a.

Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792-1797.

English, A.C., Richards, S., Han, Y., Wang, M., Vee, V., Qu, J.X., Qin, X., Muzny, D.M., Reid, J.G., Worley, K.C., et al. (2012). Mind the Gap: Upgrading Genomes with Pacific Biosciences RS Long-Read Sequencing Technology. PloS one 7.

Enright, A.J., Van Dongen, S., and Ouzounis, C.A. (2002). An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30, 1575-1584.

Falquet, L., Pagni, M., Bucher, P., Hulo, N., Sigrist, C.J.A., Hofmann, K., and Bairoch, A. (2002). The PROSITE database, its status in 2002. Nucleic Acids Research 30, 235-238.
Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S.R., and Bateman, A. (2005). Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Research 33, D121-D124.

Haas, B.J., Delcher, A.L., Mount, S.M., Wortman, J.R., Smith, R.K., Jr., Hannick, L.I., Maiti, R., Ronning, C.M., Rusch, D.B., Town, C.D., et al. (2003). Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res 31, 5654-5666.

Haas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., Couger, M.B., Eccles, D., Li, B., Lieber, M., et al. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature protocols 8, 1494-1512.

Haas, B.J., Salzberg, S.L., Zhu, W., Pertea, M., Allen, J.E., Orvis, J., White, O., Buell, C.R., and Wortman, J.R. (2008). Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biology 9.

Haft, D.H., Selengut, J.D., and White, O. (2003). The TIGRFAMs database of protein families. Nucleic Acids Research 31, 371-373.

Kanehisa, M., Furumichi, M., Tanabe, Y., and Morishima, K. (2017). KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45, D353-D361.

Katoh, K., Rozewicki, J., and Yamada, K.D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20, 1160-1166.

Kent, W.J. (2002). BLAT - The BLAST-like alignment tool. Genome Research 12, 656-664.

Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F. (1995). Stages of embryonic-development of the zebrafish. Developmental Dynamics 203, 253-310.

Korf, I. (2004). Gene finding in novel genomes. BMC Bioinformatics 5, 1-9.

Kumar, P., Henikoff, S., and Ng, P.C. (2009). Predicting the effects of coding non-synonymous variants
on protein function using the SIFT algorithm. Nature protocols 4, 1073-1081.

Kuraku, S., Zmasek, C.M., Nishimura, O., and Katoh, K. (2013). aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res 41, W22-28.

Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., et al. (2007). Clustal W and clustal X version 2.0. Bioinformatics 23, 2947-2948.

Lees, J.G., Lee, D., Studer, R.A., Dawson, N.L., Sillitoe, I., Das, S., Yeats, C., Dessailly, B.H., Rentzsch, R., and Orengo, C.A. (2014). Gene3D: Multi-domain annotations for protein sequence and comparative genome analysis. Nucleic Acids Research 42, D240-D245.

Li, H., and Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589-595.

Li, L., Stoeckert, C.J., and Roos, D.S. (2003). OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Research 13, 2178-2189.

Liu, B., Shi, Y., Yuan, J., Hu, X., Zhang, H., Li, N., Li, Z., Chen, Y., Mu, D., and Fan, W. (2013). Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. arXiv preprint arXiv:13082012.

Lowe, T.M., and Eddy, S.R. (1997). tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 25, 955-964.

Lupas, A., Vandyke, M., and Stock, J. (1991). Predicting coiled coils from protein sequences. Science 252, 1162-1164.

Majoros, W.H., Pertea, M., and Salzberg, S.L. (2004). TigrScan and GlimmerHMM: two open source
Murrell, B., Weaver, S., Smith, M.D., Wertheim, J.O., Murrell, S., Aylward, A., Eren, K., Pollner, T., Martin, D.P., Smith, D.M., et al. (2015). Gene-Wide Identification of Episodic Selection. Molecular biology and evolution 32, 1365-1371.

Nawrocki, E.P., and Eddy, S.R. (2013). Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933-2935.

O’Leary, N.A., Wright, M.W., Brister, J.R., Ciufo, S., Haddad, D., McVeigh, R., Rajput, B., Robbertse, B., Smith-White, B., Ako-Adjei, D., et al. (2016). Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44, D733-745.

Parra, G., Bradnam, K., and Korf, I. (2007). CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061-1067.

Patel, R.K., Mukesh, J., and Zhanjiang, L. (2012). NGS QC Toolkit: A Toolkit for Quality Control of Next Generation Sequencing Data. PloS one 7, e30619-

Pond, S.L.K., Frost, S.D.W., and Muse, S.V. (2005). HyPhy: hypothesis testing using phylogenies. Bioinformatics 21, 676-679.

Priyam, A., Woodcroft, B.J., Rai, V., Munagala, A., Moghul, I., Ter, F., Gibbins, M.A., Moon, H., Leonard, G., and Rumpf, W. (2015). Sequenceserver: a modern graphical user interface for custom BLAST databases. Biorxiv, 033142.

Punta, M., Coggill, P.C., Eberhardt, R.Y., Mistry, J., Tate, J., Boursnell, C., Pang, N., Forslund, K., Ceric, G., Clements, J., et al. (2012). The Pfam protein families database. Nucleic Acids Research 40, D290-D301.

Robinson, M.D., and Oshlack, A. (2010). A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biol 11, R25.

Schartl, M., Walter, R.B., Shen, Y., Garcia, T., Catchen, J., Amores, A., Braasch, I., Chalopin, D., Vollf, J.N., Lesch, K.P., et al. (2013). The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits. Nat Genet 45, 567-572.

Schultz, J., Milpetz, F., Bork, P., and Ponting, C.P. (1998). SMART, a simple modular architecture research tool: Identification of signaling domains. Proceedings of the National Academy of Sciences of the United States of America 95, 5857-5864.

Seppey, M., Manni, M., and Zdobnov, E.M. (2019). BUSCO: Assessing Genome Assembly and Annotation Completeness. Methods Mol Biol 1962, 227-245.

Simao, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., and Zdobnov, E.M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210-3212.

Solovyev, V., Kosarev, P., Seledsov, I., and Vorobyev, D. (2006). Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biology 7.

Spielman, S.J., Weaver, S., Shank, S.D., Magalis, B.R., Li, M., and Kosakovskiy Pond, S.L. (2019). Evolution of Viral Genomes: Interplay Between Selection, Recombination, and Other Forces. Methods Mol Biol 1910, 427-468.

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313.

Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., and Morgenstern, B. (2006). AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Research 34, W435-W439.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: Molecular
Evolutionary Genetics Analysis Version 6.0. Molecular biology and evolution 30, 2725-2729.

Tang, H., and Thomas, P.D. (2016). PANTHER-PSEP: predicting disease-causing genetic variants using position-specific evolutionary preservation. Bioinformatics 32, 2230-2232.

Tania, L., H., A.A., Elisabeth, C., Guillaume, K., Karine, M., Catherine, R., Virginie, B., Edouard, d.C., Corinne, L., and Delphine, B. (2009). HAMAP: a database of completely sequenced microbial proteome sets and manually curated microbial protein families in UniProtKB/Swiss-Prot. Nucleic Acids Research, 471-478.

Tarailo-Graovac, M., and Chen, N. (2009). Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics Chapter 4, Unit 4 10.

The UniProt, C. (2017). UniProt: the universal protein knowledgebase. Nucleic Acids Res 45, D158-D169.

Thomas, P.D., Campbell, M.J., Kejariwal, A., Mi, H.Y., Karlak, B., Daverman, R., Diemer, K., Muruganujan, A., and Narechania, A. (2003). PANTHER: A library of protein families and subfamilies indexed by function. Genome Research 13, 2129-2141.

Trampell, C., Pachter, L., and Salzberg, S.L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105-1111.

Trampell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel, H., Salzberg, S.L., Rinn, J.L., and Pachter, L. (2014). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks (vol 7, pg 562, 2012). Nature protocols 9, 2513-2513.

Venkatesh, B., Lee, A.P., Ravi, V., Maurya, A.K., Lian, M.M., Swann, J.B., Ohta, Y., Flajnik, M.F., Sutoh, Y., Kasahara, M., et al. (2014). Elephant shark genome provides unique insights into gnathostome evolution. Nature 505, 174-179.
Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C.A., Zeng, Q.D.,
Wortman, J., Young, S.K., et al. (2014). Pilon: An Integrated Tool for Comprehensive Microbial
Variant Detection and Genome Assembly Improvement. PloS one 9.

Ward, R., Zemlak, T., Innes, B., Last, P., and Hebert, P. (2005). DNA barcoding Australia’s fish species.
360, 1847-1857.

Waterhouse, R.M., Seppey, M., Simao, F.A., Manni, M., Ioannidis, P., Klioutchnikov, G., Kriventseva,
E.V., and Zdobnov, E.M. (2017). BUSCO applications from quality assessments to gene prediction and
phylogenomics. Molecular biology and evolution.

Wu, C.H., Nikolskaya, A., Huang, H.Z., Yeh, L.S.L., Natale, D.A., Vinayaka, C.R., Hu, Z.Z.,
Mazumder, R., Kumar, S., Kourtesis, P., et al. (2004). PIRSF: family classification system at the
Protein Information Resource. Nucleic Acids Research 32, D112-D114.

Yang, J., Chen, X., Bai, J., Fang, D., Qiu, Y., Jiang, W., Yuan, H., Bian, C., Lu, J., He, S., et al. (2016).
The Sinocyclocheilus cavefish genome provides insights into cave adaptation. BMC Biol 14, 1.

Yang, Z.H. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. Molecular biology and
evolution 24, 1586-1591.

Zdobnov, E.M., and Apweiler, R. (2001). InterProScan - an integration platform for the signature-
recognition methods in InterPro. Bioinformatics 17, 847-848.

Zheng, G.X., Lau, B.T., Schnall-Levin, M., Jarosz, M., Bell, J.M., Hindson, C.M., Kyriazopoulou-
Panagiotopoulou, S., Masquelier, D.A., Merrill, L., Terry, J.M., et al. (2016). Haplotyping germline and
cancer genomes with high-throughput linked-read sequencing. Nat Biotechnol 34, 303-311.