Racial Differences in the Prevalence of Severe Aortic Stenosis
Devin K. Patel, MD; Kelly D. Green, MD; Marat Fudim, MD; Frank E. Harrell, Jr, PhD; Thomas J. Wang, MD; Mark A. Robbins, MD

Background—In an era of expanded treatment options for severe aortic stenosis, it is important to understand risk factors for the condition. It has been suggested that severe aortic stenosis is less common in African Americans, but there are limited data from large studies.

Methods and Results—The Synthetic Derivative at Vanderbilt University Medical Center, a database of over 2.1 million de-identified patient records, was used to identify individuals who had undergone echocardiography. The association of race with severe aortic stenosis was examined using multivariable logistic regression analyses adjusting for conventional risk factors. Of the 272,429 eligible patients (mean age 45 years, 44% male) with echocardiography, 14% were African American and 82% were Caucasian. Severe aortic stenosis was identified in 106 (0.29%) African-American patients and 2,030 (0.91%) Caucasian patients (crude OR 0.32, 95% CI [0.26, 0.38]). This difference persisted in multivariable-adjusted analyses (OR 0.41 [0.33, 0.50], \(P < 0.0001 \)). African-American individuals were also less likely to have severe aortic stenosis due to degenerative calcific disease (adjusted OR 0.47 [0.36, 0.61]) or congenitally bicuspid valve (crude OR 0.13 [0.02, 0.80], adjusted OR dependent on age). Referral bias against those with severe valvular disease was assessed by comparing the prevalence of severe mitral regurgitation in Caucasians and African Americans and no difference was found.

Conclusions—These findings suggest that African Americans are at significantly lower risk of developing severe aortic stenosis than Caucasians. (J Am Heart Assoc. 2014;3:e000879 doi: 10.1161/JAHA.114.000879)

Key Words: aortic valve stenosis • database • epidemiology • race and ethnicity • risk factor
structured (laboratory values, ID9/CPT codes, demographics, etc.) and unstructured (text strings in narrative documents and reports) data. As patient data does not contain any identifying information, use of Synthetic Derivative is classified as non-human research by Vanderbilt University’s Institutional Review Board and approval was given for this study.

All records in the Synthetic Derivative were queried for documentation of an echocardiogram and race. Patients were then screened and individually reviewed for diagnosis of severe aortic stenosis, age at diagnosis, aortic valve area at diagnosis, and underlying etiology of disease. Criteria for documentation of an echocardiogram and confirmation of severe aortic stenosis are detailed in Table 1. Records that fulfilled search criteria for echocardiogram had a greater than 75% rate of having true documentation of an echocardiogram and approximately 90% of the 3500 patients with mention of severe aortic stenosis in their chart were identified using this search criteria. Race was classified using observer-reported determination, which has been shown to have >92% concordance with self-reported race and ancestry based on genetic biomarkers.9,10

To address the possibility that Caucasians with severe valvular disease were more likely to be referred for echocardiogram compared with African Americans with severe valvular disease, another valvular condition, severe mitral regurgitation, was assessed. Criteria for diagnosis of severe mitral regurgitation are also shown in Table 1.

Assessment and Imputation of Traditional Risk Factors

Multiple traditional risk factors for aortic stenosis including sex, race, age, body mass index (BMI), LDL, creatinine, diabetes, hypertension, coronary artery disease, and statin use were assessed. Criteria for determination of each condition are shown in Table 2 with details of Synthetic Derivative search criteria for diabetes, hypertension, coronary artery disease, and statin use available in Table 3. Manual review of 500 patients with each definitive classification of a categorical variable was done (eg, 500 patients who were classified as having diabetes, 500 patients who were classified as not having diabetes, etc.) with accuracy ranging from 95% to 100% for each risk factor classification tested. Clinical judgment, shown in Table 4, was used to exclude incorrectly documented values. Each risk factor was then categorized based on percent of patients with

Table 1. Criteria for Inclusion in Study Populations

Study Population	Defined from keyword search in all clinical documents	All of the following criteria:
Echocardiogram		● Presence of the string “echo” in any clinical document*
		● Race equals any of the following: African American, Caucasian
Severe aortic stenosis	Defined from keyword search in all clinical documents	All of the following criteria:
		● Presence of the string “echo” in any clinical document*
		● Presence of either of the following strings in any clinical document**: “severe aortic stenosis”, “critical aortic stenosis”
		● Race equals any of the following: African American, Caucasian
		● Single-reviewer manual review for either of the following criteria: aortic valve area ≤1 cm², operative intervention on aortic valve due to stenosis
Severe mitral regurgitation	Defined from keyword search in all clinical documents	All of the following criteria:
		● Presence of the string “echo” in any clinical document*
		● Presence of the string “severe mitral regurgitation” in any clinical document*
		● Race equals any of the following: African American, Caucasian

Search criteria for identification of patients in the study population is shown. A combination of keyword search, demographics qualifiers, and manual review was used. *Any clinical document includes clinical notes, procedure reports, radiology reports, problem lists, clinical communications, discharge summaries, patient letters, pathology reports or rehabilitation reports.

Table 2. Method for Determination of Each Demographic or Risk Factor

Method of Determination	Demographic or Risk Factors
Direct export	Gender
	Race
Mean of all documented values	BMI
	LDL
	Creatinine
Value at most recent clinic clinical encounter*	Age
Synthetic Derivative search	Coronary artery disease
	Hypertension
	Diabetes
	Statin use

The method of determining the demographic group or presence of a risk factor is shown. A combination of direct data export, export of laboratory or clinical measurement, and Synthetic Derivative queries was used in collecting risk factor data. Details of synthetic derivative queries for coronary artery disease, hypertension, and diabetes are shown in Table 3. BMI indicates body mass index; LDL, low-density lipoprotein. *Defined as outpatient clinic visit, inpatient consultation, or documentation of vital signs.
Table 3. Synthetic Derivative Search Criteria for Risk Factor Determination

Hypertension	Definition	Documentation of any of the following criteria:
Yes	Defined from combination of ICD9 coding and problem list search excluding common search confounders of the disease	Hypertension, HTN, coronary artery bypass, CABG, Percutaneous Coronary Intervention, PCI
No	Defined from lack of ICD9 code and lack of mention of disease in any clinical document	Hypertension, HTN, coronary artery bypass, CABG, Percutaneous Coronary Intervention, PCI
Unable to classify	Defined from lack of ICD9 coding but mention of disease in clinical document other than problem list	Hypertension, HTN, coronary artery bypass, CABG, Percutaneous Coronary Intervention, PCI

Coronary artery disease requiring intervention	Definition	Documentation of any of the following criteria:
Yes	Defined from combination of CPT coding and problem list search	Hypertension, HTN, coronary artery bypass, CABG, Percutaneous Coronary Intervention, PCI
No	Defined from lack of ICD9 and mention of disease in any clinical document	Hypertension, HTN, coronary artery bypass, CABG, Percutaneous Coronary Intervention, PCI
Unable to classify	Defined from lack of ICD9 coding but mention of disease in clinical document other than problem list	Hypertension, HTN, coronary artery bypass, CABG, Percutaneous Coronary Intervention, PCI

Diabetes mellitus	Definition	Documentation of any of the following criteria:
Yes	Defined from combination of ICD9 coding and problem list search	diabetes mellitus, IDDM, NIDDM
No	Defined from lack of ICD9 and mention of disease in any clinical document	diabetes mellitus, IDDM, NIDDM
Unable to classify	Defined from lack of ICD9 coding but mention of disease in clinical document other than problem list	diabetes mellitus, IDDM, NIDDM

Continued
definitive diagnosis or laboratory measure available, shown in Table 5.

Multiple imputation incorporating severe aortic stenosis and all complete risk factors was used to predict the seldom-missed risk factors to allow for their inclusion in final analysis. Binary logistic regression was used to predict diabetes, hypertension, and coronary artery disease with random draws under fitted probability models used for imputation. The age effect was nonlinear in all models while creatinine was imputed using a linear model with random residuals added to mean predicted values. Multiple imputation was repeated 5 times to test whether results varied significantly between draws. The absolute number of complete cases was sizeable so the coefficients for imputed variables and race did not vary significantly across trials (Table 6). The final random draw was used for subsequent analysis.

Statistical Analysis

A binary logistic model based on the complete and seldom-missed comorbidities was used to model the probability of severe aortic stenosis. Age and creatinine were modeled as continuous variables and fitted using a restricted cubic spline as to not assume linear relationships between them and severe aortic stenosis. All other variables were modeled as categorical variables. The interaction between race and all other comorbidities was assessed to determine if race significantly affected any other comorbidities’ prediction of severe aortic stenosis and no significant interactions were found. This entire analysis was repeated for specific etiologies of severe aortic stenosis—calcific degeneration and bicuspid valve—to determine if the race relationship was present with common etiologies of severe aortic stenosis. All analyses

Table 3. Continued

Statin use	Variable	Excluded Values
Yes	Defined from presence of medication in medication search	Presence of any of the following in medication search: "atorvastatin", "cerivastatin", "fluvasatin", "lovastatin", "pravastatin", "rosuvastatin", "simvastatin", "Altocor", "Altoprev", "Baycol", "Caduet", "Canef", "Crestor", "Lescol", "Lipex", "Lipitor", "Lipobay", "Lipostat", "Mevacor", "Pravachol", "Simcor", "Sortis", "Torvocard", "Torvast", "Totalip", "Tulip", "Vytorin", "Zocor"
No	Defined from lack of presence of medication in medication search	No presence of any of the following in medication search: "atorvastatin", "cerivastatin", "fluvasatin", "lovastatin", "pravastatin", "rosuvastatin", "simvastatin", "Altocor", "Altoprev", "Baycol", "Caduet", "Canef", "Crestor", "Lescol", "Lipex", "Lipitor", "Lipobay", "Lipostat", "Mevacor", "Pravachol", "Simcor", "Sortis", "Torvocard", "Torvast", "Totalip", "Tulip", "Vytorin", "Zocor"

Full Synthetic Derivative search criteria for hypertension, diabetes coronary artery disease and statin use are shown below. A combination of keyword search within problem lists and clinical charts, ICD9 codes, CPT codes and medication searches was used for each risk factor. All searches are case insensitive. ICD9: ninth revision of International Classification of Diseases.

Clinical documents includes clinical notes, procedure reports, radiology reports, problem lists, clinical communications, discharge summaries, patient letters, pathology reports or rehabilitation reports.

Table 4. Data Exclusion Criteria for Inaccurately Reported Data

Variable	Excluded Values
Birth year	Year 1900*
BMI	Values <14 and >70
LDL	Values <1 and >1500
Creatinine	Values <0 and >30

Clinical criteria shown here was used to exclude incorrectly documented measurements. Criteria were established based on clinical judgment and applied to all patients. BMI indicates body mass index; LDL, low density lipoprotein.

*Exclude because patients whose birthdays are unknown are inaccurately classified as year 1900.

Table 5. Classification of Comorbidities Based on Data Available

Risk Factor	Criteria	Variables	% Classified
Complete	Data available for more than 99.9% of patients	Presence of aortic stenosis 100%	Statin use 100%
Race	100%	Sex 99.99%	Age at last follow-up 99.98%
Seldom-missed	Data available for between 67% and 99.9% of patients	Coronary artery disease 86.6%	Creatinine 76.7%
Hypertension	74.2%	Diabetes 67.9%	
LDL	62.2%	BMI	62.2%
Incomplete	Data available for less than 67% of patients	LDL 31.9%	

Comorbidities were classified based on percent of patients with data available for that comorbidity. Cutoff percentages for classification category were assigned based on statistical judgment. BMI indicates body mass index; LDL, low density lipoprotein.
Table 6. Variation in Coefficients for Race and Imputed Risk Factor Between Different Draws of Imputation Model

Draw	Race	Diabetes	Hypertension	CAD
1	0.899	0.566	0.281	1.200
2	0.898	0.557	0.279	1.195
3	0.903	0.558	0.286	1.203
4	0.895	0.554	0.301	1.193
5	0.899	0.564	0.296	1.207

Coefficients for the association between race and imputed risk factors are shown below for 5 consecutive draws. The coefficients do not vary significantly between draws indicating variations due to random draw do not significantly affect the output of the model. CAD indicates coronary artery disease.

Results

347 126 of the 2 163 553 patients in the Synthetic Derivative had documentation of an echocardiogram, of which 272 525 patients including 222 976 Caucasians (81.8%) and 36 681 African Americans (13.5%) had race denoted. Of these patients, 2598 patients including 2030 (0.91%) Caucasians and 106 (0.29%) African Americans had severe aortic stenosis and 3614 including 3013 (1.35%) Caucasian and 532 (1.45%) African Americans had severe mitral regurgitation. Baseline characteristics of the echocardiogram population by race are shown in Figure 1 and Table 7. The mean age of African-American patients was slightly lower than Caucasian and a larger proportion of African-American patients were female. Significantly more African Americans had hypertension and diabetes while the mean creatinine and BMI were slightly higher for African-American patients. African Americans and Caucasians had similar LDL cholesterol levels while Caucasians were taking statins and had coronary artery disease more often.

Table 7. Baseline Characteristic of Echocardiogram Population by Race for Categorical Characteristics

Risk Factor	Classification	Caucasian	African American		
	Number	%	Number	%	
Sex	Male	100 586	45.1	14 740	40.2
	Female	122 377	54.9	21 935	59.8
DM	Yes	34 157	15.3	6360	17.3
	No	117 062	52.5	18 649	50.8
	Imputed	71 757	32.2	11 672	31.8
HTN	Yes	94 090	42.2	17 110	46.6
	No	71 156	31.9	10 263	28.0
	Imputed	57 730	25.9	9308	25.4
CAD	Yes	17 774	8.0	1362	3.7
	No	174 228	78.1	31 461	85.8
	Imputed	30 974	13.9	3858	10.5
Statin use	Yes	62 719	28.1	7873	21.5
	No	160 257	71.9	28 808	78.5

Baseline characteristic for the echocardiogram population are shown, stratified by race, for categorical risk factors. Caucasian subjects were more likely to be male, have coronary artery disease and be prescribed statins while African Americans are more likely to have diabetes and hypertension. CAD indicates coronary artery disease; DM, diabetes mellitus; HTN, hypertension.

Table 8 and Figure 2 show the likelihood of severe aortic stenosis for each demographic group and based on presence of each risk factor. Correlates of severe aortic stenosis included Caucasian race, male sex, creatinine, extremes in age, presence of diabetes, presence of hypertension, and presence of coronary artery disease. These relationships were also seen in etiology-specific analysis looking specifically at severe calcific degenerative disease and bicuspid valve disease.

In multivariable-adjusted analysis adjusted for sex, statin use, diabetes, hypertension, age, coronary artery disease, and creatinine, the association of African-American race with lower risk for severe aortic stenosis remained significant (OR 0.41, 95% CI [0.33, 0.50]). The effect of age and race on prevalence of severe aortic stenosis is shown in Figure 3. The decreased prevalence of severe aortic stenosis in African Americans was present and consistent at all ages.

The partial effects of each risk factor and demographic group on the probability of severe aortic stenosis are shown in Figure 4. Odds ratios with confidence intervals for categorical risk factors and P values for continuous risk factors are shown. Age was the most significant risk factor while coronary artery disease, diabetes, race, and creatinine were also significant predictors. Sex, statin use, and hypertension had less effect on probability of disease.

Etiology-specific analyses shown in Figures 5 and 6 revealed that the association of African-American race with
lower risk of severe aortic stenosis persisted for both bicuspid aortic valve (OR 0.13 [0.02, 0.80]) and calcific degeneration of native tricuspid aortic valve (OR 0.47 [0.36, 0.61]). The probability of bicuspid aortic valve appeared to have an age-dependent relationship with African-Americans children spared and the peak probability of severe aortic stenosis due to bicuspid valve occurring at a younger age in African Americans; however, only a small number of African Americans had bicuspid severe aortic stenosis and the age relationship in African Americans may be artifact. Still, African Americans who developed severe aortic stenosis were significantly less likely to have congenitally bicuspid valve as their underlying etiology (OR 0.49 [0.29, 0.85]).

Discussion

In summary, this study shows that African Americans are significantly less likely to have severe aortic stenosis than Caucasian individuals. The difference cannot be explained by traditional risk factors, age, or etiology of aortic valve disease.

A few smaller studies have commented on the relationship between race and aortic valve disease. Novaro and colleagues found that, among individuals referred for cardiac surgery, African Americans had significantly less aortic stenosis, aortic valve calcification, degenerative aortic valve disease, and bicuspid aortic valves and more pathologically normal aortic valves than Caucasian individuals. Likewise, Yeung and colleagues reported that 10% of patients evaluated for aortic valve replacement in their hospital were African American, despite the fact that 37% of individuals in their overall population were African American.

Unlike prior studies that have focused on surgical populations, this study assessed the overall and etiology-specific prevalence of severe aortic stenosis in all patients undergoing echocardiography. Racial differences in comorbid medical conditions including traditional risk factors for aortic stenosis were extensively analyzed and controlled for using multivariable statistical analysis. Not surprisingly, many known risk factors for aortic stenosis were significantly less likely to have congenitally bicuspid valve as their underlying etiology (OR 0.49 [0.29, 0.85]).

Table 8. The Likelihood of Severe Aortic Stenosis, Severe Aortic Stenosis due to Calcific Degeneration of Tricuspid Aortic Valve, and Severe Aortic Stenosis due to Bicuspid Valve Disease Given Each Categorical Risk Factor

Characteristic	Total	SAS	CDT	BVD
Sex				
Male	115 326	1.00%	0.55%	0.31%
Female	144 312	0.68%	0.44%	0.14%
OR* for males	1.47†	1.25†	2.22†	
Race				
African American	36 681	0.29%	0.18%	0.04%
Caucasian	222 976	0.91%	0.54%	0.24%
OR* for African Americans	0.32†	0.33†	0.17†	
Diabetes mellitus				
Yes	40 581	1.98%	1.41%	0.35%
No	136 812	0.97%	0.51%	0.30%
OR* ratio for diabetes	2.06†	2.79†	1.17	
Hypertension				
Yes	111 354	1.60%	1.04%	0.36%
No	81 862	0.44%	0.13%	0.19%
OR* for hypertension	3.68†	8.07†	1.90†	
Coronary artery disease				
Yes	19 392	4.99%	3.32%	0.98%
No	206 343	0.57%	0.30%	0.18%
OR* for coronary artery disease	9.16†	11.41†	5.49†	
Statin use				
Yes	70 592	1.89%	1.24%	0.43%
No	189 065	0.42%	0.21%	0.13%
OR* for statin use	4.57†	5.97†	3.32†	
Overall percent	0.82%	0.49%	0.21%	

The overall and etiology-specific probability of severe aortic stenosis based on presence of each risk factor or demographic is shown. Among patient with a given risk factor classification, the proportion of patients with severe aortic stenosis, severe aortic stenosis due to calcific degeneration of a native tricuspid valve, and severe aortic stenosis due to a bicuspid aortic valve are shown with the overall odds ratio for the difference. Group with higher probability of severe aortic stenosis included males, Caucasians, those with hypertension, diabetes mellitus, or coronary artery disease, and those prescribed statins. BVD indicates proportion with severe aortic stenosis due to bicuspid valve disease; CDT, proportion with severe aortic stenosis due to calcific degeneration of tricuspid aortic valve; SAS, proportion with severe aortic stenosis.

| OR: crude odd ratio for developing severe aortic stenosis given a demographic or presence of a risk factor unadjusted for any other factors. |

†P<0.0001.
factors (age, statin use, diabetes, hypertension, and coronary artery disease) were risk factors for severe aortic stenosis in this study sample; however, none of these factors could explain the lower prevalence of severe aortic stenosis in African Americans, and Caucasian race remained an independent risk factor for severe aortic stenosis.

Individual analysis of the two most common etiologies of severe aortic stenosis—degenerative calcification of a tricuspid aortic valve and stenosis of a congenitally bicuspid aortic valve—revealed that the decreased prevalence in African Americans applied to both etiologies. Moreover, African Americans with severe aortic stenosis were less likely to have bicuspid valve as their underlying etiology. This is consistent with the previously reported findings that African Americans have a drastically lower risk of bicuspid aortic valves.

![Figure 2](image1.png)

Figure 2. The overall and etiology-specific likelihood of severe aortic stenosis given each continuous risk factor. The overall and etiology-specific probability of severe aortic stenosis as a function of age, creatinine, and BMI, unadjusted for other risk factors, is shown. Older patients and patients with higher creatinine had a higher probability of having severe aortic stenosis. BMI indicates body mass index.

![Figure 3](image2.png)

Figure 3. Probability of severe aortic stenosis by age and race. The probability of severe aortic stenosis with 95% confidence interval as a function of age for African Americans and Caucasians, adjusted for other risk factors, is shown here with distribution of patient ages noted at top. The difference in probability of severe aortic stenosis between the two races is present and significant at all ages.

![Figure 4](image3.png)

Figure 4. Partial effect of each predictor on model for severe aortic stenosis. The partial effect of each risk factor and demographic group on the probability of severe aortic stenosis is shown below. Odds ratios with 95% confidence intervals are shown for categorical values and P values are shown for continuous variable. Age had the greatest effect followed by coronary artery disease, diabetes, race, and creatinine. Sex, statin use, and hypertension had less predictive value. CAD indicates coronary artery disease; OR, odds ratio; HTN, hypertension.
Extensive efforts were made to confirm the validity of search methods. Criteria were set to ensure that the diagnosis of severe aortic stenosis had high specificity. Single-reviewer manual chart review was used for each patient with severe aortic stenosis to ensure the diagnosis was made based on established guidelines on minimal valve area (<1 cm²) or that the stenosis was severe enough to necessitate valve replacement. Previously documented racial differences in prevalence of comorbid conditions were again identified in the overall echocardiogram population.14-23

To further test for unforeseen bias against African Americans with severe valvular disease, the rate of another echocardiographically diagnosed pathology, severe mitral regurgitation, was assessed. Mitral valve disorders occur at equal rates in African Americans and Caucasians.24-26 The rate of severe mitral regurgitation in the study population was similar (1.45% for African Americans, 1.35% for Caucasians) indicating that baseline valvular pathologies were diagnosed at equal rates.

This study was not without limitations. The cohort included only patients with clinically indicated echocardiograms at a large academic referral center and may be biased toward patients with more severe disease. Any conclusion regarding the absolute prevalence of severe aortic stenosis is thus limited. Also, risk factors were classified through chart review and thus subject to provider-by-provider variations in definition and documentation of comorbid conditions, although there is no reason to believe one race would be affected more than another.

The underlying etiology of race-related differences in aortic stenosis remains to be determined. While numerous studies have identified single nucleotide polymorphisms associated with aortic valve calcification, no studies have noted racial differences in genetic risk factors for the disease.27,28 Previous studies have assessed racial difference in aortic valve calcification and thickness but no differences between African Americans and Caucasians were identified.29 Differences, however, have been noted in coronary artery calcification with African Americans significantly less likely to have calcification than whites, although this difference has not been associated with decreased risk of coronary heart disease.30-34 Further understanding of the genetics and environmental factors underlying the racial difference in prevalence of severe aortic stenosis may result in novel preventative measures, early detection strategies, and therapeutic targets for the condition.

Conclusion

This study utilized a large research medical record to show that African Americans have a significantly lower prevalence of severe aortic stenosis than Caucasians. This difference cannot be explained by traditional risk factors and is present at all ages and for both common etiologies. Further genetic and laboratory investigation is warranted to determine the underlying mechanism for the lower prevalence.

Acknowledgments

The dataset used for the analyses described were obtained from Vanderbilt University Medical Center’s Synthetic Derivative, which is supported by institutional funding and by the Vanderbilt CTS grant ULTR000445 from NCATS/NIH.
Disclosures
Kelly Green was supported by T32 HL 07411-31.

References
1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics – 2013 update: a report from the American Heart Association. Circulation. 2013;127:e245.
2. Stewart BF, Siscovick D, Lind BK, Gardin JM, Gottliebsen J, Smith VE, Kitzman D, Otto CM. Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study. J Am Coll Cardiol. 1997;29:630–636.
3. Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG, Tuzcu EM, Osnabrugge RL, Mylotte D, Head SJ, Van Mieghem NM, Nkomo VT, LeReun CM, Novaro GM, Houghtaling PL, Gillinov AM, Blackstone EH, Asher CR. Prevalence differences in rates of aortic valve replacement in patients with severe aortic stenosis. J Am Coll Cardiol. 2013;62:1002–1012.
4. Yeung M, Kerrigan J, Sodhi S, Huang PH, Novak E, Maniar H, Zajarais A. Racial differences in rates of aortic valve replacement in patients with severe aortic stenosis. Am J Cardiol. 2013;112:991–995.
5. Novaro GM, Houghtaling PL, Gillinov AM, Blackstone EH, Asher CR. Prevalence of mitral valve prolapse and congenital bicuspid aortic valves in black and white patients undergoing cardiac valve operations. Am J Cardiol. 2013;118:991–998.
6. Peterson ED, Wright SM, Daley J, Thibault GE. Effect of overweight and obesity on cardiovascular events in the middle-aged African American cohort of the Atherosclerosis Risk in Communities Study. Am J Cardiol. 2007;1180.
7. Thanassoulis G, Campbell CY, Owens DS, Smith JG, Smith AV, Pelosi GM, Kerr KF, Pennavaria S, Budoff MJ, Harris TL, Malhotra R, O’Brien KD, Kiamstrup PR, Nordestgaard BG, Tybjaerg-Hansen A, Allison MA, Aspelund T, Criqui MH, Heckbert SR, Hwang SJ, Liu Y, Jorgensen M, van der Pals J, Kalsch H, Muhrlein TW, Nøtten MM, Cupples LA, Casiak M, Di Angelantonio E, Danner J, Rotter JJ, Sigurdsson S, Wong Q, Kesler S, Lindberg S, Mølgaard C, Nunnally V, O’Donnell CJ, Post WS; CHARCter Extraordinary Calcium Working Group. Genetic associations with valvular calcification and aortic stenosis. N Engl J Med. 2013;368:503–512.
8. Ellis SG, Dushman-Ellis S, Lake MM, Murugesan G, Kottke-Marchant K, Ellis GM, Griffin B, Tuzcu EM, Hazen S. Pilot candidate gene analysis of patients ≥ 60 years old with aortic stenosis involving a tricuspid aortic valve. J Am Coll Cardiol. 2012;110:88–92.
9. Sashida Y, Rodriguez CJ, Boden-Albala B, Jin Z, Eilkind MS, Liu R, Runode T, Sacco RL, DiFilullo MR, Homa S. Ethnic differences in aortic valve thickness and related clinical factors. Am Heart J. 2010;159:688–704.
10. Bild DE, Detrano R, Peterson D, Guerci A, Liu K, Shahar E, Ouyang P, Jackson S, Saad MF. Ethnic differences in coronary calcium scores: The Multi-Ethnic Study of Atherosclerosis (MESA). Circulation. 2005;111:1313–1320.
11. Budoff MJ, Yang T, Shavelle RM, Lamont DH, Brundage BH. Ethnic differences in coronary atherosclerosis. J Am Coll Cardiol. 2002;39:408–412.
12. Tang W, Detrano CR, Brezden OS, Georgiou D, French WJ, Wong ND, Doherty TM, Brundage BH. Racial differences in coronary calcium prevalence among high risk adults. Am J Cardiol. 1995;75:1038–1091.
13. Kawakubo M, LaBree L, Liao M, Doherty TM, Wong ND, Azen S, Detrano R. Racial differences in the extent, prevalence, and progression of coronary calcium. Ethnic Dis. 2005;15:198–204.
14. Doherty TM, Tang W, Detrano RC. Racial differences in the significance of coronary calcium in asymptomatic black and white subjects with coronary risk factors. J Am Coll Cardiol. 1999;34:787–794.