Is There Any Scientific Basis of Hawan to be used in Epilepsy-Prevention/Cure?

Parveen Bansal¹, Ramandeep Kaur¹, Vikas Gupta¹, Sanjiv Kumar², RamanPreet Kaur¹

¹Baba Farid University of Health Sciences University Centre of Excellence in Research; ²National Medicinal Plant Board, Department of AYUSH, Punjab, India

Epilepsy is a neuropsychiatric disorder associated with religiosity and spirituality. Nasal drug delivery systems are the best for diseases related to brain. In older times RishiMuni, ancient scholars and physicians used to recommend Hawan for mental peace and well being. Gayatri Mantra also tells that sughandhim (aroma, fragrance) puushtivardhanam (gives rise to good health). Om triambkum yajamahe, sughandhim puushtivardhanam, urvarukmavandhanaat, mrityumokshyamamritaat! Hawan is a scientific experiment in which special herbs (Hawan Samagri) are offered in the fire of medicinal woods ignited in a specially designed fire pit called agnikuñda. Hawan seems to be designed by the ancient scholars to fight with the diseases of the brain. Our metadata analysis demonstrates that the components of Hawan are having a number of volatile oils that are specifically useful for epilepsy through one or the other mechanism of action. Due to high temperature of fire the vapors of these oils enter into the central nervous system through nasal route. The routine of performing Hawan might keep the threshold value of the therapeutic components in the body and help in preventing epilepsy. In the present manuscript authors have tried to highlight and integrate the modern and ancient concepts for treatment and prevention of epilepsy. (2015;5:33-45)

Key words: Epilepsy, Hawan, Traditional therapies, Volatile oil

Introduction

Epilepsy is a neuropsychiatric disorder with high prevalence among children and young adults. In India, about 10 million people suffer from epilepsy with a prevalence of about 1.9% in rural areas and 0.6% in urban locales. The greater prevalence of epilepsy in rural areas is a testament to impact of stigma that surrounds this illness on levels of treatment that Indians receive. About 95% of people in India who suffer from epilepsy are never treated for it and almost half of sufferers do not have access to anti epileptic drugs.¹,² It is the most expensive chronic neurological brain disorder in Europe.³,⁴ According to the World Health Organization and the World Bank, the costs of epilepsy constitute 0.5% of all diseases.⁵

In ancient as well as present times, epilepsy has been associated with religiosity⁶ and spirituality. People with epilepsy of comparable severity may differ widely in quality of life (QOL). A study considered the possible role of spirituality and it has been reported that spirituality could contribute to QOL in epilepsy.⁷ In another study, the complementary and alternative approaches have been successfully demonstrated in epilepsy management.⁸

In ancient times this disease was considered as a sacred disease and a number of superstitious measures used to be taken to prevent/cure it. Vajurveda advocates performing of Hawan every day, morning and evening to attain spiritual enlightenment, mental peace, purification of the mind and environment.⁹ From time immemorial, human beings have used smoke of medicinal plants for curing disorders. Smoke produced from natural substances has been used extensively in many cultures and famous ancient physicians have described and recommended such use. Under the Saraswati-Indus civilization 7500 BC,¹⁰ the great Rishis (saints) used to perform agnihotra-yagnas to purify the environment as described in Rigveda-the most ancient compilation of knowledge on earth by sublimating the Hawan samagri (mixture of wood with odoriferous and medicinal herbs) in the fire accompanied by the chanting of Vedic mantras described in Rigveda.¹¹ Smoke produced at high temperatures is considered as a simple way of administering a drug, which exhibits rapid pharmacological activity when inhaled. The sublimated vital elements and herbal medicines inhaled in Yagya first reach the...
Na\(^+\) and outflow of K\(^+\) through these channels that contribute to epilepsy through Hawan. The present manuscript is intended to highlight the scientific evidences that support possible prevention/cure of epilepsy. The present manuscript is designed to highlight the modern and ancient concepts for treatment and prevention of epilepsy.

Biochemical/molecular view of epilepsy

Epileptic seizures caused by imbalance between excitatory and inhibitory processes in the brain are due to abnormalities in the membrane properties of neurons, changes in the ionic micro environment surrounding the neuron, decreased inhibition of neurotransmission (by gamma-amino butyric acid, GABA) or enhanced excitatory neurotransmission by the acidic amino acid glutamate. All ionotropic glutamate receptors are permeable to Na\(^+\) and K\(^+\) and it is the influx of Na\(^+\) and outflow of K\(^+\) through these channels that contribute to membrane depolarization and generation of the action potential. The n-methyl d-aspartate (NMDA) receptors also has a Ca\(^{++}\) channel that is blocked by Mg\(^{++}\) ions in the resting state, but under conditions of local membrane depolarization, Mg\(^{++}\) is displaced and channel becomes permeable to Ca\(^{++}\) ions. Influx of Ca\(^{++}\) tends to further depolarize the cell, and is also thought to contribute to Ca\(^{++}\) mediated neuronal injury under conditions of excessive neuronal activation (e.g. status epilepticus) potentially leading to cell death, a process termed excitotoxicity. Neuronal firing may lead to a number of neurochemical changes and cascades of events at the cellular and molecular level like mitochondrial dysfunction, increased ROS and nitric oxide (NO) which precedes neuronal degeneration and death with possible subsequent epileptogenesis. Experimental data indicate involvement of NO in pathophysiology of epileptic seizures by decreasing synaptosomal GABA up-take and reduced availability of GABA at the synapses leading to an increase of neuronal firing. Mitochondria are emerging as key participants in cell death because their association with an over-growing list of apoptosis-related problems. Peroxidation of neuronal membranes modifies their electrophysiological properties and leads to abnormal bioelectric discharges of neurons. Among diseases involving dysfunction in the mitochondrial structures, epilepsy is prominent. Mitochondria have important vital functions such as energy production, cellular harm control, neurotransmitter synthesis and free radical production however, it is still not clear which of these functions is affected in epileptic seizures. It is interesting to note that oxygen stress and mitochondrial dysfunction may both cause and be caused by epileptic attacks. Now a day work is focused on the possible interaction between oxidative stress resulting in disturbance of physiological signaling roles of calcium and free radicals in neurons, mitochondrial dysfunction, cell damage and epilepsy. Role of oxygen stress has been well demonstrated and discussed in experimental animal model of epileptic seizures.

Mechanism of action of present drug module for epilepsy

The objective of the therapeutic management of seizures with medication is to control the seizures with minimal adverse side effects. Although the actions of each AED have unique characteristics and some drugs may act by multiple mechanisms, the anti-seizure actions of these drugs can be grouped into four broad categories like, modulation of voltage-dependent sodium, calcium or potassium channels; increase in GABA-ergic inhibition via actions on GABAA receptors; or on GABA synthesis, reuptake, or degradation, decreased synaptic excitation via actions on ionotropic glutamate receptors; or modulation of neurotransmitter release via presynaptic mechanisms. The drugs presently available for epilepsy are having renowned side effects like tolerance, dependence, and long term defects like psychosis, osteoporosis etc.

What is Hawan

Hawan is a Sanskrit word which refers to any ritual that involves making offerings into a consecrated fire. It was done by ‘Rishis’ in early period and is an important religious practice in Hinduism where they are part of most Sanskar ceremonies. They are also prevalent in current-day Buddhism and Jainism. A consecrated fire is the central element of every Hawan ritual however the procedure and items offered to the fire vary by occasions/ceremony or by the benefit expected from the ritual. A Hawan (homam, yagya or agnihotra) is a scientific experiment in which special herbal/plant medicinal preparations (Hawan Samagri) are offered in the fire of medicinal woods ig-
Parveen Bansal, et al. Epilepsy is a neuropsychiatric disorder associated

Hawaran seems to be designed by the ancient scholars to fight with...
the diseases of the brain. The components of Hawan are having a number of volatile oils that volatilize due to high temperature of fire. The vapors of these oils enter into the central nervous system through nasal route. The routine of performing Hawan might keep the threshold value of the therapeutic components in the body and help in preventing epilepsy (Fig. 1). The scientific studies conducted on various components of Hawan clearly demonstrates that Hawan was designed for multifaceted action to clean the environment as well as to cleanse the body of the toxins responsible for causing diseases related to brain. Hawan fumes are not only used for the disinfection of air but also it can be environmentally oppressed for the physical, mental, intellectual and spiritual development based on nano-technology of Hawan.

Scientific evidences for effect of Hawan on epilepsy

The purpose of Hawan is to enhance the energy of the human body and make it healthy and progressive. The therapeutic value of Hawan is based on the ingredients used (Table 1). One of the main ingredients used is cow “Ghee” or “Clarified Butter” which has enormous beneficial properties. This ghee when burnt like oil will produce natural fumes that heal the respiratory system and clear any blood clots and bacterium affecting the nasal, lungs and veins. In the bible, the Book of Samuels, Chapter 2, “the burning of sins, using the sticks and clarified butter” infers that ghee was frequently used for fire rituals in biblical times. Essential oil constituents that penetrate the nasal passages, skin or lungs have direct actions on the autonomic nervous system that can be grouped as relaxing or stimulating in terms of basic responses such as heart rate, blood pressure and respiration, in addition to localized dermal and bronchial effects. The direct neuro-pharmacological properties of an essential oil, aroma of the oil may exert a pleasant response via the olfactory system in turn, altering the hypothalamic control of hormones and neurotransmitters. The medium chain fatty acids in pure Ghee get converted into ketones and supply the epilepsy patient brain with the energy it needs to survive and if given on a continual basis will support processes in the brain that are involved in healing and repair.
Table 1. Therapeutic mechanism of action and active constituents of different components of Hawaiian Samagri on epilepsy

S. No	Name/botanical name	Active component	Mechanism of action
1.	Saffron *Crocus sativus*	Crocetin, picrocrocin, safranal, isophorone, 2,2,6-trimethyl-1,4-cyclohexanediol, 4-ketoisophorone, 2-hydroxy-4,4,6-trimethyl-2,5-cyclohexadien-1-one as well as 2,6,6-trimethyl-1,4-cyclohexadiene-1-carboxaldehyde	Increase in seizure threshold. Increase GABA-ergic neurotransmission. Improve tonic clonic seizures.
2.	Jatamansi *Nardostachys jatamansi*	Valeranone, Calerene, patchoul, α-gurjunene, aristolone, β-maaliene, spathulenol	Increase in seizure threshold, Inhibit the electroshock convulsions. Increase GABA, 5-HT, 5-HIAA.
3.	Coconut *Cocos nucifera*	Monounsaturated fatty acids, Saponins	Inhibit PTZ induced convulsions. Increase GABA level, serotonin level.
4.	Sesame seeds *Sesamum indicum*	1-(5-methyl-2-furanyl)-1-propanone, 3-formylthiophene, 2-propyl-4-methylthiazole, 2-ethyl-4-methyl-1H-pyrrole, 2-ethyl-6-methylpyrazine, 2-ethyl-5-methylpyrazine, 2,6-diethylpyrazine, 2-ethyl-2,5-dimethylpyrazine, 1-(2-pyridyl) ethanone, and 1-(1-methyl-1H-pyrrol-2-yl) ethanone	Decrease ROS, MDA in epileptics.
5.	Clove *Eugenia caryophyllus*	Eugenol, acetyl eugenol, β-caryophyllene, vanillin, crategid acid, tannins, galloctannic acid, methyl salycylate, flavonoids eugenin, kaempferol, rhamnetil, eugenitin and triterpenoids like oleanolic acid.	Increase onset of convulsions. Reduce duration of convulsions. Delay onset on seizures. Increase GABAergic and glycinergic activity.
6.	Nutmeg *Myristica fragrans*	Myristicin and macelignan	Inhibit seizures. Reduce severity of seizures.
7.	Nagkesar *Mesua ferra*	Sesquiterpene, diterpenes, triterpenes, carboxylic acids and saturated hydrocarbons	Reduce HLTE. Inhibit MES induced convulsions. Increase the onset time of seizures. Decrease duration of seizure.
8.	Tagar *Valeriana wallichii*	Valerian, valipotriates and GABA sesquiterpene, diterpenes, triterpenes, carboxylic acids and saturated hydrocarbons	Sedative action. Decrease HLTE. Anticonvulsant activity.
9.	Agar *Aquilana malaccensis*	Sesquiterpenes, benzylacetone, guaiene, anisylacetone and chrome derivatives	Sedative action.
10.	Nagarmotha *Cyperus rotundus*	Cyperone, selinene, cyperene, cyperotundone, patchulenone, sugeonol, kobusone and isokobusone, pinene (monoterpene) derivatives of sesquiterpenes such as cyperol, isocyperol and cyperone.	Anticonvulsant action.
11.	Ber *Zaphus jujuba*	Flavonoids, sapoins, tannins, vitamin A, vitamin B, sugars, mucilage, calcium. Anticonvulsant action.	
12.	Phoolmakhane *Nelumbo nucifera*	N-nornuciferine, O-nornuciferine, nuciferine, and roemerine, protein, amino acids, unsaturated fatty acids, minerals, starch, and tannins.	Decrease tonic extensor convulsions.
13.	Mango *Mangifera indica*	PGG, polyphenolics, flavonoids, triterpenoids, mangiferin, catechin, isomangiferin, mangiferin, alanine, glycine, y-aminobutyric acid, Kinic acid, shikimic acid, Increase GABA levels. and the tetracyclic triterpenoids cycloart-24-en-3β, 26dial, 3-ketodammar-24 Anticonvulsant action.	Increase PTZ and MES induced convulsions.

PTZ, pentylenetetrazole induced; GABA, gamma-aminobutyric acid; ROS, reactive oxygen species; MDA, malondialdehyde; MES, maximal electroshock seizure; HLTE, hind limb tonic extension

Another important ingredient in Hawaiian is “Camphor” from the plant *Cinnamomum camphora*. When the camphor is burnt in the fire ritual, the body’s breathing system is cleared quickly and the person will experience a “high” or elevated feeling during the ceremony.43
The use of CO₂ as a cerebral stimulant to assist the patients suffering from lack of ventilation is common in medical world. Its use to control and cure many mental disorders is also known to medical science. Small amounts of CO₂ inhaled by the persons performing Yagna acts as a stimulant and more and more aromatic fumes are inhaled which help in curing mental disorders.44

Crocus sativus L. contains important constituents like crocetin, picrocrocin, safranal, which are main component for characteristic aroma. Safranal is the aglycon of picrocrocin and are responsible for many pharmacological actions.45 Saffron increased the seizure threshold, the ability of saffron in to elevate seizure threshold and block pentylenetetrazole-induced (PTZ) convulsions can be attributed to its modulatory effect on GABA neurotransmission. The probable mechanism of anti epileptic activity has been shown to be by increasing the GABAergic neurotransmission. They showed that acute administration of saffron showed protection against PTZ induced convulsions. The animals showed only mild clonic convulsions followed by recovery. This may be because of their interaction with GABA benzodiazepine receptor complex. Another study also showed that pretreatment with saffron offered a significant protection both during the development of PTZ-induced kindling and also once kindling was established. It may be due to blockade of GABAergic mechanism by both acute and chronic treatment of saffron.46,47 In another study, ethanolic and aqueous extracts decreased the duration of tonic seizures.48,49 Among the constituents of saffron extract crocin is mainly responsible for the above pharmacological activities. In traditional medicine, the stigmas of this plant have been used as an anticonvulsant remedy.50 The aqueous and ethanolic extracts of *C. sativus* have shown anticonvulsant activity in PTZ and maximal electroshock seizure (MES)-induced seizures. Agents affecting the PTZ test can inhibit absence seizures. The extracts have also been shown to improve tonic clonic seizures.49 The mechanism (s) of anticonvulsant activity of the extracts is not clear. Saffron has been reported to have some behavioral effects on the central nervous system. In one study an alcoholic extract of decreased the motor activity and prolonged the sleeping time induced by hexobarbital.51 Another component of saffron, crocin did not show any effect in pentylenetetrazole-induced convulsions in mice.52

Jatamansi is a reputed Ayurvedic herb and used in various multiple formulations. Jatamansi has been used in the treatment of many disease and has several activities including anticonvulsant activity, anti-parkinson’s activity, tranquilizing activity, hepatoprotective, neuroprotective etc.53 Rao et al.54 have studied ethanol extract of the roots of *N. jatamansi* DC for its anticonvulsant activity and neurotoxicity, alone and in combination with phenytoin in rats. The results demonstrated a significant increase in the seizure threshold by root extract against MES model as indicated by a decrease in the extension/flexion ratio. Valeranone prolonged barbiturate anesthesia, impaired rotorod performance, inhibited electroshock convulsions, and potentiated the hypothermic effects.55 Limited results from behavioral tests revealed that an extract from *N. jatamansi* exhibited significant antidepressant activity.56 In another study the effect of acute and subchronic administration of alcoholic extract of the roots of *N. jatamansi* DC on nor epinephrine (NE), dopamine (DA), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), GABA, and taurine on male albino Wistar rats was conducted. The acute oral administration of the extract did not change the level of NE and DA but resulted in a significant increase in the level of 5-HT and 5-HIAA. A significant increase in the level of GABA and taurine was observed in the drug-treated groups when compared to the controls. A 15-day treatment resulted in a significant increase in the levels of NE, DA, 5-HT, 5-HIAA, and GABA.57

Nutmeg (*Myristica fragrans*, *MF*) possesses anticonvulsant activity against PTZ, MES and lithium-pilocarpine induced seizures and lower doses were more effective in inhibiting seizures. The *MF* was without any significant effect on picrotoxin-induced convulsions and motor coordination but potentiated haloperidol induced catalepsy significantly. *MF* indicated signs of both CNS depression as well as stimulation. In various animal models of seizures used in study, the anticonvulsant activity of *MF* decreased with increasing doses. In status epilepticus, the animals receiving *MF* in a dose of 10 mg/kg reduced the severity of seizures at much earlier time. These observations support the biphasic effect of *MF* on the central nervous system. *MF* was without any effect on the duration of pentobarbitone-induced sleep. Though the MES test predicts activity against generalized tonic-clonic and cortical focal seizures and the PTZ test against absence seizures, the underlying neuronal abnormality is poorly understood. Diminution of brain GABA level has been reported after subconvulsive dose of PTZ.58 Picrotoxin, the antagonist of GABA at the postsynaptic receptors, induced seizures in all the animals and its effect was not antagonized even at the dose of 100 mg/kg suggesting that GABA may not be involved in the anticonvulsant activity of *MF*.59,60

Nagkeshwar (*Mesua ferrea*) is also a component of *Hawan samagri*. The ethanolic extract of *M. ferrea* flowers have been reported to reduce the duration of Hind limb tonic extension in a dose dependent manner against MES model and inhibited MES-induced convulsions.
Data also showed that *M. ferrea* flowers significantly increased the onset time and decreased the duration of seizures by electroconvulsive shock.\(^6\) Agarwood smoke functions as an endocrine disruptor and Agar wood have sedative property.\(^6\) Tagar wood *Valeriana wallichii* is an important component of Hawan reported to contain valepotriates and valerinic acids (with putative pharmacological activities). Root hydroethanolic extract have shown a dose dependant reduction of hind limb tonic extensor phase indicating potential antiepileptic effect on grand mal type of epilepsy in man. The extract didn’t show any adverse effects on motor coordination.\(^6\) Wood extract used for its sedative action and anticonvulsant activity\(^6\) have CNS depressant action and also have anti-convulsant effect.\(^6\)

Clove is also an important part of Hawan Samagri. Clove essential oil (CEO) has been shown to significantly increase the onset of convulsion and reduce its duration in dose dependent manner compared to the control for strychnine and picrotoxin-induced convulsion. The study indicates anticonvulsant, anxiolytic and hypnotic activity of CEO. The anticonvulsant activity of a novel compound is not measured only by its ability to prevent convulsions but also to delay the onset of seizures or to reduce death rate.\(^6\) These observations also suggest that the CEO has considerable glycnergic and GABA-ergic potentiating mechanisms. Glycine and GABA are amino acids, which act as inhibitory neurotransmitters in the central nervous system and their inhibition has been implicated in convulsions. Strychnine, a potent spinal cord convulsant, blocks glycine receptors selectively to induce excitatory response in the central nervous system. Picrotoxin, on the other hand, blocks GABAA receptors to induce generalized seizures.\(^6\) The anticonvulsant action of the CEO was probably due to inhibition of the effects of strychnine and picrotoxin at glycine and GABAA receptor sites respectively. CEO has also been shown to act against neurotoxic death usually caused by chemical convulsants.\(^6\)

Nagaramtha (*Cyperus rotundus*) is an important herb in the Ayurveda.\(^6\) Cyperotundone and α-cyperone compounds have been reported from essential oil of C. rotundus rhizomes. The effect of *Cyperus esculentus* and *Cyperus rotundus* essential oils has been reported as anticonvulsant (MES produced convulsion). The results showed dose dependent activity in the maximal electroshock (MES) induced convulsion in comparison to Diclofenac sodium.\(^7\) Nagarmotha is also known to have Iso curcumenol used as sedative.\(^7\) Nelumbo nucifera have reduced the tonic extensor convulsion induced by MES.\(^7\) The wood of *Ziziphus jujuba* is used in Hawan and the hydro-alcoholic extract of *Z. jujuba* demonstrate the anticonvulsant effect as well as amelioration of cognitive impairment induced by seizures in rats.\(^7\)

The ethanol extract of *Cocos nucifera* was tested for possible pharmacological effects on experimental animals. Pretreatment with extract caused significant protection against PTZ induced convulsions. The behavioral studies on mice indicate CNS depressant activity of the ethanol extract of *C. nucifera* EECN potentiated significantly the duration of pentobarbital, diazepam and meprobamate induced sleep in mice, suggesting probable tranquilizing action as well as CNS depressant action.\(^7\) It was found to increase the brain serotonin and GABA level in mice (unpublished data). Therefore, profound analgesic and anticonvulsant activities produced by extracts may be related to the increased brain serotonin and GABA level in mice.\(^7\)

The mechanism whereby extract depressed awareness, touch and pain responses, righting reflex, pinna reflex, corneal reflex, and grip strength may also be due to synapse block of the efferent pathway or by overall CNS depressant action.\(^7\) The exact chemical components responsible for such CNS depressant activity of extract are not known. Preliminary phytochemical studies revealed that it contains saponin which might be responsible for anticonvulsant properties of extract.\(^7\) The extracts also enhanced sleeping time, analgesic, and anti-convulsant activities and reduced different behavioral reflexes. In a study 1,2,3,4,6-penta-O-galloyl-β-d-glucopyranose (PGG) isolated from methanolic leaf extracts of *Mangifera indica* showed significant and dose-dependent inhibition of *Mangifera indica* showed significant and dose-dependent inhibition of PTZ and MES-induced convulsions. Furthermore, PGG administration showed significant decrease in the locomotor activity as an indication of its CNS-depressant property; also, PGG has significantly increased the GABA levels in the cerebellum and whole brain other than the cerebellum. In conclusion, PGG isolated from *M. indica* showed potent anticonvulsant activity, and possible mechanism may be due to enhanced GABA levels in the brain.\(^7\)

The pathogenesis of epilepsy has been strongly affected free radicals and authors have tried to hypothesize antioxidant action (Table 2) of each component of Hawan Samagri. Components of Hawanlike Guggal, Saffron, Almond, Jatamansi and Coconut scavenge free radicals and hence might be helpful to stop the pathogenesis of the disease. *Sesamum indicum*, Sesamin is a well-known antioxidant from sesame seeds and it scavesnge free radicals and significantly decreased ROC.\(^8\)

Nitric Oxide is an important neurotransmitter and also related to synaptic plasticity, neuronal excitability regulation, and epileptic activity.\(^8\) NMDA glutamate receptors activate calcium release via NMDA receptor that consequently activates calcium calmodulin pathway to increase neuronal nitric oxide synthase protein expression.
Table 2. Components of Hawan Samagri along with probable multiple mechanism of action

S. No	Name/botanical name	GABA/serotonin/5-HIAA	Antioxidant activity	Nitric oxide level	NMDA
1.	Saffron (Crocus sativus)	×	×	×	
2.	Jatamansi (Nardostachys jatamansi)	×	×		
3.	Coconut (Cocos nucifera)	×	×		
4.	Sesame seeds (Sesamum indicum)	×	×		
5.	Clove (Eugenia caryophyllus)	×	×		
6.	Nutmeg (Myristica fragrans)	×	×		
7.	Nagkesar (Mesua ferra)	×	×		
8.	Tagar (Valeriana wallichii)	×	×		
9.	Agar (Aquilana malaccensis)	×	×		
10.	Nagarmotha (Cyperus rotundus)	×	×		
11.	Ber (Ziziphus jujube)	×	×		
12.	Phoolmakhane (Nelumbo nucifera)	×	×		
13.	Mango (Mangifera indica)	×	×		
14.	Ghee	×	×		
15.	Camphor laurel (Cinnamomum camphora)	×	×		
16.	Guggal (Commiphora weightii)	×	×		
17.	Almond (Prunus amygdalus)	×	×		
18.	Gular (Ficus racemosa)	×	×		
19.	Chirongi (Bauchanania lanzari)	×	×		
20.	Kapurkachri (Hedychium spicatum)	×	×		
21.	Red sandal (Pterocarpus santalinus)	×	×		

NMDA, n-methyl d-aspartate

and NO increment in brain different area. The higher NO level is able to increase the induction of generalized epilepsy. NO is known as a molecule that can easily react with O2− radicals in the brain and reduce the oxidative stress induced damage via deleting free radicals.82 It has been reported in a study that Hawan causes a reduction in NO levels in the atmosphere.83 The reduction in level of NO may be helpful in reducing the epileptic seizures. Other components of Hawan samagri have also been reported to reduce NO levels through various mechanisms (Table 2). Methanol extracts of Nardostachys jatamansi have been shown to exert inhibitory effect on nitric oxide (NO) production. The NO level decreased from 100% to 5.8% and this decreased levels could prove to have antiepileptic effect. NJ extracts down regulated iNOS in a dose-dependent manner.84 In another study saffron extract has been related to a decrease in the NO concentration.85 Lotus seed extract have been shown to possess free radical scavenging properties.86 Results showed that all the extracts inhibit nitric oxide accumulation and thus could be helpful in antiepileptic action. Results of a study showed that clove oil and its major constituent, eugenol, were the most active inhibitors of the nitric oxide production.86 C. rotundus rhizomes ethanolic exhibits its scavenging effect in concentration dependent manner on superoxide anion radicals, hydroxyl radicals, nitric oxide radical, hydrogen peroxide and it had a property of metal chelating and reducing power. This antioxidant activity could be helpful in preventing epilepsy.89 The methanol and EtOAc fraction of C. wightii has been shown to inhibit the NO formation by down regulation of iNOS and COX-2 gene expression.90 Guggulipid prevented the production of NO and ROS generation91 in rat astrocytoma cell line. Nishaa et al.92 and K. Kamalakara et al.93 have reported nitric oxide scavenging activity of M. ferrea pet ether and methanol extract. The biflavone and tannin fraction form Ficus racemosa bark extract has shown inhibitory action on nitric oxide and hydroxyl radicals in in-vitro studies.94 Cyperus rotundus extract suppressed the production of NO and the inhibition of NO production by the extract was due to the suppression of iNOS protein, as well as iNOS mRNA expression, determined by Western and Northern blotting analyses, respectively.95 Also, other constituents of C. rotundus including sugeonol and cyperone, could yield a modulatory effect on glutaminergic system, especially lowering the opening of NMDA receptor channels,96 which could lead to anticonvulsant effects. Ziziphus jujube (SZS) has been
shown to have sedative, analgesic and antiseizure effects.97-100 NMDA-induced intracellular Ca2+ increase was almost completely abolished by SZS101 a qualitatively stronger effect than other herbs that only partially diminished the Ca2+ response. The subsequent ROS production and cell death was also reduced by SZS. Similar to RP, SZS also suppresses glutamate release and may suggest additional protection for excitotoxicity.101 Ethanol extract of Valeriana abolished cell death in NMDA-stimulated mouse cortical neurons.102 In the same study, kainate-induced cell death was marginally decreased only, suggesting the selective effect of extract on NMDA-R over other glutamate receptor subtypes.102 An inhibitory effect on glutamate binding of NMDA-R was only observed when isoborneol was present at a high concentration.103 It is therefore likely that the NMDA-R-selective cellular effects reported by Jacobo-Herrera et al. were attributed to a high concentration of isoborneol or other extract constituents yet to be identified in the ethanol extract.102 Moreover, the use of whole extract in targeting NMDA-R activity is cautioned due to the multi-faceted effect on all glutamate receptor subtypes, ionicotropic and metabotropic. Evidence of the inhibition of postsynaptically located NMDA and kainite receptors by a hydro-ethanolic Crocus sativus L extract have been reported, which is partly mediated by trans-cocetin. These mechanisms contribute to the neuroprotective effect of saffron.104 Saffron has turned out to be the antagonist of postsynaptic NMDA receptors.105 Several studies have demonstrated that oxygen free radicals formed by xanthine/xanthine oxidase (X/XO) may be involved in the NMDA-mediated neurotoxicity and inhibitory action of glutamate uptake in glial cells.106-108 The results of another study showed that eugenol attenuated NMDA induced acute neurotoxicity and inhibited NMDA-induced elevation in neuronal Ca2+ uptake. Furthermore eugenol prevented acute neuronal swelling and reduced neuronal death and significantly reduced oxidative neuronal injury induced by X/XO.109 Eugenol increased the degree of INa activation and reversibly suppressed non-activating I\textsubscript{Na}. In addition, at higher concentrations eugenol diminished L-type Ca2+ current and delayed rectifier K+ current. In pilocarpine-induced seizures in rats, a lower seizure severity and mortality was noted, though no shorter seizure latency effect was observed. The mechanism of action was deduced to be the synergistic blocking of I\textsubscript{Na} and non-activating I\textsubscript{Na} affecting neuronal spontaneous action potentials.110 Mangifera indica L. extract attenuates glutamate-induced neurotoxicity on neurons.111

Apart from the significant physical and medical applications like cleansing of the environment, curing bodily ailments and augmenting vitality and physical potentials, yagyopat is also found to be of immense use in treatment of psychosomatic disorders and psychological and psychiatric problems. The sublimated vital elements and herbal medicines inhaled in Yagya first reach the brain and then to the lungs and other parts, the gross as well as the subtle components of the body. Thus, it has a direct healing effect on brain diseases and complexities. The body absorbs the heat of its sacrificial fire and inhaled the vapors of sublimated herbs through the skin-pores and respiration. This elevated level of antioxidants upon reaching the brain and the nerves eliminates the major cause of mental tensions. The specific energy currents reduced by yagyagni and mantra shakti have significant remedial effect on the disorders and diseases ranging from headache, migraine, cold to mental dullness, intellectual deficiencies, depression, insomnia, intemperance, epilepsy, schizophrenia and varieties of manias.112

Conclusions

From the metadata analysis it seems that Hawan has been designed by the ancient scholars to fight with a plethora of diseases related to brain. As explained in text, more than 70% of the components of Hawan samagri are having a number of volatile oils that volatilize due to high temperature of fire. Most of the components have been found to be having anticonvulsant activity through one or the other mechanism. The action of maximum number of herbs is benzodiazepines, Phenobarbital, valproate like action that enhances GABA-ergic inhibition. It is quite likely that the other volatile components those have not been explored for anticonvulsant action could add to further therapeutic antiepileptic action. The components of Hawan seem to have multiple action in preventing epilepsy through scavenging of free radicals, increase in level of antioxidants, decrease in level of nitric oxide and other underlying mechanisms. From the pharmacological potentials of the components it can be concluded that the routine of performing Hawan might keep the threshold value of the antiepileptic elements in the body and help in preventing epilepsy however concerted efforts are required to prove the hypothesis.

References

1. Roy MK, Das D. Indian Guidelines on Epilepsy. Chapter 116. Section 16: Neurology Medicine Update 2013. The Association of Physician of India. Retrieved from: http://www.apiindia.org/medicine_update_2013/chap116.pdf (Accessed August 2014).

www.kes.or.kr
2. Kounteya S. Around 95% of Indian with epilepsy don’t get treatment study. The Times of India. Retrieved from: http://timesofindia.indiatimes.com/India/Around-95-of-Indians-with-epilepsy-dont-get-treatment-Study/articleshow/16585514.cms (Accessed August 2014).

3. Andlin-Sobocki P, Jonss B, Witzchen HU, Olesen J. Cost of disorders of the brain in Europe. Eur J Neurol 2005;12:1-27.

4. Majkowski J, Majkowska-Zwoliriska B. Direct and Indirect Annual Costs of Patients with Epilepsy in Poland-Prospective Multicenter Study. Epileptologia 2010;18:141-52.

5. Leonard M, Ustrun TB. The global burden of epilepsy. Epilepsia 2002; 43:21-5.

6. Brodtkorb E, Nakken KO. The relationship between epilepsy and religiosity illustrated by the story of the visionary mystic Wise-Knut. Epilepsy & Behavior 2015;46:99-102.

7. Giovagnoli AR, Meneses RF, Da Silva AM. The contribution of spirituality to quality of life in focal epilepsy. Epilepsy & Behavior 2006;9:133-9.

8. Işl ğ er A, Turan FD, Gozum S, Oncel S. Complementary and alternative approaches used by parents of children with epilepsy on epilepsy management. Epilepsy & Behavior 2014;32:156-161.

9. Tewary R, Mishra JK, Havran. An effective method to reduce fungal load at small work places. Aerobiologia 1999;13:135-8.

10. Nigam R, Hashimi NH. Has sea level fluctuations modulated human health care in Cape Town. Transcultural Psychiatry, 2015, doi: 10.1177/1363461515571626.

11. Kalyanaraman S, Miecaha. Indus script and sarasvati hieroglyphs. Bangladesh: Baba Saheb (Umakanta Keshava) Apte Smarak Samiti; 2004.

12. Jain S, Tandon PN. Ayurvedic medicine and Indian literature on epilepsy Neurology Asia 2004;9:57-58.

13. Fischer JH, The epilepsy counseling guide. New Jersey: MPE Communications Inc; 1994.

14. Garnett WR. Epilepsy. Stamford, CT: Appleton and Lange; 1997, p. 1179-210.

15. Frantsseva MV, Perez Velazquez JL, Tsraklidis G, et al. Oxidative stress is involved in seizure-induced neurodegeneration in the kindling model of epilepsy. Neuroscience 2000;97:431-3.

16. Frantsseva MV, Perez Velazquez JL, Carlen PL. Changes in membrane and synaptic properties of thalamocortical circuitry caused by hydrogen peroxide. J Neurophysiol 1998;80:1317-26.

17. Wuldbauam S, Patel M. Mitochondrial dysfunction and oxidative stress: a contributing link to acquired epilepsy? J Bioenerg Biomembr 2010; 42:449-55.

18. Chang JC, Koo SJ, Lin WT, Liu CS. Regulatory role of mitochondria in oxidative stress and atherosclerosis. World J Cardiol 2010;2:150-9.

19. Rowley S, Patel M. Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic Biol Med 2013;62:121-31.

20. Sullivan PG, Springer JE, Hall ED, Scheff S. Mitochondrial uncoupling as a therapeutic target following neuronal injury. J Bioenerg Biomembr 2004;36:353-6.

21. Martinc B, Grabnar I, Vovk T. The role of reactive species in epileptogenesis and influence of antiepileptic drug therapy on oxidative stress. Curr Neuropharmacol. 2012;10:328-43.

22. Majkowski J. Epileptogenesis- The role of oxygen stress. Epileptologia 2007;1:225-40.

23. Ryan K, Backos DS, Reigan P, Patel M. Post-translational oxidative modification and inactivation of mitochondrial complex I in epileptogenesis. J Neurosci 2012;32:11250-8.

24. Pathirana W, Abhayawardha R, Kariyawasam H, Ratnasooriya WD. Transcranial Route of Brain Targeted Delivery of Methadone in Oil. Indian J Pharm Sci 2009;71:264-9.

25. Scorer CA. Predilection and clinical challenges in the development of disease-modifying therapies for Alzheimer’s disease. Drug Discov Today 2001;6:1207-19.

26. Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet 2006;368:387-403.

27. Tripathi KD. Essentials of medical pharmacology. New Delhi: IP Brothers Medical published; 2010.

28. Keikelame MJ, Swartz L. A thing full of stories’: Traditional healers’ explanations of epilepsy and perspectives on collaboration with biomedical health care in Cape Town. Transcultural Psychiatry, 2015, doi: 10.1177/1363461515571626.

29. Kishore J, Gupta A, Jiloha RC, Bantman P. Myth, beliefs and perceptions about mental disorders and health seeking behavior in Delhi, India. Indain J Psychiatry 2011;53:324-9.

30. Turk C, Onur E, Ozer Y. Nasal route and drug delivery systems. Pharm World Sci 2004;26:137-42.

31. Sugawara Y, Hara C, Aoki T, Sugimoto N, Masujima T. Odor distinctiveness between enantiomers of linalool: difference in perception and responses elicited by sensory test and forehead surface potential wave measurement. Chem Senses 2000;25:77-84.

32. Guedes DN, Silva DF, Barbosa-Filho JM, Medeiros IA. Mucarincic agonist properties involved in the hypotensive and vasorelaxant responses of rotundifolone in rats. Planta Med 2002;68:700-4.

33. Nagai M, Wada M, Usui N, Tanaka A, Hasebe Y. Pleasant odors attenuate the blood pressure increase during rhythmic handgrip in humans. Neuroscience Letters 2000;36:289-292.

34. Ballard CG, Gauthier S, Cummings JL et al. Management of agitation and aggression associated with Alzheimer disease. Nat Rev Neurol 2009;5:245-55.

35. Turk C, Onur E, Ozer Y. Nasal route and drug delivery systems. Pharm World Sci 2004;26:137-42.

36. Ghadrdoost B, Vafaei AA, Rashidi-Pour A, Hajisoltani R, Bandegi AR, Motamedi F et al. Protective effects of saffron extract and its active constituent crocin against oxidative stress and spatial learning and memory deficits induced by chronic stress in rats. Eur J Pharmacol 2011;667:222-9.

37. Reddy PM, Gobinath M, Rao KM, Venugopalaiah P, Reena N. A Review on Importance of Herbal Drugs in Cosmetics. International Journal of...
Abe K, Saito H. Effects of saffron extract and its constituent crocin on
Hosseinzadeh H, Ghenaati J. Evaluation of the antitussive effect of
Bagchi A, Oshima Y, Hikino H. Neoligans and lignans of Nardostachys
Neelakanth MJ, Bhat MR, Taranalli AD, Veeresh B. Effect of Buchanania
Katariya DC, Nerkar N, Gadiya RV, Abhyankar MM. Detailed Profile of
Joshi RR. The Integrated Science of Yagna. http://literature.awgp.org/
Sharma S, Sharma J, Kaur G. Therapeutic uses of Elettaria cardomum.
Makhija IK, Sharma IP, Khamar D. Phytochemistry and Pharmacological
Sheng L, Qian Z, Zheng S, Xi L. Mechanism of hypolipidemic effect of
Zargari A. Medicinal Plants. Tehran: Tehran University Press; 1990, p.
Sunanda BPV, Rammohan B, Kumar A, Kudagi BL. The Effective Study
Vida JA, Foye WO, Lemke TL, Williams DA. Principles of Medicinal
Zhang Y, Shoyama Y, Sugiura M, Saito H. Effect of Crocus sativus L.
Prabhu V, Karanth KS, Rao A. Effects of Nardostachys jatamansi on
www.kes.or.kr
nitive impairment in experimental models of epilepsy in rats. Epilepsy & Behavior 2011;21:356-63.
74. Pal D.K., Panda C., Sinhababu S., Dutta A., Bhattacharya S. Evaluation of Psychopharmacological effect of petroleum ether extract of Cuscuta reflexa Roxb. Stem in mice. Acta Pol Pharm Drug Res 2003;60;481-6.
75. Mazumder UK, Gupta M, Pal DK, Bhattacharya S. CNS activities of the methanol extracts of Cuscuta reflexa Roxb. Stem and Corchorous olitorius L. seed in mice. Malaysian J. Pharm 2005;2;190-198.
76. Pal DK, Sahoo M, Mishra AK. Analgesic and anticonvulsant effects of saponin isolated from the stems of Opuntia vulgaris Mill in mice. Eur. Bull. Drug Res 2005;13;91-97.
77. Pal DK, Dutta S, Sarkar A. Evaluation of antioxidant activity of the roots of Cyperus rotundus L. Acta Pol. Pharm. Drug Res 2006;68:256-8.
78. Pal DK, Balasaheb NS, Khatun S, Bandyopadhyay PK. CNS activities of the aqueous extract of Hydrilla verticillata in mice. Nal Prod Sci 2006;12;44-9.
79. Viswanatha GL, Mohan CG, Shylaja H, Yuvaraj HC, Sunil V. Anticonvulsant activity of the aqueous extract of Mangifera indica roots. Naunyn Schmiedebergs Arch Pharmacol 2013;386:599-604.
80. Hsieh PF, Hou CW, Yao PW et al. Sesamin ameliorates oxidative stress and mortality in kainic acid induced status epilepticus by inhibition of MAPK and COX-2 activation. J. Neuroinflammation 2011; 8: 57-66.
81. Buisson A, Lakhmeche N, Verrecchia C, Plotkine M, Boulu RG. Nitric oxide: an endogenous anticonvulsant substance. Neuroreport 1993;4: 444-6.
82. Sudha K, Rao AV, Rao A. Oxidative stress and antioxidants in epilepsy. Clin. Chem 2001;303:19-24.
83. Abhang P, Patil M, Moghe P. Beneficial Effects of Agnighotra on Environment and Agriculture. International Journal of Agricultural Science and Research 2015;5;111-20.
84. Chunmei L, Myeong-Hyeon W. Nardostachys jatamansi (D. Don) DC prevents LPS-induced inflammation in RAW 264.7 macrophages by preventing ROS production and down-regulating inflammatory gene expression. Food Science and Biotechnology 2014;23:903-9.
85. Parizadeh MR, Gharib FG, Abbaspour AR, Afshar JT, Mobaran MG. Effects of aqueous saffron extract on nitric oxide production by two human carcinoma cell lines: Hepatocellular carcinoma (HepG2) and laryngeal carcinoma (Hep2). Avicenna J Phytomed 2011;1:43-50.
86. Sohn DH, Kim YC, Oh SH, Park EJ, Li X, Lee BH. Hepatoprotective and free radical scavenging effects of Nelumbo nucifera. Phytomedicine 2003;10:165-9.
87. Yen GC, Duh PD, Su HJ, Yeha CT, Wu CH. Scavenging effects of lotus seed extracts on reactive nitrogen species. Food Chemistry 2006;94: 596-602.
88. Perez-Roses R, Risco E, Vila R, Penalver P, Canigueral S. Inhibitory activity of nine essential oils on nitric oxide production by human leukocytes. Planta Med 2009;75:17-26.
89. Nagulendran KR, Velavan S, Mahesh R, Begum VH. In vitro antioxidant activity and total polyphenolic content of Cyperus rotundus rhizomes. J Chem 2007;4:440-9.
90. Cheng YW, Cheah KP, Lin CW et al. Myrrh mediates haem oxygenase-1 expression to suppress the lipopolysaccharide-induced inflammatory response in RAW 264.7 macrophages. J Pharmacy and Pharmacology 2011;63;1211-8.
91. Niranjani R, Kamat PK, Nath C, Shukla R. Evaluation of guggulipid and nimesulide on production of inflammatory mediators and GFAP expression in LPS stimulated rat astrocytoma, cell line (C6). Journal of Ethnopharmacology 2010;127:625-30.
92. Nishaa S, Vishnupriya M, Sasikumar JM, Hephzbah PC, Gopalakrishnan VK. Antioxidant Activity of Ethanolic Extract of Maranta Arundinacea L. Tuberous Rhizomes. Asian J Pharm Clin Res 2012;5:85-88.
93. Chaitanya KK, Rao KK, Sastry YN, Padal SB, Lakshmi AR, Rao DG. Anti-inflammatory, antioxidant and phytochemical analysis of Mesua ferrea bark extracts. IJTPR 2015;3:891-902.
94. Nirmala S, Ahamed HN, Ravichandiran V. Comparative in vitro study on the free radical scavenging capacity of tannin and biflavone fraction from Ficus racemosa Linn and Acurania bidwillii Hook. International Journal of ChemTech Research 2011;3:1440-5.
95. Won Gil S, Hyun-Ock P, Gi-Su O et al. Inhibitory effects of methanol extract of Cyperus rotundus rhizomes on nitric oxide and superoxide productions by murine macrophage cell line, RAW 264.7 cells. Journal of Ethnopharmacology 2001;76:59-64.
96. Ngo Bum E, Rakotonirina A, Rakotonirina SV, Herrling P. Effect of cyperus articulates compared to effects of anticonvulsant compounds on the cortical wedge. Journal of Ethnopharmacology 2003;97:27-34.
97. Chen JK, Chen TT. Chinese Medical Herbology and Pharmacology. City of Industry, USA: Art of Medicine Press; 2003, p.1031-74.
98. Yuching W. Handbook of Commonly Used Chinese Herbal Prescriptions. Long Beach, USA: Oriental Healing Arts Institute; 1983, p.104-7.
99. Han BH, Park MH. Folk Medicine. Washington, USA: American Chemical Society; 1986, p.205-9.
100. Huang KC. The Pharmacology of Chinese Herbs. Boca Raton, USA: CRC Press; 1999, p.155-8.
101. Park JH, Lee HJ, Koh SB, Ban JY, Seong YH. Protection of NMDA-induced neuronal cell damage by methanol extract of Zizyphi Spinosi Semen in cultured rat cerebellar granule cells. J. Ethnopharmacol 2004; 95:39-45.
102. Jacobo-Herrera NJ, Vartiainen N, Bremner P, Gibbons S, Koistinaho J. Anti-NMDA-κB modulators from Valeriana officinalis. Phytother Res 2006;20:917-9.
103. Del Valle-Mojica LM, Ayala-Marín YM, Ortiz-Sanchez CM, Torres-Hernandez BA, Abdalla-Mukhaimer S, Ortiz JG. Selective interactions of Valeriana officinalis extracts and valerenic acid with [3H] glutamate binding to rat synaptic membranes. Evid. Based Complement. Alt. Med 2011, 403591. doi: 10.1155/2011/403591.
104. Nieber K, Berger F, Hensel A. Saffron extract and trans-crocetin inhibits excitotoxicity by inhibition of post-synaptically located glutamate receptors in rat brain neurons, Proceedings of the British Pharmacological Society. http://www.pA2online.org/abstracts/Vol10Issue3/abst006P.pdf.

105. Berger F, Hensel A, Nieber K. Saffron extract and trans-crocetin inhibit glutamatergic synaptic transmission in rat cortical brain slices. Neuroscience 2011;180:238-47.

106. Aizenman E, Hartnett KA, Reynolds II. Oxygen free radicals regulates NMDA receptor function via a redox modulatory site. Neuron 1990;5:841-6.

107. Volterra A, Tropp D, Racagni G. Glutamate uptake is inhibited by arachidonic acid and oxygen radicals via two distinct and additive mechanisms. Mol. Pharmacol 1994;46:986-92.

108. Volterra A, Tropp D, Tromba C, Floridi S, Racagni G. Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocyte. J. Neurosci 1994;14:2924-32.

109. Wie MB, Won MH, Lee KH et al. Eugenol protects neuronal cells from excitotoxic and oxidative injury in primary cortical cultures. Neurosci Lett 1997;225:93-6.

110. Huang CW, Chow JC, Taid JJ, Wu SN. Characterizing the effects of eugenol on neuronal ionic currents and hyperexcitability. Psychopharmacology 2012;21:576-7.

111. Lemus-Molina Y, Sanchez-Gomez MV, Delgado-Hernandez R, Matute C. Mangifera indica L extract attenuates glutamate-induced neurotoxicity on rat cortical neurons. NeuroToxicology 2009;30:1053-8.

112. Heuberger E, Hongratanaworakit T, Bohm C, Weber R, Buchbauer G. Effects of chiral fragrances on human autonomic nervous system parameters and self-evaluation. Chem Senses 2001;26:281-92.