Distribution and Migration of Trace Elements during Flotation in Ge-Rich Low-Rank Coal from Wulantuga Coal Mine, Inner Mongolia, China

Piaopiao Duan, Sijie Han,* Wenfeng Wang, and Yuegang Tang

ABSTRACT: The high-Ge low-rank coal in Wulantuga Coal Mine, Inner Mongolia, China, has a high utilization value due to its enrichment of critical element Ge. However, it is also enriched with toxic elements such as Be, F, As, and Hg; therefore, the coal should be cleaned before use. In this study, the flotation experiment, X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier transform infrared (FTIR) analysis, and the release experiment for the high-Ge low-rank coal from Wulantuga were carried out, and the results are as follows. (1) The total mineral content of the feed coal is higher than that of the cleaned coal and tailing, and the content of the functional group −OH is also increased, indicating that the moisture in the cleaned coal is increased after flotation. (2) Argillation occurred and some minerals (dihydrate gypsum and kaolinite) and elements were released into the water during flotation, so the ash yield and the percentage of TiO₂, Al₂O₃, Fe₂O₃, MgO, and CaO of the cleaned coal and tailing are lower than those of feed coal. (3) The concentrations of elements Li, Be, F, Mn, Zn, Sr, Hg, Ti, and Pb of the cleaned coal are higher than those of tailing, indicating that these elements are more likely to occur in organic matter or fine-grained mineral embedded in organics, but the concentration of other elements such as Ge, As, Sb, and W in the cleaned coal is lower than that of tailing, suggesting that these elements are weakly associated with organics or occur in minerals. (4) After flotation, trace elements Be, Cs, Ti, Ge, Sb, and W enriched in the feed coal were removed in large quantities, while F, As, and Hg were difficult to remove; therefore, other preparation methods should be tried. (5) The release experiment showed that the release rate of chalcophile and siderophile elements and rare earth elements and yttrium (REY) is relatively higher. In addition to those of Be, Ga, Sr, and Cs, the release rate of most elements is relatively low.

INTRODUCTION

Coal is one of the main energy sources in China. With the increasing consumption of coal resources, the efficient utilization of low-rank coal should be greatly strengthened. Low-rank coal in China is mainly distributed in North China, with the eastern region of Inner Mongolia having the largest low-rank coal resources. In China, low-rank coal is mainly used for power generation and the coal ash can also be used as a raw material for extracting critical elements such as Ge, Ga, U, V, and rare earth elements and yttrium (REY). Previous studies have shown that low-rank coal in Wulantuga Coal Mine is highly enriched with trace elements Be, F, Ge, As, and Hg and the concentration of Ge is of industrial grade. However, the toxic trace elements Be, F, As, and Hg are released into the environment during combustion. Therefore, whether from the perspective of the utilization of critical elements or environmental protection, the low-rank coal from Wulantuga should be cleaned before use.

Flotation is an effective method for industrial coal preparation. Flotation can separate minerals from coal according to the surface property difference between coal and minerals. Duan et al. studied the removal of toxic elements via the flotation of high-sulfur coal in Southwestern China and found that flotation was an effective way to remove toxic elements from coal. Liu et al. found that Hg was obviously removed from fine coal by combined flotation and gravity separation approaches. Zhou et al. found that the removal rate of arsenic in coal by flotation was higher than that by gravity separation. Different from the high-rank coal, the low-rank coal contains more hydroxyl, carboxyl, and carbonyl hydrophilic groups, which accounts for its high porosity and poor floatability. In addition, low-rank coal may undergo argillation during flotation, but the mechanism of the migration of trace elements in the process of flotation is not clear. In this study, the low-rank coal from the Wulantaga coal mine, Inner Mongolia,
China, was selected as a research object. The study of the differences of various functional groups before and after flotation, and the migration and release of toxic elements in the low-rank coal during flotation can provide a scientific basis for environmental protection and effective utilization of valuable elements.

SAMPLE AND METHODS

Wulantuga Coal Mine is located in the southwestern part of the Shengli coalfield, Inner Mongolia, China. The feed coal sample was collected from Wulantuga Coal Mine belonging to the Shengli Formation of the Lower Cretaceous.

Proximate analysis (moisture, ash, and volatile matter) was conducted following ASTM Standards D3173-11,26 D3174-11,27 and D3175-11,28 respectively. The total sulfur and forms of sulfur were determined following ASTM Standards D3177-02,29 D3178-02,30 and D2492-02,30 respectively. Fluorine was determined by pyrohydrolysis combined with an ion-selective electrode following the ASTM method D 5987-96.31 Arenic and Hg were measured by atomic fluorescence spectrometry (ASF2202), and Se was determined by atomic fluorescence spectrometry (LC-6500). The other elements were determined by inductively coupled plasma mass spectrometry (X Series II ICP-MS). The ICP-MS analyses and microwave digestion program for the samples followed the methods described by Dai et al.32

Coal flotation tests were performed according to the Chinese national standard GB/T 4757.33 Deionized water and 50 g of coal samples (<0.5 mm) were added into a 1.5 L single flotation cell (XFD-63) and stirred for 3 min to mix the coal slurry uniformly. Subsequently, collector (diesel), and frother (XFD-63) and stirred for 10 min at 1800 RPM, and the filtrate was obtained after filtration. The concentration of trace elements in the filtrate was determined by ICP-MS.

FTIR (Bruker, VERTEX 80v) was used to determine the functional groups of organic matter in the coal. Prior to FTIR analysis, the samples were dried and ground to less than 200 mesh, mixed with KBr, and compressed into disks. All spectra were recorded at a resolution of 4 cm\(^{-1}\) and the scans were repeated 32 times. Spectra were collected in the range of 4000–400 cm\(^{-1}\).

X-ray fluorescence (XRF) spectrometry (BRUKER S8, TIGER) was used to determine the oxides of major elements in the coal, including SiO\(_2\), TiO\(_2\), Al\(_2\)O\(_3\), FeO\(_3\), MgO, CaO, MnO, Na\(_2\)O, and K\(_2\)O. The maximum working voltage and current were 4 kV and 17 0mA, respectively. Prior to the XRF analysis, the samples were dried and ground to less than 200 mesh.

The coal samples were analyzed by XRD using a D/max-2500/PC powder diffractometer with Ni-filtered Cu Kα radiation and a scintillation detector. The XRD patterns were recorded in a 2θ interval of 2.6–70° with a step size of 0.01°. In addition, the TOPAS 4.2 software was used to conduct quantitative mineralogical analysis for X-ray diffractograms of coals.

RESULTS AND DISCUSSION

Coal Chemistry. Proximate analysis, total sulfur, and forms of sulfur for the Wulantuga coal are listed in Table 1. The volatile matter content of the sample is 43.58%, indicating that the Wulantuga coal is sub-bituminous coal according to the ASTM classification.34 The Wulantuga coal is classified as a “low-ash coal” according to GB 15224.1-2004 (coal with ash yield <10% is classified as low-ash coal).35 The total sulfur content in the coal is 2.82%, suggesting it to be medium-sulfur coal according to Chou36 and GB/T 15224.2-2004 (coal with the total sulfur content of 2–3% is medium-sulfur coal).37 Sulfate sulfur is the dominant form of sulfur.

TABLE 1. Proximate Analysis and Sulfur Analysis
proximate analysis (%)
M_d
11.48

*M, moisture; A, ash yield; V, volatile matter; S, total sulfur; S_p, pyritic sulfur; S_o, organic sulfur; ad, air-dry basis; d, dry basis; daf, dry air basis.

Trace Elements in Coal.**

The concentration of trace elements in the Wulantuga coal (feed coal) is listed in Table 4. The concentration coefficient (CC) is the ratio of trace elements in samples investigated vs averages for world low-rank coals38 is shown in Figure 1. Based on the classification of enrichment proposed by Dai et al.,39 elements Ge, Sb, and W are unusually enriched (CC > 100); Be, F, As, and Hg are significantly enriched (10 < CC < 100); Cs and Ti are slightly enriched (2 < CC < 5); Zn, Ga, Mo, and Sn (0.5 < CC < 2) are close to their average values in world coals; and other trace elements are depleted (CC < 0.5).

Distribution of Mineral and Organic Functional Groups during Flotation. Quantitative mineralogical compositions of feed coal, cleaned coal, and tailing are listed in Table 2. As shown in Table 2, the percentage of mineral in the cleaned coal is the lowest, and the percentage of mineral in the feed coal is higher than that in the cleaned coal and tailing, which is consistent with the distribution of ash yield in feed coal, cleaned coal, and tailing, indicating the occurrence of argillation and the release of some minerals (dihydrate gypsum and kaolinite) into the water during flotation. Dihydrate gypsum is not detected in the cleaned coal because dihydrate gypsum is slightly soluble in water; therefore, the dihydrate gypsum in tailing is lower than that in feed coal. In addition, quartz and kaolinite in the cleaned coal and tailing are lower than that in feed coal, but the content of quartz and kaolinite in the cleaned coal is higher than that in tailing, which may be because quartz and kaolinite are mixed in the organic matter of the cleaned coal with fine-grained size. Trace amounts of pyrite were observed under electron microscopy but did not appear in the XRD pattern, possibly because it was below the detection limit of XRD.

The low-rank coal has a high content of hydroxyl, carboxyl, and carbonyl groups, so FTIR is used to study the variation in the contents of different functional groups before and after flotation. The results of the FTIR analysis of cleaned coal and feed coal are shown in Figure 2.

Infrared bands in the range of 3600–3100 cm\(^{-1}\) are attributed to the OH stretching vibrations of the coordinated water or bonded OH.40 The content of the –OH functional group in the cleaned coal is higher than that in the feed coal, indicating that
after flotation, the moisture of the cleaned coal is higher than that in the feed coal. The band occurring in the range of 3100−2800 cm\(^{-1}\) corresponds to the tensile absorption peaks of the C−H functional groups of \(-\text{CH}_3, -\text{CH}_2-,\) aliphatic, and aromatic. Bands that occur in the range of 1700−1450 cm\(^{-1}\) correspond to the stretching vibrations of aromatic C\(\equiv\)O and C\(\equiv\)C and bonded OH.\(^{41,43}\) Infrared bands in the range of 1250−900 cm\(^{-1}\) are related to the stretching vibrations of C\(\equiv\)O (carbonyl) and \(-\text{O}-\) (ether group).\(^{40,44−46}\) The flexural vibrations of H groups that lie in the range of 870−600 cm\(^{-1}\) are vibrations of aromatic nuclei and benzene rings.\(^{47}\)

Figure 2 shows that the content of the functional groups of C−H, C\(\equiv\)C, and C\(\equiv\)O in the cleaned coal is lower than that in the feed coal. An infrared band at 530 cm\(^{-1}\) is the elastic vibrations of the Si−O functional group in kaolinite and that at 462 cm\(^{-1}\) is the elastic vibrations of the Si−O functional group in quartz.\(^{45,46}\) Compared with that in the feed coal, the peak intensity of the Si−O group in the cleaned coal is lower, indicating that a part of aluminosilica minerals and quartz are removed through flotation but the content of OH in the cleaned coal is increased. This shows that the moisture of the cleaned coal increases after flotation.

Distribution of Oxides of Major Element during Flotation.

The yield, ash yield, and percentage of oxides of major elements in the Wulantuga coal and flotation products are shown in Table 3. The total yield of the cleaned coal and tailing obtained by flotation is 84.46%. In addition, the ash yield and the percentages of TiO\(_2\), Al\(_2\)O\(_3\), Fe\(_2\)O\(_3\), MgO, and CaO in the cleaned coal and tailing are lower than those of feed coal, indicating that argillation occurs and some minerals (dihydrate gypsum and kaolinite) and elements are released into the water during flotation. The percentage of SiO\(_2\) and K\(_2\)O in the feed coal is slightly lower than that of the cleaned coal and tailing. Compared to the world coal, except for Fe\(_2\)O\(_3\), the percentage of other oxides of major elements in the Wulantuga coal are lower than that in the world coal.

Distribution of Trace Elements in Floating Products.

The distribution of trace elements in feed coal, cleaned coal, and tailing is listed in Table 4 and shown in Figure 3.

Table 2. Percentages of Minerals in the Feed Coal and Floating Products (%)

sample	dihydrate gypsum	quartz	kaolinite	total	
cleaned coal	bdl\(^a\)	4.13	0.89	5.02	
tailings		2.85	3.87	0.40	7.12
feed coal		4.64	4.23	1.13	10.00

\(\text{bdl, below the detection limit.}\)

Figure 3 shows that the concentrations of Li, Be, F, Mn, Zn, Sr, Hg, Tl, and Pb in the cleaned coal are higher than those in tailing, indicating that these elements mainly occur in organic matter or fine-grained minerals embedded in organic matter. The concentrations of other trace elements such as Ge, As, Sb, and W in the cleaned coal are lower than those in tailing. Wei and Rimmer10,11 studied the mode of occurrence of Ge, As, Sb, and W by electron probe microanalysis and acid leaching and

Table 3. Yield, Ash Yield, and Percentages of Oxides of Major Elements in the Feed Coal and Floating Products (\%)a

sample	yield	A\textsubscript{j}	SiO\textsubscript{2}	TiO\textsubscript{2}	Al\textsubscript{2}O\textsubscript{3}	Fe\textsubscript{2}O\textsubscript{3}	MgO	CaO	Na\textsubscript{2}O	K\textsubscript{2}O	P\textsubscript{2}O\textsubscript{5}
cleaned coal	30.72	4.70	3.30	0.05	bdll	1.90	0.11	0.18	bdll	0.075	0.005
tailing	53.74	6.04	3.06	0.06	bdll	2.00	0.07	0.15	bdll	0.051	0.003
feed coal	100	8.81	2.88	0.06	1.09	4.16	0.19	0.53	0.06	0.046	0.007
world coalb	nd	nd	8.47	0.33	5.98	4.85	0.22	1.23	0.16	0.19	0.092

abdll, below the detection limit; nd, no data. bKetris and Yudovich.38

Table 4. Concentrations of Trace Elements in the Feed Coal and Floating Products (\(\mu g/g\))

sample	Li	Be	F	Sc	Ti	V	Cr	Mn	Co	Ni	Cu	Zn	Ga
cleaned coal	2.91	6.48	976	0.42	146.99	2.61	4.28	7.34	0.34	0.83	2.23	4.15	3.09
tailing	2.59	5.00	822	0.49	217.72	3.02	5.70	4.41	0.47	1.55	2.75	2.05	5.08
feed coal	2.88	16.5	1014	1.19	205.71	4.83	5.21	27.4	0.94	2.89	3.87	12.0	6.58

sample	Ge	As	Se	Rb	Sr	Zr	Nb	Mo	Cd	In	Sn	Sb	Cs
cleaned coal	125.7	326.6	<0.065	2.17	24.6	6.19	0.60	0.65	0.004	0.002	0.26	30.4	2.40
tailing	321.9	485.4	0.196	2.50	13.0	9.48	1.11	1.46	0.006	0.002	0.33	80.1	2.41
feed coal	264.4	467.0	<0.065	2.58	24.5	7.97	1.00	1.68	0.019	0.005	0.58	134	3.78

sample	Ba	Hf	Ta	W	Hg	Ti	Pb	Bic	Th	U	La	Ce	Pr
cleaned coal	35.0	0.20	0.012	138	9.56	1.69	5.32	0.057	0.31	1.91	2.89	0.32	
tailing	120	0.31	0.062	333	3.56	0.99	2.70	0.059	0.44	1.99	3.11	0.35	
feed coal	44.2	0.26	0.088	278	5.15	2.36	6.32	0.029	0.77	0.21	2.68	4.60	0.54

sample	Nd	Sm	Eu	Gd	Tb	Dy	Y	Ho	Er	Tm	Yb	Lu
cleaned coal	1.17	0.20	0.05	0.18	0.03	0.16	0.89	0.03	0.09	0.02	0.10	0.01
tailing	1.27	0.23	0.08	0.19	0.03	0.18	0.95	0.04	0.11	0.02	0.11	0.02
feed coal	2.16	0.42	0.09	0.38	0.06	2.07	0.07	0.21	0.04	0.22	0.03	0.03

cBismuth in cleaned coal and tailing was higher than that in feed coal, which may be caused by the release of trace elements from diesel collector.

Figure 3. Distribution of trace elements in the feed coal and floating products.
showed that these elements were weakly bonded to organic matter or occur in fine-ground sulfate minerals, quartz, pyrite, and other minerals. Based on the previous studies and the flotation experiment, elements Ge, As, Sb, and W are weakly bonded to organic matter or occur in fine-grained minerals. Elements Ga, Rb, Mo, Cd, In, Sn, Sb, Cs, Ta, Tl, and Pb in the cleaned coal and tailing are lower than that in feed coal because part of these elements is released into coal preparation water during flotation. Consequently, the treatment of filtrate after flotation should be strengthened, which can prevent the coal preparation wastewater from polluting the environment.

The REY in feed coal, cleaned coal, and tailing are normalized to the upper continental crust (UCC). The distribution of UCC-normalized REY is shown in Figure 4. The concentrations of REY in tailing are higher than that in the cleaned coal, indicating that REY mainly occur in minerals, but the concentrations of REY in the cleaned coal and tailing are lower than those in feed coal because part of these elements is released into coal preparation water during flotation.

Figure 3 shows that the concentrations of trace elements Be, F, Sc, V, Mn, Co, Ni, Cu, Zn, Ga, Rb, Mo, Cd, In, Sn, Sb, Cs, Ta, Tl, and Pb in the cleaned coal and tailing are lower than those in feed coal because part of these elements is released into coal preparation water during flotation. Consequently, the treatment of filtrate after flotation should be strengthened, which can prevent the coal preparation wastewater from polluting the environment.

The REY in feed coal, cleaned coal, and tailing are normalized to the upper continental crust (UCC). The distribution of UCC-normalized REY is shown in Figure 4. The concentrations of REY in tailing are higher than that in the cleaned coal, indicating that REY mainly occur in minerals, but the concentrations of REY in the cleaned coal and tailing are lower than those in feed coal because part of these elements is released into coal preparation water during flotation. Consequently, the treatment of filtrate after flotation should be strengthened, which can prevent the coal preparation wastewater from polluting the environment.

The REY in feed coal, cleaned coal, and tailing are normalized to the upper continental crust (UCC). The distribution of UCC-normalized REY is shown in Figure 4. The concentrations of REY in tailing are higher than that in the cleaned coal, indicating that REY mainly occur in minerals, but the concentrations of REY in the cleaned coal and tailing are lower than those in feed coal because part of these elements is released into coal preparation water during flotation. Consequently, the treatment of filtrate after flotation should be strengthened, which can prevent the coal preparation wastewater from polluting the environment.

The REY in feed coal, cleaned coal, and tailing are normalized to the upper continental crust (UCC). The distribution of UCC-normalized REY is shown in Figure 4. The concentrations of REY in tailing are higher than that in the cleaned coal, indicating that REY mainly occur in minerals, but the concentrations of REY in the cleaned coal and tailing are lower than those in feed coal because part of these elements is released into coal preparation water during flotation. Consequently, the treatment of filtrate after flotation should be strengthened, which can prevent the coal preparation wastewater from polluting the environment.

The REY in feed coal, cleaned coal, and tailing are normalized to the upper continental crust (UCC). The distribution of UCC-normalized REY is shown in Figure 4. The concentrations of REY in tailing are higher than that in the cleaned coal, indicating that REY mainly occur in minerals, but the concentrations of REY in the cleaned coal and tailing are lower than those in feed coal because part of these elements is released into coal preparation water during flotation. Consequently, the treatment of filtrate after flotation should be strengthened, which can prevent the coal preparation wastewater from polluting the environment.
lower than that in feed coal, indicating that REY migrated to coal preparation wastewater during flotation.

Removability of Trace Elements. To study the degree of reduction of trace elements during coal preparation, the following equation was used to calculate the removability.

\[R_i = \frac{1 - c_i}{C_i} \times 100\% \]

where \(R_i \) is the removability, \(c_i \) is the concentration of element \(i \) in the cleaned coal or tailing, and \(C_i \) is the concentration of element \(i \) in the feed coal. The removability of coal ash and trace elements of the cleaned coal are listed in Table 5 and shown in Figure 5. Because the concentrations of some trace elements in the cleaned coal and tailing are lower than that in the feed coal, the removability of trace elements in the cleaned coal and tailing is calculated to reflect the migration of trace elements from feed coal to the cleaned coal and tailing.

From Table 5 and Figure 5, the removability of unusually enriched elements Ge, Sb, and W in the cleaned coal is higher than 50%. The removability of significantly enriched element Be in the cleaned coal is more than 60%, and the removability of elements F and As is about 30%. The removability of the slightly enriched elements Cs and Ti is under 50%. The removability of Sc, Co, Ni, Cu, Zn, Ga, Mo, Cd, In, Sn, and Ta is higher than 50%, while Hg is enriched in the cleaned coal and the removability of other elements is lower.

The removability of a few elements such as Ti, Cr, Ge, As, Zr, Nb, Ba, Hf, W, and Bi in the tailing is lower than 0, which indicated that these elements are enriched in the tailing and occur in minerals. The removability of other elements is all higher than 0, which indicated that these elements migrated to the cleaned coal or coal preparation wastewater.

The removability of REY in the cleaned coal and tailing is shown in Figure 6. Except for the removability of a few REY (La, Ce, Pr, and Eu) below 40%, the removability of the remaining REY in the cleaned coal and tailing can reach nearly 50% or above. Because REY generally occur in the clay minerals, leading the release of some REY into the coal preparation wastewater along with the clay minerals.

Migration of Toxic Elements during Release Experiment. During flotation, some trace elements migrated to coal preparation wastewater, so the release experiment was carried out to quantitatively study the release of trace elements to coal preparation wastewater. The release rate of trace elements in coal is shown in Table 6. The release rate can be calculated by the following formula

\[\text{release rate} = \left(\frac{\text{concentration of element } i \text{ in filtrate}}{\text{volume of filtrate}} \right) \times \frac{100\%}{\text{concentration of element } i \text{ in feed coal} \times \text{total content of element } i \text{ in feed coal}} \]

where \(i \) is the trace element.

As listed in Table 6, the release rates of sulfurophile and siderophile elements Sc, V, Mn, Co, Ni, Zn, Cd, and Tl into water are higher than 45%. The release rates of most REY are between 30 and 60%, and the release rates of elements Be, Ga, Sr, and Cs are also relatively high. The high release rates of these lithophile elements are because they may occur in clay minerals that are easily muddied and released to the coal preparation wastewater. The release rate of elements such as Ge, Sb, and W is low because these elements occur in organic matter or minerals, which did not undergo argillization easily.

CONCLUSIONS

The total mineral content of the feed coal is higher than that of the cleaned coal and the tailing, and the contents of dihydrate gypsum, quartz, and kaolinite in the cleaned coal and the tailing are lower than that in the feed coal. The contents of C–H, C═C, and C═O are reduced by flotation but that of OH is
increased, indicating that the moisture in the cleaned coal increases after flotation.

Because of the argillation and some minerals (dihydrate gypsum and kaolinite) and elements are released into water during flotation, the contents of Al_2O_3, Fe_2O_3, Mg, and Ca of the cleaned coal and the tailing are lower than that of the feed coal. The concentrations of elements Li, Be, F, Mn, Zn, Sr, Hg, Ti, and Pb are higher than that of tailing, indicating that these elements are more likely to occur in the organic matter or fine-grained minerals. The concentration of the rest elements such as Ge, As, Sb, and W in the cleaned coal is lower than that of the tailing, suggesting that these elements are weakly bonded to organic matter or occur in fine-grained minerals.

After flotation, the enriched elements Be, Ca, Ti, Ge, Sb, and W were removed in large quantities, while F, As, and Hg were difficult to remove. In view of the poor removal effect of flotation, it is suggested to use gravity separation or dry coal preparation to remove toxic elements.

During flotation, some trace elements are released into coal preparation wastewater, so it is necessary to strengthen the treatment of the filtrate after flotation to prevent the coal preparation wastewater from polluting the environment.

Author Information

Corresponding Author
Sijie Han — Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008 Jiangsu, China; orcid.org/0000-0001-5472-5822; Email: hsj_cumt@126.com

Authors
Piaopiao Duan — Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process of the Ministry of Education, China University of Mining and Technology, Xuzhou 221000 Jiangsu, China; School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116 Jiangsu, China; orcid.org/0000-0003-4558-1358

Wenfeng Wang — Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process of the Ministry of Education, China University of Mining and Technology, Xuzhou 221000 Jiangsu, China; School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116 Jiangsu, China; orcid.org/0000-0002-2200-0250

Yuegang Tang — School of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; orcid.org/0000-0002-2260-6113

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.1c05487

Notes
The authors declare no competing financial interest.

Acknowledgments
This research was supported by the National Natural Science Foundation of China (No. 42072192) and the Fundamental Research Funds for the Central Universities (2021YCPY0106).

References
(1) Dai, S.; Wang, X.; Seredin, V. V.; Hower, J. C.; Ward, C. R.; O’Keefe, J. M. K.; Huang, W.; Li, T.; Li, X.; Liu, H.; et al. Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulautanga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. Int. J. Coal Geol. 2012, 90–91, 72–99.
(2) Dai, S.; Ren, D.; Zhou, C.-L.; et al. Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21.
(3) Fu, X.; Lu, L.; Ge, Y.; Tian, J.; Luo, P. China Lignite Resources and Physical Features. Coal Sci. Technol. 2012, 40, 104–107.
(4) Dai, H.; Xie, K. The Utilization Technology of Lignite; China Coal Industry Publishing House: Beijing, 1999.
(5) Mao, Y.; Xia, W.; Bu, X.; Chen, Y.; Wang, T.; Peng, Y. Discussion on ultrasonic enhanced lignite flotation and its action mechanism. J. China Coal Soc. 2017, 42, 3006–3013.
(6) Yin, L. Lignite resources and utilization outlook in China. Coal Sci. Technol. 2004, 32, 12–14.
(7) Dai, S.; Finkelman, R. B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018, 186, 155–164.
(8) Dai, S.; Yan, X.; Ward, C. R.; Hower, J. C.; Zhao, L.; Wang, X.; Zhao, L.; Ren, D.; et al. Valuable elements in Chinese coals: a review. Int. Geol. Rev. 2018, 60, 590–620.
(9) Du, G.; Zhan, X.; Querol, X.; Izquierdo, M.; Alastuey, A.; Moreno, T.; Font, O. Ge distribution in the Wulautanga high-germanium coal deposit in the Shengli coalfield, Inner Mongolia, northeastern China. Int. J. Coal Geol. 2009, 78, 16–26.
(10) Wei, Q.; Dai, S.; Lefranciu, L.; Costin, G. Electron probe microanalysis of major and trace elements in coals and their low-temperature ashes from the Wulautanga and Lincang Ge ore deposits, China. Fuel 2018, 215, 1–12.
(11) Wei, Q.; Rimmer, S. M. Acid solubility and affinities of trace elements in the high-Ge coals from Wulautanga (Inner Mongolia) and Lincang (Yunnan Province), China. Int. J. Coal Geol. 2017, 178, 39–55.
(12) Belkin, H. E.; Zheng, B.; Zhou, D.; Finkelman, R. B. Chronic arsenic poisoning from domestic combustion of coal in rural China: a case study of the relationship between earth materials and human health. Environ. Geochim. 2008, 401–420.
(13) Cheng, W.; Zhang, Q.; Yang, R.; Tian, Y. Occurrence modes and cleaning potential of sulfur and some trace elements in a high-sulfur coal from Pu’an coalfield, SW Guizhou, China. Environ. Earth Sci. 2014, 72, 35–46.
(14) Duan, P.; Wang, W.; Liu, X.; Qian, F.; Sang, S.; Xu, S. Distribution of As, Hg and other trace elements in different size and density fractions of the Reshuihe high-sulfur coal, Yunnan Province, China. Int. J. Coal Geol. 2017, 173, 129–141.
(15) Kolker, A.; Senior, C.; Alphen, C. V.; Koenig, A.; Geboy, N. Mercury and trace element distribution in density separates of a South African Highveld (#4) coal: Implications for mercury reduction and preparation of export coal. Int. J. Coal Geol. 2016, 170, 7–13.
(16) Luo, G.; Ma, J.; Han, J.; Yao, H.; Xu, M.; Zhang, C.; Chen, G.; Gupta, R.; Xu, Z. Hg occurrence in coal and its removal before coal utilization. Fuel 2013, 104, 70–76.
(17) Wang, W.; Qin, Y.; Sang, S.; Jiang, B.; Guo, Y.; Zhu, Y.; Fu, X. Partitioning of minerals and elements during preparation of Taixi coal, China. Fuel 2006, 85, 57–67.
(18) Wang, W.; Qin, Y.; Wei, C.; Li, Z.; Guo, Y.; Zhu, Y. Partitioning of elements and macerals during preparation of Antaobao coal. Int. J. Coal Geol. 2006, 68, 223–232.
(19) Wang, W.; Qin, Y.; Wang, J.; Wang, J.; Li, J. In Partitioning of Hazardous Trace Elements During Coal Preparation, Proceedings of the International Conference on Mining Science & Technology, 2009; pp 838–844.
(20) Duan, P.; Wang, W.; Sang, S.; Tang, Y.; Ma, M.; Zhang, W.; Liang, B. Geochemistry of Toxic Elements and Their Removal via the Preparation of High-Uranium Coal in Southwestern China. Minerals 2018, 8, No. 83.
(21) Pan, J.; Zhou, C.; Cong, L.; Zhang, N.; Liu, C.; Peng, C.; Ouyang, C. Mercury in Chinese Coals: Modes of Occurrence and its Removal Statistical Laws during Coal Separation. *Energy Fuels* 2017, 31, 986–995.

(22) Zhou, C.; Zhang, N.; Peng, C.; Cong, L.; Ouyang, C.; Han, R. Arsenic in Coal: Modes of Occurrence, Distribution in Different Fractions, and Partitioning Behavior during Coal Separation—A Case Study. *Energy Fuels* 2016, 30, 3233–3240.

(23) Xie, G. *Mineral Processing Technology*; China University of Mining and Technology Press: Xuzhou, 2010.

(24) Liu, C.; Zhou, C.; Cong, L.; Zhang, N.; Pan, J.; Tang, M.; Cao, S. Removal of mercury from fine coal based on combined coal processing approaches. *Energy Fuels* 2017, 31, 12951−12958.

(25) Bensley, C. N.; Nicol, S. K. The effect of mechanical variables on the flotation of coarse coal. *Coal Prep.* 1985, 189–205.

(26) ASTM Standard D3173-11: Test Method for Moisture in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, 2011.

(27) ASTM Standard D3174-11: Annual Book of ASTM Standards. *Test Method for Ash in the Analysis Sample of Coal and Coke*; ASTM International: West Conshohocken, PA, 2011.

(28) ASTM Standard D3175-11: Test Method for Volatile Matter in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, 2011.

(29) ASTM Standard D3177-02: Test Methods for Total Sulfur in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, 2002.

(30) ASTM Standard D2492-02: Test Methods for Forms Sulfur in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, 2002.

(31) ASTM Standard D5987-96: Standard Test Method for Total Fluorine in Coal and Coke by Pyrohydrolytic Extraction and Ion Selective Electrode or Ion Chromatograph Methods; ASTM International: West Conshohocken, PA, 2002.

(32) Dai, S.; Wang, X.; Zhou, Y.; Hower, J. C.; Li, D.; Chen, W.; Zhu, X.; Zou, J. Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao black shales and coals. *Int. J. Coal Geol.* 2017, 131, 183−205.

(33) GB/T 4757-2001: Methods for the Batch Flotation Testing of Fine Coal. National Standard of P.R. China, 2001.

(34) Annual Book of ASTM Standards, D388-99 Standard Classification of Coals by Rank; ASTM International: West Conshohocken, PA, 2005.

(35) GB/T 15224.1-2004: Classification for Quality of Coal Part 1: Ash; National Standard of P.R. China, 2004.

(36) Chou, C.-L. Sulfur in coals: A review of geochemistry and origins. *Int. J. Coal Geol.* 2012, 100, 1–13.

(37) GB/T 15224.2-2004: Classification for Quality of Coal Part 2: Sulfur Content; National Standard of P.R. China, 2004.

(38) Ketris, M. P.; Yudovich, YaE. Estimations of Clarke for carbonaceous biolithes: world average for trace element contents in black shales and coals. *Int. J. Coal Geol.* 2009, 78, 135−148.

(39) Dai, S.; Yang, J.; Ward, C. R.; Hower, J. C.; Liu, H.; Garrison, T. M.; French, D.; O’Keefe, J. M. K. Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili Basin, Xinjiang, northeastern region coals of India on heat treatment. *Energy Fuels* 2016, 30, 1089−1096.

(40) Strydom, C. A.; Bunt, J. R.; Schobert, H. H.; Ragho, M. Changes to the organic functional groups of an inertinite rich medium rank bituminous coal during acid treatment processes. *Fuel Process. Technol.* 2011, 92, 764−770.

(41) Wang, L.; Jin, G.; Xu, Y. Desulfurization of coal using four ionic liquids with [HSO₄]⁻. *Fuel* 2019, 236, 1181−1190.

(42) Song, Y.; Feng, W.; Li, N.; Li, Y.; Zhi, K.; Teng, Y.; He, R.; Zhou, H.; Liu, Q. Effects of demineralization on the structure and combustion properties of Shengli lignite. *Fuel* 2016, 183, 659−667.

(43) Zhang, X.; Zhang, S.; Li, P.; Ding, Z.; Hao, Z. Investigation on solubility of multicomponents from semi-anthracite coal and its effect on coal structure by Fourier transform infrared spectroscopy and X-ray diffraction. *Fuel Process. Technol.* 2018, 174, 123−131.

(44) Baruah, M. K.; Kotoky, P.; Borah, G. C. Distribution and nature of organic/mineral bound elements in Assam coals, India. *Fuel* 2003, 82, 1783−1791.

(45) Mukherjee, S.; Srivastava, S. K. Minerals transformations in northeastern region coals of India on heat treatment. *Energy Fuels* 2006, 20, 1089−1096.

(46) Sonibare, O. O.; Haeger, T.; Foley, S. F. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy. *Energy* 2010, 35, 5347−5353.

(47) Shang, X.; Hou, K.; Wu, J.; Zhang, Y.; Liu, J.; Qi, J. The influence of mineral matter on moisture adsorption property of Shengli lignite. *Fuel* 2016, 182, 749−753.

(48) Taylor, S. R.; McLennan, S. M. *The Continental Crust: Its Composition and Evolution, An Examination of the Geochemical Record Preserved in Sedimentary Rocks*; Blackwell Scientific Publications, 1985.

(49) Duan, P.; Wang, W.; Liu, X.; Sang, S.; Ma, M.; Zhang, W. Differentiation of rare earth elements and yttrium in different size and density fractions of the Reshuihe coal, Yunnan Province, China. *Int. J. Coal Geol.* 2019, 207, 1−11.