A SIMPLY CONNECTED SURFACE OF GENERAL TYPE
WITH $p_g = 1$, $q = 0$, AND $K^2 = 8$

HEESANG PARK, JONGIL PARK, AND DONGSOO SHIN

Abstract. We construct a new family of simply connected minimal complex surfaces with $p_g = 1$, $q = 0$, and $K^2 = 8$ using a \mathbb{Q}-Gorenstein smoothing theory.

1. Introduction

This paper is an addendum to the authors' work [5], in which we constructed a family of minimal complex surfaces of general type with $p_g = 1$, $q = 0$, and $1 \leq K^2 \leq 2$ and simply connected surfaces with $p_g = 1$, $q = 0$, and $3 \leq K^2 \leq 6$ using a \mathbb{Q}-Gorenstein smoothing theory. We extend the results to the $K^2 = 8$ case in this paper. The main result of this paper is the following theorem.

Theorem 1.1. There exists a simply connected minimal complex surface of general type with $p_g = 1$, $q = 0$, and $K^2 = 8$.

We briefly sketch the proof. At first we blow up a K3 surface Y in a suitable set of points so that we obtain a surface with some special disjoint linear chains of rational curves which can be contracted to singularities class T on a singular surface X with $H^2(T_X) \neq 0$. In order to prove the existence of a global \mathbb{Q}-Gorenstein smoothing of X, we apply the cyclic covering trick developed in Y. Lee and J. Park [2]. The cyclic covering trick says that, if a cyclic covering $\pi : V \to W$ of singular surfaces satisfies certain conditions and the base W has a \mathbb{Q}-Gorenstein smoothing, then the cover V has also a \mathbb{Q}-Gorenstein smoothing.

The main ingredient of this paper is that we construct an unramified double covering $\pi : \overline{X} \to X$ to a singular surface X constructed in a recent paper [4] of the first author. It is a main result of H. Park [4] that the singular surface X has a global \mathbb{Q}-Gorenstein smoothing and a general fiber X_t of the smoothing of X is a surface of general type with $p_g = 0$, $K^2 = 4$, and $\pi_1 = \mathbb{Z}/2\mathbb{Z}$. We show that the double covering $\overline{X} \to X$ satisfies all the conditions of the cyclic covering trick; hence, there is a global \mathbb{Q}-Gorenstein smoothing of \overline{X}. Then it is not difficult to show that a general fiber \overline{X}_t of the smoothing of \overline{X} is the desired surface.

2. Construction

According to Kondo [1], there is an Enriques surface Y with an elliptic fibration over \mathbb{P}^1 which has an I_0-singular fiber, a nodal singular fiber F, and two bisections S_1 and S_2; Figure 1. Again by Kondo [1], there is an unbranched double covering...
\(\pi : Y \to Y \) of \(Y \) where \(Y \) is an elliptic \(K3 \) surface which has two \(I_9 \)-singular fiber, two nodal singular fiber \(F_1 \) and \(F_2 \), and four sections \(S_1, \ldots, S_4 \) such that \(\pi(F_1) = \pi(F_2) = F, \pi(S_1) = \pi(S_3) = S_1 \), and \(\pi(S_2) = \pi(S_4) = S_2 \); Figure 2

![Figure 1: An Enriques surface](image1)

![Figure 2: A K3 surface](image2)

We blow up the \(K3 \) surface \(Y \) totally 30 times at the marked points \(\bullet \) and \(\bigcirc \). We then get a surface \(\mathcal{Z} = Y \times_{\mathbb{P}^2} 30 \mathbb{P}^2 \); Figure 3. There exist four disjoint linear
chains of \(\mathbb{CP}^1\)'s in \(\mathbb{Z}\):

\[
\begin{align*}
C_{19,6} & : -2 -2 -9 -2 -2 -2 -4 \\
C_{19,6} & : 0 -2 -2 -2 -2 -2 -4 \\
C_{73,50} & : 0 -2 -7 -2 -3 -2 -4 \\
C_{73,50} & : 0 -2 -7 -2 -3 -2 -4
\end{align*}
\]

Figure 3: A surface \(\mathbb{Z} = Y \# 30 \mathbb{CP}^2\)

We contract these four chains of \(\mathbb{CP}^1\)'s from the surface \(\mathbb{Z}\) so that it produces a normal projective surface \(\overline{X}\) with four singular points of class \(T\). It is not difficult to show that \(H^2(X, T_X) \neq 0\).

Theorem 2.1. The singular surface \(\overline{X}\) has a global \(\mathbb{Q}\)-Gorenstein smoothing. A general fiber \(\overline{X}_t\) of the smoothing of \(\overline{X}\) is a simply connected minimal complex surface of general type with \(p_g = 1\), \(q = 0\), and \(K^2 = 8\).

In order to prove Theorem 2.1, we apply the following proposition.

Proposition 2.2 (Y. Lee and J. Park [2]). Let \(V\) be a normal projective surface with singularities of class \(T\). Assume that a cyclic group \(G\) acts on \(X\) such that

1. \(W = V/G\) is a normal projective surface with singularities of class \(T\),
2. \(p_g(W) = q(W) = 0\),
3. \(W\) has a \(\mathbb{Q}\)-Gorenstein smoothing,
4. the map \(\sigma : V \to W\) induced by a cyclic covering is flat, and the branch locus \(D\) (resp. the ramification locus) of the map \(\sigma : V \to W\) is a nonsingular curve lying outside the singular locus of \(W\) (resp. of \(V\)), and
5. \(H^1(W, O_W(D)) = 0\).
Then there exists a \mathbb{Q}-Gorenstein smoothing of V that is compatible with a \mathbb{Q}-Gorenstein smoothing of W. Furthermore the cyclic covering extends to the \mathbb{Q}-Gorenstein smoothing.

We now construct an unramified double covering from the singular surface X to another singular surface. We begin with the Enriques surface Y in Figure 1. We blow up totally 15 times at the marked points • and ◯; Figure 4. We then get a surface $Z = Y^{\#15}\mathbb{CP}^2$; Figure 5. There exist two disjoint linear chains of \mathbb{CP}^1's in Z:

\[
C_{19,6} : \begin{array}{cccccccccc}
-2 & -2 & -2 & -2 & -2 & -2 & -2 & -2 & -2 & -2 \\
\end{array}
\]

\[
C_{73,50} : \begin{array}{cccccccccc}
-2 & -2 & -2 & -2 & -2 & -2 & -2 & -2 & -2 & -2 \\
\end{array}
\]

Figure 4: An Enriques surface Y with marked points

We contract the two chains of \mathbb{CP}^1's from the surface Z so that it produces a normal projective surface X with two singular points class T. It is clear that there is an unbranched double covering $\pi : X \rightarrow X$. The singular surface X satisfies the third condition of Proposition 2.2.

Proposition 2.3 (H. Park [4]). The singular surface X has a global \mathbb{Q}-Gorenstein smoothing. A general fiber X_t of the smoothing of X is a minimal complex surface of general type with $p_g = 0$, $K^2 = 4$, and $\pi_1(X_t) = \mathbb{Z}/2\mathbb{Z}$.

Proof of Theorem 2.1. It is easy to show that the covering $\pi : X \rightarrow X$ satisfies all conditions of Proposition 2.2. Therefore the singular surface X has a global \mathbb{Q}-Gorenstein smoothing. Let X_t be a general fiber of the smoothing of X. Since $p_g(X) = 1$, $q(X) = 0$, and $K^2_X = 8$, by applying general results of complex surface theory and \mathbb{Q}-Gorenstein smoothing theory, one may conclude that a general fiber X_t is a complex surface of general type with $p_g = 1$, $q = 0$, and $K^2 = 8$. Furthermore, it is not difficult to show that a general fiber X_t is minimal by using a similar technique in [3, 6, 7].
Claim. A general fiber $\overline{X_t}$ is simply connected: By Proposition 2.2, there is an induced unbranched double covering $\overline{X_t} \to X_t$; hence, a general fiber $\overline{X_t}$ is simply connected because $\pi(X_t) = \mathbb{Z}/2\mathbb{Z}$ by Proposition 2.3.

References

[1] S. Kondo, Enriques surfaces with finite automorphism groups, Japan. J. Math. (N.S.) 12 (1986), no. 2, 191–282.

[2] Y. Lee and J. Park, A construction of Horikawa surface via \mathbb{Q}-Gorenstein smoothings, arXiv:0708.3319, to appear in Math. Z.

[3] Y. Lee and J. Park, A simply connected surface of general type with $p_g = 0$ and $K^2 = 2$, Invent. Math. 170 (2007), 483–505.

[4] H. Park, A complex surface of general type with $p_g = 0$, $K^2 = 4$, and $\pi_1 = \mathbb{Z}/2\mathbb{Z}$, preprint.

[5] H. Park, J. Park and D. Shin, A construction of surfaces of general type with $p_g = 1$ and $q = 0$, arXiv:0906.5195.

[6] H. Park, J. Park and D. Shin, A simply connected surface of general type with $p_g = 0$ and $K^2 = 3$, Geom. Topol. 13 (2009), no. 2, 743–767.

[7] H. Park, J. Park and D. Shin, A simply connected surface of general type with $p_g = 0$ and $K^2 = 4$, Geom. Topol. 13 (2009), no. 3, 1483–1494.

Department of Mathematical Sciences, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-747, Korea
E-mail address: {hspark@math.snu.ac.kr, jipark@snu.ac.kr, dsshin@cnu.ac.kr