Indirect and Direct BSM Searches at $\sqrt{s} \leq 500$ GeV

J. List (DESY)
ECFA-LC2016
Santander, June 3 2016
Motivation

• The short-comings of the Standard Model convince us that there must be new physics:
 • Hierarchy problem
 • Dark Matter
 • Matter-Antimatter Asymmetry
 • Origin of neutrino masses
 •

• MEXT review ask us to make more clear the prospects for “discoveries”

• **Create a joint picture of direct and indirect searches for BSM**
Solving the Hierarchy Problem
The basic solutions to the Hierarchy problem

Reminder: If SM valid up to the Planck scale, immense fine-tuning is required to prevent the Higgs mass from being driven to the Planck scale by loop corrections as expected for an elementary scalar.

- protect Higgs mass by new symmetry which provides cancellation of divergent loop diagrams

=> SUSY:
 - SM-like top couplings, but deviations in ew precision
 - deviations in Higgs couplings
 - new light states (Higgsinos, stops, …)

“deny the problem”:
- Higgs not elementary and/or Planck scale much lower than it seems

=> compositeness / extra dim.:
 - deviations in top electroweak couplings & ew precision
 - deviations in Higgs couplings
 - new states often assumed heavy

=> not necessarily, cf F.Richard’s talk in physics session
The basic solutions to the Hierarchy problem

Reminder: If SM valid up to the Planck scale, immense fine-tuning is required to prevent the Higgs mass from being driven to the Planck scale by loop corrections as expected for an elementary scalar.

- protect Higgs mass by new symmetry which provides cancellation of divergent loop diagrams

=> SUSY:
 - SM-like top couplings, but deviations in ew precision
 - deviations in Higgs couplings
 - new light states (Higgsinos, stops, ...)

 “deny the problem”:
 - Higgs not elementary and/or Planck scale much lower than it seems

=> compositeness / extra dim.:
 - deviations in top electroweak couplings & ew precision
 - deviations in Higgs couplings
 - new states often assumed heavy

=> not necessarily, cf F.Richard’s talk in physics session

C.f. Marcel’s talk
The basic solutions to the Hierarchy problem

Reminder: If SM valid up to the Planck scale, immense fine-tuning is required to prevent the Higgs mass from being driven to the Planck scale by loop corrections as expected for an elementary scalar.

protect Higgs mass by new symmetry which provides cancellation of divergent loop diagrams

=> SUSY:
- SM-like top couplings, but deviations in ew precision
- deviations in Higgs couplings
- new light states (Higgsinos, stops, …)

“deny the problem”:
Higgs not elementary and/or Planck scale much lower than it seems

=> compositeness / extra dim.:
- deviations in top electroweak couplings & ew precision
- deviations in Higgs couplings
- new states often assumed heavy

=> not necessarily, cf F.Richard’s talk in physics session

c.f. Jim’s talk

c.f. Marcel’s talk
Probing BSM with precision Higgs couplings

….by the power of precision measurements of $h\gamma\gamma$, $h\tau\tau$, h_{bb} couplings:

- HL-LHC 3000 fb$^{-1}$
- ILC (1150 fb$^{-1}$@250 GeV & 1600 fb$^{-1}$@500 GeV)

[Cahill-Rowley, Hewett, Ismail, Rizzo, arXiv:1407.7021 [hep-ph]]

- colour scale: fraction of scan points excluded via coupling precisions
- white lines: LHC / HL-LHC direct search reach for heavy Higgses

Precisions achievable with e^+e^- machine provide powerful probe for heavy Higgs bosons up to ~2 TeV - for any $\tan(\beta)$
Probing BSM with precision Higgs couplings

….by the power of precision measurements of $h\gamma\gamma$, $h\tau\tau$, hbb couplings:

- HL-LHC 3000 fb$^{-1}$
- ILC (1150 fb$^{-1}$@250 GeV & 1600 fb$^{-1}$@500 GeV)

[Cahill-Rowley, Hewett, Ismail, Rizzo, arXiv:1407.7021 [hep-ph]]

We should have more such examples illustrating the BSM capabilities of precision measurements!

Precisions achievable with e$^+e^-$ machine provide powerful probe for heavy Higgs bosons up to ~2 TeV - for any tan(β)
Direct Searches for Supersymmetry

Nothing left? Give up on TeV-scale SUSY?
Plenty of room left for SUSY - naturally!

simplified models don’t give the full story
(e.g. 100% BR assumption rarely fulfilled)
-> c.f. pMSSM scan by ATLAS [arXiv:1508:06608]
Plenty of room left for SUSY - naturally!

simplified models don’t give the full story (e.g. 100% BR assumption rarely fulfilled)
-> c.f. pMSSM scan by ATLAS [arXiv:1508:06608]

LEP chargino limit!
Plenty of room left for SUSY - naturally!

simplified models don’t give the full story
(e.g. 100% BR assumption rarely fulfilled)
-> c.f. pMSSM scan by ATLAS [arXiv:1508:06608]
Plenty of room left for SUSY - naturally!

simplified models don’t give the full story
(e.g. 100% BR assumption rarely fulfilled)
-> c.f. pMSSM scan by ATLAS [arXiv:1508:06608]

natural SUSY: small μ => light Higgsinos

LEP chargino limit!

only ~30% excluded below limit
Plenty of room left for SUSY - naturally!

- Simplified models don’t give the full story (e.g. 100% BR assumption rarely fulfilled)
 - c.f. pMSSM scan by ATLAS [arXiv:1508:06608]

- Natural SUSY: small μ => light Higgsinos
 - LEP chargino limit!
 - Only ~30% excluded below limit

- => No change in level of fine-tuning due to ATLAS exclusions (Barbieri-Giudice measure)
Natural SUSY

[H.Sert, K.Rolbiecki, H.Baer]

- key prediction: small $\mu \Rightarrow 3$ light Higgsinos with small mass differences
- “invisible” at LHC
- loop-hole free detection at ILC up to $\sqrt{s}/2$
 (clean environment & beam polarisation required!)
- determination of gaugino masses - even if in multi-TeV regime

![Graph: Events vs. \sqrt{s}/GeV](image)

- Fast sim - ILD full sim in progress
- $dM770$
- $M_{\chi_1^0}^{fit} = 168.6 \pm 1.0 \text{ GeV}$
- $dM770 \Delta M(\chi_2^0 \chi_1^0) \leq 2 \text{ ab}^{-1}$

![Graph: Mass vs. M_1/TeV](image)

- “Wino” mass
- “Bino” mass
- Mass unification
- $\tan \beta \leq 50$
Natural SUSY [H.Sert, K.Rolbiecki, H.Baer]

- **key prediction:** small $\mu \Rightarrow 3$ light Higgsinos with small mass differences
- “invisible” at LHC
- **loop-hole free detection at ILC up to $\sqrt{s}/2$**
 (clean environment & beam polarisation required)
- determination of gaugino masses - even if in multi-TeV regime

- **Fast sim - ILD full sim in progress**

ILD + Theory

- **M_2 / TeV**
 - $\Delta M(\chi_2^0, \chi_1^0)$, 2 ab^{-1}
 - $\tan\beta \leq 50$

- **“Wino” mass**
 - $\tan\beta = 50$

- **“Bino” mass**
 - M_1 / TeV

dM770
- $M_{\chi_1^0} = 168.6 \pm 1.0 \text{ GeV}$
- Events/10 GeV
Natural SUSY

- key prediction: small μ => 3 light Higgsinos with small mass differences
- "invisible" at LHC
- loop-hole free detection at ILC up to $\sqrt{s}/2$ (clean environment & beam polarisation required!)
- determination of gaugino masses - even if in multi-TeV regime

A real challenge for the detectors due to very soft visible final state
- has not yet been fully demonstrated in full detector simulation!

=> requires:
- reconstruction and PID for < 2 GeV particles
- hermeticity in the forward region
- more differential techniques to deal with $\gamma\gamma$ -> hadron overlay

ILD selected this channel as one of the benchmarks for detector optimisation
ILD Study on Radiative Natural SUSY

- special version of natural SUSY which can be implemented as GUT-scale model (e.g. NUHM2)
- mass differences 10-20 GeV, no ISR tag needed

NEW!

Chargino pair production with semileptonic decay
\[e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 qq' \ell \nu \]

Neutralino mixed production with leptonic decay
\[e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \ell^+ \ell^- \]
ILD Study on Radiative Natural SUSY

- special version of natural SUSY which can be implemented as GUT-scale model (e.g. NUHM2)
- mass differences 10-20 GeV, no ISR tag needed

-Chargino pair production with semileptonic decay
\[e^+ e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 q q' \ell \nu \]

Neutralino mixed production with leptonic decay
\[e^+ e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \ell^+ \ell^- \]

- target: masses and polarised cross sections
- determination of SUSY parameters
- test GUT- scale unification!
NMSSM Higgs Bosons

- Light Higgs bosons and neutralinos in NMSSM, e.g.:
 \[M(a_1) = 10 \text{ GeV}, \]
 \[M(h_1) = 60 \text{ GeV}, \]
 \[M(h_2) = 125 \text{ GeV} \]

- \(h_1 / a_1 \) have reduced couplings to \(Z \)
 \(\Rightarrow \) produce in \(\chi^0 \) cascades

- Work in progress using SiD card for Delphes

- Very good mass resolution and strong polarisation dependence

\[a_1 \rightarrow \mu^+\mu^- \]

\[h_1 \rightarrow bb \]
Identifying Dark Matter
Generic Dark Matter: Mono-photons

- **full complementarity to LHC / direct detection:**
 - lepton vs hadron couplings
 - large mediator scale vs large DM mass:
 - ILC500: up to $\Lambda = 3$ TeV for $M_\chi < 250$ GeV
- **beam polarisation is essential:**
 - suppress background by factor ~10 => gains 1 TeV in reach!
 - *and:* analysis of potential signal

Diagram:

- 90% CL, Vector operator (D5)
- ILC
- LHC
- Snowmass 14 TeV, 3/ab, Ref. arXiv:1307.5327
- CMS 8 TeV, 3.5 ab
- CMS 14 TeV, 300 fb
- ATLAS, 14 TeV, 3ab
- ATL-PHYS-PUB-2014-007

Graph:

- 3σ observation reach, ILC 500 GeV, L=500fb$^{-1}$

Legend:

- Bkg: x 0.1
- Background unpolarized beam
- Background (Pe,Pp)=(80%,0%)
- Background (Pe,Pp)=(80%,60%)

Table:

M_χ [GeV]	ILC	LHC
50		
100		
150		
200		
250		

Analysis:

- 90% CL and 5% syst on background
- CMS, 8 TeV, 19.5 fb
- 3.5 fb
- 3.5 ab

Note:

- Ref. arXiv:1307.5327
- Ref. CMS PAS EXO-12-048
- CMS, 8 TeV, 19.5 fb
- ATLAS, 14 TeV, 3/ab

[Generic Dark Matter: Mono-photons [A.Chaus, M.Habermehl]]
Generic Dark Matter: Mono-photons

- **full complementarity to LHC / direct detection:**
 - lepton vs hadron couplings
 - large mediator scale vs large DM mass:
 - ILC500: up to \(\Lambda = 3 \text{ TeV} \) for \(M_\chi < 250 \text{ GeV} \)
- **beam polarisation is essential:**
 - suppress background by factor ~10
 - gains 1 TeV in reach!

remaining background:
- radiative Bhabhas \(e^+e^- \rightarrow e^+e^-\gamma \)

\[\Rightarrow \text{crucially depends on highly efficient veto in forward region} \]

ILD currently studies this in context of reduced L*

\[\text{bkg: } x 0.1 \]

\[\text{Entries} \]

Entries	Background unpolarized beam	Background \((P_e,P_p)=(80\%,0\%)\)	Background \((P_e,P_p)=(80\%,-60\%)\)
50	10^4	10^3	10
100	10^3	10^2	1
150	10^2	10	1
200	10		
250	1		

\[E_\gamma [\text{GeV}] \]

90% CL, Vector operator (D5)

\[\text{reach: } +1 \text{ TeV} \]

\[M_\chi [\text{GeV}] \]

\[\text{Vector operator} (\text{D5}) \]
SUSY Dark Matter: Co-annihilation

- additional motivation for small mass differences
 => very challenging at LHC, gold-plated ILC case
- example study of a full SUSY model with stau-LSP co-annihilation, incl. interplay with LHC

NEW:
- which observables required with which precisions to determine relic density?
- simulation study of neutralinos, e.g.:

\[\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\tau}_1 \tilde{\chi}_1^0 \]

⇒ 1% variation of \(M_{\tilde{\tau}} \) or \(M_{\tilde{\chi}_1^0} \) changes abundance by 5%.
⇒ 1% variation of \(\theta_{\tilde{\tau}} \) or \(N_{11} \) changes abundance by 1% and 3.5%, respectively.

Resolution on endpoint ~700 MeV
Explaining the Matter-Antimatter-Asymmetry
Baryogenesis

requires:

- CP violation
- baryon number violation
- first order phase transition

Can this be the electroweak phase transition? “electroweak baryogenesis”

- not in the SM with $M_H = 125$ GeV (2nd order PT)
- need $\lambda > 1.2 \lambda_{SM}$
BSM effects in Higgs pair production

- always multiple diagrams contributing - with and without Higgs self-coupling λ
- interference induces non-trivial relations between cross sections and λ
- VHH has opposite behaviour to VBF /ggF=> important independent information!
- largest sensitivity to λ near threshold => restriction to high energy / high mass does not help
- unique for e^+e^- @ 500 GeV: access to VHH

[arxiv:1401.7340]
Measurement prospects at e^+e^- colliders

- gives access to two complementary production processes:
 - **ZHH @ \sim 500 \text{ GeV}**
 - unique feature: increases if $\lambda > \lambda_{\text{SM}}$
 - additional dependency on g_{ZZHH}
 - **vvH (VBF) @ ECM > 1 \text{ TeV}:** large cross section, in particular with polarised beam
 - additional dependency on g_{WWHH}
 - **ZHH \rightarrow Zbbbb / ZbbWW / Zbb$\tau\tau$ / ...:**
 - very complex final states
 - small statistics
 - need to exploit *all* the information provided by our detectors

\Rightarrow requires further developments of the reconstruction!

ILD FullSim

ILD preliminary

\begin{align*}
\sqrt{s} & = 500 \text{ GeV}, \quad 2000 \text{ fb}^{-1} \\
P(e^+e^-) & = (+0.3,-0.8) \\
\end{align*}
Measurement prospects at e^+e^- colliders

- gives access to two complementary production processes:
 - **ZHH @ ~500 GeV**
 - unique feature: increases if $\lambda > \lambda_{SM}$
 - additional dependency on g_{ZZHH}
 - **$\nu\nu H$ (VBF) @ ECM > 1 TeV**: large cross section, in particular with polarised beam
 - additional dependency on g_{WWHH}
 - ZHH \rightarrow Zbbbb / ZbbWW / Zbb$\tau\tau$ / …:
 - very complex final states
 - small statistics
 - need to exploit all the information provided by our detectors

\Rightarrow requires further developments of the reconstruction!

update of ZHH @ 500 GeV in full simulation of ILD to come soon…

ILD FullSim

[C.Dürig, J.Tian, M.Kurata]
From cross section to self-coupling in e^+e^- in BSM

- $\delta \lambda / \lambda = k \delta \sigma / \sigma$; n.b.: $k = \left(\frac{\partial \sigma}{\partial \lambda}\right)^{-1} |_{\lambda=\lambda_{\text{obs}}}$

	500 GeV ZHH	1 TeV vvHH	1.4 TeV vvHH	3 TeV vvHH	1.4 TeV vvHH, pol	3 TeV vvHH, pol	
$\int L dt$	4 ab$^{-1}$	2.5 ab$^{-1}$	1.5 ab$^{-1}$	2 ab$^{-1}$	1.5 ab$^{-1}$	2 ab$^{-1}$	
$\delta \sigma / \sigma$	16 %	13 %	26 %	11 %	20 %	8 %	
k_{SM}	1.64	0.76	1.22	1.47	1.22	1.47	
$\delta \lambda / \lambda	_{\text{SM}}$	27 %	10 %	32 %	16 %	24 %	12 %

- $\delta \sigma / \sigma \leq 20\% \Rightarrow \geq 5\sigma$ discovery of Higgs pair production

- for SM case, 1 TeV is a “sweet spot” with $k < 1$ (sensitivity to λ largest close to threshold!)

- **BSM can change the picture**: consider e.g. $\lambda = 1.5 \lambda_{\text{SM}}$

 - 500GeV: $\delta \sigma / \sigma \sim= 12\%$; $\delta \lambda / \lambda \sim= 20\%$
 - 1TeV: $\delta \sigma / \sigma \sim= 16\%$; $\delta \lambda / \lambda \rightarrow "\infty"$

- with combination of 500 GeV and 1 TeV we’re always on the safe side!
Higgs self-coupling from loop corrections?

- sub-% precision on σ_{ZH} possible at all proposed e+e- colliders
- indirect and model-dependent method
- interesting consistency check, not an independent measurement
- n.b.: what about other loop contributions?
 - top $\rightarrow y_t$? W $\rightarrow g_{WWH}$?
 - or even BSM?
- better look at plot the other way round: will we need at some point O(10%) direct measurement of λ in order to achieve permille-level extraction of g_{ZZH} from σ_{ZH}!?
- n.b.: at 500 GeV, NLO effects from λ on σ_{ZH} are \sim7 times smaller than at 250 GeV.....
Neutrino Masses & Leptogenesis

- search for heavy neutrinos at ILC
- study various ECM based on SiD card for Delphes

SiD Delphes

[O. Fischer]

Neutrino Masses & Leptogenesis

- search for heavy neutrinos at ILC
- study various ECM based on SiD card for Delphes

SiD Delphes

[O. Fischer]

Neutrino Masses & Leptogenesis

- search for heavy neutrinos at ILC
- study various ECM based on SiD card for Delphes

SiD Delphes

[O. Fischer]
Conclusions
Conclusions

• “indirect” searches:
 • we’re in good shape with estimating (statistical) precisions on observables (but watch out for systematics, theory & Co!)
 • need more efforts to interpret precisions in various BSM scenarios
 => crucial for selling the physics case!

• “direct” searches
 • offer significant complementarity with LHC
 • have special detector requirements, e.g.
 • hermeticity in forward region
 • reconstruction and ID of low momentum particles

e^+e^- collisions will tell us a lot about physics beyond the Standard Model
- even at $\sqrt{s} \leq 500$ GeV: BSM is an integral part of the physics case!
Backup
Top Couplings and BSM

ILC precision allows model discrimination
- sensitivity in g_{Z_L}, g_{Z_R} plane complementary to LHC

Sensitivity to huge variety of models with compositeness and/or extra-dimensions complementary to resonance searches

- RS with Z-Z' Mixing
- Light top partners Alternative 1
- Light top partners Alternative 2
- SUSY
- SM
- 4D Composite Higgs Models
- Little Higgs
- RS with Custodial SU(2)
- Composite Top

LHC14, 3000 fb^{-1}
From Phys.Rev.D63 (2006) 034016

[Poeschl, Richard]
New Physics Reach of full ILC500 Program

….for typical BSM scenarios with **composite Higgs/Top and/or extra dimensions**

based on phenomenology described in Pomerol et al. arXiv:0806.3247

Can probe scales of ~20 TeV in typical scenarios

(… and up to 80 TeV for extreme scenarios)
New Physics Reach of full ILC500 Program

….for typical BSM scenarios with **composite Higgs/Top and/or extra dimensions** based on phenomenology described in Pomerol et al. arXiv:0806.3247

Can probe scales of ~20 TeV in typical scenarios

(… and up to 80 TeV for extreme scenarios)
Measurement prospects at pp colliders

- HL-LHC:
 - significance for observation of Higgs pair production
 \(\sim 1.9 \sigma / \exp \) if \(\lambda = \lambda_{SM} \) (\(bb\gamma\gamma / bbWW / bb\tau\tau \))
 - \(\Rightarrow \) uncertainty on signal rate \(\sim 54\% / \exp \) => \(\sim 38\% \) combined
 - n.b.: this is not the uncertainty on \(\lambda \! \)
- 100 TeV: [TODO: check talk at FCC week on Wednesday]
 - cross section \(\sim 40\times \) larger
 => but still no sensitivity to VHH….
 - aim for 5-10%
- Common challenges:
 - “double solution” for \(\lambda \)
 - \(\lambda > \lambda_{SM} \Rightarrow \) rate drops!
 - correlation with top Yukawa coupling \(y_t \)
 - large NLO k-factors….
The basic solutions to the Hierarchy problem

Reminder: If SM valid up to the Planck scale, immense fine-tuning is required to prevent the Higgs mass from being driven to the Planck scale by loop corrections as expected for an elementary scalar.

- protect Higgs mass by new symmetry which provides cancellation of divergent loop diagrams

 => SUSY:
 - SM-like top couplings, but deviations in ew precision
 - new light states (Higgsinos, stops, …)
 - deviations in Higgs couplings

 “deny the problem”:
 - Higgs not elementary and/or Planck scale much lower than it seems

 => compositeness / extra dim.:
 - deviations in top electroweak couplings & ew precision
 - new states often assumed heavy

 => not necessarily, cf F.Richard’s talk in physics session
 - deviations in Higgs couplings
The basic solutions to the Hierarchy problem

Reminder: If SM valid up to the Planck scale, immense fine-tuning is required to prevent the Higgs mass from being driven to the Planck scale by loop corrections as expected for an elementary scalar.

- MSSM ($\tan\beta = 5$, $M_A = 700$ GeV)
- New symmetry protects Higgs mass which provides cancellation of divergent loop diagrams

=> SUSY:
- SM-like top couplings, but deviations in EW precision
- New light states (Higgsinos, stops, ...)
- Deviations in Higgs couplings "deny the problem": Higgs not elementary and/or Planck scale much lower than it seems

=> Compositeness / extra dim.:
- Deviations in top electroweak couplings & EW precision
- New states often assumed heavy => not necessarily, cf F. Richard's talk in physics session
- Deviations in Higgs couplings

Projected Higgs coupling precision (model-independent)

- ILC
- Model prediction

- 500 GeV, 4000 fb$^{-1}$ ⊕ 350 GeV, 200 fb$^{-1}$ ⊕ 250 GeV, 2000 fb$^{-1}$
The basic solutions to the Hierarchy problem

Reminder: If SM valid up to the Planck scale, immense fine-tuning is required to prevent the Higgs mass from being driven to the Planck scale by loop corrections as expected for an elementary scalar.

- Protect Higgs mass by new symmetry which provides cancellation of divergent loop diagrams

- SUSY:
 - SM-like top couplings, but deviations in electroweak precision
 - New light states (Higgsinos, stops, …)
 - Deviations in Higgs couplings

"Deny the problem":
Higgs not elementary and/or Planck scale much lower than it seems

- Compositeness / extra dim.:
 - Deviations in top electroweak couplings & electroweak precision
 - New states often assumed heavy
 - In contrast, perhaps not necessarily, cf. F. Richard's talk in physics session

Projected Higgs coupling precision (model-independent)

- ILC
- Model prediction

Higgs' couplings covered in Jim's talk, - as essential as ever if direct hint for BSM become true!
Topics to address - indirect searches

- Higgs / top:
 - **fine-tune with other speakers**
 - focus mostly on BSM interpretations of achieved precisions
 - candidate examples:
 - Higgs couplings => pMSSM
 - Higgs self-coupling in BSM
 - top FCNC
 - top couplings in BSM
- Others:
 - TGCs / QGCs
 - EW precision / 2 fermions
Key messages I suggest to convey

• Indirect searches:
 • well covered with achievable precisions on experimental observables
 • need much more effort on **interpretation in BSM models**
 • => quantify discovery potential
 • => interplay with LHC

• Direct searches:
 • not only single benchmarks
 • need also discovery sensitivities in whole parameter planes
 (eg LEP chargino plot.....)
 • => demonstrate even more clearly complementarity to LHC