Glutamate signals through mGluR2 to control Schwann cell differentiation and proliferation

Fuminori Saitoh1,2, Shuji Wakatsuki2, Shinji Tokunaga1, Hiroki Fujieda2 & Toshiyuki Araki1

Rapid saltatory nerve conduction is facilitated by myelin structure, which is produced by Schwann cells (SC) in the peripheral nervous system (PNS). Proper development and degeneration/regeneration after injury requires regulated phenotypic changes of SC. We have previously shown that glutamate can induce SC proliferation in culture. Here we show that glutamate signals through metabotropic glutamate receptor 2 (mGluR2) to induce Erk phosphorylation in SC. mGluR2-elicited Erk phosphorylation requires ErbB2/3 receptor tyrosine kinase phosphorylation to limit the signaling cascade that promotes phosphorylation of Erk, but not Akt. We found that Gβγ and Src are involved in subcellular signaling downstream of mGluR2. We also found that glutamate can transform myelinating SC to proliferating SC, while inhibition of mGluR2 signaling can inhibit demyelination of injured nerves in vivo. These data suggest pathophysiological significance of mGluR2 signaling in PNS and its possible therapeutic importance to combat demyelinating disorders including Charcot-Marie-Tooth disease.

Rapid saltatory conduction of electrical signals along the distance of an axon is facilitated by myelin, a lipid-rich ionic insulator that wraps around the axon1,2. In the peripheral nervous system (PNS), myelination is accomplished by the peripheral type of glial cells, i.e., Schwann cells (SC). In PNS development, axons regulate SC differentiation into myelinating and non-myelinating cell populations. Once SC detach from axons by disease or damage, SC rapidly and drastically change their phenotype to become de-differentiated, which is crucial to facilitate axonal regeneration1.

Signaling that translates humoral/contact-mediated stimulation to SC differentiation has been thoroughly examined to better understand the mechanism of myelination in the PNS. Neuregulin-1 (Nrg1)-ErbB2/3 signal is known to play a major role in SC differentiation and proliferation. SC precursors that associate with peripheral axons express the tyrosine kinase receptors ErbB2/34, as well as, the neuronally produced Nrg1, for migration, proliferation, and differentiation34. Nrg1 can also be produced by adult SC in degenerating nerves to promote the de-differentiated SC phenotype2. ErbB2 activation in SC elicits multiple intracellular signaling pathways, including ones that activate Erk and Akt8–10. cAMP is also known as a key regulatory factor for SC proliferation and differentiation. cAMP-stimulating agents increase the potency of Nrg1; cAMP can also upregulate the expression of a number of myelin genes such as: myelin protein zero (P0) and the transcription factor SCIP/Oct-6/Tst-1, which are essential regulators of SC differentiation into a myelinating phenotype11. The best known downstream effector of cAMP is protein kinase A (PKA). Inhibition of PKA has been shown to block the morphological changes in SC, which is induced by raising cAMP levels12.

It has become increasingly clear that the undifferentiated/differentiated phenotypes of SC are tightly regulated by a cascade of intracellular signaling events, and an orchestrated series of gene expression pathways of regulatory proteins and molecules found on the cell surface and extracellular matrix2,13,14. For instance, the de-differentiation signals for SC invariably overlap with proliferation, particularly in in vivo situations. Nrg1 may be the most well-characterized and only example of such molecule that can elicit multiple SC intracellular signaling pathways, but the knowledge with regard to the molecular mechanism to coordinate these multiple events in SC is still limited.

We previously reported that expression of glutamine synthetase (GS) in SC promotes their myelination phenotype. GS is an enzyme that catalyzes conversion of glutamate into glutamine. We previously showed by using
Figure 1. Inhibiting mGluR2/3 signaling promotes myelination. (A,B) In vitro myelination was performed using a co-culture of DRG neurons and SC with indicated mGluR antagonists (AIDA for mGluR1, PCCG-4 for mGluR2/3, and MPEP for mGluR5). Resultant myelination profiles were visualized by MBP immunocytochemistry. Representative myelination profiles (A) and their quantification data (B) are shown. Scale bar = 100 μm. For quantification, myelination profiles were counted from five randomly selected fields under a microscope using a 10x objective lens. The number of profiles relative to no inhibitor control is
shown (mean profile numbers of 5 independent experiments ± SD). Asterisks indicate significant difference from control (Student’s t test, *p < 0.05). Note that myelination was promoted by PCCG-4, an mGluR2/3 antagonist. (C) Representative photomicrographs and quantification of EdU-positive SC in the proliferation assay with indicated conditions. Cells were co-stained with DAPI. Scale bar = 250 μm. For quantification, the percentage of EdU-positive cells to the total number of cells were calculated in each condition (n = 3, mean ± SD). Statistical analysis was performed by Student’s t-test. Asterisks indicate significant difference (*p < 0.05). (D,E) Representative photomicrographs and quantification of neurofilament M (NFM) and MBP immunoreactivity of the DRG neuron-SC co-culture. Scale bar = 50 μm. For quantification in (E) the numbers of myelination profiles visualized by MBP staining and the intensity of NFM immunoreactivity were analyzed from five randomly selected fields under a microscope using a 20x objective lens (mean ± SD, n = 3). Asterisks indicate significant difference from control (Student’s t test, *p < 0.05).

Results

Glutamate enhances Erk phosphorylation via mGluR2 on SC. In our previous report, we showed that forced expression of GS resulted in increased myelination in vitro, and that glutamate along with an mGluR agonist promotes SC proliferation. These data suggested that glutamate affects the differentiation status of SC via mGluR on SC. To show that the myelination-promoting effect of GS expression in SC is mediated by mGluR signaling, we first examined the effects of mGluR inhibitors on SC myelination and glutamate-induced SC proliferation in vitro. We found that application of PCCG-4, an mGluR2/3 antagonist, significantly promoted myelination to an extent similar to GS overexpression in SC (Fig. 1). We also found that PCCG-4 inhibited glutamate-induced SC proliferation. These data suggest that glutamate affects SC proliferation and differentiation by signaling via mGluR2/3.

Previous reports indicated that subcellular signaling resulting in proliferation/de-differentiation of SC is mostly associated with Ras-Raf-Erk signaling and/or Akt7. Other reports have shown that Erk signaling in SC is associated with demyelination and dedifferentiation5. Whereas, Akt activation in SC is elicited by extracellular matrix and/or cell-to-cell contact, and is involved in their migration and radial sorting7,10. Therefore, to dissect mGluR2/3-elicited signaling in SC, we first examined the phosphorylation status of Erk and Akt after application of glutamate to primary cultured SC. We found that glutamate induces a weak but significant increase of Erk phosphorylation, and does not affect phosphorylation status of Akt in SC (Fig. 2A,B). We also found that glutamate accelerates Nrg1-induced Erk phosphorylation, but does not affect Nrg1-induced Akt phosphorylation (Fig. 2A,B). These results suggest that glutamate may elicit SC signaling by modulating ErbB2 receptor-mediated subcellular signaling. To determine if ErbB2 is required for glutamate-induced SC signaling, we examined Erk phosphorylation in response to glutamate under the presence of PKI166, a potent inhibitor of kinase activity of ErbB2 and EGFR. We found that PKI166 shuts down Erk phosphorylation in response to Nrg1 and/or glutamate (Fig. 2C). We also found that PKI166 inhibited the glutamate-induced SC proliferation in culture (Fig. 2E). These results suggest that mGluR2/3 signaling in SC requires ErbB2 receptor to induce Erk phosphorylation and resultant SC proliferation. To further characterize the mechanism of inducing Erk-specific phosphorylation downstream of ErbB2 receptor signaling, we employed antibodies against specific phosphorylated tyrosine residues of ErbB2 to determine which residues are phosphorylated in response to glutamate application on SC. Among possible phosphorylation sites, we found that glutamate strongly induces phosphorylation of Y1221, more so than other tyrosine residues including Y877 or Y1248 (Fig. 2D). Y1221/1222 phosphorylation is known to constitute a docking site for cytoplasmic proteins of the ErbB2 signal transduction cascade16,17. Taken together, these results suggest that glutamate elicits a subset of subcellular signaling downstream of ErbB2 receptor activation by inducing ErbB2 phosphorylation in a manner independent from ligand binding.

We showed in Fig. 1 that application of an mGluR2/3-specific inhibitor promoted myelination in vitro. To characterize glutamate-elicited intracellular signaling in SC, we tried to determine the receptor subtype(s) responsible for signaling. For this purpose, we examined mRNA expression of mGluR family members by RT-PCR. We found that mGluR2 showed detectable mRNA expression in primary cultured SC (Fig. 3A). Together with the data in Fig. 1, our data suggest that glutamate signals through mGluR2 on SC to affect SC proliferation and differentiation. To confirm the involvement of mGluR2 in the glutamate-induced effect on SC, we performed shRNA-mediated mGluR2 down-regulation in SC or DRG neurons in in vitro myelination experiments (Fig. 4). We found that mGluR2 down-regulation in SC resulted in increased myelination in culture as observed by using a mGluR inhibitor. These results indicate that mGluR2 on SC is the signaling gate for glutamate to affect SC proliferation and differentiation.

To analyze mGluR2-mediated signaling in SC, we first confirmed that mGluR2 activation is necessary for glutamate-induced Erk phosphorylation. For this purpose we employed different mGluR antagonists and applied them with glutamate and/or Nrg1 on primary cultured SC. Among different mGluR antagonists, we found that
Figure 2. ErbB2 phosphorylation in response to glutamate in SC causes increased phosphorylation of Erk but not Akt. (A,B) Representative immunoblot images (A) and quantified expression levels (B) of phosphorylated/total Erk and Akt in primary cultured SC after treatment with glutamate and Nrg1 at varying concentrations as indicated for 30 min. The quantified expression level was normalized to the total Erk or Akt expression level, relative to the condition without glutamate/Nrg1 (mean ± SD, n = 3). The asterisks indicate significant difference between glutamate+/− conditions at each Nrg1 concentration (Student’s t test, *P < 0.05) (C) Representative immunoblot images (top) and quantified expression levels (bottom) of phosphorylated/total Erk in primary cultured SC in response to glutamate in the presence or absence of PKI166. The quantified expression level was normalized to the total Erk expression level, relative to the condition without glutamate (mean ± SD, n = 3). Note that glutamate-induced increase of Erk phosphorylation is strongly inhibited by PKI166. The asterisk indicates significant difference (Student’s t test, *P < 0.05) (D) Representative immunoblot
images (top) and quantified expression levels (bottom) of phosphorylated ErbB2 at indicated tyrosine residues in the presence of glutamate with/without mGluR2,3 antagonist application. The quantified expression level was normalized to the total ErbB2 expression level, relative to the condition without glutamate (mean ± SD, n = 3). Total ErbB2 expression levels serve as a loading control. Note that glutamate-induced ErbB2 phosphorylation is inhibited by PCCG-4. (E) Representative photomicrographs and quantification of EdU-positive cells in the proliferation assay. SC were treated with 2 mM glutamate, together with PKI166 (200 nM). The proliferating cells were labeled 22 h later by adding EdU (20 μM) for another 2 h. Cells were co-stained with DAPI. Scale bar = 250 μm. The percentage of EdU-positive cells to the total number of cells were calculated in each condition (n = 3, Mean ± SD). Statistical analysis was performed by Student's t-test. Asterisks indicate significant difference (p < 0.05).

mGluR elicits intracellular signaling involving Goi and Gβγ in SC. mGluR2 is known to elicit intracellular signaling by association with G proteins. Ligand-bound mGluR2 activates heterotrimeric Gs/Гα proteins by exchanging GDP (bound to the Gαi) for GTP, which leads to dissociation of GTP-bound Gαs from Гβγ. The Gαi subunit inhibits adenylyl cyclase, and thereby decreases intracellular cAMP. The Gβγ subunits, after dissociation from Gαi subunits, also act as a signaling molecule to induce Erk phosphorylation18. To know whether glutamate-induced Erk phosphorylation is mediated by Gαs and/or Gβγ, we examined the effect of NF023 (an inhibitor for Gαi) and gallein (an inhibitor for Gβγ) on glutamate-induced Erk phosphorylation in primary cultured SC. We found that the glutamate induced increase of Erk phosphorylation was significantly suppressed by gallein to the control level, while NF023 showed no significant effect (Fig. 5A). Furthermore, we found that gallein inhibited glutamate-induced SC proliferation (Fig. 5D). These results suggest that Gβγ plays a role in signaling from mGluR2 to Erk. To demonstrate the role of Gβγ directly, we examined the levels of Erk phosphorylation in SC overexpressing Gβγ proteins. Among variants of Gβγ proteins expressed in SC, we chose to express a well-characterized combination of Gβ1 and Gγ218. We found that SC overexpressing Gβ1 and Gγ2 induced Erk phosphorylation, and also enhanced Nrg1-induced Erk phosphorylation (Fig. 5B). We also found that SC overexpressing Gβ1 and Gγ2 showed enhanced proliferation in response to glutamate (Fig. 5E). These results confirmed the involvement of Gβγ in mGluR2-mediated SC signaling.

Previous reports have shown that intracellular signaling molecules downstream of Gβγ include Src and PI3K. To uncover the involvement of Src and PI3K in glutamate-elicited signaling in SC, we examined glutamate-induced Erk phosphorylation in the presence of Src and PI3K inhibitors19–21. We found that Src i, a Src inhibitor, significantly decreased the induction of Erk phosphorylation by glutamate applied with Nrg1. Whereas, inhibition by LY294002, demonstrated no inhibition of Erk phosphorylation (Fig. 5C). These results suggest that Gβγ proteins transmit signaling in SC mainly via Src.

mGluR2 signaling regulates SC differentiation/myelination. In SC, promotion of the differentiated phenotype is strongly associated with inhibition of the proliferation/de-differentiation phenotype; and the same is true for inhibition of differentiation and promotion of proliferation/de-differentiation7,8,10,22. Here we have shown that mGluR2 signaling promotes proliferation by enhancing Erk phosphorylation in SC. To examine the transcription of genes that designate SC differentiation/de-differentiation phenotypes are regulated together with the induction of Erk phosphorylation, we examined the effect of mGluR2 signaling on SC differentiation. For this purpose, we examined expression of Krox20, a key transcription factor promoting the myelinating phenotype23, and c-Jun, a negative regulator of myelination, under RNAi-mediated down-regulation of mGluR2 expression in primary cultured SC. We found increased expression of Krox20 and decreased expression of c-Jun, together with decreased Erk phosphorylation (Fig. 6A). To examine the contribution of mGluR2-elicited possible cross-talk with previously identified SC differentiation/de-differentiation signaling, we examined the effect of mGluR2 signaling on cAMP-induced SC signaling (Fig. 6E). We found that dibutyl-cAMP-induced down-regulation of c-Jun and induction of Krox20 in primary cultured SC are not affected by additional stimulation by glutamate. These results suggest that cAMP signaling in SC is not affected by mGluR2-elicited signaling.

To examine the phenotypic consequence of the Krox20 increase, we performed luciferase reporter assay using SC with mGluR2 down-regulation, to evaluate the transcription status of myelin basic protein (MBP), whose expression is critically important for the myelinating SC phenotype. We found increased transcription of MBP in SC with mGluR2 down-regulation (Fig. 6B,C). Furthermore, we found the similar increase of MBP promoter activity by applying PCCG-4 to primary cultured SC (Fig. 6D). These results suggest that mGluR2 signaling not only stimulate proliferations of SC, but also regulates their differentiation.

Despite the relatively weak induction of the myelinating phenotype by mGluR2 down-regulation in the experimental promoter assay context, we have observed clear promotion of myelination in an in vitro myelination assay using an mGluR2/3 antagonist and mGluR2 down-regulation (Figs 1 and 4). To clarify the biological significance of mGluR2 signaling in SC by performing phenotypic analysis under more physiologically relevant situations, we applied PCCG-4 to the area surrounding transected sciatic nerves in vivo. We found that direct
PCCG-4 application around injured nerves using Gelfoam prevented injury-induced demyelination (Fig. 7). These results support the significance of mGluR2 signaling to inhibit SC differentiation/myelination. To show the proliferation/de-differentiation-promoting effect of mGluR2 signaling in SC in a physiological setting, we examined the effect of applying glutamate directly to the area surrounding sciatic nerves in vivo. We found that proliferating SC appeared only when glutamate is applied to the sciatic nerves (Fig. 8A,C). We also found that, in the glutamate-stimulated sciatic nerves, as MBP-expressing SC number decreases EdU-positive proliferating cells and p75-positive de-differentiating cells appear in MBP-expressing SC, indicating that myelinating SC are transformed to proliferating SC in response to glutamate treatment (Fig. 8D). The effect of glutamate on myelinating SC was also confirmed by electron microscopic analysis, in which phagocytosed myelin and non-myelinating SC appeared by glutamate treatment. Together, these results suggest that glutamate serves as a physiological modulator of SC differentiation/proliferation via mGluR2.

Figure 3. Glutamate induces Erk phosphorylation in SC via mGluR2. (A) Representative images of RTPCR analysis for expression of mGluR family members in cultured SC and DRG neurons. The expressions of GAPDH, S100β (a Schwann cell marker) and Brn3a (a neuron marker) mRNA were also analyzed for control. (B) Representative images of immunoblot analysis (top) and quantified expression levels (bottom) of phosphorylated Erk levels in SC with glutamate stimulation as indicated. The quantified expression level was normalized to the total Erk expression level, relative to the condition without glutamate (n = 3, Mean ± SD). Note that glutamate-induced Erk phosphorylation is cancelled by PCCG-4, but not by AIDA or MPEP. The asterisks indicate significant difference (Student’s t test, *P < 0.05). (C,D) Representative images of immunoblot analysis (left) and quantified expression levels (right) of phosphorylated Erk expression in SC with RNAi-mediated down-regulation of mGluR2. The quantified expression level was normalized to the total Erk expression level, relative to the condition without glutamate (n = 3, Mean ± SD). Efficiency of RNAi-mediated down-regulation of mGluR2 expression performed in (C) is shown in (D) (n = 3, mean expression levels relative to control ± SD). The asterisks indicate significant difference (Student's t test, *P < 0.05).
Discussion

Glutamate is an amino acid necessary for protein metabolism in all cells. In the central nervous system (CNS), it is also important as an excitatory neurotransmitter. In the CNS, astrocytes which express GS serve to terminate glutamatergic transsynaptic signaling by uptaking glutamate released from synaptic terminals. In the PNS, on the other hand, while GS is known to be expressed by SC, glutamate is not a neurotransmitter, and the role of GS and glutamate in PNS has remained unclear. Here we established its role as an extracellularly released signaling molecule regulating proliferation and differentiation of SC. Previously identified extracellular signals that regulate SC differentiation status include molecules associated with axonal contact, i.e., cell surface molecules such as NCAM, extracellular matrix molecules such as integrins, and trophic factors such as Nrg1. ErbB2/3 receptor complex can transmit multiple signaling in SC. ErbB2/3 on SC usually takes Nrg1 as a ligand and can associate with a variety of molecules in the SC cytoplasm, which transmit different signals leading to multiple phenotypic consequences. It was previously reported that membrane-bound Nrg1 can regulate myelination, while secretory forms of Nrg1 is inhibitory to myelination. Another report showed that soluble Nrg1 has multiple functions in a manner dependent on its concentration. Nrg1 is myelination-promotive in the lower concentration range, while it is inhibitory to myelination at higher concentrations. Additional complexity...
Figure 5. **Gβγ and Src serve as signaling components downstream of mGluR2.** (A) Representative images of immunoblot analysis (top) and quantified expression levels (bottom) of glutamate-induced potentiation of phosphorylated Erk expression in primary cultured SC in the presence or absence of NF023 (an inhibitor for Gαi) or gallein (an inhibitor for Gβγ). The quantified phosphorylated Erk expression level was normalized to the total Erk level, relative to the condition without glutamate (n = 3, Mean ± SD). The asterisks indicate significant difference (Student’s t test, *P < 0.05). Note that gallein inhibited glutamate-induced Erk phosphorylation, while NF023 showed no effect. (B) Representative images of immunoblot analysis (top) and quantified expression levels (bottom) of phosphorylated Erk expression in primary cultured SC overexpressing Gβ1 and/or Gγ2 proteins with/without Nrg1 stimulation. The quantified expression level was normalized to the total Erk level, relative to the condition without Gβ1 or Gγ2 (n = 3, Mean ± SD). The asterisks indicate significant difference (Student’s t test, *P < 0.05). Note that combined expression of Gβ1 and Gγ2 increases Erk phosphorylation. (C) Representative images of immunoblot analysis (top) and quantified expression levels (bottom) of phosphorylated Erk expression in primary cultured SC stimulated by indicated reagents. The quantified expression level was normalized to the total Erk expression level, relative to the condition without glutamate (n = 3, Mean ± SD). The asterisks indicate significant difference (Student’s t test, *P < 0.05). Note that glutamate-induced Erk phosphorylation is significantly inhibited by Src I, but not LY294002.
Schwann cells were treated with 2 mM glutamate, together with NF023 (10 μM) or gallein (400 nM) in (D), or transfected with His-G31 and/or His-G2 expression vectors using electroporator in (E). The proliferating cells were labeled 22 h later by adding EdU (20 μM) for another 2 h. Cells were co-stained with DAPI. Scale bar = 250 μm. The percentage of EdU-positive cells to the total number of cells were calculated in each condition (n = 3, Mean ± SD). Statistical analysis was performed by Student’s t-test. The asterisk indicates significant difference (p < 0.05).

can come from subcellular signaling downstream of ErbB2. We found that Y1221/1222 is preferentially phospho-rylated in the ErbB2 molecule by activation of the mGluR2 signal. Y1221/1222 phosphorylation is known to constitute a docking site for cytoplasmic proteins of the ErbB2 signal transduction cascade, while Y877 regulates ErbB2 kinase activity. The glutamate-induced Y1221/1222 phophorylation of ErbB2 may be necessary to determine the ErbB2 signaling direction, which leads to enhanced Erk, but not Akt phosphorylation in SC. Pro-myelinating SC during development or in degenerating/regenerating nerves first need to proliferate before contacting axons to make proper alignment with them. As we reported previously, glutamate is produced and secreted by pro-myelinating SC. We presume that glutamate promotes the non-myelinating phenotype of SC and enhance their proliferation by limiting the function of Nrg1/ErbB2 signaling, before SC come in contact with, or proximity of axons to be stimulated by other signals. These other signals include membrane-bound Nrg1, as well as integrins and extracellular matrix molecules, that cause migration, alignment, and myelination.

We show here that glutamate application on normal sciatic nerve can induce de-differentiation of myelinating SC to initiate proliferation. We have shown previously that forced expression of GS in primary cultured SC promotes myelination in vitro. These effects of mGluR2-mediated signaling on SC differentiation seem very strong and important, almost comparable to application of Nrg1 or expression of Krox-20, which are the master regulators of SC phenotype. This strong effect is in contrast to the subtle induction of Erk phosphorylation observed by glutamate application or weak promotion of myelinating phenotype by mGluR2 down-regulation in SC. One possible explanation for this difference is that mGluR2 signaling exerts strong phenotypic consequences by promoting de-differentiation, while inhibiting differentiation at the same time. Indeed, we observed expression of p75 and/or initiation of proliferation in cells maintaining expression of MBP in response to glutamate, and that mGluR2 down-regulation induce expression of krox20, an inducer of SC myelination. The combinatorial effect could be very strong in vivo settings compared with apparent induction capability of Erk phosphorylation in vitro. Another possibility is that Nrg1 is continuously produced and always present at low level in physiological peripheral nerves, and so therefore glutamate can always exert strong effects in vivo despite its effect on cultured SC in vitro.

We showed here that inhibition of mGluR2 signaling in SC not only promotes myelination, but also prevents demyelination. This effect may be relevant for therapeutic application of the mGluR2 inhibition against demyelinating disorders in PNS, such as Charcot Marie Tooth disease type 1 (CMT1). CMT is one of the most common genetic disorders, affecting one out of every 2500 people, and causes severe motor and sensory deficits resulting in significant patient morbidity and mortality, but no treatment against CMT exists thus far. De-myelination in CMT caused by mutations in major myelin protein genes such as P0 and PMP22 is typically characterized by repeating cycles of demyelination and incomplete myelination, so preventing de-myelination is critically important for treatment of CMT1. Since a number of compounds for modulating mGluR function have already been accumulated to study neurotransmission in CNS, some of these may prove to be as useful tools to develop treatment for CMT1 in the near future.

Materials and Methods

Animals and surgical procedures. The experimental procedures performed on mice and rats were carried out in accordance with the approved guidelines from the Ministry of Health, Labor and Welfare of Japan. The experimental protocol was approved by the Animal Welfare Committee in the National Center of Neurology and Psychiatry.

Sciatic nerves of eight- to eleven-week old mice were treated with glutamate or PBS using collagen-gel matrices, Gelfoam (Pfizer) for 3 days. Sciatic nerve transaction experiments were performed as previously described. The mice were then injected with EdU (Invitrogen) for 2 hours, as described in the manufacturer’s protocol, before perfusion with fixative for histological analysis. For analysis of in vivo effects of reagents, mGluR2/3 antagonist (2S,1′R,2′S,3′R)-2-(2′-carboxy-3′-phenylcyclopropyl)glycine (PCCG-4, 100 μM; Enzo Life Sci.) and mGluR5 antagonists 6-Methyl-2′-(phenylethynyl)pyridine (MPEP, 10 μM; Sigma) were administered locally using Gelfoam around sciatic nerves of 8 to 11 week old mice for 4 days prior to collection for histological analysis.

Expression plasmids and viral vectors. His-tagged G31 (His-Gb1) and His-G2 expression vectors were generated by amplifying the full-length coding region of the G31 cDNA (GenBank accession number NM_030987) and G2 (GenBank accession number NM_017549) and then cloned into pcDNA4-His MAX at the EcoR I site. The integrity of the clones was verified by nucleotide sequence analysis. Luciferase reporter plasmid MBP-luc was a gift from Dr. Lawrence Wrabetz. CMV-Renilla.luciferase was purchased from Promega.

For cosmide vector construction, His-tagged G31 and G2 were cloned into the pAxCALNLwt2 cosmid vector (Takara Bio). Recombinant adeno virus was generated using the Takara adeno virus expression kit following the manufacturer’s instructions. The purification and concentration of adeno viruses were carried out by cesium chloride density gradient centrifugation and Centricon Centrifugal Filter Devices (Millipore). Viral titres were determined with a plaque-forming assay in HEK293 cells as previously described. For experiments using...
lentiviral vectors, control and mGluR-specific short hairpin RNAs in the pLKO.1 puromycin-resistant vector were purchased from Sigma. The following clones were used: mGluR2 (MISSION shRNA: TRCN0000219563), mGluR3 (MISSION shRNA: TRCN000025767), mGluR5 (MISSION shRNA: TRCN0000219566), and non-target control (MISSION shRNA: SHC002). Lentiviral packaging was performed using HEK293T cells as previously described. The efficiency of infection to SC (GFP-positive cells/total cells) routinely reached >95%.

Primary SC culture, transfection, and luciferase reporter assay. Primary SC cultures were prepared as described previously. mGluR antagonists were applied to the cultures at following concentrations: mGluR1 antagonist (RS)-1-aminooindan-1,5-dicarboxylic acid (AIDA, 100µM; Tocris biosci.), mGluR2/3 antagonists PCCG-4 (100µM) and mGluR5 antagonist MPEP (10µM). In some experiments, SC were treated with NF023, a Gαi inhibitor, at 10µM, Gβγ Modulator II, Gallein (Millipore) at 400 nM, dibutyryl cyclic AMP (dbcAMP) at 1 mM, ErbB2 inhibitor PKI166 (a gift from Novartis) at 200 nM.

For analyzing Erk phosphorylation status, SC were serum-starved with 1% FBS DMEM for 6 hours, followed by 1% FBS DMEM containing Nrg1 and indicated reagents for 30 min.
For proliferation analysis, SC were treated with 2 mM glutamate, together with indicated mGluR antagonists for 24 h later. EdU (20 μM) was added 2 h before fixation for detection by Click-iT EdU Imaging Kit (Invitrogen). Quantification of proliferating cell number was performed by counting the number of Edu-labeled cells under microscope in four randomly selected fields per each condition using 5x objective lens.

For reporter assays, the SC were transfected with MBP-firefly luciferase and CMV-Renilla luciferase using the NEPA21 electroporator (NEPA GENE, Japan). After transfection, Schwann cells were cultured for 3 days before harvesting for luciferase activity measurement using dual luciferase assay kit (Promega).

Immunoblot. Cells were washed and lysed with lysis buffer containing 50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% NP-40, 0.5% DOC, 0.1% SDS. The lysate was subject to SDS-PAGE and immunoblot analysis with a standard procedure using antibodies against Erk (Cell signaling, Danvers, MA), phospho-Erk (Cell signaling) His (MBL), Krox20 (BioLegend), ErbB2 (NeoMarkers), pY1221/1222-ErbB2 (Abcam), pY877-ErbB2 (Abcam), and pY1248-ErbB2 (Abcam).

Reverse transcription-PCR. Total RNA was isolated from indicated cells using RNeasy MiniKit (Qiagen), and first-strand cDNA was obtained with SuperScript III, according to the manufacturer’s protocol (Invitrogen). PCR was performed using LA Taq (Takara Bio) with the following primer sets: mGluR1, 5′-GGAATGGTACGATCTGTGTG-3′, 5′-CCACTCAAGATAACGGACAG-3′; mGluR2, 5′-CACCTGCATCATCTGGCTGGC-3′, 5′-GGGATCCAGACCCTTGAC-3′; mGluR3, 5′-CCTCAACAGGTTGTCAGTCG-3′, 5′-TGTGAGGCTCATTGTTT-3′; mGluR4, 5′-GAGGTGTGCCTGAGACCTTC-3′, 5′-CATTCCCAGAGACACTGAAG-3′; mGluR5, 5′-GATCCAGCAGCCTAGTCAAC-3′, 5′-GTCGCTGCCACAAATGTTGC-3′; mGluR6, 5′-TGGTTGCCCTGAGACATTGAGT-3′, 5′-GGAAAAGTTTAGATAACCAG-3′; mGluR7, 5′-CATCGTATCCAAAGGCTGTCAC-3′, 5′-GGAACAGGTTAGATAACCAG-3′; mGluR8, 5′-CAATGTACACCACGTGCATC-3′, 5′-CACATCGCACAGACACTGAAG-3′; GAPDH, 5′-ACAAAATGGTGAAGGTCGGTGTGA-3′, 5′-AGCTTCCCATTCTCGGCCTTGAC-3′; S100b, 5′-CCCATCTTCGCTCC-3′, 5′-CGAGGAACAGATCAGTAAGA-3′, 5′-ACAGGGAAAAACACTTCTGC-3′.

Real time quantitative PCR (qRT-PCR) was performed on the ABI Prism 7300 System (Applied Biosystems) as previously described. The fluorescence data were quantitatively analyzed using serial dilutions of the control samples included in each reaction to produce a standard curve.

In vitro myelination assay. In vitro myelination assays were performed as described previously. In some experiments, myelination was induced with mGluRs antagonist at concentrations mentioned above. For analysis of myelin profiles by immunocytochemistry, 10 days after initiation of myelination, the culture was fixed with 4% paraformaldehyde/PBS for 5 min. Myelination profiles were visualized by immunocytochemical detection of myelin basic protein (MBP) using anti-MBP antibody (Covance) followed by Alexa-594-conjugated anti-mouse IgG (Invitrogen). For quantification, myelination profiles in 5 randomly chosen fields using a 20x objective lens were counted and the number of myelinated nerve fibers per arbitrary unit area was calculated. Statistical analysis was performed by Student’s t test. All data are reported as mean ± SD; p value of less than 0.05 is considered significant.
Histological analysis. Immunohistochemistry was performed as previously described\cite{15,44}. For cell proliferation assay, cryostat sections of mouse sciatic nerve tissues were subject to detection using Alexa-594-conjugated EdU detection kit (Invitrogen). The number of EdU-incorporated proliferative SCs, and total SC numbers were counted in five independent experiments in each condition (Mean ± SD). Statistical analysis was performed by Student's t-test. Asterisks indicate significant difference (*p < 0.05). (D–F) Local administration of glutamate promotes myelin sheath breakdown and upregulation of p75 expression in SC in vivo. (D) Representative photomicrographs of transverse sections of sciatic nerves locally administered with glutamate for 2d. Sections were co-stained with p75 (a promyelinating SC marker) and MBP (a myelinating SC marker). Scale bar = 25 μm. (E) The quantification of intact myelin sheaths on sections (E) and the intensity of p75 immunoreactivity relative to the intensity at Glu (−) condition (F) are shown. (n = 3; mean ± SD) The asterisk indicates significant difference (Student's t test; *p < 0.05). Note that myelin sheath breakdown and upregulation of p75 expression was observed after local administration of glutamate in sciatic nerves. (G) Representative photomicrographs for electron microscopic analysis of cross sections of the sciatic nerves locally administered with glutamate for 2d. Scale bar = 5 μm.

References
1. Poliak, S. & Peles, E. The local differentiation of myelinated axons at nodes of Ranvier. Nat Rev Neurosci 4, 968–80 (2003).
2. Sherman, D. L. & Brophy, P. J. Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 6, 683–90 (2005).
3. Scherer, S. S. & Salzer, J. L. Axon-Schwann cell interactions during peripheral nerve degeneration and regeneration. (Oxford UP, 2001).
4. Vartanian, T., Goodarzi, A., Viehover, A. & Fischbach, G. Axonal neuregulin signals cells of the oligodendrocyte lineage through activation of HER4 and Schwann cells through HER2 and HER3. J Cell Biol 137, 211–20 (1997).
5. Michalov, G. V. et al. Axonal neuregulin-1 regulates myelin sheath thickness. Science 304, 700–3 (2004).
6. Rio, C., Rieff, H. I., Qi, P., Khurana, T. S. & Corfas, G. Neuregulin and erbB receptors play a critical role in neuronal migration. Neuron 19, 39–50 (1997).
7. Yanagita, M. et al. Glial growth factor/neuregulin inhibits Schwann cell myelination and induces demyelination. J Cell Biol 152, 1289–99 (2001).
8. Harrisis, M. C. et al. The Ras/Raf/ERK signalling pathway drives Schwann cell dedifferentiation. EMBO J 23, 3061–7 (2004).
9. Maurel, P. & Salzer, J. L. Axonal regulation of Schwann cell proliferation and survival and the initial events of myelination are mediated by PI 3-kinase activity. J Neurosci 20, 4635–45 (2000).
10. Ohta, T. et al. Opposing extracellular signal-regulated kinase and Akt pathways control Schwann cell myelination. J Neurosci 24, 6724–32 (2004).
11. Jägle, M. et al. The POU factor Oct-6 and Schwann cell differentiation. Science 273, 507–10 (1996).
12. Yoon, C., Korade, Z. & Carter, B. D. Protein kinase A-induced phosphorylation of the p65 subunit of nuclear factor-kappaB promotes Schwann cell differentiation into a myelinating phenotype. J Neurosci 28, 3738–46 (2008).
13. Ghislain, J. & Charnay, P. Control of myelination in Schwann cells: a Krox20 cis-regulatory element integrates Oct6, Bnr2 and Sox10 activities. EMBO Rep 7, 52–8 (2006).
14. Parkinson, D. B. et al. c-Jun is a negative regulator of myelination. J Cell Biol 181, 625–37 (2008).
15. Saitoh, F. & Araki, T. Proteosomal degradation of glutamine synthetase regulates schwann cell differentiation. J Neurosci 30, 1204–12 (2010).
16. Garratt, A. N., Britsch, S. & Birchmeier, C. Neuregulin, a factor with many functions in the life of a schwann cell. Bioessays 22, 987–96 (2000).
17. Morrissey, T. K., Britsch, A. D., Nuijens, A., Sliskowsky, M. X. & Bunge, R. P. Axon-induced mitogenesis of human Schwann cells involves hereregulin and p185erbB2. Proc Natl Acad Sci USA 92, 1431–5 (1995).
18. Crespo, P., Xu, N., Simonds, W. F. & Gutkind, J. S. Ras-dependent activation of MAP kinase pathway mediated by G-protein beta gamma subunits. Nature 369, 418–20 (1994).
19. Hawes, B. E., Lutrull, L. M., van Biesen, T. & Leffkowitz, R. J. Phosphatydilinositol 3-kinase is an early intermediate in the G beta gamma-mediated mitogen-activated protein kinase signaling pathway. J Biol Chem 271, 12133–6 (1996).
20. Lopez-Illasaca, M., Crespo, P., Pellici, P. G., Gutkind, J. S. & Wetzker, R. Linkage of G protein-coupled receptors to the MAPK signaling pathway through PI 3-kinase gamma. Science 275, 394–7 (1997).
21. Lutrull, L. M. et al. Role of c-Src tyrosine kinase in G protein-coupled receptor- and Gbetagamma subunit-mediated activation of mitogen-activated protein kinases. J Biol Chem 271, 19443–50 (1996).
22. Saltzer, J. L. Switching myelination on and off. J Cell Biol 181, 575–7 (2008).
23. Nagarajan, R. et al. EGR2 mutations in inherited neuropathies dominant-negatively inhibit myelin gene expression. Neuron 30, 355–68 (2001).
24. Levy, H. L. Metabolic disorders in the center of genetic medicine. N Engl J Med 353, 696–70 (2005).
25. Miller, K. E., Richards, B. A. & Kriebel, B. M. Glutamine–glutamate synthetase–glutamate dehydrogenase–pyruvate carboxylase-immunoreactivities in the rat dorsal root ganglion and peripheral nerve. Brain Res 945, 202–11 (2002).
26. Birchmeier, C. & Nave, K. A. Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation. Glia 56, 1491–7 (2008).
27. Jessen, K. R., Minsky, R. & Morgan, L. Myelinated, but not unmymelinated axons, reversibly down-regulate N-CAM in Schwann cells. J Neurocytol 16, 681–8 (1987).
28. Previtali, S. C. et al. Role of integrins in the peripheral nervous system. Prog Neurobiol 64, 35–49 (2001).
29. Monje, P. V., Soto, J., Bacallao, K. & Wood, P. M. Schwann cell dedifferentiation is independent of mitogenic signaling and uncoupled to proliferation: role of cAMP and JNK in the maintenance of the differentiated state. J Biol Chem 285, 31024–36 (2010).
30. Meyer, D. & Birchmeier, C. Multiple essential functions of neuregulin in development. Nature 378, 386–90 (1995).
31. Nave, K. A. & Saltzer, J. L. Axonal regulation of myelination by neuregulin 1. Curr Opin Neurobiol 16, 492–500 (2006).
32. Syed, N. et al. Soluble neuregulin-1 has bifunctional, concentration-dependent effects on Schwann cell myelination. J Neurosci 30, 6122–31 (2010).
33. Montgomery, R. B., Makary, E., Schiffman, K., Goodell, V. & Disis, M. L. Endogenous anti-HER2 antibodies block HER2 phosphorylation and signaling through extracellular signal-regulated kinase. Cancer Res 65, 650–8 (2005).
34. Bouhy, D. & Timmerman, V. Animal models and therapeutic prospects for Charcot-Marie-Tooth ‘disease. Ann Neurol 74, 391–6 (2013).
35. De Jonghe, P. et al. The Thr124Met mutation in the peripheral myelin protein zero (MPZ) gene is associated with a clinically distinct Charcot-Marie-Tooth phenotype. Brain 122 (Pt 2), 281–90 (1999).
36. Sa, Y. et al. Myelin protein zero gene mutated in Charcot-Marie-Tooth type 1B patients. Proc Natl Acad Sci USA 90, 10856–60 (1993).
37. Roa, B. B. et al. Charcot-Marie ‘tooth disease type 1A. Association with a spontaneous point mutation in the MPZ gene. N Engl J Med 329, 96–101 (1993).
38. Bond, A., O’Neill, M. J., Hicks, C. A., Monn, J. A. & Lodge, D. Neuroprotective effects of a systemically active group II metabotropic glutamate receptor agonist LY354740 in a gerbil model of global ischaemia. Neuroreport 9, 1191–3 (1998).
39. Choi, C. H. et al. Pharmacological reversal of synaptic plasticity deficits in the mouse model of fragile X syndrome by group II mGluR antagonist or lithium treatment. Brain Res 1380, 106–19 (2011).
40. Yahata, N., Yuasa, S. & Araki, T. Nicotinamide mononucleotide adenyltransferase expression in mitochondrial matrix delays Wallerian degeneration. J Neurosci 29, 6276–84 (2009).
41. Wakatsuki, S., Saitoh, F. & Araki, T. ZNRF1 promotes Wallerian degeneration by degrading AKT to induce GSK3B-dependent CRMP2 phosphorylation. Nat Cell Biol 13, 1413–23 (2011).
42. Araki, T., Sasaki, Y. & Millbrandt, J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305, 1010–3 (2004).
43. Saitoh, F. et al. NIRD, a novel DHHC-containing protein, targets neuronal nitric-oxide synthase (nNOS) to the synaptic membrane through a PDZ-dependent interaction and regulates nNOS activity. J Biol Chem 279, 29461–8 (2004).
44. Wakatsuki, S., Yumoto, N., Komatsu, K., Araki, T. & Sehara-Fujiwasa, A. Roles of melphin-beta/ADAM19 in progression of Schwann cell differentiation and myelination during sciatic nerve regeneration. J Biol Chem 284, 2957–66 (2009).

Acknowledgements

This work was supported by Grant-in-Aid for Scientific Research (KAKENHI; 50435723), Intramural Research Grant for Neurological and Psychiatric Disorders from National Center of Neurology and Psychiatry, Takeda Science Foundation, and, Kawano Masanori Memorial Foundation for Promotion of Pediatrics.
Author Contributions
F.S. and T.A. conceived and designed the experiments. F.S., S.W. and S.T. performed the experiments. F.S., S.W., S.T. and H.F. analyzed the data. F.S. and T.A. wrote the first draft of the manuscript. All authors were involved in editing the manuscript and approved the final version.

Additional Information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Saitoh, F. et al. Glutamate signals through mGluR2 to control Schwann cell differentiation and proliferation. Sci. Rep. 6, 29856; doi: 10.1038/srep29856 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/