Spin-orbit Hanle effect in high-mobility quantum wells

A.V. Poshakinskiy and S.A. Tarasenko
A.F. Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

We study the depolarization of optically oriented electrons in quantum wells subjected to an in-plane magnetic field and show that the Hanle curve drastically depends on the carrier mobility. In low-mobility structures, the Hanle curve is described by a Lorentzian with the width determined by the effective g-factor and the spin lifetime. In contrast, the magnetic field dependence of spin polarization in high-mobility quantum wells is nonmonotonic: The spin polarization rises with the magnetic field induction at small fields, reaches maximum and then decreases. We show that the position of the Hanle curve maximum can be used to directly measure the spin-orbit Rashba/Dresselhaus magnetic field.

PACS numbers: 72.25.Rb, 73.21.Fg, 71.70.Ej

The absorption of circularly polarized light in semiconductor structures is known to result in spin orientation of photocarriers, which leads, in turn, to the circular polarization of recombination radiation. The polarization of secondary radiation can be suppressed by applying the magnetic field perpendicularly to the initial light beam. Such an effect, first described by W. Hanle in 1920s for quicksilver atoms, enables physicists to obtain valuable information on the spin lifetime and electronic polarizability of recombination radiation. The polarizability of secondary radiation can be suppressed by applying the magnetic field perpendicularly to the initial light beam. Such an effect, first described by W. Hanle in 1920s for quicksilver atoms, enables physicists to obtain valuable information on the spin lifetime and electronic polarizability of recombination radiation.

In this Letter, we study the effect of an in-plane magnetic field and show that the Hanle curve drastically depends on the electron gas mobility and non-magnetic structures. In low-mobility quantum wells, the Hanle curve is described by a Lorentzian with the width determined by the effective electron g-factor and spin lifetime. Surprisingly, the magnetic field dependence of spin polarization in high-mobility structures is nonmonotonic: The spin polarization rises with the field induction at small fields, reaches maximum and then decreases. Such a behavior is caused by spin-orbit splitting of electron states. The position of the polarization maximum can be used to directly measure the effective Rashba or Dresselhaus magnetic field.

We consider a common n-type QW structure grown along the crystallographic axis $z || [001]$ which is subjected to an in-plane magnetic field \mathbf{B}. The structure is excited by normally-incident circularly polarized light which creates spin polarized electrons at the rate \mathbf{G}. The geometry is sketched in the inset of Fig. 1(b). In (001) QWs, the spin relaxation of electrons is determined, in the wide range of temperature and carrier density, by the D’yakonov-Perel’ spin relaxation mechanism. The mechanism is based on the precession of individual electron spins in the effective Dresselhaus and/or Rashba magnetic fields originating from spin-orbit interaction in non-centrosymmetric structures (for a review, see Refs. 11-12). In the framework of kinetic theory, the steady-state distribution function s_k of electron spins in k-space is described by equation

$$s_k = (\Omega_L + \Omega_R)k = g_k - \frac{\langle s_k \rangle}{\tau}.$$ \hspace{1cm} (1)

Here, Ω_L is the Larmor frequency corresponding to the external field \mathbf{B}, its components are given by $\Omega_{L,a} = (\mu_B/h)\sum_\beta g_{a\beta}B_\beta$, $g_{a\beta}$ is the g-factor tensor, Ω_k is the precession frequency in the effective magnetic field, g_k is the spin generation rate in the states with the wave vector k, τ is the isotropization time of the spin distribution function, and the angular brackets denote averaging over the direction of k. We assume that resident electrons form the degenerate two-dimensional gas and g_k is nonzero only in vicinity of the Fermi level 11-12. Then, the spin polarization is determined by the effective field and isotropization time at the Fermi level. Equation 11 yields

$$s_k = \frac{\zeta_k + \tau \Omega \times \zeta_k + \tau^2 \Omega : \zeta_k}{1 + \Omega^2 \tau^2},$$ \hspace{1cm} (2)

where $\zeta_k = \langle s_k \rangle + g_k \tau$ and $\Omega = \Omega_L + \Omega_R$. The closed equation for $\langle s_k \rangle$ can be found by averaging both sides of Eq. 2 over the wave vector directions. For the case where g_k is independent of the direction of k, $g_k = g$, such a procedure gives

$$\langle s_k \rangle = g_\alpha + \sum_\beta \tilde{\Gamma}_{\alpha\beta}(s_k)_\beta + g_\beta \tau,$$ \hspace{1cm} (3)

where

$$\Omega = \frac{\Omega}{1 + \Omega^2 \tau^2}, \quad \tilde{\Gamma}_{\alpha\beta} = \frac{\Omega^2 \delta_{\alpha\beta} - \Omega_\alpha \Omega_\beta}{1 + \Omega^2 \tau^2} \tau.$$ \hspace{1cm} (4)

In (001)-grown quantum wells, the effective magnetic field is linear in the wave vector and consists of the Rashba and Dresselhaus contributions. The corresponding frequency Ω_k can be presented in the form

$$\Omega_k = [(\Omega_D + \Omega_R)k_y/k_F, (\Omega_D - \Omega_R)k_x/k_F, 0],$$ \hspace{1cm} (5)
where Ω_D and Ω_R are the precession frequencies in the Dresselhaus and Rashba effective fields at the Fermi level, respectively, k_F is the Fermi wave vector, $x \parallel [110]$ and $y \parallel [1\bar{1}0]$ are the in-plane axes. Note, that the g-factor tensor is diagonal in this coordinate frame. Solution of Eq. (3) for arbitrary parameters Ω_D and Ω_R is complicated and can be found numerically. However, it has the simple form provided the frequency magnitude $|\Omega_k|$ is independent of the direction of \mathbf{k} which occurs if either Ω_D or Ω_R is zero. In particular, in the case of Rashba splitting and the spin generation along the QW normal, the out-of-plane and in-plane components of the total electron spin $\mathbf{S} = \sum_k \mathbf{s}_k$ have the form

$$S_z = \frac{\Omega_R^2 \tau G_z}{(\Omega_R^2 + \Omega_L^2)^2 \tau^2 + \Omega_L^2} \left[\frac{1}{1 + \sqrt{1 + (\Omega_R + \Omega_L)^2 \tau^2}} + \frac{1}{1 + (\Omega_R - \Omega_L)^2 \tau^2} \right],$$

(6)

$$S_\parallel = \frac{4 \Omega_L \times G}{4 \Omega_L^2 + (\Omega_R - \Omega_L)^2 \tau^2 + (\Omega_R - \Omega_L)^2} \left[\sqrt{1 + (\Omega_R + \Omega_L)^2 \tau^2} \sqrt{1 + (\Omega_R - \Omega_L)^2 \tau^2} - 1 \right],$$

(7)

where $G = \sum_k \mathbf{g}_k$ is the spin generation rate. Similar equations for the Dresselhaus splitting are obtained from Eqs. (6) and (7) by replacing Ω_L with Ω_D.

Shown in Figs. 1(a) and (b) are the magnetic field dependences of the spin components S_z and S_\parallel plotted for $B \parallel y$ and different products $\Omega_R \tau$. At $\Omega_R \tau \ll 1$, the field dependences of the spin components are described by classical Hanle curves

$$S_z = \frac{T_z G_z}{1 + \Omega_L^2 T_z}, \quad S_\parallel = \frac{T_z T_\parallel \Omega_L \times G}{1 + \Omega_L^2 T_z T_\parallel},$$

(8)

which also follow from Eqs. (6) and (7). Here, $T_z = 1/(\Omega_R^2)$ and $T_\parallel = 2/(\Omega_R \tau)$ are the out-of-plane and in-plane spin relaxation times in the collision-dominated regime [8]. The dependences $S_z(B)$ and $S_\parallel(B)$ given by Eqs. (8) are shown by dashed curves. In QWs with high electron mobility and strong spin-orbit coupling, where the parameter $\Omega_R \tau$ is large, the magnetic field dependence of the electron spin drastically changes. Instead of a monotonic decrease with the field, $S_z(B)$ rises first with the field, reach maximum, and decreases as $1/B^4$ at high fields, see Eq. (8) and Fig. 1(a). At $\Omega_R \tau \gg 1$, the Hanle curve $S_z(B)$ reaches maximum in the magnetic field where $\Omega_L = \Omega_R$. This can be used in experiment for the direct measurement of the effective magnetic field. The electron spin S_z reaches the value $G_z/(2\Omega_R)$ at $\Omega_L = \Omega_R$ that is independent of the scattering time and much larger then $S_z(0) = G_z/(\Omega_R^2)$. We also note that the field dependence of the out-of-plane spin component changes qualitatively with the increase of $\Omega_R \tau$ as well [Fig. 1(b)]. In high-mobility QWs, $S_z(B)$ exhibits the sharp rise at $\Omega_L \approx \Omega_R$ and exceeds $S_z(0)$, which does not occur in the collision-dominated regime.

Equations (6) and (7) allow us to analyze the Hanle curves at small fields. To second order in Ω_L, the field

dependence of the spin components have the form

$$S_z \approx \left[1 - \Omega_R^2 T_z T_\parallel \left(1 - \frac{\Omega_R \tau^2}{2} \right) \right] T_z G_z,$$

(9)

$$S_\parallel \approx T_z T_\parallel \Omega_L \times G.$$

One can see that $dS_z/dB = 0$ at zero magnetic field while

![FIG. 1: Dependences of S_z and S_\parallel on the magnetic field $B \parallel y$ plotted after Eqs. (6) and (7) (solid curves) and classical Eqs. (8) (dashed curves) for different $\Omega_R \tau$. Inset in panel (b) illustrates the geometry of experiment.](image-url)
the effective magnetic field in asymmetric (001)-grown QWs consists of both Rashba and Dresselhaus contributions. It leads to an in-plane anisotropy of spin properties such as spin relaxation rate and effective g-factor [17,11,12,14,16]. Such a precession results in a certain wave vector at the Fermi circle. In the limit of electron subbands in QWs, the dependence S_z on the in-plane field is shown in Fig. 3. In this particular case, $S_z(B)$ is a monotonic function for $B \parallel y$ and nonmonotonic function for $B \parallel z$.

In high-mobility QW structures, the dependence S_z on the in-plane field has a sharp maximum at $\Omega_L \approx \Omega_R^*$, where the frequency $\Omega = \Omega_L + \Omega_R + \Omega_D$ vanishes for a certain wave vector at the Fermi circle. In the limit $\Omega_D \tau, \Omega_L \tau \gg 1$, the frequency Ω_L^* is given by

$$\frac{1}{\Omega_L^*} \approx \sqrt{\frac{\cos^2 \phi}{(\Omega_R + \Omega_D)^2} + \frac{\sin^2 \phi}{(\Omega_R - \Omega_D)^2}},$$

where $\phi = \arctan(\Omega_{L,y}/\Omega_{L,x})$ is the angle between Ω_L and the x axis. The out-of-plane spin component S_z in this magnetic field reaches the value

$$S_z(\Omega_L^*) \approx \frac{G_z}{2} \sqrt{(\Omega_R + \Omega_D)^2 \sin^2 \phi + (\Omega_R - \Omega_D)^2 \cos^2 \phi}$$

independent of the relaxation time τ. The study of the angle dependences of Ω_L^* and $S_z(\Omega_L^*)$ in experiment can help in determining the coefficients of spin-orbit splitting of electron subbands in QWs.

To summarize, we have studied the spin dynamics of optically oriented electrons in quantum wells in the in-plane magnetic field. It has been shown that the interplay of spin-orbit and external magnetic fields leads to an anomalous Hanle effect in high-mobility structures. We have derived an analytical expression for the Hanle curves in structures with arbitrary strength of spin-orbit coupling, which can be used for fitting experimental data and determining the spin-orbit magnetic field.

![Figure 2](image1.png)

FIG. 2: Distributions of the frequency $\Omega = \Omega_L + \Omega_R$ in k-space for two particular cases: (a) $\Omega_L = 0$ and (b) $\Omega_L \parallel x$ and $|\Omega_L| = |\Omega_R|$.

![Figure 3](image2.png)

FIG. 3: Dependence of S_z on the in-plane magnetic field of different orientation for $\Omega_D \tau = 2$ and $\Omega_R \tau = 1$.

An example of such strongly anisotropic dependence of S_z on the in-plane field is shown in Fig. 3. In this particular case, $S_z(B)$ is a monotonic function for $B \parallel y$ and nonmonotonic function for $B \parallel z$.
Acknowledgments. This work was supported by the RFBR, programs of the RAS, and the Foundation “Dynasty”-ICFPM.

[1] Optical Orientation, Eds. F. Meier and B.P. Zakharchenya (Elsevier Science, Amsterdam, 1984).
[2] Optical Orientation, Eds. Y. Kusraev and G. Landwehr, Special issue Semicond. Sci. Technol. 23 (2008).
[3] Spin Physics in Semiconductors, Ed. M.I. Dyakonov (Springer-Verlag, Berlin, 2008).
[4] W. Hanle, Über magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz, Z. Phys. 30, 93 (1924).
[5] O. Krebs, P. Maletinsky, T. Amand, B. Urbaszek, A. Lemaître, P. Voisin, X. Marie, and A. Imamoglu, Anomalous Hanle effect due to optically created transverse Overhauser field in single InAs/GaAs quantum dots, Phys. Rev. Lett. 104, 056603 (2010).
[6] A.V. Kudinov, Yu.G. Kusraev, I.A. Merkulov, K.V. Kavokin, I.G. Aksyanov, and B.P. Zakharchenya, The anomalous Hanle effect in semimagnetic semiconductor quantum wells, Fiz. Tverd. Tela 45, 1297 (2003) [Phys. Solid State 45, 1360 (2003)].
[7] M.I. D’yakonov and V.I. Perel’, Spin relaxation of conduction electrons in noncentrosymmetric semiconductors, Fiz. Tverd. Tela 13, 3581 (1971) [Sov. Phys. Solid State 13, 3023 (1972)].
[8] M.I. D’yakonov and V.Yu. Kachorovskii, Spin relaxation of two-dimensional electrons in noncentrosymmetric semiconductors, Fiz. Tekh. Poluprovodn. 20, 178 (1986) [Sov. Phys. Semicond. 20, 110 (1986)].
[9] N.S. Averkiev and L.E. Golub, Spin relaxation anisotropy: microscopic mechanisms for 2D systems, Semicond. Sci. Technol. 23, 114002 (2008).
[10] M.W. Wu, J.H. Jiang, and M.Q. Weng, Spin dynamics in semiconductors, Phys. Rep. 493, 61 (2010).
[11] W.J.H. Leyland, R.T. Harley, M. Henini, A.J. Shields, I. Farrer, and D.A. Ritchie, Oscillatory Dyakonov-Perel spin dynamics in two-dimensional electron gases, Phys. Rev. B 76, 195305 (2007).
[12] M. Griesbeck, M.M. Glazov, T. Korn, E.Y. Sherman, D. Waller, C. Reichl, D. Schuh, W. Wegscheider, and C. Schüller, Cyclotron effect on coherent spin precession of two-dimensional electrons, Phys. Rev. B 80, 241314 (2009).
[13] S.A. Tarasenko, Scattering induced spin orientation and spin currents in gyrotropic structures, Pis’ma Zh. Eksp. Teor. Fiz. 84, 233 (2006) [JETP Lett. 84, 199 (2006)].
[14] V. N. Gridnev, Theory of Faraday rotation beats in quantum wells with large spin splitting, Pis’ma Zh. Eksp. Teor. Fiz. 74, 7 (2001) [JETP Lett. 74, 7 (2001)].
[15] D. Culcer and R. Winkler, Spin polarization decay in spin-1/2 and spin-3/2 systems, Phys. Rev. B 76, 195204 (2007).
[16] M.M. Glazov, Effect of structure anisotropy on low temperature spin dynamics in quantum wells, Solid State Commun. 142, 531 (2007).
[17] N.S. Averkiev, L.E. Golub, A.S. Gurevich, V.P. Evtikhiev, V.P. Kochereshko, A.V. Platonov, A.S. Shkolnik, and Y.P. Efimov, Spin-relaxation anisotropy in asymmetrical (001) AlxGa1−xAs quantum wells from Hanle-effect measurements: Relative strengths of Rashba and Dresselhaus spin-orbit coupling, Phys. Rev. B 74, 033305 (2006).
[18] D. Stich, J.H. Jiang, T. Korn, R. Schulz, D. Schuh, W. Wegscheider, M.W. Wu, and C. Schüller, Detection of large magetoanisotropy of electron spin dephasing in a high-mobility two-dimensional electron system in a [001] GaAs/AlxGa1−xAs quantum well, Phys. Rev. B 76, 073309 (2007).
[19] L. Meier, G. Salis, E. Gini, I. Shorubalko, and K. Ensslin, Two-dimensional imaging of the spin-orbit effective magnetic field, Phys. Rev. B 77, 035305 (2008).
[20] A.V. Larionov and L.E. Golub, Electric-field control of spin-orbit splittings in GaAs/AlxGa1−xAs coupled quantum wells, Phys. Rev. B 78, 033302 (2008).
[21] P.S. Eldridge, J. Hübner, S. Oertel, R.T. Harley, M. Henini, and M. Oestreich, Spin-orbit fields in asymmetric (001)-oriented GaAs/AlxGa1−xAs quantum wells, Phys. Rev. B 83, 041301 (2011).