Units of p-power order in principal p-blocks of p-constrained groups

Martin Hertweck

Universität Stuttgart, Fachbereich Mathematik, IGT, 70550 Stuttgart, Germany

Abstract

Let G be a finite group having a normal p-subgroup N that contains its centralizer $C_G(N)$, and let R be a p-adic ring. It is shown that any finite p-group of units of augmentation one in RG which normalizes N is conjugate to a subgroup of G by a unit of RG, and if it centralizes N it is even contained in N.

Key words: principal block, torsion unit, permutation lattice, p-constrained group

1 Introduction

This paper grew out of an attempt to understand more fully part of a theorem due to Roggenkamp and Scott (see [10, Theorem 6], [16,17], [11, Theorem 19]) about conjugacy of certain finite p-subgroups in the group of units of a p-adic group ring. The theorem in question, by now called the F*-Theorem, is stated below together with references where a detailed account on its proof can be found (with the result from Section 2 of the present paper being relevant).

Some of the interesting aspects of the group of units of a group ring SG of a finite group G concern its finite subgroups, in particular when the coefficient ring S is a G-adapted ring, i.e., an integral domain of characteristic zero in which no prime divisor of the order of G is invertible. Below, a few well known results in this case are listed. Note that it suffices to consider only the group of units $V(SG)$ consisting of units of augmentation one. For $u \in V(SG)$, we say that u is a trivial unit if $u \in G$, and the trace of u is its 1-coefficient (with respect to the basis G). Let S be a G-adapted ring. Then (see [15], [8] or [18]):

* Research supported by the Deutsche Forschungsgemeinschaft.

Email address: hertweck@mathematik.uni-stuttgart.de (Martin Hertweck).
(a) a non-trivial unit of SG of finite order has trace zero;
(b) the order of a finite subgroup of $V(SG)$ divides the order of G;
(c) a central unit of finite order is a trivial unit.

Limiting attention only to finite p-subgroups in the group of units, one might ask whether comparable results hold with S replaced by the ring \mathbb{Z}_p of p-adic integers. However, (a) and (b) does not carry over, even not if $\mathbb{Z}_p G$ consists of a single block only (cf. [14, Section XIV]). Imposing additional conditions one might also ask how certain finite p-subgroups are embedded in $V(\mathbb{Z}_p G)$. If, for example, attention is directed to the principal block B of $\mathbb{Z}_p G$, a Sylow p-subgroup P of G is identified with its projection on B, and α is an augmented automorphism of B, then the question whether P is conjugate by a unit of B to its image $P\alpha$, is part of Scott’s “defect group (conjugacy) question” (see [16, p. 267], [17]). For p-groups G, this question was answered in the affirmative by Roggenkamp and Scott [13].

Here, the following two theorems are proved. In both we assume that G has a normal p-subgroup N satisfying $C_G(N) \leq N$. By definition, this means that G is p-constrained and $O_{p'}(G) = 1$ (see [6, VII, 13.3]).

Throughout the paper, R denotes a p-adic ring, that is, the integral closure of the p-adic integers \mathbb{Z}_p in a finite extension field of the p-adic field \mathbb{Q}_p. (Then R is a complete discrete valuation ring.) Note that by our assumption on G, the group ring RG will consist of a single (principal) block only (see [6, VII, 13.5]).

Theorem A. Suppose that G has a normal p-subgroup N that contains its centralizer $C_G(N)$. Then any finite p-group in $V(RG)$ which normalizes N is conjugate to a subgroup of G by a unit of RG.

Theorem B. Suppose that G has a normal p-subgroup N that contains its centralizer $C_G(N)$. Then any finite p-group in $V(RG)$ which centralizes N is contained in N.

The proofs are somewhat complicated by the fact that we do not know in advance that RG is free for the “multiplication action” of the finite p-group under consideration (taking this for granted, Theorem A should be part of the F^*-Theorem). Section 2 contains some preparatory results needed for the handling of the case $p = 2$. Theorems A and B are proved in Section 3. The bimodule arguments used there are inspired by [10, p. 231]. The proof depends heavily on the strong results of Weiss on p-permutation lattices (see [20,21], [12]). That these results can be applied rests upon the “Ward–Coleman Lemma.” Coleman’s contribution [1] is well known, but the first version of the lemma appears in an article of Ward [19] as a contribution to a seminar run by Richard Brauer at Harvard. See also [15, Proposition 1.14], [7, 2.6 Theorem]. Actually, for its proof it is only needed that p is not invertible in the commutative ring R.

2
Ward–Coleman Lemma. Let H be a p-subgroup of the finite group G. Then $N_{V(RG)}(H) = N_G(H) \cdot C_{V(RG)}(H)$. □

A consequence of Theorem B deserves explicit mention.

Corollary. Suppose that G has a normal p-subgroup N that contains its centralizer $C_G(N)$. Then each central unit of (finite) p-power order in $V(RG)$ is a trivial unit, i.e. contained in $Z(G)$.

It is not known whether a corresponding result holds for the principal block of an arbitrary (non-solvable) group. Progress in this direction might lead to applications in finite group theory, through Robinson’s work [9] on odd analogues of Glauberman’s Z^*-Theorem.

Finally, we state the theorem of Roggenkamp and Scott.

F*-Theorem. Let G be a finite group having a normal p-subgroup N that contains its centralizer $C_G(N)$. If α is an automorphism of RG stabilizing both the augmentation ideal $I_R(G)$ and the ideal $I_R(N)G$, then the groups G and G^α are conjugate by a unit of RG.

The first step of the proof consists in showing that N and N^α are conjugate by a unit of RG, so that $N = N^\alpha$ can be assumed (details of sketch proof in [10] are given in [4, Lemma 4.1]). Then the image P^α of a Sylow p-subgroup P of G normalizes N, and by Theorem A one can even assume that $P = P^\alpha$.

Now it can be shown that there exists an automorphism ρ of G such that the composition $\alpha \rho$ fixes the elements of P, which implies that $\alpha \rho$ is an inner automorphism of RG (see [3] for a published account).

2 **(Mod 2) conjugacy for involutions**

The main result of this section is Proposition 5, which will be used in conjunction with Proposition 1 to prove in the next section Lemma 7 for $p = 2$, which then allows application of Weiss’ theorem on p-permutation lattices in the proof of Theorem A and B.

We continue to denote by G a finite group and by R a p-adic ring. For a subgroup H of G, let $I_R(H)$ denote the augmentation ideal of RH, i.e. the R-span of the elements $h - 1$ ($h \in H$). If H is a normal subgroup, $I_R(H)G$ is the kernel of the natural map $RG \to RG/H$. For any subset T of G, let $R[T]$ denote the R-span of the elements of T.

The Ward–Coleman Lemma suggests a closer investigation of $C_{V(RG)}(N)$, for G and N as in Theorems A and B.
Proposition 1. Suppose that G has a normal p-subgroup N that contains its centralizer $C_G(N)$. Then the following holds.

(a) $C_{RG}(N) \subseteq R + I_R(N)G + pRG$.

(b) Assume that $p = 2$ and set $\bar{G} = G/\Omega_2(G)$. If a subset T of G is chosen such that \bar{T} is the set of involutions in \bar{G}, then

$$C_{RG}(N) \subseteq R + I_R(\Omega_2(G))G + 4RG + 2R[T].$$

PROOF. For $g \in G$ define its “N-class sum” \mathcal{C}_g^N to be the sum (in RG) of the distinct g^x, $x \in N$. Note that the N-class sums form an R-basis of $C_{RG}(N)$. Let $g \in G$. If $C_N(g) = N$, then $g \in C_G(N) \leq N$ and $\mathcal{C}_g^N = g$, and if $|N : C_N(g)| = p^a > 1$, then $\mathcal{C}_g^N \in p^a g + I_R(N)G$. Hence (a) holds.

Set $N^* = N/\Phi(N)$, the quotient of N by its Frattini subgroup $\Phi(N)$. The group G acts by conjugation on the elementary abelian group N^*. Since N is not centralized by p'-elements of $G \setminus \{1\}$, the kernel K of this operation is a p-group (see [5, III, 3.18]), whence contained in $\Omega_2(G)$. Now let $p = 2$ and suppose that $|N : C_N(g)| = 2$ for some $g \in G$. Then $|N^* : C_{N^*}(g)| \leq 2$, so $g^2 \in K \leq \Omega_2(G)$ and $\mathcal{C}_g^N \in R + I_R(\Omega_2(G))G + 2R[T]$, which completes the proof of (b). □

In particular, we are led to consider units u of order p in RG/N which map to 1 in $(R/pR)(G/N)$. The following well known lemma (cf. [21, Lemma (53.3)]) shows that this is actually only a matter for $p = 2$.

Lemma 2. Let p be an odd prime. Then the group of units in $1 + pRG$ has no p-torsion.

PROOF. Suppose that u is a unit of order p in $u \in 1 + pRG$ and write $u = 1 + p^a x$ with $a \in \mathbb{N}$ such that $x \in RG \setminus pRG$. Writing out the binomial expansion for $(1+p^a x)^p = 1$ and solving for x, we get $p \cdot p^a x = -\sum_{n=2}^{p} \binom{p}{n} p^n a x^n$. But the right-hand side has a factor $p \cdot p^{2a}$ since $p > 2$. This contradiction proves the lemma. □

The reader might wish to convince himself that the statement of the lemma does not hold for $p = 2$, even if u is assumed to have augmentation one.

As usual, we let $[RG, RG]$ denote the additive commutator of RG, defined by

$$[RG, RG] = R \langle g^h - g \mid g, h \in G \rangle = \{xy - yx \mid x, y \in RG\}.$$
The following formulas are well known (see, for example, [18, Lemma (7.1)]). We write K for the quotient field of R, let $a_1, \ldots, a_l \in RG$ and $n \in \mathbb{N}$.

\[[KG, KG] \cap RG = [RG, RG] \quad (1.1) \]
\[[RG, RG]^p \subseteq pRG + [RG, RG] \quad (1.2) \]
\[(a_1 + \cdots + a_l)^n \equiv a_1^n + \cdots + a_l^n \mod pRG + [RG, RG] \quad (1.3) \]

Let $G_{\rho'}$ denote the set of p'-elements of G. It follows immediately from (1.2) and (1.3) that for large enough $n \in \mathbb{N}$ (it suffices that p^n is the order of a Sylow p-subgroup of G) and any $x \in RG$,

\[x^{p^n} \in pRG + [RG, RG] + R[G_{\rho'}]. \quad (1.4) \]

Fix some $c \in G$. We define

\[[RG]^{1-c} = R\langle g - g^c \mid g \in G \rangle = \{ x - x^c \mid x \in RG \}. \]

Set $C = \langle c \rangle$. If RG is considered as a C-module for the “conjugation action” $m \cdot c = c^{-1}mc$ ($m \in RG$), then $[RG]^{1-c}$ is the image of the map $RG \xrightarrow{(1-c)} RG$. Since $H^1(C, RG) = 0$ (see [13, (1.4.1) Proposition]), $[RG]^{1-c}$ is also the kernel of the map $RG \xrightarrow{\hat{C}} RG$ where \hat{C} denotes the sum of the elements in C. In particular, it follows that

\[[KG]^{1-c} \cap RG = [RG]^{1-c}. \quad (2) \]

We remark that $[RG]^{1-c}$ is invariant under left (and right) multiplication with c. Also, if $c^2 = 1$, then $([RG]^{1-c})^2 \subseteq 2RG + [RG]^{c-1}$ in analogy to (1.2) holds since $(g - g^c)(h - h^c) = gh + (gh)^c - g^ch - (g^ch)^c$ for all $g, h \in G$.

Lemma 3. Let $c \in G$ and $u \in V(RG)$ be 2-elements. Assume that $c^2 = u^2$ and $c^{-1}u = 1 + 2f$ for some $f \in RG$. Then

(a) $f + f^2 \in 2RG + [RG]^{1-c}$;
(b) $f + f^{2n} \in 2RG + [RG, RG]$ for all $n \in \mathbb{N}$;
(c) $f \in 2RG + [RG, RG] + R[G_{2'}].$

Proof. Squaring the equation $c^{-1}u = 1 + 2f$ yields $1 + 4(f + f^2) = (c^{-1}u)^2$, so $4(f + f^2)u^{-1}c = c^{-1}u - u^{-1}c$. Now $c^{-1}u = cu^{-1}$ since $c^2 = u^2$, and it follows that $4(f + f^2)u^{-1}c = cu^{-1} - (cu^{-1})^c \in [RG]^{1-c}$. By (2), and since $c^{-1}u \in 1 + 2RG$, (a) follows. Now (b) follows inductively from (1.2) and $f + f^{2n} = (f + f^2) + (f + f^{2n-1})^2 - 2f(f + f^{2n-1})$. Part (c) follows from (b) and (1.4). □
Let \(T_2 \) be the set of involutions in \(G \).

Lemma 4. If \(x \in R[T_2] \cap I_R(G) \) then \(x^2 \in (R[G \setminus T_2] \cap [RG, RG]) + 2RG \).

PROOF. Write \(x = \sum_{s \in T_2} r_s(s - 1) \) with \(r_s \in R \) for all \(s \in T_2 \). Then
\[
x^2 = \sum_{s \in T_2} r_s^2(s - 1)^2 + \sum_{\{s, t\} \subseteq T_2, s \neq t} r_s r_t((s - 1)(t - 1) + (t - 1)(s - 1)).
\]
Let \(s, t \in T_2 \). Then \((s - 1)^2 = 2(1 - s) \in 2RG \) and
\[
(s - 1)(t - 1) + (t - 1)(s - 1)
= 2(1 - s - t + st) - st + ts
\in \begin{cases} 2RG & \text{if } [s, t] = 1, \\ 2RG + (R[G \setminus T_2] \cap [RG, RG]) & \text{otherwise.} \end{cases}
\]
This proves the lemma. \(\square \)

It is evident that up to now, letting \(R \) be a \(p \)-adic ring was unnecessarily restrictive, but finally we shall use results of Weiss on permutation modules to prove:

Proposition 5. Suppose that \(p = 2 \), so that \(R \) is a 2-adic ring, and let \(c \in G \) and \(u \in V(RG) \) be 2-elements with \(c^2 = u^2 \) and \(c^{-1}u = 1 + 2f \) for some \(f \in 2RG + R[T_2] + R \). Then \(c \) and \(u \) are conjugate in the units of \(RG \).

PROOF. By Lemma 3(c), \(f \in 2RG + [RG, RG] + R[G_p] \). Compared with \(f \in 2RG + R[T_2] + R \), it follows that \(f \in 2RG + (R[T_2] \cap [RG, RG]) + R \). Taking augmentation gives \(f \in 2RG + (R[G \setminus T_2] \cap [RG, RG]) \), so that by Lemma 4, \(f^2 \in 2RG + (R[G \setminus T_2] \cap [RG, RG]) \). By Lemma 3(a), \(f + f^2 \in 2RG + [RG]^{1-c} \). The last three equations show that
\[
f \in 2RG + [RG]^{1-c}. \tag{3}
\]
Let \(C \) be a cyclic group with generator \(x \) of order the maximum of the orders of \(c \) and \(u \). Consider \(RG \) as an \(RC \)-lattice, the action of \(x \) given by \(m \cdot x = c^{-1}mu \) for all \(m \in RG \). A 1-cocycle \(\beta : C \to RG \) is defined by \(\beta(x) = f = (c^{-1}u - 1)/2 \). Notice that \(c \) and \(u \) are conjugate in the units of \(RG \) if \(\beta \) is a 1-coboundary: For if \(\beta(x) = m - c^{-1}mu \) for some \(m \in RG \), then \(v = 1 + 2m \) is a unit in \(RG \) (see [2, (5.10)]) and \(u = c^v \). The exact sequence \(0 \to RG \to RG \to \overline{RG} \to 0 \) has cohomology exact sequence
\[
\cdots \to H^1(C, RG) \xrightarrow{2} H^1(C, RG) \xrightarrow{-} H^1(C, \overline{RG}) \to \cdots
\]
By [21, Theorem (50.2)], RG is a monomial lattice for C over R, so that 2 annihilates $H^1(C, RG)$ by [21, Lemma (53.1)]. Hence the cohomology exact sequence implies that $H^1(C, RG) \to H^1(C, R\bar{G})$ is injective. By (3), the class of β maps to zero under this map; hence β is a 1-coboundary, and c and u are conjugate in the units of RG.

3 Proof of the theorems

From now on, G will be a finite group which has a normal p-subgroup N containing its centralizer $C_G(N)$. Still, R is a p-adic ring. Let Q be a finite p-subgroup of $V(RG)$ containing N as a normal subgroup. We set $M = RG$ and consider M as $R(G \times Q)$-module, the action given by $m \cdot r(g, x) = g^{-1}rmx$ for all $g \in G$, $x \in Q$, $r \in R$ and $m \in M$. We shall write, for example, $M_{G \times 1}$ for the restriction of M to G (acting from the left).

We will need the following indecomposability criterion which is proved in greater generality in [10, p. 231]. For convenience of the reader, the (short) proof is included.

Lemma 6. As $R(G \times N)$-module, M is indecomposable.

PROOF. Any endomorphism of $M_{G \times 1}$ is given by right multiplication with some element of RG, so $\text{End}_{R(G \times N)}(M) \cong C_{RG}(N)$. The radical quotient $C_{RG}(N)/\text{rad}(C_{RG}(N))$ is isomorphic to $C_{kG}(N)/\text{rad}(C_{kG}(N))$ where k denotes the residue class field of R (see [2, (5.22)]), and the latter quotient is isomorphic to k by Proposition 1(a) since $I_k(N)G$ is nilpotent (see [2, (5.26)]). Hence $\text{End}_{R(G \times N)}(M)$ is local, and M is indecomposable (see [2, (6.10)]). □

By the Ward–Coleman Lemma, we may fix (and do) for each $x \in Q$ some $g_x \in G$ such that $g_x^{-1}x \in C_{V(RG)}(N)$. Set $U = \langle g_x \mid x \in Q \rangle \leq G$. Note that for all $x, y \in Q$ we have $(g_xg_y)^{-1}xy = (g_y^{-1}y)(g_x^{-1}x)^y \in C_{V(RG)}(N)$. Since $C_G(N) \leq N$, it follows that $x \mapsto g_xN$ defines a surjective homomorphism $Q \to UN/N$. We set $F = O_p(G)$ (the Fitting subgroup of G) and $\bar{G} = G/F$. We shall extend the bar convention when writing \bar{m} for the image of m in RG under the natural map $RG \to R\bar{G}$.

Lemma 7. Let $x \in Q$. Then $\bar{x} \in \bar{g}_x + pR\bar{G}$. Further, if $g_x \in F$ then $\bar{x} = 1$. In other words, $x \mapsto \bar{g}_x$ defines an isomorphism $\bar{Q} \to \bar{U}$, and \bar{Q} maps onto \bar{U} under the natural map $R\bar{G} \to (R/pR)\bar{G}$.
PROOF. Let \(x \in Q \). Since \(x \) has augmentation one, \(\bar{x} \in g_x + pRG \) by Proposition 1(a). Now assume that \(g_x \in F \) and, by way of contradiction, that \(\bar{x} \) has order \(p \). Then \(p = 2 \) by Lemma 2, and by Proposition 1(b), \(\bar{x} = g_x^{-1} \bar{x} \in R + 4RG + 2R[T] \) where \(T \) is the set of involutions in \(G \). Hence we may apply Proposition 5 (to the group \(\tilde{G} \), with \(c = 1 \) and \(u = \bar{x} \)) to conclude that \(\bar{x} = 1 \), a contradiction. The lemma is proved. \(\square \)

The next lemma is the place where Weiss’ theorem obviously comes into play.

For a subgroup \(H \) of \(G \) we shall write \(\hat{H} \) for the sum of its elements in \(RG \).

Lemma 8. \(M_{P \times Q} \) is a permutation lattice for \(P \times Q \) over \(R \).

PROOF. First, we consider the module \(\hat{F} M_{1 \times Q} \) which is isomorphic to \(R \tilde{G} \) with \(Q \) acting by right multiplication via \(Q \rightarrow \tilde{Q} \). Write \(\tilde{G} \) as a disjoint union \(\tilde{G} = \bigcup_i \tilde{h}_i \tilde{U} \) with \(h_i \in G \), and set \(B = \bigcup_i \{ \tilde{h}_i \bar{x} \mid x \in Q \} \). By Lemma 7, \(B \) reduces modulo \(pRG \) to the canonical basis \(\tilde{G} \) of \((R/pR)\tilde{G} \), and \(|B| = |	ilde{G}| \).

Thus \(B \) is an \(R \)-basis of \(R \tilde{G} \) by Nakayama’s Lemma. Since the elements of \(B \) are permuted under the action of \(Q \) it follows that \(\hat{F} M_{1 \times Q} \) is a permutation lattice.

Next, we shall show that \(\hat{P} M \) is a permutation lattice for \(1 \times Q \) over \(R \). Set \(V = \hat{P} M_{1 \times Q} \). Write \(G \) as a disjoint union \(G = \bigcup_i P_k U \) with \(k_i \in G \) and set \(B = \bigcup_i \{ \hat{P}k_i x \mid x \in Q \} \). Write \(s \) for the sum of the elements of some system of coset representatives of \(F \) in \(P \), so that \(\hat{P} = \hat{F}s \).

The lemma thus follows from Weiss’ theorem [21, Theorem (50.1)]. \(\square \)

We are now in a position to prove Theorem B. We shall make use of the elementary theory of vertices and sources, the Krull-Schmidt Theorem and the Mackey decomposition. As a general reference we give [2].

Theorem 9. If \(c \) is a unit in \(V(RG) \) of finite \(p \)-power order and \([N, c] = 1\), then \(c \in N \).

PROOF. Set \(C = \langle c \rangle \), and consider \(M \) as \(R(G \times N \times C) \)-module, the action of \(G \times N \) being given as before, and \(m \cdot y = my \) for \(m \in M \), \(y \in C \).
Note that C acts trivially on $\hat{N}M$. Indeed, $\hat{N}M$ is a permutation module for C by Lemma 8 and C acts trivially on $\hat{N}M/p\hat{N}M$ by Proposition 1(a).

By Lemma 8,

$$M_{P \times N \times C} \cong \bigoplus_{j=1}^{n} \uparrow_{U_j}^{P \times N \times C}$$

(4)

for some subgroups U_j of $P \times N \times C$. The number of summands equals the R-rank of the fixed point module $M_{P \times 1 \times C}$, which coincides with $M_{P \times 1 \times 1}$ ($= \hat{P}R\hat{G}$). Hence $n = |G : P|$. Since the modules $M_{P \times 1 \times 1}$ and $M_{1 \times N \times 1}$ are both free, it follows from (4) and Mackey decomposition that $U_j \cap (P \times 1 \times 1) = 1$ and $U_j \cap (1 \times N \times 1) = 1$ for all j. In particular, $|U_j| \leq |N| \cdot |C|$ for all j, and comparing ranks in (4) gives $|U_j| = |N| \cdot |C|$ for all j. Restricting to $N \times N \times C$ in (4) gives

$$M_{N \times N \times C} \cong \bigoplus_{j=1}^{[G:P]} \bigoplus_{U_j \cap (N \times N \times C) \cap a} \uparrow_{U_j \cap (N \times N \times C)}^{N \times N \times C}.$$

The number of summands in this decomposition is the R-rank of $M_{N \times N \times C}$. Since $M_{N \times N \times C} = M_{N \times 1 \times 1}$ there are $[G : N]$ summands. It follows that $U_j \leq N \times N \times C$ for all j. Hence $U_j = \{(x, (x\alpha_j)z_j^{-1}, c) \mid x \in N, i \in \mathbb{Z}\}$ for some $z_j \in Z(N)$ and $\alpha_j \in Aut(N)$, and $\uparrow_{U_j}^{G \times N \times C}$ is isomorphic to $\uparrow_{U_j \cap (G \times N \times 1)}^{G \times N \times 1}$, that is, to RG, the action given by $m \cdot (g, x, 1) = g^{-1}m(x\alpha_j^{-1})$ for all $g \in G$, $x \in N$ and $m \in RG$. By Lemma 6, it follows that the modules $\uparrow_{U_j}^{G \times N \times C}$ are indecomposable. Since M is relatively $P \times N \times C$-projective, M is a direct summand of $M_{P \times N \times C} \uparrow_{G \times N \times C}$, and by (4)

$$M_{P \times N \times C} \uparrow_{G \times N \times C} \cong \bigoplus_{j=1}^{[G:P]} \uparrow_{U_j}^{G \times N \times C}.$$

By Lemma 6, M is indecomposable, so it follows that $M \cong \uparrow_{U_j}^{G \times N \times C}$ for some j. Since $(G \times 1 \times 1) \cap U_j = 1$, this shows that there is $u \in M$ such that Gu is an R-basis of M and $u = u \cdot (1, z_j^{-1}, c) = uz_j^{-1}c$. It follows that u is a unit in RG and $c = z_j$. □

Corollary 10. If $x \in Q$ and $x \in 1 + I_R(N)G$ then $x \in N$.

PROOF. For such an x we have $g_x \in N$ by Proposition 1(a), so $x \in N$ follows from Theorem 9, applied to $c = g_x^{-1}x \in C_Q(N)$. □

Lemma 11. $M_{1 \times Q}$ is a free RQ-module.

PROOF. By Lemma 8, $M_{1 \times Q}$ is a permutation lattice for Q over R. By Corollary 10, the kernel of the natural map $Q \to V(RG/N)$ is N. By Proposi-
tion 1(a), an element x in Q acts on $\tilde{N}RG/p\tilde{N}RG$ by right multiplication with g_x. Since $N \leq Q$ and RG/N is free for the multiplication action of UN/N—recall that $U = \{g_x \mid x \in Q\}$—it follows that $|Q| = |UN|$ and that each orbit of the action of Q on a basis of $M_{i \times Q}$ the elements of which it permutes has length $|Q|$. □

Finally we prove Theorem A, again guided by the remarks from [10, p. 231].

Theorem 12. There is a unit u of RG with $Q \leq Pu$ and $N = Nu$.

Proof. By Lemma 8,

$$M_{P \times Q} \cong \bigoplus_{k=1}^{l} 1_{V_k}^{\uparrow P \times Q}$$

for some subgroups V_k of $P \times Q$. Since the modules $M_{P \times 1}$ and $M_{1 \times Q}$ are both free (the latter by Lemma 11), it follows from Mackey decomposition that $V_k \cap (P \times 1) = 1$ and $V_k \cap (1 \times Q) = 1$ for all k. We shall show that the induced modules $1_{V_k}^{\uparrow G \times Q}$ are indecomposable. Mackey decomposition gives

$$M_{P \times N} \cong \bigoplus_{k=1}^{l} \bigoplus_{V_k \cap (P \times N)} 1_{V_k}^{\uparrow P \times N}.$$

If $g_1, \ldots, g_{[G:P]}$ is a system of right coset representatives of P in G, then

$$M_{P \times N} \cong \bigoplus_{j=1}^{[G:P]} 1_{U_j}^{\uparrow P \times N}$$

where $U_j = \{(n, n^{g_j}) \mid n \in N\}$.

Let $1 \leq k \leq l$. From the above, it follows that there is $j = j(k)$ such that without lost of generality $V_k \cap (P \times N) = U_j$. In particular, $U_j \leq V_k$. Altogether, we see that there is a subgroup Q_k of Q containing N so that $V_k = \{(x\beta_k, x) \mid x \in Q_k\}$ for some injective homomorphism $\beta_k : Q_k \rightarrow P$. Hence the induced module $1_{V_k}^{\uparrow G \times Q_k}$ is isomorphic to the $R(G \times Q_k)$-module RG, the operation given by $m \cdot (g, x) = g^{-1}m(x\beta_k)$ for all $g \in G$, $x \in Q_k$ and $m \in RG$, and so is indecomposable by Lemma 6 since $N\beta_k = N$. Repeated application of Green’s Indecomposability Theorem [2, (19.22)] now yields that $1_{V_k}^{\uparrow G \times Q}$ is indecomposable.

Since M is relatively $P \times Q$-projective, M is a direct summand of $M_{P \times Q}^{\uparrow G \times Q}$, and by (5)

$$M_{P \times Q}^{\uparrow G \times Q} \cong \bigoplus_{k=1}^{l} 1_{V_k}^{\uparrow G \times Q}.$$
By Lemma 6, M is indecomposable. Hence $M \cong 1\bigg|_{V_k}^{G \times Q}$ for some k. Comparing ranks shows that $Q_k = Q$. Since $V_k \cap (G \times 1) = 1$, this means that there is $u \in M$ such that Gu is an R-basis of M, i.e., u is a unit in RG, and $u = u \cdot (x\beta_k, x) = (x^{-1}\beta_k)ux$ for all $x \in Q$. In other words, $Q \leq P^u$ and $N = N^u$. □

References

[1] D. B. Coleman, On the modular group ring of a p-group, Proc. Amer. Math. Soc. 15 (1964) 511–514.

[2] C. W. Curtis, I. Reiner, Methods of representation theory. Vol. I, John Wiley & Sons Inc., New York, 1981, With applications to finite groups and orders, A Wiley-Interscience Publication.

[3] M. Hertweck, Automorphisms of principal blocks stabilizing Sylow subgroups, Arch. Math. (Basel) 82 (3) (2004) 193–199.

[4] M. Hertweck, W. Kimmerle, On principal blocks of p-constrained groups, Proc. London Math. Soc. (3) 84 (1) (2002) 179–193.

[5] B. Huppert, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin, 1967.

[6] B. Huppert, N. Blackburn, Finite groups. II, Vol. 242 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1982, AMD, 44.

[7] S. Jackowski, Z. Marciniak, Group automorphisms inducing the identity map on cohomology, J. Pure Appl. Algebra 44 (1-3) (1987) 241–250.

[8] G. Karpilovsky, Unit groups of group rings, Vol. 47 of Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical, Harlow, 1989.

[9] G. R. Robinson, The Z_p^*-theorem and units in blocks, J. Algebra 134 (2) (1990) 353–355.

[10] K. W. Roggenkamp, Some new progress on the isomorphism problem for integral group rings, in: Ring theory (Granada, 1986), Vol. 1328 of Lecture Notes in Math., Springer, Berlin, 1988, pp. 227–236.

[11] K. W. Roggenkamp, The isomorphism problem for integral group rings of finite groups, in: Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), Math. Soc. Japan, Tokyo, 1991, pp. 369–380.

[12] K. W. Roggenkamp, Subgroup rigidity of p-adic group rings (Weiss arguments revisited), J. London Math. Soc. (2) 46 (3) (1992) 432–448.
[13] K. Roggenkamp, L. Scott, Isomorphisms of p-adic group rings, Ann. of Math. (2) 126 (3) (1987) 593–647.

[14] K. W. Roggenkamp, Group rings: units and the isomorphism problem, in: Group rings and class groups, Vol. 18 of DMV Sem., Birkhäuser, Basel, 1992, pp. 1–152, with contributions by W. Kimmerle and A. Zimmermann.

[15] A. I. Saksonov, Group rings of finite groups. I, Publ. Math. Debrecen 18 (1971) 187–209 (1972).

[16] L. L. Scott, Recent progress on the isomorphism problem, in: The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Vol. 47 of Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 1987, pp. 259–273.

[17] L. L. Scott, Defect groups and the isomorphism problem, Astérisque (181-182) (1990) 257–262.

[18] S. K. Sehgal, Units in integral group rings, Vol. 69 of Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical, Harlow, 1993, with an appendix by Al Weiss.

[19] H. N. Ward, Some results on the group algebra of a group over a prime field, in: Seminar in Group Theory, Harvard University, 1960-61, pp. 13–19, mimeographed notes.

[20] A. Weiss, Rigidity of p-adic p-torsion, Ann. of Math. (2) 127 (2) (1988) 317–332.

[21] A. Weiss, Rigidity of π-adic p-torsion, appendix in Sehgal [18], pp. 309–329.