Penrose Quantum Antiferromagnet

A. Jagannathan and A. Szallas

Laboratoire de Physique des Solides, CNRS-UMR 8502, Université Paris-Sud, 91405 Orsay, France

Stefan Wessel

Institut für Theoretische Physik III, Universität Stuttgart, 70550 Stuttgart, Germany

Michel Duneau

Centre de Physique Théorique, CNRS-UMR 7644, Ecole Polytechnique, 91128 Palaiseau, France

(Dated: February 1, 2008)

The Penrose tiling is a perfectly ordered two dimensional structure with fivefold symmetry and scale invariance under site decimation. Quantum spin models on such a system can be expected to differ significantly from more conventional structures as a result of its special symmetries. In one dimension, for example, aperiodicity can result in distinctive quantum entanglement properties. In this work, we study ground state properties of the spin-1/2 Heisenberg antiferromagnet on the Penrose tiling, a model that could also be pertinent for certain three dimensional antiferromagnetic quasicrystals. We show, using spin wave theory and quantum Monte Carlo simulation, that the local staggered magnetizations strongly depend on the local coordination number z and are minimized on some sites of five-fold symmetry. We present a simple explanation for this behavior in terms of Heisenberg stars. Finally we show how best to represent this complex inhomogeneous ground state, using the “perpendicular space” representation of the tiling.

PACS numbers: 71.23.Ft, 75.10.Jm, 75.10.-b

The Penrose tiling [1], illustrated in Fig. 1, is one of the best known of many quasiperiodic tilings. Its counterpart in one dimension is the Fibonacci chain, while its three dimensional counterpart is the 3D Penrose or icosahedral tiling, the basic template for many quasicrystalline alloys. One of the most striking and experimentally observable features of the Penrose tiling is its five-fold symmetric structure factor with sharp peaks in reciprocal space. In real space the tiling, built from two types of rhombuses, has a set of vertices of coordination number z ranging from 3 to 7, with an overall coordination number of exactly 4. The characteristics of the Penrose tiling such as the tile shapes, or the relative frequencies of vertices can be expressed in terms of the golden mean $\tau = (\sqrt{5}+1)/2$. This irrational also gives the length scale for the transformations called inflations (deflations) that leave the tiling invariant, in which the basic units of the tiling are redefined so as to give a Penrose tiling on a larger (smaller) scale. These and many other fascinating properties of the Penrose tiling have been extensively studied in the literature [2].

This type of ordered structure can lead to complex physics, as shown by a large number of studies on electronic properties in this and other quasiperiodic models [3, 4]. Quasiperiodic quantum spin chains have also been the subject of many studies. The recent interest in quantum entanglement of spins has led for example, to investigation of one dimensional critical aperiodic systems [5] showing that the entanglement entropy depends on the strength of the aperiodicity. Quantum effects are biggest in low dimensions and small spin value, while two is the smallest dimension for which T=0 order can occur. We therefore investigate the consequences of a quasiperiodic geometry in two dimensions for a Heisenberg $S = \frac{1}{2}$ antiferromagnet.

In an antiferromagnet, quantum fluctuations around the Neel state lead to a reduction of the order parameter with respect to its classical value, even at $T = 0$. On bipartite Archimedean lattices, where all sites have the same value of z, the staggered magnetization is expected to increase with z, towards the classical value of $\frac{1}{2}$. This effect is easily explained within linear spin wave theory [6], and it is confirmed in a number of numerical calculations. Thus for example, the order parameter on the honeycomb lattice ($z = 3$), $m_s \approx 0.235$ [7], is more strongly suppressed than on the square lattice ($z = 4$), where $m_s \approx 0.307$ [8].

For inhomogeneous ordered structures with more than one value of z, it was recently argued that, contrarily to

FIG. 1: Portion of the Penrose tiling
naive belief based on the preceding remarks, quantum fluctuations in the ground state are typically greater on sites with greater z \cite{3}. Compared to the previous structures studied, the Penrose tiling is the most complex, with more local environments and more complex transformation rules than the quasiperiodic octagonal tiling. The ground state of the former has significantly stronger variations of the local order parameters as compared to the latter. The results show a strong decrease of onsite magnetization with z for small z, followed by an upturn for larger z — a behavior we will explain by generalizing an argument presented in Ref. \cite{3}.

The ground state of the Penrose antiferromagnet can be described in terms of the local staggered magnetizations. We calculate these by two different methods: linearized spin wave (LSW) theory and quantum Monte Carlo (QMC). Although the real space distribution of the local staggered magnetization thus found is complex, a compact visualization of it is possible in “perpendicular space”, as will be explained below.

The model we consider is the nearest neighbor Heisenberg antiferromagnet

$$\mathcal{H} = \sum_{<i,j>} J \vec{S}_i \cdot \vec{S}_j,$$

where the sum is taken over pairs of linked sites and all bonds $J > 0$ are of the same strength. The site index i takes values 1 to N, for the finite size systems considered. The first type of systems we consider are periodic approximants called Taylor approximants — after their use in the description of the Taylor phases of intermetallic compounds in the Al-Pd-Mn system \cite{11} — which allow for using periodic boundary conditions. These approximants can be constructed in such a way as to obtain sublattices of equal size, and we have considered four such systems, with $N = 96, 246, 644$ and 1686 sites. These approximants have defects as compared to the infinite perfect tiling, but the relative number of defects becomes negligible as N increases. We also considered finite pieces of the perfect Penrose tiling and find that spin magnetizations in the interior of the finite sample are close to those obtained for the Taylor approximants, showing their relative insensitivity to boundary conditions.

The model of Eq. (11) is frustrated, and the ground state of this bipartite system breaks the $SU(2)$ symmetry of H, with the order parameter being the staggered magnetization $M_s = \sum_i \epsilon_i (S_i^z) \equiv \sum_i m_{si}$, where $\epsilon_i = \pm 1$ depending on whether i lies in sublattice A or B and $m_{si} = |\langle S_i^z \rangle|$ are the local order parameters.

Within the quantum Monte Carlo (QMC) simulations, we obtain $m_{si}^2 = \sum_{j=1}^{N} \epsilon_i \epsilon_j \langle S_i^z S_j^z \rangle$ from the spin-spin correlation functions \cite{10}. The QMC simulations were performed using the stochastic series expansion method \cite{8} for the Taylor approximants at temperatures chosen low enough to obtain ground state properties of these finite systems \cite{10}.

To obtain the spin wave Hamiltonian, one uses the Holstein-Primakoff boson representation of S^z on each sublattice in terms of the deviation from the classical values of $\pm S^z$, $S_i^z = S - a_i^+ a_i$ and $S_i^z = -S + b_i^+ b_i$, respectively \cite{12}. The a_i, b_i ($i, j = 1, ..., N/2$) and their adjoints, obey appropriate bosonic commutation relations and correspond to the sites of the A and B sublattices respectively.

The spin raising and lowering operators on the two sublattices are $S_i^+ = \sqrt{2S} \left(1 - \frac{\Delta S}{2S}\right)^{\frac{3}{2}} a_i$ and $S_i^- = \sqrt{2S} \left(1 - \frac{\Delta S}{2S}\right)^{\frac{3}{2}} b_i$, respectively. After expanding to order $1/S$, the (LSW) Hamiltonian can be diagonalized by a generalized Bogoliubov transformation \cite{13}. The ground state energy and m_{si} can then be calculated from the transformation matrix (c.f. e.g. Ref. \cite{14}). The LSW result for the ground state energy, extrapolated to the thermodynamic limit is $E_0/N = -0.643J$, and compares well to the QMC result, $E_0/N = -0.6529(1) J$.

Fig. 2 shows the values of m_{si} plotted against coordination number z for the largest approximant ($N = 1686$) for both the LSW and QMC data. In comparison with the other known quasiperiodic structure, the octagonal tiling (see \cite{14}), the variations of the local order parameters are larger, making it possible to identify some of the trends more clearly. The values initially decrease with z, but then tend back upwards. There appears thus to be a minimum in $m_{si}(z)$ at $z = 5$, the median z value in this tiling (Nb. on the infinite tiling as well as the approximants, the mean value of z is exactly 4). The average value of the magnetizations is also higher on the Penrose tiling, compared to the octagonal tiling, showing a suppression of quantum fluctuations due to greater structural complexity.

Another noteworthy feature is the wide spread in the values for $z = 5$. This is related to the complex structural properties of the lattice, as there are three sets of sites with $z = 5$. The first set, which occurs most frequently, does not possess local five-fold symmetry and corresponds to the intermediate range of values of m_{si}.
The two other sets of sites have a five-fold symmetry and are at the centers of football-shaped clusters (F) or star-shaped clusters (S). F sites correspond to the lowest \(m_{si}\) values while the highest \(m_{si}\) values are obtained at the S sites.

This local hierarchy in the magnetic structure on the Penrose tiling becomes evident in the “perpendicular space” structural representation. The vertices of the Penrose tiling can, in effect, be considered as the projection of vertices of a five dimensional cubic lattice onto the x-y (“physical”) plane. If those vertices are instead projected onto the three remaining dimensions or “perpendicular” space, one obtains dense packings of points lying on four distinct pentagon-shaped plane regions. In this perpendicular space projection, sites having the same environment map into the same subdomain of the selection windows (applied to a crystalline structure, the same operation would lead to as many points as there are distinct environments, of which there are a finite number, contrarily to the quasicrystal). The different domains are labeled in Fig. 3 by the value of \(z\) associated with each domain. In addition, the domains corresponding to the sets of F and S sits are shown, along with their appearance in real space.

Using a color map to represent the local order parameters strengths, we obtain compact representations of the ground state as in Fig. 3, which thus shows the LSW magnetizations of sites corresponding to two of the perpendicular space planes (the two others being identical upto rotations). The points in the central star-shaped region of Fig. 3a correspond to the F sites, and have the smallest staggered magnetizations. In Fig. 3b, the central pentagon corresponding to the S sites, which have the highest staggered magnetizations at \(z = 5\).

A simple model for the local staggered magnetization considers a Heisenberg star cluster consisting of a central spin coupled to \(z\) neighboring spins \([9]\). One considers the external spins to be embedded in an infinite medium, so that there is a finite net staggered magnetization. Carrying out the standard expansion in boson operators, one then finds that the onsite staggered magnetization of the central spin is lower than that of the outer spins. This model, which takes into account only the nearest neighbors is inadequate to describe the non-monotonic dependence of magnetizations observed. We consider therefore a generalization to a two-level Heisenberg star in order to investigate the effects of next-nearest neighbors on the center spin magnetization. The cluster we consider is shown in Fig. 4 where the central site has \(z\) nearest neighbors and \(z'\) next-nearest neighbors. All the couplings (represented by the links in the figure) are taken equal, with \(J > 0\).

The Hamiltonian of this cluster of \(1 + z(1 + z')\) spins can be diagonalized in linear spin wave theory, with the following result for the central spin’s staggered magnetization:

\[
m_{s}(z, z') = \frac{1}{2} \left(1 - \frac{zf_{1}(z, z')}{f_{2}(z, z') - zf_{1}(z, z') - 4z'}\right),
\]

where \(f_{1}(z) = -z' \pm \sqrt{4 - 4z + (z + z')^{2}}\). This yields a staggered magnetization that approaches the

FIG. 3: (Color online) Two out of the four perpendicular space projected domains of the Penrose tiling, with a color coding of the sites according to the value of the local staggered magnetization determined by linear spin wave theory.

FIG. 4: A two-level Heisenberg star showing the central spin, its \(z\) nearest neighbors and \(z'\) next-nearest neighbors. In the example shown, \(z = 6\) and \(z' = 4\).
classical limit of 0.5 in the limit of large z and/or z'. In addition, for fixed z this function $m_s(z,z')$ has a minimum for a value of z' between $z - 1$ and z. In other words, the quantum fluctuations on the central site are largest when this site and its neighbors have similar coordinations.

Turning now to the Penrose tiling, effective values of z' can be assigned for each site from counting the number of its next-nearest neighbors. One finds that sites of small z have higher values of z' (next nearest neighbor number), with the opposite being true for sites of high z. This means that the density of sites, in other words, does not have large local fluctuations on the Penrose tiling. A single effective z' is found for all the sites except for the values $z = 3$ and $z = 5$. For the $z = 3$ sites, we find $z' = 4$, 4.3 and 4.7, where the non-integral values result from the fact that the clusters on the tiling do not have the regular tree structure of the model shown in Fig. 4. This leads to a spread in the values of the local staggered magnetizations. The generic $z = 5$ sites correspond to $z' = 2.8$, while F and S sites have $z' = 2.4$ and 4, respectively. The resulting values for the $m_s(z,z')$ obtained using Eq. (2) along with the values of z and z' for each class of site are shown in Fig. 5.

The predictions of the simple analytical model, which is based upon the number of nearest and next-nearest neighbors only, agree qualitatively quite well with the numerical results shown in Fig. 5 for most z. The complete description must of course include longer ranged structural differences, seen clearly in Figs. 3: the domain structures of sites of a given coordination number are not colored uniformly but are instead further separated into subdomains. The hierarchical invariance of the original structure, which has not been exploited in these calculations (as was done in Ref. 13 using a renormalization group approach for the octagonal tiling) is expected to lead to self-similarities in the order parameter distribution function. This analysis, which requires considering much bigger sample sizes, is left for further investigations.

In conclusion, we have considered quantum fluctuations in the Penrose tiling, a two dimensional structure that has perfect long range structural order but with an infinite number of spin environments. The overall value of the staggered magnetization is higher than on the octagonal tiling, which is in turn higher than on the square lattice. This indicates a progressive suppression of quantum fluctuations in going from the periodic, to the simple quasiperiodic, and finally the more complex quasiperiodic structure. The geometry of the Penrose tiling leads to an antiferromagnetic ground state with extremely large variations of the local staggered magnetization compared to other systems studied recently in this context. The hierarchical symmetry present in the ground state is best seen in perpendicular space projections such as the ones shown in this paper. Finally, to explain our results, we present a two-level Heisenberg star argument showing that quantum fluctuations tend to be maximized when the site coordination number and the next nearest neighbor coordination numbers are closely matched in value.

We would like to thank Boris Vacossin and Roderich Moessner for useful discussions, and Françoise Delyon for help with the figures. We thank HLRS Stuttgart and NIC Jülich for allocation of computing time.

[1] R. Penrose, The Math. Intelligencer 2, 32 (1979).
[2] P. J. Steinhardt and S. Ostlund in The Physics of Quasicrystals, World Scientific, Singapore 1987.
[3] C. Sire in Lectures on Quasicrystals eds. F. H nipple and D. Gratias, Les Editions de Physique, Les Ulis 1994.
[4] U. Grimm and M. Schreiber in Quasicrystals - Structure and Physical Properties, ed. H.-R. Trebin (Wiley-VCH, Weinheim, 2003).
[5] Ferenc Igloi, Robert Juhasz and Zoltan Zimboras, arXiv:cond-mat/0701527
[6] P. W. Anderson, Phys. Rev. 86,694 (1952); R. Kubo, Phys. Rev. 87, 568 (1952).
[7] Rieger et al., J. Phys. (Cond.Mat) 1 1855 (1989).
[8] A. W. Sandvik, Phys. Rev. B 59, R14157 (1999).
[9] A. Jagannathan, R. Moessner and S. Wessel, Phys. Rev. B 74 184410 (2006).
[10] S. Wessel, A. Jagannathan and S. Haas, Phys. Rev. Lett. 90, 177205 (2003).
[11] M. Duneau and M. Audier in Lectures on Quasicrystals, Winter school Aussois Jan, 1994, F. Hippert and D. Gratias Ed., Les Editions de Physique (1994).
[12] E. Manousakis, Rev. Mod. Phy. 63,1 (1991).
[13] R. M. White, M. Sparks and I. Ortenburger, Phys. Rev. 139, A450 (1965).
[14] S. Wessel and I. Miliat, Phys. Rev. B 71, 104427 (2005).
[15] A. Jagannathan, Phys. Rev. Lett. 92 047202 (2004).