Resonantly tunable second harmonic generation from lithium niobate metasurfaces

Junjun Ma,1 Mengxin Ren,1,2,3 Wei Wu,1 Wei Cai,1 and Jingjun Xu1(b)

1) The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300071, P.R. China
2) Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, P.R. China
3) Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, P.R. China

(Dated: 18 February 2020)

Second harmonic generation (SHG) is a coherent nonlinear phenomenon that plays an important role in laser color conversion. However, the SHG efficiency from natural materials is low and uncontrollable. As a result, large material volume and intense laser are needed, which hinder the miniaturization of SH devices. We experimentally demonstrate efficient SHG from nonlinear lithium niobate (LN) metasurfaces. We find that as a result of the resonant local field enhancement, the SHG at resonance is about two orders of magnitude stronger than the off-resonant situations. Furthermore, we manage to tune the SHG efficiency dispersion by changing the structural parameters of the metasurfaces. Our results would pave a way for developing novel compact coherent light sources for biosensing and optical communications, et al.

Keywords: Lithium niobate, Metasurface, Second harmonic generation, Resonance

Nonlinear optical effects, such as optical harmonic generation, form the bases for extending spectral range of light source. Motivated by goals of developing ultracompact optical devices, nonlinear nanophotonics has become a prominent research area in recent decades.1–3 The nonlinear properties of nanostructures rely on strong light-matter interaction in the subwavelength structures due to the resonant enhanced localized electric fields. The famous examples include metallic plasmonic and all-dielectric metasurfaces. In plasmonic nanostructures, due to the high losses of metals, light fails to penetrate deeply, and the enhanced nonlinear response is dominated by the electric field confinement close to the surface.4–9 On the other hand, dielectric metasurfaces show great promise for enhancing nonlinear optical processes due to their larger mode volumes. And due to the very low intrinsic losses, the dielectric nanostructures can sustain much higher optical powers and ultimately provide orders of magnitude higher frequency conversion efficiency in comparison with their plasmonic counterparts.10–12

In the recent years, dielectric semiconductor nonlinear metasurfaces made of, such as Si,13–15 Ge,16 GaAs,17,18 GaP,19,20 have been reported. However, those semiconductor devices show relatively narrow band gap, and the fundamental frequency (FF) cannot enter the visible range.

Lithium niobate (LiNbO3, LN) is an important nonlinear crystal. It shows a large band gap of 4 eV, and is transparent over a spectral range of violet to mid-infrared. In the meanwhile, LN provides a large quadratic nonlinear susceptibility.22,23 The second harmonic generation (SHG) from LN nanostructures have been a subject under continuous research, including LN nanowires,24 photonic crystals,25–28 waveguides,29–31 hybrid LN-plasmonic nanopillars,32 nanocubes33,34 and most recently micro-ring35 or micro-disk36,37 resonators. In recent years, the design of LN nonlinear metasurfaces have been theoretically studied.38–40 However, no experiments to date have realized the LN nonlinear metasurfaces showing resonantly tunable SHG properties.

In this paper, we experimentally demonstrate resonant tunable SHG from nonlinear LN metasurfaces. We fabricate subwavelength nanograting metasurfaces based on LN films. Due to the distinct resonances in the metasurfaces, the enhanced SHG is observed. And the spectral properties of the SHG enhancement are proved to be tunable by changing the geometric parameters. Our results would pave a way for novel nanoscale LN nonlinear light sources applied in next generation photonic devices, including efficient nonlinear holograms and quantum-light sources.

In our experiment, a LNOI wafer (NANOLN, Jinan Jingzheng Co., Ltd) with a x-cut 220 nm thick LN film on top of a silica insulator was adopted. And we fabricated the nanograting metasurfaces with different periods (D) using focused ion beam. The duty cycle (percentage of LN ridge width d over one period) of each structure remains 62.5%. The direction of the grating is perpendicular to the optical axis of the LN film (x-axis). The representative scanning electron microscopy (SEM) image of nanograting metasurface is shown in Fig. 1(b). We give the simulated transmission of metasurfaces in Fig. 1(c,d) under normal incidence for polarization perpendicular (along x-direction) and parallel (y) to the ridges for structures with D = 500, 600, and 700 nm.
The SHG of the LN metasurface is related to the nonlinear polarization $P^{(2)}$ induced by the FF, which could be calculated using the second-order nonlinear susceptibility $\chi^{(2)}$ through $P_i^{(2)} = e_0 \chi_{ijk}^{(2)} E_j E_k$ (indices i, j, k refer to the Cartesian components of the fields). The $P_i^{(2)}$ possesses the doubled frequency of the FF wave and acts as the radiation source for the SH polarized along the z-direction. The tensor nature of $\chi^{(2)}$ implies that one FF polarization component could interact with multiple $\chi_{ijk}^{(2)}$ elements and may lead to SH with multiple polarization components. For the SH propagating along z-direction, only $P^{(2)}_z$ along x- and y-directions play roles $P^{(2)} = \sqrt{P^{(2)}_x^2 + P^{(2)}_y^2}$. And considering that all the polarization components exists in the metasurface layer as a result of scattering interaction of light inside, the component of $P^{(2)}$ can be expressed as

$$
\begin{align}
P^{(2)}_x &= \chi_{ecx}^{(2)} E^2_x + \chi_{xoe}^{(2)} E^2_y + \chi_{oxc}^{(2)} E^2_z \\
P^{(2)}_y &= -\chi_{xoe}^{(2)} E^2_x + \chi_{oxc}^{(2)} E^2_y + 2\chi_{coo}^{(2)} E_y E_x \\
\end{align}
$$

The nonzero elements of $\chi^{(2)}$ are related to the crystal symmetry of the LN. And based on the $\chi^{(2)}$ values measured in Ref. 32, we numerically predict the SH conversion efficiency of the LN metasurfaces, as shown in Fig. 2(a) and (b). For x-polarized FF, the SH conversion efficiency has strong resonance enhancement at 385 nm, 465 nm, and 510 nm for $D = 500, 600, 700$ nm, respectively. For y-polarized FF, the SH conversion efficiency has strong resonance enhancement at 360 nm, 435 nm, and 505 nm. This shows the spectral dispersion of SHG efficiency are highly sensitive to the resonance of the metasurface, and could be tuned efficiently by geometric parameter adjustment.

In our experiments, we use a commercial microscopic spectrometer (IdeaOptics Technologies) to measure the transmission spectra of LN metasurfaces with different periods. As shown in Fig. 3(a, b), measured transmission spectra show similar trends as the simulation results. However, due to the fabrication infection, the experimental transmission spectra are blue shifted compared with the simulation results. For the SHG measurements, we use a tunable linear polarized femtosecond laser (Maitai, Spectra physics) as FF light to excite LN samples. The FF beam is focused to about $5 \mu m$ in radius with a peak intensity of about 3.8 GW/cm2. And the generated SH is collected by another $\times20$ UV objective (0.4 N.A.). The FF light is filtered out from the SH by BG40 colored glass filters. The SH signal is recorded using a fiber coupled spectrometer. We define the SH conversion efficiency as $\eta = \frac{P_{SH}}{P_{FF}}$. Figure 3(c) and (d) show the SH conversion efficiency of the LN metasurfaces under two orthogonally polarized FF. For x-polarized FF, the SHG efficiency is boosted by 133 times at the resonance compared with the

![Fig. 1. Linear spectral properties of LN nanograting metasurfaces.](image1)

![Fig. 2. Numerical simulated SH conversion efficiency.](image2)
FIG. 3. Experimental measured transmission spectra and SH conversion efficiency of metasurfaces. (a, b) The experimental spectra for the LN metasurfaces for orthogonal polarizations. (c, d) The experimental SH conversion efficiency for the LN metasurfaces under orthogonal FF polarizations. The red, green, and blue lines correspond to D of 500, 600, and 700 nm.

non-resonant wavelength. By increasing the grating period constant (D), the resonance peaks of the SH conversion efficiency for LN metasurfaces suffer monotonically red-shift. For the y-polarized FF, the SH conversion efficiency of the metasurface is lower, implying that the involved second order nonlinear susceptibility elements are smaller and weaker local field enhancement, as shown in Fig. 3(d). Similarly, we can tune the resonance peaks for the SH conversion efficiency of LN metasurfaces to the red spectral range simply by increasing the grating period constant D.

In conclusion, we experimentally realize the efficient SHG from LN metasurfaces. Due to the local field enhancement, the SHG from LN metasurface is significantly enhanced. And we manage to tune the SHG efficiency spectra by changing the geometric parameters of the LN metasurfaces. Experimental results are reasonably consistent with the numerical predictions. Such a platform can also be applied for other nonlinear processes such as four-wave mixing, sum frequency generation, parametric down conversion, and so on, which may find wide applications in biosensing, optical communications, and display, and so on.

ACKNOWLEDGMENTS

This work was supported by National Key R&D Program of China (2017YFA0305100, 2017YFA0303800); National Natural Science Foundation of China (61775106, 11711530205, 11374006, 11774185, 91750204, 11904182); the 111 Project (B07013); PCSIRT (IRT14019); the Open Research Program of Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province; the Fundamental Research Funds for the Central Universities; the Tianjin youth talent support program. We thank the Nanofabrication Platform of Nankai University for fabricating samples.

18. Sun, Q. He, J. Hao, S. Xiao, and L. Zhou, “Electromagnetic metasurfaces: physics and applications,” Adv. Opt. Photonics 11, 380–479 (2019).
19. A. M. Shaltout, V. M. Shalaev, and M. L. Brongersma, “Spatiotemporal light control with active metasurfaces,” Science 364, 927–930 (2019).
20. D. Neshev and I. Aharonovich, “Optical metasurfaces: new generation building blocks for multi-functional optics,” Light Sci. Appl. 7, 1–5 (2018).
21. M. Ren, B. Jia, J.-Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. 23, 5540–5544 (2011).
22. M.-X. Ren, W. Wu, W. Cai, B. Pi, X.-Z. Zhang, and J.-J. Xu, “Reconfigurable metasurfaces that enable light polarization control by light,” Light Sci. Appl. 6, e16254–e16254 (2017).
23. J. Wang, J. Zhang, Y. Tian, C. Fan, K. Mu, S. Chen, P. Ding, and E. Liang, “Theoretical investigation of a multi-resonance plasmonic substrate for enhanced coherent anti-stokes raman scattering,” Opt. Express 25, 497–507 (2017).
24. G. Li, S. Chen, N. Pholchai, B. Reineke, P. W. H. Wong, E. Y. B. Pun, K. W. Cheah, T. Zentgraf, and S. Zhang, “Continuous control of the nonlinearity phase for harmonic generations,” Nat. Mater. 14, 607–612 (2015).
25. G. Li, S. Zhang, and T. Zentgraf, “Nonlinear photonic metasurfaces,” Nat. Rev. Mater. 2, 1–14 (2017).
26. M. Ren, W. Cai, and J. Xu, “Tailorable dynamics in nonlinear optical metasurfaces,” Adv. Mater. 32, 1806317 (2020).
27. A. Krasnok, M. Tymchenko, and A. Ali, “Nonlinear metasurfaces: a paradigm shift in nonlinear optics,” Mater. Today 21, 8–21 (2018).
28. A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9, 195–213 (2015).
29. D. Smirnova and Y. S. Kivshar, “Multispectral nonlinear nanophotonics,” Optica 3, 1241–1255 (2016).
30. Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geoghegan, and J. Valentinie, “Nonlinear fano-resonant dielectric metasurfaces,” Nano Lett. 15, 7388–7393 (2015).
31. L. Wang, S. Kruk, K. Koshelev, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, “Nonlinear wavefront control with all-dielectric metasurfaces,” Nano Lett. 18, 3978–3984 (2018).
32. G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16, 4635–4640 (2016).
33. L. Carletti, A. Locatelli, O. Stepanenko, G. Leo, and C. D. Angelis, “Enhanced second-harmonic generation from magnetic resonance in algaas nanoantennas,” Opt. Express 23, 26544–26550 (2015).
34. V. F. Gilli, L. Carletti, A. Locatelli, D. Rocco, M. Finazzi, L. Ghirardini, I. Favero, C. Gomez, A. Lemaître, M. Celebrano, C. D. Angelis, and G. Leo, “Monolithic algaas second-harmonic nanoantennas,” Opt. Express 24, 15965–15971 (2016).
35. S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly enhanced second-harmonic generation using iii-semiconductor all-dielectric metasurfaces,” Nano Lett. 16, 5426–5432 (2016).
36. I. D. Sautter, L. Xu, A. E. Miroshnichenko, M. Lysevych, I. Volkovskaya, D. A. Smirnova, R. Camacho-Morales, K. Zangeneh Kamali, F. Karouta, K. Vora, H. H. Tan, M. Kauranen, I. Staude, C. Jagadish, D. N. Neshev, and M. Rahman, “Tailor-
ing second-harmonic emission from (111)-gaas nanoantennas,” Nano Lett. **19**, 3905–3911 (2019).

20. R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical gap nanopillars,” Nano Lett. **12**, 820–826 (2012).

21. J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. **17**, 1219–1225 (2017).

22. R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys. A **37**, 191–203 (1985).

23. Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: Optical damage, defect simulation, and on-chip devices,” Adv. Mater. **32**, 1806452 (2020).

24. A. Sergeyev, R. Geiss, A. S. Solntsev, A. Steinbrück, F. Schrempel, E.-B. Kley, T. Pertsch, and R. Grange, “Second-harmonic generation in lithium niobate nanowires for local fluorescence excitation,” Opt. Express **21**, 19012–19021 (2013).

25. R. Geiss, S. Diziain, R. Iliev, C. Ettrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett. **97**, 131109 (2010).

26. H. Li, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express **20**, 2974–2981 (2012).

27. H. Liang, R. Luo, Y. He, H. Jiang, and Q. Lin, “High-quality lithium niobate photonic crystal nanocavities,” Optica **4**, 1251–1258 (2017).

28. D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, Z. Shining, and X. Min, “Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics **12**, 596–600 (2018).

29. M. Jankowski, C. Langrock, B. Desiatov, A. Marandi, C. Wang, M. Zhang, C. R. Phillips, M. Lončar, and M. M. Fejer, “Ultra-broadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides,” Optica **7**, 40–46 (2020).

30. C. Wang, Z. Li, M.-H. Kim, X. Xiong, X.-F. Ren, G.-C. Guo, N. Yu, and M. Lončar, “Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides,” Nat. Commun. **8**, 1–7 (2017).

31. D. Lehr, J. Reinhold, I. Thiele, H. Hartung, K. Dietrich, C. Menzel, T. Pertsch, E.-B. Kley, and A. Tünnermann, “Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate,” Nano Lett. **15**, 1025–1030 (2015).

32. F. Timpu, J. Sendra, C. Renaut, L. Lang, M. Timofeeva, M. T. Buscaglia, V. Buscaglia, and R. Grange, “Lithium niobate nanocubes as linear and nonlinear ultraviolet mie resonators,” ACS Photonics **6**, 545–552 (2019).

33. A. Fedotova, M. Younesi, J. Sautter, M. Steinert, R. Geiss, T. Pertsch, I. Staude, and F. Setzpfandt, “Second-harmonic generation in lithium niobate metasurfaces,” in “European Quantum Electronics Conference,” (2019), p. ef1-2.

34. F. Dutto, M. Heiss, A. Lovera, O. López-Sánchez, A. Fontcuberta i Morral, and A. Radenovic, “Enhancement of second harmonic signal in nanofabricated cones,” Nano Lett. **13**, 6048–6054 (2013).

35. C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Lončar, “Monolithic lithium niobate photonic circuits for kerr frequency comb generation and modulation,” Nat. Commun. **10**, 1–6 (2019).

36. X. Ye, S. Liu, Y. Chen, Y. Zheng, and X. Chen, “Sum-frequency generation in lithium-niobate-on-insulator microdisk via modal phase matching,” Opt. Lett. **45**, 523–526 (2020).

37. L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. Gong, M. Lončar, and Y.-F. Xiao, “High-q chaotic lithium niobate microdisk cavity,” Opt. Lett. **43**, 2917–2920 (2018).

38. L. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, L. Qiao, W. Fang, F. Bo, and Y. Cheng, “Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator,” Phys. Rev. Lett. **122**, 173903 (2019).

39. P. Zhuang, H. Lu, H. Xiong, Y. Li, H. Chen, W. Qiu, H. Guan, J. Dong, W. Zhu, J. Yu, Y. Luo, J. Zhang, and Z. Chen, “Fano resonance on nanostructured lithium niobate for highly efficient and tunable second harmonic generation,” Nanomaterials **9**, 69 (2019).

40. L. Carletti, C. Li, J. Sautter, I. Staude, C. D. Angelis, T. Li, and D. N. Neshev, “Second harmonic generation in monolithic lithium niobate metasurfaces,” Opt. Express **27**, 33391–33398 (2019).

41. B. Gao, M. Ren, W. Wu, H. Hu, W. Cai, and J. Xu, “Lithium niobate metasurfaces,” Laser Photonics Rev. **13**, 1800312 (2019).

42. J. Ma, J. Chen, M. Ren, W. Wu, W. Cai, and J. Xu, “Second-harmonic generation and its nonlinear depolarization from lithium niobate thin films,” Opt. Lett. **45**, 145–148 (2020).