Piekarek, M., Bonneau, D., Miki, S., Yamashita, T., Fujiwara, M., Sasaki, M., ... Thompson, M. G. (2017). High-extinction ratio integrated photonic filters for silicon quantum photonics. *Optics Letters, 42*(4), 815-818. https://doi.org/10.1364/OL.42.000815
High-extinction ratio integrated photonic filters for silicon quantum photonics

MATEUSZ PIEKAREK,1,* DAMIEN BONNEAU,1 SHIGEHITO MIKI,2 TARO YAMASHITA,2 MIKIO FUJIWARA,3 MASAHIDE SASAKI,2 HIROTAKA TERAI,2 MICHAEL G. TANNER,4 CHANDRA M. NATARAJAN,5 ROBERT H. HADFIELD,5 JEREMY L. O'BRIEN,1 AND MARK G. THOMPSON1

1Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical & Electronic Engineering, University of Bristol BS8 1FD, UK
2National Institute of Information and Communications Technology (NICT), 588-2 Iwaoaka, Kobe 651-2492, Japan
3National Institute of Information and Communications Technology (NICT), 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan
4School of Engineering & Physical Sciences, Heriot-Watt University, EH14 4AS, UK
5School of Engineering, University of Glasgow, G12 8QQ, UK

*Corresponding author: mateusz.piekarek@bristol.ac.uk

Received 6 October 2016; revised 25 November 2016; accepted 29 November 2016; posted 1 December 2016 (Doc. ID 269910); published 13 February 2017

We present the generation of quantum-correlated photon pairs and subsequent pump rejection across two silicon-on-insulator photonic integrated circuits. Incoherently cascaded lattice filters are used to provide over 100 dB pass-band to stop-band contrast with no additional external filtering. Photon pairs generated in a microring resonator are successfully separated from the input pump, confirmed by temporal correlations measurements.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

OCIS codes: (270.5585) Quantum information and processing; (130.7408) Wavelength filtering devices.
https://doi.org/10.1364/OL.42.000815

Linear optical quantum computing is a promising approach to quantum information processing. However, a practical system requires a large amount of resources [1–3]. Integrated platforms provide a solution to tackle this problem through high component density. Silicon photonics has grown rapidly in recent years to become a promising platform due to unparalleled scalability, CMOS-compatibility, and access to affordable, mature fabrication techniques. While single-photon sources based on spontaneous four-wave mixing (SFWM) have already been demonstrated [4–8], the problem of the co-propagating input pump has received very little attention. A solution is to use high-extinction ratio, low-loss, on-chip filters. Thus far, quantum photonic experiments have been performed using bulky external optical filters [9–13], which typically exhibit high transmission losses. Integration of photon sources and filters on a single chip is a key step in realizing full-scale quantum photonic circuits. Filters based on coupled resonator optical waveguides (CROW) with extinction ratios in excess of 50 dB have been demonstrated in SiN [14] and silicon-on-insulator [15,16]. The first result showing the extinction ratio of 100 dB with a total loss through the filter of 3 dB was demonstrated by [17]. However, only recently have photons been successfully generated and demultiplexed using an integrated circuit without external filtering, as shown in [18], using distributed Bragg reflectors. Here we report an alternative filter structure for high-extinction filtering. The feasibility is verified through the on-chip generation and rejection of the pump using two photonic integrated circuits. The two chips were necessary, as in the previous experiments, to suppress the background scattering.

As mentioned in the previous paragraph, silicon single-photon sources are based on SFWM. By exploiting the $\chi^{(3)}$ nonlinearity of the material, with a certain probability, two pump photons are absorbed and a non-degenerate signal-idler pair is generated. In this experiment, a microring resonator was used to generate single photons. By pumping one of the resonances with a bright light, a signal-idler pair is generated spectrally on either side of the pumped resonance. This process leads to three spectrally separated signals co-propagating at the output. Therefore, the bright pump has to be filtered out while preserving the single-photon pair.

An energy of a single photon at the telecommunication C-band wavelength is of the order of 10^{-16} mJ. Any background noise above that level degrades the signal-to-noise ratio (SNR) of the single-photon source. In a practical system, parameters such as insertion loss, source brightness, detector efficiency, and dark count levels affect the performance. For an input power of 1 mW and a dark count rate of 1 kHz (10^{-13} mW), 130 dB of pass-band to stop-band contrast is required to attenuate the pump to the detector noise level.
Lattice filters are coherently cascaded unbalanced Mach–Zehnder interferometers. The advantage over an unbalanced Mach–Zehnder interferometer (UMZI) is the high degree of control over the spectral shape of the filter [19,20]. In [21], lattice filters were cascaded to create a passive, low-loss demultiplexer. Both of these characteristics are vital for the large-scale integration of quantum photonic devices. Alternative approaches such as cavity-based filters require tuning and are sensitive to fabrication tolerances. In addition, interferometric filters rely on standard components such as directional couplers and waveguides. This greatly relaxes the requirements for fabrication, which in turn lowers the cost and improves reproducibility. Lattice filters exhibit low pass and stop-band ripples and a low insertion loss dependent only on the waveguide scattering and footprint.

Here, our on-chip filters were based on a 3rd order lattice filter presented in [21], as shown in Fig. 1. The order is defined by the maximum number of elementary delays ΔL between the two outputs. The stop-band bandwidth, which depends on the directional coupler reflectivities and the filter free spectral range, was designed to be at least 1 nm at $–20$ dB suppression level. Wide pass and stop-bands significantly reduce the tuning requirements for the microring source. Combined with a flat transmission, it also reduces the effect of the filter response on the spectral shape of the generated photon. A single filter stage was expected to provide up to 20 dB pass-band to stop-band contrast. Therefore, the lattice filter was incoherently cascaded to generate higher stage filters. The unwanted output of each stage was tapered out into the cladding away from the grating couplers.

The photonic integrated circuits (PICs) were fabricated by CEA-LETI in 193 nm lithography, which has been shown to produce high device uniformity [22]. Therefore, a good spectral overlap was expected between the closely placed components. However, the overlap between separate dies was not guaranteed. The layout contained separate 2-, 4-, 6-, and 8-stage cascaded 3rd order lattice filters. Four of the structures were combined with microring resonator single-photon sources with a free spectral range (FSR) of 400 GHz (corresponding to a cavity length of ≈ 180 μm). The FSR was designed to be 800 GHz, double that of the source. While the on-chip filters were fully passive, the microring resonator sources were thermally tunable via the on-chip heaters.

In this experiment, two silicon-on-insulator (SOI) PICs were interconnected as shown in Fig. 1. A CW beam was injected in the first chip, pumping a microring source generating correlated photon pairs, then going through a 6-stage filter attenuating the pump while letting the photon pair through. A 4-stage filter was used on the second chip to sufficiently suppress the co-propagating laser beam. To spectrally overlap the filters across the two dies, chips A and B were thermally tuned using standard peltier modules to 29.5°C and 30.6°C, respectively. The external arrayed waveguide grating (AWG) filter was used to increase the SNR of the input pump. Two polarization controllers, one before each chip, provided the required adjustment necessary to optimise the coupling. An external 50/50 fiber beamsplitter was used in order to non-deterministically split the two photons into separate arms. Superconducting nanowire single-photon detectors were used with one of the arms having an additional fiber path delay of 20 m. Optical input and output was achieved through grating couplers designed to match the 127 μm spacing of an external V-groove fiber array (VGA). Each coupler exhibited approximately 5 dB coupling loss.

Filters on the same device with 2, 4, 6, and 8 cascaded stages were characterized and compared as shown in Fig. 2. As shown in the plot, the spectral overlap and shape remained consistent with increasing order. Due to the large variation with wavelength, the signal channel exhibited between 0.5 to 1.5 dB, depending on the number of cascaded stages, more loss than the idler channel. We estimate the average loss per filter stage—calculated by subtracting the grating coupler loss from the peak transmission through the filter and dividing it by the number of stages—to be ≈ 0.25 dB. The noticeable increase in the transmission loss between the 4- and 6-stage filter is attributed to an imperfect spectral overlap. The single photons generated from the resonator have a longer coherence time than the cavity lifetime [23]. Estimating the Q-factor of the source to be around 90000, this translates to a coherence length in silicon of 5 mm, which is much longer than the path length difference in a single stage of the lattice filter, ensuring its proper operation.

As can be seen in the plot, the 4-stage filter provided approximately 56 dB extinction between 1550 and 1558 nm. We estimate that the 8-stage cascaded lattice filter provided at least 100 dB pass-band to stop-band contrast. However,
the measurement was limited to around −65 dB by the background noise identified as the on-chip scattering from the pump, as shown in Fig. 2—this data was taken by moving the VGA away from the grating couplers while keeping the vertical distance unchanged. To get beyond this limit and measure correlated photon pairs, two chips had to be interconnected, with each one providing approximately 65 dB of suppression of the unguided light.

The optical crosstalk was further investigated by performing a wavelength scan between 1540 and 1560 nm at different input to output port separations. A 16-port polarization maintaining VGA and a high-sensitivity photodetector were used during the measurement. The fiber array was aligned with one of the filter circuits and the output at each dark port was measured, while the light was sent through the on-chip structure. Due to the size of the chip, 11 ports were investigated. The result of the experiment is shown in Fig. 3. Two linear fits can be seen, represented by the solid and dashed lines, for closer and farther port spacings. The light scattered inside the chip should exhibit an exponential decay (linear in dB scale) with distance (solid line) due to the multiple transmissions and reflections at various interfaces. We attribute the second trend (dashed line) to the light reflected back to the fiber array directly from the chip input. This latter effect becomes dominant at larger port spacings, resulting in a reduction in crosstalk of less than 0.6 dB per 100 μm. Therefore, while increasing the distance between the input and output ports may lead to some improvement, it is not a practical solution for fully suppressing the crosstalk to the necessary levels.

By combining the 6-stage filter with a microring resonator source on chip A with the 4-stage filter on chip B, the background noise was suppressed below the detection level of the photodiode, as shown in Fig. 4. The obvious disadvantage was

The performance of our devices was further investigated using superconducting nanowire single-photon detectors (SNSPDs). A temporal correlation measurement was performed to verify the signal and idler pair generation and the on-chip filtering. The pump source used in the experiment exhibited −100 dBm noise level. For the measurement shown in Fig. 5 the pump was pre-filtered using an external AWG filter to further increase the SNR of the input beam. The pump wavelength was 1553.84 nm, and the power injected into Chip A was 7 dBm. A coincidence peak confirms the
approach provides an extra step toward full integration of
in the full substrate. Our result demonstrates the resilience of
gigate this effect by understanding and managing the scattering
band to stop-band contrast using fully passive lattice filters. Full
A and Chip B exhibited extinction ratios of around 55 dB each,
with 193 nm lithography. At the pumping wavelength, Chip
ring resonator and the subsequent rejection of the co-propagat-
120 dB TE to TM rejection ratio comparable with the pump
and extracted a coincidence-to-accidental ratio (CAR) of 2.5.
Laser pump across two SOI integrated circuits fabricated
four grating couplers in total (two per chip), each suppressing
in electronics.

Our lattice filter was designed to work only on
them from the final readout on the time correlator single
τ
per time-bin
τ
≈
×
104 s
.0136
−
2.5
104 s
.007
accidental events per second
i.e.,
The averaged singles per channel
through the full duration of the measurement (14400 s) were
C1 = 1.7 × 104 s−1 and C2 = 2.5 × 104 s−1. We estimated
from them the final readout on the time correlator single
photon counter (TCSPC) and the accidentals ACC = C1C2τ.
We fit the coincidence histogram with a Gaussian distribution and extracted a coincidence-to-accidental ratio (CAR) of 2.5.
Such a low value was caused by a combination of high trans-
mission losses (≈25 dB), leakage of the pump photons, and the combined electronic jitter of the detectors and the counting
electronics.

One other aspect which can impact the pump rejection is the polarization. Our lattice filter was designed to work only on
the TE mode. In our experiment, the pump exhibited a TE to
TM rejection ratio of 20 dB. The pump then went through four grating couplers in total (two per chip), each suppressing the TM mode by 20–25 dB, giving approximately 100 to 120 dB TE to TM rejection ratio comparable with the pump
filter rejection of our filter.

We have demonstrated photon pair generation in a micro-
ring resonator and the subsequent rejection of the co-propagat-
ing laser pump across two SOI integrated circuits fabricated
with 193 nm lithography. At the pumping wavelength, Chip
A and Chip B exhibited extinction ratios of around 55 dB each,
as shown in Fig. 2, giving an estimate of at least 100 dB pass-
band to stop-band contrast using fully passive lattice filters. Full
integration of single-photon sources, filters, and detectors is
limited the on-chip scattering. Future systems will have to mitig-
ate this effect by understanding and managing the scattering
in the full substrate. Our result demonstrates the resilience of
the lattice filter structure to manufacturing tolerances. This
approach provides an extra step toward full integration of
components required to create a single-photon source, which is
true for building a large-scale quantum computer.

Funding. Engineering and Physical Sciences Research Council (EPSRC); European Research Council (ERC)
European Commission (EC) (323734).

Acknowledgment. I. L. O. acknowledges a Royal Society Wolfson Merit Award and a Royal Academy of Engineering Chair in Emerging Technologies. M. G. T. acknowledges support from an EPSRC Early Career Fellowship.

REFERENCES

1. J. L. O’Brien, A. Furusawa, and J. Vučković, Nat. Photonics 3, 687 (2009).
2. D. Bonneau, G. J. Mendoza, J. L. O’Brien, and M. G. Thompson, New J. Phys. 17, 043057 (2015).
3. M. Gimeno-Segovia, P. Shadbolt, D. E. Browne, and T. Rudolph, Phys. Rev. Lett. 115, 020502 (2015).
4. J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, Nat. Photonics 8, 104 (2013).
5. J. E. Sharpling, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, Opt. Express 14, 12388 (2006).
6. S. Clemen, K. Phan Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, Opt. Express 17, 16558 (2009).
7. C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, J. M. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, Opt. Lett. 36, 3413 (2011).
8. N. Matsuda, H. Takesue, K. Shimizu, Y. Tokura, E. Kuramochi, and M. Notomi, Opt. Express 21, 8596 (2013).
9. A. Polit, M. J. Cryan, J. G. Rarity, and J. L. O’Brien, Science 320, 646 (2008).
10. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, Nat. Photonics 3, 346 (2009).
11. D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, New J. Phys. 14, 045003 (2012).
12. N. Matsuda, P. Karkus, N. Hidetaka, T. Tsuchizawa, W. J. Munro, H. Takesue, and K. Yarnada, Opt. Express 22, 22831 (2014).
13. E. Murray, D. P. Ellis, T. Meany, F. F. Floether, J. P. Lee, J. P. Griffiths, G. A. C. Jones, I. Farrer, D. A. Ritchie, A. J. Bennet, and A. J. Shields, Appl. Phys. Lett. 107, 171108 (2015).
14. M. A. Popović, T. Barwicz, M. R. Watts, P. T. Raklich, L. Socci, E. P. Ippen, F. X. Kärntner, and H. I. Smith, Opt. Lett. 31, 2571 (2006).
15. P. Dong, N. N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, Opt. Express 18, 23784 (2010).
16. S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 316 (2010).
17. L. G. Helt, Z. Yang, M. Liscidini, and J. E. Sipe, Opt. Lett. 35, 3006 (2010).

![Fig. 5.](image-url) Temporal correlations coincidence peak integrated over 4 h. The pump was pre-filtered using an external AWG filter. The input power to the chip was 7 dBm.