Energetics and electronic structure of native point defects in \(\alpha\)-Ga\(_2\)O\(_3\)

Takuma Kobayashi\(^{\dagger}\), Tomoya Gake\(\ddagger\), Yu Kumagai\(\ddagger\), Fumiyasu Oba\(\ddagger\), and Yu-ichiro Matsushita\(\ddagger\)

Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan

\(^{\dagger}\)E-mail: kobayashi.t.cp@msl.titech.ac.jp

Received June 7, 2019; revised July 5, 2019; accepted July 31, 2019; published online August 12, 2019

We report first-principles calculations that clarify the formation energies and charge transition levels of native point defects (Ga and O vacancies, interstitials, and a Ga vacancy-O vacancy pair) in corundum structured \(\alpha\)-Ga\(_2\)O\(_3\). Either under a Ga- or O-rich growth condition, the negatively-charged Ga vacancy and the positively-charged Ga interstitial on a site surrounded by six O atoms are dominant when the Fermi level approaches the conduction and valence band edges, respectively. These defects would compensate carrier electrons and holes, respectively. Ga-rich conditions relatively suppress the formation of the Ga vacancy and, therefore, are suited for extrinsic \(n\)-type doping of \(\alpha\)-Ga\(_2\)O\(_3\).

\(\copyright\) 2019 The Japan Society of Applied Physics

Gallium oxide (Ga\(_2\)O\(_3\)) has emerged as an attracting material for a wide range of applications\(^{1–5}\), such as power electronics\(^{6,7}\) and deep-ultraviolet photodetectors\(^{8,9}\). Among the five common polymorphs in Ga\(_2\)O\(_3\) (i.e. \(\alpha\), \(\beta\), \(\gamma\), \(\delta\), and \(\varepsilon\))\(^{8}\), the monoclinic structured \(\beta\)-Ga\(_2\)O\(_3\) has been intensively studied and a number of devices were demonstrated in the past decades. For instance, Schottky barrier diodes (SBDs)\(^{9}\) and metal–semiconductor field effect transistors (MESFETs)\(^{10}\) and depletion-mode metal–oxide-semiconductor field effect transistors\(^{11}\) were reported. Many of theoretical studies have also been focusing on the fundamental and defect properties of \(\beta\)-Ga\(_2\)O\(_3\) so far.\(^{12–19}\)

For instance, formation energies and charge transition levels were reported for its native point defects including vacancies of Ga and O (\(V\)\(_{\text{Ga}}\) and \(V\)\(_{\text{O}}\)),\(^{13,18}\) and interstitials (\(\text{Ga}\)\(_i\) and \(\text{O}\)\(_i\)),\(^{15–17}\) and donor\(^{18}\) and acceptor-type impurities.\(^{19}\) It was shown that \(V\)\(_{\text{O}}\) behaves as a deep donor,\(^{15–17}\) while impurities such as Sn, Si, Ge, F, and Cl act as shallow donors.\(^{18}\)

In recent years, corundum structured \(\alpha\)-Ga\(_2\)O\(_3\) has also been attractive as well. Starting with the heteroeptaxy of \(\alpha\)-Ga\(_2\)O\(_3\) thin films on \(\alpha\)-Al\(_2\)O\(_3\) substrates by ultrasonic mist chemical vapor deposition,\(^{20}\) fabrication and operation of devices, such as SBDs\(^{21}\) and MESFETs\(^{22}\) were reported. Its band structure,\(^{23,24}\) interfacial band alignment,\(^{25}\) thermodynamic properties,\(^{12}\) and hole polarons\(^{26}\) have also been investigated using first-principles calculations. However, only few theoretical reports on point defect properties are available for \(\alpha\)-Ga\(_2\)O\(_3\); although there is a study concerning impurity properties (Si, Sn, and Mg),\(^{20}\) systematic investigation into the properties of native defects such as vacancies and interstitials is still lacking and thus are highly demanded.

In this study, we investigated defect properties of \(\alpha\)-Ga\(_2\)O\(_3\) by first-principles calculations using a hybrid functional. We calculated the formation energies and charge transition levels under Ga- or O-rich crystal growth conditions, focusing on the native point defects.

All calculations in this study were performed based on projector augmented wave method\(^{27}\) as implemented in the Vienna Ab-initio Simulation Package code.\(^{28,29}\) We applied the Heyd–Scuseria–Ernzerhof (HSE) hybrid functional\(^{30–32}\) with Fock-exchange mixing and screening parameters of 0.35 and 0.208 Å\(^{-1}\), respectively. The parameters were determined so as to reproduce the experimental bandgap of \(\beta\)-Ga\(_2\)O\(_3\)\(^{13,18}\) as described in detail later. The cutoff energies in the plane wave basis set were set to 520 and 400 eV for the

\[E_F[D^q] = E[D^q] + E_C[D^q] - E_F - \sum_i n_i \mu_i + q(e_{\text{VBM}} + \Delta\varepsilon_F). \]

Here, \(E[D^q]\), \(E_F\), \(e_{\text{VBM}}\), and \(\Delta\varepsilon_F\) are the total energy of the supercell with \(D^q\), that of the perfect crystal supercell, the energy level of the valence band maximum (VBM), and the Fermi level with respect to the VBM, respectively. \(n_i\) and \(\mu_i\) are the number of added (\(n_i > 0\)) or removed (\(n_i < 0\)) \(t\)-type atom and its chemical potential, respectively. \(E_C[D^q]\) is a correction term for removing the spurious long-range Coulomb interactions between \(D^q\), its periodic images, and the background charge under three-dimensional periodic boundary conditions. We applied the extended Freysoldt–Neugebauer–Van de Walle (FNV) scheme\(^{33,36}\) for the correction, which can correct energies of charged defects accurately in various systems.\(^{33,36–38}\) The correction requires a dielectric tensor, of which ionic part was calculated with density functional perturbation theory\(^{39,40}\) with the Perdew–Burke–Ernzerhof (PBE) functional.\(^{41,42}\) The ion-clamped electronic part of the dielectric tensor was calculated with a finite-electric-field approach\(^{43}\) with the HSE0(0.35, 0.21) functional. We checked with the PBE functional that, together with the extended FNV corrections,\(^{33,36}\) the difference in the formation energy of \(V\)\(_{\text{O}}^{2+}\) in \(\alpha\)-Ga\(_2\)O\(_3\) between 120-atom (\(2 \times 2 \times 1\)) and 480-atom (\(4 \times 4 \times 1\)) supercells is less than 0.2 eV, indicating that the present cell-size corrections together with the 120-atom supercell are quite sufficient to obtain a well-converged defect formation energy. We considered two extreme crystal growth conditions, where the chemical potentials of the atomic species are given as
parts of dielectric tensors were $\varepsilon_{11}^{\text{ion}} = \varepsilon_{22}^{\text{ion}} = 6.08$, $\varepsilon_{33}^{\text{ion}} = 9.32$ and $\varepsilon_{11}^{\text{ele}} = \varepsilon_{22}^{\text{ele}} = 3.54$, $\varepsilon_{33}^{\text{ele}} = 3.44$, respectively, resulting in a total dielectric tensor of $\varepsilon_{11} = \varepsilon_{22} = 9.62$, $\varepsilon_{33} = 12.76$. All the Ga and O atoms in α-Ga$_2$O$_3$ are symmetrically equivalent, respectively, so we investigated the vacancies (V_{Ga} and V_{O}) on these sites. For a Ga vacancy-O vacancy pair (V_{Ga}–V_{O}), we only considered the nearest neighbor case. For the interstitials (Ga, and O), we investigated three inequivalent high-symmetry interstitial sites as depicted in Fig. 1(b): a site surrounded by two Ga and three O atoms (site 1), six O atoms (site 2), and two Ga and two O atoms (site 3).

The calculated band structure of α-Ga$_2$O$_3$ is depicted in Fig. 2. Since the experimental bandgap of α-Ga$_2$O$_3$ varies in the literature (4.9–5.6 eV$^{20,46–49}$), we determined the Fock-exchange mixing parameter in the HSE functional to be 0.35 with the screening parameter kept fixed at a standard value of 0.208 Å$^{-1}$ so that the calculated bandgap of β-Ga$_2$O$_3$ (4.89 eV) agrees well with the experimental one (4.9 eV51). We also checked that the deviation from the generalized Koopmans’ theorem (gKT) condition52 (i.e. $E[V_{\text{Ga}}] - E[V_{\text{Ga}}] - E[V_{\text{O}}])$ is 0.11 eV for the gallium vacancy in α-Ga$_2$O$_3$, using this functional. This approach has been shown to reproduce the experimental ionization potential well and nearly satisfies gKT for a self-trapped hole in β-Ga$_2$O$_3$. The direct bandgap at the Γ point and indirect bandgap of α-Ga$_2$O$_3$ obtained using this functional are 5.73 and 5.49 eV, respectively. This calculated indirect bandgap is close to a previously reported value of 5.39 eV from a G$_0$W$_0$@HSE03 calculation.25

Figure 3 shows the formation energies of the investigated defects under either Ga- or O-rich condition. Either under Ga- or O-rich condition, negatively-charged V_{Ga} and positively-charged Ga$_i$ are energetically favorable when the Fermi level approaches the CBM and VBM, respectively. The formation energy of V_{Ga} takes a negative value under either Ga- or O-rich conditions when the Fermi level is low. This implies that the realization of a p-type material is difficult because of the carrier compensation by Ga$_i$, as well as the small hole polaron formation and related deep, polaronic nature of dopant-induced acceptor states.24 At the Ga-rich limit,
neutral and positively-charged \(V_0 \) have a low formation energy in a wide range of the Fermi level position from intrinsic to \(n \)-type conditions. However, the \(O \) vacancy is a deep donor with a transition level far below the CBM, and unlikely to be a source of native \(n \)-type conductivity, as in the case of \(\beta-Ga_2O_3 \).\(^{15-17}\) At the O-rich limit, positively-charged \(V_0 \), as well as \(Ga_i \), is rather favorable for lower Fermi level values, which is also a similar trend to \(\beta-Ga_2O_3 \).\(^{5,10}\) We also see that the formation energy of \(V_{Ga} \) takes a negative value when the Fermi level is near CBM at the O-rich limit, indicating that even \(n \)-type doping would be difficult for the extreme O-rich condition. Thus, crystal growth under a condition close to the Ga-rich limit is preferred in realizing \(n \)-type material.

We found that \(V_{Ga} \) takes \(-3\) to \(+3\) charge states depending on the position of the Fermi level. In \(\alpha-Ga_2O_3 \), \(V_{Ga} \) is surrounded by six \(O \) atoms. In the neutral charge state, three holes localize onto 2p orbitals of three different \(O \) atoms around \(V_{Ga} \), exhibiting polaronic charge localization, and the remaining three \(O \) atoms can capture three more holes. Thus, \(V_{Ga} \) acts as a triple hole trap as well as a triple acceptor depending on the Fermi level. Similar hole localization is reported in other oxide semiconductors such as ZnO.\(^{54}\) We found that \(V_O \) acts as a deep donor showing small negative-\(U \) behavior: \(U = E_F[V_0^0] + E_F[V_0^{+2}] - 2E_F[V_0^{+1}] = -0.16 \) eV. The \((\pm 2/0)\) transition level of \(V_O \) is located at \(E_C - 1.72 \) eV, close to the value of about \(E_C - 2.1 \) eV calculated by Lyons.\(^{55}\) The energy gain for the formation of a Ga vacancy-\(O \) vacancy pair (i.e. \(V_{Ga} + V_O \rightarrow V_{Ga} - V_O \)) is about 0.9 eV at the \(n \)-type limit, indicating the vacancy pair formation in \(n \)-type materials, in particular at low temperatures where entropic energy gain is small for isolated defects.

The optimized structures of the stable \(Ga \) and \(O \) interstitials are shown in Fig. 4. The most favorable form of \(Ga_i \) is \(Ga_{i,3} \), in which the interstitial \(Ga \) atom is surrounded by six \(O \) atoms. Note that the \(Ga_{i,3} \) eventually converged to the same structure as \(Ga_{i,2} \), and thus shows similar formation energy as \(Ga_{i,2} \) (Fig. 3). In Fig. 3, we see that \(Ga_{i,3} \) is always in \(+3\) charge state regardless of the position of the Fermi level, indicating that the defect supplies electrons to the conduction band if they are not compensated by acceptor-type defects and thus operates as a shallow donor.

Among the oxygen interstitials, we found that the split interstitials, \(O_{i,1} \) and \(O_{i,3} \), are favorable when the Fermi level is located at the lower half of the bandgap, whereas the negatively-charged interstitial without splitting, \(O_{i,2} \), becomes favorable under \(n \)-type conditions. The reason why the split interstitials (\(O_{i,1} \) and \(O_{i,3} \)) are not stabilized in negatively-charged states can be understood by considering the molecular orbital of an \(O_2 \) molecule; In the ground state of an isolated, neutral \(O_2 \) molecule, two up-spin electrons are in the antibonding \(\pi^* \) states, realizing a triplet state. In \(Ga_2O_3 \), each \(O \) atom formally receives two electrons from \(Ga \) atoms because of the difference of electronegativity of \(Ga \) and \(O \) atoms, and thus the split interstitials (\(O_{i,1} \) and \(O_{i,3} \)) together with a host \(O \) atom accommodates two more electrons than a neutral \(O_2 \) molecule. Then, the \(\pi^* \) states are fully occupied with 4 electrons in the neutral condition. To add an additional electron into this system, the electron should go into \(\sigma^* \) states with high energy loss. Thus, the split interstitials do not take negatively-charged states. Indeed, we confirmed that 2 up- and 2 down-spin electrons fully occupy the states with similar energy levels (\(E_V + 0.55 \) eV and \(E_V + 0.58 \) eV) in the neutral charge state of \(O_{i,3} \). The fact that the bond-length of two oxygen atoms (1.372 Å) in the neutral split-interstitial is longer than that of the calculated value for an \(O_2 \) molecule (1.207 Å) also suggests that electrons get into the antibonding \(\pi^* \) states in the case of the split-interstitial in the neutral charge state.

In summary, we report the formation energies and charge transition levels of the native point defects in corundum structured \(\alpha-Ga_2O_3 \). We found that negatively-charged \(V_{Ga} \) and positively-charged \(Ga_i \) are favorable when the Fermi level is near the CBM and VBM, respectively, regardless of crystal growth conditions (Ga-rich or O-rich). Either under
Ga- or O-rich condition, the formation energy of Ga$_n$ takes a negative value when the Fermi level approaches the VBM, implying that the realization of a p-type material is difficult because of a strong carrier compensation. At the Ga-rich limit, neutral and positively-charged V_O are favorable within a wide range of the Fermi level from an intrinsic to n-type condition. However, the O vacancy is a deep donor and unlikely to be a source of native n-type conductivity. At the O-rich limit, positively-charged V_O becomes comparable in energy to Ga$_n$ at lower Fermi levels. We also found that the formation energy of Ga$_n$ takes a negative value when the Fermi level approaches the CBM at the O-rich limit, indicating that even extrinsic n-type doping is difficult in thermal equilibrium state for such O-rich conditions. Thus, crystal growth under a Ga-rich condition is preferred in n-type doping.

Computations were performed mainly at the Center for Computational Science, University of Tsukuba, and the Supercomputer Center at the Institute for Solid State Physics, The University of Tokyo. The authors acknowledge the support from JSPS Grant-in-Aid for Scientific Research (A) (Grant Number: 18H03770 and 18H03873).