Search for the rare decay $B^0_s \rightarrow \mu^+\mu^-$

V.M. Abazov,35 B. Abbott,73 M. Abolins,62 B.S. Acharya,29 M. Adams,48 T. Adams,46 G.D. Alexeev,35 G. Alkhazov,39 A. Alton4, 61 G. Alverson60 G.A. Alves,2 L.S. Ancu,34 M. Aoki,47 Y. Arnoud,14 M. Arov,57 A. Askew,46 B. Ásman,40 O. Atramentov,65 C. Avila,8 J. BackusMayes,80 F. Badam,13 L. Baghy,47 B. Baldin,47 D.V. Bandurin,46 S. Banerjee,29 E. Barberis,60 A.-F. Barfuss,15 P. Baringer,55 J. Barreto,2 J.F. Bartlett,47 U. Bassler,18 S. Beale,6 A. Bean,55 M. Begalli,3 M. Begel,71 C. Belanger-Champagne,40 L. Bellantoni,47 J.A. Benitez,62 S.B. Beri,27 G. Bernardi,72 I. Bertram,41 M. Besançon,18 R. Beuselinck,42 V.A. Bezzubov,38 P.C. Bhat,47 V. Bhatnagar,27 G. Blayze,49 S. Blessing,46 K. Bloom,64 A. Boehlein,47 D. Boline,70 T.A. Bolton,56 E.E. Boos,37 G. Borisov,41 T. Bose,59 A. Brandt,76 O. Brandt,23 R. Brock,62 G. Brooijmans,68 A. Bross,47 D. Brown,19 X.B. Bu,7 D. Buchholz,50 M. Buehler,79 V. Buescher,24 V. Bunichev,37 S. Burdis,41 T.H. Burnett,80 C.P. Buszello,42 P. Callayan,25 B. Calpas,15 S. Calvet,16 E. Camacho-Pérez,32 J. Cammin,65 M.A. Carraresi-Lizarra,32 E. Carrera,46 B.C.K. Casey,47 H. Castillo-Valdez,32 S. Chakraborti,70 D. Chakraborty,49 K.M.Chan,53 A. Chandra,78 G. Chen,55 S. Chevalier-Théry,18 D.K. Cho,75 S.W. Cho,31 S. Choi,31 B. Choudhary,28 T. Christoudias,42 S. Cibinlig,7 D. Claes,64 J. Clutter,55 M. Cooke,74 W.E. Cooper,74 M. Corcoran,78 F. Coudere,18 M.-C. Cousinou,15 A. Croc,18 D. Cutts,75 M. Čwiok,30 A. Das,44 G. Davies,42 K. De,76 S.J. de Jong,34 E. De La Cruz-Burelo,33 F. Déjot,18 M. Demartene,77 R. Demina,69 D. Denisov,47 S.P. Denisov,38 S. Desai,47 K. DeVaughan,64 H.T. Diehl,47 M. Diesburg,47 A. Dominguez,54 T. Dorland,50 A. Dubey,28 L.V. Dudkin,37 D. Duggan,85 A. Dumprin,15 S. Dutt,27 A. Dyshkant,49 M. Eads,64 D. Edmunds,92 J. Ellison,45 V.D. Elvira,47 Y. Enari,17 S. Enó,58 H. Evans,51 A. Evdokimov,71 V.N. Evdokimov,38 G. Facini,60 A.V. Ferapontov,75 T. Ferbel,71 D. Fiedler,24 F. Filthaut,24 W. Fisher,62 H.E. Fortner,47 M. Fortner,49 H. Fox,41 S. Fuess,37 T. Gadfort,75 A. Garcia-Bellido,69 V. Gavrilov,36 P. Gay,13 W. Geist,19 W. Geng,15,62 D. Gerbaudo,66 C.E. Gerber,48 Y. Gerstein,65 D. Gillberg,6 G. Ginther,47,69 G. Golovanov,35 A. Goussiou,80 P.D. Grannis,70 S. Greder,19 H. Greenlee,47 E.M. Gregores,4 G. Grenier,20 Ph. Gris,13 J.-F. Grivaz,16 A. Grohsjean,18 S. Grünendahl,47 M.W. Grünewald,30 F. Guo,70 J. Guo,70 G. Gutierrez,47 P. Gutierrez,37 A. Haas,68 P. Haefner,25 S. Haggopian,46 J. Hale,60 L. Han,7 K. Harder,43 A. Harel,50 J.M. Hauptmann,54 J. Hays,42 T. Hebeker,21 D. Hedín,49 A.P. Heinson,45 U. Heintz,75 C. Hensel,23 I. Heredia-De La Cruz,32 K. Herner,61 G. Hesketh,50 M.D. Hildreth,53 R. Hirosky,79 T. Hoang,46 J.D. Hobbs,70 B. Hoeneisen,12 M. Hohlfeld,24 S. Hossain,73 Y. Hu,70 Z. Hubecek,10 N. Husko,77 V. Hynek,70 I. Iashvili,67 R. Illingworth,57 A.S. Ito,47 S. Jabeen,75 M. Jaffre,16 S. Jain,67 D. Jamin,15 R. Jesik,42 K. Johns,44 M. Johnson,47 D. Johnston,64 A. Jonckheere,47 P. Jonsson,42 J. Josh,42 A. Just,47 K. Kaadze,56 E. Kajfasz,15 D. Karmanov,37 P.A. Kasper,47 I. Katsanos,54 R. Kehoe,77 S. Kerniche,15 N. Khaltayian,47 A. Khanov,74 A. Kharchilava,67 Y.N. Kharchzeev,35 D. Khatidze,75 M.H. Kirby,50 M. Kirsch,21 J.M. Kohli,27 A.V. Kozlov,38 J. Kraus,62 A. Kumar,67 A. Kupco,11 T.K. Kurth,17 U. Kuzmin,37 J. Kvita,8 S. Lammerz,53 G. Landsberg,75 P. Lebrun,20 H.S. Lee,31 W.M. Lee,47 J. Lellouch,17 L. Li,45 Q.Z. Li,47 S.M. Lietti,5 J.K. Lim,31 D. Lincoln,47 J. Linнеман,62 V.V. Lippew,38 R. Lipton,47 Y. Liu,7 Z. Liu,6 A. Lobodenko,39 M. Lokajíček,11 P. Love,41 H.J. Lubatti,30 R. Luna-García,32 A.L. Lyon,47 A.K.A. Maciel,2 F. Mackin,78 R. Madar,18 R. Magaña-Villalba,32 S. Malik,64 V.L. Malyshev,35 Y. Maravin,56 J. Martínez-Ortega,32 R. McCarthy,70 C.L. McGivern,55 M.M. Meijer,34 A. Melnitchouk,63 D. Menezes,49 P.G. Mercadante,4 M. Merkin,37 A. Meyer,21 J. Meyer,23 N.K. Mondal,29 T. Moulik,55 G.S. Muanza,15 M. Mulhearn,79 E. Nagy,15 M. Naimuddin,28 M. Narain,75 R. Nayyar,28 H.A. Neal,61 J.P. Negret,8 P. Neustroev,39 H. Nilsen,22 S.F. Novaes,9 T. Nunnemann,25 G. Obrant,39 D. Onoprienko,56 J. Ordone,32 N. Osman,42 G.J.G. Otero y Garzón,1 M. Owen,43 M. Padilla,45 M. Pangilinan,75 N. Parashar,52 V. Parihar,75 S.K. Park,31 J. Parsons,68 R. Partridge,75 N. Parnau,51 A. Patwa,71 B. Penning,47 M. Perfilov,47 K. Peters,43 Y. Peters,43 G. Petrillo,69 P. Pétroff,16 R. Piegaa,1 J. Piper,62 M. Pleier,71 P.L.M. Pedestra-Lemma,62 V.M. Podstavkov,47 M.-E. Pol,2 P. Polozov,36 A.V. Popov,38 M. Prewitt,78 D. Price,51 S. Protopopescu,71 J. Qian,61 A. Quad,23 B. Quimm,53 M.S. Rangel,16 K. Ranjan,28 P.N. Ratoff,41 I. Razumov,38 P. Renkel,77 P. Rich,43 M. Rijsenbeek,70 I. Ripp-Baudot,19 F. Rizatdinova,74 M. Rominsky,37 C. Royon,18 P. Rubinov,47 R. Ruchti,53 G. Saffonov,36 G. Sajot,14 A. Sánchez-Hernández,32 M.P. Sanders,25 B. Sanghai,47 A.S. Santos,5 G. Savage,47 L. Sawyer,57 T. Scanlon,42 D. Schaile,25 R.D. Schamberger,70 Y. Scheglov,39
H. Schellman, T. Schliephake, S. Schlobohm, C. Schwanenberger, R. Schwienhorst, J. Sekaric, H. Severini, E. Shabalina, V. Shary, A.A. Shchukin, R.K. Sh Ivy, V. Simak, V. Sirotenko, P. Skubic, P. Slattery, D. Smirnov, G.R. Snow, J. Snow, S. Snyder, S. Söldner-Rembold, L. Sonnenschein, A. Sopczak, N. Varelas, M. Vartapetian, S. Vartanian, S.J. Wimpenny, P.M. Tuts, H. Severini, G. Weber, J. Yu, P. Slattery, E.W. Varnes, R. Unalan, W. Taylor, P. Vint, M. Weber, P. Skubic, E. Shabalina, T. Yasuda, T. Schliephake, M. Wobisch, II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany

Simon Fraser University, Vancouver, British Columbia, and York University, Toronto, Ontario, Canada

IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France

S. Zelitch, E.W. Varnes, R. Unalan, W. Taylor, P. Vint, M. Weber, P. Slattery, E. Shabalina, T. Yasuda, T. Schliephake, M. Wobisch, II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany

University of Science and Technology of China, Hefei, People’s Republic of China

Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil

The University of Manchester, Manchester M13 9PL, United Kingdom

II. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany

LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil

Universidad de los Andes, Bogotá, Colombia

Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic

Czech Technical University in Prague, Prague, Czech Republic

Academy of Sciences of the Czech Republic, Prague, Czech Republic

Universidad San Francisco de Quito, Quito, Ecuador

LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France

LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France

CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France

LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France

CEA, Ifeu, SPP, Saclay, France

IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France

IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France

III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany

Physikalisches Institut, Universität Freiburg, Freiburg, Germany

II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany

Institut für Physik, Universität Mainz, Mainz, Germany

Ludwig-Maximilians-Universität München, München, Germany

Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Panjab University, Chandigarh, India

Delhi University, Delhi, India

Tata Institute of Fundamental Research, Mumbai, India

University College Dublin, Dublin, Ireland

Korea Detector Laboratory, Korea University, Seoul, Korea

CINVESTAV, Mexico City, Mexico

FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands

Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands

Joint Institute for Nuclear Research, Dubna, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia

Moscow State University, Moscow, Russia

Institute for High Energy Physics, Protvino, Russia

Petersburg Nuclear Physics Institute, St. Petersburg, Russia

Stockholm University, Stockholm and Up sala University, Uppala, Sweden

Lancaster University, Lancaster LA1 4YB, United Kingdom

Imperial College London, London SW7 2AZ, United Kingdom

The University of Manchester, Manchester M13 9PL, United Kingdom

(The D0 Collaboration)
We present the results of a search for the flavor changing neutral current decay $B^0 \rightarrow \mu^+ \mu^-$ using 6.1 fb$^{-1}$ of pp collisions at $\sqrt{s} = 1.96$ TeV collected by the D0 experiment at the Fermilab Tevatron Collider. The observed number of B^0_s candidates is consistent with background expectations. The resulting upper limit on the branching fraction is $B(B^0_s \rightarrow \mu^+ \mu^-) < 5.1 \times 10^{-8}$ at the 95% C.L. This limit is a factor of 2.4 better than that of the previous D0 analysis and the best limit to date.

PACS numbers: 12.15.Mn, 13.20.He, 14.40.Nd

The standard model (SM) provides an accurate description of current observations in high energy physics experiments, in particular precision electroweak measurements and flavor physics observables. A flavor changing neutral current (FCNC) process is an apparent transition between quarks of different flavor but equal charge. In the SM, the FCNC processes are forbidden at first order. They can occur at second order only through Glashow-Iliopoulos-Maiani (GIM) [1] suppressed box and penguin diagrams. The decay $B^0_s \rightarrow \mu^+ \mu^-$ is an example of such a process, as shown in Fig. 1. Unlike other FCNC decays this decay rate is further suppressed by helicity factors in the $\mu^+ \mu^-$ final state [2]. The SM expectation for the branching fraction of this decay is $(3.6 \pm 0.3) \times 10^{-9}$ [3]. The decay amplitude for $B^0_s \rightarrow \mu^+ \mu^-$ can be enhanced by several orders of magnitude in some extensions of the SM. For example, in some supersymmetric models such as the minimal supersymmetric standard model this decay can occur through the mediation of superpartners of the SM intermediate par-
The D0 detector [18] has a central tracking system, consisting of a silicon microstrip tracker (SMT) [19] and a central fiber tracker (CFT), both located within a 2 T superconducting solenoidal magnet, with designs optimized for tracking and vertexing at pseudorapidities $|\eta| \lesssim 3$ and $|\eta| \lesssim 2.5$, respectively, where $\eta = -\ln \tan (\theta/2)$, and θ is the polar angle with respect to the proton beam direction. An outer muon system, covering $|\eta| \lesssim 2$, consists of a layer of tracking detectors and scintillation trigger counters in front of 1.8 T toroids, followed by two similar layers after the toroids [20]. The trigger and data acquisition systems are designed to accommodate the high instantaneous luminosity of the Tevatron Run II that started in 2001. In summer 2006, the SMT detector was upgraded by inserting an additional layer of silicon microstrip detectors, Layer 0 [21], close to the beampipe. The data-taking period before the Layer 0 installation is referred to as Run IIA, and the period afterwards is referred to as Run IIb. The two data sets are analyzed separately.

All data collected up to June 2009 are included in this analysis. The integrated luminosities for the Run IIA and Run IIb data sets are 1.3 fb$^{-1}$ and 4.8 fb$^{-1}$, respectively. Events are recorded using a set of single muon triggers, dimuon triggers, and triggers that select pp interactions based on energy depositions in the calorimeter. $B^0 \rightarrow \mu^+ \mu^-$ candidates are formed from pairs of oppositely charged muons identified by extrapolating tracks reconstructed in the central tracking detectors to the muon detectors, and matching them with information from the muon system. The muon selection has been updated with respect to the previous analysis [17], yielding 10% higher acceptance while keeping the fraction of misidentified muons below 0.5%. Each muon is required to have a transverse momentum $p_T \mu \geq 1.5$ GeV, and to have hits in at least two layers of both the CFT and the SMT. The B^0 candidate is required to have a reconstructed three-dimensional (3D) decay vertex displaced from the interaction point with a transverse decay length significance $L_T/\sigma_{L_T} \gtrsim 3$ to reduce prompt dimuon background, where $L_T = \vec{l}_\mu \cdot \vec{p}_T/|\vec{p}_T|$. The vectors \vec{l}_μ and \vec{p}_T are, respectively, the vector from the interaction point to the decay point and the transverse momentum vector of the B^0 meson in the transverse plane. The pp interaction vertex is found for each event using a beam-spot constrained fit as described in [22]. Events are selected if the reconstructed invariant dimuon mass, $m_{\mu\mu}$, is between 4.0 GeV and 7.0 GeV.

To further suppress the background we use the following discriminating variables: the transverse momentum of the B^0 candidate $p_T^{B^0}$, the pointing angle, L_T/σ_{L_T}, the decay vertex fit χ^2, the smaller impact parameter significance (δ/σ_{δ}) of the two muons, $\min(\delta/\sigma_{\delta})$, and the smaller p_T^{μ} of the two muons, $\min(p_T^{\mu})$. The pointing angle is defined to be the 3D opening angle between the B^0 meson momentum vector and the displacement vector from the interaction to the dimuon vertex. The impact parameter δ is defined to be the distance of closest approach of the track to the interaction point in the transverse plane, and σ_{δ} is its uncertainty. We use a Bayesian Neural Network (BNN) [23,24] multivariate classifier with the above variables to distinguish signal events from background. The BNN is trained using background events sampled from the sideband regions 4.5 GeV $\leq m_{\mu\mu} \leq 5.0$ GeV and 5.8 GeV $\leq m_{\mu\mu} \leq 6.3$ GeV.
$m_{\mu\mu} \leq 6.5$ GeV) and simulated signal events. To simulate the B_d^0 signal, we generate Monte Carlo events using the PYTHIA 20 event generator, interfaced with the EVTGEN 21 decay package. We simulate the detector response using GEANT 22. Multiple interactions are modeled by overlaying randomly triggered data events on top of the simulated hits in the detector. The distributions of the BNN output β for the B^0 signal and the sideband events as well as the $B^+ \rightarrow J/\psi(\mu^+\mu^-)K^+$ control sample are shown in Fig. 2. We define the $B^0 \rightarrow \mu^+\mu^-$ signal region to be $0.9 \leq \beta \leq 1.0$ and 5.0 GeV $\leq m_{\mu\mu} \leq 5.8$ GeV where there is a clear separation between signal and background. This region is determined by optimizing the expected sensitivity of the search. We prepare two-dimensional (2D) histograms of $m_{\mu\mu}$ vs. β dividing the signal region into several bins to improve the sensitivity relative to using a single bin.

The dominant source of background dimuon events is from decays of heavy flavor hadrons in $b\bar{b}$ or $c\bar{c}$ production. To study this background contribution, we generate inclusive dimuon Monte Carlo samples with PYTHIA generic QCD processes that include all $b\bar{b}$ or $c\bar{c}$ production processes. The dimuon background events can be categorized by two types: (i) $B(D) \rightarrow \mu^+\nu X, B(D) \rightarrow \mu^-\bar{\nu}X'$ double semileptonic decays where the two muons originate from different $b(c)$ quarks, yielding dimuon masses distributed over the entire signal region, and (ii) $B \rightarrow \mu^+\nu D, D \rightarrow \mu^-\bar{\nu}X$ sequential semileptonic decays, resulting in $m_{\mu\mu}$ predominantly below the B hadron mass. The simulated dimuon mass distributions for both background sources after requiring $\beta \geq 0.8$ are parametrized using an exponential function to estimate the number of background events in the signal region after fitting the dimuon mass in the data sideband regions, 4.0 GeV $\leq m_{\mu\mu} \leq 5.0$ GeV and 6.0 GeV $\leq m_{\mu\mu} \leq 7.0$ GeV, in each β bin. The uncertainty on this background estimate is dominated by the statistical uncertainty of the sideband sample (10–35%). In addition, we consider background contributions from B^0 and B^0_s decays $B \rightarrow h^+h^-$, where h^+ and h^- represent a charged kaon or pion. The muon identification efficiency and the fractions of pions and kaons misidentified as muons are evaluated using samples of $J/\psi \rightarrow \mu^+\mu^-$ and $D^0 \rightarrow K^+\pi^-$ in $B \rightarrow \mu\nu D^0$ decays. $B^0 \rightarrow K^+K^-$ decay is the largest contribution in the $B \rightarrow h^+h^-$ backgrounds and that is expected to be 0.13 ± 0.10 events for Run IIA and 0.36 ± 0.27 events for Run IIB in the signal region, where the uncertainty is dominated by the statistical uncertainty on the fraction of misidentification. The $B \rightarrow h^+h^-$ background contribution is thus found to be negligible (see below).

The branching fraction $B(B^0 \rightarrow \mu^+\mu^-)$ is computed by normalizing the number of events, $N(B^0)$, to the number of reconstructed $B^+ \rightarrow J/\psi(\mu^+\mu^-)K^+$ events, $N(B^+)$:

$$B(B^0 \rightarrow \mu^+\mu^-) = \frac{N(B^0)}{N(B^+)} \cdot \epsilon_{B^+} \cdot \frac{f_{B^+}}{f_{B^0}} \cdot B(B^+),$$

where the parameters ϵ_{B^+} and ϵ_{B^0} are the reconstruction efficiencies for $B^+ \rightarrow J/\psi(\mu^+\mu^-)K^+$ and $B^0 \rightarrow \mu^+\mu^-$, respectively. They are estimated from simulations. We use $B(B^+) = B(B^+ \rightarrow J/\psi K^+) \times B(J/\psi \rightarrow \mu^+\mu^-) = (5.97 \pm 0.22) \times 10^{-5}$ 23 and the ratio of B-hadron production fractions $f_{B^+}/f_{B^0} = 3.86 \pm 0.59$ 24. The simulated mass resolution of the D0 detector for the $B^0_s \rightarrow \mu^+\mu^-$ is ≈ 120 MeV and is therefore insufficient to readily separate B^0_s from B^0 leptonic decays. In this analysis, we assume that there are no contributions from $B^0 \rightarrow \mu^+\mu^-$ decays, since this decay is suppressed by $|V_{td}/V_{ts}|^2 \approx 0.04$ 25, 31.

A sample of $B^+ \rightarrow J/\psi(\mu^+\mu^-)K^+$ events is selected using all but the β selection requirements, with an additional requirement of $p_T^\mu \geq 1$ GeV for the kaon candidate. By performing a binned likelihood fit with the $J/\psi K^+$ invariant mass distribution in data, we observe $N(B^+) = 14340 \pm 665$ events for Run IIA and 32463 ± 875 events for Run IIB, where the uncertainty is only statistical. The statistical significance of the B^+ signal yield in Run IIB is higher than that in Run IIA although the lower yield per the integrated luminosity. The $J/\psi K^+$ invariant mass distribution is shown in Fig. 3. A systematic uncertainty of 2% on the B^+ yield is found by varying the fit parameterization. The efficiency for the additional kaon track in $B^+ \rightarrow J/\psi(\mu^+\mu^-)K^+$ decays is calibrated using the ratio of $B^0 \rightarrow J/\psi(\mu^+\mu^-)K^0_s(K^+\pi^-)$ to $B^+ \rightarrow J/\psi(\mu^+\mu^-)K^+$ data with an uncertainty of 7.5%. The trigger efficiency depends on the muon transverse momentum p_T^μ. This is modeled by comparing the
We compute the final sensitivity using 2D histograms of \(m_{\mu\mu} \) vs. \(\beta \) of the signal and the backgrounds by combining the sensitivity of each bin taking into account the correlated uncertainties. In addition to the uncertainty on the signal normalization, we add uncertainties on the expected \(B_s^0 \) mass and its resolution in the calculation. Additional uncertainties on the dimuon background distributions are assigned to allow for possible variation in the background \(m_{\mu\mu} \) distribution as a function of \(\beta \). The resulting median expected limits are \(B(B_s^0 \rightarrow \mu^+\mu^-) < 8.5 \times 10^{-8} \) for Run IIa, and \(4.6 \times 10^{-8} \) for Run IIb at the 95% (90%) C.L. and the combined median expected limit is \(B(B_s^0 \rightarrow \mu^+\mu^-) < 4.0 \times 10^{-8} \). The limits are calculated from Eq. \(\text{[3]} \) using the semi-Frequentist confidence level approach (CLs) \([32,34] \) with a Poisson log-likelihood ratio test statistic. The limit incorporates Gaussian uncertainties on the signal efficiency and the background. This expected limit is a factor of 2.4 better than the expected limit of \(9.7 \times 10^{-8} \) at the 95% C.L. of the previous D0 result [17], where 10% of this improvement results from changes in the analysis technique.

After finalizing the selection criteria and all systematic uncertainties, we study events in the signal region. There are 256 events for Run IIa, and 823 events for Run IIb. The observed number of background events is consistent with the background expectations. We extract 95% (90%) C.L. limits of \(B(B_s^0 \rightarrow \mu^+\mu^-) < 8.2 \times 10^{-8} \) for Run IIa, and \(5.6 \times 10^{-8} \) for Run IIb. The resulting combined limit is \(B(B_s^0 \rightarrow \mu^+\mu^-) < 5.1 \times 10^{-8} \) at the 95% (90%) C.L. The probability for the expected background distributions to fluctuate to the observed data distributions is 31%.

In conclusion, we have reported a search for the rare decay \(B_s^0 \rightarrow \mu^+\mu^- \) using 6.1 fb\(^{-1}\) of \(pp \) collisions collected...
by the D0 experiment at Fermilab Tevatron Collider. We observe no evidence for physics beyond the SM and set a limit of $B(B^0 \to \mu^+\mu^-) < 5.1 \times 10^{-8}(4.2 \times 10^{-8})$ at the 95% (90%) C.L. This result is more stringent than the previous results $^{[15, 17]}$ and the best limit to date.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACYT (Mexico); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China).

[1] S. L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D 2, 1285 (1970).
[2] Charge conjugate states are assumed implicitly throughout this paper.
[3] G. Buchalla and A. J. Buras, Nucl. Phys. B 400, 225 (1993).
[4] A. J. Buras, Prog. Theor. Phys. 122, 145 (2009).
[5] S. R. Choudhury and N. Gaur, Phys. Lett. B 451, 86 (1999).
[6] J. K. Parry, Nucl. Phys. B 760, 38 (2007).
[7] J. K. Parry, arXiv:hep-ph/0606150 (2006).
[8] E. Lunghi, W. Porod, and O. Vives, Phys. Rev. D 74, 075003 (2006).
[9] D. Guadagnoli, S. Raby and D. M. Straub, J. High Energy Phys. 0910, 059 (2009).
[10] B. C. Allanach, G. Hiller, D. R. T. Jones and P. Slavich, J. High Energy Phys. 0904, 088 (2009).
[11] R. L. Arnowitt, B. Dutta, T. Kamon, and M. Tanaka, Phys. Lett. B 538, 121 (2002).
[12] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 77, 011107 (2008).
[13] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 81, 051101 (2010).
[14] Belle Collaboration, K. Ikado et al., Phys. Rev. Lett. 97, 251802 (2006).
[15] Belle Collaboration, I. Adachi et al., arXiv:hep-ex/0809.3834 (2008).
[16] CDF Collaboration, T. Aaltonen et al., Phys. Rev. Lett. 100, 101802 (2008).
[17] D0 Collaboration, V. M. Abazov et al., Phys. Rev. D 76, 092001 (2007).
[18] D0 Collaboration, V. M. Abazov et al., Nucl. Instrum. Methods in Phys. Res. A 565, 463 (2006).
[19] S. N. Ahmed et al., arXiv:1005.0801 [physics.ins-det], Nucl. Instrum. Methods in Phys. Res. A, submitted for publication.
[20] V. M. Abazov et al., Nucl. Instrum. Methods in Phys. Res. A 552, 372 (2005).
[21] R. Angstadt et al., Nucl. Instrum. Methods in Phys. Res. A 622, 298 (2010), arXiv:0911.2522 [physics.ins-det].
[22] DELPHI Collaboration, J. Abdallah et al., Eur. Phys. J. C 32, 185 (2004).
[23] R. M. Neal, Bayesian Learning of Neural Networks (Springer-Verlag, New York, 1996).
[24] P. C. Bhat and H. B. Prosper, “Bayesian Neural Networks” in Statistical Problems in Particle Physics, Astrophysics and Cosmology, ed. L. Lyons and M. K. Ünel, (Imperial College Press, London, 2006).
[25] T. Sjöstrand et al., Comput. Phys. Commun. 135, 238 (2001).
[26] D. J. Lange, Nucl. Instrum. Methods in Phys. Res. A 462, 152 (2001).
[27] R. Brun and F. Carminati, CERN Program Library Long Writeup W5013, 1993 (unpublished). We use version 3.15.
[28] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008).
[29] W.-M. Yao et al., Journal of Physics G 33, 1 (2006). We use this version of the reference for the B hadron fragmentation ratio in order to compare the result with those of the previous analyses.
[30] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
[31] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[32] A.L. Read, J. Phys. G 28, 2693 (2002).
[33] T. Junk, Nucl. Instrum. Methods in Phys. Res. A 434, 435 (1999).
[34] W. Fisher, FERMILAB Report No. FERMILAB-TM-2386-E (2007).