Atomic layer deposition of cobalt using H$_2$-, N$_2$-, and NH$_3$-based plasmas

Citation for published version (APA):
Vos, M. F. J., van Straaten, G., Kessels, W. M. M., & Mackus, A. J. M. (2018). Atomic layer deposition of cobalt using H$_2$-, N$_2$-, and NH$_3$-based plasmas: on the role of the Co-reactant. Journal of Physical Chemistry C, 122(39), 22519-22529. https://doi.org/10.1021/acs.jpcc.8b06342

DOI:
10.1021/acs.jpcc.8b06342

Document status and date:
Published: 04/10/2018

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 21. Oct. 2023
Atomic Layer Deposition of Cobalt Using H$_2$-, N$_2$-, and NH$_3$-Based Plasmas: On the Role of the Co-reactant

Martijn F. J. Vos,* Gerben van Straaten, W. M. M. Erwin Kessels, and Adriaan J. M. Mackus*†

Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

ABSTRACT: This work investigates the role of the co-reactant for the atomic layer deposition of cobalt (Co) films using cobaltocene (CoCp$_2$) as the precursor. Three different processes were compared: an AB process using NH$_3$ plasma, an AB process using H$_2$/N$_2$ plasma, and an ABC process using subsequent N$_2$ and H$_2$ plasmas. A connection was made between the plasma composition and film properties, thereby gaining an understanding of the role of the various plasma species. For NH$_3$ plasma, H$_2$ and N$_2$ were identified as the main species apart from the expected NH, whereas for the H$_2$/N$_2$ plasma, NH$_3$ was detected. Moreover, HCP was observed as a reaction product in the precursor and co-reactant subcycles. Both AB processes showed self-limiting half-reactions and yielded similar material properties, that is, high purity and low resistivity. For the AB process with H$_2$/N$_2$, the resistivity and impurity content depended on the H$_2$/N$_2$ mixing ratio, which was linked to the production of NH$_3$ molecules and related radicals. The ABC process resulted in high-resistivity and low-purity films, attributed to the lack of NH$_3$ species during the co-reactant exposures. The obtained insights are summarized in a reaction scheme where CoCp$_2$ chemisorbs in the precursor subcycle and NH$_3$ species eliminate the remaining Cp in the consecutive subcycle.

1. INTRODUCTION

Atomic layer deposition (ALD) is a thin-film deposition technique, which relies on the cyclical alternation of precursor and co-reactant doses. The self-limiting nature of the surface reactions during ALD generally allows for good uniformity on large-area substrates and excellent conformality on three-dimensional structures. Although the precursor that is used for an ALD process generally receives considerable attention, the choice of the co-reactant is equally important because it can greatly affect the properties of the deposited material as well as the technological and industrial feasibility of the process. For the ALD of metals, a wide range of co-reactants have been explored, with gases or plasmas of O$_2$, H$_2$, and NH$_3$ being the most common choices. In addition, less common chemicals such as hydrazine (N$_2$H$_4$), silane (SiH$_4$), disilane (Si$_2$H$_6$), formic acid (CH$_2$O$_2$), and tertiary butyl hydrazine (C$_3$H$_7$N$_2$) have been used. Moreover, certain ALD processes make use of what can be referred to as an advanced ALD cycle, in which either two or more co-reactants are dosed simultaneously or after one another in an ABC-type manner. For instance, mixed H$_2$/N$_2$ plasmas have been used for the ALD of a variety of materials. Furthermore, Hämäläinen et al. deposited Ir, Pd, Rh, and Pt at low temperatures (120–200 °C) using consecutive O$_2$ and H$_2$ exposures, and similar ABC-type cycles were later reported for the ALD of Ru (at 150 °C) using subsequent O$_2$ and H$_2$ doses and for the ALD of Pt (at room temperature) using subsequent O$_2$ and H$_2$ plasmas.

H$_2$, N$_2$, and NH$_3$-based plasmas (e.g., plasmas using NH$_3$, H$_2$, N$_2$, or H$_2$/N$_2$ mixtures as source gases) have previously been used as co-reactants for the ALD of a wide range of metals and metal nitrides. See Table S1 in the Supporting Information for an overview of selected metals and metal nitrides, which have been deposited using a NH$_3$ plasma or a mixed H$_2$/N$_2$ plasma as the co-reactant. For instance, Kim et al. found that for the ALD of Ir using ((ethylcyclopentadienyl)-(1,5-cyclooctadiene)iridium), NH$_3$ plasma yielded a lower surface roughness in comparison to when using O$_2$ gas as the co-reactant. Furthermore, Ten Eyck et al. employed a H$_2$/N$_2$ plasma for the ALD of Pd on a polymer substrate and claimed that a H$_2$/N$_2$ plasma leads to the formation of reactive NH$_2$ groups on the polymer, needed for chemisorption of the palladium(II) hexafluoracetyletrionate precursor. Moreover, the use of NH$_3$ plasmas instead of H$_2$ plasmas for the ALD of Ru, Ag, and Ni resulted in higher growth per cycle (GPC) and lower resistivity values. The choice for the co-reactant is generally less straightforward for the ALD of Co, Ni, and Cu, as compared to noble metals, because their reduction potential is lower, which makes impurity incorporation more
In this work, a detailed study of the use of H2-, N2-, and NH3-based plasmas as co-reactants for the ALD of Co using CoCp2 as the precursor is presented. As illustrated in Figure 1, three ALD processes with different co-reactants were investigated: an AB-type process with NH3 plasma (referred to as “AB-NH3 process”, Figure 1a), an AB process with a mixed H2/N2 plasma (“AB-H2/N2 process”, Figure 1b), and an ABC process with subsequent N2 and H2 plasmas (“ABC-N2-H2 process”, Figure 1c). As will be shown, the separation of the H2 and N2 plasmas in an ABC-type cycle provides an insight into the role of N2, which is present in both the NH3 plasma and the H2/N2 plasma (but not in the N2 or H2 plasmas).

This work is structured as follows. First, the experimental conditions related to the film deposition, the plasma studies, and the film analysis are discussed. In Section 3.1, the species present in the NH3 and H2/N2 plasmas are identified and the

Table 1. ALD Processes Reported in the Literature for the Deposition of Co, Listing Deposition Temperature T, GPC, and Resistivity ρ

precursor	co-reactant	T (°C)	GPC (Å)	ρ (μΩ cm)	ref
CoCp2	NH3 plasma	300	0.48	10	37
CoCp2	H2/N2 plasma	150-450	0.26-0.65	18	26
CoCp2	NH3^a	100-300	0.37-0.97	38	
Co(MeCp)₂	NH3 plasma	100-350	0.4-1.9	31	39
Co(CpAMD)_b	NH3 plasma	200-250	0.5	140	40
Co₂(CO)₈	H2 plasma	75-110	1.2		41
CpCo(CO)₂	H2 plasma	125-175	1.1		42
Co(AMD)_c	H2	340	0.50	285	43
Co(AMD)_d	NH3	350	0.26	50	44
t-Bu-alloy(CO)_e	dimethylhydrazine	140	0.5		45
CCTBA^f	H2	125-200	0.8	90	46
Co(DBDB)^g	formic acid	170-180	0.95	13^f	7, 47
Co(DBDB)_h	tert-butylamine	170-200	0.98	15^f	48

^aHot-wire ALD, ^bCyclopentadienyl isopropyl acetamidinato-cobalt. ^c Bis(N,N'-diisopropylacetamidinato)cobalt(II). ^d Dicobalt hexacarbonyl tert-butylacetylene. ^e Bis(1,4-difort-buty1-1,3-diazabutadienyl)cobalt(II). ^f Measured on the Ru substrate.

Figure 1. Schematic overview of the three Co ALD processes investigated in this study: (a) AB-NH3, (b) AB-H2/N2, and (c) ABC-N2-H2 process. The ABC process uses separate N2 and H2 plasmas. Note that each purge step is followed by a pump step (see Section 2.1 under Experimental Section), which is not shown in the figure for simplicity.
role of the H\textsubscript{2}/N\textsubscript{2} ratio on the plasma composition is investigated. This is followed in Section 3.2 by a study on the reaction products released during the plasma exposures of the three different ALD processes. In Section 3.3, the obtained material properties are compared. In addition, the effect of the H\textsubscript{2}/N\textsubscript{2} ratio and NH\textsubscript{3} concentration in the plasma on the material properties are addressed. Next, the role of NH\textsubscript{3} species and a possible reaction mechanism are discussed in Sections 4.1 and 4.2, respectively. Finally, the main conclusions of this work are summarized.

2. EXPERIMENTAL SECTION

2.1. ALD Reactor and Conditions. Co films were deposited in a home-built ALD reactor, as described in the previous work.39 In short, the reactor is equipped with a remote inductively coupled plasma source and a turbo pump reaching a base pressure of \(\sim 10^{-6} \) Torr. During all experiments, the temperature of the substrate table was set to 300 \(^\circ \)C, whereas the walls were heated to 100 \(^\circ \)C. Prior to all experiments, the reactor wall was covered by Co by running for at least 200 cycles of the AB-NH\textsubscript{3} process. The CoCp\textsubscript{2} precursor (98\%, Sigma-Aldrich) was contained in a stainless steel bubbler. The bubbler and the dosing line were heated to 80 and 120 \(^\circ \)C, respectively, as was previously found to be appropriate for the deposition of CoO\textsubscript{2} in the same reactor.50 The ALD recipe consisted of precursor dosing for 6 s in the first subcycle, using Ar as a carrier gas, which resulted in a chamber pressure of approximately 15 mTorr. Subsequently, the reactor was purged with Ar for 3 s and pumped down for 6 s. All plasma exposures were performed at a power of 100 W for 11 s and were followed by a purge and a pump step of 1 and 11 s, respectively. The NH\textsubscript{3}, N\textsubscript{2}, and H\textsubscript{2} plasmas were started after flowing the source gas into the reactor for 3 s. For the AB-H\textsubscript{2}/N\textsubscript{2} process, the N\textsubscript{2} flow was started 2 s before the H\textsubscript{2} flow, and subsequently after 5 s, the H\textsubscript{2}/N\textsubscript{2} plasma was ignited. This was done to stabilize the gas flows and minimize overpressures. The precursor doping and plasma exposure times were based on saturation studies as shown in the Supporting Information (Figure S1).

The pressure used for the NH\textsubscript{3} plasma was 1.5 mTorr. For the standard H\textsubscript{2}/N\textsubscript{2} plasma, the N\textsubscript{2} and H\textsubscript{2} pressures were separately set to 1.5 and 15 mTorr, respectively. Because of the addition of N\textsubscript{2} to the H\textsubscript{2} gas, the pumping speed increases (as compared to only H\textsubscript{2}),77 leading to a lower total pressure of approximately 13 mTorr for the H\textsubscript{2}/N\textsubscript{2} mixture. Moreover, the actual H\textsubscript{2}/(H\textsubscript{2} + N\textsubscript{2}) mixing ratio is approximately \(\sim 0.77 \) (for the H\textsubscript{2} and N\textsubscript{2} pressures of 1.5 and 15 mTorr, respectively) because of the shorter residence time of H\textsubscript{2} as compared to that of N\textsubscript{2} (see also Section 3.1). The results for different H\textsubscript{2}/(H\textsubscript{2} + N\textsubscript{2}) ratios in Sections 3.3 and 4.1 were obtained by varying the partial pressures of H\textsubscript{2} and N\textsubscript{2}, while keeping the total pressure of the mixture constant at 13 mTorr. For the ABC-N\textsubscript{2}-H\textsubscript{2} process, a pressure of 7.5 mTorr was used for both the N\textsubscript{2} and H\textsubscript{2} plasmas, and both plasma exposures were 11 s long.

To determine the effect of the H\textsubscript{2}/(H\textsubscript{2} + N\textsubscript{2}) ratio on the NH\textsubscript{3} production in Section 3.1, a constant pressure of 75 mTorr was used for the gas mixture. This pressure was lower than the “standard” 13 mTorr to allow for more accurate variation of the gas flows and to enable mixing ratios higher than 80 vol \%. For a pressure of 13 mTorr, it is not possible to keep the pressure constant for mixing ratios higher than \(\sim 80 \) vol \% because of the low gas flows used and because of changes in pumping speed upon mixing gas flows.

2.2. Plasma Studies. Quadrupole mass spectrometry (QMS) measurements were performed using Pfeiffer Vacuum Prisma QME-200 (mass-to-charge ratio \(m/z = 1–200 \)), attached to the side of the ALD chamber. Measurements were done with the substrate table, and reactor walls were kept at the standard temperatures of 300 and 100 \(^\circ \)C, respectively. Note that a considerable part of the QMS signal can originate from the reactions at the reactor walls because the surface area of the wall is significantly larger than the surface area of the substrate table. It was confirmed that growth also occurs at a deposition temperature of 100 \(^\circ \)C, albeit at a lower GPC (\(\sim 0.13 \) \(^\circ \)C as compared to \(\sim 0.29 \) \(^\circ \)C) and with a higher impurity content. Because the aim is to compare the three ALD processes with one another, the temperature difference between the wall and the table is considered to be of minor influence.

For determination of the main species in the NH\textsubscript{3} and H\textsubscript{2}/N\textsubscript{2} plasmas, mass scans (i.e., ion current as a function of \(m/z \)) for masses 1–30 were used. These mass scans were collected after stabilization of the gas flows and plasma. The H\textsubscript{2}/(H\textsubscript{2} + N\textsubscript{2}) mixing ratios were determined using the QMS ion currents at \(m/z \) ratios 2 and 14 (corresponding to H\textsubscript{2} and N\textsubscript{2}, respectively) from such mass scans. For a complete description of this method, see the Supporting Information.

The procedure for time-resolved QMS measurements was similar to the method as previously described by Knoops et al.51 In short, for \(m/z \leq 40 \), four \(m/z \) ratios were measured simultaneously, of which one was always \(m/z = 40 \). This value corresponds to Ar+ and is used as reference. For \(m/z > 40 \), besides \(m/z = 40 \), only one other \(m/z \) ratio was followed per measurement, in order to keep the signal-to-noise ratio optimal while maintaining a reasonable time resolution. Three different cycles were studied using the QMS measurements: a “normal” (AB- or ABC-type) ALD cycle, a cycle without CoCp\textsubscript{2} dosing (but with Ar carrier gas dosing), and a cycle without igniting the plasma(s) (see Figure S2). This was done to discern reaction products from the species present because of the precursor dosing, source gas exposure, or plasma ignition. For each type of recipe, 10 cycles were performed, and only the signals over the last nine were averaged, assuming the first cycle can deviate because of the recipes performed previously. To further minimize the influence of previous cycles, every set of cycles was preceded by a cleaning step consisting of an O\textsubscript{2} plasma for 90 s, followed by a NH\textsubscript{3} plasma for 120 s. Moreover, the purging and gas stabilization times were extended as compared to the standard ALD cycle, in order to separate the effects of pressure overshoots from the reaction products. See the Supporting Information (Figure S3) for a more detailed description and an example of the raw data that is collected using this procedure.

Optical emission spectroscopy (OES) was performed using a USB4000 spectrometer from OceanOptics, with a wavelength range of 180–1100 nm, mounted horizontally to the side of the plasma source.

2.3. Film Analysis. For characterization of the deposited material, Co films were grown on Si(100) coupons with 450 nm thermal SiO\textsubscript{2}. Prior to deposition, the samples were cleaned in situ with an O\textsubscript{2} plasma for 2 min. It was found that unloading the samples after the deposition at a table temperature of 300 \(^\circ \)C led to significant oxidation of the Co film. Therefore, the substrate table was cooled down from 300
to 100 °C after each deposition to minimize the oxidation. Although the effect of the table temperature was not investigated in detail in this study, the GPC and film purity were found to decrease when the sample temperatures were lowered, which will be addressed in a follow-up publication. The depositions for generating the saturation curves (Supporting Information, Figure S1) were performed on an ALD-grown Co seed layer to avoid nucleation effects. This Co seed layer was deposited by performing 400 cycles of the standard recipe using NH₃ plasma on a thermal SiO₂ wafer, resulting in a film thickness of approximately 12 nm. Coupons of this seed layer were loaded into the reactor with the table temperature set to 100 °C. After heating the substrate table in vacuum to the standard deposition temperature of 300 °C, the coupons were treated with a NH₃ plasma for 3 min to reduce the surface oxidation.

The ALD growth was monitored in situ by spectroscopic ellipsometry (SE) using a J.A. Woollam, Inc. M2000U ellipsometer. The dielectric function of the deposited films was parameterized using a B-spline model. The Co film microstructure was studied using transmission electron microscopy (TEM) using JEOL ARM 200F, operated at 200 kV. For the TEM analysis, a lamella was prepared using a focused ion beam (FIB) in a FEI Nova600i NanoLab. X-ray photoelectron spectroscopy (XPS) was performed with a Thermo Scientific KAL066 spectrometer, using monochromatic Al Ka X-rays with an energy of 1486.6 eV. For XPS depth profiling, sputtering was carried out using Ar⁺ ions with an energy of 200 eV. In addition, four-point probe (FPP) resistivity measurements were done using a Keithley 2400 Sourcemeter and Signatron probe.

3. RESULTS

3.1. Species in NH₃ and H₂/N₂ Plasmas. The similarities and differences between the NH₃ plasma and H₂/N₂ plasma were identified by collecting mass spectra in the range m/z = 1–30. As can be seen in Figure 2, both plasmas mainly contain H₂ (m/z = 2), N₂ (m/z = 14 and 28), and NH₃ (m/z = 15–17). However, the ratio between these species differs for the two plasmas, with the relative amount of NH₃ being larger for the NH₃ plasma. The mass-to-charge ratios 15 and 16 could correspond to NH₂ (x < 3) species formed in the plasma as well as NH₃ species formed by the dissociation of NH₃ in the QMS analyzer. However, NH₄ (x < 3) radicals present in the plasma are likely recombined before being detected in the QMS, indicating that the signals for m/z = 15–17 can mainly be attributed to NH₃. Although NH₄ (x < 3) species cannot directly be detected using the QMS, it can be assumed that they are present in the plasma as a consequence of dissociation of NH₃. See also the Supporting Information (Table S2) for the assignment of species to corresponding mass-to-charge ratios.

By comparing the QMS spectrum for the source gas with the spectrum for the corresponding plasma, it becomes visible which species are formed upon plasma ignition (see Figure S4). When a NH₃ plasma is ignited, the signals for m/z ratios 15, 16, and 17 decrease, whereas the signals at m/z = 2, 7, 14, and 28 increase. These observations indicate that part of the NH₃ is dissociated, leading to the formation of both N₂ and H₂. Similarly, in a H₂/N₂ plasma, N₂ and H₂ are dissociated upon plasma ignition, followed by the formation of NH₃ (see Figure S4b). NH₃ production using a H₂/N₂ plasma occurs mostly at the reactor walls because a three-body reaction in the gas phase is unlikely for the pressures used in this work.

The two plasmas were further compared using OES measurements (see Figure S5). The emission spectra for the NH₃ and H₂/N₂ plasmas were found to be very similar. Moreover, the emission peak at ∼336 nm corresponds to the A'H → X'Σ transition of NH and was identified in the spectra for both plasmas (Figure S5b), corroborating the presence of NHₓ (x≤3) species.

To study the composition of the H₂/N₂ plasma as a function of the mixing ratio between the H₂ and N₂ gases, QMS spectra were collected for different H₂/(H₂ + N₂) ratios. The amount of NH₃ species produced in the plasma was found to depend on the mixing ratio. Figure 3 shows the QMS ion currents at m/z ratios 16 and 17 as a function of the H₂/(H₂ + N₂) ratio. The QMS ion currents at m/z ratios 16 and 17 for a constant chamber pressure of 75 mTorr. This pressure is higher than the standard 13 mTorr used for the ALD process, as explained in Section 2.1. The m/z ratios 16 and 17 correspond to NH₂⁺ and NH₃⁺, and their ion currents are a measure for the amount of NH₃ produced in the plasma. Figure 3 indicates a maximum in NH₃ production around 60–70% for an NH₂/N₂ ratio of 0.6. The highest ion currents are observed at around 60% NH₂/N₂, which is also the composition used for the ALD process.
80% H2 in the H2/N2 mixture, in agreement with the previous work.51,60 Interestingly, the optimum is found close to the ratio between N and H atoms in the NH3 molecule (0.75).60,61 Because the plasma composition depends strongly on the mixing ratio, selecting the H2/(H2 + N2) ratio is highly important when using a H2/N2 plasma for ALD, as will also be discussed later. On the basis of the optimum found in Figure 3, a H2/(H2 + N2) mixing ratio of ~0.77 was employed for further QMS studies and depositions using the AB-H2/N2 process, unless specified otherwise.

3.2. Reaction Products during Plasma Subcycle. A further insight into the use of NH3 and H2/N2 plasmas was obtained by studying the reaction products formed during the ALD cycles using time-resolved QMS measurements. First, QMS signals were collected for m/z ratios 40 (Ar+), 59 (Co+), and 66 (HCp+) during the precursor subcycle (Figure S6). On the basis of these results, it can be concluded that HCp (C5H6+, m/z = 66) is released as a product during the precursor half-reaction. Second, QMS signals were recorded during the co-reactant subcycles of the AB-NH3 process (Figure 4a), the AB-H2/N2 process (Figure 4b), and the ABC-N2-H2 process (Figure 4c). Measurements were done for a normal ALD cycle and for a reference cycle without CoCp2 dosing, using plasma exposures of 11 s (see Figure S3). Differences between the signals for the two cycles indicate the formation of species as a consequence of the ALD reactions.

Figure 4a shows the results collected during the plasma subcycle of the AB-NH3 process. The signals for m/z ratios 17 and 28 are very similar for the ALD cycle and the corresponding reference cycle and are related to the main plasma species, namely, NH3 and N2. The increase in ion current for m/z = 28 and a decrease for m/z = 17 after plasma ignition correspond to the formation of N2 (m/z = 28), which is a consequence of the dissociation of NH3 (m/z = 17). The current for m/z = 17 demonstrates a transient behavior, as NH3 is a “sticky” molecule and the NH3 flow does not stabilize within the time of the exposure.62 Meanwhile, the initial rise in ion currents (at ~0 s) for m/z ratios 27, 39, and 66 upon plasma ignition for the (normal) ALD cycle can be attributed to the release of reaction products (see Table S2). This rise is not observed for the reference cycle without CoCp2 dosing. The increase for m/z = 66, assigned to HCp+ (C5H6+), upon plasma ignition indicates the elimination of the Cp ring from the surface. A similar increase in ion current was observed for m/z = 65 (C4H5+, data not shown). The detection of HCp+ reveals that some of the Cp ligands are still present on the surface after the CoCp2 subcycle. The mass-to-charge ratio 27 corresponds to C5H5+ or HCN+ and m/z = 39 to C2H4+ or C2H5+. The presence of, for example, HCN and C2H5 might be caused by the reaction of C5H5+ and NH3 species in the plasma. The detection of C2H3+ and C2H4+ can be explained by dissociative ionization of HCp in the QMS (see the cracking pattern in Figure S7) and/or by the formation of C2H6 and C2H5 in the plasma because of dissociation of HCp. Such production channels can unfortunately not be distinguished using the current experimental setup.

The QMS results for the AB-H2/N2 process are shown in Figure 4b. The ion currents for m/z ratios 17 and 28 behave very similar for the ALD cycle and the reference cycle and indicate the formation of NH3 (m/z = 17) and consumption of N2 (m/z = 28) in the H2/N2 plasma. These findings are in line with the QMS measurements discussed in Section 3.1 (and as shown in Figure S4). Note that the signal for m/z = 17 continues to increase during the plasma exposure because of the “sticky” nature of NH3 and/or ongoing stabilization of the NH3 production.62 However, the current for m/z = 17 starts to
drop after the plasma exposure, accompanied by a small increase in the signal for N₂, indicating that no more N₂ is being consumed. The ion currents for m/z ratios 27, 39, and 66 for the ALD cycle increase when the plasma is started (at t ≈ 0 s), similar to the data shown in Figure 4a. This increase can be explained by the release of reaction products, as was discussed for the AB-NH₃ process.

To examine the role of the NH₃ species in the plasma in the reaction mechanism, the H₂/N₂ plasma was replaced by separated N₂ and H₂ plasma steps in an ABC-type cycle (see Figure 1). The results for the ABC-N₂-H₂ process in Figure 4c show that no NH₃ was present during the N₂ exposure, as can be expected. Moreover, upon ignition of the N₂ plasma (at t ≈ 0 s), a minimal amount of HCP⁺ (m/z = 66) is detected (revealed by the small difference with the reference cycle), which is much smaller than for the AB-NH₃ and AB-H₂/N₂ processes. Upon ignition of the subsequent H₂ plasma, a rise in ion currents for both m/z = 17 and 28 (at t ≈ 32 s, observed for the ALD cycle and also for the reference cycle) indicates that NH₃ and N₂ are released. However, the amounts are almost negligible and are limited by the amount of nitrogen-containing species adsorbed to the substrate and reactor wall after the N₂ plasma exposure. The H₂ plasma mostly leads to the detection of CₓHₓ⁺/HCN⁺ (m/z = 27) and CₓHₓ⁺/CₓHN⁺ (m/z = 39) species and no significant amount of HCP⁺. The limited amount of HCP⁺ detected during both plasma exposures indicates that the Cp ring is not eliminated as a whole but rather dissociated because of the interaction with the plasmas.

Comparison of the results for the three different ALD processes provides an insight into the similarities and differences in reaction mechanisms. Except for the differences in plasma species (m/z = 17 and 28), the results in Figure 4a,b show very similar reaction products for the AB-NH₃ and AB-H₂/N₂ processes. These analogies between the two AB processes suggest a similar reaction pathway, where Cp ligands are eliminated from the surface during both the precursor and plasma subcycle. QMS measurements for the ABC-N₂-H₂ process show significant differences in terms of plasma species and reaction products (see Figure 4c), as compared to the AB processes, suggesting a different reaction pathway.

3.3. Film Properties.

Before characterization of the material properties, the ALD behavior of the two AB processes was studied by determining the GPC as a function of the CoCP₂ dosing and the plasma exposure times. As can be seen in Figure S1, both the precursor and co-reactant subcycles demonstrated a self-limiting behavior for the NH₃ plasma as well as for the H₂/N₂ plasma processes. Moreover, the saturation curves for the two processes look very similar, in line with the finding that the two AB processes show similarities in terms of plasma composition and reaction pathways as discussed in Sections 3.1 and 3.2. The GPC saturates to a value of 0.29 ± 0.02 Å, which is slightly lower than that reported by Kim and co-workers (0.48 Å).²⁶,³⁷

The material properties for the three different ALD processes were investigated for the films deposited using 1000 cycles. A film deposited using the AB-NH₃ process was investigated using TEM after preparation of a lamella using a FIB. The cross-sectional images in Figure 5 reveal that the film is polycrystalline and the crystal grains can clearly be observed. The film forms a closed layer of approximately 29 nm thick and has a low roughness. SE modeling yielded a film thickness of ~32 nm. The difference between the thicknesses derived from SE and TEM is thought to be due to the film roughness, which is not included in the SE modeling.

The material properties obtained using the different processes are shown in Table 2. As can be seen, for both the AB-NH₃ and the AB-H₂/N₂ process, the film thickness (determined using SE) is ~25 nm after 1000 cycles, corresponding to an average GPC of approximately 0.25 Å. It is noted that the sample prepared for the TEM analysis was different from the sample listed in Table 2 and the film thickness was slightly higher. The ABC-N₂-H₂ process resulted in an average GPC as high as 0.44 Å. The films deposited using the AB-NH₃ and AB-H₂/N₂ processes both demonstrate a low resistivity (41–42 µΩ cm, as compared to a Co bulk resistivity of 6.24 µΩ cm) and have a similarly low impurity content.⁵³ The resistivity values obtained for the AB processes are slightly higher than the best reported value for Co ALD and lie within the range of values obtained for processes using NH₃ or H₂/N₂ plasma as the co-reactant (10–140 µΩ cm, see Table 1). This is in contrast to the film deposited using the ABC-N₂-H₂ process, which has a high resistivity (>1000 µΩ cm), likely caused by considerable amounts of impurities found in the film (O, N, and C add up to 25 at. %).

XPS measurements showed that the surface of the Co films is slightly oxidized (Figure S8). After Ar⁺ sputtering, the O contents of the films deposited using both AB processes (NH₃ and H₂/N₂) are however found to be close to 0 at. %, and metallic Co 2p peaks were detected at around 780.2 eV.⁶⁴ Apart from minimal amounts of O, C, and N, no other impurities were detected in the Co films grown using the AB-NH₃ and AB-H₂/N₂ processes. For the film deposited using the ABC-N₂-H₂ process, significant amounts of O, C, and N were detected in the bulk of the film (see the XPS results in Figures S8 and S9). It was found that exchanging the H₂ and N₂ plasma exposures, corresponding to an ABC-type cycle first with the H₂ plasma followed by the N₂ plasma, led to a comparable impurity content of approximately 25 at. % (see Table S3).

The significant higher GPC and resistivity for the ABC-N₂-H₂ process can be explained by the impurity incorporation, leading to a lower film density and/or a higher surface roughness. The difference between the two AB processes on one hand and the ABC-N₂-H₂ process on the other hand can most likely be attributed to the absence of NH₃ species in the
The material properties will be further discussed in Section 4.1. The background species (such as H2O) in the plasma during the O incorporation is likely due to the dissociation of some impurity content. Table 3 shows that the impurity content decreases with the H2 fraction in the H2/N2 plasma. Meanwhile, the ion current at m/z = 17, indicating NH3 in the plasma, increased when varying the H2/(H2 + N2) ratio up to ~0.77 (see Figure S10). This finding is in line with the dependence of the NH3 content on the mixing ratio as was discussed in Section 3.1. In Figure 6, the Co concentration of the films is plotted as a function of the ion current for m/z = 17. Interestingly, this graph shows a linear trend, suggesting that a higher amount of NH3 radical species increases, as a consequence of NH3 dissociation. The increase in Co purity is mostly due to the decline in O content, suggesting that NH3 radical species facilitate the removal of O from the material or lead to a film which is less prone to post-deposition oxidation. Additional research is required to distinguish between these two possible explanations.

Overall, the findings show that careful consideration is needed when a H2/N2 plasma is employed as the co-reactant for ALD. Moreover, the dependence on the NH3 concentration explains why H2 plasmas or N2 plasmas are not suitable as co-reactants, mainly because of the lack of NH3 gas in the plasma. As described in Section 3.1, the amount of NH3 produced in a thermal ALD process substantiates the hypothesis that NH3 species play a crucial role in the Co film growth or post-deposition oxidation of the film. Interestingly, the C and N contents of the films are relatively constant and do not show a clear trend as a function of the H2/(H2 + N2) ratio. The relation between the H2/(H2 + N2) ratio and the material properties will be further discussed in Section 4.1.

4. DISCUSSION

4.1. Role of NH3 Species. The results addressed in Section 3 can provide an insight into the role of different plasma species during the Co film growth. Specifically, the data in Table 3 show that the impurity content decreases with the H2 fraction in the H2/N2 plasma. Meanwhile, the ion current at m/z = 17, indicating NH3 in the plasma, increased when varying the H2/(H2 + N2) ratio up to ~0.77 (see Figure S10). This finding is in line with the dependence of the NH3 content on the mixing ratio as was discussed in Section 3.1. In Figure 6, the Co concentration of the films is plotted as a function of the ion current for m/z = 17. Interestingly, this graph shows a linear trend, suggesting that a higher amount of NH3 radical species in the plasma leads to a higher film purity. Note that with a higher NH3 concentration in the plasma, also the amount of NH3 radical species increases, as a consequence of NH3 dissociation. The increase in Co purity is mostly due to the decline in O content, suggesting that NH3 radical species facilitate the removal of O from the material or lead to a film which is less prone to post-deposition oxidation. Additional research is required to distinguish between these two possible explanations.

Overall, the findings show that careful consideration is needed when a H2/N2 plasma is employed as the co-reactant for ALD. Moreover, the dependence on the NH3 concentration explains why H2 plasmas or N2 plasmas are not suitable as co-reactants, mainly because of the lack of NH3 species. In addition, the fact that NH3 gas cannot be used as the co-reactant in a thermal ALD process substantiates the hypothesis that NH3 (x < 3) plasma species are necessary. The results thus suggest that NH3 radical species play a crucial role in the Co film growth or post-deposition oxidation of the film.
growth. This is further elaborated on in Section 4.1, where a reaction mechanism is proposed.

Interestingly, the dependence of the film resistivity on the H_2/N_2 ratio is in agreement with the work of Yoon et al. and Hong et al. for the deposition of Co and Ru, respectively. Both studies observed high-resistivity values for high N_2 fractions and suggested that NH$_x$ species in the plasma play an important role in the growth. In addition, in the work of Ten Eyck et al., the H_2/N_2 ratio was optimized in order to maximize the NH generation in the plasma. Finally, ALD processes for Ru, Ni, and Ag have been reported to improve when NH$_3$ plasmas are used instead of H$_2$ plasmas (in terms of a higher GPC and lower resistivity), which also suggests an important role of NH$_x$ species present in the NH$_3$ plasmas.

4.2. Reaction Mechanism

The QMS studies addressed in Section 3.2 can help to unravel the reaction mechanisms for the ALD growth of Co. Before reviewing the main QMS results, it is relevant to obtain an understanding of the surface groups present on Co after plasma exposure (i.e., prior to precursor dosing). Although the interaction of a NH$_x$ or H$_2$ plasma with a Co surface has not been studied in detail, the surface science literature on Co provides some insights. For instance, Kizilkaya et al. investigated the stability of NH$_x$ groups on Co after NH$_3$ exposure and found that NH$_3$ adsorption on Co is followed by decomposition, resulting in NH$_x$ groups remaining on the surface. In addition, Wang et al. studied the nitridation of transition-metal surfaces and calculated that Co is not prone to nitridation, although a N-covered surface is stable after formation. On the basis of these reports, it can be expected that NH$_x$ groups are present on the Co film after NH$_3$ or H$_2/N_2$ plasma exposure. H adsorbed on the Co surface seems less likely because H is reported to desorb (as H$_2$) from Co between the temperatures of approximately 300 and 400 K, which is lower than the sample temperature during ALD (300 °C = 573 K table temperature). Notably, the role of N-containing surface species has previously been addressed for the ALD of Pt and Ag using N$_2$ or NH$_3$ plasmas. Specifically, N-containing species were proposed to adsorb during the N$_2$ or NH$_3$ plasma exposures and to react with the precursor during the subsequent precursor dose.

In short, the QMS studies in Section 3.2 revealed the following. During the precursor and co-reactant subcycles, HCp (C_5H_6) is released for both the AB-NH$_3$ and AB-H$_2/N_2$ processes. In addition, fragments of the Cp ring (e.g., $C_5H_4^+$ and $C_5H_4N^+$) were detected during the plasma exposure. Furthermore, variation of the H$_2/N_2$ ratio showed that the NH$_x$ species (NH$_{y<3}$) play an important role in the growth mechanism. These observations suggest that during the precursor subcycle, the CoCp$_2$ molecules chemisorb to the surface and that part of the Cp rings react with H atoms present at the surface, followed by the release of HCp. This is illustrated in step “A” in Figure 7. Considering that chemisorbed H is not stable on a Co surface, it is speculated that NH$_x$ surface groups present after the plasma exposure provide the source of H (NH$_x$ with the subscript y is used to indicate the distinction from the NH$_x$ species in the plasma). Additional research such as surface Fourier-transform infrared spectroscopy (FTIR) is required to identify the surface groups to which the precursor binds. Possibly the precursor chemisorbs directly to unoccupied Co surface sites or to the NH$_x$ species after the release of HCp.

In the co-reactant subcycle, the Cp ligands remaining after precursor dosing are eliminated by the NH$_x$ radical species from the plasma (NH$_{x<3}$). This reaction leads to the formation of HCp and C$_5$, H$_2$, and N-containing fragments, as illustrated in step “B” in Figure 7. The release of HCp was also observed during the NH$_3$ plasma exposure in the work of Oh et al. Moreover, Shimizu et al. and Yuan et al. used NH$_3$ as the co-reactant gas for Co and Ni hot-wire ALD using CoCp$_2$ and NiCp$_2$ as precursors, respectively, and claimed that the NH$_x$ gas-phase species formed on the hot wire are needed for the dissociation of the metal–Cp bond.

In the reaction mechanism shown in Figure 7, the NH$_{x<3}$ species generated in the plasma thus fulfill this role. Furthermore, the NH$_{x<3}$ species as well as NH$_2$ lead to the formation of NH$_x$ surface groups, which react with the precursor molecules in the next cycle. Although NH$_2$ can dissociate after adsorption on a clean Co surface, it is believed that the NH$_{x<3}$ species are essential for complete ligand removal.

Note that a small amount of N (~2–3 at. %) is present in the Co films deposited using the AB-NH$_3$ and AB-H$_2/N_2$ processes and that this content is slightly higher (~4.5 at. %) in the (sub)surface region (see Figure S9). This corroborates the expectation based on the surface science literature that N-containing species (e.g., NH$_x$) are present and that they are more stable on the surface than in the bulk. However, a remaining question is how the surface NH$_x$ species leave the film, such that they are not incorporated in the film. Because the films contain only a small amount of N, it is speculated that most of the N diffuses out of the surface region and desorbs in the form of either NH$_2$ or N$_2$.

Interestingly, an analogy appears to exist between the proposed reaction mechanism and the ALD growth of noble metals using O$_2$ as the co-reactant. During noble metal ALD, chemisorbed O plays a crucial role in the reaction mechanism, while the stability of noble metal oxides is limited. This is similar to the ALD of Co, where NH$_x$ species appear needed for chemisorption of the precursor and removal of the Cp ligands but are not built into the film.

5. CONCLUSIONS

The use of H$_2$, N$_2$, and NH$_3$-based plasmas as co-reactants for the ALD of Co using CoCp$_2$ was investigated. A direct
comparison was made between ALD processes with a NH\textsubscript{3} plasma and a combined H\textsubscript{2}/N\textsubscript{2} plasma as the co-reactant. It was shown that the NH\textsubscript{3} and H\textsubscript{2}/N\textsubscript{2} plasmas contain comparable plasma species, including NH\textsubscript{x}, although the relative concentrations are different. Moreover, the reaction products detected during the plasma subcycle are very similar, suggesting analogous reaction pathways. Variation of the mixing ratio of H\textsubscript{2} and N\textsubscript{2} in the H\textsubscript{2}/N\textsubscript{2} plasma showed that the lowest resistivity is achieved for the ratios with the highest NH\textsubscript{x} concentration. In addition, the films deposited using plasmas with a lower NH\textsubscript{x} concentration contained significant amounts of O impurities. Deposition using an ABC-type cycle with consecutive N\textsubscript{2} and H\textsubscript{2} plasma steps resulted in a Co film with significant amounts of impurities and a high resistivity. These insights indicate that the NH\textsubscript{x} species present in both the NH\textsubscript{3} and H\textsubscript{2}/N\textsubscript{2} plasmas are necessary for eliminating the precursor ligands and for obtaining high-purity films, which explains why H\textsubscript{2} plasmas or N\textsubscript{2} plasmas are not suitable as co-reactants. Furthermore, on the basis of the QMS results and surface science literature, a reaction mechanism was proposed where NH\textsubscript{x} play an essential role, leading to the release of H\textsubscript{2}O in both subcycles.

Overall, the work shows that the plasma composition can strongly affect the obtained material properties and that the co-reactant of a metal ALD process should be carefully selected. Specifically, when using a H\textsubscript{2}/N\textsubscript{2} plasma for Co ALD, selecting the H\textsubscript{2}/(H\textsubscript{2} + N\textsubscript{2}) ratio is crucial. Other literature reports further illustrate the importance of choosing a suitable co-reactant and demonstrate that NH\textsubscript{3} or H\textsubscript{2}/N\textsubscript{2} plasmas can be preferred over other co-reactants. This suggests that the findings of this work can be generalized and can also apply to other metal ALD processes.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.8b06342.

Additional OES and QMS data on the plasma composition, detailed description of the QMS procedures, assignment of species to corresponding m/z ratios, QMS data collected during the precursor subcycle, saturation curves, and XPS data showing the elemental film composition and ion currents for m/z = 16 and 17 as a function of H\textsubscript{2}/(H\textsubscript{2} + N\textsubscript{2}) for 13 and 75 mTorr, respectively (PDF).

AUTHOR INFORMATION

E-mail: a.j.m.mackus@tue.nl.

ORCID

Martijn J. Vos: 0000-0002-7380-5032

W. M. M. Erwin Kessels: 0000-0002-7630-8226

Adriaan J. M. Mackus: 0000-0001-6944-9867

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors gratefully acknowledge J. J. A. Zeebregts, C. A. A. van Helvoirt, and C. van Bommel for technical assistance and Dr. Harm Knoops and Dr. Nick Thissen for fruitful discussion. The authors would also like to thank Dr. M. A. Verheijen for the TEM analysis. Soilliance and the Dutch province of Noord-Brabant are acknowledged for funding the TEM facility. This work was financially supported by the Netherlands Organization for Scientific Research (NWO) through the Zwaartekracht program “Research Centre for Integrated Nanophotonics.”

REFERENCES

1. George, S. M. Atomic Layer Deposition: An Overview. *Chem. Rev.* 2010, 110, 111–131.

2. Mikkulainen, V.; Leskelä, M.; Leskelä, M.; Puurunen, R. L. Crystallinity of Inorganic Films Grown by Atomic Layer Deposition: Overview and General Trends. *J. Appl. Phys.* 2013, 113, 021301.

3. Hämäläinen, J.; Ritala, M.; Leskelä, M. Atomic Layer Deposition of Noble Metals and Their Oxides. *Chem. Mater.* 2014, 26, 786–801.

4. Bernal Ramos, K.; Saly, M. J.; Chabal, Y. J. Precursor Design and Reaction Mechanisms for the Atomic Layer Deposition of Metal Films. *Coord. Chem. Rev.* 2013, 257, 3271–3281.

5. Kalanyan, B.; Losego, M. D.; Oldham, C. J.; Parsons, G. N. Low-Temperature Atomic Layer Deposition of Tungsten Using Tungsten Hexafluoride and Highly-Diluted Silane in Argon. *Chem. Vap. Depos.* 2013, 19, 161–166.

6. Grubbs, R. R.; Steinmetz, N. J.; George, S. M. Gas phase reaction products during tungsten atomic layer deposition using WF\textsubscript{6} and S\textsubscript{2}e\textsubscript{2}. *J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.-Process., Meas., Phenom.* 2002, 20, 1118–1121.

7. Kleseko, J. P.; Kerring, M. M.; Winter, C. H. Low Temperature Thermal Atomic Layer Deposition of Cobalt Metal Films. *Chem. Mater.* 2016, 28, 700–703.

8. Golrokhi, Z.; Marshall, P. A.; Romanis, S.; Rushworth, S.; Chalker, P. R.; Potter, R. J. The Influence of Tertiary Butyl Hydrazine as a Co-Reactant on the Atomic Layer Deposition of Silver. *Appl. Surf. Sci.* 2017, 399, 123–131.

9. Kim, H.; Kelloch, A. J.; Rossnagel, S. M. Growth of Cubic-TaN Thin Films by Plasma-Enhanced Atomic Layer Deposition. *J. Appl. Phys.* 2002, 92, 7080–7085.

10. Ten Eyck, G. A.; Pimanpang, S.; Juneja, J. S.; Bakhr, H.; Lu, T. M.; Wang, G. C. Plasma-Enhanced Atomic Layer Deposition of Palladium on a Polymer Substrate. *Chem. Vap. Depos.* 2007, 13, 307–311.

11. Alevli, M.; Orgit, C.; Donmez, I.; Biyikli, N. The Influence of N2/H2 and Ammonia N Source Materials on Optical and Structural Properties of AlN Films Grown by Plasma Enhanced Atomic Layer Deposition. J. *Cryst. Growth* 2011, 335, 51–57.

12. Hong, T. E.; Mun, K.-Y.; Choi, S.-K.; Park, J.-Y.; Kim, S.-H.; Cheon, T.; Kim, W. K.; Lim, B.-Y.; Kim, S. Atomic Layer Deposition of Ru Thin Film Using N2/H2 Plasma as a Reactant. *Thin Solid Films* 2012, 520, 6100–6105.

13. Hämäläinen, J.; Puukilainen, E.; Kemell, M.; Costelle, L.; Ritala, M.; Leskelä, M. Atomic Layer Deposition of Iridium Thin Films by Consecutive Oxidation and Reduction Steps. *Chem. Mater.* 2009, 21, 4868–4872.

14. Hämäläinen, J.; Puukilainen, E.; Sajavara, T.; Ritala, M.; Leskelä, M. Low Temperature Atomic Layer Deposition of Noble Metals Using Ozone and Molecular Hydrogen as Reactants. *Thin Solid Films* 2013, 531, 243–250.

15. Lu, J.; Elam, J. W. Low Temperature ABC-Type Ru Atomic Layer Deposition through Consecutive Disissociative Chemisorption, Combustion, and Reduction Steps. *Chem. Mater.* 2015, 27, 4950–4956.

16. Mackus, A. J. M.; Garcia-Alonso, D.; Knoops, H. C. M.; Bol, A. A.; Kessels, W. M. M. Room-Temperature Atomic Layer Deposition of Platinum. *Chem. Mater.* 2013, 25, 1769–1774.

17. Kim, S.-W.; Kwon, S.-H.; Jeong, S.-J.; Park, J.-S.; Kang, S.-W. Improvement of Morphological Stability of PEALD-Iridium Thin Films by Adopting Two-Step Annealing Process. *Electrochem. Solid-State Lett.* 2008, 11, H303.
(18) Sari, W.; Eom, T.-K.; Kim, S.-H.; Kim, H. Plasma Enhanced Atomic Layer Deposition of Ruthenium Thin Films Using Isopropylmethylbenzene-Cyclohexadiene-Ruthenium and NH[sub 3] Plasma. J. Electrochem. Soc. 2011, 158, D42–D47.

(19) Minjauw, M. M.; Solano, E.; Sree, S. P.; Asapu, R.; Van Dalee, M.; Ramachandran, R. K.; Heremans, G.; Verbruggen, S. W.; Lenaerts, S.; Martens, J. A.; et al. Plasma-Enhanced Atomic Layer Deposition of Silver Using Ag/FdG(PEt3) and NH3-Plasma. Chem. Mater. 2017, 29, 7114−7121.

(20) Lee, H.-B.-R.; Bang, S.-H.; Kim, W.-H.; Gu, G. H.; Lee, Y. K.; Chung, T.-M.; Kim, C. G.; Park, C. G.; Kim, H. Plasma-Enhanced Atomic Layer Deposition of Ni. Jpn. J. Appl. Phys. 2010, 49, 05SF11.

(21) Kim, H.; Detavenier, C.; Van Der Straten, O.; Rossnagel, S. M.; Kellock, A. J.; Park, D.-G. Robust TaNx Diffusion Barrier for Cu-Interconnect Technology with Subnanometer Thickness by Metal-Organic Plasma-Enhanced Atomic Layer Deposition. J. Appl. Phys. 2005, 98, 014308.

(22) Chung, H.-S.; Kwon, J.-D.; Kang, S.-W. Plasma-Enhanced Atomic Layer Deposition of TaN Thin Films Using Tantalum-Pentafluoride and N2/H2/Ar Plasma. J. Electrochem. Soc. 2006, 153, C751.

(23) Ozgit-Akgun, C.; Goldenberg, E.; Oktay, A. B.; Biyikli, N. Hollow Cathode Plasma-Assisted Atomic Layer Deposition of Crystalline a-AlN, a-GaN and AlxGa1−xN Thin Films at Low Temperatures. J. Mater. Chem. C 2014, 2, 2123−2136.

(24) Alevli, M.; Hungor, N. Influence of N2/H2 and N2 Plasma on Binary Ni3-Nitride Films Prepared by Hollow-Cathode Plasma-Assisted Atomic Layer Deposition. J. Vac. Sci. Technol., A 2018, 36, 01A110.

(25) Rumble, J. R. CRC Handbook of Chemistry and Physics, 98th ed.; CRC-Press: Boca Raton, FL, 2017.

(26) Li, L.; Han, D.; Wei, W.; Liu, Z.; Zhang, F.; Mao, X.; Wang, P.; Hou, H. Interlayer Exchange Coupling in [Pt/Co/nMgO/Co/Pt] Perpendicular Magnetic Tunnel Junctions. J. Appl. Phys. 2014, 116, 123904.

(27) Hwang, I. Y.; Kim, J. H.; Oh, S. K.; Kang, H. J.; Lee, Y. S. Ultrathin Cobalt Silicide Film Formation on Si(100). Surf. Interface Anal. 2003, 35, 184−187.

(28) Lee, H.-B.-R.; Son, J.; Kim, H. Nitride Mediated Epitaxy of Co on SiO2 through Self-Interlayer-Formation of Plasma-Enhanced Atomic Layer Deposition Co. Appl. Phys. Lett. 2007, 90, 213509.

(29) Tokei, Z.; Iof, I.; Roussel, P.; Debacker, P.; Raghavan, P.; Van Der Veen, M. H.; Jourdan, N.; Wilson, C. J.; Gonzalez, V. V.; Der Veen, M. H.; Jourda
Spectra of Glow, Townsend-like and Radiofrequency DBDs in N2-H2 Plasmas. J. Phys. Chem. A 2007, 111, 11460–11472.

Van Helden, J. H.; Wagemans, W.; Yagci, G.; Zijlmans, R. A. B.; Schram, D. C.; Engelh, R.; Lombardi, G.; Stancu, G. D.; Röpcke, J. Detailed Study of the Plasma-Activated Catalytic Generation of Ammonia in N2-H2 Plasmas. J. Appl. Phys. 2007, 101, 043305.

Mackus, A. J. M.; Heil, S. B. S.; Langereis, E.; Knoops, H. C. M.; van de Sanden, M. C. M.; Kessels, W. M. M. Optical Emission Spectroscopy as a Tool for Studying, Optimizing, and Monitoring Plasma-Assisted Atomic Layer Deposition Processes. J. Vac. Sci. Technol., A 2010, 28, 77–87.

Gast, R.; Gavaler, S.; Pearse, A. G. The Identification of Molecular Spectra; Chapman & Hall: London, 1950.

Bazinette, R.; Paillol, J.; Massines, F. Optical Emission Spectroscopy of Glow, Townsend-like and Radiofrequency DBDs in an Ar/NH3 mixture. Plasma Sources Sci. Technol. 2015, 24, 055021.

Nagai, H.; Takashima, S.; Hiramatsu, M.; Hori, M.; Goto, T. Behavior of Atomic Radicals and Their Effects on Organic Low Dielectric Constant Film Etching in High Density N2/H2 and N2/NH3 Plasmas. J. Appl. Phys. 2002, 91, 2615–2621.

Amorim, J.; Baravian, G.; Sultan, G. Absolute Density Measurements of Ammonia Synthesized in N2-H2 Mixture Discharges. Appl. Phys. Lett. 1996, 68, 1915–1917.

Roscioli, J. R.; Zahniser, M. S.; Nelson, D. D.; Herndon, S. C.; Kolb, C. E. New Approaches to Measuring Sticky Molecules: Improvement of Instrumental Response Times Using Active Passivation. J. Phys. Chem. A 2016, 120, 1347–1357.

Dean, J. A. Lange’s Handbook of Chemistry, 15th ed.; McGraw-Hill: New York, 1999; Vol. S.

Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Chastain, J., Ed.; Perkin-Elmer Corporation: Minnesota, 1992.

Gaydon, R. W. B.; Pearse, A. G. Handbook of Chemistry and Physics, 85th ed.; CRC Press, 2007.

Moir, C.; Islam, M. S.; Groza, J. R. Physical and Chemical Vapor Deposition Processes. In Materials Processing Handbook; Groza, J. R., Shackelford, J. F., Lavernia, E. J., Powers, M. T., Eds.; CRC Press, 2007.

Nastasi, M.; Misra, A.; Mayer, J. W. Ion Beam Assisted Deposition. In Materials Processing Handbook; Groza, J. R., Shackelford, J. F., Lavernia, E. J., Powers, M. T., Eds.; CRC Press, 2007.

Kizilkaya, A. C.; Niemantsverdriet, J. W.; Weststrate, C. J. Ammonia Adsorption and Decomposition on Co(0001) in Relation to Fischer-Tropsch Synthesis. J. Phys. Chem. C 2016, 120, 3834–3845.

Wang, T.; Yan, Z.; Michel, C.; Pera-Titus, M.; Sautet, P. Trends and Control in the Nitridation of Transition-Metal Surfaces. ACS Catal. 2018, 8, 63–68.

van Helden, P.; van den Berg, J.-A.; Weststrate, C. J. Hydrogen Adsorption on Co Surfaces: A Density Functional Theory and Temperature Programmed Desorption Study. ACS Catal. 2012, 2, 1097–1107.

Zowtiak, J. M.; Bartholomew, C. H. The Kinetics of H2 Adsorption on and Desorption from Cobalt and the Effects of Support Thereon. J. Catal. 1983, 83, 107–120.

Gopalakrishnan, R.; Viswanathan, B. Interaction of CO and Hydrogen on Cobalt Surfaces: A Temperature-Programmed Desorption Study. Surf. Technol. 1984, 23, 173–177.

Longrie, D.; Devloo-Casier, K.; Deduytsche, D.; Van den Berghe, S.; Driesen, K.; Detavernier, C. Plasma-Enhanced ALD of Platinum with O2, N2 and NH3 Plasmas. ECS J. Solid State Sci. Technol. 2012, 1, Q123–Q129.

Dendooven, J.; Ramachandran, R. K.; Solano, E.; Kurttepeli, M.; Geerts, L.; Heremans, G.; Rongé, J.; Minjauw, M. M.; Dobbelare, T.; Devloo-Casier, K.; et al. Independent Tuning of Size and Coverage of Supported Pt Nanoparticles Using Atomic Layer Deposition. Nat. Commun. 2017, 8, 1074.

Oh, I. K.; Kim, H.; Lee, H. B. R. Growth Mechanism of Co Thin Films Formed by Plasma-Enhanced Atomic Layer Deposition Using NH3 as Plasma Reactant. Curr. Appl. Phys. 2017, 17, 333–338.

Yuan, G.; Shimizu, H.; Momose, T.; Shimogaki, Y. Role of NH3 Feeding Period to Realize High-Quality Nickel Films by Hot-Wire-Assisted Atomic Layer Deposition. Microelectron. Eng. 2014, 120, 230–234.

Mackus, A. J. M.; Leick, N.; Baker, L.; Kessels, W. M. M. Catalytic Combustion and Dehydrogenation Reactions during Atomic Layer Deposition of Platinum. Chem. Mater. 2012, 24, 1752–1761.