ABSTRACT

We present new H i imaging and spectroscopy of the 14 UV-selected star-forming galaxies in the Lyman Alpha Reference Sample (LARS), aimed for a detailed study of the processes governing the production, propagation, and escape of Lyα photons. New H i spectroscopy, obtained with the 100 m Green Bank Telescope (GBT), robustly detects the H i spectral line in 11 of the 14 observed LARS galaxies (although the profiles of two of the galaxies are likely confused by other sources within the GBT beam); the three highest redshift galaxies are not detected at our current sensitivity limits. The GBT profiles are used to derive fundamental H i line properties of the LARS galaxies. We also present new pilot H i spectral line imaging of five of the LARS galaxies obtained with the Karl G. Jansky Very Large Array (VLA). This imaging localizes the H i gas and provides a measurement of the total H i mass in each galaxy. In one system, LARS 03 (UGC 8335 or Arp 238), VLA observations reveal an enormous tidal structure that extends over 160 kpc from the main interacting systems and that contains \(\gg 10^9 \) \(\text{M}_\odot \) of H i. We compare various H i properties with global Lyα quantities derived from the Lyα escape fraction with the Hubble Space Telescope measurements. The measurements of the Lyα escape fraction are coupled with the new direct measurements of H i mass and significantly disturbed H i velocities. Our robustly detected sample derives tentative correlations between the total H i mass and linewidth, and key Lyα tracers. Further, on global scales, these data support a complex coupling between Lyα propagation and the H i properties of the surrounding medium.

Key words: galaxies: ISM – galaxies: kinematics and dynamics – galaxies: starburst – radio lines: galaxies

Online-only material: color figures

1. INTRODUCTION

The Lyman-alpha emission line (Lyα) at 1216 Å fills several extremely important roles in observations of the high-redshift (\(z \)) universe. As recombination nebulae re-process one-third of the raw ionizing power of hot stars into a single spectral emission feature, it acts as a luminous spectral beacon by which to identify galaxies at the highest redshifts (see, e.g., Hayes et al. 2010 and references therein). Further, at the highest redshift it provides the potential for the all-important spectroscopic confirmation of distant galaxies selected by other methods, transforming the status of candidates to objects with secure redshifts (e.g., Stark et al. 2010).

Lyα is a resonance line, and photons scatter wherever they encounter neutral hydrogen atoms. This scattering may occur in the interstellar medium (ISM) of the galaxies themselves, or in the circumgalactic medium (CGM) that immediately surrounds them. Scattering in the CGM can lead to extended Lyα structures such as those found in high-\(z \) Lyα emitters (LAE) by Steidel et al. (2011) and Zheng et al. (2011) among others. Inside the ISM, the radiative transport of Lyα depends strongly on dust extinction (Atek et al. 2014). This dependence, however, shows large scatter due to the complicated resonant scattering of Lyα, in which the visibility of the line is influenced by a large number of factors, including dust content (Charlot & Fall 1993; Verhamme et al. 2008; Atek et al. 2009; Hayes et al. 2010), dust geometry (Scarlata et al. 2009), neutral gas content and kinematics (Kunth et al. 1998; Mas-Hesse et al. 2003; Cannon et al. 2004), and gas geometry (Neufeld 1991; Giavalisco et al. 1996; Hansen & Oh 2006; Laursen et al. 2011; Duval et al. 2014). Taken together, these myriad factors indicate that the true total escape fraction of Lyα photons (\(f_{\text{esc}} \); defined as the ratio of observed to intrinsic Lyα luminosity; Hayes et al. 2005, 2013), is still poorly understood. Thus, photometric measurements of Lyα will reflect the underlying properties of galaxies only in the very broadest statistical sense.
The only way to remedy this complicated situation is to study the Lyα emission line in a sample of star-forming galaxies on a spatially resolved basis. From the UV perspective, obtaining Lyα images in the nearby universe is expensive and requires space-based platforms. To this end, our team has acquired data from the Hubble Space Telescope (HST) to produce Lyα images of a statistically selected sample of star-forming galaxies in the low-z universe (see G. ¨Ostlin et al., in preparation); details about the image processing methods can be found in Hayes et al. (2009). This program, called the “Lyman Alpha Reference Sample” (“LARS”), includes HST Cycle 18 imaging and Cycle 19 spectroscopic observations of 14 galaxies. These HST data sets form the backbone of a comprehensive multi-wavelength observational campaign that will allow great strides forward in our understanding of Lyα radiative transport. Since the LARS sample is selected on UV luminosity and Hα equivalent width, and not on Lyα characteristics, the composite sample was designed to overlap with both high-z and low-z star-forming galaxies. LARS will form a critical local interpretive benchmark for studies of high-z galaxies for decades to come, and is well placed to take advantage of the remaining HST lifetime and motivate future observations with JWST.

The LARS program (including sample selection) is described in detail in ¨Ostlin et al. (2014) and Hayes et al. (2014), hereafter referred to as Papers I and II respectively. Preliminary results derived from the Lyα images of the LARS galaxies are presented in Hayes et al. (2013). That work showed that in many LARS galaxies, Lyα emission is prominent on physical scales that exceed those of both the massive stellar populations and the star formation regions that give rise to the Lyα photons; this trend is very prominent in the panels of Figures 1–3, which show optical and UV images of the LARS galaxies. This may point towards Lyα photons being resonantly scattered to large radii in most of the LARS galaxies, although other possibilities have been proposed, such as ionization caused by hot plasma (Ot´ı-Floranes et al. 2012). It is likely that multiple of the aforementioned physical properties (dust content and geometry, neutral gas content, kinematics, geometry) are facilitating this efficient resonant scattering.

In order to decouple the effects of dust and neutral gas kinematics and densities, the Lyα images must be compared with spatially resolved information about the neutral ISM. While UV and optical absorption line spectroscopy offers one avenue to address this issue, such data are limited to those regions in the foreground of only the brightest continuum sources (usually the emission line nebulae themselves). While our team is pursuing such analyses (see T. Rivera-Thorsen et al., in preparation, and Lyα profile modeling from I. Orlitova et al., in preparation), these avenues should be complemented by direct probes of the neutral interstellar medium in all regions of the LARS galaxies. To this end, in this manuscript we begin a detailed exploration of the neutral hydrogen in the LARS galaxies by presenting new single-dish HI spectroscopy and spatially resolved interferometric HI imaging. We use these data to derive global properties and to study the properties of the HI gas on bulk scales.

Previous spatially resolved HI observations of galaxies in which Lyα radiative transport has been studied in detail are few. While the sample of systems with spectroscopic information about Lyα is robust, there are comparatively few systems that have direct Lyα imaging (see the discussion in Hayes et al. 2005, 2009; ¨Ostlin et al. 2009 and references therein). For

![Figure 1](https://example.com/figure1.png)
those systems that do, there has, until the present work, been no systematic investigation of the H\textsubscript{i} on a spatially resolved basis; only a few selected systems have detailed H\textsubscript{i} studies in the literature.

Cannon et al. (2004) presented H\textsubscript{i} observations of two of the most well-studied and nearby Ly\textsubscript{α}-emitting galaxies in the local universe, ESO 338―IG 004 (Tol 1924–416) and IRAS 08339+6517. In each galaxy, extended neutral gas connects the target and nearby neighbors, suggesting that interactions have played an important role in triggering the massive starbursts in ESO 338―IG 004 and IRAS 08339+6517. The close proximity of the companions suggests that the interactions were recent. Since both primary systems are Ly\textsubscript{α} emitters, these data support two possible interpretations of Ly\textsubscript{α} escape from starburst galaxies: either (1) the bulk ISM kinematics provides the means of escape for Ly\textsubscript{α} photons by shifting H\textsubscript{i} atoms out of resonance, or (2) the H\textsubscript{i} is sufficiently clumpy on scales below our resolution to allow for efficient Ly\textsubscript{α} escape. These interpretations are further supported by H\textsubscript{i} (Bergvall & Jorsater 1988) and Ly\textsubscript{α} observations (Kunth et al. 1998) of ESO400―G43.

In this work, we begin to extend this type of analysis to the entire LARS sample. Basic properties of the LARS galaxies are summarized in Table 1. Figures 1–3 show optical and UV images of the 14 LARS galaxies, with the left and right columns displaying the color HST images and the SDSS color images respectively. The right column includes the immediate surroundings, while the left column has smaller fields of view, and are scaled to show detail in the galaxies.
We organize this manuscript as follows. In Section 2 we describe the data acquisition, reduction, and analysis. Section 3 presents the single-dish H i profiles of the 14 LARS galaxies, while Section 4 presents spatially resolved H i images of 5 of the 14 LARS systems. We discuss each system individually in Section 5, and discuss various correlations between galaxy global properties in Section 6. We draw our conclusions in Section 7. Throughout this paper we adopt the value of $H_0 = 70 \pm 1.4 \text{ km s}^{-1} \text{ Mpc}^{-1}$ from the averaged WMAP 7 yr data as presented in Komatsu et al. (2011).

2. OBSERVATIONS, DATA REDUCTION AND ANALYSIS

2.1. GBT Data

We obtained data from the National Radio Astronomy Observatory 100 m Robert C. Byrd Green Bank Telescope (GBT) under program GBT/11A-057 (Legacy ID QO13; PI: Östlin). Data were acquired in four observing sessions in 2011 March and April. Position switching observations were performed for all sources; 32,768 channels over the 12.5 MHz of total bandwidth produce a spectral resolution of 381.469 Hz (0.08 km s$^{-1}$ ch$^{-1}$).

All reductions were performed in the IDL environment, using the GTBIDL package designed at NRAO. We first imported the raw data for each galaxy into GTBIDL using standard averaging techniques, with zenith opacity coming from atmospheric data from the NRAO CLEO weather system. The data was moderately contaminated by terrestrial radio frequency interference (RFI); bad data were identified by examining individual spectra, blanked, and interpolated.

The standard position switching algorithms in GTBIDL were used to produce a combined spectrum for each galaxy. To increase the signal-to-noise ratio (S/N) of the observations we first averaged the reference spectrum by 16 channels. This procedure can have a negative effect on the baseline shape, increasing the order of the polynomial (often third order) that we used to fit and subtract the continuum (see Table 2 for the order of the fit for each galaxy). The S/N was quite low on most of the LARS galaxies and we thus smoothed our spectrum by 256 channels resulting in a velocity resolution of $\sim 20 \text{ km s}^{-1}$. Flux and width measurements were taken on this smoothed profile. Two regions were selected by hand for each galaxy: the first around the profile, and the second in an area free from RFI (used as an rms noise region).

The redshifts of the LARS galaxies (see Table 1) place some of them in proximity to a bandpass filter in the 1.2–1.3 GHz region. This bandpass filter is designed to shield against a local radar signal, but contributes higher than usual system temperature (T_{sys}) values (and therefore system noise) to calibrated data in this frequency range. Further, the T_{sys} values fluctuated markedly from one spectral scan to the next. The affected galaxies were all nondetections (LARS 12, LARS 13, and LARS 14) and have markedly higher T_{sys} values (in particular LARS 13) than would otherwise be expected. It should also be noted that these three galaxies are at the largest redshifts in our sample.

Systematically measuring the flux and width of irregular, low S/N, H i spectra can be challenging. To do so, we have modified previously well known measurement techniques and find that they are robust over the range of S/N and profile shapes in our data. Our measurement routines take as inputs the smoothed spectrum and the region suspected of containing the galaxy. In our initial tests of archival data for NGC 5291 (available in the distribution of GTBIDL), we found that hand selecting regions of the profile could add additional bias, causing the width and flux measurements to vary by 2%–5%. Instead, we opted to use χ^2 minimization techniques to fit Gaussian components (a single component fit for galaxies with a single peak and a multi component fit for double-horned profiles) to the smoothed spectrum. These components were used to guide later analysis and ensured repeatability in our results even with low S/N. These Gaussian fits serve only to guide analysis, however, and the flux and width measurements follow the methodology

Table 1

Galaxy	Alternate Name	R.A. (J2000)	Decl. (J2000)	V_{opt} (km s$^{-1}$)	z_{opt}	Distance (Mpc)	Morphological Type
LARS 01	Mrk 259	13:28:44.50	+43:55:50	8394	0.028	120	Dwarf Irregular
LARS 02	SDSS J090704.88+532656.6	09:07:04.88	+53:26:56	8934	0.030	130	Dwarf Irregular
LARS 03	Arp 238	13:15:35.60	+62:07:28	9204	0.031	130	Merger
LARS 04	SDSS J130728.45+542652.3	13:07:28.45	+54:26:52	9743	0.033	140	Irregular
LARS 05	Mrk 1486	13:59:50.91	+57:26:22	10133	0.034	150	Edge-on Dwarf Spiral
LARS 06	KISSR 2019	15:45:44.52	+44:15:51	10223	0.034	150	Dwarf Irregular
LARS 07	IRAS 1313+2938	13:16:03.91	+29:22:54	11332	0.038	170	Dwarf Edge-on Spiral
LARS 08	SDSS J125013.50+073441.5	12:50:13.50	+07:34:41	11452	0.038	170	Spiral
LARS 09	IRAS 0820+2816	08:23:54.96	+28:06:21	14150	0.047	210	Edge-on Spiral
LARS 10	Mrk 0061	13:01:41.52	+29:22:52	17208	0.057	260	Merger
LARS 11	SDSS J140347.22+062812.1	14:03:47.22	+06:28:12	25302	0.084	380	Edge-on Spiral
LARS 12	SBS 0934+547	09:38:13.49	+54:28:25	30608	0.102	470	Dwarf Irregular
LARS 13	IRAS 0147+1254	01:50:28.39	+13:08:58	43979	0.147	700	Irregular
LARS 14	SDSS J092600.40+442736.1	09:26:00.40	+44:27:36	54172	0.181	880	Dwarf

Notes.

a Derived from SDSS spectroscopy.

b Values derived from luminosity distance.

c Morphologies provided to guide the reader and are presented from optical imaging and Paper II. Irregulars have no obvious spiral structure in the optical disk and mergers have an obvious interacting companion. Galaxies marked as dwarves have stellar masses lower than 10^{10} M_\odot.

13 The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

14 Exelis Visual Information Solutions, Boulder, CO.
Table 2
Observed and Derived GBT H I Properties

Galaxy	V_{20}^a (km s⁻¹)	W_{20}^{b,c} (km s⁻¹)	W_{50}^b (km s⁻¹)	Velocity Offset (km s⁻¹)	S_{20}^d (Jy km s⁻¹)	M_{21} (10⁹ M_{\odot})	SNR (Sum, Peak)	RMS (mJy)	Baseline^e	Fit Order	Type^f
LARS 01	8339 ± 5	160 ± 10	180 ± 16	−55 ± 5	0.70 ± 0.07	2.5 ± 0.3	(3.1, 6.5, 310 N)	1.1	2	D	
LARS 02	8940 ± 8	140 ± 17	150 ± 26	3 ± 8	0.70 ± 0.07	2.8 ± 0.3	(2.2, 2.9, 16)	1.8	3	D	
LARS 03	9421 ± 20	310 ± 39	380 ± 62	230 ± 30	1.6 ± 0.2	6.9 ± 0.7	(3.1, 4.9, 310 N)	1.2	3	D	
LARS 04	9740 ± 16	150 ± 31	260 ± 49	−3 ± 16	1.6 ± 0.2	7.7 ± 0.8	(5.1, 11, 310 N)	1.0	3	S	
LARS 05	10117 ± 14	160 ± 28	170 ± 44	−10 ± 14	<0.55	<2.9	(1.3, 1.5)	1.1	1	I	
LARS 06	10378 ± 12	370 ± 3	390 ± 5	155 ± 2	4.4 ± 0.4	23 ± 2	(9.5, 18, 310 N)	1.1	3	D	
LARS 07	11315 ± 16	100 ± 32	170 ± 50	−10 ± 16	0.47 ± 0.05	3.1 ± 0.3	(3.3, 6.2, 310 N)	0.86	3	S	
LARS 08	11468 ± 23	310 ± 47	470 ± 73	20 ± 23	3.4 ± 0.3	22 ± 2	(5.7, 11, 310 N)	0.91	3	I	
LARS 09	14020 ± 46	270 ± 92	490 ± 140	−130 ± 46	1.2 ± 0.1	13 ± 1	(2.8, 7.3, 310 N)	0.73	3	S	
LARS 10	17284 ± 69	280 ± 140	380 ± 220	70 ± 69	0.29 ± 0.03	4.5 ± 0.5	(1.1, 2.1, 310 N)	0.69	3	C	
LARS 11	25366 ± 56	260 ± 11	290 ± 18	65 ± 6	0.75 ± 0.08	26 ± 3	(2.9, 6.4, 310 N)	0.89	3	D	
LARS 12	(306009)	(264)	(290)	N/A	<2.9	<150	N/A	3.4	3	N	
LARS 13	(43980)	(264)	(290)	N/A	<33	<3800	N/A	38	5	N	
LARS 14	(54172)	(264)	(290)	N/A	<1.7	<310	N/A	2.0	1	N	

Notes.

^a Values from nondetections are from the SDSS optical redshifts.

^b These values are derived from fits to the slopes on either side of the profile. See discussion in Section 2.

^c Assumed linewidths for nondetections are the average linewidth of detected sources.

^d Upper limits are 1.5 times the local rms noise over the average W_{50} value (290 km s⁻¹).

^e Order of polynomial that was fit to the GBT baseline.

^f The classification of the profile: “S” for single-horned, “D” for double-horned, “C” for confusion caused by other galaxies, “I” for an irregular profile, “N” for no detection.

The error for the width and systemic velocity measurements is based on the equations found in Schneider et al. (1990)

$$
\sigma V = 1.5(W_{20} - W_{50}) (S/N)^{-1}.
$$

This equation is doubled to give the error of the width measurements W_{20} and W_{50}, which refer to the width at 20% and 50% of the maximum, respectively.

2.2. VLA Data

We obtained D-configuration Very Large Array H I spectral line imaging of five LARS galaxies under program VLA/13A-181 (Legacy ID AC 1123; PI: Cannon). These data were obtained with a standard WIDAR correlator configuration that provides 16 MHz of total bandwidth. 1024 channels deliver a native spectral resolution of 3.3 km s⁻¹. The data were acquired in 2013 March and April during seven observing sessions; details are summarized in Table 3.

Data reductions followed standard prescriptions in CASA and in AIPS. The wide bandwidth and frequency range of these observations resulted in a significant amount of RFI that was removed from the data. Bandpass and flux calibrations were derived using either 3C147 or 3C286 (see Table 3). The gains and phases were then calibrated using observations of the phase calibrators, which were typically separated by ~20 minutes of on-source integration time. The wide bandwidth allowed for hundreds of channels of line-free continuum to be fit and subtracted. For LARS 02 and LARS 09, which each had two separate observing sessions, we combined the separate observations into a single data set for each galaxy.

described in Springob et al. (2005). This method fits lines to the profile in the region over which it varies the most (here between 15% and 85% of the peak value) and measures width properties from these fits. Springob et al. (2005) found that this reduced the dependence on noise on their measurements versus direct measurements. We modified this method to respond better to low S/N measurements. We consider this method to be the “best representation” of the width measurements for these spectra, although it is not the only method (e.g., the busy function; Westmeier et al. 2014). We recorded two S/N based on the peak-to-rms ratio and on the integrated flux to integrated rms ratio.

The accuracy of GBT data using standard reduction techniques is quoted as 10% in the GBTIDL calibration guide. The primary error terms are the rms fluctuations of the spectra in the region around the target and the subjectivity of selecting the baseline regions and rms/profile regions. In testing it was seen that increasing the order of the baseline generally led to increasing error. We thus adopt a 10% flux error for “good” profiles and a conservative 20% for “irregular” profiles.

Special attention was paid to the error terms presented in Springob et al. (2005) as modified from Schneider et al. (1990). The error term given there adds an error associated with the quality of the baseline fit. Because we have assumed a separate baseline error, we remove this term to get a more or less standard error term:

$$
\epsilon_{S}^{\text{stat}} = \text{rms} \sqrt{W \Delta V},
$$

where $\epsilon_{S}^{\text{stat}}$ is the noise in units of Jy km s⁻¹, and W is the area of integration for the profile. The width at 50% of the maximum value (W_{50}) results reported are highly dependent on the accuracy of the method described in Springob et al. (2005) which, as mentioned in the above discussion, breaks down at lower S/N.
Table 3
VLA Observations of the LARS Galaxies

Galaxy	Observation Date (UT)	Primary Calibrator	Phase Calibrator	Flux Densitya (Jy)	Integration Time (minutes)
LARS 02	2013 Apr 3–4	0542+498 = 3C147	J0834+5534	8.28 ± 0.014	225.9
LARS 02	2013 Apr 5–6	0542+498 = 3C147	J0834+5534	8.35 ± 0.013	225.5
LARS 03	2013 Apr 14	1331+305 = 3C286	J1400+6210	4.42 ± 0.017	200.4
LARS 04	2013 Mar 30	1331+305 = 3C286	J1252+5634	2.29 ± 0.025	120.4
LARS 08	2013 Apr 16	1331+305 = 3C286	J1254+1141	0.858 ± 0.0058	119.8
LARS 09	2013 Mar 3–4	0542+498 = 3C147	J0741+3112	2.02 ± 0.0056	306.2
LARS 09	2013 Mar 26–27	0542+498 = 3C147	J0741+3112	2.09 ± 0.050	281.1

Note.a Flux density of phase calibrator derived during calibration.

Table 4
Observed and Derived VLA H\(i\) Properties

Galaxy	\(V_{\text{sys}}\) (km s\(^{-1}\))	\(W_{50}\) (km s\(^{-1}\))	\(W_{20}\) (km s\(^{-1}\))	Velocity Offset (km s\(^{-1}\))	\(S_{\text{HI}}\) (Jy km s\(^{-1}\))	\(M_{\text{HI}}\) (10\(^6\) \(M_\odot\))	RMS (mJy Beam\(^{-1}\))	\(\langle N_{\text{HI}}\rangle\) (10\(^{19}\) cm\(^{-2}\))
LARS 02	8960 ± 2	140 ± 4	150 ± 6	26 ± 6	0.36 ± 0.036	1.4 ± 0.15	0.50	2.6
LARS 03	9520 ± 10	170 ± 20	300 ± 32	316 ± 32	2.2 ± 0.22	7.8 ± 0.94\(^d\)	1.0	0.96
LARS 04	9760 ± 2	180 ± 4	190 ± 6	15 ± 6	1.2 ± 0.12	5.8 ± 0.58	1.0	4.8
LARS 08	11450 ± 2	240 ± 4	250 ± 7	−1 ± 7	1.8 ± 0.18	12. ± 1.2	1.0	2.6
LARS 09	14070 ± 9	310 ± 18	330 ± 28	−79 ± 28	0.60 ± 0.060	6.2 ± 0.62	0.50	1.2

Notes.
\(^a\) These values are derived from fits to the slopes on either side of the profile. See discussion in Section 2.
\(^b\) The final circular beam sizes of the VLA data presented here are 59′′, 62′′, 71′′, 72′′, and 59′′, for LARS 02, LARS 03, LARS 04, LARS 08, and LARS 09, respectively.
\(^c\) Average global value after convolving column density map to the resolution of our beam.
\(^d\) Mass of main component of galaxy not including tidal tail.

The calibrated data were then inverted and cleaned using the CLEAN algorithms in CASA. To maximize S/N, the data sets for LARS 04 and LARS 08 were spectrally smoothed to a final velocity resolution of 10 km s\(^{-1}\). A Gaussian UVTAPER was applied to produce cubes with beam sizes of ~1′; the resulting cubes were then convolved to circular beam sizes. The beam sizes and rms noises of the final datacubes are summarized in Table 4.

Moment maps were derived using standard blanking procedures. First, each datacube was spatially smoothed to a circular beam size that is larger than the original. The resulting smoothed cube was then blanked at the 2.5σ level, where σ is the rms noise in line-free channels of the cube. This blanked cube is then inspected by hand, and only features that are spatially coincident across two or more consecutive channels are deemed to be real emission and kept in the final blanked cube. This cube is then used as a blanking mask against the original, unconvolved cube. Moment maps are then derived using standard procedures. We assume a 10% uncertainty on the overall calibration and absolute flux scale of the VLA images.

It is important to emphasize that all of the LARS galaxies are at distances of more than 100 Mpc (\(c_{\text{opt}} \geq 0.028\); see Table 1; even with angular resolutions that are exquisite for H\(i\) work (e.g., 5′′ = 2.4 kpc at a distance of 100 Mpc), we are sensitive only to the bulk H\(i\) properties of the neutral gas in these galaxies. As such, the VLA images presented here are used only to study the global morphology and large-scale H\(i\) kinematics. A detailed study of the H\(i\) on finer physical scales will require deep observations in more extended array configurations.

2.3. Lyα Data

We use global Lyα data for all 14 LARS galaxies as presented in Paper I and Paper II. The HST data were obtained with the Wide Field Camera 3 and Advanced Camera for Surveys using Hα and Hβ filters, and a combination of \(U\), \(B\), and \(I\) bands for FUV continuum imaging. We also acquired data with the Solar Blind Channel using a bandpass designed to isolate Lyα emission.

We reduced imaging data using MULTIDRIZZLE\(^{18}\) in the standard HST pipelines and used the Lyman-alpha extraction Software (LaXs; Hayes et al. 2009) to continuum subtract the Lyα UV data. We refer the reader to Papers I and II for details of this process. The final global properties (see Paper I and Table 5) are measured within apertures that correspond to twice the Petrosian radius (\(r_p = 0.2\); Petrosian 1976). This reduces the effect of noise on the measurements at large radii.

3. GBT H\(i\) GLOBAL PROFILES

Presented in Figure 4 are the fully smoothed and reduced GBT H\(i\) profiles of the LARS galaxies. Plotted over these are the Gaussian fits in gray, solid lines in red showing the sides of the profile used in the peak \(W_{50}\) calculations, and the peak \(W_{50}\) line itself shown as a horizontal blue dotted line. A discussion of each galaxy is included below.

The observed properties from our GBT observations of each galaxy can be found in Table 2 along with properties derived

\(^{18}\) Fruchter & Sosey (2009).
from these methods described below. The distances of each galaxy are calculated from the standard LARS luminosity distances. The H I mass in units of M_\odot is calculated via $M_{HI} = 2.36 \times 10^5 D^2 S_{HI}$, where D is the distance in Mpc and S_{HI} is the H I flux integral in units of Jy km s$^{-1}$. We will discuss the mass for each galaxy in Section 5. Overall we find that our detections and mass estimates show a strong dependence on distance.

It is important to emphasize that the 8' primary beam of the GBT at 21 cm is sensitive to all H I-bearing objects in the observed frequency range. Even for the closest LARS galaxy (LARS 01; $D = 120 \pm 2$ Mpc), this 8' beam subtends a projected circular area that is nearly 280 kpc in diameter; the potential for contamination in the GBT beam is significant. We thus examined SDSS images of the area surrounding each LARS galaxy for nearby objects. Objects with spectroscopic data available from SDSS that might have contributed to the GBT flux are noted below. These objects have velocities within 300 km s$^{-1}$ of the target LARS galaxy and are within the 8' primary beamsize of the GBT. Optical images of the fields that contain possible confusing sources (LARS 06 and LARS 11) are shown in Figures 5 and 6; these two sources are discussed in more detail in Section 5. We used the SDSS g band to convert to luminosity L_g, which we compared with a log(M_{HI}/L_g) value of -0.5 for late type galaxies found in (Haynes & Giovanelli 1984). The masses of potential contamination galaxies are computed from this ratio. We also use the 22.2 mag limit for the SDSS to determine the possible contributions from optically dim sources of contamination. For our closest nine galaxies this is roughly $10^9 M_\odot$ of H I; this increases to 10^9 for our furthest two systems. This information is also presented in Table 2.

The profiles in Figure 4 show a variety of H I structure. Some galaxies are simple single peak profiles (e.g., LARS 04, LARS 09), while others show complex and asymmetric profiles (e.g., LARS 01, LARS 03). Still other systems have H I spectra that are almost certainly confused; the classic double-horn profile of LARS 06 is likely due to the contribution of UGC 10028, a large spiral galaxy located only 1' to the southeast of LARS 06 (see Figure 5).

Galaxy	L_{HI} (105 cgs)	$L_{Hα}$ (105 cgs)	j_{HI} (M$^{0.7}$ yr$^{-1}$)	SFRUV corr. (M$^{0.2}$ yr$^{-1}$)	Metallicity (12+log(O/H))	W_{HI} (A)	ξ_{HI}	M_* (108 M$_\odot$)
LARS 01	0.85 ± 0.09	0.63 ± 0.19	0.119 ± 0.012	3.14 ± 0.09	8.26 ± 0.04	33.0 ± 3.44	3.37 ± 1.33	6.10 ± 0.25
LARS 02	0.81 ± 0.02	0.58 ± 0.018	0.521 ± 0.015	1.01 ± 0.03	8.23 ± 0.04	81.7 ± 2.36	2.27 ± 0.15	2.35 ± 0.20
LARS 03	0.10 ± 0.02	0.117 ± 0.021	0.003 ± 0.000	2.41 ± 0.07	8.38 ± 0.20	16.3 ± 2.71	0.77 ± 0.10	0.15 ± 0.16
LARS 04	0.00	0.60 ± 0.018	0.000	3.37 ± 0.10	8.20 ± 0.04	0.00	...	12.9 ± 0.85
LARS 05	1.11 ± 0.13	0.51 ± 0.015	0.174 ± 0.021	3.23 ± 0.10	8.13 ± 0.04	35.9 ± 4.32	2.61 ± 0.77	4.27 ± 0.10
LARS 06	0.00	0.13 ± 0.026	0.000	0.62 ± 0.08	8.06 ± 0.06	0.00	...	2.09 ± 0.15
LARS 07	1.01 ± 0.01	0.52 ± 0.016	0.100 ± 0.001	2.61 ± 0.08	8.36 ± 0.05	40.9 ± 0.41	3.37 ± 0.46	4.75 ± 0.11
LARS 08	1.00 ± 0.07	1.50 ± 0.045	0.025 ± 0.002	8.81 ± 0.26	8.50 ± 0.15	22.3 ± 1.59	1.12 ± 0.19	0.93 ± 0.11
LARS 09	0.33 ± 0.03	2.61 ± 0.078	0.007 ± 0.001	15.0 ± 0.45	8.40 ± 0.05	3.31 ± 0.28	>2.85	51.0 ± 1.4
LARS 10	0.16 ± 0.05	0.34 ± 0.010	0.026 ± 0.008	2.29 ± 0.07	8.51 ± 0.14	8.90 ± 2.82	2.08 ± 0.65	21.5 ± 3.2
LARS 11	1.20 ± 0.20	1.66 ± 0.050	0.036 ± 0.006	22.3 ± 0.67	8.43 ± 0.30	7.38 ± 1.22	2.27 ± 0.65	121 ± 2.6
LARS 12	0.93 ± 0.10	1.96 ± 0.059	0.009 ± 0.001	13.3 ± 0.40	8.35 ± 0.05	8.49 ± 0.87	3.48 ± 0.45	7.41 ± 1.5
LARS 13	0.72 ± 0.08	2.46 ± 0.074	0.010 ± 0.001	18.8 ± 0.56	8.50 ± 0.12	6.06 ± 0.68	1.74 ± 0.06	59.2 ± 1.8
LARS 14	4.46 ± 0.43	1.99 ± 0.060	0.163 ± 0.016	11.0 ± 0.33	8.15 ± 0.05	39.4 ± 3.83	3.62 ± 0.82	1.75 ± 0.10

Note. All values from Hayes et al. (2013), G. Östlin et al. (2014, in preparation) and Hayes et al. (2014).

Various observed properties of each GBT H I profile, and the quantities derived from these, are tabulated in Table 2: Column 1 identifies the galaxy number; Column 2 is the systemic velocity in km s$^{-1}$; Column 3 is the linewidth at 50% in km s$^{-1}$; Column 4 is the linewidth at 20% in km s$^{-1}$; Column 5 is the velocity offset between the optical velocity and the H I central velocity; Column 6 is the single-dish integrated flux in Jy km s$^{-1}$; Column 7 is the mass from the single-dish measurements in units of $10^9 M_\odot$; Column 8 is the S/N from the integrated flux and the peak; Column 9 is the rms noise value of the GBT in units of mJy; Column 10 gives the baseline polynomial fit used in the calibration of the GBT spectrum; Column 11 is the classification of the profile ("S" for single-horned, "D" for double-horned, "N" for no detection, "I" for highly irregular shapes, or the presence of RFI near the signal region, and "C" for confusion due to known nearby galaxies.)

4. VLA H I IMAGES

The H I moment zero (representing H I mass surface density) and moment one (representing intensity-weighted velocity) images of the five LARS galaxies observed in program 13A-181 are presented in Figures 7–11. In panel (a) of each figure, a Digitized Sky Survey image is overlaid with contours of H I mass surface density (individual contour levels are provided in the caption to each figure). The beam size is shown by a blue circle, while a red square shows the location of the HST pointing for which we have UV imaging (see discussion in Papers I and II). In panel (b) of each figure, the H I moment one image (representing intensity weighted velocity) is presented in a rainbow color format; the velocity scale of each galaxy is shown by a colorbar.

Based on the distances and optical angular sizes of the LARS galaxies (of order 1' or less; see Figures 1–3), one would expect the H I to be distributed on similar angular scales. At the resolution of these data (beam sizes between 59" and 72"), the LARS galaxies would thus appear as unresolved sources in the H I data cubes. As we discuss below, three of the LARS galaxies have H I morphologies consistent with...
this interpretation. Surprisingly, two of the sources have H\textsc{i} distributions that largely exceed the beam size; we discuss these sources in detail below.

It is important to stress that even in cases where galaxies are unresolved by an H\textsc{i} beam, one can still extract bulk characteristics of the neutral ISM because of the spectrally resolved nature of the data. Detailed kinematic analyses (e.g., rotation curve work or spatially resolved position–velocity diagrams) will be unavailable in such cases. However, within the spatial and spectral resolution elements of the data, one can derive bulk constraints on the motions of the H\textsc{i} gas.

We use the VLA H\textsc{i} images of the five LARS galaxies presented here to constrain two critical properties. First, the H\textsc{i} data allow us to localize the H\textsc{i} associated with the LARS galaxy. This in turn allows us to accurately measure the total H\textsc{i} mass of each system. These interferometric measurements often recover less of the H\textsc{i} flux, and therefore mass, than the GBT measurements. We attribute this to the low S/N of H\textsc{i} in these galaxies, the possible presence of low surface brightness H\textsc{i} features missed by the VLA in extended regions or velocity space, and flux contamination from other galaxies, although we suspect that this is only relevant in the cases marked as confused.

It is interesting to note that at the distances of the LARS galaxies, interferometric observations are perhaps better suited to determine the H\textsc{i} mass than single-dish observations (for example, the 60' characteristic resolution of the present data are about a factor of three better than the H\textsc{i} beam of Arecibo,

Figure 4. GBT H\textsc{i} spectra of LARS Galaxies. We show each smoothed spectrum in black over a gray Gaussian best fit line. The profile is integrated over the area where this best fit rises above the background. The blue dashed line shows the W_{50} line derived from the method in Springob et al. (2005) and utilizing the sides of the profile shown by the two red lines on the sides. Refer to Section 3 for details.

(A color version of this figure is available in the online journal.)
The Astrophysical Journal, 794:101 (19pp), 2014 October 20

Pardy et al.

Figure 5. HST color composite image (F336W, F435W, and F775W shown as blue, green red, respectively) of the LARS 06 field. The LARS 06 GBT spectrum is potentially confused from at least one of the other labeled sources in the field. Inhomogeneous velocity information is available for all five galaxies: LARS 06 ($V_{\text{opt}} = 10246$ km s$^{-1}$); UGC 10028 ($V_{\text{opt}} = 10399$ km s$^{-1}$); 2MASX J15455278+4415470 ($V_{\text{opt}} = 11984$ km s$^{-1}$); 2MASX J15455157+4415310 (SDSS RF method photometric redshift = 0.100 ± 0.0291); SDSS J154549.41+441539.2 (SDSS RF method photometric redshift = 0.043 ± 0.0174). Based on this information, LARS 06 appears to be at essentially the same distance as UGC 10028; the other three sources appear to be in the background. Spectroscopic follow-up will be required to determine the absolute velocities of 2MASX J15455278+4415470 and 2MASX J15455157+4415310 (for example, note that the SDSS RF method photometric redshift of UGC 10028 is 0.071 ± 0.0261). The field of view is much smaller than the GBT primary beam; VLA observations of this complex field will be able to localize the neutral gas components of each system.

(A color version of this figure is available in the online journal.)

Figure 6. Digitized Sky Survey image of the LARS 11 field. The red circle denotes the 8′ GBT primary beam; labels denote the target source as well as possible contaminating galaxies at similar velocities within the primary beam.

(A color version of this figure is available in the online journal.)

gas, some of which is expected to be tidal in origin based on the optical morphologies of the LARS galaxies alone (see, e.g., Figures 1–3).

In Table 4 we present VLA HI quantities for our five targeted galaxies derived in the same method as described above for the GBT data. Column 1 identifies the galaxy number; Column 2 is the systemic velocity in km s$^{-1}$; Column 3 is the linewidth at 50% in km s$^{-1}$; Column 4 is the linewidth at 20% in km s$^{-1}$; Column 5 is the velocity offset between the optical velocity and the HI central velocity; Column 6 is the interferometric integrated flux in Jy km s$^{-1}$; Column 7 is the mass in units of $10^9 M_{\odot}$; Column 8 is the rms noise value in units of mJy Beam$^{-1}$; Column 9 is the median global column density of HI from a column density map convolved with the beam size given in 10^{19} cm$^{-2}$.

5. DISCUSSION OF INDIVIDUAL GALAXIES

We now present discussion of each LARS target based on our new HI data and on the HST imaging presented in Hayes et al. (2013), Paper I, and Paper II.

5.1. LARS 01

LARS 01 is a strong Lyα emitter, with a global EW of 46 Å (Paper I) and a moderate star formation rate (a few M_{\odot} yr$^{-1}$). The single-dish HI observations (see Figure 4) reveal an asymmetric double-horn profile with peak S/N of 6.5 and linewidth at 50% of 160 km s$^{-1}$. We recover a total HI flux of 0.7 Jy km s$^{-1}$ which at our distance of 118 Mpc gives an HI
mass of $2.3 \times 10^9 M_\odot$. A search of the SDSS field revealed no other objects within a ± 300 km s$^{-1}$ velocity range.

Assuming that the HI profile is unconfused, the asymmetric line shape and offset from the optical velocity is suggestive of bulk outflow of HI. Consistent with this interpretation is the observation in Paper II that LARS 01 shows extended Hα and Hβ emission. Further, preliminary results from COS spectroscopy show that within the COS aperture (2′5 diameter), large column densities of neutral hydrogen are outflowing at around -128 km s$^{-1}$ with respect to the Hα velocity. Note that LARS 01 will be studied in detail within Paper I, while T. Rivera-Thorsen et al. (in preparation) will present the COS analysis of the whole sample. Interstellar metal lines are blueshifted with respect to the systemic velocity of the galaxy, and there is a distinct lack of static gas in the COS aperture. This is consistent with the recent results from Wofford et al. (2013), whose analysis of the interstellar OI, SiII, and CII lines in this galaxy also yields an outflow of the neutral gas at -130 km s$^{-1}$ (not including the geocoronal velocity offset applied by these authors). This large shift is also seen in our measurement of the systemic velocity of HI in LARS 01.

As the closest LARS galaxy, future interferometric HI observations of LARS 01 will be especially interesting.

5.2. LARS 02

This galaxy is the strongest Lyα emitter (in terms of escape fraction) in the sample with a Lyα EW ~ 82 Å, yet has one of the lowest (Hα or UV-based) star formation rates. The GBT spectrum is double peaked (see Figure 4) and has a linewidth ~ 140 km s$^{-1}$. The total single-dish HI flux is 0.7 Jy km s$^{-1}$, which gives a mass of $2.7 \times 10^9 M_\odot$ at our derived distance of 127 Mpc. We find no sources of potential contamination in the SDSS field.

The VLA images of LARS 02 (see Figure 7) reveal a compact distribution of HI gas; the HI is only slightly resolved by the 59′ (36.3 kpc) beam. The HI column densities peak at $\sim 2 \times 10^{20}$ cm$^{-2}$ (although the marginally resolved nature of the source strongly suggests that the HI distribution is more localized, with correspondingly higher mass surface densities). There is evidence for coherent rotation in this source; the isovelocity contours shown in panel (b) of Figure 7 are parallel from ~ -15 to 15 km s$^{-1}$ of the systemic velocity of 8960 km s$^{-1}$. A coarse estimate of the dynamical mass of the system can be made by assuming that this rotational velocity is occurring over the angular diameter of the beam, and that the total projected rotation velocity is symmetric about a dynamical center. The resulting $M_{\text{dyn}} = 3.8 \times 10^9 M_\odot$ (which will increase for any nonzero value of disk inclination, but will decrease depending on the actual size of the rotating component of the disk) is consistent with the interpretation in Paper II of LARS 02 being among the more dwarf-like systems in LARS. We stress that this dynamical mass estimate is meant to be representative only.

5.3. LARS 03

LARS 03 is the nuclear region of the southeastern galaxy in the spectacular Arp 238 interacting pair. Note that Figure 1 shows the large-scale interacting morphology very clearly in the SDSS panel, while the HST Lyα imaging covers only the southern of the two nuclei, and only a relatively small portion of the total interacting system. Paper II finds that LARS 03 is a weak Lyα emitter. Interestingly, the Lyα luminosity increases as a function of distance from the source, suggesting that Lyα photons are readily being scattered to large distances even though the Lyα extension parameter ($\xi_{\text{Ly}\alpha}$, defined as the ratio between the Lyα and Hα Petrosian radii) is unity.
Based on the interacting morphology of the system, we expect both an irregular global H\textsc{i} profile and extended H\textsc{i} structure. Both of these expectations are borne out by the data. The GBT profile of LARS 03 (see Figure 4) is double-peaked and asymmetric. The linewidth exceeds 300 km s$^{-1}$ at the 50\% level, and there is evidence for low surface brightness H\textsc{i} emission on even larger velocity scales ($W_{20} = 380 \pm 62$ km s$^{-1}$, and the profile shows weak evidence for H\textsc{i} emission over a range as large as ~ 600 km s$^{-1}$).

The H\textsc{i} morphology and kinematics of LARS 03 clearly indicate a violent interaction between the two galaxies. The H\textsc{i} emission is extended many beam sizes beyond the optical galaxy. As shown in Hayes et al. (2013), Lyα emission is found in the southeast of the two interacting galaxies (although those authors point out that the nature of Lyα emission on larger spatial scales is not constrained by data presently in hand). Our VLA images reveal that the H\textsc{i} surface density maximum is coincident with the Northwest of the two interacting galaxies (although this is within one beam width at the present spatial resolution). This region is not included in the present HST observations. The total H\textsc{i} mass in the interacting system is $\sim 9 \times 10^9 M_{\odot}$, and the average H\textsc{i} column density as revealed by our VLA beam is 4.8×10^{19} cm$^{-2}$. An enormous tidal feature, which is contiguous in velocity space from the two interacting galaxies, extends ~ 160 kpc to the west–southwest and contains $\sim 1.6 \times 10^9 M_{\odot}$ of H\textsc{i} gas. Because of the large distance separating this component from the main body of LARS 03 we decide to remove this mass from the total H\textsc{i} mass estimate of LARS 03 itself. This extended tidal structure is reminiscent of that in the local Lyα-emitting starburst galaxies Tol 1924–416 and IRAS 08339+6517 found by Cannon et al. (2004), in which the large-scale neutral gas kinematics are interpreted to be critical for Lyα radiative transport. Although we do not probe the same physical scales in this work, we can conclude from this large tidal feature that the neutral gas is strongly disturbed.

Even with these interesting H\textsc{i} kinematics and the obvious interacting nature of the system, which contributes to its luminous infrared nature, LARS 03 remains a relatively weak emitter of Lyα photons, that would be undetected in most high-redshift surveys. While the ever increasing Lyα emission to higher radii is tantalizing, more data is needed to draw firm conclusions.

5.4. LARS 04

LARS 04 has a strong single peaked H\textsc{i} profile with a width at 50\% of 150 km s$^{-1}$ (see Figure 4). We classify it as an unconfused source; although SDSS J130757.13+542310.6 ($V_{opt} = 9714$ km s$^{-1}$) is located 5.56 to the southwest, it is not detected in our VLA imaging (see below). LARS04 has an irregular morphology in the UV and is a net Lyα absorber, just showing a weak asymmetric emission on top of a large, damped absorption profile within the HST COS aperture (2\'5 in diameter). Paper II has shown that weak diffuse Lyα emission is present, but scattered to very large galactocentric radii.

We recover a total single-dish H\textsc{i} flux of 1.6 Jy km s$^{-1}$ which yields an H\textsc{i} mass of $7.3 \times 10^9 M_{\odot}$ at the adopted distance of 140 Mpc. The VLA H\textsc{i} imaging (see Figure 9) reveals extended emission with a median H\textsc{i} column density of 4.1×10^{19} cm$^{-2}$ (maximum angular extent roughly twice that of the 71" (47.5 kpc) beam; interestingly, this extended H\textsc{i} component is in the same directional sense as the optical morphology. Higher spatial resolution observations of LARS 04 with the VLA are both technically feasible (sufficient source brightness) and will be very useful in assessing the localized morphology and kinematics.

There is coherent rotation of the source apparent at this low spatial resolution. Specifically, the isovelocity contours are mostly parallel over ~ 100 km s$^{-1}$ (see Figure 9). Using the same approach as for LARS 02 above, this implies a dynamical mass of $M_{dyn} = 1.4 \times 10^{10} M_{\odot}$ (again, with no inclination correction and with the assumption of the H\textsc{i} rotating over one beam diameter). However, based on the highly irregular optical morphology (which Figure 1 shows to be suggestive of an interaction), it is likely that the localized neutral gas kinematics are more complicated than simple disk rotation; the coarse beam size is likely smoothing out the kinematic details of this system.

5.5. LARS 05

LARS 05 is an edge-on galaxy (see Figure 1), with net Lyα absorption at very small radii and emission at larger radii, and at the physical scales relevant in this work see discussion in Paper II. The GBT H\textsc{i} profile (see Figure 4) shows a very weak signal that is near the noise level. While the S/N is low, the peaks in the spectrum may represent the top of the horns of a typical double-horn profile that is expected for a highly inclined disk galaxy. We derive an H\textsc{i} flux integral of 0.55 Jy km s$^{-1}$, which, at a distance of 140 Mpc, corresponds to an H\textsc{i} mass
of $2.4 \times 10^9 M_\odot$. This galaxy has no known companions or contaminants in the GBT field of view.

5.6. LARS 06

LARS 06 is an irregular galaxy that has the weakest H\alpha and UV-based star formation rates in the entire LARS sample; it is a Ly\alpha absorber on all physical scales. The optical morphology suggests an interaction scenario, with the southern tail being UV luminous but H\alpha dim compared to the main star forming knots in the northern portion of the system. Interestingly, this is the LARS system with the lowest measured nebular abundance (see discussion in Paper II).

The GBT H\alpha profile of the LARS 06 field has the highest S/N of any of the LARS galaxies. This is almost certainly due to confusion within the beam. As Figure 5 shows, LARS 06 is separated from the disk galaxy UGC 10028 by only $\sim 1'$ (43 kpc at the adopted distance of 148 Mpc). Although the redshift-derived velocity values differ for these two galaxies by ~ 200 km s$^{-1}$, the H\alpha velocity of the total system is centered directly at the velocity of UGC 10028. This single-dish H\alpha spectrum is a classical double horn profile indicative of the rotation of a massive and inclined H\alpha disk; the width of the profile is ~ 370 km s$^{-1}$ at 50% of the maximum. The H\alpha flux of 4.4 Jy km s$^{-1}$ yields a total H\alpha mass of $2.3 \times 10^{10} M_\odot$; this can be compared with the estimate of the stellar mass of LARS 06, $2.1 \times 10^9 M_\odot$, from Paper II. While gas to stellar mass ratios of this size are not unreasonable, a comparison of the optical morphologies of UGC 10028 and LARS 06 strongly suggests that the former system is contributing significantly to the flux in this field. From the SDSS g-band luminosity, we estimate the H\alpha mass of UGC 10028 as $4.1 \times 10^9 M_\odot$. This represents roughly 20% of the total mass seen in the system, but we caution that this might be an over or under estimation if the galaxy does not follow the same relation as other galaxies.

There are three other galaxies in the vicinity of LARS 06 that could also be contributing to the observed flux integral. As discussed in the caption of Figure 5, LARS 06 and UGC 10028 are also in close angular proximity to 2MASX J15455278+4415470, 2MASX J15455157+4415310, and SDSS J154549.41+441539.2. Based on the optical velocity, 2MASX J15455278+4415470 appears to be roughly 1000 km s$^{-1}$ in the background of LARS 06 and UGC 10028. Only photometric redshifts are available for 2MASX J15455157+4415310 and SDSS J154549.41+441539.2, and each appears to also be at larger distances than LARS 06 and UGC 10028; emission line spectroscopy will be required to determine the absolute velocities of these systems.

Wide-bandwidth VLA observations of this complex field will be able to localize the neutral gas components of each system; this is an ideal target for subsequent high spatial resolution observations. LARS 06 is also the only detected galaxy that lies significantly off of our observed gas fraction-stellar mass relationship (see discussion in Section 6 below), most likely due to this contamination.

5.7. LARS 07

LARS 07 is a near edge-on disk system that shows one of the highest Ly\alpha equivalent widths of the LARS sample. The GBT spectrum shown in Figure 4 is measured as a single peak profile with a linewidth of ~ 92 km s$^{-1}$ at 50% of maximum; a second peak is separated from this main component by ~ 120 km s$^{-1}$. Due to the low S/N of this putative second peak, we measure the H\alpha properties of the source using only the higher S/N component. With this assumption, LARS 07 has the narrowest linewidth of any galaxy in our sample. The H\alpha flux is 0.47 Jy km s$^{-1}$, corresponding to an H\alpha mass of $2.9 \times 10^9 M_\odot$ at the adopted distance of 161 Mpc.

5.8. LARS 08

LARS 08 is a metal-rich, low-inclination system (see Figure 2 and discussion in Paper II). The distribution of UV, Ly\alpha, and H\alpha emission is strongly asymmetric in the galaxy, being much more prominent on the western side of the disk than on the eastern side. The system is a Ly\alpha emitter on all spatial scales.

The GBT spectrum of LARS 08 (see Figure 4) shows a broad, possibly double-peaked profile with a linewidth of 310 km s$^{-1}$ at 50% of the peak. The single-dish H\alpha integrated flux is 3.4 Jy km s$^{-1}$, yielding a total H\alpha mass of $2.2 \times 10^{10} M_\odot$ at the adopted distance of 160 Mpc. The galaxy appears to be isolated, with no known neighbors in the GBT beam with similar velocities. The median column density of H\alpha is 2.5×10^{19} cm$^{-2}$.

As Figure 10 shows, the detected H\alpha emission is highly localized to the 72′ (56.9 kpc) beam. The source appears to be undergoing bulk rotation; while the velocity field is formally unresolved, the nearly parallel isovelocity contours span ~ 80 km s$^{-1}$ (note that the first moment map represents intensity-weighted velocity; for faint, unresolved sources one
would expect a compressed velocity scale in the first moment compared to a spectrum). Taken as projected rotation with no inclination correction (which is likely substantial, given the apparent optical inclination), the implied dynamical mass is \(\sim 1.1 \times 10^{10} M_\odot \). Higher spatial resolution H\textsc{i} observations of LARS 08 would be very interesting to pursue, since this system appears to be undergoing normal rotation and lacks obvious signatures of large-scale kinematic disturbances in our H\textsc{i} maps, even though COS spectroscopy shows significant outflow activity (see details in T. Rivera-Thorsen et al., in preparation).

5.9. LARS 09

LARS 09 is an extended system with two prominent arms that are rich in H\textsc{a}-emitting star formation regions (note that a careful inspection of Figure 2 shows that there is a prominent foreground star at the southern end of the disk). The optical morphology is consistent with the source being either a loose spiral or an interacting pair. The system is a global Ly\textsc{a} emitter at large scales \((R > 10 \text{ kpc}) \); the Ly\textsc{a} morphology is similar to that of the optical/UV, although more extended in all directions from the disk.

The GBT spectrum (see Figure 4) is broad (linewidth of 270 km s\(^{-1}\) at 50\% of the peak) and relatively low S/N. The total H\textsc{i} single-dish flux is 1.2 Jy km s\(^{-1}\), which gives a mass of \(1.2 \times 10^{10} M_\odot \) at a distance of 200 Mpc. The profile is not contaminated by any other known sources within the GBT beam. The median H\textsc{i} column density is \(1.2 \times 10^{19} \text{ cm}^{-2} \).

The VLA images presented in Figure 11 show that the source is essentially unresolved by the 59\" (57.2 kpc) beam. The H\textsc{i} maximum is co-spatial with the optical body; there is weak evidence for extended gas that is only slightly larger than the beam size (see, for example, the extended material to the east–southeast of the optical body in Figure 11). However, we do not interpret this as evidence of extended tidal structure due to the marginal extension compared to the beam size.

The intensity weighted velocity field of LARS 09 covers a large range \((>200 \text{ km s}^{-1}) \) and is severely disturbed. There are some isovelocity contours that are roughly parallel in the northwest region of the system; however, at the position of the optical body these contours deviate significantly from regularity. The kinematic information in these images suggests that the interaction scenario for the optical morphology may be appropriate. The presence of diffuse Ly\textsc{a} emission in this source, combined with the irregular kinematics and morphology, make this a prime target for higher resolution H\textsc{i} observations.

5.10. LARS 10

LARS 10 is an irregular source that shows high Ly\textsc{a} equivalent width emission arising from a diffuse component that extends beyond the optical body of the source (see discussion in
Paper I). The optical morphology is consistent with an advanced merger state. The GBT profile is broad (≈ 280 km s$^{-1}$ at 50% of maximum), although of low S/N; the total flux integral of 0.29 Jy km s$^{-1}$ corresponds to a total H i mass of $\sim 4.1 \times 10^9 M_\odot$ at the adopted distance of 250 Mpc. The weak H i flux integral will make high resolution interferometric observations of LARS 10 challenging.

5.11. LARS 11

LARS 11 is a dramatic edge-on galaxy that is in close angular proximity to a field spiral galaxy (CGCG 046-044 NED01 at 14h03m47s.0, +06h28m26s.7). LARS 11 appears to be in the foreground of this object (LARS 11 is at $z_{\text{opt}} = 0.0843$, while CGCG 046-044 NED01 has a photometric redshift derived from SDSS of ~ 0.1); this is apparent by the disk of LARS 11 visually obstructing one of the spiral arms of CGCG 046-044 NED01. Figure 6 shows that LARS 11 is separated from two other field galaxies with similar velocities by less than the GBT beam: SDSS J140401.00+062901.7 at 14h04m01s.0 +06h29m02s.3, and SDSS J143533.36+062504.8 at 14h03m53s.3 +06h25m05s.7. Given this complex field, we classify the GBT profile of LARS 11 as potentially confused. Further, RFI was present near the expected frequency of the H i spectral line from LARS 11; this required extensive flagging.

The H i profile of LARS 11 shown in Figure 4 is broad ($W_{50} = 260$ km s$^{-1}$) and is distributed in multiple peaks. This may represent a broad rotation profile from LARS 11, or it may be indicative of multiple sources contributing to the H i flux within the beam. Assuming that the full H i flux integral of 0.75 Jy km s$^{-1}$ is only associated with LARS 11, the implied neutral hydrogen mass is $2.3 \times 10^{10} M_\odot$ at the adopted distance of 360 Mpc. VLA imaging of LARS 11 would be very useful for localizing the H i emission from the various sources in this complex field.

6. GLOBAL CHARACTERISTICS OF THE LARS GALAXIES

Due to resonant scattering with neutral hydrogen atoms, the radiative transport of Lyα photons may well have its strongest dependence on the characteristics of the H i that surrounds the star forming regions in which the photons are produced. With the present H i spectroscopy and imaging, we now have a first order understanding of the neutral gas contents of many of the LARS galaxies. Comparing the qualities of the global H i reservoirs with the detailed characteristics of each system derived from HST imaging allows us to probe what roles H i kinematics and density play in governing Lyα radiative transport.

We focus on four global properties derived from the present H i observations of the 11 lowest-redshift LARS galaxies (those for which the GBT spectra provide meaningful measurements or limits); for the galaxies where it is available (LARS 02, 03, 04, 08, 09) we use the total fluxes and masses VLA images preferentially over the GBT data. In general the VLA data recovers 30% less flux than the GBT data, which contributes to 6% shorter linewidths. As mentioned in Section 4, this is most likely due to a combination of decreased surface brightness sensitivity in the VLA data and decreased contamination from other sources.

First, the H i linewidth (specifically, the width at 50% of the maximum W_{50}) is a distance-independent variable that has been shown to correlate with absolute magnitude and thus to serve as a proxy for mass in star-forming disk galaxies (Tully & Fisher 1977). For rotationally dominated galaxies, a larger H i linewidth can often be interpreted as an indicator of a more massive galaxy. To know with certainty, a detailed study of the dynamics and complete censuses of the baryonic components of individual galaxies is needed. In our case, the galaxies with irregular morphology may have linewidths that are significantly increased due to kinematic disturbances and merging activity.

The second global parameter we examine is the total H i mass of each LARS galaxy. This parameter is of course related to the H i linewidth, but not in a one to one sense. The LARS galaxies span a range of morphological types, including violent interactions (e.g., LARS 03), disk-dominated spirals (e.g., LARS 05 and LARS 11), and irregulars (e.g., LARS 04, LARS 06). While for disk dominated systems the H i linewidth and H i mass should be closely correlated, for the other types of systems the H i line profile may not only be indicative of rotation; H i gas from multiple components may create irregular single-dish profiles. Examples of this are clearly seen in the GBT spectra (Figure 4) and in the VLA images (see, e.g., Figure 8).

Third, we examine the offset in velocity between the centroid of the H i profile and the known systemic velocity of each LARS galaxy as derived from optical spectroscopy. Assuming that such offsets are caused by large-scale kinematic deviations from regularly rotating galaxy disks (e.g., tidal interaction, gas outflow or infall), this offset parameter can be considered a rough proxy for the presence or absence of large-scale motions of neutral gas. As discussed in Cannon et al. (2004) and above for LARS 03, we find evidence for extended tidal structure in some Lyα-emitting galaxies. However, we also find systems that are strong Lyα emitters that do not show such extended neutral gas components (e.g., LARS 02; see Section 5.2 above).

Finally, we examine the gas mass fraction defined as the H i mass divided by the stellar mass. Numerous works have shown that normal, star-forming disk galaxies populate a robust trend of decreasing gas fraction with increasing stellar mass (see recent results in Huang et al. 2012; Papastergis et al. 2012; Peebles et al. 2014 and various references therein). In Figure 12 we show the gas fraction as a function of total stellar mass (M_*) derived from two-component SED modeling to the HST data (see Paper II and Hayes et al. 2009 for details). Except for LARS 06, whose H i flux integral is likely strongly contaminated by the nearby field spiral UGC 10028 (see discussion in Section 5.6 and Figure 5), the LARS galaxies closely follow the derived relations for nearby galaxies as found in Papastergis et al. (2012) and Peebles et al. (2014).

It is important to remain cognizant of the possible confusion within the GBT beam for some of the sources without VLA data. In particular, the H i properties of LARS 06 are almost certainly contaminated by UGC 10028, and those of LARS 11 may be contaminated by SDSS J140401.00+062901.7 and/or SDSS J140353.36+062504.8. If these sources are in fact contaminated, then the H i linewidths and masses will be overestimated; the velocity offsets may or may not change.

We examine the relationships of these four H i-based quantities with seven global properties derived from HST data in Paper II: the Lyα/Hα ratio, the Lyα luminosity, the Hα/Hβ ratio, the Lyα escape fraction, the Lyα equivalent width, the Lyα extension parameter (Lyα ξ), and the SFR per unit area within the Petrosian radius ($\eta = 0.2$; see Paper II). As discussed in detail in Hayes et al. (2014), there is a complex interrelation between these (and other) properties in the process of Lyα radiative transport; the total Lyα luminosity of a given galaxy does not correlate in a statistically significant way with any individual
quantity. Further, there is significant variation in these values as a function of position within an individual galaxy; some galaxies appear as net absorbers within the disk and as net emitters when the diffuse \(\text{Ly} \alpha \) halo is included. Nevertheless, we seek statistical comparisons with many of the \textit{global} quantities when the diffuse \(\text{Ly} \alpha \) appears as net absorbers within the disk and as net emitters as a function of position within an individual galaxy; some galaxies will be detected as higher-redshift \(\text{Ly} \alpha \) emitters and will constrain one of the many poorly understood aspects of \(\text{Ly} \alpha \) propagation and detection in the distant universe.

From a simplified interpretative standpoint, these seven global quantities can be related as follows. The \(\text{H} \alpha / \text{H} \beta \) ratio indicates extinction; deviations above the intrinsic ratio of 2.86 (Osterbrock 1989) indicate nonzero \(E(B-V) \) values. These \(E(B-V) \) values can in turn be used to derive the intrinsic \(\text{Ly} \alpha \) luminosity of a system based on its observed (and extinction corrected) \(\text{H} \alpha \) luminosity and also to estimate the \(\text{Ly} \alpha \) escape fraction. The \(\text{Ly} \alpha / \text{H} \alpha \) ratio has a (Case B) recombination value of 8.7. Lower values can indicate stronger suppression of \(\text{Ly} \alpha \) versus \(\text{H} \alpha \) (e.g., by attenuation from dust, or by resonant scattering away from the production site); super-recombination values are seen in a few localized regions of the LARS galaxies, as well as in some of the large scattered \(\text{Ly} \alpha \) halos surrounding some of the systems (see Paper I and Paper II). The \(\text{Ly} \alpha \) equivalent width is related to the recent star formation history of the galaxy or region; global values of \(\sim 100 \) \(\text{Å} \) indicate constant star formation over \(\sim 100 \) Myr timescales, while values exceeding 250 \(\text{Å} \) occur only in the very youngest burst episodes (Schaerer et al. 2003; Raiter et al. 2010.)

We present scatter plot comparisons of the four global \(\text{H} \) derived properties and seven global \(\text{HST} \)-derived properties in Figures 13, 14, 15, and 16. We restrict the \(\text{Ly} \alpha \) properties to positive values, which has the effect of setting \(\text{EW} \) and luminosity measurements equal to zero. We mark this region on the plots with a hashed region. We use the Spearman \(\rho_s \) correlation coefficient to quantify possible monotonic correlations between these properties; a perfect correlation or anti-correlation between two properties will have \(\rho_s \) values of +1 or −1, respectively. Each panel of Figures 13 through 16 shows the corresponding \(\rho_s \) value. To estimate the errors on these correlation coefficients we resample the properties 1000 times with a random realization of the associated errors and measure, recording the correlation coefficients each time. For each correlation we show the value from the sample of uncontaminated detections as the primary result, and include the value for the entire sample including upper limits and confused detections below.

Overall the results do not show strong evidence of correlation between properties (\(\rho_s < -0.6 \) or \(\rho_s > +0.6 \)). We present all correlations in Table 6, along with the dispersion and discuss the correlations for each \(\text{H} \) property below.

Table 6

Property	\(W_{\text{Ly} \alpha} \)	\(M_{\text{H} \alpha} \)	Velocity Offset	\(f_{\text{gas}} \)
Ly\(\alpha / \text{H} \alpha \)	-0.52 [0.2]	-0.53 [0.06]	-0.083 [0.08]	0.47 [0.4]
\(\text{Lum}(\text{Ly} \alpha) \)	-0.27 [0.1]	0.05 [0.1]	0.17 [0.04]	0.00 [0.1]
\(\text{H} \alpha / \text{H} \beta \)	-0.67 [0.1]	0.18 [0.1]	0.50 [0.05]	-0.45 [0.3]
\(f_{\text{escp}} \)	-0.53 [0.2]	-0.63 [0.1]	-0.15 [0.1]	0.40 [0.4]
\(\text{Ly} \alpha \) EW	-0.33 [0.2]	-0.60 [0.1]	0.10 [0.1]	0.45 [0.3]
\(f_{\text{Ly} \alpha} \)	-0.81 [0.1]	-0.45 [0.1]	-0.44 [0.2]	0.57 [0.1]
SFR area\(^{-1} \)	-0.15 [0.1]	-0.40 [0.2]	-0.067 [0.04]	0.43 [0.2]

Notes. a Values are for all galaxies with a positive, unconfused detection. Standard deviation values are given in square brackets.
Figure 13. Comparisons of global H I mass with the seven global properties derived from HST imaging, including Lyα/Hα, L_{Lyα}, Hα/Hβ, f_{Lyα}^{esc}, Lyα EW, Lyα ξ, and UV SFR/R_{Lyα}^{20}. When available, we use the VLA derived values for H I mass, which are generally lower than the GBT derived values. The Spearman ρ_s correlation coefficient, which quantifies possible monotonic correlations between properties, is shown in each panel. We compare these results with data from another local Lyα emitter, IRAS 08339+6517. The symbols represent the different galaxies and are shown in the legend in the final panel. The same symbols are used throughout the rest of the comparison plots.

(A color version of this figure is available in the online journal.)

Figure 14. Comparisons of global H I line width at 50% of maximum (see column 3 of Table 2) with the seven global properties derived from HST imaging, including Lyα/Hα, L_{Lyα}, Hα/Hβ, f_{Lyα}^{esc}, Lyα EW, Lyα ξ, and UV SFR/R_{Lyα}^{20}. The Spearman ρ_s correlation coefficient is shown in each panel for the subsample of galaxies with unconfused detections and, in parenthesis, all 14 galaxies. The symbols are the same as in Figure 13.

(A color version of this figure is available in the online journal.)

6.1. Linewidth

The H I line width is significantly anti-correlated with the Lyα extension parameter, ξ_{Lyα} (see Figure 14). This is the strongest evidence of correlation in the entire sample. The H I line width is positively correlated with the Hα/Hβ ratio (see further discussion below). Two factors are possibly at play here. Either larger H I quantities scatter Lyα photons to extended radii, or interactions increase both the linewidth and preferentially block Lyα photons at short radii.

6.2. Mass

Two anti-correlations, and a positive correlation appear comparing the H I mass of our sample of well detected galaxies (see Figure 13). The escape fraction (ρ_s = −0.63), and Lyα EW (ρ_s = −0.60) show tentative evidence for anti-correlation, which do not appear when including the marginal detections. Interestingly, the Hα/Hβ ratio shows strong evidence of correlation (ρ_s = 0.75). It has been known for some time that more massive star forming galaxies (hence those with larger H I masses and...
Figure 15. Comparisons between the gas fraction (M_{HI}/M_\ast) and the seven global properties derived from HST imaging, including Lyα/Hα, $L_{\text{Ly}\alpha}$, H_α/H_β, $f_{\text{Ly}\alpha}^{\text{esc}}$, Ly$\alpha$ EW, Lyα ξ, and UV SFR/$(R_{\text{Ly}\alpha})^{20}$. The symbols and correlation coefficients are plotted the same as in Figure 13.

(A color version of this figure is available in the online journal.)

Figure 16. Comparisons between the velocity offset between optical and HI derived systemic velocities and the seven global properties derived from HST imaging, including Lyα/Hα, $L_{\text{Ly}\alpha}$, H_α/H_β, $f_{\text{Ly}\alpha}^{\text{esc}}$, Ly$\alpha$ EW, Lyα ξ, and UV SFR/$(R_{\text{Ly}\alpha})^{20}$. The symbols and correlation coefficients are plotted the same as in Figure 13.

(A color version of this figure is available in the online journal.)

linewdths) are dustier, and that the Balmer decrement scales accordingly (e.g., Brinchmann et al. 2004; Lee et al. 2009; Garn & Best 2010). How this correlation may be connected to the underlying Lyα propagation is not entirely clear.

6.3. Gas Fraction

We see no conclusive evidence of correlations with any of the global Lyα properties using either the whole sample or the positive detections. The strongest correlation is with the H_α/H_β ratio ($\rho_s = -0.53$).

6.4. Velocity Offset

We find no significant correlation between the velocity offsets and the various Lyα properties. This might be due to our velocity smoothing and the large extent over which we are probing the velocity information. The strongest correlation is with the H_α/H_β ratio ($\rho_s = 0.50$).

7. DISCUSSION AND CONCLUSIONS

We have presented new GBT spectroscopy and VLA HI spectral line imaging of the galaxies in the “Lyman Alpha
Reference Sample” (“LARS”). LARS is a comprehensive, multi-wavelength study of 14 UV-selected star-forming galaxies that functions as a local benchmark for studies of Lyα emission and absorption at higher redshifts. The centerpiece is a suite of HST images that allows us to study Lyα emission and related quantities on a spatially resolved basis. The preliminary results presented in Hayes et al. (2013) showed that most of the LARS galaxies have large, diffuse halos of Lyα emission that exceed the sizes of the stellar populations; this is strong evidence for the importance of resonant scattering in the neutral hydrogen gas component. The H1 structure and content are important pieces for understanding the origin of the Lyα halos and their different sizes. Our current H1 angular resolution probes the large-scale global properties rather than those in the immediate vicinity of the Lyα halo regions imaged with HST. Nevertheless, these provide important insights into the galaxy structure and environment. The LARS survey products are described in Paper I of this series (Östlin et al. 2014); the integrated properties of the LARS galaxies as derived from the HST imaging are presented in Paper II of this series (Hayes et al. 2014).

In this manuscript we present a first exploration of the H1 properties of the LARS galaxies. Using data from the GBT 100 m telescope, we have presented direct measurements of the neutral gas contents of 11 of the 14 galaxies; we place limits on the three most distant (z > 0.1) LARS galaxies. These profiles show a wide variety of structure. Some systems harbor multi-component profiles that are indicative of interaction or the presence of nearby companions; others show more simple single H1 peaks. Two sources (LARS 06 and LARS 11) are likely confused with nearby galaxies. We fit each of these profiles in order to derive global line properties, including systemic velocity, linewidths, H1 flux integrals, and H1 masses.

For a subset of five of the LARS galaxies, we also present new, low-resolution H1 spectral line imaging obtained with the VLA. These H1 images allow us to localize the H1 associated with each galaxy. Three of the systems (LARS 02, LARS 08, and LARS 09) are unresolved at this angular resolution, while LARS 04 is resolved by a few beams. LARS 03 is highly resolved by the present data; we have discovered an enormous tidal structure that contains more than 10^9 M⊙ of H1, and that extends more than 160 kpc from the main interacting galaxies in the LARS 03 system. Based on the recovered flux integrals from these VLA data, each of the five systems presented here would be amenable to higher spatial resolution observations. The VLA C and B configurations would offer a factor of roughly 4 and 10 improvement in resolution respectively, but at the cost of longer integration times.

In particular LARS 03 presents an interesting case where we have unequivocal evidence of kinematic disturbances on large scales, yet no accompanying boost relative to nondisturbed galaxies in Lyα escape fraction. A high-resolution follow up with the VLA and future radio telescopes, especially coupled with larger maps of the Lyα flux, would disentangle the local versus global kinematic effects, and probe the Lyα escape on physical scales larger than the ~10 kpc already probed in the HST imaging.

Using these new GBT and VLA data, as well as the results derived from HST imaging and presented in Paper II, we compare various global H1 and Lyα properties. While the sample is small, we find a few intriguing correlations in our robustly detected galaxies: The H1 linewidths are strongly anti-correlated with ∆Lyα (ρ = −0.81), while the total H1 masses show anti-correlations with escape fraction and Lyα EW. Additionally, both the H1 linewidths and the H1 masses are each correlated with the H0/H2 ratio. These intriguing but tentative (anti-)correlations are in general agreement with a significant dependence of Lyα propagation on the total mass and thus the H1 mass of the source, and is in general agreement with previous work by Laursen et al. (2009) which found that the escape fraction decreases with increasing virial mass. These results also support the general trend that Lyα properties appear to correlate with total galaxy mass, as found in Paper II. That work showed that Lyα emission (quantified by Lyα equivalent width, escape fraction, etc.) is systematically larger in lower mass galaxies. Given the variety of properties that scale roughly with mass (e.g., metallicity, dust content, star formation rate, UV colors, etc.), a larger statistical sample of galaxies will be needed in order to better quantify these trends.

The famous metal-poor blue compact dwarf galaxy I Zw18 reminds us that the trend of lower mass galaxies having larger Lyα luminosities or escape fractions is not always true. While the system has an extremely low nebular oxygen abundance (Skillman & Kennicutt 1993), an appreciable star formation rate (Cannon et al. 2002), and a substantial UV luminosity (Grimes et al. 2009), Kunth et al. (1998) showed that I Zw 18 is in fact a Lyα absorber. This process was explained by numerous scattering events in the neutral, and, most importantly, static ISM even in the complete absence of dust (Atek et al. 2009). Future local Lyα studies should seek to expand the number of low-mass systems with analyses similar to the ones presented here for LARS.

Although it is tempting to view the increasing Lyα/Hα with decreasing mass as a result of less gas mass being available for scattering, this theory must be cast in the light of results that suggest that gas fraction increases with increasing redshift (e.g., Tacconi et al. 2013), and that lower mass galaxies tend to be more gas-rich (Saintonge et al. 2011) and less dusty (e.g., Blanc et al. 2011). In Figure 12 we see that the LARS galaxies fit the general trend with gas mass fraction.

While Lyα halos seem to appear in systems with a range of H1 linewidths, large Lyα/Hα values only appear in galaxies with H1 smaller linewidths. Large Lyα halos are also correlated with less massive galaxies, and with increasing velocity offsets. We interpret this to mean that low H1 linewidths are necessary but not sufficient for Lyα escape, while larger linewidths contribute to the overall effects of Lyα destruction by dust, extinction, and scattering.

The bulk of the evidence presented by previous Lyα work shows the importance of H1 properties, especially kinematic details, in determining the escape of photons (e.g., Mas-Hesse et al. 2003). This process is mostly governed by local effects, and it is unclear at this time what global H1 properties are required for the escape and propagation of Lyα photons. The asymmetric GBT profiles and evidence of Lyα emission in the presence of large column densities of H1 both point to interesting subresolution kinematic and density effects.

A larger sample of galaxies with data like those presented here will allow us to place these correlations on a more statistically robust footing. The HST eLARS program has been approved for 54 orbits and contains 28 more galaxies within our nominal sensitivity range of z ~ 0.08. In addition, higher resolution
follow up observations will allow us to determine kinematic details on more applicable scales for a number of our galaxies. This program will likely be the largest statistical sample of both HI and Lyα detected galaxies until new advances of radio telescopes, such as the Square Kilometer Array,19 push HI detections to 20–100 kpc scales at $z>1$.

The authors thank the anonymous referee for insightful comments that improved the quality of this manuscript. J.M.C. and S.P. thank Sung Kyu Kim and Macalaster College for research support. J.M.C. thanks the Instituto Nazionale di Astrofisica and the Osservatorio Astronomico di Padova for their hospitality during a productive sabbatical leave. G.O.S. is a Royal Swedish Academy of Science research fellow (supported by a grant from the Knut & Alice Wallenberg foundation). M.H. acknowledges the support of the Swedish Research Council (Vetenskapsrådet) and the Swedish National Space Board (SBSB). This work was supported by the Swedish Research Council and the Swedish National Space Board. H.O.F. is funded by a postdoctoral UNAM grant. J.M.M-H is funded by Spanish MINECO grants AYA2010-21887-C04-02 and AYA2012-39362-C02-01. I.O. was supported by the Sciei fellowship of the Rectors’ Conference of Swiss Universities. P.L. acknowledges support from the ERC-StG grant EGGSS-278202. D.K is supported by CNES (Centre National d’études spatiales) for the HST project.

This investigation has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration, and NASA’s Astrophysics Data System. This investigation has made use of data from the Sloan Digitized Sky Survey (SDSS). Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is \url{http://www.sdss.org/}.

The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.

19 \url{https://www.skatelescope.org}