Data Article

Nuclear magnetic resonance spectroscopy and mass spectrometry data for sulfated isoguanine glycosides

Yuri Uyama, Emi Ohta, Yui Harauchi, Tatsuo Nehira, Hisashi Omura, Hiroyuki Kawachi, Aya Imamura-Jinda, Mylene M. Uy, Shinji Ohta

Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, 739-8521, Japan
Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, 739-8521, Japan
Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga, 526-0829, Japan
Department of Chemistry, Mindanao State University-Iligan Institute of Technology, Iligan City, 9200, Philippines

ARTICLE INFO

Article history:
Received 8 November 2019
Received in revised form 10 December 2019
Accepted 11 December 2019
Available online 19 December 2019

Keywords:
Bruchidius dorsalis
Pupal case
Sulfated purine alkaloid
NMR
ESIMS

ABSTRACT

The data presented here are related to the research paper entitled “Rare sulfated purine alkaloid glycosides from Bruchidius dorsalis pupal case” [1]. In this data article, we provide 1D and 2D nuclear magnetic resonance (NMR) spectroscopy and electrospray ionization mass spectrometry (ESIMS) data of three undescribed sulfated purine alkaloids, locustoside A disulfate, saikachinoside B disulfate, and saikachinoside A trisulfate isolated from the pupal case of the wild bruchid seed beetle Bruchidius dorsalis (Chrysomelidae, Bruchinae) infesting the seed of Gleditsia japonica Miquel (Fabaceae).

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

The data set presented in this article focuses on characterization of the sulfated purine alkaloids described in [1]. The article provides the information on the spectroscopic data of the sulfated purine alkaloids isolated from the pupal case produced by the bruchid beetle *Bruchidius dorsalis* inside the seed of *Gleditsia japonica* (Fig. 1). The 1H NMR spectra of 1–3 are shown in Figs. 2a, 3a and 4a, respectively. The 13C NMR and DEPT spectra of 1–3 are shown in Figs. 2b, 3b and 4b, respectively. 2D 1H–1H COSY spectra of 1–3 are shown in Figs. 2c, 3c and 4c, respectively. 2D 1H–1H NOESY spectra of 1–3 are shown in Figs. 2d, 3d and 4d, respectively. 2D 1H–13C heteronuclear single quantum coherence (HSQC) spectra of 1–3 are shown in Figs. 2e, 3e and 4e, respectively. 2D 1H–13C heteronuclear multiple-bond correlation (HMBC) spectra of 1–3 are shown in Figs. 2f, 3f and 4f, respectively. ESIMS data of 1–3 are shown in Figs. 2g, 3g and 4g, respectively. Analyses of the spectra of 1–3 are described in the research article [1]. It has been reported that 3 inhibited starfish blastulation during embryonic development [1].

Although some sulfated guanosine analogs, such as the kainate receptor inhibitor HF-7 [2], have been isolated from the venom of spiders [3], sulfated nucleoside derivatives from natural sources other than spiders are rare [1,4].

![Fig. 1. Structures of sulfated isoguanine glycosides isolated from pupal case produced by bruchid beetle *Bruchidius dorsalis* inside *Gleditsia japonica* seeds.](image-url)
2. Experimental design, materials, and methods

2.1. Samples

Samples were isolated according to a previously reported method [1].

2.2. Description of the NMR experiments

Compounds 1–3 were dissolved in 0.6 mL of a mixture of CD$_3$OD and D$_2$O (1:9). All NMR spectra were acquired using a JEOL A400 spectrometer (400 MHz for 1H, 100 MHz for 13C). NMR analysis was performed using the ALICE2 software (JEOL, Tokyo, Japan). 1H and 13C NMR chemical shifts were referenced to residual solvent peaks: δ_H 3.30 (residual CHD$_2$OD) and δ_C 49.0 for CD$_3$OD. HRESIMS were carried out using a Thermo Fisher Scientific LTQ Orbitrap XL mass spectrometer at the Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University.

3. Sulfated isoguanine glycosides 1–3

3.1. 6-Amino-7-(2,4-di-O-sulfo-β-D-glucopyranosyl)-3,7-dihydro-3-(3-methyl-2-buten-1-yl)-2H-purin-2-one (locustoside A disulfate) (1)

1D NMR, 2D NMR, and HRESIMS spectra of the compound 1 are shown in Fig. 2a–g.

3.2. 6-Amino-7-(6-O-α-apio-β-D-furanosyl-2,4-di-O-sulfo-β-D-glucopyranosyl)-3,7-dihydro-3-[(2Z)-4-hydroxy-3-methyl-2-buten-1-yl)]-2H-purin-2-one (saikachinoside B disulfate) (2)

1D NMR, 2D NMR, and HRESIMS spectra of the compound 2 are shown in Fig. 3a–g.

![Fig. 2a. 1H NMR (400 MHz, CD$_3$OD–D$_2$O, 1:9) of 1.](image-url)
Fig. 2b. 13C NMR and DEPT (100 MHz, CD$_3$OD–D$_2$O, 1:9) of 1.

Fig. 2c. 1H–1H COSY of 1.
Fig. 2d. 1H–1H NOESY of 1.

Fig. 2e. 1H–13C HSQC of 1.
Fig. 2f. 1H–13C HMBC of 1.

Fig. 2g. (−-) HRESIMS of 1.

Calded for $C_{16}H_{21}N_2O_5S_2Na^- = 562.0531$

Calded for $C_{16}H_{21}N_2O_5S_2^- = 540.0712$

Calded for $C_{16}H_{21}N_2O_5S_2^2^- / 2 = 269.5320$
Fig. 3a. 1H NMR (400 MHz, CD$_3$OD–D$_2$O, 1:9) of 2.

Fig. 3b. 13C NMR and DEPT (100 MHz, CD$_3$OD–D$_2$O, 1:9) of 2.
Fig. 3c. 1H–1H COSY of 2.

Fig. 3d. 1H–1H NOESY of 2.
Fig. 3e. 1H–13C HSQC of 2.

Fig. 3f. 1H–13C HMBC of 2.
Fig. 3g. (-)HRESIMS of 2.

Fig. 4a. 1H NMR (400 MHz, CD$_3$OD–D$_2$O, 1:9) of 3.
Fig. 4b. 13C NMR and DEPT (100 MHz, CD$_3$OD–D$_2$O, 1:9) of 3.

Fig. 4c. 1H–1H COSY of 3.
Fig. 4d. 1H--1H NOESY of 3.

Fig. 4e. 1H--13C HSQC of 3.
Fig. 4f. 1H–13C HMBC of 3.

Fig. 4g. (–)HRESIMS of 3.

T: FTMS - p ESI Full ms [100.00-2000.00]

$^{[M-2H]}^+$: Caled for C$_{16}$H$_{12}$N$_2$O$_{10}$S$_4^+ / 2 = 317.5078$

$^{[M-3H]}^+$: Caled for C$_{16}$H$_{10}$N$_2$O$_{9}$S$_4^+ / 3 = 211.3361$

$^{[M-H]}$:

Caled for C$_{16}$H$_{12}$N$_2$O$_{10}$S$_4^-$ = 636.0229

$^{[M-2H+Na]}^+$: Caled for C$_{16}$H$_{12}$N$_2$O$_{10}$S$_4$Na$^+$ = 658.0049
3.3. 6-Amino-3,7-dihydro-3-[(2Z)-4-hydroxy-3-methyl-2-buten-1-yl]-7-(2,4,6-tri-O-sulfo-β-D-glucopyranosyl)-2H-purin-2-one (saikachinoside A trisulfate) (3)

1D NMR, 2D NMR, and HRESIMS spectra of the compound 3 are shown in Fig. 4a–g.

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant Number 18K05335.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] Y. Uyama, E. Ohta, Y. Harauchi, T. Nehira, H. Ómura, H. Kawachi, A. Imamura-Jinda, M.M. Uy, S. Ohta, Rare sulfated purine alkaloid glycosides from Bruchidius dorsalis pupal case, Phytochem. Lett. 35 (2020) 10–14.
[2] J. McCormick, Y. Li, K. McCormick, K. Duynstee, A.K. van Engen, G.A. van der Marel, B. Ganem, J.H. van Boom, J. Meinwald, Structure and total synthesis of HF-7, a neuroactive glyconucleoside disulfate from the funnel-web spider Hololena curta, J. Am. Chem. Soc. 121 (1999) 5661–5665.
[3] A.E. Taggi, J. Meinwald, F. Schroeder, A new approach to natural products discovery exemplified by the identification of sulfated nucleosides in spider venom, J. Am. Chem. Soc. 126 (2004) 10364–10369.
[4] Y. Harauchi, K. Muranaka, E. Ohta, H. Kawachi, A. Imamura-Jinda, T. Nehira, H. Omura, S. Ohta, Sulfated purine alkaloid glycosides from the pupal case built by the bruchid beetle Bruchidius dorsalis inside the seed of Gleditsia japonica, Chem. Biodiversity 15 (2018) e1800154.