Combined inhibition of MDM2 and BCR-ABL1 tyrosine kinase targets chronic myeloid leukemia stem/progenitor cells in a murine model

Bing Z. Carter,¹ Po Yee Mak,¹ Hong Mu,¹ Xiangmeng Wang,¹ Wenjing Tao,¹ Duncan H. Mak,¹ Elisha J. Dettman,² Michael Cardone,² Oleg Zernovak,³ Takahiko Seki,³ and Michael Andreeff¹

¹Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ²Eutropics, Cambridge, MA, USA and ³Daiichi Sankyo Co. Ltd., Oncology Laboratories, R&D Division, 2-58, Hiromachi 1-Chome, Shinagawa-ku, Tokyo, Japan

©2020 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2019.219261

Received: February 11, 2019.
Accepted: July 26, 2019.
Pre-published: August 1, 2019.
Correspondence: BING Z. CARTER - bicarter@mdanderson.org
MICHAEL ANDREEFF - mandreef@mdanderson.org
Supplemental Materials

Supplemental Methods

Human cells

Cells from newly diagnosed chronic phase CML patients (n = 5 for RT-PCR and n = 7 for Western blot, Supplemental Table 1) and normal bone marrow controls (n = 6 for RT-PCR and n = 5 for western blot) were collected in accordance with MD Anderson Cancer Center IRB-approved protocols. Mononuclear cells were isolated by density-gradient centrifugation using lymphocyte separation medium (Corning; Manassas, VA) and CD34+ cells were enriched using EasySep™ Human CD34 Positive Selection Kit II (Vancouver, BC, Canada) or Miltenyi Microbeads and autoMACS Separator (Miltenyi, Auburn, CA).

CyTOF mass cytometry

Mouse bone marrow cells were stained with a panel of metal-tagged antibodies for cell surface markers and intracellular proteins (Supplemental Table 3) and subjected to CyTOF analysis as previously described.1-3 Viable (cisplatin low) single cells were gated with FlowJo software (v10.2, FlowJo LLC) and exported as flow cytometry standard (FCS) data for subsequent analysis in Cytofkit.4 RPhenoGraph was used for unsupervised subset detection based on cell surface markers. t-SNE embedded FCS files were further analyzed in FlowJo and cell populations identified by RPhenoGraph were mimicked and gated on the t-SNE map for quantitation of intracellular marker expression. ArcSinh-transformed counts for the expression of each protein in the desired cell compartments were exported and visualized with heat maps.

Mitochondrial Priming
Frozen bone marrow cells obtained from Tet-off and Tet-on transgenic Scl-tTa-\textit{BCR-ABL1} mice were thawed. Viable cells were enumerated by Trypan blue exclusion and assessed for BCL-2 protein family function using the BH3 priming assay as previously described.5 To obtain sufficient cell numbers, we added Molm-13 cells to reach a 106 cells/ml cell concentration. Cells were then stained with antibodies against mouse CD45, Lineage cocktail, SCA-1, and C-KIT or appropriate isotype-matched control antibodies (BD Biosciences, San Jose, CA). Because Molm-13 cells are of human origin, the antibodies do not stain these cells, so the mouse cells were gated as CD45-positive. Gating for positivity for each marker was based on isotype control staining. Cells were treated with various BH3 peptides (PUMA, 10 \(\mu\)M; others, 100 \(\mu\)M) for 2 h and 15 min. Total CD45+ or CD45+ LSK cells were gated and JC-1-red positivity was measured. Priming was calculated for each peptide using the following formula, with dimethyl sulfoxide as a negative control and carbonyl cyanide m-chlorophenylhydrazone as a positive control (both purchased from Sigma Aldrich, St. Louis, MO).

\[
\text{Priming} = \frac{\text{Dimethyl Sulfoxide MFI} - \text{Peptide MFI}}{\text{Dimethyl Sulfoxide MFI} - \text{Cyanide m - Chlorophenyl hydrazone MFI}} \\
\times 100\%
\]
Supplemental Figures

Supplemental Figure 1. Effects of combined activation of p53 by MDM2 inhibition and inhibition of BCR-ABL1 by imatinib *in vivo* on GFP-LSK cells in bone marrow (A) and spleen (B). Cells were collected at the end of treatments from bone marrow and spleen of each treatment group and the control (n = 5, 3, 4, and 4 for control, IM, DS-5272, DS-5272+IM; respectively). Numbers of GFP-LSK cells were determined by flow cytometry after cells were stained with a lineage cocktail and antibodies against SCA-1 and C-KIT (CD117). CON, control; IM, imatinib.

Supplemental Figure 2. Mouse body weight during treatments

![Body weight chart](image-url)
Supplemental Tables

Supplemental Table 1. Patient characteristics

Patient no.	Blast%	Source	Cell population	Assay
1	1	BM	Total	RT-PCR
2	1	BM	Total	RT-PCR
4	2	BM	Total	RT-PCR
5	2	BM	Total	RT-PCR
6	1	BM	Total	RT-PCR
7	5	BM	CD34+	Western blot
8	2	BM	CD34+	Western blot
9	2	BM	CD34+	Western blot
10	2	BM	CD34+	Western blot
11	0	BM	CD34+	Western blot
12	2	PB	CD34+	Western blot
13	0	BM	CD34+	Western blot

CP, chronic phase; BM, bone marrow; PB, peripheral blood.

Supplemental Table 2. Primer sets for PCR analysis

Name	Mouse	Human
Abl1	Mm00802029_m1	ABL1 Hs01104728_m1
Bax	Mm00432051_m1	BAX Hs00180269_m1
Trp53	Mm01731287_m1	TP53 Hs99999147_m1
Mdm2	Mm01233138_m1	MDM2 Hs00242813_m1
Cdkn1a	Mm04205640_g1	CDKN1A Hs00355782_m1
Pmaip1	Mm00451763_m1	PMAIP1 Hs00560402_m1
18s	Mm03928990_g1	18S Hs03928985_g1

Supplemental Table 3. Antibody panel for CyTOF analysis

Target	Label	Clone	Vendor
CD45	147Sm	30-F11	DVS-Fluidigm
CD4	145Nd	RM4-5	DVS-Fluidigm
CD11b	148Nd	M1/70	DVS-Fluidigm
IGM	151Eu	RMM-1	DVS-Fluidigm
CD3e	152Sm	145-2C11	DVS-Fluidigm
TER119	162Dy	Ter-119	DVS-Fluidigm
LY6G/LY6C, GR-1	175Lu	RB6-8C5	BioLegend
B220, CD45R	176Yb	RA3-6B2	Biolegend
LY6A/E, SCA-1	164Dy	D7	DVS-Fluidigm
CD117, C-KIT	166Er	2B8	DVS-Fluidigm
Antibody	IS/AM	Cat. No.	Company
-----------	-------	----------	-------------
CD16, CD32		144Nd	DVS-Fluidigm
CD34		156Gd	BioLegend
BAX		163Dy	BioLegend
p53		165Ho	R&D Systems
p21		154Sm	Sigma
NOXA		168Er	Sigma
MDM2		173Yb	Sigma

References

1. Carter BZ, Mak PY, Mu H, et al. Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells. Sci Transl Med. 2016;8(355):355ra117.

2. Han L, Qiu P, Zeng Z, et al. Single-cell mass cytometry reveals intracellular survival/proliferative signaling in FLT3-ITD-mutated AML stem/progenitor cells. Cytometry A. 2015;87(4):346-356.

3. Zhou H, Mak PY, Mu H, et al. Combined inhibition of beta-catenin and Bcr-Abl synergistically targets tyrosine kinase inhibitor-resistant blast crisis chronic myeloid leukemia blasts and progenitors in vitro and in vivo. Leukemia. 2017.

4. Chen H, Lau MC, Wong MT, Newell EW, Poidinger M, Chen J. Cytofkit: A Bioconductor Package for an Integrated Mass Cytometry Data Analysis Pipeline. PLoS Comput Biol. 2016;12(9):e1005112.

5. Ishizawa J, Kojima K, McQueen T, et al. Mitochondrial Profiling of Acute Myeloid Leukemia in the Assessment of Response to Apoptosis Modulating Drugs. PLoS One. 2015;10(9):e0138377.