Infralittoral ostracoda and benthic foraminifera of the Gulf of Pozzuoli (Tyrrhenian Sea, Italy)

Giuseppe Aiello · Diana Barra · Roberta Parisi · Michele Arienzo · Carlo Donadio · Luciano Ferrara · Maria Toscanesi · Marco Trifuoggi

Received: 17 January 2021 / Accepted: 17 May 2021 / Published online: 15 June 2021 © The Author(s) 2021

Abstract The shallow water benthic foraminiferal and ostracod assemblages of the Gulf of Pozzuoli, located in the central Tyrrhenian Sea, were studied to investigate the relationship between calcareous meiofaunas and contaminant concentrations in bottom sediments exposed to prolonged industrial pollution. Both benthic foraminifers and ostracods displayed high-diversity and low-dominance, unusual features in highly contaminated environments. High-diversity values were possibly linked to the oligotrophic, well-oxygenated, and CaCO₃-supersaturated coastal Mediterranean waters. The comparison with historical data suggested that assemblage composition changed in the last decades, with an increase in the relative abundance of benthic foraminiferal (Quinqueloculina seminulum, Bulimina elongata) and ostracod (Xestoleberis, Loxoconcha, Semicytherura rarecostata) taxa. They probably represent organisms tolerant to the environmental variations in the last decades. The relationships between granulometry and diversity indices, high correlation values between Quinqueloculina lata and heavy metal pollution, and the preference of the ostracod genera Urocysteris and Paracytheridea for very shallow marine waters were highlighted.

Keywords Meiobenthos · Granulometry · Mediterranean Sea · Industrial pollution · High-diversity assemblages

Introduction

Benthic foraminifers (Rhizaria) and ostracods (Crustacea) are meiofaunal groups generally provided with calcareous tests and valves, commonly preserved in sea bottom sediments. The composition of their assemblages reflects environmental conditions due to both natural and human causes. Anthropogenic activities produce various effects on shallow marine waters, including organic pollution, changes in sedimentation rates, increase in hydrocarbon and heavy metal concentrations, and eutrophication-induced hypoxia (Goody et al., 2009; Yasuhara et al., 2012; Wilkinson et al., 2014) that, in turn, lead to an increase in the
relative abundance of stress-tolerant foraminiferal species (Hayward et al., 2004; Alve et al., 2009; Frontalini and Coccioni, 2011; Ruiz et al., 2012) and frequently to ostracod diversity decrease (Alve, 1991; Mazzola et al., 1999; Cronin & Vann, 2003; Irizuki et al., 2018). The studies combining the analyses of benthic foraminifers and ostracods in areas where human-induced ecological variations occurred showed the high potential of calcareous meiofaunal assemblages as water quality indicators (Samir, 2000; Triantaphyllou et al., 2003, 2005; Vilela et al., 2003; Bergin et al., 2006; Pascual et al., 2008, Salvi et al., 2015).

In the present study, benthic foraminiferal and ostracod assemblages were studied from eleven samples collected in the infralittoral zone of the Gulf of Pozzuoli, a bay located in the Campania region (Southern Italy) with a narrow continental shelf, a shelf break at about 40 m bsl, a maximum depth of 110 m, and an average depth of ca. 60 m (Fig. 1; Somma et al., 2016). The gulf is mainly exposed to winds and sea waves approaching from the southeast–southwest sector, with a maximum geographic fetch of 665 km for the 205° direction, 0.9–2.2 m average wave height, and a maximum wave height of 4.7 m in winter (De Pippo et al., 2008). The water circulation models (De Maio et al., 1985; Menna et al., 2008; de Ruggiero, 2016) of the gulf generally indicate two main flow patterns: (i) when the open sea currents flow toward the southeast, the inner waters of the bay are cut off in a slow cyclonic gyre; then, the coastal waters slow motion could favor turbidity and a high pollutant concentration; (ii) when the open sea currents flow toward the northwest, some branches enter into the bay; then, a fair renewal of sea waters occurs. Tides are negligible, with a syzygial tide amplitude of 0.35 m (Tammaro et al., 2021); therefore, the gulf is a wave-dominated environment. Salinity, turbidity, and phytoplankton distribution are related to seasonal variation in the sea surface and column temperature, autumn–winter freshwater supply by rainfalls and land runoff, marine currents cell circulation: 37.1–38.6‰ salinity, 27–30°C sea surface temperature, and high phytoplankton biomass (Chl a

Fig. 1 Location of the sampling stations (black solid circle) in the Gulf of Pozzuoli. Legend: 1, pyroclastics of the Phlegrean Fields (Late Pleistocene–Holocene); 2, deposits of transitional environments (Quaternary); 3, isobath(-m); 4, edge of the continental shelf break, from a depth of about 25 down to 40 m. Depth is in meters b.s.l. (after Somma et al., 2016 and the morphobathymetric and sedimentological surveys carried out for this research). The geographic coordinate system is WGS84
concentration > 2 μg/L) were registered during the spring–summer season (Bolinesi et al., 2020). The bay was exposed to prolonged anthropogenic disturbance, due to urban and industrial wastes, at least since 1885, when an armaments factory was built by the British company Armstrong Mitchell & Co. The eastern part of the gulf was under the influence of the Bagnoli steel plant from 1910 to 1990, to which the high levels of polycyclic aromatic hydrocarbons (Arienzo et al., 2017; Ferrara et al., 2020), trace metals (Trifuoggi et al., 2017), and rare earth elements (Trifuoggi et al., 2018) in the sediment seem to be linked. Recently, some ecological and paleoecological investigations were performed on Recent (Balassone et al., 2016; Mangoni et al., 2016; Arienzo et al., 2020) and late Quaternary (i.e., from ~ 150 ka to historical times; Aiello et al., 2012; 2018; 2020; 2021; Amato et al., 2019; Petrosino et al., 2021) sediments of the Campania region coastal areas focused on benthic foraminiferal and ostracod assemblages. The present study aims to define the characteristics of the calcareous meiofaunal assemblages in the infralittoral zone (Peres & Picard, 1964; Peres, 1982) of an area showing high geoaccumulation values and to test a possible decrease in benthic faunal abundance and diversity in polluted bottom sediments. Our data, compared with the above-mentioned studies and previous investigations on Campanian infralittoral benthic foraminifers (Moncharmont Zei, 1964; Sgarrella & Barra, 1985; Sgarrella et al., 1985; Sgarrella & Moncharmont, 1993) and ostracods (Müller, 1894; Puri et al., 1964, 1969), may contribute to a more complete understanding of the relationship between meiofaunal assemblages and environmental parameters.

Material and methods

Eleven samples of very fine to coarse sands, and very fine gravels, were collected by a Van Veen grab above the shelf break of the Gulf of Pozzuoli (~ 40 m bsl), in a water depth range between 7.5 m and 38 m, within the infralittoral zone. The grab collected superficial sediments, including the first ca. 5 cm of the seabed, related to texture and consistency of silt or sand deposits. Sharp & Nardi (1987) calculated, in this area, a sedimentation rate of about 4 mm/year and consequently the sampled sediments deposited, at most, in the last 15 years. The surface of the sampler is about 150 square cm (10 × 15 cm), while the volume of the sampled sea bottom surface sediment generally is about 750–1000 cubic cm. Samples were taken along one campaign in the spring of 2017 along transects and aboard a motor vessel. Bathymetry, grain size, number, and location of samples are reported in Fig. 1 and Table 1. For meiofaunal analyses, all the samples were oven-dried, and 100 g of dry sediment was taken. They were washed through 230-mesh (63 μm) and 120-mesh (125 μm) sieves, and the residues were oven-dried and examined with a reflected light microscope. A microsplitter was used.

Table 1 Coordinates of sampling stations, grain size, and water depth

Sampling stations	Latitude (N)	Longitude (E)	Depth (m)	Gravel %	Sand %	Silt %	Clay %	Class
TP1—1	40°49’27.55”	14°05’02.94”	8.0	4.68	94.9	0.33	0.05	Fine sand
TP1—2	40°49’16.89”	14°05’08.74”	24.8	1.59	97.3	0.96	0.16	Fine sand
TP2—1	40°49’41.34”	14°06’19.46”	8.0	0.69	99.3	–	–	Coarse sand
TP2—2	40°49’23.95”	14°06’21.93”	25.8	1.50	97.0	1.40	0.10	Very fine sand
TP2—3	40°48’42.91”	14°06’29.06”	34.0	6.72	91.8	1.32	0.15	Fine sand
TP3—1	40°49’05.98”	14°07’50.41”	7.5	0.67	99.3	–	–	Medium sand
TP3—2	40°48’53.02”	14°07’46.26”	23.8	5.10	94.9	–	–	Fine sand
TP3—3	40°48’33.38”	14°07’38.47”	38.0	2.89	96.1	0.88	0.12	Fine sand
TP4—1	40°48’46.43”	14°09’30.87”	7.7	0.06	99.9	–	–	Fine sand
TP4—2	40°48’32.74”	14°09’17.63”	21.5	0.57	98.9	0.47	0.07	Fine sand
TP5—1	40°47’33.96”	14°09’28.91”	22.7	49.1	50.8	–	–	Very fine gravel
to obtain subsamples when necessary. About 300 benthic foraminiferal tests and 300 ostracod valves were picked from the coarsest fraction (> 125 μm), classified, and counted. Abundance and diversity indices were calculated using the number of foraminiferal specimens, the ostracod Minimum Number of Individuals (MNI), and the Total Number of Valves (TNV). MNI is the greater number between right and left adult valves plus the number of adult carapace; when only juvenile shells (j) were recorded, the MNI equals one. TNV includes all the adult and young instar valves. Assemblage composition as well as diversity indices was considered for environmental discussion. The following indices were calculated: S (taxa richness), I (individuals per 100 g of sediment), D (dominance), H’ (Shannon’s diversity index, using natural logarithm), and J (equitability). The species were identified according to classic and modern literature both for benthic foraminifers and ostracods (Aiello & Barra, 2010; Aiello et al., 2018, and references therein). The studied specimens are housed in the Aiello Barra Micropaleontological Collection (A.B.M.C.), Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università degli Studi di Napoli Federico II. Statistical analyses were performed using abundance values of foraminiferal (I = number of individuals per 100 g) and ostracod (both MNI = minimum number of individuals per 100 g, and TNV = total number of valves per 100 g) assemblages. Q-mode cluster analysis (paired group as an algorithm, Rho as similarity measure) was performed to determine groups of samples with similar meiofaunal composition, using abundance values of all foraminiferal and ostracod (both MNI and TNV) species. Pearson’s correlation coefficient was used to test for correlation between assemblage features, depth, major and trace elements, and polycyclic aromatic hydrocarbons of eight fine-grained samples; benthic foraminiferal and ostracod species with relative abundance greater than 5% in at least two samples were considered. The abiotic variables were subject to z-standardization. Analyses were carried out on the same set of samples used by Arienzo et al. (2017), Trifuoggi et al. (2017, 2018), and Ferrara et al. (2020) in their investigations on the distribution of polycyclic aromatic hydrocarbons (PAHs), trace metals (HMs), and rare earth elements (REEs). All the analytical determinations were performed in triplicate for each sample taken at each site. The quality of the analytical results is assured by participation in ring tests for the determination of HMs, PAHs, and REEs from sediments and similar matrices. Mean recoveries ranged from a minimum of 85% to a maximum of 97%. Grain size analyses were performed following the standard methodology of Folk and Ward (1957). Full methodological details on sampling techniques, geochemical and grain size analyses were reported in Arienzo et al. (2017), Trifuoggi et al. (2017, 2018), and Ferrara et al. (2020).

Computation of diversity indices and statistical analysis were performed with STATISTICA 5 (StatSoft Inc., Tulsa, OK, USA).

Table 2 Benthic foraminiferal absolute abundance (I = individuals per 100 g of sediment)

Sampling stations	Latitude (N)	Longitude (E)	Depth (m)	Gravel %	Sand %	Silt %	Clay %	Class
TP1—1	40°49'27.55"	14°05'02.94"	8.0	4.68	94.9	0.33	0.05	Fine sand
TP1—2	40°49'16.89"	14°05'08.74"	24.8	1.59	97.3	0.96	0.16	Fine sand
TP2—1	40°49'41.34"	14°06'19.46"	8.0	0.69	99.3	–	–	Coarse sand
TP2—2	40°49'23.95"	14°06'21.93"	25.8	1.50	97.0	1.40	0.10	Very fine sand
TP2—3	40°48'42.91"	14°06'29.06"	34.0	6.72	91.8	1.32	0.15	Fine sand
TP3—1	40°49'05.98"	14°07'50.41"	7.5	0.67	99.3	–	–	Medium sand
TP3—2	40°48'53.02"	14°07'46.26"	23.8	5.10	94.9	–	–	Fine sand
TP3—3	40°48'33.38"	14°07'38.47"	38.0	2.89	96.1	0.88	0.12	Fine sand
TP4—1	40°48'46.43"	14°09'30.87"	7.7	0.06	99.9	–	–	Fine sand
TP4—2	40°48'32.74"	14°09'17.63"	21.5	0.57	98.9	0.47	0.07	Fine sand
TP5—1	40°47'33.96"	14°09'28.91"	22.7	49.1	50.8	–	–	Very fine gravel
Results

All the samples yielded both benthic foraminiferal and ostracod shells (no barren samples) (Tables 2–8). A total of 4262 foraminiferal individuals and 3607 ostracod valves were collected. The good state of preservation, the distribution data, and the presence of all developmental stages (in ostracods: different young instars and adults) suggested that the calcareous meiofaunal assemblages could be considered entirely autochthonous. The benthic foraminiferal assemblages included 142 species assigned to 74 genera; 127 ostracod species in 49 genera were recorded (Appendix 1; Figs. 2–3). Five benthic foraminiferal species and eight ostracod species were tentatively identified or left in open nomenclature and nine with affinitive status due to the absence of adult specimens, or because of poorly preserved shells. The good state of preservation, the distribution data, and the presence of all developmental stages (in ostracods: different young instars and adults) suggested that the calcareous meiofaunal assemblages could be considered entirely autochthonous.

Benthic foraminifers.

Six benthic foraminiferal species were present in all the samples, that is, *Ammonia aberdoveyensis, Buccella granulata, Cibicides lobatulus, Elphidium crispum, Quinqueloculina seminulum* and *Triloculina schreiberiana*. Assemblages were characterized by the genera *Quinqueloculina* (19 species) and *Elphidium* (10 species). *Cibicides lobatulus* was the most abundant species, with a Medium Relative Abundance (MRA) of 12.8%, followed by *Tretomphalus concinnus* (MRA = 5.54%), *Siphonaperta aspera* (MRA = 4.30%), *Elphidium crispum* (MRA = 3.97%), *Asterigerinata mamilla* (MRA = 3.75%) and *Q. seminulum* (MRA = 3.53%).

The number of species (S) was between 17 and 82, with discrimination between the three coarse-grained samples (TP2-1 = coarse sand; TP3-1 = medium sand; TP5-1 = very fine gravel) and the remaining eight samples, all made of fine or very fine sands. The former displayed a S range from 17 to 48, with the mean value of 34.33; the eight fine-grained samples had S between 52 and 82 (mean value = 61.25).

The number of specimens (I) showed a wide range, from 69 to 105,984. The three coarse-grained samples displayed a mean value of 484, whereas a I mean value of 51,540 was recorded for the remaining samples. The dominance (D) was between 0.04 and 0.20, with high values in the samples TP2-1 (D = 0.20) and TP5-1 (D = 0.16) and low (D<0.06) the remaining ones.

TP2-1 and TP5-1 assemblages showed a Shannon diversity index (H’) less than 3; in the other assemblages H’ >3. Mean H’ is 3.28. A similar trend was observed for equitability (J), low in the samples TP2-1 and TP5-1 (J<0.8) and high (J>0.8) in the other samples.

Ostracods.

The most diversified genera were *Semicytherura* (18 species) and *Xestoleberis* (12 species). Characteristic species were *Urocythereis margaritifera* [MRA(MNI) = 8.10%; MRA(TNV) = 9.94%], *Pontocythere turbida* [MRA(MNI) = 6.00%; MRA(TNV) = 5.64%], *Semicytherura rarecostata* [MRA(MNI) = 5.56%; MRA(TNV) = 3.87%], *Loxoconcha rhomboidea* [MRA(MNI) = 5.08%; MRA(TNV) = 4.83%] and *Loxoconcha ovalata* [MRA(MNI) = 3.68%; MRA(TNV) = 5.55%]. *Loxoconcha affinis* [MRA(MNI) = 3.45%; MRA(TNV) = 3.64%], *Xestoleberis dispar* [MRA(MNI) = 2.93%; MRA(TNV) = 5.26%], *Xestoleberis communis* [MRA(MNI) = 2.25%; MRA(TNV) = 5.22%] and *Aurila convexa* [MRA(MNI) = 1.93%; MRA(TNV) = 4.95%] were considered accessory species.

The three samples with coarser granulometry (TP2-1, TP3-1, TP5-1) yielded relatively poor ostracod assemblages, showing low diversity and high dominance. Conversely, in the fine-grained samples, diversity and abundance were high and the dominance low.

Taxa richness (S) ranged from 4 to 12 in the coarse-grained samples and from 31 to 57 in the remaining ones. In the former samples, abundance (I) was between 9 and 27 (MNI) and between 18 and 40 (TNV); in the latter samples, the mean value of I was 2065.5 (MNI) and 7781 (TNV). Shannon index H’ followed a similar trend: in TP2-1, TP3-1, TP5-1 mean H’ (MNI) was 1.68 and medium H’ (TNV) was 1.56; in the assemblages occurring in the fine-grained sediments, medium H’ (MNI) was 3.35 and medium H’ (TNV) was 3.10.

Dominance (D) values were high in the assemblages of samples TP2-1, TP3-1, TP5-1 [D (MNI) range = 0.09–0.48; D(TNV) range = 0.14–0.70]; in the fine-grained samples the average D was 0.05 (MNI) and 0.07 (TNV).
Table 3 Benthic foraminiferal relative abundance (RA, %) samples

Samples	TP1—1	TP1—2	TP2—1	TP2—2	TP2—3	TP3—1	TP3—2	TP3—3	TP4—1	TP4—2	TP5—1
Adelosina elegans (Williamson, 1858)											
Adelosina longirostra (d'Orbigny, 1826)	0.67	2.54	1.19	1.18	1.39	1.56	0.25	0.61			
Adelosina mediterranensis (Le Calvez & Le Calvez, 1958)											2.37
Adelosina pulchella d'Orbigny, 1826											0.52
Affinetrina planctonica (d'Orbigny, 1839)	0.12										0.43
Ammodiscus planorbis Höglund, 1947											0.30
Ammonia aberdoveyensis Haynes, 1973 lobate form	1.66										0.81
Ammonia aberdoveyensis Haynes, 1973 rounded form	3.20	2.90	2.90	5.70	3.25	3.13	0.81	4.68	0.74	0.30	0.87
Ammonia beccarii Linnaeus, 1758	0.36	7.25		2.07	0.69						0.52
Amphicorina scalaris (Batsch, 1791)									0.26		
Angulogerina angulosa (Williamson, 1858)										0.27	
Asterigerinata adriatica Haake, 1977									0.89	0.89	0.26
Asterigerinata manilla (williamson, 1858)	1.35	3.86	0.95	6.80	1.04	8.09	8.83	1.47	3.65	5.19	
Asterigerinata mariae Sgarrella, 1990	0.67										
Astronomion stelligerum (d'Orbigny, 1839)	1.68	0.85		0.30	0.35			0.74	0.91	2.16	
Bolivina catanensis Seguenza, 1862	0.34										
Bolivina lowmani Phleger & Parker, 1951	0.51	0.24	0.30	0.35	0.27						
Bolivina pseudoplicata Heron–Allen & Earland, 1930	0.24							0.26			
Bolivina variabilis (Williamson, 1858)									0.27		
Bolivina sp.	0.12										
Bulimina spathulata (Williamson, 1858)	0.24	0.24									
Bulimina stratiata (Cushman, 1922)	0.51	0.12									
Buccella granulata (Di Napoli Alliata, 1952)	1.52	1.45	2.90	0.48	2.66	4.17	1.89	6.23	0.49	2.43	2.60
Bulimina aculeata d'Orbigny, 1826	0.17	0.36	1.90	0.59	0.35	0.54	0.26	0.91			
Bulimina elongata d'Orbigny, 1846	0.67	5.07	9.98	3.85	6.20	0.78	0.74	2.43			
Cassululina carinata Silvestri, 1896	0.60	0.89	1.39								1.04
Cibicides lobatus (Walker & Jacob, 1798)	8.59	10.51	4.35	5.46	12.13	7.64	16.98	11.43	12.99	13.98	36.80
Cibicides refugens Montfort, 1808											0.91
Cibicidoides pachyderma (Rzehak, 1886)	0.24										
Cibicidoides variabilis (d'Orbigny, 1826)	0.51	0.85	1.19					2.45	0.61	0.87	
Conoribella imperatoria (d'Orbigny, 1846)	0.24										
Cornuspira involvens (Reuss, 1850)								2.38	0.49		
Cycloforina contorta (d'Orbigny, 1846)	1.68	1.81	0.24	2.07	3.47	1.35	3.38	0.98	4.26	0.87	
Cycloforina rugosa (d'Orbigny, 1826)	0.34								1.23	0.30	
Cycloforina tenuicollis (Wiesner, 1923)										0.25	
Samples	TP1—1	TP1—2	TP2—1	TP2—2	TP2—3	TP3—1	TP3—2	TP3—3	TP4—1	TP4—2	TP5—1
---	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------
Cycloforina villafranca (Le Calvez & Le Calvez, 1958)	0.59	0.54									0.74
Discorbinella bertheloti (d’Orbigny, 1839)	0.24	5.92	0.35	0.81	6.49	0.61					
Discorbis torrei Bermúdez, 1935											1.52
Eggerelloides scaber (Williamson, 1858)	2.38	0.35									
Eilohedra vitrea (Parker, 1953)											0.35
Elphidium articulatum (d’Orbigny, 1839)	1.18	0.71	1.18	0.91							
Elphidium complanatum (d’Orbigny, 1839)	4.55	5.43	0.30	3.77	0.52	2.70	0.61				
Elphidium crispum (Linnaeus, 1758)	1.52	6.04	1.45	6.41	4.14	2.08	3.23	4.68	1.23	1.22	11.69
Elphidium granosum (d’Orbigny, 1846)	0.17	0.24	0.48	4.44	0.27	1.56					
Elphidium incertum (Williamson, 1858)	0.51	0.48									
Elphidium macellum (Fichtel & Moll, 1798)	1.52	1.69	7.25	1.43	3.25	4.86	2.43	1.56	0.98		
Elphidium maioricense Colom, 1942	0.34	0.36	0.71	1.39	1.08	0.98	1.22	1.30			
Elphidium poeyanum (d’Orbigny, 1839)					0.60				1.89		
Elphidium poeyanum (d’Orbigny, 1839) DS form	0.48	0.71	3.25	0.81	1.30						
Elphidium pulvereum Todd, 1958	0.84	0.24	1.66	0.35		3.19	1.22	0.43			
Elphidium punctatum (Terquem, 1878)	7.74	0.48	1.18	7.29	1.62	0.78	3.68	7.29	0.43		
Favulina hexagona (Williamson, 1848)		0.30									
Flintinoides labiosa (d’Orbigny, 1839)	1.85	1.69	0.35	0.54	1.23						
Furesenina acuta (d’Orbigny, 1846)	0.48	0.24		0.26							
Gavelinopsis praegeri (Heron-Allen & Earland, 1913)	0.34	0.48	0.95	2.37	1.62	1.30	0.49	0.30	0.43		
Glabratarella erecta (Sidebottom, 1908)	0.24			0.49	0.61						
Glabratarella hexacamerata Seiglie & Bermúdez, 1965	1.01	0.24	0.48			0.98					
Globobulimina sp. 1		0.48									0.43
Globocassidulina subglobosa (Brady, 1881)	0.17										0.43
Globulina gibba (d’Orbigny, 1826)	0.12										
Guttulina sp. 1											0.43
Gyroïdina neosoldanii Broten, 1936	0.12										
Gyroïdina umbonata (Silvestri, 1898)											
Haynesina depressula (Walker & Jacob, 1798)	2.02	0.97	4.28	2.07	3.82	0.26	0.98	1.22			
Haynesina germanica (Ehrenberg, 1840)	2.78										
Lachlanella undulata (d’Orbigny, 1852)											0.30
Lagena semistriata Williamson, 1848	0.12										0.48
Lenticulina cultrata (Montfort, 1808)											0.12
Lenticulina gibba (d’Orbigny, 1839)											0.30
Lenticulina rotulata (Lamarck, 1804)	0.17	0.89	0.81								
Samples	TP1—1	TP1—2	TP2—1	TP2—2	TP2—3	TP3—1	TP3—2	TP3—3	TP4—1	TP4—2	TP5—1
-------------------------------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------
Massilina secans (d’Orbigny, 1826)	0.67	0.12	0.35	0.54	0.74	1.22	0.87				
Melonis affinis (Reuss, 1851)	0.72	0.89									
Miliolidae	0.36		0.81	0.52							
Miliolinella elongata Knit, 1955											1.52
Miliolinella cf. M. hybrida (Terquem, 1878)	1.01										
Miliolinella semicostata (Wiesner, 1923)	0.67	0.24	0.30	1.04	0.27	0.26	0.25	0.43			
Miliolinella subrotunda (Montagu, 1803)	0.51	1.93	4.35	4.75	3.47	2.16	4.66	3.04	2.60		
Miliolinella webbiana (d’Orbigny, 1839)											0.43
Miniacina minacea (Pallas, 1766)											
Neoconorbina terquemi (Rzehak, 1888)	0.84	0.97	1.66	3.85	3.50	10.39	0.91	0.43			
Nonionella turgida (Williamson, 1858)	0.12	0.71						1.23			
Nubecularia lucifuga Defrance, 1825	1.52	0.60	1.66	0.30	0.35	1.35	0.52	0.74	2.43	0.87	
Palliolatella fasciata (Egger, 1857)										0.30	
Parrina bradyi (Millett, 1898)							0.24	0.30			
Peneroplis persutus (Forskål, 1775)	2.02	1.09	2.90	2.78	0.27	0.49					
Peneroplis planatus (Fichtel & Moll, 1798)	0.84	0.12									
Planoglabrataella opercularis (d’Orbigny, 1846)	0.69										0.49
Planorbula mediterraneensis d’Orbigny, 1826	2.69	2.05	0.24	2.07	0.69	1.89	2.34	8.09	1.52	5.19	
Quinqueloculina agglutinans d’Orbigny, 1839	0.17	0.24									
Quinqueloculina annectens (Schlumberger, 1893)											0.12
Quinqueloculina berthelotiana d’Orbigny, 1839	3.37	4.35	2.90	2.85	0.30	0.35	1.35	3.38	0.61	0.87	
Quinqueloculina bosciana d’Orbigny, 1839	2.02	0.36	1.66	0.30	7.29	0.27	1.23	0.30			
Quinqueloculina bradyana Cushman, 1917	0.34	0.85	0.24	0.30	1.04						1.47
Quinqueloculina disparilis d’Orbigny, 1826											0.26
Quinqueloculina irregularis d’Orbigny, 1826	0.34										0.30
Quinqueloculina jugosa Cushman, 1944	0.34	0.24									1.04
Quinqueloculina laevisata d’Orbigny, 1839	0.17	0.24			0.35						0.74
Quinqueloculina lata Terquem, 1876	2.86	0.97	2.90	1.90	0.30	5.56	0.27	9.80	4.86	1.73	
Quinqueloculina limbata d’Orbigny, 1826	0.17	0.36									
Quinqueloculina parvula Schlumberger, 1894	0.84	0.60	1.19	0.30		0.74	0.61				
Quinqueloculina poeyana d’Orbigny, 1839					1.45	0.24					1.22
Quinqueloculina pyrgimae Reuss, 1850	1.68	0.48	0.24	1.48	1.74	0.78	3.19	1.22			
Quinqueloculina seminulum (Linnaeus, 1758)	1.52	1.21	10.14	5.94	0.89	6.60	1.62	1.30	4.17	2.43	3.03
Quinqueloculina stalkeri Loeblich & Tappan, 1953	0.17	0.48	0.35							0.61	
Quinqueloculina stelligera Schlumberger, 1893	1.85	0.85	1.19		0.81	0.49	0.91	4.33			
Samples	TP1—1	TP1—2	TP2—1	TP2—2	TP2—3	TP3—1	TP3—2	TP3—3	TP4—1	TP4—2	TP5—1
--	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------
Quinqueloculina ungeriana d’Orbigny, 1846	0.17										
Quinqueloculina vulgaris d’Orbigny, 1826		1.45		1.04		1.23		0.61			
Quinqueloculina sp.	0.17										
Rectuvigerina phlegeri Le Calvez, 1959	0.17	0.85	2.38	3.85	2.43	2.60					
Reophax fusiformis (Williamson, 1858)											
Reussella spinulosa (Reuss, 1850)				1.48		0.27		0.78			
Rosalina floridana (Cushman, 1922)	1.35	1.57	0.30	1.04	4.04	0.52	0.49	2.13	1.73		
Rosalina macropora (Hofker, 1951)	2.36	2.78	0.48	6.51	2.43	3.23	2.34	1.23	0.91	3.46	
Rosalina obtusa d’Orbigny, 1846	1.85	3.02	0.71	2.07	0.69	4.04	3.90	1.23	4.56		
Rotorbis auberii (d’Orbigny, 1839)	0.17	0.12		0.24		0.52					
Sahulia conica (d’Orbigny, 1839)											
Sigmoilina costata Schumberger, 1893	0.34	0.60	0.48	0.30	0.54	0.52	0.74	0.30			
Sigmoilina grata (Terquem, 1878)						0.27		0.74			0.61
Sigmoilinita distorta (Phleger & Parker, 1951)				0.25							
Siphonaperta aspera (d’Orbigny, 1826)		0.24	40.58	0.48	4.51	0.27		1.22			
Siphonina reticulata (Czľek, 1884)		0.12		0.14				0.54			
Sorites orbicularis (Forskål, 1775)	0.17	1.45		0.48	0.24						1.30
Spirillina vivipara Ehrenberg, 1843											0.30
Spiroloculina depressa d’Orbigny, 1826											
Spiroloculina excavata d’Orbigny, 1846											0.26
Spiroloculina ornata d’Orbigny, 1839	0.17	0.24									
Spiroloculina tricarinata d’Orbigny, 1852	0.34	0.36									
Spiroplectinella wrighti (Silvestri, 1903)									0.27	0.52	
Stainforthia complanata (Egger, 1893)											
Stnematobriss concentrica (Parker & Jones, 1864)											0.43
Textularia aciculata d’Orbigny, 1826						0.59		0.26			
Textularia agglutinans d’Orbigny, 1839						0.12					
Textularia calva Lalicker, 1940									0.81	0.26	
Textularia pala Czľek, 1848											1.08
Tretomphalus concinnus (Brady, 1884)	11.78	8.09	7.13	1.48	5.56	3.23	1.30	10.29	8.21	3.90	
Triloculina eburnea d’Orbigny, 1839	0.17	4.35			1.04						
Triloculina plicata Terquem, 1878	0.34	0.60		0.69	0.81	0.49	0.91	0.43			
Triloculina schreibersiana d’Orbigny, 1839	0.34	0.12	0.24	1.04	0.26	0.74	0.30				
Triloculina trigonula (Lamarck, 1804)	4.04	5.80	1.45	5.94	1.48	0.69	3.77	2.60	0.98	3.95	0.43
Trochammina inflata (Montagu, 1808)									0.27		
Equitability (J) ranged from 0.72 to 0.99 (MNI) and from 0.46 to 0.94 (TNV). The mean J values were 0.86 (MNI) and 0.79 (TNV).

Statistics.

The cluster analysis (Fig. 4) revealed two clusters of samples, obtained at a similarity cut-off level of 0.45. Cluster B consists of the coarse-grained samples TP2-1, TP3-1, and TP5-1, with low diversity—low abundance assemblages; cluster A includes the remaining eight fine-grained (fine and very fine sands) samples, characterized by high-diversity—high abundance assemblages. The three sediment samples grouped in Cluster B, consisting of medium sand, coarse sand, and very fine gravel, showed low geochemical accumulation. Since both low meiofaunal abundance/diversity values and low pollutant concentrations are highly associated with grain size (v. Discussion section), a correlation analysis including all the samples would provide results strongly influenced by granulometry. Consequently, we opted for performing the Pearson’s correlation coefficient analysis on the eight fine-grained samples included in Cluster A. Results of Pearson’s correlation coefficient analysis using meiofaunal assemblages, depth, major and trace elements, total organic carbon, and polycyclic aromatic hydrocarbons (Table 9) are reported in Table 10. The foraminiferal species *Cibicides lobatulus* and *Elphidium crispum* are common in all the samples. The assemblages included in Cluster A are characterized by the foraminifers *Tretomphalus concinnus*, *Asterigerinata mamilla*, *Triloculina trigonula*, and *Elphidium punctatum* and by the ostracods *Semicictherura rarecostata*, *Loxoconcha ovulata*, *L. rhomboidea*, *Aurila convexa*, and *Xestoleberis communis*. In Cluster B, the foraminiferal species *Siphonaperta aspera*, *Quinqueloculina seminulum*, *Elphidium macellum*, and the ostracods *Urocythereis margaritifera* and *Pontocythere turbida* characterized the assemblages.

Our results show that the anthropogenic impact in the infralittoral zone of the Gulf of Pozzuoli, recorded in the geochemical accumulation (v. Table 9), was not reflected by diversity indices of the calcareous meiofaunal assemblages. The present findings were compared with the results of a previous study by Moncharmont (1964), based on a sampling carried out in 1961 by Harbans S. Puri and the Stazione Zoologica Anton Dohrn, where the characteristic species of the infralittoral zone were *Ammonia beccarii*, A. *mamilla*, C. *lobatulus* and *T. concinnus*.
Table 4 Ostracod absolute abundance [I(MNI) = minimal number of individuals per 100 g of sediment]; j indicates juvenile specimens

Samples	TP1	TP1	TP2	TP2	TP3	TP3	TP3	TP4	TP4	TP5
	1	2	1	2	1	2	1	2	1	
Aglaiocypris complanata (Brady & Robertson, 1869)	16	64j	j							
Argilloecia minor Müller, 1894	8	32								
Auriia convexa (Baird, 1850)	16j	32j	32j	32j	48j	48j	32j	8j	1	
Auriia prasina Bar beet-Gonzalez, 1971										
Auriia speyeri (Brady, 1858)										
Callistocythere crispa ta (Brady, 1868)	8j	32j	j	64j	16j	48j	8j	8j		
Callistocythere flavides (Ruggieri, 1950)	8		48j	48j						
Callistocythere lobiancoi (Müller, 1894)	64j									
Callistocythere aff. C. protracta Ruggieri & D’Arpa, 1993	8									
Carinocythereis carinata (Roemer, 1838)										
Carinocythereis whitei (Baird, 1850)	24j	128j	192j	128j	32j	32j	8	16j		
Cistacythereis turbida (Müller, 1894)	32j	64j	128j	32j	112j	j	8j			
Costa batei (Brady, 1866)	32j		16	48j						
Costa edwardsii (Roemer, 1838)	8		32	16	j					
Cyprideis torosa (Jones, 1850)	j	32j								
Cytheretta adriatica Ruggieri, 1952	j		4	j	8j	40j				
Cytheretta subradiosa (Roemer, 1838)	16		1	32j	48j	64j	16	32j		
Cytheridea neapolitana Kollmann, 1960	j									
Cytherois frequens Müller, 1894	8	224j	96j	j						
Cytherois joachinoi Barra, 1992	32									
Cytherois aff. C. niger Schornikov, 1965										
Cytherois aff. C. pontica Marinov, 1966	8									
Cytherois triangularis Bonaduce, Masoli, Minichelli & Pugliese, 1979	32	j	32j	16j	j	j				
Cytherois uffenordei Ruggieri, 1974	80j	544j	64j	16j	64j	16				
Cytherois sp.1	32									
Cytheroma variabilis Müller, 1894										
Cytheropteron latum Müller, 1894										
“Elofsonia” minima (Bonaduce, Ciampo and Masoli, 1976)	32	j	32j	16	24j	j				
Eucytherura gibbera Müller, 1894										
Hemicytherura defiorei Ruggieri, 1953	16	32j	64j	80	48j	8				
Hemicytherura videns (Müller, 1894)	8j	32j	32	16	16	8				
Table 4 continued

Samples	TP1—	TP1—	TP2—	TP2—	TP3—	TP3—	TP3—	TP4—	TP4—	TP5—		
	1	2	1	2	1	2	1	2	1			
Heterocythereis voraginosa Athersuch, 1979												
Leptocythere levis (Müller, 1894)	8											
Leptocythere macella Ruggieri, 1975	32	16j										
Leptocythere ramosa (Rome, 1942)												
Loxoconcha decipiens (Müller, 1894)												
Loxoconcha affinis (Brady, 1866)	136j	608j		96j	56j	40j						
Loxoconcha concentrica Bonaduce, Ciampi & Masoli, 1976	32											
Loxoconcha ovulata (Costa, 1853)	160j	256j	208j	112j	208j	16j						
Loxoconcha rhomboidea (Fischer, 1855)	64j	64j	512	96j	144j	112j	16j	2j				
Loxoconcha stellifera Müller, 1894	8j	32j	1									
Macrocyprina succinea (Müller, 1894)												
Microcythere depressa Müller, 1894	8	32j										
Microcythere hians Müller, 1894												
Microcythere ? tara Müller, 1894												
Microcythere vitrea Bonaduce, Ciampi & Masoli, 1976												
Microxestoleberis fulva (Brady & Robertson, 1874)	16j											
Microxestoleberis nigrescens Müller, 1894	32j	32j	64j	16j	32j	24j						
“*Microcytherura*” sp. 1												
Microxestoleberis nana Müller, 1894												
Microxestoleberis sp.												
Neocytheridea subulata (Brady, 1868)	8	j	64	16	64	16j						
Neônesidea mediterranea (Müller, 1894)	j	32j		16j	j	16						
Palmoconcha subrugosa (Ruggieri, 1977)												
Palmoconcha turbida (Müller, 1894)	64											
Parycythereia paulii Dubowsky, 1939	128j	32j	64j	16j	104j	48j						
Parycythereia triquetra (Reuss, 1850)	64j	384j	32j	48j	8j	40j	1					
Parycythereois agigensis Caraion, 1963												
Parycythereois flexuosata (Brady, 1867)												
Paradoxostoma atrum Müller, 1894	32											
Paradoxostoma acuminatum Müller, 1894	64	64										
Paradoxostoma angustum Müller, 1894												
Paradoxostoma caecum Müller, 1894	32	16										
Samples	TP1—1	TP1—2	TP2—1	TP2—2	TP2—3	TP3—1	TP3—2	TP3—3	TP4—1	TP4—2	TP4—3	TP5—1
---------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------
Paradoxostoma parallelum Müller, 1894	8											
Paradoxostoma aff. P. rotundatum Müller, 1894	32											
Paradoxostoma simile Müller, 1894			32									
Paradoxostoma triste Müller, 1894	32j		32									
Phlyctocythere pellucida (Müller, 1894)				16								
Polycope reticulata Müller, 1894									16			
Pontocypris acuminata (Müller, 1894)	32j											
Pontocypris frequens (Müller, 1894)											16j	
Pontocypris obtusa (Müller, 1894)											j	
Pontocypris pellucida Müller, 1894												16
Pontocypris aff. P. pellucida Müller, 1894												32j
Pontocythere turbida (Müller, 1894)	16j	1	64j	16j	12	16j	176j	24j	32j			
Procytherideis retifera Ruggieri, 1978	64j	32			1	1		104				
Procytherideis subspiralis (Brady, Crosskey & Robertson, 1874)	8		j				j	16				
Propontocypris intermedia (Brady, 1868)	16	64j		160j	j	j	j	8j				
Propontocypris rara (Müller, 1894)												
Propontocypris subfuscus (Müller, 1894)											48j	
Propontocypris succinea (Müller, 1894)											j	j
Propontocypris sp.1											j	1
Pseudocytherura strangulata Ruggieri, 1991	8											
Pseudopsammocythere reniformis (Brady, 1868)	160j	32j	j									
Pterygocythereis jonesi (Baird, 1850)											80	
Sagmatocythere napoliana (Puri, 1963)	16j	32j	j				16j	32j	16j			
Sagmatocythere versicolor (Müller, 1894)	48j										32j	
Sahnicythere retroflexa (Klie, 1936)	16											72j
Sclerochilus ? aequus Müller, 1894	8										32	
Sclerochilus gewemueelleri Dubowsky, 1939	8											
Sclerochilus levis Müller, 1894												
Semicytherura acuta (Müller, 1912)										32	8j	32j
Semicytherura acuticostata (Sars, 1866)	64j	32	64j	112j	16	16						
Semicytherura alifera Ruggieri, 1959	16	128j	32j	16	48	16						
Semicytherura costata (Müller, 1894)												8
Samples	TP1—	TP1—	TP2—	TP2—	TP3—	TP3—	TP4—	TP4—	TP5—			
---------	------	------	------	------	------	------	------	------	------			
	1	2	1	2	3	1	2	3	1			
Semicytherura dispar (Müller, 1894)	16	32	32	16	24							
Semicytherura incongruens (Müller, 1894)	8	160j	352j	48j	112j	48j						
Semicytherura inversa (Seguenza, 1880)	40j	j	j		128j	8j	8j	1				
Semicytherura paradoxoza (Müller, 1894)	8j	32j	32j	16j		8						
Semicytherura punctata (Müller, 1894)												
Semicytherura quadridentata (Hartmann, 1953)	16	32j	32j	j	16	8						
Semicytherura rarecostata Bonaduce, Ciampo & Masoli, 1976	64	320j	64j	304j	4	176j	192j	16	8j			
Semicytherura reticulata (Müller, 1894)												
Semicytherura robusta Bonaduce, Ciampo & Masoli, 1976	48j	32j	32	48	16							
Semicytherura simplex (Brady & Norman, 1889)												
Semicytherura aff. S. slavonica Krstić, 1983	8											
Semicytherura sulcata (Müller, 1894)												
Semicytherura tergestina Masoli, 1968	32	48j										
Tenedocythea prava (Baird, 1850)	32j	j	32	4	32j	16						
Triebelina raripila (Müller, 1894)	8	j	j									
Urocythereis ilariae Aiello, Barra & Parisi, 2016												
Urocythereis margaritifera (Müller, 1894)	56j	32j	6j	j	16j	64j	16	1				
Urocythereis schlzi (Hartmann, 1958)	8	j										
Xestoleberis communis Müller, 1894	16j	192j	64j	48j	64j	16j	16j	16j	j			
Xestoleberis decipiens Müller, 1894	8j											
Xestoleberis dispar Müller, 1894	24j	192j	224j	64j		80j	16j	16j	1j			
Xestoleberis aff. X. labiata Brady & Robertson, 1874												
Xestoleberis margaritopsis Rome, 1942												
Xestoleberis pellucida Müller, 1894	8											
Xestoleberis aff. X. pellucida Müller, 1894	8	8										
Xestoleberis cf. X. perminima Neviani, 1928	8											
Samples	TP1—1	TP1—2	TP2—1	TP2—2	TP2—3	TP3—1	TP3—2	TP3—3	TP4—1	TP4—2	TP5—1	
--------------------------------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	
Aglaiocypris complanata (Brady & Robertson, 1869)	1.19	1.31	0.93									
Argilloecia minor Müller, 1894		0.60	0.65									
Aurila convexa (Baird, 1850)	1.19	0.65	0.93	1.57	2.24	2.78	3.01	1.14	7.69			
Aurila prasina Barbeito-Gonzalez, 1971											2.78	
Aurila speyeri (Brady, 1858)											2.78	
Callistocythere crispa (Brady, 1868)	0.60	0.65	0.93	3.15	0.75	2.78	0.75	0.75	1.14			
Callistocythere flavidofusca (Ruggieri, 1950)	0.60		2.36	2.24	2.78							
Callistocythere lobianci (Müller, 1894)	1.31										1.49	
Callistocythere aff. C. protracta Ruggieri & D’Arpa, 1993	0.60											
Carinocythereis carinata (Roemer, 1838)		0.93		11.11		3.70						
Carinocythereis whitei (Baird, 1850)	1.79	2.61	5.61	6.30	1.49	1.85	0.75	2.27				
Cistacythereis turbida (Müller, 1894)	0.65	1.87	6.30	1.49	6.48	0.75	1.14					
Costa batei (Brady, 1866)	0.65	0.79	2.24	2.78	0.75	0.75	1.14					
Costa edwardsii (Roemer, 1838)	0.60	0.93	0.93	0.75								
Cyprideis torosa (Jones, 1850)	0.60	0.65	1.14									
Cytheretta adriatica Ruggieri, 1952	0.60		11.11	0.75	0.75	5.68						
Cytheretta subradiosa (Roemer, 1838)	1.19	11.11	0.93	2.36	2.99	0.93	4.55					
Cytheridea neapolitana Kollmann, 1960	0.60											
Cytherois frequens Mülller, 1894	0.60	4.58	2.80	0.75		1.14						
Cytherois joachinoi Barra, 1992		0.93									0.93	
Cytherois aff. C. niger Schornikov, 1965											0.93	
Cytherois aff. C. pontica Marinov, 1966	0.60										0.75	
Cytherois triangularis Bonaduce, Masoli, Minichelli & Pugliese, 1979	2.38	0.65	0.93	0.75	0.75	0.75						
Cytherois uffenordei Ruggieri, 1974	5.95	11.11	1.87	0.79	2.99	0.93					1.14	
Cytherois sp.1 Ruggieri, 1974	0.65										1.14	
Cytheroma variabilis Mülller, 1894		0.93										
Cytheropteron latum Mülller, 1894											0.75	
“Elofsonia” minima (Bonaduce, Ciampo and Masoli, 1967)	2.38	0.65	0.93	0.75	0.75	2.26	1.14					
Eucytherura gibbera Mülller, 1894											2.24	1.14
Hemicytherura defiorei Ruggieri, 1953	1.19	0.65	3.15	3.73	2.78	1.14						
Hemicytherura videns (Müller, 1894)	0.60	0.65	0.93	0.75	0.75	1.50	1.14					
Table 5 continued

Samples	TP1	TP1	TP2	TP2	TP3	TP3	TP4	TP4	TP5	
	1	2	1	2	3	1	2	3	1	
Heterocythereis voraginosa Athersuch, 1979									1.14	
Leptocythere levis (Müller, 1894)	0.60									
Leptocythere macella Ruggieri, 1975		0.93	0.79		0.75					
Leptocythere ramosa (Rome, 1942)								0.93		
Loxocauda decipiens (Müller, 1894)								0.79		
Loxoconcha affiliis (Brady, 1866)	10.12	12.42			4.48	5.26	5.68			
Loxoconcha concentrica Bonaduce, Ciampo & Masoli, 1976								0.65		
Loxoconcha ovulata (Costa, 1853)	3.27	7.48	10.24		5.22	12.04	2.27			
Loxoconcha rhomboidea (Fischer, 1855)	4.76	1.31	14.95	4.72	6.72	6.48	1.50	15.38		
Loxoconcha stelligera Müller, 1894	0.60	0.65	11.11						1.50	
Macrocyprina succinea (Müller, 1894)				1.57	0.75					
Microcythere depressa Müller, 1894	0.60	0.65								
Microcythere hians Müller, 1894								0.75		
Microcythere ? tara Müller, 1894	0.65									
Microcythere vitrea Bonaduce, Ciampo & Masoli, 1976								0.75		
Microcytherura fulva (Brady & Robertson, 1874)	1.19							1.50		
Microcytherura nigrescens Müller, 1894	2.83	0.65	1.87	0.75	3.01	3.41				
“Microcytherura” sp. 1								1.14		
Microxestoleberis nana Müller, 1894								0.75	1.50	
Microxestoleberis sp.								1.14	7.69	
Neocytherideis subulata (Brady, 1868)	0.60	0.65	3.15	0.75	3.70	2.27				
Neonesidea mediterranea (Müller, 1894)	0.60	0.65			0.75	0.93	1.50	7.69		
Palmoconcha subrugosa (Ruggieri, 1977)				0.93	1.57	0.93	1.50			
Palmoconcha turbida (Müller, 1894)				1.31						
Paracytheridea paulii Dubowsky, 1939	9.52	0.65	1.87	0.75	9.77	6.82				
Paracytheridea triquetra (Reuss, 1850)	4.76	7.84	0.93	2.24	0.75	5.68	7.69			
Paracytherois agigensis Caraion, 1963				0.65						
Paracytherois flexuosa (Brady, 1867)								0.93		
Paradoxostoma aturn Müller, 1894					0.93	0.75				
Paradoxostoma acuminatum Müller, 1894					1.31	1.87				
Paradoxostoma angustum Müller, 1894							0.75			
Paradoxostoma caecum Müller, 1894					0.93	0.75				
Samples	TP1—	TP1—	TP2—	TP2—	TP3—	TP3—	TP3—	TP4—	TP4—	TP5—
------------------------	------	------	------	------	------	------	------	------	------	------
Paradoxostoma parallelum Müller, 1894	0.60									
Paradoxostoma aff. P. rotundatum Müller, 1894		0.65								
Paradoxostoma simile Müller, 1894								0.79	0.93	
Paradoxostoma triste Müller, 1894	0.65	0.93	0.75	1.50						
Phlyctocythere pellucida (Müller, 1894)										
Polycopae reticulata Müller, 1894										0.75
Pontocypris acuminata (Müller, 1894)			0.79							
Pontocypris frequens (Müller, 1894)										0.79
Pontocypris obtusa (Müller, 1894)										0.75
Pontocypris pellucida Müller, 1894										0.79
Pontocypris aff. P. pellucida Müller, 1894										0.93
Pontocythere turbida (Müller, 1894)	1.19	1.19	1.87	0.79	33.33	0.75	10.19	2.26	4.55	
Procytherideis retifera Ruggieri, 1978	4.76	0.65	0.79	11.11						9.77
Procytherideis subspiralis (Brady, Crosskey & Robertson, 1874)	0.60	0.93	0.75							
Propontocypris intermedia (Brady, 1868)	1.19	1.31	4.67	0.79	0.75	0.75				
Propontocypris rara (Müller, 1894)										0.65
Propontocypris subfusca (Müller, 1894)										2.36
Propontocypris succinea (Müller, 1894)								0.75	1.14	7.69
Propontocypris sp.1										0.65
Pseudocytherura strangulata Ruggieri, 1991										0.75
Pseudopsammocythere reniformis (Brady, 1868)	3.27	0.93	0.79							
Pterygocythereis jonesii (Baird, 1850)										4.63
Sagmatocythere napuliana (Puri, 1963)	1.19	0.65	0.93	0.75	3.01	2.27				
Sagmatocythere versicolor (Müller, 1894)										1.85
Sahnicythere retroflexa (Klie, 1936)										6.77
Sclerochilus ? aequus Müller, 1894										
Sclerochilus gewemuelleri Dubowsky, 1939	0.60	0.65								
Sclerochilus levis Müller, 1894										1.14
Semicytherura acuta (Müller, 1912)								1.49	0.75	4.55
Semicytherura acuticostata (Sars, 1866)	1.31	0.93	3.15	5.22	0.93					2.27
Semicytherura alifera Ruggieri, 1959	1.19	2.61	0.93	0.79	2.24	1.50				
Semicytherura costata (Müller, 1894)										0.75
Table 5 continued

Samples	TP1—	TP1—	TP2—	TP2—	TP3—	TP3—	TP4—	TP4—	TP5—					
	1	2	1	2	3	1	2	3	1					
Semicytherura dispar (Müller, 1894)	1.19	0.65		1.49	0.93	2.26								
Semicytherura incongruens (Müller, 1894)	0.60	3.27	10.28	2.36	5.22	6.82								
Semicytherura inversa (Seguenza, 1880)	2.98	0.65	0.93	5.97	0.75	1.14	7.69							
Semicytherura paradoxa (Müller, 1894)	0.60	0.65	1.57	0.75	0.75									
Semicytherura punctata (Müller, 1894)					0.75	2.26	2.27							
Semicytherura quadridentata (Hartmann, 1953)	1.19	0.65	0.93	0.75	1.50	1.14								
Semicytherura rarecostata Bonaduce, Ciampo & Masoli, 1976	4.76	6.54	1.87	14.96	11.11	8.21	11.11	1.50	1.14					
Semicytherura reticulata (Müller, 1894)									1.14					
Semicytherura robusta Bonaduce, Ciampo & Masoli, 1976									3.15	4.63				
Semicytherura ruggierii (Pucci, 1955)										0.75				
Semicytherura simplex (Brady & Norman, 1889)										0.75				
Semicytherura aff. S. slavonica Krstić, 1983										0.75				
Semicytherura sulcata (Müller, 1894)										1.50	3.41			
Semicytherura tergestina Masoli, 1968					0.93	2.36								
Tenedocythere prava (Baird, 1850)					0.65	0.93	1.57	11.11	1.49	0.93				
Triebelina raris (Müller, 1894)	0.60									0.75	7.69			
Tuberoxococncha tuberosa (Hartmann, 1954)										0.75				
Urocyclereis ilariae Aiello, Barra & Parisi, 2016											1.31	11.11		
Urocyclereis margaritifera (Müller, 1894)	4.17	0.65	66.67	0.93	0.75	6.02	2.27	7.69						
Urocyclereis schulzi (Hartmann, 1958)	0.60										0.75			
Xestoleberis communis Müller, 1894	1.19	3.92	1.87	2.36	2.99	0.93	1.50	2.27	7.69					
Xestoleberis decipiens Müller, 1894	0.60													
Xestoleberis dispers Müller, 1894	1.79	3.92	6.54	3.15	0.75	4.63	1.50	2.27	7.69					
Xestoleberis aff. X. labiata Brady & Robertson, 1874										0.93				
Xestoleberis margaritopsis Rome, 1942										1.50				
Xestoleberis pellucida Müller, 1894	0.60													
Xestoleberis aff. X. pellucida Müller, 1894										0.75	1.14			
Xestoleberis cf. X. perminima Neviani, 1928	0.75													
Xestoleberis aff. X. perula Athersuch, 1978	1.19	0.65	0.93	0.79	0.75					1.14				
Xestoleberis plana Müller, 1894	1.19	0.65	0.93	1.49	3.76	1.14	1.14	7.69						
Xestoleberis rara Müller, 1894	0.60													
Xestoleberis sp.1										1.14				
Samples	TP1-1	TP1-2	TP2-1	TP2-2	TP2-3	TP3-1	TP3-2	TP3-3	TP4-1	TP4-2	TP4-3	TP5-1	TP5-2	TP5-3
---------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------
Aglaiocypsis complanata (Brady & Robertson, 1869)	16	192	64											
Argilloecia minor Müller, 1894	8	32												
Aurila convexa (Baird, 1850)	88	128	768	352	208	208	1504	16	1					
Aurila prasina Barbeito-Gonzalez, 1971														
Aurila speyeri (Brady, 1858)														
Callistocythere crispa (Brady, 1868)	40	96	32	352	48	80	24	8						
Callistocythere flavidofusca (Ruggieri, 1950)	8	96	32	352	48	80	24	8						
Callistocythere lobianci (Müller, 1894)														
Callistocythere aff. C. protracta Ruggieri & D’Arpa, 1993	32													
Carinocythereis carinata (Roemer, 1838)		256	4											
Carinocythereis whitei (Baird, 1850)	168	896	1472	512	160	64	8	40						
Cistacythereis turbida (Müller, 1894)	96													
Costa batei (Brady, 1866)														
Costa edwardsii (Roemer, 1838)	8													
Cyprideis torosa (Jones, 1850)	8	160												
Cytheretta adriatica Ruggieri, 1952	8													
Cytheretta subradiosa (Roemer, 1838)	24	1	224	80	80	16								
Cytheridea neapolitana Kollmann, 1960	8													
Cytherois frequens Müller, 1894	16	480	288		32									
Cytherois joachinoi Barra, 1992														
Cytherois aff. C. niger Schornikov, 1965														
Cytherois aff. C. pontica Marinov, 1966	8													
Cytherois triangularis Bonaduce, Masoli, Minichelli & Pugliese, 1979	48	192	96	48	16	8								
Cytherois uffenorae Ruggieri, 1974	136	1216	160	32	160	16								
Cytherois sp.1	32													
Cytheroma variabilis Müller, 1894														
Cytheropteron latum Müller, 1894														
“Elofsonia” minima (Bonaduce, Ciampo and Masoli, 1976)	72	32	64		16	8	48							
Eucytherura gibbera Müller, 1894														
Hemicytherura defiorei Ruggieri, 1953	16	96			96	80	64	16						
Hemicytherura videns (Müller, 1894)	16	64	32		16	32	16							
Table 6 continued

Samples	TP1—1	TP1—2	TP2—1	TP2—2	TP2—3	TP3—1	TP3—2	TP3—3	TP4—1	TP4—2	TP5—1
Heterocythereis voraginosa Athersuch, 1979	8										
Leptocythere levis (Müller, 1894)	8										
Leptocythere macella Ruggieri, 1975	64	208	32								
Leptocythere ramosa (Rome, 1942)											16
Loxocoeca decipiens (Müller, 1894)	16										
Loxocoeca affinis (Brady, 1866)	360	3232	192	192	72						
Loxocoeca concentrica Bonaduce, Ciampo & Masoli, 1976	32										
Loxocoeca ovulata (Costa, 1853)	768	2048	1520	416	816	40					
Loxocoeca rhomboidea (Fischer, 1855)	256	160	512	352	768	240	80	8			
Loxocoeca stellifera Müller, 1894	72	64	1								32
Macrocyprina succinea (Müller, 1894)	16	128									
Microcythere depressa Müller, 1894	32										
Microcythere hians Müller, 1894	16										
Microcythere ? rara Müller, 1894	32										
Microcythere vitrea Bonaduce, Ciampo & Masoli, 1976	16										
Microxestoleberis fulva (Brady & Robertson, 1874)	32										
Microxestoleberis nigrescens Müller, 1894	136	96	192	64	96	56					
“Microxestoleberis” sp. 1	16										
Microxestoleberis nana Müller, 1894	16										
Microxestoleberis sp.	32										
Neocythereis subulata (Brady, 1868)	8	32	128	16	80	40					
Neoesidea mediterranea (Müller, 1894)	8	192		112	16	16	8				
Palmoconcha subrugosa (Ruggieri, 1977)	224	96		48	16	16	8				
Palmoconcha turbida (Müller, 1894)			64								
Paracytheridea paulii Dubowsky, 1939	424	64	192	48	304	112					
Paracytheridea tripeta (Reuss, 1850)	272	736	128	208	32	72	8				
Paracytherois agigensis Caraion, 1963			32								
Paracytherois flexuosa (Brady, 1867)											
Paradoxostoma atrum Müller, 1894	32										
Paradoxostoma acuminatum Müller, 1894	64	64									
Paradoxostoma angustum Müller, 1894											8
Paradoxostoma caecum Müller, 1894	32	32									
Table 6 continued											

Samples	TP1	TP1	TP2	TP2	TP3	TP3	TP4	TP4	TP5		
-----------	-----	-----	-----	-----	-----	-----	-----	-----	-----		
	1	2	1	2	1	2	1	2	1		
Paradoxostoma parallelum Müller, 1894	8										
Paradoxostoma aff. *P. rotundatum* Müller, 1894	32										
Paradoxostoma similis Müller, 1894					32						
Paradoxostoma triste Müller, 1894	64	32		16		16					
Phlyctocythere pellucida (Müller, 1894)			32		16						
Polycopae reticulata Müller, 1894						16					
Pontocypris acuminata (Müller, 1894)								96			
Pontocypris frequens (Müller, 1894)							32				
Pontocypris obtusa (Müller, 1894)									8		
Pontocypris pellucida Müller, 1894									64		
Pontocypris aff. *P. pellucida* Müller, 1894		32									
Pontocypris turbida (Müller, 1894)	32	1	448	80	12	224	288	104	104		
Procytherideis retifera Ruggieri, 1978	160	32		16	4		208				
Procytherideis subspiralis (Brady, Crosskey & Robertson, 1874)	8	352		16							
Propontocypris intermedia (Brady, 1868)	24	800	1120	32	64			40			
Propontocypris rara (Müller, 1894)					32						
Propontocypris subfusca (Müller, 1894)						128					
Propontocypris succinea (Müller, 1894)		8				24					
Propontocypris sp.					32						
Pseudocytherura strangulata Ruggieri, 1991								8			
Pseudopsammocythere reniformis (Brady, 1868)	960	224		32							
Pterygocythereis jonesii (Baird, 1850)				176				80			
Sagmatocythere napoliana (Puri, 1963)	32	96	128		48	64	32				
Sagmatocythere versicolor (Müller, 1894)				416	112						
Sahncythere retroflexa (Klie, 1936)	24							184			
Sclerochilus ? aequus Müller, 1894	8	32									
Sclerochilus gewemuelleri Dubowsky, 1939	8										
Sclerochilus levis Müller, 1894								96			
Semicytherura acuta (Müller, 1912)						48	40	64			
Semicytherura acuticostata (Sars, 1866)	192	32	112	176	16	24					
Semicytherura alifera Ruggieri, 1959	24	256	96	32	80	24					
Semicytherura costata (Müller, 1894)								8			
Table 6 continued

Samples	TP1—1	TP1—2	TP2—1	TP2—2	TP2—3	TP3—1	TP3—2	TP3—3	TP4—1	TP4—2	TP5—1	
Semicytherura dispar (Müller, 1894)	16	32										
Semicytherura incongruens (Müller, 1894)	8	800	1216	256	208							
Semicytherura inversa (Seguenza, 1880)	104	32	64		288							
Semicytherura paradoxa (Müller, 1894)	16	96		96								
Semicytherura punctata (Müller, 1894)					16	40	2					
Semicytherura quadridentata (Hartmann, 1953)	16	64		96								
Semicytherura rarecostata Bonaduce, Ciampo & Masoli, 1976	96	480	96	832	4		400	384	24	32		
Semicytherura reticulata (Müller, 1894)												
Semicytherura robusta Bonaduce, Ciampo & Masoli, 1976												
Semicytherura ruggierii (Pucci, 1955)	128	128	32	64	16							
Semicytherura simplex (Brady & Norman, 1889)												
Semicytherura aff. S. slavonica Krstić, 1983												
Semicytherura sulcata (Müller, 1894)					24	32						
Semicytherura tergestina Masoli, 1968					32	80						
Tenedocythere prava (Baird, 1850)												
Triebelina raripila (Müller, 1894)					96	32	64	4	112	16		
Tuberoxococchus tuberosa (Hartmann, 1954)												
Urocycthereis ilariae Aiello, Barra & Parisi, 2016					64							
Urocycthereis margaritifera (Müller, 1894)					392	352	15	64	64	408	16	
Urocycthereis schulzi (Hartmann, 1958)					8	32						
Xestoleberis communis Müller, 1894					32	768	256	816	1328	336	72	
Xestoleberis decipiens Müller, 1894					16							
Xestoleberis dispar Müller, 1894					144	1600	2016	912	144	192	96	
Xestoleberis aff. X. laiviata Brady & Robertson, 1874												
Xestoleberis margaritopsis Rome, 1942												
Xestoleberis pellucida Müller, 1894												
Xestoleberis aff. X. pellucida Müller, 1894												
Xestoleberis cf. X. perminima Neviani, 1928												
Xestoleberis aff. X. perula Athersuch, 1978					48	64	128	16	32	24		
Xestoleberis plana Müller, 1894					40	96			128	80	24	
Xestoleberis rara Müller, 1894					8							
Xestoleberis sp.1												
Samples	TP1—1	TP1—2	TP2—1	TP2—2	TP2—3	TP3—1	TP3—2	TP3—3	TP4—1	TP4—2	TP4—3	TP5—1
-------------------------------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------
Aglaiocypris complanata	0.43	1.12	0.45									
Argilloecia minor	0.21	0.19										
Aurila convexa	2.35	0.75	5.42	3.83	3.04	4.30	31.28	1.06	2.50			
Aurila prasina												
Aurila speyeri												1.32
Callistocythere crispatula	1.07	0.56	0.23	3.83	0.70	1.66	0.50	0.53				
Callistocythere flavofusca	0.21		1.04		0.94	2.32						
Callistocythere lobiancoi												1.49
Callistocythere aff. C. protracta	0.85											
Carinocythereis carinata		1.81					5.96					
Carinocythereis whitei	4.49	5.22		10.38	5.57	2.34	1.32	0.17	2.66			
Cistacythereis turbida	0.56	2.48		9.22		1.41	12.58	0.17	1.60			
Costa batei	1.12	0.17		2.34								0.53
Costa edwardsii	0.21		0.23		0.33	0.17						
Cyprideis torosa	0.21	0.93										0.53
Cytheretta adriatica	0.21		11.11	0.23		1.50	5.85					
Cytheretta subradiosa	0.64	5.56	1.58	0.87		1.17	0.33	4.26				
Cytheridea neapolitana	0.21											
Cytherois frequens	0.43	2.80	2.03		0.47	0.53						
Cytherois joachinita						0.23						
Cytherois aff. C. niger	0.21		0.47									0.33
Cytherois aff. C. pontica	0.21		0.47									
Cytherois triangularis	1.28	1.12	0.68	0.52	0.23	0.17						
Cytherois uffenordi	3.63	7.09	1.13	0.35	2.34	0.33						0.53
Cytherois sp.1	0.19											
Cytheroma variabilis												0.45
Cytheropteron latum												0.17
“Elofsonia” minima	1.92	0.19	0.45	0.23	1.83	0.53						
Eucytherura gibbera												
Hemicytherura defiorei	0.43	0.56	1.04	1.17	1.32	1.06						
Hemicytherura videns	0.43	0.37	0.23	0.23	0.67	1.06						
Table 7 continued

Samples	TP1—1	TP1—2	TP2—1	TP2—2	TP2—3	TP3—1	TP3—2	TP3—3	TP4—1	TP4—2	TP5—1	TP5—2	TP5—3
Heterocythereis voraginosa	0.53												
Leptocythere levis (Müller, 1894)	0.21												
Leptocythere macella Ruggieri, 1975		0.45	2.26		0.47								
Leptocythere ramosa (Rome, 1942)													0.33
Loxocauda decipiens (Müller, 1894)		0.17											
Loxococoncha affinis (Brady, 1866)	9.62	18.84		2.81	3.99	4.79							
Loxococoncha concentrica Bonaduce, Ciampo & Masoli, 1976		0.19											
Loxococoncha ovulata (Costa, 1853)	4.48	14.45	16.52	6.09	16.89	2.66							
Loxococoncha rhomboidea (Fischer, 1855)	6.84	0.93	3.61	3.83	11.24	4.97	1.66	20.00					
Loxococoncha stellifera Müller, 1894	1.92	0.37	5.56			0.67	0.53						
Macrocyprina succinea (Müller, 1894)				0.35	0.23								
Microcythere depressa Müller, 1894	0.43	0.75											
Microcythere hians Müller, 1894												0.50	
Microcythere ? rara Müller, 1894												0.19	
Microcythere vitrea Bonaduce, Ciampo & Masoli, 1976													0.23
Microcytherura fulva (Brady & Robertson, 1874)	0.85												0.83
Microcytherura nigrescens Müller, 1894	3.63	0.56	1.35	0.94	2.00	3.72							
“Microcytherura” sp. 1													0.53
Microxestoleberis nana Müller, 1894				0.23	0.50	0.53	5.00						
Microxestoleberis sp.													
Neocytherideis subulata (Brady, 1868)	0.21	0.19	1.39	0.23	1.66	2.66							
Neonesidea mediterranea (Müller, 1894)	0.21	1.12		1.64	0.33	0.33							20.00
Palmoconcha subrugosa (Ruggieri, 1977)			1.58	1.04	0.99	12.48							
Palmoconcha turbida (Müller, 1894)				0.37									
Paracytheridea paulii Dubowsky, 1939	11.32	0.37	1.35	0.70	6.32	7.45							
Paracytheridea triquetra (Reuss, 1850)	7.26	4.29	0.90	3.04	0.67	4.79	2.50						
Paracytherois agigensis Caraion, 1963				0.19									
Paracytherois flexuosa (Brady, 1867)													0.66
Paradoxostoma atrum Müller, 1894		0.23											0.17
Paradoxostoma acuminatum Müller, 1894		0.37	0.45										0.17
Paradoxostoma angustum Müller, 1894													0.17
Paradoxostoma caecum Müller, 1894		0.23	0.47										
Table 7 continued

Samples	TP1	TP2	TP3	TP4	TP5				
Paradoxostoma parallelum Müller, 1894	0.21								
Paradoxostoma aff. P. rotundatum Müller, 1894	0.19								
Paradoxostoma simile Müller, 1894									
Paradoxostoma triste Müller, 1894	0.37	0.23	0.23	0.33					
Phlyctocythere pellucida (Müller, 1894)		0.35			0.33				
Polycopre reticulata Müller, 1894			0.23						
Pontocypris acuminata (Müller, 1894)	0.56								
Pontocypris frequens (Müller, 1894)		0.35							
Pontocypris obtusa (Müller, 1894)		0.17							
Pontocypris pellucida Müller, 1894		0.17							
Pontocypris aff. P. pellucida Müller, 1894		0.45							
Pontocythere turbida (Müller, 1894)	0.85	5.56	3.16	0.87	33.33	3.28	5.96	2.16	6.91
Procytherideis retifera Ruggieri, 1978	4.27	0.19	0.17	11.11		4.33			
Procytherideis subspiralis (Brady, Crosskey & Robertson, 1874)	0.21	2.48	0.23						
Propontocypris intermedia (Brady, 1868)	0.64	4.66	7.90	0.35	0.94	0.83			
Propontocypris rara (Müller, 1894)		0.19							
Propontocypris subfusca (Müller, 1894)			1.39						
Propontocypris succinea (Müller, 1894)		0.17	1.60	5.00					
Propontocypris sp.1	0.19								
Pseudocytherura strangulata Ruggieri, 1991					0.17				
Pseudopsammocythere reniformis (Brady, 1868)	0.19	5.60	1.58	0.35					
Pterygocythereis jonesii (Baird, 1850)			1.91	1.66					
Sagmatocythere napoliana (Puri, 1963)	0.85	0.56	0.90	0.70	1.33	2.13			
Sagmatocythere versicolor (Müller, 1894)				4.52	2.32				
Sahnicythere retroflexa (Klie, 1936)	0.64					3.83			
Sclerochilus ? aequus Müller, 1894	0.21	0.19							
Sclerochilus gewemuelleri Dubowsky, 1939	0.21								
Sclerochilus levis Müller, 1894	0.68				0.53				
Semicytherura acuta (Müller, 1912)				0.70	0.83	4.26			
Semicytherura acuticostata (Sars, 1866)	1.12	0.23	1.22	2.58	0.33	1.60			
Semicytherura alifera Ruggieri, 1959	0.64	1.49	0.68	0.35	1.17	0.50			
Semicytherura costata (Müller, 1894)						0.17			
Table 7 continued

Samples	TP1—1	TP1—2	TP2—1	TP2—2	TP3—1	TP3—2	TP3—3	TP4—1	TP4—2	TP5—1
Semicytherura dispers (Müller, 1894)	0.43	0.19			0.70	0.33	0.67			
Semicytherura incongruens (Müller, 1894)	0.21	4.66	8.58	2.78	3.04			5.85		
Semicytherura inversa (Seguenza, 1880)	2.78	0.19	0.45		4.22	0.33	2.66	5.00		
Semicytherura paradoxa (Müller, 1894)	0.43	0.56		1.04		0.47			0.17	
Semicytherura punctata (Müller, 1894)						0.23	0.50			1.60
Semicytherura quadridentata (Hartmann, 1953)	0.43	0.37	0.68		0.70		0.50	1.06		
Semicytherura rarecostata Bonaduce, Ciampo & Masoli, 1976	2.56	2.80	0.68	9.04	11.11	5.85	7.95	0.50	2.13	1.06
Semicytherura robusta Bonaduce, Ciampo & Masoli, 1976							1.91		3.31	
Semicytherura ruggieri (Pucci, 1955)	3.42	0.75	0.23	0.70				0.23		
Semicytherura simplex (Brady & Norman, 1889)										0.17
Semicytherura aff. S. slavonica Krstić, 1983										
Semicytherura sulcata (Müller, 1894)								0.50	2.13	
Semicytherura tergestina Masoli, 1968								0.23	0.87	
Tenedocythere prava (Baird, 1850)										
Triebelina raripila (Müller, 1894)	0.43		0.56	0.23	0.70	11.11	1.64	0.33		
Triebelina raripila (Müller, 1894)			0.17						5.00	
Tuberoxococncha tuberosa (Hartmann, 1954)										0.33
Urocythereis ilariae Aiello, Barra & Parisi, 2016						0.37				11.11
Urocythereis margaritifera (Müller, 1894)	10.47	2.05	83.33	0.45		0.94	8.49		1.06	2.50
Urocythereis schulzi (Hartmann, 1958)	0.21				0.23					
Xestoleberis communis Müller, 1894	0.85	4.48	1.81	8.87	19.44	6.95	1.50	8.51	5.00	
Xestoleberis decipiens Müller, 1894	0.43									
Xestoleberis dispar Müller, 1894	3.85	9.33	14.22	9.91	2.11	3.97	2.00	2.66	17.50	
Xestoleberis aff. X. labiata Brady & Robertson, 1874							0.23			
Xestoleberis margaritopsis Rome, 1942										0.33
Xestoleberis pellucida Müller, 1894	0.21									
Xestoleberis aff. X. pellucida Müller, 1894									0.33	0.53
Xestoleberis cf. X. perminima Neviani, 1928								0.17		
Xestoleberis aff. X. perula Athersuch, 1978	1.28	0.37	0.90	0.17		0.47		1.60		
Xestoleberis plana Müller, 1894	1.07	0.56	1.87		1.87	1.66	1.60	10.00		
Xestoleberis rara Müller, 1894	0.21									1.06
Xestoleberis sp.1										
(splitted by Moncharmont in *T. concinnus* and *Rosalina globularis*); conversely, *Q. seminulum*, *S. aspera*, *Bulimina elongata* were very rare. Our data suggested that *Q. seminulum* and *B. elongata*, stress-tolerant species (Aiello et al., 2018; Debenay et al., 2009), and *S. aspera* may have increased their abundance in the last decades.

The 1961 sampling campaign also provided bottom sediments of the adjacent Gulf of Naples. Their ostracofaunas were analyzed by Puri et al. (1964). In the infralittoral zone, the ostracod assemblages were dominated by *Aurila*, *Urocythereis*, *Carinocythereis*, *Costa* and *Pontocythere* (*Cushmanidea* in Puri et al., 1964) species, *Tenedocythere prava* (=*Quadra-cythere (?) prava* plus «*Cythereis* polygonata», the latter name including the juveniles, in Puri et al., 1964) and *S. incongruens*. In the present infralittoral ostracofauna of the Gulf of Pozzuoli *U. margaritifera* and *P. turbida* are very common, but overall the assemblages are not dominated by trachyleberid species, being characterized by the genera *Loxoconcha* and *Xestoleberis* and by the species *S. rarecostata*.

It can be hypothesized that industrial and urban contaminants caused a meiofaunal change, more apparent in ostracod than in benthic foraminifers. Conversely, the high-diversity and low-dominance values showed that in oligotrophic and well-oxygenated waters (e.g., Hyams-Kaphzan et al., 2009, in a coastal area under the influence of sewage sludge with organic matter input), the diversity indices were not negatively influenced by the high concentration of pollutants in bottom sediments.

The sensitivity of ostracod and benthic foraminifers was also displayed by statistical analysis. Noteworthy correlations between ostracod dominance and sediment contaminants (polycyclic aromatic hydrocarbons, rare earth elements) encourage the use of calcareous meiofaunal assemblages as environmental bioindicators. The analysis confirmed the results of previous investigations, such as the tolerance of *Q. lata* to high heavy metal concentrations (Romano et al., 2009) testified by high correlations (\(C^0.76\)) with Ni, Pb, and Zn. *Quinqueloculina lata* was considered a pollution-tolerant species, by Elshanawany et al. (2011; 2018) and by Romano et al. (2013) in environment under strong anthropogenic pressure. The study of Mangoni et al. (2016) showed a correlation of this species with high concentrations of inorganic nutrients.

The strong anticorrelations (\(-0.80\)) between both TNV and MNI abundances of the typical shallow marine (Aiello et al., 2016, 2018) species *P. paulii* and *U. margaritifera*, and water depth suggested the preferences of these taxa for the uppermost part of
Fig. 2 1 Eggerelloides scaber (Williamson, 1858), lateral view, sample TP2—2, ABMC 2019/042 2 Quinqueloculina lata Terquem, 1876, four chamber side, sample TP1—1, ABMC 2019/054 3 Quinqueloculina seminulum (Linnaeus, 1758), four chamber side, sample TP2—2, ABMC 2019/045 4 Quinqueloculina stelligera Schlumberger, 1893, peripheral view, sample TP1—2, ABMC 2019/044 5 Siphonaperta aspera (d’Orbigny, 1826), side view, sample TP2—1, ABMC 2019/040 6 Cycloforina contorta (d’Orbigny, 1846), four chamber side, sample TP1—2, ABMC 2019/058 7 Cycloforina contorta (d’Orbigny, 1846), peripheral view, sample TP1—2, ABMC 2019/059 8 Triloculina trigonula (Lamarck, 1804), peripheral view, sample TP1—2, ABMC 2019/048 9 Miliolinella semicostata (Wiesner, 1923), side view, sample TP1—1, ABMC 2019/047 10 Bulimina elongata d’Orbigny, 1846, lateral view, sample TP3—2, ABMC 2019/047 11 Rosalina macropora (Hofker, 1951), spiral side, sample TP1—2, ABMC 2019/055 12 Rosalina macropora (Hofker, 1951), umbilical side, sample TP1—2, ABMC 2019/056 13 Asterigerinata mamilla (Williamson, 1858), spiral side, sample TP1—2, ABMC 2019/051 14 Ammonia aberdoveyensis Haynes, 1973, spiral side, sample TP1—1, ABMC 2019/039 15 Ammonia beccarii (Linnaeus, 1758), spiral side, sample TP2—3, ABMC 2019/060 16 Ammonia beccarii (Linnaeus, 1758), umbilical side, sample TP2—3, ABMC 2019/061 17 Buccella granulata (Di Napoli Alliata, 1952), spiral side, sample TP2—3, ABMC 2019/043 18 Tretomphalus concinnus (Brady, 1884), spiral side, sample TP1—1, ABMC 2019/052 19 Cibicides lobatulus (Walker & Jacob, 1798), umbilical side, sample TP1—2, ABMC 2019/053 20 Haynesina depressula (Walker & Jacob, 1798), side view, sample TP1—1, ABMC 2019/050 21 Elphidium crispum (Linnaeus, 1758), side view, sample TP2—3, ABMC 2019/041 22 Elphidium maioricense Colom, 1942, side view, sample TP3—2, ABMC 2019/049 23 Planorbulina mediterranensis d’Orbigny, 1826, unattached side, sample TP3—2, ABMC 2019/057 Scale bar 100 μm
Fig. 3 1 Aurila convexa (Baird, 1850), left valve, sample TP2—3, ABMC 2019/065 2 Callistocythere lobiancoi (Müller, 1894), left valve, sample TP1—2, ABMC 2019/078 3 Callistocythere flavidofusca (Ruggieri, 1950), right valve, sample TP2—3, ABMC 2019/067 4 Urocythereis margaritifera (Müller, 1894), right valve, sample TP2—1, ABMC 2019/068 5 Cistacythereis turbida (Müller, 1894), left valve, sample TP2—3, ABMC 2019/074 6 Pontocythere turbida (Müller, 1894), right valve, sample TP2—2, ABMC 2019/072 7 Procytherideis retifera Ruggieri, 1978, right valve, sample TP1—1, ABMC 2019/081 8 Procytherideis retifera Ruggieri, 1978, carapace in dorsal view, sample TP1—1, ABMC 2019/082 9 Sagmatocythere napoliiana, left valve, sample TP3—2, ABMC 2019/075 10 Paracytheridea triquetra (Reuss, 1850), left valve, sample TP1—1, ABMC 2019/066 11 Paracytheridea paulii Dubowsky, 1939, right valve, sample TP1—1, ABMC 2019/062 12 Semicytherura robusta Bonaduce, Ciampo & Masoli, 1976, left valve, sample TP2—3, ABMC 2019/077 13 Semicytherura incongruens (Müller, 1894), right valve, sample TP2—2, ABMC 2019/070 14 Semicytherura rarecostata Bonaduce, Ciampo & Masoli, 1976, right valve, sample TP1—2, ABMC 2019/076 15 Semicytherura ruggieri (Pucci, 1955), right valve, sample TP1—1, ABMC 2019/080 16 Loxoconcha affinis (Brady, 1866), left valve, sample TP1—1, ABMC 2019/063 17 Loxoconcha rhomboidea (Fischer, 1855), left valve, sample TP1—1, ABMC 2019/069 18 Loxoconcha ovalata (Costa, 1853), left valve, sample TP2—2, ABMC 2019/071 19 Cytherois affenordei Ruggieri, 1974, left valve, sample TP1—2, ABMC 2019/064 20 Xestoleberis communis Müller, 1894, left valve, sample TP1—2, ABMC 2019/073 21 Xestoleberis dispar Müller, 1894, right valve, sample TP2—2, ABMC 2019/079 Scale bar 100 μm
the upper infralittoral zone. From a paleoecological point of view, the refining of the distribution range of paleobathymetric indicators is a primary objective. The paleodepth estimates of sedimentary successions, or levels, using benthic foraminifers and ostracods, may contribute to the reconstruction of the dynamics of volcanic areas (Aiello et al., 2007, 2012; Marturano et al., 2009; 2011a; 2011b; 2013; 2018; Di Vito et al., 2016; Isaia et al., 2019). The present results showed that high abundance values of the genera Para-cytheridea and Urocythereis, and specifically of P. paulii and U. margaritifera, are characteristic of upper shoreface environments in waters shallower than 23 m.

Pearson’s correlation coefficient analysis of benthic foraminifers revealed that T. concinnus and taxa richness (S) correlated with As; foraminiferal dominance with Fe and Zn; Q. lata correlated with Ni, Pb, Zn, TOC and anticorrelated with water depth.

The Pearson’s correlation coefficient analysis of ostracods showed that Cr and Cu displayed high correlations with Carinocythereis whitei, Semicytherura incongruens (both MNI and TNV), L. rhomboidea (MNI), L. ovulata, and X. dispar and an inverse correlation with equitability J (TNV). Water depth correlated with C. turbida and taxa richness S (MNI and TNV), L. ovulata and Shannon Index H’ (MNI), and anticorrelated with Paracytheridea paulii and U. margaritifera (MNI and TNV) and with Procytherideis retifera (MNI).

Total PAHs and total PD PAHs (Priority Dangerous PAHs) correlated with P. retifera (MNI), A. convexa and D and showed an inverse correlation with J (TNV). Rare earth elements correlated with A. convexa and D (TNV).

Ni correlated with P. paulii, P. retifera, and U. margaritifera (MNI); As showed correlation with L. affinis (MNI and TNV), Cythereis uffenordei, Paracytheridea triquetra (MNI); Hg anticorrelated with H’ (TNV); TOC correlated with D(TNV).

Discussion

The study of shallow water samples of the Gulf of Pozzuoli allowed us to investigate the distribution of meiofaunal calcareous assemblages in an area subject
Table 9 Concentrations (%) of TOC = total organic carbon; concentrations (mg/kg) of heavy metals, REE + Y = rare earth elements + Y, LREE (light rare earth elements), HREE (heavy rare earth elements), total PAHs (polycyclic aromatic hydrocarbons) and total PD PAHs (PD: Priority Dangerous PAHs: naphthalene (NAP), anthracene (ANT), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(ghi)perylene (BgP), benzo(a)pyrene (BaP); (Arienzo et al., 2017; Trifuoggi et al., 2017; 2018; Ferrara et al., 2020); concentrations of national regulatory guidelines (Ministero dell’Ambiente e della Tutela del Territorio, 2003; Ministero dell’Ambiente e della Tutela del Territorio e del Mare, 2009); background concentrations for the study area (Damiani et al., 1987)

	TP1—	TP1—	TP2—	TP2—	TP3—	TP3—	TP3—	TP4—	TP4—	TP5—	Damiani et al.	D.M.	D.M.	
TOC %	1.34	1.51	1.75	1.84	0.98	0.09	0.64	1.17	9.20	2.60	0.34			
As	59.02	100.4	18.83	25.4	22.58	26.12	38.51	35.35	61.27	69.03	12.31	12		
Cr	11.58	14.27	4.80	27.15	19.73	10.22	15.49	1.99	1.85	1.59	0.55	0.30	30	
Cu	15.48	16.40	5.88	24.62	15.93	5.16	9.72	13.32	14.59	10.23	3.53	0.20		
Fe	13,784	14,882	12,835	21,132	18,666	37,320	25,588	29,442	32,449	37,495	10,498	25,000		
Hg	1.14	1.40	0	3.00	3.44	0.59	1.52	3.00	3.35	2.01	0.51	0.25	0.30	
Ni	14.82	10.5	3.72	8.47	6.36	14.85	3.56	4.45	35.45	14.52	0.20	0.20	0.30	
Pb	45.67	55.81	20.32	86.46	72.93	29.94	74.98	71.19	110.82	107.57	20.60	60		
Zn	107.4	114.7	46.7	178.9	135.7	96.70	187.3	132	247.9	232.3	42.10	80		
Total PAHs	17	52	7.20	230	58	7.10	42	42	840	130	17			
Total PD PAHs	6.10	21	2.70	74	32	2.80	13	13	250	39	5.40	200	E-3	
REE + Y	16.96	44.71	31.4	42.64	27.8	31.67	46.51	50.08	142.46	59.3	73.93			
LREE	15.53	42.92	30.38	40.85	25.6	30.41	43.68	48.82	125.71	53.73	64			
HREE	0.93	1.20	0.69	1.15	1.18	0.92	1.65	0.92	6.12	2.60	4.84			
Table 10 Bivariate correlation with the Pearson’s correlation coefficient. TOC = total organic carbon; TTPAH = total polycyclic aromatic hydrocarbons; TTPD = total priority
dangerous polycyclic aromatic hydrocarbons; REE + Y = rare earth elements + Y; LREE = light rare earth elements; HREE = heavy rare earth elements

	DEPTH	TOC	As	Cu	Fe	Ni	Pb	Zn	TTPAH	TTPD	REE+Y	LREE	Cr
Asterigerinata manilla	0.65	-0.46	-0.19	-0.26	-0.30	-0.35	-0.39	-0.44	-0.49	-0.53	-0.44	-0.45	-0.21
Bulimina elongata	0.27	0.01	0.01	0.02	0.02	0.02	0.02	0.02	-0.35	-0.34	-0.26	-0.24	-0.34
Cibicides lobatus	0.49	-0.15	-0.15	-0.17	-0.19	-0.21	-0.23	-0.25	-0.43	-0.44	-0.20	-0.18	-0.34
Discorbinella bertheloti	0.74	-0.30	-0.42	-0.30	-0.36	-0.43	-0.50	-0.56	-0.63	-0.70	-0.30	-0.16	-0.14
Elphidium crispum	0.59	-0.44	0.26	0.15	0.15	0.16	0.17	0.17	0.18	-0.43	-0.42	-0.26	-0.23
Elphidium punctatum	-0.27	-0.24	-0.20	-0.22	-0.22	-0.22	-0.23	-0.23	-0.29	-0.32	-0.24	-0.26	-0.12
Planorbulina mediterranensis	0.39	-0.15	0.22	0.04	0.04	0.04	0.04	0.04	-0.18	-0.19	0.04	0.07	-0.13
Quinqueloculina lata	-0.71	0.74	0.70	0.45	0.53	0.61	0.69	0.76	0.84	0.92	0.70	0.69	0.65
Quinqueloculina serifulanum	0.43	-0.31	-0.17	-0.24	-0.28	-0.33	-0.37	-0.41	-0.46	-0.50	-0.17	-0.18	-0.11
Tretomphalus concinnus	-0.03	-0.19	0.71	0.20	0.10	-0.51	-0.57	-0.13	-0.49	-0.41	-0.23	-0.15	-0.13
Triloculina trigonum	0.32	-0.42	0.44	0.21	-0.01	-0.39	-0.48	-0.45	-0.50	-0.45	-0.41	-0.26	-0.23
Carinocythereis whitei MNI	0.42	-0.35	-0.22	0.86	0.82	-0.54	0.23	-0.39	-0.21	-0.34	-0.21	-0.17	-0.38
Cistacythereis turbida MNI	0.89	-0.45	-0.64	0.32	0.23	-0.15	0.59	-0.61	-0.19	-0.41	-0.36	-0.32	-0.36
Cytherella adriatica MNI	-0.29	0.19	0.33	-0.53	-0.44	0.63	-0.18	0.29	0.53	0.55	0.08	0.21	0.16
Cythereis effenoreaei MNI	0.03	-0.21	0.73	0.22	0.18	-0.55	-0.50	-0.14	-0.50	-0.47	-0.25	-0.20	-0.18
Loxoconcha affinis MNI	-0.11	-0.12	0.82	0.07	0.02	-0.49	-0.58	-0.01	-0.47	-0.40	-0.19	-0.11	-0.10
Loxoconcha ovulata MNI	0.83	-0.51	-0.49	0.63	0.55	-0.31	0.40	-0.68	-0.24	-0.41	-0.37	-0.34	-0.41
Loxoconcha rhomboidea MNI	0.26	-0.26	-0.54	0.76	0.79	-0.25	0.24	-0.36	-0.02	-0.08	-0.07	-0.26	-0.24
Paracytheridea paulii MNI	-0.92	0.52	0.29	-0.13	0.23	-0.11	-0.23	0.71	0.05	0.19	0.48	0.46	0.29
Paracytheridea triquetra MNI	-0.03	-0.18	0.79	0.14	0.10	-0.48	-0.56	-0.08	-0.45	-0.40	-0.24	-0.24	-0.16
Pontocythere turbida MNI	0.55	-0.14	-0.41	-0.29	0.05	0.33	0.40	-0.29	0.04	-0.12	-0.11	-0.13	0.02
Procythereis retifera MNI	-0.83	0.78	0.42	-0.36	0.02	-0.05	0.02	0.89	0.09	0.20	0.72	0.71	0.62
Semicicytherea incongruens MNI	0.19	-0.26	-0.15	0.78	0.73	-0.30	0.01	-0.32	-0.01	-0.02	-0.11	-0.09	-0.23
Semicicytherea inversa MNI	-0.18	-0.25	-0.14	0.12	-0.48	-0.03	-0.52	-0.26	-0.17	0.08	-0.22	-0.24	-0.14
Semicicytherea rarecostata MNI	0.63	-0.52	0.03	0.34	0.01	-0.54	-0.03	-0.57	-0.58	-0.66	-0.51	-0.47	-0.42
Urocythereis marginatifera MNI	-0.92	0.64	0.57	-0.39	-0.14	-0.08	-0.32	0.80	0.00	0.16	0.54	0.52	0.48
Xestoleberis dispar MNI	0.35	-0.24	0.07	0.60	0.82	-0.45	0.11	-0.28	-0.23	-0.35	-0.15	-0.13	-0.25
Xestoleberis marginatifera MNI	-0.92	0.64	0.57	-0.39	-0.14	-0.08	-0.32	0.80	0.00	0.16	0.54	0.52	0.48
Xestoleberis marginatifera MNI	0.35	-0.24	0.07	0.60	0.82	-0.45	0.11	-0.28	-0.23	-0.35	-0.15	-0.13	-0.25
Table 10 continued

	DEPTH	TOC	As	Cr	Cu	Fe	Hg	Ni	Pb	Zn	TTPAH	TTPD	REE+Y	LREE	Cr
Aurila convexa TNV	-0.39	0.86	-0.16	-0.04	0.35	0.26	0.64	0.74	0.58	0.57	0.94	0.95	0.82	0.81	0.79
Carinocythereis carinata TNV	0.53	-0.20	-0.49	0.14	0.48	0.10	0.42	-0.36	0.01	-0.15	-0.10	-0.11	-0.12	-0.08	-0.33
Carinocythereis whitei TNV	0.25	-0.28	-0.11	0.83	0.87	-0.52	0.10	-0.30	-0.19	-0.26	-0.14	-0.12	-0.32	-0.31	-0.39
Cistacythereis turbida TNV	0.81	-0.38	-0.67	0.31	0.25	-0.15	0.65	-0.52	-0.14	-0.37	-0.30	-0.26	-0.34	-0.33	-0.42
Cytheretta adriatica TNV	-0.49	0.66	0.32	-0.65	-0.46	0.80	0.08	0.68	0.81	0.85	0.58	0.56	0.67	0.66	0.77
Laxoconcha affinis TNV	-0.03	-0.11	0.80	0.09	0.09	-0.47	-0.48	-0.02	-0.43	-0.40	-0.17	-0.16	-0.09	-0.08	-0.15
Laxoconcha ovulata TNV	0.64	-0.39	-0.56	0.78	0.75	-0.36	0.48	-0.52	-0.12	-0.29	-0.23	-0.19	-0.37	-0.36	-0.47
Laxoconcha rhomboidea TNV	0.26	-0.48	-0.59	0.67	0.13	-0.31	-0.10	-0.58	-0.28	-0.16	-0.33	-0.32	-0.38	-0.37	-0.41
Paracytheridea paulii TNV	-0.90	0.46	0.20	-0.09	0.24	-0.17	-0.23	0.65	-0.02	0.11	0.42	0.40	0.22	0.19	0.35
Pontocythere turbida TNV	0.39	-0.15	-0.67	0.36	0.44	0.22	0.40	0.34	0.25	0.19	0.02	0.01	-0.03	0.00	-0.18
Semicytherura incongruens TNV	0.23	-0.24	-0.01	0.77	0.79	-0.42	0.03	-0.28	-0.10	-0.16	-0.11	-0.09	-0.24	-0.22	-0.33
Semicytherura rarecostata TNV	0.68	-0.50	-0.25	0.35	-0.06	-0.42	0.17	-0.58	-0.43	-0.54	-0.47	-0.43	-0.43	-0.43	-0.46
Urocystheres margaritifera TNV	-0.80	0.52	0.64	-0.17	0.11	-0.35	-0.35	0.68	-0.22	-0.08	0.44	0.43	0.35	0.33	0.41
Xestoleberis communis TNV	0.45	-0.48	-0.14	0.40	-0.27	-0.25	-0.20	-0.58	-0.28	-0.21	-0.41	-0.40	-0.29	-0.28	-0.33
Xestoleberis dispar TNV	0.31	-0.25	-0.02	0.78	0.84	-0.54	0.13	-0.28	-0.21	-0.31	-0.14	-0.10	-0.28	-0.27	-0.37
Taxa (S) F	-0.30	-0.20	0.73	0.23	0.30	-0.63	-0.68	-0.01	-0.57	-0.49	-0.25	-0.26	-0.30	-0.30	-0.29
Individuals (I) F	0.58	-0.48	0.12	0.07	-0.21	-0.24	-0.25	-0.59	-0.49	-0.49	-0.47	-0.48	-0.27	-0.23	-0.45
Dominance (D) F	-0.23	0.52	-0.03	-0.55	0.63	0.72	0.10	0.37	0.57	0.70	0.51	0.48	0.69	0.70	0.66
Shannon (H') F	-0.29	-0.22	0.49	0.22	0.38	-0.30	-0.53	-0.02	-0.20	-0.17	-0.27	-0.28	-0.36	-0.37	-0.30
Equitability (J) F	0.02	0.02	-0.56	0.13	-0.10	0.22	0.39	0.02	0.37	0.32	0.04	0.07	-0.08	-0.11	0.11
Taxa (S) O	-0.74	0.17	0.52	0.28	0.14	-0.42	-0.63	0.32	-0.21	0.02	0.16	0.15	0.06	0.05	0.17
Individuals (I) O MNI	0.31	-0.35	0.30	0.59	0.51	-0.63	-0.21	-0.36	-0.47	-0.50	-0.28	-0.26	-0.30	-0.28	-0.43
Dominance (D) O MNI	0.69	-0.34	-0.54	0.58	0.74	-0.27	0.56	-0.47	-0.12	-0.34	-0.20	-0.17	-0.32	-0.30	-0.47
Shannon (H') O MNI	-0.85	0.31	0.51	-0.17	-0.36	0.00	-0.62	0.49	0.07	0.32	0.23	0.21	0.21	0.18	0.40
Equitability (J) O MNI	-0.18	0.16	0.11	-0.77	-0.86	0.64	-0.13	0.21	0.34	0.39	0.02	-0.01	0.19	0.17	0.31
Individuals (I) O TNV	0.30	-0.24	0.14	0.71	0.66	-0.61	-0.01	-0.29	-0.34	-0.39	-0.14	-0.11	-0.22	-0.21	-0.33
Dominance (D) O TNV	-0.29	0.80	-0.04	-0.23	0.12	0.17	0.53	0.66	0.33	0.33	0.84	0.84	0.80	0.80	0.73
to long-term industrial and urban pollution. All the sediments were collected within the infralittoral zone where previous researches displayed high geoaccumulation levels, especially in the eastern part of the bay (Arienzo et al., 2017; Trifuoggi et al., 2017, 2018). Anthropogenic and natural environmental pressure may influence both the meiofaunal features (abundance, diversity indices, dominance) and the taxonomic composition of foraminiferal and ostracod assemblages. In the sediments of the Gulf of Pozzuoli, their diversity was strongly related to the grain size of the bottom sediments, being low in the coarse-grained samples and high in fine and very fine sands. The relationship between granulometry and meiofaunal diversity in shallow marine waters was investigated by several researchers, who identified indicative trends. Pokorny (1978) stated, as a general rule, that coarse sediments (e.g., oolites and clean sands), can hold only a limited number of ostracod species, whereas on pelitic bottoms and mud-mixed sands the diversity of the assemblages increases. A number of studies corroborated this relationship, showing high ostracod diversity in fine-grained sands and low diversity in coarser sediments (Hazel, 1975; Aiello et al., 2006), higher diversity on silts or mud-mixed sands, and lower in clean sands (Puri 1966, 1971) and negative correlation with granulometry in Quaternary sandy successions (Aiello et al., 2020). On the other hand, on muddy bottoms, ostracod diversity frequently diminishes (Benson & Maddocks, 1964; Hong, 2016); consequently, it was suggested that the relationship between “ostracod diversity and particle size fractionation is not unimodal but rather hump shape” (Hong, 2016).

A similar trend was observed concerning benthic foraminifers. Investigations on assemblages collected on muddy bottom recorded low diversity, increasing in sandy sediments (Diz et al., 2004; Debenay et al., 2005); in large-grain sands and coarser bottom sediments a decrease was observed (Samir & El-Din, 2001; Temelkov, 2008; Delaine et al., 2015). It has to be noted that some studies reported apparently contradictory results, showing, for example, high foraminiferal diversity in sheltered areas with fine-grained sediments and high ostracod diversity in more exposed coarser-grained sediments (Morley & Hayward, 2014).

The characteristic of the assemblages occurring in the study samples supported the link between
granulometry and calcareous meiofaunal diversity. Coarse-grained sediments were present in the samples TP3-1 (medium sand), TP2-1 (coarse sand), and TP5-1 (very fine gravel), where the ostracod dominance is high, whereas abundance and diversity are low; foraminiferal taxa richness and abundance are low. In the infralittoral zone of the bay, muddy sediments were virtually absent, and Pokorny’s statement was confirmed by higher diversity and lower dominance displayed by ostracod, and, to a lesser extent, by benthic foraminiferal assemblages in fine and very fine sandy samples.

Chemical analyses revealed lower concentrations of pollutants in coarse-grained samples. Arsenic, copper, mercury, lead, zinc, total polycyclic aromatic hydrocarbons (pahs; in particular anthracene, benzo(a)anthracene, benzo(b)fluoranthene, and chrysene) and priority dangerous pahs were significantly higher in fine and very fine sands. The recognized inverse relationship between grain size and anthropogenic chemical contaminants (Horowitz, 1985, 1991; Herut & Sandler, 2006) and the above-mentioned link between meiofaunal remains and granulometry, could erroneously suggest the preference of ostracod and benthic foraminiferal assemblages for polluted bottom sediments. Consequently, to achieve reliable results, we considered separately the fine sandy samples and the coarser-grained sediments.

Calcareous meiofaunal assemblages exhibit different responses to anthropogenic inputs, including the decrease in diversity and increase in the abundance of tolerant taxa or morphotypes typical of polluted waters (Frontalini & Coccioni, 2008, 2011; Yasuhara et al., 2012; Albani et al., 1998; Eagar, 1999; Irizuki et al., 2015); conversely, some investigations suggested negative effects (Schornikov, 2000; Mostafawi, 2001; Martins et al., 2015) or displayed controversial results (Coccioni, 2000; Debenay & Fernandez, 2009; Choi & An, 2012).

Our point of view is that neither the contaminants accumulated in the bottom sediments nor the dead assemblages are representative of the ecological conditions at the time of sampling. Instead, they are indicative of the environmental history of the bay during the last years or decades. On the base of the present data, it is hypothesized that the continued anthropogenic disturbance, primarily due to industrial wastes, had not resulted in a decrease in ostracod and benthic foraminiferal diversity and had its effect by changing the taxonomic composition of the assemblages. In Table 11, the mean values of diversity indices of the infralittoral assemblages of Monte di Procida (Mangoni et al., 2016) and Falerno-Domito (Balassone et al., 2016) were reported. Both ostracod and benthic foraminiferal assemblages of the Gulf of Pozzuoli showed higher diversity and lower dominance in comparison with the nearby areas. The expected response to contaminant input was the decrease in meiofaunal diversity, nonetheless, some investigations on benthic foraminifers reported inverse trends (Debenay & Fernandez, 2009 and Li et al., 2015, in metal-contaminated waters) and highly diversified assemblages in polluted waters (Romano et al., 2009 and Choi & An, 2012, in metal-contaminated waters; Arminot du Châtelet et al., 2011, in metal-contaminated, rich organic carbon waters).

| Table 11 | Comparative table of diversity/dominance indices mean values of benthic foraminiferal and ostracod infralittoral assemblages of northwestern Campanian coastal areas (only fine and very fine sands); MDP = Monte di Procida (Mangoni et al., 2016), FD = Litorale Falerno Domitio (Balassone et al., 2016), GPI = infralittoral assemblages of the Gulf of Pozzuoli (this paper) |
Foraminifera	MDP	FD	GPI
Taxa (S)	51	36	61
Individuals (I)	7376	12,356	51,540
Dominance (D)	0.08	0.12	0.05
Shannon (H’)	3.25	2.73	3.49
Equitability (J)	0.83	0.77	0.85
Ostracoda MNI			
Taxa (S)	35	21	48
Individuals (I)	268	865	2066
Dominance (D)	0.09	0.17	0.05
Shannon (H’)	2.93	2.25	3.35
Equitability (J)	0.84	0.77	0.87
Ostracoda TNV			
Individuals (I)	822	3447	7781
Dominance (D)	0.13	0.18	0.07
Shannon (H’)	2.64	2.17	3.10
Equitability (J)	0.76	0.74	0.81
Barras et al. (2014) suggested that in oligotrophic environments the diversity indices are not appropriate to describe water quality. Moreover, the common presence of miliolids implies coastal waters supersaturated in calcium carbonate (Aiello et al., 2018, and references therein) where the presence of industrial wastes did not result in a pH lowering.

Reports of high-diversity ostracod assemblages in stressed environments are very rare (Amato et al., 2019; Aiello et al., 2020) which hampers to perform a proper comparison with the present study.

Conclusions

A quantitative study of benthic foraminiferal and ostracod assemblages, integrated with chemical and sedimentological parameters, was carried out along the coast of the Gulf of Pozzuoli. A total of 11 samples were collected within the infralittoral zone, to investigate the relationship between meiofaunal calcareous remains and pollution indicators preserved in the shallow marine bottom sediments of the bay. Assemblages were characterized by species typical of infralittoral Mediterranean environments such as the benthic foraminifers A. aberdoveyensis, B. granulata, and C. lobatulus, and the ostracods U. margaritifera and P. turbida. The genera Elphidium and Quinqueloculina (Foraminifera), and Semicytherura and Xestoleberis (Ostracoda) were highly diversified. Despite the continued anthropogenic disturbance, testified by high geoaccumulation levels, the shallow bottom sediments of the Gulf of Pozzuoli yielded high-diversity, low-dominance assemblages. It was here hypothesized that the oligotrophic, well-oxygenated, and supersaturated in CaCO₃ shallow Tyrrhenian waters may promote “complex trophic relationship” and “full exploitation of ecological niches” as stated by Holbourn et al. (2013) in their investigations on foraminiferal deep-water assemblages. The diversity was linked to the grain size of the bottom sediments, being higher on fine and very fine sands, and lower on coarser sediments.

On the other hand, the comparison with the assemblages collected in 1961 in the Gulf of Pozzuoli and the Gulf of Naples showed an increase in the abundance of taxa that are suggested to tolerate to geochemical pollution (Q. seminulum, B. elongata, Xestoleberis, Loxoconcha, S. rarecostata). Statistical analysis confirmed the tolerance of Q. lata to a high level of heavy metals contaminants and the preference of U. margaritifera and P. paulii for the shallow part of the infralittoral zone.

Acknowledgements The authors thank Roberto de’ Gennaro (DiSTAR, Università di Napoli Federico II) who took the SEM micrographs. We also acknowledge the kind collaboration of the Lega Navale di Pozzuoli, Italy, for providing us the motor vessel Antilia, the skipper Raffaele Donadio, the Captaincy of Port of Pozzuoli and Lieutenant Commander Angelo Benedetto Gonnella for assistance to the operations at sea. Finally, we are grateful to the University of Naples Federico II for supporting our research in the APC for open access.

Author contributions Giuseppe Aiello involved in conceptualization, writing—original draft preparation, investigation; Diana Barra took part in conceptualization, investigation, writing—review & editing; Roberta Parisi participated in formal analysis, investigation; Carlo Donadio took part in data curation, investigation; Michele Arienzo involved in formal analysis, investigation, resources; Luciano Ferrara took part in formal analysis, investigation, resources; Maria Toscanesi involved in investigation, resources; Marco Trifuoggi participated in investigation, resources.

Funding Open access funding provided by Università degli Studi di Napoli Federico II within the CRUI-CARE Agreement. No funding was received for conducting this study.

Data availability All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Declaration

Conflicts of interest The authors have no financial or proprietary interests in any material discussed in this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

990 Aquat Ecol (2021) 55:955–998

Springer
Appendix 1

Benthic foraminiferal and ostracod list of species.

List of benthic foraminiferal species

Adelosina elegans (Williamson, 1858)

Adelosina longirostra (d’Orbigny, 1826).

Adelosina mediterranensis (Le Calvez & Le Calvez, 1958).

Adelosina pulchella d’Orbigny, 1826.

Affinetrina planciana (d’Orbigny, 1839).

Ammodiscus planorbis Höglund, 1947.

Ammonia aberdoveyensis Haynes, 1973 lobate form.

Ammonia aberdoveyensis Haynes, 1973 rounded form.

Ammonia beccarii (Linnaeus, 1758).

Amphicoryna scalaris (Batsch, 1791).

Angulogerina angulosa (Williamson, 1858).

Asterigerinata adriatica Haake, 1977.

Asterigerinata mamilla (Williamson, 1858).

Asterigerinata mariae Sgarrella, 1990.

Bolivina catanensis Seguenza, 1862.

Bolivina lowmani Phleger & Parker, 1951.

Bolivina pseudoplicata Heron-Allen & Earland, 1930.

Bolivina variabilis (Williamson, 1858).

Bolivina sp.

Brizalina spathulata (Williamson, 1858).

Brizalina striatula (Cushman, 1922).

Buccella granulata (Di Napoli Alliata, 1952).

Bulimina aculeata d’Orbigny, 1826.

Bulimina elongata d’Orbigny, 1846.

Cassidulina carinata Silvestri, 1896.

Cibicides lobatus (Walker & Jacob, 1798).

Cibicides refugens Montfort, 1808.

Cibicoides pachyderma (Rzehak, 1886).

Cibicoides variabilis (d’Orbigny, 1826).

Conorbella imperatoria (d’Orbigny, 1846).

Cornuspira involvens (Reuss, 1850).

Cycloforina contorta (d’Orbigny, 1846).

Cycloforina rugosa (d’Orbigny, 1826).

Cycloforina tenuicollis (Wiesner, 1923).

Cycloforina villafranca (Le Calvez & Le Calvez, 1958).

Discorbinella bertheloti (d’Orbigny, 1839).

Discorbis torrei Bermúdez, 1935.

Eggerelloides scaber (Williamson, 1858).

Eiiohedra vitrea (Parker, 1953).

Elphidium articulatum (d’Orbigny, 1839).

Elphidium complanatum (d’Orbigny, 1839).

Elphidium crispum (Linnaeus, 1758).

Elphidium granosum (d’Orbigny, 1846).

Elphidium incertum (Williamson, 1858).

Elphidium macellum (Fichtel & Moll, 1798).

Elphidium maioricense Colom, 1942.

Elphidium poeyanum (d’Orbigny, 1839) DS form.

Elphidium poeyanum (d’Orbigny, 1839) FS form.

Elphidium pulvereum Todd, 1958.

Elphidium punctatum (Terquem, 1878).

Favulina hexagona (Williamson, 1848).

Flintinoides labiosa (d’Orbigny, 1839).

Fursenkoina acuta (d’Orbigny, 1846).

Gavelinopsis praegeri (Heron-Allen & Earland, 1913).

Glabratella erecta (Sidebottom, 1908).

Glabratella hexacamerata Seiglie & Bermúdez, 1965.

Globobulimina sp. 1

Globocassidulina subglobosa (Brady, 1881).

Globulina gibba (d’Orbigny, 1826).

Guttulina sp. 1

Gyroidina neosoldanii Broten, 1936.

Gyroidina umbonata (Silvestri, 1898).

Haynesina depressula (Walker & Jacob, 1798).

Haynesina germanica (Ehrenberg, 1840).

Lachlanella undulata (d’Orbigny, 1852).

Lagena semistriata Wiliamson, 1848.

Lenticulina cultrata (Montfort, 1808).

Lenticulina gibba (d’Orbigny, 1839).

Lenticulina rotulata (Lamarck, 1804).

Massilina secans (d’Orbigny, 1826).

Melonis affinis (Reuss, 1851).

Miliolidae.

Miliolinella elongata Kruit, 1955.

Miliolinella cf. hybrida (Terquem, 1878).

Miliolinella semicostata (Wiesner, 1923).

Miliolinella subrotunda (Montagu, 1803).

Miliolinella webbiana (d’Orbigny, 1839).

Miniacina miniacea (Pallas, 1766).

Neconorbina terquemi (Rzehak, 1888).

Nonionella turgida (Williamson, 1858).

Nubecularia lucifuga Defrance, 1825.

Palliolatella fasciata (Egger, 1857).

Parrina bradyi (Millett, 1898).
List of ostracod species

Aglaiocypris complanata (Brady & Robertson, 1869).

Argilloeia minor Müller, 1894

Aurila convexa (Baird, 1850).

Aurila prasina Barbeito-Gonzalez, 1971.

Aurila speyeri (Brady, 1858).

Callistocythere crispata (Brady, 1868).

Callistocythere flavofusca (Ruggieri, 1950).

Callistocythere lobiancoi (Müller, 1894).

Callistocythere aff. C. protracta Ruggieri & D’Arpa, 1993.

Carinocythereis carinata (Roemer, 1838).

Carinocythereis whitei (Baird, 1850).

Cistacythereis turbida (Müller, 1894).

Costa batei (Brady, 1866).

Costa edwardsii (Roemer, 1838).

Cyprideis torosa (Jones, 1850).

Cytheretta Adriatica Ruggieri, 1952.

Cytheretta subradiosa (Roemer, 1838).

Cytheridea neapolitana Kollmann, 1960.

Cytherois frequens Müller, 1894

Cytherois joachinii Barra, 1992.

Cytherois aff. C. niger Schornikov, 1965.

Cytherois aff. C. pontica Marinov, 1966.

Cytherois triangularis Bonaduce, Masoli, Minichelli & Pugliese, 1979.

Cytherois uffenordei Ruggieri, 1974.

Cythereid sp. 1

Cytheroma variabilis Müller, 1894

Cytheropteron latum Müller, 1894

“Elofsonia” minima (Bonaduce, Ciampo & Masoli, 1976).

Eucytherura gibbera Müller, 1894

Hemicytherura deforei Ruggieri, 1953.
Hemicytherura videns (Müller, 1894).
Heterocythereis voraginosa Athersuch, 1979.
Leptocythere levis (Müller, 1894).
Leptocythere macella Ruggieri, 1975.
Leptocythere ramosa (Rome, 1942).
Loxocauda decipiens (Müller, 1894).
Loxoconcha affinis (Brady, 1866).
Loxoconcha concentrica Bonaduce, Ciampo & Masoli, 1976.
Loxoconcha ovulata (Costa, 1853).
Loxoconcha rhomboidea (Fischer, 1855).
Macrocyprina succinea (Müller, 1894).
Microcythere depressa Müller, 1894.
Microcythere hians Müller, 1894.
Microcythere ? rara Müller, 1894.
Microcythere vitrea Bonaduce, Ciampo & Masoli, 1976.
Microcytherura fulva (Brady & Robertson, 1874).
Microcytherura nigrescens Müller, 1894.
“Microcytherura” sp. 1
Microxestoleberis nana Müller, 1894.
Microxestoleberis sp.
Neocytherideis subulata (Brady, 1868).
Neonesidea mediterranea (Müller, 1894).
Palmoconcha subrugosa (Ruggieri, 1977).
Palmoconcha turbida (Müller, 1894).
Paracytheridea paulii Dubowsky, 1939.
Paracytheridea triquetra (Reuss, 1850).
Paracytherois agigensis Caraion, 1963.
Paracytherois flexuosa (Brady, 1867).
Paradoxostoma atrum Müller, 1894.
Paradoxostoma acaenum Müller, 1894.
Paradoxostoma angustum Müller, 1894.
Paradoxostoma caecum Müller, 1894.
Paradoxostoma parallellum Müller, 1894.
Paradoxostoma aff. P. rotundatum Müller, 1894.
Paradoxostoma simile Müller, 1894.
Paradoxostoma triste Müller, 1894.
Phlyctocythere pellucida (Müller, 1894).
Polycope reticulata Müller, 1894.
Pontocypris acuminata (Müller, 1894).
Pontocypris frequens (Müller, 1894).
Pontocypris obtusa (Müller, 1894).
Pontocypris pellucida Müller, 1894.
Pontocypris aff. P. pellucida Müller, 1894.
Pontocythere turbida (Müller, 1894).
Procytherideis retifera Ruggieri, 1978.
Procytherideis subspiralis (Brady, Crosskey & Robertson, 1874).
Propontocypris intermedia (Brady, 1868).
Propontocypris rara (Müller, 1894).
Propontocypris subfuscus (Müller, 1894).
Propontocypris succinea (Müller, 1894).
Propontocypris sp. 1
Pseudocytherura strangulata Ruggieri, 1991.
Pseudopsammocythere reniformis (Brady, 1868).
Pterygocythereis jonesii (Baird, 1850).
Sagmatocythere napoliana (Puri, 1963).
Sagmatocythere versicolor (Müller, 1894).
Sahncythere retroflexa (Klie, 1936).
Sclerochilus ? aequus Müller, 1894.
Sclerochilus gewemuelleri Dubowsky, 1939.
Sclerochilus levir Müller, 1894.
Semicytherura acuta Müller, 1912.
Semicytherura acuticostata (Sars, 1866).
Semicytherura alifera Ruggieri, 1959.
Semicytherura costata (Müller, 1894).
Semicytherura dispar (Müller, 1894).
Semicytherura incongruens (Müller, 1894).
Semicytherura inversa (Seguenza, 1880).
Semicytherura paradoxa (Müller, 1894).
Semicytherura punctata (Müller, 1894).
Semicytherura quadridentata (Hartmann, 1953).
Semicytherura rarecostata Bonaduce, Ciampo & Masoli, 1976.
Semicytherura reticulata (Müller, 1894).
Semicytherura robusta Bonaduce, Ciampo & Masoli, 1976.
Semicytherura ruggierii (Pucci, 1955).
Semicytherura simplex (Brady & Norman, 1889).
Semicytherura aff. S. slavonica Krstic´, 1983.
Semicytherura sulcata (Müller, 1894).
Semicytherura tergestina Masoli, 1968.
Tenedocythere prava (Baird, 1850).
Triebelina raripila (Müller, 1894).
Tuberoloxococncha tuberosa (Hartmann, 1954).
Urocythereis ilariae Aiello, Barra & Parisi, 2016.
Urocythereis margaritifera (Müller, 1894).
Urocythereis schulzi (Hartmann, 1958).
Xestoleberis communis Müller, 1894.
Xestoleberis decipiens Müller, 1894.
Xestoleberis dispar Müller, 1894.
Xestoleberis aff. X. labiata Brady & Robertson, 1874.
Xestoleberis margaritopsis Rome, 1942.
Xestoleberis pellucida Müller, 1894.
Xestoleberis aff. X. pellucida Müller, 1894
Xestoleberis cf. X. perminima Neviani, 1928.
Xestoleberis aff. X. perula Athersuch, 1978.
Xestoleberis plana Müller, 1894
Xestoleberis rara Müller, 1894
Xestoleberis sp. 1

References

Aiello G, Barra D (2010) Crustacea, Ostracoda. Biol Mar Mediterr 17:401–419. https://doi.org/10.1093/osoo/9780199233267.003.0025
Aiello G, Barra D, Coppa MG, Valente A, Zeni F (2006) Recent infralittoral foraminifera and ostracoda from the porto Cesareo Lagoon (Ionian Sea, Mediterranean). Boll Soc Paleontol Ital 45:1–14
Aiello G, Barra D, De Pippo T, Donadio C, Petroinos C (2007) Geomorphological evolution of Phlegraean volcanic islands near Naples, southern Italy. Zeitschrift Für Geomorphol NF 51(2):165–190. https://doi.org/10.1127/0372-8854/2007/0051-0165
Aiello G, Barra D, De Pippo T, Donadio C (2012) Pleistocene foraminifera and ostracoda from the island of Procida (Bay of Naples, Italy). Boll Soc Paleontol Ital 51(1):49–62. https://doi.org/10.4435/BSPI.2012.06
Aiello G, Barra D, Parisi R (2016) Intra- and interspecific shell variability of the genus Urocystheris Ruggieri, 1950 (Ostracoda: Hemicytheridae) in the La Strea Bay (Ionian Sea, Italy). Eur J Taxon 193:1–35. https://doi.org/10.5852/ejt.2016.193
Aiello G, Barra D, Parisi R, Isaia R, Marturano A (2018) Holocene benthic foraminiferal and ostracod assemblages in a paleo-hydrothermal vent system of Campi Flegrei (Campania, South Italy). Palaeontol Electron 21.3:41A 1–71. https://doi.org/10.4249/paleo.2018.3.41A
Aiello G, Amato V, Barra D, Caporaso L, Caruso T, Giaccio B, Parisi R, Rossi A (2020) Late Quaternary benthic foraminiferal and ostracod response to palaeoenvironmental changes in a Mediterranean coastal area, Port of Salerno. Tyrrenhian Sea Reg Stud Mar Sci 40:101498. https://doi.org/10.1016/j.rsma.2020.101498
Aiello G, Amato V, Aucelli PPC, Barra D, Corrado G, Di Leo P, Di Lorenzo H, Jicha B, Pappone G, Parisi R, Petroinos P, Russo Ermolli E, Schiattarella M (2021) Multiproxy study of cores from the Garigliano Plain: an insight into the late quaternary coastal evolution of Central-Southern Italy. Palaeogeogr Palaeoclim Palaeoecol 567:110298. https://doi.org/10.1016/j.palaeo.2021.110298
Albani AD, Favero VM, Serandrei Barbero R (1998) Distribution of sediment and benthic foraminifera in the Gulf of Venice. Italy Estuar Coast Shelf Sci 46(2):251–265. https://doi.org/10.1006/ecss.1997.0261
Alve E (1991) Foraminifera, climatic change, and pollution: a study of late Holocene sediments in Drønningmøllensfjord, southeast Norway. Holocene 1(3):243–261. https://doi.org/10.1177/095968369100100306
Alve E, Lepland A, Magnusson J, Backer-Owe K (2009) Monitoring strategies for re-establishment of ecological reference conditions: Possibilities and limitations. Mar Pollut Bull 59(8–12):297–310. https://doi.org/10.1016/j.marpolbul.2009.08.011
Amato V, Aiello G, Barra D, Caporaso L, Caruso T, Giaccio B, Parisi R, Rossi A (2019) Holocene paleogeographic evolution of an ancient port city of the central Mediterranean area: natural and anthropogenic modifications from Salerno city, southern Italy. Geoaarchaeology 35(3):366–383. https://doi.org/10.1002/gea.21774
Arienzo M, Donadio C, Mangoni O, Bolinesi F, Stanisla C, Trifugo C, Toscanesi M, Di Natale G, Ferrara L (2017) Characterization and source apportionment of polycyclic aromatic hydrocarbons (pahs) in the sediments of gulf of Pozzuoli (Campania, Italy). Mar Pollut Bull 124(1):480–487. https://doi.org/10.1016/j.marpollbul.2017.07.006
Arienzo M, Bolinesi F, Aiello G, Barra D, Donadio C, Stanisla C, Ferrara L, Mangoni O, Toscanesi M, Tiara A, Trifugo M (2020) The environmental assessment of an estuarine transitional environment. Southern Italy J Mar Sci Eng 8:628
Armanyot du Châtelet EA, Gebhardt K, Langer MR (2011) Coastal pollution monitoring: foraminifera as tracers of environmental perturbation in the port of Boulogne-sur-Mer (Northern France). Neues Jahrb Geol Palaeontol Abh 262(1):91–116. https://doi.org/10.1007/9777-749/2011/0187
Balassone G, Aiello G, Barra D, Cappelletti P, De Bonis A, Donadio C, Guida M, Melluso L, Morra V, Parisi R, Pennetta M, Siciliano A (2016) Effects of anthropogenic activities in a Mediterranean coastalland: the case study of the falerno-domito littoral in Campania, Tyrrenhian Sea (southern Italy). Mar Pollut Bull 112(1–2):271–290. https://doi.org/10.1016/j.marpolbul.2016.08.004
Barras C, Jorissen FJ, Labrune C, Andral B, Boissery P (2014) Live benthic foraminiferal faunas from the French Mediterranean Coast: towards a new biotic index of environmental quality. Ecol Indic 36:719–743. https://doi.org/10.1016/j.ecolind.2013.09.028
Benson RH, Maddock RF (1964) Recent ostracodes of Knysna Estuary, Cape Province, Union of South Africa. Univ Kansas Paleontol Contrb, Arthropoda 5:1–39
Bergin F, Kucuksezgin F, Uluturhan E, Barut IF, Meric E, Avsar N, Nazik A (2006) The response of benthic foraminifera and ostracoda to heavy metal pollution in Gulf of Izmir (Eastern Aegean Sea). Estuar Coast Shelf Sci 66(3–4):368–386. https://doi.org/10.1016/j.ecss.2005.09.013
Bobolinsy F, Arienzo M, Donadio C, Ferrara L, Passarelli A, Saggiomo N, Saggiomo M, Saggiomo N, Stanisla C, Trifugo M, Mangoni O (2020) Spatial and temporal variation of phytoplankton community structure in a coastal marine system subjected to human pressure. Reg Stud Mar Sci 35:101198. https://doi.org/10.1016/j.rsma.2020.101198
Choi JU, An S (2012) High benthic foraminiferal diversity in polluted Busan North Port (Korea). J Foraminiferal Res 42(4):327–339. https://doi.org/10.2113/gsjfr.42.4.327
Coccioni R (2000) Benthic foraminifera as bioindicators of heavy metal pollution. In: Martin RE (ed) Environmental
Micropaleontology: The Application of Microfossils to Environmental Geology Kluwer Academic/Plenum Publishers, Boston, New York. https://doi.org/10.1007/978-1-4615-4167-7_4

Cronin TM, Vann CD (2003) The sedimentary record of climatic and anthropogenic influence on the patuxent estuary and chesapeake bay ecosystems. Estuaries 26(2):196–209. https://doi.org/10.1007/bf02695962

Damiani V, Baud R, De Rosa S, De Simone R, Ferretti O, Izzo G, Serena F (1987) A case study: bay of Pozzuoli (Gulf of Naples, Italy). Hydrobiol 149:201–211. https://doi.org/10.1007/978-94-009-4053-6_21

De Maio A, Moretti M, Sansone E, Spezeg G, Valtaglito M (1985) Outline of marine currents in the Bay of Naples and some considerations on pollutant transport. Il Nuovo Cimento 8(6):955–969. https://doi.org/10.1007/BF02558022

De Pippo T, Donadio C, Pennetta M, Petrosino C, Petrosino C, Terlizzi F, Di Vito MA, Acocella V, Aiello G, Barra D, Battaglia M, Diz P, France’s G, Costas S, Souto C, Alejo I (2004) Distribution and chesapeake bay ecosystems. Estuaries 26(2):196–209. https://doi.org/10.1007/bf02695962

Hayward BW, Grenfell HR, Nicholson K, Parker R, Wilmhurst R (2016 Hong Kong shallow marine benthic ecosystem history: conservation paleoecology approach based on microfossil ostracods Thesis University of Hong Kong https://doi.org/10.5353/th_991022192279703414

Herut B, Sandler A (2006) Normalization Methods for pollutants in marine sediments: review and recommendations for the Mediterranean. Israel Oceanogr Limnol Res, Report H18(2006):1–23

Holbourn et al., 2013 A Holbourn AS Henderson N MacLeod 2013 Atlas of benthic foraminifera John Wiley & Sons - Natural History Museum London https://doi.org/10.1002/bg-6-1707-2009

Horowitz AJ (1985) A Primer on trace metal-sediment chemistry united states geological survey. Water-Supply Paper 2277(1):67. https://doi.org/10.3133/wsp2277
Yasuhrara M, Hunt G, Breitburg D, Tsujimoto A, Katsuki K (2012) Human-induced marine ecological degradation: micropaleontological perspectives. Ecol Evol 2(12):3242–3268. https://doi.org/10.1002/ece3.425

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.