A complication of BCG vaccine: A case of localized cutaneous abscess due to *Mycobacterium bovis*

Nathalie Lussier MD, Anne-Marie Bourgault MD FRCPC, Christiane Gaudreau MD FRCPC, Pierre Turgeon MD FRCPC

The attenuated bacille Calmette-Guérin (BCG) vaccine is administered worldwide to prevent tuberculosis. Complications of vaccination are uncommon. A case of cutaneous abscess due to BCG is presented in a 24-year-old woman. The abscess developed at the inoculation site four weeks after vaccination. Routine Gram stain and bacterial cultures of the pus were negative. The auramine stain was positive. Mycobacterial cultures were positive after 14 and 18 days, using the BACTEC 12B bottle and Löwenstein-Jensen media, respectively. The mycobacteria were identified as *Mycobacterium bovis*, vaccinal strain by high-performance liquid chromatography and DNA probe assays.

Key Words: BCG vaccine; Complications; Cutaneous abscess
CASE PRESENTATION

A 24-year-old woman was referred to the out-patient clinic for the evaluation of an inflammatory lesion on her left forearm. She was born and raised in Morocco, and came to Canada as a student eight months before consultation. She had no past medical history and no known contact with tuberculosis. During a visit to Morocco in July 1997, because of a negative purified protein derivative skin test, she was administered a BCG vaccine into the internal aspect of her left forearm. Information on the vaccine manufacturer and the technique of inoculation was not available. Four weeks later, she developed painful swelling with central fluctuation at the vaccination site. There were no associated systemic signs or symptoms. On examination, the patient looked well. On the internal aspect of the left forearm, at the site of the BCG inoculation, there was an erythematous swollen area of 3 cm with indurated margins and central fluctuation. There were no signs of lymphangitis or lymphadenopathy. A needle aspiration of the lesion was performed, and 1 mL of pus was collected. Gram stain showed numerous polymorphonuclear leukocytes but no microorganisms, and the routine bacterial culture was negative. The auramine stain showed one acid-fast bacillus per high-powered field. Mycobacteria were detected after 14 days and 18 days in the BACTEC 12B radiometric system (Becton Dickinson and Company, Maryland) and on Löwenstein-Jensen media (Laboratoires Quelab), respectively. Inclusion of p-nitroacetamidino- and hydroxypropiophenone inhibited the growth of the organisms. The organisms were nacian-negative and did not reduce nitrates. The pyrazinamidase test was negative. The high-performance liquid chromatography profile and DNA probe assay results confirmed the organism as M bovis, vaccinal strain. Three weeks after drainage, an ulcer developed and significant inflammatory signs persisted. Isoniazid 300 mg daily was prescribed. Despite many recalls, she was lost to follow-up.

DISCUSSION

Since 1921, the year the BCG vaccine was put into use in humans, there has been widespread use of the vaccine by the majority of countries in the world with the exception of The Netherlands and the United States, countries where immunization has traditionally been restricted to specific indications (3-6).

Unresolved questions about BCG vaccination include its overall efficacy, the duration of protective immunity and the effect of age at vaccination on protection (6). Ninety per cent of the vaccines are produced from four different strains of M bovis: Pasteur 1173P2, Danish 1331, Glaxo 1077 and Tokyo 172 (6). In Quebec, the Montreal strain developed at the Institut de Microbiologie et d’Hgiène de l’Université de Montréal, has been extensively used (7). All these strains of BCG differ in terms of their immunogenicity, efficacy and side effects (6). It is generally believed that vaccines derived from strains with the lowest concentration of viable bacilli per dose are stronger inducers of immunity but are more likely to be associated with side effects (8,9). The Pasteur 1173P2 and the Danish 1331 strains are considered as strong strains whereas the Glaxo 1077, the Tokyo 172 and the Montreal strains are considered as weak strains (6). Two BCG vaccines are licensed in Canada: Connaught strain (Pasteur Mérieux Connaught) and Montreal strain (Biochem Pharma).

Vaccine performance in prospective trials has ranged from 0% to 80% protective benefit (10). In a recent meta-analysis of the literature on the efficacy of BCG vaccine in the prevention of tuberculosis, Colditz et al (11) concluded that, on average, BCG vaccine significantly reduces the risk of tuberculosis by 50%. Protection against death from tuberculosis (78% protective effect), meningitis (64%) and disseminated disease (78%) is higher than for total tuberculosis cases.

The BCG vaccine is injected intradermally into the deltoid region or the upper external part of the thigh. The usual response to the vaccine is a red indurated area measuring 5 mm to 15 mm; the centre is soft for four weeks, and a crust is formed. The crust falls off between the sixth and 10th week and a scar remains (2,12).

The BCG vaccine is generally safe when administered to immunocompetent individuals. Complications include local reactions in 0% to 5% of recipients and, very rarely, systemic complications such as osteitis and disseminated M bovis infections (1,2,6,12,13). Factors associated with the development of local complications include the type, dose and strength of the vaccine strain, technique of inoculation, age, race, immune status of the recipient and previous positive tuberculin skin reaction (6). Muzy de Souza et al (14), in a study of 117,533 vaccinees, reported an incidence of local complications of 0.04% (51 patients), with 55% of these being abscesses. Other adverse reactions were ulcer formation, lymphangitis, suppurative adenitis and cheloid. Local reactions occurred as early as two weeks after vaccine administration in 30% of patients but could be seen as late as 90 days after the procedure.

Although the diagnosis of these complications can usually be made on clinical grounds, microbiological and histopathological examinations may be helpful. In the few studies reporting on the laboratory diagnosis, the sensitivities of the acid-fast smear (auramine-rhodamine) have ranged from 33% to 75%; cultures can be made on clinical grounds, microbiological and histopathological examinations may be helpful. In the few studies reporting on the laboratory diagnosis, the sensitivities of the acid-fast smear (auramine-rhodamine) have ranged from 33% to 75%; cultures are positive in about two-thirds of patients (15,16).

It is unclear whether antimycobacterial treatment should be administered to treat local abscesses (6,12,17). In a controlled study, Caglayan et al (18), compared no therapy with therapy with either isoniazid alone or isoniazid and rifampin and found no statistical difference.

In our patient, following a negative purified protein derivative skin test, the BCG vaccine was administered into the anterior region of the forearm, a faulty location. We do not know what type of BCG vaccine she received nor her human immuno deficiency virus (HIV) status because she was lost to follow-up. There were, however, no predisposing factors, high risk behaviours or physical findings that would suggest an increased risk for HIV infection. Interestingly, the auramine-rhodamine and Ziehl-Neelsen stained showed acid-fast bacilli, and the culture both on Löwenstein-Jensen and in the BACTEC radiometric system was positive, despite the known fastidious growth patterns of the live-attenuated M bovis strains (19).
BCG vaccine is very rarely administered in Quebec, so not surprisingly the complication was encountered in an individual having received medical care abroad. It is important for these cases to be reported to the public health authorities. Conservative management is indicated for most cases.

REFERENCES
1. Centers for Disease Control. The role of BCG vaccine in the prevention and control of tuberculosis in the United States: a joint statement by the Advisory Council for the Elimination of Tuberculosis and the Advisory Committee on Immunization Practices. MMWR 1996;45:1-14.
2. BCG vaccine. In: Canadian Immunization Guide, 4th edn. Ottawa: Health and Welfare Canada, 1993:29-33.
3. Guérin C. Early history of BCG. In: Rosenthal SR, ed. BCG Vaccination Against Tuberculosis. Boston: Little Brown, 1957.
4. Grange JM, Gibson J, Osborn TW, Collins CH, Yates MD. What is BCG? Tubercle 1983;64:129-39.
5. Lugosi L. Theoretical and methodological aspects of BCG vaccine from the discovery of Calmette and Guérin to molecular biology. A review. Tuber Lung Dis 1992;73:252-61.
6. Starke JR, Connelly KK. Bacille Calmette-Guérin vaccine. In: Plotkin SA, Mortimer EA Jr, eds. Vaccines. Montreal: WB Saunders, 1994:439-73.
7. [BCG Product Monograph]. Montreal: Biochem Pharma, 1997.
8. Smith D, Harding C, Chan J, et al. Potency of 10 BCG vaccines as evaluated by their influence on the bacillemic phase of experimental airborne tuberculosis in guinea-pigs. J Biol Stand 1979;7:179-97.
9. Pollock TM. BCG vaccination in man. Tubercle 1959;40:339-412.
10. Fine PEM, Rodrigues LC. Modern vaccines: mycobacterial diseases. Lancet 1990;335:1016-20.
11. Colditz GA, Brewer T, Berkey CS, et al. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA 1994;271:698-702.
12. Fitzgerald MJ, Duclos P. The reporting and management of adverse reactions to bacillus Calmette-Guérin (BCG) vaccination. Can Dis Wkly Rep 1991;17:98-100.
13. Talbot EA, Perkins MD, Silva SFM, et al. Disseminated bacille Calmette-Guérin disease after vaccination: case report and review. Clin Infect Dis 1997;24:1139-46.
14. Muzy de Souza SR, Sant’Anna CC, Lapane Silva JR, et al. Intradermal BCG vaccination complications – analysis of 51 cases. Tubercle 1985;64:23-7.
15. Peltola H, Salmi I, Vahvanen V, et al. BCG vaccination as a cause of osteomyelitis and subcutaneous abscess. Arch Dis Child 1984;59:157-61.
16. Colebunders RL, Izaley L, Musampu M, et al. BCG vaccine abscesses are unrelated to HIV infection. JAMA 1988;259:352.
17. Verbov J. Local skin complications of BCG vaccination. Practitioner 1984;228:1069-71.
18. Caglayan S, Yegin O, Kayran K, et al. Is medical therapy effective for regional lymphadenitis following BCG vaccination? Am J Dis Child 1987;141:1213-4.
19. Nolte FS, Metchock B. Mycobacterium. In: Murray PR, Baron EJ, Pfaller MA, et al. Manual of Clinical Microbiology. Washington: ASM Press, 1995:400-37.
