A comprehensive analysis of pollutant’s trend and their measurement techniques are crucial for evaluating the air quality, and thereby helpful in formulating better control policies. In this report, we summarise ground based PM$_{2.5}$ and PM$_{10}$ data report in India (2015–2019). The important points discussed here are: (i) review of the ground-based data of PM$_{2.5}$ and PM$_{10}$ and the techniques used, (ii) mapping of the data over India with spatial and temporal distribution so that better understanding on PM pollution level can be made, (iii) identifying the technological gaps in measurement of PM concentration in India, and (iv) evaluation of MERRA-2’s (Modern-Era Retrospective Analysis for Research and Applications, Version 2) simulation of PM$_{2.5}$ against surface measurements in India to better understand biases for spatial and seasonal distribution, and then (v) suggestions for better PM measurement protocols, policies and metrological aspects for both measurement and control policies. It is observed that the amount of ground data on ambient monitoring of fine PM is insufficient and has several inconsistencies which require adequate attention. In India, not much work has been done on developing certified reference materials, traceable standards and calibration facility for particulate matter measurement which is a crucial step to ensure quality checks. Further, the comparison of MERRA-2 and ground PM$_{2.5}$ concentrations revealed huge discrepancies with underestimating PM$_{2.5}$ measurements in highly polluted regions like the Indo-Gangetic plain, especially during winter when pollution load was high. Better PM$_{2.5}$ agreement was found in summer and monsoon season, based on performance statistics explained in this paper. Inconsistencies between MERRA-2 and ground PM$_{2.5}$ are partly due to few limitations in MERRA-2 reanalysis method which are discussed in this paper, apart from several issues in ground-based observation. The aim of this review and comparison is to highlight such issues and give more attention to the importance of data quality assurance for effective air quality management. The present study may be helpful for the researchers in evaluating and choosing appropriate reanalysis products for their future studies.

KEY WORDS MERRA-2, Ground-measurement, PM$_{2.5}$ and PM$_{10}$, Seasonal variability, Measurement techniques

1. **INTRODUCTION**

Atmospheric pollution is one of the major environmental concerns worldwide, especially in urban and sub-urban areas. Particulate Matter (PM) is known as one of
the significant contributors to poor air quality which is defined as solid, liquid and/or mixed particles suspended in air. They emit from both natural and anthropogenic sources. The particles having aerodynamic diameter \(\leq 2.5 \text{ \(\mu \)m (PM}_{2.5} \) have adverse impact on human health since they can penetrate deep into the respiratory system causing cardiovascular and respiratory diseases. Thereby, PM\(_{2.5}\) mass concentration was adopted as the primary parameter for ambient air particulate pollution and generally used as indicator of adverse health effects first in the United States in 1997, and later in different countries of the world. In India, CPCB (Central Pollution Control Board) notified National Ambient Air Quality Standards (NAAQS, revised 2009) stating standards of ambient air quality under the Air (prevention and control of pollution) Act 1981. As per the guidelines, cities are required to attain PM\(_{1.5}\) concentrations below 40 \(\mu \text{g/m}^3 \) (annual average) and below 60 \(\mu \text{g/m}^3 \) (24-hour average). For PM\(_{10}\) mass concentration standards below 60 \(\mu \text{g/m}^3 \) (annual average) and below 100 \(\mu \text{g/m}^3 \) (24-hour average) are permissible.

Despite being a key contributor to air quality, not much progress has been done to ensure the data quality of PM ambient mass measurements in India. Lack of uniform and continuous PM monitoring is one of the important issues hindering effective air quality management. These are the possible reasons for which several Indian cities are scaled as most polluted cities in Asia and world in the listing by WHO (Air quality database, WHO, April, 2022). To ensure accurate and precise PM measurements, regular quality checks and calibration of instruments/methods deployed are of utmost importance which in turn helps policy makers to effectively combat and control emissions. Various central and state regulatory bodies along with research institutes are involved in monitoring of PM at various stations throughout the country. However, the present literature shows inconsistent data and limited air monitoring network.

So, considering these issues, this paper aims to review and map ground-based PM studies published in recent years (2015–2019) across India and the techniques used for PM monitoring, highlight limitations and variations in measurements and to suggest better PM measurement strategy. Literature shows high loading of PM\(_{2.5}\) in most of the Indian region, especially in the Ingo-Gangetic Plain (IGP), almost all year round with values exceeding national standards several folds. The IGP is regarded as the hotspot for aerosol source since it is densely populated, and meteorological as well as topographical conditions which favour the accumulation loading of PM with lower planetary boundary layer (PBL) height, especially in the winter season (Jain et al., 2021). Likewise, trends in PM mass concentrations in different regions of India, their sources along with measurement techniques used are discussed in this paper. Furthermore, it is observed that although ground air quality monitoring stations exist in various regions in India, but due to their limited and non-uniform distribution with almost no station in rural areas, the air quality data is not sufficient to analyse spatial and temporal distribution of PM. Henceforth, to study better spatiotemporal PM\(_{2.5}\) variation in India with the available data, satellite data is used to compare with ground-based PM monitoring and thereby calculate differences in PM\(_{2.5}\) mass concentration on spatial and seasonal basis.

This review is organised into six sections. Section 2 reviews published studies on ground-based mass concentration of PM\(_{2.5}\) and PM\(_{10}\) in five years (2015–2019) in India along with measurement techniques. Section 3 introduces satellite PM\(_{2.5}\) data and reanalysis method. In Section 4 results and discussions are given, comparing ground PM\(_{2.5}\) mass concentration with that of satellite assimilated data on seasonal and spatial basis using statistical parameters (correlation coefficient, mean bias, standard deviation of bias, mean fraction, FAC2) to study spatio-temporal PM distribution over India. In addition, factors resulting in underestimation of MERRA-2 PM\(_{2.5}\) are discussed. In Section 5, the limitations in ground air quality monitoring network are discussed. Conclusion and suggestions for better and accurate PM measurement techniques are given in Section 6.

2. GROUND-BASED MEASUREMENT TRENDS

2.1 Ambient PM\(_{2.5}\) Mass Concentrations in Various Cities during the Years 2015–2019

We have reviewed available literature on PM\(_{2.5}\) mass concentration ground-based measurements in Indian cities during 2015–2019. Fig. 1 displays the average PM\(_{2.5}\) concentration distribution in different cities in India. The concentration values for each region along with the monitoring techniques are given in Table 1. The Indian Himalaya Range (IHR) is a great mountain terrain which encompasses an area of about 2,500 km\(^2\) and forms a bar-
Fig. 1. Distribution of ground \(\text{PM}_{2.5} \) mass concentration in India (2015–2019), where Y-axes represent mass concentration of \(\text{PM}_{2.5} \) in \(\mu g/m^3 \) and date of sampling on X-axis.
City	Sampling year	PM$_{10}$ (μg/m3)	Technique used	PM$_{2.5}$ (μg/m3)	Technique used	Reference
IHR						
Kashmir	January–March 2015	32 ± 27.6	Respirable dust sampler	20.3 ± 13.1	Fine dust HVS	Sen et al. (2017)
Kullu	January–March 2015	48.5 ± 16	Respirable dust sampler	30.8 ± 17.2	Fine dust HVS	Sen et al. (2017)
Nainital	January–March 2015	42 ± 24	Respirable dust sampler	20.3 ± 13.1	Fine dust HVS	Sen et al. (2017)
Dehradun	November 2014–June 2015	90 ± 32 (winter)	Partisol speciation sampler	63 ± 27 (winter)	Partisol speciation sampler	Soni et al. (2020)
		87 ± 40 (summer)		39 ± 19 (summer)		
		(Mean = 89 ± 36)		(Mean = 51 ± 23)		
Dehradun	January–March 2015	52.9 ± 37.7	Fine dust HVS			Sen et al. (2017)
Dehradun	November 2015–May 2016	186.2 ± 16.7 (winter)	HVS (Model: Spectro APM 460 BL, India)			Shridhar (2019)
		153.8 ± 17.9 (summer)				
Dehradun	2017–2018	134.21 ± 44.80 (Diwali sampling)	Portable aerosol spectrometer (Model-1371, GRIMM Aerosol Technik, Germany)	97.10 ± 40.36 (Diwali sampling)	Portable aerosol spectrometer (Model-1371, GRIMM Aerosol Technik, Germany)	Prabhu et al. (2019)
Darjeeling	January–March 2015	48 ± 18	Respirable dust sampler	24.3 ± 13.5	Fine dust HVS	Sen et al. (2017)
Darjeeling	December 2018–February 2019	48 ± 16	Particle sampler (1.2 m3/min)			Sharma et al. (2020)
IGP						
Delhi	January 2012–December 2016	128 ± 81	Fine particle sampler (APM 550, Envirotech, Delhi, IN)			Sharma et al. (2018b)
Delhi	January 2013–December 2016	238 ± 106	High volume respiratory dust sampler (AAS-217 NL; Make: M/s. Ecotech, India)	131 ± 79	High volume respiratory dust sampler (AAS-217 NL; Make: M/s. Ecotech, India)	Jain et al. (2020)
Delhi	January–March 2015	191.6 ± 58.1	Respirable HVS	125.7 ± 56.6	Fine dust HVS	Sen et al. (2017)
Delhi	January–December 2015	177.81 ± 95.50	BAM (SAFAR)	111.10 ± 59.90	BAM (SAFAR)	Krishna et al. (2018)
Table 1. Comparison of Ground and MERRA-2 PM2.5 Concentration in India

City	Sampling year	PM_{10} (µg/m3)	Technique used	$\text{PM}_{2.5}$ (µg/m3)	Technique used	Reference
Delhi	January 2015–December 2016	242 ± 95	High volume respirable dust sampler (AAS 217 NL, Ecotech, India)	135 ± 64	Fine particle sampler (APM 550, Envirotech, India)	Jain et al. (2021)
Delhi	January 2015–December 2017	222 ± 87	Respirable dust Sampler (Model: AAS-217 NL; Make: M/s. Ecotech, Delhi, India)			Sharma et al. (2018a)
Delhi	May–June 2017	162	HVS (APM 550M, Envirotech)	91.5	HVS (APM 550M, Envirotech)	Devi et al. (2020)
Delhi	January–December 2017	200	BAM	101	BAM	Anand et al. (2019)
Agra	January–March 2015	206.5 ± 90.9	Respirable dust sampler	144 ± 79	Fine dust HVS	Sen et al. (2017)
Agra	5 May–30 June 2015	156.2 ± 118.9	Respirable dust sampler	67.8 ± 33.6	Respirable dust sampler	Sen et al. (2017)
Agra	July–September 2015	137.09 ± 61 (urban) 270.14 ± 21 (semi-urban) (Mean = 203 ± 45)	Grimm portable aerosol spectrometer	41.45 ± 40 (urban) 48.88 ± 34 (semi-urban) (Mean = 45 ± 37)	Grimm portable aerosol spectrometer	Tiwari et al. (2020)
Agra	March 2016–March 2017	214.6 ± 60	HVS (APM 550, Envirotech)			Sah et al. (2019)
Agra	1–15th May 2018			68 ± 26.9	Envirotech sampler (APM 550)	Kumari et al. (2020)
Agra	7–26th June 2018	234 ± 84	BGI PQ200 particulate samplers (Mesa Labs, USA, USEPA)	65 ± 13	BGI PQ200 particulate samplers (Mesa Labs, USA, USEPA)	Nagar et al. (2020)
Patiala	January–March 2015		Respirable HVS	93 ± 35	Fine dust HVS	Sen et al. (2017)
Patiala	5 May–30 June 2015	175.4 ± 56	Respirable HVS	66.6 ± 40.7	Fine dust HVS	Sen et al. (2017)
Kanpur	May–June 2017	147	HVS (APM 550M, Envirotech)	83.2	HVS (APM 550M, Envirotech)	Devi et al. (2020)
Lucknow	January–March 2015	196 ± 90	Respirable dust HVS	130.5 ± 73.0	Fine dust HVS	Sen et al. (2017)
Table 1. Continued.

City	Sampling year	PM$_{10}$ (μg/m3)	Technique used	PM$_{2.5}$ (μg/m3)	Technique used	Reference						
Lucknow	October 2015-September 2016	161 ± 90	Respirable dust sampler (Model-460BL, Env)			Bharti et al. (2017)						
Varanasi	January 2014-December 2017	178 ± 105	Respirable dust sampler (APM-460BL)			Murari et al. (2020)						
Varanasi	January-March 2015	238 ± 82	Respirable dust HVS			Sen et al. (2017)						
Varanasi	5 May-30 June 2015	71.7 ± 38.7				Sen et al. (2017)						
Varanasi	January 2015-December 2016	257 ± 90	High volume respirable dust sampler (AAS 217 NL, Ecotech, India)	99 ± 33	Fine particle sampler (APM 550, Envirotech, India)	Jain et al. (2021)						
Varanasi	November 2016-February 2017	213 ± 80	Respirable dust sampler (APM 460NL)	134 ± 48	Respirable dust sampler (APM 550)	Pratap et al. (2020)						
Varanasi	May-June 2017	165	HVS (APM 550M, Envirotech)	102	HVS (APM 550M, Envirotech)	Devi et al. (2020)						
Varanasi	October 2016-May 2018	207.992 ± 66.861 (winter, 2016)	177.344 ± 68.971 (winter, 2017)	173.784 ± 37.671 (post-monsoon, 2016)	153.577 ± 82.595 (post-monsoon, 2017) (Mean = 178 ± 66)	Respirable dust sampler (APM-460BL)	129.808 ± 36.348 (winter, 2016)	110.732 ± 42.581 (winter, 2017)	121.46 ± 65.374 (post-monsoon, 2016)	116.06 ± 49.34 (post-monsoon, 2017) (Mean = 124 ± 50)	APM 550 (Make: M/s Envirotech, India)	Kumar et al. (2020)
Mirzapur	December 2014-December 2017	131 ± 56	Respirable dust sampler (APM-460BL)			Murari et al. (2020)						
Kolkata	January-March 2015	131.4 ± 58.1				Sen et al. (2017)						
Kolkata	5 May-30 June 2015	60.6 ± 40.7				Sen et al. (2017)						
Kolkata	January 2015-December 2016	179 ± 77	Respirable HVS (AAS 217NL, Ecotech)	116 ± 38	Fine particle sampler (APM-550, Envirotech)	Jain et al. (2021)						
City	Sampling year	PM$_{10}$ (μg/m3)	Technique used	PM$_{2.5}$ (μg/m3)	Technique used	Reference						
----------------------	---------------	------------------------	--	------------------------	--	---------------						
Kolkata	May–June 2017	151	HVS (APM 550M, Envirotech)	93	HVS (APM 550M, Envirotech)	Devi et al. (2020)						
Western India												
Pune	January–December 2015	98 ± 45.5	BAM-1020 (SAFAR)	46 ± 23	BAM-1020 (SAFAR)	Krishna et al. (2018)						
Pune	April 2015–April 2016		Fine dust sampler (NPM-FDS)	37.3	Fine dust sampler (NPM-FDS)	Gawhane et al. (2017)						
Pune	January–December 2016	63 ± 25	Dust sampler (NETEL, India) at $q = 16.7$ lpm	40 ± 14	Dust sampler (NETEL, India) at $q = 16.7$ lpm	Gawhane et al. (2019)						
Pune	January–December 2017	87	BAM	47	BAM	Anand et al. (2019)						
Mumbai	January–December 2017	99	BAM	60	BAM	Anand et al. (2019)						
Mumbai	September 2016–December 2016	96.61 (urban) 100.30 (sub-urban) (Mean = 98.45)	MiniVolTM Tactical Air Sampler (TAS), USEPA			Masih et al. (2019)						
Mahabaleshwar	March 2015–February 2017	26 ± 14	GRIMM Environmental Dust Monitor (EDM 180)			Buchende et al. (2019)						
Sinhagad (Rural-high altitude site)	January–December 2016	46.8 ± 12	Dust sampler (NETEL India Pvt. Ltd.)	27 ± 8	Dust sampler (NETEL India Pvt. Ltd.)	Budhavant et al. (2020)						
Ajmer	January–March 2015	80 ± 44	Respirable HVS			Sen et al. (2017)						
Ahmedabad	May–June 2017	116 ± 36 (Bapunagar) 228 ± 43 (Nanol) 133 ± 29 (Paldi) 101 ± 21 (Income tax) 70 ± 20 (Science City) (129.6/31.07) (Mean = 130 ± 31)	Respirable dust sampler (APM-460NL, Envirotech)			Patel et al. (2021)						
Ahmedabad	January–December 2017	126	BAM (SAFAR)	70	BAM (SAFAR)	Anand et al. (2019)						
Eastern India												
Bhubaneswar	January–March 2015	119.7 ± 36.9	Respirable HVS	58.1 ± 28.4	Fine dust HVS	Sen et al. (2017)						
Patna	March 2013–December 2014	192.0 ± 132.8	BAM			Tiwari et al. (2016)						
Table 1. Summary of ground-based ambient average mass concentration measurements of PM from several cities across India in the past five years (2015-2019).

City	Sampling year	PM$_{10}$ (μg/m3)	Technique used	PM$_{2.5}$ (μg/m3)	Technique used	Reference
Patna	January-December 2015	82 ± 27	Micro-aethelometer	52.62 ± 21.54	Micro-aethelometer	Arif et al. (2018)
Patna	May-June 2017	149	HVS (APM 550M, Envirotech)	77.4	HVS (APM 550M, Envirotech)	Devi et al. (2020)
Bhagalpur	May-June 2017	194	HVS (APM 550M, Envirotech)	98	HVS (APM 550M, Envirotech)	Devi et al. (2020)
Jorhat	February-March 2018	261 ± 89	Respirable dust sampler (APM-460NL, Envirotech)	126.76 ± 80.40	Fine particulate sampler (APM 550, Envirotech)	Islam et al. (2020a)
Jorhat	October-November 2018	274 ± 79	Respirable dust sampler (APM-460NL, Envirotech)	159 ± 77.6	Fine particulate sampler APM 550, Envirotech)	Islam et al. (2020a)
Jorhat	July-August 2019	153 ± 45	Fine particulate sampler (APM 550, Envirotech)	121 ± 49	Respirable dust sampler (APM 460NL)	Islam et al. (2020b)
Prayagraj	May-June 2017	118	HVS (APM 550M, Envirotech)	66	HVS (APM 550M, Envirotech)	Devi et al. (2020)
Chhattisgarh	October 2015-September 2016	71.8 ± 27 (rural)	Mini vol sampler	133 ± 51 (urban)	Mini vol sampler	Sahu et al. (2018)

Southern India						
Vishakhapatnam (Urban industrial site)	January 2014-December 2019	110 ± 48	BAM	48.5 ± 27	BAM	Varaprasad et al. (2021)
Tirumala (Rural hilly site)		60 ± 25	BAM	30 ± 17	BAM	Varaprasad et al. (2021)
Amaravati (Residential)	August 2017-December 2019	79 ± 45	BAM	40 ± 28	BAM	Varaprasad et al. (2021)
Rajahmundry (Industrial site)		75 ± 42	BAM	37 ± 28	BAM	Varaprasad et al. (2021)
Kadapa (Andhra Pradesh)	March 2013-February 2015	61.4 ± 3.4	HVS	29.0 ± 3.5	HVS	Begam et al. (2017)
The Indo-Gangetic Plain (IGP) is a vast fertile flat land covering an area of about 700,000 km², situated in the foothills of Himalayas, flanked by Bay of Bengal on its east, the Thar desert on its west and semi-arid Deccan plateau to its south (Sen et al., 2014) to 66.6 μg/m³ in Delhi (Jain et al., 2021) to 79 μg/m³ (January–March 2015) (Sen et al., 2017) showing a strong seasonal trend. Also, a slight increase in concentration can be observed in average PM mass concentration reported from previous study i.e. 121 ± 36 μg/m³ (20 January–5 February 2014) (Sen et al., 2014) to 144 ± 79 μg/m³ (January–March 2015) (Sen et al., 2017). It is a heavily polluted site in Northern India which is influenced by emissions from factories, vehicles, post-harvest stubble burning, brick kilns, etc. (Pipal et al., 2014).

As for Varanasi, an increasing trend in the mean concentration of PM₂.₅ can be observed from 99 ± 27.5 μg/m³ (January 2015–December 2016) (Jain et al., 2021) to 134 ± 48 μg/m³ (November 2016–February 2017) (Pratap et al., 2020) followed by a slight decline in mass concentration i.e. 124 ± 50 μg/m³ (October 2016–May 2018) (Kumar et al., 2020). Varanasi located in the middle IGP region observed very high pollution load due to combined effect of accumulation of particulates from upper IGP and emissions from local sources (Sen et al., 2016). Kolkata, being the third most densely inhabited city in India (Census, 2011), recorded an increasing trend in PM₂.₅ concentration from 48 ± 9.3 μg/m³ (May–June 2014) (Sen et al., 2016) to 93 μg/m³ (May–June 2017) (Devi et al., 2020). High population, vehicular and industrial emissions are predominant sources of PM₂.₅ in addition to the emissions from biomass burning and anthropogenic activities predominately from upper and middle IGP cities (Jain et al., 2020). Jamshedpur, an urban site in east India, also recorded a high PM₂.₅ annual average (119 ± 43 μg/m³) from December 2017 to November 2018 (Ambade et al., 2021). Potential sources contributing to high PM concentration are the anthropogenic activities such as coal burning, fossil fuel burning wood burning etc.

Among the north-eastern Indian sites, Jorhat reported substantially high loading of PM₂.₅ showing seasonal variability with highest average mass concentration i.e. 43 ± 14 μg/m³ (November 2014–October 2015) (Ambade et al., 2021). Potential sources contributing to high PM concentration are the anthropogenic activities such as coal burning, fossil fuel burning, wood burning etc.
observed during post-monsoon season as 159 ± 77.6 μg/m³ (October–November 2018) (Islam et al., 2020a), followed by pre-monsoon, i.e. 127 ± 80.4 μg/m³ (February–March 2018) and monsoon season i.e, 121 ± 49 μg/m³ (July–August 2020) (Islam and Saikia, 2020b). Poor air quality in this region is predominantly due to emissions from small and medium scale industries involved in tea processing, oil and brick kilns and coal-based (Islam et al., 2020a; Islam and Saikia, 2020b; Saika et al., 2018). During wintertime in northeast India, due to festive biomass burning episode, traditionally known as meji burning, copious amounts of particulate matter is released into the atmosphere, worsening air quality in this region (Deka and Hoque, 2014). Some other important sources of PM$_{2.5}$ include coal combustion, crustal emissions induced by traffic, wood burning and vehicular emissions (Khare and Baruah, 2010).

Over western India, Mumbai recorded high mass concentration of PM$_{2.5}$. A study by Masih et al. (2019) estimated the average PM$_{2.5}$ concentration in Mumbai to be 98.45 μg/m³ during September–December 2016 followed by a drop in mass concentration to 60 μg/m³ observed during January–December 2017 (Anand et al., 2019). The direction of wind flow majorly influences the air quality of Mumbai, being a coastal city. When clean coastal winds flow towards the city, it causes dispersion of pollutants thus improving the air quality, however the reversal of winds along with high humid conditions favour accumulation of pollutants in the region (Anand et al., 2019).

Pune, on the other hand, observed quite low PM$_{2.5}$ concentration as it is located at a relatively high altitude and experiences moderate weather conditions in both summer and winter seasons. Annual PM$_{2.5}$ mass concentration in Pune fluctuated from 46 ± 23 μg/m³ (January–December 2015) (Krishna and Beig, 2018) to drop in concentration to 37.3 μg/m³ (during April 2015–April 2016) (Gawhane et al., 2017), followed by slight increased concentration to 40 ± 14 (January–December 2016) (Gawhane et al., 2019) which finally peaked at 47 μg/m³ (January–December 2017) (Anand et al., 2019). Pune observed a boom in housing industry since past few years along with the increased vehicular emissions and industrial setups in Pune (Pipal and Satsangi, 2015) which are probable sources of PM. High altitude sites in western India like Mahabaleshwar and Sinhagad recorded quite low PM$_{2.5}$ concentrations well within the NAAQS, i.e. 26 ± 14 μg/m³ (March 2015–February 2017) (Buchende et al., 2019) and 27 ± 8 μg/m³ (January–December 2017) (Budhavant et al., 2020), respectively.

Sampling locations in southern India, viz. Vishakhapatnam (48.5 ± 27 μg/m³ during January 2014–December 2019), Tirumala (30 ± 17 μg/m³ during January 2014–December 2019), Amravati (40 ± 28 μg/m³ during August 2017–December 2019) and Rajahmundry (37 ± 28 μg/m³ during August 2017–December 2019) (Varaprasad et al., 2021) recorded substantially low PM$_{2.5}$ concentrations. Low concentration in Tirumala (viz a high-altitude site) as compared to Vishakhapatnam, Amravati and Rajahmundry is due to the absence of power plants and sugar industries in its near vicinity. Also, to meet electricity and energy demands, wind and solar energy is relied upon in Tirumula (Varaprasad et al., 2021).

2.2 Ambient PM$_{10}$ Mass Concentrations in Various Indian Cities during the Years 2015–2019

Majority of the cities located in IHR reported average PM$_{10}$ mass concentrations well within NAAQS for PM$_{10}$ (60 μg/m³) prescribed by the Central Pollution Control Board, India. The IHR sampling locations, i.e. Kashmir (32 ± 27.6 μg/m³), Kullu (48.5 ± 16 μg/m³), Darjeeling (48 ± 19 μg/m³) and Nainital (42 ± 24 μg/m³) reported low average mass concentrations of PM$_{10}$ during January–March 2015 (Sen et al., 2017) as compared to that of other sub-urban cities. However, in Dehradun, PM$_{10}$ levels were nearly doubled in one year period, i.e. from 89 ± 36 μg/m³ (November 2014–June 2015) (Soni et al., 2020) to 170 ± 17.3 μg/m³ (November 2015–May 2016) (Shridhar, 2019). This is attributed to rapid urbanisation causing increased anthropogenic emissions such as vehicular emissions, biomass burning, road dust resuspension influx of air masses from IGP (Soni et al., 2020; Shridhar, 2019).

The various mega-cities located in IGP, recorded remarkably high levels of average PM$_{10}$ mass concentration, violating the NAAQS value of 60 μg/m³. Amongst all sampling locations in IGP, Varanasi recorded the highest PM$_{10}$ average mass concentration (ranged 165 to 257 ± 90 μg/m³) followed by Delhi (ranged 162 to 242 μg/m³), Agra (ranged 206.5 ± 91 to 234 ± 84 μg/m³) and Kolkata (ranged 151 to 179 ± 77 μg/m³) during 2015–2019.

As for Varanasi, an uptrend in annual average mass concentration is observed from 238 ± 82 (January–March 2015) (Sen et al., 2017) to 257 ± 90 μg/m³ (January 2015–December 2016) (Jain et al., 2021) followed by a
decrease in concentration to 165 μg/m³ observed during summer sampling months, i.e. May–June 2017 (Devi et al., 2020). Major sources of high PM₁₀ levels in Varanasi region are emissions from traffic, construction and development activities, resuspension of road dust and long-range transport of PM from upper IGP (Jain et al., 2021).

In Delhi, PM₁₀ annual mass concentration increased from 178 ± 96 μg/m³ (January–December 2015) (Krishna and Beig, 2018) to 242 ± 95 μg/m³ (January 2015–December 2016) (Jain et al., 2021) followed by a slight downturn to 222 ± 87 μg/m³ (January 2015–December 2017) (Sharma et al., 2018a) and subsequently to 200 μg/m³ (January 2017–December 2017) (Anand et al., 2019). Wind-blown dust in Delhi predominantly contributes to elevated PM₁₀ levels (Anand et al., 2019). Other sources of PM in Delhi include vehicular emissions, biomass burning, soil/road dust, fossil fuel combustion and industrial emissions (Jain et al., 2021).

In Agra, a uniform trend of PM₁₀ mass concentration can be observed which is nearly three times higher than the annual average standards of PM₁₀ (60 μg/m³) (NAAQS, 2009). Predominant sources of PM₁₀ include emissions from factories and vehicles, construction and development activities, road and soil dust.

In Kolkata, Jain et al. (2021) calculated average PM₁₀ mass concentration to be 179 ± 77 μg/m³ (January 2015–December 2016) and Devi et al. (2020) reported mass concentration of about 151 μg/m³ (May–June 2017). Kolkata being a coastal city, experiences high loading of coarse mode marine aerosols in addition to local anthropogenic emissions, resulting in elevated PM₁₀ mass concentration levels especially in the winter sampling months (Sen et al., 2014).

In western India, the annual average PM₁₀ mass concentration for Pune slightly decreased from 98 ± 45.5 μg/m³ (January–December 2015) (Krishna and Beig, 2018) to 63 ± 25 μg/m³ (January–December 2016) (Gawhane et al., 2019) and then increased to 87 μg/m³ (January–December 2017) (Anand et al., 2019). Anthropogenic activities, sea-salt and dust aerosols are the major sources contributing to PM₁₀ concentration (Gawhane et al., 2019). Ajmer, a semi-arid site, observed low PM₁₀ concentration (80 ± 44 μg/m³ during January–March 2015, Sen et al., 2017) as it is surrounded by Aravalli range resulting in lower transport of windblown dust aerosols from Thar desert in its vicinity. Ahmedabad, which is large city in western India, recorded average PM₁₀ concentration as 126 μg/m³ during January–December 2017 (Anand et al., 2019). Even in summer, the PM concentration remained equally high i.e., 130 ± 31 μg/m³ (during May–June 2017) due to sea salt and mineral aerosols, frequent dust storms and heat wave conditions due to proximity to Thar Desert and Arabian Sea (Patel et al., 2021).

Over north-eastern India, sampling of PM₁₀ size fraction was carried out in Jorhat (Islam et al., 2020a; Islam and Saikia, 2020b) for which the mean concentration values were 261 ± 89 μg/m³, 274 ± 79 μg/m³, and 153 ± 45 μg/m³ during February–March 2018, October–November 2018 and July–August 2019, respectively exhibiting clear seasonal trend. High particulate concentrations at these sites could be due to the influx of air masses loaded with particulate matter from within IGP region into eastern region (BoB) due to favourable wind pattern during winter (Sen et al., 2017). High PM level in Jorhat during winter/post monsoon is due to large number of forest fires in its near vicinity as reported by Sen et al. (2016) on the basis of open fire-count satellite data, in addition to festive biomass burning episode (meji burning) during this time (Deka and Hoque, 2014).

In southern India, at an urban coastal industrial sampling site Vishakhapatnam, PM₁₀ average mass concentration was observed to be 110 ± 48 μg/m³ (January 2014–December 2019) (Varaprasad et al., 2021). Important sources of PM pollution at this site are emissions from industries, vehicles and port activities. Tirumala which is high-altitude rural region also famous as a pilgrim site, reported moderate PM levels i.e., 60 ± 25 μg/m³ (January 2014–December 2019) (Varaprasad et al., 2021) whereby, emissions from transport sector is the major source of pollution. During August 2017–December 2019, Varaprasad et al. (2021) reported PM₁₀ levels in Amravati (residential site, capital of Andhra Pradesh) and Rajahmundry (industrial site) to be 79 ± 45 μg/m³ and 75 ± 42 μg/m³, respectively. In Amravati, the major sources of PM pollution are emissions from transport sector and construction activities, while in Rajahmundry, emissions from paper industries and powerplants located in its vicinity are the dominant sources.

3. MERRA-2 DATA AND METHODS

3.1 Data Analysis

NASA’s (National Aeronautics and Space Administration) MERRA-2 dataset (Modern-Era Retrospective Analysis for Research and Applications, Version 2) is a
global atmospheric reanalysis tool developed by GMAO (Global Modelling and Assimilation Office) which is an advanced version of MERRA-1, Goddard Earth Observing System (GEOS) model. Atmospheric reanalysis integrating satellite observations is a helpful tool to provide the most complete picture of global climate change and spatial environment due to continual temporal and spatial resolution, high data quality and wide aerosol species (Randles et al., 2017). MERRA-1 was available from 1979 to February 2016, and after its discontinuation the subsequent dataset is present with MERRA-2 (runs a few weeks prior real-time). Basic aspects of both the reanalyses such as resolution and data products are the same as given in Gelaro et al. (2017). MERRA-2 dataset can be accessed online through NASA Goddard Earth Sciences Data Information Services Center (GES DISC). The optical depth observations assimilated at 550 nm in MERRA-2, are obtained by reflectance from MODIS (Moderate Resolution Imaging Spectroradiometer) on board Aqua and Terra satellites (Gelaro et al., 2017). The GOCART (Goddard Chemistry Aerosol Radiation and Transport) model coupled with GEOS provides information about the life cycle of predominant aerosol species, incorporating sea-salt (SS), dust (DS), organic carbon (OC), black carbon (BC) and sulfate (SO$_4$). At 550 nm, AOD is obtained by summation product of extinction coefficient of each species derived from cloud datasets, optical properties and mass concentrations of aerosols in the form of a column-species-integrated optical quantity.

Aerosol assimilation in MERRA-2 is done at a resolution of 0.5° latitude by 0.625° longitude and 73 vertical levels (from the surface to 80 km) all over the globe (Randles et al., 2017; Chin et al., 2002), thereby assessing the global distribution of PM$_{2.5}$ at high spatio-temporal resolutions. It is a very important tool to study particulate concentration and composition, especially in regions where ground monitoring is scarce or unreliable, or areas which are inaccessible. Having said that, there are also certain limitations in estimation methodologies used for simulation of MERRA-2 PM$_{2.5}$ mass concentrations, which must be carefully studied in order to better understand their merits and weaknesses. The purpose of this study is to assess MERRA-2’s simulation of fine PM by comparison with ground-based measurements conducted at 27 stations across the Indian region between 2015 and 2019. The evaluation is based on seasonal and spatial variation, as the air quality of a region is predominantly influenced by life-style, meteorological and geographical factors.

To obtain ground-based PM$_{1.5}$ mass concentrations, a literature survey of available previous studies during 2015–2019 in India was done as shown in Table 1. Since PM$_{2.5}$ sampling durations varied in different studies, only those ground stations/cities are selected for which at least one month of continuous data is available, for better comparison with satellite data. It is also important to note that the MERRA-2 PM$_{2.5}$ mass concentration values at specific latitude and longitude coordinates were selected, corresponding to the coordinates of ground monitoring stations, in order to get spatially accurate data. Further, it maybe noted that there are many published studies which have used the data obtained from monitoring stations managed by the government, (for example pollution board monitoring stations) and then compared with satellite data (Navinya et al., 2020; Mahesh et al., 2019). However, to the best of our knowledge no study has used ground PM$_{2.5}$ mass concentration other than that of government managed stations for comparison with MERRA-2.

3.2 Evaluation method: Reconstruction of PM$_{2.5}$ Mass Concentration

Monthly MERRA-2 simulation data of five PM$_{2.5}$ species: SO$_4$, OC, BC, DS$_{2.5}$ and SS$_{2.5}$ has been evaluated from 2015 to 2019 to estimate the total concentration of PM$_{2.5}$. Using these individual aerosol species concentrations, the total mass concentration of PM$_{2.5}$ can be evaluated applying mass reconstruction method as shown in the equation below (Chow et al., 2015):

$$\text{(MERRA-2 PM}_{2.5}\text{)} = \text{DU}_{2.5} + \text{BC} + \text{SS}_{2.5} + (\text{OC} \times 1.6) + (\text{SO}_4 \times 1.375) \quad (1)$$

where, DU$_{2.5}$, BC, SS$_{2.5}$, OC and SO$_4$ stand for dust (size $\leq 2.5 \mu$m), black carbon, sea salt (size $\leq 2.5 \mu$m), organic carbon and sulfate concentration, respectively. The factor of 1.375 is used to estimate absolute sulfate concentration as it is present in the form of neutralised (NH$_4$)$_2$SO$_4$ in MERRA-2 data (Buchard et al., 2016). Similarly, a factor of 1.6 is used to calculate particulate organic carbon to account for organic matter contributions of Indian region (Aggarwal and Kawamura, 2009). It is important to note that eq. 1 lacks the concentration of nitrate particles predominantly anthropogenic in nature (Delmas et al., 1997), which may result to biases when compared with ground data (He et al., 2019; Mah-
In this study, MERRA-2’s simulated PM$_{2.5}$ concentration calculated by the equation above, is compared to the ground-based PM$_{2.5}$ concentration measured at 27 locations on seasonal as well as regional basis for a time period of January 2015–December 2019. In order to ensure the data reliability of the simulated and observed (ground-based) PM$_{2.5}$ data, a spatial consistency algorithm is used which is as follows: since trace concentrations are usually lognormally distributed, the bias between log-simulated concentration and log observed concentration ($B_{\text{log}} = \log (C_{S}) - \log (C_{O})$; where C_{S}: simulated concentration, C_{O}: observed concentration) is calculated at all study locations. Thereby, reliability interval which justifies 95% of the normal distribution is calculated as: $\overline{B_{\text{log}}} \pm 2\sigma_{B_{\text{log}}}$ excluding all data pairs outside this interval.

Various statistical parameters were applied on monthly mean PM$_{2.5}$ concentrations for quantifying MERRA-2’s accuracy. These are correlation coefficient (R), mean bias ($\overline{B} = \overline{C_{S}} - \overline{C_{O}}$), the standard deviation of bias (SD-B) mean fraction ($F = \overline{C_{S}} / \overline{C_{O}}$), where C_{O} and C_{S} are observed and simulated mass concentration, respectively. Also, log transformed statistics were computed: B_{log} and R_{log}. To evaluate air quality models, Chang and Hanna (2004) proposed Factor of Two (FAC2) index proposing that the proportion of data which satisfies $0.5 \leq C_{O}/C_{S} \leq 2.0$, should be equal to or more than 0.5 to be considered a good model performance. A detailed statistical comparison of ground and MERRA-2 PM$_{2.5}$ concentrations is given in section 4.1.

4. RESULTS AND DISCUSSION

4.1 Seasonal and Spatial Comparison of PM$_{2.5}$ Mass Concentration between MERRA-2 and Ground-based Data

The aerosol distribution at surface and in the atmospheric column is heterogeneous and shows strong seasonal trend owing to meteorological conditions and seasonally varying emission source strengths over India (Sreekanth et al., 2007). Therefore, to evaluate the level of agreement between ground and MERRA-2 data, statistical metrics are applied on seasonal mean PM$_{2.5}$ concentrations shown in Table 2 (Navinya et al., 2020; Mahesh et al., 2019). We observed that the correlation coefficients are low during monsoon (0.22), indicating that PM$_{2.5}$ diurnal variability is not well captured by MERRA-2 in this season possibly due to restricted assimilation of MERRA-2 in presence of cloud cover (He et al., 2019; Buchard et al., 2016), while it is moderate during post monsoon (0.37), summer (0.38), and better during winter (0.59). However, Willmott (1982) discouraged the use of R to evaluate model performance since it is sensitive to extreme values and does not directly compare simulated with observed data. Therefore, to directly relate simulated and ground-based PM$_{2.5}$ concentrations, FAC2 index is evaluated given that this index is not disproportionately sensitive to extreme values. Based on FAC2 values, MERRA-2 and ground data performed well in all seasons (FAC2 ≥ 0.5) i.e., 1.60, 1.52, 1.40 and 1.84 for winter, summer, monsoon and post-monsoon, respectively, suggesting good model performance and comparability between the two datasets. The mean bias was less during monsoon (−10.75 μg/m3) and summer (−24.33 μg/m3) as compared to post-monsoon (−35 μg/m3) and winter (−32.76 μg/m3). Also, the average observed PM$_{2.5}$ concentration reported at ground locations was higher in post-monsoon (103 μg/m3) and winter (86 μg/m3) as compared to summer (73 μg/m3) and monsoon (45 μg/m3). These results suggest MERRA-2’s inability to simulate PM$_{2.5}$ mass concentration during high PM mass loading episodes. This is further supported by an underestimation of 34% and 38% during post-monsoon and winter respectively. Similar study by Navinya et al. (2020) reported the average observed PM$_{2.5}$ concentration over 20 Indian cities from 2015–2018 to be 80 μg/m3, while 35 μg/m3 simulated by MERRA-2, indicating MERRA PM$_{2.5}$ underestimation by 34%. The explanation for disagreement between the two datasets is to be discussed in section 4.2.

Fig. 2 shows the spatial pattern of MERRA-2 simulated
Fig. 2. Distribution of average PM$_{2.5}$ and location of measurement sites along with corresponding Ground PM$_{2.5}$ and MERRA-2 PM$_{2.5}$ concentration during the time period 2015-2019 in India, where (a) winter, (b) summer, (c) monsoon, and (d) post-monsoon.
PM$_{2.5}$ mass concentration throughout India for different seasons. The ground PM$_{2.5}$ mass concentration measured at 27 different sampling sites mentioned in this study are also depicted. A clear seasonal trend of PM$_{2.5}$ mass concentration is observed. Some key notable features are as follows: the air masses over IGP region are observed to have high dominance of PM$_{2.5}$ especially during the post-monsoon season (Fig. 2d) predominantly due to stubble burning over the western IGP which increases along the north eastern region during winter season (Fig. 2a), due to transport of aerosols from IGP (Sarkar et al., 2018). Also, throughout the study period, relatively higher PM mass concentration is observed over the IGP region compared to other parts of the country indicated by both MERRA-2 as well as ground data. Rapid industrialisation, urbanisation and elevated prominent PM sources such as biomass burning, waste burning, vehicular emissions are some of the reasons due to which IGP has been regarded as one of the most polluted regions in India (Jain et al., 2021; Ojha et al., 2020). In contrast, less PM mass concentration is observed in IHR and south India due to pristine conditions and vegetation cover respectively (as explained in previous sections), which is indicated by both MERRA-2 and ground PM$_{2.5}$ concentrations. Therefore, we can say that PM$_{2.5}$ spatial trends observed from MERRA-2 data in different seasons reasonably conform to that of ground-based measurements.

However, it may be noted that MERRA-2 does not completely capture the size-resolved dust concentration in the IGP (Fig. 2b), since IGP is characterised by high dust loading during summer season (Goel et al., 2015). The underestimation of fine dust particle concentration has been reported in previous study by Kramer et al. (2018). Over central and eastern regions, coal-based power and steel plants in addition to small and medium scale industries as well as mining activities significantly contribute to PM mass loading (Guttikunda et al., 2019). It is important to highlight that the sampling site (located near the industrial site) at Chhattisgarh showed huge deviations (~3 times) between MERRA-2 and ground PM$_{2.5}$ concentrations throughout the study duration. This deviation could possibly be due to the inability of MERRA-2 to simulate nitrate concentrations from industries located in the vicinity of sampling location. Similar deviations between MERRA-2 and ground PM$_{2.5}$ (~4 times) was observed in Jorhat, where industrial emissions are the major factors for PM$_{2.5}$ emissions.

In terms of spatial distribution, when comparing the observed concentration (from ground data) and simulated concentration (from MERRA-2) an apparent deviation is evident in mass concentration of PM$_{2.5}$. We observed high mean bias between ground and simulated data over IGP (~28 µg/m3) as compared to IHR (~7 µg/m3) and southern region (~3 µg/m3), and the corresponding underestimation by MERRA-2 to be 29%, 15% and 8%, respectively. Hence, it can be clearly observed that MERRA-2 underestimates mass concentration at regions showing very high pollution levels.

4.2 Factors Resulting in PM$_{2.5}$ Underestimation by MERRA-2

Fig. 3 shows the scatter between the MERRA-2 and ground-based data for monthly PM$_{2.5}$ mass concentrations. The solid line in the figure represents equiline (1 : 1 line) and PM$_{2.5}$ values are scattered below and above
the equiline, indicating both under and overestimations by MERRA-2. The scatter becomes wider for higher ground-based concentrations. The plot reveals that for significantly high (low) loading conditions, MERRA-2 underestimates (overestimates) the mass concentrations. Similar analysis is supported by log-transformed data. To better understand agreement between ground-based and MERRA-2 simulated PM2.5 concentrations, we compared monthly averaged observed and simulated data from 2015 to 2019 (Fig. 4). Similar trends in PM concentrations by both ground and MERRA-2 data is observed in all months. Moreover, the bias values indicate better model performance in summer and monsoon months (i.e., March to April) as compared to winter and post-monsoon (October to February), possibly attributing to the absence of nitrate in MERRA-2 PM2.5 reanalysis which is more significant in India given that PM2.5 is mostly composed of anthropogenic particles (He et al., 2019; Mahesh et al., 2019). Another reason for high deviations in winter and post-monsoon could be due to MERRA-2’s inability to unresolve local sources of pollution since its resolution is too coarse to evaluate the urban core of cities (Provencal et al., 2016).

In addition, MERRA-2 does not completely capture the size resolved dust concentration resulting in underestimation of fine dust particle concentration of size less than 2 μm (Kramer et al., 2018). Further, there are missing AOD values in MERRA-2 reanalysis dataset due to cloud cover, orbital gaps, etc. (Mahesh et al., 2019; Buchard et al., 2016). Therefore, these datasets require extensive regional scale validations for complete data interpretation, especially over the highly diverse Indian region.

5. VARIATIONS AND LIMITATIONS IN MEASUREMENT OF GROUND-BASED PM MASS CONCENTRATION

Since PM monitoring plays an important role in improving air quality and health, therefore the accurate and precise measurement of PM mass concentration is of utmost concern. To monitor PM concentration across India, Central Pollution Control Board (CPCB) has notified three methods namely, Gravimetric Method (GMM), Tapered Element Oscillating Microbalance (TEOM) and Beta Attenuation Monitor (BAM). Gravimetric Method is the primary method to quantify PM mass concentration which is based on the difference in mass of the filter used before and after sampling, while
BAM and TEOM are the online/real-time measurement methods where the mass of PM collected on filter substrate is determined using beta attenuation, and change in frequency of oscillating element in TEOM, respectively. From the available ground-based data given in Table 1, we conclude that all methods, Gravimetric Method is widely used in India since it is comparatively simpler, cost-effective and involves the primary measurement of PM mass.

For quality assured measurements, the periodic calibration of the instruments deployed for mass measurement is very important. As per Bureau of Indian Standards (BIS-IS 5182 (Part 24): 2019), the important parameters required during Gravimetric measurement include calibration of (1) impactor (2) flow rate of sampler, (3) micro balance, (4) temperature sensor, and (5) pressure sensor. However, there are many studies which have not mentioned the calibration and schedule of instruments, which is a significant measure to ensure QA/QC procedure (Murari et al., 2020; Anand et al., 2019; Yadav et al., 2019; Gawhane et al., 2019, 2017; Begam et al., 2017; Bharti et al., 2017; Leena et al., 2017; Das et al., 2015; Yadav et al., 2015; Yadav and Satsangi, 2013).

In addition, some studies show inconsistency in mass concentration measurement even for the similar measurement technique used at same location for similar sampling duration. For example, Sen et al. (2014) reported PM$_{2.5}$ concentration in Varanasi to be $188 \pm 36.5 \mu g/m^3$ using IPM-FDS, Instrumex (flow rate of 1 m3/h, designed as per USEPA guidelines) during 20th January–5th February 2014, whereas another study by Kumar et al. (2015), reported PM$_{2.5}$ mass concentration as $138 \pm 47.12 \mu g/m^3$ in Varanasi during 1st January–31st March 2014 using the same instrument. Therefore, about 30% variation in PM mass concentration is observed despite similar conditions of measurement. A part of deviation in results could be attributed to the different local (site-specific) sources and measurement period (which was not exactly the same), but the inconsistency is primarily due to lack of standardisation of measurement method (Malik and Aggarwal, 2021). The calibration of instruments and the measurement methods deployed are very important, however in several studies most often this issue is not given adequate attention. The available literature shows that many studies lack the calibration details of instruments used, which is crucial for QA/QC purpose, i.e., Ezhilkumar et al., 2021; Budhavant et al., 2020; Islam et al., 2020a; Islam and Saikia, 2020b; Begam et al., 2017; Das et al., 2015 etc.

Another issue of significant importance is variation in PM mass loading introduced due to different techniques. For comparison, PM$_{2.5}$ mass measured by MiniVol sampler during December 2013–January 2014 in Delhi was observed to be $277 \pm 100 \mu g/m^3$ (Pant et al., 2015), while in another study PM mass measured using APM550 (high-volume sampler) in Delhi during January–February 2014 (Sen et al., 2014) was reported to be $178 \pm 56.5 \mu g/m^3$, i.e. about 43% variation in mass measurement. Here both the techniques used are gravimetric mass measurement, however calibration of impactor and cyclone are the major issues to be addressed. Thus, the performance evaluation and limitations of different measurement techniques should be well understood as per country’s ambient conditions before deploying an instrument which would be beneficial to effectively monitor air quality.

6. CONCLUSION AND SUGGESTIONS FOR BETTER AND ACCURATE GROUND-BASED PM MEASUREMENT TECHNIQUES, PROTOCOLS AND POLICIES

For better air quality management (AQM), extensive technical and scientific efforts of government regulatory bodies along with research institutions/local universities is crucial to generate reliable air monitoring data. In order to ensure data reliability following protocols should be followed; (1) periodic calibration of flow rate (2) comparison/intermediate check of data obtained with reference instrument (3) calibration certificate provided by the manufacturer (Aggarwal et al., 2013). Some other important suggestions for improved air quality management are as follows:

1. For measurement of pollutants at air monitoring stations, the guidelines recommended by CPCB are followed. However, there are certain limitations resulting in incompliance in the target frequency monitoring (104 observations annually) due to (1) non-availability of continuous power supply (2) limited and non-uniform distribution of monitoring stations with almost no monitoring station in rural areas (3) many locations have manual stations which require two to three days to show measurement results (4) absence of calibration and laboratory inter-comparison details resulting in low credibility of data quality, henceforth the monitor-
ing data obtained is not absolute rather just indicative (CPCB, 2013). The regulatory bodies must ensure the following factors in order to ensure QA/QC procedure: (1) regular calibration of equipments such as blower, rotameter, microbalance, spectrophotometer etc must be carried out at regular intervals (2) continuous supply of electricity should be ensured for uninterrupted monitoring of pollutants (3) more uniform air monitoring network should be developed to obtain comparable data from various stations (CPCB, 2003).

2. Available literature shows that greater number of studies are carried out in larger cities when compared to small cities and rural areas. This issue should be given more attention. The air monitoring network should be reliable, accurate and uniformly available so that data from different stations is comparable to better understand PM concentration levels and trends in India.

3. Variations in PM concentration are observed for studies conducted in the same city. A part of this deviation could be due to different sampling locations and meteorological conditions, but to large extent variations are observed due to lack of standard operating procedures and limited availability of trained manpower. Therefore, all laboratories and stations involved in air quality monitoring should be accredited to ensure QA/QC procedures. Periodic workshops and capacity building training of all manpower, involved directly or indirectly in generating and reporting data, whether in fields and laboratories, should be arranged to familiarise them with appropriate sampling and analysis methods.

This review summarises ambient PM$_{2.5}$ and PM$_{10}$ mass concentration across different sampling locations in India during 2015–2019, and also compare PM$_{2.5}$ mass concentration with MERRA-2 reanalysis data. The objective was to map this data with temporal and spatial distribution to better understand PM pollution and thereby help policy makers to formulate better control policies. Some important conclusions drawn from the study are:

1. Due to pristine conditions of IHR, low PM mass concentration is observed when compared to other locations however due to urbanisation and long-range transport of pollutants from IGP, slight increase in the average mass concentration of PM is reported in many locations in last few years. Amongst the IHR sites, lowest PM$_{10}$ and PM$_{2.5}$ concentration were recorded in Kashmir in contrast to Dehradun which observed high PM mass concentration values showing uptrend/increasing concentrations in subsequent years, while Kullu recorded a slight drop in PM$_{10}$ concentration from 2014 to 2015.

2. Throughout the study period, ground sampling locations in IGP like Delhi, Agra, Varanasi, Kolkata reported the highest fine and coarse PM mass loading, due to rapid urbanisation, industrialisation and increased anthropogenic emissions from biomass/waste burning activities. The combined effect of local sources and stable atmospheric conditions further deteriorated the air quality during winters in these regions. Especially in Delhi, air quality is worsened due its landlocked geographical location.

3. Most of the ground studies have been conducted in larger cities when compared to small cities and rural areas. This needs to be improved for better understanding of PM concentration levels and trends in order to comprehend the overall state of PM pollution in India.

4. Variations in ground PM concentration are observed for the studies conducted in the same city. This may be due to different sampling locations and meteorological conditions, but to large extent variations are observed due to lack of standard operating methods.

5. According to National Ambient Air Quality Standards, monitoring should be done for 24 h and at least 104 days in a year. However, the literature clearly indicates that most of the data are for limited days.

6. There are associated uncertainties in data from ground monitoring networks due to lack of quality control procedures. In the absence of QA/QC, data quality remains questionable.

7. MERRA-2 PM$_{2.5}$ exhibited seasonal variation with high mass loading in winter and low in monsoon. However, MERRA-2 mostly underestimated PM$_{2.5}$ mass concentration relative to corresponding ground measurement, which was even higher during pollution episodes indicating inability of MERRA-2’s data assimilation when predicting higher mass concentration.

Effective air quality management has become one of the most important tools to be ensured in order to combat and control the negative impacts of atmospheric pollution on human health and environment. Hence, an accurate, continuous and precise air monitoring network is crucial for formulating effective abatement and control policies. The present study highlights better measurement techniques, protocols and policies to maintain
quality and reliability in the air monitoring data. The development of RM would prove to be beneficial for monitoring bodies working in this domain. Regular quality and calibration checks are mandatory to ensure quality of data generated. All resources and efforts need to be prioritized in improving air quality network and encouraging scientific community towards advancement of better techniques and standards.

ACKNOWLEDGEMENT

The authors are thankful to Director, NPL, New Delhi for all the support and encouragement. AK is thankful to University Grant Commission (UGC) for providing the fellowship under Project No. 90802 (UGC-SRF fellowship). Authors acknowledge the Global Modelling and Assimilation Office of the Goddard Space Flight Centre, NASA for providing the MERRA-2 data.

REFERENCES

Aggarwal, S.G., Kawamura, K. (2009) Carbonaceous and inorganic composition in long-range transported aerosols over northern Japan: Implication for aging of water-soluble organic fraction. Atmospheric Environment, 43(16), 2532–2540. https://doi.org/10.1016/j.atmosenv.2009.02.032

Aggarwal, S.G., Kumar, S., Mandal, P., Sarangi, B., Singh, K., Pokhriyal, J., Mishra, S.K., Aggarwal, S., Sinha, D., Singh, S., Sharma, C. (2013) Traceability issue in PM$_{2.5}$ and PM$_{10}$ measurements. Mapan, 28(3), 153–166. https://doi.org/10.1007/s12647-013-0173-x

Ambade, B., Sankar, T.K., Panicker, A.S., Gautam, A.S., Gautam, A., Anand, V., Korhale, N., Rathod, A., Beig, G. (2019) On process- ter techniques and standards.

Ambage, S.K., Kumar, D., Anand, S., Barman, S.C., Kumar, N. (2017) Characterization and morphological analysis of individual aerosol of PM$_{2.5}$ in urban area of Lucknow, India. Micron, 103, 90–98. https://doi.org/10.1016/j.micron.2017.09.004

Buchard, V., Da Silva, A.M., Randles, C.A., Colarco, P., Ferrare, R., Hair, J., Hostetler, C., Tackett, J., Winker, D. (2016) Evaluation of the surface PM$_{2.5}$ in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States. Atmospheric Environment, 125, 100–111. https://doi.org/10.1016/j.atmosenv.2015.11.004

Buchunde, P., Safai, P.D., Mukherjee, S., Leena, P.P., Singh, D., Meena, G.S., Pandithurai, G. (2019) Characterisation of particulate matter at a high-altitude site in southwest India: Impact of dust episodes. Journal of Earth System Science, 128(8), 1–18. https://doi.org/10.1007/s12040-019-1265-8

Budhavant, K.B., Gawhane, R.D., Rao, P.S.P., Nair, H.R.C.R., Safai, P.D. (2020) Physico-chemical characterization and sink mechanism of atmospheric aerosols over South-west India. Journal of Atmospheric Chemistry, 77, 17–33. https://doi.org/10.1007/s10874-020-09400-x

Chang, J.C., Hanna, S.R. (2004) Air quality model performance evaluation. Meteorology and Atmospheric Physics, 87(1), 167–196. https://doi.org/10.1007/s00703-003-0070-7

Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B.N., Duncan, B.N., Martin, R.V., Logan, J.A., Higurashi, A., Nakajima, T. (2002) Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements. Journal of the Atmospheric Sciences, 59, 461–483. https://doi.org/10.1175/1520-0469 (2002)059<0461:TAOTFT>2.0.CO;2

Chow, J.C., Lowenthal, D.H., Chen, L.W.A., Wang, X., Watson, J.G. (2015) Mass reconstruction methods for PM$_{2.5}$: a review. Air Quality, Atmospheric & Health, 8(3), 243–263. https://doi.org/10.1007/s11869-015-0338-3

Das, R., Khezri, B., Srivastava, B., Datta, S., Siddar, P.K., Webster, R.D., Wang, X. (2015) Trace element composition of PM$_{2.5}$ and PM$_{10}$ from Kolkata - a heavily polluted Indian metropolis. Atmospheric Pollution Research, 6(5), 742–750. https://doi.org/10.5094/APR.2015.083

Delmas, R., Serça, D., Jambert, C. (1997) Global inventory of NO$_x$ sources. Nutrient Cycling in Agroecosystems, 48(1), 51–60. https://doi.org/10.1023/A:1009793806086

Deka, P., Hoque, R.R. (2014) Incremental effect of festive biomass burning on wintertime PM$_{10}$ in Brahmaputra Valley of Northeast India. Atmospheric Research, 143, 380–391. https://doi.org/10.1016/j.atmosres.2014.03.003

Devi, N.L., Kumar, A., Yadav, I.C. (2020) PM$_{10}$ and PM$_{2.5}$ in Indo-Gangetic Plain (IGP) of India: Chemical characterization, source analysis, and transport pathways. Urban Climate, 33, 100663. https://doi.org/10.1016/j.uclim.2020.100663

EzhilKumar, M.R., Karthikeyan, S., Chianese, E., Tirimberio, G., Di Gilio, A., Palmisani, J., Miniero, V.D., Cotugno, P., Riccio,
Guttikunda, S.K., Nishadh, K.A., Jawahar, P. (2019) Air pollution and its source identification in the street canyons of Chennai metropolitan city, India. Atmospheric Pollution Research, 12(1), 173–183. https://doi.org/10.1016/j.apr.2018.08.032

Gawhane, R.D., Rao, P.S.P., Budhavant, K.B., Waghmare, V., Meshram, D.C., Safai, P.D. (2017) Seasonal variation of chemical composition and source apportionment of PM$_{2.5}$ in Pune, India. Environmental Science and Pollution Research, 24(26), 21065–21072. https://doi.org/10.1007/s11356-017-7961-3

Gawhane, R.D., Rao, P.S.P., Budhavant, K., Meshram, D.C., Safai, P.D. (2019) Anthropogenic fine aerosols dominate over the Pune region, Southwest India. Meteorology and Atmospheric Physics, 131(5), 1497–1508. https://doi.org/10.1007/s00703-018-0653-y

Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, A., Takacs, L., Randles, C.A., Darmenov, A., Bosilovich, M.G., Reichle, R., Wargan, K. (2017) The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1

Goel, R., Gani, S., Guttikunda, S.K., Wilson, D., Tiwari, G. (2015) On-road PM$_{2.5}$ pollution exposure in multiple transport microenvironments in Delhi. Atmospheric Environment, 123, 129–138. https://doi.org/10.1016/j.atmosenv.2015.10.037

Guttikunda, S.K., Nishadh, K.A., Jawahar, P. (2019) Air pollution knowledge assessments (APnA) for 20 Indian cities. Urban Climate, 27, 124–141. https://doi.org/10.1016/j.uclim.2018.11.005

He, L., Lin, A., Chen, X., Zhou, H., Zhou, Z., He, P. (2019) Assessment of MERRA-2 surface PM$_{2.5}$ over the Yangtze River Basin: Ground-based verification, spatiotemporal distribution and meteorological dependence. Remote Sensing, 11(4), 460. https://doi.org/10.3390/rs11040460

https://dst.gov.in/sites/default/files/DST_Status%20of%20Health%20of%20Ecosystem%20in%20IHR%202.pdf (Last accessed on August, 2019).

Islam, N., Dihingia, A., Khare, P., Saikia, B.K. (2020a) Atmospheric particulate matters in an Indian urban area: Health implications from potentially hazardous elements, cytotoxicity, and genotoxicity studies. Journal of Hazardous Materials, 384, 121472. https://doi.org/10.1016/j.jhazmat.2019.121472

Islam, N., Saikia, B.K. (2020b) Atmospheric particulate matter and potentially hazardous compounds around residential/road side soil in an urban area. Chemosphere, 259, 127453. https://doi.org/10.1016/j.chemosphere.2020.127453

Jain, S., Sharma, S.K., Vijayan, N., Mandal, T.K. (2020) Seasonal characteristics of aerosols (PM$_{2.5}$ and PM$_{10}$) and their source apportionment using PMF: a four year study over Delhi, India. Environmental Pollution, 262, 114337. https://doi.org/10.1016/j.envpol.2020.114337

Jain, S., Sharma, S.K., Srivastava, M.K., Chatterjee, A., Vijayan, N., Tripathy, S.S., Kumari, K.M., Mandal, T.K., Sharma, C. (2021) Chemical characterization, source apportionment and transport pathways of PM$_{2.5}$ and PM$_{10}$ over Indo Gangetic Plain of India. Urban Climate, 36, 100805. https://doi.org/10.1016/j.uclim.2021.100805

Jan, R., Roy, R., Bhor, R., Pai, K., Satsangi, P.G. (2020) Toxicological screening of airborne particulate matter in atmosphere of Pune: reactive oxygen species and cellular toxicity. Environmental Pollution, 261, 113724. https://doi.org/10.1016/j.envpol.2019.113724

Khare, P., Baruah, B.P. (2010) Elemental characterization and source identification of PM$_{2.5}$ using multivariate analysis at the suburban site of North-East India. Atmospheric Research, 98(1), 148–162. https://doi.org/10.1016/j.atmosres.2010.07.001

Kramer, S., Zuidema, P., Delgadillo, R., Silvia, A.D., Alvarez, C., Custuls, L., Barkley, A., Gaston, C.J., Prospero, J.M. (2018) Comparison of saharan dust surface mass observations and lidar in Miami, FL, to the MERRA2 Reanalysis. In AMS annual meeting.

Krishna, K.R., Beig, G. (2018) Influence of meteorology on particulate matter (PM) and vice-versa over two Indian metropolitan cities. Open Journal of Air Pollution, 7(3), 244–262. https://doi.org/10.4236/ojap.2018.73012

Kumar, M., Tiwari, S., Murari, V., Singh, A.K., Banerjee, T. (2015) Wintertime characteristics of aerosols at middle Indo-Gangetic Plain: Impacts of regional meteorology and long range transport. Atmospheric Environment, 104, 162–175. https://doi.org/10.1016/j.atmosenv.2015.01.014

Kumar, P., Pratap, V., Kumar, A., Choudhary, A., Prasad, R., Shukla, A., Singh, R.P., Singh, A.K. (2020) Assessment of atmospheric aerosols over Varanasi: physical, optical and chemical properties and meteorological implications. Journal of Atmospheric and Solar-Terrestrial Physics, 209, 105424. https://doi.org/10.1016/j.jastp.2020.105424

Kumari, S., Lakhani, A., Kumari, K.M. (2020) Transport of aerosols and trace gases during dust and crop-residue burning events in Indo-Gangetic Plain: Influence on surface ozone levels over downwind region. Atmospheric Environment, 241, 117829. https://doi.org/10.1016/j.atmosenv.2020.117829

Leena, P.P., Vijayakumar, K., Anilkumar, V., Pandithurai, G. (2017) Analysing temporal variability of particulate matter and possible contributing factors over Mahabaleshwar, a high-altitude station in Western Ghats, India. Journal of Atmospheric and Solar-Terrestrial Physics, 164, 105–115. https://doi.org/10.1016/j.jastp.2017.08.013

Mahesh, B., Rama, B.V., Spandana, B., Sarma, M.S.S.R.K.N., Niranjan, K., Sreekanth, V. (2019) Evaluation of MERRAero PM$_{2.5}$ over Indian cities. Advances in Space Research, 64(2), 328–334. https://doi.org/10.1016/j.asr.2019.04.026

Malik, A., Aggarwal, S.G. (2021) A Review on the Techniques Used and Status of Equivalent Black Carbon Measurement in Two Major Asian Countries. Asian Journal of Atmospheric Environment (AJAE), 15(3). https://doi.org/10.5572/ajae.2021.0044

Mashil, J., Dyavarchetty, S., Nair, A., Taneja, A., Singhvi, R. (2019) Concentration and sources of fine particulate associated polycyclic aromatic hydrocarbons at two locations in the western coast of India. Environmental Technology & Innovation, 13, 179–188. https://doi.org/10.1016/j.eti.2018.10.012
Murari, V., Singh, N., Ranjan, R., Singh, R.S., Banerjee, T. (2020) Source apportionment and health risk assessment of airborne particulates over central Indo-Gangetic Plain. Atmosphere, 257, 127145. https://doi.org/10.1016/j.chemosphere.2020.127145

Nagar, P.K., Gargava, P., Shukla, V.K., Sharma, M., Pathak, A.K., Singh, D. (2021) Multi-pollutant air quality analyses and apportionment of sources in three particle size categories at Taj Mahal, Agra. Atmospheric Pollution Research, 12(1), 210–218. https://doi.org/10.1016/j.apr.2020.09.001

Navinya, C.D., Vinoj, V., Pandey, S.K. (2020) Evaluation of PM$_{2.5}$ surface concentrations simulated by NASA's MERRA Version 2 aerosol reanalysis over India and its relation to the air quality index. Aerosol and Air Quality Research, 20(6), 1329–1339. https://doi.org/10.4209/aaqr.2019.12.0615

Ojha, N., Sharma, A., Kumar, M., Girach, I., Ansari, T.U., Navinya, C.D., Vinoj, V., Pandey, S.K., Singh, A., Pun, A., Pozer, A., Gunthe, S.S. (2020) On the widespread enhancement in fine particulate matter across the Indo-Gangetic Plain towards winter. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-62710-8

Pant, P., Shukla, A., Kohi, S.D., Chow, J.C., Watson, J.G., Harrison, R.M. (2015) Characterization of ambient PM$_{2.5}$ at a pollution hotspot in New Delhi, India and inference of sources. Atmospheric Environment, 109, 178–189. https://doi.org/10.1016/j.atmosenv.2015.02.074

Patel, A., Rastogi, N., Gandhi, U., Khatri, N. (2021) Oxidative potential of atmospheric PM$_{10}$ at five different sites of Ahmedabad, a big city in Western India. Environmental Pollution, 268, 115909. https://doi.org/10.1016/j.envpol.2020.115909

Pipal, A.S., Tiwari, S., Satsangi, P.G., Taneja, A., Bisht, D.S., Srivastava, A.K., Srivastava, M.K. (2014) Sources and characteristics of carbonaceous aerosols at Agra “World heritage site” and Delhi “capital city of India”. Environmental Science and Pollution Research, 21(14), 8678–8691. https://doi.org/10.1007/s11356-014-2768-0

Pipal, A.S., Satsangi, P.G. (2015) Study of carbonaceous species, morphology and sources of fine (PM$_{2.5}$) and coarse (PM$_{10}$) particles along with their climatic nature in India. Atmospheric Research, 154, 103–115. https://doi.org/10.1016/j.atmosres.2014.11.007

Prabhu, V., Prakash, J., Soni, A., Madhwal, S., Shridhar, V. (2019) Atmospheric aerosols and inhalable particle number count during Diwali in Dehradun. City and Environment Interactions, 2, 100006. https://doi.org/10.1016/j.cacint.2019.100006

Pratap, V., Kumar, A., Tiwari, S., Kumar, P., Tripathi, A.K., Singh, A.K. (2020) Chemical characteristics of particulate matters and their emission sources over Varanasi during winter season. Journal of Atmospheric Chemistry, 77(3), 83–99. https://doi.org/10.1007/s10874-020-09405-6

Provençal, S., Buchard, V., da Silva, A.M., Leduc, R., Barrette, N., Elhacham, E., Wang, S.H. (2017) Evaluation of PM$_{2.5}$ surface concentration simulated by Version 1 of the NASA's MERRA Aerosol Reanalysis over Israel and Taiwan. Aerosol and Air Quality Research, 17(1), 253.

Randles, C.A., da Silva, A.M., Buchard, V., Colarco, P.R., Damenov, A., Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., Hair, J., Shinozuka, Y., Flynn, C.J. (2017) The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. Journal of Climate, 30, 6823–6850. https://doi.org/10.1175/JCLI-D-16-0609.1

Rastogi, N., Singh, A., Sarin, M.M., Singh, D. (2016) Temporal variability of primary and secondary aerosols over northern India: Impact of biomass burning emissions. Atmospheric Environment, 125, 396–403. https://doi.org/10.1016/j.atmosenv.2015.06.010

Sah, D., Verma, P.K., Kandikonda, M.K., Lakhani, A. (2019) Pollution characteristics, human health risk through multiple exposure pathways, and source apportionment of heavy metals in PM$_{10}$ at Indo-Gangetic site. Urban Climate, 27, 149–162. https://doi.org/10.1016/j.uclim.2018.11.010

Sahu, R.K., Pervez, S., Chow, J.C., Watson, J.G., Tiwari, S., Panicker, A.S., Chakrabarty, R.K., Pervez, Y.F. (2018) Temporal and spatial variations of PM$_{2.5}$, organic and elemental carbon in Central India. Environmental Geochemistry and Health, 40(5), 2205–2222. https://doi.org/10.1007/s10653-018-0093-0

Saikia, J., Roy, S., Bordoloi, M., Saikia, P., Saikia, B.K. (2018) Atmospheric aerosols around three different types of coal-based industries: Emission parameters, cytotoxicity assay, and principal component analysis. Journal of Aerosol Science, 126, 21–32. https://doi.org/10.1016/j.jaerosci.2018.08.003

Sarkar, S., Singh, R.P., Chauhan, A. (2018) Crop residue burn in northern India: Increasing threat to Greater India. Journal of Geophysical Research: Atmospheres, 123(13), 6920–6934. https://doi.org/10.1029/2018JD028428

Saxena, M., Sharma, A., Sen, A., Saxena, P., Mandal, T.K., Sharma, S.K., Sharma, C. (2017) Water soluble inorganic species of PM$_{10}$ and PM$_{2.5}$ at an urban site of Delhi, India: seasonal variability and sources. Atmospheric Research, 184, 112–125. https://doi.org/10.1016/j.atmosres.2016.10.005

Sen, A., Ahammed, Y.N., Arya, B.C., Banerjee, T., Reshma Begam, G., Baruah, B.P., Chatterjee, A., Choudhuri, A.K., Dhir, A., Das, T., Dhyani, P.P. (2014) Atmospheric fine and coarse mode aerosols at different environments of India and the Bay of Bengal during winter-2014: implications of a coordinated campaign. Mapan, 29(4), 273–284. https://doi.org/10.1007/s12647-014-0109-x

Sen, A., Ahammed, Y.N., Banerjee, T., Chatterjee, A., Choudhuri, A.K., Dhir, A., Das, T., Deb, N.C., Dhyani, A., Goel, S., Khan, A.H., Mandal, T.K. (2016) Spatial variability in ambient atmospheric fine and coarse mode aerosols over Indo-Gangetic plains, India and adjoining oceans during the onset of summer monsoons, 2014. Atmospheric Pollution Research, 7(3), 521–532. https://doi.org/10.1016/j.apr.2016.01.001

Sen, A., Abdelmaksoud, A.S., Ahammed, Y.N., Banerjee, T., Bhat, M.A., Chatterjee, A., Choudhuri, A.K., Das, T., Dhyani, A., Dhyani, P.P., Gadi, R. (2017) Variations in particulate matter over Indo-Gangetic Plains and Indo-Himalayan Range during four field campaigns in winter monsoon and summer monsoon: role of pollution pathways. Atmospheric Environment, 154, 200–224. https://doi.org/10.1016/j.atmosenv.2016.12.054

Sharma, S.K., Mandal, T.K., Srivastava, M.K., Chatterjee, A.,
Jain, S., Saxena, M., Singh, B.P., Sharma, A., Adak, A., Ghosh, S.K. (2016) Spatio-temporal variation in chemical characteristics of PM$_{10}$ over Indo Gangetic Plain of India. Environmental Science and Pollution Research, 23(18), 18809–18822. https://doi.org/10.1007/s11356-016-7025-2

Sharma, S.K., Mandal, T.K., Sharma, A., Jain, S. (2018a) Seasonal and annual trends of carbonaceous species of PM$_{10}$ over a megacity Delhi, India during 2010–2017. Journal of Atmospheric Chemistry, 75(3), 305–318. https://doi.org/10.1007/s00128-018-9379-y

Sharma, S.K., Mandal, T.K., Sharma, A., Jain, S. (2018b) Carbonaceous species of PM$_{2.5}$ in megacity Delhi, India during 2012–2016. Bulletin of Environmental Contamination and Toxicology, 100(5), 695–701. https://doi.org/10.1007/s00128-018-2313-9

Sharma, S.K., Choudhary, N., Kothnala, G., Das, D., Mukherjee, S., Ghosh, A., Vijayan, N., Rai, A., Chatterjee, A., Mandal, T.K. (2020) Wintertime carbonaceous species and trace metals in PM$_{10}$ in Darjeeling: a high altitude town in the eastern Himalayas. Urban Climate, 34, 100668. https://doi.org/10.1016/j.uclim.2020.100668

Shridhar, V. (2019) Investigation of potential sources, transport pathway, and health risks associated with respirable suspended particulate matter in Dehradun city, situated in the foothills of the Himalayas. Atmospheric Pollution Research, 10(1), 187–196. https://doi.org/10.1016/j.apr.2018.07.009

Song, Z., Fu, D., Zhang, X., Wu, Y., Xia, X., He, J., Han, X., Zhang, R., Che, H. (2018) Diurnal and seasonal variability of PM$_{2.5}$ and AOD in North China plain: Comparison of MERRA-2 products and ground measurements. Atmospheric Environment, 191, 70–78. https://doi.org/10.1016/j.atmosenv.2018.08.012

Soni, A., Kumar, U., Prabhu, V., Shridhar, V. (2020) Characterization, source apportionment and carcinogenic risk assessment of atmospheric particulate matter at Dehradun, situated in the foothills of Himalayas. Journal of Atmospheric and Solar-Terrestrial Physics, 199, 105205. https://doi.org/10.1016/j.jastp.2020.105205

Sreekanth, V., Niranjan, K., Madhavan, B.L. (2007) Radiative forcing of black carbon over eastern India. Geophysical Research Letters, 34(17), L17818. https://doi.org/10.1029/2007GL030377

Tiwari, S., Tunved, P., Hopke, P.K., Srivastava, A.K., Bisht, D.S., Pandey, A.K. (2016) Observations of ambient trace gas and PM$_{10}$ concentrations at Patna, Central Ganga Basin during 2013–2014: the influence of meteorological variables on atmospheric pollutants. Atmospheric Research, 180, 138–149. https://doi.org/10.1016/j.atmosres.2016.05.017

Tiwari, R., Singh, P.P., Taneja, A. (2020) Chemical characterization of particulate matter at traffic prone roadside environment in Agra, India. Pollution, 6(2), 237–252. https://doi.org/10.22059/POLL.2019.289418.683

Varaprasad, V., Kanawade, V.P., Narayana, A.C. (2021) Spatio-temporal variability of near-surface air pollutants at four distinct geographical locations in Andhra Pradesh State of India. Environmental Pollution, 268, 116899. https://doi.org/10.1016/j.envpol.2020.116899

Yadav, S., Satsangi, P.G. (2013) Characterization of particulate matter and its related metal toxicity in an urban location in South West India. Environmental monitoring and assessment, 185(9), 7365–7379. https://doi.org/10.1007/s10661-013-3106-6

Yadav, S., Praveen, O.D., Satsangi, P.G. (2015) The effect of climate and meteorological changes on particulate matter in Pune, India. Environmental monitoring and assessment, 187(7), 1–14. https://doi.org/10.1007/s10661-015-4634-z

Yadav, R., Sahu, L.K., Beig, G., Tripathi, N., Maji, S., Jaaffrey, S.N.A. (2019) The role of local meteorology on ambient particulate and gaseous species at an urban site of western India. Urban Climate, 28, 100449. https://doi.org/10.1016/j.uclim.2019.01.003