Research Article

Analytical Solution for Consolidation of Vertical Drains-Impervious Columns Multiple Composite Foundation under Nonuniform Distribution of Initial Pore Pressure

Yuguo Zhang and Yamin Zhao

School of Architecture and Civil Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China

Correspondence should be addressed to Yamin Zhao; 2020109313@zut.edu.cn

Received 7 December 2021; Revised 21 January 2022; Accepted 13 April 2022; Published 9 May 2022

Academic Editor: Francesco Ripamonti

Copyright © 2022 Yuguo Zhang and Yamin Zhao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Based on the axisymmetric model, the consolidation control equations based on the assumption of equal strain are established for the vertical drains-impervious columns multi-composite foundation consolidation problem, and the analytical solutions are given for the drains-impervious columns multiple composite foundation consolidation with trapezoidal, rectangular, positive triangular and inverted triangular distribution of initial pore pressure. Through the degradation study and comparison with the existing analytical solutions. Using the derived consolidation analytical solution for parameter analysis, the consolidation characteristics of multivariate composite foundation are studied. The results show that: the non-uniform distribution of initial pore pressure has a significant effect on the consolidation of combined composite foundations, the trapezoidal distribution is faster than the rectangular distribution, the positive triangular distribution is the slowest and the inverted triangular distribution is the fastest. The smaller the initial pore pressure value at the base of the soil layer and the larger the vertical permeability coefficient of the soil, the faster the consolidation. The consolidation rate of the foundation increases with the increase of the replacement rate of impervious columns and the compression modulus. Compared with the foundation of a single pile type, the consolidation rate of combined composite foundations can be significantly increased. The rate of consolidation of the foundation increases with the increase in the replacement rate and compression modulus of impervious columns.

1. Introduction

In recent years, the development of composite foundations from a single type to a combined type has occurred and great progress has been made. Depending on the permeability of the piles, composite foundations can be divided into drained pile composite foundations and impervious pile composite foundations. The use of combined vertical drains with impervious columns to treat soft ground is a cost-effective measure, and composite foundations usually solve the problem of poor foundation drainage and inadequate bearing capacity. The vertical drains have a strong drainage capacity to facilitate the drainage of water from the foundation, the impervious columns have a good bearing capacity and can effectively improve the bearing capacity of the foundation. The combination of the two can give full play to their respective advantages with a view to reducing postwork settlement, accelerating foundation consolidation and increasing load-bearing capacity.

The theory of composite foundation consolidation is an important part of the theory of composite foundations. At present, the consolidation solutions established for composite foundations are able to take into account the effects of smearing and well resistance effects [1], changes in soil permeability coefficients [2], variable loading effects [3–5] and changes in total stresses with time and depth [6–8], among other factors. Many scholars have also investigated the theory of consolidation of composite foundations...
composed of different materials. Liu et al. [9] gave a simplified method for calculating the settlement of a composite foundation consolidation used plum blossom pile layout scheme and based on an axisymmetric consolidation model with a combination of powder jetting piles and drainage board. Prakash and Krishnamoorthy [10] investigated the effect of lime and CFG pile composite foundations on the factor of safety of embankments at different time intervals during the consolidation of foundations. Ye et al. [11] considered the problem of composite foundation consolidation with soil-cement columns and prefabricated vertical drains. Yu et al. [12] based on an axisymmetric consolidation model and the consolidation theory for double-layer ground, the consolidation characteristics of combined composite foundation reinforced by penetrated impermeable columns and partially penetrated permeable columns have been studied. Yang et al. [13] studied and analyzed a multi-pile composite foundation consisting of fully penetrated long rigid piles and partially penetrated impervious or pervious short piles. Based on the assumption of equal vertical strain, derived an analytical solution for the consolidation of long rigid piles with undrained short piles in composite foundations. However, in practical engineering, the initial pore pressure induced by external loads in the foundation is often non-uniformly distributed along the depth [14, 15]. The existing research results on the theory of consolidation of multi-composite foundations of vertical drains and impervious columns are relatively few. Therefore, the study of composite foundations with combined vertical drains and impervious columns under non-uniform initial pore pressure is of both theoretical and practical value.

In view of this, this paper firstly derives the consolidation solution for the combination of vertical drain and impervious columns with the initial pore pressure distributed along a trapezoid shape, and gives an analytical solution for consolidation with the initial pore pressure distributed in a rectangle, a positive triangle and an inverted triangle. Using the analytical solution of consolidation derived in this paper, the degradation is studied, and the consolidation law of the combined vertical drains-impervious columns multi-composite foundation is analyzed and discussed by preparing the calculation program and plotting the relevant consolidation curve.

2. Establishment of Consolidation Control Equation

2.1. Calculation Sketch and Basic Assumptions. Figure 1 shows a computational model for a combined vertical drain-impervious columns multi-composite foundation consolidation problem. Multi-composite foundations are mostly arranged in rectangles and triangles. In this paper, both vertical drains and impervious columns are arranged in rectangles, and one unit is taken as the research object, with the vertical drain being the center of the model and the impervious column located at the outer boundary of the model. Where H is the thickness of the soft clay layer, q is the instantaneous applied external load, \(r_w \), \(r_e \) and \(r_n \) are the radius of the vertical drain, the radius of the zone of influence and the radius of the entire unit foundation respectively. \(k_h \) and \(k_v \) are the horizontal and vertical permeability coefficients of the foundation soil respectively. \(k_w \) is the vertical permeability coefficient of the vertical drain. \(u_w \) and \(u_e \) are the pore pressure within the vertical drain and soil at any point respectively. \(E_p \) and \(E_s \) are the compression modulus of the impervious column and natural soil respectively. \(r \) and \(z \) are the radial and vertical coordinates respectively, assuming that the drainage conditions of the multi-composite foundation are permeable at the top and impermeable at the bottom.

In the derivation of this paper, the following assumptions are made about the model.

1. The equal strain condition holds, i.e., there is no lateral deformation in the foundation and the vertical deformation at any point at the same depth is equal.
2. The load is applied instantaneously and the resulting initial pore pressure is non-uniformly distributed along the depth direction.
3. Ignore the radial seepage in the vertical drains.
4. Water in the soil has both radial and vertical seepage, and the seepage obeys Darcy’s law.
5. The flow around the well is continuously equal, i.e., the flow of water from the soil into the vertical drains at any depth is equal to the increment of water flowing upwards in the well, expressed as follows:

\[
2\pi r dz k_h \frac{\partial u}{\partial r} \bigg|_{r=r_w} = -\pi r^2 dz k_w \frac{\partial^2 u}{\partial z^2} \tag{1}
\]

Figure 2 shows the four cases of initial pore pressure distribution along the depth. Where \(P_T \) and \(P_B \) are the initial pore pressure values at the top and bottom of the soil layer respectively. When \(P_T = P_B = P_w \) as shown in Figure 2(a), the initial pore pressure is evenly distributed. When \(P_T = 0 \), as shown in Figure 2(b), the initial pore pressure is distributed in a positive triangle along the depth. When \(P_B = 0 \), as shown in Figure 2(c), the initial pore pressure is distributed in an inverted triangle. When \(P_T \neq P_B \neq 0 \), as shown in Figure 2(d), the initial pore pressure is distributed in a trapezoid shape.

2.2. Solving Conditions and Control Equation. The external load is supported by the vertical drains, the soil and the impervious columns, which according to the vertical equilibrium condition gives

\[
\pi r_w^2 \bar{\sigma}_w + \pi (r_e^2 - r_w^2) \bar{\sigma}_s + \pi (r_n^2 - r_e^2) \bar{\sigma}_p = \pi r_n^2 \bar{q}, \tag{2}
\]

where \(\bar{\sigma}_w \), \(\bar{\sigma}_s \) and \(\bar{\sigma}_p \) are the average stresses in the vertical drain, soil and impervious columns respectively in a multi-composite foundation.
From basic assumption (1) it follows that

\[
\frac{\sigma_{uw} - u_w}{E_w} = \frac{\sigma_s - \sigma_k}{E_s} = \frac{\sigma_p}{E_p} = \varepsilon_v, \tag{3}
\]

where \(E_w\) is the compression modulus of the vertical drain, \(\sigma_s\) is the average pore water pressure at any depth in the soil, \(\varepsilon_v\) and \(\varepsilon_z\) are the volumetric and vertical strains in the foundation, respectively, and are equal when only vertical deformation is present.

The derivative of (3) with respect to time \(t\) gives

\[
\frac{\partial \varepsilon_z}{\partial t} = -\frac{1}{E_{\text{com}}} \frac{\partial \pi}{\partial t}. \tag{4}
\]

Where \(\pi\) is the average pore water pressure across the foundation at any depth, \(E_{\text{com}}\) is the composite modulus of elasticity, which can be expressed as

\[
E_{\text{com}} = \frac{E_w + (N_{ew}^2 - 1)E_s + (N_{nw}^2 - N_{ew}^2)E_p}{N_{nw}^2}, \tag{5}
\]

where \(N_{ew} = (r_e/r_w)\), and \(N_{nw} = (r_n/r_w)\).

The expressions for the average pore water pressure in the foundation soil at any depth and the average pore water pressure across the foundation at any depth are

\[
\pi_s = \frac{1}{\pi(r_e^2 - r_w^2)} \int_{r_w}^{r_e} 2\pi r u_s dr, \tag{6}
\]

\[
\pi = \frac{1}{\pi r_e^2} \int_{0}^{r_e} 2\pi r u_s (r) dr = \frac{N_{ew}^2 - 1}{N_{nw}^2} \pi_s. \tag{7}
\]

According to the assumption of equal strain, the basic consolidation equation for the axially symmetric case with reference to the literature Lu et al. [2] is
\[
\frac{\partial \varepsilon_v}{\partial t} = k_v \frac{1}{\gamma_w} \frac{\partial}{\partial r} \left[\frac{\partial u_v}{\partial r} \right] - k_v \frac{\partial^2 \varepsilon_v}{\partial z^2}, \quad r_w \leq r \leq r_c. \tag{8}
\]

To simplify the calculation, a function \(w(z, t) \), which is independent of \(r \), is introduced and can be expressed as
\[
w(z, t) = \frac{k_v}{\gamma_w} \frac{\partial^2 \varepsilon_v}{\partial z^2} + \frac{\partial \varepsilon_v}{\partial z}. \tag{9}
\]
Substituting equation (9) into equation (8) gives
\[
w(z, t) = \frac{k_v}{\gamma_w} \frac{1}{r} \frac{\partial}{\partial r} \left[r \frac{\partial u_v}{\partial r} \right], \quad r_w \leq r \leq r_c, \tag{10}
\]
where \(\gamma_w \) is the weight of the water.

Boundary conditions:
\[
r = r_w, \quad u_z = u_w = \bar{u}_w, \tag{11}
\]
\[
r = r_c, \quad \frac{\partial u_z}{\partial r} = 0, \tag{12}
\]
\[
z = 0, \quad u = 0, \tag{13}
\]
\[
z = H, \quad \frac{\partial u}{\partial z} = 0. \tag{14}
\]

Initial condition:
\[
t = 0: \quad \bar{u}(z) = u_0(z) = P_T + (P_B - P_T) \frac{z}{H}. \tag{15}
\]

Integrating (10) with respect to \(r \) and using the boundary condition (12) yields
\[
\frac{\partial u_z}{\partial r} = w(z, t) \frac{\gamma_w}{2k_v} \left(\frac{r^2}{r_w} - r \right). \tag{16}
\]

Integrating (16) with respect to \(r \) and using the boundary condition (11) yields
\[
u_z = w(z, t) \frac{\gamma_w}{2k_v} \left(\frac{r^2}{r_w} - \frac{r^2 - r_w^2}{2} \right) + u_w. \tag{17}
\]

The combination of equation (6) and equation (17) yields
\[
\bar{u}_z = w(z, t) \frac{\gamma_w r^2 F_a}{2k_v} + \bar{u}_w, \tag{18}
\]
where \(F_a = \ln N_{ew}^2 + 4N_{ew}^4 - 1/4N_{ew}^4 - 3/4N_{ew}^2/N_{ew}^2 - 1 \).

Substituting (16) into (1) can be obtained:
\[
k_w \frac{\partial^2 \bar{u}_w}{\partial z^2} = -w(z, t) \left(N_{ew}^2 - 1 \right). \tag{19}
\]

Then from equations (4), (7), (9) and (19), the following can be derived
\[
N_{ma}^2 \frac{k_w}{\gamma_w} \frac{\partial^2 \bar{u}_w}{\partial z^2} = \frac{N_{ma}^2}{F_{com}} \frac{1}{\gamma_w} \frac{\partial \bar{u}_w}{\partial t} - k_w \frac{\partial^2 \bar{u}_w}{\partial z^2}. \tag{20}
\]

Taking the partial derivative of (18) twice with respect to \(z \) and using (7) gives
\[
\frac{N_{ma}^2}{N_{ew}^2 - 1} \frac{\partial^2 \bar{u}_w}{\partial z^2} = \frac{N_{ma}^2}{F_{com}} \frac{1}{\gamma_w} \frac{\partial \bar{u}_w}{\partial t} + k_w \frac{\partial^2 \bar{u}_w}{\partial z^2}. \tag{21}
\]

3. Solution of Average Pore Pressure and Average Consolidation of Composite Foundation

Referring to the literature Lu et al. [16], it is assumed that the solution of (22) takes the form of
\[
\bar{u} = \sum_{m=0}^{\infty} T_m(t) \sin \left(\frac{M}{H} z \right), \tag{23}
\]
where \(M = 2m + 1/2n, \ n = 0, 1, 2, \ldots \)

Substituting (23) into (22), the following can be obtained:
\[
T_m(t) + T_m(t) \cdot \beta_m = 0, \tag{24}
\]
where \(\beta_m = A (M/H)^2 - C/(H/M)^2 - B \).

Substituting the coefficients \(A, B \) and \(C \) in (22) into \(\beta_m \) gives
According to the theory of ordinary differential equations, the general solution of (24) can be written as

$$T_m(t) = A_m e^{-\beta_mt}. \quad (26)$$

Substituting equation (26) into equation (23) gives that

$$\pi = \sum_{m=0}^{\infty} A_m \sin\left(\frac{Mz}{H}\right) e^{-\beta_mt}. \quad (27)$$

Substituting the initial condition (15) into equation (27) and using the trigonometric orthogonality, the following can be obtained:

$$A_m = \frac{\int_0^H u_0(z) \sin \left(\frac{Mz}{H}\right) dz}{\int_0^H \sin^2 \left(\frac{Mz}{H}\right) dz} = \frac{2}{M} \left[P_T + (-1)^m P_B - P_T \right]. \quad (28)$$

Substituting equation (28) into equation (27) gives that

$$\pi = \sum_{m=0}^{\infty} \frac{2}{M} \left[P_T + (-1)^m P_B - P_T \right] \sin \left(\frac{Mz}{H}\right) e^{-\beta_mt}. \quad (29)$$

Based on the above derivation, the total average consolidation of a multi-composite foundation as defined by stress can be found as

$$U(t) = 1 - \frac{\int_0^H \pi dz}{\int_0^H \pi_0(z) dz} = 1 - \sum_{m=0}^{\infty} \frac{P_T + (-1)^m (P_B - P_T/M)}{M^2 (P_B + P_T)} 4 e^{-\beta_mt}. \quad (30)$$

In summary, (29) and (30) are the solutions for the consolidation of a vertical drain-impervious columns multi-composite foundation when a trapezoidal distribution of initial pore pressure is considered. Based on the four distributions of the initial pore pressure in Figure 2, further expressions for the average pore pressure and average consolidation for each particular case are given below.

Case 1. At $P_T = P_B = P_0$, the initial pore pressure is rectangularly distributed, see Figure 2(a).

Degenerate (22) and (23) to the instantaneously loaded initial pore pressure homogeneous vertical drain and impervious columns multi-composite foundation consolidation solution, i.e.

$$\beta_m = \left[\frac{N_{ew}^2 / (N_{ew}^2 - 1)^2 (k_w/k_h) (1 + (1/N_{ew}^2 - 1) (k_w/k_h))}{(H^2 M^2)} + (1/N_{ew}^2 - 1) (k_w/k_h) (r_0^2 F_u/2) \right] E_{com k_h} / y_w \quad (25)$$

$$\pi = p_0 \sum_{m=0}^{\infty} \frac{2}{M} \sin \left(\frac{Mz}{H}\right) e^{-\beta mt}, \quad (31)$$

$$U(t) = 1 - \sum_{m=0}^{\infty} \frac{2}{M} e^{-\beta mt}. \quad (32)$$

Case 2. At $P_T = 0$, the initial pore pressure has a positive triangular distribution, see Figure 2(b).

According to (22) and (23), the following can be obtained:

$$\pi = p_B \sum_{m=0}^{\infty} (-1)^m \frac{2}{M} \sin \left(\frac{Mz}{H}\right) e^{-\beta mt}, \quad (33)$$

$$U(t) = 1 - \sum_{m=0}^{\infty} (-1)^m \frac{4}{M^2} e^{-\beta mt}. \quad (34)$$

Case 3. At $P_B = 0$, the initial pore pressure has an inverted triangular distribution, see Figure 2(c).

According to equation (29) and equation (30), the following can be obtained:

$$\pi = p_T \sum_{m=0}^{\infty} \frac{2}{M} \left[1 - (-1)^m \frac{1}{M} \right] \sin \left(\frac{Mz}{H}\right) e^{-\beta mt}, \quad (35)$$

$$U(t) = 1 - \sum_{m=0}^{\infty} \frac{4}{M^2} \left[1 - (-1)^m \frac{1}{M} \right] e^{-\beta mt}. \quad (36)$$

At this point, all the analytical solutions for multi-composite foundation consolidation of combined vertical drain-impervious columns with trapezoidal, rectangular, positive triangle and inverted triangular distribution of initial pore pressure under this model have been given.

4. Degenerations of the Obtained Solution

The degradation method with reference to the literature [1, 17] is used to analyze the degradation of the consolidation analytical solutions obtained in this paper. The above three special cases of pore pressure and consolidation degree are degenerated from (29) and (30), where (31) and (32) are the solutions for consolidation when the initial pore pressure is homogeneous and can be degenerated again, and the steps and methods of degeneration are as follows.

1. When $N_{ew} = N_{ew0}$, i.e., there are no impervious columns in the foundation. Since there are no impervious columns, the other parameters need to be degraded in the
same way, where $E_{\text{com}} = E_s$ and $N_{n_w} = n. \beta_m$ of equation (25) can be degenerated to

$$\beta_m = \frac{(k_w/k_h)(k_v/k_h)(r_c^2F_\alpha/2)((M/H)^2)(1/(n^2 - 1)) + (k_v/k_h)(1 + (1/n^2 - 1)(k_w/k_v))}{(H/M)^2 + (1/(n^2 - 1))(k_w/k_h)(r_c^2F_\alpha/2)} \frac{E_s k_h}{\gamma_w}.$$ \hspace{1cm} (35)

Equation (37) is the solution for a single vertical drain foundation, which at this point degenerates into the solution of Tang Xiaowu [18].

(2) Continuing the degeneration based on the above equation, let $n \to \infty$ and $k_h \to \infty$, then β_m can be degenerated to

$$\beta_m = c_v \left(\frac{M}{H}\right)^2.$$ \hspace{1cm} (36)

Equation (38) is the analytical solution for one-dimensional consolidation of Terzaghi natural foundations, where c_v is the vertical consolidation coefficient of the soil, $c_v = k_v E_s/\gamma_w$.

$$\Gamma_m = \frac{\left(N_{n_w}^2/(N_{n_w}^2 - 1)^2\right) + (k_w/k_h)(k_v/k_h)(r_c^2F_\alpha/2)((M/H)^2) + \left(N_{n_w}^2/(N_{n_w}^2 - 1)^2\right)(k_v/k_h)(1 + (1/N_{n_w}^2 - 1)(k_w/k_v))}{(H/M)^2 + (1/(N_{n_w}^2 - 1))(k_w/k_h)(r_c^2F_\alpha/2)} 4r_c^2Y,$$ \hspace{1cm} (38)

where $Y = (E_{\text{com}}/E_s)$.

The calculation of the solution of this paper is programmed and the effect of each parameter on the consolidation properties of the multi-composite foundation is analyzed below by plotting the consolidation curve. Figure 3 shows the consolidation curves for different distributions of initial pore pressure. The initial pore pressure distribution conditions have a significant effect on the consolidation of multi-composite foundations, with a trapezoidal distribution consolidating faster than a rectangular distribution, a positive triangular distribution consolidating the slowest, and an inverted triangular distribution consolidating the fastest. The results show that the effect of considering the non-uniform distribution of the initial pore pressure along the depth is not negligible.

Figure 4 reflects the influence of the initial pore pressure values at the top and bottom of the soil layer on the consolidation process. When $(P_\text{in}/P_T) = 1$ and $(P_\text{in}/P_T) = 0$ the initial pore pressure is uniformly distributed along the depth and the initial pore pressure is distributed in an inverted triangle along the depth respectively, as shown in the figure, the larger the initial pore pressure value at the bottom of the soil, the slower the consolidation of the foundation.

Figure 5 shows the effect of impervious columns replacement rate on the consolidation of a multiple composite foundation. As the radius of the foundation of the entire unit continues to decrease, this leads to a decrease in N_{n_w}. The smaller the impervious pile replacement rate, the slower the consolidation rate of the whole foundation, because the modulus of elasticity of the impervious pile is much larger than that of the vertical drain and the soil, the smaller the impervious pile replacement rate, the smaller the average modulus of elasticity of the whole foundation, the smaller the external load borne by the impervious pile itself, and the slower the rate of consolidation of the foundation accordingly. When $N_{n_w} = 15$, the impervious pile replacement rate is zero, i.e., there are no impervious piles in the composite foundation. It can be seen that the rate of consolidation of foundations can be significantly increased with multiple composite foundations compared to a single pile type foundation.

The effect of the vertical permeability of the soil on the consolidation of the foundation is shown in Figure 6. The effect of the soil permeability coefficient on the consolidation rate of the foundation is significant. When the radial and vertical permeability coefficients of the soil are the same, the speed of consolidation of the multi-composite foundation is the fastest, and as the vertical permeability coefficient of the soil decreases, the speed of consolidation of the foundation becomes slower, i.e., the larger the ratio of k_h/k_v, the slower the consolidation of the foundation.
Figure 7 gives the curve of the effect of the pile-soil compression modulus ratio on the consolidation of the foundation. The larger the pile-soil compression modulus ratio, the faster the consolidation. Engineering impervious piles can be CFG piles, cement mixer piles, or even concrete pipe piles, and the stiffness varies greatly. The increase in stiffness of impervious piles has a significant effect on the consolidation rate of composite foundations, and the consolidation rate of vertical drain-impervious piles multi-composite foundations increases significantly with the increase in the compression modulus of impervious piles.

Figure 8 shows the comparison between the consolidation solution of this paper and the existing solution under instantaneous loading. Under the same parameters, when the disturbance zone of the pile and vertical drain is not considered, the consolidation rate from fast to slow is Chen et al. [19] multi-composite foundation solution, this paper’s solution, Yu et al. [20] multi-composite foundation solution, Walker and Indraratna [21] sand drain foundation solution, and Lu et al. [17] impervious pile composite foundation solution. The reason for the faster deconsolidation of Chen et al. [19] is that the radial and vertical percolation of the drainage body is not considered, and the radial and vertical
6. Conclusion

In this paper, a model for the consolidation of multi-composite foundations with vertical drain-imperious piles is established, and the analytical solution for consolidation under consideration of non-uniform distribution of initial pore pressure along the depth, well resistance, radial and vertical seepage of the soil, etc. The consolidation characteristics of multi-composite foundations are systematically studied through parametric analysis. The main conclusions are as follows:

1. The nonuniform distribution of the initial pore pressure along the depth has a significant effect on the consolidation of multi-composite foundations, with a trapezoidal distribution of initial pore pressure resulting in faster consolidation than a rectangular distribution, a positive triangular distribution resulting in the slowest consolidation, and an inverted triangular distribution resulting in the fastest consolidation. The larger the initial pore pressure value at the base of the soil layer, the slower the consolidation.

2. When the radial and vertical permeability coefficients of the multi-composite foundation soil are the same, the foundation consolidation speed is the fastest, and increasing the vertical permeability coefficient of the soil will accelerate the consolidation speed of the multi-composite foundation.

3. The consolidation rate of the vertical drain-imperious piles multi-composite foundation increases with the increase of the replacement rate and compression modulus of the imperious pile. Increasing the stiffness of the imperious piles can accelerate the consolidation of the composite foundation.

4. The consolidation solution of this paper is compared with the existing solution, and the multi-pile composite foundation can significantly improve the consolidation rate of the foundation compared with the single pile type foundation.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was supported by the National Nature Science Foundation of China (U1204511) and the Key Research Projects of Henan Higher Education Institutions (19A560027).
References

[1] P. Kim, T.-C. Kim, Y. G. Kim, H. B. Myong, K. S. Jon, and S. H. Jon, “Nonlinear consolidation analysis of soft soil with vertical drains considering well resistance and smear effect under cyclic loadings,” Geotextiles and Geomembranes, vol. 49, no. 5, pp. 1440–1446, 2021.
[2] M.-M. Lu, K.-H. Xie, and B. Guo, “Consolidation theory for a composite foundation considering radial and vertical flows within the column and the variation of soil permeability within the disturbed soil zone,” Canadian Geotechnical Journal, vol. 47, no. 2, pp. 207–217, 2010.
[3] D.-Q. Chen, P.-P. Ni, X.-L. Zhang, Z. Chen, G. Mei, and J. Feng, “Consolidation theory of unsaturated soils with vertical drains considering well resistance and smear effect under time-dependent loading,” Journal of Engineering Mechanics, vol. 147, no. 9, Article ID 04021055, 2021.
[4] K.-H. Xie, K. Wang, G.-H. Chen, and A. Hu, “One-dimensional consolidation of over-consolidated soil under time-dependent loading,” Frontiers of Architecture and Civil Engineering in China, vol. 2, no. 1, pp. 67–72, 2008.
[5] T. Yang, H. Yang, Y.-Z. Ruan, and L. Guo-wei, “Consolidation analysis of surrounding and underlying soils in a composite ground with impervious pile under variable loading,” Rock and Soil Mechanics, vol. 37, no. 2, pp. 323–330, 2016.
[6] R.-Q. Lang, A.-W. Yang, and S.-W. Yan, “Analysis of consolidation properties of rigid pile composite foundation based on modified equal strain assumption,” Rock and Soil Mechanics, vol. 41, no. 3, pp. 813–822, 2020.
[7] K.-H. Xie, M.-M. Lu, A.-F. Hu, and G. H. Chen, “A general theoretical solution for the consolidation of a composite foundation,” Computers and Geotechnics, vol. 36, no. 1-2, pp. 24–30, 2009.
[8] M.-M. Lu, K.-H. Xie, C.-X. Li, and K. Wang, “Consolidation solution for composite foundation considering a time- and depth-dependent stress increment along with three distribution patterns of soil permeability,” Journal of Zhejiang University - Science, vol. 12, no. 4, pp. 268–277, 2011.
[9] F. Liu, K. Qin, and Y.-S. Han, “Simplified method for consolidation settlement calculation of combined composite foundation,” Shock and Vibration, vol. 2020, Article ID 8818161, 7 pages, 2020.
[10] K.-G. Prakash and A. Krishnamoorthy, “Evaluation of stability of embankment constructed on soft consolidating soil with lime–CFG composite column system,” International Journal of Geosynthetics and Ground Engineering, vol. 7, no. 3, p. 58, 2021.
[11] G.-B. Ye, Z. Zhang, H.-F. Xing, M. S. Huang, and C. Xu, “Consolidation of a composite foundation with soil-cement columns and prefabricated vertical drains,” Bulletin of Engineering Geology and the Environment, vol. 71, no. 1, pp. 87–98, 2012.
[12] C.-L. Yu, A.-J. Zhang, Y.-G. Wang, and W. Ren, “Analytical solution for consolidation of combined composite foundation reinforced with penetrated impermeable columns and partially penetrated permeable stone columns,” Computers and Geotechnics, vol. 124, p. 8, Article ID 103606, 2020.
[13] T. Yang, Y.-Z. Ruan, J. Ni, and C. Li, “Consolidation analysis of an impervious multi-pile composite ground under rigid foundation,” European Journal of Environmental and Civil Engineering, vol. 25, no. 7, pp. 1287–1301, 2021.
[14] D. Ganesalingam, W. Read, and S. Nagaratnam, “Consolidation behavior of a cylindrical soil layer subjected to nonuniform pore-water pressure distribution,” International Journal of Geomechanics, vol. 13, no. 5, pp. 665–671, 2013.
[15] Y.-G. Zhang, P. Yue, and K.-H. Xie, “Study of consolidation theory of composite ground with granular columns under nonuniform distribution of initial excess pore water pressure,” Rock and Soil Mechanics, vol. 32, no. 9, pp. 2675–2680+2691, 2011.
[16] M.-M. Lu, H.-W. Jing, A.-N. Zhou, and K. Xie, “Analytical models for consolidation of combined composite ground improved by impervious columns and vertical drains,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 42, no. 6, pp. 871–888, 2018.
[17] M.-M. Lu, K.-H. Xie, S.-Y. Wang, and C. X. Li, “Analytical solution for the consolidation of a composite foundation reinforced by an impervious column with an arbitrary stress increment,” International Journal of Geomechanics, vol. 13, no. 1, pp. 33–40, 2013.
[18] X.-W. Tang, A Study for Consolidation of Ground with Vertical drain System, Saga University, Saga, Japan, 1998.
[19] L. Chen, S.-Y. Liu, and Z.-S. Hong, “Study of consolidation calculation of soft ground improved by dry jet mixing combined with vertical drain method,” Chinese Journal of Geotechnical Engineering, vol. 29, no. 2, pp. 198–203, 2007.
[20] C.-L. Yu, A.-J. Zhang, Q.-Y. Zhao, and Y.-G. Wang, “Analytical analysis for consolidation of composite foundation reinforced by permeable and impermeable piles,” Rock and Soil Mechanics, vol. 38, no. 1, pp. 3255–3260+3270, 2017.
[21] R. Walker and B. Indraratna, “Vertical drain consolidation with parabolic distribution of permeability in smear zone,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 132, no. 7, pp. 937–941, 2006.