Tree-based Arithmetic and Compressed Representations of Giant Numbers

Paul Tarau

Department of Computer Science and Engineering
University of North Texas
e-mail: tarau@cs.unt.edu

Abstract. Can we do arithmetic in a completely different way, with a radically different data structure? Could this approach provide practical benefits, like operations on giant numbers while having an average performance similar to traditional bitstring representations? While answering these questions positively, our tree based representation described in this paper comes with a few extra benefits: it compresses giant numbers such that, for instance, the largest known prime number as well as its related perfect number are represented as trees of small sizes. The same also applies to Fermat numbers and important computations like exponentiation of two become constant time operations. At the same time, succinct representations of sparse sets, multisets and sequences become possible through bijections to our tree-represented natural numbers.

1 Introduction

If extraterrestrials were to do arithmetic computations, would one assume that their numbering system should look the same? At a first thought, one might be inclined to think so, maybe with the exception of the actual symbols used to denote digits or the base of the system likely to match numbers of fingers or some other anthropocentric criteria. After some thinking about the endless diversity of the universe (or unconventional models of Peano’s axioms), one might also consider the possibility that the departure from our well-known number representations could be more significant.

With more terrestrial uses in mind, one would simply ask: is it possible to do arithmetic differently, possibly including giant numbers and a radically different underlying data structure, while maintaining the same fundamentals – addition, multiplication, exponentiation, primality, Peano’s axioms behaving in the same way? Moreover, can such exotic arithmetic be as efficient as binary arithmetic, while possibly supporting massively parallel execution?

We have shown in [1] that type classes and polymorphism can be used to share fundamental operations between natural numbers, finite sequences, sets and multisets. As a consequence of this line of research, we have discovered that it is possible to transport the recursion equations describing binary number arithmetics on natural numbers to various tree types.
However, the representation proposed in this paper is different. It is arguably simpler, more flexible and likely to support parallel execution of operations. It also allows to easily compute average and worse case complexity bounds. We will describe it in full detail in the next sections, but for the curious reader, it is essentially a recursively self-similar run-length encoding of bijective base-2 digits.

The paper is organized as follows. Section 2 describes our type class used to share generic properties of natural numbers. Section 3 describes binary arithmetic operations that are specialized in section 4 to our compressed tree representation. Section 5 describes efficient tree-representations of some important number-theoretical entities like Mersenne, Fermat and perfect numbers. Section 6 shows that sparse sets, multisets and lists have succinct tree representation. Section 7 describes generic isomorphisms between data types, centered around transformations of instances of our type class to their corresponding sets, multisets and lists. Section 8 shows interesting complexity reductions in other computations and section 9 compares the performance of our tree-representation with conventional ones. Section 10 discusses related work. Section 11 concludes the paper and discusses future work.

To provide a concise view of our compressed tree data type and its operations, we will use the strongly typed functional language Haskell as a precise means to provide an executable specification. We have adopted a literate programming style, i.e. the code contained in the paper forms a self-contained Haskell module (tested with ghc 7.4.1), also available as a separate file at http://logic.cse.unt.edu/tarau/research/2013/giant.hs. Also, a Scala package implementing the same tree-based computation is available from http://code.google.com/p/giant-numbers/. We hope that this will encourage the reader to experiment interactively and validate the technical correctness of our claims.

We mention, for the benefit of the reader unfamiliar with Haskell, that a notation like \( f \, x \, y \) stands for \( f(x, y) \), \([t]\) represents sequences of type \( t \) and a type declaration like \( f :: s \to t \to u \) stands for a function \( f : s \times t \to u \) (modulo Haskell’s “currying” operation, given the isomorphism between the function spaces \( s \times t \to u \) and \( s \to t \to u \)). Our Haskell functions are always represented as sets of recursive equations guided by pattern matching, conditional to constraints (simple arithmetic relations following \( | \) and before the \( = \) symbol). Locally scoped helper functions are defined in Haskell after the \( \text{where} \) keyword, using the same equational style. The composition of functions \( f \) and \( g \) is denoted \( f \cdot g \). It is also customary in Haskell, when defining functions in an equational style (using \( = \)) to write \( f = g \) instead of \( f \, x = g \, x \) (“point-free” notation). The use of Haskell’s “call-by-need” evaluation allows us to work with infinite sequences, like the \( [0..] \) infinite list notation, corresponding to the set \( \mathbb{N} \) itself.

Our literate Haskell program is organized as the module \texttt{Giant} depending on a few packages, as follows:

```haskell
{-# LANGUAGE NoMonomorphismRestriction #-}
-- needed to define toplevel isomorphisms
module Giant where
```
import Data.List.Ordered
import Data.List hiding (unionBy)
import System.CPUTime

2 Sharing axiomatizations with type classes

Haskell's type classes [2] are a good approximation of axiom systems as they describe properties and operations generically i.e. in terms of their action on objects of a parametric type. Haskell's type instances approximate interpretations [3] of such axiomatizations by providing implementations of the primitive operations, with the added benefit of refining and possibly overriding derived operations with more efficient equivalents.

We start by defining a type class that abstracts away properties of binary representations of natural numbers.

The class \( N \) assumes only a theory of structural equality (as implemented by the class \( \text{Eq} \) in Haskell). It implements a representation-independent abstraction of natural numbers, allowing us to compare our tree representation with “ordinary” natural numbers represented as non-negative arbitrary large \text{Integers} in Haskell, as well as with a binary representation using bijective base-2 [4].

```haskell
class Eq n ⇒ N n where

An instance of this class is required to implement the following 6 primitive operations:

- \( e :: n \)
- \( o,o',i,i' :: n \rightarrow n \)
- \( o_ :: n \rightarrow \text{Bool} \)

The constant function \( e \) can be seen as representing the empty sequence of binary digits. With the usual representation of natural numbers, \( e \) will be interpreted as 0. The constructors \( o \) and \( i \) can be seen as applying a function that adds a 0 or 1 digit to a binary string on \( \{0,1\}^* \). The deconstructors \( o' \) and \( i' \) undo these operations by removing the corresponding digit. The recognizer \( o_ \) detects that the constructor \( o \) is the last one applied, i.e. that the “string ends with the 0 symbol. It will be interpreted on \( N \) as a recognizer of odd numbers.

This type class also endows its instances with generic implementations of the following derived operations:

```haskell
\[ e_,i_ :: n \rightarrow \text{Bool} \]
\[ e_ \ x = x = e \]
\[ i_ \ x = \text{not} \ (e_ \ x \ |\| o_ \ x) \]
```

with structural equality used implicitly in the definition of the recognizer predicate for empty sequences \( e_ \) and with the assumption that the domain is exhausted by the three recognizers in the definition of the recognizer \( i_ \) of sequences ending with 1, representing even positive numbers in bijective base-2.

Successor \( s \) and predecessor \( s' \) functions are implemented in terms of these operations as follows:
By looking at the code, one might notice that our generic definitions of operations mimic recognizers, constructors and destructors for bijective base-2 numbers, i.e. sequences in the language \(\{0,1\}^*\), similar to binary numbers, except that 0 is represented as the empty sequence and left-delimiting by 1 is omitted.

**Proposition 1** Assuming average constant time for recognizers, constructors and destructors \(e, o, i, o', i'\), successor and predecessor \(s\) and \(s'\) are constant time, on the average.

**Proof.** Clearly the first two rules are constant time for both \(s\) and \(s'\) as they do not make recursive calls. To show that the third rule applies recursion a constant number of times on the average, we observe that the recursion steps are exactly given by the number of 0s or 1s that a (bijective base-2 number) ends with. As only half of them end with a 0 and another half of those end with another 0 etc. one can see that the average number of 0s is bounded by \(\frac{1}{2} + \frac{1}{4} + \ldots = 1\). The same reasoning applies to the average number of 1s a number can end with.

The infinite stream of generic natural numbers is generated by iterating over the successor operation \(s\):

```
allFrom :: n→[n]
allFrom x = iterate s x
```

### 3 Efficient arithmetic operations, generically

We will first show that all fundamental arithmetic operations can be described in this abstract, representation-independent framework. This will make possible creating instances that, on top of symbolic tree representations, provide implementations of these operations with asymptotic efficiency comparable to the usual bitstring operations.

We start with addition (\(\text{add}\)) and subtraction (\(\text{sub}\)):

```
add :: n→n→n
add x y | e_ x = y
add x y | e_ y = x
add x y | o_ x && o_ y = i (add (o' x) (o' y))
add x y | o_ x && i_ y = o (s (add (o' x) (i' y)))
add x y | i_ x && o_ y = o (s (add (i' x) (o' y)))
```
add x y | i_ x && i_ y = i (s (add (i' x) (i' y)))

sub :: n→n→n
sub x y | e_ y = x
sub y x | o_ y && o_ x = s' (o (sub (o' y) (o' x)))
sub y x | i_ y && i_ x = s' (s' (o (sub (o' y) (i' x))))
sub y x | i_ y && o_ x = o (sub (i' y) (o' x))
sub y x | i_ y && i_ x = s' (o (sub (i' y) (i' x)))

It is easy to see that addition and subtraction are implemented generically, with asymptotic complexity proportional to the size of the operands. Comparison provides the expected total order of \( \mathbb{N} \) on our type class:

cmp :: n→n→Ordering
cmp x y | e_ x && e_ y = EQ
cmp x _ | e_ x = LT
cmp _ y | e_ y = GT
cmp x y | o_ x && o_ y = cmp (o' x) (o' y)
cmp x y | i_ x && i_ y = cmp (i' x) (i' y)
cmp x y | o_ x && i_ y = down (cmp (o' x) (i' y)) where
down EQ = LT
down r = r
cmp x y | i_ x && o_ y = up (cmp (i' x) (o' y)) where
up EQ = GT
up r = r

And based on it one can define the minimum \( \text{min2} \) and maximum \( \text{max2} \) functions as follows:

\[
\text{min2} x y = \text{if } \text{LT} = \text{cmp x y} \text{ then } x \text{ else } y
\]
\[
\text{max2} x y = \text{if } \text{LT} = \text{cmp x y} \text{ then } y \text{ else } x
\]

Next, we define multiplication:

mul :: n→n→n
mul x _ | e_ x = e
mul _ y | e_ y = e
mul x y | s' x (s' y) where
m x y | e_ x = y
m x y | o_ x = o (m o' x) y
m x y | i_ x = s (add y (o (m (i' x) y)))

as well as double of a number \( \text{db} \) and half of an even number \( \text{hf} \), having both simple expressions:

\[
\text{db},\text{hf} :: n→n
\]
\[
\text{db} = s' \cdot o
\]
\[
\text{hf} = s \cdot i'
\]

Power is defined as follows:

pow :: n→n→n
pow _ y | e_ y = o e
\[
\text{pow } x \ y \mid \text{o}_y = \text{mul } x (\text{pow } (\text{mul } x x) (\text{o'} y)) \\
\text{pow } x \ y \mid \text{i}_y = \text{mul } (\text{mul } x x) (\text{pow } (\text{mul } x x) (\text{i'} y))
\]
together with more efficient special instances, exponent of 2 (\text{exp2}) and multiplication by a power of 2 (\text{leftshift}):

\[
\text{exp2} :: n \rightarrow n \\
\text{exp2 } x \mid \text{e}_x = o e \\
\text{exp2 } x = \text{db } (\text{exp2 } (\text{s'} x))
\]

\[
\text{leftshift} :: n \rightarrow n \rightarrow n \\
\text{leftshift } x \ y = \text{mul } (\text{exp2 } x) \ y
\]

Finally, division and reminder on \( N \) is a bit trickier but can be expressed generically as well:

\[
\text{div_and_rem} :: n \rightarrow n \rightarrow (n,n) \\
\text{div_and_rem } x \ y \mid \text{LT } \equiv \text{cmp } x \ y = (\text{e},x) \\
\text{div_and_rem } x \ y \mid \text{not } (\text{e}_y) = (q,r) \text{ where} \\
(qt,rm) = \text{divstep } x \ y \\
(z,r) = \text{div_and_rem } rm \ y \\
q = \text{add } (\text{exp2 } qt) \ z
\]

\[
\text{divstep} :: N \ n \Rightarrow n \rightarrow n \rightarrow (n,n) \\
\text{divstep } n \ m = (q, \text{sub } n \ p) \text{ where} \\
q = \text{try_to_double } n \ m \ e \\
p = \text{mul } (\text{exp2 } q) \ m
\]

\[
\text{try_to_double } x \ y \ k = \\
\text{if } (\text{LT } \equiv \text{cmp } x \ y) \\
\text{then } s' k \\
\text{else } \text{try_to_double } (\text{db } y) (s \ k)
\]

\[
\text{divide,reminder} :: n \rightarrow n \rightarrow n \\
\text{divide } n \ m = \text{fst } (\text{div_and_rem } n \ m) \\
\text{reminder } n \ m = \text{snd } (\text{div_and_rem } n \ m)
\]

And for the reader curious by now about how this maps to “arithmetic as usual”, here is an instance built around the (arbitrary length) \text{Integer} type, also usable as a witness on the time/space complexity of our operations.

\[
\text{instance } N \ \text{Integer where} \\
e = 0 \\
\text{o}_x = \text{odd } x \\
o \ x = 2x+1 \\
o' \ x \mid \text{odd } x \ &k \ x > 0 = (x-1) \ 'div' \ 2 \\
i \ x = 2x+2
\]
An instance mapping our abstract operations to actual constructors, follows in the form of the datatype \( B \):

\[
data B = B \mid O B \mid I B \text{ deriving (Show, Read, Eq)}
\]

\[
\begin{aligned}
\text{instance } N B \text{ where } \\
e &= B \\
o &= O \\
i &= I \\
o' (O x) &= x \\
i' (I x) &= x \\
o_ (O _) &= \text{True} \\
i_ _ &= \text{False}
\end{aligned}
\]

One can try out various operations on these instances:

\[
\begin{aligned}
*\text{Giant} > & \text{mul} 10 5 \\
*\text{Giant} > & \text{exp2} 5 \\
*\text{Giant} > & \text{add} (O B) (I (O B)) \\
& 0 (I B)
\end{aligned}
\]

### 4 Computing with our compressed tree representations

We will now show how our shared axiomatization framework can be implemented as a new, somewhat unusual instance, that brings the ability to do arithmetic computations with trees.

First, we define the data type for our tree represented natural numbers:

\[
data T = T \mid V T [T] \mid W T [T] \text{ deriving (Eq,Show,Read)}
\]

The intuition behind this “union type” is the following:

- The type \( T \) corresponds to an empty sequence
- The type \( V x xs \) counts the number \( x \) of \( o \) applications followed by an alternation of similar counts of \( i \) and \( o \) applications
- The type \( W x xs \) counts the number \( x \) of \( i \) applications followed by an alternation of similar counts of \( o \) and \( i \) applications
- The same principle is applied recursively for the counters, until the empty sequence is reached

One can see this process as run-length compressed bijective base-2 numbers, represented as trees with either empty leaves or at least one branch, after applying the encoding recursively. First we define the 6 primitive operations:
Next, we override two operations involving exponents of 2 as follows

\[
\begin{align*}
\text{exp2} &= \text{exp2'} \quad \text{where} \\
\text{exp2'} T &= V T [] \\
\text{exp2'} x &= s (V (s' x) [])
\end{align*}
\]

\[
\begin{align*}
\text{leftshift} &= \text{leftshift'} \quad \text{where} \\
\text{leftshift'} n T &= T \\
\text{leftshift'} n y &\mid o_\_ y = s (\text{vmul} n (s' y)) \\
\text{leftshift'} n y &\mid i_\_ y = s (\text{vmul} (s n) (s' y))
\end{align*}
\]

The \text{leftshift'} operation uses an efficient implementation, specialized for the type \( T \), of the repeated application (\( n \) times) of constructor \( o \), over the second argument of the function \text{vmul}:

\[
\begin{align*}
\text{vmul} T y &= y \\
\text{vmul} n T &= V (s' n) [] \\
\text{vmul} n (V y ys) &= V (\text{add} (s' n) y) ys \\
\text{vmul} n (W y ys) &= V (s' n) (y:ys)
\end{align*}
\]

Note that such overrides take advantage of the specific encoding, as a result of simple number theoretic observations. For instance, the operation \text{exp2'} works in time proportional to \( s \) and \( s' \), that can be shown to be constant on the average. The more complex \text{leftshift'} operation observes that repeated application of the \( o \) operation, when adjusted based on being even or odd, provides an efficient implementation of multiplication with an exponent of 2.

It is convenient at this point, as we target a diversity of interpretations materialized as Haskell instances, to provide a polymorphic converter between two
different instances of the type class \( \text{N} \) as well as their associated lists, implemented by structural recursion over the representation to convert. The function \( \text{view} \) allows importing a wrapped object of a different instance of \( \text{N} \), generically.

\[
\text{view :: } (\text{N} \ a, \text{N} \ b) \Rightarrow a \rightarrow b
\]

\[
\text{view } x \mid e_\ x = e
\]

\[
\text{view } x \mid o_\ x = o \ (\text{view} \ (o' \ x))
\]

\[
\text{view } x \mid i_\ x = i \ (\text{view} \ (i' \ x))
\]

We can specialize \( \text{view} \) to provide conversions to our three data types, each denoted with the corresponding lower case letter, \( \text{tt t} \), \( \text{b} \) and \( \text{n} \) for the usual natural numbers.

\[
\text{t :: } (\text{N} \ n) \Rightarrow n \rightarrow T
\]

\[
\text{t} = \text{view}
\]

\[
\text{b :: } (\text{N} \ n) \Rightarrow n \rightarrow B
\]

\[
\text{b} = \text{view}
\]

\[
\text{n :: } (\text{N} \ n) \Rightarrow n \rightarrow \text{Integer}
\]

\[
\text{n} = \text{view}
\]

One can try them out as follows:

*Giant> \text{t 42}
\text{W (V T []) [T,T,T]}

*Giant> \text{b it}
\text{I (I (O (I (O B))))}

*Giant> \text{n it}
\text{42}

While space constraints forbid us from providing the correctness proofs of operations like \( \text{exp2'} \) and \( \text{leftshift'} \), we are able to illustrate their expected usage as follows:

*Giant> \text{t 5}
\text{V T [T]}

*Giant> \text{exp2 it}
\text{W T [V (V T []) []]}

*Giant> \text{n it}
\text{32}

*Giant> \text{t 10}
\text{W (V T []) [T]}

*Giant> \text{leftshift it (t 1)}
\text{W T [W T [V T []]]}

*Giant> \text{n it}
\text{1024}
5 Efficient representation of some important number-theoretical entities

Let’s first observe that Fermat, Mersenne and perfect numbers have all compact expressions with our tree representation of type $T$.

```haskell
fermat n = s (exp2 (exp2 n))
mersenne p = s' (exp2 p)
perfect p = s (V q [q]) where q = s' (s' p)
```

And one can also observe that this contrasts with both the `Integer` representation and the bijective base-2 numbers $B$:

```haskell
*Giant> mersenne (b 127)
O (O ...
... a few lines of Os and Is
))))))))))))))))))))))))))))))))
*Giant> mersenne (n 127)
170141183460469231731687303715884105727
*Giant> mersenne (t 127)
V (W T [T]) []
```

The largest known prime number, found by the GIMP distributed computing project [5] is the 45-th Mersenne prime $= 2^{43112609} - 1$. It is defined in Haskell as follows:

```haskell
-- its exponent
prime45 = 43112609 :: Integer

-- the actual Mersenne prime
mersenne45 = s' (exp2 (t p)) where
  p = prime45::Integer
```

While it has a bitsize of 43112609, we have observed that its compressed tree representation using our type $T$ is rather small:

```haskell
*Giant> mersenne45
V (W T [V (V T []) [],T,T,W T [],V T [],T,W T [],W T [],T,V T [],T,T]) []
```

One the other hand, displaying it with a decimal or binary representation would take millions of digits.

And by folding replicated subtrees to obtain an equivalent DAG representation, one can save even more memory. Figure 1 shows this representation, involving only 6 nodes.

It is interesting to note that similar compact representations can also be derived for perfect numbers. For instance, the largest known perfect number, derived from the largest known Mersenne prime as $2^{43112609} - 1 (2^{43112609} - 1)$, is:

```haskell
perfect45 = perfect (t prime45)
```
Fig. 1. Largest known prime number: the 45-th Mersenne prime, represented as a DAG

Fig. 2. Largest known perfect number
Fig. 2 shows its DAG representation involving only 7 nodes. Similarly, the largest Fermat number that has been factored so far, \(F_{11} = 2^{2^{11}} + 1\) is compactly represented as

*Giant> fermat (t 11)
\[V T [T, V T [W T [V T []][]]]\]

By contrast, its (bijective base-2) binary representation consists of 2048 digits.

6 Representing sparse sets, multisets and lists

We will now describe bijective mappings between collection types as well as a Gödel numbering scheme putting them in bijection with natural numbers. Interestingly, natural number encodings for sparse instances of these collections will have space-efficient representations as natural numbers of type \(T\), in contrast with bitstring or conventional \texttt{Integer}-based representations.

The type class \texttt{Collections} will convert between natural numbers and lists, by using the bijection \(f(x, y) = 2^x(2^y + 1)\), implemented by the function \(c\) and its first and second projections \(c'\) and \(c''\), inverting it.

```haskell
class (N n) \Rightarrow Collections n where
c :: n \rightarrow n \rightarrow n
c', c'' :: n \rightarrow n

c x y = mul (exp2 x) (o y)
c' x | not (e_ x) = if o_ x then e else s (c' (hf x))
c'' x | not (e_ x) = if o_ x then o' x else c'' (hf x)
```

The bijection between natural numbers and lists of natural numbers, \texttt{toList} and its inverse \texttt{fromList} apply repeatedly \(c\) and respectively \(c'\) and \(c''\).

```haskell
to_list :: n \rightarrow [n]
to_list x | e_ x = []
to_list x = (c' x) : (to_list (c'' x))

from_list :: [n] \rightarrow n
from_list [] = e
from_list (x:xs) = c x (from_list xs)
```

Incremental sums are used to transform arbitrary lists to multisets and sets, inverted by pairwise differences.

```haskell
list2mset, mset2list, list2set, set2list :: [n] \rightarrow [n]

list2mset ns = tail (scanl add e ns)
mset2list ms = zipWith sub ms (e:ms)
list2set = (map s') . list2mset . (map s)
set2list = (map s') . mset2list . (map s)
```
By composing with natural number-to-list bijections, we obtain bijections to multisets and sets.

```haskell
to_mset, to_set :: n → [n]
from_mset, from_set :: [n] → n

to_mset = list2mset . to_list
from_mset = from_list . mset2list

to_set = list2set . to_list
from_set = from_list . set2list
```

We will add the usual instances to the type class Collections. A simple number-theoretic observation connecting $2^n$ and $n$ applications of the constructor $i$, implemented by the function `vmul`, allows a shortcut that speeds up the bijection from lists to natural numbers, by overriding the functions $c$, $c'$, $c''$ in instance $T$.

```haskell
instance Collections Integer
instance Collections T where
  c = cons where
    cons n y = s (vmul n (s' (o y)))
  c' = hd where
    hd z | o_ z = T
    hd z = s x where
      V x _ = s' z
  c'' = tl where
    tl z | o_ z = o' z
    tl z = f xs where
      V _ xs = s' z
    f [] = T
    f (y:ys) = s (i' (W y ys))
```

As the following example shows, trees of type $T$ offer a significantly more compact representation of sparse sets.

```haskell
*Giant> from_set (map t [1,100,123,234])
W (V T []) [V T [T,W T [],T],T,V T [V T [],T],T,V T [W T [],T,T]]

*Giant> from_set (map n [1,100,123,234])
27606985387162255149739023449108112443629669818608757680508075841159170

*Giant> from_set (map b [1,100,123,234])
I (I (O 
... a few lines ...
...)))))))))))
```

Note that a similar compression occurs for sets of natural numbers with only a few elements missing, as they have the same representation size with type $T$ as the dual of their sparse counterpart.
Giant> from_set ([1,3,5]++[6..220])
336993333393299743337688687745383420464305281757156013795128113
*Giant> t it
W (V T []) [T,T,T,W (W T []) [T,T,T,T]]
*Giant> dual it
V (V T []) [T,T,T,W (W T []) [T,T,T,T]]
*Giant> to_set it
[T,V T [],W T [T],W T [T,T,T,T]]
*Giant> map n it
[0,1,4,220]

As an application, we can define bitwise operations on our natural numbers by borrowing the corresponding ordered set operations, provided in Haskell by the package Data.List.Ordered.

First we define the type class BitwiseOperations and the higher order function \( l_{op} \) transporting a binary operation from ordered sets to natural numbers.

```haskell
class Collections n ⇒ BitwiseOperations n where
  l_op :: ([n] → [n] → [n]) → n → n → n
  l_op op x y = from_set (op (to_set x) (to_set y))
```

Next we define the bitwise \( \text{and} \), \( \text{or} \) and \( \text{xor} \) operations:

```haskell
l_and, l_or, l_xor, l_dif :: n → n → n
l_and = l_op (isectBy cmp)
l_or = l_op (unionBy cmp)
l_xor = l_op (xunionBy cmp)
l_dif = l_op (minusBy cmp)
```

More complex operations like the ternary \( \text{if-the-else} \) can be defined as a combination of binary operations:

```haskell
l_ite :: n → n → n → n
l_ite x y z = from_set (ite (to_set x) (to_set y) (to_set z)) where
  ite d a b = xunionBy cmp e b where
  c = xunionBy cmp a b
  e = isectBy cmp c d
```

Finally, bitwise negation (requiring additional parameter \( l \) defining the bitlength of the operand) can be defined using set complement with respect to \( 2^l - 1 \), corresponding to the set of all elements up to \( l \).

```haskell
l_not :: Integer → n → n
l_not l x |xl ≤ l = from_set (minusBy cmp ms xs) where
  xs = to_set x
  xl = genericLength xs
  ms = genericTake l (allFrom e)
```

We will next generalize the iso-functor mechanism implemented generically by \( l_{op} \) that transports operations back and forth between data types as a special data type, consisting of two higher order functions inverse to each other.
7 Isomorphisms between data types, generically

Along the lines of [6] we can define isomorphisms between data types as follows:

```haskell
data Iso a b = Iso (a -> b) (b -> a)
from (Iso f _) = f
to (Iso _ f') = f'
```

Morphing between data types as well as “lending” operations from one to another is provided by the combinators as, land1 and land2:

```haskell
as that this x = to that (from this x)

lend1 op1 (Iso f f') x = f' (op1 (f x))
lend2 op2 (Iso f f') x y = f' (op2 (f x) (f y))
```

Assuming that the Haskell option `NoMonomorphismRestriction` is set on, we can now define generically “virtual types” centered around type class `N`:

```haskell
nat = Iso id id
list = Iso from_list to_list
mset = Iso from_mset to_mset
set = Iso from_set to_set
```

This results in a small “embedded language” that morphs between various instances of type class `N` and their corresponding list, multiset and set types, as follows:

*Giant> as set nat 1234
[1,4,6,7,10]
*Giant> map t it
[V T [], W T [T], W (V T []) [], V (W T []) [], W (V T []) [T]]
*Giant> as nat set it
W (V T []) [V T [], T, T, V T [], V T []]
*Giant> n it
1234
*Giant> lend1 s set [0,2,3]
[1,2,3]
*Giant> lend2 add set [0,2,3] [4,5]
[0,2,3,4,5]

8 Complexity reduction in other computations

A number of other, somewhat more common computations also benefit from our data representations. The type class `SpecialComputations` groups them together and provides their bitstring inspired generic implementations.

The function `dual` flips `o` and `i` operations for a natural number seen as written in bijective base 2.
class Collections n ⇒ SpecialComputations n where
dual :: n→n
dual x | e_ x = e
dual x | o_ x = i (dual (o' x))
dual x | i_ x = o (dual (i' x))

The function bitsize computes the number of applications of the o and i operations:

bitsize :: n→n
bitsize x | e_ x = e
bitsize x | o_ x = s (bitsize (o' x))
bitsize x | i_ x = s (bitsize (i' x))

The function repsize computes the representation size, which defaults to the bit-size in bijective base 2:

repsize :: n→n
repsize = bitsize

The functions decons and cons provide bijections between \(\mathbb{N} - \{0\}\) and \(\mathbb{N} \times \mathbb{N}\) and can be used as an alternative mechanism for building bijections between lists, multisets and sets of natural numbers and natural numbers. They are based on separating o and i applications that build up a natural number represented in bijective base 2.

decons ::n→(n,n)
cons :: (n,n)→n
decons z | o_ z = (x,y) where
x0 = s' (ocount z)
y = otrim z
x = if e_ y then (s'.o) x0 else x0
decons z | i_ z = (x,y) where
x0 = s' (icount z)
y = itrim z
x = if e_ y then (s'.i) x0 else x0

cons (x,y) | e_ x && e_ y = s e
cons (x,y) | o_ x && e_ y = itimes (s (i' (s x))) e
cons (x,y) | i_ x && e_ y = otimes (s (o' (s x))) e
cons (x,y) | o_ y = itimes (s x) y
cons (x,y) | i_ y = otimes (s x) y

Implementing decons and cons requires counting the number of applications of o and i provided by ocount and icount, as well trimming the applications of o and i, performed by otrim and itrim.

ocount,icount,otrim,itrim :: n→n

ocount x | o_ x = s (ocount (o' x))
ocount _ = e
icount \ x \ | \ i_ x = s \ (icount \ (i' x))
icount _ = e

otrim \ x \ | \ o_ x = otrim \ (o' x)
otrim \ x = x

itrim \ x \ | \ i_ x = itrim \ (i' x)
itrim \ x = x

otimes, itimes :: n \to n

otimes \ x \ y \ | \ e_ x = y
otimes \ x \ y = otimes \ (s' x) \ (o y)

itimes \ x \ y \ | \ e_ x = y
itimes \ x \ y = itimes \ (s' x) \ (i y)

An alternative bijection between natural numbers and lists of natural numbers, \text{to\_list'} and its inverse \text{from\_list'} is obtained by applying repeatedly \text{cons} and respectively \text{decons}.

to\_list' :: n \to \ [n]
to\_list' \ x \ | \ e_ x = []
to\_list' \ x = \text{hd} : (to\_list' \ \text{tl}) \ \text{where} \ (\text{hd}, \text{tl}) = \text{decons} \ x

from\_list' :: \ [n] \to n
from\_list' \ [] = e
from\_list' \ (x:xs) = \text{cons} \ (x, from\_list' \ xs)

One can observe the significant reduction of asymptotic complexity with respect to the default operations provided by the type class \text{SpecialComputations} when overriding with \text{tbitsize} and \text{tdual} in instance \text{T}.

instance \text{SpecialComputations Integer}
instance \text{SpecialComputations B}
instance \text{SpecialComputations T where}
\text{bitsize} = \text{tbitsize where}
\quad \text{tbitsize} \ T = T
\quad \text{tbitsize} \ (V \ x \ xs) = s \ (\text{foldr} \ \text{add1} \ x \ xs)
\quad \text{tbitsize} \ (W \ x \ xs) = s \ (\text{foldr} \ \text{add1} \ x \ xs)

\quad \text{add1} \ x \ y = s \ (\text{add} \ x \ y)

\text{dual} = \text{tdual where}
\quad \text{tdual} \ T = T
\quad \text{tdual} \ (V \ x \ xs) = W \ x \ xs
\quad \text{tdual} \ (W \ x \ xs) = V \ x \ xs

\text{rpsize} = \text{tsize where}
\quad \text{tsize} \ T = T
The replacement with special purpose code for the `cons` / `decons` functions is even more significant:

```haskell
decons (V x []) = (((s’.o) x),T)
decons (V x (y:ys)) = (x,W y ys)
decons (W x []) = (((s’.i) x),T)
decons (W x (y:ys)) = (x,V y ys)
```

```haskell
cons (T,T) = V T []
cons (x,T) | o_ x = W (i’ (s x)) []
cons (x,T) | i_ x = V (o’ (s x)) []
cons (x,V y ys) = W x (y:ys)
cons (x,W y ys) = V x (y:ys)
```

One can also see that their complexity is now proportional to `s` and `s’` given that the `V` and `W` operations perform in constant time the work of `otimes` and `itimes`. The following example illustrates their work:

```haskell
*Giant> map to_list’ [0..20]
[[],[0],[1],[2],[0,0],[0,1],[3],[4],[0,2],[0,0,0],[1,0],[1,1],
 [0,0,1],[0,3],[5],[6],[0,4],[0,0,2],[1,2],[1,0,0],[0,0,0,0]]
*Giant> map from_list’ it
[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
```

Note the shorter lists created close to powers of 2, coming from the longer sequences of consecutive `o` and `i` operations in that region.

### 9 A performance comparison

Our performance measurements (run on a Mac Air with 8GB of memory and an Intel i7 processor) serve two objectives:

1. to show that, on the average, our tree based representations perform on a blend of arithmetic computations within a small constant factor compared with conventional bitstring-based computations
2. to show that on interesting special computations they outperform the conventional ones due to the much lower asymptotic complexity of such operations on data type `T`.

Objective 1 is served by the Ackerman function that exercises the successor and predecessor functions quite heavily, the prime generation and the Lucas-Lehmer primality test for Mersenne numbers that exercise a blend of arithmetic operations.

Objective 2 is served by the other benchmarks that take advantage of the overriding by instance `T` of operations like `exp2` and `bitsize`, as well as the compressed representation of large numbers like the 45-th Mersenne prime and perfect numbers. In some cases the conventional representations are unable to
run these benchmarks within existing computer memory and CPU-power limitations (marked with ? in the comparison table of Fig. 3). In other cases, like in the sparse set encoding benchmark, data type $T$ performs significantly faster than binary representations.

Together they indicate that our tree-based representations are likely to be competitive with existing bitstring-based packages on typical computations and significantly outperform them on some number-theoretically interesting computations. While the code of the benchmarks is omitted due to space constraints, it is part of the companion Haskell file at http://logic.cse.unt.edu/tarau/Research/2013/giant.hs.

10 Related work

We will briefly describe here some related work that has inspired and facilitated this line of research and will help to put our past contributions and planned developments in context.

Several notations for very large numbers have been invented in the past. Examples include Knuth’s *arrow-up* notation [7] covering operations like the *tetration* (a notation for towers of exponents). In contrast to our tree-based natural numbers, such notations are not closed under addition and multiplication, and consequently they cannot be used as a replacement for ordinary binary or decimal numbers.

The first instance of a hereditary number system, at our best knowledge, occurs in the proof of Goodstein’s theorem [8], where replacement of finite numbers on a tree’s branches by the ordinal $\omega$ allows him to prove that a “hailstone sequence” visiting arbitrarily large numbers eventually turns around and terminates.

Numeration systems on regular languages have been studied recently, e.g. in [9] and specific instances of them are also known as bijective base-$k$ numbers [4]. Arithmetic packages similar to our bijective base-2 view of arithmetic operations are part of libraries of proof assistants like Coq [10] and the corresponding regular
languages have been used as a basis of decidable arithmetic systems like \((\omega)S1S\) \cite{11} and \((\omega)S2S\) \cite{12}.

Arithmetic computations based on recursive data types like the free magma of binary trees (isomorphic to the context-free language of balanced parentheses) are described in \cite{13} and \cite{14}, where they are seen as Gödel’s System T types, as well as combinator application trees. In \cite{1} a type class mechanism is used to express computations on hereditarily finite sets and hereditarily finite functions.

An emulation of Peano and conventional binary arithmetic operations in Prolog, is described in \cite{15}. Their approach is similar as far as a symbolic representation is used. The key difference with our work is that our operations work on tree structures, and as such, they are not based on previously known algorithms.

Arithmetic computations with types expressed as C++ templates are described in \cite{16} and in online articles by Oleg Kiselyov using Haskell’s type inference mechanism. However, the algorithm described there is basically the same as \cite{15}, focusing on Peano and binary arithmetics.

Efficient representation of sparse sets are usually based on a dedicated data structure \cite{17} and they cannot be at the same time used for arithmetic computations as it is the case with our tree-based encoding.

In \cite{18} integer decision diagrams are introduced providing a compressed representation for sparse numbers, sets and various other data types. However likewise \cite{13} and \cite{1}, and by contrast to those proposed in this paper, they do not compress dense sets or numbers.

Ranking functions (bijections between data types and natural numbers) can be traced back to Gödel numberings \cite{19} associated to formulae. Together with their inverse unranking functions they are also used in combinatorial generation algorithms \cite{20,21}.

As a fresh look at the topic, we mention recent work in the context of functional programming on connecting heterogeneous data types through bijective mappings and natural number encodings \cite{22,23,24}.

\section{Conclusion and future work}

We have seen that the average performance of arithmetic computations with trees of type T is comparable, up to small constant factors, to computations performed with the binary data type B and it outperforms them by an arbitrarily large margin on the interesting special cases favoring the tree representations.

Still, does that mean that such binary trees can be used as a basis for a practical arbitrary integers package?

Native arbitrary length integer libraries like GMP or BigInteger take advantage of fast arithmetic on 64 bit words.

To match their performance, we plan to switch between bitstring representations for numbers fitting in a machine word and a tree representation for numbers not fitting in a machine word.
We have shown that some interesting number-theoretical entities like Mersenne, Fermat and perfect numbers have significantly more compact representations with our tree-based numbers. One may observe their common feature: they are all represented in terms of exponents of 2, successor/predecessor and specialized multiplication operations.

The fundamental theoretical challenge raised at this point is the following: can other number-theoretically interesting operations, with possible applications to cryptography be also expressed succinctly in terms of our tree-based data type? Is it possible to reduce the complexity of some other important operations, besides those found so far?

The methodology to be used relies on two key components, that have been proven successful so far, in discovering succinct representations for Mersenne, Fermat and perfect numbers, as well as low complexity algorithms for operations like \texttt{bitsize} and \texttt{exp2}:

- partial evaluation of functional programs with respect to known data types and operations on them, as well as the use of other program transformations
- salient number-theoretical observations, provable by induction, that relate operations on our tree data types to known identities and number-theoretical algorithms

References

1. Tarau, P.: Declarative modeling of finite mathematics. In: PPDP ’10: Proceedings of the 12th international ACM SIGPLAN symposium on Principles and practice of declarative programming, New York, NY, USA, ACM (2010) 131–142
2. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad-hoc. In: POPL. (1989) 60–76
3. Kaye, R., Wong, T.L.: On Interpretations of Arithmetic and Set Theory. Notre Dame J. Formal Logic Volume 48(4) (2007) 497–510
4. Wikipedia: Bijective numeration — wikipedia, the free encyclopedia (2012) [Online; accessed 2-June-2012].
5. Wikipedia: Great internet mersenne prime search — wikipedia, the free encyclopedia (2012) [Online; accessed 9-December-2012].
6. Tarau, P.: “Everything Is Everything” Revisited: Shapeshifting Data Types with Isomorphisms and Hylomorphisms. Complex Systems (18) (2010) 475–493
7. Knuth, D.E.: Mathematics and Computer Science: Coping with Finiteness. Science 194(4271) (1976) 1235 –1242
8. Goodstein, R.: On the restricted ordinal theorem. Journal of Symbolic Logic (9) (1944) 33–41
9. Rigo, M.: Numeration systems on a regular language: arithmetic operations, recognizability and formal power series. Theoretical Computer Science 269(12) (2001) 469 – 498
10. The Coq development team: The Coq proof assistant reference manual. LogiCal Project. (2004) Version 8.0.
11. Büchi, J.R.: On a decision method in restricted second order arithmetic. International Congress on Logic, Method, and Philosophy of Science 141 (1962) 1–12
Appendix

This appendix contains some additional code, used for testing and benchmarking our functions, grouped in the type class `Benchmarks`. First we define a prime number generator working with all our instances.

```haskell
class SpecialComputations n ⇒ Benchmarks n where
    primes :: [n]

primes = s (s e) : filter is_prime (odds_from (s (s (s e)))) where
    odds_from x = x : odds_from (s (s x))
```

12. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Transactions of the American Mathematical Society \textbf{141} (1969) 1–35
13. Tarau, P., Haraburda, D.: On Computing with Types. In: Proceedings of SAC’12, ACM Symposium on Applied Computing, PL track, Riva del Garda (Trento), Italy (March 2012) 1889–1896
14. Tarau, P.: Declarative Specification of Tree-based Symbolic Arithmetic Computations. In Russo, C., Zhou, N.F., eds.: Proceedings of PADL’2012, Practical Aspects of Declarative Languages, Philadelphia, PA, Springer, LNCS7149 (January 2012) 273–289
15. Kiselyov, O., Byrd, W.E., Friedman, D.P., Shan, C.c.: Pure, declarative, and constructive arithmetic relations (declarative pearl). In: FLOPS. (2008) 64–80
16. Kiselyov, O.: Type arithmetics: Computation based on the theory of types. CoRR cs.CL/0104010 (2001)
17. Briggs, P., Torczon, L.: An efficient representation for sparse sets. ACM Letters on Programming Languages and Systems \textbf{2} (1993) 59–69
18. Vuillemin, J.: Efficient Data Structure and Algorithms for Sparse Integers, Sets and Predicates. In: Computer Arithmetic, 2009. ARITH 2009. 19th IEEE Symposium on. (June 2009) 7–14
19. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik \textbf{38} (1931) 173–198
20. Martinez, C., Molinero, X.: Generic algorithms for the generation of combinatorial objects. In Rovan, B., Vojtas, P., eds.: MFCS. Volume 2747 of Lecture Notes in Computer Science., Berlin Heidelberg, Springer (2003) 572–581
21. Knuth, D.: The Art of Computer Programming, Volume 4, draft (2006) http://www-cs-faculty.stanford.edu/~knuth/taocp.html.
22. Vytiniotis, D., Kennedy, A.: Functional Pearl: Every Bit Counts. ICFP 2010 : The 15th ACM SIGPLAN International Conference on Functional Programming (September 2010) ACM Press.
23. Kobayashi, N., Matsuda, K., Shinohara, A.: Functional Programs as Compressed Data. ACM SIGPLAN 2012 Workshop on Partial Evaluation and Program Manipulation (January 2012) ACM Press.
24. Tarau, P.: A Unified Formal Description of Arithmetic and Set Theoretical Data Types. In Autexier, S., ed.: Intelligent Computer Mathematics, 17th Symposium, Calculemus 2010, 9th International Conference AISC/Calculemus/MKM 2010, Paris, Springer, LNAI 6167 (July 2010) 247–261
is_prime p = [p]==to_primes p

to_primes n = to_factors n p ps where
(p:ps) = primes

to_factors n p ps | cmp (mul p p) n == GT = [n]
to_factors n p ps | e_ r = p : to_factors q p ps where
(q,r) = div_and_rem n p

to_factors n p (hd:tl) = to_factors n hd tl

Next we define the Lucas-Lehmer fast primality test for Mersenne numbers:

lucas_lehmer :: n -> Bool
lucas_lehmer p = e_ y where
p_2 = s’ (s’ p)
four = i (o e)
m = exp2 p
m’ = s’ m
y = f p_2 four

f k n | e_ k = n
f k n = r where
x = f (s’ k) n
y = s’ (s’ (mul x x))
--r = reminder y m’
r = fastmod y m

-- fast computation of k mod 2^p-1
fastmod k m | k == s’ m = e
fastmod k m | LT = cmp k m = k
fastmod k m = fastmod (add q r) m where
(q,r) = div_and_rem k m

-- exponents leading to Mersenne primes
mersenne_prime_exps :: [n]
mersenne_prime_exps = filter lucas_lehmer primes

-- actual Mersenne primes
mersenne_primes :: [n]
mersenne_primes = map f mersenne_prime_exps where
f p = s’ (exp2 p)

The Ackerman function is a good benchmark for successor and predecessor operations:

ack :: n->n->n
ack x n | e_ x = s n
ack m1 x | e_ x = ack (s’ m1) (s e)
ack m1 n1 = ack (s’ m1) (ack m1 (s’ n1))

Next we define a variant of the 3x+1 problem / Collatz conjecture / Syracuse
function (see http://en.wikipedia.org/wiki/Collatz_conjecture) that, some-
what surprisingly, can be expressed as a mix of arithmetic operations and reflected list operations, to test the relative performance of some of our instances. It is easy to show that the Collatz conjecture is true iff the function \( \text{nsyr} \), implementing the n-th iterate of the Syracuse function, always terminates:

\[
\text{syracuse} :: n \rightarrow n
-- n \rightarrow c'' (3n+2)
\text{syracuse} n = c'' (\text{add} \ n \ (i \ n))
\]

\[
\text{nsyr} :: n \rightarrow [n]
\text{nsyr} n | e_n = [e]
\text{nsyr} n = n : \text{nsyr} (\text{syracuse} n)
\]

Finally we close our type class with the usual instance declarations:

\[
\text{instance} \ \text{Benchmarks} \ \text{Integer}
\text{instance} \ \text{Benchmarks} \ B
\text{instance} \ \text{Benchmarks} \ T
\]

The following example illustrates the first 8 sequences of the Syracuse function:

*Giant> map \text{nsyr} [0..7]
[[0],[1,2,0],[2,0],[3,5,8,6,2,0],[4,3,5,8,6,2,0],[5,8,6,2,0],[6,2,0],[7,11,17,26,2,0]]

Our generic benchmark function measures the CPU time for running a no argument toplevel function \( f \) received as a parameter.

\[
\text{benchmark mes} \ f = \text{do}
\ x \leftarrow \text{getCPUTime}
\ \text{print} \ f
\ y \leftarrow \text{getCPUTime}
\ \text{let} \ \text{time} = (y-x) \div 1000000000
\ \text{return} \ (\text{mes}++" :time"++(\text{show} \ \text{time}))
\]

The following benchmarks provide the code used in the section [9]

\[
\text{bm1t} = \text{benchmark} \ "\text{ack} 3 \ 7 \ \text{on} \ t" \ (\text{ack} \ (t \ (\text{toInteger} \ 3)) \ (t \ (\text{toInteger} \ 7)))
\text{bm1b} = \text{benchmark} \ "\text{ack} 3 \ 7 \ \text{on} \ b" \ (\text{ack} \ (b \ (\text{toInteger} \ 3)) \ (b \ (\text{toInteger} \ 7)))
\text{bm1n} = \text{benchmark} \ "\text{ack} 3 \ 7 \ \text{on} \ n" \ (\text{ack} \ (n \ (\text{toInteger} \ 3)) \ (n \ (\text{toInteger} \ 7)))
\]

\[
\text{bm2t} = \text{benchmark} \ "\text{exp2} t" \ (\text{exp2} \ (t \ (\text{toInteger} \ 14)))
\text{bm2b} = \text{benchmark} \ "\text{exp2} b" \ (\text{exp2} \ (b \ (\text{toInteger} \ 14)))
\text{bm2n} = \text{benchmark} \ "\text{exp2} n" \ (\text{exp2} \ (n \ (\text{toInteger} \ 14)))
\]

\[
\text{bm3 tvar} = \text{benchmark} \ "\text{sparse_set on a type}" \ (n \ (\text{bitsize} \ (\text{from_set} \ ps)))
\ \text{where} \ ps = \text{map} \ \text{tvar} [101,2002..100000]
\text{bm4t} = \text{benchmark} \ "\text{bitsize of Mersenne 45}" \ (n \ (\text{bitsize mersenne45}))
\text{bm5t} = \text{benchmark} \ "\text{bitsize of Perfect 45}" \ (n \ (\text{bitsize perfect45}))
\]

\[
\text{bm6t} = \text{benchmark} \ "\text{large leftshift}" \ (\text{leftshift} \ n \ n) \ \text{where}
\]
\[ n = t \] \text{prime45} \\
\texttt{bm3' tvar m = benchmark "to/from list on a type"} \\
\quad (n (\text{bitsize (from_list (to_list (from_list ps))))) ) \\
\quad \text{where ps = map tvar [101,2002..3000+m]} \\
\texttt{bm3'' tvar m = benchmark "to/from list on a type"} \\
\quad (n (\text{bitsize (from_list (to_list (from_list ps))))) ) \\
\quad \text{where ps = map \text{dual.tvar} [101,2002..3000+m]} \\
\texttt{bm7t = benchmark "primes on t"} \\
\quad (\text{last (take 100 ps)) where ps = \text{primes :: [T]}} \\
\texttt{bm7b = benchmark "primes on b"} \\
\quad (\text{last (take 100 ps)) where ps = \text{primes :: [B]}} \\
\texttt{bm7n = benchmark "primes on n"} \\
\quad (\text{last (take 100 ps)) where ps = \text{primes :: [Integer]}} \\
\texttt{bm8t = benchmark "mersenne on t"} \\
\quad (\text{last (take 7 ps)) where ps = \text{mersenne_primes :: [T]}} \\
\texttt{bm8b = benchmark "mersenne on b"} \\
\quad (\text{last (take 7 ps)) where ps = \text{mersenne_primes :: [B]}} \\
\texttt{bm8n = benchmark "mersenne on n"} \\
\quad (\text{last (take 7 ps)) where ps = \text{mersenne_primes :: [Integer]}} \\
The following tests the syracuse / Collatz conjecture up to \( m \) \\
\texttt{test_syr tvar m = maximum (map length (map (nsyr . tvar) [0..m]))} \\
\texttt{compress_syr tvar m = r where} \\
\quad \texttt{nss = map (nsyr . tvar) [0..m]} \\
\quad \texttt{r = maximum (map \text{n.bitsize} (map from_list nss))} \\
\quad \text{-- overflows for m>2 except for tvar=t} \\
\texttt{compress_syr_twice tvar m = r where} \\
\quad \texttt{nss = map (nsyr . tvar) [0..m]} \\
\quad \texttt{r = \text{n.bitsize} (from_list (map from_list nss))} \\
\texttt{bm9 tvar = benchmark "test syracuse" (test_syr tvar 2000)} \\
\texttt{bm10 tvar = benchmark "compress syracuse" (compress_syr tvar 100)} \\
\texttt{bm11 tvar = benchmark "compress syracuse_twice" r where} \\
\quad \texttt{r = compress_syr_twice tvar 20} \\
The following function computes the size of a tree-represented natural number: \\
\texttt{tsize T = 1} \\
\texttt{tsize (V x xs) = 1+ sum (map tsize (x:xs))} \\
\texttt{tsize (W x xs) = 1+ sum (map tsize (x:xs))} \\
The function \( kth \) computes the k-th iteration of a function application.
kth _ k x | e_ k = x
kth f k x = f (kth f (s' k) x)

The following assertions are used for testing some of our operations:

-- relation between iterations of o,i and power of 2
a1 k = pow (i e) k == s (kth o k e)
a2 k = pow (i e) k == s (s (kth i (s' k) e))

-- relations between power operations and multiplication
a3 n b = (u=v,u,v) where
  m = pow (i e) n
  u = kth o n b
  v = s' (mul m (s b))
a4 x y = (a=b,a,b) where
  a = mul (pow (i e) x) y
  b = s (kth o x (s' y))