Manipulating the sleeping beauty mutase operon for the production of 1-propanol in engineered Escherichia coli

Kajan Srirangan, Lamees Akawi, Xuejia Liu, Adam Westbrook, Eric JM Blondeel, Marc G Aucoin, Murray Moo-Young and C Perry Chou*

Abstract

Background: While most resources in biofuels were directed towards implementing bioethanol programs, 1-propanol has recently received attention as a promising alternative biofuel. Nevertheless, no microorganism has been identified as a natural 1-propanol producer. In this study, we manipulated a novel metabolic pathway for the synthesis of 1-propanol in the genetically tractable bacterium Escherichia coli.

Results: E. coli strains capable of producing heterologous 1-propanol were engineered by extending the dissimilation of succinate via propionyl-CoA. This was accomplished by expressing a selection of key genes, i.e. (1) three native genes in the sleeping beauty mutase (Sbm) operon, i.e. sbm-ygfD-ygfG from E. coli, (2) the genes encoding bifunctional aldehyde/alcohol dehydrogenases (ADHs) from several microbial sources, and (3) the sucCD gene encoding succinyl-CoA synthetase from E. coli. Using the developed whole-cell biocatalyst under anaerobic conditions, production titers up to 150 mg/L of 1-propanol were obtained. In addition, several genetic and chemical effects on the production of 1-propanol were investigated, indicating that certain host-gene deletions could abolish 1-propanol production as well as that the expression of a putative protein kinase (encoded by ygfD/argK) was crucial for 1-propanol biosynthesis.

Conclusions: The study has provided a novel route for 1-propanol production in E. coli, which is subjected to further improvement by identifying limiting conversion steps, shifting major carbon flux to the productive pathway, and optimizing gene expression and culture conditions.

Keywords: Bifunctional aldehyde/alcohol dehydrogenases, Cyanocobalamin, Metabolic engineering, Methylmalonyl-CoA mutases, Propanol, Propionate, Sleeping beauty mutase operon

Background

The majority of the world’s energy requirements are currently met through unfettered use of carbonaceous fossil fuels. However, mounting environmental and socio-economic concerns associated with exploiting these resources have led to the exploration of more sustainable and environmentally friendly energy forms, in particular biofuels [1]. While ethanol, one of the most common and successful biofuels today, almost possesses established economic niches within energy markets, significant attention is being directed towards the production of longer-chain alcohols, such as 1-butanol and 1-propanol [2,3]. These longer-chain alcohols tend to have a higher energy content, lower hygroscopicity, and water solubility; and are compatible with existing transportation infrastructures and pipelines [4].

In addition to being a potential biofuel, 1-propanol serves as an important solvent and chemical for relevant industrial applications [5]. Up to now, the production of 1-propanol primarily relies on chemical synthesis and no microbial cells have been identified as a natural 1-propanol producer. Nevertheless, recent advances in synthetic biology and metabolic engineering have enabled biological production of 1-propanol using various non-natural but genetically tractable microorganisms, among which Escherichia coli is the most common. It is critical to
identify potential synthetic pathways and enzymes relevant to the target metabolite (i.e. 1-propanol) heterologously produced in a non-native microbial host. For example, Atsumi et al., [2] devised a synthetic approach to convert 2-ketobutyrate to produce 1-propanol in a genetically engineered E. coli strain through a non-fermentative bio-synthetic pathway mediated by a promiscuous 2-ketoacid decarboxylase and an aldehyde/alcohol dehydrogenase (ADH). The conversion bioprocess was further enhanced using an evolved citramalate pathway [6]. On the other hand, Choi et al., [7] demonstrated the production of 1-propanol by grafting a pathway containing several key genes for further conversion of L-threonine into 1-propanol in an engineered L-threonine overproducing E. coli strain. Jain and Yan [5] reported the production of 1-propanol in E. coli by expanding the 1,2-propanediol pathway with two steps mediated by a novel 1,2-propanediol dehydratase and an ADH. More recently, Shen and Liao [8] combined the native threonine pathway and a heterologous citramalate pathway for synergistic production of 1-propanol in E. coli. In addition to the aforementioned E. coli platforms, Deng and Fong [9] explored direct conversion of untreated plant biomass to 1-propanol using an engineered Thermobifida fusca strain.

Herein, we present an alternative novel biosynthesis of 1-propanol by manipulating the sleeping beauty mutase (Sbm) operon in E. coli. This four-gene operon (sbm-ygfD-ygfG-ygfH) encodes various enzymes involved in a cobalamin-dependent metabolic pathway for decarboxylation of succinate into propionate [10]. The metabolic context of the Sbm-pathway remains ambiguous, but is suspected to be involved in the assimilation of unusual carbon sources, such as succinate and propionate. Moreover, synonymous to its name, the operon genes are hardly expressed possibly due to an inactive or weak promoter-operator system [11,12]. Three of the encoded proteins from this operon are identified to be members of the crotonase superfamily, namely (1) sbm encoding a cobalamin-dependent methylmalonyl-CoA mutase (or Sbm; sleeping beauty mutase), which catalyzes the isomerization of succinyl-CoA to L-methylmalonyl-CoA; (2) ygfG encoding a methylmalonyl-CoA decarboxylase (YgfG), which catalyzes the decarboxylation of methylmalonyl-CoA to propionyl-CoA; and (3) ygfH encoding a propionyl-CoA:succinate transferase (YgfH) [13]. The ygfD gene encodes a putative protein kinase (YgfD/ArgK) whose function remains unclear. However, YgfD could potentially interact with Sbm to form a multi-subunit complex [14]. Although the structure, function, and relationship of these enzymes have been characterized, hardly any work has been performed for their practical application.

In this study, we demonstrated the production of 1-propanol using engineered E. coli strains with an activated Sbm operon for extended dissimilation of succinate (see Figure 1 for relevant pathways). First, three E. coli genes of sbm, ygfD, and ygfG were assembled as a single operon and then were expressed to convert succinyl-CoA to propionyl-CoA. Second, the genes encoding bifunctional ADHs from various microorganisms were cloned and expressed to convert propionyl-CoA to 1-propanol. We further channeled carbon flux towards the 1-propanol-producing pathway by expressing sucCD (encoding succinyl-CoA synthetase) from E. coli. These biosynthetic strategies were implemented into E. coli based on the construction of triple-plasmid expression systems (Figure 2) to facilitate the evaluation of suitable pathways. The 1-propanol-producing capacity of these metabolically engineered E. coli strains were evaluated under anaerobic cultivation conditions. The exometabolome of the culture was analyzed using 1-dimensional hydrogen nuclear magnetic resonance (1D-1H-NMR) spectroscopy with more than thirty metabolites being identified. In addition, we investigated several genetic and chemical effects associated with 1-propanol production in engineered E. coli.

Results

Construction of propanogenic E. coli strains for 1-propanol production

Based on the proposed novel pathway for the production of 1-propanol (Figure 1), the intracellular pool of propionyl-CoA, a rare metabolite in E. coli, should be first increased to promote its subsequent conversion to 1-propanol. To do this, genes encoding methylmalonyl-mutase (Sbm), arginine kinase (YgfD/ArgK), and methylmalonyl-CoA decarboxylase (YgfG) from the Sbm operon were cloned and expressed under the control of the P_{lac} promoter from plasmid pK-scpAKB. To convert the increased pool of propionyl-CoA to 1-propanol, the gene encoding a common bifunctional ADH from C. acetobutylicum was cloned and expressed under the control of the P_{lac} promoter from plasmid pU-adhE2(CA). While the wild-type strain of BW25141 showed no sign of propionate or 1-propanol production, approximately 47 mg/L of 1-propanol was detected for WT-adhE2(CA)² when glucose was used as the sole carbon source (Table 1), implying that the implemented 1-propanol production pathway was functioning. A potential factor limiting the overall production of 1-propanol was perceived to be the abundance of various precursors, such as succinate and succinyl-CoA. To investigate this, the gene encoding E. coli succinyl-CoA synthetase (sucCD) gene was cloned and expressed under the control of the P_{araB} promoter from plasmid pB-sucCD. Compared to WT-adhE2(CA)², a significant increase in both propionate and 1-propanol production was observed for WT-adhE2(CA)³ (Table 1), implying that the conversion catalyzed by succinyl-CoA synthetase can limit the production of 1-propanol under shake flask culture conditions. On the other hand, the production of propionate and 1-propanol
was further extended for WT-adhE2(CA)3 when 4 g/L succinate was supplemented in the cultivation medium (Table 1), implying that succinate could also be a key precursor limiting 1-propanol production.

To further characterize this pathway, we investigated the dispensability of YgfD/ArgK, a gene product from the Sbm operon, for 1-propanol production. To do this, we excised the YgfD/ArgK coding region from plasmid pK-scpAKB. The resulting plasmid pK-scpAB was used to replace pK-scpAKB in WT-adhE2(CA)3 to form WT-adhE2(CA)3-ΔygfD. While 1-propanol production was detected in the WT-adhE2(CA)3-ΔygfD culture, the titer was approximately one third that of WT-adhE2(CA)3 (Table 1). Interestingly, the propionate concentrations from the two strains of WT-adhE2(CA)3 and WT-adhE2(CA)3-ΔygfD were approximately the same. From these results, we assume that the presence of YgfD/ArgK can be crucial for 1-propanol production.

Figure 1 The genetically engineered central metabolic pathway under anaerobic conditions showing the activation of the Sbm operon (sbm, ygfD, and ygfG), and the expression of various adhEs used in this study. Red colored gene names above or beside dashed lines represent diverting pathways; metabolites in red boxes are unwanted. Genes in green represent the necessary genes for 1-propanol conversion from glucose; those that are in bold font and boxed represent genes expressed via episomal plasmids.
Manipulation of cultivation conditions

As mentioned above, the production of 1-propanol can be limited by the structural rearrangement of succinyl-CoA into L-methylmalonyl-CoA. The catalytic activity of the enzyme responsible for this conversion, Sbm, is dependent on the availability of cyanocobalamin [15]. While E. coli encodes several cobalamin-dependent mutases and possesses receptors specifically for uptake of vitamin B₁₂ (which is the active form of cyanocobalamin) [16], the organism neither produce cyanocobalamin in vivo nor require it for cell growth [17]. Using WT-adhE2(CA)³ as the host/vector system, it was observed that 1-propanol can be produced only when a threshold concentration of cyanocobalamin of 0.2 μM was supplemented in the cultivation medium. Using several cyanocobalamin concentrations less than 0.2 μM either significantly reduced or even abolished 1-production (Figure 3). As a result, this cyanocobalamin concentration of 0.2 μM was used for all cultivations.

Studies were conducted to investigate the effects of various operating parameters on cultivation performance, particularly 1-propanol titer. WT-adhE2(CA)³ was grown aerobically and then resuspended in five different optical cell densities for anaerobic fermentation and 1-propanol production. Typical major fermentation metabolites, including ethanol, lactate, and acetate, as well as those relevant to the proposed pathway, including succinate, 1-propanol, and propionate, were detected in extracellular medium samples and their titer distributions under various culture conditions are summarized in Figure 4. While the distribution of two major metabolites of acetate and lactate appears to be affected by suspension cell density, the sum of their titers remained rather constant at approximately 8 g/L. Such high levels of major metabolites can potentially inhibit cell growth during anaerobic fermentation. Interestingly, the titer of the other major metabolite ethanol was minimally affected by suspension cell density by maintaining at approximately 2 g/L. Metabolites associated with the 1-propanol-producing pathway were considered minor and their titer distribution was also affected by suspension cell density. 1-Propanol titer reached a peak level at approximately 150 mg/L when suspension cell density was higher than 10 OD₆₀₀. Considering the above effects, suspension cell density at 25 OD₆₀₀ was chosen for all characterization experiments in this study. In addition to HPLC analysis, metabolites of interest were also analyzed by NMR, either qualitatively or quantitatively, based on their unique spectral signature and the results of a representative culture sample are summarized in Figure 5. In particular, the spectral signature associated with 1-propanol, i.e. the three peak clusters, was mapped to verify the production of 1-propanol (Figure 5C).
Effects of various ADHs on 1-propanol production

Based on reported biosynthetic pathways of several alcohols (particularly long-chain alcohols) [18,19], the sequential reduction of propionyl-CoA to propionaldehyde and then to 1-propanol via a bifunctional ADH can represent a key step limiting the overall production of 1-propanol. In addition to *C. acetobutylicum* bifunctional ADH (AdhE2), various other ADHs were investigated in this study. *E. coli* has several ADHs, including AdhE, AdhP, YqhD, EutG, and YiaY [18]. To evaluate the effects of these endogenous ADHs on 1-propanol production, an *E. coli* strain of WT2, similar to WT-adhE2(CA)3 but without episomal expression of AdhE2, was derived. This strain, though harboring its native ADHs, failed to produce any detectable amount of 1-propanol after 72 h of cultivation (data not shown). The results suggest that 1-propanol production was primarily mediated by *C. acetobutylicum* AdhE2 in WT-adhE2(CA)3. In principle, 1-propanol should be detected in WT2, since bioinformatics databases such as BRENDA [20] report that certain *E. coli* ADHs also possess affinity for either propionyl-CoA and/or propionaldehyde as potential substrates. The abolishment of 1-propanol production in WT2 may be attributed to the very low basal levels of the native ADHs present in the cell with higher affinities for other substrates.

To further study the effects of various *E. coli* ADHs on 1-propanol production, we respectively cloned the *adhE*, *adhP*, and *yqhD* genes for episomal expression (Figure 2) and the results are summarized in Table 2. Amongst the native ADHs, YqhD and AdhP were of particular interest because of their affinity for medium-to-long chain

Table 1 1-Propanol and other metabolite titers (mg/L) in reduced M9 minimal media using *E. coli* strain BW25141 transformed with appropriate plasmids

Strain	Carbon source	Succinate	Lactate	Acetate	Propionate	Ethanol	1-Propanol
Control	Glucose	307 ± 36	128 ± 11	4436 ± 250	—	3021 ± 156	—
Experimental							
WT-adhE2(CA)²	Glucose	264 ± 8	2601 ± 642	2961 ± 72	Trace	2640 ± 170	47 ± 2
WT-adhE2(CA)³	Glucose	231 ± 11	1877 ± 303	2653 ± 55	51 ± 14	3199 ± 283	103 ± 16
WT-adhE2(CA)³	Glucose and succinate	2200 ± 172	2293 ± 2970	3699 ± 352	123 ± 21	2774 ± 297	168 ± 39
WT-adhE2(CA)³-Δygfd	Glucose	269 ± 94	3970 ± 1367	2527 ± 142	52 ± 8	1999 ± 104	37 ± 1

Cultures were induced at an O.D₆₀₀ of 15. Strains were cultivated anaerobically at 37°C for 72 h. All experiments were performed in triplicate.
substrates [18]. Titer of 1-propanol detected in the WT-adhP(EC) and WT-yqhD(EC) cultures were ~25% less than that in WT-adhE2(CA)3. Note that both YqhD and AdhP are unifunctional ADHs and thus lack an acetaldehyde dehydrogenase domain at the carboxyl end. The bifunctional AdhE of E. coli (encoded by the adhE gene) was also evaluated. However, the plasmid containing the E. coli adhE gene cannot be transformed into E. coli cells since episomal expression of the endogenous AdhE appears to be physiologically toxic. To circumvent this limitation, we derived an aerotolerant mutant of AdhE, which was previously documented to be less toxic than wild-type AdhE, and the corresponding propanogenic strain, i.e. WT-ΔadhE. Cultures of this mutant strain was cultivated anaerobically in reduced M9 minimal media with 20 g/L of glucose at 37°C for 72 h.

Effects of host-gene deletions on 1-propanol production
While 1-propanol production based on this novel pathway in E. coli is feasible, the titer and yield can be potentially limited by the accumulation of major metabolites of lactate, acetate, and ethanol (Figure 4). Hence, we also explored deletion of several host genes involved in the production of these metabolites, specifically adhE encoding AdhE, pta encoding phosphotransacetylase, and ldhA encoding lactate dehydrogenase, and the results are summarized in Table 3. Deletion of adhE (in WT-ΔadhE) reduced the production of ethanol significantly compared to wild-type BW25141. However, the 1-propanol-producing capacity of WT-ΔadhE appears to be completely abolished, even after being transformed with the triple-plasmid expression system for activation of the Sbm pathway (data not shown). On the other hand, deleting pta (in WT-Δpta) resulted in marked growth retardation though the acetate levels were significantly reduced, compared to wild-type BW25141, with the main fermentative byproduct being lactate. Similar to WT-ΔadhE, WT-Δpta was also incapable of producing 1-propanol when being transformed with the triple-plasmid expression system (data not shown). Deletion of ldhA (in WT-ΔldhA) significantly reduced lactate titers, with superior cell growth compared to wild-type BW25141 under aerobic conditions. In contrast to the previous two mutant strains, WT-ΔldhA retained the 1-propanol-producing capacity upon its transformation with the triple-plasmid expression system. Nevertheless, the 1-propanol titer for these expression systems were approximately half of that for WT-adhE2(CA)3 (Table 3). Note that both ethanol and acetate titers for these WT-ΔldhA expression systems were significantly higher than WT-adhE2(CA)3, implying that the carbon flux was not properly channeled into the 1-propanol-producing pathway. Furthermore, while WT-ΔldhA expression systems were competent producers of 1-propanol, certain double (i.e. ΔldhA ΔadhE) and triple mutant (i.e. ΔldhA ΔadhE Δpta) counterparts failed to produce the target metabolite under shake flask culture conditions (data not shown).

Discussion
To date, metabolic engineering of E. coli for 1-propanol biosynthesis has been conducted through two major pathways, i.e. (1) the keto-acid biosynthetic pathway [6-8] and (2) the extended 1,2-propanediol pathway [5]. Unlike these approaches, our strategy focused on activation of the endogenous but often silent Sbm operon for extended conversion of succinate into 1-propanol. The 1-propanol-producing capacity was implemented by transforming a
wild-type *E. coli* strain, BW25141, with three plasmids respectively harboring the Sbm operon genes (with the exception of *ygfG*), *sucCD*, and *adhE2* for expression of these key genes. Using the metabolically engineered strains for anaerobic fermentation, we obtained 1-propanol titers up to 150 mg/L which is comparable to those of other studies [5,9]. In addition, we identified several potential factors limiting 1-propanol production, in particular the abundance of precursors and the conversion step catalyzed by a bi-functional alcohol/aldehyde dehydrogenase. While it is possible to perform this biotransformation aerobically, anaerobic cultivation was chosen for two reasons. Firstly, the two TCA intermediates of succinate and succinyl-CoA are the precursors for 1-propanol biosynthesis and their

Figure 5 Single dimension hydrogen NMR spectra scanned at 600 MHz from samples of *E. coli* supernatant from strain WT-adhE2(CA)³.

Strain was cultivated anaerobically in reduced M9 minimal media with 20 g/L of glucose at 37°C for 72 h. Culture samples were then centrifuged for 3 min at 13,000 × g to recover the supernatant fraction for analysis. **A** The 25 OD₆₀₀ spectrum profiled for metabolites using Chenomx Suite 7.5. **B** Zoomed in panels from part A, identifying the three peak clusters of 1-propanol and major end-product metabolites. From left to right the panels show: i. lactate, glucose and ethanol peaks, ii. convolution of glycine spectra with that of the first 1-propanol peak cluster, iii. acetate, iv. the unobscured second peak cluster of 1-propanol, v. propionate, vi. the third peak cluster of 1-propanol. **C** Zoomed in panels from part B of the three 1-propanol peak clusters from pure solution standard and supernatant of WT-adhE2(CA)³ grown at 25 OD₆₀₀.
abundance can potentially limit 1-propanol production. Under anaerobic, but not aerobic, conditions, *E. coli* generates both succinate and succinyl-CoA as fermentation end products via a reductive reverse TCA pathway (Figure 1). Secondly, potential oxygen-sensitivity of AdhE2 and other ADHs is another limitation for oxygenic production of 1-propanol. While the expression of enzymes encoded by the Sbm operon is potentially detectable, their levels are far too low to form a functional pathway [13,14,23]. Moreover, due to *E. coli*'s inability to produce coenzyme B12, the expressed Sbm remains as an inactive apo-enzyme, but nano-molar supplementation of cyanocobalamin can result in the formation of active Sbm [24,25]. Our observations of no detectable titers of propionate and 1-propanol for wild-type BW25141 as well as the production of 1-propanol upon heterologous expression of the Sbm operon genes with proper supplementation of cyanocobalamin was associated with the activation of the Sbm-pathway. While the activated Sbm-pathway can result in 1-propanol production, the expression of SucCD was deemed crucial to increase the succinyl-CoA pool and consequently the 1-propanol titer. In addition, 1-propanol production was enhanced by exogenous supplementation of succinate. These results suggest that 1-propanol production can be limited by the availability of various precursors and key enzymes along this 1-propanol-producing pathway.

Table 2 Comparison of 1-propanol production titers and other metabolites (mg/L) by expression of several ADHs in *E. coli* strain BW25141, transformed with appropriate plasmids

Strain	Metabolite titers (mg/L)	Succinate	Lactate	Acetate	Propionate	Ethanol	1-Propanol
Control							
BW25141	307 ± 36	128 ± 11	4436 ± 250	—	3021 ± 156	—	
Experimental							
WT-adhE2(CA)3	231 ± 11	1877 ± 303	2653 ± 55	51 ± 14	2774 ± 297	103 ± 16	
WT-adhP(EC)	239 ± 57	2986 ± 498	2545 ± 89	100 ± 18	3192 ± 80	84 ± 7	
WT-yqhD(EC)	Trace	3322 ± 920	3818 ± 826	29 ± 67	3469 ± 538	69 ± 10	
WT-adhEmut(EC)	Trace	3762 ± 393	2164 ± 64	Trace	4016 ± 83	74 ± 6	
WT-adhE1(CA)	Trace	411 ± 120	4247 ± 198	71 ± 10	4397 ± 403	76 ± 11	
WT-bdhB(CA)	150 ± 131	2139 ± 474	2329 ± 21	67 ± 22	3455 ± 169	109 ± 6	

Cultures were suspended in reduced M9 minimal media and induced at an O.D_{600} of 15. Strains were cultivated anaerobically at 37°C for 72 h. Glucose (20 g/L) was used as the sole carbon source and all experiments were performed in triplicate.

Table 3 Secretion profile of the metabolites produced (mg/L) by various knock out strains with or without appropriate plasmids

Strain	Metabolite titers (mg/L)	Succinate	Lactate	Acetate	Propionate	Ethanol	1-Propanol
Controls							
BW25141	307 ± 36	128 ± 11	4436 ± 250	—	3021 ± 156	—	
WT-ΔadhE	Trace	99 ± 17	4646 ± 705.2	—	1936 ± 741.9	—	
WT-Δpta	776 ± 57	7259 ± 14	694 ± 196	—	3927 ± 691	—	
WT-ΔldhA	187 ± 7	195 ± 14	3960 ± 151	—	6128 ± 80	—	
Experimental							
WT-adhE2(CA)3	231 ± 11	1877 ± 303	2653 ± 55	51 ± 14	2774 ± 297	103 ± 16	
ΔldhA- adhE(EC)	206 ± 49	63 ± 3	4181 ± 550	—	6209 ± 183	42 ± 4	
ΔldhA- adhE2(CA)	247 ± 64	77 ± 4	4210 ± 292	—	6713 ± 270	57 ± 1	
ΔldhA- adhE1(CA)	256 ± 106	81 ± 10	3696 ± 652	—	5863 ± 9	45 ± 10	
ΔldhA- adhEmut(EC)	243 ± 8	79 ± 7	3814 ± 26	—	6021 ± 104	60 ± 9	
ΔldhA- adhP(EC)	208 ± 115	190 ± 16	4488 ± 126	—	6124 ± 119	65 ± 2	
ΔldhA- yqhD(EC)	145 ± 49	99 ± 16	4145 ± 14	—	5732 ± 77	38 ± 1	
ΔldhA- bdhB(CA)	212 ± 50	89 ± 12	4351 ± 204	—	5652 ± 195	41 ± 4	

Cultures were suspended in reduced M9 minimal media and induced at an O.D_{600} of 15. Strains were cultivated anaerobically at 37°C for 72 h. Glucose (20 g/L) was used as the sole carbon source and all experiments were performed in triplicate.
While the metabolic context for the three enzymes encoded by the four-gene Sbm operon, i.e. Sbm, YgfG, and YgfH, has been unraveled, the biological role of the other member, i.e. YgfD/ArgK, remains ambiguous. Earlier studies determined that YgfD/ArgK is a putative arginine kinase interacting with Sbm in vivo and in vitro [14] and involved in the phosphorylation of periplasmic binding proteins for amino acid translocation [11]. The activity of YgfD/ArgK was shown to be potentially essential for 1-propanol biosynthesis since the 1-propanol titer was significantly reduced by the ygfD/argK deletion. Interestingly, propionate production was hardly affected by the ygfD/argK deletion, and this result is consistent with a previous report [26], where propionate was derived from fatty acids by expressing the Sbm-operon genes excluding ygfD/argK in an engineered E. coli strain.

A selection of native and non-native ADHs were heterologously expressed for evaluation of their effects on 1-propanol-producing capacity of various metabolically engineered E. coli strains, with AdhE2 and BdhB being identified as the most prominent ones for 1-propanol production. Nevertheless, our consistent observation that ethanol titers were significantly higher than 1-propanol implies that propionyl-CoA or propionaldehyde might have less affinity towards ADHs than acetyl-CoA or acetaldelyde. Several native E. coli ADHs (e.g. YqhD, AdhP, and AdhE^{MUT}) were also active in driving 1-propanol production, but in a much lower titer. In particular, the generation of the aerotolerant AdhE mutant (AdhE^{MUT}) opens an avenue for aerobic production of 1-propanol. Under anaerobic conditions, the maximum theoretical yield (on the molar basis) of 1-propanol from glucose is less than one due to limited NADH availability. Thus, developing an oxygenic production system would be beneficial as it increases the carbon throughout whilst improving cell growth and physiology.

Under anoxic conditions for anaerobic fermentation in E. coli, the carbon flux at the PEP node favors reduction into pyruvate rather than carboxylation into oxaloacetate (OAA), with lactate, acetate, and ethanol as major metabolites (Figure 1). Note that there are four NADH-consuming steps along the 1-propanol-producing pathway downstream of phosphoenolpyruvate (PEP), whereas only one or two NADH-consuming steps for the other pathways associated with the major metabolites. The anaerobic reactions within the metabolic network are optimized in order to balance the cell’s energy budget and electrons. Consequently, only ~10% of glucose consumed is channeled towards succinate and cell mass [27]. Our results suggest that the production of 1-propanol was potentially hampered by the inherent limitation in succinate production and a metabolic deficiency in NADH generation. Interestingly, propionate was also concomitantly produced with 1-propanol in our metabolically engineered strains (Tables 1 and 2). Additional studies are needed to elucidate the dichotomy between 1-propanol and propionate accumulation.

There is an apparent need to reduce the amounts of major metabolites, i.e. ethanol, acetate, and lactate. This could be achieved by knocking out relevant native genes in the hope to redirect the carbon flux into the 1-propanol-producing pathway. While deletions of both adhE and pta were previously found to improve succinate titers [28], these mutations abolished 1-propanol production in our study (data not shown). Deletion of pta resulted in the channeling of the carbon flux towards lactate accumulation. In addition, heterologous expression of E. coli AdhE or other ADH homologs failed to complement the adhE genomic knockout in terms of restoring 1-propanol production, potentially due to unknown perturbations in the metabolite pool or gene regulation. While the lactate level was significantly reduced for the ldhA null mutants, they produced considerable levels of both acetate and ethanol, thus reducing the carbon flux towards 1-propanol production (Table 3). Nonetheless, the ldhA mutation was deemed beneficial since it offers an additional NADH source and greatly reduces the acidification of the medium, thus improving cell growth.

Another critical factor limiting the production of 1-propanol (and other desired metabolites, such as succinate [28] and malate [29]) is the energetically favored diversion of carbon flux at the node of PEP towards pyruvate, resulting in the production of the major metabolites ethanol, lactate, and acetate. Blocking the production of one of these major metabolites (i.e. lactate, acetate, or ethanol) causes the accumulation of the others without improving the overall production of 1-propanol since these major metabolites all share the same precursor of pyruvate. Therefore, the implementation of a “driving force” diverting the carbon flux from pyruvate to OAA appears to be inevitable. Several metabolic engineering strategies to improve this are currently under our investigation. Since a considerable amount of succinate accumulated in the extracellular medium potentially due to the poor affinity of succinate to SucCD (K_m of ~0.25 mM with succinyl-CoA as the substrate in comparison to K_m of ~4 mM with succinate as the substrate [30]), we are also identifying novel succinyl-CoA synthethases with a higher affinity for succinate to alleviate this limitation in 1-propanol production.

Conclusions

In this study, we demonstrated the manipulation of the homologous Sbm operon for extended dissimilation of succinate in E. coli, leading to 1-propanol production. Using the engineered E. coli strains for anaerobic cultivation in a shaker, 1-propanol titers up to 150 mg/L
could be obtained. However, ethanol, acetate, and lactate represented the major metabolites, potentially limiting the productivity of 1-propanol. To improve the efficiency and applicability of this biocatalytic system, further studies have to be conducted to derive superior production strains by eliminating key conversion bottlenecks, metabolic imbalances, and undesirable byproducts as well as to optimize gene expression and culture conditions.

Methods

Plasmid construction

All plasmids and primers used in this study are listed in Table 4. Genomic DNA from various bacterial strains was isolated using the Blood & Tissue DNA Isolation Kit (Qiagen, Hilden, Germany). Standard recombinant DNA technologies for gene cloning [31] were applied. Various DNA polymerases, restriction endonucleases, T4 DNA ligase, and Antarctic phosphatase were obtained from New England Biolabs (Ipswich, MA). All oligonucleotides were obtained from Integrated DNA Technologies (Coralville, IA). DNA sequencing was conducted in the Centre for Applied Genomics at the Hospital for Sick Children (Toronto, Canada).

The succinyl-CoA synthetase gene (sucCD) from *E. coli* was cloned into the plasmid pBRR1MCS-3 for its expression under the regulation of the inducible *P*araB promoter. To make this construct, sucCD was PCR-amplified from *E. coli* BW25141 genomic DNA using the c-sucCD primer set, whereas the araC-ParaB fragment was PCR-amplified from pKD46 using the c-paraB primer set. The two DNA fragments were then transcriptionally fused with splice overlap extension PCR [37] using the forward primer c-ParaB and the reverse primer c-sucCD. The resulting *araC*-ParaB:sucCD fragment was directionally cloned into the XhoI and XbaI restriction sites of pBBR1MCS-3, yielding pB-sucCD.

The fusion containing the three genes of *sbm-ygfD-ygfG* from the *Sbm* operon was PCR-amplified from *E. coli* BW25141 genomic DNA using the c-scpAB primer set. The amplified DNA fragment was non-directionally cloned into the EcoRI restriction site of pK184. A clone with the correct transcriptional orientation of the *sbm-ygfD-ygfG* fragment with respect to the inducible *P*lac promoter was selected and verified by DNA sequencing, yielding pK-scpAKB. To test the essentiality of YgfD/ArgK, PCR was used to amplify the entire pK-scpAKB construct, with the exception of ygfD, using the c-argK primer set. This resulted in the addition of a flanking XbaI site downstream of *sbm* and upstream of *ygfG*. XbaI digestion and relegation of this PCR product rendered plasmid pK-scpAB.

A selection of genes encoding alcohol/aldehyde dehydrogenases from various sources were respectively cloned into pUC19 as transcriptional fusions under the control of the inducible *P*lac promoter. To do this, the *adhE*, *ydhD*, and *adhP* genes were amplified from *E. coli* BW25141 genomic DNA using the c-adhE(EC), c-ydhD(EC), and c-adhP(EC) primer sets, respectively. The resulting PCR products were individually fused with the BamHI-linearized pUC19 using the In-Fusion PCR Cloning System (Clontech Laboratories Inc, Mountainview, CA) to yield pU-adhE(EC), pU-ydhD(EC), and pU-adhP(EC), respectively. Similarly, the *adhE2*, *adhE1*, and *bdhB* genes were PCR-amplified from *Clostridium acetobutylicum* ATCC 824 genomic DNA using the c-adhE2(CA), c-adhE1(CA), and c-bdhB primer sets, respectively. The resulting PCR products were individually fused with the BamHI-linearized pUC19 to yield pU-adhE2(CA), pU-adhE1(CA), and pU-bdhB(CA), respectively. Plasmid pU-adhEMUT(EC) was derived from pU-adhE(EC) by generating a Glu568Lys mutation within the *adhE* coding sequence using the Phusion Site-directed Mutagenesis Kit (New England Biolabs) with the m-adhE primer set and the point-mutation was screened based on the loss of a unique Sphi restriction site. Similar to a previous approach [26], pU-adhEMUT(EC) was used to express an aero-tolerant *E. coli* alcohol/acetaldehyde dehydrogenase mutant.

Bacterial strains and chromosomal manipulation

A selection of *E. coli* host strains and host/vector systems used in this study are listed in Tables 4 and 5, respectively. BW25141 was used to provide wild-type (WT) genetic backgrounds for 1-propanol production. HST08 was used for molecular cloning. Various host gene deletions (e.g. *adhE, pta*, and *ldhA*) were introduced to BW25141 by P1-phage transduction [31] using proper Keio Collection strains (CGSC, Yale University) as donors [38]. The co-transduced KmR-FRT gene cassette was removed using pCP20 [33]. *E. coli* strain MC4100 was used as a control strain for all P1 phage transductions. The genotypes of derived knockout strains were confirmed with colony PCR using appropriate primer sets (e.g. v-adhE, v-pta, and v-ldhA).

Media and cultivation

All chemicals for medium components were obtained from Sigma-Aldrich Co. (St Louis, MO) except yeast extract and tryptone, which were obtained from BD Diagnostic Systems (Franklin Lakes, NJ). When required, antibiotics at a proper concentration were used: 100 μg/mL carbenicillin, 50 μg/mL kanamycin, and 20 μg/mL tetracycline. For multi-plasmid systems, the concentration of each antibiotic was reduced to half to avoid negative impacts on growth. Isopropyl-beta- D-thiogalactopyranoside (IPTG) (1 mM) and L-arabinose (10 mM) were used to induce gene expression respectively regulated by the *P*lac and *P*araB promoters.

For all cultivation experiments, *E. coli* strains (stored as glycerol stocks at −80°C) were streaked on LB plates
Table 4 Hosts strains, plasmids and primers

Name	Description, relevant genotype or primer sequence (5′ → 3′)	Reference
E. coli host strains		
HST08	F-, endA1, supE44, thi-1, recA1, relA1, gyrA96, phoA, 580d lacZΔM15, Δ(lacZYA – argF) U169, Δ(mrr – rcsB) – mcrC, ΔmcrA, λ–	Takara Bio, Shiga, Japan
MC4100	F-, [araD139]B/r, Del(panB-lac)169, [lacZYA–argF] U169, Δ(mrr–hsdRMS–mcrBC), ΔmcrA, λ–, e14+, fliD301, Δ(fruK-yeiR)725, relA1, rpsL150, rd5301	[32]
BW25141	F-, Δ(araD-araB)567, Δ(lacZYA–argF) U169, Δ(mrr–hsdRMS–mcrBC), ΔmcrA, λ–, relA1, rpsL150, rd5301, fliD301, Del(fimB-fimE)632, ΔfruK-yeiR	[33]
BW25113	F-, Δ(araD-araB)567, Δ(lacZYA–argF) U169, Δ(mrr–hsdRMS–mcrBC), ΔmcrA, λ–, relA1, rpsL150, rd5301, fliD301, Del(fimB-fimE)632, ΔfruK-yeiR	[33]
Plasmids		
pCP20	FLP+, λ cl857+, λ R, Rep(pSC101 ori), Ap⁶, Cm^R	[34]
pKD46	RepA101^T, Ap⁶, araC^{-ParaB::gam-bet-exo}	[33]
pK184	p15A ori, Km⁶, P_{lac}:lacZ⁺	[35]
pBBRIMCS-3	broad host range ori, Te⁶, P_{lac}:lacZ⁺	[36]
pUC19	ColE1 ori, Ap⁶, P_{lac}:lacZ⁺	Invitrogen, Corp., Carlsbad, CA
pK-scpAKB	From pK184, P_{lac}: sbm^{-ygfD-ygfG}	This study
pK-scpAB	From pK184, P_{lac}: sbm^{-ygfG}	This study
pSU-sucCD	From pBBRIMCS-3, P_{lac}: sucCD	This study
pU-adhE(EC)	From pUC19, P_{lac}:adhE(EC)	This study
pU-adhE2(CA)	From pUC19, P_{lac}:adhE2(CA)	This study
pU-adhE1(CA)	From pUC19, P_{lac}:adhE1(CA)	This study
pU-adhEMUT(EC)	From pUC19, P_{lac}:adhEMUT(EC)	This study
pU-yqhD(EC)	From pUC19, P_{lac}:yqhD(EC)	This study
Primers		
v-adhE	AATCTTGCTTACGCCACCTGGAAGTG; CGAAGCGTGGCACTGGAAGAAACGG	This study
v-pta	GGATCAAGCGTGGTGAGCCTGAAACAATAACA; GATCTGGAGTTAATCCTCAAGC	This study
v-ldhA	TCATCAGACCTGCACTACGC; ATCGCTGGTCAAGGCTGTTAGC	This study
m-adhE	CATCCGGAATAACTACTCTGAAAGCTGGCCTG; CAGCCGCACTTTTGGAACTGAGTGGTTCGGA	This study
c-scpAB	CCATGATTACGAAGTGCAAGCCTGGGAACCAAGGA; TACCCGACTCTAATTGAAGC	This study
c-argK	GCATTGACGGTCCGAAGCTGACGGTCCGAGA; GCTGGAGTCTTAC	This study
c-paraB	CGGTTCGCTGATTGAGAACTG; GCTGGAGTCTTACG	This study
c-sucCD	ATGACCTTACAGTAAGCAGGAGCAAAACGA; CCCCTCAGACAGTTCGTTCGTTCGTTCGT	This study
c-adhE(EC)	CGACTCTAGAGGATCGTTGCAAGTCGTTGCTTACATTATGCGTGTTG; CTCGGTACCGCTGGAAC	This study
c-adhE2(CA)	CGACTCTAGAGGATCGTTGCAAGTCGTTGCTTACATTATGCGTGTTG; CTCGGTACCGCTGGAAC	This study
c-adhE1(CA)	CGACTCTAGAGGATCGTTGCAAGTCGTTGCTTACATTATGCGTGTTG; CTCGGTACCGCTGGAAC	This study
c-adhP(EC)	CGACTCTAGAGGATCGTTGCAAGTCGTTGCTTACATTATGCGTGTTG; CTCGGTACCGCTGGAAC	This study
with appropriate antibiotics and incubated for 16 h at 37°C. Single colonies were picked from LB plates to inoculate 25-mL LB media with appropriate antibiotics in 125-mL conical flasks. The cultures were grown in a rotary shaker at 250 rpm and 37°C to reach an optical cell density at 600 nm (OD600) of 0.7. Four milliliter of the second seed culture was used to inoculate 400-mL LB media with appropriate antibiotics in 1-L conical flasks. This second seed culture was also shaken at 250 rpm and 37°C to reach an OD600 of 0.7. Cells were collected by centrifugation at 6,000 × g and 4°C for 20 min and the cell pellets were transferred into a controlled anaerobic atmosphere (85% N2, 10% H2, and 5% CO2) in an anaerobic chamber (Plas-Labs Inc., Lansing, MI). Cell pellets were washed and resuspended in reduced modified M9 minimal media [6 g/L Na2HPO4, 3 g/L KH2PO4, 0.5 g/L NaCl, 1g/L NH4Cl, 1 mM MgSO4, 0.1 mM CaCl2, 10 mM NaHCO3, 10 mg/L vitamin B1, and 0.2 μM cyanocobalamin (vitamin B12)] containing appropriate carbon sources, 5 g/L yeast extract, appropriate antibiotics and inducers, and 1000X trace metal mix A5 (2.86 g/L H2BO3, 1.81 g/L MnCl2·4H2O, 0.222 g/L ZnSO4·7H2O, 0.39 g/L Na2MoO4·2H2O, 0.079 g/L CuSO4·5H2O, 49.4 mg/L Co(NO3)2·6H2O). Cells were resuspended to a final OD600 of 15 unless specified otherwise. While most oxygen in the modified M9 minimal media was purged by autoclaving, trace oxygen was reduced using a palladium catalyst attached to the heating unit of the anaerobic chamber. The anaerobic condition of the medium was monitored using resazurin, which was added at 1 mg/L. Suspended cultures were then transferred into 50-mL screw-capped conical flasks and sealed with Parafilm, before being removed from the anaerobic chamber and placed in a rotary shaker running at 250 rpm 37°C. Cultures were unsealed and analyzed after 3 d.

Analytical procedures

Culture samples were appropriately diluted with an isotonic saline solution for measuring the optical cell density (OD600) using a spectrophotometer (DU520, Beckman Coulter, Fullerton, CA). For HPLC and NMR analyses, culture samples were centrifuged for 3 min at 13,000 × g to recover the supernatant fraction which was filtered with a 0.2 μM syringe filter prior to being stored at −20°C.

HPLC analysis

Extracellular metabolites were analyzed using HPLC (LC-10ATVP, Shimadzu, Kyoto, Japan) equipped with an Aminex HPX87 column (BioRad Laboratories, Hercules, CA) and a refractive index detector (RID-10A, Shimadzu, Kyoto, Japan) for chromatographic data processing. Pure samples of various metabolites with concentrations ranging from 0.02 to 12.0 g/L were used as standards for calibration.

NMR analysis

NMR sample preparation

Extracellular medium samples were diluted in 10% v/v with an internal standard composed of 99.9% D2O with 5 mM 2,2-Dimethyl-2-silapentane-5-sulfonate (DSS) serving

Table 5. E. coli strains containing variants of the synthetic 1-propanol pathway used in this study

Strain	E. coli host	Plasmid 1	Plasmid 2	Plasmid 3
WT2	BW25141	pK-scpAKB	pB-sucCD	—
WT-adhE2(CA)2	BW25141	pK-scpAKB	—	pU-adhE2(CA)
WT-adhE2(CA)3	BW25141	pK-scpAKB	pB-sucCD	pU-adhE2(CA)
WT-adhE2(CA)3-ΔygfD	BW25141	pK-scpAKB	pB-sucCD	pU-adhE2(CA)
WT-adhE1(CA)	BW25141	pK-scpAKB	pB-sucCD	pU-adhE1(CA)
WT-adhE1(EC)	BW25141	pK-scpAKB	pB-sucCD	pU-adhE1(EC)
WT-adhE2(EC)	BW25141	pK-scpAKB	pB-sucCD	pU-adhE2(EC)
WT-yqhD(EC)	BW25141	pK-scpAKB	pB-sucCD	pU-yqhD(EC)
WT-bdhB(CA)	BW25141	pK-scpAKB	pB-sucCD	pU-bdhB(CA)
ΔadhA-adhE(EC)	WT-ΔadhA	pK-scpAKB	pB-sucCD	pU-adhE(EC)
ΔadhA-adhE2(CA)	WT-ΔadhA	pK-scpAKB	pB-sucCD	pU-adhE2(CA)
ΔadhA-adhE1(CA)	WT-ΔadhA	pK-scpAKB	pB-sucCD	pU-adhE1(CA)
ΔadhA-adhE1(EC)	WT-ΔadhA	pK-scpAKB	pB-sucCD	pU-adhE1(EC)
ΔadhA-adhE2(EC)	WT-ΔadhA	pK-scpAKB	pB-sucCD	pU-adhE2(EC)
ΔadhA-yqhD(EC)	WT-ΔadhA	pK-scpAKB	pB-sucCD	pU-yqhD(EC)
ΔadhA-bdhB(CA)	WT-ΔadhA	pK-scpAKB	pB-sucCD	pU-bdhB(CA)
as a chemical shape indicator (CSI) and 0.2% w/v sodium azide (NaN₃) to inhibit bacterial growth. The diluted samples were subsequently transferred to 5-mm NMR tubes (NE-UL5-7, New Era Enterprises Inc., Vineland, NJ). Spectra were acquired by a 1D NOEY pulse sequence on a Bruker Avance 600.13 MHz spectrometer with a TXI 600 Probe (Bruker Canada Ltd., Toronto, Canada).

Spectra processing and compound identification

Following acquisition, spectra were imported into Chenomx NMR Suite 7.5 (Chenomx Inc., Edmonton, Alberta, Canada) for data processing with phase, baseline, shim, and shape corrections being carried out. An average sample pH of 5.2 measured during fermentation was applied as a reference for metabolite identification. Following spectral processing, various extracellular metabolites were identified by targeted profiling. Since the compound database associated with Chenomx NMR Suite 7.5 software did not include 1-propanol (Figure 5) or propionaldehyde, the ‘compound builder’ application was used to implement the hydrogen spectra and unique peaks of these compounds.

Abbreviations

Δ: Deletion; []: Denotes plasmid-carrier state; accAB: Genes encoding acetyl-CoA carboxylase; ackA: Acetate kinase; ADH(s): Alcohol dehydrogenase(s); adhE: Gene encoding acetaldehyde dehydrogenase/Alcohol dehydrogenase; adhE1: Gene encoding bifunctional alcohol/CoA/Alcohol dehydrogenase; adhE2: Gene encoding bifunctional alcohol/CoA/alcohol dehydrogenase; adhEP: Gene encoding alcohol/acetaldehyde dehydrogenase, 1-propanol preferring; aldB: Genes encoding aldehyde dehydrogenase; Ap: Ampicillin; argK/ygfD: Gene encoding arginine kinase; bshB: Gene encoding butanol dehydrogenase; bla: Gene encoding Apβ gene; cis857: Gene encoding temperature-sensitive A repressor; D3: Dissolved oxygen; fbaB: Genes encoding fructose-bisphosphate aldolase; fip: Gene encoding Saccharomyces cerevisiae Flip recombine; fadB/C/D: Fumarate reductase; FRT: Flip recombination target; furABC: Genes encoding fumarate hydratase; gapA: Gene encoding glycerate-3-phosphate dehydrogenase; gkp: Gene encoding glycerokinase; glaAB: Gene encoding glyoxylate isomerase; glmA: Gene encoding glycerol kinase; glmB: Gene encoding citrate synthase; gpmA: Gene encoding phosphoglyceromutase 1; gpxA: Gene encoding glycerol-3-phosphate dehydrogenase; hplC: High-performance liquid chromatography; icd: Genes encoding isocitrate dehydrogenase; iptG: Isopropyl-β-D-thiogalactoside; kan: Gene encoding Kmβ; Km: Kanamycin; Kmβ FRT: Cassette carrying Kmβ marker; LBI: Lysogeny broth; ldhA: Gene encoding lactate dehydrogenase; mdh: Gene encoding malate dehydrogenase; mgsA: Gene encoding glycerate-3-phosphate reductase; mgsA: Gene encoding methylglyoxyl synthase; mnaA: Gene encoding maltose phosphate permease; ndhA: Gene encoding galactose permease; nadA: Gene encoding alcohol dehydrogenase; nadA: Gene encoding malate dehydrogenase; pgi: Gene encoding phosphoglycerate kinase; pfkA: Gene encoding 6-phosphofructokinase; pfkB: Gene encoding pyruvate formate lyase 1; pgI: Gene encoding glucosephosphate isomerase; pgK: Gene encoding phosphoglycerate kinase; ppxA: Gene encoding pyruvate dehydrogenase; ppC: Gene encoding 2-methylcitrate synthase; pts: Gene encoding phosphofructokinase; pta: Gene encoding phosphoenolpyruvate carboxylase; ptsG: Gene encoding glucose-specific phosphotransferase permease; pyk: Gene encoding pyruvate carboxylase; pykFA: Gene encoding pyruvate kinase; R: Resistant; resistant; S: Sensitive/sensitivity; sbm/ scpA: Methylobalalin-CoA mutase; sbhA/B: Gene encoding succinate dehydrogenase; succCD: Gene encoding succinyl-CoA synthetase; Tc: Tetracycline; TCA: Tricarboxylic acid cycle; pyl: Gene encoding triosephosphate isomerase; tetAR: Genes encoding TcR and Tc repressor; tktAB: Genes encoding transketolase; ts: Temperature sensitive; WT: Wild type; yglK/scpB: Gene encoding methylmalonyl-CoA carboxylase; yghF/scpC: Gene encoding propanoyl-CoA succinate-CoA transferase; yqhD: Gene encoding aldehyde reductase.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

KS conceived the study, designed and carried out the experiments, and drafted the manuscript. LA participated in the experimental design, performed data interpretation and analysis, and helped to draft the manuscript. JL and AW participated in the experimental design. EJB and MGA carried out NMR spectroscopic analysis. MMY and CPC conceived, supervised, and managed the study, as well as helped to draft the manuscript. All authors read and approved the final manuscript.

Acknowledgments

The authors’ research is supported by the Natural Sciences and Engineering Research Council (NSERC) and the Canada Research Chair (CRC) program of Canada. The authors thank Pamela Sokol and Sujatha Subramoni for kindly providing the pBRR1MC5-S-3 plasmid, and Barbara Moffatt and Bernard Glick for technical advice.

Received: 6 June 2013 Accepted: 24 September 2013

Published: 28 September 2013

References

1. Srirangan K, Akawi L, Moo-Young M, Chou CP: Towards sustainable production of clean energy carriers from biomass resources. Appl Energy 2012, 100:172–186.

2. Atsumi S, Hanai T, Liao J: Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008, 451:69–89.

3. McEwen JT, Atsumi S: Alternative biofuel production in non-native hosts. Curr Opin Biotechnol 2012, doi:10.1016/j.copbio.2011.12.019.

4. Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Bynenkosen MP, Chou KY, Hanai T, Liao J: Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 2006, 8:305–311.

5. Jain R, Yan Y: Dehydratase mediated 1-propanol production in metabolically engineered Escherichia coli. Microb Cell Fact 2011, 10:1–10.

6. Atsumi S, Liao J: Directed evolution of Methylcoccus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl Environ Microbiol 2008, 74:7802–7808.

7. Jun Choi Y, Hwan Park J, Yong Kim T, Yup Lee S: Metabolic engineering of Escherichia coli for the production of 1-propanol. Metab Eng 2012, 14:477–486.

8. Shen C, Liao J: Synergy as design principle for metabolic engineering of 1-propanol production in Escherichia coli. Metab Eng 2013, 17:12–22.

9. Deng Y, Feng SS: Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol. Metab Eng 2011, 13:570–577.

10. Aldor IS, Kim SW, Prather KLJ, Keasling JD: Discovering new enzymes and metabolic pathways: conversion of succinate to propionate by metabolically engineered methanotrophs. Appl Environ Microbiol 2012, doi:10.1128/AEM.02620-11.

11. Kannan SM: Studies on Methylmalonyl-CoA Mutase from Escherichia coli. London, UK: University of Westminster; 2008.

12. Leadlay PF: Purification and characterization of methylmalonyl-CoA epimerase from Propionibacterium shermanii. Biochim J 1981, 197:513.

13. Haller T, Buckel T, Rejetzky J, Gerst JA: Discovering new enzymes and metabolic pathways: conversion of succinate to propionate by Escherichia coli. Biochemistry 2000, 39:4622–4629.

14. Frosen D, Dobson C, White A, Wu X, Padovan D, Banerjee R, Haller T, Gerst J, Sureen M, Gravel R, Sleeping beauty mutase sbm is expressed and interacts with yglf in Escherichia coli. Microbiol Res 2009, 164:1–8.

15. Mche N, Keep N, Patchett M, Leadlay P: Adenosylcobalamine-dependent methylmalonyl-CoA mutase from Propionibacterium shermanii. Active holoenzyme produced from Escherichia coli. Biochim J 1990, 269:293–298.

16. Di Wasi DR, White J, Schnaitman CA, Bradbeer C, Transport of vitamin B₁₂ in Escherichia coli. Common receptor sites for vitamin B₁₂ and the E Colins on the outer membrane of the cell envelope. J Bacteriol 1973, 115:506–513.

17. Raux E, Lanois A, Levillayer F, Warren MJ, Brody E, Rambach A, Thermes C: Salmonella typhimurium cobalamin (vitamin B₁₂) biosynthetic genes: functional studies in S. typhimurium and Escherichia coli. J Bacteriol 1996, 178:753–767.
18. Atsumi S, Wu T-Y, Eckl E-M, Hawkins SD, Buxter T, Liao JC. Engineering the
isobutanol biosynthetic pathway in *Escherichia coli* by comparison of
three aldehyde reductase/alcohol dehydrogenase genes. *Appl Microbiol
Biotechnol* 2010, 85:651–657.

19. Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino
S, Suzuki N, Yukawa H. Expression of *Clostridium acetobutylicum* butanol
synthetic genes in *Escherichia coli*. *Appl Microbiol Biotechnol* 2008,
77:1305–1316.

20. Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, Schomburg
D. BRENDA, the enzyme database: updates and major new
developments. *Nucleic Acids Res* 2004, 32:D431–D433.

21. Membreño-Hernández J, Echave P, Cabisco E, Tamart J, Ros J, Un EC.
Evolution of the *adhF* gene product of *Escherichia coli* from a functional
reductase to a dehydrogenase. *J Biol Chem* 2000, 275:33869–33875.

22. Diérre P. Biobutanol: an attractive biofuel. *Biotechnol* J 2007, 2:1525–1534.

23. Dayem LC, Carney JR, Santi DV, Pfeifer BA, Khosla C, Kealey JT. Metabolic
engineering of a methylmalonyl-CoA mutase-epimerase pathway for
complex polyketide biosynthesis in *Escherichia coli*. *Biochemistry* 2002,
41:5193–5201.

24. Havemann GD, Sampson EM, Bobik TA. PduA is a shell protein of
polyhedral organelles involved in coenzyme B12-dependent degradation
of 1,2-propanediol in *Salmonella enterica* serovar *Typhimurium* LT2.

25. Skrál F, Lyttle BL, Cameron DC. Construction and characterization of a
1,3-propanediol operon. *Appl Environ Microbiol* 1998, 64:189–195.

26. Dellomonaco C, Rivea C, Campbell P, Gonzalez R. Engineered respira-
toryfermentative metabolism for the production of biofuels and
biochemicals from fatty acid-rich feedstocks. *Appl Environ Microbiol*
2010, 76:5067–5078.

27. Neidhardt FC, Ingraham JL, Schaechter M. *Physiology of the bacterial cell: a*
molecular approach. Sunderland, MA: Sinauer Associates; 1990.

28. Sanchez AM, Bennett GN, San K-Y: Novel pathway engineering design of
the anaerobic central metabolic pathway in *Escherichia coli* to increase
succinate yield and productivity. *Metab Eng* 2005, 7:229–239.

29. Moon SY, Hong SH, Kim TY, Lee SY. Metabolic engineering of *Escherichia
coli* for the production of malic acid. *Biochem Eng* J 2008, 40:312–320.

30. Hider R, Browne ER, Hayakawa K, Fraser ME. Participation of Cys123 of
Escherichia coli succinyl-CoA synthetase in catalysis. *Acta Crystallogr D Biol
Cryst* 2007, 63:876–884.

31. Miller JH: A short course in bacterial genetics: a laboratory manual and
handbook for *Escherichia coli* and related bacteria. New York, USA: Cold
Spring Harbor Laboratory Pr; 1992.

32. Casadaban MJ. Transposition and fusion of the lac genes to selected
promoters in *Escherichia coli* using bacteriophage lambda and Mu.
J Mol Biol 1976, 104:541–555.

33. Datsenko KA, Wanner BL: One-step inactivation of chromosomal genes in
Escherichia coli K-12 using PCR products. *Proc Natl Acad Sci* 2000,
97:6640–6645.

34. Cherepanov PP, Wackernagel W: Gene disruption in *Escherichia coli*: Tc^R
and Km^R cassettes with the option of Flp-catalyzed excision of the
antibiotic-resistance determinant. *Gene* 1995, 158:9–14.

35. Jobling MG, Holmes RK: Construction of vectors with the pSC101 replicon,
kamycin resistance, inducible lacZ and pUC18 or pUC19 multiple
cloning sites. *Nucleic Acids Res* 1990, 18:5315–5316.

36. Kovacevich MA, Eber PH, Gish LW, Robertson GT, Farris MA, Opalka RRM,
Peterson KM. Four new derivatives of the broad-host-range cloning
vector pBR31MCS, carrying different antibiotic-resistance cassettes.
Gene 1995, 166:175–176.

37. Barand RT. ChimORIZATION of multiple antibiotic classes using splic:
overlap extension PCR. *Biotechniques* 2005, 38:181–182.

38. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA,
Tomita M, Wanner BL, Mori H. Construction of *Escherichia coli* K-12 in-
frame, single-gene knockout mutants: the Keio collection. *Mutat Syst Biol*
2006, 2:1–11.

Cite this article as: Srirangan et al. Manipulating the sleeping beauty
mutase operon for the production of 1-propanol in engineered
Escherichia coli. *Biotechnology for Biofuels* 2013, 6:139.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit