The real number system is geometrically extended to include three new anticommuting square roots of plus one, each such root representing the direction of a unit vector along the orthonormal coordinate axes of Euclidean 3-space. The resulting geometric (Clifford) algebra provides a geometric basis for the famous Pauli matrices which, in turn, proves the consistency of the rules of geometric algebra. The flexibility of the concept of geometric numbers opens the door to new understanding of the nature of space-time, and of Pauli and Dirac spinors as points on the Riemann sphere, including Lorentz boosts.

AMS Subject Classification: 15A66, 81P16

Keywords: geometric algebra, relative geometric algebra, Riemann sphere, complex Riemann sphere.

1 The geometric algebra of space \mathbb{G}_3

The most direct way of obtaining the geometric algebra \mathbb{G}_3 of space is to extend the real number system \mathbb{R} to include three new anti-commutative square roots e_1, e_2, e_3 of $+1$, that represent unit vectors along the respective xyz-coordinate axes. Thus, $e_1, e_2, e_3 \not\in \mathbb{R}$ and $e_j^2 = e_k^2 = 1$. The resulting associative geometric algebra $\mathbb{G}_3 := \mathbb{R}[e_1, e_2, e_3]$, as a real linear space, has the $2^3 = 8$-dimensional standard basis

$$\mathbb{G}_3 = \text{span}_{\mathbb{R}} \{1, e_1, e_2, e_3, e_{12}, e_{13}, e_{23}, e_{123}\},$$

where $e_{jk} := e_j e_k = -e_k e_j$ represent unit bivectors in the three xy, xz, yz-coordinate planes, for $j \neq k$, and $I := e_{123} = e_1 e_2 e_3$ represents the oriented directed trivector, or pseudoscalar element of space. The geometric numbers of 3-dimensional space are pictured in Figure 1.

To see that the rules of our geometric algebra are consistent, we relate it immediately to the famous Pauli algebra \mathcal{P} of square 2×2 matrices over the complex numbers \mathbb{C}. The most intuitive way of doing this is to introduce the mutually annihilating idempotents $u_{\pm} = \frac{1}{2}(1 \pm e_3)$, which satisfy the rules

$$u_+^2 = u_+, \quad u_-^2 = u_-, \quad u_+ u_- = 0, \quad u_+ + u_- = 1, \quad u_+ - u_- = e_3.$$

In addition, $e_1 u_+ = u_- e_1$. All these rules are easily verified and left to the reader. Another important property of the geometric algebra \mathbb{G}_3 is that the pseudoscalar element $I = e_{123}$ is in the center of the algebra, commuting with all elements, and $I^2 = -1$. Thus I can take over the role of the unit imaginary $i = \sqrt{-1}$.

By the spectral basis \mathcal{S}_G of the geometric algebra \mathbb{G}_3, we mean

$$\mathcal{S}_G := \left(\begin{array}{c} 1 \\ e_1 \end{array} \right) u_+ \left(\begin{array}{cc} 1 & e_1 \\ e_1 & u_- \end{array} \right) = \left(\begin{array}{c} u_+ \\ e_1 u_+ \\ e_1 u_- \\ u_- \end{array} \right),$$ (1)
where I is taking over the role of $i = \sqrt{-1}$ in the usual Pauli algebra. Any geometric number $g = s + It + a + Ib \in G_3$ corresponds directly to a Pauli matrix $[g]$, by the simple rule

$$g = (1 \, e_1) u_+ [g] \left(\frac{1}{e_1} \right).$$

For example, the famous Pauli matrices $[e_1], [e_2], [e_3]$ are specified by

$$[e_1] := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad [e_2] := \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}, \quad [e_1] := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

as can be easily checked. For $[e_2]$, we have

$$e_2 = (1 \, e_1) u_+ \left(\begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix} \right) \left(\frac{1}{e_1} \right) = I e_1 (u_+ - u_-) = I e_1 e_3.$$

This shows that the Pauli algebra \mathcal{P} and the geometric algebra G_3 are fully compatible as algebraically isomorphic algebras over the complex numbers

$$\mathbb{C} := \{ z = s + tI \mid s, t \in \mathbb{R} \}.$$

The geometric product of geometric numbers $g_1 g_2$ corresponds to the usual matrix algebra product of the matrices $[g_1][g_2] = [g_1 g_2]$. The great advantage of the geometric algebra G_3 over the Pauli algebra \mathcal{P}, is that the geometric numbers are liberated from their coordinate representations as 2×2 complex matrices, as well as being endowed with a complete geometric interpretation. On the other hand, the consistency of the rules of the geometric algebra follow from the known consistency of rules of matrix algebra, and matrices offer a computational tool for computing the product of geometric numbers [9].

It is worthwhile to give a summary of the deep relationship between pre-relativistic (Gibbs-Heaviside) vector algebra, and the geometric algebra G_3. The geometric product of two vectors $a, b \in \mathbb{R}^3$ is given by

$$a b = \frac{1}{2} (ab + ba) + \frac{1}{2} (ab - ba) = a \cdot b + a \wedge b,$$

where the inner product $a \cdot b := \frac{1}{2} (ab + ba) \in \mathbb{R}$, and the outer product $a \wedge b := \frac{1}{2} (ab - ba)$ has the interpretation (due to Grassmann) of the bivector in the plane of the vectors a and b. The bivector $a \wedge b = I(a \times b)$, where $a \times b$ is the vector normal to the plane of $a \wedge b$, and is its dual.
Another advantage of the geometric product \mathbf{ab} over the inner product $\mathbf{a} \cdot \mathbf{b}$ and the cross product $\mathbf{a} \times \mathbf{b}$, is the powerful cancellation rule
\[\mathbf{ab} = \mathbf{ac} \iff \mathbf{a}^2 \mathbf{b} = \mathbf{a}^2 \mathbf{c} \iff \mathbf{b} = \mathbf{c}, \]
provided of course that $\mathbf{a}^2 \neq 0$. It takes knowledge of both $\mathbf{a} \cdot \mathbf{b}$ and $\mathbf{a} \wedge \mathbf{b}$ (or $\mathbf{a} \times \mathbf{b}$), to uniquely determine the relative directions of the vectors \mathbf{a} and \mathbf{b}. Another unique advantage in the the geometric algebra is the Euler formula made possible by (3),
\[\mathbf{ab} = |\mathbf{a}| |\mathbf{b}| e^{l\theta} = |\mathbf{a}| |\mathbf{b}| (\cos \theta + l \hat{c} \sin \theta), \]
where $|\mathbf{a}| := \sqrt{\mathbf{a}^2}$ and similarly for $|\mathbf{b}|$, and θ is the angle between the vectors \mathbf{a} and \mathbf{b}. The unit vector \hat{c} can be defined by $\hat{c} = \frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{a} \times \mathbf{b}|}$.

The Euler formula for the bivector $l\hat{c}$, which has square -1, is the generator of rotations in the plane of the bivector $\mathbf{a} \wedge \mathbf{b}$. Later, when talking about Lorentz boosts, we will also utilize the hyperbolic Euler form
\[e^{\phi \hat{v}} = \cosh \phi + \hat{v} \sinh \phi, \tag{4} \]
where $\tanh \phi = \frac{\hat{v}}{c} \in \mathbb{R}$ determines the rapidity of the boost in the direction of the unit vector $\hat{v} \in \mathbb{G}_3^1$. A couple more formulas, relating the vector cross and dot products to the geometric product, are
\[\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c} := \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) l = l \det[\mathbf{a}, \mathbf{b}, \mathbf{c}], \]
and
\[\mathbf{a} \cdot (\mathbf{b} \wedge \mathbf{c}) := (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} - (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} = -\mathbf{a} \times (\mathbf{b} \times \mathbf{c}). \]
The triple vector products $\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}$ and $\mathbf{a} \cdot (\mathbf{b} \wedge \mathbf{c})$ are directly related to the geometric product by the identity
\[\mathbf{a}(\mathbf{b} \wedge \mathbf{c}) = \frac{1}{2} (\mathbf{a}(\mathbf{b} \wedge \mathbf{c}) - (\mathbf{b} \wedge \mathbf{c}) \mathbf{a}) + \frac{1}{2} \left(\mathbf{a}(\mathbf{b} \wedge \mathbf{c}) + (\mathbf{b} \wedge \mathbf{c}) \mathbf{a} \right), \]
where $\mathbf{a} \cdot (\mathbf{b} \wedge \mathbf{c}) = \frac{1}{2} \left(\mathbf{a}(\mathbf{b} \wedge \mathbf{c}) - (\mathbf{b} \wedge \mathbf{c}) \mathbf{a} \right)$ and $\mathbf{a} \wedge (\mathbf{b} \wedge \mathbf{c}) = \frac{1}{2} \left(\mathbf{a}(\mathbf{b} \wedge \mathbf{c}) + (\mathbf{b} \wedge \mathbf{c}) \mathbf{a} \right)$. Detailed discussions and proofs of these identities, and their generalizations to higher dimensional geometric algebras, can be found in [8], [10]. Geometric algebra has in recent years become a basic tool for research in quantum mechanics [1], [3], and more generally as a basic language of mathematics and physics [2], [8].

We now return to beautiful results which depend in large part only upon the geometric product. Thus the reader can relax and rely upon the familiar rules of matrix algebra, which are equally valid in the isomorphic geometric algebra.

2 Stereographic projection in \mathbb{R}^3

Consider the equation
\[\mathbf{m} = \frac{2}{\hat{\mathbf{a}} + e_3} = \frac{2(\hat{\mathbf{a}} + e_3)}{(\hat{\mathbf{a}} + e_3)^2} = \frac{\hat{\mathbf{a}} + e_3}{1 + \hat{\mathbf{a}} \cdot e_3}, \tag{5} \]
where $\hat{\mathbf{a}} = \mathbf{a}/|\mathbf{a}|$ is a unit vector for the vector $\mathbf{a} \in \mathbb{G}_3^1$. Clearly, this equation is well defined except when $\hat{\mathbf{a}} = -e_3$. Let us solve this equation for $\hat{\mathbf{a}}$, but first we find that
\[\mathbf{m} \cdot e_3 = \left(\frac{2}{\hat{\mathbf{a}} + e_3} \right) \cdot e_3 = 1. \]
Returning to equation (5),
\[\hat{\mathbf{a}} = \frac{2}{\mathbf{m}} - e_3 = \frac{1}{\mathbf{m}} (2 - \mathbf{m} e_3) \]
\[= \frac{1}{\mathbf{m}} (2 + e_3 \mathbf{m} - 2 e_3 \cdot \mathbf{m}) = \hat{\mathbf{m}} e_3 \mathbf{m}. \tag{6} \]
Equation (5) can be equivalently expressed by
\[\hat{\mathbf{a}} = \hat{\mathbf{m}} e_3 \mathbf{m} = (\hat{\mathbf{m}} e_3) (e_3 \mathbf{m}) = (-\mathbf{m}) e_3 (\hat{\mathbf{m}}), \]
showing that \hat{a} is obtained by a rotation of e_3 in the plane of $\hat{m} \wedge e_3$ through an angle of 2θ, where $\cos \theta := e_3 \cdot \hat{m}$, or equivalently, by a rotation of e_3 in the plane of $\hat{m}\hat{m}$ through an angle of π.

It is easily shown that the most general idempotent in \mathbb{G}_3 has the form

$$s = \frac{1}{2} (1 + m + ln)$$

(7)

where

$$(m + ln)^2 = 1 \iff m^2 - n^2 = 1 \text{ and } m \cdot n = 0,$$

and $I := e_{123}$ is the unit pseudoscalar element in \mathbb{G}_3^3. Consider now idempotents of the form $p = (1 + \lambda e_1)u_+$, where $\lambda \in \mathbb{G}_3^{0+3}$. Equating $s = p$, we find that

$$(1 + m + ln) = (1 + \lambda e_1)(1 + e_3) = 1 + \lambda e_1 - I\lambda e_2 + e_3.$$

Changing the parity of this equation, gives

$$(1 - m + ln) = (1 - \lambda^* e_1)(1 - e_3) = 1 - \lambda^* e_1 - I\lambda^* e_2 - e_3,$$

since the parity change (changing the sign of vectors) λ^- of λ is identical to the reverse (reversing the order of products of vectors) λ^\dagger of λ.

We can now solve these last two equations for m and ln in terms of λ, getting

$$m = \frac{\lambda + \lambda^\dagger}{2} e_1 + \frac{\lambda - \lambda^\dagger}{2I} e_2 + e_3, \quad ln = \frac{\lambda - \lambda^\dagger}{2} e_1 - \frac{\lambda + \lambda^\dagger}{2I} e_2 = m \wedge e_3,$$

or

$$m = x + e_3 \quad \text{and} \quad n = m \times e_3,$$

(8)

where $x = xe_1 + ye_2 \in \mathbb{R}^2$, the xy-plane. From (7), it immediately follows that

$$s = \frac{1}{2} (1 + m + ln) = \frac{1}{2} (1 + m + m \wedge e_3) = mu_+.$$

(9)

We also easily find that

$$m^2 = 1 + \lambda \lambda^\dagger = 1 + x^2 \geq 1 \iff |m| = \sqrt{1 + \lambda \lambda^\dagger} = \sqrt{1 + x^2}.$$

A Pauli spinor is a column matrix of two complex components, which we denote by $[\alpha]_2 := \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix}$. Each Pauli spinor $[\alpha]_2$ corresponds to a minimal left ideal $[\alpha]_L$, which in turn corresponds to geometric Pauli spinor, or Pauli g-spinor α in the geometric algebra \mathbb{G}_3. We have

$$[\alpha]_2 = \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} \iff [\alpha]_L := \begin{pmatrix} \alpha_0 & 0 \\ \alpha_1 & 0 \end{pmatrix} \iff \alpha := (\alpha_0 + \alpha_1 e_1)u_+ \in \mathbb{G}_3.$$

(10)

By factoring out α_0 from g-spinor α, we get

$$\alpha = (\alpha_0 + \alpha_1 e_1)u_+ = \alpha_0 (1 + \frac{\alpha_1}{\alpha_0} e_1)u_+ = \alpha_0 p = \alpha_0 mu_+,$$

where $p = s$ is the idempotent defined above for $\lambda = \frac{\alpha_1}{\alpha_0}$.

By the norm $|\alpha|$ of the g-spinor α, we mean

$$|\alpha| := \sqrt{2(\alpha^\dagger \alpha)_0} = \sqrt{\alpha_0 \alpha_0^\dagger + \alpha_1 \alpha_1^\dagger} \geq 0,$$

(11)
where $\langle g \rangle_0$ means the real number part of the geometric number $g \in \mathbb{G}_3$. More generally we define the sesquilinear inner product between the g-spinors α, β to be

$$\langle \alpha | \beta \rangle := 2 \langle \alpha^\dagger \beta \rangle_{0+3} = \alpha_0^\dagger \beta_0 + \alpha_1^\dagger \beta_1,$$

where $\langle g \rangle_{0+3}$ means the scalar and pseudo-scalar parts of the geometric number $g \in \mathbb{G}_3$. A g-spinor α is said to be normalized if $|\alpha|=1$.

From equations (7) and (11), it follows that for $\lambda = \alpha_0^{-1} \alpha_1$,

$$\alpha = \alpha_0 s = \alpha_0 \sqrt{1 + \lambda \lambda^*} \hat{m} u_+ = \rho e^{i \theta} \hat{m} u_+ = \rho e^{i \theta} \hat{a}_+ \hat{m},$$

where $e^{i \theta} := \frac{\alpha_0}{\sqrt{\alpha_0 \alpha_0^*}}$, $\rho := \sqrt{\alpha_0 \alpha_0^* + \alpha_1 \alpha_1^*}$, and $\hat{a}_+ := \hat{m} u_+ \hat{m}$. Equations (5) and (6) have an immediate interpretation on the Riemann sphere centered at the origin. Figure 2 shows a cross-section of the Riemann 2-sphere, taken in the plane of the bivector $m \wedge e_3$, through the origin. We see that the stereographic projection from the South pole at the point $-e_3$, to the point \hat{a} on the Riemann sphere, passes through the point $x = \text{proj}(m)$ of the point m onto the plane through the origin with the normal vector e_3. Stereographic projection is just one example of conformal mappings, which have important generalizations to higher dimensions [6].

We can now simply answer a basic question in quantum mechanics. If a spin $\frac{1}{2}$-particle is prepared in a normalized Pauli g-spin state α, what is the probability of finding it in a normalized Pauli g-state β immediately thereafter? We calculate

$$\langle \beta | \alpha \rangle \langle \alpha | \beta \rangle = 2 \langle \alpha^\dagger \beta \rangle_{0+3} \langle \alpha^\dagger \beta \rangle_{0+3} = 2 \langle u_+ \hat{m} a \hat{m} u_+ \hat{m} \rangle_{0+3} = 2 \langle u_+ \hat{m} b \hat{m} u_+ \hat{m} \rangle_{0+3} = \langle (1 + \hat{a} \cdot \hat{b}) u_+ \rangle_{0+3} = \frac{1}{2} (1 + \hat{a} \cdot \hat{b}).$$

(12)

This relationship can be more directly expressed in terms of m_a and m_b. Using (5), for $\hat{a} = \frac{2}{m_a} - e_3$ and $\hat{b} = \frac{2}{m_b} - e_3$, a short calculation gives the result

$$1 - \frac{(m_a - m_b)^2}{m_a^2 m_b^2} = \frac{1}{2} (1 + \hat{a} \cdot \hat{b}) \iff \frac{(m_a - m_b)^2}{m_a^2 m_b^2} = \frac{1}{2} (1 - \hat{a} \cdot \hat{b}),$$

(13)

showing that the probability of finding the particle in that Pauli g-state $|\beta\rangle$ is directly related to the Euclidean distance between the points m_a and m_b.

Clearly, when $\hat{b} = -\hat{a}$, the expression in (13) simplifies to

$$\frac{(m_a - m_b)^2}{m_a^2 m_b^2} = 1.$$
This will occur when \(m_b := \frac{1}{m_a} m_a \), for which case
\[
\hat{b} = \hat{m}_b e_3 \hat{m}_b = -\hat{m}_a e_3 \hat{m}_a = -\hat{a} \quad \text{and} \quad m_b \cdot m_a = 0.
\]
Writing \(m_a = x_a + e_3 \) for \(x_a \in \mathbb{R}^2 \),
\[
m_b = x_b + e_3 = \frac{1}{x_a} (x_a + e_3) = \frac{e_3 x}{x^2} (x_a + e_3) = -\frac{1}{x_a} + e_3.
\]
(14)

More details of the constructions found in this section can be found in [4] and [7].

3 Dirac spinors

What is missing in the concept of a Pauli spinor is the ability to distinguish between Pauli spinors in different reference frames. Within the geometric algebra \(\mathbb{G}_3 \), we are able to distinguish different inertial systems. Recall that the rest frame that defined the geometric algebra \(\mathbb{G}_3 \) was \(\{e_1, e_2, e_3\} \), oriented by the property that \(e_{123} = e_1 e_2 e_3 = I \). A set of three orthonormal geometric numbers \(\{e_1', e_2', e_3'\} \), specified by the condition
\[
\{e_1', e_2', e_3'\} = e^{\frac{i}{2} \phi} \{e_1, e_2, e_3\} e^{-\frac{i}{2} \phi},
\]
where each \(e_k' := e^{\frac{i}{2} \phi} e_k e^{-\frac{i}{2} \phi} \), defines a rest frame, or inertial system of relative vectors moving with a velocity of \(\Sigma = \hat{v} \tanh \phi \), with respect to the inertial system defined by \(\{e_k\}_{k=1}^3 \). If \(X = ct + x \) represents the time \(t \) and position \(x \) of an event in the inertial system \(\{e_k\}_{k=1}^3 \), then the corresponding event \(X' = ct' + x' \) in the inertial system \(\{e_k'\}_{k=1}^3 \) is specified by the active Lorentz transformation \(X' = X e^{-\phi \hat{v}} \), [8], [11].

Each inertial system is distinguished by how its observer partitions its geometric numbers into vectors and bivectors, in the same sense that what one observer identifies as a pure electric field, becomes a mixture of an (vector) electric and (bivector) magnetic field in an inertial system not at rest. But all observers have the same pseudoscalar element \(I = e_1 e_2 e_3 = e_1' e_2' e_3' \), representing the unit trivector of space. The relative geometric algebra
\[
\mathbb{G}_3' := \text{gen}_\mathbb{R} \{e_k'\}_{k=1}^3 = e^{\frac{i}{2} \phi} \mathbb{G}_3 e^{-\frac{i}{2} \phi},
\]
consists of the same geometric numbers as in \(\mathbb{G}_3 \), but with a different observer dependent partition of what elements are identified as (relative) vectors, and what elements are identified as (relative) bivectors. These ideas have been explored by the author more fully in [11], and in the book [8, Chps:2,11].

Consider now Dirac spinors of the form
\[
M_\phi := e^{\phi \hat{v} \cdot x} + e_3 = x \cosh \phi + e_3 + I e_3 \times x \sinh \phi
\]
where \(x = x_1 e_1 + x_2 e_2 \), and \(\phi \in \mathbb{R} \). When \(\phi = 0 \), \(M_0 = x + e_3 \) becomes the Pauli spinor given in [8]. Indeed, since \(M_0^2 = x^2 + 1 \geq 1 \),
\[
\hat{M}_\phi = \frac{M_\phi}{\sqrt{x^2 + 1}} = e^{\frac{i}{2} \phi \hat{e}_3} \frac{M_0}{\sqrt{x^2 + 1}} e^{-\frac{i}{2} \phi \hat{e}_3},
\]
so \(\hat{M}_\phi \) is just the normalized spinor defined by \(\alpha = \hat{m} u_+ \) boosted into the inertial system \(\{e_k'\}_{k=1}^3 \) where \(\hat{v} = e_3 \).

Starting with (15), we calculate
\[
\hat{M}_\phi = \frac{x \cosh \phi + e_3}{\sqrt{x^2 + 1}} + \frac{I (e_3 \times x) \sinh \phi}{\sqrt{x^2 + 1}} = m_1 + I m_2 = e^{\frac{i}{2} \omega \hat{m}_1 \times \hat{m}_2} \hat{m}_1 e^{-\frac{i}{2} \omega \hat{m}_1 \times \hat{m}_2},
\]
where \(\cosh \omega := |m_1| \) and \(\sinh \omega := |m_2| \), which defines the velocity
\[
tanh \frac{\omega}{2} = \frac{v_\phi}{c} := \sqrt{\frac{(m_2)^2}{(m_1)^2}} = \frac{|x| \sinh \phi}{\sqrt{x^2 \cosh^2 \phi + 1}}
\]
in the direction
\[
\hat{m}_1 \times \hat{m}_2 = -\hat{x} + e_3 |x| \cosh \phi \over \sqrt{x^2 \cosh^2 \phi + 1}.
\]

From (16) and (17), it follows that the spinor \(\mathbf{M}_0\) boosted in the direction of \(e_3\), with rapidity \(\tanh \phi = \frac{v}{c}\), is in the same inertial system as the spinor defined by \(\hat{m}_1\) boosted in the direction of \(\hat{m}_1 \times \hat{m}_2\) with rapidity \(\omega = \omega c\).

Just as the equations (5) and (6) led to the interpretation of stereographic projection on the Riemann sphere, Figure 2, the generalized equation
\[
\hat{M}_\phi = 2 \hat{A} + e_3 \Longleftrightarrow \hat{A} = \hat{M}_\phi e_3 \hat{M}_\phi,
\]
where \(\hat{A}^2 = 1\), leads to a stereographic projection of the Riemann sphere, followed by a boost. This is most clearly seen by writing
\[
\hat{M}_\phi e_3 \hat{M}_\phi = e^{\frac{i}{2} \hat{m}_1 \times \hat{m}_2} \hat{m}_1 e_3 \hat{m}_1 e^{-\frac{i}{2} \hat{m}_1 \times \hat{m}_2},
\]
so the Dirac \(g\)-spinor represented by \(\hat{M}_\phi\), maps the North Pole \(e_3\) into the point \(\hat{a} = \hat{m}_1 e_3 \hat{m}_1\) on the Riemann sphere, followed by the boost \(e^{\frac{i}{2} \hat{m}_1 \times \hat{m}_2}\). See [5] for more details of this construction.

References

[1] W.E. Baylis, J.D. Keselica, *The Complex Algebra of Physical Space: A Framework for Relativity*, Advances in Applied Clifford Algebras, Vol. 22, No. 3, pp. 537 - 561, 2012.

[2] D. Hestenes, *New Foundations for Classical Mechanics*, 2nd Ed., Kluwer 1999.

[3] D. Hestenes, *Zitterbewegung in Quantum Mechanics*, Found Physics (2010) 40:1-54.

[4] G. Sobczyk, *Part I: Vector Analysis of Spinors*, (2014)

[5] G. Sobczyk, *Part II: Spacetime Algebra of Dirac Spinors*, (2015)

[6] G. Sobczyk, *Conformal Mappings in Geometric Algebra*, Notices of the AMS, Volume 59, Number 2, p.264-273, 2012.

[7] G. Sobczyk, *Geometry of Spin 1/2 Particles*, Revista Mexicana de Física, 61 (2015) 211-223.

[8] G. Sobczyk, *New Foundations in Mathematics: The Geometric Concept of Number*, Birkhäuser, New York 2013.

[9] G. Sobczyk, Geometric Matrix Algebra, *Linear Algebra and its Applications*, 429 (2008) 1163-1173.

[10] G. Sobczyk, Hyperbolic Number Plane, *The College Mathematics Journal*, Vol. 26, No. 4, pp.268-280, September 1995.

[11] G. Sobczyk, *Spacetime Vector Analysis*, Physics Letters A, Vol 84A, p.45-49, 1981.