Polymorphism in FASN, SCD1 and ANXA9 Genes: A Preliminary Study of Markers Which May Serve As Genetic Predictors of the Fatty Acid Profile of Sheep Milk

Ewa Pecka-Kiełb (ewa.pecka@upwr.edu.pl)
Wrocław University of Environmental and Life Sciences

Inga Kowalewska-Łuczak
West Pomeranian University of Technology in Szczecin

Ewa Czerniawska-Piątkowska
West Pomeranian University of Technology in Szczecin

Bożena Króliczewska
Wrocław University of Environmental and Life Sciences

Research Article

Keywords: sheep, milk, fatty acids, FASN, SCD1, ANXA9

DOI: https://doi.org/10.21203/rs.3.rs-559141/v1

License: ☕️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

In this study, single nucleotide polymorphisms (SNPs) in the ANXA9 (annexin 9), FASN (fatty acid synthase) and SCD1 (stearoyl-CoA desaturase 1) genes were analyzed as factors influencing fatty acid profiles in milk from Zořlachtená valaška sheep. SNP in selected genes was identified using polymerase chain reaction (PCR) and restriction fragment length polymorphism (PCR-RFLP). The long-chain fatty acids profile in sheep milk was identified by gas chromatography. Statistical analysis of the SCD1/Cfr13I polymorphism showed that the milk of the homozygous AA animals was characterized by a lower (P < 0.05) share of C4:0, C6:0, C8:0, C10:0, C12:0, C14:0 in comparison to the homozygous CC sheep. The milk of heterozygous sheep was characterized by a higher (P < 0.05) proportion of C13:0 acid compared to the milk of sheep with the homozygous AA type. A higher (P < 0.05) level of saturated fatty acids (SFA) was found in the milk of CC genotype sheep compared to the AA genotype. Our results lead to the conclusion that the greatest changes were observed for the SCD1/Cfr13I polymorphism and the least significant ones for FASN/Aci. Moreover, it is the first evidence that milk from sheep with SCD1/Cfr13I polymorphism and the homozygous AA genotype showed the most desirable fatty acids profile.

1. Introduction

Globalization and the rapid development of food production have resulted in new consumer food trends. Modern consumers are looking for products rich in valuable nutrients, vitamins and substances that have a positive effect on human health. In food, unsaturated fatty acids have pro-health properties, in particular, they contribute to reducing blood cholesterol \(^1\). The most desirable fatty acids in the human diet are conjugated linoleic acid (CLA), eicosapentaenoic acid (C20:5n-3, EPA) and docosahexaenoic acid (C22:6n-3, DHA), which play an important role in preventing cancer, cardiovascular, autoimmune, and psychological diseases \(^2\). In contrast, the SFA intake highly increases coronary disease risk, diabetes, obesity, atherosclerosis, and high low-density lipoprotein (LDL) levels \(^3\).

Sheep milk is a rich source of unsaturated fatty acids compared to cow and goat milk, which makes it desirable as a functional food \(^4\). The composition of milk, including the fatty acids profile, is determined by genetic and environmental factors \(^5,6,7\). The composition of sheep milk is influenced by both genetic and environmental factors. Breed, age and stage of lactation have a significant impact on changes in sheep's milk. The candidate gene approach is applied with regard to genes whose products might affect production traits. Among them, the most extensively studied genes are genes encoding milk proteins (e.g. caseins), hormones and their receptors. Other genes of interest in this area include genes encoding enzymes that participate in fatty acid metabolism as well as genes encoding fatty acid binding and transport proteins \(^8\).

Fatty acid synthase (FASN) encoded by the FASN gene is a multifunctional homodimeric enzyme that catalyzes the synthesis of fatty acids (FA), plays a key role in the synthesis of short- and medium-chain fatty acids in mammals \(^9,10\). Additionally, which is important in the adult life of mammals, it determines the energy homeostasis of the organism and is involved in the production of milk lipids during lactation.
Annexin 9 (ANXA9) encoded by the ANXA9 gene is a phospholipid and Ca\(^{2+}\) binding protein. It is also involved in the transport across the cytoplasmic membrane, which is important in the mammary gland. On the other hand, stearoyl-CoA desaturase 1 (SCD1) encoded by the SCD1 gene is the key and a rate-limiting enzyme involved in the metabolism of mammary lipids and is responsible for the conversion of SFA into monounsaturated fatty acids (MUFA). Also be a key enzyme in the production of the cis-9, trans-11 isomer of conjugated CLA. CLA can be found in ruminant milk and tissue fat and is considered a beneficial effect on human health.

Dairy sheep farming systems vary from extensive to intensive according to economic relevance of the production chain and the specific environmental and breed. Only a few publications have comparative values of milk composition for different breeds of sheep and milk energy of sheep breeds, but milk components were not different among breeds.

The available literature data have shown the effects of SNP on the basic composition and protein fractions in sheep milk, however, each variant of the polymorphism was considered separately for each of the FASN, ANXA9 and SCD1 genotypes. Therefore, an attempt was made to determine which of the studied polymorphisms has a more significant impact on the proportion of fatty acids in sheep milk and could be the best candidate marker. Additionally, Zošľachtená valaška sheep are a local Slovak breed, which opens up prospects for future selection programs and animal protection strategies. For this purpose, this study analyzed SNP polymorphisms in the ANXA9, FASN and SCD1 genes as a factor influencing the fatty acid profile in the milk of Zošľachtená valaška sheep.

2. Materials And Methods

2.1. Animals and nutrition

The experiment was carried out in a flock of sheep of the Zošľachtená valaška a perspective breed, mainly for mountainous areas, which is included in the native Slovak breed. They are bred in the three Slovak regions (Spiš, Orava, and Liptov). The breed was generated by the intentionally combined crossing of Native Wallachian sheep with the rams of various imported breeds as, Cheviot, Hampshire, Lincoln, Texel and Leicester, therefore it is genetically interesting. As a new semi-coarse-wool breed, the Improved Wallachian sheep was recognized in 1982. At present, 128,930 pieces of this breed are kept in Slovakia. Animals of this breed are characterized by good adaptation to difficult mountain conditions. Ewes weigh from 50 to 55 kg, they are seasonally polyoestrous during the fall season (October – November). The composition of mammalian milk is influenced by genetic and environmental factors. Breed, age and stage of lactation have a significant impact on changes in sheep's milk. Therefore, fifty sheep were selected from a herd, taking into account age and lactation stage to eliminate the main variables influencing milk parameters. After lamb weaning, the ewes produced 80–120 kg of milk during the 150 days of lactation. The material for the study was collected from 50 ewes in the similar phase of milking (25-30 days of lactation) and lactation (1st and 2nd lactation). In the lambing period, the sheep were kept in special buildings complying with the European Union Directive (No. 116, item 778, 2010) and were fed...
hay ad libitum, 250 g/ewe/day of wheat middlings, and 3 kg/ewe/day of haylage. To collect milk samples from ewes, their lambs were separated overnight. The milk was collected into sterile containers and transported to the laboratory at 4 °C. Besides, peripheral blood samples were collected from the external jugular vein (EJV) of ewes into test tubes containing anticoagulant (tripotassium ethylenediaminetetraacetic acid, K₃EDTA) for DNA isolation and immediately transported to the laboratory, and frozen at −20 °C for subsequent analysis.

DNA isolation was performed using the MasterPure DNA Purification Kit for Blood, Version II (Lucigen, Middleton, WI, USA) according to the manufacturer’s instructions. Animal genotyping was performed using PCR-RFLP. Three SNPs in the ANXA9 gene (intron 4, intron 5, GenBank: AY785286.1) and one in the FASN gene (exon 32, GenBank: GQ150557.1) and SCD1 (promoter region, GenBank: FJ513370.1) were analyzed. Table 1 shows the location of individual SNPs and the appropriate primers, designed using the Primer3 software (http://bioinfo.ut.ee/primer3-0.4.0/), enabling the amplification of selected fragments of the analyzed genes. In the case of the reverse primer for the FASN gene, a mismatched nucleotide was introduced to create a cleavage site for the enzyme (this nucleotide is underlined in the Table 1). The polymerase chain reaction (PCR) reaction was performed in a final volume of 25 μl, using 2x PCR Master Mix (A&A Biotechnology, Gdynia, Poland), containing 50 ng genomic DNA and 5 pmol of each primer.

DNA amplification was performed using an initial denaturation at 94°C for 5 min, followed by 30 cycles of 30 s denaturation at 94°C each, annealing at a temperature appropriate for each gene for 30 s and extension at 72°C for 30 s, ending with a final extension of 8 minutes at 72°C (Table 1).

Table 1. Localization of SNPs and primer sequences for the tested genes.

Gene	Location	Primer Sequence (5′–3′)	Annealing temperature
SCD1	promoter region (31 C>A)	F: CAGGGGCAGGGGCAGAGGCA R: CGCTGGCAGCCGGTGACTGTG	62°C
FASN	exon 32 (257 C>T)	F: TGAGATGGGGCAGCAGGCCT R: GGAACACTGTTCGCTTGCGG	60°C
ANXA9	intron 4 (c.172 + 181G > A)	F: CATTCCTGTGTGTCCGGTGAC R: TCATCTCAGACCTAACCACCA	50°C
	intron 4 (c.173-27C > G)		
	intron 5 (c.267 + 103C > A)		

After the amplification of selected fragments of SCD1, FASN and ANXA9 genes, the identification of polymorphic loci in these genes was carried out using appropriately selected restriction enzymes.
Individual PCR products were digested separately with restriction enzymes according to the manufacturer's recommendations. Next, the restriction fragments were separated on agarose gels with appropriately selected agarose concentration. The restriction enzymes and the obtained restriction fragments for individual genotypes are presented in Table 2.

Table 2. The size of the restriction fragments for each restriction enzyme of the studied genes.

Gene	Product size (bp)	Restriction enzyme	Size of RFLP band (bp)
SCD1	225	Cfr13I	CC: 194, 31
			CA: 225, 194, 31
			AA: 225
FASN	275	AciI	CC: 149, 107, 19
			CT: 168, 149, 107, 19
			TT: 168, 107
ANXA9	675	NlalII	GG: 252, 177, 175, 71
		Hinfl	GA: 252, 248, 177, 175, 71
		TruI	AA: 252, 248, 175
			GG: 366, 162 147,
			GC: 366, 227, 162 147,139
			CC: 227, 162,147, 139
			CC: 450, 225
			CA: 450, 389, 225, 61
			AA: 389, 225, 61

2.2. Profile of fatty acids

Fats were extracted from the milk samples using the Folch method [19]. Next, the obtained fat was converted to fatty acid methyl esters using the Christopherson and Glass procedure (1969) [20] with 2M KOH in methanol. The fatty acid profile was determined, by using a gas chromatography method (Agilent Technologies 7890A, Agilent Technologies, Santa Clara, CA, USA), with a flame ionization detector and an HP-88 capillary column designed for the separation of fatty acid methyl esters (FAMEs) (100 m length, 25 mm i.d. × 0.20 μm). The initial oven temperature was 50 °C and was increased by 3 °C/min to 220 °C. The detector and dispenser temperatures were -270 °C and 270 respectively.

To analyse experimental chromatograms a comparative analysis of the retention times of the fatty acid methyl ester standards [Sigma-Aldrich] was performed using the ChemStation software (Agilent...
Technologies, USA).

2.3. Statistical analysis

The frequencies of genotypes and alleles and the Hardy-Weinberg equilibrium for individual SNPs were calculated using the POPGENE software \(^{21}\), the effective number of alleles (Ne) was evaluated according to Kimura and Crow (1964) \(^{22}\) and expected heterozygosity (He) and the polymorphism information content (PIC) were evaluated according to Nei’s methods \(^{23}\).

The statistical analysis of the influence of selected SNPs on the fatty acid profile in sheep milk was carried out using the Statistica 13.1 program (StatSoft Poland, Krakow, Poland). The results of the study were statistically analyzed using one-way ANOVA followed by a multiple comparisons Tukey Post-Hoc Test. Pearson correlation coefficient (r) with two-tailed test of significance was conducted to examine the relationship between certain parameters.

3. Results

The analysis of the obtained genotyping results suggested that for almost all polymorphic loci tested, the presence of all three possible genotypes was identified; only in the \(FASN\) gene, two out of three possible genotypes were identified. Table 3 shows the frequencies of genotypes and alleles and the expected heterozygosity, the effective number of alleles, PIC, and the value of \(\chi^2\) calculated based on genotyping results.

Table 3. The frequencies of genotypes and alleles for the analyzed SNPs in the studied sheep flock.
The expected heterozygosity for almost all examined loci was quite similar and ranged from 0.449 to 0.497; the only exception was the FASN polymorphism where two out of three genotypes were identified. In the case of the effective number of alleles, similar values were observed for most of the analyzed SNPs in the range of 1.814-1.987, except for the SCD1 genes, where this value was 1.150. The PIC value for all tested SNPs was similar and ranged from 0.311 to 0.373, that according to the classification of Botstein et al. (1980) indicates an average polymorphism (0.25 < PIC value < 0.5). The next analyzed parameter was the Hardy-Weinberg equilibrium value (HWE). The distribution of genotypes consistent with the HWE was at P > 0.05. The analysis of the results collected in Table 3 shows that the ANXA9/HinF1 polymorphism was found to be incompatible with the Hardy-Weinberg equilibrium. We also assessed the effects of SNPs within the fatty acid synthase gene (FASN), however, we detected only two genotypes (CC, CT) out of 3 FASN/AciI polymorphism (without TT). Due to this, we did not calculate HWE for FASN/AciI.

The profile of individual saturated fatty acids in sheep milk in relation to individual genotypes of the studied polymorphisms of the SCD1 and FASN genes is presented in Table 4. Statistical analysis for the SCD1/Cfr13I polymorphism showed that the milk of individuals with the homozygous AA genotype was characterized by a lower (P < 0.05) share of butanoic acid (C4:0), hexanoic acid (C6:0), octanoic acid

Polymorphism	n	Genotype frequencies	Allele frequencies	He	Ne	PIC	HWE			
SCD1/Cfr13I	5	AA	A	0.10	0.37	0.466	1.150	0.358	1.253	0.263
	27	AC	C	0.54	0.63					
	18	CC		0.36						
ANXA9/NlaIl	23	GG	G	0.46	0.66	0.449	1.814	0.348	0.591	0.442
	20	GA	A	0.40	0.34					
	7	AA		0.14						
ANXA9/HinF1	22	GG	G	0.32	0.54	0.497	1.987	0.373	14.923	0.0001
	12	CG	C	0.44	0.46					
	18	CC		0.24						
ANXA9/Tru1	18	CC	C	0.36	0.57	0.490	1.962	0.370	1.025	0.311
	21	CA	A	0.42	0.43					
	11	AA		0.22						

n – animal numbers; He - expected heterozygosity; Ne - effective number of alleles; PIC polymorphic information content, HWE Hardy–Weinberg equilibrium
(C8:0), decanoic acid (C10:0), dodecane (C12:0), tetradecanoate (C14:0) than the homozygous CC sheep. On the other hand, the milk of sheep with the heterozygous genotype was characterized by a higher (P < 0.05) share of tridecanoic acid (C13:0) as compared to the milk of sheep with the AA genotype. A higher (P < 0.05) total level of saturated fatty acids (SFA) was found in the milk of the homozygous CC sheep compared to those of the homozygous AA genotype.

Table 4. The content of individual saturated fatty acids (SFA) in sheep for the SCD1 and FASN polymorphisms.

	SCD1/Cfr13I	FASN/Aci			
	AA	CA	CC	CC	CT
SCFA					
C4:0	0.53 ± 0.17^a	0.54 ± 0.21	0.67 ± 0.28^b	0.59 ± 0.23	0.58 ± 0.29
C6:0	0.68 ± 0.19^a	0.75 ± 0.17	0.85 ± 0.21^b	0.78 ± 0.19	0.77 ± 0.21
C8:0	0.81 ± 0.21^a	0.92 ± 0.20	1.00 ± 0.20^b	0.94 ± 0.21	0.95 ± 0.18
C10:0	2.79 ± 0.86^a	3.25 ± 0.71	3.45 ± 0.72^b	3.25 ± 0.76	3.46 ± 0.55
Total	4.80 ± 1.38	5.47 ± 1.11	5.96 ± 1.26	5.77 ± 1.07	5.56 ± 1.24
LCFA					
C12:0	1.92 ± 0.38^a	2.15 ± 0.34	2.31 ± 0.40^b	2.17 ± 0.40	2.29 ± 0.16
C13:0	0.03 ± 0.05^a	0.06 ± 0.02	0.05 ± 0.02	0.05 ± 0.03	0.07 ± 0.02
C14:0	7.22 ± 0.65^a	7.74 ± 0.81	8.18 ± 0.89^b	7.83 ± 0.91	8.01 ± 0.59
C15:0	1.10 ± 0.19	1.09 ± 0.19	1.12 ± 0.06	1.07 ± 0.16	1.16 ± 0.19
C16:0	21.44 ± 0.95	22.03 ± 1.15	21.81 ± 1.44	21.90 ± 1.29	21.89 ± 1.02
C17:0	1.09 ± 0.08	1.01 ± 0.11	1.01 ± 0.12	1.03 ± 0.11	0.98 ± 0.10
C18:0	12.61 ± 0.16	11.48 ± 1.41	12.33 ± 1.74	11.91 ± 1.58	11.83 ± 1.31
C20:0	0.31 ± 0.04	0.32 ± 0.04	0.33 ± 0.06	0.32 ± 0.05	0.34 ± 0.05
Total	45.70 ± 1.64	45.88 ± 2.13	47.08 ± 1.19	46.55 ± 1.33	46.27 ± 1.95
SFA%	50.49 ± 2.85^a	51.32 ± 2.85	53.02 ± 1.84^b	51.80 ± 2.71	52.30 ± 2.27

SCFA- short-chain fatty acids, LCFA – long-chain fatty acids, SFA – saturated fatty acids. Mean ± SD values within the same row sharing a different superscript letter (a, b, c, etc.) are significantly different.
Table 5 presents the share of unsaturated fatty acids in sheep milk in relation to the studied polymorphisms of the SCD1 and FASN genes. The analysis of the SCD1/Cfr13I polymorphism revealed that the proportion of (Z)-11-eicosenoic acid (C20:1) in milk was lower (P < 0.05) in the homozygous AA sheep in relation to the heterozygous and homozygous CC individuals. Higher (P < 0.05) levels of MUFA were noted in the homozygous AA individuals compared to the homozygous CC individuals. The relationship for all cis-5,8,11,14,17-eicosapentaenoic acid (C20:5n3) was reverse: in the milk of the homozygous AA sheep the level of this acid was lower (P < 0.05) compared to individuals with the CC genotype. The polymorphism in the FASN gene will not statistically affect the fatty acid profile in sheep milk. For the remaining saturated and saturated fatty acids in milk, no statistical effect of polymorphisms for the SCD1 gene was observed.

Table 5. The content of individual unsaturated fatty acids (UFA) in sheep milk for the SCD1 and FASN polymorphisms.
	SCD1/Cfr13I		FASN/Aci		
	AA CA CC CC CT				
MUFA					
C14:1	0.53 ± 0.15	0.57 ± 0.09	0.56 ± 0.08	0.56 ± 0.09	0.62 ± 0.08
C16:1	5.63 ± 0.66	5.78 ± 0.73	5.44 ± 0.64	5.59 ± 0.69	5.93 ± 0.75
C17:1	0.53 ± 0.08	0.50 ± 0.06	0.49 ± 0.06	0.50 ± 0.06	0.48 ± 0.06
C18:1n9c	23.57 ± 1.35	22.75 ± 2.31	21.85 ± 1.67	22.66 ± 2.16	21.51 ± 0.94
C18:1n9t	1.92 ± 0.51	1.84 ± 0.37	1.88 ± 0.49	1.85 ± 0.37	1.94 ± 0.66
C18:1n7t	2.27 ± 0.19	2.15 ± 0.27	2.06 ± 0.27	2.13 ± 0.28	2.09 ± 0.23
C20:1	0.06 ± 0.04a	0.08 ± 0.03b	0.08 ± 0.02b	0.08 ± 0.03	0.08 ± 0.02
Σ MUFA	34.51 ± 2.00b	33.66 ± 2.29	32.36 ± 1.60a	32.63 ± 1.24	33.36 ± 2.24
PUFA					
C18:2n6c	1.91 ± 0.33	1.76 ± 0.29	1.77 ± 0.23	1.78 ± 0.27	1.74 ± 0.31
CLA	1.29 ± 0.12	1.25 ± 0.27	1.19 ± 0.15	1.24 ± 0.23	1.22 ± 0.18
C18:3n3	1.46 ± 0.08	1.53 ± 0.23	1.48 ± 0.19	1.53 ± 0.21	1.35 ± 0.10
C20:4n6	0.10 ± 0.07	0.11 ± 0.03	0.10 ± 0.02	0.10 ± 0.03	0.12 ± 0.04
C20:5n3	0.07 ± 0.05a	0.08 ± 0.02	0.09 ± 0.02b	0.08 ± 0.03	0.08 ± 0.02
Σ PUFA	4.82 ± 0.40	4.72 ± 0.66	4.62 ± 0.45	4.49 ± 0.44	4.73 ± 0.59
Σ UFA	40.14 ± 1.73	39.17 ± 2.61	37.74 ± 1.73	38.87 ± 2.49	37.92 ± 1.23

MUFA - monounsaturated fatty acids, PUFA - Polyunsaturated fatty acids. Mean ± SD values within the same row sharing a different superscript letter (a, b, c, etc.) are significantly different (P < 0.05).

The analysis of the share of short- and long-chain saturated fatty acids with respect to the individual genotypes of the studied polymorphisms in the ANXA9 gene is presented in Table 6 (a, b, c). Statistical analysis for the ANXA9/Hinfl polymorphism showed that the milk of individuals with the homozygous CC genotype was characterized by a higher (P < 0.05) content of pentadecanoic acid (C15:0) and eicosanoic acid (C20:0) than the milk of heterozygous sheep. In contrast, the milk of sheep with the CG genotype was characterized by a lower (P < 0.05) proportion of octadecanoic acid (C18:0) compared to the milk of sheep with the homozygous GG genotype. For the remaining saturated fatty acids in milk, no statistical effect of ANXA9 polymorphisms was observed.
Table 7 (a, b, c) shows the contribution of UFA in Zošľachtená valaška milk with respect to individual genotypes of the ANXA9 polymorphisms examined in this study. Analysis of the ANXA9/NlaIII polymorphism showed that the share of (all-Z) -5,8,11,14-eicosatetraenoic acid (20:4n6) in milk was lower (P < 0.01) in the sheep with the homozygous AA genotype in relation to individuals with heterozygous and homozygous GG genotypes. In the case of the ANXA9/HinfI polymorphism, it was shown that the milk of sheep with the homozygous GG genotype was characterized by a higher proportion of trans-octadecenoic acid (C18:1n9t) compared to the homozygous CC (P < 0.01) and heterozygous (P < 0.05) sheep. Also, a higher (P < 0.05) share of CLA was found in the homozygous GG individuals compared to heterozygous ones. For the ANXA9/TruI polymorphism, it was found that animals with the homozygous AA genotype were characterized by a lower (P < 0.05) proportion of C18:1n9t acid in milk compared to heterozygous sheep and higher (P < 0.05) compared to the homozygous CC animals. The polymorphism in the ANXA9 gene did not statistically affect the share of other unsaturated fatty acids in sheep milk.

Table 6. The content of individual saturated fatty acids (SFA) in the milk of the Zošľachtená valaška sheep for the ANXA9 polymorphisms. a) ANXA9/NlaIII; b) ANXA9/HinfI; c) ANXA9/TruI
SCFA			
C4:0	0.46 ± 0.20	0.64 ± 0.29	0.57 ± 0.18
C6:0	0.68 ± 0.19	0.83 ± 0.20	0.77 ± 0.17
C8:0	0.82 ± 0.20	0.98 ± 0.19	0.94 ± 0.21
C10:0	2.87 ± 0.78	3.38 ± 0.64	3.31 ± 0.78
Total	4.83 ± 1.14	5.21 ± 1.11	5.59 ± 1.20
LCFA			
C12:0	2.03 ± 0.36	2.23 ± 0.30	2.20 ± 0.44
C13:0	0.06 ± 0.03	0.05 ± 0.02	0.05 ± 0.03
C14:0	7.98 ± 1.12	7.84 ± 0.80	7.84 ± 0.89
C15:0	1.13 ± 0.16	1.09 ± 0.18	1.06 ± 0.16
C16:0	22.59 ± 1.19	21.81 ± 1.26	21.79 ± 1.23
C17:0	1.03 ± 0.09	1.03 ± 0.11	1.00 ± 0.11
C18:0	11.74 ± 0.98	12.22 ± 1.78	11.65 ± 1.43
C20:0	0.33 ± 0.05	0.33 ± 0.05	0.31 ± 0.05
Total	46.87 ± 2.02	46.58 ± 1.71	45.88 ± 1.82
Σ SFA%	51.69 ± 3.28	52.39 ± 2.36	51.46 ± 2.72

SCFA- short-chain fatty acids, LCFA – long-chain fatty acids, SFA – saturated fatty acids; (g/100g of fat). Mean ± SD values within the same row sharing a different superscript letter (a, b, c, etc.) are significantly different (P < 0.05).

6 b)
	CC	CG	GG
SCFA			
C4:0	0.63 ± 0.27	0.53 ± 0.18	0.63 ± 0.27
C6:0	0.83 ± 0.21	0.76 ± 0.19	0.77 ± 0.17
C8:0	0.97 ± 0.21	0.95 ± 0.22	0.91 ± 0.19
C10:0	3.36 ± 0.70	3.36 ± 0.79	3.13 ± 0.71
Total	5.78 ± 1.26	5.60 ± 2.27	5.36 ± 1.11
LCFA			
C12:0	2.23 ± 0.32	2.23 ± 0.42	2.11 ± 0.36
C13:0	0.06 ± 0.01	0.05 ± 0.03	0.05 ± 0.03
C14:0	8.02 ± 0.95	7.91 ± 0.83	7.66 ± 0.86
C15:0	1.17 ± 0.15^b	1.04 ± 0.17^a	1.07 ± 0.17
C16:0	22.36 ± 1.42	22.07 ± 0.91	21.31 ± 1.30
C17:0	1.04 ± 0.10	0.98 ± 0.11	1.05 ± 0.10
C18:0	11.80 ± 1.78	11.29 ± 1.03^a	12.74 ± 1.56^b
C20:0	0.34 ± 0.04^b	0.30 ± 0.04^a	0.33 ± 0.05
Total	47.01 ± 2.09	45.87 ± 15.91	46.20 ± 1.61
Σ SFA%	52.79 ± 2.65	51.47 ± 2.86	51.72 ± 2.27

SCFA- short-chain fatty acids, LCFA – long-chain fatty acids, SFA – saturated fatty acids; (g/100g of fat). Mean ± SD values within the same row sharing a different superscript letter (a, b, c, etc.) are significantly different (P < 0.05).
	AA	CA	CC
SCFA			
C4:0	0.58 ± 0.21	0.58 ± 0.25	0.63 ± 0.27
C6:0	0.79 ± 0.19	0.78 ± 0.20	0.77 ± 0.17
C8:0	0.97 ± 0.21	0.95 ± 0.22	0.87 ± 0.16
C10:0	3.40 ± 0.82	3.31 ± 0.73	3.00 ± 0.55
Total	5.26 ± 0.91	5.61 ± 1.28	5.74 ± 1.30
LCFA			
C12:0	2.23 ± 0.42	2.22 ± 0.36	2.04 ± 0.30
C13:0	0.05 ± 0.03	0.05 ± 0.02	0.05 ± 0.03
C14:0	7.83 ± 0.89	7.97 ± 0.91	7.66 ± 0.74
C15:0	1.08 ± 0.12	1.08 ± 0.19	1.11 ± 0.19
C16:0	21.78 ± 1.18	21.77 ± 1.39	22.42 ± 0.92
C17:0	1.03 ± 0.11	1.01 ± 0.12	1.02 ± 0.07
C18:0	11.52 ± 1.16	12.22 ± 1.83	11.80 ± 1.32
C20:0	0.30 ± 0.04	0.33 ± 0.06	0.33 ± 0.05
Total	46.41 ± 2.66	46.64 ± 1.44	45.79 ± 1.86
Σ SFA%	51.67 ± 3.03	52.24 ± 2.29	51.67 ± 3.04

SCFA- short-chain fatty acids, LCFA – long-chain fatty acids, SFA – saturated fatty acids; (g/100g of fat). Mean ± SD values within the same row sharing a different superscript letter (a, b, c, etc.) are significantly different (P < 0.05).

Table 7. The content of individual unsaturated fatty acids (UFA) in the milk of the Zošľachtená valaška sheep for the **ANXA9** polymorphisms. a) **ANXA9/NlaIII**; b) **ANXA9/HinfI**; c) **ANXA9/Tru1I**

7 a)
	AA	GA	GG
MUFA			
C14:1	0.55 ± 0.07	0.58 ± 0.08	0.56 ± 0.11
C16:1	5.95 ± 0.78	5.57 ± 0.70	5.61 ± 0.69
C17:1	0.50 ± 0.02	0.51 ± 0.07	0.49 ± 0.06
C18:1n9c	21.87 ± 1.80	22.37 ± 1.95	22.77 ± 2.26
C18:1n9t	2.03 ± 0.47	1.85 ± 0.48	1.82 ± 0.35
C18:1n7t	2.10 ± 0.29	2.07 ± 0.26	2.18 ± 0.28
C20:1	0.08 ± 0.07	0.07 ± 0.01	0.08 ± 0.03
Σ MUFA	33.06 ± 1.92	33.01 ± 1.93	33.50 ± 2.26
PUFA			
C18:2n6c	1.66 ± 0.20	1.78 ± 0.27	1.81 ± 0.29
CLA	1.16 ± 0.28	1.18 ± 0.23	1.30 ± 0.19
C18:3n3	1.45 ± 0.14	1.54 ± 0.26	1.48 ± 0.16
C20:4n6	0.07 ± 0.04^A	0.11 ± 0.03^B	0.11 ± 0.03^B
C20:5n3	0.08 ± 0.04	0.09 ± 0.03	0.08 ± 0.02
Σ PUFA	4.42 ± 0.41	4.69 ± 0.59	4.76 ± 0.5
Σ UFA	38.30 ± 2.51	38.47 ± 2.12	39.08 ± 2.58

MUFA - monounsaturated fatty acids, PUFA - Polyunsaturated fatty acids; (g/100g of fat). Mean ± SD values within the same row sharing a different superscript letter (a, b, c, etc.) are significantly different (P < 0.05) and the superscript capital letter (A, B, C, etc.) different at P < 0.01.

7 b)
	CC	CG	GG
MUFA			
C14:1	0.60	0.55	0.57
C16:1	5.55	5.66	5.68
C17:1	0.51	0.50	0.49
C18:1n9c	22.06	22.62	22.66
C18:1n9t	1.76	1.80	2.02
C18:1n7t	2.04	2.18	2.12
C20:1	0.08	0.08	0.07
Σ MUFA	32.57	28.90	33.82
PUFA			
C18:2n6c	1.79	1.79	1.75
CLA	1.21	1.0	1.16
C18:3n3	1.53	1.46	1.53
C20:4n6	0.10	0.11	0.09
C20:5n3	0.09	0.08	0.08
Σ PUFA	4.71	4.14	4.56
Σ UFA	38.03	38.95	39.00

MUFA - monounsaturated fatty acids, PUFA - Polyunsaturated fatty acids; (g/100g of fat). Mean ± SD values within the same row sharing a different superscript letter (a, b, c, etc.) are significantly different (P < 0.05) and the superscript capital letter (A, B, C, etc.) different at P < 0.01.

7 c)
Table 8. Correlation coefficients between the polymorphism in genes and the content of individual saturated fatty acids (SFA) in sheep of milk.

	ANXA9/HinfI		
	CC	CG	GG
MUFA			
C14:1	0.60 ± 0.06	0.55 ± 0.09	0.57 ± 0.08
C16:1	5.55 ± 0.70	5.66 ± 0.72	5.68 ± 0.71
C17:1	0.51 ± 0.05	0.50 ± 0.06	0.49 ± 0.07
C18:1n9c	22.06 ± 1.75	22.62 ± 1.98	22.66 ± 2.44
C18:1n9t	1.76 ± 0.55	1.80 ± 0.40	2.02 ± 0.28
C18:1n7t	2.04 ± 0.32	2.18 ± 0.26	2.12 ± 0.24
C20:1	0.08 ± 0.02	0.08 ± 0.04	0.07 ± 0.03
Σ MUFA	32.57 ± 1.88	28.90 ± 11.63	33.82 ± 2.16
PUFA			
C18:2n6c	1.79 ± 0.27	1.79 ± 0.27	1.75 ± 0.25
CLA	1.21 ± 0.24	1.0 ± 0.24	1.16 ± 0.17
C18:3n3	1.53 ± 0.24	1.46 ± 0.16	1.53 ± 0.23
C20:4n6	0.10 ± 0.03	0.11 ± 0.03	0.09 ± 0.04
C20:5n3	0.09 ± 0.02	0.08 ± 0.02	0.08 ± 0.03
Σ PUFA	4.71 ± 0.66	4.14 ± 1.72	4.56 ± 0.51
Σ UFA	38.03 ± 2.20	38.95 ± 2.56	39.00 ± 2.25

MUFA - monounsaturated fatty acids, PUFA - Polyunsaturated fatty acids; (g/100g of fat). Mean ± SD values within the same row sharing a different superscript letter (a, b, c, etc.) are significantly different (P < 0.05) and the superscript capital letter (A, B, C, etc.) different at P < 0.01.

Furthermore, we estimated the genetic correlations among individual FAs, which were shown in (Table 8 and 9). For two individual SCFA (C4:0, C6:0), and one LCFA (C:14) negative genetic correlations were observed for SCD1/Cfr13I polymorphism and two negative correlation for two LCFA (C15:0, C20:0) over ANXA9/HinfI polymorphism.
Positive genetic correlations were observed between MUFA and UFA and SCD1/Cfr13I, although negative correlations for C20:5n3 was observed (Table 9). We also showed a positive correlation between C20:4n6 and ANXA9/NlaIII.

Table 9. Correlation coefficients between the polymorphism in genes and the content of individual unsaturated fatty acids (UFA) in the milk of sheep.
MUFA - monounsaturated fatty acids, PUFA - Polyunsaturated fatty acids; (g/100g of fat). *Significance at $P < 0.05$ was marked by an asterisk.

4. Discussion

Sheep milk is characterized by high variability in the level of fatty acids25,26,27. The level of saturated fatty acids (SFA) ranges from 49.43 to 82.9 g / 100 g fat. On the other hand, the share of MUFA and polyunsaturated fatty acids (PUFA) is slightly lower (MUFA: 11.95- 45.26 g/100 g fat, PUFA 2.79 -12.24 g/100 g fat)26. The results obtained in the author's research correspond with the literature data.

Due to the biohydrogenation process taking place in the rumen content, nutrition is the main factor determining the fatty acid profile in the milk of ruminants10,25,27. However, the level of fatty acids in sheep milk shows a low to moderate genetic variation for individual acids (ranging from 0.01 to 0.47)26. Therefore, nutrition and genetics play a key role in modulating the composition of milk fat25.
According to Crisà et al. (2010) 9 257C>T (exon 32) polymorphism in the FASN gene significantly affects the level of the following acids in sheep milk: C10:0; C10:1, C12:0; C14:0; C15:0; C17:1. On the other hand, other authors found the effect of the FASN gene polymorphism (SNP was mapped in intron 31) also on the C13:0 level in sheep milk 28. However, it is the T allele in FASN that is responsible, at least in part, for a higher level of fatty acids in milk 9. In our research, the FASN polymorphism affected no changes in the fatty acid composition in milk, which may be related to the low share of the T allele in the sheep genotype.

Studies by other authors have shown a link between polymorphisms (other than those studied in the present work) of the SCD1 gene and the composition of fatty acids in ruminant products, including sheep milk. They found that the analyzed SNPs in SCD1 significantly influenced the level of C16:1 acid, C18:1 trans-11 acid, the content of SFA and MUFA in sheep milk 29. Moreover, Gu et al. (2019) 30 analyzed the polymorphism in the promoter region of the SCD1 gene (g.133A>C) showed that the presence of the C allele results in higher levels of MUFA and lower levels of SFA. In our study we found, that the milk of the homozygous CC sheep contains a higher level of C20:1 and C20:5n3 acids for the milk of sheep with AA genotype. In the case of SFA and MUFA, a higher share of MUFA and a lower share of SFA were obtained in the milk of the homozygous AA sheep. The presence of features linked to polymorphism is related, among others, to the specificity of population and animal species 31, which may explain the obtained results.

There are only a few studies in the available literature describing the effect of SCD1 29 and ANXA9 polymorphisms on the composition of sheep milk, including the fatty acid profile. The polymorphism in the ANXA9 gene affects the yield of milk fat in cows 32 and the level of fat in sheep milk 7. The authors' research revealed the effect of SNP in the ANXA9 gene on the share of the following acids: C15:0; C18:0; C20:0 and C18:19t; C20:4n6; and CLA.

In the human diet, foods with a low n-6/n-3 share, ranging from 1:1 to 4:1, are desirable 33. Maintaining a sufficiently low n-6/n-3 ratio in the diet has a positive effect on the cognitive functions of the body and reduces the risk of depression 34. Additionally, the high consumption rate of (n-3)/(n-6) PUFAs reduces the risk of neoplastic diseases and inflammations 2,33,35.

In the case of the SCD1/Cfr13I polymorphism, an increase in C20:5n3 was observed in milk of the sheep with homozygous CC genotypes, without changes in the level of n-6 acids, which may cause an increase in the value of (n-3)/(n-6). In the case of ANXA9/NlaIII polymorphism analysis for AA homozygous animals, a decrease in the C20:4n6 acid level was found, which can also be considered a favourable phenomenon. Supplementation of CLA in the diet of animals and humans improves the metabolism of glucose and lipids in the body 36. In our research, an increase in the level of CLA in the milk of sheep with the GG ANXA9/Hinfl genotype was observed.

According to studies by other authors, long-chain unsaturated fatty acids are important in the human diet 33,35,36. Replacing SFA with PUFA in the human diet is beneficial for the cardiovascular system 37. In the
diet, saturated acids, such as C18:0, C14:0 and C12:0, adversely affect the increase of plasma lipoproteins. On the other hand, the consumption of saturated fatty acids with a carbon chain from C12 to C16 increases the level of plasma LDL-C. In our research, an increase in the level of C18:0 acid was noted in the ANXA9/HinI polymorphism in the homozygous GG individuals, while in the homozygous AA sheep, in the case of the SCD1/Cfr13I polymorphism, a decrease in the level of C12:0, C13:0, C14:0 acids and an increase in MUFA level in milk was observed. Consuming MUFA has a positive effect on humans, reduces total cholesterol and LDL fraction in the blood.

The share of individual fatty acids in the human diet determines both physical and mental health. The present study determined the relationship between the studied polymorphisms and the fatty acid profile in milk and the results may be used in the selection program in sheep flocks: the choice of an appropriate genotype variant will ensure the desired fatty acid profile in milk.

5. Conclusions

The research was aimed at searching for the best marker influencing the fatty acid profile in sheep milk. These preliminary findings show that the greatest changes were observed in sheep with SCD1/Cfr13I polymorphism and the least significant ones in FASN/AciI. Milk obtained from the homozygous AA sheep (SCD1/Cfr13I) had the best fatty acid profile. Slight changes in the milk of sheep were found for polymorphisms in the ANXA9 gene. For the ANXA9/NlallI polymorphism (AA genotype animals) a favourable reduction in the level of C20:4n6 acid in the milk was noted. Changes were also found for the ANXA9/HinI polymorphism (homozygous GG individuals). The milk of these sheep was characterized by an increase in the level of C18:1n9t and CLA acids, which is beneficial; unfortunately, an undesirable increase in the proportion of C18:0 acid was also found. Because presented results indicate the association of the analyzed genotypes with the fatty acid profile in Zošľachtenevalaška, a larger prospective study will be continued to explore the effect of SNPs, also in the other genes showing effects on sheep milk. Moreover, results of our study can be useful for breeders, especially that Zošľachtenevalaška sheep are included in the breeding program and sheep with homozygous AA (SCD1/Cfr13I) could be used during the breed improvement program.

Declarations

Ethical statement. All methods and procedures strictly complied with the “Regulation on the Studying Procedures and Principles of Animal Experiments of Ethics Committees” and were approved by the Veterinary Care of the University of Veterinary Medicine and Pharmacy in Košice, permission number IČO 00397474 2015, licensed by the Ministry of Education, Sciences, Research and Sport of the Slovak Republic. All animals used in this study were handled in strict accordance with good clinical practices following EU legislation (Council Directive 2010/63/EU), and all efforts were made to minimize suffering.

Author Contributions: Conceptualization, E.P.-K. and I.K.-Ł.; investigation, E.P.-K and I.K.-Ł.; Analyzed the data E.P.-K., I.K.-Ł., E.C.-P, B.K.; writing the first version of the manuscript, E.P.-K., I.K.-Ł., E.C.-P.; prepared
All authors approved the final version of the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Chen, J. & Liu, H. Nutritional indices for assessing fatty acids: A mini-review. *J. Mol. Sci.* **21**, 5695. https://doi.org/10.3390/ijms21165695 (2020).

2. Zhang, X. *et al.* Fatty acid composition analyses of commercially important fish species from the Pearl River Estuary, China. *PLoS One.* https://doi.org/10.1371/journal.pone.0228276 (2020).

3. Astrup, A. *et al.* Yusuf, R.D.S., Krauss, R.M. Saturated fats and health: a reassessment and proposal for food-based recommendations: state-of-the-art review. *JACC.* **76**, 844-857. https://doi.org/10.1016/j.jacc.2020.05.077 (2020).

4. Cividini, A. & Simčič, M. Fatty acid profile in milk of Bovec sheep fed in the stable or grazed in different pastures. **21**, 109–112. DOI: 10.18047/poljo.21.1.sup.25 (2015).

5. Ganter, Mijić, P, Baban, M., Škrtič, Z. & Turalika, A. The overall and fat composition of milk of various species. *Mljekarstvo.* **65**, 223-231. DOI: 10.15567/mljekarstvo.2015.0401 (2015).

6. Pecka, E., Zachwieja, A. & Tumanowicz, J. Technological parameters of milk depending on the cow housing system, nutrition system, age, and number of somatic cells. *Przemysł Chemiczny.* **92**, 1087-1091 (2013).

7. Pecka-Kiełb, E., Czerniawska-Piątkowska, E., Kowalewska-Luczak, I. & Vasil, M. Polymorphism in ovine *ANXA9* gene and physic-chemical properties and the fraction of protein in milk. *Sci Food Agric.* **98**, 5396–5400. doi:10.1002/jsfa.9081(2018).

8. Zidi, A. *et al.* Association between the polymorphism of the goat stearoyl-CoA desaturase 1 (SCD1) gene and milk fatty acid composition in Murciano-Granadina goats. *J Dairy Sci.* **93**, 4332-9. doi: 10.3168/jds.2009-2597 (2010).

9. Crisà, A. *et al.* Exploring polymorphisms and effects of candidate genes on milk fat quality in dairy sheep *Dairy Sci.* **93**, 3834–3845. doi: 10.3168/jds.2009-3014 (2010).

10. Urrutia, O. *et al.* Adipose tissue modification through feeding strategies and their implication on adipogenesis and adipose tissue metabolism in ruminants. *Int. J. Mol. Sci.* **21**, 3183; https://doi.org/10.3390/ijms21093183 (2020).

11. Chirala, S.S. *et al.* Fatty acid synthesis is essential in embryonic development: Fatty acid synthase null mutants and most of the heterozygotes die in utero. *Proc Natl Acad Sci U S A.* **100**, 6358–6363 doi/10.1073/pnas.0931394100 (2003).

12. Calvo, J.H. *et al.* Isolation, mapping, and identification of SNPs for four genes (ACP6, CGN, ANXA9, SLC27A3) from a bovine QTL region on BTA3. *Cytogenetic Genome Res.* **114**, 39–43. DOI: 10.1159/000091926 (2006).
13. Mele, M. et al. Stearoyl-coenzyme A desaturase gene polymorphism and milk fatty acid composition in Italian Holsteins. *Dairy Sci.* **90**, 4458-4465, https://doi.org/10.3168/jds.2006-617 (2007).

14. Barton, L. et al. The polymorphisms of stearoyl-CoA desaturase (SCD1) and sterol regulatory element binding protein-1 (SREBP-1) genes and their association with the fatty acid profile of muscle and subcutaneous fat in Fleckvieh bulls. *Meat Sci.* **85**, 15-20. doi: 10.1016/j.meatsci.2009.11.016. (2010).

15. Ferro, M. M., Tedeschi, L. O. & Atzori, A. S. The comparison of the lactation and milk yield and composition of selected breeds of sheep and goats, *Translational Animal Science*. **1**, 498–506 (2017).

16. Czerniawska-Piątkowska, E., Kowalewska-Łuczak, I., Pecka-Kiełb, E. & Banaszewska, D. Effects of FASN and SCD gene polymorphism on the composition of sheep's milk. *JAPS*. **31**, 906-912. https://doi.org/10.36899/JAPS.2021.3.0280 (2021).

17. Kowalewska-Łuczak, I., Czerniawska-Piątkowska, E. & Pecka-Kiełb, E. Investigation on relationships of the FABP3 AND SLC27A3 genes with milk production traits in sheep. *Elementol.* **22**, 1485–1493. doi:10.5601/jelem.2017.22.1.1406 (2017).

18. Chrenek, P., Makarevič, A., Kubovičová, E., Bulla, J. & Supuka, P. Slovak national animal breeds; Slovak University of Agriculture in Nitra. Nitra, Slovakia, pp. 1-100 (2019).

19. Christie, W. & William, S. Lipid analysis. Isolation, separation, identification, and structural analysis of lipids. The isolation of lipids from tissues. Pergamon Press: Oxford, UK, pp. 39–40 (1973).

20. Christopherson, S.W. & Glass, R.L. Preparation of milk fat methyl esters by alcoholysis in an essentially nonalcoholic solution. *Dairy Sci.* **52**, 1289–1290. doi:10.3168/jds.S0022-0302(69)86739-1 (1969).

21. Yeh, F.C., Yang, R.T.J. & Xiyan, J.M. PopGene32. Microsoft Window-based Freeware for Population Genetic Analysis, Version 1.32 (Software). University of Alberta, Edmonton, AB (2000).

22. Kimura, M. & Crow J. F. The number of alleles that can be maintained in a finite population. *Genetics*. **49**, 725-738 (1964).

23. Nei, M. & Roychoudhury, A.K. Sampling variances of heterozygosity and genetic distance. **76**, 379-390 (1974).

24. Botstein, D., White, E.L., Skolnick, M. & Dawis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphism. *J. Hum. Genet.* **32**, 314-331 (1980).

25. Bastin, C., Gengler, N. & Soyeurt, H. Phenotypic and genetic variability of production traits and milk fatty acid contents across days in milk for Walloon Holstein first-parity cows. *Dairy Sci.* **94**, 4152-4163. https://doi.org/10.3168/jds.2010-4108 (2011).

26. Correddu, F. et al. Genetic parameters of milk fatty acid profile in sheep: comparison between gas chromatographic measurements and Fourier-transform IR spectroscopy predictions. **13**, 469-476. https://doi.org/10.1017/S1751731118001659 (2019).

27. Nudda, A. et al. Feeding strategies to design the fatty acid profile of sheep milk and cheese. *Bras. Zootec.* **43**, 445-456. https://doi.org/10.1590/S1516-35982014000800008 (2014).
28. Symeou, S., Tzamaloukas, O., Banos, G. & Miltiadou, D. ACAA2 and FASN polymorphisms affect the fatty acid profile of Chios sheep milk. *JDR*. **87**, 23-26. https://doi.org/10.1017/S0022029919000992 (2020).

29. García-Fernández, M., Gutiérrez-Gil, B., García-Gámez, E.; Sánchez, J.P. & Arranz, J.J. Detection of quantitative trait loci affecting the milk fatty acid profile on sheep chromosome 22: Role of the stearoyl-CoA desaturase gene in Spanish Churra sheep. *Dairy Sci.* **93**, 348–357. doi: 10.3168/jds.2009-2490 (2010).

30. Gu, M. *et al.* The single nucleotide polymorphism g.133A>C in the stearoyl CoA desaturase gene (SCD) promoter affects gene expression and quasi-quantitative properties of river buffalo milk. *Dairy Sci.* **102**, 442–451. https://doi.org/10.3168/jds.2018-15059 (2019).

31. Palombo, V. *et al.* Genome-wide association study of milk fatty acid composition in Italian Simmental and Italian Holstein cows using single nucleotide polymorphism arrays. *Dairy Sci.* **101**, 11004–11019. https://doi.org/10.3168/jds.2018-14413 (2018).

32. Martínez-Royo, A. *et al.* The bovine annexin 9 gene (ANXA9) is significantly associated with milk-fat yield in a Spanish Holstein–Friesian population. *Res Vet Sci.* **88**, 452–455. https://doi.org/10.1016/j.rvsc.2009.12.009 (2010).

33. Balić, A., Vlašić, D., Žužul, K., Marinović, B. & Mokos, A.B. Omega-3 Versus Omega-6 Polyunsaturated Fatty Acids in the Prevention and Treatment of Inflammatory Skin Diseases. *Int J Mol Sci.* **21**, 741. doi: 10.3390/ijms21030741. (2020).

34. Layé, S., Nadjar, A., Joffre, C.& Bazinet, R.P. Anti-inflammatory effects of omega-3 fatty acids in the brain: physiological mechanisms and relevance to pharmacology. *Rev.* **70**, 12–38. doi: 10.1124/pr.117.014092 (2017).

35. Goodstine, S.L *et al.* Dietary (n-3)/(n-6) fatty acid ratio: possible relationship to premenopausal but not postmenopausal breast cancer risk in U.S. women. *J Nutr.* **133**, 1409–1414, https://doi.org/10.1093/jn/133.5.1409 (2003).

36. Martín-González, M.Z *et al.* Beneficial effects of a low-dose of conjugated linoleic acid on body weight gain and other cardiometabolic risk factors in cafeteria diet-fed rats. *Nutrients* **12**, 408. doi: 10.3390/nu12020408 (2020).

37. Siri-Tarino, P.F., Chiu, S., Bergeron, N. & Krauss, R.M. Saturated fats versus polyunsaturated fats versus carbohydrates for cardiovascular disease prevention and treatment. *Rev. Nutr.* **35**, 517–543. doi:10.1146/annurev-nutr-071714-034449 (2015).

38. Karupaiah, T., Tan, C.H., Chinna, K. & Sundram, K. The chain length of dietary saturated fatty acids affects human postprandial lipemia. *J Am. Coll Nutr.* **30**, 511-21. DOI: 10.1080/07315724.2011.10719997 (2011).

39. Mensink, R.P., Zock, P.L., Kester, A.D. & Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. *J. Clin. Nutr.* **77**, 1146–55. doi:10.1093/ajcn/77.5.1146 (2003).
40. Gill, J. et al. Effects of dietary monounsaturated fatty acids on lipoprotein concentrations, compositions, and subfraction distributions and on VLDL apolipoprotein B kinetics: dose-dependent effects on LDL. *Am J Clin Nutr.* **78**, 47-56 doi: 10.1093/ajcn/78.1.47 (2003).