Pair distribution function of one-dimensional “hard-sphere” Fermi and Bose systems

Bo-Bo Wei\(^1(a)\) and Chen-Ning Yang\(^1,2\)

\(^1\)Chinese University of Hong Kong - Hong Kong
\(^2\)Tsinghua University - Beijing, China

received 9 April 2009; accepted in final form 22 June 2009
published online 23 July 2009

PACS 05.30.Jp – Boson systems
PACS 03.75.Bh – Static properties of condensates; thermodynamical, statistical, and structural properties
PACS 67.85.Bc – Static properties of condensates

Abstract – The pair distributions of one-dimensional “hard-sphere” fermion and boson systems are exactly evaluated by using gap variables.

\[D(r) = \rho^{-2}\langle \psi^\dagger(r_1)\psi^\dagger(r_2)\psi(r_2)\psi(r_1) \rangle, \]

where \(\rho = N/L \) is the density. \(D(r) \) is an important physical quantity measurable for many liquid systems. In this formula \(\psi(r) \) is the annihilation operator in \(r \) space.

The pair distribution function \(D(r_{12}) \) is also related to the diagonal elements of the reduced density matrix [15]:

\[D(r_{12}) = \rho^{-2}\text{Tr}[\psi(r_2)\psi(r_1)\rho_N\psi^\dagger(r_1)\psi^\dagger(r_2)], \]

where \(\rho_N = \Psi_0\Psi_0^\dagger \), and \(\Psi_0 \) is the many-body wave function.

The meaning of \(D(r) \) is as follows: given a particle A at one point, the probability of finding another particle B at a distance \(r \) (counterclockwise) is

\[\rho D(r)\,dr. \]

It is obvious that \(D(r) \to 1 \) as \(r \to \infty \). Also

\[\int_0^L \rho D(r)\,dr = N - 1. \]

Fermions with \(a = 0 \).

Wave function \(\Psi \) for fermions with \(a = 0 \). In this case, the fermions are free. Their momenta are \(2\pi k/L \), where \(k = -(N-1)/2 \) to \((N-1)/2 \). Here we consider the case that the number of fermions in the system is odd, \(N = 2n + 1 \). The normalized many-body wave function \(\Psi(r_1, r_2, \ldots, r_N) \) of the system is of the form [5]

\[\Psi = \frac{1}{\sqrt{N!}} \det \begin{pmatrix} \epsilon_1^n & \epsilon_2^n & \ldots & \epsilon_{2n+1}^n \\ \epsilon_1^{n-1} & \epsilon_2^{n-1} & \ldots & \epsilon_{2n+1}^{n-1} \\ \epsilon_1^{n-2} & \epsilon_2^{n-2} & \ldots & \epsilon_{2n+1}^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ \epsilon_1 & \epsilon_2 & \ldots & \epsilon_{2n+1} \\ \end{pmatrix}, \]

where \(\epsilon_j = \exp(i\frac{2\pi}{L}r_j) \). After some calculations, we arrive at a compact form for the wave function,

\[\Psi = \frac{1}{\sqrt{N!}} \left(\frac{1}{\sqrt{L}} \right)^N 2^{N(N-1)/2} \prod_{1 \leq i < j \leq N} \sin \left[\frac{\pi}{L} (r_j - r_i) \right]. \]
The pair distribution function $D(r)$ for free fermions can be exactly obtained from this many-body wave function [4],

$$D(r) = 1 - \frac{\sin^2 \left(\frac{N\pi r}{L} \right)}{N^2 \sin^2 \left(\frac{\pi r}{L} \right)}.$$ \hspace{1cm} (7)

Gap variables for free fermions. In order to prepare for dealing with the $a \neq 0$ problem, we introduce gap variables in the case $a = 0$. Consider a region of the N-body $L \times L \times \cdots \times L$ coordinate system where, modulo L,

$$r_1 \leq r_2 \leq \cdots \leq r_N \leq r_1.$$ \hspace{1cm} (8)

We shall designate this region as R_1. In this region, we introduce [16] the gap variables \{g_i\}:

$$g_i = r_{i+1} - r_i, \quad i = 1, 2, 3, \ldots, 2n + 1.$$ \hspace{1cm} (9)

Obviously $\sum g_i = L$. With the gap variables the many-body wave function Ψ is given by

$$\Psi = Q[f(g_1)f(g_2) \cdots f(g_{2n+1})]$$

$$\times [f(g_1 + g_2)f(g_2 + g_3) \cdots f(g_{2n+1} + g_1)]$$

$$\times [f(g_1 + g_2 + g_3) \cdots f(g_{2n+1} + g_1 + g_2)]$$

$$\times \cdots$$

$$\times [f(g_1 + \cdots + g_n) \cdots f(g_{2n+1} + g_1 + \cdots + g_{n-1})],$$ \hspace{1cm} (10)

where $f(g) = \sin(\pi g/L)$, and Q is the normalization factor given by

$$Q = \frac{1}{\sqrt{N!}} \left(\frac{1}{\sqrt{L}} \right)^N \left[2^{N(N-1)/2} \right].$$ \hspace{1cm} (11)

Ψ has $(2n+1) \times n$ factors in total.

The probability distributions in R_1 is

$$|\Psi|^2 dg_1 dg_2 \cdots dg_N \delta \left(\sum_{i=1}^{N} g_i - L \right).$$ \hspace{1cm} (12)

with all $g_i \geq 0$. Now R_1 is only one of the $(N-1)!$ regions of the full coordinate space. In each of these regions we have the same gap distribution as (12). Thus, gap distribution probability dP is

$$dP = (N-1)!L|\Psi|^2 dg_1 dg_2 \cdots dg_N \delta \left(\sum_{i=1}^{N} g_i - L \right).$$ \hspace{1cm} (13)

Functions $F_i(r)$ for free fermions. We now evaluate the function $D(r)$ of expression (3) using (13). Going from particle A to B, counterclockwise in the cycle of length L, as shown in fig. 1, there may be i other particles, with $i = 0, 1, \cdots, (N-2)$. Thus $D(r)$ becomes a sum of partial terms F_i,

$$\rho D(r) = \rho[F_0(r) + F_1(r) + \cdots + F_{N-2}(r)],$$ \hspace{1cm} (14)

where

$$\rho F_i(r)dr = \int \delta \left(\sum_{j=1}^{i+1} g_j - r \right) d\rho dr.$$ \hspace{1cm} (15)

Thus,

$$\rho F_i(r) = (N-1)!L \int |\Psi|^2 \delta \left(\sum_{j=1}^{i+1} g_j - r \right)$$

$$\times \delta \left(\sum_{j=i+2}^{N} g_j - (L-r) \right) dg_1 dg_2 \cdots dg_N,$$ \hspace{1cm} (16)

where all $g_j \geq 0$.

Integrating over dr we get, from (15),

$$\int_0^L \rho F_i(r)dr = \int dP = 1.$$ \hspace{1cm} (17)

Thus by (14), $\int \rho D(r)dr = N-1$, confirming (4). Outside of the interval $(0, L)$ we define $F_i(r)$ by

$$F_i(r) = 0 \quad \text{for} \quad r < 0 \quad \text{and} \quad r > L.$$ \hspace{1cm} (18)

In eq. (14), $D(r)$ is a sum of $N-1$ partial terms. The sum in this case of $a = 0$ of course agrees with expression eq. (7) above. But the partial terms will become the key to the evaluation of $D(r)$ in the case $a \neq 0$. Please see eq. (25) below.

Besides (17), $F_i(r)$ has also the following properties:

i) It is analytic except at $r = 0$ and $r = L$, where $F(r)$ and its first derivative are both zero.

ii) $F_i(r) = F_{N-2-i}(L-r)$.

It is obvious from (16) that $NF_i(r)$ is a function of N and r/L. In fig. 2 we plot this function vs. r/L for the case $N = 5$.

10005-p2
Fermions with \(a > 0 \). – For fermions with \(a > 0 \), the full cyclic coordinate space is again divided into \((N-1)!\) regions, one of which, \(R_1 \), is defined by the cyclic condition (8) modulo \(L \). We introduce gap variables in \(R_1 \) by equations similar to (9):

\[
g_i = r_{i+1} - r_i - a, \quad i = 1, 2, 3, \ldots, (N-1)
\]

and

\[
g_N = r_1 - r_N + L - a.
\]

Obviously

\[
\sum g = L - Na.
\]

The key point is \(\Psi \) in terms of the gap variables \(\{g\} \) is still given by (10), but with

\[
f(g) = \sin(\pi g/\xi)
\]

and

\[
Q = \frac{1}{\sqrt{N}!} \left(\frac{1}{\sqrt{L - Na}} \right)^N [2^{N(N-1)/2}].
\]

Equation (12) now becomes

\[
|\Psi|^2 d g_1 d g_2 \cdots d g_N \delta \left(\sum_{i=1}^N g_i - (L - Na) \right) L,
\]

and (13) becomes

\[
dP = (N-1)!L|\Psi|^2 d g_1 \cdots d g_N \delta \left(\sum_{i=1}^N g_i - (L - Na) \right).\]

The function \(D(r) \) is again, as in (14), a sum of \((N-1)!F\) functions. To illustrate the reasoning we turn to fig. 3 and fig. 4 for the case \(N = 5 \). We have

\[
D(r) = F_0[(r - a) \xi] + F_1[(r - 2a) \xi] + F_2[(r - 3a) \xi] + F_3[(r - 4a) \xi],
\]

where \(\xi = L/(L - Na) \), and \(F_i(r) \) is defined by (16) and (18).

Since \(F_i(r) \) is nonzero only in the open interval \((0, L)\), for \(N = 5 \),

\[
- F_0[(r - a) \xi] \text{ is nonzero only for } a < r < L - 4a,
- F_1[(r - 2a) \xi] \text{ is nonzero only for } 2a < r < L - 3a,
- F_2[(r - 3a) \xi] \text{ is nonzero only for } 3a < r < L - 2a,
- F_3[(r - 4a) \xi] \text{ is nonzero only for } 4a < r < L - a.
\]

In fig. 4 we indicate the regions where \(F_i[(r - (i + 1)a) \xi] \) is nonzero for \(i = 0 \) to 3.

We present in fig. 5 and fig. 6 the function \(D(r) \) for \(N = 5 \), and for several values of \(L/a \).

Returning now to the general case, we conclude:

In the interval \((0, L)\), \(D(r) \) is analytic everywhere except at \((N-1)!\) open circles at \(r = a, 2a, \ldots, (N-1)a, \) and at \((N-1)!\) full circles at \(r = L - a, L - 2a, \ldots, L - (N-1)a \).
Fig. 5: (Color online) The pair distribution function \(D(r) \) as a function of distance \(r \) for \(N = 5 \). The \(N - 1 = 4 \) open circles and the \(N - 1 = 4 \) closed circles are where \(D(r) \) is singular. For case \(a = L/(5+) \), \(ND(r) \) represents four \(\delta \)-functions (not shown).

The pair distribution function is related to the square of the wave function. Thus, for \(a > 0 \),

\[D_{BE}(r) = D_{FD}(r). \]

(26)

Additional remarks. – A) For an even number of particles in a periodic ring, the ground state is doubly degenerate. Any combination of the two is

\[\Psi = \left[\alpha \exp \left(\frac{i\pi}{L} \sum_{i=1}^{N} r_i \right) + \beta \exp \left(-\frac{i\pi}{L} \sum_{i=1}^{N} r_i \right) \right] \times \prod_{1 \leq i < j \leq N} \sin \left[\frac{\pi}{L} (r_i - r_j) \right]. \]

(27)

Thus, the pair distribution function calculation proceeds exactly as above. We present the case of \(N = 4 \) in fig. 7.

B) How about vanishing boundary conditions at the two ends of the 1D space? We label such problems as \(B \), and periodic boundary problems as \(A \). \(B \) problems do not have translational invariance.

Now a \(B \) problem for \(N \) particles in the 1D space of length \(L - a \) is mathematically the same as an \(A \) problem for \(N + 1 \) particles in a ring of circumference \(L \). For example, take a \(B \) problem with \(N = 4 \). Compare it with the \(A \) problem illustrated in fig. 4 above. If we fix \(r_1 \), the remaining 4 particles move in the 1D space of length \(L - a \) with vanishing boundary conditions at the two ends! Thus, our \(A \) problem for pair distribution also solves a \(B \) problem for single-particle distribution. To solve a pair distribution \(B \) problem requires the solution of a 3-particle distribution \(A \) problem.

We thank the reviewer of this paper for raising two interesting questions which led to the additional remarks in the last section.
REFERENCES

[1] Tonks L., Phys. Rev., 50 (1936) 955.
[2] Lieb E. and Liniger W., Phys. Rev., 130 (1963) 1605.
[3] Lieb E., Phys. Rev., 130 (1963) 1616.
[4] Ufford C. W. and Wigner E. P., Phys. Rev., 61 (1942) 524.
[5] Girardeau M., J. Math. Phys., 1 (1960) 516.
[6] Girardeau M. D., Phys. Rev., 139 (1965) B500.
[7] Castin Y. et al., J. Mod. Opt., 47 (2000) 2671.
[8] Gangardt D. M. and Shlyapnikov G. V., Phys. Rev. Lett., 90 (2003) 010401; New J. Phys., 5 (2003) 79.
[9] Kheruntsyan K. V., Gangardt D. M., Drummond P. D. and Shlyapnikov G. V., Phys. Rev. Lett., 91 (2003) 040403; Phys. Rev. A, 71 (2005) 053615.
[10] Drummond P. D., Deuar P. and Kheruntsyan K. V., Phys. Rev. Lett., 92 (2004) 040405.
[11] Astrakharchik G. E. and Giorgini S., J. Phys. B, 39 (2006) S1; Cazalilla M., J. Phys. B, 37 (2004) S1; Caux J.-S. and Calabrese P., Phys. Rev. A, 74 (2006) 031605(R).
[12] Cherny A. Y. and Brand J., Phys. Rev. A, 73 (2006) 023612.
[13] Sykes A. G. et al., Phys. Rev. Lett., 100 (2008) 160406.
[14] Wei B. B. and Yang C. N., cond-mat/0807.2081 (2008).
[15] Yang C. N., Rev. Mod. Phys., 34 (1962) 694.
[16] These gap variables had been used by Rubin R. J., J. Chem. Phys., 23 (1955) 1183.