Dynamic Immune Profile in French Toxoplasmosis Patients

Julie Denis,1,2 Chloé Gommenginger,2,3 Teodora Strechie,1,3 Denis Filisetti,1,2,3 Laetitia Beal,2,3 Alexander W. Pfaff,1,2 and Odile Villard1,2,3

1Institut de Parasitologie et de Pathologie Tropicale, UR292 Dynamique des Interactions Hôte Pathogène, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France; 2Laboratoire de Parasitologie et Mycologie Médicale, Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France; and 3Centre National de Référence Toxoplasmose-Pôle sérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France

Background. Toxoplasma gondii infection is usually benign in Europe due to the strong predominance of type II strains. Few studies have been conducted to examine the immunological course of infection in humans and have yielded conflicting results, maybe influenced by heterogeneous parasite strains.

Methods. We measured 23 immune mediators in 39, 40, and 29 sera of French noninfected, acutely infected, and chronically infected immunocompetent pregnant women, respectively.

Results. Four different cytokine patterns were identified regarding their dynamics through infection phases. For 11 of the cytokines (IFN-β, IFN-γ, IL-4, IL-5, IL-6, IL-10, IL-12, IL-15, CXCL9, CCL2, and CSF2) the serum levels were significantly elevated during acute infection. The inflammatory mediators IL-1β, IL-17A, IL-18, TNF-α, and CSF3 remained unchanged during acute infection, while they were significantly lower in chronically infected compared to noninfected patients. As for the anti-inflammatory cytokines TGF-β and CCL5, their levels remained significantly elevated during chronic infection. We also observed a significant negative correlation of several cytokine concentrations with IgG levels, indicating a rapid decline of serum concentrations during the acute phase.

Conclusions. These results indicate an anti-inflammatory pattern in chronically infected patients in a type II dominated setting and demonstrate the highly dynamic immune situation during acute infection.

Keywords. Toxoplasma gondii; toxoplasmosis; acute; chronic; cytokine profile; cytokines; pregnant; France.
levels of colony-stimulating factor 2 (CSF2), granulocyte-macrophage CSF (GM-CSF), CXCL11, transforming growth factor-β (TGF-β), CXCL9, and CXCL10 in the acute infection phase compared to the chronic phase [16,17]. CXCL9, CCL2, and CSF2 were even reported to distinguish between acute and chronic toxoplasmosis with an accuracy of 76% [17].

Clearly, the cytokine profile of response to toxoplasmosis seems to vary according to many parameters, such as the infection stage, the underlying clinical conditions, but also crucially the parasite strain [18]. These studies were often conducted in cohorts of pregnant women, which certainly introduced some bias but has the great advantage of providing a quite homogeneous and clinically well-defined group. One study compared a US cohort, where approximately 50% of infections were due to type II strains, with a similar Colombian cohort, where the setting was highly variable and more pathological [3]. Surprisingly, the North American patients showed decreased levels of half of the immune mediators, including IFN-γ, IL-17, CCL4, and CSF3 (G-CSF), during acute infection, while in Colombian patients, only few mediator levels were decreased during acute infection and some others were elevated.

Thus, although the cytokinome in infected patients has been well studied in South America and partly in the United States, these studies always include the uncertainty of strain variations. To characterize this cytokinome in a nearly homogenous type II setting, we therefore evaluated the cytokine profile of European pregnant women, infected or not with toxoplasmosis. In addition to distinguishing between acute and chronic infections, we also took into account the evolution of the acute phase by quantifying immunoglobulin G (IgG) antibody levels and avidity [19]. This allowed us to demonstrate the dynamics of cytokine responses during the course of the acute phase of infection.

METHODS

Patients

In this retrospective study, we collected sera from pregnant women who took part in routine toxoplasmosis serological screening at the Strasbourg University Hospitals, France, and who did not present any underlying pathology or signs of immunosuppression. Overall, 108 sera from 101 pregnant women were included in this study between 2011 and 2021. Toxoplasmosis serological screening consisted of an IgM assay (ARCHITECT Toxo IgM; Abbott) and an IgG assay (ARCHITECT Toxo IgG; Abbott), as well as an IgG avidity measurement in those patients with positive IgM and IgG levels (ARCHITECT Toxo IgG Avidity; Abbott) [19]. IgM were considered negative below 0.5 IU/mL, equivocal between 0.5 and 0.6 IU/mL, and positive above 0.6 IU/mL. IgG were considered negative below 1.5 IU/mL, equivocal between 1.6 and 3 IU/mL, and positive above 3 IU/mL. Avidity was considered weak below 40% and high above 60%. The patients were accordingly classified into 3 groups: 39 patients not infected with toxoplasmosis (IgM and IgG negative), 40 sera of 33 patients with acute-phase toxoplasmosis (IgM positive and/or IgG weakly positive and avidity below 40%), and 29 patients with chronic toxoplasmosis (IgM negative, IgG positive).

Serum Cytokine Assay

The sera were stored at −20°C. The following 23 cytokines were measured on the Luminex MAGPIX system: IL-17, CCL5, CSF3, CSF2, IFN-α, IFN-β, IFN-γ, IL-1α, IL-1β, IL-10, IL-12p70, IL-15, IL-17A, IL-18, IL-4, IL-5, IL-6, CXCL8, CXCL10 (IP-10), CCL2 (MCP-1), CXCL9 (MIG), TNF-α, and TGF-β (PROCARTAPLEX Luminex kit). Assays were performed in duplicate on 25 μL of serum and analyzed using the Luminex Xponent software version 4.2.

Statistical Analysis

Statistical analysis was conducted with GraphPad Prism version 8.2. Nonparametric tests were used throughout, as a preliminary test showed a nonnormal distribution of cytokine levels. The comparisons between the noninfected, acutely infected, and chronically infected groups were performed using a Kruskal-Wallis test with Dunn correction for multiple comparisons. Correlations between *Toxoplasma*-specific IgG and cytokine levels were analyzed by Spearman correlation test. The Spearman test was also used to explore the correlation between avidity and IgM or IgG levels. *P* values <.05 were considered as statistically significant.

Ethics Approval

The serum samples were obtained in compliance with the quality assurance scheme and legal policies. They are part of a biobank of the Strasbourg University Hospital that has been authorized by the local Clinical Research Department and declared to the French Ministry of Health (No. DC-2019-3727).

RESULTS

In our cohort, 39, 33, and 29 patients (39, 40, and 29 sera) were classified as not infected with *T. gondii*, acutely infected, and chronically infected, respectively. The patients’ data are summarized in Supplementary Figure 1.

The levels of 23 cytokines were measured in the sera of these patients. We first compared the levels in each of the 3 infection groups (Figure 1 and Table 1). Four distinct patterns were identified. The first pattern (pattern A) comprised half of the examined mediators, including major Th1, Th2, and regulatory cytokines, namely IFN-γ, IL-12p70, CSF2, CXCL9, CCL2, IFN-β, IL-4, IL-5, IL-10, IL-6, and IL-15 (Figure 1A). These mediators were significantly upregulated in the sera from patients with acute toxoplasmosis. In chronically infected patients, cytokine levels returned to preinfection values, so that the noninfected and chronic groups were not statistically different. The
Figure 1. Serum cytokine concentration of the noninfected patients and patients with acute or chronic toxoplasmosis: (A) cytokines showing significant upregulation only in patients in the acute phase of infection; (B) cytokines with significant downregulation in patients in the chronic phase; and (C) cytokines with significantly elevated levels in patients from both the acute and chronic groups compared to the noninfected patients. Pattern plots show the relative dynamics between the 3 subgroups for each pattern. Abbreviations: CCL, CC chemokine ligand; CSF, colony-stimulating factor; CXCL, C-X-C motif chemokine ligand; IFN, interferon; IL, interleukin; TGF, transforming growth factor; TNF, tumor necrosis factor.
and CCL5 (RANTES), with their levels being significantly compared to both the noninfected and acute groups.

In studies characterizing the immune response in T. gondii infection, we regularly noticed a great variability of values, and of used to be high during chronic infection.

The third pattern (pattern C) comprised only TGF-β, IL-1α, IL-18, and IL-17A) and was characterized by significantly lower levels in the chronic group as compared to both the noninfected and acute groups (Figure 1B). None of these immune mediators showed a statistically significant difference between the noninfected and acute groups. The third pattern (pattern C) comprised only TGF-β and CCL5 (RANTES), with their levels being significantly more elevated in the acute and chronic groups than in the noninfected group (Figure 1C). Finally, the remaining cytokines (CXCL8, IL-17F, CXCL10, IFN-α, and IL-1α), corresponding to pattern D, showed no differences between the groups or were expressed at very low levels throughout (Supplementary Figure 2A). Thus, whereas most cytokines were upregulated only during the acute infection phase with no difference between noninfected and chronically infected patients, some mediators, notably inflammatory cytokines, continued to be low and others, namely the anti-inflammatory TGF-β, continued to be high during chronic infection.

When looking more closely at the cytokine levels during acute infection, we regularly noticed a great variability of values, and often 2 or more distinct populations. Therefore, we dissected the evolution of infection during this phase using IgG titers as a marker. The results are shown in Figure 2, with cytokines displayed in the same groups as in Figure 1. Obviously, for most of the immune mediators with lower concentrations in chronically infected than in acutely infected patients, we observed a significant negative correlation between IgG levels and cytokine concentrations, regardless of whether concentrations were higher in acute compared to noninfected patient groups (IFN-γ, IL-12p70, CSF2, IFN-β, IL-4, IL-5, IL-6, and IL-15; Figure 2A) or not (TNF-α, IL-17A, CSF3, and IL-1β; Figure 2B). For those cytokines that remained elevated in the chronic phase, no correlation with IgG levels was noted (Figure 2C). This lack of correlation was also observed for mediators whose levels did not differ between the 3 infection groups (Supplementary Figure 2B). Thus, most cytokines that were temporarily upregulated during acute infections showed their highest concentrations early in the infectious process, followed by a rapid decline to the levels observed in the chronic phase.

DISCUSSION

In studies characterizing the immune response in T. gondii-infected patients, parasite- or host-related factors will always

| Cytokine Profile During Toxoplasmosis • JID 2022:226 (15 November) • 1837 |
|---|---|---|
| **Table 1. Median Cytokine Concentrations in the Noninfected, Acutely Infected, and Chronically Infected Pregnant Women, and Adjusted P Values for Each Pairwise Comparison** |
Cytokine Concentration, Median (Range), pg/mL	Noninfected	Acute	Chronic	**Noninfected vs Acute**	**Noninfected vs Chronic**	**Acute vs Chronic**
IFN-γ	0.0 (0–0)	0.0 (0–8.3)	0.0 (0–0)	<.0001 ****	>.9999 NS	<.0001 ****
IL-12p70	0.0 (0–0)	0.0 (0–48)	0.0 (0–0)	<.0001 NS	>.9999 NS	<.0001 ****
CSF2	0.0 (0–0)	8.6 (0–31)	0.0 (0–14)	<.0001 ****	>.9999 NS	<.0001 ****
CCL5	0.935 (0–664)	81.78 (0–980)	0.0 (0–610)	<.0001 ****	>.9999 NS	<.0001 ****
CXCL8	22.605 (0–145)	31.8 (0–183)	6.49 (0–62)	.9435 NS	<.0001 ****	<.0001 ****
IFN-β	0.0 (0–28.6)	0.0 (0–13)	0.0 (0–1.47)	.0004 ***	>.9999 NS	<.0003 ***
IL-4	0.0 (0–2.8)	1.095 (0–9.5)	0.0 (0–2.8)	<.0001 ****	>.9999 NS	<.0001 ****
IL-5	0.0 (0–83)	1.34 (0–52)	0.0 (0–86)	<.0001 ****	>.9999 NS	<.0001 ****
IL-10	0.0 (0–11.5)	1.505 (0–3.12)	0.0 (0–8.9)	<.0001 ****	.3228 NS	.0027 **
IL-6	0.0 (0–472)	0.89 (0–32)	0.0 (0–16.2)	.0042 **	>.9999 NS	.001 ***
IL-15	0.0 (0–34.1)	0.0 (0–23.5)	0.0 (0–9.5)	.0003 ***	>.9999 NS	.0012 **
TNF-α	0.0 (0–65)	0.0 (0–30)	0.0 (0–0)	.0824 NS	<.051 NS	<.0001 ****
IL-17A	0.0 (0–12)	0.0 (0–23)	0.0 (0–6.4)	.6155 NS	<.0001 ****	.005 **
CSF3	19.74 (0–46)	14.56 (0–75)	0.0 (0–40)	.1177 NS	<.0001 ****	.0009 ***
IL-1β	3.97 (0–177)	3.895 (0–30.1)	0.0 (0–24)	>.9999 NS	<.0001 ****	<.0001 ****
IL-18	5.865 (0–93.9)	6.88 (0–38)	0.92 (0–48)	>.9999 NS	<.0001 ****	<.0001 ****
TGF-β, ng/mL	675.1 (0–2607)	5.1644 (1.8–29.3)	2781.18 (465–5942)	<.0001 ****	<.0001 ****	<.0001 ****
CCL5, ng/mL	3618.25 (132–10970)	13.22182 (1.1–93)	10 748.08 (1270–37729)	<.0001 ****	<.0001 ****	>.9999 NS
IL-1α	0.0 (0–9)	0.0 (0–4.2)	0.0 (0–52)	.1746 NS	.6157 NS	>.9999 NS
CXCL8	29.995 (0–1332)	21.405 (0–1332)	18.94 (0–255)	>.9999 NS	>.9999 NS	>.9999 NS
IL-17F	0.39 (0–2.2)	0.22 (0–2.3)	0.22 (0–1.6)	>.9999 NS	>.9999 NS	>.9999 NS
IFN-α	0.0 (0–0.855)	0.0 (0–0.55)	0.0 (0–0.38)	>.9999 NS	>.9999 NS	>.9999 NS
CXCL10	6.11 (2.5–171)	49.775 (2–205)	6.91 (0–96)	.1969 NS	>.9999 NS	.1112 NS

n = 39, 40, and 29 sera for the noninfected, acute, and chronic groups, respectively. The comparisons between noninfected, acutely infected, and chronically infected groups were analyzed by Kruskal-Wallis test with Dunn correction for multiple comparisons. * P < .05, ** P < .01, *** P < .001, **** P < .0001. Abbreviation: CCL, CC chemokine ligand; CSF, colony-stimulating factor; CXCL, C-X-C motif chemokine ligand; IFN, interferon; IL, interleukin; NS, not significant; TGF, transforming growth factor.
Figure 2. Correlation profiles between Toxoplasma-specific IgG and cytokine levels in patients with an acute toxoplasmosis. Cytokines are displayed as in Figure 1: (A) cytokines showing significant upregulation only in the acute phase of infection; (B) cytokines with significant downregulation in the chronic phase; and (C) cytokines with significantly elevated levels in both the acute and chronic groups compared to the noninfected group. Correlations were analyzed by Spearman correlation test. * \(P < .05 \), ** \(P < .01 \), *** \(P < .001 \). Abbreviations: CCL, CC chemokine ligand; CSF, colony-stimulating factor; CXCL, C-X-C motif chemokine ligand; IFN, interferon; IgG, immunoglobulin G; IL, interleukin; ns, not significant; TGF, transforming growth factor; TNF, tumor necrosis factor.
exert an influence. This was evident in the different studies looking at peripheral cytokine response in acutely or chronically infected populations. Most of them were performed in South America, where high infection rates and virulent parasite strains facilitate the enrollment of sufficient numbers of patients. However, the highly variable strains in this region make it more difficult to draw conclusions regarding the patients’ response. The particular character of the South American setting has been demonstrated repeatedly by comparison with European or North American patients [3,4]. The latter study [3], comparing US and Colombian pregnant women, showed a relatively small impact of infection on serum cytokine levels in Colombia. Similar observations were made when exploring cytokine aqueous humor levels, as evidenced by one of our previous studies and by others in South America [18,20–22]. Interestingly, US patients, however, showed diminished levels of a substantial number of immune mediators, which we did not observe for any mediator in our French patients. However, heterogeneity of parasite strains cannot be excluded in this US setting, where approximately 50% of infections were due to non-type II strains [8]. In French, and other European populations, as in our study, there was nearly homogenous type II infection, even if a few non-type II infections may have been included [23,24]. Furthermore, the routine French surveillance protocol for T. gondii infections in pregnant women enabled us to recruit patients in different infection phases, with minimal interference of concomitant infections. Avidity measurement allowed us to delimit more precisely the time frame of the acute phase to about 3 to 4 months following infection according to the manufacturer’s instructions for the different detection kits, in contrast to IgM expression only, where the time frame can reach 1 year and may thus misinterpret early chronic infection as acute infection. It is also noteworthy that some of the cytokines that were poorly or not expressed in our noninfected group showed substantial serum concentrations in the American noninfected cohort [3]. This disparity, perhaps due to patient recruitment bias, could explain some of the differences compared to our observations.

While focusing specifically on the different cytokines during the distinct phases of infection, we could identify different patterns of reactivity. Pattern A, with elevated serum concentrations only during the acute phase, comprises classical Th1 cytokines, such as IFN-γ, IL-12, CXCL9 (MIG), and CCL2 (MCP1). CXCL9 was also reported to be elevated in infected Brazilian patients, both adults [17,25] and newborns [16]. Interestingly, there also seemed to be a counterbalancing Th2 response during acute infection, as evidenced by elevated IL-4 and IL-5 levels, with similar observations also made in some mouse studies [26,27]. In contrast, our observation of increased IFN-β levels during this phase has not been reported in the aforementioned studies. This type I IFN has very well-described antiviral properties; however, its role in Toxoplasma infection is still controversial [28,29]. Our results indicate its involvement in the acute infection phase. Pattern B is characterized by significantly lower serum levels during the chronic phase, as compared to both the noninfected and acute groups. In contrast, the levels did not significantly differ between the acute phase and noninfected groups. Interestingly, we identified several inflammatory mediators, such as TNF-α, IL-17A, and CSF3, in this group. The pattern C mediators, whose serum levels remained elevated during the chronic phase, contained the anti-inflammatory cytokine TGF-β. These findings demonstrate that this long-lasting chronic infection creates a new immunological equilibrium towards an anti-inflammatory response. This changing equilibrium seems to be strain dependent. A Brazilian study of pregnant women actually also found lower TNF-α concentrations in chronically infected patients, but, in contrast to our results, a strong depression of IFN-γ production [3]. Additionally, TGF-β levels were only enhanced during acute infection, but not during the chronic phase [17]. The observed suppression of potentially harmful inflammatory responses is evidently protective, but could render an infected person more vulnerable to certain infections and other challenges, and it would therefore be interesting to compare T. gondii with other infections. Previous results have also established a link between certain clinical contexts and failure to reach such equilibrium. For example, an increased expression of the IL-6 and IL-1β genes was observed in pregnant women infected with T. gondii who have had a miscarriage [30]. During ocular toxoplasmosis, ocular cytokine profiles were characterized by increased levels of IL-17, IL-33, IL-10, CXCL9, and CXCL10 [16,22,31,32], and decreased levels of CCL11, CCL26, MIF, and CXCL12 [16]. Moreover, lower levels of CCL2 were associated with active ocular toxoplasmosis lesions, but more data are needed to define the subtle links between peripheral cytokine levels and localized disease, especially as these markers could differ between the local, ocular compartment, and peripheral circulation. A study on acute ocular toxoplasmosis reported enhanced TGF-β expression in peripheral blood mononuclear cells, while the corresponding aqueous humor levels were diminished [22]. The dynamics between local and circulating immune cells could explain the distinct local manifestations of Toxoplasma infection.

Our results demonstrated that the acute phase was the most dynamic part of the immune reaction during T. gondii infection. While this has been shown previously, no study specifically looked at the dynamics within this phase. Indeed, we observed a great variability of values, or sometimes 2 or more distinct populations, during this phase, whereas this was very rarely the case in noninfected and chronically infected patients. This led us to conclude that the heterogeneous cytokine levels were due to clear-cut dynamics within the acute phase. These were especially evident in pattern A, where the markedly
increased cytokine levels were clearly confined to the early phase of acute infection. Even if we cannot determine the exact timing corresponding to these IgG titers, the initially increased cytokine levels in this pattern seem to drop at an early time point. This result could be important to interpret the acute phase in future studies, as well as to determine the infection status of individual patients in difficult diagnostic situations, like persistent IgM production or acute infection without IgM antibodies.

In conclusion, we characterized the serum cytokine levels in a European setting with predominantly type II strains and observed substantial secretion of Th1 and Th2 cytokines during acute infection, as well as an anti-inflammatory bias during chronic infection. Additionally, our results found that most cytokine activation occurred in the initial phase of the acute infection. These results could pave the way to better understand the immune dynamics of T. gondii infection, especially when including subsequent localized pathologies such as ocular toxoplasmosis in further studies, and thus help to guide diagnosis and treatment.

Supplementary Data
Supplementary materials are available at The Journal of Infectious Diseases online. Consisting of data provided by the authors to benefit the reader, the posted materials are not copyedited and are the sole responsibility of the authors, so questions or comments should be addressed to the corresponding author.

Notes
Financial support. No financial support was received for this work.

Potential conflicts of interest. All authors: No reported conflicts of interest. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References
1. Hide G. Role of vertical transmission of Toxoplasma gondii in prevalence of infection. Expert Rev Anti Infect Ther 2016; 14:335–44.
2. Hill D, Dubey JP. Toxoplasma gondii: transmission, diagnosis and prevention. Clin Microbiol Infect 2002; 8: 634–40.
3. Pernas L, Ramirez R, Holmes TH, Montoya JC, Boothroyd JC. Immune profiling of pregnant toxoplasma-infected US and Colombia patients reveals surprising impacts of infection on peripheral blood cytokines. J Infect Dis 2014; 210: 923–31.
4. de-la-Torre A, Sauer A, Pfaff AW, et al. Severe South American ocular toxoplasmosis is associated with decreased IFN-γ/IL-17a and increased IL-6/IL-13 intraocular levels. PLoS Negl Trop Dis 2013; 7:e2541.
5. Petersen E, Edvinsson B, Lundgren B, Benfield T, Evengård B. Diagnosis of pulmonary infection with Toxoplasma gondii in immunocompromised HIV-positive patients by real-time PCR. Eur J Clin Microbiol Infect Dis 2006; 25:401–4.
6. Vidal JE. HIV-related cerebral toxoplasmosis revisited: current concepts and controversies of an old disease. J Int Assoc Provid AIDS Care 2019; 18:2325958219876315.
7. Butler NJ, Furtado JM, Winthrop KL, Smith JR. Ocular toxoplasmosis II: clinical features, pathology and management. Clin Experiment Ophthalmol 2013; 41:95–108.
8. Shwab EK, Zhu XQ, Majumdar D, et al. Geographical patterns of Toxoplasma gondii genetic diversity revealed by multilocus PCR-RFLP genotyping. Parasitology 2014; 141:453–61.
9. Khan A, Jordan C, Muccioli C, et al. Genetic divergence of Toxoplasma gondii strains associated with ocular toxoplasmosis, Brazil. Emerg Infect Dis 2006; 12:942–49.
10. Abdollahi SH, Ayooobi F, Khorramdelazad H, et al. Interleukin-10 serum levels after vaccination with in vivo prepared Toxoplasma gondii excreted/secreted antigens. Oman Med J 2013; 28:112–5.
11. Saej JP, Frickel EM. Exposing Toxoplasma gondii hiding inside the vacuole: a role for GBP5s, autophagy and host cell death. Curr Opin Microbiol 2017; 40:72–80.
12. Fisch D, Clough B, Frickel EM. Human immunity to Toxoplasma gondii. PLoS Pathog 2019; 15:e1008097.
13. Goldszmid RS, Caspar P, Rivollier A, et al. NK cell-derived interferon-γ orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection. Immunity 2012; 36:1047–59.
14. Gazzinelli RT, Wysocka M, Hayashi S, et al. Parasite-induced IL-12 stimulates early IFN-gamma synthesis and resistance during acute infection with Toxoplasma gondii. J Immunol 1994; 153:2533–43.
15. de Araújo TE, Coelho-Dos-Reis JG, Béla SR, et al. Early serum biomarker networks in infants with distinct retinochoroidal lesion status of congenital toxoplasmosis. Cytokine 2017; 95:102–12.
16. Marino AP, Dos Santos LI, Henriques PM, et al. Circulating inflammatory mediators as biomarkers of ocular toxoplasmosis in acute and in chronic infection. J Leukoc Biol 2020; 108:1253–64.
17. Marchioro AA, Colli CM, de Souza CZ, et al. Analysis of cytokines IFN-γ, TNF-α, TGF-β and nitric oxide in amniotic fluid and serum of pregnant women with toxoplasmosis in southern Brazil. Cytokine 2018; 106:35–9.
18. Mantilla-Muriel LE, Hernández-de-Los-Ríos A, Rincón M, et al. Serotyping, host genes and cytokines response in human ocular toxoplasmosis. Microb Pathog 2020; 148: 104465.
19. Villard O, Cimon B, L'Ollivier C, et al. Serological diagnosis of Toxoplasma gondii infection: recommendations from the French national reference center for toxoplasmosis. Diagn Microbiol Infect Dis 2016; 84:22–33.

20. Smith JR, Ashander LM, Arruda SL, et al. Pathogenesis of ocular toxoplasmosis. Prog Retin Eye Res 2021; 81:100882.

21. de-la-Torre A, Pfaff AW, Grigg ME, Villard O, Candolfi E, Gomez-Marín JE. Ocular cytokinome is linked to clinical characteristics in ocular toxoplasmosis. Cytokine 2014; 68:23–31.

22. Raouf-Rahmati A, Ansar AR, Rezaee SA, et al. Local and systemic gene expression levels of IL-10, IL-17 and TGF-β in active ocular toxoplasmosis in humans. Cytokine 2021; 146:155643.

23. Ajzenberg D, Collinet F, Aubert D, et al. The rural-urban effect on spatial genetic structure of type II Toxoplasma gondii strains involved in human congenital toxoplasmosis, France, 2002–2009. Infect Genet Evol 2015; 36:511–6.

24. Morisset S, Peyron F, Lobry JR, et al. Serotyping of Toxoplasma gondii: striking homogeneous pattern between symptomatic and asymptomatic infections within Europe and South America. Microbes Infect 2008; 10:742–7.

25. de Araújo TE, Dos Santos LI, Gomes AO, et al. Putative biomarkers for early diagnosis and prognosis of congenital ocular toxoplasmosis. Sci Rep 2020; 10:16757.

26. Calabrese KS, Tedesco RC, Zaverucha do Valle T, Barbosa HS. Serum and aqueous humour cytokine response and histopathological alterations during ocular Toxoplasma gondii infection in C57BL/6 mice. Micron 2008; 39:1335–41.

27. Mammari N, Vignoles P, Halabi MA, Dardé M-L, Courtioux B. Interferon gamma effect on immune mediator production in human nerve cells infected by two strains of Toxoplasma gondii. Parasite 2015; 22:39.

28. Mahmoud ME, Ui F, Salman D, Nishimura M, Nishikawa Y. Mechanisms of interferon-beta-induced inhibition of Toxoplasma gondii growth in murine macrophages and embryonic fibroblasts: role of immunity-related GTPase M1. Cell Microbiol 2015; 17:1069–83.

29. Matta SK, Olias P, Huang Z, et al. Toxoplasma gondii effector TgIST blocks type I interferon signaling to promote infection. Proc Natl Acad Sci U S A 2019; 116:17480–91.

30. Mousa NM, Jasim HM. Gene expression of two innate cytokines in a miscarriage toxoplasmosis woman. Ann Parasitol 2021; 67:281–6.

31. Zhang Y, He J, Zheng H, Huang S, Lu F. Association of TREM-1, IL-1β, IL-33/ST2, and TLR expressions with the pathogenesis of ocular toxoplasmosis in mouse models on different genetic backgrounds. Front Microbiol 2019; 10:2264.

32. Thieme C, Schlickeiser S, Metzner S, Dames C, Pleyer U. Immune mediator profile in aqueous humor differs in patients with primary acquired ocular toxoplasmosis and recurrent acute ocular toxoplasmosis. Mediators Inflamm 2019; 2019:9356728.