Fuscibacter oryzae gen. nov., sp. nov., a phosphate-solubilizing bacterium isolated from the rhizosphere of rice plant

Geeta Chhetri · Minchung Kang · Jiyoun Kim · Inhyup Kim · Yoonseop So · Taegun Seo

Received: 31 March 2021 / Accepted: 8 July 2021 / Published online: 17 July 2021 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract An ovoid to rod shaped, white to brown pigmented, facultative anaerobic, mesophilic, non-phototrophic, Gram-staining-negative, non-motile, multiply by binary fission designated strain KVB23^T, which was isolated from root of rice plant, near Ilsan, South Korea, was investigated for its taxonomic position by polyphasic approach. Optimal growth was found to occur at 30°C, at pH 6.5 and in the absence of NaCl on R2A. Phylogenetic analysis based on the 16S rRNA gene sequence of strain KVB23^T revealed that it formed a distinct lineage, as a separate deep branch within the family Rhodobacteriaceae, with < 96.5% sequence similarity to representatives of the genera Rhodobacter, Xinfanggangia, Tabrizicola, Falsirhodobacter, Haematobacter, Paenirhodobacter, Pseudorhodobacter and Pararhodobacter. Based in 16S rRNA sequences strain KVB23^T was most closely related to Tabrizicola fusiformis KCTC 62105^T (96.5%) and Rhodobacter thermarum KCTC 52712^T (96.2%). The draft genome of strain KVB23^T was 3.80 bp long with a DNA G + C content of 63.1%. Genome of strain KVB23^T harboured gene clusters for tryptophan and cobalamin biosynthesis. The strain contained Q-10 as the sole respiratory quinone. The predominant fatty acids were found to consist of C_{16:0}, C_{18:0} and summed feature 8 (comprising C_{18:1}ω7c and / or C_{18:1}ω6). The polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, seven unidentified phosphoglycolipids, two unidentified aminophosphoglycolipid, one unidentified glycolipid and four unidentified lipids. Phosphate-solubilizing bacteria have the ability to dissolve insoluble phosphates and enhance the soil fertility. Strain KVB23^T can solubilize calcium phosphate tribasic. Phosphate solubilizing and tryptophan biosynthesis property of strain KVB23^T could be a possible factor for the increase in growth of rice plant. Differential phenotypic, chemotaxonomic and genotypic properties, together with the phylogenetic distinctiveness, demonstrated that strain KVB23^T was found to represent a novel genus in the Rhodobacteriaceae family, for which the name *Fuscibacter oryzae* gen. nov., sp. nov. is proposed, with the type strain KVB23^T(= KACC 21711^T = NBRC 114716^T).

Keywords *Fuscibacter oryzae* · Non-phototrophic · Binary fission · Phosphate-solubilization · Brown-pigment

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10482-021-01619-2.
Introduction

The *Rhodobacteriaceae* family was first established by Garrity et al. (2005) as a sole member of the order *Rhodobacterales* within the class *Alphaproteobacteria* and phylum *Proteobacteria*. *Rhodobacteriaceae* is one of the most widely distributed bacterial lineages in marine habitats such as seawater, sediments, marine snails, marine sponges and marine phytoplankton etc. They are mainly aerobic phototrophs and chemoheterotrophs however, they can also exist as purple non-sulfur bacteria, which perform photosynthesis in anaerobic environments (Garrity et al. 2005). The members are Gram-stain-negative, oval-shaped and non-spore-forming bacteria. Most of the species are positive for oxidase activity. Pigmentation occurs not only in photosynthetic members but also in non-phototrophic members. Some members produce polyhydroxyalkanoates (PHBs). The G+C content of genomic DNA ranges from 58.5 to 65.0 mol% (Hetharua et al. 2018). Q-10 is the predominant isoprenoid quinone and the major fatty acid is unsaturated fatty acid C_{18:1}ω7c. There are approximately 220 recognized genera in the family at the time of writing (https://lpsn.dsmz.de/family/rhodobacteraceae). In the course of screening the bacterial diversity in the roots of rice plants near Dongguk university, Ilsan, South Korea, strain KVB23^T was isolated from a paddy field in the Republic of Korea. Phosphate solubilizing bacteria play important role in biogeochemical phosphorus cycling in both terrestrial and aquatic environments (Das et al. 2007). In the present study, we introduce a novel non-phototrophic and phosphate-solubilizing bacterium isolated from the roots of rice plants that belongs to a new genus associated with the family *Rhodobacteriaceae*.

Materials and methods

Isolation of the novel strain and cultivation

For assessing the diversity of culturable bacteria in the roots of rice plant, root samples were collected from a paddy field near Dongguk University, Ilsan, South Korea (GPS positioning of the sample collection site; 37° 40′ 26.4″ N 126° 48′ 20.88″ E). The samples were placed in sterile polyethylene bags and brought back to the laboratory. For the isolation of strain KVB23^T, the root samples were thoroughly washed with sterilized water, to remove the external soil that was clinging to the surface of roots. The roots were cut into small fragments and macerated using a sterile pestle and mortar in sterile distilled water. The macerated samples were serially diluted using 0.85% NaCl as described previously (Chhetri et al. 2020a). Isolation was achieved using R2A agar (Difco) at 28 °C for 1 week. A single colony chosen on the plates was purified by transferring it to new R2A plates. Pure culture of strain KVB23^T was obtained by their repeated transfer on R2A agar plates and the purified colonies were sent to Bionics (Daejeon, Republic of Korea) for 16S rRNA gene analysis. From the purified bacterial colonies, a novel strain of the genus was identified to be a member of *Fuscibacter* and designated as KVB23^T. The isolate was preserved in R2A broth (Difco) supplemented with 50% (v/v) glycerol at −80 °C. The reference strains *Tabrizicola fusiformis* KCTC 62105^T, *Rhodobacter thermarum* KCTC 52712^T and *Falsirhodobacter deserti* KCTC 32408^T were purchased from KCTC (Korean Collection for Type Cultures).

Morphological characteristics

Colonial morphology was studied on R2A medium at 30 °C for 5 days. The cell morphology and dimension were visualised by negative staining with 1% (w/v) phosphotungstic acid and viewing under a transmission electron microscope (TEM) (LIBRA 120, Carl Zeiss, Germany) after 3 days of incubation in R2A agar at 30 °C.

Physiological and biochemical characteristics

To determine the optimal temperature range for growth, the growth of the strain was assessed at a temperature range of 4–40 °C (0, 2, 4, 10, 15, 20, 25, 28, 30, 35, 37 and 40 °C) was measured by observing the formation of colonies on R2A to estimate the optimal temperature range for growth. The growth of the strains on different media was assessed at 30 °C for 10 days using R2A agar (BD Difco), Trypticase soy agar, Marine agar, nutrient agar, Luria–Bertani agar and MacConkey. The requirement for NaCl was determined using R2A broth containing various concentrations of NaCl (0.2 increments, w/v) was tested in
R2A medium at pH 7.0 by incubation for 10 days at 30 °C. Cell growth at various pH values in R2A broth (pH 4.0–10.0, in intervals of 1.0 pH unit) was examined using the following buffer systems as described previously: citrate/NaH$_2$PO$_4$ buffer (for pH 4.0–5.0), phosphate buffer (for pH 6.0–8.0) and Tris buffer (for pH 9.0–10.0) (Chhetri et al. 2018). Anaerobic growth was assessed by checking for colony formation on R2A agar at 30 °C for two weeks in a GasPak jar (BBL, Cockeysville, MD, USA). Motility was assessed in R2A medium containing 0.4% agar. Gliding motility was tested using the hanging-drop method after growing the cells in R2A broth (Difco) for 48 h at 30 °C (Bernardt et al. 2002). Gram reaction was determined using the non-staining KOH lysis method (Fautz and Reichenbach, 1980). Test for catalase and oxidase activities were performed using 3% (v/v) hydrogen peroxide solution and oxidase reagent, respectively as described previously (Kim et al. 2020). The presence of flexirubin-type pigments was investigated by performing the bathochromic shift test with 20% KOH (w/v) (Kim et al. 2019a, b). The hydrolysis of Tween 20, 40, 60 and 80 was assessed according to the method described by Simbert & Krieg (1994). Moreover, the hydrolysis of chitin, carboxymethyl-cellulose, starch, and casein was also assessed according to a previously described method (Chhetri et al. 2019a). DNase activity was detected on DNase test agar by using toluidine blue. Additional enzyme activities, biochemical features and physiological characteristics were tested using the API 20NE and API ZYM kits (bioMérieux) according to the manufacturer’s instructions. Since the strain KVB23T was isolated from the roots of rice plants its nitrification ability was assessed. Jensen’s nitrogen free medium was used for this purpose, and bromothymol blue (BTB) was used as an indicator. Growth of strain KVB23T in nitrogen free medium was observed for one week. Pikovakaya’s (PVK) media was used to check the phosphate solubilizing activity of strain KVB23T.

Phylogenetic and genotypic analysis

Genomic DNA was extracted using the TaKaRa MiniBEST Bacteria Genomic DNA extraction Kit version 3.0 (TaKaRa) following the manufacturer’s instructions. The 16S rRNA gene of the isolate was directly amplified by colony-PCR using the universal bacterial primers pairs 27F, 518F, 805R and 1492R; the PCR products were commercially sequenced (Solgent, Daejon, Republic of Korea). The nearly complete sequence (1415 bp) of the 16S rRNA gene was deposited to NCBI GenBank under accession number MN955430 after assembled with SeqMan software (DNASTAR). The pairwise 16S rRNA gene sequence similarities, were calculated and phylogenetic neighbours were identified based on sequences of bacterial type strains from the EzBiocloud server database (Kim et al. 2012). Multiple sequences were aligned using MEGA 7.0 software (Kumar et al. 2016) and analyzed using the CLUSTALX 2.1 (Thompson et al. 1997). A phylogenetic tree was constructed according to the neighbour-joining (NJ) (Felsenstein, 1985), maximum-parsimony (MP) and maximum-likelihood (ML) methods with the Kimura two-parameter model (Kimura, 1980). Minimum-evolution tree was also constructed using the MEGA 7.0 software in order to estimate the confidence of tree topologies (Rzhetsky and Nei, 1992). MEGA 7.0 software was used to construct a phylogenetic tree by bootstrap analysis with 1000 replications (Felsenstein, 1985).

For genome sequencing, a standard DNA library was prepared using the TruSeq DNA PCR-Free kit library (Illumina). Subsequently, whole genome sequencing was performed by de novo sequencing analysis using an Illumina Hiseq 4000 sequencer with a paired-end read length of 151 bp and assembled with the SPAdes Analysis v.3.10.1 at Macrogen (Republic of Korea). Average nucleotide identity (ANI) and digital DNA-DNA hybridization values between the strain KVB23T and closely related strain were calculated using ANI calculator (www.ezbiocloud.net/tools/ani), and the Genome-to-Genome Distance Calculator (GGDC 2.1; https://ggdc.dsmz.de/ggcd.php) (Meier-Kolthoff et al. 2013). To obtain more sufficient taxonomic evidence, UBCG phylogenomic tree based on the core genomes was constructed (Na et al. 2018). Publicly available genomes of closely related taxa were used. The DNA G+C content of strain KVB23T was calculated from the genome data. Genes involved in secondary metabolism were predicted by antibiotics and Secondary Metabolite analysis shell (antiSMASH) version 5.0 (Blin et al. 2019) and RAST annotation pipeline was carried out using the SEED platform (Aziz et al. 2008). The Venn
diagram was constructed by OrthoVenn2 (https://orthovenn2.bioinfotoolkits.net/home), using the generated protein sequences. The draft genome and 16S rRNA gene sequences of strain KVB23T have been deposited at GenBank/EMBL/DDBJ under accession numbers JAESVP000000000 and MN955430 respectively. The DNA G + C content of strain KVB23T was calculated from the genome data.

Chemotaxonomy

For determining the chemotaxonomic characteristics, the cells were grown in R2A agar at 30 °C until the late exponential phase and then harvested by centrifugation. Cellular fatty acids were acquired by saponification, methylation and extraction as reported previously (Kuykendall et al. 1988). The extract was analysed using the Sherlock Microbial Identification System (MIDI) and was subsequently compared with the extracts of other type strains.

For the purification of isoprenoid quinones, SepPak Vac cartridges (Waters Associates Inc., Milford MA USA) were used and the extract was analysed by using high-performance lipid chromatography as reported previously (Hiraishi et al. 1996; Collins and Jones 1981).

For carotenoid analysis, the cells were extracted using 10 ml mixture of methanol/acetone (1:1, v/v) (Chhetri et al. 2019b). The absorption spectrum of the pigments was assessed with a spectrophotometer (Multiskan GO; Thermo Fisher Scientific).

Polar lipids were extracted as described previously (Minnikin et al. 1984) and analyzed by two-dimensional thin-layer chromatography using chloroform/methanol/water (65:25:4; v/v/v) in the first dimension and chloroform/methanol/acetic acid/water (80:15:12:4; v/v/v/v) in the second dimension (Minnikin et al. 1984). Appropriate detection reagents (Komagata and Suzuki 1987) were used to identify the spots; molybdophosphoric acid (phosphomolybdic acid reagent, 5% v/v solution in ethanol; Sigma-Aldrich, Germany) was used to detect total lipids, ninhydrin reagent (0.2% solution; Sigma life Science, USA) was used to detect amino lipids, Zinzadze reagent (molybdenum blue spray reagent, 1.3%; Sigma Life Science) was used to detect phospholipids, and α-naphthol reagent was used to detect glycolipids.

Results and discussion

Morphology, physiology and biochemical analysis.

Cells of the strain KVB23T were facultative anaerobic, Gram-stain-negative, rod-shaped, oxidase-negative, catalase-positive and devoid of flagella. Colonies were white, convex and circular with entire edges. The colour of colonies were white after culture for 5 days and it became slightly brown at the center of the colonies after ten days of incubation at 30 °C (Fig. 1). The strain grew in the presence of 0–2% (w/v) NaCl (optimum 0%), at 7–35 °C (optimum 30 ºC) and at pH 6.5–7.5 (optimum pH 7.0). It did not show photoautotrophic and phototrophic growth under anaerobic conditions. No absorption maxima were detected at 377, 590, 803 and 860 nm confirming that the strain KVB23T did not contain any photosynthetic pigments. In addition, the genome of strain KVB23T did not have any photosynthetic genes. Growth occurred at temperatures ranging from 7–35 ºC (optimum, 30 ºC), at pH 6.0–8.0 (optimum, pH 7.0) and in the presence of 0–03% NaCl (w/v: optimum, 0%). The new isolated was unable to perform anoxygenic photosynthesis or to grow phototrophically under anoxic conditions, and this character can clearly distinguish strain KVB23T from the species of genus Tabrizicola and Rhodobacter. Growth of strain KVB23T was not occurred in Jensen’s nitrogen free medium. Occurrence of halo zone around the colonies in phosphate-solubilizing agar showed the solubilizing ability of strain KVB23T (Fig. S1). In the API ZYM system, the strain KVB23T displayed positive results for alkaline phosphatase, esterase, esterase lipase, leucine arylamidase, valine arylamidase, trypsin, acid phosphatase, naphthol-AS-BI-phosphohydrolase and α-glucosidase activities however it displayed negative results for lipase, cystine arylamidase, α-chymotrypsin, α-galactosidase, β-galactosidase, β-glucuronidase, β-glucosidase, N-acetyl-β-glucosaminidase, α-mannosidase and α-fucosidase activities. In the API 20NE system, the strain did not reduce nitrate and did not produce indole. Moreover, it did not ferment glucose and did not hydrolyse arginine and gelatin. It only assimilated malic acid but did not assimilate D-glucose, L-arabinose, D-mannose, N-Acetyl-D-glucosamine, D-maltose, potassium gluconate, capric acid, adipic acid, trisodium citrate and phenylacetic acid. KVB23T could be differentiated from other closely related members by using several
phenotypic and biochemical properties, such as able to grow in low temperature of 7 °C, could grow in anaerobic condition and able to hydrolyse esculin. Most importantly, strain KVB23T showed brown pigmentation at the center of the colony after ten days of incubation but the close relatives were not shown the pigmentation. The differentiating characteristics between strain KVB23T and the members of its related genera within the family Rhodobacteriaceae and also the reference strains were presented in Table 1.

Phylogenetic and genome analysis

16S rRNA gene sequence of strain KVB23T indicated that strain was most closely related to Tabrizicola fusiformis SY72T (96.5%), Rhodobacter thermarum YIM 73036T (96.2%) and Tabrizicola alkalilacus DJCT (96.0%). Phylogenetic analysis based on neighbour-joining tree (Fig. 2) further revealed that the novel strain KVB23T, formed a distinct lineage within the family Rhodobacteriaceae, clustering with the clade comprising phototrophic species belonging to the genus Tabrizicola and Rhodobacter, and non-phototrophic species belonging to Falsirhodobacter and Xinfangfangia. Similar results were obtained in both maximum-likelihood (Fig. S2) and maximum parsimony trees (Fig. S3). The topologies of all tree trees were almost same and available in the online version of this article. Phylogenomic tree also gave the similar results (Fig. S4).

The genome size of strain KVB23T was found to be 3,808,773 bp. The complete genome of strain KVB23T consisted of 3,720 coding genes, 3 rRNA and 46 tRNA genes and 32 pseudogenes. The number

Fig. 1 Creamy white colonies (a) turns to brown at the center (b) after 10 days of incubation at 30 °C. Transmission electron microscopy of strain KVB23T, four days old. Cells were grown for four days and seven days and negatively stained with phosphotungstic acid after growth for one week at 30 °C on R2A agar. Bar (c) and (d) 0.2 μm and 0.5 μm. Figure (d) showing budding cells
The project assembly of contigs was 21 and N50 value was 446,226. The G + C content of genomic DNA is 63.1% which is within the range for the members of the family *Rhodobacteriaceae*. The ANI values between strain

Characteristics	1	2	4	3
Isolation source	Plant root	Industrial wastewater	Sediment	Sandy soil
Cell shape	Ovoid to rod	fusiform	Ovoid to rod	rod
Colony color	white to brown	Translucent white	Brown	Lemon yellow
Catalase/oxidation	–/–	+/+	+/+	+/+
Anaerobic growth	+	–	–	+
Optimal growth	25–30	30–37	37–45	30
Temperature range for growth	7–35	15–40	20–55	10–40
Growth in 3% NaCl	–	–	+	+
NaCl range for growth	0–2	0–1.5	0–3.5	0–10
Media for optimum growth	R2A	R2A	R2A	TSA
Optimal pH	6.5–7.0	6.0–7.0	7.0–7.5	7
Phototrophic growth	–	–	–	–
Photosynthetic pigments	–	–	Bacteriochlorophyl II *a*	–
Internal membrane system	–	–	+	–
β-Caroten production	–	–	+	–
pufL and pufM genes	–	–	+	–
Enzyme activities (API ZYM)				
Lipase	–	+	+	+
Cystine arylamidase	–	–	+	+
Trypsin	+	–	–	+
Acid phosphatase	+	+	–	–
Naphtol-AS-BI-phosphohydrolase	+	–	–	+
β-galactosidase	–	–	+	+
β-galactosidase	+	+	+	+
β-glucosidase	–	+	–	+
N-acetyl-β-glucosaminidase	–	+	–	–
API 20NE				
Arginine dihydrolase	–	+	–	+
Urease	–	+	–	+
Esculin hydrolysis	+	+	–	–
D-glucose	–	–	+	–
L-arabinose	–	+	+	+
D-mannose	–	+	+	+
D-mannitol	–	+	+	–
N-Acetyl-D-glucosamine	–	+	–	–
D-maltose	–	+	+	–
malic acid	+	–	–	+
DNA G + C content (mol%)	63.5	63.7 + 0.2^a	66^b	67.3^c

*Data taken from: a (Ko et al. 2018); b (Khan et al. 2018) and c (Wang et al. 2015); +, Positive; –, negative
KVB23^T and the closely related reference strains T. fusiformis KCTC 62105^T, R. thermarum KCTC 52712^T and F. deserti KCTC 32408^T were 78.2, 74.4 and 72.9% and the corresponding dDDH values were 21, 19.2 and 19.4%. These ANI and dDDH values are clearly below the species-delineating thresholds (95 and 70%, respectively) (Chun et al. 2018; Richter and Rossello-Mora 2009; Stackebrandt and Ebers2006), supporting the conclusion that strain KVB23^T represents a novel genus in the family Rhodobacteriaceae. The antiSMASH server revealed eight gene clusters for the biosynthesis of several secondary metabolites; one gene cluster each for redox-cofactor, terpene, Type I polyketide synthase (T1PKS), non-ribosomal peptide synthetase, three gene clusters for hserlactone, and one gene cluster for RRE-element. The presence of three striking hserlactone gene clusters may have potential ecological roles, which may be related to the communication between fungi and bacteria (Shiner et al. 2005). The comparison of biosynthetic gene clusters between strain KVB23^T and its reference strains is provided in Table S1. According to RAST annotation, 1455 protein encoding genes in whole genome of strain KVB23^T were classified into 27 functional categories (Table 2). Interesting point was all strains have genes for motility (Flagellar) and chemotaxis except F. deserti KCTC 32408^T. However, all strains were found to be non-flagellated. Strain KVB23^T, also had five gene clusters for motility and chemotaxis however it was not flagellated. The genome of strain KVB23^T was compared with those of phylogenetically related species belonging to the family Rhodobacteriaceae. Four gene clusters for auxin biosynthesis were also annotated in the genome of strain KVB23^T. The main precursor for the synthesis of IAA is
typtophan, four genes encoding for tryptophan biosynthesis were also found: tryptophan-rich sensory protein (JAESVP010000001.1), tryptophan 2, 3-dioxygenase (kynA; JAESVP010000002.1), tryptophan synthase subunitbeta (trpB; JAESVP010000003.1) and tryptophan synthase subunit alpha (JAESVP010000005.1). Cobalamin has been suggested to stimulate plant development and could be synthesized either via de novo or salvage pathways. Five gene clusters for cobalamin biosynthesis were also found in the genome of strain KVB23T. Based on Venn diagrams of protein clusters, Fig S5 showed the number of orthologous clusters shared among strain KVB23T and other closely related members.

Chemotaxonomic characterization

The major respiratory quinone of the strain KVB23T was ubiquinone Q-10, which is common in Rhodobacteriaceae family. The polar lipid of strain KVB23T were diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), seven unidentified phosphoglycolipid (PGL), two unidentified aminophosphoglycolipid (APGL), one unidentified glycolipid (GL) and four unidentified lipids (L) which characteristically differentiate KVB23T from other recognized families (Fig. S6). The fatty acid profiles of strain KVB23T and its closely related members were presented in Table 3. The drastic difference in the major fatty acids also differentiate strain KVB23T from other close relatives. Difference in the percentage of major fatty acid C16:0, C18:0 and summed feature 8 (comprising

Strains	1	2	3	4
Cofactors, Vitamins, Prosthetic Groups, Pigments	136	137	119	38
Cell Wall and Capsule	23	31	36	5
Virulence, Disease and Defense	34	63	35	5
Potassium metabolism	4	8	4	–
Photosynthesis	–	–	2	–
Miscellaneous	15	28	19	6
Phages, Prophages, Transposable elements, Plasmids	20	33	28	1
Membrane Transport	37	77	35	19
Iron acquisition and metabolism	4	9	4	0
RNA Metabolism	36	46	35	10
Nucleosides and Nucleotides	98	91	91	33
Protein Metabolism	170	191	181	58
Cell Division and Cell Cycle	–	–	–	–
Motility and Chemotaxis	5	16	15	0
Regulation and Cell signaling	25	19	17	6
Secondary Metabolism	4	5	5	0
DNA Metabolism	71	66	69	28
Fatty Acids, Lipids, and Isoprenoids	52	75	62	3
Nitrogen Metabolism	43	42	22	7
Dormancy and Sporulation	1	1	1	0
Respiration	106	110	93	13
Stress Response	65	66	55	10
Metabolism of Aromatic Compounds	9	50	39	2
Amino Acids and Derivatives	243	259	228	82
Sulfur Metabolism	3	18	3	3
Phosphorus Metabolism	24	21	23	12
Carbohydrates	227	252	188	34

Table 2 Comparison of numbers of genes associated with functional categories in genomes of strain KVB23T and phylogenetically related species in the family Rhodobacteriaceae. Strains: 1, KVB23T; 2, Tabrizicola fusiformis KCTC 62105T; 3, Rhodobacter thermarum KCTC 52712T; 4, Falsirhodobacter deserti KCTC 32408T.
Table 3 Cellular fatty acid compositions (%) of strain KVB23\(^T\) and reference strains of the closely related species. Strains: 1, KVB23\(^T\); 2, *Tabrizicola fusiformis* KCTC 62105\(^T\); 3, *Rhodobacter thermarum* KCTC 52712\(^T\); 4, *Fal-sirrhodobacter deserti* KCTC 32408\(^T\). Prior to fatty acid extraction, all strains were grown on R2A agar at 30 °C for 3 days except *R. thermarum* KCTC 52712\(^T\), it is grown at 40 °C on R2A. Values are percentages of total fatty acids, and only fatty acids representing more than 1% for at least one of the strains are shown. -, Not detected; TR, trace amounts (<1%)

Fatty acids	1	2	3	4
C14:0	1.0	TR	–	1.2
C16:0	13.1	6.8	25.1	6.8
C17:0	1.5	1.6	TR	TR
C18:0	16.9	3.5	22	10.6
iso C16:0	–	1.5	–	–
iso C11:0 3OH	1.7	TR	–	–
C10:0 3OH	5.5	3.5	6.9	3.8
anteiso C15:0	–	1.2	1.3	–
C18:1 ω7c	4.8	–	38.9	60.8
C16:0 N alcohol	TR	–	2.5	1.8
C18:1 ω7c 11-methyl	7.4	1.8	1.2	15

*Summed features represent groups of two or three fatty acids that cannot be separated using MIDI system. Summed feature 3 (composed of C16:1ω7c and/or C16:1ω7c and/or iso-C15:0 2-OH), summed feature 7 (composed of C19:1ω7c and/or C19:1ω6c) and summed feature 8 comprises C18:1ω7c and/or C18:1ω6c

C18:1 ω7c and / or C18:1 ω6c distinguish the strain KVB23\(^T\) from its close relatives. Absence of anteiso C15:0, iso C16:0, presence of C18:1 ω7c and some other qualitative and quantitative differences in the fatty acid composition between the novel strain KVB23\(^T\) and other members of the family *Rhodobacteriaceae* could considered as a distinguishing characteristics for the novel genus.

Strain KVB23\(^T\) has the ability to solubilize phosphate and the genome of strain KVB23\(^T\) contains striking genes that may contribute to rice plant growth stimulation and has good application potential in sustainable agriculture. Based on the aforementioned distinct phylogenetic, phenotypic, biochemical, chemotaxonomic and genomic data the novel isolate KVB23\(^T\) cannot be assigned to any previously recognized bacterial taxa and therefore, we propose that strain KVB23\(^T\) represents a novel species belonging to a novel genus *Fuscibacter oryzae* gen. nov., sp. nov., within a novel family, *Rhodobacteriaceae* fam. Nov.

Description of* Fuscibacter oryzae* gen. nov.

Fuscibacter gen. nov. (Fus.ci.bac’ter. L. adj. fuscus, brown; L. n. bacter (from Gr. bakterion) a rod; N.L. masc. n. Fuscibacter, a brown rod).

Cells are Gram-stain-negative, facultative anaerobic, catalase- and oxidase-negative, asporogenous, short-rod shaped, non-flagellated and non-motile. Flexirubin-type pigments are absent. They contained Q-10 as the sole respiratory quinone. The main cellular fatty acids are C16:0, C18:0 and summed feature 8 (comprising C18:1 ω7c and / or C18:1 ω6).

The polar lipids include diphosphatidylglycerol, phosphatidylethanolamine, seven unidentified phosphoglycolipid, two unidentified aminophosphoglycolipid, one unidentified glycolipid and four unidentified lipids. The DNA G+C content of the type strain of the type species is 63.1%. Based on phylogenetic analysis, the genus belongs to the family *Rhodobacteriaceae* within the phylum *Proteobacteria*. The type species is *Fuscibacter oryzae*.

Description of* Fuscibacter oryzae* sp. nov

F. oryzae sp. nov. (o.ry’zae. L. fem. n. oryzae, of rice, referring to the isolation of the type strain from the root of a rice plant).

Cells are Gram-stain negative, aerobic, ovoid to rod-shaped, non-motile, asporogenous, 0.4–0.5 μm long and 0.8–1.4 μm wide after 3 days of culture on R2A. Colonies on R2A agar are white to brown pigmented, smooth, circular, convex and have an entire margin. Cells are non-motile, multiply by binary fission and negative for catalase and oxidase activities. Growth occurs at 7–35 °C (optimum 25–30 °C) and pH 6.0–8.0 (optimum 6.5–7.0). Hardly tolerates NaCl (w/v) upto 2% (optimum 0% NaCl). Good growth occurs on R2A agar and NA, weak growth on TSA and no growth on MA and LB. Strain KVB\(^T\) was able to grow in the absence of oxygen and showed negative activities for catalase and oxidase reaction. Strain
KVB23T able to hydrolyze esculin and Tween 20, but not Tween 40 and 60, starch, casein and CM-cellulose. It does not have a vesicular photosynthetic membrane. Moreover, it does not contain bacteriochlorophyll a, carotenoids and flexirubin. Photoautotrophic and photoheterotrophic growth does not occur. Furthermore, photosynthetic pigments were not produced and apparently photosynthetic genes were not found in the genome of strain KVB23T. Strain KVB23T was able to dissolve phosphate when grown in Piko-vakaya’s medium. The predominant respiratory quinone is ubiquinone Q-10 and the G + C content of the genomic DNA of the type strain is 63.1%. The main cellular fatty acids are C16:0, C18:0 and summed feature 8 (comprising C18:1ω7c and/or C18:1ω6c). The polar lipid include diphosphatidylglycerol, phosphatidylethanolamine, seven unidentified phosphoglycolipid, two unidentified aminophosphoglycolipid, one unidentified glycolipid and four unidentified lipids.

The type strain KVB23T (= KACC 21711T = NBRC 114716T) was isolated from root of rice plant collected from rice field near Ilsan, South Korea. The GenBank accession number of the 16S rRNA gene sequence of the strain KVB23T is MN955430 and its draft genome sequence accession number is JAESP000000000.

Acknowledgements The draft genome and 16S rRNA524 gene sequences of strain KVB23T have been deposited525 at GenBank/EMBL/DDBJ under accession numbers526 JAESP000000000 and MN955430 respectively.

Author contributions GC isolated the bacterium, designed the study, performed the phenotypic and biochemical characterization, and wrote the original draft; MK, JK, IK, YS helped with the analysis of taxonomic data; TS designed and supervised the study, and edited the original draft.

Funding This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR202002203), and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1F1A1072647).

Declarations

Conflict of interest All the authors declare that there is no conflict of interest.

Ethical approval This study does not describe any experimental work related to human.

References

Aziz RK, Bartels D, Best AA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75
Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070
Blin K, Shaw S, Steinke K et al (2019) AntiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:W81–W87
Chhetri G, Kim J, Kim H et al (2019b) Pontibacter oryzae sp. nov., a carotenoid-producing species isolated from a rice paddy field. Antonie Van Leeuwenhoek 112:1705–1713
Chhetri G, Kim J, Kim I, Kim H et al (2020) Adhaeribacter rhizoryzae sp. nov., a fibrillar matrix producing bacterium isolated from the rhizosphere of rice plant. Int J Syst Evol Microbiol 70:5382–5388
Chhetri G, Kim J, Kim I, Seo T (2019a) Lysobacter caseini-lyticus, sp. nov., a casein hydrolyzing bacterium isolated from sea water. Antonie Van Leeuwenhoek 112:1349–1356
Chhetri G, Yang D, Choi J et al (2018) Edaphorhabdus rosea gen. nov., sp. nov., a new member of the family Cytophagaceae isolated from soil in South Korea. Antonie van Leeuwenhoek 111:2385
Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, De Meyer S, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466
Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354
Das S, Lyla PS, Khan SA (2007) Biogeochemical processes in the continental slope of Bay of Bengal: I. bacterial solubilization of inorganic phosphate Rev. Biol Trop 55:1–9
Fautz E, Reichenbach H (1980) A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8:87–91
Fautz E, Reichenbach H (1980) A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8:87–91
Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791
Garrity GM, Bell JA, Liburn T. Familial. Rhodobacter-aceae fam.nov (2005) In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology New York: Springer; pp 161
Hetharua B, Min D, Liao H, Lin Li’an XuH et al (2018) Litorivita pollutaquae gen. nov., sp. nov., a marine bacterium in the family Rhodobacteraceae isolated from surface seawater of Xiamen Port. China Int J Syst Evol Microbiol 68:3908–3913
Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by highperformance liquid chromatography and photodiode array detection J Gen Appl Microbiol 42: 457–469
Kim J, Chhetri G, Kim I, Kim H, Kim MK, Seo T (2019) Methylobacterium terrae sp. nov., a radiation-resistant bacterium isolated from gamma ray-irradiated soil. J Microbiol 57:959–966
Kim I, Kim J, Chhetri G et al. (2019) *Flavobacterium humi* sp. nov., a flexirubin-type pigment producing bacterium, isolated from soil. J Microbiol 57:1079–1085

Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH. & other authors (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbial 62:716–721

Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

Komagata K, SuzukiKI (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–205

Kumar S, Stecher G and Tamura K (2016) Mega 7: Molecular evolutionary genetics analysis in version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

Kuykendall LD, Roy MA, O’Neill JJ, Devine TE (1988) Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of *Bradyrhizobium japonicum*. Int J Syst Evol Microbiol 38:358–361

MeierKolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinf 14:60

Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

Na SI, Kim YO, Yoon SH et al. (2018) UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:281–285

Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 106:19126–19131

Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9:945–967

Shiner EK, Rumbaugh KP and Williams SC (2005) Interkingdom signaling: Deciphering the language of acyl homoserine lactones. FEMS Microbiol Rev. 29:935–947

Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P (ed) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 607–654

Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.