A Comprehensive Review of Computer Vision in Sports: Open Issues, Future Trends and Research Directions

1Banoth Thulasya Naik, 2Mohammad Farukh Hashmi, 3Neeraj Dhanraj Bokde

1Department of Electronics and Communication Engineering, National Institute of Technology, Warangal, India
2Department of Engineering - Renewable Energy and Thermodynamics, Aarhus University, 8000, Denmark
3Department of Engineering - Renewable Energy and Thermodynamics, Aarhus University, 8000, Denmark

1thulasyramsingh@student.nitw.ac.in, 2mdfarukh@nitw.ac.in, 3neerajdhanraj@mpe.au.dk

Abstract:

Recent developments in video analysis of sports and computer vision techniques have achieved significant improvements to enable a variety of critical operations. To provide enhanced information, such as detailed complex analysis in sports like soccer, basketball, cricket, badminton, etc., studies have focused mainly on computer vision techniques employed to carry out different tasks. This paper presents a comprehensive review of sports video analysis for various applications high-level analysis such as detection and classification of players, tracking player or ball in sports and predicting the trajectories of player or ball, recognizing the teams strategies, classifying various events in sports. The paper further discusses published works in a variety of application-specific tasks related to sports and the present researchers views regarding them. Since there is a wide research scope in sports for deploying computer vision techniques in various sports, some of the publicly available datasets related to a particular sport have been provided. This work reviews a detailed discussion on some of the artificial intelligence (AI) applications in sports vision, GPU-based work stations, and embedded platforms. Finally, this review identifies the research directions, probable challenges, and future trends in the area of visual recognition in sports.

Keywords: Sports, Ball Detection, Player Tracking, Artificial Intelligence, Computer Vision, Embedded Platforms, Research Directions in Sports
1 Introduction:

Automatic analysis of video in sports is a possible solution to the demands of fans and professionals for various kinds of information. Analyzing videos in sports has provided a wide range of applications, which include player positions, extraction of ball’s trajectory, content extraction and indexing, summarization, detection of highlights, on demand 3D reconstruction, animations, generation of virtual view, editorial content creation, virtual content insertion, visualization and enhancement of content, game play analysis and evaluations, identifying player’s actions, referee decisions and other fundamental elements required for the analysis of a game.

The task of player detection (identification) and tracking is very difficult because of many challenges, which include similar appearance of subjects, complex occlusions, unconstrained field environment, background, unpredictable movements, unstable camera motion, issues with calibration of low textured fields and the editing done to broadcast video, lower pixel resolution of players who are distant and smaller in the frame, motion blur etc. The simultaneous detection of players the ball and tracking them at once is quite challenging, because of the zigzag movements of the ball and player, change of ball from player to player, severe occlusion between players and ball, etc., and hence this study presents a survey of detection, classification, tracking, trajectory prediction and recognizing the team’s strategies etc. in various sports. Detection and tracking of player is the only major requirement in some sports like cycling, swimming etc. As a result, as illustrated in Figure 1, this research classifies all sports into two categories: player-centered sports and ball-centered sports, with extensive analysis in Section 4.

Recent developments in video analysis of sports have a focus on the features of computer vision techniques which are used to perform certain operations for which these are assigned, such as detailed complex analysis like detection and classification of each player based on their team in every frame or by recognizing the jersey number to classify players based on their team will helps to classify various events where the player is involved. In higher level analysis, such as tracking the player or ball, many more such evaluations are to be considered for the evaluation of a player’s skills, detecting the team’s strategies, events and the formation of tactical positions such as mid field analysis in various sports like soccer, basketball etc., and also various sports vision applications such as smart assistants, virtual umpires, assistance coaches etc., have been discussed in Section 7. A higher level semantic interpretation is an effective substitute, especially in situations requiring real time analysis and minimal human intervention for exploitation of the delivered system outputs.
The main task of video summarization or highlight extraction is extracting key events of the game which provides users with an ability to view highlights as per their interests. For this purpose, it is required to detect, classify gestures, recognize the actions of referee/umpire, track players and the ball in key events like the time of goal scoring to analyze and classify different types of shots performed by players. The framework for processing and analyzing task-specific events in sports applications, such as playfield extraction, detection, and tracking of player/ball, etc. has been shown in figure 2, and detailed analyses of playfield extraction are discussed in Section 3.

A detailed review of research in the above-mentioned domains has been presented in this article and the data has compiled from papers which focus on computer vision based approaches that are used for each application, followed by inspecting key points and weaknesses, thereby investigating whether these methodologies in their current state of implementation can be utilized in real time sports video analysis systems.
1.1 Features of the Proposed Review

Some of the surveys and reviews published in different sports video processing and their main contributions are discussed and summarized in table 1 and listed below.

- D. Y. W. Tan et al. [1] researched on badminton movement analysis such as Badminton smashing, badminton service recognition, badminton swing and shuttle trajectory analysis.
- Robson P B et al. [2] presented a systematic review of sports data mining, which discusses the current panorama, themes, the dataset used, algorithms and research opportunities.
- N A Rahmad et al. [3] presented a survey on video based sports intelligence systems to recognize sports actions. They provided video based action recognition frameworks used in sports field and also discussed deep learning implementation in video based sports action recognition. They proposed a flexible method which classifies actions in different sports with different context and features as part of future research.
• Eline K et al. [4] presented an overview of 17 human motion capture systems which report the specs given by the manufacturer as well as calibration specs. This review helps researchers in the selection of a suitable motion capture system for experimental setups in various sports.

• M Manaffifard et al. [5] presented a survey on state-of-the-art (SOTA) algorithms for player tracking in soccer videos. They analyzed strengths and weaknesses of different approaches and presented the evaluation criteria for future research.

• Graham Thomas et al. [6] presented an analysis of computer vision based applications and research topics in sports field. They summarized some of the commercially available systems such as camera tracking and player tracking systems. They also incorporated some of the available datasets of different sports.

• Emily E C et al. [7] presented systematic review of literature on machine learning and deep learning for sports-specific movement recognition using inertial measurement unit and or computer vision data.

• PR Kamble et al. [8] presented an exhaustive survey of all the published research work on ball tracking in a categorical manner and also reviews the used techniques, their performance, advantages, and limitations with their suitability for a particular sport.

• HC Shih et al. [9] introduced the fundamentals of content analysis such as sports genre classification, and the overall status of sports video analytics. Also reviewed SOTA studies with prominent challenges identified in literature.

• Ryan Beal et al. [10] explored AI techniques that have been applied to challenges within a team sports such as match outcome prediction, tactical decision making, player investments, and injury prediction.

• Apostolidis E et al. [11] suggested a taxonomy of the existing algorithms and presented a systematic review of the relevant literature that shows the evolution of the deep learning based video summarization technologies.

• Yewande Adesida [289] explored a review to better understand the usage of wearable technology in sports to improve performance and avoid injury.

• Manju Rana [290] offered a thorough overview of the literature on the use of wearable inertial sensors for performance measurement in various sports.

Table 1 Summary of Previous Survey and Reviews in different Sports

Ref	Handcrafted Algorithms	Machine Learning Algorithms	Sport and Application	Discussed about Dataset	Aim of Review					
			Sport	Detection						
				Tracking						
				Classification and						
Study	Detection	Classification	Tracking	Motion analysis	Player detection/tracking	Availability of datasets	Ball Tracking	Content-Aware Analysis	Video Summarization	Wearable technology in sports
------------------------------------	-----------	----------------	----------	----------------	--------------------------	--------------------------	---------------	------------------------	---------------------	-----------------------------
D. Y. W. Tan et al. [1]	✓	✓	x	x	✓					
Robson P B et al. [2]	✓	✓	-	-	-	✓				Sports data mining
N A Rahmad et al. [3]	x	✓	-	✓	x	✓				
Eline K et al. [4]	✓	x	-	x	✓	x				Motion Capture
M Manaffifard et al. [5]	x	✓	Soccer	✓	✓	-				Player detection/tracking
Graham Thomas et al. [6]	x	✓	-	✓	✓	x				Availability of datasets for sports
Emily E C et al. [7]	x	✓	-	x	✓	x				
PR Kamble et al. [8]	✓	✓	Soccer	✓	✓	x				Ball Tracking
HC Shih et al. [9]	✓	✓	-	x	-	x				Content-Aware Analysis
Ryan Beal et al. [10]	x	✓	-	x	✓	x				
Apostolidis E et al. [11]	x	✓	-	x	✓	x				Video Summarization
Yewande Adesida [289]	✓	x	-	-	-	x				Wearable technology in sports
Manju Rana [290]	✓	x	-	-	✓	✓	x			Wearable technology in sports

The proposed survey mainly focuses on providing a proper and comprehensive survey of research carried out in computer vision based sports video analysis for various applications such as detection and classification of players, tracking player or ball and predicting the trajectories of player or ball, recognizing
the team’s strategies, classifying various events in sports field etc. and in particular, establishing a pathway for next-generation research in the sports domain. The features of this review are:

- In contrast to recently published review papers in the sports field, this article comprehensively reviews statistics of studies in various sports and various AI algorithms that have been used to cover various aspects viewed and verified in sports.
- It provides road map of various AI algorithms selection and evaluation criteria and also provided some of the publicly available datasets of different sports.
- It discusses various GPU-based embedded platforms for real time object detection and tracking framework to improve the performance and accuracy of edge devices.
- Besides, it demonstrates various applications in sports vision and possible research directions.

The rest of this paper is organized as follows. Section 2 provides statistical details of research in sports. Section 3 presents extraction data vis-a-vis various sports play fields, followed by a broader dimension that covers a wide range of sports and is reviewed in section 4. Some of the available datasets for various sports along and embedded platforms have been reviewed in section 5 and 6. Section 7 provides various application-specific tasks in the field of sports vision. Section 8 covers potential research directions, as well as different challenges to be overcome in sports studies. Last, but not the least, Section 9 concludes by describing the final considerations.

2 Statistics of Studies in Sports

Detection of the positions of the players at any given point of time is the basic step for tracking a player, which is also needed for graphics systems in sports for analysis and getting pictures of key moments in a game. Equipment and methods used in commercial broadcast analysis systems range from those depending on a manual operator clicking on the feet of the players with a calibrated camera image to an automated technique that involves segmentation to identify areas which likely correspond to players. For improvement of the performance of teams in sports like soccer, volleyball, hockey, badminton etc., analyzing the movements of players individually, and the real time formation of the teams, can provide a valuable real time insight for the coach of that team.

On obtaining a number of articles from various resources, the research articles are selected based on peer review, ranging from high impact factor online sources in the domain of player/ball/referee detection and tracking in sports, classification of objects in sports, behaviour and performance analysis of players, gesture recognition of referees/umpires, automatic highlight detection and score updating etc. Figure 3 provides
overall information of sports research publications in past five years considered in this comprehensive survey article.

Figure 3 Sports research progress in past five years

Figure 4 provides the statistics of studies of various sports in various applications such as detecting/tracking the player and ball, trajectory prediction, classification, video summarization etc. which are published in various standard journals as presented in figure 3.
3 Play Field Extraction in Various Sports

Detection of the sports field plays an important role in sports video analysis. Detection of playfield region has two objectives. One is to detect the playfield region from non-playfield areas as presented in [7], while the other is to identify primary objects from the background by filtering out redundant pixels such as grass, court lines. This provides a reduced pixel which requires processing and reduction of errors for simplifying player or ball detection and tracking phases, event extraction, pose detection etc. The challenges here include distinguishing the color of the playfield from that of the stadium, lighting conditions and sometimes weather, viewing angles and the shadows. Therefore, an accurate segmentation of the playfield cannot be achieved just by processing the color of the playfield under certain situations and making it constant without updating the statistics throughout the game. There is also an added noise when the player’s dress matches that of the ground, and there appear shadows at the base of a player from different sources of light. Gaussian-based background subtraction technique [12] which is implemented using computer vision methods, generates the foreground mask as shown in figure 5.

![Figure 5 Background subtraction model](image)
Researchers have used a single dominant color for detecting the playfield. Accordingly, some researchers have utilized the features of images in which illumination is not affected by transforming the images from RGB space to HIS [13, 14, and 15], YCbCr [16], normalized RGB [17, 18, 19].

For a precise capture of the movements of the players, tracking the ball and actions of referees, etc. on the field or court, it is necessary to calibrate the camera [5, 8] and also to use an appropriate number of cameras to cover the field. Though, some algorithms are capable of tracking the players, some other objects are also needed to be tracked in the dynamically complex situations of interest for detailed analysis of the events and extraction of the data of the subject of interest. Y Ohno et al. [20] presented an approach to extract the play field and track the players and ball using multiple cameras in soccer video. In [21, 22] presented an architecture which uses single (figure 6 (a)) and multi camera (figure 6 (c)) to capture a clear view of players and ball in various challenging and tricky situations such as severe occlusions, missing of the ball from the frames, etc. To estimate the players trajectory and team classification in [23, 24] presented a bird’s eye view of the field to capture players precisely as shown in figure 6 (b). Various positions of the camera for capturing the entire field is presented in [25, 26] to detect and track the players/ball and estimating the position of the players etc.
Morphological operations-based techniques can separate the playfield and non-playfield regions, but they cannot detect the lines in the playfield. The background subtraction based techniques generate foreground regions by subtracting the background frame from the current frame (i.e. by detecting moving objects in the frame), however they fails to detect the playfield lines as shown in figure 5. So, the best way to detect the playfield lines is by labeling the data as playfield lines (as shown in figure 7(a)), advertisements (as shown in figure 7(b)), and the non-playfield regions as shown in figure 7(c). Training the model using a dataset that is labeled as playfield lines, advertisements, and the non-playfield region as shown in figure 8 can detect and classify the playfield lines, advertisements, and the non-playfield region, which reduces the detection of false positives and false negatives.
4 Literature Review

In this section, the overview of traditional computer-vision methods implemented for major application specifics in sports (such as detection, events classification/recognizing, tracking and trajectory prediction etc.) investigated by the researchers and their significant limitations has been discussed.

4.1 Basketball

Basketball is played by two teams of five players each. The object of the game is to score more points than opponent. The ball is passed, thrown, bounced, batted, or rolled from one player to another. Physical contact with an opponent can result in a foul if the contact impedes the desired movement of the player. The advent of computer vision techniques have effectively replaced manual analysis of tennis sports with fully automated systems. Recognizing the player action and classifying the events [27, 28, 29] in basketball videos helps to analyze the player performance. Player/ball detection and tracking in basketball videos is carried out in [30, 31, 32, 33, 34, 35] but fails in assigning specific identification to avoid the identity switching among the players when they crossed. By estimating the pose of the player, the trajectory of the ball [36, 37] is estimated from various distances to the basket. By recognizing and classifying the referee signals [38], player behaviour can be assessed and highlights of the game can be extracted [39]. The behaviour of a basketball team [40] can be characterized by the dynamics of space creation presented in [41, 42, 43, 44, 45, 46] that works to counteract space creation dynamics with defensive play presented in [47]. By detecting a specific location of the player and ball in the basketball court, the player movement can be predicted [48] and the ball trajectory [49, 50, 51] can be generated in three-dimensional which is a complicated task. It is also necessary to study the extraction of basketball players’ shooting motion trajectory, combined with the image feature analysis method of basketball shooting, to reconstruct and quantitatively track the basketball players’ shooting motion trajectory [52, 53, 54, 55]. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is necessary to analyze the real time game play [56]. Table 2 summarizes various proposed methodologies to resolve various challenging tasks in basketball sport with their limitations.

Ref.	Problem Statement	Proposed Methodology	Precision and Performance characteristics	Limitations and Remarks
L. Long 2021 [29]	Recognizing action of basketball player by using image	Bi-LSTM Sequence2Sequence	The metrics used to evaluate the method are Spearman rank-order correlation coefficient. Kendall rank-order correlation coefficient, Pearson linear correlation	▶ The methodology failed to recognize difficult actions due to which accuracy is reduced.
Authors	Technique Description	Methodology Details	Notes	
--	--	---	---	
Bertugli A et al. 2021 [51]	Multi-future trajectory prediction in basketball.	The proposed methodology was tested on Average Displacement Error and Final Displacement Error metrics. The methodology is robust if smaller the number and it has achieved 7.01 and 10.61.	-	
Y Wang et al. 2021 [56]	Predicting line-up performance of basketball player by analyzing the situation of the field.	At the point guard (pg) position 4 candidates were taken and at the center (c) position 3 candidates were taken. The total score of pg candidates is 13.67, 12.96, 13.42, 10.39, and where the total score of c candidates is 10.21, 14.08, and 13.48 respectively.	Proposed methodology fail to predict the trajectories in case of uncertain and complex scenarios. As the behaviour of the basketball/payers are dynamic in nature, belief maps cannot steer future positions. Training the model with a dataset of different events can rectify the failures of predictions.	
Xubo Fu et al. 2020 [30]	Multiplayers tracking in basketball videos	Faster-RCNN provides better accuracy than YOLOv3 among baseline detectors. Joint Detection and Embedding method performs better in accuracy of tracking and computing speed among multi object tracking methods.	Tracking in specific areas like severe occlusions and improving detection precision improves the accuracy and computation speed. By adopting frame extracting methods, in terms of speed and accuracy, it can achieve comprehensive performance, which may be an alternative solution.	
Julius Żengulis et al. 2020 [38]	Recognizing the referee signals from real time videos in basketball game.	Achieved an accuracy of 95.6% for referee signal recognition using local binary pattern features and SVM classification.	In case of noisy environment, significant chance of occlusion, unusual viewing angle and/or variability of gestures, the performance of the proposed method is not consistent. Detecting with jersey colour and eliminating all other detected elements in the frame can be the other solution to improve the accuracy of referee signal recognition.	
Author(s)	Event/Method	Model	mAP/Results	Notes
---------------------------	---	-------	--	--
L Wu et al. 2020 [28]	Event recognition in basketball videos	CNN	mAP for group activity recognition is 72.1%	Proposed model can recognize the global movement in the video.
				By recognizing the local movements the accuracy can be improved.
L Chen et al. 2020 [41]	Analyzing behaviour of the player.	CNN + RNN	Achieved an accuracy of 76.5% for four type of actions in basketball video.	Proposed model gives less accuracy for the actions like pass and foul.
				Also gives less accuracy of recognition and prediction on test dataset compared to valid dataset.
Y Yoon et al. 2019 [31]	Tracking ball movements and classification of players in basketball game	YOLO + Joy2019	Jersey number recognition in terms of Precision achieved is 74.3%. Player recognition in terms of Recall achieved 89.8%.	YOLO confuses the overlapped image for a single player. In the subsequent frame, the tracking ID of the overlapped player is exchanged, which causes wrong player information to be associated with the identified box.
L Wu et al. 2019 [27]	Events classifications in basketball videos	CNN + LSTM	Average accuracy using two-stage event classification scheme achieved 60.96%.	Performance can be improved by introducing information like individual player pose detection, player location detection etc.
C Tian et al. 2019 [47]	Classification of different defensive strategies of basketball players, at particularly when they deviate from their initial defensive action.	KNN, Decision Trees and SVM	Achieved 69% of classification accuracy for automatic defensive strategy identification.	Considered only two defensive strategies “switch” and “trap” involved in Basketball.
				In addition, the alternative method of labeling large spatio-temporal datasets will also lead to better results.
				Future research may also consider other defensive strategies such as pick-and-roll and pick-and-pop.
Yu Z et al. 2018 [36]	Basketball trajectory prediction based on real data and generating new trajectory samples.	BLSTM + MDN	The proposed method performed well in terms of convergence rate and final AUC (91%), and proved deep learning models perform better than conventional models (GLM and GBM).	To improve the accuracy time series the prediction has to consider.
				By considering factors like player cooperation and defense when predicting NBA player positions, the performance of the model can be improved.
Zheng et al. 2017 [49]	Generating basketball trajectories.	GRU-CNN	Validated on hierarchical policy network (HPN) with ground truth and 3 baselines.	Proposed model failed in trajectory of three-dimensional basketball match.
W Liu et al. [2017] [39]	Score detection, highlight video generation basketball video.	BEI+CNN	Automatically analyses the basketball match, detects scoring and generates highlights. Achieved an accuracy, precision, recall, and f1-score of 94.59%, 96.55%, 92.31%, and 94.38%.	➢ Proposed method is lacks in computation speed which achieved 5 frames per second. ➢ Therefore it cannot be implemented in a real-time basketball match.
V.Ramanathan et al. 2016 [32]	Multi-person event recognition in basketball video.	BLSTM	Event classification and event detection achieved in terms of mean average precision i.e. 51.6% and 43.5%.	➢ High resolution dataset can improve the performance of the model.
K Wang et al. 2016 [42]	Player behaviour analysis.	RNN	Achieved an accuracy of 80% over offensive strategies.	➢ The methodology fails in many factors such as complexity of interaction, distinctiveness, and diversity of the target classes and other extrinsic factors like reactions to defense, unexpected events such as fouls, and consistency of executions.
Rajiv C.S et al. 2016 [37]	Prediction of 3-point shot in basketball game	RNN	Evaluated in terms of AUC and achieved 84.30%.	➢ Proposed method fails in case of high ball velocity and noisy nature of motion data.

4.2 Soccer

Soccer is played using football and two teams of eleven players each compete to get the ball into the other team's goal, thereby scoring a goal. The players always confuse each other by changing their speed or direction unexpectedly. Due to their same jersey color, players look almost identical and are frequently involved in possessing the ball which leads to severe occlusions and tracking ambiguities. In such case, jersey number must be detected to recognize player [57]. Accurate tracking [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 291, 292] by detection [68, 69, 70, 71] of multiple soccer players as well as ball in real-time, is a major challenge to evaluate the performance of the players, to find their relative positions at regular intervals, and to link spatiotemporal data to extract trajectories. The systems which evaluate the player [72] or team performance [73] have the potential to reveal aspects of the game that are not obvious to the human eye. Such systems can successfully evaluate the activities of players [74] such as distance covered by players, shot detection [75, 76], number of sprints, player's position and their movements [77, 78], player's relative position concerning other players, possession [79] of the soccer ball and motion/gesture recognition of referee [80], predicting player trajectories for shot situations [81]. The generated data can evaluate individual player performance, occlusion handling [19] by detecting position of player [82], action recognition [83], predicting and classifying the passes [84, 85, 86], key event extraction [87, 88, 89, 90, 91],...
92, 93, 94, 95, 96], tactical performance of the team [97, 98, 99, 100, 101], and analyzing the team tactics based on the team formation [102, 103, 104], generating highlights [105, 106, 107, 108]. Table 3 summarizes various proposed methodologies to resolve various challenging tasks in soccer sport with their limitations.

Ref.	Problem Statement	Proposed Methodology	Precision and Performance characteristics	Limitations and Remarks
B. Thulasya Naik et al. 2022 [291]	Player and ball detection and tracking in soccer.	YOLOv3 and SORT	Methodology achieved tracking accuracy of 93.7% on multiple object tracking accuracy metrics with a detection speed of 23.7 FPS and a tracking speed of 11.3 FPS.	This methodology effectively handles challenging situations, such as partial occlusions, players, and ball, reappearing after a few frames but fails when the players were severely occluded.
B. Thulasya Naik et al. 2022 [292]	Player, referee and ball detection and tracking by jersey color recognition in soccer.	DeepPlayer-Track	Model achieved a tracking accuracy of 96% and 60% on MOTA and GMOTA metrics respectively with a detection speed of 23 FPS.	The limitation of this method is that when the player with the same jersey color is occluded, the ID of the player is switched.
G Paul et al. 2021 [72]	Tracking soccer players to evaluate the number of goals scored by a player.	Machine Learning and Deep Reinforcement Learning.	Performance of player tracking model measured in terms of mAP and achieved 74.6%.	The method failed to track the ball at critical moments such as pass at beginning and shot. It also failed to overcome the identity switching problem.
H Cho et al. 2021 [89]	Extracting ball events to classify the player passing style.	Convolutional Auto-Encoder	Methodology evaluated in terms of accuracy and achieved 76.5% for 20 players.	Concatenation of auto-encoder and extreme learning machine techniques will improve the events classification performance.
K Ali et al. 2021 [96]	Detecting events in soccer sport.	Variational Auto-encoder and EfficientNet	Achieved F1-score of 95.2% on event images and Recall of 51.2% on images not related to soccer at threshold value of 0.50.	Deep extreme learning machine technique which employs auto-encoder technique may enhance the event detection accuracy.
Anthony et al. 2020 [77]	Action spotting soccer video.	YOLO-like encoder	Algorithm achieved mAP of 62.5%.	-
S Kusmakar et al. 2020 [73]	Team performance analysis in soccer	SVM	Prediction models achieved an overall accuracy of 75.2% in predicting the correct segmental outcome of the likelihood of team making a successful attempt to score a goal on used dataset.	The proposed model failed in identifying the players that are more frequently involved in match states that end with an attempt at scoring i.e., a “SHOT” at goal which may assist sports analysts and team staff to develop strategies suited to an opponent’s playing style.
Author et al. 2020	Method	Model	Results	Notes
-------------------	--------	-------	---------	-------
Y Kim et al. 2020 [80]	Motion Recognition of assistant referees in soccer	AlexNet, VGGNet-16, ResNet-18, and DenseNet-121	The proposed algorithm achieved 97.56% accuracy with real-time operations.	Though the proposed algorithm is immune to variations of illuminance caused by weather conditions, it failed in the case of occlusions between referee and players.
A Hassan et al. 2020 [101]	Predicting the attributes (Loss or Win) in soccer sport.	ANN	The proposed model predicts 83.3% for the win case and 72.7% for loss.	-
S Genki et al. 2019 [97]	Team tactics estimation in soccer videos.	DELM	Performance of the model are measured on precision, recall, and f1-score and achieved 87.6%, 88%, and 87.8%.	Team tactics are estimated on the basis of the relationship between tactics of two teams and ball possession. The method fails to estimate the team formation at the beginning of the game.
Y Ganesh et al. 2019 [83]	Action recognition in soccer	CNN based Gaussian Weighted event based Action Classifier architecture	Accuracy in terms of F1 Score is achieved 52.8% for 6 classes.	By classifying the actions into subtypes, accuracy of action recognition can be enhanced.
P.R Kamble et al. 2019 [59]	Detection and tracking of ball in soccer videos.	VGG – M CNN	Achieved an accuracy of 87.45%.	It could not detect when the ball moved out of play in the field, in the stands region, or from partial occlusion by players, or with ball color matching the player jersey.
K Zhang et al. 2019 [90]	Automatic event extraction for soccer videos based on multi-cameras.	YOLO	U-encoder is designed for feature extraction and has better performance in terms of accuracy compared with fixed feature extractor.	To carry out tactical analysis of the team, player trajectory needs to be analyzed.
Jackman et al. 2019 [75]	Shot detection in football game	MobileNetV2	MobileNetV2 method performed better than other feature extractor methods.	By extracting the features with the MobileNetV2 and then using 3D convolution on the extracted features for each frame can improve the detection performance.
Lindstrom et al. 2019 [81]	Predicting player trajectories for shot situations	LSTM	Performance is measured in terms of f1-score and achieved 53%.	The model failed to predict the player trajectory in the case of players confused each other by changing their speed or direction unexpectedly.
Y Wu et al. 2018 [103]	Analyzing the team formation in soccer and formulating several design goals.	-	The formation detection model achieved a max accuracy of 96.8%.	The model is limited to scalability as it cannot be operated on high resolution soccer videos. The results are bounded to a particular match, and it cannot evaluate the
Paper Details	Task Description	Methodology	Results	Notes
---------------	------------------	-------------	---------	-------
OpenCV is used for back-end visualization.				tactical schemes across different games.
- Visualization of real-time team formation is another drawback as it limits the visualization of non-trivial spatial information.
- By applying state-of-the-art tracking algorithms, one can predominantly improve the performance of tactics analysis. |
| Gerke et al. 2017 [57] | Player recognition with jersey number recognition. | Spatial Constellation + CNN | Achieved an accuracy of 82% by combining Spatial Constellation + CNN models. | The proposed model failed to handle the players that are not visible for certain periods.
- Predicting the position of invisible players could improve the quality of spatial constellation features. |
| S Chawla et al. 2017 [84] | Evaluating and classifying the passes in football game. | SVM | The proposed model achieves an accuracy of 90.2% during a football match. | To determine the quality of each pass, some factors like pass execution of player at particular difficult situation, strategic value of pass, the riskiness of the pass etc. need to be included.
- To rate the passes in sequence, it is needed to consider the sequence of passes during which player is possessing the ball. |
| H Tepanyan 2017 [79] | Detecting the ball and predicting which team possess the ball. | Static RNN | Achieved test accuracy of 85.5%. | The proposed model is not robust and it does not detect the ball as it is small in size in far view frames. |
| S Genki et al. 2016 [98] | Team tactics estimation in soccer videos. | SVM | The performance of the methodology is measured in terms of precision, recall, and f1-score and achieved 98%, 97%, and 98%. | The model fails when audiovisual features could not recognize quick changes in the team tactics. |
| J brookes et al. 2016 [88] | Analyzing pass events in the case of non-obvious insights in soccer. | k-NN, SVM | To extract the features of pass location, they used heat map generation and achieved an accuracy of 87% in classification task. | By incorporating temporal information, the classification accuracy can be improved and it is also offers specific insights to situations. |
| Baysal et al. 2015 [58] | Tracking the players in soccer videos. | HOG + SVM | Player detection is evaluated in terms of accuracy and achieved 97.7%. Classification accuracy using k-NN achieved 93% for 15 classes. | - |
Moez B et al. 2010

| Action classification in soccer videos | LSTM + RNN | The model achieves a classification rate of 92% on four types of activities. | By extracting the features of various activities, the accuracy of the classification rate can be improved. |

4.3 Cricket

In many aspects of cricket as well, computer vision techniques can effectively replace manual analysis. A cricket match has many observable elements including batting shots [109, 110, 111, 112, 113, 114, 115, 116], bowling performance [117, 118, 119, 120, 121, 122], number of runs or score depending on ball movement, detecting and estimating the trajectory of the ball [123], decision making on placement of players foot [128], outcome classification to generate commentary [124, 125], detecting umpire decision [126, 127]. Predicting an individual crickter’s performance [129, 130] based upon his past record can be critical in the selection of team members in international competitions. This process is highly subjective and usually requires much expertise and negotiate decision making. By predicting the results of cricket matches [131, 132, 133, 134, 135] such as toss decision, home ground, player’s fitness, player’s performance criteria [136], and other dynamic strategies the winner can be estimated. The video summarization process provides a compact version of the original video to manage the interesting video contents easily. Also, the video summarization methods capture the viewer’s interest by selecting exciting events from the original video [137, 138]. Table 4 summarizes various proposed methodologies with their limitations to resolve various application issues in cricket sport.

Table 4 Studies in Cricket
Ref.
2021 [112]
R Rahman et al. 2021 [120]
2021 [128]
Year

2021
- Decision tree classifier performance is low due to the existence of a huge number of trees. Therefore, a small change in decision tree may improve the prediction accuracy.
- Extreme Learning Machines has faced the problem of over fitting, which can be overcome by removing duplicate data in dataset. |
| | Chetan Kapadiya et al. 2020 [129] | Prediction of individual player performance in cricket | Efficient Machine Learning Techniques | Proposed algorithm achieves classification accuracy of 93.73% which is good compared with traditional classification algorithms. |
- Replacing machine learning techniques with deep learning techniques may improve the performance in prediction even in the case of different environmental conditions. |
| | Md. Ferdouse Ahmed Foysal et al. 2019 [109] | Classification of different batting shots in cricket. | CNN | Average classification in terms of precision is 0.80, Recall is 0.79 and F1-score is 0.79. |
- To improve the accuracy of classification, deep learning algorithm has to be replaced with a better neural network. |
| | Rohit Kumaret al. 2019 [124] | Outcome classification task to create automatic commentary generation. | CNN + LSTM | Maximum of 85% of training accuracy and 74% validation accuracy |
- Due to the unavailability of standard dataset for ball by ball outcome classification in cricket, the accuracy is not up to mark. Also better accuracy leads to automatic commentary generation in sports. |
| | Md. Kowsheeret al. 2019 [126] | Detecting third umpire decision and Automated scoring system in cricket game. | CNN + Inception V3 | It holds 94% accuracy in Deep Conventional Neural Network (DCNN) and 100% in Inception V3 for the classification of umpire signal in order to automate scoring system of cricket. |
- To build automated umpiring system based on computer vision application and artificial intelligence, the results obtained in this paper are more enough. |
| | Md Nafee Al Islam et al. 2019 [117] | Classification of cricket bowlers based on their bowling actions. | CNN | The test set accuracy of the model is 93.3% which demonstrates its classification ability. |
- The model lacks data for detecting spin bowlers. As the dataset is confined to left arm bowlers, the model misclassifies the right arm bowlers. |
| | Muhammad Zeeshan Khan et al. 2018 [110] | Recognition of various batting | Deep - CNN | The proposed models are able to recognize |
- As the model is dependent on frame per second of the video, it fails to recognize |
| Title | Method | Accuracy | Notes | |
|---|---|---|---|---|
| PushkarShukla et al. 2018 [125] | Automatic highlight generation in the game of cricket. | CNN + SVM | Mean Average Precision of 72.31% | The proposed method cannot clear metrics to evaluate the false positives in highlights. |
| Aravind Ravi et al. 2018 [127] | Umpire poses detection and classification in cricket. | SVM | VGG19-Fc2 Player testing accuracy = 78.21% | Classification and summarization technique can minimize false positives and false negatives. |
| AFTAB KHAN et al. 2017 [111] | Activity recognition for quality assessment of batting shots. | Decision Trees, k-Nearest Neighbours, and Support Vector Machines. | The proposed method identifies 20 classes of batting shots with an average F1-score of 88% based on recorded movement of data. | In order to assess the player’s batting caliber, certain aspects of batting also need to be considered i.e. position of batsman before playing shot and way of batting shots for a particular bowling types can be modeled. |
| 2016 [131] [132] | Predicting the outcome of the cricket match. | k-NN, Naïve Bayesian, SVM, and Random Forest | Achieved an accuracy of 71% upon the statistics of 366 matches. | Imbalance in the dataset is one of the causes to get less accuracy. Deep learning methodologies may give promising results by training with a dataset that included added features. |
| D. Bhattacharjee et a. 2012 [119] | Performance analysis of the bowler. | Multiple regression mode | Variation in ball speed has a feeble significance in influencing the bowling performance (p-value being 0.069). The variance ratio of the regression equation to that of the residuals (F-value) is given by 3.394 with corresponding p-value 0.015. | - |
| R.I.Subramanian et al. 2009 [130] | Predicting performance of the player. | Multilayer perception Neural Network | The model achieves an accuracy of 77% on batting performance and 63% on bowling performance. | - |

4.4 Tennis

Tennis is one of the most popular sports across the globe. A meticulous analysis of the game is needed to reduce human errors and extract several statistics from the visual feed of the game. Automated ball and player tracking is one such class of systems which requires sophisticated algorithms for analysis.
The primary data for tennis is obtained from the ball and player tracking systems, such as HawkEye[139, 140] and TennisSense [26, 141]. The data from this systems can be used to detect and track the ball/player [142, 143, 144, 145], visualizing the overall tennis match [146, 147] and predicting trajectories of ball landing positions [148, 149, 150], player activity recognition [151, 152, 153], analyzing the movements of the player and ball [154], analyzing the player behaviour [155] and predicting the next shot movement [156], real time tennis swing classification [157]. Table 5 summarizes various proposed methodologies to resolve various challenging tasks in tennis sport with their limitations.

Table 5 Studies in Tennis
Ref.
G Wu et al. 2021 [140]
N Bai et al. 2021 [153]
M Kevin et al. 2021 [157]
J Cai et al. 2020 [151]
B Giles et al. 2019 [142]
T Fernando et al. 2019 [148]
Tom Polk et al. 2019 [154]
S.V Mora et al. 2017 [152]
I. Improves from 84.10% to 88.16% for players of mixed abilities.
II. Improves from 81.23% to 84.33% for amateurs and from 87.82% to 89.42% for professionals.
When trained using the entire dataset.
Xinyu Wei et al. 2016 [156]
Xiangzeng Zhou et al. 2015 [143]
Guangyu Zhu et al. 2007 [155]

4.5 Volleyball

Volleyball is a team sport in which two teams of six players are separated by a net. Each team tries to score points by grounding a ball on the other team's court under organized rules. So, detecting and analyzing the player activities [158, 159, 160], detecting play patterns and classifying tactical behavior's
predicting league standings [165], detecting and classifying spiking skills [166, 167], estimating the pose of the player [168], tracking player [169], tracking the ball [170] etc., are the major aspects of volleyball sport. Predicting the ball trajectory [171] in volleyball game by observing the motion of setter player. Table 6 summarizes various proposed methodologies to resolve various challenging tasks in volleyball sport with their limitations.

Table 6 Studies in Volleyball

Ref.	Problem Statement	Proposed Methodology	Precision and Performance characteristics	Limitations and Remarks
T Haritha et al. 2021 [168]	Group activity recognition by tracking players.	CNN + Bi-LSTM	Model achieved an accuracy of 93.9%.	➢ Model fails to track the players if video is taken from dynamic camera.
				➢ Temporal action localization can improve the accuracy of tracking the players in severe occlusion condition.
Z Kai et al. 2021 [169]	Recognizing and classifying player’s behaviour.	SVM	Achieved recognition rate of 98% for correct samples 349.	➢ By employing state-of-the-art method and training on proper dataset which has continuous positional data, it is possible predict tactic behavior and set/match outcomes.
Sebastian Wenninger et al. 2020 [162]	Classification of tactical behaviors in beach volleyball.	RNN + GRU	The model achieves better classification results as prediction accuracies ranges from 37% for the forecasting the attack and direction to 60% of the prediction of success.	➢ By incorporating different frequency domain features, the performance factor can be improved.
Y Tian 2020 [170]	Motion estimation the sport of volleyball	Machine Vision and Classical particle filter.	Tracking accuracy is 89%	➢ Replacing with deep learning algorithms gives better results.
Fasih Haider et al. 2019 [163]	Assessing the use of Inertial Measurement Units in the recognition of different volleyball actions.	KNN, Naïve Bayes, SVM	Unweighted Average Recall of 86.87%	➢ By incorporating different frequency domain features, the performance factor can be improved.
Shuya Suda et al. 2019 [171]	Predicting the ball trajectory in volleyball game by observing the	Neural Network	The proposed method predicts 0.3 s in advance of the trajectory of the volleyball based on the motion of setter player.	➢ In case of predicting the 3D body position data, it records a large error. This can be overcome by training a
4.6 Hockey/Ice-hockey

Field hockey, also called hockey, is an outdoor game played by two opposing teams of 11 players each who use sticks curved at the striking end to hit a small, hard ball into their opponent's goal. It is called field hockey to distinguish it from the similar game played on ice. So, detecting and tracking player/hockey ball, recognizing the actions of player [173, 174, 175], estimating the pose of the player [176], classifying and tracking the players of the same team or of different teams [177], referee gesture analysis [178, 179], hockey ball trajectory estimation etc. are the major aspects of hockey sport.

Whereas ice hockey is the game between two teams, each usually having six players, who wear skates and compete on an ice rink. The object is to propel a vulcanized rubber disk, the puck, past a goal line and into a net guarded by a goaltender. With its speed and its frequent physical contact, ice hockey has become one of the most popular of international sports. So, detecting/tracking the player [180, 181, 182], estimating the pose of the player [183], classifying and tracking with different identification the players of the same team or of different teams, tracking the ice hockey puck [184], classification of puck possession events [185] etc., are the major aspects of the ice-hockey sport. Table 7 summarizes various proposed methodologies to resolve various challenging tasks in hockey/ice-hockey sport with their limitations.

Reference	Problem Statement	Proposed Methodology	Precision and Performance characteristics	Limitations and Remarks
Thomas Kautz et al. 2017 [159]	Activity recognition in beach-volleyball game	Deep Convolutional LSTM	The approach achieved classification accuracy of 83.2%, which is superior compared with other classification algorithms.	-
J Wei et al. 2021 [165]	Volleyball skills and tactics analysis	ANN	Evaluated in terms of Average Relative Error for 10 samples and achieved 0.69%.	-
Mostafa S. Ibrahim et al. 2016 [160]	Group activity recognition in volleyball game	LSTM	Group activity recognition of accuracy of the proposed model in volleyball is 51.1%.	The performance of architecture is poor because of lack of hierarchical considerations of individual and group activity dataset.
Authors	Task Description	Methods	Results	Notes
------------------	---	---	---	--
Ş Melike et al. 2021 [172]	Detecting the player in hockey.	SVM, Faster R-CNN SSD and YOLO	HD+ SVM achieved best results in terms of accuracy, recall and f1-score of 77.24%, 69.23%, and 73.02%.	Model is failed to detect the players in occlusion conditions.
V Kanav et al. 2021 [184]	Localizing puck Position and Event recognition.	Faster RCNN	Evaluated in terms of AUC and achieved 73.1%.	By replacing the detection method with YOLO series can improve the performance.
Alvin Chan et al. 2020 [177]	Identification of player in hockey.	ResNet + LSTM	Achieves player identification accuracy of over 87% on split dataset.	Some of the jersey number classes such as 1 to 4 are incorrectly predicted. The diagonal numbers from 1 to 100 are falsely classified due to the small amount of training examples.
Keerthana Rangasamy et al. 2020 [173]	Activity recognition in hockey game.	LSTM	The proposed model recognizes the activities like free hit, goal, penalty corner, long corner with an accuracy of 98%.	As the proposed model is focusses on the spatial features, it does not recognize activities like free hit and long corner as they appear as similar patterns. By including temporal features and incorporating LSTM to the model, the model is robust to performance accuracy.
Zixi Cai et al. 2019 [176]	Pose estimation and temporal based action recognition in hockey sport.	VGG19 + LiteFlowNet + CNN	A novel approach is designed and achieved an accuracy of 85% for action recognition.	The architecture is not robust to abrupt changes in video, i.e. it fails to predict hockey stick. Activities like goal scored, or puck location are not recognized.
Kanav Vat et al. 2019 [183]	Action recognition in ice hockey using player pose sequence.	CNN + LSTM	Performance of the model is better in similar classes like passing and shooting. It achieved 90% of parameter reduction and 80% of floating point reduction on HARPET dataset.	As the number of hidden units to LSTM increases, the number of parameters also increases which leads to overfitting, and low test accuracy.
Konstantin S et al. 2018 [174]	Human activity recognition in hockey sport.	CNN + LSTM	F1-score of 67% is calculated for action recognition on multi-labeled imbalanced dataset.	Performance of the model is poor because of improper imbalanced dataset.
4.7 Badminton

Badminton is one of the most popular racket sports which includes tactics, techniques, and precise execution movements. To improve the performance of the player, technologies play a key role in optimizing training of players which determines the movements of the player [186] during training and game situations such as action recognition [187, 188, 189], analyzing performance of player [190], detecting and tracking shuttlecock [191, 192, 193] etc. Table 8 summarizes various proposed methodologies to resolve various challenging tasks in badminton sport with their limitations.

Ref.	Problem Statement	Proposed Methodology	Precision and Performance characteristics	Limitations and Remarks
Z Cao et al. 2020 [191]	Shuttlecock detection problem of a badminton robot.	Tiny YOLOv2 and YOLOv3	Results show that comparing with state-of-art methods, proposed networks achieved good accuracy with efficient computation.	➢ Proposed method fails to detect in different environmental conditions. ➢ As it uses the binocular camera to detect 2D shuttlecock, it cannot detect the 3D shuttlecock trajectory.
N A Rahmad et al. 2020 [187]	Automated badminton player action recognition in badminton game.	AlexNet+CNN, GoogleNet+CNN and SVM	Recognition of badminton actions by the linear SVM classifier for both AlexNet and GoogleNet using local and global extractor method is 82% and 85.7%.	➢ The architecture can be improved fine tuning end-to-end manner with a larger dataset on feature extracted at different fully connected layers.
Teem steels et al. 2020 [188]	Badminton activity recognition	CNN	Nine different activities have been distinguished: seven badminton strokes, displacement and moments of rest. With accelerometer data, accurate estimation has been made using CNN with 86% precision. Accuracy raised to 99% when gyroscope data is combined with accelerometer data.	➢ Computer vision techniques can be employed instead of sensors.
Classification of badminton matches images to recognize the different actions done by the athletes.

AlexNet, GoogleNet, Vgg-19 + CNN

Significantly, GoogleNet model has the highest accuracy compared to other models in which only two hit actions were falsely classified as non-hit action.

- The proposed method classifies the actions of hit and non-hit and it can be improved by classifying more actions in various sports.

Tracking shuttlecock in badminton sport

AdaBoost Algorithm which can be trained using OpenCV Library.

The performance of the proposed algorithm was evaluated based on precision and it achieved an average precision accuracy of 94.52% with 10.65 fps.

- The accuracy of tracking shuttlecock is enhanced by replacing state-of-the-art AI algorithms.

Tactical movement classification in badminton

KNN

The average accuracy of player position detection is 96.03% and 97.09% on two halves of a badminton court.

- The unique properties of application such as the length of frequent trajectories or the dimensions of the vector space may improve classification performance.

4.8 Miscellaneous

Player detection and tracking is the major requirement in athletic sports like running, swimming [194, 195], and cycling. In sports like table tennis [196], squash [197, 198], golf [199] etc. ball detection and tracking, player pose detection [200] are the challenging tasks. In ball-centric sports like rugby, American football, handball, baseball etc. ball/player detection [201–208] and tracking [209–219], analyzing the action of player [220–226], events detection and classification [227–231], performance analysis of player [232-234], referee identification and gesture recognition, etc. are the major challenging tasks. Video highlight generation is a subclass of video summarization [235-238] which may be viewed as a subclass of sports video analysis. Table 9 summarizes various proposed methodologies to resolve various challenging tasks in various sports with their limitations.

Table 9 Studies in various sports
Ref.
Liu Wei 2021 [208]
Author et al.

Y Cao 2020
Hegazy H et al. 2020
Ruiheng Zhang et al. 2020
R L Castro et al. 2019
Cao Zhi-chao et al. 2019
Mohammad Ashraf Russo et al. 2019
Source

Ali Javed et al. 2019 [236]
➢ It can be extended by incorporating artificial intelligence techniques.
Subhajit Chaudhury et al. 2019 [227]
➢ It can be extended by incorporating artificial intelligence techniques.
Yedong Li et al. 2019 [228]
Stephen Karungaru et al. 2019 [210]
➢ The method uses template matching algorithm, which can be replaced with deep learning based state-of-art algorithm to acquire better results.
Qiuli Hui. 2019 [211]
The accuracy of tracking players can be improved by replacing them with artificial intelligence algorithms.

The architecture can be improved by fine tuning end-to-end manner with a larger dataset for illustrating potential performance and also to evaluate in the context of wider variety of sports.

In case, the object takes up most part of the frame, the human detector cannot completely cover the body of the object. This leads to missing movements of body parts like hands and arms. And also recognition of similar movements are the challenges for this architecture.

4.9 Overview of Machine Learning/Deep Learning Techniques
There are multiple ways to classify, detect, and track objects to analyze the semantic levels involved in various sports. It paves the way for player localization, jersey number recognition, event classification, trajectory forecasting of the ball, etc., in a sports video with a much better interpretation of an image as a whole.
Figure 8: Block diagram of road map to machine learning architecture selection and training

Figure 9: Block diagram of road map to deep learning architecture selection and training
The selected AI algorithm is better if it is tested and benchmarked on the different data. For that to evaluate the robustness of AI algorithms some metrics are required, which measures the performance of particular AI algorithm to enable better selection. Figure 8 depicts the road map of the machine learning algorithms' general information, methods, and evaluation criteria for a particular task and required libraries/tools for training the model. Whereas Figure 9 depicts the roadmap of the deep learning algorithm selection, training, and evaluation criteria for a particular task and required libraries/tools for training the model. Figure 10 shows taxonomy of various deep learning techniques of classification [239]-[245], detection algorithms [246], unsupervised learning [247] [248], tracking [249]-[258], and trajectory prediction [259]-[266]. Since various tasks in sports such as classification/detection, tracking, and trajectory prediction show great advantages in various sports.

5 Available Datasets of Sports

In this section, a brief description of some sports video (or) image datasets which are available publicly with annotations are provided. Utilizing these shared datasets provides a platform for comparison of performance of algorithms with common data for improving the transparency in research in this domain. Additionally, sharing the data among the users (researchers) reduces extremely time-consuming efforts of capturing and annotating large quantities of videos in diversified areas. This allows users to get a benchmark scores for the algorithms developed.
These shared datasets can be categorized into two types: Videos or still images, which are typically taken with moving cameras, particularly of individual athletes or of team sports, for the purpose of recognition of player actions [91, 160, 224, 225, 267, 269, 270, 273], event detection and classification [32, 96, 268], which are often captured using several setups of static cameras, for the purpose of detection and tracking of player/ball [272, 274, 277], pose estimation [276], and sports event summarization [275] in the team plays. One dataset focuses on the actions of the spectators of an event in sports rather than the players. These datasets which are available for analysis are large performing a great variety of actions. Table 10 describes the available datasets of various sports, mode of dataset, annotated parameters, number of frames and length of the video.

The parameters which are annotated in ISSIA dataset relate to positions of the ball, player and referee in each video from each camera. The images shown in figure 11 are few sample frames from ISSIA dataset.

Figure 11 Sample frames from ISSIA dataset [274]
The parameters which are annotated in the TTNet dataset are the ball bouncing moments, ball hitting the net and empty events. The images shown in figure 12 are few samples frames from the TTNet dataset.

![Figure 12 Sample frames from TTNet dataset](image)

For creation of APIDIS dataset videos are captured from seven cameras from above and around the court. The events which are annotated in this dataset are player positions, movements of referee, baskets and position of the ball. The images shown in figure 13 are the few samples from the APIDIS dataset.

![Figure 13 Sample frames from APIDIS dataset](image)
Ref.	Sport	Dataset	Mode of Dataset	Annotated parameters	Length of Video and Number of Images
K Ali et al. 2021 [96]	Soccer	Image type Football Keyword Dataset	Event detection and Classification.	Events such as free kick, penalty kick, tackle, red card, yellow card.	Dataset was categorized as train, test, and validation with 5000, 500, and 500 images.
X Gu et al. 2020 [267]	Basketball	Basketball dataset	Action Recognition	Dribbling, Passing, Shooting	Dataset consists video of 8 hours duration, 3399 annotations and 130 samples of each class.
A Gupta et al. 2020 [116]	Cricket	Video type Cricket Strokes Dataset	Cricket Stroke Localization.	Annotated with strokes played in untrimmed videos.	Highlights dataset which comprised of Cricket telecast videos at 25FPS.
Roman V et al. [268]	Table Tennis	Video type TTNet dataset	Ball detection and Event Spotting	Ball bounces, Net hit, Empty Events	5 Videos of 10-25 min duration for training and 7 short videos for testing
Silvio Giancola et al. 2018 [269, 91]	Soccer	Image type SoccerNet and SoccerNetv2 dataset	Action spotting in soccer videos	Goal, Yellow/Red Card, Substitution	Handles a length of video about 764 hours and 6,637 moments which are split into three major classes (Substitution, Goal and Yellow/Red Card).
Mostafa S. Ibrahim et al. 2016 [160]	Volleyball	Volleyball dataset	Group activity recognition	Person-level actions, Temporal dynamics of a person’s action and Temporal evolution of group activity	1525 frames were annotated.
D. Conigliaro et al. 2015 [270]	Hockey	The Spectators Hockey (S-HOCK)	Analyzing Crowds at the Stadium	spectator categorization such as position, head pose, posture and action	Video type dataset. 31 sec 30 fps
A. Karpathy et al. 2014 [271]	487 classes of sports	Sports-1M dataset	Sports classification and activity recognition.	Activity labels	5 m 36 sec
S.A. Pettersen et al. 2014 [272]	Soccer	Player position in soccer video Dataset	Player tracking system	Trajectories of players	45 min
G. Waltner et al. 2014 [224]	Volleyball	Indoor volleyball dataset	Activity Detection and Recognition	Seven activities such as serve, reception, setting, attack, block, stand, and defense/move are	23 min 25 fps
Authors	Sports/Datasets	Activities	Tasks/Features	Annotations/Details	
---------	----------------	------------	---------------	---------------------	
J.C. Niebles et al. 2010 [273]	Olympic Sports Dataset	Recognition of complex human activities in sports	Video type dataset. It contains 16 sports classes, with 50 sequences per class.		
V. Ramanathan et al. [32]	NCAA Dataset	Event Recognition	Event classification, Event detection and Evaluation of attention.		
T. D’Orazio et al. 2009 [274]	ISSIA Soccer Dataset	Objective way of Ground Truth Generation	The video type dataset. Length 1.5 hours long. Annotated with 11 types of events.		
C.D. Vleeschouwer et al. 2008 [275]	APIDIS Basketball Dataset	Sport-event summarization	Basketball events like position of players, referees, ball.		
W Zhang et al. [276]	Badminton, Basketball, Football, Rugby, Tennis, Volleyball	3D human pose estimation	It is annotated with 5 types of actions.		
Khurram Soomro et al. 2014 [225]	UCF Sports Action Dataset	Action Recognition	Action localization and the class label for activity recognition.		
N Feng et al. 2020 [277]	Soccer	Shot segmentation, Event detection, Player Tracking	Far-view shot, Medium-view shot, Close-view shot, Out-of-field shot, and Playback shot.		
6 GPU-Based Work Stations and Embedded Platforms

To find the target, GPU-constrained devices such as Raspberry Pi, Latte Panda, Odroid Xu4 and Computer Vision were used. The disadvantages of machine learning techniques are that they provide poor or inaccurate results and have issues in predicting an unknown future data. Whereas deep learning algorithms provide accurate results and also make predictions from unknown future data. Segmentation, localization and image classification are visual recognition systems which have prominent research contributions.

Among embedded AI computing platforms, Nvida Jetson devices provide low-power computing and high-performance support for artificial intelligence based visual recognition systems. Jetson modules are configured with OpenCV, cuDNN, CUDA Toolkit, L4T with LTS Linux kernel and TensorRT. Intel Movidius Neural Compute Stick uses Intel Movidius Neural Compute SDK in GPU-Constrained devices to deploy AI algorithms.

S. Wang et al. [199] presented a high-speed stereo vision system which can track the motion of the golf ball at a speed of 360 km/h under indoor lighting conditions. They implemented the algorithm on field-programmable gate array board with advanced RISC machine CPU. P R Kamble et al. [59] implemented a deep learning approach to track the soccer ball on NVIDIA GTX1050Ti GPU. L Chen et al. [41] implemented deep learning algorithm on GTX 1080 ti GPU, based on CUDA 9.0 and Caffe to analyze the technical features in basketball video. Table 11 shows the basic comparison between GPU based devices and GPU-constraint devices and possible deep learning algorithms to implement on various devices.

Table 11 Comparison between Jetson Modules and GPU-Constrained Devices
Jetson TX1
CPU
GPU
Memory
Storage
Possible Deep Learning Algorithms to Implement.
Field Programmable Gate Array (FPGA) has also been used in sports involving 3D motion capturing, object movement analysis and image recognition, etc. Table 12 describes how different researchers performed various problem statements of sports on hardware platforms such as FPGA, GPU-based devices and their results in terms of performance measures are listed.

Table 12 Performance of various studies on hardware platforms

Ref	GPU Based Work Station	Embedded platform	Problem Statement	Performance measures	Result
L Wu et al. 2019 [27]	NVidia Titan X GPU.	-	Events classifications in basketball videos.	Average Accuracy	58.10%
Yu Z et al. 2018 [36]	NVIDIA GTX 960	-	Basketball trajectory prediction based on real data and generating new trajectory samples.	Measured in terms of AUC	91.00%
T Liang 2020 [279]	-	FPGA	Recognizing swimming styles of a swimmer.	The result shows the three-level identification system in Average, Minimum and Maximum offset.	4.14%, 2.16%, 5.77%
J Hou et al. 2020 [194]	-	FPGA	Tracking ball movements and classification of players in basketball game	Recall and Specificity	85% and 96.6%
Y Yoon et al. 2019 [31]	NVidia GeForce GTX 1080Ti	-	Ball detection and tracking to reconstruct trajectories in basketball sport.	Precision and Recall	74.3% and 89.8%
Z dou 2020 [279]	-	FPGA	Detecting movement of ball in basketball sport.	Accuracy	>90%
L Chen et al. 2020 [41]	NVidia GTX 1080ti GPU	-	Analyzing behaviour of the player.	Accuracy	83%
L Yin et al. [280]	-	FPGA	Detecting movement of ball in basketball sport.	Average rate vs Frame range	Varies from 12% - 100% for different frame range.
R L Castro et al. 2019 [212]	NVidia GTX 1080Ti	-	Individual player tracking in sports events.	Achieved an Area Under Curve (AUC)	66%
Y Ganesh et al. 2019 [83]	NVidia GeForce GTX 1080Ti	-	Action recognition in soccer	Accuracy in terms of F1 Score	52.80%
H Bao et al. 2020[281]	-	FPGA	Movement classification in basketball sport based on Virtual Reality Technology to improve basketball coaching.	Accuracy	93.50%
P.R Kamble et al. 2019 [59]	NVidia GTX 1050Ti	-	Detection and tracking of ball in soccer videos.	Accuracy	87.45%
7 Applications in Sports Vision

A fan who is digitally connected becomes the biggest influencer online of sports venues. The teams and stadium owners who provide plenty of personalized experiences through their custom apps, mobile phone support for the content with offers, and live updates of the game information using digital boards increase the engagement of fans and in turn generate opportunities for new revenues [283]. Figure 14 depicts where AI technology can be used within the sporting landscape.

7.1 Chabot’s& Smart Assistants

Recently, sports teams like NHL and NBA started using virtual assistants for responding to enquires done by fans in a wide range of topics like ticketing, arena logistics, parking and other game related information. If the bots are not capable, such scenarios are handled by human intervention and they maintain customer service for that.
7.2 Video highlights

The challenges facing the industry include not just creation of content but also delivering it to customers through multiple devices and screens for viewing different content at different times. There is a serious demand from fans for in-depth analysis and also for commentary. Many others like action packed highlights and some behind-the-scenes content as well.

Introducing AI enables solving challenging tasks in various sports and it provides an exciting viewing experience to the audience, attracting more viewers.

7.3 Training & Coaching

An effective way for improving the analysis of performance of athletes and also assisting coaches with team guidance to gauge the tactics of the opponents are gaining popularity.

An application which uses AI contains huge data set of game performances and training related information which is backed up with the knowledge of several coaches and sports scientists. They act as an accumulated source for dissemination of current knowledge on dissemination of latest techniques, tactics or knowledge for professional coaches.

With the evolution of any body of knowledge on any tactic or technique, the knowledge base of AI is updated. The accumulated data can be used for training and educating sports coaches, scientists and also athletes, which in-turn leads to improved performance.

7.4 Virtual Umpires

In cricket and tennis, we see Video Assistant referee (VAR) and Decision Review System (DRS) which take into consideration Hawk-eye, slow motion replays and some other technologies already being used. But the catch is that these involve request from players or team for review when an umpire’s or referee’s decision has some uncertainty involving other parties to assist the main umpire, the whole process is also time consuming taking away the momentum and excitement of the game.

Latest camera technology supporting AI software creates a situation where an umpire’s role is limited to on-field behaviour management of players rather than taking critical decisions. For example, in the case of tennis with the use of computer vision for detecting placement and speed of the ball, the need for a line umpire is completely eliminated. The future scope can be an umpire’s earpiece and glasses assisting the decision instantly, eliminating the necessity of reviews.
7.5 AI Assistant Coaches

AI can be way more capable in situations involving a dynamic planning and analysis of the scene where a coach would rely on previous data and experience, and it cannot really be so effective to frame dynamically changing strategies in comparison to a machine. A future can be imagined in which a machine with AI running alongside the gameplay is dynamically predicting and creating strategies, helping the teams to get an edge over others. The evolution of chess technology is shown in figure 15.

One example where we can see the levels AI has achieved is in Chess. The Russian Garry Kasparov who was considered world’s No.1 for about 19 years with Elo rating (skill level measurement) 2851 was surpassed by Magnus Carlsen with Elo rating 2882 in 2014.

In computers, Deep Blue’s rating which was 2700+ was surpassed by Deep Mind’s Alpha Zero with an estimated Elo 3600, which was developed by Google’s sibling DeepMind. It is developed by a reinforcement learning technique called self-play. It took just 24 hours to achieve it, proving the capabilities of the machine.
7.6 Available Commercial Systems for Player and Ball Tracking

Hawkeye [284, 285, 286] is the technology which is available for ball tracking in cricket, tennis and soccer. The area of primary application is officiating in tennis, cricket and soccer to enhance broadcast videos. Figure 16 shows visualization performance of the commercial systems.

![Figure 16 Hawkeye Technology in Cricket, Tennis and Soccer [284, 285, 286]](image)

STATS SportVu [287] and ChyronHego TRACAB [288] are the technologies available for player tracking in sports. The area of primary application is to track players in various sports to analyse the performance of players and to assist coaches for training. Figure 17 shows player position and pose estimation using commercial systems. SportsVu is a computer vision technology which provides real-time optical tracking.

![Figure 17 TRACAB Gen5 Technology for Player Tracking [288]](image)
in various sports. It provides in-depth performance of any team, in terms of tracking every player from both the team to provide comprehensive match coverage, collecting data to provide tactical analysis of the match and highlighting the performance deviations to reduce injuries in the game.

8 Research Directions in Sports Vision

Based on the investigation of available articles in sports, we were able to come out with various research topics and identifies research directions to be taken for further research in sports. They are categorized based on the task specifics in sports applications (such as major sports in which player/ball/referee detection and tracking, pose estimation, trajectory prediction is required) as shown in figure 18 to provide promising and potential research directions for future computer vision/video processing in various sports.

![Figure 18 Major task-specifics in sports applications](image)

As sporting activities are dynamic in nature, the accuracy and reliability of a single player or multi-player tracking [60, 212] in real time sports video can be enhanced by proposing a framework that learns object identities with deep representations which resolve the problem of identity switch among players [209]. By
considering the temporal information, the performance of tracking algorithm can become robust to overcome problems like severe occlusions, miss-detection etc.

The accuracy of classifying different defensive strategies of various sports can be improved by labelling large spatio-temporal datasets; and, also by classifying the actions into subtypes [83], the accuracy of action recognition can be enhanced. The performance measures of team tactics analysis [88, 90] of soccer videos can be enhanced by analyzing player trajectories. By incorporating the temporal information, the classification accuracy can be improved while it also offers more specific insights to situations like pass events in the case of non-obvious insights in sports videos. Accurate pose detection as shown in figure 19 is still a major challenge to identify whether the player is running, jumping or walking as shown in figure 20, and also to handle the severe occlusions or identity switch among players.

In order to assess the player’s batting caliber in cricket, certain aspects of batting also need to be considered i.e. position of batsman before playing shot and way of batting shots for a particular bowling type needs to be modeled [111]. Classification technique can minimize false positives and false negatives to detect and classify umpire poses [127]. Detecting various moments like whether the ball hit the bat and precise detection of player and wicket skipper at the moment of run outs, as shown in figure 21, is still a major issue in cricket. Predicting the trajectory of ball bowled by spin bowlers as shown in figure 22 can be resolved accurately by labeling large dataset and modeling using SOTA algorithms.
Recognition accuracy of player action in badminton game [187] can be improved by SOTA computer vision algorithms and fine tuning end-to-end manner with a larger dataset on feature extracted at different fully connected layers. In the implementation of automatic linesman system in badminton game, the algorithm is not robust to the far views of the camera, where illumination conditions heavily impact the system while the speed of the shuttle cock is also a major factor for poor accuracy. So, it is needed to track the path, which becomes simpler to referee to decide if a shuttle lands out or in as shown in fig 23.

![Figure 23 Exact spot on which shuttle lands](image)

8.1 Open Issues and Future Research Areas

Computer vision plays a vital role in the area of sports video processing. To analyse sports events, there are many issues open for research. Calibration and viewpoints of the camera to capture the sports events such as close-up views, far views and wide views in degree of occlusions etc., are still issues that have not been satisfactorily addressed.

Detecting the ball in various sports helps to detect and classify various ball based events such as goals, possession of the ball and many other events. Due to the size, speed, velocity and unstructured motion of the ball compared to players and playfield in various sports, it is still an open issue to detect and track the ball. Various AI algorithms have been developed to achieve better performance in various sports such as soccer, basketball, tennis and badminton in terms of detecting and tracking with respect to various aspects of the ball.

Tracking players and ball is the one of the most open area for research which includes various issues such as fast and frequent movements of the players, similar appearance of players due to jersey colour in team sports, often partial and full occlusions of players, etc. Various algorithms use linear motions for multi-player tracking, resulting in poor performance but solves data association problems with appearance models. However, this algorithms fails in various conditions such as severe occlusions, ambiguity of appearance between players etc.
8.2 Future Research Trends according to Methodologies in Sports Vision

In this section, we aim to set forth the methodological approach to various components of detection, classification and tracking in sports. By considering the deep analysis of sports studies, it will be clear that the performance of the algorithm depends on the type (annotation parameters) of dataset used, which is carried out based on loss functions and evaluation metrics. The major difficulties in real time use of AI algorithms in various research areas of sports are accuracy, computation speed, size of the model etc. Considering all these aspects, the development of future trends based on contemporary ideas are presented below.

- Due to the continuous movements of player, jersey number encounter serious deformation and various image size and low resolution makes difficult to read jersey number [201]. Player’s similar appearance and severe occlusions make difficult to track and identify players, referees and goal keepers reliably, which causes the critical problem of identity switch among players [209]. To solve these challenges, a framework is needed to be proposed that learns object identities with deep representations and improves tracking using information pertaining to identity.

- The algorithms employed to detect and track the state of the ball such as whether it is controlled by a player (Dribbling), moving on the ground (passed from one player to another player) or flying in the air to categorize the movement as rolling pass or lobbing pass are not robust with respect to size of ball, shape of the ball, velocity etc. and under different environmental conditions. A few researchers have come forward with novel ideas to deal with the above mentioned aspects [59, 199, 102, 207, 193, 66, 282] but research is still at a nascent stage.

- Conventional architectures of detecting, classifying and tracking are replaced with more promising and potential modern learning paradigms such as Online Learners and Extreme Learning Machine etc.

8.3 Different Challenges to Overcome in Sports Studies

- Classification of jersey numbers in sports like soccer and basketball is quite simple [201] as they have plain jersey but in case of the sports like hockey and American football, the jerseys are massive and have sharp contours, due to which jersey number recognition is quite hard. By implementing proper bounding box techniques and digit recognition methods, better performance of jersey number recognition in every sport can be achieved.

- Action recognition in sports videos [220, 221] is explicitly a non-linearity problem, which can be obtained by aligning feature vectors, by providing massive amount of discriminative video representations, can provide a way to capture the temporal structure of video that is not present in the dynamic image space and analyzing salient regions of frames for action recognition.
Provisional tactical analysis related to player formation in sports such as soccer [97], basketball, rugby, American football and hockey etc., and pass prediction [84, 85, 86, 93], shot prediction [76], expectation for goals given a game state [77] or possession of ball, or more general game strategies can be achieved through AI algorithms.

Recognition of fine-grained activity of typical badminton strokes can be performed by using off-the-shelf sensors [188], and it can be replaced with automatic detection and tagging of aspects/events in the game and use of CCTV-grade digital cameras without additional sensors.

Identity of the player is lost when the player moves out of the frame and to retain the identity when the players reappear in subsequent frames, the player must be recognized. The key challenges for player recognition is detecting the pose of the player [54] which is the most difficult recognition challenge, especially in case of resolution effects, variable illuminations or lighting effects and severe occlusions.

9 Conclusion

Sports video analysis is an emerging and very dynamic field of research. This study comprehensively reviewed sports video analysis for various applications such as tracking player or ball in sports and predicting the trajectories of player or ball, player skill and team’s strategies analysis, detecting and classifying objects in sports. As per the requirements of deploying computer vision techniques in various sports, we have provided some of the publicly available datasets related to a particular sport. Detailed discussion on GPU based work station, embedded platforms and AI applications in sports have been presented. We have presented various classical techniques and AI techniques employed in sports, their performance, pros, cons and suitability to particular sports. We have listed probable research directions, existing challenges and current research trends with a brief discussion and also widely used computer vision techniques in various sports.

Individual player tracking in sports is very helpful for coaches and personal trainers. Though the sports includes particularly challenging tasks like similarities between players, generation of blurry video segments in some cases, partially or fully occlusions between players, invisibility of jersey number in some cases etc., computer vision is the best possible solution to achieve.

Classification of jersey numbers in sports like soccer and basketball is quite simple as they have plain jersey but in case of sports like hockey and American football, the jerseys are massive and come with sharp contours, due to which the jersey number recognition is quite hard. By implementing proper bounding box techniques and digit recognition methods, better performance vis-a-vis jersey number recognition in every sport can be achieved. As the appearance of players varies from sport to sport, the algorithm trained
on one sport may not work when it is tested on another sport. The problem may be solved by considering a dataset which contains a small set of samples from every sport for fine-tuning.

In case of multi-player tracking in real time sports videos, severe occlusions cause critical problem of identity switch among the players. Continuous movement of player’s makes difficult to read jersey number. A player’s similar appearance to another and severe occlusions make it difficult to track and identify players, referees and goal keepers reliably. Multiple object tracking in sports is a key prerequisite for realization of advanced operations in sports, such as player movement and their position in sports which will give good objective criteria to the team manager for developing a new plan to improve team performance as well as evaluate each player accurately.

Commercially used multi-camera tracking systems of players rely on some mixture of manual and automated tracking and player labeling. Optical tracking systems are a good approach for tracking players occluding each other or players having a similar appearance. The algorithm may detect false positives from out of the court such as fans wearing team uniform, as the appearance of fans is similar to that of players. This can be eliminated by estimating the playground area or broadcast camera parameters with extra spatiotemporal locations of player positions.

Action recognition in sports videos is explicitly a non-linearity problem, which can be obtained by aligning feature vectors, by providing massive amount discriminative video representations; to capture the temporal structure of the video that is not present in the dynamic image space and analyzing the salient regions of the frames for action recognition.

The algorithms employed so far for detecting and tracking ball movements began with estimating 3D ball position in trajectory. Employing these methods is very critical, as they include a lot of mathematical relations and require reliable reference objects to construct the path of the trajectory. Kalman filter and particle filter based methods are robust with respect to size, shape and velocity of the ball. However, the methods fail to establish the track when the ball reappears after occlusion. Trajectory based methods solve the problem of occlusion and are robust in obtaining data with regard to missing and merging balls but fail in case of the size and shape of the ball. Data association methods are best suited for detecting and tracking small size balls in small courts like tennis but are not suited for challenges in sports like basketball, soccer, volleyball etc. AI algorithms predict the precise trajectories of the ball from a knowledge of previous frames and are immune to challenges like air friction, ball spin and other complex ball movements. A precise database which includes different size and shape of the ball has to be introduced in order to detect the ball position and enable tracking algorithms to perform efficiently.
Detection and tracking of player, ball and assistant referee as well as semantic scene understanding in computer vision applications of sports is still an open research area due to various challenges like sudden and rapid changes in movements of the players and ball, similar appearance, players with extreme aspect ratios (players will have extremely small aspect ratios in terms of height and width when they fall down on the field) and frequent occlusions. Future scope of the computer vision research in the sports therefore handles limitations more accurately on different AI algorithms.

As the betting process involves financial assets, it is important to decide which team is likely to win; therefore, bookmakers, fans and potential bidders are all interested in estimating odds of the game in advance. So, provisional tactical analysis of field sports related to player formation in sports such as soccer, basketball, rugby, American football, and hockey etc., as well as pass prediction, shot prediction, and expectations of goals in a given a game state or a possession, or more general game strategies are needed to be analyzed in advance.

Tracking algorithms which are used in various sports cannot be compared on a common scale as experiments, requirements; situations and infrastructure in every scenario differ. Determining the performance benchmark of algorithms quantitatively is quite difficult due to the unavailability of a comparable database with ground truths of different sports differing in many aspects. In addition to these, there are additional parameters like different video capturing devices and their parameter variations which lead to difficulty in building an object tracking system in the sports field.

References
1. Tan, D. Y. W., H. Y. Ting, and S. B. Y. Lau. "A review on badminton motion analysis." In 2016 International Conference on Robotics, Automation and Sciences (ICORAS), pp. 1-4. IEEE, 2016.
2. Bonidia, Robson P., Luiz AL Rodrigues, Anderson P. Avila-Santos, Danilo S. Sanches, and Jacques D. Brancher. "Computational intelligence in sports: A systematic literature review." Advances in Human-Computer Interaction 2018 (2018).
3. Rahmad, Nur Azmina, Muhammad Amir As’Ari, Nurul Fathiah Ghazali, Norazman Shahar, and Nur Anis Jasmin Sufri. "A survey of video based action recognition in sports." Indonesian Journal of Electrical Engineering and Computer Science 11, no. 3 (2018): 987-993.
4. van der Kruk, Eline, and Marco M. Reijne. "Accuracy of human motion capture systems for sport applications; state-of-the-art review." European journal of sport science 18, no. 6 (2018): 806-819.
5. Manafifard, Mehrtash, Hamid Ebadi, and H. AbrishamiMoghaddam. "A survey on player tracking in soccer videos." Computer Vision and Image Understanding 159 (2017): 19-46.
6. Thomas, Graham, Rikke Gade, Thomas B. Moeslund, Peter Carr, and Adrian Hilton. "Computer vision for sports: Current applications and research topics." Computer Vision and Image Understanding 159 (2017): 3-18.
7. Cust, Emily E., Alice J. Sweeting, Kevin Ball, and Sam Robertson. "Machine and deep learning for sport-specific movement recognition: a systematic review of model development and performance." Journal of sports sciences 37, no. 5 (2019): 568-600.
8. Kamble, Paresh R., Avinash G. Keskar, and Kishor M. Bhurchandi. "Ball tracking in sports: a survey." *Artificial Intelligence Review* 52, no. 3 (2019): 1655-1705.
9. Shih, Huang-Chia. "A survey of content-aware video analysis for sports." *IEEE Transactions on Circuits and Systems for Video Technology* 28, no. 5 (2017): 1212-1231.
10. Beal, Ryan, Timothy J. Norman, and Sarvapali D. Ramchurn. "Artificial intelligence for team sports: a survey." *The Knowledge Engineering Review* 34 (2019).
11. Apostolidis, Evlampios, Eleni Adamantidou, Alexandros I. Metsai, Vasileios Mezaris, and Ioannis Patras. "Video Summarization Using Deep Neural Networks: A Survey." *arXiv preprint arXiv:2101.06072* (2021).
12. Kini, Sowmya. "Real Time Moving Vehicle Congestion Detection and Tracking using OpenCV." *Turkish Journal of Computer and Mathematics Education (TURCOMAT)* 12, no. 10 (2021): 273-279.
13. Davis, Michael. "Investigation into tracking football players from single viewpoint video sequences." *Bachelor of Science, in Computer Science, The University of Bath* (2008): 147.
14. Spagnolo, P., N. Mosca, M. Nitti, and A. Distante. "An unsupervised approach for segmentation and clustering of soccer players." In *International Machine Vision and Image Processing Conference (IMVIP 2007)*, pp. 133-142. IEEE, 2007.
15. Le Troter, Arnaud, Sebastien Mavromatis, and Jean Sequeira. "Soccer field detection in video images using color and spatial coherence." In *International Conference Image Analysis and Recognition*, pp. 265-272. Springer, Berlin, Heidelberg, 2004.
16. Heydari, Mohammad, and Amir Masoud Eftekhar-Moghadam. "An MLP-based player detection and tracking in broadcast soccer video." In *2012 International Conference of Robotics and Artificial Intelligence*, pp. 195-199. IEEE, 2012.
17. Barnard, Mark, and J-M. Odobez. "Robust playfield segmentation using MAP adaptation." In *Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.*, vol. 3, pp. 610-613. IEEE, 2004.
18. Pallavi, V., Jayanta Mukherjee, Arun K. Majumdar, and Shamik Sural. "Graph-based multiplayer detection and tracking in broadcast soccer videos." *IEEE Transactions on Multimedia* 10, no. 5 (2008): 794-805.
19. Ul Huda, Noor, Kasper H. Jensen, Rikke Gade, and Thomas B. Moeslund. "Estimating the number of soccer players using simulation-based occlusion handling." In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops*, pp. 1824-1833. 2018.
20. Ohno, Yoshinori, Jun Miura, and Yoshiaki Shirai. "Tracking players and estimation of the 3D position of a ball in soccer games." In *Proceedings 15th International Conference on Pattern Recognition. ICPR-2000*, vol. 1, pp. 145-148. IEEE, 2000.
21. Santiago, Catarina B., Armando Sousa, Luis Paulo Reis, and Maria Luísa Estriga. "Real time colour based player tracking in indoor sports." In *Computational Vision and Medical Image Processing*, pp. 17-35. Springer, Dordrecht, 2011.
22. Ren, Jinchang, James Orwell, Graeme A. Jones, and Ming Xu. "Tracking the soccer ball using multiple fixed cameras." *Computer Vision and Image Understanding* 113, no. 5 (2009): 633-642.
23. Kasuya, Nozomu, Itaru Kitahara, Yoshinari Kameda, and Yuichi Ohta. "Real-time soccer player tracking method by utilizing shadow regions." In *Proceedings of the 18th ACM international conference on Multimedia*, pp. 1319-1322. 2010.
24. Homayounfar, Namdar, Sanja Fidler, and Raquel Urtasun. "Sports field localization via deep structured models." In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 5212-5220. 2017.
25. Leo, Marco, Nicola Mosca, Paolo Spagnolo, Pier Luigi Mazzeo, Tiziana D’Orazio, and Arcangelo Distante. "Real-time multiview analysis of soccer matches for understanding interactions between ball and players." In *Proceedings of the 2008 international conference on Content-based image and video retrieval*, pp. 525-534. 2008.
26. Conaire, Ciarán Ó., Philip Kelly, Damien Connaghan, and Noel E. O'Connor. "Tennissense: A platform for extracting semantic information from multi-camera tennis data." In 2009 16th International Conference on Digital Signal Processing, pp. 1-6. IEEE, 2009.

27. Wu, Lifang, Zhou Yang, Jiaoyu He, Meng Jian, Yaowen Xu, Dezong Xu, and Chang Wen Chen. "Ontology based global and collective motion patterns for event classification in basketball videos." IEEE Transactions on Circuits and Systems for Video Technology (2019).

28. Wu, Lifang, Zhou Yang, Qi Wang, Meng Jian, Boxuan Zhao, Junchi Yan, and Chang Wen Chen. "Fusing motion patterns and key visual information for semantic event recognition in basketball videos." Neurocomputing 413 (2020): 217-229.

29. Liu, Long. "Objects detection toward complicated high remote basketball sports by leveraging deep CNN architecture." Future Generation Computer Systems 119 (2021): 31-36.

30. Fu, Xubo, Kun Zhang, Changgang Wang, and Chao Fan. "Multiple player tracking in basketball court videos." Journal of Real-Time Image Processing (2020).

31. Yoon, Young, Heesu Hwang, Yongjun Choi, Minbeom Joo, Hyeyoon Oh, Insun Park, Keon-Hee Lee, and Jin-Ha Hwang. "Analyzing basketball movements and pass relationships using real-time object tracking techniques based on deep learning." IEEE Access 7 (2019): 56564-56576.

32. Ramanathan, Vignesh, Jonathan Huang, Sami Abu-El-Haija, Alexander Gorban, Kevin Murphy, and Li Fei-Fei. "Detecting events and key actors in multi-person videos." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3043-3053. 2016.

33. Chakraborty, Bodhisattwa, and Sukadev Meher. "A real-time trajectory-based ball detection-and-tracking framework for basketball video." Journal of Optics 42, no. 2 (2013): 156-170.

34. Santhosh, P. K., and B. Kaarthick. "An Automated Player Detection and Tracking in Basketball Game." CMC-Comput. Mater. Contiu 58 (2019): 625-639.

35. Acuna, David. "Towards real-time detection and tracking of basketball players using deep neural networks." In 31st Conference on Neural Information Processing Systems (NIPS 2017). 2017.

36. Zhao, Yu, Rennong Yang, Guillaume Chevalier, Rajiv C. Shah, and Rob Romijnders. "Applying deep bidirectional LSTM and mixture density network for basketball trajectory prediction." Optik 158 (2018): 266-272.

37. Shah, Rajiv, and Rob Romijnders. "Applying deep learning to basketball trajectories." arXiv preprint arXiv:1608.03793 (2016).

38. Žemgulys, Julius, Vidas Raudonis, Rytis Maskeliūnas, and Robertas Damaševičius. "Recognition of basketball referee signals from real-time videos." Journal of Ambient Intelligence and Humanized Computing 11, no. 3 (2020): 979-991.

39. Liu, Wu, Chenggang Clarence Yan, Jiangyu Liu, and Huadong Ma. "Deep learning based basketball video analysis for intelligent arena application." Multimedia Tools and Applications 76, no. 23 (2017): 24983-25001.

40. Yao, Peng. "Real-Time Analysis of Basketball Sports Data Based on Deep Learning." Complexity 2021 (2021).

41. Chen, Li, and Wenbo Wang. "Analysis of technical features in basketball video based on deep learning algorithm." Signal Processing: Image Communication 83 (2020): 115786.

42. Wang, Kuan-Chieh, and Richard Zemel. "Classifying NBA offensive plays using neural networks." In Proceedings of MIT Sloan Sports Analytics Conference, vol. 4. 2016.

43. Tsai, Tsung-Yu, Yen-Yu Lin, Shyh-Kang Jeng, and Hong-Yuan Mark Liao. "End-to-end Key-Player-Based Group Activity Recognition Network Applied to Basketball Offensive Tactic Identification in Limited Data Scenarios." IEEE Access (2021).

44. Lamas, L., D. De Rose Junior, F. Santana, E. Rostaiser, L. Negretti, and C. Ugrinowitsch. "Space creation dynamics in basketball offence: validation and evaluation of elite teams." International Journal of Performance Analysis in Sport 11, no. 1 (2011): 71-84.

45. Bourbousson, Jérôme, Carole Sève, and Tim McGarry. "Space–time coordination dynamics in basketball: Part 1. Intra- and inter-couplings among player dyads." Journal of Sports Sciences 28, no. 3 (2010): 339-347.
46. Bourbousson, Jérôme, Carole Sève, and Tim McGarry. "Space–time coordination dynamics in basketball: Part 2. The interaction between the two teams." Journal of Sports Sciences 28, no. 3 (2010): 349-358.
47. Tian, Changjia, Varuna De Silva, Michael Caine, and Steve Swanson. "Use of Machine Learning to Automate the Identification of Basketball Strategies Using Whole Team Player Tracking Data." Applied Sciences 10, no. 1 (2020): 24.
48. Hauri, Sandro, Nemanja Djuric, Viadan Radosavijevic, and Slobodan Vucetic. "Multi-Modal Trajectory Prediction of NBA Players." In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1640-1649. 2021.
49. Zheng, Stephan, Yisong Yue, and Jennifer Hobbs. "Generating long-term trajectories using deep hierarchical networks." Advances in Neural Information Processing Systems 29 (2016): 1543-1551.
50. Victor, Brandon, Aiden Nibali, Zhen He, and David L. Carey. "Enhancing trajectory prediction using sparse outputs: application to team sports." Neural Computing and Applications (2021): 1-12.
51. Bertugli, Alessia, Simone Calderara, Pasquale Coscia, Lamberto Ballan, and Rita Cucchiara. "AC-VRNN: Attentive Conditional-VRNN for multi-future trajectory prediction." Computer Vision and Image Understanding 210 (2021): 103245.
52. Li, Hongfei, and Maolin Zhang. "Artificial Intelligence and Neural Network-Based Shooting Accuracy Prediction Analysis in Basketball." Mobile Information Systems 2021 (2021).
53. Chen, Hua-Tsung, Chien-Li Chou, Tsung-Sheng Fu, Suh-Yin Lee, and Bao-Shuh P. Lin. "Recognizing tactic patterns in broadcast basketball video using player trajectory." Journal of Visual Communication and Image Representation 23, no. 6 (2012): 932-947.
54. Chen, Hua-Tsung, Ming-Chun Tien, Yi-Wen Chen, Wen-Jiin Tsai, and Suh-Yin Lee. "Physics-based ball tracking and 3D trajectory reconstruction with applications to shooting location estimation in basketball video." Journal of Visual Communication and Image Representation 20, no. 3 (2009): 204-216.
55. Hu, Ming, and Qilin Hu. "Design of basketball game image acquisition and processing system based on machine vision and image processor." Microprocessors and Microsystems 82 (2021): 103904.
56. Yichen, Wang, and Haruka Yamashita. "Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks." International Journal of Economics and Management Engineering 15, no. 3 (2021): 283-289.
57. Gerke, Sebastian, Antje Linnemann, and Karsten Müller. "Soccer player recognition using spatial constellation features and jersey number recognition." Computer Vision and Image Understanding 159 (2017): 105-115.
58. Baysal, Sermetcan, and Pınar Duygulu. "Sentioscope: a soccer player tracking system using model field particles." IEEE Transactions on Circuits and Systems for Video Technology 26, no. 7 (2015): 1350-1362.
59. Kamble, P. R., A. G. Keskar, and K. M. Bhurchandi. "A deep learning ball tracking system in soccer videos." Opto-Electronics Review 27, no. 1 (2019): 58-69.
60. Choi, Kyuhyoung, and Yongduck Seo. "Automatic initialization for 3D soccer player tracking." Pattern Recognition Letters 32, no. 9 (2011): 1274-1282.
61. Kim, Wonjun. "Multiple object tracking in soccer videos using topographic surface analysis." Journal of Visual Communication and Image Representation 65 (2019): 102683.
62. Liu, Jia, Xiaofeng Tong, Wenlong Li, Tao Wang, Yimin Zhang, and Hongqi Wang. "Automatic player detection, labeling and tracking in broadcast soccer video." Pattern Recognition Letters 30, no. 2 (2009): 103-113.
63. Komorowski, Jacek, Grzegorz Kurzejamski, and Grzegorz Sarwas. "BallTrack: Football ball tracking for real-time CCTV systems." In 2019 16th International Conference on Machine Vision Applications (MVA), pp. 1-5. IEEE, 2019.
64. Hurault, Samuel, Coloma Ballester, and Gloria Haro. "Self-Supervised Small Soccer Player Detection and Tracking." In Proceedings of the 3rd International Workshop on Multimedia Content Analysis in Sports, pp. 9-18. 2020.

65. Kamble, Paresh R., Avinash G. Keskar, and Kishor M. Bhurchandi. "A convolutional neural network based 3D ball tracking by detection in soccer videos." In Eleventh International Conference on machine vision (ICMV 2018), vol. 11041, p. 110412O. International Society for Optics and Photonics, 2019.

66. Naidoo, Wayne Chelliah, and Jules Raymond Tapamo. "Soccer video analysis by ball, player and referee tracking." In Proceedings of the 2006 annual research conference of the South African institute of computer scientists and information technologists on IT research in developing countries, pp. 51-60. 2006.

67. Liang, Dawei, Yang Liu, Qingming Huang, and Wen Gao. "A scheme for ball detection and tracking in broadcast soccer video." In Pacific-Rim Conference on Multimedia, pp. 864-875. Springer, Berlin, Heidelberg, 2005.

68. Komorowski, Jacek, Grzegorz Kurzejamski, and Grzegorz Sarwas. "FootAndBall: Integrated player and ball detector." arXiv preprint arXiv:1912.05445 (2019).

69. Pallavi, V., Jayanta Mukherjee, Arun K. Majumdar, and Shamik Sural. "Ball detection from broadcast soccer videos using static and dynamic features." Journal of Visual Communication and Image Representation 19, no. 7 (2008): 426-436.

70. Leo, Marco, Pier Luigi Mazzeo, Massimiliano Nitti, and Paolo Spagnolo. "Accurate ball detection in soccer images using probabilistic analysis of salient regions." Machine vision and applications 24, no. 8 (2013): 1561-1574.

71. Mazzeo, Pier Luigi, Marco Leo, Paolo Spagnolo, and Massimiliano Nitti. "Soccer ball detection by comparing different feature extraction methodologies." Advances in Artificial Intelligence 2012 (2012).

72. Garnier, Paul, and Théophile Gregoir. "Evaluating Soccer Player: from Live Camera to Deep Reinforcement Learning." arXiv preprint arXiv:2101.05388 (2021).

73. Kusmakar, Shitanshu, Sergiy Shelyag, Ye Zhu, Dan Dwyer, Paul Gastin, and Maia Angelova. "Machine Learning Enabled Team Performance Analysis in the Dynamical Environment of Soccer." IEEE Access 8 (2020): 90266-90279.

74. Baccouche, Moez, Franck Mamalet, Christian Wolf, Christophe Garcia, and Attila Baskurt. "Action classification in soccer videos with long short-term memory recurrent neural networks." In International Conference on Artificial Neural Networks, pp. 154-159. Springer, Berlin, Heidelberg, 2010.

75. Jackman, Simeon. "Football Shot Detection using Convolutional Neural Networks." (2019).

76. Lucey, Patrick, Alina Biakowski, Mathew Monfort, Peter Carr, and Iain Matthews. "QualiTyvs quantity: Improved shot prediction in soccer using strategic features from spatiotemporal data." In Proc. 8th annual mitsloans sports analytics conference, pp. 1-9. 2014.

77. Cioppa, Anthony, Adrien Deliege, Silvio Giancola, Bernard Ghanem, Marc Van Droogenbroeck, Rikke Gade, and Thomas B. Moeslund. "A context-aware loss function for action spotting in soccer videos." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13126-13136. 2020.

78. Beernaerts, Jasper, Bernard De Baets, Matthieu Lenoir, and Nico Van de Weghe. "Spatial movement pattern recognition in soccer based on relative player movements." Plos one 15, no. 1 (2020): e0227746.

79. Tepanyan, Hayk. "Soccer Stats with Computer Vision."

80. Kim, Yoonhyung, Chanho Jung, and Changick Kim. Motion Recognition of Assistant Referees in Soccer Games via Selective Color Contrast Revelation. No. 2604. EasyChair, 2020.

81. Lindström, Per, Ludwig Jacobsson, Niklas Carlsson, and Patrick Lambrix. "Predicting Player Trajectories in Shot Situations in Soccer." (2019).

82. Machado, Vinicius, Roger Leite, Felipe Moura, Sergio Cunha, Filip Sadlo, and João LD Comba. "Visual soccer match analysis using spatiotemporal positions of players." Computers & Graphics 68 (2017): 84-95.
83. Ganesh, Yaparla, Allaparthi Sri Teja, Sai Krishna Munnangi, and Garimella Rama Murthy. "A novel framework for fine grained action recognition in soccer." In International Work-Conference on Artificial Neural Networks, pp. 137-150. Springer, Cham, 2019.

84. Chawla, Sanjay, Joël Estephan, Joachim Gudmundsson, and Michael Horton. "Classification of passes in football matches using spatiotemporal data." ACM Transactions on Spatial Algorithms and Systems (TSAS) 3, no. 2 (2017): 1-30.

85. Gyarmati, Laszlo, and Rade Stanojevic. "Qpass: a merit-based evaluation of soccer passes." arXiv preprint arXiv:1608.03532 (2016).

86. Vercruyssen, Vincent, Luc De Raedt, and Jesse Davis. "Qualitative spatial reasoning for soccer pass prediction." In CEUR Workshop Proceedings, vol. 1842. 2016.

87. Yu, Junqing, Aiping Lei, and Yangliu Hu. "Soccer video event detection based on deep learning." In International Conference on Multimedia Modeling, pp. 377-389. Springer, Cham, 2019.

88. Brooks, Joel, Matthew Kerr, and John Guttag. "Using machine learning to draw inferences from pass location data in soccer." Statistical Analysis and Data Mining: The ASA Data Science Journal 9, no. 5 (2016): 338-349.

89. Cho, Hyeonah, Hyunyoung Ryu, and Minseok Song. "Pass2vec: Analyzing soccer players' passing style using deep learning." International Journal of Sports Science & Coaching (2021): 17479541211033078.

90. Zhang, Kaifai, Ji Wu, Xiaofeng Tong, and Yumeng Wang. "An automatic multi-camera-based event extraction system for real soccer videos." Pattern Analysis and Applications 23, no. 2 (2020): 953-965.

91. Deliege, Adrien, Anthony Cioppa, Silvio Giancola, Meisam J. Seikavandi, Jacob V. Dueholm, Kamal Nasrollahi, Bernard Ghanem, Thomas B. Moeslund, and Marc Van Droogenbroeck. "Soccernet-v2: A dataset and benchmarks for holistic understanding of broadcast soccer videos." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4508-4519. 2021.

92. Pennumala, Radha, M. Sivagami, and Suresh Srinivasan. "Automated Goal Score Detection in Football Match Using Key Moments." Procedia Computer Science 165 (2019): 492-501.

93. Khan, Abdullah, Beatrice Lazzerini, Gaetano Calabrese, and Luciano Serafini. "Soccer event detection." In 4th International Conference on Image Processing and Pattern Recognition (IPPR 2018), pp. 119-129. AIRCC Publishing Corporation, 2018.

94. Khaustov, Victor, and Maxim Mozgovoy. "Recognizing Events in Spatiotemporal Soccer Data." Applied Sciences 10, no. 22 (2020): 8046.

95. Saraogi, Himangi, Rahul Anand Sharma, and Vijay Kumar. "Event recognition in broadcast soccer videos." In Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing, pp. 1-7. 2016.

96. Karimi, Ali, Ramin Toosi, and Mohammad Ali Akhaee. "Soccer Event Detection Using Deep Learning." arXiv preprint arXiv:2102.04331 (2021).

97. Suzuki, Genki, Sho Takahashi, Takahiro Ogawa, and Miki Haseyama. "Team Tactics Estimation in Soccer Videos Based on a Deep Extreme Learning Machine and Characteristics of the Tactics." IEEE Access 7 (2019): 153238-153248.

98. Suzuki, Genki, Sho Takahashi, Takahiro Ogawa, and Miki Haseyama. "Decision level fusion-based team tactics estimation in soccer videos." In 2016 IEEE 5th Global Conference on Consumer Electronics, pp. 1-2. IEEE, 2016.

99. Ohnuki, Shuhei, Sho Takahashi, Takahiro Ogawa, and Miki Haseyama. "Soccer video segmentation based on team tactics estimation method." In Proc. IWAIT, pp. 692-695. 2013.

100. Clemente, Filipe Manuel, Micael Santos Couceiro, Fernando Manuel Lourenço Martins, Rui Sousa Mendes, and António José Figueiredo. "Soccer team's tactical behaviour: Measuring territorial domain." Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology 229, no. 1 (2015): 58-66.
101. Hassan, Amr, Abdel-Rahman Akl, Ibrahim Hassan, and Caroline Sunderland. "Predicting Wins, Losses and Attributes' Sensitivities in the Soccer World Cup 2018 Using Neural Network Analysis." *Sensors* 20, no. 11 (2020): 3213.

102. Niu, Zhenxing, Xinbo Gao, and Qi Tian. "Tactic analysis based on real-world ball trajectory in soccer video." *Pattern Recognition* 45, no. 5 (2012): 1937-1947.

103. Wu, Yingcai, Xiao Xie, Jiachen Wang, Dazhen Deng, Hongye Liang, Hui Zhang, Shoubin Cheng, and Wei Chen. "Forvizor: Visualizing spatio-temporal team formations in soccer." *IEEE transactions on visualization and computer graphics* 25, no. 1 (2018): 65-75.

104. Suzuki, Genki, Sho Takahashi, Takahiro Ogawa, and Miki Haseyama. "Team tactics estimation in soccer videos via deep extreme learning machine based on players formation." In *2018 IEEE 7th Global Conference on Consumer Electronics (GCCE)*, pp. 116-117. IEEE, 2018.

105. Wang, Bin, Wei Shen, FanSheng Chen, and Dan Zeng. "Football match intelligent editing system based on deep learning." *TIIS* 13, no. 10 (2019): 5130-5143.

106. Zawbaa, Hossam M., Nashwa El-Bendary, Aboul Ella Hassanien, and Tai-hoon Kim. "Event detection based approach for soccer video summarization using machine learning." *International Journal of Multimedia and Ubiquitous Engineering* 7, no. 2 (2012): 63-80.

107. Kolekar, Maheshkumar H., and Somnath Sengupta. "Bayesian network-based customized highlight generation for broadcast soccer videos." *IEEE Transactions on Broadcasting* 61, no. 2 (2015): 195-209.

108. Li, Jianguo, Tao Wang, Wei Hu, Mingliang Sun, and Yimin Zhang. "Soccer highlight detection using two-dependence bayesian network." In *2006 IEEE International Conference on Multimedia and Expo*, pp. 1625-1628. IEEE, 2006.

109. Foysal, MdFerdouse Ahmed, Mohammad Shakirul Islam, AsifKarim, and NafisNeehal. "Shot-Net: A convolutional neural network for classifying different cricket shots." In *International Conference on Recent Trends in Image Processing and Pattern Recognition*, pp. 111-120. Springer, Singapore, 2018.

110. Khan, Muhammad Zeeshan, Muhammad A. Hassan, AmmarahFarooq, and Muhammad UsmanGhanni Khan. "Deep CNN Based Data-Driven Recognition of Cricket Batting Shots." In *2018 International Conference on Applied and Engineering Mathematics (ICAEM)*, pp. 67-71. IEEE, 2018.

111. Khan, Aftab, James Nicholson, and Thomas Plötz. "Activity recognition for quality assessment of batting shots in cricket using a hierarchical representation." *Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies* 1, no. 3 (2017): 1-31.

112. Sen, Anik, Kaushik Deb, Pranab Kumar Dhar, and Takashi Koshiba. "CricShotClassify: An Approach to Classifying Batting Shots from Cricket Videos Using a Convolutional Neural Network and Gated Recurrent Unit." *Sensors* 21, no. 8 (2021): 2846.

113. Gürpinar-Morgan, Will, Daniel Dinsdale, Joe Gallagher, Aditya Cherukumudi, and Patrick Lucey. "You Cannot Do That Ben Stokes: Dynamically Predicting Shot Type in Cricket Using a Personalized Deep Neural Network." *arXiv preprint arXiv:2102.01952* (2021).

114. Bandara, Ishara, and Boris Bačič. "Strokes Classification in Cricket Batting Videos." In *2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA)*, pp. 1-6. IEEE, 2020.

115. Moodley, Tevin, and Dustin van der Haar. "Scene Recognition Using AlexNet to Recognize Significant Events Within Cricket Game Footage." In *International Conference on Computer Vision and Graphics*, pp. 98-109. Springer, Cham, 2020.

116. Gupta, Arpan, and Sakthi Balan Muthiah. "Viewpoint constrained and unconstrained cricket stroke localization from untrimmed videos." *Image and Vision Computing* (2020): 103944.

117. Al Islam, MdNafee, Tanzil Bin Hassan, and SiamulKarim Khan. "A CNN-based approach to classify cricket bowlers based on their bowling actions." In *2019 IEEE International Conference on Signal Processing, Information, Communication & Systems (SPICSCON)*, pp. 130-134. IEEE, 2019.
118. Muthuswamy, Shanthi, and Sarah S. Lam. "Bowler performance prediction for one-day international cricket using neural networks." In IIE Annual Conference. Proceedings, p. 1391. Institute of Industrial and Systems Engineers (IISE), 2008.

119. Bhattacharjee, Dibyojyoti, and Darshan G. Pahinkar. "Analysis of performance of bowlers using combined bowling rate." International Journal of Sports Science and Engineering 6, no. 3 (2012): 1750-9823.

120. Rahman, Rafeed, Mehfuz A. Rahman, Md Saiful Islam, and Mahady Hasan. "DeepGrip: Cricket Bowling Delivery Detection with Superior CNN Architectures." In 2021 6th International Conference on Inventive Computation Technologies (ICICT), pp. 630-636. IEEE, 2021.

121. Lemmer, Hermanus H. "The combined bowling rate as a measure of bowling performance in cricket." South African Journal for Research in Sport, Physical Education and Recreation 24, no. 2 (2002): 37-44.

122. Mukherjee, Satyam. "Quantifying individual performance in Cricket—A network analysis of Batsmen and Bowlers." Physica A: Statistical Mechanics and its Applications 393 (2014): 624-637.

123. Velammal, B. L., and P. Anandha Kumar. "An Efficient Ball Detection Framework for Cricket." International Journal of Computer Science Issues (IJCSI) 7, no. 3 (2010): 30.

124. Kumar, Rohit, D. Santhadevi, and Janet Barnabas. "Outcome Classification in Cricket Using Deep Learning." In 2019 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM), pp. 55-58. IEEE, 2019.

125. Shukla, Pushkar, Hemant Sadana, Apaar Bansal, Deepak Verma, Carlos Elmadjian, Balasubramanian Raman, and Matthew Turk. "Automatic cricket highlight generation using event-driven and excitement-based features." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1800-1808. 2018.

126. Kowsher, Md, M. AshrafAliAlam, MdJashimUddin, Faisal Ahmed, MdWaliUllah, and MdRafiqul Islam. "Detecting Third Umpire Decisions & Automated Scoring System of Cricket." In 2019 International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2), pp. 1-8. IEEE, 2019.

127. Ravi, Aravind, Harshwin Venugopal, Sruthy Paul, and Hamid R. Tizhoosh. "A Dataset and Preliminary Results for Umpire Pose Detection Using SVM Classification of Deep Features." In 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1396-1402. IEEE, 2018.

128. Nelikanti, Arjun, G. Venkata Rami Reddy, and G. Karuna. "An Optimization Based deep LSTM Predictive Analysis for Decision Making in Cricket." In Innovative Data Communication Technologies and Application, pp. 721-737. Springer, Singapore, 2021.

129. Kapadiya, Chetan, Ankit Shah, Kinjal Adhvaryu, and Pratik Barot. "Intelligent Cricket Team Selection by Predicting Individual Players' Performance using Efficient Machine Learning Technique."

130. Iyer, Subramanian Rama, and Ramesh Sharda. "Prediction of athletes performance using neural networks: An application in cricket team selection." Expert Systems with Applications 36, no. 3 (2009): 5510-5522.

131. Jhanwar, MadanGopal, and VikramPudi. "Predicting the Outcome of ODI Cricket Matches: A Team Composition Based Approach." In MLSA@ PKDD/ECML. 2016.

132. Pathak, Neeraj, and Hardik Wadhwa. "Applications of modern classification techniques to predict the outcome of ODI cricket." Procedia Computer Science 87 (2016): 55-60.

133. Alaka, Souridas, Rishikesh Sreekumar, and Harithwik Shalu. "Efficient Feature Representations for Cricket Data Analysis using Deep Learning based Multi-Modal Fusion Model." arXiv preprint arXiv:2108.07139 (2021).

134. Goel, Rajesh, Jerrel Davis, Amit Bhatia, Pulkit Malhotra, Harsh Bhardwaj, Vikas Hooda, and Ankit Goel. "Dynamic cricket match outcome prediction." Journal of Sports Analytics Preprint: 1-12.
135. Karthik, K., Gokul S. Krishnan, Shashank Shetty, Sanjay S. Bankapur, Ranjit P. Kolkar, T. S. Ashwin, and Manjunath K. Vanahalli. “Analysis and Prediction of Fantasy Cricket Contest Winners Using Machine Learning Techniques.” In Evolution in Computational Intelligence, pp. 443-453. Springer, Singapore, 2021.
136. Shah, Parag. “New performance measure in Cricket.” ISOR Journal of Sports and Physical Education 4, no. 3 (2017): 28-30.
137. Shingrakhia, Hansa, and Hetal Patel. “SGRNN-AM and HRF-DBN: a hybrid machine learning model for cricket video summarization.” The Visual Computer (2021): 1-17.
138. Guntuboina, Chakradhar, Aditya Porwal, Preet Jain, and Hansa Shingrakhia. "Deep Learning Based Automated Sports Video Summarization using YOLO." Electronic Letters on Computer Vision and Image Analysis 20, no. 1 (2021): 99-116.
139. Owens, N. E. I. L., C. Harris, and C. Stennett. "Hawk-eye tennis system." In 2003 International Conference on Visual Information Engineering VIE 2003, pp. 182-185. IET, 2003.
140. Wu, Guodong. "Monitoring System of Key Technical Features of Male Tennis Players Based on Internet of Things Security Technology." Wireless Communications and Mobile Computing 2021 (2021).
141. Connaghan, Damien, Philip Kelly, and Noel E. O'Connor. "Game, shot and match: Event-based indexing of tennis." In 2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI), pp. 97-102. IEEE, 2011.
142. Giles, Brandon, Stephanie Kovalchik, and Machar Reid. "A machine learning approach for automatic detection and classification of changes of direction from player tracking data in professional tennis." Journal of Sports Sciences 38, no. 1 (2020): 106-113.
143. Zhou, Xiangzeng, Lei Xie, Qiang Huang, Stephen J. Cox, and Yanning Zhang. "Tennis ball tracking using a two-layered data association approach." IEEE Transactions on Multimedia 17, no. 2 (2014): 145-156.
144. Reno, Vito, Nicola Mosca, Roberto Marani, Massimiliano Nitti, Tiziana D'Orazio, and Ettore Stella. "Convolutional neural networks based ball detection in tennis games." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1758-1764. 2018.
145. Archana, M., and M. Kalaisevi Geetha. "Object detection and tracking based on trajectory in broadcast tennis video," Procedia Computer Science 58 (2015): 225-232.
146. Polk, Tom, Jing Yang, Yueqi Hu, and Ye Zhao. "Tennivis: Visualization for tennis match analysis." IEEE transactions on visualization and computer graphics 20, no. 12 (2014): 2339-2348.
147. Kelly, Philip, Ciarán Ó Conaire, David Monaghan, JogileKuklyte, Damien Connaghan, Juan Diego Pérez-MoneoAgapito, and PetrosDaras. "Performance analysis and visualisation in tennis using a low-cost camera network." (2010).
148. Fernando, Tharindu, Simon Denman, SridhaSridharan, and Clinton Fookes. "Memory augmented deep generative models for forecasting the next shot location in tennis." IEEE Transactions on Knowledge and Data Engineering (2019).
149. Pingali, Gopal, AgataOpalach, Yves Jean, and Ingrid Carlbom. "Visualization of sports using motion trajectories: providing insights into performance, style, and strategy." In Proceedings Visualization, 2001. VIS'01., pp. 75-544. IEEE, 2001.
150. Pingali, GopalSarma, AgataOpalach, Yves D. Jean, and Ingrid B. Carlbom. "Instantly indexed multimedia databases of real world events." IEEE transactions on multimedia 4, no. 2 (2002): 269-282.
151. Cai, Jiaxin, Junlin Hu, Xin Tang, Tzu-Yi Hung, and Yap-Peng Tan. "Deep Historical Long Short-Term Memories for Action Recognition." Neurocomputing (2020).
152. Mora, Silvia Vinyes, and William J. Knottenbelt. "Deep learning for domain-specific action recognition in tennis." In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 170-178. IEEE, 2017.
153. Ning, Bai, and Liu Na. "Deep Spatial/temporal-level feature engineering for Tennis-based action recognition." *Future Generation Computer Systems* 125 (2021): 188-193.

154. Polk, Tom, Dominik Jäckle, Johannes Häußler, and Jing Yang. "CourtTime: Generating actionable insights into tennis matches using visual analytics." *IEEE Transactions on Visualization and Computer Graphics* 26, no. 1 (2019): 397-406.

155. Zhu, Guangyu, Qingming Huang, Changsheng Xu, Liyuan Xing, Wen Gao, and Hongxun Yao. "Human behavior analysis for highlight ranking in broadcast racket sports video." *IEEE Transactions on Multimedia* 9, no. 6 (2007): 1167-1182.

156. Wei, Xinyu, Patrick Lacey, Stuart Morgan, and Sridha Sridharan. "Forecasting the next shot location in tennis using fine-grained spatiotemporal tracking data." *IEEE Transactions on Knowledge and Data Engineering* 28, no. 11 (2016): 2988-2997.

157. Ma, Kevin. "A Real Time Artificial Intelligent System for Tennis Swing Classification." In *2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)*, pp. 000021-000026. IEEE, 2021.

158. Vales-Alonso, Javier, David Chaves-Diéguez, Pablo López-Matencio, Juan J. Alcaraz, Francisco J. Parrado-Garcia, and F. Javier Gonzalez-Castano. "SAETA: A smart coaching assistant for professional volleyball training." *IEEE Transactions on Systems, Man, and Cybernetics: Systems* 45, no. 8 (2015): 1138-1150.

159. Kautz, Thomas, Benjamin H. Groh, Julius Hannink, Ulf Jensen, Holger Strubberg, and Bjoern M. Eskofier. "Activity recognition in beach volleyball using a Deep Convolutional Neural Network." *Data Mining and Knowledge Discovery* 31, no. 6 (2017): 1678-1705.

160. Ibrahim, Mostafa S., Srikant Muraleedharan, Zhiwei Deng, Arash Vahdat, and Greg Mori. "A hierarchical deep temporal model for group activity recognition." In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 1971-1980. 2016.

161. Van Haaren, Jan, Horesh Ben Shitrit, Jesse Davis, and Pascal Fua. "Analyzing volleyball match data from the 2014 World Championships using machine learning techniques." In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pp. 627-634. 2016.

162. Wenninger, Sebastian, Daniel Link, and Martin Lames. "Performance of machine learning models in application to beach volleyball data." *International Journal of Computer Science in Sport* 19, no. 1 (2020): 24-36.

163. Haider, Fasih, Fahim Salim, Vahid Naghashi, Sena Busra Yengec Tasdemir, Izem Tengiz, Kubra Cengiz, Dees Postma et al. "Evaluation of dominant and non-dominant hand movements for volleyball action modelling." In *Adjunct of the 2019 International Conference on Multimodal Interaction*, pp. 1-6. 2019.

164. Salim, Fahim A., Fasih Haider, Sena Busra Yengec Tasdemir, Vahid Naghashi, Izem Tengiz, K. Cengiz, D. B. W. Postma, and R. Van Delden. "Volleyball Action Modelling for Behavior Analysis and Interactive Multi-modal Feedback." In 15th International Summer Workshop on Multimodal Interfaces, p. 50. 2019.

165. Jiang, Wei, Kai Zhao, and Xinlong Jin. "Diagnosis Model of Volleyball Skills and Tactics Based on Artificial Neural Network." Mobile Information Systems 2021 (2021).

166. Wang, Yufan, Yuliang Zhao, Rosa HM Chan, and Wen J. Li. "Volleyball skill assessment using a single wearable micro inertial measurement unit at wrist." *IEEE Access* 6 (2018): 13758-13765.

167. Zhang, Chuanchang, Huan Tang, and Zhigang Duan. "Time Series Analysis of Volleyball Spiking Posture Based on Quality-Guided Cyclic Neural Network." *Journal of Visual Communication and Image Representation* (2019): 102681.

168. Thilakarathne, Haritha, Aiden Nibali, Zhen He, and Stuart Morgan. "Pose is all you need: The pose only group activity recognition system (POGARS)." *arXiv preprint arXiv:2108.04186* (2021).
169. Zhao, Kai, Wei Jiang, Xinlong Jin, and Xuming Xiao. "Artificial intelligence system based on the layout effect of both sides in volleyball matches." Journal of Intelligent & Fuzzy Systems Preprint (2021): 1-10.

170. Tian, Yang. "Optimization of Volleyball Motion Estimation Algorithm Based on Machine Vision and Wearable Devices." Microprocessors and Microsystems (2020): 103750.

171. Suda, Shuya, Yasutoshi Makino, and Hiroyuki Shinoda. "Prediction of Volleyball Trajectory Using Skeletal Motions of Setter Player." In Proceedings of the 10th Augmented Human International Conference 2019, pp. 1-8. 2019.

172. Şah, Melike, and Cem Direkoğlu. "Review and evaluation of player detection methods in field sports." Multimedia Tools and Applications (2021): 1-25.

173. Rangasamy, Keerthana, Muhammad Amir As’ari, NurAzminaRahmad, and NurulFathiahGhazali. "Hockey activity recognition using pre-trained deep learning model." ICT Express (2020).

174. Sozykin, Konstantin, Stanislav Protasov, Adil Khan, Rasheed Hussain, and Jooyoung Lee. "Multi-label class-imbalanced action recognition in hockey videos via 3D convolutional neural networks." In 2018 19th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), pp. 146-151. IEEE, 2018.

175. Fani, Mehrnaz, Helmut Neher, David A. Clausi, Alexander Wong, and John Zelek. "Hockey action recognition via integrated stacked hourglass network." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 29-37. 2017.

176. Cai, Zixi, Helmut Neher, Kanav Vats, David A. Clausi, and John Zelek. "Temporal hockey action recognition via pose and optical flows." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 0-0. 2019.

177. Chan, Alvin, Martin D. Levine, and MehrsanJavan. "Player Identification in Hockey Broadcast Videos." Expert Systems with Applications 165 (2020): 113891.

178. Carbonneau, Marc-André, Alexandre J. Raymond, Eric Granger, and Ghyslain Gagnon. "Real-time visual play-break detection in sport events using a context descriptor." In 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2808-2811. IEEE, 2015.

179. Guo, Tianxiao, Kuan Tao, Qingrui Hu, and YanfeiShen. "Detection of Ice Hockey Players and Teams via a Two-Phase Cascaded CNN Model." (2020).

180. Liu, Guiliang, and Oliver Schulte. "Deep reinforcement learning in ice hockey for context-aware player evaluation." arXiv preprint arXiv:1805.11088 (2018).

181. Weeratunga, Kokum, AnujaDharmaratne, and Khoo Boon How. "Application of computer vision and vector space model for tactical movement classification in badminton." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 76-82. 2017.
187. Rahmad, N. A., and M. A. As‘ari. "The new Convolutional Neural Network (CNN) local feature extractor for automated badminton action recognition on vision based data." In *Journal of Physics: Conference Series*, vol. 1529, no. 2, p. 022021. IOP Publishing, 2020.

188. Steels, Tim, Ben Van Herbruggen, Jaron Fontaine, Toon De Pessemier, David Plets, and Eli De Poorter. "Badminton Activity Recognition Using Accelerometer Data." *Sensors* 20, no. 17 (2020): 4685.

189. bintiRahmad, NurAzmina, NurAnisJasminbintiSufri, Muhammad Amir bin As‘ari, and AizreenabintiAzaman. "Recognition of Badminton Action Using Convolutional Neural Network." *Indonesian Journal of Electrical Engineering and Informatics (IJEEI)* 7, no. 4 (2019): 750-756.

190. Ghosh, Indrajeet, Sreenivasan Ramasamy Ramamurthy, and Nirmalya Roy. "StanceScorer: A Data Driven Approach to Score Badminton Player." In *2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)*, pp. 1-6. IEEE, 2020.

191. Cao, Zhiguang, Tingbo Liao, Wen Song, Zhenghua Chen, and Chongshou Li. "Detecting the shuttlecock for a badminton robot: A YOLO based approach." *Expert Systems with Applications* 164 (2020): 113833.

192. Chen, Wei, Tingbo Liao, Zhihang Li, Haozhi Lin, Hong Xue, Le Zhang, Jing Guo, and Zhiguang Cao. "Using FTOC to track shuttlecock for the badminton robot." *Neurocomputing* 334 (2019): 182-196.

193. Rahmad, Nur Azmina, Nur Anis Jasmin Sufri, Nurul Hamizah Muzamil, and Muhammad Amir As‘ari. "Badminton player detection using faster region convolutional neural network." *Indonesian Journal of Electrical Engineering and Computer Science* 14, no. 3 (2019): 1330-1335.

194. Hou, Jianbin, and Baoguo Li. "Swimming target detection and tracking technology in video image processing." *Microprocessors and Microsystems* 80 (2020): 103535.

195. Cao, Yu. "Fast swimming motion image segmentation method based on symmetric difference algorithm." *Microprocessors and Microsystems* 80: 103541.

196. Hegazy, Habiba, Mohamed Abdelsalam, Moustafa Hussien, Seif Elmosalamy, Yomna MI Hassan, Ayman M. Nabil, and Ayman Atia. "IPingPong: A Real-time Performance Analyzer System for Table Tennis Stroke’s Movements." *Procedia Computer Science* 175 (2020): 80-87.

197. Baclig, Maria Martine, Noah Ergezinger, Qipei Mei, Mustafa Gül, Samer Adeeb, and Lindsey Westover. "A Deep Learning and Computer Vision Based Multi-Player Tracker for Squash." *Applied Sciences* 10, no. 24 (2020): 8793.

198. Brumann, Christopher, Markus Kukuk, and Claus Reinsberger. "Evaluation of Open-Source and Pre-Trained Deep Convolutional Neural Networks Suitable for Player Detection and Motion Analysis in Squash." *Sensors* 21, no. 13 (2021): 4550.

199. Wang, Shaobo, Yuan Xu, Yanghao Zheng, Mingcheng Zhu, Haodong Yao, and Zhiyong Xiao. "Tracking a golf ball with high-speed stereo vision system." *IEEE Transactions on Instrumentation and Measurement* 68, no. 8 (2018): 2742-2754.

200. Zhi-chao, Cao, and Lingling Zhang. "Key pose recognition toward sports scene using deeply-learned model." *Journal of Visual Communication and Image Representation* 63 (2019): 102571.

201. Liu, Hengyue, and BirBhanu. "Pose-Guided R-CNN for Jersey Number Recognition in Sports." In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops*, pp. 0-0. 2019.

202. Pobar, Miran, and Marina Ivašić-Kos. "Detection of the leading player in handball scenes using Mask R-CNN and STIPS." In *Eleventh International Conference on Machine Vision (ICMV 2018)*, vol. 11041, p. 110411V. International Society for Optics and Photonics, 2019.

203. Van Zandycke, Gabriel, and Christophe De Vleeschouwer. "Real-time CNN-based Segmentation Architecture for Ball Detection in a Single View Setup." In *Proceedings Proceedings of the 2nd International Workshop on Multimedia Content Analysis in Sports*, pp. 51-58. 2019.
204. Buric, Matija, Miran Pobar, and Marina Ivašić-Kos. "Object detection in sports videos."
In *2018 41st International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO)*, pp. 1034-1039. IEEE, 2018.

205. Buric, Matija, Miran Pobar, and Marina Ivašić-Kos. "Adapting YOLO network for ball and
player detection." In *Proceedings of the 8th International Conference on Pattern Recognition
Applications and Methods (ICPRAM 2019)*, pp. 845-851. 2019.

206. Pobar, Miran, and Marina Ivasic-Kos. "Active Player Detection in Handball Scenes Based
on Activity Measures." *Sensors* 20, no. 5 (2020): 1475.

207. Komorowski, Jacek, Grzegorz Kurzejamski, and Grzegorz Sarwas. "Deepball: Deep
network ball detector." *arXiv preprint arXiv:1902.07304* (2019).

208. Liu, Wei. "Beach sports image detection based on heterogeneous multi-
processor and
convolutional neural network." *Microprocessors and Microsystems* 82 (2021): 103910.

209. Zhang, Ruiheng, Lingxiang Wu, Yukun Yang, Wanneng Wu, Yueqiang Chen, and Min
Xu. "Multi-camera multi-player tracking with deep player identification in sports video." *Pattern
Recognition* 102 (2020): 107260.

210. Karungaru, Stephen, Kenji Matsuura, Hiroki Tanioka, Tomohito Wada, and Naka Gotoda.
"Ground Sports Strategy Formulation and Assistance Technology Develpomnt: Player Data
Acquisition from Drone Videos." In *2019 8th International Conference on Industrial Technology
and Management (ICITM)*, pp. 322-325. IEEE, 2019.

211. Hui, Qiuli. "Motion video tracking technology in sports training based on Mean-Shift
algorithm." *The Journal of Supercomputing* 75, no. 9 (2019): 6021-6037.

212. Castro, Roberto López, and Diego Andrade Canosa. "Using Artificial Vision Techniques
for Individual Player Tracking in Sport Events." In *Multidisciplinary Digital Publishing Institute
Proceedings*, vol. 21, no. 1, p. 21. 2019.

213. Buric, Matija, Marina Ivašić-Kos, and Miran Pobar. "Player Tracking in Sports Videos."
In *19th IEEE International Conference on Computer and Information Technology (CIT 2019)*.
2019.

214. Moon, Sungwon, Jiwon Lee, Dowon Nam, Wonyoung Yoo, and Wonjun Kim. "A
comparative study on preprocessing methods for object tracking in sports events." In *2018 20th
International Conference on Advanced Communication Technology (ICACT)*, pp. 460-462. IEEE,
2018.

215. Xing, Junliang, Haizhou Ai, Liwei Liu, and Shihong Lao. "Multiple player tracking in sports
video: A dual-mode two-way bayesian inference approach with progressive observation
mapping." (2011).

216. Liang, Qiaokang, Wanneng Wu, Yukun Yang, Ruiheng Zhang, Yu Peng, and Min Xu.
"Multi-Player Tracking for Multi-View Sports Videos with Improved K-Shortest Path
algorithm." *Applied Sciences* 10, no. 3 (2020): 864.

217. Lu, Wei-Lwun, Jo-Anne Ting, James J. Little, and Kevin P. Murphy. "Learning to track
and identify players from broadcast sports videos." *IEEE transactions on pattern analysis and
machine intelligence* 35, no. 7 (2013): 1704-1716.

218. Huang, Yu-Chuan, I-No Liao, Ching-Hsuan Chen, Tsi-Ui Ik, and Wen-Chih Peng.
"TrackNet: A Deep Learning Network for Tracking High-speed and Tiny Objects in Sports
Applications." In *2019 16th IEEE International Conference on Advanced Video and Signal Based
Surveillance (AVSS)*, pp. 1-8. IEEE, 2019.

219. Xing, Junliang, Haizhou Ai, Liwei Liu, and Shihong Lao. "Multiple player tracking in sports
video: A dual-mode two-bayesian inference approach with progressive observation
mapping." *IEEE Transactions on image Processing* 20, no. 6 (2010): 1652-1667.

220. Tan, Shaqing, and Ruoyu Yang. "Learning similarity: Feature-aligning network for few-
shot action recognition." In *2019 International Joint Conference on Neural Networks (IJCNN)*, pp.
1-7. IEEE, 2019.

221. Ullah, Amin, Jamil Ahmad, Khan Muhammad, Muhammad Sajjad, and Sung Wook Baik.
"Action recognition in video sequences using deep bi-directional LSTM with CNN features." *IEEE
Access* 6 (2017): 1155-1166.
Russo, Mohammad Ashraf, Laksono Kurniadi, and Kang-Hyun Jo. "Classification of sports videos with combination of deep learning models and transfer learning." In 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1-5. IEEE, 2019.

Santiago, Catarina B., Armando Sousa, Luís Paulo Reis, and Maria Luísa Estriga. "Real-time colour based player tracking in indoor sports." In Computational Vision and Medical Image Processing, pp. 17-35. Springer, Dordrecht, 2011.

Waltner, Georg, Thomas Mauthner, and Horst Bischof. "Indoor activity detection and recognition for sport games analysis." arXiv preprint arXiv:1404.6413 (2014).

Soomro, Khurram, and Amir R. Zamir. "Action recognition in realistic sports videos." In Computer vision in sports, pp. 181-208. Springer, Cham, 2014.

Xu, Ke, Xinghao Jiang, and Tanfeng Sun. "Two-stream dictionary learning architecture for action recognition." IEEE Transactions on Circuits and Systems for Video Technology 27, no. 3 (2017): 567-576.

Chaudhury, Subhajit, Daiki Kimura, Phongtharin Vinayavekhin, Asim Munawar, Ryuki Tachibana, Koji Ito, Yuki Inaba, Minoru Matsumoto, Shuji Kidokoro, and Hiroki Ozaki. "Unsupervised Temporal Feature Aggregation for Event Detection in Unstructured Sports Videos." In 2019 IEEE International Symposium on Multimedia (ISM), pp. 9-97. IEEE, 2019.

Li, Yedong, Hongmei He, and Zhixin Zhang. "Human motion quality assessment toward sophisticated sports scenes based on deeply-learned 3D CNN model." Journal of Visual Communication and Image Representation 71 (2020): 102702.

Chen, Hua-Tsung, Chien-Li Chou, Wei-Chin Tsai, Suh-Yin Lee, and Bao-Shuh P. Lin. "HMM-based ball hitting event exploration system for broadcast baseball video." Journal of Visual Communication and Image Representation 23, no. 5 (2012): 767-781.

Punchihewa, Niroshan G., Go Yamako, Yuu Fukao, and Etsuo Chosa. "Identification of key events in baseball hitting using inertial measurement units." Journal of biomechanics 87 (2019): 157-160.

Kapela, Rafał, Aleksandra Świętlicka, Andrzej Rybarczyk, and Krzysztof Kolanowski. "Real-time event classification in field sport videos." Signal Processing: Image Communication 35 (2015): 35-45.

Maksai, Andrii, Xinchao Wang, and Pascal Fua. "What players do with the ball: A physically constrained interaction modeling." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 972-981. 2016.

Goud, P. Sri Harsha Vardhan, Y. Mohana Roopa, and B. Padmaja. "Player Performance Analysis in Sports: with Fusion of Machine Learning and Wearable Technology." In 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), pp. 600-603. IEEE, 2019.

Park, Young Joon, Hyung Seok Kim, Donghwa Kim, Hankyu Lee, Seoung Bum Kim, and Pilsung Kang. "A deep learning-based sports player evaluation model based on game statistics and news articles." Knowledge-Based Systems 138 (2017): 15-26.

Tejero-de-Pablos, Antonio, Yuta Nakashima, Tomokazu Sato, Naokazu Yokoya, Marko Linna, and Esa Rahtu. "Summarization of user-generated sports video by using deep action recognition features." IEEE Transactions on Multimedia 20, no. 8 (2018): 2000-2011.

Javed, Ali, AunlIrtaza, Yasmeen Khaliq, Hafiz Malik, and Muhammad Tariq Mahmood. "Replay and key-events detection for sports video summarization using confined elliptical local ternary patterns and extreme learning machine." Applied Intelligence 49, no. 8 (2019): 2899-2917.

Rafiq, Muhammad, Ghazala Rafiq, Rockson Agyeman, Seong-Il Jin, and Gyu Sang Choi. "Scene Classification for Sports Video Summarization Using Transfer Learning." Sensors 20, no. 6 (2020): 1702.

Khan, Abdullah Aman, Jie Shao, Waqar Ali, and Saifullah Tumrani. "Content-Aware Summarization of Broadcast Sports Videos: An Audio–Visual Feature Extraction Approach." Neural Processing Letters (2020): 1-24.
239. Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." *Advances in neural information processing systems* 25 (2012): 1097-1105.

240. Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet classification with deep convolutional neural networks." *Communications of the ACM* 60, no. 6 (2017): 84-90.

241. Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." *arXiv preprint arXiv:1409.1556* (2014).

242. Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with convolutions." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1-9. 2015.

243. He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770-778. 2016.

244. Iandola, Forrest N., Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, and Kurt Keutzer. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size." *arXiv preprint arXiv:1602.07360* (2016).

245. Howard, Andrew G., Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." *arXiv preprint arXiv:1704.04861* (2017).

246. Zhang, Yifu, Chunyu Wang, Xinggang Wang, Wenjun Zeng, and Wenyu Liu. "Fairmot: On the fairness of detection and re-identification in multiple object tracking." *arXiv preprint arXiv:2004.01888* (2020).

247. Hu, Hou-Ning, Yung-Hsu Yang, Tobias Fischer, Trevor Darrell, Fisher Yu, and Min Sun. "Monocular Quasi-Dense 3D Object Tracking." *arXiv preprint arXiv:2103.07351* (2021).

248. Chaabane, Mohamed, Peter Zhang, J. Ross Beveridge, and Stephen O'Hara. "Deft: Detection embeddings for tracking." *arXiv preprint arXiv:2102.02267* (2021).

249. Wang, Zhongdao, Liang Zheng, Yixuan Liu, Yali Li, and Shengjin Wang. "Towards real-time multi-object tracking." In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI 16*, pp. 107-122. Springer International Publishing, 2020.

250. Xu, Yihong, Aljosha Osep, Yutong Ban, Radu Horaud, Laura Leal-Taixe, and Xavier Alameda-Pineda. "How to train your deep multi-object tracker." In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6787-6796. 2020.
257. Sun, Peize, Yi Jiang, Rufeng Zhang, Enze Xie, Jinkun Cao, Xinting Hu, Tao Kong, Zehuan Yuan, Changhu Wang, and Ping Luo. "Transtrack: Multiple-object tracking with transformer." arXiv preprint arXiv:2012.15460 (2020).

258. Xu, Zhenbo, Wei Zhang, Xiao Tan, Wei Yang, Xiangbo Su, Yuchen Yuan, Hongwu Zhang, Shiwei Wen, Erri Ding, and Liusheng Huang. "PointTrack++ for Effective Online Multi-Object Tracking and Segmentation." arXiv preprint arXiv:2007.01549 (2020).

259. Gupta, Agrim, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi. "Social gan: Socially acceptable trajectories with generative adversarial networks." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2255-2264. 2018.

260. Phan-Minh, Tung, Elena Corina Grigore, Freddy A. Boulton, Oscar Beijbom, and Eric M. Wolff. "Covernet: Multimodal behavior prediction using trajectory sets." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14074-14083. 2020.

261. Li, Xin, Xiaowen Ying, and Mooi Choo Chuah. "Grip: Graph-based interaction-aware trajectory prediction." In 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 3960-3966. IEEE, 2019.

262. Salzmann, Tim, Boris Ivanovic, Punarjay Chakravarty, and Marco Pavone. "Trajectron++: Dynamically-feasible trajectory forecasting with heterogeneous data." In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVIII 16, pp. 683-700. Springer International Publishing, 2020.

263. Mohamed, Abdallah, Kun Qian, Mohamed Elhoseiny, and Christian Claudel. "Social-stgcn: A social spatio-temporal graph convolutional neural network for human trajectory prediction." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14424-14432. 2020.

264. Amiran, Javad, Bingqing Zhang, Francisco Valente Castro, Juan Jose Baldeolmar, Jean-Bernard Hayet, and Julien Pettré. "OpentraJ: Assessing prediction complexity in human trajectories datasets." In Proceedings of the Asian Conference on Computer Vision. 2020.

265. Yu, Cunjun, Xiao Ma, Jiawei Ren, Haiyu Zhao, and Shuai Yi. "Spatio-temporal graph transformer networks for pedestrian trajectory prediction." In European Conference on Computer Vision, pp. 507-523. Springer, Cham, 2020.

266. Wang, Chuhua, Yuchen Wang, Mingze Xu, and David J. Crandall. "Stepwise Goal-Driven Networks for Trajectory Prediction." arXiv preprint arXiv:2103.14107 (2021).

267. Gu, Xiaofan, XinweiXue, and Feng Wang. "Fine-Grained Action Recognition on a Novel Basketball Dataset." In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2563-2567. IEEE, 2020.

268. Voeikov, Roman, Nikolay Falaleev, and Ruslan Baikulov. "TTNet: Real-time temporal and spatial video analysis of table tennis." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 884-885. 2020.

269. Giancola, Silvio, Mohieddine Amine, TarekDghaily, and Bernard Ghanem. "Soccernet: A scalable dataset for action spotting in soccer videos." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1711-1721. 2018.

270. Coniglio, Davide, Paolo Rota, Francesco Setti, Chiara Bassetti, Nicola Conci, NicuSebe, and Marco Cristani. "The s-hock dataset: Analyzing crowds at the stadium." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2039-2047. 2015.

271. Karpathy, Andrej, George Toderici, SankethShetty, Thomas Leung, Rahul Sukthankar, and Li Fei-Fei. "Large-scale video classification with convolutional neural networks." In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 1725-1732. 2014.

272. Pettersen, Svein Arne, Dag Johansen, Håvard Johansen, Vegard Berg-Johansen, Vamsidhar Reddy Gaddam, Asgeir Mortensen, RagnarLangseth, CarstenGriwodz,
HåkonKvaleStensland, and PålHalvorsen. "Soccer video and player position dataset." In Proceedings of the 5th ACM Multimedia Systems Conference, pp. 18-23. 2014.

273. Niebles, Juan Carlos, Chih-Wei Chen, and Li Fei-Fei. "Modeling temporal structure of decomposable motion segments for activity classification." In European conference on computer vision, pp. 392-405. Springer, Berlin, Heidelberg, 2010.

274. D'Orazio, Tiziana, Marco Leo, Nicola Mosca, Paolo Spagnolo, and Pier Luigi Mazzeo. "A semi-automatic system for ground truth generation of soccer video sequences." In 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 559-564. IEEE, 2009.

275. De Vleeschouwer, Christophe, Fan Chen, Damien Delannay, Christophe Parisot, Christophe Chaudy, Eric Martrou, and Andrea Cavallaro. "Distributed video acquisition and annotation for sport-event summarization." NEM summit 8 (2008).

276. Zhang, Wei Chen, Zhiguang Liu, Liuyang Zhou, Howard Leung, and Antoni B. Chan. "Martial arts, dancing and sports dataset: A challenging stereo and multi-view dataset for 3d human pose estimation." Image and Vision Computing 61 (2017): 22-39.

277. Feng, Na, Zikai Song, Junqing Yu, Yi-Ping Phoebe Chen, Yizhu Zhao, Yunfeng He, and Tao Guan. "SSET: a dataset for shot segmentation, event detection, player tracking in soccer videos." Multimedia Tools and Applications 79, no. 39 (2020): 28971-28992.

278. Liang, Tianxiang. "Swimming sports action recognition based on wireless sensor and FPGA." Microprocessors and Microsystems (2020): 103433.

279. Dou, Zi. "Research on Virtual Simulation of Basketball Technology 3D Animation Based on FPGA and Motion Capture System." Microprocessors and Microsystems (2020): 103679.

280. Yin, Le, and Rui He. "Target state recognition of basketball players based on video image detection and FPGA." Microprocessors and Microsystems (2020): 103340.

281. Bao, Hongshu, and Xiang Yao. "Dynamic 3D Image Simulation of Basketball Movement Based on Embedded System and Computer Vision." Microprocessors and Microsystems (2020): 103655.

282. Junjun, Gun. "Basketball action recognition based on FPGA and particle image." Microprocessors and Microsystems (2020): 103334.

283. Avaya: Connected Sports Fans 2016 – Trends on the Evolution of Sports Fans Digital Experience with Live Events; June 2016

284. H.-E Innovations, 2017. Hawk-Eye in Cricket. https://www.hawkeyeinnovations.com/sports/cricket Accessed 12 Feb 2017.

285. H.-E Innovations, 2017d. Hawk-Eye Tennis System. https://www.hawkeyeinnovations.com/sports/tennis Accessed 12 Feb 2017

286. H.-E Innovations, 2017b. Hawk-Eye Goal Line Technology. https://www.hawkeyeinnovations.com/products/ball-tracking/goal-line-technology Accessed 12 Feb 2017.

287. STATS, 2017. STATS SportVU ®: Player Tracking and Predictive Analytics. https://www.statsperform.com/team-performance/football/optical-tracking/ Accessed 12 Feb 2017.

288. ChyronHego, 2017. Product Information Sheet TRACAB Optical Tracking. https://chyronhego.com/tracab-gen5-provides-demo-of-semi-automated-offside-technology-developments-to-the-football-world/ Accessed 12th Feb 2017.

289. Adesida, Yewande, Enrica Papi, and Alison H. McGregor. "Exploring the role of wearable technology in sport kinematics and kinetics: A systematic review." Sensors 19, no. 7 (2019): 1597.

290. Rana, Manju, and Vikas Mittal. "Wearable sensors for real-time kinematics analysis in sports: a review." IEEE Sensors Journal 21, no. 2 (2020): 1187-1207.
291. Naik, B.; Hashmi, M.F. YOLOv3-SORT detection and tracking player-ball in soccer sport. Journal of Electronic Imaging 2023, 32, 011003. doi:10.1117/1.JEI.32.1.011003.
292. Naik, B.; Hashmi, M.F.; Geem, Z.W.; Dhanraj, B.N. DeepPlayer-Track: Player and Referee Tracking with Jersey Color Recognition in Soccer. IEEE Access 2022, pp. 1–1. doi:10.1109/ACCESS.2022.3161441.

Abbreviations:

ANN = Artificial Neural Network
AI = Artificial intelligence
AUC = Area under Curve
BEI-CNN = Basketball Energy Image - Convolutional Neural Network
Bi-LSTM = Bi-directional Long Short Term Memory
CNN = Convolutional Neural Network
CPU = Central Processing Unit
CUDA = Compute Unified Device Architecture
DELM = Deep Extreme Learning Machine
DeepMOT = Deep Multi Object Tracking
Deep-SORT = Simple Online Real Time Tracking with Deep Association
DRS = Decision Review System
ELM = Extreme Learning Machine
Faster-RCNN = Faster-Regional with Convolutional Neural Network
FPGA = Field Programmable Gate Array
GAN = Generative Adversarial Network
GDA = Gaussian Discriminant Analysis
GPU = Graphical Processing Unit
GRU-CNN = Gated Recurrent Unit - Convolutional Neural Network
GTX = Giga Texel Shader eXtreme
HOG = Histogram of Oriented Gradients
HPN = Hierarchical Policy Network
KNN = K-Nearest Neighbor
LSTM = Long Short Term Memory
Mask R-CNN = Mask Region-based Convolutional Neural Network
NBA = National Basketball Association
NHL = National Hockey League
R-CNN = Region-based Convolutional Neural Network
ResNet = Residual neural Network
RISC = Reduced Instruction Set Computer
RNN = Recurrent Neural Networks
SOTA = State Of The Art
SSD = Single-Shot Detector
SVM = Support Vector Machine
VAR = Video Assistant Referee
VGG = Visual Geometry Group
YOLO = You Only Look Once