Complications of hip preserving surgery

Markus S. Hanke1
Till D. Lerch2
Florian Schmaranzer2
Malin K. Meier1
Simon D. Steppacher1
Klaus A. Siebenrock1

Preoperative evaluation of the pathomorphology is crucial for surgical planning, including radiographs as the basic modality and magnetic resonance imaging (MRI) and case-based additional imaging (e.g. 3D-CT, abduction views).

Hip arthroscopy (HAS) has undergone tremendous technical advances, an immense increase in use and the indications are getting wider. The most common indications for revision arthroscopy are labral tears and residual femoroacetabular impingement (FAI).

Treatment of borderline developmental dysplastic hip is currently a subject of controversy. It is paramount to understand the underlying problem of the individual hip and distinguish instability (dysplasia) from FAI, as the appropriate treatment for unstable hips is periacetabular osteotomy (PAO) and for FAI arthroscopic impingement surgery.

PAO with a concomitant cam resection is associated with a higher survival rate compared to PAO alone for the treatment of hip dysplasia. Further, the challenge for the surgeon is the balance between over- and undercorrection.

Femoral torsion abnormalities should be evaluated and evaluation of femoral rotational osteotomy for these patients should be incorporated to the treatment plan.

Keywords: femoroacetabular impingement; hip arthroscopy; hip dysplasia; periacetabular osteotomy; SCFE; surgical hip dislocation

Cite this article: EORT Open Rev 2021;6:472-486.
DOI: 10.1302/2058-5241.6.210019

Over the past two decades, substantial increase in the knowledge of pre-arthritic conditions of the hip joint including femoroacetabular impingement, development dysplasia of the hip, slipped capital femoral epiphysis, residual deformities after Perthes disease, torsional abnormalities together with the development of new surgical approaches and procedures, have revolutionized the field of joint preserving surgery. The utilization of joint preservation operations including hip arthroscopy, surgical hip dislocation, and periacetabular osteotomy (PAO) has increased over time.

The purpose of this article is to review current knowledge about complications of joint preservation procedures of the hip.

Preoperative workup

A workup of the patient’s symptoms, clinical findings and standardized radiographic workup is mandatory in patients eligible for joint preserving surgery. Detailed understanding of the location and extension of the deformity is essential for the correct choice of surgical technique and success of the surgical treatment. Patients may present typical symptoms (e.g. groin pain with hip rotation, while sitting or during sport activities; trochanteric pain). A detailed clinical examination of the hip may further present typical findings (e.g. restricted range of motion, positive anterior impingement sign).

Conventional radiographs remain the basis of the radiographic workup. These should include supine anteroposterior (AP) pelvic views to assess radiographic joint degeneration, acetabular coverage, acetabular version and gross anatomy of the pelvis. To detect accompanying cam deformities, which are typically located anterosuperiorly, an axial view is needed. In the absence of severe joint space narrowing, magnetic resonance imaging (MRI) of the hip should be performed in all patients evaluated for joint preserving surgery. At first, fluid-sensitive images with a large field of view should be obtained to screen for associated inflammatory or neoplastic conditions surrounding the hip joint. Fast axial images of the pelvis and the distal femoral condyles should be acquired to assess femoral torsion. Then dedicated high-resolution images of the hip at field strengths of 1.5 T or 3 T in the coronal, axial-oblique/axial and sagittal orientations should be performed to assess...
intraarticular lesions. Acquisition of radial images is essential to provide a circumferential assessment of the femoral head neck junction. Although promising results have been demonstrated for non-contrast MRI of the hip at 3 T, direct MR arthrography is still the current diagnostic gold standard in the detection of chondrolabral lesions. MR arthograms provide crucial prognostic information as extensive cartilage defects, acetabular cysts and osteophyte formations indicate a higher risk for failure of femoroacetabular impingement (FAI) surgery in the long term. Injection of intraarticular contrast agent further enables application of leg traction to achieve joint distraction and has shown promising early results to improve the visualization of intraarticular lesions.

Further on, selective additional imaging may be added. To assess for joint congruency, functional views are performed. Especially in dysplastic hips there is typically an apparent joint space narrowing due to subluxation and for differentiation the abduction view is used. New biochemical cartilage MRI techniques such as delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) or T2* imaging offer the ability to evaluate chondral defects more accurately before surgical therapy. Three-dimensional computerized tomography (3D CT) scans enable exact visualization of the bony deformities, and specific software for dynamic range of motion simulation can be very effective to correct the dominant osseous deformity and plan surgical correction. This is especially true for surgical planning in cases with suspected extraarticular FAI. 3D MRI has great potential to replace 3D CT for rendering of 3D models of the hip joint and further analysis for a non-invasive improved surgical decision-making in these mostly young patients.

Hip arthroscopy (HAS)

Historically the treatment of hip pathologies including FAI and labral tears has required open surgical hip dislocation. Over the past years HAS has undergone tremendous technical advances, an immense increase in use and the indications are getting wider. Thus, a wide range of complications is more frequently seen and reported (Table 1; Fig. 1). Generally complications are rare (1.3–4.2%), but may be underreported. The early arthroscopic treatment method of labral tears was debridement. Based on increasing understanding and research on labral function and its relation to joint stability, management has progressed to favor repair when sufficient tissue is available or even reconstruction in cases in which the labrum was not amenable to repair. Reestablishment of suction seal and normal biomechanics of the hip joint is allowed by labral repair. This has further been substantiate in several case-control studies comparing patient-reported outcomes (PROs) of labral repair to debridement reporting significantly better outcomes for patients undergoing repair. Further on, reconstruction has become a more widely used treatment option in cases where the labrum is not amenable to repair. Several studies have demonstrated that reconstruction can closely approximate the native labrum and lead to favourable outcomes in the short term despite variable techniques, graft type and indications.

The most common indications for revision arthroscopy are labral tears and residual FAI. In a systematic review labral tears were commonly treated with labral reconstruction at the time of revision. The corresponding improvement in outcomes may suggest that labral degeneration is one of the leading sources of pain in the failed hip arthroscopy. In systematic reviews of revision hip arthroscopy, residual cam or pincer lesions not properly addressed in up to 37% of the patients undergoing revision HAS. On the other hand over-resection may cause fractures of the femoral neck, disruption of the labral seal, or mechanical symptoms. Femoral neck fractures may occur due to weakening of the bone and thus most

Table 1. Complications of hip arthroscopy (HAS) are listed below with grading according to Sink et al.118

Grade	Complication without clinical relevance	Prevalence	Reference
1	Superficial wound infection	< 1%	119
	Heterotopic ossification Grade 1–2 (Brooker)	< 1–6%	119–122
	Instrument breakage	< 1%	119,122,123
	Iatrogenic chondral injury	3%	119,124
	Iatrogenic labral injury	< 1–20%	119,125
	Hypothermia	2.7%	126
2	Complication with outpatient or medication treatment		
	Permanent nerve injury	< 1%	122
	Perineal skin damage	< 1%	119,122,123,128
	Deep wound infection	< 1%	119,129
	Deep vein thrombosis	1–3.7%	119,130
3	Complication with surgical therapy or unplanned hospitalization		
	Femoral neck fracture	< 1%	119,125
	Scrotal skin necrosis	< 1%	131
	Avascular necrosis	< 1%	119,123
	Heterotopic ossifications Grade 3–4 (Brooker)	< 1%	120
	Extraarticular fluid extravasation	< 1–1%	119,122,123
A cadaveric study found that the load-bearing ability of the bone was not affected if resection of up to 30% of the anterolateral head–neck junction was performed. The sealing effect is dependent on the fit of the labrum against the femoral head and thus over-resection may disrupted this seal of the labrum against the over-resected area.

This leads to impaired joint lubrication and quicker cartilage consolidation.

For arthroscopic treatment of FAI less favourable outcomes have been reported for patients of older age groups (> 45 years), female sex, those with elevated body mass index (BMI), osteoarthritic changes, decreased joint space (< 2 mm), chondral defects, increased lateral centre edge (LCE) angle and labral debridement compared with labral repair.

The ideal treatment of borderline developmental dysplastic hip (BDDH) is currently a subject of controversy. It is paramount to understand the underlying problem of the individual hip and distinguish instability (dysplasia) from FAI as the appropriate treatment for unstable hips is PAO and for FAI arthroscopic impingement surgery. The consequences of hip arthroscopy in unstable hips can be devastating. Mostly, BDDH is defined as LCEA of 18–25° and to further evaluate stability the Femoro-Epiphyseal Acetabular Roof (FEAR) Index was introduced, which helps to separate the indications of PAO or hip arthroscopy. Among patients with an LCEA of ≤ 25°, a FEAR Index of < 5° is a moderate indication for hip arthroscopy. Instability due to deficient coverage further leads to increased loads to the labrum, resulting in labral hypertrophy and an increased iliocapsularis-to-rectus-femoris ratio is suggestive for instability in BDDH. Surgically, capsular closure or capsular plication is paramount. Failure to completely close the capsulotomy site may lead to iatrogenic instability and patients may be more likely to have residual symptoms from capsular laxity or capsular defects.

Surgical hip dislocation (SHD)

Open surgical hip dislocation (SHD) offers the possibility of circumferential corrections and can be combined with additional procedures to relieve intra- and extraarticular impingement and associated collateral damages. The technique was first described by Ganz et al. in 2001 as a technique for safe surgical dislocation of the hip after detailed analysis of the blood supply of the femoral head. The approach can be used for surgical correction of pre-arthritis conditions such as FAI, residual Perthes deformity (Legg-Calvé-Perthes disease), slipped capital femoral epiphysis (SCFE), avascular necrosis of the femoral head (AVN), synovial disease with formation of loose bodies and for open reduction and internal fixation (ORIF) of acetabular fractures.
The rate of severe complications after SHD for FAI is generally low (Table 2). Persisting groin pain can be present in approximately 10% to 15% of patients after open FAI surgery. Insufficient correction of the femoral and acetabular deformity, advanced osteoarthritis and intraarticular adhesions are causes of persistent groin pain after FAI surgery. Patients often report no or only a short pain-free interval after surgery when a persistent FAI morphology is present. Residual deformity is the most common cause of persistent hip pain and persistent FAI after previous FAI surgery. Adhesions may be present in up to 62% of patients undergoing revision surgery. Typical locations for adhesions are between the joint capsule and the former resection area of the femoral neck (Fig. 5), and between the labrum and the joint capsule. Diagnostics are performed with MR arthrography, and treatment of painful adhesions is generally by HAS. Inadequate postoperative mobilization and patients aged under 30 years are at increased risk.

Eighty per cent of patients undergoing SHD for correction of anterior intraarticular FAI have a good clinical result without osteoarthritis progression and no total hip
arthroplasty at 10-year follow-up. One could count failure of the procedure and disease progression as complications, and several predictive factors for an unfavourable outcome after SDH have been reported (Table 3). In a retrospective study, a 10-year survivorship of 82% was reported after SHD for acetabular fractures involving the posterior wall or transverse and posterior wall or others. Marginal impaction, duration of surgery, and age of patient.

Bernese periacetabular osteotomy (PAO)
The PAO is an accepted surgical technique for treatment of both hip dysplasia and pincer-type FAI due to...
The aim of PAO surgery is to prevent or delay secondary osteoarthritis while improving hip biomechanics. In contrast to different pelvic osteotomies, the posterior column remains intact during PAO. This improves the stability of the reoriented acetabular fragment and facilitates postoperative rehabilitation at the same time. The birth canal remains intact and allows normal birth. The overall complication rate is relatively low considering the complexity of the surgery. The key point for a successful long-term outcome is an optimal reorientation of the acetabulum avoiding under- or over-correction for both hip dysplasia and acetabular retroversion.

For the treatment of acetabular retroversion with anteverting PAO, a 10-year total hip arthroplasty (THA)-free survival of 100% has been described. In addition, when comparing PAO and acetabular rim trimming for the treatment of acetabular retroversion, the first exhibited a higher long-term survival rate. With optimal reorientation and a spherical femoral head, the cumulative survivorship of the hip after 10 years is 90.5% for treatment of hip dysplasia. For the very first 75 patients, the cumulative THA-free survivorship at 20-year follow-up was 60% and at 30-year follow-up was 43%. The PAO has become the gold standard for the surgical therapy of hip dysplasia in adolescents and adult patients.

Although PAO is a rather complex operation, only few severe complications have been described so far (Table 4). In a recent review, analysing 4070 hips that underwent PAO, a complication rate of 7% was described. Reduced complication rates were described for minimally invasive approaches. Comparison between the studies remains difficult because of the heterogeneity of the studies and inconsistent training of the surgeons. A higher complication rate was described for patients with a BMI > 30. The most common complications were transient or permanent damage of the lateral femoral cutaneous nerve with a prevalence of up to 30%, asymptomatic heterotopic ossification being the most common grade I/II complication with a prevalence of 20% and protracted union with a prevalence of up to 15% (Fig. 6). The most common complication requiring revision surgery was intraarticular osteotomy, with a prevalence of 1–15.5%. Asymptomatic heterotopic ossification being the most common Grade I/II complication with a prevalence of 20% and protracted union with a prevalence of up to 15% (Fig. 6). The most common complication requiring revision surgery was intraarticular osteotomy, with a prevalence of 1–15.5%. Complications could be reduced with growing experience and the learning curve. The reported prevalence of over-/under-correction is 22% while the LCE angle was more often undercorrected than over-corrected (20% versus 2%). Hips with more severe dysplasia preoperatively were at higher risk for under-correction assessed with the LCE angle.

The prevalence of over-/under-correction was probably underestimated before the description of FAI.
Theoretically, through over-correction during PAO, secondary hip impingement can be induced (Fig. 7). This can lead to iatrogenic acetabular retroversion or pincer-type deformity, thereby reducing range of motion and requiring revision osteotomy.

Failure to correct associated cam deformity probably had a higher prevalence before the description of FAI in 2003. Currently, this complication can be easily avoided with concomitant cam resection, either with open capsulotomy or with concomitant hip arthroscopy. This is important because a non-spherical femoral head is associated with lower long-term survival. In the presence of a deformity of the proximal femur (valgus hip or increased femoral antetorsion), a concomitant proximal femoral osteotomy should be evaluated. Up to 23% of patients with hip dysplasia had concomitant high femoral antetorsion (>35°), in a recent prevalence study.

Femoral torsion correction

Abnormal femoral torsion has been described as an additional possible reason for FAI. Increased or decreased femoral torsion can cause extraarticular hip impingement. Increased femoral torsion can cause posterior extraarticular ischiofemoral impingement. On the other hand, decreased femoral torsion can cause anterior extraarticular subspine hip impingement; this is even worse if combined with mixed-type FAI. Surgical treatment consists of hip arthroscopy or surgical hip dislocation combined with proximal femoral osteotomies. Derotational femoral osteotomy is performed for hips with increased femoral torsion and vice versa. Few outcome studies have evaluated this treatment after the description of FAI in 2003. Therefore, it is questionable whether the outcome and complications of studies before 2003 should be compared with today’s treatment. Outcomes of recently published case series analysing patients who underwent femoral derotation osteotomy showed good clinical outcome. Most of the patients reported that they would undergo surgery again. However, for the treatment of decreased femoral torsion, usually hip arthroscopy with cam resection was performed. Some authors reported inferior outcomes of patients with decreased femoral torsion compared to patients with normal femoral torsion. Therefore, some authors reported that decreased femoral torsion or femoral retrotorsion should be regarded as a contraindication for hip arthroscopy. Others recommended evaluation of femoral rotational osteotomy for these patients.

Complications associated with the treatment of patients with torsional deformities of the femur depend on the treatment. The most common revision surgery after closed treatment with an intramedullary nail, is hardware removal. Hardware removal was performed in the majority of patients in a recent case series of 55 femoral derotational osteotomies. A nonunion rate of 2% and an infection rate of 2% were reported, while 4% underwent THA. After open surgical treatment, the most common complication requiring revision surgery was also implant removal. Nonunion of the proximal femoral osteotomy

Table 4. Complications of periacetabular osteotomy (PAO) are listed below, with grading according to Sink et al.

Grade	Complication	Prevalence	Reference
1 Complication without clinical relevance	Urinary tract infection	1.5–13%	87,89
	Superficial wound infection	5%	136
	Heterotopic ossifications Grade 1–2 (Brooker)	1.8–15%	87,117
	Postoperative fever	18%	87
2 Complication with outpatient or medication treatment	Paresthesia N. cutaneus femoris lateralis	30%	87
	Paresis N. femoralis	1.6–5.6%	90,138
	Paresis N. ischiadicus	1.5–7%	89,90
	Blood loss (>5 blood conserves administered)	3–8%	87,89
	Avulsion of spina iliaca anterior superior	23%	139
	Deep wound infection	3–15%	87,89
	Discontinuity of the posterior column	1.5–8.5%	87,89
	Fracture of the os ischium	4.3%	90
	Stress fracture ramus inferior os pubis	5%	136
	Protracted union of osteotomies	2.6–15%	78,89
	Nonunion ramus superior os pubis, without revision surgery	6–16%	89,116
3 Complication with surgical therapy or unplanned hospitalization	Deep vein thrombosis, pulmonary embolism	3%	89
	Migration of the acetabular fragment	1.3–5.6%	78,90
	Heterotopic ossifications Grade 3–4 (Brooker) with surgery	1–8.5%	90,91
	Revision surgery for nonunion of the ramus superior os pubis	1%	136
	Revision surgery for haematoma evacuation	5%	87
	Intraarticular osteotomy or fracture	1–15.5%	90,91
4 Total hip arthroplasty or life-threatening complication	Necrosis of the acetabular fragment	4.2%	90
ranged from 0% to 7%.96,100 Previous studies reported nonunion rates of up to 15%, mostly for children.103 Complications after open femoral derotation osteotomy are listed in Table 5. Next to hardware removal, subsequent surgeries included hip arthroscopy for adhesiolysis96 or implant exchange due to implant failure.100

No predictive factors associated with failures are described in the orthopaedic literature. Tönnis and Heinnecke described in 1999, that various types of femoral osteotomies result in improved clinical outcome,102 unfortunately they did not report on complications associated with these procedures. For femoral rotational osteotomies

Fig. 6 (A) A 39-year-old patient with developmental dysplastic hip (lateral centre edge angle (LCE) of 15°) and preserved joint space. (B) Six weeks postoperatively following periacetabular osteotomy, LCE was 28°. (C) Anteroposterior pelvis view shows nonunion of the osteotomy and stress fracture of the inferior pubic ramus six months postoperatively. (D) A decortication and re-osteosynthesis was performed via ilioinguinal approach.
to correct decreased femoral torsion, Tönnis and Heinecke reported less hip pain and balanced range of motion postoperative.102

SCFE – modified Dunn, pinning

Slipped capital femoral epiphysis (SCFE) is a long-known hip deformity of adolescent patients. Several classifications have been described previously, among them the classification of Tönnis and Heinecke.102

Complication	Grade	Prevalence	Reference
Nonunion of the femoral osteotomy	III	0–7%	100
Deep wound infection	III	2%	95
Total hip arthroplasty	IV	0–4%	95,96
Intraarticular adhesions requiring adhesiolysis	II	12%	96
Hardware removal	–	64–71%	95,96
Fig. 8 (A, B) A 14-year-old boy presenting with hip pain and unstable moderate slipped capital femoral epiphysis (Southwick angle 43° shown in B). (C, D) Magnetic resonance imaging was performed showing joint effusion and bone marrow oedema at the femoral neck but no signs of femoral head necrosis. (E) Postoperative anteroposterior pelvis view six weeks after modified Dunn procedure. (F) Four months postoperative, patient presents with increased pain and radiographic signs of flattening femoral head indicative for avascular necrosis of the femoral head.
severity described Wilson (mild/moderate/severe)104 while Loder105 classified them based on stability (stable/unstable) of SCFE. Untreated SCFE can result in early osteoarthritis, hip pain and THA at young age.106,107 Therefore, different surgical treatments have been performed. In situ pinning is probably the most common treatment for SCFE. Open surgery includes proximal femoral osteotomies and the modified Dunn procedure. This procedure allows anatomical restoration and normalization of hip function but is a difficult surgery. Long-term studies after the modified Dunn procedure showed no or only minimal signs of osteoarthritis.67

Based on various studies on the vascular blood supply to the femoral head, the original technique according to Dunn had been modified. The modification included the development of a retinacular soft tissue flap containing the vascular blood supply to the femoral epiphysis.

According to a recent systematic review108 analysing 58 studies with 2262 hips, the treatment of stable SCFE, in situ pinning using single screw had the lowest AVN rate of 1.4%. Overall, phsyseal osteotomy had the highest AVN rate of 11.1%. Physeal osteotomy exhibited the highest rate of chondrolysis of 9.8%. The highest rate of secondary hip impingement (FAI) was noted in patients with stable SCFE who underwent in situ pinning using single screw (30%). Regarding the development of OA, the highest rate was described for epiphysiodesis (23%) and for in situ pinning using multiple pins (15%).

Analysing the outcome of patients with unstable SCFE, a recent systematic review109 included 25 studies with 679 hips and found an overall AVN rate of 21%. The AVN rate varied between the interventions, varying from 33% from in situ pinning to 5% for open reduction and internal fixation. Further subgroup analysis showed different AVN rates for moderate and severe slips. Timing of surgery (intervention performed within 24 hours or later) remains an important prognostic factor in predicting AVN in these subgroups of SCFE.

Complications associated with treatment of SCFE depend on the treatment approach. Although the modified Dunn procedure is a complex surgery, low rates of AVN were described in Europe. On the other hand, some authors in the US reported a high AVN rate, ranging up to 29% for unstable SCFE (Fig. 8).110 An overall complication rate needing revision surgery was described between 7% and 15% but remains difficult because of the heterogeneity of the included patients.111–114 Some authors performed the modified Dunn procedure exclusively for severe or unstable SCFE. While others performed this procedure for moderate and severe SCFE or for both stable and unstable SCFE. Subsequent surgery for improvement of secondary deformities and impingement ranged from 0% to 16%.111,112,114–117 In Tables 6 and 7 the complications described in the literature are listed in the order of severity according to the classification of Sink.118 In situ pinning, proximal femoral osteotomies and the modified Dunn procedure are associated with long-term survival. The challenge for the surgeon is the patient selection for open surgery and its treatment.

Conclusion

Preoperative evaluation and surgical planning are essential steps in joint preserving surgery. The choice of treatment method is crucial to approach the patient-specific pathomorphology and prevent surgical-related secondary problems such as instability and surgically induced FAI.

Table 6. Complications of different treatments for stable slipped capital femoral epiphysis (SCFE) according to the review by Naseem et al.108 with grading according to Sink et al.118
Complication
AVN
FAI
OA

Note. AVN, avascular necrosis of the femoral head; FAI, femoroacetabular impingement; OA, osteoarthritis; NR, not reported.

Table 7. Complications of different treatments for unstable slipped capital femoral epiphysis (SCFE) according to the review by Alshryda et al.109 with grading according to Sink et al.118
Complication
AVN

Note. AVN, avascular necrosis of the femoral head.

AUTHOR INFORMATION

1Department of Orthopaedic and Trauma Surgery, Inselspital, University of Bern, Bern, Switzerland.
2Department of Diagnostic, Interventional and Pediatric Radiology University Hospital of Bern, Inselspital, University of Bern, Bern, Switzerland.

Correspondence should be sent to: Markus Hanke, Department of Orthopaedic and Trauma Surgery, Inselspital, University of Bern, Freiburgstrasse, 3010 Bern, Switzerland.

Email: markus.hanke@insel.ch.
dislocation of the adult hip a technique with full access to the femoral head and acetabulum

Surgical

4. ganz r, gill tJ, gautier e, ganz k, Krügel n, Berlemann u. Clin Orthop Relat Res 2004;429:262–271. Femoroacetabular impingement: a cause for osteoarthritis of the hip.

2. ganz r, parvizi j, Beck m, leunig m, nötzli h, siebenrock KA. and surgical management trends over time. J Bone Joint Surg Br 2001;83:1119–1124. Femoral antetorsion: implications for planning open hip preservation surgery and hip arthroscopy.

7. sutter r, dietrich tJ, Zingg po, pfirrmann CWA. Semin Musculoskelet Radiol 2019;23:227–251. MRI of cartilage index in hips of patients with femoroacetabular impingement syndrome. Eur Radiol 2015;25:1721–1730. Improving visualization of the central compartment of the hip with direct MR arthrography under axial leg traction: a feasibility study. Acad Radiol 2014;21:1240–1247.

13. Chopra A, Grainger AJ, Dube B, et al. Comparative reliability and diagnostic performance of conventional 3T magnetic resonance imaging and 1.5T magnetic resonance arthrography for the evaluation of internal derangement of the hip. Eur Radiol 2018;28:963–971.

14. Hanke MS, Steppacher SD, Anwander H, Werlen S, Siebenrock KA, Tannast M. What MRI findings predict failure 10 years after surgery for femoroacetabular impingement? Clin Orthop Relat Res 2017;475:192–207.

15. Schmaranzer F, Klauser A, Koger M, et al. Improving visualization of the central compartment of the hip with direct MR arthrography under axial leg traction: a feasibility study. Acad Radiol 2014;21:1240–1247.

16. Schmaranzer F, Klauser A, Koger M, et al. Diagnostic performance of direct traction MR arthrography of the hip: detection of chondral and labral lesions with arthroscopic comparison. Eur Radiol 2015;25:1721–1730.

17. Schmaranzer F, Klauser A, Koger M, et al. MR arthrography of the hip with and without leg traction: assessing the diagnostic performance in detection of ligamentum teres lesions with arthroscopic correlation. Eur J Radiol 2016;85:489–497.

18. Schmaranzer F, Lerch TD, Strasser U, Vavron P, Schmaranzer E, Tannast M. Usefulness of MR arthrography of the hip with and without leg traction in detection of intra-articular bodies. Acad Radiol 2019;26:625–639.

19. Garbuz DS, Masri BA, Haddad F, Duncan CP. Clinical and radiographic assessment of the young adult with symptomatic hip dysplasia. Clin Orthop Relat Res 2004;418:18–22.

20. Perets I, Chaharbakhshi EO, Hartigan DE, Ortiz-Dectel Y, Mu B, Domb BG. The correlation between arthroscopically defined acetabular cartilage defects and a proposed preoperative delayed gadolinium-enhanced magnetic resonance imaging of cartilage index in hips of patients with femoroacetabular impingement syndrome. Arthroscopy 2018;34:1202–1212.

21. Ben-Eliezer N, Raya JG, Babb JS, Youm T, Sodickson DK, Lattanzi R. A new method for cartilage evaluation in femoroacetabular impingement using quantitative T2 magnetic resonance imaging: preliminary validation against arthroscopic findings. Cartilage 2019, https://doi.org/10.1177/1947603519870852. [Epub ahead of print]

22. Tannast M, Kubiak-Langer M, Langlotz F, Puls M, Murphy SB, Siebenrock KA. Noninvasive three-dimensional assessment of femoroacetabular impingement. J Orthop 2007;25:122–123.

23. Siebenrock KA, Steppacher SD, Haeefeli PC, Schwab JM, Tannast M. Valgus hip with high antetorsion causes pain through posterior extraarticular FAL. Clin Orthop Relat Res 2013;471:3774–3780.

24. Lerch TD, Degonda C, Schmaranzer F, et al. Patient-specific 3-D magnetic resonance imaging-based dynamic simulation of hip impingement and range of motion can replace 3-D computed tomography-based simulation for patients with femoroacetabular impingement: implications for planning open hip preservation surgery and hip arthroscopy. Am J Sports Med 2019;47:2966–2977.

25. Schmaranzer F, Helfenstein R, Zeng G, et al. Automatic MRI-based three-dimensional models of hip cartilage provide improved morphologic and biochemical analysis. Clin Orthop Relat Res 2019;477:1036–1052.

26. Hesper T, Neugroda C, Schleich C, et al. T2*-mapping of acetabular cartilage in patients with femoroacetabular impingement at 3 Tesla: comparative analysis with arthroscopic findings. Cartilage 2018;9:118–126.

27. Kyin C, Maldonado DR, Go CC, Shapiro J, Lall AC, Domb BG. Mid- to long-term outcomes of hip arthroscopy: a systematic review. Arthroscopy 2020;36:8063.e20:30828-8.
28. Cvetanovich GL, Chalmers PN, Levy DM, et al. Hip arthroscopy surgical volume trends and 30-day postoperative complications. Arthroscopy 2016;32:1286–1292.

29. Carulli C, Schiavo A, Rigon A, De Marchi W, Innocenti M, Meccariello L, et al. Rare and uncommon diseases of the hip: arthroscopic treatment. Med Glas (Zenica) 2021;18.

30. Disegni E, Martinot P, Dartus J, et al. Hip arthroscopy in France: an epidemiological study of postoperative care and outcomes involving 3699 patients. Orthop Traumatol Surg Res 2021;107:12767.

31. Niroopan G, de Sa D, MacDonald A, Burrow S, Larson CM, Ayeni OR. Hip arthroscopy in trauma: a systematic review of indications, efficacy, and complications. Arthroscopy 2016;32:716–725.e1.

32. de Sa D, Stephens K, Parmar D, et al. A comparison of supine and lateral decubitus positions for hip arthroscopy: a systematic review of outcomes and complications. Arthroscopy 2016;32:692–703.e1.

33. Truntzer JN, Hoppe DJ, Shapiro LM, Abrams GD, Safran M. Complication rates for hip arthroscopy are underestimated: a population-based study. Arthroscopy 2017;33:1194–1201.

34. Bedi A. Editorial commentary: with new technology comes new responsibility: do the complications of hip arthroscopy see us more often than we see them? Arthroscopy 2017;33:1202–1203.

35. Chen AW, Yuen LC, Ortiz-Decet V, Litrenta J, Maldonado DR, Domb BG. Selective debridement with labral preservation using narrow indications in the hip: minimum 5-year outcomes with a matched-pair labral repair control group. Am J Sports Med 2018;46:297–304.

36. Harris JD. Hip labral repair: options and outcomes. Curr Rev Musculoskelet Med 2016;9:361–367.

37. Wu Z-X, Ren W-X, Ren Y-M, Tian M-Q. Arthroscopic labral debridement versus labral repair for patients with femoroacetabular impingement: a meta-analysis. Medicine (Baltimore) 2020;99:e21041.

38. Duplantier NL, McCulloch PC, Nho SJ, Mather RC III, Lewis BD, Harris JD. Hip dislocation or subluxation after hip arthroscopy: a systematic review. Arthroscopy 2016;32:1428–1434.

39. Chandrasekaran S, Darwish N, Close MR, Lodhia P, Suarez-Ahedo C, Nho SJ. Revision hip arthroscopy: a systematic review of diagnoses, operative findings, and outcomes. Arthroscopy 2015;31:1382–1390.

40. Sardana V, Philippin MJ, de Sa D, et al. Revision hip arthroscopy indications and outcomes: a systematic review. Arthroscopy 2015;31:2047–2055.

41. Ilizaliturri VM Jr. Complications of arthroscopic femoroacetabular impingement treatment: a review. Clin Orthop Relat Res 2009;467:760–768.

42. McCarthy JC, Noble PC, Schuck MR, Wright J, Lee J. The watershed labral lesion: its relationship to early arthritis of the hip. J Arthroplasty 2001;16:81–87.

43. Mansor Y, Perets I, Close MR, Mu BH, Domb BG. In search of the spherical femoroacetabular joint: can it lead to increased iliocapsularis-to-rectus-femoris ratio is suggestive for instability in borderline hip dysplasia? Clin Orthop Relat Res 2011;469:1027–1035.

44. Cvetanovich GL, Levy DM, Weber AE, et al. Do patients with borderline dysplasia have inferior outcomes after hip arthroscopic surgery for femoroacetabular impingement? J Arthroplasty 2015;30:369–377.
impingement compared with patients with normal acetabular coverage. Am J Sports Med 2017;45:2116–2124.

65. Gautier E, Ganz K, Krügel N, Gill T, Ganz R. Anatomy of the medial femoral circumflex artery and its surgical implications. J Bone Joint Surg Br 2000;82:679–683.

66. Tannast M, MacIntyre N, Steppacher SD, Hosalkar HS, Ganz R, Siebenrock KA. A systematic approach to analyse the sequelae of LCPD. Hip Int 2013;23:561–570.

67. Ziebarth K, Milosevic M, Lerch TD, Steppacher SD, Slongo T, Siebenrock KA. High survivorship and little osteoarthritis at 10-year followup in SCFE patients treated with a modified Dunn procedure. Clin Orthop Relat Res 2017;475:1212–1228.

68. Tannast M, Krüger A, Mack PW, Powell JN, Hosalkar HS, Siebenrock KA. Surgical dislocation of the hip for the fixation of acetabular fractures. J Bone Joint Surg Br 2010;92:842–852.

69. Beck M. Groin pain after open FAI surgery: the role of intraarticular adhesions. Clin Orthop Relat Res 2009;467:769–774.

70. Beck M, Leunig M, Parvizi J, Boutier V, Wyss D, Ganz R. Anterior femoroacetabular impingement: part II. Midterm results of surgical treatment. Clin Orthop Relat Res 2004;418:67–73.

71. Philippin MJ, Schenker ML, Briggs KK, Kuppersmith DA, Maxwell RB, Stubbs AJ. Revision hip arthroscopy. Am J Sports Med 2007;35:1918–1921.

72. Ross JR, Larson CM, Adeeoye O, Kelly BT, Bedi A. Residual deformity is the most common reason for revision hip arthroscopy: a three-dimensional CT study. Clin Orthop Relat Res 2015;473:1388–1395.

73. Philippin MJ, Schroder E, Souza BG, Briggs KK. Hip arthroscopy for femoroacetabular impingement in patients aged 50 years or older. Arthroscopy 2012;28:39–65.

74. Kim CY, Dietrich TJ, Zingg PO, Dora C, Pfirrmann CWA, Sutter R. Arthroscopic hip surgery: frequency of postoperative MR arthrographic findings in asymptomatic and symptomatic patients. Radiology 2017;283:779–788.

75. Willimon SC, Briggs KK, Philippin MJ. Intra-articular adhesions following hip arthroscopy: a risk factor analysis. Knee Surg Sports Traumatol Arthrosc 2014;22:822–825.

76. Steppacher SD, Anwander H, Zürmühle CA, Tannast M, Siebenrock KA. Eighty percent of patients with surgical hip dislocation for femoroacetabular impingement have a good clinical result without osteoarthritis progression at 10 years. Clin Orthop Relat Res 2015;473:1333–1341.

77. Haefeli PC, Marecek GS, Keel MJB, Siebenrock KA, Tannast M. Patients undergoing surgical hip dislocation for the treatment of acetabular fractures show favourable long-term outcome. Bone Joint J 2017;99-B:598–575.

78. Ganz R, Klaue K, Vinh TS, Mast JW. A new periacetabular osteotomy for the treatment of hip dysplasias: technique and preliminary results. Clin Orthop Relat Res 1988;232:26–36.

79. Siebenrock KA, Schoeniger R, Ganz R. Anterior femoro-acetabular impingement due to acetabular retroversion: treatment with periacetabular osteotomy. J Bone Joint Surg Am 2003;85:278–286.

80. Albers CE, Steppacher SD, Ganz R, Tannast M, Siebenrock KA. Impingement adversely affects 10-year survivorship after periacetabular osteotomy for DDH. Clin Orthop Relat Res 2013;471:1602–1614.

81. Siebenrock KA, Schaller C, Tannast M, Keel M, Büchler L. Anteverting periacetabular osteotomy for symptomatic acetabular retroversion: results at ten years. J Bone Joint Surg Am 2014;96:1785–1792.

82. Zürmühle CA, Anwander H, Albers CE, et al. Periacetabular osteotomy provides higher survivorship than rim trimming for acetabular retroversion. Clin Orthop Relat Res 2017;475:1138–1150.

83. Steppacher SD, Tannast M, Ganz R, Siebenrock KA. Mean 20-year followup of Bernese periacetabular osteotomy. Clin Orthop Relat Res 2008;466:1633–1644.

84. Lerch TD, Steppacher SD, Liechti EF, Tannast M, Siebenrock KA. One-third of hips after periacetabular osteotomy survive 30 years with good clinical results, no progression of arthritis, or conversion to THA. Clin Orthop Relat Res 2017;475:1154–1168.

85. Ali M, Malviya A. Complications and outcome after periacetabular osteotomy: influence of surgical approach. Hip Int 2020;30:4–15.

86. Mayer SW, Zelenski NA, Karas V, Xie Z, Olson SA. High body mass index is related to increased perioperative complications after periacetabular osteotomy. Am J Orthop 2018;47.

87. Biedermann R, Donnan L, Gabriel A, Wachter R, Krismer M, Behensky H. Complications and patient satisfaction after periacetabular pelvic osteotomy. Int Orthop 2008;32:611–617.

88. Zaltz I, Baca G, Kim Y-J, et al. Complications associated with the periacetabular osteotomy: a prospective multicenter study. J Bone Joint Surg Am 2014;96:1967–1974.

89. Matta JM, Stover MD, Siebenrock K. Periacetabular osteotomy through the Smith-Petersen approach. Clin Orthop Relat Res 1999;363:21–32.

90. Siebenrock KA, Schöll E, Lottenbach M, Ganz R. Bernese periacetabular osteotomy. Clin Orthop Relat Res 1999;363:9–20.

91. Murphy S, Deshmukh R. Periacetabular osteotomy: preoperative radiographic predictors of outcome. Clin Orthop Relat Res 2002;405:168–174.

92. Peters CL, Erickson JA, Hines JL. Early results of the Bernese periacetabular osteotomy: the learning curve at an academic medical center. J Bone Joint Surg Am 2006;88:1920–1926.

93. Novais EN, Duncan S, Nepple J, Pashos G, Schoenecker PL, Clohisy JC. Do radiographic parameters of dysplasia improve to normal ranges after Bernese periacetabular osteotomy? Clin Orthop Relat Res 2017;475:1120–1127.

94. Tannast M, Pfander G, Steppacher SD, Mast JW, Ganz R. Total acetabular retroversion following pelvic osteotomy: presentation, management, and outcome. Hip Int 2013;23:514–526.

95. Buly RL, Sosa BR, Poultisdes LA, Caldwell E, Rozbruch SR. Femoral derotation osteotomy in adults for version abnormalities. J Am Acad Orthop Surg 2018;26:646–6425.

96. Lerch TD, Schmaranzer F, Steppacher SD, Ziebarth K, Tannast M, Siebenrock KA. Most of patients with femoral derotation osteotomy for posterior extraarticular hip impingement and high femoral version would do surgery again. Hip Int 2020; https://doi.org/10.1111/hisp.13530 [Epub ahead of print].

97. Lerch TD, Todoroki IAS, Steppacher SD, et al. Prevalence of femoral and acetabular version abnormalities in patients with symptomatic hip disease: a controlled study of 538 hips. Am J Sports Med 2018;46:122–134.

98. Lerch TD, Schmaranzer F, Hanke MS, et al. Posterolateral deformities of the femur in patients with femoroacetabular impingement: dynamic 3D impingement simulation can be helpful for the planning of surgical hip dislocation and hip arthroscopy. Orthopade 2020;49:471–481.

99. Lerch TD, Boschung A, Todoroki IAS, et al. Femoroacetabular impingement patients with decreased femoral version have different impingement locations and intra- and extraarticular anterior subspine FAI on 3D-CT-based impingement simulation: implications for hip arthroscopy. Am J Sports Med 2019;47:3120–3132.
100. Kamath AF, Ganz R, Zhang H, Grappiolo G, Leunig M. Subtrochanteric osteotomy for femoral mal-torsion through a surgical dislocation approach. J Hip Preserv Surg 2015;2:65–79.

101. Fabricant PD, Fields KG, Taylor SA, Magennis E, Bedi A, Kelly BT. The effect of femoral and acetabular version on clinical outcomes after arthroscopic femoroacetabular impingement surgery. J Bone Joint Surg Am 2015;97:537–543.

102. Tönnis D, Heinecke A. Acetabular and femoral anteversion: relationship with osteoarthritis of the hip. J Bone Joint Surg Am 1999;81:1174–1177.

103. Svenningsen S, Apalset K, Terjesen T, Anda S. Osteotomy for femoral anteversion: complications in 95 children. Acta Orthop Scand 1989;60:401–405.

104. Wilson PD, Jacobs B, Schechter L. Treatment of slipped capital femoral epiphysis with a modified Dunn procedure. J Pediatr Orthop 2010;30:289–296.

105. Loder RT. Unstable slipped capital femoral epiphysis. J Pediatr Orthop 2001;21:694–699.

106. Carney BT, Weinstein SL, Noble J. Long-term follow-up of slipped capital femoral epiphysis. J Bone Joint Surg Am 1997;79:667–674.

107. Castañeda P, Ponce C, Villareal G, Vidal C. The natural history of osteoarthritis after a slipped capital femoral epiphysis. J Pediatr Orthop 2013;33:575–582.

108. Naseem H, Chatterji S, Tsang K, Hakimi M, Chytas A, Alshryda S. Treatment of stable slipped capital femoral epiphysis: systematic review and exploratory patient level analysis. J Hip Preserv Surg 2017;4:379–394.

109. Alshryda S, Tsang K, Chytas A, et al. Evidence based treatment for unstable slipped upper femoral epiphysis: systematic review and exploratory patient level analysis. J Bone Joint Surg Br 2018;100:145–154.

110. Souder CO, Bomar JD, Wenger DR. The role of capital realignment versus in situ stabilization for the treatment of slipped capital femoral epiphysis. J Pediatr Orthop 2014;34:791–798.

111. Huber H, Dora C, Ramseier LE, Buck F, Dieraumer S. Adolescent slipped capital femoral epiphysis treated by a modified Dunn osteotomy with surgical hip dislocation. J Bone Joint Surg Br 2011;93:833–838.

112. Novais EN, Hill MK, Carry PM, Heare TC, Sink EL. Modified Dunn procedure is superior to in situ pinning for short-term clinical and radiographic improvement in severe stable SCFE. Clin Orthop Relat Res 2015;473:2108–2117.

113. Sankar WN, Vanderhave KL, Matheney T, Herrera-Soto JA, Karlen JW. The modified Dunn procedure for unstable slipped capital femoral epiphysis: a multicenter perspective. J Bone Joint Surg Am 2013;95:585–591.

114. Ziebarth K, Zilkins C, Spencer S, Leunig M, Ganz R, Kim Y-J. Capital realignment for moderate and severe SCFE using a modified Dunn procedure. Clin Orthop Relat Res 2009;467:704–716.

115. Madan SS, Cooper AP, Davies AG, Fernandes JA. The treatment of severe slipped capital femoral epiphysis via the Ganz surgical dislocation and anatomical reduction: a prospective study. J Bone Joint Surg Br 2013;95:8:424–429.

116. Slongo T, Kakaty D, Krause F, Ziebarth K. Treatment of slipped capital femoral epiphysis with a modified Dunn procedure. J Bone Joint Surg Am 2010;92:2988–2988.

117. Upasani VV, Matheney TH, Spencer SA, Kim Y-J, Millis MB, Kasser JR. Complications after modified Dunn osteotomy for the treatment of adolescent slipped capital femoral epiphysis. J Pediatr Orthop 2014;34:661–667.

118. Sink EL, Leunig M, Zaltz I, Gilbert JC, Clohisy J; Academic Network for Conservational Hip Outcomes Research Group. Reliability of a complication classification system for orthopaedic surgery. J Orthop Relat Res 2012;470:2220–2226.

119. Weber AE, Harris JD, Nho SJ. Complications in hip arthroscopy: a systematic review and strategies for prevention. Sports Med Arthrosc Rev 2015;23:187–193.

120. Randelli F, Pierannunzii L, Banci L, Ragone V, Aliprandi A, Buly R. Heterotopic ossifications after arthroscopic management of femoroacetabular impingement: the role of NSAID prophylaxis. J Orthop Traumatol 2010;11:245–250.

121. Larson CM, Gevans MR. Arthroscopic management of femoroacetabular impingement: early outcomes measures. Arthroscopy 2008;24:540–546.

122. Thomas Byrd JW. Complications associated with hip arthroscopy. In: Thomas Byrd JW, ed. Operative Hip Arthroscopy. New York, NY: Springer, 2005;229–231. https://link.springer.com/chapter/10.1007/3-7044-2716_1

123. Sampson TG. Complications of hip arthroscopy. Clin Sports Med 2001;20:831–835.

124. McCarthy JC, Lee JA. Hip arthroscopy: indications, outcomes, and complications. Instr Course Lect 2006;55:301–308.

125. Badyal JS, Keene JS. Do iatrogenic punctures of the labrum affect the clinical results of hip arthroscopy? Arthroscopy 2011;27:761–767.

126. Parodi D, Tobar C, Valderrama J, et al. Hip arthroscopy and hypothermia. Arthroscopy 2012;28:924–928.

127. Lo Y-P, Chan Y-S, Lien L-C, Lee MSS, Hsu K-Y, Shih C-H. Complications of hip arthroscopy: analysis of severity three cases. Chang Gung Med J 2006;29:86–92.

128. Gedouin J-E, May O, Bonin N, et al; French Arthroscopy Society. Assessment of arthroscopic management of femoroacetabular impingement: a prospective multicenter study. Orthop Traumatol Surg Res 2010;96:559–567.

129. Clarke MT, Arora A, Villar RN. Hip arthroscopy: complications in 1054 cases. Clin Orthop Relat Res 2003;406:84–88.

130. Salvo JP, Troxell CR, Duggan DP. Incidence of venous thromboembolic disease following hip arthroscopy. Orthopedics 2010;33:664.

131. Souza BGS, Dani WS, Honda EK, et al. Do complications in hip arthroscopy change with experience? Arthroscopy 2010;26:1053–1057.

132. Sink EL, Beaulé PE, Sucato D, et al. Multicenter study of complications following surgical dislocation of the hip. J Bone Joint Surg Am 2011;93:112–1136.

133. Steppacher SD, Huemmer C, Schwab J, Siebenrock KA. Surgical hip dislocation for treatment of femoroacetabular impingement: factors predicting 5-year survivorship. Clin Orthop Relat Res 2014;472:337–348.

134. Beaulé PE, Le Duff MJ, Zaragoza E. Quality of life following femoral head-neck osteochondroplasty for femoroacetabular impingement. J Bone Joint Surg Am 2007;89:773–779.

135. Naal FD, Miozzari HH, Schär M, Heser T, Nötzli HP. Midterm results of surgical hip dislocation for the treatment of femoroacetabular impingement. J Sports Med 2012;401:1501–1510.

136. Thawrani D, Sucato DJ, Podeszwa DA, DeLaRocha A. Complications associated with the Bernese periacetabular osteotomy for hip dysplasia in adolescents. J Bone Joint Surg Am 2010;92:1707–1714.

137. Russell JC, Rodriguez JA, Ganz R. Technical complications of the Bernese periacetabular osteotomy. Clin Orthop Relat Res 1999;363:81–92.

138. Trumble SJ, Mayo KA, Mast JW. The periacetabular osteotomy: Minimum 2 year followup in more than 100 hips. Clin Orthop Relat Res 1999;363:54–63.

139. Crockarell J Jr, Trousdale RT, Cabanela ME, Berry DJ. Early experience and results with the periacetabular osteotomy: the Mayo Clinic experience. Clin Orthop Relat Res 1999;363:45–53.