1. Introduction

Developing single-photon sources is an important task in optical quantum technologies [1–3]. In particular, CMOS-compatible on-chip devices are especially in demand for creating scalable and compact quantum photonic circuits [3–5]. In this respect, heralded single-photon sources based on spontaneous four-wave mixing (SFWM) in microring resonators are of great interest since, within the framework of integrated optics, they allow one to achieve high efficiency of the nonlinear process [6–8], obtain generated photons with a narrow spectral width [9], and to approach their deterministic emission using multiplexing techniques [10, 11]. The latter is expected to be quite efficient when using photon number resolving detectors [12]. In addition, the sources can be designed to produce pure single-photon states (transform-limited single-photon wave packets) [13, 14], which are crucially important for observing quantum interference effects and implementing optical quantum computing [15]. It is also worth noting that cryogenic temperatures in this case are not required, in contrast to single-photon sources based on single quantum emitters such as quantum dots or color centers.

In the present paper, we develop a scheme for generating pure single-photon states via SFWM in a system of coupled ring microresonators. In the SFWM process, two pump laser photons are converted into a pair of daughter photons, usually...
called the signal and idler, in a third-order nonlinear optical material. The photon number correlation between the resulting fields can be exploited to herald the existence of one photon by the detection of its partner, which underlies the conditional preparation of single-photon states. Energy conservation requires the signal and idler photons to be generated at frequencies that are symmetrically distributed around the pump frequency. In the general case, due to such a spectral correlation, the heralded photons prove to be in a mixed state. The high purity of the emitted photons is achieved when the joint spectral amplitude (JSA) of the biphoton state is a factorable function in the frequency domain [16], which is possible for a sufficiently broadband pump field. Similar to [14], for the latter to be used we take advantage of a smaller pump quality factor, which makes the linewidth of the microresonator for the pump broader than those for the signal and idler fields. However, instead of using two coupling points via Mach–Zehnder interferometers, we suggest using additional microrings. An important advantage of our scheme is that the microrings can be fabricated in special sizes and tuned in resonance with only three interacting modes, thereby making additional spectral filtering unnecessary. In addition, the present scheme may be easily realized not only with microring resonators but also with other types of resonators such as microspheres and microtoroids.

2. Basic model

In the present paper, we consider a system of three microring resonators coupled to a central one and connected with strait waveguides (buses) (figure 1). The SFWM process occurs in the central ring, while other rings are used for loading the pump field and unloading the generated photons. For simplicity, we consider a degenerate pump scheme. It is assumed that the pump field corresponds to a resonator mode in the zero-dispersion region of the central ring microresonator so that the signal and idler photons can be emitted into the adjacent modes that are separated from the pump mode by equal frequency intervals (the group velocity dispersion is negligible). One of the outer rings is tuned in such a way that one of its resonances coincides with the pump mode of the central ring, whereas other resonances do not coincide with the signal and idler modes. In contrast, other outer rings should be out of resonance with the pump mode but in resonance with the signal and idler modes. When the free spectral range of the outer rings is two times smaller than that of the central ring, the system is similar to that of [14]. However, it is possible to make these rings in other sizes so that only three modes of the central ring prove to be effectively coupled to the strait waveguides.

The Hamiltonian for the system is

\[
\mathcal{H} = \mathcal{H}_{\text{sys}} + \mathcal{H}_{\text{bath}} + \mathcal{H}_{\text{internal}} + \mathcal{H}_{\text{bath}}^\text{int},
\]

where

\[
\mathcal{H}_{\text{sys}} = \hbar \omega_0 x^\dagger x + \sum_{n=m} \hbar \omega_n y^\dagger y_n + \sum_{m=0,l,s} \hbar \omega_{0,m} z^\dagger_m z_m
\]

is the free-field Hamiltonian for the cavities,

\[
\mathcal{H}_{\text{bath}} = \int d\omega \hbar \omega \left[a_p^\dagger(\omega) a_p(\omega) + \sum_{m=l,s} b_m^\dagger(\omega) b_m(\omega) \right]
\]

is the external bath Hamiltonian,

\[
\mathcal{H}_{\text{internal}} = i \hbar g_{p,y} x^\dagger y + i \hbar g_{s,i} z^\dagger z + h.c.
\]

is the coupling between the rings, and

\[
\mathcal{H}_{\text{bath}}^\text{int} = \frac{i \hbar}{\sqrt{2\pi}} \int d\omega \left[\sqrt{\kappa_p} x^\dagger x(\omega) + \sqrt{\kappa_s} z^\dagger z(\omega) \right] + h.c.
\]

is the coupling to the external modes. Here \(m = \{i, s\}, n = \{i, s, p\} \), \(\omega_{0,p}, \omega_{0,s}, \omega_{0,m} \) are the central frequencies of the microrings, \(\kappa_{p,s} \) are the coupling parameters between the waveguide and the rings, \(g_{p,s} \) are coupling parameters between the rings, and \(x_p, y_s \) are the annihilation operators for the photons corresponding to the different modes in the rings. The nonzero commutation relations read: \([x_p, x_s^\dagger] = [y_s, z_p^\dagger] = [z_m, z_s^\dagger] = 1 \) and \([p_p(\omega), a_i^\dagger(\omega')] = [b_i(\omega), a_i^\dagger(\omega')] = \delta(\omega - \omega') \).

By applying the input–output formalism [17], from equation (1) we obtain the following Heisenberg–Langevin equations:

\[
\begin{align*}
\frac{\partial}{\partial t} + i \omega_{0,p} + \frac{\kappa_p}{2} & \right) x_p - g_p y_p = \sqrt{\kappa_p} a_{\text{inp}}, \\
\frac{\partial}{\partial t} + i \omega_{0,s} + \frac{\kappa_s}{2} & \right) y_s - g_s z_s = 0, \\
\frac{\partial}{\partial t} + i \omega_{0,m} + \frac{\kappa_m}{2} & \right) z_m - g_s y_s = \sqrt{\kappa_m} b_{\text{out}}, \\
\frac{\partial}{\partial t} - i \omega_{0,m} - \frac{\kappa_m}{2} & \right) z_m - g_s y_s = 0,
\end{align*}
\]

where we used the Markov approximation \(\kappa_{p,s}(\omega) \approx \kappa_p = \text{const}, \)

\(\kappa_{m}(\omega) \approx \kappa_m = \text{const} \), \(g_{p,s}(\omega) \approx g_p = \text{const} \) and \(g_{m}(\omega) \approx g_m = \text{const} \).

In what follows, we also assume that the same modes in the different rings are matched with each other: \(\omega_{0,p} = \omega_{0,s} = \omega_{0,m} = \omega_{0} \), which is a natural condition for an efficient energy transfer.

3. Input–output relations

By taking the Fourier transform of (2), we obtain the system of algebraic equations

\[
\begin{align*}
\left[i \Delta_p + \frac{\kappa_p}{2} \right] x_p(\omega) - g_p y_p(\omega) = \sqrt{\kappa_p} a_{\text{inp}}(\omega), \\
\left[i \Delta_p y_p(\omega) + g_p x_p(\omega) = 0, \\
\left[i \Delta_m y_m(\omega) + g_s z_m(\omega) = 0, \\
\right. \\
\left[i \Delta_m + \frac{\kappa_m}{2} \right] z_m(\omega) - g_s y_m(\omega) = \sqrt{\kappa_m} b_{\text{out}}, \\
\left. a_{\text{inp}}(\omega) - a_{\text{out}}(\omega) = \sqrt{\kappa_p} x_p(\omega), \\
\right. \\
\left. b_{\text{out}}(\omega) - b_{\text{out}}(\omega) = \sqrt{\kappa_m} z_m(\omega),
\right]
\end{align*}
\]
where we introduce $\Delta_n = \omega_{in} - \omega$, and for all the annihilation operators the Fourier transform is defined as $u(t) = \frac{1}{\sqrt{2\pi}} \int dw \, e^{-i\omega t} u(\omega)$.

Let us consider the case when $a_{in,p} = 1$ and $b_{in,m} = 0$, which corresponds to the loading of the pump field. Then we obtain the input–output relations for the pump field operators

$$y_p(\omega) = M_p a_{in,p}(\omega) = \frac{2g_p \sqrt{\kappa_p} a_{in,p}(\omega)}{-2\Delta_p^2 + 2g_p^2 + i\Delta_p \kappa_p}. \quad (4)$$

Similarly, in the case when $a_{in,p} = 0$ and $b_{in,m} = 1$, which corresponds to the loading of the signal and idler fields (and unloading them for the reversed time), we get

$$y_m(\omega) = M_m b_{in,m}(\omega) = \frac{2g_{is} \sqrt{\kappa_{is}} b_{in,m}(\omega)}{-2\Delta_m^2 + 2g_{is}^2 + i\Delta_m \kappa_{is}}. \quad (5)$$

To express the cavity field operators y_i in terms of the output fields $a_{out,p}(\omega)$ and $b_{out,m}(\omega)$, M_n in equations (4) and (5) should be replaced by M_n^*.

4. Optimal coupling

To suppress the phase dispersion in the central microring, which is necessary for the effective loading of the pump field at a frequency ω_{in} into it and unloading the generated photons at the frequencies ω_s, ω_i from it through the outer microrings, we apply the following condition of the closeness of the frequency dependence of the phase to the linear one:

$$\partial^l_{\omega} \text{Argument}(M_n) \bigg|_{\omega = \omega_{in}} = 0, \quad l = 2, 3, \ldots \quad (6)$$

In our system, we can impose the condition for $l = 3$, which leads to

$$\partial^3_{\omega} \text{Arctan} \left[\frac{\Delta_p \kappa_p}{2\Delta_p^2 - 2g_p^2} \right] \bigg|_{\omega = \omega_{in}} = 0, \quad (7)$$

and obtain the following optimal ratios between the coupling parameters

$$g_{p,\text{opt}} = \kappa_p/\sqrt{12}, \quad g_{is,\text{opt}} = \kappa_{is}/\sqrt{12}. \quad (8)$$

The remaining conditions for $l > 3$ lead to $\kappa_{p,\text{is}} \to \infty$. Physically, this means that the maximum possible experimental values of $\kappa_{p,\text{is}}$ should be used.

To conveniently visualize the dispersion effects, we introduce the delay function $T_p(\omega) = \text{Argument}(M_p)/(\omega - \omega_{in})$, which shows the difference in the time delay of signals at different frequencies near the central frequency ω_{in} (the case of unloading the signal and idler fields can be described similarly). Figure 2 demonstrates the difference between the three cases, $g_p = \{0.9 g_{p,\text{opt}}, g_{p,\text{opt}}, 1.1 g_{p,\text{opt}}\}$. It can be seen that the maximum size of the plateau, corresponding to the maximum suppression of negative dispersion effects for the pump field in the central ring, is attained for the ratio (8). Such dispersion suppression is necessary to improve the quality of the heralded photons to the greatest extent possible.
y(α - iω) is the frequency detuning. Now, taking into account the input–output relations. This approach was used for the analysis of the cavity-assisted SFWM in [18, 25, 26].

The SFWM process in the central resonator is described by the effective Hamiltonian

\[\mathcal{H}_{\text{SFWM}}(t) = \zeta y_p(t)y_p(t)y_s(t), \]

where \(\zeta \) is the effective nonlinearity that takes into account \(\chi^{(3)} \) of the nonlinear material, the microresonator mode functions and other parameters, which are not important for the present analysis.

By applying the first-order perturbation theory, the state vector of the generated biphoton field is calculated as

\[|\psi\rangle = |0\rangle|\alpha\rangle - \frac{i\zeta}{\hbar(2\pi)^2} \int dt dt' dt'' dt''' e^{i\omega t'} \left(y_p(t')y_p(t'')y_s(t''') y_s(t') + y_p(t')y_p(t'') y_s(t'') y_p(t') + y_p(t) y_p(t') y_s(t') y_s(t') \right) / |\alpha\rangle, \]

where \(|0\rangle = 0 |0\rangle \) is the vacuum state of the signal and idler fields, \(|\alpha\rangle \) is the coherent state of the pump field with a complex amplitude \(\alpha \) (i.e., \(y_p(t)|\alpha\rangle = \alpha(t)|\alpha\rangle \)), and

\[\Delta \omega = 2\omega_p - \omega_s - \omega_i \]

is the frequency detuning. Now, taking into account the input–output relations (4) and (5) we obtain

\[|\psi\rangle = |0\rangle|\alpha\rangle - \frac{i\zeta}{\hbar(2\pi)^2} \int \omega d\omega d\omega d\omega' e^{i\Delta \omega t} |\alpha\rangle, \]

where

\[F(\omega_s, \omega_i) = \mathcal{I}_p(\omega_s, \omega_s)\mathcal{F}(\omega_s, \omega_i) \]

is the convolution of the spectral amplitude of the pump field \(\alpha(\omega_p) \) in the resonator.

To illustrate the spectral correlations between the emitted photons, it is convenient to use the joint spectral intensity (JSI) \(\mathcal{P}(\omega_s, \omega_i) = |\mathcal{F}(\omega_s, \omega_i)|^2 \). In addition, for quantitative analysis we can take advantage of the Schmidt decomposition of the JSI [27, 28], which can be written as

\[F(\omega_s, \omega_i) = \sum_n \sqrt{\lambda_n} \psi_n(\omega_s) \phi_n(\omega_i), \]

where the Schmidt coefficients satisfy the condition

\[\sum_n \lambda_n = 1. \]

Then the Schmidt number \(K = 1/\sum \lambda_n^2 \) is usually used as a measure of entanglement in the photon pairs [29, 30], while the purity of the heralded single-photon state is equal to \(\gamma = 1/K. \) A two-photon state for which \(K = 1 \) (the minimum value) represents a factorable state, which exhibits no spectral entanglement and gives rise to pure heralded
single photons. Figure 3 illustrates the JSI distributions calculated numerically for the equal resonator linewidths $\kappa_p = \kappa_{ii}$ and for the broader pump linewidth $\kappa_p \gg \kappa_{ii}$. In both cases, the optimal ratio between the coupling parameters (8) is maintained, and the pump pulse is assumed to be Gaussian, $\alpha(\omega) = (2\pi\sigma)^{-1/4}\exp(-\omega - \omega_p)^2/4\sigma)$, with a spectral width, $\Delta\omega_{1/2} = \sqrt{8\pi}\ln{2}$, optimized for providing the minimum value of the Schmidt number. Similar to [14], the calculations show the near perfect separability of the biphoton minimum value of the Schmidt number. Similar to [14], the calculations show the near perfect separability of the biphoton field in the case of the broad pump linewidth. However, we managed to obtain even smaller Schmidt numbers by optimizing the coupling parameters and spectral width of the pump pulse. In particular, for the ratio of $\kappa_p/\kappa_{ii} = 6.6$ and the optimal spectral width of $\Delta\omega_{1/2} = 0.45 \kappa_p$, we have $K = 1.0003$. A further increase in κ_p/κ_{ii} to 10 provides $K = 1.00006$, which corresponds to the purity of the heralded photons of $\gamma = 0.9999$.

6. Conclusion

We have shown that a system of optimally coupled ring microresonators is capable of producing almost factorable joint spectral amplitude of the biphoton field, thereby generating near pure heralded single-photon states via spontaneous four-wave mixing. By optimizing the coupling parameters of the system, we present a way of suppressing negative dispersion effects, which, in combination with the optimal spectral width of the pump pulse, provides the highest possible purity of the heralded photons generated in such a scheme. The use of resonant coupling via microrings makes it possible to load and unload only the required field modes, which may simplify the implementation of integrated sources of indistinguishable single photons.

Acknowledgments

The work was partially supported by the Russian Science Foundation (project no. 16-12-00045). The results of section 4 were obtained within state assignment (theme no. 0217-2018-0005).

References

[1] Eisaman M D, Fan J, Migdall A and Polyakov S V 2011 Invited review article: single-photon sources and detectors Rev. Sci. Instrum. 82 071101
[2] Takeuchi S 2014 Recent progress in single-photon and entangled-photon generation and applications Japan. J. Appl. Phys. 53 030101
[3] Caspani L, Xiong C, Eggleton B J, Bajoni D, Liscidini M, Galli M, Morandotti R and Moss D J 2017 Integrated sources of photon quantum states based on nonlinear optics Light: Sci. Appl. 6 e17100
[4] Politi A, Matthews J C F, Thompson M G and O’Brien J L 2009 Integrated quantum photonics IEEE. J. Sel. Top. Quantum Electron. 15 1673–84
[5] Harris N C, Grassani D, Simbula A, Pant M, Galli M, Baehr-Jones T, Hochberg M, Enengl D, Bajoni D and Galland C 2014 Integrated source of spectrally filtered correlated photons for large-scale quantum photonics systems Phys. Rev. X 4 041047
[6] Turner A C, Foster M A, Gaeta A L and Lipson M 2008 Ultra-low power parametric frequency conversion in a silicon microring resonator Opt. Express 16 4881–7
[7] Azzini S, Grassani D, Strain M J, Sorel M, Helt L G, Sipe J E, Liscidini M, Galli M and Bajoni D 2012 Ultra-low power generation of twin photons in a compact silicon ring resonator Opt. Express 20 23100–7
[8] Savanier M, Kumar R and Mookherjea S 2016 Photon pair generation from compact silicon microring resonators using microwatt-level pump powers Opt. Express 24 3313–28
[9] Reimer C et al 2014 Integrated frequency comb source of heralded single photons Opt. Express 22 6535–46
[10] Collins M J et al 2013 Integrated spatial multiplexing of heralded single-photon sources Nat. Commun. 4 2582
[11] Heuck M, Pant M and Englund D R 2018 Temporally and spectrally multiplexed single photon source using quantum feedback control for scalable photonic quantum technologies New J. Phys. 20 063046
[12] Christ A and Silberhorn C 2012 Limits on the deterministic creation of pure single-photon states using parametric down-conversion Phys. Rev. A 85 480
[13] Helt L G, Yang Z, Liscidini M and Sipe J E 2010 Spontaneous four-wave mixing in microring resonators Opt. Lett. 35 3006–8
[14] Vernon Z et al 2017 Truly unentangled photon pairs without spectral filtering Opt. Lett. 42 3638–41
[15] Kok P 2016 Photonic quantum information processing Contemp. Phys. 57 526–44
[16] U’Ren A B, Silberhorn C, Banaszek K, Walsmsley J A, Erdmann R, Grice W P and Raymer M G 2005 Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion Laser Phys. 15 146
[17] Walls D F and Milburn G J 2008 Quantum Optics (Berlin: Springer)
[18] Chen J, Levine Z H, Fan J and Migdall A L 2011 Frequency-bin entangled comb of photon pairs from a silicon-on-insulator micro-resonator Opt. Express 19 1470–83
[19] Helt L G, Liscidini M and Sipe J E 2012 How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices J. Opt. Soc. Am. B 29 2199–212
[20] Camacho R M 2012 Entangled photon generation using four-wave mixing in azimuthally symmetric microresonators Opt. Express 20 21977–91
[21] Vernon Z and Sipe J E 2015 Strongly driven nonlinear quantum optics in microring resonators Phys. Rev. A 92 033840
[22] Vernon Z and Sipe J E 2015 Spontaneous four-wave mixing in lossy microring resonators Phys. Rev. A 91 053802
[23] Vernon Z, Liscidini M and Sipe J E 2016 No free lunch: the trade-off between heralding rate and efficiency in microresonator-based heralded single photon sources Opt. Lett. 41 788–91
[24] Garay-Palmett K, U’Ren A B and Rangel-Rojo R 2010 Conversion efficiency in the process of copolarized spontaneous four-wave mixing Phys. Rev. A 82 043809
[25] Garay-Palmett K, Jerónimo-Moreno Y and U’Ren A B 2012 Theory of cavity-enhanced spontaneous four wave mixing Laser Phys. 23 035201
[26] Chuprina I N, An P P, Zubkova E G, Kovalyuk V V, Kalachev A A and Gol’tsman G N 2017 Optimisation
of spontaneous four-wave mixing in a ring microcavity
Quantum Electron. **47** 887

[27] Law C K, Walmsley I A and Eberly J H 2000 Continuous
frequency entanglement: effective finite Hilbert space and
entropy control *Phys. Rev. Lett.* **84** 5304–7

[28] Fedorov M V and Miklin N I 2014 Schmidt modes and entan-
glement *Contemp. Phys.* **55** 94–109

[29] Law C K and Eberly J H 2004 Analysis and interpretation of
high transverse entanglement in optical parametric down
conversion *Phys. Rev. Lett.* **92** 127903

[30] Fedorov M V, Efremov M A, Volkov P A and Eberly J H 2006
Short-pulse or strong-field breakup processes: a route to
study entangled wave packets *J. Phys. B: At. Mol. Opt.
Phys.* **39** S467–83