A retrospective analysis of risk factors associated with catheter-related thrombosis: a single-center study

CURRENT STATUS: POSTED

Shen Runnan
Sun Yat-sen University Zhongshan School of Medicine

Zhou Xuezhen
Nursing department of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China

Lin Xi
Sun Yat-sen University Zhongshan School of Medicine

Qu Yingying
Venous catheter nursing clinic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China

Mo Chunling
Venous catheter nursing clinic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China

Li Yan
Venous catheter nursing clinic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China

Chen Qingchang
The first affiliated hospital, Sun Yat-sen University.

Wu Guitao
Sun Yat-sen University Zhongshan School of Medicine

Chen Zhenhong
Sun Yat-sen University Zhongshan School of Medicine

Huang Kai huangk37@mail.sysu.edu.cn
Department of Cardiovascular surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University

Corresponding Author

ORCID: 0000-0002-6957-880X

DOI:
SUBJECT AREAS
 Cardiothoracic Surgery

KEYWORDS
 catheter-related thrombosis, deep venous thrombosis, pulmonary embolism
Abstract

Background: Catheter-related thrombosis (CRT) may lead to catheter infections and failure, further deep venous thrombosis (DVT), and pulmonary embolism (PE). Recognizing the risk factors for CRT is extremely important to inform the development of catheter-nursing guidelines.

Methods: Data were collected from a total of 1532 patients who had undergone venous catheterization, including indwelling catheterization from March 19 to March 30, 2019 in Sun Yat-sen Memorial Hospital. The factors for which data were to be collected included the patients’ physical characteristics, catheter-associated factors, and factors associated with catheter nursing. Logistic regression analysis, the chi-square test, Fisher’s exact test, and the t-test were used to analyze the data.

Results: Of the 1532 patients studied, 28 developed intraductal thrombi, and of the factors analyzed, tumor, a catheterization history, a history of thrombophilia, surgery during the week before catheterization, the catheterization duration were significant risk factors associated with CRT (all P < 0.05). There were no significant associations between the catheter brand, the number of lumens, the insertion direction, or the factors associated with catheter nursing and CRT (all P > 0.05). Anticoagulation therapy significantly decreases the risk of CRT (P < 0.05). Conclusion: Tumor, a history of thrombophilia, a history of catheterization, surgery during the week before catheterization, and catheterization duration were associated with increased risks of CRT. Prophylactic anticoagulation is effective for preventing and treating CRT. Our study incorporates clear and systematic risk factors associated with CRT. The results are different from those of previous studies.

Background
Implanting central venous catheters (CVCs) into patients can lead to catheter-related thrombosis (CRT). However, implanting CVCs into patients with tumors and those who need long-term parenteral nutrition infusion is useful to establish good infusion channels, avoid the pain of repeated punctures, and to accelerate the critical transport of chemicals, blood, antibiotics, and parenteral nutrition [1]. In the United States of America, over five million CVCs are implanted into patients’ blood vessels each year, and this number is increasing [2]. Thus, the causes of and the risk factors for CRT are the foci of current research. The pathophysiological mechanism underlying CRT suggests that catheter insertion causes mechanical damage to the vein, fibrin is deposited onto the surface of the catheter, and a large number of smooth muscle and endothelial cells quickly become embedded within the fibrin. The continuous movement of the catheter in the vein erodes the endothelial cells, which enter the catheter cavity, and this may trigger mural thrombus formation, catheter infections, DVT, and persistent vascular damage if they are not detected and treated promptly [3]. Patients with CRT may develop persistent vascular occlusion many years after catheter removal, thereby increasing their risk of post-thrombotic syndrome and recurrent thrombosis [4]. Furthermore, CRT may lead to PE, which may cause death [5]. Therefore, the presence of and possible harm caused by CRT should be considered, and the risk factors associated with CRT should be determined and mitigated.

While studies’ findings indicate that many risk factors may be associated with CRT, they are yet to be clearly defined [1]. The risk factors associated with CRT can be categorized into three groups, namely, patients’ physical characteristics, catheter-associated factors, and factors associated with catheter nursing [1,3]. Patients’ physical factors include the presence of a tumor, their embolism history, and their infectious disease history [6–10]. Catheter-associated factors include the type of catheter implanted, catheter placement
location, catheter insertion location, and the catheterization duration [11–14]. Catheter-
nursing-associated factors include the infusion order and the composition of the liquid
because intraductal thrombosis may be caused by drug and parenteral nutrition
preparations [15,16]. However, clear and systematic descriptions of the risk factors that
may be associated with CRT and its prevention do not exist. Therefore, we collected data
describing the baseline characteristics of patients who had CVCs inserted, catheter-
associated factors, and catheter-nursing-associated factors to analyze a variety of
potential risk factors that may contribute to CRT. This study aimed to identify the main
hospital-based risk factors for CRT and to provide benchmarks for the clinical prevention
and treatment of adverse events, including infections, catheter failure, catheter-related
DVT and its sequelae, and PE, which are caused by CRT.

Methods

Data sources

The data were collected from departments that used CVCs from March 19, 2019 until
March 30, 2019 at the Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University for this
retrospective analysis. The study was approved by the hospital ethics committee. We
distributed questionnaires to the critical care and pediatric intensive care units, and the
biliary and pancreatic surgery, pediatric, otorhinolaryngology, gynecological oncology,
hepatobiliary surgery, orthopedic, respiratory, emergency, rehabilitation, stomatology,
urology, thoracic surgery, general medicine, cardiovascular surgery, cardiothoracic
surgery, cardiothoracic surgery, neurorheumatology, neurosurgery, nephrology,
gastrointestinal surgery, gastroenterology, hematology, ophthalmology, plastic surgery,
oncology, and intensive care departments, and we collected data describing pertinent
factors to analyse their association with CRT.

Patient inclusion and exclusion criteria
The inclusion criteria were patients aged <75 years who had received CVC implantations in the aforementioned departments, including patients who received systemic tumor treatment. The exclusion criteria were patients with CRT, DVT, and PE that were detected two weeks before their inclusion in the study, and patients with brain tumors. Table 1 presents the patients’ baseline data.

Catheter-related thrombosis risk factors

Table 1 presents the patients’ baseline data which included the physical characteristics factors that are associated with CRT. The catheter-related risk factors for CRT included the catheter brand, number of catheter lumens, catheter placement position, and the catheterization duration. The catheter-nursing-related risk factors for CRT included a comparison of prefilled saline delivery devices with syringes used to draw saline.

Study endpoints

The study’s clinical endpoints were the presence of intraductal thrombosis during the observation period, CRT detected using Doppler ultrasound, computed tomography, or venography, infections caused by CRT, further DVT, and PE. Figure 1 illustrates the clinical pathway for CRT detection.

Data analysis

The data were analyzed using IBM® SPSS® software, version 20.0 (IBM Corporation, Armonk, NY, USA). The risk factors associated with CRT were determined using univariate and logistic regression analyses, and the odds ratios (ORs) and 95% confidence intervals (CIs) were calculated from the data describing the patients’ baseline characteristics, and catheter- and catheter-nursing-related factors. The group of patients that did not have CRT represented the reference group. Chi-square and Fisher’s exact tests were used to calculate the P values for the aforementioned factors. The t-test was used to determine the significance of the catheterization duration. The associations between CRT and the
presence of tumors, a history of thrombophilia, and the use of anticoagulants were analyzed using univariate analysis only, because the data that all departments submitted was the sum.

Results

From 19 March until 30 March 2019, a total of 1532 patients who underwent catheterization were included in the survey. Of the patients, 51.1% were male, 48.9% were female, 13.3% were aged 5–15 years, 58.3% were aged 15–60 years, and 28.4% were aged 60–75 years. CRT occurred in 28 patients (1.83%) (Table 1). Further DVT, PE, post-thrombotic syndrome, and catheter infections and failure did not occur during the observation period. No bleeding events were reported in association with the use of prophylactic anticoagulants. Tables 1 and 2 present comparisons of the patients’ baseline data and the catheter- and catheter-nursing-related factors, respectively.

There were no significant differences between the groups in relation to sex (P = 0.31) or age (P = 0.63). The univariate analysis of the patients’ physical factors showed that the risk of CRT was lower in the patients without tumors than that in the patients with tumors (OR = 0.39 [95% CI = 0.18–0.82]), and the chi-square test showed that the presence of a tumor was significantly associated with CRT (P = 0.01). The patients without a catheterization history had a lower risk of CRT compared with that in the patients with a catheterization history (OR = 0.42 [95% CI = 0.18–0.95]), and the chi-square test showed that the result was statistically significant (P = 0.04). The risk of CRT was lower among the patients who did not have a history of thrombophilia (OR = 0.41 [95% CI = 0.17–0.98]). Compared with the patients who had undergone surgery during the week before catheterization, those who had not undergone surgery had a significantly reduced risk of CRT (P < 0.01) (OR = 0.15 [95% CI = 0.06–0.37]). The patients who did not use anticoagulant therapy had a significantly increased risk of CRT (OR = 6.34 [95% CI =
Among the catheter- and catheter-nursing-associated factors, the risk of CRT did not differ in relation to the catheter brand (P = 0.17), catheter lumen number (P = 0.50), or the catheter insertion direction (P = 0.63). A longer catheterization duration significantly increased the risk of CRT (P = 0.036), and although prefilled saline delivery devices seemed to reduce the risk of CRT compared with the use of syringes (OR = 0.51 [95% CI = 0.22–1.21]), the difference was not significant based on the chi-square test (P = 0.12).

Table 3 presents data describing the types of and numbers of patients with tumors within the study population, and the patients’ histories of thrombophilia and their use of anticoagulants.

Discussion

Our result had shown that the presence of a tumor, a catheterization history, a history of thrombophilia, surgery during the week before catheterization, the catheterization duration were significant risk factors associated with CRT (all P < 0.05). Anticoagulation therapy significantly decreases the risk of CRT (P < 0.05). There were no significant associations between the catheter brand, the number of lumens, the insertion direction, or the factors associated with catheter nursing and CRT (all P > 0.05). Our result may be different with previous studies.

A previous study’s findings showed that among catheterized patients, the CRT rate can be as high as 66% [17]. CRT can cause post-thrombotic syndrome, further DVT, PE, catheter occlusion, and catheter infections [18–20]. Up to 10% of patients with symptomatic CRT may have a PE [21]. Another study’s findings from 112 patients with CRT showed that post-thrombotic syndrome was difficult to relieve without removal of the CVC and anticoagulation [22]. Although this study’s findings did not indicate the presence of further venous thromboembolism, events associated with post-thrombotic syndrome were
detected, and we must consider the factors that may trigger CRT to prevent more
dangerous complications caused by CRT.

Thrombosis occurs more frequently in patients with tumors [23]. In this analysis, the
presence of a tumor increased the risk of CRT. A review of the relationship between
tumors and thrombosis at the molecular level suggested that tumor cells can show the
abnormal expression of tissue factor (TF), release tumor cell-derived TF particles, and
express cancer coagulation factors and cell surface proteases that directly promote
coagulation. In addition, cancer cells can release cytokines, factor X-activating cysteine
protease, mucinous glycoproteins, or circulating TF-bearing microparticles that affect
platelets, white blood cells, and endothelial cells, thereby promoting thrombosis indirectly
[24]. Meanwhile, tumors may differentially express the RAS, PTEN, and P53 genes that
influence the genesis of thrombosis [25,26]. Tumors are associated with a high risk of
CRT, especially among patients with advanced or active tumors [23], and this demands
clinical attention. The 2019 version of the National Comprehensive Cancer Network (NCCN)
guidelines on cancer-associated venous thromboembolic diseases recommends that
prophylactic anticoagulation therapy should administered to patients who have been
diagnosed with cancer or are clinically suspected of having cancer [27]. Many studies’
findings have demonstrated the efficacy and safety of rivaroxaban administered to cancer
patients to prevent thrombosis [28–32]. Our clinical practice indicated that rivaroxaban
may be the first choice for anticoagulation in cancer patients with CVC; these findings will
be verified in future trials.

This study’s data demonstrated that a history of thrombophilia was associated with a
greater risk of CRT. Previous study’s findings have shown that a history of venous
thromboembolism was the most important external risk factor for predicting CRT (OR =
2.0 [95% CI = 1.1–3.9]) [33]. Virchow’s triad describes changes in the flow and
composition of blood, endothelial damage, and inflammation as components that may cause thrombosis [34–36]; this may help to explain why a history of catheterization and surgery during the week preceding catheterization increased the risk of CRT. Surgery during the week before catheterization may be associated with a high risk of thrombosis [37]; hence, reasonable catheter maintenance should be achieved during the perioperative period. The 2019 version of the NCCN guidelines also recommends that prophylactic anticoagulation therapy should be administered to hospitalized and surgical patients [27]; this is a recommendation that we follow in our hospital to prevent CRT. However, a fixed-dose schedule for the anticoagulation of CRT in surgical patients with CVC is yet to be agreed, and the anticoagulation of CRT requires further investigation.

Regarding our investigation of catheter-related factors, neither the catheter brand nor the number of lumens influenced the risk of CRT. One study’s findings showed that a greater number of lumens was associated with an increased risk of CRT [38]. The findings from a large randomized controlled trial have shown that among the three types of CVC implantation, a subclavian vein placement decreased the risk of CRT compared with femoral vein (hazard ratio = 3.4 [95% CI = 1.2–9.3]), jugular, and subclavian vein placements that had similar levels of risk [39]. However, our analysis showed there were no statistical differences among the three different types of catheter implantation in relation to the risk of CRT. Previous studies’ findings have also shown that femoral and subclavian vein catheterization did not differ regarding the overall rate of mechanical complications (17.3% vs 18.8%; P = 0.74) [40]. Subclavian vein catheterization can injure patients; consequently, we do not recommend this type of catheterization. Regarding the catheterization duration, we have found that a longer catheter exposure time is associated with an increased risk of CRT, which is a finding that is supported by other studies’ data [39, 40]. Catheter movement can damage vessels, and as the catheterization
duration increases, the greater the possibility that smooth muscle cells and endothelial cells will become embedded in the fibrin on the surface or in the cavity of the catheter, thereby increasing the risks of blood infection and CRT. In terms of the catheter-nursing-related factors, using prefilled saline delivery devices did not differ from syringes regarding the CRT risk. A meta-analysis showed that there was no statistical difference between heparin saline and 0.9% normal saline used for catheter maintenance [41]. However, no studies have explored the differences between prefilled saline delivery devices and syringes in relation to the risk of CRT. Compared with syringes, prefilled saline delivery devices can reduce the occurrence of infections and accurately control the volume of liquid administered, and they are extremely safe [42]. Prefilled saline delivery devices may reduce the frequency of catheter infections, thereby helping to prevent CRT; however, the data do not support this notion. At present, most hospitals use syringes to draw normal saline and heparin saline to seal the tube. Catheter-nursing-related factors should be explored further.

Our study has limitations. Only single-factor logistic regression and chi-square analyses were conducted, because the data submitted was the sum. In addition, confounding factor analysis was not undertaken. The number of patients who participated in the study may be not be adequate, and further studies involving larger numbers of patients are needed. While adverse events, including catheter failure, catheter infections, catheter-related DVT, and PE, did not occur during this investigation, a longer follow-up duration is needed to determine the evolution of CRT.

Conclusions

Our findings showed that the presence of a tumor, a history of thrombophilia, a history of catheterization, surgery during the week before catheterization, catheterization duration were associated with increased risks of CRT. Prophylactic anticoagulation, which we highly
recommend, is effective and safe for the prevention and treatment of CRT in hospitalized and surgical patients with CVC.

Abbreviations

CRT: Catheter-related thrombosis
DVT: Deep venous thrombosis
PE: Pulmonary embolism
OR: odds ratio
CI: confidence interval
SD: standard deviation
CT: computed tomography

Declarations

Ethics approval and consent to participate
The study was approved by the Sun Yat-sen memorial hospital ethics committee.
Consent for publication
We had used our agency’s consent form.
Availability of data and materials
The data is shown in this article.
Competing interests
The authors declare that they have no competing interests.
Funding
The project is sponsored by National Natural Science Fundation of China (Project approval number is 81800420).
Authors’s contributions

Kai Huang, Runnan Shen and Xuezhen Zhou are the main authors to design the study and to write the manuscript. Yingying Qu, Chunling Mo, Yan Li contributed in designing questionnaires and collecting data from departments. Xi lin, Qingchang Chen, Guitao Wu and Zhenhong Chen analyzed the data and helped writing the manuscript. All authors read and approved the final manuscript.

Acknowledgements

The authors thank all the patients participating in this study.

References

[1] Frere C, Debourdeau P, Hij A, et al. Therapy for cancer-related thromboembolism. Semin Onco. 2014;1(3):319–338.

[2] Ouriel K. Preventing complications of central venous catheterization. N Engl J Med. 2003; 348,2684–2686, 2684–2686.

[3] Geerts W. Central venous catheter-related thrombosis. Hematology Am Soc Hematol Educ Program. 2014; 2014(1):306–311.

[4] Wilimas J A, Hudson M, Rao B, et al. Late vascular occlusion of central lines in pediatric malignancies[J]. Pediatrics,1998,101(2):E7.

[5] Massicotte M P, Dix D, Monagle P, Adams M, Andrew M. Central venous catheter related thrombosis in children: analysis of the Canadian Registry of Venous Thromboembolic Complications. J Pediatr. 1998;133(6):770–776.
[6] Sallah S, Wan J Y, Nguyen N P. Venous thrombosis in patients with solid tumors: determination of frequency and characteristics. Thromb Haemost. 2002;87(4):575–579.

[7] Blom J W, Doggen C J, Osanto S, Rosendaal FR. Malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA. 2005;293(6):715–722.

[8] Chew H K, Wun T, Harvey D, Zhou H, White RH. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch Intern Med. 2006;166(4):458–464.

[9] Kyriazi V, Theodoulou E. Assessing the risk and prognosis of thrombotic complications in cancer patients. Arch Pathol Lab Medicine. 2013;137(9):1286–1295.

[10] Streiff M B, Holmstrom B, Ashrani A, et al. Cancer-Associated Venous Thromboembolic Disease, Version 1.2015. J Nati Compr Canc Netw: JNCCN. 2015;13(9):1079–1095.

[11] Saber W, Moua T, Williams E C, et al. Risk factors for catheter-related thrombosis (CRT) in cancer patients: a patient-level data (IPD) meta-analysis of clinical trials and prospective studies. J Thromb Haemost. 2011;9(2):312–319.

[12] Debourdeau P, Chahmi D K, Zammit C, Farge-Bancel D. Venous thromboembolism associated with long-term use of central venous catheters in cancer patients. Pathol Biol (Paris). 2008;56(4):211–219.
[13] Debourdeau P, Kassab C D, Le Gal G, et al. 2008 SOR guidelines for the prevention and treatment of thrombosis associated with central venous catheters in patients with cancer: report from the working group. Ann Oncol. 2009;20(9):1459-1471.

[14] Debourdeau P, Farge D, Beckers M, et al. International clinical practice guidelines for the treatment and prophylaxis of thrombosis associated with central venous catheters in patients with cancer. J Thromb Haemost. 2013;11(1):71-80.

[15] Hooke C. Recombinant tissue plasminogen activator for central venous access device occlusion. J Pediatr Oncol Nurs. 2000;17(3):174–178.

[16] Andris D A, Krzywda E A, Schulte W, Ausman R, Quebbeman EJ. Pinch-off syndrome: a rare etiology for central venous catheter occlusion. JPEN J Parenter Enteral Nutr. 1994;18(6):531–533.

[17] Verso M, Agnelli G. Venous thromboembolism associated with long-term use of central venous catheters in cancer patients. J Clin Oncol. 2003;21(19):3665-3675

[18] Kuhle S, Koloshuk B, Marzinotto V, et al. A cross-sectional study evaluating post-thrombotic syndrome in children. Thromb Res. 2003;111(4-5):227–233.

[19] Rosovsky R P, Kuter D J. Catheter-related thrombosis in cancer patients: pathophysiology, diagnosis, and management. Hematol Oncol Clin North Am. 2005;19(1):183–202.

[20] Boersma R S, Jie K G, Verbon A, van Pampus EC, Schouten HC. Thrombotic and
infectious complications of central venous catheters in patients with hematological malignancies. Ann Oncol. 2008; 19(3):433–442.

[21] Monreal M, Raventos A, Lerma R, et al. Pulmonary embolism in patients with upper extremity DVT associated to venous central lines—a prospective study. Thromb Haemost. 1994;72(4):548–550.
[22] Frank D A, Meuse J, Hirsch D, Ibrahim JG, van den Abbeele AD. The treatment and outcome of cancer patients with thromboses on central venous catheters. J Thromb Thrombolysis. 2000;10(3):271–275.
[23] Khorana A A, Francis C W, Culakova E, Kuderer NM, Lyman GH. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J Thromb Haemost. 2007;5,632–634.
[24] Donnellan E, Kevane B, Bird B R H, Ainle FN. Cancer and venous thromboembolic disease: from molecular mechanisms to clinical management. Curr Oncol (Toronto, Ont.). 2014;21(3):134–143.
[25] Rong Y, Post D E, Pieper R O, Durden DL, Van Meir EG, Brat DJ. PTEN and hypoxia regulate tissue factor expression and plasma coagulation by glioblastoma. Cancer Res. 2005;65(4):1406–1413.
[26] Regina S, Valentin JB, Lachot S, Lemarié E, Rollin J, Gruel Y. Increased tissue factor expression is associated with reduced survival in non-small cell lung cancer and with
mutations of TP53 and PTEN. Clin Chem. 2009;55(10):1834–1842.

[27] NCCN Clinical Practice Guidelines in Cancer-Associated Venous Thromboembolic Disease (2019 Version I)[DB/OL]. http://www.nccn.org.

[28] Gerotziafas G T, Mahe I, Elalamy I. New orally active anticoagulant agents for the prevention and treatment of venous thromboembolism in cancer patients. Ther Clin Risk Manag. 2014;10:423–436.

[29] Prins M H, Lensing A W, Brighton T A, et al. Oral rivaroxaban versus enoxaparin with vitamin K antagonist for the treatment of symptomatic venous thromboembolism in patients with cancer (EINSTEIN-DVT and EINSTEIN-PE): a pooled subgroup analysis of two randomised controlled trials[J]. Lancet Haematol. 2014;1(1):e37-e46.

[30] Khorana A A, Vadhan-Raj S, Kuderer N M, et al. Rivaroxaban for Preventing Venous Thromboembolism in High-Risk Ambulatory Patients with Cancer: Rationale and Design of the CASSINI Trial. Rationale and Design of the CASSINI Trial[J]. Thromb Haemost. 2017;117(11):2135–2145.

[31] Streiff M B, Holmstrom B, Angelini D, et al. NCCN Guidelines Insights: Cancer-Associated Venous Thromboembolic Disease, Version 2.2018. J Natl Compr Canc Netw. 2018;16(11):1289–1303.

[32] Lee J H, Hyun D G, Choi C M, et al. A Retrospective Study on Efficacy and Safety of Rivaroxaban and Dalteparin for Long-Term Treatment of Venous Thromboembolism in Patients with Lung Cancer al. Respiration; 2019:1–9.

[33] Saber W, Moua T, Williams E C, et al. Risk factors for catheter-related thrombosis (CRT) in cancer patients: a patient-level data (IPD) meta-analysis of clinical trials and
[34] Wolberg A S, Aleman M M, Leiderman K, Machlus KR. Procoagulant activity in hemostasis and thrombosis: Virchow’s triad revisited. Anesth Analg. 2012;114(2):275–285.

[35] Watson T, Shantsila E, Lip G Y H. Mechanisms of thrombogenesis in atrial fibrillation: Virchow’s triad revisited. Lancet (London, England). 2009;373(9658):155–166.

[36] Elmoamly S, Mattar M, Yacoub M F, Afif A. Can Biomarkers of Coagulation, Platelet Activation, and Inflammation Predict Venous Thromboembolism in Patients with Haematological Malignancies? Acta Haematol. 2019;141(4):245–253.

[37] Mcgoldrick D M, Redmond H P. Venous thromboembolism prophylaxis risk assessment in a general surgery cohort: a closed-loop audit. Ir J Med Sci. 2017;186(3):743–745.

[38] Baumann Kreuziger L, Jaffray J, Carrier M. Epidemiology, diagnosis, prevention and treatment of catheter-related thrombosis in children and adults. Thromb Res. 2017;157:64–71.

[39] Parienti J, Mongardon N, Megarbane B, et al. Intravascular Complications of Central Venous Catheterization by Insertion Site. N Engl J Med. 2015;373(13):1220–1229.

[40] Merrer J, De Jonghe B, Golliot F, et al. Complications of femoral and subclavian venous
catheterization in critically ill patients: a randomized controlled trial. JAMA. 2001;286(6):700–707.

[41] Zhong L, Wang H, Xu B, et al. Normal saline versus heparin for patency of central venous catheters in adult patients - a systematic review and meta-analysis. [J]. Crit Care (London, England). 2017;21(1):5.

[42] Ingle R G, Agarwal A S. Pre-filled syringe - a ready-to-use drug delivery system: a review. [J]. Expert Opin Drug Deliv. 2014;11(9):1391–1399.

Tables

Table 1 Patients’ baseline demographic and clinical data.

Baseline characteristics	All (n=1532 100%)	No CRT found (n=1504 98.17%)	CRT (n=28 1.83%)	OR	95%CI	Chi-square value	P value
Sex, n (%)							
Male	78351.1	76650.9	17(60.7)	1.48	0.69–3.20	1.05	0.31
Female	74948.9	73849.1	11(39.3)				
Age, years, n (%)							
5-15	20313.3	20013.3	3(10.7)	-	-	0.85	0.63
15-60	894 (58.3)	875 (58.2)	19(67.9)				
60-75	435 (28.4)	429 (28.5)	6(21.4)				
Tumor presence a, n (%)							
Absent	114874.9	1128 (75.0)	15(53.6)	0.39	0.18–0.82	6.66	0.01
Present	38425.1	376 (25.0)	13 (46.4)				
Catheter related factors	All	No CRT	CRT	OR	95% CI	Chi-square value	P value
--------------------------	-------	--------	-------	-------	--------	------------------	---------
History of catheterization	130885.4	1288(85.6)	20(71.4)	0.42	0.18-0.95	3.67b	0.04
	Yes	22414.6	216(14.4)	8(28.6)			
Surgery in the week before catheterization	98364.2	977(65.0)	6(21.4)	0.15	0.06-0.37	22.65	0.01
	Yes	54935.8	527(35.0)	22(78.6)			
Anticoagulant drug use	124681.3	1219(81.1)	27(96.4)	6.34	0.86-46.81	4.30	0.04
	Yes	28618.7	285(18.9)	1(3.6)			
History of thrombophilia	134587.8	1323(88.0)	21(78.6)	0.41	0.17-0.98	4.29	0.04
	Yes	18712.2	181(12.0)	7(21.4)			

CRT, catheter-related thrombosis; OR, odds ratio; CI, confidence interval.

a Factors that may induce CRT in patients.

b Fisher exact test

Table 2 Catheter- and catheter-nursing-related factors among the patients.
Catheter brand, n (%)	Braun	Arrow	SungWon
n (%)	183(11.9)	756(49.3)	593(38.7)
n (%)	179(11.9)	747(49.7)	578(38.4)
n (%)	4(14.3)	9(32.1)	15(53.6)
Number of lumens, n (%)	46(3.0)	756(49.3)	593(38.7)
n (%)	45(3.0)	747(49.7)	578(38.4)
n (%)	1(3.6)	4(14.3)	9(32.1)
Catheter insertion direction, n (%)	1364(8.9)	487(31.8)	425(28.3)
n (%)	1340(89.1)	476(31.6)	620(40.1)
n (%)	24(85.7)	11(39.3)	8(28.6)
Subclavian vein	433(28.3)	425(28.3)	8(28.6)
n (%)	425(28.3)	620(40.1)	-
Jugular vein	612(40.0)	603(40.1)	9(32.1)
n (%)	603(40.1)	612(40.0)	-
Catheterization duration, mean ±SD	12.7±3.2	11.2±2.5	14.1±3.4
n (%)	12.7±3.2	11.2±2.5	14.1±3.4
Catheter nursing factors			
Flashing catheter, n (%)	Prefilled drug delivery		
n (%)	60239.3	595(39.6)	7(25.0)
n (%)	60239.3	595(39.6)	7(25.0)
n (%)	0.51	0.22-1.21	-

References:

1. [a](#)
2. [b](#)
delivers saline / heparin saline

Syringe suction of saline / heparin saline

CRT, catheter-related thrombosis; OR, odds ratio; CI, confidence interval; SD, standard deviation.
a Fisher exact test
b Catheter duration was calculated with t-test.

Table 3 Conditions of tumors, previous thrombophilia diseases history and anticoagulant therapy of patients selected.

Baseline characteristics	All (n=1532 100%)	No CRT found (n=1504 98.17%)	CRT (n=28 1.83%)
Tumor patients, n (%)			
No	1148(74.9)	1128(75.0)	20(71.4)
Yes	384(25.1)	376(25.0)	8(28.6)
Type of tumor, n (%)			
Breast cancer	89(5.8)	86(5.7)	3(10.7)
colorectal cancer	32(2.1)	31(2.1)	1(3.6)
lung cancer	54(3.5)	52(3.5)	2(7.1)
Gastric cancer	33(2.2)	32(2.1)	1(3.6)
Gynecological tumor	30(2.0)	30(2.0)	0
Condition	n	%	#
---------------------------------	-------	------	-----
Lymphomas	35(2.3)	35(2.3)	0
Liver tumor	65(4.2)	64(4.3)	1(3.6)
Renal tumor	46(3.0)	46(3.1)	0
History of thrombophilia, n (%)	58(3.8)	56(3.7)	2(7.1)
Deep venous thrombosis	13(0.8)	12(0.8)	1(3.6)
Pulmonary embolism	5(0.3)	5(0.3)	0
Septicemia	3(0.2)	3(0.2)	0
Sickle cell disease	6(0.4)	5(0.3)	1(3.6)
Inherited thrombophilia	54(3.5)	54(3.6)	0
Enteritis	48(3.1)	46(3.1)	2(7.1)
Infectious diseases	1345(87.8)	1323(88.0)	22(78.6)
Others or missed	1236(80.7)	1209(80.4)	27(96.4)
Use of anticoagulant, n (%)	81(5.3)	81(5.3)	0
Low molecular weight heparin	59(3.9)	59(3.9)	0
Warfarin	156(10.2)	155(10.1)	1(3.6)
Rivaroxaban	15(0.3)	15(0.3)	0

CRT, catheter-related thrombosis.

Figures
Figure 1

The catheter-related thrombosis detection pathway.
