Selecting the Correct English Synset for a Spanish Sense

Javier Farreres, Horacio Rodríguez

Universitat Politècnica de Catalunya
Barcelona
farreres,horacio@lsi.upc.es

Abstract

This work tries to enrich the Spanish Wordnet using a Spanish taxonomy as a knowledge source. The Spanish taxonomy is composed by Spanish senses, while Spanish Wordnet is composed by synsets, mostly linked to English WordNet. A set of weighted associations between Spanish words and Wordnet synsets is used for inferring associations between both taxonomies.

1. Introduction

In previous work, a way to extract a large volume of weighted associations between Spanish words and WordNet (WN) synsets was obtained (Farreres et al., 2002). Its results derive from the entries of a Spanish-English bilingual dictionary and are thus limited by the coverage of the dictionary. In order to extend the associations to words not covered by the bilingual dictionary a taxonomy alignment was considered. This work is centered in the nominal part.

Main problems in ontology merging arise when 1) the units of the ontologies to be merged are of different granularity, and 2) the mapping between those units cannot be stated directly but through another intermediate level of representation. This is the case of lexico-conceptual taxonomy merging where the mapping between conceptual units is performed through intermediate lexical units. An even more complicated case occurs when the mapping between conceptual units is performed through two levels of intermediate lexical units. This latter case reflects the approach that was taken to create the Spanish Wordnet (SpWN) in the first stages of development within the EuroWordNet (EWN) project (Atserias et al., 1997). See figure 1.

Table 1: Taxonomy volume comparison

	WN1.5	SpTax	WtS	StS
Words	87642	62433	12073	9509
Variants	107424			
Senses	111512		35566	
Synsets	60557	18650	17443	
Associations	65304	326368		

The PRB Given a StS a PRB(a) (pair of related branches) is formed by the Spanish branch developed up to 5th ancestor, following the results in (Farreres et al., 2003), the WN branch developed up to the topmost level, and all the associations relating both branches. The level of an association in the PRB is the level of the Spanish ancestor from which the association starts. A PRB is said to be connected when some Spanish ancestor is associated with the WN branch. Connected PRBs have a level, which is the...
level of the first Spanish ancestor with an association in the PRB, the ancestor which is closest to the link originating the PRB.

PRB is the concept managed in this work that allows studying the relationship between SpTax and WN.

3. Problem Definition

This work addresses the transformation of a set of WiS into a set of SiS. Given a WiS, the information the association provides is that the Spanish word is, probably, a translation of some variant occurring in the synset. But a word has not a unique meaning; meanings are in the senses of the words. Although knowing that a Spanish word may correspond to a WN synset is an useful information, the aim should be to assign the adequate sense of the Spanish word. As a side effect, this would also help detecting several wrong WiS, when for them no adequate Spanish sense were found.

Due to the complexity of the problem, a cautious approach has been preferred. A step by step analysis has been performed, starting from the analysis of simple cases, in order to first understand the kind of problems occurring in this type of taxonomy merging. A further step will consist on applying this knowledge to more complex cases.

4. Analysis of Monosemic Spanish Words

Following this incremental approach, from simple to complex, in a previous work (Farreres et al., 2003) we proposed a comparison between two taxonomies as a way to transform a set of WiS into a set of SiS. The study was centered in the most simple case, monosemic Spanish words with only one WiS, converting it to an SiS assigned to the single sense straightforwardly. 1263 SiS where induced from WiS this way with a percentage of 96.7% of correctness. After building the whole branches of ancestors of both the Spanish sense and the synset of the association, it was first observed from the data that SpTax chains should be limited to five ancestors, as only few cases had their first association after this limit, and the correctness of an association this far was dubious. When the confidence scores of the associations calculated using the logistic regression model obtained in (Farreres et al., 2002) were studied, it was observed that the mean probability of the associations was related to the cardinality of the relation between the branches, the presence of gaps in the Spanish branch, and the number of Spanish ancestors with an association.

4.1. Monosemic Spanish Words with Two Associations

After analyzing the behavior of monosemic Spanish words with one WiS, the next step forward is to study what happens when a monosemic Spanish word has two or more WiS. In this case possibilities increase, as it can be the case that some WiS are incorrect and some are correct; the problem stands in the separation of the correct and incorrect WiS and the ulterior transformation into SiS. In a first step the case where only two WiS are present is studied. At the end results are projected to the set of monosemic Spanish words with a larger number of associations.

Having the evidence that some factors are related to the probability of the base SiS of PRBs, a study has been carried out on 150 monosemic Spanish words with two WiS, taking into account the sense and the two links. The factors studied for each link that seem to be relevant are: the existence of an ancestor with an association together with its level, the cardinality of the relation between the Spanish and the English branches, the presence of gaps in the Spanish branch, the number of Spanish senses with an association, the manual evaluation of the association, and the probability of the link.

The first distinction has been done in terms of whether the PRBs are connected. Table 2 summarizes the set volumes. When a PRB is connected, there is added evidence as to the correctness of the base SiS.

Group	Quantity	Percentage
No PRB connected	39	26%
One PRB connected	49	33%
Both PRB connected	62(*)	41%
Total	150	

(*) Two of them are tops in SpTax and are thus not taken into account in this work.

Table 2: Pairs of PRB for the same Spanish word
mographs. As the current work only studies existing associations, this will not be taken into account right now. But in a future line of enrichment of SpWN, the generation of associations by means of homographs will be studied, with the caution of the danger of false friends.

4.1.2. One PRB Connected

When only one of the PRB is connected, in most of the cases the connected link has proven to be correct, while the disconnected PRB is in mostly incorrect. The 49 cases generate 98 PRB: the 49 connected PRB have been accepted, the other 49 PRB have been rejected. Table 3 shows that the detection has a recall of 76% and a precision of 84%. The number of correct solutions discarded is quite high (13) but no evidence of any factor was detected that could help recovering any of them.

4.1.3. Both PRB Connected

When both PRB are connected, there is the possibility that both are correct (16 cases), that just one of them is correct (43 cases), or that both are incorrect (2 cases). The factors (level of upper closest association, cardinality of the relation between the branches, presence of gaps, number n of associations, evaluation, logistic probability) have been studied for each of the cases.

It was observed that the behavior of factors level and n is quite different when one or both PRB are correct. Upon studying them, it is observed that for the case that one PRB is incorrect, it is almost always the case that the correct PRB has higher level or higher n than the incorrect PRB. Applying this result, table 4 shows the results of separating correct and incorrect cases when the upper condition takes place. The detection of correct and incorrect cases when one PRB has greater n or level than the other is quite precise, with a recall of 85.7% and a precision of 92%.

When both PRB have the same level and n, the structure of the association with the WN branch of the PRB has been studied. Six structures have been distinguished. Figure 3 shows the structures together with the number of cases of each of the structures; case b) is the most frequent totaling a 42%, and the second most frequent is case a) with a 19%.

The two most frequent structures covering a 61% of the cases have been studied more deeply. The rest has been left out of further study, and will be accepted as correct globally, mainly due to the lack of coverage.

In case a) the decision is between a synset and its immediate ancestor. In 3 cases both are correct, in 5 cases the lower one is the correct one, and in 3 cases the upper one is the correct one. No way to distinguish them automatically has been found, and evaluation will be left out for the manual validation process, accepting both as correct, giving 22 STS with a 64% precision.

In case b) a pattern has been detected that tends to distinguish the correct links from the incorrect ones in a small number of cases. A distance is defined counting the number of nodes between each of the base links generating the PRB and the lowest upper association common to both PRB, see figure 3 b). Given two PRB A and B, when |d(A)-d(B)|>2, the PRB with lower distance is usually correct and the other one incorrect. Table 5 shows the results, giving a recall of 83.3% and a precision of 83.3%.

Table 6 shows the results of the successful part of the study for monosemic words with two associations, with a recall of 78% and a precision of 85%. If the rest of unresolved PRB were to be accepted as correct globally, the results would return a 75% recall and 75% precision, being the main source of incorrect values accepted as correct the number of unresolved PRB where both are connected.
This subgroup will need to be studied more deeply in future work.

4.2. Generalization to the Case of Many Associations

In the set of monosemic Spanish words there are 554 with 2 WtS and 865 with more StS. A sample of 48 monosemic Spanish words with more than one WtS has been extracted. The 48 Spanish words have 604 WtS, with a mean of 13 WtS per Spanish word, with the minimum being 4 WtS, and the maximum being 31 WtS. One of the words is in fact a top in SpTax, and thus its 30 associations are discarded. The resulting 574 WtS have been transformed into StS and their corresponding PRB have been constructed. The manual validation gives 125 correct, a 22%, and 449 incorrect. A large quantity of the incorrect PRB is the result of the polysemy of the English translations, originating erroneous associations. Another big set of incorrect PRB are correct WtS that deem incorrect when compared with the Spanish senses. In this case, the usual problem is that the bilingual Spanish-English dictionary gives a translation for a sense that is not represented in the monolingual Spanish dictionary.

Table 7 shows the results of the study. The detection of incorrect PRB has 87% precision and 60% recall. But the detection of correct PRB has a 32% precision and 68% recall. It seems from these results that the detection of incorrect cases works much better than the detection of correct results. This is indicative of semidecidable problems.

When adding the comparison of number of ancestors with association together with the comparison of distances of case b, the precision increases to 37% but the recall decreases to 47% (see table 8). In this case, whenever some PRB are related via structure a), they have been taken as one node in order to calculate distances; all have been assigned the same distance when compared with other PRB via structure b) in figure 3).

5. Global Results and future work

A set of factors has been identified that help separating correct and incorrect StS starting from the same Spanish sense by evaluation and comparison of the generated PRB. Disconnected PRB are taken as incorrect. Connected PRB are compared in terms of the number of Spanish ancestors with association, the level of the first ancestor with an association, and the structure of the relation with WN. Centering the study on the set of Spanish words with 2 WtS, the successful measures return 81% recall and 85% precision. If the unsolved cases are included, the results return 75% recall and precision.

Translating the results to the case of monosemic Spanish words with more than 2 WtS, the separation has a precision of 37% with a recall of 47%. These figures are low, but it should be taken into account that the set of words under study is a quite complex one: monosemic Spanish words with more than 2 WtS. It is a suspicious behavior for a monosemic word, and logically it results in low figures. Table 9 summaries the results for all monosemic Spanish words.

Table 7 shows that unconnected PRB are a good indicator of incorrect StS. In this study, PRB have been separated between connected and disconnected. But many of the connected PRB are supported by unconnected upper PRB. If a chain of deletions were executed along the branches, many of the incorrect PRB would disappear.

6. References

J. Atserias, S. Climent, J. Farreres, G. Rigau, and H. Rodríguez. 1997. Combining multiple methods for the automatic construction of multilingual wordnets. In Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP), Tzigov Chark, Bulgaria.

J. Farreres, K. Gibert, and H. Rodríguez. 2002. Semiautomatic creation of taxonomies. In G. Ngai et al., editor, Proceedings of the Coling 2002 Workshop "SemaNet’02: Building and Using Semantic Networks", Taipei, August.

J. Farreres, K. Gibert, and H. Rodríguez. 2003. Towards binding Spanish senses to wordnet senses through taxonomy alignment. In Sojka et al., editor, Proceedings of the Second International Wordnet Conference (GWC 2004), pages 259–264, Brno. Masaryk University.

G. Rigau. 1998. Automatic Acquisition of Lexical Knowledge from MRDs. Ph.D. thesis, Universitat Politècnica de Catalunya, Barcelona.