The Combined Outcomes of the COVID-19 Pandemic and a Collapsing Economy on Quality of Life: A Cross-Sectional Study

Hala Sacre
INSPECT-LB. Institut National de Santé Publique, Epidémiologie Clinique et Toxicologie-Liban. Beirut, Lebanon

Aline Hajj
Universite Saint-Joseph

Danielle A Badro
American University of Science and Technology Faculty of Health Sciences

Carla Abou Selwan (✉ carla.abouselwan@sciencepro.me)
Science PRO https://orcid.org/0000-0002-8140-8694

Randa Aoun
INSPECT-LB. Institut National de Santé Publique, Epidémiologie Clinique et Toxicologie-Liban. Beirut, Lebanon

Pascale Salameh
Universite Libanaise Faculte de Pharmacie

Research article

Keywords: COVID-19, pandemic, quality of life, declining economy, developing country, fear of poverty, fear of COVID-19

DOI: https://doi.org/10.21203/rs.3.rs-34832/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

This study aimed at examining the combined outcomes of the COVID-19 pandemic and a collapsing economy on the quality of life (QOL) of the general Lebanese population.

Methods

A cross-sectional study was conducted from 10-18 May 2020, via an online-based questionnaire using the snowball sampling technique. It enrolled 502 adult participants.

Results

The QOL had a mean of 14.80[14.37;15.24]. A lower QOL was associated with female gender (beta=-1.533[-2.324;-0.743]), university education (beta=-2.119[-3.353;-0.885]), fear of COVID-19 (beta=-0.131[-0.199;-0.063]), fear of poverty (beta=-0.232[-0.402;-0.063]), verbal violence at home (beta=-3.464[-5.137;-1.790]), and chronic disease (beta=-1.307[-2.283;-0.330]). Better family satisfaction (beta=0.380[0.235;0.525]) and better financial situation (beta=0.029[0.003;0.055]) were significantly correlated with better QOL. In the subsample of workers/looking for a job, additional factors affected QOL: physical exercise (beta=1.318[0.370;2.265]) was associated with better QOL, while previous waterpipe smoking, being self-employed before the crisis (beta=-1.22[-2.208;-0.231]), working from home since the economic crisis (-1.853[-3.692;-0.013]), closure of the institution (beta=-1.201[-2.607;0.204]), and worrying about long-term effects of the crisis on one's employment status (beta=-0.433[-0.650;-0.216]) were associated lower QOL; the fear of COVID-19 was not significantly associated with QOL (p>0.05).

Conclusion

This study showed that during the pandemic, economic and other factors, directly or indirectly related to COVID-19, significantly affected quality of life. The fear of COVID-19 and fear of poverty mainly impacted the QOL of the general population; however, the fear of COVID-19 lost its significance among workers, who reported that factors negatively affecting their QOL are directly related to their employment and the already collapsing economy in Lebanon.

Background

The coronavirus disease outbreak or COVID-19 that first emerged in Wuhan, China, in December 2019, has rapidly become a global threat.1,2 It was declared a pandemic by the World Health Organization (WHO) in March 2020 and considered a public health emergency of international concern ever since.3

The COVID-19 is rapidly spreading in the population, primarily affecting patients’ lungs, and causing mild to severe forms of respiratory illnesses, sometimes associated with intensive care unit (ICU) admissions and high mortality.2-4 To curb the spread of the virus and alleviate the burden on the healthcare system,
governments across the globe deployed public health responses and imposed containment measures, including social distancing, self-isolation, quarantine, and local and international travel restrictions. On 25 March 2020, an estimated 2.6 billion people (one-third of the human population) were under some form of lockdown. As of 17 May 2020, the pandemic resulted in 4,534,731 confirmed cases of COVID-19 infections and 307,537 deaths worldwide.

Throughout history, epidemics and pandemics have had manifold and profound long-lasting impacts on mental health and quality of life (QOL). Thus, COVID-19 is expected to affect the quality of life (QOL), defined by the World Health Organization (WHO) as “an individual’s perception of their position in life in the context of the culture and value systems in which they live and in relation to their goals, expectations, standards, and concerns”. However, data on the impact of COVID-19 on the QOL remain scarce, and only a few reports evaluated it among special populations, such as patients with pelvic floor disorders, Parkinson’s disease, inflammatory bowel disease, or among general practitioners working with suspected or confirmed cases on the frontline of COVID-19.

Another impact of the COVID-19 is the slowing down of major world economies with a higher risk for developing ones. Indeed, containment strategies of flattening the curve most countries adopted to avoid overwhelming the healthcare system, induced a global economic slowdown with layoffs and firms exits generating an abrupt increase in unemployment.

In Lebanon, the first COVID-19 positive case was confirmed on 21 February 2020. As of this date, the government implemented stepwise measures to curb the spread of the disease; one week after, schools were closed. Other escalating steps followed until the sanitary lockdown on 15 March. In parallel, awareness campaigns and electronic official platforms were launched to keep the public informed. On 21 May, the Ministry of Public Health (MOPH) reported a total of 961 cumulative positive COVID-19 cases, 26 deaths, and 53 positive cases. Urban regions are the most affected, mainly the capital city Beirut.

In Lebanon, the COVID-19 outbreak coincided with an unprecedented economic crisis. This Middle-Eastern developing country was recently downgraded from a high-income to upper-middle-income country by the World Bank. In 2011, the Lebanese population was estimated at 5,202,343 inhabitants and reached 6,848,925 in 2018. This dramatic increase that has largely affected its economy is mainly due to the inflow of Syrian refugees who fled their country upon the declaration of war in 2012. Lebanon’s economy is highly volatile; it is service-oriented and relies heavily on the diaspora’s money inflows. Despite several periods of economic prosperity, Lebanon has been witnessing slow economic growth over the past few years that reached monetary tightening in 2019, and resulted in an unprecedented crisis with massive demonstrations, strikes, and temporary bank closures. Since then, banks have become unable to supply depositaries with money, whether Lebanese Pounds or US Dollars, the two currencies used in Lebanon. Furthermore, USD exchange rates have skyrocketed, making the
paper money in that currency and other foreign currencies scarce or unavailable. This economic frailty is mainly due to its non-productive structure coupled with corruption, political instability, and jostling, further aggravated by the significant influx of Syrian refugees.

Despite its dreadful situation and an immediate economic vulnerability, Lebanon ranked among the countries with the most prepared health system for the handling the COVID-19. Given that this pandemic has already affected the major world economies, with some of them heading towards a sharp recession, it is expected that Lebanon will be no exception; the current health crisis will deepen the country’s already collapsing economy, thereby altering QOL in the general population. Studies exploring this particular facet of the pandemic are lacking. Therefore, this study aimed at examining the combined outcomes of the COVID-19 pandemic and a collapsing economy on the quality of life of the general Lebanese population.

Methods

Study Design and Sampling

A cross-sectional study was conducted from 10-18 May 2020, using an online-based questionnaire created on Google forms. Due to the government-mandated sanitary lockdown, the survey was distributed to participants through social media platforms and WhatsApp groups, using the snowball sampling technique. All individuals over 18 years of age with access to the Internet were eligible. A total of 502 respondents filled out the questionnaire that required between 15 and 20 minutes to complete.

Minimal sample size calculation

The minimum sample size was calculated using the G-Power software, version 3.0.10. The calculated effect size was 0.0526, expecting a squared multiple correlation of 0.05 (R^2 deviation from 0) related to the Omnibus test of multiple regression. The minimum necessary sample was n=454, considering an alpha error of 5%, a power of 80%, and allowing 25 predictors to be included in the model.

Questionnaire

The online questionnaire was available in Arabic, the native language in Lebanon. It consisted of three parts. The first part assessed the sociodemographic features of the participants, such as age, gender, marital status, educational level, employment status, region, household size, current household monthly income (divided into five levels, according to the official exchange rate: no income, low< 675,000 LBP (450 USD), moderate 675,000-1,500,000 LBP (450-1,000 USD), intermediate 1,500,000-3,000,000 LBP (1,000-2,000 USD), and high income >3,000,000 LBP (2,000USD)); the socioeconomic status was assessed using quartiles of individual income (household income divided by the household size). Questions were also asked about medical coverage, smoking and alcohol consumption, self-perception of the financial situation, having been infected or in contact with people infected with coronavirus, and physical activity before and during COVID-19.
The second part of the questionnaire, addressed to working people and those seeking a job, consisted of a set of 20 questions related to current employment and how it was affected by either the economic crisis or the COVID-19. Examples of questions asked: Do you have to go out to make a living despite the sanitary lockdown? Are you able to apply social distancing while working (1.5-2m safety distance)? Did your company change the working hours because of the economic crisis or the COVID-19 pandemic? Has your salary/income been affected by the economic crisis or the COVID-19 pandemic? Are you worried about the long-term impact of the economic crisis or the COVID-19 pandemic on your business/job? Did the economic crisis or the COVID-19 pandemic result in decreasing the salaries of employees? Did the economic crisis or the COVID-19 pandemic cause the dismissal of some employees? What were the criteria used to lay-off employees?

The third part consisted of the several measures using validated scales, after obtaining the due permission from their copyright holders when necessary:

The World Health Organization-Five Well-Being Index (WHO-5)

This short self-reported tool is validated in Lebanon and consists of five questions graded from 0 to 5 to evaluate mental well-being and quality of life in the past month. The total score ranges from 0 to 25; higher scores indicate a better quality of life ($\alpha_{\text{Cronbach}}=0.796$).

The fear of COVID-19 scale

This 7-item tool is used to measure the extent of fear of the COVID-19 in adult people. It is scored on a 5-point Likert scale from 1 (strongly disagree) to 5 (strongly agree). The total score ranges from 1 to 35, with higher scores indicating a greater fear of COVID-19 ($\alpha_{\text{Cronbach}}=0.893$).

The InCharge Financial Distress/Financial Well-Being Scale (IFDFW)

This tool includes eight items that assess the perceived financial distress/financial well-being on a linear scale from 1 to 10. Lower scores reflect higher financial distress and lower well-being ($\alpha_{\text{Cronbach}}=0.925$). Since this tool is copyrighted, written permission was obtained from the authors for cross-cultural validation and use in Lebanon.

The Family APGAR Index

This short self-reported instrument evaluates the satisfaction with global family function. It consists of five questions, each corresponding to a component of family function, i.e., Adaptation, Partnership, Growth, Affection, and Resolve (APGAR). All items are scored on a 3-point Likert scale: 0 (hardly ever), 1 (some of the time), and 2 (almost always). The total score ranges from 0 to 10. Higher scores indicate higher satisfaction with family function ($\alpha_{\text{Cronbach}}=0.927$).

Translation Procedure and Piloting
All the scales used in this paper were translated into Arabic, except for the WHO-5, already validated and available in this language. Three authors performed the forward translation, and the other three, the back translation. Discrepancies between original English versions and translated ones were resolved by consensus.

The questionnaire was pilot-tested with ten people unfamiliar with the study to get to the final version; answers were not included in the final dataset.

Statistical Analysis

Data were collected using Google Forms and generated on an Excel sheet, then transferred to IBM SPSS® software, version 23.0 for analysis. The database was weighted according to gender, age, and region of residence, based on the Central Administration of Statistics, before analysing it.

For the descriptive analysis, frequencies and percentages were used for categorical variables, and means and standard deviation for quantitative variables. For the dependent variable (WHO-5), the median and interquartile range were presented as well.

The distribution of the WHO-5 variable was considered normal using visual inspection of the histogram, while the skewness and kurtosis were both lower than 1. These conditions are considered compatible with normality in a sample size higher than 300.

For the bivariate analysis of continuous variables, the Student’s T-test was used to compare the means between two groups and ANOVA between three groups or more, after checking for homogeneity of variances using Levene's test; when variances were not homogenous, the corrected T-Test and the Kruskal-Wallis test were used, respectively. Post-hoc analyses were conducted, after ANOVA and Kruskal-Wallis comparisons, using Bonferroni adjustment. The McNemar-Bowker test was used to compare categorical variables before and after the beginning of the economic crisis. A Spearman correlation coefficient was used to correlate between scale variables. In all cases, a p-value lower than 0.05 was considered significant.

As for the multivariable analysis, a multiple linear regression was conducted to assess the correlates of WHO-5 in the whole sample, after checking the residues normality, linearity of the relationship, absence of multicollinearity, and homoscedasticity assumptions; a stepwise method was used to reach the most parsimonious model. As for the workers/trying to work subgroup analysis, a linear regression using the Generalized Linear Model was used, since the additional variables related to work conditions were multinomial; the ENTER method was used to reach the appropriate model with appropriate assumptions. Independent variables included in the models had a p-value lower than 0.1 in the bivariate analysis, taking into account the allowed maximal number of variables to be included given the sample size. The beta coefficient, its 95% Confidence Interval (CI), and the p-value were reported in both models.

Results
Sociodemographic characteristics of participants

The sample included 502 participants, with 52.7% females, 57.8% married, and 88.5% university degree holders. The distribution over the regions was as follows: 16.7% in Beirut (the city capital), 44.2% in Mount Lebanon, 15.9% in the North, 13.8% in the South, and 9.5% in the Beqaa. Only 32% of participants lived in a household of less than four persons; 58.8% had one or more dependent child, and 33.2% were living in a house of fewer than five rooms. Moreover, 39.3% of participants never consumed alcohol, 66.6% never smoked cigarettes, and 72.3% never smoked waterpipe. Around 6% reported verbal violence at home, while other reported types of domestic violence accounted for less than 2%. Furthermore, 71.9% of the sample had an employment (61.9%) or were looking for one (10%), 10.3% were housewives or never worked, 9.9% were students, and 7.9% had retired (Table 1).

Quality of life distribution

In this sample of the Lebanese general population, QOL had a mean of 14.80 (SD=4.93; 95% CI [14.37;15.24]), a median of 14 (IQR=11; 19), and a range between 2 and 25 (Figure 1).

Sociodemographic characteristics and QOL

A better mean QOL was associated with the male gender (15.61), an education below the university level (16.03), no consumption of alcohol (15.29), no smoking of waterpipe (15.10), and greater satisfaction with family life (APGAR). Occasional cigarette smokers (13.69) and participants who reported violence in their homes (11.37) had lower mean QOL. Additionally, a significant positive correlation was found for the APGAR family scale and the WHO-5 (r=0.251). Significant differences were not found for the rest of the characteristics (Table 1).

Economic characteristics and QOL

People who subjectively classified themselves as belonging to the middle class both prior to the economic crisis and the pandemic (15.02) and after (15.39) had a better QOL; the more people feared poverty, the lower their QOL (r=-0.236). On the contrary, the better their current financial situation, the better their QOL (r=0.206) (Table 2).

Figure 2 shows the sample’s subjective assessment of the socioeconomic status before and after the COVID-19 pandemic; it revealed a significant decrease (p<0.001) of rich and middle classes self-classification, versus a notable increase in low and below poverty categories.

Professional characteristics and QOL

When comparing individuals who were employed and those looking for employment (looking for a job/licensed from work), the latter had a lower mean QOL (12.77) compared to those still working (mean QOL varies from 14-15). Since the beginning of the economic crisis (not the COVID-19 crisis), workers who were still employed (15.51) had the best QOL compared to all other categories (12 to 14). Employees
who reported a current decrease in salary (25-50%), or were dismissed from work (25-75%) had significantly affected QOL compared to workers employed at companies that were not being affected by the crisis. Moreover, incremental concern that the current crisis would affect one's employment was inversely related to QOL (r=-0.206) (Table 3).

COVID-19 exposure, health characteristics, and QOL

As for health-related matters, only 0.6% of participants reported having been infected with COVID-19. Physical activity significantly improved QOL (15.23 vs. 14.05, with nearly 30% of the population reporting an increase in the time they dedicated to physical exercising), while having a chronic disease decreased QOL (13.90 vs. 15.04). In addition, the fear of becoming unable to supply themselves with their medications (13.67) and the fear of going out to receive treatment (13.16) were significantly associated with lower QOL. The higher the fear of COVID-19, the lower the QOL (r=-0.228) (Table 4).

Multivariable analyses: Correlates of WHO-5

The multivariable analysis (Table 5) showed that correlates of QOL differed between the full sample and the workers/looking for a job subsample. In the full sample, better satisfaction from family (beta=0.380) and a better financial situation (beta=0.029) were significantly correlated with better QOL. However, a lower QOL was significantly different among females (beta=-1.533), participants who attended university (beta=-2.119), participants who manifested fear of COVID-19 (beta=-0.131), participants who manifested fear of poverty (beta=-0.232), participants who reported verbal violence at home (beta=-3.464), and the ones who had a chronic disease (beta=-1.307).

In the subsample of workers/looking for a job, additional factors affected QOL: waterpipe smoking (current [beta=3.079] or none [beta=2.297] versus previous) and physical exercise (beta=1.318) were associated with better QOL, while being self-employed before the crisis (beta=-1.22), working from home since the economic crisis (-1.853), closure of the institution (beta=-1.2), and worrying about the long-term effect of the crisis on one's employment status (beta=-0.433) were associated with a lower QOL. It is noteworthy that the fear of COVID-19 was not significantly associated with QOL (p>0.05).

Discussion

This study shed light on the combined effects of the current economic crisis and COVID-19 pandemic on the quality of life in the general population in Lebanon. It showed that during the pandemic, economic and other factors, directly or indirectly related to COVID-19, significantly affected QOL of the general population. However, fear of COVID-19 lost its significance in the workers’ group, who reported that the main factors negatively affecting their QOL were those directly related to their employment status and the already collapsing Lebanese economy. In all groups, individuals with a more favourable financial status seemed to be at lower risk of being affected by both the pandemic and the economic situation, since the IFDFW scores were positively correlated with a better QOL.
In the current context, fear of poverty is illustrated by the subjective economic assessment, showing a significant shift towards low and below poverty classes, thereby revealing the direct impact of difficult financial situations on their quality of life. Prior to the COVID-19 outbreak, the World Bank had forecasted that by 2020, the proportion of Lebanese below the poverty line would increase from 30 to 50%.28

Regarding the workers’ group, individuals owning their businesses before the crisis, working from home since the beginning of the economic crisis, and worrying about the long-term effect of the crisis on their employment status experienced the worst QOL. The main impact was directly related to worrying about their work: those who worked remotely from home feared a wage cut-down or even dismissal if the situation persisted. Business owners feared a complete collapse in income, in the absence of governmental financial support, since budgetary policies are lacking in Lebanon.29

Although “economic damage” can only be assessed when the pandemic subsides,30 financial loss creates long-lasting socioeconomic distress with anger and anxiety that can last months after the pandemic. A recent report from the World Bank pointed out a substantial impact of COVID-19 on the Lebanese economy (11% decrease in GDP), especially with uncertainties about the duration of the pandemic and the drastic changes in the financial system.29 In such a vulnerable system, workers were highly preoccupied with the wilting economy and outcomes of lockdown on their employment rather than fearing the virus itself.

In contrast, unemployed respondents (retired, students, and housewives) worried about contracting the virus and not being able to afford the treatment. Our results are different from those reported in China, where the helplessness feeling of participants was low, although more than half of them declared feeling horrified and apprehensive because of the COVID-19 pandemic.31 A possible explanation is that China being the world’s second-largest economy, people can afford to stop working and rest during the lockdown, without their QOL being affected.31

Another significant aspect is the level of education. Our results showed that the higher the level of education, the lower the QOL. This outcome is not surprising since being unable to plan, face unforeseen expenses, and overcome any sudden deterioration in people’s economic environment has an impact on their QOL.32 Therefore, in our study, participants holding university degrees might have felt deceived and worried about their future in Lebanon due to the current challenging context.

In addition to the economic factors, our results showed that some sociodemographic factors also affected the QOL of Lebanese people; lower QOL was associated with the female gender, having a chronic disease, and experiencing verbal violence at home, whereas a better family satisfaction was correlated with a better QOL. These associations can be explained by homeschooling led by mothers33 and forced confinement with a violent partner,34 while family support improves QOL.31

Furthermore, vulnerable people, particularly those with chronic diseases, require special attention. Studies exploring the impact of the pandemic on the QOL of these patients are scarce and results conflicting.
Although research, with relatively small sample size, failed at identifying a negative impact of COVID-19 on the overall QOL among a population with inflammatory bowel disease, another study demonstrated that patients with Parkinson’s disease experienced worse mental health with lower QOL. Around 20% of our respondents had a chronic disease and exhibited a lower QOL in the whole group and the workers’ subgroup. Lebanon has high percentages of vulnerable populations, such as elderly, and chronic diseases, considered at higher risk for COVID-19 and lower QOL. Reasons in this context could include panic due unreliable information for patients, especially in an era of massive misinformation in the media, added to the economic situation itself. Furthermore, the healthcare system in Lebanon is mainly private, while 10.5% of our population reported not having any health coverage. Consequently, patients with chronic diseases might fear not being able to afford medications and medical care, especially with the significant drop in the sizes of the rich and middle classes, in favour of a significant increase in poor and below poverty classes, as demonstrated by our results.

Finally, only in the workers’ group, current smoking status was significantly associated with better QOL versus previous smokers. It is noteworthy that in Lebanon, behavioural/motivational factors for smoking cessation are mainly driven by health-related issues. Thus, this particular population of “previous smokers” might be at higher risk of vulnerability and chronic diseases (including pulmonary diseases), exposing them to lower QOL scores. The positive correlation among current waterpipe smokers (regular and occasional) might seem surprising since tobacco exposure is known to be a major risk factor for decreased QOL. However, smokers might have felt some relief reducing their stress and anxiety towards hardship, through the already known “self-medication” hypothesis of smoking, postulating that individuals turn towards smoking to alleviate their depression and anxiety symptoms; this is added to the specificities of waterpipe smoking (positive and negative reinforcement, social aspect and conviviality).

Our study also revealed the beneficial effects of physical activity/exercise on overall QOL, particularly in the subgroup of workers, with almost 30% of them reporting an increase in the time allocated for exercise. Several reports have been published recently regarding the importance of physical exercise as a therapy to fight the mental and physical consequences of COVID-19 lockdown. Physical activity and exercise help also maintain immune system function in the current precarious environment and are particularly recommended in vulnerable populations such as those with chronic diseases who scored a lower QOL in our study.

Limitations and strengths

Some limitations could be noted in our study. Although our sample was weighted for gender, age, and regions, it mainly consisted of people with a university level of education with high computer literacy; thus, our results might not be generalized to the whole population. This outcome was expected since the survey used was online, and only computer literate people with Internet access were able to participate. However, this selection bias is not expected to affect the associations found in the multivariable analysis.
since the education factor was taken into account as a potential confounder. Moreover, although the questionnaire was piloted to improve its clarity, there is a probability of information bias, since the questionnaire was self-administered online, with no possibility to explain confusing questions to respondents, if any; however, this is expected to decrease the subjectivity related to interviews and drive the results towards a non-differential bias, thus underestimating the real associations. An additional potential bias would be the residual confounding since not all confounders could be measured.

Nevertheless, and despite these limitations, to the best of our knowledge, this is the largest (sample size large enough to account for statistical power of main comparisons) and the first study evaluating the combined effect of the COVID-19 pandemic and the economic crisis on the QOL in the general population. Moreover, a standardized questionnaire with validated scales was used to evaluate QOL, economy or COVID-19-related factors. Finally, our study pilot-tested the validity of the questionnaires, and all used scales have shown very good to excellent reliability.

Conclusion

This study shed light on the combined outcomes of the current economic crisis and COVID-19 pandemic on the quality of life in a developing country. It showed that during the pandemic, economic and other factors, directly or indirectly related to COVID-19, significantly affected quality of life. The fear of COVID-19 and fear of poverty mainly impacted the QOL of the general population; however, the fear of COVID-19 lost its significance among workers, who reported that factors negatively affecting their QOL are directly related to their employment and the already collapsing economy in Lebanon.

Declarations

Ethics approval and consent to participate

The Institutional Review Board of the American University of Science and Technology approved this study protocol (AUST-IRB-20200527-01). The topic was explained to all participants in the introductory section of the survey and consent to participate was implicit. Anonymity of participants was guaranteed throughout the process of data collection and analysis.

Consent for publication: Not applicable.

Availability of data and materials: The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests: None declared.

Funding: None.

Authors' contributions: All authors had full access to all data in the study and take responsibility for the integrity of the data and accuracy of analysis. HS and AH contributed in literature search, study design,
data collection, and drafting the manuscript. DB, CAS and RA contributed in literature search, data collection, and drafting the manuscript. PS designed the study, analysed the data and contributed in data collection and drafting the manuscript.

Acknowledgements: The authors would like to thank all the persons who helped distribute the questionnaire.

References

1. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. *Lancet.* 2020;395(10223):470-473.
2. Yi Y, Lagniton PNP, Ye S, Li E, Xu RH. COVID-19: what has been learned and to be learned about the novel coronavirus disease. *Int J Biol Sci.* 2020;16(10):1753-1766.
3. Sohrabi C, Alsaﬁ Z, O’Neill A, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). *International Journal of Surgery.* 2020;76:71-76.
4. Insider MJ Business. More People Are Now in “Lockdown” Than Were Alive During World War II. 2020.; https://www.sciencealert.com/one-third-of-the-world-s-population-are-now-restricted-in-where-they-can-go, last accessed May 25, 2020.
5. World Health Organizaization (WHO), WHO Coronavirus Disease (COVID-19) Dashboard. 2020.; https://covid19.who.int/, last accessed May 22, 2020.
6. Brusciano L, Gualtieri G, Gambardella C, et al. When preserving life becomes imperative, quality of life is eclipsed! COVID-19 outbreak impacting patients with pelvic floor disorders undergoing pelvic floor rehabilitation. *Br J Surg.* 2020.
7. World Health Organizaition (WHO), WHOQOL: Measuring Quality of Life. 2020.; https://www.who.int/healthinfo/survey/whoqol-qualityoflife/en/, Last accessed May 25, 2020.
8. Shalash A, Roushdy T, Essam M, et al. Mental health, physical activity and quality of life in Parkinson's disease during COVID-19 pandemic. *Mov Disord.* 2020.
9. Azzam NA, Aljebreen A, Almuhareb A, Almadi MA. Disability and quality of life before and during the COVID-19 outbreak: A cross-sectional study in inflammatory bowel disease patients. *Saudi J Gastroenterol.* 2020.
10. Amerio A, Bianchi D, Santi F, et al. Covid-19 pandemic impact on mental health: a web-based cross-sectional survey on a sample of Italian general practitioners. *Acta Biomed.* 2020;91(2):83-88.
11. Surico P & Galeotti A. The economics of a pandemic: the case of Covid-19. 2020.; https://icsb.org/wp-content/uploads/2020/03/LBS_Covid19_final.pdf.pdf.pdf.pdf-1.pdf.pdf.pdf, last accessed May 27, 2020.
12. Baldwin R, Weder di Mauro B. Mitigating the COVID Economic Crisis: Act Fast and Do Whatever It Takes. In: Mauro RBaBWd, ed. London, UK: CEPR Press; 2020: https://voxeu.org/content/mitigating-covid-economic-crisis-act-fast-and-do-whatever-it-takes, Last assessed May 22, 2020.
13. Ministry of Public Health. Daily situation report. 2020.; https://corona.ministryinfo.gov.lb/, last accessed May 25, 2020.
14. Ministry of Public Health. Coronavirus COVID-19 Lebanon Cases. 2020.; https://maps.moph.gov.lb/portal/apps/opsdashboard/index.html - /d19be998323548278e088076d46d24f8, last accessed May 25, 2020.
15. Arezki R, Mottaghi L, Barone A, et al. A New Economy in Middle East and North Africa. Middle East and North Africa Economic Monitor. 2018. Accessed Last assessed May 22, 2020 from: https://covid19.who.int/.
16. The World Bank. Lebanon. 2020.; https://data.worldbank.org/country/lebanon, Last accessed May 22, 2020.
17. McKinsey and Company. Lebanon Economic Vision. The McKinsey Full Report 2018. 2018.; https://www.economy.gov.lb/media/11893/20181022-1228full-report-en.pdf, Last accessed May 22, 2020.
18. Lebanon-MEU. http://pubdocs.worldbank.org/en/757651553672394797/Lebanon-MEU-April-2019-Eng.pdf, last accessed May 22, 2020.
19. Lebanon economic monitor: so when gravity beckons, the poor don’t fall. In: Global Practice for Macroeconomics, Trade & Investment, Middle East and North Africa Region. 2019.; http://documents.worldbank.org/curated/en/349901579899850508/pdf/Lebanon-Economic-Monitor-So-When-Gravity-Beckons-the-Poor-Dont-Fall.pdf, Last accessed May 22, 2020.
20. Khraiche, D. Lebanon’s Banks Set Limits They Won’t Call Capital Controls. 2019.; https://www.bloomberg.com/news/articles/2019-11-17/lebanese-banks-to-impose-first-joint-measures-in-face-of-crisis, last accessed May 25, 2020.
21. United Nations Development Programme (UNDP), COVID-19: New UNDP data dashboards reveal huge disparities among countries in ability to cope and recover. 2020.; https://www.undp.org/content/brussels/en/home/presscenter/pressreleases/covid-19--new-undp-data-dashboards-reveal-huge-disparities-among.html, Last accessed May 22, 2020.
22. Sibai AM, Chaaya M, Tohme RA, Mahfoud Z, Al-Amin H. Validation of the Arabic version of the 5-item WHO Well Being Index in elderly population. Int J Geriatr Psychiatry. 2009;24(1):106-107.
23. Ahorsu DK, Lin CY, Imani V, Saffari M, Griffiths MD, Pakpour AH. The Fear of COVID-19 Scale: Development and Initial Validation. Int J Ment Health Addict. 2020:1-9.
24. Prawitz A, Garman ET, Sorhaindo B, O’Neill B, Kim J, Drentea P. Incharge Financial Distress/Financial Well-Being Scale: Development, Administration, and Score Interpretation Financial Counseling and Planning. 2006;17(1):34-50.
25. Good M-J, Smilkstein G, Good B, Shaffer T, Arons T. The Family APGAR Index: A Study of Construct Validity. The Journal of Family Practice. 1979;8(3):577-582.
26. Central Administration of Statistics - Population statistics. 2020.; http://www.cas.gov.lb/index.php/demographic-and-social-en/population-en, Last accessed May 22, 2020.
27. Mishra P, Pandey CM, Singh U, Gupta A, Sahu C, Keshri A. Descriptive statistics and normality tests for statistical data. *Ann Card Anaesth.* 2019;22(1):67-72.

28. The World Bank. World Bank: Lebanon is in the Midst of Economic, Financial and Social Hardship, Situation Could Get worse. 2019.; https://www.worldbank.org/en/news/press-release/2019/11/06/world-bank-lebanon-is-in-the-midst-of-economic-financial-and-social-hardship-situation-could-get-worse, last accessed May 25, 2020.

29. The World Bank. Lebanon's Economic Update — April 2020. 2020.; https://www.worldbank.org/en/country/lebanon/publication/economic-update-april-2020, last accessed May 25, 2020.

30. Yamin M. Counting the cost of COVID-19. *Int J Inf Technol.* 2020:1-7.

31. Zhang Y, Ma ZF. Impact of the COVID-19 Pandemic on Mental Health and Quality of Life among Local Residents in Liaoning Province, China: A Cross-Sectional Study. *Int J Environ Res Public Health.* 2020;17(7).

32. EuroStat. Quality of life indicators - measuring quality of life. 2019.; https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Quality_of_life_indicators_-_measuring_quality_of_life_-_B1_dimensions_of_quality_of_life, last accessed May 25, 2020.

33. Wenham C, Smith J, Morgan R, Gender, Group C-W. COVID-19: the gendered impacts of the outbreak. *Lancet.* 2020;395(10227):846-848.

34. Chandan JS, Taylor J, Bradbury-Jones C, Nirantharakumar K, Kane E, Bandyopadhyay S. COVID-19: a public health approach to manage domestic violence is needed. *Lancet Public Health 2020.* 2020. https://www.thelancet.com/pdfs/journals/lanpub/PIIS2468-2667(20)30112-2.pdf. Last assessed: May 23, 2020.

35. Boulos C, Salameh P, Barberger-Gateau P. The AMEL study, a cross sectional population-based survey on aging and malnutrition in 1200 elderly Lebanese living in rural settings: protocol and sample characteristics. *BMC Public Health.* 2013;13:573.

36. Waked M, Khayat G, Salameh P. Chronic obstructive pulmonary disease prevalence in Lebanon: a cross-sectional descriptive study. *Clin Epidemiol.* 2011;3:315-323.

37. Shamseddine A, Sibai AM, Gehchan N, et al. Cancer incidence in postwar Lebanon: findings from the first national population-based registry, 1998. *Ann Epidemiol.* 2004;14(9):663-668.

38. Zeidan RK, Farah R, Chahine MN, et al. Prevalence and correlates of coronary heart disease: first population-based study in Lebanon. *Vasc Health Risk Manag.* 2016;12:75-84.

39. Megari K. Quality of Life in Chronic Disease Patients. *Health Psychol Res.* 2013;1(3):e27.

40. Hayek SE, Cheaito MA, Nofal M, et al. Geriatric mental health and COVID-19: An eye-opener to the situation of the Arab countries in the Middle East and North Africa Region. *Am J Geriatr Psychiatry.* 2020.

41. Cuan-Baltazar JY, Munoz-Perez MJ, Robledo-Vega C, Perez-Zepeda MF, Soto-Vega E. Misinformation of COVID-19 on the Internet: Infodemiology Study. *JMIR Public Health Surveill.* 2020;6(2):e18444.
42. Park HW, Park S, Chong M. An Infodemiological Study on Novel Coronavirus (COVID-19) in South Korea: Conversations and Medical News Frames on Twitter. J Med Internet Res. 2020.

43. The Institute of Health Management and Social Protection, World Health Organization & Ministry of Public Health. National Health Statistics Report in Lebanon. 2012.; https://www.usj.edu.lb/intranet/annonce/files/pdf/175_pdf_1.pdf, last accessed May 24, 2020.

44. Salameh P, Waked M, Aoun Z. Waterpipe smoking: construction and validation of the Lebanon Waterpipe Dependence Scale (LWDS-11). Nicotine Tob Res. 2008;10(1):149-158.

45. Salameh J, Salameh P, Khayyat G, Waken M. Cigarette and waterpipe smoking decrease respiratory quality of life in adults: results from a national cross-sectional study. Pulm Med. 2012;2012:868294.

46. Chaiton MO, Cohen JE, O'Loughlin J, Rehm J. A systematic review of longitudinal studies on the association between depression and smoking in adolescents. BMC Public Health. 2009;9:356.

47. Fluharty M, Taylor AE, Grabski M, Munafo MR. The Association of Cigarette Smoking With Depression and Anxiety: A Systematic Review. Nicotine Tob Res. 2017;19(1):3-13.

48. Jimenez-Pavon D, Carbonell-Baeza A, Lavie CJ. Physical exercise as therapy to fight against the mental and physical consequences of COVID-19 quarantine: Special focus in older people. Prog Cardiovasc Dis. 2020.

49. Fallon K. Exercise in the time of COVID-19. Aust J Gen Pract. 2020;49.

50. Chen P, Mao L, Nassis GP, Harmer P, Ainsworth BE, Li F. Coronavirus disease (COVID-19): The need to maintain regular physical activity while taking precautions. J Sport Health Sci. 2020;9(2):103-104.

Tables
Characteristic	Frequency (%)	Unadjusted QOL Mean (SD)	p-value
Gender			
Male	237(47.3%)	15.61(5.02)	<0.001a
Female	265(52.7%)	14.08(4.74)	
Marital status			0.243
Single	189(37.6%)	15.26(5.08)	
Married	290(57.8%)	14.57(4.78)	
Widowed/Divorced	23(4.6%)	14.01(5.44)	
Level of education			0.044a
Less than university	58(11.5%)	16.03(4.97)	
University degree	445(88.5%)	14.64(4.90)	
Dwelling region			0.115
Beirut (capital)	84(16.7%)	14.06(4.45)	
Mount Lebanon	222(44.2%)	14.62(4.70)	
South Lebanon	69(13.8%)	15.93(5.15)	
Beqaa plain	47(9.5%)	14.34(4.50)	
North Lebanon	80(15.9%)	15.40(5.90)	
Household size			0.113
Lower than 4	161(32.1%)	14.79(4.64)	
4 persons	137(27.2%)	14.05(5.18)	
5 persons	122(24.2%)	15.10(4.37)	
6 and more	83(16.5%)	15.63(5.69)	
Number of dependent children			0.163
None	207(41.2%)	15.35(5.07)	
1 child	46(9.1%)	14.37(5.25)	
2 children	132(26.3%)	14.17(4.54)	
3 or more	118(23.4%)	14.73(4.94)	
Number of rooms other than the kitchen and bathrooms	167(33.2%)	15.05(4.84)	0.775
---	------------	-------------	-------
< 5 rooms	138(27.6%)	14.72(4.86)	
5 rooms	109(21.8%)	14.87(4.79)	
6 rooms	87(17.4%)	14.39(5.43)	
7 or more			

Alcohol consumption	0.018a		
Previous	14(2.8%)	11.52(2.72)	
None	197(39.3%)	15.29(5.23)	0.035
Occasional	248(49.3%)	14.47(4.72)	0.176
Regular	44(8.7%)	15.51(4.80)	0.051

Cigarette smoking	0.040a		
Previous	21(4.1%)	14.15(5.99)	0.905
None	334(66.6%)	14.93(4.88)	0.847
Occasional	87(17.4%)	13.69(4.82)	0.038
Regular	60(11.9%)	15.95(4.77)	1.000

Waterpipe smoking	0.009a		
Previous	27(5.3%)	12.41(3.88)	Ref
None	363(72.3%)	15.10(4.99)	0.038
Occasional	79(15.7%)	13.87(4.96)	1.000
Regular	33(6.7%)	15.66(4.22)	0.066

Violence at homeb	<0.001a		
Verbal violence vs no	30(5.9%)	11.37(4.52)	
Physical violence vs no	8(1.6%)	11.35(5.27)	0.301
Sexual violence vs no	7(1.4%)	11.94(4.99)	0.727
Other violence vs no	8(1.6%)	11.35(5.27)	0.324
No violence	472(94.1%)	15.07(4.91)	Ref

| Professional status | 0.075 | | |
| Works/looking for a job | 361(71.9%) | 14.60(4.75) | Ref |
Occupation	Mean (SD)	Unadjusted Correlation (r)	p-value
Housewife/never work	52(10.3%)	15.12(4.42)	1.000
Student	50(9.9%)	16.44(5.60)	0.081
Retired	40(7.9%)	14.21(5.94)	1.000
Age in years	42.47(14.06)	-0.057	0.219
APGAR family	7.81(2.72)	0.251	<0.001^a

^aStatistically significant result; ^bMore than one option is possible.
Characteristic	Frequency (%)	Unadjusted QOL Mean (SD)	p-value
	N=502(100%)		
Subjective assessment before COVID crisis			
No answer	30(6.1%)	13.93(5.26)	0.222
Rich	448(89.2%)	15.02(4.92)	0.015
Middle class	11(2.1%)	13.42(3.74)	0.859
Middle to low	8(1.6%)	9.49(1.84)	Ref
Below poverty line			
Subjective assessment after COVID crisis			0.007
No answer	5(1.1%)	15.54(4.27)	1.000
Rich	327(65.1%)	15.39(5.09)	0.007
Middle class	137(27.2%)	13.69(4.32)	Ref
Middle to low	19(3.8%)	13.29(5.00)	1.000
Below poverty line			
Current Health Coverage			0.213
No health coverage	53(10.5%)	14.31(4.69)	
Private insurance	205(40.8%)	15.03(5.06)	
Social security	155(30.9%)	14.41(4.77)	
Other public coverage	90(17.8%)	15.61(5.17)	
Household income			0.370
Less than 675,000LP	15(2.9%)	13.74(4.40)	
675,000-1,500,000LP	64(12.8%)	14.10(4.63)	
1,500,000-3,000,000LP	149(29.7%)	14.67(5.01)	
More than 3,000,000LP	274(54.5%)	15.10(4.93)	
Socioeconomic quartile			0.733
	134(26.6%)	15.02(4.75)	
Quartile 1	Mean (SD)	Unadjusted Correlation (r)	p-value
------------	-----------	--------------------------	---------
142(28.3%)	14.85(5.44)	-0.236	<0.001a
Quartile 2	119(23.7%)	14.39(4.81)	
Quartile 3	101(20.1%)	15.02(4.68)	
Quartile 4			

Fear of poverty	6.90(2.65)	-0.236	<0.001a
IFDFW financial wellbeing scale	39.9(17.33)	0.206	<0.001a

aStatistically significant result.
Table 3. Professional characteristics and QOL

Characteristic	Frequency (%)	Unadjusted QOL Mean (SD)	p-value
	N=361(100%)		
Public sector work	65(17.9%)	14.62(4.58)	0.866
Private sector work	296(82.1%)	14.50(5.53)	
Income basis			0.116
Own business	81(22.4%)	14.84(4.11)	
Project basis	11(3.1%)	16.97(4.37)	
Monthly income	246(68.1%)	14.58(4.97)	
Daily wages	23(6.4%)	12.90(4.29)	
Healthcare profession			0.359
No	173(48.0%)	14.84(4.85)	
Yes	187(37.3%)	14.38(4.66)	
Work before economic crisis			
Works on his/her own versus no	130(35.9%)	14.00(4.41)	0.076
Owns an enterprise versus no	93(25.7%)	13.93(4.35)	0.100
Managerial position versus no	155(42.8%)	14.78(4.93)	0.519
Employee versus no	208(57.7%)	14.53(4.87)	0.764
Looking for a job versus no	41(11.3%)	13.25(4.35)	0.052
Work during COVID crisis			0.903
Goes to work now versus no	197(54.6%)	14.63(4.99)	
Has absolutely go out versus no	176(35.1%)	14.93(4.89)	0.193
Applies social distancing versus no	142(39.3%)	15.15(4.72)	0.003^a
I was licensed from work versus no	70(13.9%)	14.22(4.76)	0.457
Current position after COVID crisis	125(34.7%)	14.08(4.28)	0.113
------------------------------------	------------	-------------	-------
Works on his/her own versus no	87(24.0%)	13.95(4.53)	0.144
Owns an enterprise versus no	145(40.1%)	15.07(4.89)	0.119
Managerial position versus no	205(56.7%)	14.67(4.89)	0.731
Employee versus no	50(13.9%)	12.77(4.66)	0.009a

Change since economic crisis start	135(37.4%)	15.51(4.81)	Ref
No change	11(3.05%)	12.00(3.98)	0.013
Permanent closure	53(14.7%)	14.07(4.38)	0.020
Temporary closure	20(5.5%)	12.86(4.42)	<0.001
Work from home	80(22.2%)	14.59(4.43)	0.070
Decrease shifts	61(16.9%)	14.09(5.25)	0.039
Does not apply			

Change since COVID crisis	46(12.7%)	16.31(5.80)	0.343
No change	21(5.8%)	13.94(3.96)	
Permanent closure	63(17.5%)	14.35(4.08)	
Temporary closure	79(21.9%)	14.00(4.50)	
Work from home	106(29.4%)	14.43(4.60)	
Decrease shifts	46(12.7%)	14.94(5.37)	
Does not apply			

Current personal income change	152(42.1%)	15.29(5.03)	0.310
No change in income	48(13.3%)	14.76(5.18)	
Decrease by 25%	77(21.3%)	13.94(4.63)	
Decrease by 50%	53(14.7%)	13.39(3.23)	
Decrease by 75%			
Temporary no salary	22(6.1%)	13.76(3.80)	
---------------------	----------	-------------	
Was licensed	9(2.49%)	14.97(5.21)	

Current enterprise salary change

Change Type	Count (%)	Mean (SD)
No change in salaries	153(42.4%)	15.40(5.34)
Decrease by 25%	58(16.1%)	13.63(4.23)
Decrease by 50%	74(20.5%)	13.90(3.89)
Decrease by 75%	13(3.6%)	13.31(4.97)
Temporary no salary	14(3.9%)	14.83(5.24)
Does not apply	49(13.6%)	14.57(4.12)

Current enterprise employees licensing

Change Type	Count (%)	Mean (SD)
No change	231(64.0%)	15.11(4.92)
Licensing by 25%	36(10.0%)	13.54(4.21)
Licensing by 50%	19(5.3%)	12.44(4.63)
Licensing by 75%	7(1.9%)	11.05(3.16)
Licensing all employees	7(1.9%)	17.59(3.95)
Does not apply	61(16.9%)	13.95(4.16)

Unadjusted Correlation

Variable	Mean (SD)	Unadjusted Correlation (r)	p-value
Years of experience	16.81(10.30)	-0.032	0.556
Years current position	12.88(10.19)	-0.020	0.347
Worry that the crisis would affect the job	7.80(2.51)	-0.206	<0.001a

aStatistically significant result; bMore than one option is possible.
Table 4. COVID-19 exposure, health characteristics, and QOL

Characteristic	Frequency (%)	Unadjusted QOL Mean (SD)	p-value
N=502(100%)			
Had COVID-19 infection			0.990
Yes	3(0.6%)	14.77(2.32)	
No	499(99.4%)	14.80(4.94)	
Contact with COVID-19			0.257
Yes (work, family, store)	18(3.5%)	16.11(4.26)	
No	484(96.5%)	14.76(4.95)	
Knows someone infected			0.164
Yes	145(28.8%)	15.27(4.57)	
No	357(71.2%)	14.62(5.06)	
Visiting/receiving friends			0.517
Yes	109(21.8%)	15.08(4.46)	
No	393(78.2%)	14.73(5.06)	
Visiting/receiving family			0.103
Yes	311(61.9%)	14.52(4.73)	
No	191(38.1%)	15.26(5.22)	
Physical activity			0.010*
Yes	321(64.0%)	15.23(4.93)	
No	181(36.0%)	14.05(4.85)	
Chronic disease			0.036*
Yes	103(20.5%)	13.90(4.96)	
No	399(79.5%)	15.04(4.90)	
Regular treatment			0.009*
Yes	127(25.4%)	13.67(4.77)	
No	40(8.0%)	15.99(5.19)	
	Mean (SD)	Unadjusted Correlation (r)	p-value
--------------------------------	-----------	----------------------------	---------
Fear of COVID-19	11.35(6.03)	-0.228	<0.001

a Statistically significant result; b Yes versus no modalities comparison.
Table 5. Multivariable analyses: Correlates of WHO-5

Model	Unstandardized beta	p-value	95% CI of Unstandardized beta
Correlates of WHO-5 (All sample)\(^a\)			
APGAR score	0.380	<0.001	0.235; 0.525
Fear of Poverty score	-0.232	0.007	-0.402; -0.063
Verbal violence in the home	-3.464	<0.001	-5.137; -1.790
Fear of COVID score	-1.533	0.001	-2.324; -0.743
Female gender	-2.119	0.009	-3.353; -0.885
University education	-1.307	0.027	-2.283; -0.330
Chronic disease	0.029		0.003; 0.055
IFDFW financial wellness score			
Correlates of WHO-5 (Workers)\(^b\)			
Female gender	-1.516	0.001	-2.429; -0.603
University education	-2.806	0.002	-4.552; -1.060
Verbal violence in the home	-2.579	0.027	-4.866; -0.292
Waterpipe Current vs previous	3.079	0.024	0.412; 5.747
Waterpipe sometimes vs previous	2.426	0.046	0.039; 4.813
Waterpipe none vs previous	2.297	0.044	0.061; 4.533
Physical activity	1.318	0.006	0.370; 2.265
Waterpipe none vs previous	-1.411	0.017	-2.573; -0.249
Physical activity	-1.220	0.016	-2.208; -0.231
Chronic disease	-1.853	0.048	-3.692; -0.013
Having its own work before crisis	-1.201	0.094	-2.607; 0.204
Work from home vs no change	0.041	0.013	0.009; 0.072
Temporary closure of institution	0.604	<0.001	0.447; 0.760
Work from home vs no change	-0.433	<0.001	-0.650; -0.216
Temporary closure of institution	-0.054	0.192	-0.136; 0.027
IFDFW financial wellness score

APGAR score

Worried about work

Fear of COVID score

\(^{a} \) Stepwise Likelihood ratio method; linear regression, assumptions checked. Included in first step: Age, gender, education, alcohol, cigarette, waterpipe, verbal violence, APGAR score, fear of poverty score, IFDFW, physical activity, chronic disease, fear of COVID score.

\(^{b} \) ENTER method; linear regression using GEE, assumptions checked; Included in first step: Age, gender, education, alcohol, cigarette, waterpipe, verbal violence, APGAR score, fear of poverty score, IFDWF, physical activity, chronic disease, fear of COVID score; working on its own, being jobless, professional change since the crisis started; salary changes in the enterprise, licensing employees in the enterprise, worrying about long-term crisis effects on its job.

Figures
Figure 1

Histogram of Quality of Life in the Lebanese Population (n=502)
Figure 2

Subjective Economic Status Assessment of Lebanese Population Before and After COVID-19 crisis. Percentages are shown; P-value for McNemar-Bowker test <0.001.