Risk for gastric neoplasias in patients with chronic atrophic gastritis: A critical reappraisal

Lucy Vannella, Edith Lahner, Bruno Annibale

Lucy Vannella, Edith Lahner, Bruno Annibale, Dipartimento Medico-Chirurgico di Scienze Cliniche, Tecnobiomediche e Medicina Traslazionale, Sant’Andrea Hospital, School of Medicine, University Sapienza, Rome 00189, Italy

Author contributions: Vannella L contributed to the acquisition, analysis and interpretation of data and wrote the article; Lahner E critically revised the manuscript; Annibale B contributed to conception and design of the study and to final revision of the manuscript; all authors approved the version to be published.

Correspondence to: Bruno Annibale, Professor, Dipartimento Medico-Chirurgico di Scienze Cliniche, Tecnobiomediche e Medicina Traslazionale, Sant’Andrea Hospital, School of Medicine, University Sapienza, Rome 00189, Italy. bruno.annibale@uniroma1.it

Telephone: +39-6-4455292 Fax: +39-6-4455292

Received: August 15, 2011 Revised: November 15, 2011 Accepted: November 22, 2011 Published online: March 28, 2012

Abstract

Chronic atrophic gastritis (CAG) is an inflammatory condition characterized by the loss of gastric glandular structures which are replaced by connective tissue (non-metaplastic atrophy) or by glandular structures inappropriate for location (metaplastic atrophy). Epidemiological data suggest that CAG is associated with two different types of tumors: Intestinal-type gastric cancer (GC) and type I gastric carcinoid (T I GC). The pathophysiological mechanisms which lead to the development of these gastric tumors are different. It is accepted that a multistep process initiating from Helicobacter pylori-related chronic inflammation of the gastric mucosa progresses to CAG, intestinal metaplasia, dysplasia and, finally, leads to the development of GC. The T I GC is a gastrin-dependent tumor and the chronic elevation of gastrin, which is associated with CAG, stimulates the growth of enterochromaffin-like cells with their hyperplasia leading to the development of T I GC. Thus, several events occur in the gastric mucosa before the development of intestinal-type GC and/or T I GC and these take several years. Knowledge of CAG incidence from superficial gastritis, its prevalence in different clinical settings and possible risk factors associated with the progression of this condition to gastric neoplasias are important issues. This editorial intends to provide a brief review of the main studies regarding incidence and prevalence of CAG and risk factors for the development of gastric neoplasias.

© 2012 Baishideng. All rights reserved.

Key words: Chronic atrophic gastritis; Gastric neoplasia; Intestinal-type gastric cancer; Type I gastric carcinoid; Prevalence; Incidence; Risk factors

INTRODUCTION

Chronic atrophic gastritis (CAG) is an inflammatory condition characterized by the loss of gastric glandular structures which are replaced by connective tissue (non-metaplastic atrophy) or by glandular structures inappropriate for location (metaplastic atrophy)[1]. Epidemiological data suggest that CAG is associated with two different types of tumors: Intestinal-type gastric cancer (GC) and type I gastric carcinoid (T I GC). The pathophysiological mechanisms which lead to the development of these gastric tumors are different. It is accepted that a multistep process initiating from Helicobacter pylori (H. pylori)-related chronic inflammation of the gastric mucosa progresses to CAG, intestinal metaplasia, dysplasia, and finally leads to...
the development of GC[2]. T I GC is a gastrin-dependent tumor and the chronic elevation of gastrin, which is associated with CAG, stimulates the growth of enterochromaffin-like (ECL) cells with their hyperplasia leading to the development of T I GC[3,4]. Considering that several events occur in the gastric mucosa before the development of GC and/or of T I GC, and that these events take several years, the knowledge of CAG incidence from superficial gastritis, its prevalence in different clinical settings and possible risk factors associated with the progression of this condition to gastric neoplasias are important issues.

EPIDEMIOLOGY OF CHRONIC ATROPHIC GASTRITIS

A recent systematic review was performed with the aim of evaluating the CAG incidence in patients free of CAG at moment of inclusion in the study[8,9]. From published studies, the authors selected only 14 follow-up studies in which CAG diagnosis was carefully made by histology (12 studies) or by serum pepsinogen (PG) levels (2 studies). The CAG incidence rates ranged from 0% to 10.9% per year. This wide CAG incidence range is explained by the particular settings in which the CAG diagnoses were made. In fact, the lowest incidence rates (0%) were found in patients with reflux esophagitis[3] and in patients successfully treated for \textit{H. pylori} infection[8]. The highest incidence rate was observed in an older study conducted on patients who underwent vagotomy because of ulcer disease[9]. Regarding \textit{H. pylori} infection, the CAG incidence rate was higher in \textit{H. pylori}-positive patients than in \textit{H. pylori}-negative ones[7,10-13] and the meta-analysis on the association between \textit{H. pylori} infection and CAG incidence presented a rate ratio of 5 (95% CI: 3.1-8.3).

The prevalence of CAG was evaluated by serological screening using surrogate markers of gastric function (PG I or PG I/PG II ratio) or by gastroscopy/histology. In the vast majority of cases, the serological and histological screenings were both made in a general population. Serological studies reported CAG prevalence rates between 3% and 7%, which were lower than those reported by histological studies. On CAG prevalence subdivided on the basis of diagnostic tools used for CAG diagnosis (histology or serology) are shown in Table 1[14-20]. The observed differences between serological and histological studies could be explained by the fact that it is likely that symptomatic patients accepted more easily to undergo gastroscopy. Higher rates of CAG prevalence found in the Asian countries may be justified by the fact that these areas are at higher risk of GC and by the fact that the definition of CAG diagnosis may be different between Western and Asian countries. In studies reporting from Asian countries, CAG diagnosis included all atrophic lesions irrespective of the atrophy localization in the gastric mucosa (antrum and/or corpus); in the vast majority of the studies conducted in Western countries, CAG diagnosis included only patients with a corpus atrophic involvement such as corpus-atrophic gastritis or a multifocal atrophic gastritis (i.e., patchy areas of atrophic-metaplastic changes in the antral and corpus mucosa), because it is maintained that only corpus atrophic changes can lead to the development of gastric cancer.

ATROPHIC GASTRITIS AND GASTRIC CANCER

Nowadays, GC represents one of the most challenging tumors due to the fact that its diagnosis is often late and, in the advanced stage, the therapeutic options are scarce with consequent high rate of mortality[34-42]. In fact, although a reduction of global incidence for this neoplasm is reported, it remains the second cause of cancer-related death. The knowledge of precursor lesions for the development of intestinal-type GC could contribute to anticipating GC diagnosis at an early stage when surgery or chemotherapy offers a better prognosis. Several studies have estimated the risk of GC in patients with CAG[20-33]. Although the vast majority of these were performed on small numbers of patients and were based on older histological classifications, the progression rate of CAG to GC fluctuates from 0% to 10% with annual incidence (person-year) lower than 1% (Table 2). It is interesting to observe that, although the incidence rate of CAG in patients with superficial gastritis is higher in populations with higher risk of GC (Table 1), the progression rate of CAG towards GC is similar irrespective of different geographic areas.

Some studies have attempted to identify risk factors linked with the progression of precancerous lesions (CAG or intestinal metaplasia) towards GC to select those patients who should undergo endoscopic surveillance.

Age

Age has been identified as a possible risk factor in several studies. In the study by Leung \textit{et al}[32], \textit{H. pylori}-positive patients with intestinal metaplasia were followed up for 5 years to evaluate the progression or the improvement of histological lesions after \textit{H. pylori} eradication treatment compared with placebo. At multivariate analysis, the presence of age > 45 years showed an approximate two-fold increased risk of progression of intestinal metaplasia compared to younger subjects[32]. This same age limit had already been identified in a screening survey performed on 3386 subjects from a rural Chinese population that showed an approximate three-fold increased risk of progression to GC[34]. In a large cohort study, increasing age at initial diagnosis was associated with higher hazard ratio (HR) for the progression to GC (for age > 55 years, HR > 2.38)[32]. In a recent work, patients with CAG who were aged > 50 years at the moment of initial diagnosis presented HR = 8.8 for the progression to gastric neoplastic lesions[33].

Pernicious anemia

Although the vast majority of the older studies on CAG...
Table 1 Prevalence of chronic atrophic gastritis

Author	Year	Country	Study type	Patients	Age (yr)	CAG (%)
Serology						
Steffenet et al.	2004	Sweden	General population	12,252 (men)	51-65	5.2
Green et al.	2005	New Zealand	General population	466	> 65	6.7
Weik et al.	2007	Germany	General population	9,444	50-74	6
Telicara-Keerle et al.	2010	Finland	General population	4,256	18-92	3.5
Histology						
Oksanen et al.	2000	Finland	Endoscopic cohort	207	19-83	13.1
Borch et al.	2000	Sweden	General Population	501	35-85	9.4.1
Asaka et al.	2002	Japan	General Population	2,455	< 20 to > 70	55.5
Bedeven et al.	2003	Sweden	General Population	488	57-85	9
Storckrub et al.	2008	Sweden	General Population	976	20-80	6.6
Zou et al.	2011	China	General Population	1,022	18-80	63.8

1This percentage refers to patients (n = 27) with atrophic body gastritis; 2this percentage refers to patients (n = 47) with atrophic pangastritis and corpus-predominant gastritis; 3these percentages included chronic atrophic gastritis (CAG) diagnosis irrespective of the atrophy localization in the gastric mucosa (antrum and/or corpus); 4this percentage refers to patients (n = 54) with multifocal atrophic gastritis and atrophic corpus-limited gastritis.

Table 2 Incidence of gastric cancer in patients with chronic atrophic gastritis or pernicious anemia

Author	Year	Country	Study type	Patients	Age, median or range (yr)	GC, person-year (%)
Patients with chronic atrophic gastritis						
Walker et al.	1971	Australia	Retrospective	40	40-64	4 (10)
Ectors et al.	1986	United Kingdom	Retrospective	225	-	3 (1.3)
Tatsuta et al.	1993	Japan	Retrospective	654	-	22 (3.4)
You et al.	1999	China	Prospective	20822	35-64	19 (0.9)
Whitting et al.	2002	United Kingdom	Prospective	1042	> 40	12 (11.5)
Dinis-Ribeiro et al.	2004	Portugal	Retrospective	1,771	-	4 (2.2)
Lahner et al.	2005	Italy	Prospective	106	22-74	1 (0.9)
de Vries et al.	2008	Netherlands	Retrospective	84,0723	65.7	1,035 (1.2)
Vannella et al.	2010	Italy	Retrospective	300	18-78	3 (1)
Patients with pernicious anemia						
Borch et al.	1986	Sweden	Prospective	61	-	0
Kokkola et al.	1998	Finland	Prospective	62	20-73	2 (3.2)
Sjöblom et al.	1999	Finland	Prospective	56	27-78	2 (3.5)
Ambricre et al.	1999	United Kingdom	Prospective	27	26-81	0
Bresky et al.	2003	Spain	Prospective	68	-	0
Ye et al.	2003	Sweden	Retrospective	21,265	74.3	177 (0.8)
Vannella et al.	2010	Italy	Retrospective	129	23-74	2 (1.5)

1This number refers to biopsies taken in 144 patients and includes chronic atrophic gastritis (CAG) with type Ⅰ, Ⅱ, Ⅲ intestinal metaplasia; 2this number refers to CAG patients with or without intestinal metaplasia. GC: Gastric cancer.

The role of Helicobacter pylori infection in progression from CAG has low prevalence in the Asian geographic area or if this condition is overlooked.

Intestinal metaplasia
Parallel with more extensive atrophy in the gastric mucosa, the extensive replacement of this by intestinal metaplasia is considered a hallmark of severity of CAG. In the literature, the intestinal metaplasia extension was widely related to a higher risk of GC[32,33,43,44]. In particular, type Ⅲ intestinal metaplasia was associated with an increased risk of GC in some studies[32,33,43,44], but subsequent studies showed conflicting findings[43,46], thus the clinical utility of different subtyping of intestinal metaplasia is limited.
to GC is controversial. In the Leung study, *H. pylori*-positive patients who had not undergone eradication therapy had a progression rate of intestinal metaplasia higher than cured patients\[46\]. However, in this study, the vast majority of patients had only a superficial gastritis at baseline and, after 5 years of follow-up, the rate of patients with intestinal metaplasia increased significantly. It is maintained that the effect of eradication therapy on the progression to GC in patients with precancerous lesions is limited. A previous large prospective study demonstrated that *H. pylori* eradication may be beneficial in arresting the progression to GC only in patients without CAG or intestinal metaplasia\[51\]. Two recent meta-analyses showed a beneficial long-term effect of *H. pylori* eradication therapy on atrophic gastritis, but not on intestinal metaplasia\[46,49\]. Up till now, although the possibility of histological improvement of CAG is accepted after *H. pylori* cure, the efficacy of *H. pylori* eradication in reducing GC incidence needs to be demonstrated.

ATROPHIC GASTRITIS AND TYPE 1 GASTRIC NEUROENDOCRINE TUMOR

T1 GC derives from ECL cells which are localized in the gastric fundus and corpus. ECL cells are specialized in the secretion of histamine that, in turn, stimulates acid secretion by parietal cells\[52\]. Gastric carcinoids have been classified into three subgroups, type I to type III, with different outcomes\[53-58\]. Type I lesions are associated with atrophic gastritis and constitute up to 80% of all gastric carcinoids\[58\]. Gastrin, released by G-cells in the gastric antrum, stimulates the release of histamine and produces toxic effects upon ECL cells\[59\]. In CAG, the loss of appropriate glands in the body leads to achlorhydria, and the consequent chronic hypergastrinemia stimulates ECL hyperplasia and sometimes the development of T1 GC\[55\].

The prevalence rate of T1 GC in patients with CAG is reported to be between 1% and 12.5% in different studies\[35,56,61\]. The wide range of the prevalence rates of T1 GC among several studies can be explained by different settings where patients were selected, such as type of hospital (secondary, tertiary center) or symptoms/signs of presentation. CAG can have a wide range of clinical presentations such as dyspepsia, iron deficiency anemia or pernicious anemia\[35\]. In particular, in a recent observational study in which the T1 GC incidence and prevalence were evaluated, pernicious anemia was present in almost 50% of patients, while previous studies included exclusively patients with this condition\[60\].

Long-term observational studies assessing incidence of T1 GC in CAG patients are scarce\[35,56,61\]. We recently followed up a cohort of CAG patients for 1463 person-years reporting an annual incidence rate (person-year) for T1 GC of 0.49\%\[60\]. An old study by Kokkola et al\[60\] reported an annual incidence of 2%, observing 8 new cases of T1 GC in 416 patient-years. Sjöblom et al\[61\] studied 196 patients with pernicious anemia and after 1397 patient-years, 2 new cases of T1 GC were reported in hospital registries among the initial group of patients. This figure should correspond to an annual incidence rate of 0.1%, but in this study only 70 patients (35.7\%) underwent gastroscopy and the incidence rate can only be obtained indirectly. Furthermore, although there are small fluctuations in the reported incidence rates, only a small group of CAG patients develop T1 GC showing that factors other than gastrin are necessary for the progression of ECL cells to T1 GC.

Few studies have attempted to identify risk factors associated with the development of T1 GC. In a recent work, we found higher baseline levels of gastrin and chromogranin A in CAG patients with T1 GC compared to those without T1 GC. However, all patients with CAG present high plasma values of chromogranin A\[82\] and gastrin, thus these markers have limited clinical utility because of low specificity\[83\].

An accepted risk factor for T1 GC is the presence of ECL dysplasia, which is often associated with T1 GC. This lesion is considered as the true gastric carcinoid precursor lesion and it can represent the sign of a concomitant carcinoid lesion\[36,63\]. CAG patients with a diagnosis of ECL cell dysplasia could benefit from a shorter endoscopic follow-up time to exclude concomitant T1 GC lesions or to identify newly arisen lesions in the gastric mucosa.

Although T1 GC lesions can also be present on flat mucosa, in the vast majority of cases they are associated with the presence of body polyps. In CAG patients, hyperplastic or adenomatous polyps are very common; however, the presence of body polyps increases the risk of having a T1 GC\[64\]. Unfortunately, no feature of endoscopic appearance of the gastric polyps (size, number, sessile/pedunculated presentation) seems useful to differentiate histology of polyps, thus all polyps should be removed and histologically examined\[65,66\].

CONCLUSION

The risk of development of GC or T1 GC appears higher in CAG patients with respect to the general population. In geographic areas with low risk of GC, a surveillance program for all CAG patients may not be cost-effective considering that the vast majority of CAG patients will not develop a gastric neoplasm\[85\]. A subset of CAG patients at higher risk for GC should be identified allowing the selection of those CAG patients in whom gastrosopic/histologic surveillance may be warranted. Recently, an international consensus developed evidence-based guidelines on the management of precancerous conditions and lesions of the stomach, recommending an endoscopic surveillance every 3 years after diagnosis in all patients with extensive atrophy and/or intestinal metaplasia in the antrum and corpus\[86\]. New systems for histopathological staging (OLGA, OLGIM) have been developed with the aim of combining pathological findings with the risk of GC for the patient and to iden-
Long-term omeprazole treatment in resistant gastroesophageal reflux disease: efficacy, safety, and influence on gastric mucosa. Gastroenterology 2000; 118: 661-669

13 Lundell L, Havu N, Miettinen P, Myrvold HE, Wallin L, Julkunen R, Levander K, Hatlebakk JC, Liedeman B, Lamm M, Malm A, Walan A. Changes of gastric mucosal architecture during long-term omeprazole therapy: results of a randomized clinical trial. Aliment Pharmacol Ther 2006; 23: 639-647

14 Sipponen P, Laxin F, Huotari K, Härkönen M. Prevalence of low vitamin B12 and high homocysteine in serum in an elderly male population: association with atrophic gastritis and Helicobacter pylori infection. Scand J Gastroenterol 2003; 38: 1209-1216

15 Green TJ, Venn BJ, Skeaff CM, Williams SM. Serum vitamin B12 concentrations and atrophic gastritis in older New Zealanders. Eur J Clin Nutr 2005; 59: 205-210

16 Weck MN, Stegmaier C, Rothenbacher D, Brenner H. Epidemiology of chronic atrophic gastritis: population-based study among 9444 older adults from Germany. Aliment Pharmacol Ther 2007; 26: 879-889

17 Telaranta-Keerie A, Kara R, Palobeimo L, Härkönen M, Sipponen P. Prevalence of undiagnosed advanced atrophic corpus gastritis in Finland: an observational study among 4,256 volunteers without specific complaints. Scand J Gastroenterol 2010; 45: 1036-1041

18 Oksanen A, Sipponen P, Miettinen A, Sarna S, Rauteh M. Evaluation of blood tests to predict normal gastric mucosa. Scand J Gastroenterol 2000; 35: 791-795

19 Borch K, Jönsson KA, Petersson F, Redéen S, Mårdh S, Franzen LE. Prevalence of gastroduodenitis and Helicobacter pylori infection in a general population sample: relations to symptomatology and lifestyle. Dig Dis Sci 2000; 45: 1322-1329

20 Asaka M, Sugiyama T, Nobuta A, Kato M, Takeda H, Graham DY. Atrophic gastritis and intestinal metaplasia in Japan: results of a large multicenter study. Helicobacter 2001; 6: 294-299

21 Redéen S, Petersson F, Jönsson KA, Borch K. Relationship of gastrointestinal features to histological findings in gastritis and Helicobacter pylori infection in a general population sample. Endoscopy 2003; 35: 946-950

22 Storskrubb T, Aro P, Ronkainen J, Sipponen P, Nyblin H, Talley NJ, Engstrand L, Stolle M, Vieth M, Walker M, Agreus L. Serum biomarkers provide an accurate method for diagnosis of atrophic gastritis in a general population: The Kalixanda study. Scand J Gastroenterol 2008; 43: 1448-1455

23 Zou D, He J, Ma X, Liu W, Chen J, Shi X, Ye P, Gong Y, Zhao Y, Wang R, Yan X, Man X, Gao L, Dent J, Sung J, Wernerson B, Johanssen S, Li Z. Helicobacter pylori infection and gastritis: the Systematic Investigation of gastrointestinal diseases in China (SILC). J Gastroenterol Hepatol 2011; 26: 908-915

24 Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127: 2893-2917

25 Walker IR, Strickland RG, Ungar B, Mackay IR. Simple atrophic gastritis and gastric carcinoma. Gut 1971; 12: 906-911

26 Ectors N, Dixon MF. The prognostic value of sulphomucin positive intestinal metaplasia in the development of gastric cancer. Histopathology 1986; 10: 1271-1277

27 Tatsuta M, Ishii H, Nakazumi A, Okuda S, Taniguchi H, Hiyama T, Tsukuma H, Oshima A. Fundal atrophic gastritis as a risk factor for gastric cancer. Int J Cancer 1993; 53: 70-74

28 You WC, Li JY, Blet WJ, Chang YS, Jin ML, Gail MH, Zhang L, Liu WD, Ma JI, Hu YR, Mark SD, Correa P, Fraumeni JF, Xu GW. Evolution of precancerous lesions in a rural Chinese population at risk of gastric cancer. Int J Cancer 1999; 83: 615-619

29 Whitling JL, Sigurdsson A, Rowlands DC, Hallissey MT, Fielding JW. The long term results of endoscopic surveillance of premalignant gastric lesions. Gut 2002; 50: 378-381

30 Dinis-Ribeiro M, Lopes C, da Costa-Pereira A, Guilherme M,
Barbosa J, Lomba-Viana H, Silva R, Moreira-Dias L. A follow up model for patients with atrophic chronic gastritis and intestinal metaplasia. *J Clin Pathol* 2004; 57: 177-182

Lahner E, Bordi C, Cattaruzza MS, Iannone C, Milione M, Delle Fave G, Annibale B. Long-term follow-up in atrophic body gastritis patients: atrophy and intestinal metaplasia are persistent lesions irrespective of Helicobacter pylori infection. *Aliment Pharmacol Ther* 2005; 22: 471-481

de Vries AC, van Gierek NC, Looman CW, Casparie MK, de Vries E, Meijer GA, Kuipers EJ. Gastric cancer risk in patients with premalignant gastric lesions: a nationwide cohort study in the Netherlands. *Gastroenterology* 2008; 134: 945-952

Vannella L, Lahner E, Osborn J, Bordi C, Miglione M, Delle Fave G, Annibale B. Risk factors for progression to gastric neoplastic lesions in patients with atrophic gastritis. *Aliment Pharmacol Ther* 2010; 31: 1042-1056

Borch K. Epidemiologic, clinicopathologic, and economic aspects of gastroscopic screening of patients with pernicious anemia. *Scand J Gastroenterol* 1986; 21: 21-30

Kokkola A, Sjöblom SM, Haapiainen R, Sipponen P, Puolakkainen P, Järvinen H. The risk of gastric carcinoma and carcinoid tumours in patients with pernicious anemia. A prospective follow-up study. *Scand J Gastroenterol* 1998; 33: 88-92.

Sjöblom SM, Sipponen P, Järvinen H. Gastroscopic follow up of pernicious anemia patients. *Gut* 1993; 34: 28-32

Armbrucht U, Stockbrügger RW, Rode J, Menon GG, Cotton PB. Development of gastric dysplasia in pernicious anemia: a clinical and endoscopic follow up study of 80 patients. *Gut* 1990; 31: 617-620

Bresky G, Mata A, Llach J, Ginis MA, Pellisi M, Soria MT, Fernandez-Esparrach G, Mondelo F, Bordas JM. Endoscopic findings in a biennial follow-up program in patients with pernicious anemia. *Hepatogastroenterology* 2003; 50: 2264-2266

Ye W, Nyrén O. Risk of cancers of the oesophagus and stomach by histology or subsite in patients hospitalised for pernicious anaemia. *Gut* 2005; 52: 938-941

Lehtola J, Karitunen T, Krekela I, Niemelä S, Räsänen O. Gastric carcinoids with minimal or no macroscopic lesion in patients with pernicious anemia. *Hepatogastroenterology* 1985; 32: 72-76

Annibale B, Azzoni C, Corleto VD, di Giulio E, Caruana P, D’Ambra G, Bordi C, Delle Fave G. Atrophic body gastritis patients with enterochromaffin-like cell dysplasia are at increased risk for the development of type I gastric carcinoid. *Eur J Gastroenterol Hepatol* 2001; 13: 1449-1456

Stockbrügger RW, Menon GG, Beilby JO, Mason RR, Cotton PB. Gastroscopic screening in 80 patients with pernicious anemia. *Gut* 1983; 24: 1141-1147

Borch K, Rennvall H, Kullman E, Wilander E. Gastric carcinoid associated with the syndrome of hypergastrinemic atrophic gastritis. A prospective analysis of 11 cases. *Am J Surg Pathol* 1987; 11: 435-444

Marignani M, Delle Fave G, Mecarocchi S, Bordi C, Angeletti S, D’Ambra G, Aprile MR, Corleto VD, Monarba B, Annibale B. High prevalence of atrophic body gastritis patients with unexplained microcytic and macrocytic anemia: a prospective screening study. *Am J Gastroenterol* 1999; 94: 766-772

Vannella L, Strozzi-Vanni A, Lahner E, Bordi C, Pilozzi E, Corleto VD, Ostrom DF, Delle Fave G, Annibale B. Development of type I gastric carcinoid in patients with chronic atrophic gastritis. *Aliment Pharmacol Ther* 2011; 33: 1361-1369

Sjöblom SM, Sipponen P, Miettinen M, Karonen SL, Järvinen HJ. Gastroscopic screening for gastric carcinoids and carcinoma in pernicious anemia. *Endoscopy* 1988; 20: 52-56

Borch K, Stridsberg M, Burman P, Rehfeld JF. Basal chromogranin A and gastrin concentrations in circulation correlate to endocrine cell proliferation in type-A gastritis. *Scand J Gastroenterol* 1997; 32: 198-202

Peracchi M, Gobbia C, Basilio G, Quattrini M, Tarantino C, Vescarelli C, Massironi S, Conte D. Plasma chromogranin A in patients with autoimmune chronic atrophic gastritis, enterochromaffin-like cell lesions and gastric carcinoids. *Eur J Endocrinol* 2005; 152: 443-448

Solcia E, Bordi C, Creutzfeldt W, Dayal Y, Dayan AD, Falkmer S, Grimmelis L, Hauv N. Histopathological classification of nonnal gastric endocrine growths in man. *Digestion* 1988; 41: 185-200

Carmack SW, Genta RM, Graham DY, Lauwers GY. Management of gastric polyps: a pathology-based guide for gastroenterologists. *Nat Rev Gastroenterol Hepatol* 2009; 6: 331-341

Godard AF, Board R, Pritchard DM, Walker MM, Warren B. The management of gastric polyps. *Gut* 2010; 59: 1270-1276

Correa P, Piazuelo MB. The gastric precancerous cascade. *J Dig Dis* 2012; 13: 2-9

Vannella L et al., Risk for gastric neoplasias in atrophic gastritis

on gastric histology: a systematic review and meta-analysis. *Helicobacter* 2007; 12 Suppl 2: 32-38

Wang J, Xu L, Shi R, Huang X, Li SW, Huang Z, Zhang G. Gastric atrophy and intestinal metaplasia before and after Helicobacter pylori eradication: a meta-analysis. *Digestion* 2011; 83: 253-260

Burkitt MD, Pritchard DM. Review article: Pathogenesis and management of gastric carcinoid tumours. *Aliment Pharmacol Ther* 2006; 24: 1305-1320

Rindi G, Bordi C, Rappel S, La Rosa S, Stolte M, Solcia E. Gastric carcinoids and neuroendocrine carcinomas: pathogenesis, pathology, and behavior. *World J Surg* 1996; 20: 168-172
Dinis-Ribeiro M, Areia M, de Vries AC, Marcos-Pinto R, Monteiro-Soares M, O’Connor A, Pereira C, Pimentel-Nunes P, Correia R, Ensari A, Dumonceau JM, Machado JC, Macedo G, Malfertheiner P, Matysiak-Budnik T, Megraud F, Miki K, O’Morain C, Peek RM, Ponchon T, Ristimaki A, Rembacken B, Carneiro F, Kuipers EJ. Management of precancerous conditions and lesions in the stomach (MAPS): guideline from the European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter Study Group (EHSG), European Society of Pathology (ESP), and the Sociedade Portuguesa de Endoscopia Digestiva (SPED). *Endoscopy* 2012; 44: 74-94

Rugge M, Meggio A, Pennelli G, Piscioli F, Giacomelli L, De Pretis G, Graham DY. *Gastritis staging in clinical practice: the OLGA staging system*. *Gut* 2007; 56: 631-636

Capelle LG, de Vries AC, Haringsma J, Ter Borg F, de Vries RA, Bruno MJ, van Dekken H, Meijer J, van Grieken NC, Kuipers EJ. The staging of gastritis with the OLGA system by using intestinal metaplasia as an accurate alternative for atrophic gastritis. *Gastrointest Endosc* 2010; 71: 1150-1158

Arnold R, Chen YJ, Costa F, Falconi M, Gross D, Grossman AB, Hyrdel R, Kos-Kudla B, Salazar R, Flöckinger U. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: follow-up and documentation. *Neuroendocrinology* 2009; 90: 227-233

Borch K, Ahlén B, Ahlman H, Falkmer S, Granérus G, Grimalius L. Gastric carcinoids: biologic behavior and prognosis after differentiated treatment in relation to type. *Ann Surg* 2005; 242: 64-73