Diagnosis and treatments for oropharyngeal dysphagia: effects of capsaicin evaluated by newly developed ultrasonographic method

Rui NAKATO1*, Noriaki MANABE1, Kozo HANAYAMA2, Hiroaki KUSUNOKI3, Jiro HATA1 and Ken HARUMA4

1Division of Endoscopy and Ultrasonography, Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School, Kurashiki, Japan
2Department of Rehabilitation Medicine, Kawasaki Medical School, Kurashiki, Japan
3Department of General Medicine, Kawasaki Medical School, Kurashiki, Japan
4Department of General Internal Medicine 2, Kawasaki Medical School, Kurashiki, Japan

Submitted April 1, 2020; accepted in final form May 12, 2020

Abstract

Oropharyngeal dysphagia (OD) is a common symptom in the older people, and may cause fatal complications such as aspiration pneumonia. However, there is no established treatment for OD. The relationship between the transient receptor potential vanilloid 1 (TRPV1) and substance P released by activated TRPV1 was recently demonstrated. Further, there are several reports showing that capsaicin, a specific agonist of TRPV1, can improve OD. Currently, the evaluation of swallowing is mainly performed by videofluoroscopic examination. However, there are no reports on the clinical application of ultrasonography using tissue Doppler imaging. In this review, we describe the pathophysiology and treatments for OD, introduce our novel US method to evaluate cervical esophageal motility, and then outline our clinical study examining the effects of capsaicin, a specific TRPV1 agonist, in older patients with OD.

Key words: oropharyngeal dysphagia, capsaicin, substance P, transient receptor potential vanilloid 1, ultrasonographic tissue Doppler imaging

Introduction

Oropharyngeal dysphagia (OD) is a common major symptom in daily practice, and the number of patients with OD is approximately 16,500,000 in the USA (1). In our previous study targeting 6,069 Japanese patients (mean age 58.7 ± 17.9 years), the percentage of patients with dysphagia was 3.9% in enrolled outpatients (2). The prevalence of OD is higher in independently living older persons—16.6% in the 70–79 years-old group,
and 33.0% in the >80 years-old group (3, 4). OD reduces the social and psychological quality of life for both patients and caregivers, and can also cause fatal complications including malnutrition and/or dehydration, aspiration pneumonia, and asphyxia (1, 5, 6). These serious complications are reported to be closely associated with mortality in older people, because the frequency of aspiration pneumonia increases with age, and is considered an important complication of OD (4, 7, 8).

Accurate diagnosis of OD is extremely important. OD is assessed using screening, clinical signs, and instrumental methods. To date, the gold standard for OD diagnosis includes videofluoroscopic examination of swallowing (VF), and videoendoscopic evaluation of swallowing (VE) (9–11). However, existing modalities to assess oropharyngeal motility have several drawbacks such as location constraints, high costs, radiation exposure, or intricacy. VF can indicate the movement of the oral, pharyngeal, laryngeal and esophageal during swallowing, by using radiopaque contrast agents such as barium with mixed test agent like liquid or solid, under the X-ray (9, 10). It is not a direct observation of inflow of bolus into the esophagus, but an indirect observation method using X-ray. There are several limitations such as the risk of barium aspiration, the need to move X-ray equipment, and the risk of radiation exposure (9, 10). VE is a transnasal endoscopic method to evaluate the pharyngeal movement in direct observation during swallowing little amount of colored agents (11). VE can indicate the residue in pharynx, presence or absence of vocal cord paralysis. Furthermore, it is possible to perform at the bedside without radiation exposure (11). However, there might be risks of epistaxis, vasovagal response or laryngospasm, and concern associated the use of topical anesthesia. In addition, VE cannot observe the oral movement during swallowing and the bolus inflow into the esophagus due to white out (11). Although the both methods enable detailed evaluation of dysphagia, they are dynamic observation and quantitative evaluation is difficult, and they are complicated because of various evaluation factors (9–11) (Table 1). Nevertheless, ultrasonography (US) has no limitations of radiation exposure or the examination location, allows noninvasive testing, and is a useful technique for clinical practice. However, few studies have used US to evaluate oropharyngeal motility (12–15).

There is no definitive treatment for OD, and as such, most OD patients go untreated (16, 17). It was recently reported that substance P (SP) can cause swallowing and coughing reflexes of central origin via afferent stimulation of the transient receptor potential vanilloid 1 (TRPV1), which is expressed in the oral mucosa, pharyngolaryngeal mucosa, gastrointestinal tract mucosa, and airway mucosa (18). Thus, neuropeptides such as SP may be a potential target for treatment of OD.

In this review, we describe the pathophysiology and treatments for OD, introduce our novel US method to evaluate cervical esophageal motility, and then outline our clinical study examining the effects of capsaicin, a specific TRPV1 agonist, in older patients with OD.

Table 1. The characteristics of modalities used to assess oropharyngeal dysphagia

Evaluation of swallowing phase	Location constraint	Cost	Radiation exposure	Quantitative evaluation	Procedure complexity	
Videofluoroscopic swallowing examination	Oral, pharyngeal, and esophageal phase	Yes	High	Yes	Difficult	Intricate
Videoendoscopic swallowing evaluation	Pharyngeal phase	No	High	No	Difficult	Intricate
Tissue Doppler imaging	Pharyngeal, and esophageal phase	No	Low	No	Simple	Simple
Figure 1 shows a summary of the important factors associated with oropharyngeal dysphagia (OD) in older patients. There are numerous factors (19, 20), which fall into two broad systems: the input system involving sensory nerves, and the output system involving various muscles and swallowing reflex (21).

Sensory system of swallowing

The perception of swallowing is transmitted through various nerves to the brainstem, and is collected in the solitary nucleus in the reticular formation through the fifth cranial nerve (trigeminal nerve, CN-V), the seventh cranial nerve (facial nerve, CN-VII), the ninth cranial nerve (glossopharyngeal nerve, CN-IX), and the tenth central nerve (vagal nerve, CN-X). Those signals are then transmitted to the nucleus ambiguus, which integrates motor output, and the swallowing reflex occurs by applying output stimulation to the swallow muscle through the trigeminal (CN-V), glossopharyngeal (CN-IX), vagal (CN-X), accessory (CN-XI), and hypoglossal nerves (CN-XII). The swallowing reflex is extremely reproducible, and these series of responses are controlled by a central pattern generator (CPG) in the medulla oblongata (20–23). The CPG is also regulated by upper motor neurons from the central cortex (21, 23–25).

The stimulation related to swallowing stimuli includes both chemical and mechanical stimuli. The mechanical stimuli are transmitted by myelinated fibers, while the chemical stimuli are transmitted by unmyelinated fibers (C-fibers). The TRP family plays an important role as a receptor for chemical stimulation in the pharyngeal, laryngeal, and airway regions. TRPs are six-transmembrane ion channels, with a number of subfamilies including TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPML (mucolipin), TRPP (polycystin), TRPC (canonical), and TRPN (Drosophila NOMPC) (26). TRPV1 is expressed on C-fiber terminals of afferent nerves involved in the swallowing sensation, and is a selective receptor for low pH, noxious heat (≥43 °C), and capsaicin (27–29).
Motility system of swallowing

The swallowing movement is divided into the oral, pharyngeal, and esophageal phases. After the pharyngeal phase, a swallowing reflex and involuntary movement occur via the CPG. As the bolus passes through the pharynx, the input stimulus activates the CPG, closing the vocal cords, moving the tongue backward, raising the hyoid bone, inverting the epiglottis, and raising the thyroid and cricoid cartilage. The pharyngeal constrictor muscle contracts sequentially from above for peristalsis, and the upper esophageal sphincter (UES) relaxes and opens, causing the bolus to be sent into the esophagus (21, 23). Aging causes a decrease in the muscle volume and elasticity of the tongue and masticatory muscle. Efficient pharyngeal contraction is impaired in the older people, the UES pressure at rest decreases, the UES relaxation pressure decreases, and the duration of UES opening time is prolonged (30–33). Therefore, the movement of the bolus from the oral cavity to the esophagus is disturbed, reflux from the esophagus to the pharynx occurs, and motor function decreases in all phases of swallowing (20, 30, 31, 33, 34).

Relationship between sensory and motility system

Disturbed input of the swallowing reflex causes swallowing reflex failure, while disturbed output causes motility dysfunction (35, 36). CPG impairment can cause swallowing abnormalities after the pharyngeal phase, resulting in impaired pharyngeal peristalsis and an abnormal UES opening timing (35). Although both the input and output systems are impaired in the older people, leading to aspiration, oral and pharyngeal sensitivity are considered the most important for initializing adequate UES opening.

Current treatment strategies for patients with oropharyngeal dysphagia

The primary clinical goal of OD treatment is relief of symptoms, prevention of various complications such as aspiration pneumonias, and prevention of degradation. The social and psychological quality of life should be also considered as a secondary goal. Several treatment options have been proposed to date, although without a high level of evidence.

Modification of diet and postural control

Previous studies have shown that dietary modification and postural control can improve certain aspects of swallowing (37, 38). Although these treatment methods can be performed at low cost, they are difficult to unify and reproduce, and there is only limited evidence for their efficacy at present.

Dental care and oral health

Dental care and oral health are important treatment strategies for OD. For example, Van Der Maarel-Wierink et al. showed that dental care or oral health improved the swallowing reflex and cough reflex, and decreased the amount of potential respiratory pathogens by avoiding bacterial overgrowth (39). However, there is lack of evidence from comparative studies on dental care or oral health in combination with pharmacological treatment in older patients.

Rehabilitation and training

Several studies have shown that rehabilitation and training can have significant positive effects in OD patients, and are recommended as supportive treatments (19, 20, 40). Swallowing intervention with exercise,
such as rehabilitation and swallowing training, was also reported to improve swallowing dysfunction and OD-related comorbidities (41, 42). Generally, the methods of rehabilitation for OD in older patients include training tongue pressure to improve lip muscle function, and the Shaker exercise (1, 43, 44). Although these treatments are noninvasive, there are individual differences in their effects. Expert advice or intervention is also required for a certain period. Further, several recent reports have shown that swallowing function improves more when combined with transcranial magnetic stimulation or pharyngeal electrical stimulation (neuromuscular electrical stimulation), or pyriform sinus ballooning (42, 45, 46). However, there have been no large studies examining the long-term efficacy.

Current medication therapies

As OD is often treated empirically, there are no medication therapies with a high level of evidence. Goals of medication therapy for OD are classified into preventing aspiration pneumonia, and improving sensory dysfunction of swallowing. There are two randomized controlled trials to prevent aspiration pneumonia in older patients. Nakagawa et al. reported that the newly developed pneumonia ratio was significantly lower in OD patients treated with amantadine than in those without treatment (47). Further, Yamaya et al. reported that use of cilostazol in patients with stroke reduced the risk of pneumonia by approximately 40% compared with the no-use group (48). However, although those studies showed significant benefits, there were problematic side effects including bleeding (4.4%), palpitation and/or tachycardia (4.1%), headache (0.7%), and diarrhea (0.4%).

New treatment options

Capsaicin is a specific agonist to TRPV1. As shown in Fig. 2, capsaicin, an agonist of TRPV1, can activate peripheral sensory C-fibers, leading to the release of several neuropeptides including SP (27, 28). Stimulation of the sensory C-fiber branches of the vagus in the laryngopharyngeal mucosa with capsaicin was reported to induce the swallowing reflex (29, 49). Rofes et al. also showed that stimulation of TRPV1 by capsaicinoids strongly improved the swallow response in older patients with OD (50). Further, several other studies have re-
Effects of capsaicin and US-TDI for OD

Table 2. Previous reports examining the effects of capsaicin on swallowing

Author (ref.)	Journal, years	Subjects (number)	Mean age (± SD, years)	Capsaicin Evaluation modality Parameter	The effect of capsaicin	Side effect	
Ebihara et al. (51)	Lancet, 1993	Patients with cerebral thrombosis (n=20) and age-matched controls	76 ± 2.0 74 ± 1.0	Bolus injection of 1 ml (10⁻¹² to 10⁻⁹ mol/ml capsaicin) into pharynx	EMG LTSR (time from injection to onset of swallowing)	LTSR was dose-dependently shorter in capsaicin group.	None
Ebihara et al. (52)	J Am Geriatr Soc, 2005	Elderly in nursing home allocated into intervention group (n=32), and control group (n=32)	81.7 ± 1.5 82.1 ± 1.2	Capsaicin trochisci (1.5 µg/tablet) for 4 weeks	EMG LTSR	LTSR was shorter in capsaicin group after 4 weeks intervention compared with before the study. The reduction ratio of LTSR was increased in the high risk group (LTSR ≥6.0 s, n=8) than in the low risk group (LTSR <3.0 s, n=16).	NA
Rofes et al. (50)	Gut, 2013	Patients with OD (n=33)	73.9 ± 2.3	185.5 µg/g of capsaicin with bolus	VF Prevalence of penetration	Prevalence of penetration reduced. Prevalence of pharyngeal residue reduced. The time to UES opening was shorter.	NA
Kondo et al. (53)	Clin Interv Aging, 2014	Patients with OD allocated into: outpatients (n=10; mean ESS 4.5 ± 1.4), outpatients (n=6; mean ESS 6.7 ± 0.8), and long-term inpatients (n=10; mean ESS 6.5 ± 1.6)	79.3 ± 7.9 80.7 ± 7.4 81.3 ± 5.0	0.5 g of ointment (0.025% capsaicin) applied to external auditory canal	VE ESS after 5 min	ESS improved after application compared with before application in all three experimental groups.	None
Shin et al. (54)	Dysphagia, 2016	Young healthy group (n=10) Older group without history of dysphagia or aspiration pneumoniae (n=16)	21.6 ± 0.5 81.6 ± 9.4	10 g of pickled Napa cabbage (includes 1.5 µg capsaicin) before every meal for 20 days	EMG LSR assessed by S-SPT (time from solution injection into oropharynx with a nasoesophageal feeding tube to the onset of laryngeal movement	LSR improved on post-intervention compared with pre-intervention in both young and elderly groups.	NA
Our study (55)	Digestion, 2017	Patients with OD (n=49)	70.8 ± 11.6	Capsaicin-containing film food (0.75 µg capsaicin per sheet)	US-TDI Improvement of symptoms CEOT (time from beginning of cervical esophageal wall opening to maximum cervical esophageal wall opening during swallowing the total test meal volume) SP level in saliva	Number of patients with improvement of symptoms by capsaicin intake was larger than with placebo. CEOT in the effective group was shorter capsaicin administration versus placebo. SP levels in saliva in the effective group increased after capsaicin administration versus placebo. Negative correlation of rate of change in CEOT with rate of change in SP in saliva.	None

EMG: electromyography; LTSR: latency time of swallowing reflex; NA: not available; OD: oropharyngeal dysphagia; VF: videofluoroscopic examination of swallowing; UES: upper esophageal sphincter; ESS: endoscopic swallowing score; VE: videoendoscopic evaluation of swallowing; LSR: latency of swallowing response; S-SPT: simple swallowing provocation test; US-TDI: ultrasonographic examination with tissue Doppler imaging; CEOT: cervical esophageal wall opening time; SP: substance P.
ported effects of capsaicin on the swallow response in patients with OD (Table 2) (50–55). However, there are no double-blind placebo-controlled, crossover trials. Further, these reports evaluated the responsiveness of the swallowing reflex, but did not evaluate meal swallowing (successful movement of a meal into the esophagus through the pharynx), and did not measure improvement of symptoms in detail, or measure SP.

Menthol, an agonist of TPRM8, was reported to have an inhibitory effect on the cough reflex, and to reduce the latency time of the swallowing reflex via cold stimulation in the anterior facial arches (56, 57). However, there is one interesting study showing that the improvement in the swallowing response with menthol treatment was lower than that for capsaicin (58), although further studies are required.

The effects of capsaicin in older patients with oropharyngeal dysphagia: a double-blind, placebo-controlled, crossover study

The detailed protocol for this study was previously described (Fig. 3) (55). The subjects of this study was 49 patients with oropharyngeal dysphagia, and the mean age was 70.8 years old. In brief, following an initial screening at visit 1, eligible patients were asked to answer a self-completion interview sheet, and collect their saliva at rest. An ultrasonographic examination with tissue Doppler imaging was then performed to evaluate cervical esophageal wall motion (59). After these examinations, patients were prescribed either capsaicin or placebo for 1 week. At visit 2, on the day when the patient had completed their 1-week capsaicin or placebo treatment, they were instructed to write a self-completion interview sheet, to collect their saliva, and to undergo an US examination as for visit 1. After these examinations, the medications were changed from capsaicin to placebo or placebo to capsaicin, and the patients were instructed to take the changed medicine for an additional week. At visit 3, the last day of the study, patients were instructed to write a self-completion interview sheet, to collect their saliva, and to undergo an US examination. Cottons were used for saliva collection based on a previous report (60), and the saliva volume, pH, and SP concentrations (enzyme immunoassay) were measured.

Capsaicin was significantly more effective (38.8%) for improving symptoms of oropharyngeal dysphagia than placebo (6.1%) in OD patients. There was also a significant increase in the change rate of salivary SP concentrations after administration of capsaicin compared with placebo only in OD patients who exhibited symptomatic improvement. Further, the duration of the cervical esophageal wall opening time evaluated by

Fig. 3. The detailed protocol of our study. Taken from Nakato et al. Digestion 2017 (ref. 55).
US was significantly shorter in the capsaicin administration group compared with placebo only in OD patients who exhibited symptomatic improvement. Interestingly, there was a significant negative correlation of the change ratio of the duration of cervical esophageal wall opening time with salivary SP level (Fig. 4) (55). Thus, our study showed that elevated salivary SP concentration stimulated by capsaicin strongly improved the safety and efficacy of swallowing, and shortened the swallow response, in older patients with OD (Table 2).

Conclusion

Although OD is a highly prevalent disease, no diagnostic and treatment strategies are fully established. OD is an aging disease (“geriatric syndrome”) and is expected to rapidly increase in the near future with the aging society (1, 19, 20). Several modalities to assess oropharyngeal functions have been developed, although less invasive and more convenient screening methods are desirable. Our US method provides a useful tool that can overcome the disadvantages of previous modalities. Multifaceted approaches are also required for OD treatment, including tailored treatment combining swallowing training therapy and medication targeting neuropeptides such as SP. Future large-scale prospective studies are needed to evaluate the efficacy of these tailored treatments using our newly developed US method.

Award Presentation

This review is based on the 4th Tsumeo Shiratori Award at the 60th annual meeting of the Japan Society of Smooth Muscle Research in Tokyo, Japan.

Conflict of Interest

The authors declare that they have no conflict of interests.
Acknowledgment

We thank Edanz Group (https://en-author-services.edanzgroup.com/) for editing a draft of this manuscript.

References

1. Rofes L, Arreola V, Almirall J, Cabrè M, Campins L, García-Peris P, Speyer R, Clavé P. Diagnosis and management of oropharyngeal dysphagia and its nutritional and respiratory complications in the elderly. Gastroenterol Res Pract. 2011. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929516/. doi: 10.1155/2011/818979.
2. Tsukamoto M, Manabe N, Kamada T, Hirai T, Hata J, Haruma K, Inoue K. Number of gastrointestinal symptoms is a useful means of identifying patients with cancer for dysphagia. Dysphagia. 2016; 31(4): 547–54. [Medline] [CrossRef]
3. Serra-Prat M, Hinojosa G, López D, Juan M, Fabré E, Voss DS, Calvo M, Marta V, Ribó L, Palomera E, Arreola V, Clavé P. Prevalence of oropharyngeal dysphagia and impaired safety and efficacy of swallow in independently living older persons. J Am Geriatr Soc. 2011; 59(1): 186–7. [Medline] [CrossRef]
4. Cabré M, Serra-Prat M, Palomera E, Almirall J, Pallares R, Clavé P. Prevalence and prognostic implications of dysphagia in elderly patients with pneumonia. Age Ageing. 2010; 39(1): 39–45. [Medline] [CrossRef]
5. Timmerman AA, Speyer R, Heijnen BJ, Klijn-Zwijnenberg IR. Psychometric characteristics of health-related quality-of-life questionnaires in oropharyngeal dysphagia. Dysphagia. 2014; 29(2): 183–98. [Medline] [CrossRef]
6. Nakato R, Manabe N, Kamada T, Matsumoto H, Shiotani A, Hata J, Haruma K. Age-related differences in clinical characteristics and esophageal motility in patients with dysphagia. Dysphagia. 2017; 32(3): 374–82. [Medline] [CrossRef]
7. Teramoto S, Fukuchi Y, Sasaki H, Sato K, Sekizawa K, Matsuse T, Japanese Study Group on Aspiration Pulmonary Disease High incidence of aspiration pneumonia in community- and hospital-acquired pneumonia in hospitalized patients: a multicenter, prospective study in Japan. J Am Geriatr Soc. 2008; 56(3): 577–9. [Medline] [CrossRef]
8. Morimoto K, Suzuki M, Ishifuji T, Yaegashi M, Asoh N, Hamashige N, Abe M, Aoshima M, Ariyoshi K, Adult Pneumonia Study Group-Japan (APSG-J) The burden and etiology of community-onset pneumonia in the aging Japanese population: a multicenter prospective study. PLoS One. 2015; 10(3): e0122247. [Medline] [CrossRef]
9. Rofes L, Arreola V, Romea M, Palomera E, Almirall J, Cabrè M, Serra-Prat M, Clavé P. Pathophysiology of oropharyngeal dysphagia in the frail elderly. Neurogastroenterol Motil. 2010; 22(8): 851–8 e230. [Medline] [CrossRef]
10. Rebecca Leonard Susan McKenzie. Dysphagia assessment and treatment planning: a team approach 2nd ed. San Diego, CA: Plural Publishing, Inc.; 2008. p. 201–13.
11. Langmore SE. History of fiberoptic endoscopic evaluation of swallowing for evaluation and management of pharyngeal dysphagia: changes over the years. Dysphagia. 2017; 32(1): 27–38. [Medline] [CrossRef]
12. Peng CL, Jost-Brinkmann PG, Miethke RR, Lin CT. Ultrasonographic measurement of tongue movement during swallowing. J Ultrasound Med. 2000; 19(1): 15–20. [Medline] [CrossRef]
13. Yabunaka K, Konishi H, Nakagami G, Sanada H, Iizaka S, Sanada S, Ohue M. Ultrasonographic evaluation of geniohyoid muscle movement during swallowing: a study on healthy adults of various ages. Radiological Phys Technol. 2012; 5(1): 34–9. [Medline] [CrossRef]
14. Morinière S, Hammoudi K, Marmouset F, Bakhos D, Beutter P, Patat F. Ultrasound analysis of the up-
Effects of capsaicin and US-TDI for OD

per esophageal sphincter during swallowing in the healthy subject. Eur Ann Otorhinolaryngol Head Neck Dis. 2013; 130(6): 321–5. [Medline] [CrossRef]

15. Miura Y, Nakagami G, Yabunaka K, Tohara H, Haru K, Noguchi H, Mori T, Sanada H. Detecting pharyngeal post-swallow residue by ultrasound examination: a case series. Med Ultrason. 2016; 18(3): 288–93. [Medline] [CrossRef]

16. Loeb MB, Becker M, Eady A, Walker-Dilks C. Interventions to prevent aspiration pneumonia in older adults: a systematic review. J Am Geriatr Soc. 2003; 51(7): 1018–22. [Medline] [CrossRef]

17. Bartlett RS, Thibeault SL. Insights into oropharyngeal dysphagia from administrative data and clinical registries: a literature review. Am J Speech Lang Pathol. 2018; 27(2): 868–83. [Medline] [CrossRef]

18. Bessac BF, Jott SE. Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology (Bethesda). 2008; 23: 360–70. [Medline]

19. Wirth R, Dziewas R, Beck AM, Clavé P, Hamdy S, Heppner HJ, Langmore S, Leischker AH, Martino R, Pluschinski P, Rösler A, Warnecke T, Sieber CC, Volkert D. Oropharyngeal dysphagia in older persons - from pathophysiology to adequate intervention: a review and summary of an international expert meeting. Clin Interv Aging. 2016; 11: 189–208. [Medline] [CrossRef]

20. Baijens LW, Clavé P, Cras P, Ekberg O, Forster A, Kolb GF, Leners JC, Mateos-Nozal J, Ortega O, Smithard DG, Speyer R, Walshe M. European Society for Swallowing Disorders - European Union Geriatric Medicine Society white paper: oropharyngeal dysphagia as a geriatric syndrome. Clin Interv Aging. 2016; 11: 1403–28. [Medline] [CrossRef]

21. Jean A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev. 2001; 81(2): 929–69. [Medline] [CrossRef]

22. Lang IM. Brain stem control of the phases of swallowing. Dysphagia. 2009; 24(3): 333–48. [Medline] [CrossRef]

23. Leonard R, Kendall K. Dysphagia assessment and treatment planning: a team approach 2nd ed. San Diego: Plural Publishing; 2008. p. 1–26.

24. Leopold NA, Daniels SK. Supranuclear control of swallowing. Dysphagia. 2010; 25(3): 250–7. [Medline] [CrossRef]

25. Ebihara S, Ebihara T, Kohzuki M. Effect of aging on cough and swallowing reflexes: implications for preventing aspiration pneumonia. Lung. 2012; 190(1): 29–33. [Medline] [CrossRef]

26. Li H. TRP channel classification. Adv Exp Med Biol. 2017; 976: 1–8. [Medline] [CrossRef]

27. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997; 389(6653): 816–24. [Medline] [CrossRef]

28. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell. 2003; 112(6): 819–29. [Medline] [CrossRef]

29. Nesuashvili L, Hadley SH, Bahia PK, Taylor-Clark TE. Sensory nerve terminal mitochondrial dysfunction activates airway sensory nerves via transient receptor potential (TRP) channels. Mol Pharmacol. 2013; 83(5): 1007–19. [Medline] [CrossRef]

30. Herzberg EG, Lazarus CL, Steele CM, Molfenter SM. Swallow event sequencing: comparing healthy older and younger adults. Dysphagia. 2018; 33(6): 759–67. [Medline] [CrossRef]

31. Namasivayam-MacDonald AM, Barbon C, Steele CM. A review of swallow timing in the elderly. Physiol Behav. 2018; 184: 12–26. [Medline] [CrossRef]

32. Nativ-Zeltzer N, Logemann JA, Zecker SG, Kahrilas PJ. Pressure topography metrics for high-resolution pharyngeal-esophageal manofluorography-a normative study of younger and older adults. Neurogastroenterol Motil. 2016; 28(5): 721–31. [Medline] [CrossRef]

33. Puisieux F, D’Andrea C, Bacoüinier P, Bui-Dinh D, Castaings-Pelet S, Crestani B, Desruex B, Ferron C,
Franco A, Gaillat J, Guenard H, Housset B, Jeandel C, Jebrak G, Leymarie-Saddles A, Orvoen-Frija E, Piette F, Pinganaud G, Salle JY, Strubel D, Vernejaux JM, de Wazières B, Weil-Engerer S, Intergroupe PneumoGériatrie SPLF–SFGG placé sous l'égide de la Société de pneumologie de langue française (SPLF) et de la Société française de gériatrie et gérontologie (SFGG) Swallowing disorders, pneumonia and respiratory tract infectious disease in the elderly. Rev Mal Respir. 2011; 28(8): e76–93. [Medline] [CrossRef]

34. Cock C, Omari T. Systematic review of pharyngeal and esophageal manometry in healthy or dysphagic older persons (>60 years). Geriatr Basel. 2018; 3(4): 67. [Medline] [CrossRef]

35. Power ML, Hamdy S, Goulermas JY, Tyrrell PJ, Turnbull I, Thompson DG. Predicting aspiration after hemispheric stroke from timing measures of oropharyngeal bolus flow and laryngeal closure. Dysphagia. 2009; 24(3): 257–64. [Medline] [CrossRef]

36. Butler SG, Stuart A, Leng X, Wilhelm E, Rees C, Williamson J, Kritchevsky SB. The relationship of aspiration status with tongue and handgrip strength in healthy older adults. J Gerontol A Biol Sci Med Sci. 2011; 66(4): 452–8. [Medline] [CrossRef]

37. Wheeler-Hegland K, Ashford J, Frymark T, McCabe D, Mullen R, Mussen N, Hammond CS, Schooling T. Evidence-based systematic review: Oropharyngeal dysphagia behavioral treatments. Part II—impact of dysphagia treatment on normal swallow function. J Rehabil Res Dev. 2009; 46(2): 185–94. [Medline] [CrossRef]

38. O’Keeffe ST. Use of modified diets to prevent aspiration in oropharyngeal dysphagia: is current practice justified? BMC Geriatr. 2018; 18(1): 167. [Medline] [CrossRef]

39. van der Maarel-Wierink CD, Vanobbergen JN, Bronkhorst EM, Schols JM, de Baat C. Oral health care and aspiration pneumonia in frail older people: a systematic literature review. Gerodontology. 2013; 30(1): 3–9. [Medline] [CrossRef]

40. Smukalla SM, Dimitrova I, Feintuch JM, Khan A. Dysphagia in the elderly. Curr Treat Options Gastroenterol. 2017; 15(3): 382–96. [Medline] [CrossRef]

41. Sura L, Madhavan A, Carnaby G, Crary MA. Dysphagia in the elderly: management and nutritional considerations. Clin Interv Aging. 2012; 7: 287–98. [Medline]

42. Momosaki R, Yasunaga H, Matsui H, Horiguchi H, Fushimi K, Abo M. Effect of dysphagia rehabilitation on oral intake in elderly patients with aspiration pneumonia. Geriatr Gerontol Int. 2015; 15(6): 694–9. [Medline] [CrossRef]

43. Fraga BF, Almeida ST, Santana MG, Cassol M. Efficacy of myofunctional therapy associated with voice therapy in the rehabilitation of neurogenic oropharyngeal dysphagia: a pilot study. Int Arch Otorhinolaryngol. 2018; 22(3): 225–30. [Medline] [CrossRef]

44. Shaker R, Easterling C, Kern M, Nitschke T, Massley B, Daniels S, Grande B, Kazandjian M, Dikeman K. Rehabilitation of swallowing by exercise in tube-fed patients with pharyngeal dysphagia secondary to abnormal UES opening. Gastroenterology. 2002; 122(5): 1314–21. [Medline] [CrossRef]

45. Takatsuji H, Zakir HM, Mostafeezur RM, Saito I, Yamada Y, Yamamura K, Kitagawa J. Induction of the swallowing reflex by electrical stimulation of the posterior oropharyngeal region in awake humans. Dysphagia. 2012; 28: 10.1007/s00455-012–9393-1. [Medline]

46. Kim YK, Lee KY, Lee SH. Efficacy of a 4-week swallowing rehabilitation program combined with pyriform sinus ballooning in patients with post-stroke dysphagia. Ann Rehabil Med. 2018; 42(4): 542–50. [Medline] [CrossRef]

47. Nakagawa T, Wada H, Sekizawa K, Arai H, Sasaki H. Amantadine and pneumonia. Lancet. 1999; 353(9159): 1157. [Medline] [CrossRef]

48. Yamaya M, Yanai M, Ohrui T, Arai H, Sekizawa K, Sasaki H. Antithrombotic therapy for prevention of pneumonia. J Am Geriatr Soc. 2001; 49(5): 687–8. [Medline] [CrossRef]

49. Tsujimura T, Udembga C, Inoue M, Canning BJ. Laryngeal and tracheal afferent nerve stimulation
evokes swallowing in anaesthetized guinea pigs. J Physiol. 2013; 591(18): 4667–79. [Medline] [CrossRef]

50. Rofes L, Arreola V, Martin A, Clavé P. Natural capsaicinoids improve swallow response in older patients with oropharyngeal dysphagia. Gut. 2013; 62(9): 1280–7. [Medline] [CrossRef]

51. Ebihara T, Sekizawa K, Nakazawa H, Sasaki H. Capsaicin and swallowing reflex. Lancet. 1993; 341(8842): 432. [Medline] [CrossRef]

52. Ebihara T, Takahashi H, Ebihara S, Okazaki T, Sasaki T, Watando A, Nemoto M, Sasaki H. Capsaicin troche for swallowing dysfunction in older people. J Am Geriatr Soc. 2005; 53(5): 824–8. [Medline] [CrossRef]

53. Kondo E, Jinnouchi O, Ohnishi H, Kawata I, Nakano S, Goda M, Kitamura Y, Abe K, Hoshikawa H, Okamoto H, Takeda N. Effects of aural stimulation with capsaicin ointment on swallowing function in elderly patients with non-obstructive dysphagia. Clin Interv Aging. 2014; 9: 1661–7. [Medline]

54. Shin S, Shutoh N, Tonai M, Ogata N. The effect of capsaicin-containing food on the swallowing response. Dysphagia. 2016; 31(2): 146–53. [Medline] [CrossRef]

55. Nakato R, Manabe N, Shimizu S, Hanayama K, Shiotani A, Hata J, Haruma K. Effects of capsaicin on older patients with oropharyngeal dysphagia: a double-blind, placebo-controlled, cross over study. Digestion. 2017; 95(3): 210–20. [Medline] [CrossRef]

56. Ebihara T, Ebihara S, Watando A, Okazaki T, Asada M, Ohrui T, Yamaya M, Arai H. Effects of menthol on the triggering of the swallowing reflex in elderly patients with dysphagia. Br J Clin Pharmacol. 2006; 62(3): 369–71. [Medline] [CrossRef]

57. Sciortino K, Liss JM, Case JL, Gerritsen KG, Katz RC. Effects of mechanical, cold, gustatory, and combined stimulation to the human anterior faucial pillars. Dysphagia. 2003; 18(1): 16–26. [Medline] [CrossRef]

58. Alvarez-Berdugo D, Rofes L, Arreola V, Martin A, Molina L, Clavé P. A comparative study on the therapeutic effect of TRPV1, TRPA1, and TRPM8 agonists on swallowing dysfunction associated with aging and neurological diseases. Neurogastroenterol Motil. 2018; 30(2): doi: 10.1111/nmo.13185. [Medline] [CrossRef]

59. Manabe N, Haruma K, Nakato R, Kusunoki H, Kamada T, Hata J. New ultrasonographic screening method for oropharyngeal dysphagia: tissue Doppler imaging. Am J Physiol Gastrointest Liver Physiol. 2018; 314(1): G32–8. [Medline] [CrossRef]

60. Yasuda T, Nakamori Y, Shiraishi O, Yasuda A, Peng YF, Shinakai M, Imano M, Imamoto H, Shiozaki H. Decreased preoperative plasma substance P concentration is likely associated with postoperative silent aspiration after esophagectomy. Esophagus. 2014; 11: 99–107. [CrossRef]