Association between Drug Insurance Cost Sharing Strategies and Outcomes in Patients with Chronic Diseases: A Systematic Review

Bikaramjit S. Mann1, Lianne Barnieh1,2, Karen Tang1, David J. T. Campbell1,2, Fiona Clement3,4, Brenda Hemmelgarn1,2,3,4,5, Marcello Tonelli2,6, Diane Lorenzetti3, Braden J. Manns1,2,3,4,5*

1 Department of Medicine, University of Calgary, Calgary, Alberta, Canada, 2 Interdisciplinary Chronic Disease Collaboration Team, Calgary, Alberta, Canada, 3 Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada, 4 Institute of Public Health, University of Calgary, Calgary, Alberta, Canada, 5 Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada, 6 Department of Medicine, University of Alberta, Edmonton, Alberta, Canada

Abstract

Background: Prescription drugs are used in people with hypertension, diabetes, and cardiovascular disease to manage their illness. Patient cost sharing strategies such as copayments and deductibles are often employed to lower expenditures for prescription drug insurance plans, but the impact on health outcomes in these patients is unclear.

Objective: To determine the association between drug insurance and patient cost sharing strategies on medication adherence, clinical and economic outcomes in those with chronic diseases (defined herein as diabetes, hypertension, hypercholesterolemia, coronary artery disease, and cerebrovascular disease).

Methods: Studies were included if they examined various cost sharing strategies including copayments, coinsurance, fixed copayments, deductibles and maximum out-of-pocket expenditures. Value-based insurance design and reference based pricing studies were excluded. Two reviewers independently identified original intervention studies (randomized controlled trials, interrupted time series, and controlled before-after designs). MEDLINE, EMBASE, Cochrane Library, CINAHL, and relevant reference lists were searched until March 2013. Two reviewers independently assessed studies for inclusion, quality, and extracted data. Eleven studies, assessing the impact of seven policy changes, were included: 2 separate reports of one randomized controlled trial, 4 interrupted time series, and 5 controlled before-after studies.

Findings: Outcomes included medication adherence, clinical events (myocardial infarction, stroke, death), quality of life, healthcare utilization, or cost. The heterogeneity among the studies precluded meta-analysis. Few studies reported the impact of cost sharing strategies on mortality, clinical and economic outcomes. The association between patient copayments and medication adherence varied across studies, ranging from no difference to significantly lower adherence, depending on the amount of the copayment.

Conclusion: Lowering cost sharing in patients with chronic diseases may improve adherence, but the impact on clinical and economic outcomes is uncertain.

Introduction

Access and adherence to medications is important in the management of many chronic diseases, including cardiovascular conditions [1–5]. Since medications are a major driver of health expenditures [6], insurance plans have instituted a variety of cost sharing strategies, such as copayments, aimed at reducing expenditure on pharmaceuticals [7] (Box 1).

The type of drug insurance that is available to citizens varies internationally, as does the use of patient cost sharing strategies. Many patients lack drug insurance or make some form of direct payment for a portion of their prescriptions, which may constitute a financial barrier to drug access [8,9] – especially since patients with lower socioeconomic status are at higher risk of chronic diseases [10–12]. In a recent survey of Canadians with hypertension, diabetes or cardiovascular disease, nearly 10% identified a
financial barrier to accessing drugs, and those with barriers were 50% less likely to receive statins than those without barriers [13].

A prior Cochrane review of studies published before 2008 found low-quality evidence that fixed copayments and caps reduced adherence to medications [14]. A separate review found that higher levels of copayments were associated with poor adherence, discontinuation and non-initiation of therapy [15]. We sought to update previous reviews and determine the impact of drug insurance (vs. no drug insurance) and varying levels of patient cost sharing (i.e. copayment, deductible, caps, and maximum out-of-pocket expenditure) on medication adherence, clinical and economic outcomes in patients with cardiovascular-related chronic disease. This work focused on cardiovascular related chronic diseases given that long-term medication use (in addition to lifestyle changes) is the mainstay of treatment in these conditions, and that a large body of evidence shows that selected preventative medications (i.e. antihypertensive agents, statins, and anti-diabetic drugs) are effective in reducing morbidity and mortality [16–19].

Maximum out-of-pocket limit: a limit that is set as a fixed dollar amount or as a percentage of income after which the insurer pays 100% of the drugs. Copayments and coinsurance are in place prior to the limit being reached. Some studies refer to this as catastrophic coverage limit

Methods

Data Sources and Searches

A librarian assisted search was performed of electronic databases for English language studies, from inception until March 2013 and included: MEDLINE, EMBASE, CINAHL, Cochrane Controlled Trials Register, and Current Controlled Trials. The full search strategy is available in Appendix S1 – in brief, the key terms included: coronary artery disease, hypertension, dyslipidemia, diabetes, peripheral vascular disease, stroke, transient ischemic attack, heart failure, chronic kidney disease, insurance, pharmaceutical services, health or for-profit insurance plans, reimbursement, Medicare, single-payer system, copay, deductibles, coinsurance, and insurance coverage. No limitations were placed on patient characteristics, study duration or outcomes; the bibliographies of included studies were also searched independently by two reviewers (BSM and LB).

Box 1. Definition of Cost-Sharing Strategies to Restrict Expenditures

- **Full drug insurance**: a policy where the patient does not pay any out-of-pocket expenditure at the time the prescription is dispensed.
- **Cap**: a limit below which a patient does not pay or has reduced payments for prescriptions. After the cap is reached full payment is required by the patient.
- **Coinsurance**: a system where a patient pays a set percentage of the amount per drug or per prescription.
- **Copayment**: an amount per drug or per prescription that a patient pays.
- **Coverage gap**: a gap between a cap and catastrophic coverage where a patient is responsible for the full cost of the drug.
- **Deductible**: a limit up to which a patient pays the full cost of the drug. After the deductible is reached, the patient either does not pay or has reduced payments for prescriptions.
- **Fixed copayment**: a system where a patient pays a fixed, or set, amount per drug or per prescription.

Study Selection

Two reviewers (BSM and LB) independently screened citations and determined eligibility in two stages. In the first stage, all identified citations were reviewed, while the second stage encompassed full-text review of selected abstracts to determine eligibility. Disagreements were resolved by consensus or through consultation with a third reviewer (BJM). Studies were included if they focused on: adult patients with chronic disease (coronary artery disease, hypertension, diabetes, hypercholesterolemia, and cerebrovascular disease), and assessed the impact of full drug insurance without cost sharing, or with lower level of cost sharing as part of a drug insurance system against a comparator group.

We included studies that examined various cost sharing strategies including copayments, coinsurance, fixed copayments, deductibles and maximum out-of-pocket expenditures, defined in Box 1. The cost sharing strategy for the intervention group was the strategy with lower out of pocket payments for the patient, ranging from no payment at all (full drug insurance) to some form of payment. The comparator group had higher out of pocket payments for the patient and ranged from no drug insurance (full payment of pharmaceutical) to a higher level of payment relative to the intervention group through the use of cost sharing strategies such as copayments, fixed copayments, deductibles, coinsurance, or maximum out of pocket expenditures.

Consistent with the Cochrane Effective Practice and Organisation of Care Group [EPOC] taxonomy of health care policy studies [20], we included: randomized controlled trials (RCTs), non-randomized controlled trials, controlled before-after (CBA) and interrupted time series (ITS) studies. Relevant outcomes included: medication adherence, clinical events (myocardial infarction, stroke, death), quality of life, healthcare utilization, or cost. Studies were excluded if they: focused exclusively on children or adolescents, or patients with medical conditions other than chronic cardiovascular disease or one of its risk factors. Studies were further excluded if the health policy focus was value-based insurance, or reference based pricing.

Data Extraction and Quality Assessment

Two reviewers (BSM and LB) independently extracted data and disagreements were resolved by consensus or through consultation with a third reviewer (BJM). The quality of included studies was evaluated using the Cochrane risk of bias tool for randomized controlled trials [21], as well as the Cochrane EPOC taxonomy for non-randomized trials, controlled before-after studies and interrupted time series designs [20].

Data Synthesis and Analysis

As we anticipated substantial heterogeneity between the outcomes reported across studies, we developed broad categories of outcomes, and decided a priori not to pool the studies. Individual study results are reported by type of intervention.

Results

The search yielded 3,122 citations, 72 of which were selected for full-text review. Of these, 11 studies evaluating 7 different drug insurance policy changes met our inclusion criteria (Figure 1): 2 separate reports of one randomized controlled trial (RCT), the RAND trial [22,23]; 4 interrupted time series (ITS) assessing three drug policy changes [24–27]; and 5 controlled before-after (CBA) studies assessing three drug policy changes [28–32] (Figure 2). Seven of the studies were from the US, three were from Canada, and one was from Taiwan with eight of the eleven studies focusing on elderly patients.
Quality of Included Studies

The randomized controlled trial was rated as moderate quality (Appendix S2). The other studies included in our review consisted of ITS designs (rated as high quality) and CBA studies (rated as relatively poor quality) (Appendix S2).

Having Drug Insurance, Compared with No Insurance

Three studies compared those with no drug coverage to a group that had stable uncapped drug coverage that remained unchanged before and after the implementation of Medicare Part D [27,30,31]. They found that in patients aged 65 or older, drug insurance was associated with a 2-fold increase in the odds of using an antihypertensive agent compared to those without drug insurance (Figure 3).

Zhang 2009 [27] also examined drug expenditures and found that compared to those without drug insurance, drug insurance as offered by Medicare Part D coverage was associated with higher drug expenditures ($41 per month), but lower nondrug health care expenditures for each patient (Figure 4). None of these studies evaluated clinical outcomes.

Different Levels of Copayment

Seven studies (assessing five different policy interventions) assessed the impact of varying levels of copayment, ranging from full coverage (no payment from patient) to 95% patient copayment on drug adherence (Figure 3).
Study details	Policies examined								
Primary Author & Accrual Period	**Study Design**	**Study Setting**	**Intervention & Comparator**	**No. of Patients**	**F/u (yr)**	**Varying copay**	**Deadcombs**	**Cap**	**Mac OOP limit/catastrophic coverage**
RAND trial	RCT	American families between the ages of 14 & 61 were randomly assigned to one of four broad categories of health insurance plans, covering all facets of health care including drugs	Full medical care vs. 1. Individual-deductible plan: family paid 95% of cost up to an annual OOP cost ($50,000/yr) 2. Intermediate coinsurance plan: family paid 25 – 50% of health care costs up to $100,000 3. Income-related catastrophic plans: family paid 95% of health care costs up to $100,000	3,958	5	✓	✓	✓	✓
Brook 1983 [23]	ITT	>65 from Quebec, Canada discharged after acute MI. Before and after policy change where varying copay and deductible added over two time periods	Full medical & drug coverage (plan $2 copay with annual max OOP $100/yr) vs. 1. 25% coinsurance (annual max OOP $75/yr) 2. 25% coinsurance & annual deductible added ($30–$50/yr) + annual max OOP $75/yr	22,096	1	✓	✓	✓	✓
Koester 1990 [23]	CSA	>65 from Taiwan with chronic disease randomly sampled from 21 hospital clinics before & after a policy change where coinsurance was introduced for some patient groups	Full drug coverage before and after policy change vs. All medications subjected to progressive coinsurance based medication cost (max OOP $15.62 [US per prescription]) after policy change	470,029	2	✓	✓	✓	✓
Pluto 2003 [24]	ITT	>65 from BC, Canada discharged after acute MI before & after policy change where varying copay & deductible added over two time periods. Examined adherence of beta-blockers	Full drug coverage vs. 1. Copays of $25 ($10 for low-income seniors) per prescription 2. Copay replaced with 26% coinsurance & income-based deductible policy (waived for low-income seniors)	13,193	1	✓	✓	✓	✓
Li 2004 [24]	CSA	As per above, but examined adherence to statins	See Schneeweiss 2007x	41,561	1	✓	✓	✓	✓
Schneeweiss 2007 [25]	ITT	Patients with CHD from VA Medical Centre in Philadelphia, filled at at least one lipid-lowering medication in 24 months prior to policy change resulting in an increase in copay (from $2 to $7) & change to max OOP expenditure for some groups	Full drug coverage before & after policy change vs. 1. Moderate copay – copay increase from $2 to $7 (annual max OOP of $640 for medication costs) 2. Higher copay – copay increased from $2 to $7, with no annual medication max OOP limit	5,654	1	✓	✓	✓	✓
Zhang 2009 [27]	ITT	Patients who were continuously enrolled in Medicare Advantage Plans after US Medicare’s implementation of Part D. Prior to Part D implementation, three groups had no or limited coverage, while one group had stable uncapped coverage which did not vary before or after Part D implementation	People whose drug insurance improved after Part D implementation to between $18–10 copay per generic prescription, $20–30 copay per brand-name prescription with caps of $150–100 per quarter, until reaching a cap of ~$2,200/yr, & catastrophic coverage levels (~$5100/yr). Prior drug coverage for these patients varied as follows: 1. No coverage: patients without prior drug insurance 2. $150 cap: $12 & $20 copayment per generic & brand-name prescription, respectively with $150 cap & no coverage gap or catastrophic limit 3. $350 cap: $12 & $20 copayment per generic & brand-name prescription, respectively with $350 cap & no coverage gap or catastrophic limit vs. No cap: Patients were subject to $10–20 copayment per monthly prescription with no cap before and after Part D implementation	51,102	4	✓	✓	✓	✓
Zhang 2011 [26]	CSA	Patients who were continuously enrolled in Medicare Advantage Plans after US Medicare’s implementation of Part D	See Zhang 2009	16,002	4	✓	✓	✓	✓
Li 2012 [22]	CBA	>65 US Part D plan enrollees with hypertension or hyperlipidemia who had no coverage, generic-only coverage, or both brand-name and generic coverage during the gap in 2008. Patients eligible for low-income subsidy were control group. The study evaluated the effects of coverage gap on drug use	Patients who entered 2006 and who were ineligible for low-income subsidies: 1. No gap coverage: 100% cost-sharing for any drug 2. Generic gap coverage: 100% cost-sharing for brand-name drugs 3. Brand-name & generic gap coverage: no change in cost sharing for any drug vs. US: not subject to increased payments during coverage gap and whose total annual drug spending exceeding the coverage gap threshold ($2250)	93,373	2	✓	✓	✓	✓

* = Reported in the study
* * = Not reported in the study
Intervention is included on the first line following the comparator (numbered below).

Abbreviations: CAN, Canada; copy, copayment; CBA, controlled before and after study; CHD, coronary heart disease; F/U, follow-up; HTN, hypertension; ITT, Intent-to-treat analysis; max, maximum; US, low-income subsidy; OOP, out-of-pocket; RCT, Randomized controlled trial; TAI, Taiwan; USA; United States of America; VA, Veterans Affairs; yr, year; vs, versus.

Figure 2. Overview of included studies.
doi:10.1371/journal.pone.0089168.g002
The RAND RCT compared full healthcare insurance with three different cost sharing strategies. In a sub-group analysis, they found that in patients with hypertension, full drug insurance led to higher use of antihypertensive medications at the exit screening examination (20% absolute increase) compared to each of the three cost sharing strategies [23]. One study from Quebec found no apparent decrease in medication adherence (Figure 3) when a minimal copayment was changed to 25% coinsurance (Figure 5). The Quebec study found no difference in death, myocardial infarctions, heart failure, or angina after changing from a small copayment to 25% coinsurance (Figure 5). Though expenditures were not reported in any of the studies, the addition of a 25% copayment did not appear to increase admissions to hospital or the emergency room in Quebec [24].

Deductibles

The impact of deductibles was assessed in the studies from Quebec and British Columbia [24–26]. The Quebec study found that introduction of the cost sharing strategy was not associated with a decrease in drug use (Figure 3). In the two British Columbia studies, evaluating one policy, there was no association between introduction of the deductible and adherence to beta-blockers or statins, compared with only a fixed copayment. However, being subject to a 100% copay, for those who had not yet reached their deductible, was associated with a 2-fold increase in the risk of discontinuing statins [26].

Maximum Out-of-Pocket Limits and Coverage Gaps

Few studies evaluated changes in the maximum out-of-pocket limit, outside of other policy changes. In a high risk group of US Veteran’s Administration patients with coronary heart disease, there was a slight decline in adherence in patients without an annual maximum out-of-pocket expenditure, compared to those with a maximum out-of-pocket expenditure ($840 US per year) (Figure 3) [29]. In Quebec, a change from minimal copayment ($2 CDN per prescription; annual maximum of $100 CDN) to 25% coinsurance, with a $250–750 CDN annual maximum out-of-pocket expenditure had no apparent change in medication use (Figure 3).

A study by Li et al examined the effect of a coverage gap in a group of elderly Part D enrollees who were ineligible for low-income subsidies with elderly Part D enrollees who were eligible for low-income subsidies. As of 2006, the standard Medicare Part D design has a coverage gap, where a beneficiary has to pay 100% of drug costs after total drug spending exceeds an annual threshold of $2250 in 2006 [32]. This study found that the Part D coverage gap was associated with a 1.5-fold increased probability in nonadherence to antihypertensive and lipid-lowering agents in those who entered the coverage gap phase in 2006 with no coverage (Figure 3).

Discussion

Our systematic review identified 11 studies, comparing 7 policy changes assessing drug insurance and patient cost sharing

Figure 3. The association between cost sharing and medication utilization and adherence. doi:10.1371/journal.pone.0089168.g003
Interrupted Time Series

Study: Zhang 2009[27]

Outcome(s) Measured	Results	p-value	
Impact of Medicare Part D on drug expenditures	Monthly drug expenditures ($US)	CI	
No coverage vs. no cap	41.1	32.7 to 49.6	NR
Capped coverage vs. no cap	12.8	3.87 to 21.69	NR
Impact of Medicare Part D on medical (non-drug) expenditures	Monthly drug expenditures ($US)	CI	p-value
No coverage vs. no cap	-33	-29 to -37	NR
Capped coverage vs. no cap	30	25 to 36	NR

Controlled Before-After Study

Study: Liu 2004[28]

Outcome(s) Measured	Results		
Impact of Medicare Part D on drug expenditures: Average drug cost per prescription (pre vs. post)	Expenditure ($US)	%Change	p-value
Full drug coverage	45.58 vs. 47.31	3.8	0.0001
Cost-sharing	33.87 vs. 35.77	5.61	0.0001
Average drug cost per day (pre vs. post)	Expenditure ($US)	%Change	p-value
Full drug coverage	1.54 vs. 1.59	3.25	0.0005
Cost-sharing	1.58 vs. 1.66	5.06	0.0001

*Capped coverage denotes $350-cap

Abbreviations: CI, confidence interval; NR, not reported

Figure 4. The association between cost sharing and drug and non-drug expenditures.
doi:10.1371/journal.pone.0089168.g004

Randomized-Controlled Trial

Study: RAND trial; Keeler 1985[23]

Outcome(s) Measured	Results		
At study end	Adjusted mean difference (free versus cost-sharing)	CI	p-value
Systolic blood pressure (mmHg)	-1.8	-4.5 to 0.6	NS*
Diastolic blood pressure (mmHg)	-1.9	-3.5 to -0.3	<0.05

Interrupted Time Series

Study: Pilote 2002 [24]

Outcome(s) Measured	Results	p-value
MI	No change over time	NR
HF	No change over time	NR
Angina	No change over time	NR
Death	No change over time	NR

*p-value not provided

Abbreviations: CI, confidence interval; DBP, diastolic blood pressure; HF, heart failure; MI, myocardial infarction; NR, not reported; NS, not significant

Figure 5. The association between cost sharing and clinically relevant outcomes.
doi:10.1371/journal.pone.0089168.g005
strategies (i.e. copayment, deductible, caps, and maximum out-of-pocket expenditure) in patients with or at risk for cardiovascular disease. Although data on clinical outcomes was not widely reported, our review found that providing drug insurance to people with chronic diseases who have no drug insurance appears to increase appropriate use of and adherence to drugs.

The proportion of the US gross domestic product that is spent on health care has more than tripled over the past 30 years [33]. Prescription drugs constitute a significant proportion of overall healthcare costs, with current annual spending for prescription drugs in the US at $250 billion, projected to double over the next decade [34]. One mechanism that has been devised to reduce the financial burden to insurance plans is to shift the burden from the insurer to patients [35,36]. This shift of financial responsibility may lead to underuse of potentially important medications in people with chronic conditions [37,38].

Previous reviews have examined the relationship between drug insurance and health care utilization [39] or various policies regarding direct payment of drugs [14]. Our search strategy, and the results of our search, were compared with the Cochrane review [14]. Our search strategy captured all relevant studies identified in the Cochrane review, along with additional newer studies which focused on the subset of people with or at risk for cardiovascular disease. Like others, we found that the addition of drug insurance for those without previous drug insurance appears to consistently increase adherence to medications, and that increased costs on drug expenditures may be offset by decreased costs in non-drug expenditures [27,30,31]. In general, studies evaluating cost sharing strategies appeared to have conflicting results with some studies showing significant differences in some outcomes such as the RAND trial [23], Doshi [29], and Zhang 2010 and 2011 [30,31]; while other studies such as the studies out of Quebec [24] and British Columbia [25,26] demonstrated no discernable difference in outcomes. Since the cost sharing policies differed from study to study it is worthwhile discussing the different strategies used in the studies in our review. In the studies we included, the use of increasing patient copayments (up to 25% patient copayment) does not appear to reduce the appropriate initiation of medications, but is associated with a small reduction in medication adherence, when compared to full drug coverage. The RAND trial had a significant increase in copayments, which included up to 95% copayments as part of its cost sharing strategy. This study also provided insights into the change in adherence associated with full drug insurance, as it noted a 20% absolute increase to antihypertensive agents compared to the cost sharing group. As such, we can infer that a small copayment (up to 25%) does not appear to impact adherence, while large copayments (95% copay) may have a substantial impact on medication adherence. Furthermore, the impact on adherence may be more significant in those with low socioeconomic status [29], providing some insight into vulnerable populations in whom policy makers may consider waiving copayments.

While the use of deductibles (up to $350 per year) does not appear to have a significant impact on medication adherence, one study reported that 100% copayment (i.e. those who had not yet reached the deductible level) was associated with a two-fold reduction in drug adherence [26]. Furthermore, when patients exceed a pre-defined annual threshold limit and enter a period of a coverage gap the use of medications decreases, particularly when patients were responsible for 100% of medication costs compared to those who had some form of drug coverage [32]. Waiving deductibles and the coverage gap for those from a lower socioeconomic status may be a consideration for policy makers. It is uncertain whether there is a linear relationship between the deductible and adherence though our results suggest there may be a threshold effect. Finally, the impact of a maximum out-of-pocket limits was uncertain [24,29].

Our review has some limitations: we limited our search to English language studies and may have missed non-English language studies. Furthermore, the heterogeneity of the studies prevented us from obtaining pooled estimates of the overall effect of drug insurance on our outcomes of interest. Our review focused on patients with or at risk for cardiovascular diseases, and it is possible that the impact of some tools (such as maximum out-of-pocket limits) may be more important for patients receiving very high-cost drugs, such as those with cancer. While we attempted to assess the association between changes in drug policy and clinically relevant outcomes, studies rarely reported on these outcomes. Though we wished to explore any unwanted side effects of using less drugs as a result of these cost-sharing strategies, the studies included did not report specifically on this outcome. However, providing medication coverage appeared to improve medication adherence, though studies either did not find or did not report changes in clinically relevant outcomes such as myocardial infarction, heart failure, angina or death [24].

Our review shows that providing drug insurance to those with or at risk for cardiovascular disease who have no insurance improves drug adherence. The impact of cost sharing strategies is less certain, though patient cost sharing in people of lower socioeconomic status may adversely impact adherence. Policy makers should be aware that copayments and deductibles, while reducing cost for the payer, may influence medication adherence and ultimately health outcomes – especially for those of lower socioeconomic status.

Supporting Information

Appendix S1 Search strategy. (DOCX)

Appendix S2 Risk of bias summary table. (DOCX)

Author Contributions

Conceived and designed the experiments: BSM LB KT DC FC BH MT DL BJM. Analyzed the data: BSM LB KT FC DC BJM. Contributed reagents/materials/analysis tools: BSM LB BJM DL DC FC KT. Drafted the paper: BSM LB KT DC FC BH MT DL BJM. Acquisition and data analysis: BSM LB DL BJM. Full access to all the data in the study and responsibility for the integrity of the data and accuracy of the data analysis: BJM.

References

1. American Diabetes Association (2013) Standards of medical care in diabetes - 2013. Diabetes Care: 36: S11–S86.
2. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, et al. (2004) JNC 7 Express: the seventh report for the Joint Committee on prevention, detection, evaluation, and treatment of high blood pressure. In: Serviss UDofH, editor: National Institutes of Health; National Heart, Lung, and Blood Institute. pp. 1–66.
3. Grundy SM, Gardin JM, Abrams J, Berra K, Blankenship JC, et al. (2012) 2012 ACCF/AHA/ACP/AATS/PCNA/SCA/STS guideline for the diagnosis and management of patients with stable ischemic heart disease. JACC 60: e44–e164.
4. Grundy SM, Becker D, Clark LT, Cooper RS, Denke MA, et al. (2002) Third report of the National Cholesterol Education Program (NCEP) Expert Panel on the detection, evaluation and treatment of high blood cholesterol in adults (adult
Drug Insurance Cost Sharing and Outcomes

20. EPOC (2012) EPOC Methods. In: Group CEPaOoC, editor. Ottawa: Cochrane Collaboration.

21. Higgins JPT, Altman DG, Gotzsche PC, Juni P, Moher D, et al. (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343: d5928.

22. Brook RH, Ware JE Jr, Rogers WH, Kreuter EB, Davies AR, et al. (1983) Does free care improve adult’s health? NEJM 309: 1426–1434.

23. Kreuter EB, Brook RH, Goldberg GA, Kamberg CJ, Newhouse JP (1985) How free care reduced hypertension in the health insurance experiment. NEJM 254: 1926–1931.

24. Pilone L, Beck C, Richard H, Eisenberg MJ (2002) The effects of cost-sharing on essential drug prescriptions, utilization of medical care and outcomes after acute myocardial infarction in elderly patients. CMAJ 167: 246–252.

25. Schneeweis S, Patrick AR, Maclure M, Dormuth CR, Glyn RJ (2007) Adherence to beta-blocker therapy under drug cost sharing in patients with and without acute myocardial infarction. Am J Manag Care 13: 445–452.

26. Schneeweis S, Patrick AR, Maclure M, Dormuth CR, Glyn RJ (2007) Adherence to statin therapy under drug cost sharing in patients with and without acute myocardial infarction: a population-based natural experiment. Circulation 115: 2128–2135.

27. Zhang Y, Donohue JM, Lave JR, O’Donnell G, Newhouse JP (2009) The effect of Medicare Part D on drug and medical spending. NEJM 361: 52–61.

28. Liu S-Z, Rommijn J (2004) Changes in drug utilization following the outpatient prescription drug cost-sharing program - evidence from Taiwan’s elderly. Health Policy 68: 277–287.

29. Doshi JA, Zhu J, Lee BY, Kimmel SE, Volpp KG (2009) Impact of a prescription copayment increase on lipid-lowering medication adherence in veterans. Circulation 119: 390–397.

30. Zhang Y, Lave JR, Donohue JM, Fischer MA, Chernew ME, et al. (2010) The impact of Medicare Part D on medication adherence among older adults enrolled in Medicare-Advantage products. Med Care 48: 409–417.

31. Zhang Y, Donohue JM, Lave JR, Gellad WF (2011) The impact of Medicare Part D on medication treatment of hypertension. Health Research and Educational Trust 46: 185–190.

32. Li P, McElligott S, Berquist H, Schwartz JS, Doshi JA (2012) Effect of Medicare Part D coverage gap on medication use among patients with hypertension and hyperlipidemia. Ann Intern Med 136: 774–784.

33. Fineberg HV (2012) A successful and sustainable health system - how to get there from here. NEJM 366: 1020–1027.

34. Keeler EB, Brook RH, Ware JE Jr, Rogers WH, Davies AR, et al. (1983) Does free care improve adult’s health? NEJM 309: 1426–1434.

35. Reder CE, Lingle EW, Schulte RM, Mauch RPJ, Nightengale BS, et al. (1993) Economic impact of cost-containment strategies in third party programmes in the US (part 1). Pharmacoconomics 4: 92–103.

36. Smith DG, Kicking DM (1992) Impact of consumer fees on drug utilisation. Pharmacoconomics 2: 335–342.

37. Piette JD, Heisler M, Wagner TH (2004) Cost-related medication underuse among chronically ill adults: the treatments people forgo, how often, and who is at risk. Am J Pub Health 94: 1767–1775.

38. Hartin C (1994) The use of prescription charges. Health Policy 41: 53–73.

39. Freeman JD, Kadiyala S, Bell J, Martim D (2008) The causal effect of health insurance on utilization and outcomes in adults: a systematic review of US studies. Med Care 46: 1023–1032.