KURANISHI TYPE MODULI SPACES FOR PROPER CR SUBMERSIONS FIBERING OVER THE CIRCLE

LAURENT MEERSSEMAN

June 24, 2013

Abstract. Kuranishi’s fundamental result (1962) associates to any compact complex manifold X_0 a finite-dimensional analytic space which has to be thought of as a local moduli space of complex structures close to X_0. In this paper, we give an analogous statement for Levi-flat CR manifolds fibering properly over the circle by describing explicitly an infinite-dimensional Kuranishi type local moduli space of Levi-flat CR structures. We interpret this result in terms of Kodaira-Spencer deformation theory making clear the likenesses as well as the differences with the classical case. The article ends with applications and examples.

Introduction

In 1962, M. Kuranishi proved that any compact complex manifold X_0 has a versal (also called semi-universal) finite-dimensional analytic space of deformations K (see [Ku1] for the original paper, [Ku2] and [Ku3] for more accurate versions and simpler proofs). Roughly speaking, this means that every deformation of the complex structure of X_0 is encoded in a family defined over this finite-dimensional analytic space K (the family is said to be complete); and that this family is minimal amongst all complete families. This fundamental result is the crowning achievement of the famous deformation theory K. Kodaira developed in collaboration with D.C. Spencer (see [K-S1], [K-S2]). The Kuranishi space K must be thought of as a substitute for a local moduli space of complex structures, which is known not to exist in general.

It is natural to ask for generalizations of this result to other geometric structures, and in particular to foliations. It is known that a Kuranishi’s Theorem is valid for holomorphic foliations and even for transversely holomorphic foliations (see [G-H-S]). In this last case, the foliation is smooth, but its normal bundle is endowed with a complex structure which is invariant by holonomy.

1991 Mathematics Subject Classification. 32G07, 32V05, 57R30.

Key words and phrases. Levi-flat CR structures, foliations by complex manifolds, deformations of CR structures and foliations, local moduli space.

This work was partially supported by project COMPLEXE (ANR-08-JCJC-0130-01) from the Agence Nationale de la Recherche. It is part of Marie Curie project DEFFOL 271141 funded by the European Community. I enjoyed the warmful atmosphere of the CRM of Bellaterra during the elaboration of this work. I would like to thank the ANR, the CRM and the European Community. This work benefited from fruitful discussions with Marcel Nicolau to whom I am especially grateful.
However, in the case of foliations by complex manifolds (or, equivalently, Levi-flat CR structures), the situation is much more complicated. Here the tangent bundle to the foliation is endowed with a complex structure, so that this is a case in a sense orthogonal to the previous one.

The main problem is that it is easy to find examples of foliations by complex manifolds with no finite-dimensional complete family. Indeed, this is the most common case and it seems very difficult to give a useful criterion to ensure finite-dimensional completeness. For example, in the case of an irrational linear foliation of the 3-torus by curves, finite-dimensionality is related to the arithmetic properties of the irrational slope (see [Sl] or [EK-S]).

So one is faced with the following dilemma: either studying the rare examples where finite-dimensionality occurs (cf. [M-V] for such an example), or dealing with infinite-dimensional families.

If one follows this last option and try to construct an infinite-dimensional versal space, many technical obstacles come out. The classical proof of versality in Kuranishi’s Theorem breaks down completely since it uses heavily elliptic theory, and begins with showing that the candidate for versal space is tangent to the kernel of an auto-adjoint elliptic operator. But this implies that this space is finite-dimensional. Hence there is no natural way of attacking the problem.

The starting point of this paper is the following easy remark. If we consider the Levi-flat CR manifold $\mathbb{E}_\tau \times S^1$ (for \mathbb{E}_τ the elliptic curve of modulus $\tau \in \mathbb{H}$), then a complete space for close Levi-flat CR structures is given by the set of smooth maps from S^1 to \mathbb{H} close to the constant map τ. It is even a local moduli space if τ is not a root of unity.

The main result of this paper (Theorem 2) shows that this picture is still valid for Levi-flat CR manifolds which are proper submersions over the circle. Starting with any such CR manifold X_0, there exists a finite-dimensional analytic space K_{c_0} with a marked loop c_0 such that a neighborhood of c_0 in the loop space of K_{c_0} contains all small deformations of X_0. This loop space is the base of an infinite-dimensional family which is complete for X_0 (Theorem 4).

If all the fibers of the submersion $X_0 \to S^1$ are biholomorphic, the space K_{c_0} is just the common Kuranishi space of all fibers. However, if the submersion has non-isomorphic fibers, one has to build this space from different Kuranishi spaces by gluing them together. This causes many technical problems. First these spaces may not have the same dimension, hence we have to fat them. Then, there is no canonical choice for the gluing maps, hence we have to make all the choices coherent. Finally, we have to make sure that the resulting glued space is really an analytic space, especially that it is Hausdorff.

It is important to notice that this complete family is not always versal. But it is minimal in a reasonable sense as explained in Corollary 4. Indeed, we give examples in Sections V.3 and V.4 which suggest that there is no versal family. We also give a complete characterization of versality of our family in Theorem 4.

1Here, we consider only Levi-flat CR structures on the tangent bundle to the elliptic factor, that is we fix the differentiable type of the induced smooth foliation. Moreover, we identify two such structures if they are isomorphic through a CR isomorphism which is the identity on the S^1-factor.
The paper is organized as follows. In Part I, we give some preliminary material. While some of it is very classical, the version of Kuranishi’s Theorem as well as the definitions of CR deformations are not. In Part II, we study the neighborhood of a loop in the set of complex structures on a fixed differentiable manifold. It is the first step in the construction of the Kuranishi type moduli space $C^\infty(S^1, K_{\nu})$ and the proof of Theorem 2, our main theorem. Part IV develops the necessary deformation machinery to interpret Theorem 2 in terms of deformation theory. Part V contains applications to connectedness and rigidity of the Kuranishi type moduli space as well as examples showing that it can be explicitly computed.

I. Preliminaries.

1. Notations and Framework.

The notations we introduce in this section will be used throughout the article.

Let X^{diff} be a smooth (i.e. C^∞) connected compact manifold of dimension $2n$. We fix a smooth riemannian metric g on its tangent bundle TX^{diff}.

Given any locally trivial smooth bundle E over X^{diff}, we denote by $\Sigma(E)$ the space of sections of E. More generally, we denote by $\Sigma(E, B)$, or simply by $\Sigma(E)$ when the context is clear, the space of smooth sections of a locally trivial bundle E with base B. We topologize such spaces of sections using a Sobolev norm and consider sections belonging to the Sobolev class W^r (cf. [Ku3, Chapter IX] for more details). They form a Hilbert space. We assume that r is big enough to ensure that all these sections are at least of class C^{2n+1}. We drop any reference to this r in the sequel, since it does not play any specific role.

We denote by E the set of almost-complex structures of class W^r on X^{diff}, and by I the subset of E formed by the integrable ones. We assume that both E and I are non-empty. Observe that our choice of r implies that an element of I gives rise to a structure of complex manifold on X^{diff} by Newlander-Nirenberg Theorem [N-N].

Any almost-complex operator J is diagonalizable over \mathbb{C} with eigenvalues i and $-i$ and conjugated eigenspaces. This induces a splitting of the complexified tangent bundle of X^{diff}

$$T_{\mathbb{C}}X^{\text{diff}} = T \oplus \bar{T}$$

Conversely, any such splitting define a unique almost-complex structure on X^{diff}, which is equal (as an operator) to the multiplication by i on T and by $-i$ on \bar{T}. Therefore, denoting by $\text{Gr}(T_{\mathbb{C}}X^{\text{diff}})$ the bundle over X^{diff} whose fiber at x is the grassmannian of complex n-planes of $(T_{\mathbb{C}}X^{\text{diff}})_x$, we may identify E to an open subset of $\Sigma(\text{Gr}(T_{\mathbb{C}}X^{\text{diff}}))$. We set, more precisely

$$E = \{ T \in \Sigma(\text{Gr}(T_{\mathbb{C}}X^{\text{diff}})) \mid \bar{T} \cap T = \{0\} \}$$

And we have

$$I = \{ T \in E \mid [T, T] \subset T \}$$
making \mathcal{I} a closed subset of \mathcal{E}.

We will make use of the formalism of Banach manifolds and Banach analytic spaces as defined in [Do1] and [Do2]. Since $\text{Gr}(T_{\mathbb{C}}X^\text{diff})$ is a complex bundle, its space of sections is a Banach manifold over \mathbb{C} with tangent space at some section σ equal to the Banach space of sections of Sobolev class $W^2_{\mathbb{C}}$ of the complex vector bundle $\sigma^*T_{\mathbb{C}}X^\text{diff})$. Moreover, the open set \mathcal{E} is a \mathbb{C}-Banach manifold and its subset \mathcal{I} is a \mathbb{C}-analytic Banach space (cf. [Do1]).

Given $J \in \mathcal{E}$ (respectively $J \in \mathcal{I}$), we denote by X_J the almost-complex (respectively complex) manifold (X^diff, J).

Let $\text{Diff}(X^\text{diff})$ be the group of diffeomorphisms of class W^{r+1}_2 of X^diff. It acts on \mathcal{E} as follows: for $J \in \mathcal{E}$ and $f \in \text{Diff}(X^\text{diff})$, we have

\begin{equation}
(f \cdot J)_x(v) = d_x f \circ J_{f^{-1}(x)} \circ (d_x f)^{-1}(v)
\end{equation}

for $(x, v) \in TX^\text{diff}$, or, using the presentation (3),

\begin{equation}
(f \cdot T)_x = (d_x f)(T_{f^{-1}(x)}).
\end{equation}

This group being an open subset of the Banach manifold of W^{r+1}_2 maps from X^diff to the complex manifold X_J, is also a Banach manifold and the action (4) is \mathbb{C}-analytic locally at J (cf. [Do1]). Besides, by definition, it preserves the almost-complex structures, that is f realizes an isomorphism between X_J and $X_{f \cdot J}$.

Given two subsets U and V of \mathcal{E} with U open and an analytic map F from U to V, we say that F is almost-complex preserving if, for each $J \in U$, the manifolds X_J and $X_{F(J)}$ are CR isomorphic. We note

\[U \xrightarrow{F} V \]

Notice that an a.c. map is a special type of equivariant map. Indeed, the set of a.c. maps corresponds exactly to the set of equivariant maps which descends as the identity on the quotient space $\mathcal{E}/\text{Diff}(X^\text{diff})$. We extend this notion to the following case. Letting U and V as before and letting W be an open subset of a topological \mathbb{C}-vector space, we say that an analytic map F from U to $V \times W$ (respectively from $U \times W$ to V) is almost-complex preserving if the composition

\[U \xrightarrow{F} V \times W \xrightarrow{\text{1st projection}} V \]

respectively

\[U \xrightarrow{\text{inclusion}} U \times \{w\} \subset U \times W \xrightarrow{} V \]

is almost-complex preserving (respectively almost-complex preserving for all $w \in W$).
2. Kuranishi’s Theorem revisited.

In this Section, we state a version of Kuranishi’s Theorem which is suited for our purposes. Although it is very close to the statements of [Ku2], this slight reformulation will be crucial in the proof of our main results.

Let $J_0 \in I$. Set $X_0 := X_{J_0}$. Let W be a neighborhood of the identity in $\text{Diff}(X_{diff})$. Observe that, if W is small enough, every $\phi \in W$ can be constructed as follows. There exists a smooth vector field ξ close to 0 such that the map

$$x \in X_{diff} \xrightarrow{e(\xi)} \gamma_{x,\xi(x)}(1)$$

is exactly ϕ. Here $\gamma_{x,\xi(x)} : \mathbb{R}^+ \rightarrow X_{diff}$ is the geodesic starting at x with initial velocity $\xi(x)$.

Conversely, there exists an open neighborhood V of 0 in $\Sigma(T X_{diff})$ such that, for every $\xi \in V$, the map $e(\xi)$ defined by (6) is a diffeomorphism of X_{diff}. Hence we constructed in that way an isomorphism e between V and W.

Now, let H_0 be the subspace of $\Sigma(T X_{diff})$ consisting of the real parts of the holomorphic vector fields of X_0. Choose a decomposition

$$\Sigma(T X_{diff}) = H_0 \oplus L_0$$

for some closed subspace L_0. Observe that such a closed complementary subspace always exists, since H_0 is finite-dimensional hence closed and since we are in a Hilbert space. Nevertheless, we want to emphasize that we do not ask (7) to be orthogonal with respect to any product. Indeed, in the sequel, we will use the fact that L_0 is not unique and that we can choose it.

Remark. It is important to keep in mind that the vector spaces of (7) are indeed \mathbb{C}-vector spaces through the identification between $\Sigma(T X_{diff})$ and $\Sigma(T)$; see also the remark after the statement of the Theorem.

Kuranishi’s Theorem may be rephrased as:

Theorem.

There exists an open neighborhood U_0 of J_0 in \mathcal{E}, an open neighborhood W_1 of 0 in L_0 and an analytic map

$$U_0 \xrightarrow{\Xi_0} \Delta_0 \subset U_0$$

such that

(i) The set

$$K_0 := \Xi_0(U_0 \cap I)$$

is a (finite-dimensional) analytic set of (embedding) dimension at 0 equal to

$$h^1(0) := \dim H^1(X_0, \Theta).$$

(ii) The map

$$(J, \xi) \in K_0 \times W_1 \xrightarrow{\Phi_0} e(\xi) : J \in U_0 \cap I$$
is an a.c. isomorphism whose inverse has component in K_0 equal to Ξ_0.

Remark. In the classical presentation of [Ku2], a slightly different splitting is used. From the decomposition (1), Kuranishi defines A^p as the space of $(0, p)$-forms of X_0 with values in T. Hence A^0 is the space of $(1, 0)$-vectors and we may write

\begin{equation}
A^0 = H^0 \oplus \perp A^0
\end{equation}

for H^0 the subspace of holomorphic vector fields and $\perp A^0$ its orthogonal with respect to the L^2-norm for some fixed hermitian metric of X_0. And he encodes the small diffeomorphisms of X^{diff} through the map

$$\xi \in A^0 \mapsto e(\xi + \bar{\xi}).$$

The version we present can easily be deduced from the classical one, the decomposition (7) playing the role of (10). However, the crucial point is that (7) gives a splitting of the space of smooth vector fields, which is obviously independent of the complex structure J_0, whereas (10) gives a splitting of A^0, whose definition depends on J_0. So using (7) instead of (10) will allow us to compare different splittings based at different points.

Let us give the core of the proof and explain why it is possible to replace the splitting (10) with the splitting (7).

Let δ be the adjoint (from differential operator theory) with respect to a fixed hermitian metric on X_0 of the $\bar{\partial}$-operator extended to the forms with values in the holomorphic bundle T. This $\bar{\partial}$-operator acting on the spaces A^p defines an elliptic complex, hence the associated Laplace-type operator Δ is elliptic.

Also, by ellipticity, we have a direct sum decomposition

\begin{equation}
A^1 = \text{Im } \bar{\partial} \oplus \text{Ker } \delta.
\end{equation}

Using the splitting (10), consider the smooth map

\begin{equation}
(\xi, \omega) \in \perp A^0 \times \text{Ker } \delta \mapsto e(\Re \xi) \cdot \omega \in A^1.
\end{equation}

Remark. In order to make (11) and (12) precise, one should add that A^1 means the set of 1-forms of class W^{r+1}_2, and A^0 means the 0-forms of class W^r_2.

A direct computation shows that its differential at 0 is given by

\begin{equation}
(\eta, \alpha) \in \perp A^0 \times \text{Ker } \delta \mapsto \alpha + \bar{\partial} \eta \in A^1
\end{equation}

and that (13) is invertible with inverse given by

\begin{equation}
\omega = \bar{\partial} \eta + \alpha \in \text{Im } \bar{\partial} \oplus \text{Ker } \delta \mapsto (G\delta \bar{\partial} \eta, \alpha) \in \perp A^0 \times \text{Ker } \delta.
\end{equation}

Here G denotes the Green operator associated to Δ.

By application of the inverse function theorem on Banach spaces, the map (12) is a local diffeomorphism.
The Kuranishi space of X_0 is then defined as
\begin{equation}
K_0 = \{ \omega \in A^1 \mid \bar{\partial}\omega - [\omega, \omega] = \delta\omega = 0 \}.
\end{equation}

The restriction of (12) to $A^0 \times K_0$ gives a map similar to (9), which appears in the classical statement of Kuranishi’s Theorem.

If we use now the splitting (7), we just have to modify the previous formulas as follows.

We consider the map
\begin{equation}
(\xi, \omega) \in L_0 \times \text{Ker } \delta \longmapsto e(\xi) \cdot \omega \in A^1
\end{equation}
instead of (12), whose differential at 0 is
\begin{equation}
(\eta, \alpha) \in L_0 \times \text{Ker } \delta \longmapsto \alpha + \bar{\partial}\tau\eta \in A^1.
\end{equation}
This is completely analogous to (13), the only difference being the use of the identification
\begin{equation}
\tau : \xi \in \Sigma(TX^{\text{diff}}) \longmapsto \xi - iJ_0 \xi \in A^0.
\end{equation}
This identification (18) maps $\Sigma(TX^{\text{diff}})$ onto A^0, and H_0 onto H^0. But it does not map L_0 onto A^0. Nevertheless, since τL_0 and A^0 are complementary to the same finite-dimensional space, they are isomorphic, so that we can twist (18) into an identification
\begin{equation}
\tilde{\tau} : H_0 \oplus L_0 \longrightarrow H^0 \oplus A^0
\end{equation}
which preserves the direct sum decompositions. More precisely, we define $\tilde{\tau}$ as the map
\begin{equation}
\tilde{\tau}(\xi_0 \oplus \xi_{L_0}) = \tau\xi_0 \oplus (\tau\xi)^\perp
\end{equation}
where
\[\xi = \xi_0 \oplus \xi_{L_0} \in H^0 \oplus L_0 \quad \text{and} \quad \tau\xi = (\tau\xi)^0 \oplus (\tau\xi)^\perp \in H^0 \oplus A^0. \]
From (19) and (20), we infer that the formula for the inverse of (17), analogous to (14), is
\begin{equation}
\omega = \bar{\partial}\tau\eta + \alpha \in \text{Im } \bar{\partial} \oplus \text{Ker } \delta \longmapsto (\tilde{\tau}^{-1}G\delta\bar{\partial}\tau\eta, \alpha) \in L_0 \times \text{Ker } \delta.
\end{equation}
This shows that the map (16) is a local diffeomorphism. Its restriction to $L_0 \times K_0$ gives the map (9). The first component of its inverse gives the map (8).

We call a map Ξ_0 as defined in (8) a Kuranishi map based at J_0. Its domain of definition is called a Kuranishi domain. The analytic space K_0 is called the Kuranishi space of X_0. We note the following unicity property.
Corollary. The Kuranishi space K_0 of X_0 is unique in the following sense.

(i) If L' is another closed complementary subspace to H_0, then the corresponding space K'_0 is a.c. isomorphic to K_0.

(ii) If U' is another neighborhood of J_0 in \mathcal{E}, then the restrictions of Ξ_0 and of the corresponding map Ξ'_0 to $U \cap U' \cap I$ have a.c. isomorphic images.

In particular, it is unique as a germ of analytic space at 0. In this paper, thinking of this corollary, we say that K_0 is the Kuranishi space of X_0, even if it depends on U_0 and on L_0.

In the sequel, when we will refer to Kuranishi’s Theorem, we will always refer to this version of Kuranishi’s Theorem.

3. Deformations.

Let $J_0 \in \mathcal{I}$ and set $X := X_{J_0}$. Recall the following classical definitions (cf. [Su] and [Ko] for additional details).

Definitions. An analytic deformation of X is a flat morphism $\Pi : \mathcal{X} \rightarrow B$ onto a (possibly non-reduced) analytic space, together with a base-point $0 \in B$ and a marking, that is a holomorphic identification $i : \mathcal{X} \rightarrow \Pi^{-1}\{0\}$.

A smooth deformation of X is a smooth submersion $\Pi : \mathcal{X} \rightarrow B$ onto a smooth manifold, together with a base-point and a marking. The total space \mathcal{X} is endowed with a Levi-flat CR structure whose associated leaves are the level sets of Π and the marking is assumed to be holomorphic.

Now, deformations can also be defined as analytic (resp. smooth) families of complex operators. To be more precise,

Definitions. Let B be an analytic space (resp. a smooth manifold) with base-point 0. Consider a family $(J_t)_{t \in B}$ of elements of \mathcal{I}. We say that $(J_t)_{t \in B}$ is analytic (resp. smooth) if endowing each fiber $X_{J_t} \times \{t\}$ of the projection $X_{\text{diff}} \times B \rightarrow B$ with the complex structure J_t turns it into an analytic (resp. smooth) deformation of X.

The Kuranishi space K of X defines such a family of complex operators. It follows from [Ku3, Theorem 8.1] that this family is analytic. Hence the Kuranishi space K of X naturally defines an analytic deformation $\Pi : K \rightarrow K$ once chosen a marking. It is called the Kuranishi family. It has the following properties.

Corollary. Let $\Pi : K \rightarrow K$ be the Kuranishi family of a compact complex manifold X. Then it is versal at 0, that is

(i) It is complete at 0: any holomorphic (resp. smooth) deformation $\mathcal{X} \rightarrow B$ of X is locally isomorphic at 0 to the pull-back of K by some analytic (resp. smooth) map f from $(B, 0)$ to $(K, 0)$. Moreover this local isomorphism may be asked to preserve the markings.

(ii) The (embedding) dimension of K at 0 is minimal amongst the bases of complete families for X.

Property (ii) is known to be equivalent to the following. Given a deformation $\mathcal{X} \rightarrow B$, the map f given by completeness is in general not unique, but its differential at 0 is, provided only marking preserving isomorphisms are used. It can also
be proven that there exists a unique germ of versal family up to isomorphism. This
gives another unicity property of the Kuranishi space.

Moreover, from the existence of the Kuranishi’s family, we obtain the following.
Given an analytic (resp. smooth) map \(f : B \to \mathcal{I} \), the family \((f(t))_{t \in B} \) is analytic
(resp. smooth).

To finish with this section, we add the somehow less classical definitions.

Definition. A **Levi-flat CR space** \(Z \) is a second-countable Hausdorff space for
which there exists a covering by open subsets \(V_\alpha \) and homeomorphisms
\[
F_\alpha : V_\alpha \to \mathbb{R}^p \times W_\alpha
\]
for some analytic sets \(W_\alpha \subset \mathbb{C}^{n_\alpha} \), such that the changes of charts
\[
F_{\alpha\beta} := F_\beta \circ F_\alpha^{-1}
\]
are smooth, respects the foliation by copies of \(W_\alpha \), and are analytic in the second
variable; that is, setting
\[
F_{\alpha\beta} : (x, z) \mapsto (f_{\alpha\beta}, g_{\alpha\beta})(x, z)
\]
we have that \(f_{\alpha\beta} \) does not depend on \(x \), and that, for all \(x \), the map
\[
z \mapsto g_{\alpha\beta}(x, z)
\]
is analytic.

A Levi-flat CR space is just a special case of ringed space, and of mFB space
(see [F-K]). But we really want to consider it as a Levi-flat CR manifold with
singularities. As in the smooth case, it is foliated, the leaves being obtained by
gluing the \(W_\alpha \) via \(g_{\alpha\beta} \). The leaves are analytic, but, unlike the smooth case, they
may have singularities. A trivial example is given by a product of an analytic space
with a smooth manifold.

Definition. A **CR deformation** of \(X \) is a Levi-flat CR space \(Z \) together with a
proper and transflat CR morphism \(\Pi : Z \to B \), for \(B \) a Levi-flat CR space, a
base-point and a marking.

By transflat, we mean that there are submersion charts
\[
\begin{array}{ccc}
z \in U \subset Z & \xrightarrow{\text{CR iso.}} & \Pi(U) \times \mathbb{C}^n \times \mathbb{R}^p \\
\Pi & \downarrow & \downarrow \text{1st projection} \\
\Pi(z) \in \Pi(U) \subset B & \xrightarrow{\text{Id}} & \Pi(z) \in \Pi(U) \subset B
\end{array}
\]
for all points \(z \in Z \) (see [Sc]).

Remark. In the previous definition, since the fibres of \(Z \) are complex manifolds, we
have \(p = 0 \) in the diagram of submersion charts. However, we will consider more
general situations in part IV for which both \(n \) and \(p \) are non-zero.
In [F-K] and [Sc], such a deformation is called a "relativ-analytisch Deformation". Observe that analytic and smooth deformations are particular cases of CR deformations. Observe also that if \(B\) is a product \(B_1 \times B_2\) with \(B_1\) smooth and \(B_2\) analytic, then for every \(x \in B_1\), the induced deformation over \(B_2\) obtained by restricting \(Z\) to \(\Pi^{-1}(\{x\} \times B_2)\) is analytic; whereas for every \(z \in B_2\), the induced deformation over \(B_1\) obtained by restricting \(Z\) to \(\Pi^{-1}(B_1 \times \{z\})\) is smooth.

Observe that, if \(f: B \to I\) is CR, then the family \((J_f(t))_{t \in B}\) defines a CR deformation of \(X\). We call such a family a CR family.

Finally, note that all the previous definitions of deformations hold for infinite-dimensional analytic spaces as bases, using the formalism of [Do]. This of course has no interest in the case of compact complex manifolds, since Kuranishi’s Theorem implies the existence of finite-dimensional complete families, but it will be used in Section IV, when dealing with deformations of proper CR submersions over the circle. For example, the infinite-dimensional analytic set \(I\) defined in (3) is the base of such an infinite-dimensional analytic deformation of \(X_0\), once a base-point corresponding to \(X_0\) is fixed. This comes from the fact that, using the map (9) at each point of \(I\), one shows that this family is locally obtained by pull-back from the Kuranishi family. Since the last one is flat, so is the first one.

II. Structure of \(I\) in the neighborhood of a compact set.

1. Foliation of the neighborhood of a compact set.

Recall that \(Diff(X^{diff})\) acts on \(E\). Given a closed vector subspace \(L\) of the space \(\Sigma(TX^{diff})\), set

\[
\Gamma_L = \langle e(W_L) \rangle
\]

where \(e\) was defined in (6), where \(W_L\) is an open neighborhood of 0 in \(L\) small enough to be in the domain of definition of \(e\), and where \(\langle \cdot \rangle\) means the group generated by. Notice that (22) does not depend on the choice of \(W_L\).

Lemma 1. Let \(J\) and \(J'\) be two homotopic complex structures. Then \(\Sigma(T_J)\) and \(\Sigma(T_{J'})\) are isomorphic \(\mathbb{C}\)-vector spaces.

Proof. We may assume that \(T_{J'}\) is represented by the graph of a 1-form from \(T_J\) to \(\overline{T}_J\); otherwise just choose a finite number of points \(J_i\) on the path from \(J\) to \(J'\) and repeat the argument inductively. The projection on \(T_J\) parallel to \(\overline{T}_J\) identifies \(T_{J'}\) and \(T_J\) as \(\mathbb{C}\)-vector bundles over \(X^{diff}\). Hence \(\Sigma(T_J)\) and \(\Sigma(T_{J'})\) are isomorphic \(\mathbb{C}\)-vector spaces. \(\square\)

Thanks to this lemma, the structure of complex vector space induced on \(L\) through (7) and the identification between \(TX^{diff}\) and \(\overline{T}_J\) does not depend on \(J\), provided we stay in a single connected component of complex operators.

Proposition 1. Let \(C\) be a compact set of \(E\). Then, for any sufficiently small neighborhood \(U\) of \(C\) in \(E\), there exists a closed subspace \(L\) of \(\Sigma(TX^{diff})\) of finite codimension such that \(\Gamma_L\) foliates \(U \cap I\). More precisely, there exists a finite open covering

\[
U = U_1 \cup \ldots \cup U_k
\]
such that

(i) For every \(i \), there exists an analytic space \(K_i \) such that \(U_i \cap \mathcal{I} \) is a.c. isomorphic to the product of some neighborhood \(W_i \) of 0 in \(L \) with \(K_i \).

(ii) When defined, the composition of two such isomorphisms preserves the plaques \(W_i \times \{ \text{Cst.} \} \).

(iii) The induced leaves are in one-to-one correspondence with the connected components of the action of \(\Gamma_L \) restricted to \(U \cap \mathcal{I} \).

Remark. Item (iii) means the following. The leaf through a point \(x \in U \cap \mathcal{I} \) is the connected component at \(x \) of the \(\Gamma_L \)-orbit of \(x \) with \(U \).

Proof. Begin with choosing an open neighborhood \(U \) of \(C \) in \(E \) and a finite open covering of \(U \) by Kuranishi domains \(U_1, \ldots, U_k \) based at \(J_1, \ldots, J_k \), points of \(C \).

Set

\(H_i := H_{J_i} \)

and denote by Kur\(_i\) the Kuranishi space of \(J_i \). Assume that we used the classical orthogonal splitting, that is, in the splitting (7), we took \(L_i \) as the orthogonal complement to \(H_i \). It follows from Kuranishi’s Theorem that for every \(i \) and every \(J \in U_i \cap \mathcal{I} \), we have

\[
L_i \cap H_J = \{ 0 \}.
\]

Let \(S \) be the set of closed vector subspaces \(S \) of \(\Sigma(TX^{\text{diff}}) \) having finite codimension and satisfying

\[
S \cap H_J = \{ 0 \} \quad \text{for all } J \in U.
\]

We claim that, shrinking \(U \) if necessary, we may assume that \(S \) is not empty. Indeed, let

\[
L := (H_1 + \ldots + H_k)^\perp.
\]

Then \(L \) is orthogonal to each \(H_i \), hence it is included in each \(L_i \). Property (24) implies that \(L \) belongs to \(S \). As a consequence, we may choose \(L \in S \) having minimal codimension. We claim that this \(L \) satisfies the requirements of Proposition 1.

Since \(L \) has finite codimension in \(\Sigma(TX^{\text{diff}}) \), we may choose some finite-dimensional vector subspaces \(\tilde{H}_i \) such that, for all \(i \), we have

\[
\Sigma(TX^{\text{diff}}) = L \oplus \tilde{H}_i \oplus H_i.
\]

Set

\[
\tilde{L}_i := L \oplus \tilde{H}_i.
\]

We may then replace \(L_i \) with \(\tilde{L}_i \) and obtain new Kuranishi maps and domains based at \(J_i \). If they do not cover \(C \), we just add a finite number of extras Kuranishi maps. This is possible thanks to (25). To simplify notations, we still denote by the same symbols \(U_i \) this refined covering. Remembering (28), Kuranishi’s Theorem
implies that these Kuranishi maps induce a.c. isomorphisms between $U_i \cap I$ and the product of the finite-dimensional analytic space

$$K_i := \text{Kur}_i \times B_i$$

(for B_i an open neighborhood of 0 in \bar{H}_i) with W, an open neighborhood of 0 in L. Hence they give foliated charts as wanted in (i).

Observe that the case where at least one of the Kur$_i$ is not reduced is treated exactly in the same way.

Moreover, still by Kuranishi’s Theorem, the plaques $W \times \{Cst\}$ correspond to the local orbits of the Γ_L-action. Since the compositions involved are equivariant, they must preserve the connected component of the action of Γ_L, hence preserve the plaques. This proves (ii) and then (iii).

\[\square\]

Definition. Let U satisfying the hypotheses of Proposition 1. Then an adapted covering of U is a finite covering (23) satisfying the conclusions of Proposition 1.

We note the following easy fact.

Proposition 2. The subspace L is unique in the following sense. If L and L' are two vector subspaces of $\Sigma(TX^{diff})$ such that

1. Γ_L and Γ'_L foliate $U \cap I$ as in the statement of Proposition 1.
2. Both L and L' are elements of S of minimal codimension.

Then L and L' are isomorphic.

Observe that, if Γ_L foliates $U \cap I$ as in Proposition 1, then L must be an element of S. And of course, if they do not have the same codimension, we cannot expect them to be isomorphic. So condition (ii) in the statement of Proposition 1 is not a restriction but an obvious necessary condition to have unicity.

Proof. This is standard linear algebra. Set

$$I = L \cap H \quad J = L' \cap H$$

-see (26)- and

$$\Sigma(TX^{diff}) = H \oplus L_0 \quad \text{with } L = L_0 \oplus I$$

$$= H \oplus L'_0 \quad \text{with } L' = L'_0 \oplus J.$$

So L_0 and L'_0 are isomorphic as complementary subspaces of the same subspace H, and have thus the same codimension. So I and J are isomorphic and we may extend the isomorphism between L_0 and L'_0 to an isomorphism between L and L'.

\[\square\]

Nevertheless, we do not know if the foliations by Γ_L and Γ'_L are equivalent under the hypotheses of Proposition 2.

2. The case of a neighborhood of a path.

Let c be a continuous path into I and let U be a connected neighborhood of c in \mathcal{E} for which Proposition 1 is valid. In this particular case, we can give a much more precise description of the Γ_L-foliation.
Theorem 1. Let Γ_L foliating $U \cap \mathcal{I}$ as in Proposition 1. Then, if U is small enough, the foliation is given by the level sets of a smooth morphism. To be more precise, there exists an analytic space K_U and an a.c. morphism

$$U \cap \mathcal{I} \xrightarrow{\Xi_U} K_U$$

such that

(i) K_U is the leaf space of the Γ_L-foliation and the leaves are given by the level sets of Ξ_U.

(ii) The map Ξ_U is locally a projection: in the neighborhood V of any point $x \in U \cap \mathcal{I}$, we have a commutative diagram

$$
\begin{array}{ccc}
x \in V & \xrightarrow{\text{a.c. isomorphism}} & \Xi_U(V) \times W \\
\downarrow \Xi_U & & \downarrow \text{1st projection} \\
\Xi_U(V) \subset K_U & \xrightarrow{\text{Identity}} & \Xi_U(V) \subset K_U
\end{array}
$$

for some open neighborhood W of 0 in L.

Moreover, the Γ_L-foliation is smoothly trivial, that is there exists a smooth injection

$$K_U \xrightarrow{i_U} a.c. U \cap \mathcal{I}$$

and, up to shrinking U if necessary, a diffeomorphism

$$J \in K_U \times W_U \xrightarrow{\phi_u} a.c. f \cdot i_U(J) \in U \cap \mathcal{I}$$

where W_U is an open neighborhood of the identity in Γ_L.

Remark. The open set U may contain "large" open sets of Γ_L-orbits, so that we cannot ensure that they can be completely encoded via the map e. This is typically the case if the path c is included in a single Γ_L-orbit. This explains why the set W_U of (32) is included in Γ_L and not in L.

Proof. If c is constant or is contained in a single Kuranishi domain, then there is nothing to do: we just take U as a Kuranishi domain based at $c(0)$ and the map (9) given by Kuranishi's Theorem as trivialization chart (30). This map is indeed global, so that (32) is satisfied with an analytic isomorphism.

So assume that c is not contained in a single Kuranishi domain. We assume that c does not self-intersect. In case it does, just move it locally along the $\text{Diff}(X^{\text{diff}})$-orbits in a finite number of points to destroy the self-intersections.

We just make use of Proposition 1. We first assume that c is not a loop. We cover it by an adapted covering. We assume without loss of generality that

$$U_i \cap U_j \neq \emptyset \iff |i - j| = 0 \text{ or } 1$$
and that every non-empty intersection $U_i \cap U_j$ is connected.

We also assume that every intersection $U_i \cap U_i$ and $U_i \cap U_j \cap c$ is connected.

Furthermore, we assume that the U_i are sufficiently small so that, for any pair (x, y) of points of $U_i \cup U_{i+1}$ with $U_i \cap U_j \neq \emptyset$, if x and y belong to the same orbit in $U_i \cup U_{i+1}$, we have

\begin{equation}
 y = e(\xi) \cdot x \quad \text{for some } \xi \in W_i \cap W_{i+1}
\end{equation}

where the local charts

\begin{equation}
 \Phi_i : K_i \times W_i \overset{a.c.}{\longrightarrow} \mathcal{I}
\end{equation}

given by Proposition 1 are supposed to cover an open set containing $U_i \cap \mathcal{I}$.

We want to construct K_U by gluing each K_i to the next one using the changes of foliated charts. To be more precise, we proceed by induction.

Firstly, consider, for $i = 1, 2$, the two local charts (35) and the associated change of chart

\begin{equation}
 (z, v) \overset{\Phi_{12} := \Phi_2^{-1} \circ \Phi_1}{\underset{a.c.}{\longrightarrow}} (\Psi(z), \chi(z, v)).
\end{equation}

By abuse of notation, we will denote by the same symbol K_i and the image $\Phi_i(K_i \times \{0\})$. We assume, composing Φ_1 and Φ_2 with translations on the W-factor if necessary, that K_1 and K_2 have disjoint images in \mathcal{I}.

Consider the space obtained by gluing K_1 to K_2 through the map Ψ. We claim that, up to shrinking U_1 and U_2, it is an analytic space. This can be proved as follows.

We define the open set $V_1 \subset K_1$ by the following relation

\begin{equation}
 x \in V_1 \iff \exists v \in W_1 \text{ such that } \Phi_1(x, v) \in U_2.
\end{equation}

By (34), observe that V_1 contains all the points whose leaf in U_1 meets U_2. Denoting as usual by Ξ_1 the map contracting $U_1 \cap \mathcal{I}$ onto K_1, observe that $\Xi_1(c \cap U_1) \cap V_1$ is non-empty and connected. Then, define

\begin{equation}
 x \in V_1 \overset{g}{\underset{a.c.}{\longrightarrow}} \Xi_2 \circ \Phi_1(x, v) \in K_2
\end{equation}

where v is any vector of W_1 such that (37) holds. The previous map does not depend on the particular choice of v because of (34).

This is the gluing map we want to use. Set $V_2 = g(V_1) \subset K_2$. It follows from the proof of Proposition 1 that there exists an analytic map

$\eta : V_1 \subset K_1 \longrightarrow L$

such that

\begin{equation}
 g = e(\eta).
\end{equation}
Now, choose some open set V'_1 included in V_1 such that $\Xi_1(c \cap U_1) \cap V'_1$ is non-empty and connected. Let χ be a bump function defined on U_1, equal to 1 on V'_1 and to 0 on $K_1 \setminus V_1$. Let V'_2 be the image $g(V'_1)$. Define

$$\eta_1 := \chi \cdot \eta : U_1 \rightarrow L.$$

Then the map $g_1 := e(\eta_1)$ is an a.c. diffeomorphism from K_1 to its image. Moreover, we may assume that $g_1(K_1)$ intersects K_2 along

$$\tilde{V}'_2 = \{ x \in \overline{V_2'} \mid \Gamma^{U_1 \cup U_2}_L(y) \cap \overline{V_1'} \neq \emptyset \}.$$

where $\Gamma^{U_1 \cup U_2}_L(y)$ denotes the leaf of y in $U_1 \cup U_2$, and where the closure is taken in K_2 (respectively K_1).

We would like that the set \tilde{V}'_2 is open and that the union $g_1(K_1) \cup K_2$ cuts every leaf of $U_1 \cup U_2$ into a single point. Taking into account the definition of \tilde{V}'_2, this would imply that the image through g_1 of $\overline{\tilde{V}_1'} \setminus V_1'$ does not belong to K_2. From this, it is easy to check that $K_1 \cup g_1 K_2$ would be Hausdorff, hence an analytic space since it is obtained by gluing two analytic spaces along an open set; also this would imply that it is the leaf space of $U_1 \cup U_2$.

Remark. To clarify the proof, let us emphasize the following obvious but crucial point: $K_1 \cup g_1 K_2$ will be constructed as an *abstract* analytic space homeomorphic to $g_1(K_1) \cup K_2$. But obviously, this last set is not an analytic subspace of \mathcal{I}.

Nevertheless, it is not true in general. Indeed, it fails every time that \tilde{V}'_2 contains a point of $\overline{\tilde{V}_2'} \setminus V_2'$.

We claim that it is enough to shrink U_1 and U_2 to ensure

$$\tilde{V}'_2 = V'_2$$

and thus to solve our problem.

\[\text{Figure 1: non-Hausdorff gluing.} \]
In figure 1 above, the big ellipses represent K_1 and K_2 and the small ones represent V'_1 and V'_2. The arrows on the leaves just suggest the identification. The glued space is obtained by gluing along the open shaded parts. Clearly, since V'_1 has boundary points in K_1 which correspond through the identification to boundary points of V'_2 in K_2, the resulting space is not Hausdorff.

The claim is that it is possible to shrink U_1 and U_2 so that the picture is like picture 2 (see next page). The big ellipses represent the domains of K_1 and K_2 onto which the new sets U_1 and U_2 retract. In this new case, the boundary points of V'_1 are not in correspondence with the boundary points of V'_2, hence the gluing is Hausdorff. Notice that, in the case of U_2 (the upper ellipse), a subset of the former trace of c in K_2 is now out of the domain. This has no consequence since this part of c has still a trace in K_1, but it helps reducing the boundary of V'_2.

First, observe that shrinking U_i to, say, U'_i, we may assume that it transforms (35) into

\begin{equation}
\Phi_i : K'_i \times W'_i \subset K_i \times W_i \xrightarrow{a.c.} U'_i \cap I
\end{equation}

However, $W'_i \subset W_i$ may not contain 0. Then $g_1(K'_1)$ intersects K'_2 along $\bar{V}'_2 \cap K'_2$. The claim is that, after shrinking and after taking the intersection with K'_2, we may assume that (42) holds.

![Figure 2: Hausdorff gluing.](image)

To go further, we distinguish cases.

1st case. We assume that $\Xi_i(c \cap U_i)$ does not intersect the boundary $\overline{V}'_i \setminus V'_i$. This is typically the case is c is included in a single orbit of Γ_L, hence its trace in each K_i is a single point belonging to V'_i. Then there is no problem. We set

$$U_i = \Xi_i^{-1}(V'_i) \quad \text{for} \quad i = 1, 2.$$

Geometrically, K_1 and K_2 are simply identified one to the other.
2nd case. We assume that the intersection of $\Xi_i(c \cap U_i)$ with the boundary $\overline{V_i'} \setminus V_i'$ is connected. Then it is enough to shrink U_2 setting

$$U_2 = \Xi_2^{-1}(V_2').$$

Geometrically, K_2 is identified to an open subset of K_1.

3rd case. We assume that the intersection of $\Xi_i(c \cap U_i)$ with the boundary $\overline{V_i'} \setminus V_i'$ is disconnected. This is the case treated in figures 1 and 2.

Set

$$(44) \quad I = \{t \in [0,1] \mid \Xi_2(c(t)) \cap \overline{V_2'} \setminus V_2' \neq \emptyset\}.$$

It has at least two connected components and we may find two disjoint open intervals I_1 and I_2 such that

$$(45) \quad I \subset I_1 \sqcup I_2.$$

Then, shrink U_1 and U_2 such that (33) and (34) and all the above hypotheses are still satisfied, as well as the additional hypothesis

$$(46) \quad U_i' \cap c(I) \subset c(I_i).$$

Properties (46) and (45) imply that (42) holds after taking the intersection with K_2'.

In other words, set

$$K_{12} := K_1' \cup_{g_1} K_2' \quad \text{with} \quad g_1 : K_1' \cap V_1' \to K_2' \cap V_2'.$$

Then K_{12} is an analytic space. It is by construction the leaf space of the Γ_L-action restricted to $U_1' \cup U_2'$.

Remark. If K_1 (or equivalently K_2) is not reduced, then we perform the previous construction with their reduction and put on each component of the resulting space the common multiplicity of the corresponding components of K_1 and K_2.

Besides the two maps

$$U_1' \cap \mathcal{I} \xrightarrow{\Phi_1^{-1}_{\text{a.c.}}} K_1' \times W_1' \xrightarrow{1\text{st projection}} K_1'$$

and

$$U_2' \cap \mathcal{I} \xrightarrow{\Phi_2^{-1}_{\text{a.c.}}} K_2' \times W_2' \xrightarrow{1\text{st projection}} K_2'$$

glue into a single map

$$(47) \quad \Xi : (U_1' \cup U_2') \cap \mathcal{I} \xrightarrow{\text{a.c.}} K_{12}$$

with charts (30) by construction.
It follows now from (47) that the inclusions
\[i_1 : z \in K_1' \mapsto \Phi_1(z, \eta_1(z)) \in U_1' \cap I \]
and
\[i_2 : z \in K_2' \mapsto \Phi_2(z, 0) \in U_2' \cap I. \]
glue naturally into a smooth inclusion
\[(48) \quad i_{12} : K_{12} \xrightarrow{a.c.} (U_1' \cup U_2') \cap I \]
yielding (31) and a smooth trivialization (32) (shrinking \(U \) if necessary).

Repeating the process, we construct the map \(\Xi_U \) as desired as well as the smooth trivialization.

Assume now that \(c \) is a loop. We cover it by adapted domains and we assume without loss of generality that
\[(49) \quad k > 2 \quad \text{and} \quad \overline{U_i} \cap \overline{U_j} \neq \emptyset \iff |i - j| = 0 \text{ or } 1 \text{ or } k - 1, \]
that \(U_i \cap U_j, U_i \cap c \) and \(U_i \cap U_j \cap c \) are connected when non-empty. Assume also that (34) is satisfied.

We proceed as before, but we have now to perform an ultimate gluing between \(U_k \) and \(U_1 \) to obtain \(K_U \), still using the changes of charts of Proposition 1. Let \(K \) denote the analytic space obtained by making all the gluings except for the last one. We also have a smooth map
\[i : K \xrightarrow{a.c.} U \cap I \]
alogous to (31). The last gluing to perform is defined through an analytic map
\[V_k \subset K_k \xrightarrow{\eta} K_1 \]
which is equal as before to \(e(\eta) \) for some analytic map \(\eta \) from \(K_k \cap U_1 \) into \(L \) because of (34). So we may proceed as before and extend smoothly \(\eta \) to
\[\eta_1 : K \to L \]
equal to \(\eta \) on \(V_k' \subset K_k \) for some open set \(V_k' \) included in \(V_k \). We assume it meets \(\Xi_k(c \cap U_k) \). Now, up to shrinking the \(U_i \)'s, we have that \(e(\eta) \cdot K \) is a smooth global transverse section to the \(\Gamma_L \)-foliation on \(U \cap I \). This proves at the same time that the space \(K_U \) obtained from \(K \) after performing the last gluing is homeomorphic to \(e(\eta) \cdot K \), hence Hausdorff and by construction an analytic space; and that the foliation is smoothly trivial.

The injection (31) and the trivialization (32) are then obtained as before. □

Corollary 1. The analytic space \(K_U \) is unique up to a.c. isomorphism, that is does not depend on the choice of the adapted covering and of the Kuranishi maps.

Proof. This is a direct consequence of the fact that \(K_U \) is the leaf space of the \(\Gamma_L \)-foliation restricted to \(U \). Hence it is unique. □

For the same reason, we also have
Corollary 2. Let \(U \) and \(U' \) be two connected neighborhoods of \(c \) for which a smooth trivialization (32) exists. Then the restrictions of \(K_U \) and \(K'_U \) to \(U \cap U' \cap I \) (via the trivializations (32)) are a.c. isomorphic.

However, it is worth to emphasize that \(K_U \) depends on the choice of \(L \).

III. The Kuranishi type moduli space of a proper CR submersion over the circle.

1. Proper CR submersions.

Definition. A proper smooth submersion \(\pi : \mathcal{X} \to S^1 \) is called a proper CR submersion if \(\mathcal{X} \) is endowed with a Levi-flat integrable CR structure which is tangent to the fibers of \(\pi \).

As a smooth manifold, a proper CR submersion is a locally trivial smooth fiber bundle over the circle, thanks to Ehresmann’s Lemma. The fiber, that we denote by \(X^{diff} \), is a smooth compact manifold. We assume that it is connected. In other words, \(\mathcal{X} \) is diffeomorphic to

\[
X_\phi := (X^{diff} \times [0,1]) / \sim \quad \text{where} \quad (x,0) \sim (x',1) \iff x' = \phi(x).
\]

Here \(\phi \) is a fixed diffeomorphism of \(X^{diff} \), classically called the monodromy of \(X_\phi \). Recall also that \(X_\phi \) and \(X'_\phi \) are diffeomorphic if \(\phi \) and \(\phi' \) are isotopic.

As a CR manifold, each fiber of \(\mathcal{X} \) is a copy of \(X^{diff} \) equipped with a complex structure. The only difference between a proper CR submersion and a smooth deformation over the circle is that here there is no marked point.

By Fischer-Grauert’s Theorem (see [Me2] for the version we use), if all the fibers of a proper CR submersion are biholomorphic to a fixed manifold \(X_0 \), then it is locally trivial, that is satisfies

\[
\begin{array}{ccc}
\pi^{-1}(U) & \xrightarrow{\text{CR isomorphism}} & U \times X_0 \\
\pi \downarrow & & \downarrow \text{1st projection} \\
U & \rightarrow & U
\end{array}
\]

in a neighborhood \(U \) of any point of the circle. We call such a locally trivial CR submersion a CR bundle.

Choosing a smooth model (50) for \(\mathcal{X} \), we may identify it as a CR manifold with a smooth path \(c \) in \(I \) such that

\[
c(1) = \phi \cdot c(0)
\]

and

\[
c_\phi : t \in (-\epsilon, \epsilon) \mapsto \begin{cases}
 c(1+t) & \text{if } t \leq 0 \\
 \phi \cdot c(t) & \text{if } t \geq 0
\end{cases}
\]

is smooth.

that is, \(\mathcal{X} \) is CR isomorphic to the family

\[
(\pi^{-1}(\exp 2i\pi t), c(t))_{\exp 2i\pi t \in S^1},
\]

the identification of the endpoints being realized thanks to (51) and (52).
2. The set of CR submersions structures on a fixed smooth proper submersion over the circle.

Let $\pi^{\text{diff}} : \mathcal{X}^{\text{diff}} \to S^1$ be a smooth proper submersion. Let X^{diff} be its fiber. Define E and I as in (3) and (4). Choose a monodromy ϕ so that X^{diff} is diffeomorphic to X_{ϕ} (see (50)).

As proved in the preceding section, turning π^{diff} into a CR submersion π means choosing a path c in I whose endpoints satisfy (51) and (52). So the space of CR submersions compatible with π^{diff} is just the set

$$\mathcal{I}(\mathcal{X}^{\text{diff}}) = \{c : [0,1] \to I \mid c \text{ is smooth and satisfies (51) and (52)}\}$$

and we may define similarly the space of almost CR submersions as the set

$$\mathcal{E}(\mathcal{X}^{\text{diff}}) = \{c : [0,1] \to E \mid c \text{ is smooth and satisfies (51) and (52)}\}.$$

We want to give a Theorem describing locally the set $\mathcal{I}(\mathcal{X}^{\text{diff}})$, analogous to that of Kuranishi describing locally \mathcal{I}. Before stating and proving this result in the next section, we first make some useful preliminary comments.

Start with a CR submersion $\pi : \mathcal{X}_0 \to S^1$ compatible with π^{diff}, which we represent by a smooth map c_0 satisfying (51) and (52). As in part II, we assume that c_0 has no self-intersection. Let U be a connected neighborhood of c_0 in \mathcal{E}. As usual, we cover U by an adapted covering.

If $\mathcal{X}^{\text{diff}} \to S^1$ is trivial, we assume that

$$U_k = U_1 \quad \phi \equiv \text{Identity} \quad c_0 = \text{loop}$$

and finally we define U_{ϕ} to be U.

If $\mathcal{X}^{\text{diff}} \to S^1$ is not trivial, then, shrinking U if necessary, we may assume that the Kuranishi domains satisfy (33) with all non-empty intersections being connected. In particular, we assume that U_k is disjoint from U_1 but equal to $\phi \cdot U_1$. This means that we choose ϕ so that it is not a biholomorphism of $X_{c_0(0)}$. Thus $c_0(1)$ is different from $c_0(0)$. This is always possible, since ϕ can be chosen arbitrarily in a fixed isotopy class of diffeomorphisms of X^{diff}. We define now U_{ϕ} as the set obtained from U by identifying each point J of U_1 with the corresponding point $\phi \cdot J$ of U_k. We put on U_{ϕ} the quotient topology.

Observe that we may assume it is Hausdorff, shrinking U if necessary. As in the proof of Theorem 1, the only problem that could appear is the following. If we can find a sequence (x_n) in U_1 such that

$$\lim x_n \in U \cap \overline{U_1} \setminus U_1$$

and

$$y := \lim \phi(x_n) \in U \cap \overline{U_k} \setminus U_k$$

then U_{ϕ} is not separated at y. This can be avoided as follows.
First, since c_0 is not constant, we may assume that $c_0'(0) \neq 0$, changing the base point 0 otherwise. As c_0 maps into a Banach manifold locally modeled on a Hilbert space, we may work locally in a chart based at $c_0(0)$ and define

\[(57)\quad H := (c_0'(0))^\perp\]

We then extend c_0 to $(-\epsilon, 0]$ for ϵ small enough so that

\[(58)\quad \langle c_0(0)c_0(t), c_0'(0) \rangle > 0 \iff 0 < t < \epsilon \]

\[< 0 \iff -\epsilon < t < 0\]

Shrinking U if necessary, we may assume that U_1 is a ball and that H cuts U_1 into two connected components, say H^+ and H^-. Moreover, we assume that $U_2 \subset H^+$ and, using $U_k = \phi \cdot U_1$, that $U_{k-1} \subset \phi \cdot H^-$. Let now x be a point of $U \cap U_1 \setminus U_1$. Then x belongs to H^+. As a consequence, if (x_n) converges to x, then $\phi(x_n)$ belongs to $\phi \cdot H^+$ for n big enough. Since $U \cap U_k \setminus U_k$ is included in $\phi \cdot H^-$, we see that it is not possible to find a sequence (x_n) satisfying (55) and (56).

Hence U_ϕ is Hausdorff. Since it is obtained from the Banach manifold U by an open gluing, it is also a Banach manifold. We may thus speak of smooth maps into U_ϕ.

If \mathcal{X} is a CR submersion close to \mathcal{X}_0, it is represented by a smooth path c in U whose endpoints belong to U_1 and U_k respectively, and which satisfies (52) and (51). Hence it is represented by a smooth loop in U_ϕ. Reciprocally it is clear that any loop in U_ϕ formed by integrable structures lifts to a point of $\mathcal{I}(\mathcal{X}^{diff})$ close to c_0, thus defining a CR submersion close to \mathcal{X}_0.

In other words, denoting abusively $U_\phi \cap \mathcal{I}$ the subset of points of U_ϕ corresponding to integrable structures, we may take the space $\mathcal{C}^\infty(S^1, U_\phi)$ as a neighborhood of c_0 in $\mathcal{E}(\mathcal{X}^{diff})$; and the space $\mathcal{C}^\infty(S^1, U_\phi \cap \mathcal{I})$ as a neighborhood of c_0 in $\mathcal{I}(\mathcal{X}^{diff})$.

Observe that U_ϕ being obtained from U by an a.c. gluing, we have

Proposition 3. Let U and U_ϕ be as above. Then the Γ_L-foliation of U descends as a foliation of U_ϕ.

Definition. We call this foliation the Γ_L-foliation of U_ϕ.

Let $Diff_\pi(\mathcal{X}^{diff})$ be the group of bundle isomorphisms of \mathcal{X}^{diff} which descend as the identity on the base S^1. It acts on $\mathcal{C}^\infty(S^1, U_\phi)$ in the obvious way. That is, given $c \in \mathcal{C}^\infty(S^1, U_\phi)$ and $f \in Diff_\pi(\mathcal{X}^{diff})$, we have

\[\forall t \in S^1 \quad (f \cdot c)_t = f_t \cdot c_t\]

where the action on the right-hand side is defined in (5).

Consider the set $\Sigma_\pi(T\mathcal{X}^{diff})$ of smooth vector fields of \mathcal{X}^{diff} tangent to the fibers of π. We have

\[\Sigma_\pi(T\mathcal{X}^{diff}) \simeq \{ \sigma : t \in S^1 \mapsto \sigma_t \in \Sigma(T\pi^{-1}(t)) \}.\]
Using (6), we may easily define a map
\[e_{\pi} : \Sigma_{\pi}(TX^{diff}) \to Diff_{\pi}(X^{diff}) \]
which satisfies, for all \(t \in S^1 \),
\[(e_{\pi})_t : \xi \in \Sigma(TX^{diff}) \simeq \Sigma(T\pi^{-1}\{t\}) \mapsto e(\xi) \in Diff(X^{diff}) \simeq Diff(\pi^{-1}\{t\}) \]
As in the pointwise case, \(e_{\pi} \) realizes a diffeomorphism between an open neighborhood of the zero-section in \(\Sigma_{\pi}(TX^{diff}) \) and a neighborhood of the identity in \(Diff_{\pi}(X^{diff}) \).

Given two subsets \(U \) and \(V \) of \(E(X^{diff}) \) with \(U \) open, \(W \) an open subset of a topological \(C^\infty \)-vector space, and an analytic map \(F \) from \(U \) to \(V \times C^\infty(S^1,W) \), we say that \(F \) is almost-complex preserving if the composition
\[c \in U \xrightarrow{F} V \times C^\infty(S^1,W) \xrightarrow{1st \ projection} G(c) \in V \]
is almost-complex preserving for each \(t \in S^1 \), that is the complex manifolds \(X_{c(t)} \) and \(X_{G(c(t))} \) are isomorphic for each \(t \).

Thus we extend the notion of a.c. maps to \(E(X^{diff}) \). Observe that an a.c. map is equivariant with respect to the action of \(Diff_{\pi}(X^{diff}) \).

3. The Kuranishi space of a proper CR submersion.

We are now in position to prove the main result of this paper: a statement analogous to Kuranishi’s Theorem for \(I(X^{diff}) \).

Let \(X_0 \) be a CR submersion compatible with \(\pi^{diff} \), represented by an element \(c_0 \) of \(I(X^{diff}) \). Identify a neighborhood of \(c_0 \) in \(I(X^{diff}) \) with \(C^\infty(S^1,U_\phi) \) as explained in the previous Subsection. Choose a closed vector subspace \(L \) of \(\Sigma(TX^{diff}) \) satisfying (25) for all \(J \) in the image of \(c_0 \) and having minimal codimension for this property. We have

Theorem 2. Shrinking \(U_\phi \) if necessary, we can find an analytic space \(K_{c_0} \) and an analytic map
\[U_\phi \cap I \xrightarrow{\mathcal{E}_\phi \ a.c.} K_{c_0} \]
such that

(i) The set \(K_{c_0} \) is a (finite-dimensional) analytic space of (embedding) dimension at \(c_0(t) \) equal to
\[h_1(t) + \text{codim } L - h_0(t) + 1 \quad \text{if } X_0 \text{ is a non-trivial CR bundle} \]
\[h_1(t) + \text{codim } L - h_0(t) \quad \text{otherwise} \]
where \(\text{codim } L \) is the codimension of \(L \) in \(\Sigma(TX^{diff}) \).

(ii) If we are not in the special case of (i), the analytic set \(K_{c_0} \) is the leaf space of the \(\Gamma_L \)-foliation of \(U_\phi \). Otherwise, there exists a closed subspace \(L' \) of \(\Sigma(TX^{diff}) \) containing \(L \) as a codimension-one subspace and such that \(K_{c_0} \) is the leaf space of the \(\Gamma_{L'} \)-foliation of \(U_\phi \).

As a consequence, the (infinite-dimensional) analytic space \(C^\infty(S^1,K_{c_0}) \) plays the role of the Kuranishi space \(K_0 \) in the classical case. Hence we define
Definition. The loop space $C^\infty(S^1, K_{c_0})$ is called a Kuranishi type moduli space of X_0. We denote it by K^g.

Remark. We will also consider the space $W^r_2(S^1, K_{c_0})$. We denote it by \mathcal{K}^g. The interest is that \mathcal{K}^g is a Banach analytic space (cf. Section I.1), whereas K^g is not.

Proof. We keep the same notations as in the previous subsections and recall that U_ϕ is defined as the quotient of some open neighborhood U of c_0 by ϕ. By Theorem 1, shrinking U and thus U_ϕ if necessary, attached to U is an analytic space K_U together with an analytic a.c. map of U onto K_U such that K_U is the leaf space of the Γ_L-foliation of U. We want now to define an analytic space K_{c_0} attached to U_ϕ.

If ϕ is the identity, there is nothing to do. We have $U_\phi = U$ and we take $K_{c_0} = K_U$, that is we take exactly the analytic space given by Theorem 1.

To do the general case, it would be natural to define K_{c_0} as the quotient of K_U by the action of ϕ. However, the resulting quotient space is not always an analytic space and we have to consider two different cases.

Indeed, when dealing in the previous subsection with the construction of U_ϕ, we imposed the condition of ϕ not being a biholomorphism. This forces c_0 to have distinct endpoints. It follows that, when gluing U_k to U_1 through ϕ, the resulting quotient space is Hausdorff (at least after shrinking). The fact that U_k and U_1 may be supposed to be disjoint is fundamental in this process. In the same way, when performing the same gluing onto K_U, we must ensure that the glued pieces corresponding to K_1 and K_k in K_U are disjoint to obtain an analytic space. This is possible (shrinking U if necessary) if and only if the image c of c_0 in K_U is not a loop.

Indeed, we may assume that

$$K_k = \phi \cdot K_1$$

and, after identification between open sets of K_k and K_1 and open sets of K_U, this induces a well-defined analytic a.c. isomorphism between two open sets of K_U. As we just told, if we may assume that, after shrinking, these two pieces are disjoint, then we may proceed as in Section 2 (construction of U_ϕ) and ensure that the gluing occurs exclusively on these open sets and that the resulting analytic space is the desired leaf space. Hence we are done.

Assume that X_0 is not a CR bundle. Then, by Fischer-Grauert Theorem, we can find $t \neq t'$ such that $X_{c_0(t)}$ is not biholomorphic to $X_{c_0(t')}$. This implies that c is not a constant path. It may of course be a loop, which is exactly the situation we would like to avoid, but since it is not a constant loop, we claim that, shrinking U, the image of c_0 in K_U is not a loop but a path. Indeed, assume that c is a loop. Then this means not only that $c_0(0)$ and $c_0(1)$ are in the same leaf of \mathcal{I}, but also that they are in the same leaf of U. Either $c_0(t)$ or $c_0(t')$ must be in a different Γ_L-orbit than that of the two endpoints. Say it is $c_0(t)$. By shrinking U, we may assume that $c_0(t)$ belongs to some domain U_p with p different from 1 and from k, and that this U_p does not intersect the Γ_L-orbit of $c_0(0)$. Hence the intersection of this orbit with U is disconnected and $c_0(0)$ from the one hand, and $c_0(1)$ from the other hand, belong to two different connected components. In other words, the
common leaf of \(c_0(0) \) and \(c_0(1) \) in \(\mathcal{I} \) disconnects into (at least) two leaves in \(U \), one passing through \(c_0(0) \), and the other passing through \(c_0(1) \). Because of the trivialization (35), this prevents their images \(c(0) \) and \(c(1) \) to be the same point of \(K_U \). So in this case, we may define \(K_{c_0} \) as the quotient of \(K_U \) by the action of \(\phi \).

Assume now that \(X_0 \) is a CR bundle. Then, we cannot exclude that \(c \) is the constant loop even after shrinking \(U \) (cf. Example V.3). The quotient of \(K_U \) by the action of \(\phi \) occurs in the neighborhood of the point \(c \), which is fixed by \(\phi \). As a consequence, it may not be Hausdorff, depending on the properties of \(\phi \). We avoid this problem as follows. Choose \(c_0 \) so that \(c \) is a point. Instead of using in Proposition 1 a subspace \(L \) of minimal codimension as we did, we take \(L' \) such that

\[
L = L' \oplus L_1
\]

where \(L_1 \) is one-dimensional. Then using Proposition 1 with \(L' \) this time, we obtain in place of \(K_U \) the space \(K_U \times W_1 \) for some open set \(W_1 \subset L_1 \). Now, we may assume that the image of \(c_0 \) in \(K_U \times W_1 \) is not constant (for example that the projection onto \(L_1 \) is not constant). Taking this image as the new path \(c \), we may now finish the argument with this \(c \), defining \(K_{c_0} \) as the gluing of \(K_U \times W_1 \) through \(\phi \) as before. Observe that the gluing is given by the associated map

\[
(J, v) \in K_U \times W_1 \mapsto (\phi \cdot J, d\phi \cdot v) \in K_U \times W_1
\]

the action on the first coordinate being defined in (4), and the action on the second coordinate being that of the differential of \(\phi \) on \(\Sigma(TX^{diff}) \).

Notice that, when dealing with \(L \) of minimal codimension, that is excluding the case where \(X_0 \) is a non-trivial CR bundle, it follows from Proposition 1 and Theorem 1 that \(K_U \), hence also \(K_{c_0} \), is complete at \(c(t) \) but not always versal, being the product of the Kuranishi space with a \(\mathbb{C} \)-vector space of dimension

\[
\text{codim } L - \text{codim } L_0 = \text{codim } L - h^0(t).
\]

Hence it has dimension

\[
h^1(t) + \text{codim } L - h^0(t)
\]

as stated. In the case of a non-trivial CR bundle, we have to increase the dimension by one.

To define the map \(\Xi_\phi \), we proceed as follows. Assume that we are not in the special case. We already have an a.c. projection

\[
(61) \quad U \cap \mathcal{I} \xrightarrow{\text{a.c.}} K_U
\]

by Theorem 1. Since both the construction of \(U_\phi \) and that of \(K_{c_0} \) consist in taking the quotient by \(\phi \), it follows that the projection (61) descends as a map

\[
(62) \quad U_\phi \cap \mathcal{I} \xrightarrow{\Xi_\phi} K_{c_0}
\]

as desired and that \(K_{c_0} \) is the leaf space of the \(\Gamma_L \)-foliation of \(U_\phi \). The special case is handled in the same way, just noting that, running the proof of Theorem 1 with \(L' \) instead of \(L \) yields an a.c. projection

\[
(63) \quad U \cap \mathcal{I} \xrightarrow{\text{a.c.}} K_U \times W_1.
\]

Using (63) instead of (61), we immediately see that it descends also as a map (62).

Remark. If \(K_U \) is not reduced, then we perform exactly the same construction. Because of (29), the extra vector space factor is always reduced and there is no change in the dimension counting.
Corollary 3. The map (62) is, after shrinking of U_ϕ, a.c. diffeomorphic to a trivial bundle with base K_{c_0} and fibre an open neighborhood of the identity in Γ_L (respectively in $\Gamma_{L'}$ in the special case).

Proof. Use trivialization (32) and observe that the ϕ-gluing respects the fibers of this trivialization. This shows that U_ϕ is a.c. diffeomorphic to a locally trivial bundle over K_{c_0}. Now there are two cases. Either the gluing occurs on the fibers (cf. case 1 and 2 in the proof of Theorem 2) hence the bundle is trivial; or the gluing occurs on the base (cf. case 3 of the proof of Theorem 2), but then its monodromy is isotopic to the identity (because it is given by some map (39) once the gluing between U_k and U_1 is performed), and it is trivial.

Observe that, in the first case, the fiber is homotopic to a circle, whereas in the second case it is contractible but this time the base has a non-trivial fundamental group. □

Corollary 4. The analytic space K_{c_0} is unique in the following sense.

(i) Up to a.c. isomorphism, it does not depend on the choice of the adapted covering and of the Kuranishi maps.

(ii) If U' is another neighborhood of c_0, then the restrictions of Ξ_ϕ and of the corresponding map Ξ'_ϕ to $(U \cap U')_\phi \cap I$ have a.c. isomorphic images.

Proof. This follows immediately from the fact that it is a leaf space. □

In other words, the germ of K_{c_0} at c_0 is unique. However, once again, we want to emphasize that it depends on the choice of L, and of L' in the special case.

IV. Deformation Theory of proper CR submersions.

1. Basic notions.

Let $\pi : X_0 \to S^1$ be a proper CR submersion. Recall the definitions given in Section I.3. The following definitions are inspired in [Bu].

Definitions. A holomorphic deformation (resp. smooth deformation) of X_0 is a Levi-flat CR space Z together with a proper and transflat CR morphism $\Pi : Z \to B$ onto an analytic space (resp. a smooth manifold) B, a smooth and proper transflat map $s : Z \to S^1$ and a marking $i : X_0 \to \Pi^{-1}\{0\}$ such that, for all $t \in B$,

(i) The Π-fiber Z_t over t is a Levi-flat CR submanifold of Z.

(ii) The restriction s_t of s to Z_t is a proper CR submersion compatible with π^{diff}.

(iii) The composition $s_t \circ i$ is equal to π.

(iv) The map

\[P = (s, \Pi) : Z \to S^1 \times B \]

is a proper and transflat CR morphism.

This is a quite technical definition so let us highlight some of its principal features. Firstly, choose any $t_0 \in S^1$ and let X_0 be the fiber of X_0 over t_0. Then the map P of (64) is a CR deformation of X_0 once chosen a marking.
Secondly, Z is locally diffeomorphic at $z \in Z$ to $X^{\text{diff}} \times U$, for U a neighborhood of $\Pi(z)$ in B. Moreover, we have a commutative diagram of diffeomorphisms

\[
\begin{array}{ccc}
\mathbb{S}^1 & \xrightarrow{\pi^{\text{diff}}} & X^{\text{diff}} \\
\uparrow s & & \uparrow \text{2nd projection} \\
\Pi^{-1}(U) \subset Z & \xrightarrow{\sim} & X^{\text{diff}} \times U \\
\downarrow \Pi & & \downarrow \text{1st projection} \\
U & \xrightarrow{\text{Identity}} & U
\end{array}
\]

2. Complete Families.

We are in position to prove the following completeness result.

Theorem 3. Let $\pi : X_0 \to \mathbb{S}^1$ be a proper CR submersion. Choose a path c_0 representing X_0 and let K^g be a Kuranishi type moduli space of X_0. Then there exists a (infinite-dimensional) holomorphic deformation $\Pi^g : \overline{K}^g \to \overline{K}^g$ of X_0 with base \overline{K}^g. This family is complete at 0, that is any holomorphic (resp. smooth) deformation $\Pi : \mathcal{Z} \to B$ of X_0 is locally isomorphic to the pull-back of \overline{K}^g by some analytic (resp. smooth) map f from $(B, 0)$ to $(\overline{K}^g, 0)$.

Moreover, we may ask the local isomorphisms to preserve the markings.

Proof. Choose a path c_0 representing X_0, define K_{c_0} and K^g as usual. Recall that \overline{K}^g is obtained by considering maps of Sobolev class W^r_2. Observe that K_{c_0} being obtained from a finite number of Kuranishi spaces by gluing them through a.c. isomorphisms, it defines in a natural way an analytic family \mathcal{K}_{c_0}.

Indeed, going back to the proof of Theorem 1 and using the notations introduced there, let K_1 and K_2 be two Kuranishi spaces and let

\[
K_{12} = K_1 \cup_g K_2
\]

be an analytic space obtained by gluing, the gluing g being an a.c. isomorphism between an open set V_1 of K_1 and an open set V_2 of K_2. More precisely, g is given as a map

\[
g : J \in V_1 \subset K_1 \mapsto G(J) \cdot J \in K_2
\]

where

\[
G : V_1 \to Diff(X^{\text{diff}})
\]

and where the \cdot denotes the action (4). Consider now the families \mathcal{K}_i induced above K_i. They are constructed as $K_i \times X^{\text{diff}}$, every fiber $\{J\} \times X^{\text{diff}}$ being endowed with the complex structure J. It follows that the map

\[
(J, x) \in V_1 \times X^{\text{diff}} \mapsto (g(J), G(J)(x)) \in V_2 \times X^{\text{diff}}
\]
realizes an analytic isomorphism between open sets of K_i preserving the projections onto K_i. Gluing K_1 and K_2 through (68), we obtain a holomorphic family K_{12} over K_{12}. Repeating the process yields the family K_{c_0}.

Set
\[(69) \quad \mathcal{K}^g := \{ f^*K_{c_0} \mid f \in W^r_2(S^1, K_{c_0}) \}\]
and let Π^g be the induced projection from \mathcal{K}^g to K^g. Call 0 the point of K^g corresponding to c_0. Finally choose a marking
\[i^g : X_0 \rightarrow (\Pi^g)^{-1}(0).\]

This is obviously a holomorphic deformation of X_0. Moreover, as a consequence of property (64), a holomorphic (resp. smooth) CR deformation $\Pi : Z \rightarrow B$ of X_0 can be locally encoded as follows. Construct the neighborhood U_ϕ of c_0. Then P induces an analytic (resp. smooth) map f from a neighborhood of 0 in B to $C^\infty(S^1, U_\phi \cap I)$ such that Z is locally isomorphic to $X^{\text{diff}} \times B$ endowed with the family of CR submersions structures $(f(t))_{t \in B}$.

It is enough to compose f with the a.c. projection from $C^\infty(S^1, U_\phi \cap I)$ to $K^g \subset \mathcal{K}^g$ induced by the map Ξ_ϕ of (60) to prove completeness.

Finally, observe that if this composition, let us call it g, does not preserve the markings, then there exists a CR isomorphism Φ of X_0 covering the identity of S^1 such that
\[
\begin{array}{cccc}
X_0 & \xrightarrow{\Phi} & X_0 \\
\downarrow i & & \downarrow i^g \\
(Z, \Pi^{-1}(0)) & \xrightarrow{G} & \mathcal{K}^g \subset \mathcal{K}^g \\
\downarrow \Pi & & \downarrow \Pi^g \\
(B, 0) & \xrightarrow{g} & K^g \subset \mathcal{K}^g \\
\end{array}
\]

But now, Φ acts on K^g, so that we may replace the map G by $\Phi^{-1} \cdot G$ so that we have now
\[
\begin{array}{cccc}
X_0 & \xrightarrow{i^g} & K^g \subset \mathcal{K}^g \\
\downarrow i & & \downarrow \text{Identity} \\
(Z, \Pi^{-1}(0)) & \xrightarrow{\Phi^{-1} \cdot G} & K^g \subset \mathcal{K}^g \\
\end{array}
\]
and this time the map g preserves the markings. □

Remark. Although the map
\[\Pi^g : K^g \rightarrow K^g\]
is not strictly speaking a deformation of X_0 (since its base is only Fréchet), we will consider it as a deformation of X_0. The reader may, if he wants, replace it by $\mathcal{K}^g \rightarrow \mathcal{K}^g$ in the sequel.
3. (Uni)versality.

As recalled in Section I.3, the Kuranishi family is not only complete but also versal at 0 in the classical case. We will see that things are a bit different in the case of proper CR submersions.

First, recall that we gave two equivalent definitions of versality in the classical context. The first one deals with the Kuranishi space having minimal dimension at 0. Since our family is infinite-dimensional, we cannot use this definition. The other characterization deals with the unicity of the differential at 0 of the map f. This can be easily transposed to our context.

Moreover, recall that the Kuranishi space is universal if the germ of f is unique. This definition can also be transposed to our context. It is known that, in the reduced case, the Kuranishi space is universal if and only if the function h^0 is constant along it (cf. [Wa1], [Wa2], [Me1]).

Let us fix some notations. We start from a deformation $\Pi : Z \to B$ of X_0 and we consider a map f from some open set of B to K^g given by completeness. Its differential at the marked point 0 goes from the tangent space T_0B to the tangent space T_0K^g. We only consider local isomorphisms from Z to K^g covering f which preserve the markings. This prevents from composing with automorphisms of Z and K^g which descends as non-trivial automorphisms of the bases of the families. Notice that this is necessary to hope the unicity of d_0f. Even in the classical case, allowing these compositions, one loses versality.

Nevertheless, we do not have versality in general. We will give some counterexamples in the next part. Indeed,

Theorem 4.

(i) The family $\Pi^g : K^g \to K^g$ is versal at 0 if and only if

\[\forall t \in S^1, \quad h^0(t) = \text{codim } L. \]

(ii) The family $\Pi^g : K^g \to K^g$ is universal at 0 for families over a reduced base if and only if

\[\forall J \in K_{c_0}, \quad h^0(X_J) = \text{codim } L. \]

Remark. Observe that, if X_0 is a trivial CR bundle, then (70) is automatically satisfied, hence K^g is versal. And it is universal if and only if the Kuranishi space of the fiber is universal. On the contrary, if X_0 is a non-trivial CR bundle, the family K^g is never versal.

Proof. We first need to compute the tangent space of K^g at some point c. From its definition, one has that

\[T_cK^g = \{ H \in C^\infty(S^1, TK_{c_0}) \mid p \circ H \equiv c \} \]

where $p : TK_{c_0} \to K_{c_0}$ is the tangent sheaf of K_{c_0}. In particular, for $t \in S^1$, we have a commutative diagram

\[
\begin{array}{ccc}
H \in T_cK^g & \xrightarrow{\text{evaluation at } t} & H(t) \in T_{c(t)}K_{c_0} \\
\downarrow p^0 & & \downarrow p \\
c \in K^g & \xrightarrow{\text{evaluation at } t} & p \circ H(t) = c(t) \in K_{c_0}
\end{array}
\]
Let ev_t denote the evaluation map of the bottom arrow and Ev_t that of the top arrow. Then analyzing (72) yields that the differential dev_t is equal to Ev_t.

Indeed, let v be a vector of T_cK^g and let

$$u : (−\varepsilon, \varepsilon) \to K^g$$

be a smooth path whose derivative at 0 is v. Define

$$(s, \theta) ∈ (−\varepsilon, \varepsilon) \times \mathbb{S}^1 \mapsto U(s, \theta) := ev_θ \circ u(s) ∈ K_{c_0}.$$

Compute

$$\frac{d}{ds}|_{s=0}(ev_t \circ u(s)) = \frac{d}{ds}|_{s=0}(U(s, t)) = Ev_t \circ \frac{d}{ds}|_{s=0}(u(s))$$

that is

$$dc(ev_t \circ u) = dc(ev_t(v)) = Ev_t \circ v.$$

Let $\Pi : Z \to B$ be a deformation of X_0 and let (f, F) be given by completeness. Consider now the smooth morphism

$$(73) \quad \Pi_t : \mathcal{Y}_t := s_0^{-1}(t) \xrightarrow{\Pi_\mathcal{Y}_t} B.$$

This is a deformation of $X_t := \pi_{c_0}(t)$. But we have a commutative diagram

$$(74) \quad \mathcal{Y}_t \subset Z \xrightarrow{(F)_t} K_{c_0}$$

where $(F)_t$ and $(f)_t$ are given by the evaluation at t of the maps F and f.

Observe that, if

$$(75) \quad i : X_0 \to \Pi^{-1}(0)$$

denotes the marking of our family Π, then

$$(76) \quad i_t : X_t \subset X_0 \to \Pi_t^{-1}(0)$$

is a marking for (73).

From (72) and (74), we obtain that

$$(77) \quad d_0(f)_t \equiv (d_0f)_t : T_0B \to T_{c_0(t)}K_{c(t)},$$

and we see that the versality at $c_0(t)$ of K_{c_0} for any t implies the versality at 0 of K^g. The markings used here are (76) and (75).
Conversely, assume that \(K_{c_0} \) is not versal at some point \(c_0(t_0) \) with \(t_0 \in \mathbb{S}^1 \). Then we can find a deformation

\[
\mathcal{Y} \to (\mathbb{D}, 0)
\]

of \(X_{t_0} \) with marking \(i_0 \) and two holomorphic maps

\[
(\mathbb{D}, 0) \xrightarrow{f_{t_0}, g_{t_0}} (K_{c_0}, c_0(t_0))
\]

with

\[
\mathcal{Y} = f_{t_0}^*K_{c_0} = g_{t_0}^*K_{c_0},
\]

respecting the markings \(i_0 \) and \(i^g(c_0(t_0)) \) and finally such that

\[(78)\]

\[d_0f_{t_0} \neq d_0g_{t_0}.
\]

Then we extend the map \(f_{t_0} \) into a CR map

\[f : \mathbb{D} \times \mathbb{S}^1 \to K_{c_0}\]

such that

\[
\begin{cases}
 f|_{\mathbb{D} \times \{t_0\}} \equiv f_{t_0} \\
 f|_{\{0\} \times \mathbb{S}^1} \equiv c_0
\end{cases}
\]

To prove that such an extension exists, first observe that we may assume \(K_{c_0} \) smooth. If not, just desingularize and lift both \(f_{t_0} \) and \(c_0 \). Also observe that we may perform the extension step by step along the circle, from \(t_0 \) to a close \(t_1 \) and so on. Hence we reduce the problem to a local extension problem in \(\mathbb{C}^n \).

Remark. There is no particular problem if the space \(K_{c_0} \) is not reduced. Indeed, since we use maps from a reduced base (here a circle or an annulus) into \(K_{c_0} \), they map into the reduction of \(K_{c_0} \). Hence, we only have to desingularize the reduction of \(K_{c_0} \).

Taking into account that we have a monodromy problem when coming back to \(t_0 \) after a complete turn, we finally see that the proof is completed with the following lemma (we prove more since it will be useful in Part V).

Lemma 2.

(i) Let \(u : [0, 1] \to \mathbb{C}^n \) be a smooth path and let \(f_i : \mathbb{D} \to \mathbb{C}^n \) be two \((i = 0, 1)\) holomorphic maps such that \(f_i(0) = u(i) \).

Then, there exists a CR map

\[F : \mathbb{D} \times [0, 1] \to \mathbb{C}^n\]

such that

\[
\begin{cases}
 F(-, i) \equiv f_i \quad \text{for } i = 0, 1 \\
 F(0, t) = u(t) \quad \text{for } t \in [0, 1]
\end{cases}
\]

(ii) Moreover, let \(v : [0, 1] \to \mathbb{C}^n \) be a smooth path and \(z_0 \in \mathbb{D} \setminus \{0\} \) such that \(f_i(z_0) = v(i) \) (for \(i = 0, 1 \)).
Then, we may assume that the map F of (i) satisfies also
\[F(z_0, t) = v(t) \quad \text{for } t \in [0, 1]. \]

Proof of Lemma 2. To prove (i), just define
\[F(z, t) = (1 - t)f_0(z) + tf_1(z) + u(t) - tu(1) - (1 - t)u(0), \]
and to prove (ii),
\[F(z, t) = (1 - t)f_0(z) + tf_1(z) + u(t) - tu(1) - (1 - t)u(0) \]
\[+ \frac{z}{z_0}(v(t) + (1 - t)u(0) - tu(1) - tu(1) + (1 - t)u(0)). \]

Coming back to the proof of Theorem 4, define
\[
Z := f^*(\mathcal{K}_c) \longrightarrow \mathbb{D} \times S^1 \overset{\text{1st projection}}{\longrightarrow} \mathbb{D}.
\]
This is a deformation of \mathcal{X}_0 with marking
\[i : \mathcal{X}_0 \longrightarrow c^*_0\mathcal{K}_c. \]
Now, taking into account that K_c encodes complex operators, we may write
\[\mathcal{Y} = (X^{\text{diff}} \times \mathbb{D}, J_0) = (X^{\text{diff}} \times \mathbb{D}, J_1) \]
with J_0 and J_1 families of complex operators on X^{diff} indexed by \mathbb{D} and satisfying
\[(F_{t_0})_*J_0 \equiv (G_{t_0})_*J_1 \]
where F_{t_0} (respectively G_{t_0}) is a map from \mathcal{Y} to \mathcal{K}_c covering f_{t_0} (respectively g_{t_0}).

In other words, we may find some smooth family of diffeomorphisms k_s of X^{diff} parametrized over the disk such that, for every $s \in \mathbb{D}$, the map k_s is a biholomorphism from $(X^{\text{diff}} \times \{s\}, J_0(s))$ to $(X^{\text{diff}} \times \{s\}, J_1(s))$.

We extend J_0 into a family of complex operators over $\mathbb{D} \times S^1$ so that
\[Z = (X^{\text{diff}} \times \mathbb{D} \times S^1, J_0) \]
and we extend J_1 over the same base by defining
\[J_1 := (k_s)_*J_0 \]
on the fiber over any point $(s, t) \in \mathbb{D} \times S^1$.

Obviously, we also have
\[Z = (X^{\text{diff}} \times \mathbb{D} \times S^1, J_1). \]
Shrinking the base \mathbb{D} if necessary, we may assume that the map

$$J_1 : \mathbb{D} \times S^1 \rightarrow \mathcal{I}$$

has image in the open set $U_\phi \cap \mathcal{I}$ admitting a retraction (60) onto K_{c_0}. This allows us to extend the map g_{t_0} into a map g defined over $\mathbb{D} \times S^1$ by stating

$$g(z, t) := \Xi_\phi((J_1)(z, t))$$

where $(J_1)(z, t)$ denotes the restriction of J_1 to the fiber over (z, t). By construction, we have

$$Z = g^* K^g.$$

Because of (79), (78) and (77), the family K^g is not versal at c_0.

To finish with the proof of (i), we just have to show that K_{c_0} is versal at each point $c_0(t)$ if and only if equality (70) holds.

The construction of K_{c_0} given in the proof of Theorem 2 shows that it is complete at $c_0(t)$ with dimension

$$h^1(t) + \text{codim } L - h^0(t) \quad \text{or} \quad h^1(t) + \text{codim } L + 1 - h^0(t).$$

To be versal, it must have minimal dimension, that is dimension $h^1(t)$. Since we have

$$\text{codim } L \geq h^0(t) \quad \text{for all } t$$

this yields the condition

$$h^0(t) = \text{codim } L.$$

Conversely, if this condition is fulfilled, then, from (80), the space K_{c_0} is versal at each point of c_0, hence the differential $d_0(f)_t$ is uniquely determined for each $t \in S^1$. By (77), which means that $d_0 f$ is uniquely determined, so the family $\Pi^g : K^g \rightarrow K^g$ is versal at 0. This proves (i).

By definition f is unique, yielding universality if f_t is unique for all t. In other words, K^g is universal if K_{c_0} is universal at each point $c_0(t)$. Conversely, if K_{c_0} is not universal at some point $c_0(t_0)$, then the same argument as above (just replacing (78) with $f_{t_0} \neq g_{t_0}$) shows that K^g is not universal at c_0.

Universality of K_{c_0} implies also that it is versal at each point $c_0(t)$, that is that the function h^0 is equal to codim L at every point $c_0(t)$. Now, by a Theorem of Wavrik (see [Me1, Section 5.5] for the version we use), K_{c_0} is universal at $c_0(t)$ for families over a reduced base if and only if h^0 is constant in a whole neighborhood of $c_0(t)$. So we finally obtain that the condition

$$h^0(X_J) = \text{codim } L \quad \text{for all } J \in K_{c_0}$$

is sufficient to have universality for families over a reduced base. □
4. Kodaira-Spencer map.

We finish this Section with the construction of the Kodaira-Spencer map of a deformation of a proper CR submersion over the circle. In the classical case, the Kodaira-Spencer map of a deformation of \(X_0 \) takes value in the first cohomology group \(H^1(X_0, \Theta_0) \), which can be identified with the tangent space at 0 of the Kuranishi space of \(X_0 \) in such a way that it corresponds to the differential \(d_0f \) of the map \(f \) obtained by completeness. In our case, however, the Kodaira-Spencer map will take value in a first cohomology group which is different from \(T_0K^g \), except if (81) is satisfied for all \(t \in S^1 \).

To do that, we start as usual with a proper CR submersion \(\pi : X_0 \to S^1 \) and we define \(\Theta_\pi \) to be the sheaf of germs of CR vector fields of \(X_0 \) tangent to the fibers of \(\pi \). The first cohomology group \(H^1(X_0, \Theta_\pi) \) has a natural structure of the set of smooth sections of a sheaf of \(\mathbb{C} \)-vector spaces over the circle. The stalk at some point \(t \) is the vector space \(H^1(X_t, \Theta_t) \). Moreover, it is a vector bundle over the circle as soon as the function \(h^1 \) is constant along the circle (cf. [K-S1]).

Let \(\Pi : Z \to B \) be a deformation of \(X_0 \). Let \(\Theta_s \) be the sheaf of germs of CR vector fields of \(Z \) tangent to the fibers of \(s \). Let also \(\Theta_P \) be the sheaf of germs of CR vector fields of \(Z \) tangent to the fibers of \(P \) (cf. (64)). Consider the following exact sequence of sheaves

\[
0 \to \Theta_P \to \Theta_s \to \Theta_s/\Theta_P \to 0
\]

and observe that the quotient sheaf \(\Theta_s/\Theta_P \) can be identified with the sheaf \(\Theta_B \) of germs of CR vector fields on the base \(B \). The long exact sequence associated to (82) runs as follows

\[
\ldots \to H^0(Z, \Theta_s) \to H^0(B, \Theta_B) \xrightarrow{\rho} H^1(Z, \Theta_P) \to \ldots
\]

Observe now that the restriction of \(\rho \) to the tangent space \(T_0B \) gives a map

\[
T_0B \xrightarrow{\rho_0} H^1(X_0, \Theta_\pi).
\]

Definition. The map \(\rho_0 \) of (84) is called the *Kodaira-Spencer map* at 0 of the deformation \(\Pi : Z \to B \).

Roughly speaking, the map \(\rho \) of (83) represents the complete obstruction to lift CR vector fields of \(B \) to CR vector fields of \(Z \) respecting the fibers of \(s \), thus trivializing the family. The Kodaira-Spencer map being the evaluation of this obstruction to the central fiber is the first obstruction to such a trivialization. It has the advantage to be defined on \(X_0 \) and not on the whole deformation \(Z \) and thus can be computed explicitly in many cases.

Theorem 5. Let \(\pi : X_0 \to S^1 \) be a proper CR submersion. Assume that for all \(t \in S^1 \), the identity (81) is fulfilled. Then there exists a fixed isomorphism

\[
H^1(X_0, \Theta_\pi) \xrightarrow{\varphi} T_0K^g
\]

such that the following property holds.
Let $\Pi : Z \to B$ be any deformation of X_0. Let ρ_0 be its Kodaira-Spencer map at 0 and let $f : (B, 0) \to (K^g, 0)$ be given by completeness of K^g. Then we have

$$\varphi \circ \rho_0 \equiv d_0 f$$

Proof. We have already seen that the natural projection

$$\mathcal{H}^1 = \bigcup_{t \in S^1} H^1(X_t, \Theta_t) \longrightarrow S^1$$

can be endowed with a structure of a sheaf over the circle with stalk $H^1(X_t, \Theta_t)$ at t. With this structure, \mathcal{H}^1 identifies with the cohomology group $H^1(X_0, \Theta_\pi)$.

If $\Pi : Z \to B$ is a deformation of X_0, recall that (cf. (73))

$$\mathcal{Y}_t := s^{-1}(t) \overset{\Pi_t}{\longrightarrow} B$$

is a deformation of $X_t := \pi^{-1}(t) \subset X_0$. Associated to (87), when B is finite-dimensional, we thus have a (classical) Kodaira-Spencer map

$$\rho_t : T_0 B \longrightarrow H^1(X_t, \Theta_t)$$

and the family of these maps, when t varies in S^1, is exactly the Kodaira-Spencer map defined in (84).

We want to apply these considerations to the Kuranishi family of X_0. In this case, because of (74), the deformation \mathcal{Y}_t given by (87) reduces to a deformation over $(K_{c_0}, c_0(t))$. Indeed \mathcal{Y}_t is equal to the pull-back of $K_{c_0} \to (K_{c_0}, c_0(t))$ by the evaluation map at t. Hence (88) gives a decomposition of the Kodaira-Spencer map ρ of the family $\Pi^g : K^g \to K^g$ into a family

$$\rho_t : T_{c_0(t)} K_{c_0} \longrightarrow H^1(X_t, \Theta_t)$$

and we have a commutative diagram

$$\begin{array}{ccc}
T_0 K^g & \overset{\rho}{\longrightarrow} & H^1(X_0, \Theta_\pi) \\
\downarrow{ev_t} & & \downarrow{ev_t} \\
T_{c_0(t)} K_{c_0} & \overset{\rho_t}{\longrightarrow} & H^1(X_t, \Theta_t)
\end{array}$$

Since we assume that (81) is fulfilled for all t, the space K_{c_0} is versal at $c_0(t)$ and all the ρ_t are isomorphisms. So is the map ρ.

We define the map φ of (85) to be ρ^{-1}.

Now, because of (72), (74) and (76), the property (86) is satisfied if and only if it is satisfied for each $t \in S^1$, that is if

$$\varphi_t \circ \rho_t \equiv d_0 f_t$$

which is true by the chain-property of the (classical) Kodaira-Spencer map. □
V. Applications and examples.

1. Connectedness and extension of deformations.

In the classical case of compact complex manifolds, Kuranishi’s Theorem has as a consequence that every complex structure J on X close enough to a fixed structure J_0 is connected to it. That is, there exists a 1-dimensional holomorphic (resp. smooth) deformation of X_0 that contains X_J. The proof just consists in choosing a disk (resp. a path) in the Kuranishi space of X_0 joining the base point to the point encoding J.

In our case, the same result is true.

Theorem 6. Let $\pi : \mathcal{X}_0 \to S^1$ be a proper CR submersion, represented by an element c_0 of $I(X^{diff})$ as usual.

Then, if \mathcal{X} is a proper CR submersion close enough to \mathcal{X}_0 (that is, if \mathcal{X} can be represented by a path c close enough to c_0 in the topological space I), there exists a holomorphic (resp. smooth) 1-dimensional deformation joining \mathcal{X}_0 and \mathcal{X}.

Proof. Since \mathcal{X} is close to \mathcal{X}_0, it is represented by a point in the Kuranishi space K^g of \mathcal{X}_0. That means that there exists a loop c in KC_0 encoding \mathcal{X}.

Therefore, to construct a smooth deformation as desired, it is enough to construct an isotopy

$$H : S^1 \times [0, 1] \to KC_0$$

such that

$$H_0 := H(\cdot, 0) \equiv c_0 \quad \text{and} \quad H_1 := H(\cdot, 1) \equiv c.$$

Now, it is a classical fact that two smooth loops in an analytic space are isotopic as soon as they are close enough one from the other. Indeed, this is clear for complex manifolds. For analytic spaces, we may first desingularize and extend the loops we want to isotope. Observe that the exceptional divisors being simply connected, there is no additional obstruction. Since we may assume c to be arbitrarily close to c_0, the existence of H follows.

Remark. There is no particular problem if the space KC_0 is not reduced. Indeed, since we use maps from a reduced base (here a circle or an annulus) into KC_0, they map into the reduction of K_{c_0}. Hence, we only have to desingularize the reduction of K_{c_0}. The same remark applies below and to the next results (Corollaries 5 and 6).

We treat the case of a 1-dimensional holomorphic family joining \mathcal{X}_0 to \mathcal{X}. That amounts to finding some CR morphism of $S^1 \times \mathbb{D}$ in KC_0 whose image contains c_0 and c. Once again, desingularizing and extending c_0 and c if necessary, we may assume that K_{c_0} is smooth. For each $\exp 2i\pi \theta \in S^1$, the corresponding holomorphic disk of K_{c_0} must pass through $c_0(\exp 2i\pi \theta)$ and $c(\exp 2i\pi \theta)$. We can always construct such a disk D_{θ} for θ fixed. And this can be done in a locally smooth way. The only problem that could appear is that, starting with D_0 and constructing the family by extension, we finish with D_1 different from D_0. Lemma 2, (ii) allows us to solve this problem. □

Indeed, we have even a stronger connectedness result.
Corollary 5. Let \(\pi : \mathcal{X}_0 \to \mathbb{S}^1 \) be a proper CR submersion.
If \(X \) is a compact complex manifold close enough to some fiber \(X_t \) of \(\mathcal{X}_0 \), then there exists a holomorphic (resp. smooth) 1-dimensional deformation \(Z \) of \(\mathcal{X}_0 \) such that, for some \(z \) in the base, the \(t \)-fiber of \(Z_z \) is biholomorphic to \(X \).

Proof. Choose \(c \) in \(\mathcal{I}(\mathcal{X}_0^{\text{diff}}) \) close to \(c_0 \) and satisfying that \(X_{c(t)} \) is biholomorphic to \(X \) and apply Theorem 6. \(\square \)

Finally, we prove that a 1-dimensional deformation of a fiber of \(\mathcal{X}_0 \) can be extended as a 1-dimensional deformation of \(\mathcal{X}_0 \).

Corollary 6. Let \(\pi : \mathcal{X}_0 \to \mathbb{S}^1 \) be a proper CR submersion.
If \(Y \to B \) is a holomorphic (resp. smooth) deformation of some fiber \(X_t \) of \(\mathcal{X}_0 \) over a 1-dimensional reduced base, then there exists a holomorphic (resp. smooth) deformation \(Z \) of \(\mathcal{X}_0 \) over the same base inducing locally \(Y \), i.e. such that we have \((Y_t)|_U \equiv Y \) for \(U \) a neighborhood of 0 in \(B \).

Recall the definition (73) of \(Y_t \).

Proof. We just do the holomorphic case. Since \(K_{c_0} \) is complete at \(c_0(t) \), we may assume that \(Y \) is obtained by pull-back of \(K_t \) (the Kuranishi space of \(X_t \)) over some disk of the base. As before, we may assume that \(K_{c_0} \) is smooth. Let \(F : (\mathbb{D}, 0) \subset (B, 0) \longrightarrow (K_{c_0}, c_0(t)) \) be the associated map. We just have to extend it into a CR map \(H : \mathbb{S}^1 \times \mathbb{D} \longrightarrow K_{c_0} \) such that \(H(-, 0) \equiv c_0 \) and \(H(t, -) \equiv F \) which is not really different from what we did in the proofs of Theorems 4 and 6 thanks to Lemma 2. \(\square \)

2. Rigidity.

As in the classical case, we say that a proper CR submersion \(\pi : \mathcal{X}_0 \to \mathbb{S}^1 \) is rigid if any deformation \(\Pi : \mathcal{Z} \to B \) of \(\mathcal{X}_0 \) is (locally) isomorphic to a product \(\mathcal{X}_0 \times B \).

Here is a trivial example of a rigid CR submersion.

Example. Let \(X_0 \) be a rigid compact complex manifold (for example, \(X \) is \(\mathbb{P}^n \) for some \(n > 0 \)). Let \(\mathcal{X}_0 \) be a CR bundle with fiber \(X_0 \).

If this bundle is trivial, then the space \(K_{c_0} \) is nothing else that a point. So is \(K^g \). By Theorem 2, \(\mathcal{X}_0 \) is trivial.

If it is not trivial, then \(K_{c_0} \) can be taken as the unit disk (cf. Theorem 2), but the family \(K_{c_0} \to K_{c_0} \) is trivial by construction and every \(\mathcal{X} \) close to \(\mathcal{X}_0 \) is isomorphic to \(X_0 \times [0, 1]/\sim \) where \((z, 0) \sim (\phi(z), 1) \) for \(\phi \) a biholomorphism representing the monodromy of \(\mathcal{X}_0 \). Hence it is isomorphic to \(\mathcal{X}_0 \). The same argument shows that any deformation of \(\mathcal{X}_0 \) is trivial, hence \(\mathcal{X}_0 \) is trivial.

This is indeed the unique rigid example.
Theorem 7. Let $\pi : X_0 \to S^1$ be a proper CR submersion. Then X_0 is rigid if and only if it is a CR bundle with rigid fiber.

Proof. We have already seen in the previous example that a CR bundle with rigid fiber is rigid. Conversely let X_0 be rigid. If one of the fiber X_t of X_0 is not rigid, then by Corollary 6, there exists a non-trivial deformation of X_0, so every fiber is rigid. By connectedness of the circle, this implies that all the fibers are biholomorphic, hence, by Fischer-Grauert’s Theorem, it is a CR bundle. □

3. Examples of CR bundles.

Example: the trivial case. Assume that $\pi : X_0 \to S^1$ is a trivial CR bundle. Then c_0 is just a point of \mathcal{I} and K_{c_0} is the same as the Kuranishi space K_0 of the fiber X_0. So finally the Kuranishi space K^g of X_0 is $C^\infty(S^1,K_0)$.

For example, if X_0 is $E_\tau \times S^1$ (where E_τ is the elliptic curve of modulus $\tau \in \mathbb{H}$), then K_0 is a neighborhood of τ in \mathbb{H} and K^g is the space of smooth maps from the circle to this neighborhood.

Example: the non-trivial case. Let $\omega = \exp(2i\pi/3)$ and let E be the elliptic curve of modulus ω. Let X_0 be the CR bundle with fiber E and monodromy ω. Here c_0 is also a point, but we are in the special case of Theorem 2 and we cannot take K_{c_0} as a neighborhood of ω in \mathbb{H}. Let D_ω be a disk centered at ω in \mathbb{H}. Let $V = \{z \in \mathbb{C} \mid \inf_{t \in [0,1]} |z - (t\omega + (1-t))| < \epsilon\}$.

This is a neighborhood of the segment joining 1 to ω in \mathbb{C}. Let D_ϵ be the open disk of radius ϵ centered at 1. Observe that D_ϵ is a neighborhood of 1 included in V. Assume that ϵ is small enough to ensure that D_ϵ and ωD_ϵ are disjoint.

Following the proof of Theorem 2, we define K_{c_0} to be

$$K_{c_0} = D_\omega \times V / \sim \quad \text{with} \quad (\tau, w) \in D_\omega \times D_\epsilon \sim (\omega \cdot \tau, \omega w)$$

where $\omega \cdot$ describes the action of the automorphism ω onto \mathbb{H}, that is

$$\omega \cdot \tau = \frac{-1 - \tau}{\tau}.$$

So K_{c_0} is biholomorphic to the product of a disk with an annulus. And X_0 has non-trivial deformations, even if the situation may at first sight be rigid, due to the fact that no other elliptic curve than E admits ω as an automorphism. A CR submersion close to but different from X_0 is encoded in a path c in \mathbb{H} with

$$c(1) = \omega \cdot c(0).$$

Such a structure is of course non-constant (in the sense that the fibers of the CR submersion are not all the same) and this explains how it is possible that the monodromy is not a biholomorphism of any fiber (cf. [M-V]). This is indeed an example of a non-versal Kuranishi family.
Observe that we are in the special case where the dimension of K_{c_0} is one more than the dimension of the Kuranishi space it is constructed with. This extra-dimension comes from the fact that we need X_0 to be represented by a path and not a loop in K_{c_0}. Without this trick, one should take as K_{c_0} the quotient of \mathbb{D}_ω by the action generated by ω; but we should then consider K_{c_0} as an orbifold.

More generally, if we take as X_0 a CR bundle with fiber X_0 a compact complex 2-torus and monodromy an automorphism of X_0 non-isotopic to the identity and non-periodic (such pairs exist, see [G-V]), the same construction yields as K_{c_0} the product of the Kuranishi space K_0 of X_0, an open set of \mathbb{C}^4, with an annulus. Forgetting the extra-dimension, one should take the quotient of K_0 by the action generated by this automorphism; but we should then consider a non-Hausdorff space. Once again, our Kuranishi space is not versal.

On the contrary, when the monodromy of the fiber X_0 is not isotopic to the identity but extends as an automorphism of any manifold in the Kuranishi space K_0 of X_0, we may take K_0 as K_{c_0} and gain one dimension with respect to our construction. However, with this “reduced” K_{c_0}, there is no equivalent to Theorem 3, because the space \mathcal{K}^g of (69) is not complete. There is no hope to obtain a non-trivial CR bundle as pull-back by a constant map.

Hence, we see that in all these examples, our space K_{c_0} is not versal but it is minimal with respect to properties of Theorems 2 and 3.

4. Hopf surfaces.

Consider the quotient of

$$\mathbb{C}^2 \setminus \{(0,0)\} \times S^1$$

by the action generated by the map

$$(z, w, t) \mapsto (2z + a(t)w^2, (2 + b(t))w, t)$$

where a and b are two smooth functions from $S^1 \subset \mathbb{C}$ into $\mathbb{R}_{\geq 0}$ satisfying

$$a(-1) = a(1) = 0 \quad \text{and} \quad a(t) > 0 \text{ for } t \neq -1, 1$$

and

$$b(1) = 0, \quad b(-1) = 2 \quad \text{and} \quad 0 < b(t) < 2 \text{ for } t \neq -1, 1.$$

This defines a smoothly trivial CR submersion X_0 over the circle with fibers (primary) Hopf surfaces. As usual, we denote by X_t the fiber over t.

The following facts are well-known (cf. [Da] or [We]).

(i) The Hopf surface X_1 is the quotient of $\mathbb{C}^2 \setminus \{(0,0)\}$ by the linear action generated by the matrix $2Id$. Its Kuranishi space is smooth of dimension four and a Kuranishi domain can be identified with an open neighborhood V of $2Id$ in $GL_2(\mathbb{C})$ under the correspondence

$$A \in V \mapsto X_A := (\mathbb{C}^2 \setminus \{(0,0)\}) / \langle A \rangle.$$
(ii) The Hopf surface X_{-1} is the quotient of the quotient of $\mathbb{C}^2 \setminus \{(0,0)\}$ by the linear action generated by the diagonal matrix with eigenvalues 2 and 4. Because 4 is the square of 2, we are in a resonant case and its Kuranishi space is a bit different from the previous one. It is smooth of dimension three and a Kuranishi domain can be identified with an open neighborhood W of $(2, 4, 0)$ in \mathbb{C}^3 under the correspondence

$$\alpha, \beta, s \in W \mapsto X_{(\alpha, \beta, s)} := (\mathbb{C}^2 \setminus \{(0,0)\}) / \langle (z, w) \mapsto (\alpha z + sw^2, \beta w) \rangle.$$

(iii) For $t \neq -1, 1$, the Hopf surface X_t is biholomorphic to the linear Hopf surface defined by the matrix

$$A_\lambda(t) = \begin{pmatrix} 2 & \lambda \\ 0 & 2 + b(t) \end{pmatrix}$$

for any choice of $\lambda \in \mathbb{C}$. Its Kuranishi space is smooth of dimension two and a Kuranishi domain can be identified with an open neighborhood W of $(2, 2 + b(t), a(t), 0)$ in \mathbb{C}^4 under the correspondence

$$t \in S^1 \cap \{\Re t \geq 0\} \mapsto c^+(t) := (2, 2 + b(t), a(t)) \in \mathbb{C}^4.$$

Let $\| - \|$ be the standard euclidian norm on \mathbb{C}^4. It induces a norm on $V \subset GL_2(\mathbb{C})$ by identifying $GL_2(\mathbb{C})$ to an open set of \mathbb{C}^4. Let ϵ be a positive real number and define

$$V = \{A \in GL_2(\mathbb{C}) \mid \| A - c^+(t) \| < \epsilon \text{ for some } t \in S^1 \cap \{\Re t \geq 0\} \}.$$

Symmetrically, consider the closed path

$$t \in S^1 \cap \{\Re t \leq 0\} \mapsto c^-(t) := (2, 2 + b(t), a(t), 0) \in \mathbb{C}^4.$$

Define

$$W = \{A \in \mathbb{C}^4 \mid \| A - c^-(t) \| < \epsilon \text{ for some } t \in S^1 \cap \{\Re t \leq 0\} \}.$$

Assume that ϵ is small enough so that

(i) The open sets V and W are Kuranishi domains.

(ii) The subset

$$V_0 = \{A \in GL_2(\mathbb{C}) \mid \| A - c^+(t) \| < \epsilon \text{ for } t = \pm i \} \subset V.$$
has two connected components and any point $A = (A_{ij})_{i,j=1,2}$ of V_0 satisfies

\begin{equation}
0 < |\lambda_1(A)| < |\lambda_2(A)| < 4 \quad \text{and} \quad |A_{21}| > 0
\end{equation}

where $\lambda_1(A)$ (respectively $\lambda_2(A)$) is the smallest (respectively biggest) eigenvalue of A.

(iii) The subset

$$W_0 = \{ A \in \mathbb{C}^4 \mid \|A - c^{-}(t)\| < \epsilon \quad \text{for} \quad t = \pm i \} \subset W$$

has two connected component and any point $A = (A_i)_{i=1,\ldots,4}$ of W_0 satisfies

\begin{equation}
0 < |A_1| < |A_2| < 4 \quad \text{and} \quad |A_3| > 0.
\end{equation}

Then, because of (101) and (100), the map

\begin{equation}
A \in V_0 \mapsto (\lambda_1(A), \lambda_2(A), A_{21}, A_{12}) \in W_0
\end{equation}

is a biholomorphism. Because of the facts recalled above, (102) is an a.c. isomorphism. Gluing V to W through (102) gives the analytic space K_{c_0} we are looking for. Here it is smooth of dimension four and it has the homotopy type of a circle. The paths (98) and (96) glue together to give the path c_0.

According to Theorem 4, the associated space K^g is not versal at c_0. This is easy to see in this case. Modifying the path (98) by replacing the zero fourth coordinate with any bump function (small enough in modulus) gives a path encoding X_0 although it is different from c_0.

Moreover, taking a bump function depending on a smooth parameter and performing the same construction, one obtains a trivial deformation of X_0 over the interval with injective image in K^g. This contradicts versality.
MODULI SPACES FOR CR SUBMERSIONS

REFERENCES

[Bu] T. Burel, Déformations de feuilletages à feuilles complexes, Thèse de doctorat, Institut de Mathématiques de Bourgogne, Dijon, 2011.

[Da] K. Dabrowski, Moduli spaces for Hopf surfaces, Math. Ann. 259 (1982), 201–225.

[Do1] A. Douady, Le problème des modules pour les variétés analytiques complexes, Sém. Bourbaki 277 (1964/65).

[Do2] A. Douady, Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné, Ann. Inst. Fourier 16 (1966), 1–95.

[EK-S] A. El Kacimi, J. Slimène, Cohomologie de Dolbeault le long des feuilles de certains feuilletages complexes, Ann. Inst. Fourier 60 (2010), 727–757.

[F-K] O. Forster, K. Knorr, Relativ-analytische Räume und die Kohärentz von Bildgärben, Invent. Math. 16 (1972), 113-160.

[G-V] E. Ghys, A. Verjovsky, Locally free holomorphic actions of the complex affine group, Geometric study of foliations (Tokyo, 1993), World Sci. Publ., River Edge, NJ, 1994, pp. 201–217.

[G-H-S] J. Girbau, A. Haefliger, D. Sundararaman, On deformations of transversely holomorphic foliations, J. Reine Angew. Math. 345 (1983), 122–147.

[Ko] K. Kodaira, Complex manifolds and deformation of complex structures, Classics in Mathematics, Springer, Berlin, 2005.

[K-S1] K. Kodaira, D.C. Spencer, On deformations of complex analytic structures I, Ann. of Math. 67 (1958), 328–402.

[K-S2] K. Kodaira, D.C. Spencer, On deformations of complex analytic structures II, Ann. of Math. 67 (1958), 403–466.

[Ku1] M. Kuranishi, On locally complete families of complex analytic structures, Ann. of Math. 75 (1962), 536–577.

[Ku2] M. Kuranishi, New Proof for the Existence of Locally Complete Families of Complex Structures, Proc. Conf. Complex Analysis (Minneapolis, 1964), Springer, Berlin, 1965, pp. 142–154.

[Ku3] M. Kuranishi, Deformations of Compact Complex Manifolds, Les presses de l’université de Montréal, Montréal, 1971.

[Me1] L. Meersseman, Foliated structure of the Kuranishi space and isomorphisms of deformation families of compact complex manifolds, Ann. Sci. Éc. Norm. Supér. 44 (2011), 495-525.

[Me2] L. Meersseman, Feuilletages par variétés complexes et problèmes d’uniformisation, Panoramas & Synthèses (to appear).

[M-V] L. Meersseman, A. Verjovsky, On the moduli space of certain smooth codimension-one foliations of the 5-sphere, J. Reine Angew. Math. 632 (2009), 143–202.

[N-N] A. Newlander, L. Nirenberg, Complex analytic coordinates in almost complex manifolds, Ann. of Math. 65 (1957), 391-404.

[Sl] J. Slimène, Deux exemples de calcul explicite de cohomologie de Dolbeault feuilletée, Proyecciones 27 (2008), 63–80.

[Sc] M. Schneider, Halbstetigkeitssätze für relativ analytische Räume, Invent. Math. 16 (1972), 161-176.

[Su] D. Sundararaman, Moduli, deformations and classifications of compact complex manifolds, Research Notes in Mathematics, vol. 45, Pitman, Boston, Mass.-London, 1980.

[Wa1] J.J. Wavrik, Obstructions to the existence of a space of moduli, Global Analysis, Papers in honor of K. Kodaira, Princeton University Press, Princeton, 1969, pp. 403–414.

[Wa2] J.J. Wavrik, Deforming cohomology classes, Trans. Amer. Math. Soc. 181 (1973), 341–350.

[We] J. Wehler, Versal deformation of Hopf surfaces, J. Reine Angew. Math. 328 (1981), 22-32.

LAURENT MEERSSEMAN, INSTITUT DE MATHEMATIQUES DE BOURGOGNE, B.P. 47870, 21078 DIJON CEDEX, FRANCE

Current address: Laurent Meersseman, Centre de Recerca Matemàtica, 08193 Bellaterra, Spain

E-mail address: laurent.meersseman@u-bourgogne.fr and lmeersseman@crm.cat