FACTORY THREEFOLD HYPERSURFACES

IVAN CHELTSOV

Abstract. Let X be a hypersurface in \mathbb{P}^4 of degree d that has at most isolated ordinary double points. We prove that X is factorial in the case when X has at most $(d - 1)^2 - 1$ singular points.

1. Introduction

The Cayley–Bacharach theorem (see [7], [10]), in its classical form, may be seen as a result about the number of independent linear conditions imposed on forms of a given degree by a certain finite subset of \mathbb{P}^n. The purpose of this paper is to prove the following result.

Theorem 1.1. Let Σ be a finite subset in \mathbb{P}^n, and let μ be a natural number such that

- the inequalities $\mu \geq 2$ and $|\Sigma| \leq \mu^2 - 1$ hold,
- at most μk points in the set Σ lie on a curve in \mathbb{P}^n of degree $k = 1, \ldots, \mu - 1$, where $n \geq 2$. Then Σ imposes independent linear conditions on forms of degree $2\mu - 3$.

Let X be a hypersurface in \mathbb{P}^4 of degree $d \geq 3$ such that the threefold X has at most isolated ordinary double points. Then X can be given by the equation

$$f(x, y, z, t, u) = 0 \subset \mathbb{P}^4 \cong \text{Proj} \left(\mathbb{C} [x, y, z, t, u] \right),$$

where $f(x, y, z, t, u)$ is a homogeneous polynomial of degree d.

Remark 1.2. It follows from [12] and [9] that the following conditions are equivalent:

- every Weil divisor on the threefold X is a Cartier divisor;
- every surface $S \subset X$ is cut out on X by a hypersurface in \mathbb{P}^4;
- the ring

$$\mathbb{C} [x, y, z, t, u] / \langle f(x, y, z, t, u) \rangle$$

is a unique factorization domain;
- the set $\text{Sing}(X)$ imposes independent linear conditions on forms of degree $2d - 5$.

We say that X is factorial if every Weil divisor on X is a Cartier divisor.

Example 1.3. Suppose that X is given by

$$xg(x, y, z, t, u) + yh(x, y, z, t, u) = 0 \subset \mathbb{P}^4 \cong \text{Proj} \left(\mathbb{C} [x, y, z, t, u] \right),$$

where g and h are general homogeneous polynomials of degree $d - 1$. Then

- the threefold X has at most isolated ordinary double points,
- the equality $|\text{Sing}(X)| = (d - 1)^2$ holds, but X is not factorial.

The assertion of Theorem 1.1 implies the following result (cf. [6], [2], [4]).

Theorem 1.4. Suppose that $|\text{Sing}(X)| < (d - 1)^2$. Then X is factorial.

Proof. The set $\text{Sing}(X)$ is a set-theoretic intersection of hypersurfaces of degree $d - 1$. Then

- the inequalities $d - 1 \geq 2$ and $|\text{Sing}(X)| \leq (d - 1)^2 - 1$ hold.

We assume that all varieties are projective, normal, and defined over \mathbb{C}.

• at most \((n-1)k\) points in the set \(\operatorname{Sing}(X)\) lie on a curve in \(\mathbb{P}^4\) of degree \(k = 1, \ldots, n-2\), which immediately implies that the points of the set \(\operatorname{Sing}(X)\) imposes independent linear conditions on forms of degree \(2d - 5\) by Theorem 1.1. Thus, the threefold \(X\) is factorial.

The assertion of Theorem 1.4 is proved in [3] and [5] in the case when \(d \leq 7\).

Remark 1.5. Suppose that \(d = 4\) and \(X\) is factorial. Then it follows from [13] that

- the threefold \(X\) is non-rational,
- the threefold \(X\) is not birational to a conic bundle,
- the threefold \(X\) is not birational to a fibration into rational surfaces,

but general determinantal quartic hypersurfaces in \(\mathbb{P}^4\) are rational.

The author thanks J. Park, Yu. Prokhorov, V. Shokurov, K. Shramov for useful comments.

2. **The Proof**

Let \(\Sigma\) be a finite subset in \(\mathbb{P}^n\), and let \(\mu\) be a natural number such that

- the inequalities \(\mu \geq 2\) and \(|\Sigma| \leq \mu^2 - 1\) hold,
- at most \(\mu k\) points in the set \(\Sigma\) lie on a curve in \(\mathbb{P}^n\) of degree \(k = 1, \ldots, \mu - 1\),

where \(n \geq 2\). Suppose that \(\Sigma\) imposes dependent linear conditions on forms of degree \(2\mu - 3\).

Remark 2.1. The inequality \(\mu \geq 3\) holds.

The following result is proved in [1] and [8].

Theorem 2.2. Let \(P_1, \ldots, P_\delta \in \mathbb{P}^2\) be distinct points such that

- at most \(k(\xi + 3 - k) - 2\) points in \(\{P_1, \ldots, P_\delta\}\) lie on a curve of degree \(k \leq (\xi + 3)/2\),
- the inequality

\[
\delta \leq \max \left\{ \left\lfloor \frac{\xi + 3}{2} \right\rfloor \left(\xi + 3 - \left\lfloor \frac{\xi + 3}{2} \right\rfloor \right) - 1, \left\lfloor \frac{\xi + 3}{2} \right\rfloor^2 \right\}
\]

holds, where \(\xi\) is a natural number such that \(\xi \geq 3\),

and let \(\pi: Y \to \mathbb{P}^2\) be a blow up of the points \(P_1, \ldots, P_\delta\). Then the linear system

\[
\left| \pi^* \left(\mathcal{O}_{\mathbb{P}^2}(\xi) \right) - \sum_{i=1}^\delta E_i \right|
\]

does not have base points, where \(E_i\) is the \(\pi\)-exceptional divisor such that \(\pi(E_i) = P_i\).

There is a point \(P \in \Sigma\) such that every hypersurface\(^1\) in \(\mathbb{P}^n\) of degree \(2\mu - 3\) that contains the set \(\Sigma \setminus P\) must contain the point \(P \in \Sigma\). Let us derive a contradiction.

Lemma 2.3. The inequality \(n \neq 2\) holds.

Proof. Suppose that \(n = 2\). Let us prove that at most \(k(2\mu - k) - 2\) points in \(\Sigma \setminus P\) can lie on a curve of degree \(k \leq \mu\). It is enough to show that

\[
k(2\mu - k) - 2 \geq k\mu
\]

for every \(k \leq \mu\). We must prove this only for \(k \geq 1\) such that

\[
k(2\mu - k) - 2 < |\Sigma \setminus P| \leq \mu^2 - 2,
\]

because otherwise the condition that at most \(k(2\mu - k) - 2\) points in the set \(\Sigma \setminus P\) can lie on a curve of degree \(k\) is vacuous. Therefore, we may assume that \(k < \mu\).

\(^1\)For simplicity we consider homogeneous forms on \(\mathbb{P}^n\) as hypersurfaces.
We may assume that $k \neq 1$, because at most $\mu \leq 2\mu k - 3$ points of $\Sigma \setminus P$ lie on a line. Then

$$k(2\mu - k) - 2 \geq k\mu \iff \mu > k,$$

which implies that at most $k(2\mu - k) - 2$ points in $\Sigma \setminus P$ can lie on a curve in \mathbb{P}^2 of degree $k \leq \mu$.

Thus, it follows from Theorem 2.2 that there is a curve of degree $2\mu - 3$ that contains all points of the set $\Sigma \setminus P$ and does not contain the point $P \in \Sigma$, which is a contradiction. □

Moreover, we may assume that $n = 3$ due to the following result.

Lemma 2.4. Let $\Lambda \subseteq \Sigma$ be a subset, let $\psi: \mathbb{P}^n \dashrightarrow \mathbb{P}^m$ be a general linear projection, and let

$$\mathcal{M} \subseteq \mathcal{O}_{\mathbb{P}^n}(k)$$

be a linear subsystem that contains all hypersurfaces that pass through Λ. Suppose that

- the inequality $|\Lambda| \geq \mu k + 1$ holds,
- the set $\psi(\Lambda)$ is contained in an irreducible reduced curve of degree k,

where $n > m \geq 2$. Then \mathcal{M} has no base curves, and either $m = 2$, or $k > \mu$.

Proof. We may assume that there are linear subspaces Ω and $\Pi \subseteq \mathbb{P}^n$ such that

$$\psi: \mathbb{P}^n \dashrightarrow \Pi \cong \mathbb{P}^m$$

is a projection from Ω, where $\dim(\Omega) = n - m - 1$ and $\dim(\Pi) = m$.

Suppose that there is an irreducible curve $Z \subset \mathbb{P}^n$ such that Z is contained in the base locus of the linear system \mathcal{M}. Put $\Xi = Z \cap \Lambda$. We may assume that $\psi|_Z$ is a birational morphism, and

$$\psi(Z) \cap \psi(\Lambda \setminus \Xi) = \emptyset,$$

because the projection ψ is general. Then $\deg(\psi(Z)) = \deg(Z)$.

Let $C \subset \Pi$ be an irreducible curve of degree k that contains $\psi(\Lambda)$, and let $W \subset \mathbb{P}^n$ be the cone over the curve C whose vertex is Ω. Then $W \in \mathcal{M}$, which implies that $Z \subseteq W$. We have

$$\psi(Z) = C,$$

which immediately implies that $\Xi = \Lambda$ and $\deg(Z) = k$. But $|Z \cap \Sigma| \leq \mu k$, which is a contradiction. Therefore, the linear system \mathcal{M} does not have base curves.

Now we suppose that $m \geq 3$ and $k \leq \mu$. Let us show that this assumption leads to a contradiction. Without loss of generality, we may assume that $m = 3$ and $n = 4$.

Let \mathcal{Y} be the set of all irreducible reduced surfaces in \mathbb{P}^4 of degree k that contains the set Λ, and let \mathcal{Y} be a subset of \mathbb{P}^4 that consists of all points that are contained in every surface of the set \mathcal{Y}. Then $\Lambda \subseteq \mathcal{Y}$. Arguing as above, we see that \mathcal{Y} is a finite set.

Let \mathcal{S} be the set of all surfaces in \mathbb{P}^3 of degree k such that

$$S \in \mathcal{S} \iff \exists Y \in \mathcal{Y} \text{ such that } \psi(Y) = S \text{ and } \psi|_Y \text{ is a birational morphism},$$

and let $\Psi \subset \mathbb{P}^3$ that consists of all points contained in every surface in \mathcal{S}. Then $\mathcal{S} \neq \emptyset$ and

$$\psi(\Lambda) \subseteq \psi(\mathcal{Y}) \subseteq \Psi.$$

For every point $O \in \Pi \setminus \Psi$ and for a general surface $Y \in \mathcal{Y}$, we may assume that the line passing through O and Ω does not intersect Y. But $\psi|_Y$ is a birational morphism. Then

$$\psi(\mathcal{Y}) = \Psi,$$

and $\psi(\Lambda) \subseteq \Psi$ contains at least $\mu k + 1 \geq k^2 + 1$ points that are contained in a curve of degree k, which is impossible, because Ψ is a set-theoretic intersection of surfaces of degree k. □

Fix a sufficiently general hyperplane $\Pi \subset \mathbb{P}^3$. Let

$$\psi: \mathbb{P}^3 \dashrightarrow \Pi \cong \mathbb{P}^2$$

be a projection from a sufficiently general point $O \in \mathbb{P}^3$. Put $\Sigma' = \psi(\Sigma)$ and $P' = \psi(P)$.
Lemma 2.5. There is a curve $C \subset \Pi$ of degree $k \leq \mu - 1$ such that $|C \cap \Sigma'| \geq \mu k + 1$.

Proof. We suppose that at most μk points of the set Σ' are contained in a curve in Π of degree k for every $k \leq \mu - 1$. Then arguing as in the proof of Lemma 2.3 we obtain a curve $Z \subset \Pi \cong \mathbb{P}^2$ of degree $2\mu - 3$ that contains the set $\Sigma' \setminus P'$ and does not pass through the point P'.

Let Y be the cone in \mathbb{P}^3 over the curve Z whose vertex is the point O. Then Y is a surface of degree $2\mu - 3$ that contains all points of the set $\Sigma \setminus P$ but does not contain the point $P \in \Sigma$. □

It immediately follows from Lemma 2.4 that $k \geq 2$.

Lemma 2.6. Suppose that $|C \cap \Sigma'| \geq 9$. Then $k \geq 3$.

Proof. Suppose that $k = 2$. Let $\Phi \subseteq \Sigma$ be a subset such that $|\Phi| \geq 9$, but $\psi(\Phi)$ is contained in the conic $C \subset \Pi$. Then the conic C is irreducible by Lemma 2.4.

Let D be a linear system of quadric hypersurfaces in \mathbb{P}^3 containing Φ. Then D does not have base curves by Lemma 2.4. Let W be a cone in \mathbb{P}^3 over C with the vertex Ω. Then

$$8 = D_1 \cdot D_2 \cdot W \geq \sum_{\omega \in \Phi} \text{mult}_\omega(D_1)\text{mult}_\omega(D_2) \geq |\Phi| \geq 9,$$

where D_1 and D_2 are general divisors in the linear system D. □

We may assume that k is the smallest natural number such that at least $\mu k + 1$ points in Σ' lie on a curve of degree k. Then there is a non-empty disjoint union

$$\bigcup_{j=k}^l \bigcup_{i=1}^{c_j} \Lambda^i_j \subset \Sigma$$

such that $|\Lambda^i_j| \geq \mu j + 1$, all points of the the set $\psi(\Lambda^i_j)$ are contained in an irreducible reduced curve of degree j, and at most $\mu \zeta$ points of the subset

$$\psi \left(\Sigma \setminus \left(\bigcup_{j=k}^l \bigcup_{i=1}^{c_j} \Lambda^i_j \right) \right) \subset \Sigma' \subset \Pi \cong \mathbb{P}^2$$

lie on a curve in Π of degree ζ for every natural number ζ. Put

$$\Lambda = \bigcup_{j=k}^l \bigcup_{i=1}^{c_j} \Lambda^i_j.$$

Let Ξ^i_j be the base locus of the linear subsystem in $|\mathcal{O}_{\mathbb{P}^3}(j)|$ that contains all surfaces passing through the set Λ^i_j. Then Ξ^i_j is a finite set by Lemma 2.3, and

$$|\Sigma \setminus \Lambda| \leq \mu \left(\mu - \sum_{i=k}^l c_i \mu i \right) - 2. \quad (2.7)$$

Corollary 2.8. The inequality $\sum_{i=k}^l ic_i \leq \mu - 1$ holds.

Put $\Delta = \Sigma \cap \left(\bigcup_{j=k}^l \bigcup_{i=1}^{c_j} \Xi^i_j \right)$. Then $\Lambda \subseteq \Delta \subseteq \Sigma$.

Lemma 2.9. The set Δ impose independent linear conditions on forms of degree $2\mu - 3$.

Proof. Let us consider the subset $\Delta \subset \mathbb{P}^3$ as a closed subscheme of \mathbb{P}^3, and let \mathcal{I}_Δ be the ideal sheaf of the subscheme Δ. Then there is an exact sequence

$$0 \to \mathcal{I}_\Delta \otimes \mathcal{O}_{\mathbb{P}^3}(2\mu - 3) \to \mathcal{O}_{\mathbb{P}^3}(2\mu - 3) \to \mathcal{O}_\Delta \to 0,$$
which implies that Δ imposes independent conditions on forms of degree $2\mu - 3$ if and only if

$$h^1(\mathcal{I}_\Delta \otimes \mathcal{O}_{\mathbb{P}^3}(2\mu - 3)) = 0.$$

Suppose $h^1(\mathcal{I}_\Delta \otimes \mathcal{O}_{\mathbb{P}^3}(2\mu - 3)) \neq 1$. Let us show that this assumption leads to a contradiction.

Let \mathcal{M} be a linear subsystem in $|\mathcal{O}_{\mathbb{P}^3}(\mu - 1)|$ that contains all surfaces that pass through all point of the set Δ. Then the base locus of \mathcal{M} is zero-dimensional, because $\sum_{i=k}^{l} ic_i \leq \mu - 1$ and

$$\Delta \subseteq \bigcup_{j=k}^{l} \bigcup_{i=1}^{c_j} \Xi_j,$$

but Ξ_j is a zero-dimensional base locus of a linear subsystem in $|\mathcal{O}_{\mathbb{P}^3}(j)|$. Put

$$\Gamma = M_1 \cdot M_2 \cdot M_3,$$

where M_1, M_2, M_3 are general surfaces in the linear system \mathcal{M}. Then Γ is a zero-dimensional subscheme of \mathbb{P}^3, and Δ is a closed subscheme of the scheme Γ.

Let Υ be a closed subscheme of the scheme Γ such that

$$\mathcal{I}_\Upsilon = \text{Ann}(\mathcal{I}_\Delta / \mathcal{I}_\Gamma),$$

where \mathcal{I}_Υ and \mathcal{I}_Γ are the ideal sheaves of the subschemes Υ and Γ, respectively. Then

$$0 \neq h^1(\mathcal{O}_{\mathbb{P}^3}(2\mu - 3) \otimes \mathcal{I}_\Delta) = h^0(\mathcal{O}_{\mathbb{P}^3}(\mu - 4) \otimes \mathcal{I}_\Upsilon) - h^0(\mathcal{O}_{\mathbb{P}^3}(\mu - 4) \otimes \mathcal{I}_\Gamma)$$

by Theorem 3 in [7] (see also [10]). Thus, there is a surface $F \in |\mathcal{O}_{\mathbb{P}^3}(\mu - 4) \otimes \mathcal{I}_\Upsilon|$. Then

$$(\mu - 4)(\mu - 1)^2 = F \cdot M_1 \cdot M_2 \geq h^0(\mathcal{O}_\Upsilon) = h^0(\mathcal{O}_\Gamma) - h^0(\mathcal{O}_\Delta) = (\mu - 1)^3 - |\Delta|,$$

which implies that $|\Delta| \geq 3(\mu - 1)^2$. But $|\Delta| < |\Sigma| < \mu^2$, which is impossible, because $\mu \geq 3$. \hfill \Box

We see that $\Delta \subsetneq \Sigma$. Put $\Gamma = \Sigma \setminus \Delta$ and $d = 2\mu - 3 - \sum_{i=k}^{l} ic_i$.

Lemma 2.10. The set Δ imposes dependent linear conditions on forms of degree d.

Proof. Suppose that the points of the set Δ impose independent linear conditions on homogeneous polynomials of degree d. Let us show that this assumption leads to a contradiction.

The construction of Δ implies the existence of a homogeneous form H of degree $\sum_{i=k}^{l} ic_i$ that vanishes at all points of the set Δ and does not vanish at any point of the set Γ.

Suppose that $P \in \Delta$. Then there is a homogenous form F of degree $2\mu - 3$ that vanishes at every point of the set $\Delta \setminus P$ and does not vanish at the point P by Lemma 2.9. Put

$$\Gamma = \{Q_1, \ldots, Q_\gamma\},$$

where Q_i is a point in Γ. Then there is a homogeneous form G_i of degree d that vanishes at every point in $\Gamma \setminus Q_i$ and does not vanish at the point Q_i. Then

$$F(Q_i) + \mu_i H G_i(Q_i) = 0$$

for some $\mu_i \in \mathbb{C}$, because $G_i(Q_i) \neq 0$. Then the homogenous form

$$F + \sum_{i=1}^{\gamma} \mu_i H G_i$$

vanishes on the set $\Sigma \setminus P$ and does not vanish at the point P, which is a contradiction.

We see that $P \in \Gamma$. Then there is a homogeneous form G of degree d that vanishes at every point in $\Gamma \setminus P$ and does not vanish at P. Then HG vanishes at every point of the set $\Sigma \setminus P$ and does not vanish at the point P, which is a contradiction. \hfill \Box

Put $\Gamma' = \psi(\Gamma)$. Let us check that Γ' and d satisfy the hypotheses of Theorem 2.2
Lemma 2.11. The inequality \(d \geq 3 \) holds.

Proof. Suppose that \(d \leq 2 \). It follows from Corollary 2.8 that

\[
2 \geq d = 2\mu - 3 - \sum_{i=k}^{l} ic_i \geq \mu - 2 \geq 1,
\]

but \(\mu \neq 3 \) by Lemma 2.10, because \(|\Gamma| \leq |\Sigma \setminus \Lambda| \leq \mu(\mu - \sum_{i=k}^{l} c_i) - 2 \).

Thus, we see that \(\mu = 4 \). Then \(k = 3 \) by Lemma 2.6, which implies that

\[
|\Gamma| \leq |\Sigma \setminus \Lambda| \leq 14 - 4 \sum_{i=k}^{l} c_i \leq 2,
\]

which is impossible by Lemma 2.10, because \(d \geq 1 \).

It follows from the inequality 2.7 that \(|\Gamma'| = |\Gamma| \leq |\Sigma \setminus \Lambda| \leq \mu(\mu - \sum_{i=k}^{l} c_i) - 2 \). Then

\[
|\Gamma'| \leq \mu \left(\mu - \sum_{i=k}^{l} c_i \right) - 2 \leq \max \left\{ \left\lfloor \frac{d+3}{2} \right\rfloor \left(d + 3 - \left\lfloor \frac{d+3}{2} \right\rfloor \right) - 1, \left\lfloor \frac{d+3}{2} \right\rfloor^2 \right\},
\]

because \(d = 2\mu - 3 - \sum_{i=k}^{l} c_i \) and \(\mu \geq 3 \).

Lemma 2.12. At most \(d \) points of the set \(\Gamma \) is contained in a line.

Proof. Suppose that at least \(d + 1 \) points of the set \(\Gamma \) is contained in some line. Then

\[
\mu \geq d + 1 = 2\mu - 2 - \sum_{i=k}^{l} c_i,
\]

because at most \(\mu \) points of \(\Gamma \) is contained in a line. It follows from Corollary 2.8 that

\[
\mu - 1 \geq \sum_{i=k}^{l} c_i \geq \mu - 2.
\]

Suppose that \(\sum_{i=k}^{l} c_i = \mu - 2 \). Then \(|\Gamma| \leq 2\mu - 2 \). So, the set \(\Gamma \) imposes independent linear conditions on forms of degree \(d = \mu - 1 \) by Theorem 2 in [11], which is impossible by Lemma 2.10.

We see that \(\sum_{i=k}^{l} c_i = \mu - 1 \). Then \(|\Gamma| \leq \mu - 2 = d \), which is impossible by Lemma 2.10. Therefore, at most \(d \) points of the set \(\Gamma' \) lies on a line by Lemmas 2.12 and 2.4.

Lemma 2.13. For every \(t \leq (d + 3)/2 \), at most

\[
t(d + 3 - t) - 2
\]

points of the set \(\Gamma' \) lie on a curve of degree \(t \) in \(\Pi \cong \mathbb{P}^2 \).

Proof. At most \(\mu t \) points of the set \(\Gamma' \) lie on a curve of degree \(t \). It is enough to show that

\[
t(d + 3 - t) - 2 \geq \mu t
\]

for every \(t \leq (d + 3)/2 \) such that \(t > 1 \) and \(t(d + 3 - t) - 2 < |\Gamma'| \). But

\[
t(d + 3 - t) - 2 \geq t\mu \iff \mu - \sum_{i=k}^{l} c_i > t,
\]

because \(t > 1 \). Thus, we may assume that \(t(d + 3 - t) - 2 < |\Gamma'| \) and

\[
\mu - \sum_{i=k}^{l} c_i \leq t \leq \frac{d + 3}{2}.
\]
Let \(g(x) = x(d+3-x) - 2 \). Then

\[
g(t) \geq g\left(\mu - \sum_{i=k}^{l} c_i \right),
\]

because \(g(x) \) is increasing for \(x < (d+3)/2 \). Therefore, we have

\[
\mu \left(\mu - \sum_{i=k}^{l} ic_i \right) - 2 \geq |\Gamma' | > g(t) \geq g\left(\mu - \sum_{i=k}^{l} c_i \right) = \mu \left(\mu - \sum_{i=k}^{l} c_i \right) - 2,
\]

which is a contradiction. □

Thus, the set \(\Gamma' \) imposes independent linear conditions on forms of degree \(d \) by Theorem 2.2, which implies that the set \(\Gamma \) also imposes independent linear conditions on forms of degree \(d \), which is impossible by Lemma 2.10. The assertion of Theorem 1.1 is proved.

References

[1] E. Bese, *On the spannedness and very ampleness of certain line bundles on the blow-ups of \(\mathbb{P}^2 \) and \(\mathbb{P}^3 \)*, Mathematische Annalen 262 (1983), 225–238

[2] I. Cheltsov, *On factoriality of nodal threefolds*, Journal of Algebraic Geometry 14 (2005), 663–690

[3] I. Cheltsov, *Non-rational nodal quartic threefolds*, Pacific Journal of Mathematics 226 (2006), 65–82

[4] I. Cheltsov, *Points in projective spaces and application*, Journal of Differential Geometry, to appear

[5] I. Cheltsov, J. Park, *Factorial hypersurfaces in \(\mathbb{P}^4 \) with nodes*, Geometriae Dedicata 121 (2006), 205–219

[6] C. Ciliberto, V. Di Gennaro, *Factoriality of certain hypersurfaces of \(\mathbb{P}^4 \) with ordinary double points*, Encyclopaedea of Mathematical Sciences 132 (2004), 1–9

[7] E. Davis, A. Geramita, F. Orecchia, *Gorenstein algebras and the Cayley–Bacharach theorem*, Proceedings of the American Mathematical Society 93 (1985), 593–597

[8] E. Davis, A. Geramita, *Birational morphisms to \(\mathbb{P}^2 \): an ideal-theoretic perspective*, Mathematische Annalen 279 (1988), 435–448

[9] A. Dimca, *Betti numbers of hypersurfaces and defects of linear systems*, Duke Mathematical Journal 60 (1990), 285–298

[10] D. Eisenbud, M. Green, J. Harris, *Cayley–Bacharach theorems and conjectures*, Bulletin of the American Mathematical Society 33 (1996), 295–324

[11] D. Eisenbud, J-H. Koh, *Remarks on points in a projective space*, MSRI Publications 15, Springer, New York, 157–172

[12] R. Hartshorne, *Ample subvarieties of algebraic varieties*, Lecture Notes in Mathematics 156, Springer–Verlag (1970)

[13] M. Mella, *Birational geometry of quartic 3-folds II: the importance of being \(\mathbb{Q} \)-factorial*, Mathematische Annalen 330 (2004), 107–126

School of Mathematics
University of Edinburgh
Edinburgh EH9 3JZ, UK

I.Cheltsov@ed.ac.uk