Cigarette smoking is a risk factor for type 2 diabetes. Genetic variants in the nicotinic acetylcholine receptor (nAChR) genes have been associated with smoking phenotypes and are likely to influence diabetes. Although each single variant may have only a minor effect, the joint contribution of multiple single nucleotide polymorphisms (SNPs) to the occurrence of disease may be larger.

In this study, we conducted a gene-family analysis to investigate the joint impact of 61 tag SNPs in 7 nAChRs genes on insulin resistance and type 2 diabetes in 3,665 American Indians recruited by the Strong Heart Family Study. Results show that although multiple SNPs showed marginal individual association with insulin resistance and type 2 diabetes, only a few can pass adjustment for multiple testing. However, a gene-family analysis considering the joint impact of all 61 SNPs reveals significant association of the nAChR gene family with both insulin resistance and type 2 diabetes (both \(P < 0.0001 \)), suggesting that genetic variants in the nAChR genes jointly contribute to insulin resistance and type 2 diabetes among American Indians. The effects of these genetic variants on insulin resistance and diabetes are independent of cigarette smoking per se. \(\text{Diabetes} \ 61:1888-1894, 2012 \)

Type 2 diabetes disproportionately affects American Indians. The prevalence of type 2 diabetes is, on average, two to four times higher than that in other ethnic groups (1). Although lifestyle and environmental risk factors are believed to be significant contributors to the etiology of diabetes, genetic predisposition also plays a critical role (2). Recent genome-wide association studies have identified multiple genetic variants, each of which explains only a small proportion of interindividual variability to diabetes risk (3). It is well accepted that the etiology of type 2 diabetes involves many genes, but a single gene does not cause disease individually; instead, multiple genes act jointly in the context of complex networks or biological pathways in leading to disease susceptibility and disease development (4). A pathway- or gene-family approach taking into account the joint effect of multiple genetic variants with marginal individual effect may capture a large proportion of the associated genetic variants and thus should have a higher power than single-gene analysis in dissecting the complex genetic etiology of diabetes.

American Indians have the highest prevalence of cigarette smoking of all U.S. ethnic groups (5). Previous research from experimental and human studies has demonstrated that cigarette smoking impairs insulin action (6), causes β-cell dysfunction, and induces insulin resistance (7), whereas smoking cessation improves insulin resistance (8) and reduces diabetes risk (9). Therefore, cigarette smoking is believed to be an important risk factor for type 2 diabetes (10). However, the association between cigarette smoking and type 2 diabetes reported in previous studies was primarily performed in European or African American populations. It is unclear whether this relationship also holds for American Indians.

Nicotine is the major bioactive component of cigarette smoke that leads to insulin resistance (11) and diabetes (12). Nicotine acts by binding to nicotinic acetylcholine receptors (nAChRs), a superfamily of ligand-gated ion channels that are widely present within neuronal and nonneuronal cell types (13). Evidence from human and animal research has documented that genetic polymorphisms in nAChRs are associated with nicotine dependence (14) and lung cancer (15). However, according to our knowledge, no study has yet investigated the potential effect of nAChRs genetic variants on diabetes risk. Moreover, existing studies focused on single-gene analysis, which is less powerful in detecting small genetic effect and cannot capture the joint contribution of multiple genes. In this study, we conduct a gene-family analysis to examine whether 61 tag single nucleotide polymorphisms (SNPs) in 7 nAChRs genes jointly contribute to the susceptibility for insulin resistance and type 2 diabetes in a large, well-characterized American Indian population.

RESEARCH DESIGN AND METHODS

Study population. The Strong Heart Family Study (SHFS) is a multicenter, family-based prospective study designed to identify genetic factors for cardiovascular disease, diabetes, and their risk factors in American Indians. A total of 3,665 tribal members (aged 18 years and older) from 94 multiplex families residing in Arizona (AZ), North and South Dakota (DK), and Oklahoma (OK) were recruited and examined between 2001 and 2003. Detailed descriptions of the SHFS protocols for the collection of phenotype data have been described previously (16). Briefly, a total of 94 families, including 76 three-generation families (26 from AZ, 28 from OK, and 22 from DK) and 18 two-generation families (5 from AZ, 8 from OK, and 5 from DK), were included in this analysis.

From the 1University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; the 2Texas Biomedical Research Institute, San Antonio, Texas; the 3Center for American Indian Health Research, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; the 4MedStar Health Research Institute, Hyattsville, Maryland; the Georgetown-Howard University Center for Clinical and Translational Sciences, Washington, District of Columbia; the 5Missouri Breaks Industries Research, Inc., Timber Lake, South Dakota; the 6New York Hospital-Cornell Medical Center, New York, New York; and the 7Black Hills Center for American Indian Health, Rapid City, South Dakota. Corresponding author: Jinying Zhao, jinying-zhao@ouhsc.edu. Received 6 October 2011 and accepted 29 February 2012. DOI: 10.2337/db11-1393

This article contains Supplementary Data online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db11-1393/-/DC1. © 2012 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
The largest family size is 113 individuals from DK, 61 from OK, and 80 from AZ, with an average family size of 38 (37 in AZ, 34 in OK, and 45 in DK). The largest sibling size is 9 in DK, 9 in OK, and 10 in AZ. All participants received a personal interview and a physical examination. The personal interview used a standard questionnaire and was administered by trained study personnel to collect data on demographic characteristics, medical history, and lifestyle risk factors including smoking, alcohol consumption, diet, and physical activity. The physical examination included anthropometric and blood pressure measurements and an examination of the heart and lungs. Fasting blood samples were collected to measure lipids and lipoproteins, insulin, plasma creatinine, plasma fibrinogen, and glycosylated hemoglobin, and a 75-g oral glucose tolerance test was performed as described previously (17). Laboratory methods were reported previously (16,18). The SHFS protocol was approved by the Institutional Review Boards from the Indian Health Service and the participating centers. All participants have given informed consent for genetic study of cardiovascular disease, diabetes, and associated risk factors.

Assessments of insulin resistance and diabetes. According to the 1997 American Diabetes Association criteria (19), diabetes was defined as fasting plasma glucose ≥7.0 mmol/L or post-75-g oral glucose challenge blood glucose of ≥11.1 mmol/L or receiving insulin or oral hypoglycemic treatment. Impaired fasting glucose was defined as a fasting glucose of 6.1–7.0 mmol/L. Fasting glucose <6.1 mmol/L was defined as normal. Insulin resistance was assessed using the homeostatic model assessment (HOMA) according to the following formula: $HOMA = (\mu g/mL/L) \times insulin (\mu U/mL)/405$.

Measurements of diabetes risk factors. Body weight (kg) and height (cm) were measured by trained research staff when participants wore light clothes and no shoes. BMI was calculated by dividing weight in kilograms by the square of the height in meters. Waist circumference was measured at the level midway between the lowest rib and the uppermost iliac crest with the subjects standing. Hip circumference was measured at the level of widest circumference over greater trochanters with the legs close together. Waist/hip ratio (WHR) was measured by trained research staff when participants wore light clothes and no shoes. BMI was calculated by dividing weight in kilograms by the square of the height in meters. Waist circumference was measured at the level midway between the lowest rib and the uppermost iliac crest with the subjects standing. Hip circumference was measured at the level of widest circumference over greater trochanters with the legs close together. Waist/hip ratio (WHR) was measured by trained research staff when participants wore light clothes and no shoes. BMI was calculated by dividing weight in kilograms by the square of the height in meters.

Tag SNPs selection and genotyping. Sixty-one tag SNPs in 7 nAChRs genes (CHRNA3–A6, CHRNA2–B4) from the nAChRs gene family were genotyped in 3,665 SHFS participants. These genes were consistently reported to be associated with cigarette smoking in previous studies. For tag SNP selection within each candidate gene, we used the computer program haplovief 4.2 (21) with an r² threshold of 0.80 for linkage disequilibrium (LD). The following criteria were also considered: minor allele frequency (>5%), SNP location (i.e., coding region), and Illumina design scores (quantifying how likely a SNP can be genotyped). SNPs that could not be tagged (i.e., singletons) were included as long as their design score was >0.15. All genotyping was done at the Texas Biomedical Research Institute using the Illumina VeraCode technology (Illumina, Inc., San Diego, CA). The average genotyping call rates were 98% for the 61 tag SNPs, and sample success rate was >96.6%.

Statistical analysis

Single SNP association analysis. We examined the association of each individual SNP with insulin resistance or type 2 diabetes, separately, using the generalized estimating equation (GEE). The relatedness among family members of the study participants was accounted for using GEE by including family identifier as a clustering variable. The model also controlled for other covariates, including age, sex, WHR, smoking status (former versus current versus never), alcohol intake (current versus former versus never), HDL cholesterol, LDL cholesterol, systolic blood pressure, levels of physical activity, plasma fibrinogen, and renal function (assessed by estimated glomerular filtration rate [eGFR]). Results from GEE were further validated by family-based association tests using the computer program FBAT (22). Power of genetic association analyses for insulin resistance and type 2 diabetes was estimated using the computer program PBAT (23).

RESULTS

Baseline characteristics of the study participants. Table 1 presents the baseline characteristics of the study participants by smoking status. Compared with never smokers, smokers were older (38 vs. 41 years old; $P < 0.0001$), and to record the number of the steps taken daily in the activity diary. Physical activity was assessed by the mean number of steps per day calculated by averaging the number of steps recorded each day for the 7-day period. This is based on our previous research demonstrating that TPM is quite robust to the assumption of constant correlation. Though different choices of truncation points have little in common, we conducted analyses using other threshold of 0.80 for linkage disequilibrium (LD). The following criteria were also considered: minor allele frequency (>5%), SNP location (i.e., coding region), and Illumina design scores (quantifying how likely a SNP can be genotyped). SNPs that could not be tagged (i.e., singletons) were included as long as their design score was >0.15. All genotyping was done at the Texas Biomedical Research Institute using the Illumina VeraCode technology (Illumina, Inc., San Diego, CA). The average genotyping call rates were 98% for the 61 tag SNPs, and sample success rate was >96.6%.

Statistical analysis

Single SNP association analysis. We examined the association of each individual SNP with insulin resistance or type 2 diabetes, separately, using the generalized estimating equation (GEE). The relatedness among family members of the study participants was accounted for using GEE by including family identifier as a clustering variable. The model also controlled for other covariates, including age, sex, WHR, smoking status (former versus current versus never), alcohol intake (current versus former versus never), HDL cholesterol, LDL cholesterol, systolic blood pressure, levels of physical activity, plasma fibrinogen, and renal function (assessed by estimated glomerular filtration rate [eGFR]). Results from GEE were further validated by family-based association tests using the computer program FBAT (22). Power of genetic association analyses for insulin resistance and type 2 diabetes was estimated using the computer program PBAT (23). To avoid population substructure, we first stratified the analyses by study center (OK, AZ, and DK) and then combined the results from three centers by meta-analysis using the truncated product method (TPM, described below).

Gene-based and gene-family association. The association of a candidate gene (including all SNPs within the gene) with insulin resistance or type 2 diabetes was assessed by combining P values from single SNP association analysis. This was done using the TPM, as described below. A gene-family analysis was then performed by combining the P value of each gene from gene-based analysis, including seven genes in the nAChRs gene family.

TPM is a P value combination method that is used widely in biostatistics (24). Suppose there are N SNPs within a gene, denoted by s_1, s_2, \ldots, s_N. Let p_i be the P value obtained from single gene-association analysis for s_i, in relation to insulin resistance or type 2 diabetes. TPM takes the product of the P values that do not exceed some prespecified value τ, and the test statistic is calculated as:

$$W = \prod_{i=1}^{N} p_i^{I(\tau < p_i)}$$

where $I(\cdot)$ is an indicator function. When the P values are independent, W has a known distribution. If the P values are not independent, the distribution of W can be estimated using Monte Carlo simulation (24). To calculate W, we need to estimate the correlation matrix, Σ, for the P values. Define the probits $t_i, i = 1, 2, \ldots, N$, as $t_i = \Phi^{-1}(p_i)$ where $\Phi^{-1}(\cdot)$ represents the inverse of a standard normal distribution. Following Demetrescu et al. (25), we assume a constant correlation, ρ, between the probits: $cov(t_i, t_j) = \rho$ for $i \neq j, i, j = 1, \ldots, N$. ρ can be estimated by

$$\hat{\rho} = 1 - \frac{1}{N-1} \sum_{i=1}^{N} (t_i - \bar{t})^2$$

where

$$\bar{t} = \frac{1}{N} \sum_{i=1}^{N} t_i$$

The correlation matrix Σ can be estimated using $\hat{\rho}$ (26). The choice of truncation point, τ, is somewhat arbitrary, and in our analysis, we used $\tau = 0.1$. This is based on our previous research demonstrating that TPM is quite robust to the assumption of constant correlation. Though different choices of truncation points have little influence on the results, our simulation studies indicated that a smaller truncation point may be preferable in terms of type I error of the test (26,27). Our previous research has also demonstrated that this method has good properties in terms of type I error and power under various correlation structures among the P values (26,27). The P value for TPM was estimated by 5,000 simulations. To confirm our results by TPM, we also conducted analyses using other P value combination methods, such as modified inverse normal method (28) or Simes’ method (29), and obtained similar results. In this study, we chose to use TPM because it focuses only on P values below some threshold, thus avoiding the offset on the overall effect by removing some large P values from the analysis and thus probably gains power.

Other statistical analyses. We first stratified all statistical analyses by geographical sites (AZ, OK, and DK), and then conducted meta-analysis to combine results from the three study centers using TPM. To examine whether cigarette smoking influences the association between genetic variants and insulin resistance or type 2 diabetes, we conducted separate analyses to compare the results with or without adjustment for smoking status. Multiple testing was controlled by Bonferroni correction. That is, for single SNP association analysis, we used the significance level of 0.05/61 × 8.2 × 10⁻⁴. The significance level for gene-based analysis was set to 0.05/7 = 0.007. In all analyses, continuous variables, including insulin resistance, WHR, HDL, LDL, level of physical activity, plasma fibrinogen, and eGFR, were logarithmically transformed to improve normality. Participants with missing information on smoking status (n = 18) or diabetes (n = 39) were excluded from analyses. Analyses were done using SAS version 9.2 (SAS Institute Inc., Cary, NC) and Matlab 7.10.0.499 (The MathWorks, Inc., Natick, MA).
more likely to be males (34 vs. 44%; \(P < 0.0001 \)), more likely to be centrally obese (WHR 0.90 vs. 0.92; \(P < 0.0001 \)), had a higher level of plasma fibrinogen (388 vs. 391 mg/dL), and had a higher level of total cholesterol (177 vs. 183 mg/dL; \(P = 0.004 \)). The demographic characteristics of the study participants according to study center or diabetes status are summarized in Supplementary Tables 1 and 2, respectively.

Table 2

Information for the 61 tagging SNPs in 7 nAChRs candidate genes genotyped in this study.

Gene	dbSNP identification number	Chromosome	Alleles	MAF
CHRNA3	rs1051730	15	A/G	0.084
	rs11637630	15	A/G	0.191
	rs12910984	15	A/G	0.190
	rs12914385	15	A/G	0.092
	rs1317286	15	A/G	0.080
	rs1878399	15	C/G	0.100
	rs3743074	15	A/G	0.093
	rs3743078	15	C/G	0.184
	rs578776	15	A/G	0.181
	rs645308	15	A/G	0.191
	rs660652	15	A/G	0.085
	rs7177514	15	C/G	0.189
	rs2236196	20	A/G	0.070
	rs2275904	20	A/G	0.347
	rs7871116	20	A/G	0.066
	rs787137	20	A/G	0.355
	rs6122429	20	A/G	0.227
	rs11633585	15	A/C	0.013
	rs11637635	15	A/G	0.088
	rs16969968	15	A/G	0.081
	rs17483686	15	A/T	0.220
	rs17486278	15	A/C	0.088
	rs2036527	15	A/G	0.087
	rs514743	15	A/T	0.087
	rs569207	15	A/G	0.190
	rs588765	15	A/G	0.101
	rs615470	15	A/G	0.093
	rs637137	15	A/T	0.190
	rs680244	15	A/G	0.102
	rs684513	15	C/G	0.345
	rs8034191	15	A/G	0.090
	rs905739	15	A/G	0.193
	rs951266	15	A/G	0.081
	rs2304297	8	C/G	0.316
	rs2072658	1	A/G	0.113
	rs2072659	1	C/G	0.024
	rs2072660	1	A/G	0.235
	rs2072661	1	A/G	0.228
	rs3811450	1	A/G	0.016
	rs10958726	8	A/C	0.325
	rs13277254	8	A/G	0.325
	rs13280604	8	A/G	0.325
	rs4950	8	A/G	0.327
	rs4952	8	A/G	0.014
	rs4953	8	C/G	0.014
	rs4954	8	A/G	0.272
	rs6474413	8	A/G	0.326
	rs11633223	15	A/G	0.094
	rs11636605	15	A/G	0.255
	rs12440014	15	C/G	0.254
	rs12914008	15	A/G	0.006
	rs1316971	15	A/G	0.255
	rs16970006	15	A/G	0.385
	rs17487223	15	A/G	0.150
	rs1948	15	A/G	0.090
	rs1996371	15	A/G	0.102
	rs3813567	15	A/G	0.358
	rs3971872	15	A/G	0.108
	rs7178270	15	C/G	0.094
	rs8023462	15	A/G	0.092
	rs950776	15	A/G	0.083

MAF, minor allele frequency.
show the results of single SNP association with insulin resistance and type 2 diabetes, respectively, by meta-analyses. Results of single SNP association analysis with insulin resistance and diabetes according to study centers are listed in Supplementary Tables 3 and 4, respectively. To confirm our results, we also conducted family-based association analysis using the computer program FBAT. Compared with the results by GEE, the genetic associations with insulin resistance or diabetes obtained by FBAT are in general less significant, and none of these associations survives multiple testing correction by Bonferroni (Supplementary Tables 5 and 6).

Gene-based and gene-family analysis. Using P values obtained from single SNP association analysis, we conducted gene-based and gene-family analysis for both insulin resistance and type 2 diabetes by meta-analyses to combine results from the three study centers. Results for gene-based analysis show that, after correction for multiple comparisons, genetic variants in four genes (**CHRNA3**, **CHRNA5**, **CHRNB2**, and **CHRNB4**) jointly contribute to the susceptibility for insulin resistance and type 2 diabetes (all P values ≤ 0.005). Gene-family analysis comprising all seven genes demonstrates that the nAChRs gene family as a whole is significantly associated with both insulin resistance and type 2 diabetes (both $P < 0.0001$). Results for gene-based and gene-family analyses are presented in Table 5. Center-specific results for gene-based and gene-family analyses are shown in online Supplementary Table 7.

DISCUSSION

Using a sample of 3,665 subjects from the SHFS, we conducted a gene-family analysis to examine the joint impact of 61 genetic variants in seven nAChRs candidate genes on insulin resistance and diabetes in American Indians. We found that, although multiple genetic polymorphisms are individually associated with insulin resistance and/or type 2 diabetes, only a few SNPs survive adjustments for multiple testing. However, a gene-based or a gene-family analysis considering the joint contribution of multiple SNPs reveals significant associations with both insulin resistance and type 2 diabetes. To our best knowledge, this is the first study examining the joint contribution of the nAChRs gene family to the susceptibility for insulin resistance and type 2 diabetes in any ethnic group.

Several aspects of our investigation merit comment. First, although a SNP may show no or marginal association with diabetes by single gene analysis, the joint impact of multiple SNPs within a gene or a gene family on disease susceptibility could be large. For example, no SNP in **CHRNA3** is individually associated with diabetes after adjusting for multiple testing, but the joint effect of all SNPs within this gene reveals a significant association with diabetes ($P < 0.0001$). This finding is in line with previous research demonstrating that a gene-based or gene-family approach simultaneously modeling the joint effect of multiple SNPs within a gene or a gene family may provide a better chance to identify genetic variants that would otherwise be missed by single gene association analysis (31). It is worth pointing out that the observed genetic associations by gene-family analysis may not be driven by the gene showing the most significant association in gene-based analysis, because removing the most significant gene from gene-family analysis did not change our results. Second, genetic variants in the **CHRNA5/CHRNA3/CHRNB4** gene cluster located on chromosome 15q24 have been consistently

SNP	Gene	P value
rs1051730	CHRNA3	0.1208
rs11637630	CHRNA3	0.0166
rs12910984	CHRNA3	0.0360
rs12914385	CHRNA3	0.1350
rs1317286	CHRNA3	0.0048
rs1878399	CHRNA3	0.1104
rs3743074	CHRNA3	0.0002
rs3743078	CHRNA3	0.0328
rs578776	CHRNA3	0.0512
rs6495308	CHRNA3	0.0584
rs696052	CHRNA3	0.1738
rs7177514	CHRNA3	0.0580
rs2236196	CHRNA4	0.0114
rs2273504	CHRNA4	0.0682
rs3787116	CHRNA4	0.0600
rs3787137	CHRNA4	0.1570
rs6122429	CHRNA4	0.1680
rs11633585	CHRNA5	0.1582
rs11637635	CHRNA5	0.1684
rs16909968	CHRNA5	0.1450
rs17483686	CHRNA5	0.0052
rs17488278	CHRNA5	0.0956
rs2036627	CHRNA5	0.0134
rs514743	CHRNA5	$<1 \times 10^{-4}$
rs569207	CHRNA5	0.0182
rs588705	CHRNA5	0.1042
rs615470	CHRNA5	0.0646
rs697137	CHRNA5	0.0166
rs680244	CHRNA5	0.1272
rs684513	CHRNA5	0.0108
rs8034191	CHRNA5	0.0280
rs905739	CHRNA5	0.0718
rs951266	CHRNA5	0.1384
rs2304297	CHRNA6	0.2026
rs2072658	CHRN B2	0.1148
rs2072650	CHRN B2	$<1 \times 10^{-4}$
rs2072660	CHRN B2	0.0934
rs2072661	CHRN B2	0.0180
rs3811450	CHRN B2	0.0348
rs10958726	CHRN B3	0.2112
rs13277254	CHRN B3	0.2104
rs13280604	CHRN B3	0.1812
rs4950	CHRN B3	0.2000
rs4953	CHRN B3	0.1172
rs4954	CHRN B3	0.1194
rs1476777	CHRN B3	0.1388
rs6474413	CHRN B3	0.1996
rs11633223	CHRN B4	0.0028
rs11636605	CHRN B4	$<1 \times 10^{-4}$
rs12440014	CHRN B4	$<1 \times 10^{-4}$
rs12914008	CHRN B4	0.0006
rs1316971	CHRN B4	0.0006
rs16970006	CHRN B4	0.0086
rs17487223	CHRN B4	0.0754
rs1948	CHRN B4	0.0832
rs1996371	CHRN B4	0.0002
rs3813567	CHRN B4	0.0002
rs3971870	CHRN B4	0.1102
rs7178270	CHRN B4	0.0268
rs8023462	CHRN B4	0.0782
rs950776	CHRN B4	0.0244

P values in boldface indicate statistical significance after Bonferroni correction.
TABLE 4
Association of the 61 SNPs with type 2 diabetes by meta-analysis

SNP	Gene	P value
rs1051730	CHRNB4	0.126
rs11637630	CHRNB4	0.022
rs12910984	CHRNB4	0.003
rs12914385	CHRNB4	0.131
rs1317286	CHRNB4	0.306
rs1878399	CHRNB4	0.120
rs3743074	CHRNA5	0.098
rs3743078	CHRNA5	0.003
rs578777	CHRNA5	0.065
rs6485308	CHRNA5	0.003
rs660652	CHRNA5	0.194
rs7177517	CHRNA5	0.001
rs2236193	CHRNA5	0.007
rs2273504	CHRNA5	0.084
rs3787116	CHRNA5	0.042
rs3787137	CHRNA5	0.086
rs6122439	CHRNA4	0.017
rs11633585	CHRNA5	0.041
rs11637635	CHRNA5	0.203
rs16969968	CHRNA5	0.139
rs17483866	CHRNA5	0.088
rs17486278	CHRNA5	0.0002
rs2036527	CHRNA5	<10^-4
rs514743	CHRNA5	0.095
rs569207	CHRNA5	0.004
rs588788	CHRNA5	0.123
rs615470	CHRNA5	0.154
rs637137	CHRNA5	0.001
rs680244	CHRNA5	0.124
rs684513	CHRNA5	0.008
rs8034191	CHRNA5	<10^-4
rs905789	CHRNA5	0.012
rs951266	CHRNA5	0.015
rs2304297	CHRNA6	0.103
rs2072658	CHRNA2	0.126
rs2072659	CHRNA2	<10^-4
rs2072660	CHRNA2	0.023
rs2072661	CHRNA2	0.038
rs3811450	CHRNA2	0.291
rs10958726	CHRNA3	0.211
rs13172754	CHRNA3	0.214
rs13280604	CHRNA3	0.161
rs4950	CHRNA3	0.204
rs4952	CHRNA3	0.079
rs4953	CHRNA3	0.079
rs4954	CHRNA3	0.114
rs6474413	CHRNA3	0.207
rs11633223	CHRNA4	<10^-4
rs11636695	CHRNA4	<10^-4
rs12440014	CHRNA4	<10^-4
rs12914008	CHRNA4	0.307
rs1316971	CHRNA4	0.0004
rs16970006	CHRNA4	0.0008
rs17487233	CHRNA4	0.0458
rs1948	CHRNA4	0.076
rs1996371	CHRNA4	0.059
rs3813567	CHRNA4	<10^-4
rs3971872	CHRNA4	0.228
rs7178270	CHRNA4	0.018
rs8023462	CHRNA4	0.065
rs895776	CHRNA4	0.020

P values in boldface indicate statistical significance after Bonferroni correction.

TABLE 5
Gene-based and gene-family associations for the seven nAChRs genes with insulin resistance and type 2 diabetes by meta-analysis

Gene	Insulin resistance	Type 2 diabetes
CHRNA3	<10^-4	<10^-4
CHRNA4	0.0160	0.0326
CHRNA5	0.0030	<10^-4
CHRNA6	0.2026	0.1688
CHRNA2	<10^-4	<10^-4
CHRNA3	0.1603	0.1796
CHRNA4	<10^-4	<10^-4

The nAChRs gene family was associated with nicotine dependence (32,33). Our gene-family analysis also reveals a significant association of this gene cluster with both insulin resistance and type 2 diabetes, lending further support to previous findings. These associations, however, may not be mediated by cigarette smoking, because further adjustment for smoking had little impact on the observed associations. Moreover, smoking status is associated with neither insulin resistance nor diabetes in our study (Table 1), indicating that it is unlikely to be a mediator for the association between genetic variants and insulin resistance or diabetes. Third, previous studies repeatedly reported an association of rs16969968 in CHRNA5 with nicotine dependence in European Americans or African Americans (15,34). Our analyses, however, did not find an association of this SNP with either insulin resistance or type 2 diabetes, probably due to difference in genetic background between American Indians and other ethnic groups. It is also possible that this SNP might influence diabetes risk through pathways beyond cigarette smoking. Fourth, in our study sample, >50% of the study participants were smokers. However, the amount of cigarettes smoked per day is quite low (median = 5). The frequency of cigarette smoke and the amount of smoke varied by study center, with the lowest being AZ, followed by OK and DK (Supplementary Table 1). Interestingly, though tribal members from AZ had the lowest number of cigarettes smoked per day, strong genetic associations with insulin resistance and type 2 diabetes were observed in this study center. This supports the hypothesis that the impact of nAChRs genes on the susceptibility to insulin resistance or diabetes may not be through cigarette smoking per se. To examine whether smoking quantity influences our study results, we conducted a separate analysis by including pack-year instead of smoking status as a covariate in the statistical models, but our results remained unchanged.

Smokers tend to be thinner than nonsmokers, and smoking cessation results in an increase in body weight (35,36). The mechanism underlying the link between cigarette smoking and body weight is unclear, but a recent study by Mineur et al. (37) suggests that nicotine may stimulate the activity of pro-opiomelanocortin neurons by activation of hypothalamic α2β2 nAChRs, leading to decreased appetite and body weight. Though smokers tend to have lower BMI than never smokers, smokers are more likely to have increased central adiposity (38,39), a strong determinant for insulin resistance and type 2 diabetes (40,41). Furthermore, within a normal BMI, smokers tend
to have a greater risk of abdominal fat accumulation compared with nonsmokers (38,42). In our study sample, smokers and never smokers did not exhibit significant difference in BMI, but smokers had significantly larger WHR than never smokers, indicating that smokers tend to be more centrally obese than never smokers. This is consistent with previous findings (38,42). Our results, however, are unlikely to be confounded by obesity because we controlled for WHR in all statistical analyses.

The precise mechanisms through which genetic variants in the nAChRs gene family influence diabetes are unclear, but because smoking increases inflammation (43) and oxidative stress (44), each of which has been strongly implicated in insulin resistance and diabetes (45,46), it is plausible that genetic polymorphisms in nAChRs genes may influence diabetes susceptibility through their impact on inflammatory and/or oxidative responses to cigarette smoking. This hypothesis is supported by our analysis, which shows that smokers have a higher level of plasma fibrinogen than never smokers. In the current study, however, we did not observe a significant difference in the prevalence of type 2 diabetes or the level of insulin resistance between smokers and never smokers, suggesting that the impact of nAChR genetic variants on insulin resistance and type 2 diabetes may not be due to the direct detrimental effect of cigarette smoking per se. Instead, nAChR genetic abnormalities may influence diabetes through regulating appetite or eating behavior (37,47), thus causing changes in body weight or metabolic profiles (48). This hypothesis is corroborated by our observation that smokers are more centrally obese than never smokers, probably due to overeating. Of course, it is also possible that the nAChRs genetic variants could affect diabetes vulnerability through other independent yet uncharacterized mechanisms.

Our study has some limitations. First, though we were able to control many of the potential confounders, we cannot entirely exclude the possibility of residual confounding by other factors such as diet, which is known to be related to diabetes (49). However, a previous study investigating the relationship between cigarette smoking and glycosuria indicated that dietary factors may not be a confounder (50). Furthermore, it is possible that adjustment for dietary factors may be overadjustment, as these could be on the causal pathway linking cigarette smoking to diabetes. Second, this study used a cross-sectional design, which thus precluded causal inference. Finally, our analyses were undertaken among American Indians, and hence our results might not be generalized to other ethnic groups.

In summary, this study provides initial evidence for a joint impact of multiple genetic variants in the nAChRs gene family on insulin resistance and type 2 diabetes in American Indians. The impact of these genetic variants on the susceptibility to diabetes is independent of cigarette smoking per se. Our results may provide valuable information for individualized prevention or intervention on diabetes in American Indians who suffer from disproportionately high prevalence of type 2 diabetes.

ACKNOWLEDGMENTS

This study was supported by a seed grant from the Oklahoma Tobacco Research Center and National Institutes of Health Grants K01-AG-034259 and R21-HL-092365 and Cooperative Agreement Grants U01-HL-65520, U01-HL-41642, U01-HL-41652, U01-HL-41654, and U01-HL-65521.

No potential conflicts of interest relevant to this article were reported.

The views expressed in this article are those of the authors and do not necessarily reflect those of the Indian Health Service.

J.Y. and Y. Zhu conducted statistical analyses and wrote the manuscript. S.A.C. and K.H. collected genotype data and reviewed the manuscript. Y.Zha, L.A.B., B.V.H., L.G.B., R.B.D., J.A.H., P.H., and E.T.L. contributed to discussion and reviewed and edited the manuscript. J.Z. conceived the study and wrote the manuscript. J.Z. is the guarantor of this work and, as such, had full access to all of the data in the study and takes full responsibility for the integrity of the data and the accuracy of the data analysis.

The authors thank the SHFS participants, Indian Health Service facilities, and participating tribal communities for extraordinary cooperation and involvement, which has contributed to the success of the SHFS.

REFERENCES

1. Burrows NR, Geiss LS, Engelau GM, Acton KJ. Prevalence of diabetes among Native Americans and Alaskan Natives, 1990-1997: an increasing burden. Diabetes Care 2000;23:1786–1790
2. Barroso I. Genetics of Type 2 diabetes. Diabet Med 2005;22:517–535
3. McCarthy MI, Zeggini E. Genome-wide association studies in type 2 diabetes. Curr Diab Rep 2009;9:164–171
4. Schadt EE. Molecular networks as sensors and drivers of common human diseases. Nature 2009;461:218–223
5. Daley CM, Greiner KA, Nazir N, et al. All Nations Breath of Life: using community-based participatory research to address health disparities in cigarette smoking among American Indians. Ethn Dis 2010;20:334–338
6. Attwll S, Fowelin J, Lager I, Von Schenck H, Smith U. Smoking induces insulin resistance—a potential link with the insulin resistance syndrome. J Intern Med 1993;237:327–332
7. Tarberg G, Alberiche M, Zenere MB, Bonadonna RC, Muggio M, Bonora E. Cigarette smoking and insulin resistance in patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1997;82:3619–3624
8. Eliasson B, Attwll S, Taskinen MR, Smith U. Smoking cessation improves insulin sensitivity in healthy middle-aged men. Eur J Clin Invest 1997;27:450–456
9. Will JC, Galuska DA, Ford ES, Mokdad A, Call EE. Cigarette smoking and diabetes mellitus: evidence of a positive association from a large prospective cohort study. Int J Epidemiol 2001;30:540–546
10. Manson JE, Aijani UA, Liu S, Nathan DM, Hennekens CH. A prospective study of cigarette smoking and the incidence of diabetes mellitus among US male physicians. Am J Med 2000;109:538–542
11. Eliasson B, Taskinen MR, Smith U. Long-term use of nicotine gum is associated with hyperinsulinemia and insulin resistance. Circulation 1996;94:878–881
12. Borrowitz IL, Isom GE. Nicotine and type 2 diabetes. Tocicol Sci 2008;103:225–227
13. Millar NS, Harkness PC. Assembly and trafficking of nicotinic acetylcholine receptors (Review). Mol Membr Biol 2008;25:279–292
14. Changeux JP. Nicotine addiction and nicotinic receptors: lessons from genetically modified mice. Nat Rev Neurosci 2010;11:389–401
15. Saccone NL, Culverhouse RC, Schwantes-An TH, et al. Multiple independent loci at chromosome 15q25.1 affect smoking quantity: a meta-analysis and comparison with lung cancer and COPD. PLoS Genet 2010;6:e1001053
16. Lee ET, Welsy TK, Fabsitz RR, et al. Risk factors for coronary heart disease in American Indians: design and methods. Am J Epidemiol 1990;132:1141–1155
17. Lee ET, Howard BV, Savage PJ, et al. Diabetes and impaired glucose tolerance in three American Indian populations aged 45-74 years. The Strong Heart Study. Diabetes Care 1995;18:590–610
18. Howard BV, Velsy TK, Fabsitz RR, et al. Risk factors for coronary heart disease in diabetic and nondiabetic Native Americans. The Strong Heart Study. Diabetes Care 1992;15:110–117
19. Mellitus TECoDaCoD: Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2003;26(Suppl. 1):S5–S20
20. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412–419
21. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005;21:263–265
22. Laird NM, Horvath S, Xu X. Implementing a unified approach to family-based tests of association. Genet Epidemiol 2000;19(Suppl. 1):S36–S42
23. Lange C, DeMeo D, Silverman EK, Weiss ST, Laird NM. PBAT: tools for family-based association studies. Am J Hum Genet 2004;74:367–369
24. Zaykin DV, Zhivotovsky LA, Westfall PH, Weir BS. Truncated product method for combining P-values. Genet Epidemiol 2002;22:170–185
25. Demetrescu M, Hassler U, Tarcolea AI. Combining significance of correlated statistics with application to panel data. Oxf Bull Econ Stat 2006;68:647–663
26. Sheng X, Yang J. Truncated product methods for panel unit root tests. Oxf Bull Econ Stat. In press
27. Sheng X, Yang J. Panel unit root test by combining dependent p-values: a comparative study. J Prob Stat 2011;2011:617652
28. Hartung J. A note on combining dependent tests of significance. Biom J 1999;41:849–855
29. Simes RJ. An improved Bonferroni procedure for multiple tests of significance. Biometrika 1986;73:751–754
30. Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome. Science 2002;296:2225–2229
31. Wang K, Li M, Hakonarson H. Analysing biological pathways in genome-wide association studies. Nat Rev Genet 2010;11:843–854
32. Li MD, Xu Q, Lou XY, Nguyen H, et al. The CHRNA5/CHRNA3/CHRNB4 gene cluster with nicotine dependence in African and European Americans. Am J Med Genet B Neuropsychiatr Genet 2010;153B:745–756
33. Saccone NL, Wang JC, Breslau N, et al. The CHRNA5/CHRNA3/CHRNB4 nicotinic receptor subunit gene cluster affects risk for nicotine dependence in African-Americans and in European-Americans. Cancer Res 2009;69:6848–6856
34. Liu JZ, Tozzi F, Waterworth DM, et al.; Wellcome Trust Case Control Consortium. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat Genet 2010;42:436–440
35. Alhunes D, Jones DY, Micozzi MS, Mattson ME. Associations between smoking and body weight in the US population: analysis of NHANES II. Am J Public Health 1987;77:439–444
36. Eisen SA, Lyons MJ, Goldberg J, True WR. The impact of cigarette and alcohol consumption on weight and obesity. An analysis of 1911 monozygotic male twin pairs. Arch Intern Med 1993;153:2457–2463
37. Mineur YS, Abizaid A, Rao Y, et al. Nicotine decreases food intake through activation of POMC neurons. Science 2011;332:1330–1332
38. Shimokata H, Muller DC, Andres R. Studies in the distribution of body fat. III. Effects of cigarette smoking. JAMA 1989;261:1169–1173
39. Barrett-Connor E, Khaw KT. Cigarette smoking and increased central adiposity. Ann Intern Med 1989;111:783–787
40. Kahn SE, Hull RL, Uitzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006;444:840–846
41. Ross R, Després JP. Abdominal obesity, insulin resistance, and the metabolic syndrome: contribution of physical activity/exercise. Obesity (Silver Spring) 2009;17(Suppl. 3):S1–S2
42. Simon JA, Seeley DG, Lipschutz RC, Vittinghoff E, Browner WS. The relation of smoking to waist-to-hip ratio and diabetes mellitus among elderly women. Prev Med 1997;26:639–644
43. Gonçalves RB, Coletta RD, Silvério KG, et al. Impact of smoking on inflammation: overview of molecular mechanisms. Inflamm Res 2011;60:409–424
44. Morrow JD, Frei B, Longmire AW, et al. Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. Smoking as a cause of oxidative damage. N Engl J Med 1995;332:1198–1203
45. Wright E Jr, Scism-Bacon JL, Glass LC. Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int J Clin Pract 2006;60:308–314
46. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005;115:1111–1119
47. Jo YH, Talmage DA, Role LW. Nicotinic receptor-mediated effects on appetite and food intake. J Neurobiol 2002;53:618–632
48. Marrero MB, Lucas R, Salet C, et al. An alpha7 nicotinic acetylcholine receptor-selective agonist reduces weight gain and metabolic changes in a mouse model of diabetes. J Pharmacol Exp Ther 2010;332:173–180
49. McNaughton SA, Mishra GD, Brunner EJ. Dietary patterns, insulin resistance, and incidence of type 2 diabetes in the Whitehall II Study. Diabetes Care 2008;31:1343–1348
50. Sargeant LA, Khaw KT, Bingham S, et al. Cigarette smoking and glycaemia: the EPIC-Norfolk Study. European Prospective Investigation into Cancer. Int J Epidemiol 2001;30:547–554