Hypocapnia Attenuates, and Nitrous Oxide Disturbs the Cerebral Oximetric Response to the Rapid Introduction of Desflurane

The aim of this study was to develop a nonlinear mixed-effects model for the increase in cerebral oximetry (rSO2) during the rapid introduction of desflurane, and to determine the effect of hypocapnia and N2O on the model. Twelve American Society of Anesthesiologist physical status class 1 and 2 subjects were allocated randomly into an Air and N2O group. After inducing anesthesia, desflurane was then increased abruptly from 4.0 to 12.0%. The PETCO2, PETDESF and rSO2 were recorded at 12 predetermined periods for the following 10 min. The maximum increase in rSO2 reached +24-25% during normocapnia. The increase in rSO2 could be fitted to a four parameter logistic equation as a function of the logarithm of PETDESF. Hypocapnia reduced the maximum response of rSO2, shifted the EC50 to the right, and increased the slope in the Air group. N2O shifted the EC50 to the right, and reduced the slope leaving the maximum rSO2 unchanged. The N2O-effects disappeared during hypocapnia. The cerebrovascular reactivity of rSO2 to CO2 is still preserved during the rapid introduction of desflurane. N2O slows the response of rSO2. Hypocapnia overwhelms all the effects of N2O.

Key Words: Cerebral Oximetry; Desflurane; Anesthesia

INTRODUCTION

The rapid introduction of desflurane produces sympathet-
ic stimulation and associated changes, which are represented by increases in blood pressure, heart rate and pupil diameter (1-3). The cerebrovascular response to a rapid increase in desflurane was also reported and considered to be either a coincident or independent change from hemodynamic stimulation (4, 5). There are few reports on the cerebral oximetric response to the introduction of desflurane. Hoffman et al. (6) observed an increase in the cerebral tissue PO2 during desflurane anesthesia, and suggested the increased PO2 to be indicative of the improved cerebral oxygenation status. The cerebral oximetry (rSO2) values can be compared with the focal cerebral tissue PO2. Moreover, the increase in rSO2 can be regarded not only as an improvement in the cerebral oxygenation status but also as a resultant hyperemia. It was hypothesized that rSO2 would also respond to the rapid introduction of desflurane.

Carbon dioxide plays an important role in regulating the cerebral blood flow. Hence, hypocapnia would be favorable in desflurane-induced hyperemic changes to the brain. The addition of N2O, which is commonly used in everyday practice of anesthesia, decreases the minimum alveolar concentration (MAC) of desflurane and would attenuate the response of rSO2 by increasing the depth of anesthesia if the change in rSO2 is dependent on systemic sympathetic stimulation. This study examined the inherent cerebrovascular effects of N2O. It is expected that this study will help to improve the understanding of the cerebrovascular changes during desflurane anesthesia.

Accordingly, in order to demonstrate that hypocapnia or the addition of N2O can modify the response of rSO2, the concentration (dose)-response relationship for the change in rSO2 during the rapid introduction of desflurane was examined using a nonlinear mixed-effects model in a grouped repeated design.

MATERIALS AND METHODS

After obtaining institutional research board approval (2008-1-26) and written informed consent, 12 American Society of Anesthesiologist (ASA) physical status class 1-2 adults who underwent a variety of surgical procedures requiring general anesthesia were enrolled in this study. The exclusion criteria included subjects with alleged respiratory, cardiovascular, and cerebral diseases, or were taking associated medications. No premedication was given. The subjects were allocated randomly to an Air (n=6) or N2O group (n=6).
In addition to the standard monitoring equipment, the emitter-sensor couplet of a cerebral oximeter (INVOS 5100B, Somanetics® , Troy, OH, U.S.A.) was attached to the right brow, and a sensor from a Finometer (Finapres Medical Systems, Amsterdam, The Netherlands) was attached to the appropriate finger to obtain the continuous arterial pressure, heart rate, and cardiac output. The concentrations of CO₂ (PETCO₂), N₂O, and desflurane were measured using the airway module embedded in an anesthesia machine (S/5 Avance, Datex-Ohmeda, Helsinki, Finland). Anesthetic induction and maintenance were achieved as described by our institution’s standard anesthetic guidelines. Briefly, vecuronium (0.08-0.1 mg/kg), remifentanil (computer-estimated effect-site concentration, Ce=3.0 ng/mL) were administered intravenously as required after confirming the loss of consciousness with a titrated dose of intravenous propofol (1.5-2.0 mg/kg). Remifentanil was administered using a target-controlled infusion device (Orchestra® Base Primea, Fresenius-Kabi, Bad Homburg, Germany). Desflurane (6.0% dial-concentration) were inhaled. After the trachea was intubated, the infusion of remifentanil was stopped and the dial-concentration of desflurane was adjusted to 4.0%. In the Air group, medical air was added to the oxygen to ensure an inspired oxygen fraction of 0.4. N₂O was added in the N₂O group. Mechanical ventilation was started with VE=8 mL/kg and RR=10 breath/min while permitting an inter-subjects difference in the end-tidal concentration of CO₂ (PETCO₂). The corresponding PETCO₂ was 33 ± 4 (range 24-41) mmHg throughout the study period. The SpO₂ values were approximately 98-100% during the course of the study.

After stabilization for approximately 20 min until the Ce of remifentanil fell to below 0.3, the average end-tidal (PETDESF) and inspired (PFIDESF) desflurane reached 4.0%, and the dial-concentration of desflurane was increased to 12.0%, simultaneously with 6 L/min of a fresh gas flow rate and the PETDESF converged within 90% of the PFIDESF. This time was set to time 0 (T0).

Measurements and calculations

The basic preanesthetic measurements included the body weight, height, rSO₂, mean arterial pressure (MAP), heart rate (HR), cardiac output (CO), body surface area (BSA), and derived cardiac index (CI). Consecutive measurements, including the rSO₂, SpO₂, MAP, HR, CI, PETDESF, PFIDESF, and PETCO₂ were recorded at T0 and the following periods; 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 8.0, and 10 min from T0. The measurement was stopped when the MAP>120 mmHg or <50 mmHg, and the HR>130 beats/min or <45 beats/min. However, the measurements before stopping were also included in the analysis. Two subjects, one in the Air group and one in the N₂O group, showed hypotension (MAP<50 mmHg), which was treated promptly with intravenous ephedrine 5 mg. The ΔrSO₂ was defined as the difference between the rSO₂ at a given time from rSO₂ at T0. The estimated alveolar concentration of desflurane (PET/FIDESF) was defined and calculated as the PETDESF divided by the final PFIDESF.

Reliability of the rSO₂ measurements

By examining the variance components using a random intercept and slope model, the reliability of the two rSO₂ measurements was tested before and after the induction of anesthesia. The value of rSO₂ was predicted from hemoglobin with a combination of the anesthesia-effect and subject-effect as random effects. The intra-class correlation (ρ) was defined and estimated,

\[\rho = \frac{\tau^2}{\tau^2 + \sigma^2} \]

where \(\tau \) is the between-subjects variance and \(\sigma \) is the within-subjects variance. The variance of the between-subjects random effects was composed of the variance of each random effect, in this case, \(\tau^2 = \tau_{\text{int}r\text{ro}r}^2 + \tau_{\text{slope}}^2 \). Interpretation of \(\rho \) was descriptive. A high \(\rho \) (>0.90) suggests that the between-subjects component was dominant in the total variances, which also indicated a good reliability of the repeated measurement within-subjects.

Hemodynamic variables

The temporal changes in the MAP, HR, and CI were analyzed by an analysis of the covariance (ANCOVA). The ANCOVA model was fitted as a function of time, and N₂O was used as a grouping variable. When the N₂O-effect was significant, 12 pairwise comparisons were made at each time period using the adjusted \(P \) according to the Dunn-Sidak procedure (\(P^* = 1 - (1 - P)^{1/12} \)).

Modeling for temporal changes in PET/Fidesf

The temporal change in the PET/Fidesf was modeled using an exponential function of time as follows:

\[\text{Predicted PET/Fidesf} = f(\text{time}) = \text{Asym} \times (y_0 - \text{Asym}) \times e^{-(\text{rate} \times \text{time})} \]

where Asym is the asymptote as time approaches infinity, and y₀ is PET/Fidesf at T0. The parameter, ln(r), is the logarithm of the rate constant, ensuring a positive rate constant. The time to half (t₀.₅) can be derived from \(\log(2) \times \text{rate} \). The parameter time is the elapsed time from T0. PET/Fidesf was fitted as a function of time, where the covariates, such as N₂O, PETCO₂, MAP, HR, and CI, were analyzed to demonstrate their effects on the individual parameters; Asym, y₀, and ln(r). The term for the random effects was constructed initially with the intercepts of Asym, y₀, and ln(r). Between the random effects, the high correlations (r>0.9) were removed by under-parameterization. The variance component of the random effects belonging to the subjects was also examined.
Modeling for the increase in ΔrSO₂ for PETDESF

The ΔrSO₂ increased as a function of the logarithm of PETDESF according to the following equation:

$$ΔrSO₂ = f(\log(PETDESF)) = R_{max} \times \frac{R}{1 + e^\left(-\frac{\log(PETDESF)}{\theta}\right)}$$

where R_{max} is the maximum response, R₀ is the initial response, LC₀ is the log(PETDESF) value at the inflection point (=log(EC₅₀)), and θ is simply the inverse slope factor. This is known as the four-parameter logistic model, which relates the response of ΔrSO₂ to an input PETDESF using a sigmoidal function. When describing and discussing the results, all the LC₀ was translated in terms of the EC₅₀, e^{θ0}.

The effects of PETCO₂ and N₂O on the individual model parameters, R_{max}, R₀, LC₀, and θ, were the primary focus of this study. The other covariates, MAP, HR and CI, were also examined using the stepwise including and excluding technique. The term for the random effects was constructed with the intercepts of R_{max} and θ. No random effects of R₀ or LC₀ were assumed. The block diagonal matrix was specified to represent the random effects variance-covariance matrix. The heteroscedasticity of the within-subject errors, particularly at low PETDESF levels, was accommodated using a variance function, which is a power of the absolute value of the variance covariance.

The final model was chosen based on a log-likelihood test and an analysis of variance of nonlinear mixed-effects model. The median (Q1-Q3) standardized residuals were calculated and an analysis of variance of nonlinear mixed-effects model.

Table 1. Summary statistics for the basic measurements and calculations

Parameters	Overall (n=138)	Air group (n=67)	N₂O group (n=71)
Age (yr)	42±10	45±6	39±12
Sex (male/female)	6/9	3/3	3/3
Body weight (kg)	63±10	64±12	62±9
Height (cm)	162±9	160±10	164±9
BSA (m²)	1.67±0.17	1.67±0.19	1.67±0.17
Hemoglobin (g/dL)	13.8±1.2	13.6±1.2	14.0±1.2
MAP (mmHg)	94±15	90±6	99±20
HR (beat/min)	71±12	62±10	71±12
CO (L/min)	5.80±1.67	6.50±1.86	5.10±1.23
CI (L/min/m²)	3.48±0.95	3.93±1.07	3.03±0.59

Values are reported as the mean±SD. All measurements in the Table 1 show no significant differences between the two groups (P≥0.05).

10 mmHg in each group.

Unless specified otherwise, all values are reported as mean±SD. All statistical analyses, including nonlinear mixed-effects modeling, inferential statistics, and arithmetic calculations, were performed using S-Plus 8.0 (Insightful Corp., Seattle, WA, U.S.A.), which was enhanced using the nlme (nonlinear mixed effects) version 3.3.2 library (Pinheiro and Bates, U.S.A.). Therefore, estimates of the parameters for the fixed effects of the mixed-effects model are presented as the mean (standard error of the mean), and the residuals of the fitted model were presented as the median (Q2-Q3). Random effects were presented as overall SD of the random effects. Between the groups, the basic measurements and calculations were compared using a Wilcoxon rank test, and the gender distribution was compared using a Fisher’s exact test. A multiple Wilcoxon rank test was used with the P value to compare the pairwise contrasts for the groups at 12 periods. P values <0.05 were considered significant.

RESULTS

Measurements, calculations, and the reliability of the measurements

There was no significant difference in the basic measurements between the groups (Table 1). There was also no sig-

Table 2. Summary statistics for the repeated measurements during rapid introduction of desflurane

Parameters	Overall (n=138)	Air group (n=67)	N₂O group (n=71)
MAP (mmHg)	74±18 (44-123)	72±20	76±15
HR (beat/min)	81±22 (45-150)	74±16	87±25
CO (L/min)	6.32±2.01 (2.00-11.90)	6.02±1.62	6.61±2.29
CI (L/min/m²)	3.82±1.32 (1.35-7.83)	3.64±1.03	4.00±1.54
PETCO₂ (mmHg)	33±4 (24-41)	39±3	34±4
SpO₂ (%)	99±1 (98-100)	98±1	99±1
PET₁₀₀ (%)	-	-	52±4
PFlCO₂ (%)	-	-	53±4
PET₉₀ (%)	8.9±1.9	9.0±2.0	8.9±1.8
Final PF₁₀₀ (%)	11.5±0.7	11.9±0.9	11.1±0.3

Values are reported as the mean±SD (min-max).

Measurements of PET₁₀₀, SpO₂, and final PFlCO₂ in the Table 2 show no significant difference between the two groups (P≥0.05).

The values of MAP, HR, CO, CI, and PET₁₀₀ were not compared based on the simple mean±SD, which is meaningless n, number of total repeated measurements for 6 subjects in each group; BSA, body surface area; MAP, mean arterial pressure; HR, heart rate; CO, cardiac output; CI, cardiac index; PET₁₀₀, end-tidal CO₂ concentration; SpO₂, pulse oximetry; PFlCO₂, end-tidal N₂O concentration; PFlNO, inspired N₂O concentration; PET₉₀, end-tidal desflurane concentration; Final PF₁₀₀, final inspired desflurane concentration.
significant difference in the repeated measurements during rapid introduction of desflurane between the groups (Table 2). The mean rSO2 values before and after anesthesia were 68 ± 8%, whose anesthesia-effect was estimated to be +0.4% but failed to reach significance at the 5% level (P = 0.127). The ρ, estimated intra-class correlation between the two rSO2 measurements was 0.9336, indicating that the repeated measurements of rSO2 were reliable within-subjects.

Hemodynamic variables

The MAP, HR and CI evenly showed an initial increase with a subsequent decrease (Fig. 1). The temporal changes in the MAP, HR, and CI were statistically significant (P < 0.001, P = 0.007, and P = 0.001, respectively). N2O significantly affected the pattern of the temporal changes in the CI (P = 0.021) but not MAP (P = 0.059) or HR (P = 0.877). Changes in N2O had no significant effect on the CI at any separate time period (P ≥ 0.05 between groups). Despite the statistical insignificance, N2O mildly augmented the increase in the HR (+17 beats/min), and reduced the slope of the decrease in the HR, MAP, and CI.

Modeling for the temporal changes in PET/FIDESF

The temporal changes in PET/FIDESF were modeled by

\[
\text{Predicted PET/FIDESF} = f(\text{time}) = 0.9080 + (0.6196 - 0.9080) \times e^{-0.7836 \times \text{Time}}
\]

when \(\text{PETCO}_2=40 \text{ mmHg}\) and CI = 3.8 L/min/m\(^2\) (Fig. 2). The time to half (t\(_{0.5}\)) was estimated to be approximately 1.5 min from T0. In concordance with the well-known concept on the pharmacokinetics of volatile anesthetics, the \(\text{PETCO}_2\) (P = 0.001) and CI (P < 0.001) significantly modified the Asym, not lrc or y0. A decrease in \(\text{PETCO}_2\) increased the Asym by 0.0014 (0.0009, SE)/mmHg and increase the CI by 0.0081 (0.0019, SE)/L/min/m\(^2\). No other covariates, such as the N2O, MAP, or HR, modified the parameters. There was a strong correlation between the random effects for the intercepts of

![Graph 1: Temporal changes in MAP, HR, and CI](image1)

![Graph 2: Predicted changes in PET/FIDESF](image2)
Asym and y0 (r=0.983) and random effects for y0 were removed. Random effects were ± 0.0458. The standardized residuals were normally distributed, -0.1803 (-0.7387-0.5468).

Modeling for the increase in ΔrSO_2 for PETDESF

The final model for the increase in ΔrSO_2 were determined using the following equation

$$
\text{Predicted } \Delta rSO_2 = -0.3362 - 25.9425 \times \frac{\log(\text{PETCO}_2-40)-9.3549}{0.1084}
$$

where $\text{PETCO}_2=40$ mmHg in the Air group. In the model, R_0 was constant at -0.3362 (0.2894) and R_{max}, E_{C50}, and θ were modified by a combination of PETCO_2 and N_2O (Table 3). No other covariates, such as MAP, HR, or CI, had a significant effect on the parameters ($P \geq 0.05$). The effects of CO2 on R_{max} and θ were estimated within the course of the increase in PETDESF (Fig. 3). However, the typical values for the cerebrovascular reactivity to CO2 could be estimated by 1.5389%/mmHg in the Air group, and 1.2898%/mmHg in the N2O group ($P \geq 0.05$ between groups). Random effects were ± 2.3872. The standardized residuals were normally distributed, 0.1798 (-0.4629-0.4713).

DISCUSSION

During the rapid introduction of desflurane, the curve for the temporal increase in PET/FIDESF from a concentration of 4% to 12% in this study agreed reasonably well with a textbook example regarding the effect of PETCO2 and CI. High residuals are indicative of low predictability and the need of the two-exponential curves. We did not attempt to refine the model because it was beyond the interest of the present study. Prefilled N2O in the lung had no effect on the curve. The rapid introduction of desflurane produced a similar hemodynamic stimulatory effects to previous reports. Stimulation peaked at approximately 1.5 min from T0, which approximated to t0.5 of the curve for the increase in PETDESF. N2O failed to block the stimulation of MAP and HR, or mildly promoted the increased pattern, which is comparable to the N2O-induced changes in pupil diameter reported by Daniel et al. (3). As expected, rSO2 also increased up to 24-25% according to the increase in PETDESF in a concentration-dependent manner. The residuals were extremely small and independent of any possible violation by the MAP, HR, or CI. This study did not examine the random effects in detail. The

Table 3. Parameter estimates of the model to fit ΔrSO_2 according to PETCO2

Groups	R_{max} (%)	E_{C50} (%)	θ
Air group (n=6)			
$\text{PETCO}_2=40$ mmHg	25.9425	9.3549	0.1084
$\text{PETCO}_2=30$ mmHg	(4.6705) (1.0516)	(0.0252)	
$\text{PETCO}_2=30$ mmHg	(4.6705) (1.0516)	(0.0252)	
N2O group (n=6)			
$\text{PETCO}_2=40$ mmHg	24.8791	10.0976	0.1851
$\text{PETCO}_2=30$ mmHg	(4.6705) (1.0070)	(0.0245)	
$\text{PETCO}_2=30$ mmHg	(4.6705) (1.0070)	(0.0245)	

Values are reported as the mean (standard error of mean). R_{max}, the destined maximum response of rSO2; E_{C50}, median effective concentration of desflurane; $\text{e}^{-\theta}$, the inverse slope factor; PETCO2, end-tidal concentration of carbon dioxide. The * mark denotes the statistically significant difference from $\text{PETCO}_2=40$ mmHg ($P<0.001$); The † mark denotes the statistically significant difference from Air group ($P<0.001$).

Fig. 3. Predicted ΔrSO_2 for the increase in PET/FIDESF according to the change in PETCO2. The predicted ΔrSO_2 increases with increasing PETDESF as a four-parameter logistic curve. At $\text{PETDESF}=40$ mmHg, the addition of N2O decreases the slope of the increase, but the same maximum rSO2 lies outside of this graph. In N2O group, both the inverse slope factor and maximum rSO2 decrease significantly with decreasing PETCO2. The N2O-effects decrease with decreasing PETCO2, and the differences between the groups disappear when PETCO2= 30 mmHg. PETDESF, end-tidal concentration of desflurane (%); PETCO2, end-tidal carbon dioxide concentration (mmHg).
random effects were confined to refining the relationship between the predictors and the response by eliminating the individual variability. Modeling for the population was beyond the scope of this study. The fitted equation included three major parameters, R_{max}, EC_{50}, and θ.

Hypocapnia reduced the R_{max}, and increased the slope in the Air group. EC_{50} was shifted to the right slightly but significantly. This suggests that the cerebrovascular reactivity to CO$_2$ still subsists at more than 1.5 MAC desflurane. The CO$_2$ reactivity was not measured while the patient was awake. Therefore, the absolute values for the reactivity cannot be used to draw any real conclusion as to whether it was intact or preserved. There are no reports on the reactivity to CO$_2$ measured at high concentrations of desflurane that could be used to compare with the present study. With 0.5-1.0 MAC desflurane, the reactivity to CO$_2$ is considered to be preserved (7-9). In a study of 1.5 age-adjusted MAC desflurane-anesthetized children, the reactivity to CO$_2$ was impaired (8). The estimate of the overall reactivity to CO$_2$ of rSO$_2$ was 1.2898-1.5389%/mmHg, which is similar to the 1.1 ± 0.67%/mmHg estimated results from 5% desflurane-anesthetized adults by Lee et al. (9). In this study, the reactivity to CO$_2$ was estimated during the dynamic phase of the increasing concentration of desflurane, which is unlike the steady state used by others. Its importance is unknown and so any comparison might be invalid.

Although there is some discrepancy in the measurements or design, it can be generally summarized that the cerebrovascular effect of the solitary or additional N.O to volatile anesthetics causes an elevation (10-12), or at least no decrease (13-16) in the cerebral blood flow. Interpreting the effect of N.O on these parameters is quite complicated. During normocapnia, the addition of 60% N.O obviously increased the inverse slope factor θ and shifted EC_{50} to the right in order to reduce the change in rSO$_2$ caused by an increase in desflurane concentration, while the R_{max} was unchanged. These N.O-effects disappeared in hypocapnia. Lowering PETCO$_2$ shifted the EC_{50} to the left and reduced the θ. Summary of the hypocapnia-effect in the N.O group is the right-shift and steepening of the curve. There may be two explanations for this observation. The rapid introduction of desflurane could cause a pronounced hypervemic condition of the brain, in which no more hyperemia could be reached even by adding N.O. The slower response in the N.O group might indicate a disturbance of the cerebral vascularity to changes in the desflurane concentration. The other explanation is that hypocapnia overwhelms the effect of N.O.

The former explanation partly agrees with some previous studies that reported a cerebrovascular effect in anesthesia with a combination of N.O and volatile anesthetics, in which N.O had no additional effect on the volatile-induced change in cerebral blood flow velocity (16). Contradiction was also found. For example, N.O disturbs the flow/metabolism coupling when added to sevoflurane (12). No other report has estimated the additional N.O-effect even with a desflurane concentration of >1.5 MAC or with a variety of CO$_2$ tension. The latter explanation remains to be demonstrated. There are no reports of interactions between hypocapnia and N.O. Local factors of the brain should also be considered. N.O or volatile anesthetics redistribute rCBF (13, 17, 18). The rSO$_2$ measurements were limited to the frontal pole of the brain, which represent neither the global CBF nor typical rCBF.

One limitation of this study is that the protocol included 3 ng/mL Ce of remifentanil during induction of anesthesia. It was clinically relevant to suppress the hemodynamic response due to laryngoscopy. By waiting 20 min from the discontinuation of the remifentanil infusion, it was confirmed the Ce fell below 0.3 ng/mL. This is the minimum concentration where no hemodynamic interaction between remifentanil and desflurane would be expected. Moreover, our episodic finding suggested that desflurane-induced sympathetic stimulation is unlikely repeat once it was stimulated, which was also inferred from the classical report by Weiskopf et al. (19).

Another shortcoming of this study is the well-known limitations of rSO$_2$. It is believed that the confounders had been eliminated. The hemoglobin concentrations and PETCO$_2$ values were similar in both groups, which would be regarded a major determinant for the change in rSO$_2$. The SpO$_2$ values were all within 98-100%, and the MAP values were within 44-123 mmHg. Only two subjects showed a MAP <50 mmHg. The within-subject variability was confirmed to be <10% with the reliability test using the intra-class correlation. The value of the intra-class correlation in examining the reliability of the repeated medical data was well described by Everitt and Rabe-Hesketh (20). The inter-subjects variability of rSO$_2$ was also removed by considering the difference from the baseline. There was a relatively small number of subjects enrolled in this study. However, the nature of mixed-effects modeling can overcome the size of the sample. The limitations related to the small sample size always arise from the inevitable inter-individual variability, which can be eliminated by mixed-effects modeling. The quality of our fitted model was exceptionally good, and the results and conclusions are strong.

In conclusion, a nonlinear mixed-effects model, which strongly predicted the response of rSO$_2$ as the function of logarithm concentration of PETCO$_2$, was modified only by PETCO$_2$ and N.O. Hypocapnia shifted the response curve to the right and reduced the maximum response of rSO$_2$ in the Air group. The cerebrovascular reactivity to CO$_2$ still preserved within the scope of this study. It is difficult to interpret the effects of N.O on the response of rSO$_2$ to the rapid introduction of desflurane. There are little or no N.O-induced hemodynamic changes and the effects of N.O are definitely due to its inherent cerebrovascular effect.

REFERENCES

1. Ebert TJ, Muzi M, Lopatka CW. Neurocirculatory responses to sevo-
Desflurane and Cerebral Oximetry

1. Desflurane in humans. A comparison to desflurane. Anesthesiology 1995; 83: 88-95.
2. Ebert TJ, Muiz M. Sympathetic hyperactivity during desflurane anesthesia in healthy volunteers. A comparison with isoflurane. Anesthesiology 1993; 79: 444-53.
3. Daniel M, Larson MD, Eger EI 2nd, Noorani M, Weiskopf RB. Fentanyl, clonidine, and repeated increases in desflurane concentration, but not nitrous oxide or esmolol, block the transient mydriasis caused by rapid increases in desflurane concentration. Anesth Analg 1995; 81: 372-8.
4. Brenet O, Granry JC, Poirier N, Le Gall R. The effect of desflurane on cerebral blood flow velocity and cerebrovascular reactivity to CO2 in children. Ann Fr Anesth Reanim 1998; 17: 227-33.
5. Tonner PH, Scholtz J, Krause T, Paris A, von Knobelsdorff G, Schulte an Esch J. Administration of sufentanil and nitrous oxide blunts cardiovascular effects of desflurane but does not prevent an increase in middle cerebral artery blood flow velocity. Eur J Anaesthesiol 1997; 14: 389-96.
6. Hoffman WE, Charbel FT, Edelman G. Desflurane increases brain tissue oxygenation and pH. Acta Anaesthesiol Scand 1997; 41: 1162-6.
7. Mielck F, Stephan H, Buhre W, Weyland A, Sonntag H. Effects of 1 MAC desflurane on cerebral metabolism, blood flow and carbon dioxide reactivity in humans. Br J Anaesth 1998; 81: 155-60.
8. Lugninbuehl IA, Karsli C, Bissonnette B. Cerebrovascular reactivity to carbon dioxide is preserved during hypocapnia in children anesthetized with 1.0 MAC, but not with 1.5 MAC desflurane. Can J Anaesthest 2003; 50: 166-71.
9. Lee YS, Kwon TM, In JY, Woo SH, Yon JH, Kim JW, Choe WJ, Kim KM, Hong KH. Reliability of rSO2 to measure CO2 reactivity of cerebral vasculatures during desflurane-N2O anesthesia. Korean J Anesthesiol 2002; 43: 288-93.
10. Girling KJ, Cavill G, Mahajan RP. The effects of nitrous oxide and oxygen on transient hyperemic response in human volunteers. Anesth Analg 1999; 89: 175-80.
11. Reinstrup P, Ryding E, Algotssson L, Berntman L, Uski T. Regional cerebral blood flow (SPECT) during anaesthesia with isoflurane and nitrous oxide in humans. Br J Anaesth 1997; 78: 407-11.
12. Kasti KK, Langsjo JW, Aalto S, Oikonen V, Sipila H, Teras M, Hinkka S, Metsahonkala L, Scheinin H. Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology 2003; 99: 603-13.
13. Manohar M, Parks C. Regional distribution of brain and myocardial perfusion in swine while awake and during 1.0 and 1.5 MAC isoflurane anaesthesia produced without or with 50% nitrous oxide. Cardiovasc Res 1984; 18: 344-53.
14. Cho S, Fujigaki T, Uchiyama Y, Fukasaki M, Shibata O, Sumikawa K. Effects of sevoflurane with and without nitrous oxide on human cerebral circulation. Transcranial Doppler study. Anesthesiology 1996; 85: 755-60.
15. Reinstrup P, Ryding E, Ohlsson T, Dahm PL, Uski T. Cerebral blood volume (CBV) in humans during normo- and hypocapnia: influence of nitrous oxide (N2O). Anesthesiology 2001; 95: 1079-82.
16. Karsli C, Lugninbuehl IA, Bissonnette B. The effect of nitrous oxide on cerebral blood flow velocity in children anaesthetised with desflurane. Anaesthesia 2003; 58: 24-7.
17. Manohar M. Regional distribution of porcine brain blood flow during 50% nitrous oxide administration. Am J Vet Res 1985; 46: 831-5.
18. Kannurpatti SS, Biswal BB, Kim YR, Rosen BR. Spatio-temporal characteristics of low-frequency BOLD signal fluctuations in isoflurane-anesthetized rat brain. Neuroimage 2008; 40: 1738-47.
19. Weiskopf RB, Eger El 2nd, Noorani M, Daniel M. Repetitive rapid increases in desflurane concentration blunt transient cardiovascular stimulation in humans. Anesthesiology 1994; 81: 843-9.
20. Everitt B, Rabe-Hesketh S. Analyzing Medical Data Using S-PLUS. New York: Springer-Verlag, 2001.