Pig-islet xenotransplantation: recent progress and current perspectives

Hai-Tao Zhu, Wan-Li Wang, Liang Yu and Bo Wang*

Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi’an Jiaotong University, Xi’an, China

INTRODUCTION

Diabetes is one of the most dangerous threats to human health. However, pancreatic islet transplantation has gradually showed satisfactory and prospective application in the treatment of type 1 diabetes mellitus (T1DM) (1). In the year 2000, Edmonton protocol (2) demonstrated that islet allotransplantation had achieved a remarkable success, but shortage of donors still prevented the progression of clinical islet transplantation. Xenotransplantation provides an effective and appropriate solution for this limitation. Among the potential candidates for islet xenotransplantation, pig is considered as the most ideal donor for future clinical applications (3–8). Although encouraging findings have been obtained in pig-to-primate islet xenotransplantation (9–11), the potential clinical application of pig islet still faces two major challenges: inadequate supply of islet cells with high-quality and xenorejection. This review will discuss the current approach and progress in pig donor selecting, isolation and preparation of pig-islet grafts, prevention of xenorejection, microbial safety, and obtained findings of clinical trials.

Islet xenotransplantation is one prospective treatment to bridge the gap between available human cells and needs of patients with diabetes. Pig represents an ideal candidate for obtaining such available cells. However, potential clinical application of pig islet still faces obstacles including inadequate yield of high-quality functional islets and xenorejection of the transplants. Adequate amounts of available islets can be obtained by selection of a suitable pathogen-free source herd and the development of isolation and purification method. Several studies demonstrated the feasibility of successful preclinical pig-islet xenotransplantation and provided insights and possible mechanisms of xenogeneic immune recognition and rejection. Particularly promising is the achievement of long-term insulin independence in diabetic models by means of distinct islet products and novel immunotherapeutic strategies. Nonetheless, further efforts are needed to obtain much more safety and efficacy data to translate these findings into clinic.

Keywords: islet, pig, isolation, xenotransplantation, immune, rejection

ORIGINAL OF PORCINE ISLETS

Islets obtained from embryonic, fetal, neonatal, young, or adult pigs have been selected as the grafts for xenotransplantation. Despite several years of study, no exact consensus has been achieved about the selection of the most optimal pig to supply adequate viable isolated islet cells for preclinical xenotransplantation (11, 12). Only islet xenografts harvested from neonatal (2–3 days old) and adult (>6 months) pigs have been shown to correct diabetes in non-human primates (NHPs) or humans (13–16). Fetal pig islet-like cell clusters (ICCs) and neonatal pig islets (NPIs) are immature cells, which can be easily obtained by enzymatic digestion and simple culture. Other advantages of ICCs and NPIs are their apparent resistance to ischemic and inflammatory damage during isolation that makes islet recovery more efficient. However, several studies suggested that ICCs had poor insulin response to glucose (17–21). Typically, ICCs require 2–3 months for maturation to achieve in vivo functionality (22). Additionally, in diabetic monkeys, transplanted pig ICCs were almost completely destroyed within 12 days post-transplantation (23). All the disadvantages restrict the potential clinical application of pig ICCs. Neonatal pig islets consist of differentiated pancreatic endocrine cells (about 35%) and primarily epithelial cells (about 57%), which is also considered as islet precursor cells (24, 25). NPIs are more responsive to high glucose than ICCs and subsequently have a powerful functional ability to restore normoglycemia in diabetic animals, which are mainly due to β cell expansion and the striking differentiation of epithelial cells into β cells (26–29). NPIs clearly express xenoaantigens including sialic acid antigens, Hanganutziu–Deicher (H–D) antigens, and Galα1–3Galβ1–4GlcNAc-R (α-Gal) epitopes (30). However, with the development

Abbreviations: α1,3GT, α1,3-galactosyltransferase; α-Gal, Galα1–3Galβ1–4GlcNAc-R; APCs, antigen presenting cells; APIs, adult pig islets; CMS, Chicago Medical School; CTLA4Ig, cytotoxic T lymphocyte antigen 4-immunoglobulin; ECs, endothelial cells; GMP, good manufacturing practices; GT-KO, α1,3-galactosyltransferase gene-knockout; HAR, hyperacute rejection; H–D antigen, Hanganutziu–Deicher antigen; IBMIR, instant blood-mediated inflammatory reaction; ICCs, islet-like cell clusters; IE/mm², islet equivalents per mm²; IEQ, islet equivalents; MSCs, mesenchymal stem cells; NK cell, natural killer cell; NHPs, non-human primates; NPIs, neonatal pig islets; PERV, porcine endogenous retroviruses; SPE, specific pathogen-free; T1DM, type 1 diabetes mellitus; TCR, T-cell receptor; WIT, warm ischemia time.
of genetic engineering technology, stable gene transferred NPIs can therefore effectively attenuate the xenogenicity (30–32). In pig-islet xenotransplantation, several studies suggested that cell numbers in the range of 25,000–100,000 islet equivalents (IEQ)/kg recipient body weight were required to achieve insulin independence in diabetic NHPs (13, 16, 33–35). Usually, after \textit{in vitro} culture, tissue from one neonate pancreas yields about 50,000 NPI aggregates (24); thus, at least four neonate pig donors are required to treat a diabetic primate weighing 6–8 kg.

Adult pig is regarded as the major donor source of islet xenografts, which can supply a sufficient number of viable islet cells and start functioning immediately after transplantation. More than 255,000 adult pig islets (APIs) with high purity (80–95\%) can be isolated from an adult pig donor (36). Furthermore, published study also reported an extremely high APIs yield, up to 800,000 IEQ per pancreas after purification (37). The achievements make it possible to perform single pig donor clinical xenogeneic transplantation. Additionally, in comparison with young pig (<6 months) pancreas, a great number of large (150–200 \(\mu \)m) and well-structured islets can be obtained from adult pig donors (38–40). In large islets, the centralized structure for both collagen and capillaries could reduce enzymatic digestion-induced islet damage and subsequently facilitate post-transplant revascularization (38, 41). Consequently, APIs possess a better potential for cellular engraftment in xenotransplantation.

The breed and strain of donor pigs have a vital impact on the outcome of islet isolation. Previous studies suggested that German Landrace and Large White pigs appeared to be more suitable islet donor breeds than Duroc, Pietrain, Hampshire, Belgium Landrace, local farmers (hybrid), and wild-type pigs (42, 43). The German Landraces showed the highest numbers of large islets (150\(\mu \)m) and islet volume density (%) (43). In contrast, Heiser et al. reported that Pietrain pig could produce more islet yields than purebred German Landrace, Munich minipig “Troll,” and hybrid pigs (44). The variability of results in different laboratories was possibly related to alterations in islet isolation and preparation procedure. Recently, very high islet yields (up to 9,589 \(\pm \) 2,838 IEQ/g pancreas) with large size and well-function were harvested from adult Chicago Medical School (CMS) miniature pigs (45). The CMS miniature pigs can be bred under specific pathogen-free (SPF) conditions. All these making this pig breed potentially a better donor candidate for future clinical islet xenotransplantation.

ISOLATION AND PREPARATION OF PORCINE ISLETS

Islet-like cell clusters and NPIs can be easily obtained by simple enzymatic digestion and subsequent pre-transplantation culture due to relative lack of exocrine tissues and concomitant relative abundance of endocrine tissues (23, 24, 46). Briefly, the pancreas from fetuses or neonates is surgically removed in sanitary environments, chopped into small fragment measuring 1–2 mm\(^3\), digested by collagenase, washed, and then explanted in Petri plate for culturing. Normally, a culture time of 4–9 days is required to clear exocrine cells and facilitate islet cell re-aggregation. The isolation and preparation of APIs grafts from adult pigs is similar to that of humans. Factors including quality status of donor pancreas, blood exsanguinations, warm ischemia time (WIT), perfusate, types of digestive enzyme, and isolation/purification process will affect the islet yield and function (47–49).

SELECTION AND PROCUREMENT OF PANCREAS

Morphological screening before isolation process is necessary to obtain amounts of islet cells with high-quality, decrease variance in islet yield and viability, and reduce economic costs. A rapid and inexpensive strategy for assessment of pig donor pancreas was established in 1994 (50), which indicated that a pancreas containing round or oval islets with compact borders would provide successful islet isolation. Meanwhile, islet size \textit{in situ} was also regarded as another important parameter for successful isolation. A donor pancreas with predominantly large islets (>200 \(\mu \)m) generally yielded significantly higher numbers of cell grafts (51, 52). Additionally, a recent study indicated that only islet equivalents per mm\(^2\) (IE/m\(^2\)) in splenic lobe of pancreas could dramatically predict an accurate islet yield, while variables such as pig donor age, gender, ischemic time, and enzyme lot were not significantly correlated with islet yield (53).

Warm ischemia time during pancreas procurement should be reduced as much as possible to prevent autolysis of pig donor pancreas and apoptosis in islet cell, reduce expression of inflammatory mediators, and improve islet survival rate during culture (54, 55). However, there is still lack of uniform standards of safe WIT for pig-islet preparation. It is considered that WIT within 10 min was essential for successful pig-to-primate islet xenotransplantation (48).

ISOLATION OF PORCINE ISLETS

Although several major improvements or modifications have been made in the field of pig pancreas digestion and islet isolation (56–58), there is still a need for better isolation methods. Usually, immediately after harvesting of intact pig pancreas under sterile conditions, the pancreatic duct is cannulated and then collagenase is delivered by syringe or controlled perfusion after cold preservation (<2 h of cold ischemia time is advisable). Currently, a novel good manufacturing practices (GMP) grade bovine nervous tissue-free enzyme, Liberase MTF C/T, which contains lower endotoxin content (<10 EU/mg), is recommended for successful pancreas digestion (59, 60). Following the step of collagenase injection, the pancreas is placed in a new re-circulating digestion/filtration chamber (called Oxford chamber), which is similar to standard Ricordi chamber. The Oxford chamber results in less destruction of tissue, greater yield of islets, as well as improved cell viability (61). With the new device, up to 5,000 islets/g pancreas can be obtained from juvenile pigs. During this digestion process, another study recommended that digestion time should be limited to 35 min and temperature in the chamber should not exceed 35\(^\circ\)C (62). The limited time and lower temperature avoid the deleterious impact of overdigestion and oxidative stress induced islet damage, respectively (45, 63). Once the islets are dissolved from collagen matrix, the freshly isolated cells are immediately removed from digest/filtration chamber and then placed in a cell processor (COBE 2991) for purification.

PURIFICATION OF PORCINE ISLETS

Purification is the next necessary process to completely separate islets from acinar tissues, especially for islet preparation from
young or adult pigs. The classical purification method is based on a density gradient centrifugation, taking advantage of the fact that the density of islet is lower than that of exocrine tissue. The final purity of islet products mainly depends on the characteristics of density gradients (64). At present, Ficoll is the most commonly used reagent for islet purification (56, 65), and usually a purity of 70–90% (islets/whole pancreas) can be achieved (66). However, this reagent has disadvantages of hypertonicity, high viscosity, and possible endotoxin content, which are harmful to pig-islet viability and function (67). In contrast, Iodixanol is widely used in clinical examination as an iso-osmotic contrast medium (approximately 290 mOsm/kg), which is free of endotoxin. Compared with Ficoll solution, Iodixanol can significantly improve pig-islet yield and viability, reduce cytokine/chemokine generation, and prevent islet mass loss during pre-transplantation culture. (67–69).

In general, freshly obtained islets from adult pigs are often of heterogeneous constitution, culturing provides a valuable tool to improve xenograft quality and homogeneity (70). Although islet recovery decreased dramatically after prolonged culture (7–14 days), the APIs displayed shorter time-to-normoglycemia and reversed hyperglycemia in all recipients.

IMMUNOLOGICAL REJECTION OF PORCINE ISLET XENOTRANSPLANTATION

INSTANT BLOOD-MEDIATED INFLAMMATORY REACTION

Immuno-rejection, which poses negative impacts on islet engraftment as well as function, is still a major obstacle for successful clinical application of pig-islet xenotransplantation (71, 72). Several studies showed that after intraportal injection, tissue factor (TF) produced and expressed on the transplanted pig islets would first trigger platelet accumulation, coagulation, and complement activation, neutrophil infiltration, as well as graft dysfunction and destruction when exposed to fresh recipients’ blood; this phenomenon was described as instant blood-mediated inflammatory reaction (IBMIR) (73–75). Generally, IBMIR contributes to a considerable early pig-islet xenograft loss (estimated up to 60–80%) in diabetic primate (71, 76). Thus, effective treatments targeting IBMIR response provide promise for minimizing the critical islet dose to restore normoglycemia and insulin independence. After IBMIR has emerged, other subsequent immune responses intervene more specifically in relation to pig-islet xenografts.

HYPERACUTE REJECTION

Islet engraftment is a process of graft revascularization mainly by recipients’ endothelial cells, very few endothelial cells from donors can survive after pre-transplantation culture (77). In addition, Gal molecules expressed on pig islets are lower than solid-organ, only 5% of Gal is expressed on the surface of APIs and α1,3-galactosyltransferase (α1,3GT) activity was also undetectable (78, 79). Hence, the pig-islet xenografts rarely undergo hyperacute rejection (HAR) as observed in vascularized organ transplants. Furthermore, in a study of pig-to-NPH islet xenotransplantation, neither increase in Gal-specific IgG or IgM antibody levels nor Gal-specific staining (isolectin B4) on islets was observed (16). All the data indicate that natural anti-Gal antibodies do not appear to play a major role in the immune rejection of APIs in diabetic NHPs. Nevertheless, Gal expression on pig islets is age dependent, both ICCs and NPIs clearly express a relatively higher level of Gal antigens (up to 11–19% of total islets) (30, 78). Additionally, the Gal expression remains positive with both small (<100 µm) and large islets (>100 µm) after isolation procedure (41). Therefore, Gal molecules are still considerable targets for humoral xenorejection.

CELLULAR REJECTION

Still, if the islet xenografts escape the acute damages due to IBMIR and additional humoral response, they will be subject to acute cellular rejection. Typically, in pig-to-rodent islet xenotransplantation, cellular rejection appears to be mainly a CD4+ T-cell-dependent process (80–82). In diabetic primates, the acute cellular rejection takes place during the first 24 h to 20 days after transplantation and is characterized by a massive infiltration of macrophages and T cells (CD4+ and CD8+ T cells) in the periphery of grafts (16, 83). Lindeborg et al. further demonstrated that the CD4+ T cells were the major phenotype of activated T-cell clones reactive against pig-islet antigens (84). Besides, the T-cell-mediated response possibly induces numerous other cellular responses such as natural killer cell (NK cell), B cell, and innate responses. All these indicate that T cell plays a crucial and central role in the cellular rejection against pig islets. Although pig-islet cells are not believed to act as professional antigen presenting cells (APCs), both direct and indirect pathways of antigen presentation appear to be involved in the xenogeneic T-cell response (72). Usually, T cells require two signals to become fully activated, one is T-cell receptor (TCR) signaling, and the other is co-stimulatory signal. Co-stimulation signal, which is provided by interaction between co-stimulatory molecules expressed on the membrane of APC and T cell, is very crucial to induction and amplification of an effective immune response (85). Thus, therapies targeting different pathways affecting T-cell activation are believed to induce a long-term pig-islet survival and host hyporeactivity.

METHODS TO RELIEVE XENOGENIC REJECTION ENCAPSULATED ISLETS

Immuno-isolation, hiding the islet grafts from recipients’ immune system, has become an effective strategy to protect pig islets from immune rejection (86). Till present, there are two types of immune-isolation devices: microencapsulation and macroencapsulation. Microencapsulated islets are microcapsules containing single islet or few islets, while the macrocapsules contain a few islets. The sizes of encapsulated islet grafts should be chosen according to implant sites as well as islet viability and function. Although the microcapsules are difficult to implant and remove, the permeability of microcapsules are better than that of macrocapsules. The ideal capsules should protect inner pig grafts from attacks mediated by host’s immune cells and enable free exchange of nutrients, oxygen, and wastes. Thus, the function of encapsulated islet is closely linked with biocompatibility of materials. (87). In recent years, a variety of artificial materials, including modified polysulfone, protamine–heparin complex, cellulose, agarose, ethylene glycol, and alginate were used to form macrocapsules or microcapsules, as a result, islet graft survival time was significantly prolonged (88–92). Moreover, after subcutaneous transplantation of encapsulated pig islets (alginate based),
The potential to normalize glucose homeostasis and completely prevent the occurrence of IBMIR and coagulation dysfunction was demonstrated. Pig islet botic genes (CD39/thrombomodulin), will certainly prevent the stimulation of the primary pathway, which eventually induced differentiation bias of T helper cells (Th cells). When the direct and indirect pathways of T-cell activation were selectively blocked by pig CTLA4Ig modified immature dendritic cells and murine CTLA4Ig protein, the survival time of pig-islet xenografts was significantly prolonged (>100 days) in diabetic mice. Anti-CD154 antibodies, known to be effective in blocking indirect pathway of all recognition, is also a critical component of effective immunosuppressive strategies in preventing cellular rejection in pig-to-NHPs islet xenotransplantation.

CO-STIMULATORY BLOCKING

The engagement of TCR with foreign antigen without co-stimulatory signal will render T cells unresponsive to the antigen (known as T-cell anergy), thereby suppressing antigen induced response. Our previous study showed that the survival rate of donor-derived (pig) cytotoxic T lymphocyte antigen 4-immunoglobulin (CTLA4Ig) gene-modified islet xenografts was significantly prolonged in diabetic rats. The possible mechanism was that the CTLA4Ig fusion protein blocked CD28/B7 co-stimulatory signaling of the primary pathway, which eventually induced differentiation bias of T helper cells (Th cells). When the direct and indirect pathways of T-cell activation were selectively blocked by pig CTLA4Ig modified immature dendritic cells and murine CTLA4Ig protein, the survival time of pig-islet xenografts was significantly prolonged (>100 days) in diabetic mice. Anti-CD154 antibodies, known to be effective in blocking indirect pathway of all recognition, is also a critical component of effective immunosuppressive strategies in preventing cellular rejection in pig-to-NHPs islet xenotransplantation.

GENE-MODIFIED PIG IN ISLET XENOTRANSPLANTATION

Genetically modified pigs offer a number of potential advantages in minimizing the risk of thrombosis, reducing rapid loss of transplanted islets, decreasing the number of required islets, mitigating side effects of conventional/systemic immunosuppression, and improving islets activity and survival. Transgenic expression of human heme oxygenase-1 (HO-1) can effectively protect pig xenografts from ischemia/reperfusion injury and acute rejecting mediated by inflammatory cytokines. Humoral rejection can be overcome in pig-to-NHPs islet xenotransplantation by crossbreeding of α1,3-galactosyltransferase gene-knockout (GTKO) pigs with transgenic pigs expressing human complement regulators including CD46, CD59, and human decay-accelerating factor (hDAF, CD55). Additional pig genetic engineering, knockout of TF, and overexpressing of human antithrombotic genes (CD39/thrombomodulin), will certainly prevent the occurrence of IBMIR and coagulation dysfunction. Pig islet transgenic for a high-affinity variant of CTLA4Ig also displays the potential to normalize glucose homeostasis and completely prevent cellular rejection in humanized mouse model. Recently, the development of RNA interference technology targeting porcine endogenous retroviruses (PERV) has substantially solved the possible problem of retrovirus contamination. With the development and modification of genetic engineering, transgenic pigs will eventually drive islet xenotransplantation into clinical application.

OTHER FACTORS INFLUENCING ISLET SURVIVAL

IMPLANT SITE

Successful pig-islet xenotransplantation is also closely related with appropriate selection of implantation site. The ideal transplant site should take into account: (1) surgical operation is simple and safe, (2) the ability to maintain a stable glucose metabolism, and (3) immune protection. Besides intrahepatic transplantation, renal subcapsular, subcutaneous, as well as omentum are commonly used sites in both experimental and preclinical islet xenotransplantation. Renal subcapsular and omentum represent the interesting alternatives due to advantages of relatively convenient and invasive process, sufficient blood and oxygen supply, portal venous drainage, and anatomical immune privilege.

ISLET GRAFT REVASCULARIZATION

Regeneration of optimal microvascular supply is a vital prerequisite for islet transplantation. However, isolated pig islets are avascular and revascularization is generated 14 days after transplantation, therefore, promoting revascularization process and protecting newly formed microvasculature from rejection-mediated damage will immensely contribute to the improvement of islet function and survival. A recent study showed that, when islets were coated with mesenchymal stem cells (MSCs) and endothelial cells (ECs), the EC proliferation, sprout formation, migration of ECs into the islets as well as subsequent vascularization were significantly enhanced by MSCs. Similar findings were also demonstrated in syngeneic islet transplantation. Considering the powerful pro-angiogenic and immunomodulatory properties of MSCs, for pig-islet xenotransplantation, pre-treatment of islet grafts with recipient-derived MSCs will be helpful to accelerate islet revascularization and improve islet engraftment.

In addition, embryonic pig pancreatic tissue may also be another good choice. Embryonic pancreatic implants predominantly induce host-type vasculature to support growth and survival in diabetic rodents or monkeys, thereby evading hyperacutecity or acute rejection.

CLINICAL STUDY

The systematic clinical application of pig islets was first performed by Groth group. Between 1990 and 1993, 10 TIDM patients with kidney allografts were transplanted pig ICCs either intraperitoneally or under the capsule of renal graft. After transplantation, pig C-peptide could be detected in the urine for 200–400 days in four patients. The data suggest that pig islets can survive in the humans, providing a good basis for clinical use of xenogeneic islet.

The long-term pig-islet viability and function was reported by Elliott et al. (15). The blood glucose level of T1DM patient was
significantly reduced when the alginate-encapsulated NPIs was implanted intraperitoneally. After 10 years of follow-up, biopsy showed that there were still a large number of functional islets throughout peritoneal tissue. This single case study indicates that pig islets may have a positive long-term safety and therapeutic effect in the treatment of human T1DM, suggesting the necessity to conduct more large-scale clinical studies.

Living Cell Technology Co., Ltd. (LCT) developed a commercial encapsulated pig-islet product (Diabecell), which was tested in phase I/IIa clinical study in Moscow since 2007 (119, 120). A total of seven T1DM patients received Diabecell intraperitoneally at a dosage of 5,000–10,000 IEQ/kg, no significant adverse reactions were found post-transplantation. After 2-year follow-up, five patient's blood glucose levels decreased to a normal range (5.8–8.2 mmol/L), two patients were independent with insulin administration. Additional I/IIa trials are being conducted in New Zealand.

SAFETY OF PORCINE ISLET XENOTRANSPLANTATION

Interspecies transmission of PERV is still a potential risk factor in clinical pig-islet xenotransplantation. When human HK-293 cells were co-cultured with pig cells in vitro, PERV could infect human cells (121). In addition, the possibility of cross-species transmission of PERV was also confirmed in pig-to-mouse islet xenotransplantation (122). In contrast, no evidence of PERV activation was found in TIDM patients after long-term follow-up (123). However, PERV remains a potential threat requiring long-term follow-up in human clinical trials. Stringent PERV screening should be conducted in clinical islet xenotransplantation. With the emergence of PERV gene-knockout pigs, this bio-safety risk will be eliminated completely.

Besides PERV infections, other pathogens including herpesvirus, pig cytomegalovirus, lymphotropic herpesvirus, as well as bacterial pathogens also pose safety problems in pig-islet xenotransplantation, highlighting the importance of selecting of SPF pigs and prescreening of donor pigs.

CONCLUSION

Building on the remarkable progress in the experimental/clinical studies, it appears that pig islets have great potentiality to reverse diabetes in NHPs and humans. With development of suitable sources of genetically modified pigs and modification of isolation technology, together with improvement of specific immunosuppressive methods, a tangible therapy will benefit the patients with diabetes in the very near future. However, questions remain and detailed problems need to be adequately addressed.

REFERENCES

1. de Kort H, de Koning EJ, Rabelink TJ, Bruijn JA, Bajema IM. Islet transplantation in type 1 diabetes. BMJ (2011) 342:d217. doi:10.1136/bmj.d217
2. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med (2000) 342(4):236. doi:10.1056/NEJM200007273420401
3. Cooper DK, Gollackner B, Sachs DH. Will the pig solve the transplantation backlog? Am J Transplant (2002) 53:133. doi:10.1111/1600-6143.01059
4. Koulmanda M, Qipo A, Smith RN, Aunchinloss H Jr. Pig islet xenografts are resistant to autoimmune destruction by non-obese diabetic recipients after anti-CD4 treatment. Xenotransplantation (2003) 10(2):178. doi:10.1034/j.1399-3089.2003.02040.x
5. Potter KJ, Abudini A, Marek P, Klimak AM, Butterworth S, Driscoll M, et al. Islet amyloid deposition limits the viability of human islet grafts but not porcine islet grafts. Proc Natl Acad Sci U S A (2010) 107(9):4305. doi:10.1073/pnas.0909241010
6. Tai HC, Ezzelarab M, Hara H, Ayares D, Cooper DK. Progress in xenotransplantation following the introduction of gene-knockout technology. Transpl Int (2007) 20(2):107. doi:10.1016/j.tox.2006.03.008
7. Casu A, Echeverri GJ, Bottino R, van der Windt DJ, He J, Eker B, et al. Insulin secretion and glucose metabolism in alpha 1,3-galactosyltransferase knock-out pigs compared to wild-type pigs. Xenotransplantation (2010) 17(2):131. doi:10.1002/tmj.21272
8. Garkavenko O, Dieckhoff B, Wynyard S, Denner J, Elliott RB, Tan PL, et al. Absence of transmission of potentially xenotic viruses in a prospective pig to primate islet xenotransplantation study. J Med Virol (2008) 80(11):2046. doi:10.1002/jmv.21272
9. Cozzi E, Bosio E. Islet xenotransplantation: current status of preclinical studies in the pig-to-nonhuman primate model. Curr Opin Organ Transplant (2008) 13(2):155. doi:10.1097/MOT.0b013e3282b97842
10. Rood PP, Buhler LH, Bottino R, Trucco M, Cooper DK. Pig-to-nonhuman primate islet xenotransplantation: a review of current problems. Cell Transplant (2006) 15(2):89. doi:10.3727/000000006783982052
11. Dufrane D, Gianello P. Pig islet xenotransplantation into non-primate human model. Transplantation (2008) 86(6):753. doi:10.1097/TP.0b013e3181840565
12. Prabhakaran S, Hering BJ. What strain of pig should be used? Xenotransplantation (2008) 15(2):83. doi:10.1111/j.1399-3089.2008.00456.x
13. Thompson P, Badell SM, Lowe M, Turner A, Cano J, Avila J, et al. Alternate immunomodulatory strategies for xenotransplantation: CD40/154 pathway-sparing regimens promote xenograft survival. Am J Transplant (2012) 12(7):1765. doi:10.1111/j.1600-6143.2012.04031.x
14. Dufrane D, Goebels RM, Gianello P. Alginat macroencapsulation of pig islets allows correction of streptozotocin-induced diabetes in primates up to 6 months without immunosuppression. Transplantation (2009) 80(10):1054. doi:10.1097/TP.0b013e318186e267
15. Elliott RB, Escobar L, Tan PL, Muzina M, Zwain S, Buchanan C. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation (2007) 14(2):157. doi:10.1016/j.xenotrans.2006.10.001
16. Hering BJ, Wijkstrom M, Graham ML, Hårdstedt M, Aasheim TC, Jie T, et al. Prolonged diabetes reversal after intraperitoneal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates. Nat Med (2006) 12(3):301. doi:10.1038/nm1369
17. Otonkoski T, Ustinov J, Astrom M, Kallo E, Korsgren O, Hager P. Differentiation and maturation of porcine fetal islet cells in vitro and after transplantation. Transplantation (1999) 68(11):1674. doi:10.1097/00007890-199912150-00010
18. Tan C, Tuch BE, Tu I, Brown SA. Role of NADH shuttles in glucose-induced insulin secretion from fetal beta-cells. Diabetes (2002) 51(10):2989. doi:10.2337/diabetes.51.10.2989
19. Korsgren O, Jansson L, Eizirik D, Andersson A. Functional and morphological differentiation of fetal porcine islet-like cell clusters after transplantation into nude mice. Diabetologia (1991) 34(4):379. doi:10.1007/BF00430174
20. Bogdani M, Suevens KC, Bock T, Pipelleers-Marichal M, In’t Veld P, Pipeleers-M. Growth and functional maturation of beta-cells in implants of endocrine cells purified from porcine pancreas. Diabetes (2005) 54(12):3887. doi:10.2337/diabetes.54.12.3887
21. Sandler S, Anderson A, Eizirik DL, Hellerstrom C, Espevik T, Kulsberg B, et al. Assessment of insulin secretion in vitro from microencapsulated fetal porcine islet-like cell clusters and rat and mouse, and human pancreatic islets. Transplantation (1997) 63(12):1712. doi:10.1097/00007890-199706270-00002
22. Hardikar AA, Wang XY, Williams LJ, Kwock J, Wong R, Yao M, et al. Functional maturation of fetal porcine beta-cells by glucagon-like peptide 1 and ghrelin. Endocrinology (2002) 143(9):3850. doi:10.1210/en.2001-21134
23. Söderlund J, Wennberg L, Castaños-Velez E, Biberfeld P, Zhu S, Tibell A, et al. Fetal porcine islet-like cell clusters transplanted to cyromolgus monkeys: an immunohistochemical study. Transplantation (1999) 67(6):784. doi:10.1097/00007890-199903270-00002
Zhu et al. Pig-islet xenotransplantation

24. Korbett GS, Elliott JE, Ao Z, Smith DK, Warnock GL, Rajotte RV. Large scale isolation, growth, and function of porcine neonatal islet cells. *J Clin Invest* (1996) 97(9):2119. doi:10.1172/JCI11618649

25. Dufrane D, Gianello P. Pig islets for clinical islet xenotransplantation. *Curr Opin Neurol Hypertens* (2009) 18(6):495. doi:10.1097/01.nmh.0b013e328331ae83

26. Trivedi N, Hollister-Lock J, Lopez-Avalos MD, O’Neill JJ, Keegan M, Bonner-Weir S, et al. Increase in beta-cell mass in transplanted porcine neonatal pancreatic islet cells is due to proliferation of beta-cell and differentiation of duct cells. *Endocrinology* (2001) 142(5):2115. doi:10.1210/en.142.5.2115

27. Yoon KH, Quickel RR, Tatarakiewicz K, Ulrich TR, Hollister-Lock J, Trivedi N, et al. Differentiation and expansion of beta cell mass in porcine neonatal pancreatic islet cell clusters transplanted into nude mice. *Cell Transplant* (1999) 8(6):673.

28. Weir GC, Quickel RR, Yoon KH, Tatarakiewicz K, Ulrich TR, Hollister-Lock J, et al. Porcine neonatal pancreatic islet clusters (NPCCs): a potential source of tissue for islet transplantation. *Ann Transplant* (1997) 2(3):63.

29. Nielsen TB, Yderstræde KB, Schroder HD, Holst JJ, Brusgaard K, Beck-Nielsen H. Functional and immunohistochemical evaluation of porcine neonatal islet-like cell clusters. *Cell Transplant* (2003) 12(1):13. doi:10.3727/000000003783985142

30. Omori T, Nishida T, Komoda H, Fumimoto Y, Ito T, Sawa Y, et al. A study of the xenoantigenicity of neonatal porcine islet-like cell clusters (NPCGC) and the efficiency of adenovirus-mediated DAF (CD55) expression. *Xenotransplantation* (2006) 13(5):455. doi:10.1139/06-00335.x

31. Vizzardelli C, Molano RD, Piffaldi A, Berney T, Cattan P, Fenyes ES, et al. Neonatal porcine pancreatic cell clusters as a potential source for transplantation in humans: characterization of proliferation, apoptosis, xenoantigen expression and gene delivery with recombinant AAV. *Xenotransplantation* (2002) 9(1):14. doi:10.1399/3089.02002.00128

32. Cooper DK, Hara H, Ezellarab M, Bottino R, Trucco M, Phelps C, et al. The potential of genetically-engineered pigs in providing an alternative source of organs and cells for transplantation. *J Biomed Res* (2013) 27(4):249. doi:10.5755/JBR.27.20130963

33. Casu A, Bottino R, Balamurugan AN, Hara H, van der Windt DJ, Campanile N, et al. Metabolic aspects of pig-to-monkey (Macaca fascicularis) islet transplantation: implications for translation into clinical practice. *Diabetologia* (2008) 51(1):120. doi:10.1007/s00125-007-0744-4

34. Thompson P, Cardona K, Russell M, Badell JR, Shafer V, Korbett G, et al. CD40-specific costimulation blockade enhances neonatal porcine islet survival in nonhuman primates. *Am J Transplant* (2011) 11(5):947. doi:10.1111/j.1600-6143.2011.03509.x

35. van der Windt DJ, Bottino R, Casu A, Campanile N, Smetanka C, He J, et al. Long-term controlled normoglycemia in diabetic non-human primates after transplantation with hCD346 transgenic porcine islets. *Am J Transplant* (2009) 9(12):2716. doi:10.1111/j.1600-6143.2009.02850.x

36. Ricordi C, Socci C, Davalli AM, Staudacher C, Baro P, Vertova A, et al. Parameters for successful adult pig islet isolations for xenotransplantation in pig-to-primate models. *Xenotransplantation* (2006) 13(3):204. doi:10.1111/j.1399-3089.2006.00275.x

37. Kim T, Shapiro AM. Surgical aspects of human islet isolation. *Islets* (2010) 2(5):265. doi:10.4161/ifi.2.5.13019

38. Mundwiler KE, Lamberti PV, Hill RS. Rapid and inexpensive method for the quantitative assessment of donor pancreata for islet isolation. *Transplant Proc* (1994) 26(6):3427.

39. Kirchhoff N, Hering BJ, Geiss V, Federlin K, Bretzel RG. Inhibition of porcine xenograft rejection: characterization of proliferation, apoptosis, xenoantigenicity of neonatal porcine islet-like cell clusters (NPCC) and the efficiency of adenovirus-mediated DAF (CD55) expression. *Xenotransplantation* (2006) 13(3):111. doi:10.1111/j.1399-3089.2006.00275.x

40. Yoo J, Park SK, Kim JS, et al. Rapid quantitative assessment of the pig pancreas biopsy predicts islet yield. *Transplant Proc* (2010) 42(6):2036. doi:10.1016/j.transproceed.2010.05.113

41. Stadlbauer V, Schaffellner S, Iberer F, Lackner C, Liegl B, Zink B, et al. Occurrence of apoptosis during ischemia in porcine pancreas islet cells. *Int J Artif Organs* (2003) 26(5):205.

42. Goto M, Imura T, Inagaki A, Ogawa N, Yamaya H, Fujiisemi K, et al. The impact of ischemic stress on the quality of isolated pancreatic islets. *Transplant Proc* (2010) 42(6):2040. doi:10.1016/j.transproceed.2010.05.101

43. Brandhorst D, Brandhorst H, Hering BJ, Fedelin K, Bretzel RG. Islet isolation from the pancreas of large mammals and humans: 10 years of experience. *Exp Clin Endocrinol Diabetes* (2010) 118(Suppl 2):3. doi:10.1055/s-0029-1211386

44. Ricordi C, Finke EH, Lacy PE. A method for the mass isolation of islets from the adult pig pancreas. *Diabetes* (1986) 35(6):649. doi:10.2337/diab.35.6.649

45. Nielsen TB, Yderstræde KB, Beck-Nielsen H. Isolation, transplantation, and functional studies of adult porcine islets of Langerhans. *Comp Med* (2002) 52(2):127.

46. O’Gorman D, Kim T, Imes S, Pawlick R, Senior P, Shapiro AM. Surgical aspects of human islet isolation outcomes using a new mammalian tissue-free enzyme versus collagenase NB-1. *Transplantation* (2010) 90(3):255. doi:10.1097/TP.0b013e318117ce

47. Jin SM, Shin JS, Kim RS, Gong CH, Park SK, Kim JS, et al. Islet isolation from adult designated pathogen-free pigs use of the newer bovine nervous tissue-free enzymes and a revised donor selection strategy would improve the islet graft function. *Xenotransplantation* (2011) 18(6):369. doi:10.1111/j.1399-3089.2011.00677.x

48. Gray DW, Sudhakaran N, Titus TT, McShane P, Johnson P. Development of a novel digestion chamber for human and porcine islet isolation. *Transplant Proc* (2004) 46(1):135. doi:10.1016/j.transproceed.2004.04.050

49. Stiegler P, Stadlbauer V, Haddi F, Schaffellner S, Iberer F, Gerblberger I, et al. Prevention of oxidative stress in porcine islet isolation. *J Artif Organs* (2010) 13(1):38. doi:10.1007/s10041-010-0488-x

50. Li S, Sakai T, Suzuki Y, Goto T, Tanaka T, Yoshikawa T, et al. Improved quantity of islet mass in transplanted porcine neonatal pancreas by a novel digestion chamber for human and porcine islet isolation. *Transplant Proc* (2007) 39(6):539.
64. Carter JD, Dula SB, Corbin KL, Wu R, Nunemaker CS. A practical guide to rodent islet isolation and assessment. Biol Proced Online (2009) 11(3). doi:10.1007/s12575-009-9021-0

65. Marchetti P, Finke EH, Gerassimidi-Vazeou A, Falqui L, Scharp DW, Lacy PE. Automated large-scale isolation, in vitro function and xenotransplantation of porcine islets of Langerhans. Transplantation (1991) 52(2):209. doi:10.1097/00007890-199108000-00005

66. Toso C, Brandhorst D, Oberholzer J, Triponez F, Buhler L, Morel P. Isolation of adult porcine islets of Langerhans. Cell Transplant (2000) 9(3):297.

67. Min T, Yi L, Chao Z, Hatait P, Wei W, Liang Y, et al. Superiority of visiopaque (iodixanol)-controlled density gradient over Ficoll-400 in adult porcine islet purification. Transplant Proc (2010) 42(5):1825. doi:10.1016/j.transproceed.2010.01.068

68. van der Burg MP, Graham JM. Iodixanol density gradient preparation in University of Wisconsin solution for porcine islet purification. ScientificWorldJournal (2003) 3:1115. doi:10.1101/tsw.2003.107

69. Mita A, Ricordi C, Miki A, Barker S, Khan A, Alvarez A, et al. Purification method using iodixanol (OptiPrep)-based density gradient significantly reduces cytokine chemokine production from human islet preparations, leading to prolonged beta-cell survival during pretransplantation culture. Transplant Proc (2009) 41(3):314. doi:10.1016/j.transproceed.2008.10.059

70. Rijkelijkhuizen JK, van der Burg MP, Tons A, Terpstra OT, Bouwman E. Pretransplant culture selects for high-quality porcine islets. Pancareas (2006) 32(4):403. doi:10.1016/j.mpa.2006.02.086.87568.82

71. Ekser B, Cooper DK. Overcoming the barriers to xenotransplantation: prospects for the future. Expert Rev Clin Immunol (2010) 6(2):219. doi:10.1586/erci.09.81

72. Scalea J, Hanecamp I, Robson SC, Yamada K. T-cell-mediated immunological barriers to xenotransplantation. Xenotransplantation (2012) 19(1):23. doi:10.1111/j.1399-3089.2011.00687.x

73. Nilsson B. The instant blood-mediated inflammatory reaction in xenogeneic transplantation. Cell Transplant (2000) 9(3):321. doi:10.1080/09638920030248860

74. Johansson H, Lukin las A, Moberg L, Lundgren T, Berne C, Foss A, et al. Tissue factor produced by the endocrine cells of the islets of Langerhans is associated with a negative outcome of clinical islet transplantation. Diabetes (2005) 54(6):1735. doi:10.2337/diabetes.54.6.1755

75. Goto M, Tjernberg I, Dufrane D, Elgar G, Brandhorst D, Ekdahl KN, et al. Dissecting the instant blood-mediated inflammatory reaction in islet xenotransplantation. Xenotransplantation (2008) 15(4):225. doi:10.1111/j.1399-3089.2008.00482.x

76. Mariglano M, Berterà S, Gruppolo M, Trucco M, Bottino R. Pig-to-nonhuman primates pancreatic islet xenotransplantation: an overview. Curr Diab Rep (2011) 11(4):302. doi:10.1007/s11892-011-0213-x

77. Nyqvist D, Kohler M, Wahlstedt H, Berggren PO. Donor islet endothelial cells and inhibition of human serum anti-pig cytotoxicity: value of highly CD46 transgenic pig model system for the study of discordant xenotransplantation. PLoS One (2013) 8(7):e69640. doi:10.1371/journal.pone.0069640

78. Zhai C, Yu L, Zhu H, Tian M, Xiaozong Z, Bo W. Porcine CTLA-4g prolong islet xenografts in rats by downregulating the direct pathway of T-cell activation. Xenotransplantation (2011) 18(1):40. doi:10.1111/j.1399-3089.2011.00627.x

79. Tian M, Liao Y, Zhai C, Zhu H, Yu L, Wang B. Alternative immunomodula- tory strategies for xenotransplantation: CD80/CD86-CTLA4 pathway-modified immature dendritic cells promote xenograft survival. PLoS One (2013) 8(7):e69640. doi:10.1371/journal.pone.0069640

80. Forster E, Krenger W, Joergensen J, Hof R, Geha RS, Hollander GA. Contribution of CD40-CD154-mediated costimulation to alloresponses in vivo. Transplantation (1999) 67(9):1284. doi:10.1097/00007890-199909000-00016

81. Yamada A, Salama AD, Sayegh MH. The role of novel T cell costimulatory path- ways in autoimmunity and transplantation. J Am Soc Nephrol (2004) 15(2):559.

82. Cardona K, Korbutt GS, Milas Z, Lyon J, Cano J, Jiang W, et al. Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways. Nat Med (2006) 12(3):304. doi:10.1038/nm1375

83. Schiller W, Bigaud M, Brinkmann V, Di Padova E, Geisse S, Gram H, et al. Efficacy and safety of B793, a novel human anti-human CD154 monomolecular antibody, in cynomolgus monkey renal allotransplantation. Transplantation (2007) 75(5):717. doi:10.1097/01.TP.0000116563.72765.83

84. d’Apice AJ, Cowan PJ. Gene-modified pigs. Xenotransplantation (2008) 3(2):87. doi:10.1111/j.1399-3089.2008.00457.x

85. Nagaraju S, Bottino R, Wijkstrom M, Hara H, Trucco M, Cooper DK. Islet xeno- transplant from genetically engineered pigs. Curr Opin Organ Transplant (2013) 18(6):695. doi:10.1097/MOT.0000000000000020

86. Yeom HJ, Koo OJ, Yang J, Cho B, Hwang JI, Park SJ, et al. Generation and char- acterization of human T cell clones indirectly activated against adult pig islet cells. Xenotransplantation (2006) 13(1):41. doi:10.1111/j.1399-3089.2005.00257.x

87. Trikudanathan S, Sayegh MH. The evolution of the immunobiology of co- stimulatory pathways: clinical implications. Clin Exp Rheumatol (2007) 25(5) Suppl:46.S12

88. Orlowski T, Sitarek E, Tatarakiewicz K, Sabat M, Antosik M. Comparison of two methods of pancreas islets immunosolation. Int J Artif Organs (1997) 20(12):701.

89. Kim T, Iwata H, Aomatsu Y, Ohyama T, Kanheiro H, Hisanaga M, et al. Xen- otransplantation of pig islets in diabetic dogs with use of a microcapsule composed of agarose and polystyrene sulfonic acid mixed gel. Pancareas (2002) 25(11):94. doi:10.1006/panc.2002.00020

90. Forster E, Krenger W, Joergensen J, Hof R, Geha RS, Hollander GA. Contribution of CD40-CD154-mediated costimulation to alloresponses in vivo. Transplantation (1999) 67(9):1284. doi:10.1097/00007890-199909000-00016

91. Schiller W, Bigaud M, Brinkmann V, Di Padova E, Geisse S, Gram H, et al. Efficacy and safety of B793, a novel human anti-human CD154 monomolecular antibody, in cynomolgus monkey renal allotransplantation. Transplantation (2007) 75(5):717. doi:10.1097/01.TP.0000116563.72765.83

92. Liu D, Kobayashi T, Onishi A, Furusawa T, Iwamoto M, Suzuki S, et al. Relation between human decay-accelerating factor (hDAF) expression in pig islets and inhibition of human serum anti-pig cytotoxicity: value of highly

www.frontiersin.org

March 2014 | Volume 1 | Article 7 | 7
expressed hDAF for xenotransplantation. Xenotransplantation (2007) 14(1):67. doi:10.1111/j.1399-3089.2006.00365.x

105. Le Bas-Bernardet S, Tillou X, Pointier N, Dilek N, Chatelais M, Devallière J, et al. Pig pancreatic islets as a source for transplantation in diabetes: transient treatment with anti-LFA1, anti-CD48, and FTY720 enables long-term graft maintenance in mice with only mild ongoing immunosuppression. Diabetes (2009) 58(7):1585. doi:10.2337/db09-1112

106. Groth CG, Korsgren O, Tibell A, Tollefors J, Moller E, Bolinder J, et al. Transplantation of porcine fetal pancreas into diabetic patients. Lancet (1994) 344(8934):1402. doi:10.1016/S0140-6736(94)90570-3

107. Ramsoondar J, Vaught T, Ball S, Messler M, Wenshsch A, et al. Prevention of immune rejection in humanized mice. Diabetes (2012) 61(6):1527. doi:10.2337/db11-1325

108. Eventov-Friedman S, Tchorsh D, Katchman H, Shezen E, Aronovich A, Hecht ... Transplantation (2009) 16(3):164. doi:10.1111/j.1399-3089.2009.00325.x

109. Merani S, Toso C, Emaanuddle J, Shapiro AM. Optimal implantation site for pancreatic islet transplantation. Br J Surg (2008) 95(12):1449. doi:10.1002/bjs.6391

110. van der Windt DJ, Echeverri GJ, Ijzermans JN, Cooper DK. The influence of implantation site on the biocompatibility and survival of porcine encapsulated islet beta cells. Biomaterials (2006) 27(17):3201. doi:10.1016/j.biomaterials.2006.01.028

111. Dufrane D, Steenbergh M, Goebbels RM, Taliez A, Guoit Y, Gianello P. The influence of implantation site on the biocompatibility and survival of alginate encapsulated pig islets in rats. Biomaterials (2006) 27(17):3201. doi:10.1016/j.biomaterials.2006.01.028

112. Elliott RB. Towards xenotransplantation of pig islets in the clinic. Curr Opin Organ Transplant (2011) 16(2):195. doi:10.1097/MOT.0b013e3283449dec

113. Yu P, Zhang L, Li SF, Li YP, Cheng JQ, Lu YR, et al. Long-term effects on HEK-293 cell line after co-culture with porcine endogenous retrovirus. Transplant Proc (2005) 37(1):496. doi:10.1016/j.transproceed.2004.12.296

114. van der Laan LJ, Lockey C, Griffith BC, Fraser FS, Wilson CA, Onions DE, et al. Infection by porcine endogenous retrovirus after islet xenotransplantation in SCID mice. Nature (2000) 407(6800):90. doi:10.1038/35024089

115. Valdes-Gonzalez R, Dorantes LM, Bracho-Chavez E, Rodriguez-Ventura A, White DJ. No evidence of porcine endogenous retrovirus in patients with type 1 diabetes after long-term porcine islet xenotransplantation. J Med Virol (2010) 82(2):331. doi:10.1002/jmv.21655

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 16 December 2013; paper pending published: 03 February 2014; accepted: 07 March 2014; published online: 24 March 2014.

Citation: Zhu H-T, Wang W-L, Yu L and Wang B (2014) Pig-islet xenotransplantation: recent progress and current perspectives. Frontiers in Surgery. 1:7. doi: 10.3389/fsurg.2014.00007

This article was submitted to Visceral Surgery, a section of the journal Frontiers in Surgery.

Copyright © 2014 Zhu, Wang, Yu and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.