Amomum tsao-ko Crevost & Lemarié: a comprehensive review on traditional uses, botany, phytochemistry, and pharmacology

Siyuan Yang · Yafu Xue · Daju Chen · Zhengtao Wang

Received: 26 December 2020 / Accepted: 27 November 2021 / Published online: 10 January 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract Tsaoko Fructus, the dried ripe fruit of Amomum tsao-ko Crevost & Lemarié, is used as both medicinal material and food additive. This review summarized the traditional uses, botany, phytochemistry, and pharmacological progress on Tsaoko Fructus. One classical prescription and the other 11 representative prescriptions containing Tsaoko Fructus were reviewed. The indications of these prescriptions are major in treating spleen and stomach disorders and epidemic febrile diseases including malaria. At least 209 compounds have been isolated and identified from Tsaoko Fructus, most of which belong to terpenoids, phenylpropanoids, and organic acids. Essential oil, crude extract, and some compounds were observed to have pharmacological activities such as anti-biotics, anti-inflammation, antioxidant, mostly via in vitro experiments. However, the mechanism of its medicinal uses remains unclear. This review provides a comprehensive understanding of Tsaoko Fructus, which will be beneficial to exploring the mechanism and potential medicinal applications of Tsaoko Fructus, as well as developing a rational quality control system for Tsaoko Fructus as a medicinal material in the future.

Keywords Amomum tsao-ko · Traditional use · Botany · Phytochemistry · Pharmacological and biological activity

Introduction

Amomum tsao-ko Crevost & Lemarié is a perennial Zingiberaceae herb, mainly growing in the warm and humid southwestern China and northern Vietnam. Its dried ripe fruit, called Tsaoko Fructus (Caoguo in Chinese), smells aromatic and spicy and has been used as both folk medicine and food additive. The earliest record of the medicinal application of Tsaoko Fructus can be dated back to Official Prescription of the Royal Medical Prescriptions (Taiping Huimin Heji Ju Fang,
Ju Fang in brief) and Summary of Medicinal Herbs in Baoqing (Baoqing Bencao Zhezhong) in the Song Dynasty (Chen 2007; Gao and Wang 2007). Since then, the actions, compatibility, and prescriptions of Tsaoko Fructus had been developed and recorded in successive ancient medical books such as Yanshi Ji Sheng Fang (Ji Sheng Fang in brief) in the South Song dynasty, Wen Yi Lun in the Ming dynasty, and Wen Bing Tiao Bian in the Qing dynasty (Yao 2002; Shi et al. 2013). Five prescriptions consisting of Tsaoko Fructus were included in Pharmacopoeia of the People’s Republic of China (China Pharmacopoeia in brief) (Chinese Pharmacopoeia Commission 2015).

A number of prescriptions composed of Tsaoko Fructus were recorded in ancient medicinal books and China Pharmacopoeia. Those prescriptions were major in treatment of abdominal pain, diarrhea, hemorrhoids, throat infections, and malaria (Gao and Wang 2007). In recent years, Tsaoko Fructus-containing prescriptions have been developed and used to treat Hepatitis B, influenza, the Severe Acute Respiratory Syndromes (SARS), and the Coronavirus Disease 2019 (COVID-19) (Hu 1993; Yao 2002; Zhang and Chen 2008; Ding et al. 2020; Shen et al. 2020; Zong et al. 2020). Phytochemical research revealed at least 209 compounds belonging to terpenoids, flavonoids, diarylheptanoids, and organic acids were present in Tsaoko Fructus (Hong et al. 2015; Lee et al. 2019; He et al. 2020a, d). However, the mechanism of the medicinal uses of Tsaoko Fructus has not been elucidated. As a result, there are some unreasonable points in the present quality control system of Tsaoko Fructus. In fact, its value as a medicinal material had received less attention than as a condiment (Gao and Wang 2007), although it has a long history of clinical applications.

In this review, the information related different aspects of A. tsao-ko was collected from reviewing peer-reviewed journals covering 1981–2021. Pubmed, SciFinder, Web of Science, EBSCO Medline, Baidu Scholar, and CNKI were used for electronic retrieval of the information. Based on this information, we gave a comprehensive review of A. tsao-ko, aiming to provide information for better understanding its pharmacological mechanism and the potential medicinal applications, and for developing a rational quality control system of Tsaoko Fructus as medicinal material in the future.

Traditional uses of Tsaoko Fructus

According to the theory of traditional Chinese medicine (TCM), Tsaoko Fructus has a mild property and has effects on removing dampness and warming the spleen and stomach (Yuan et al. 2000). It is indicated to treat interior obstruction of cold-dampness, distending pain in the epigastrium and abdomen, vomiting, malaria with cold and fever, and pestilence fever (Chen 2007; Gao and Wang 2007; Chinese Pharmacopoeia Commission 2015).

In traditional uses, Tsaoko Fructus or the seed of Tsaoko Fructus was commonly used in combination with other medicinal materials. One classical prescription and the other 11 representative ones were listed in Table 1. The main function and indication of these prescriptions covers two aspects. One is digestive system disorders resulted from cold and dampness of spleen and stomach, and the other is epidemic diseases such as malaria caused by epidemic pathogen infection (Table 1). Among the 12 prescriptions, Caoguo decoction (Caoguo Yin) from Ju Fang, Guofu decoction (Guofu Tang), and Qingpi decoction (Qingpi Yin) from Ji Sheng Fang, Dayuan decoction (Dayuan Yin) from Wen Yi Lun, Caoguo Zhimu decoction (Caoguo Zhimu Tang) from Wen Bin Tiao Bian had effects on both digestive system disorders and epidemic febrile diseases. Changshan decoction (Changshan Yin) from Ju Fang was intended for curing malaria. Suopi decoction (Supi Yin) from Ju Fang and four prescriptions from China Pharmacopoeia (Jiebai Pills, Lige Pills, Piweishu Pills, and Piwei Xiaozhi Pills) were adopted in treating disorders of digestive system. Although it seems some prescriptions had similar functions, their specific applicable indications were not exactly the same. For example, regarding to the treatment of malaria, Dayuan Yin was used to treat early malaria, Guofu Tang could prevent attack of malaria, and Changshan Yin suited for curing all types of malaria including the chronic one. It was worth mentioning that Ershiwuwei Zhenzhu Pills (Ershiwuwei Zhenzhu Wan) documented in China Pharmacopoeia had different indications from the other 11 ones. It was effective for the treatment of
| Prescriptions       | Ingredients                                                                 | Functions and Indications                                                                 | Sources                                      |
|---------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------|
| Changshan Yin      | Anemarrhena Rhizoma, Dichroa Radix, Tsaoko Fructus, Glycyrhiza Radix Et Rhizoma (stir-baked with liquid), Alpiniae Officinarum Rhizoma, Mume Fructus (without core) (In the mass ratio of 10:10:10:6:5, 9 g a dose, dipped in 150 ml water and boiled to 100 ml, one dose a day) | Functions and indications: Treating all types of malaria including chronic malaria           | Taiping Huimin Heji Ju Fang, Vol. 8, Song dynasty, 1151 |
| Caoguo Yin         | Perillae Folium, Seeds of Tsaoko Fructus, Chaumixiong Rhizoma, Angelicae Dahuricae Radix, Alpiniae Officinarum Rhizoma (stir-baked), Citri Reticulatae Pericarpium Viride (without flesh, stir-baked), Glycyrhizae Radix Et Rhizoma (stir-baked) (In the mass ratio of 1:1:1:1:1:1, 6 g a dose, dipped in 150 ml water and boiled to 100 ml, three doses on the first day, then one dose a day) | Functions and indications: Warming spleen and stomach, dispersing cold and heat, regulating qi, treating cold spleen and preventing attack of malaria | Taiping Huimin Heji Ju Fang, Vol. 3, Song dynasty, 1151 |
| Suopi Yin          | Amomi Fructus, Mume Fructus (without core), seeds of Tsaoko Fructus, Glycyrhizae Radix Et Rhizoma (stir-baked with liquid), Puerariae Lobatae Radix, Lablab Semen Album (stir-baked, without cortex) (In the mass ratio of 2:2:2:1:1, 12 g a dose, dipped in 250 ml water and boiled to 200 ml, taken as frequently as tea) | Functions and indications: Reducing fever and fidgetiness after cholera, treating heat- and dampness-resulted vomit | Taiping Huimin Heji Ju Fang, Vol. 2, Song dynasty, 1151 |
| Guofu Tang         | Seeds of Tsaoko Fructus, Aconiti Lateralis Radix Praeparata (Processed, without cortex) (In the mass ratio of 1:1, 25 g a dose, dipped in a bottle of water and boiled with 7 pieces of ginger and one Jujubae Fructus, taken anytime) | Functions and indications: Warming spleen and stomach, preventing attack of malaria           | Yanshi Ji Sheng Fang, Vol. 18, South Song dynasty, 1253 |
| Qingpi Tang        | Citri Reticulatae Pericarpium Viride (without flesh), Magnoliae Officinalis Cortex (stir-baked with ginger), Atractylodis Macrocephalae Rhizoma, Seeds of Tsaoko Fructus, Bupleuri Radix (without stem), Poria (without cortex), Pinelliae Rhizoma (Soaking in the water seven times), Scutellariae Radix, Glycyrhizae Radix Et Rhizoma (stir-baked with liquid) (Equal proportion, 12–20 g a dose, dipped in 220 ml water and boiled with five pieces of ginger to 150 ml, taken anytime) | Functions and indications: Expelling phlegm, removing dampness, harmonizing stomach, and preventing attack of malaria | Yanshi Ji Sheng Fang, Vol. 18, South Song dynasty, 1253 |
| Dayuan Yin         | Arecae Semen, Magnoliae Officinalis Cortex, Seeds of Tsaoko Fructus, Anemarrhena Rhizoma, Paoniea Radix Alba, Scutellariae Radix, Glycyrhizae Radix Et Rhizoma (In the mass ratio of 4:2:1:2:2:1, 21 g a dose, dipped in 200 ml water and boiled to about 160 ml, one dose a day) | Functions: Eliminating pathogens between interior and exterior, eliminating fetid and turbid-transmission. Indications: Pathogens, early malaria, pathogens between interior and exterior, aversion to cold and high fever, fullness in the chest, vomiting, headache, and restlessness | Wen Yi Lun, Ming dynasty, 1642 |
| Caoguo Zhimu Tang  | Tsaoko Fructus, Anemarrhena Rhizoma, Pinelliae Rhizoma, Magnoliae Officinalis Cortex, Scutellariae Radix, Mume Fructus, Pollen (In the mass ratio of 3:4:6:4:3:3, 39 g a dose, dipped in 1000 ml of water and boiled with 25 ml of ginger juice to 400 ml, divided into two parts and taken twice a day) | Functions: Relieving cold in the back, fullness and discomfort of qi in the chest, preventing attack of malaria | Wen Bing Tiao Bian, Vol. 2, Qing dynasty, 1798 |
| Prescriptions | Ingredients* | Functions and Indications |
|---------------|--------------|---------------------------|
| Jiebai Wan$ | Chebulae Fructus, Calcitum, Peirocephali Herba, Trogopteri Faeces Extract, Inulae Radix, Punicae Granati Fructus, Chaenomelis Fructus, Aquilariae Lignurn Resinatum, Caryophylli Flos, Pulvenum Calc, Carthami Flos, Myristicae Semen, Alpiniae Katsumadai Semen, *Seeds of Tsaoko Fructus* (In the mass ratio of 60:35:14:30:4:4:4:3:3:2:1:2:2:2) | Functions: Fortifying the spleen, harmonizing the stomach, relieving epigastric pain and vomiting, separating the clear and excrete the turbid. Indications: Distension and fullness in the chest and the abdomen, indigestion, hiccup, diarrhea, and inhibited urination |
| Lige Wan$ | Raphani Semen (stir-baked), Arecae Semen, Rhei Radix et Rhizoma (processed with wine), Magnoliae Officinalis Cortex (baked with ginger), Cataegi Fructus, Massa Medicata Fermentata (stir-baked), Anomi Fructus, Platycodonae Radix, Citri Reticulatae Pericarpium Viride (processed with vinegar), Aurantii Fructus (stir-baked with bran), Hordei Fructus Germinatus (stir-baked with bran), Aucklandiae Radix, Citri Reticulatae Pericarpium, Atractylodis Rhizoma (stir-baked with bran), Pogostemonis Herba; *Seeds of Tsaoko Fructus*; Glycyrrhizae Radix et Rhizoma (In the mass ratio of 4:4:4:2:2:2:1:2:2:2:2:2:2:2:2:2) | Functions: Soothing the chest and diaphragm, eliminating accumulation and relieving pain. Indications: Qi stagnation and constraint, distension and fullness in the chest and the diaphragm, pain in the epigastrium and abdomen, and retained fluid |
| Piweishu Wan$ | Trionycis Carapax (processed), Astragali Radix Praeparata, Citri Reticulatae Pericarpium, Aurantii Immaturus Fructus, Paeniae Radix Alba, Macrocephalae Rhizoma (stir-fried with bran), Cyperi Rhizoma (processed with vinegar), *Tsaoko Fructus*, Mume Fructus (stir-baked), Chuanxiong Rhizoma, Arecae Semen Tostum, Magnoliae Officinalis Cortex (Equal proportion) | Functions: Soothing the liver, regulate qi, fortifying the spleen, harmonizing the stomach, eliminating accumulation, and promoting digestion. Indications: Indigestion, poor appetite, epigastric upset, abdominal distention, borborygms, nausea, vomiting, sloppy stool, distending pain in the hypochondrium, irritability, insomnia and dream-disturbed sleep; Chronic gastritis, chronic hepatitis and early stage liver cirrhosis with the symptoms described above |
| Tiaowei Xiaozi Wan$ | Officinalis Cortex Magnoliae (stir-baked with ginger juice), Notopterygii Rhizoma et Radix, Guangdong Shenqiu, Aurantii Fructus, Cyperi Rhizoma (processed), Pinelliae Rhizoma (stir-baking with ginger juice), Saposhnioviae Radix, Peucedani Radix, Chuanxiong Rhizoma (stemming with distillate spirits), Angelicae Dahuricae Radix, Menthae Haplocalycis Herba, AmomiFructus, *Tsaoko Fructus*, Aucklandiae Radix, Amomi Rotundus Fructus, Poria, Atractylodis Rhizoma (macerate), Pogostemonis Herba, Linderae Radix (steaming with vinegar), Glycyrrhizae Radix (et Rhizoma), Perillae Folium, Citri Reticulatae Pericarpium (In the mass ratio of 10:10:10:5:1:1:10:10:1:1:10:10:5:1:10:10:1:10:5:10:10) | Functions: Dispersing wind, releasing the exterior, dissipate cold, resolving dampness, invigorating the stomach, and promoting digestion. Indications: Common cold due to wind-cold with dampness and internal food stagnation, manifested as chills, fever, headache, body heaviness with difficult movement, reduced food intake, fetid belching, acid reflux, abdominal pain, and diarrhea |

*Sources: Pharmacopoeia of the People’s Republic of China, 2015*
Apoplexy manifested as hemiplegia, deviated eyes and mouth, coma, disordered consciousness, delirious speech, and so on. Information of these prescriptions including ingredients, functions, indications and others was listed in Table 1.

In most of the prescriptions, Tsaoko Fructus acts as the main medicine due to its efficacy on invigorating the spleen and stomach, promoting qi to disperse stagnation, and eliminating pathogens (Gao and Wang 2007). For instance, Dayuan Yin is the classic prescription formulated by Wu Youke in the Ming dynasty to treat malaria (Fang and Yue 2021). In this prescription, Tsaoko Fructus acts as one of the “minister” medicines to cooperate with Arecae Semen, the “monarch”, and Magnoliae Officinalis Cortex, the other “minister”, to eliminate the pathogens between interior and exterior, according to the “monarch, minister, assistant, and guide” formula theory of TCM (Fang and Yue 2021; Li 2021). The other four ingredients of the prescription, Anemarrhenae Rhizoma, Paeoniae Radix Alba, Scutellariae Radix, and Glycyrrhizae Radix Et Rhizoma do not directly clear away the pathogens but serve as reconciliation agents, the “assistant” and the “guide”, to recover the balance of the body (Fang and Yue 2021; Li 2021). To prepare this decoction, a total of 21 g of the medicinal materials at a ratio of 4:2:1 are firstly dipped in 200 ml water and then boiled to a certain volume. The filtered solution was taken when it was warm once a day.

Recently, Dayuan Yin has been used to prevent and treat SARS and the COVID-19, two epidemic diseases that cause severe damage to the respiratory system. When it was used to treat 112 confirmed SARS cases during 2003, more than 93.7% of patients had experienced noticeable symptom relief and recovery (Ren et al. 2021). When used for mild and common cases of COVID-19 combined with antiviral drugs, it could relieve symptoms of cough, asthma, and dry throat, improve prognosis of COVID-19 patients, and shorten disease progression (Ren et al. 2021). The volatile oil of Tsaoko Fructus was speculated as one of the effective ingredients to treat these epidemic diseases due to their anti-inflammatory and antibacterial properties (Zhang et al. 2020).
Botany of *A. tsao-ko*

*A. tsao-ko* is of forest understory habitat in the tropical and subtropical regions (Fig. 1a) and mainly distributes in the southwestern of China including Yunnan, Guangxi, and Guizhou provinces, and the northern Vietnam. *A. tsao-ko* herb typically grows about 2–2.5 m high. Its leaves are green, smooth, slightly sharp, and oval-shaped, approximately 40–70 cm in length and about 10–20 cm in width (Fig. 1a). Its anthotaxy is spica, and the yellow or white flowers are serried inserted on the thick rachis (Fig. 1b). Its fruits are oval-shaped red capsules, densely packed together when fresh (Fig. 1c). The dried ripe capsules are roughly 2.5–4.5 cm in length, the pericarps of which are grayish-brown to brown with longitudinal furrows and ribs without hair or spikes (Fig. 1d). The seeds grow in clusters in the capsule, generally divided into three parts by rows, and are wrapped by pulp. Seeds are conical polyhedral, reddish-brown, covered with grayish-white membranous aril (Wu et al. 2014). The ripe capsules are harvested before crack usually during September to November when becoming grey to brown. The harvested capsules are dried into brown Tsaoko Fructus (Fig. 1d) in the sun or in a thermostat.

*A. tsao-ko* is a cultivated herb. It has different cultivated populations that have varied phenotypes. According to the morphological characteristics, for example, the shape of the capsules, *A. tsao-ko* has at least five cultivars, the spheroidal-, the near spheroidal-, the spindle-, the ellipsoid-, and the cone-shaped fruit groups (Fig. 1d) (Zhang et al. 2011; Lu et al. 2019; Wei et al. 2019). Tsaoko Fructus of different shape have different chemical profiles. Taken *A. tsao-ko* cultivated in Xishuangbanna as an example, the ellipsoid shape Tsaoko Fructus contained 3.55 mL/100 g of essential oil (EO) with 20.33% of geraniol (5), the spindle-shaped ones had 2.75 mL/100 g of EO with 14.40% of geraniol (5), and the spheroidal-, the near spheroidal-shaped ones had 4.00 mL/100 g of EO with 17.86% of geraniol (5) and 3.33 mL/100 g of EO with 16.87% of geraniol (5), respectively (Ma et al. 2008). The varied phenotypes suggest that *A. tsao-ko* has morphologic and genetic diversity among populations.

Genetic diversity assay based on phenotypic traits revealed that *A. tsao-ko* cultivars clustered into a...
number of large groups and sub-groups, indicating A. tsao-ko germplasm has high genetic diversity (Yan 2012; Yang et al. 2014; Ma et al. 2017b, a, 2020; Hu et al. 2018a, 2019a, b; Xie et al. 2018; Lu et al. 2019; Ma and Lu 2020). As mentioned above, the concentration of EO varied in different shape fruits (Ma et al. 2008), which indicated that the chemical profiles may be related to morphological characteristics such as fruit forms. Sim et al. (2019) also found that A. tsao-ko fruits distilled for EO A/B showed a more conical shape, while pods used for EO B had an elliptic form. The composition of main ingredients in EO A/B had significant variations in concentration, e.g., eucalyptol (10), 4-Indanecarbaldehyde (16), and (2E)-decanal (200) in EO A/B was 28.1%/22.6%, 4.3%/2.3%, and 3.0%/6.1%, respectively (Sim et al. 2019). However, the relationship between the morphological characteristics such as fruit forms and the chemical profiles, especially the characteristics of active ingredients, is still unclear. Such work is important for selecting high quality Tsaoko Fructus germplasm resources, and worth exploring in the future. There are 23 novel microsatellite markers found in A. tsao-ko (Lu et al. 2021) and several site variations in matK, psbA-trnH and ycf1 sequences of A. tsao-ko cultivars (Hu et al. 2019b). These DNA markers may help develop molecular tools for the germplasm characterization, and the selection and breeding of good germplasm A. tsao-ko.

Some Zingiberaceae plants have similar capsules to that of A. tsao-ko and also have overlaps in the distribution. As a result, they are often mixed up with A. tsao-ko and incorporated into Tsaoko Fructus containing medicines (Shi et al. 2013), thus adding difficulty to its regular use as medicinal material. The commonly confused species include other Amomum genus such as A. paratsaoko, A. Koenigii, A. kravanh, A. subulatum, and A. xanthoides, the Alpinia genera such as A. galanga, A. katsumadai, and A. zerumbet, and Elettaria Maton specie like E. cardamomum (Shi et al. 2013; Wu et al. 2014). The species of Zingiberaceae was usually identified by the seed and fruit features, according to the macroscopic morphological characteristics and the microscopic features of their seeds and fruits (Table S2, Table S3) (Shi et al. 2013; Wu et al. 2014). The chemical profiles of EO of A. tsao-ko fruits are different from that of other species like A. paratsaoko. For example, the dried fruit of A. tsao-ko is rich in 1,8-cineole (10) and citral, which are 19.50% and 14.95%, respectively, whereas the dried fruit of A. paratsaoko only contains 0.25% of 1,8-cineole and undetectable citral (Huang et al. 2014). Thus, chemical profiles can also be used to distinguish Tsaoko Fructus from other easily-confused species.

In these years, DNA molecule labeling technology has been explored to study the genetic property of A. tsao-ko and the related plant species. The Internal Transcribed Spacer (ITS), Random Amplified Polymorphic DNA Markers (RAPD), Simple Sequence Repeat (SSR) or Microsatellite sequence (MS), and complete chloroplast genome of A. Tsaoko have been explored (Yan 2012; Yang et al. 2014; Ma et al. 2017b, a, 2020; Hu et al. 2018a, 2019a, b; Xie et al. 2018; Lu et al. 2019, 2021; Ma and Lu 2020). DNA barcoding sequence analysis revealed that ITS, matK, psbA-trnH and ycf1 could accurately distinguish A. tsao-ko from 18 other Amomum genus (Hu et al. 2019b). Chloroplast genome was also workable, as revealed by phylogenetic analysis using complete chloroplast genome of A. tsao-ko and 16 other related species (Ma and Lu 2020).

**Phytochemistry**

Phytochemicals are the medicinal basis substances of medicinal plants, as well as an important reservoir for candidate drug development. To date, more than 300 compounds have been detected in Tsaoko Fructus (Tables 2, S4), at least 209 of which have been isolated and identified (Table 2, Figs. 2, 3, 4, 5, 6, 7, 8). According to the characteristics of core structure, these compounds can be classified as terpenoids, phenylpropanoids, organic acids, and other compounds (Table 2). Overall, there are 32 terpenoids (1–31), 157 phenylpropanoids (32–188), 19 organic acids (189–208), and one pyrrole (209). Since Tsaoko Fructus has an aromatic and spicy odor, its volatile oil, also called essential oil (EO), has attracted much attention (Yang et al. 2008; Feng et al. 2010; Min et al. 2010; He et al. 2013; Cui et al. 2017; Sim et al. 2019). A. tsao ko EO contains terpenoids, phenolic acids, and organic acids.
Table 2 Isolated and identified compounds from *A. tsao-ko* fruits

| Compd. no. | Chemical name | Molecular formula | References |
|------------|---------------|-------------------|------------|
| 1          | Limonene      | C_{10}H_{16}       | Wang et al. (2014) |
| 2          | Myrcenol      | C_{10}H_{18}O     | Wang et al. (2014) |
| 3          | 8-hydroxy-2,6-dimethyl-1,6-octadien-3-one | C_{10}H_{16}O_{2} | Lee et al. (2019) |
| 4          | (2E,6E)-8-(acetoxy)-2,6-dimethyl-2,6-octadienal | C_{14}H_{18}O_{3} | Lee et al. (2019) |
| 5          | Geraniol      | C_{10}H_{18}O     | Dai et al. (2016a) |
| 6          | Geraniol acetate | C_{12}H_{20}O_{2} | Yang et al. (2009) |
| 7          | (2E,6E)-8-hydroxy-2,6-dimethyl-2,6-octadien acetate | C_{14}H_{18}O_{3} | Yang et al. (2009) |
| 8          | (2E,6E)-8-hydroxy-2,6-dimethyl-2,6-octadienal | C_{10}H_{16}O_{2} | Yang et al. (2009) |
| 9          | 8-oxogeraniol | C_{10}H_{16}O_{2} | Lee et al. (2008) |
| 10         | 1,8-cineole (eucalyptol) | C_{10}H_{18}O | Wang et al. (2014), Dai et al. (2016b) |
| 11         | p-menth-1-ene-5,6-diol | C_{10}H_{18}O_{2} | Lee et al. (2008) |
| 12         | 3α-hydroxygeraniol | C_{10}H_{18}O_{2} | Lee et al. (2008) |
| 13         | Tsaokoin      | C_{10}H_{14}O_{2} | Moon et al. (2004), Yang et al. (2009), Kim et al. (2019b) |
| 14         | Isotsaokoin   | C_{10}H_{14}O_{2} | Moon et al. (2004) |
| 15         | 5-indene-2-carbaldehyde (5-Indancarboxaldehyde)* | C_{10}H_{16}O | Jin et al. (2013), Sim et al. (2019) |
| 16         | 4-indene-2-carbaldehyde* | C_{10}H_{16}O | Jin et al. (2013), Wang et al. (2014), Dai et al. (2016b), Sim et al. (2019) |
| 17         | 6-hydroxyindan-4-carbaldehyde (6-hydroxy-4-aldehydeindene) | C_{10}H_{16}O_{2} | Lee et al. (2008), Yang et al. (2009), Jin et al. (2013) |
| 18         | 6,7-dihydroxy-indan-4-carbaldehyde | C_{10}H_{16}O_{3} | Lee et al. (2008), Jin et al. (2013) |
| 19         | (1RS,5SR,6RS)-5-hydroxybicyclo[4.3.0]non-2-ene-2-carbaldehyde | C_{10}H_{18}O_{2} | Yang et al. (2009) |
| 20         | trans-2,3,3a,7a-tetrahydro-1H-indene-4-carbaldehyde (trans-dihydroindane-4-carboxylic aldehyde)* | C_{10}H_{18}O | Starkenmann et al. (2007), Sim et al. (2019) |
| 21         | trans-2,3,3a,7a-tetrahydro-1H-indene-5-carbaldehyde | C_{10}H_{18}O | Sim et al. (2019) |
| 22         | cis-2,3,3a,7a-tetrahydro-1H-indene-4-carbaldehyde (cis-dihydroindane-4-carboxylic aldehyde)* | C_{10}H_{18}O | Starkenmann et al. (2007), Sim et al. (2019) |
| 23         | cis-2,3,3a,7a-tetrahydro-1H-indene-5-carbaldehyde | C_{10}H_{18}O | Sim et al. (2019) |
| 24         | (3S,6E)-3,7,11-trimethyl-1,6,10-dodecatrien-3-ol (trans-nerolidol) | C_{14}H_{26}O | Hong et al. (2015), Lee et al. (2019) |

Diterpenoids

| Compd. no. | Chemical name | Molecular formula | References |
|------------|---------------|-------------------|------------|
| 25         | Coronadiene   | C_{18}H_{26}O     | Liu et al. (2018) |
| 26         | (3E)-4-{[(S,4aS,8aS)-decahydro-5,5,8a-trimethyl-2-methylene-1-naphthalenyl]-3-buten-2-one} | C_{18}H_{28}O | Lee et al. (2019) |
| 27         | Amotsaokonal A | C_{28}H_{30}O | Hong et al. (2015) |
| 28         | Amotsaokonal B | C_{28}H_{32}O | Hong et al. (2015) |
| 29         | Amotsaokonal C | C_{28}H_{32}O | Hong et al. (2015) |

Steroids

| Compd. no. | Chemical name | Molecular formula | References |
|------------|---------------|-------------------|------------|
| 30         | β-sitosterol  | C_{29}H_{50}O     | Martin et al. (2000), Zhang et al. (2014) |
| 31         | β-sitosterol-3-O-glucoside (daucosterol) | C_{35}H_{60}O_{6} | Martin et al. (2000), He et al. (2020c) |
### Table 2 continued

| Compd. no. | Chemical name                        | Molecular formula | References                                                  |
|------------|--------------------------------------|-------------------|-------------------------------------------------------------|
| 32         | Catechol                             | C₆H₆O₂            | Wang et al. (2009), Jin et al. (2013), Zhang et al. (2014) |
| 33         | Hydroquinone                         | C₆H₆O₂            | Jin et al. (2013)                                           |
| 34         | Pyrogallic acid                      | C₆H₆O₃            | Wang et al. (2009)                                         |
| 35         | 4-hydroxy-benzaldehyde               | C₇H₆O₂            | Yang et al. (2009)                                          |
| 36         | Protocatechaldehyde                  | C₇H₆O₃            | Martin et al. (2000), Liu et al. (2018), Choi et al. (2018) |
| 37         | p-hydroxybenzoic acid                | C₇H₆O₃            | Martin et al. (2000), Wang et al. (2009)                     |
| 38         | Protocatechuic acid                  | C₇H₆O₄            | Martin et al. (2000), Wang et al. (2009)                     |
| 39         | 3,5-dihydroxybenzoic acid            | C₇H₆O₄            | Jin et al. (2013)                                           |
| 40         | Vanillic acid (4-hydroxy-3-methoxy-benzoic acid) | C₈H₈O₄            | Martin et al. (2000), Wang et al. (2009), Liu et al. (2018), Choi et al. (2018) |
| 41         | 3-O-methylgallic acid                | C₈H₈O₃            | Liu et al. (2018)                                           |
| 42         | 3,4-dihydroxybenzoic acid            | C₇H₆O₄            | Liu et al. (2018)                                           |
| 43         | Anisole                              | C₇H₈O             | Jin et al. (2013)                                           |
| 44         | 3-methoxy-catechol                   | C₇H₆O₃            | Jin et al. (2013)                                           |
| 45         | 2-methoxy-hydroquinone               | C₇H₆O₃            | Jin et al. (2013)                                           |
| 46         | 2-methoxy-resorcinol                 | C₇H₆O₃            | Jin et al. (2013)                                           |
| 47         | 4-methoxy-catechol                   | C₇H₆O₃            | Jin et al. (2013)                                           |
| 48         | 4-methoxybenzaldehyde                | C₈H₆O₂            | Jin et al. (2013)                                           |
| 49         | 2-methoxy-benzaldehyde               | C₈H₆O₂            | Jin et al. (2013)                                           |
| 50         | 3-methoxy-benzaldehyde               | C₈H₆O₂            | Jin et al. (2013)                                           |
| 51         | 3-methoxy-4-hydroxy-benzaldehyde     | C₈H₆O₃            | Jin et al. (2013)                                           |
| 52         | 4-hydroxy-2,5- dimethoxy-benzaldehyde | C₈H₁₀O₄          | Jin et al. (2013)                                           |
| 53         | 4-methoxy-3-hydroxy-benzaldehyde     | C₈H₈O₃            | Yang et al. (2009), Jin et al. (2013)                       |
| 54         | 3-hydroxybenzoic acid                | C₈H₈O₃            | Jin et al. (2013)                                           |
| 55         | 4-(2-hydroxypropyl)phenol            | C₉H₁₂O₂            | Jin et al. (2013)                                           |
| 56         | (E)-p-coumaric acid                  | C₉H₈O₃            | Liu et al. (2018), Choi et al. (2018)                       |
| 57         | 2,6-dimethoxy-4-[(1R)-1-methoxyethyl]-phenol | C₁₁H₁₆O₄        | Lee et al. (2019)                                           |
| 58         | 2,6-dimethoxy-4-[(1R)-1-methoxypropyl]-phenol | C₁₂H₁₉O₄      | Lee et al. (2019)                                           |
| 59         | 1,3-dimethoxybenzene                 | C₈H₁₀O₂            | Jin et al. (2013)                                           |
| 60         | 2,6-dimethoxy-phenol                 | C₈H₁₀O₃            | Lee et al. (2019)                                           |
| 61         | 2,6-dimethoxy-4-methyl-phenol        | C₉H₁₂O₃            | Lee et al. (2019)                                           |
| 62         | 2,6-dimethoxy-4-(methoxymethyl)-phenol | C₁₀H₁₄O₄        | Lee et al. (2019)                                           |
| 63         | 2,6-dimethoxy-4-(2-propen-1-yl)-phenol | C₁₀H₁₄O₄        | Lee et al. (2019)                                           |
| 64         | 1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone | C₁₁H₁₄O₄    | Lee et al. (2019)                                           |
| 65         | 4-hydroxy-3-methoxy-benzaldehyde     | C₈H₈O₃            | Lee et al. (2019)                                           |
| 66         | 1-(4-hydroxy-3-methoxyphenyl)-ethanone | C₉H₁₀O₃         | Lee et al. (2019)                                           |
| 67         | 1-(4-hydroxy-3-methoxyphenyl)-1-propanone | C₁₀H₁₂O₃      | Lee et al. (2019)                                           |
| 68         | 3,4-dimethoxy-benzoic acid           | C₉H₁₀O₄            | Lee et al. (2019)                                           |
| 69         | 3,3’-5,5’-tetramethoxy-[1,1’-biphenyl]-4,4’-diol | C₁₆H₁₈O₆    | Lee et al. (2019)                                           |
| 70         | Myriciaphenone A                     | C₁₄H₁₉O₉            | Choi et al. (2018)                                          |
| 71         | (+)-afzelechin                       | C₁₃H₁₄O₅            | He et al. (2021)                                             |

**Flavonoids**

| Compd. no. | Chemical name                        | Molecular formula | References |
|------------|--------------------------------------|-------------------|------------|
| 71         | (+)-afzelechin                       | C₁₃H₁₄O₅            | He et al. (2021) |
| Compd. no. | Chemical name | Molecular formula | References |
|------------|---------------|-------------------|------------|
| 72         | 8-aldehyde-catechin | C<sub>16</sub>H<sub>14</sub>O<sub>7</sub> | He et al. (2021) |
| 73         | (-)-catechin | C<sub>14</sub>H<sub>14</sub>O<sub>6</sub> | Martin et al. (2000), Jin et al. (2013), Choi et al. (2018), He et al. (2021) |
| 74         | (-)-epi-afzelechin | C<sub>14</sub>H<sub>14</sub>O<sub>5</sub> | He et al. (2021) |
| 75         | ( +)-epicatechin | C<sub>14</sub>H<sub>14</sub>O<sub>6</sub> | Martin et al. (2000), Zhang et al. (2014), Choi et al. (2018), He et al. (2021) |
| 76         | (2R,3R,4R)-3',5'-dimethoxy-3,4,7,4'-tetrahydroxy-flavan | C<sub>17</sub>H<sub>18</sub>O<sub>7</sub> | Jin et al. (2013) |
| 77         | Quercetin | C<sub>15</sub>H<sub>10</sub>O<sub>7</sub> | Zhang et al. (2014) |
| 78         | quercetin-3-O-β-D-glucopyranoside | C<sub>21</sub>H<sub>20</sub>O<sub>12</sub> | Wang et al. (2009), Zhang et al. (2014), Rahman et al. (2017) |
| 79         | quercetin-7-O-β-glucoside | C<sub>23</sub>H<sub>20</sub>O<sub>12</sub> | Zhang et al. (2014), Rahman et al. (2017) |
| 80         | Rutin | C<sub>24</sub>H<sub>16</sub>O<sub>16</sub> | Wang et al. (2009), Dai and Peng (2011) |
| 81         | 3',7-dihydroxy-4'-methoxy-flavan | C<sub>16</sub>H<sub>16</sub>O<sub>4</sub> | Jin et al. (2013) |
| 82         | Abyssinoflavanone VII | C<sub>25</sub>H<sub>28</sub>O<sub>6</sub> | Jin et al. (2013) |
| 83         | Alpinetin | C<sub>16</sub>H<sub>16</sub>O<sub>4</sub> | Kim et al. (2019b) |
| 84         | Naringenin-5-O-methyl ether | C<sub>18</sub>H<sub>16</sub>O<sub>5</sub> | Kim et al. (2019b) |
| 85         | Naringenin | C<sub>16</sub>H<sub>16</sub>O<sub>4</sub> | Kim et al. (2019b) |
| 86         | Hesperetin | C<sub>16</sub>H<sub>16</sub>O<sub>6</sub> | Kim et al. (2019b) |
| 87         | 4',7-dihydroxy-3',6-diprenylflavone | C<sub>23</sub>H<sub>26</sub>O<sub>4</sub> | Jin et al. (2013) |
| 88–91      | Geranylated pyranoflavones | - | Kim et al. (2019a) |
| 92–95      | Farnesylated pyranoflavones | - | Kim et al. (2019a) |
| 96         | 4'-hydroxy-2'-methoxychalcone | C<sub>16</sub>H<sub>16</sub>O<sub>3</sub> | Jin et al. (2013) |
| 97         | 4-hydroxy-4'-methoxychalcone | C<sub>16</sub>H<sub>16</sub>O<sub>3</sub> | Jin et al. (2013) |
| 98         | 2',4',6'-trihydroxy-4'-methoxy chalcone | C<sub>16</sub>H<sub>16</sub>O<sub>3</sub> | Kim et al. (2019b) |
| 99         | 4-hydroxy-2'-methoxychalcone | C<sub>16</sub>H<sub>16</sub>O<sub>3</sub> | Jin et al. (2013) |
| 100        | 4'-hydroxy-4-methoxychalcone | C<sub>16</sub>H<sub>16</sub>O<sub>3</sub> | Jin et al. (2013) |
| 101        | 2',4'-dihydroxy-4-methoxy-chalcone | C<sub>16</sub>H<sub>16</sub>O<sub>4</sub> | Jin et al. (2013) |
| 102        | 4,4'-dimethoxychalcone | C<sub>17</sub>H<sub>16</sub>O<sub>3</sub> | Jin et al. (2013) |
| 103        | 2',4',4'-trimethoxychalcone | C<sub>18</sub>H<sub>16</sub>O<sub>4</sub> | Jin et al. (2013) |
| 104        | Boesenbergin B | C<sub>26</sub>H<sub>28</sub>O<sub>4</sub> | Kim et al. (2019b) |
| 105        | 4-hydroxyboesenbergin B | C<sub>26</sub>H<sub>28</sub>O<sub>3</sub> | Kim et al. (2019b) |
| 106,107    | Farnesylated pyranochalcones | - | Kim et al. (2019a) |
| 108        | 3',5'-di-C-β-D-glucopyranosylphloretin | C<sub>23</sub>H<sub>26</sub>O<sub>9</sub> | Wang et al. (2009), Hussain et al. (2018) |
| 109        | 2-(4-hydroxy-3-methoxybenzoyl)-4-methoxy-benzaldehyde | C<sub>16</sub>H<sub>16</sub>O<sub>3</sub> | Jin et al. (2013) |
| 110        | Flavanocoumarin | C<sub>14</sub>H<sub>14</sub>O<sub>7</sub> | He et al. (2021) |
| 111        | Sappanone B | C<sub>16</sub>H<sub>14</sub>O<sub>6</sub> | He et al. (2021) |
| 112        | Brazilin | C<sub>16</sub>H<sub>14</sub>O<sub>6</sub> | He et al. (2021) |
| 113        | Epi-catechin-(4β → 8,2β → O → 7)-epi-afzelechin | C<sub>16</sub>H<sub>22</sub>O<sub>11</sub> | He et al. (2021) |
| 114        | Proanthocyanidin A-2 | C<sub>20</sub>H<sub>28</sub>O<sub>12</sub> | He et al. (2021) |

**Flavanol-menthane conjugates**

| Compd. no. | Chemical name | Molecular formula | References |
|------------|---------------|-------------------|------------|
| 115        | Amomutsaokin A | C<sub>23</sub>H<sub>28</sub>O<sub>6</sub> | He et al. (2021) |
| 116        | Amomutsaokin B | C<sub>23</sub>H<sub>28</sub>O<sub>6</sub> | He et al. (2021) |
| 117        | Amomutsaokin C | C<sub>23</sub>H<sub>28</sub>O<sub>6</sub> | He et al. (2021) |
| Compd. no. | Chemical name | Molecular formula | References |
|-----------|---------------|--------------------|------------|
| 118       | Amomutsaokin D | C<sub>25</sub>H<sub>28</sub>O<sub>6</sub> | He et al. (2021) |
| 119       | Amomutsaokin E | C<sub>25</sub>H<sub>30</sub>O<sub>7</sub> | He et al. (2021) |
| 120       | Amomutsaokin F | C<sub>25</sub>H<sub>30</sub>O<sub>7</sub> | He et al. (2021) |
| 121       | Amomutsaokin G | C<sub>25</sub>H<sub>30</sub>O<sub>7</sub> | He et al. (2021) |
| 122       | Amomutsaokin H | C<sub>25</sub>H<sub>30</sub>O<sub>7</sub> | He et al. (2021) |
|           | Flavanol-fatty alcohol hybrids |                     |            |
| 123       | Tsaokoflavanol A | C<sub>23</sub>H<sub>28</sub>O<sub>7</sub> | He et al. (2020a) |
| 124       | Tsaokoflavanol B | C<sub>25</sub>H<sub>32</sub>O<sub>7</sub> | He et al. (2020a) |
| 125       | Tsaokoflavanol C | C<sub>25</sub>H<sub>32</sub>O<sub>7</sub> | He et al. (2020a) |
| 126       | Tsaokoflavanol D | C<sub>25</sub>H<sub>30</sub>O<sub>8</sub> | He et al. (2020a) |
| 127       | Tsaokoflavanol E | C<sub>27</sub>H<sub>32</sub>O<sub>9</sub> | He et al. (2020a) |
| 128       | Tsaokoflavanol F | C<sub>27</sub>H<sub>34</sub>O<sub>7</sub> | He et al. (2020a) |
| 129       | Tsaokoflavanol G | C<sub>27</sub>H<sub>36</sub>O<sub>7</sub> | He et al. (2020a) |
| 130       | Tsaokoflavanol H | C<sub>23</sub>H<sub>28</sub>O<sub>7</sub> | He et al. (2020a) |
| 131       | Tsaokoflavanol I | C<sub>23</sub>H<sub>28</sub>O<sub>7</sub> | He et al. (2020a) |
| 132       | Tsaokoflavanol J | C<sub>23</sub>H<sub>28</sub>O<sub>7</sub> | He et al. (2020a) |
| 133       | Tsaokoflavanol K | C<sub>23</sub>H<sub>28</sub>O<sub>7</sub> | He et al. (2020a) |
| 134       | Tsaokoflavanol L | C<sub>23</sub>H<sub>28</sub>O<sub>7</sub> | He et al. (2020a) |
| 135       | Tsaokoflavanol M | C<sub>23</sub>H<sub>28</sub>O<sub>7</sub> | He et al. (2020a) |
| 136       | Tsaokoflavanol N | C<sub>23</sub>H<sub>30</sub>O<sub>8</sub> | He et al. (2020a) |
| 137       | Tsaokoflavanol O | C<sub>23</sub>H<sub>30</sub>O<sub>8</sub> | He et al. (2020a) |
| 138       | Tsaokoflavanol P | C<sub>27</sub>H<sub>32</sub>O<sub>9</sub> | He et al. (2020a) |
| 139       | Tsaokoflavanol Q | C<sub>27</sub>H<sub>32</sub>O<sub>9</sub> | He et al. (2020a) |
| 140       | Tsaokoflavanol R | C<sub>27</sub>H<sub>34</sub>O<sub>7</sub> | He et al. (2020a) |
| 141       | Tsaokoflavanol S | C<sub>27</sub>H<sub>34</sub>O<sub>7</sub> | He et al. (2020a) |
|           | Flavanol-monoterpenoid hybrids |                     |            |
| 142       | Tsaokol A | C<sub>25</sub>H<sub>26</sub>O<sub>7</sub> | He et al. (2020b) |
| 143       | Tsaokol B | C<sub>25</sub>H<sub>26</sub>O<sub>7</sub> | He et al. (2020b) |
|           | Diaryheptanoids |                     |            |
| 144       | (+)-hannokinol | C<sub>10</sub>H<sub>18</sub>O<sub>4</sub> | Martin et al. (2000), Lee et al. (2008), Liu et al. (2018), Choi et al. (2018) |
| 145       | (3R,5R)-3-acetoxy-5,7-bis(4-hydroxyphenyl)heptane | C<sub>21</sub>H<sub>26</sub>O<sub>5</sub> | He et al. (2020d) |
| 146       | (3R,5R)-3,5-dihydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)heptane | C<sub>19</sub>H<sub>24</sub>O<sub>5</sub> | He et al. (2020d) |
| 147       | (3R,5R)-3,5-dihydroxy-1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)heptane | C<sub>21</sub>H<sub>26</sub>O<sub>5</sub> | He et al. (2020d) |
| 148       | meso-hannokinol | C<sub>10</sub>H<sub>18</sub>O<sub>4</sub> | Martin et al. (2000), Lee et al. (2008), Zhang et al. (2014), Liu et al. (2018), Choi et al. (2018), He et al. (2020d) |
| 149       | rel-(3R,5S)-3,5-dihydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)heptane | C<sub>10</sub>H<sub>20</sub>O<sub>5</sub> | He et al. (2020d) |
| 150       | (3R,5S)-3,5-dihydroxy-1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxy phenyl)heptane | C<sub>20</sub>H<sub>26</sub>O<sub>5</sub> | He et al. (2020d) |
| 151       | rel-(3R,5S)-3,5-dihydroxy-1-(4-hydroxy-3-methoxyphenyl)-7-(3,4-dihydroxyphenyl)heptane | C<sub>20</sub>H<sub>28</sub>O<sub>5</sub> | He et al. (2020d) |
| Compd. no. | Chemical name | Molecular formula | References |
|-----------|---------------|-------------------|------------|
| 152       | (4E,6E)-1,7-bis(4-hydroxyphenyl)hepta-4,6-dien-3-one | C_{19}H_{18}O_{3} | Zong et al. (2020), He et al. (2020d) |
| 153       | Tsaokoarlyone | C_{20}H_{20}O_{4} | Lee et al. (2008), Yang et al. (2009), Jin et al. (2013), Kim et al. (2019b), He et al. (2020d) |
| 154       | (4E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-4,6-dien-3-one | C_{21}H_{22}O_{5} | Lee et al. (2008), He et al. (2020d) |
| 155       | 1,7-bis(3,4-dihydroxyphenyl)-hepta-4E,E-hepta-dien-3-one | C_{19}H_{18}O_{5} | Hussain et al. (2018), He et al. (2020d) |
| 156       | 4-[(3S,5E)-3-hydroxy-7-(4-hydroxyphenyl)hept-5-en-1-yl]-2-methoxyphenol | C_{20}H_{24}O_{4} | He et al. (2020d) |
| 157       | Amomutsaokol G | C_{19}H_{22}O_{4} | He et al. (2020d) |
| 158       | Amomutsaokol H | C_{20}H_{24}O_{5} | He et al. (2020d) |
| 159       | Amomutsaokol I | C_{22}H_{26}O_{5} | He et al. (2020d) |
| 160       | 1,7-bis(4-hydroxyphenyl)-3-hepten-5-one (1,7-bis(4-hydroxyphenyl)-4(E)-hepten-3-one) | C_{19}H_{20}O_{3} | Jin et al. (2013), He et al. (2020d) |
| 161       | hannokinin | C_{19}H_{22}O_{4} | Lee et al. (2008) |
| 162       | Amomutsaokol J | C_{20}H_{24}O_{4} | He et al. (2020d) |
| 163       | Amomutsaokol K | C_{20}H_{24}O_{4} | He et al. (2020d) |
| 164       | Amomutsaokol C | C_{20}H_{26}O_{6} | He et al. (2020d) |
| 165       | Amomutsaokol D | C_{20}H_{26}O_{6} | He et al. (2020d) |
| 166       | Amomutsaokol E | C_{20}H_{28}O_{6} | He et al. (2020d) |
| 167       | Amomutsaokol A | C_{20}H_{28}O_{11} | He et al. (2020d) |
| 168       | Amomutsaokol B | C_{20}H_{28}O_{6} | He et al. (2020d) |
| 169       | Amomutsaokol F | C_{22}H_{26}O_{8} | He et al. (2020d) |
| 170       | 2,3-dihydro-2-(4'-hydroxy-phenylethyl)-6-[(3'00,4'-dihydroxy-5'00-methoxy)phenyl]-4-pyrene | C_{20}H_{20}O_{6} | Zhang et al. (2015, 2016) |
| 171       | 4-dihydro-2-(4'-hydroxy-phenylmethyl)-6-[(3'00,4'-dihydroxy-5'00-methoxyphenyl)methylene]-pyran-3,5-dione | C_{20}H_{18}O_{7} | Zhang et al. (2015, 2016) |
| 172       | Tsaokopyranol A | C_{22}H_{24}O_{9} | He et al. (2020c) |
| 173       | Tsaokopyranol B | C_{22}H_{25}O_{10} | He et al. (2020c) |
| 174       | Tsaokopyranol C | C_{22}H_{26}O_{8} | He et al. (2020c) |
| 175       | Tsaokopyranol D | C_{22}H_{26}O_{9} | He et al. (2020c) |
| 176       | Tsaokopyranol E | C_{22}H_{26}O_{6} | He et al. (2020c) |
| 177       | Tsaokopyranol F | C_{22}H_{26}O_{6} | He et al. (2020c) |
| 178       | Tsaokopyranol G | C_{22}H_{26}O_{8} | He et al. (2020c) |
| 179       | Tsaokopyranol H | C_{22}H_{26}O_{5} | He et al. (2020c) |
| 180       | Tsaokopyranol I | C_{22}H_{26}O_{6} | He et al. (2020c) |
| 181       | Tsaokopyranol J | C_{22}H_{26}O_{7} | He et al. (2020c) |
| 182       | Tsaokopyranol K | C_{22}H_{26}O_{6} | He et al. (2020c) |
| 183       | Tsaokopyranol L | C_{22}H_{26}O_{4} | He et al. (2020c) |
| 184       | (2R,6R)-3,4-dehydro-4'-de-O-methyl centrolobin | C_{19}H_{22}O_{3} | He et al. (2020c) |
| 185       | Tsaokopyranol M | C_{20}H_{24}O_{4} | He et al. (2020c) |
| 186       | (2R,6S)-3,4-dehydro-1,7-bis(4-hydroxy phenyl)-4'-de-O-methyl centrolobine | C_{19}H_{22}O_{3} | He et al. (2020c) |
| 187       | Phaeoheptanoxide | C_{19}H_{22}O_{3} | He et al. (2020c) |
| 188       | Engelheptanoxides C | C_{20}H_{24}O_{3} | He et al. (2020c) |
Terpenoids

Terpenoids are abundant in A. tsao-ko EO (Tables 2, S4, Fig. 2). There was one monoterpane hydrocarbon (1), 22 oxygenated monoterpenes (2–23), one sesquiterpenoid (24), five diterpenoids (25–29), and two sterols (30, 31) isolated and identified from A. tsao-ko. All these compounds are present in Tsaoko Fructus. Limonene (1) and 1,8-cineole (10) also exist in A. tsao-ko stems and leaves (Yang 2019).

Among the 23 monoterpenes, 1,8-cineole (eucalyptol, 10) accounts for the highest proportion, taking 34.6%–45.24% (Feng et al. 2010; Cui et al. 2017; Rahman et al. 2017; Gu et al. 2018; Liu et al. 2018; Sun et al. 2018; Sim et al. 2019). Specially, there were four indanecarbaldehydes, 5-indanecarbaldehyde (15), 4-indanecarbaldehyde (16), trans-
dihydroindane-4-carboxylaldehydes (20), and cis-dihydroindane-4-carboxylaldehydes (22). These compounds have not been found in any other species, but only in A. tsao-ko from both China and Vietnam, thus could be used as chemical marker of A. tsao-ko species probably regardless of the growing regions (Sim et al. 2019).

Sesquiterpenoids are the condensation products of three isopentenyl pyrophosphate molecules. One linear sesquiterpenoid, (3S,6E)-3,7,11-trimethyl-1,6,10-decatrien-3-ol, also named trans-nerolidol (24), has been isolated from Tsaoko Fructus (Hong et al. 2015; Lee et al. 2019).

The five diterpenoids included two labdane-type trinorditerpenes, namely coronadiene (25) and (3E)-4-[(1S,4aS,8aS)-decahydro-5,5,8a-trimethyl-2-methylene-1-naphthalenyl]-3-buten-2-one (26) (Liu et al. 2018; Lee et al. 2019), two cycloterpenals, namely amotsaokonal B (28) and amotsaokonal C (29), and one benzaldehyde, amotsaokonal A (27) (Hong et al. 2015). It should be noted that amotsaokonal A (27) may be formed through the dehydrogenation of 29 from the perspective of biosynthetic pathway, so it is regarded as diterpenoids here.

There were two steroids isolated from Tsaoko Fructus. They were β-sitosterol (30) and its glycosylation product, β-sitosterol-3-O-glucoside (daucosterol, 31).

Besides the 31 terpenoids mentioned above, there were other 85 terpenoids detected by LC–MS or GC–MS in the extracts of A. tsao-ko fruits (Table S4) (Feng et al. 2010; Hong et al. 2015; Hu et al. 2018b; Sim et al. 2019).

**Phenylpropanoids**

Phenylpropanoids are the large group of secondary metabolites in plants. At least 157 phenylpropanoids

---

Fig. 2 Terpenoids isolated and identified from *A. tsao-ko* fruits
have been isolated and identified from Tsaoko Fructus (Table 2). These phenylpropanoids included simple phenolic acids (32–70, Fig. 3), typical flavonoids (71–114, Fig. 4), and flavonoid derivatives including flavanol-menthane conjugates (115–122, Fig. 5) (He et al. 2020c), flavanol-fatty alcohol hybrids (123–141, Fig. 4, Fig. 5) (He et al. 2020a, b, 2021), dihydrochalcone (108), and flavan-3-ols (71–75), flavan-3,4-diol (76), flavonoids and their corresponding glycosylated derivatives (77–80), flavan (81), flavanones (82–95), chalcones (96–107), dihydrochalcone (108), and flavanol conjugates with other groups such as flavonocoumarin (110), epi-catechin-(β → 8,2β → O → 7)-epiafzelechin (113), proanthocyanidin A-2 (114) (He et al. 2021). Other flavonoid derivatives like sappanone B (112), braziliin (113), flavanol-menthane conjugates (115–122), flavanol-fatty alcohol hybrids (123–141), and flavanol-monoterpenoid hybrids (142, 143) were also reported (He et al. 2020a, b, 2021) (Fig. 4, Fig. 5). In particular, there were nine flavonoids that were geranylated or farnesylated at the A ring of the skeleton, including geranylated pyranoflavanones (88–91), farnesylated pyranoflavanones (92–95), and farnesylated pyranochalcones (106, 107) (Kim et al. 2019a).

Diarylheptanoids are another type phenylpropanoids, which are characterized with a 1,7-diphenylheptane core Lee et al. (2008, 2020c, d). These compounds are widespread in Zingiberaceae. Twenty linear diarylheptanoids (144–163; Fig. 6) and 25 cyclic diarylheptanoids (164–188; Fig. 6, Fig. 7) have been isolated and identified from Tsaoko Fructus Lee et al. (2008, 2020b, d). One phenylethanoid glycoside, 2-methoxy-1,4-biphenol-1-O-[6-O-(3-methoxy-4-hydroxybenzoyl)]-β-d-glucopyranoside (189), has also been identified from the dried fruits of A. tsao-ko (Wang et al. 2009).

Organic acids

Organic acids from Tsaoko Fructus included fatty acids (190–198), aliphatic aldehydes (199–201), aliphatic alcohols (202–206), and aliphatic esters.
(207–208) (Fig. 8)(Yang et al. 2008; Min et al. 2010; He et al. 2013; Hu et al. 2018b; Liu et al. 2018; Lee et al. 2019; Sim et al. 2019; Xu et al. 2019). These compounds were also rich in A. tsao-ko EO (Li et al. 1998; Ma et al. 2008). For example, 2E-decenal (199) accounts for 3.41%-10.92% of A. Tsaoko EO (Ma et al. 2008). In addition, 49 other organic acids were also detected in A. tsao-ko EO (Table S4).

Other compounds

Besides the main constituents of Tsaoko Fructus listed above, pyrrole-2-carboxylic acid (209, Table 2, Fig. 8) (Hong et al. 2015), alicyclic compounds, furan compounds, and heterocyclic compound were also reported (Table S4).

**Pharmacological and biological activities**

Biological activities of EO, extracts, and isolated compounds of A. tsao-ko fruits have been investigated by several research groups. Most of the bioactivities were evaluated by in vitro experiments, including antibiotic, anti-tumor and anti-cancer, anti-inflammatory, anti-diabetes, neuroprotective, plasma and liver triacylglycerol decreasing activities (Table 3).

**Antibiotic activity**

Antibiotic activity of Tsaoko Fructus is extensively studied through the inhibition of various microbes such as fungi, protozoa, and both Gram-positive and Gram-negative bacteria, and against insects like...
*Tribolium castaneum*, mainly using agar dilution/diffusion or liquid/broth dilution methods in vitro.

Both the ethanol extracts (EtOH Ex.) and the ethyl acetate extracts (EtOAc Ex.) of *A. tsao-ko* fruits showed inhibitory activities against *Staphylococcus aureus*, *Salmonella Typhimurium*, *Pseudomonas aeruginosa*, and *Klebsiella pneumonia*, a gram-negative bacterium caused pneumonia with high morbidity and mortality (Rahman et al. 2017; Liu et al. 2018). The Minimum Inhibitory Concentration (MIC) of EtOH Ex. for *S. aureus*, *S. Typhimurium*, and *P. aeruginosa* was 1, 2, and 2 mg/mL, which was 25%, 25%, and 12.5% of the positive control (vanillin), respectively (Rahman et al. 2017). The MIC for *K. pneumonia* was 5 μg/mL, equal to the chloramphenicol positive control (Liu et al. 2018). Investigation with purified compounds showed that MIC values of fatty acids (191–194), phenolic acids (40–42), and coronadiene (25) for *K. pneumonia* ranged from 5 to 50 μg/mL, 100% to 10% of the positive control, proving that the anti-microbial activity of EtOH Ex. and EtOAc Ex. was most likely contributed to the synergistical effects of these components (Liu et al. 2018).

*A. tsao-ko* EO also showed antibiotic activity in vitro. It had an inhibitory effect on a broad spectrum microbial organisms, including gram-positive and gram-negative bacteria such as *E. coli*, *S. aureus*, and *Pseudomonas aeruginosa*, with MIC ranging from 22.49 to 1438.91 μg/mL (Dai et al. 2016b). It could also suppress the growth of *Trichomonas vaginalis* Tv1 and Tv2, with IC₅₀ values of 22.49 μg/mL and 44.97 μg/mL, respectively; the IC₅₀ values of metronidazole positive control were 2.44 μg/mL and 4.88 μg/mL, respectively (Dai et al. 2016a). Observation under transmission electron microscopy (TEM)
showed the anti-\textit{T. vaginalis} activity was possibly due to the damage of membrane structure, reduction or disappearance of ribosomes, organelles disintegration, cell disintegration and necrosis (Dai et al. 2016a). Geraniol (5) was thought to be the most effective substance due to its high content in \textit{A. tsao-ko} EO (13.69%) and its inhibitory activity against \textit{T. vaginalis} (IC$_{50}$ = 171.48 µg/mL for both Tv1 and Tv2) (Dai et al. 2016a).

\textit{A. tsao-ko} EO had considerable toxicity on stored-product insects, \textit{T. castaneum} (Herbst) and \textit{Lasioderma serricorne} (Fabricius) (Wang et al. 2014). Further isolation led to two components, limonene (1) and eucalyptol (10). Both compounds showed pronounced contact toxicity against \textit{T. castaneum} and \textit{L. serricorne}. The LD$_{50}$ values of 1 for \textit{T. castaneum} and \textit{L. serricorne} were 14.97 µg/adult and 13.66 µg/adult, respectively; those of 10 were 18.83 µg/adult and
15.58 μg/adult, respectively (Wang et al. 2014). These two components also possessed strong fumigant toxicity against both insect species. The LC50 values of 10 for T. castaneum and L. serricorne were 5.47 mg/L air and 5.18 mg/L air, and those of 1 were 6.21 mg/L air and 14.07 mg/L, respectively (Wang et al. 2014).

Isotsaokoin (14), another A. tsao-ko EO component, showed antifungal activity against Trycophyton mentagrophytes a little better than the positive control (amphotericin B) (Moon et al. 2004). The inhibition zone of 14 was 1.5 and 2.0 mm at 20 and 40 μg/disk, respectively, whereas that of amphotericin B was 2.5 and 3.0 mm at 20 and 40 μg/disk, respectively (Moon et al. 2004).

In vivo experiment also demonstrated that A. tsao-ko EO had antibiotic activity. When intramuscularly supplied 0.92 g/kg/d, A. tsao-ko EO could protect the mice from the infection of S. aureus or Escherichia coli, showing 100.00% survival rates (Dai et al. 2016b).

The broad-spectrum antibiotic activities of Tsaoko Fructus against microorganisms especially pathogenic microbes makes Tsaoko Fructus a promising and potential natural source for developing broad-spectrum antibiotics, which also gives a hint to the probable mechanism of its clinical application such as curing malaria and diarrhea.

Anti-inflammatory activity

It was proved that EtOH Ex. and some purified compounds from Tsaoko Fructus had anti-inflammatory activities. Lipopolysaccharide (LPS)-treated RAW 264.7 macrophage cells and BV2 microglial cells are commonly used to evaluate the effects and to
explore the possible molecular mechanism of anti-inflammatory activities.

NNMBS227, the 70% EtOH Ex. of A. tsao-ko seeds (At-EE), was reported to suppress the expression of two pro-inflammatory mediators, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in the LPS-induced inflammatory responses in RAW264.7 cells and exhibited IC50 values of 194.92 ± 1.38 µg/mL and 151.00 ± 1.06 µg/mL, respectively (Li et al. 2014). Another research also revealed that the 80% EtOH Ex. of A. tsao-ko decreased LPS-induced NO production in RAW264.7 cells with an IC50 value of 59.5 ± 1.8 µg/mL, and the N-Monomethyl-L-arginine positive control had an IC50 value of 27.3 ± 0.3 µM (Choi et al. 2018). Bioassay guided purification and inhibitory effect assay led to the finding of two active compounds, (-)-catechin (73) and (+)-epicatechin (75) (Choi et al. 2018). Both showed high activity (IC50 = 70.6 µM and IC50 = 73.3 µM, respectively) against NO production without cytotoxicity (Choi et al. 2018). Pharmacological research with purified compounds revealed that diarylheptanoids (170, 171) and aliphatic alcohol (2,8-decadiene-1,10-diol, DDO, 203) from the ethanol extracts, and oxygenated monoterpenes (9, 11–14, 17, 18), flavonoids (88–95, 98, 104–107), diarylheptanoids (144, 148, 153, 154, 161), and fatty acid (190) from the methanol extracts also had considerable inhibitory effect against LPS-induced inflammatory response, with IC50 values or the inhibition effects equivalent to that of the positive control Lee et al. (2008) (Table 3).

Western blot, RT-PCR, and ELISA analysis proved that (-)-catechin (73) and (+)-epicatechin (75) inhibited the NO production in LPS-stimulated RAW 264.7 cells through suppressing the expression of iNOS and the translocation of nuclear factor kappa-B (NF-κB) and reducing the production of inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-10 (Choi et al. 2018). For 203, besides reducing NO production and iNOS transcription, it could also inhibit the production of prostaglandin E2 (PGE2) and pro-inflammatory cytokines such as IL-6 and TNF-α. Such biological effect was resulted from the inactivation of the MAPKs such as extracellular signal-regulated kinase, c-Jun-N-terminal kinase and

Fig. 8 Fatty acids, aliphatic ketones, and hydrocarbons isolated and identified from A. tsao-ko fruits
### Table 3: The pharmacological activities of extract, essential oil, and isolated compounds of A. tsao-ko fruits*

| Activity          | Extract/ EO/ compound | Measure of activity | Positive control and activity | Cell line/strain/Model | Method | References               |
|-------------------|-----------------------|---------------------|-------------------------------|------------------------|--------|--------------------------|
| Antibiotic activity | EtOH Ex               | MIC: 1, 2, and 2 mg/mL for S. aureus, S. Typhimurium, and P. aeruginosa, respectively | Vanillin: MIC: 250 μg/mL | Staphylococcus aureus ATCC 6538 | Agar disk diffusion method | Rahman et al. (2017) |
|                   | EtOH Ex., EtOAc Ex., | MIC: 5, 5, 5, 10, 10, 50, 50 μg/mL, respectively | Chloramphenicol: MIC: 5 μg/mL | Klebsiella pneumoniae | Flask incubation assay | Liu et al. (2018) |
| EO                | In vitro:             | MIC: 22.49 to 1438.91 μg/mL | Cefradine for mice infected with S. aureus | Reference strains: E. coli ATCC 25922, S. aureus ATCC 25923, Pseudomonas aeruginosa NCTC 10662, E. coli CMCCB 44102, S. aureus CMCCB 26003, S. pneumoniae ATCC 49619 | Broth-dilution method | Dai et al. (2016b) |
|                   | In vivo:              | 0.92 g/kg/d (intramuscularly): 100.00% survival rate for S. aureus and E. coli infected mice | Cefminox for mice infected with E. coli | Clinical isolated strains: 85 S. aureus, E. coli, P. aeruginosa, Proteus vulgaris, Shigella flexneri, Enterobacter cloacae |        |                          |
|                   |                       | 1.84 g/kg/d (intragastrically): 100.00% and 70% survival rates for S. aureus and E. coli infected mice, respectively | | Mouse peritonitis model: | | | |
|                   |                       | | | Infected with S. aureus or E. coli | | | |
| EO                | MLC = 44.97 μg/mL; IC50 = 22.49 μg/mL for T. vaginalis isolate Tv1; | Metronidazole: MLC = 4.88 μg/mL; IC50 = 2.44 μg/mL for Tv1; MLC = 9.77 μg/mL; IC50 = 4.88 μg/mL for Tv2; | | Trichomonas vaginalis isolates Tv1, Tv2 | Liquid dilution method | Dai et al. (2016a) |
|                   | MLC = 89.93 μg/mL; IC50 = 44.97 μg/mL for Tv2 | Omidazol: MLC = 2.44 μg/mL; IC50 = 1.22 μg/mL for Tv1; MLC = 4.88 μg/mL; IC50 = 2.44 μg/mL for Tv2; | | | TEM | |
| 5                 | MLC = 342.96 μg/mL; IC50 = 171.48 μg/mL for both Tv1 and Tv2 | Amphotericin B: The inhibition zone was 1.5 and 2.0 mm at 20 and 40 μg/disk, respectively | | Trychophyton mentagrophytes KCTC 6085 | Paper-disk agar diffusion method | Moon et al. (2004) |

*In vivo and in vitro studies were conducted on S. aureus, S. Typhimurium, P. aeruginosa, and T. vaginalis isolates, respectively.
| Activity | Extract/E0/compound | Measure of activity | Positive control and activity | Cell line/strain/Model | Method | References |
|----------|---------------------|---------------------|-----------------------------|------------------------|--------|------------|
| 1        | EO                  | LD$_{50}$ = 16.52 µg/adult; LC$_{50}$ = 5.85 mg/L air against *T. castaneum* | Pyrethrins: LD$_{50}$ = 0.26 µg/adult against *T. castaneum* | *Tribolium castaneum* (Herbst) | Contact toxicity bioassay | Wang et al. (2014) |
|          |                     | LD$_{50}$ = 6.14 µg/adult; LC$_{50}$ = 8.70 mg/L air against *L. serricorne* | Pyrethrins: LD$_{50}$ = 0.24 µg/adult against *L. serricorne* | *Lasioderma serricorne* (Fabricius) | Fumigant toxicity bioassay |           |
| 10       |                     | LD$_{50}$ = 18.83 µg/adult; LC$_{50}$ = 5.47 mg/L air against *T. castaneum* | Methyl bromide: LC$_{50}$ = 1.75 mg/L air against *T. castaneum* | |           |            |
|          |                     | LD$_{50}$ = 15.58 µg/adult; LC$_{50}$ = 5.18 mg/L air against *L. serricorne* | Phosphine: LC$_{50}$ = 9.23 × 10$^{-3}$ mg/L air against *L. serricorne* | |           |            |

*LD$_{50}$* = 50% lethal dose; *LC$_{50}$* = 50% lethal concentration.
| Activity                          | Extract/EO/compound | Measure of activity                                                                 | Positive control and activity | Cell line/strain/Model   | Method                                                                 | References            |
|----------------------------------|---------------------|-------------------------------------------------------------------------------------|-----------------------------|-------------------------|-------------------------------------------------------------------------|-----------------------|
| Anti-inflammatory activity       | EtOH Ex. (seeds)    | No cytotoxic effect below 400 µg/mL IC<sub>50</sub> = 194.92 µg/mL for iNOS        | -                           | LPS-induced RAW264.7    | MTT assay, Nitrite assay using the Griess reaction                      | (Li et al. 2014)      |
|                                  |                     | IC<sub>50</sub> = 151.00 µg/mL for COX-2                                           |                             | RAW264.7 macrophages     | ELISA, Western Blot, Immunofluorescence Microscopy                       |                      |
|                                  |                     | No cytotoxic effect on up to 300 µM IC<sub>50</sub> = 136.66 µM for NO production | N-Methyl-L-arginine (L-NMMA, 100 µM) | LPS-induced RAW264.7    | MTT assay, Nitrite assay using the Griess reaction ELISA, Western blot | Kim et al. (2016)    |
|                                  |                     | Inhibition on iNOS, COX-2, IL-6, NF-κB, and MAKPs at 200 µM, and TNF-α at 100 µM |                             | RAW264.7 macrophages     | Immunofluorescence Microscopy                                            |                      |
|                                  | EtOH Ex             | IC<sub>50</sub> = 59.5 µg/mL for NO production and MTT > 100%                       | N-Monomethyl-L-arginine: IC<sub>50</sub> = 27.3 µM | LPS-induced RAW264.7    | MTT assay, Nitrite assay using the Griess reaction ELISA, Western blot | (Choi et al. 2018)   |
|                                  | 73                  | IC<sub>50</sub> = 73.32 µM for NO production and MTT > 100%                        | N-Monomethyl-L-arginine: IC<sub>50</sub> = 25.29 µM | LPS-induced RAW264.7    | MTT assay, Nitrite assay using the Griess reaction ELISA, Western blot |                      |
|                                  | 75                  | IC<sub>50</sub> = 70.57 µM for NO production and MTT > 100%                        |                              |                         |                                                                         |                      |
|                                  |                     | Inhibition on iNOS, TNF-α, IL-1β, IL-10 at 25–100 µM                               | Dexamethasone: Cell viability: 80.34% and 69.82% at 50 µg/mL, respectively | LPS-stimulated macrophage RAW 264.7 cells | MTT assay, Nitrite assay using the Griess reaction                       | (Zhang et al. 2016)  |
|                                  | 170, 171            | Cell viability: 80.34% and 69.82% at 50 µg/mL, respectively                        | Vitamin C: Cell viability: 84.80% at 50 µg/mL | H<sub>2</sub>O<sub>2</sub>-treated PC-12 cells |                                                                         |                      |
|                                  |                     | NO inhibition: 60.46% and 48.62% at 100 µg/mL, respectively                        |                             |                         |                                                                         |                      |
|                                  | 9, 11, 13, 14, 17,  | 68.8% to 1.1% NO inhibition at a concentration ranging from 1 µM to 100 µM       | NAME (o-nitro-L-arginine methyl ester): 58.5% to 11.2% for NO inhibition at a concentration ranging from 1 µM to 100 µM | LPS-induced BV2 microglial cells | MTT assay, Nitrite assay using the Griess reaction                      | Lee et al. (2008)    |
|                                  | 18, 144, 148, 153,  |                                                                                   |                             |                         |                                                                         |                      |
|                                  | 154, 161, 190       |                                                                                   |                             |                         |                                                                         |                      |
|                                  | 98, 104, 105, 153   | IC<sub>50</sub> = 10.9 to 22.5 µM                                                | Aminoguanidine: IC<sub>50</sub> = 21.4 µM | LPS-induced RAW264.7    | MTT assay, Nitrite assay using the Griess reaction                      | Kim et al. (2019b)   |
|                                  | 88–95, 106, 107     | IC<sub>50</sub> = 10.6 to 41.5 µM                                                | Aminoguanidine: IC<sub>50</sub> = 21.7 µM | LPS-induced RAW264.7    | MTT assay, Nitrite assay using the Griess reaction                      | Kim et al. (2019a)   |
| Activity and anti-cancer | Extract/EO/compound | Measure of activity | Positive control and activity | Cell line/strain/Model | Method | References |
|--------------------------|----------------------|--------------------|-------------------------------|------------------------|--------|------------|
| Anti-tumor and anti-cancer | Ethyl acetate fraction of EtOH Ex | Inhibition rate at 400 µg/mL: 71.4% against SMMC-7721; About 60% against HepG-2, Hela and A549 | 5-fluorouracil: Inhibition rate at 400 µg/mL: About 70% against SMMC-7721 and A549; About 60% against HepG-2 and Hela | HepG-2, SMMC-7721, Hela and A549 human cancer cells | MTT assay | Zhang et al. (2015) |
| | Petroleum ether fraction of EtOH Ex | Inhibition rate at 400 µg/mL: About 70% against SMMC-7721 and A549; About 60% against HepG-2 and Hela | 5-fluorouracil: IC\textsubscript{50} = 91.23, 89.08, 117.83, 79.77 µg/mL to SMMC-7721, HepG-2, Hela, A549 cells, respectively | | IC\textsubscript{50} = 59.83, 73.89, 65.89, and 72.29 µg/mL to SMMC-7721, HepG-2, Hela, and A549 cells, respectively |
| | Hexane fraction of EtOH Ex. (seeds) | IC\textsubscript{50} = 72.14 µg/mL to Hela cells | - | BV2 microglial cells | MTT assay | SPHK1/2 activity inhibition assay | Lee et al. (2019) |
| | | No significant cell death at 10 µM | Resveratrol for SPHK1 inhibition: 85.43% of the control | | | |
| | | SPHK1 inhibition: 59.75% (205) to 77.51% of the control | SKI-II for SPHK2 inhibition: 75.35% of the control | | | |
| | | No significant cell death at 10 µM | Mitomycin: IC\textsubscript{50} = 5.93 µg/mL for HepG2 | | MTT assay, DNA content and cell cycle analysis | Yang et al. (2010) | |
| | | SPHK2 inhibition: 22.75% (3), 25.40% (205) to 58.20% of the control | | Human HepG2, Hela, Bel-7402, SGC-7901, PC-3 | | |
| | | | | Normal cell lines: Human HUVEC and HL-7702 | | | |
| Activity                      | Extract/E0/compound | Measure of activity                                      | Positive control and activity | Cell line/strain/Model                                    | Method                                                       | References       |
|------------------------------|----------------------|----------------------------------------------------------|-------------------------------|----------------------------------------------------------|--------------------------------------------------------------|------------------|
| Antioxidant activity         | Ethyl acetate fraction of 95% EtOH Ex | > 90% DPPH radicals inhibition rate at 200 μg/mL         | Vitamin C: > 90% DPPH radicals inhibition rate at 200 μg/mL | HepG-2, SMMC-7721, Hela, and A549 human cancer cells     | DPPH radical scavenging activity assay                      | Zhang et al. (2015) |
| 171                          |                      | About 80% DPPH radical inhibition rate at 100 μg/mL      | Vitamin C: > 80% DPPH radicals inhibition rate at 100 μg/mL |                                           | DPPH radical scavenging activity assay                      | Liu et al. (2018)  |
| 40–42, 144, 148, 191, 192    | MIC: 5, 100, 100, 100, 100, 100 μg/mL; > 80%, > 80%, > 80%, 77.08%, > 70%, > 70%, 60.83% | Vitamin C: MIC: 5 μg/mL, > 90% |                               |                                           | DPPH radical scavenging activity assay                      | Martin et al. (2000) |
| 36, 60, 73, 75               | IC₅₀ = 12.55, 12.66, 15.89, 14.39 μM, respectively | β-Tocopherol: IC₅₀ = 12.57 μM |                               |                                           | DPPH radical scavenging activity assay                      | Cui et al. (2017)  |
| EO (obtained by M-SFME)      | IC₅₀ = 5.27 mg/mL for DPPH assay | IC₅₀ = 0.63 mg/mL for β-carotene/linoleic acid bleaching assay | Vitamin C for DPPH assay: IC₅₀ = 0.046 mg/mL | BHT for β-carotene/linoleic acid bleaching assay: IC₅₀ = 0.02 mg/mL | DPPH radical scavenging activity assay, β-carotene/linoleic acid bleaching assay | Cui et al. (2017) |
| EO                           | IC₅₀ = 5.12 mg/mL for DPPH assay | L-Ascorbic acid for DPPH: IC₅₀ = 2.17 μg/mL | BHT for TBA test: IC₅₀ = 0.05 μg/mL | L-Ascorbic acid: FRAP = 10.33 mM Fe²⁺/mg | DPPH radical scavenging activity assay, TBA test (Lipid peroxidation inhibition assay), FRAP assay | Yang et al. (2010) |
|                             | IC₅₀ = 0.04 μg/mL for TAB test | FRAP = 24.27 μM Fe²⁺/mg |                               |                                           | Human HepG2, Bel-7402, Hela, A549, SGC-7901, and PC-3 cancer cell lines, and HL-7702, HUVEC normal cell lines |                 |
| Activity                  | Extract/EO/compound | Measure of activity | Positive control and activity | Cell line/strain/Model | Method                                      | References       |
|--------------------------|---------------------|---------------------|-------------------------------|------------------------|---------------------------------------------|------------------|
| Anti-diabetic activity   | Aqueous Ex. of A. tsao-ko seeds | IC₅₀ = 1.04 mg/mL for α-amylase | Acarbose: IC₅₀ = 2.1 mg/mL for α-amylase | -                      | α-amylase inhibition assay                  | Hussain et al. (2018) |
|                          |                     | IC₅₀ = 1.4 mg/mL for α-glucosidase | IC₅₀ = 1.90 mg/mL for α-glucosidase |                        | α-glucosidase inhibition assay              |                  |
|                          | Aqueous Ex. of A. tsao-ko rinds | IC₅₀ = 1.24 mg/mL for α-amylase | MeX Polar fraction of MeX IC₅₀ = 0.02 mg/mL for α-glucosidase | Diet control: Plasma glucose: About 200 mg/dL | In vitro: α-amylase, α-glucosidase, and lipase activity assay | Yu et al. (2010) |
|                          |                     | IC₅₀ = 2.4 mg/mL for α-glucosidase | No IC₅₀ for α-amylase and lipase | Male mice of the Crlj:CD-1 (ICR) strain | In vivo: Plasma glucose assay                |                  |
|                          |                     | Plasma glucose: About 100 mg/dL of polar fraction | Det control: Plasma glucose: About 200 mg/dL |                          |                                             |                  |
|                          | 50% EtOH Ex 176, 179–182, 187 | IC₅₀ = 38.6 µg/mL | Acarbose: IC₅₀ = 219.0 µM | -                      | α-glucosidase inhibitory assay              | He et al. (2020c) |
|                          | 172, 173, 175, 177, 188 | IC₅₀ = 59.4 to 97.0 µM | ACarbose: IC₅₀ = 193.77 µM | -                      | α-glucosidase inhibitory assay              | He et al. (2020a) |
|                          | 110, 114, 116, 117, 120 | IC₅₀ = 100.1 to 179.5 µM | Suramin sodium: IC₅₀ = 199.39 µM | -                      | PTP1B inhibitory assay                      | He et al. (2021) |
|                          | 71, 112, 114–117, 119–122 | IC₅₀ = 201.45 to 317.51 µM | Suramin sodium: IC₅₀ = 199.39 µM | -                      | TCPTP assay                                | He et al. (2021) |
|                          | 123, 124, 128, 133, 140 | IC₅₀ = 3.73 to 76.23 µM | Suramin sodium: IC₅₀ = 199.39 µM | -                      | TCPTP assay                                | He et al. (2021) |
|                          | 128, 132–134, 141 | IC₅₀ = 5.2 to 9.0 µM, | Suramin sodium: IC₅₀ = 199.39 µM | -                      | TCPTP assay                                | He et al. (2020a) |
|                          | 142 | IC₅₀ = 5.2 to 9.0 µM | Suramin sodium: IC₅₀ = 199.39 µM | -                      | TCPTP assay                                | He et al. (2020a) |
|                          | 143 | IC₅₀ = 18.8 µM | Acarbose: IC₅₀ = 213 µM | -                      | α-glucosidase inhibitory assay              | He et al. (2020b) |
| Activity                        | Extract/ EO/ compound | Measure of activity | Positive control and activity | Cell line/strain/ Model | Method                                               | References |
|--------------------------------|-----------------------|---------------------|------------------------------|-------------------------|------------------------------------------------------|------------|
| Lipid reducing activity       | MeX polar fraction of MeX | Body lipid: About 12.5% | Diet control: Body lipid: about 20% | Male mice of the Crlj:CD-1 (ICR) strain | Plasma and liver lipid analysis Plasma TBARS concentration assay | (Yu et al. 2010) |
|                               |                       |                     |                              |                         |                                                      |            |
|                                | 191-194               | MIC: 50 µg/mL, 50.07%; MIC: 50 µg/mL, 61.56%; MIC: 50 µg/mL, 49.32% | Orlistat: MIC: 5 µg/mL, 58.78% | - | Lipase inhibition assay | Liu et al. (2018) |
| Neuroprotective activity      | 170                   | 80.34% cell viability at 50 µg/mL | 84.80% cell viability at 50 µg/mL | LPS-stimulated macrophage RAW 264.7 cells | MTT assay, Nitrite assay using the Griess reaction | Zhang et al. (2016) |
|                               | 171                   | 69.82% cell viability at 50 µg/mL |                              | H2O2-treated PC-12 cells |                                                      |            |
|                                | 77                    | up to 78.9% cell viability at 50 µg/mL | Hydrogen peroxide: > 50% cell viability | H2O2-treated PC-12 cells | MTT assay, Nitrite assay using Griess reaction, DPPH radical scavenging activity assay | Zhang et al. (2014) |
| Anti-complementary activity   | 33, 160              | CH50: 0.55 mM; AP50: 0.53 mM CH50: 0.42 mM; AP50: 0.66 mM | Sheep erythrocytes | | In vitro test for complement- inhibitory properties against CP and AP, In vitro hemolytic assays | Jin et al. (2013) |

*All the extracts, EO, and isolated compounds were from the dried fruits of A. tsao-ko, except where specified.

ENZA Enzyme-Linked Immunosorbent Assay, EtOAc Ex. Ethyl Acetate Extracts, EtOH Ex. Ethanol Extracts, IC50 50% inhibitory concentration, LC50 50% Lethal Concentration, LD50 50% Lethal Dose, LPS Lipopolysaccharide, MAPK Mitogen-Activated Protein Kinase, MBC Minimum Bactericidal Concentration, MeX Methanol Extracts, DPPH 2,2-Diphe- Nyl-1-Picrylhydrazyl, MIC Minimum Inhibitory Concentration, MLC Minimum Lethal Concentration, MLD Minimal Lethal Dose, MTT 3-(4,5-Dimethyl-2-Thiazolyl)-2,5-Diphenyl-2-H-Tetrazolium Bromide, TBARS Thiobarbituric Acid Reactive Substances, TCPTP T-Cell Protein Tyrosine Phosphatase, TEM Transmission Electron Microscopy.
p38MAPK and the suppression of the NF-κB pathway such as degradation of κB-α and NF-κB inhibitors (Kim et al. 2016). It appeared that the anti-inflammatory activities of Tsaoko Fructus extracts and the isolated compounds were possibly achieved through the downregulation of the mitogen-activated protein kinase (MAPK) pathway and the NF-κB pathway.

The anti-inflammatory activity of Tsaoko Fructus indicates that it could be used as a potent therapeutic agent for the treatment of inflammatory disorders. It also implies that the medicinal value of Tsaoko Fructus such as its treatment on spleen and stomach disorders might be at least partially due to its anti-inflammatory activity.

Anti-tumor/cancer and antioxidant activity

The anti-tumor and anti-cancer activities were usually evaluated by MTT assay against human cancer cells such as hepatoma cells HepG-2 and SMMC-7721, cervical cancer cell Hela, and lung cancer cell A549 in vitro. Besides, since oxidative stress is among the main causes of cancer-related death and the chemoprevention is defined as the use of antioxidants to prevent cancer formation or cancer progress, antioxidative activity assay such as DPPH radical scavenging ability assay was also used to screen potential anti-tumor/cancer chemicals (Zhang et al. 2015).

It was reported that the ethyl acetate fraction and the petroleum ether fraction of 95% ethanol extracts of A. tsao-ko fruits showed > 60% inhibition rate at 400 μg/mL against several cancer cell lines including Hela, HepG-2, SMMC-7721, and A549 (Zhang et al. 2015). Bioactivity-guided separation led to the isolation of isotsaokoin (14) and two diarylheptanoids (170 and 171) (Zhang et al. 2015). 170 and 171 inhibited the proliferation of HepG-2, SMMC-7721, Hela and A549 cells with IC50 ranging from 44.66 μg/mL to 117.83 μg/mL, nearly equal to that of the positive control (5-fluorouracil: 59.83–73.89 μg/mL), while 14 only had inhibitory activity against Hela cells (IC50 = 72.14 μg/mL) (Zhang et al. 2015). 171 also showed DPPH scavenging ability, equivalent to vitamin C (Ve) (Zhang et al. 2015).

Sphingosine kinases 1 and 2 (SPHK1/2) are considered rate limiting enzymes for the formation of sphingosine 1 phosphate (S1P), which serves an important function in cellular and physiological processes Lee et al. (2019). So, the inhibition of SPHK1/2 may induce cell cycle arrest and apoptosis, exerting anticancer effects Lee et al. (2019). Research revealed the hexane fraction of 50% EtOH Ex. of A. tsao-ko seeds showed inhibitory effect on SPHK1 and SPHK2 by 39% and 67% of the control, respectively Lee et al. (2019). Under the guidance of this assay, 25 compounds had been isolated, of which phenolic acids 61, 62, 63 and 68, fatty acids 194 and 197, aliphatic alcohols 204, 205 and 206 showed inhibition against SPHK1 activity up to 20%, and monoterpene 3, phenolic acids 57, 58 and 65, fatty acid 193, aliphatic alcohols 204 and 205 had inhibition against SPHK2 activity up to 40% compared with the control Lee et al. (2019) (Table 3). Compound 205 had the highest potency to inhibit the activity of SPHK1, by 59.75%, and compound 3 showed the highest potency in suppressing SPHK2 activity, by 22.75%, in comparison with the control, where both exhibited higher inhibitory effect than the corresponding positive control (Resveratrol for SPHK1: 85.43%; SKI-II for SPHK2: 75.35%) Lee et al. (2019). Docking modeling analysis indicated that 205 and 3 bind into the hydrophobic substrate-binding pocket of SPHK1 and SPHK2, respectively, suggesting they might act as substrate-competitive inhibitors of SPHK1/2 enzymes Lee et al. (2019).

Compounds from the 95% EtOH extract or 70% acetone fraction of dichloromethane extracts of Tsaoko Fructus had antioxidative activity. These compounds included phenolic acids 36, 40, 41 and 42, flavonoids 60, 74 and 76, diarylheptanoids 145 and 149, and fatty acids 192 and 193 (Martin et al. 2000; Liu et al. 2018). Among them, 36, 60, 73 and 75 had the IC50 values of 12.55–15.89 μM, equivalent to that of the positive control (α-tocopherol: IC50 = 12.57 μM) (Martin et al. 2000), and 42 exhibited almost excellent DPPH scavenging activity at a concentration of 100 μg/mL (DPPH radical inhibition rate > 90%), which was very close to that of vitamin C at the same concentration (DPPH radical inhibition rate about 95%) (Liu et al. 2018).

A. tsao-ko EO was also proved to have antioxidative and anti-tumor activities. Cytotoxicity analysis by MTT assay showed that A. tsao-ko EO was cytotoxic to HepG2, Hela, Bel-7402, SGC-7901 and PC-3 cell lines. And the lowest IC50 of 31.80 ± 1.18 μg/mL was obtained for HepG2 carcinoma cell lines, compared to 5.93 ± 0.30 μg/mL of the positive control (mitomycin) (Yang et al. 2010). It
had weak antioxidant activity as measured by DPPH radical assay, thiobarbituric acid (TBA) test, and ferric reducing antioxidant power (FRAP) assay (Yang et al. 2010).

The strong antioxidant and anti-tumor activity against tested tumor cell lines of 171 indicates it is worthy of further study as a potential nutraceutical compound and chemotherapeutic drug. The studies of 205 and 3 on the inhibition of SPHK1 and SPHK2 enzymatic activities also suggest that these compounds could be developed as potential anti-tumor drugs.

**Anti-diabetic activity**

The anti-diabetic activities of extracts, EO, and isolated compounds of *A. tsao-ko* are usually assessed by assaying the inhibition activity of enzymes such as α-amylase, α-glucosidase, protein tyrosine phosphatase 1B (PTP1B), and T-Cell protein tyrosine phosphatase (TCPTP) through in vitro and in vivo experiments.

The aqueous extracts of *A. tsao-ko* seeds showed obvious inhibitory activities against α-amylase and α-glucosidase in vitro, with IC$_{50}$ of 1.04 mg/mL and 1.4 mg/mL, in contrast to 2.1 mg/mL and 1.90 mg/mL of the positive control (acarbose), respectively (Hussain et al. 2018). The methanol extracts (MeX) and the polar fraction of MeX of *A. tsao-ko* fruits inhibited α-glucosidase activity with an IC$_{50}$ of 0.02 mg/mL in vitro (Yu et al. 2010). Dietary feeding experiments in mice proved that feeding the polar fraction of MeX can reduce plasma glucose to about 50% of the negative control, indicating that the polar fraction of MeX had effective hypoglycemic activity in vivo (Yu et al. 2010).

Recently, it has been demonstrated that 50% ethanol–water extract of *A. tsao-ko* dried fruits had significant α-glucosidase inhibitory activity (IC$_{50}$ = 38.6 µg/mL) (He et al. 2020c). Bioactivity-guided isolation on the active fraction afforded seventeen 2,6-epoxy diarylethanoids (172–188)(He et al. 2020c) Among them, tsaokopyranols E, H, I, J, K (176, 179–182) and phaeoheptanoxide (187) showed obvious α-glucosidase inhibitory activity with IC$_{50}$ below 100 µM, much lower than the positive control (acarbose: IC$_{50}$ = 219.0 µM). Tsaokopyranols A, B, D, F (172, 173, 175, 177) and engelheptanoxide C (188) exhibited moderate activity with IC$_{50}$ ranging from 100.1 to 179.5 µM, comparable to the positive control (He et al. 2020c). Applying similar approaches, the same research group also isolated a series of flavonoids and flavonoid derivatives from the EtOH extract of *A. tsao-ko* fruits and demonstrated that some of them had anti-diabetic activities (He et al. 2020a, b, 2021). These compounds included flavonoids, namely (+)-afzelechin (71), flavanocoumarin (110), sappanone B (111), brazillian (112) and proanthocyanidin A-2 (114), rare flavanol-methane conjugates, namely amomutsaokins A–C and E–H (115–117, 119–122), new flavanol-fatty alcohol hybrids, namely tsaokoflavonols A, B, F, J–L, R and S (123, 124, 128, 132–134, 140, 141), and two unusual flavanol-monoterpenoid hybrids, tsaokols A (142) and B (143) (He et al. 2020a, b, 2021) (Table 3). Tsaokols A (142) and B (143) showed significant α-glucosidase inhibitory effect with IC$_{50}$ values of 18.8 and 38.6 µmol/L (He et al. 2020b). Compounds 110, 114, 116, 117 and 120 exhibited PTP1B selective inhibition with IC$_{50}$ values of 201.45–317.51 µM, and 71, 111, 112, 114–117 and 119–122 displayed α-glucosidase inhibitory effect with IC$_{50}$ values ranging from 3.73 to 76.23 µM (He et al. 2021). Tsaokoflavonols A, B, F, K and R (123, 124, 128, 140) exhibited inhibitory activity against α-glucosidase with IC$_{50}$ values of 5.2–9.0 µM, 20–35 times stronger than the positive control (acarbose: IC$_{50}$ = 180.0 µM). And tsaokoflavonols F, J–L and S (128, 132–134, 141) were PTP1B/TCPTP selective inhibitors with IC$_{50}$ values of 56.4–80.4 µM, 2–4 times stronger than the positive control (suramin sodium: IC$_{50}$ = 200.5 µM)(He et al. 2020a). Enzyme kinetics study indicated that compounds 123, 124, 128 and 133 were α-glucosidase and PTP1B mixed-type inhibitors with Ki values ranging from 2.9 to 13.0 M, 20–35 times stronger than the positive control (acarbose: IC$_{50}$ = 180.0 µM). And tsaokoflavonols F, J–L and S (128, 132–134, 141) were PTP1B/TCPTP selective inhibitors with IC$_{50}$ values of 56.4–80.4 µM, 2–4 times stronger than the positive control (suramin sodium: IC$_{50}$ = 200.5 µM)(He et al. 2020a). Using docking simulation they proved that the hemiacetal hydroxy, the orientation of 3,4-dihydroxyphenyl, and the length of alkyl were essential in binding with α-glucosidase and PTP1B (He et al. 2020a).

**Lipid reducing activity**

Methanol extracts (MeX) of *A. tsao-ko* fruits could reduce the body lipid in mice at about 50% of the control, and (+)-epicatechin (75) was believed to be the main active component (Yu et al. 2008, 2010). Through in vitro assay, Liu et al. (2018) proved that
fatty acids 191, 192, 193 and 194 exhibited inhibition effects on lipase activity, and when the concentrations were at 50 μg/mL, their inhibition rates were 50.07%, 61.56%, 59.37% and 49.32%, respectively. The inhibition effects of (2E,7Z)-tetradeca-2,7-dienoic acid (192) and (E)-tetradec-2-enoic acid (193) on lipase were even better than the positive control (orlistat: 58.78%) at a concentration of 50 μg/mL (Liu et al. 2018).

**Neuroprotective activity**

The neuroprotective effect is closely in correlation with the antioxidant activity, just as anti-inflammatory and anti-tumor activities (Zhang et al. 2015, 2016). H2O2 induced nerve injury of PC-12 cells were commonly used to assay the neuroprotective activity.

Besides the activity against inflammation, diarylheptanoids 170 and 171 also showed significant neuroprotective activity by reversing the loss of cell viability induced by H2O2, with nearly equal activity to the Vc control (Zhang et al. 2016). The 95% EtOH and the ethyl acetate fraction of A. tsao-ko fruits also showed potent protective effect on the damage to PC-12 cells induced by H2O2 (Zhang et al. 2014). Bioactivity-guided separation led to the isolation of six active compounds including quercetin (77), daucosterol (31), (+)-epicatechin (75), quercetin-7-O-β-glucoside (79), quercetin-3-O-β-D-glucopyranoside (78), meso-hannokinol (148). Quercetin (77) exhibited the strongest neuroprotective effect, and the cell viability was up to 78.9% at a concentration of 50 μg/mL. The other five compounds 31, 75, 78, 79 and 148 also showed protective effects. The cell viability was 75.6%, 70.4%, 68.1%, 68.1% and 63.8% after treatment with these compounds, respectively (Zhang et al. 2014). Quercetin (77) exhibited good DPPH radical-scavenging activity at a concentration of 100 μg/mL (DPPH radical inhibition rate > 80%), very close to Vc at the same concentration (about 83%) (Zhang et al. 2014). But, quercetin (77) is a widespread natural product in plants and can interact with many proteins in vitro (Gertsch 2009). Whether it works as the effective ingredient of Tsaoko Fructus or not requires further exploration.

**Anti-complementary activity**

In the effort to search for anti-complementary agents under the guidance of bioactivity-directed fractionation and isolation, Jin et al. (2013) obtained 14 compounds (15, 18, 32, 33, 44–47, 55, 96, 99, 101, 153, 160) from the ethanolic extract of A. tsao-ko dried fruits. All the 14 compounds exhibited anti-complementary activities against the classical pathway (CP) and the alternative pathway (AP) through in vitro evaluation (Jin et al. 2013). Among them, hydroquinone (33) and 1,7-bis(4-hydroxyphenyl)-4(E)-hepten-3-one (160) showed the strongest anti-complementary activity. The CH50 and AP50 values of 33 and 160 were 0.55 ± 0.11 mM and 0.53 ± 0.15 mM, 0.42 ± 0.15 mM and 0.66 ± 0.11 mM, respectively; compared to the positive control, heparin, the CH50 and AP50 of which were 40 μg/mL and 97 μg/mL, respectively (Jin et al. 2013). Hemolytic assays indicated that 160 blocked C1q, C2, C3, C4, C5 and C9 in the complement system, and 33 acted on C1q, C2, C3, C5 and C9 (Jin et al. 2013). The anti-complementary activity of A. tsao-ko extracts and the purified compounds, in particular 33 and 160, suggests that they have the potency to be complement inhibitors.

Although most of the pharmacological activities of the extracts and compounds from Tsaoko Fructus were obtained only by in vitro experiments at present, the advanced achievements have provided certain evidences for elucidating the therapeutic mechanism. It also makes Tsaoko Fructus an expected potential health care product and medicinal source such as dietary supplements for reducing blood glucose and lipid levels or as new anti-diabetic drug candidates. Moreover, it has been demonstrated that the ethanol extract of Tsaoko Fructus showed no toxic and no-observed adverse effects in mice when fed with the extract at 2000 mg/kg/day (Park et al. 2015).

**Quality control of Tsaoko Fructus as a medicinal material**

Quality control of medicinal materials is of great importance to keep the clinical efficacy and safety. There is no international standard of Tsaoko Fructus at present. The current quality control of Tsaoko Fructus is based on the content of eucalyptol (10), besides the
normal morphological detection and authentication, according to the newly published *Pharmacopoeia of the People’s Republic of China* (2020). Yet, eucalyptol (10) universally exists in the volatile oil of many plants, not unique to Tsaoko Fructus. More importantly, besides the anti-biotic activity, eucalyptol (10) has little bioactivities (Table 4), which makes it improper as the “quality” standard index. A more proper standard should be developed to focus on either *A. tsao-ko*-specific compounds such as 15, 16, 20, and 22 (Sim et al. 2019) (Table 2) or components relevant to its clinical efficacy like 14 that has anti-inflammatory and anti-tumor activities.

Additionally, since Tsaoko Fructus has multiple pharmacological activities (Tables 3, 4) and there are a great variety of chemicals in Tsaoko Fructus (Tables 2, S4), it will be better to study the biological activities of a fraction or extract and establish a specific chemical fingerprint correlated with a certain clinical efficacy or bioactivity, instead of just focusing on one or two particular compounds.

### Conclusion and perspective

The dried fruits of *A. tsao-ko* (Tsaoko Fructus) are valuable medicinal materials that have been used clinically more than one thousand years ago. Its traditional uses in treating malaria have contributed to the successful application of Tsaoko Fructus-containing prescriptions in the treatment and prevention of the current epidemic diseases, SARS and COVID-19. Nowadays, epidemic has become the greatest threat to people’s health and life. Novel viruses and multiple antibiotic-resistant bacteria keep emerging, posing an unprecedented challenge to the health even life security of human. People are in urgent need of safe and effective medicines. The extracts, EO, and isolated compounds of Tsaoko Fructus exhibited a broad-spectrum inhibition against multiple microbes, which makes it a potential source of safe and natural antibiotics, especially in an era that pathogens have become the greatest enemy to us.

Pharmacological studies of the extracts, EO, and isolated compounds of Tsaoko Fructus provided a certain basis for its mechanism of medicinal function and potential application. The inhibition activities on a broad-spectrum of microorganism of Tsaoko Fructus may account for its suppression of many pathogen-related diseases such as malaria, diarrhea, throat infections, pathogen induced fever and other pathogen infections. The relief of abdominal pain and the elimination of phlegm is possible related to its anti-inflammatory activities. The anti-diabetic and lipid-reducing activities of *A. tsao-ko* make it a potential resource to prevent or relieve age or life-style related diseases such as diabetes, obesity and hypertension.

Behind its various biological activities lies an abundant number of phytochemicals. At least 209 components have been separated and identified including terpenoids, flavonoids, aromatic compounds and a diversity of simple organic molecules, some of which have already been tested for their bioactivities.

However, there still exist some research gaps to date. Firstly, current research has revealed many

### Table 4 Compounds isolated and identified from *A. tsao-ko* fruits

| Pharmacological activity | Compounds isolated and identified from *A. tsao-ko* fruits |
|-------------------------|---------------------------------------------------------|
| Anti-biotic activity    | Monoterpenoids (1, 5, 10, 14), Diterpenoids (25), Phenolic acids (40–42), Fatty acids (191–194) |
| Anti-inflammatory activity | Monoterpenoids (9, 11–14, 17, 18), Phenolic acids (73, 75), Flavonoids (88–95, 98, 104–107), Diarylheptanoids (144, 148, 153, 154, 161, 170, 171), Fatty Acids (190), Aliphatic alcohols (203) |
| Anti-tumor and anti-cancer activity | Monoterpenoids (3, 14), Phenolic acids (57, 58, 61–63, 65, 68), Diarylheptanoids (144, 170, 171), Fatty acids (193, 194, 197), Aliphatic alcohols (204–206) |
| Antioxidant activity | Phenolic acids (36, 40–42, 60), Flavonoids (73, 75), Diarylheptanoids (144, 148, 171), Fatty acid (191) |
| Anti-diabetic activity | Flavonoids (71, 110, 112, 114), Flavanol-methane conjugates (115–117, 119–122), Flavanol-fatty alcohol hybrids (123, 124, 128, 132–134, 140, 141), Flavanol-monoterpenoid hybrids (142, 143), Diarylheptanoids (172, 173, 175–177, 179–182, 187, 188) |
| Lipid-reducing activity | Fatty acids (191–194) |
| Neuroprotective activity | Phenolic acids (77), Diarylheptanoids (170, 171) |
| Anti-complementary properties | Phenolic acid (33), Diarylheptanoid (160) |
biological activities of Tsaoko Fructus, but those bioactivities haven’t been well linked to its medical usage. More study on the relationship between the bioactivity and medical uses should be done in the future. Investigation at molecular and cellular levels and in vivo experiments are expected to reveal what exactly are functioning as key components and how they work, considering the bioavailability of the compounds. This can subsequently help us better understand the mechanism to treat disease and make better use of this medicinal material. Secondly, in many phytochemical research, there exist some unidentified signals in the results of LC–MS or GC–MS profiles, which might be due to instrumental accuracy and precision, or some compounds that were not listed in the current database. This can be a point to dig into, which may help to discover some new compounds with biological activities. At last, according to *Pharmacopoeia of the People’s Republic of China* (2020), a more appropriate quality control system on the basis of the unique components and more relevant to its pharmacological activity or clinical efficacy should be developed for Tsaoko Fructus. Using a specific chemical feature related with a certain pharmacological activity or clinical efficacy may be more rational, because there are a great number of compounds in Tsaoko Fructus and it has multiple bioactivities and clinical applications.

In conclusion, Tsaoko Fructus has a long historical clinical use to treat a number of disorders. The present studies revealed that it contains hundreds of compounds and has multiple biological activities. These achievements indicate a bright future of Tsaoko Fructus as a natural source of next-generation medications, and also lay foundation for further elucidating the therapeutic mechanism, and revealing the relationship between clinical usage, chemical composition and pharmacological activity of Tsaoko Fructus in the future.

**Acknowledgements** We greatly appreciate Prof. Guixin Chou, Prof. Ling Zhao, and Prof. Hailian Shi from Shanghai University of Traditional Chinese Medicine for their assistance in the identification and classification of the compounds, and the interpretation and explanation of Tsaoko Fructus-containing prescriptions.

**Authors’ contributions** Zhengtao Wang gave the outline of the review and revised the manuscript. Daju Chen retrieved and classified most of the literatures and revised the manuscript. Siyuan Yang drafted and revised the manuscript, drew the chemical structures and made most of the tables. Yafu Xue participated in modifying the manuscript.

**Funding** This work was supported by “Science and Technology Innovation Action Program” of Shanghai Science and Technology Commission (No. 19395800300) and the “Wang Zhengtao” Expert Workstation of Yunnan Province (No. 2018IC146) granted to Professor Zhengtao Wang.

**Availability of data and material** Not applicable.

**Code availability** Not applicable.

**Conflict of interest** The authors have no conflicts of interest.

**References**

Chen Y (2007) Caoguo-Baoqing Bencao Zhezhong. In: Zheng J (ed) Three Issues of Rare Bencao in Nan Song Dynasty. People’s Medical Publishing House, Beijing, p 588

Chinese Pharmacopoeia Commission (2015) Pharmacopoeia of the People’s Republic of China. China Medical Science Press

Choi CW, Shin JY, Seo C et al (2018) In vitro anti-inflammatory activity of the components of *Amomum tsao-ko* in murine macrophage raw 2647 cells. Afr J Tradit Complement Altern Med 15:26–34. https://doi.org/10.21010/ajtcam.v15i2.4

Cui Q, Wang LT, Liu JZ et al (2017) Rapid extraction of *Amomum tsao-ko* essential oil and determination of its chemical composition, antioxidant and antimicrobial activities. J Chromatogr B Anal Technol Biomed Life Sci 1061–1062:364–371. https://doi.org/10.1016/j.jchromb.2017.08.001

Dai M, Peng C (2011) Research progress on chemical compositions and pharmacological actions of *Amomum tsao-ko* Crevost et Lemaire. Pharm Clin Chin Mater Medica 2:55–59

Dai M, Peng C, Peng F et al (2016a) Anti-Trichomonas vaginalis properties of the oil of *Amomum tsao-ko* and its major component, geraniol. Pharm Biol 54:445–450. https://doi.org/10.3109/13880209.2015.1044617

Dai M, Peng C, Sun F (2016b) Anti-infectious efficacy of essential oil from Caoguo (Fructus Tsaoko). J Tradit Chin Med 36:799–804. https://doi.org/10.1016/s0254-6272(17)30018-3

Ding R, Wang F, Lu H (2020) Diagnosis and treatment of COVID-19 from spleen and stomach. Acta Chinese Med 35:

Fang Z, Yue D (2021) Analysis of the classic prescription Dayuanyin and exploration of its inheritance and application. Jilin J Chin Med 41:569–571

Feng X, Jiang ZT, Wang Y, Li R (2010) Composition comparison of essential oils extracted by hydrodistillation and microwave-assisted hydrodistillation from *Amomum tsao-
ko in China. J Essent Oil-Bearing Plants 13:286–291. https://doi.org/10.1080/0972060X.2010.10643823

Gao J, Wang H (2007) A survey of traditional and modern prescrions containing Caoguo. Tianjin J Tradit Chin Med 24:15–18

Gertsch J (2009) How scientific is the science in ethnopharmacology? Historical perspectives and epistemological problems. J Ethnopharmacol 122:177–183. https://doi.org/10.1016/j.jep.2009.01.010

Gu F, Zhang L, Fang Y et al (2018) Analysis of physical properties, essential oil content and composition of Amomum tsao-ko from different origins of Yunnan. Chinese J Trop Crop 39:1440–1446. https://doi.org/10.3969/j.issn.1000-2561.2018.07.026

He Q, Qin J, Huang Y et al (2013) Analysis of volatile oils from the seeds and shells of Amomum tsao-ko by GC-MS. Chin J Exp Tradit Med Formulae 19:2–7

He X-F, Chen J-J, Li T-Z et al (2020a) Nineteen new flavanol-monoterpenoid hybrids from Amomum tsao-ko. Phytochem Rev (2022) 21:1487–1521

He X, Wang H, Geng C et al (2020d) Amomutsaokols A-K, and their α-glucosidase inhibitors from Amomum tsao-ko. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2020.08.050

He X-F, Zhang X-K, Geng C-A et al (2020c) Tsakopyranol A-M, 2,6-epoxydiarylheptanoids from Amomum tsao-ko and their α-glucosidase inhibitory activity. Bioorg Chem 96:103638. https://doi.org/10.1016/j.bioorg.2020.103638

He X, Wang H, Geng C et al (2020d) Amomutsaokols A-K, diarylheptanoids from Amomum tsao-ko and their α-glucosidase inhibitory activity. Phytochemistry 177:112418. https://doi.org/10.1016/j.phytochem.2020.112418

He XF, Chen JJ, Huang XY et al (2021) The antidiabetic potency of Amomum tsao-ko and its active flavanols, as PTP1B selective and α-glucosidase dual inhibitors. Ind Crops Prod 160:112908. https://doi.org/10.1016/j.indcrop.2020.112908

Hong SS, Lee JH, Choi YH et al (2015) Amotsaokonal A-C, benzaldehyde and cycloterpenal from Amomum tsao-ko. Tetrahedron Lett 56:6681–6684. https://doi.org/10.1016/j.tetlet.2015.10.045

Hu Z (1983) 300 cases of Chaigui Caoguo Tang on treatment of influenza. Zhejing J Tradit Chin Med 2:65

Hu Y, Zhang X, Xu S et al (2018a) Analysis of genetic diversity and genetic relationship of Amomum tsao-ko germplasm resources in Yunnan by SSR markers. Chinese Tradit Herb Drugs 49:5388–5395. https://doi.org/10.7501/j.issn.0253-2670.2018.22.025

Hu Y, Zhang Z, Zhang T et al (2018b) Analysis of volatile oil ingredients from different cultivars of the Amomum tsao-ko by GC-MS. J Wenshan Univ 31:15–22

Hu Y, Di Y, Zhang X, Yang Z (2019a) Optimization of SSR-PCR system and primers screening of Amomum tsao-ko Crevost et Lemarie in Yunnan. Mol Plant Breed 17:195–200

Hu Y, Zhang X, Shi N, Yang Z (2019b) DNA barcoding sequence analysis of Amomum tsao-ko germplasm resources in Yunnan province. Chin Tradit Herb Drugs 50:6091–6097. https://doi.org/10.7501/j.issn.0253-2670.2019.24.025

Huang Y, Qin L, Hu Q et al (2014) GAS chromatography-mass spectrometry analysis of essential oil from Amomum tsao-ko Crevost et Lemarie and Amomum Paratsao-ko S. Q. Tong et Y. M. Xia grow in Guangxi. Res Pract Chin Med 28:22–24

Hussain SA, Hameed A, Fu J et al (2018) Comparative in vitro analysis of anti-diabetic activity of Indo-Pak black cardamom (Amomum subulatum Roxb) and Chinese black cardamom (Amomum tsao-ko Crevost et Lemaire). Prog Nutr 20:403–414. https://doi.org/10.23751/pn.v20i2.6196

Jin J, Cheng Z, Chen D (2013) Two new compounds and anti-complementary constituents from Amomum tsao-ko. Nat Prod Commun 8:1715–1718. https://doi.org/10.1177/1934578x1300801214

Kim MS, Ahn EK, Hong SS, Oh JS (2016) 2,8-decadiene-1,10-diol inhibits lipopolysaccharide-induced inflammatory responses through inactivation of mitogen-activated protein kinase and Nuclear Factor-kb signaling pathway. Inflammation 39:583–591. https://doi.org/10.1007/s10753-015-0283-1

Kim JK, Jang H, Le TPL et al (2019a) Pyranoflavonones and Pyranochalcones from the Fruits of Amomum tsao-ko. J Nat Prod 82:1886–1892. https://doi.org/10.1021/acs.jnatprod.9b00155

Kim JK, Le Linh TP, Hong HR et al (2019) Nitric oxide inhibitory constituents from the fruits of Amomum tsao-ko. Nat Prod Sci 25:76–80. https://doi.org/10.20307/NPS.2019.25.1.76

Lee KY, Kim SH, Sung SH, Kim YC (2008) Inhibitory constituents of lipopolysaccharide-induced nitric oxide production in BV2 microglia isolated from Amomum tsao-ko. J Nat Prod 71:867–869. https://doi.org/10.1021/sk8009552

Lee S, Lee JC, Subedi L et al (2019) Bioactive compounds from the seeds of Amomum tsao-ko Crevost et Lemaire, a Chinese spice as inhibitors of sphingosine kinases, SPHK1/2. RSC Adv 9:33957–33968. https://doi.org/10.1039/c9ra07988b

Li F (2021) Identifying the monarch medicine in formulas. J Nanjing Univ Tradit Chin Med 37:481–484

Li Z, Luo L, Dai W et al (1998) Chemical constituents of the essential oil on Amomum tsao-ko from Yunnan Province. Acta Bot Yunnanica 20:119–122

Li B, Choi HJ, Lee DS et al (2014) Amomum tsao-ko suppresses lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages via Nrf2-dependent heme oxygenase-1 expression. Am J Chin Med 42:1229–1244. https://doi.org/10.1124/s09192415X14000773

Liu H, Yan Q, Zou D et al (2018) Identification and bioactivity evaluation of ingredients from the fruits of Amomum tsao-ko Crevost et Lemaire. Phytochem Lett 28:111–115. https://doi.org/10.1016/j.phytol.2018.10.007

Lu B, Ma M, Wang T et al (2019) Genetic diversity and genetic relationships of Amomum tsao-ko based on Random Amplified Polymorphic DNA Markers. Int J Agric Biol. https://doi.org/10.17957/IJAB/15.0729

Lu B, Ma M, Zhang W et al (2021) Development of 23 novel microsatellite markers of Amomum tsao-ko (Zingiberaceae) based on restriction-site-associated DNA
Ma M, Lu B (2020) The complete chloroplast genome of Amomum tsao-ko. Mitochondrial DNA Part B 5:848–849. https://doi.org/10.1080/23802359.2020.1717382

Ma J, Zhang L, Peng J (2008) Study on chemical constituents of introduced and cultivated grass and fruits in Xishuangbanna. Chinese Tradit Pat Med 30:1192–1194

Ma M, Lei E, Meng H et al (2017a) Cluster and principal component analysis based on SSR markers of Amomum tsao-ko in Jinping County of Yunnan Province. AIP Conf Proc. https://doi.org/10.1063/1.4992887

Ma M, Wang T, Lei E et al (2017b) Genetic diversity analysis of Amomum tsao-ko in Jinping County of Yunnan Province using SSR markers. AIP Conf Proc. https://doi.org/10.1063/1.4992888

Ma M, Wang T, En L et al (2020) Genetic diversity analysis of Amomum tsao-ko in Jinping based on phenotypic traits and SSR markers. Crops 2:54–59. https://doi.org/10.16035/j.issn.1001-7283.2020.02.009

Martin TS, Kikuzaki H, Hisamoto M, Nakatani N (2000) Constituents of Amomum tsao-ko and their radical scavenging and antioxidant activities. J Am Oil Chem Soc 77:667–673. https://doi.org/10.1007/s11746-000-0107-4

Min Y, Zhang W, Yao L et al (2010) Study on the essential oil ingredients of Amomum tsao-ko from different regions of Yunnan Province. Med Plant 1:33–35

Moon SS, Lee JY, Cho SC (2004) Isotsaokoin, an antifungal agent from Amomum tsao-ko. J Nat Prod 67:889–891. https://doi.org/10.1021/np030464j

Park JH, Cho YR, Ko HJ et al (2015) Evaluation of 3-week repeated dose oral toxicity on dried Amomum tsao-ko Crevost et Lemarie. Fine Chem. https://doi.org/10.13550/j.xgh.20190538

Yang Y (2019) Analysis on the content and main chemical components of volatile oils from Amomum tsao-ko Stems and Leaves in Yunnan province. J Chin Med Mater 42:339–343

Yang Y, Yan R-W, Cai X-Q et al (2008) Chemical composition and antimicrobial activity of the essential oil of Amomum tsao-ko. J Sci Food Agric 88:2111–2116. https://doi.org/10.1002/jsfa.3321

Wang W, Yang C, Zhang Y (2009) Phenolic constituents from the fruits of Amomum tsao-ko (Zingiberaceae). Acta Bot Yunnanica 31:284–288

Wang Y, You CX, Wang CF et al (2014) Chemical constituents and insecticidal activities of the essential oil from Amomum tsao-ko against two stored-product insects. J Oleo Sci 63:1019–1026. https://doi.org/10.5650/jos.es14087

Weite Z, Bingyue L, Hengling M et al (2019) Phenotypic diversity analysis of the fruit of Amomum tsao-ko Crevost et Lemarie, an important medicinal plant in Yunnan, China. Genet Resour Crop Evol 66:1145–1154. https://doi.org/10.1007/s10722-019-00765-x

Wu M, Zhang W, Guo P, Zhao Z (2014) Identification of seven Zingiberaceae species based on comparative anatomy of microscopic characteristics of seeds. Chin Med 9:10. https://doi.org/10.1186/1749-8546-9-10

Xie Z, Ning D, Zhou J et al (2018) RAPD primers screen for genetic diversity analysis in Amomum tsao-ko. J West China for Sci 47:45–50

Xu S, Bai J, Yang W et al (2019) Analysis of the key odorants in Amomum tsao-ko Crevost et Lemarie. Saudi J Biol Sci 24:324–330. https://doi.org/10.1016/j.sjbs.2019.10.002

Yang M (2015) Characterization of microsatellite markers for Amomum tsao-ko (Zingiberaceae), an economically important plant in China. Genet Mol Res 13:8220–8224. https://doi.org/10.4238/gmr.1304.0731

Yang X, Kienzi P, Plitzko I et al (2009) Bicyclononane aldehydes and antiproliferative constituents from Amomum tsao-ko. J Sci Food Agric 89:2111–2116. https://doi.org/10.1002/jsfa.3321

Yang Y, Yue Y, Runwei Y, Guolin Z (2010) Cytotoxic, apoprotic and antioxidant activity of the essential oil of Amomum tsao-ko. Bioreour Technol 101:4205–4211. https://doi.org/10.1016/j.biortech.2009.12.131

Yang YW, Yang ZY, Yan MR et al (2014) Isolation and characterization of microsatellite markers for Amomum tsao-ko (Zingiberaceae), an economically important plant in China. Genet Mol Res 13:8220–8224. https://doi.org/10.4238/2014.October.8.3

Yao M (2002) Observation of Yugan Tang on treatment of Hepatitis B based on 62 clinical cases. Mod J Integr Tradit Chin West Med 11:1116

Shi Y, Jin H, Yang Y et al (2019) Medicinal textual researcg on Caoguo. Mordern Chin Med 15:913–916

Sim S, Tan SK, Kohlenberg B, Braun NA (2019) Amomum tsao-ko–Chinese black cardamom: detailed oil composition and comparison with two other cardamom species. Nat Prod Commun. https://doi.org/10.1179/1934578X19857675

Starkenmann C, Mayenzet F, Brauchli R et al (2007) Structure elucidation of a pungent compound in black cardamom: Amomum tsao-ko Crevost et Lemarié (Zingiberaceae). J Agric Food Chem 55:10902–10907. https://doi.org/10.1021/jf072707b

Sun WM, Ma YN, Yin YJ et al (2018) Effects of essential oils from zingiberaceae plants on root-rot disease of Panax notoginseng. Molecules 23:1–11. https://doi.org/10.3390/molecules23051021

Yu L, Shirai N, Suzuki H et al (2008) Effect of lipid extracted from Tsao-ko (Amomum tsao-ko Crevost et Lemaire) on digestive enzyme activity, antioxidant activity, plasma and liver lipids, and blood glucose levels of mice. J Nutr Sci Vitaminol (tokyo) 54:378–383. https://doi.org/10.3177/jnsv.54.378

Yu L, Shirai N, Suzuki H et al (2010) The effect of methanol extracts of tsao-ko (Amomum tsao-ko Crevost et Lemaire) on digestive enzyme and antioxidant activity in vitro, and plasma lipids and glucose and liver lipids in mice. J Nutr
Zhang TT, Lu CL, Jiang JG (2016) Neuroprotective and anti-inflammatory effects of diphenylheptanes from the fruits of *Amomum tsao-ko*, a Chinese spice. Plant Foods Hum Nutr 71:450–453. https://doi.org/10.1007/s11130-016-0570-5

Zhang XR, Li TN, Ren YY et al (2020) The important role of volatile components from a Traditional Chinese Medicine Dayuan-Yin Against the COVID-19 Pandemic. Front Pharmacol 11:1–13. https://doi.org/10.3389/fphar.2020.583651

Zong Y, Ding ML, Jia KK et al (2020) Exploring active compounds of Da-Yuan-Yin in treatment of COVID-19 based on network pharmacology and molecular docking method. Chin Tradit Herb Drugs 51:836–844. https://doi.org/10.7501/j.issn.0253-2670.2020.04.002

**Publisher’s Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.