Evaluation of Microbial and Nutritional Values of Commercially Packaged Soymilk Sold in Akure, Nigeria

Oluwole Olakunle Oladele* and Prudent Oseyomon Ofure

Department of Biology, Federal University of Technology, Nigeria

*Corresponding author: Oluwole Olakunle Oladele, Department of Biology, Federal University of Technology, PMB 704, Akure, Nigeria

Abstract

The sale of soymilk is quite popular in Akure but there is no related information on its microbial safety and nutritional status.

Objectives: To determine the microbial and nutritional values of selected commercially packaged soymilk sold in Akure, Nigeria.

Materials and methods: The branded samples were coded HL, GD, VT and SF while a soymilk locally produced (unbranded) served as control. Microbial counts and isolation was carried out using pour plate technique. Microbial count was carried out with a digital colony counter (Gallenkamp model). Morphological and biochemical characteristics were used in the identification of bacteria isolates while fungal isolates were identified based on their cultural morphology and microscopy.

Results: Results showed that the bacterial counts ($\times 10^{1}$ cfu/ml) of branded samples which ranged from 0.00 ± 0.00 in VT to 0.80 ± 0.70 in GD were not significantly different ($p > 0.05$) from each other but significantly different (< 0.05) from the unbranded samples (20.00 ± 0.40). However, there was no fungi growth in all the branded samples but the unbranded recorded fungi count of 18.00 ± 0.08 $\times 10^{1}$ sfu/ml. Similarly, there was no coliform growth in both the branded and unbranded samples. The probable bacterial isolates in both branded and unbranded samples were Lactobacillus sp and Bacillus sp while the only fungi isolate was Rhizopus sp in the unbranded.

Conclusion: Remarkably, absence of coliforms in both the branded and unbranded samples and the microbial load obtained which did not exceed the acceptable limit (3×10^{4} cfu/ml) for pasteurized milk suggests good manufacturing practices in the production of the soymilk samples. Consequently, industries producing soymilk and soymilk vendors should follow suit in ensuring that their products are consistently produced hygienically with regards to quality control measures to avoid microbial contaminants.

Keywords

Soymilk, Branded, Unbranded, Microbial, Nutritional, Public health

Introduction

Soyabean (Glycine max) is incorporated into so many food formulation for both children and adults to enhance nutritional value of foods [1], in preparations such as “dawadawa”, allele, moi-moi, akara, soy-ogi and most recently as soymilk [2] which is a high protein, iron-rich milky liquid produced from pressing ground, cooked soybeans [3]. The milk which is a white or creamy emulsion resembles cow milk in both appearance and consistency [4].

The diets of people in many developing countries lack animal sources of proteins such as milk which are expensive and out of reach for low income families. Hence, soymilk which is a cheap source of protein is therefore used to supplement such diets. Soybeans and products derived from them have served as an important source of protein in the diet of millions of oriental people for nearly 5,000 years [5]. In fact, the increasing popularity of soymilk is credited to health benefits and being a good alternative to animal protein [6]. Besides, it is a good nutrient for vegetarian diet [7].

Nevertheless, soymilk can also serve as a source for transmitting food borne infections. In addition to poor handling and unhygienic practices of local producers of soymilk products, the nutrient composition of soymilk makes it an excellent bacteriological medium [1]. Bacterial pathogens identified with food poisoning, gas-
troenteritis and enteric fever can be harbored in soy-
milk that was not hygienically prepared [4]. Hence, this
study was carried out to assess microbial and nutritional
status of selected commercially packaged soymilk sold
in Akure, Nigeria.

Materials and Methods

Source and collection of sample

Four selected commercially branded soymilk sam-
ple were obtained from super markets and stores in
Akure metropolis, Ondo state, Nigeria. The branded
samples were designated HL, GD, VT and SF while a soy-
milk locally produced (unbranded) served as control.
They were then taken to the Department of Biology lab-
oratory, Federal University of Technology, Akure, Nige-
ria and preserved at 4 °C for microbial and proximate
analyses.

Counting and isolation of microorganisms

Pour-plate technique was used for microbial counts
and isolation. One ml of each soymilk sample was seri-
diluted to x10³ dilution factor and 1 ml of the dilu-
tion factor was then pipetted aseptically into a sterilized
Petri-dish. This was followed by the pouring of already
prepared sterilized molten nutrient agar and potato
dextrose agar media for bacteria and fungi counts re-
spectively. The Petri dish was later incubated at 37 °C
for 24 h (bacteria) and 28 ± 2 °C for 72 h (fungi) after
being allowed to solidify. After 24 h, bacteria count was
Carried out with a digital colony counter and record
ed as Colony forming units per ml (cfu/ml). Similarly, after 72 h, fungi count was equally
Carried out with a digital colony counter (Gallenkamp
model, UK) and recorded as colony forming units per ml (cfu/ml). Observable
isolate was then sub cultured severally to obtain pure
culture. The same procedure was repeated for coliform
count and isolation except that the agar used was eosin
methylene blue agar and incubation was done for 24 h
at 37 °C.

Identification of bacterial isolates

Cultural characteristics of discrete colonies such as
color, shape, elevation, pigmentation, opacity, nature
of edges of the colonies and biochemical tests were
used in the identification of bacteria isolates.

Identification of fungal isolates

Fungal isolates were identified according to their cul-
tural morphology and microscopy.

pH determination

This was done by inserting the electrode of a digital
pH meter directly into the soymilk samples and reading
was taken.

Proximate analysis of soymilk

The method of Pearson [8] was used to determine
the moisture content of the soymilk samples. The
weight of an empty aluminium dish can (W0) was deter-
mained before the sample was introduced into it. About
20 ml of the soymilk sample was measured out and fur-
ther weighed (W1) in the aluminium dish can. The alu-
minium dish can was then dried in a hot air oven for 24
hours and cooled in a dessicator and weight (W2) mea-
sured. Percentage of moisture content was determined
as follows:

\[
\text{Percentage of moisture content} = \frac{(W_1 - W_0) - (W_2 - W_0)}{(W_1 - W_0)} \times 100
\]

Where:

- W0 = Weight of empty moisture can
- W1 = Weight of moisture can and sample
- W2 = Weight of dessicated sample

Also, standard methods according to AOAC [9] were
used to determine protein, ash, fat, fibre and carbohy-
drate contents of the soymilk samples. Crude protein
of the soymilk sample was determined using Kjeldahl
method. For digestion at high temperature, 10 ml of
concentrated sulfuric acid and 1.1 g digestion mixture
were added to 0.5 g of the soymilk sample in digestion
tube. Then the digestion tubes were set in digestion
chamber fixing at 420 °C for 45 minutes. Thereafter, the
digestion tubes were allowed to cool and 5 ml of sodium
thio-sulphate (Na,S,O₃, 33%) and 30 ml sodium hydrox-
de (NaOH) solution was added to the digestion tube.
Then the distilled extraction was collected with 25 ml of
Boric acid (4%) and titrated with standard hydrochloric
acid (0.2N). The nitrogen values obtained was convert-
ed into percentage of crude protein by multiplying with
a factor of 6.25.

Ash content was determined by heating 1 ml of the
soymilk sample inside a weighed crucible in a muffle furna-
ce at 550 °C for 5 h. Crude lipid (fat) was determined
by extracting 3 mls of each soymilk sample with ana-
lytical grade acetone using Soxhlet method. Extraction
was allowed to continue by heating at 70 °C for 3 h. For
crude fibre determination, 1 ml of the soymilk sample
was defatted, followed by successive treatment with
boiling solutions of H₂SO₄ and KOH, then, the residue
was filtered, washed, dried and weighed after which it
was ashed in a muffle furnace at 550 °C where the loss in
weight after ashing is the crude fibre content. Amount
of carbohydrate was determined by difference:

100 - (% protein + ash + fat + fibre)

Statistical analysis

All experiment was conducted in triplicates. Mi-
Crobiological and proximate values were subjected
to analysis of variance (ANOVA) using SPSS, version
16.0 and where significant, means were separated by
Tukey-posthoc test at p = 0.05.
Results

The result of the microbial counts of the soymilk samples is presented in Table 1. Bacterial counts (x10^1 cfu/ml) of the branded samples were not significantly different (p > 0.05) from one another. The least count (0.00 ± 0.00) occurred in VT while the highest count (0.80 ± 0.70) occurred in GD. However, these counts were significantly different (p < 0.05) from the unbranded samples (20.00 ± 0.40). Meanwhile, there was no fungi

Soymilk samples	Sample code	Bacterial count x10^1 cfu/ml	Fungi count x10^1 cfu/ml	Coliform count x10^1 cfu/ml
Branded	HL	0.50 ± 0.70a	0.00 ± 0.00a	0.00 ± 0.00a
	GD	0.80 ± 0.70a	0.00 ± 0.00a	0.00 ± 0.00a
	VT	0.00 ± 0.00a	0.00 ± 0.00a	0.00 ± 0.00a
	SF	0.50 ± 0.70a	0.00 ± 0.00a	0.00 ± 0.00a
Unbranded	LOCAL	20.00 ± 0.40b	18.00 ± 0.08b	0.00 ± 0.00a

Each values is a mean of triplicate determination ± SE and means having the same letter in the column are not significantly different (p > 0.05) by Tukey test at α = 0.05.

Note: HL, GD, VT and SF = codes for branded soymilk samples.

Parameters	Morphological and Biochemical Characteristics	
Colour of colony	Yellowish	Whitish
Elevation of colony	Raised	Flat
Edge of colony	Entire	Crenated edge
Texture of colony	Smooth	Smooth
Size of colony	Medium	Large
Gram's reaction	+	+
Shape of colony	Circular	Circular
Shape of cells	Rod	Rod
Catalase	+	-
Coagulase	-	-
Glucose	-	+
Galactose	-	+
Sucrose	-	+
Lactose	-	+
Likely Organisms	Lactobacillus sp	Bacillus sp

Key:
+ = Positive
- = Negative

Table 3: Occurrence of microorganisms in soymilk samples.

Soymilk samples	Sample code	Bacterial isolates	Fungi isolate	
		Lactobacillus sp	Bacillus sp	Rhizopus sp
Branded	HL	+	+	-
	GD	+	+	-
	VT	+	+	-
	SF	+	+	-
Unbranded	LOCAL	+	+	+

HL, GD, VT and SF = codes for branded Soymilk samples.

Note:
+ = Positive or present
- = Negative or absent
growth in all the branded samples but the unbranded recorded fungi count (18. 00 ± 0.08 x 10^1 sfu/ml) that was also significantly different (p < 0.05). Interestingly, there was no coliform growth in all the samples.

Various bacteria isolates from both the branded and unbranded samples are presented in Table 2 and were Lactobacillus and Bacillus while Rhizopus was the only fungal isolate from unbranded samples (Table 3).

The result of the pH values is shown in Table 4 and ranged between 7.2 in VT to 7.9 in the unbranded while Table 5 showed the proximate compositions of the soymilk samples. The moisture contents (%) of all the branded and the unbranded samples were not significantly different (p < 0.05) and ranged from 77.90 ± 0.73 in VT to 79.00 ± 0.00 in the unbranded while protein contents (%) of the branded (except GD and SF) and the unbranded samples were also not significantly different (p < 0.05) and ranged from 2.01 ± 0.10 in GD to 3.07 ± 0.73 in HL. Similarly, fat content (%) of the branded (aside GD and SF) and the unbranded were not significantly different (p < 0.05) and ranged from 1.76 ± 0.73 in SF to 3.00 ± 0.00 in VT. Meanwhile, the fibre content (%) for both branded and unbranded samples was 0.00 ± 0.00. Ash content (%) in both branded and unbranded samples were also not significantly different (p < 0.05) and ranged from 0.29 ± 0.01 in HL to 0.38 ± 0.08 in SF. In the same vein, there was no significant difference in the carbohydrate contents of both the branded (except VT and SF) when compared with the unbranded samples and the values ranged from 5.83 ± 0.88 in GD to 11.67 ± 0.33 in VT.

Table 4: pH of soymilk samples.

Soymilk samples	Sample code	pH
Branded	HL	7.3
	GD	7.5
	VT	7.2
	SF	7.3
Unbranded	LOCAL	7.9

Note: HL, GD, VT and SF = codes for branded soymilk samples.

Table 5: Proximate compositions of soymilk samples.

Soymilk Samples	Sample code	Moisture content (%)	Protein (%)	Fat (%)	Fibre (%)	Ash (%)	CHO (%)
Branded	HL	78.01 ± 0.07a	3.07 ± 0.73b	2.63 ± 0.88b	0.00 ± 0.00a	0.29 ± 0.01a	5.93 ± 0.67a
	GD	78.00 ± 0.00a	2.01 ± 0.10a	1.78 ± 0.88a	0.00 ± 0.00a	0.30 ± 0.11a	5.83 ± 0.88a
	VT	77.90 ± 0.73a	3.00 ± 0.11b	3.00 ± 0.00c	0.00 ± 0.00a	0.30 ± 0.05a	11.67 ± 0.33c
	SF	78.00 ± 0.00a	2.73 ± 0.67b	1.76 ± 0.88a	0.00 ± 0.00a	0.35 ± 0.08a	7.06 ± 0.67b
Unbranded	LOCAL	79.00 ± 0.00a	3.00 ± 0.00b	2.73 ± 0.67bc	0.00 ± 0.00a	0.30 ± 0.00a	5.93 ± 0.67a

Each value is a mean of triplicate determination ± SE and means having the same letter in the column are not significantly different (p > 0.05) by Tukey test at α = 0.05.

Note: HL, GD, VT and SF = codes for branded Soymilk samples.

Discussion

From the results, it was observed that both the bacterial and fungal loads in the unbranded samples were higher than the branded. This observation was supported by the work of Adeleke, et al. [10] that branded soymilk samples purchased from selected markets in Ibadan had lower microbial counts than the unbranded samples. Although the observation contradicted the work of Adebayo-Tayo, et al. [4] who reported higher microbial population in branded samples than the unbranded samples. The contradiction unarguably may be as a result of the fact that Adebayo-Tayo, et al. [4] work on powdered soymilk samples while this work investigated already prepared liquid soymilk samples. Again, the observed microbial load in this study must have been influenced by pH as buttressed by Adeleke, et al. [10] that pH favours bacteria growth.

Meanwhile, absence of coliform growth observed in this work was consistent with the work of Adebayo-Tayo, et al. [4] who equally detected no coliforms in their soy milk samples. The various bacteria isolates from both the branded and unbranded were Lactobacillus and Bacillus while the only fungal isolate from the unbranded samples was Rhizopus. This observation contradicts the earlier works of Soomro [11] who reported the presence of Staphylococcus aureus in samples obtained from different locations in India. In a similar work on microorganisms associated with locally processed milk products (nono and Wara) at Ilorin, E. coli, and Staph. aureus were also isolated [12]. Similarly, none of these bacterial isolates was identified in soymilk on sale in Makurdi as reported by Liamngge, et al. [13].

Nevertheless, Ozoh and Umeakwu [14] in their own work identified Bacillus sp and Rhizopus. In the same vein, Mbajuka, et al. [15] also reported similar isolates of Bacillus cereus and Lactobacillus species in soymilk. The occurrences of Bacillus sp. can be said to be as a result of prevalence of their spores in the environment. Bacillus species are spore formers whose spores could survive high temperatures of processing. Bacillus has equally been isolated from non-alcoholic beverages [16,17]. Likewise, the presence of Rhizopus sp could not
but be connected with contamination from the environment. This observation was supported by the report of Arotupin, et al. [18] that environmental contamination was responsible for the presence of Aspergillus niger, Aspergillus flavus and Rhizopus sp. since their spores are common contaminants.

Remarkably, the microbial population obtained in both branded and unbranded samples in this work was below the acceptable limit of 2.0 × 10⁴ cfu/g recommended for general bacterial count by the Soy Foods Association of America (SFAA) and did not also exceed the acceptable limit for pasteurized milk (3 × 10⁴ cfu/ml). Besides, the absence of E. coli in this work suggests non faecal contamination of the soymilk samples and consequently renders the liquid drink fit for consumption because a large number of microorganisms such as mesophilic aerobic bacteria, coliforms and fungi, are known to be responsible for the spoilage of soymilk, producing undesirable changes [19,20].

Proximate results showed that all the soymilk samples had high moisture contents and this is because soymilk is an emulsion containing high water and water soluble proteins, carbohydrate and oil droplets [3]. Although the protein values observed in this work was lower than 7.78-10.47% reported by Ozoh and Umeakwu [14] in ready to drink soy milk sold in Onitsha while the fat content was higher than 1.44% reported by Ozoh and Umeakwu [14], also in ready to drink soy milk sold in Onitsa. Meanwhile, the fibre content obtained in this work was the same as the one earlier obtained by Onuorah, et al. [21]. The ash content falls within the range of values (0.27-0.57%) for ash contents of ready to drink soymilk and soymilk yoghurt sold in Onitsha as earlier reported by Ozoh and Umeakwu [14]. Similarly, the carbohydrate values observed in this work were within the range of values (3.09-13.39%) earlier reported by Lianmgee, et al. [13] for carbohydrate contents of soyabean milk sold at different locations in Makurdi metropolis. This has further showed that soymilk is highly nutritional and in agreement with Adebayo-Tayo [4] that soymilk samples have a high nutritional value, excellent food for man, and also provides an excellent growth medium for microorganisms. In fact, the increase in the consumption rate of soybean milk cannot but be connected to its high protein content which has encouraged low scale production of the soymilk under house hold condition with little or no regard to the quality control measures [22].

Conclusion

The result of the study revealed that the soymilk samples had no fungi count and lesser bacterial count below the acceptable limit as established by regulatory agency. Consequently, industries producing soymilk and other soymilk vendors should follow suit in ensuring that their products are consistently produced hygienically with regards to quality control measures to avoid microbial contaminants. Interestingly, absence of coliforms in both branded and unbranded samples was another index of good manufacturing practice in the production of the soymilk samples.

Acknowledgement

The author acknowledged the efforts of Mrs. E Toyin Ojo and Mrs. Gbolahan Ayoade for providing technical assistance.

Competing Interests

The authors declare no conflict of interest.

Author’s Contributions

Oluwole Olakunle Oladele and Prudent Oseyomon Ofure designed the research concept, performed data analysis and interpretation, reviewed and approved the final version of the article.

References

1. Michael PO (1986) Use of soybeans in treatment of protein malnutrition in infants. J Tropical Agric Res 8: 7-8.
2. Habeeb OH (1998) Genotype and environmental interaction for yield in field soybean. Philippines J Crop Sci 8: 3-9.
3. Singh JA, Reddy SG, Kundukulam J (2011) Risk factors for gout and prevention: A systematic review of the literature. Curr Opin Rheuma 23: 192-202.
4. Adebayo-Tayo BC, Adegoke AA, Akinjogunla OJ (2009) Microbial and physico-chemical quality of powdered soymilk samples in Akwalbom, South Southern Nigeria. Afric J Biotechnol 8: 3066-3071.
5. Vij S, Hati S, Yadav D (2011) Biofunctionality of probiotic soy yoghurt. Food and Nut Sci 2: 502-507.
6. Messina M, Messina V (2010) The role of soy in vegetarian diets. Nutrients 2: 855-888.
7. Samona A (1993) Soymilk in the encyclopedia of Food Science. Food Technol Nut 6: 4239-4242.
8. Pearson D (1970) The chemical analysis of food. (7th edn), Church Hill Living Stones. Edinburg, London.
9. AOAC (2012) The official methods of analysis. (18th edn), Association of official analytical chemists. Washinton DC, USA.
10. Adeleke OE, Adeniyi BA, Akinrinmisi AA (2000) Microbiological quality of local soymilk: A public health appraisal. Afric J Biomed Res 3: 89-92.
11. Soomro H (2003) Isolation of Staphylococcus aureus from milk products sold at sweetmeet shops of Hyderabad, India. J Biol Sci 31: 91-94.
12. BJ Akinyele BJ (2000) Microorganisms associated with some locally processed milk products. J Techno Sci 4: 28-30.
13. Lianmgee K, Terna TP, Bem AA, Orpin JB, Mzungul, et al. (2013) Microbial analysis of soyabean milk sold in Makurdi Metropolis. IOSR J Environ Sci Toxicol and Food Technol 3: 97-104.
14. Ozoh CN, Umeaku CN (2016) Public health implication of ready-to drink soymilk and soymilk yogurt sold in Onitsha Urban Anambra State, Nigeria. J Multidiscipl Eng Sci and Technol 3: 5386-5393.
15. Mbajiuka CS, Obeagu EI, Ifediora AC, Ugwu GU (2014) Isolation and identification of microorganisms involved in the spoilage of soymilk. J Pharm Biolo Sci 9: 29-36.

16. Osuntogun B, Aboaba OO (2004) Microbiological and physico-chemical evaluation of some non-alcoholic beverages. Pakistan J Nut 3: 188-192.

17. Amusa NA, Ashaye OA, Aiyegbayo AA, Oladapo MO, OniMO, et al. (2005) Microbiological and nutritional quality of hawked sorrel drinks (Zoborodo) (the Nigerian locally brewed soft drinks) widely consumed and notable drinks in Nigeria. J Food Agric and Environ 3: 47-50.

18. Arotupin DJ, Akinyosoye FA, Oladele OO (2003) Microbial quality of selected commercially packaged chocolaty beverages in Akure, Nigeria. J Nig Soc Exp Biol 3: 35-41.

19. Agboke AA, Uduma E, Osonwa C, Emmanuel O, Ibezim C (2011) Evaluation of microbiology quality of some soybean milk products consumed in Nigeria. Prime J 1: 25-30.

20. Arekemase MO, Babashola DR (2019) Assessment of the effectiveness of Ginger (Zingiber officinale), Clove (Syzygium aromaticum) and sodium benzoate on the shelf life of soymilk. Notulae Scientulae Biologicae 11: 400-409.

21. Onuorah CE, Adejare AO, Uhiara NS (2007) Comparative physicochemical evaluation of soymilk and soya cake produced by three different methods. Nig Food J 34: 2-5.

22. Chukwu A (2012) Instability of pharmaceutical products in the tropics. In A text book of pharmaceutical technology and industrial pharmacy, Ofoeule, SI ed. Samakin Enterprises, Lagos, Nigeria. 234-255.