The spectral norm of a Horadam circulant matrix

Jorma K. Merikoskia, Pentti Haukkanena, Mika Mattilab, Timo Tossavainenc,*

aFaculty of Natural Sciences, FI-33014 University of Tampere, Finland
bDepartment of Mathematics, Tampere University of Technology, P.O. Box 553, FI-33101
Tampere, Finland
cDepartment of Arts, Communication and Education, Luleå University of Technology,
SE-97187 Luleå, Sweden

Abstract

Let a, b, p, q be integers and (h_n) defined by $h_0 = a, h_1 = b, h_n = ph_{n-1} + qh_{n-2},$ $n = 2, 3, \ldots$. Complementing to certain previously known results, we study the spectral norm of the circulant matrix corresponding to h_0, \ldots, h_{n-1}.

Keywords: Circulant matrix, Fibonacci sequence, Horadam sequence, Lucas sequence, Spectral norm

2010 MSC: 15A60, 11B39, 11C20, 15B05

1. Introduction

Throughout this paper, let $a, b, p, q \in \mathbb{Z}$. We define the Horadam sequence $(h_n) = (h_n(a, b; p, q))$ via

$$h_0 = a, \quad h_1 = b, \quad h_n = ph_{n-1} + qh_{n-2}, \quad n = 2, 3, \ldots.$$

We also use the following abbreviations:

$(f_n) = (h_n(0, 1; 1, 1))$, the Fibonacci sequence;
$(\tilde{f}_n) = (h_n(0, 1; p, q))$, a generalization of the Fibonacci sequence;
$(l_n) = (h_n(2, 1; 1, 1))$, the Lucas sequence;

*Corresponding author
Email addresses: jorma.merikoski@uta.fi (Jorma K. Merikoski),
pentti.haukkanen@uta.fi (Pentti Haukkanen), mika.mattila@tut.fi (Mika Mattila),
timo.tossavainen@ltu.se (Timo Tossavainen)
\((\tilde{l}_n) = (h_n(2, p; p, q))\), a generalization of the Lucas sequence.

Some references call \((\tilde{l}_n)\) the Lucas sequence. In order to keep the language simple, we follow the custom in [7, p. 8] and call the sequence of Luca’s numbers briefly the Lucas sequence.

For \(n \geq 1\), we write

\[
\mathbf{f} = (f_0, \ldots, f_{n-1}), \quad \tilde{\mathbf{f}} = (\tilde{f}_0, \ldots, \tilde{f}_{n-1}), \\
\mathbf{l} = (l_0, \ldots, l_{n-1}), \quad \tilde{\mathbf{l}} = (\tilde{l}_0, \ldots, \tilde{l}_{n-1}), \\
\mathbf{h} = (h_0, \ldots, h_{n-1}).
\]

Let \(\mathbf{x} = (x_0, \ldots, x_{n-1}) \in \mathbb{R}^n\). The corresponding circulant matrix \(C(\mathbf{x})\) is defined as

\[
C(\mathbf{x}) = \begin{pmatrix}
x_0 & x_1 & \cdots & x_{n-2} & x_{n-1} \\
x_{n-1} & x_0 & \cdots & x_{n-3} & x_{n-2} \\
x_{n-2} & x_{n-1} & \cdots & x_{n-4} & x_{n-3} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
x_2 & x_3 & \cdots & x_0 & x_1 \\
x_1 & x_2 & \cdots & x_{n-1} & x_0
\end{pmatrix}.
\]

We let \(\| \cdot \|\) stand for the spectral norm. Our problem is to compute \(\|C(\mathbf{h})\|\) under suitable assumptions. Recently, Kocer et al. [6], ˙Ipek [5], Liu [8], and Bahşi [1] have already studied this question. We will survey their results in Section 2 and give further results in Sections 3 and 4. Finally, we will complete our paper with some remarks in Section 5.

2. Previous results

Let us first study the eigenvalues and singular values of \(C(\mathbf{x})\).

Theorem 1. The eigenvalues of \(C(\mathbf{x})\) are

\[
\lambda_i = \sum_{j=0}^{n-1} x_j \omega^{-ij}, \quad i = 1, \ldots, n,
\]

where \(\omega\) is the \(n\)'th primitive root of unity.
Proof. See [2, Theorem 3.2.2].

Corollary 1. The singular values of $C(x)$ are

\[\sigma_i = \left| \sum_{j=0}^{n-1} x_j \omega^{-ij} \right|, \quad i = 1, \ldots, n. \]

Therefore

\[\|C(x)\| = \max_{1 \leq i \leq n} \left| \sum_{j=0}^{n-1} x_j \omega^{-ij} \right|. \]

Proof. Since $C(x)$ is normal, its singular values are the absolute values of eigenvalues. \hfill \blacksquare

Applying this corollary, Kocer et al. [6, Theorem 2.2] proved that

\[\|C(h)\| = \max_{0 \leq i \leq n-1} \left| \frac{h_n + (pa - b + qh_{n-1})\omega^{-i} - a}{q\omega^{-2i} + p\omega^{-i} - 1} \right|. \]

The maximization problem restricts the use of this formula. The same authors also proved [6, Corollary 2.3] that

\[\|C(h)\| = \frac{h_n + qh_{n-1} + (p - 1)a - 1}{p + q - 1}, \quad (1) \]

assuming that $p, q \geq 1$ and $b = 1$. Doing so, they suppose nothing on a, but apparently $a \geq 0$ must hold. (To see this, take $n = 1$.)

Further, İpek [5, Theorem 1] proved (independently of (1)) that

\[\|C(f)\| = f_{n+1} - 1 \]

and [5, Theorem 2]

\[\|C(l)\| = f_{n+2} + f_n - 1. \]

Liu [8, Theorem 9] extended (1) to

\[\|C(h)\| = \frac{h_n + qh_{n-1} + (p - 1)a - b}{p + q - 1}, \quad (2) \]

whenever $p + q \neq 1$, and to

\[\|C(h)\| = \frac{qh_{n-1} + (n - 1)(qa + b) + a}{q + 1}. \]
as \(p + q = 1 \), but assumed nothing about \(a, b, p, q \).

Bašić [1, Theorem 2.1] proved (independently of (2)) that, if \(p, q \geq 1 \), then

\[
\|C(\tilde{f})\| = \frac{\tilde{f}_n + q\tilde{f}_{n-1} - 1}{p + q - 1}
\]

and [1, Theorem 2.2]

\[
\|C(\tilde{l})\| = \frac{\tilde{l}_n + q\tilde{l}_{n-1} + p - 2}{p + q - 1}.
\]

3. Computation of \(\|C(h)\|, h \geq 0 \)

We first take a more general viewpoint and verify a theorem that applies also to other matrices than circulant ones or those having elements from a recurrence sequence. If a matrix \(A \) and a vector \(x \) are entrywise nonnegative (respectively, positive), we denote \(A \geq 0 \) and \(x \geq 0 \) (respectively, \(A > 0 \) and \(x > 0 \)). We let \(\lambda(A) \) denote the Perron root of a square matrix \(A \geq 0 \).

Theorem 2. Assume that an \(n \times n \) matrix \(A \geq 0 \) has all row sums and column sums equal; let \(s \) be their common value. Then \(\lambda(A) = \|A\| = s \).

Proof. Denoting \(e = (1, \ldots, 1) \in \mathbb{R}^n \), we have \(Ae = A^T e = se \). So, \(s \) is an eigenvalue of \(A \) and \(A^T \), and \(e \) is a corresponding eigenvector. Since \(e > 0 \), actually \(s = \lambda(A) = \lambda(A^T) \), see [4, Theorem 8.3.4]. Because

\[
A^T A e = A^T s e = s A^T e = s^2 e,
\]

we similarly see that \(s^2 = \lambda(A^T A) = \|A\|^2 \).

Corollary 2. If \(x = (x_0, \ldots, x_{n-1}) \geq 0 \), then

\[
\|C(x)\| = x_0 + \cdots + x_{n-1}.
\]

In order to apply this corollary in the case \(x = h \), we must compute \(h_0 + \cdots + h_{n-1} \).
Lemma 1. If \(p + q \neq 1 \), then
\[
h_0 + \cdots + h_{n-1} = \frac{h_n + qh_{n-1} + (p-1)a - b}{p + q - 1}.
\] (3)

If \(p + q = 1 \) and \(p \neq 2 \), then
\[
h_0 + \cdots + h_{n-1} = \frac{qh_{n-1} + (n-1)(qa + b) + a}{q + 1}.
\] (4)

If \(p = 2 \) and \(q = -1 \), then
\[
h_0 + \cdots + h_{n-1} = n \frac{h_{n-1} + a}{2}.
\] (5)

Proof. Claim (3) is equivalent to [3, Equation (3.5)] and to [8, Lemma 5(1)]. Claim (4) is equivalent to [8, Lemma 5(2)]. Claim (5) is trivial, because the sequence \((h_n)\) is arithmetic.

We have now proved the following theorem.

Theorem 3. If \(h \geq 0 \), then
\[
\|C(h)\| = h_0 + \cdots + h_{n-1},
\]
where \(h_0 + \cdots + h_{n-1} \) is as in Lemma 1.

4. Generalization of Theorem 3

Can the assumption \(h \geq 0 \) be weakened? Again, we begin by taking a more general viewpoint. For \(m \in \mathbb{Z} \), we set
\[
m_n = m - \left\lfloor \frac{m}{n} \right\rfloor n.
\]

Theorem 4. Let \(x = (x_0, \ldots, x_{n-1}) \in \mathbb{R}^n \). If
\[
\sum_{i=0}^{n-1} x_i x_{(i+j-1)n} \geq 0
\]
for all \(j = 1, \ldots, n \), then
\[
\|C(x)\| = |x_0 + \cdots + x_{n-1}|.
\] (6)
Proof. Write $B = (b_{ij}) = C(x)^T C(x)$. Letting c_1, \ldots, c_n to denote the column vectors of $C(x)$, we have

$$b_{1j} = c_1 \cdot c_j = \sum_{i=0}^{n-1} x_i x_{(i+j-1)_n}$$

for all $j = 1, \ldots, n$. So, the first row of B is nonnegative. Summing its elements gives us

$$r_1 = \sum_{j=1}^{n} \sum_{i=0}^{n-1} x_i x_{(i+j-1)_n} = \sum_{i=0}^{n-1} x_i \sum_{j=1}^{n} x_{(i+j-1)_n} = \left(\sum_{i=0}^{n-1} x_i \right)^2.$$

The last equation follows from the fact that

$$\{i_n, \ldots, (i+n-1)_n\} = \{0, \ldots, n-1\}$$

for all $i = 0, \ldots, n-1$.

A simple modification of the above reasoning applies to all rows of B. Consequently, $B \geq O$ with row sums

$$r_1 = \cdots = r_n = \left(\sum_{i=0}^{n-1} x_i \right)^2.$$

Since B is symmetric, every of its column sums has this value, too. Applying Theorem 2 to B, we therefore obtain

$$\|C(x)\|^2 = \lambda(B) = \left(\sum_{i=0}^{n-1} x_i \right)^2,$$

and (6) follows.

Corollary 3. If

$$\sum_{i=0}^{n-1} h_i h_{(i+j-1)_n} \geq 0$$

for all $j = 1, \ldots, n$, then

$$\|C(h)\| = |h_0 + \cdots + h_{n-1}|,$$

where $h_0 + \cdots + h_{n-1}$ is as in Lemma 1.
5. Concluding remarks

In Section 2, we saw that, in the previous literature, \(\| C(h) \| \) is computed under various assumptions on \(h \). For example, in [6], the Horadam numbers were involved requiring that \(a \geq 0, b = 1 \) and \(p, q \geq 1 \). We assumed first only that \(h \geq 0 \), and then, even more generally, that \((7) \) holds. As byproducts, Corollary 2 and Theorem 4 provided us with the corresponding results on \(\| C(x) \| \), too.

We also mention that Yazlik and Taskara [9] defined the notion of a generalized \(k \)-Horadam sequence \((H_{k,n})_{n \in \mathbb{N}} \). In fact, Liu [8] ended up with (2) by studying a circulant matrix corresponding to such a sequence. However, since \(k \) is fixed in [9, Definition 1], this sequence is nothing but an ordinary Horadam sequence \((h_n) = (h_n(a, b; p, q)) \) with \(p = f(k) \) and \(q = g(k) \).

References

[1] M. Bahşı, On the norms of circulant matrices with the generalized Fibonacci and Lucas numbers, TWMS Journal of Pure and Applied Mathematics 6 (2015) 84–92.

[2] P. J. Davis, Circulant Matrices, Wiley, 1979.

[3] A. F. Horadam, Basic properties of a certain generalized sequence of numbers, The Fibonacci Quarterly 3 (1965) 161–176.

[4] R. A. Horn, C. R. Johnson, Matrix Analysis, Second Edition, Cambridge Univ. Pr., 2013.

[5] A. İpek, On the spectral norms of circulant matrices with classical Fibonacci and Lucas numbers entries, Applied Mathematics and Computation 217 (2011) 6011–6012.

[6] E. G. Kocer, T. Mansour, N. Tuglu, Norms of circulant and semicirculant matrices with Horadam numbers, Ars Combinatoria 85 (2007) 353–359.
[7] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, 2001.

[8] L. Liu, On the spectrum and spectral norms of r-circulant matrices with generalized k-Horadam number entries, International Journal of Computational Mathematics 2014, Art. ID 795175, 6 pp.

[9] Y. Yazlik, N. Taskara, A note on generalized k-Horadam sequence, Computers & Mathematics with Applications 63 (2012) 36–41.