Regulation of Gene Expression by β-Glucans

Mary O. Huff and Carolyn M. Klinge

Department of Biology, Bellarmine University, Louisville, KY 40205, USA
Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA

Abstract: β-D-glucans are diverse polysaccharides derived from plant cell walls, fungi and bacteria. β-D-glucans are composed of D-glucose monomers linked by (1-3) β-glycosidic bonds with varying amounts of (1-6) or (1-4) linked side chains that bind cell surface receptors ultimately triggering changes in intracellular pathways and gene transcription. β-D-glucans have anti-viral, immunomodulatory and anti-cancer activities. This article reviews the current identity and putative function of genes regulated by β-glucans purified from various sources in human cancer and immune cells and in murine dendritic, macrophage cells and lungs. β-D-glucans increase the expression of numerous cytokines and immunomodulatory factors and their receptors in dendritic cells. Pathways and transcription factors involved in the cellular responses to β-glucans are summarized.

Keywords: Glucan, Transcription, Cytokines

Introduction

β-D-glucans are diverse polysaccharides derived from plant cell walls, fungi and bacteria composed of D-glucose monomers linked by (1-3) β-glycosidic bonds and variable amounts of (1-6) and (1-4) branches. β-D-glucans are considered to be “biological response modifiers” because they exhibit antibacterial, antiviral, anti-coagulatory, anti-tumoral immunomodulatory and wound-healing activities (Bohn and BeMiller, 1995). In addition, β-D-glucans stimulate the immune system against infectious pathogens and cancer (Saraswat-Ohri et al., 2011; Chan et al., 2009; Aleem, 2013). When ingested in plant materials, β-glucans are absorbed in the small intestine, internalized and fragmented by macrophages and subsequently carried to the spleen, lymph nodes and bone marrow (Chan et al., 2009). Here it is believed that the soluble β-glucan fragments are released and taken up by circulating granulocytes, monocytes and dendritic cells while insoluble fragments induce a cellular response by binding to cell surface receptors. Several types of β-glucan receptors have been identified including several immune receptors, e.g., Dectin-1, Complement Receptor (CR3), CD11b/CD18, Mac-1, αMb integrin (Ross, 2000), Scavenger Receptors (SR), Lactosylceramide (LacCer) and toll-like receptors, e.g., TLR-2/6 and trigger responses in macrophages, neutrophils, monocytes, natural killer cells and dendritic cells in vitro (Chan et al., 2009; Kim et al., 2011; Legentil et al., 2015). β-glucans also bind to L-Ficolin (Legentil et al., 2015). Through this interaction with plasma membrane receptors, β-glucans potentiate intracellular signaling pathways that ultimately activate transcription factors such as NFκB resulting in both innate and adaptive immune responses (Li et al., 2010).

In addition to immunomodulatory activity, β-glucans have been reported to have direct anti-cancer activity in vitro. A water-soluble β-glucan extract from the mycelia of Poriacocos inhibited the viability (MTT assay) of MCF-7 human breast cancer cells with an IC_{50} of 400 µg mL^{-1} and decreased cyclin D1 and cyclin E protein expression (Zhang et al., 2006). We reported that a purified preparation of β-D-glucan (from barley) dissolved in DMSO - but not water- inhibited the growth of estrogen receptor α (ERα)+ MCF-7 cells with an IC_{50} of ~164±12 µg mL^{-1} compared to normal breast epithelial (ERα-) MCF-10A cells, IC_{50} = 464 µg mL^{-1} (Jafaar et al., 2014). β-glucan inhibited the estradiol (E2)- independent, tamoxifen (TAM) and fulvestrant-resistant, ERα + LCC9 and LY2 cells (derived from MCF-7 cells)
with IC_{50} values of 4.6±0.3 and 24.2±1.4 µg mL\(^{-1}\), respectively (Jafaar et al., 2014). In contrast, the “triple negative/basal-like” MDA-MB-231 breast cancer cells were not growth inhibited by β-glucan (Jafaar et al., 2014). Conversely, aqueous-soluble β-glucans reportedly had no direct cytotoxic effects on a panel of common cancer cell lines including blastoma, carcinoma and sarcoma cells (Chan et al., 2009).

There are many studies of β-glucans purified from the cell walls of yeast, fungi and plants as immunomodulators that increase the levels of pro-inflammatory cytokines, chemokines and cell adhesion molecules (Novak and Vetvicka, 2008). We will review immunomodulatory genes regulated by β-glucans in human and mouse cells. In addition, we reviewed the literature to identify additional genes increased or inhibited by glucan treatment of cells in vitro. We summarize the downstream effects of these transcriptional changes and how they inform the mechanisms by which glucans act in various cell types.

Glucans Increase Gene Transcription in Human Cancer Cells and Immortalized Normal Cells

A number of reports have examined the effect of β-glucan on transcription in human and murine immune cells with a few studies examining the activity of glucans in human cancer cells. Table 1 summarizes those genes that were transcriptionally induced by β-glucan in the cells examined. First, we will review the results in human cells.

β-Glucan in Breast Cancer Cells

In our lab, it was shown that a purified β-D-glucan isolated from barley and dissolved in DMSO, but not water, inhibited cell viability in two human breast cancer cells lines: MCF-7 and LCC9, an endocrine-resistant (estradiol, tamoxifen and fulvestrant) cell line derived from MCF-7. Using two concentrations of β-D-glucan, we examined the expression of a set of genes implicated in breast cancer in both cell lines using PCR array analysis.

Gene(s)	Cell system	β-glucan	Ref.	Comments
BIRC5, BRCA1, BRCA2, CCNA1, PGR, RASSF1	MCF-7 human breast cancer cells	10 or 50 µg mL\(^{-1}\) β-D glucan purified from barley and purchased from Sigma (cat. No. G6513, purity ~97%), dissolved in DMSO	(Jafaar et al., 2014)	BIRC5 is anti-apoptotic; BRCA1 and BRCA2 are involved in DNA repair, Cyclin A1(CCNA1) regulates cell cycle progression, progesterone receptor (PGR) is a breast cancer differentiation marker, RASSF1 (NORE2A) is a scaffolding protein that functions as a tumor suppressor
CTSD, PTGS2	MCF-7 human breast cancer cells	10 µg mL\(^{-1}\) β-D glucan	(Jafaar et al., 2014)	Cathepsin D (CTSD) is an acid protease; COX-2 (PTGS2) increases pro-inflammatory cytokines
MK167	MCF-7 human breast cancer cells	50 µg mL\(^{-1}\) β-D glucan	(Jafaar et al., 2014)	Ki-67 is a marker of cell proliferation
EGF, GLI1, HIC, IGFB1, IGFBP3, PTGS2	LCC9 endocrine-resistant human breast cancer cells	10 or 50 µg mL\(^{-1}\) β-D glucan	(Jafaar et al., 2014)	GLI1 is a zinc finger transcription factor; HIC is the gene MDFIC is a transcriptional regulator
TP53, CDKN1B	MCF-7 human breast cancer cells	Fungal β-glucan (Botryosphaeran, BOT) was produced by B. rhodina MAMB-05 grown on nutrient medium containing glucose (BOTglu) and fructose (BOTfru). Cells were treated with 100 µg mL\(^{-1}\) for 48 h	Queiroz et al., 2015	TP53 and P27 are involved in cell cycle arrest
CD86	Dectin-1(+)CR3(-) human Burkitt (B-cell) lymphoma cell lines (Daudi and Raji)	Aqueous underivatized β-glucan from Saccharomyces cerevisiae (1 µg mL\(^{-1}\)) for Raji cells and 0.1 µg/ml for Daudi cells	(Harnack et al., 2011)	Maturation marker-measured cell surface expression by flow cytometry. Observed peak increase at 48 h tx. Both cell lines express dectin-1, the major β-glucan receptor.
HSP70 protein, MUC1	Human gastric carcinoma cells	LMW β-glucan purified from conditioned medium of Aureobasidium pullulans GM-NH-1A1 with ~70% β(1-6) branches 100 µg mL\(^{-1}\)	(Tanaka et al., 2011)	MUC1 is mucin 1, a transmembrane protein.

There are many studies of β-glucans purified from the cell walls of yeast, fungi and plants as immunomodulators that increase the levels of pro-inflammatory cytokines, chemokines and cell adhesion molecules (Novak and Vetvicka, 2008). We will review immunomodulatory genes regulated by β-glucans in human and mouse cells. In addition, we reviewed the literature to identify additional genes increased or inhibited by glucan treatment of cells in vitro. We summarize the downstream effects of these transcriptional changes and how they inform the mechanisms by which glucans act in various cell types.
Table 1. Continuous
PKC, CXCL8 (IL-8 gene), CDC42, BBC3 (PUMA) IL-10, IL-12, IL-23 transcripts
IL23A, PTGS2
**TGF-α, IFN-ε, IFN-α, IL-29, IL-28B, IL-28A, IL27, IL-23, IL-19, IL-15, IL-12B, IL-12A, IL10, IL-8, IL-7, IL-6, IL-1B, IL-1α, EB13, IL22R1, IL15RA, IL7R, IL6, IL4R, IL3RA, IL2RA, CCR7, CCR6, CX3CL1, CXCL11, CXCL10, CXCL9, CXCL6, CXCL5, CXCL3, CXCL2, CXCL1, CCL2, CCL20, CCL19, CCL17, CCL15, CCL13, CCL8, CCL5, CCL4, CCL3, CCL1, LILR8, LAMP3, ECGF1, CD86, CD83, CD80, CD58, CD54, CD47, CD44, ADAMDEC1, ISG20, IFITM3, IFIT4, IFIT2, IFIT1, IFI44, IFI35, IFI27, GIP3, GIP2, RELA, RELB, NFkB1, NFkB2, NFkB1, EB13, CFLAR, BTG1, BASP1, ATF4, AIM2, ADAR, ACPP
GITRL protein
Ddx58, Mda5, IL-1β, IL-6, TNFα, GM-CSF and G-CSF
UMP synthetase
IFN-Y
β-D-glucan increased the expression of 9 genes in MCF-7 human breast cancer cells and 5 genes in LCC9 breast cancer cells (Jafaar et al., 2014). These genes are summarized in Table 1. Overall, depending on the concentration of β-D-glucan, we observed that β-D-glucan increased the expression of genes involved in proliferation (MK167 (Ki-67), CCNA1 (cyclin A1) and BRCC5), invasion (CTSD (cathepsin D)), inflammation (PTGS2 (COX-2)), differentiation (PGR (progesterone receptor)), tumor suppression (RASSF1) and DNA repair (BRCA1, BRCA2). Surprisingly, a set of different genes were upregulated by β-D-glucan in the endocrine-resistant (tamoxifen and fulvestrant) LCC9 cells with the exception of the common increase in PTGS2. These genes were involved in proliferation (EGF, IGF1, IGFBP3) and transcription (GL1). The mechanism for this difference is unknown, although LCC9 cells have higher NFκB expression/activity than MCF-7 (Litchfield et al., 2014).

More recent studies reported that two preparations of fungal β-glucans inhibited MCF-7 cell viability, stimulated apoptosis and ROS production and increased necrosis (Queiroz et al., 2015). BOT(1Glc) and BOT(1Fru) (100 µg mL⁻¹, Table 1) increased the mRNA and protein expression of p53 (TP53) and p27 (CDKN1B) after 48 h of treatment (Queiroz et al., 2015). The authors reported that BOT(1Glc) activated AMPK, increased FOXO3a protein and reduced phospho-FOXO3a, suggesting that stimulation of FOXO3a transcriptional activity is the mechanism by which cell arrest is achieved. This was supported with the observation that treatment with these β-glucans resulted in an increase in p53 and p27 transcription (Queiroz et al., 2015).

β-D-Glucan Regulates Protein and Gene Expression in Gastric Cancer Cells and other Human Cell Lines

Treatment of human gastric carcinoma cells with β-glucan increased the expression of HSP70 protein (HSPA1A gene) and MUC1 transcript levels (mucin-1, a transmembrane protein) - both of which are protective factors in the gastric mucosa (Tanaka et al., 2011). We note that the primary focus of this study was to examine the protective effects of β-glucans on gastric lesions in mice with confirmation of HSP70 and MUC1 in gastric cancer cells.

Synthetic glucans increased expression of PKC (protein kinase C), CXCL8 (IL-8), CDC-42 and PUMA (BBC3) transcripts in human Detroit-573 fibroblasts and HaCaT keratinocytes as measured by non-quantitative PCR (Vetvicka et al., 2011). These genes are regulators of cell growth and PUMA is a BCL-2-pro-apoptotic protein.

Microarray Analysis in Human Monocyte-Derived Dendritic Cells

Gene array profiling of human monocyte-derived Dendritic Cells (DCs) treated with a purified extract of Polysaccharide (PS-G, a branched (1→6)-β-D-glucan) from Ganoderma lucidum, a Chinese medicinal mushroom, identified 3477 (17%) probe sets upregulated (2-fold) and 4418 (19%) probe sets downregulated (2-fold) after 16 h of treatment (Lin et al., 2006). The identity of genes included in the text of that manuscript (Lin et al., 2006) are shown on Table 1 and 2. Significant increases in transcript levels were observed for a number of cytokines (IL-12A, IL-12B, IL-23A, IL-27 and EB12; also known as IL-27B), chemokines and chemokine receptors (CCL20, CCL19, CCL5, CXCL10, CXCL11 and CCR7) and cell surface proteins (CD80, CD83 and CD86). The authors also noted that an increase in transcripts for NFKB1, NFKB2, RELA, RELB and MAPK11 which support the model that β-glucans activate human dendritic cells through the NFκB and p38 MAPK pathways. Further, the authors suggested that the increase in CCL20, IL-27, IL-23A, IL-12A and IL-12B transcripts after PS-G treatment of human DCs may play a role in the anti-tumor activity of β-glucans (Lin et al., 2006).

A more recent microarray profiling of human monocyte-derived DCs treated with β-D glucan (10 µg mL⁻¹) for 4 or 12 h identified ~1500 genes that were either inhibited (38%) or induced (62%) (Cardone et al., 2014). The β-D glucan-regulated genes were divided into 6 groups: (1) Early-inhibited genes (4-6 h after activation); (2) genes inhibited similarly at both early and late times (early-late-inhibited genes); (3) late-inhibited genes; (4) early-induced genes; (5) genes induced similarly at both early and late times (early-late-induced genes); and (6) late-induced genes (12 h after activation). Gene ontology analysis indicated that the early induced genes were likely involved in apoptosis or stress and antiviral responses, e.g., IFNB1, NFKBID, NFATC1, TNF, proIL1β, NFKBIZ and that these genes were potentially regulated by Interferon Regulatory Factors (IRFs). The late-induced genes were identified to be involved in chemotaxis, IL-1 production and NFκB or STAT signaling and were predicted to be regulated by NFκB and IRFs. The late-induced genes included chemokines, cytokines and other factors involved in DC activation and proliferation, e.g., IL6, I10, IL12B, IL20, IL23A, IL1F9, CSF7, CSF3; and were predicted to be regulated by NFκB, IRFs, AP1, STATs and CEBPs. The authors demonstrated that β-glucan stimulates IL-1 expression which once processed by the caspase/inflammasome pathway acts in an autocrine fashion to stimulate the expression of the late-induced cytokines at the transcriptional level via IκB-ζ modulation (Cardone et al., 2014). Further, the authors reported that β-glucan also promoted an IFN-γ gene signature consistent with the reported induction of IFN-γ in response to fungi via Dectin-1 signaling. These data demonstrated that IL-1 and IFN-γ differentially regulate the β-glucan-induced Th responses in human DCs.
Table 2. Genes down-regulated by glucan. The cell type and concentration and form of β-glucan used in these studies is indicated. The comments include information about the genes regulated taken from the references cited and from the Gene Cards human gene database http://www.genecards.org/

Gene	Cell system	β-glucan Ref.	comments	
Measured Cyclin D1 and Cyclin E proteins by flow cytometry	MCF-7 human breast cancer cells	400 µg mL⁻¹, PCM3-II, a water-soluble β-glucan purified from the mycelia of *Poria cocos*, 48 h treatment	(Zhang et al., 2006)	Cell cycle regulators
CDKN1C, PLAU, RARB	MCF-7 human breast cancer cells	10, 50 µg mL⁻¹ β-D glucan; 24 h	(Jafaar et al., 2014)	CDKN1C is a negative regulator of cell proliferation; Plasminogen Activator, Urokinase (PLAU) is a serine protease, Retinoic Acid Receptor β (RARB) is a differentiation maker
CTNNB1, IGFBP2, SLIT2	MCF-7 human breast cancer cells	50 µg mL⁻¹ β-D glucan; 24 h	(Jafaar et al., 2014)	CTNNB1 is β catenin; IGFBP2 is Insulin Like Growth Factor Binding Protein 2; SLIT2 is a secreted glycoprotein involved in cell migration
MUC1, SNAI2	MCF-7 human breast cancer cells	10 µg mL⁻¹ β-D glucan; 24 h	(Jafaar et al., 2014)	MUC1 is a transmembrane protein that is cleaved at its intracellular domain interacts with ERα and contributed to endocrine-resistance (Kufe, 2013); SNAI2 is the protein LUG which is a transcriptional repressor
ADAM23, BRCA2, CDH13, CDKN1C, CTNNB1	LCC9 endocrine-resistant breast cancer cells	10, 50 µg mL⁻¹ β-D glucan; 24 h	(Jafaar et al., 2014)	ADAM23 is a membrane protein that acts as a tumor suppressor; CDH1 is Cadherin 13; CDH13 is C-SAMP Dependent Kinase Inhibitor 1C- a negative regulator of cell proliferation; CTNNB1 is β-catenin
ERCC5	HepG2 cells	A β-glucan-containing polysaccharide complex purified from Agaricus blazei Murill mushroom of Brazilian origin by aqueous extraction	(da Silva et al., 2013)	ERCC5 is involved in excision repair following DNA damage
Identified 61 downregulated miRNAs -focused on mmu-miR-9 CREB mRNA and protein	Splenic MDSC from tumor-bearing mice	100 µg mL⁻¹ for 24 h; whole β-glucan particles from S. cerevisiae	(Tian et al., 2015)	miRNA microarray assay GEO accession number GSE67578; Identified Runx1, a transcription factor involved in differentiation of MDSCs, as a direct, bona fide target of miR-9. CREB, transcription factor, suppressed miR-9 transcription. measured by microdissection and RT-PCR; Thymidylate Synthase (TS) Dihydropyrimidin Dehydrogenase (DPD)
TS, DPD	Human KB cells (subclone HeLa cells) grown as a tumor xenograft in female athymic mice	Lentinan purified from Lentinus edodes (Shiitake mushroom) Dose (ip injection): 0.1 mg/kg/day 2X/week for 3 weeks	(Harada et al., 2010)	Affymetrix GeneChip microarray analysis
ARHGDIB, ATM, CEBPA, CSF1R, CST, F13A1, JTGAM, ITGB2, VCL Ptg2 (Cox2 gene)	Human monocyte-derived DCs from healthy donors	PS-G, a branched (1→6)-β-D-glucan purified from Ganoderma lucidum10 µg/ml for 16 h	(Lin et al., 2006)	Affymetrix GeneChip microarray analysis
Lungs of normal C57BL/6J Narl mice	Antrodia camphorate beta-glucan; mice were fed beta glucan daily for 12 days	(Wang et al., 2015)	Affymetrix GeneChip microarray analysis	

β-Glucan Stimulates IL23A and IL-10 Transcription But not IL-12 in Human Dendritic Cells

In a study designed to determine the effect of β-glucan on the production of IL-12 and IL-23 in human dendritic cells, high and low concentrations of purified β-glucan (10 versus 200 µg mL⁻¹ zymosan) were shown to induce transcription of IL-23 and IL-10, which was enhanced when cells were simultaneously treated with R848 (a Toll-like receptor...
Lymphocytes be mediated through the Dectin-1 receptor and involved bacterial and viral DNA component known to induce expression (Rodríguez et al., 2014). Evidence that CHOP is involved directly in IL-23 transcription (Rodríguez et al., 2014). In a more recent study, Rodríguez et al. (2014) showed that selective upregulation of IL-23 by zymosan (1 mg mL⁻¹) involves activating transcription Factor 2 (ATF2) in addition to NFκB which stimulates both IL-23 and IL-10. In these studies, the authors suggest that zymosan interaction with dectin-1 activates PKA-MEK-ERK and PKC signaling leading to activation of ATF2 and coordinates with TLR2 signaling to activate NFκB. ATF2 and NFκB stimulate IL23A transcription (Rodriguez et al., 2014). Whilezymogen and two other insoluble β-glucans (curdlan- and pustulan-containing latex beads) resulted in the disappearance of the Endoplasmic Reticulum Stress Response (ERS) transcription factors CHOP and XBP-1 from the nucleus of human DCs and macrophages, there was no evidence that CHOP is involved directly in IL-23 induced expression (Rodriguez et al., 2014).

β-Glucans Induce Cytokine Production in Human B Lymphocytes

While most studies have focused on the activation of gene expression in DCs, a recent report demonstrated that purified β-glucan (curdlan) induces expression of several cytokines including TNFα, IL-6 and II-8 in human B lymphocytes at both the mRNA and protein level (Ali et al., 2015). Activation of II-8 was shown to be mediated through the Dectin-1 receptor and involved SYK, ERK and JNK and activation of the transcription factors AP-1 and NFκB. Interestingly, β-glucan had no effect on antibody production or proliferation suggesting that β-glucans induce a different response than TLR-9 agonist CpG oligodeoxynucleotide (CpG) that is a bacterial and viral DNA component known to induce cytokine production in B lymphocytes (Ali et al., 2015).

Glucans Increase gene Transcription in Murine (Mouse) Immune Cells

Treatment of murine Myeloid-Derived Suppressor Cells (MDSCs) with whole β-glucan particles was shown to increase the expression of Runx1, a transcription factor that induces differentiation in Myeloid-Derived Suppressor Cells (MDSC) and mmu-miR-181d in M-MDSCs (downregulated in G-MDSCs) (Tian et al., 2015). These authors did not examine the function of miR-181d and a search in PubMed revealed no studies examining miR-181d in MDSCs. miR-181d is a stress-responsive miRNA in thymocytes with expression decreasing in response to LPS (Belkaya and van Oers, 2014). A search of microRNA.org revealed 8084 targets for has-miR-181d, but the role of increased miR-181d in response to β-glucan in MDSCs remains to be defined.

Treatment of murine bone marrow derived DCs with Whole β-Glucan Particles (WGP) rapidly activated the dectin-1 receptor, increased SYK phosphorylation (10-20 min) and increased cell surface GITRL protein (RNFSF18) levels measured 48 h later (Tian et al., 2012). GITRL (also called TL6) is a cytokine member of the TNF ligand family, GIRT L primes cytotoxic T lymphocyte responses and downregulates the suppressive activity of regulatory T cells, thus inhibiting tumor progression in the mouse Lewis Lung Carcinoma (LLC) cell model (Tian et al., 2012). The authors also showed that treatment of mice implanted with LLC tumor cells with WBPs resulted in an increase in GITRL on DCs in vivo and slower tumor development.

Time course experiments in murine macrophage-derived RAW264.7 cells showed that β (1-3),(1-6)-D-glucan, purified from Aureobasidium pullulan, strongly upregulated the inflammatory cytokines IL-1β and IL-6 and weakly upregulated TNFα. Increases in GM-CSF (CSF2) and G-CSF (CSF3), cytokines important for differentiation and proliferation, were also observed by 3 h with increased Ddx58 (RIG-1- retinoic acid inducible gene-1) and Mda5 (melanoma differentiation-associated protein 5) seen 6 h after treatment (Muramatsu et al., 2012). RIG-1 is necessary for Type I interferon production when cells are infected with a virus and MDA5 is an intracellular pattern recognition molecule for virus-derived RNAs which is necessary for Type I interferon production when cells are virus infected. These results correlate with the anti-viral activity of β-glucan observed in mice (Muramatsu et al., 2012).

Treatment of RAW264.7 mouse macrophage cells with β-glucan increased TNFα and GM-CSF (granulocyte macrophage colony stimulating factor) after 3 h. CSF2 is involved in the development and differentiation of lymphocytes from stem cells increased at 3 h and remained upregulated through 24 h.

β-Glucan Regulates Genes in a Human Tumor Cell Xenograft

Treatment of female athymic mice with lentinan (LNT, Glc(b1-3)(Glc(b1-6))Glc(b1-3)Glc(b1-3)Glc(b1-6)) (Gerosa et al., 2008). In contrast, transcription of IL-12 was not induced by zymosan alone. Instead, expression of IL12 was observed only when cells were first primed with IFN-γ and treated with low concentrations of zymosan and R848. Based on these observations, the authors concluded that the differential expression of IL-23 and IL-12 is dependent on the specific PPRs (pattern recognition receptors) that are activated by different microorganisms. Specifically, TLR2 is able to differentially regulate the expression of these two cytokines which allows DCs to respond appropriately to different pathogens (Gerosa et al., 2008). While most studies have focused on the activation of gene expression in DCs, a recent report demonstrated that purified β-glucan (curdlan) induces expression of several cytokines including TNFα, IL-6 and II-8 in human B lymphocytes at both the mRNA and protein level (Ali et al., 2015). Activation of II-8 was shown to be mediated through the Dectin-1 receptor and involved SYK, ERK and JNK and activation of the transcription factors AP-1 and NFκB. Interestingly, β-glucan had no effect on antibody production or proliferation suggesting that β-glucans induce a different response than TLR-9 agonist CpG oligodeoxynucleotide (CpG) that is a bacterial and viral DNA component known to induce cytokine production in B lymphocytes (Ali et al., 2015).
ERBB2, MUC1 purified from and LCC9 cells has not been examined. (Jafaar et al., 2014). The mechanism(s) for these effects in MCF-7 not water, inhibits MCF-7 cell proliferation (Jafaar et al., 2014). β-D-glucan also inhibited the expression of OPRT has been associated with resistance to 5-FU based chemotherapies, cotreatment with lentinan may increase the successful use of therapeutic drugs such as S-1 and other 5-FU based chemotherapies.

Genes Inhibited by β-Glucan

A number of studies have identified genes whose expression is decreased by β-glucan treatment in human and mouse cells. Table 2 summarizes the information on these genes that have been identified. First, the results in human cells will be reviewed followed by studies in mouse cells.

β-Glucan Inhibits Gene Transcription in Breast Cancer Cells

Early studies in MCF-7 cells showed that a 48 h treatment with 400 μg mL⁻¹ PCM3-II, a water-soluble β-glucan, inhibited cell viability and coordinately reduced Cyclin D1 and Cyclin E protein expression (Zhang et al., 2006). However, that study did not examine the impact of PCM3-II on gene transcription. We examined the effect of two concentrations of β-D-glucan on the expression of a set of genes implicated in breast cancer in MCF-7 and LCC9 cells using a PCR array. We reported that β-D-glucan inhibited the expression of cell proliferation and differentiation markers in MCF-7 cells, e.g., CDKN1C, CTNNB1, ERBB2, MUC1 and RAB (Jafaar et al., 2014). These changes in gene expression correspond to the observation that β-D-glucan dissolved in DMSO, but not water, inhibits MCF-7 cell proliferation (Jafaar et al., 2014). β-D-glucan also inhibited the expression of CDKN1C and CTNNB1 in LCC9 cells (Jafaar et al., 2014). The mechanism(s) for these effects in MCF-7 and LCC9 cells has not been examined.

β-Glucan Inhibits ERCC5 Expression in HepG2 Cells

Treatment of HepG2 human hepatoma cells with a β-glucan-containing polysaccharide complex purified from Agaricus blazei (Murill mushroom of Brazilian origin) by aqueous extraction (Gonzaga et al., 2005) had no effect on cell viability (MTT assay), CYP1A1 or CASP9 gene transcript levels, but inhibited ERCC5 expression (da Silva et al., 2013). ERCC5 is involved in excision repair following DNA damage, but the authors did not pursue this finding. Interestingly, β-glucan treatment of HepG2 cells increased metabolites involved in bioenergetic metabolism, including alanine, glutamate and creatine. From these studies, the authors concluded that β-glucan increases metabolites needed for high energy metabolism and stimulates bioenergetics (da Silva et al., 2013). Interestingly, injection of yellow croaker (Pseudosciaenacrocea) fish with β-glucan (5 mg kg⁻¹ body weight, from Sigma) 6 h prior to hypoxic stress inhibited reactive oxygen formation in the liver and increased transcription of Pyruvate Kinase (PK) while reducing F-ATPase, Succinate Dehydrogenase (SDH) and Malate Dehydrogenase (MDH) expression (Zeng et al., 2016). Which subunit of SDH or form of MDH was examined by PCR was not indicated. These results suggest that β-glucan inhibits the TCA cycle and enhances glycolysis in vivo in the liver of yellow croaker fish, although direct examination of TCA cycle metabolites, oxygen consumption or ATP production was not performed.

β-Glucan Inhibits miR-9 Expression in Mouse Macrophage Cells

A microRNA microarray in Whole β-Glucan Particles (WGP)-treated MDSCs isolated from the spleen of Lewis lung carcinoma bearing mice identified 61 miRNAs that were downregulated whereas 40 miRNAs were upregulated (Tian et al., 2015). Specifically, the authors identified miR-9 as an important regulator of Runx1 (runt-related transcription factor) as a direct, bona fide target of miR-9 (verified by 3'UTR luciferase reporter assay in HEK-293T cells). They also reported a decrease in Creb transcript levels in WGP-treated MDSCs, identified a binding site for CREB in the miR-9 promoter region and verified CREB suppression by a promoter luciferase reporter assay. Both CREB and mi-RNA suppression by WGP were shown to be mediated by the Dectin-1 pathway. These results support the conclusion that through the Dectin-1
β-Glucan Inhibits Proteins that Regulate Nucleic Acid Synthesis in a Human Tumor Cell Xenograft

As reviewed above, treatment of female athymic mice with lentinan at a dose of 1 mg/kg/day 2X/week for 3 weeks reduced xenograft human KB cell tumors (Harada et al., 2010). The authors reported reduced thymidylate synthase and dihydropyrimidine dehydrogenase proteins in the KB xenografts, results that correlated with inhibition of KB xenograft growth in vivo (Harada et al., 2010).

As discussed above, gene array profiling of human monocyte-derived DCs treated with a PS-G identified 4418 (19%) probe sets downregulated (2-fold) after 16 h of treatment (Lin et al., 2006). The identity of downregulated genes included in the text of that manuscript (Lin et al., 2006) is shown in Table 2. The authors suggested that the decrease in ARHGDB, ATM, CEBPA, CSFIR, CST, F13A1, ITGAM and ITGB2 transcripts after PS-G treatment may play a role in the anti-tumor activity of β-glucans (Lin et al., 2006). Another microarray profiling of human monocyte-derived DCs treated with β-D glucan (10 µg mL⁻¹) for 4 or 12 h identified ~ 1500 genes that were either inhibited (38%) or induced (62%) (Cardone et al., 2014). The authors focused on upregulated transcripts and none of the downregulated genes were described; thus, these are not included in Table 2.

Conclusion

From the genes identified as regulated by β-glucan in this review, it is clear that β-glucan regulates the transcription of numerous immunomodulatory genes in human and mouse dendritic and macrophage cells. In addition, gene expression changes in response to β-glucans have been identified in human breast, gastric and liver cancer cells as well as a few other cell lines as summarized in Table 1 and 2. Figure 1 is a model of the generalized pathway by which β-glucan regulates gene transcription by interaction with a plasma membrane receptor which then activates an intracellular pathways leading to activation or inhibition of transcription factor activity. The activated transcription factors then regulate the transcription of cell-specific target genes.

![Fig. 1. General model of β-glucan regulation of gene transcription. Examples of cell type specific receptors, pathways and transcription factors are in plain font](image-url)
Authors Contributions

MOH and CMK contributed equally to the writing of this review.

Conflict of Interest

The authors declare no conflict of interest.

References

Aleem, E., 2013. β-Glucans and their applications in cancer therapy: Focus on human studies. Anticancer Agents Med. Chem., 13: 709-719.
DOI: 10.2174/1871520611313050005

Ali, M.F., C.B. Driscoll, P.R. Walters, A.H. Limper and E.M. Carmona, 2015. Beta-glucan-activated human B lymphocytes participate in innate immune responses by releasing proinflammatory cytokines and stimulating neutrophil chemotaxis. J. Immunol., 195: 5318-5326.
DOI: 10.4049/jimmunol.1500559

Belkaya, S. and N.S.C. van Oers, 2014. Transgenic expression of MicroRNA-181d augments the stress-sensitivity of CD4+CD8+ thymocytes. PLoS One, 9: e85274-e85274.
DOI: 10.1371/journal.pone.0085274

Tian, J., J. Ma, K. Ma, B. Ma and X. Tang et al., 2012. Up-regulation of GITRL on dendritic cells by WGP improves anti-tumor immunity in murine Lewis lung carcinoma. PLoS One, 7: e46936-e46936.
DOI: 10.1371/journal.pone.0046936

Bohn, J.A. and J.N. BeMiller, 1995. (1→3)-β-D-Glucans as biological response modifiers: A review of structure-functional activity relationships. Carbohydr. Pol., 28: 3-14.
DOI: 10.1016/0144-8617(95)00076-3

Chan, G., W. Chan and D. Sze, 2009. The effects of β-glucan on human immune and cancer cells. J. Hematol. Oncol., 2: 25-25.
DOI: 10.1186/1756-8722-2-25

Cardone, M., A.K. Dzutsev, H. Li, N. Riteau and F. Gerosa, et al., 2014. Interleukin-1 and interferon-γ orchestrate β-glucan-activated human dendritic cell programming viaIκB-ζ modulation. PLoS One, 9: e114516-e114516.
DOI: 10.1371/journal.pone.0114516

da Silva, A.F., D. Sartori, F.C. Macedo, L.R. Ribeiro and M.H. Fungaro et al., 2013. Effects of β-glucan extracted from Agaricus blazei on the expression of ERCC5, CASP9 and CYP1A1 genes and metabolic profile in HepG2 cells. Hum. Exp. Toxicol., 32: 647-654.
DOI: 10.1177/0960327112468173

Gerosa, F., B. Baldani-Guerra, L.A. Lyakh, G. Batoni and S. Esin et al., 2008. Differential regulation of interleukin 12 and interleukin 23 production in human dendritic cells. J. Exp. Med., 205: 1447-1461.
DOI: 10.1084/jem.20071450

Gonzaga, M.L.C., N.M.P.S. Ricardo, F. Heatley and S.D.A. Soares, 2005. Isolation and characterization of polysaccharides from Agaricus blazei Murill. Carbohydr. Pol., 60: 43-49.
DOI: 10.1016/j.carbpol.2004.11.022

Harada, K., Y. Itashiki, T. Takenawa and Y. Ueyama, 2010. Effects of lentilain alone and in combination with fluoropyrimidine anticancer agent on growth of human oral squamous cell carcinoma in vitro and in vivo. Int. J. Oncol., 37: 623-631.
DOI: 10.3892/ijn.00000711

Harnack, U., U. Kellermann and G. Pecher, 2011. Yeast-derived beta-(1-3),(1-6)-D-glucan induces up-regulation of CD86 on dectin-1-positive human B-lymphoma cell lines. Anticancer Res., 31: 4195-4199. PMID: 22199280

Ina, K., T. Kataoka and T. Ando, 2013. The use of lentilain for treating gastric cancer. Anticancer Agents Med. Chem., 13: 681-688.
DOI: 10.2174/1871520611313050002

Jafaar, Z.M., L.M. Litchfield, M.M. Ivanova, B.N. Radde and N. Al-Rayyan et al., 2014. Beta-D-glucan inhibits endocrine-resistant breast cancer cell proliferation and alters gene expression. Int. J. Oncol., 44: 1365-1375. DOI: 10.3892/ijoi.2014.2294

Kim, H.S., J.T. Hong, Y. Kim and S.B. Han, 2011. Stimulatory effect of β-glucans on immune cells. Immune Netw., 11: 191-195.
DOI: 10.4110/in.2011.11.1.191

Kufe, D.W., 2013. MUC1-C oncoprotein as a target in breast cancer: Activation of signaling pathways and therapeutic approaches. Oncogene, 32: 1073-1081.
DOI: 10.1038/onc.2012.158

Legentil, L., F. Paris, C. Ballet, S. Trouvelot and X. Daire et al., 2015. Molecular interactions of β-(1→3)-glucans with their receptors. Molecules, 20: 9745-9766. DOI: 10.3390/molecules20069745

Li, B., Y. Cai, C. Qi, R. Hansen and C. Ding et al., 2010. Orally administered particulate β-glucan modulates tumor-capturing dendritic cells and improves antitumor t-cell responses in cancer. Clin. Canc Res., 16: 5153-5164. DOI: 10.1186/1748-717X-16-5153

Lin, Y.L., S.S. Lee, S.M. Hou and B.L. Chiang, 2006. Polysaccharide purified from Ganoderma lucidum induces gene expression changes in human dendritic cells and promotes T helper 1 immune response in BALB/c mice. Mol. Pharmacol., 70: 637-644.
DOI: 10.1124/mol.106.022327
Litchfield, L.M., S.N. Appana and C.M. Klinge, 2014. COUP-TFI inhibits NFkappaB activation in endocrine-resistant breast cancer cells. Mol. Cell Endocrinol., 382: 358-367. DOI: 10.1016/j.mce.2013.10.010

Lyakh, L., G. Trinchieri, L. Provezza, G. Carra and F. Gerosa, 2008. Regulation of interleukin-12/interleukin-23 production and the T-helper 17 response in humans. Immunol. Rev., 226: 112-131. DOI: 10.1111/j.1600-065X.2008.00700.x

Muramatsu, D., A. Iwai, S. Aoki, H. Uchiyama and K. Kawata et al., 2012. β-Glucan derived from Aureobasidium pullulans is effective for the prevention of influenza in mice. PLoS One, 7: e41399-e41399. DOI: 10.1371/journal.pone.0041399

Novak, M. and V. Vetvicka, 2008. β-glucans, history and the present: Immunomodulatory aspects and mechanisms of action. J. Immunotoxicol., 5: 47-57. DOI: 10.1080/15476910802019045

Queiroz, E.A.I.F., Z.B. Fortes, M.A.A. da Cunha, A.M. Barbosa and N. Khaper et al., 2015. Antiproliferative and pro-apoptotic effects of three fungal exocellular β-glucans in MCF-7 breast cancer cells is mediated by oxidative stress, AMP-Activated Protein Kinase (AMPK) and the Forkhead transcription factor, FOXO3a. Int. J. Biochem. Cell Biol., 67: 14-24. DOI: 10.1016/j.biocel.2015.08.003

Rodriguez, M., E. Domingo, S. Alonso, J.G. Frade and J. Eiros et al., 2014. The unfolded protein response and the phosphorylations of activating transcription factor 2 in the trans-activation of il23a promoter produced by β-glucans. J. Biol. Chem., 289: 22942-22957. DOI: 10.1074/jbc.M113.522656

Ross, G.D., 2000. Regulation of the adhesion versus cytotoxic functions of the Mac-1/CR3/alphaMbeta2-integrin glycoprotein. Crit. Rev. Immunol., 20: 197-222. PMID: 10968371

Saraswat-Ohri, S., A. Vashishta, V. Vetvicka, K. Descroix and F. Jamois et al., 2011. Biological properties of (1 → 3)-β-d-Glucan-based synthetic oligosaccharides. J. Med. Food, 14: 369-376. DOI: 10.1089/jmf.2010.0081

Tanaka, K., Y. Tanaka, T. Suzuki and T. Mizushima, 2011. Protective effect of β-(1,3 → 1,6)-d-glucan against irritant-induced gastric lesions. Br. J. Nutr., 106: 475-485. DOI: 10.1017/S0007114511000365

Tian, J., K. Rui, X. Tang, J. Ma and Y. Wang et al., 2015. MicroRNA-9 regulates the differentiation and function of myeloid-derived suppressor cells via targeting Runx1. J. Immunol., 195: 1301-1311. DOI: 10.4049/jimmunol.1500209

Vetvicka, V., S. Saraswat-Ohri, A. Vashishta, K. Descroix and F. Jamois et al., 2011. New 4-deoxy-(1→3)-β-d-glucan-based oligosaccharides and their immunostimulating potential. Carbohydr. Res., 346: 2213-2221. DOI: 10.1016/j.carres.2011.06.020

Wang, W.J., Y.S. Wu, S. Chen, C.F. Liu and S.N. Chen, 2015. Mushroom beta-glucan may immunomodulate the tumor-associated macrophages in the Lewis lung carcinoma. Biomed. Res. Int., 2015: 604385-604385. DOI: 10.1155/2015/604385

Zeng, L., Y.H. Wang, C.X. Ai, J.L. Zheng, C.W. Wu et al., 2016. Effects of β-glucan on ROS production and energy metabolism in yellow croaker (Pseudosciaena crocea) under acute hypoxic stress, Fish Physiol. Biochem., 42: 1395-1405. DOI: 10.1007/s10695-016-0227-1

Zhang, M., L.C. Chiu, P.C. Cheung and V.E. Ooi, 2006. Growth-inhibitory effects of a beta-glucan from the mycelium of Poria cocos on human breast carcinoma MCF-7 cells: Cell-cycle arrest and apoptosis induction. Oncol. Rep., 15: 637-643. PMID: 16465424