Anisotropic magnetoresistance (AMR) in ferromagnets was discovered two centuries ago by Thomson, but it took more than a hundred years to exploit this phenomenon to full extent and to provide a theoretical understanding. In the past decades, this relativistic effect, the essence of which lies in the dependence of the longitudinal conductance on the direction of the magnetization in a ferromagnet or staggered magnetization in an antiferromagnet due to spin-orbit coupling (SOC) has become one of the main tools used to access and probe the magnetization dynamics in various spintronics setups.

AMR in bulk ferromagnets has been extensively explored in the past. In tunneling geometry the AMR has been measured in ultrathin films utilizing the scanning tunneling microscope and in planar tunnel junctions with ferromagnetic semiconductors. The phenomenon of ballistic AMR has been theoretically suggested to exist in the contact limit of nano-scale atomic junctions, and it was eventually demonstrated experimentally in Co break-junctions.

AMR of single-atom and single-molecule contacts is caused by the magnetization-direction sensitive, SOC-induced hybridization between specific orbitals at a certain energy. AMR is severely limited by the states which are not altered by the change of magnetization direction and thus provide a constant background conductance. In typical bulk ferromagnets, it constitutes only a few percent. In the ballistic regime, suppressing the transmission due to SOC-insensitive states and promoting the conductance due to states which are strongly dependent on the magnetization direction, promises enhanced values of AMR.

This scenario can be realized with molecules sandwiched between magnetic leads since molecules often bind rather weakly to the substrates on which they are deposited and their orbitals preserve this initial symmetry and localized molecular orbital character. This makes them ideally suited for filtering out states of a specific symmetry and favoring the transmission due to lead states heavily influenced by SOC. While molecules are well-known for their spin-filtering properties and AMR of molecular systems in the tunneling regime has been investigated experimentally, magnetic anisotropy effects in organic materials are usually believed to be small due to weak spin-orbit interaction of light elements and are scarcely explored.

In this work, by density functional theory (DFT) calculations, we demonstrate that AMR in the ballistic regime can be enhanced by orders of magnitude via combining SOC-triggered modifications in the electronic structure of transition-metal wires with the orbital-symmetry filtering properties of molecules. This leads to the effect of *molecular anisotropic magnetoresistance* (MAMR), defined as:

\[
\text{MAMR} = \frac{T_\parallel - T_\perp}{T_\perp},
\]

where \(T_\parallel \) and \(T_\perp \) are the transmissions for perpendicular and parallel orientation of the magnetization with respect to the chain axis, respectively. To demonstrate the effect, we focus on metal-benzene complexes of the VBz-type (Bz, V2Bz, V3Bz, TaBz2, and NbBz2), some of which have been studied before both theoretically and experimentally, sandwiched between leads which are modeled by Ni and Co linear monoatomic chains (see Fig. 1(c) for a sketch of the geometry).

The method of study is based on density-functional theory in the local density approximation, and utilizes the one-dimensional version of the full-potential linearized augmented plane-wave method as implemented in FLEUR. The leads were described in a single-atom unit cell with a lattice constant of 2.21 Å. The scattering region was modeled by a symmetric unit cell consisting of up to ten Ni (Co) atoms and the molecule. For the V2Bz2 molecule the distance was set to the relaxed values of the isolated molecule. The same parameters were used for the other molecules since they only change by a few percent when the central metal atom is...
replaced.19

We begin the demonstration of the concept of MAMR by analyzing the electronic bandstructure of an isolated Ni monowire (MW) and the local density of states (LDOS) of VBz\textsubscript{2} molecule. The insets from top to bottom show the charge density plots of the molecular orbitals in the xz-plane. (c) Spin-decomposed transmission T of VBz\textsubscript{2} molecule contacted by Ni monowires. The contributions of orbitals of Δ_1, Δ_3, and Δ_4 symmetry are colored in gray, red, and blue, respectively. SOC has been neglected.

FIG. 1: (a) Bandstructure of a Ni monowire. Majority and minority states are marked with black and green circles, respectively. (b) Spin-decomposed local density of states (LDOS) of VBz\textsubscript{2} molecule. The insets from top to bottom show the charge density plots of the molecular orbitals in the xz-plane. (c) Spin-decomposed transmission T of VBz\textsubscript{2} molecule contacted by Ni monowires. The critical bands of the Ni chain in the following discussions will be the highly dispersive bands of Δ_1 (s, d_{z^2}) symmetry and of the very localized Δ_4 ($d_{xy}, d_{x^2-y^2}$) symmetry. The bands of Δ_3 (d_{xz}, d_{yz}) symmetry are of minor importance since the molecular orbitals (MO) of VBz\textsubscript{2} of Δ_3-symmetry are very low in energy. In contrast, the VBz\textsubscript{2} MOs of Δ_1- and Δ_4-symmetry lie close to the Fermi level and are thus able to interact with Ni MW states of the corresponding symmetry. In the isolated molecule, see Fig. 1(b), the splitting of minority and majority states results in a V magnetic moment of 1.0 μ_B.

In Fig. 1(c) we show the resulting spin-resolved transmission of VBz\textsubscript{2} contacted by Ni MWs with a distance between the Ni and V atom of $d_{\text{Ni-V}} = 4.232 \AA$ on both sides. At this distance the largest value of MAMR due to optimal bonding characteristics is found as will be discussed at the end of this paper. In realistic systems, it has been shown that the bonding characteristics can be tuned by graphene spacer layers13 or the chemical structure of the ligands of a magnetic complex12. The transmission exhibits localized contributions of Δ_4-symmetry in the minority and majority channel at $+0.13$ eV and -0.93 eV, respectively, nearly preserving the exchange splitting between majority and minority Δ_4-MOs of $+1.4$ eV in the free molecule displayed in Fig. 1(b). The states of Δ_4-symmetry, on the other hand, contribute by broad, band-like features from -0.5 eV to E_F and from -1.4 to -1.0 eV in the minority and majority channels, respectively, coinciding precisely with the regions of Δ_4 Ni bands in the leads. This shape of the transmission can be understood from the observation that the Δ_4-states of the Ni MW hybridize strongly with the respective MOs of VBz\textsubscript{2}, while the hybridization of the states of Δ_1 and Δ_3 symmetry is very small. This is caused by the already mentioned large energy offset between the Δ_4-states of the transition metal wire and the molecule and, in addition, the shape of the charge densities of the MOs in the xz-plane displayed as insets in Fig. 1(b). While the charge density of the MO of Δ_1-symmetry is only localized around the V atom, the one of the MO of Δ_3-symmetry shows considerable contributions at the benzene ring thus reducing the effective bonding distance for the Δ_4-states compared to the Δ_1-states. The strong effect of the symmetry-dependent hybridization between the lead states and the MOs of the molecule thus not only leads to the effect of spin-filtering as pointed out before20, but also gives rise to the orbitally-filtered transmission.

Considering spin-orbit coupling, the modifications in the electronic structure of the Ni chain upon changing the magnetization from along-the-chain axis ($\mathbf{M} \parallel z$) to perpendicular ($\mathbf{M} \perp z$) are clearly visible in Fig. 2 (a). We focus on an energy region which leads to the largest MAMR. In particular, at the point where the Δ_1- and Δ_3-bands cross at -0.38 eV we observe an avoided degeneracy as the magnetization is rotated from along-the-chain axis to perpendicular, since for $\mathbf{M} \perp z$ the Δ_3- and Δ_4-states are allowed to couple due to non-zero matrix elements of spin-orbit coupling between them for this magnetization direction.24 As a result, were the Fermi energy located at -0.38 eV, the ballistic AMR of an infinite Ni chain of 130\% would be significant, but its value would be hindered by the unavoidable large contribution to the transmission from magnetization-direction insensitive Δ_1-states at this energy (cf. Fig. 2 (a)).

The situation is completely different for our Ni-VBz\textsubscript{2}-Ni system. The magnetization-direction induced changes in the bandstructure of the Ni chain are directly passed on to the full transmission of the junction, see Fig. 2(d). For $\mathbf{M} \perp z$ the Δ_4-transmission is quenched between -0.4 and -0.33 eV, however, in contrast to the case of the infinite Ni chain (cf. Fig. 2 (b)), the remaining transmission of the order of 0.05 in this energy interval is due to the tail of localized Δ_1-originated transmission peaks at 0.1 and -0.9 eV. For $\mathbf{M} \parallel z$, on the other hand, the transmission at this energy has a value of about 1.5, originating mainly in Δ_4-states. The gigan-
FIG. 2: (a) Ni chain bandstructure with SOC for $M \parallel z$ (top) and $M \perp z$ (bottom) where z denotes the chain axis. (b) Transmission of an infinite Ni wire for $M \parallel z$ (top) and $M \perp z$ (bottom). (c) Transmission of Bz molecule contacted by Ni monowires for $M \parallel z$ (top) and $M \perp z$ (bottom). (d) shows the same as (c) of VBz2 molecule. (e) shows the same as (c) of V$_2$Bz3 molecule. The color code is as in Fig. 1.

The magnitude of the AMR for this junction of the order of $3.5 \times 10^3 \%$ nicely illustrates the principle of employing the symmetry-filtering properties of the molecules for arriving at molecular AMR.

The strength of the filtering effect and MAMR can be controlled by the size of the contacted molecule. For a single benzene molecule contacted by Ni MWs, Fig. 2(e) displays the transmission due to Δ_1- and Δ_3-states displays band-like features in a wide energy interval due to strong hybridization of the Ni chain with Bz, and of Ni apex atoms across benzene. This leads to poor filtering of Δ_1- and Δ_3-states, leaving a transmission of about 0.7 for $M \perp z$ in the energy range from −0.4 to −0.33 eV, while the transmission for $M \parallel z$ is about 2.2. This results in MAMR of about 230 %, which is one order of magnitude smaller as compared to the Ni-VBz2-Ni junction.

On the other hand, the filtering effect can be enhanced by considering a longer V$_2$Bz3 molecule instead of VBz2 (while keeping d_{Ni-V} the same). For this system the Δ_1 transmission peak at +0.05 eV in Fig. 2(e) becomes very sharp, while the energetic tails of both Δ_1-peaks at +0.05 and −0.9 eV are strongly suppressed. As a result, the transmission between −0.4 and −0.33 eV is almost solely determined by the states of Δ_1-symmetry. The total transmission in this energy region for $M \perp z$ is only of the order of 10^{-3}, while it constitutes 1.2 for $M \parallel z$, which results in MAMR of about $1.3 \times 10^{5} \%$ — two orders of magnitude larger as compared to the VBz2-Ni junction.

The quality of the filtering properties of such molecular junctions expectedly depends very strongly on the energetic position of the MOs of the contacted molecule with respect to the lead states. We demonstrate this by using the example of a Ni-NbBz2-Ni junction. As apparent from Fig. 3(a), the LDOS of the isolated NbBz$_2$ is very similar to that of the free VBz2 since Nb is isoelectronic to V. However, the exchange splitting of Δ_1-orbitals is only half as large for NbBz$_2$, which is reflected in the reduced value of the magnetic moment of 0.67 μ_B. As in the case of VBz$_2$, the exchange splitting between the Δ_1-states is nearly conserved when the molecule is contacted by Ni leads, Fig. 3(b). Therefore, the majority Δ_1-peak in transmission lies at −0.36 eV — directly in the energy region of the avoided level crossing in the bandstructure of the Ni chain discussed above. This severely hinders the orbital filtering in this energy region, resulting in MAMR of only 90 % despite a significantly stronger spin-orbit interaction of Nb atoms, as compared to Ni or V.
A similar value for the MAMR of 100% is obtained by replacing Nb with Ta for which SOC is even more enhanced. This can be explained by the fact that within the scenario for MAMR that we consider here, it is the SOC-induced modifications in the electronic structure of the leads which are promoted by the molecule. This is also visible when the Ni leads are replaced by chains consisting of Co atoms. In the Co MW bandstructure (Fig. 2 (c)) the bands of Δ_3- and Δ_4-symmetry cross at -0.13 eV for the case without SOC. This degeneracy is lifted at that energy for $M_0 - M_\perp$ when SOC is included, in analogy to the Ni case. Since Co is slightly lighter than Ni the energy gap devoid of Δ-states is very large, while it rises to its maximal value at d_{N_i-V} between 1.96 Å and 2.24 Å, and then rapidly decays as the distance is increased further. This behavior can be attributed to the strength of hybridization between states of different symmetry from the Ni MW and VBz, and its variation with d_{N_i-V}. At small distances the hybridization between the Δ_1, Δ_2- and Δ_4-states is very strong, leading to a large background transmission which quenches the Δ_4-MAMR, in a similar way to the Ni-Bz-Ni junction. The hybridization reduces strongly for states of Δ_1- and Δ_4-symmetry at intermediate distances, while it remains strong for the Δ_2-states, as discussed previously, promoting thus Δ_4-MAMR. Eventually, at very large d_{N_i-V} the overlap between Δ_4-states also vanishes, with tunneling across Δ_4-states dominating the tiny MAMR.

In conclusion, our calculations demonstrate the phenomenon of huge MAMR and point out the importance of the modifications in the electronic structure of the leads, contacted through a molecule, upon varying their magnetization direction. The magnitude of the MAMR sensitively depends on the details of the orbital filtering by the molecule. The specific electronic structure of the molecule and its coupling to the leads should be engineered based on the condition as to which part of the electronic structure in the leads should be promoted, and which parts of it should be suppressed.

Acknowledgments

S.H. and F.O. thank the DFG for funding within the SFB 677.

1. W. Thomson, Proc. R. Soc. 8, 546 (1856).
2. J. Smit, Physica 17, 612 (1951).
3. R. I. Potter, Phys. Rev. B 10, 4626 (1974).
4. T. R. McGuire and R. I. Potter, IEEE Trans. Magn. 11, 1018 (1975).
5. A. Fert and A. A. Campbell, J Phys. F: Met. Phys. 6, 849 (1976).
6. K. M. Seemann, F. Freimuth, H. Zhang, S. Blügel, Y. Mokrousov, D. E. Bürgler, and C. M. Schneider, Phys. Rev. Lett. 107, 086603 (2011).
7. P. Wadley, B. Howells, J. Zelezny, C. Andrews, V. Hills, R. P. Campion, V. Novak, F. Freimuth, Y. Mokrousov, A. W. Rushforth, et al., ArXiv e-prints (2015). 1503.03765.
8. M. Bode, S. Heinze, A. Kubetzka, O. Pietzsch, X. Nie, G. Bihlmayer, S. Blügel, and R. Wiesendanger, Phys. Rev. Lett. 89, 237205 (2002).
9. C. Gould, C. Rüster, T. Jungwirth, E. Girgis, G. M. Schott, R. Giraud, K. Brunner, G. Schmidt, and L. W. Molenkamp, Phys. Rev. Lett. 93, 117203 (2004).
10. J. Velev, R. F. Sabirianov, S. S. Jaswal, and E. Y. Tsymbal,
Phys. Rev. Lett. 94, 127203 (2005).
11 A. Sokolov, C. Zhang, E. Y. Tsymbal, J. Redepenning, and B. Doudin, Nat Nano 2, 171 (2006).
12 V. Iancu, K.-F. Braun, K. Schouteden, and C. Van Heseendonck, Phys. Rev. Lett. 113, 106102 (2014).
13 S. Lei, W. Feng, B. Li, Q. Li, A. Zhao, B. Wang, J. Yang, and J. G. Hou, Appl. Phys. Lett. 102, 163506 (2013).
14 V. V. Maslyuk, A. Bagrets, V. Meded, A. Arnold, F. Evers, M. Brandbyge, T. Bredow, and I. Mertig, Phys. Rev. Lett. 97, 097201 (2006).
15 M. Grünewald, M. Wahler, F. Schumann, M. Michelfeit, C. Gould, R. Schmidt, F. Würthner, G. Schmidt, and L. W. Molenkamp, Phys. Rev. B 84, 125208 (2011).
16 J.-J. Li, M.-L. Bai, Z.-B. Chen, X.-S. Zhou, Z. Shi, M. Zhang, S.-Y. Ding, S.-M. Hou, W. Schwarzacher, R. J. Nichols, et al., J. Am. Chem. Soc. 137, 5923 (2015).
17 D. Sun, E. Ehrenfreund, and Z. Valy Vardeny, Chem. Commun. 50, 1781 (2014).
18 J. Wang, P. H. Acioli, and J. Jellinek, J. Am. Chem. Soc. 127, 2812 (2005).
19 Y. Mokrousov, N. Atodiresei, G. Bihlmayer, S. Heinze, and S. Blügel, Nanotechnology 18, 495402 (2007).
20 B. Hardrat, N.-P. Wang, F. Freimuth, Y. Mokrousov, and S. Heinze, Phys. Rev. B 85, 245412 (2012).
21 B. Hardrat, F. Freimuth, S. Heinze, and Y. Mokrousov, Phys. Rev. B 86, 165449 (2012).
22 S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
23 Y. Mokrousov, G. Bihlmayer, and S. Blügel, Phys. Rev. B 72, 045402 (2005).
24 E. Abate and M. Asdente, Phys. Rev. 140, A1303 (1965).
25 www.flapw.de
26 The distance between the apex Ni atom and Bz is 2.428 Å, the same distance as in the Ni-VBz2-Ni junction with \(d_{Ni-V} = 4.232 \) Å.