Solvability of the heat equation on a half-space with a dynamical boundary condition and unbounded initial data

Marek Fila, Kazuhiro Ishige and Tatsuki Kawakami

Abstract. We study the linear heat equation on a half-space with a linear dynamical boundary condition. We are interested in an appropriate choice of the function space of initial functions such that the problem possesses a solution. It was known before that bounded initial data guarantee solvability. Here, we extend that result by showing that data from a weighted Lebesgue space will also do so.

Mathematics Subject Classification. 35K05, 35K20, 35A01.

Keywords. Heat equation, Dynamical boundary condition, Weighted Lebesgue space, Existence of solutions.

1. Introduction

Let \(N \geq 2 \) and \(\mathbb{R}_+^N := \mathbb{R}_+^{N-1} \times \mathbb{R}_+ \). This paper is concerned with global solvability of the problem

\[
\begin{align*}
\partial_t u - \Delta u &= 0, \quad x \in \mathbb{R}_+^N, \quad t > 0, \\
\partial_t u + \partial_N u &= 0, \quad x \in \partial \mathbb{R}_+^N, \quad t > 0, \\
u(x, 0) &= \varphi(x), \quad x \in \mathbb{R}_+^N, \\
u(x, 0) &= 0, \quad x = (x', 0) \in \partial \mathbb{R}_+^N, \quad x' := (x_1, x_2, \ldots, x_{N-1}),
\end{align*}
\]

(1.1)

where \(\partial_t := \partial/\partial t \), and \(\partial_N := -\partial/\partial x_N \). The boundary condition from (1.1) describes diffusion through the boundary in processes such as thermal contact with a perfect conductor or diffusion of solute from a well-stirred fluid or vapor (see, e.g., [4]). Various aspects of analysis of parabolic equations with dynamical boundary conditions have been treated by many authors, see, for example, [2,3,5–8,11–13,15,17,19–27].

In this paper, we focus on the simplest linear problem from a point of view which has not been considered yet (as far as we know). Namely, we are interested in an appropriate choice of the function space of initial functions \(\varphi \) such that problem (1.1) is solvable.

Throughout this paper, we often identify \(\mathbb{R}_+^{N-1} \) with \(\partial \mathbb{R}_+^N \). We introduce some notation. Let \(\Gamma_D = \Gamma_D(x, y, t) \) be the Dirichlet heat kernel on \(\mathbb{R}_+^N \), that is,

\[
\Gamma_D(x, y, t) := (4\pi t)^{-\frac{N}{2}} \left[\exp \left(-\frac{|x-y|^2}{4t} \right) - \exp \left(-\frac{|x-y_*|^2}{4t} \right) \right]
\]

(1.2)

for \((x, y, t) \in \mathbb{R}_+^N \times \mathbb{R}_+^N \times (0, \infty) \), where \(y_* = (y', y_N) \) for \(y = (y', y_N) \in \mathbb{R}_+^N \). Set

\[
[S_1(t) \phi](x) := \int_{\mathbb{R}_+^N} \Gamma_D(x, y, t) \phi(y) \, dy, \quad (x, t) \in \mathbb{R}_+^N \times (0, \infty),
\]

(1.3)
for any measurable function ϕ in \mathbb{R}^N_+ if the right hand side of (1.3) is well defined. For $x = (x', x_N) \in \mathbb{R}^N_+$ and $t > 0$, set
\[
P(x', x_N, t) := C_N(x_N + t)^{1-N} \left(1 + \frac{|x'|}{x_N + t} \right)^{-\frac{N}{2}},
\]
(1.4)
where C_N is the constant chosen so that
\[\int_{\mathbb{R}^{N-1}} P(x', x_N, t)dx' = 1 \quad \text{for all } x_N \geq 0 \text{ and } t > 0.\]
Then, $P = P(x', x_N, t)$ is the fundamental solution of the Laplace equation in \mathbb{R}^N_+ with the homogeneous dynamical boundary condition; that is, P satisfies
\[
\begin{align*}
-\Delta P &= 0, & x \in \mathbb{R}^N_+, \ t > 0, \\
\partial_t P + \partial_{x_N} P &= 0, & x \in \partial \mathbb{R}^N_+, \ t > 0, \\
P(x, 0) &= \delta(x'), & x = (x', 0) \in \partial \mathbb{R}^N_+,
\end{align*}
\]
where $\delta = \delta(\cdot)$ is the Dirac delta function on $\partial \mathbb{R}^N_+ = \mathbb{R}^{N-1}$ (see, e.g., [1]). Set
\[
[S_2(t)\psi](x) := \int_{\mathbb{R}^{N-1}} P(x' - y', x_N, t)\psi(y') dy', \quad (x, t) \in \mathbb{R}^N_+ \times (0, \infty),
\]
(1.5)
for any measurable function ψ in \mathbb{R}^{N-1} if the right hand side of (1.5) is well defined. Then, the function $\Psi(x, t) := [S_2(t)\psi](x)$ satisfies
\[
\begin{align*}
-\Delta \Psi &= 0, & x \in \mathbb{R}^N_+, \ t > 0, \\
\partial_t \Psi + \partial_{x_N} \Psi &= 0, & x \in \partial \mathbb{R}^N_+, \ t > 0, \\
\Psi(x, 0) &= \psi(x'), & x = (x', 0) \in \partial \mathbb{R}^N_+.
\end{align*}
\]
Consider
\[
\begin{align*}
\partial_t v &= \Delta v - F[v], & x \in \mathbb{R}^N_+, \ t > 0, \\
\Delta w &= 0, & x \in \mathbb{R}^N_+, \ t > 0, \\
v &= 0, & \partial_x w - \partial_{x_N} w = \partial_{x_N} v, & x \in \partial \mathbb{R}^N_+, \ t > 0, \\
v(x, 0) &= \varphi(x), & x \in \mathbb{R}^N_+, \\
w(x, 0) &= 0, & x = (x', 0) \in \partial \mathbb{R}^N_+,
\end{align*}
\]
(1.6)
where
\[
F[v](x, t) := \int_{\mathbb{R}^{N-1}} P(x' - y', x_N, 0)\partial_{x_N} v(y', 0, t) dy'
+ \int_0^t \int_{\mathbb{R}^{N-1}} \partial_t P(x' - y', x_N, t - s)\partial_{x_N} v(y', 0, s) dy' ds.
\]
(1.7)
Following [12], we formulate the definition of a solution of (1.1).

Definition 1.1. Let φ be measurable function in \mathbb{R}^N_+. Let $0 < T \leq \infty$ and
\[
v, \ \partial_{x_N} v, \ w \in C(\mathbb{R}^N_+ \times (0, T)).
\]
We call (v, w) a solution of (1.6) in $\mathbb{R}^N_+ \times (0, T)$ if
\[
[S_1(t)\varphi](x), \ \int_0^t [S_1(t - s)F[v](s)](x) \, ds, \ \int_0^t [S_2(t - s)\partial_{x_N} v(\cdot, 0, s)](x) \, ds
\]
are well defined and functions \(v \) and \(w \) satisfy

\[
v(x,t) = [S_1(t)\varphi](x) - \int_0^t [S_1(t-s)F[v](s)](x) \, ds, \]

\[
w(x,t) = \int_0^t [S_2(t-s)\partial x_N v(\cdot, 0, s)](x) \, ds,
\]

for \(x \in \mathbb{R}_+^N \) and \(t \in (0, T) \), respectively. Then, we say that \(u := v + w \) is a solution of (1.1) in \(\mathbb{R}_+^N \times (0, T) \).

In the case of \(T = \infty \), we call \((v, w)\) a global-in-time solution of (1.6) and \(u \) a global-in-time solution of (1.1).

We are ready to state the main results of this paper. For \(1 \leq r \leq \infty \), we write \(| \cdot |_{L^r} := | \cdot |_{L^r(\partial \mathbb{R}_+^N)} \) and \(\| \cdot \|_{L^r} := \| \cdot \|_{L^r(\mathbb{R}_+^N)} \) for simplicity. Furthermore, for \(1 \leq r \leq \infty \) and \(\alpha \geq 0 \), we define

\[
L^r_\alpha := \{ f \in L^r(\mathbb{R}_+^N) : \| f \|_{L^r_\alpha} < \infty \},
\]

where

\[
\| f \|_{L^r_\alpha} := \begin{cases} \left(\int_{\mathbb{R}_+^N} |f(x)|^r h(x_N)^{-\alpha r} \, dx \right)^{\frac{1}{r}} & \text{if } 1 \leq r < \infty, \\ \| f \|_{L^\infty} & \text{if } r = \infty, \end{cases}
\]

with \(h(x_N) := \frac{x_N}{x_N + 1} \). \hspace{1cm} (1.8)

Then, we can easily show that \(\| f \|_{L^r_\alpha} \leq \| f \|_{L^r_\beta} \) for \(r \in [1, \infty] \) and \(0 \leq \alpha \leq \beta \).

Theorem 1.1. Let \(N \geq 2 \) and \(1 \leq q \leq \infty \). Furthermore, let

\[
p \in \left(Nq/(N-1), \infty \right) \quad \text{if} \quad q < \infty \quad \text{and} \quad p = \infty \quad \text{if} \quad q = \infty.
\]

For \(r \in [q, \infty] \), put

\[
\alpha(r) = (N-1) \left(\frac{1}{q} - \frac{1}{r} \right) + \frac{1}{q},
\]

(1.9)

Assume \(\varphi \in L^q_{\alpha(p)} \). Then, problem (1.6) possesses a unique global-in-time solution \((v, w)\) with the following property: For any \(T > 0 \) there exists \(C_T > 0 \) such that

\[
\sup_{0 < t < T} \left[t^N \left(\frac{q}{r} - \frac{1}{r} \right) \left(\| v(t) \|_{L^p} + t^\frac{1}{2} \| \partial x_N v(t) \|_{L^p} \right) + t^\frac{1}{2} |\partial x_N v(t)|_{L^r} \right] \leq C_T \| \varphi \|_{L^q_{\alpha(p)}},
\]

(1.10)

for \(r \in [q, p] \). Furthermore, \(v \) and \(w \) are bounded and smooth in \(\mathbb{R}_+^N \times I \) for any bounded interval \(I \subset (0, \infty) \).

Let us now explain the role of the space \(L^q_{\alpha(p)} \) in our study. Let \(1 \leq q \leq \infty \) and take arbitrary functions \(\Phi \in L^q(\mathbb{R}^{N-1}), \vartheta \in L^q(1, \infty) \). Now set \(\varphi(x) := \Phi(x')\Psi(x_N) \) for \(x = (x', x_N) \in \mathbb{R}^N_+ \), where

\[
\Psi(x_N) := \begin{cases} x_N^\lambda & \text{if } 0 < x_N \leq 1, \quad \lambda \in \mathbb{R}, \\ \vartheta(x_N) & \text{if } x_N > 1. \end{cases}
\]

Choose \(p \) as in Theorem 1.1. Then, it is easy to check that \(\varphi \in L^q_{\alpha(p)} \) if and only if

\[
\lambda > (N-1) \left(\frac{1}{q} - \frac{1}{p} \right) > 0 \quad \text{if} \quad q < \infty.
\]
If $\lambda > 0$, then $\lim_{x, y \to 0} \psi(x) = 0$ which means that the condition $u(x', 0, 0) = 0$ in (1.1) is satisfied. This indicates that the choice of the space of initial functions is natural and also optimal in some sense since λ can be arbitrarily close to 0 if q is large enough.

We have not observed the importance of the behavior of ψ near $\partial \mathbb{R}^N_+$ in the L^∞-setting in [12]. The main novelty of this paper consists in working in an appropriate weighted L^q-space by which we extend a result from [12] significantly, as we explain below.

In [12], we studied the problem

\begin{equation}
\begin{aligned}
\partial_t u - \Delta u &= 0, \quad x \in \mathbb{R}^N_+, \quad t > 0, \\
\partial_t u + \partial_x u &= 0, \quad x \in \partial \mathbb{R}^N_+, \quad t > 0, \\
u(x, 0) &= \varphi(x), \quad x \in \mathbb{R}^N_+, \\
u(x, 0) &= \varphi_b(x'), \quad x = (x', 0) \in \partial \mathbb{R}^N_+,
\end{aligned}
\end{equation}

where φ and φ_b are bounded functions. A part of Theorem 1.1 in [12] reads as follows:

Theorem 1.2. Let $N \geq 2$, $\varphi \in L^\infty(\mathbb{R}^N_+)$ and $\varphi_b \in L^\infty(\mathbb{R}^{N-1})$. Then problem (1.11) possesses a unique global-in-time solution u which is bounded and smooth in $\mathbb{R}^N_+ \times I$ for any bounded interval $I \subset (0, \infty)$.

Hence, if $\varphi_b \equiv 0$, then Theorem 1.2 is a very special case of Theorem 1.1. If $\varphi_b \in L^\infty(\mathbb{R}^{N-1})$ and $\varphi \in L^q(r)$ with p, q as in Theorem 1.1, then we can combine Theorem 1.1 with Theorem 1.2 to obtain the existence of a solution of (1.11) easily, since the problem is linear.

2. Preliminaries

In this section, we prove several lemmata on $S_1(t)\phi$ and $F[v]$ and recall some properties of $S_2(t)v$. In what follows, by the letter C we denote generic positive constants (independent of x and t) and they may have different values also within the same line.

We first recall some properties of $S_1(t)\phi$ (see, e.g., [16] and [12, Lemma 2.1]).

\begin{enumerate}
\item[(G1)] For any $1 \leq q \leq r \leq \infty$,
\[\|S_1(t)\phi\|_{L^r} \leq c_1 t^{-\frac{N}{2} \left(\frac{1}{q} \right) - \frac{1}{2}} \|\phi\|_{L^q}, \quad t > 0, \]
for all $\phi \in L^q(\mathbb{R}^N_+)$, where c_1 is a positive constant, independent of q and r. In particular, if $q = r$, then
\[\sup_{t > 0} \|S_1(t)\phi\|_{L^r} \leq \|\phi\|_{L^r}. \]

Furthermore, for any $1 \leq q \leq r \leq \infty$,
\[\|\partial_x S_1(t)\phi\|_{L^r} \leq c_2 t^{-\frac{N}{2} \left(\frac{1}{q} \right) - \frac{1}{2}} \|\phi\|_{L^q}, \quad t > 0, \]
for all $\phi \in L^q(\mathbb{R}^{N-1}_+)$, where c_2 is a positive constant, independent of q and r.
\item[(G2)] Let $\phi \in L^q(\mathbb{R}^N_+)$ with $1 \leq q \leq \infty$ and $T > 0$. Then, $S_1(t)\phi$ is bounded and smooth with respect to x and t in $\mathbb{R}^N_+ \times (T, \infty)$.
\end{enumerate}

Lemma 2.1. Let $1 \leq q \leq r \leq \infty$. Assume $\phi \in L^q_{\alpha(r)}$ with $\alpha(r)$ as in (1.9). Then, there exists $c_3 = c_3(N) > 0$ such that
\[|\partial_x S_1(t)\phi|_{L^r} \leq c_3 t^{-\frac{1}{2}} \|\phi\|_{L^q_{\alpha(r)}}, \quad t > 0. \]
Proof. Let $\Gamma_d (d = 1, 2, \ldots)$ be the Gauss kernel in \mathbb{R}^d. It follows from (1.2) that

\[
\Gamma_D(x, y, t) = \Gamma_{N-1}(x' - y', t) \left(\Gamma_1(x_N - y_N, t) - \Gamma_1(x_N + y_N, t) \right), \tag{2.3}
\]

\[
K(x, y, t) := \partial_x \Gamma_D(x, y, t)
\]

\[
= \Gamma_{N-1}(x' - y', t) \left(-\frac{x_N - y_N}{2t} \Gamma_1(x_N - y_N, t) + \frac{x_N + y_N}{2t} \Gamma_1(x_N + y_N, t) \right), \tag{2.4}
\]

for $(x, y, t) \in \mathbb{R}^N_+ \times \mathbb{R}^N_+ \times (0, \infty)$. Then, we have

\[
K(x', 0, y, t) = \frac{y_N}{t} \Gamma_{N-1}(x' - y', t) \Gamma_1(y_N, t) \tag{2.5}
\]

for $(x', y, t) \in \mathbb{R}^{N-1} \times \mathbb{R}^N_+ \times (0, \infty)$.

We first prove (2.2) for the case $r = \infty$. By (2.5) we can easily show that, for $q \in (1, \infty)$, it holds that

\[
\int_{\mathbb{R}^N_+} \left(|K(x', 0, y, t)| y_N^q \right) dy
\]

\[
= t^{-\frac{q'}{q}} \int_{\mathbb{R}^N_+} \left[t^{\frac{N}{N-1}} \Gamma_{N-1}(y', t) \left(\frac{y_N}{t^{1/2}} \right)^{1+\frac{N}{q}} \Gamma_1(y_N, t) \right] \frac{y_N^q}{t} \leq C t^{-\frac{q'}{q}} \int_0^\infty \eta^q \exp \left(-C \eta^2 \right) d\eta
\]

\[
\leq C t^{-\frac{q'}{q}} \int_0^\infty \eta^q \exp \left(-C \eta^2 \right) d\eta \leq Ct^{-\frac{q'}{q}}
\]

for $t > 0$, where $1/q + 1/q' = 1$. Furthermore, for $q = 1$, it holds that

\[
|K(x', 0, y, t)| y_N^q = t^{\frac{N-1}{N}} \Gamma_{N-1}(x' - y', t) \left(\frac{y_N}{t^{1/2}} \right)^{1+N} \Gamma_1(y_N, t) \leq Ct^{-\frac{1}{2}},
\]

for $(x', y, t) \in \mathbb{R}^{N-1} \times \mathbb{R}^N_+ \times (0, \infty)$. For $q \in \{1, \infty\}$, by (1.3), (1.8), (2.6), and (2.7) we have

\[
|\partial_x [S_1(t)\phi](x', 0)|
\]

\[
\leq \int_{\mathbb{R}^N_+} |K(x', 0, y, t)| h(y_N)^{\frac{N}{q}} h(y_N)^{-\frac{N}{q}} |\phi(y)| dy
\]

\[
\leq \int_{\mathbb{R}^N_+} \left| K(x', 0, y, t) \right| y_N^q h(y_N)^{-\frac{N}{q}} |\phi(y)| dy \leq Ct^{-\frac{1}{2}q} \|\phi\|_{L^q_{R, \infty}} \tag{2.8}
\]

for $x' \in \mathbb{R}^{N-1}$ and $t > 0$. Furthermore, for $q \in (1, \infty)$, similarly to (2.8), applying Hölder’s inequality, we see that

\[
|\partial_x [S_1(t)\phi](x', 0)|
\]

\[
\leq C \left\{ \int_{\mathbb{R}^N_+} h(y_N)^{-\frac{N}{q}} |\phi(y)| dy \right\}^{\frac{1}{q}} \left\{ \int_{\mathbb{R}^N_+} \left| K(x', 0, y, t) h(y_N)^{\frac{N}{q}} \right|^q dy \right\}^{\frac{1}{q'}}
\]

\[
\leq Ct^{-\frac{1}{2}q} \|\phi\|_{L^q_{R, \infty}}
\]

for $x' \in \mathbb{R}^{N-1}$ and $t > 0$, where $1/q + 1/q' = 1$. This together with (2.8) implies (2.2) for the case $r = \infty$.
Next we consider the case \(r < \infty \). Let \(1 \leq q \leq r < \infty \). Put
\[
\frac{1}{p} := 1 + \frac{1}{r} - \frac{1}{q}, \quad \beta = N \left(1 - \frac{1}{p} \right). \tag{2.9}
\]
Then, for \(\theta \in (0, 1) \), it follows from Hölder’s inequality that
\[
\int_{\mathbb{R}^N} |K(x', 0, y, t)||\phi(y)| \, dy
\leq \left\{ \int_{\mathbb{R}^N} \left[|K(x', 0, y, t)| h(y_N)^{\alpha(r)} \right]^{p} \left[h(y_N)^{-\alpha(r)} |\phi(y)| \right] \frac{(1-\theta)p}{r} \, dy \right\}^{\frac{1}{p}}
\times \left\{ \int_{\mathbb{R}^N} \left[h(y_N)^{-\alpha(r)} |\phi(y)| \right]^{q \theta'} \, dy \right\}^{\frac{1}{q'}}
\]
for \(x' \in \mathbb{R}^{N-1} \) and \(t > 0 \), where \(1/p + 1/p' = 1 \). Put \(\theta = q/p' \). Then, since it follows from (2.9) that \(1 - \theta = q/r \), we have
\[
\int_{\mathbb{R}^N} |K(x', 0, y, t)||\phi(y)| \, dy
\leq \left\{ \int_{\mathbb{R}^N} \left[|K(x', 0, y, t)| h(y_N)^{\alpha(r)} \right]^{p} \left[h(y_N)^{-\alpha(r)} |\phi(y)| \right] \frac{p\bar{q}}{r} \, dy \right\}^{\frac{1}{p}}
\times \left\{ \int_{\mathbb{R}^N} \left[h(y_N)^{-\alpha(r)} |\phi(y)| \right]^{q \theta''} \, dy \right\}^{\frac{1}{q''}} \|\phi\|_{L^2_{\alpha(r)}}^{1 - \frac{q}{p}} \tag{2.10}
\]
for \(x' \in \mathbb{R}^{N-1} \) and \(t > 0 \). Furthermore, put \(\bar{\theta} = p/q' < 1 \). Then, since \(1 - \bar{\theta} = p/r \) and \(\beta = N/p' \), applying Hölder’s inequality with (2.6), we see that
\[
\int_{\mathbb{R}^N} \left[|K(x', 0, y, t)| y_N^{\alpha(r)} \right]^{p} \left[h(y_N)^{-\alpha(r)} |\phi(y)| \right] \frac{p\bar{q}}{r} \, dy
\leq \left\{ \int_{\mathbb{R}^N} \left[|K(x', 0, y, t)| y_N^{\bar{\theta} \bar{r}} \right]^{p} \, dy \right\}^{\bar{\theta}}
\times \left\{ \int_{\mathbb{R}^N} \left[h(y_N)^{-\alpha(r)} |\phi(y)| \right]^{q \theta''} \, dy \right\}^{\frac{1}{q''}}
\]
for $x' \in \mathbb{R}^{N-1}$ and $t > 0$. This together with (2.10) yields that
\[
\int_{\mathbb{R}^{N}} |K(x', 0, y, t)||\phi(y)| \, dy
\]
\[
\leq Ct^{-\frac{\beta}{2}} \left\{ \int_{\mathbb{R}^{N}} \left[|K(x', 0, y, t)|y_N^{1-\gamma} \right]^p \left[h(y_N)^{-\alpha(r)}|\phi(y)| \right]^q \, dy \right\}^{\frac{1}{q}}
\]

(2.11)

for $x' \in \mathbb{R}^{N-1}$ and $t > 0$. Since
\[
\frac{\alpha(r) - \beta}{1 - \theta} = (N-1) \left(1 - \frac{1}{p} \right) + 1,
\]
similarly to (2.6), it holds that
\[
\int_{\mathbb{R}^{N-1}} \left[|K(x', 0, y, t)|y_N^{1-\gamma} \right]^p \, dx'
\]
\[
= t^{-\frac{\beta}{2}} \int_{\mathbb{R}^{N-1}} \left[\frac{N-1}{2} (1-\frac{1}{p}) + \frac{1}{2} \Gamma_{N-1}(y', t) \left(\frac{y_N}{t^{1/2}} \right)^{(N-1)(1-\frac{1}{p})+2} \right] \left(\frac{y_N}{t^{1/2}} \right)^{\alpha(r)^2} \, dx'
\]
\[
\leq Ct^{-\frac{\beta}{2}} \left(\frac{y_N}{t^{1/2}} \right)^{(N-1)(p-1)+2p} \exp \left(- C'y_N^2 \right) \leq Ct^{-\frac{\beta}{2}}.
\]

This together with (2.11) implies
\[
|\partial_{x_N} [S_1(t)\phi]|_{L^r}
\]
\[
\leq \int_{\mathbb{R}^{N-1}} \left\{ \int_{\mathbb{R}^{N}} |K(x', 0, y, t)||\phi(y)| \, dy \right\}^r \, dx'
\]
\[
\leq Ct^{-\frac{\beta}{2}} \int_{\mathbb{R}^{N-1}} \int_{\mathbb{R}^{N}} \left[|K(x', 0, y, t)|y_N^{1-\gamma} \right]^p \left[h(y_N)^{-\alpha(r)}|\phi(y)| \right]^q \, dy \, dx' \|\phi\|_{L^p_{\alpha(r)}}^{r-q}
\]
\[
\leq Ct^{-\frac{\beta}{2}} \|\phi\|_{L^p_{\alpha(r)}}^{r}
\]

for $t > 0$, and we have (2.2). Thus, Lemma 2.1 follows. \hfill \square

Next we recall some properties of $S_2(t)\psi$.

(P1) Let $\psi \in L^r(\mathbb{R}^{N-1})$ for some $r \in [1, \infty]$ and $t, t' > 0$. Then
\[
[S_2(t)\psi](x', x_N) = [S_2(t + x_N)\psi](x', 0),
\]
\[
[S_2(t + t')\psi](x) = [S_2(t)(S_2(t')\psi)](x),
\]

for $x = (x', x_N) \in \mathbb{R}^N$. Furthermore,
\[
\lim_{t \to 0} |S_2(t)\psi - \psi|_r = 0 \quad \text{if} \quad 1 \leq r < \infty.
\]
(P_2) For any 1 \leq r \leq q \leq \infty,
|S_2(t)\psi|_{L^q} \leq C t^{-(N-1)(\frac{1}{q} - \frac{1}{r})} |\psi|_{L^r}, \quad t > 0,
for all \psi \in L^r(\mathbb{R}^{N-1}). In particular, if q = r, then
\[
\sup_{t > 0} |S_2(t)\psi|_{L^q} \leq |\psi|_{L^q}.
\]
(2.12)

(P_3) Let 1 \leq r < \infty and Nr/(N-1) < q \leq \infty. Then
\[
\|S_2(t)\psi\|_{L^q} \leq C t^{-(N-1)(\frac{1}{q} - \frac{1}{r}) + \frac{1}{r}} |\psi|_{L^r}, \quad t > 0,
\]
for all \psi \in L^r(\mathbb{R}^{N-1}). Furthermore,
\[
\sup_{t > 0} \|S_2(t)\psi\|_{L^q} \leq C(\|\psi\|_{L^q} + |\psi|_{L^r})
\]
for all \psi \in L^q(\mathbb{R}^{N-1}) \cap L^r(\mathbb{R}^{N-1}). Properties (P_1), (P_2), and (P_3) easily follow from (1.5) (see, e.g., [10]) and imply that
\[
\sup_{t > 0} \|S_2(t)\psi\|_{L^\infty} \leq |\psi|_{L^\infty}
\]
for all \psi \in L^\infty(\mathbb{R}^{N-1}). Furthermore, by an argument similar to that in the proof of property (G_2) we have:

(P_4) Let \psi \in L^r(\mathbb{R}^{N-1}) with 1 \leq r \leq \infty. Then, for any T > 0, S_2(t)\psi is bounded and smooth in \(\mathbb{R}^N \times (T, \infty)\).

At the end of this section, we have the following (see also [11, Lemma 3.3]).

Lemma 2.2. Let 0 \leq a < 1 and 0 \leq b < 1 be such that 0 \leq a + b \leq 1. Let \gamma \geq 0 and T > 0. Then, for any \delta > 0, there exists a M_* \geq 1 such that
\[
\sup_{0 < t < T} e^{-Mt^\gamma} \int_0^t e^{M_*s^{-a}(t-s)^{-b}} ds \leq \delta \quad \text{for} \quad M \geq M_*.
\]

The proof of this lemma is almost the same as the proof of [11, Lemma 3.3], so we omit it here.

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. By [12, Theorem 1.1] with \varepsilon = 1 and \varphi_b \equiv 0 we have Theorem 1.1 for the case p = q = \infty. So we focus on the case q < \infty.

Let T > 0, M \geq 1, 1 \leq q < \infty, and p \in (Nq/(N - 1), \infty]. Set
\[
X_{T,M} := \left\{ v : v, \partial_{x_N} v \in C(\mathbb{R}^N \times (0, T)), \|v\|_{X_{T,M}} < \infty, \quad \|v\|_{X_{T,M}} := \sup_{0 < t < T} e^{-Mt} E[v](t), \right\}
\]
where
\[
E[v](t) := \int_0^t (\frac{\partial v}{t}) \left(\|v(t)\|_{L^p} + t^\frac{1}{p} \|\partial_{x_N} v(t)\|_{L^p} \right) + \sup_{q \leq r \leq p} t^\frac{1}{2} |\partial_{x_N} v(t)|_{L^r}.
\]
Then, X_{T,M} is a Banach space equipped with the norm \| \cdot \|_{X_{T,M}}. We apply the Banach contraction mapping principle in X_{T,M} to find a fixed point of the functional
\[
Q[v](t) := S_1(t)\varphi - D[v](t)
\]
(3.1)
on $X_{T,M}$, where $D[v]$ is the function defined by
\[D[v](t) := \int_0^t S_1(t-s)F[v](s) \, ds \tag{3.2} \]
and $F[v]$ is the function defined by (1.7).

Lemma 3.1. Let $T > 0$, $M \geq 1$, $1 \leq q < \infty$, and $p \in (Nq/(N-1), \infty]$. Assume that $v \in X_{T,M}$. Then, there exists $C > 0$, independent of T and M, such that, for $p \in (Nq/(N-1), \infty)$, it holds that
\[\|F[v](t)\|_{L^p} \leq C(1 + t^\frac{1}{q})t^{-\frac{1}{2}}e^{Mt}\|v\|_{X_{T,M}} \tag{3.3} \]
for $0 < t < T$. Furthermore, for any $r \in [q,p]$,
\[\|F[v](\cdot, x_N, t)\|_{L^r(\mathbb{R}^{N-1})} \leq C\left(1 + \left(\frac{x_N^2}{r}t\right)^\frac{1}{2}\right)t^{-\frac{1}{2}}e^{Mt}\|v\|_{X_{T,M}} \tag{3.4} \]
for $x_N \in (0, \infty)$ and $0 < t < T$.

Proof. Let $T > 0$, $M \geq 1$, $1 \leq q < \infty$, $p \in (Nq/(N-1), \infty]$, and $v \in X_{T,M}$. It follows from (1.7) that
\[F[v](x,t) = F_1[v](x,t) + F_2[v](x,t) \tag{3.5} \]
for $x \in \mathbb{R}^N_+$ and $0 < t < T$, where
\[F_1[v](x,t) := \int_{\mathbb{R}^{N-1}} P(x' - y', x_N, 0)\partial_{x_N} v(y', 0, t) \, dy', \]
\[F_2[v](x,t) := \int_0^t \int_{\mathbb{R}^{N-1}} \partial_t P(x' - y', x_N, t-s)\partial_{x_N} v(y', 0, s) \, dy' \, ds. \]

We first obtain some estimates of $F_1[v]$. For $p \in (Nq/(N-1), \infty)$, by (1.5) and (2.13) we have
\[\|F_1[v](t)\|_{L^p} \leq \liminf_{\varepsilon \to +0} \left(\int_{\mathbb{R}^{N-1}} \int \|S_2(x_N)\partial_{x_N} v(\cdot, 0, t)(x', 0)\|^p \, dx' \, dx_N\right)^{1/p} \]
\[= \liminf_{\varepsilon \to +0} \left(\int_{\mathbb{R}^{N+1}} \|S_2(x_N)\partial_{x_N} v(\cdot, 0, t)(x', \varepsilon)\|^p \, dx\right)^{1/p} \tag{3.6} \]
\[= \liminf_{\varepsilon \to +0} \left(\int_{\mathbb{R}^{N+1}} \|S_2(\varepsilon)\partial_{x_N} v(\cdot, 0, t)(x)\|^p \, dx\right)^{1/p} \]
\[\leq C \left(\|\partial_{x_N} v(t)\|_{L^q} + \|\partial_{x_N} v(t)\|_{L^p}\right) \leq Ct^{-\frac{1}{2}}e^{Mt}\|v\|_{X_{T,M}} \]
for $0 < t < T$. Similarly, for $r \in [q,p]$, by (P2) we obtain
\[\|F_1[v](\cdot, x_N, t)\|_{L^r(\mathbb{R}^{N-1})} \leq \|S_2(x_N)\partial_{x_N} v(\cdot, 0, t)\|_{L^r} \]
\[\leq \|\partial_{x_N} v(t)\|_{L^r} \leq t^{-\frac{1}{2}}e^{Mt}\|v\|_{X_{T,M}} \tag{3.7} \]
for $x_N \in (0, \infty)$ and $0 < t < T$.
Next we obtain some estimates of $F_2[v]$. It follows from (1.4) that
\[
\partial_t P(x', x_N, t) = \frac{1}{x_N + t} \frac{|x'|^2 - (N - 1)(x_N + t)^2}{|x'|^2 + (x_N + t)^2} P(x', x_N, t),
\]
for $x = (x', x_N) \in \mathbb{R}_+^N$ and $t > 0$. This implies that
\[
|\partial_t P(x', x_N, t)| \leq C(x_N + t)^{-1} P(x', x_N, t) \leq CP(x', x_N, t)x_N^{-\frac{1}{2}} t^{-\frac{1}{2}}
\]
for $x = (x', x_N) \in \mathbb{R}_+^N$ and $t > 0$. Furthermore, for $p \in (Nq/(N - 1), \infty)$, by (2.12) we have
\[
\int_{\mathbb{R}^N} \left\{ (x_N + t - s)^{-1} [S_2(t - s)|\partial_{x_N} v(\cdot, 0, s)](x) \right\}^p \, dx
\]
\[
= \int_{0}^{\infty} (x_N + t - s)^{-p} |S_2(t - s + x_N)|\partial_{x_N} v(s)||_{L^p} dx_N
\]
\[
\leq C|\partial_{x_N} v(s)||_{L^p} \int_{0}^{\infty} (x_N + t - s)^{-p} dx_N \leq C(t - s)^{1-p} s^{-\frac{q}{2}} e^{Ms} \|v\|_{X_{T,M}}
\]
for $0 < s < t < T$. Then, by (3.8) and (3.9) we obtain
\[
\|F_2[v](t)\|_{L^p} \leq C \int_{0}^{t} \left(\int_{\mathbb{R}^N} \left\{ (x_N + t - s)^{-1} [S_2(t - s)|\partial_{x_N} v(\cdot, 0, s)](x) \right\}^p \, dx \right)^{\frac{1}{p}} \, ds
\]
\[
\leq C\|v\|_{X_{T,M}} \int_{0}^{t} (t - s)^{-1+\frac{1}{p}} s^{-\frac{q}{2}} e^{Ms} \, ds \leq Ct^{-\frac{1}{p}+\frac{1}{p}} e^{Mt} \|v\|_{X_{T,M}}
\]
for $0 < t < T$. In addition, for $r \in [q, p]$, by (P2) and (3.8) we see that
\[
\|F_2[v](\cdot, x_N, t)\|_{L^r(\mathbb{R}^N-1)}
\]
\[
\leq Cx_N^{-\frac{1}{2}} \int_{0}^{t} (t - s)^{-\frac{1}{2}} |S_2(x_N + t - s)\partial_{x_N} v(\cdot, 0, s)||_{L^r} \, ds
\]
\[
\leq Cx_N^{-\frac{1}{2}} \int_{0}^{t} (t - s)^{-\frac{1}{2}} |\partial_{x_N} v(s)||_{L^r} \, ds
\]
\[
\leq Cx_N^{-\frac{1}{2}} \|v\|_{X_{T,M}} \int_{0}^{t} (t - s)^{-\frac{1}{2}} s^{-\frac{q}{2}} e^{Ms} \, ds \leq Cx_N^{-\frac{1}{2}} e^{Mt} \|v\|_{X_{T,M}}
\]
for $x_N \in (0, \infty)$ and $0 < t < T$. Therefore, by (3.5), (3.6), (3.7), (3.10) and (3.11) we obtain (3.3) and (3.4). Thus, Lemma 3.1 follows.

\[\square\]

Lemma 3.2. Assume the same conditions as in Lemma 3.1. Let $D[v]$ be the function defined by (3.2). Then, there exists $M_* \geq 1$ such that
\[
\|D[v]\|_{X_{T,M}} \leq \frac{1}{2} \|v\|_{X_{T,M}}
\]
for $v \in X_{T,M}$ and $M \geq M_*$. Furthermore, $D[v]$ is bounded and smooth in $\mathbb{R}_+^N \times (\tau, T)$ for any $0 < \tau < T$.

143 Page 10 of 17 M. Fila, K. Ishige and T. Kawakami ZAMP
Proof. We first prove (3.12). Let \(T > 0, M \geq 1, \) and \(1 \leq q < \infty. \) For \(p \in (Nq/(N-1), \infty), \) by \((G_1)\) and \((3.3)\) we have

\[
\|D[v](t)\|_{L^p} \leq \int_0^t \|S_1(t-s)F[v](s)\|_{L^p} \, ds
\]

\[
\leq \int_0^t \|F[v](s)\|_{L^p} \, ds \tag{3.13}
\]

\[
\leq C\|v\|_{X_{T,M}} \int_0^t e^{Ms(1+s^{1/p})} s^{-\frac{1}{2}} \, ds
\]

\[
\leq C\|v\|_{X_{T,M}} \left(1 + T^{\frac{1}{p}}\right) \int_0^t e^{Ms} s^{-\frac{1}{2}} \, ds
\]

for \(v \in X_{T,M} \) and \(0 < t < T. \) Furthermore, since it follows from \([12, \text{Lemma 2.3}]\) that

\[
\sup_{x > 0} \int_0^\infty \left(\frac{|x + y|}{t}\right)^k \Gamma_1(x \pm y, t) y^{-\frac{1}{2}} \, dy \leq Ct^{-\frac{k}{2}-\frac{j}{4}}, \quad k = 0, 1, \quad j = 0, 1, \tag{3.14}
\]

for \(t > 0, \) by \((2.3)\) and \((3.4)\) we have

\[
|D[v](x, t)| \leq \int_0^t \int_{R^N} \Gamma_D(x, y, t-s) |F[v](y, s)| \, dy \, ds
\]

\[
\leq C \int_0^t \int_0^\infty \Gamma_1(x_N - y_N, t-s) \|F[v](\cdot, y_N, s)\|_{L^\infty(R^N)} \, dy_N \, ds \tag{3.15}
\]

\[
\leq C\|v\|_{X_{T,M}} \int_0^t \int_0^\infty \Gamma_1(x_N - y_N, t-s) \left(1 + (y_N^{-1} s)^{\frac{1}{2}}\right) s^{-\frac{1}{2}} e^{Ms} \, dy_N \, ds
\]

\[
\leq C\|v\|_{X_{T,M}} \int_0^t e^{Ms} \left(s^{-\frac{1}{2}} + (t-s)^{-\frac{1}{4}}\right) \, ds
\]

for \(v \in X_{T,M}, x \in \mathbb{R}_+^N, \) and \(0 < t < T. \) Then, taking a sufficiently large \(M \geq 1 \) if necessary, we can apply Lemma 2.2 to (3.13) and (3.15), and for \(p \in (Nq/(N-1), \infty), \) it holds that

\[
\sup_{0 < t < T} e^{-Mt^{\frac{N}{2}(\frac{1}{q}-\frac{1}{p})}} \|D[v](t)\|_{L^p} \leq \frac{1}{4} \|v\|_{X_{T,M}}. \tag{3.16}
\]
On the other hand, we observe from (2.4) and (3.4) that

\[
|\partial_{x_N} D[v](x, t)| \\
\leq \int_0^t \int_{\mathbb{R}^N_+} |K(x, y, t - s)||F[v](y, s)|\,dy\,ds \\
\leq C \int_0^t \int_{\mathbb{R}^N_+} \tilde{K}(x_N, y_N, t - s)||F[v](\cdot, y_N, s)||_{L^\infty(\mathbb{R}^{N-1})}\,dy_N\,ds \\
\leq C\|v\|_{X_{T,M}} \int_0^t \int_{\mathbb{R}^N} e^{Ms} \tilde{K}(x_N, y_N, t - s)\left(1 + (y_N^{-1}s)^{\frac{1}{2}}\right)s^{-\frac{1}{2}}\,dy_N\,ds \tag{3.17}
\]

for \(x \in \mathbb{R}^N_+\) and \(0 < t < T\), where

\[
\tilde{K}(x_N, y_N, t) = \frac{|x_N - y_N|}{t} \Gamma_1(x_N - y_N, t) + \frac{x_N + y_N}{t} \Gamma_1(x_N + y_N, t)
\]

for \(x_N \geq 0, y_N > 0\) and \(t > 0\). Then, by (3.14) and (3.17) we see that

\[
|\partial_{x_N} D[v](x, t)| \leq C\|v\|_{X_{T,M}} \int_0^t e^{Ms} \left(s^{-\frac{1}{2}}(t - s)^{-\frac{1}{2}} + (t - s)^{-\frac{3}{4}}\right)\,ds \tag{3.18}
\]

for \(x \in \mathbb{R}^N_+\) and \(0 < t < T\). Furthermore, similarly to (3.17) and (3.18), we see that

\[
|\partial_{x_N} D[v](t)|_{L^r} \leq C\|v\|_{X_{T,M}} e^{-Mt} \int_0^t e^{Ms} \left(s^{-\frac{1}{2}}(t - s)^{-\frac{1}{2}} + (t - s)^{-\frac{3}{4}}\right)\,ds, \quad t > 0.
\]

This together with (3.18) yields

\[
\begin{align*}
e^{-Mt^\frac{1}{2}} |\partial_{x_N} D[v](t)|_{L^r} \\
&\leq C\|v\|_{X_{T,M}} e^{-Mt^\frac{1}{2}} \int_0^t e^{Ms} \left(s^{-\frac{1}{2}}(t - s)^{-\frac{1}{2}} + (t - s)^{-\frac{3}{4}}\right)\,ds, \quad r \in [q, p], \tag{3.19}
\end{align*}
\]
for $0 < t < T$. Moreover, for $p \in (Nq/(N-1), \infty)$, by (2.1) and (3.3) we have

$$\|\partial_{x_N} D[v](t)\|_{L^p} \leq \int_0^t \|\partial_{x_N} S_1(t-s)F[v](s)\|_{L^p} \, ds$$

$$\leq C \int_0^t (t-s)^{-\frac{1}{2}} \|F[v](s)\|_{L^p} \, ds$$

$$\leq C \|v\|_{X_{T,M}} \int_0^t (t-s)^{-\frac{1}{2}} (1 + s^{\frac{1}{p}}) s^{-\frac{1}{2}} e^{Ms} \, ds$$

$$\leq C \|v\|_{X_{T,M}} \left(1 + T^{\frac{1}{p}}\right) \int_0^t (t-s)^{-\frac{1}{2}} s^{-\frac{1}{2}} e^{Ms} \, ds$$

(3.20)

for $0 < t < T$. Then, by Lemma 2.2 with (3.18), (3.19), and (3.20), taking a sufficiently large $M \geq 1$ if necessary, for $p \in (Nq/(N-1), \infty]$ and $r \in [q,p]$, we see that

$$\sup_{0 < t < T} e^{-Mt^{\frac{N}{p}/2}} \|\partial_{x_N} D[v](t)\|_{L^p} \leq \frac{1}{8} \|v\|_{X_{T,M}},$$

$$\sup_{0 < t < T} e^{-Mt^{\frac{1}{2}}} \|D[v](t)\|_{L^r} \leq \frac{1}{8} \|v\|_{X_{T,M}}.$$

This together with (3.16) implies (3.12).

Next we prove the boundedness and smoothness of $D[v]$. It follows from the semigroup property of $S_1(t)$ that

$$D[v](x,t) = \int_0^t [S_1(t-s)F[v](s)](x) \, ds$$

$$= S_1(t-\tau)D[v](x,\tau) + \int_\tau^t [S_1(t-s)F[v](s)](x) \, ds$$

for $x \in \mathbb{R}^N_+$ and $0 < \tau < t < T$. Then, by (3.2) and (G2) we see that

$$S_1((t-\tau))D[v](x,\tau)$$

is bounded and smooth in $\mathbb{R}^N_+ \times (\tau,T)$. Furthermore, by (3.4) we apply the same argument as in [14, Section 3, Chapter 1] to see that

$$\int_\tau^t [S_1(t-s)F[v](s)](x) \, ds$$

is bounded and smooth in $\mathbb{R}^N_+ \times (\tau,T)$. (See also [9, Proposition 5.2] and [18, Lemma 2.1].) Then we deduce that $D[v]$ and $\partial_{x_N} D[v]$ are bounded and smooth in $\mathbb{R}^N_+ \times (\tau,T)$ for $0 < \tau < T$. Thus, Lemma 3.2 follows.

Now we are ready to complete the proof of Theorem 1.1.
Proof of Theorem 1.1. Let \(T > 0, M \geq 1, 1 \leq q < \infty, \) and \(p \in (Nq/(N - 1), \infty) \). Then, since \(\| \varphi \|_{L^q_r} \leq \| \varphi \|_{L^q_{t_r}} \) for \(r \in [1, \infty] \) and \(0 \leq \alpha \leq \beta \), by (G1) and (2.2) we have

\[
e^{-Mt} E[S_1(t)\varphi](t) \leq (c_1 + c_2 + c_3)\| \varphi \|_{L^q_{(p)}} \tag{3.21}
\]

for \(t > 0 \), where \(c_1, c_2, \) and \(c_3 \) are positive constants given in (G1) and Lemma 2.1, respectively, and \(\alpha(p) \) is given in (1.9). Furthermore, by Lemma 3.2, taking a sufficiently large \(M \geq 1 \) if necessary, we see that

\[
\| D[v] \|_{X_{T,M}} \leq \frac{1}{2} \| v \|_{X_{T,M}}, \quad v \in X_{T,M}, \tag{3.22}
\]

for \(0 < t < T \). Set

\[
m := 2(c_1 + c_2 + c_3)\| \varphi \|_{L^q_{(p)}}. \tag{3.23}
\]

We deduce from (3.1), (3.21), (3.22), and (3.23) that

\[
\| Q[v] \|_{X_{T,M}} \leq \sup_{0 < t < T} e^{-Mt} E[S_1(t)\varphi](t) + \| D[v] \|_{X_{T,M}}
\]

\[
\leq (c_1 + c_2 + c_3)\| \varphi \|_{L^q_{(p)}} + \frac{1}{2} \| v \|_{X_{T,M}} \leq m \tag{3.24}
\]

for \(v \in X_{T,M} \) with \(\| v \|_{X_{T,M}} \leq m \). Similarly, it follows from (3.22) that

\[
\| Q[v_1] - Q[v_2] \|_{X_{T,M}} = \| D[v_1] - v_2 \|_{X_{T,M}} \leq \frac{1}{2} \| v_1 - v_2 \|_{X_{T,M}} \tag{3.25}
\]

for \(v_i \in X_{T,M} \) (\(i = 1, 2 \)). Then, by (3.24) and (3.25), applying the contraction mapping theorem, we find a unique solution \(v \in X_{T,M} \) with \(\| v \|_{X_{T,M}} \leq m \) such that

\[
v = Q[v] = S_1(t)\varphi - D[v](t) \quad \text{in} \quad X_{T,M}.
\]

In particular, we see that

\[
\| v \|_{X_{T,M}} \leq C\| \varphi \|_{L^q_{(p)}}.
\]

Moreover, by (G2) and Lemma 3.2, we see that \(v \) is bounded and smooth in \(\overline{\mathbb{R}^N}_+ \times (T_1, T) \) for any \(0 < T_1 < T \). Set

\[
w(x, t) = \int_0^t [S_2(t - s)\partial_{x_N} v(\cdot, 0, s)](x) \, ds
\]

for \(x \in \overline{\mathbb{R}^N}_+ \) and \(t \in (0, T) \). By (2.13) and (3.23) we obtain

\[
\| w(t) \|_{L^p} \leq \int_0^t \| S_2(t - s)\partial_{x_N} v(\cdot, 0, s) \|_{L^p} \, ds
\]

\[
\leq C \int_0^t \left(|\partial_{x_N} v(s)|_{L^p} + |\partial_{x_N} v(s)|_{L^p} \right) \, ds
\]

\[
\leq C \int_0^t e^{Ms} s^{-\frac{1}{2}} \| v \|_{X_{T,M}} \, ds \leq C e^{MT} T^{\frac{1}{2}} \| \varphi \|_{L^q_{(p)}} < \infty,
\]
and

\[|w(t)|_{L^r} \leq \int_0^t |S_2(t - s)\partial_{x_N} v(\cdot, 0, s)|_{L^r} \, ds \]

\[\leq C \int_0^t |\partial_{x_N} v(s)|_{L^r} \, ds \]

\[\leq C \int_0^t e^{M_s s^{-\frac{1}{2}}} \|v\|_{X_{T,M}} \, ds \leq Ce^{MT}T^{\frac{1}{2}} \|\varphi\|_{L^q(\nu(p))} < \infty, \]

for \(0 < t < T \). Furthermore, by \((P_3)\) we apply an argument similar to that in the proof of Lemma 3.2 and see that \(w \) is bounded and smooth in \(\mathbb{R}_+^N \times (T_1, T) \) for any \(0 < T_1 < T \). Therefore, we deduce that \((v, w)\) is a solution of (1.6) in \(\mathbb{R}_+^N \times (0, T) \) satisfying (1.10).

Let \((\tilde{v}, \tilde{w})\) be a solution of (1.6) in \(\mathbb{R}_+^N \times (0, T_*) \) for any \(T_* > T \) and such that \(\tilde{v} \in X_{T_*,M_*} \) with some \(M_* > 0 \). Then, \(\tilde{v} \in X_{T,M} \) and since

\[v - \tilde{v} = Q[v] - Q[\tilde{v}] = D[v - \tilde{v}] \quad \text{in} \quad X_{T,M}, \]

by (3.12) we have

\[\|v - \tilde{v}\|_{X_{T,M}} \leq \frac{1}{2} \|v - \tilde{v}\|_{X_{T,M}}. \]

This implies that \(v = \tilde{v} \) in \(X_{T,M} \). Therefore, we deduce that \((v, w)\) is a unique global-in-time solution of (1.6) satisfying (1.10). Thus, Theorem 1.1 holds for the case \(q < \infty \). Furthermore, by [12, Theorem 1.1] with \(\varepsilon = 1 \) and \(\varphi_b \equiv 0 \) we have Theorem 1.1 for the case \(p = q = \infty \), and the proof of Theorem 1.1 is complete. \(\square \)

Acknowledgements

The first author was supported in part by the Slovak Research and Development Agency under the contract No. APVV-18-0308 and by the VEGA Grant 1/0339/21. The second and third authors were supported in part by JSPS KAKENHI Grant Number JP19H05599. The third author was also supported in part by JSPS KAKENHI Grant Numbers JP20K03689 and JP22KK0035.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

References

[1] Amann, H., Fila, M.: A Fujita-type theorem for the Laplace equation with a dynamical boundary condition. Acta Math. Univ. Comenianae 66, 321–328 (1997)
[2] Arrieta, J.M., Quittner, P., Rodríguez-Bernal, A.: Parabolic problems with nonlinear dynamical boundary conditions and singular initial data. Differ. Integral Equ. 14, 1487–1510 (2001)
[3] Bandle, C., von Below, J., Reichel, W.: Parabolic problems with dynamical boundary conditions: eigenvalue expansions and blow up. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. (9) 17, 35–67 (2006)
[4] Crank, J.: The Mathematics of Diffusion, 2nd edn. Clarendon Press, Oxford (1975)
[5] Denk, R., Prüss, J., Zacher, R.: Maximal L_p-regularity of parabolic problems with boundary dynamics of relaxation type. J. Funct. Anal. 255, 3149–3187 (2008)
[6] Escher, J.: Quasilinear parabolic systems with dynamical boundary conditions. Commun. Partial Differ. Equ. 18, 1309–1364 (1993)
[7] Escher, J.: On the qualitative behaviour of some semilinear parabolic problems. Differ. Integral Equ. 8, 247–267 (1995)
[8] Fila, M., Quittner, P.: Large time behavior of solutions of a semilinear parabolic equation with a nonlinear dynamical boundary condition. Topics in nonlinear analysis—The Herbert Amann anniversary volume. Birkhäuser, Basel, pp. 251–272 (1999)
[9] Fila, M., Ishige, K., Kawakami, T.: Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition. Commun. Pure Appl. Anal. 11, 1285–1301 (2012)
[10] Fila, M., Ishige, K., Kawakami, T.: Large-time behavior of solutions of a semilinear elliptic equation with a dynamical boundary condition. Adv. Differ. Equ. 18, 69–100 (2013)
[11] Fila, M., Ishige, K., Kawakami, T., Lankeit, J.: The large diffusion limit for the heat equation in the exterior of the unit ball with a dynamical boundary condition. Discrete Contin. Dyn. Syst. 40, 6529–6546 (2020)
[12] Fila, M., Ishige, K., Kawakami, T.: The large diffusion limit for the heat equation with a dynamical boundary condition. Commun. Contemp. Math. 23, 2050003 (2021)
[13] Fiscella, A., Vitillaro, E.: Local Hadamard well-posedness and blow-up for reaction–diffusion equations with non-linear dynamical boundary conditions. Discrete Contin. Dyn. Syst. 33, 5015–5047 (2013)
[14] Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964)
[15] Gal, C.G., Meyries, M.: Nonlinear elliptic problems with dynamical boundary conditions of reactive and reactive–diffusive type. Proc. Lond. Math. Soc. 108, 1351–1380 (2014)
[16] Giga, M., Giga, Y., Saal, J.: Nonlinear Partial Differential Equations, Asymptotic Behavior of Solutions and Self-Similar Solutions. Birkhäuser, Boston (2010)
[17] Hintermann, T.: Evolution equations with dynamic boundary conditions. Proc. R. Soc. Edinb. Sect. A 113, 43–60 (1989)
[18] Ishige, K., Kawakami, T., Kobayashi, K.: Global solutions for a nonlinear integral equation with a generalized heat kernel. Discrete Contin. Dyn. Syst. Ser. S 7, 767–783 (2014)
[19] Kirane, M.: Blow-up for some equations with semilinear dynamical boundary conditions of parabolic and hyperbolic type. Hokkaido Math. J. 21, 221–229 (1992)
[20] ter Elst, A.F.M., Meyries, M., Rehberg, J.: Parabolic equations with dynamical boundary conditions and source terms on interfaces. Ann. Mat. Pura Appl. 193, 1295–1318 (2014)
[21] Vázquez, J.L., Vitillaro, E.: Heat equation with dynamical boundary conditions of locally reactive type. Semigroup Forum 74, 1–40 (2007)
[22] Vázquez, J.L., Vitillaro, E.: Heat equation with dynamical boundary conditions of reactive type. Commun. Partial Differ. Equ. 33, 561–612 (2008)
[23] Vitillaro, E.: Global existence for the heat equation with nonlinear dynamical boundary conditions. Commun. Partial Differ. Equ. 33, 561–612 (2008)
[24] von Below, J., Pincet Mailly, G.: Blow up for some nonlinear parabolic problems with convection under dynamical boundary conditions. Discrete Contin. Dyn. Syst. 2007, Suppl. 1031–1041 (2007)
[25] von Below, J., Coster, C.D.: A qualitative theory for parabolic problems under dynamical boundary conditions. J. Inequal. Appl. 5, 467–486 (2000)
[26] von Below, J., Pincet Mailly, G.: Blow up for reaction diffusion equations under dynamical boundary conditions. Commun. Partial Differ. Equ. 28, 223–247 (2003)
[27] von Below, J., Pincet Mailly, G., Rault, J.-F.: Growth order and blow up points for the parabolic Burgers’ equation under dynamical boundary conditions. Discrete Contin. Dyn. Syst. Ser. S 6, 825–836 (2013)

Marek Fila
Department of Applied Mathematics and Statistics
Comenius University
84248 Bratislava
Slovakia
e-mail: fila@fmph.uniba.sk
Kazuhiro Ishige
Graduate School of Mathematical Sciences
The University of Tokyo
3-8-1 Komaba, Meguro-ku
Tokyo 153-8914
Japan
e-mail: ishige@ms.u-tokyo.ac.jp

Tatsuki Kawakami
Faculty of Advanced Science and Technology
Ryukoku University
1-5 Yokotani, Seto Oe-cho
Otsu Shiga520-2194
Japan
e-mail: kawakami@math.ryukoku.ac.jp

(Received: October 26, 2022; revised: April 10, 2023; accepted: June 6, 2023)