Cross-species Analysis Reveals Evolving and Conserved Features of the Nuclear Factor κB (NF-κB) Proteins*

Received for publication, January 7, 2013, and in revised form, March 6, 2013 Published, JBC Papers in Press, March 18, 2013, DOI 10.1074/jbc.M113.451153

Grigory Ryzhakov†1, Ana Teixeira‡, David Saliba§, Katrina Blazek¶, Tatsushi Muta‡, Jiannis Ragoussis§2, and Irina A. Udalova‡3

From the †Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, London W6 8LH, United Kingdom, the ¶Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom, and the §Laboratory of Cell Recognition and Response, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan

Abstract: NF-κB is a key regulator of gene expression in metazoans. It is currently unclear what changes occurred in NF-κB during animal evolution and what features remained conserved. To address this question, we compared the biochemical and functional properties of NF-κB proteins derived from human and the starlet sea anemone (Nematostella vectensis) in 1) a high-throughput assay of in vitro preferences for DNA sequences, 2) ChIP analysis of in vivo recruitment to the promoters of target genes, 3) a LUMIER-assisted examination of interactions with cofactors, and 4) a transactivation assay. We observed a remarkable evolutionary conservation of the DNA binding preferences of the animal NF-κB orthologs. We also show that NF-κB dimerization properties, nuclear localization signals, and binding to cytosolic IκBs are conserved. Surprisingly, the Bcl3-type nuclear IκB proteins functionally pair up only with NF-κB derived from their own species. The basis of the differential NF-κB recognition by IκB subfamilies is discussed.

Mammalian immunity is a constantly evolving system with multiple levels of redundancy and compensatory mechanisms allowing flexible but robust protection against pathogens. Recent advances in genomics and bioinformatics allow for systematic comparisons of the defense mechanisms in a wide selection of animal taxa. This is critical for an in-depth understanding of the molecular machinery underlying the host defenses against pathogens.

Cnidaria is a diverse phylum of basal animals, including sea anemones, jellyfish, and corals, the important builder species of marine ecosystems (1). As any other animals, cnidarians are attacked by various pathogens (2). It has been shown that a freshwater cnidarian Hydra produces antimicrobial peptides in response to pathogen-associated molecular patterns, which serve as an indicator of innate immunity (3).

The starlet sea anemone (Nematostella vectensis) is an emerging model system to study physiological processes in basal animals (4). Its recently published genome analysis revealed a remarkably large number of shared genes and genomic linkage groups between Nematostella and vertebrates (5). A number of homologs of key mammalian immune molecules were identified in Nematostella (6). Many of them have no paralogs present in the genome, which suggests their non-redundant function (7). For example, the N. vectensis (Nv)4 genome contains just one NF-κB gene, NvNF-κB p50, with p50 and p52 being the closest human homologs (8).

NF-κB is the key regulator of gene expression in immune processes (9, 10). There are five NF-κB subunits in mammals (NF-κB1, NF-κB2, RelA, cRel, and RelB), which regulate gene expression acting as homo- or heterodimers (10). The N-terminal part of NF-κB molecules consists of a Rel homology domain (RHD), which binds to DNA, and a dimerization domain (IPT (lg-like, plexins, transcription factors)). The C-terminal part of NF-κB forms a transactivation domain in RelA, RelB, and cRel or, alternatively, is represented by an ankyrin repeat domain (ARD) in NF-κB1 p105 and NF-κB2 p100 (11). The latter proteins are also present in proteolytically processed forms, NF-κB1 p50 and NF-κB2 p52 (9, 12). The processing requires a glycine-rich region, which is located between the N-terminal part and the ARD (13).

NF-κB proteins are regulated by a family of cofactors called IκBs (inhibitor of κB proteins) (14). In mammals, NF-κB is sequestered in the cytoplasm as an inactive complex bound to IκB (15). There are three mammalian cytoplasmic IκBs, IκBα, IκBβ, and IκBe (14). Upon stimulation, IκBs are degraded, and

* This work was supported by European Community Seventh Framework Programme FP7/2007-2013 under Grant 222008.
† Author’s Choice—Final version full access.
§ This article contains supplemental Table 1.
1 To whom correspondence may be addressed: Kennedy Institute of Rheumatology, University of Oxford, 65 Aspenlea Rd; London W6 8LH, UK. Tel.: 44-208-383-4444; Fax: 44-208-383-4499; E-mail: grigory@ryzhakov.co.uk.
2 Supported by The Wellcome Trust Grants 090532/Z/09/Z and 075491/Z/04.
3 Present address: McGill University and Génome Québec Innovation Centre, 740 Docteur Penfield Avenue, Montréal (Québec) H3A 0G1, Canada.
4 The abbreviations used are: Nv, N. vectensis; RHD, Rel homology domain; ARD, ankyrin repeat domain; qPCR, quantitative PCR; Hs, H. sapiens; NLS, nuclear localization sequence.

© 2013 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.
NF-κB translocates to the cell nucleus to activate gene expression (9, 15). There are also three mammalian nuclear Iκ Bs, Bcl3, IkBζ, and IkBδ, which are involved in the regulation of late NF-κB-dependent genes (16). All IκB proteins are structurally related to the ARDs of NF-κB1/2 (14). Bcl3 and IkBζ have an N-terminal transactivation domain, enabling these proteins, in addition to their inhibitory roles, to function as NF-κB transcription coactivators for certain genes (17, 18). Two IκB genes were found in Nematostella, NvIκB and NvBcl3, related to human cytoplasmic IκBe and nuclear Bcl3, respectively (19).

Previous reports showed NvNF-κB binding to a human NF-κB DNA site (20), suggesting conservation of NF-κB function across evolution. In this study, we undertook a systematic functional comparison of human and Nematostella NF-κB p50 proteins. Our high-throughput protein/DNA binding analysis confirmed the data obtained by Sullivan et al. (20) and demonstrated overall similar DNA binding specificities of the mammalian and Nematostella NF-κB proteins. Nonetheless, we discovered significant differences in their interactions with cofactors. NF-κB interaction with cytoplasmic IκB molecules remained conserved during evolution, whereas its binding interface with co-regulators of the Bcl3 family has changed. This suggests that the interface between NF-κB and its IκB coactivators may be under evolutionary pressure from invading pathogens, for which blocking NF-κB-mediated immune responses would be advantageous.

EXPERIMENTAL PROCEDURES

Bioinformatics—Sequence alignments were performed using the ClustalW 2.0 tool (European Bioinformatics Institute).

Plasmids and Reagents—nκb1/2−/− murine embryonic fibroblasts, kindly provided by Dr. Alexander Hoffmann (University of California), and HEK293ET cells were cultured in Dulbecco’s modified Eagles medium (PAA Laboratories GmbH) supplemented with 10% fetal bovine serum (Invitrogen) and 1% penicillin/streptomycin (PAA Laboratories GmbH) at 37 °C in 5% CO2 and 95% humidity. Mouse monoclonal antibodies against the H3 tag (70976-3, Novagen) and against the Myc tag (clone 9E10, Santa Cruz Biotechnology), protein G-Sepharose (GE Healthcare), and FLAG peptide and anti-FLAG-agarose (Sigma) were used. Human and Nematostella NF-κB p50 cDNAs was generated from human 293ET cell or Nematostella polyp total RNA, respectively, and subcloned into the pEAk8-Myc and pETM11-His vectors for mammalian and bacterial expression purposes. The cloned Nematostella p50 cDNA used in this study corresponds to the Ser-67 allele of the gene (20). NvBcl3 and NvIκB was amplified from Nematostella polyp cDNA and subcloned into the pBent2 vector with an N-terminal FLAG tag. Deletion and point mutants of human and Nematostella p50 proteins were generated by PCR using wild-type cDNA templates and subcloned into the pEAk8 vector as fusion constructs labeled with Myc or Renilla luciferase tags at their N termini. A 700-bp-long fragment of the Nvbcl3 gene promoter, upstream of the first coding ATG, was amplified from Nematostella polyp genomic DNA and cloned into the pGL3-Basic vector (Promega) to drive expression of firefly luciferase. Renilla luciferase-tagged NF-κB and IκBα constructs were kindly provided by Stuart Bloor (MRC Laboratory of Molecular Biology, Cambridge, United Kingdom). All of the generated constructs were confirmed by sequencing. The pGL3-len2-luc reporter and pcDNA-FLAG-HsIκBα expression plasmids have been described previously (21). pNF-κB-luc and pRl-TK were purchased from Clontech.

Electroporation, RNA Extraction, cDNA Synthesis, and Quantitative PCR (qPCR)—Murine embryonic fibroblasts (107 cells/cuvette) were electroporated with 5 μg of pEAk8-Myc vector, 1 μg of pmaxGFP® (Lonza), and 4 μg of a carrier DNA (10 μg in total) using the Amaxa MEF1 Nucleofector kit (Lonza) according to the manufacturer’s instructions. Three days after electroporation, cells were stimulated with 1 μg/ml LPS (Alexis Biochemicals) for 1 and 4 h or left unstimulated before collection. Total RNA was extracted from cells using the Qiagen RNeasy mini kit (Qiagen). Cells were lysed in Buffer RLT (Qiagen), and cDNA synthesis was performed using the extracted RNA, an oligo(dT) primer, and SuperScript III reverse transcriptase (Invitrogen). The cDNA was PCR-amplified using EfficienSee FAST qPCR MasterMix Plus dTTP (Eurogentec). The TaqMan gene expression assays for mouse Hprt (housekeeper control) and Lcn2 were acquired from Applied Biosystems.

Transfection and Reporter Assays—293ET cells were transfected in 96-well plates using Lipofectamine 2000 (Invitrogen). The pEAk8-Myc-NF-κB p50 (wild-type or mutant) and/or pBent2-FLAG (encoding IκB proteins) expression construct (10 ng/well each) was cotransfected along with a given firefly luciferase plasmid (pNF-κB-luc, pNGAL-luc, or pNvBcl3(−700) pro-luc) and the pRL-TK plasmid (10 ng/well each). In the experiments shown in Figs. 4B and 5A, a concentration range of the IκB-encoding plasmids was used: 3 and 10 ng (Fig. 4B) and 2, 5, and 10 ng (Fig. 5A) per well. One day after transfection, cells were lysed, and luciferase activities were measured in lysates using the Dual-Glo luciferase assay kit (Promega). For stimulation experiments, cells were stimulated the next day after transfection with 10 ng/ml TNF-α (PeproTech) for 6 h before collection. Data are presented as means ± S.D. from triplicate wells of a representative experiment.

Protein Expression and Purification—Expression constructs for NF-κB dimers used in this study were created as described (22). Briefly, pET vectors for expression in BL21(DE3) Escherichia coli (Merck) were used to produce His-tagged recombinant proteins. Proteins were overexpressed through induction with 0.2 mM isopropyl β-D-thiogalactopyranoside at 30 °C for 5 h. Pellets of cells were harvested in nickel-nitrilotriacetic acid binding buffer with added EDTA-free protease inhibitor (Roche Applied Science) and pulse-sonicated for 2 min, and debris was removed by centrifugation at 16,000 × g. NF-κB proteins were purified by affinity chromatography in two steps: using first the nickel-nitrilotriacetic acid His-Bind resin system (Merck) and then biotinylated DNA oligonucleotides attached to streptavidin-agarose (Sigma). The bound proteins were eluted in the high-salt buffer (50 mM Tris-HCl (pH 8.0), 0.1 mM EDTA, 500 mM NaCl, 10% glycerol, and 0.01% Nonidet P-40) as described (22).

DNA Affinity Protein Purification—5′-Biotinylated DNA oligonucleotides containing the NF-κB site from the 3′-UTR of the human TNF promoter (5′-biotin-(AGCT)GGGCA(TGGG-
Evolving and Conserved Features of the NF-κB Proteins

AATTTCAGACTCT-3') or the control sequence (5'-biotin-(AGCT)GGGCAAAACCGGGTATAACTCT-3') were used for NF-κB purification as described (22). Briefly, the DNA oligonucleotides were immobilized on streptavidin-agarose (Pierce). Cell pellets were lysed in protein/DNA binding buffer (50 mM Tris-HCl (pH 7.4), 50 mM NaCl, 0.1% Triton X-100, 10% glycerol, and protease inhibitors) and subjected to a French press, and the soluble fractions (separated from insoluble debris by ultracentrifugation) were incubated for 2 h with the DNA sorbent at room temperature with shaking. The proteins were eluted in high-salt buffer.

SDS-PAGE—The eluates were separated by SDS-PAGE using precast 4–12% denaturing gels (Invitrogen), which were Coomassie Blue-stained with the InstantBlue solution (Expedeon).

Protein Binding Microarrays—We designed 8 × 15K Agilent arrays using eArray as we have described in detail previously (23). Briefly, the canonical NF-κB consensus binding sequence GGRRNNTYCC was expanded into the GGGRNNHHYYB 11-mer motif, which was processed using the principal coordinate method (24). The outcome was 803 DNA sequences that are representative of the “k-mer space” encompassed by the expanded motif. The resulting z-score was obtained using log2-transformed intensities, and the median of replicates was calculated for each probe within every array (supplemental Table 1). The binding affinities for each protein were calculated using three technical replicates. The Cy3 values from the double stranding were used to normalize the Cy5 values of the protein/DNA binding. To approximate binding affinity values between proteins, these values were logged (log2), and a z-score was created using the following formula: z-score = (log2 value - median of array)/S.D. of array. The z-scores were used as input for the MultiExperiment Viewer software (25, 26) to create a heat map.

LUMIER—Luminescence-based mammalian interactome (LUMIER) mapping (27) was used to rapidly test protein/protein interactions between NF-κB and IκB proteins. Two putative interactors fused to either N-terminal FLAG or Renilla luciferase tags were coexpressed in 293ET cells. One day after transfection, the cells were lysed in immunoprecipitation buffer (10% glycerol, 150 mM NaCl, 0.1%. Triton X-100, 20 mM Tris-HCl (pH 7.4), 5 mM EDTA, and protease inhibitors), and the post-nuclear supernatants were incubated for 2 h with FLAG-agarose. The beads were then washed four times with immunoprecipitation buffer, and the proteins were eluted for 30 min with FLAG peptide diluted to a final concentration of 150 μg/ml in Renilla lysis buffer (Promega). The luciferase activity was measured in the eluates and total lysates using the Renilla luciferase assay system (Promega). The magnitude of luciferase activity correlates with the binding affinity within a pair of interactors. The data are labeled as -fold binding and are presented as the ratio of luciferase activity in eluates and lysates normalized against the control (empty vector).

ChIP—A total of 107 HEK293ET cells were fixed by adding 1% formaldehyde (final concentration) for 5 min at room temperature. Nuclear extracts were subjected to 6 × 12-s pulses of sonication using a Vibra-Cell VCX130 processor (Sonics) at 20% amplitude. For immunoprecipitation reaction, nuclear extracts were precleared with a protein G-Sepharose bead slurry (GE Healthcare) for 2 h and then incubated with 2 μg of 9E10 or isotype control antibodies overnight at 4 °C with rotation. Immunocomplexes were collected with protein G-Sepharose beads for 30 min, rigorously washed, and eluted. Cross-linked protein-DNA complexes were reversed by incubation overnight at 65 °C, and DNA fragments were purified using the Qiaquick PCR purification kit (Qiagen). The immunoprecipitated DNA fragments were interrogated by real-time PCR using SYBR Premix Ex Taq II Master Mix (Takara Bio) and the indicated primers for the TNF promoter (5'-GGAGCCAGACG-TGAAAACCAGCA and 5'-CCGGGAATTCAGACCCC-ACT) and IL-10 promoter (5'-CCTGTGCCGGGGAAACCTTT- GATTGTGAC and 5'-GTCAGGAGCAACAGCAACAG-GCAGT) regions. Data were analyzed using Roto-Gene 6000 software (Corbett Life Science). All primer sets were tested for specificity and equal efficiency before use.

RESULTS

The DNA Binding Properties of NF-κB Are Evolutionarily Conserved—An amino acid sequence alignment of NF-κB proteins from multiple mammalian species shows great conservation of their RHDs (8). We wished to systematically characterize the DNA binding preferences of NvNF-κB p50 and its Homo sapiens (Hs) orthologs NF-κB1 (HsNF-κB p50) and NF-κB2 (HsNF-κB p52). The proteins were expressed in E. coli and purified by DNA affinity chromatography, and their functional activity was confirmed using specific and scrambled NF-κB-binding sequences in an oligonucleotide pulldown assay (Fig. 1A). Used as an additional control, a DNA-binding mutant of NvNF-κB p50, FRY → AAA, failed to bind NF-κB-specific DNA (data not shown).

Next, the binding of NvNF-κB p50 to 803 11-mer sequences within the generalized NF-κB consensus sequence GGGRNNHHYYB was examined using double-stranded DNA microarrays essentially as described (23). We built a heat map of NvNF-κB p50 binding by arranging variant 11-mer sequences in columns and color-coding the ranked binding affinities for these sequences from high (yellow) to low (blue) (Fig. 1B). The NvNF-κB p50 binding profile was compared with those of HsNF-κB p50, HsNF-κB p52, and another mammalian homodimer, NF-κB RelA. As expected, HsNF-κB p50 and HsNF-κB p52 had the most similar profiles to NvNF-κB p50 (z-score correlation coefficients of 0.88 and 0.95, respectively), whereas the RelA binding profile was the most distant (z-score coefficient of 0.65) (Fig. 1C). The correlations between z-scores of the binding affinities of the selected NF-κB dimers are shown in supplemental Table 1, and they were comparable with previously determined correlations within the HsNF-κB family (23).

Despite a clear conservation of the 3'-pyrimidine-half DNA consensus sequences, i.e. a CC duplex at positions 9 and 10 (or on the complementary strand, a GG duplex at positions 2 and 3), we also observed differences in the DNA barcode when we compared the top 20 highest binding motifs of the individual NF-κB proteins (Fig. 1D). The signature GGxxxxyyCC symmetry of the canonical NF-κB motif observed in the case of human p52 and Nematostella p50 is lost in human p50, which has...
evolved to have a larger affinity for \(\text{N6CCCC(T/C)} \) sequences. The latter observation is supported by a previous study that reported the DNA binding preferences of mammalian NF-\(\kappa \)B dimers, including p50 (28). Nevertheless, taking into account the evolutionary distance of 600 million years between \textit{Nematostella} and mammals (29), the \textit{in vitro} DNA binding specificities of NF-\(\kappa \)B orthologs are remarkably similar. This is in contrast to noticeable differences between the DNA binding patterns of mammalian NF-\(\kappa \)B paralogs (human RelA versus NF-\(\kappa \)B1/2) (Fig. 1B).

To compare the efficiency of \textit{in vivo} binding of HsNF-\(\kappa \)B1 p50 and NvNF-\(\kappa \)B p50 to the NF-\(\kappa \)B-regulated human gene promoters, NF-\(\kappa \)B proteins were cloned into a mammalian expression vector containing a Myc tag and expressed in the human cell line HEK293ET. The cell lysates were subjected to ChIP using anti-Myc (clone 9E10) or IgG control antibodies, followed by qPCR with specific primer sets. HsNF-\(\kappa \)B1 p50 and NvNF-\(\kappa \)B p50 proteins showed a similar degree of recruitment to the human TNF and IL-10 promoters (Fig. 1E). Therefore, both DNA binding specificity and genomic
Evolving and Conserved Features of the NF-κB Proteins

FIGURE 2. Conservation of NF-κB protein/protein interactions. FLAG- and Renilla luciferase-tagged proteins were expressed as pairs in 293ET cells. The cell lysates were subjected to immunoprecipitation using FLAG-agarose, the proteins bound to the sorbent were eluted with FLAG peptide, and the luciferase activities were measured in the eluates and total lysates. The data are shown as the ratio of luciferase activity in eluates and lysates normalized against the control (empty vector).

Recruitment of NF-κB complexes are similar between human and Nematostella NF-κB orthologs.

NF-κB Interactions with IκBα Are Evolutionarily Conserved—The NF-κB dimerization region is well conserved among various animal NF-κB orthologs (8) and includes a nuclear localization sequence (NLS) of NF-κB, which is recognized by IκB proteins (30). To examine whether NvNF-κB p50 is able to form dimers with different human NF-κB subunits and IκBα, we employed a LUMIER assay (27), which allows measurement of potential binding between a pair of proteins. NvNF-κB and HsNF-κB were tagged with FLAG, whereas all of the human NF-κB subunits and IκBα carried a Renilla luciferase tag. The individual pairs of proteins were expressed in HEK293ET cells and immunoprecipitated from cell lysates using FLAG-agarose. Both NvNF-κB and HsNF-κB interacted strongly with IκBα and all Rel proteins, whereas a negative control protein, FLAG-GFP, did not (Fig. 2). Thus, the dimerization properties of NF-κB and its interaction with cytoplasmic IκBs are evolutionarily conserved.

HsIκBζ Discriminates between Human and Nematostella NF-κB—The mammalian NF-κB p50 subunit lacks a transactivation domain and requires a cofactor like HsIκBζ to drive transcription of its dedicated genes (17). We used the LUMIER assay to compare HsIκBζ binding of HsNF-κB p50 and NvNF-κB p50. FLAG-tagged HsIκBζ was expressed along with the Renilla luciferase-tagged NF-κB proteins. FLAG-RelA was used as a confirmed binding partner of p50. Interestingly, HsNF-κB, but not NvNF-κB, bound to HsIκBζ, whereas both proteins bound well to RelA (Fig. 3A).

It is not entirely known how NF-κB interacts with HsIκBζ, with the C terminus of p50 being proposed to play role (31). To clarify which region of HsNF-κB interacts with HsIκBζ, we constructed several deletion mutants of HsNF-κB p50 and tested them in the LUMIER assay for their affinity to HsIκBζ (Fig. 3B). The DNA-binding domain of HsNF-κB p50 was dispensable for its interactions with HsIκBζ, but so was its C terminus, as HsNF-κB mutant N380 (amino acids 1–380) could still bind to HsIκBζ (Fig. 3B). However, HsNF-κB p50 mutant N355 (amino acids 1–355) failed to interact with HsNF-κB (Fig. 3B). The alignment of the region encompassing amino acids 355–380 of human and Nematostella NF-κB p50 demonstrated that it is only 40% identical between the species and encompasses the conserved NLS motif (amino acids KRxK, underlined in Fig. 3C). To further dissect the contribution of the NF-κB p50 evolving versus conserved amino acids in recognition of HsIκBζ, we used NLS-free mutants of HsNF-κB p50 and NvNF-κB p50 in the LUMIER binding assay and found that the NLS is important for NF-κB binding to HsIκBζ, as well as to HsIκBα, which was used as a control (Fig. 3D). Therefore, we concluded that the sequences outside of the NLS are responsible for differential recognition of HsIκBζ by human and Nematostella NF-κB p50.

Next, we sought to examine the functional consequences of the differential HsIκBζ/p50 binding. We coexpressed HsIκBζ with human or Nematostella NF-κB p50 and a luciferase reporter driving the expression of the HsIκBζ-dependent gene NGAL/lcn2 in human 293ET cells (Fig. 3E). HsNF-κB p50 coinduced greater reporter activation compared with NvNF-κB p50. Finally, we used a genetic complementation test in nfkβ1/2−/− murine embryonic fibroblasts (32) to examine expression of the endogenous lcn2 gene. Introduction of human p50, but not its Nematostella counterpart or the human p50 mutant lacking the C-terminal HsIκBζ-binding region, could restore LPS-inducible expression of lcn2 in these cells (Fig. 3F).

In summary, these data indicate that HsIκBζ can discriminate between human and Nematostella NF-κB proteins. Thus, we hypothesized that the IκB/p50 interaction interface might have undergone changes during evolution.

NvBcl3 Discriminates between Human and Nematostella NF-κB—To test our hypothesis, we first examined binding of the Nematostella homolog of HsIκBζ to both HsNF-κB p50 and NvNF-κB p50. Two IκB-related proteins, NvlkB and NvBcl3, have so far been identified in Nematostella (8, 19). NvBcl3 is phylogenetically related to mammalian Bcl3 and HsIκBζ and appears to be localized in both the cytosol and nucleus (8, 19). NvIκB is similar to mammalian cytoplasmic IκBs; it has an N-terminal IκB kinase phosphorylation motif, and it was shown to sequester NvNF-κB in the cytoplasm when ectopically expressed in mammalian cells (8, 19). We tested the binding of NvlkB and NvBcl3 to HsNF-κB p50 and NvNF-κB p50 by LUMIER. NvlkB strongly bound to both human and Nematostella NF-κB p50, whereas NvBcl3 bound only to NvNF-κB (Fig. 4A). Moreover, the expression of NvlkB, but not NvBcl3, inhibited the TNF-α-induced pNF-κB-luc reporter in human HEK293ET cells (Fig. 4B), confirming the fact that NvlkB, but not NvBcl3, can bind human NF-κB.

To better understand the molecular basis of the differential recognition of NF-κB by cytosolic and nuclear IκB proteins, we considered crystallographic and molecular modeling studies of complexes between IκB and NF-κB (30). First, they showed that
the IkBε DGD motif interacts with the NF-κB p50 NLS (30). We performed an amino acid sequence alignment of the DGD region for all human and Nematostella IkB proteins and found that it is conserved in IkB and Bcl3-like proteins (Fig. 4C). This supports our finding that the NLS is crucial for NF-κB binding by both groups of IkBs (Fig. 3D). Second, they predicted that loops located between ankyrin repeats 4, 5, 6, and 7 of IkBs are involved in NF-κB binding. For example, the loop located between ankyrin repeats 5 and 6 of human Bcl3 contains several residues contacting the NF-κB p50 dimer (30). We generated an amino acid sequence alignment of this region for all human and Nematostella IkB proteins and found that there is only a little conservation in the predicted residues contacting NF-κB (Fig. 4D). It is therefore possible that the dynamic evolution of the indicated IkB loops is responsible for the differential recognition of NF-κB by cytosolic and nuclear IkB proteins.

Inhibition of NF-κB Activity by Cnidarian IkB Proteins—NvIkB and NvBcl3 have been shown previously to inhibit Nvp50-mediated activity of the synthetic pNF-κB-luc reporter (19). We extended these observations (Fig. 5A) to NF-κB-dependent Nematostella gene expression by analyzing the activity of a reporter construct driven by a 700-nucleotide upstream region of the predicted NvNF-κB target gene, Nvbcl3 (Fig. 5B). NvNF-κB induced pNvBcl3(-700)-luc reporter activity,
Evolving and Conserved Features of the NF-κB Proteins

FIGURE 4. Distinct properties of *Nematostella* IxB and Bcl3 proteins. A, LUMIER assay of selected NF-κB/IxB interactions. The Renilla luciferase-tagged human and *Nematostella* NF-κB p50 proteins were coexpressed with one of the FLAG-tagged IxB proteins in 293ET cells. The protein complexes were pulled out from cell lysates using FLAG-agarose, the bound proteins were eluted with FLAG peptide, and the luciferase activities in the lysates and eluates were measured. The data are shown as fold binding compared with the control (bacterial alkaline phosphatase). B, 293ET cells seeded in 96-well plates were transfected with 3 or 10 ng (lo and hi, respectively)/well NvBcl3- or NvIxB-encoding plasmid and 10 ng/well pNF-κB-luc reporter plasmid. One day later, the cells were stimulated for 6 h with 10 ng/ml TNF-α before collection. The luciferase activities were measured in cell lysates. The data are shown as fold induction compared with the control (empty vector). C and D, the amino acid sequence alignments of human and *Nematostella* IxB proteins. Sequences were aligned using ClustalW software, and the aminokin repeats (AR) were labeled according to a previously used annotation (30). Conserved residues are shown in boldface, and the predicted loop residues of HsBcl3 contacting HsNF-κB are underlined.

whereas NvlxIxB or NvlxBcl3 attenuated this induction (Fig. 5B). These data suggest that inhibition of NF-κB activity by IxB proteins is not a recent property but that it originated before the separation of cnidarian and triploblastic animal lineages.

DISCUSSION

NF-κB is a key regulator of gene expression in inflammation and other immune responses, but little is known about the evolution of the NF-κB system. In this study, we compared the functional properties of human and *Nematostella* NF-κB proteins and found that their DNA binding specificities in vitro and in vivo are largely conserved and that evolutionarily conserved immune genes have been regulated by NF-κB since, at least, the origin of cnidarians. We have shown that both human and *Nematostella* NF-κB can interact equally well with all mammalian NF-κB subunits and inhibitors HsIxBoα and NvlxIxB. However, the binding of NF-κB to the Bcl3 family of proteins is not conserved: HsIxBoα and NvlxBcl3 can discriminate between human and *Nematostella* NF-κB and bind only the transcription factor from their own species.

The similarity in the functional properties of NF-κB proteins reported in this study is a direct result of evolutionary conservation of the amino acid sequence of NF-κB (8). For example, the RFRFYXCE region of the RHD, responsible for p50 binding to DNA (33, 34), is highly conserved between mammalian NF-κB and *Nematostella* NF-κB subunits and inhibitors HsIxBα and NvlxIxB. However, the binding of NF-κB to the Bcl3 family of proteins is not conserved: HsIxBoα and NvlxBcl3 can discriminate between human and *Nematostella* NF-κB and bind only the transcription factor from their own species.

The similarity in the functional properties of NF-κB proteins reported in this study is a direct result of evolutionary conservation of the amino acid sequence of NF-κB (8). For example, the RFRFYXCE region of the RHD, responsible for p50 binding to DNA (33, 34), is highly conserved between mammalian NF-κB and *Nematostella* NF-κB subunits and inhibitors HsIxBα and NvlxIxB. However, the binding of NF-κB to the Bcl3 family of proteins is not conserved: HsIxBoα and NvlxBcl3 can discriminate between human and *Nematostella* NF-κB and bind only the transcription factor from their own species.

The similarity in the functional properties of NF-κB proteins reported in this study is a direct result of evolutionary conservation of the amino acid sequence of NF-κB (8). For example, the RFRFYXCE region of the RHD, responsible for p50 binding to DNA (33, 34), is highly conserved between mammalian NF-κB and *Nematostella* NF-κB subunits and inhibitors HsIxBα and NvlxIxB. However, the binding of NF-κB to the Bcl3 family of proteins is not conserved: HsIxBoα and NvlxBcl3 can discriminate between human and *Nematostella* NF-κB and bind only the transcription factor from their own species.

The similarity in the functional properties of NF-κB proteins reported in this study is a direct result of evolutionary conservation of the amino acid sequence of NF-κB (8). For example, the RFRFYXCE region of the RHD, responsible for p50 binding to DNA (33, 34), is highly conserved between mammalian NF-κB and *Nematostella* NF-κB subunits and inhibitors HsIxBα and NvlxIxB. However, the binding of NF-κB to the Bcl3 family of proteins is not conserved: HsIxBoα and NvlxBcl3 can discriminate between human and *Nematostella* NF-κB and bind only the transcription factor from their own species.
dent (18). As expected, Nematostella NF-κB triggered the NvBcl3 promoter-driven luciferase expression. This indicates that evolutionarily conserved immune genes, such as IkBs, have been regulated by NF-κB since, at least, the origin of cnidarians.

It is significant that the entire amino acid sequence of NF-κB is not conserved. The 355–380-amino acid region next to the IPT dimerization domain shows only a partial similarity between human and Nematostella p50 proteins. This region is known to be a binding hub for IkB proteins (30). Here, we have demonstrated that it is recognized differentially by the two subfamilies of IkBs. Both human and Nematostella IkBα proteins bind to human and Nematostella NF-κB equally well and inhibit the transcriptional activity of both proteins. In contrast, NvBcl3 can bind only to Nematostella NF-κB, but not human NF-κB, whereas HsIkβζ fails to recognize the cnidian NF-κB protein. The selectivity of the Bcl3 family proteins in NF-κB binding is reflected in their function. In association with human NF-κB, HsIkβζ has been shown to drive lcn2 gene transcription (36). We have demonstrated that ectopic HsIkβζ triggers less lcn2 reporter activity or lcn2 gene expression when coexpressed with Nematostella NF-κB than when it is paired with human NF-κB. Conversely, NvBcl3 can inhibit only NvNF-κB-induced reporter activation but fails to suppress TNF-α-induced NF-κB activation in human cells.

What is the molecular basis of the differential recognition of NF-κB by the two IkB subfamilies? The in silico modeling suggests that loops of the ARDs, which show great sequence divergence, confer the specificity of NF-κB/IkB interactions (30). However, these predictions alone do not explain why cytoplasmic IkBs bind strongly to both human and Nematostella NF-κB proteins, whereas the Bcl3-type IkBs are more selective and weaker binders. We hypothesize that the cytoplasmic IkBs bind to NF-κB proteins via conserved elements, whereas the Bcl3-type IkBs bind via the variable ARD loops, but more work is needed to address this issue experimentally.

The interface between NF-κB and its IkB family coactivators may be under evolutionary pressure from invading pathogens keen to hamper NF-κB-mediated immune responses. Interestingly, a recent study has shown that a measles virus encodes an IkB-like protein, which blocks the NF-κB response by retaining RelA in the cytoplasm (37). Another example is an insect virus encoding eight proteins orthologous to Drosophila IkB called Cactus, which have been shown to block the midgut melanotic response during infection (38). Therefore, pathogen-derived IkB molecules can compete with NF-κB coactivators, i.e., the Bcl3-type proteins, to suppress the host immunity. On the other hand, the host IkB inhibitors do not interfere with a pathogen’s agenda, and therefore, there is less evolutionary pressure on them.

In summary, in addition to demonstrating a remarkable conservation of the NF-κB/DNA binding, dimerization properties, and interactions with cytosolic IkBs, we have uncovered a previously unknown phenomenon of the evolving interaction interface between NF-κB and nuclear IkBs. It is conceivable that a stronger evolutionary pressure on the NF-κB interaction with coactivator nuclear IkB molecules has been exerted by the pathogens trying to evade the host immunity.

Acknowledgment—We thank Dr. Alexander Hoffmann for kindly providing the nfkb1/2−/− cells.

REFERENCES

1. Steele, R. E., David, C. N., and Technau, U. (2011) A genomic view of 500 million years of cnidian evolution. Trends Genet. 27, 7–13
2. Rosenberg, E., Koren, O., Reshef, L., Efrony, R., and Zilber-Rosenberg, I. (2007) The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 5, 355–362
3. Augustin, R., Fraune, S., and Bosch, T. C. (2010) How Hydra senses and destroys microbes. Semin. Immunol. 22, 54–58
4. Darling, I. A., Reitzel, A. R., Burton, P. M., Mazza, M. E., Ryan, J. F., Sullivan, J. C., and Finnerty, J. R. (2005) Rising starlet: the starlet sea anemone, Nematostella vectensis. BioEssays 27, 211–221
5. Putnam, N. H., Srivastava, M., Hellsten, U., Dirks, B., Chapman, J., Salamov, A., Terry, A., Shapiro, H., Lindquist, E., Kapitonov, V. V., Jurka, J., Genikovich, G., Grigoriev, I. V., Lucas, S. M., Steele, R. E., Finnerty, J. R., Technau, U., Martindale, M. Q., and Kozhsar, D. S. (2007) Sea anemone genome reveals ancestral eumetazoa gene repertoire and genomic organization. Science 317, 86–94
6. Miller, D. J., Ball, E. E., and Technau, U. (2005) Cnidarians and ancestral genetic complexity in the animal kingdom. Trends Genet. 21, 536–539
7. Miller, D. J., Hemmrich, G., Ball, E. E., Hayward, D. C., Khalturin, K., Funayama, N., Agata, K., and Bosch, T. C. (2007) The innate immune repertoire in Cnidaria—ancestral complexity and stochastic gene loss. Genome Biol. 8, R59
8. Sullivan, J. C., Kalaitzidis, D., Gilmore, T. D., and Finnerty, I. R. (2007) Rel homology domain-containing transcription factors in the cnidian Nematostella vectensis. Dev. Genes Evol. 217, 63–72
9. Li, Q., and Verma, I. M. (2002) NF-κB regulation in the immune system. Nat. Rev. Immunol. 2, 725–734
10. Ockinghaus, A., and Ghosh, S. (2009) The NF-κB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol. 1, a000304
11. Vallabhapurapu, S., and Karin, M. (2009) Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733
12. Heusch, M., Lin, L., Geleziunas, R., and Greene, W. C. (1999) The generation of nfkb p52: mechanism and efficiency. Oncogene 18, 6201–6208
13. Lin, L., and Ghosh, S. (1996) A glycine-rich region in NF-κB-p105 functions as a processing signal for the generation of the p50 subunit. Mol. Cell. Biol. 16, 2248–2254
14. Whiteside, S. T., and Israel, A. (1997) IkB proteins: structure, function and regulation. Semin. Cancer Biol. 8, 75–82
15. Lin, Y. C., Brown, K., and Siebenlist, U. (1995) Activation of NF-κB requires proteolysis of the inhibitor IkB-a: signal-induced phosphorylation of IkB-α alone does not release active NF-κB. Proc. Natl. Acad. Sci. U.S.A. 92, 552–556
16. Yamamoto, M., and Takeda, K. (2008) Role of nuclear IkB proteins in the regulation of host immune responses. J. Infect. Chemother. 14, 265–269
17. Muta, T. (2006) IkB-ζ: an inducible regulator of nuclear factor-κB. Vitam. Horm. 74, 301–316
18. Palmer, S., and Chen, Y. H. (2008) Bcl-3, a multifaceted modulator of NF-κB-mediated gene transcription. Immunol. Rev. 222, 210–218
19. Wolenski, F. S., Garbati, M. R., Lubinski, T. J., Traylor-Knowles, N., Dresselhaus, E., Stefanik, D. J., Goucher, H., Finnerty, J. R., and Gilmore, T. D. (2011) Characterization of the core elements of the NF-κB signaling pathway of the sea anemone Nematostella vectensis. Mol. Cell. Biol. 31, 1076–1087
20. Sullivan, J. C., Wolenski, F. S., Reitzel, A. M., French, C. E., Traylor-Knowles, N., Gilmore, T. D., and Finnerty, J. R. (2009) Two alleles of NF-κB in the sea anemone Nematostella vectensis are widely dispersed in nature and encode proteins with distinct activities. PLoS ONE 4, e7311
21. Matsuo, S., Yamazaki, S., Takeshige, K., and Muta, T. (2007) Crucial roles of binding sites for NF-κB and C/EBPs in IkB-ζ-mediated transcriptional activation. Biochem. J. 405, 605–615
22. Ragoussis, J., Field, S., and Udalova, I. A. (2006) Quantitative profiling of
protein-DNA binding on microarrays. *Methods Mol. Biol.* **338**, 261–280
23. Wong, D., Teixeira, A., Oikonomopoulos, S., Humburg, P., Lone, I. N., Saliba, D., Siggers, T., Bulyk, M., Angelov, D., Dimitrov, S., Udalova, I. A., and Ragoussis, J. (2011) Extensive characterization of NF-κB binding uncovers non-canonical motifs and advances the interpretation of genetic functional traits. *Genome Biol.* **12**, R70
24. Udalova, I. A., Mott, R., Field, D., and Kwiatkowski, D. (2002) Quantitative prediction of NF-κB DNA-protein interactions. *Proc. Natl. Acad. Sci. U.S.A.* **99**, 8167–8172
25. Saeed, A. I., Bhagabati, N. K., Braisted, J. C., Liang, W., Sharov, V., Howe, E. A., Li, J., Thiagarajan, M., White, J. A., and Quackenbush, J. (2006) TM4 microarray software suite. *Methods Enzymol.* **411**, 134–193
26. Saeed, A. I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., Braisted, J., Klapa, M., Currier, T., Thiagarajan, M., Sturn, A., Snuffin, M., Rezantsev, A., Popov, D., Rybtsov, A., Kostukovich, E., Borisovsky, I., Liu, Z., Vinsavich, A., Trush, V., and Quackenbush, J. (2003) TM4: a free, opensource system for microarray data management and analysis. *Biotechniques* **34**, 374–378
27. Barrios-Rodiles, M., Brown, K. R., Ozdamar, B., Bose, R., Liu, Z., Donovan, R. S., Shinjo, F., Liu, Y., Dembowy, J., Taylor, I. W., Luga, V., Przulj, N., Robinson, M., Suzuki, H., Hayashizaki, Y., Jurisica, I., and Wrana, J. L. (2005) High-throughput mapping of a dynamic signaling network in mammalian cells. *Science* **307**, 1621–1625
28. Siggers, T., Chang, A. B., Teixeira, A., Wong, D., Williams, K. J., Ahmed, B., Ragoussis, J., Udalova, I. A., Smale, S. T., and Bulyk, M. L. (2012) Principles of dimer-specific gene regulation revealed by a comprehensive characterization of NF-κB family DNA binding. *Nat. Immunol.* **13**, 95–102
29. Peterson, K. J., and Butterfield, N. J. (2005) Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. *Proc. Natl. Acad. Sci. U.S.A.* **102**, 9547–9552
30. Manavalan, B., Basith, S., Choi, Y. M., Lee, G., and Choi, S. (2010) Structure-function relationship of cytoplasmic and nuclear IκB proteins: an in silico analysis. *PLoS ONE* 5, e15782
31. Trinh, D. V., Zhu, N., Farhang, G., Kim, B. J., and Huxford, T. (2008) The nuclear IκB protein IκBζ specifically binds NF-κB p50 homodimers and forms a ternary complex on κB DNA. *J. Mol. Biol.* **379**, 122–135
32. Hoffmann, A., Leung, T. H., and Baltimore, D. (2003) Genetic analysis of NF-κB/Rel transcription factors defines functional specificities. *EMBO J.* **22**, 5530–5539
33. Müller, C. W., Rey, F. A., Sodeoka, M., Verdine, G. L., and Harrison, S. C. (1995) Structure of the NF-κB p50 homodimer bound to DNA. *Nature* **373**, 311–317
34. Ghosh, G., van Duyn, G., Ghosh, S., and Sigler, P. B. (1995) Structure of NF-κB p50 homodimer bound to a κB site. *Nature* **373**, 303–310
35. Hetru, C., and Hoffmann, J. A. (2009) NF-κB in the immune response of *Drosophila*. *Cold Spring Harb. Perspect. Biol.* **1**, a000232
36. Cowland, J. B., Muta, T., and Borregaard, N. (2006) IL-1β-specific up-regulation of neutrophil gelatinase-associated lipocalin is controlled by IκB-ζ. *J. Immunol.* **176**, 5559–5566
37. Schuhmann, K. M., Pfäller, C. K., and Conzelmann, K. K. (2011) The measles virus V protein binds to p65 (RelA) to suppress NF-κB activity. *J. Virol.* **85**, 3162–3171
38. Bae, S., and Kim, Y. (2009) IκB genes encoded in *Cotesia plutellae* baculovirus suppress an antiviral response and enhance baculovirus pathogenicity against the diamondback moth, *Plutella xylostella*. *J. Invertebr. Pathol.* **102**, 79–87