The Cauchy problem for the quantum Boltzmann equation for bosons at very low temperature

Ricardo Alonso*, Irene M. Gamba**, Minh-Binh Tran ***

*Department of Mathematics
Pontificia Universidad Catolica at Rio de Janeiro
e-mail: ralonso@mat.puc-rio.br

**Department of Mathematics
University of Texas Austin
e-mail: gamba@math.utexas.edu

***Department of Mathematics
University of Wisconsin-Madison
e-mail: mtran23@wisc.edu

September 26, 2016

Abstract

We solve the Cauchy problem for a kinetic quantum Boltzmann model that approximates the evolution of a radial distribution of quasi-particles in a dilute gas of bosons at very low temperature with a cubic kinetic transition probability kernel. We classify some relevant qualitative properties of such solutions which include the propagation and creation of polynomial and Mittag-Leffler tails. We develop the existence and uniqueness result by means of abstract ODE’s theory in Banach spaces by characterizing an invariant bounded, convex, closed subset S of the positive cone associated with the Banach space $C^1([0,\infty);L^1(|p|dp))$. The subset S depends on the cubic structure of the kinetic transition probability kernel and the interaction law for bosons.

Keywords Quantum kinetic theory, low-temperature Bose particles, spin-Peierls model, Mittag-Leffler moments, abstract ODE theory.

MSC: 82C10, 82C22, 82C40.
1 Introduction

After the first Bose-Einstein Condensate (BEC) was produced by Cornell, Wieman, and Ketterle, which led them to the 2001 Nobel Prize in Physics [3, 4, 10], there has been an explosion of research on BECs and cold bosonic gases. Above the condensation temperature, the dynamic of a bose gas is determined by the Uehling-Uhlenbeck kinetic equation introduced in [43]; see for instance [19, 22] for interesting results and list of references. Below the condensation temperature, the bosonic gas dynamics is also governed by a kinetic equation that was first derived by Kirkpatrick and Dorfmann in [33, 34] using a combination of mean field theory, kinetic theory, and Green’s function methods.

This latter regime is the object of study in the present paper, more specifically, we are interested in the dynamics of dilute Bose gases at very low temperature under the assumption of reference [20], that is, the BEC is very stable and contains a sizeable number of atoms, the interaction between excited atoms is small, being the dominant interaction the one between excited atoms and the BEC. The evolution of the density distribution function $f := f(t, p)$, with $(t, p) \in [0, \infty) \times \mathbb{R}^3$, of such Bose gases can be described...
by the following bosonic quantum Boltzmann equation [18, 20, 28, 44],
\[
\frac{df}{dt} = Q[f], \quad f(0, \cdot) = f_0, \quad (1.1)
\]
where the interaction operator is defined as
\[
Q[f] := \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} dp_1 dp_2 \left[R(p, p_1, p_2) - R(p_1, p, p_2) - R(p_2, p_1, p) \right],
\]
\[
R(p, p_1, p_2) := |\mathcal{M}(p, p_1, p_2)|^2 \left[\delta(\omega(p) - \omega(p_1) - \omega(p_2)) \delta(p - p_1 - p_2) \right]
\times \left[f(p_1)f(p_2)(1 + f(p)) - (1 + f(p_1))(1 + f(p_2))f(p) \right]. \quad (1.2)
\]
Here above, the term $\mathcal{M}(p, p_1, p_2)$ is the transition probability, $\omega(p)$ is the Bogoliubov dispersion law:
\[
\omega(p) = \left[\frac{gn_c}{m} |p|^2 + \left(\frac{|p|^2}{2m} \right)^2 \right]^{1/2}, \quad (1.3)
\]
where $p \in \mathbb{R}^3$ is the momenta, m is the mass of the particles, g is the interaction coupling constant and n_c is the density of particles in the BEC.

The collision operator Q describes the interaction between the condensed and the excited atoms. Now, since $\omega(p)$ and $\mathcal{M}(p, p_1, p_2)$ are complicated functions, we further restrict the range of our analysis supposing that the temperature T, the condensate density n_c, and the interaction coupling constant g are such that $k_B T$ is much smaller than gn_c. Under this condition, the quantity $\omega(p)$ is approximated by the phonon dispersion law, see [14, 18, 30]
\[
\omega(p) = c|p|, \quad \text{where} \quad c := \sqrt{\frac{gn_c}{m}}, \quad (1.4)
\]
and \mathcal{M} is usually approximated as
\[
|\mathcal{M}|^2 = \kappa|p| |p_1||p_2|. \quad (1.5)
\]
Here $\kappa > 0$ is an explicit constant that can be found for instance in [18, 20, 30]. We stress that this approximation is valid at low temperature regime where only low momentum excitations are relevant.

Different from previous mathematical works [6, 7, 8, 9], we do not truncate the transition probability $|\mathcal{M}|^2$ from above, or assume that it is cut-off near the origin, however, we restrict ourself to an analysis of radially symmetric solutions for the model. Thus, we perform the analysis in the whole
momentum space, not in a piece of it or the torus \cite{40}, requiring a detailed control of the solution’s tails.

After the pioneering work of Kirkpatrick and Dorfmann, there have been a large number of works trying to derive a kinetic theory for the BEC using different approaches: two fluid hydrodynamic description \cite{28,44}, quantum kinetic master equation \cite{17,25,26,27,31,32}, mean field theory \cite{29}, Stoof’s approach \cite{41} where pseudo-potential methods at the quantum level are avoided since such methods fail near the condensate. In all these works, equation (1.1) is used to characterize the growth of the BEC. Moreover, the kinetic equation (1.1) is also used to describe phonon interactions in anharmonic crystal lattices, first derived in this context by Peierls \cite{38,39}, then by several other authors \cite{14,40}.

The equilibrium distribution \(f^\infty \) of Equation (1.1) has the form

\[
f^\infty(p) = \frac{1}{e^{\beta \omega(p)} - 1},
\]

where \(\beta := \frac{1}{k_B T} > 0 \) is a given physical constant depending on the Boltzmann constant \(k_B \) and the temperature of the quasiparticles \(T \) at equilibrium. Considering the linearization

\[
f(t,p) = f^\infty(p) + f^\infty(p) \left(1 + f^\infty(p) \right) \Omega(t,p),
\]

plugging this expression into (1.1) and keeping only the linear terms, the following linearized equation of (1.1) was obtained in \cite{21}

\[
f^\infty(p) \left(1 + f^\infty(p) \right) \frac{\partial \Omega}{\partial t}(t,p) = -M(p) \Omega(t,p) + \int_{\mathbb{R}^3} dp' \ U(p,p') \Omega(t,p'),
\]

for some explicit function \(M(p) \) and measure \(U(p,p') \). The Cauchy problem and the convergence toward equilibrium of such linearized model (1.8) were addressed in the aforementioned reference. The discrete theory of the equation, based on a dynamical system approach, was done in \cite{15}. In reference \cite{37}, it has been proved that positive classical solutions of the model have a Gaussian barrier from below.

In our current work, we solve the Cauchy problem for (1.1) in the context of radial solutions by showing that they possess qualitative properties such as creation and propagation of polynomial and Mittag-Leffler moments. The argument is based on techniques developed previously for the classical Boltzmann equation in \cite{2,11,23,21,42}. Thanks to the propagation of polynomial moments, we are able to provide a natural space to show existence and uniqueness of solutions for equation using abstract ODE theory.
Similar to the classical Boltzmann collision operator, the quantum collision operator \(Q \) can be separated in a gain and a loss operators

\[
Q[f](t,p) = Q^+[f](t,p) - Q^-[f](t,p) = Q^+[f](t,p) - f(t,p) \nu[f](t,p).
\]

The gain operator is defined by

\[
Q^+[f](t,p) := \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} dp_1 dp_2 |p||p_1||p_2| \delta(p-p_1-p_2) \\
\times \delta(|p| - |p_1| - |p_2|) f(t,p_1)f(t,p_2) + 2 \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} dp_1 dp_2 |p||p_1||p_2| \\
\times \delta(p_1 - p - p_2) \delta(|p_1| - |p| - |p_2|) \left[2f(t,p)f(t,p_1) + f(t,p_1) \right].
\]

The loss operator \(Q^-[f] := f \nu[f] \) is local in \(f(t,p) \), and where \(\nu[f](t,p) \), referred as the collision frequency or attenuation coefficient, is defined by

\[
\nu[f](t,p) := \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} dp_1 dp_2 |p||p_1||p_2| \delta(p-p_1-p_2) \\
\times \delta(|p| - |p_1| - |p_2|)[2f(t,p_1) + 1] + 2 \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} dp_1 dp_2 |p||p_1||p_2| \\
\times \delta(p_1 - p - p_2) \delta(|p_1| - |p| - |p_2|) f(t,p_2),
\]

is nonlocal in \(f(t,p) \).

Remark 1.1 In order to grant the split of the collision operator in gain and loss part, it is necessary that \(\nu[f](t,p) \) is well defined. This is granted if radial solutions have at least the second moment finite throughout the evolution. This property will be secured by the creation and propagation of statistical moments in Section 4 and the corresponding existence theorem in Section 5.

A technical difficulty in the analysis is the fact that the natural conservation law for the model is energy conservation, that is, the solution’s first moment, whereas the homogeneity of the kinetic potential kernel in the model is 3. Due to this fact, it is essential to perform high moment analysis which, in contrast, it is not central for the Cauchy problem in the classical Boltzmann equation, refer to [5, 36, 24].

The organization of the paper is as follows, all in the context of radially symmetric solutions:
· In Section 2 we recall the main conservation laws of (1.1). We also present the natural decomposition of Q into the sum of a gain and a loss term.

· Section 3 is devoted to a key a priori estimate on the moments of equation (1.1) which will be used several times along the paper, Proposition 3.1.

· Using Proposition 3.1 we prove the creation and propagation of polynomial moments, Theorem 4.1 in Section 4.

· Using the a priori estimates of Section 4, we prove, in section 5, existence and uniqueness of solutions of radially symmetric solutions for equation (1.1) under natural conditions. Existence is based on a Hölder estimate and a condition of the sub-tangent type for Q, see Theorem 5.2. Uniqueness is based on a one-side Lipschitz estimate.

· Theorems 6.1 and 6.2 are the main results of Section 6. They address the propagation and creation of Mittag-Leffler moments for solutions to (1.1).

2 Conservation of energy and momentum

For notational convenience, we will usually omit the time variable t unless some stress is necessary in the context.

Proposition 2.1 (Weak Formulation) For any suitable test function φ, the following formula holds:

$$
\int_{\mathbb{R}^3} dp Q[f](p)\varphi(p) = \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} dp dp_1 dp_2 |p p_1 p_2| \delta(p - p_1 - p_2) \\
\times \delta(|p| - |p_1| - |p_2|) \left[f(p_1) f(p_2) - f(p_1) f(p) - f(p_2) f(p) - f(p) \right] \\
\times \left[\varphi(p) - \varphi(p_1) - \varphi(p_2) \right].
$$

(2.1)
Proof. In this proof we use the short-hand \(\int := \int_{\mathbb{R}^3} dp \, dp_1 \, dp_2 \). First, observe that
\[
\int_{\mathbb{R}^3} dp \, Q[f](p) \varphi(p) = \\
\int |p_1 p_2| \delta(p - p_1 - p_2) \delta(|p| - |p_1| - |p_2|) R(p, p_1, p_2) \varphi(p) \\
- \int |p_1 p_2| \delta(p - p_1 - p_2) \delta(|p| - |p_1| - |p_2|) R(p_1, p, p_2) \varphi(p) \\
- \int |p_1 p_2| \delta(p - p_1 - p_2) \delta(|p| - |p_1| - |p_2|) R(p_2, p_1, p) \varphi(p) .
\]
(2.2)

Second, interchanging variables \(p \leftrightarrow p_1 \) and \(p \leftrightarrow p_2 \),
\[
\int |p_1 p_2| R(p_1, p, p_2) \varphi(p) = \int |p_1 p_2| R(p, p_1, p_2) \varphi(p_1) ,
\]
(2.3)

and
\[
\int |p_1 p_2| R(p_2, p_1, p) \varphi(p) = \int |p_1 p_2| R(p, p_1, p_2) \varphi(p_2) .
\]
(2.4)

Finally, combining (2.2), (2.3), (2.4), we get (2.1).

\[\]
\[
\int_{\mathbb{R}^3} dp \, \partial_t f(p) \log \left(\frac{f(p)}{f(p)+1} \right).
\]

In addition, we can rewrite
\[
\int_{\mathbb{R}^3} dp \, Q[f](p) \varphi(p) = \int_{\mathbb{R}^9} |p p_1 p_2| \delta(p-p_1) \delta(|p| - |p_1| - |p_2|)
\times (1 + f(p)) (1 + f(p_1)) (1 + f(p_2))
\times \left(\frac{f(p_1)}{f(p_1) + 1} \frac{f(p_2)}{f(p_2) + 1} - \frac{f(p)}{f(p) + 1} \right) [\varphi(p) - \varphi(p_1) - \varphi(p_2)] d\rho d\rho_1 d\rho_2.
\]

Choosing \(\varphi(p) = \log \left(\frac{f(p)}{f(p)+1} \right) \) we obtain, in the case of equality, that
\[
\frac{f(p_1)}{f(p_1) + 1} \frac{f(p_2)}{f(p_2) + 1} - \frac{f(p)}{f(p) + 1} = 0,
\]
or equivalently, putting \(h(p) = \log \left(\frac{f(p)}{f(p)+1} \right) \), we get
\[
h(p_1) + h(p_2) = h(p).
\tag{2.8}
\]

The fact that \(h(\cdot) \) is radially symmetric yields \(h(p) = -\alpha \omega(p) \), for all \(p \in \mathbb{R}^3 \) and some positive constant \(\alpha \). This proves the claim.

Remark 2.1 We can observe from the above proof that if the function \(h \) is not radially symmetric, the constant \(\alpha \) will be a function of the direction \(\frac{p}{|p|} \) of the line containing the vector \(p \). Therefore, it is not clear if the equilibrium is uniquely determined for non-radial solutions. Moreover, it is clear that in order for \(\nu[f](p,t) \) to be well-defined, the integral of \(f \) on any lines starting from the origin needs to be well-defined. As a consequence, we need the condition that \(f \) is bounded from above by an integrable radial function. The above two reasons imply that working with radial solutions seems to be a natural choice for us.

3 A priori estimates on a solution’s moments

The scope of this paper limits to the case of radially symmetric solutions
\[
f(t,p) = f(t,|p|).
\]
Furthermore, we consider solutions of (1.1) that lie in $C([0, \infty); L^1(\mathbb{R}^3, |p|^k dp))$ where
\[L^1(\mathbb{R}^3, |p|^k dp) := \{ f \text{ measurable} \mid \int_{\mathbb{R}^3} dp \, |f(p)||p|^k < \infty, \ k \geq 1 \} . \]
That is, in sections 3 and 4 the a priori estimates assume the existence of a radially symmetric solution enjoying time continuity in such Lebesgue spaces for k sufficiently large. Define the solution’s moment of order k as
\[M_k(f)(t) := \int_{\mathbb{R}^3} dp \, f(t, |p|)|p|^k . \]

(3.1)

Using spherical coordinates, the integral with respect to dp on \mathbb{R}^3 can be reduced to an integral on \mathbb{R}_+ with respect to $d|p|$. Therefore, we also use the line-moment on \mathbb{R}_+
\[m_k(f)(t) := \int_0^{\infty} d|p| \, f(t, |p|)|p|^k . \]

(3.2)

We are going to use the definition of moments in two contexts: In one hand, in sections 3, 4 and 6 we always consider the moment applied to a given radial solution of the equation. Thus, there is no harm to omit the function dependence and just write $M_k(t), M_k, m_k(t)$ or $m_k(t)$ to denote moments and line-moments for simplicity. In the other hand, in section 5 we will use moments as norms of the spaces $L^1(\mathbb{R}^3, |p|^k dp)$, as a consequence, the functional dependence will be important. In addition, time dependence will not be key in this section, thus, we will write line-moments as $m_k(\cdot)$. Note that, for radially symmetric functions, M_k and m_{k+2} are equivalent. Then, according to the conservation law (2.6) and assuming initial energy finite, the following estimate hold
\[M_1(t) = M_1(0) < \infty , \quad m_3(t) = m_3(0) < \infty . \]

Proposition 3.1 (Line-Moment Ordinary Differential Inequalities)
For $1/k \leq \gamma \leq 1$, $k > 1$, we have the following a priori estimate on the moments valid with some universal constants C_1 and C_2
\[
\frac{d}{dt} m_{k\gamma + 2}(t) \\
\leq C_1 \sum_{i=1}^{\lfloor \frac{k+1}{2} \rfloor} \binom{k}{i} \left(m_{i\gamma + 4} m_{3+(k-i)\gamma} + m_{i\gamma + 3} m_{4+(k-i)\gamma} \right)(t) - C_2 m_{k\gamma + 8}(t) .
\]

(3.3)
Thus, we can reduce the integral of \(d_p\) as a test function in (1.1) and recalling that the line-moment \(m_k\) is equivalent to \(M_{k-2}\), we obtain

\[
\frac{d}{dt} m_k(t) = C(\pi) \int_{\mathbb{R}^+} \int_{\mathbb{R}^+} dr_1 dr_2 (r_1 + r_2)^{\frac{3}{2}} [f(t, r_1) f(t, r_2) - 2f(t, r_1 + r_2) - f(t, r_1 + r_2)] \times |r_1 + r_2|^{k-2} - r_1^{k-2} - r_2^{k-2}.
\]

(3.4)

Proof. For simplicity we omit the \(t\)-time variable in this proof. Using \(|p|^{k-2}\) as a test function in (1.1) and recalling that the line-moment \(m_k\) is equivalent to \(M_{k-2}\), we obtain

\[
\frac{d}{dt} m_k(t) = C \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} dp_1 dp_2 |p_1p_2| [\delta(p - p_1 - p_2) \\
\times \delta(|p| - |p_1| - |p_2|)][f(t, p_1)f(t, p_2) - f(t, p_1)f(t, p) \\
- f(t, p_2)f(t, p) - f(t, p)] \times |p|^{k-2} - |p_1|^{k-2} - |p_2|^{k-2},
\]

where \(C\) is some positive constant varying from line to line. The above integral, thanks to the Dirac measure \(\delta(p - p_1 - p_2)\), can be reduced from an integral on \(\mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3\) of \(dp_1 dp_2\) to an integral on \(\mathbb{R}^3 \times \mathbb{R}^3\) of \(dp_1 dp_2\)

\[
\frac{d}{dt} m_k(t) = \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} dp_1 dp_2 |p_1 + p_2| p_1 p_2 [\delta(|p_1 + p_2| - |p_1| - |p_2|) \\
\times \left[f(t, p_1)f(t, p_2) - f(t, p_1)f(t, p_1 + p_2) - f(t, p_2)f(t, p_1 + p_2) \\
- f(t, p_1 + p_2)\right] \times |p_1 + p_2|^{k-2} - |p_1|^{k-2} - |p_2|^{k-2}.
\]

Using spherical coordinates one has \(dp_2 = |p_2|^2 \sin \gamma d|p_2| d\gamma dp,\) with \(\gamma \in [0, \pi], \rho \in [0, 2\pi],\) and

\[
\delta(|p_1 + p_2| - |p_1| - |p_2|) = \delta(1 - \cos \gamma).
\]

Thus, we can reduce the integral of \(dp_2\) on \(\mathbb{R}^3\) to an integral of \(d|p_2|\) on \(\mathbb{R}^+\).

\[
\frac{d}{dt} m_k(t) = C(\pi) \int_{\mathbb{R}^+} \int_{\mathbb{R}^+} dp_1 d|p_2| |p_1 + p_2| p_1 p_2 [f(t, p_1)f(t, p_2) \\
- f(t, p_1)f(t, p_1 + p_2) - f(t, p_2)f(t, p_1 + p_2) - f(t, p_1 + p_2) \\
\times |p_1 + p_2|^{k-2} - |p_1|^{k-2} - |p_2|^{k-2} |p_2|^2.
\]

This implies, by a similar change of variables, that one is able to reduce \(dp_1\) to \(d|p_1|\). More specifically,

\[
\frac{d}{dt} m_k(t) = C(\pi) \int_{\mathbb{R}^+} \int_{\mathbb{R}^+} dp_1 d|p_2| \left(|p_1| + |p_2|\right) |p_1| |p_2| \times
\left[f(t, |p_1|)f(t, |p_2|) - f(t, |p_1|)f(t, |p_1| + |p_2|) - f(t, |p_2|)f(t, |p_1| + |p_2|) \\
- f(t, |p_1| + |p_2|)\right] \times \left(|p_1 + p_2|^{k-2} - |p_1|^{k-2} - |p_2|^{k-2}\right).
\]

10
Lemma 3.2 (From Ref. [12]) Assume that $k > 1$, let $\left\lfloor \frac{k+1}{2} \right\rfloor$ denote the integer part of $\frac{k+1}{2}$. Then for all $a, b > 0$, the following inequality holds

$$
\sum_{i=1}^{\left\lfloor \frac{k+1}{2} \right\rfloor-1} \binom{k}{i} (a^i b^{k-i} + a^{k-i} b^i)
$$

\begin{equation}
\leq (a + b)^k - a^k - b^k \leq \sum_{i=1}^{\left\lfloor \frac{k+1}{2} \right\rfloor} \binom{k}{i} (a^i b^{k-i} + a^{k-i} b^i).
\end{equation}

Proof. (of Proposition 3.1) For simplicity we omit t, the time variable, in the argument of this proof. From (3.4), we eliminate the negative term $-2 f(t, r_1) f(t, r_1 + r_2)$ and take into account the fact that $|r_1 + r_2|^k - r_1^k - r_2^k > 0$, to get

$$
\frac{d}{dt} m_{k+2}(t) \leq C(\pi) \int_{\mathbb{R}^+} \int_{\mathbb{R}^+} dr_1 dr_2 (r_1 + r_2) r_1^3 r_2^3 \left[f(t, r_1) f(t, r_2) - f(t, r_1 + r_2) \right] \times \left[|r_1 + r_2|^k - r_1^k - r_2^k \right].
$$

By applying the inequality

$$
|r_1 + r_2|^k \leq (|r_1|^\gamma + |r_2|^\gamma)^k,
$$

with $1/k \leq \gamma \leq 1$ into (3.6), it yields

$$
\frac{d}{dt} m_{k+2}(t) \leq C(\pi) \int_{\mathbb{R}^+} \int_{\mathbb{R}^+} dr_1 dr_2 (r_1 + r_2) r_1^3 r_2^3 \left[(|r_1|^\gamma + |r_2|^\gamma)^k - r_1^k - r_2^k \right] - C(\pi) \int_{\mathbb{R}^+} \int_{\mathbb{R}^+} dr_1 dr_2 (r_1 + r_2) r_1^3 r_2^3 \times \left[f(t, r_1 + r_2) \left[|r_1 + r_2|^k - r_1^k - r_2^k \right] \right].
$$

In order to obtain (3.14), we estimate the two terms on the right hand side of (3.8). Using Lemma 3.2 with $a = r_1^\gamma$ and $b = r_2^\gamma$, the first term can be estimated as follows

$$
\int_{\mathbb{R}^+} \int_{\mathbb{R}^+} dr_1 dr_2 (r_1 + r_2) r_1^3 r_2^3 \left[(|r_1|^\gamma + |r_2|^\gamma)^k - r_1^k - r_2^k \right] f(t, r_1) f(t, r_2)
$$

11
\[
\begin{align*}
\leq \int_{\mathbb{R}_+^2} d_1 dr_2 (r_1 + r_2) r_1^3 r_2^3 \sum_{i=1}^{k+1} \left(\binom{k}{i} \right) \left(r_1^{i \gamma} r_2^{(k-i) \gamma} + r_1^{(k-i) \gamma} r_2^{i \gamma} \right) f(t, r_1) f(t, r_2),
\end{align*}
\]

which, by a simple expansion process, can be bounded by

\[
\begin{align*}
& \int_{\mathbb{R}_+^2} \int_{\mathbb{R}_+} d_1 dr_2 \sum_{i=1}^{k+1} \left(\binom{k}{i} \right) \left(r_1^{i \gamma+4} r_2^{3+(k-i) \gamma} + r_1^{i \gamma+3} r_2^{4+(k-i) \gamma} + r_1^{(k-i) \gamma+4} r_2^{i \gamma+3} + r_1^{(k-i) \gamma+3} r_2^{i \gamma+4} \right) f(t, r_1) f(t, r_2) \\
& \quad \leq 2 \sum_{i=1}^{k+1} \left(\binom{k}{i} \right) \left(m_{i \gamma+3} m_{4+(k-i) \gamma} + m_{i \gamma+3} m_{4+(k-i) \gamma} \right) (t).
\end{align*}
\]

Note that in the above inequality, we only use the definition of \(m_{i \gamma+3}, m_{i \gamma+4}, m_{(k-i) \gamma+3}, \) and \(m_{(k-i) \gamma+4}. \) Regarding the second term on the right side of (3.8), we rewrite it using the change of variables \(r_1 + r_2 \rightarrow r \) and \(r_1 \rightarrow r - r_2 \)

\[
\begin{align*}
- \int_{\mathbb{R}_+^2} \int_{\mathbb{R}_+} d_1 dr_2 (r_1 + r_2) r_1^3 r_2^3 \left[|r_1 + r_2|^{k \gamma} - r_1^{k \gamma} - r_2^{k \gamma} \right] f(t, r_1 + r_2) \\
& = \int_0^{\infty} \int_0^r dr_2 dr \left(r - r_2 \right)^3 r_2^3 \left[|r - r_2|^{k \gamma} + r_2^{k \gamma} - |r|^{k \gamma} \right] f(t, r).
\end{align*}
\]

Set

\[
I := \int_0^r dr_2 r (r - r_2)^3 r_2^3 \left[|r - r_2|^{k \gamma} + r_2^{k \gamma} - |r|^{k \gamma} \right] .
\]

Then, by (3.7), \(I \leq 0. \) By the change of variables \(r_2 \rightarrow r - r_2, \) one gets the following identity

\[
\int_0^r dr_2 (r - r_2)^3 r_2^{3+k \gamma} = \int_0^r dr_2 (r - r_2)^3 r_2^{3+k \gamma} ,
\]

which implies the equality

\[
I = \int_0^r dr_2 (r - r_2)^3 r_2^{3} [2r_2^{k \gamma} - r^{k \gamma}] .
\]
Develop \((r - r_3)^3\) in the above integral, the following equality holds

\[
I = \int_0^r dr_2 (r - r_2)^3 r_2^3 [2r_2^{k\gamma} - r^{k\gamma}]
\]

\[
= \int_0^r dr_2 [r^3 - 3r_2^2 r + 3r_2^3 - r - r_2^3] [2r_2^{k\gamma+3} - r^{k\gamma} r_2^3]
\]

\[
= \int_0^r dr_2 [2r_2^{k\gamma+3} r^3 - 6r_2^{k\gamma+4} r^2 + 6r_2^{k\gamma+5} r - 2r_2^{k\gamma+6}

- r^{k\gamma} r_2^3 + 3r^{k\gamma+2} r_2^4 - 3r^{k\gamma+1} r_2^5 + r_2^6 r^{k\gamma}] = -C r^{k\gamma+7},
\]

where the last equality follows by evaluating the integral of \(dr_2\) in \((0, r)\).

Since \(I \leq 0\), the constant \(C\) is explicit and positive. Combining (3.10), (3.11), (3.12), we get the following equation for the second term on the right hand side of (3.8)

\[
- \int_{\mathbb{R}_+} \int_{\mathbb{R}_+} dr_1 dr_2 (r_1 + r_2) r_1^3 r_2^3 \left[|r_1 + r_2|^{k\gamma} - r_1^{k\gamma} - r_2^{k\gamma} \right] f(t, r_1 + r_2)
\]

\[
= -C \int_0^\infty r^{k\gamma+8} f(t, r) dr = -C m_{k\gamma+8}.
\]

Putting together (3.6), (3.9) and (3.13), we obtain the ordinary differential line-moments inequality

\[
\frac{d}{dt} m_{k\gamma+2} \leq C \sum_{i=1}^{\left\lfloor \frac{k+1}{2} \right\rfloor} \binom{k}{i} \left(m_{i\gamma+4m_3+(k-i)\gamma} + m_{i\gamma+3m_4+(k-i)\gamma} \right) - C' m_{k\gamma+8}.
\]

The proof of Proposition 3.1 is now complete.

\[\blacksquare\]

4 Creation and propagation of polynomial moments

Let us write the main result of this section.

Theorem 4.1 Suppose that \(f_0(p) = f_0(|p|)\), \(m_3(0) < \infty\) and \(m_3(t)\) defined in (3.2). Then, there exists a constant \(C_k(h_3)\) that depends only on \(h_3 := h_3(m_3(0))\), and on \(k\) such that we have the following creation of the \(k\)th line moment

\[
m_k(t) \leq C_k(h_3) \left(1 - e^{-C_k t} \right)^{-\frac{k+2}{6}} \quad \forall \ k > 3.
\]
Moreover, if \(m_k(0) < \infty \), we have the following propagation of the \(k \)th line moment
\[
m_k(t) \leq \max \{ m_k(0), C_k(\mathfrak{b}_3) \}.
\] (4.2)

Lemma 4.1 (Moment interpolation) The line-moment \(m_k = m_k(t) \) satisfies
\[
m_\rho \leq m_{\rho_1}^{\gamma} m_{\rho_2}^{1-\gamma},
\] (4.3)
where the positive constants \(\rho, \rho_1, \rho_2, \gamma \) satisfy \(0 < \rho_1 \leq \rho \leq \rho_2, 0 < \gamma < 1 \), and \(\rho = \gamma \rho_1 + (1 - \gamma) \rho_2 \).

Proof. The proof of this statement is straightforward. Indeed, Hölder’s inequality implies
\[
m_\rho \leq m_{\rho_1}^{\gamma} m_{\rho_2}^{1-\gamma} = \left(\int_{\mathbb{R}_+} dr |r|^{\rho_1} f(r) \right)^\gamma \left(\int_{\mathbb{R}_+} dr |r|^{\rho_2} f(r) \right)^{1-\gamma} \geq \int_{\mathbb{R}_+} dr |r|^{\rho_1 \gamma + \rho_2 (1-\gamma)} f(r) \geq \int_{\mathbb{R}_+} dr |r|^{\rho} f(r) \geq m_\rho.
\]

Proof. (of Theorem 4.1) In this proof, we will use Lemma 3.1 with \(\gamma = 1 \) which reduces to
\[
\frac{d}{dt} m_{k+2}(t) \leq C_1 \sum_{i=1}^{[\frac{k+1}{2}]} \binom{k}{i} \left(m_{i+4} m_{3+(k-i)} + m_{i+3} m_{4+(k-i)} \right)(t) - C_2 m_{k+8}(t),
\]
where \(C_1 \) and \(C_2 \) are some universal positive constants. For the sake of simplicity, we shift \(k + 2 \rightarrow k \) in the above inequality to get
\[
\frac{d}{dt} m_k(t) \leq C_1 \sum_{i=1}^{[\frac{k-1}{2}]} \binom{k-2}{i} \left(m_{i+4} m_{1+(k-i)} + m_{i+3} m_{2+(k-i)} \right)(t) - C_2 m_{k+6}(t).
\] (4.4)

From (4.4), our goal is to construct a differential inequality for \(m_k = m_k(t) \) from which the boundedness of \(m_k \) could be deduced. In order to do that, we will estimate the right hand side of (4.4) by some function of \(m_k \), which leads to a uniform in time upper bound of \(m_k \). First, let us start bounding the right hand side of (4.3) by estimating the term \(m_{i+4} m_{1+k-i} \) with Hölder’s inequality,
\[
m_{i+4} \leq m_3^{\frac{k+2}{k+4}} m_{k+6}^{\frac{k-1}{k+4}} = C m_{k+6}.
\]
where we notice that, by the conservation of energy (2.6), m_{3} and m_{k+1-i} are constants. Multiplying m_{i+4} by m_{1+k-i} and using Young’s inequality

$$m_{i+4}m_{1+k-i} \leq Cm_{k+6}^{\frac{k+1}{k+2}}m_{1+k-i} \leq \frac{m_{k+6}^{p}m_{1+k-i}}{p} + \frac{m_{k+6}^{q}m_{1+k-i}}{qe^{q}}. \quad (4.5)$$

We set $q = \frac{k+3}{k+2-i}$ and $p = \frac{k+3}{i+1}$ and choose $\epsilon > 0$ in the sequel. The quantity m_{1+k-i} could be bounded by Hölder’s inequality again

$$m_{1+k-i} \leq \frac{k+3}{k+2-i}m_{3}^{\frac{k+3}{k+2-i}}.$$

Therefore, from (4.5) and the aforementioned bound on m_{1+k-i}, we obtain the estimate for the term $m_{i+4}m_{1+k-i}$ on the right side of (4.4)

$$m_{i+4}m_{1+k-i} \leq \frac{m_{k+6}^{p}m_{k}^{(k+3)(k-i-2)}}{p} + \frac{m_{k+6}^{q}m_{k}^{(k+2-i)(k-3)}}{qe^{q}}. \quad (4.6)$$

Since

$$\frac{1}{2} < \frac{(k+3)(k-i-2)}{(k+2-i)(k-3)} < \frac{k-1}{k-3},$$

an interpolation argument applied to inequality (4.6) leads to

$$m_{i+4}m_{1+k-i} \leq \frac{m_{k+6}^{p}m_{k}^{1/2}}{p} + \frac{m_{k+6}^{q}m_{k}^{k-1}}{qe^{q}}. \quad (4.7)$$

where C is some positive constant that can vary from line to line. Second, we continue estimating the right side of (4.4) by controlling the term $m_{i+3}m_{2+k-i}$. We consider two cases: (1) $i \geq 2$ (then $2+k-i \leq k$), and (2) $i = 1$ (then $i+3 = 4 \leq k$). Let us start with the latter.

Case (2). Using Hölder inequality (4.3) and the conservation of momentum on m_{3}

$$m_{2+k-i} \leq m_{3}^{k+3}m_{k+6}^{k-i-1} = Cm_{k+6}^{k-i-1}. \quad (k+3)$$

Multiplying this inequality by m_{i+3} and employing Hölder’s inequality again, we have

$$m_{i+3}m_{2+k-i} \leq Cm_{i+3}m_{k+6}^{k-i-1} \leq \frac{m_{i+3}^{p}m_{k+6}^{q}}{s} + \frac{m_{k+6}^{q}m_{i+3}^{k-i-1}}{s} \epsilon^{s}, \quad (4.8)$$

15
where we set $s = \frac{k+3}{k-1-i}$ and $r = \frac{k+3}{i+1}$. Since $i + 3 \leq k$, we can use Hölder’s inequality

$$m_{i+3} \leq m_k^{\frac{i}{k-3}} m_3^{\frac{k-3-i}{k-3}}.$$

One concludes that

$$m_{i+3} m_{2+k-i} \leq \frac{m_{k+6} \epsilon^s}{s} + \frac{m_k^{\frac{i}{k-3}}}{r \epsilon^r} = \frac{m_{k+6} \epsilon^s}{s} + \frac{m_k^{\frac{i}{k-1}}}{r \epsilon^r}.$$

(4.9)

For Case (1) a similar argument is made to conclude that

$$m_{i+3} \leq m_3^{\frac{k+3-i}{k+3-i}} m_k^{\frac{1}{k+6}} = C m_k^{\frac{1}{k+6}}.$$

Multiplying m_{i+3} by m_{2+k-i} and using Young’s inequality

$$m_{i+3} m_{2+k-i} \leq C m_k^{\frac{i}{k+3-i}} m_{2+k-i} \leq \frac{m_{k+6} \epsilon^s}{s} + \frac{m_{k+6} \epsilon^{s'}}{s'} + \frac{m_{k+6} \epsilon^{r'}}{r' \epsilon^{r''}},$$

where we set $s' = \frac{k+3}{k+3-i}$ and $s'' = \frac{k+3-i}{k+3-i}$. The quantity m_{2+k-i} can be bounded as

$$m_{2+k-i} \leq m_k^{\frac{k-1}{k-3}} m_3^{\frac{k-2}{k-3}}.$$

Therefore, we obtain the estimate for the term $m_{i+3} m_{2+k-i}$ for the right side of (4.4)

$$m_{i+3} m_{2+k-i} \leq \frac{m_{k+6} \epsilon^p}{p} + \frac{m_k^{\frac{(k+3)(k-i-1)}{(k+3-i)(k-3)}}}{q \epsilon^q}.$$

Since

$$\frac{1}{2} \leq \frac{(k+3)(k-i-1)}{(k+3-i)(k-3)} \leq \frac{k-1}{k-3},$$

we can interpolate to conclude that

$$m_{i+3} m_{2+k-i} \leq \frac{m_{k+6} \epsilon^{s'}}{s'} + C \frac{m_k^{\frac{i}{s'}}}{r' \epsilon^{r'}} + C \frac{m_k^{\frac{k+3}{r'}}}{r' \epsilon^{r''}}.$$

(4.10)

Combining (4.4), (4.5), (4.9) and (4.10), we get

$$\frac{d}{dt} m_k(t) \leq C(\epsilon) m_{k+6} + C'(\epsilon) \left[m_k^{\frac{k+3}{k+3-i}} + m_k^{\frac{k-1}{k-3}} \right](t) - C'' m_{k+6}(t),$$

(4.11)

where $C(\epsilon)$ and $C'(\epsilon)$ are positive constants satisfying $C(\epsilon) \to 0$ and $C'(\epsilon) \to \infty$ as $\epsilon \to 0$, and C'' is a positive constant depending only on $\eta_3 := m_3(0)$.

16
Notice also that $C(\epsilon)$ and $C'(\epsilon)$ also depend on k. For $\epsilon > 0$ sufficiently small, the constant $C(\epsilon)$ is absorbed by C'' and we infer from (4.11) that
\[
\frac{d}{dt} m_k(t) \leq C_k \left[m_k^{\frac{k+1}{k-3}} + m_k^{\frac{k+3}{5(k-3)}} + m_k^{\frac{1}{2}}(t) \right] \frac{C''}{2} m_{k+6}(t),
\]
for some $C_k > 0$ depending only on $k > 3$. In order to obtain a differential inequality for m_k, it remains to estimate m_{k+6}. Indeed, using Hölder’s inequality (4.3)
\[
m_k^{\frac{k-3}{k+3}} - \frac{6}{k+3} \geq m_k,
\]
which implies $m_{k+6} \geq m_k$. As a consequence, from (4.12) we finally arrive to
\[
\frac{d}{dt} m_k(t) \leq C_k \left[m_k^{\frac{k-1}{k-3}} + m_k^{\frac{k+3}{5(k-3)}} + m_k^{\frac{1}{2}}(t) \right] - \frac{C''}{2} m_{k+3}^\frac{k+3}{k-3}(t).
\]
By Young inequality, there are positive constants $C(\epsilon)$ and ϵ such that
\[
m_k^{\frac{k-1}{k-3}} \leq \epsilon m_k^{\frac{k+3}{5(k-3)}} + C(\epsilon), \quad m_k^{\frac{k+3}{5(k-3)}} \leq \epsilon m_k^{\frac{k+3}{k-3}} + C(\epsilon),
\]
and by Cauchy inequality
\[
m_k^{\frac{1}{2}} \leq \frac{1}{2} m_k + \frac{1}{2}.
\]
Combining the above inequalities, for ϵ small, with (4.13) we conclude that there are positive constants, still denoted by C_k and $C''/2$, such that
\[
\frac{d}{dt} m_k(t) \leq C_k \left[1 + m_k(t) \right] - C'' m_{k+3}^\frac{k+3}{k-3}(t).
\]
By comparing (4.13) with the solution of the Bernoulli equation
\[
\frac{d}{dt} Y(t) \leq C_k Y(t) - C'' Y^{\frac{k+3}{k-3}}(t),
\]
which is
\[
Y(t) = \left[\left(Y(0) e^{-C_k t} \right)^{-\frac{6}{k-3}} + \frac{C''}{C_k} \left(1 - e^{-C_k t} \right) \right]^{-\frac{k-3}{6}},
\]
\[
\leq C_k (\theta_3) \left(1 - e^{-C_k t} \right)^{-\frac{k-3}{6}},
\]
where $C_k(\theta_3) := (C_k/C'')^\frac{k-3}{6}$ is a constant, since C'' depends only on $\theta_3 = m_3(0)$ and C_k only on k. Hence inequality (4.1) holds. In addition, if the initial k^{th} line-moment $m_k(0)$ is finite, then clearly the bound may be improved at $t = 0$, and $m_k(t)$ clearly satisfies inequality (4.2).
5 The Cauchy Problem

This section is devoted to show existence and uniqueness of positive solutions of the initial value problem associated to equation (1.9), (1.10) and (1.11), which corresponds to the solutions of the initial value problem for equation (1.1) where the collision operator has a transition probability given by $|M|^2 = \kappa |p||p_1||p_2|$ from (1.5) for $p = p_1 + p_2$ and $|p| = |p_1| + |p_2|$.

The approach we use is based on an abstract framework for solving ODE’s in Banach spaces applied in this context to find uniqueness of non-negative homogeneous radially symmetric solutions of the quantum Boltzmann equation for bosons at very low temperature in $L^1(\mathbb{R}^3, |p|dp)$, the set of measurable functions, integrable w.r.t. the measure $|p|dp$.

More specifically, we have the following theorem, whose proof can be found in the Appendix 7.

Theorem 5.1 Let $E := (E, \| \cdot \|)$ be a Banach space, \mathcal{S} be a bounded, convex and closed subset of E, and $Q : \mathcal{S} \to E$ be an operator satisfying the following properties:

- **Hölder continuity condition**
 $$\|Q[f] - Q[g]\| \leq C\|f - g\|^\beta, \quad \beta \in (0, 1), \quad \forall f, g \in \mathcal{S}, \quad (5.1)$$

- **Sub-tangent condition**
 $$\liminf_{h \to 0^+} h^{-1} \text{dist}(f + hQ[f], \mathcal{S}) = 0, \quad \forall f \in \mathcal{S}, \quad (5.2)$$

and, **one-sided Lipschitz condition**

$$[Q[f] - Q[g], f - g] \leq C\|f - g\|, \quad \forall f, g \in \mathcal{S}, \quad (5.3)$$

where $[\varphi, \phi] := \lim_{h \to 0^-} h^{-1}(\|\varphi + h\phi\| - \|\phi\|)$.

Then the equation

$$\partial_t f = Q[f] \text{ on } [0, \infty) \times E, \quad f(0) = f_0 \in \mathcal{S} \quad (5.4)$$

has a unique solution in $C^1([0, \infty), E) \cap C([0, \infty), \mathcal{S})$.

This theorem was proved in [13] by Bressan in the context of solving the elastic Boltzmann equation for hard spheres in 3 dimension. We point out that [13] does not properly show that (5.2) is satisfied in that case. For
The completeness of this manuscript we rewrite Bressan’s unpublished proof in the Appendix. The Bressan’s needed techniques can be found in [35]. Indeed, referring to the argument given in [1], using conditions (5.1) and (5.2) combined with [35, Theorem VI.2.2] one has that conditions (C1), (C2) and (C3) in [35, pg. 229] are satisfied and hence, together with (5.3), all needed conditions for the existence and uniqueness theorem [35, Theorem VI.4.3] for ODEs in Banach spaces are fulfilled.

For our particular case, we need to identify a suitable Banach space and a corresponding bounded, convex and closed subset S.

Indeed, choosing $E = L^1(\mathbb{R}^3, |p| dp)$, the choice of the subspace S, defined below in (5.5), specifically depend on the estimates to solutions of the quantum Boltzmann equation (1.9), (1.10) and (1.11), whose collisional operator satisfy conditions (5.1), (5.2) and (5.3) when the transition probability (1.5) is given by $|\mathcal{M}|^2 = \kappa |p||p_1||p_2|$ for $p = p_1 + p_2$ and $|p| = |p_1| + |p_2|$.

More specifically, such subset $S \subset L^1(\mathbb{R}^3, |p| dp)$ is characterized by the Hölder continuity and sub-tangent conditions (5.1) and (5.2), respectively, (to be shown next in subsection 5.2), and it is defined as follows:

$$S := \left\{ f \in L^1(\mathbb{R}^3, |p| dp) \mid \begin{array}{l}
\text{i. } f \text{ nonnegative \& radially symmetric, } \\
\text{ii. } m_3(f) = \int_{\mathbb{R}^+} d|p| f(|p|)|p|^3 = h_3, \\
\text{iii. } m_{10}(f) = \int_{\mathbb{R}^+} d|p| f(|p|)|p|^{10} \leq h_{10}
\end{array} \right\},$$

where h_3 is an arbitrary initial energy, and the specific h_{10} is defined below in (5.29). We are now in conditions to state and prove the existence and uniqueness theorem.

Theorem 5.2 (Existence and Uniqueness) Let $f_0(p) = f_0(|p|) \in S$. Then, equation (1.1) with (1.5) has a unique conservative solution

$$0 \leq f(t, p) = f(t, |p|) \in C([0, \infty); S) \cap C^1((0, \infty); L^1(\mathbb{R}^3, |p| dp)).$$

Proof. The proof of this theorem consists of verifying the three conditions (5.1), (5.2), and (5.3) in Subsections 5.1, 5.2, and 5.3, respectively. We start first with the Hölder continuity condition.
5.1 Hölder Estimate for Q

Recall the definition of $m_k(f)$, the kth-line-moment of a radially symmetric $f(p) := f(|p|)$

$$m_k(f) := \int_{\mathbb{R}^+} dp \, f(|p|)|p|^k, \quad k \geq 0,$$ \hspace{1cm} (5.7)

and observe that $m_3(|f|)$ is equivalent to the usual norm for a radially symmetric function in $L^1(\mathbb{R}^3, |p|dp)$.

Lemma 5.1 (Hölder continuity) The collision operator

$$Q : S \rightarrow L^1(\mathbb{R}^3, |p|dp)$$

is Hölder continuous, with the following Hölder estimate

$$m_3(\langle Q[f] - Q[g] \rangle) \leq A_1 m_3(\langle f - g \rangle)^\gamma + A_2 m_3(\langle f - g \rangle),$$ \hspace{1cm} (5.8)

valid for all $f, g \in S$. The constants A_i, for $i = \{1, 2\}$, depend only on h_3 and h_{10}.

Proof. We first observe that for any $f \in S$, properties i. and ii. in [4.5] yield the interpolation estimates shown in (4.3) for moments $m_5(\langle f \rangle) \leq C_5$ and $m_6(\langle f \rangle) \leq C_6$, with $\gamma = \frac{2}{7}$ and $\gamma = \frac{3}{7}$ and positive constants depending only on h_3 and h_{10}, respectively.

Next, in order to estimate the $L^1(\mathbb{R}^3, |p|dp)$-norm of the difference of the collision operator on any pair of functions f and g in S, we use the weak formulation shown in Proposition 2.1 applied to the test function $\varphi(p) = \text{sign}(Q[f] - Q[g])(p)$, yielding the identity

$$\int_{\mathbb{R}^3} dp \, |Q[f] - Q[g]|(p)|p| = \int_{\mathbb{R}^3} dp \, (Q[f] - Q[g])(p)\text{sign}(Q[f] - Q[g])(p)|p|$$

$$= \int_{\mathbb{R}^3} dp \, dp_1 dp_2 \, |p| p_1 p_2 \delta(p - p_1 - p_2) \delta(|p| - |p_1| - |p_2|)$$

$$\times \left[f(p_1)f(p_2) - 2f(p_2)f(p) - f(p) - g(p_1)g(p_2) + 2g(p_2)g(p) + g(p) \right]$$

$$\times \left[|p|\text{sign}(Q[f] - Q[g])(p) - |p_1|\text{sign}(Q[f] - Q[g])(p_1) \right.$$

$$\left. - |p_2|\text{sign}(Q[f] - Q[g])(p_2) \right].$$

So, using the triangle inequality, it follows

$$\int_{\mathbb{R}^3} dp \, |Q[f] - Q[g]|(p)|p|$$

20
from estimating these three terms. Therefore, the proof of the Hölder estimate for the collision operator follows and

\[\int_{\mathbb{R}} dp \, dp_1 dp_2 \, |p \, p_1 p_2| \delta(p - p_1 - p_2) \delta(|p| - |p_1| - |p_2|) \]

where

\[C \left| f(p_1) f(p_2) - 2f(p_2)f(p) - f(p) - g(p_1)g(p_2) + 2g(p_2)g(p) + g(p) \right| \]

\[\times \left[|p| + |p_1| + |p_2| \right]. \]

Hence, using the same change of coordinates (3.10) used to obtained the a priori moment’s estimates, now applied to the above inequality (5.9), yields

\[\int_{\mathbb{R}^+} dr \left| Q[f] - Q[g] \right|(r)r^3 \]

\[\leq C \int_0^\infty \int_0^r \, dr_2 dr \left| r - r_2 \right|^3 r^2 \left| f(r - r_2)f(r_2) - 2f(r_2)f(r) - f(r) \right| \]

\[- g(r - r_2)g(r_2) + 2g(r_2)g(r) + g(r) \mid \left(|r| + |r - r_2| + |r_2| \right), \]

where \(C \) is an explicit positive constant that varies from line to line. Now, since \(|r| + |r - r_2| + |r_2| = 2r \) in the \(0 \leq r_2 \leq r \) domain of integration, the simplified expression follows

\[\int_{\mathbb{R}^+} dr \left| Q[f] - Q[g] \right|(r)r^3 \]

\[\leq C \int_0^\infty \int_0^r \, dr_2 dr_2 \left| r - r_2 \right|^3 r^2 \left| f(r - r_2)f(r_2) - 2f(r_2)f(r) - f(r) \right| \]

\[- g(r - r_2)g(r_2) + 2g(r_2)g(r) + g(r) \mid \]

\[= Q_1 + Q_2 + Q_3, \]

where the \(Q_i \), with \(i \in \{1, 2, 3\} \), are defined by

\[Q_1[f, g] := \]

\[C \int_0^\infty \int_0^r \, dr_2 dr \left| r - r_2 \right|^3 r^2 \left| f(r - r_2)f(r_2) - g(r - r_2)g(r_2) \right|, \]

\[Q_2[f, g] := C \int_0^\infty \int_0^r \, dr_2 dr \left| r - r_2 \right|^3 r^2 \left| f(r_2)f(r) - g(r_2)g(r) \right|, \]

and

\[Q_3[f, g] := C \int_0^\infty \int_0^r \, dr_2 dr \left| r - r_2 \right|^3 r^2 \left| f(r) - g(r) \right|. \]

Therefore, the proof of the Hölder estimate for the collision operator follows from estimating these three terms.
Estimating Q_1. First, splitting $f(r-r_2)f(r_2) - g(r-r_2)g(r_2)$ as the sum of $f(r-r_2)(f(r_2) - g(r_2))$ and $g(r_2)(f(r-r_2) - g(r-r_2))$ and applying the triangle inequality from (5.12) yields

\[
Q_1[f, g] \leq C \int_0^\infty \int_0^r dr_2 dr_2 r^2 |r - r_2|^3 r_2^3 |f(r_2)||f(r_2) - g(r_2)| \\
+ C \int_0^\infty \int_0^r dr_2 dr_2 r^2 |r - r_2|^3 r_2^3 |g(r_2)||f(r_2) - g(r-r_2)|.
\]
(5.15)

Exchanging variables $r - r_2 \to r_1$, the right side of (5.15) is bounded by

\[
\int_{\mathbb{R}_+} dr |Q_1[f] - Q_1[g]|(r)r^3 \leq C \int_{\mathbb{R}_+^2} dr_1 dr_2 (r_1^5 r_2^3 + r_1^3 r_2^5) |f(r_1)||f(r_2) - g(r_2)| \\
+ C \int_{\mathbb{R}_+^2} dr_1 dr_2 (r_1^5 r_2^3 + r_1^3 r_2^5) |g(r_2)||f(r_1) - g(r_1)| \leq C \left(h_3 + C_5\right) \int_{\mathbb{R}_+} dr |f(r) - g(r)||(|r|^3 + |r|^5),
\]
(5.16)

where last inequality holds by the propagation of moments estimate

\[
\int_{\mathbb{R}_+} dr r^3 \max\{f, g\}(r) \leq h_3, \quad \int_{\mathbb{R}_+} dr r^5 \max\{f, g\}(r) \leq C_5.
\]
(5.17)

Finally, using Hölder inequality

\[
\int_{\mathbb{R}_+} dr |f(r) - g(r)||r|^5 \leq \left(\int_{\mathbb{R}_+} dr |f(r) - g(r)||r|^3 \right)^{2/3} \times \left(\int_{\mathbb{R}_+} dr |f(r) - g(r)||r|^6 \right)^{1/3} \leq C_6^{2/3} \left(\int_{\mathbb{R}_+} dr |f(r) - g(r)||r|^3 \right)^{1/3},
\]
leads to estimate for the term Q_1 as follows,

\[
Q_1[f, g] \leq C h_3 C_6^{2/3} \left(\int_{\mathbb{R}_+} dr |f(r) - g(r)||r|^3 \right)^{1/3} \\
+ C C_5 \int_{\mathbb{R}_+} dr |f(r) - g(r)||r|^3,
\]
(5.18)
where, we recall, the constants C_5 and C_6 are controlled by b_3 and b_{10}.

Estimating Q_2. Expressing $f(r_2)f(r) - g(r_2)g(r)$ as the sum of $(f(r_2) - g(r_2))f(r)$ and $g(r_2)(f(r) - g(r))$ we estimate (5.13) as

$$Q_2[f,g] \leq C \int_0^\infty \int_0^r dr_2 dr_2 |r - r_2|^3 |r_2|^3 \|f(r_2) - g(r_2)\|f(r)\
+ C \int_0^\infty \int_0^r dr_2 dr_2 |r - r_2|^3 |r_2|^3 \|f(r) - g(r)\|g(r_2)\. \tag{5.19}$$

Since $|r - r_2| \leq |r|$, we obtain from (5.19) that

$$Q_2[f,g] \leq C \int_0^\infty \int_0^r dr_2 dr_2 |r|^3 |r_2|^3 \|f(r_2) - g(r_2)\|f(r)\
+ C \int_0^\infty \int_0^r dr_2 dr_2 |r|^3 |r_2|^3 \|f(r) - g(r)\|g(r_2)\
\leq C b_3 \int_{\mathbb{R}^+} dr \|f(r) - g(r)\||r|^5 + C C_5 \int_{\mathbb{R}^+} dr \|f(r) - g(r)\||r|^3, \tag{5.20}$$

where we have used in the last inequality (5.17). By the same argument as (5.18), we get

$$Q_2[f,g] \leq C b_3 C_6^{2/3} \left(\int_{\mathbb{R}^+} dr \|f(r) - g(r)\||r|^3 \right)^{1/3}$$

$$+ C C_5 \int_{\mathbb{R}^+} dr \|f(r) - g(r)\||r|^3. \tag{5.21}$$

Estimating Q_3. Integrating in r_2, we can rewrite (5.14) as an integral in r only

$$Q_3[f,g] = C \int_{\mathbb{R}^+} dr \|f(r) - g(r)\||r|^9, \tag{5.22}$$

where C is some other universal constant. Thus, using Hölder inequality as in (4.3) on $|f - g|(r)$ with $\gamma = \frac{9}{4}$, one obtains

$$C^{-1} Q_3[f,g] = \int_{\mathbb{R}^+} dr |f - g|(r)|r|^9$$

$$\leq \left(\int_{\mathbb{R}^+} dr |f - g|(r)|r|^{10} \right)^{6/7} \times \left(\int_{\mathbb{R}^+} dr |f - g|(r)|r|^3 \right)^{1/7}$$

$$\leq (2b_{10})^{6/7} \left(\int_{\mathbb{R}^+} dr |f - g|(r)|r|^3 \right)^{1/7}. \tag{5.23}$$

Therefore, estimate (5.8) follows by gathering (5.18), (5.21) and (5.23).
5.2 Sub-tangent condition

This condition, jointly with the Hölder continuity, characterize the subset $S \subset L^1(\mathbb{R}^3, |p|dp)$ defined in (5.5).

First, we show that the collision operator Q can be split as the sum of a gain and a loss operators, as mentioned earlier in (1.9)

$$Q[f] = Q^+[f] - f \nu[f],$$

provided $\nu[f]$ is finite whenever $f \in S$. Indeed, this property follows by the nature of the interaction law (i.e. the form of the singular mass term in the integrand) and transition probability \mathcal{M}, since

$$\nu[f](p) = \int_{\mathbb{R}^3} dp_1 |p_1| |p_1| |p - p_1| \delta(|p| - |p_1| - |p - p_1|)[2f(p_1) + 1]$$
$$+ 2 \int_{\mathbb{R}^3} dp_2 |p| |p + p_2| |p_2| \delta(|p + p_2| - |p| - |p_2|)f(p)$$
$$= \int_0^{|p|} dr |p|r^3(|p - r|)[2f(r) + 1] + 2 \int_{\mathbb{R}_+} dr |p|(|p + r|)r^3f(r)$$
$$\leq C |p| \left(m_3(f)^2 + m_4(f) + |p|^5\right),$$

and, therefore,

$$|\nu[f](p)| \leq C(h_3, h_{10})|p|(1 + |p|^5), \quad \forall f \in S.$$ (5.24)

The sub-tangent condition (5.2) follows as a corollary of next Proposition 5.1.

Proposition 5.1 Fix $f \in S$. Then, for any $\epsilon > 0$, there exists $h_1 := h_1(f, \epsilon) > 0$, such that the ball centered at $f + hQ[f]$ with radius $h \epsilon > 0$ intersects S, that is,

$$B(f + hQ[f], h\epsilon) \cap S,$$

is non-empty for any $0 < h < h_1$.

Proof. First, set $\chi_R(p)$ the characteristic function of the ball of radius $R > 0$ and introduce the truncated function $f_R(p) := \chi_R(p)f(p)$, then set $w_R := f + hQ[f_R]$.

We can control w_R from below to show it is possible to find an h_1 such that w_R remains non-negative for as long $0 < h < h_1$. Indeed, for any $f \in S$ its truncation $f_R(p) \in S$ as well, and since Q^+ is a positive operator,

$$w_R = f + Q^+[f_R] - hf_R \nu[f_R] \geq f - hf_R \nu[f_R].$$
\[\geq f \left(1 - h C(h_3, h_{10}) R \left(1 + |R|^5 \right) \right) \geq 0 \]

for any \(0 < h < h_1 := 1/C(h_3, h_{10}) R \left(1 + |R|^5 \right) \). In addition, since \(f_R \in \mathcal{S} \), \(Q[f_R] \in L^1(\mathbb{R}^3, |p|dp) \) by Lemma 5.1 and, as a consequence, \(w_R \in L^1(\mathbb{R}^3, |p|dp) \) as well. Moreover, by conservation of energy \(\int_{\mathbb{R}^3} dp Q[f_R] |p|^3 = 0 \), yielding

\[
m_3 \langle w_R \rangle = \int_{\mathbb{R}^3} dp w_R(|p|) |p|^3 = \int_{\mathbb{R}^3} dp \left(f + h Q[f_R] \right) |p|^3 = \int_{\mathbb{R}^3} dp f(|p|) |p|^3 = h_3,
\]

with \(h_3 \) independent of the parameter \(R \). In particular, \(w_R \) satisfies uniformly in \(R \), property \(\text{i.} \) in the characterization of the \(\mathcal{S} \) defined in (5.5).

Finally we need to show that \(w_R \) also satisfies property \(\text{ii.} \) in the set \(\mathcal{S} \). First, recall the a priori estimate for developed in (4.13) for the line-moment inequalities, namely

\[
\int_{\mathbb{R}^3} dp Q[f] |p|^k \leq \mathcal{L}_k \left(m_k \langle f \rangle \right) := C_k \left[m_k \langle f \rangle^{k-1} + m_k \langle f \rangle^{k+3} \right] - \frac{C''}{2} m_k \langle f \rangle^{k+1},
\]

holds for any \(k > 3 \) and \(C_k \) only depending on \(k \), and \(C'' \) only depending on \(m_3 \langle f \rangle = h_3 \). Note that the map \(\mathcal{L}_k : [0, \infty) \to \mathbb{R} \) has only one root, denoted as \(h_k^* \), at which \(\mathcal{L}_k \) changes from positive to negative for any \(k > 3 \). Note that this root only depends on \(h_k^3 \) and \(k \). Thus, it is always the case that

\[
\int_{\mathbb{R}^3} dp Q[f] |p|^k \leq \mathcal{L}_k \left(m_k \langle f \rangle \right) \leq \max_{0 \leq x \leq h_k^*} \{ \mathcal{L}_k(x) \}, \quad f \in \mathcal{S}.
\]

Fix \(k = 10 \) and define

\[
h_{10} := h_{10}^* + \max_{0 \leq x \leq h_{10}^*} \{ \mathcal{L}_{10}(x) \}.
\]

For any \(f \in \mathcal{S} \), we have two possibilities: \(m_{10} \langle f \rangle \leq h_{10}^* \), or \(m_{10} \langle f \rangle > h_{10}^* \). For the former, it readily follows that

\[
m_{10} \langle w_R \rangle = \int_{\mathbb{R}^3} dp w_R(|p|) |p|^{10} = \int_{\mathbb{R}^3} dp \left(f + h Q[f_R] \right) |p|^{10} \leq h_{10}^* + h \max_{0 \leq x \leq h_{10}^*} \{ \mathcal{L}_{10}(x) \} \leq h_{10}.
\]
where in the last inequality we have assumed $h \leq 1$ without loss of generality.

For the latter, we can choose $R := R(f)$ sufficiently large such that $m_{10}(f_R) \geq \mathfrak{h}_{10}$, and therefore,

$$\int_{\mathbb{R}^3} dp \, Q[f_R]|p|^{10} \leq \mathcal{L}_{10}(m_{10}(f_R)) \leq 0.$$

As a consequence,

$$m_{10}(w_R) = \int_{\mathbb{R}^3} dp \, (f + hQ[f_R])|p|^{10} \leq \int_{\mathbb{R}^3} dp \, f|p|^{10} \leq \mathfrak{h}_{10}.$$

The conclusion is that for any $f \in \mathcal{S}$, it is always the case that

$$m_{10}(w_R) \leq \mathfrak{h}_{10},$$

which ensures that w_R satisfies property ii. of the set \mathcal{S} in (5.3). We infer, thanks to (5.26), (5.27) and (5.30), that $w_R \in \mathcal{S}$ for any $0 < h < h_*$ where

$$h_* = \min \left\{ 1, \frac{1}{C(\mathfrak{h}_3)R(f)(1 + |R(f)|^5)} \right\}.$$ (5.31)

The argument ends using the Hölder estimate from Lemma 5.1 to obtain

$$h^{-1} m_3(|w_R - f - hQ[f_R]|) = m_3(|Q[f] - Q[f_R]|)$$

$$\leq A_1 m_3(|f - f_R|)^{\frac{1}{2}} + A_2 m_3(|f - f_R|) \leq \epsilon,$$

for $R := R(\epsilon)$ sufficiently large. Then, $w_R \in B(f + hQ[f], \epsilon)$ for this choice. Thus, choosing $R = \max\{R(f), R(\epsilon)\}$ and $h_1 := h_1(f, \epsilon)$ as in (5.31) one concludes that $w_R \in B(f + hQ[f], \epsilon) \cap \mathcal{S}$. Consequently,

$$h^{-1} \text{dist}(f + hQ[f], \mathcal{S}) \leq \epsilon, \quad \forall 0 < h < h_1.$$

The proof of Proposition 5.1 is now complete.

5.3 One-side Lipschitz condition

Using dominate convergence theorem one can show that

$$[\varphi, \phi] \leq \int_{\mathbb{R}^3} dp \varphi(p) \text{sign}(\phi)|p|.$$

Thus, the one-side Lipschitz condition is met after proving the following lemma showing a Lipschitz condition for quantum-Boltzmann operator. The
following proof, which yields a uniqueness results, is in the same spirit of
the original Di Blassio [16] uniqueness proof for initial value problem to the
homogeneous Boltzmann equation for hard spheres, using data with enough
initial moments.

Lemma 5.2 (Lipschitz condition) Assume $f, g \in S$. Then, there exists
constant $C := C(\mathfrak{h}_3, \mathfrak{h}_{10}) > 0$ such that

$$\int_{\mathbb{R}^3} dp \left(Q[f](p) - Q[g](p) \right) \text{sign}(f - g)(|p|^1 + |p|^2) \leq C m_3 (|f - g|) .$$

Proof. We start with the identity valid for radial functions $f := f(|p|)$ and
$\varphi := \varphi(|p|)$

$$\int_{\mathbb{R}^3} dp Q[f](p) \varphi(p) = 2(2\pi)^2 \int_0^\infty \int_0^\infty dr_1 dr_2 (r_1 + r_2) r_1^2 r_2^3 \times [\varphi(r_1 + r_2) - \varphi(r_1) - \varphi(r_2)] R(f)(r_1, r_2) ,$$

where

$$R(f)(r_1, r_2) := f(r_1) f(r_2) - 2f(r_1) f(r_1 + r_2) - f(r_1 + r_2) .$$

Thus,

$$\int_{\mathbb{R}^3} dp \left(Q[f](p) - Q[g](p) \right) \varphi(p) = 2(2\pi)^2 \int_0^\infty \int_0^\infty dr_1 dr_2 (r_1 + r_2) r_1^2 r_2^3 \times [\varphi(r_1 + r_2) - \varphi(r_1) - \varphi(r_2)] (R(f)(r_1, r_2) - R(g)(r_1, r_2)) ,$$

where, by definition

$$R(f)(r_1, r_2) - R(g)(r_1, r_2) = (f(r_1) f(r_2) - g(r_1) g(r_2))$$

$$- 2(f(r_1) f(r_1 + r_2) - g(r_1) g(r_1 + r_2)) - (f(r_1 + r_2) - g(r_1 + r_2)) .$$

Now, let us particularize for $\varphi := \varphi_k = |\cdot|^k \text{sign}(f - g)$, with $k \in \{1, 2\}$, and
control each of the natural 3 terms appearing in the right side of (5.32). For
the first, use simply $|\varphi_k| \leq |\cdot|^k$ to obtain

$$(f(r_1) f(r_2) - g(r_1) g(r_2)) [\varphi_k(r_1 + r_2) - \varphi_k(r_1) - \varphi_k(r_2)]$$

$$\leq \left(|f(r_1) - g(r_1)| |f(r_2) + g(r_1)| |f(r_2) - g(r_2)| \right) [r_1 + r_2]^k + |r_1|^k + |r_2|^k .$$
Since \(|r_1 + r_2|^k + |r_1|^k + |r_2|^k \leq 2(r_1 + r_2)^k \), it readily follows that
\[
\int_0^\infty \int_0^\infty dr_1dr_2(r_1 + r_2)r_1^3r_2^3
\times \left[\varphi(r_1 + r_2) - \varphi(r_1) - \varphi(r_2) \right] \left(f(r_1)f(r_2) - g(r_1)g(r_2) \right)
\leq 2^{k+1}m_3\langle f + g \rangle m_{k+4}\langle |f - g| \rangle + 2^{k+1}m_{k+4}\langle f + g \rangle m_3\langle |f - g| \rangle.
\] (5.33)

Similar argument for the second term, together with the change of variable \(r_1 + r_2 \rightarrow r_2 \), leads to
\[
-2 \int_0^\infty \int_0^\infty dr_1dr_2(r_1 + r_2)r_1^3r_2^3
\times \left[\varphi(r_1 + r_2) - \varphi(r_1) - \varphi(r_2) \right] \left(f(r_1)f(r_1 + r_2) - g(r_1)g(r_1 + r_2) \right)
\leq 2m_3\langle g \rangle m_{k+4}\langle |f - g| \rangle + 2m_{k+4}\langle f \rangle m_3\langle |f - g| \rangle.
\] (5.34)

Now, the absorption (third) term is nonpositive for \(k = 1 \) since
\[
-(f(r_1 + r_2) - g(r_1 + r_2)) \left[\varphi_1(r_1 + r_2) - \varphi_1(r_1) - \varphi_1(r_2) \right]
\leq |f(r_1 + r_2) - g(r_1 + r_2)| |r_1| + |r_2| - |r_1 + r_2| = 0.
\]

In addition, for \(k = 2 \) it follows that
\[
-(f(r_1 + r_2) - g(r_1 + r_2)) \left[\varphi_2(r_1 + r_2) - \varphi_2(r_1) - \varphi_2(r_2) \right]
\leq |f - g|(r_1 + r_2) |r_1|^2 + |r_2|^2 - |r_1 + r_2|^2 = -2r_1r_2|f - g|(r_1 + r_2).
\]

In turn, this leads to
\[
-\int_0^\infty \int_0^\infty dr_1dr_2(r_1 + r_2)r_1^3r_2^3 \left[\varphi(r_1 + r_2) - \varphi(r_1) - \varphi(r_2) \right] (f - g)(r_1 + r_2)
\leq -2\int_0^\infty \int_0^\infty dr_1dr_2(r_1 + r_2)r_1^4r_2^3 |f(r_1 + r_2) - g(r_1 + r_2)|
\leq -2\int_0^\infty drr |f - g|(r) \int_0^r dr_1r_1^4(r - r_1)^4 = -Cm_{10}\langle |f - g| \rangle,
\]
for some universal \(C > 0 \). Gathering (5.33), (5.34) and (5.35) we conclude that for \(f, g \in S \)
\[
\int_{\mathbb{R}^3} dp \left(Q[f](p) - Q[g](p) \right) (|p|^1 + |p|^2) \text{sign}(f - g) \leq c_1m_3\langle |f - g| \rangle
\]
\[
+ c_2m_5\langle |f - g| \rangle + c_3m_6\langle |f - g| \rangle - Cm_{10}\langle |f - g| \rangle \leq c_4m_3\langle |f - g| \rangle,
\]
28
where the constants c_i, with $i \in \{1, 2, 3, 4\}$, depend on h_3 and h_{10}. The last inequality follows noticing that $c_1 r^3 + c_2 r^5 + c_3 r^6 - C r^{10} \leq c_4 r^3$ for any $r \geq 0$.

The proof of Theorem 5.2 is now completed, as an application of Theorem 5.4 where the three conditions (5.1), (5.2), and (5.3) have been verified in Subsections 5.1, 5.2 and 5.3 respectively.

6 Mittag-Leffler moments

6.1 Propagation of Mittag-Leffler tails

In this section we are interested in studying the propagation and creation of the Mittag-Leffler moments of order $a \in [1, \infty)$ and rate $\alpha > 0$. In terms of infinite sums, see [42], this is equivalent to control the integral

$$\int_{\mathbb{R}^3} dp \, f(t, p) \mathcal{E}_a(\alpha |p|) = \sum_{k=1}^{\infty} \frac{M_k(t) \alpha^a k}{\Gamma(ak + 1)},$$

(6.1)

where

$$\mathcal{E}_a(x) := \sum_{k=1}^{\infty} \frac{x^k}{\Gamma(ak + 1)} \approx e^{x^{1/\alpha}} - 1, \quad x \gg 1.$$

(6.2)

We have excluded the term $k = 0$ to account for the fact that equation (1.1) does not conserve mass. For convenience define for any $\alpha > 0$ and $a \in [1, \infty)$ the partial sums

$$\mathcal{E}_a^n(\alpha, t) := \sum_{k=1}^{n} \frac{M_k(t) \alpha^a k}{\Gamma(ak + 1)} \quad \text{and} \quad \mathcal{T}_{\alpha, \rho}^n(\alpha, t) := \sum_{k=1}^{n} \frac{M_{k+\rho}(t) \alpha^a k}{\Gamma(ak + 1)}, \quad \rho > 0.$$

This notation will be of good use throughout this section.

Theorem 6.1 (Propagation of Mittag-Leffler tails) Let f be a solution of (1.1) in S associated to the initial condition $f_0 \geq 0$, $a \in [1, \infty)$, and suppose that there exists positive α_0 such that

$$\int_{\mathbb{R}^3} dp \, f_0(p) \mathcal{E}_a(\alpha_0^a |p|) \leq 1.$$

Then, there exists positive constant $\alpha := \alpha(M_1(0), \alpha_0, a)$ such that

$$\int_{\mathbb{R}^3} dp \, f(t, p) \mathcal{E}_a(\alpha^a |p|) \leq 2, \quad \forall t \geq 0.$$

(6.3)
Lemma 6.1 (From Ref. [42]) Let \(k \geq 3 \), then for any \(a \in [1, \infty) \), we have

\[
\sum_{i=1}^{\frac{k+1}{2}} \binom{k}{i} B(ai + 1, a(k - i) + 1) \leq C_a (ak)^{-1-a},
\]

for some constant \(C_a \) depending on \(a \).

Lemma 6.2 (Moment interpolation)

\[
M_\rho \leq M_{\rho_1}^{\gamma} M_{\rho_2}^{1-\gamma}, \tag{6.4}
\]

where the positive constants \(\rho, \rho_1, \rho_2, \gamma \) satisfy \(0 < \rho_1 \leq \rho \leq \rho_2 \), \(0 < \gamma < 1 \), and \(\rho = \gamma \rho_1 + (1 - \gamma) \rho_2 \).

Remark 6.1 Contrary to section 4, we will work in this section with the moments \(M_k \) rather than work with the line-moments \(m_k \). It turns out to be clearer in terms of notation.

Lemma 6.3 Let \(\alpha > 0 \), \(a \in [1, \infty) \). Then, the following estimate holds

\[
\sum_{i=k_0}^{n} \sum_{k=k_0}^{\frac{k+1}{2}} \binom{k}{i} \left(M_{i+2} M_{1+(k-i)} + M_{i+1} M_{2+(k-i)} \right) \frac{\alpha^a}{\Gamma(ak + 1)} \leq C_a \frac{ak_0 + 1}{(ak_0)^{1+a}} E_a^{n} \mathcal{F}_{a,3}^{n}, \quad n \geq k_0 \geq 1,
\]

with universal constant \(C_a \) depending only on \(a \).

Proof. First, we estimate the sum of the left side of (6.5) by controlling the sum \(M_{i+2} M_{1+(k-i)} + M_{i+1} M_{2+(k-i)} \) with \(2 M_i M_{k-i+3} \) for any \(i \geq 3 \). This can be done using Hölder’s inequality (6.4)

\[
M_{i+2} \leq M_{i+1+2i}^{2} M_{k-i+3}^{2} \quad \text{and} \quad M_{1+(k-i)} \leq M_{i+3-2i}^{2} M_{k-i+3}^{2}.
\]

Thus, the product of these terms is controlled by

\[
M_{i+2} M_{1+(k-i)} \leq M_i M_{k-i+3}.
\]

Similarly, from (6.4), the following inequalities also hold

\[
M_{i+1} \leq M_{i+1+2i}^{2} M_{k-i+3}^{2} \quad \text{and} \quad M_{2+(k-i)} \leq M_{i+3-2i}^{2} M_{k-i+3}^{2}.
\]
which lead to the estimate
\[\mathcal{M}_{i+1} \mathcal{M}_{2+(k-i)} \leq \mathcal{M}_i \mathcal{M}_{k-i+3}. \]

As a consequence,
\[\mathcal{M}_{i+2} \mathcal{M}_{1+(k-i)} + \mathcal{M}_{i+1} \mathcal{M}_{2+(k-i)} \leq 2 \mathcal{M}_i \mathcal{M}_{3+(k-i)}. \]

Therefore, it readily follows that
\[
\mathcal{J} := \sum_{k=k_0}^n \sum_{i=1}^{\left\lfloor \frac{k+1}{2} \right\rfloor} \binom{k}{i} \left(\mathcal{M}_{i+2} \mathcal{M}_{1+(k-i)} + \mathcal{M}_{i+1} \mathcal{M}_{2+(k-i)} \right) \frac{\alpha^k}{\Gamma(ak+1)}
\leq 2 \sum_{k=k_0}^n \sum_{i=1}^{\left\lfloor \frac{k+1}{2} \right\rfloor} \binom{k}{i} \mathcal{M}_i \mathcal{M}_{3+(k-i)} \frac{\alpha^k}{\Gamma(ak+1)}.
\]

(6.6)

Using the following identities for the Beta and Gamma functions
\[
B(ai+1, a(k-i)+1) = \frac{\Gamma(ai+1) \Gamma(a(k-i)+1)}{\Gamma(ai+1+a(k-i)+1)} = \frac{\Gamma(ai+1) \Gamma(a(k-i)+1)}{\Gamma(ak+2)},
\]
and the identity \(\alpha^k = \alpha^{ai} \alpha^{a(k-i)} \), we deduce from (6.6) that
\[
\mathcal{J} \leq 2 \sum_{k=k_0}^n \sum_{i=1}^{\left\lfloor \frac{k+1}{2} \right\rfloor} \binom{k}{i} \frac{\mathcal{M}_i \alpha^{ai} \mathcal{M}_{k-i+3} \alpha^{a(k-i)}}{\Gamma(ai+1) \Gamma(a(k-i)+1)} \times B(ai+1, a(k-i)+1) \frac{\Gamma(ak+2)}{\Gamma(ak+1)}.
\]

(6.7)

Since \(\Gamma(ak+2) = (ak+1)\Gamma(ak+1) \), the term \(\frac{\Gamma(ak+2)}{\Gamma(ak+1)} \) in (6.7) can be reduced to \(ak+1 \). That is,
\[
\mathcal{J} \leq 2 \sum_{k=k_0}^n (ak+1)
\times \sum_{i=1}^{\left\lfloor \frac{k+1}{2} \right\rfloor} \binom{k}{i} \frac{\mathcal{M}_i \alpha^{ai} \mathcal{M}_{k-i+3} \alpha^{a(k-i)}}{\Gamma(ai+1) \Gamma(a(k-i)+1)} B(ai+1, a(k-i)+1).
\]

(6.8)
Also, each component in the sum on the right side of (6.8) can be bounded as
\[
\frac{[k+1]}{2} \sum_{i=1}^{[k+1]} \binom{k}{i} \frac{\mathcal{M}_i \alpha^{ai} \mathcal{M}_{k-i+3} \alpha^{a(k-i)}}{\Gamma(ai+1) \Gamma(a(k-i)+1)} B(ai+1, a(k-i)+1)
\leq \frac{[k+1]}{2} \sum_{i=1}^{[k+1]} \binom{k}{i} \frac{\mathcal{M}_i \alpha^{ai} \mathcal{M}_{k-i+3} \alpha^{a(k-i)}}{\Gamma(ai+1) \Gamma(a(k-i)+1)} \sum_{j=1}^{[k+1]} \binom{k}{j} B(a(j+1, a(k-j)+1),
\]
which implies, by Lemma 6.1, that
\[
\frac{[k+1]}{2} \sum_{i=1}^{[k+1]} \binom{k}{i} \frac{\mathcal{M}_i \alpha^{ai} \mathcal{M}_{k-i+3} \alpha^{a(k-i)}}{\Gamma(ai+1) \Gamma(a(k-i)+1)} B(ai+1, a(k-i)+1)
\leq C_a \left(\frac{ak+1}{(ak)^{1+a}}\right) \frac{[k+1]}{2} \sum_{i=1}^{[k+1]} \binom{k}{i} \frac{\mathcal{M}_i \alpha^{ai} \mathcal{M}_{k-i+3} \alpha^{a(k-i)}}{\Gamma(ai+1) \Gamma(a(k-i)+1)}.
\]
Combining (6.8) and (6.9) yields the estimate on \(J \)
\[
J \leq 2C_a \frac{ak+1}{(ak)^{1+a}} \frac{[k+1]}{2} \sum_{i=1}^{[k+1]} \binom{k}{i} \frac{\mathcal{M}_i \alpha^{ai} \mathcal{M}_{k-i+3} \alpha^{a(k-i)}}{\Gamma(ai+1) \Gamma(a(k-i)+1)}.
\]
(6.10)
Notice that \(\frac{ak+1}{(ak)^{1+a}} \) decreases towards 0 as \(k \) increases to infinity. Therefore, from (6.10) one concludes that
\[
\sum_{k=k_0}^{n} \frac{[k+1]}{2} \sum_{i=1}^{[k+1]} \binom{k}{i} \left(\mathcal{M}_{i+2} \mathcal{M}_{1+(k-i)} + \mathcal{M}_{i+1} \mathcal{M}_{2+(k-i)}\right) \frac{\alpha^a}{\Gamma(ak+1)}
\leq 2C_a \frac{ak_0+1}{(ak_0)^{1+a}} \sum_{k=k_0}^{n} \sum_{i=1}^{[k+1]} \frac{\mathcal{M}_i \alpha^{ai} \mathcal{M}_{k-i+3} \alpha^{a(k-i)}}{\Gamma(ai+1) \Gamma(a(k-i)+1)}
\leq 2C_a \frac{ak_0+1}{(ak_0)^{1+a}} \frac{[k+1]}{2} \sum_{i=1}^{[k+1]} \binom{k}{i} \frac{\mathcal{M}_i \alpha^{ai} \mathcal{M}_{k-i+3} \alpha^{a(k-i)}}{\Gamma(ai+1) \Gamma(a(k-i)+1)} \leq C_a \left(\frac{ak_0+1}{(ak_0)^{1+a}}\right) \mathcal{E}_a \mathcal{T}_a^3.
\]
(6.11)

\textbf{Lemma 6.4} The following control is valid for any \(\alpha > 0 \) and \(a \in [1, \infty) \)
\[
\mathcal{T}_{a,6}^n(\alpha, t) \geq \frac{1}{\alpha^a} \mathcal{E}_a^n(\alpha, t) - \frac{1}{\alpha^{a/2}} M_1 \mathcal{E}_a(a - 1/2).
\]
(6.12)
Proof. Observe that
\[
T_n(\alpha, t) = \sum_{k=1}^{n} \frac{\mathcal{M}_{k+6}(t)\alpha^k}{\Gamma(ak+1)} \geq \sum_{k=1}^{n} \int_{\{|p| \geq \frac{1}{\sqrt{\alpha}}\}} dp \frac{|p|^{k+6}\alpha^k}{\Gamma(ak+1)} f(t, p).
\]

Note that in the set \(\{|p| \geq \frac{1}{\sqrt{\alpha}}\}\) one has \(|p|^k \geq \frac{|p|^k}{\alpha}\), therefore
\[
T_n(\alpha, t) \geq \frac{1}{\alpha^3} \sum_{k=1}^{n} \int_{\{|p| \geq \frac{1}{\sqrt{\alpha}}\}} dp \frac{|p|^{k}\alpha^k}{\Gamma(ak+1)} f(t, p).
\]

In the set \(\{|p| < \frac{1}{\sqrt{\alpha}}\}\) one has \(|p|^k < |p|\alpha^{-(k-1)/2}\), consequently
\[
T_n(\alpha, t) \geq \frac{1}{\alpha^3} \left(\mathcal{E}_n(\alpha, t) - \sum_{k=1}^{n} \int_{\mathbb{R}^3} dp \frac{\alpha^{-(k-1)/2}\alpha^k}{\Gamma(ak+1)} f(t, p)|p|\right)
\]
\[
= \frac{1}{\alpha^3} \mathcal{E}_n(\alpha, t) - \frac{M_1}{\alpha^{5/2}} \sum_{k=1}^{n} \frac{\alpha^{(a-1)/2}k}{\Gamma(ak+1)}.
\]

Since
\[
\sum_{k=1}^{n} \frac{\alpha^{(a-1)/2}k}{\Gamma(ak+1)} \leq \sum_{k=1}^{\infty} \frac{\alpha^{(a-1)/2}k}{\Gamma(ak+1)} = \mathcal{E}_a(a-1/2),
\]
estimate (6.12) follows. \(\square\)

Proof. (of Theorem 6.1) The proof consists in showing that for any \(a \in [1, \infty)\), there exists positive constant \(\alpha\) such that
\[
\mathcal{E}_n(\alpha, t) \leq 2, \quad \forall \ t \geq 0, \forall \ n \in \mathbb{N}\setminus\{0\}.
\]

For this purpose we define for sufficiently small \(\alpha > 0\), chosen in the sequel, the sequence of times
\[
T_n := \sup \{t \geq 0 \mid \mathcal{E}_n(\alpha, \tau) \leq 2, \forall \ \tau \in [0, t]\}
\]
and prove that \(T_n = +\infty\). This sequence of times is well-defined and positive. Indeed, for any \(\alpha \leq \alpha_0\)
\[
\mathcal{E}_n(\alpha, 0) = \sum_{k=1}^{n} \frac{\mathcal{M}_k(0)\alpha^k}{\Gamma(ak+1)} \leq \sum_{k=1}^{n} \frac{\mathcal{M}_k(0)\alpha_0^k}{\Gamma(ak+1)} = \int_{\mathbb{R}^3} dp f_0(p)\mathcal{E}_a(\alpha_0^a|p|) \leq 1.
\]
Since each term \(M_k(t) \) is continuous in \(t \), the partial sum \(E^n_a(\alpha, t) \) is also continuous in \(t \). Therefore, \(E^n_a(\alpha, t) \leq 2 \) in some nonempty interval \((0, t_n)\) and, thus, \(T_n \) is well-defined and positive for every \(n \in \mathbb{N} \).

Now, let us establish a differential inequality for the partial sums that implies \(T_n = +\infty \). Note that (3.14), with \(\gamma = 1 \), implies that

\[
\frac{d}{dt} M_k \leq C_1 \sum_{i=1}^{\left\lfloor k+1 \right\rfloor} \binom{k}{i} (M_{i+2} M_{1+(k-i)} + M_{i+1} M_{2+(k-i)}) - C_2 M_{k+6}.
\]

Multiplying the above inequality by \(\frac{\alpha^k}{\Gamma(ak+1)} \) and summing with respect to \(k \) in the interval \(k_0 \leq k \leq n \), with \(k_0 \geq 1 \) to be chosen later on sufficiently large,

\[
\frac{d}{dt} \sum_{k=k_0}^{n} \frac{M_k \alpha^k}{\Gamma(ak+1)} \leq C_1 \sum_{k=k_0}^{n} \sum_{i=1}^{\left\lfloor k+1 \right\rfloor} \binom{k}{i} (M_{i+2} M_{1+(k-i)} + M_{i+1} M_{2+(k-i)}) \frac{\alpha^k}{\Gamma(ak+1)} - C_2 \sum_{k=k_0}^{n} \frac{M_{k+6} \alpha^k}{\Gamma(ak+1)}.
\]

(6.14)

We observe that the sum on the left side of (6.14) will become \(\frac{d}{dt} E^n_a(\alpha, t) \) after adding

\[
\frac{d}{dt} \sum_{k=1}^{k_0-1} \frac{M_k \alpha^k}{\Gamma(ak+1)} \leq C(k_0, \alpha_0, a) < \infty
\]

(6.15)

to this expression. The latter inequality holds due to the choice \(\alpha \leq \alpha_0 \) and the control of moments (3.14). Therefore, from (6.14) and (6.15), we obtain the differential inequality

\[
\frac{d}{dt} E^n_a(\alpha, t) \leq C_1 \sum_{k=k_0}^{n} \sum_{i=1}^{\left\lfloor k+1 \right\rfloor} \binom{k}{i} (M_{i+2} M_{1+(k-i)} + M_{i+1} M_{2+(k-i)}) \frac{\alpha^k}{\Gamma(ak+1)} - C_2 \sum_{k=k_0}^{n} \frac{M_{k+6} \alpha^k}{\Gamma(ak+1)} + C(k_0, \alpha_0, a).
\]

(6.16)

Let us now estimate the sum on the right side of (6.16). We deduce from Theorem 4.1 that

\[
\sum_{k=1}^{k_0} \frac{M_{k+6} \alpha^k}{\Gamma(ak+1)} \leq \sum_{k=1}^{k_0} \frac{M_{k+6} \alpha_0^k}{\Gamma(ak+1)} \leq C(k_0, \alpha_0, a),
\]

34
which leads to the following estimate for (6.16)

\[
\frac{d}{dt} \mathcal{E}_a^n(\alpha, t) \leq C_1 \sum_{k=k_0}^{n} \sum_{i=1}^{\left\lfloor \frac{k+1}{2} \right\rfloor} \binom{k}{i} \left(\mathcal{M}_{i+2} \mathcal{M}_{1+(k-i)} + \mathcal{M}_{i+1} \mathcal{M}_{2+(k-i)} \right) \frac{\alpha^k}{\Gamma(ak+1)} - C_2 \sum_{k=1}^{n} M_{k+6} \alpha^k - C(k_0, \alpha_0, a).
\]
(6.17)

By the definition of \(I_{a,6} \)

\[
\frac{d}{dt} \mathcal{E}_a^n(\alpha, t) \leq C_1 \sum_{k=k_0}^{n} \sum_{i=1}^{\left\lfloor \frac{k+1}{2} \right\rfloor} \binom{k}{i} \left(\mathcal{M}_{i+2} \mathcal{M}_{1+(k-i)} + \mathcal{M}_{i+1} \mathcal{M}_{2+(k-i)} \right) \frac{\alpha^k}{\Gamma(ak+1)} - C_2 \sum_{k=1}^{n} M_{k+6} \alpha^k + C(k_0, \alpha_0, a).
\]
(6.18)

Thus, thanks to Lemma 6.3, we have the control on (6.18)

\[
\frac{d}{dt} \mathcal{E}_a^n(\alpha, t) \leq C_1 \sum_{k=k_0}^{n} \sum_{i=1}^{\left\lfloor \frac{k+1}{2} \right\rfloor} \binom{k}{i} \left(\mathcal{M}_{i+2} \mathcal{M}_{1+(k-i)} + \mathcal{M}_{i+1} \mathcal{M}_{2+(k-i)} \right) \frac{\alpha^k}{\Gamma(ak+1)} - C_2 I_{a,6}^n + C(k_0, \alpha_0, a).
\]
(6.19)

We now estimate the right hand side of (6.19) starting with the term \(I_{a,3} \). Using Cauchy inequality \(|p|^3 \leq \frac{1}{2} + \frac{1}{2} |p|^6\), then

\[
\mathcal{M}_{k+3} \leq \frac{1}{2} \mathcal{M}_k + \frac{1}{2} \mathcal{M}_{k+6}, \quad k \geq 0.
\]

Multiplying this inequality with \(\frac{\alpha^k}{\Gamma(ak+1)} \) and summing with respect to \(k \) in the interval \(0 \leq k \leq n \) yields

\[
I_{a,3}^n \leq \frac{1}{2} \mathcal{E}_a^n + \frac{1}{2} I_{a,6}^n.
\]

Since we are considering \(t \in [0, T_n] \) one has \(\mathcal{E}_a^n \leq 2 \) and, as a result, the following inequality is valid

\[
I_{a,3}^n \leq 1 + \frac{1}{2} I_{a,6}^n.
\]

This implies from (6.19) the estimate on

\[
\frac{d}{dt} \mathcal{E}_a^n \leq 2C_a \left(\frac{ak_0}{(ak_0)^{1+a}} \right) \left(1 + \frac{1}{2} I_{a,6}^n \right) - C_2 I_{a,6}^n + C(k_0, \alpha_0, a).
\]
(6.20)
Choosing k_0 sufficiently large, the term $2C_a \frac{k_0a_{k_0+1}T^n}{2(a_{k_0})^{1+a}}$ is absorbed by $C_2T^n_{a,6}$. Thus,
\[
\frac{d}{dt}E^n_a \leq -\frac{C_2}{2}I^n_{a,6} + C(M_1, \alpha_0, a).
\] (6.21)

Recall that C_2 only depends on the energy $M_1 = M_1(0)$, thus, k_0 only depends on the initial energy and a. Let us estimate the right side of (6.21) in terms of E^n_a. Lemma [6.4] provides a lower bound on $I^n_{a,6}$ in terms of E^n_a which can be used in (6.21) to obtain
\[
\frac{d}{dt}E^n_a \leq -\frac{C_2}{2\alpha^3}E^n_a + \frac{C_2}{2\alpha^{5/2}}M_1E_a(a-1/2) + C(M_1, \alpha_0, a).
\]

Integrating the differential inequality
\[
E^n_a \leq 1 + 2\alpha^3\frac{C_2}{C_2} \left(\frac{C_2}{2\alpha^{5/2}}M_1E_a(a-1/2) + C(M_1, \alpha_0, a)\right) < 2, \quad t \in [0, T_n],
\] (6.22)

provided that $\alpha := \alpha(M_1, \alpha_0, a) > 0$ is such that
\[
\frac{2\alpha^3}{C_2} \left(\frac{C_2}{2\alpha^{5/2}}M_1E_a(a-1/2) + C(M_1, \alpha_0, a)\right) < 1.
\]

Given the continuity of $E^n_a(\alpha, t)$ with respect to t, estimate (6.22) contradicts the maximality of T_n, unless $T_n = +\infty$. Therefore, $E^n_a(\alpha, t) \leq 2$ for $t \in [0, \infty)$ and $n \in \mathbb{N}\{0\}$. Now taking the limit as $n \to \infty$ yields
\[
\int_{\mathbb{R}^3} dp f(t, p)E_a(\alpha^a|p|) = \lim_{n \to \infty} E^n_a(\alpha, t) \leq 2.
\]

This concludes the argument. \(\blacksquare \)

6.2 Creation of exponential tails

Theorem 6.2 Let f be a positive solution of (1.1) in S. Then, there exists constant $\alpha > 0$ depending only on $m_3(0)$ such that
\[
\int_{\mathbb{R}^3} dp f(t, p)|p|e^{\alpha\min\{1, t^{1/2}\}|p|} \leq \frac{1}{2\alpha}, \quad \forall t \geq 0.
\] (6.23)

Proof. Thanks to equation (1.1) we have the control
\[
m_k(t) \leq C_k(h_3)(1 - e^{-C_k t})^{-\frac{k-3}{6}}, \quad \forall k > 3.
\]

36
This implies that

$$E^n_1(t^{\frac{1}{2}} \alpha, t) = \int_{\mathbb{R}^3} dp \cdot f(t, p) E^n_1(t^{\frac{1}{2}} \alpha | p|) \leq C_n(\alpha) t^{\frac{1}{2}} \alpha > 0. \quad (6.24)$$

Fix parameters $\alpha, \vartheta \in (0, 1]$ and define

$$T_n := \sup \left\{ t \in [0, 1] | E^n_1(t^{\frac{1}{2}} \alpha, t) \leq t^{\frac{1}{2}} \alpha \right\}.$$

We prove that for sufficiently small $\alpha > 0$ depending only on $m_3(0)$, $T_n = 1$ for all $n \in \mathbb{N}$ and $\vartheta \in (0, 1]$. One notices first that $T_n > 0$ for each n thanks to (6.24). Also, for $n \geq k_0 \geq 1$ we have

$$\frac{d}{dt} \sum_{k=k_0}^{n} \mathcal{M}_k(t) \frac{(t^{\frac{1}{2}} \alpha)^k}{k!} = \sum_{k=k_0}^{n} \mathcal{M}'_k(t) \frac{(t^{\frac{1}{2}} \alpha)^k}{k!} + \frac{\alpha}{6t^{\frac{1}{2}}} \sum_{k=k_0}^{n} \mathcal{M}_k(t) \frac{(t^{\frac{1}{2}} \alpha)^{k-1}}{(k-1)!}.$$

(6.25)

Observe that for the last term in the right side of (6.25)

$$\frac{\alpha}{6t^{\frac{1}{2}}} \sum_{k=k_0}^{n} \mathcal{M}_k(t) \frac{(t^{\frac{1}{2}} \alpha)^{k-1}}{(k-1)!}$$

$$= \frac{\alpha}{6t^{\frac{1}{2}}} \sum_{k=k_0+6}^{n} \mathcal{M}_k(t) \frac{(t^{\frac{1}{2}} \alpha)^{k-1}}{(k-1)!} + \frac{\alpha}{6t^{\frac{1}{2}}} \sum_{k=k_0}^{k_0+5} \mathcal{M}_k(t) \frac{(t^{\frac{1}{2}} \alpha)^{k-1}}{(k-1)!}$$

$$= \frac{\alpha}{6} \sum_{k=k_0}^{n-6} \mathcal{M}_{k+6}(t) \frac{(t^{\frac{1}{2}} \alpha)^k}{k!(k+5)!} + \frac{\alpha}{6t^{\frac{1}{2}}} \sum_{k=k_0}^{k_0+5} \mathcal{M}_k(t) \frac{(t^{\frac{1}{2}} \alpha)^{k-1}}{(k-1)!}$$

$$\leq \frac{\alpha}{6} \sum_{k=k_0}^{n} \mathcal{M}_{k+6}(t) \frac{(t^{\frac{1}{2}} \alpha)^k}{k!} + \frac{\alpha^{k_0}}{t^{\frac{1}{2}}} C(k_0, m_3(0)).$$

Thus, arguing as in (6.14)-(6.19) we conclude that for the quantities

$$E^n_1 := E^n_1(t^{\frac{1}{2}} \alpha, t), \quad T^n_{1,6} := T^n_{1,6}(t^{\frac{1}{2}} \alpha, t),$$

it follows that

$$\frac{d}{dt} E^n_1 \leq \frac{C_n}{k_0} E^n_1 T^n_{1,3} - (C_2 - \frac{\alpha}{6}) T^n_{1,6} + \frac{\alpha}{t^{\frac{1}{2}}} C(k_0, m_3(0)), \quad (6.26)$$

for a universal constant $C > 0$ and constant $C_2 > 0$ depending only $m_3(0)$. Using that

$$T^n_{1,3} \leq \frac{E^n_1}{2} + \frac{T^n_{1,6}}{2}$$

37
and the definition of T_n, it follows from (6.26)

\[
\frac{d}{dt} \mathcal{E}_1^n \leq C \frac{2^{k_o}}{2k_o} - (C_2 - \frac{\alpha^6}{6} - C \frac{2}{2k_o}) I_{1,6}^n + \frac{\alpha}{t^\alpha} C(k_o, m_3(0)) \quad 0 < t \leq T_n. \tag{6.27}
\]

Now fix $k_o \in \mathbb{N}$ and $\alpha \in (0, 1]$ such that

\[
\frac{C}{2k_o} \leq \frac{C_2}{4}, \quad \frac{\alpha^6}{6} \leq \frac{C_2}{4},
\]

to conclude from (6.27) that

\[
\frac{d}{dt} \mathcal{E}_1^n \leq C \frac{2^{k_o}}{2k_o} - C_2 \frac{I_{1,6}^n}{2} + \frac{\alpha}{t^\alpha} C(k_o, m_3(0)), \quad 0 < t \leq T_n. \tag{6.28}
\]

Also observe that

\[
I_{1,6}^n = \sum_{k=1}^{n} \mathcal{M}_{k+6}(t) \frac{(t^2 \alpha)^k}{k!} = \frac{1}{t^\alpha} \sum_{k=7}^{n+6} \mathcal{M}_k(t) \frac{(t^2 \alpha)^k}{k!} \geq \frac{1}{t^\alpha} \sum_{k=7}^{n} \mathcal{M}_k(t) \frac{(t^2 \alpha)^k}{k!} \geq \frac{1}{t^\alpha} \mathcal{E}_1^n - \frac{C(m_3(0))}{t^\alpha \alpha^5}.
\]

Together with (6.28), this leads finally to

\[
\frac{d}{dt} \mathcal{E}_1^n \leq C \frac{2^{k_o}}{2k_o} + \frac{C(k_o, m_3(0))}{t^\alpha \alpha^5} - \frac{C_2}{2t\alpha^6} \mathcal{E}_1^n, \quad 0 < t \leq T_n.
\]

Thus, using a comparison principle for ode’s, we can choose $\alpha > 0$ sufficiently small, say

\[
\alpha := C_2 \left[\frac{C}{k_o} + 2C(k_o, m_3(0)) \right]^{-1}
\]

to deduce that $\mathcal{E}_1^n < t^\frac{1}{\alpha}$. That is,

\[
\int_{\mathbb{R}^3} dp \, f(t, p) \mathcal{E}_1^n(t^\frac{1}{\alpha}|p|) < t^\frac{1}{\alpha}, \quad 0 \leq t \leq T_n.
\]
Time continuity of \mathcal{E}_1^ϑ and the maximality of T_n imply that $T_n = 1$ for all $n \geq 1$ and $\vartheta \in (0, 1]$. In particular, sending $\vartheta \to 0$ and, then, $n \to \infty$ one arrives to

$$\int_{\mathbb{R}^3} dp \, f(t, p) \mathcal{E}_1(t^\frac{1}{6} \alpha |p|) \leq t^\frac{1}{2}, \quad 0 \leq t \leq 1.$$

Furthermore, this estimate shows that

$$\int_{\mathbb{R}^3} dp \, f(1, p) \mathcal{E}_1(\alpha |p|) \leq 1.$$

Then, using Theorem 6.1, the exponential moment propagates for $t > 1$, and choosing $\alpha > 0$ sufficiently small

$$\int_{\mathbb{R}^3} dp \, f(t, p) \mathcal{E}_1(\alpha |p|) \leq 1, \quad t \geq 1.$$

The result follows after noticing that

$$\mathcal{E}_1(t^\frac{1}{6} \alpha |p|) \geq t^\frac{1}{6} \alpha |p| e^{t^\frac{1}{6} \alpha |p|}, \quad 0 \leq t \leq 1.$$

\[\text{Acknowledgements.}\] This work has been partially supported by NSF grants DMS 143064 and RNMS (Ki-Net) DMS-1107444. In addition, M.-B Tran has been supported by ERC Advanced Grant DYCON. The authors would like to thank Professor Daniel Heinzen, Professor Linda Reichl, Professor Mark Raizen and Professor Robert Dorfman for fruitful discussions on the topic. Support from the Institute of Computational Engineering and Sciences (ICES) at the University of Texas Austin is gratefully acknowledged. The research was carried on while M.-B. Tran and R. Alonso were visiting ICES.

\section{Appendix: Proof of Theorem 5.1}

We recall the proof of Bressan in [13] for the sake of completeness. The proof is divided into three steps:

\textbf{Step 1.} Since \mathcal{S} is bounded, there exists a uniform bound C_Q of $Q(u)$, for all u in \mathcal{S}. Let u be in \mathcal{S} there exists $h_u > 0$ such that for $0 < h < h_u$ and for all $\epsilon > 0$ sufficiently small, the intersection $B(u + hQ(u), \epsilon) \cap \mathcal{S}\{u + hG(u)\}$ is
non-empty. We also suppose that \(\|Q(u) - Q(v)\| \leq \frac{\epsilon}{2} \) if \(\|u - v\| \leq (C_Q + 1)h \).

Take \(w \) to be a point inside \(B(u + hQ(u), \epsilon) \cap S \setminus \{u + hQ(u)\} \) satisfying
\[
\|w - u - hQ(u)\| \leq \frac{\epsilon h}{2}.
\]

We consider the linear map
\[
s \mapsto \rho(s) = u + \frac{s(w - u)}{h}, \quad s \in [0, h].
\]

By the convexity of \(S \), \(\rho(s) \in S \) for all \(s \) in \([0, h]\). Moreover, since \(\dot{\rho}(s) = \frac{w - u}{h} \),
\[
\|\dot{\rho}(s) - Q(u)\| \leq \frac{\epsilon}{2}.
\]

Now, we can see that
\[
\|\rho(s) - u\| = \left\| \frac{s(w - u)}{h} \right\| \leq \|w - u\| \leq h\|Q(u)\| + \frac{\epsilon h}{2} < (C_Q + 1)h,
\]
which implies
\[
\|Q(\rho(s)) - Q(u)\| \leq \frac{\epsilon}{2}, \quad \forall s \in [0, h].
\]

Therefore,
\[
\|\dot{\rho}(s) - Q(\rho(s))\| \leq \epsilon, \quad \forall s \in [0, h]. \tag{7.1}
\]

A consequence of this fact is that
\[
\|\dot{\rho}(s)\| \leq 1 + C_Q \tag{7.2}
\]
for all \(s \) in \([0, h]\) and \(\epsilon < 1 \).

Step 2. From Step 1, we have proved the existence of solution \(\rho \) to the equation (7.1) on an interval \([0, h]\). From this solution, we carry on the following process.

1. We start with the solution \(\rho \), defined on \([0, h]\) of (7.1).

2. Suppose that the solution \(\rho \) of (7.1) is constructed on \([0, \tau]\). Since \(\rho(\tau) \in S \), by the same process as in Step 1, the solution \(\rho \) could be extended to \([\tau, \tau + h\tau]\).
(3) Suppose that the solution ρ of (7.1) is constructed on a series of intervals $[0, \tau_1], [\tau_1, \tau_2], \ldots, [\tau_n, \tau_{n+1}], \ldots$. Moreover, suppose the increasing sequence $\{\tau_n\}$ is bounded. Set

$$\tau = \lim_{n \to \infty} \tau_n.$$

Since $G(\rho)$ is bounded by C_G on $[\tau_n, \tau_{n+1}]$ for all $n \in \mathbb{N}$, $\dot{\rho}$ is bounded by $\epsilon + C_G$ on $[0, \tau)$. Therefore, we can define $\rho(\tau)$ satisfying

$$\rho(\tau) = \lim_{n \to \infty} \rho(\tau_n), \quad \dot{\rho}(\tau) = \lim_{n \to \infty} \dot{\rho}(\tau_n),$$

which implies that ρ is a solution of (7.1) on $[0, \tau]$.

By (3) of this process, we can see that if the solution ρ, constructed as above, is defined on $[0, T)$, it could be extended to $[0, T]$. Suppose that $[0, T]$ is the maximal closed interval that ρ could be constructed, by Step 2 of the process, ρ could be extended to a larger interval $[T, T + T_h]$, which means that ρ can be constructed on the whole interval $[0, \infty)$.

Step 3. Let us now consider two sequences of approximate solutions u^ϵ, w^ϵ, where ϵ tends to 0. From Step 1 and Step 2, one can see that the time interval $[0, T]$ can be decomposed into

$$\left(\bigcup_{\gamma} I_{\gamma} \right) \bigcup \mathfrak{N},$$

where I_{γ} are countably many open intervals and \mathfrak{N} is of measure 0. Taking the derivative of the difference $\|u^\epsilon(t) - w^\epsilon(t)\|$ gives

$$\frac{d}{dt} \|u^\epsilon(t) - w^\epsilon(t)\| = \left[u^\epsilon - w^\epsilon, \dot{u}^\epsilon(t) - \dot{w}^\epsilon(t) \right]_-
\leq \left[u^\epsilon - w^\epsilon, \dot{u}^\epsilon(t) - \dot{w}^\epsilon(t) \right]_+ + 2\epsilon
\leq L\|u^\epsilon(t) - w^\epsilon(t)\| + 2\epsilon,$$

which yields

$$\|u^\epsilon(t) - w^\epsilon(t)\| \to 0 \quad \text{as} \quad \epsilon \to 0,$$

and we have the convergence $u^\epsilon \to u$ uniformly on $[0, T]$. The function u is, then, a solution of our equation.
References

[1] R. Alonso, V. Bagland, Y. Cheng, and B. Lods. One dimensional dissipative boltzmann equation: measure solutions, cooling rate and self-similar profile. *Submitted*, 2016.

[2] R. Alonso, J. A. Cañizo, I. M. Gamba, and Clément Mouhot. A new approach to the creation and propagation of exponential moments in the Boltzmann equation. *Comm. Partial Differential Equations*, 38(1):155–169, 2013.

[3] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell. Observation of BoseEinstein Condensation in a dilute atomic vapor. *Science*, 269(5221):198–201, 1995.

[4] M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle. Observation of interference between two Bose condensates. *Science*, 275 (5300):637–641, 1997.

[5] L. Arkeryd. On the Boltzmann equation. I. Existence. *Arch. Rational Mech. Anal.*, 45:1–16, 1972.

[6] L. Arkeryd and A. Nouri. Bose condensates in interaction with excitations: a kinetic model. *Comm. Math. Phys.*, 310(3):765–788, 2012.

[7] L. Arkeryd and A. Nouri. Bose condensate in interaction with excitations - a two-component space-dependent model close to equilibrium. *ArXiv e-prints*, July 2013.

[8] L. Arkeryd and A. Nouri. A Milne problem from a Bose condensate with excitations. *Kinet. Relat. Models*, 6(4):671–686, 2013.

[9] L. Arkeryd and A. Nouri. Bose condensates in interaction with excitations: a two-component space-dependent model close to equilibrium. *J. Stat. Phys.*, 160(1):209–238, 2015.

[10] L. Barbara Goss. Cornell, Ketterle, and Wieman share Nobel Prize for Bose-Einstein Condensates. *Search and Discovery. Physics Today online.*, 2001.

[11] A. V. Bobylev and I. M. Gamba. Boltzmann equations for mixtures of Maxwell gases: exact solutions and power like tails. *J. Stat. Phys.*, 124(2-4):497–516, 2006.
[12] A. V. Bobylev, I. M. Gamba, and V. A. Panferov. Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions. *J. Statist. Phys.*, 116(5-6):1651–1682, 2004.

[13] A. Bressan. Notes on the Boltzmann equation. *Lecture notes for a summer course, S.I.S.S.A. Trieste*, 2005.

[14] F. A. Buot. On the relaxation rate spectrum of phonons. *J. Phys. C: Solid State Phys.*, 5(1):5–14, 1972.

[15] G. Craciun and M.-B. Tran. A toric dynamical system approach to the convergence to equilibrium of quantum Boltzmann equations for bose gases. *Submitted*.

[16] Gabriella Di Blasio. Differentiability of spatially homogeneous solutions of the Boltzmann equation in the non Maxwellian case. *Comm. Math. Phys.*, 38:331–340, 1974.

[17] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Behler, and P. Zoller. Quantum states and phases in driven open quantum systems with cold atoms. *Nature Physics*, 4:878 – 883, 2008.

[18] U. Eckern. Relaxation processes in a condensed bose gas. *J. Low Temp. Phys.*, 54:333–359, 1984.

[19] M. Escobedo, S. Mischler, and J. J. L. Velázquez. Singular solutions for the Uehling-Uhlenbeck equation. *Proceedings of the Royal Society of Edinburgh*, 138(A):67–107, 2008.

[20] M. Escobedo, F. Pezzotti, and M. Valle. Analytical approach to relaxation dynamics of condensed Bose gases. *Ann. Physics*, 326(4):808–827, 2011.

[21] M. Escobedo and M.-B. Tran. Convergence to equilibrium of a linearized quantum Boltzmann equation for bosons at very low temperature. *Kinetic and Related Models*, 8(3):493–531, 2015.

[22] M. Escobedo and J. J. L. Velázquez. Finite time blow-up and condensation for the bosonic Nordheim equation. *Invent. Math.*, 200(3):761–847, 2015.

[23] I. M. Gamba, V. Panferov, and C. Villani. On the Boltzmann equation for diffusively excited granular media. *Comm. Math. Phys.*, 246(3):503–541, 2004.
[24] I. M. Gamba, V. Panferov, and C. Villani. Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation. *Arch. Ration. Mech. Anal.*, 194(1):253–282, 2009.

[25] C. Gardiner and P. Zoller. *Quantum kinetic theory. A quantum kinetic master equation for condensation of a weakly interacting Bose gas without a trapping potential*, volume 55 of *Phys. Rev. A*. 1997.

[26] C. Gardiner and P. Zoller. *Quantum kinetic theory. III. Quantum kinetic master equation for strongly condensed trapped systems*, volume 58 of *Phys. Rev. A*. 1998.

[27] C. Gardiner and P. Zoller. *Quantum kinetic theory. V. Quantum kinetic master equation for mutual interaction of condensate and noncondensate*, volume 61 of *Phys. Rev. A*. 2000.

[28] A. Griffin, T. Nikuni, and E. Zaremba. Bose-condensed gases at finite temperatures. *Cambridge University Press, Cambridge*, 2009.

[29] E. D. Gust and L.E. Reichl. The viscosity of dilute boseeinstein condensates. *Phys. Scr.*, T165:014034, 2015.

[30] M. Imamovic-Tomasovic and A. Griffin. Quasiparticle kinetic equation in a trapped bose gas at low temperatures. *J. Low Temp. Phys.*, 122:617–655, 2001.

[31] D. Jaksch, C. Gardiner, K. M. Gheri, and P. Zoller. *Quantum kinetic theory. IV. Intensity and amplitude fluctuations of a Bose-Einstein condensate at finite temperature including trap loss*, volume 58 of *Phys. Rev. A*. 1998.

[32] D. Jaksch, C. Gardiner, and P. Zoller. *Quantum kinetic theory. II. Simulation of the quantum Boltzmann master equation*, volume 56 of *Phys. Rev. A*. 1997.

[33] T. R. Kirkpatrick and J. R. Dorfman. Transport theory for a weakly interacting condensed Bose gas. *Phys. Rev. A (3)*, 28(4):2576–2579, 1983.

[34] T. R. Kirkpatrick and J. R. Dorfman. Transport in a dilute but condensed nonideal bose gas: Kinetic equations. *J. Low Temp. Phys.*, 58:301–331, 1985.
[35] R. H. Martin. *Nonlinear operators and differential equations in Banach spaces*. Pure and Applied Mathematics. Wiley-Interscience, 1976.

[36] Stéphane Mischler and Bernt Wennberg. On the spatially homogeneous Boltzmann equation. *Ann. Inst. H. Poincaré Anal. Non Linéaire*, 16(4):467–501, 1999.

[37] T. Nguyen and M.-B. Tran. Uniform in time lower bound for solutions to a quantum Boltzmann equation of bosons at low temperatures. *Submitted*.

[38] R. Peierls. Zur kinetischen theorie der warmeleitung in kristallen. *Annalen der Physik*, 395(8):1055–1101, 1929.

[39] R. E. Peierls. Quantum theory of solids. In *Theoretical physics in the twentieth century (Pauli memorial volume)*, pages 140–160. Inter-science, New York, 1960.

[40] H. Spohn. The phonon Boltzmann equation, properties and link to weakly anharmonic lattice dynamics. *J. Stat. Phys.*, 124(2-4):1041–1104, 2006.

[41] H.T.C Stoof. Coherent versus incoherent dynamics during bose-einstein condensation in atomic gases. *Journal of low temperature physics*, 114(1-2):11–108, 1999.

[42] M. Taskovic, R. Alonso, I. M. Gamba, and N. Pavlovic. On Mittag-Leffler moments for the Boltzmann equation for hard potentials without cutoff. *Submitted*.

[43] E.A. Uehling and G.E. Uhlenbeck. Transport phenomena in einstein-bose and fermi-dirac gases. *Phys. Rev.*, 43:552–561, 1933.

[44] E. Zaremba, T. Nikuni, and A. Griffin. Dynamics of trapped bose gases at finite temperatures. *J. Low Temp. Phys.*, 116:277–345, 1999.