Inferring the diameter of a biopolymer from its stretching response

Ngo Minh Toan1,2, Davide Marenduzzo3,4 and Cristian Micheletti1

1 International School for Advanced Studies (S.I.S.S.A.) and INFM, Via Beirut 2-4, 34014 Trieste, Italy
2 Institute of Physics, 10 Dao Tan, Hanoi, Vietnam
3 the Rudolf Peierls Centre for Theoretical Physics, Oxford University, 1 Keble Road, Oxford OX1 3NP, United Kingdom
4 Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

We investigate the stretching response of a thick polymer model by means of extensive stochastic simulations. The computational results are synthesized in an analytic expression that characterizes how the force versus elongation curve depends on the polymer structural parameters: its thickness and granularity (spacing of the monomers). The expression is used to analyze experimental data for the stretching of various different types of biopolymers: polypeptides, polysaccharides and nucleic acids. Besides recovering elastic parameters (such as the persistence length) that are consistent with those obtained from standard entropic models, the approach allows to extract viable estimates for the polymers diameter and granularity. This shows that the basic structural polymer features have such a profound impact on the elastic behaviour that they can be recovered with the sole input of stretching measurements.

I. INTRODUCTION

In the past decade a remarkable technological progress has allowed experiments where single polymers are manipulated by means of optical or magnetic tweezers, micro-needles or atomic force microscopes [1,2,3,4]. These micro-manipulation techniques were used to characterize means by which various biopolymers such as DNA, proteins and polysaccharides elongate under the action of a stretching force [4,5,6,7,8,9,10,11,12,13,14]. The wealth of collected experimental data have constituted and still represent an invaluable and challenging benchmark for theoretical approaches to the problem [15,16,17,18,19,20,21]. The typical models introduced to account for the observed stretching measurements rely on a description of the polymer as a one-dimensional curve with a certain persistence length. Two celebrated examples are provided by the freely-jointed and the worm-like chain (FJC and WLC, respectively). Their widespread use reflects both their success in fitting experimental measurements and their simplicity of formulation. In fact, within the FJC model the polymer is described as a succession of phantom independent segments [15,22] while the WLC relies on a description of the chain as a continuous curve characterized by a local bending rigidity [17,23,24]. We investigate the stretching response of a thick polymer model by means of extensive stochastic simulations.

In this study we introduce a mesoscopic approach where a polymer is specified by its basic three-dimensional structural properties which, in turn, dictate how the chain responds under mechanical tension. This provides a novel view on the problem where the persistence length of the polymer (and its entire stretching curve) is not determined phenomenologically but is specified by fundamental structural parameters. As we shall discuss, this perspective opens the possibility to extract the fundamental structural parameters of biopolymers given the measurements of their stretching response.

The feasibility of the scheme outlined above relies on the possibility to model in an effective way how the polymer structural features impact on the elastic response. As a pre-requisite, any such model should go beyond the one-dimensional schematization of the chain and capture its three-dimensional steric hindrance and the granularity associated to the monomeric units. Arguably, the simplest theoretical framework that possesses these requirements is the thick-chain (TC) model that has been recently developed in geometrical contexts motivated by the knotting of circular DNA [25,26,27,28,29,30]. In the TC framework a polymer is modelled as a discretised tube with a given thickness. The steric effects associated to the finite thickness are fully taken into account and introduce some strict constraints for the viable configurations that the chain can attain in the three-dimensional space. The implications of the selection in structure space operated by this steric criterion have been investigated in a variety of biophysical problems. In particular it has allowed to elucidate the ubiquitous emergence of secondary motifs in proteins and the characterization of DNA knotting probabilities and DNA packaging thermodynamics [30,31,32]. The diversity of these biological problems suggests that the thick chain model may be a sufficiently general framework to capture the stretching response of biopolymers with very different thickness and persistence length such as DNA, proteins and polysaccharides.

A detailed discussion of the model is provided in the next section where we also discuss how its stretching response was characterized by computational means leading to a parametrization of the stretching curve in terms of the chain contour length, its thickness and the length of the modular units (monomers). The resulting parametric expression is finally used to fit the experimental data on three different instances of biopolymers: the PEVK-domain of protein [7,8,9], cellulose [11,33,34] and double-stranded DNA [5]. It is shown that this approach allows to extract meaningful quantitative estimates of the effective thickness and modular granularity of the polymers. The persistence length implied by the structural parameters is consistent with that obtainable from the WLC or, according to the contexts, the FJC. In addition the overall quality of the fit of experimental data (measured in terms of χ^2) improves that achievable with either of the two reference entropic models.
II. THEORY AND METHODS

To characterize the impact of a polymer’s finite thickness on the stretching response we shall view the polymer as a tube with a uniform circular section. Consistently with other studies we define the chain thickness, Δ, as the radius of the circular section and, furthermore, we coarse-grain the polymeric chain into a succession of discrete units equispaced at distance a. From a schematic point of view the discretised thick chain can be thought of as consisting of tethered discs or oblate ellipsoids of radius Δ and spacing a, as in Fig. 1a.

Within the framework of elasticity theory, the elastic properties of a homogeneous tube are well-characterised in the case where the tube is bent with respect to the straight reference configuration. If the bending angle is small then the leading term in the elastic energy penalty has a quadratic dependence on the bending curvature. Already at this perturbative stage the thickness of a polymer, viewed as a uniformly-dense tube, controls the elastic response since it determines the bending rigidity coefficient, κ_b. In fact, throughout a vast class of biopolymers, κ_b shows an approximate quartic dependence on Δ which implies that thermal excitations will be unable to excite appreciable local bends in sufficiently thick polymers (as microtubules) \[15\]. By converse, for smaller thickness, thermal excitations may cause appreciable deviations from the straight configuration. In this case the quadratic expansion of the elastic energy may be questioned since it does not penalize enough highly-bent conformations.

In the case of peptides, for example, the persistence length at room temperature is comparable with the nominal thickness \[10, 30, 35\]. From the quadratic approximation of the elastic energy one would conclude that thermal excitations should easily introduce deformations corresponding to bending radii smaller than Δ – a fact that should be strictly forbidden since it would lead to self-intersections. It therefore appears that a general mesoscopic model for the elasticity of biopolymers should take into account explicitly how the accessible conformational space is limited by the polymer finite thickness.

A theoretically appealing and computationally effective framework for treating the finite thickness in discrete polymer models was recently proposed in the context of ideal shapes of knots \[25, 26, 27, 28, 29, 36, 37\]. In fact, throughout a vast class of biopolymers, κ_b shows an approximate quartic dependence on Δ which implies that thermal excitations may cause appreciable deviations from the straight configuration. In this case the quadratic expansion of the elastic energy may be questioned since it does not penalize enough highly-bent conformations.

Physically, the finite thickness introduces restrictions on polymer chains that are both of local and non-local character. To avoid local self-intersection of the thick tube, the local radius of curvature must be no smaller than Δ \[25, 27\], as anticipated above. This introduces a limitation for the range of attainable values for the angle formed by two consecutive bonds of the discretised thick chain. Besides this local effect there is also a non-local one: any two portions of the tube, at a finite arc-length separation, cannot interpenetrate \[25, 27\]. In traditional beads-and-strings models it is only this second effect that is taken into account through a pairwise potential with a hard-core repulsion. Interestingly, one needs to go beyond pairwise interactions to account for the above mentioned effects in discretized polymer chains \[38, 39\]. In fact, the requirement on the local radius of curvature can be enforced by finding the radii of the circles going through any consecutive triplet of points and ensuring that each of them is greater than Δ. The non-local effect can be addressed within the same framework by requiring that the minimum radius among circles going through any non-consecutive triplet of points is also greater than Δ. Indeed, the finite thickness, Δ, of the discretized tube constrains the radii of the circles going through any triplet of distinct points to be greater than Δ (see Fig. 1b) \[27\].

The treatment followed here therefore focuses on thickness-induced effects that are complementary to those captured by the WLC. In fact, in the latter approach all three-dimensional arrangements of a chain are permitted but each structure carries a statistical weight that reflects its degree of local bending. In the thick chain model the chain configurations that are incompatible with the finite polymer thickness are excluded but allowed configurations have the same statistical weight. The parameters that characterise a thick disc chain within this model are three: the chain contour length, L_C, its thickness, Δ, and the spacing, a, of the monomers which control the chain discretisation (granularity). It may be envisaged that a more powerful scheme would be to combine the WLC and TC by introducing a bending rigidity penalty among the physically allowed structures. This approach is certainly feasible though it requires the introduction of an additional parameter, κ_b, in the model. With the purpose of keeping the model as transparent as possible we have restricted the analysis to the simplest formulation of the TC.

The previous analysis has strong analogies with the approach of Premilat and Hermans and of Flory and Conrad \[40, 41\] which showed the profound influence of dihedral angles restrictions on the persistence length of poly-Gly and poly-Ala chains. The
relevance of the thickness constraint for the modelling of biopolymer elasticity can be illustrated by applying eq. (1) to the case of polypeptides and DNA. In the first case the chain modularity is intuitively suggested by the separation of consecutive C_{α} atoms, $a = 3.8 \text{Å}$, while the typical polypeptide thickness obtained from previous studies is $\Delta = 2.5 \text{Å}$. This yields for ξ_p the value of 0.55 nm which is in good agreement with the experimental value of 0.4 nm.\[\text{(1)}\] For single- and double-stranded DNA a is naturally taken as the nucleotide separation ($a_{ss} = 0.55$ nm) or the base-pair spacing, $a_{ds} = 0.34$ nm, respectively, while the associated nominal values for Δ based on structural determinations are $\Delta_{ss} = 0.4$ nm and $\Delta_{ds} = 1.25$ nm. For single-stranded DNA this yields $\xi_{pss} \approx 1$ nm, which is consistent with experimental determinations in solutions rich of monovalent counterions which screen the phosphate charges [23]. For double-stranded DNA one obtains $\xi_{pds} = 19$ nm which captures the correct order of magnitude of the experimentally-determined one $\xi_{pd} = 50$ nm. These examples, though based on the simplified local approximation for the persistence length, illustrate well how the basic elastic properties of various biopolymers can be influenced by their finite thickness.

In the present study the complete characterization of the stretching response of a thick chain was obtained through extensive Monte Carlo simulations. The discretization length, a, was taken as the unit length in the problem and several values of Δ/a were considered, ranging from the minimum allowed value of 0.5 (corresponding to the limit case where the oblate ellipsoids of Fig. 1 are spheres) to the value of 4.0. This upper limit appears adequate in the present context since the largest nominal ratio for Δ/a among the biopolymers considered here is achieved for dsDNA for which one has $\Delta/a \approx 3.7$. For each value of Δ/a considered, the simulations were carried out on chains whose length was at least ten times bigger than the persistence length estimated from eq. (1). The relative elongation of the chain was calculated for increasing values of the applied stretching force (typically about 100 distinct force values were considered). Starting from an arbitrary initial chain configuration, the exploration of the available structure space in the fixed-force ensemble was done by distorting conformations by means of pivot and crankshaft moves. The standard Metropolis algorithm was used to accept/reject the newly generated conformations. For each run, after equilibration, we measured the autocorrelation time and sampled a sufficient number of independent conformations to achieve a relative error of, at most, 10^{-3} on the average chain elongation. For moderate or high forces this typically entailed the collection of 10^4 independent structures while a tenfold increase of sampling was required at small forces due to the broad distribution of the end-to-end separation along the force direction.

From the simulations several different stretching regimes could be identified in the elastic response of a thick chain. These are best discussed in connection with analogous regimes found in the FJC and WLC. For the former model, the functional dependence of the relative elongation, x, on the applied force, f, is given by

$$x = \coth(f b/k_B T) - \frac{k_B T}{f b}$$

where b is the Kuhn length, and $k_B T$ is the thermal energy. The analogous characteristic relationship for the WLC is, instead, traditionally approximated as:

$$f(x) = \frac{k_B T}{\xi_p} \left[\frac{1}{4(1 - x)^2} - \frac{1}{4} + x \right]$$

where ξ_p is the persistence length. It is apparent from both expressions that, at low force, the relative elongation, x, depends linearly on the applied force, f. This result holds also for the thick chain model. However, due to the self-avoidance of the TC, the Hookean relationship between f and x disappears in the limit of long polymer chains in favour of the Pincus regime, $f \sim x^{1/(1 - \nu)}$, $\nu \sim 3/5$ being the critical exponent for self-avoiding polymers in three dimensions. For intermediate forces the Pincus behaviour is found to be followed by a second regime characterised by the same scaling relation found in the WLC at high forces, $f \sim (1 - x)^{-2}$. As shown in Fig. 2, at still higher forces the same scaling relation found in the FJC is observed, $f \sim (1 - x)^{-1}$. Physically, the first two regimes are determined by self-avoidance and chain stiffness or persistence length, while the last regime, found in the Kratky-Porod model, has recently been ascribed to the discrete nature of the chain.

Since the purpose of this study is to apply the thick-chain model to contexts where experimental data are available we have analysed the numerical data with the purpose of extracting a single analytical expression which captures the observed functional dependence of f on Δ and a. For any value of a and Δ the sought expression should reproduce the succession of the three regimes discussed above. Among several trial formulae we found, \textit{a posteriori}, that the best interpolation was provided by the following expression,

$$f(x) = \frac{k_B T}{a(1 - x)} \tanh \left(\frac{k_1 x^{3/2} + k_2 x^2 + k_3 x^3}{1 - x} \right)$$

where the parametric dependence on Δ and a is carried by the following expressions for the k’s,
Within the explored ranges of Δ and a the relative extension obtained from eq. (4) differs on average by 1% (and at most by 5%) from the true values at any value of the applied force. Through the analysis of the decay of tangent-tangent correlations in the configurations sampled in the absence of a stretching force we also obtained the persistence length as a function of Δ and a. For this quantity we found that expression of eq. (1) already provides a very good approximation for the observed persistence length and found no need to correct it with other interpolation formulae.

In the discrete chain model considered here, the spacing of consecutive beads is constant along the chain. The application of arbitrary large forces cannot, therefore, stretch a thick chain beyond its nominal contour length. This is true also for the FJC and WLC models described by equations (2) and (3), since x cannot exceed 1 for any value of f. The property of inextensibility, though very natural and appealing, can make the models inadequate to capture the phenomenology of stretching at forces high enough to cause isomerization or structural transitions. Experiments on dsDNA, for example, have shown that forces greater than 10 pN can induce significant overstretching in the molecule [5]. For polysaccharides such as dextran, a chair-to-boat transition occurs at forces around 700 pN, leaving a distinctive "bump" in the force versus elongation curves. The detailed description of how each type of biomolecule distorts at high stretching forces requires the use of ad hoc models and atomistic simulations thus going beyond the reach of simple phenomenological models [17]. However, the simple inextensible models mentioned above can be extended to describe, in a very satisfactory way, also the over-stretching regime. This is accomplished by introducing an effective stretching modulus, K, controlling the elongation of the chain beyond its natural contour length [18]. From a practical point of view the relative extension, x, of eqns. (2) and (3) is replaced by $x (1 - f / K)$. The same scheme could be adopted also with the TC model too. In the interest of limiting the number of parameters in the theory, the focus of the present work is limited to the inextensible model which has, so far, been the reference case for thick chain models.

III. RESULTS AND DISCUSSION

We have applied the thick-chain results of eq. (4) to interpret the experimental stretching curves of three types of biomolecules: the PEVK domain of titin, cellulose and double-stranded DNA. Due to the inextensible nature of TC model, it will be applied to fit data collected at forces below the known overstretching thresholds mentioned below. Our goal is twofold: on one hand we wish to verify the viability of the thick-chain model in contexts where other entropic models are routinely used. Secondly, we aim at extracting the relevant structural information, (effective thickness and granularity), of the polymer from the experimental stretching curves.

For both purposes a first useful benchmark is constituted by the PEVK-domain of titin. The experimental data which we shall consider pertain to the atomic force measurements of ref. [17] that were performed on heteropolymers comprising cardiac PEVK segments (each about 190 residues long) in tandem with I27 domains. Some evidence has been previously presented in favour of the lack of structural organization in PEVK domain. It therefore appears appropriate to model the PEVK elastic response as arising from entropic effects, as in a random coil (to which the PEVK domain has indeed been assimilated). The use of the WLC to fit the low-force data on the hetero-polyprotein returned a persistence length spanning the range 0.5 - 2.5 nm, the average being 0.9 nm [7].

In the discrete chain model considered here, the spacing of consecutive beads is constant along the chain. The application of arbitrary large forces cannot, therefore, stretch a thick chain beyond its nominal contour length. This is true also for the FJC and WLC models described by equations (2) and (3), since x cannot exceed 1 for any value of f. The property of inextensibility, though very natural and appealing, can make the models inadequate to capture the phenomenology of stretching at forces high enough to cause isomerization or structural transitions. Experiments on dsDNA, for example, have shown that forces greater than 10 pN can induce significant overstretching in the molecule [5]. For polysaccharides such as dextran, a chair-to-boat transition occurs at forces around 700 pN, leaving a distinctive "bump" in the force versus elongation curves. The detailed description of how each type of biomolecule distorts at high stretching forces requires the use of ad hoc models and atomistic simulations thus going beyond the reach of simple phenomenological models [17]. However, the simple inextensible models mentioned above can be extended to describe, in a very satisfactory way, also the over-stretching regime. This is accomplished by introducing an effective stretching modulus, K, controlling the elongation of the chain beyond its natural contour length [18]. From a practical point of view the relative extension, x, of eqns. (2) and (3) is replaced by $x (1 - f / K)$. The same scheme could be adopted also with the TC model too. In the interest of limiting the number of parameters in the theory, the focus of the present work is limited to the inextensible model which has, so far, been the reference case for thick chain models.

$$k_1^{-1} = -0.28394 + 0.76441 \Delta / a + 0.31858 \Delta^2 / a^2,$$

$$k_2^{-1} = +0.15098 - 0.50503 \Delta / a - 0.20636 \Delta^2 / a^2,$$

$$k_3^{-1} = -0.34984 + 1.2333 \Delta / a + 0.58697 \Delta^2 / a^2.$$
Another relevant class of biopolymers for which stretching measurements are available is constituted by polysaccharides, in particular cellulose, amyllose and dextran. We shall focus on cellulose since its stretching curve does not display the presence of the “bumps” which in amyllose and dextran denote the onset of structural transitions which can be captured only by atomistic models. On the contrary, cellulose, which is composed of sugar rings each spanning a distance of about 1 nm, does not display dramatic structural changes upon stretching. For these reasons it is regarded as a standard example of entropic elasticity. It should be mentioned that, within traditional elastic models, the best fit of experimental data for forces up to 300 pN, is provided not by the WLC but by the FJC. In fact, under the working assumption of a constant error on the measured force (but also using an error proportional to the force) the FJC fit provides a χ^2 smaller than the WLC by more than 50%. The lengths of the statistical segments obtained from the FJC fit is $L_K = 1.03 \pm 0.02$ nm which is very close to the nominal lengths of the sugar units comprising cellulose. Consistently, the application of the TC model (Fig. 4) yields $a = 1.02 \pm 0.01$ nm and $\Delta = 0.54 \pm 0.02$ nm which are both in agreement with the atomic structural parameters of cellulose.

Finally, we consider the case of dsDNA stretching. The extensive experimental data set used here was obtained by optical tweezers measurements on DNA in a PTC buffer [14]. The type and concentration of the counterions in solution are known to affect strongly the strength (and even the sign) of the self-interaction of DNA molecules through the screening of the DNA phosphates [32, 49, 50]. In a seminal study Cozzarelli et al. have described the effects of the self-repulsion of DNA in a solution containing monovalent counterions (Na^+) in terms of an apparent DNA diameter [32]. In their study this effective diameter was recovered from the comparison of the knotting probabilities found experimentally for circular DNA of known length with those predicted numerically for a circular arrangements of a succession of cylinders. It was found that the effective diameter approached the bare-DNA one (2.5 nm) for high concentrations of counter-ions, while for low concentrations the poor electrostatic screening of the phosphates yielded much greater diameters, e.g. 15 nm in the presence of 10 mM Na^+. Our approach provides an alternative framework for the extraction of the effective DNA diameter which, furthermore, is inferred not from the analysis of structural properties in an equilibrium ensemble (as for the knotting probabilities) but from the elastic response of single molecules.

The good performance of the TC model (the fit is shown in Fig. 5) is highlighted by the very good value for χ^2 which optimizes the fit. Even considering measurements up to forces of 25 pN (more than 650 data points) the χ^2 takes on the excellent value of 1.2. This constitutes a significant improvement among the class of inextensible chain models which are usually employed only up to forces of 10 pN. In fact, the performance of the inextensible WLC, both in its original and improved form, up to forces of 25 pN yields a value for χ^2 greater than 2. Within the WLC scheme only through the addition of enthalpic effects which mimic the chain extensibility it is possible to improve the quality of the fit reaching the value $\chi^2 = 1.1$. Incidentally, we mention that the FJC yields a poorer fit than the WLC or TC.

The fit through the TC model yields a contour length of 1.335 ± 0.001 μm, very close to the one recovered from the original WLC model 1.327 ± 0.001 μm (using forces up to 10 pN) or to the extensible version using forces up to 25 pN. The structural parameters extracted in this context are $a = 3.27 \pm 0.57$ nm and $\Delta = 5.76 \pm 0.58$ nm. They correspond to a persistence length of 38.99 ± 0.86 nm, again consistently with e.g. the one obtained from the improved WLC, $\xi_p = 37.8 \pm 0.5$ nm. Consistently with the findings of ref. [5] the use of the extensible WLC model leads to a slightly larger persistence length, $\xi_p = 40.6$ nm. Arguably, the smaller χ^2 values obtained with the TC model may reflect the presence of an additional parameter with respect to the worm-like or freely-jointed chains. However, the increase of parameter space does not automatically lead to substantial improvements of the fits. If we were to refine the WLC model with its discretised version [45] whose parameters would then be the contour length, persistence length, and granularity, we would not improve the value of χ^2 obtained with the ordinary WLC model. The improvement obtained with the TC model can therefore be ascribed to the ability to capture in a better way the phenomenology of polymer stretching (in the same way that extensible models augment the range of applicability of inextensible ones).

The consistency of L_c and ξ_p with the data obtained from the WLC shows that the familiar elastic parameters of the chain are faithfully recovered by the thick chain model too. The additional insight obtained here is the indication of the effective DNA granularity and thickness. In fact, the value $a = 3.27$ nm corresponds to about nine times the nominal base-pair spacing in dsDNA while the effective thickness, which corresponds to a diameter $2\Delta \approx 11.5 \pm 1$ nm is about five times the nominal hydration radius of dsDNA. A direct quantitative comparison of this value with the effective diameters found in ref. [32] cannot be done with the present data set given the different type of solution employed. This comparison is, however, possible using a set of DNA stretching measurements done in the presence of sodium ions [2, 51]. Also in these cases the TC model provides a better χ^2 than the FJC or WLC. It is found that in 10 mM Na^+ the effective diameter is $2\Delta = 23 \pm 3$ nm which exceeds by 35% the estimate obtained by Cozzarelli et al. from the probability of occurrence of trefoil knotted DNA configurations. Given the diversity of the two approaches it is pleasing that the two types of effective diameters are in fair quantitative agreement.

Consistently with the intuitive expectations and the findings of ref. [32] it is found that at lower ionic strengths the effective diameter increases so that e.g. $2\Delta = 51 \pm 7$ nm at 1.0 mM. Of all the cases considered here, the aspect that is less satisfactory is the order-of-magnitude difference between the effective spacing of the beads and the base pair separation. Although this consideration is mostly based on intuition, the good agreement of the effective bead spacings and nominal length of the “moduli” found for PEVK and polysaccharides suggests that a better consistency should be obtained for DNA too. This might be accomplished by considering, in addition, to the thickness constraints, other important factors limiting the local freedom of the chain, such as...
introducing a bending or torsional rigidity term (see ref. [52] for a theoretical framework within which to consider this effects). Such extension of the TC model will be the object of future investigations.

IV. CONCLUSIONS

In summary, we have studied the feasibility of extracting the effective thickness and granularity of a biopolymer by fitting its stretching response to that of a discrete thick polymer. The strategy that we followed relied on the preliminary numerical characterization of the elastic response of a thick chain through several Monte-Carlo simulations. From the numerical results we extracted a simple functional form for the force versus elongation curve as a function of effective thickness, chain granularity, and contour length. The resulting expression was used to analyse data coming from stretching experiments on the PEVK domain of proteins, cellulose and double stranded DNA in presence of different concentrations of monovalent counter-ions. For all these biopolymers, we thus recovered, besides the persistence length (which is consistent with that obtained from standard entropic models) quantitative indications of their thickness and effective monomer size. These structural parameters turned out to be compatible with the nominal ones for the PEVK-domain and cellulose or, in the case of DNA, with those previously obtained through a careful analysis of the proportion of knotted DNA molecules.

The results clarify that the use of suitable models allows to extract from the experimental stretching curve not only some overall elastic phenomenological parameters but also fundamental structural properties of the polymer itself. This issue is not only a challenge in itself but has important experimental ramifications in the characterization of the polyelectrolytes self-interaction. The simple approach proposed here in terms of the thick chain model constitutes a novel effective scheme for characterizing the effective size of polyelectrolytes in various ionic solutions, starting from measurements of their elastic response.

Acknowledgments: We are indebted to S. Block, W. Linke and P. Marszalek for having provided us with the experimental data that were used in this study. We are grateful to E. Lattman, W. Linke and A. Pastore for fruitful discussions. This work was supported by INFM.

[1] Bustamante, C., Z. Bryant, and S. B. Smith. (2003) Nature 421, 423–427.
[2] Smith, S. B., L. Finzi, and C. Bustamante. (1992) Science 258, 1122–1126.
[3] Cluzel, P., A. Lebrun, C. Heller, R. Lavery, J.-L. Viovy, D. Chatenay, and F. Caron. (1996) Science 271, 792.
[4] Strick, T. R., J.-F. Allemand, D. Bensimon, A. Bensimon, and V. Croquette. (1996) Science 271, 1835–1837.
[5] Bouchiat, C., M. D. Wang, J. F. Allemand, T. Strick, S. M. Block, and V. Croquette. (1999) Biophys. J. 76, 409–413.
[6] Wenner, J. R., M. C. Williams, I. Rouzina, and V. A. Bloomfield. (2002) Biophys. J. 82, 3160.
[7] Linke, W. A., M. Kulke, H. Li, S. F. Becker, C. Neagoe, D. J. Manstein, M. Gautel, and J. M. Fernandez. (2002) J. Struct. Biol. 137, 194–205.
[8] Li, H., W. Linke, A. Oberhauser, M. Carrion-Vazquez, J. Kerkvliet, H. Lu, P. Marszalek, and J. Fernandez. (2002) Nature 418, 998–1002.
[9] Li, H., A. F. Oberhauser, S. D. Redick, M. C.-Vazquez, H. P. Erickson, and J. M. Fernandez. (2001) Proc. Natl. Acad. Sci. USA 98, 10682–10686.
[10] Rief, M., J. Pascual, M. Saraste, and H. E. Gaub. (1999) J. Mol. Biol. 286, 553–561.
[11] Marszalek, P. E., A. F. Oberhauser, Y.-P. Pang, and J. M. Fernandez. (1998) Nature 396, 661–664.
[12] Williams, P. M., S. B. Fowler, R. B. Best, J. L. Toca-Herrera, K. A. Scott, A. Steward, and J. Clarke. (2003) Nature 422, 446–449.
[13] Best, R. B., S. B. Fowler, J. L. Toca-Herrera, A. Steward, E. Paci, and J. Clarke. (2003) J. Mol. Biol. 330, 867–877.
[14] Wang, M. D., H. Yin, R. Landick, J. Gelles, and S. M. Block. (1997) Biophys. J. 72, 1335–1346.
[15] Boal, D. (2002) Mechanics of the cell. (Cambridge University Press, Cambridge).
[16] Pincus, P. (1976) Macromolecules 9, 386–388.
[17] Bustamante, C., J. F. Marko, E. D. Siggia, and S. Smith. (1994) Science 265, 1599–1600.
[18] Cieplak, M., T. X. Hoang, and M. O. Robbins. (2002) Proteins 49, 114–124.
[19] Cieplak, M., T. X. Hoang, and M. O. Robbins. (2004) Phys. Rev. E 69, 011912.
[20] Gao, M., M. Wilkens, and K. Schulten. (2002) Biophys. J. 83, 3435–3445.
[21] Marszalek, P. E., H. Lu, H. B. Li, M. Carrion-Vazquez, A. F. Oberhauser, K. Schulten, and J. M. Fernandez. (1999) Nature 402, 100–103.
[22] Flory, P. (1989) Statistical mechanics of chain molecules. (Hanser Publisher, Munich).
[23] Marko, J. F., and E. D. Siggia. (1994) Macromolecules 28, 8759–8770.
[24] Hansen, P. and R. Podgornik. (2001) J. Chem. Phys. 114, 8637–8648.
[25] Buck, G. and J. Orloff. (1995) Topol. Appl. 61, 205–214.
[26] Litherland, R., J. Simon, O. Durumeric, and E. Rawdon. (1999) Topol. Appl. 91, 233–244.
[27] Gonzales, O. and J. H. Maddocks. (1999) Proc. Natl. Acad. Sci. USA 96, 4769–4773.
[28] Katichr, V., W. K. Olson, P. Pieranski, J. Dubochet, and A. Stasiak. (1997) Nature 388, 148–151.
[29] Stasiak, A. and J. H. Maddocks. (2000) Nature 406, 251–253.
[30] Maritan, A., C. Micheletti, A. Trovato, and J. R. Banavar. (2000) Nature 406, 287.
FIG. 1: (a) Pictorial sketch of a discrete thick chain with thickness Δ and granularity a (in the figure $\Delta = 4a$). The finite thickness introduces steric constraints that forbid configurations where the chain self-intersects. (b) These constraints, which for, e.g. the chain of ellipsoids, may be implemented only with heavy computational expenditure, are more conveniently treated within the three-body prescription of the thick-chain model. Within this approach the centerline of a viable configuration is such that the radii, r_{ijk} of the circles going through any triplet of points, i, j, k, on the curve are not smaller than Δ.

[31] Marenduzzo, D. and C. Micheletti. (2003) J. Mol. Biol. 330, 485–492.
[32] Rybenkov, V. V., N. R. Cozzarelli, and A. V. S. Vologodskii. (1993) Proc. Natl. Acad. Sci. USA 90, 5307.
[33] Marszalek, P. E., Y.-P. Pang, H. Li, J. E. Yazal, A. F. Oberhauser, and J. M. Fernandez. (1999) Proc. Natl. Acad. Sci. USA 96, 7894–7898.
[34] Marszalek, P. E., H. Li, and J. M. Fernandez. (2001) Nature Biotech. 19, 258–262.
[35] Rief, M., M. Gautel, F. Oesterhelt, J. Fernandez, and H. E. Gaub. (1997) Science 276, 1109–1112.
[36] Buck, G. (1998) Nature 392, 238–239.
[37] Rawdon, E. (2000) J. Knot Th. Ram. 9, 113–145.
[38] Banavar, J., A. Maritan, C. Micheletti, and A. Trovato. (2002) Proteins 47, 315–322.
[39] Banavar, J. R., A. Flammini, D. Marenduzzo, and A. Maritan. (2003) J. Phys.-Condens. Matt. 15, S1787–S1796.
[40] Premilat, S. and J. J. Hermans. (1973) J. Chem. Phys. 59, 2602–2612.
[41] Flory, P. J. and V. W. C. Chang. (1976) Macromolecules 9, 33–40.
[42] Lam, P.-M. (2002) Biopolymers 64, 57–62.
[43] Livadaru, L., R. R. Netz, and H. J. Kreuzer. (2003) Macromolecules 36, 3732–3744.
[44] Storm, C. and P. C. Nelson. (2003) Phys. Rev. E 67, 051906.
[45] Rosa, A., T. X. Hoang, D. Marenduzzo, and A. Maritan. (2003) Macromolecules 36, 10095–10102.
[46] Lamba, A., T. W. Burkhardt, and G. Gompper. (2001) Phys. Rev. E 64, 061801.
[47] Lee, G., W. Nowak, J. Jaroniec, Q. Zhang, and P. Marszalek. (2004) Biophys. J. 87, 1456–1465.
[48] Odijk, T. (1995) Macromolecules 28, 7016–7018.
[49] Odijk, T. (1998) Biophysical Journal 75, 1223–1227.
[50] Podgornik, R., P. Hansen, and V. Parsegian. (2000) J. Chem. Phys. 113, 9343–9350.
[51] Lee, N. and D. Thirumalai. (1999) Eur. Phys. J. B 12, 599–605.
[52] Marenduzzo, D., C. Micheletti, H. Seyed-allaei, A. Trovato, and A. Maritan. (2005) J. Phys. A: Math. Gen. p. in press.
FIG. 2: (a) Elongation versus reduced force for a chain of thickness $\Delta/a = 1$. Data points are presented in the $(\log(1-x), \log(f))$ plane to highlight the WLC- and FJC-like regimes found at moderate and high forces. (b) Illustration of the low-force crossover from the Hookean regime, $x \propto f$, to the Pincus one, $x \propto f^{2/3}$ for a chain of thickness $\Delta/a = 1$ and $N = 1200$ beads.

FIG. 3: Typical fit of the PEVK stretching data through the thick-chain model. The particular fit yields a contour length $L_c = 147.6 \pm 0.3$ nm, a thickness $\Delta = 0.34 \pm 0.01$ nm and a granularity $a = 0.45 \pm 0.02$ nm. For this set the WLC provides a fit with a χ^2 analogous to that of the TC and yields $L_c = 148.1 \pm 0.1$ nm and $\xi_p = 0.76 \pm 0.02$ nm.
FIG. 4: Fit of the cellulose stretching data through the TC model. The fit was carried out using forces up to 300 pN, and yielded a contour length $L_c = 82.35 \pm 0.02$ nm, a thickness $\Delta = 0.54 \pm 0.02$ nm, and a granularity $a = 1.02 \pm 0.01$ nm.

FIG. 5: Fit of dsDNA stretching measurements through the TC model. Forces up to 10 pN were used.