Hurricanes increase tropical forest vulnerability to drought

Chris M. Smith-Martin1, Robert Muscarella2, Roi Ankori-Karlinsky1, Sylvain Delzon3, Samuel L. Farrar2, Melissa Salva-Sauri1,4, Jill Thompson5, Jess K. Zimmerman4 and María Uriarte1

1Department of Ecology, Evolution and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027, USA; 2Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala 752 36, Sweden; 3INRA, BIOGECO, Université Bordeaux, Pessac 33615, France; 4Department of Environmental Sciences, University of Puerto Rico, San Juan, PR 00925, USA; 5UK Centre for Ecology & Hydrology Bush Estate, Penicuik, Midlothian, EH26 0QB, UK

Key words: coastal tropical forests, cyclonic storm, forest succession, Hurricane Hugo, P50 xylem optical vulnerability curves, plant hydraulics, plant–climate interactions, tropical trees and palms.

Introduction

Rapid changes in climate and disturbance regimes are likely to influence tropical forests (Bonan, 2008; Chazdon, 2008; McDowell et al., 2020). Most models predict stronger droughts across large areas in the tropics, including the Amazon (Joetzjer et al., 2013), Central America, and the Caribbean (Neelin et al., 2006; Herrera & Ault, 2017). Increases in tree mortality and growth declines have been associated with severe drought across several tropical forests (Chazdon et al., 2005; Uriarte et al., 2016a; Leitold et al., 2018; Powers et al., 2020). Given that these ecosystems account for the majority of terrestrial aboveground biomass (Pan et al., 2011), declines in productivity coupled with high tree mortality could lead to large carbon (C) losses to the atmosphere, turning tropical forests from a C sink to a source, and creating a positive feedback to climate warming (Gatti et al., 2014; Bienen et al., 2015; Hubau et al., 2020). Beyond its effects on precipitation, climate change is also altering the frequency and/or intensity of disturbances, including fires, cyclonic storms, insect outbreaks, and floods (Dale et al., 2001; Seidl et al., 2017; DOE, 2018; Brando et al., 2019; Knutson et al., 2019). Understanding the compound effects of droughts and more severe natural disturbance on tropical forests is necessary to elucidate the future of these ecosystems under a changing climate.

Cyclonic storms (known as hurricanes in the Atlantic and typhoons or cyclones elsewhere) represent the dominant natural disturbance in many coastal tropical and subtropical forests in the Atlantic coastal regions of Central and South America, through the Caribbean, Gulf Coast region, the Indian subcontinent, Southeast Asia, Indo-Malaysia, and northern Australia (Boose et al., 1994; Everham & Brokaw, 1996; Lugo, 2008; Ibanez et al., 2019). Since these storms derive their energy from ocean heat and sea surface temperatures have increased in the North Atlantic during the past decades, maximum wind speeds and rainfall rates are expected to rise and storms to intensify more rapidly (Webster, 2005; Knutson et al., 2010; Balaguru et al., 2018). The expected shifts in the frequency and intensity of tropical storms, and their potential interaction with other climate change stressors such as severe droughts, have profound implications for the long-term resilience of tropical forests in these regions. Yet our understanding of the compound effects of severe droughts and hurricanes on forests is extremely limited (Beard et al., 2005).

Summary

• Rapid changes in climate and disturbance regimes, including droughts and hurricanes, are likely to influence tropical forests, but our understanding of the compound effects of disturbances on forest ecosystems is extremely limited. Filling this knowledge gap is necessary to elucidate the future of these ecosystems under a changing climate.

• We examined the relationship between hurricane response (damage, mortality, and resilience) and four hydraulic traits of 13 dominant woody species in a wet tropical forest subject to periodic hurricanes.

• Species with high resistance to embolisms (low P50 values) and higher safety margins (SM50) were more resistant to immediate hurricane mortality and breakage, whereas species with higher hurricane resilience (rapid post-hurricane growth) had high capacitance and P50 values and low SM50. During 26 yr of post-hurricane recovery, we found a decrease in community-weighted mean values for traits associated with greater drought resistance (leaf turgor loss point, P50, SM50) and an increase in capacitance, which has been linked with lower drought resistance.

• Hurricane damage favors slow-growing, drought-tolerant species, whereas post-hurricane high resource conditions favor acquisitive, fast-growing but drought-vulnerable species, increasing forest productivity at the expense of drought tolerance and leading to higher overall forest vulnerability to drought.

Received: 15 November 2021
Accepted: 7 April 2022

New Phytologist (2022)
doi: 10.1111/nph.18175

© 2022 The Authors
New Phytologist © 2022 New Phytologist Foundation
www.newphytologist.com
Forests undergoing post-hurricane disturbance may be particularly vulnerable to climate stress from drought. Hurricanes cause widespread crown damage and mortality, opening up the canopy and leading to rapid post-successional dynamics and community reorganization (Vandermeer, 2000; Lugo, 2008; Tanner et al., 2014; Imbert, 2018; Uriarte et al., 2019). Canopy damage results in elevated light and temperature in the understory (Comita et al., 2009; Vargas et al., 2009), intensifying drought impacts. The high resource conditions that typically follow hurricane disturbance result in large increases in seedling establishment and tree growth, particularly for light-demanding species (Guzman-Grajales & Walker, 1991; Burslem et al., 2000; Uriarte et al., 2004, 2005; Comita et al., 2009). As a result, recovering forests contain a greater proportion of pioneer and fast-growing tree species, whose physiological characteristics may make them more vulnerable to drought (Bazzaz & Pickett, 1980; Phillips et al., 2010; Lohbeck et al., 2013; Greenwood et al., 2017). Competition for water, which may intensify under drought, is particularly high in regrowing forests as a result of fast growth rates of understory vegetation, high stem densities, and dominance of water-demanding species (Uriarte et al., 2016b). Despite these potential vulnerabilities, research on the factors that determine how drought may influence post-hurricane ecosystem recovery is lacking (Anderson-Teixeira et al., 2013; Uriarte et al., 2016b; Bretfeld et al., 2018; McDowell et al., 2020).

The fate of tropical forests exposed to severe droughts and hurricanes depends on variation in species’ responses to these events. Evidence suggests that forests subject to periodic hurricane disturbance may have a greater proportion of species with traits (e.g. shorter height, high resistance to damage) that have been selected to withstand these repetitive large-scale disturbances (Boose et al., 2004; Griffith et al., 2008; Ibanez et al., 2019). Nevertheless, tree species differ in their susceptibility to disturbance by a wind of a given intensity and the nature of the damage they sustain (i.e. resistance), as well in their recovery from wind disturbance, at both the individual plant level through repair of damage, and at the population level through reproduction, seedling establishment, and growth response to enhanced light availability (i.e. resilience) (Walker, 1991; Boucher et al., 1994; Zimmerman et al., 1994; Uriarte et al., 2009, 2019; Canham et al., 2010). Variability among species in their ability to resist wind damage may not always align with life history classifications based on light-use strategies (Zimmerman et al., 1994; Lugo & Scatena, 1996; Uriarte et al., 2004, 2012, 2019). Although species with denser wood (Uriarte et al., 2019) and deeper root systems (Gresham et al., 1991) generally suffer less damage and mortality, there are many exceptions to these patterns (Uriarte et al., 2019). Dense wood has also been associated with greater drought tolerance (Powers et al., 2020; Liang et al., 2021), suggesting that resistance to hurricanes and drought tolerance may be aligned across species. However, the fast-growing light-demanding, hurricane-resilient species are expected to possess a set of traits that make them more vulnerable to drought. Species with strategies associated with greater resource acquisitiveness that dominate post-disturbance recovery tend to have traits associated with drought avoidance (high capacitance) and higher growth rates, whereas conservative species favor greater drought tolerance (i.e. low leaf turgor loss point, high resistance to xylem embolisms, and larger safety margins) at the expense of lower growth (Oliveira et al., 2021). Forests recovering from hurricanes are expected to favor resource-acquisitive species over conservative ones due to high light conditions in the understory (Carreño-Rocabado et al., 2012; Subedi et al., 2019), potentially leading to an increase in the overall level of forest susceptibility to drought. Yet species-level responses to drought, and how they align with their responses to disturbances, are extremely variable and poorly understood (Umaña & Arellano, 2021).

Here, we examine the relationship between drought avoidance and tolerance with hurricane resistance (resistant to immediate hurricane mortality and stem break) and resilience (rapid post-hurricane growth) for 12 common and broadly distributed tree species and one dominant palm species in a forest in El Yunque National Forest in northeastern Puerto Rico. The forest is subject to repeated hurricane disturbance with a return interval of c. 50 yr for severe storms (category 3–4 in the Saffir–Simpson scale) (Boose et al., 2004). After 57 yr without a major storm, two severe storms, Hurricane Hugo in 1989 and Hurricane Georges in 1998, struck the forest. We ask the following questions and test associated hypotheses:

Q1. Do resistance to hurricane damage (hurricane-induced mortality and stem damage) and drought tolerance (embolism resistance and vulnerability to hydraulic failure) constitute independent axes of plant function? We expect species that are more resistant to immediate hurricane damage to also be more resistant to embolism and hydraulic failure.

Q2. Do resilience to hurricane damage (high post-hurricane growth) and drought avoidance (high capacitance) constitute independent axes of plant function? We expect species that are more resilient to hurricanes and grow more rapidly during post-hurricane recovery to also be more vulnerable to embolisms and hydraulic failure and possess higher capacitance.

Q3. How does forest level vulnerability to drought change over 26 yr of post-hurricane recovery? We hypothesize that high light conditions in post-hurricane recovery will favor acquisitive fast-growing, drought-avoiding species (high capacitance), with leaves that wilt under lower drought stress (high turgor loss point Ψₑ), that are more vulnerable to embolisms and hydraulic failure, thus increasing forest productivity at the expense of drought tolerance. We hypothesize that this change will lead to greater forest vulnerability to drought as the forest recovers from disturbance.

Materials and Methods

Study site and species data

This study was conducted at the Luquillo Experimental Forest (LEF) in northeastern Puerto Rico. The LEF is an evergreen forest classified as subtropical wet forest in the Holdridge life zone system (Ewel & Whitmore, 1973) with a mean annual temperature of...
25.2°C and mean annual rainfall of 3500 mm. Soils are from volcanic origin and are classified as Oxisols and Ultisols (Soil Survey Staff, 1995). Although land use was extensive when the US Forest Service acquired the land in 1932, the majority of the forest is considered old-growth, particularly at elevations > 350 m. These forests have a well-documented history of hurricane damage, with a return interval of c. 50 yr for severe storms (category 3–4 in the Saffir–Simpson scale) (Boose et al., 2004), although hurricane activity exhibits oscillations linked to Atlantic multidecadal variability (Goldenberg et al., 2001). Early in the last century, in 1928 and 1932, major hurricanes struck the LEF. After 57 yr without a major storm, two severe storms, Hugo in 1989, a category 3 storm with winds up to 166 km h⁻¹ and Georges in 1998, also a category 3 storm with winds up to 144 km h⁻¹, struck the forest (Zimmerman et al., 2002). The compound effects of these two storms led to rapid, post-hurricane dynamics (Uriarte et al., 2005, 2009; Zimmerman et al., 2010; Hogan et al., 2016; Heartsill Scalley, 2017). Average canopy height is 30 m, but hurricane damage can lead to canopy height losses ranging between 5 and 10 m (Brokaw & Grear, 1991; Gannon & Martin, 2014; Leitold et al., 2021).

For our study, we selected 12 tree species and one palm species that encompass many of the dominant species at this site (Table 1; Thompson et al., 2002). Demographic and immediate hurricane damage data were collected in the Luquillo Forest Dynamics Plot (LFDP; 18°20′N, 65°49′W; Thompson et al., 2002). The LFDP is a 16 ha forest plot located near El Verde Field Station in the LEF with an elevation range from 333 to 423 m. The plot was established in 1989 and censused at c. 5 yr intervals starting in 1990 through 2016 using standard protocols (Condit, 1998). Briefly, all stems with diameter at breast height (DBH) of ≥ 1 cm are mapped, measured, and identified to species. In each census, new stems are added, stems are remeasured, and their status (alive/dead) is updated. Prior to 1934, parts of the lower elevation forest of the LD FP (< 350 m) were subjected to light logging and agriculture, but the forest structure and canopy cover had recovered by the time Hurricane Hugo made landfall (Thompson et al., 2002).

The first LFDP census in 1990 included an initial survey of all stems ≥ 10 cm DBH to prevent loss of data due to decomposition of trees killed or damaged by Hurricane Hugo (Zimmerman et al., 1994; Thompson et al., 2002). During this census, immediate hurricane mortality and damage (stem break) were also recorded (Zimmerman et al., 1994; Thompson et al., 2002; Canham et al., 2010). Surveys of all stems ≥ 1 and ≤ 10 cm DBH in the first census were conducted from 1990 to 1993 and capture post-successional recruitment. For this reason, we only use stems ≥ 10 cm DBH to calculate comparable basal area across all censuses (Q3). However, we use all stems ≥ 1 cm DBH to calculate growth rates (Q2). As the forest was recovering from Hurricane Hugo, Hurricane Georges struck Puerto Rico in September 1998 with winds up to 144 km h⁻¹ (category 3; Solá, 2000), but it was estimated to be a category 2 storm by the time it reached the forest. The effects of this second hurricane on the LFDP forest area were less acute than those of Hugo (Uriarte et al., 2019), and it had a limited effect on forest structure and composition (Uriarte et al., 2009, 2019). Basal area was estimated to average 36.7 m² ha⁻¹ at the time of Hurricane Hugo, 30.85 m² ha⁻¹ at the time Georges struck, and 38.37 m² ha⁻¹ in 2016. Density of stems ≥ 10 cm DBH has remained stable at c. 1000 ha⁻¹, whereas the density of small stems (1–10 cm DBH) ranged from 6841 in 1993 and 2444 ha⁻¹ in 2016, reflecting continuous stem thinning through post-hurricane succession (Supporting Information Fig. S1).

The forest has not been censused since the passage of Hurricane Maria in 2017, so we use census data collected through 2016. Altogether, our 13 target species represent c. 50–60% of the basal area of the LFDP, depending on the census (Table 1). For each of the 13 species, we calculated two metrics of growth for the first 5 yr after the hurricane: annual absolute growth quantified as the increments in tree DBH between the initial and the first post-hurricane census divided by census interval and relative growth, calculated as absolute growth divided by the initial tree DBH. We also calculated relative growth in the same way using basal area instead of DBH.

Hydraulic traits

For each species, we measured hydraulic traits on 5–13 mature canopy trees (Table S1) for a total of 123 trees measured. We collected canopy branches that were > 1.5 m long with a pole pruner, immediately sealed branches in large plastic bags with wet paper towels, placed the branches in large black plastic garbage cans filled with water as soon as possible, recut the branches under water, and covered them with black plastic bags to minimize transpiration until further processing. At the end of each collecting trip, we immediately took samples to the laboratory where we conducted the hydraulic measurements. All hydraulic measurements were conducted between July 2019 and August 2020.

Leaf turgor loss point and leaf capacitance

We characterized leaf turgor loss point and leaf water storage capacity using

Table 1. List of species used in this study, the code we used to represent them in some figures, their families, and the range of the percentage of the total basal area of each species across six censuses of the 16 ha Luquillo Forest Dynamics Plot.

Species	Code	Family	Range of basal area (%)
Alchornea latifolia	ALCLAT	Euphorbiaceae	1.43–1.95
Casearia arborea	CASARB	Flacourtiaceae	2.99–4.94
Cecropia schreberiana	CECSCH	Moraceae	3.87–6.54
Cordia borinquensis	CORBOR	Boraginaceae	0.10–0.25
Cyrilla racemiflora	CYRRAC	Cyrtaceae	0.17–0.24
Dacryodes excelsa	DACEXC	Bursaraceae	12.04–16.82
Drypetes glauca	DRYGLA	Euphorbiaceae	0.38–0.73
Inga laurina	INGLAU	Fabaceae	3.07–5.25
Micropholis guianensis	MIGGUY	Sapotaceae	0.01–0.02
Ocotea leucocyanon	OCOLEU	Lauraceae	0.60–0.94
Prestoea acuminata var. montana	PREMON	Arecales	13.44–24.44
Sloanea berteroana	SLOBER	Elaeocarpaeceae	2.72–3.85
Tabebuia heterophylla	TABHET	Bignonaceae	1.24–2.67
Total			50–60
changes in light intensity. Embolism accumulation in each leaf black (0) to white (255). Each image was subtracted from the converted them to 8-bit grayscale with pixel values ranging from We calculated leaf area with IMAGEJ software (National Institutes of Health, New York, NY, USA) and used the Sack & Pasquet-Kok (2011) spreadsheet tool to construct pressure–volume curves. We used the optical vulnerability technique to estimate xylem embolism accumulation in leaves (Brodribb et al., 2016). Briefly, for each branch immediately after it was brought back from the field, we secured a leaf inside a custom-built three-dimensional printed clamp (OpenSourceOV) fitted with a small 8 Mpx Raspberry Pi camera and light-emitting diodes operated by a Raspberry Pi microcomputer. Once the leaf was secured in the clamps, we took a picture every 2 min of a 4 cm² leaf area until no embolism events were recorded for at least 12 h (c. 72–96 h, depending on the species). As the branch dehydrated, we used a stem psychrometer (ICT International, Armidale, NSW, Australia) to record water potential every 10 min. To attach the stem psychrometer, we removed a small section of bark from the branch and clamped the psychrometer to the exposed xylem and created an airtight seal with Parafilm sealing film.

We used IMAGEJ to analyze the pictures of leaf embolisms following Brodribb et al. (2016). We stacked all the images and converted them to 8-bit grayscale with pixel values ranging from black (0) to white (255). Each image was subtracted from the next image in the sequence to reveal embolisms that appear as changes in light intensity. Embolism accumulation in each leaf was quantified as a cumulative total of embolized pixels in each image divided by the total number of embolized pixels in the fully dried sample. To determine the water potential Ψx at the time of image capture, we fitted a linear regression to the Ψt over time and extracted the values at which 50% of the cumulative embolizations had occurred (P50; Figs S2–S4). We also measured xylem vulnerability in stems on the same branches at the same time as we measured the leaves (Figs S2–S4); however, we only use vulnerability curves from leaves because we were unable, due to their stem anatomy, to measure stem xylem vulnerability for Cecropia schreberiana, which has thick hollow stems, and the palm, Prestoea acuminata var. montana. For the 11 species for which we were able to measure P50 in both leaves and stems, there was no significant difference between the two (Figs S2–S4). Full details of the procedure, including an overview of the technique, image processing, and IMAGEl scripts, are available at http://www.opensourceov.org.

We calculated safety margins SMP50 as the difference between leaf turgor loss point Ψtlp, which is a common proxy for stomatal closure (Brodribb et al., 2003; Rodriguez-Dominguez et al., 2016; Martin-StPaul et al., 2017; Ziegler et al., 2019), and the water potential at which 50% of total embolisms had occurred as defined by Martin-St Paul et al. (2017):

\[SM_{P50} = \Psi_{tlp} - P_{50} \]

Data analysis

We used linear regressions to evaluate if there were associations between species P50 and safety margin SMP50 and the metrics of hurricane response: hurricane damage (mortality and broken stems) and post-hurricane absolute and relative growth. To evaluate if there was a trade-off between storage of water in the tissue and embolism resistance and vulnerability to hydraulic failure, we fitted linear regressions of species leaf capacitance Cx vs P50 and SMP50.

To assess changes in forest-level drought responses during post-hurricane recovery, we calculated community-weighted mean (CWM) trait values for all of the species with measured hydraulic traits for each census under the assumption that these traits are static through time. We calculated CWM values for each trait t and each census c as CWMt,c = \sum_{i=1}^{S} a_{ic} × t_i, where aic is the relative basal area of each species i for census c based on the total basal area of the focal species. To evaluate how the individual CWM traits changed among censuses, we calculated the percentage of relative change between each census c as:

\[\frac{CWM_{t,c} - CWM_{t,c-1}}{CWM_{t,c-1}} × 100 \]

We performed all analyses using R statistical software (v.4.0.2; R Core Team, 2020).

Results

Overall, our study species exhibited substantial variation in hydraulic traits. Turgor loss point Ψtlp, a proxy for leaf wilting point and stomatal closure, had significant variation across species (Fig. 1a; Tables S2, S3). Cecropia schreberiana had the highest Ψtlp values, meaning that this species wilts at a higher water potential, whereas Caseria arborea wilted at the lowest water potential. Species also exhibited large variation in water storage capacity in leaves (Fig. 1b; Tables S2, S3): C. schreberiana and Cordia borinquensis had the highest capacitance, followed by the palm P. acuminata var. montana. Caseria arborea, Dacryodes excelsa, Drypetes glauca, and Micropholis guyanensis had some of the lowest water storage capacitance. Resistance to embolism formation P50 was also highly variable across species, with C. schreberiana, D. excelsa, and Alchornea latifolia at the lowest range and C. arborea and M. guyanensis at the highest end overall (Fig. 1c; Tables S2, S3). Species safety margins SMP50 also exhibited a broad range of variation, with significant...
Cecropia schreberiana was the only species that exhibited a slightly negative SM$_{P_{50}}$, suggesting that it is particularly vulnerable to severe drought. Several other species also had very low SM$_{P_{50}}$, indicating that they operate at thresholds that are very close to hydraulic failure, making them highly susceptible to droughts. Specifically, A. latifolia, Cyrilla racemiflora, D. excelsa, Inga laurina, Ocotea leucoxylon, P. acuminata var. montana, and Sloanea berteroana all had SM$_{P_{50}}$ < 1 MPa, whereas C. arborea, C. boringuensis, D. glauca, and Tabebuia heterophylla had SM$_{P_{50}}$ > 1 MPa, and M. guayanensis had the highest SM$_{P_{50}}$ of 2.6 MPa (Fig. 1d).

Across species, there was a trade-off between capacitance and P_{50} (Fig. S5a; Table S4) and SM$_{P_{50}}$ (Fig. S5b; Table S4). Drought-avoiding species (i.e. higher capacitance) were also more vulnerable to embolisms (i.e. higher P_{50}) and hydraulic failure (i.e. lower SM$_{P_{50}}$), and thus less drought tolerance, whereas the more embolism resistant and drought-tolerant species had lower capacitance. There was an association between vulnerability to hurricane damage and resistance to embolisms and hydraulic failure. Species that had lower capacitance (P_{50} values also experienced a lower percentage of immediate mortality (Fig. 2a) and stem breaks (Fig. 2b) during Hurricane Hugo. Paralleling patterns observed for P_{50}, species that had higher SM$_{P_{50}}$ again also had lower percentage of hurricane-induced immediate mortality (Fig. 2c) and stem break (Fig. 2d). In the case of hurricane resilience, we found the opposite trend. There was a trade-off between hurricane resilience and resistance to embolisms and hydraulic failure.

In the first 5 yr following Hurricane Hugo, basal area of stems ≥ 10 cm DBH of most of the target species decreased or stayed the same (Fig. 4; Table S5). However, after 10–15 yr of post-hurricane recovery there was an increase in the basal area of many species. Three species in particular had very high hurricane resilience, C. schreberiana, D. excelsa, and P. acuminata var. montana, with dramatic increases in basal area that exceeded pre-hurricane levels 15–20 yr after the hurricane. After 26 yr of post-hurricane recovery, the basal area of two of these species, C. schreberiana and P. acuminata var. montana, declined whereas that of D. excelsa continued to increase (Fig. 4; Table S6).
Hurricane disturbance increased forest susceptibility to drought. Over the 26 yr of post-hurricane recovery, CWM trait values associated with drought avoidance (capacitance) increased whereas CWM trait values associated with drought tolerance (P_{50} and $SM_{P_{50}}$) declined. CWM for leaf turgor loss point Ψ_{tlp} decreased by c. 2.5% during the first 10 yr post-disturbance; then it leveled off and started to increase during the last census interval (2011–2016; Fig. 5a; Table S6). CWM capacitance C_{ft} increased until it reached a peak in 2005, with a total increase of c. 12.5% over the 15 yr period, and then it started to decrease during the last census (Fig. 5b; Table S6). CWM P_{50} decreased by c. 11% during the 26 yr of post-hurricane recovery, although it leveled off and even started to increase by 2016 (Fig. 5c; Table S6). The most pronounced post-hurricane change in our analyses was CWM hydraulic safety margins $SM_{P_{50}}$, with a 45% total decrease over the first 20 yr post-hurricane, although it had leveled off between the last two censuses (Fig. 5d; Table S6).

Discussion

We examined the relationship between hurricane resistance and resilience and hydraulic traits of 13 dominant woody species in a wet tropical forest subject to periodic hurricane disturbance. We found a large range in variation in hydraulic traits within the community and a trade-off between capacitance and two metrics of drought tolerance, P_{50} and $SM_{P_{50}}$. Species that were more resistant to embolisms (P_{50}) and hydraulic failure ($SM_{P_{50}}$) were also less vulnerable to immediate hurricane damage (mortality and stem break), whereas species that had higher hurricane resilience and regenerated rapidly after the hurricane had hydraulic traits that made them more vulnerable to drought (high P_{50} values and low $SM_{P_{50}}$). Over the first 5 yr of post-hurricane recovery, we found a trade-off between growth and hydraulic safety, confirming a recently proposed trade-off between growth and $SM_{P_{50}}$ that had not been tested in other forests outside the Brazilian Amazon (Oliveira et al., 2021). In particular, three species (C. schreberiana, D. excelsa, and P. acuminata var. montana) with hydraulic traits linked to greater vulnerability to drought also exhibited high hurricane resilience, with dramatic increases in basal area that exceeded pre-hurricane levels. During 26 yr of post-hurricane recovery, there was a decrease in community-weighted mean trait values associated with greater drought tolerance (Ψ_{tlp}, P_{50}, $SM_{P_{50}}$) and an increase in capacitance, a trait that has been linked with lower drought tolerance (Christoffersen et al., 2016; Pivovaroff et al., 2018; Santiago et al., 2018; Oliveira et al., 2021). Immediate hurricane damage in this forest favors slow-growing, drought-tolerant species. However, the high resource conditions in the wake of a hurricane favor acquisitive, fast-growing, drought-avoiding species that are more vulnerable to drought and hydraulic failure, increasing...
Species exhibited large variation in hydraulic traits and a trade-off between drought avoidance and tolerance

Species within our community exhibited a large range of variation in embolism resistance and hydraulic safety. We found over a five-fold difference in P_{50} values across species, and $SM_{P_{50}}$ ranged from close to zero to $c.$ 2.5 MPa. Consistent with our findings, several studies have observed a wide range in P_{50} values within tropical forest communities elsewhere (Santiago et al., 2018; Barros et al., 2019; Oliveira et al., 2019; Ziegler et al., 2019; Fontes et al., 2020; Powers et al., 2020). The wide range in $SM_{P_{50}}$ indicates that not all the species within our community function at the edge of their hydraulic capacity, a fact that does not support the expectation that species should operate with narrow $SM_{P_{50}}$ to sustain CO₂ assimilation as water becomes more limited (Tyree & Sperry, 1988; Choa et al., 2012; Barros et al., 2019; Fontes et al., 2020). Although a growing number of studies have found that wide $SM_{P_{50}}$ values (1–5 MPa) are common within and across tropical forest communities (Martin-StPaul et al., 2017; Benito Garzón et al., 2018; Barros et al., 2019; Ziegler et al., 2019; Powers et al., 2020; Smith-Martin et al., 2020), eight of the 13 species we studied had $SM_{P_{50}} < -1$ MPa, indicating that the majority of species were operating close to their maximum hydraulic capacity. *Cecropia schreberiana* had slightly negative $SM_{P_{50}}$, which should be further investigated by direct measurements of stomatal conductance in response to drought as the expectation is that no embolism occurs before full stomatal closure has occurred (Creek et al., 2020). Community-wide variation in turgor loss point was not as marked as for P_{50}. There was only around a 1.5-fold difference in $Ψ_{tlp}$ across species, with 11 of our 13 species having $Ψ_{tlp}$ between -1.5 and -2 MPa, suggesting greater convergence in this trait than in embolism resistance (over a five-fold difference in P_{50}). Our findings support the idea that the range in $Ψ_{tlp}$ values is lower than in P_{50} and $SM_{P_{50}}$. Ziegler et al. (2019) also found a range in $Ψ_{tlp}$ of $c.$ -1.5 to -2.0 MPa, further supporting that this trait is less variable, at least in wetter forests.

Our findings imply a trade-off between drought avoidance (high capacitance) and drought tolerance (high embolism resistance and large $SM_{P_{50}}$). Among the species we studied, there was over a three-fold difference in leaf capacitance, and some of the species with the greatest water storage in their leaves also had the least negative P_{50} values and the lowest $SM_{P_{50}}$. This pattern was particularly marked in *C. schreberiana*, *D. excelsa*, and *P. acuminata var. montana*. Our results coincide with previous findings of a synthesis of data from multiple sites that found a trade-off between drought avoidance at the expense of potential higher forest vulnerability to drought.

Fig. 3 Associations between P_{50} and safety margins $SM_{P_{50}}$ and (a, c) absolute annual diameter growth and (b, d) relative annual growth during the first 5 yr after Hurricane Hugo. Blue lines depict linear regressions and shaded areas represent 95% confidence intervals.

© 2022 The Authors
New Phytologist © 2022 New Phytologist Foundation

New Phytologist (2022)
www.newphytologist.com
Hurricane Hugo broke, uprooted, and killed fewer individuals of species with dense wood, which could explain the association we found between drought and hurricane resistance, as densely wooded species have been shown to be more drought tolerant (Powers et al., 2020; Liang et al., 2021). Overall, this would mean that the direct effects of hurricanes and drought favor the same group of old-growth, dense-wood, and drought-tolerant species.

Trade-off between drought tolerance and hurricane resilience

There was also a trade-off between post-hurricane growth and drought tolerance. Specifically, we found a trade-off between stem diameter growth and the two metrics of drought tolerance (P_{50} and $SM_{P_{50}}$) during the first 5 yr after the hurricane. Even if immediate hurricane damage favors more drought-tolerant species, rapid forest reorganization and high post-hurricane growth benefit species that favor productivity over hydraulic safety. Oliveira et al. (2021) argue that the fast–slow economic spectrum also applies to $SM_{P_{50}}$, reasoning that species with high $SM_{P_{50}}$ are not operating at maximum growth capacity to achieve higher safety, and thus have a lower return on their C investment, making them slower growing and better suited for low-resource environments. By contrast, species with low $SM_{P_{50}}$ that operate at maximum capacity have a high return on their C investment, leading to fast growth and a competitive advantage in a high-resource environment. Our findings support the trade-off between $SM_{P_{50}}$ and growth proposed by Oliveira et al. (2021), showing that this pattern applies to another forest aside from the Brazilian Amazon where this idea was originally tested and also applies to the trade-off between P_{50} and growth. The degree to which this trade-off occurs in other tropical forest ecosystems remains an open question.

Post-hurricane successional forests are more vulnerable to drought

Post-hurricane successional forests had high capacitance and low resistance to embolisms and hydraulic failure. Assuming that traits remained stable over the 26 yr period, we found a decrease in community-weighted mean trait values associated with drought tolerance (i.e. $Ψ_{50}$, P_{50}, and $SM_{P_{50}}$) and an increase in capacitance. These shifts in forest level traits were most pronounced during the first 15 yr post-disturbance and, in general, leveled off or started to revert 26 yr after the hurricane. This increase in drought vulnerability was largely driven by increases in three of the species with the most drought-vulnerable hydraulic traits, *C. schreberiana*, *D. excelsa*, and *P. acuminata var. montana*, which dominate post-disturbance communities (Uriarte et al., 2009, 2019). Umaña & Arellano (2021) studied six tree species at the same location in Puerto Rico and found that *C. schreberiana* was the species that had the highest growth reduction during drought, consistent with our findings. In their study, *D. excelsa* was not affected by severe drought and responded favorably to moderate droughts (Umaña & Arellano, 2021). *Dacryodes excelsa* is known to have extensive root grafting (Basnet...
et al., 1993) that could allow trees to redistribute water and make them less susceptible to drought. Our findings could have consequences for forest post-disturbance dynamics, since forests in Puerto Rico and the Caribbean are subject to periodic hurricanes and our study site was recently hit by another category 4 hurricane in 2017, Hurricane María (Uriarte et al., 2019). A warming climate is expected to lead to more intense hurricanes (Knutson et al., 2010; Balaguru et al., 2018), which coupled with expected increases in extreme drought events (Khalyani et al., 2015; Ramseyer et al., 2019) could drastically change dynamics and species composition of Caribbean forests.

Compound disturbances can interact in ways that cannot be predicted by the study of a single disturbance (Paine et al., 1998; Seidl et al., 2017), potentially altering forest species composition and successional pathways (Wu & Loucks, 1995; McDowell et al., 2020). Our results demonstrate that the temporal pattern of disturbance can play a key role in determining forest vulnerability to drought. Hurricane disturbance favors species on the fast end of the plant economic spectrum (Reich, 2014). Hurricane Hugo struck our study site in 1989, causing significant forest damage and favoring fast-growing but drought-vulnerable pioneer species. If this forest were to suffer a severe drought in the first few years after a recent hurricane, this could result in rapid drought-induced mortality of hydraulically vulnerable species and alter post-disturbance ecosystem successional trajectories (Beard et al., 2005). A previous study at the site found a decline in tree growth during a 2015 drought (Feng et al., 2018; Schwartz et al., 2020), an effect that could potentially be exacerbated if the forest were in the early stages of recovery from severe hurricane damage. A substantial amount of research in temperate forests has examined compound impacts of climate change stressors on ecosystems (Seidl et al., 2017; Gaiser et al., 2020). Disturbance can enhance resilience or increase vulnerability to other global change factors (Turner, 2010). For example, drought exacerbates forest vulnerability to bark beetle attacks (Negrón et al., 2009; Netherer et al., 2019), and insect damage can favor species better adapted to warmer climates, reducing ecosystem vulnerability to subsequent disturbances (Temperli et al., 2013). However much less is known about the effect of compound disturbances on tropical forests, especially about the interaction between wind disturbance and drought. Since climate change has multiple and varied effects on ecosystems, anticipating whether a disturbance will change vulnerability to other environmental stressors is an issue ecologists must address if they are going to forecast the future of the biosphere (Gaiser et al., 2020).

Acknowledgements

This work was supported by US National Science Foundation (NSF) DEB-1753810 to MU and RM. Collection of tree demography data was supported by NSF DEB-1050957 to MU and DEB-1546686 to the Department of Environmental Studies,
University of Puerto Rico, working with the International Institute of Tropical Forestry (USDA Forest Service), for the Luquillo Long-Term Ecological Research Program. RM and SLF were partly supported by grant no. 2019-03758 from the Swedish Research Council, Vetenskaprådet. We are indebted to the many volunteers and El Verde technicians who collected the tree census data.

Author contributions

CMS-M and MU conceptualized the project. CMS-M, RM, RA-K, SD, SLF, MS-S, JT, JKKZ and MU collected the data. CMS-M and MU analyzed the data. CMS-M and MU wrote the manuscript and RM, RA-K, SD, SLF, MS-S, JT and JKKZ contributed to the final draft.

ORCID

Roi Ankori-Karlinsky https://orcid.org/0000-0002-8277-8136

Sylvain Delzon https://orcid.org/0000-0003-3442-1711

Robert Muscarella https://orcid.org/0000-0003-3039-1076

Chris M. Smith-Martin https://orcid.org/0000-0002-6557-1432

Data availability

All data that are not included in the main text and in the Supporting Information can be found at https://luquillo.lter.network/data-catalog/. LFDP census data can be found at https://portal.edirepository.org/nis/mapbrowse/packageid=knb-lter-luq.119.1545979. Tree damage by Hurricane Hugo in the LFDP can be found at https://portal.edirepository.org/nis/mapbrowse/packageid=knb-lter-luq.57.583050.

References

Anderson-Teixeira KJ, Miller AD, Mohan JE, Hubbard TW, Duval BD, DeLucia EH. 2013. Altered dynamics of forest recovery under a changing climate. *Global Change Biology* 19: 2001–2021.

Balaguru K, Foltz GR, Leung LR. 2018. Comparative review. *Biotropica* 50: 1432–1437.

Brienen RJF, Phillips OL, Feldpausch TR, Gloor E, Baker TR, Lloyd J, Lopez-Gonzalez G, Montague-Mendoza A, Malhi Y, Lewis SL et al. 2015. Long-term decline of the Amazon carbon sink. *Nature* 519: 344–348.

Brodribb TJ, Holbrook NM, Edwards EJ, Gutierrez MV. 2003. Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. *Plants, Cells & Environment* 26: 443–450.

Brodribb TJ, Skelton RP, McAdam SAM, Bienaimé D, Lucani CJ, Marmontt PH. 2016. Visual quantification of embolism reveals leaf vulnerability to hydraulic failure. *New Phytologist* 209: 1403–1409.

Brearley BE, Ewers BE, Hall JS. 2018. Plant water use responses along secondary forest succession during the 2015–2016 El Niño drought in Panama. *New Phytologist* 219: 885–899.

Bresnahan AL, Finney CR, Bloomfield GR, Green RD. 2014. Modeling the resource-use strategies of a tropical forest community. *Geoscientific Model Development* 7: 1435–1450.

Brokaw NVL. 1991. Forest structure before and after hurricane hugo at three elevations in the luquillo mountains, Puerto Rico. *Biotropica* 23: 386–394.

Burrough MD, Whitmore TC, Brown GC. 2000. Short-term effects of cyclone impact and long-term recovery of tropical rain forest on Kolombangara, Solomon Islands. *Journal of Ecology* 88: 1063–1078.

Canham CD, Thompson J, Zimmerman JK, Uriarte M. 2010. Variation in susceptibility to Hurricane Damage as a function of storm intensity in Puerto Rican tree species. *Biotropica* 42: 87–94.

Carreño-Rocabado G, Peña-Claros M, Bongers F, Alarcón A, Licona JC, Poorter L. 2012. Effects of disturbance intensity on species and functional diversity in a tropical forest. *Journal of Ecology* 100: 1453–1463.

Chazdon RL. 2008. Beyond deforestation: restoring forests and ecosystem services on degraded lands. *Science* 320: 1458–1460.

Chazdon RL, Bremes AR, Alvarado BV. 2005. Effects of climate and stand age on annual tree dynamics in tropical second-growth rain forests. *Ecology* 86: 1808–1815.

Choat B, Hansen JS, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Rucci SJ, Feild TS, Gleason SM, Hacke UG et al. 2012. Global convergence in the vulnerability of forests to drought. *Nature* 491: 752–755.

Christoffersen BO, Gloor M, Faust S, Fyllas NM, Galbraith DR, Baker TR, Krujit B, Rowland L, Fisher RA, Binks OJ et al. 2016. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS vol 1-Hydro). *Geoscientific Model Development* 9: 4227–4255.

Comita LS, Uriarte M, Thompson J, Jonckheere I, Canham CD, Zimmerman JK. 2009. Abiotic and biotic drivers of seedling survival in a hurricane-impacted tropical forest. *Journal of Ecology* 97: 1346–1359.

Condit R. 1998. *Tropical forest census plots*. Berlin & Heidelberg, Germany: Springer.

Cred S, Larmarque JI, Torres-Ruiz JM, Parise C, Burrell R, Tissue DT, Delzon S. 2020. Xylem embolism in leaves does not occur with open stomata: evidence from direct observations using the optical visualization technique. *Journal of Experimental Botany* 71: 1151–1159.

Dale VH, Joyce LA, Mcenulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irlando LC, Lugo AE, Peterson CJ et al. 2001. Climate change and forest disturbances: climate change can affect forests by altering the frequency, intensity, duration, and timing of fire, drought, introduced species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms, or landslides. *BioScience* 51: 723–734.

DOE US. 2018. Disturbance and vegetation dynamics in earth system models. *New Phytologist* 211: C1–C19.

Gonzalez G, Monteagudo-Mendoza A, Malhi Y, Lewis SL et al. 2015. Long-term decline of the Amazon carbon sink. *Nature* 519: 344–348.
R Core Team. 2020. *R: a language and environment for statistical computing*. Vienna, Austria: R Foundation for Statistical Computing. [WWW document] URL: https://www.R-project.org/ [accessed 24 July 2021].

Ramsay CA, Miller PW, Mote TL. 2019. Future precipitation variability during the early rainfall season in the El Yunque National Forest. *Science of the Total Environment* 661: 326–336.

Reich PB. 2014. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. *Journal of Ecology* 102: 275–301.

Rodriguez-Dominguez CM, Buckley TN, Egea G, Cires AD, Hernandez-Santana V, Martorell S, Diaz-Deilcejo A. 2016. Most stomatal closure in woody species under moderate drought can be explained by stomatal responses to leaf turgor. *Plant, Cell & Environment* 39: 2014–2026.

Sack L, Pasquet-Kok J. 2011. Leaf pressure-volume curve parameters. Prometheus: protocols in ecological & environmental science [WWW document] URL: https://prometheusprotocols.net/function/water-relations/pressure-volume-curves/leaf-pressure-volume-curve-parameters/ [accessed 16 July 2020].

Santiago LS, De Guzman ME, Baraloto C, Vogenberg JE, Brodie M, Héraut B, Fortunel C, Bonal D. 2018. Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. *New Phytologist* 218: 1015–1024.

Schwartz NB, Feng X, Muscatella R, Swenson NG, Umaña MN, Zimmerman JK, Uriarte M. 2020. Topography and traits modulate tree performance and drought response in a tropical forest. *Frontiers in Forests and Global Change* 3: 1–14.

Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vaccioni G, Wild J, Ascoli D, Petr M, Honkaniemi J et al. 2017. Forest disturbances under climate change. *Nature Climate Change* 7: 395–402.

Smith-Martin CM, Skelton RP, Johnson KM, Lucci C, Brodribb TJ. 2020. Lack of vulnerability segmentation among woody species in a diverse dry sclerophyll woodland community. *Functional Ecology* 34: 777–787.

Soil Survey Staff. 1995. *Order I soil survey of the Luquillo long-term ecological research grid*. San Juan, PR, USA: Department of Agriculture, National Resources Conservation Service.

Solá ME. 2000. *Historia de los huracanes en Puerto Rico*. San Juan, PR, USA: E. Miner Solá.

Subedi SC, Ross MS, Sah JP, Redwine J, Baraloto C. 2019. Trait-based community assembly pattern along a forest succession gradient in a seasonally dry tropical forest. *Ecosphere* 10: e02719.

Tanner EVJ, Rodriguez-Sanchez F, Healey JR, Holdaway RJ, Bellingham PJ. 2014. Long-term hurricane damage effects on tropical forest tree growth and mortality. *Ecology* 95: 2974–2983.

Temperli C, Bugmann H, Elkin C. 2013. Cross-scale interactions among bark beetles, climate change, and wind disturbances: a landscape modeling approach. *Ecological Monographs* 83: 383–402.

Thompson J, Brokaw N, Zimmerman JK, Waide RB, Everham EM, Lodge DJ, Taylor CM, García-Montiel D, Fluet M. 2002. Land use history, environment, and tree composition in a tropical forest. *Ecol. Appl.* 12: 1344–1363.

Turner MG. 2010. Disturbance and landscape dynamics in a changing world. *Ecology* 91: 2833–2849.

Tyree MT, Hammel HT. 1972. The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique. *Journal of Experimental Botany* 23: 267–282.

Tyree MT, Sperry JS. 1988. Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress?: answers from a model. *Plant Physiology* 88: 574–580.

Umaña MN, Arellano G. 2021. Legacy effects of drought on tree growth responses to hurricanes. *Ecography* 44: 1686–1697.

Uriarte M, Canham CD, Thompson J, Zimmerman JK. 2004. Neighborhood analysis of tree growth and survival in a hurricane-driven tropical forest. *Ecological Monographs* 74: 591–614.

Uriarte M, Canham CD, Thompson J, Zimmerman JK, Brokaw N. 2005. Seedling recruitment in a hurricane-driven tropical forest: light limitation, density- dependence and the spatial distribution of parent trees. *Journal of Ecology* 93: 291–304.

Uriarte M, Canham CD, Thompson J, Zimmerman JK, Murphy L, Sabat AM, Fetcher N, Haines BL. 2009. Natural disturbance and human land use as determinants of tropical forest dynamics: results from a forest simulator. *Ecological Monographs* 79: 423–443.

Uriarte M, Clark JS, Zimmerman JK, Comita LS, Forero-Montaña J, Thompson J. 2012. Multidimensional trade-offs in species responses to disturbance: implications for diversity in a subtropical forest. *Ecology* 93: 191–205.

Uriarte M, Lasky JR, Boukili VK, Chatzon RL. 2016a. A trait-mediated, neighbourhood approach to quantify climate impacts on successional dynamics of tropical rainforests. *Functional Ecology* 30: 157–167.

Uriarte M, Schwartz N, Powers JS, Marin-Spiotta E, Liao WY, Werden LK. 2016b. Impacts of climate variability on tree demography in second growth tropical forests: the importance of regional context for predicting successional trajectories. *Biota tropica* 48: 780–797.

Uriarte M, Thompson J, Zimmerman JK. 2019. Hurricane Maria tripled stem breaks and doubled tree mortality relative to other major storms. *Nature Communications* 10: 1362.

Vandemeer J, Cerda IGD, Boucher D, Perfecto I, Ruiz J. 2000. Hurricane disturbance and tropical tree species diversity. *Science* 290: 788–791.

Vargas R, Trumbore SE, Allen MF. 2009. Evidence of old carbon used to grow new fine roots in a tropical forest. *New Phytologist* 182: 710–718.

Walker LR. 1991. Tree damage and recovery from hurricane Hugo in Luquillo Experimental Forest, Puerto Rico. *Biota tropica* 23: 379.

Webster PJ, Holland GJ, Curry JA, Chang H-R. 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. *Science* 309: 1844–1846.

Wu J, Loucks OL. 1995. From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. *The Quarterly Review of Biology* 70: 439–466.

Ziegler C, Coste S, Stahl C, Delzon S, Levionnois S, Cazal J, Cochard H, Esquivel-Muellert A, Goret J-Y, Heuret P et al. 2019. Large hydraulic safety margins protect Neotropical canopy rainforest tree species against hydraulic failure during drought. *Annals of Forest Science* 76: 115.

Zimmerman JK, Comita LS, Thompson J, Uriarte M, Brokaw N. 2010. Patch dynamics and community metastability of a subtropical forest: compound effects of natural disturbance and human land use. *Landscape Ecology* 25: 1099–1111.

Zimmerman JK, Iii EME, Waide RB, Lodge DJ, Taylor CM, Brokaw NVL. 1994. Responses of tree species to Hurricane Winds in Subtropical Wet Forest in Puerto Rico: implications for tropical tree life histories. *Journal of Ecology* 82: 911.

Zimmerman JK, Wood TE, González G, Ramirez A, Silver WL, Uriarte M, Willig MR, Waide RB, Lugo AE. 2021. Disturbance and resilience in the Luquillo Experimental Forest. *Biological Conservation* 253: 108891.

Supporting Information

Additional Supporting Information may be found online in the Supporting Information section at the end of the article.

Fig. S1 Biomass and stem mortality from after Hurricane Hugo of the target species in the 16 ha Luquillo Forest Dynamics Plot and over 26 yr of post-hurricane succession.

Fig. S2 Leaf and stem optical vulnerability curves.

Fig. S3 Leaf and stem optical vulnerability curves.

Fig. S4 Leaf and stem optical vulnerability curves.

Fig. S5 Trade-off between capacitance at full turgor and P_{50} and safety margins $SM_{P_{50}}$ for all measured individuals.
Fig. S6 Associations between P_{50} and safety margins and relative basal area growth during the first 5 yr after Hurricane Hugo.

Fig. S7 Associations between the proportion of stems with DBH \geq 10 cm for each of the 13 tree species that were immediately killed by Hurricane Hugo and growth during the first 5 yr thereafter.

Table S1 Number of measured individuals per species for each of the hydraulic traits.

Table S2 Mean and SD of all the hydraulic traits and maximum tree height per species.

Table S3 F, P-values, and degrees of freedom from ANOVAs of hydraulic traits by species.

Table S4 Results of linear regressions of capacitance at full turgor by P_{50} and safety margins.

Table S5 Basal area of stems \geq 10 cm DBH of the target species in the six censuses of the 16 ha Luquillo Forest Dynamics Plot.

Table S6 Percentage of relative change of community-weighted mean trait values between each census and the preceding one.

Please note: Wiley Blackwell are not responsible for the content or functionality of any Supporting Information supplied by the authors. Any queries (other than missing material) should be directed to the *New Phytologist* Central Office.

About *New Phytologist*

- *New Phytologist* is an electronic (online-only) journal owned by the New Phytologist Foundation, a **not-for-profit organization** dedicated to the promotion of plant science, facilitating projects from symposia to free access for our Tansley reviews and Tansley insights.

- Regular papers, Letters, Viewpoints, Research reviews, Rapid reports and both Modelling/Theory and Methods papers are encouraged. We are committed to rapid processing, from online submission through to publication ‘as ready’ via Early View – our average time to decision is <23 days. There are **no page or colour charges** and a PDF version will be provided for each article.

- The journal is available online at Wiley Online Library. Visit www.newphytologist.com to search the articles and register for table of contents email alerts.

- If you have any questions, do get in touch with Central Office (np-centraloffice@lancaster.ac.uk) or, if it is more convenient, our USA Office (np-usaoffice@lancaster.ac.uk)

- For submission instructions, subscription and all the latest information visit www.newphytologist.com