Leptogenesis bound on neutrino masses in left-right symmetric models with spontaneous D-parity violation

Narendra Sahu and Utpal Sarkar

Theoretical Physics Division, Physical Research Laboratory, Ahmedabad-380 009, India

Abstract

We study the baryogenesis via leptogenesis in a class of left-right symmetric models, in which D-parity is broken spontaneously. We first discuss the consequence of the spontaneous breaking of D-parity on the neutrino masses. Than we study the lepton asymmetry in various cases, from the decay of right handed neutrino as well as the triplet Higgs, depending on their relative masses they acquire from the symmetry breaking pattern. The leptogenesis bound on their masses are discussed by taking into account the low energy neutrino oscillation data. It is shown that a TeV scale leptogenesis is viable if there is an additional source of CP violation like CP-violating condensate in the left-right domain wall. This is demonstrated in a class of left-right symmetric models where D-parity breaks spontaneously at a high energy scale while allowing $SU(2)_R$ gauge symmetry to break at the TeV scale.

PACS numbers: 98.80.Cq,14.60.Pq
I. INTRODUCTION

The matter antimatter asymmetry during the big-bang nucleosynthesis era is required to be very tiny. Recent results from the Wilkinson Microwave Anisotropy Probe (WMAP) provides a fairly precise value for this asymmetry, given by

\[
\left(\frac{n_B - n_{\bar{B}}}{n_\gamma} \right)_0 \equiv \left(\frac{n_B}{n_\gamma} \right)_0 = (6.1^{+0.3}_{-0.2}) \times 10^{-10}.
\]

(1)

In recent years the most fascinating experimental result in particle physics came out in neutrino physics. The atmospheric neutrinos provided us the first evidence for a non-vanishing neutrino mass \(2\) and hence first indication for physics beyond the standard model. The mass-squared difference providing \(\nu_\mu - \nu_\tau\) oscillations, as required by the atmospheric neutrinos, is given by

\[
\Delta m_{\text{atm}} \equiv \sqrt{|m_3^2 - m_2^2|} \simeq 0.05\text{eV}.
\]

(2)

This result is further strengthened by the solar neutrino results \(3\) which require a mass-squared difference providing a \(\nu_e - \nu_\mu\) oscillation. The mass splitting given by

\[
\Delta m_\odot \equiv \sqrt{m_3^2 - m_1^2} \simeq 0.009\text{eV},
\]

(3)

where \(m_1\), \(m_2\) and \(m_3\) are the masses of light physical neutrinos. Note that \(\Delta m_\odot\) is positive as indicated by the SNO data while there is an ambiguity in the sign of \(\Delta m_{\text{atm}}\) to the date.

The above discoveries, the matter antimatter asymmetry of the present Universe \(1\) and the sub-eV neutrino masses \(2\) and \(3\), could be intricately related with each other. A most viable scenario to explain is the baryogenesis via leptogenesis (BVL) \(4, 5\). The smallness of the neutrino masses compared to the charged fermions are best understood in terms of a seesaw mechanism \(6\). Although the neutrinos are massless in the standard model, a minimal extension including right-handed neutrinos or triplet Higgs scalars or both can generate tiny Majorana masses for the neutrinos through the seesaw mechanism. The smallness of the neutrino masses depend on a large suppression by the lepton (L) number violating scales in the model, which is the scale of Majorana masses of the right-handed neutrinos or the masses and dimensional couplings of the triplet Higgs scalars. The \(L\)-number violating decays of the right-handed neutrinos or the triplet Higgs scalars at this large scale can then generate a \(L\)-asymmetry of the universe, provided there is enough \(CP\)-violation and the decays satisfy the out-of-equilibrium condition, the necessary criteria of Sakharov \(7\). This \(L\)-asymmetry
of the universe is then get converted to a baryon (B) asymmetry of the universe (BAU) through the sphaleron processes unsuppressed above the electroweak phase transition [8].

In the simplest type-I seesaw models the singlet right-handed neutrinos (N_R’s) are added to the Standard Model (SM) gauge group, $SU(2)_L \times U(1)_Y$. The canonical seesaw then gives the light neutrino mass matrix:

$$m_\nu = m_\nu^I = -m_D M_R^{-1} m_D^T,$$

(4)

where m_D is the Dirac mass matrix of the neutrinos connecting the left-handed neutrinos with the right-handed neutrinos and M_R is the Majorana mass matrix of the right handed heavy neutrinos, which also sets the scale of L-number violation. Since the Majorana mass of the right handed neutrinos violate L-number by two units, their out of thermal equilibrium decay to SM particles is a natural source of L-asymmetry [4]. The CP-violation, which comes from the Yukawa couplings that gives the Dirac mass matrix, resulted through the one loop radiative correction requires at least two right handed neutrinos. Assuming a strong hierarchy in the right handed neutrino sector a successful L-asymmetry in these models requires the mass scale of the lightest right handed neutrino to be $M_1 \geq O(10^9)$ GeV [9]. If the corresponding theory of matter is supersymmetric then this bound, dangerously being close to the reheat temperature, poses a problem. A modest solution was proposed in ref. [10] by introducing an extra singlet. However, the success of the model is the reduction of above bound [9] by an order of magnitude.

In the type-II seesaw models, on the other hand, triplet Higgses (Δ_L’s) are added to the SM gauge group. The triplet seesaw [11] in this case gives the light neutrino mass matrix:

$$m_\nu = m_\nu^{II} = f\mu \frac{v^2}{M_{\Delta_L}^2},$$

(5)

where M_{Δ_L} is the mass of the triplet Higgs scalar Δ_L, f is the Yukawa coupling relating the triplet Higgs with the light leptons, μ is the coupling constant with mass dimension 1 for the trilinear term with the triplet Higgs and two standard model Higgs doublets and v is the vacuum expectation value (vev) of the SM Higgs doublet. The L-asymmetry, in these models, is generated through the L-number violating decays of the Δ_L to SM lepton and Higgs. The CP-violation, originated from the one loop radiative correction, requires at least two triplets. Again the scale of L-number violation is determined by M_{Δ_L} and μ and required to be very high and larger than the type-I models [12].
An attractive scenario is the hybrid seesaw models (type-I+type-II), where both right-handed neutrino as well as triplet Higgs scalar are present. So, there is no constraint on their number to have \(CP \)-violation. The neutrino mass matrix in these models is given by

\[
m_\nu = m_\nu^I + m_\nu^II,
\]

where \(m_\nu^I \) and \(m_\nu^II \) are given by equations (4) and (5) respectively. A natural extension of the \(SM \) to incorporate both type-I as well as type-II terms of the neutrino mass matrix is the left-right symmetric models \[13\] with the gauge group \(SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L} \). The advantages of considering this model is that (1) it has a natural explanation for the origin of parity violation, (2) it can be easily embedded in the \(SO(10) \) Grand Unified Theory (GUT) and (3) \(B-L \) is a gauge symmetry. Since \(B-L \) is a gauge symmetry of the model, it is not possible to have any \(L \)-asymmetry before the left-right symmetry breaking. An \(L \)-asymmetry can be produced after the left-right symmetry breaking phase transition, either through the decay of right handed neutrinos or through the decay of the triplet Higgses or can be both depending on the relative magnitudes of their masses. Assuming a strong hierarchy in the right-handed neutrino sector and \(M_1 < M_{\Delta_L} \), it is found that \(M_1 \) can be reduced to an order of magnitude in comparison to the type-I models \[14, 15, 16\]. Despite the success, this mechanism of producing \(L \)-asymmetry in these models can not bring down the scale of leptogenesis to the scale of the next generation accelerators.

The alternatives to these are provided by mechanisms which work at the TeV scale \[17\] either in supersymmetric extensions of the \(SM \) relying on the new particle content or finding the additional source of CP violation in the model \[18\]. It is worth investigating other possibilities, whether or not supersymmetry is essential to the mechanism. In the following we consider a class of left-right symmetric models in which the spontaneous breaking of \(D \)-parity occurs at a high energy scale (\(\sim 10^{13} GeV \)) leaving the \(SU(2)_R \) intact. In the left-right symmetric models, parity connects the left-handed gauge group with the right-handed gauge group. But the same need not be true for the scalar particles. In this class of left-right symmetric models, the spontaneous \(D \)-parity violation allows the scalars transforming under the group \(SU(2)_L \) to decouple from the scalars transforming under the group \(SU(2)_R \) and these scalars can have different masses and couplings. This allows the mass scale of the triplet \(\Delta_L \) to be very high at the \(D \)-parity breaking scale \[19\] while leaving the mass of \(\Delta_R \) to be as low as the \(SU(2)_R \) symmetry breaking scale or vice versa. However, we will see that
even in these models a successful leptogenesis doesn’t allow neither the mass of triplets nor the mass of right handed neutrinos less than 10^8 GeV if the L-asymmetry arises from their out of equilibrium decay. We then consider an alternative mechanism to bring down the mass scale of right handed neutrinos to be in TeV scale. In the respective mechanism a net L-asymmetry arises through the preferential scattering of left-handed neutrino ν_L over its CP conjugate state ν_L^c from the left-right domain wall \[^{[20]}\]. The survival of this asymmetry then requires the mass scale of lightest right handed neutrino, assuming a normal mass hierarchy in the right handed neutrino sector, to be in TeV scale \[^{[21, 22]}\]. In this class of models the TeV scale masses of the right handed neutrinos are resulted through the low scale (~ 10 TeV) breaking of $SU(2)_R$ gauge symmetry while D-parity breaks at a high energy scale ($\sim 10^{13}$ GeV). This is an important result pointed out in this paper.

The rest of the manuscript is arranged as follows. In the section-II we briefly discuss the left-right symmetric models, elucidating the required Higgs structure for spontaneous breaking of D-parity. In section-III we discuss the parities in left-right symmetric models and their consequence on neutrino masses. Than we give a possible path for embedding the left-right symmetric models in the $SO(10)$ GUT. In section-IV we discuss the production of L-asymmetry through the decay of heavy Majorana neutrinos as well as the triplet Δ_L separately by taking into account the relative magnitudes of their masses. In section V, by assuming a charge-neutral symmetry, we derived the neutrino mass matrices from the low energy neutrino data. Using this symmetry the L-asymmetry is estimated in section VI by considering the relative masses of N_1 and the triplet Δ_L. In any case, it is found that the leptogenesis scale can not be lowered to a scale that can be accessible in the next generation accelerators. In section VII, we therefore discuss an alternative mechanism which has the ability to explain the L-asymmetry at the TeV scale. In section VIII we give a qualitative suggestion towards the density perturbations due to the presence of heavy singlet scalars. We summarize our results and conclude in section IX.

II. LEFT-RIGHT SYMMETRIC MODELS

In the Left-Right symmetric model, the right handed charged lepton of each family which was a isospin singlet under SM gauge group gets a new partner ν_R. These two form an isospin doublet under the $SU(2)_R$ of the left-right symmetric gauge group $SU(2)_L \times SU(2)_R \times$
$U(1)_{B-L} \times P$, where P stands for the parity. Similarly, in the quark-sector, the right
handed up and down quarks of each family, which were isospin singlets under the SM gauge
group, combine to form the isospin doublet under $SU(2)_R$. As a result before the left-right
symmetry breaking both left and right handed leptons and quarks enjoy equal strength
of interactions. This explains that the parity is a good quantum number in the left-right
symmetric model in contrast to the SM where the left handed particles are preferential
under the electro-weak interaction.

In the Higgs sector, the model consists of a $SU(2)$ singlet scalar field σ, two $SU(2)$
triplets Δ_L and Δ_R and a bidoublet Φ which contains two copies of SM Higgs. Under
$SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ the field contents and the quantum numbers of the Higgs fields
are given as

$$\sigma \sim (1,1,0)$$

$$\Phi = \begin{pmatrix} \phi_1^0 & \phi_1^+ \\ \phi_2^- & \phi_2^0 \end{pmatrix} \sim (2,2,0)$$

$$\Delta_L = \begin{pmatrix} \delta_L^+ / \sqrt{2} & \delta_L^{++} \\ \delta_L^0 & -\delta_L^+ / \sqrt{2} \end{pmatrix} \sim (3,1,2)$$

$$\Delta_R = \begin{pmatrix} \delta_R^+ / \sqrt{2} & \delta_R^{++} \\ \delta_R^0 & -\delta_R^+ / \sqrt{2} \end{pmatrix} \sim (1,3,2).$$

The most general renormalizable Higgs potential exhibiting left-right symmetry is given
by

$$V = V_\sigma + V_\Phi + V_\Delta + V_{\sigma\Delta} + V_{\sigma\Phi} + V_{\Phi\Delta},$$

where

$$V_\sigma = -\mu_\sigma^2 \sigma^2 + \lambda_\sigma \sigma^4,$$

$$V_\Delta = -\mu_{\Delta}^2 \left[Tr \left(\Delta_L \Delta_L^\dagger \right) + Tr \left(\Delta_R \Delta_R^\dagger \right) \right]$$

$$+ \rho_1 \left[\left(Tr \left(\Delta_L \Delta_L^\dagger \right) \right)^2 + \left(Tr \left(\Delta_R \Delta_R^\dagger \right) \right)^2 \right]$$

$$+ \rho_2 \left[Tr \left(\Delta_L \Delta_L^\dagger \right) Tr \left(\Delta_L \Delta_L^\dagger \right) + Tr \left(\Delta_R \Delta_R^\dagger \right) Tr \left(\Delta_R \Delta_R^\dagger \right) \right]$$

$$+ \rho_3 \left[Tr \left(\Delta_L \Delta_L^\dagger \right) Tr \left(\Delta_R \Delta_R^\dagger \right) \right]$$

$$+ \rho_4 \left[Tr \left(\Delta_L \Delta_L^\dagger \right) Tr \left(\Delta_R \Delta_R^\dagger \right) + Tr \left(\Delta_L \Delta_L^\dagger \right) Tr \left(\Delta_R \Delta_R^\dagger \right) \right].$$
\[V_\Phi = -\mu_1^2 \text{Tr}(\Phi^\dagger \Phi) - \mu_2^2 \left[\text{Tr}(\Phi \Phi^\dagger) + \text{Tr}(\bar{\Phi} \Phi^\dagger) \right] \\
+ \lambda_1 \left[\text{Tr}(\Phi \Phi^\dagger) \right]^2 + \lambda_2 \left\{ \left[\text{Tr}(\Phi \Phi^\dagger) \right]^2 + \left[\text{Tr}(\bar{\Phi} \Phi^\dagger) \right]^2 \right\} \\
+ \lambda_3 \left[\text{Tr}(\Phi \Phi^\dagger) \text{Tr}(\Phi \Phi^\dagger) \right] \\
+ \lambda_4 \left\{ \text{Tr}(\Phi \Phi^\dagger) \left[\text{Tr}(\bar{\Phi} \Phi^\dagger) + \text{Tr}(\bar{\Phi} \Phi^\dagger) \right] \right\}, \]

\[V_{\sigma \Delta} = M\sigma \left[\text{Tr}(\Delta_L \Delta_L^\dagger) - \text{Tr}(\Delta_R \Delta_R^\dagger) \right] + \gamma \sigma^2 \left(\text{Tr}(\Delta_L \Delta_L^\dagger) + \text{Tr}(\Delta_R \Delta_R^\dagger) \right), \]

\[V_{\sigma \Phi} = \delta_1 \sigma^2 \text{Tr}(\Phi \Phi^\dagger) + M'\sigma \left[\text{Tr}(\Phi \Phi^\dagger) - \text{Tr}(\bar{\Phi} \Phi^\dagger) \right] \\
+ \delta_2 \sigma^2 \left[\text{Tr}(\bar{\Phi} \Phi^\dagger) + \text{Tr}(\bar{\Phi} \Phi^\dagger) \right], \]

\[V_{\Phi \Delta} = \alpha_1 \left\{ \text{Tr}(\Phi \Phi^\dagger) \left[\text{Tr}(\Delta_L \Delta_L^\dagger) + \text{Tr}(\Delta_R \Delta_R^\dagger) \right] \right\} \\
+ \alpha_2 \left\{ \text{Tr}(\Phi \Phi^\dagger) \text{Tr}(\Delta_R \Delta_R^\dagger) + \text{Tr}(\bar{\Phi} \Phi^\dagger) \text{Tr}(\Delta_L \Delta_L^\dagger) \right\} \\
+ \text{Tr}(\bar{\Phi} \Phi^\dagger) \text{Tr}(\Delta_R \Delta_R^\dagger) + \text{Tr}(\bar{\Phi} \Phi^\dagger) \text{Tr}(\Delta_L \Delta_L^\dagger) \right\} \\
+ \alpha_3 \left\{ \text{Tr}(\Phi \Phi^\dagger \Delta_L \Delta_L^\dagger) + \text{Tr}(\bar{\Phi} \Phi^\dagger \Delta_R \Delta_R^\dagger) \right\} \\
+ \beta_1 \left\{ \text{Tr}(\Phi \Delta_R \Phi^\dagger \Delta_L^\dagger) + \text{Tr}(\bar{\Phi} \Delta_L \Phi^\dagger \Delta_R^\dagger) \right\} \\
+ \beta_2 \left\{ \text{Tr}(\Phi \Delta_R \Phi^\dagger \Delta_L^\dagger) + \text{Tr}(\bar{\Phi} \Delta_L \Phi^\dagger \Delta_R^\dagger) \right\} \\
+ \beta_3 \left\{ \text{Tr}(\Phi \Delta_R \Phi^\dagger \Delta_L^\dagger) + \text{Tr}(\bar{\Phi} \Delta_L \Phi^\dagger \Delta_R^\dagger) \right\} \\
+ \beta_4 \left\{ \text{Tr}(\Phi \Delta_R \Phi^\dagger \Delta_L^\dagger) + \text{Tr}(\bar{\Phi} \Delta_L \Phi^\dagger \Delta_R^\dagger) \right\}, \]

where \(\bar{\Phi} = \tau^2 \Phi^* \tau^2 \), \(\tau^2 \) being the Pauli spin matrix and \(\mu_a^2 > 0 \), with \(a = \sigma, \Delta, \Phi_1, \Phi_2 \).

III. Parities in Left-Right Symmetric Models and Consequences

Now we briefly discuss the parities, \(P \) and \(D \), in left-right symmetric models. The main difference between a \(D \)-parity and \(P \)-parity is that the \(D \)-parity acts on the groups \(SU(2)_L \otimes SU(2)_R \), while the \(P \)-parity acts on the Lorentz group. In the left-right symmetric models we identify both the parities with each other, so that when we break the \(SU(2)_R \) group or the \(D \)-parity, the Lorentz \(P \)-parity is also broken.
Under the operation of parity the fermions, scalars and the vector bosons transform as:

\[
\begin{align*}
\psi_{L,R} & \longrightarrow \psi_{R,L} \\
\Phi & \longrightarrow \Phi^\dagger \\
\Delta_{L,R} & \longrightarrow \Delta_{R,L} \\
\sigma & \longrightarrow -\sigma \\
W_{L,R} & \longrightarrow W_{R,L}.
\end{align*}
\]

This implies that the combinations \(W_L + W_R\) and \(\Delta_L + \Delta_R\) are even under parity, while \(W_L - W_R\) and \(\Delta_L - \Delta_R\) are odd under parity. So, \(W_L - W_R\) is axial vector and \(\sigma\) and \(\Delta_L - \Delta_R\) are pseudo scalars. Thus the vev of the fields \(\sigma\) or \(\Delta_R\) can break parity spontaneously.

It is possible to break the \(D\)-parity spontaneously by breaking the group \(SU(2)_R\) spontaneously by the vev of the field \(\Delta_R\), or by breaking it by the vev of \(\sigma\). In general, \(\sigma\) could be a scalar or pseudo scalar. If we start with \(\sigma\) to be a scalar, then it can break the \(D\)-parity keeping the \(P\)-parity invariant. However, if we consider \(\sigma\) to be a pseudo scalar, it can break both \(D\) and \(P\) parities spontaneously. Since it is conventional to identify \(P\) parity with the \(D\) parity, we consider \(\sigma\) to be a pseudo scalar. Then the vev of the field \(\sigma\) will break parity and the group \(SU(2)_R\) at different scales. This will have some interesting phenomenology. This was proposed in ref. [19]. Recently its phenomenological consequences using doublet and triplet Higgses are studied in ref. [24].

We assume that \(\mu_\sigma^2 > 0\) in equation (11). As a result below the critical temperature \(T_c \sim \langle \sigma \rangle\), the parity breaking scale, the singlet Higgs field acquires a vev

\[
\eta_P \equiv \langle \sigma \rangle = \frac{\mu_\sigma}{\sqrt{2\lambda_\sigma}}.
\]

Since \(\sigma\) doesn’t possess any quantum number under \(SU(2)_{L,R}\) and \(U(1)_{B-L}\), these groups remain intact while \(P\) breaks. However it creates a mass splitting between the triplet fields \(\Delta_L\) and \(\Delta_R\) since it couples differently with them as given in equation (11). This leads to different effective masses for \(\Delta_L\) and \(\Delta_R\)

\[
\begin{align*}
M_{\Delta_L}^2 &= \mu_\Delta^2 - (M\eta_P + \gamma\eta_P^2), \\
M_{\Delta_R}^2 &= \mu_\Delta^2 + (M\eta_P - \gamma\eta_P^2).
\end{align*}
\]
We now apply a fine tuning to set $M_{\Delta R}^2 > 0$ so that Δ_R can acquire a vev

$$\langle \Delta_R \rangle = \begin{pmatrix} 0 & 0 \\ v_R & 0 \end{pmatrix}. \quad (16)$$

In order to restore the SM prediction, i.e., to restore the observed phenomenology at a low scale, Φ and $\tilde{\Phi}$ acquire vevs

$$\langle \Phi \rangle = \begin{pmatrix} k_1 & 0 \\ 0 & k_2 \end{pmatrix} \quad \text{and} \quad \langle \tilde{\Phi} \rangle = \begin{pmatrix} k_2 & 0 \\ 0 & k_1 \end{pmatrix}. \quad (17)$$

This breaks the gauge group $SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$ down to $U(1)_{em}$. However, this induces a non-trivial vev for the triplet Δ_L as

$$\langle \Delta_L \rangle = \begin{pmatrix} 0 & 0 \\ v_L & 0 \end{pmatrix}. \quad (18)$$

In the above v_L, v_R, k_1 and k_2 are real parameters. Further the observed phenomenology requires that $v_L \ll k_1, k_2 \ll v_R$.

Using equations (16), (17) and (18) in equation (11) we get the effective potential

$$V_{\text{eff}} = -\mu_{\Delta}^2 \eta_P^2 \left[-\mu_{\Delta}^2 - M_{\eta_P}^2 - \gamma \eta_P^2 - \alpha_1 (k_1^2 + k_2^2) - \alpha_2 (4k_1k_2) - \alpha_3 k_2^2 \right] v_L^2$$

$$- \left[\mu_{\Delta}^2 + M_{\eta_P}^2 - \gamma \eta_P^2 - \alpha_1 (k_1^2 + k_2^2) - \alpha_2 (4k_1k_2) - \alpha_3 k_2^2 \right] v_R^2$$

$$- \mu_{\Phi_1}^2 (k_1^2 + k_2^2) - \mu_{\Phi_2}^2 (4k_1k_2)$$

$$+ \lambda_\sigma \eta_P^4 + \rho_1 (v_L^4 + v_R^4) + \rho_3 v_L^2 v_R^2$$

$$+ \lambda_1 (k_1^2 + k_2^2) + (2\lambda_2 + \lambda_3) (4k_1^2k_2^2) + \lambda_4 (k_1^2 + k_2^2) (4k_1k_2)$$

$$+ \delta_1 \eta_P^2 (k_1^2 + k_2^2) + \delta_2 \eta_P^2 (4k_1k_2)$$

$$+ 2(\beta_1 k_1 k_2 + \beta_2 k_1^2 + \beta_3 k_2^2 + \beta_4 k_1 k_2) v_L v_R. \quad (19)$$

The electroweak phase transition occurs at a low energy scale and hence it is reasonable to assume that the parameters $k_2^2, k_1 k_2, k_1^2 \ll \eta_P$. Using this approximation in equation (19) one can see that the effective masses of Δ_L and Δ_R coincides with equations (14) and (15).

Further assuming $M = \gamma \eta_P$ we get

$$M_{\Delta R}^2 = \mu_{\Delta}^2 \quad \text{and} \quad M_{\Delta L}^2 = M_{\Delta R}^2 - 2\gamma \eta_P^2. \quad (20)$$
Thus a large cancellation between M_{Δ_R} and $\gamma\eta_P$ allows an effective mass scale of the triplet Δ_L to be very low and vice-versa.

We now check the order of magnitude of the induced vev of the triplet Δ_L. This should be small (less than a GeV) in order the theory to be consistent with Z-decay width. Further the sub-eV masses of the light neutrinos require vev of Δ_L to be of the order of eV, because it gives masses through the type-II seesaw mechanism. From equation (19) we get

$$v_R \frac{\partial V_{eff}}{\partial v_L} - v_L \frac{\partial V_{eff}}{\partial v_R} = 0$$

$$= v_L v_R[4M\eta_P - 4\rho_1(v_R^2 - v_L^2) + 2\rho_3(v_R^2 - v_L^2)]$$

$$+ 2(\beta_1 k_1 k_2 + \beta_2 k_1^2 + \beta_3 k_2^2 + \beta_4 k_1 k_2)(v_R^2 - v_L^2).$$

In the quark sector the vevs k_1 and k_2 give masses to the up and down type quarks respectively. Therefore, it is reasonable to assume

$$\frac{k_1}{k_2} = \frac{m_t}{m_b}.$$ \hspace{1cm} (22)

With the approximation $v_L \ll k_1, k_2 \ll v_R \ll \eta_P$ and using the above assumption (22) in equation (21) we get

$$v_L \simeq -\frac{\beta_2 v^2 v_R}{2M\eta_P},$$ \hspace{1cm} (23)

where we have used $v = \sqrt{k_1^2 + k_2^2} \simeq k_1 = 174$ GeV. Notice that in the above equation the smallness of the vev of Δ_L is decided by the parity breaking scale, not the $SU(2)_R$ breaking scale. So there are no constraints on v_R from the seesaw point of view. After $SU(2)_R$ symmetry breaking the right handed neutrinos acquire masses through the Majorana Yukawa coupling with the Δ_R. Depending on the strength of Majorana Yukawa coupling a possibility of TeV scale right handed neutrino is unavoidable. We will discuss the consequences in context of L-asymmetry in section IV.

Finally before going to discuss the L-asymmetry in this model we give a most economic breaking scheme of $SO(10)$ GUT through the left right symmetric path. Keeping in mind that the P and $SU(2)_R$ breaking scales are different, the breaking of $SO(10)$ down to $U(1)_{em}$ can be accomplished by using a set of Higgses: $\{210\}$, $\{126\}$, $\{10\}$ of $SO(10)$. At the first stage $SO(10)$ breaks to $G_{224} \equiv SU(2)_L \otimes SU(2)_R \otimes SU(4)_C \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L} \otimes SU(3)_C$ through the vev of $\{210\}$. Under G_{224} its decomposition can be written as

$$\{210\} = (1, 1, 1) + (2, 2, 20) + (3, 1, 15) + (1, 3, 15) + (2, 2, 6) + (1, 1, 15).$$ \hspace{1cm} (24)
where \((1, 1, 1)\) is a singlet and it is odd under the \(D\) parity, which is a generator of the group \(SO(10)\). Hence it can play the same role as \(\sigma\) discussed above. At a later epoch \(\{126\}\) of \(SO(10)\) can get a vev and breaks \(SU(2)_L \otimes SU(2)_R \otimes SU(4)_C\) to \(G_{213} \equiv SU(2)_L \otimes U(1)_Y \otimes SU(3)_C\). Under \(G_{224}\) the decomposition of \(\{126\}\) is given as

\[
\{126\} = (3, 1, 10) + (1, 3, 10) + (2, 2, 15) + (1, 1, 6),
\]

where \((3, 1, 10)\) and \((1, 3, 10)\) contain the fields \(\Delta_L\) and \(\Delta_R\) respectively as in the above discussion. Finally the vev of \(\{10\}\) breaks the gauge group \(SU(2)_L \otimes U(1)_Y \times SU(3)_C\) down to \(U(1)_{em} \otimes SU(3)_C\) which contains a \((2, 2, 1)\) playing the role of \(\Phi\) in our discussion.

IV. NEUTRINO MASSES AND LEPTOGENESIS IN LEFT-RIGHT SYMMETRIC MODELS

The relevant Yukawa couplings giving masses to the three generations of leptons are given by

\[
\mathcal{L}_{yuk} = h_{ij} \bar{\psi}_L \psi_R \Phi + \bar{h}_{ij} \bar{\psi}_L \psi_R \bar{\Phi} + H.C. + f_{ij} \left[(\psi_L) \psi_L \Delta_L + (\psi_R) \psi_R \Delta_R \right] + H.C.,
\]

where \(\bar{\psi}_{L,R} = (\nu_{L,R}, e_{L,R})\). The discrete left-right symmetry ensures the Majorana Yukawa coupling \(f\) to be same for both left and right handed neutrinos. The breaking of left-right symmetry down to \(U(1)_{em}\) results in the effective mass matrix of the light neutrinos to be

\[
m_\nu = f v_L - m_D \frac{f^{-1}}{v_R} m^T_D = m^{II}_\nu + m^{I}_\nu,
\]

where \(m_D = h k_1 + \tilde{h} k_2 \simeq h k_1\) and \(v_L\) is given by equation (23). In theories where both type-I and type-II mass terms originate at the same scale it is difficult to choose which of them contribute dominantly to the neutrino mass matrix. In contrast to it in the present case since the parity and the \(SU(2)_R\) breaking scales are different and, in fact, \(\eta_P \gg v_R\) it is reasonable to assume that the type-I neutrino mass dominantly contributes to the effective neutrino mass matrix. In what follows we assume

\[
m_\nu = m^{I}_\nu = -m_D \frac{f^{-1}}{v_R} m^T_D.
\]
In the previous section we showed that the $SU(2)_R$ breaking scale v_R can be much lower than the parity breaking scale η_P since the smallness of v_L doesn’t depend on v_R. Conventionally this leads to the right handed neutrino masses to be smaller than that of the triplet Δ_L [19]. However, in the present case a large cancellation between $M^2_{\Delta_R}$ and $\gamma \eta_P^2$ allows an effective mass of the triplet Δ_L to be in low scale while leaving the mass of Δ_R at the D-parity breaking scale. Note that the source of smallness of the right handed neutrinos and the triplet Δ_L are absolutely different. Unless the low energy observables constrain their masses one can’t predict which one is lighter. In the following we take leptogenesis as a tool to distinguish their mass scales.

A. Leptogenesis via heavy neutrino decay

Without loss of generality we work in a basis in which the mass matrix of the right handed neutrinos is real and diagonal. In this basis the heavy Majorana neutrinos are defined as $N_i = (1/\sqrt{2})(\nu_{Ri} \pm \nu_{Ri}^c)$, where $i=1,2,3$ representing the flavor indices. The corresponding masses of the heavy Majorana neutrinos are given by M_i. In this basis a net CP-asymmetry results from the decay of N_i to the SM fermions and the bidoublet Higgses and is given by the interference of tree level, one loop radiative correction and the self-energy correction diagrams as shown in figs.(1). The resulting CP-asymmetry in this case is given by

$$\epsilon_i^l = \frac{1}{8\pi} \sum_l Im \left[\frac{\left(h^a h^b\right)_{il} \left(h^b h^a\right)^{il}}{(h^a h^a)_{ii}} \right] \sqrt{x_l} \left[1 - (1 + x_l) \log(1 + 1/x_l) + 1/(1 - x_l) \right],$$

where $x_l = M_i^2/M_R^2$ and h^a, with $a = 1,2$ stands for the Dirac Yukawa couplings of fermions with Φ and $\bar{\Phi}$ respectively. That is $h^1 = h$ and $h^2 = \bar{h}$ as given in equation [26]. Now
we assume a normal mass hierarchy, $M_1 \ll M_2 < M_3$, in the heavy Majorana neutrino sector. In this case while the heavier right handed neutrinos N_2 and N_3 are decaying yet the lightest one, N_1, is in thermal equilibrium. Any L-asymmetry thus produced by the decay N_2 and N_3 is erased by the L-number violating scatterings mediated by N_1. Therefore, it is reasonable to assume that the final L-asymmetry is given by the decay of N_1. Simplifying equation (29) we get a net CP-asymmetry coming from the decay of N_1 to be

$$
\epsilon_1 = -\frac{3M_1}{16\pi} \sum_{i,j} Im \left[(h^a\dagger)_i (h^b (M_{dia})^{-1} (h^a)^T)_{ij} (h^b\ast)_{jk} \right].
$$

(30)

Expanding the above equation (30) and using the fact that $m_\nu \simeq -k_1^2 (h M_{dia}^{-1} h^T)$ we get

$$
\epsilon_1 = \frac{3M_1}{16\pi v^2} \left\{ \sum_{i,j} Im \left[(h^i)_{ii} (m_\nu^I)_{ij} (h^b)_{jk} \right] (h^a\dagger h^a)_{11} + (h, \tilde{h}) \text{terms} \right\}.
$$

(31)

Unlike the type-I models [9] here we have additional terms contributing the CP-asymmetry in the decay of N_1. Note that if the strength of \tilde{h} is comparable with h then the resulting CP-asymmetry enhances by a factor of 2 in comparison with the CP-asymmetry in the exclusive type-I models [9].

An additional contribution to CP-asymmetry also comes from the interference of tree level diagram in fig. (1) and the one loop radiative correction diagram involving the virtual triplet Δ_L as shown in fig. (2). The resulting CP-asymmetry in this case is given by [14, 25]

$$
\epsilon_1^{II} = \frac{3}{8\pi} \sum_{k,j} Im \left[(h^a\dagger)_{ji} (h^b)_{ki} f_{jk} (v_R \beta)_{ab} \right] \left(1 - \frac{M^2_{\Delta_L}}{M^2_i} \log(1 + M^2_i / M^2_{\Delta_L}) \right),
$$

(32)

where

$$
\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{pmatrix}.
$$

(33)
If we further assume that $M_1 \ll M_{\Delta_L}$ in addition to the normal mass hierarchy in the heavy Majorana neutrino sector, then the final L-asymmetry must be given by the CP-violating decay of N_1 to the SM lepton and the bidoublet Higgs. Now using (23) in equation (32) we get the CP-asymmetry parameter

$$
\epsilon_{11}^I = \frac{3M_1}{16\pi v^2} \left(\frac{2M\eta_P}{-\beta_2 M_{\Delta_L}^2} \right) \sum_{j,k} \text{Im} \left[(h^a)_{1j}^\dagger (m_{\nu}^I)_{jk} (h^b)^*_{k1} \beta_{ab} \right] (h^a h^a)_{11}.
$$

(34)

Note that this result differs from the usual type-II seesaw models [14, 15] where only one triplet Δ_L is usually introduced into the SM in addition to the singlet heavy Majorana neutrinos.

The total CP-asymmetry coming from the decay of N_1 thus reads

$$
\epsilon_1 = \epsilon_1^I + \epsilon_{11}^I,
$$

(35)

where ϵ_1^I and ϵ_{11}^I are given by equations (31) and (34) respectively. Unlike the existing literature [15, 16] in the present case it is impossible to compare the magnitude of ϵ_1^I and ϵ_{11}^I through the type-I and type-II neutrino mass terms unless one takes the limiting cases.

1. Dominating type-I contribution

Let us first assume that ϵ_1^I dominates in equation (35) and the neutrino Dirac Yukawa coupling $h \simeq \tilde{h}$. The resulting CP-asymmetry is then given by

$$
\epsilon_1 = \epsilon_1^I = 2 \left\{ \frac{3M_1}{16\pi v^2} \sum_{i,j} \text{Im} \left[(h^i)_{1i} (m_{\nu}^I)_{ij} (h^*)_{j1} \right] \right\}.
$$

(36)

The maximum value of ϵ_1 then reads $\epsilon_1^{\text{max}} = 2\epsilon_1^0$, where

$$
|\epsilon_1^0| = \frac{3M_1}{16\pi v^2} \sqrt{\Delta m^2_{atm}}.
$$

(37)

As a result we gain a factor of 2 in the lower bound on M_1 which is given as

$$
M_1 \geq 4.2 \times 10^8 GeV \left(\frac{n_B/\eta_{\gamma}}{6.4 \times 10^{-10}} \right) \left(\frac{10^{-3}}{\nu_{\mu}/\delta} \right) \left(\frac{v}{174 GeV} \right)^2 \left(\frac{0.05 eV}{\sqrt{\Delta m^2_{atm}}} \right),
$$

(38)

where we have made use of the equation (1).
2. Dominating type-II contribution

Suppose ϵ_{II}^1 dominates in equation (35). In that case, assuming $\tilde{h} \simeq h$ and β_i's of order unity we get the maximum value of the CP-asymmetry parameter

$$|\epsilon_{I}^{\text{max}}| = \left(\frac{4M\eta_{P}}{M_{\Delta L}^2}\right)\frac{3M_1}{16\pi v^2 m_3},$$

where $m_3 = \sqrt{\Delta m_{\text{atm}}^2} \simeq 0.05$ eV. Following the same procedure in section IV A 1 we gain a factor of $(M_{\Delta L}^2/4M\eta_{P})$ in the lower bound on M_1.

B. Leptogenesis through triplet decay

In the left-right symmetric models the decay of the scalar triplets Δ_L and Δ_R violates L-number by two units and hence potentially able to produce a net L-asymmetry. The efficient decay modes which violate L-number are

$$\Delta_{L,R} \rightarrow \nu_{L,R} + \nu_{L,R},$$

$$\Delta_{L,R} \rightarrow \Phi^a + \Phi^b.$$ \hspace{1cm} (40)

However, the decay rate in the process $\Delta_R \rightarrow \Phi^a + \Phi^b$ is highly suppressed in comparison to $\Delta_L \rightarrow \Phi^a + \Phi^b$ because of the proportionality constant is v_L in the former case while it is of v_R in the latter case. Moreover, in the present case the effective mass scale of the triplet Δ_R is larger than the mass of Δ_L due to the large cancellation between $M_{\Delta R}^2$ and $2\gamma\eta_{P}^2$. Therefore, in what follows we take only the decay modes of the triplet Δ_L. The decay rates are given as:

$$\Gamma_{\nu}(\Delta_L \rightarrow \nu_{L,i}\nu_{L,j}) = \frac{|f_{ij}|^2}{8\pi}M_{\Delta L},$$

$$\Gamma_{\Phi}(\Delta_L \rightarrow \Phi^a + \Phi^b) = \frac{|\beta_{ab}|^2}{8\pi}r^2M_{\Delta L},$$

where β_{ab} are given in equation (33) and $r^2 = (v_R^2/M_{\Delta L}^2)$. A net asymmetry is produced when the decay rate of the triplet Δ_L fails to compete with the Hubble expansion rate of the Universe. This is given by the conditions:

$$\Gamma_{\nu} \lesssim H(T = M_{\Delta L}),$$

$$\Gamma_{\Phi} \lesssim H(T = M_{\Delta L}).$$

(43) \hspace{1cm} (44)
As shown in equation (20) a large cancellation can lead to a TeV scale of the triplet ΔL. However, the SM gauge interaction $W_L^+ + W_L \rightarrow \Delta_L^+ + \Delta_L$ keeps it in thermal equilibrium. The out of equilibrium of this process requires $\Gamma_W \leq H(T = M_{\Delta_L})$. Consequently we will get a lower bound on the mass of the triplet Δ_L to be $M_{\Delta_L} \geq 4.8 \times 10^{10}$ GeV.

The CP-asymmetry in this case arises from the interference of tree level diagrams in figs. (3) with the one loop radiative correction diagrams involving the virtual right handed neutrinos as shown in the figs: (4). The resulting CP-asymmetry in this case is given by \[\epsilon_{\Delta} = \frac{1}{8\pi} \sum_k M_k \frac{\sum_{ij} Im [(h^a)^*_{jk}(h^b)^*_{jk} (\beta v_R)^*_{ab} f_{ij}]}{\sum_{ij} |f_{ij}|^2 M_{\Delta_L}^2 + \sum_{cd} |\beta_{cd}|^2 v_R^2} \log(1 + \frac{M_{\Delta_L}^2}{M_k^2}). \] (45)

Assuming that $M_{\Delta_L} < M_1$ and $h = \tilde{h}$ the above equation can be simplified to

\[\epsilon_{\Delta} = \frac{1}{8\pi v^2} \frac{\sum_{ij} Im [(\tilde{m}_{ij}^L)^* (M_R)_{ij} \sum \beta^*]}{\sum_{ij} |f_{ij}|^2 + \sum_{cd} |\beta_{cd}|^2 r^2}, \] (46)

where m_{ν}^L is given by equation (28) which can be calculated from the low energy neutrino oscillation data.
V. CHARGE-NEUTRAL SYMMETRY AND NEUTRINO MASS MATRICES

The present neutrino oscillation data show that the neutrino mixing matrix up to a leading order in \(\sin \theta_{13} \) is \[26\]

\[
U_{PMNS} = \begin{pmatrix}
\frac{\sqrt{2}}{\sqrt{3}} & \frac{1}{\sqrt{3}} & e^{-i\delta} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} e^{i\delta} \\
\frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{6}} e^{-i\delta}
\end{pmatrix} \text{dia} (1, e^{i\alpha}, e^{(\beta+i\delta)})
\] (47)

where we have used the best fit parameters \[27\]; the atmospheric mixing angle \(\theta_{23} = 45^\circ \), the solar mixing angle \(\theta_{12} \approx 34^\circ \) and the reactor angle \(\sin \theta_{13} \equiv \epsilon \). Using (47) the neutrino mass matrix can be written as

\[
m_\nu = U_{PMNS}^* m_\text{dia} U_{PMNS}^\dagger,
\] (48)

where \(m_\text{dia} = \text{dia}(m_1, m_2, m_3) \), with \(m_1, m_2, m_3 \) are the light neutrino masses. Using equations (47) and (48) we get, up to an order of \(\epsilon \), the elements of the neutrino mass matrix:

\[
(m_\nu)_{11} = \frac{m_2}{3} + \frac{2}{3} m_1
\]

\[
(m_\nu)_{12} = \epsilon e^{i\delta} \frac{m_3}{\sqrt{2}} + \frac{m_2}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{6}} e^{i\delta} \right) - \sqrt{\frac{2}{3}} m_1 \left(\frac{1}{\sqrt{6}} + \frac{e^{-i\delta}}{\sqrt{3}} \right)
\]

\[
(m_\nu)_{13} = \epsilon e^{i\delta} \frac{m_3}{\sqrt{2}} - \frac{m_2}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{6}} e^{-i\delta} \right) + \sqrt{\frac{2}{3}} m_1 \left(\frac{1}{\sqrt{6}} - \frac{e^{-i\delta}}{\sqrt{3}} \right)
\]

\[
(m_\nu)_{23} = \frac{m_3}{2} + \frac{m_1}{3} - \frac{m_1}{6}
\]

\[
(m_\nu)_{22} = \frac{m_3}{2} + \frac{m_1}{\sqrt{6}} \left(\frac{1}{\sqrt{6}} + \frac{2 e^{-i\delta}}{\sqrt{3}} \right) + \frac{m_2}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} - \sqrt{\frac{2}{3}} e^{-i\delta} \right)
\]

\[
(m_\nu)_{33} = \frac{m_3}{2} + \frac{m_1}{\sqrt{6}} \left(\frac{1}{\sqrt{6}} - \frac{2 e^{-i\delta}}{\sqrt{3}} \right) + \frac{m_2}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} + \frac{2 e^{-i\delta}}{\sqrt{6}} \right)
\] (49)

Inverting the seesaw relation \[28\] we get the right handed neutrino mass matrix \[28\]

\[
M_R = -m_D^T m_\nu^{-1} m_D,
\] (50)

where \(M_R = f v_R \). The \(m_\nu^{-1} \) in the above equation can be calculated from equation \[48\]. Unless one assumes a texture of \(m_D \) it is difficult to link \(m_\nu \) and \(M_R \) through equation \[50\]. In general it is almost impossible to connect the low energy \(CP \)-phase and the \(CP \)-phase appearing in leptogenesis. So, by using some approximations for the neutrino Dirac
mass matrix one can calculate the right handed neutrino mass matrix \(M_R \) and hence the \(CP \)-asymmetry \(\text{[29]} \). We assume a charge neutral symmetry which is natural in the supersymmetric left-right symmetric models \(\text{[30]} \). We take the neutrino Dirac mass

\[
m_D = cm_l,
\]

where \(m_l \) is the charged lepton mass matrix and \(c \) is a numerical factor. Further we assume the texture of the charged leptons mass matrix as \(\text{[31]} \)

\[
m_l = \begin{pmatrix}
0 & \sqrt{m_e m_{\mu}} & 0 \\
\sqrt{m_e m_{\mu}} & m_{\mu} & \sqrt{m_e m_{\tau}} \\
0 & \sqrt{m_e m_{\tau}} & m_{\tau}
\end{pmatrix}.
\]

We shall further assume that at a high energy scale, where the leptogenesis occurs, the PMNS matrix is given by \(\text{[32]} \)

\[
U_{PMNS} = U_l^0 U_0,
\]

where \(U_l \) and \(U_0 \) are the diagonalizing matrix of \(m_l \) and \(m_\nu \) respectively. At this scale we assume \(U_l = I \) and a bimaximal structure for \(U_0 \) which is given by

\[
U_0 = \begin{pmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & e^{-i\delta} \\
-\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\
\frac{1}{2} & -\frac{i}{2} & \frac{1}{\sqrt{2}}
\end{pmatrix}.
\]

Now using \(\text{[51]} \) and \(\text{[52]} \) in equation \(\text{[50]} \) we get the elements in the right handed neutrino mass matrix as:

\[
(M_R)_{11} \simeq -c^2(m_e m_{\mu}) \left(\frac{1}{4m_1} (1 + 2ee^{i\delta}) + \frac{1}{4m_2} (1 - 2ee^{i\delta}) + \frac{1}{2m_3} \right)
\]

\[
(M_R)_{12} \simeq -c^2(m_{\mu} \sqrt{m_e m_{\mu}}) \left(\frac{1}{4m_1} (1 + 2ee^{i\delta}) + \frac{1}{4m_2} (1 - 2ee^{i\delta}) + \frac{1}{2m_3} \right)
\]

\[
(M_R)_{13} \simeq -c^2(m_{\tau} \sqrt{m_e m_{\mu}}) \left(-\frac{1}{4m_1} - \frac{1}{4m_2} + \frac{1}{2m_3} \right)
\]

\[
(M_R)_{22} \simeq -c^2m_{\mu}^2 \left(\frac{1}{4m_1} (1 + 2ee^{i\delta}) + \frac{1}{4m_2} (1 - 2ee^{i\delta}) + \frac{1}{2m_3} \right)
\]

\[
(M_R)_{23} \simeq -c^2(m_{\mu} m_{\tau}) \left(-\frac{1}{4m_1} - \frac{1}{4m_2} + \frac{1}{2m_3} \right)
\]

\[
(M_R)_{33} \simeq -c^2m_{\tau}^2 \left(\frac{1}{4m_1} (1 + 2ee^{i\delta}) + \frac{1}{4m_2} (1 - 2ee^{i\delta}) + \frac{1}{2m_3} \right).
\]
Below the electroweak phase transition the charged leptons are massive and the corresponding mass matrix is given by equation \(52\). So we can recover the PMNS matrix at low energy as given by equation \(53\) by attributing the small deviation from its bimaximal form to the diagonalizing matrix of the charged leptons \(U_l\).

VI. LEPTON ASYMMETRY WITH CHARGE-NEUTRAL SYMMETRY

In this section we estimate the \(L\)-asymmetry from the decay of right handed neutrino as well as the triplet \(\Delta_L\), depending on the relative masses they acquire from the symmetry breaking pattern.

A. \(L\)-asymmetry with \(M_1 < M_{\Delta_L}\) and dominating \(\epsilon_1\)

Using \(49\) and \(51\) in equation \(36\) we get the resulting \(CP\)-asymmetry parameter from the decay of right handed neutrino to be

\[
\epsilon_1' \simeq -\frac{M_1}{16\pi v^2} \left[(2m_1 + m_2)\epsilon^2 \sin 2\delta + 2\sqrt{2}(m_1 - m_2)\epsilon \sin \delta \right].
\]

The \(L\)-asymmetry in a comoving volume is then given by

\[
Y_L = \epsilon_1' Y_{N_1} d,
\]

where \(Y_{N_1} = (n_{N_1}/s)\), \(s = (2\pi^2/45)g_s T^3\) is the entropy density, \(n_{N_1}\) is the number density of lightest right handed neutrino in a physical volume and \(d\) is the dilution factor which can be obtained by solving the required Boltzmann equations. A part of the \(L\)-asymmetry is then transferred to the \(B\)-asymmetry in a calculable way. As a result we get the net \(B\)-asymmetry

\[
\frac{n_B}{n_\gamma} = 7Y_B = -3.5\epsilon_1' Y_{N_1} d.
\]

With the maximal CP asymmetry, i.e., \(\delta = \pi/2\), and using the best fit parameter for \(m_2 = 0.009\) eV we have shown the regions in the \(\sin \theta_{13}\) versus \(m_1\) plane for various values of \(M_1\) as shown in fig. \(5\). The upper most region represents \(4.2 \times 10^8 GeV < M_1 < 4.2 \times 10^9\) GeV. As we go down the mass of \(N_1\) increases by an order of magnitude per region. If we assume a normal mass hierarchy for the light physical neutrinos then only the bottom most
FIG. 5: Contours satisfying the required B-asymmetry are plotted in the sin θ_{13} versus m_1 plane for $(4.2 \times 10^8 GeV/M_1) = 0.1, 0.01, 0.001, 0.0001$ region i.e., $M_1 > 4.2 \times 10^{12}$ GeV, is allowed for all $m_1 < 0.001 eV$ and $\sin \theta_{13} < 0.2$, the present experimentally allowed values.

B. L-asymmetry with $M_1 < M_{\Delta_L}$ and dominating ϵ_1^{H}

Assuming a normal mass hierarchy in the right handed neutrino sector and the mass of lightest right handed neutrino $M_1 < M_{\Delta_L}$, the CP-asymmetry parameter (52) can be rewritten as

$$\epsilon_1^{H} = \left(\frac{3M_1}{16\pi M_{\Delta_L}^2}\right) \frac{\text{Im} \left[\left((m_D^a)^\dagger M_R (m_D^b)^*\right)_{11} \beta_{ab}\right]}{((m_D^a)^\dagger m_D^a)_{11}}.$$ (59)

We further assume $m_D \simeq \tilde{m}_D$ and $\beta = O(1)$. Thus using the value of m_D and M_R from equations (51) and (55) in the above equation we get

$$\epsilon_1^{H} \simeq \left(-\frac{3M_1 \beta \epsilon c^2 m_\nu^2}{8\pi M_{\Delta_L}^2}\right) \frac{\epsilon \sin \delta}{2} \left(\frac{1}{m_1} - \frac{1}{m_2}\right).$$ (60)

Following the same procedure in section (VI A) we calculate the B-asymmetry by using ϵ_1^{H}. The corresponding regions in the sin θ_{13} versus m_1 plane are shown in figure (5) for
FIG. 6: Contours satisfying the required B-asymmetry in the $\sin \theta_{13}$ versus m_1 plane are plotted for $(4.2 \times 10^8 GeV/M_1) = 0.01, 0.001, 0.0001$. We have used the parameters $\beta = 1, c = 1$ and $M_{\Delta_L} = 10^{13} GeV$.

various values of M_1. In the bottom most region we have $4.2 \times 10^9 GeV < M_1 < 4.2 \times 10^9$ GeV. As we go up the mass of N_1 increases by an order of magnitude for each region. By taking the best-fit value for $m_2 = 0.009$ eV and using the maximal CP-violation it is found that in a large allowed range of $\sin \theta_{13}$ the smaller values of M_1 are preferable for all $m_1 < 10^{-3}$ eV. That means a successful leptogenesis with $m_1 < 10^{-3} eV$ prefers the only values $4.2 \times 10^8 GeV \leq M_1 < 4.2 \times 10^{12} GeV$. Note that these regions are exactly complementary to the dominant type-I case.

C. L-asymmetry with $M_{\Delta_L} < M_1$

We now assume that $M_{\Delta_L} < M_1$. Hence the final L-asymmetry must be given by the decay of triplet Δ_L. The L-asymmetry from the decay of triplet Δ_L is defined as

$$ Y_L = \epsilon_\Delta Y_{\Delta} d, \quad (61) $$

where $Y_\Delta = (n_{\Delta_L}/s)$, with $n_{\Delta_L} = n_{\Delta_L^+} + n_{\Delta_L^+} + n_{\Delta_L^0}$ is the density of the triplets and s is the entropy density, and d is the dilution factor. Assuming β’s of order unity and
substituting ϵ_Δ from equation (46) we get the L-asymmetry

$$Y_L = \frac{1}{8\pi v^2} \frac{Im(Tr[(m_\nu^L)^* M_R] \sum \beta_i^*)}{\sum |\beta_i|^2 r^2} Y_\Delta d.$$ (62)

FIG. 7: Contours satisfying the required B-asymmetry in the $\sin \theta_{13}$ versus m_1 plane are shown for $r^2 = 1, 10, 25$. We have used the parameters $c = 0.1$, $\beta = 1$.

Using the equations (49) and (55) we evaluate Y_L. Again following the same procedure as given in section (VI A) we calculate the B-asymmetry. With the maximal CP-violation and using the best-fit parameters, $m_2 = 0.009$ eV and $m_3 = 0.05$ eV, the regions in the $\sin \theta_{13}$ versus m_1 plane are shown in fig. (7) for various values of $r^2 = v_R^2/M_{\Delta_L}^2$. In the bottom most region we have $r^2 > 25$. r^2 values are decreased further to wards upper-left (the red region which is not allowed because it represents $r^2 < 1$ which implies $M_{\Delta_L} > M_1$). Thus it is clear that for $\sin \theta_{13} < 0.2$ the only values of $m_1 < 10^{-4}$ eV are allowed for a successful leptogenesis.

D. Results and Discussions

Assuming the neutrino Dirac mass matrix follows the same hierarchy of charged lepton mass matrix we studied the sensitivity of L-asymmetry on the mass scale of the light-
est right handed neutrino as well as the triplet Δ_L. In any case it is found that a successful L-asymmetry requires the mass of lightest right handed neutrino should satisfy $M_1 > O(10^8)\text{GeV}$ and that of $M_{\Delta_L} > O(10^{10})\text{GeV}$. Therefore, these mechanisms of producing L-asymmetry is far away from our hope to be verified in the next generation accelerators. On the other hand, the large masses of N_1 and Δ_L satisfy a large range of parameters explored in the neutrino oscillations. In the following we study an alternative to explain the L-asymmetry at the TeV scale that is compatible with the low energy neutrino oscillation data.

VII. TRANSIENT LEFT-RIGHT DOMAIN WALLS, LEPTOGENESIS AND TEV SCALE RIGHT HANDED NEUTRINO

A. Spontaneous breaking of D-parity and transient left-right domain walls

In the conventional low energy left-right symmetric model the discrete left-right symmetry as well as the gauge symmetry $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ breaks at the same scale through the vev of Δ_R. As a result stable domain walls [33], interpolating between the L and R-like regions, are formed. By L-like we mean regions favored by the observed phenomenology, while in the R-like regions the vacuum expectation value of Δ_R is zero. Unless some non-trivial mechanism prevents this domain structure, the existence of R-like domains would disagree with low energy phenomenology. Furthermore, the domain walls would quickly come to dominate the energy density of the Universe. Thus in this theory a departure from exact $L \leftrightarrow R$ symmetry is essential in such a way as to eliminate the phenomenologically disfavoured R-like regions.

The domain walls formed can be transient if there exists a slight deviation from exact $L \leftrightarrow R$ symmetry. In other words we require $g_L \neq g_R$ before $SU(2)_L \times SU(2)_R$ breaking scale. In the present case this is achieved by breaking the D-parity at a high scale, at around $\eta_P \sim 10^{13}$ GeV. This gives rise to $g_L \neq g_R$ before the breaking of gauge symmetry $SU(2)_L \times SU(2)_R$. As a result the spectrum of Higgs bosons exhibit the left-right asymmetry even though $SU(2)_R$ symmetry is unbroken. Therefore, the thermal perturbative corrections to the Higgs field free energy will not be symmetric and the domain walls will be unstable. The slight difference in the free energy between the two types of regions causes a pressure
difference across the walls, converting all the R-like regions to L-like regions. Details of this dynamics can be found in ref. [20].

B. Leptogenesis from transient domain walls

It was shown in [20] that within the thickness of the domain walls the net CP violating phase becomes position dependent. Under these circumstances the preferred scattering of ν_L over its CP-conjugate state (ν_L^c) produce a net raw L-asymmetry

$$\eta_L^{\text{raw}} \approx 0.01 \nu_w \frac{M_1^4}{g_* T^5 \Delta_w}$$

(63)

where η_L^{raw} is the ratio of n_L to the entropy density s. In the right hand side Δ_w is the wall width and g_* the effective thermodynamic degrees of freedom at the epoch with temperature T. Using $M_1 = f_1 \Delta_T$, with Δ_T is the temperature dependent vev acquired by the Δ_R in the phase of interest, and $\Delta_w^{-1} = \sqrt{\lambda_{\text{eff}} \Delta_T}$ in equation (63) we get

$$\eta_L^{\text{raw}} \approx 10^{-4} \nu_w \left(\frac{\Delta_T}{T} \right)^5 f_1^4 \sqrt{\lambda_{\text{eff}}},$$

(64)

where we have used $g_* = 110$. Therefore, depending on the various dimensionless couplings, the raw asymmetry may lie in the range $O(10^{-4} - 10^{-10})$. However, it may not be the final L-asymmetry, because the thermally equilibrated L-violating processes mediated by the right handed neutrinos can erase the produced raw asymmetry. Therefore, a final L-asymmetry and hence the bound on right handed neutrino masses can only be obtained by solving the Boltzmann equations [5]. We assume a normal mass hierarchy in the right handed neutrino sector. In this scenario, as the temperature falls, first N_3 and N_2 go out of thermal equilibrium while N_1 is in thermal equilibrium. Therefore, it is the number density and mass of N_1 that are important in the present case which enter into the Boltzmann equations. The relevant Boltzmann equations for the present purpose are

$$\frac{dY_{N_1}}{dZ} = -(D + S) (Y_{N_1} - Y_{N_1}^{\text{eq}})$$

(65)

$$\frac{dY_{B-L}}{dZ} = -WY_{B-L},$$

(66)

where Y_{N_1} is the density of N_1 in a comoving volume, Y_{B-L} is the $B - L$ asymmetry and the parameter $Z = M_1/T$. The various terms D, S and W are representing the decay,
scatterings and the wash out processes involving the right handed neutrinos. In particular, $D = \frac{\Gamma_D}{\mathcal{H}}$, with

$$\Gamma_D = \frac{1}{16\pi^2} \tilde{m}_1 M_1^2,$$

(67)

where $\tilde{m}_1 = (m_D^\dagger m_D)_{11}/M_1$ is called the effective neutrino mass parameter. Similarly $S = \frac{\Gamma_S}{\mathcal{H}}$ and $W = \frac{\Gamma_W}{\mathcal{H}}$. Here Γ_S and Γ_W receives the contribution from $\Delta_L = 1$ and $\Delta_L = 2$ L-violating scattering processes.

In an expanding Universe these Γ’s compete with the Hubble expansion parameter. In a comoving volume the dependence of $\Delta_L = 1$ L-violating processes on the parameters \tilde{m}_1 and M_1 is given as

$$\left(\frac{\gamma_D}{sH(M_1)}\right), \left(\frac{\gamma_{N1}^{\phi,s}}{sH(M_1)}\right), \left(\frac{\gamma_{N1}^{\phi,t}}{sH(M_1)}\right) \propto k_1 \tilde{m}_1.$$

(68)

On the other hand, the dependence of the γ’s in $\Delta_L = 2$ L-number violating processes on \tilde{m}_1 and M_1 is given by

$$\left(\frac{\gamma_{N1}^l}{sH(M_1)}\right), \left(\frac{\gamma_{N1,t}^l}{sH(M_1)}\right) \propto k_2 \tilde{m}_1^2 M_1.$$

(69)

Finally there are also L-conserving processes whose dependence is given by

$$\left(\frac{\gamma_{Z'}}{sH(M_1)}\right) \propto k_3 M_1^{-1}.$$

(70)

In the above equations (68), (69), (70), $k_i, i = 1, 2, 3$ are dimensionful constants determined from other parameters. Since the L-conserving processes are inversely proportional to the mass scale of N_1, they rapidly bring the species N_1 into thermal equilibrium for all $T \gg M_1$. Furthermore, smaller the values of M_1, the washout effects (69) are negligible because of their linear dependence on M_1. We shall work in this regime while solving the Boltzmann equations.

The equations (69) and (66) are solved numerically. The initial $B - L$ asymmetry is the net raw asymmetry produced through the domain wall mechanism as discussed above. We impose the following initial conditions:

$$Y_{N1}^{in} = Y_{N1}^{eq} \text{ and } Y_{B-L}^{in} = \eta_{B-L}^{raw},$$

(71)

assuming that there are no other processes creating L-asymmetry below the $B - L$ symmetry breaking scale. This requires $\Gamma_D \leq \mathcal{H}$ at an epoch $T \geq M_1$ and hence lead to a bound

$$m_\nu < m_\ast \equiv 4\pi g_\ast^{1/2} \frac{G_N^{1/2}}{\sqrt{2} G_F} = 6.5 \times 10^{-4} \text{eV}.$$

(72)
Alternatively in terms of Yukawa couplings this bound reads

\[h_\nu \leq 10x, \quad \text{with} \quad x = (M_1/M_{pl})^{1/2}. \]

(73)

At any temperature \(T \geq M_1 \), wash out processes involving \(N_1 \) are kept under check due to the \(\tilde{m}_1^2 \) dependence in (69) for small values of \(\tilde{m}_1 \). As a result a given raw asymmetry suffers limited erasure. As the temperature falls below the mass scale of \(N_1 \) the wash out processes become negligible leaving behind a final \(L \)-asymmetry. Fig. 8 shows the result of solving the Boltzmann equations for different values of \(M_1 \). An important conclusion from this figure is that for smaller values of \(M_1 \) the wash out effects are tiny. Hence by demanding that the initial raw asymmetry is the required asymmetry of the present Universe we can conspire the mass scale of \(N_1 \) to be as low as 1 TeV. For this value of \(M_1 \), using equation (73), we get the constraint on the neutrino Dirac Yukawa coupling to be \(h_\nu \leq 10^{-7} \). It is shown in ref. [22] that \(h_\nu = 10^{-7} \) is reasonable to suppress the flavor changing neutral current in the conventional left-right symmetric model.

We assume that in equation (60) there are no other sources that produce \(L \)-asymmetry below the \(SU(2)_R \times U(1)_{B-L} \) symmetry breaking phase transition. This can be justified by considering small values of \(h_\nu \), since the \(CP \) asymmetry parameter \(\epsilon_1 \) depends quadratically on \(h_\nu \). For \(h_\nu \leq 10^{-7} \) the \(L \)-asymmetry \(Y_L \leq O(10^{-14}) \), which is far less than the raw
asymmetry produced by the scatterings of neutrinos on the domain walls. This explains the absence of any L-asymmetry generating terms in equation (66).

VIII. SPONTANEOUS BREAKING OF D-PARITY AND IMPLICATIONS FOR COSMOLOGY

An important aspect of the particle physics models is that the out-of-equilibrium decay of heavy scalar condensations gives rise to density perturbations in the early Universe [35]. In such a scenario, the cosmic microwave background radiation (CMBR) originating from the decay products of the scalar condensation and hence its anisotropy can be affected by the fluctuation of the scalar condensates. The observed anisotropy then constrain the mass scale of the heavy Higgs which induces the density perturbations. In the present model the fluctuation of the amplitude of late decaying condensation σ (the so called curvaton scenario) can give rise to density perturbations if the energy density of σ dominates the Universe for some time before its decay. Thus the models where inflaton doesn’t generate sufficient perturbations can be rescued.

One possibility is that the σ can be abundantly produced from the decay of inflaton field and dominates before its decay. Note that σ is a singlet field under the gauge symmetry $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$. Therefore, the domination of σ before it’s decay is natural in this model than any other scalar fields which have the gauge interactions. This is possible if $\Gamma_{inf} \gg \Gamma_{\sigma}$, where Γ_{inf} and Γ_{σ} are respectively the decay rates of inflaton and σ fields. The Universe will then go through a radiation dominated era with a reheat temperature $T_I \simeq g_*^{-1/4}(M_p \Gamma_{inf})^{1/2}$ when the inflaton field decays completely, i.e. $\Gamma_{inf} \sim H$. If the initial amplitude of σ is substantial then it will reheat the Universe at a latter epoch $H \sim \Gamma_{\sigma}$ characterised by the reheat temperature $T_{II} \simeq g_*^{-1/4}(M_p \Gamma_{\sigma})^{1/2}$ when σ decays completely.

Therefore, the final density perturbation is mostly given by the σ field [35].

Obtaining an acceptable perturbations of the correct size (about 1 in 10^5) requires that the vev of σ field $\eta_P \sim 10^5 H_I$ [35], where H_I is the Hubble expansion rate during inflation. For $\eta_P \sim 10^{13}$ GeV (which is required to suppress the type-II contribution of the neutrino mass matrix) one can have $H_I \sim 10^8$ GeV.
IX. CONCLUSIONS

We studied BVL from the decay of right handed heavy Majorana neutrinos as well as the triplet Δ_L in a class of left-right symmetric models with spontaneous D-parity violation. While in a generic type-I seesaw models, assuming normal mass hierarchy in the right handed neutrino sector, one requires $M_1 > 4.2 \times 10^8 GeV$ for successful thermal leptogenesis, with D-parity this bound can be lowered up to a factor of $(M_{\Delta_L}^2/4M\eta_P)$. Thus the lowering factor depends on the model parameters in the present case. On the other hand, in the case $M_{\Delta_L} < M_1$ the lower bound on the mass scale of Δ_L is of the order 10^{10} GeV to produce the required lepton asymmetry. In any case the thermal leptogenesis scale can not be lowered up to a TeV scale if the lepton asymmetry is produced through the out-of-equilibrium decay of these heavy particles (either right handed neutrinos or triplet Higgses). However, this is not true if the production and decay channel of these heavy particles in a thermal bath are different.

The large masses of these heavy particles satisfy a large range of low energy neutrino oscillation data as we saw in figs. (5), (6) and (7). In particular, we found that in case $M_1 < M_{\Delta_L}$ (1) the dominating ϵ_1 favors $M_1 > 4.2 \times 10^{12}$ GeV for all $m_1 < 10^{-3} \text{ eV}$, (2) the dominating ϵ_I^{I}, on the other hand, favors $4.2 \times 10^8 GeV \leq M_1 < 4.2 \times 10^{12} GeV$ for all $m_1 < 10^{-3} \text{ eV}$. In the case $M_{\Delta_L} < M_1$ we found that $m_1 < 10^{-4} \text{ eV}$ are the only allowed values to give rise a successful leptogenesis.

Despite the success, the out-of-equilibrium decay production of L-asymmetry suffers a serious problem as far as the collider energy concern. Therefore, we considered an alternative mechanism of producing L-asymmetry by considering the extra source of CP-violation in the model. In particular, the complex condensate inside left-right domain wall gives rise to CP-violation. Under these circumstance the preferred scattering of ν_L over it’s CP-conjugate state ν_c^L produce a net L-asymmetry. The survival of this asymmetry then requires the mass scale of N_1 to be very small, say $10 TeV$. This is compatible with the low energy neutrino oscillation data if the Dirac mass matrix of the neutrinos follow two orders of magnitude less than the charged lepton mass matrix. Moreover, the TeV scale masses of the right handed neutrinos are explained through the breaking of $SU(2)_R$ guage symmetry at a few TeV scale while leaving the D-parity breaking scale as high as 10^{13} GeV.

Since σ is a singlet scalar field under the gauge symmetry $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$,
we conjecture that its late decay can produce a density perturbation in the early Universe. However, in this work, we have not explored the details of density perturbations due to its out of equilibrium decay. This is under investigation and will be reported elsewhere.

Acknowledgment

We thank Prof. Anjan Joshipura for useful discussions and suggestions.

[1] D.N. Spergel et al Astrophys.J.Suppl. 148 (2003) 175 astro-ph/0302209
[2] S. Fukuda et al (Super-Kamiokande Collaboration), Phys. Rev. Lett. 86, 5656 (2001).
[3] Q.R. Ahmed et al (SNO Collaboration), Phys. Rev. Lett. 89, 011301-011302 (2002); J.N. Bahcall and C. Pena-Garay, arXiv:hep-ph/0404061.
[4] M. Fukugita and T. Yanagida, Phys. Lett. B174, 45 (1986).
[5] M.A. Luty, Phys. Rev. D45, 455 (1992); R.N. Mohapatra and X. Zhang, Phys. Rev. D46, 5331 (1992); A. Acker, H. Kikuchi, E. Ma and U. Sarkar, Phys. Rev. D 48, 5006 (1993); M. Flanz, E.A. Paschos and U. Sarkar, Phys. Lett. B 345, 248 (1995); M. Flanz, E.A. Paschos, U. Sarkar and J. Weiss, Phys. Lett. B 389, 693 (1996); M. Plumacher, Z. phy. C74(1997)549; W. Buchmuller, P. Di Bari and M. Plumacher, Annals Phys. 315, 305 (2005), arXiv:hep-ph/0401240; J. Faridani, S. Lola, P.J. O’Donnell and U. Sarkar, Eur. Phys. Jour. C 7, 543 (1999); R. Barbieri, P. Creminelli, A. Strumia and N. Tetradis, Nucl. Phys. B 575, 61 (2000), arXiv:hep-ph/9911315; G. F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Nucl. Phys. B 685, 89 (2004), arXiv:hep-ph/0310123.
[6] P. Minkowski, Phys. Lett. B 67, 421 (1977); M. Gell-Mann, P. Ramond and R. Slansky in Supergravity (P. van Nieuwenhuizen and D. Freedman, eds), (Amsterdam), North Holland, 1979; T. Yanagida in Workshop on Unified Theory and Baryon number in the Universe (O. Sawada and A. Sugamoto, eds), (Japan), KEK 1979; R.N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).
[7] A.D. Sakharov, JETP Lett. 5, 24 (1967).
[8] V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov Phys. Lett. B155, 36 (1985); P.A. Arnold and Mc Lerran L, Phys. Rev. D36, 581 (1987); Phys. Rev. D37, 1020 (1988);
J. Ambjorn, Askgaard t., Porter H. and Shaposhnikov M. E., Phys. Lett. B244, 479 (1990); Nucl. Phys. B353, 346 (1991).

[9] S. Davidson and A. Ibarra, Phy. Lett. B535, 25 (2002), arXiv:hep-ph/0202239; W. Buchmuller, P. Di Bari and M. Plumacher, Nucl. Phys. B643, 367 (2002), arXiv:hep-ph/0205349.

[10] E. Ma, N. Sahu and U. Sarkar, arXiv:hep-ph/0603043, J. Phys. G: Nucl. Part. Phys, 32, L65- L68, (2006).

[11] J. Schechter and J.W.F. Valle, Phys. Rev. D 22, 2227 (1980); M. Magg and C. Wetterich, Phys. Lett. B 94, 61 (1980); C. Wetterich, Nucl. Phys. B 187, 343 (1981); R. N. Mohapatra and G. Senjanovic Phys. Rev. D23, 165 (1981); G. Lazarides, Q. Shafi and C. Wetterich, Nucl. Phys. B181, 287 (1981).

[12] E. Ma and U. Sarkar, Phys. Rev. Lett. 80, 5716 (1998), arXiv:hep-ph/9802445; T. Hambye, E. Ma and U. Sarkar, Nucl. Phys. B 602, 23 (2001), arXiv:hep-ph/0011192; T. Hambye, M. Raidal and A. Strumia, arXiv:hep-ph/0510008. E. J. Chun and S. K. Kang, Phys. Rev. D 63, 097902 (2001) arXiv:hep-ph/0001296.

[13] J.C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974); R.N. Mohapatra and J.C. Pati, Phys. Rev. D11, 566(1975), Phys. Rev. D 11, 2558 (1975); R.N. Mohapatra and G. Senjanovic, Phys. Rev. D12, 1502 (1975).

[14] T. Hambye and G. Senjanovic, Phys. Lett. B582, 73 (2004).

[15] S. Antusch and S. F. King, Phys. Lett. B 597, 199 (2004)arXiv:hep-ph/0405093;

[16] N. Sahu and S. Uma Sankar, Phys. Rev. D71, 2005 (013006), arXiv:hep-ph/0406065; Peihong Gu and Xiao-jun Bi, Phys. Rev. D70, 2004 (063511).

[17] T. Hambye, E. Ma and U. Sarkar, Phys. Rev. D 62, 015010 (2000); Nucl. Phys. B 590, 429 (2000); L. Boubekeur, T. Hambye and G. Senjanovic, Phys. Rev. Lett. 93, 111601 (2004); arXiv:hep-ph/0404038; T. Hambye, J.M. Russel, S.M. West, JHEP 0407, 070 (2004), arXiv:hep-ph/0403183; E.J. Chun, arXiv: hep-ph/0508050; S. Dar, Q. Shafi and A. Sil, arXiv:hep-ph/0508037.

[18] A. Pilaftsis, T.E.J Underwood, Nucl.Phys. B692, 303-345 (2004), arXiv:hep-hep/0309342; A. Abada, H. Aissaoui and M. Losada, Nucl. Phys. B 728, 55 (2005) arXiv:hep-ph/0409343; M. Frigerio, T. Hambye and E. Ma, arXiv:hep-ph/0603123.

[19] D. Chang, R. N. Mohapatra and M. K. Parida, Phys. Rev. Lett. 52, 1072 (1984); Phys. Rev. D 30, 1052 (1984).
[20] J. M. Cline, U. A. Yajnik, S. N. Nayak and M. Rabikumar, Phys. Rev. D 66, 065001 (2002), arXiv:hep-ph/0204319.

[21] N. Sahu and U.A. Yajnik, Phys. Rev. D 71, 2005 (023507), arXiv:hep-ph/0410075.

[22] N. Sahu and U. A. Yajnik, Phys. Lett. B 635 (2006) 11, arXiv:hep-ph/0509285.

[23] See R.N. Mohapatra and G. Senjanovic in ref. [11]; N. G. Deshpande, J. F. Gunion, B. Kayser and F. I. Olness, Phys. Rev. D 44, 837 (1991); G. Barenboim and J. Bernabeu, Z. Phys. C 73 (1997) 321, arXiv:hep-ph/9603379; Y. Rodriguez and C. Quimbay, Nucl. Phys. B 637, 219 (2002), arXiv:hep-ph/0203178.

[24] U. Sarkar, Phys. Lett. B 594, 308 (2004), arXiv:hep-ph/0403276.

[25] P. J. O'Donnell and U. Sarkar, Phys. Rev. D 49, 2118 (1994), arXiv:hep-ph/9307279.

[26] Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys. 28, 870 (1962). B. Pontecorvo, Sov. Phys. JETP 7, 172 (1958), [Zh. Eksp. Teor. Fiz. 34, 247 (1957)]; B. Pontecorvo, Sov. Phys. JETP 6, 429 (1957), [Zh. Eksp. Teor. Fiz. 33, 549 (1957)].

[27] M.C. Gonzalez-Garcia and C. Pena-Garay, Phys. Rev. D 68, 093003 (2003), hep-ph/0306001.

[28] D. Falcone, Phys. Rev. D 68, 033002 (2003), arXiv:hep-ph/0305229; E.K. Akhmedov, M. Frigerio and A.Y. Smirnov, JHEP 0309, 021 (2003), arXiv:hep-ph/0305322; G.C. Branco, R. Gonzalez Felipe, F.R. Joaquim, M.N. Rebelo, Nucl. Phys. B 640 202-232,2002, [arXiv: hep-ph/0202030].

[29] J. M. Frere, L. Houart, J. M. Moreno, J. Orloff and M. Tytgat, Phys. Lett. B 314, 289 (1993), arXiv:hep-ph/9301228; K. Kang, S.K. Kang and U. Sarkar, Phys. Lett. B 486, 391 (2000); D. Falcone and F. Tramontano, Phys. Rev. D 63, 073007 (2001), arXiv:hep-ph/0011053; A. S. Joshipura, E. A. Paschos and W. Rodejohann, Nucl. Phys. B 611, 227 (2001), arXiv:hep-ph/0104228, JHEP 0108, 029 (2001), arXiv:hep-ph/0105175; G. C. Branco, R. Gonzalez Felipe, F. R. Joaquim, I. Masina, M. N. Rebelo and C. A. Savoy, Phys. Rev. D 67, 073025 (2003), arXiv:hep-ph/0211001; S. Pascoli, S. T. Petcov and W. Rodejohann, Phys. Rev. D 68, 093007 (2003), arXiv:hep-ph/0302054; N. Sahu and S. Uma Sankar, Nucl. Phys. B 724,329 (2005), [arXiv: hep-ph/0501069].

[30] K.S. Babu, B. Dutta and R.N. Mohapatra, Phys. Rev. D 60, 095004 (1999), Phys. Lett. B 458, 93 (1999); K. S. Babu, A. Bachri and H. Aissaoui, arXiv:hep-ph/0509091.

[31] B. R. Desai and A. R. Vaucher, Phys. Rev. D 63, 113001 (2001), arXiv:hep-ph/0007233; J. L. Chkareuli and C. D. Froggatt, Phys. Lett. B 450, 158 (1999), arXiv:hep-ph/9812499.
[32] C. Giunti and M. Tanimoto, Phys. Rev. D 66, 053013 (2002), arXiv:hep-ph/0207096.

[33] T.W.B. Kibble, G. Lazarides and Q. Shafi, Phys. Rev. D 26, 435 (1982); G. Lazarides and Q. Shafi, Phys. Lett. B 159, 261 (1985); H. Lew and A. Riotto, Phys. Lett. B309, 258 (1993); U.A. Yajnik, H. Widyan, S. Mahajan, A. Mukherjee and D. Choudhuri, Phys. Rev. D59 103508 (1999).

[34] W. Fischler, G.F. Guidice, R.G. Leigh, and S. Paban Phys. Lett. B258 45 (1991).

[35] T. Moroi and T. Takahashi, Phys. rev. D 66, 063501 (2002); R. Allahberdi and M. Drees, Phys. Rev. D 70, 123522 (2004) and the references there in.