Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk

Sara Lindström1,2, Deborah J. Thompson3,4, Andrew D. Paterson5, Jingmei Li6, Gretchen L. Gierach7, Christopher Scott8, Jennifer Stone9, Julie A. Douglas10, Isabel dos-Santos-Silva11, Pablo Fernandez-Navarro12,13, Jajini Verghe8,3,14, Paula Smith3,4, Judith Brown3,4, Robert Luben3, Nicholas J. Wareham15, Ruth J.F. Loos15,16, John A. Heit17, V. Shane Pankratz8, Aaron Norman8, Ellen L. Goode8, Julie M. Cunningham18, Mariza deAndrade8, Robert A. Vierkant8, Kamila Czen6, Peter A. Fasching19,20, Laura Baglietto21,22, Melissa C. Southey23, Graham G. Giles21,22, Kaanan P. Shah10, Heang-Ping Chan24, Mark A. Helvie24, Andrew H. Beck25, Nicholas W. Knoblauch25, Aditi Hazra1,2,26, David J. Hunter1,2,26, Peter Kraft1,2,27, Marina Pollan12,13, Jonine D. Figueroa7, Fergus J. Couch8,18, John L. Hopper22, Per Hall6, Douglas F. Easton3,4,28, Norman F. Boyd29, Celine M. Vachon8,* & Rulla M. Tamimi1,2,26,*

Mammographic density reflects the amount of stromal and epithelial tissues in relation to adipose tissue in the breast and is a strong risk factor for breast cancer. Here we report the results from meta-analysis of genome-wide association studies (GWAS) of three mammographic density phenotypes: dense area, non-dense area and percent density in up to 7,916 women in stage 1 and an additional 10,379 women in stage 2. We identify genome-wide significant (P<5×10−8) loci for dense area (AREG, ESR1, ZNF365, LSP1/TNNT3, IGF1, TMEM184B and SGS3/MKL1), non-dense area (8p11.23) and percent density (PRDM6, 8p11.23 and TMEM184B). Four of these regions are known breast cancer susceptibility loci, and four additional regions were found to be associated with breast cancer (P<0.05) in a large meta-analysis. These results provide further evidence of a shared genetic basis between mammographic density and breast cancer and illustrate the power of studying intermediate quantitative phenotypes to identify putative disease-susceptibility loci.
Variations in the appearance of the mammogram reflect differences in breast fibro glandular tissue that appears white or radio-dense, and fat that appears black or non-dense. After adjustment for age and body mass index (BMI), the proportion of the total breast area that is dense (percent density (PD)) is a strong risk factor for breast cancer¹, and both dense (DA) and non-dense areas (NDA), are also independently associated with breast cancer risk²-⁵. PD, DA and NDA are all highly heritable (0.6–0.7)⁴,⁵; however, to date few genetic loci associated with mammographic density have been identified⁶–⁸.

Here we report results from a two-stage (discovery and replication stages) genome-wide association studies (GWAS) of DA, NDA and PD, respectively. We identify genome-wide significant (P<5 × 10⁻⁸) loci for DA (AREG, ESR1, ZNF365, LSPI/TNNT3, IGF1, TMEM184B and SGSM3/MKL1), NDA (8p11.23) and PD (PRDM6, 8p11.23 and TMEM184B). Our results add to the growing body of evidence that mammographic density and breast cancer risk share a genetic component.

Results

Our discovery phase included 11 studies with GWAS data (Methods, Supplementary Note 1) comprising a total of 7,916 women. Study subjects were predominantly postmenopausal women of European ancestry participating in the Markers of Density consortium. Mammographic density was measured using CUMULUS⁹ (Supplementary Table 1) and 1,642 (21%) of the subjects were breast cancer cases. All studies were imputed to HapMap phase II before meta-analysis (Supplementary Table 2). For each single-nucleotide polymorphism (SNP), we combined study-specific P values and direction of association using the METAL software¹⁰. We assessed 200 promoting SNPs for replication in up to 10,379 women from 11 different studies (Supplementary Table 3, Supplementary Note 2).

For DA (n = 7,600), no SNP reached genome-wide significance in the discovery phase (Supplementary Figs 1 and 2). However, through replication analysis (Supplementary Table 4), we identified seven independent loci significantly associated (P<5 × 10⁻⁸) with DA (Table 1, Supplementary Figs 3 and 4) including AREG, ESR1, ZNF365, LSPI/TNNT3, IGF1, TMEM184B and SGSM3/MKL1.

The AREG gene is a member of the epidermal growth factor family that promotes growth of normal epithelial cells, and variants that strongly correlate with our top SNP rs10034692 in this region have previously been associated with breast size¹¹. Although we observed the strongest association for rs10034692, another SNP (rs12642133) located 116 kb away and in weak linkage disequilibrium (LD) with rs10034692 (r² = 0.16, D’ = 1.00) also reached genome-wide significance (Supplementary Table 4). We investigated these two SNPs further in 6,624 women from the NHS (Nurses’ Health Study), BBCC (Bavarian Breast Cancer Cases and Controls), MCBCS (Mayo Clinic Breast Cancer Study) and MMHS (Mayo Mammography Health Study) studies for whom we had individual-level genotype data. Both SNPs were associated with DA in this data set when analysed separately (β = −0.16,

Table 1 | SNPs associated with mammographic DA, NDA and PD.

Lead SNP Chr: position	Gene	Alleles	MAF	Stage	Z-Score	P-value (s.e.)	Stage 1	Z-Score	P-value (s.e.)	Stage 1 + 2	Z-Score	P-value (s.e.)
rs10034692 4:75638651	AREG	A/G	0.26	1	−4.67	3.00 × 10⁻⁶	−0.16 (0.03)	−6.35	2.12 × 10⁻¹⁰	0.77		
rs12665607 6:15198332	ESR1	T/A	0.08	1	−4.44	9.06 × 10⁻⁶	0.17 (0.04)	5.64	1.71 × 10⁻⁸	0.27		
rs10995190 10:63948688	ZNF365	G/A	0.16	1	−6.65	3.36 × 10⁻⁶	−0.24 (0.03)	−8.26	1.49 × 10⁻¹⁶	0.44		
rs3817918 11:1865582	LSPI	T/C	0.34	1	−4.76	6.31 × 10⁻⁷	0.14 (0.03)	5.67	9.67 × 10⁻¹¹	0.99		
rs703556 12:10153602	IGF1	A/G	0.02	1	−5.13	2.91 × 10⁻⁷	−0.41 (0.08)	6.27	3.74 × 10⁻¹⁰	0.90		
rs7289126 22:36958252	TMEM184B	C/A	0.40	1	−4.30	1.74 × 10⁻⁵	−0.11 (0.02)	−5.55	2.80 × 10⁻⁸	0.99		
rs17001868 22:39108177	SGSM3, MKL1	A/C	0.08	1	−4.42	9.99 × 10⁻⁶	−0.18 (0.03)	−7.33	2.29 × 10⁻¹³	0.74		

| SNPs associated with mammographic NDA | rs7816345 B:36965267 | N/A | 0.18| 1 | −7.37 | 1.77 × 10⁻¹³| −0.24 (0.03)| −9.96 | 2.40 × 10⁻²³| 0.09 | | |
| | rs186749 5:122482204 | PRDM6| 0.28| 1 | −6.77 | 1.30 × 10⁻¹¹| −0.10 (0.02)| −5.86 | 4.68 × 10⁻⁹| 0.82 | | |

| SNPs associated with mammographic PD | rs7816345 B:36965267 | N/A | 0.18| 1 | 4.99 | 6.26 × 10⁻⁷| 0.10 (0.02)| 5.96 | 2.52 × 10⁻⁹| 0.43 | | |
| | rs7289126 22:36958252 | TMEM184B| 0.40| 1 | −4.79 | 1.69 × 10⁻⁶| 0.03 (0.02)| 4.68 | 4.68 × 10⁻⁹| 0.82 | | |

DA, dense area; MAF, minor allele frequency; NDA, non-dense area; PD, percent density; SNP, single-nucleotide polymorphism.

*WG version 18.

†Includes nearby genes.

‡MAF as in the 1000 Genomes project.

§β and s.e. estimates were obtained using fixed effects meta-analysis of cross-sectional studies (that is, studies that analysed density phenotypes as a quantitative trait) in unrelated individuals.

Mammographic density phenotypes are square-root-transformed.

*P-value for heterogeneity between studies.
\(P = 0.0002 \text{ for } rs10034692 \text{ and } \beta = 0.17, \quad P = 9 \times 10^{-6} \text{ for } rs12642133 \). Including both SNPs in the same model attenuated the signal for both SNPs (\(\beta = -0.10, \quad P = 0.04 \) for rs10034692 and \(\beta = 0.13, \quad P = 0.002 \) for rs12642133). Thus, it is possible that these two SNPs are either a proxy for another yet unidentified causal SNP or that they represent two independent causal SNPs. Interestingly, rs12642133 is located in a weak enhancer region in human mammary epithelial cells (HMEC).

SNPs in ESR1 have earlier been associated with breast cancer risk\(^{12–15}\), and rs12665607\(^7\) identified here is in strong LD with the

sets will be necessary to determine whether there are multiple independent signals. In particular, SNPs rs1949359\(^7\) (\(r^2 = 0.08, \quad D^2 = 0.36 \) with rs10995190) and rs10733779\(^7\) (\(r^2 = 0.11, \quad D^2 = 1.00 \) with rs10995190) showed genome-wide significant associations with DA. After adjusting for rs10995190, the associations for both rs1949359 (\(P = 4.4 \times 10^{-5} \) before and \(P = 0.008 \) after adjustment) and rs10733779 (\(P = 1.9 \times 10^{-6} \) before and \(P = 0.002 \) after adjustment) were attenuated. Additional analyses in larger data sets will be necessary to determine whether there are multiple independent SNPs associated with DA in this region.

We identified a rare (minor allele frequency (MAF) = 0.02) SNP 222 kb upstream of IGF1 that was associated with DA. IGF1 is a candidate gene for breast cancer risk\(^{15}\) and is hypothesized to be involved in breast development. Indeed, circulating levels of IGF1 are associated with breast cancer risk\(^{18}\).

We also confirmed previous findings\(^8\) that rs3817198 in the known breast cancer gene LSP1 is associated with DA and also observed a genome-wide significant association for a weakly correlated SNP rs909116 (\(r^2 = 0.24, \quad D^2 = 0.82 \)). Both these SNPs have been associated with breast cancer risk, and the recently published iCOGS\(^9\) analysis of breast cancer found that rs3817198 is the SNP most strongly associated with breast cancer at the LSP1 locus. Large-scale fine-mapping efforts are needed to pinpoint the causal variant(s).

SNP rs7289126 (TMEM184B) was associated with both DA and PD. A correlated SNP rs738322 (\(r^2 = 0.34, \quad D^2 = 0.71 \)) located in the PLA2G6 gene has previously been associated with cutaneous nevi\(^{20}\). Interestingly, two recent independent studies recently reported a link between cutaneous nevi and breast cancer\(^{21,22}\), and it is possible that this link can be partly explained through a shared genetic origin between cutaneous nevi and mammographic density.

The SNP rs17001868 (SGSM3/MKL1 region) is in moderate LD (\(r^2 = 0.41, \quad D^2 = 0.76 \)) with rs6001930 that has been previously associated with breast cancer\(^{19}\). We also observed several nearby SNPs located in the TNRC6B and MKL1 genes that were associated with DA. However, these SNPs did not remain significant after adjusting for rs17001868.

For NDA (\(n = 7,600 \)), multiple SNPs at 8p11.23 reached genome-wide significance in the discovery phase (Supplementary Figs 5 and 6); this region has previously been associated with breast size\(^{11,12}\) (Table 1, Supplementary Figs 8 and 9). Replication analysis (Supplementary Table 5) confirmed this region (top SNP rs7816345, combined \(P = 2.4 \times 10^{-23} \)) and this SNP was also associated with PD on a genome-wide significant level.

For PD (\(n = 7,916 \)), the only two regions that reached genome-wide significance in the discovery stage were the previously identified ZNF365 (ref. 6) and 1q24 (ref. 7) loci (Supplementary Figs 10 and 11). Through replication analysis (Supplementary Table 6), we identified three new loci (\(P < 5 \times 10^{-8} \)) that mapped to PRDM6, 8p11.23 and TMEM184B (Table 1, Supplementary Figs 12 and 13). rs7816345 (8p11.23) was also significantly associated with NDA and rs7289126 (TMEM184B) with DA on a genome-wide significance level. SNP rs186749 is located in PRDM6, a gene involved in the regulation of endothelial cell proliferation, survival and differentiation. Interestingly, we observed a borderline association (\(P = 2.6 \times 10^{-2} \)) between rs186749 and DA (Supplementary Table 4). We also observed two SNPs in ZNF365, rs10733779 and rs10509168 that reached genome-wide significance but their associations were attenuated when adjusting for the known PD SNP rs10095190. As with DA, analysis in larger data sets will be needed to assess the possibility of multiple independent SNPs in this region.

We used data from the ENCODE\(^{24}\) project to identify potential overlap between SNPs in regions associated with mammographic density phenotypes and regulatory elements in mammmary tissue (Supplementary Table 7). We identified multiple SNPs in these regions that were in strong LD (\(r^2 \geq 0.8 \)) with the lead SNPs and mapped to regulatory regions, as defined by DNAse I-hypersensitive site (DHS) or enhancer histone marks in mammmary tissue for the ESR1, IGF1, TMEM184B, SGSM3/MKL1 and 8p11.23 regions. In particular, several SNPs including rs77275268 (proxy for rs12665607) in the ESR1 region map to a DHS in the breast MCF-7 and HMEC cell lines. SNP rs77275268 has previously been shown to disrupt a partially methylated CpG sequence within a known CTCF-binding site\(^{25}\). Interestingly, both rs77275268 and rs4820328 (proxy for rs7289126) in the TMEM184B region are in regions that bind CTCF. CTCF is believed to play genome-wide role in transcriptional regulation and chromatic structure. In addition, rs4820328 also mapped to enhancer histone marks and DHS in HMEC cell lines. On the basis of these data, rs4820328 and rs77275268 are intriguing candidates for further follow-up. We also identified SNPs in these regions that bind several proteins implicated in breast cancer including GATA3, ESR1, FOXA1, YY1, RAD21, SMC3, GR and EGR1. To explore potential function of identified SNPs further, we assessed their association with gene expression levels in adipose tissue and lymphoblastoid cell lines (LCL)\(^{26}\). The DA and PD SNP rs7289126 (TMEM184B) was associated with expression of MAFF and ANKRD54 in LCL (\(P < 0.001 \)) and BAIAP2L2 in adipose tissue (\(P < 0.0001 \)). rs17001868 (SGSM3/MKL1) was associated with SGSM3 expression in both adipose tissue and LCL (\(P < 0.0001 \)). We also examined whether any of these SNPs (or proxies) were associated with transcript levels in breast cancer tumours using data from The Cancer Genome Atlas\(^{27}\) (TCGA). We conducted both cis (within 1 Mb of the transcription start or end site) and trans (genome-wide) expression quantitative trait loci (eQTL) analyses. Although we did not identify any significant pathways in gene set enrichment analysis, we identified some significant eQTLs with a raw \(P < 0.00024 \) (Supplementary Table 9). Interestingly, rs4820328 in the TMEM184B region that showed up in the ENCODE analysis was also associated with multiple transcript levels in TCGA.

To investigate whether SNPs associated with mammographic density phenotypes are also associated with breast cancer, we accessed data from the GAME-ON (http://gameon.dfc.io.harvard-d.edu) and iCOGS breast cancer meta-analysis based on 62,533 cases and 60,976 controls (Table 2). Eight out of nine SNPs were associated with breast cancer risk (\(P < 0.05 \)), four of which have already been reported to be associated with breast cancer on a genome-wide significance level (ESR1, ZNF365, LSP1 and SGSM3/MKL1)\(^{12–15,19,28}\). Four additional SNPs (PRDM6, 8p11.23, IGF1 and TMEM184B) were nominally associated with breast cancer (\(P < 0.05 \), Table 2) and indicate potential new breast cancer susceptibility loci. Among the eight SNPs associated with
both mammographic density phenotypes and breast cancer, six SNPs showed consistent direction between the mammographic density and breast cancer association, whereas SGSM3/MKL1 and 8p11.23 showed conflicting direction of associations with breast cancer in relation to the mammographic density association. We conducted SNP–breast cancer association analyses with and without adjusting for mammographic density (Supplementary Table 9) in up to 3,696 breast cancer cases and 4,768 controls for whom we had mammographic density data on. We did not observe strong evidence that mammographic density mediates the SNP–breast cancer association; however, we note that our low sample size limits our ability to draw conclusions from these analyses.

The SNPs identified here explain only a small fraction of the variance of DA (1.0%), NDA (0.4%) and PD (0.6%). We generated phenotype-specific genotype scores and estimated the difference in density associated with each density-increasing allele carried. The score-specific differences per allele were 1.94 cm² for DA, 5.88 cm² for NDA and 0.77% for PD. It is noteworthy that two out of three SNPs associated with PD were associated with breast tissue and breast cancer risk by factors we are unable to suggest important biologic differences of the effect of this SNP on breast cancer risk but in opposite directions. In addition, rs7816345 was also associated with apparent opposing directions of this locus on DA and breast cancer risk may reflect true biologic differences over the life course. For example, it has been demonstrated that adiposity during early life is inversely associated with breast cancer³⁰, while postmenopausal BMI is positively associated with breast cancer³¹.

There are some weaknesses with our study that should be mentioned. First, we used the HapMap project as imputation panel that prohibited us from assessing the contribution of rare variants. Future genetic studies of mammographic density phenotypes should use more dense imputation panels such as the 1000 Genomes³² that will provide a more complete coverage of the genome. Moreover, it is possible that the causal variant(s) within each mammographic density GWAS region was not captured here. Pin-pointing the causal variants will require not only denser genotyping and/or sequencing of these regions but also larger sample sizes. Another weakness with our study is that it was not designed or adequately powered to test whether mammographic density mediates SNP effects on breast cancer. Future large studies with both mammographic density and breast cancer data should assess such mediation effects.

In summary, we report multiple loci associated with mammographic density phenotypes. We identified six DA-specific loci, of which five showed an association with breast cancer and one

Table 2 | Breast cancer associations for mammographic density SNPs based on a meta-analysis of 62,533 breast cancer cases and 60,976 controls.

Mammographic density phenotype	SNP	Chr	Gene	Alleles	Z-score, mammographic density association (density phenotype)	Breast cancer association OR (95% CI)	P value breast cancer association
Dense area	rs10034692	4	AREG	A/G	-6.35 (DA)	0.99 (0.97-1.01)	0.31
rs12656507	6	ESR1	T/A	5.64 (DA)	1.20 (1.16-1.23)	1.48 x 10^-30	
rs3817998	11	LSP1	T/C	6.47 (DA)	1.07 (1.05-1.09)	2.09 x 10^-13	
rs703556	12	IGFI	A/G	-6.27 (DA)	0.94 (0.90-0.99)	0.02	
Percent density	rs17001868	22	SGSM3/MKL1	A/C	-7.33 (DA)	1.10 (1.08-1.13)	1.19 x 10^-15
Dense area and percent density	rs186749	5	PRDM6	G/A	5.96 (PD)	1.02 (1.01-1.04)	0.009
Non-dense area and percent density	rs7816345	8	N/A	C/T	9.96 (NDA), 5.46 (PD)	0.94 (0.92-0.96)	2.18 x 10^-8

CI, confidence interval; OR, odds ratio; SNP, single-nucleotide polymorphism.

*Reference allele/effect allele.

DA, dense area; PD, percent density; NDA, non-dense area.

P value based on a fixed effects meta-analysis. Estimates and s.e.’s for each breast cancer study were calculated using logistic regression.
PD-specific locus also associated with breast cancer. We also report an additional locus associated with DA, PD and breast cancer risk as well as a locus associated with NDA, PD and breast cancer risk. These results confirm previous observations that mammographic density phenotypes and breast cancer risk share genetic origin and biological pathways. Despite the smaller sample size in this mammographic density GWAS (n = 7,916 in the discovery and n = 10,379 in the replication phase) compared with recent large-scale breast cancer studies (n = 22,627 in the discovery and n = 87,170 in the replication phase)4,5, our ability to identify known as well as putative novel breast cancer loci by studying mammographic density phenotypes demonstrates the power of using quantitative intermediate phenotypes to discover new disease loci.

Methods

Ethics statement. Each study obtained informed consent from patients and had relevant ethics and institutional approvals from the following institutions: Brigham and Women’s Hospital (NHS), Harvard School of Public Health (NHSII), Norwich District Ethics Committee (EPIC-Norfolk), Karolinska Institutet (Singapore and Sweden Breast Cancer Study (SASBAC)), Mayo Clinic (MBCFS (Minnesota Breast Cancer Family Study), MAYO VTE, MCOCS, MMHS, MCBCS), University Health Network, Toronto, Canada (TOR), Eastern Multicentre Research Ethics Committee (Sisters in Breast Screening (SIBS)), Instituto de Salud Carlos III (DDM-Spain), University of Melbourne (AMDTSS), University of Michigan and University of Maryland (OAA), The Cancer Council Victoria Ethnic Committee (Melbourne Collaborative Cohort Study (MC3S)), Friedrich-Alexander University Erlangen-Nuremberg (BBCC), NCI Special Studies Institutional Review Board (PBCC) and National Research Ethics Committee (NREC) East of England—Cambridge South (SEARCH).

Study design. We conducted a meta-analysis of 12 GWAS of mammographic density (Supplementary Note 1). For DA and NDA, we had GWAS data from 11 studies, and for PD we had GWAS data from 12 studies. To follow up promising SNPs (P < 0.0001; Supplementary Tables 4–6), we conducted replication and effect finding from data from three discovery iCOGS, Select and in silico look-ups in GWAS data. We assessed a total of 209 SNPs that showed suggestive associations with DA, NDA or PD for replication. We pursued replication of 114 SNPs that were included on the iCOGS16 array and genotyped additional 86 SNPs in 3,832 women using a customized Select array. For the replication analysis, we also included cases from the Old Order Amish (OAA, n = 1,472, GWAS) and for the DA analysis, the Australian MD Twins and Sisters Study (AMDTSS) GWAS (n = 343).

Genotyping, quality control and imputation. Study participants were genotyped on various genotyping platforms, and standard quality-control filters for call rate, Hardy–Weinberg equilibrium P-value and other measures were applied to exclude individuals and genotyped SNPs. To generate a common set of SNPs for meta-analysis, all studies were imputed to HapMap phase II (Supplementary Table 2). Imputation quality was visually assessed for all SNPs. We used the IMPUTE software. We also investigated whether identified mammographic density SNPs or their proxies were associated with breast cancer. For this purpose, we excluded all SNPs with minor allele frequency less than 5% and two subjects (out of 204 included duplicates) who showed multiple discrepancies leaving 3,832 subjects for analysis. Remaining duplicates had concordance >99%. In addition, we also included association results from the OOA (n = 1,472) and AMDTSS (n = 343 for the DA analysis) GWAS where available. To account for the extreme sampling scheme in AMDTSS, we up-weighted this study with a scale factor of 3.51. In total, our replication sample size for included on the iCOGS array was 9,118 women and the sample size for SNPs included on the Select was 5,647 women.

Assessment of regulatory functions for identified SNPs. We used the ENCODE data to assess whether any of the identified mammographic density SNPs or their proxies (P ≥ 0.8 in 1000 Genomes CEU population) are located in regulatory regions. Look-ups were made using the HaploReg and RegulomeDB softwares. We also investigated whether identified mammographic density SNPs or their proxies were associated with gene expression in breast cancer. We used the GeneVar database. To further explore the regulatory properties of the mammographic density SNPs, we conducted eQTL analyses on mammographic density SNPs and their proxies (P ≥ 0.8) using data from TCGA. We identified eQTLs using BeQTL (manuscript under review, http://beqtl.org) that robustly assesses the association between SNP genotypes and mRNA transcript levels using linear regression with bootstrap. We assessed a total of 22 SNPs and a total of 18,985 transcripts among 608 oestrogen receptor-positive cases and 19,105 transcripts among 177 oestrogen receptor-negative cases. To robustly determine the correlation between SNP genotype and gene expression level, the 95% confidence interval and median of the t-statistic for the correlation coefficient were estimated via statistical bootstrap. For the bootstrap procedure, case resampling was performed N × log(N) times where N is the total number of cases. We computed P values from the median t-statistic obtained in linear regression. Functional gene set analysis was performed using DAVID (http://david.abcc.ncifcrf.gov/) for the set of transcripts achieving a raw P value less than 0.00024 in the eQTL analysis.

Breast cancer association analysis. We looked up the association between mammographic density SNPs and breast cancer in the iCOGS16 + GAME-ON breast cancer GWAS meta-analysis. The GAME-ON meta-analysis13,19,43,44 can be found at (http://gameon.dlci.harvard.edu) and is based on 11 breast cancer GWAS. In total, the reported breast cancer associations for the replicated mammographic density SNPs were based on 62,533 breast cancer cases and 60,976 controls. We conducted logistic regression analysis with and without adjustment for mammographic density including up to 3,696 breast cancer cases and 4,768 controls from the NHS, NHSII, MBCBS, MMHS, BBCC, SASBAC and MCCCS studies.

References

1. Vachon, C. M. et al. Mammographic density, breast cancer risk and risk prediction. Breast Cancer Res. 9, 217 (2007).
2. Pettersson, A. et al. Nondense mammographic area and risk of breast cancer. Breast Cancer Res. 13, R100 (2011).
3. Pettersson, A. et al. Mammographic density phenotypes and risk of breast cancer: a meta-analysis. J. Natl Cancer Inst. 106, 5 (2014).
4. Buch, N. F. et al. Heritability of mammographic density, a risk factor for breast cancer. New Engl. J. Med. 347, 886–894 (2002).
5. Stone, J. et al. The heritability of mammographically dense and nondense breast tissue. Cancer Epidemiol. Biomark. Prev. 15, 612–617 (2006).
6. Lindstrom, S. et al. Common variants in 2NZf365 are associated with both mammographic density and breast cancer risk. Nat. Genet. 43, 185–187 (2011).
7. et al. de novo identification of a novel cancer-mammographic density locus at 16q24. Hum. Mol. Genet. 21, 3299–3305 (2012).
8. Vachon, C. M. et al. Common breast cancer susceptibility variants in LSP1 and RAD51L1 are associated with mammographic density measures that predict breast cancer risk. Cancer Epidemiol. Biomark. Prev. 21, 1156–1166 (2012).
9. Byng, J. W. et al. Symmetry of projection in the quantitative analysis of mammographic images. Eur. J. Cancer Prev. 5, 319–327 (1996).
10. Willer, C. J., Li, L. & Abecasis, G. R. MetaMap: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
11. Eriksson, N. et al. Genetic variants associated with breast size also influence breast cancer risk. BMC Med. Genet. 13, 52 (2012).
12. Long, J. et al. Genome-wide association study in east Asians identifies novel susceptibility loci for breast cancer. PLoS Genet. 8, e1002532 (2012).
13. Sidorchuk, A. et al. A meta-analysis of genomewide association studie of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11. Hum. Mol. Genet. 21, 5373–5384 (2012).
14. Turnbull, C. et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat. Genet. 42, 504–507 (2010).
15. Zheng, W. et al. Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat. Genet. 41, 324–328 (2009).
16. Cai, Q. et al. Genome-wide association study identifies breast cancer risk variant at 10q21.2: results from the Asia Breast Cancer Consortium. Hum. Mol. Genet. 20, 4991–4999 (2011).
17. Hunter, D. J. et al. A candidate gene approach to searching for low-penetration breast cancer susceptibility loci. Am. J. Hum. Genet. 83, 1198–1211 (2008).
18. Key, T. J., Appleby, P. N., Reeves, G. K. & Roddam, A. A. Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies. Lancet Oncol. 11, 530–542 (2010).
19. Michailidou, K. et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat. Genet. 45, 361e1–362e CSR (2013).
20. Niu, H. et al. Genome-wide association study identifies single-nucleotide polymorphisms for breast cancer susceptibility loci. Hum. Mol. Genet. 20, 2673–2679 (2011).
21. Zhang, M. et al. Association between Catenase Nevi and Breast Cancer in the Nurses’ Health Study: A Prospective Cohort Study. PLoS Med. 11, e1001659 (2014).
22. Kwok, W. et al. Association between Melanocytic Nevi and Risk of Breast Diseases: The French E3N Prospective Cohort. PLoS Med. 11, e1001660 (2014).
23. Michailidou, K. et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat. Genet. 45, 353–361 (2013).
24. Consortium, E. P. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
25. Stamatoyannopoulos, J. A. et al. Ancestry-shifting refinement mapping of the C6orf97-ESRI breast cancer susceptibility locus. PLoS Genet. 6, e1001029 (2010).
26. Yang, T. P. et al. Genevar: a database and Java application for the analysis and visualization of SNP-gene associations in eQTL studies. Bioinformatics 26, 2474–2476 (2010).
27. Cancer Genome Atlas, N. Comprehensive molecular portraits of human breast tumors. Nature 490, 61–70 (2012).
28. Easton, D. F. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–1093 (2007).
29. Kerdivel, G. et al. Activation of the MKL1/actin signaling pathway induces hormonal escape in estrogen-responsive breast cancer cell lines. Mol. Cell Endocrinol. 390, 34–44 (2014).
30. Pumplin, S. E. et al. Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative breast cancer. Carcinogenesis 35, 1012–1019 (2014).
31. Baer, H. J., Tworoger, S. S., Hankinson, S. E. & Willett, W. C. Body fatness at young ages and risk of breast cancer throughout life. Cancer Epidemiol. Biomark. Prev. 19, 1523–1530 (2010).
32. Garcia-Closas, M. et al. Genome-wide association study identifies breast cancer risk variants at 6q14 and 20q11.1. Cancer Res. 73, 4264–4270 (2013).
33. Hu, Y. et al. Genome-wide association analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).
34. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 5, 4154–4187 (2010).
35. Aulchenko, Y. S., Struchalin, M. V. & van Duijn, C. M. ProbABEL package for genomewide association analysis of imputed data. BMC Bioinformatics 11, 134 (2010).
36. Ward, L. D. & Kellis, M. HaplReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40, D930–D934 (2012).
37. Boyle, A. P. et al. Annotuation of functional variation in personal genomes using RegulomeDB. Genome Res. 22, 1790–1797 (2012).
38. Davis, T. J., Therneau, T. M., Retzer, S. A. & Tischendorf, L. LD structure and parameter estimation for quantitative-trait linkage analysis in general pedigrees. Am. J. Hum. Genet. 62, 1198–1211 (1998).
39. Amos, C. I. Robust variance-components approach for assessing genetic linkage in pedigrees. Am. J. Hum. Genet. 54, 535–543 (1994).
40. Aulchenko, Y. S., Struchalin, M. V. & van Duijn, C. M. ProbABEL package for genomewide association analysis of imputed data. BMC Bioinformatics 11, 134 (2010).
41. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).
42. Huang da, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–19 (2009).
43. Ghouissi, M. et al. Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nat. Genet. 44, 312–318 (2012).
44. Garcia-Closas, M. et al. Genome-wide association studies identify four ER-negative-specific breast cancer risk loci. Nat. Genet. 45, 398e1–398e2 (2013).
the staff of Mayo Clinic Genotyping Core Facility. The iCOGS infrastructure was funded by the following: the European Community’s Seventh Framework Programme under grant agreement no. 223175 (HEALTH-F2-2009-223175; COGS), Cancer Research UK (C1287/A10118, C1287/A10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112—the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation and the Ovarian Cancer Research Fund. The results published here are in part based upon data generated by The Cancer Genome Atlas project established by the NCI and NHGRI (dbGaP Study Accession: phs000178.v8.p7). Information about TCGA and the investigators and institutions who constitute the TCGA research network can be found at http://cancergenome.nih.gov/.

Author contributions
S.L., D.J.T., A.D.P., J.L., P.H., D.F.E., N.F.B., C.M.V. and R.M.T. designed the study. S.L., D.J.T., A.D.P., J.L., J.S., J.A.D., P.F.-N., J.V., P.S., A.H.B. and N.W.K. performed the statistical analysis. J.A.D., I.D.-S., J.R., R.L., N.I.W., R.J.L., J.A.H., V.S.P., A.N., E.L.G., J.M.C., M.D., R.A.V., K.C., P.A.F., L.B., M.C.S., G.G.G., K.P.S., H.-P.C., M.A.H., A.H., D.J.H., P.K., M.P., J.D.F., F.J.C., J.L.H., P.H., D.F.E., N.F.B., C.M.V. and R.M.T. provided samples and data. S.L., D.J.T., A.D.P., J.A.D., J.L.H., N.F.B., C.M.V. and R.M.T. drafted the manuscript. All authors contributed to the final paper.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Lindstrom, S. et al. Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk. Nat. Commun. 5:5303 doi: 10.1038/ncomms6303 (2014).
Corrigendum: Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk

Sara Lindström, Deborah J. Thompson, Andrew D. Paterson, Jingmei Li, Gretchen L. Gierach, Christopher Scott, Jennifer Stone, Julie A. Douglas, Isabel dos-Santos-Silva, Pablo Fernandez-Navarro, Jajini Verghase, Paula Smith, Judith Brown, Robert Luben, Nicholas J. Wareham, Ruth J.F. Loos, John A. Heit, V. Shane Pankratz, Aaron Norman, Ellen L. Goode, Julie M. Cunningham, Mariza deAndrade, Robert A. Vierkant, Kamila Czene, Peter A. Fasching, Laura Baglietto, Melissa C. Southey, Graham G. Giles, Kaanan P. Shah, Heang-Ping Chan, Mark A. Helvie, Andrew H. Beck, Nicholas W. Knoblauch, Aditi Hazra, David J. Hunter, Peter Kraft, Marina Pollan, Jonine D. Figueroa, Fergus J. Couch, John L. Hopper, Per Hall, Douglas F. Easton, Norman F. Boyd, Celine M. Vachon & Rulla M. Tamimi

Nature Communications 5:5303 doi: 10.1038/ncomms6303 (2014); Published 24 Oct 2014; Updated 9 Sep 2015

The financial support for this Article was not fully acknowledged. The Acknowledgements should have included the following:

This study was supported by CA173785 from the National Institutes of Health.