Risk factors and mortality of pulmonary embolism in COVID-19 patients
Evidence based on fifty observational studies

Zhaoliang Fu, BDa, Gengshen Bai, MDh, Bingsheng Song, BDi, Yongbing Wang, BDi, Hui Song, BDc, Ming Ma, BDj, Junqiang Zhu, BDk, Zejun Zhang, BDl, Qinghong Kang, BDm,*

of Baiyin City, Baiyin, China, a Department of Interventional, The Second People’s Hospital of Baiyin City, No. 509, Park Road, Baiyin District, Baiyin City 730900, China (e-mail: kangqh2022@163.com).

Abstract
Background: At present, many studies have described acute pulmonary embolism (PE) as a frequent and prognostically relevant complication of coronavirus disease 2019 (COVID-19) infection. Thus we performed the present analysis of 50 studies to evaluate the risk factors and mortality of PE in COVID-19 patients.

Method: Databases including PubMed, Embase, Cochrane Library and Web of Science were searched to October, 2021. Odds ratio (OR), mean difference (MD) or standard MD was used to evaluate the outcomes. The primary outcomes were the difference of mortality between PE and non-PE COVID-19 patients as well as relevant risk factors of PE in COVID-19 patients. All statistical analyses were performed using the standard statistical procedures provided in Review Manager 5.2.

Result: A total of 50 studies including 10053 patients were included in this meta-analysis. Our results indicated that COVID-19 patients with PE experienced significantly higher mortality than non-PE patients (21.9% vs. 10.7%), with a pooled OR of 2.21 (95% CI 1.30 – 3.76; P = .003). In addition, COVID-19 patients with PE also experienced more mechanical ventilation (MV) (OR 2.21; 95% CI 1.30 – 3.75; P = .003) and invasive mechanical ventilation (IMV) (OR 3.58; 95% CI 2.47 – 5.20; P < .0001) respectively. Univariate analysis (UVA) results indicated the Sequential Organ Failure Assessment (SOFA) score, time to deep venous thrombosis (DVT), non-intensive care unit (non-ICU) patients and no anticoagulation as risk factors of PE for COVID-19 patients. In addition, multivariate analysis also found that SOFA score, D-dimer, BMI > 30 kg/m2 and history of PE were risk factors of PE for COVID-19 patients.

Conclusion: The present analysis indicated that PE increased the mortality of COVID-19 patients. Mechanical ventilation, especially invasive mechanical ventilation, is correlated with an increased incidence of PE in patients with COVID-19. The incidence of PE for COVID-19 patients may be multifactorial and further researches focused on risk factors were needed in the future.

Abbreviations: AMSTAR = assessing the methodological quality of systematic reviews, COVID-19 = coronavirus disease 2019, DVT = deep venous thrombosis, HFNC = high-flow nasal cannula, ICU = intensive care unit, IMV = invasive mechanical ventilation, MD = mean difference, MVA = multivariate analysis, NMV = non-invasive mechanical ventilation, NOS = Newcastle-Ottawa Scale, OR = odds ratio, PE = pulmonary embolism, PRISMA = preferred reporting items for systematic reviews and meta-analyses, SOFA = sequential organ failure assessment, UVA = univariate analysis.

Keywords: COVID-19, mortality, pulmonary embolism, risk factors.

1. Introduction

The outbreak of coronavirus disease 2019 (COVID-19) remains a severe public health emergency of international concern. Over the past months, several investigations have suggested an association between the COVID-19 pathogenesis and a pro-coagulant pattern that seems to be implicated in a higher risk of both arterial and venous thrombotic events.[1–4] In this regard, acute pulmonary embolism (PE) has emerged as a potential severe complication of the infection and both American and European consensus statement have suggested general recommendations to deal with these clinical events.[5,6]

Many studies have reported a high incidence of PE in patients with COVID-19, ranging from 10.5% to 14.7% in patients who were admitted to general wards and from 23.4% to 24.7% in patients who were admitted to the intensive care unit (ICU).[7–9]
It was believed that complications of PE, such as pulmonary infection, pulmonary consolidation, pulmonary arterial hypertension and increasing of right heart load, increased or resulted in in-hospital death of COVID-19 patients. However, the influence of PE to mortality of COVID-19 patients was still unclear. In addition, the risk factors of PE are not evaluated at present in patients with COVID-19.

Thus we performed the present analysis to evaluate the risk factors and mortality of PE in COVID-19 patients. We aim to explore the risk factors of PE in COVID-19 patients and hope that this will be helpful to prophylaxis or diagnosis of PE in COVID-19 patients.

2. Methods

2.1. Search strategy and study selection

A systematic search of PubMed, Embase, Cochrane Library and Web of Science up to October, 2021 was conducted for relevant studies using a search strategy developed by a medical information specialist that involved controlled vocabulary and keywords related to our research question (e.g., “coronavirus disease”, “COVID-19”, “pulmonary embolism”, “PE”; “prognosis”, “outcome”, “survival”, “death”, “mortality”, “prevalence”, “risk factors”). The search strategy was limited to English language articles. Two assessors independently screened the titles and abstracts of each study. When a relevant study was identified, its full text was obtained for further evaluation. The full text of related references was also obtained for review.

2.2. Criteria for considering studies

We included studies if they met the following criteria: studies that: (1) compared the death or other outcomes between PE and non-PE patients with COVID-19; (2) explored the risk factors of PE in patients with COVID-19.

Studies were excluded if they met the following criteria: (1) experimental trial on animals or a nonhuman studies; (2) study population included non-COVID-19 patients; (3) study reported in the form of an abstract, letter, editorial, expert opinion, review, or case report; or (4) lack of sufficient data or failure to meet the inclusion criteria.

2.3. Quality assessment and data extraction

Two reviewers assessed the quality of each study using the 9-star Newcastle-Ottawa Scale (NOS). The scores were judged according to the three aspects of NOS of evaluation: selection, comparability, and outcome between the case group and control group. In addition, the risk of bias for each studies and the risk of bias across all studies were evaluated and shown with figures generated by RevMan 5.2 software.

Baseline characteristics and outcomes from the included studies were extracted using a standardized extraction form. Key study characteristics including country, sample size, mean age, location, setting, end points and main outcomes were extracted. Data were extracted by 1 reviewer and then examined for accuracy and completeness by a second reviewer.

2.4. Data synthesis and statistical methods

The data of comparable outcomes between PE and non-PE patients with COVID-19 were combined-analyzed, using the standard statistical procedures provided in RevMan 5.2. Dichotomous data were measured with odds ratio (OR) and continuous variable data were measured with mean difference (MD). The heterogeneity between studies was evaluated by the chi-square-based Q statistical test with P value and I^2 statistic, ranging from 0% to 100%, to quantify the effect of heterogeneity. $P < 0.10$ was deemed to represent significant heterogeneity, and pooled estimates were estimated using a random-effect model (the DerSimonian and Laird method). On the contrary, if statistical study heterogeneity was not observed ($P > 0.10$), a fixed effects model (the Mantel–Haenszel method) was used. The effects of outcome measures were considered to be statistically significant if pooled ORs with 95% confidence intervals (CIs) did not include 1.0.
CI did not overlap with 1 or pooled MDs with 95% CI did not overlap with 0.

This work has been reported in line with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)[16] and Assessing the methodological quality of systematic reviews (AMSTAR) Guidelines.[17] Because this work in fact was a second analysis of previous study, the ethical approval for this study was not applicable.

3. Results

3.1. Included studies, study characteristics, and quality assessment

At the beginning of the search, a total of 114 records of citations were obtained; 105 of records were reviewed further after duplicates were removed. By screening titles and abstracts, 41 studies were preliminarily excluded and the remaining 64 studies

Table 1

The characteristics of included studies in this meta-analysis.

Author/Year	Country	Sample size	Location	Setting	Age (mean ± SD, range)	Male (n)	Main outcomes
Alonso-Fernández A	Spain	30	Single-center	ICU, general wards	67.0 (63.0–73.0)	15	Incidence and risk factors of PE
Al-Samkari H	USA	400	Multicenter	ICU, general wards	60/65	228	Incidence and risk factors of PE
Artifoni M	France	71	Multicenter	General wards	64 (46.0–75)	43	Incidence and risk factors of PE
Bompard F	France	135	Multicenter	ICU	64 (64–76)	94	Incidence and risk factors of PE
Cattaneo M	Italy	64	Single center	General wards	70 (58–77.5)	35	Incidence and risk factors of PE
Chen J	China	25	Single center	General wards	65 (56.5–70)	15	Incidence and risk factors of PE
Chen S (2021)	China	88	Single center	ICU	63 (57–71)	54	Incidence and risk factors of DVT
Cui S	China	81	Single center	ICU	59.9 ± 14.1	37	Incidence and risk factors of PE
Demelo-Rodríguez P	Spain	156	Single center	General wards	68.1 ± 14.5	102	Incidence and risk factors of PE
Fang C	UK	93	Single center	ICU, general wards	62 (56–69)	60	Incidence and risk factors of PE
Fauvel C	France	1240	Multicenter	General wards	64 ± 17	559	Incidence of PE; death, admission to the ICU, invasive mechanical ventilation, and noninvasive ventilation
Fraïssé M	France	92	Single center	ICU	61 (55–70)	73	Incidence and risk factors of PE
Freund Y	6 countries	3253	Multicenter	General wards	61.0 ± 19	1558	Incidence and risk factors of PE
Galeano-Valle F	Spain	24	Multicenter	General wards	64.3 ± 14.4	14	Incidence and risk factors of PE
Gervaise A	France	72	Single center	General wards	62.3 ± 17.8	54	Incidence and risk factors of PE
Grandmaison G	Switzerland	29	Single center	ICU	64.6 ± 10.0	18	Incidence and risk factors of PE
Griffit F	France	100	Single center	ICU, General wards	66 ± 13	70	Incidence of PE and VTE
Hékimian G	France	51	Single center	ICU	51.9 ± 11.0	38	Incidence and risk factors of PE
Helms J	France	150	Multicenter	ICU	63 (53–71)	122	Incidence and risk factors of PE
Kertkov O (2021)	Russia	75	Single center	ICU	63.4 ± 13	36	Incidence and risk factors of PE
Klok FA	The Netherlands	184	Multicenter	General wards	64 ± 12	139	Potential risk factors for DVT
Koleiart I	USA	135	Single center	General wards	63 ± 15	53	Incidence of PE; death, admission to the ICU, invasive mechanical ventilation, and noninvasive ventilation
Le Jeune S	France	42	Single center	General wards	65 ± 19	55	Incidence of VTE
LeBrun DG	France	59	Multi-center ICU	General wards	68 (85–100)	264	Incidence of PE; death, admission to the ICU, invasive mechanical ventilation, and noninvasive ventilation
Léonard-Lorant I	France	106	Single center	ICU, General wards	62.5 ± 14.3	70	Incidence and risk factors of PE
Litipis JF	France	26	Multi-center ICU	General wards	68 (51.7–74.5)	20	Incidence and risk factors of PE
Lodigiani C	Italy	362	Single center	General wards	66 (55–75)	264	Incidence and risk factors of PE
Longchamp A	Switzerland	25	Single center	ICU	68 ± 11	16	Incidence and risk factors of PE
Maatman TK	USA	109	Multi-center ICU	General wards	61 ± 16	62	Incidence and risk factors of PE
Manjunath M	USA	23	Single center	ICU	61.7	15	Incidence and risk factors of PE
Marone EM	Italy	101	Single center	General wards	70 ± 10	58	Incidence and risk factors of PE
Mentor T	Switzerland	21	Multi-center ICU	General wards	76	55	Incidence of PE; death, admission to the ICU, invasive mechanical ventilation, and noninvasive ventilation
Mestre-Gómez B	Spain	29	Single center	General wards	65 (56–73)	21	Incidence of PE; factors associated to the diagnosis of PE
Middeldorp S	The Netherlands	198	Single center	ICU, General wards	61 ± 14	130	Incidence and risk factors of PE
Mueller-Petalz K	Germany	16	Single center	ICU	62 ± 8	13	Incidence and risk factors of PE
Poissy J	France	107	Single center	ICU	60.8 ± 14.0	78	Incidence and risk factors of PE
Poyjadj N (2020)	USA	328	Multi-center ICU	General wards	59 ± 15	186	Incidence and risk factors of PE
Ren B (2020)	China	48	Multi-center ICU	General wards	70 (62–80)	26	Incidence and risk factors of PE
Soumagne T (2020)	France/Belgium	375	Multi-center ICU	General wards	63.5 ± 10.1	288	Incidence and risk factors of PE
Thomas W (2020)	UK	63	Single center	ICU	59 ± 13	44	Incidence and risk factors of PE
Trimaille A	France	289	Multi-center ICU	General wards	62.2 ± 17.0	171	Incidence and risk factors of PE
Valle C (2021)	Italy	114	Multi-center ICU	General wards	61 (51.2–66)	84	Incidence and risk factors of PE
van Dam LF	the Netherlands	23	Single center	General wards	63 ± 6.4	16	Incidence and risk factors of PE
van den Heuvel FMA (2020)	the Netherlands	51	Single center	General wards	63 (51–68)	41	Incidence and risk factors of PE
Ventura-Díaz S (2020)	Spain	242	Single center	General wards	66 ± 15	150	Incidence and risk factors of PE
Wang Y (2020)	China	237	Single center	General wards	61.5 ± 2	129	Incidence and risk factors of PE
Whyte MB (2020)	UK	214	Single center	ICU, General wards	73 (52–87)	110	Incidence and risk factors of PE
Wichmann D (2020)	Germany	12	Single center	General wards	62 ± 12	74	Incidence and risk factors of PE
Yu Y (2020)	China	142	Single center	General wards	63 ± 14	74	Incidence and risk factors of PE
Zhang L (2020)	China	143	Single center	ICU	63 ± 14	74	Incidence and risk factors of PE

CVA = cerebrovascular accident, DVT = deep vein thrombosis, ICU = intensive care unit, MI = myocardial infarction, PE = pulmonary embolus, UTI = urinary tract infection, VTE = venous thrombus embolism.
were retrieved in full text for further evaluation. After reading the full texts, 14 studies were excluded further. Eventually, 50 studies\(^6\)\(^5\)\(^6\)\(^4\)\(^4\) (10,053 patients) were included in this systematic review and meta-analysis. Six studies were from USA, 14 from France, 8 from China, 3 from Switzerland, 5 from Spain. 15 studies were conducted by multicenter and the others by single center. The detailed search process and summary of studies are shown in the study flow diagram (Fig. 1). The other characteristics of each study are shown in Table 1.

Risk-of-bias graphs were generated to further identify the risk of bias of the including studies. The risk of bias for each study was presented as percentages across all included studies, and the risk-of-bias item for each included study was displayed (Fig. 2 and 3). The risk-of-bias graphs indicated generally low risk of selection and comparability. In addition, all studies experienced low risk of bias in “assessment of outcomes” item. A high risk of bias was mainly observed in “ascertainment of exposure” and “adequacy of follow-up of cohorts”. Unclear risk of bias was mainly observed in “ascertainment of exposure” and “other bias”.

3.2. The clinical outcomes of COVID-19 patients with PE

We compared the mortality of COVID-19 patients between PE and non-PE. As Figure 4 shows, our pooled results indicated that COVID-19 patients with PE experienced significantly higher mortality than non-PE patients (21.9% vs. 10.7%), with a pooled OR of 2.21 (95% CI 1.30 – 3.76; \(P = .003\)). As significant heterogeneity between studies was observed \((P = .0003\) and \(I^2 = 65\%\), the randomized effect model was used.

In addition, it was observed that COVID-19 patients with PE also experienced more ICU admission than non-PE, with a pooled OR of 2.79 (95% CI 1.88 – 4.13; \(P < .0001\)). However, no significant difference was found between PE and non-PE patients in the incidence of acute respiratory failure (OR 2.25; 95% CI 0.52 – 9.70; \(P = .28\)) and arrhythmia (OR 5.74; 95% CI 0.25 – 130.37; \(P = .27\)) (Table 2).

3.3. Anthropometric and clinical characteristics between PE and non-PE patients with COVID-19

In order to explore the difference in characteristics of COVID-19 patients with PE, we compared the characteristics between PE and non-PE patients with COVID-19. As Table 3 shows, compared with non-PE, COVID-19 patients with PE experienced longer time from illness onset to admission, with a pooled MD of 1.50 days (95% CI 1.30 – 3.76; \(P = .003\)). No significance was found in age (MD 3.99 years; 95% CI -0.77 – 8.76; \(P = .10\)), gender (OR 1.81; 95% CI 0.96 – 3.41; \(P = .07\)), BMI (MD -1.30 Kg/m\(^2\); 95% CI -3.42 – 0.82; \(P = .23\)), time to CTPA (MD 1.23 days; 95% CI -0.33 – 2.79; \(P = .12\)), hospitalization (MD 4.15 days; 95% CI 0.48 – 8.77; \(P = .08\)) respectively.

We compared relevant risk factors between PE and non-PE patients with COVID-19. As Table 6 shows, no significant difference between PE and non-PE patients with COVID-19 was found in diabetes mellitus (OR 0.98; 95% CI 0.66 – 1.45), cardiovascular disease (OR 1.18; 95% CI 0.69 – 2.01), chronic respiratory disease (OR 1.28; 95% CI 0.67 – 2.43), varicose veins (OR 3.21; 95% CI 1.12 – 85.20), chronic venous insufficiency (OR 0.31; 95% CI 0.01 – 8.28), neoplasm (OR 3.21; 95% CI 0.12 – 85.20), previous VTE, chronic heart failure, ischemic heart disease, pregnancy or puerperium, obesity (OR 0.73; 95% CI 0.15 – 3.49), 1 or more known risk factors for PE (OR 1.51; 95% CI 0.11 – 21.35).

We also compared the incidence of PE in patients with COVID-19 of different treatment in hospital. The results indicated no significant difference between PE and non-PE patients with COVID-19 in azithromycin (OR 0.22; 95% CI 0.04 – 1.11), hydroxychloroquine (OR 2.13; 95% CI 0.17 – 26.67), lopinavir + ritonavir (OR 0.76; 95% CI 0.18 – 3.24), tocilizumab (OR 0.42; 95% CI 0.09 – 1.92), other biological therapy (OR 3.21; 95% CI 0.12 – 85.20) and systemic corticosteroids (OR 1.03; 95% CI 0.33 – 3.25) (Table 7).

3.4. Comparison of oxygen therapy in hospital between PE and non-PE patients with COVID-19

In order to explore the risk factors of PE in COVID-19 patients, we also compared the oxygen therapy in hospital between PE and non-PE patients with COVID-19. Our pooled results indicated that COVID-19 patients with PE experienced more mechanical ventilation (MV) (OR 2.21; 95% CI 1.30 – 3.75; \(P = .003\)) and invasive mechanical ventilation (IMV) (OR 3.58; 95% CI 2.47 – 5.20; \(P < .0001\)) respectively (Fig. 5). However, no significant difference was observed in maximum FiO2 (MD -0.27; 95% CI -0.89 to 0.35; \(P = .38\)) and systolic BP (MD -2.00 mm Hg; 95% CI -4.69 – 0.82; \(P = .56\)). No significant difference was observed in respiratory rate (MD 2.00 breaths/min; \(P = .56\)), time to CTPA (MD -1.30 Kg/m\(^2\); 95% CI -3.42 – 0.82; \(P = .80\)), systolic BP (MD -2.00 mm Hg; 95% CI -17.56 – 13.56; \(P = .80\)), diastolic BP (MD 4.00 mm Hg; 95% CI -10.88 – 18.88; \(P = .60\)), temperature (MD 0.00 °C; 95% CI -1.57 – 1.57; \(P = 1.0\)), and lower limb edema (OR 0.56; 95% CI 0.02 – 17.92; \(P = .74\)) (Table 5).

3.5. Laboratory findings between PE and non-PE patients with COVID-19

We compared the laboratory indicators between PE and non-PE COVID-19 patients. Our pooled analysis indicated that compared to non-PE, COVID-19 patients with PE had higher baseline and peak serum D-dimer, with pooled MDs of 5.98 μg/mL (95% CI 4.15 – 7.81; P < .0001) and 1.10 μg/mL (95% CI 0.13 – 2.07; P = .03) respectively. In addition, COVID-19 patients with PE had higher NT-pro BNP (MD 94.24 pg/mL; 95% CI 45.21 – 143.27; P = .0002), hs Troponin I (MD 5.00 ng/L; 95% CI 1.01 – 8.99; P = .01), but lower albumin (MD -3.58 g/L; 95% CI -3.18 to -1.98; P < .0001) (Table 9).

However, no significant difference was found in ferritin, platelets, lymphocytes, NLR, IL-6 (MD -2.23 pg/mL; 95% CI -33.02 – 28.56; P = .89), fibrinogen (MD 1.96 mg/dL; 95% CI -1.95 – 5.87; P = .33) and SOFA score (MD -1.00; 95% CI -4.03 – 2.03; P = .52) (Table 9).

3.6. Risk factors associated with PE for patients with COVID-19

Univariate analysis (UVA) results indicated SOFA score (OR 1.87; 95% CI 1.39 – 2.52; P < .0001), time to DVT (OR 1.04; 95% CI 1.01 – 1.07; P = .009), non-ICU patients (OR 6.50; 95% CI 2.10 – 20.12; P = .001), no anticoagulation (OR 3.00; 95% CI 1.10 – 8.18; P = .03) and dyslipidemias (OR 9.06; 95% CI 1.88 – 43.67; P = .006) as risk factors of PE for COVID-19 patients.

In addition, multivariate analysis (MVA) also found that SOFA score (OR 2.07; 95% CI 1.38 – 3.11; P = .0004), D-dimer (OR 2.82; 95% CI 1.05 – 7.58; P = .04), BMI > 30 kg/m² (OR 2.70; 95% CI 1.30 – 5.61; P = .008) and history of PE (OR 3.50; 95% CI 1.20 – 10.21; P = .02) were risk factors of PE for COVID-19 patients. Inversely, MVA indicated that COVID-19 patients receiving statin therapy had negative correlation to PE, with a pooled OR of 0.40 (95% CI 0.20 – 0.80; P = .01). However, age, gender, PaO2/FiO2 ratio, and hypertension were not indicated as risk factors of PE for patients with COVID-19 (Table 10).

3.7. Publication bias

Funnel plots were conducted for assessing the publication bias of included literatures and we could roughly assess the publication bias by seeing whether their shapes were of any obvious asymmetry. The funnel plots showed no clear evidence of publication bias for mortality between PE and non-PE patients with COVID-19 (see supplemental digital content, http://links.lww.com/MD/G909).

4. Discussion

PE is a life-threatening complication in patients with COVID-19, and given the data presented by previous studies, patients with COVID-19 always experienced a high incidence of PE and mortality.[7,8] However, the risk factors of PE for patients with COVID-19 are still unclear. Thus, we conducted the present analysis with 50 observational studies including 10053 patients in order to explore the relevant risk factors of PE for patients with COVID-19.

Our results indicated that COVID-19 patients with PE always experienced more ICU admission, longer time from illness onset to admission, more mechanical ventilation and IMV, higher baseline and peak serum D-dimer, higher NT-pro BNP and hs Troponin I, but lower albumin. In addition, SOFA score, time to DVT, non-ICU patients, no anticoagulation and dyslipidemias was indicated as risk factors of PE for COVID-19 patients. Multivariate analysis also found that SOFA score, D-dimer, BMI > 30 kg/m² and history of PE may be independent risk factors of
Figure 4. Forest plot of the mortality between PE and non-PE patients with COVID-19.

Table 2

The comparison of clinical outcomes in hospital between PE and non-PE patients with COVID-19.

Treatment	Sample size	OR	95% CI	P value	Analytic effect model
Acute respiratory failure	30	2.25	0.52, 9.70	0.28	Fixed effect model
Arrhythmia	30	5.74	0.25, 130.37	0.27	Fixed effect model
ICU admission	1405	2.79	1.88, 4.13	< 0.0001	Fixed effect model

COVID-19 = coronavirus disease 2019, ICU = intensive care unit, OR = odds ratio, PE = pulmonary embolism.

Table 3

The comparison of characteristics between PE and non-PE patients with COVID-19.

Characteristics	Sample size	Estimate	95% CI	P value	Analytic effect model
Age, yr	2206	MD 3.99	–0.77, 8.76	0.10	Random-effect model
Gender (men)	2095	OR 1.81	0.96, 3.41	0.07	Random-effect model
BMI, kg/m²	1519	MD –1.30	–3.42, 0.82	0.23	Random-effect model
Time to admission, day	1405	MD 1.50	0.45, 2.55	0.005	Fixed effect model
Time to CTPA, day	438	MD 1.23	–0.33, 2.79	0.12	Fixed effect model
Hospitalization, day	677	MD 4.15	–0.48, 8.77	0.08	Random-effect model

BMI = body mass index, COVID-19 = coronavirus disease 2019, CTPA = computed tomography pulmonary angiography, MD = mean difference, OR = odds ratio, PE = pulmonary embolism.

Table 4

The comparison of symptoms between PE and non-PE patients with COVID-19.

Symptoms	Sample size	OR	95% CI	P value	Analytic effect model
Cough	380	0.86	0.51, 1.45	0.57	Fixed effect model
Fever	380	1.71	0.88, 3.33	0.11	Fixed effect model
Dyspnea	245	1.27	0.73, 2.22	0.40	Fixed effect model
Chest pain	102	1.12	0.26, 4.78	0.88	Fixed effect model

PE = pulmonary embolism; OR = odds ratio; COVID-19 = coronavirus disease 2019.
PE for COVID-19 patients. COVID-19 patients receiving statin therapy may reduce the risk of PE.

To the best of our knowledge, the present analysis is the first systematic review and meta-analysis designed to focus on the clinical relevant risk factors instead of the prevalence of PE in patients with COVID-19.[7–9,65,66] However, prior to our analysis, 1 meta-analysis was performed to summarize evidence on the incidence of clinically relevant VTE—defined as VTE excluding isolated subsegmental PE and distal deep vein thrombosis—in adult critically ill patients with COVID-19.[67] The author reported longer mean ICU stay, advanced age and overweight, critical illness, immobility were associated with increased VTE risk.[67] This was in line with our results to a large extent.

Severe COVID-19 disease is accompanied by excessive cytokine release, which in turn activates the coagulation cascade, resulting in typical laboratory alterations such as elevated fibrinogen and D-dimer levels.[64] Thus we compared the laboratory indicators between PE and non-PE patients aiming to found the difference and possible risk factors of PE in COVID-19 patients. As a results, serum D-dimer, higher NT-pro BNP and hs Troponin I as well as albumin level were found significant difference and may be associated with the incidence of PE.

Several relevant limitations of our work need to be recognized. First, as our results indicated that statin therapy may beneficial to PE and no anticoagulation may increase the incidence of PE for COVID-19 patients, some patients included in our included studies may receive this treatment. However, these studies did not report this part of patients, which resulted in our failure to perform subgroup analysis further. To date, only 1 prospective, randomized, controlled trial has compared different anticoagulation regimens in critically ill patients (n = 20) with COVID-19.[69] Therefore, it seems unlikely that a meta-analysis could shed light on this important question at this point. In line with this, a recently published Cochrane review concluded that there is currently insufficient evidence to determine the risks and benefits of anticoagulation in patients with COVID-19.[70] Second, we observed substantial heterogeneity among studies that—apart from distinct outcome definitions—may have been caused by differences in study designs and settings. In particular, the absence of uniform diagnostic procedures to detect
PE needs to be borne in mind when interpreting the results of our study. Furthermore, we cannot exclude that the different included patient cohorts and different treatment strategies used in studies might have resulted in distinct PE risks. Third, the inherent limitations of retrospective data reporting applied to the majority of the included studies. This is a likely explanation for our finding that all of the included studies had a moderate to high risk of bias.

5. Conclusion

In conclusion, the present study summarizes the globally available risk factors of PE in patients with COVID-19. We calculated and compared the mortality of COVID-19 patients and found more than twofold mortality in PE than non-PE patients. Though it is multifactorial, we found several relevant risk factors of PE in patients with COVID-19 which may be helpful to
Table 9
The comparison of laboratory findings between PE and non-PE patients with COVID-19.

Laboratory indicators	Sample size	Estimate	95% CI	P value	Analytic effect model
Serum D-dimer, μg/mL					
Baseline	2703 MD	5.98	4.15, 7.81	<0.0001	Random-effect model
Peak	30 MD	1.10	0.13, 2.07	0.03	Fixed effect model
Prior to CTPA	30 MD	1.00	-0.17, 2.17	0.09	Fixed effect model
Ferritin, ng/mL					
Baseline	165 MD	-213.68	-916.29, 488.93	0.98	Random-effect model
Peak	30 MD	-20.82	-1373.57, 1331.94	0.07	Fixed effect model
Prior to CTPA	30 MD	-1150.0	-2390.38, 90.38	0.71	Fixed effect model
Platelets, 10^3/μL					
Baseline	1616 MD	0.49	-39.76, 40.75	0.98	Random-effect model
Peak	30 MD	-55.0	-147.31, 37.31	0.24	Fixed effect model
Prior to CTPA	30 MD	12.0	-24.84, 48.84	0.52	Fixed effect model
Lymphocytes					
Baseline	1641 SMD	-0.12	-0.37, 0.14	0.37	Random-effect model
Peak	30 SMD	-0.34	-1.06, 0.38	0.35	Fixed effect model
Prior to CTPA	30 SMD	-0.68	-1.42, 0.06	0.07	Fixed effect model
NLR					
Baseline	165 MD	2.17	-0.54, 4.89	0.12	Fixed effect model
Peak	30 MD	3.70	-5.15, 12.55	0.41	Fixed effect model
Prior to CTPA	30 MD	2.20	-0.25, 4.65	0.08	Fixed effect model
IL-6, pg/mL	207 MD	-2.23	-33.02, 28.56	0.89	Fixed effect model
NT-pro BNP, pg/mL	1383 MD	94.24	45.21, 143.27	0.0002	Fixed effect model
hs Tropinin I, ng/L	30 MD	5.00	1.01, 8.99	0.01	Fixed effect model
Fibrinogen, mg/dL	1447 MD	1.96	-1.96, 5.87	0.33	Fixed effect model
Albumin, g/L	30 MD	-3.58	-5.18, -1.98	<0.0001	Fixed effect model
SOFA score	135 MD	-1.00	-4.03, 2.03	0.52	Fixed effect model

COVID-19 = coronavirus disease 2019, CTPA = computed tomography pulmonary angiography, MD = mean difference, , NLR = neutrophil to lymphocyte ratio, PE = pulmonary embolism, SMD = standardized mean difference, SOFA = Sequential Organ Failure Assessment.

Table 10
The pooled results of univariate and multivariate analysis of risk factors associated with PE for patients with COVID-19.

Risk factors	OR	95% CI	P value	OR	95% CI	P value
Age	1.01	0.86, 1.19	0.90	1.00	0.81, 1.23	1.0
Gender (male)	1.09	0.46, 2.58	0.84			
SOFA score	1.87	1.39, 2.52	<0.0001	2.07	1.38, 3.11	0.0004
D-dimer	3.34	0.39, 28.82	0.27	2.82	1.05, 7.58	0.04
PaO2/FiO2 ratio (> 150)	0.54	0.23, 1.27	0.16	0.81	0.36, 2.01	0.58
Time to DVT	1.04	1.01, 1.07	0.009	1.04	1.00, 1.08	0.05
Non-ICU patients	6.50	2.10, 20.12	0.001			
No Anticoagulation	3.00	1.10, 8.18	0.03			
Dyslipidemia	9.06	1.88, 43.67	0.006			
BMI > 30 kg/m²				2.70	1.30, 5.61	0.008
Statin therapy	0.40	0.20, 0.80	0.01			
History of PE	3.50	1.20, 10.21	0.02			
Hypertension	0.50	0.20, 1.25	0.14			

BMI = body mass index, COVID-19 = coronavirus disease 2019, DVT = deep vein thrombosis, MVA = multivariate analysis, OR = odds ratio, PE = pulmonary embolism, SMD = standardized mean difference, SOFA = Sequential Organ Failure Assessment.

Clinical precaution and patients with these risk factors should be vigilant for PE.

Author contributions
The authors on this paper all participated in study design. All authors read, critiqued and approved the manuscript revisions as well as the final version of the manuscript. Also, all authors participated in a session to discuss the results and consider strategies for analysis and interpretation of the data before the final data analysis was performed and the manuscript written. All authors have the appropriate permissions and rights to the reported data.

Ethical approval: Not applicable.
References

[1] Lodigiani C, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020;191:9–14.

[2] Silva BV, et al. Pulmonary embolism and COVID-19: a comparative analysis of different diagnostic models performance. Am J Emerg Med. 2021;50:526–31.

[3] van Twist DJL, Luu IHY. Pulmonary embolism in COVID-19: the actual prevalence remains unclear. Radiol. 2021;299:E254.

[4] Woodard PK. Pulmonary thromboembolism in COVID-19. Radiology. 2021;298:E107–8.

[5] Klok FA, et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis. Thromb Res. 2020;191:148–50.

[6] Leonard-Lorant I, Delabranche X. Acute pulmonary embolism in patients with COVID-19 at CT angiography and relationship to d-Dimer levels. Radiol. 2020;296:E189–e191.

[7] Liao SC, et al. Incidence and mortality of pulmonary embolism in COVID-19: a systematic review and meta-analysis. Crit Care. 2020;24:464.

[8] Roncon L, et al. Incidence of acute pulmonary embolism in COVID-19 patients: systematic review and meta-analysis. Eur J Intern Med. 2020;82:29–37.

[9] Suh YJ, Hong H. Pulmonary embolism and deep vein thrombosis in COVID-19: a systematic review and meta-analysis. Radiol. 2021;298:E70–7.

[10] Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.

[11] Moher D, et al. Preferred reporting items for systematic reviews that include randomised or non-randomised studies of health care interventions, or both. BMJ. 2017;358:j4008.

[12] University of York Centre for Reviews and Dissemination. Systematic Reviews: CRD's Guidance for Undertaking Reviews in Health Care. York: CRD, University of York, 2009.

[13] DerSimonian R, Laird N. Meta-analysis in clinical trials revisited. Int J Epidemiol. 2021;25:603–5.

[14] Lau J, Ioannidis JP, Schmid CH. Quantitative synthesis in systematic reviews: the PRISMA statement. BMJ. 2009;339:b2353.

[15] Shea BJ, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of health-care interventions, or both. BMJ. 2017;358:j4008.

[16] Alonso-Fernández A, et al. Pulmonary embolism and COVID-19 pneumonia and elevated D-dimer levels. Radiol. 2020;296:E189–e191.

[17] Maltez S, Cappellini MD. Incidence of pulmonary embolism in COVID-19: a systematic review and meta-analysis. Acad Emerg Med. 2020;27:811–20.

[18] Gervaise A, et al. Acute pulmonary embolism in non-hospitalized COVID-19 patients referred to CTPA by emergency department. Eur Radiol. 2020;30:6170–7.

[19] Grandmason G AA, Périard D, et al. Systematic screening for venous thromboembolic events in COVID-19 pneumonia. TH Open. 2020;4:e113–5.

[20] Grillet F, et al. Acute pulmonary embolism associated with COVID-19 pneumonia detected with pulmonary CT angiography. Radiol. 2020;296:E186–e188.

[21] Al-Samkari H, et al. COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood. 2020;136:489–500.

[22] Klok FA, et al. Confirmation of the high cumulative incidence of thromboembolic disease in patients with COVID-19 pneumonia and elevated D-dimer levels. Thromb Res. 2020;192:113–5.

[23] Artifoni M, et al. Systematic assessment of venous thromboembolism in patients with COVID-19 pneumonia: a multicenter cohort study. Eur Heart J. 2020;41:3058–68.
[55] Trimaille A, et al. Venous thromboembolism in non-critically ill patients with COVID-19 infection. Thromb Res. 2020;193:166–9.
[56] Valle C, et al. Association between pulmonary embolism and COVID-19 severe pneumonia: experience from two centers in the core of the infection Italian peak. Eur J Radiol. 2021;137:109613.
[57] van Dam LF, et al. Clinical and computed tomography characteristics of COVID-19 associated acute pulmonary embolism: a different phenotype of thrombotic disease? Thromb Res. 2020;193:86–9.
[58] van den Heuvel FMA, et al. Cardiac function in relation to myocardial injury in hospitalised patients with COVID-19. Neth Heart J. 2020;28:410–7.
[59] Ventura-Díaz S, et al. A higher D-dimer threshold for predicting pulmonary embolism in patients with COVID-19: a retrospective study. Emerg Radiol. 2020;27:679–89.
[60] Wang Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020;395:1569–78.
[61] Whyte MB, et al. Pulmonary embolism in hospitalised patients with COVID-19. Thromb Res. 2020;195:95–9.
[62] Wichmann D, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med. 2020;173:268–77.
[63] Yu Y, et al. Incidence and risk factors of deep vein thrombosis in hospitalized COVID-19 patients. Clin Appl Thromb Hemost. 2020;26:1076029620953217.
[64] Zhang L, et al. Deep vein thrombosis in hospitalized patients with COVID-19 in Wuhan, China: prevalence, risk factors, and outcome. Circulation. 2020;142:114–28.
[65] Kollas A, et al. Venous thromboembolism in COVID-19: a systematic review and meta-analysis. Vasc Med. 2021;26:415–25.
[66] Longchamp G, et al. Proximal deep vein thrombosis and pulmonary embolism in COVID-19 patients: a systematic review and meta-analysis. Thromb J. 2021;19:15.
[67] Gratz J, et al. Risk of clinically relevant venous thromboembolism in critically ill patients with COVID-19: a systematic review and meta-analysis. Front Med (Lausanne). 2021;8:647917.
[68] Huang C, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.
[69] Lemos ACB, et al. Therapeutic versus prophylactic anticoagulation for severe COVID-19: a randomized phase II clinical trial (HESACOVID). Thromb Res. 2020;196:359–66.
[70] Flumignan RL, et al. Prophylactic anticoagulants for people hospitalised with COVID-19.. Cochrane Database Syst Rev. 2020;10:Cd013739.