miR-335 Targets SIAH2 and Confers Sensitivity to Anti-Cancer Drugs by Increasing the Expression of HDAC3

Youngmi Kim1,2, Hyuna Kim1,2, Deokbum Park1, and Dooil Jeoung1,*

We previously reported the role of histone deacetylase 3 (HDAC3) in response to anti-cancer drugs. The decreased expression of HDAC3 in anti-cancer drug-resistant cancer cell line is responsible for the resistance to anti-cancer drugs. In this study, we investigated molecular mechanisms associated with regulation of HDAC3 expression. MG132, an inhibitor of proteasomal degradation, induced the expression of HDAC3 in various anti-cancer drug-resistant cancer cell lines. Ubiquitination of HDAC3 was observed in various anti-cancer drug-resistant cancer cell lines. HDAC3 showed an interaction with SIAH2, an ubiquitin E3 ligase, that has increased expression in various anti-cancer drug-resistant cancer cell lines. miRNA array analysis showed the decreased expression of miR-335 in these cells. Targetscan analysis predicted the binding of miR-335 to the 3′-UTR of SIAH2. miR-335-mediated increased sensitivity to anti-cancer drugs was associated with its effect on HDAC3 and SIAH2 expression. miR-335 exerted apoptotic effects and inhibited ubiquitination of HDAC3 in anti-cancer drug-resistant cancer cell lines. miR-335 negatively regulated the invasion, migration, and growth rate of cancer cells. The mouse xenograft model showed that miR-335 negatively regulated the tumorigenic potential of cancer cells. The down-regulation of SIAH2 conferred sensitivity to anti-cancer drugs. The results of the study indicated that the miR-335/SIAH2/HDAC3 axis regulates the response to anti-cancer drugs.

INTRODUCTION

Among the numerous HDACs, histone deacetylase-3 (HDAC3) is ubiquitously expressed and conserved in a wide range of species (Mahlknecht et al., 1999). HDAC3 forms large corepressor complexes containing N-CoR/SMRT and additional proteins (Li et al., 2000). HDAC3 regulates the JNK pathway (Zhang et al., 2002), NF-kB activity (Chen et al., 2001), MAPK activation (Mahlknecht et al., 2004) and apoptosis (Bardai and D’Mello, 2011; Uo et al., 2009). It represses CREB3-mediated transcription and migration of metastatic breast cancer cells (Kim et al., 2010) and acts as a negative regulator of angiogenesis (Park et al., 2014a). HDAC3 confers sensitivity to anti-cancer drugs (Kim et al., 2014). HDAC3 expression is lower in various anti-cancer drug-resistant vs. anti-cancer drug-sensitive cancer cell lines (Kim et al., 2014). The molecular mechanism of anti-cancer drug sensitivity conferred by HDAC3 remains unknown.

The loss of Siah2 increases chemo-sensitivity (Wong et al., 2012). The E3 ubiquitin ligase activity of Siah2 is necessary for resistance to death receptor-mediated apoptosis (Christian et al., 2011). The Inhibition of Siah2 ubiquitin ligase blocks melanoma tumorigenesis (Shah et al., 2009). Siah2 expression is upregulated in basal-like breast cancers via copy number changes and/or transcriptional activation by p53 (Chan et al., 2011). The inhibition of Siah2 activity reduces metastasis through HIF-1alpha (Qi et al., 2008). Siah2 regulates HIF1 alpha expression and response to hypoxia (Nakayama et al., 2004). SIAH2 diminishes p53 acetylation and transcriptional activity (Grishina et al., 2012). Loss of SIAH2 suppresses tumorigenesis in a LATS2-dependent manner in a xenograft mouse model (Ma et al., 2015). Knockdown of SIAH2 causes growth suppression and apoptosis induction in a p53-independent mechanism (Hsieh et al., 2013). Blood vessel normalization in Siah2 (-/-) tumors resulted in an increased response to chemotherapy and prolonged survival (Wong et al., 2012). These reports collectively suggest the role of SIAH2 in tumorigenesis and the response to anti-cancer drugs. However, the molecular mechanisms associated with the effect of SIAH2 on the response to anti-cancer drugs remains largely unknown.

MicroRNAs (miRNAs) are non-coding RNA molecules that mediate posttranscriptional gene regulation (Calin and Croce, 2006). miRNAs play important roles in tumor development by regulating the expression of various oncogenes and tumor suppressor genes (Calin and Croce, 2006; Xu et al., 2013). For example, miR-199a suppresses tumorigenicity and multidrug resistance of ovarian cancer-initiating cells (Cheng et al., 2012). miR-27a reverses the multidrug resistance phenotype by regulating the expression of MDR1 and b-catenin (Chen et al., 2013). miR-146b-5p suppresses translation of EGFR, binds to the EGFR 3′-UTR, and inhibits migration of gliomas (Katakowski et
Materials and methods

Materials

Anti mouse and anti rabbit IgG-horse radish peroxidase conjugate antibodies were purchased from Pierce Company. An ECL (enhanced chemiluminescence) kit was purchased from Amersham. Lipofectamin, Plus reagent, Trizol and reverse transcriptase (Superscript II RT) were purchased from Invitrogen (USA). Bioneer (Korea) synthesized all primers and miR inhibitor used in this study. 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and all other chemicals used in this study were purchased from Sigma. Anchorage-independent growth assays kit was purchased from Millipore. Annexin V-FITC kit for the detection of apoptosis was purchased from Biovision. Transwell chamber system with 8-μm pore polycarbonate filter inserts for the determination of invasional potential was purchased from CostAR (USA). Quickchange site-directed mutagenesis kit was purchased from Stratagene. miRNA array was purchased from Signosis Company. SiRNA construction kit, mirVana miRNA isolation kit and SYBR Green qRT-PCR kit were purchased from Ambion (USA). qScript™ reverse transcriptase was purchased from Quanta Biogenesis. A-Plus Poly(A) Polymerase Tailing Kit was purchased from Cell Script. SYBR PCR Master Mix was purchased from Applied Biosystems.

Cell lines and cell culture

Cancer cell lines used in this study were cultured in Dulbecco’s modified minimal essential medium (DMEM; Gibico, USA) supplemented with heat-inactivated 10% fetal bovine serum (FBS, Gibico) and antibiotics at 37°C in a humidified incubator with a mixture of 95% air and 5% CO₂. Cancer cell lines resistant to anti-cancer drugs (SNU387R, Malme3M R, SNU387R-Taxol, Malme3M R-Taxol, Malme3M R-Vinblastine) were established by stepwise addition of the respective drug. SNU387R and Malme3M R cells are cancer cell lines made resistant to celastrol. Cells surviving drug treatment (attached fraction) were obtained and used throughout this study. SNU387R or Malme3M R cells that stably express HDAC3 S424A-Flag or HDAC3-Flag were selected by G418 (400 μg/ml), Malme3M R-mir-335 cells were also selected by G418.

Western blot analysis

Western blot analysis, immunoprecipitation and cellular fractionation were performed according to the standard procedures (Kim et al., 2014). For analysis of proteins from tumor tissues, frozen samples were grounded to a fine powder using a mortar and pestle over liquid nitrogen. Proteins were solubilized in RIPA buffer containing protease inhibitors, and insoluble material removed by centrifugation.

Cell viability determination

Viable cell number counting was carried out by trypan blue exclusion assays.

Annexin V-FITC staining

Apoptosis determination was carried out by using annexin V-FITC. Ten thousand cells were counted for three independent experiments.

In vivo drug resistance and tumorigenic potential

Athymic nude mice (BALB/c nu/nu, 5–6-week-old females) were obtained from Orient Bio Inc. (Korea) and were maintained in a laminar air-flow cabinet under aseptic conditions. Each cancer cells (1 × 10⁶) were injected subcutaneously into the dorsal flank area of the mice. Tumor volume was determined by direct measurement with calipers and calculated by the following formula: length × width × height × 0.5. Following the establishment of sizeable tumor, celastrol (1 mg/kg) or taxol (1 mg/kg) was administered via tail vein. Tumor volume was measured as describe above. All animal experiments were approved by the Institutional Animal Care and Use Committee of Kangwon National University (KW-140707-1).

Anchorage-independent growth assay

The assays were done in 96-well plates, and the plates were incubated at 37°C for 21–28 days. Anchorage-independent growth was evaluated using the cell stain solution. Stained colonies were counted using a microscope and intensity of staining was quantified by measuring absorbance at 490 nm.

Chemo invasion assays

The invasive potential was determined by using a transwell chamber system with 8-μm pore polycarbonate filter inserts. The lower and upper sides of the filter were coated with gelatin and Matrigel, respectively. Trypsinized cells (5 × 10³) in the serum-free RPMI 1640 medium containing 0.1% bovine serum albumin were added to each upper chamber of the transwell. RPMI 1640 medium supplemented with 10% fetal bovine serum was placed in the lower chamber, and cells were incubated.
at 37°C for 16 h. The cells were fixed with methanol, and the invaded cells were stained and counted. Results were analyzed for statistical significance using the Student’s t test. Differences were considered significant when p < 0.05.

Wound migration assays
Cells were plated overnight to achieve a confluent layer in 24-well plates. A scratch was made on the cell layer with a micropipette tip, and cultures were washed twice with serum-free medium. Cells were then transfected with the construct of interest. Wound healing was visualized by comparing photographs taken at the time of transfection and 48 h later.

RNA extraction and quantitative real-time PCR
miRNA was extended by a poly(A) tailing reaction using the A-Plus Poly(A) polymerase Tailing Kit. cDNA was synthesized from miRNA with poly(A) tail using a poly(T) adaptor primer and qScript™ reverse transcriptase (Quanta BioGenes). Expression levels of miR-335 were quantified with SYBR Green qRT-PCR kit using a miRNA-specific forward primer and a universal poly (T) adaptor reverse primer. The expression of miR-335 was defined based on the threshold (Ct), and relative expression levels were calculated as 2-[(Ct of miR-335)-(Ct of U6)] after normalization with reference to expression of U6 small nuclear RNA. For detection of HDAC3 RNA level, Total RNA was isolated using Trizol and 1 μg of total RNA was used to synthesize complementary DNA using random primers and reverse transcriptase (SuperScript II RT). For quantitative real-time PCR, SYBR PCR Master Mix was used in a CFX96 Real-Time System thermocycler (Biorad). The miRNA level for HDAC3 was normalized to the β-actin value and relative quantification was determined using the ΔΔC model presented by PE Applied Biosystems (Perkin Elmer, USA).

miR-335 and pGL3-3’UTR-SIAH2 construct
To generate miR-335 expression vector, a 351bp genomic fragment encompassing primary miR-335 gene was PCR amplified and cloned into BarnHI/Xhol site of pcDNA3.1 vector. To generate pGL3-3’UTR-SIAH2 construct, 250 bp human SIAH2 gene segment encompassing 3’UTR was PCR amplified and subcloned into XbaI site of pGL3 luciferase plasmid. Mutant pGL3-3’UTR-SIAH2 construct was made with the Quickchange site-directed mutagenesis kit (Stratagene). Luciferase activity assay was performed according to the instruction manual (Promega Company).

miRNA analyses
miRNA array analysis to identify miRNAs that are related with anti cancer drug-resistance was performed according to the instruction manual provided by manufactures (Signomax Company). Genes that contain the miR-binding site (s) in the UTR were obtained using the TargetScan program.

Oligonucleotide transfections
For miR-335 knockdown, cells were transfected with 100 nM of oligonucleotide with Lipofectamine 2000. The sequences used were: 5’-AACAUUUUUGGUAAUUGCUUCUGA-3’ (miR-335 inhibitor oligonucleotide); and 5’-UUUGUACUACAAAAUGUACUG-3’ (control oligonucleotide).

Statistical analysis
Data were analyzed and graphed using the GraphPad Prism statistics program (GraphPad Software). Results are presented as mean ± S.E. Statistical analysis was performed using Student’s t tests with differences between means considered significant when p was < 0.05.

RESULTS

The expression of HDAC3 is under proteasomal regulation
The expression level of HDAC3 is lower in anti-cancer drug-resistant cancer cell lines than in anti-cancer drug-sensitive cancer cell lines (Kim et al., 2014). We therefore investigated the mechanism of expression regulation of HDAC3. In most of the anti-cancer drug-resistant cancer cell lines, the expression level of HDAC3 did not show difference from anti-cancer drug-sensitive cancer cell lines (data not shown). We therefore examined the possibility of proteasomal degradation of HDAC3 in anti-cancer drug-resistant cancer cell lines. MG132, an inhibitor of proteasomal degradation, restored the expression of HDAC3 in anti-cancer drug-resistant cancer cell lines such as SNU387R, Malme3M3R, SN38R-Taxol, SNU387R-Vinblastine, Malme3M3R-Taxol, and WM266-4 cells (Fig. 1A). This suggests that the expression level of HDAC3 may be under proteasomal regulation. Celastrol and taxol decreased the expression of HDAC3 while increasing the expression of SIAH2 in Malme3M3 cells (Fig. 1B). SIAH2, E3 ubiquitin ligase, induces proteasomal degradation of target proteins (Christian et al., 2011) suggestive of its regulatory role in the response to anti-cancer drugs. Because HDAC3 expression level is regulated by proteasome-dependent ubiquitination, we hypothesized that the expression of E3 ubiquitin ligases, including SIAHs are increased in cancer cell lines resistant to anti-cancer drugs. The E2 ubiquitin conjugase USCHB (ubiquitin conjugating enzyme [human] 8) cooperates with the E3 ubiquitin ligases SIAH1 and SIAH2 (seven in absentia homolog 1/2) to mediate the proteasomal degradation of oncoproteins (Pietschmann et al., 2012). SIAH2 mediates HDAC3 degradation, and Ski protein exerts a negative effect on SIAH2-mediated HDAC3 degradation by interaction with SIAH2 (Zhao et al., 2010). Ski is necessary for proper chromosome segregation and interacts with aurora kinase A at the centrosome (Mosquera et al., 2011). HDAC3 serves as a substrate of Src (Longworth and Laimins, 2006) and Src activates SIAH2 E3 ubiquitin ligase activity (Sarkar et al., 2012). These reports imply a role for SIAH2 in the regulation of HDAC3 expression. SIAH1 and SIAH2 showed relatively higher expression in anti-cancer drug-resistant cancer cell lines vs. anti-cancer drug-sensitive cancer cell lines (Fig. 1G). The down-regulation of SIAH2 increased the expression of HDAC3 (Fig. 1D), suggesting that SIAH2 may act as a negative regulator of HDAC3. Taken together, these results suggested that proteasomal degradation is responsible for the decreased expression of HDAC3 in anti-cancer drug-resistant cancer cells.

SIAH2 is responsible for the ubiquitination of HDAC3
Because expression level of HDAC3 is regulated by proteasomal degradation regulation, we examined ubiquitination of HDAC3 in anti-cancer drug-resistant cancer cells. Anti-cancer drug-resistant cancer cells, such as SNU387R, SN38R-Taxol, SNU387R-Vinblastine, Malme3M3R and Malme3M3R-Taxol, showed ubiquitination of HDAC3 (Fig. 2A). The down-regulation of SIAH2 prevented the ubi-
miR-335/SIAH2/HDAC3 Axis in the Response to Anti-Cancer Drug
Youngmi Kim et al.

Fig. 1. HDAC3 is subjected to ubiquitin-dependent proteasomal degradation. (A) SNU387R or Malme3M® cells were treated with various concentrations of MG132 for 6 h or 1 μM MG132 for various time intervals. SNU387R-Taxol, SNU387R-Vinblastine, Malme3M®-Taxol, or WM266-4 cells were also treated with various concentration of MG132 for 6 h. (B) Malme3M® cells treated with celastrol or taxol as indicated were subjected to Western blot analysis. (C) Cell lysates isolated from the indicated cancer cells were subjected to Western blot analysis. (D) The indicated cancer cells were transiently transfected with 10 nM of the indicated siRNA. At 48 h after transfection, cell lysates were isolated and subjected to Western blot analysis. Scr. denotes scrambled siRNA.

Fig. 2. SIAH2 is responsible for the ubiquitination of HDAC3. (A) Nuclear extracts from each cell line were immunoprecipitated with the indicated antibody (2 μg/ml), followed by Western blot. Nuclear extracts from SNU387® or Malme3M® cells were also immunoprecipitated with isotype-matched anti-IgG antibody (2 μg/ml), followed by Western blot. Ub denotes ubiquitin. (B) At 48 h after transfection, nuclear extracts were immunoprecipitated with the indicated antibody (2 μg/ml), followed by Western blot. Nuclear extracts were also subjected to Western blot. Nuclear extracts from SNU387®, Malme3M® or WM266-4 cells transfected with Scr. were also immunoprecipitated with anti-IgG antibody (2 μg/ml), followed by Western blot. (C) The indicated cancer cells were transiently transfected with 1 μg of the indicated construct. At 48 h after transfection, cell lysates were immunoprecipitated with the indicated antibody (2 μg/ml), followed by Western blot analysis. Cell lysates were also subjected to Western blot analysis.

ubiquitination of HDAC3 in anti-cancer drug-resistant cancer cell lines such as SNU387®, Malme3M® and WM266-4 cells (Fig. 2B). Because SIAH2 regulated the expression of HDAC3 by ubiquitination (Fig. 2B), we examined the possibility of interaction between HDAC3 and SIAHs. Wild type HDAC3, but not mutant HDAC3 (HDAC3S424A), showed an interaction with SIAH2, but not with SIAH1 (Fig. 2C), suggesting that SIAH2, but not SIAH1, may target HDAC3 for ubiquitination. Wild type
miR-335/SIAH2/HDAC3 Axis in the Response to Anti-Cancer Drug
Youngmi Kim et al.

Fig. 3. SIAH2 targets HDAC3 for ubiquitination. (A) miRNA array analysis employing the indicated cancer cell lines was performed as described. (B) Potential binding sites of miR-335 in the 3′-UTR of SIAH2. (C) Wild type or mutant pGL3-SIAH2-3′UTR reporter plasmid with the luciferase coding sequence fused to the wild type or mutant 3′UTR of SIAH2 was cotransfected into each cell line with pcDNA3.1-miR-335 (1 μg) or pcDNA 3.1 (1 μg). Relative luciferase activity = (S Lug/C Lug). S Lug, RLUs of luciferase activity in the pcDNA3.1-miR-335-transfected cell line. C Lug, RLUs of luciferase activity in the pcDNA3.1-transfected cell line. Each value represents an average of 3 independent experiments. The asterisk (*) indicates the statistical difference between pcDNA 3.1 control vector and miR-335 transfections. Luciferase activity assays were performed as described. (D) The indicated cancer cell lines were treated with taxol (1 μM) for various time intervals. miRNAs isolated at each time point were subjected to qRT-PCR analysis. (E) The indicated cancer cell line was transfected with pcDNA 3.1 vector (1 μg) or pcDNA3.1-miR-335 construct (1 μg). At 48 h after transfection, cell lysates were prepared and subjected to Western blot analysis. (F) The indicated cell line was transfected with pcDNA 3.1 vector (1 μg) or pcDNA3.1-miR-335 construct (1 μg). At 48 h after transfection, cell lysates were immunoprecipitated with anti-HDAC3 antibody (2 μg/ml) or anti-Ub antibody (2 μg/ml), followed by Western blot. Cell lysates isolated from Malme3M or SNU387 cells were immunoprecipitated with the indicated antibody, followed by Western blot analysis.

HDAC3 that contains nuclear localization signal sequences (313-428 of HDAC3) shows localization into the nucleus (Park et al., 2014a). However, HDAC3S424A does not show localization into the nucleus (Park et al., 2014b). Taken together, these results suggested that SIAH2 might target HDAC3 for ubiquitination to decrease the expression of HDAC3.

miR-335 targets SIAH2 and increases the expression of HDAC3 by inhibiting ubiquitination of HDAC3

We performed microRNA array (miRNA array) experiments in an effort to identify factor(s) that would affect the expression of HDAC3 and SIAH2. We found that several microRNAs were decreased in the Malme3M cells (Fig. 3A). These microRNAs may regulate expression of SIAH2, which in turn could affect response to anti-cancer drugs by regulating the expression of HDAC3, Targetscan analysis predicted the binding of miR-335 to the 3′-UTR of SIAH2 (Fig. 3B). miR-335 decreased the luciferase activity of wild type pGL3-3′UTR-SIAH2, but not mutant pGL3-3′UTR-SIAH2, in various anti-cancer drug-resistant cancer cell lines (Fig. 3C), suggesting that miR-335 directly targets SIAH2. Taxol decreased expression of miR-335 in Malme3M and SNU387 cells (Fig. 3D), suggesting the involvement of miR-335 in regulating the response to anti-cancer drugs. miR-335 decreased the expression of SIAH2 and MDR1 while increasing expression of HDAC3 in cancer cell lines that were made resistant to anti-cancer drugs (Fig. 3E). However, miR-335 did not affect the expression of SIAH1 (data not shown). miR-335 inhibited ubiquitination of HDAC3 (Fig. 3F). Taken together, these results suggest that miR-335 increases the expression of HDAC3 by targeting SIAH2.
miR-335 regulates the response to anti-cancer drugs

Next, we examined whether miR-335 would confer sensitivity to anti-cancer drugs. For this, miR-335 was transfected into various anti-cancer drug-resistant cancer cell lines such as SNU387R, Malme3MR, SNU387R-Taxol, or Malme3MR-Taxol (Fig. 4A). Based on annexin V-FITC staining, miR-335 enhanced the sensitivity of SNU387R, Malme3MR, SNU387R-Taxol, and Malme3MR-Taxol to anti-cancer drugs (Fig. 4B). miR-335 enhanced cleavages of PARP and Caspase-3 in SNU387R, Malme3MR, SNU387R-Taxol, and Malme3MR-Taxol in response to anti-cancer drugs (Fig. 4C). We next examined the effect of miR-335 inhibitor on the response to anti-cancer drugs. miR-335 inhibitor induced resistance to anti-cancer drugs in anti-cancer drug-sensitive cancer cell lines such as Malme3M and Malme3M-miR-335 cells (Fig. 5A). miR-335 inhibitor decreased the expression of miR-335 in Malme3M and Malme3M-Taxol cells (Fig. 5B). miR-335 inhibitor prevented cleavage of PARP by anti-cancer drugs in Malme3M and Malme3M-miR-335 cells (Fig. 5C). miR-335 inhibitor induced the expression of SIAH2 and MDR1 while decreasing the expression of HDAC3 in Malme3M and Malme3M-miR-335 cells (Fig. 5D).
miR-335/SIAH2/HDAC3 Axis in the Response to Anti-Cancer Drug
Youngmi Kim et al.

Fig. 6. SIAH2 confers resistance to anti-cancer drugs by regulating the expression and ubiquitination of HDAC3. (A) Malme3M cells were transfected with the control vector (1 μg) or SIAH2 cDNA (1 μg). The next day, cells were treated with various concentrations of the indicated drug for 24 h. *, *p < 0.05. P value was determined in comparison with value obtained from Malme3M cells transfected with control vector. (B) At 48 h after transfection with control vector (1 μg) or SIAH2 cDNA (1 μg), Western blot was performed. (C) Malme3M cells were transfected with control vector (1 μg) or SIAH2 cDNA (1 μg). The next day, cells were treated with celastrol (1 μM) or taxol (1 μM) for 24 h, followed by Western blot. (D) The indicated cancer cells were transiently transfected with control vector (1 μg) or SIAH2 cDNA (1 μg). At 48 h after transfection, cell lysates were immunoprecipitated with the indicated antibody (2 μg/ml), followed by Western blot analysis.

Fig. 7. miR-335 regulates the invasion and migration potential of cancer cells. (A) The indicated cancer cell lines were subjected to invasion assays. Cell lysates isolated from the indicated cell lines were subjected to Western blot analysis. **p < 0.005. (B) The indicated cancer cell lines were subjected to wound migration assays. Movement of cells into wound was shown for the indicated cancer cell lines at 0 and 48 h post scratch (40X). Data were the means of 3 independent experiments and the bars represent SD of the mean. The broken lines indicate the boundary lines of scratch. **p < 0.005.

Taken together, these results suggested that miR-335 regulates the response to anti-cancer drugs in association with its effect on SIAH2 and HDAC3 expression.

SIAH2 confers resistance to anti-cancer drugs by regulating the expression and ubiquitination of HDAC3
Because SIAH2 regulates the expression of HDAC3 (Fig. 1D),
we examined the effect of SIAH2 on the response to anti-cancer drugs. Over expression of SIAH2 conferred resistance to anti-cancer drugs in Malme3M cells (Fig. 6A). SIAH2 decreased expression of HDAC3 while increasing the expression of MDR1 (Fig. 6B). SIAH2 prevented cleavage of PARP by anti-cancer drugs in Malme3M cells (Fig. 6C). SIAH2 induced ubiquitination of HDAC3 (Fig. 6D). Taken together, these results suggested that SIAH2 targets HDAC3 for ubiquitination to confer resistance to anti-cancer drugs.

miR-335 regulates the invasion and migration of cancer cells

The invasion and migration potential of cancer cells are associated with the response to anti-cancer drugs (Kim et al., 2014). We therefore examined the effect of miR-335 on the invasion and migration of cancer cells. SNU387R-miR-335 and Malme3MR-miR-335 cells showed lower invasion potential than SNU387R and Malme3MR cells (Fig. 7A). SNU387R-miR-335 and Malme3MR-miR-335 cells also showed lower migration potential than SNU387R and Malme3MR cells (Fig. 7B). Taken together, these results suggested that miR-335 targets HDAC3 for ubiquitination to confer resistance to anti-cancer drugs.

DISCUSSION

The SIAH family of proteins interacts with N-CoR, an HDAC3-interacting protein. Silencing SIAH2 leads to increased caspase activity and apoptosis in response to both TRAIL and Fas ligand (Christian et al., 2011). Our results show that SIAH2 regulates expression of HDAC3 and induces the ubiquitination of HDAC3 (Fig. 2B). TBL1 and TBLR1 function as ubiquitin ligases and are involved in HDAC3 degradation (Zhao et al., 2010; Dimitrova et al., 2010). It would be interesting to examine the effects of these ubiquitin ligases on the expression of HDAC3.

Acetylation is an important post-translational modification that regulates various cellular processes (Shan et al., 2014). The acetylation of HDAC3 is increased in SNU387R and Malme3MR cell lines (data not shown). In this study, we found that Tip60, a histone acetyl transferase, was necessary for acetylation of HDAC3 (data not shown). It will be necessary to examine the
miR-335/SIAH2/HDAC3 Axis in the Response to Anti-Cancer Drug
Younmi Kim et al.
effect of Tip60 on the expression of HDAC3 and the response to anti-cancer drugs. Knockdown of HDAC3 in cells increases Tip60 acetylation levels after DNA damage (Yi et al., 2014). HDAC3 and Tip60 may thus form a negative feedback loop.

In this study, we found that taxol decreased HDAC3 expression while increasing the level of active rac1 in anti-cancer cancer cell lines (data not shown). This suggested that rac1 might regulate the expression of HDAC3. In addition, we found tyrosine nitration of HDAC3 in anti-cancer drug-resistant cancer cell lines such as Malme3M8 and SNU3875 cells (data not shown). The activated Rac1/Cdc42 enhances p53 protein ubiquitination and weakens p53 protein stability to increase VEGF expression (Ma et al., 2013). Ubiquitination of HDAC3 by rac1 requires further study.

miR-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1 (Xu et al., 2012). miR-335 inhibits tumor re-initiation and is epigenetically silenced in breast cancers (Png et al., 2011). miR-335 suppresses neuroblastoma cell invasiveness by down-regulating multiple genes from TGF-β signaling pathways (Lynch et al., 2012). miR-335 down-regulates ROCK and MAPK1, resulting in reduced phospho-ERK and downstream signaling molecules (Lynch et al., 2012). It will be interesting to examine the roles of ROCK1 and MAPK1 in resistance to anti-cancer drugs. The miR-335/SIAH2/HDAC3 axis possibly regulates MAPK.

Target Scan analysis revealed the binding of miR-326 to the 3’ UTR of HDAC3. miR-326 is involved in chemo-resistance in breast cancer cell by modulating expression of multi drug resistance-associated protein 1 (Liang et al., 2010). miR-326 regulates the response to anti-cancer drugs by forming a negative feedback loop with HDAC3 (Kim et al., 2014). It will be interesting to examine whether miR-326 induces the expression of SIAH2 and the ubiquitination of HDAC3. It is probable that miR-326 may negatively regulate the expression of miR-335 to decrease the expression of HDAC3.

miRNA array analysis showed that miR-138 is decreased in Malme3M8 cells (Fig. 3A). miR-138 interacts with the 3’UTR of HDAC3 and reduces the expression of HDAC3 in cancer cells by up-regulating the expression of γH2AX (Yang et al., 2014). The down-regulation of miR-138-5p contributes to fibroblast resistance in non-small cell lung cancer (Gao et al., 2014). It will be necessary to examine whether anti-cancer drugs, such as taxol, affects the expression of miR-138.

miRNA array analysis also showed that the expression of miR-211 is lower in Malme3M8 cells than in Malme3M cells (Fig. 3A). miR-211, a melanocyte lineage-specific small non-coding miRNA, acts as a tumor suppressor by regulating the activity of oncoproteins such as PRAME and KCNMA1 (Mazar et al., 2010; Sarkurai et al., 2011). miR-211 suppresses the invasion potential of melanoma cells (Levy et al., 2010; Mazar et al., 2010). The induction of the miR-211 expression in the cells increases the sensitivity to gemcitabine and reduced the expression of its target ribonucleotide reductase subunit 2 (RRM2) (Maftouh et al., 2011). miR-211 suppresses the invasion potential of melanoma cells (Levy et al., 2010; Mazar et al., 2010). The activation of Rac1/Cdc42 enhances p53 protein ubiquitination and weakens p53 protein stability to increase VEGF expression (Ma et al., 2013). Ubiquitination of HDAC3 by rac1 requires further study.

miR-146 targets SIAH2 (Liao et al., 2013). miR-146a/b-TRAFl/IRAK1-NF-κB axis regulates dendritic cell apoptosis (Park et al., 2015). The down-regulation of miR-146a and miR-146b increases the expression of anti-apoptotic protein Bcl-2 (Park et al., 2015). It will be necessary to examine whether miR146a/b-146b regulate the expression of HDAC3.

HDAC3, along with c-Myc, represses the expression of miR-15a/miR-16-1 (Zhang et al., 2012). It will be interesting to further identify miRNAs that are regulated by HDAC3. So far, there are few known HDAC3-regulated miRNAs. miRNAs that are increased in anti-cancer drug-resistant cancer cells may form a negative feedback loop with HDAC3. In conclusion, the miR-335-SIAH2-HDAC3 axis offers a valuable target for the development of anti-cancer drugs.

ACKNOWLEDGMENTS

This work was supported by National Research Foundation Grants (2014R1A2A201002448, 2015RF1A1A3A001339), a grant from the BK21 Plus Program, and by National R&D Program for Cancer Control, Ministry for Health and Welfare, Republic of Korea Grant 1320160. This work was also supported by a grant from Kangwon National University.

REFERENCES

Asuthkar, S., Velpula, K.K., Cheyty, C., Gorantla, B., and Rao, J.S. (2012). Epigenetic regulation of miRNA-211 by MMP-9 governs glioma cell apoptosis, chemosensitivity and radiosensitivity. Oncotarget 3, 1439-1454.

Bardai, F.H., and D’Mello, S.R. (2011). Selective toxicity by HDAC3 in neurons: regulation by Akt and GSK3β. J. Neurosci. 31, 1746-1751.

Calin, G. A., and Croce, C. M. (2006). MicroRNA signatures in human cancers. Nat. Rev. Cancer 6, 587-600.

Cao, J., Cai, J., Huang, D., Han, Q., Yang, Q., Li, T., Ding, H., and Wang, Z. (2013). miR-335 represents an invasion suppressor gene in ovarian cancer by targeting Bcl-w. Oncol Rep. 30, 701-706.

Chen, P., Möller, A., Liu, M.C., Sceneay, J.E., Wong, C.S., Waddell, N., Huang, K.T., Dobrovic, A., Miller, E.K., O’Toole, S.A., et al. (2011). The expression of the ubiquitin ligase SIAH2 (seven in absentia homolog 2) is mediated through gene copy number in breast cancer and is associated with a basal-like phenotype and worse cancer expression. Breast Cancer Res. 13, R5.

Chen, L.F., Fischle, W., Verdin, E., and Greene, W.C. (2001). Duration of nuclear NF-kappaB activity regulated by reversible acetylation. Science 293, 653-657.

Chen, Z., Ma, T., Huang, C., Zhang, L., Lv, X., Xu, T., Hu, T., and Li, J. (2013). miR-27a modulates the MDR1/P-glycoprotein expression by inhibiting FZD7/-catenin pathway in hepatocellular carcinoma cells. Cell. Signal. 25, 2693-2701.

Cheng, W., Liu, T., Wan, X., Gao, Y., and Wang, H. (2012). MicroRNA-199a targets CD44 to suppress the tumorigenicity and multidrug resistance of ovarian cancer-initiating cells. FEBS J. 279, 2047-2059.

Christian, P.A., Fiandalo, M.V., and Schwarze, S.R. (2011). Possible role of death receptor-mediated apoptosis by the E3 ubiquitin ligase Siah2 and PASH. Mol. Cancer 10, 57.

Dimitrova, Y.N., Li, J., Lee, Y.T., Res-Estevés, J., Friedman, D.B., Choi, H.J., Weis, W.I., Wang, C.Y., and Chazin, W.J. (2010). Direct ubiquitination of beta-catenin by Siah-1 and regulation by the exchange factor TBL1. J. Biol. Chem. 285, 13507-13516.

Dollet, O., Yasui, K., Gen, Y., Takada, H., Endo, M., Tsuji, K., Konishi, C., Yamada, N., Missuyoshi, H., Yagi, N., et al. (2013). Epigenetic silencing of miR-335 and its host gene MEST in hepatocellular carcinoma. Int. J. Oncol. 42, 411-418.

Gao, Y., Fan, X., Li, W., Ping, W., Deng, Y., and Fu, X. (2014). miR-15a-5p represses the expression of HDAC3 in a cell line with the HDAC3 pathway. Cell. Signaling 26, 701-706.

Grishina, I., Debus, K., Garcia-Limones, C., Schneider, C., Shresta, A., Garcia, C., Calzado, M.A., and Schmitz, M.L. (2012). SIAH-
mediated ubiquitination and degradation of acetyl-transferases regulate the p53 response and protein acetylation. Biochem. Biophys. Acta 1623, 2287-2296.

Hsieh, S.C., Kuo, S.N., Zheng, Y.H., Tsai, M.H., Lin, Y.S., and Lin, J.H. (2013). The E3 ubiquitin ligase SIAH2 is a prosurvival factor overexpressed in oral cancer. Anticancer Res. 33, 4965-4973.

Katakowski, M., Zheng, X., Jiang, F., Rogers, T., Szalad, A., and Chopp, M. (2010). MiR-146b-S suppresses EGFexpression and reduces in vitro migration and invasion of glioma. Cancer Invest. 28, 1024-1030.

Kim, H.C., Choi, C., Choi, H.K., Kang, H.B., Kim, M.J., Lee, Y.H., Lee, O.H., Lee, J., Kim, Y.J., Jun, W., et al. (2010). HDAC3 selectively represses CREB3-mediated transcription and migration of metastatic breast cancer cells. Cell. Mol. Life. Sci. 67, 3499-3510.

Kim, Y., Park, D., Kim, H., Choi, M., Lee, H., Lee, Y.S., Choe, J., Kim, Y.M., and Jeoung D. (2013). miR-200b and cancer/testis antigen CAGE form a feedback loop to regulate the invasion and tumorigenic and angiogenic responses of a cancer cell line to microtubule-targeting drugs. J. Biol. Chem. 288, 36502-36518.

Kim, Y., Kim, H., Park, H., Park, D., Lee, H., Lee, Y.S., Choe, J., Kim, Y.M., and Jeoung, D. (2014). miR-326-histone deacetylase-3 feedback loop regulates the invasive and tumourigenic and angiogenic response to anti-cancer drugs. J. Biol. Chem. 289, 28019-28039.

Levy, C., Khaled, M., Ilipoulos, D., Janas, M.M., Schubert, S., Pinner, S., Chen, P.H., Li, S., Fletcher, A.L., Yokoyama, S., et al. (2010). MiR-211 assumes the tumor suppressor function of its host gene in melanoma. Mol. Cell. 40, 841-849.

Li, J., Wang, J., Wang, J., Nawaz, Z., Liu, J.M., Qin, J., and Wong, J. (2000). Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J. 19, 4342-4350.

Liang, Z., Wu, H., Xia, J., Li, Y., Zhang, Y., Huang, K., Wagat, N., Yoon, Y., Cho, H.T., Scala, S., et al. (2010). Involvement of miR-326 in chemoresistance of breast cancer through modulation of multidrug resistance-associated protein 1. Biochem. Pharmacol. 79, 817-824.

Liao, Y., Zhang, M., and Lönnéradal, B. (2013). Growth factor TGF-β induces intestinal epithelial cell (IEC-6) differentiation: miR-146b as a regulatory component in the negative feedback loop. Genes Nutr. 8, 79-89.

Longworth, M.S., and Laimins, L.A. (2006). Histone deacetylase 3 localizes to the plasma membrane and is a substrate of Src. Oncogene 25, 4495-4500.

Lynch, J., Fay, J., Meehan, M., Bryan, K., Watters, K.M., Murphy, D.M., Stallings, R.L. (2012). MiRNA-335 suppresses neuroblastoma tumor cell invasion and xenograft formation. PLoS One 7, e4342-4350.

Ma, B., Chen, Y., Chen, L., Cheng, H., Mu, C., Li, J., Gao, R., Zhou, C., Cao, L., Liu, J., et al. (2015). Hypoxia regulates Hippo signaling through the SIAH2 ubiquitin E3 ligase. Nat. Cell. Biol. 17, 95-103.

Maftouh, M., Avan, A., Funel, N., Brampton, A.E., Fiuji, H., Pelliccioni, S., Castellano, L., Galia, V., Peters, G.J., and Giovannetti, E. (2014). miR-211 modulates gemcitabine activity through down-regulation of ribonucleotide reductase and inhibits multidrug resistance-associated protein 1. Mol. Cancer 13, 2831-2841.

Pietschmann, K., Buchwald, M., Müller, S., Krause, H.K., Kögl, M., Heinzl, T., and Krämer, O.H. (2012). Differential regulation of PML-RARε stability by the ubiquitin ligases SIAH1/SIAH2 and TIF1A1. Int. J. Biochem. Cell. Biol. 44, 132-138.

Pinner, S., Chen, P.H., Li, S., Fletcher, A.L., Yokoyama, S., et al. (2010). Identification of Ski as a target for Aurora A kinase. J. Biol. Chem. 285, 13287-13293.

Sarkar, T.R., Sharan, S., Wang, J., Pawar, S.A., Cantwell, C.A., Johnson, P.F., Morrison, D.K., Wang, J.M., and Sterneck, E. (2012). Identification of a Src tyrosine kinase/SIAH2 E3 ubiquitin ligase pathway that regulates CEBPβ expression and contributes to transformation of breast tumor cells. Mol. Cell. Biol. 32, 320-332.

Sakurai, E., Maesawa, C., Shibazaki, M., Yasuhira, S., Okawa, H., Sato, M., Tsunoda, K., Ishikawa, Y., Watanabe, A., Takahashi, K., et al. (2011). Downregulation of microRNA-211 is involved in expression of preferentially expressed antigen of melanoma in malignant melanoma. Int. J. Oncol. 39, 665-672.

Shah, M., Stebbins, J.L., Dewing, A., Qi, J., Pellecchia, M., and Ronai, Z.A. (2009). Inhibition of Siah2 ubiquitin ligase by vitamin K3 (menadione) attenuates hypoxia and MAPK signaling and blocks melanoma tumorigenesis. Pigment Cell Melanoma Res. 22, 799-808.

Shan, X., Fu, Y.S., Aziz, F., Wang, X.Q., Yan, Q., and Liu, J.W. (2014). Ginsenoside Rg3 Inhibits Melanoma Cell Proliferation through Down-Regulation of Histone Deacetylase 3 (HDAC3) and Increase of p53 Acetylation. PLoS One 9, e102415-102418.

Sorrentino, A., Liu, C.G., Delledonne, A., Pesci, C., Schimenti, G., and Ferlini, C. (2008). Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol. Oncol. 111, 478-486.

Tomei, M., López-Romerom, P., Albo, C., Sepúlveda, J.C., Fernández-Güiteres, R., Dogra, A., Bernet-A., and González, M.A. (2011). miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death Differ. 18, 985-995.

Uo, T., Veenstra, T.D., and Morrison, R.S. (2009). Histone deacetylase inhibitors prevent p53-dependent and p53-independent Bax-mediated neuronal apoptosis through two distinct mechanisms. J. Neurosci. 29, 2824-2832.

Wang, H., Li, M., Zhang, R., Wang, Y., Zang, W., Ma, Y., Zhao, G., and Zhang, G. (2013). Effect of miR-335 upregulation on the apoptosis and invasion of lung cancer cell A549 and H1299. Tumour Biol. 34, 3101-3109.
Wong, C.S., Sceneay, J., House, C.M., Halse, H.M., Liu, M.C., George, J., Hunnam, T.C., Parker, B.S., Haviv, I., Ronai, Z., et al. (2012). Vascular normalization by loss of Siah2 results in increased chemotherapeutic efficacy. Cancer Res. 72, 1694-1704.

Xiong, S.W., Lin, T.X., Xu, K.W., Dong, W., Ling, X.H., Jiang, F.N., Chen, G., Zhong, W.D., and Huang, J. (2013). MicroRNA-335 acts as a candidate tumor suppressor in prostate cancer. Pathol. Oncol. Res. 19, 529-537.

Xu, Y., Zhao, F., Wang, Z., Song, Y., Luo, Y., Zhang, X., Jiang, L., Sun, Z., Miao, Z., and Xu, H. (2012). MicroRNA-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1. Oncogene 31, 1398-1407.

Xu, X., Chen, H., Lin, Y., Hu, Z., Mao, Y., Wu, J., Xu, X., Zhu, Y., Li, S., Zheng, X., and Xie, L. (2013). MicroRNA-409-3p inhibits migration and invasion of bladder cancer cells via targeting c-Met. Mol. Cells 36, 62-68.

Yan, Z., Xiong, Y., Xu, W., Gao, J., Cheng, Y., Wang, Z., Chen, F., and Zheng, G. (2012). Identification of hsa-miR-335 as a prognostic signature in gastric cancer. PLoS One 7, e40037.

Yang, H., Tang, Y., Guo, W., Du, Y., Wang, Y., Li, P., Zang, W., Yin, X., Wang, H., Chu, H., et al. (2014). Up-regulation of microRNA-138 induce radiosensitization in lung cancer cells. Tumour Biol. 35, 6557-6565.

Yi, J., Huang, X., Yang, Y., Zhu, W.G., Gu, W., and Luo, J. (2014). Regulation of histone acetyltransferase TIP60 function by histone deacetylase 3. J. Biol. Chem. 289, 33878-33886.

Zhang, J., Kalkum, M., Chait, B.T., and Roeder, R.G. (2002). The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol. Cell 9, 611-623.

Zhang, X., Chen, X., Lin, J., Lwin, T., Wright, G., Moscinski, L.C., Dalton, W.S., Seto, E., Wright, K., Sotomayor, E., et al. (2012). Myc represses miR-15a/miR-16-1 expression through recruitment of HDAC3 in mantle cell and other non-Hodgkin B-cell lymphomas. Oncogene 31, 3002-3008.

Zhao, H.L., Ueki, N., and Hayman, M.J. (2010). The Ski protein negatively regulates SIAH2-mediated HDAC3 degradation. Biochem. Biophys. Res. Commun. 399, 623-628.