This article presents the data on a parametric temperature dependent potential for β-PbF$_2$ using molecular dynamics (MD) simulations in the rigid ion approach. The β-PbF$_2$ is an important ionic conductor that exhibit a super ionic behavior at 711 K. The understanding of the temperature effect in its properties is crucial for possible applications in electrode for solid state batteries, Cherenkov detectors, and rare earth host for scintillation screen. The simulations were done in the DL_POLY Classic 1.9 package employing the Buckingham pair-potential type. The data have not been reported nor discussed in the research paper to be submitting.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Most of the bulk properties of fluorite structure ionic crystals, such as CaF$_2$ [4], BeF$_2$ [5], UO$_2$ [3], and PbF$_2$ [6] can be simulated by MD using a Buckingham potential type:

\[U(r_{ij}) = A_{ij} \exp \left(-\frac{r_{ij}}{\rho_{ij}} \right) - \frac{C_{ij}}{r_{ij}^6} + q_i q_j / r_{ij}, \tag{1} \]

where the first term of the right side is known as the energy repulsion, and represent the electronic overlap, while the second is a well-known dispersion term present in the Lennard-Jones (6–12) potential, which is due to the Coulomb interaction.

In order to modify the β-PbF$_2$ potential given by eq. (1), the ρ_{ij} coefficient is replaced by a temperature function $\rho_{ij}(T)$, with $i = $ Pb (lead) and $j = $ F (fluorine), respectively. The objective is to find the best $\rho_{ij}(T)$ function, that match well with the experimental lattice parameter data reported in Ref. [7].

Therefore, $\rho_{ij}(T)$ values are presented. All data are shown in Tables 1 and 2. In both tables, the first column are the density values choose in the range from 0.490 to 0.520 eV for the Buckingham fitting parameter, while the second column are computed data of the lattice parameter, a_0, obtained using the computer simulation technique of MD.

Table 1

Lattice parameter for different ρ_{ij} values considering the temperature as a parameter.

$\rho(T)$ (eV)	Lattice parameter a_0 (Å) for different temperatures													
	300 K	400 K	500 K	600 K	700 K	720 K	740 K	760 K	780 K	800 K	820 K	840 K	875 K	900 K
0.490	5.716	5.755	5.735	5.759	–	–	–	–	–	–	5.903	–	–	–
0.495	–	–	–	–	5.819	5.825	5.833	5.840	5.854	5.860	5.868	5.874	5.967	5.912
0.500	5.798	5.823	5.853	5.878	5.920	5.930	5.939	5.944	5.954	5.967	5.976	5.978	6.003	6.025
0.505	5.894	5.911	5.969	5.981	6.030	6.036	6.050	6.054	6.066	6.076	6.088	6.103	6.058	6.159
0.510	5.992	6.016	6.053	6.088	6.136	6.147	6.154	6.166	6.177	6.191	6.199	6.221	6.107	6.107
0.516	6.110	6.142	6.181	6.211	–	–	–	–	–	–	6.121	–	–	–
0.520	6.190	6.204	6.256	6.296	–	–	–	–	–	–	–	–	–	–
2. Experimental design, materials, and methods

2.1. MD simulation detail

The data reported here was obtained using DL_POLY Classic 1.9 package develop by Smith et al. [8] at the Daresbury Laboratory. In this work, the calculations were performed in a cubic simulation box with 768 atoms and long size of 23.720 Å. VESTA [9] was used to prepare the unit cell, while the supercell was created with Atomsk package [10]. Periodic boundary has been used in order to reproduce the bulk properties. The system was previously equilibrated at environmental conditions: 300 K and 1 atm, respectively. In order to compute the crystal expansion (lattice parameters), the simulations were performed in a NVT ensemble and then relaxed into a NPT ensemble, where the number of the ions (N), temperature (T) and pressure (P) are kept constant. A 5 fs integration time is used to find the $\rho(T)$, then a 1 fs integration time is used to performance a new simulation at the $\rho(T)$ correct values, with finality

$\rho(T)$ (eV)	Lattice parameter a_0 (Å)
0.495	5.941
0.496	5.950
0.497	5.985
0.498	6.002
0.499	6.165
0.500	6.120

Table 2
Lattice parameter for different ρ_0 values at 930 K.

Atomic pairs	A_{ij} (eV)	ρ_{ij} (Å)	C_{ij} (eV Å6)
Pb – Pb	0.0	0.0	0.0
Pb – F	122.7	Tab. 1–2	107.3
F – F	10255	0.225	107.3

Table 3
Adjustment constants of the potentials that describe the β-PbF$_2$ by MD [11].

Fig. 1. Values for the adjustment parameter $\rho(T)$ as a function of temperature.
to corroborate the accurate lattice parameter at each temperature. In both cases, a 10 Å cutoff is employed, and the Ewald sum is used to compute the Coulomb long range potential. The used potential parameters are summarized in Table 3. The data is obtained from Walker et al. [11] as well the modifications proposed in the Section 1.

2.2. Parametric temperature dependent potential for β-PbF$_2$

From the Tables 1 and 2 a linear fitting is done for each temperature. In order to find the better lattice parameter value, thermal expansion measurements for PbF$_2$ obtained by Goff et al. [7] by neutron diffraction at different temperatures were employed. The $\rho(T)$ values are shown in Fig. 1.

In order to make a first approximation on the validation of the potential data shown in Fig. 1, the enthalpy of the atomic system was recorded (refer to Table 4).

Table 4

Temperature (K)	Enthalpy (kJ mol$^{-1}$)
300	-2239.19618
350	-2236.83185
370	-2235.87824
400	-2234.44629
420	-2233.46642
450	-2231.99567
470	-2230.98597
500	-2229.42186
520	-2228.37485
550	-2226.68132
570	-2225.5548
600	-2223.77367
620	-2222.5076
650	-2220.55895
670	-2219.266
700	-2217.2881
720	-2215.84356
750	-2213.80256
770	-2212.31626
800	-2210.2459

Fig. 2. The enthalpy for β-PbF$_2$. In filled square, data obtained by MD; in solid line, the linear fit.
The specific heat capacity at constant pressure, \(C_p \), is calculated from Table 4 and the slope of the linear fit shown in Fig. 2. The \(C_p \) value obtained by MD is \(58 \pm 1 \text{ J mol}^{-1} \text{ K}^{-1} \) which is in acceptable agreement with reported value of \(69 \pm 7 \text{ J mol}^{-1} \text{ K}^{-1} \) between 400 and 640 K [12].

Acknowledgments

The first author thanks to Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS, Colombia, C.I. 1165) for the full support during the realization of this work, and to the “Alianza del Pacífico”, Chile, for mobility scholarship.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] A. Monteil, S. Chaussedent, D. Guichaoua, Molecular dynamics simulation of phase transitions in crystalline lead (II) fluoride, Mater. Chem. Phys. 146 (2014) 170–174, https://doi.org/10.1016/j.matchemphys.2014.03.016.
[2] M.A.P. Silva, A. Monteil, Y. Messaddeq, S.J.L. Ribeiro, Molecular dynamics simulations on devitrification: the PbF2 case, J. Chem. Phys. 117 (2002) 5366–5372, https://doi.org/10.1063/1.1501119.
[3] Y. Nagornov, A. Katz, Parametrically temperature-dependent potential for molecular dynamics simulation of uranium dioxide properties, Int. J. Comput. Theor. Chem. 1 (3) (2013) 18–26, https://doi.org/10.11648/j.ijctc.20130103.11.
[4] M.A. Lodes, A. Hartmaier, M. Göken, K. Durst, Influence of dislocation density on the pop-in behavior and indentation size effect in CaF2 single crystals: experiments and molecular dynamics simulations, Acta Mater. 59 (2011) 4264–4273, https://doi.org/10.1016/j.actamat.2011.03.050.
[5] J.R. Nelson, R.J. Needs, C.J. Pickard, High-pressure phases of group-II difluorides: polymorphism and superionicity, Phys. Rev. B 95 (2017) 054118, https://doi.org/10.1103/PhysRevB.95.054118.
[6] Y. Chergui, N. Nehaoua, B. Telghemti, S. Guemid, N.E. Deraddji, H. Belkhir, D.E. Mekki, The structural properties of PbF2 by molecular dynamics, Eur. Phys. J. Appl. Phys. 51 (2010) 20502, https://doi.org/10.1051/epjap/2010096.
[7] J.P. Goff, W. Hayes, S. Hull, M.T. Hutchings, Neutron powder diffusion study of the fast-ion transition and specific heat anomaly in beta — lead fluoride, J. Phys-Condens. Mat. 3 (1991) 3677–3687, https://doi.org/10.1088/0953-8984/3/21/001.
[8] W. Smith, T.R. Forester, DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package, J. Mol. Graph. 14 (1996) 136–141, https://doi.org/10.1016/S0263-7855(96)00043-4.
[9] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (2011) 1272–1276, https://doi.org/10.1107/S0021889811038970.
[10] P. Hirel, Atomsk: A tool for manipulating and converting atomic data files, Comput. Phys. Commun. 197 (2015) 212–219, https://doi.org/10.1016/j.cpc.2015.07.012.
[11] A.B. Walker, M. Dixon, M.J. Gillan, Computer simulation of ionic disorder in high temperature PbF2, J. Phys. C Solid State Phys. 15 (1982) 4061–4073, https://doi.org/10.1088/0022-3719/15/19/007.
[12] D.S. Rimai, R.J. Sladek, Anomalies in the specific heat of PbF2, Solid State Commun. 31 (1979) 473–475, https://doi.org/10.1016/0038-1098(79)90442-3.