GENERALIZATIONS OF SELF-RECIPIROCAL POLYNOMIALS

SANDRO MATTAREI AND MARCO PIZZATO

Abstract. A formula for the number of monic irreducible self-reciprocal polynomials, of a given degree over a finite field, was given by Carlitz in 1967. In 2011 Ahmadi showed that Carlitz’s formula extends, essentially without change, to a count of irreducible polynomials arising through an arbitrary quadratic transformation. In the present paper we provide an explanation for this extension, and a simpler proof of Ahmadi’s result, by a reduction to the known special case of self-reciprocal polynomials and a minor variation. We also prove further results on polynomials arising through a quadratic transformation, and through some special transformations of higher degree.

1. Introduction

A polynomial \(f(x) \), of positive degree, over a field, is said to be self-reciprocal if \(x^{\deg f} f(1/x) = f(x) \). Every monic irreducible self-reciprocal polynomial except for \(x + 1 \) has even degree. The abbreviation \textit{srin} is in use for self-reciprocal irreducible monic. Various counting formulas for irreducible polynomials of certain types exist, on the model of Gauss’s formula \((1/n) \sum_{d|n} \mu(d)q^{n/d} \) for the total number of monic irreducible polynomials of degree \(n \) over the field \(\mathbb{F}_q \) of \(q \) elements. Carlitz proved in [Car67] that the number \(\text{SRIM}(2n, q) \) of \textit{srin} polynomials of degree \(2n \) over a finite field \(\mathbb{F}_q \) is given by

\[
\text{SRIM}(2n, q) = \begin{cases}
q^n - 1 & \text{if } q \text{ is odd and } n \text{ is a power of 2}, \\
\frac{q^n - 1}{2} \sum_{d|n, \ d \text{ odd}} \mu(d)q^{n/d} & \text{otherwise}.
\end{cases}
\]

Simpler proofs of Equation (1) were given by Cohen [Coh69] and Meyn [Mey90]. The latter proof applies Möbius inversion to the fact, of which our Theorem 4 below is a slight generalization, that the nonlinear \textit{srin} are exactly the nonlinear irreducible factors of polynomials of the form \(x^{q^n+1} - 1 \). The proofs of Carlitz and Cohen rely, in a crucial way, on the well-known fact that any self-reciprocal polynomial of degree \(2n \) over a field can be expressed as \(x^n \cdot f(x + x^{-1}) \) for some polynomial \(f(x) \) of degree \(n \). (This fact also featured in Meyn’s paper, but was used only for further developments.) This point of view motivated Ahmadi [Ahm11] to study polynomials obtained from such \(f(x) \) through a more general quadratic transformation, namely, polynomials of the form \(h(x)^n \cdot f(g(x)/h(x)) \), where \(g(x) \)

\[2000\text{ Mathematics Subject Classification. Primary 12E05; secondary 12E10, 12E20.}

\textit{Key words and phrases.} Irreducible polynomials; Self-reciprocal polynomials; Quadratic transformations.
and \(h(x) \) are coprime polynomials with \(\max(\deg g, \deg h) = 2 \), and \(n = \deg f \) as above. The special case of \(\text{srim} \) polynomials arises when \(g(x)/h(x) = (x^2 + 1)/x = x + x^{-1} \). Ahmadi found that the number of such polynomials which are irreducible of degree \(2n > 2 \) over \(\mathbb{F}_q \), for a given \(g(x)/h(x) \), equals \(\text{SRIM}(2n, q) \) except, for \(q \) even, when both \(g(x) \) and \(h(x) \) miss the linear term, in which case no irreducible polynomials arise.

One goal of this paper is to give a simple explanation of Ahmadi’s conclusion that, aside from that exceptional case, Carlitz’s count of \(\text{srim} \) polynomials extends unchanged to a count of the polynomials obtained through an arbitrary fixed quadratic transformation. The reason is that the quadratic rational expression \(g(x)/h(x) \) employed may be composed with linear fractional expressions \((ax + b)/(cx + d) \) on both sides without changing the resulting count of irreducible polynomials. By doing so \(g(x)/h(x) \) can be brought to one of only two forms over \(\mathbb{F}_q \), which in the odd characteristic case are \(x + x^{-1} \) and \(x + \sigma x^{-1} \), where \(\sigma \) is any fixed non-square in \(\mathbb{F}_q^* \). We explain one way to perform this reduction in Section 2. At this point, half the cases follow from Carlitz’s result, and the other half from a straightforward variation. This produces a shorter and simpler proof of Ahmadi’s result, which we present in Section 3.

In the rest of the paper we present supplementary results on this topic. Meyn’s proof in [Mey90] of Carlitz’s counting formula for \(\text{srim} \) polynomials was based on viewing them as irreducible factors of polynomials of the form \(x^{q^n+1} - 1 \). That explicit description of all irreducible factors of \(x^{q^n+1} - 1 \) as self-reciprocal polynomials of certain degrees (plus \(x - 1 \) when \(q \) is odd), admits a much more general version which we present in Section 4. In theorem 8 there, irreducible polynomials arising through an arbitrary quadratic transformation are used to describe the complete factorization of a certain related polynomial of the form \(ax^{q^n+1} - b(x^{q^n} + x) + c \). Note that factorizing polynomials of this form is also the subject of [ST12], but as we discuss at the end of Section 4 there is little overlap with our results as the goals are different.

We have mentioned how the well-known characterization of even-degree self-reciprocal polynomials as those of the form \(x^{\deg f} \cdot f(x + 1/x) \) was a simple but essential fact for various investigations of self-reciprocal polynomials. This is also the case in the present paper, with the definition of being self-reciprocal as, appropriately formulated, invariance under the substitution \(x \mapsto 1/x \) first slightly generalized to invariance under \(x \mapsto \sigma/x \) in Lemma 3 and then to invariance under any involutory Möbius transformation in Lemma 9. We devote Section 5 to a discussion of alternate proofs of these results, and to variations concerning invariance under Möbius transformations of higher order.

The research leading to this paper begun when the second author was a PhD student at the University of Trento, Italy, under the supervision of the first author. Part of these results have appeared among other results in [Piz13].

2. Quadratic Transformations

Let \(K \) be any field and fix a quadratic rational expression \(R(x) = g(x)/h(x) \), where \(g(x), h(x) \in K[x] \) are coprime polynomials with \(\max(\deg g, \deg h) = 2 \).
This induces a quadratic transformation of polynomials in \(K[x] \), which sends (zero to zero if we like, and) a nonzero polynomial \(f(x) \) to the polynomial \(f_R(x) := h(x)^{\deg f} \cdot f\left(g(x)/h(x)\right) \). Thus, the quadratic transformation is given by the substitution \(x \mapsto R(x) \) into \(f(x) \) (or applying pre-composition with \(x \mapsto R(x) \) if we prefer), followed with multiplication by the least power of \(h(x) \) required to clear denominators and ensure that \(f_R(x) \) is actually a polynomial.

A formal treatment of a general quadratic transformation, associated to a quadratic rational expression \(R(x) \), is encumbered by some technicalities. A harmless one is a scalar factor ambiguity in \(f_R(x) \) upon writing \(R(x) = g(x)/h(x) \) in an equivalent form \((ag(x))/(ah(x))\). One may resolve this by including a normalization to the unique monic scalar multiple in the definition of \(f_R(x) \), but we rather not do so as it may create other issues.

More disturbing is the fact that in some cases a quadratic transformation may not double the degree of a polynomial, as seen, for example, in \(x^n \mapsto (x^2)^n \cdot (1/x^2)^n = 1 \) when \(g(x) = 1 \) and \(h(x) = x^2 \). More generally, \(\deg f_R = 2 \deg f \) unless, in self-explanatory projective language, \((g/h)(\infty)\) is a root of \(f \). Written out explicitly, that occurs exactly when \(h_2 \neq 0 \) and \(f(g_2/h_2) = 0 \), and hence cannot occur for \(f \) irreducible with \(\deg(f) > 1 \). We generally work on this assumption, which was also made in [Ahm11]. However, we will consider polynomials \(f \) of degree one in the last part of Section 3 (after the proof of Theorem 5), and allow possibly reducible polynomials \(f \) in Section 4. In both instances we will explain how to deal with the resulting issue of a possible drop in degree. A related issue is that, when \(\deg f_R < 2 \deg f \) only, the transformed polynomial \(f_R \) may be irreducible without \(f \) being irreducible: with \(R(x) = 1/x^2 \) as in the previous example, the transformation takes the reducible polynomial \(xf(x) \) to \(f_R(x) \), which may be irreducible.

The key to our proof of Ahmadi’s result in [Ahm11] is that any quadratic rational expression \(R(x) = g(x)/h(x) \) can be brought to a simple special form by pre- and post-composition with certain invertible transformations of the form \(x \mapsto (ax + b)/(cx + d) \), that is, elements of the M"obius group. Recall that the M"obius group, over a field \(K \), is isomorphic with the projective general linear group \(\text{PGL}(2,K) \), with the image of the matrix \([a \ b] \) in \(\text{PGL}(2,K) \) corresponding to the M"obius transformation of the previous sentence. Because the M"obius group is generated by the affine maps \(x \mapsto ax + b \) (with \(a \in K^* \) and \(b \in K \)), and the inversion map \(x \mapsto 1/x \), reducing \(R(x) \) to a special form can be done by repeated and appropriate use of only those maps, as we show in Theorem 2 below.

Before doing that we show that our goal of counting the irreducible polynomials of the form \(f_R(x) = h(x)^{\deg f} \cdot f\left(g(x)/h(x)\right) \) is (essentially) not affected by composing \(g(x)/h(x) \), on either side, with maps of those two types.

Lemma 1. Let \(R(x) = g(x)/h(x) \) be a quadratic rational expression over \(\mathbb{F}_q \), and fix \(n > 1 \). Then the number of irreducible polynomials in \(\mathbb{F}_q[x] \) of the form \(f_R(x) = h(x)^{\deg f} \cdot f\left(g(x)/h(x)\right) \) for some irreducible \(f \in \mathbb{F}_q[x] \) of degree \(n \), does
not change upon composing the quadratic expression \(g(x)/h(x) \), on either side, with affine maps or the inversion map.

Proof. Note that \(\deg f_R = 2 \deg f = 2n \) because of our assumption that \(f \) is irreducible of degree \(n > 1 \).

Pre-composition with (invertible) affine maps clearly does not affect the irreducibility of \(f_R(x) = h(x)^{\deg f} \cdot f(g(x)/h(x)) \).

Pre-composing \(g(x)/h(x) \) with the inversion map before applying the quadratic transformation to \(f \) results in \((x^2 h(1/x))^{\deg f} \cdot f(g(1/x)/h(1/x)) \). This coincides with the reciprocal polynomial \(x^{\deg f} f_R(1/x) \) of \(f_R(x) \) precisely because \(\deg f_R = 2 \deg f \).

Post-compositions do not generally preserve irreducibility of \(f_R(x) \). However, if \(\tilde{R}(x) = ag(x)/h(x) + b \) then the map \(f(x) \mapsto \tilde{f}(x) = f(ax + b) \) is a degree-preserving bijection from the set of irreducible polynomials \(f(x) \) such that \(f_R(x) \) is irreducible, onto the set of irreducible polynomials \(\tilde{f} \) such that \(f_R(x) \) is irreducible, because \(f_R(x) = \tilde{f}_R(x) \).

Similarly, if \(\tilde{R}(x) = h(x)/g(x) \) then the map \(f(x) \mapsto \tilde{f}(x) = x^{\deg f} f(1/x) \) is a degree-preserving bijection from the set of irreducible polynomials \(f \) with \(\deg f > 1 \) such that \(f_R(x) \) is irreducible, onto the set of irreducible polynomials \(\tilde{f} \) with \(\deg \tilde{f} > 1 \) such that \(\tilde{f}_R(x) \) is irreducible, again because \(f_R(x) = \tilde{f}_R(x) \). Here the assumption \(\deg f > 1 \) serves to exclude the exceptional case \(f(x) = x \).

The following result and its proof show how to bring \(g(x)/h(x) \) to particularly simple forms through the transformations described in Lemma [1]. This reduction can be done over an arbitrary field \(K \).

Theorem 2. Let \(K \) be a field, and let \(g, h \) be coprime polynomials in \(K[x] \) with \(\max(\deg g, \deg h) = 2 \). Then the quadratic rational expression \(g(x)/h(x) \), upon composing on both sides with affine maps \(x \mapsto ax + b \), and the inversion map \(x \mapsto 1/x \), repeatedly and in some order, can be brought to the form \(x + \sigma x^{-1} \) for some \(\sigma \in K^* \), or, when \(\text{char } K = 2 \), to the form \(x^2 \).

Proof. Write \(g(x) = g_2 x^2 + g_1 x + g_0 \) and \(h(x) = h_2 x^2 + h_1 x + h_0 \). Most of our work will serve to remove the quadratic term from the denominator, while leaving a linear term if that is possible.

We first deal with the rather special case where \(g_2 h_1 = g_1 h_2 \) and \(g_1 h_0 = g_0 h_1 \). Because \(g(x) \) and \(h(x) \) are coprime, these conditions imply \(g_1 = h_1 = 0 \), and hence \(g(x)/h(x) = (g_2 x^2 + g_0)/(h_2 x^2 + h_0) \). Replacing \(g(x)/h(x) \) with \(g(x+1)/h(x+1) \) will get us away from this special situation, except when \(K \) has characteristic two. In that case, if \(h_2 = 0 \) then \((h_0/g_2) \cdot (g(x)/h(x) - g_0/h_0) = x^2 \), as desired. If \(K \) has characteristic two and \(h_2 \neq 0 \) then \(1/(g(x)/h(x) - g_2/h_2) \) has no quadratic term at the denominator, and proceeding as in the previous case we can reach the desired form \(x^2 \).

As we mentioned, if the characteristic of \(K \) is not two then, possibly after substituting \(x \) with \(x + 1 \), we may arrange for at least one of the conditions \(g_2 h_1 \neq g_1 h_2 \) and \(g_1 h_0 \neq g_0 h_1 \) to hold. Possibly after replacing \(g(x)/h(x) \) with
expression has the form \((g_2'x^2 + g_1'x + g_0')/(h_1'x + h_0')\), with \(h_1' \neq 0\). Otherwise,
\(1/(g(x)/h(x) - g_2'x^2)\) will have that form.

Finally, applying the substitution \(x \mapsto x - h_0'/h_1'\) and then multiplying the
resulting expression by a suitable constant brings it to the form
\((x^2 + g_1'x + g_0'x)/x\), and then \((x^2 + g_1''x + g_0'')/x - g_1'' = x + \sigma/x\), where \(\sigma = g_0'' \in K^*\).

As a distinguished example, over a field \(K\) of characteristic not two the pro-
cedure described in the above proof brings \(g(x)/h(x) = x^2\) to the form \(x + x^{-1}\).
This can also be achieved in one go as the composition
\[
\frac{2x + 2}{-x + 1} \circ x^2 \circ \frac{x - 1}{x + 1} = x + \frac{1}{x},
\]
which is essentially an application of the Cayley transform. This equivalence
of \(x^2\) and \(x + x^{-1}\) explains why the number of irreducible monic polynomials
in \(\mathbb{F}_q[x]\), for \(q\) odd, having the form \(f(x^2)\) and degree \(2n\), which can be read
off [Coh69, Theorem 3] as a special case, coincides with the number of srims
polynomials of the same degree.

Given a quadratic rational expression \(g(x)/h(x)\), we can tell which of the
special forms of Theorem 2 it can be brought to without actually performing the
full reduction procedure, but rather considering the derivatives \(g'\) and \(h'\) of \(g\)
and \(h\). In fact, both \(g'\) and \(h'\) vanish exactly when \(\text{char } K = 2\) and \(g(x)/h(x)\) can be
brought to the form \(x^2\). Assuming this is not the case, we know that \(g(x)/h(x)\)
can be brought to the form \(x + \sigma x^{-1}\) for some \(\sigma \in K^*\), and we only need to find
an appropriate value of \(\sigma\). Because \(a(x/a + \sigma a/x) = x + \sigma a^2/x\), the value of
\(\sigma\) can be multiplied by any nonzero square. Consider the polynomial \(g'h - gh'\),
which is at most quadratic as its quadratic term equals \((g_2h_1 - g_1h_2)x^2\). In case
this quadratic term vanishes, replace \(g(x)/h(x)\) with \((x^2g(1/x))/(x^2h(1/x))\) as
in the proof of Theorem 2 and then the new \(g'h - gh'\) will be quadratic. Then
we may take as \(\sigma\) the discriminant of \(g'h - gh'\). This is because the rest of the
proof only used post-compositions with inversion or affine maps, which replace
\(g'h - gh'\) with a nonzero scalar multiple, and pre-composition with affine maps,
whose effect on \(g'h - gh'\) does not change its discriminant (up to squares).

In conclusion, under the equivalence which is implicit in Theorem 2 and denoting
by \((K^*)^2\) the set of squares in \(K^*\), quadratic rational expressions \(g(x)/h(x)\)
are naturally classified by the quotient group \(K^*/(K^*)^2\) in characteristic not two,
and by \(K^*/(K^*)^2\) plus one element in characteristic two, with the extra element
occurring when \(g(x)/h(x) \in K(x^2)\).

In particular, when \(K\) is a finite field \(\mathbb{F}_q\) and \(q\) is odd, any quadratic rational
expression can be brought to precisely one of the forms \(x + x^{-1}\) and \(x + \sigma_0 x^{-1}\),
where \(\sigma_0\) is a fixed nonsquare in \(\mathbb{F}_q\). When \(K = \mathbb{F}_q\) with \(q\) even, any quadratic
rational expression can be brought to precisely one of the forms \(x + x^{-1}\) and \(x^2\).
However, the latter form contributes no irreducible polynomials, as \(f(x^2)\) is the
square of a polynomial in \(\mathbb{F}_q[x]\) if \(q\) is even.
3. Counting irreducible polynomials obtained through a quadratic transformation

Theorem 2 together with the discussion which follows it, reduces the problem of counting the irreducible polynomials of the form \(f(g(x)/h(x)) \) to the cases where the quadratic expression \(g(x)/h(x) \) has the special form \(x + \sigma x^{-1} \). Thus, we see that about half the possibilities for \(g(x)/h(x) \) when \(q \) is odd (those where \(\sigma \) is a square in \(\mathbb{F}_q^* \)), and all the possibilities when \(q \) is even, have already been dealt with by Carlitz’s count of self-reciprocal irreducible polynomials. In particular, we can already conclude that, for \(q \) even and \(g(x)/h(x) \notin \mathbb{F}_q(x^2) \), the number of irreducible monic polynomials of degree 2 in \(\mathbb{F}_q[x] \) having the form \(f(g(x)/h(x)) \) is still given by Carlitz’s formula for the number of self-reciprocal irreducible monic polynomials of the same degree.

The missing half possibilities for \(q \) odd, which occur when \(\sigma \) is not a square in \(\mathbb{F}_q^* \), can be covered with a simple extension of any of the various proofs for Carlitz’s formula which are available, found in [Car67, Coh69, Mey90]. We have chosen a presentation close to that of [Mey90].

We start with a slight extension of the well-known fact that any self-reciprocal polynomial of degree 2n over a field can be expressed as \(x^n \cdot f(x + x^{-1}) \) for some polynomial \(f(x) \) of degree \(n \). This simple but crucial fact can be proved in many ways, and in view of generalizations we review several lines of proof in Section 5, including a constructive proof based on Dickson polynomials. Here we present what we feel is the most elementary proof.

Lemma 3. Let \(K \) be a field, let \(\sigma \in K^* \), and let \(F \in K[x] \) be a polynomial of even degree 2n. Then \(x^{2n} \cdot F(\sigma/x) = \sigma^n F(x) \) holds if, and only if, \(F(x) = x^n \cdot f(x + \sigma/x) \) for some \(f \in K[x] \) of degree \(n \).

Proof. If \(f \in K[x] \) has degree \(n \), then \(F(x) = x^n \cdot f(x + \sigma/x) \) is a polynomial of degree 2n, and clearly satisfies \(x^{2n} \cdot F(\sigma/x) = \sigma^n F(x) \).

We can prove the converse implication by a simple linear algebra argument provided we release the even integer 2n from being equal to \(\deg(F) \), as follows. Given a non-negative integer \(n \), the assignment \(f \mapsto F \), where \(F(x) = x^n \cdot f(x + \sigma/x) \), defines an injective \(K \)-linear map from the \((n+1) \)-dimensional space of polynomials \(f \in K[x] \) of degree at most \(n \), into the space \(V \) of polynomials \(F \in K[x] \) having degree at most 2n and satisfying the condition \(x^{2n} \cdot F(\sigma/x) = \sigma^n F(x) \). Written in terms of the coefficients of \(F(x) = \sum_{k=0}^{2n} b_k x^k \) the condition amounts to \(b_{n-k} = b_{n+k} \sigma^k \) for \(0 < k \leq n \). Because these \(n \) equations are linearly independent we see that \(V \) has dimension \(n+1 \), and so the linear map under consideration is bijective. Because \(\deg(F) = n + \deg(f) \), if \(\deg(F) = 2n \) then the corresponding \(f \) satisfies \(\deg(f) = n \) as required. \(\square \)

As in the special case \(\sigma = 1 \) of self-reciprocal polynomials, the condition \(x^{2n} \cdot F(\sigma/x) = \sigma^n F(x) \) for a polynomial \(F \) of degree 2n can be checked from knowledge of all the roots of \(F \) in a splitting field with their multiplicities. For simplicity assume \(F(x) \) coprime with \(x^2 - \sigma \), which will be satisfied in our application below. Then the condition \(x^{2n} \cdot F(\sigma/x) = \sigma^n F(x) \) is equivalent to \(\sigma/\xi \)
being a root of F along with each root ξ of F, and of the same multiplicity. This is easily seen upon writing $F(x) = \prod_{i=1}^{2n} (x - \xi_i)$ over a splitting field, once assumed monic as we may. The proof of a more general fact will be given in Lemma 10.

Now we specialize K to a finite field \mathbb{F}_q. The next result we need is the following slight generalization of [Mey90, Theorem 1], which was the case $\sigma = 1$.

Theorem 4. Let $\sigma \in \mathbb{F}_q^*$, and let \mathcal{I}_σ be the set of all monic irreducible polynomials $F \in \mathbb{F}_q[x]$ of even degree which satisfy $x^{2n} \cdot F(\sigma/x) = \sigma^n F(x)$, where $2n = \deg F$. Then the polynomial

$$H(x) = \frac{x^{q^n+1} - \sigma}{(x^2 - \sigma, x^{q^n-1} - 1)}$$

equals the product of all $F \in \mathcal{I}_\sigma$ of degree a divisor of $2n$ which does not divide n.

Note that the denominator in the above expression for $H(x)$ equals the greatest common divisor $(x^2 - \sigma, x^{q^n+1} - \sigma)$, and hence divides the numerator. Also, its degree equals the number of distinct square roots of σ in \mathbb{F}_q^n. Consequently, when q is odd we have $H(x) = (x^{q^n+1} - \sigma)/(x^2 - \sigma)$ unless n is odd and σ is not a square in \mathbb{F}_q, in which case $H(x) = x^{q^n+1} - \sigma$. When q is even we have $H(x) = (x^{q^n+1} - \sigma)/(x - \sigma^{q/2})$.

Proof of Theorem 4. The field $\mathbb{F}_{q^{2n}}$ contains a splitting field for $H(x)$. The roots of $H(x)$ are all distinct, and they are exactly all elements of $\mathbb{F}_{q^{2n}}$ such that $\xi^{q^n} = \sigma/\xi \neq \xi$. In particular, the orbit of each root of $H(x)$ under the automorphism $\alpha \mapsto \alpha^q$ of $\mathbb{F}_{q^{2n}}$ has length some divisor of $2n$ which does not divide n. To each orbit there corresponds a monic irreducible factor of $H(x)$ over \mathbb{F}_q, having its elements as roots.

If $F(x)$ is an irreducible factor of $H(x)$, hence of degree $2n/d$ with d an odd divisor of n, then for each root ξ of F the element $\xi^{q^n} = \sigma/\xi$ is also a root. Because all roots of F are necessarily simple, and because $F(x)$ is coprime with $x^2 - \sigma$, we conclude that $F \in \mathcal{I}_\sigma$.

Conversely, if $F \in \mathcal{I}_\sigma$ has degree $2n/d$, with d an odd divisor of n, then F has all its roots in $\mathbb{F}_{q^{2n}}$, say $\xi, \xi^q, \ldots, \xi^{q^{2n/d-1}}$. The defining condition of \mathcal{I}_σ implies that σ/ξ is also a root, and hence $\sigma/\xi = \xi^{q^k}$ for some integer k with $0 < k < 2n/d$. But then $\xi^{q^{2k}} = (\sigma/\xi)^{q^k} = \sigma/\xi^{q^k} = \xi$, forcing $k = n/d$. From $\xi^{q^{2n/d}} = \sigma/\xi$ and $\xi^{q^{2n/d}} = \xi$ we now infer $\xi^{q^n} = \xi^{q^{2n/d}} = \sigma/\xi$, and hence $F(x)$ divides $x^{q^n+1} - \sigma$. Also, F cannot divide $x^2 - \sigma$, otherwise $\xi^2 = \sigma$, whence $\xi^q = \sigma/\xi = \xi$ and so $\xi \in \mathbb{F}_q$, contrary to the irreducibility of F. □

Ahmadi’s generalization of Carlitz’s result follows from Theorem 4 through an application of Möbius inversion. For the reader’s convenience we recall a form of Möbius inversion which is only slightly more general than the classical one, see [Kno75, Proposition 5.2]. Given a completely multiplicative function $\chi : \mathbb{N} \to \mathbb{C}$ (that is, a homomorphism of the multiplicative monoid \mathbb{N} of the
positive integers into the multiplicative monoid of the complex numbers), two functions \(f, g : \mathbb{N} \to \mathbb{C} \) satisfy

\[
f(n) = \sum_{d \mid n} \chi(d) g(n/d)
\]

for all \(n \in \mathbb{N} \) if, and only if, they satisfy

\[
g(n) = \sum_{d \mid n} \mu(d) \chi(d) f(n/d)
\]

for all \(n \in \mathbb{N} \), where \(\mu \) is the Möbius function. This allows one to invert relations of the form \(f(n) = \sum_{d \mid n, \ d \text{ odd}} g(n/d) \), for example, by taking \(\chi(d) = 0 \) for \(d \) even and \(\chi(d) = 1 \) for \(d \) odd. (This special case is [Jun93, Theorem 2.7.2].)

Theorem 5 (Theorem 2 in [Ahm11]). Let \(g, h \in \mathbb{F}_q[x] \) be coprime polynomials with \(\max(\deg g, \deg h) = 2 \). Then the number of monic irreducible polynomials \(f \in \mathbb{F}_q[x] \) of degree \(n > 1 \) such that \((h(x))^n \cdot f(g(x)/h(x)) \) is irreducible equals

\[
\begin{cases}
0 & \text{if } q \text{ is even and } g' = h' = 0, \\
\frac{1}{2n} (q^n - 1) & \text{if } q \text{ is odd and } n \text{ is a power of } 2, \\
\frac{1}{2n} \sum_{d \mid n, \ d \text{ odd}} \mu(d) q^{n/d} & \text{otherwise}.
\end{cases}
\]

Proof. According to the discussion which precedes Theorem [2], the count of irreducible polynomials of the form described does not change upon pre- and post-composing \(g(x)/h(x) \) with affine maps or the inversion map. Theorem [2] then describes the resulting convenient forms to which \(g(x)/h(x) \) can be brought. In particular, the proof of Theorem [2] shows that \(g(x)/h(x) \) can be brought to the form \(x^2 \) exactly when \(q \) is even and \(g' = h' = 0 \). This case does not contribute any irreducible polynomials of the desired form, as \(f(x^2) \) cannot be irreducible. In all other cases \(g(x)/h(x) \) can be brought to the form \(x + \sigma x^{-1} \) for some \(\sigma \in K^* \).

Let \(SRIM_\sigma(2n, q) \) be the number of irreducible monic polynomials of degree \(2n \) in \(\mathcal{I}_\sigma \). Taking degrees in Theorem [4] we find

\[
q^n - \varepsilon^n = \sum_{d \mid n, \ d \text{ odd}} 2n/d \cdot SRIM_\sigma(2n/d, q),
\]

where \(\varepsilon = 0 \) for \(q \) even, and \(\varepsilon = \pm 1 \in \mathbb{Z} \) according as \(\sigma^{(q-1)/2} = \pm 1 \in \mathbb{F}_q \) for \(q \) odd. Möbius inversion as described above turns this equation into

\[
2n \cdot SRIM_\sigma(2n, q) = \sum_{d \mid n, \ d \text{ odd}} \mu(d) (q^{n/d} - \varepsilon^{n/d}).
\]

Because the sum \(\sum_{d \mid n, \ d \text{ odd}} \mu(d) \varepsilon^{n/d} = \varepsilon^n \sum_{d \mid n, \ d \text{ odd}} \mu(d) \) vanishes unless \(q \) is odd and \(n \) is a power of \(2 \), and in this case equals \(2^n \), we conclude

\[
SRIM_\sigma(2n, q) = \begin{cases}
\frac{1}{2n} (q^n - \varepsilon^n) & \text{if } q \text{ is odd and } n \text{ is a power of } 2, \\
\frac{1}{2n} \sum_{d \mid n, \ d \text{ odd}} \mu(d) q^{n/d} & \text{otherwise}.
\end{cases}
\]

Because of our assumption \(n > 1 \) we have \(\varepsilon^n = 1 \) in Equation (2), and our proof is complete. □
The hypothesis \(n > 1 \) in our Theorem 5, as well as in [Ahm11], which was not required in Carlitz’s Equation (11), was needed to ensure that
\[
f_R(x) = (h(x))^{\deg f} \cdot f\left(\frac{g(x)}{h(x)}\right)
\]
has degree equal to \(2\deg f \). In the excluded case \(f(x) = x - \alpha \), for some \(\alpha \in \mathbb{F}_q \), that conclusion fails exactly when \(g_2 = \alpha h_2 \), where \(g(x) = g_2 x^2 + g_1 x + g_0 \) and \(h(x) = h_2 x^2 + h_1 x + h_0 \). For completeness we now count the irreducible quadratic polynomials which arise from polynomials \(x - \alpha \) through a given quadratic transformation, that is, those of the form \(g(x) - \alpha h(x) \) for some \(\alpha \in \mathbb{F}_q \). To obtain a simpler statement we exclude the case of even characteristic where both \(g(x) \) and \(h(x) \) are polynomials in \(x^2 \), whence no irreducible polynomial can arise anyway.

Theorem 6. Let \(g, h \in \mathbb{F}_q[x] \) be coprime polynomials with \(\max(\deg g, \deg h) = 2 \), and if \(q \) is even assume that \(g' \) and \(h' \) are not both zero. Then the number of monic irreducible quadratic polynomials which are \(\mathbb{F}_q \)-linear combinations of \(g(x) \) and \(h(x) \) equals \(q/2 \) if \(q \) is even, and it equals \((q - 1)/2 \) or \((q + 1)/2 \) if \(q \) is odd, according to whether the polynomial \(g'h - gh' \) has its roots in \(\mathbb{F}_q \), or not.

We omit the proof, which is similar to that of the general case \(n > 1 \) in Theorem 5 except that the reduction of \(g(x)/h(x) \) to the special form \(x + \sigma/x \) done in the proof of Theorem 2 needs to be adapted in order to avoid applying post-composition with the inversion map, where \(\deg f_R = 2\deg f \) may fail.

The following immediate corollary of Theorems 5 and 6 states the special case of our count of irreducible polynomials where they are closest to the traditional definition of self-reciprocal polynomials, namely invariant under the involutive transformation considered in Lemma 6.

Corollary 7. Let \(\sigma \in \mathbb{F}_q^* \). The number of monic irreducible polynomials \(g \in \mathbb{F}_q[x] \) of degree \(2n \) which satisfy \(x^{2n} \cdot g(\sigma/x) = \sigma^n g(x) \) equals
\[
\frac{1}{2n} \left(-\delta + \sum_{d|n} \mu(d) q^{n/d} \right),
\]
where
\[
\delta = \begin{cases}
1 & \text{if } q \text{ is odd and } n > 1 \text{ is a power of } 2, \\
1 & \text{if } q \text{ is odd, } n = 1, \text{ and } \sigma \text{ is a square in } \mathbb{F}_q, \\
-1 & \text{if } q \text{ is odd, } n = 1, \text{ and } \sigma \text{ is not a square in } \mathbb{F}_q, \\
0 & \text{otherwise.}
\end{cases}
\]

4. Explicit characterization of the polynomials obtained through a quadratic transformation

Meyn’s proof in [Mey90] of Carlitz’s counting formula for srim polynomials relies on viewing them as irreducible factors of polynomials of the form \(x^{n^2} + 1 \), as in the special case \(\sigma = 1 \) of our Theorem 5, which is [Mey90, Theorem 1]. It is actually possible to obtain a similar characterization for an arbitrary quadratic transformation, as follows.
Theorem 8. Let \(g(x) = g_2x^2 + g_1x + g_0 \) and \(h(x) = h_2x^2 + h_1x + h_0 \) be coprime polynomials over the field \(\mathbb{F}_q \) of \(q \) elements, with \(\max(\deg g, \deg h) = 2 \). For any nonzero polynomial \(f \in \mathbb{F}_q[x] \), further satisfying \(f(g_2/h_2) \neq 0 \) in case \(h_2 \neq 0 \), we set \(f_R(x) = h(x)^{\deg f} \cdot f(g(x)/h(x)) \). If \(q \) is even, assume in addition that \(g_1 \) and \(h_1 \) are not both zero.

Then every irreducible polynomial of the form \(f_R(x) \) for some \(f(x) \), and of degree \(2n/d \) with \(d \) odd, is a factor of the polynomial

\[
H(x) = H_{R,q^n}(x) = ax^{q^n+1} - b(x^{q^n} + x) + c,
\]

where

\[
a = g_2h_1 - g_1h_2, \quad b = gh_2 - g_0h_0, \quad c = g_1h_0 - g_0h_1.
\]

Furthermore, every irreducible factor of \(H(x) \) of degree higher than one, and different from \(ax^2 - 2bx + c \) in case that is irreducible, has (up to a scalar factor) the form \(f_R(x) \) for some \(f \in \mathbb{F}_q[x] \), and its degree divides \(2n \) but not \(n \).

Some comments are in order on the statement of Theorem 8. The coprimality condition imposed on \(g(x) \) and \(h(x) \) in Theorem 8 and the assumption \(\max(\deg g, \deg h) = 2 \), are together equivalent to \(b^2 - ac \neq 0 \). This can be seen by computing the resultant of \(g(x) \) and \(h(x) \), or rather their quadratic homogenized versions. In turn, for a polynomial \(H(x) \) of the form given in Theorem 8, the condition \(b^2 - ac \neq 0 \) is equivalent to \(H(x) \) having only simple roots in a splitting field, as \((ax - b)H'(x) - aH(x) = b^2 - ac \). (Strictly speaking, this is true unless \(a = b = 0 \neq c \), whence \(H(x) \) is a nonzero constant, but that case cannot occur under the hypotheses of Theorem 8.) In conclusion, the polynomial \(H(x) \) of Theorem 8 has distinct roots in a splitting field, and hence its irreducible factors over \(\mathbb{F}_q \) are all distinct.

In the excluded case in Theorem 8 where \(q \) is even and \(g_1 = h_1 = 0 \), the polynomial \(f_R(x) \) belongs to \(\mathbb{F}_q[x^2] \), hence is a square in \(\mathbb{F}_q[x] \), and cannot be irreducible.

Our proof of Theorem 8 involves applying the quadratic transformation to reducible polynomials as well. A problem arises, which we discussed near the beginning of Section 2 and also affects the omitted proof of Theorem 8, of the degree of the transformed polynomial \(f_R \) possibly being less than twice the degree of \(f \). As discussed there, this drop in degree occurs precisely when \((g/h)(\infty) \) is a root of \(f \). Hence we have avoided defining \(f_R \) for such \(f \) in Theorem 8 by assuming that \(f(g_2/h_2) \neq 0 \) in case \(h_2 \neq 0 \).

The proof of Theorem 8 requires a generalization of Lemma 8, which holds over an arbitrary field \(K \), where the involutory substitution \(x \mapsto \sigma/x \) is replaced with an arbitrary involution in the Möbius group over \(K \). Any such involution has the form \(x \mapsto (bx - c)/(ax - b) \), for some \(a, b, c \in K \) with \(b^2 - ac \neq 0 \), and \(a, c \) not both zero in case \(q \) is even. Note that its fixed points in \(K \), if any, are the roots of \(ax^2 - 2bx + c \). Our Lemma 9 below roughly says that the polynomials \(F \in K[x] \) of even degree which are ‘invariant’, in an appropriate sense, under the involution \(x \mapsto (bx - c)/(ax - b) \), are exactly those which are obtained through a certain quadratic transformation, associated to \(R(x) = g(x)/h(x) \) in the usual
way. There is some freedom as to the choice of \(R(x) \) in the formulation, all choices being related by post-composition with Möbius transformations.

Lemma 9. Let \(K \) be any field, and let \(a, b, c \in K \) with \(b^2 - ac \neq 0 \). Let \((g_0, g_1, g_2) \) and \((h_0, h_1, h_2) \) be \(K \)-linearly independent triples of elements of \(K \) such that \(a g_0 + b g_1 + c g_2 = 0 \) and \(a h_0 + b h_1 + c h_2 = 0 \). If \(K \) has characteristic two, assume in addition that \(a \) and \(c \) are not both zero. Consider the two polynomials

\[
g(x) = g_2 x^2 + g_1 x + g_0 \quad \text{and} \quad h(x) = h_2 x^2 + h_1 x + h_0 \quad \text{in} \quad K[x].
\]

Then a polynomial \(F \in K[x] \) of degree \(2n \) satisfies

\[
(3) \quad (ax - b)^{2n} \cdot F \left(\frac{bx - c}{ax - b} \right) = (b^2 - ac)^n \cdot F(x)
\]

if, and only if, \(F(x) = h(x)^n \cdot f \left((g(x)/h(x)) \right) \) for some polynomial \(f \in K[x] \).

Note that, despite the shift of focus from \(g(x) \) and \(h(x) \) to the triple \((a, b, c) \) in Lemma 9 that triple is necessarily proportional to the triple \((a, b, c) \) constructed from \(g(x) \) and \(h(x) \) in Theorem 8. In particular, the comment we made on the hypothesis \(b^2 - ac \neq 0 \) after the statement of Theorem 8 still applies, and hence the rational expression \(g(x)/h(x) \) produced in Lemma 9 is indeed quadratic (that is to say, \(\max(\deg g, \deg h) = 2 \)).

At one point in the following proof, as well as in Section 5, we will need to consider rational expressions of arbitrary degree (over a field \(K \)). Recall that the degree of a nonzero rational expression \(u(x) = g(x)/h(x) \in K(x) \), where \(g(x), h(x) \in K[x] \) are coprime polynomials, is defined as \(\deg(u) = \max(\deg g, \deg h) \). This terminology is justified by the fact that, assuming \(u(x) \notin K \), the degree of \(u(x) \) equals the degree of the field extension \(K(x) \) over \(K(u) \). In fact, the minimal polynomial of \(x \) over \(K(u) \) is a scalar multiple of \(g(y) - uh(y) \). These facts are often assigned as exercises in standard algebra textbooks, but a proof is explicitly given in [Coh91, Chapter 5, Proposition 2.1].

Proof of Lemma 9. We consider separately the special case where \(a = 0 \), which is equivalent to some linear combination of \(g(x) \) and \(h(x) \) being a nonzero constant. In this case Equation (3) becomes \(F(c/b - x) = F(x) \), which can be shown to be equivalent to \(F(x) \) being a polynomial in \(bx^2 - cx \). Because each of \(g(x) \) and \(h(x) \) equals a scalar multiple of \(bx^2 - cx \) plus a constant, the latter is equivalent to \(F(x) \) being a rational function of \(g(x)/h(x) \). Deducing that \(F(x) \) has the form described in Lemma 9 for some polynomial \(f \) (rather than just a rational function \(f \)) can be done in the same way as in the case \(a \neq 0 \), which will be explained in the final part of this proof.

Now we may assume \(a \neq 0 \). The polynomial

\[
(y - x) \left(y - \frac{bx - c}{ax - b} \right) = y^2 - \frac{ax^2 - c}{ax - b} y + \frac{bx^2 - cx}{ax - b} = y^2 - zy + \frac{bz - c}{a}
\]

has coefficients in the subfield \(L = K(z) \) of \(K(x) \), where \(z = (ax^2 - c)/(ax - b) \). It is irreducible over \(L \) because its two roots in \(K(x) \) are interchanged by the automorphism of \(K(x) \) given by pre-composition (that is, substitution) with the involution \(x \mapsto (bx - c)/(ax - b) \). The linear conditions imposed in the hypotheses
on the coefficients of \(g(x) \) and \(h(x) \) show that each of those two polynomials is a linear combination of the numerator and the denominator of \((ax^2 - c)/(ax - b)\). Hence \(g(x)/h(x) \) can be obtained from \((ax^2 - c)/(ax - b)\) by post-composing it with a suitable Möbius transformation. In other words, \(g(x)/h(x) \) can be obtained from \(z \) by an application of a suitable Möbius transformation, and hence \(L = K\left(\frac{g(x)}{h(x)}\right)\).

If \(F(x)/h(x)^n = f(g(x)/h(x)) \) for some \(f \in K[x] \), then the left-hand side must be invariant under substitution with \(x \mapsto (bx - c)/(ax - b) \), and a calculation shows that this condition is equivalent to Equation \((3)\). Conversely, if \(F(x)/h(x)^n \) is invariant under the substitution \(x \mapsto (bx - c)/(ax - b) \), then because \(L = K\left(\frac{g(x)}{h(x)}\right) \) we have \(F(x)/h(x)^n = f\left(\frac{g(x)}{h(x)}\right) \) for some rational expression \(f \in K(x) \), necessarily of degree \(n \). We only need to show that \(f \) is actually a polynomial. If it were not, then it would have a pole at some \(\eta \in \overline{K} \), the algebraic closure of \(K \). But then \(f\left(\frac{g(x)}{h(x)}\right) \) would have a pole at each root \(\xi \in \overline{K} \) of the polynomial \(g(x) - \eta h(x) \). Now \(F(x)/h(x)^n = f\left(\frac{g(x)}{h(x)}\right) \) cannot have any pole except at any root \(\zeta \) of \(h \), but clearly \(g(\zeta) - \eta h(\zeta) \neq 0 \), hence we get the desired contradiction and we are bound to conclude that \(f \in K[x] \). \(\square \)

In a similar way as for the condition of being self-reciprocal, which it generalizes, Equation \((3)\) in Lemma \(9\) can be checked in terms of the roots of \(F \) in a splitting field, as follows.

Lemma 10. Assume that \(F(x) \) in Lemma \(9\) is coprime with \(ax^2 - 2bx + c \). Then Equation \((3)\) is equivalent to \((b\xi - c)/(a\xi - b)\) being a root of \(F(x) \) in a splitting field along with each root \(\xi \), and with the same multiplicity.

Proof. To see this, assuming \(F(x) \) monic as we may, and writing it as \(F(x) = \prod_{i=1}^{2n}(x - \xi_i) \) over a splitting field, we have

\[
(ax - b)^{2n} \cdot F\left(\frac{bx - c}{ax - b}\right) = \prod_{i=1}^{2n}\left((bx - c) - \xi_i(ax - b)\right)
\]

\[
= \prod_{i=1}^{2n}(a\xi_i - b) \cdot \prod_{i=1}^{2n}\left(x - \frac{b\xi_i - c}{a\xi_i - b}\right).
\]

Hence if Equation \((3)\) holds, then for every root \(\xi \) of \(F \) in a splitting field, \((b\xi - c)/(a\xi - b)\) is a root as well, and with the same multiplicity. Conversely, if the latter holds then Equation \((3)\) holds up to a scalar factor. To check that that factor is one we use our assumption that \(F(x) \) is coprime with \(ax^2 - 2bx + c \), and hence we may assume that \(\xi_{n+i} = (b\xi_i - c)/(a\xi_i - b) \) for \(n < i \leq 2n \). Consequently, we have \(a\xi_{n+i} - b = (b^2 - ac)/(a\xi_i - b) \), from which we conclude that \(\prod_{i=1}^{2n}(a\xi_i - b) = (b^2 - ac)^n \) as desired. \(\square \)

We are now ready to prove Theorem \(8\).

Proof of Theorem 8. If \(f(x) = \sum_{k=0}^{n}a_kx^k \), with \(a_n \neq 0 \), then the coefficient of \(x^{2n} \) in \(f_R(x) \) equals \(\sum_{k=0}^{n}a_kg_2^k/n^k \), which equals \(h_2^n \cdot f(g_2/h_2) \) if \(h_2 \neq 0 \),
and \(a_n g_2^n \) otherwise. Consequently, the polynomials \(f \) under consideration satisfy \(\deg f_R = 2 \deg f \). It readily follows that the quadratic transformation \(f(x) \mapsto f_R(x) \) preserves multiplication of such polynomials, in the sense that \((f_1 \cdot f_2)R(x) = (f_1)R(x) \cdot (f_2)R(x) \). In particular, \(f_R(x) \) can possibly be irreducible only if \(f(x) \) is.

Now suppose that \(f_R(x) \) is irreducible, of degree \(2n/d \) with \(d \) odd, for some permitted \(f(x) \). Because \(f(x) \) is irreducible of degree a divisor of \(n \), it divides \(x^{q^n} - x \). Consequently, \(f_R(x) \) divides

\[
(x^{q^n} - x)_R = h(x)^{q^n} \cdot \left(\frac{g(x)^{q^n} - g(x)}{h(x)^{q^n}} \right) = \frac{g(x)^{q^n} h(x) - g(x) h(x)^{q^n}}{h(x)}.
\]

Now we have

\[
g(x)^{q^n} h(x) - g(x) h(x)^{q^n} = (g_2 h_1 - g_1 h_2) x^{2q^n + 1} + (g_2 h_0 - g_0 h_2) x^{2q^n} + (g_1 h_2 - g_2 h_1) x^{q^n + 2} + (g_1 h_0 - g_0 h_1) x^{q^n} + (g_0 h_2 - g_2 h_0) x^2 + (g_0 h_1 - g_1 h_0) x = (x^{q^n} - x) \cdot H_{R,q^n}(x),
\]

where

\[
H_{R,q^n}(x) = a x^{q^n + 1} - b(x^{q^n} + x) + c,
\]

having set

\[
a = g_2 h_1 - g_1 h_2, \quad b = g_0 h_2 - g_2 h_0, \quad c = g_1 h_0 - g_0 h_1.
\]

Because \(f_R(x) \) is irreducible of degree not dividing \(n \), it cannot divide \(x^{q^n} - x \), and hence it must divide \(H(x) \).

Conversely, let \(F(x) \) be any irreducible factor of \(H(x) \). Then

\[
x^{q^n} \equiv \frac{b x - c}{a x - b} \pmod {F(x)},
\]

and hence

\[
x^{q^n} = \frac{(b x - c) q^n}{a x - b} = \frac{b x^{q^n} - c}{a x^{q^n} - b} \equiv \frac{b(x - c) - c(ax - b)}{a(bx - c) - b(ax - b)} = x \pmod {F(x)}.
\]

Hence \(F(x) \) divides \(x^{q^n} - x \) but not \(x^{q^n} - x \). (In particular, \(\mathbb{F}_{q^{2n}} \) contains a splitting field for \(F(x) \).) Consequently, \(F(x) \) has degree a divisor of \(2n \) which is not a divisor of \(n \).

We note in passing that the argument employed in the previous paragraph has a natural extension to a Möbius transformation \(x \mapsto (\gamma x + \delta)/(\alpha x + \beta) \) of higher order. In fact, it provides information on the order, and consequently on the factorization in \(\mathbb{F}_q[x] \), of polynomials of the form \(\alpha x^{q^n + 1} + \beta x^{q^n} - \gamma x - \delta \), see [Mat07, Proposition 2.3]. Such factorizations have been further investigated in [ST12].

It remains to prove that \(F(x) = f_R(x) \) for some \(f \in \mathbb{F}_q[x] \), which we do by an application of Lemma [9]. The triple \((a, b, c)\) defined above is the standard cross product of \((h_0, h_1, h_2)\) and \((g_0, g_1, g_2)\), and hence is orthogonal to both of them with respect to the standard scalar product in \(\mathbb{F}_q^3 \). This ensures that the
conditions stated in the first paragraph of Lemma 9 are met. (In case K has characteristic two, our assumption that g_1 and h_1 are not both zero implies that a and c are not both zero.) Thus, we only need to check that Equation (3) is satisfied, which we may do in terms of the roots of $F(x)$ in a splitting field, according to Lemma 10. We have seen that $F(x)$ has all its roots in $\mathbb{F}_{q^{2n}}$. If ξ is any of them, then $\xi^{q^n} = (b\xi - c)/(a\xi - b)$ is also a root, and clearly both are simple roots. According to Lemma 10 we conclude that Equation (3) is satisfied, as desired. □

In summary, Theorem 8 tells us that, under its hypotheses and up to a scalar factor, the product of all irreducible polynomials of the form $f_R(x)$ of degree a divisor of $2n$ which does not divide n equals

$$\frac{ax^{q^n+1} - b(x^{q^n} + x) + c}{(ax^2 - 2bx + c, x^{q^n} - x)},$$

where a, b, c are obtained from $R(x) = g(x)/h(x)$ as described there. Compare with Theorem 4 where $(a, b, c) = (1, 0, -\sigma)$. The degree of this product polynomial equals $q^n - \varepsilon n$, where $\varepsilon = 0$ for q even, and $\varepsilon = \pm 1 \in \mathbb{Z}$ for q odd according as to whether $b^2 - ac$ is a square or a nonsquare in \mathbb{F}_q. Theorem 5 would follow again by an application of Möbius inversion.

Irreducible factors of polynomials of the form $H(x) = ax^{q^n+1} - b(x^{q^n} + x) + c$ as in Theorem 8 were already considered in [ST12]. In essence, they were characterized in [ST12, Theorem 4.2] as those irreducible polynomials which are invariant under a certain transformation, expressed by our Equation (3). While the remainder of [ST12] focuses on asymptotic counting results, our Theorem 8 provides an explicit construction for those irreducible factors as resulting from the application of the appropriate quadratic transformation.

5. Variations on Lemma 3

In Section 3 we have chosen to give what we feel is the simplest and most direct proof of Lemma 3, but several other lines of proof are possible, which we outline here. We can clearly restrict ourselves to discussing the only nontrivial implication, namely, the existence of f given F.

One possibility is a reduction to the well-known special case $\sigma = 1$ of self-reciprocal polynomials, which can be done by extending the field K to one containing a square root ρ of σ. In fact, upon substituting x with ρx, the condition $x^{2n} \cdot F(\sigma/x) = \sigma^n F(x)$ becomes $x^{2n} \cdot \tilde{F}(1/x) = \tilde{F}(x)$ in terms of $\tilde{F}(x) = F(\rho x)$. This means that $\tilde{F}(x)$ is self-reciprocal. An appeal to that special case followed by the inverse substitution produces the desired polynomial $\tilde{f} \in K(\rho)[x]$, and it only remains to check that f actually has coefficients in K. We omit the details.

Another proof uses a classical argument of field theory and relies on the fact that $K(x + \sigma/x)$ is the fixed subfield of the automorphism of $K(x)$ given by $x \mapsto \sigma/x$. There is no need to spell out this proof either, as it is a special case of
our proof of Lemma 9 above. This argument easily transfers to other situations, as in the proof of Lemma 11 below.

The proofs of Lemma 3 which we have described so far are not constructive. A simple proof by induction on \(n\) (as in \([93, Lemma 2.75]\) for the special case \(\sigma = 1\)) produces an algorithm for recovering \(f\) from \(F\). However, one can actually write an explicit formula for \(f\) in terms of \(F\) using Dickson polynomials. Recall that the Dickson polynomial of the first kind

\[
D_n(x, a) = \sum_{i=0}^{\lfloor n/2 \rfloor} \frac{n}{n-i} \binom{n-i}{i} (-a)^i x^{n-2i},
\]

see \([93]\) or \([83]\). The fundamental property of those Dickson polynomials, which can also be used to define them, is the functional equation \(D_n(x + a/x) = x^n + (a/x)^n\). Now, in the setting of Lemma 3 if \(F \in K[x]\) of degree \(2n\) satisfies \(x^{2n} \cdot F(\sigma/x) = \sigma^n F(x)\), then \(F(x)/x^n = b_n + \sum_{k=1}^{n} b_{n+k}(x^k + \sigma/x^k)\), and hence \(F(x) = x^n \cdot f(x + \sigma/x)\), where \(f(y) = b_n + \sum_{k=1}^{n} b_{n+k} D_k(y, \sigma)\). Straightforward manipulation then leads to a formula for the coefficient of \(y^j\) in \(f(y)\) in terms of the coefficients of \(F(x)\). To keep that simple assume that \(K\) has characteristic different from two, allowing us to rewrite the central coefficient \(b_n\) of \(F(x)\) as \(2b_n\), whence \(F(x)/x^n = \sum_{k=0}^{n} b_{n+k}(x^k + \sigma/x^k)\). The coefficient of \(y^j\) in \(f(y)\) then equals

\[
\sum_{i=0}^{\lfloor (n-j)/2 \rfloor} \frac{2i+j}{i+j} \binom{i+j}{i} (-\sigma)^i b_{n+2i+j}.
\]

The definition of self-reciprocal polynomials in terms of appropriate invariance under the involutory substitution \(x \mapsto 1/x\) prompts a natural generalization of self-reciprocal polynomials, namely, polynomials which are invariant under pre-composition with a Möbius transformation of order \(r\). Such a generalization has been considered to some extent in \([83]\) and some of the references therein, but here we focus on natural analogues of Lemma 3.

We may work over an arbitrary field \(K\). In case \(K\) has positive characteristic \(p\), a fundamental distinction is whether \(p\) divides the order \(r\) of the Möbius transformation, or not. We only mention an example of the former case before passing to the latter case, which is far more interesting. Any Möbius transformation of order \(p\) is conjugate to the translation \(x \mapsto x + 1\). One easily finds that any polynomial satisfying \(F(x+1) = F(x)\) has the form \(F(x) = f(x^p - x)\).

Under the assumption that the characteristic of \(K\) does not divide \(r\), it is known from \([10]\), that all subgroups of \(\text{PGL}(2, K)\) of order \(r\) are conjugate for \(r > 2\), while the conjugacy classes of subgroups (or elements) of order two are in a natural correspondence with the elements of \(K^*/(K^*)^2\). Lemma 3 dealt with the latter case. Note that elements of a given order \(r > 2\) need not be conjugate in \(\text{PGL}(2, K)\), but because the subgroups they generate are conjugate there is essentially one higher analogue of Lemma 3 for every \(r > 2\), depending on a choice of an element of order \(r\) in \(\text{PGL}(2, K)\). We exemplify such results with the special cases \(r = 3, 4\). As representatives of elements of order 3 and 4 in \(\text{PGL}(2, K)\) we may take those represented by the matrices \([0 \; 1 \; 1]\), and \([0 \; 1 \; 1]\).
for q odd in the latter case. This means considering the Möbius transformations $x \mapsto 1/(1 - x)$ and $x \mapsto 1/(2 - 2x)$, which we do in our concluding results.

Lemma 11. Let K be a field and let $F(x) \in K[x]$ be a polynomial of degree $3n$. We have $(x - 1)^{3n} \cdot F(1/(1 - x)) = F(x)$ if, and only if,

$$F(x) = x^n(x - 1)^n \cdot f \left(\frac{x^3 - 3x + 1}{x(x - 1)} \right)$$

for some $f \in K[x]$ of degree n.

Proof. Consider the automorphism of the field $K(x)$ given by the substitution $x \mapsto 1/(1 - x)$ of order three. The monic polynomial which has its distinct composition powers as its roots is

$$(y - x) \left(y - \frac{1}{1 - x} \right) \left(y - \frac{x - 1}{x} \right) = y^3 - \frac{x^3 - 3x + 1}{x(x - 1)} y^2 + \frac{x^3 - 3x^2 + 1}{x(x - 1)} y + 1.$$

Because the sum of the coefficients of y^2 and y equals -3, all coefficients belong to the subfield $L = K\left(\frac{x^3 - 3x + 1}{x(x - 1)} \right)$ of $K(x)$. Because $|K(x) : L| = 3$ equals the order of the substitution $x \mapsto 1/(1 - x)$, we have that $K(x)$ is a Galois extension of L with Galois group generated by that substitution.

If

$$(4) \quad \frac{F(x)}{x^n(x - 1)^n} = f \left(\frac{x^3 - 3x + 1}{x(x - 1)} \right)$$

for some $f \in K[x]$, then the left-hand side must be invariant under the substitution $x \mapsto 1/(1 - x)$, and $(x - 1)^{3n} \cdot F(1/(1 - x)) = F(x)$ follows after a short calculation. Conversely, if the latter holds then Equation (4) holds for some rational expression $f \in K(x)$, necessarily of degree n. If f were not a polynomial, then it would have a pole at some $\eta \in \overline{K}$, the algebraic closure of K. But then the right-hand side of Equation (4), and hence the left-hand side as well, would have a pole at any root $\xi \in \overline{K}$ of the polynomial $(x^3 - 3x + 1) - \eta x(x - 1)$. Because this polynomial cannot have 0 or 1 as roots, this is impossible. We conclude that $f \in K[x]$, as desired. \qed

Differently from the previous discussion, we have not excluded that K may have characteristic three in Lemma [11] but in that case the substitution $x \mapsto 1/(1 - x)$ is conjugate to $x \mapsto x + 1$, an easy case which we have briefly discussed earlier on.

Lemma 12. Let K be a field of characteristic not two, and let $F(x) \in K[x]$ be a polynomial of degree $4n$. Then

$$(-1/4)^n \cdot (2 - 2x)^{4n} \cdot F(1/(2 - 2x)) = F(x)$$

holds if, and only if,

$$F(x) = x^n(x - 1)^n(x - 1/2)^n \cdot f \left(\frac{x^4 - 3x^2 + 2x - 1/4}{x(x - 1)(x - 1/2)} \right)$$

for some $f \in K[x]$ of degree n. \[end]
We omit the proof, which is entirely similar to that of Lemma 11, but just point out that the argument of \(f \) in the above equation for \(F(x) \) equals
\[
x + \frac{1}{2 - 2x} + \frac{1 - x}{1 - 2x} + \frac{2x - 1}{2x},
\]
the sum of the iterates of \(1/(2 - 2x) \).

References

[Ahm11] Omran Ahmadi, Generalization of a theorem of Carlitz, Finite Fields Appl. 17 (2011), no. 5, 473–480. MR 2831706 (2012f:11231)

[Bea10] Arnaud Beauville, Finite subgroups of \(\text{PGL}_2(K) \), Vector bundles and complex geometry, Contemp. Math., vol. 522, Amer. Math. Soc., Providence, RI, 2010, pp. 23–29. MR 2681719 (2011h:20096)

[Car67] L. Carlitz, Some theorems on irreducible reciprocal polynomials over a finite field, J. Reine Angew. Math. 227 (1967), 212–220. MR 0215815 (35 #6650)

[Coh69] Stephen D. Cohen, On irreducible polynomials of certain types in finite fields, Proc. Cambridge Philos. Soc. 66 (1969), 335–344. MR 0244202 (39 #5519)

[Coh91] P. M. Cohn, Algebra. Vol. 3, second ed., John Wiley & Sons, Ltd., Chichester, 1991. MR 1098018

[Jun93] Dieter Jungnickel, Finite fields, Bibliographisches Institut, Mannheim, 1993, Structure and arithmetics. MR 1238714

[Kno75] John Knopfmacher, Abstract analytic number theory, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975, North-Holland Mathematical Library, Vol. 12. MR 0419383 (54 #7404)

[LMT93] R. Lidl, G. L. Mullen, and G. Turnwald, Dickson polynomials, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 65, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. MR 1237403

[LN83] Rudolf Lidl and Harald Niederreiter, Finite fields, Encyclopedia of Mathematics and its Applications, vol. 20, Addison-Wesley Publishing Company Advanced Book Program, Reading, MA, 1983, With a foreword by P. M. Cohn. MR 746963 (86c:11106)

[Mat07] S. Mattarei, The orders of nonsingular derivations of Lie algebras of characteristic two, Israel J. Math. 160 (2007), 23–40. MR 2342489 (2008i:17025)

[Mey90] Helmut Meyn, On the construction of irreducible self-reciprocal polynomials over finite fields, Appl. Algebra Engrg. Comm. Comput. 1 (1990), no. 1, 43–53. MR 1325510 (96e:11159)

[Piz13] Marco Pizzato, Some problems concerning polynomials over finite fields, or algebraic diversitesses, Ph.D. thesis, University of Trento, Italy, December 2013.

[ST12] Henning Stichtenoth and Alev Topuzoğlu, Factorization of a class of polynomials over finite fields, Finite Fields Appl. 18 (2012), no. 1, 108–122. MR 2874909

E-mail address: smattarei@lincoln.ac.uk

School of Mathematics and Physics, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, United Kingdom

E-mail address: marco.pizzato1@gmail.com