Topological Quantum Field Theory
for
Calabi-Yau threefolds and
G_2-manifolds

Naichung Conan Leung

School of Mathematics,
University of Minnesota,
Minneapolis, MN 55454,
USA.

LEUNG@MATH.UMN.EDU

1 Introduction

In the past two decades we have witnessed many fruitful interactions between mathematics and physics. One example is in the Donaldson-Floer theory for oriented four manifolds. Physical considerations lead to the discovery of the Seiberg-Witten theory which has profound impact to our understandings of four manifolds. Another example is in the mirror symmetry for Calabi-Yau manifolds. This duality transformation in the string theory leads to many surprising predictions in the enumerative geometry.
String theory in physics studies a ten dimensional space-time $X \times \mathbb{R}^{3,1}$. Here X a six dimensional Riemannian manifold with its holonomy group inside $SU(3)$, the so-called Calabi-Yau threefold. Certain parts of the mirror symmetry conjecture, as studied by Vafa’s group, are specific for Calabi-Yau manifolds of complex dimension three. They include the Gopakumar-Vafa conjecture for the Gromov-Witten invariants of arbitrary genus, the Ooguri-Vafa conjecture on the relationships between knot invariants and enumerations of holomorphic disks and so on. The key reason is they belong to a duality theory for G_2-manifolds. G_2-manifolds can be naturally interpreted as special Octonion manifolds [23]. For any Calabi-Yau threefold X, the seven dimensional manifold $X \times S^1$ is automatically a G_2-manifold because of the natural inclusion $SU(3) \subset G_2$.

In recent years, there are many studies of G_2-manifolds in M-theory including works of Archaya, Atiyah, Gukov, Vafa, Witten, Yau, Zaslow and many others (e.g. [1], [5], [13], [2]).

In the studies of the symplectic geometry of a Calabi-Yau threefold X, we consider unitary flat bundles over three dimensional (special) Lagrangian submanifolds L in X. The corresponding geometry for a G_2-manifold M is called the special \mathbb{H}-Lagrangian geometry (or C-geometry in [19]). where we consider Anti-Self-Dual (abbrev. ASD) bundles over four dimensional coassociative submanifolds, or equivalently special \mathbb{H}-Lagrangian submanifolds of type II [23], (abbrev. \mathbb{H}-SLag) C in M.

Counting ASD bundles over a fixed four manifold C is the well-known theory of Donaldson differentiable invariants, $Don(C)$. Similarly, counting unitary flat bundles over a fixed three manifold L is Floer’s Chern-Simons homology theory, $HF_{CS}(L)$. When C is a connected sum $C_1 \#_L C_2$ along a homology three sphere, the relative Donaldson invariants $Don(C_i)$’s take values in $HF_{CS}(L)$ and $Don(C)$ can be recovered from individual pieces by a gluing theorem, $Don(C) = \langle Don(C_1), Don(C_2) \rangle_{HF_{CS}(L)}$ (see e.g. [7]). Similarly when L has a handlebody decomposition $L = L_1 \#_\Sigma L_2$, each L_i determines a Lagrangian subspace \mathcal{L}_i in the moduli space $\mathcal{M}_{flat}(\Sigma)$ of unitary flat bundles over the Riemann surface Σ and Atiyah conjectures that we can recover $HF_{CS}(L)$ from the Floer’s Lagrangian intersection homology group of \mathcal{L}_1 and \mathcal{L}_2 in $\mathcal{M}_{flat}(\Sigma)$, $HF_{CS}(L) = HF_{flat}(\Sigma)(\mathcal{L}_1, \mathcal{L}_2)$. Such algebraic structures in the Donaldson-Floer theory can be formulated as a Topological Quantum Field Theory (abbrev. TQFT), as defined by Segal and Atiyah [3].

In this paper, we propose a construction of a TQFT by counting ASD bundles over four dimensional \mathbb{H}-SLag C in any closed (almost) G_2-manifold.
We call these \(H\)-Slag cycles and they can be identified as zeros of a naturally defined closed one form on the configuration space of topological cycles. We expect to obtain a homology theory \(H_C(M) \) by applying the construction in the Witten’s Morse theory. When \(M \) is non-compact with an asymptotically cylindrical end, \(X \times [0, \infty) \), then the collection of boundary data of relative \(H\)-Slag cycles determines a Lagrangian submanifold \(\mathcal{L}_M \) in the moduli space \(M^{SLag}(X) \) of special Lagrangian cycles in the Calabi-Yau threefold \(X \).

When we decompose \(M = M_1 \#_X M_2 \) along an infinite asymptotically cylindrical neck, it is reasonable to expect to have a gluing formula,

\[H_C(M) = HF_{\text{Lag}}^{M^{SLag}(X)}(\mathcal{L}_{M_1}, \mathcal{L}_{M_2}). \]

The main technical difficulty in defining this TQFT rigorously is the compactness issue for the moduli space of \(H\)-Slag cycles in \(M \). We do not know how to resolve this problem and our homology groups are only defined in the formal sense (and physical sense?).

2 \(G_2\)-manifolds and \(H\)-Slag geometry

We first review some basic definitions and properties of \(G_2\)-geometry, see [19] for more details.

Definition 1. A seven dimensional Riemannian manifold \(M \) is called a \(G_2\)-manifold if the holonomy group of its Levi-Civita connection is inside \(G_2 \subset SO(7) \).

The simple Lie group \(G_2 \) can be identified as the subgroup of \(SO(7) \) consisting of isomorphism \(g : \mathbb{R}^7 \rightarrow \mathbb{R}^7 \) preserving the linear three form \(\Omega \),

\[
\Omega = f^1 f^2 f^3 - f^1 (e^1 e^0 + e^2 e^3) - f^2 (e^2 e^0 + e^3 e^1) - f^3 (e^3 e^0 + e^1 e^2),
\]

where \(e^0, e^1, e^2, e^3, f^1, f^2, f^3 \) is any given orthonormal frame of \(\mathbb{R}^7 \). Such a three form, or up to conjugation by elements in \(GL(7, \mathbb{R}) \), is called positive, and it determines a unique compatible inner product on \(\mathbb{R}^7 \) [6].

Gray [12] shows that \(G_2\)-holonomy of \(M \) can be characterized by the existence of a positive harmonic three form \(\Omega \).

Definition 2. A seven dimensional manifold \(M \) equipped with a positive closed three form \(\Omega \) is called an almost \(G_2\)-manifold.
Remark: The relationship between G_2-manifolds and almost G_2-manifolds is analogous to the relationship between Kahler manifolds and symplectic manifolds. Namely we replace a parallel non-degenerate form by a closed one.

For example, suppose that X is a complex three dimensional Kähler manifold with a trivial canonical line bundle, i.e. there exists a nonvanishing holomorphic three form $Ω_X$. Yau’s celebrated theorem says that there is a Kähler form $ω_X$ on X such that the corresponding Kahler metric has holonomy in $SU(3)$, i.e. a Calabi-Yau threefold. In particular both $Ω_X$ and $ω_X$ are parallel forms. Then the product $M = X × S^1$ is a G_2-manifold with

$$Ω = \text{Re} Ω_X + ω_X ∧ dθ.$$

Conversely, one can prove, using Bochner arguments, every G_2-metric on $X × S^1$ must be of this form. More generally, if $ω_X$ is a general Kähler form on X, then $(X × S^1, Ω)$ is an almost G_2-manifold and the converse is also true.

Next we quickly review the geometry of \mathbb{H}-SLag cycles in an almost G_2-manifold (see [19]).

Definition 3. An orientable four dimensional submanifold C in an almost G_2-manifold $(M, Ω)$ is called a coassociative submanifold, or simply a \mathbb{H}-SLag, if the restriction of $Ω$ to C is identically zero,

$$Ω|_C = 0.$$

If M is a G_2-manifold, then any coassociative submanifold C in M is calibrated by $⋆Ω$ in the sense of Harvey and Lawson [14], in particular, it is an absolute minimal submanifold in M. The normal bundle of any \mathbb{H}-SLag C can be naturally identified with the bundle of self-dual two forms on C. McLean [27] shows that infinitesimal deformations of any \mathbb{H}-SLag are unobstructed and they are parametrized by the space of harmonic self-dual two forms on C, i.e. $H^2_+(C, \mathbb{R})$.

For example, if S is a complex surface in a Calabi-Yau threefold X, then $S × \{t\}$ is a \mathbb{H}-SLag in $M = X × S^1$ for any $t ∈ S^1$. Notice that $H^2_+(S, \mathbb{R})$ is spanned by the Kahler form and the real and imaginary parts of holomorphic two forms on S, and the latter can be identified holomorphic normal vector fields along S because of the adjunction formula and the Calabi-Yau condition on X. Thus all deformations of $S × \{t\}$ in M as \mathbb{H}-SLag submanifolds are of the same form. Similarly, if L is a three dimensional special
Lagrangian submanifold in \(X \) with phase \(\pi/2 \), i.e.
\[\omega|_L = \text{Re} \Omega_X|_L = 0, \]
then \(L \times S^1 \) is also a \(\mathbb{H} \text{-SLag} \) in \(M = X \times S^1 \). Furthermore, all deformations of \(L \times S^1 \) in \(M \) as \(\mathbb{H} \text{-SLag} \) submanifolds are of the same form because
\[H^2_+(L \times S^1) \cong H^1(L), \]
which parametrizes infinitesimal deformations of special Lagrangian submanifolds in \(X \).

Definition 4. A \(\mathbb{H} \text{-SLag} \) cycle in an almost \(G_2 \)-manifold \((M, \Omega)\) is a pair \((C, D_E)\) with \(C \) a \(\mathbb{H} \text{-SLag} \) in \(M \) and \(D_E \) an ASD connection over \(C \).

Remark: \(\mathbb{H} \text{-SLag} \) cycles are supersymmetric cycles in physics as studied in [26]. Their moduli space admits a natural three form and a cubic tensor [19], which play the roles of the correlation function and the Yukawa coupling in physics.

We assume that the ASD connection \(D_E \) over \(C \) has rank one, i.e. a \(U(1) \) connection. This avoids the occurrence of reducible connections, thus the moduli space \(\mathcal{M}^{\mathbb{H} \text{-SLag}}(M) \) of \(\mathbb{H} \text{-SLag} \) cycles in \(M \) is a smooth manifold. It has a natural orientation and its expected dimension equals \(b^1(C) \), the first Betti number of \(C \). This is because the moduli space of \(\mathbb{H} \text{-SLag} \)s has dimension equals \(b^1(C) \) [27] and the existence of an ASD \(U(1) \)-connection over \(C \) is equivalent to \(H^2(C, \mathbb{R}) \cap H^2(C, \mathbb{Z}) \neq \phi \). The number \(b^1(C) \) is responsible for twisting by a flat \(U(1) \)-connection.

For simplicity, we assume that \(b^1(C) = 0 \), otherwise, one can cut down the dimension of \(\mathcal{M}^{\mathbb{H} \text{-SLag}}(M) \) to zero by requiring the ASD connections over \(C \) to have trivial holonomy around loops \(\gamma_1, \ldots, \gamma_{b^1(C)} \) in \(C \) representing an integral basis of \(H_1(C, \mathbb{Z}) \). We plan to count the algebraic number of points in this moduli space \(\# \mathcal{M}^{\mathbb{H} \text{-SLag}}(M) \).

This number, in the case of \(X \times S^1 \), can be identified with a proposed invariant of Joyce [17] defined by counting rigid special Lagrangian submanifolds in any Calabi-Yau threefold. To explain this, we need the following proposition on the strong rigidity of product \(\mathbb{H} \text{-SLag} \)s.

Proposition 5. If \(L \times S^1 \) is a \(\mathbb{H} \text{-SLag} \) in \(M = X \times S^1 \) with \(X \) a Calabi-Yau threefold, then any \(\mathbb{H} \text{-SLag} \) representing the same homology class must also be a product.

Proof: For simplicity we assume that the volume of the \(S^1 \) factor is unity, \(\text{Vol}(S^1) = 1 \). If \(L \times S^1 \) is a \(\mathbb{H} \text{-SLag} \) in \(M \) then \(L \) is special Lagrangian submanifold in \(X \) with phase \(\pi/2 \), i.e. \(\text{Re} \Omega_X|_L = \omega|_L = 0 \). Suppose \(C \) is another \(\mathbb{H} \text{-SLag} \) in \(M \) representing the same homology class, we have \(\text{Vol}(C) = \text{Vol}(L) \). If we write \(C_\theta = C \cap (X \times \{\theta\}) \) for any \(\theta \in S^1 \), then
$\text{Vol} (C_\theta) \geq \text{Vol} (L)$, as L is a calibrated submanifold in X. Furthermore the equality sign holds only if C_θ is also calibrated. In general we have

$$\text{Vol} (C) \geq \int_{S^1} \text{Vol} (C_\theta) \, d\theta,$$

with the equality sign holds if and only if C is a product with S^1. Combining these, we have

$$\text{Vol} (L) = \text{Vol} (C) \geq \int_{S^1} \text{Vol} (C_\theta) \, d\theta \geq \int_{S^1} \text{Vol} (L) \, d\theta = \text{Vol} (L).$$

Thus both inequalities are indeed equal. Hence $C = L' \times S^1$ for some special Lagrangian submanifold L' in X. ■

Suppose $M = X \times S^1$ is a product G_2-manifold and we consider product \mathbb{H}-SLag cycles $C = L \times S^1$ in M. From the above proposition, every \mathbb{H}-SLag representing $[C]$ must also be a product. Since $b^2_+ (C) = b^1 (L)$, the rigidity of the \mathbb{H}-SLag C in M is equivalent to the rigidity of the special Lagrangian submanifold L in X. When this happens, i.e. L is a rational homology three sphere, we have $b^2 (C) = 0$ and

$$\text{No. of ASD U}(1)\text{-bdl}/C = \# H^2 (C, \mathbb{Z}) = \# H^2 (L, \mathbb{Z}) = \# H_1 (L, \mathbb{Z}).$$

Here we have used the fact that the first cohomology group is always torsion free. Thus the number of such \mathbb{H}-SLag cycles in $X \times S^1$ equals the number of special Lagrangian rational homology three spheres in a Calabi-Yau threefold X, weighted by $\# H_1 (L, \mathbb{Z})$. Joyce [17] shows that with this particular weight, the numbers of special Lagrangians in any Calabi-Yau threefold behave well under various surgeries on X, and expects them to be invariants. Thus in this case, we have

$$\# \mathcal{M}^{\mathbb{H} - \text{SLag}} (X \times S^1) = \text{Joyce's proposed invariant for } \# \text{SLag. in } X.$$

In the next section, we will propose a homology theory, whose Euler characteristic gives $\# \mathcal{M}^{\mathbb{H} - \text{SLag}} (M)$.

3 Witten’s Morse theory for \mathbb{H}-SLag cycles

We are going to use the parametrized version of \mathbb{H}-SLag cycles in any almost G_2-manifold M. We fix an oriented smooth four dimensional manifold C and
a rank r Hermitian vector bundle E over C. We consider the configuration space

$$
\mathcal{C} = \text{Map}(C, M) \times \mathcal{A}(E),
$$

where $\mathcal{A}(E)$ is the space of Hermitian connections on E.

Definition 6. An element (f, D_E) in \mathcal{C} is called a parametrized \mathbb{H}-SLag cycles in M if

$$
f^*\Omega = F_E^+ = 0,
$$

where the self-duality is defined using the pullback metric from M.

Instead of $\text{Aut}(E)$, the symmetry group \mathcal{G} in our situation consists of gauge transformations of E which cover arbitrary diffeomorphisms on M,

$$
\begin{array}{ccc}
E & \xrightarrow{g} & E \\
\downarrow & & \downarrow \\
M & \xrightarrow{g_M} & M.
\end{array}
$$

It fits into the following exact sequence,

$$
1 \to \text{Aut}(E) \to \mathcal{G} \to \text{Diff}(C) \to 1.
$$

The natural action of \mathcal{G} on \mathcal{C} is given by

$$
g \cdot (f, D_E) = (f \circ g_M, g^*D_E),
$$

for any $(f, D_E) \in \mathcal{C} = \text{Map}(C, M) \times \mathcal{A}(E)$. Notice that \mathcal{G} preserves the set of parametrized \mathbb{H}-SLag cycles in M.

The configuration space \mathcal{C} has a natural one form Φ_0: At any $(f, D_E) \in \mathcal{C}$ we can identify the tangent space of \mathcal{C} as

$$
T_{(f,D_E)}\mathcal{C} = \Gamma(C, f^*T_M) \times \Omega^1(C, \text{ad}(E)).
$$

We define

$$
\Phi_0(f, D_E)(v, B) = \int_C \text{Tr} \left[f^*(\iota_v \Omega) \wedge F_E + f^*\Omega \wedge B \right],
$$

for any $(v, B) \in T_{(f,D_E)}\mathcal{C}$.

Proposition 7. The one form Φ_0 on \mathcal{C} is closed and invariant under the action by \mathcal{G}.
Proof: Recall that there is a universal connection D_E over $C \times \mathcal{A}(E)$ whose curvature F_E at a point (x, D_E) equals,
\[
F_E|_{(x, D_E)} = \left(F_{E, 0}^2, F_{E, 1}^1, F_{E}^0 \right)
\in \Omega^2(C) \otimes \Omega^0(A) + \Omega^1(C) \otimes \Omega^1(A) + \Omega^0(C) \otimes \Omega^2(A)
\]
with
\[
F_{E, 0}^2 = F_E, \quad F_{E, 1}^1(v, B) = B(v), \quad F_{E}^0 = 0,
\]
where $v \in T_x C$ and $B \in \Omega^1(C, \text{ad}(E)) = T_{D_E} A(E)$ (see e.g. [20]). The Bianchi identity implies that $\text{Tr} F_E$ is a closed form on $C \times \mathcal{A}(E)$. We also consider the evaluation map,
\[
ev : C \times \text{Map}(C, M) \to M
\]
\[
ev(x, f) = f(x).
\]
It is not difficult to see that the pushforward of the differential form $\ev^* (\Omega) \wedge \text{Tr} F_E$ on $C \times \text{Map}(C, M) \times \mathcal{A}(E)$ to $\text{Map}(C, M) \times \mathcal{A}(E)$ equals Φ_0, i.e.
\[
\Phi_0 = \int_C \ev^* (\Omega) \wedge \text{Tr} F_E.
\]
Therefore the closedness of Φ_0 follows from the closedness of Ω. It is also clear from this description of Φ_0 that it is G-invariant. ■

From this proposition, we know that $\Phi_0 = d\Psi_0$ locally for some function Ψ_0 on C. As in the Chern-Simons theory, this function Ψ_0 can be obtained explicitly by integrating the closed one form Φ_0 along any path joining to a fixed element in C. When $M = X \times S^1$ and $C = L \times S^1$, this is essentially the functional used by Thomas in [30].

From now on, we assume that E is a rank one bundle.

Lemma 8. The zeros of Φ_0 are the same as parametrized \mathbb{H}-SLag cycles in M.

Proof: Suppose (f, D_E) is a zero of Φ_0. By evaluating it on various $(0, B)$, we have $f^* \Omega = 0$, i.e. $f : C \to M$ is a parametrized \mathbb{H}-SLag. This implies that the map
\[
\delta \Omega : T_{f(x)} M \to \Lambda^2 T_x^* C
\]
has image equals $\Lambda^2 T_x^* C$, for any $x \in C$. By evaluating Φ_0 on various $(v, 0)$, we have $F_{E}^0 = 0$, i.e. (f, D_E) is a parametrized \mathbb{H}-SLag cycle in M. The converse is obvious. ■
From above results, \(\Phi_0 \) descends to a closed one form on \(\mathcal{C}/\mathcal{G} \), called \(\Phi \). Locally we can write \(\Phi = dF \) for some function \(F \) whose critical points are precisely (unparametrized) \(\mathbb{H} \)-SLag cycles in \(M \). Using the gradient flow lines of \(F \), we could formally define a Witten’s Morse homology group, as in the famous Floer’s theory. Roughly speaking one defines a complex \((C_*, \partial)\), where \(C_* \) is the free Abelian group generated by critical points of \(F \) and \(\partial \) is defined by counting the number of gradient flow lines between two critical points of relative index one.

Remark: The equations for the gradient flow are given by

\[
\frac{\partial f}{\partial t} = * (f^* \xi \wedge F_E), \quad \frac{\partial D_E}{\partial t} = * (f^* \Omega),
\]

where \(\xi \in \Omega^2 (M, T_M) \) is defined by \(\langle \xi (u, v), w \rangle = \Omega (u, v, w) \).

The equation

\[
\partial^2 = 0
\]

requires a good compactification of the moduli space of \(\mathbb{H} \)-SLag cycles in \(M \), which we are lacking at this moment (see [31] however). We denote this proposed homology group as \(H_C (M) \), or \(H_C (M, \alpha) \) when \(f_* [C] = \alpha \in H_4 (M, \mathbb{Z}) \).

This homology group should be invariant under deformations of the almost \(G_2 \)-metric on \(M \) and its Euler characteristic equals,

\[
\chi (H_C (M)) = \# \mathcal{M}_{\mathbb{H}\text{-SLag}} (M).
\]

Like Floer homology groups, they measure the middle dimensional topology of the configuration space \(\mathcal{C} \) divided by \(\mathcal{G} \).

\section{4 TQFT of \(\mathbb{H} \)-SLag cycles}

In this section we study complete almost \(G_2 \)-manifold \(M_i \) with asymptotically cylindrical ends and the behavior of \(H_C (M) \) when a closed almost \(G_2 \)-manifold \(M \) decomposes into connected sum of two pieces, each with an asymptotically cylindrical end,

\[
M = M_1 \#_X M_2.
\]

Nontrivial examples of compact \(G_2 \)-manifolds are constructed by Kovalev [18] using such connected sum approach. The boundary manifold \(X \) is necessary a Calabi-Yau threefold. We plan to discuss analytic aspects of \(M_i \)’s in a future paper [24].
Each M_i's will define a Lagrangian subspace \mathcal{L}_{M_i} in the moduli space of special Lagrangian cycles in X. Furthermore we expect to have a gluing formula expressing the above homology group for M in terms of the Floer Lagrangian intersection homology group for the two Lagrangian subspaces \mathcal{L}_{M_1} and \mathcal{L}_{M_2},

$$H_C(M) = HF_{\text{Lag}}^{\mathcal{M}_{\text{SLag}}(X)}(\mathcal{L}_{M_1}, \mathcal{L}_{M_2}).$$

These properties can be reformulated to give us a topological quantum field theory. To begin we have the following definition.

Definition 9. An almost G_2-manifold M is called cylindrical if $M = X \times \mathbb{R}^1$ and its positive three form respect such product structure, i.e.

$$\Omega_0 = \text{Re} \Omega_X + \omega_X \wedge dt.$$

A complete almost G_2-manifold M with one end $X \times [0, \infty)$ is called asymptotically cylindrical if the restriction of its positive three form equals to the above one for large t, up to a possible error of order $O(e^{-t})$. More precisely the positive three form Ω of M restricted to its end equals,

$$\Omega = \Omega_0 + d\zeta$$

for some two form ζ satisfying $|\zeta| + |\nabla \zeta| + |\nabla^2 \zeta| + |\nabla^3 \zeta| \leq C e^{-t}$.

Remark: If M is an almost G_2-manifold with an asymptotically cylindrical end $X \times [0, \infty)$, then (X, ω_X, Ω_X) is a complex threefold with a trivial canonical line bundle, but the Kähler form ω_X might not be Einstein. This is so, i.e. a Calabi-Yau threefold, provided that M is a G_2-manifold. We will simply write $\partial M = X$.

We consider \mathbb{H}-SLags C in M which satisfy a Neumann condition at infinity. That is, away from some compact set in M, the immersion $f : C \to M$ can be written as

$$f : L \times [0, \infty) \to X \times [0, \infty)$$

with $\partial f / \partial t$ vanishes at infinite [24]. A relative \mathbb{H}-SLag itself has asymptotically cylindrical end $L \times [0, \infty)$ with L a special Lagrangian submanifold in X. A relative \mathbb{H}-SLag cycle in M is a pair (C, D_E) with C a relative \mathbb{H}-SLag in M and D_E a unitary connection over C with finite energy,

$$\int_C |F_E|^2 dv < \infty.$$

Any finite energy connection D_E on C induces a unitary flat connection D_E^\prime on L [7].
Such a pair \((L, D_{E'})\) of a unitary flat connection \(D_{E'}\) over a special Lagrangian submanifold \(L\) in a Calabi-Yau threefold \(X\) is called a special Lagrangian cycle in \(X\). Their moduli space \(\mathcal{M}^{SLag}(X)\) plays an important role in the Strominger-Yau-Zaslow Mirror Conjecture [29] or [22]. The tangent space to \(\mathcal{M}^{SLag}(X)\) is naturally identified with \(H^2(L, \mathbb{R}) \times H^1(L, \text{ad}(E'))\). For line bundles over \(L\), the cup product \(\cup: H^2(L, \mathbb{R}) \times H^1(L, \mathbb{R}) \to \mathbb{R}\), induces a symplectic structure on \(\mathcal{M}^{SLag}(X)\) [15]. Using analytic results from [24] about asymptotically cylindrical manifolds, we can prove the following theorem.

Claim 10. Suppose \(M\) is an asymptotically cylindrical (almost) \(G_2\)-manifold with \(\partial M = X\). Let \(\mathcal{M}^{\mathbb{H}-SLag}(M)\) be the moduli space of rank one relative \(\mathbb{H}\)-SLag cycles in \(M\). Then the map defined by the boundary values,

\[b: \mathcal{M}^{\mathbb{H}-SLag}(M) \to \mathcal{M}^{SLag}(X),\]

is a Lagrangian immersion.

Sketch of the proof ([24]): For any closed Calabi-Yau threefold \(X\) (resp. \(G_2\)-manifold \(M\)), the moduli space of rank one special Lagrangian submanifolds \(L\) (resp. \(\mathbb{H}\)-SLags \(C\)) is smooth [27] and has dimension \(b_2^2(L)\) (resp. \(b_2^2(C)\)). The same holds true for complete manifold \(M\) with a asymptotically cylindrical end \(X \times [0, \infty)\), where \(b_2^2(C)_{L^2}\) denote the dimension of \(L^2\)-harmonic self-dual two forms on a relative \(\mathbb{H}\)-SLag \(C\) in \(M\).

The linearization of the boundary value map \(\mathcal{M}^{\mathbb{H}-SLag}(M) \to \mathcal{M}^{SLag}(X)\) is given by \(H^2_+\ (C)_{L^2} \xrightarrow{\alpha} H^2(L)\). Similar for the connection part, where the boundary value map is given by \(H^1(C)_{L^2} \xrightarrow{\beta} H^1(L)\). We consider the following diagram where each row is a long exact sequence of \(L^2\)-cohomology groups for the pair \((C, L)\) and each column in a perfect pairing.

\[
\begin{array}{cccccccc}
0 & \to & H^2_+ (C, L) & \to & H^2_+ (C) & \xrightarrow{\alpha} & H^2 (L) & \to & H^3 (C, L) & \to & \cdots \\
& & \otimes & \otimes & \otimes & & \otimes & & \otimes & & \\
0 & \leftarrow & H^2_+ (C) & \leftarrow & H^2_+ (C, L) & \leftarrow & H^1 (L) & \xleftarrow{\beta} & H^1 (C) & \leftarrow & \cdots \\
& & \downarrow & & \\
& & \mathbb{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} & & \mathbb{R} & & \\
\end{array}
\]

Notice that \(H^2_+ (C, L)\), \(H^2_+ (C)\) and \(H^2 (L)\) parametrize infinitesimal deformation of \(C\) with fixed \(\partial C\), deformation of \(C\) alone and deformation of \(L\) respectively.
By simple homological algebra, it is not difficult to see that $\text{Im} \alpha \oplus \text{Im} \beta$ is a Lagrangian subspace of $H^2(L) \oplus H^1(L)$ with the canonical symplectic structure. Hence the result.

Remark: The deformation theory of conical special Lagrangian submanifolds is developed by Pacini in [28].

We denote the immersed Lagrangian submanifold $b (\mathcal{M}^H_{-SLag}(M))$ in $\mathcal{M}^{SLag}(X)$ by \mathcal{L}_M. When M decompose as a connected sum $M_1 \#_X M_2$ along a long neck, as in Atiyah’s conjecture on Floer Chern-Simons homology group [3], we expect to have an isomorphism,

$$H_C(M) \cong HF^*_{\text{Lag}}(M_1, M_2).$$

More precisely, suppose Ω_t with $t \in [0, \infty)$, is a family of G_2-structure on $M_t = M$ such that as t goes to infinite, M decomposes into two components M_1 and M_2, each has an asymptotically cylindrical end $X \times [0, \infty)$. Then we expect that $\lim_{t \to \infty} H_C(M_t) \cong HF^*_{\text{Lag}}(M_1, M_2)$. We summarize these structures in the following table:

Manifold:	(almost) G_2 -manifold, M^7	(almost) CY threefold, X^6
SUSY Cycles:	\mathbb{H}-SLag. submfds. + ASD bdl	SLag submfds. + flat bdl
Invariant:	Homology group, $H_C(M)$	Fukaya category, $Fuk (\mathcal{M}^{SLag}(X))$.

These associations can be formalized to form a TQFT [4]. Namely we associate an additive category $F(X) = Fuk (\mathcal{M}^{SLag}(X))$ to a closed almost Calabi-Yau threefold X, a functor $F(M) : F(X_0) \to F(X_1)$ to an almost G_2-manifold M with asymptotically cylindrical ends $X_1 - X_0 = X_1 \cup X_0$.

They satisfy

(i) $F(\phi) =$ the additive tensor category of vector spaces $(\mathbb{V}ec)$,

(ii) $F(X_1 \amalg X_2) = F(X_1) \otimes F(X_2)$.

For example, when M is a closed G_2-manifold, that is a cobordism between empty manifolds, then we have $F(M) : ((\mathbb{V}ec)) \to ((\mathbb{V}ec))$ and the image of the trivial bundle is our homology group $H_C(M)$.
5 More TQFTs

Notice that all TQFTs we propose in this paper are formal mathematical constructions. Besides the lack of compactness for the moduli spaces, the obstruction issue is also a big problem if we try to make these theories rigorous. This problem is explained to the author by a referee.

There are other TQFTs naturally associated to Calabi-Yau threefolds and G_2-manifolds but (1) they do not involve nontrivial coupling between submanifolds and bundles and (2) new difficulties arise because of corresponding moduli spaces for Calabi-Yau threefolds have virtual dimension zero and could be singular. They are essentially in the paper by Donaldson and Thomas [9].

TQFT of associative cycles

We assume that M is a G_2-manifold, i.e. Ω is parallel rather than closed. Three dimensional submanifolds A in M calibrated by Ω is called associative submanifolds and they can be characterized by $\chi|_A = 0$ ([14]) where $\chi \in \Omega^3 (M, T_M)$ is defined by $\langle w, \chi (x, y, z) \rangle = \ast \Omega (w, x, y, z)$. We define a parametrized A-cycle to be a pair $(f, D_E) \in C_A = \text{Map} (A, M) \times A (E)$, with $f : A \to M$ a parametrized A-submanifold and D_E is a unitary flat connection on a Hermitian vector bundle E over A. There is also a natural G-invariant closed one form Φ_A on C_A given by

$$\Phi_A (f, D_E) (v, B) = \int_A Tr F_E \wedge B + \langle f^* \chi, v \rangle_{T_M},$$

for any $(v, B) \in \Gamma (A, f^* T_M) \times \Omega^1 (A, ad (E)) = T_{(f, D_E)} C_A$. Its zero set is the moduli space of A-cycles in M. As before, we could formally apply arguments in Witten’s Morse theory to Φ_A and define a homology group $H_A (M)$.

The corresponding category associated to a Calabi-Yau threefold X would be the Fukaya-Floer category of the moduli space of unitary flat bundles over holomorphic curves in X, denote $\mathcal{M}^{\text{curve}} (X)$. We summarize these in the following table:

Manifold:	G_2 -manifold, M^7	CY threefold, X^6
SUSY Cycles:	A-submfd.+ flat bundles	Holomorphic curves+ flat bundles
Invariant:	Homology group, $H_A (M)$	Fukaya category, $\text{Fuk} (\mathcal{M}^{\text{curve}} (X))$.
TQFT of Donaldson-Thomas bundles

We assume that M is a seven manifold with a G_2-structure such that its positive three form Ω is co-closed, rather than closed, i.e. $d\Theta = 0$ with $\Theta = *\Omega$. In [9] Donaldson and Thomas introduce a first order Yang-Mills equation for G_2-manifolds,

$$F_E \wedge \Theta = 0.$$

Their solutions are the zeros of the following gauge invariant one form Φ_{DT} on $A(E)$,

$$\Phi_{DT} (D_E)(B) = \int_M Tr [F_E \wedge B] \wedge \Theta,$$

for any $B \in \Omega^1 (M, ad (E)) = T_{D_E} A(E)$. This one form Φ_{DT} is closed because of $d\Theta = 0$. As before, we can formally define a homology group $H_{DT} (M)$. The corresponding category associated to a Calabi-Yau threefold X should be the Fukaya-Floer category of the moduli space of Hermitian Yang-Mills connections over X, denote $\mathcal{M}^{HYM}(X)$. Again we summarize these in a table:

Manifold:	G_2-manifold, M^7	CY threefold, X^6
SUSY Cycles:	DT-bundles	Hermitian YM-bundles
Invariant:	Homology group, $H_{DT} (M)$	Fukaya category, $Fuk (\mathcal{M}^{HYM}(X))$.

It is an interesting problem to understand the transformations of these TQFTs under dualities in M-theory.

Acknowledgments: This paper is partially supported by NSF/DMS-0103355. The author expresses his gratitude to J.H. Lee, R. Thomas, A. Voronov and X.W. Wang for useful discussions. The author also thank the referee for many useful comments.

References

[1] B. S. Acharya, B. Spence, Supersymmetry and M theory on 7-manifolds, [hep-th/0007213].
[2] M. Aganagic, C. Vafa, *Mirror Symmetry and a G_2 Flop*, [hep-th/0105225].

[3] M. Atiyah, *New invariants of three and four dimensional manifolds*, in The Mathematical Heritage of Herman Weyl, Proc. Symp. Pure Math., 48, A.M.S. (1988), 285-299.

[4] M. Atiyah, *Topological quantum field theories*. Inst. Hautes Études Sci. Publ. Math. No. 68 (1988), 175–186 (1989).

[5] M. Atiyah, E. Witten, *M-theory dynamics on a manifold of G_2 holonomy*, [hep-th/0107177].

[6] R. Bryant, *Metrics with exceptional holonomy*, Ann. of Math. 126 (1987) 525-576.

[7] S. Donaldson, *Floer homology group in Yang-Mills theory*, Cambridge Univ. Press (2002).

[8] S. Donaldson, P. Kronheimer, *The geometry of four-manifolds*, Oxford University Press, (1990).

[9] S. Donaldson, R. Thomas, *Gauge theory in higher dimension*, The Geometric Universe: Science, Geometry and the work of Roger Penrose, S.A. Huggett et al edited, Oxford Univ. Press (1988).

[10] K. Fukaya, Y.G. Oh, H. Ohta, K. Ono, *Lagrangian intersection Floer theory - anomaly and obstruction*, to appear in International Press.

[11] R. Gopakumar, C. Vafa, *M-theory and topological strings - II*, [hep-th/9812127].

[12] A. Gray, *Vector cross products on manifolds*, Trans. Amer. Math. Soc. 141 (1969) 465-504.

[13] S. Gukov, S.-T. Yau, E. Zaslow, *Duality and Fibrations on G_2 Manifolds*, [hep-th/0203217].

[14] R. Harvey, B. Lawson, *Calibrated geometries*, Acta Math. 148 (1982), 47-157.

[15] N. Hitchin, *The moduli space of special Lagrangian submanifolds*. Dedicated to Ennio DeGiorgi. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 3-4, 503–515 (1998). [dg-ga/9711002].

[16] N. Hitchin, *The geometry of three forms in 6 and 7 dimensions*, J. Differential Geom. 55 (2000), no. 3, 547–576. [math.DG/0010054].
[17] D. Joyce, On counting special Lagrangian homology 3-spheres, [hep-th/9907013].

[18] A. Kovalev, Twisted connected sums and special Riemannian holonomy, [math.DG/0012189].

[19] J.H. Lee, N.C. Leung, Geometric structures on G_2 and Spin(7)-manifolds, [math.DG/0202045].

[20] N.C. Leung, Symplectic structures on gauge theory, Comm. Math. Phys., 193 (1998) 47-67.

[21] N.C. Leung, Mirror symmetry without corrections, [math.DG/0009235].

[22] N.C. Leung, Geometric aspects of mirror symmetry, to appear in the proceeding of ICCM 2001, [math.DG/0204168].

[23] N.C. Leung, Riemannian geometry over different normed division algebras, preprint 2002.

[24] N.C. Leung, in preparation.

[25] N.C. Leung, S.Y. Yau, E. Zaslow, From special Lagrangian to Hermitian-Yang-Mills via Fourier-Mukai transform, to appear in Adv. Theor. Math. Phys. [math.DG/0005118].

[26] R. McLean, Deformations of calibrated submanifolds, Comm. Analy. Geom., 6 (1998) 705-747.

[27] T. Pacini, Deformations of Asymptotically Conical Special Lagrangian Submanifolds. Preprint 2002. [math.DG/0207144].

[28] A. Strominger, S.-T. Yau, and E. Zaslow, Mirror Symmetry is T-Duality, Nuclear Physics B479 (1996) 243-259; [hep-th/9606040].

[29] R. P. Thomas, Moment maps, monodromy and mirror manifolds. In "Symplectic geometry and mirror symmetry", Proceedings of the 4th KIAS Annual International Conference, Seoul. Eds. K. Fukaya, Y.-G. Oh, K. Ono and G. Tian. World Scientific, 2001.

[31] G. Tian, Gauge theory and calibrated geometry. I. Ann. of Math. (2) 151 (2000), no. 1, 193–268.