STOCHASTIC B–SERIES ANALYSIS OF ITERATED TAYLOR METHODS

KRISTIAN DEBRABANT AND ANNE KVÆRNØ

ABSTRACT. For stochastic implicit Taylor methods that use an iterative scheme to compute their numerical solution, stochastic B–series and corresponding growth functions are constructed. From these, convergence results based on the order of the underlying Taylor method, the choice of the iteration method, the predictor and the number of iterations, for Itô and Stratonovich SDEs, and for weak as well as strong convergence are derived. As special case, also the application of Taylor methods to ODEs is considered. The theory is supported by numerical experiments.

1. INTRODUCTION

Besides stochastic Runge–Kutta methods, one important class of schemes to approximate the solution of stochastic differential equations (SDEs) are stochastic Taylor methods. As in the deterministic setting [1], they are especially suitable for problems with not too high dimension, and here especially in the case of strong approximation, because weak approximation of low-dimensional problems can often be done more efficiently by numerically solving the corresponding deterministic PDE problem obtained by applying the Feynman–Kac formula. For solving stiff SDEs, implicit methods have to be considered, as is illustrated in the following two examples.

Example 1.1 (see [12]). Consider the linear Itô-SDE

\[dX(t) = \mu X(t) \, dt + \sigma X(t) \, dW(t), \quad X(0) = x_0, \]

with \(\mu, \sigma \in \mathbb{C} \). We assume that the exact solution is mean-square stable, i.e.

\[\lim_{t \to \infty} E(|X(t)|^2) = 0, \]

which is the case if and only if \(2 \Re \mu + |\sigma|^2 < 0 \). To achieve that also the numerical approximation \(Y_n \) obtained with the (explicit) Euler-Maruyama scheme with step size \(h \) is mean-square stable, i.e. \(\lim_{n \to \infty} E(|Y_n|^2) = 0 \), we have to restrict the step size according to \(h < h_0 := -\frac{2 \Re \mu + |\sigma|^2}{|\mu|^2} \), whereas for \(h > h_0 \) the numerical approximations explode, \(\lim_{n \to \infty} E(|Y_n|^2) = \infty \). In contrast to this, the semi-implicit Euler scheme is mean-square stable without any step size restriction. For a numerical affirmation, see Figure 1.

Example 1.2. Consider the following stochastic Van der Pol equation,

\[
\begin{align*}
 dX_1(t) &= X_2(t) \, dt, \\
 dX_2(t) &= (\mu (1 - X_1(t)^2) X_2(t) - X_1(t)) \, dt + \theta (1 - X_1(t)^2) X_2(t) \, dW(t), \\
 X_1(0) &= x_{0,1}, \quad X_2(0) = x_{0,2}.
\end{align*}
\]

2000 Mathematics Subject Classification. 65C30, 60H35, 65C20, 68U20.

Key words and phrases. Stochastic Taylor method, stochastic differential equation, iterative scheme, order, Newton’s method, weak approximation, strong approximation, growth functions, stochastic B–series.
Figure 1. Approximation results for the linear test equation (1) with \(\mu = -3, \sigma = \sqrt{3}, \) and \(x_0 = 1 \) by Euler-Maruyama (explicit) and semi-implicit Euler scheme. Here, \(E(|Y(t)|^2) \) is approximated as mean over 10^6 simulations. The explicit scheme is only stable for appropriate step sizes, the semi-implicit scheme is stable for all step sizes.

Figure 2. Approximation of Van der Pol equation with \(\mu = 10, \theta = 1, \) \(x_{0,1} = 2, \) and \(x_{0,2} = 0 \) by the explicit and semi-implicit Milstein scheme (using the same Brownian path) with step-size \(h = 0.05. \) The explicit scheme suffers from heavy stability problems and aborts.

Application of the explicit Milstein scheme (see Example 1.3 with \(\alpha = 0 \) and \(\beta = 0 \)) with step-size \(h = 0.05 \) to approximate a solution path leads to an explosion of the approximation, see Figure 2(a). Whereas application of the semi-implicit Milstein scheme, given by substituting \(g_0(Y_n) \) by \(g_0(Y_{n+1}) \) (\(\alpha = 1 \) and \(\beta = 0 \) in Example 1.3), yields (for the same Brownian path) the result of Figure 2(b).

Implicit stochastic Taylor methods have been considered both for strong [15, 17] and weak [15] approximation. For these methods, the approximation values are only given
Let a discretization for (5) X with step sizes (3) has a unique solution.

Moreover, for each iteration scheme in question, we will define a growth function. Briefly explained, when the exact numerical and the k times iterated solutions are both written in terms of B–series, then all terms of these series for which the growth function has a value not greater than k coincide. Thus the growth functions give a quite exact description of the development of the iterations. B–series and corresponding growth functions for iterated solutions have been derived for Runge–Kutta methods applied to deterministic ordinary differential equations [14], differential algebraic equations [13], and SDEs [7]. Somewhat surprisingly, the growth functions are exactly the same in all these cases, and, as we will show in this paper, this also holds for implicit Taylor methods.

The outline of the paper is as follows: First, we will give the SDE to be solved and the iterated Taylor methods used for its approximation. In Section 2 stochastic B–series are introduced and some useful preliminary results are presented. The main results of the paper can be found in Section 3, where the B–series of the iterated solutions are developed and the before mentioned growth functions derived. In Section 4, these findings are interpreted in terms of the order of the overall scheme, giving concrete results on the order of the considered methods depending on the kind and number of iterations, both for SDEs and ODEs. Contrary to the results obtained for Runge–Kutta methods [7], the order of the iteration error is shown to be independent on whether Itô or Stratonovich SDEs, weak or strong convergence is considered. Finally, in Section 5 we present several numerical examples to support our theoretical findings.

Let $(\Omega, \mathcal{A}, \mathcal{P})$ be a probability space. We denote by $(X(t))_{t \in I}$ the stochastic process which is the solution of a d-dimensional SDE defined by

(2) \[dX(t) = g_0(X(t))dt + \sum_{l=1}^{m} g_l(X(t)) \cdot dW_l(t), \quad X(t_0) = x_0, \]

with an m-dimensional Wiener process $(W(t))_{t \geq 0}$ and $I = [t_0, T]$. As usual, (2) is construed as abbreviation of

(3) \[X(t) = x_0 + \int_{t_0}^{t} g_0(X(s))ds + \sum_{l=1}^{m} \int_{t_0}^{t} g_l(X(s)) \cdot dW_l(s). \]

The integral w. r. t. the Wiener process has to be interpreted e. g. as Itô integral with $dW_l(s) = dW_l(t)$ or as Stratonovich integral with $dW_l(s) = o dW_l(t)$. We assume that the Borel-measurable coefficients $g_l : \mathbb{R}^d \to \mathbb{R}^d$ are sufficiently differentiable and chosen such that SDE (3) has a unique solution.

To simplify the presentation, we define $W_0(s) = s$, so that (3) can be written as

(4) \[X(t) = x_0 + \sum_{l=0}^{m} \int_{t_0}^{t} g_l(X(s)) \cdot dW_l(s). \]

Let a discretization $I^h = \{t_0, t_1, \ldots, t_N\}$ with $t_0 < t_1 < \ldots < t_N = T$ of the time interval I with step sizes $h_n = t_{n+1} - t_n$ for $n = 0, 1, \ldots, N-1$ be given. Now, we consider the general class of stochastic Taylor methods given by $Y_0 = x_0$ and

(5) \[Y_{n+1} = B(\Phi_{ex}, Y_n; h_n) + B(\Phi_{im}, Y_{n+1}; h_n) \]

for $n = 0, 1, \ldots, N-1$ with $Y_n = Y(t_n), t_n \in I^h, \Phi_{ex}(\emptyset) \equiv 1, \Phi_{im}(\emptyset) \equiv 0$.

Example 1.3. Consider the family of Milstein schemes applied to an Itô SDE with one-dimensional noise,

\[Y_{n+1} = Y_n + h_n \left((1 - \alpha)g_0(Y_n) + \alpha g_0(Y_{n+1}) \right) + I_{(1),h_n}((1 - \beta)g_1(Y_n) + \beta g_1(Y_{n+1})) + (I_{(1),h_n} - \beta I^2_{(1),h_n})[g'_1 g_1](Y_n). \]

Here,

\[I_{(1),h_n} = W(t_{n+1}) - W(t_n) = \Delta W_n, \]
\[I_{(1),h_n} = \int_{t_n}^{t_{n+1}} W(s)dW(s) = \frac{1}{2}(\Delta W_n^2 - h_n), \]

and the parameters \(\alpha, \beta \in [0, 1] \) indicate the degree of implicitness. When \(\alpha = \beta = 0 \) we have the explicit Milstein scheme, with \(\alpha \neq 0, \beta = 0 \) a semi-implicit scheme. In all cases, the method (6) can be written in the form (5) with

\[B(\Phi_{ex}, Y_n; h_n) = x_0 + h_n((1 - \alpha)g_0(Y_n) + I_{(1),h_n}(1 - \beta)g_1(Y_n)) + (I_{(1),h_n} - \beta I^2_{(1),h_n})[g'_1 g_1](Y_n), \]
\[B(\Phi_{im}, Y_{n+1}; h_n) = h_n\alpha g_0(Y_{n+1}) + I_{(1),h_n}\beta g_1(Y_{n+1}). \]

The terms \(\Phi_{ex} \) and \(\Phi_{im} \) refer to the time- and method-dependent part of each term: In this case

\[\Phi_{ex}(\bullet_0) = h_n(1 - \alpha), \quad \Phi_{im}(\bullet_0) = h_n\alpha, \]
\[\Phi_{ex}(\bullet_1) = I_{(1),h_n}(1 - \beta), \quad \Phi_{im}(\bullet_1) = I_{(1),h_n}\beta, \]
\[\Phi_{ex}([\bullet_1]_1) = I_{(1),h_n} - \beta I^2_{(1),h_n}. \]

The notation will be explained in detail in Section 2.

What the general method (5) concerns, application of an iterative Newton-type method

\[Y_{n+1} = B(\Phi_{ex}, Y_n; h_n) + B(\Phi_{im}, Y_{n+1}; h_n) + J_k(Y_{n+1,k+1} - Y_{n+1,k}) \]

with some approximation \(J_k \) to the Jacobian of \(B(\Phi_{im}, Y_{n+1,k}; h_n) \) and a predictor \(Y_{n+1,0} \). In the following we assume that (7) can be solved uniquely at least for sufficiently small \(h_n \). To simplify the presentation, we assume further that all step sizes are constant, \(h_n = h \).

For the approximation \(J_k \) there exist several common choices. If we choose \(J_k \) to be the exact Jacobian \(\partial_2B(\Phi_{im}, Y_{n+1,k}; h_n) \), then we obtain the classical Newton iteration method for solving (5), with quadratic convergence. It will be denoted in the following as full Newton iteration. If we choose instead \(J_k = \partial_2B(\Phi_{im}, Y_n; h) \), then we obtain the so called modified Newton iteration method, which is only linearly convergent. Here, \(J_k \) is independent of the iteration number \(k \), thus its computation is much cheaper and simpler than in the full Newton iteration case. The third and simplest possibility is to choose \(J_k = 0 \) equal to zero. In this case we don’t even have to solve a linear system for \(Y_{n+1,k+1} \). This iteration method is called simple iteration method or predictor corrector method. Its disadvantage is that for stiff systems it requires very small step sizes to converge.

For most stiff problems and problems with additive noise, the use of semi-implicit methods suffices. As will be demonstrated in Section 4 these have the advantage that less iterations are required to obtain the correct order of the underlying method.
2. Stochastic B–series

B–series, symbolized by $B(\phi, x_0; h)$, for SDEs were first constructed by Burrage and Burrage [2, 3] to study strong convergence in the Stratonovich case. In the following years, this approach has been further developed by several authors to study weak and strong convergence, for the Itô and the Stratonovich case, see e.g. [7] for an overview. A uniform theory for the construction of stochastic B–series has been presented in [7], in [8] this approach has been used to construct order conditions for implicit Taylor methods. Following the exposition of these two papers, we define in this section stochastic B–series and present some preliminary results that will be used later.

2.1. Some useful definitions and preliminary results.

Definition 2.1 (Trees). The set of $m + 1$-colored, rooted trees

$$T = \{\emptyset\} \cup T_0 \cup T_1 \cup \cdots \cup T_m$$

is recursively defined as follows:

a): the graph $\bullet_i = [\emptyset]$ with only one vertex of color l belongs to T_i.

Let $\tau = [\tau_1, \tau_2, \ldots, \tau_k]$ be the tree formed by joining the subtrees $\tau_1, \tau_2, \ldots, \tau_k$ each by a single branch to a common root of color l.

b): If $\tau_1, \tau_2, \ldots, \tau_k \in T$ then $\tau = [\tau_1, \tau_2, \ldots, \tau_k] \in T_i$.

Thus, T_i is the set of trees with an l-colored root, and T is the union of these sets.

Definition 2.2 (Elementary differentials). For a tree $\tau \in T$ the elementary differential is a mapping $F(\tau) : \mathbb{R}^d \to \mathbb{R}^d$ defined recursively by

a): $F(\emptyset)(x_0) = x_0$,

b): $F(\bullet_i)(x_0) = g_i(x_0)$,

c): If $\tau = [\tau_1, \tau_2, \ldots, \tau_k] \in T_i$ then

$$F(\tau)(x_0) = g_{\tau}^{(x)}(x_0) \cdot F(\tau_1)(x_0), F(\tau_2)(x_0), \ldots, F(\tau_k)(x_0)).$$

With these definitions in place, we can define the stochastic B–series:

Definition 2.3 (B–series). A (stochastic) B–series is a formal series of the form

$$B(\phi, x_0; h) = \sum_{\tau \in T} \alpha(\tau) \cdot \phi(\tau)(h) \cdot F(\tau)(x_0),$$

where $\phi : T \to \mathbb{R}^d : \{\phi(h)\}_{h \geq 0}$ is Borel-measurable $\forall h \geq 0$ assigns to each tree a random variable, and $\alpha : T \to Q$ is given by

$$\alpha(\emptyset) = 1, \quad \alpha(\bullet_i) = 1, \quad \alpha(\tau = [\tau_1, \ldots, \tau_k]) = \frac{1}{r_1! r_2! \cdots r_k!} \prod_{j=1}^k \alpha(\tau_j),$$

where r_1, r_2, \ldots, r_k count equal trees among $\tau_1, \tau_2, \ldots, \tau_k$.

Note that $\alpha(\tau)$ is the inverse of the order of the automorphism group of τ.

To simplify the presentation, in the following we assume that all elementary differentials exist and all considered B–series converge. Otherwise, one has to consider truncated B–series and discuss the remainder term.

The next lemma is proved in [7].
Lemma 2.1. If \(Y(h) = B(\phi, x_0; h) \) with \(\phi(\emptyset) = 1 \) is some \(B \)-series and \(f \in C^\omega(\mathbb{R}^d, \mathbb{R}^d) \), then \(f(Y(h)) \) can be written as a formal series of the form

\[
f(Y(h)) = \sum_{u \in U_f} \beta(u) \cdot \psi_f(u)(h) \cdot G(u)(x_0),
\]

where

a): \(U_f \) is a set of trees derived from \(T \) as follows: \(\emptyset \in U_f \) and if \(\tau_1, \tau_2, \ldots, \tau_k \in T \setminus \{\emptyset\} \) then \([\tau_1, \tau_2, \ldots, \tau_k] \in U_f \).

b): \(G([\emptyset]))(x_0) = f(x_0) \) and
\[
G(u = [\tau_1, \ldots, \tau_k])(x_0) = f([\kappa]) \{F(\tau_1)(x_0), \ldots, F(\tau_k)(x_0)\},
\]

c): \(\beta([\emptyset]) = 1 \) and \(\beta(u = [\tau_1, \ldots, \tau_k]) = \frac{1}{r_1!r_2! \cdots r_q!} \prod_{j=1}^k \alpha(\tau_j) \),

where \(r_1, r_2, \ldots, r_q \) count equal trees among \(\tau_1, \tau_2, \ldots, \tau_k \).

d): \(\psi_f([\emptyset]) = 1 \) and \(\psi_f(u = [\tau_1, \ldots, \tau_k])(h) = \prod_{j=1}^k \phi (\tau_j)(h) \).

For notational convenience, in the following the \(h \)-dependency of the weight functions and the \(x_0 \)-dependency of the elementary differentials will be suppressed whenever this is unambiguous, so \(\Phi(\tau)(h) \) will be written as \(\Phi(\tau) \) and \(F(\tau)(x_0) \) as \(F(\tau) \).

The next step is to present the composition rule for \(B \)-series. In the deterministic case, this is e.g. given by \([10]\), using ordered trees. The same rule applies for multicolored trees, as in the stochastic case. But it is also possible to present the result without relying on ordered trees, as done in \([8]\), and this is the approach that will be used in the following.

Consider triples \((\tau, \vartheta, \omega) \) consisting of some \(\tau \in T \), a subtree \(\vartheta \) sharing the root with \(\tau \), and a remainder multiset \(\omega \) of trees left over when \(\vartheta \) is removed from \(\tau \). We also include the empty tree as a possible subtree, in which case the triple becomes \((\tau, \emptyset, \tau) \).

Example 2.1. Two examples of such triples are

\[
\left(\begin{array}{c}
\varnothing \quad \varnothing \\
\end{array} \right), \quad \left(\begin{array}{c}
\varnothing \quad \varnothing \\
\end{array} \right)
\]

and

\[
\left(\begin{array}{c}
\varnothing \quad \varnothing \\
\end{array} \right), \quad \left(\begin{array}{c}
\varnothing \quad \varnothing \\
\end{array} \right)
\]

For notational convenience, in the following the \(h \)-dependency of the weight functions and the \(x_0 \)-dependency of the elementary differentials will be suppressed whenever this is unambiguous, so \(\Phi(\tau)(h) \) will be written as \(\Phi(\tau) \) and \(F(\tau)(x_0) \) as \(F(\tau) \).

The next step is to present the composition rule for \(B \)-series. In the deterministic case, this is e.g. given by \([10]\), using ordered trees. The same rule applies for multicolored trees, as in the stochastic case. But it is also possible to present the result without relying on ordered trees, as done in \([8]\), and this is the approach that will be used in the following.

Consider triples \((\tau, \vartheta, \omega) \) consisting of some \(\tau \in T \), a subtree \(\vartheta \) sharing the root with \(\tau \), and a remainder multiset \(\omega \) of trees left over when \(\vartheta \) is removed from \(\tau \). We also include the empty tree as a possible subtree, in which case the triple becomes \((\tau, \emptyset, \tau) \).

Example 2.1. Two examples of such triples are

\[
\left(\begin{array}{c}
\varnothing \quad \varnothing \\
\end{array} \right), \quad \left(\begin{array}{c}
\varnothing \quad \varnothing \\
\end{array} \right)
\]

and

\[
\left(\begin{array}{c}
\varnothing \quad \varnothing \\
\end{array} \right), \quad \left(\begin{array}{c}
\varnothing \quad \varnothing \\
\end{array} \right)
\]

So, for the same \(\tau \) and \(\vartheta \) there might be different \(\omega \)’s.

We next define \(ST(\tau) \) as the set of all possible subtrees of \(\tau \) together with the corresponding remainder multiset \(\omega \), that is, for each \(\tau \in T \setminus \emptyset \) we have

\[
ST(\tau) = \{(\emptyset, \bullet), (\bullet, \emptyset), (\emptyset, \emptyset)\},
\]

\[
ST(\tau = [\tau_1, \ldots, \tau_k]) = \{(\vartheta, \omega) : \vartheta = [\vartheta_1, \ldots, \vartheta_k], \omega = \{\omega_1, \ldots, \omega_k\},
\]

\[
(\vartheta_i, \omega_i) \in ST(\tau_i), \quad i = 1, \ldots, k \} \cup \{\emptyset, \tau\}.
\]

We also have to take care of possible equal terms in the formula presented below. This is done as follows: For a given triple \((\tau, \vartheta, \omega) \) write first \(\vartheta = [\vartheta_1, \ldots, \vartheta_k] \) = \(\{\vartheta_1, \ldots, \vartheta_k\} \), where the latter only expresses that \(\vartheta \) is composed by \(q \) different nonempty trees, each appearing \(r_1 \) times, hence \(\sum_{i=1}^q r_i = k_0 \). Let \(\tau = [\tau_1, \ldots, \tau_k] \). For \(i = 1, \ldots, q \), each \(\vartheta_i \) is a subtree of some of the \(\tau_i \)’s, with corresponding remainder multisets \(\omega_i \). Assume that there are exactly \(p_i \) different such triples \((\tilde{\tau}_i, \tilde{\vartheta}_i, \tilde{\omega}_i) \) each appearing exactly \(r_{ik} \) times so that \(\sum_{k=1}^{p_i} r_{ik} = r_i \). Finally, let \(\delta_k \in \omega \) be the distinct trees with multiplicity \(s_k, k = 1, \ldots, p_0 \), of
Lemma 2.2. If $\phi_1, \phi_2 : T \to \mathbb{Z}$ and $\phi_1(\emptyset) \equiv 1$. Then the B–series $B(\phi_1, \phi_2; x_0; h)$ inserted into $B(\phi_1, \phi_2; x_0; h)$ is again a B–series,

$$B(\phi_1, B(\phi_2, x_0; h); h) = B(\phi_1 \circ \phi_2, x_0; h),$$

where

$$\gamma(\emptyset, \emptyset, \emptyset) = 1,$n

and

$$\gamma(\tau, \vartheta, \omega) = \frac{R_1! \cdots R_Q!}{s_1! \cdots s_p! f_{p_1}! \cdots f_{p_Q}!} \prod_{i=1}^{p_1} \prod_{k=1}^{p_i} \gamma(\bar{\bar{\tau}}, \bar{\vartheta}, \bar{\omega}),$$

for τ given by (9).

The combinatorial term γ gives the number of equal terms that will appear if the composition rule using ordered trees is preferred.

In general, the composition law is not linear, neither is it associative. It is, however, linear in its second operand. Further, if both $\phi_i(\emptyset) = \phi_i(\emptyset) \equiv 1$, then the composition law can be turned into a group operation (Butcher group, see [6, 10, 11] for the deterministic case): The inverse element $\phi^{-1}(\tau)$ can be recursively computed by

$$\gamma(\emptyset, \emptyset, \emptyset) = 1,$n

and associativity is proved by

$$B(\phi_1, B(\phi_2, B(\phi_3, x_0; h); h); h) = B(\phi_1 \circ (\phi_2 \circ \phi_3), x_0; h) = B((\phi_1 \circ \phi_2) \circ \phi_3, x_0; h).$$

This holds even if $\phi_i(\emptyset) \not\equiv 1$.

The next result will be needed for the investigation of modified Newton iterations.

Lemma 2.2. If $\phi_i(\emptyset) \equiv 0$ we have

$$\partial_2 B(\phi_1, x_0; h) B(\phi_2, x_0; h) = B(\phi_1 \ast \phi_2, x_0; h),$$

where the bi-linear operator \ast is given by

$$\gamma(\tau, \vartheta, \{\delta\}) \cdot \phi_2(\vartheta) \phi_3(\delta)$$

for $\tau = \emptyset$, otherwise,

$SP(\tau) = \{(\vartheta, \omega) \in ST(\tau) : \omega \text{ contains exactly one element } \delta\}. $
Proof. Written in full, the statement of the theorem claims that
\[
\sum_{\delta \in T} \sum_{\delta \in T} \alpha(\vartheta) \alpha(\delta) \cdot \phi_\vartheta(\delta) \cdot \phi_\delta(\vartheta) \cdot (\partial F(\vartheta)F(\delta))
\]
(13) \[= \sum_{\tau \in T_\vartheta(\vartheta)} \alpha(\tau) \left(\sum_{(\theta,\delta) \in SP(\tau)} \gamma(\tau,\theta,\delta) \cdot \phi_\theta(\delta) \cdot \phi_\delta(\theta) \right) \cdot F(\tau).\]

This is true if
\[
(\partial F(\vartheta)F(\delta)) = \sum_{\tau \in \mathcal{A}(\vartheta,\delta)} \beta(\tau,\theta,\delta) F(\tau)
\]
and
\[
\alpha(\vartheta) \alpha(\delta) \beta(\tau,\theta,\delta) = \alpha(\tau) \gamma(\tau,\theta,\delta),
\]
where \(\mathcal{A}(\vartheta,\delta)\) is the set of all \(\tau\)'s constructed by attaching \(\delta\) to one of the vertices of \(\vartheta\).

We will prove this by induction.

First, let \(\vartheta = \emptyset\). Since \(\partial F(\vartheta)F(\delta) = F(\delta)\) we have \(\tau = \delta\) and (14) and (15) are trivially true with \(\beta(\tau,\emptyset,\tau) = 1\). Now, let \(\vartheta = \bullet_l\). Then \(\partial F(\vartheta)F(\delta) = g'_lF(\delta) = F([\delta]_l)\). As \(\mathcal{A}(\vartheta,\delta) = \{[\delta]_l\}\) this gives \(\beta([\delta]_l,\bullet_l,\delta) = 1\), and again (15) is trivially true. Finally, let

\[\vartheta = [\tilde{\vartheta}^1_1, \ldots, \tilde{\vartheta}^1_{r_1}, \ldots, \tilde{\vartheta}^q_{r_q}]\]

with distinct trees \(\tilde{\vartheta}^1_1, \ldots, \tilde{\vartheta}^q_{r_q}\). Then

\[
\partial F(\vartheta)F(\delta) = \left(\sum_{l=1}^{r_1} g_l^{(\kappa_\vartheta)} \right) \left(F(\delta), F(\tilde{\vartheta}^1_1), \ldots, F(\tilde{\vartheta}^1_{r_1}), \ldots, F(\tilde{\vartheta}^q_{r_q}) \right)
\]

where \(\kappa_\vartheta = \sum_{l=1}^q r_l\), so \(\tau \in \mathcal{A}(\vartheta,\delta)\) is either

\[\tau = [\delta, \tilde{\vartheta}^1_1, \ldots, \tilde{\vartheta}^1_{r_1}, \ldots, \tilde{\vartheta}^q_{r_q}]\]

or

\[\tau = [\tilde{\vartheta}^1_1, \ldots, \tilde{\vartheta}^1_{r_1}, \ldots, \tilde{\vartheta}^q_{r_q}]\]

with \(\tau \in \mathcal{A}(\tilde{\vartheta}^1,\delta)\) and \(\beta(\tau,\vartheta,\delta) = r_l \beta(\tau,\tilde{\vartheta}^1,\delta)\).

In the first case, if \(\delta = \tilde{\vartheta}^j\) for some \(j\), then \(\alpha(\tau) = \alpha(\vartheta)\alpha(\delta)/M\) and \(\gamma(\tau,\vartheta,\delta) = M\) with \(M = r_j + 1\). Otherwise the same is valid with \(M = 1\). So (15) holds. In the second case, assume that our induction hypothesis (15) is true for all \(\tau \in \mathcal{A}(\tilde{\vartheta}^1,\delta)\). We obtain

\[\alpha(\tau) = \frac{r_l}{M} \frac{\alpha(\tau)}{\alpha(\tilde{\vartheta}^1)} \alpha(\vartheta)\]

with \(M = r_j + 1 \) if \(\tau = \tilde{\vartheta}^j\) for some \(j\) and \(M = 1\) otherwise. It follows that

\[\alpha(\tau) \gamma(\tau,\vartheta,\delta) = \frac{r_l}{M} \gamma(\tau,\vartheta,\delta) \alpha(\vartheta) \alpha(\delta) r_l \beta(\tau,\tilde{\vartheta}^1,\delta) = \alpha(\vartheta) \alpha(\delta) \beta(\tau,\vartheta,\delta).\]
2.2. B–series of the exact and the numerical solutions. From the results of the previous subsection, it is possible to find the B–series of the exact and numerical solutions. Here, the proofs are only sketched, for details consult [7, 8].

Theorem 2.2. The solution \(X(t_0 + h) \) of (4) can be written as a B–series \(B(\varphi, x_0; h) \) with

\[
\varphi(\emptyset) = 1, \quad \varphi(\bullet_i)(h) = W_i(h), \quad \varphi(\tau = [\tau_1, \ldots, \tau_k]) (h) = \int_0^h \prod_{j=1}^k \varphi(\tau_j)(s) \cdot dW_i(s).
\]

Proof. Write the exact solution as some B–series \(X(t_0 + h) = B(\varphi, x_0; h) \). As \(\varphi(\emptyset) = 1 \), apply Lemma 2.1 to \(g_l(X(t_0 + h)) \) and Definitions 2.1, 2.2, and 2.3 to obtain

\[
g_l(B(\varphi, x_0; h)) = \sum_{\tau \in T_l} \alpha(\tau) \cdot \varphi_l(\tau)(h) \cdot F(\tau)(x_0)
\]

in which

\[
\varphi_l(\tau)(h) = \begin{cases} 1 & \text{if } \tau = \emptyset, \\ \prod_{j=1}^k \varphi(\tau_j)(h) & \text{if } \tau = [\tau_1, \ldots, \tau_k] \in T_l. \end{cases}
\]

Insert this into the SDE (3) and compare term by term. \(\Box \)

Theorem 2.3. The numerical solution \(Y_1 \) given by (5) can be written as a B–series

\[
Y_1 = B(\Phi, x_0; h)
\]

with \(\Phi \) recursively defined by

\[
\begin{align*}
(17a) \quad \Phi(\emptyset) & = 1, \\
(17b) \quad \Phi(\tau) & = \Phi_{ex}(\tau) + (\Phi \circ \Phi_{im})(\tau).
\end{align*}
\]

Proof. Write \(Y_1 = B(\Phi, x_0; h) \) and insert this into (5). As \(\Phi(\emptyset) = \Phi_{ex}(\emptyset) + \Phi_{im}(\emptyset) = 1 \), apply Theorem 2.1, and compare term by term. \(\Box \)

To study the consistency of the numerical methods, we need to assign to each tree an order:

Definition 2.4 (Tree order). The order of a tree \(\tau \in T \) respectively \(u \in U_f \) is defined by

\[
\rho(\emptyset) = 0, \quad \rho(u = [\tau_1, \ldots, \tau_k]) = \sum_{i=1}^k \rho(\tau_i),
\]

and

\[
\rho(\tau = [\tau_1, \ldots, \tau_k]) = \sum_{i=1}^k \rho(\tau_i) + \begin{cases} 1 & \text{for } l = 0, \\ \frac{1}{2} & \text{otherwise}. \end{cases}
\]

In Table 1 some trees and the corresponding values for the functions \(\rho, \alpha, \) and \(\varphi \) are presented.

To decide the weak order we will also need the B–series of the function \(f \), evaluated at the exact and the numerical solution. From Theorems 2.2 and 2.3 and Lemma 2.1 we obtain

\[
f(X(t_0 + h)) = \sum_{u \in U_f} \beta(u) \cdot \psi_f(u)(h) \cdot G(u)(x_0),
\]

\[
f(Y_1) = \sum_{u \in U_f} \beta(u) \cdot \psi_f(u)(h) \cdot G(u)(x_0),
\]
with
\[
\psi_\varphi([\emptyset]) = 1, \quad \psi_\varphi([\tau_1, \ldots, \tau_\kappa]) = \prod_{j=1}^\kappa \varphi(\tau_j),
\]
and
\[
\psi_\Phi([\emptyset]) = 1, \quad \psi_\Phi([\tau_1, \ldots, \tau_\kappa]) = \prod_{j=1}^\kappa \Phi(\tau_j).
\]

One can show [15, 5, 9] that \(E\psi_\varphi(u)(h) = \mathcal{O}(h^{\rho(u)}) \) \(\forall u \in U_f \) and \(\varphi(\tau)(h) = \mathcal{O}(h^{\rho(\tau)}) \) \(\forall \tau \in T \), respectively, where especially in the latter case the \(\mathcal{O}(\cdot) \)-notation refers to the \(L^2(\Omega) \)-norm and \(h \to 0 \).

In the following we assume that also method (5) is consistent with the definition of the tree order, i.e. that it is constructed as usual such that \(E\psi_\varphi(u)(h) = \mathcal{O}(h^{\rho(u)}) \) \(\forall u \in U_f \) and \(\Phi(\tau)(h) = \mathcal{O}(h^{\rho(\tau)}) \) \(\forall \tau \in T \), respectively. These conditions are fulfilled if for \(\tau \in T \) and \(k \in \mathbb{N} = \{0, 1, \ldots\} \) it holds that \((\Phi_{ex}(\tau))^k = \mathcal{O}(h^{2k\rho(\tau)}) \) and \((\Phi_{lm}(\tau))^k = \mathcal{O}(h^{2k\rho(\tau)}) \).

3. B–series of the iterated solution and growth functions

In this section we will discuss how the iterated solution defined in (7) can be written in terms of B–series, that is
\[
Y_{1,k} = B(\Phi_k, x_0; h).
\]
Assume that the predictor can be written as a B–series,
\[
Y_{1,0} = B(\Phi_0, x_0; h),
\]
satisfying $\Phi_0(\emptyset) \equiv 1$ and $\Phi_0(\tau) = \mathcal{O}(h^{\rho(\tau)}) \forall \tau \in T$. The most common situation is the use of the trivial predictor $Y_{1,0} = x_0$, for which $\Phi_0(\emptyset) \equiv 1$ and $\Phi_0(\tau) \equiv 0$ otherwise.

We are now ready to study each of the iteration schemes, which differ only in the choice of J_k in (7). In each case, we will first find the recurrence formula for $\Phi_k(\tau)$. From this we define a growth function $g(\tau)$:

Definition 3.1 (Growth function). A growth function $g : T \rightarrow \mathbb{N}$ is a function satisfying

$$\Phi_k(\tau) = \Phi(\tau) \quad \forall \tau \in T \text{ with } g(\tau) \leq k$$

$$\Rightarrow \quad \Phi_{k+1}(\tau) = \Phi(\tau) \quad \forall \tau \in T \text{ with } g(\tau) \leq k + 1,$$

for all $k \geq 0$.

This result should be sharp in the sense that in general there exists $\tau \neq \emptyset$ with $\Phi_0(\tau) \neq \Phi(\tau)$ and $\Phi_k(\tau) \neq \Phi(\tau)$ when $k < g(\tau)$. From Lemma 2.1 we also have

$$f(Y_{1,k}) = \sum_{u \in U_f^k} \beta(u) \cdot \psi_{\Phi_k}(u) \cdot G(u)(x_0)$$

with

$$\psi_{\Phi_k}([\emptyset]) \equiv 1, \quad \psi_{\Phi_k}(u = [\tau_1, \ldots, \tau_k]) = \prod_{j=1}^{k} \Phi_k(\tau_j),$$

where $\beta(u)$ and $G(u)(x_0)$ are given in Lemma 2.1. This implies

$$\psi_{\Phi_k}(u) = \psi_{\Phi(\tau)} \quad \forall u = [\tau_1, \ldots, \tau_k] \in U_f \text{ with } g'(u) = \max_{j=1}^k g(\tau_j) \leq k.$$

As we will see, the growth functions give a precise description of the development of the iterations. However, to get applicable results we will at the end need the relation between the growth functions and the order. These aspects are discussed in the next section. Examples of trees and the values of the growth functions for the three iteration schemes are given in Figure 3.

3.1. The simple iteration

Simple iterations are described by (7) with $J_k = 0$, that is

$$Y_{n+1,k+1} = B(\Phi_{ex}, Y_n, h) + B(\Phi_{im}, Y_{n+1,k}, h).$$

By Theorem 2.1 we easily get the following lemma, where, as in the following, all results are valid for all $l = 0, \ldots, m$:

Lemma 3.1. If $Y_{1,0} = B(\Phi_0, x_0; h)$ then $Y_{1,k} = B(\Phi_k, x_0; h)$, where

$$\Phi_{k+1}(\emptyset) \equiv 1,$$

$$\Phi_{k+1}(\tau) = \Phi_{ex}(\tau) + (\Phi_k \circ \Phi_{im})(\tau).$$
The corresponding growth function is given by

\[h(\emptyset) = 0, \quad h(\bullet_i) = 1, \quad h([\tau_1, \ldots, \tau_k]) = 1 + \max_{j=1}^k h(\tau_j). \]

The function \(h(\tau) \) is the height of \(\tau \), that is the maximum number of nodes along one branch.

3.2. The modified Newton iteration. In this subsection we consider the modified Newton iteration

\[Y_{n+1,k+1} = B(\Phi_{\text{ex}}, Y_n; h) + B(\Phi_{\text{im}}, Y_{n+1,k}; h) \]
\[+ \partial_2 B(\Phi_{\text{im}}, Y_n; h)(Y_{n+1,k+1} - Y_{n+1,k}). \]

The B–series for \(Y_{1,k} \) and the corresponding growth function can now be described by the following lemma:

Lemma 3.2. If \(Y_{1,0} = B(\Phi_0, x_0; h) \) then \(Y_{1,k} = B(\Phi_k, x_0; h) \) with

\[\Phi_{k+1}(\emptyset) = 1, \]
\[\Phi_{k+1}(\tau) = \Phi_{\text{ex}}(\tau) + (\Phi_k \circ \Phi_{\text{im}})(\tau) + ((\Phi_{k+1} - \Phi_k) \ast \Phi_{\text{im}})(\tau). \]

The corresponding growth function is given by

\[r(\emptyset) = 0, \quad r(\bullet_i) = 1, \quad r([\tau_1, \ldots, \tau_k]) = \begin{cases} r(\tau_1) & \text{if } \kappa = 1, \\ 1 + \max_{j=1}^k r(\tau_j) & \text{if } \kappa \geq 2. \end{cases} \]

The function \(r(\tau) \) is one plus the maximum number of ramifications along any branch of the tree.

Proof. Theorem 2.1 and Lemma 2.2 imply (22). We next prove that \(r \) is the appropriate growth function. If \(r(\tau) = 0 \) then \(\tau = \emptyset \) and \(\Phi_{1,0}(\emptyset) = \Phi(\emptyset) \). Assume now that \(\Phi_k(\tau) = \Phi(\tau) \) \(\forall \tau \) with \(r(\tau) \leq k \). If \((\delta, \omega) \in \mathcal{ST}(\tau) \setminus \mathcal{SP}(\tau) \) with \(r(\tau) \leq k + 1 \), then \(\forall \omega \in h \) it holds \(r(\delta) \leq r(\tau) \) and therefore \(\Phi_{\delta}(\delta) = \Phi(\delta) \). So, by (22) we have \(\forall \tau \) with \(r(\tau) \leq k + 1 \)

\[\Phi_{k+1}(\tau) = \Phi_{\text{ex}}(\tau) + \sum_{(\delta, \omega) \in \mathcal{ST}(\tau) \setminus \mathcal{SP}(\tau)} \gamma(\tau, \delta, \omega) \cdot \Phi_{\text{im}}(\delta) \prod_{\delta \in \omega} \Phi(\delta) \]
\[+ \sum_{(\delta, \delta) \in \mathcal{SP}(\tau)} \gamma(\tau, \delta, \{ \delta \}) \cdot \Phi_{\text{im}}(\delta) \Phi_{k+1}(\delta), \]

and by induction on the number of nodes of these trees we obtain that \(\Phi_{k+1}(\tau) = \Phi(\tau) \) \(\forall \tau \) with \(r(\tau) \leq k + 1 \). \(\square \)

3.3. The full Newton iteration. In this subsection we consider the full Newton iteration (7) with \(J_k = \partial_2 B(\Phi_{\text{im}}, Y_{1,k}; h) \). Extending the *-operator to the case when its first operand does not vanish on the empty tree by

\[(\phi_k \ast \phi_k)(\tau) = ((\phi_k - \phi_k(\emptyset) e) \ast \phi_k)(\tau) + \phi_k(\emptyset) \phi_k(\tau), \]

it follows that the B–series for \(Y_{1,k} \) and the corresponding growth function satisfy:

Lemma 3.3. If \(Y_{1,0} = B(\Phi_0, x_0; h) \) then \(Y_{1,k+1} = B(\Phi_{k+1}, x_0; h) \) with

\[\Phi_{k+1}(\emptyset) = 1, \]
\[\Phi_{k+1}(\tau) = \Phi_{\text{ex}}(\tau) + (\Phi_k \circ ((\Phi_{k+1}^{-1} \circ \Phi_{k+1}) \ast \Phi_{\text{im}}))(\tau). \]
The corresponding growth function is given by
\[\mathfrak{d} (\emptyset) = 0, \quad \mathfrak{d} (e_j) = 1, \]
\[\mathfrak{d} (\tau = [\tau_1, \ldots, \tau_k]) = \begin{cases} \max_{j=1}^k \mathfrak{d} (\tau_j) & \text{if } \gamma = 1, \\ \max_{j=1}^k \mathfrak{d} (\tau_j) + 1 & \text{if } \gamma \geq 2, \end{cases} \]
where \(\gamma \) is the number of trees in \(\tau_1, \ldots, \tau_k \) satisfying \(\mathfrak{d} (\tau_i) = \max_{j=1}^k \mathfrak{d} (\tau_j) \).

The function \(\mathfrak{d} \) is called the doubling index of \(\tau \).

Proof. Writing the iterations in terms of B-series, we get
\[B(\Phi_{k+1}, x_0; h) = B(\Phi_{ex}, x_0; h) + B(\Phi_{im}, Y_{1,k}; h) + \partial_2 B(\Phi_{im}, Y_{1,k}; h) B(\Delta \Phi_k, x_0; h) \]
with \(\Delta \Phi_k (\tau) = \Phi_{k+1} (\tau) - \Phi_k (\tau) \). Let \(x_0 = B(\Phi_k^{-1}, Y_{1,k}; h) \) so that
\[B(\Delta \Phi_k, x_0; h) = B(\Delta \Phi_k, B(\Phi_k^{-1}, Y_{1,k}; h); h) = B(\Phi_k^{-1} \circ \Delta \Phi_k, Y_{1,k}; h). \]
The use of Lemma 2.2 followed by the use of Theorem 2.1 give the following result:
\[\partial_2 B(\Phi_{im}, Y_{1,k}; h) B(\Phi_k^{-1} \circ \Delta \Phi_k, Y_{1,k}; h) = B((\Phi_k^{-1} \circ \Delta \Phi_k) \ast \Phi_{im}, Y_{1,k}; h) \]
\[= B(\Phi_k \circ ((\Phi_k^{-1} \circ \Delta \Phi_k) \ast \Phi_{im}), x_0; h). \]
The operator \(\ast \) is bilinear and \(\circ \) is linear from the right, thus
\[\Phi_k \circ ((\Phi_k^{-1} \circ \Delta \Phi_k) \ast \Phi_{im}) = \Phi_k \circ ((\Phi_k^{-1} \circ \Phi_{k+1}) \ast \Phi_{im}) - \Phi_k \circ \Phi_{im} \]
and the first part of the theorem is proven by (24). We will now prove the second part. Assume that \(\Phi_k (\tau) = \Phi_{k+1} (\tau) = \Phi (\tau) \) for all \(\tau \) satisfying \(\mathfrak{d} (\tau) \leq k \). This is true for \(k = 0 \) and \(\tau = \emptyset \). Let \(\Psi_k = \Phi_k^{-1} \circ \Phi_{k+1} \) and notice that by the assumption above, \(\Psi_k (\tau) \) equals the unit element \(e(\tau) \) if \(\mathfrak{d} (\tau) \leq k \). Consider a tree \(\tau \) where \(\mathfrak{d} (\tau) = k + 1 \). For this tree we obtain
\[(\Psi_k \circ \Phi_{im})(\tau) = \sum_{(\emptyset, \{ \emptyset \}) \in ST(\tau)} \gamma (\tau, \emptyset, \{ \emptyset \}) \Phi_{im} (\emptyset) \Psi_k (\emptyset) \]
\[+ \sum_{(\emptyset, \omega) \in ST(\tau) \setminus ST(\{ \emptyset \})} \gamma (\tau, \emptyset, \omega) \Phi_{im} (\emptyset) \prod_{\delta \in \omega} \Psi_k (\delta) = (\Psi_k \ast \Phi_{im})(\tau) \]
(25) since the last sum of (25) disappears: For each \((\emptyset, \omega) \in ST(\tau) \setminus ST(\{ \emptyset \}) \) (if any) there is at least one \(\emptyset \in \omega \) satisfying \(\mathfrak{d} (\emptyset) \leq k \) and thereby \(\Psi_k (\emptyset) = 0 \). In this case we obtain
\[(\Phi_k \circ ((\Phi_k^{-1} \circ \Phi_{k+1}) \ast \Phi_{im}) (\tau) = (\Phi_k \circ \Phi_k^{-1} \circ \Phi_{k+1} \circ \Phi_{im}) (\tau) = (\Phi_{k+1} \circ \Phi_{im}) (\tau) \]
by (11), so that
\[\Phi_{k+1} (\tau) = \Phi_{ex} (\tau) + (\Phi_{k+1} \circ \Phi_{im}) (\tau). \]
The theorem is completed by induction on the number of nodes of \(\tau \) and on \(k \).

4. General convergence results for iterated methods

Now we will relate the results of the previous section to the order of the overall scheme. We have weak consistency of order \(p \) if and only if
\[E \psi_\Phi (u)(h) = E \psi_\Phi (u)(h) + O(h^{p+1}) \quad \forall u \in U_f \text{ with } \rho (u) \leq p + \frac{1}{2}, \]
and mean square global order \(p \) if [4]
\[\Phi (\tau)(h) = \Phi (\tau)(h) + O(h^{p+1}) \quad \forall \tau \in T \text{ with } \rho (\tau) \leq p, \]
\[E \Phi (\tau)(h) = E \Phi (\tau)(h) + O(h^{p+1}) \quad \forall \tau \in T \text{ with } \rho (\tau) \leq p + \frac{1}{2}. \]
and all elementary differentials \(F(\tau) \) fulfill a linear growth condition. Instead of the last requirement it is also enough to claim that there exists a constant \(C \) such that \(\|g_j'(y)\| \leq C \) \(\forall y \in \mathbb{R}^m, j = 0, \ldots, M, \) and all necessary partial derivatives exist [3].

Then, the order of the iterated solution after \(k \) iterations is \(q_k \) if

\[
(27) \quad E \psi_{\Phi_k}(u) = E \psi_{\Phi}(u) \quad \forall u \in U_f \text{ with } \rho(u) \leq q_k + \frac{1}{2}
\]

in the weak convergence case respectively

\[
(28) \quad E \Phi_k(\tau) = \Phi(\tau) \quad \forall \tau \in T \text{ with } \rho(\tau) \leq q_k,
\]

\[
E \Phi_k(\tau) = E \Phi(\tau) \quad \forall \tau \in T \text{ with } \rho(\tau) = q_k + \frac{1}{2}
\]

in the mean square convergence case.

In the following, we assume that the predictors satisfy the condition

\[
(29) \quad \Phi_0(\tau) = \Phi(\tau) \quad \forall \tau \in T \text{ with } \rho(\tau) \leq \mathcal{G}_0,
\]

where \(\mathcal{G}_0 \) is chosen as large as possible. In particular, the trivial predictor satisfies \(\mathcal{G}_0 = 0 \).

It follows from (18) and (19) that

\[
(30) \quad \Phi_k(\tau) = \Phi(\tau) \quad \forall \tau \in T \text{ with } \rho(\tau) \leq \mathcal{G}_0 + k,
\]

as well as

\[
(31) \quad \psi_{\Phi_k}(u) = \psi_{\Phi}(u) \quad \forall u \in U_f \text{ with } \rho'(u) \leq \mathcal{G}_0 + k.
\]

The next step is to establish the relation between the order and the growth function of a tree. We have chosen to do so by a maximum growth function, given by

\[
(32) \quad \mathcal{G}(q) = \max_{\tau \in T} \{ \rho(\tau) : \rho(\tau) \leq q \} = \max_{u \in U_f} \{ \rho'(u) : \rho(u) \leq q \}.
\]

With this definition, by (31) respectively (30), the conditions (27) respectively (28) are fulfilled for all \(u \) of order \(\rho(u) \leq \min(q_k, p) \) respectively all \(\tau \) of order \(\rho(\tau) \leq \min(q_k, p) \) if

\[
(33) \quad \mathcal{G}(q_k + \frac{1}{2}) \leq \mathcal{G}_0 + k.
\]

Let \(T^S \subset T \) and \(U_f^S \subset U_f \) be the set of trees with an even number of each kind of stochastic nodes. E. g. from [9] we have

\[
(34) \quad E \psi_{\Phi}(u) = 0 \quad \text{if} \quad u \notin U_f^S.
\]

Thus, if the method is as usual constructed such that also \(\forall m, n \in \mathbb{N} \) and \(\forall \tau_{1,i} \in T, i = 1, \ldots, m, \forall \tau_{2,j} \in T, j = 1, \ldots, n, \)

\[
(35) \quad E \left(\prod_{i=1}^{m} \prod_{j=1}^{n} \Phi_{\tau_{1,i}}(\tau_{1,i}) \Phi_{\tau_{2,j}}(\tau_{2,j}) \right) = 0 \quad \text{if} \quad \sum_{i=1}^{m} \rho(\tau_{1,i}) + \sum_{j=1}^{n} \rho(\tau_{2,j}) \notin \mathbb{N},
\]

then in (33) \(q_k + \frac{1}{2} \) can be replaced by \(\lfloor q_k + \frac{1}{2} \rfloor \).

The results can then be summarized in the following theorem:

Theorem 4.1. If (35) is fulfilled, then the iterated method is of weak respectively mean square order \(q_k \leq p \) after \(\mathcal{G}(\lfloor q_k + \frac{1}{2} \rfloor) - \mathcal{G}_0 \) iterations, otherwise after \(\mathcal{G}(q_k + \frac{1}{2}) - \mathcal{G}_0 \) iterations.
follows immediately that the results are proved for \(g(\tau) = 3 \). The sets \(\mathcal{T}_{0,3} \) consist of all such trees with only stochastic nodes.

Our next aim is to give explicit formulas for the maximum growth function. Let us start with the following lemma.

Lemma 4.1. For \(k \geq 1 \),

\[
\begin{align*}
 h(\tau) &= k \quad \Rightarrow \quad \rho(\tau) \geq \frac{k}{2} , \\
 v(\tau) &= k \quad \Rightarrow \quad \rho(\tau) \geq k - \frac{1}{2} , \\
 d(\tau) &= k \quad \Rightarrow \quad \rho(\tau) \geq 2^{k-1} - \frac{1}{2} .
\end{align*}
\]

The same result is valid for \(h'(u), v'(u), \) and \(d'(u) \).

Proof. Let \(\mathcal{T}_{h,k}, \mathcal{T}_{r,k}, \) and \(\mathcal{T}_{b,k} \) be sets of trees of minimal order satisfying \(h(\tau) = k \quad \forall \tau \in \mathcal{T}_{h,k}, \quad v(\tau) = k \quad \forall \tau \in \mathcal{T}_{r,k}, \) and \(d(\tau) = k \quad \forall \tau \in \mathcal{T}_{b,k} \) (see Figure 4), and denote this minimal order by \(\rho_{h,k}, \rho_{r,k}, \) and \(\rho_{b,k} \). Minimal order trees are build up only by stochastic nodes. It follows immediately that \(\mathcal{T}_{h,1} = \mathcal{T}_{r,1} = \mathcal{T}_{b,1} = \{ \bullet : l \geq 1 \} \). Since \(\rho(\bullet) = 1/2 \) for \(l \geq 1 \), the results are proved for \(k = 1 \). It is easy to show by induction on \(k \) that

\[
\begin{align*}
 \mathcal{T}_{h,k} &= \{ [\tau]_1 : \quad \tau \in \mathcal{T}_{h,k-1}, \ l \geq 1 \} , \\
 \rho_{h,k} &= \rho_{h,k-1} + \frac{1}{2} = \frac{k}{2} , \\
 \mathcal{T}_{r,k} &= \{ [\bullet]_1, \tau_1, \tau_2 : \quad \tau \in \mathcal{T}_{r,k-1}, \ l_1, l_2 \geq 1 \} , \\
 \rho_{r,k} &= \rho_{r,k-1} + 1 = k - \frac{1}{2} , \\
 \mathcal{T}_{b,k} &= \{ [\tau_1, \tau_2]_1 : \quad \tau_1, \tau_2 \in \mathcal{T}_{b,k-1}, \ l \geq 1 \} , \\
 \rho_{b,k} &= 2 \rho_{b,k-1} + \frac{1}{2} = 2^{k-1} - \frac{1}{2} .
\end{align*}
\]

For each \(g \) being either \(h, v, \) or \(d \), the minimal order trees satisfying \(g'(u_{b,k}) = k \) are \(u_{b,k} = [\tau_{b,k}]_f \) with \(\tau_{b,k} \in \mathcal{T}_{b,k} \), which are of order \(\rho(\tau_{b,k}) \). \(\Box \)

Now we can prove the following corollary.

Corollary 4.1. For \(q \geq \frac{1}{2} \) we have

\[
\mathcal{G}(q) = \begin{cases}
 2q & \text{for simple iterations}, \\
 \lfloor q + \frac{1}{2} \rfloor & \text{for modified Newton iterations}, \\
 \lfloor \log_2(q + \frac{1}{2}) \rfloor + 1 & \text{for full Newton iterations}.
\end{cases}
\]

Proof. The minimal order trees are also the maximum height / ramification number / doubling index trees, in the sense that as long as \(\rho(\tau_{b,k}) \leq q < \rho(\tau_{b,k+1}) \) there are no trees of order \(q \) for which the growth function can exceed \(k \). \(\Box \)

For some methods, these results can be refined. We call a method semi-implicit, if \(\Phi_{in}(\tau) \equiv 0 \quad \forall \tau \notin T_0 \) (remember that \(T_0 \) is the set of trees with a deterministic root). Then, by Lemmas 3.1, 3.2, and 3.3 we obtain the following lemma:
Lemma 4.2. For semi-implicit methods, the corresponding growth functions are given by

\[
\begin{align*}
\mathcal{h}_a(\theta) &= 0, \quad \mathcal{h}_a([\tau_1, \ldots, \tau_\kappa]) = \begin{cases} 1 & \text{if } l > 0, \\ 1 + \max_{j=1}^\kappa \mathcal{h}_a(\tau_j) & \text{if } l = 0, \end{cases} \\
\mathcal{r}_a(\theta) &= 0, \quad \mathcal{r}_a(\bullet_i) = 1, \quad \mathcal{r}_a(\tau = [\tau_1, \ldots, \tau_\kappa]) = \begin{cases} 1 & \text{if } l > 0, \\ \mathcal{r}_a(\tau_1) & \text{if } l = 0, \kappa = 1, \\ 1 + \max_{j=1}^\kappa \mathcal{r}_a(\tau_j) & \text{if } l = 0, \kappa \geq 2, \end{cases} \\
\mathcal{d}_a(\theta) &= 0, \quad \mathcal{d}_a(\bullet_i) = 1, \quad \mathcal{d}_a(\tau = [\tau_1, \ldots, \tau_\kappa]) = \begin{cases} 1 & \text{if } l > 0, \\ \max_{j=1}^\kappa \mathcal{d}_a(\tau_j) & \text{if } l = 0, \gamma = 1, \\ \max_{j=1}^\kappa \mathcal{d}_a(\tau_j) + 1 & \text{if } l = 0, \gamma \geq 2, \end{cases}
\end{align*}
\]

where \(\gamma\) is the number of trees in \(\tau_1, \ldots, \tau_\kappa\) satisfying \(\mathcal{d}_a(\tau_i) = \max_{j=1}^\kappa \mathcal{d}_a(\tau_j)\).

This implies immediately:

Lemma 4.3. For \(k \geq 1\),

\[
\begin{align*}
\mathcal{h}_a(\tau) &= k \quad \Rightarrow \quad \rho(\tau) \geq k - \frac{1}{2}, \\
\mathcal{r}_a(\tau) &= k \quad \Rightarrow \quad \rho(\tau) \geq \frac{3}{2}k - 1, \\
\mathcal{d}_a(\tau) &= k \quad \Rightarrow \quad \rho(\tau) \geq \frac{3}{2}k - 1.
\end{align*}
\]

The same result is valid for \(\mathcal{h}_a'(u), \mathcal{r}_a'(u),\) and \(\mathcal{d}_a'(u)\).

Corollary 4.2. For semi-implicit methods we have for \(q \geq \frac{1}{2}\)

\[
\mathcal{G}(q) = \begin{cases} \lfloor q + \frac{1}{2} \rfloor & \text{for simple iterations}, \\ \lfloor \frac{2}{3} (q + 1) \rfloor & \text{for modified Newton iterations}, \\ \lfloor \log_2 \frac{q+1}{3} \rfloor + 2 & \text{for full Newton iterations}. \end{cases}
\]

For the trivial predictor, Table 2 gives the number of iterations needed to achieve a certain order of convergence, both in the general and in the semi-implicit case.

\(p\)	simple iter.	mod. iter.	full iter.
\(\frac{1}{2}\)	2 (1)	1	1
1	2 (1)	1	1
1\(\frac{1}{2}\)	4 (2)	2	2
2	4 (2)	2	2
2\(\frac{1}{2}\)	6 (3)	3 (2)	2
3	6 (3)	3 (2)	2

Table 2. Number of iterations needed to achieve order \(p\) when using the simple, modified or full Newton iteration scheme in the Itô and Stratonovich case for strong or weak approximation, provided (35) is fulfilled. In parentheses, the numbers for semi-implicit methods are given.
For the sake of completeness, we also give the corresponding results for (deterministic)
Taylor methods applied to deterministic problems. Note that in this case, (35) is automatically
fulfilled.

Lemma 4.4. Suppose that the considered problem is purely deterministic, i.e. \(m = 0 \) in
(3). Then, for \(k \geq 1 \),
\[
\begin{align*}
 \mathfrak{h}(\tau) &= k \quad \Rightarrow \quad \rho(\tau) \geq k, \\
 \mathfrak{r}(\tau) &= k \quad \Rightarrow \quad \rho(\tau) \geq 2k - 1, \\
 \mathfrak{d}(\tau) &= k \quad \Rightarrow \quad \rho(\tau) \geq 2^k - 1.
\end{align*}
\]

The same result is valid for \(\mathfrak{h}'(u), \mathfrak{r}'(u), \) and \(\mathfrak{d}'(u) \).

Corollary 4.3. For deterministic problems, we have for \(q \in \mathbb{N}, q \geq 1 \)
\[
G(q) = \begin{cases} q & \text{for simple iterations,} \\
\left\lfloor \frac{q+1}{2} \right\rfloor & \text{for modified Newton iterations,} \\
\left\lfloor \log_2(q+1) \right\rfloor & \text{for full Newton iterations.}
\end{cases}
\]

5. **Numerical Examples**

In the following, we analyze numerically the order of convergence of several stochastic
Taylor methods in dependence on the kind and number of iterations.

As first examples, we apply the semi-implicit Milstein method [15], denoted by SIM
and given by (6), the implicit Milstein-Taylor method [17], denoted by IM and given by
\[
Y_{n+1} = Y_n + h g_0(Y_{n+1}) + I_{(1)} g_1(Y_{n+1}) - (I_{(1,1)} + h)[g' g_1](Y_{n+1}),
\]
both of strong order 1.0, and the semi-implicit strong order 1.5 Taylor method due to
Kloeden and Platen [15, 17], denoted by SIKP and given by
\[
Y_{n+1} = Y_n + h g_0(Y_{n+1}) + I_{(1)} g_1(Y_n) + I_{(1,1)} g' g_1(Y_n) - I_{(0,1)} g_0 g_1(Y_n)
- \frac{1}{2} h^2 g''_0 g_0 + \frac{1}{2} h^2 g''_1 g_1(Y_{n+1}) + I_{(0,1)} g' g_1(Y_n)
+ I_{(1,1)} g' g_1(Y_n),
\]
to the non-linear SDE [15]
\[
dX(t) = \left(\frac{1}{2}X(t) + \sqrt{X(t)^2 + 1} \right) dt + \sqrt{X(t)^2 + 1} dW(t), \quad X(0) = 0,
\]
on the time interval \(t = [0, 1] \) with the solution \(X(t) = \sinh(t + W(t)) \). With each method,
the solution is approximated with step sizes \(2^{-11}, \ldots, 2^{-15} \) and the sample average of
\(M = 4000 \) independent simulated realizations of the absolute error is calculated in order to
estimate the expectation.

The results at time \(t = 1 \) are presented in Figure 5, where the orders of convergence
are approximated with step sizes 2

As predicted by Table 2 we observe strong
order 1.0 for one simple or one (modified) Newton iteration of the semi-implicit Milstein
method; and no convergence for one simple iteration but strong order 1.0 for two simple or
one (modified) Newton iteration of the implicit Milstein-Taylor method. The semi-implicit
strong order 1.5 Taylor method yields strong order 1.0 for one and strong order 1.5 for two
simple or modified Newton iterations.
Next, we apply the semi-implicit weak order two Taylor scheme due to Platen [15], denoted by SIW and given by

\[Y_{n+1} = Y_n + h g_0(Y_{n+1}) + I_{1(1)} g_1(Y_n) + I_{1(1)} [g'_1 g_1](Y_n) \]

\[+ \frac{1}{2} I_{1(1)} h [\Delta g_1(Y_{n+1}) + \frac{1}{2} g'_1 g_1(Y_n)] + \frac{1}{2} h^2 g''_1 g_1(Y_n) + \frac{1}{2} h^2 g''_1 g_1(Y_{n+1}) + \frac{1}{2} h^2 g''_1 g_1(Y_{n+1}) + \frac{1}{2} h^2 g''_1 g_1(Y_n) \]

to SDE (37). Here, we choose as functional \(f(x) = p(\text{arsinh}(x)) \), where \(p(z) = z^3 - 3z + 2z \) is a polynomial. Then the expectation of the solution can be calculated as

\[E(f(X(t))) = t^3 - 3t^2 + 2t \]

The solution \(E(f(X(t))) \) is approximated with step sizes \(2^{-3}, \ldots, 2^{-6} \) and \(M = 4 \cdot 10^9 \) simulations are performed in order to determine the systematic error of SIW at time \(t = 1 \).

The results with one or two simple or modified Newton iteration steps are presented in Figure 6. According to Table 2 we expect approximation order one for one iteration and order two for two iterations, which is approved by Figure 6. Finally, we apply the fully implicit strong order 1.5 Taylor scheme given in [8].
\begin{align*}
 dX_1(t) &= \left(\frac{1}{2} X_1(t) + \sqrt{X_1(t)^2 + X_2(t)^2 + 1} \right) dt + \left(\sin(X_1(t)) + 2 \sin(X_2(t)) \right) dW(t), \\
 dX_2(t) &= \left(\frac{1}{2} X_1(t) + \sqrt{X_2(t)^2 + 1} \right) dt + \left(\cos(X_1(t)) + 3 \cos(X_2(t)) \right) dW(t),
\end{align*}

\begin{equation}
X_1(0) = 0, \quad X_2(0) = 0,
\end{equation}

again on the time interval $I = [0, 1]$. The solution is approximated with step sizes $2^{-11}, \ldots, 2^{-15}$ and the sample average of $M = 4000$ independent simulated realizations of the absolute error is calculated in order to estimate the expectation. As here we do not know the exact solution, to approximate it we use SIKP with two simple iterations and a step size ten times smaller than the actual step size.

The numerical results at $t = 1$ are presented in Figure 7. Again, the orders expected according to Table 2 are confirmed.

\section{Conclusion}

For stochastic implicit Taylor methods that use an iterative scheme to approximate the solution, we derived stochastic B–series and corresponding growth functions. From these, we deduced convergence results based on the order of the underlying Taylor method, the choice of the iteration method, the predictor, and the number of iterations, for Itô and Stratonovich SDEs, and for weak as well as strong convergence. The convergence results are confirmed by numerical experiments. From a practical point of view, this theory might lead to the construction of more efficient numerical schemes for SDEs. But we also like to point out that the similarities of the iteration dependent growth functions q for a range of problems (ODEs, DAEs, and SDEs) and underlying methods (Runge–Kutta methods, implicit Taylor methods) indicate an underlying structure that could well be investigated in a more general fashion. In spite of this, the number of iterations needed to obtain the order of the underlying implicit Taylor method does not depend on whether the SDE is of Itô or
Stratonovich type. This is in contrast to the results obtained for Runge–Kutta methods for SDEs, for which usually less iterations are needed in the Stratonovich case [7]. The reason for this is that in the latter case certain error terms have vanishing expectation even if they do not vanish themselves. This is not the situation for implicit Taylor methods.

7. Acknowledgement

We thank Professor Martin Arnold and Professor Rüdiger Weiner at the Arbeitsgruppe Numerische Mathematik, Martin-Luther-Universität Halle-Wittenberg, for their kind support during the final stage of this work.

References

[1] Barrio, R.: Performance of the Taylor series method for ODEs/DAEs. Appl. Math. Comput. 163(2), 525–545 (2005). DOI 10.1016/j.amc.2004.02.015

[2] Burrage, K., Burrage, P.M.: High strong order explicit Runge–Kutta methods for stochastic ordinary differential equations. Appl. Numer. Math. 22(1-3), 81–101 (1996). DOI 10.1016/S0168-9274(96)00027-X. Special issue celebrating the centenary of Runge-Kutta methods

[3] Burrage, K., Burrage, P.M.: Order conditions of stochastic Runge–Kutta methods by B-series. SIAM J. Numer. Anal. 38(5), 1626–1646 (electronic) (2000). DOI 10.1137/S0036142999363206

[4] Burrage, K., Tian, T.: Implicit stochastic Runge–Kutta methods for stochastic differential equations. BIT 44(1), 21–39 (2004). DOI 10.1023/B:BITN.0000025089.50729.0f

[5] Burrage, P.M.: Runge–Kutta methods for stochastic differential equations. Ph.D. thesis, The University of Queensland, Brisbane (1999)

[6] Butcher, J.: An algebraic theory of integration methods. Math. Comput. 26, 79–106 (1972). DOI 10.2307/2004720

[7] Debrabant, K., Kværnø, A.: B-series analysis of stochastic Runge-Kutta methods that use an iterative scheme to compute their internal stage values. SIAM J. Numer. Anal. 47(1), 181–203 (2008/09). DOI 10.1137/070704307

[8] Debrabant, K., Kværnø, A.: Composition of stochastic B-series with applications to implicit Taylor methods. Preprint Numerics 1/2010, Norwegian University of Science and Technology, Trondheim (2010). URL http://www.math.ntnu.no/preprint/numerics/2010/N1-2010.pdf

[9] Debrabant, K., Kværnø, A.: Stochastic Taylor expansions: Weight functions of B-series expressed as multiple integrals. Stoch. Anal. Appl. 28(2), 293–302 (2010). DOI 10.1080/07362990903546504
[10] Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration, *Springer Series in Computational Mathematics*, vol. 31. Springer-Verlag, Berlin (2002)

[11] Hairer, E., Wanner, G.: On the Butcher group and general multi-value methods. Computing (Arch. Elektron. Rechnen) **13**(1), 1–15 (1974)

[12] Higham, D.J.: Mean-square and asymptotic stability of the stochastic theta method. SIAM J. Numer. Anal. **38**(3), 753–769 (electronic) (2000). DOI 10.1137/S003614299834736X

[13] Jackson, K.R., Kværnø, A., Nørsett, S.P.: The use of Butcher series in the analysis of Newton-like iterations in Runge–Kutta formulas. Appl. Numer. Math. **15**(3), 341–356 (1994). DOI 10.1016/0168-9274(94)00031-X. International Conference on Scientific Computation and Differential Equations (Auckland, 1993)

[14] Jackson, K.R., Kværnø, A., Nørsett, S.P.: An analysis of the order of Runge–Kutta methods that use an iterative scheme to compute their internal stage values. BIT **36**(4), 713–765 (1996). DOI 10.1007/BF01733789

[15] Kloeden, P.E., Platen, E.: Numerical solution of stochastic differential equations, *Applications of Mathematics*, vol. 21. 2 edn. Springer-Verlag, Berlin (1999)

[16] Rößler, A.: Rooted tree analysis for order conditions of stochastic Runge–Kutta methods for the weak approximation of stochastic differential equations. Stoch. Anal. Appl. **24**(1), 97–134 (2006). DOI 10.1080/07362990500397699

[17] Tian, T., Burrage, K.: Implicit Taylor methods for stiff stochastic differential equations. Appl. Numer. Math. **36**(1-2), 167–185 (2001). DOI 10.1016/S0168-9274(01)00034-4

(Kristian Debrabant) Technische Universität Darmstadt, Fachbereich Mathematik, Dolivostrasse 15, D-64293 Darmstadt, Germany

E-mail address: debrabant@mathematik.tu-darmstadt.de

(Anne Kværnø) Department of Mathematical Sciences, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

E-mail address: anne.kvarno@math.ntnu.no