Research Article

Investigation of IL-4, IL-10, and HVEM polymorphisms with esophageal squamous cell carcinoma: a case–control study involving 1929 participants

Shuchen Chen¹, Rui Cao¹, Chao Liu², Weifeng Tang¹ and Mingqiang Kang¹,³

¹Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China; ²Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China; ³Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian Province, China

Correspondence: Weifeng Tang (twf001001@126.com) or Mingqiang Kang (Mingqiang_Kang@126.com)

It is believed that an individual’s hereditary factors may be involved in the development of esophageal cancer (EC). The present study recruited 721 esophageal squamous cell carcinoma (ESCC) cases and 1208 controls and explored the roles of single nucleotide polymorphisms (SNPs) in the interleukin-4 (IL-4), IL-10, and herpesvirus entry mediator (HVEM) genes in contributing to ESCC risk. IL-4, IL-10, and HVEM SNPs were analyzed by employing an SNPscan method. After adjustment for body mass index (BMI), smoking, drinking, age and gender, we identified that the rs2070874 T>C locus in IL-4 gene decreased the risk of ESCC (CC vs. TT: \(P = 0.008 \); CC vs. TT/TC: \(P = 0.010 \)). After a stratified analysis, we suggested that the IL-4 rs2070874 T>C variants might be a protective factor for ESCC in male, ≥63 years old, never smoking, drinking and BMI < 24 kg/m² subgroups. In addition, we identified that the rs2243263 G>C polymorphism in IL-4 gene was a risk factor for ESCC development in the BMI ≥ 24 kg/m² subgroup (GC vs. GG: \(P = 0.030 \) and GC/CC vs. GG: \(P = 0.018 \)). We identified an association of the IL-4 rs2070874 T>C SNP with the decreased susceptibility of ESCC in stage I/II subgroup. Finally, we found an association of the IL-10 rs1800872 T>G SNP with a worse differentiation (TG vs. TT: \(P = 0.048 \) and GG/TG vs. TT: \(P = 0.032 \)). In conclusion, the findings indicate a potential importance of IL-4 rs2070874 T>C, IL-4 rs2243263 G>C and IL-10 rs1800872 T>G SNPs in the development of ESCC.

Introduction

In China, esophageal cancer (EC) is the fourth most frequently diagnosed form of malignant tumor in males and the fifth most commonly diagnosed form in females, approximately 320800 and 157200 cases occurred in 2015, respectively [1]. The incidence of EC in Eastern Asia is in the top five worldwide, including China. Esophageal squamous cell carcinoma (ESCC) is a major histological subtype, accounting for 90% of all EC cases. The complex interaction of economical and environmental conditions with individual’s hereditary factors may lead to EC development [2,3]. The etiology and development of EC is not fully understood, despite many investigations have payed close attention to the importance of immunity [4,5]. Recently, it was hypothesized that some important variants in immune-related genes may influence the susceptibility of ESCC.

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC By).
Interleukin-4 (IL-4), coded by the IL-4 gene, is an important regulator of the inflammation pathways. IL-4, a pleiotropic cytokine, may be correlated with survival and growth of lymphocytes [6]. IL-4 is produced by mast cell precursors and by the T-cell thymocyte populations. It is important for B-cell activation, proliferation and differentiation [7]. It is reported that IL-4 is necessary for producing immunoglobulin E and implicated in immune diseases. In the process of innate immune responses, IL-4 may activate M2 macrophage, and then play a specific role. It has anti-inflammatory effect, which is relevant to the development of ESCC. Recently, a number of studies have focused on the relationship of IL-4 with cancer development [8,9]. IL-4 single nucleotide polymorphisms (SNPs) have also been explored for an association with susceptibility to cancer [10–12]. The rs2070874 T>C, located in the 5'-UTR region of the IL-4 gene, is an important SNP in cancer development. Some meta-analyses have indicated that IL-4 rs2070874 may be associated with cancer development in Asian populations [13–15]. Kim et al. reported that IL-4 rs2070874 might affect the role of aspirin in regulating IL-4 expression [16]. Rs2243263 G>C polymorphism is an intron SNP of IL-4 gene. This intron SNP might play a role in splicing. Although the exact role of this intron SNP is unknown, the associations of IL-4 rs2243263 G>C SNP with the human disease have been explored. A previous study suggested that IL-4 rs2243263 was associated with the reverse seroconversion of Hepatitis B virus (HBV) [17]. This SNP was also studied for the relationship of the susceptibility to cancer. A previous report investigated the correlation of the IL-4 rs2243263 locus with colorectal cancer [18]. Although in this study, a null association was identified. However, Lan et al., in a large simple size study, found that the IL-4 rs2243263 G>C SNP might increase the susceptibility to non-Hodgkin lymphoma [19]. Currently, the associations of IL-4 the rs2070874 T>C, and rs2243263 G>C polymorphisms with ESCC development are unknown.

The IL-10 gene is located in chromosome 1q32.2. IL-10, another immune regulator, serves as an inhibitor of dendritic cells and macrophages [20], and inhibits the production of many inflammatory cytokines (e.g. tumor necrosis factor-α, IL-1, IL-6, IL-12, and others) [21]. IL-10 is a vital anti-inflammatory regulator. After IL-10 combines with its receptor (IL-10R), signal transducer and activator of transcription 3 is triggered, which plays a vital role in anti-apoptosis and proliferation [20]. An investigation found that the up-regulated mRNA expression of the IL-10 gene and higher serum levels of IL-10 were found among subjects who carried the rs1800896 G-allele [22]. The rs1800872 SNP, a promoter variant, could influence the level of IL-10 protein [23]. Some investigations have suggested that the IL-10 rs1800896 A>G (−1082) [24] and rs1800872 A>C (−592) [25] variants may influence the susceptibility to ESCC. Of late, a meta-analysis indicated that these IL-10 SNPs increased the risk of EC [26]. However, in this earlier meta-analysis, the sample size was very limited (1883 EC patients and 2857 controls included). The association of the IL-10 rs1800896 A>G and rs1800872 A>C polymorphisms with EC development should be further studied.

Herpesvirus entry mediator (HVEM), also known as TNFRSF14, plays a major role in the immune response [27–29]. HVEM has been found to be expressed in lymphoid cells, as well as in other cells. A previous study suggested that the HVEM/B- and lymphocyte attenuator/lymphotoxin/CD160 network in immune reaction to infection and inflammation could play a bidirectional regulatory role [30]. Several investigations have focused on the role of HVEM in cancer survival [31–33]. Zhu et al. reported that higher expression of HVEM may promote apoptosis and herald a good prognosis for bladder cancer patients [34]. Additionally, a previous study has indicated that HVEM is implicated in the development of breast cancer (BC) [35]. A SNP in the HVEM gene, the G to A of rs2234167 in the exon region, was found to influence the development of BC [36]. However, the association of HVEM rs2234167 G>A SNP with the expression of HVEM is unknown. Recently, Migita et al. found that HVEM is critical for both tumor survival and the escape of the host immune system in ESCC cases [37]. Thus, it could be a useful target for ESCC therapy. To date, investigation has not been performed to identify a relationship of the HVEM rs2234167 G>A polymorphism with ESCC susceptibility.

Therefore, in this investigation, the HVEM rs2234167, IL-4 rs2070874 and rs2243263, and IL-10 rs1800896 and rs1800872 polymorphisms were selected and investigated for their effect on ESCC development in a Chinese Han population.

Materials and methods

Subjects

Our case—control study was performed in Fujian Union Hospital (Fuzhou, China) and the No.1 People's Hospital of Zhenjiang City (Zhenjiang, China). This investigation was approved by Jiangsu University (registration ID: K-20160036-Y) and Fujian Medical University (registration ID: 2016-ZQN-25). Participants were recruited between February 2014 and April 2018. Our study included 721 ESCC cases and 1208 controls. These ESCC patients were histopathologically confirmed and were from 41 to 87 years old. Controls were cancer-free individuals from 40 to
87 years old. The controls were not related to any ESCC case. Using a pre-structured questionnaire, we collected epidemiological data from participants. The ESCC patients and normal controls signed consent forms.

DNA extraction and genotyping of HVEM rs2234167, IL-4 rs2070874, and rs2243263, and IL-10 rs1800896 and rs1800872 loci

We collected a blood sample (2 ml) from each participant. DNA was extracted carefully as described in a previous study [38]. Using an SNPscan™ assay (Genesky Biotechnologies Inc., Shanghai, China), we determined the genotypes of HVEM rs2234167, IL-4 rs2070874, and rs2243263, and IL-10 rs1800896 and rs1800872 polymorphisms. To confirm the accuracy of genotyping, 77 samples were selected and re-tested. The genotypes of HVEM rs2234167, IL-4 rs2070874, and rs2243263, and IL-10 rs1800896 and rs1800872 loci were re-analyzed by another technician. The genotypes of HVEM rs2234167, IL-4 rs2070874, and rs2243263, and IL-10 rs1800896 and rs1800872 SNPs were unchanged.

Statistical analysis

The difference in alcohol consumption, body mass index (BMI), gender, cigarette use, and age were tested by using χ² test. Mean age was calculated by using a Student’s t test. We used a Chi-square test (χ²) or Fisher’s exact test to determine whether the frequencies of HVEM rs2234167, IL-4 rs2070874, and rs2243263, and IL-10 rs1800896 and rs1800872 variants in ESCC cases and controls were different. A multivariate logistic regression analysis method was used to calculate the crude and adjusted odds ratios (ORs) and 95% confidence intervals (CIs) (SAS 9.4 software package; SAS Institute Inc., Cary, NC, U.S.A.). The relationship of HVEM rs2234167, IL-4 rs2070874, and rs2243263, and IL-10 rs1800896 and rs1800872 polymorphisms with ESCC development was determined by ORs and 95% CIs. The statistical significance of all analyses was P < 0.05 (two-sided). An internet-based Hardy–Weinberg equilibrium (HWE) test (http://ihg.gsf.de/cgi-bin/hw/hwa1.pl) was also harnessed to assess whether the distribution of HVEM rs2234167, IL-4 rs2070874, and rs2243263, and IL-10 rs1800896 and rs1800872 genotypes could represent the included population.

Results

Baseline characteristics

In total, 721 ESCC cases and 1208 controls were recruited (Table 1). Of these ESCC cases, 170 were females and 551 were males, average age was 62.59 ± 8.18 years. In the control group, there were 309 females and 899 males with an average age of 62.92 ± 8.94 years. There was no difference in terms of mean age (P = 0.413). The categorical variables, age and gender, were well-matched (P > 0.05). However, the distribution of other categorical variables (e.g. tobacco use, BMI, and drinking status) were significantly different (all P < 0.001). Among ESCC cases, there were 405 (56.17%) with lymphatic metastasis. The AJCC version 8.0 criteria (2018) was used to determine the ESCC stage; and 328 ESCC cases were stage I/II and 393 were stage III/IV. After genotyping the 1929 participants, the association of tobacco use, BMI, and drinking status) were significantly different (all P < 0.001).

The minor allele frequencies (MAFs) of HVEM rs2234167, IL-4 rs2070874, and rs2243263, and IL-10 rs1800896 and rs1800872 loci are shown in Table 2. They are similar to the data of Chinese population. As presented in Table 2, the HVEM rs2234167, IL-4 rs2070874, and rs2243263, and IL-10 rs1800896 and rs1800872 genotypes could represent the included population.

Relationship of HVEM rs2234167, IL-4 rs2070874, and rs2243263, and IL-10 rs1800896 and rs1800872 loci with ESCC

Table 3 shows the HVEM rs2234167, IL-4 rs2070874, and rs2243263, and IL-10 rs1800896 and rs1800872 genotypes. The frequencies of IL-4 rs2070874 TT, TC, and CC genotypes were 486 (67.88%), 214 (29.89%), and 16 (2.23%) in ESCC cases and 780 (64.95%), 371 (30.89%), and 50 (4.16%) in controls. When the reference was IL-4 rs2070874 TT genotype, we found the IL-4 rs2070874 CC genotype significantly decreased the risk of ESCC (P = 0.023). When the reference was IL-4 rs2070874 TT/TC genotype, the IL-4 rs2070874 CC genotype also significantly decreased the risk of ESCC (P = 0.028). Adjustment for BMI, smoking, drinking, age and gender, the decreased susceptibility was also identified (CC vs. TT: P = 0.008; CC vs. TT/TC: P = 0.010).

HVEM rs2234167, IL-4 rs2243263 and IL-10 rs1800896 and rs1800872 genotypes are shown in Table 3. Both crude and adjusted comparisons indicated that HVEM rs2234167, IL-4 rs2243263, and IL-10 rs1800896 and rs1800872 loci were not associated with the risk of ESCC (Table 4).
Table 1 Distribution of selected demographic variables and risk factors in ESCC cases and controls

Variable	Cases (n=721)	Controls (n=1208)	P^1
Age (years)	62.59 ± 8.18	62.92 ± 8.94	0.413
Age (years)			
<63	337	579	
≥63	384	629	0.613
Sex			0.325
Male	551	899	
Female	170	309	
Tobacco use			<0.001
Never	342	881	
Ever	379	327	
Alcohol use			<0.001
Never	502	1,046	
Ever	219	162	
BMI (kg/m²)			<0.001
<24	527	651	
≥24	194	557	
Lymph node status			
Positive	405		
Negative	316		
TMN stage			
I	143		
II	185		
III	307		
IV	86		
Grade			
G1	142		
G2	405		
G3	174		

Bold values are statistically significant (P<0.05). Abbreviation: TMN, tumor-lymph node-metastasis.

^1Two-sided χ^2 test and Student’s t test.

Table 2 Primary information for the included SNPs

Genotyped polymorphisms	HVEM rs2234167 G>A	IL-4 rs2070874 T>C	IL-4 rs2243263 G>C	IL-10 rs1800872 T>G	IL-10 rs1800896 T>C
Chromosome	1	5	5	1	1
Position_28	2562891	132674018	132677607	206773062	206773552
Region	3'-UTR	5'-UTR	intron,variant	5'-flanking	5'-flanking
MAF^1 in database (1000g- Chinese Han populotons)	0.058	0.228	0.072	0.286	0.048
MAF in our controls (n=1208)	0.036	0.196	0.065	0.324	0.060
P-value for HWE^2 test in our controls	0.239	0.484	0.593	0.825	0.871
% Genotyping value	99.38%	99.38%	99.27%	99.33%	99.22%

^1MAF.

^2HWE.

Additionally, a subgroup analysis was conducted by ESCC stage. We identified an association between IL-4 rs2070874 T>C SNP and the decreased susceptibility of ESCC in stage I/II subgroup (CC vs. TT: P=0.022; CC vs. TT/TC: P=0.025, Table 4). However, this association could not been identified for other SNPs.
Table 3 The frequencies of HVEM rs2234167, IL-4 rs2070874, rs2243263, and IL-10 rs1800896 and rs1800872 polymorphisms in different ESCC subgroups

Genotype	Overall cases (n=721)	Stage I/II patients (n=328)	Stage III/IV patients (n=393)	Controls (n=1208)						
	n	%	n	%	n	%	n	%	n	%
HVEM rs2234167 G>A										
GG	668	93.30	302	92.92	366	93.61	1,117	93.01		
GA	47	6.56	23	7.08	24	6.14	81	6.74		
AA	1	0.14	0	0.0	1	0.26	3	0.25		
A allele	49	3.42	23	3.54	26	3.32	87	3.62		
IL-4 rs2070874 T>C										
TT	486	67.88	223	68.62	263	67.26	780	64.95		
TC	214	29.89	96	29.54	118	29.19	371	30.89		
CC	16	2.23	6	1.85	10	2.56	50	4.16		
C allele	246	17.18	108	16.62	138	17.65	471	19.61		
IL-4 rs2243263 G>C										
GG	615	86.13	282	87.04	333	85.38	1,048	87.26		
GC	96	13.45	41	12.65	55	14.10	149	12.41		
CC	3	0.42	1	0.31	2	0.51	4	0.33		
C allele	102	7.14	43	6.64	59	7.56	157	6.54		
IL-10 rs1800872 T>G										
TT	349	48.81	161	49.54	188	48.21	550	45.80		
TG	301	42.10	136	41.85	165	42.31	523	43.55		
GG	65	9.09	28	8.62	37	9.44	128	10.65		
G allele	431	30.14	192	29.54	239	30.64	779	32.43		
IL-10 rs1800896 T>C										
TT	625	87.66	280	86.42	345	88.69	1,061	88.34		
TC	84	11.78	42	12.96	42	10.80	136	11.32		
CC	4	0.56	2	0.62	2	0.51	4	0.34		
C allele	92	6.45	46	7.10	46	9.81	144	6.00		

Relationship of HVEM rs2234167, IL-4 rs2070874, rs2243263, and IL-10 rs1800896 and rs1800872 loci with ESCC in stratified analyses

In a stratified analysis, the IL-4 rs2070874 genotypes are listed in Table 5. After an adjustment, we suggested that IL-4 rs2070874 C allele was a protective factor for ESCC in five subgroups (male subgroup: CC vs. TT: \(P = 0.028 \); CC vs. TT/TC: \(P = 0.031 \); ≥63 years old subgroup: CC vs. TT: \(P = 0.026 \); CC vs. TT/TC: \(P = 0.029 \); never smoking subgroup: CC vs. TT: \(P = 0.041 \); CC/TC vs. TT: \(P = 0.013 \) and TC vs. TT: \(P = 0.042 \); drinking subgroup: CC vs. TT: \(P = 0.025 \); CC vs. TT/TC: \(P = 0.024 \) and BMI < 24 kg/m² subgroup: CC vs. TT: \(P = 0.010 \); CC vs. TT/TC: \(P = 0.012 \)). In other subgroups, no association of IL-4 rs2070874 with ESCC risk was found (Table 5).

The IL-4 rs2243263 G>C genotypes in the stratified analysis are listed in Table 6. After adjustment, we identified that IL-4 rs2243263 G>C polymorphism was a risk factor for ESCC development in the BMI ≥ 24 kg/m² subgroup (GC vs. GG: \(P = 0.030 \) and GC/CC vs. GG: \(P = 0.018 \), Table 6).

In other stratified analyses, adjustment comparisons suggested that HVEM rs2234167, and IL-10 rs1800872 and rs1800896 loci did not confer a risk of ESCC (data not shown).

Association of HVEM rs2234167, IL-4 rs2070874, and rs2243263, and IL-10 rs1800896 and rs1800872 loci with lymphatic metastasis in ESCC cases

Among the 721 ESCC patients, 405 patients had lymphatic metastasis. As presented in Table 7, we found a null association of HVEM rs2234167, IL-4 rs2070874, rs2243263 and IL-10 rs1800896 and rs1800872 SNPs with different lymph node status.
Table 4 Logistic regression analyses of association of HVEM rs2234167, IL-4 rs2070874, rs2243263 and IL-10 rs1800896 and rs1800872 polymorphisms with risk of ESCC

Genotype	Overall patients (n=721) vs. controls	Stage I/II patients (n=328) vs. controls	Stage III/IV patients (n=393) vs. controls			
	Crude OR (95% CI)	Adjusted OR1 (95% CI)	Crude OR (95% CI)	Adjusted OR1 (95% CI)	Crude OR (95% CI)	Adjusted OR1 (95% CI)
HVEM rs2234167 G>A						
GA vs. GG	0.97 (0.67–1.41)	1.05 (0.65–1.70)	0.90 (0.57–1.45)	1.03 (0.63–1.69)	0.86 (0.57–1.34)	0.90 (0.57–1.45)
AA vs. GG	0.96 (0.66–1.38)	1.01 (0.63–1.63)	1.04 (0.61–1.63)	0.99 (0.57–1.44)	0.91 (0.57–1.44)	0.91 (0.57–1.44)
AA vs. GG/GA	0.56 (0.06–5.37)	0.56 (0.04–4.49)	0.56 (0.04–4.49)	0.56 (0.04–4.49)	0.56 (0.04–4.49)	0.56 (0.04–4.49)
IL-4 rs2070874 T>C						
TC vs. TT	0.93 (0.76–1.13)	0.93 (0.70–1.22)	0.94 (0.74–1.21)	0.95 (0.72–1.24)	0.95 (0.72–1.24)	0.95 (0.72–1.24)
CC vs. TT	0.51 (0.29–0.91)	0.42 (0.18–0.89)	0.59 (0.30–1.19)	0.52 (0.25–1.09)	0.52 (0.25–1.09)	0.52 (0.25–1.09)
TC/CC vs. TT	0.88 (0.72–1.07)	0.85 (0.65–1.10)	0.90 (0.71–1.15)	0.89 (0.69–1.16)	0.89 (0.69–1.16)	0.89 (0.69–1.16)
CC vs. TT/TC	0.53 (0.30–0.93)	0.43 (0.18–1.02)	0.60 (0.30–1.20)	0.53 (0.26–1.10)	0.53 (0.26–1.10)	0.53 (0.26–1.10)
IL-4 rs2243263 G>C						
GC vs. CC	1.10 (0.83–1.45)	1.02 (0.71–1.48)	1.16 (0.83–1.62)	1.03 (0.70–1.51)	1.03 (0.70–1.51)	1.03 (0.70–1.51)
CC vs. GG	1.28 (0.29–5.73)	0.93 (0.10–8.35)	1.57 (0.29–8.63)	0.84 (0.09–8.01)	0.84 (0.09–8.01)	0.84 (0.09–8.01)
GC/CC vs. GG	1.10 (0.84–1.45)	1.02 (0.71–1.47)	1.17 (0.84–1.63)	1.02 (0.70–1.49)	1.02 (0.70–1.49)	1.02 (0.70–1.49)
CC vs. GG/GC	1.26 (0.28–6.68)	0.93 (0.10–8.32)	1.54 (0.28–8.46)	0.83 (0.09–7.98)	0.83 (0.09–7.98)	0.83 (0.09–7.98)
IL-10 rs1800872 T>G						
TG vs. TT	0.91 (0.75–1.10)	0.89 (0.69–1.15)	0.92 (0.73–1.17)	0.90 (0.69–1.18)	0.90 (0.69–1.18)	0.90 (0.69–1.18)
GG vs. TT	0.80 (0.58–1.11)	0.75 (0.48–1.17)	0.92 (0.73–1.17)	0.80 (0.58–1.11)	0.80 (0.58–1.11)	0.80 (0.58–1.11)
GG/TG vs. TT	0.89 (0.74–1.07)	0.86 (0.67–1.10)	0.90 (0.72–1.14)	0.88 (0.68–1.13)	0.88 (0.68–1.13)	0.88 (0.68–1.13)
GC vs. TT/GC	0.84 (0.61–1.15)	0.79 (0.52–1.21)	0.88 (0.60–1.29)	0.79 (0.51–1.23)	0.79 (0.51–1.23)	0.79 (0.51–1.23)
IL-10 rs1800896 T>C						
TC vs. TT	1.05 (0.79–1.40)	1.17 (0.81–1.70)	0.95 (0.66–1.37)	0.90 (0.66–1.37)	0.90 (0.66–1.37)	0.90 (0.66–1.37)
CC vs. TT	1.70 (0.42–6.81)	1.71 (0.40–7.33)	1.63 (0.27–9.70)	1.71 (0.40–7.33)	1.71 (0.40–7.33)	1.71 (0.40–7.33)
TC/CC vs. TT	1.07 (0.80–1.42)	1.19 (0.83–1.71)	0.90 (0.61–1.33)	1.19 (0.82–1.73)	1.19 (0.82–1.73)	1.19 (0.82–1.73)
CC vs. TT/TC	1.69 (0.42–6.77)	1.68 (0.42–6.77)	1.65 (0.28–8.48)	1.68 (0.42–6.77)	1.68 (0.42–6.77)	1.68 (0.42–6.77)

1 Adjusted for age, sex, smoking status, alcohol use and BMI status. Bold values are statistically significant (P<0.05).
Table 5 Stratified analyses between IL-4 rs2070874 T>C polymorphism and CRC risk by sex, age, BMI, smoking status, and alcohol consumption

Variable	IL-4 rs2070874 T>C (case/control)	Adjusted OR\(^2\) (95% CI); \(P\)	
Sex			
Male	366/578	0.93 (0.73–1.20); 0.88 (0.69–1.22); 0.46 (0.23–0.93);	
	12/35	0.593	0.281
Female	120/202	0.94 (0.61–1.45); 0.86 (0.57–1.31); 0.44 (0.14–1.38);	
	4/15	0.785	0.489
Age (years)			
<63	164/292	0.94 (0.68–1.29); 0.89 (0.65–1.22); 0.51 (0.20–1.34);	
	84/143	0.681	0.465
≥63	322/488	0.91 (0.68–1.23); 0.84 (0.63–1.11); 0.42 (0.20–0.92);	
	130/228	0.546	0.220
Smoking status			
Never	246/564	0.74 (0.55–0.99); 0.70 (0.53–0.93); 0.45 (0.20–1.05);	
	87/276	0.41 (0.18–0.96); 0.40 (0.20–1.09); 0.46 (0.20–1.09);	
	7/34	0.177	0.404
Ever	240/216	1.26 (0.90–1.76); 1.15 (0.83–1.58); 0.46 (0.20–1.09);	
	127/95	0.116	0.404
Alcohol consumption			
Never	341/675	0.91 (0.71–1.16); 0.86 (0.68–1.09); 0.55 (0.29–1.06);	
	146/323	0.54 (0.28–1.103); 0.80 (0.209); 0.074	
	0.428	0.20 (0.05–0.82); 0.80 (0.55–1.39); 0.20 (0.05–0.81);	
	0.21 (1.19); 0.404	0.025	0.024
Ever	145/105	1.01 (0.62–1.63); 0.88 (0.55–1.39); 0.20 (0.05–0.81);	
	68/48	0.979	0.570
	3/8	0.025	0.024
BMI (kg/m\(^2\))			
<24	356/417	0.92 (0.70–1.20); 0.84 (0.65–1.08); 0.41 (0.20–0.82);	
	154/196	0.517	0.179
	12/32	0.80 (0.65–1.35); 0.90 (0.63–1.29); 0.60 (0.20–1.85);	
	0.719	0.40 (0.20–0.81); 0.573	0.576
≥24	130/363	0.94 (0.65–1.35); 0.80 (0.63–1.29); 0.60 (0.20–1.85);	
	60/175	0.59 (0.19–1.822); 0.573	0.576

\(^1\) For IL-4 rs2070874 T>C, the genotyping was successful in 716 (99.31%) CRC cases and 1201 (99.42%) controls.

\(^2\) Adjusted for multiple comparisons [age, sex, BMI, smoking status and alcohol consumption (besides stratified factors accordingly)] in a logistic regression model.

Bold values are statistically significant (\(P<0.05\)).

Association of HVEM rs2234167, IL-4 rs2070874, and rs2243263, and IL-10 rs1800896 and rs1800872 loci with tumor grade of ESCC cases

As presented in Table 1, 142 patients had well-differentiated tumors, 405 had moderately differentiated, tumors and 174 has poorly differentiated tumors. We found an association of the IL-10 rs1800872 T>G SNP with a worse differentiation (TG vs. TT: \(P=0.048\) and GG/TG vs. TT: \(P=0.032\), Table 8).

Discussion

Immunotherapy is altering how we comprehend malignancies and offers new methods to treat them. EC is a representative model of immune and inflammation-related cancer [39]. Recently, some studies indicated that the SNPs in inflammation and immune-related genes might influence the risk of EC [40,41]. In this study, we explored the role of immune-related gene SNPs (HVEM rs2234167, IL-4 rs2070874, and rs2243263, and IL-10 rs1800896 and rs1800872) to ESCC development. We observed that IL-4 rs2070874 T>C could decrease a risk to ESCC, even in the stage I/II subgroup. However, in BMI ≥ 24 kg/m\(^2\) subgroup, IL-4 rs2243263 G>C might increase the risk of ESCC. We also found an association of the IL-10 rs1800872 T>G SNP with a worse differentiation.

IL-4 is an important regulator of immune and inflammation pathways. Some reports have suggested that IL-4 levels are higher in untreated ESCC patients than in controls [42–44]. It is considered that IL-4 levels may be implicated in the development of ESCC. The IL-4 rs2070874 T>C polymorphism is a 3′-UTR SNP. In a high-risk gastric cancer (GC) region, a previous study suggested that rs2070874 C allele in the IL-4 gene might decrease the susceptibility to GC in a Chinese population [45]. Lu et al. reported that the rs2070874 C allele increased the risk of HCC in a male subgroup [46]. However, Chang et al. and Wang et al. found that the IL-4 rs2070874 polymorphism might not influence the susceptibility of cancer in Chinese population [47,48]. In this study, we included 1929 subjects and investigated the correlation of this SNP to ESCC susceptibility. We found that IL-4 rs2070874 T>C polymorphism...
seemed to be a protective factor for ESCC development. Our findings were similar to a previous meta-analysis that suggested that the *IL-4* rs2070874 C allele could be associated with a decreased susceptibility of gastrointestinal cancer [14]. A functional study indicated that the *IL-4* rs2070874 allele C could promote a higher level of IL-4 in plasma [49]. *IL-4* has an anti-inflammatory effect and may decrease the risk of ESCC by inhibiting the inflammation. FitzGerald et al. reported that the *IL-4* rs2070874 allele C could decrease the risk of prostate cancer specific mortality [50]. Consistent with that report, we identified an association between the *IL-4* rs2070874 T>C SNP and CRC risk by sex, age, BMI, smoking status and alcohol consumption (besides stratified factors accordingly) in a logistic regression model.

Table 6 Stratified analyses between *IL-4* rs2243263 G>C polymorphism and CRC risk by sex, age, BMI, smoking status, and alcohol consumption

Variable	*IL-4* rs2243263 G>C (case/control)\(^1\)	Adjusted OR\(^2\) (95% CI); \(P\)
	GG GC CC	GG GC CC GC/CC CC vs. (GC/GG)
Sex		
Male	464/779 79/113 2/3	1.00 (1.03–1.10);
P: 0.388		
		1.22 (1.08–1.38);
P: 0.038		
Female	151/269 17/36 1/1	1.06 (1.00–1.12);
P: 0.126		
		1.37 (1.09–1.70);
P: 0.018		
Age		
<63	215/392 34/59 1/3	1.00 (1.00–1.01);
P: 0.098		
		0.55 (0.40–0.81);
P: 0.028		
≥63	400/656 62/90 2/1	1.00 (1.00–1.01);
P: 0.084		
		1.89 (1.26–2.81);
P: 0.008		
Smoking status		
Never	300/763 38/108 1/2	1.00 (1.00–1.01);
P: 0.000		
		0.72 (0.53–1.00);
P: 0.045		
Ever	315/285 58/41 2/2	1.00 (1.00–1.01);
P: 0.052		
		2.36 (1.40–3.96);
P: 0.003		
Alcohol consumption		
Never	433/903 63/134 3/3	1.00 (1.00–1.01);
P: 0.000		
		0.98 (0.71–1.36);
P: 0.017		
Ever	182/145 33/15 0/1	1.00 (1.00–1.01);
P: 0.000		
		1.70 (1.16–2.46);
P: 0.057		
BMI (kg/m\(^2\))		
<24	457/553 62/89 3/3	1.00 (1.00–1.01);
P: 0.000		
		0.84 (0.59–1.22);
P: 0.064		
≥24	158/495 34/60 0/1	1.00 (1.00–1.01);
P: 0.000		
		0.37 (0.24–0.57);
P: 0.012 |

\(^1\) For *IL-4* rs2243263 G>C, the genotyping was successful in 714 (99.03%) CRC cases and 1201 (99.42%) controls.

\(^2\) Adjusted for multiple comparisons [age, sex, BMI, smoking status and alcohol consumption (besides stratified factors accordingly)] in a logistic regression model.

Bold values are statistically significant \((P<0.05)\).

License: CC BY
Table 7 Logistic regression analyses of association between HVEM rs2234167, IL-4 rs2070874, rs2243263 and IL-10 rs1800896 and rs1800872 polymorphisms and lymph node status in ESCC patients

Genotype	Positive (n=405)	Negative (n=316)	Crude OR (95% CI)	P	Adjusted OR¹ (95% CI)	P
	n	%	n	%	P	P
HVE/M rs2234167 G>A						
GG	378	93.80	290	92.65	1.00	1.00
GA	24	5.96	23	7.35	0.80 (0.44–1.45)	0.461
AA	1	0.25	0	0	-	-
GA + AA	25	6.20	23	7.35	0.83 (0.46–1.50)	0.544
GG+GA	402	99.75	313	100.00	1.00	1.00
AA	1	0.25	0	0	-	-
IL-4 rs2070874 T>C						
TT	275	68.24	211	67.41	1.00	1.00
TC	118	29.28	96	30.67	0.94 (0.68–1.30)	0.723
CC	10	2.48	6	1.92	1.28 (0.46–3.57)	0.639
CC+TC	128	31.76	102	32.59	0.96 (0.70–1.32)	0.814
TT+TC	393	97.52	307	98.08	1.00	1.00
CC	10	2.48	6	1.92	1.30 (0.47–3.62)	0.613
A allele	26	3.23	23	3.67		
IL-4 rs2243263 G>C						
GG	346	86.07	269	86.22	1.00	1.00
GC	54	13.42	42	13.64	1.00 (0.65–1.54)	0.999
CC	2	0.50	1	0.32	1.56 (0.14–17.24)	0.719
CC+TC	56	13.93	43	13.78	1.01 (0.68–1.55)	0.955
TT+TC	400	99.50	311	99.68	1.00	1.00
CC	2	0.50	1	0.32	1.56 (0.14–17.23)	0.719
C allele	58	17.12	108	17.25		
IL-10 rs1800872 T>G						
TT	195	48.51	154	49.20	1.00	1.00
TG	169	42.04	132	42.17	1.01 (0.74–1.38)	0.944
GG	38	9.45	27	8.63	1.11 (0.65–1.90)	0.700
GG+TG	207	51.49	159	50.80	1.03 (0.77–1.38)	0.854
TT+TG	364	90.55	286	88.54	1.00	1.00
GG	38	9.45	27	8.63	1.11 (0.66–1.86)	0.703
G allele	245	30.47	186	29.71		
IL-10 rs1800896 T>C						
TT	356	88.78	269	86.22	1.00	1.00
TC	43	10.72	41	13.14	0.79 (0.50–1.25)	0.318
CC	2	0.50	2	0.64	0.76 (0.11–5.40)	0.780
CC+TC	45	11.22	43	13.78	0.79 (0.51–1.24)	0.303
TT+TC	399	99.50	310	99.36	1.00	1.00
CC	2	0.50	2	0.64	0.78 (0.11–5.55)	0.801
C allele	47	5.86	45	7.21		

¹Adjusted for age, sex, smoking, alcohol use, and BMI status.

that the rs2243263 G>C polymorphism influences the level of IL-4 by regulating gene transcription. In the future, a functional study should be considered to explore the potential mechanism.

The IL-10 rs1800872 T>G is a promotor SNP. Torres-Poveda et al. reported that the expression of IL-10 mRNA and the level of serum IL-10 were significantly higher in subjects with the IL-10 rs1800872 T allele [54]. A recent study found that IL-10 rs1800872 T>G SNP promoted the risk of EC [25]. A meta-analysis also confirmed this association [55]. In our case–control study, we did not find the association of IL-10 rs1800872 T>G SNP with the development of EC, even in stratified analyses and reviewing different lymph node status. Additionally, Liu et al. reported that IL-10 rs1800872 GG genotypes predicted the worse survival of diffuse large B-cell lymphoma patients treated with rituximab-CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) [56]. In this study, we found that
Table 8 Logistic regression analyses of association between HVEM rs2234167, IL-4 rs2070874, rs2243263 and IL-10 rs1800896 and rs1800872 polymorphisms and grades of ESCC

Genotype	G2+G3 (n=579)	G1 (n=142)	Crude OR (95% CI)	P	Adjusted OR\(^1\) (95% CI)	P
HVEM rs2234167 G>A						
GG	541 93.44 127 89.44 1.00					
GA	33 5.70 14 9.86 0.55 (0.29–1.07) 0.076 0.57 (0.30–1.11) 0.099					
AA	1 0.17 0 0 -					
GA + AA	34 5.87 14 9.86 0.57 (0.30–1.09) 0.091 0.59 (0.31–1.13) 0.112					
GG + GA	574 99.14 141 99.30 1.00					
AA	1 0.17 0 0 -					
A allele	35 3.02 14 4.93					
IL-4 rs2070874 T>C						
TT	391 67.53 95 66.90 1.00					
TC	173 29.88 41 28.87 1.03 (0.68–1.54) 0.905 1.06 (0.70–1.60) 0.785					
CC	11 1.90 5 3.52 0.54 (0.18–1.58) 0.256 0.56 (0.19–1.66) 0.296					
CC + TC	184 31.78 46 32.39 0.97 (0.66–1.44) 0.887 1.01 (0.68–1.50) 0.981					
TT + TC	564 97.41 136 95.77 1.00					
CC	11 1.92 5 3.52 0.53 (0.18–1.55) 0.247 0.55 (0.19–1.62) 0.278					
C allele	196 16.84 51 17.96					
IL-4 rs2243263 G>C						
GG	493 85.15 122 85.92 1.00					
GC	78 13.47 18 12.68 1.07 (0.62–1.86) 0.803 1.13 (0.65–1.96) 0.674					
CC	2 0.35 1 0.70 0.70 (0.50–0.50) 0.567 0.62 (0.05–7.19) 0.702					
CC + GC	80 13.82 19 13.38 1.04 (0.61–1.78) 0.882 1.10 (0.64–1.90) 0.727					
GG + GC	571 98.62 140 98.59 1.00					
CC	2 0.35 1 0.70 0.49 (0.04–5.45) 0.562 0.61 (0.05–7.03) 0.690					
C allele	82 7.08 20 7.04					
IL-10 rs1800872 T>G						
TT	269 46.46 80 56.34 1.00					
TG	250 43.18 51 35.92 1.46 (0.99–2.16) 0.059 1.49 (1.00–2.21) 0.048					
GG	55 9.50 10 7.04 1.64 (0.80–3.36) 0.180 1.59 (0.77–3.27) 0.211					
GG + TG	305 52.68 61 42.96 1.49 (1.03–2.16) 0.036 1.51 (1.04–2.19) 0.032					
TT + TG	519 89.64 131 92.25 1.00					
GG	55 9.50 10 7.04 1.39 (0.69–2.80) 0.359 1.34 (0.66–2.71) 0.419					
G allele	360 31.09 71 25.00					
IL-10 rs1800896 T>C						
TT	501 86.53 124 87.32 1.00					
TC	68 11.74 16 11.27 1.05 (0.59–1.88) 0.864 1.07 (0.60–1.93) 0.809					
CC	3 0.52 1 0.70 0.74 (0.08–7.20) 0.797 0.88 (0.09–8.64) 0.909					
CC + TC	71 12.26 17 11.97 1.03 (0.59–1.82) 0.909 1.06 (0.60–1.88) 0.833					
TT + TC	569 98.27 140 98.59 1.00					
CC	3 0.52 1 0.70 0.74 (0.08–7.15) 0.793 0.87 (0.09–8.55) 0.903					
C allele	74 6.39 18 6.34					

1 Adjusted for age, sex, smoking, alcohol use, and BMI status. Bold values are statistically significant (P<0.05).

the IL-10 rs1800872 G allele was associated with poorly differentiated tumor. Thus, in the future, the association of the IL-10 rs1800872 T>G SNP and the survival of ESCC cases should be further studied.

Limitations in the present study should be acknowledged. First, in the present study, we only included five functional SNPs and explored the association of the risk to ESCC. Second, there were other environmental risk factors (e.g. vegetable and fruit intake, aspirin and NSAIDs use, and physical exercise), which we did not consider for their influence to the development of ESCC. Third, the number of ESCC patients was limited and our study may be
under-powered in some subgroups. Fourth, in this investigation, the protein expression levels of the suspect factors were not measured. Finally, considering the low penetrance of SNP, the other functional polymorphisms in the HVEM, IL-4, and IL-10 genes should not be ignored.

In summary, the present study suggests that the IL-4 rs2070874 T>C polymorphism is a protective factor for ESCC development, while the IL-4 rs2243263 G>C increases a risk to ESCC in obese and overweight subjects. Additionally, it is highlighted that the IL-10 rs1800872 G allele is associated with poorly differentiated tumor.

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.

Funding
This work was supported in part by the Young and Middle-aged Talent Training Project of Health Development Planning Commission in Fujian Province [grant number 2016-ZQN-25]; the Program for New Century Excellent Talents in Fujian Province University [grant number NCETFJ-2017B015]; and the Joint Funds for the Innovation of Science and Technology, Fujian Province [grant number 2017Y9099].

Author Contribution
All authors contributed significantly to the present study. Conceived and designed the experiments: W.T. and M.K. Performed the experiments: S.C., R.C. and C.L. Analyzed the data: W.T. and M.K. Contributed reagents/materials/analysis tools: M.K. Wrote the manuscript: S.C. and R.C. Other (please specify): none.

Acknowledgements
We appreciate all subjects who participated in the present study. We wish to thank Dr. Yan Liu (Genesky Biotechnologies Inc., Shanghai, China) for technical support.

Abbreviations
AJCC, American Joint Committee on Cancer; BC, breast cancer; BMI, body mass index; CI, confidence interval; EC, esophageal cancer; ESCC, esophageal squamous cell carcinoma; GC, gastric cancer; HBV, Hepatitis B virus; HVEM, herpesvirus entry mediator; HWE, Hardy–Weinberg equilibrium; IL, interleukin; NSAID, nonsteroidal anti-inflammatory drug; OR , odds ratio; SNP, single nucleotide polymorphism.

References
1 Bray, F., Ferlay, J., Soerjomataram, I. et al. (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424, https://doi.org/10.3322/caac.21492
2 Matejcic, M. and Iqbal Parker, M. (2015) Gene-environment interactions in esophageal cancer. Crit. Rev. Clin. Lab. Sci. 52, 211–231, https://doi.org/10.3109/10408363.2015.1020358
3 Qin, J.M., Yang, L., Chen, B. et al. (2008) Interaction of methylenetetrahydrofolate reductase C677T, cytochrome P4502E1 polymorphism and environment factors in esophageal cancer in Kazakh population. World J. Gastroenterol. 14, 6986–6992, PMCID: PMC2773864, https://doi.org/10.3748/wjg.v14.i6.6986
4 Lin, E.W., Karakasheva, T.A., Hicks, P.D. et al. (2016) The tumor microenvironment in esophageal cancer. Oncogene 35, 5337–5349, PMCID: PMC5003768, https://doi.org/10.1038/onc.2016.34
5 Park, R., Williamson, S., Kasi, A. et al. (2018) Immune therapeutics in the treatment of advanced gastric and esophageal cancer. Anticancer Res. 38, 5569–5580, https://doi.org/10.21873/anticanres.12891
6 Nelms, K., Keegan, A.D., Zamorano, J. et al. (1999) The IL-4 receptor: signaling mechanisms and biologic functions. Annu. Rev. Immunol. 17, 701–738, https://doi.org/10.1146/annurev.immunol.17.1.701
7 Rush, J.S. and Hodgkin, P.D. (2001) B cells activated via CD40 and IL-4 undergo a division burst but require continued stimulation to maintain division, survival and differentiation. Eur. J. Immunol. 31, 1150–1159, https://doi.org/10.1002/eji.200121411
8 Suzuki, A., Leland, P., Joshi, B.H. et al. (2015) Targeting of IL-4 and IL-13 receptors for cancer therapy. Cytokine 75, 79–88, https://doi.org/10.1016/j.cyto.2015.05.026
9 Francipane, M.G., Alea, M.P., Lombardo, Y. et al. (2008) Crucial role of interleukin-4 in the survival of colon cancer stem cells. Cancer Res. 68, 4022–4025, https://doi.org/10.1158/0008-5472.CAN-07-6874
10 Tan, N., Song, J., Yan, M. et al. (2019) Association between IL-4 tagging single nucleotide polymorphisms and the risk of lung cancer in China. Mol. Gene Genom. Med. 7, e00585, PMCID: PMC6465665, https://doi.org/10.1002/mgg3.585

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).
39 O’Sullivan, K.E., Phelan, J.J., O’Hanlon, C. et al. (2014) The role of inflammation in cancer of the esophagus. Expert Rev. Gastroenterol. Hepatol. 8, 749–760, https://doi.org/10.1586/17474124.2014.913478
40 Sun, T., Zhou, Y., Yang, M. et al. (2008) Functional genetic variations in cytotoxic T-lymphocyte antigen 4 and susceptibility to multiple types of cancer. Cancer Res. 68, 7025–7034, https://doi.org/10.1158/0008-5472.CAN-08-0806
41 Qin, H., Zheng, L., Tang, W. et al. (2014) Programmed death-1 (PD-1) polymorphisms in Chinese patients with esophageal cancer. Clin. Biochem. 47, 612–617, https://doi.org/10.1016/j.clinbiochem.2013.12.023
42 Xin, Z., Wenyu, F. and Shenhua, X. (2010) Clinicopathologic significance of cytokine levels in esophageal squamous cell carcinoma. Hepatogastroenterology 57, 1416–1422
43 Wang, Q. and Chen, D.Y. (2009) Effect of Aidi injection on peripheral blood expression of Th1/Th2 transcription factors and cytokines in patients with esophageal squamous cell carcinoma during radiotherapy. Chin. J. Integr. Trad. Western Med. 29, 394–397
44 Wei, Y.C., Hu, F.B., Shen, Y. et al. (2004) Postoperative Th1 and Th2 type cytokine changes in patients with esophageal squamous cell carcinoma and their clinical significance. Acad. J. First Med. Coll. 24, 1271–1273
45 Wu, J., Lu, Y., Ding, Y.B. et al. (2009) Promoter polymorphisms of IL2, IL4, and risk of gastric cancer in a high-risk Chinese population. Mol. Carcinog. 48, 626–632, https://doi.org/10.1002/mc.20502
46 Lu, Y., Wu, Z., Peng, G. et al. (2014) Role of IL-4 gene polymorphisms in HBV-related hepatocellular carcinoma in a Chinese population. PLoS ONE 9, e110061, PMCID: PMC4190355, https://doi.org/10.1371/journal.pone.0110061
47 Chang, W.S., Wang, S.C., Chuang, C.L. et al. (2015) Contribution of interleukin-4 genotypes to lung cancer risk in Taiwan. Anticancer Res. 35, 6297–6301
48 Wang, Y., Li, H., Wang, X. et al. (2017) Association between four SNPs in IL-4 and the risk of gastric cancer in a Chinese population. Int. J. Mol. Epidemiol. Genet. 8, 45–52, PMCID: PMC5636916
49 Cabantous, S., Ranque, S., Poudiougou, B. et al. (2015) Genotype combinations of two IL4 polymorphisms influencing IL-4 plasma levels are associated with different risks of severe malaria in the Malian population. Immunogenetics 67, 283–288, https://doi.org/10.1007/s00251-015-0836-3
50 FitzGerald, L.M., Zhao, S., Leonardson, A. et al. (2018) Germline variants in IL4, MGMT and AKT1 are associated with prostate cancer-specific mortality: An analysis of 12,082 prostate cancer cases. Prostate Cancer Prostatic Dis. 21, 228–237, PMCID: PMC6026113, https://doi.org/10.1038/s41391-017-0029-2
51 Baye, T., M. Bultsch Kovacic, M., Biagini Myers, J.M. et al. (2011) Differences in candidate gene association between European ancestry and African American asthmatic children. PLoS ONE 6, e16522, PMCID: PMC3046166, https://doi.org/10.1371/journal.pone.0016522
52 Englich, B., Herberth, G., Rolle-Kampczyk, U. et al. (2017) Maternal cytokine status may prime the metabolic profile and increase risk of obesity in children. Int. J. Obes. 41, 1440–1446, https://doi.org/10.1038/ijo.2017.113
53 Pisano, S., Catone, G., Coppola, G. et al. (2017) Different immune signature in youths experiencing antipsychotic-induced weight gain compared to untreated obese patients. J. Child Adolesc. Psychopharmacol. 27, 844–848, https://doi.org/10.1089/cap.2016.0203
54 Torres-Poveda, K., Burguete-Garcia, A.I., Cruz, M. et al. (2012) The SNP at -592 of human IL-10 gene is associated with serum IL-10 levels and increased risk for human papillomavirus cervical lesion development. Infect. Agents Cancer 7, 32, PMCID: PMC3552694, https://doi.org/10.1186/1750-9378-7-32
55 Li, Y.F., Yang, P.Z. and Li, H.F. (2016) Functional polymorphisms in the IL-10 gene with susceptibility to esophageal, nasopharyngeal, and oral cancers. Cancer Biomark. 16, 641–651, https://doi.org/10.3233/CBM-160606
56 Liu, D., Wang, Y., Dong, M. et al. (2017) Polymorphisms in cytokine genes as prognostic markers in diffuse large B cell lymphoma patients treated with (R)-CHOP. Ann. Hematol. 96, 227–235, https://doi.org/10.1007/s00277-016-2857-x