Construction and validation of a novel prognostic model for thyroid cancer based on N7-methylguanosine modification-related IncRNAs

Yang Zhou, MM; Xuezhong Dai, MM; Jianhong Lyu, MM; Yingyue Li, MM; Xueyu Bao, MM; Fang Deng, MM; Kun Liu, MM; Liming Cui, MM; Li Cheng, MM

Abstract

Background: To construct and verify a novel prognostic model for thyroid cancer (THCA) based on N7-methylguanosine modification-related IncRNAs (m7G-lncRNAs) and their association with immune cell infiltration.

Methods: In this study, we identified m7G-lncRNAs using co-expression analysis and performed differential expression analysis of m7G-lncRNAs between groups. We then constructed a THCA prognostic model, performed survival analysis and risk assessment for the THCA prognostic model, and performed independent prognostic analysis and receiver operating characteristic curve analyses to evaluate and validate the prognostic value of the model. Furthermore, analysis of the regulatory relationship between prognostic differentially expressed m7G-related IncRNAs (PDEm7G-lncRNAs) and mRNA and correlation analysis of immune cells and risk scores in THCA patients were carried out.

Results: We identified 29 N7-methylguanosine modification-related mRNAs and 116 differentially expressed m7G-related IncRNAs, including 87 downregulated and 29 upregulated IncRNAs. Next, we obtained 8 PDEm7G-lncRNAs. A final optimized model was constructed consisting of 5 PDEm7G-lncRNAs (DOCK9–DT, DPP4–DT, TMEM105, SMG7–AS1 and HMGAA2–AS1). Six PDEm7G-lncRNAs (DOCK9–DT, DPP4–DT, HMGAA2–AS1, LINC01976, MID1P1–AS1, and SMG7–AS1) had positive regulatory relationships with 10 PDEm7G-mRNAs, while 2 PDEm7G-lncRNAs (LINC02026 and TMEM105) had negative regulatory relationships with 2 PDEm7G-mRNAs. Survival curves and risk assessment predicted the prognostic risk in both groups of patients with THCA. Forest maps and receiver operating characteristic curves were used to evaluate and validate the prognostic value of the model. Finally, we demonstrated a correlation between different immune cells and risk scores.

Conclusion: Our results will help identify high-risk or low-risk patients with THCA and facilitate early prediction and clinical intervention in patients with high risk and poor prognosis.

Abbreviations: AUC = the area under the ROC curve, DEm7G-lncRNAs = differentially expressed m7G-related IncRNAs, LASSO = least absolute shrinkage and selection operator, IncRNAs = long non-coding RNAs, m7G = N7-methyladenosine, m7G-lncRNAs = N7-methylguanosine modification-related lncRNAs, m7G-mRNAs = N7-methylguanosine modification-related mRNAs, PCC = pearson correlation coefficient, PDEm7G-lncRNAs = prognostic DEm7G-lncRNAs, ROC = receiver operating characteristic, THCA = thyroid cancer.

Keywords: immune cell infiltration, N7-methylguanosine modification, prognosis model, prognostic IncRNAs, prognostic risk, thyroid cancer

1. Introduction

Thyroid cancer (THCA) is a malignant tumor originating from the thyroid follicular epithelium or parafollicular epithelium. It is also the most common malignant tumor of the head and neck.1] THCA can be classified as differentiated thyroid carcinoma (DTC) (papillary thyroid carcinoma and follicular thyroid carcinoma), medullary thyroid carcinoma (MTC), and...
anaplastic thyroid carcinoma (ATC). DTC has mild biological behavior and a good prognosis, whereas ATC has a high degree of malignancy and a median survival time of less than 6 months. Hence, it is necessary to identify new prognostic genes to distinguish between patients with low- and high-risk THCA.

Long non-coding RNAs (lncRNAs) are non-coding RNA with a length greater than 200 nucleotides. Differential expression of lncRNAs is closely related to the occurrence of human diseases, including cancer, degenerative neurological diseases, and other major diseases that seriously harm human health, which manifest in molecular biological processes such as sequence and spatial structure disorder, expression level difference, and abnormal interaction with binding proteins. N7-methyladenosine (m7G) is a modification that adds a methyl group to the 7th N of RNA guanine under the action of a methyltransferase. M7G modification is one of the most common base modification methods in gene regulation and plays an important role in maintaining the structural stability of RNA, affecting RNA processing and metabolism, and regulating protein translation.

Studies have shown that N7-methylguanosine modification-related IncRNAs (m7G-IncRNAs) participate in the regulation of the molecular biological processes of tumor cells in vivo and affect the occurrence and development of tumors. However, to the best of our knowledge, no studies of m7G-IncRNAs in THCA have been reported. In this study, we identified a new definition of m7G-IncRNAs that predicts prognosis in THCA patients and elucidated their association with immune cell infiltration. The objective of this study was to identify sensitive prognostic biomarkers of THCA, which is of great significance for the early prediction of patients with high-risk and poor prognosis of THCA and early clinical intervention.

2. Materials and Methods

2.1. Data collection and collation

Transcriptome expression data and corresponding clinical information of THCA were downloaded from TCGA database, and a total of 567 samples were collected, including 509 THCA tissue samples and 58 normal paracancer tissue samples. We then used the Perl language to organize and clean all data for subsequent bioinformatics and statistical analyses.

![Figure 1](image_url). The co-expression network of m7G-IncRNAs and m7G-mRNA. Orange nodes represent m7G-mRNAs and blue nodes represent m7G-IncRNAs. Grey solid lines represent the coexpression relationships between the mRNAs and IncRNAs. IncRNAs = Long non-coding RNAs, m7G-IncRNAs = N7-methylguanosine modification-related mRNAs.
2.2. Identification of m7G-related IncRNAs by co-expression analysis

First, the transcriptome expression matrix of all THCA samples was gene-classified using customized Perl scripts and configuration files to identify which RNAs were mRNAs or IncRNAs. The list of m7G-related genes was obtained from the MSigDB database (http://www.gsea-msigdb.org/gsea/login.jsp)\[12\] and the relative expression level of each m7G-related gene was extracted from the THCA gene matrix using the R package limma.\[13\] Finally, co-expression analysis of m7G-related mRNAs and IncRNAs was conducted using the Pearson correlation test,\[14\] and the m7G-related IncRNAs were identified. A Pearson correlation coefficient > 0.4 and P-value < .001 were considered statistically different.

2.3. Differential expression analysis of m7G-related IncRNAs between groups

We calculated the mean expression value of each m7G-related IncRNA in each sample using R packages limma and pheatmap\[15\] and screened out the differentially expressed m7G-related IncRNAs (DEm7G-lncRNAs) with high expression and low expression by comparing the expression differences between THCA and normal sample groups. Finally, the results of the differential expression analysis were analyzed. RNAs with an adjusted P-value < .05 and |logFC (fold change)| >1 were defined as DEm7G-lncRNAs.

2.4. Construction of the THCA prognosis model

First, the expression matrix of DEm7G-IncRNAs and the survival time and status of patients with THCA were sorted and combined. All samples were then randomly divided into training and test groups. The THCA prognosis model was constructed based on DEm7G-IncRNAs using univariate and multivariate COX regression and least absolute shrinkage and selection operator regression analyses,\[16,17\] and the accuracy of the model was verified. Then, the relative expression level of each DEm7G-IncRNA in each sample was multiplied by the risk factor and then added together to obtain the risk score of each sample by R package survival, survminer, and timeROC.\[18–20\] Finally, the risk score of each sample was compared with the median risk score, and all patients were divided into high- and low-risk groups.

2.5. Analysis of regulatory relationship between prognostic DEm7G-IncRNAs and mRNAs

To further investigate the regulatory relationship between prognostic DEm7G-IncRNAs (PDEm7G-IncRNAs) and mRNAs, we inputted regulatory network parameters and the list of PDEm7G-IncRNAs into R software to establish a regulatory network linked by IncRNAs and their target genes and visualized them with a Sankey diagram using the packages ggalluvial, ggplot2, and dplyr.\[21,22\]

2.6. Survival analysis of high- and low-risk groups in the THCA prognostic model

To test the prognostic value of the THCA prognostic model, we performed survival analysis of patients in the high- and low-risk groups. We used the survival information, risk score, risk grouping and PDEm7G-IncRNAs expression matrix of the training set, testing set, and all patients as the input files of R Studio and drew the survival curves\[23\] of THCA patients in the high- and low-risk groups by comparing the survival differences of the high- and low-risk groups and referring to the R packages survival and survminer.\[24\]

2.7. Risk assessment of high- and low-risk groups in the THCA prognostic model

To explore the correlation between patient survival time, survival status, PDEm7G-IncRNAs expression and risk scores, we conducted a risk assessment for THCA patients in high- and low-risk groups.\[25\] The results are shown by risk curves, survival scatter plots, and risk gene heat maps using the R package pheatmap.\[26,27\]

2.8. Independent prognostic analysis of the THCA prognostic model

Independent prognostic analysis was used to predict whether the risk score could be used as an independent prognostic factor for THCA patients with THCA. Using the R package survival, univariate and multivariate independent prognostic analyses were performed by reading and combining all patient risk files (including survival time, survival status, risk score, and gene expression matrix) and clinical trait lists (including patient age, sex, and tumor stage).\[28\] The results were visualized using forest plots.\[29\]
2.9. Receiver operating characteristic (ROC) curve analyses of the THCA prognostic model

The ROC curve is a comprehensive index reflecting the continuous variables of sensitivity and specificity and is usually used to show the relationship between the 2.[30] If the area under the ROC curve (AUC) is larger, the diagnostic value of the test is higher.[31] ROC curves were drawn to test the predictive performance of the THCA prognostic model using the R package survival, survminer, and timeROC.[18–20] The survival times, survival statuses, PDEm7G-lncRNAs expressions, risk score, and clinical characteristics (age, sex, and tumor stage) were read and combined, and ROC curves of 1-year, 3-year, and 5-year survival rates and clinical traits were plotted.[32,33]

2.10. Correlation analysis of immune cells and risk scores in THCA patients

To investigate the correlation between immune cell infiltration and risk scores in THCA patients, we performed Spearman correlation analysis between risk scores and immune cell infiltration[34] using the R package scales ggplot2, ggtext, tidyr, and ggpubr.[35–37] If the P-value of the correlation test was less than .05, we drew scatter plots and a bubble plot of the correlation between immune cell infiltration and patient risk score for visualization.[38]

3. Results

3.1. Identification of m7G-related lncRNAs

We collected and collated 39953 RNAs transcript expression matrices from TCGA database, including 4438 IncRNAs and 19166 mRNAs. An expression matrix consisting of 29 N7-methylguanosine modification modification-related mRNAs (m7G-mRNAs) was constructed based on the MSigDB and THCA gene matrices. In addition, 545 coexpressed m7G-lncRNAs were identified using co-expression network analysis. The details of the expression matrix and co-expression relationship of m7G-lncRNAs are provided in the Supplemental.
3.2. Identification of differentially expressed m7G-lncRNAs between groups

Through differential expression analysis of 545 m7G-lncRNAs, we identified 116 DEM7G-lncRNAs, including 87 downregulated lncRNAs and 29 upregulated lncRNAs. The matrix and differential expression parameters of DEM7G-lncRNAs are shown in the Supplemental Digital Content, File 3, http://links.lww.com/MD/H597, Supplemental Digital Content, File 4, http://links.lww.com/MD/H598. The volcano map in Figure 2A shows the expression of all 116 DEM7G-lncRNAs and the heat map in Figure 2B shows the top 20 DEM7G-lncRNAs with the most significant upregulation and downregulation.

3.3. The prognosis model for THCA patients

After univariate Cox analysis of 116 DEM7G-lncRNAs, we identified 8 PDEm7G-lncRNAs, among which DOCK9−DT, DPP4−DT and HMGA2−AS1 were low risk lncRNAs (hazard ratio < 1), and MID1IP1−AS1, TMEM105, LINC01976, LINC02026, and SMG7−AS1 were high-risk lncRNAs (hazard ratio > 1) (Fig. 3A). Least absolute shrinkage and selection operator regression was used to select 7 PDEm7G-lncRNAs (DOCK9−DT, DPP4−DT, TMEM105, LINC01976, LINC02026, SMG7−AS1 and HMGA2−AS1) with significant differential expression for Cox model construction (Fig. 3B and C). Furthermore, the predictive value of the prognosis model was evaluated and optimized by cross-validation, resulting in a final optimized model consisting of 5 PDEm7G-lncRNAs (DOCK9−DT, DPP4−DT, TMEM105, SMG7−AS1 and HMGA2−AS1). The raw data related to the prognostic model are detailed in the Supplemental Digital Content, File 5, http://links.lww.com/MD/H599, Supplemental Digital Content, File 6, http://links.lww.com/MD/H600, Supplemental Digital Content, File 7, http://links.lww.com/MD/H601. The formula for the prognostic model was as follows.

3.4. Regulatory relationships between PDEm7G-lncRNAs and mRNAs

Analysis of the regulatory relationship between PDEm7G-lncRNAs and mRNAs revealed that 6 PDEm7G-lncRNAs (DOCK9−DT, DPP4−DT, HMGA2−AS1, LINC01976, MID1IP1−AS1, and SMG7−AS1) had positive regulatory relationships with 10 PDEm7G-lncRNAs, whereas 2 PDEm7G-lncRNAs (LINC02026 and TMEM105) had negative regulatory relationships with 2 PDEm7G-lncRNAs. The Sankey diagram displays all regulatory relationship results (Fig. 4).

3.5. Survival analysis and risk assessment of the THCA prognostic model

Survival curves were plotted by comparing differences in survival between the high- and low-risk groups in the training set, test set, and all patients in the prognostic model. As shown in Figure 5A–C, the survival of THCA patients in the high-risk group was significantly lower than that of patients in the low-risk group (P < .05). We further performed a prognostic risk assessment to predict the prognostic risk in both groups of patients with THCA. The risk scores of the high-risk groups in the training set, test set, and all patients were significantly higher than those in the low-risk group.
As the risk score increased, patient survival decreased and the number of deaths increased (Fig. 6D–F). As shown in Figure 6G–I, DOCK9−DT, DPP4−DT and HMGA2−AS1 were low-risk m7G-lncRNAs, whereas TMEM105 and SMG7−AS1 were high-risk m7G-lncRNAs. These results suggest that the prognostic model can accurately predict the survival and risk outcomes between the 2 groups.

3.6. Evaluation and validation of the prognostic value of the model
Forest maps and the ROC curves were generated to evaluate and validate the prognostic value of the model. Figure 7A and B presented that the P-value of the risk score was \(P < .05 \), and the HR value was greater than 1 in both univariate and multivariate logistic analyses, suggesting that the risk score in the prognostic model might serve as a reliable clinically independent prognostic factor. As shown in Figure 7C, the AUC of the 1-, 3-, and 5-year survival rates were 0.798, 0.797, and 0.834, respectively. Compared with other clinical characteristics, the prognostic model-based risk score and age had relatively higher AUC values (0.834 and 0.896) (see Fig. 7D). These results indicate that the prognostic model can accurately and independently predict the prognosis of patients with THCA.

3.7. Correlation between immune cell infiltrations and risk scores
We performed a correlation analysis between immune cell infiltration and risk scores, and drew a bubble plot for visualization. Figure 8 shows the correlation between different immune cells and risk scores, with different colored bubbles representing the predicted results of different bioinformatics software. Using a bubble plot, we could visually and clearly see which immune cells were positively or negatively correlated with the patient's risk score. The correlation curves between each immune cell infiltration level and risk score using different predictive software are detailed in the Supplemental Digital Content, File 8 (ImmuneCor; http://links.lww.com/MD/H834).

4. Discussion
THCA is the most common malignant tumor of the endocrine system. Most patients with THCA have good prognosis

![Image](image-url)

Figure 5. The survival curve of high- (red) and low-risk (blue) patients in Train set (A), Test set (B) and all patients (C). Abscissa, survival years of patients; Ordinate, survival rate. The lists below the curves showed the number of surviving patients per year.
after conventional surgery and other treatments. However, patients with poor pathological differentiation or late clinical stage tend to have a poor prognosis and lower overall survival rate.\[39–41\] Therefore, in this study, we identified 29 m7G-mRNAs and 116 DEm7G-lncRNAs, including 87 downregulated and 29 upregulated lncRNAs. Next, we obtained 8 PDEm7G-lncRNAs. Furthermore, the predictive value of the prognosis model was evaluated and optimized by cross-validation, resulting in a final optimized model consisting of 5 PDEm7G-lncRNAs (DOCK9−DT, DPP4−DT, TMEM105, SMG7−AS1 and HMGA2−AS1). Next, analysis of the regulatory relationship between PDEm7G-lncRNAs and mRNAs revealed that 6 PDEm7G-lncRNAs (DOCK9−DT, DPP4−DT, HMGA2−AS1, LINC01976, MID1IP1−AS1, and SMG7−AS1) had positive regulatory relationships with 10 PDEm7G-mRNAs, whereas 2 PDEm7G-lncRNAs (LINC02026 and TMEM105) had negative regulatory relationships with 2 PDEm7G-mRNAs. Survival curves were plotted by comparing the differences in survival between the groups, and a prognostic risk assessment was performed to predict the prognostic risk in both groups of THCA patients. Forest maps and the ROC curves were generated to evaluate and validate the prognostic value of the model. Finally, we assessed the association between immune cell infiltration and risk scores.

To date, no study has reported a prognostic model based on m7G-lncRNAs for predicting the prognosis and risk of THCA. The newly discovered m7G-lncRNAs that affected the prognosis of THCA in our study were rarely reported in the literature. However, in the research field of other tumors, a few studies have found that m7G-modification is involved in important biological activities in tumorigenesis and development. Orellana et al\[42\] found that METTL1 is frequently amplified and overexpressed in cancer, and is associated with low patient survival. METTL1 depletion leads to a decreased abundance of m7G-modified tRNA and cell cycle changes and inhibits its carcinogenicity. In contrast, METTL1 overexpression induced oncogenic cell transformation. This promises to be an effective anticancer target. Dai et al\[43\] found that m7G-tRNA modification and its methyltransferase complex components METTL1 and WDR4 are significantly upregulated in intrahepatic cholangiocarcinoma by constructing gene overexpression and knockout mouse models and are associated with poor prognosis. METTL1-mediated m7G-tRNA modification plays a key carcinogenic role in regulating mRNA translation and cancer progression in intrahepatic cholangiocarcinoma. Chen et al\[44\] discovered that the expression of m7G-tRNA-modifying enzyme METTL1 and its companion WDR4 is significantly elevated in advanced nasopharyngeal carcinoma and is associated with poor prognosis. The mechanism might be that METTL1 upregulates the Wnt/β-catenin signaling pathway and promotes epithelial mesenchymal transformation and chemical resistance to cisplatin and docetaxel in advanced nasopharyngeal carcinoma cells in vitro and in vivo. This study revealed a novel modality of m7G-tRNA-mediated regulation of mRNA translation and highlighted the key role of m7G-modification in cancer progression.

Through our correlation analysis of immune cell infiltrations and risk scores, we could see that in multiple prediction software, immune cells such as Monocyte, Myeloid dendritic cell,
Endothelial cell and NK cell resting are all positively correlated with the risk score of THCA. Several previous research reports also confirmed our similar conclusion. A higher relative ratio of monocytes in THCA patients tends to be associated with a higher risk of postoperative recurrence,\(^{43}\) and the relative ratio is also higher in THCA patients with lymph node and distant metastases.\(^{44}\) Gogali F et al.\(^{45}\) found higher NK cell infiltration levels in papillary thyroid carcinoma (PTC) tissues, and NK cell infiltration levels were positively correlated with PTC clinical stage. In addition, vascular endothelial growth factor (VEGF) produced by tumor cells can effectively stimulate endothelial cell proliferation and angiogenesis, and plays a key role in the pathophysiology of THCA.\(^{46}\) Klein M et al.\(^{47}\) found that the expression level of VEGF is closely related to the distant metastasis of PTC, suggesting that it can be used as a poor prognostic marker of PTC.

In this study, we identified m7G-lncRNAs using co-expression analysis and performed differential expression analysis of m7G-lncRNAs between groups. We then constructed a THCA prognostic model, performed survival analysis and risk assessment for the THCA prognostic model, and performed independent prognostic analysis and ROC curve analyses to evaluate and validate the prognostic value of the model. Furthermore, analysis of the regulatory relationship between PDEm7G-lncRNAs and mRNAs and correlation analysis of immune cells and risk scores in THCA patients were carried out. We have identified novel prognostic m7G-lncRNAs and constructed a prognostic model for THCA, which will help to identify high-risk or low-risk patients with THCA and facilitate early prediction and clinical intervention in patients with high risk and poor prognosis. However, this study has some limitations, such as the lack of further research on different pathological subtypes of THCA and key gene pathways of pathogenesis. Ideally, in vitro and in vivo experiments with clinical samples are required to further validate our findings.

5. Conclusion
In this study, we identified a new definition of m7G-lncRNAs that predicts prognosis in THCA patients and elucidated its association with immune cell infiltration, which is of great significance for the early prediction of patients with high risk and poor prognosis of THCA and early clinical intervention.

Author contributions
All authors participated in the design and interpretation of the studies, analysis of the data, and review of the manuscript. LC and YZ designed this study. YZ drafted the original manuscript. FD, KL, and LMC collected raw data. XZD, JHL, YYL, and XYB performed the statistical and bioinformatic analyses. LC supervised this study.

Figure 7. Forest plots of univariate (A) and multivariate (B) logistic analysis of clinical characteristics in THCA patients. Green or red square represents HR value, blue solid lines represent 95% confidence intervals. ROC curves of the prognosis model. The different colored curves represent different survival rates (1-, 3-, and 5-year) (C) or clinical characteristics (D). AUC = area under the ROC curve, Abscissa = 1-Specificity (false positive rate), HR = hazard ratio, ordinate = Sensitivity (true positive rate), ROC = receiver operating characteristic, THCA = thyroid cancer.
Conceptualization: Yang Zhou, Li Cheng.
Data curation: Fang Deng, Kun Liu, Liming Cui.
Formal analysis: Xuezhong Dai, Jianhong Lyu, Yingyue Li, Xueyu Bao.
Supervision: Li Cheng.
Writing – original draft: Yang Zhou.
Writing – review & editing: Li Cheng.

Acknowledgements
We thank the TCGA database for providing data in this study.

References
[1] Yeh S-J, Lin C-Y, Li C-W, et al. Systems biology approaches to investigate genetic and epigenetic molecular progression mechanisms for identifying gene expression signatures in papillary thyroid cancer. Int J Mol Sci. 2019;20:2536.
[2] Mishra V, Kowtal P, Rane P, et al. Genetic risk association of CDKN1A and RET gene SNPs with medullary thyroid carcinoma: results from the largest MTC cohort and meta-analysis. Cancer Med. 2019;8:6151–61.
[3] Zhu L, Li XJ, Kalimuthu S, et al. Natural killer cell (NK-92MI)-based therapy for pulmonary metastasis of anaplastic thyroid cancer in a nude mouse model. Front Immunol. 2017;8:816.
[4] Guo D, Xu Q, Pabla S, et al. Cytokeratin-8 in anaplastic thyroid carcinoma: more than a simple structural cytoskeletal protein. Int J Mol Sci. 2018;19:577.
[5] Zhao X, Li X, Zhou L, et al. LncRNA HOXA11-AS drives cisplatin resistance of human LUAD cells via modulating miR-454-3p/Stat3. Cancer Sci. 2018;109:3068–79.
[6] Ren M, Wang T, Wei X, et al. LncRNA H19 regulates smooth muscle cell functions and participates in the development of aortic dissection through sponging miR-193b-3p. Biosci Rep. 2021;41:BRSR20202298.
[7] Zhang S-Y, Zhang S-W, Zhang T, et al. Recent advances in functional annotation and prediction of the epitranscriptome. Comput Struct Biotechnol J. 2021;19:3015–26.
[8] Thongdee N, Jaroen suk J, Atichartpongkul S, et al. TrmB, a tRNA m7G(6)m methyltransferase, plays a role in hydrogen peroxide resistance and positively modulates the translation of katA and katB mRNAs in Pseudomonas aeruginosa. Nucleic Acids Res. 2019;47:9721–81.

[9] Teng P-C, Liang Y, Yarmishyn AA, et al. RNA modifications and epigenetics in modulation of lung cancer and pulmonary diseases. Int J Mol Sci. 2021;22:10592.

[10] Li H, Gao C, Zhuang J, et al. An mRNA characterization model predicting survival in patients with invasive breast cancer based on The Cancer Genome Atlas database. Cancer Biomark. 2021;30:417–28.

[11] Rossi K, Echeverria D, Carroll A, et al. Development and evaluation of peril-based algorithms to classify neoplasms from pathology records in synoptic report format. JCO Clin Cancer Inform. 2021;5:295–303.

[12] Liberonz A, Birger C, Thorvaldsdottir H, et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell systems 2015;1:417–25.

[13] Ritchie M, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

[14] Cao D, Xu N, Chen Y, et al. Construction of a pearson- and MIC-based co-expression network to identify potential cancer genes. Intersci. Sci. 2022;14:245–57.

[15] Zhang M, Hua C, Liu J, et al. Identification of a five autophagy subtype-related gene expression pattern for improving the prognosis of lung adenocarcinoma. Front Cell Dev Biol. 2021;9:756911.

[16] Yang X, Rao J, Yang W, et al. Evaluation of the predictive and prognostic values of stromal tumor-infiltrating lymphocytes in HER2-positive breast cancers treated with neoadjuvant chemotherapy. Target Oncol. 2018;13:757–67.

[17] Amaedor K, Vos J, Pals S, et al. Discriminating between Waldenstrom macroglobulinemia and marginal zone lymphoma using logistic LASSO regression. Leuk Lymphoma. 2022;63:1070–9.

[18] Feng J, Wu J, Zhu R, et al. Simple risk score for prediction of early recurrence of hepatocellular carcinoma within the Milan criteria after orthotopic liver transplantation. Sci Rep. 2017;7:44036.

[19] Wang B, Sun Y. SELPGL expression was potentially correlated with metastasis and prognosis of osteosarcoma. Pathol Oncol Res. 2022;28:1610047.

[20] Wang Q, Lin W, Zhu Y. Comprehensive analysis of a TNF family-based-signature in diffuse gliomas with regard to prognosis and immune significance. Cell Commun Signal. 2022;20:6.

[21] Yuan J, Jiang X, Lan H, et al. Multi-omics analysis of the therapeutic value of MAL2 based on data mining in human cancers. Front Cell Dev Biol. 2021;9:736649.

[22] Awan F, Ali M, Hamid M, et al. Epi-gene: an R-package for easy analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

[23] Carpenter C, Frank D, Williamson K, et al. tidyMicro: a pipeline for microbiome data analysis and visualization using the tidyverse in R. BMC Bioinf. 2021;22:41.

[24] Li N, Luo P, Li C, et al. Analysis of related factors of radiation pneumonia caused by precise radiotherapy of esophageal cancer based on The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell systems 2015;1:417–25.

[25] Ritchie M, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

[26] Cao D, Xu N, Chen Y, et al. Construction of a pearson- and MIC-based co-expression network to identify potential cancer genes. Intersci. Sci. 2022;14:245–57.

[27] Zhan M, Hua C, Liu J, et al. Identification of a five autophagy subtype-related gene expression pattern for improving the prognosis of lung adenocarcinoma. Front Cell Dev Biol. 2021;9:756911.

[28] Yang X, Rao J, Yang W, et al. Evaluation of the predictive and prognostic values of stromal tumor-infiltrating lymphocytes in HER2-positive breast cancers treated with neoadjuvant chemotherapy. Target Oncol. 2018;13:757–67.

[29] Amaedor K, Vos J, Pals S, et al. Discriminating between Waldenstrom macroglobulinemia and marginal zone lymphoma using logistic LASSO regression. Leuk Lymphoma. 2022;63:1070–9.

[30] Feng J, Wu J, Zhu R, et al. Simple risk score for prediction of early recurrence of hepatocellular carcinoma within the Milan criteria after orthotopic liver transplantation. Sci Rep. 2017;7:44036.

[31] Wang B, Sun Y. SELPGL expression was potentially correlated with metastasis and prognosis of osteosarcoma. Pathol Oncol Res. 2022;28:1610047.

[32] Wang Q, Lin W, Zhu Y. Comprehensive analysis of a TNF family-based-signature in diffuse gliomas with regard to prognosis and immune significance. Cell Commun Signal. 2022;20:6.

[33] Yuan J, Jiang X, Lan H, et al. Multi-omics analysis of the therapeutic value of MAL2 based on data mining in human cancers. Front Cell Dev Biol. 2021;9:736649.

[34] Carpenter C, Frank D, Williamson K, et al. tidyMicro: a pipeline for microbiome data analysis and visualization using the tidyverse in R. BMC Bioinf. 2021;22:41.

[35] Li N, Luo P, Li C, et al. Analysis of related factors of radiation pneumonia caused by precise radiotherapy of esophageal cancer based on The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell systems 2015;1:417–25.