EXPERT REVIEW

The neurobiology and treatment of first-episode schizophrenia

RS Kahn and IE Sommer

It is evident that once psychosis is present in patients with schizophrenia, the underlying biological process of the illness has already been ongoing for many years. At the time of diagnosis, patients with schizophrenia show decreased mean intracranial volume (ICV) as compared with healthy subjects. Since ICV is driven by brain growth, which reaches its maximum size at approximately 13 years of age, this finding suggests that brain development in patients with schizophrenia is stunted before that age. The smaller brain volume is expressed as decrements in both grey and white matter. After diagnosis, it is mainly the grey matter loss that progresses over time whereas white matter deficits are stable or may even improve over the course of the illness. To understand the possible causes of the brain changes in the first phase of schizophrenia, evidence from treatment studies, postmortem and neuroimaging investigations together with animal experiments needs to be incorporated. These data suggest that the pathophysiology of schizophrenia is multifactorial. Increased striatal dopamine synthesis is already evident before the time of diagnosis, starting during the at-risk mental state, and increases during the onset of frank psychosis. Cognitive impairment and negative symptoms may, in turn, result from other abnormalities, such as NMDA receptor hypofunction and low-grade inflammation of the brain. The latter two dysfunctions probably antedate increased dopamine synthesis by many years, reflecting the much earlier presence of cognitive and social dysfunction. Although correction of the hyperdopaminergic state with antipsychotic agents is generally effective in patients with a first-episode psychosis, the effects of treatments to correct NMDA receptor hypofunction or low-grade inflammation are (so far) rather modest at best. Improved efficacy of these interventions can be expected when they are applied at the onset of cognitive and social dysfunction, rather than at the onset of psychosis.

Molecular Psychiatry (2015) 20, 84–97; doi:10.1038/mp.2014.66; published online 22 July 2014

INTRODUCTION

When does schizophrenia first manifest itself? Is it at the onset of the first psychosis? Is it at the first signs of psychosis, as in the group of patients referred to as ‘at-risk mental state’ (ARMS)? Or is it even earlier, and not primarily associated with psychosis, but with cognitive decline? This question is not only essential to address the biology of first-episode schizophrenia, but it is at the core of the schizophrenia concept itself.

We have argued that the first signs of schizophrenia already occur in early puberty with a (relative) decline in cognitive dysfunction. It is not until many years later, when psychotic symptoms occur during the ARMS, or more pronounced during the first psychosis itself, that the diagnosis becomes obvious. Thus, we would argue that first-episode schizophrenia is a misnomer, as the core of the illness, that is, the cognitive decline, may not be episodic. Nevertheless, almost all studies into the biology of the first stages of schizophrenia have focused on the psychotic symptoms to define the onset of the illness.

BRAIN CHANGES AT THE TIME OF FIRST PSYCHOSIS

It is evident that once psychosis is present in patients with schizophrenia, the underlying biological process of the illness has already been ongoing for many years. This conclusion can be based on the multitude of neuroimaging studies that we recently reviewed in a meta-analysis of over 18 000 subjects, including 771 medication-naive, recent onset patients. These data show a slight, but significant, decrease in intracranial volume in patients with schizophrenia (effect size –0.2), in chronic and recent onset, medication-naive patients. Intracranial volume is driven by brain growth, as it is the enlarging brain that determines the expansion of the skull. Therefore, brain development must be stunted in patients with schizophrenia before that time. From the same meta-analysis, it can be gleaned that there must be additional brain loss, or continued abnormal development, after the age of 13: total brain volume in never-treated patients is decreased to a larger degree (effect size –0.4) than is intracranial volume and this is due to decreases in both white and grey matter. Importantly, while grey matter loss is larger in chronic than in medication-naive patients, white matter volume is decreased to a similar extent in both groups. Indeed, longitudinal studies indicate that loss of white matter volume, while present at psychosis onset, does not progress further after psychosis has emerged. This is consistent with the finding in twin studies that decreased white matter volume in schizophrenia may be related more to the genetic risk to develop the illness than to the effects of illness itself. In contrast, grey matter volume loss (mainly expressed as reductions in cortical thickness) progresses further after the onset of psychosis, and is related to outcome,8 cannabis smoking,9 medication use10,11 and psychotic relapses. Thus, although some of the brain abnormalities in schizophrenia worsen after the onset of psychosis, abnormal development of the brain must have been ongoing for many years before the first psychosis—expressed, as it is, in decreased intracranial volume and even larger decreases in white and grey matter.

What is the nature of the white and grey matter changes that are present at the onset of the first psychosis? Using tract-based...
analysis of white matter fibres in medication-naive schizophrenia patients we, and others, have found differences in the uncinate and arcuate fasciculi, suggestive of axonal or glial damage and/or increased free water concentrations. In unmedicated first-episode psychosis (FEP) patients reduced fractional anisotropy, a measure reflecting white matter fibre density and myelination, is related to cognitive dysfunction. Pronounced fractional anisotropy reductions in medication-naive FEP patients appear to be predictive of poor response to subsequent antipsychotic treatment. While white matter decreases are not evenly dispersed throughout the brain, but instead are most pronounced in association fibres, such as the uncinate and arcuate fasciculi, changes in the grey matter are not uniformly distributed throughout the brain either. Most pronounced grey matter decreases in FEP patients are found in frontal and temporal areas, including the insula, superior temporal gyrus and the anterior cingulate gyrus. As indicated, following the FEP, most (but not all) longitudinal studies suggest that grey matter loss continues, which is most prominent in frontal and temporal areas, and results from cortical thinning (and not surface shrinkage) and is related to clinical and cognitive outcome. Only few studies have investigated white matter changes over time after the FEP. Two recent studies showed contrasting results with one demonstrating improvement of white matter decreases in FEP patients after antipsychotic treatment and the other showing worsening of these abnormalities. On postmortem examination, decreases in white matter are associated with a reduction in oligodendrocytes in the superior frontal cortex and in the bilateral hippocampus, suggesting dysfunction of oligodendrocytes to underlie white matter deficits in schizophrenia.

BRAIN CHANGES BEFORE THE ONSET OF THE FIRST PSYCHOsis

The ARMS is a prodromal phase of schizophrenia characterized by cognitive impairments, mood alterations, anxiety, attenuated psychotic symptoms and a decline in social and occupational functioning. Although the concept has been useful in understanding the development of schizophrenia, only a small percentage of patients with these symptoms eventually go on to develop the illness—and this percentage further declines as the number of studies increases. A recent review on neurobiological changes in ARMS subjects suggests that volumes of frontal and temporal areas are decreased in a similar fashion—but to a lesser extent—as observed in schizophrenia. Longitudinal studies are scarce, but those available suggest that grey matter deficits present in those subjects that go on to develop schizophrenia, worsen over time and are found mainly in fronto-temporal areas. Progressive reduction in the integrity of frontal white matter has also been reported in ARMS subjects who go on to develop schizophrenia. However, studies in the ARMS period are limited by the fact that the subjects studied are selected on the basis of the presence of mild and incomplete symptoms of psychosis and that outcome, that is, conversion to psychosis, is defined by psychosis as well. It has been argued that a focus on cognitive and negative symptoms in these ARMS subjects may be needed to understand the developmental biology of schizophrenia. Indeed, baseline cognitive functioning in ARMS subjects is an adequate predictor of poor outcome, regardless of transition to psychosis.

POSSIBLE CAUSES AND EFFECTS OF THE BRAIN CHANGES

To understand the possible causes of the brain changes in the first phase of schizophrenia, evidence from treatment studies, post-mortem and neuroimaging investigations together with animal experiments needs to be integrated. These studies suggest that schizophrenia is related to at least three interacting pathophysiological mechanisms: dopaminergic dysregulation, disturbed glutamatergic neurotransmission and increased proinflammatory status of the brain. These processes interact with each other and most likely have causal interrelationships.

Dopamine dysregulation

Since the discovery of the antipsychotic properties of chlorpromazine in the 1950s, increased dopamine (DA) turnover in the striatum has received much attention as an underlying mechanism of schizophrenia. Although initial studies focused on the postsynaptic DA receptor, more recent positron emission tomography (PET) studies, using (18)F-DOPA as a tracer, show that the major locus of dopaminergic dysfunction is presynaptic rather than postsynaptic in nature, characterized by elevated DA synthesis and release capacity. Increased (18)F-DOPA binding capacity is already present during the ARMS period and is found to be predictive of the further development into full clinical psychosis (see Table 1A for an overview of DA deviations in ARMS subjects). In medication-naive schizophrenia patients who experience an FEP, in the hypothesis is based on studies using NMDAr antagonists, such as ketamine and phencyclidine, which were found to induce the full range of schizophrenia symptoms, including psychosis, negative symptoms, and also cognitive dysfunction. Furthermore, patients with an autoimmune encephalitis producing antibodies against the NMDAr can have a clinical picture that is indistinguishable from schizophrenia. Finally, many of the well-known risk genes, such as DISC-1, dysbindin, SHANK and NRG-1, but also de novo mutations associated with schizophrenia influence glutamatergic neurotransmission.

During brain development the NMDAr has a crucial role in brain maturation by means of synaptic plasticity, which forms the basis for adequate development of higher cognitive functions, such as learning and memory (see Wang et al). NMDAr is a heterotetrameric structure with one obligatory NR1 and two variable NR2 subunits, determining its biophysical and pharmacological properties. During brain development, the subunit composition of this receptor undergoes a switch, in which some subunits are replaced by structurally different ones. The mature receptor composition has different physiological properties, rendering the receptor more suitable for optimal timing of firing, thereby enabling the swift integration of environmental stimuli. The timing of receptor switches differs per brain region, and may coincide with ‘risk windows’ for schizophrenia, that is, developmental phases when the individual is particularly vulnerable to environmental influences such as hypoxia, birth stress, infection or inflammation, drug abuse or social isolation. During pregnancy, fetal NMDAr
levels are increased, rendering the infants’ brain vulnerable to insults. It is conceivable, although largely hypothetical, that environmental risk factors for schizophrenia affect the brain by means of delaying or preventing adequate NMDAr switching in specific brain areas, and an incomplete receptor switch could be related to the onset of cognitive decline in the earliest phases of the illness. Imperfect expression of the mature NMDAr subunit profile is likely to impair the process of long-term depression and potentiation, by which frequently-used connections are strengthened and rarely-used connections are weakened. At early adolescence, pruning will eliminate the weak connections. When a lack of long-term depression and potentiation has resulted in a failure to differentiate the frequently-used from the rarely-used connections, pruning may become a random process, eliminating important as well as less-relevant connections.

Downstream from the glutamatergic neurons, decreased functioning of the NMDAr leads to hypofunction of the inhibitory GABA-ergic interneurons. Decreased functioning of these fast-spiking GABA-ergic interneurons hampers synchronisation of neuronal firing of the pyramidal neurons. Diminished synchronised neuronal activity leads—again—to impaired cognitive processing. Postmortem studies consistently demonstrate that a subpopulation of the GABA-ergic interneurons, the parvalbumin-containing chandelier cells, is decreased in patients with schizophrenia (for a review see Curley et al.57). Enzymes related to GABA-ergic neurotransmission, such as glutamic acid decarboxylase (GAD)67 and GABA transporter (GAT)1, are consistently reported to be decreased in patients with schizophrenia.57 A large postmortem study involving 240 controls of all age categories and 31 patients with schizophrenia observed that development and maturation in the prefrontal cortex and the hippocampus is characterized by progressive switches in expression from GAD25 to GAD67 and from NKCC1 to KCC2. The former switch leads to L-type calcium channel activation, and the latter leads to switching from excitatory to inhibitory neurotransmission. In the hippocampus, GAD25/GAD67 and NKCC1/KCC2 ratios are increased in patients with schizophrenia, reflecting a potentially immature GABA physiology. This deviation was associated with the risk allele at the promoter region of the GAD-1 gene.58

It remains unclear whether deviations in the GABA-ergic interneurons are secondary to deficits in NMDAr-mediated signalling, or if abnormal NMDAr signalling is compensatory to GABA-ergic aberrations. Either way, hypofunction of the NMDAr and reduced neural synchrony caused by decreased function of the GABA-ergic interneurons may be the converging mechanisms underlying cognitive dysfunction, which—as indicated—starts at least 10 years before the onset of psychotic symptoms1 and remains relatively stable after the FEP, as a 10-year follow-up study of FEP patients showed no clear signs of deterioration as compared with healthy controls. Murine studies show that glutamatergic afferents from the hippocampus to the nucleus accumbens exert a strong excitatory effect on striatal DA neurons, influencing both activity and firing properties of the dopaminergic neurons. Thus, decreased activation of the NMDAr leads to an increase in striatal DA release and induce psychotic symptoms. This finding provides a biological explanation of the clinical and epidemiological observations that cognitive changes precede the onset of psychosis by many years. One of the few available techniques to examine the status of the NMDA/glutamate system in the human brain is the use of magnetic resonance spectroscopy (MRS). This method provides concentrations of several molecules, including glutamate, glutamine and GABA. However, glutamate as measured with MRS does not reflect intrasynaptic glutamate levels, as the MRS signal is derived from glutamate in neurons, blood vessels, white matter, and so on. When glutamate is released into the synapse it is quickly metabolized into the inert glutamine, which may be a better reflection of intrasynaptic glutamate levels and hence of NMDAr hypofunction. Indeed, Rowland et al. found increased glutamine as measured with MRS after infusion of ketamine in healthy subjects. Moreover, with magnetic resonance imaging scanners at a magnetic field strength lower than 4 Tesla, it is difficult to disentangle the peaks from glutamate and glutamine; most studies therefore provide a value of ‘glx’, which is composed of both glutamate and glutamine. Results in schizophrenia suggest that glx concentrations are different for each stage of the illness.

Table 1A. Dopamine in ultra-high-risk subjects

Study	Technique and ligand	Sample size	Main finding
Allen et al.155	PET (18)F-DOPA	16 UHR-nt	Striatal DA synthesis capacity all UHR = HC, but
Bloemen et al.156	(123)I-BZM SPECT	5 UHR-t, 5 HC	increased in UHRt
Egerton et al.157	PET (18)F-DOPA	14 UHR	Postsynaptic DA: UHR = HC baseline and after DA
Fusar-Poli et al.158	PET (18)F-DOPA	15 HC	depletion
Fusar-Poli et al.159	PET (18)F-DOPA	26 UHR	Striatal DA synthesis capacity UHR > HC
Hirvonen et al.160	(((11)C)-labelled raclopride PET	20 UHR, 14 HC	Striatal DA synthesis capacity UHR > HC
Howes et al.161	PET (18)F-DOPA	24 UHR* 7 SCZ, 12 HC	Striatal DA synthesis capacity UHR > HC
Howes et al.162	PET (18)F-DOPA	20 UHR* scanned twice	Schiz > HC (ES 1.25) in 8 converters
Howes et al.163	PET (18)F-DOPA	30 UHR* 29 HC	Striatal DA synthesis capacity UHR > HC, converters
Sundjaj et al.164	PET (11C)(+-)-PHNO	13 CHR, 13 FEP	No difference in non-displaceable DA2/D3 binding potential

Abbreviations: CHR, clinical high risk; DA, dopamine; ES, effect size; FEP, first-episode psychosis; PET, positron emission tomography; Schiz, patients with schizophrenia; UHR-nt, non-transition; UHR-t, transition to psychosis; UHRS, ultra-high-risk subjects. *Samples overlap.
Although results in ARMS subjects are not consistent, the majority of studies show increased glx, whereas a few report decreased or normal values (see Table 2A). Studies differentiating between glutamate and glutamine generally report increased levels of both molecules. In medication-naive FEP patients, studies generally report increased glx concentrations (composed of increased glutamate and increased glutamine) as compared with healthy controls, whereas in medicated FEP patients, glx levels are reported to be normal (Table 2B). In the later phases of schizophrenia, glx values appear slightly but

Study	Technique and ligand	Sample size	Main finding
Abi-Dargham et al.163	[11C]NNC 112 PET	16 SCZ of whom 7 FEP; 16 HC	D1r bp DL-PFC patients > HC
Abi-Dargham et al.164	[11C]NNC 112 PET	30 FEP 15 HC	DAT FEP < HC
Buchsbaum et al.165	(18)F-fallypride PET	15 FEP	bp FEP < HC
Corripio et al.166	[123I]IB2M SPECT	18 FEP	D2r bp FEP > HC
Corripio et al.167	[123I]IB2M SPECT	37 FEP	D2r striatal/frontal ratios
Glenthoj et al.168	[123I]IB2M SPECT	18 HC	FEP > HC in those with SCZ
Graff-Guerrerro et al.169	[(11)C]-(+)-PHNO PET	13 FEP	Non-displaceable D2/D3 bp
Graff-Guerrerro et al.170	[(11)C]-(+)-PHNO PET	13 FEP	D2/D3 bp FEP = HC
Hietala et al.171	[18F]-DOPA PET	7 FEP	Striatal DA synthesis capacity FEP > HC
Hietala et al.172	[18F]-DOPA PET	10 FEP	Striatal DA synthesis capacity FEP > HC
Hsiao et al.173	[99mTc]TRODAT SPECT	12 FEP	DAT FEP = HC
Karlsson et al.174	[(11)C]SCH 23390 PET	10 FEP	D1r bp FEP = HC
Laakso et al.175	[18F]CFT PET	9 FEP	DAT FEP = HC
Lavalaye et al.176	[123I]FP-CIT SPECT	36 SCZ of whom 10 FEP; 12 HC	DAT FEP = HC
Lehrer et al.177	(18)F-fallypride PET	33 SCZ of whom 14 FEP; 12 HC	bp medial thalamus SCZ < HC (ES = 0.89)
Lindstrom et al.178	[(11)C]-DOPA PET	12 SCZ of whom 10 FEP; 10 HC	Striatal DA synthesis capacity FEP > HC
Mateos et al.179	[123I]FP-CIT SPECT	20 FEP	DAT FEP < HC
Mateos et al.180	[123I]FP-CIT SPECT	30 FEP	DAT FEP < HC
Mateos et al.181	[123I]FP-CIT SPECT	20 FEP	DAT FEP = HC
Nozaki et al.182	[11C]-DOPA PET	18 SCZ of whom 14 FEP; 12 HC	bp FEP > HC
Safont et al.183	[123I]-IB2M SPECT	37 FEP	D2r bp
Schmitt et al.184	([99mTc]TRODAT-1 SPECT	18 HC	D2r bp = HC
Schmitt et al.185	([99mTc]TRODAT-1 SPECT	10 FEP	DAT FEP = HC
Schmitt et al.186	[99mTc]TRODAT-1 and [123I]IB2M SPECT	20 FEP	DAT FEP = HC
Schmitt et al.187	[123I]IB2M SPECT	12 FEP	D2r bp FEP = HC
Schmitt et al.188	[99mTc]TRODAT-1 and [123I]IB2M SPECT	12 FEP	D2r bp FEP < HC
Talvik et al.189	[11C]FLB 457 PET	9 FEP	D2r bp FEP = HC
Talvik et al.190	[(11)C]raclopride PET	8 HC	D2r bp FEP = HC
Yang et al.191	[99mTc]TRODAT SPECTand	12 HC	DAT FEP = HC
Yasuno et al.192	[(123I)]IB2M SPECT	12 HC	D2r bp FEP = HC

Abbreviations: bp, binding potential; D1r, dopamine D1 receptor; D2r, dopamine D2 receptor; DAT, striatal dopamine transporter; ES, effect size; FEP, first-episode psychosis; PET, positron emission tomography; SCZ, schizophrenia. *Samples overlap.
significantly decreased, which is the result of decreased glutamate and increased glutamine levels, leading to an increased glutamine-to-glutamate ratio.80,81 The decreased glx levels in chronically medicated patients are most pronounced in the frontal areas and correlate with cognitive deficits.80 GABA levels have been measured less extensively but the few available reports generally indicate decreased GABA levels in medicated FEP as well as in chronic patients, and these are correlated with cognitive dysfunction,82,83 but see Tayoshi et al.84 Detailed information on GABA levels in ARMS subjects and in unmedicated FEP patients is as yet unavailable.

Increased proinflammatory status

The third mechanism that may underlie (some of the) the signs and symptoms of schizophrenia is an increased proinflammatory status of the brain, a hypothesis proposed many years ago, for example, by Stevens,85 who observed signs of low-grade inflammation in postmortem brains of patients with schizophrenia. Interest in inflammation as a possible aetiology of schizophrenia has been bolstered by the simultaneous publication of three genome-wide association studies in 2009 providing compelling evidence for the involvement of the MHC region in the susceptibility of schizophrenia.86–88 MHC class I molecules could also operate through direct effects on brain development as these molecules regulate many aspects of brain development, including neurite outgrowth, synapse formation and function, homeostatic plasticity and activity-dependent synaptic refinement.89–91 However, epidemiological studies consistently show that the risk for schizophrenia is increased following pre and perinatal infections.92 A subset of patients initially diagnosed with schizophrenia is known to suffer from autoimmune encephalitis. A recent study demonstrated anti-NMDAR antibodies in almost 10% patients with schizophrenia as compared with 0.4% in controls,94 but replication of this finding is needed. However, neuroinflammation probably has a role in a larger group of patients, not just in those who can be characterized as suffering from an autoimmune encephalitis. The immature brain can be exposed to inflammation associated with viral or bacterial infection or as a result of sterile brain insults. Microglia are the main immuno-competent cells in the immature brain, and depending on the stimulus, molecular context and timing, these cells will acquire various phenotypes, which are critical regarding the consequences of inflammation.95 Acute inflammation can shift to a chronic inflammatory state and adversely affect brain development.

Support for the putatively increased activation of microglia cells is provided by two studies using 11C-PK11195 PET, reporting increased activation of microglia cells especially in the temporal lobes in patients with early-stage schizophrenia as compared with controls.96,97 A third PET study using another tracer (11C-DAA1106)98 found no differences between schizophrenia patients and controls. Specificity of both tracers for microglia activation is under discussion, however.99 A possible explanation for the difference is that the latter PET study included chronic patients and increased neuroinflammation may be present only in the first years of the disease. If this would be the case, then postmortem studies—usually including only chronic patients—would not be expected to find signs of increased inflammation. However, although results are inconsistent, many postmortem studies, in fact, do report increased numbers of microglia cells in activated states.100 Table 3 provides a summary of these findings. Only one postmortem study analysed brain tissue of patients with long and short duration of illness101 and, surprisingly, reported strongest indications of increased inflammation in the later stages of the illness. Postmortem literature, which mainly describes the late

Study	Technique and area	Sample size	Main finding
Bloemen et al.193	1H-MRS hippocampus	11 UHR	glu UHR < HC (ES = 0.22)
De la Fuente-Sandoval et al.68	1H-MRS dorsal-caudate cerebellum	18 UHR 18 medication-naive FEP	Dorsal-caudate glu: UHR = FEP > HC cerebellar glu: UHR = FEP = HC
De la Fuente-Sandoval et al.67	1H-MRS dorsal-caudate nucleus	19 UHR 19 medication-naive FEP	glu UHR-t > UHR-nt (7 UHR-t) UHR-ts > HC (ES = 1.39)
Fusar-Poli et al.194	1H-MRS thalamus, ACC, hippocampus	24 UHR 24 medication-naive FEP	glu thalamus UHR < HC
Keshavan et al.65	1H-MRS frontal, occipital, temporal, parietal, basal	40 GHR	Inferior parietal/occipital region glx GHR > HC
Natsubori et al.72	1H-MRS medial prefrontal	24 UHR, 24 medication-naive FEP	gtx UHR = HC
Purdon et al.195	1H-MRS medial frontal	15 GHR	gtx UHR = HC, but more variability in glx in GHR
Stone et al.69	1H-MRS, thalamus ACC, hippocampus	14 HC	glu thalamus UHR < HC
Tandon et al.68	1H-MRS thalamus caudate ACC	23 GHR	glx thalamus and caudate GHR > HC, ACC glx
Tibbo et al.64	1H-MRS right medial frontal	24 HC	HR = HC
Valli et al.196	1H-MRS medial temporal, ACC, thalamus	22 UHR	glu UHR = HC (trend in thalamus: UHR < HC)
Yoo et al.71	1H-MRS ACC, DLPFC, thalamus	22 GHR	glu HC = HC

Abbreviations: ACC, anterior cingulate gyrus; ES, effect size; FEP, first-episode psychosis; GHR, genetic high risk; gln, glutamine; glu, glutamate; glx, glutamate +glutamine; MRS, magnetic resonance spectroscopy; UHR, ultra-high-risk subjects, UHR-nt, non-transition; UHR-t, transition to psychosis. *Samples overlap.
stages of schizophrenia, may therefore not be representative for the presence (or absence) of increased proinflammatory status of the brain in patients with an FEP. Information on a potential proinflammatory status in FEP patients can be retrieved from peripheral blood markers, which so far show that deviations in pro and anti-inflammatory factors are of the same magnitude in FEP patients as in chronic patients with acute exacerbations.\(^{102}\)

When microglial cells become activated, they abandon their neurotrophic functions (for example, axon guidance and the production of neurotrophins such as BDNF), which leave the neurons in suboptimal condition.\(^{103}\) In addition, activated microglia produce several neurotoxic substances, such as free radicals and proinflammatory cytokines that can damage neuronal and glial cells, leading to cognitive dysfunction and brain volume loss.\(^{100}\) Neuroinflammation and NMDAr dysfunction are intertwined in several ways. For example, activated microglial cells produce high levels of glutamate, whereas NMDAr activity is required for the expression of antioxidant enzymes\(^{104}\) necessary to compensate the toxic effects of microglial activation. Furthermore, deviant brain development and subsequent cognitive alterations in adulthood may be mediated by cytokines, especially by IL-6 induction during infection.\(^{105}\) Activation of the IL-6/Nox2 pathway and consequent increase in superoxide production in the brain can also induce a loss of parvalbumin-containing interneurons in adulthood.\(^{106}\) The increased glutamate levels observed with MRS in the ARMS and early FEP period may thus result from activated microglial cells rather than from NMDAr hypofunction. The increased proinflammatory status can also cause or worsen hypoxia of the NMDAr by means of altered tryptophane catabolism.\(^{107}\) During low-grade inflammation, the catabolism of tryptophane in the brain is shifted away from serotonin as an end product towards kynurenic acid, which inhibits the NMDAr at the glycine site.\(^{108}\) One postmortem study and several studies investigating cerebrospinal fluid indeed showed increased levels of kynurenic acid in patients with schizophrenia as compared with controls (reviewed by Coyle\(^{109}\)). Inflammation can also be linked to DA dysregulation, as animal studies consistently show increased activity of mesolimbic DA neurons in offspring of rats exposed to prenatal inflammatory challenges.\(^{110}\) In fact, the white matter alterations observed in the early stages of schizophrenia, before psychotic symptoms have become apparent, could reflect an increased inflammatory status of the brain.\(^{111}\)

Not all schizophrenia patients have the same pathophysiology. It is highly unlikely that the pathogenesis of all patients with schizophrenia will be uniform. More probable is that some patients will display for example pronounced NMDAr hypofunction, whereas in others this mechanism is hardly affected. Indeed, Egerton et al.\(^{112}\) have found that FEP patients who respond well to antipsychotic medication displayed normal glx levels in the anterior cingulate cortex, whereas those with poor response showed increased glx concentrations, indicating that in the nonresponders, other mechanisms than increased DA synthesis may have a role. Demjaha et al.\(^{113}\) confirmed that patients with intractable psychosis, not responding to various antipsychotic agents, lacked the typical increase in DA synthesis capacity. In a

Table 28. Glutamate and glutamine in first-episode psychosis subjects

Study	Technique and area	Sample size	Main finding
Bartha et al.\(^{73}\)	\(^1\)H-MRS medial prefrontal	14 FEP	glu prefrontal FEP > HC
Bartha et al.\(^{97}\)	\(^1\)H-MRS medial temporal	10 HC	
Bartha et al.\(^{75}\)	\(^1\)H-MRS AC, frontal white, thalamus	11 FEP	glu FEP = HC
Bustillo et al.\(^{79}\)	\(^1\)H-MRS AC, frontal white, thalamus	14 FEP	gln/gl ratio AC FEP > HC
De la Fuente-Sandoval et al.\(^{66}\)	\(^1\)H-MRS precommissural dorsal-caudate cerebellar cortex	30 Medicated FEP	glx medicated FEP = HC
De la Fuente-Sandoval et al.\(^{198}\)	\(^1\)H-MRS striatal cerebellum	24 Medication-naive FEP, 18 HC	Strialt glu: FEP > HC
Galinska et al.\(^{78}\)	\(^1\)H-MRS frontal, temporal, thalamus	30 Medicated FEP, 19 HC	cerebellar glu: FEP > HC
Natsubori et al.\(^{72}\)	\(^1\)H-MRS medial prefrontal	19 FEP, 73 HC, 25 ChSz	glu FEP = HC
Ohmann et al.\(^{199}\)	\(^1\)H-MRS DLPFC	18 FEP, 21 HC, 21 ChSz	glu FEP = HC
Ohmann et al.\(^{100}\)	\(^1\)H-MRS DLPFC hippocampus	18 FEP, 20 HC	glu FEP = HC
Olbrich et al.\(^{101}\)	\(^1\)H-MRS DLPFC hippocampus	9 Medicated FEP	Thalamus glu FEP > HC
Stanley et al.\(^{76}\)	\(^1\)H-MRS DLPFC	32 HC	hippocampus same trend
Théberge et al.\(^{202}\)	\(^1\)H-MRS ACC thalamus	21 FEP	glu FEP > HC (trend)
Théberge et al.\(^{203}\)	\(^1\)H-MRS ACC thalamus	21 HC	glu FEP = HC
Wood et al.\(^{77}\)	\(^1\)H-MRS prefrontal	15 FEP, 19 HC	FEP > HC
Wood et al.\(^{204}\)	\(^1\)H-MRS mesial temporal	19 medicated FEP	glu FEP = HC

Abbreviations: ChSz, chronic schizophrenia patients; DLPFC, dorsolateral prefrontal cortex; FEP, first-episode psychosis; FEP patients are medication free unless defined otherwise; gln, glutamine; glu, glutamate; glx, glutamate+glutamine; nt, non-transition; t, transition to psychosis.
similar increase, increased proinflammatory status of the brain may be most pronounced in a specific subgroup of patients. Indeed, in 180 medication-naive FEP patients, approximately one-third showed marked increases in serum immunity markers. In parallel, a recent postmortem study indicated signs of low-grade inflammation in 40% patients with schizophrenia. For future research, it will be key to determine deviations in DA synthesis, frontal glutamine levels and activation of microglial cells could unravel which underlying neurobiology is relevant in a specific patient.

TREATMENT OF FIRST-EPIODE SCHIZOPHRENIA

For obvious reasons, treatment of schizophrenia has focused almost exclusively on the stage when patients present with clear-cut clinical symptoms, that is, psychosis. Although an increasing number of studies are now developing treatment at the earlier stages of the illness, such as the ARMS, or focus on the alleviation of cognitive dysfunction in chronic patients, the bulk of studies still focus on the treatment of psychosis.

Antipsychotic treatment

The best-known mechanism of action of antipsychotic medication is the correction of increased striatal DA turnover. Interestingly, more recent work in animals (Kato et al.) and cultured brain cells (Zheng et al.) suggest that inhibition of microglial activation may be an additional aspect of the efficacy of antipsychotics. Although we have had effective antipsychotic treatments for nearly 50 years, the application and implementation of these treatments is far from optimal. Many of the elementary questions in the treatment of schizophrenia have remained unanswered. Fortunately, first-episode patients do often respond reasonably well; the main challenge then becomes how to keep them well. Once it has been decided that antipsychotic...
treatment is to be initiated, the question arises on how to prioritize the currently available treatments in a rational and optimal manner. No one treatment will be adequate for all patients. Prospective, sequential studies are necessary to develop treatment algorithms for schizophrenia, but these are almost completely missing. Although every year hundreds of studies on schizophrenia are published (the register of the Cochrane Schizophrenia Group currently includes 12,000 controlled clinical trials), most of the studies focus on the question of whether a specific drug or psychotherapeutic intervention works or not. However, lacking are the mechanism-based, rational, sequential studies that address how to deal with treatment nonresponse. Although schizophrenia patients with an FEP are highly responsive to antipsychotic medication, this rapidly diminishes as episodes increase. Whether switching of antipsychotics is helpful in such patients has hardly been studied, although several large trials are currently under way (OPTiMiSE trial and SWITCH). Agid et al. used an algorithm in which 244 FEP patients were randomized to risperidone or olanzapine. After 4 weeks, as much as 75% had responded to medication (82% in the olanzapine group and 66% in the risperidone group). Nonresponders were switched to the other arm. In this second trial, response rate dropped dramatically to only 17% and again significantly more patients in the olanzapine than in the risperidone group responded. This study illustrates the high response rate in FEP patients, but also shows that patients who do not respond to the first antipsychotic medication have a low probability of responding to a second antipsychotic drug. In these nonresponders, non-dopaminergic mechanisms may be important and when a first trial of antipsychotic medication has failed, treatments to correct NMDAr hypofunction, or increased proinflammatory status of the brain, are expected to be more effective.

Glutamatergic treatments

There are several routes that can potentially improve, or compensate, NMDAr hypofunction in schizophrenia. First, the availability of glycine or D-serine at the glycine site can be increased by the administration of glycine or D-serine. Some studies suggest that glycine and D-serine modestly improve positive and negative symptoms, with little or no impact on cognitive dysfunction. D-serine levels can also be increased by inhibiting its cataboliser D-amino acid oxidase (DAAO), which so far showed no efficacy on symptom severity.

Modulations of AMPA receptors, which are colocalized in synapses near NMDA receptors, provide another avenue for treatment. Several compounds such as CX-516, piracetam cyclothiazide and LY404187 have been tested but so far have not shown clear benefits. A third option is modulation of the glycine transporter, for example, with sarcosine, which has demonstrated some improvement in negative and cognitive symptoms. Finally, modulation of the metabotropic glutamate receptor (mGluR) has been studied: in a phase II study, one of these substances (LY354740), was comparable in efficacy to olanzapine, but a subsequent larger trial was inconclusive.

Influencing GABA-ergic interneurons—the downstream relays of the glutamatergic neurons—offers an alternative strategy. Two classes of selective GABA-ergic drugs have been proposed to enhance cognition in schizophrenia, α5-selective inverse agonists and α2/3-selective agonists. There is compelling evidence from animal models of schizophrenia that allosteric modulation of the α5 subunit of the GABA-A receptor can correct underlying deviations and lead to improvements in cognition. So far, significant improvement of cognition in patients with schizophrenia by GABA-ergic drugs has not been demonstrated, however. The disappointing results with agents targeting NMDAr-mediated or GABA-ergic signalling may not come as a surprise given the fact that dysfunction within these circuits is likely to take place far earlier than does the onset of psychosis. At the time of frank psychotic symptoms many years of NMDAr and GABA-ergic hypofunction may already have caused irreversible deficits in brain maturation and synaptic plasticity. Therefore, treatment for schizophrenia may only be truly effective during the critical developmental window, after which the brain is hard-wired. For treatment, or better prevention, of cognitive decline, it will be key to diagnose at-risk subjects much earlier than the FEP or even the ARMS stage so that glutamatergic or GABA-ergic medication can be given before the window of opportunity has closed.

Antinflammatory agents for the treatment of schizophrenia

The use of antinflammatory agents to improve symptoms of schizophrenia is still in its infancy. A recent meta-analysis has shown some efficacy in schizophrenia for aspirin, n-acetylcysteine (NAC) and estrogens (the latter only in females), but not for other agents with antinflammatory properties, such as celecoxib, minocycline, davunetide and polysaturated fatty acids. Two EEG studies showed that NAC improved both multivariate phase synchronization and mismatch negativity in patients with schizophrenia. A trial in ARMS subjects, however, did show that polysaturated fatty acids significantly reduced (or delayed) transition to psychosis. A follow-up study of this RCT showed that a reduction of positive symptoms and a lower mean PANSS positive score in the polysaturated fatty acids group were apparent after 8 weeks, whereas the significant drop in negative symptoms and the higher mean scores in global functioning occur later at 12 weeks. More studies are needed, however, before this treatment can be considered an effective intervention. As increased proinflammatory status may also affect the brain in an early stage of the illness, augmentation with these agents during the ARMS or FEP stages may be less effective than earlier interventions, that is, several years before psychosis starts. As the diagnosis of schizophrenia is currently based on the onset of the psychotic symptoms, irreversible damage to neurons and glia cells, reflected in brain volume loss, may already be present at the time of diagnosis (as has been argued above and has been repeatedly shown in magnetic resonance imaging studies). Thus, to treat the earliest phases of the illness, antinflammatory agents with high numbers-needed-to-harm are the best candidates. NAC may be of particular interest, as this component targets not only a diverse array of factors including glutamatergic neurotransmission, the antioxidant glutathione, neurotrophins, apoptosis, mitochondrial function, but also the inflammatory pathways. NAC displays a benign side-effect profile and may even have some anti-addictive properties, which would make this component a valuable substance for prevention of brain volume loss, cognitive deterioration and subsequent transition to psychosis in individuals at (genetic) risk for schizophrenia.

Non-pharmacological treatments

Among the many non-pharmacological interventions recently developed to treat patients in the ARMS and FEP period, exercise interventions, such as aerobic interval training, seem especially appealing. The beneficial effects of exercise on mood and self-esteem have long been acknowledged and we recently showed that psychotic and negative symptoms are also reduced by exercise interventions as compared with creative therapy. Interestingly, physical exercise is known to affect gene expression in an antinflammatory pathway, including the downregulation of monocyte TNF, TLR4 and CD36 genes. In sedentary patients, a fitness programme engaging them in a 1-h daily walk resulted in significant decreases in systemic inflammation parameters. An important advantage of physical exercise is its potential to prevent metabolic side-effects of antipsychotics. Exercise also attenuates progressive grey matter loss in the early stages of
schizophrenia and leads to an increase in hippocampal volume in patients. Whether exercise is effective in FEP or ARMS has not been tested, but may show particular promise in view of the absence of harmful side-effects.

Other non-pharmacological interventions consist of neumo-
dulation, using repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation. Theoretically, these interventions can improve GABA-ergic inhibition with minimal side effects.

Recent advances in spatial and temporal precision of these neuromodulation techniques allow for specific enhancement of neural synchrony in a particular brain area (for example, the dorsolateral prefrontal cortex), which can improve cognitive functions, such as working memory.

Towards personalized medicine for patients with schizophrenia Schizophrenia most likely develops from several different mechanisms, among which are increased DA synthesis, NMDAR hypofunction and increased proinflammatory status of the brain. Neuroimaging techniques may help to tailor treatments to the needs of individual patients. Given that the vast majority of FEP patients respond well to an antipsychotic agent, it does not seem worthwhile to use invasive and expensive PET scans for selection before a first medication trial. In the FEP patients who fail to respond to a first antipsychotic trial, however, further investigations may be valuable. MRS can be performed on most clinical magnetic resonance imaging scanners. Both the peak signal observed during ARMS and FEP and the subsequent decrease observed in more chronic stages of the illness could be targeted with glutamatergic drugs. Likewise, decreases in GABA could be compensated with selective GABA-agonists. Alternatively, hypo-
function of the GABA-ergic interneurons could be compensated by increasing cortical inhibition with targeted neuromodula-
tion. Increased proinflammatory status of the brain, in particular increased microglia cell activation, can be detected with PET scans using the PK11195 tracer, but this is an invasive and expensive technique. As increased proinflammatory status may not be restricted to the brain, but may be systemic in a subset of patients with schizophrenia, measurements of proinflammatory cyto-
kines in peripheral blood, such as the IL-1 receptor antagonist, IL-6 and sIL-2R could provide a simple screening method to select patients for augmentation with antiinflammatory drugs.

Another approach could be to measure the concentration of C-reactive protein, which is a general reflection of heightened (native and adaptive) immune activity but also of metabolic syndrome, stress and even smoking.

CONCLUSION

At the time of first psychotic symptoms, neurobiological processes underlying schizophrenia have already been ongoing for many years. Although increased DA synthesis may be the final common pathway to psychosis, hypofunction of the NMDAr, associated decreased GABA-ergic signalling and increased proinflammatory status of the brain may be important mechanisms underlying cognitive dysfunction. The contribution of these pathophysiological pathways to the clinical picture of schizophrenia most likely varies per individual. If we aim to intervene before the window of opportunity is closed and deviations in the brain have become hard-wired, it will be key to include cognitive deterioration in the diagnosis of schizophrenia instead of postponing diagnosis until the onset of psychotic symptoms many years later. Meanwhile, effective interventions, with high numbers-needed-to-harm, should be considered for at-risk groups.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

We thank Dr C Vinkers, MSc, JL Schutte and Professor Dr P Burbach for their help in preparing this paper.

REFERENCES

1. Kahn RS, Keefe RS. Schizophrenia is a cognitive illness: time for a change in focus. JAMA Psychiatry 2013; 70: 1107–1112.
2. Hajima SV, Van Haren N, Cahn W, Koolschijn PC, Hulshoff Pol HE, Kahn RS. Brain volumes in schizophrenia: a meta-analysis in over 18,000 subjects. Schizophr Bull 2013; 39: 1129–1138.
3. O’Rahilly, R Müller, F. Human Embryology & Teratology. Wiley-Liss: New York, NY, USA, 1992.
4. Sgouros S, Hockley AD, Goldin JH, Wake MJ, Natarajan K. Intracranial volume change in craniomycostasis. J Neurosurg 1999; 91: 617–625.
5. Blakemore SJ. Imaging brain development: the adolescent brain. Neuroimage 2012; 61: 397–406.
6. Hulshoff Pol HE, Kahn RS. What happens after the first episode? A review of progressive brain changes in chronically ill patients with schizophrenia. Schizophr Bull 2008; 34: 354–366.
7. Hulshoff Pol HE, Brandeis MD, Van Haren NE, Schnack HG, Langen M, Baare WF et al. Gray and white matter volume abnormalities in monzygotic and same-gender dizygotic twins discordant for schizophrenia. Biol Psychiatry 2004; 55: 126–130.
8. Cahn W, Van Haren NE, Hulshoff Pol HE, Schnack HG, Caspers E, Laponder DA et al. Brain volume changes in the first year of illness and 5-year outcome of schizophrenia. Br J Psychiatry 2006; 189: 381–382.
9. Van Haren NE, Cahn W, Hulshoff Pol HE, Kahn RS. Confounders of excessive brain volume loss in schizophrenia. Neurosci Biobehav Rev 2013; 37: 2418–2423.
10. Ho BC, Andreassen NC, Ziebell S, Pierson R, Magnotta V. Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch Gen Psychiatry 2011; 68: 128–137.
11. Andreassen NC, Liu D, Ziebell S, Vora A, Ho BC. Relapse duration, treatment intensity, and brain tissue loss in schizophrenia: a prospective longitudinal MRI study. Am J Psychiatry 2013; 170: 609–615.
12. Mandl RC, Rais M, Van Baal GC, Van Haren NE, Cahn W, Kahn W, Kahn RS et al. Altered white matter connectivity in never-medicated patients with schizophrenia. Hum Brain Mapp 2013; 34: 2353–2365.
13. Reis Marques T, Taylor H, Chaddock D, Dell’acqua F, Handleby R, Reinders AA et al. White matter integrity as a predictor of response to treatment in first episode psychosis. Brain 2014; 137: 172–182.
14. Kuswanto CN, Teh I, Lee TS, Sim K. Diffusion tensor imaging findings of white matter changes in first episode schizophrenia: a systematic review. Clin Physiological Neurosci 2012; 10: 13–24.
15. Radua J, Borgwardt S, Crescini A, Mataix-Cols D, Meyer-Lindenberg A, McGuire PK et al. Multimodal meta-analysis of structural and functional brain changes in first episode psychosis and the effects of antipsychotic medication. Neurosci Biobehav Rev 2012; 36: 2325–2333.
16. Vita A, De Peri L, Deste G, Sacchetti E. Progressive loss of cortical gray matter in schizophrenia: a meta-analysis and meta-regression of longitudinal MRI studies. Transl Psychiatry 2012; 2: e190.
17. Van Haren NE, Cahn W, Hulshoff Pol HE, Kahn RS. The course of brain abnormalities in schizophrenia: can we slow the progression? J Psychopharmacol 2012; 26: 8–14.
18. Van Haren NE, Cahn W, Hulshoff Pol HE, Kahn RS. Schizophrenia as a progressive brain disease. Eur Psychiatry 2008; 23: 245–254.
19. Hulshoff Pol HE, Kahn RS. What happens after the first episode? A review of progressive brain changes in chronically ill patients with schizophrenia. Schizophr Bull 2008; 34: 354–366.
20. Steen RG, Mull C, McClure R, Hamer RM, Lieberman JA. Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic reso-
nance imaging studies. Br J Psychiatry 2006; 188: 510–518.
21. Wang Q, Cheung C, Deng W, Li M, Huang C, Ma X et al. White-matter micro-
structure in previously drug-naive patients with schizophrenia after 6 weeks of treatment. Psychol Med 2013; 43: 2301–2309.
22. Friedrich VL Jr, Byne W, Buitron C, Perl DP, Davis KL. Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol Psychiatry 2003; 53: 1075–1085.
23. Schmitt A, Steyskal C, Bernstein HG, Schneider-Axmann T, Parlapiano E, Schaeffer EL et al. Stereologic investigation of the posterior part of the hippocampus in schizophrenia. Acta Neuropathol 2009; 117: 395–407.
44 Schwartz TL, Sachdeva S, Stahl SM. Genetic data supporting the NMDA receptor hypothesis for schizophrenia. Curr Pharm Des 2013; 19: 2340–2349.

45 Anticevic A, Gancsos M, Murray JD, Repovs G, Driesen NR, Ennis DJ et al. Cognitive functioning in at-risk mental states for psychosis and 2-year clinical outcome. Schizophr Res 2012; 142: 108–115.

46 Simon AE, Grädel M, Cattapan-Ludewig K, Gruber K, Ballinari P, Roth B et al. Neurocognitive predictors of functional outcome two to 13 years after identification as ultra-high risk for psychosis. Schizophr Res 2013; 209: 266–272.

47 Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and implications for the pathophysiology of schizophrenia. Arch Gen Psychiatry 2009; 66: 1108–1109.

48 Hoff AL, Svetina C, Shields G, Stewart J, Delisii LE. Ten year longitudinal study of neurophysiological functioning following to a first episode of schizophrenia. Schizophrenia Res 2005; 78: 27–36.

49 Floresco SB, Todd CL, Grace AA. Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J Neurosci 2001; 21: 4915–4922.

50 Adell A, Jiménez-Sánchez L, López-Gil X, Román T. Is the acute NMDA receptor hypofunction a valid model of schizophrenia? Schizophr Bull 2012; 38: 9–14.

51 Rowland LM, Kontion C, West J, Edden RA, Zhin Wijtenburg SA et al. In vivo measurements of glutamate, GABA, and NAA in schizophrenia. Schizophr Bull 2013; 39: 1096–1104.

52 El-Khodor BF, Flores G, Sivakumar V, Ang LS, Sundaresan A. Hypoxic damage to the perivenular white matter in neonatal brain: role of vascular endothelial growth factor, nitric oxide and excitotoxicity. J Neurochem 2006; 98: 1200–1216.

53 Kaur C, Sivakumar V, Ang LS, Sundaresan A. Hypoxic damage to the perivenular white matter in neonatal brain: role of vascular endothelial growth factor, nitric oxide and excitotoxicity. J Neurochem 2006; 98: 1200–1216.

54 Owen D, Setiawan E, Li A, McCabe L, Matthews SG. Regulation of N-methyl-D-aspartate receptor subunit expression in the fetal guinea pig brain. Biol Reprod 2004; 71: 676–683.

55 Feinberg I. Schizophrenia: caused by a fault in programmed synaptic elimination. J Neurosci 2011; 31: 5241–5246.

56 Fusar-Poli P, Bora E, Dazzan P, Haag K, Corinna K, Malti S et al. Brain metabolic alterations in people with prodromal symptoms of psychosis: a 1H magnetic resonance spectroscopy study. Schizophr Res 2010; 123: 121–132.

57 Iochum L, de la Fuente-Sandoval C, León-Ortiz C, Arienti V, Rizzo M, Roccia F et al. Cognitive dysfunction in people with prodromal symptoms of psychosis: a 1H magnetic resonance spectroscopy study. Schizophr Res 2010; 123: 121–132.

58 Wang M, Yang Y, Wang CJ, Gamo NJ, Jin LE, Mazer JA et al. Glutamate + Glutamine and N-Acetylaspartate levels in patients with chronic episode schizophrenia. Schizophr Bull 2013; 39: 1096–1104.

59 Hedges MK. Cerebrovascular dysregulation in schizophrenia and other psychiatric disorders. J Neurochem 2005; 92: 16027–16032.

60 de la Fuente-Sandoval C, León-Ortiz C, Arienti V, Rizzo M, Roccia F, Graff-Radford N et al. Brain metabolic alterations in people with prodromal symptoms of psychosis: a 1H magnetic resonance spectroscopy study. Schizophr Res 2010; 123: 121–132.

61 Adell A, Jiménez-Sánchez L, López-Gil X, Román T. Is the acute NMDA receptor hypofunction a valid model of schizophrenia? Schizophr Bull 2012; 38: 9–14.

62 Rowland LM, Kontion C, West J, Edden RA, Zhin Wijtenburg SA et al. In vivo measurements of glutamate, GABA, and NAA in schizophrenia. Schizophr Bull 2013; 39: 1096–1104.

63 Rowland LM, Bustillo JR, Mullins PG, Jung RE, Lenroot R, Landgraf E et al. Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry 2009; 66: 13–20.

64 Howes OD, Montgomery AJ, Asselin MC, Murray RM, Valli I, Tabraham P et al. Dopamine synthesis capacity before onset of psychosis: a prospective [18F]-DOPA PET imaging study. J Psychiatry 2011; 168: 1311–1317.

65 Bebr GR, Haller P, Holsboer FR, Takeda Y, Matsuoka S et al. Increased striatal dopamine synthesis capacity in healthy control subjects. Schizophr Bull 2007; 33: 549–562.

66 von Ol CJ, Shtookan MM, Creeer MP, Kahn RS. School performance as a pre-morbid marker for schizophrenia: a twin study. Schizophr Bull 2002; 28: 401–414.

67 Liu A, Wood SJ, Nelson B, Brewer WJ, Spillatoriopoulos D, Bruxner A et al. Neurocognitive predictors of functional outcome two to 13 years after identification as ultra-high risk for psychosis. Schizophr Res 2011; 132: 1–7.

68 van Ol CJ, Shtookan MM, Creeer MP, Kahn RS. School performance as a pre-morbid marker for schizophrenia: a twin study. Schizophr Bull 2002; 28: 401–414.

69 Howes OD, Montgomery AJ, Asselin MC, Murray RM, Valli I, Tabraham P et al. Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry 2009; 66: 13–20.

70 Howes OD, Bose SK, Turkheimer F, Valli I, Egerton A, Valmaggia LR et al. Dopamine synthesis capacity before onset of psychosis: a prospective [18F]-DOPA PET imaging study. J Psychiatry 2011; 168: 1311–1317.

71 Bonoldi I, Howes OD. The enduring centrality of dopamine in the pathophysiology of schizophrenia: in vivo evidence from the prodrome to the first psychotic episode. Adv Pharmacol 2013; 68: 199–220.

72 Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull 2009; 35: 549–562.

73 Winton-Brown TT, Fusar-Poli P, Ungless MA, Howes OD. Dopaminergic basis of silence dysregulation in psychosis. Trends Neurosci 2014; 37: 85–94.

74 Beech ME, Simpson EH, Kahn L, Marshall JJ, Kandel ER, Kellendonk C. Transient and selective overexpression of D2 receptors in the striatum causes persistent deficits in conditional associative learning. Proc Natl Acad Sci USA 2008; 105: 16027–16032.

75 Anticevic A, Gancos M, Murray JD, Repovs G, Driessen NR, Ennis DJ et al. NMDA receptor function in large-scale anteromedial neural networks with implications for cognition and schizophrenia. Proc Natl Acad Sci USA 2010; 107: 16720–16725.

76 Schwartz TL, Sachdev S, Stahl SM. Genetic data supporting the NMDA glutamate receptor hypothesis for schizophrenia.Curr Pharm Des 2012; 18: 1580–1592.

77 Kristal JH, Anand A, Moghaddam B. Effects of NMDA receptor antagonists: implications for the pathophysiology of schizophrenia. Arch Gen Psychiatry 2002; 59: 663–669.

78 Snyder MA, Gao WJ. NMDA hypofunction as a convergence point for progression and symptoms of schizophrenia. Front Cell Neurosci 2013; 7: 31.

79 Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2010; 15: 40–68, image 5.

80 Hahn CG, Wang HY, Cho DS, Talbot K, Gur RE, Berrettini WH et al. Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat Med 2006; 12: 824–828.

81 Fromer M, Pocklington AJ, Kavanagh DH, William HJ, Dwyer S, Gormley P et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 2014; 506: 179–184.

82 Wang M, Yang Y, Wang CJ, Gamo NJ, Jin LE, Mazer JA et al. NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex. Neuron 2013; 77: 736–749.
Molecular Psychiatry (2015), 84 – 97

94

Shatz CJ. MHC class I: an unexpected role in neuronal plasticity. Neuron 2012; 74: 265–272.

95

Canetta SE, Brown AS. Prenatal infection, maternal immune activation, and risk for schizophrenia. Psychiatr Clin Neurosci 2009; 63: 257–265.

96

Narayanan S, Tang B, Head SR, Gilmartin TJ, Sutcliffe JG, Dean B et al. Molecular profiles of schizophrenia in the CNS at different stages of illness. Brain Res Rev 2008; 213: 239–248.

97

Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 2011; 70: 663–671.

98

Feigenson KA, Kupecvc AW, Silverstein SM. Inflammation and the two-hit hypothesis of schizophrenia. Neurosci Biobehav Rev 2014; 38: 72–93.

99

Papadia S, Soriano FX, Levelle F, Martel MA, Dakin RA, Hansen HH et al. Synaptic NMDA receptor activity boosts intrinsic antidepressant defenses. Nat Neurosci 2008; 11: 476–487.

100

Smith SE, Li J, Garbett K, Mimics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 2007; 27: 10695–10702.

101

Behrens MM, Ali SS, Duigan LL. Interleukin-6 mediates the increase in NADPH-oxidase in the ketamine model of schizophrenia. Neurosci 2008; 28: 13957–13966.

102

Muller N, Schwarz M. Schizophrenia as an inflammation-mediated dysbalance of glutamatergic neurotransmission. Neurotox Res 2006; 10: 131–148.

103

Mayer ML, Westbrook GL, Vylicky LJ. Jr. Sites of antagonist action on N-methyl-D-aspartic acid receptors studied using fluctuation analysis and a rapid perfusion technique. J Neurophylos 1988; 60: 645–663.

104

Coyle JT. Nitric oxide and symptom reduction in schizophrenia. JAMA Psychiatry 2013; 70: 664–665.

105

Meyer U, Feldon J. Neural basis of psychosis-related behaviour in the infection model of schizophrenia. Behav Brain Res 2009; 204: 322–334.

106

Pastremak O, Westin CF, Bouix S, Seidman LJ, Goldstein JM, Woo TU et al. Excessive extracellular volume reveals a neurodegenerative pattern in schizophrenia onset. J Neurosci 2012; 32: 17365–17372.

107

Egerton A, Fusar-Poli P, Stone JM. Glutamate and psychosis risk. Curr Pharm Des 2012; 18: 466–478.

108

Demjaha A, Murray RM, McGuire PK, Kapur S, Howes OD. Dopamine synthesis capacity in patients with treatment-resistant schizophrenia. Am J Psychiatry 2012; 169: 1203–1210.

109

Fillman SG, Cleonan N, Miller LC, Weickert CS. Markers of inflammation in the prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 2013; 18: 133.

110

Kato T, Monji A, Hashioka S, Kanba S. Risperidone significantly inhibits feron- gamma-induced microglial activation in vitro. Schizophr Res 2007; 92: 108–115.

111

Kato TA, Monji A, Mizoguchi Y, Hashioka S, Horioka H, Seki Y, Kasai M, Utsumi H, Kanba S. Anti-Inflammatory properties of antipsychotics via microglia modulations: are antipsychotics a ‘fire extinguisher’ in the brain of schizophrenia? Mini Rev Med Chem 2011; 11: 565–574.

112

Zheng LT, Hwang J, Ock J, Lee MG, Lee WH, Suk K. The antipsychotic spiperone attenuates inflammatory response in cultured microglia via the reduction of proinflammatory cytokine expression and nitric oxide production. J Neurochem 2008; 107: 1225–1235.

113

Kahn RS, Fleischhacker WW, Boter H, Davidson M, Vergouwy V, Keet IP et al. Effectiveness of antipsychotic drugs in first-episode schizophrenia and schizophrainiform disorder: an open randomised clinical trial. Lancet 2008; 371: 1085–1097.

114

Robinson DJ. First-episode schizophrenia. CNS Spectr 2010; 15: 4–7.

115

Robinson DG, Woerner MG, Alvir JM, Geisler S, Koreen A, Shetelman B et al. Predictors of treatment response from a first episode of schizophrenia or schizoaffective disorder. Am J Psychiatry 1999; 156: 544–549.

116

Agid O, Arenovich T, Sajeev G, Zipursky RB, Kapur S, Foussias G et al. An algorithm-based approach to first-episode schizophrenia: response rates over 3 prospective antipsychotic trials with a retrospective data analysis. J Clin Psychiatry 2011; 72: 1439–1444.

117

Singh SP, Singh V. Meta-analysis of the efficacy of adjunctive NMDA receptor modulators in chronic schizophrenia. CNS Drugs 2011; 25: 859–885.

118

Heresco-Levy U, Javitt DC. Comparative effects of glycine and D-cycloserine on persistent negative symptoms in schizophrenia: a retrospective analysis. Schizophr Res 2004; 66: 89–96.

119

Hashimoto K, Malchow B, Falkai P, Schmitt A. Glutamate modulators as potential therapeutic drugs in schizophrenia and affective disorders. Eur Arch Psychiatry Clin Neurosci 2013; 263: 367–377.

Molecular Psychiatry (2015), 84 – 97

© 2015 Macmillan Publishers Limited
125 Goff DC, Lamberti JS, Leon AC, Green MF, Miller AL, Patel J et al. A placebo-controlled add-on trial of the Ampakine, CX516, for cognitive deficits in schizophrenia. Neuropsychopharmacology 2008; 33: 465–472.

126 Lane HY, Liu YC, Huang CL, Chang YC, Liau CH, Perng CH et al. The inhibitory GABA system as a target for cognitive improvement. Mol Psychiatry 2014; 19: 1217–1233.

130 Vinkers CH, Mirza NR, Olivier B, Kahn RS. The inhibitory GABA system as a target for cognitive improvement. Mol Psychiatry 2014; 19: 1217–1233.

133 Carmeli C, Knyazeva MG, Cuénod M, Do KQ. Glutathione precursor N-acetyl-cysteine, improves mismatch negativity in patients at high risk for psychosis: findings in a second cohort. Biol Psychiatry 2013; 74: 106–112.

137 Egeton A, Chaddock CA, Winton-Brown TT, Bloomfield MAP, Bhattacharyya S, Allen P et al. Presynaptic striatal dopamine dysfunction in people at ultra-high risk for psychosis: findings in a second cohort. Biol Psychiatry 2013; 74: 106–112.

149 Luber B, Steffener J, Tucker A, Habeck C, Peterechev AV, Deng ZD et al. Extended remediation of sleep deprived-induced working memory deficits using fMRI-guided transcranial magnetic stimulation. Sleep 2013; 36: 857–871.

151 Zakharyan R, Boyajyan A. Inflammatory network of schizophrenia. World J Biol Psychiatry 2014; 15: 174–187.

154 Dickerson F, Stalnag C, Orioni A, Boronow J, Volkens R. A-reactive protein is associated with the severity of cognitive impairment but not of psychiatric symptoms in individuals with schizophrenia. Schizophr Res 2007; 93: 261–265.

158 Vuksan-Cusa B, Sagud M, Jakovljevic M, Peles AM, Jakic N, Mihajlevic S et al. Association between C-reactive protein and homocysteine with the sub-components of metabolic syndrome in stable patients with bipolar disorder and schizophrenia. Nord J Psychiatry 2013; 67: 320–325.

159 Allen P, Chaddock CA, Howes O, Egerston, Seal ML, Fusar-Poli P et al. Abnormal relationship between medial temporal lobe and subcortical dopamine function in people with an ultra high risk for psychosis. Schizophr Bull. 2012; 38: 1040–9.

162 Bloemen OJN, de Koning MB, Bleich T, Meijer J, de Haan L, Linszen DH et al. Striatal dopamine D2/D3 receptor binding following dopamine depletion in subjects at Ultra High Risk for psychosis. Eur Neuropsychopharmacol 2013; 23: 666–675.

163 Egerton A, Chaddock CA, Winton-Brown TT, Bloomfield MAP, Bhattacharyya S, Allen P et al. Presynaptic striatal dopamine dysfunction in people at ultra-high risk for psychosis: findings in a second cohort. Biol Psychiatry 2013; 74: 106–112.

166 Corripio I, Pérez V, Cattafau AM, Mena E, Cairoi I, Alvarez E. Striatal D2 receptor binding as a marker of prognosis and outcome in untreated first-episode psychosis. Neuropsychopharmacology 2006; 29: 662–666.

167 Corripio I, Escarti MJ, Portella MJ, Pérez V, Grasa E, Sauras RB et al. Density of striatal D2 receptors in untreated first-episode psychosis: an 1123-IBMZ SPECT study. Eur Neuropsychopharmacol 2011; 21: 861–866.

168 Glenthoj BY, Mackeprang T, Svarer C, Rasmussen H, Pinborg LH, Friberg L et al. Frontal Dopamine D2/D3 Receptor Binding in Drug-Naive First-Episode Schizophrenic Patients Correlates with Positive Psychotic Symptoms and Gender. Biological Psychiatry 2006; 60: 621–629.

169 Graff-Guerrero A, Mamo D, Shammi CM, Mizrahi R, Marcon H, Bartsom P et al. The effect of antipsychotics on the high-affinity state of D2 and D3 receptors: a position paper. Schizophr Res 2012; 60: 606–615.

170 Hietala J, Syvälahti E, Vuorio K, Rääkköläinen V, Bergman J, Haapanen A et al. Presynaptic dopamine function in striatum of neuroleptic-naïve schizophrenic patients. Lancet 1995; 346: 1130–1131.
schizophrenia and onset of psychosis

Molecular Psychiatry (2015), 84 – 97

96

Schizophrenia and onset of psychosis
RS Kahn and IE Sommer

172 Hietala J, Syvälahti E, Villikka H, Vuorio K, Räkäkallioinen V, Bergman J et al. Depressive symptoms and presynaptic dopamine function in neuroleptic-naïve schizophrenia. Schizophr Res 1999; 35: 41–50.

173 Hsiao MC, Lin KJ, Liu CY, Tzen KY, Yen TC. Dopamine transporter change in drug-free schizophrenia: an imaging study with 99mTc-TRODAT-1. Schizophr Res 2003; 65: 39–46.

174 Karlsson P, Farde L, Halldin C, Sedval G. PET study of D1/D5 dopamine receptor binding in neuroleptic-naïve patients with schizophrenia. Am J Psychiatry 2002; 159: 761–767.

175 Laakso A, Villikka H, Alakare B, Haaparanta M, Bergman J, Solin O et al. Striatal dopamine transporter binding in neuroleptic-naïve patients with schizophrenia studied with positron emission tomography. Am J Psychiatry 2000; 157: 269–271.

176 Lavalsey J, Linszen DH, Boojy J, Dingemans PM, Renneman L, Habraken JB et al. Dopamine transporter density in young patients with schizophrenia assessed with [123]FP-CIT SPECT. Schizophr Res 2001; 47: 59–67.

177 Lehrer DS, Christian BT, Kirbas C, Chiang M, Sidhu S, Short H et al. 18F-fallypride binding potential in patients with schizophrenia compared to healthy controls. Schizophr Res 2010; 122: 43–52.

178 Lindström LH, Gelfort V, Hagberg G, Lundberg T, Bergström M, Hartvig P et al. Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by L-([beta]-11C) DOPA and PET. Biol Psychiatry 1999; 46: 681–688.

179 Mateos JJ, Lomeña F, Parellada E, Font M, Fernández E, Pavia J et al. Striatal dopamine transporter binding in neuroleptic-naïve patients with schizophrenia. Am J Psychiatry 2002; 159: 761–767.

180 Mateos JJ, Lomeña F, Parellada E, Font M, Fernández E, Pavia J et al. Striatal dopamine transporter binding in neuroleptic-naïve patients with schizophrenia studied with positron emission tomography. Am J Psychiatry 2000; 157: 269–271.

181 Lavalsey J, Linszen DH, Boojy J, Dingemans PM, Renneman L, Habraken JB et al. Dopamine transporter density in young patients with schizophrenia assessed with [123]FP-CIT SPECT. Schizophr Res 2001; 47: 59–67.

182 Lehrer DS, Christian BT, Kirbas C, Chiang M, Sidhu S, Short H et al. 18F-fallypride binding potential in patients with schizophrenia compared to healthy controls. Schizophr Res 2010; 122: 43–52.

183 Lehrer DS, Christian BT, Kirbas C, Chiang M, Sidhu S, Short H et al. 18F-fallypride binding potential in patients with schizophrenia compared to healthy controls. Schizophr Res 2010; 122: 43–52.

184 Schmitt GJE, la Fougère C, Dresel S, Frodl T, Hahn K, Möller HJ et al. Lower striatal dopamine transporter in schizophrenia indicated by L-(beta-11C) DOPA and PET. Int. J Neuropsychopharmacol 2005; 8: 1016–1024.

185 Safont G, Corripio I, Escartí MJ, Portella MJ, Pérez V, Ferrer M et al. Striatal dopamine transporter density in neuroleptic-naïve patients with schizophrenia as demonstrated by [123]IIBZM SPECT. Eur Arch Psychiatry Neurol Sci 2001; 251: 159–165.

186 Schmitt GJE, Meisenzahl EM, Frodl T, La Fougère C, Hahn K, Möller HJ et al. Striatal dopamine transporter binding in neuroleptic-naïve patients with schizophrenia studied with L-([beta]-11C) DOPA and PET. Schizophr Res 2009; 108: 78–84.

187 Salfont G, Corripio I, Escartí MJ, Portella MJ, Pérez V, Ferrer M et al. Cannabis use and striatal D2 receptor density in untreated first-episode psychosis: an in vivo SPECT study. Schizophr Res 2011; 129: 169–171.

188 Schmitt GJE, Meisenzahl EM, Frodl T, La Fougère C, Hahn K, Möller HJ et al. Striatal dopamine transporter binding in neuroleptic-naïve patients with schizophrenia studied with L-([beta]-11C) DOPA and PET. Schizophr Res 2009; 108: 78–84.

189 Salfont G, Corripio I, Escartí MJ, Portella MJ, Pérez V, Ferrer M et al. Cannabis use and striatal D2 receptor density in untreated first-episode psychosis: an in vivo SPECT study. Schizophr Res 2011; 129: 169–171.

190 Schmitt GJE, Meisenzahl EM, Frodl T, La Fougère C, Hahn K, Möller HJ et al. Striatal dopamine transporter binding in neuroleptic-naïve patients with schizophrenia studied with L-([beta]-11C) DOPA and PET. Schizophr Res 2009; 108: 78–84.

191 Salfont G, Corripio I, Escartí MJ, Portella MJ, Pérez V, Ferrer M et al. Cannabis use and striatal D2 receptor density in untreated first-episode psychosis: an in vivo SPECT study. Schizophr Res 2011; 129: 169–171.

192 Schmitt GJE, Meisenzahl EM, Frodl T, La Fougère C, Hahn K, Möller HJ et al. Striatal dopamine transporter binding in neuroleptic-naïve patients with schizophrenia studied with L-([beta]-11C) DOPA and PET. Schizophr Res 2009; 108: 78–84.

193 Salfont G, Corripio I, Escartí MJ, Portella MJ, Pérez V, Ferrer M et al. Cannabis use and striatal D2 receptor density in untreated first-episode psychosis: an in vivo SPECT study. Schizophr Res 2011; 129: 169–171.

194 Schmitt GJE, Meisenzahl EM, Frodl T, La Fougère C, Hahn K, Möller HJ et al. Striatal dopamine transporter binding in neuroleptic-naïve patients with schizophrenia studied with L-([beta]-11C) DOPA and PET. Schizophr Res 2009; 108: 78–84.

195 Salfont G, Corripio I, Escartí MJ, Portella MJ, Pérez V, Ferrer M et al. Cannabis use and striatal D2 receptor density in untreated first-episode psychosis: an in vivo SPECT study. Schizophr Res 2011; 129: 169–171.

196 Schmitt GJE, Meisenzahl EM, Frodl T, La Fougère C, Hahn K, Möller HJ et al. Striatal dopamine transporter binding in neuroleptic-naïve patients with schizophrenia studied with L-([beta]-11C) DOPA and PET. Schizophr Res 2009; 108: 78–84.

197 Salfont G, Corripio I, Escartí MJ, Portella MJ, Pérez V, Ferrer M et al. Cannabis use and striatal D2 receptor density in untreated first-episode psychosis: an in vivo SPECT study. Schizophr Res 2011; 129: 169–171.

198 Schmitt GJE, Meisenzahl EM, Frodl T, La Fougère C, Hahn K, Möller HJ et al. Striatal dopamine transporter binding in neuroleptic-naïve patients with schizophrenia studied with L-([beta]-11C) DOPA and PET. Schizophr Res 2009; 108: 78–84.

199 Schmitt GJE, Meisenzahl EM, Frodl T, La Fougère C, Hahn K, Möller HJ et al. Striatal dopamine transporter binding in neuroleptic-naïve patients with schizophrenia studied with L-([beta]-11C) DOPA and PET. Schizophr Res 2009; 108: 78–84.

200 Schmitt GJE, Meisenzahl EM, Frodl T, La Fougère C, Hahn K, Möller HJ et al. Striatal dopamine transporter binding in neuroleptic-naïve patients with schizophrenia studied with L-([beta]-11C) DOPA and PET. Schizophr Res 2009; 108: 78–84.

201 Schmitt GJE, Meisenzahl EM, Frodl T, La Fougère C, Hahn K, Möller HJ et al. Striatal dopamine transporter binding in neuroleptic-naïve patients with schizophrenia studied with L-([beta]-11C) DOPA and PET. Schizophr Res 2009; 108: 78–84.
216 Roberts GW, Colter N, Lofthouse R, Bogerts B, Zech M, Crow TJ. Gliosis in schizophrenia: a survey. *Biol Psychiatry* 1986; **21**: 1043–1050.

217 Roberts GW, Colter N, Lofthouse R, Johnstone EC, Crow TJ. Is there gliosis in schizophrenia? Investigation of the temporal lobe. *Biol Psychiatry* 1987; **22**: 1459–1468.

218 Steiner J, Mawrin C, Ziegeler A, Bielau H, Ullrich O, Bernstein H-G et al. Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization. *Acta Neuropathol* 2006; **112**: 305–316.

219 Steiner J, Bernstein H-G, Bielau H, Farkas N, Winter J, Dobrowolny H et al. S100B immunopositive glia is elevated in paranoid as compared to residual schizophrenia: a morphometric study. *J Psychiatr Res* 2008a; **42**: 868–876.

220 Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C et al. Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. *J Psychiatr Res* 2008b; **42**: 151–157.

221 Stevens CD, Altshuler LL, Bogerts B, Falkai P. Quantitative study of gliosis in schizophrenia and Huntington’s chorea. *Biol Psychiatry* 1988a; **24**: 697–700.

222 Stevens J, Casanova M, Bigelow L. Gliosis in schizophrenia. *Biol Psychiatry* 1988b; **24**: 727–731.

223 Togo T, Akiyama H, Kondo H, Ikeda K, Kato M, Iseki E et al. Expression of CD40 in the brain of Alzheimer’s disease and other neurological diseases. *Brain Res* 2000; **885**: 117–121.

224 Wierzba-Bobrowicz T, Lewandowska E, Kosno-Kruszewska E, Lechowicz W, Pasennik E, Schmidt-Sidor B. Degeneration of microglial cells in frontal and temporal lobes of chronic schizophrenia. *Folia Neuropathol* 2004; **42**: 157–165.

225 Wierzba-Bobrowicz T, Lewandowska E, Lechowicz W, Stepieni T, Pasennik E. Quantitative analysis of activated microglia, ramified and damage of processes in the frontal and temporal lobes of chronic schizophrenics. *Folia Neuropathol* 2005; **43**: 81–89.