A new ‘doubly special relativity’ theory from a quantum Weyl–Poincaré algebra

Angel Ballesterosa, N. Rossano Brunoa,b and Francisco J. Herranza

aDepartamento de Física, Universidad de Burgos, Pza. Misael Bañuelos s.n., 09001 Burgos, Spain
e-mail: angelb@ubu.es, fjherranz@ubu.es

bDipartimento di Fisica, Università di Roma ROMA TRE, and INFN Sez. Roma Tre, Via Vasca Navale 84, 00146 Roma, Italy
e-mail: rossano@fis.uniroma3.it

Abstract

A ‘mass-like’ quantum Weyl–Poincaré algebra is proposed to describe, after the identification of the deformation parameter with the Planck length, a new relativistic theory with two observer-independent scales (or DSR theory). Deformed momentum representation, finite boost transformations, range of rapidity, energy and momentum, as well as position and velocity operators are explicitly studied and compared with those of previous DSR theories based on κ-Poincaré algebra. The main novelties of the DSR theory here presented are the new features of momentum saturation and a new type of deformed position operators.
1 Introduction

In the last few years several approaches to the problem of unification of general relativity and quantum mechanics have led to arguments in favour of the modification of Lorentz symmetry at the Planck scale [1]. The different approaches to quantum gravity such as loop quantum gravity [2, 3], or string theory [4, 5] assigns to Planck scale a fundamental role in the structure of spacetime and of momentum-space, or as linked to discrete spectra of physical observables [6].

The so called ‘doubly special relativity’ (DSR) theories (see [7] and references therein) have been proposed as possible tools to investigate this ongoing quantum gravity debate in order to reconcile Lorentz invariance with the new fundamental role assigned to Planck scale. Different DSR proposals [8, 9, 10] introduce in addition to the usual observer-independent velocity scale, an observer-independent length scale (momentum scale), possibly related with the Planck scale ($L_p \simeq 10^{-33}$ cm), which acquires the role of a minimum length (maximum momentum) [9, 11], in a way in which Lorentz invariance is preserved.

Also the observable implications of DSR theories are being studied in connection with some planned Lorentz-symmetry tests [12, 13], and in searching for a kinematical solution for the puzzling observations of ultra-high-energy cosmic rays [14, 15, 16].

Under investigation [11, 17, 18] is the role that quantum groups can play in these DSR theories; for most of them, the κ-Poincaré algebra [19, 20, 21] seems to play a role which is analogous to that played by Poincaré group in Einstein’s special relativity. However, in pursuing this connection between relativistic theories with two observer-independent scales and quantum groups, it is natural to consider that any quantum Poincaré algebra should be taken as a first stage prior to the search of more general DSR theories which should be endowed with either a quantum conformal symmetry or a q-AdS (q-dS) symmetry. In this respect, several quantum deformations for so(p, q) algebras of non-standard or twisted type (different from the Drinfeld–Jimbo deformation) have been constructed during the last years. Some of them have been obtained within a conformal framework as quantum conformal algebras of the Minkowskian spacetime such as so(2, 2) [22, 23], so(3, 2) [24], and more recently so(4, 2) [25, 26, 27, 28]. From a more general mathematical perspective, twisted so(p, q) algebras have been deduced by applying different types of Drinfeld’s twists [29, 30] but most of them are written in terms of Cartan–Weyl bases.

In spite of all the mathematical (Hopf structures) background so obtained, most of the possible physical applications have mainly been studied in relation with difference-differential symmetries on uniform discretizations of the Minkowskian spacetime along a certain direction, for which the deformation parameter plays the role of the lattice step [23, 25, 27]. The aim of this paper is to explore and extract the physical consequences provided by a new DSR proposal by considering the most manageable deformation of the Weyl–Poincaré algebra, $U_\tau(WP)$, which arises within a recently introduced quantum so(4, 2) algebra [25]. The Hopf structure and the deformed momentum representation for $U_\tau(WP)$ are presented in the next section. Afterwards, by means of the usual techniques developed in studying previous DSR theories, we deduce the physical implications. Among them, finite boost transformations are obtained in section 3, and a detailed analysis of the range of the boost parameter is performed in section 4. We find that the range of the rapidity depends on the sign of the deformation parameter and, in general, the behaviour of the rapidity, energy and momentum differs from DSR theories based on κ-Poincaré. For a positive deformation parameter, the situation is rather similar to the undeformed case,
while for a negative value, the range of the rapidity is restricted between two asymptotic values for the energy; furthermore such values determine a maximum momentum that depends not only on the deformation parameter (as in κ-Poincaré) but also on the deformed mass of the particle. In section 5, two proposals for position and velocity operators are presented: one of them provides a variable speed of light for massless particles, while the other one gives rise to a fixed speed of light and conveys a new type of generalized uncertainty principle as well. Some conclusions and remarks close the paper.

2 Quantum Weyl–Poincaré algebra

Let us consider the mass-like quantum conformal Minkowskian algebra introduced in \cite{23}, $U_r(so(4,2))$, where τ is the deformation parameter. The ten Poincaré generators together with the dilation close a Weyl–Poincaré (or similitude) Hopf subalgebra, $U_r(WP) \subset U_r(so(4,2))$. Such a deformation is the natural extension to 3+1 dimensions of the results previously presented in \cite{23} for the time-type quantum $so(2,2)$ algebra and, in fact, is based in the Jordanian twist (introduced in \cite{31}) that underlies the non-standard (or h-deformation) $U_r(sl(2,\mathbb{R}))$ \cite{32}. Thus $U_r(so(4,2))$ verifies the following sequence of Hopf subalgebra embeddings:

$$U_r(sl(2,\mathbb{R})) \simeq U_r(so(2,1)) \subset U_r(so(2,2)) \subset U_r(so(3,2)) \subset U_r(so(4,2)) \bigcup \bigcup \bigcup U_r(WP_{1+1}) \subset U_r(WP_{2+1}) \subset U_r(WP_{3+1})$$

This, in turn, ensures that properties associated to deformations in low dimensions are fulfilled, by construction, in higher dimensions and moreover any physical consequence derived from the structure of $U_r(WP)$ is consistent with a full quantum conformal symmetry that can further be developed. Therefore, throughout the paper we will restrict ourselves to analyse the DSR theory provided by the deformed Weyl–Poincaré symmetries after the identification of the deformation parameter with the Planck length: $\tau \sim L_p$.

If $\{J_i, P_\mu = (P_0, \mathbf{P}), K_i, D\}$ denote the generators of rotations, time and space translations, boosts and dilations, the non-vanishing deformed commutation rules and coproduct of $U_r(WP)$ are given by \cite{23}:

$$[J_i, J_j] = i \varepsilon_{ijk} J_k \quad [J_i, K_j] = i \varepsilon_{ijk} K_k \quad [J_i, P_j] = i \varepsilon_{ijk} P_k$$

$$[K_i, J_j] = -i \varepsilon_{ijk} J_k \quad [K_i, P_0] = i e^{\tau P_0} P_i \quad [D, P_i] = i P_i$$

$$[K_i, P_j] = i e^{\tau P_0} - \frac{1}{\tau} \quad [D, P_0] = i \frac{1 - e^{-\tau P_0}}{\tau}$$

(2.1)

$$\Delta(P_0) = 1 \otimes P_0 + P_0 \otimes 1 \quad \Delta(P_i) = 1 \otimes P_i + P_i \otimes e^{\tau P_0}$$

$$\Delta(J_i) = 1 \otimes J_i + J_i \otimes 1 \quad \Delta(D) = 1 \otimes D + D \otimes e^{-\tau P_0}$$

$$\Delta(K_i) = 1 \otimes K_i + K_i \otimes 1 - \tau D \otimes e^{-\tau P_0} P_i$$

(2.2)

where hereafter we assume $\hbar = c = 1$, sum over repeated indices, Latin indices $i,j,k = 1,2,3$, while Greek indices $\mu, \nu = 0,1,2,3$. The generators of $U_r(WP)$ are Hermitian operators and τ is a real deformation parameter.

Counit ϵ and antipode S can directly be deduced from (2.1) and (2.2); they read

$$\epsilon(X) = 0 \quad X \in \{J_i, P_\mu, K_i, D\} \quad \epsilon(1) = 1$$
\[S(P_0) = -P_0 \quad S(P_i) = -P_i e^{-\tau P_0} \quad S(J_i) = -J_i \quad (2.3) \]
\[S(K_i) = -K_i - \tau D P_i \quad S(D) = -D e^{\tau P_0} \quad S(1) = 1. \]

The Poincaré sector of \(U_\tau(W\mathcal{P}) \) (which does not close a Hopf subalgebra due to the coproduct of the boosts (2.2)) provides one useful operator. If \(P_0 \) is considered as the energy of a particle, the deformation of the quadratic Poincaré Casimir

\[M^2 = \left(\frac{e^{\tau P_0} - 1}{\tau} \right)^2 - P^2 \quad (2.4) \]

can be assumed as the deformed mass-shell condition related to the rest mass \(m \) by

\[m = \frac{1}{\tau} \ln \left(1 + \tau M \right) \quad \lim_{\tau \to 0} M = m. \quad (2.5) \]

Alternatively, the deformed Poincaré Casimir (2.4) has been used to obtain a time discretization of the wave or massless Klein–Gordon equation with quantum conformal symmetry once \(\tau \) is identified with the time lattice constant [23, 25].

The operator \(M \) allows us to introduce the following deformed momentum representation for the Poincaré generators of (2.1) in terms of \(p = (p^1, p^2, p^3) \) for a spinning massive particle:

\[P_0 = p^0 = \frac{1}{z} \ln \left(1 + z \sqrt{M^2 + p^2} \right) \quad J_i = i \varepsilon_{ijk} p^k \frac{\partial}{\partial p^j} + S_i \]
\[P = p \quad K_i = i \sqrt{M^2 + p^2} \frac{\partial}{\partial p^i} + \varepsilon_{ijk} \frac{p^j S_k}{M + \sqrt{M^2 + p^2}} \quad (2.6) \]

provided that the components of the spin \(S \) fulfil \([S_i, S_j] = i \varepsilon_{ijk} S_k\).

3 Deformed finite boost transformations

The explicit form of the commutation rules \([K_i, P_\mu]\) in (2.1) show that the action of the boost generators on momentum space is deformed, so we can expect that the associated finite boost transformations are also deformed similarly to the \(\kappa \)-Poincaré case [11, 18, 33].

By taking into account that the Hopf algebra \(U_\tau(W\mathcal{P}) \) (2.1–2.3) resembles a bicrossproduct structure, we introduce the corresponding quantum adjoint action [34] as

\[\text{ad}_Y X = - \sum_i S(Y_i^{(1)}) X Y_i^{(2)} \quad (3.1) \]

provided that the coproduct of \(Y \) is written in Sweedler’s notation as \(\Delta(Y) = \sum_i Y_i^{(1)} \otimes Y_i^{(2)} \) and \(S \) is the antipode [23].

By using (3.1) it can be checked that

\[\text{ad}_{K_i} \mathcal{F}(P_\mu) = [K_i, \mathcal{F}(P_\mu)] \quad (3.2) \]

for any momentum-dependent smooth function \(\mathcal{F} \). Next, we consider a boost transformation along a generic direction determined by a unitary vector \(u \). If \(P_\mu^0 = (P_0^0, P^0) \) are the
measurements performed by the first observer with rapidity $\xi = 0$ and $P_\mu = (P_0, P)$ the measurements performed by the second one with arbitrary ξ, the finite boost transformation associated with $u \cdot K$ is obtained from (3.2) and reads

$$P_\mu = \sum_{n=0}^{\infty} \frac{1}{n!} \text{ad}^{(n)}_{-i\xi u \cdot K} P_\mu^0 = \exp \{-i\xi u \cdot K\} P_\mu^0 \exp \{i\xi u \cdot K\}. \quad (3.3)$$

Hence the infinitesimal boost transformation is given by

$$\frac{dP_\mu}{d\xi} = -i[u \cdot K, P_\mu]. \quad (3.4)$$

By substituting (2.1) on (3.4) we obtain a system of coupled differential equations:

$$\frac{dP_0}{d\xi} = e^{-\tau P_0} u \cdot P, \quad \frac{dP}{d\xi} = u \left(\frac{e^{\tau P_0} - 1}{\tau} \right) \quad (3.5)$$

which give rise to a unique non-linear differential equation for P_0:

$$\frac{d^2 P_0}{d\xi^2} + \tau \left(\frac{dP_0}{d\xi} \right)^2 + \frac{e^{-\tau P_0} - 1}{\tau} = 0. \quad (3.6)$$

Therefore we obtain that

$$P_0(\xi) = \frac{1}{\tau} \ln \left(\frac{2 + a_+ e^{\xi} + a_- e^{-\xi}}{2} \right), \quad P(\xi) = \frac{u}{2\tau} \left(a_+ e^{\xi} - a_- e^{-\xi} \right) + a \quad (3.7)$$

where a_\pm and a are integration constants. By imposing the initial conditions $P_\mu(0) = P_\mu^0$, we find that

$$a_\pm = \pm \tau u \cdot P^0 + (e^{\tau P_0^0} - 1), \quad a = P^0 - u(u \cdot P^0) \quad (3.8)$$

so that the deformed finite boost transformations (3.3) turn out to be

$$P_0(\xi) = \frac{1}{\tau} \ln \left(1 + (e^{\tau P_0^0} - 1) \cosh \xi + \tau u \cdot P^0 \sinh \xi \right),$$

$$P(\xi) = P^0 + u \left(u \cdot P^0 (\cosh \xi - 1) + \frac{1}{\tau} (e^{\tau P_0^0} - 1) \sinh \xi \right). \quad (3.9)$$

It can be checked that the deformed mass-shell condition (2.1) remains invariant under (3.9). Furthermore, this result allows us to deduce the composition of deformed boost transformations along two directions characterized by the unitary vectors u_1, u_2 such that $u_1 \cdot u_2 = \cos \theta$. Starting from the initial observer with P_μ^0 we consider a first transformation $u_1 \cdot K$ with rapidity ξ_1 to a second observer which measures P_μ, and next a second transformation $u_2 \cdot K$ with boost parameter ξ_2 to a third observer which measures P_μ':

$$P_\mu^0 \xrightarrow{\xi_1, u_1 \cdot K} P_\mu = P_\mu(\xi_1; P_\mu^0) \xrightarrow{\xi_2, u_2 \cdot K} P_\mu' = P_\mu'(\xi_2; P_\mu) = P_\mu'(\xi_1, \xi_2; P_\mu^0).$$

Due to the expressions (3.2)–(3.3) this sequence corresponds to

$$P_\mu' = \exp \{-i\xi_2 u_2 \cdot K\} \exp \{-i\xi_1 u_1 \cdot K\} P_\mu^0 \exp \{i\xi_1 u_1 \cdot K\} \exp \{i\xi_2 u_2 \cdot K\} \quad (3.10)$$

which coincides with the classical Lie group expression. Nevertheless, we stress that this is a consequence of the complete Hopf structure underlying the definition of the quantum adjoint action (3.1).
The resulting composition is given by

\[P'_0 = \frac{1}{\tau} \ln \left\{ 1 + (e^{\tau P_0^0} - 1)(\cosh \xi_1 \cosh \xi_2 + \sinh \xi_1 \sinh \xi_2 \cos \theta) \right. \]
\[+ \tau \mathbf{u}_1 \cdot \mathbf{P}^0_0(\sinh \xi_1 \cosh \xi_2 + \cosh \xi_1 \sinh \xi_2 \cos \theta) - \tau (\mathbf{u}_1 \cos \theta - \mathbf{u}_2) \cdot \mathbf{P}^0_0 \sinh \xi_2 \left. \right\} \]

\[P' = \mathbf{P}^0 + \mathbf{u}_2 \left\{ \mathbf{u}_1 \cdot \mathbf{P}^0(\cosh \xi_1 \cosh \xi_2 \cos \theta + \sinh \xi_1 \sinh \xi_2) - \mathbf{u}_2 \cdot \mathbf{P}^0 \right\} \]
\[+ \frac{1}{\tau}(e^{\tau P_0^0} - 1) \left\{ \mathbf{u}_2(\sinh \xi_1 \cosh \xi_2 \cos \theta + \cosh \xi_1 \sinh \xi_2) + \mathbf{n} \sinh \xi_1 \right\} \]
\[+ \mathbf{n}(\mathbf{u}_1 \cdot \mathbf{P}^0)(\cosh \xi_1 - 1) - \mathbf{u}_2(\mathbf{n} \cdot \mathbf{P}^0) \cosh \xi_2 \]

where we have introduced the shorthand notation \(\mathbf{n} = \mathbf{u}_1 - \mathbf{u}_2 \cos \theta \).

As a straightforward consequence, if both deformed boost transformations are performed along the same direction \(\mathbf{u}_1 = \mathbf{u}_2 \), then \(\theta = 0 \) and \(\mathbf{n} = 0 \), so that \(P'_\mu = P'_\mu(\xi_1 + \xi_2; P^0_\mu) \), and thus we obtain the additivity of the rapidity in the same way as for \(\kappa \)-Poincaré [33].

4 Range of rapidity, energy and momentum

The stationary points of the energy can be studied by means of the derivatives of \(P_0(\xi) \). For the sake of simplicity we shall analyse the \((1+1)\)-dimensional case.

4.1 Massive particles

Let us consider firstly massive particles. If we particularize the transformations (3.9) to \(P_\mu = (P_0, P_1) \), drop the index 0 in \(P^0_\mu \), and introduce the deformed mass (2.4), we find that the deformed finite boost transformations can be rewritten as

\[P_0(\xi) = \frac{1}{\tau} \ln \left(1 + \tau \sqrt{M^2 + P_1^2} \cosh \xi + \tau P_1 \sinh \xi \right) \]
\[P_1(\xi) = P_1 \cosh \xi + \sqrt{M^2 + P_1^2} \sinh \xi. \]

The zero value for the first derivative of \(P_0(\xi) \) gives the following expression for the rapidity

\[\tanh \xi_0 = - \frac{P_1}{\sqrt{M^2 + P_1^2}} \quad \xi_0 = \ln \left(\frac{M}{\sqrt{M^2 + P_1^2}} \right) \]

for which the energy takes the value of the physical rest mass of the particle under consideration and the momentum vanishes:

\[P_0(\xi_0) = \frac{1}{\tau} \ln (1 + \tau M) = m \quad P_1(\xi_0) = 0. \]

To establish whether this situation corresponds to a minimum of the energy, as it should be, we compute the second derivative of \(P_0(\xi) \). Thus we obtain

\[\frac{d^2 P_0(\xi)}{d\xi^2} \bigg|_{\xi=\xi_0} = \frac{M}{1 + \tau M}. \]
Therefore two different situations arise according to the sign of the deformation parameter:

- If $\tau > 0$, ξ_0 always determines a minimum of the energy.
- If $\tau < 0$, ξ_0 provides a minimum only if $M < 1/|\tau|$.

Now, by taking into account these cases we analyse the range of the boost parameter, energy and momentum. When τ is positive the rapidity ξ can take any real value and the expressions (4.1) show that both $P_0(\xi), P_1(\xi)$ are always well defined as well as unbounded (see figure 1a). In particular, in the limit $\xi \to +\infty$, we find that $P_0(\xi) \to +\infty, P_1(\xi) \to +\infty$, while if $\xi \to -\infty$, then $P_0(\xi) \to +\infty, P_1(\xi) \to -\infty$, in the same way as in the undeformed case.

On the contrary, when τ is negative the condition $M < 1/|\tau|$ must be fulfilled. Then we rewrite the energy as

$$P_0(\xi) = \frac{1}{|\tau|} \ln \left(\frac{1}{1 - |\tau| \sqrt{M^2 + P_1^2} \cosh \xi - |\tau| P_1 \sinh \xi} \right)$$

(4.5)

which is always a well defined expression. However there exist two values of the boost parameter,

$b) \quad \tau < 0$, $M < 1/|\tau|$ and $P_{1,\text{max}} = \sqrt{1 - \tau^2 M^2/|\tau|}$.

Figure 1: Energy $P_0(\xi)$ and momentum $P_1(\xi)$ for a massive particle with a positive initial momentum P_1 according to the sign of τ.

Therefore two different situations arise according to the sign of the deformation parameter:

- If $\tau > 0$, ξ_0 always determines a minimum of the energy.
- If $\tau < 0$, ξ_0 provides a minimum only if $M < 1/|\tau|$.

Now, by taking into account these cases we analyse the range of the boost parameter, energy and momentum. When τ is positive the rapidity ξ can take any real value and the expressions (4.1) show that both $P_0(\xi), P_1(\xi)$ are always well defined as well as unbounded (see figure 1a). In particular, in the limit $\xi \to +\infty$, we find that $P_0(\xi) \to +\infty, P_1(\xi) \to +\infty$, while if $\xi \to -\infty$, then $P_0(\xi) \to +\infty, P_1(\xi) \to -\infty$, in the same way as in the undeformed case.

On the contrary, when τ is negative the condition $M < 1/|\tau|$ must be fulfilled. Then we rewrite the energy as

$$P_0(\xi) = \frac{1}{|\tau|} \ln \left(\frac{1}{1 - |\tau| \sqrt{M^2 + P_1^2} \cosh \xi - |\tau| P_1 \sinh \xi} \right)$$

(4.5)

which is always a well defined expression. However there exist two values of the boost parameter,
parameter which give asymptotic values for the energy, namely

\[
\xi_- = \ln \left(\frac{1 - \sqrt{1 - \tau^2 M^2}}{|\tau|(\sqrt{M^2 + P_1^2 + P_1^2})} \right) \quad \xi_+ = \ln \left(\frac{1 + \sqrt{1 - \tau^2 M^2}}{|\tau|(\sqrt{M^2 + P_1^2 + P_1^2})} \right)
\]

which are consistent with the constraint \(M < 1/|\tau| \). Hence the range of the boost parameter is not the whole real axis but it does have a limited range: \(\xi_- < \xi < \xi_+ \). This interval is symmetric with respect to \(\xi_0 \):

\[
\xi_+ - \xi_0 = \xi_0 - \xi_- = \ln \left(\frac{1 + \sqrt{1 - \tau^2 M^2}}{|\tau|M} \right).
\]

The points \(\xi_\pm \) show an unbounded energy but provide a maximum momentum:

\[
P_0(\xi_\pm) = +\infty \quad P_1(\xi_\pm) = \pm \frac{1}{|\tau|} \sqrt{1 - \tau^2 M^2}.
\]

Consequently, whenever \(\tau \) is negative and \(M < 1/|\tau| \), we find that the behaviour of \(\xi \), \(P_0(\xi) \) and \(P_1(\xi) \) differs from the classical one as depicted in figure 1b; the momentum saturates in the asymptotic values for the energy with a maximum value which is different for each particle since it depends not only on the deformation parameter but also on the deformed mass.

4.2 Massless particles

For massless particles with \(M = m = 0 \) we have that \(e^{\tau P_0} - 1 = \tau |P_1| \), so that the equations (4.2)–(4.3) reduce to

\[
\tanh \xi_0 = -P_1/|P_1| \quad P_0(\xi_0) = 0 \quad P_1(\xi_0) = 0.
\]

Although the second derivative (4.4) vanishes, the behaviour of massless particles is again deeply determined by the sign of \(\tau \).

Firstly, let us consider \(\tau > 0 \). If the initial momentum \(P_1 > 0 \), then \(\xi_0 \to -\infty \) and in the limit \(\xi \to +\infty \), we find that both \(P_0(\xi) \), \(P_1(\xi) \to +\infty \). Analogously, if \(P_1 < 0 \), then \(\xi_0 \to +\infty \) and \(P_0(\xi) \to +\infty \), \(P_1(\xi) \to -\infty \) under the limit \(\xi \to -\infty \). This situation is also rather similar to the undeformed case (see figure 2a).

On the other hand, if \(\tau < 0 \), there is no additional constraint (the above condition \(M = 0 < 1/|\tau| \) is trivially fulfilled). According to the sign of the initial momentum, one of the two previous asymptotes disappears and coincides with \(\xi_0 \). In particular, if \(P_1 > 0 \), then \(\xi_0 \equiv \xi_- \to -\infty \), the asymptotic value \(\xi_+ \) is left and the momentum saturates as shown in figure 2b:

\[
\xi \in (-\infty, \xi_+) \quad \xi_+ = \ln \left(\frac{1}{|\tau|P_1} \right) \quad P_0(\xi_+) = +\infty \quad P_1(\xi_+) = \frac{1}{|\tau|}.
\]

If \(P_1 < 0 \), we find that \(\xi_0 \equiv \xi_+ \to +\infty \), the rapidity \(\xi_- \) is kept and the momentum also saturates:

\[
\xi \in (\xi_-, +\infty) \quad \xi_- = -\ln \left(\frac{1}{|\tau||P_1|} \right) \quad P_0(\xi_-) = +\infty \quad P_1(\xi_-) = -\frac{1}{|\tau|}.
\]

Therefore, the maximum momentum is only determined by the deformation parameter, although the corresponding rapidity depends on the initial momentum as well.
Figure 2: Energy $P_0(\xi)$ and momentum $P_1(\xi)$ for a massless particle with a positive initial momentum P_1 according to the sign of τ.

5 Position and velocity operators

Position and velocity observables in DSR theories, specially for the κ-Poincaré algebra, have been introduced from different approaches [35, 36, 37, 38, 39, 40, 41] and some of them lead to different proposals. In our case, we follow the same algebraic procedure firstly applied in [36] for κ-Poincaré and also in [37] for the null-plane quantum Poincaré algebra. We consider some generic position Q_i and velocity V_i operators defined as

$$Q_i = \frac{1}{2} \left(\frac{1}{f(\tau, P_0)} K_i + K_i \frac{1}{f(\tau, P_0)} \right) \quad V_i = \frac{dQ_i}{dt} = -i [Q_i, P_0]$$

where $f(\tau, P_0)$ is an arbitrary smooth function such that $\lim_{\tau \to 0} f(\tau, P_0) = P_0$. Next we compute the commutation rules between Q_i and the remaining Weyl–Poincaré generators (we omit the arguments in the function f):

$$[J_i, Q_j] = i \varepsilon_{ijk} Q_k \quad [Q_i, P_0] = i \frac{e^{-\tau P_0}}{f} P_i \quad [Q_i, P_j] = i \delta_{ij} \frac{e^{\tau P_0} - 1}{\tau f}$$

$$[Q_i, Q_j] = i \frac{f'}{f^2} e^{-\tau P_0} \left(Q_i P_j - Q_j P_i - \frac{e^{\tau P_0}}{f'} \varepsilon_{ijk} J_k \right)$$

$$[D, Q_i] = -i \left\{ \frac{f'}{f^2} \left(1 - \frac{e^{-\tau P_0}}{\tau} \right) K_i + K_i \left(1 - \frac{e^{-\tau P_0}}{\tau} \right) \frac{f'}{f^2} \right\}$$

where f' is the formal derivative of f with respect to P_0. This suggests two natural possibilities for the function f, that are summarized as follows.

- (1) $f = (e^{\tau P_0} - 1)/\tau = \sqrt{M^2 + P^2}$. Hence we obtain that

$$[J_i, Q_j] = i \varepsilon_{ijk} Q_k \quad [Q_i, P_0] = i \frac{e^{-\tau P_0}}{\sqrt{M^2 + P^2}} P_i \quad V_i = \frac{e^{\tau P_0}}{\sqrt{M^2 + P^2}} P_i$$

$$[D, Q_i] = -i Q_i \quad [Q_i, Q_j] = -i \varepsilon_{ijk} \frac{\Sigma_k}{M^2 + P^2} \quad [Q_i, P_j] = i \delta_{ij}$$

where we have introduced the kinematical observables [35, 36]: $\Sigma_k = J_k - \varepsilon_{ijk} Q_i P_j$. By taking into account the representation (2.6), it can be checked that if we consider a spinless
massive particle, then \(\Sigma = 0 \) (i.e. \(J = Q \times P \)), so that \([Q_i, Q_j] = 0 \), while if we consider a spinning massive particle with \(P = 0 \), then \(\Sigma = S \).

Physical consequences of this choice are directly deduced from the commutation rules \([J_i, Q_j] = \varepsilon_{ijk} Q_k \) : the position \(Q \) behaves as a classical vector under rotation and dilations, there is no generalized uncertainty principle and the velocity of massless particles is \(|V| = V = e^{-\tau P_0} \), so that this depends on the energy, which can be either \(V = e^{-\tau P_0} < 1 \) for \(\tau > 0 \), or \(V = e^{\tau P_0} > 1 \) for \(\tau < 0 \). This fact is well known in DSR theories based on \(\kappa \)-Poincaré \([35, 42] \).

• (2) \(f = (1 - e^{-\tau P_0})/\tau = e^{-\tau P_0} \sqrt{M^2 + P^2} \). In this case, we find that

\[
\begin{align*}
[J_i, Q_j] &= i \varepsilon_{ijk} Q_k, \\
[Q_i, P_0] &= i \frac{P_i}{\sqrt{M^2 + P^2}}, \\
[V_i] &= \frac{P_i}{\sqrt{M^2 + P^2}}, \\
[D, Q_i] &= -i \left(e^{-\tau P_0} Q_i + Q_i e^{-\tau P_0} \right), \\
[Q_i, P_j] &= i \delta_{ij} \left(1 + \tau \sqrt{M^2 + P^2} \right), \\
[Q_i, Q_j] &= -i \varepsilon_{ijk} \left(\frac{\Sigma_k}{M^2 + P^2} + \frac{\tau^2 J_k}{\tanh(\tau P_0/2)} \right).
\end{align*}
\]

Therefore the position operators are transformed as a classical vector under rotations, but as a deformed one under dilations. The velocity for massless particles reduces to \(V = 1 \) as in special relativity. In this sense we remark that, very recently, this result has been obtained for all known DSR theories in [41], including \(\kappa \)-Poincaré, by using a Hamiltonian approach.

Furthermore, if we consider a spinless massive particle, the kinematical observables vanish so that position and momentum operators verify

\[
[Q_i, Q_j] = -i \varepsilon_{ijk} \frac{\tau^2 J_k}{\tanh(\tau P_0/2)}, \\
[Q_i, P_j] = i \delta_{ij} e^{\tau P_0}. \tag{5.5}
\]

The latter commutation rule leads to the following generalized uncertainty principle:

\[
\Delta Q_i \Delta P_j \geq \frac{1}{2} \delta_{ij} \langle e^{\tau P_0} \rangle = \frac{1}{2} \delta_{ij} \left(1 + \tau \sqrt{M^2 + P^2} \right) \tag{5.6}
\]

where \(\langle . \rangle \) is the expectation value and \(\Delta \) here means a root-mean-square deviation. We stress that, by following the arguments proposed in [43], the expression \((5.6) \) can be interpreted as a linear correction in \(\Delta P \) of the usual Heisenberg uncertainty relation, whilst the \(\kappa \)-Poincaré construction leads to a quadratic term in \(\Delta P \). In this respect, see [1] for a comprehensive discussion of deformed uncertainty relations arising in quantum gravity theories.

6 Concluding remarks

We have presented a first example of a deformed relativistic theory based on a quantum group symmetry larger than Poincaré: the Weyl–Poincaré algebra. We also expect that the very same approach may be applied to other quantum deformations of \(WP \) as well as to quantum \(so(4,2) \) algebras. A first possibility is the so called ‘length-like’ (or space-type) deformation \(U_\sigma(WP) \subset U_\sigma(so(4,2)) \) [25], for which the deformation parameter has dimensions of length, which has been shown to be the symmetry algebra
of a space discretization of the Minkowskian spacetime in one spatial direction. In the
(1+1)-dimensional case [23], there is indeed an algebraic duality that relates both types of
deformations \(U_\tau(\text{so}(2,2)) \leftrightarrow U_\sigma(\text{so}(2,2)) \) as well as \(U_\tau(\mathcal{WP}_{1+1}) \leftrightarrow U_\sigma(\mathcal{WP}_{1+1}) \), by inter-
changing the energy \(P_0 \) and the momentum \(P_1 \). Nevertheless this equivalence is ‘broken’
in \(3 + 1 \) dimensions in such a manner that a single ‘privileged’ discrete space direction
arises. Thus, isotropy of the space is removed and this fact may preclude further possible
physical implications. Another possibility worth to study is the twisted conformal algebra
\(U_z(\text{so}(4,2)) \) [27] which also contains a deformed \(\mathcal{WP} \) subalgebra; this case should provide
a DSR theory naturally adapted to a null-plane (light-cone) framework, since the defor-
mation parameter \(z \) can been interpreted in a natural way as the lattice step along two
null-plane directions.

To end with, we would like to point out that in order to complete the DSR theory
provided by \(U_\tau(\mathcal{WP}) \), the corresponding (dual) quantum group should be explicitly com-
puted. This would give rise to an associated non-commutative Minkowskian spacetime
which, by taking into account the results of section 4, should be different from the well
known \(\kappa \)-Minkowski spacetime [20, 34, 44, 45]. Work on this line is in progress.

Acknowledgements

This work was partially supported by MCyT and JCyL, Spain (Projects BFM2000-1055
and BU04/03), and by INFN-CICyT (Italy-Spain).

References

[1] Garay L J 1995 Int. J. Mod. Phys. A 10 145
[2] Carlip S 2001 Rep. Prog. Phys. 64 885
[3] Smolin L 2002 Quantum gravity with a positive cosmological constant Preprint hep-th/0209079
[4] Polchinski J 1996 Lectures on D-branes Preprint hep-th/9611050
[5] Forste S 2002 Fortsch. Phys. 50 221
[6] Freidel L, Livine E R and Rovelli C 2002 Spectra of length and area in (2+1)
Lorentzian loop quantum gravity Preprint gr-qc/0212077
[7] Amelino-Camelia G 2002 Int. J. Mod. Phys. D 11 1643
[8] Amelino-Camelia G 2002 Int. J. Mod. Phys. D 11 35
Amelino-Camelia G 2001 Phys. Lett. B 510 255
[9] Magueijo J and Smolin L 2002 Phys. Rev. Lett. 88 190403
[10] Amelino-Camelia G 2002 Kinematical solution of the UHE-cosmic-ray puzzle without
a preferred class of inertial observers Preprint astro-ph/0209232
[11] Bruno N R, Amelino-Camelia G and Kowalski-Glikman J 2001 Phys. Lett. B 522 133
[12] Amelino-Camelia G, Ellis J, Mavromatos N E, Nanopoulos D V and Sarkar S 1998 Nature 393 763
[13] Norris J P, Bonnell J T, Marani G F and Scargle J D 1999 GLAST, GRBs and quantum gravity Preprint astro-ph/9912136
 de Angelis A 2000 GLAST, the Gamma-ray Large Area Space Telescope Preprint astro-ph/0009271
[14] Takeda M et al 1998 Phys. Rev. Lett. 81 1163
[15] Kifune T 1999 Astrophys. J. 518 L21
[16] Amelino-Camelia G and Piran T 2001 Phys. Rev. D 64 036005
[17] Kowalski-Glikman J and Nowak S 2002 Phys. Lett. B 539 126
[18] Lukierski J and Nowicki A 2003 Int. J. Mod. Phys. A 18 7
[19] Lukierski J, Nowicki A, Ruegg H and Tolstoy V N 1991 Phys. Lett. B 264 331
[20] Majid S and Ruegg H 1994 Phys. Lett. B 334 348
[21] Lukierski J, Ruegg H, Zakrzewski W J 1995 Ann. Phys. N.Y. 243 90
[22] Ballesteros A, Herranz F J, del Olmo M A and Santander M 1995 J. Phys. A: Math. Gen. 28 941
[23] Herranz F J 2000 J. Phys. A: Math. Gen. 33 8217
[24] Herranz F J 1997 J. Phys. A: Math. Gen. 30 6123
[25] Herranz F J 2002 Phys. Lett. B 543 89
[26] Lukierski J, Lyakhovsky V D and Mozrzymas M 2002 Phys. Lett. B 538 375
[27] Aizawa N, Herranz F J, Negro J and del Olmo M A 2002 J. Phys. A: Math. Gen. 35 8179
[28] Lukierski J, Lyakhovsky V D and Mozrzymas M 2003 Mod. Phys. Lett. A 18 753
[29] Kulish P P, Lyakhovsky V D and del Olmo M A 1999 J. Phys. A: Math. Gen. 32 8671
[30] Kulish P P and Lyakhovsky V D 2000 J. Phys. A: Math. Gen. 33 L279
[31] Ogievetsky O V 1993 Suppl. Rendiconti Cir. Math. Palermo II 37 185
[32] Drinfeld V G 1987 Quantum Groups Proc. Int. Congress of Math. (Berkeley, 1986) vol 1, ed A V Gleason (Providence RI: AMS)
[33] Bruno N R 2002 Phys. Lett. B 547 109
[34] Lukierski J, Ruegg H and Tolstoy V N in Quantum groups formalism and applications eds J Lukierski, Z Popowicz and J Sobczyk (Polish Scientific Publishers PWN, 1995) 359
[35] Bacry H 1993 *Phys. Lett. B* **306** 41

[36] Bacry H 1993 *J. Phys. A: Math. Gen.* **26** 5413

[37] Ballesteros A, Herranz F J, del Olmo M A and Santander M 1995 *Phys. Lett. B* **351** 137

[38] Amelino-Camelia G, D’Andrea F and Mandanici G 2002 Group velocity in noncommutative spacetime *Preprint* hep-th/0211022

[39] Kosinski P and Maślanka P 2002 On the definition of velocity in doubly special relativity theories *Preprint* hep-th/0211057

[40] Mignemi S 2003 On the definition of velocity in theories with two observer-independent scales *Preprint* hep-th/0302065

Mignemi S 2003 Transformations of coordinates and Hamiltonian formalism in deformed special relativity *Preprint* gr-qc/0304029

[41] Daszkiewicz M, Imilkowska K and Kowalski-Glikman J 2003 Velocities of particles in doubly special relativity *Preprint* hep-th/0304027

[42] Amelino-Camelia G and Majid S 2000 *Int. J. Mod. Phys. A* **15** 4301

[43] Maggiore M 1993 *Phys. Lett. B* **319** 83

Maggiore M 1994 *Phys. Rev. D* **49** 5182

[44] Maślanka P 1993 *J. Phys. A: Math. Gen.* **26** L1251

[45] Kowalski-Glikman J and Nowak S 2003 *Int. J. Mod. Phys. D* **12** 299