Predicting mortality and hospitalization in heart failure using machine learning: A systematic literature review

Dineo Mpanya, Turgay Celik, Eric Klug, Hopewell Ntsinjana

Objective: The partnership between humans and machines can enhance clinical decisions accuracy, leading to improved patient outcomes. Despite this, the application of machine learning techniques in the healthcare sector, particularly in guiding heart failure patient management, remains unpopular. This systematic review aims to identify factors restricting the integration of machine learning derived risk scores into clinical practice when treating adults with acute and chronic heart failure.

Methods: Four academic research databases and Google Scholar were searched to identify original research studies where heart failure patient data was used to build models predicting all-cause mortality, cardiac death, all-cause and heart failure-related hospitalization.

Results: Thirty studies met the inclusion criteria. The selected studies’ sample size ranged between 71 and 716 790 patients, and the median age was 72.1 (interquartile range: 61.1–76.8) years. The minimum and maximum area under the receiver operating characteristic curve (AUC) for models predicting mortality were 0.48 and 0.92, respectively. Models predicting hospitalization had an AUC of 0.47 to 0.84. Nineteen studies (63%) used logistic regression, 53% random forests, and 37% of studies used decision trees to build predictive models. None of the models were built or externally validated using data originating from Africa or the Middle-East.

Conclusions: The variation in the aetiologies of heart failure, limited access to structured health data, distrust in machine learning techniques among clinicians and the modest accuracy of existing predictive models are some of the factors precluding the widespread use of machine learning derived risk calculators.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
mal using chest radiographs from 685 patients. The ensemble of CNN's performed well with an area under the receiver operating characteristic curve (AUC) of 0.99 [17]. These impressive results have resulted in the commercialization of chest x-ray interpretation software [18]. The availability of such software can play a critical role in remote areas with limited or no access to radiologists, as CNN can potentially identify subtle manifestations of TB on chest radiographs, leading to prompt initiation therapy, curbing further transmission of TB. Amid these capabilities, the uptake of machine learning techniques in the healthcare sector remains limited. This systematic review aims to identify models predicting mortality and hospitalization in heart failure patients and discuss factors that restrict the widespread clinical use of risk scores created with machine learning algorithms.

2. Methods

2.1. Search strategy for identification of relevant studies

A systematic literature search was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Literature searches were conducted in MEDLINE, Google Scholar, Springer Link, Scopus, and Web of Science. The search string contained the following termi-
ology: (Mortality OR Death OR Readmission OR Hospitalization) AND (Machine Learning OR Deep Learning) AND (Heart Failure OR Heart Failure, Diastolic OR Heart Failure, Systolic).

2.2. Review methods and selection criteria

Studies reported in languages other than English were not included. A single reviewer screened titles, abstracts and full-text articles and made decisions regarding potential eligibility. Studies were eligible if they reported models predicting all-cause or cardiac mortality or all-cause or heart failure-related hospitalization in heart failure patients. Models included in the study were created using machine learning algorithms and/or deep learning. We did not include studies using solely logistic regression for a classification task. Logistic regression analysis is a machine learning algorithm borrowed from traditional statistics. When logistic regression is used as a machine learning algorithm, the algorithm is initially trained to identify clinical data patterns using a dataset with labelled classes, a process known as supervised learning. After that, the logistic regression algorithm attempts to classify new data into two or more categories based on “posteriori knowledge.”

2.3. Data extraction

The following items were extracted: study region, data collection period, sample size, age, gender, cause of heart failure (ischaemic vs non-ischaemic), predictor variables, handling of missing data, internal and external validation, all-cause mortality and cardiovascular death rate, all-cause hospitalization rate and performance metrics (sensitivity, accuracy, AUC or c-statistics and F-score). Summary statistics were generated with STATA MP version 13.0 (StataCorp, Texas).

3. Results

3.1. The review process

The initial search yielded 1,835 research papers. After screening titles and abstracts, 1,367 did not meet the inclusion criteria. Excluded papers were predominantly theoretical reviews and conference papers in the field of computer science. Two hundred and sixty full-text articles were assessed for eligibility. A further 230 studies were excluded, leaving thirty papers legible for analysis (Fig. 1). Reasons for excluding 230 studies are provided as supplementary data.

3.2. Characteristics of the included studies

The source of data in the majority of the studies were electronic health records (EHR) \((n = 16)\), followed by claims data \((n = 5)\), trial data \((n = 3)\), registry \((n = 3)\) and data obtained from research cohorts \((n = 3)\). Data was collected from hospitalized patients in twelve studies. The sample size in the predictive models ranged between 71 and 716,790, with the smallest sample size used to predict survival in patients with advanced heart failure managed with second-generation ventricular assist devices \([19]\). Within the 30 studies, twelve studies created models predicting mortality. Another 13 studies predicted hospitalization, and five studies predicted both mortality and hospitalization. The data used to create predictive models was collected between 1993 and 2017 (Table 1). Of the 30 included studies, 22 included data originating from North America, seven from Asia and six from Europe. There were no studies conducted in Africa or Middle-East (Fig. 2).

3.3. Clinical characteristics of patients with heart failure

The majority of studies reported the patients’ age (93%) and gender (87%). The median age was 72.1 (61.1–76.8) years. Between 14.0 and 83.9% of the extracted studies’ participants had ischaemic heart disease (Table 2). In total, 30% of studies mentioned Black patients. Between 0.95% and 100% of the individuals were Black, with one study enrolling only African American males with heart failure \([20]\).

3.4. Machine learning algorithms

Only eight (27%) studies used a single algorithm to build a predictive model. Nineteen studies (63%) used logistic regression, 53% random forests, and 36% of studies used decision trees to create predictive models. The rest of the algorithms are depicted in Fig. 3.

3.5. Predictors

Twelve (36.4%) studies did not report on the number of predictors or features used. The number of predictors in the identified studies were between 8 and 4,205. Some authors only mentioned the number of predictors and did not list them. Age, gender, diastolic blood pressure, left ventricular ejection fraction (LVEF), estimated glomerular filtration rate, haemoglobin, serum sodium, and blood urea nitrogen were some of the predictors of mortality identified in the extracted studies \([10,11,13]\). Predictors of hospitalization included ischaemic cardiomyopathy, age, LVEF, hypotension, haemoglobin, creatinine, and potassium serum levels \([7]\).

3.6. Model development, internal and external validation

When creating a predictive model using machine learning, data is generally partitioned into three or four datasets. In the studies extracted, between 60 and 80% of the data was used for training models, while the rest was used for testing and/or internally validating the models. Although the data on model validation was scanty, external validation was explicitly mentioned in two studies. None of the models were externally validated using data originating from Africa or the Middle-East.

3.7. Model performance and evaluation metrics

Parameters used to evaluate model performance were the confusion matrix, reporting sensitivity, specificity, positive and negative predictive value, accuracy, and precision. Most studies also reported the f-score, AUC, concordance statistic (C-statistic), and recall. The minimum and maximum AUC for models predicting mortality were 0.477 and 0.917, and models predicting hospitalization had an AUC between 0.469 and 0.836 (Table 3).

4. Discussion

This systematic review highlights several factors that restrict the use of risk scores created with machine learning algorithms in the clinical setting. The existence of clinical information with prognostic significance such as the New York Heart Association functional class in the free-text format in EHR systems may result in models with low predictive abilities if such critical data is omitted when building predictive models. Fortunately, newer emerging techniques such as bidirectional long short-term memory with a conditional random fields layer have been introduced to remedy the problem of free-text in EHR \([21,22]\).

Risk scores derived from heart failure patients residing in North America or Europe may not be suitable for application in low and
Derived from patients residing in LMIC are scanty or non-existent. The lack of EHR systems, registries, and pooled data from multicentre studies is responsible for the absence of risk scores derived from patients in LMIC. If digital structured health data were available in LMIC, models predicting outcomes could be created instead of extrapolating from studies conducted in HIC. The absence of structured health data in LMIC resulted in the underrepresentation of this population in the training and test datasets included in this systematic review.

Despite the endemicity of heart failure in LMIC, risk scores derived from patients residing in LMIC are scanty or non-existent. The lack of EHR systems, registries, and pooled data from multicentre studies is responsible for the absence of risk scores derived from patients in LMIC. If digital structured health data were available in LMIC, models predicting outcomes could be created instead of extrapolating from studies conducted in HIC. The absence of structured health data in LMIC resulted in the underrepresentation of this population in the training and test datasets included in this systematic review.

The AUC was one of the most commonly reported performance metric in the extracted studies. The highest AUC for models predicting mortality was 0.92, achieved by the random forest algorithm in the extracted studies. The highest AUC for models predicting outcomes could be created instead of extrapolating from studies conducted in HIC. The absence of structured health data in LMIC resulted in the underrepresentation of this population in the training and test datasets included in this systematic review.

Table 1
Characteristics of the included studies.

Study ID	Data collection period	No. of patients	Setting	Data source	No. of features	Primary outcome assessed
Adler, E.D (2019)	2006–2017	8 822	Inpatient and outpatient	EHR and Trial	8	All-cause mortality
Ahmad, T (2018)	2000–2012	44 886	Inpatient and outpatient	Registry	8	1-year all-cause mortality
Allam, A (2019)	2013	272 778	Inpatient and outpatient	Claims dataset	50	30-day all-cause readmission
Angraal, S (2020)	2006–2013	1 767	Inpatient and outpatient	Trial	26	All-cause mortality and HF hospitalization
Ashley, A (2019)	2012–2016	7 655	Inpatient and outpatient	EHR	30-day all-cause readmission	
Awan, SE (2019)	2003–2008	10 757	Inpatient and outpatient	EHR	47	30-day HF-related readmission and mortality
Chen, R (2019)	2014–2017	98	Inpatient	Prospective Clinical and MRI	32	Cardiac death, heart transplantation and HF-related hospitalization
Chicco, D (2020)	2015	299	Inpatient	Medical records	13	One year survival
Churinos, J (2020)	2006–2012	379	Inpatient	Trial	48	Risk of all-cause death or heart failure-related hospital admission
Desai, RJ (2020)	2007–2014	9 502	Inpatient and outpatient	Claims data and EHR	62	All-cause mortality and HF hospitalization, total costs for hospitalization, outpatient visits, and medication prescription
Frizzell, J.D (2017)	2005–2011	56 477	Inpatient	Registry and claims data	39	All-cause readmission 30-days after discharge
Gleeson, S (2017)	2010–2015	295	Inpatient	Echo database & EHR	291	All-cause mortality and heart failure admissions
Golas, S.B (2018)	2011–2015	11 510	Inpatient and outpatient	EHR	3 512	All-cause 30-day readmission, healthcare utilization cost
Hearns, J (2018)	2001–2017	1 156	Inpatient	EHR and Cardiopulmonary stress test data	39	All-cause mortality
Hsich, E (2011)	1997–2007	2 231	Inpatient	Cardiopulmonary stress test data	39	All-cause mortality
Jiang, W (2019)	2013–2015	534	Inpatient	EHR Pre and post-operative data	57	30-day readmission
Kourou, K (2016)	2016–2017	71	Inpatient	Claims dataset	48	1-year all-cause mortality
Krumholz, H (2019)	2013–2015	716 790	Inpatient	Registry	12 36-month in-hospital mortality	
Kwon, J (2015)	2015	1 778	Inpatient	EHR	56	30-day readmission
Liu, W (2020)	2011–2015	380	Inpatient	Research data	32	1-year in-hospital mortality
Lorenzoni, G (2019)	2005–2016	526	Inpatient	Multicentre database	13	2-year life-threatening arrhythmic events and heart failure death
Maharaj, S.M (2018)	2011–2015	1 068	Inpatient	EHR	4 205	30-day readmission
McKinley, D (2019)	2012–2015	132	Inpatient	EHR	4 205	30-day readmission
Miao, F (2017)	2001–2007	8 059	Inpatient	Public database	29	All-cause readmission within 30-days
Nakajima, K (2020)	2005–2016	526	Inpatient	Multicentre database	12 5-year survival after HF diagnosis	
Shameer, K (2016)	2015	1 068	Inpatient	EHR	43	Readmission
Shams, I (2015)	2011–2012	1 674	Inpatient	EHR	39	30-day readmission
Stampfli, M (2020)	2010–2014	206 644	Inpatient	EHR	43	30-day readmission
Taslimitehrani, V (2016)	1993–2013	5 044	Inpatient	EHR	30-day readmission after HF diagnosis	
Turgeman, L (2016)	2006–2014	8 480	Inpatient	EHR	43	1.2 and 5-year survival after HF diagnosis

CVD = cardiovascular disease; EHR = electronic health record; HF = heart failure; MRI = magnetic resonance imaging.
Table 2
Characteristics of heart failure patients included in the 30 models predicting mortality and hospitalization.

First Author (year)	Study Region	No. of patients	% Black	Age	% male	% Hypertension	% IHD
Adler, E.D (2019)	USA and Europe	5 822	60.3				
Ahmad, T (2018)	Europe	44 886	73.2	63			
Allam, A (2019)	USA and Europe	272 778	73 ± 14	51			
Angraal, S (2020)	USA, Canada, Brazil, Argentina, Russia, Georgia	1 767	72 (64–79)	50			
Ashfaq, A (2019)	Europe	7 655	78.8	57			
Awan, SE (2019)	Australia	10 757	82 ± 7.6	67	49		55
Chen, R (2019)	China	98	47 ± 14	79	23		
Chico, D (2020)	Pakistan	299	40–95*	65			
Chirinos, J (2020)	USA, Canada, Russia	379	7.4	70 (62–77)	53.5	94.5	30.6
Desai, R.J (2020)	USA	9 502	78 ± 8	45	87.1		22
Frizzell, J.D (2017)	USA	56 477	80 (74–86)	45.3	75.7		58
Gleeson, S (2017)	New Zealand	295	62	74	43		
Golas, S.B (2018)	USA	11 510	75.7 (64–85)	52.8			
Hearn, J (2018)	Canada	1 156	54	74.6			
Hsich, E (2011)	USA	2 231	54 ± 11	73			41
Jiang, W (2019)	USA	534	74.8	46			
Kourou, K (2016)	Belgium	71	48.07 ± 14.82	80.3			
Krumholz, H (2019)	USA	716 790	81.1 ± 8.4	43.6			
Kwon, J (2019)	Asia	2 165	69.8	59.7			
Liu, W (2019)	USA	303 233	72.5	50.9			
Lorenzoni, G (2019)	Italy	380	78 (72–83)	42.9	18.9		
Maharaj, S.M (2018)	USA	1 778	72.3 ± 12.1	97.6	14		
McKinley, D (2019)	USA	132	59.45	100	91		
Miao, F (2017)	USA	8 059	73.7	54	25		23.2
Nakajima, K (2020)	Japan	526	66 ± 14	72	53		37
Shamerer, K (2016)	USA	1 068					
Shams, I (2015)	USA	1 674	70.4	69.9			96
Stamps, M (2020)	USA	206 644	80.5 ± 11.2	38.3	96.5		0.4
Taslimitehrani, V (2016)	USA	5 044	78 ± 10	52	81		70.2
Turgeman, L (2016)	USA	4 840	69.3 ± 11.02	96.5	84.9		

Age showed as mean ± standard deviation, median (25th-75th percentile interquartile range) or minimum and maximum value.* IHD: ischaemic heart disease; USA: United States of America.
Author	Algorithms	Sensitivity	Accuracy	AUC (mortality)	AUC (Hospitalization)	F-score
Adler, E.D (2019) [10]	Boosted decision trees	0.88	(0.85–0.90)			
Ahmad, T (2018) [30]	Random forest	0.83				
Allam, A (2019) [31]	Recurrent neural network					
	Logistic regression L1-norm regularization (LASSO)					
Angraal, S (2020) [13]	Logistic regression	0.65	(0.61–0.70)			
	Logistic regression with LASSO regularization					
	Gradient descent boosting	0.68	(0.66–0.71)			
	Support vector machines (linear kernel)	0.66	(0.60–0.72)			
	Random forest	0.72	(0.69–0.75)			
Ashfaq, A (2019) [32]	Long Short-Term Memory (LSTM) neural network	0.77				0.51
Awan, SE (2019) [33]	Multi-layer perceptron (MLP)	48.4				
Chen, R (2019) [34]	Naïve Bayes	0.827				
	Naïve Bayes + IG	0.857				
	Random forest	0.817				
	Random forest + IG	0.827				
	Decision trees (bagged)	0.827				
	Decision trees (bagged) * IG	0.816				
	Decision trees (boosted)	0.735				
	Decision trees (boosted) * IG	0.806				
Chicco, D (2020) [11]	Random forest	0.740				0.547
	Decision tree	0.737	0.681			0.554
	Gradient boosting	0.738	0.754			0.527
	Linear regression	0.730	0.643			0.475
	One rule	0.729	0.637			0.465
	Artificial neural network	0.680	0.559			0.483
	Naïve Bayes	0.696	0.589			0.364
	SVM (radial)	0.690	0.749			0.182
	SVM (linear)	0.684	0.754			0.115
	K-nearest neighbors	0.624	0.493			0.148
Chirinos, J (2020) [35]	Tree-based pipeline optimizer					
	Logistic regression (traditional)	0.749	(0.729–0.768)			0.717
	LASSO	0.750	(0.731–0.769)			0.738
	CART	0.700	(0.680–0.721)			0.738
	Random forest	0.757	(0.739–0.776)			0.764
	GBM	0.767	(0.749–0.786)			0.778
Frizzell, JD (2017) [36]	Random forest					0.607
	GBM					0.614
	TAN					0.618
	LASSO					0.618
	Logistic regression					0.624
Gleson, S (2017) [37]	Decision trees					0.7505
Golas, S.B (2018) [12]	Logistic regression	0.626				0.664
	Gradient boosting	0.612				0.650
	Maxout networks	0.645				0.454
	Deep unified networks	0.646				0.695
Hearn, J (2018) [38]	Staged LASSO	0.827	(0.785–0.867)			0.705
	Staged neural network	0.835	(0.795–0.880)			0.842
	LASSO (breath-by-breath)	0.816	(0.767–0.866)			0.842
	Neural network (breath-by-breath)	0.842	(0.794–0.882)			
Hsich, E (2011) [9]	Random survival forest	0.705				0.705
	Cox proportional hazard	0.698				0.698
Jiang, W (2019) [39]	Logistic and beta regression (ML)					0.73
Kourou, K (2016) [19]	Naïve Bayes	85				0.86
	Bayesian network	85.9				0.596
	Adaptive boosting	78				0.74
	Support vector machines	90				0.74
	Neural networks	87				0.845
	Random forest	75				0.65
Krumholz, H (2019) [40]	Logistic regression (ML)					0.776
Kwon, J (2019) [5]	Deep learning	0.813	(0.810–0.816)			0.696
	Random forest	0.696	(0.692–0.700)			0.699
	Logistic regression	0.699	(0.695–0.702)			0.636
	Support vector machine	0.636	(0.632–0.640)			0.636
	Bayesian network	0.725	(0.721–0.728)			0.725
Liu, W (2019) [41]	Logistic regression	0.580	(0.578–0.583)			0.602
	Gradient boosting	0.602	(0.599–0.605)			0.602
	Artificial neural networks	0.604	(0.602–0.606)			0.604
Lorenzoni, G (2019) [7]	GLMN	77.8	0.812	0.86		
	Logistic regression	54.7	0.589	0.646		
	CART	44.3	0.635	0.586		
	Random forest	54.9	0.726	0.691		
	Adaptive Boosting	57.3	0.671	0.644		
	Logitboost	66.7	0.625	0.654		
Some of the reasons for the modest performance metrics demonstrated by machine learning algorithms include a training dataset with excessive missing data or few predictors, absence of ongoing partnership between clinicians and data scientists and class imbalance. In most instances, when handling healthcare data, the negative class tends to outnumber positive classes. The learning environment is rendered unfavourable since there are fewer positive observations or patterns for an algorithm to learn from. For example, when predicting mortality, the class with patients that demised is frequently smaller than the class with alive patients.

Models with perfect precision and recall have an F-measure, also known as the F-Score or F1 Score, equal to one [25]. Sensitivity, also known as recall, measures a proportion of positive classes accurately classified as positive [26]. Machine learning algorithms in the extracted studies had a sensitivity rate between 7.2 and 91.9%. The low sensitivity, reported by Turgeman and May, improved to 43.5% when they used an ensemble method to combine multiple predictive models to produce a single model [27].

Although the random forest algorithm appeared to have the highest predictive abilities in most studies, one cannot conclude that it should be the algorithm of choice whenever one attempts to create a predictive model. The random forest algorithm’s main advantage is that it is an ensemble-based classifier that takes random samples of data, exposing them to multiple decision tree algorithms. Decision trees are intuitive and interpretable and can immediately suggest why a patient is stratified into a high-risk category, hence guiding subsequent risk reduction interventions. The interpretability of decision trees is a significant advantage in contrast to deep learning methodologies such as artificial neural networks with a “black box” nature. Once random samples of data have been exposed to multiple decision tree algorithms, the decision trees’ ensemble identifies the class with the highest number of votes when making predictions. Random forests also perform well in large datasets with missing data, a common finding when handling healthcare data, and can rank features (predictors) in the order of importance, based on predictive powers [28].
Predictors of mortality identified by machine learning algorithms in the extracted studies were explainable and included features such as the LVEF, hypotension, and age and blood urea nitrogen levels. Whether these predictors should be considered significant risk factors for all heart failure, irrespective of genetic makeup, is debatable. The youngest patient in the studies reviewed was 40 years old, but most of the patients included in the predictive models were significantly older, with a median age of 72 years. Risk scores derived from older patients may reduce the applicability of the existing risk calculators in the sub-Saharan African (SSA) context, considering that patients with heart failure in SSA are generally a decade younger [29].

Geographically unique heart failure aetiologies and diverse clinical presentations call for predictive models that incorporate genomic, clinical and imaging data. We recommend that clinicians treating heart failure patients focus on establishing structured EHR systems and comparing outcomes such as mortality and hospitalization in patients managed with and without risk scores. Clinicians without access to EHR systems should carefully study the cohort used to create risk scores before implementing risk scores in their clinical practice.

5. Limitations

This systematic literature review has several limitations. The systematic literature search was conducted by a single reviewer, predisposing the review to selection bias. We only included original research studies published after 2009. This rationale for excluding studies published in the past 11 years was to avoid including studies where rule-based expert systems were used instead of newer machine learning techniques. Although the data used to create predictive models was grossly heterogeneous, a meta-analytic perspective on machine learning algorithms’ performance metrics when predicting heart failure patient outcomes.

6. Conclusion

The variation in the aetiologies of heart failure, limited access to structured health data, distrust in machine learning techniques among clinicians and the modest accuracy of predictive models are some of the factors precluding the widespread use of machine learning derived risk calculators.

7. Grant support

The study did not receive financial support. The primary author Dr Dineo Mpanya is a full-time PhD Clinical Research fellow in the Division of Cardiology, Department of Internal Medicine at the University of the Witwatersrand. Her PhD is funded by the Professor Bongani Mayosi Netcare Clinical Scholarship, the Discovery Academic Fellowship (Grant No. 039023), the Carnegie Corporation of New York (Grant No. b8749) and the South African Heart Association.

Declaration of Competing Interest

All authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.

Appendix A. Supplementary material

Supplementary data for this article can be found online at https://doi.org/10.1016/j.jchc.2021.100773.

References

[1] N. Boodhun, M. Jayabal, Risk prediction in life insurance industry using supervised learning algorithms, Compl. Intern. Syst. 4 (2018) 145–154.
[2] F. Carcella, Y.-A. Le Bergeon, G. Bootneau, Overview active learning strategies for real-life credit card fraud detection: assessment and visualization, Int. J. Data Sci. Anal. 5 (2019) 285–300.
[3] S. Moradi, Raffie F. Mohkhatab, A dynamic credit risk assessment model with data mining techniques: evidence from Iranian banks, Finance. Innovat. 5 (2019) 15.
[4] D. Mpanya, T. Celik, E. Klug, H. Nitsijnana, Machine learning and statistical methods for predicting mortality in heart failure, Heart Fail. Rev. (2020).
[5] J.M. Kwon, K.H. Kim, K.H. Jeon, S.E. Lee, H.Y. Lee, H.J. Cho, et al., Artificial intelligence algorithm for predicting mortality of patients with acute heart failure, Plos One. 14 (2019) e0219302.
[6] R.J. Desai, S.V. Wang, M. Vaduganathan, T. Evers, S. Schneeweiss, Comparison of machine learning methods with traditional models for use of administrative claims with electronic medical records to predict heart failure outcomes, JAMA Network. Open. 3 (2020) e191862.
[7] G. Lorenzoni, S. Santosato, C. Lanera, D. Bottiglicengo, C. Minto, H. Oeagli, et al., Comparison of machine learning techniques for prediction of hospitalization in heart failure patients, J. Clin. Med. 2019;8.
[8] S. Blecker, D. Sontag, L.I. Horwitz, G. Kuperman, H. Park, A. Reyentovich, et al., Early identification of patients with acute decompensated heart failure, J. Card Fail. 24 (2018) 357–362.
[9] E. Hirsch, E.Z. Gorodeski, E.H. Blackstone, H. Ishwaran, M.S. Lauer, Identifying important risk factors for survival in patients with systolic heart failure using random survival forests, Circulat.: Cardiovas. Qual. Outcomes 4 (2011) 39–45.
[10] E.D. Adler, A.A. Voors, I. Klein, F. Macheret, O.O. Braun, M.A. Urey, et al., Improving risk prediction in heart failure using machine learning, Eur. J. Heart Fail. 22 (2020) 139–147.
[11] D. Chico, G. Jurman, Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone, BMC Med. Inf. Decis. Making 20 (2020).
[12] S.B. Golas, T. Shibahara, S. Agboola, H. Otaki, J. Satto, T. Nakae, et al., A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: a retrospective analysis of electronic medical records data, BMC Med. Inform. Decis. Mak. 18 (2018) 44.
[13] S. Angraal, B.J. Mortazavi, A. Gupta, R. Khera, T. Ahmad, N.R. Desai, et al., Machine learning prediction of mortality and hospitalization in heart failure with preserved ejection fraction, JACC Heart Fail. 8 (2020) 12–21.
[14] M. Gheorghiade, N.M. Albert, A.B. Curtis, J. Thomas Heywood, M.L. McBride, P.J. Ing, et al., Medication dosing in outpatients with heart failure after implementation of a practice-based performance improvement intervention: findings from IMPROVE HF, Congest Heart Fail. 18 (2012) 9–17.
[15] B. Hanstraty, D. Hibbert, F. Mair, C. May, C. Ward, S. Capewell, et al., Doctors’ perceptions of palliative care for heart failure: focus group study, BMJ 325 (2002) 581–585.
[16] K. Eichler, M. Zoller, P. Tschudi, J. Steurer, Barriers to apply cardiovascular prediction rules in primary care: a postal survey, BMC Family Pract. 8 (2007) 1.
[17] P. Lakhani, B. Sundaram, Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks, Radiology 284 (2017) 574–582.
[18] F.A. Khan, A. Majidulla, G. Tavaziva, A. Nazish, S.K. Abidi, A. Benedetti, et al., Chest x-ray analysis with deep learning-based software as a triage test for pulmonary tuberculosis: a prospective study of diagnostic accuracy for culture-confirmed disease, Lancet Digit Health. 2 (2020) e573–e581.
[19] K. Kourow, G. Rigas, K.P. Exarchos, T.P. Exarchos, S. Jacobs, et al., Prediction of time dependent survival in HF patients after VAD implantation using pre- and post-operative data, Comput. Biol. Med. 70 (2016) 99–105.
[20] D. McKinley, P. Moyo-Dickerson, S. Davis, A. Akil, Impact of a pharmacist-led intervention on 30-Day readmission and assessment of factors predictive of readmission in African American men with heart failure, Am. J. Men’s Health. 13 (2019).
[21] A.N. Jagannatha, H. Yu, Bidirectional RNN for medical event detection in electronic health records, Proc. Conf. Proc. Conf. 2016 (2016) 473–482.
[22] A.N. Jagannatha, H. Yu, Structured prediction models for RNN based sequence labeling in clinical text, Proc. Conf. Empir. Methods Nat. Lang. Process. 2016 (2016) 856–865.
[23] V.N. Agbor, M. Essouma, N.A.B. Ntusi, U.F. Nyaga, J.J. Bigna, J. Noubiap, Heart failure in sub-Saharan Africa: a contemporaneous systematic review and meta-analysis, Int. J. Cardiol. 257 (2018) 207–215.
[24] K. Nakajima, T. Nakata, T. Doi, H. Tada, K. Maruyama, Machine-learning-based risk model using 123I-metaiodobenzylguanidine to differentially predict modes of cardiac death in heart failure, J. Nucl. Cardiol.: Off. Publ. Am. Soc. Nucl. Cardiol. 257 (2020).
[25] G. Hripscak, A.S. Rothschild, Agreement, the f-measure, and reliability in information retrieval, J. Am. Med. Informat. Assoc.: JAMIA 12 (2005) 296–298.
[26] T. Satto, M. Rehmsemeier, The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets, Plos One. 10 (2015) e0118432.
[27] L. Turgeman, J.H. May, A mixed-ensemble model for hospital readmission, Artif. Intell. Med. 72 (2016) 72–82.
[28] S. Uddin, A. Khan, M.E. Hossain, M.A. Moni, Comparing different supervised machine learning algorithms for disease prediction, BMC Med. Inf. Decis. Making. 19 (2019).
G.S. Bloomfield, F.A. Barasa, J.A. Doll, E.J. Velazquez, Heart failure in sub-Saharan Africa, Curr. Cardiol. Rev. 9 (2013) 157–173.

T. Ahmad, L.H. Lund, P. Rao, R. Ghosh, P. Warier, B. Vaccaro, et al., Machine learning methods improve prognostication, identify clinically distinct phenotypes, and detect heterogeneity in response to therapy in a large cohort of heart failure patients, J. Am. Heart Assoc. 7 (2018).

A. Allam, M. Nagy, G. Thoma, M. Krauthammer, Neural networks versus Logistic regression for 30 days all-cause readmission prediction, Sci. Rep. 9 (2019).

A. Ashfaq, A. Sant’Anna, M. Lonigan, S. Nowaczyk, Readmission prediction using deep learning on electronic health records, J. Biomed. Inform. 97 (2019).

A. Allam, M. Nagy, G. Thoma, M. Krauthammer, Neural networks versus Logistic regression for 30 days all-cause readmission prediction, Sci. Rep. 9 (2019).

A. Ashfaq, A. Sant’Anna, M. Lonigan, S. Nowaczyk, Readmission prediction using deep learning on electronic health records, J. Biomed. Inform. 97 (2019).

S.E. Awan, M. Bennamoun, F. Sohel, F.M. Sanfilippo, B.J. Chow, G. Dwivedi, Feature selection and transformation by machine learning reduce variable numbers and improve prediction for heart failure readmission or death, PLoS One. 14 (2019) e0218760.

R. Chen, A. Lu, J. Wang, X. Ma, L. Zhao, W. Wu, et al., Using machine learning to predict one-year cardiovascular events in patients with severe dilated cardiomyopathy, Eur. J. Radiol. 117 (2019) 178–183.

J.A. Chirinos, A. Orlesko, L. Zhao, M.D. Basso, M.E. Cvijic, Z. Li, et al., Multiple plasma biomarkers for risk stratification in patients with heart failure and preserved ejection fraction, J. Am. Coll. Cardiol. 75 (2020) 1281–1295.

J.D. Frizzell, L. Liang, P.J. Schulte, C.W. Yancy, P.A. Heidenreich, A.F. Hernandez, et al., Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: comparison of machine learning and other statistical approaches, JAMA Cardiol. 2 (2017) 204–209.

S. Gleeson, Y.W. Liao, C. Dugo, A. Cave, L. Zhou, Z. Ayar, et al., ECG-derived spatial QRS-T angle is associated with ICD implantation, mortality and heart failure admissions in patients with LV systolic dysfunction, PLoS One. 12 (2017) e0171069.

J. Hearn, H.J. Ross, B. Mueller, C.P. Fan, E. Crowdy, J. Duhamel, et al., Neural networks for prognostication of patients with heart failure, Circulation Heart Failure 11 (2018) e005193.

W. Jiang, S. Siddiqui, S. Barnes, L.A. Barouch, F. Korley, D.A. Martinez, et al., Readmission risk trajectories for patients with heart failure using a dynamic prediction approach: Retrospective study, J. Med. Int. Res. 21 (2019).

H.M. Krumholz, A.C. Coppi, F. Warner, E.W. Triche, S.X. Li, S. Mahajan, et al., Comparative effectiveness of new approaches to improve mortality risk models from medicare claims data, JAMA Network Open. 2 (2019).

W. Liu, C. Stansbury, K. Singh, A.M. Ryan, D. Sakul, E. Mahmoudi, et al., Predicting 30-day hospital readmissions using artificial neural networks with medical code embedding, PLoS ONE. 15 (2020).

S.M. Mahajan, A.S. Mahajan, R. King, S. Negahban, Predicting risk of 30-day readmissions using two emerging machine learning methods, Stud. Health Technol. Inform. 250 (2018) 250–255.

F. Miao, Y.P. Cai, Y.X. Zhang, X.M. Fan, Y. Li, Predictive modeling of hospital mortality for patients with heart failure by using an improved random survival forest, IEEE Access 6 (2018) 7244–7253.

K. Shameer, K.W. Johnson, A. Yahi, R. Miotto, L.I. Li, D. Ricks, et al., Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: a case-study using mount sinai heart failure cohort, Pac. Symp. Biocomput. 22 (2017) 276–287.

I. Shams, S. Ajoorlou, K. Yang, A predictive analytics approach to reducing 30-day avoidable readmissions among patients with heart failure, acute myocardial infarction, pneumonia, or COPD, Health Care Manage. Sci. 18 (2015) 19–34.

M. Stampelh, H.S. Friedman, P. Navaratnam, P. Russo, S. Park, E.N. Obi, Risk assessment of post-discharge mortality among recently hospitalized Medicare heart failure patients with reduced or preserved ejection fraction, Curr. Med. Res. Opin. 36 (2020) 179–188.

V. Taslimitehrani, G. Dong, N.L. Pereira, M. Panahiazar, J. Pathak, Developing EHR-driven heart failure risk prediction models using CPXR(Log) with the probabilistic loss function, J. Biomed. Inform. 60 (2016) 260–269.