CASE REPORT

Brachial and subclavian arteries aneurysms due to tuberous sclerosis complex mechanisms – case report and literature review

DANA CRISTINA CRAIU1,2, ALEXANDRA EUGENIA BASTIAN3,4, SABINA ANDRADA ZURAC5,4, SORIN LIVIU BĂILĂ5, MARIAN CROITORU6, MIHAI CRAIU7,8, RADU DIACONU9,10, MIHAEĻA-ADEĻA VİNȚAN11,12, DIANA GABRIELA BÂRCĂ1,2)

Introduction

Tuberous sclerosis complex (TSC) is a rare autosomal dominant condition characterized by cutaneous, cerebral, and other multiorgan involvement. Aneurysms due to TSC pathogenic mechanism are rarely present, mainly aortic, renal, or intracranial and very few associated with peripheral circulation. A TSC patient, aged 31 years, who developed brachial and subclavian arteries aneurysms is presented. The question of a random association of the aneurysms with TSC versus aneurysms within pathogenic released mammalian target of rapamycin (mTOR) pathway effect was raised.

Abstract

Introduction: Tuberous sclerosis complex (TSC) is a rare autosomal dominant condition characterized by cutaneous, cerebral, and other multiorgan involvement. Aneurysms due to TSC pathogenic mechanism are rarely present, mainly aortic, renal, or intracranial and very few associated with peripheral circulation. A TSC patient, aged 31 years, who developed brachial and subclavian arteries aneurysms is presented.

Keywords: tuberous sclerosis complex, subclavian artery, aneurysms, heterozygous TSC1 variant.

Introduction

Tuberous sclerosis complex (TSC) is a rare autosomal dominant disorder characterized by skin abnormalities (hypomelanotic macules, facial angiofibromas, shagreen patches, fibrous facial plaques, ungual fibromas), brain involvement [cortical tubers, subependymal nodules (SENs), subependymal giant cell astrocytoma (SEGA)], etc. [1]. Vascular involvement is rare and therefore less known and studied. Central and peripheral aneurysms and large and medium size arterial stenotic-occlusive disease have been reported in patients with TSC, as well as dysplasia of small vessels [2], including fibromuscular dysplasia [3].

 Aim

We present the case of a 31-year-old TSC male patient with TSC1 mutation diagnosed with two consecutive aneurysms of the right brachial and subclavian arteries,
respectively, raising the question of a random association of the aneurysms with TSC, versus aneurysms within pathogenic effect of the unsuppressed mammalian target of rapamycin (mTOR) pathway.

Case presentation

Patient’s file, available from the age of six months was analyzed for demonstration of TSC diagnosis. Patient was clinically reexamined, and brain magnetic resonance imaging (MRI) was repeated. The TSC1, TSC2 genes were analyzed by polymerase chain reaction (PCR) and next-generation sequencing of both deoxyribonucleic acid (DNA) strands of the entire coding region, and the highly conserved exon-intron splice junction analysis was performed. Multiplex ligation-dependent probe amplification (MLPA) analyses were performed to test for deletions or duplications within or including the TSC1, TSC2 genes.

Surgery and angiography reports and films were reviewed together with the surgeon and the interventional radiologist. Pathology of the fragments of the aneurysmal wall available from the two surgical interventions were reexamined and special stainings for elastin, smooth muscle fibers and immunohistochemistry markers for vascular endothelium were applied: Hematoxylin–Eosin (HE), elastic van Gieson, alpha-smooth muscle actin (α-SMA), cluster of differentiation 34 (CD34) marker.

Cutaneous, mucosal, ungual and dental changes

Three ungual fibromas of the right- and left-hand fingers (Figure 1b) were documented in the patient’s file at the age of 11 months; shagreen patch of the dorso-lumbar region, confetti white spots of the skin were noted at the age of four years, one dental enamel pit and gingival fibromas at the age of seven years.

Cerebral lesions

At the age of four years, a brain computed tomography (CT) scan revealed calcified SENs (Figure 1f); cerebral MRI performed at the age of 7, 11 and 26 years showed multiple bilateral cortical tubers and growing SENs; at the age of 26 years, SEGA was noted (Figure 1, g and h).

Epilepsy, intellectual disability, and autism spectrum disorder

Patient had West syndrome starting at the age of six months (epileptic spasms, hypersarrhythmia, developmental arrest), further evolving to Lennox–Gastaut syndrome, with multiple types of seizures: tonic seizures while awake and in sleep, generalized tonic-clonic seizures, atypical absences, focal seizures resistant to most antiseizure medications tried in monotherapy or different combinations. He had delayed milestones achievement and evolved to a profound intellectual disability [intelligence quotient (IQ)<20 at the age of 31], associating autism spectrum disorder with moderate aggressiveness from early childhood.

Other clinical changes

Bone changes (hypertrophic digitus medius of the right hand, with disorganized structure of the phalanges, thick bones cortex, osseous cysts, and periosteal apposition of the right forearm long and small bones) were noted starting around the age of four years (Figure 1, a–h). No cardiac, renal, pulmonary or eye changes were present.

Aneurysms

Patient developed a growing tumor in the right arm starting at the age of 13 (Figure 2, a and b). Right arm MRI with Gadolinium and further angiography showed a giant aneurysmal dilatation of the brachial artery and important surrounding soft tissue changes secondary to local ischemia (Figure 2, c–f). Aneurysm and damaged tissue were surgically removed. Angiographic checkup after one year showed a second murine aneurysm at the right subclavian level (Figure 3a). Ligature and partial resection of the aneurysm were performed (Figure 3b). Angiography of the arms, neck and head arteries did not detect other aneurysms. Aortic, renal, or lower limb vessels were not investigated with angiography, but chest CT scan and abdominopelvic MRI with contrast agent were negative.

Genetics and clinical family examination

Genetic analysis showed a heterozygous mutation in exon 8 of the TSC1 gene (c.733C>T-p.Arg245*). Father, who had periungual fibromas, declined further assessment (clinical, imaging, or genetic). Mother stated that her husband had only one generalized tonic-clonic seizure at the age of 42 for which he didn’t receive treatment. Other
family members (mother, sister) showed no TSC clinical signs.

Pathology examination

Pathology examination of the surgically removed fragments revealed a markedly thickened fibrous aneurysmal wall, with disorganized structure. Thickening was due to excessive proliferation of smooth muscle cells (SMCs) within media layer; the smooth muscle fibers were fragmented by overdeveloped collagen fibers, arranged in islands, and showing markedly disorganized arrangement. Middle tunic elastic layer was disorganized and fragmented by the collagen fibers. The intimate tunic showed large deposits of fibrin. Proliferation of small (neoformation) vessels in the outer tunic of the aneurysmal wall was observed (Figure 4, a–f).

Discussions

This patient was diagnosed with definite TSC based on five major criteria (ungual fibromas, shagreen patch, cortical tubers, SENs, SEGA), three minor criteria (confetti skin lesions, dental enamel pits, gingival fibromas), the genetic result showing a heterozygous pathogenic variant in exon 8 of the TSC1 gene (c.733C>T-p.Arg245*). The disease was most probably transmitted by the father, who had periungual nodules and a single tonic-clonic epileptic seizure.
at the age of 42, but no other clinical and genetic data are available; father declined treatment and investigations.

The case presented here showed two aneurysms in the arteries of the right arm, brachial and subclavian arteries. According to Boronat et al. (2014), aneurysms are rarely described, but twice more frequent in TSC patients (0.74%) compared to the general population (0.35%) [4]. Literature review underlines the rarity of TSC cases associating aneurysms – only 73 cases published since 1971 (Table 1). The most frequent arterial location is intracranial (53 aneurysms), usually involving the internal carotid artery (33 aneurysms); the second frequent aneurysmal location is aortic (36 aneurysms, 30 developed in the abdominal aorta). Peripheral aneurysms are very rare – only six cases have been previously described, presenting 10 aneurysms, in the iliac, iliofemoral, axillary, subclavian, or brachial arteries (Table 1). Patients usually have single aneurysms, only 12 cases presented multiple affected arteries and among these, only one in the arm. The patient discussed here presented two aneurysms in the arm, an exceptional aneurysmal location. Due to this rare disposition, an obvious question arose: are the aneurysms of the described case randomly associated with TSC or a direct result of the disturbed mTOR pathway and therefore a vascular TSC manifestation?

Table 1 – Location of TSC-associated aneurysms (literature review)

Author(s), year	Ref. No.	Aneurysm location	No. of patients	Age	Genetics
Freycon et al., 1971	5	Abdominal aorta	1		
Larbre et al., 1971	6	Abdominal aorta	1		
Davidson, 1974	7	Multiple (2): internal carotid arteries (bilateral, fusiform)	1	Child	
Snowdon, 1974	8	Intracranial	1	Child	
Dutton & Singleton, 1975	9	Abdominal aorta	1	Child	
Hagood et al., 1976	10	Abdominal aorta	1		
Ho, 1980	11	Intraventricular	1	26 years	
Beall & Delaney, 1983	12	Multiple (2): internal carotid; anterior communicating artery	1	17 years	
Guttman et al., 1984	13	Giant intracranial	1	53 years	
Brill et al., 1985	14	Giant intracranial	1	Child	
Copley, 1985	15	Intracranial	1		
Blumenkopf & Huggins, 1985	16	Multiple fusiform intracranial aneurysms	1	6 years	
Martin et al., 1987	17	Giant intracranial	1		
Towbin et al., 1987	18	Abdominal aorta	1	9 months	
Ng et al., 1988	19	Abdominal aorta	1	24 years	
Libby et al., 1989	20	Axillary	1		
Shepherd et al., 1991	21	Thoracic aorta	1/355 (causes of death)	Child	
Occhionorelli et al., 1991	22	Abdominal aorta	1	Adult	
van Reedt Dortland et al., 1991	23	Abdominal aorta	1	5 years	
Lavocat et al., 1992	24	Abdominal aorta (giant)	1	4.5 months	
Engel, 1992	25	Arterial circle of Willis	1	1 year	
Tsukui et al., 1995	26	Abdominal aorta	1	4 years	
Paraf & Bruneval, 1996	27	Abdominal aorta (pathology – fibromuscular dysplasia)	1		
Spangler et al., 1997	28	Multiple (3): internal carotid (fusiform), anterior cerebral (ectasia), middle cerebral (ectasia), all same side (left)	1	5 months	
Longa et al., 1997	29	Middle cerebral (asymptomatic)	1	30 years	Large TSC2/PKD1 deletion
Tamisier et al., 1997	30	Abdominal aorta	1	Child	
Swarnkar et al., 1998	31	Intracranial	1	Child	
Hite et al., 1998	32	Multiple (2): axillary, brachial	1	10 months	
Jarrett et al., 1998	33	Carotid	1		
Beltramello et al., 1999	34	Internal carotid (giant)	1	11 years	
Ko et al., 2000	35	Abdominal aorta (hamartomatous)	1	22 years	
Budevkar et al., 2000	36	Aorta	1	Child	
Baker & Furnival, 2000	37	Abdominal aorta	1	12 months	
Chen et al., 2001	38	Internal carotid (paraclinoid)	1	19 years	
Jost et al., 2001	39	Abdominal aorta	1	9 years	
Patzer et al., 2002	40	Thoracic aorta	1	41 years	
Jones et al., 2002	41	Internal carotid	1		
Burrows & Johnson, 2004	42	Pulmonary	1	52 years	
The pathogenesis of aneurysms formation in people without TSC is a complex remodeling process of synthesis and degradation of matrix proteins, the most striking feature being a thin media due to elastin fragmentation (leading to a compromised elastin network) [72, 73], decreased SMCs density by 74% by apoptosis, adventitial collagen synthesis, inflammation playing a role in the interaction between mesenchymal cells (SMCs and fibroblasts) and inflammatory cells (lymphocytes and macrophages) [74]. By contrast, TSC aneurysmal pathogenesis is characterized by increased proliferation of the SMCs within the media, disorganized structure also involving the elastic layer [54]. The pathology examination of the aneurysmal wall of the patient showed characteristic changes for activation of the mTOR pathway, with the typical important thickening of the aneurysmal wall based on media SMCs proliferation.

We report a pathogenic variant in exon 8 of the TSC1 gene (c.733C>T-p.Arg245*). The c.733C>T variant has been previously described; in the Leiden Open Variation Database (LOVD) (http://chromium.lovd.nl/LOVD2/TSC/home.php?select_db=TSC1&used_old_url), c.733C>T variant was reported 45 times. This was the only mutation in 40 reports.
another variant being associated in the rest of the five reports, including TSC2 gene mutations. Usually, TSC2 variants are associated with severe phenotypes [75]. Only 10 of the LOVD reports were published in five articles [76–80]. None of the published cases with c.733C>T variant associated aneurysms.

In the literature review of the published TSC cases associating aneurysms, very few discussed the causal variant (Table 1). Both TSC1 and TSC2 variants have been described in individuals with TSC and aneurysms. TSC pathogenic has a role in the genesis of aneurysms, considering that aneurysms are twice more frequent in the TSC population compared to the general population. Why are not all TSC patients presenting aneurysms? Why is this clinical manifestation so rare? Most probably other modifying genes and/or epigenetic factors are involved.

The patients with TSC and palpable vascular masses, hypertension, abdominal pain, or other symptoms, which may suggest aneurysms, should be screened using duplex ultrasonography as the initial diagnostic approach of choice [51]. Multislice CT or MRI is recommended as a complementary and diagnostic tool [48]. Because TSC families with positive history of aneurysms do exist (although rare), it was suggested that systematic screening for aneurysms should be added as standard care of the asymptomatic TSC patients with vascular positive family history [60]. Routine screening for aneurysms is not recommended in patients with TSC and no positive history for aneurysms, due to the very low incidence of the aneurysms in the TSC population (0.74%) [4, 51].

Everolimus, an mTOR inhibitor, is now indicated for treatment of SEGA and AMLs, leading to their size reduction, but also has a favorable effect on other clinical elements of the disease, such as angiofibromas, or skin lesions [81]. mTOR is a serine/threonine kinase regulated by phosphoinositide-3-kinase (PI3K) and regulates cellular metabolism, cell growth, motility, angiogenesis. The PI3K-mTOR pathway members are implicated in the pathogeny of vascular anomalies by dysregulation of angiogenesis and lymphangiogenesis, protein overgrowth, cellular hypermetabolism [82, 83]. It was shown in an experimental rat model that Rapamycin (mTOR inhibitor) suppressed the aortic aneurysm growth [84], but the pathogeny of this model may differ from that of the activated mTOR pathway. Therefore, mTOR inhibitors are predicted to be effective in other disorders in which the growth control factor is affected. There is no data in the literature presenting the effects of Everolimus treatment on aneurysms in TSC patients, but it is very tempting to think that Everolimus will have a favorable effect on TSC aneurysms, as Rapamycin (Sirolimus) proved to be effective in vascular anomalies such as vascular malformations or vascular tumors (Kaposiform hemangioendothelioma, capillary lymphatic venous malformation, diffuse microcystic lymphatic malformation), with significant response/improvement to Sirolimus [85]. In a recent published case of a 7-year-old TSC male patient with TSC2 mutation, multiple aneurysms have been described: one growing aneurysm of the abdominal aorta near the emergence of both renal arteries, one of the common iliac, one of the left external iliac, two of the left internal iliac arteries. Because of an additional lymphatic malformation of the left leg, he was treated with Everolimus for six weeks, then stopped, four weeks before an urgent operation of the growing aortic aneurysm at the age of 17 months. One month after surgery, the treatment with Everolimus was resumed for the lymphatic malformation, without long-term side effects (more than 3.3 years with 3.5 mg/day). In a routine control of the aorta by CT angiography at five months, a new aneurysm was seen at the junction of the aorta and renal arteries, above the graft with Everolimus therapy. It remained stable over time, not growing with Everolimus treatment of 5 mg/day [68]. It is possible that the growth of the first aneurysm was due to an insufficient treatment duration. Arrest aneurysm growth in this single case report points at possible favorable effect of Everolimus for this pathology. It is known that in TSC aneurysms, massive SMCs proliferation within aneurysmal wall leads to elastic fibers fragmentation and impressive loss of organization of the triplaminar vascular wall structure [54]. Hypothetically, if Everolimus treatment is used and SMCs proliferation is stopped or even reversed, one may speculate that a thin and fragile aneurysmal wall (with damaged elastic layer) may result, and this might lead to an increased probability of rupture. Currently no proof exists on this effect of Everolimus treatment on SMCs. Further research is needed to clarify this issue.

Conclusions
A case with a severe phenotype having a TSC1 gene mutation is presented; usually, the severe phenotype is associated with the TSC2 variants. This is a rare case presenting aneurysms related to TSC, with an exceptional localization. Pathology examination is the key investigation for demonstrating TSC-related pathogenic mechanism. A literature review of TSC cases presenting with aneurysms was performed (73 cases). Very few TSC patients with aneurysms were genetically analyzed, and in most cases strict analysis of the TSC1 and TSC2 genes was performed. To determine if other modifying genes or epigenetic factors are involved in the pathogenesis of the TSC-associated aneurysms, further research is needed. The role of Everolimus in the treatment of TSC aneurysms must be unraveled.

Conflict of interests
The authors declare that they have no conflict of interests.

Acknowledgments
Many thanks to Dragoș-Paul Hagiu, who kindly offered his time and talent to organize the figures for this article and to Horea Constantin Chiriță for technical support.

Role of the funding source
The analysis of genetic background of this patient was performed using an educational grant from Novartis Pharma. Novartis had no role in the collection, analysis, and interpretation of data, in the writing of the report, or in the decision to submit the paper for publication. I, first author, had full access to all the data in this case and I take complete responsibility for the integrity of the data and the accuracy of the data analysis.

References
[1] Northrup H, Krueger DA; International Tuberous Sclerosis Complex Consensus Group. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 Inter-
Cao J, Gong L, Guo DC, Mietzsch U, Kuang SQ, Kwartler CS, Sabat SB, Cure J, Sullivan J, Gujrathi R. Tuberous sclerosis. 2020, 110(1):89–92. PMID: 21816642

Denne C, Gent EM, Mayer K, Steinborn M, Hahn H, Burdach S. Presentation inhabitable de la sclérose tubéreuse de Bourneville de chez un nourrisson: à propos d’un cas [Uncommon presentation of tuberous sclerosis in an infant]. Arch Pediatr, 2011, 18(6):660–664. https://doi.org/10.1016/j.arcped.2011.03.014

Ye C, Yin H, Lin Y, Zhou L, Ye R, Li X, Han A, Wang S. Abdominal aorta aneurysms in children: single-center experience of six patients. Ann Thorac Surg, 2012, 93(1):201–205. https://doi.org/10.1016/j.athorac.2011.08.038 PMID: 22054653

Yi JL, Galgano MA, Tovar-Spinola Z, Deshaies EM. Coil embolization of an intracranial aneurysm in an infant with tuberous sclerosis complex: a case report and literature review. Surg Neurol Int, 2012, 3:129. https://doi.org/10.4103/2152-7806.102944 PMID: 23227434 PMCID: PMC3513845

Korkmaz-Pal P, Lehto H, Niinemets J, Kivisari R, Hemsiesi JM. Long-term outcome of 114 children with cerebral aneurysms. J Neurosurg Pediatr, 2012, 9:363–445. https://doi.org/10.1016/j.jns.2011.11.057 PMID: 22142680

Patino Bahena E, Calderon-Colmenero J, Buendia A, Juangco A. Giant aortic aneurysm and rhombomomas in patient with tuberous sclerosis (case report). Arch Cardiol Mex, 2005, 75(4):448–450. PMID: 16544770

Kimura Y, Sugimura H, Shibuya M, Shibuya K, Abe F, Kato H. A case of 2-year-old boy with tuberous sclerosis complicated with descending aortic aneurysm. Pediatr Int, 2005, 47(2):224–226. https://doi.org/10.1111/j.1442-2003.2005.01203.x PMID: 15852531

Wong H, Hadi M, Khoury T, Geary D, Rubin B, Filler G. Management of severe hypertension of a child with tuberous sclerosis-related major vascular abnormalities. J Hypertens, 2006, 24(3):597–599. https://doi.org/10.1097/01.jht.0000209994.33680.11 PMID: 16467664

Araujo JF, Santori RK, Sperlescu A, Marinis JL, Balbo RJ. Aneurisma intracraniiano gigante em criança de nove anos. Relato de caso [Giant intracranial aneurysm in a 9 year-old child. Case report]. Arq Neuropsiquiatr, 1996, 54(4):673–676. https://doi.org/10.1590/s0004-282x1996000400020 PMID: 9201335

Canetti MF, Antione M, Bazelly B, Cadranel J, Khalil A. Primary pulmonary artery aneurysm in tuberous sclerosis: CT, angiography and pathological study. Eur Radiol, 2006, 16(10): 2369–2370. https://doi.org/10.1007/s00330-006-0173-x PMID: 16622689

Koch AME, Janka R, Littrich S. Aneurysm in an 8-month-old girl with tuberous sclerosis. Eur J Vasc Endovasc Surg, 2009, 37(5):569–571. https://doi.org/10.1016/j.ejvs.2009.01.002 PMID: 19231254

Salaën AE, Marsenic O, Meyers KE, Kaplan BS, Hellinger JC. Pulmonary artery aneurysm and tuberous sclerosis. Thorax, 2004, 59(1):86. https://doi.org/10.1136/thorax.2003.016634 PMID: 14694262 PMCID: PMC1758861

Burrows NJ, Johnson SR. Pulmonary artery aneurysm and tuberous sclerosis. 2020, 113(1):89–91. PMID: 21816642

Dennison GP, Gent EM, Mayer K, Steinborn M, Hahn H, Burdach S. Presentation inhabituable de la sclérose tubéreuse de Bourneville de chez un nourrisson: à propos d’un cas [Uncommon presentation of tuberous sclerosis in an infant]. Arch Pediatr, 2011, 18(6):660–664. https://doi.org/10.1016/j.arcped.2011.03.014

Byrne RD, Lahir S, Bansal M, Jacob B, Stapleton G. Endovascular repair of a descending thoracic aortic aneurysm in a pediatric patient with tuberous sclerosis: a case report and review of the literature. Pediatr Cardiol, 2022, 43(1):238–243. https://doi.org/10.1007/s00246-021-02177-8 PMID: 34468774
Brachial and subclavian arteries aneurysms due to tuberous sclerosis complex mechanisms – case report...

Olvera A, Besho JM, Tanaka A, Safi HJ, Estrera AL. Multiple interventions to thoracoabdominal aortic aneurysm in a child with tuberous sclerosis. Ann Thorac Surg, 2022, Mar 17, S0003-4975(22)00343-5. https://doi.org/10.1067/ajt.athoracsur.2022.03.002 PMID: 35305993

Halloran BG, Baxter BT. Pathogenesis of aneurysms. Semin Vasc Surg, 1995, 8(2):85–92. PMID: 7670668

Samouillan V, Dandurand J, Lacabanne C, Stella A, Gargiulo M, Degani A, Gandaglia A, Spina M. Characterization of aneurysmal aortas by biochemical, thermal, and dielectric techniques. J Biomed Mater Res A, 2010, 95(2):611–619. https://doi.org/10.1002/jbm.a.32835 PMID: 20725971

López-Candales A, Holmes DR, Liao S, Scott MJ, Wickline SA, Thompson RW. Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms. Am J Pathol, 1997, 150(3):993–1007. PMID: 9060837 PMCID: PMC1857880

Jones AC, Shyamsundar MM, Thomas MW, Maynard J, Idziaszczyk S, Tomkins S, Sampson JR, Cheadle JP. Comprehensive mutation analysis of TSC1 and TSC2 – and phenotypic correlations in 150 families with tuberous sclerosis. Am J Hum Genet, 1999, 64(5):1305–1315. https://doi.org/10.1086/302381 PMID: 10205261

Dabora SL, Sigalas I, Hall F, Eng C, Vigg J, Kwiatkowski DJ. Comprehensive mutation analysis of TSC1 using two-dimensional DNA electrophoresis with DGGE. Ann Hum Genet, 1998, 62(Pt 6):491–504. https://doi.org/10.1046/j.1469-1809.1998.6260491.x PMID: 10363127

Au KS, Williams AT, Roach ES, Batchelor L, Sparagana SP, Delgado MR, Strollo RB, Smith-Knuppel TK, Cheung MY, Whittemore VH, King TM, Northrup H. Genotype/phenotype correlation in 325 individuals referred for a diagnosis of tuberous sclerosis complex in the United States. Genet Med, 2007, 9(2):88–100. https://doi.org/10.1097/gim.0b013e31803068c7 PMID: 17304050

Dabora SL, Joziwak S, Franz DN, Roberts PS, Nieto A, Chung J, Choy YS, Reeve MP, Thiele E, Egelhoff JC, Kasprzyk-Obara J, Domanska-Pakiela D, Kwiatkowski DJ. Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet, 2001, 68(1):64–80. https://doi.org/10.1021/ga.2022.03.002 PMID: 11112665 PMCID: PMC1234935

Roberts PS, Dabara S, Thiele EA, Franz DN, Joziwak S, Kwiatkowski DJ. Somatic mosaicism is rare in unaffected parents of patients with sporadic tuberous sclerosis. J Med Genet, 2004, 41(5):e69. https://doi.org/10.1136/jmg.2003.014126 PMID: 15121797 PMCID: PMC1735761

Mayer K, Ballhausen W, Rott HD. Mutation screening of the entire coding regions of the TSC1 and the TSC2 gene with the protein truncation test (PTT) identifies frequent splicing defects. Hum Mutat, 1999, 14(5):401–411. https://doi.org/10.1002/(SICI)1098-1004(19991114:5<401::AID-HUMU>3.0.CO;2-R PMID: 10533066

Krueger DA, Care MM, Agriculta K, Tudor C, Mays M, Franz DN. Everolimus long-term safety and efficacy in subependymal giant cell astrocytoma. Neurology, 2013, 80(6):574–580. https://doi.org/10.1212/WNL.0b013e3182815428 PMID: 23325902 PMCID: PMC3589289

Inoki K, Corradetti MN, Guar AO, KL. Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet, 2005, 37(1):19–24. https://doi.org/10.1038/ng1494 PMID: 15624019

Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev, 2004, 18(16):1926–1945. https://doi.org/10.1101/gad.1212704 PMID: 15314020

Lawrence DM, Singh RS, Franklin DP, Carey DJ, Elmore JR. Rapamycin suppresses experimental aortic aneurysm growth. J Vasc Surg, 2004, 40(2):334–338. https://doi.org/10.1016/j.vjs.2004.05.020 PMID: 15297830

Hammill AM, Wentezi MS, Gupta A, Nelson S, Lucky A, Eluru R, Dasgupta R, Azizkhan RG, Adams DM. Sirolimus for the treatment of complicated vascular anomalies in children. Pediatr Blood Cancer, 2011, 57(6):1018–1024. https://doi.org/10.1002/pbc.23124 PMID: 21445948

Corresponding authors
Mihai Craiu, Associate Professor, MD, PhD, Department of Pediatrics and Medical Genetics, Carol Davila University of Medicine and Pharmacy, 8 Eroilor Sanitari Avenue, Sector 5, 050474 Bucharest, Romania; Phone +4021–242 27 09, e-mail: mcraiu@yahoo.com
Radu Diaconu, Lecturer, MD, PhD, Department of Pediatrics, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rareș Street, 200349 Craiova, Dolj County, Romania; Phone +40723–524 392, e-mail: raduteodiaconu@yahoo.com

Received: May 9, 2022
Accepted: August 26, 2022