Vortex scattering by impurities in a Bose–Einstein condensate

A Griffin\(^1,2\), G W Stagg\(^1\), N P Proukakis\(^1\) and C F Barenghi\(^1\)

\(^1\)Joint Quantum Centre (JQC) Durham–Newcastle, School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom

\(^2\)Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

E-mail: carlo.barenghi@newcastle.ac.uk

Received 29 March 2017
Accepted for publication 21 April 2017
Published 11 May 2017

Abstract

Understanding quantum dynamics in a two-dimensional Bose–Einstein condensate relies on understanding how vortices interact with each other microscopically and with local imperfections of the potential which confines the condensate. Within a system consisting of many vortices, the trajectory of a vortex–antivortex pair is often scattered by a third vortex, an effect previously characterised. However, the natural question remains as to how much of this effect is due to the velocity induced by this third vortex and how much is due to the density inhomogeneity which it introduces. In this work, we describe the various qualitative scenarios which occur when a vortex–antivortex pair interacts with a smooth density impurity whose profile is identical to that of a vortex but lacks the circulation around it.

Keywords: vortex, BEC, impurity

(Some figures may appear in colour only in the online journal)

1. Introduction

In a recent paper [1], Smirnov and Smirnov studied the scattering of two-dimensional (2D) vortex–antivortex pairs and solitons by a single quantum vortex in a homogeneous atomic Bose–Einstein condensate (BEC). They found that the pair is scattered over large angles radiating sound waves, in agreement with earlier calculations [2]. This scattering process is important because it lies at the heart of the dynamics of 2D quantum turbulence, a problem which is currently attracting experimental and theoretical attention [3–8]. Our understanding of the turbulent motion of many interacting vortices is based on recognising the most elementary interactions, such as the interaction of a vortex with another vortex of the same or opposite sign (resulting, respectively, in rotational or translation motion of the pair). Similarly, we would like to recognise the possible elementary interactions between a vortex and a large density perturbation induced by the dynamics of vortices or by external means. It is well-known that a quantum vortex in a BEC is a hole of zero density around which the phase changes by \(2\pi\). The natural question is whether the incoming vortex–antivortex pair would be scattered (and if so, by which amount) by a density perturbation alone (without the circulation around it), as density gradients induce a Magnus force [9, 10] which deflects the pair. To answer this question, we have performed numerical simulations of vortex–antivortex pairs travelling towards a fixed target in the form of a density perturbation (hereafter referred to as an ‘impurity’) whose depth and size is similar to the depth and size of a quantum vortex (but without the circulation). Here we report about the significant scattering induced by the impurity, and compare it with the scattering induced by a target in the form of a vortex.

For simplicity we consider a homogeneous condensate at zero temperature, and aim at identifying the various qualitative scenarios which are possible (quantitative predictions of vortex trajectories in a harmonically trapped condensate require more specific calculations which depend on the actual physical parameters and geometry, and are outside the scope of this work). A better physical understanding of the scattering which imperfections induce on vortices is generally useful (although in general imperfections may not be as symmetric as we describe them here). Our results are also relevant to the manipulation of vortices using optical potentials generated by laser beams [11, 12].
The initial condition at \(t = 0 \), schematically described in figure 1, is a vortex–antivortex pair, consisting of a left (clockwise) vortex and a right (anticlockwise) vortex initially placed, respectively, at positions \(x_L(0), y_L(0) \) and \(x_R(0), y_R(0) \). We call \(d = |x_L(0) - x_R(0)| \), the initial distance between the vortices of the pair. The vortex–antivortex pair travels along the negative \(y \) direction with impact parameter \(h = (x_R(0) + x_L(0))/2 \) towards a fixed density perturbation (or impurity) held at \(x_L = y_L = 0 \). The impurity is represented by the (dimensionless) external potential \(V(x, y) = \sum_{j=1}^{m} A_j e^{-R_j^2/\sigma_j^2} \) where \(R_j^2 = (x - x_j)^2 + (y - y_j)^2 / \sigma_j^2 \). With a suitable choice of parameters, solving the time-independent GPE without the vortex–antivortex pair, the density profile of the impurity approximately matches the profile of a singly-charged vortex at \(x_h, y_h \) in the homogeneous condensate.

To quantify the scattering, we measure the deflection angle \(\theta \) of the antivortex away from its initial trajectory, but in some cases (for example if the vortex–antivortex pair breaks up) a different description of the interaction is necessary.

We choose \(L = 153.45 \) and impose \(\psi = 0 \) on the boundaries. We use a 1024^2 grid, corresponding to the (dimensionless) spatial discretization \(\Delta x = \Delta y = 0.3 \). Time-stepping is performed using the 4th-order Runge–Kutta scheme; the typical (dimensionless) time step is \(\Delta t = 0.01 \). During typical evolutions the total energy is conserved within 0.003%. The calculations were repeated in a 512^2 box with discretization \(\Delta x = \Delta y = 0.3 \), resulting in the same qualitative scattering scenarios which we describe in the next section. Variations in the deflection angles resulting from discretization errors and from sound waves reflected from the boundaries are small (of the order of one percent); the trapping scenario appears more sensitive to perturbations. On the other hand, in the experiments, 2D vortex configurations typically contain significant sound waves besides thermal noise.

3. Scattering scenarios

In all calculations we choose initial \(y \)-coordinates \(y_L(0) = y_R(0) = 65 \xi \), sufficiently away from the impurity; the initial \(x \)-coordinates, \(x_L(0) \) and \(x_R(0) \), vary from case to case, as we change the impact parameter \(h \) and the vortex separation \(d \). We have identified three typical scenarios:

1. **Fly-by scenario**

 If the impact parameter \(h \) is large and negative, the vortex–antivortex pair is too far at the left of the impurity, see figure 2(a), to be affected, and the deflection angle is \(\theta \approx 0 \). If the magnitude of \(h \) decreases (still keeping \(h < 0 \)), the vortex–antivortex pair is scattered to the left (as seen from the initial direction of travel) with increasing positive deflection angle \(\theta \), as shown in figures 2(a) and (b).

2. **Trapping scenario**

 If the magnitude of \(h \) is further decreased (still keeping \(h < 0 \)), the vortex falls into the region of low density of the impurity, see the red trajectory of figure 2(c), becomes trapped and stops, with a strong emission of sound waves, see figure 3; at this point, the isolated antivortex processes around the impurity, see the blue trajectory of figure 2(c). In this scenario the deflection angle cannot be defined.

3. **Go-around scenario**

 A further decrease of the magnitude of \(h \) means that the vortex–antivortex pair is almost aimed at the impurity; the left (anticlockwise) vortex and the right (clockwise) vortex overtake the impurity on opposite sides, going around it along opposite directions, before joining again, re-forming the pair, and moving on to infinity. Figure 2(d) shows that for slight negative
values of \(h \) the vortex pair is scattered to the right \((\theta < 0)\); for \(h \approx 0 \), see figure 2(e), the vortex–antivortex pair proceeds almost straight \((\theta \approx 0)\), vortex and antivortex going around the impurity in opposite directions.

Finally, for larger, positive values of \(h \), the trajectories of the vortex and the antivortex are the same (as the impurity does not introduce any preferred orientation), \(\theta \) being replaced by \(-\theta\) (in other words the function \(\theta(h) \) is antisymmetric in \(h \)). We summarise the scenarios which we have revealed by plotting the deflection angle \(\theta \) as a function of the impact parameter \(h \), see the blue line and dots in figure 4(top). The shaded areas represent the regions where the deflection angle \(\theta \) cannot be defined (one vortex becomes trapped) and the blue line is interrupted.

It is instructive to replace the impurity with a third vortex, choosing positive anticlockwise circulation, initially placed at \(x_0 = y_0 = 0 \). In this way we can directly compare the deflections Figures 2, 3, and 4.
of the vortex pair’s trajectory caused by a third vortex to the deflection caused by an impurity with the same density perturbation, isolating the effect of the vortex circulation. Unlike the impurity, which is fixed, the third vortex is free to move under the velocity field of the vortex–antivortex pair. The deflection angle θ caused by the third vortex is shown by the red line and dots of figure 4(top). It is apparent that, for large negative impact parameters, the deflection angle θ is approximately the same for vortex and impurity, but becomes significantly larger for the vortex at small negative h; moreover, there is no trapping regime for the vortex. Note also that, for the vortex, the curve $\theta(h)$ is not antisymmetric about $h = 0$ as in the case of the impurity: for $h < 0$, the closest interaction is between vortices of the same sign, which makes the two close vortices to rotate around each other causing a deflection to the left ($\theta > 0$) with respect to the initial direction of motion; for $h > 0$, the closest interaction is between vortices of the opposite sign, which makes the two close vortices to travel away together, causing a deflection to the right ($\theta < 0$); with respect to the initial direction of motion. This is why the two peaks of the red curve of figure 4(top), which represent these strong interactions, are not symmetric about $h = 0$. Between these two peaks there is a regime in which the anti-vortex of the pair swaps place with the (initially stationary) third vortex, which couples with the original vortex of the pair and travels away with it, forming a new pair. An example of this swapping regime is presented in figure 5(a). Finally, notice that the effect of the third vortex extends to large positive values of h, unlike the effect of the impurity.

Figure 4(bottom) shows what happens if we halve the initial separation of the vortex from the antivortex to $d = 2.9\xi$. At this short separation, the trapping regimes disappears (the vortex, now rather close to the antivortex, moves at large speed, and the impurity is not strong enough to stop it). The other features of the interaction remain qualitatively the same as for the larger pair separation $d = 6.9\xi$.

Increasing the size of the impurity or making it shallower—as for the density profiles shown by the dashed red and blue lines of figure 6—does not change the scenarios of interaction with the vortex–antivortex pair in a qualitative way. Figure 7(top left) and figure 7(bottom left) show the go-around scenario, respectively, for a large deep impurity and for a smaller, shallower impurity (the density at the centre is only $n \approx 0.5$). It is interesting to notice that phase defects (ghost vortices) appear inside the large impurity—compare the top right and bottom right panels of figure 7. An example of the scattering regime with an impurity similar to the size of the large impurity of figure 6 (dashed blue line) is shown in 5(b).

Changing the depth of the impurity while keeping the width close to that of a vortex only modifies the deflection angle slightly. For deeper impurities we generally see larger scattering angles in the region close to the impurity. The general trend is that the shallower the impurity is, the smaller the region in which trapping takes place (see figure 8), until the impurity is too shallow to trap a vortex, as shown by the black line of 8.

We have already pointed out (figure 3) that sound waves are created by accelerating vortices [2]. In general, these waves
Our work is motivated by the aim of gaining an insight into what it is concerned with well-separated vortex and antivortex rather than solitons (when the speed of the pair exceeds the critical value \(v/c = 0.61 \) where \(c \) is the sound speed, the circulation is lost and the pair becomes a solitonic object). Secondly, it refers to much smaller impurities (of the order of the core size, not ten times larger). In particular, unlike [14], in our work the vortex and the antivortex which make up a pair can separate. Thirdly, by solving directly the GPE, we allow acoustic losses unlike the model equations of [14].

Future work should look at the effects induced by an inhomogeneous density background in harmonically trapped condensates. Other aspects which are worth investigating are thermal and quantum fluctuations, which are not included in our mean field GPE model. Qualitatively, one would expect thermal fluctuations to move the vortex and the antivortex of a pair closer to each other, eventually leading to their annihilation. This effect would lead to the introduction of a new length/time scale associated with the vortex–antivortex pair’s intrinsic decaying dynamics. Qualitatively, however, we would still expect the same regimes to emerge. Quantum fluctuations would lead to an intrinsic jitter motion of each vortex about its mean position, with the target impurity also suffering some fluctuations from the fluctuating density in that region. On the average we would still expect the fly-be and go-around scenarios to persist, but our discussion here may represent a rather idealised case. In fact it would be interesting to investigate this scenario experimentally.

Acknowledgments

We acknowledge the support of EPSRC grants EP/K03250X/1 and EP/I019413/1.

References

[1] Smirnov L A and Smirnov A I 2015 Phys. Rev. A 92 013636
[2] Barenghi C F, Parker N G, Proukakis N P and Adams C S 2005 J. Low Temp. Phys. 138 629
[3] Nazarenko S and Onorato M 2007 J. Low Temp. Phys. 146 31
[4] Neely T W, Bradley A S, Samson E C, Rooney S J, Wright E M, Law K J H, Carretero-González R, Kevrekidis P G, Davis M J and Anderson B P 2013 Phys. Rev. Lett. 111 235301
[5] Kwon W J, Moon G, Choi J Y, Seo S W and Shin Y I 2014 Phys. Rev. A 90 063627
[6] Stagg G W, Allen A J, Parker N G and Barenghi C F 2015 Phys. Rev. A 91 013612
[7] Cidrim A, dos Santos F E A, Galantucci L, Bagnato V S and Barenghi C F 2016 Phys. Rev. A 93 033651
[8] Groszek A J, Simula T P, Paganin D M and Helmerson K 2016 Phys. Rev. A 93 043614
[9] McGee S A and Holland M J 2001 Phys. Rev. A 63 043608
[10] Fetter A L and Svidzinsky A A 2001 J. Phys.: Condens. Matter 13 R135
[11] Davis M C, Carretero-Gonzalez R, Shi Z, Law K J H, Kevrekidis P G and Anderson B P 2009 Phys. Rev. A 80 023604
[12] Aioi T, Kadokura T, Kishimoto T and Saito H 2011 Phys. Rev. X 1 021003
[13] Barenghi C F and Donnelly R J 2009 Fluid Dyn. Res. 41 051401
[14] Mironov V A and Smirnov L A 2012 Phys. Wave Phenom. 21 62

![Figure 8: Top: density profiles, \(n/n_0 \) versus x for vortex-like potential (grey), \(n/n_0 = 0.096 A_4 = 8 \) (blue), \(n/n_0 = 0.239 A_4 = 4 \) (red) and \(n/n_0 = 0.403 A_4 = 2 \) (black). Bottom: deflection angle \(\theta \) against impact parameter \(h \). Colours correspond to top figure (lines are interrupted in the region of trapping).](image-url)