Review

Structural biology of the Bcl-2 family and its mimicry by viral proteins

M Kvansakul and MG Hinds

Intrinsic apoptosis in mammals is regulated by protein–protein interactions among the B-cell lymphoma-2 (Bcl-2) family. The sequences, structures and binding specificity between pro-survival Bcl-2 proteins and their pro-apoptotic Bcl-2 homology 3 motif only (BH3-only) protein antagonists are now well understood. In contrast, our understanding of the mode of action of Bax and Bak, the two necessary proteins for apoptosis is incomplete. Bax and Bak are isostructural with pro-survival Bcl-2 proteins and also interact with BH3-only proteins, albeit weakly. Two sites have been identified; the in-groove interaction analogous to the pro-survival BH3-only interaction and a site on the opposite molecular face. Interaction of Bax or Bak with activator BH3-only proteins and mitochondrial membranes triggers a series of ill-defined conformational changes initiating their oligomerization and mitochondrial outer membrane permeabilization. Many actions of the mammalian pro-survival Bcl-2 family are mimicked by viruses. By expressing proteins mimicking mammalian pro-survival Bcl-2 family proteins, viruses neutralize death-inducing members of the Bcl-2 family and evade host cell apoptosis during replication. Remarkably, structural elements are preserved in viral Bcl-2 proteins even though there is in many cases little discernible sequence conservation with their mammalian counterparts. Some viral Bcl-2 proteins are dimeric, but they have distinct structures to those observed for mammalian Bcl-2 proteins. Furthermore, viral Bcl-2 proteins modulate innate immune responses regulated by NF-κB through an interface separate from the canonical BH3-binding groove. Our increasing structural understanding of the viral Bcl-2 proteins is leading to new insights in the cellular Bcl-2 network by exploring potential alternate functional modes in the cellular context. We compare the cellular and viral Bcl-2 proteins and discuss how alterations in their structure, sequence and binding specificity lead to differences in behavior, and together with the intrinsic structural plasticity in the Bcl-2 fold enable exquisite control over critical cellular signaling pathways.

Cell Death and Disease (2013) 4, e909; doi:10.1038/cddis.2013.436; published online 7 November 2013

Subject Category: Cancer

Facts

- Heterodimerization and conformational change of cellular Bcl-2 proteins underpins the initiation and modulation of the intrinsic apoptosis.
- Viral Bcl-2 proteins can adopt different homodimeric configurations that allow modulation of the Bcl-2-mediated pathway as well as NF-κB signaling.
- In contrast to cellular pro-survival Bcl-2 proteins, their viral counterparts have lower affinities for their BH3-only binding partners.

Open Questions

- The structural basis of full-length Bak/Bax engagement by pro-survival Bcl-2 proteins has yet to be elucidated.
- Does the Bax/Bak oligomeric pore have a defined architecture in the MOM?
- Is there a role for cellular Bcl-2 proteins in NF-κB signaling, analogous to that observed for viral Bcl-2 proteins?
- What are the key cellular pro-apoptotic Bcl-2 proteins requiring neutralization during viral infection?

Cues that initiate apoptosis, the programmed elimination of cells no longer required, infected or dangerous to an organism may arise from stimuli external to the cell (extrinsic or death receptor-induced apoptosis) or intracellular (intrinsically, mitochondrial or Bcl-2-regulated apoptosis). The result of activation of either mode of apoptosis is the induction of a proteolytic cascade of cysteine aspartyl proteases (caspases) that dismantles cells before their engulfment by phagocytes and destruction in lysosomes. The final fate of cells broken...
down and packaged during apoptosis is to be recycled through phagocytic clearance. Bcl-2 proteins may also have a part in autophagic cellular destruction, though the crosstalk between autophagy and apoptosis is not yet well understood and probably does not have a more general role in programmed cell death. Molecular mechanisms of apoptotic cell death are highly conserved, and the extrinsic and intrinsic pathways intersect at the mitochondria by direct regulation of the Bcl-2 family.

Approximately 20 proteins define the mammalian B-cell lymphoma-2 (Bcl-2) family and regulate intrinsic apoptosis. This family has been traditionally defined by the presence of a set of short conserved sequences (<20 residues) known as Bcl-2 homology (BH) motifs (also commonly called domains though they are not bona fide discreetly folded compact entities, but rather represent conserved sequence motifs within the Bcl-2 protein). Responding to diverse apoptotic stimuli Bak or Bak, the two key Bcl-2 proteins, initiate cell death by mitochondrial outer membrane permeabilization (MOMP). Release of cytochrome c and other factors from the mitochondrial intermembrane space, by an as yet ill-defined mechanism of MOMP, initiates the critical caspase cascade. Bcl-2 proteins either inhibit or activate MOMP and interactions between pro-survival and pro-apoptotic proteins of the family adjudicate cell death. Many of these interactions have been elucidated biochemically and there is now a well-understood pedigree of interactions within this family.

Viruses have evolved multiple strategies to subvert host cell apoptosis in response to cellular infection. Viral interference with apoptotic signaling can occur at multiple control points, such as inhibition of death receptor activation (extrinsic apoptosis), direct caspase inhibition, or by mimicking pro-survival Bcl-2 family action (intrinsic apoptosis). Figure 1). Here we discuss recently determined structures in the mammalian Bcl-2 family and compare mammalian and viral Bcl-2 proteins and viral Bcl-2 mimicry. Not all features of mammalian Bcl-2 structure and function need be retained by viral Bcl-2 proteins, as the essential goal is to maintain host cell viability while permitting viral replication to proceed in the absence of apoptosis. Indeed, there are remarkable similarities between some viral Bcl-2 proteins and their mammalian counterparts. There are also perplexing differences between the dimers observed in the viral Bcl-2 family from those of their mammalian equivalents.

BH Motifs—a Distinguishing Feature of the Bcl-2 Family?

Sequence analysis of the Bcl-2 family identified conserved regions, later named as BH motifs. BH1 and BH2 motifs were initially identified in Bcl-2 and the BH3 motif in Bak with a fourth poorly conserved BH motif, BH4, proposed in the N-terminal region of Bcl-2 and the closely related Bcl-xL and Bcl-w. Searches for BH motifs in numerous genomes led to the identification of many Bcl-2 family members and potential, though experimentally unproven, members. The mammalian Bcl-2 family can be classified into the multi-motif Bcl-2 proteins that bear multiple BH motifs with pro-survival (Bcl-2, Bcl-xL, Bcl-w, Mcl-1, A1, Bcl-B) and pro-apoptotic (Bax, Bak) activity. The pro-apoptotic BH3-only proteins (Bim, Bad, Bmf, tBid, Noxa, Bik, Puma, Hrk) bear only a single motif, a BH3.

The presence of a BH3 motif defines all pro-apoptotic Bcl-2 proteins, although it may or may not be present in pro-survival proteins. Analysis of BH3-sequence proteins delineates a motif that bears four hydrophobic residues spanning ~2 heptads. One of these residues is an almost invariant leucine, separated by three residues from a Xaa-Asp dyad, where Xaa is Gly, Ala or Ser, and is a feature that distinguishes BH3 motifs. The BH4 motif appears to be less defining, early classifications suggested that this motif was only present in certain pro-survival proteins but not in the pro-apoptotic members. However, more recently, the BH4 was re-defined as a conserved structure-sequence motif, found in all folded Bcl-2 proteins, where X is any amino acid, φ1, φ2 and φ4 are aliphatic residues and φ3 an aromatic residue. Being present on both pro-survival, including viral Bcl-2 homologs, and pro-apoptotic Bcl-2 proteins, it cannot distinguish them and as an isolated parameter does not identify Bcl-2 proteins. Not all BH motifs are present within a given Bcl-2 protein and several viral Bcl-2 fold proteins lack obvious BH motifs (e.g., M11L, N1L, F1L) altogether indicating BH motifs are not an essential feature for Bcl-2-fold proteins. As structures of more distantly related Bcl-2 family proteins emerge, our understanding of the sequence and structural diversity permitted in the Bcl-2 family will be refined.

An α-Helical Fold Provides a Binding Site and Defines Multi-Motif Bcl-2 Proteins

Structural studies have defined the Bcl-2 family interactions at atomic resolution. The structures of the multi-motif
proteins are highly homologous α-helical bundles. Figure 2 shows the basic fold, as exemplified by Bcl-xL, shared by both the pro-apoptotic and anti-apoptotic multi-motif proteins. Structures of BH3 complexes of the pro-survival proteins show that the BH3 ligand binds as an amphipathic helix in a hydrophobic groove formed from residues in the BH1, BH2 and BH3 motifs (or their structural equivalents where the BH sequence motif is absent) of the pro-survival protein.35,37 The majority of intermolecular contact residues reside in a 13-residue segment of the BH3 motif, including the 4 hydrophobic residues,25 and both molecules contribute almost equally to the binding surface (≈1000 Å² buried surface each). Although the topology of the pro-survival proteins is nearly identical, each protein has a different specificity for BH3 targets (summarized in Table 1).

The distinction between the BH3-only and the multi-motif proteins is not only in their biological activity and sequences but also in their structures. The BH3-only proteins are intrinsically disordered proteins (IDPs)38,39 or become disordered after processing.40 In contrast, the multi-motif proteins are folded entities, but bear intrinsically disordered regions (IDRs).39 The sequence and structural differences between the multi-motif and BH3-only proteins lead to the conclusion that they are separate phylogenetic classes.41 Structures of full-length Bax42 and Bid43,44 have been determined, but generally structural investigations have focused on ‘transmembrane’ (TM)-region truncated proteins due to their better expression and solubility properties. Bid, the only BH3-only protein with a well-defined structure, has a hydrophobic core structure similar to the Bcl-2 fold.43,44 Activation of Bid by proteolytic cleavage in the α1-α2 loop by multiple proteases, including caspase-8, Granzyme B, calpains and cathepsins,45 to form truncated Bid (tBid) containing the BH3 region leaves it stably folded.44 Like Bak and Bax, the Bid BH3 motif is released for binding in the presence of a membrane environment.46 In Bax, the C-terminal α-helix occupies a similar position to the BH3-only binding site on pro-survival proteins and blocks the groove. Bcl-w47,48 has a similar structure to Bax and biochemical and kinetic evidence is consistent with the C-terminal residues of other Bcl-2 proteins, such as Bcl-xL and Mcl-1, also occupying the groove.47,49 These findings indicate that the binding groove is hindered or occupied in the multi-motif proteins.

Two distinct roles are performed by BH3-motif residues: one as a ligand, the other as part of the receptor site groove, in each case different atomic interactions are observed for the BH3. This BH3-in-groove interaction, where the groove is formed by helices α2-α5 (Figure 2) and occupied by the BH3 motif is a key mechanistic aspect of Bcl-2-regulated apoptosis and one that viral Bcl-2 proteins mimic to prevent cell death initiation.

Bcl-2 Proteins BH3-Ligand Specificity

Investigation of the affinity and specificity of interactions between Bcl-2 proteins9–11 (Table 1) led to proposals for the mechanisms of apoptosis initiation. Two main mechanisms have been hypothesized. The ‘indirect activation’

Figure 2 Structural comparison of human and viral Bcl-2 proteins and their complexes with Bak BH3 peptides. (a) Human Bcl-xL (pdb accession code: 1MAZ) with the BH-motifs colored BH1 purple; BH2, red; BH3, green. (b) Epstein-Barr virus BHRF1 (1Q59). (c) Myxoma virus M11L (2BJX). (d) Vaccinia virus F1L (2VTY). (e) Bcl-xL:Bak (1BXL). (f) BHRF1:Bak (2XPX). (g) M11L:Bak (2BYF). (h) Vaccinia virus N1L (2UXE). The Bak BH3 peptide is shown in orange. Structures were aligned on Bcl-xL in a. Protomers of the F1L and N1L dimers are depicted in different colors.

or ‘displacement’ model poses that the BH3-only proteins release Bax and Bak from regulation by the pro-survival proteins to initiate MOMP. Whereas the ‘direct activation’ mechanism proposes two roles for BH3-only proteins: they may act either as ‘sensitizers’ (Bad, Bmf, Noxa, Hrk, Bik) that interact only with pro-survival proteins or as ‘activators’ (Bim, Puma, Bid) that interact with pro-survival Bcl-2 proteins and with Bax and Bak⁵⁰ (Figure 1). The sensitizer BH3-only proteins sequester the pro-survival proteins preventing interaction with Bax or Bak, leaving them to interact with the activator BH3-only proteins to induce the conformational changes necessary for MOMP. Composite mechanisms have been proposed and the evidence recently reviewed.⁵¹ Bim is the universal pro-survival Bcl-2 family antagonist,³⁷ whereas other BH3-only family members are more selective and the combination of Mcl-1 and Bcl-xL potentially inhibits all BH3-only initiated intrinsic apoptotic pathways.³⁷

Table 1 Summary of BH3 motif affinities for Bcl-2 proteins

Pro-death	Pro-survival
Bad	>2000
Bid	341±16
Bfk	>2000
Bim	26±4
Bmf	67±6
Hrk	63±6
Noxa	>2000
Puma	65±1
Bak	46±3
Bax	32±5
aIndicates affinities determined by isothermal calorimetry	
bIndicates affinities determined by florescence polarization	

Things Change at the Membrane

The least well-understood aspect of Bcl-2 family protein-mediated apoptosis is their interactions at intracellular (mitochondrial, endoplasmic reticulum, golgi and nuclear envelope) membrane surfaces. Many Bcl-2 proteins bear a hydrophobic C-terminal TM sequence, frequently assumed to be helical, for membrane anchorage. Some are constitutively membrane bound (Bak, Bok), whereas others (Bax, Bcl-xL, Bcl-w, Mcl-1, A1) are partitioned between the membrane and the cytosol and become integrated subsequent to apoptotic membrane insertion transition. Although biochemical evidence shows the BH3 motif of Bax (or Bak) is necessary for direct bind Bax and Bak⁵⁷–⁶¹ and in the case of Bax results in membrane integration. Some viral Bcl-2 homologs also bear a hydrophobic TM region, suggesting that they too act at the MOM.⁶²,⁶³ How pro-apoptotic Bax and Bak affect MOM remains uncertain. A ‘hit and run mechanism’⁵⁹,⁶⁴,⁶⁵ has been proposed based on a weak interaction with a BH3-only protein inducing a poorly defined and structurally uncharacterized membrane insertion transition. Although biochemical evidence suggests certain BH3-only proteins directly bind Bax and Bak⁵⁷–⁶¹ and in the case of Bax results in membrane integration. Some viral Bcl-2 homologs also bear a hydrophobic TM region, suggesting that they too act at the MOM.⁶²,⁶³ How pro-apoptotic Bax and Bak affect MOM remains uncertain. A ‘hit and run mechanism’⁵⁹,⁶⁴,⁶⁵ has been proposed based on a weak interaction with a BH3-only protein inducing a poorly defined and structurally uncharacterized membrane insertion transition. Although biochemical evidence shows the BH3 motif of Bax (or Bak) is necessary for interaction with pro-survival proteins, currently there is no high-resolution structural data available on any complexes of full-length Bax/Bak: pro-survival Bcl-2 proteins. Further structures will be required to answer this question.

Bcl-2 Proteins Dimerize

Heterodimerization of Bak and Bax⁶⁶ with pro-survival proteins requires a conformational change in one or both partners.⁶⁷ as the key residues in the interacting BH3 motifs are buried in monomeric Bax and Bak.⁴²,⁶⁸ Early in the exploration of the Bcl-2 family, it was noted that Bax:Bcl-2 dimers form in the presence of non-ionic surfactants (detergents)⁶⁹ and the affinity was recently measured in the presence of the surfactant Brij-35 (Kd ~ 36 nM).⁷⁰ Given that the core of the Bcl-2 fold largely comprises of hydrophobic interactions, it is not surprising that surfactants have an effect on the structure. Bcl-xL in dodecylphosphocholine micelles forms a molten globule retaining secondary structure but not a tertiary fold.⁷¹ Conformational change of the Bcl-2 proteins in the membrane is a major feature of their action,⁷² and changes have been observed for Bax and Bak through the use of antibodies specific for epitopes that are not exposed before membrane interaction.⁷³,⁷⁴

In addition to heterodimerization, both pro-survival and pro-apoptotic proteins can homodimerize. Under the influence of heat, organic solvents, pH or surfactants, Bcl-xL dimerizes⁷⁵–⁷⁸ to form an extended structure capable of binding BH3 peptides⁷⁵,⁷⁸ (Figure 3a). An ±1 helix swapped dimer of Bcl-xL retaining an ability to bind BH3 ligands has also been observed (Figure 3b).⁷⁵ Higher order oligomers of Bcl-xL can available. Other evidence suggests certain BH3-only proteins directly bind Bax and Bak⁵⁷–⁶¹ and in the case of Bax results in membrane integration. Some viral Bcl-2 homologs also bear a hydrophobic TM region, suggesting that they too act at the MOM.⁶²,⁶³ How pro-apoptotic Bax and Bak affect MOM remains uncertain. A ‘hit and run mechanism’⁵⁹,⁶⁴,⁶⁵ has been proposed based on a weak interaction with a BH3-only protein inducing a poorly defined and structurally uncharacterized membrane insertion transition. Although biochemical evidence shows the BH3 motif of Bax (or Bak) is necessary for interaction with pro-survival proteins, currently there is no high-resolution structural data available on any complexes of full-length Bax/Bak: pro-survival Bcl-2 proteins. Further structures will be required to answer this question.

Bcl-2 Proteins Dimerize

Heterodimerization of Bak and Bax⁶⁶ with pro-survival proteins requires a conformational change in one or both partners.⁶⁷ as the key residues in the interacting BH3 motifs are buried in monomeric Bax and Bak.⁴²,⁶⁸ Early in the exploration of the Bcl-2 family, it was noted that Bax:Bcl-2 dimers form in the presence of non-ionic surfactants (detergents)⁶⁹ and the affinity was recently measured in the presence of the surfactant Brij-35 (Kd ~ 36 nM).⁷⁰ Given that the core of the Bcl-2 fold largely comprises of hydrophobic interactions, it is not surprising that surfactants have an effect on the structure. Bcl-xL in dodecylphosphocholine micelles forms a molten globule retaining secondary structure but not a tertiary fold.⁷¹ Conformational change of the Bcl-2 proteins in the membrane is a major feature of their action,⁷² and changes have been observed for Bax and Bak through the use of antibodies specific for epitopes that are not exposed before membrane interaction.⁷³,⁷⁴

In addition to heterodimerization, both pro-survival and pro-apoptotic proteins can homodimerize. Under the influence of heat, organic solvents, pH or surfactants, Bcl-xL dimerizes⁷⁵–⁷⁸ to form an extended structure capable of binding BH3 peptides⁷⁵,⁷⁸ (Figure 3a). An ±1 helix swapped dimer of Bcl-xL retaining an ability to bind BH3 ligands has also been observed (Figure 3b).⁷⁵ Higher order oligomers of Bcl-xL can
be formed and there appear to be differences between dimers formed using surfactant and pH, the acid-formed dimers bind BH3 peptides, whereas surfactant-induced dimer did not, though structural details are lacking. A TM-truncated Bcl-w dimerizes on crystallization, forming a structurally distinct dimer to that of surfactant-induced Bcl-xL with reduced ability to bind BH3 peptides. Surfactant treatment of Bax followed by dilution or removal of surfactants gives a surfactant-free dimer with a similar structure to surfactant-induced Bcl-xL dimer, where the central α5 and α6 helices form a single contiguous helix. A truncated GFP-tagged Bax retaining only the central α2-α5 region forms a dimer with a different structure in the absence of surfactant. Bok has also been reported to dimerize before MOMP. The functional role, if any, of Bcl-2 protein homodimerization remains unclear, and kinetically pore formation appears to be dependent on monomeric Bax.

Although the multi-motif Bcl-2 monomers are topologically near-identical, the dimers are not, having different architecture depending on the protein and how dimerization was induced (Figure 3). The interaction of proteins with crystallization co-solvents or surfactants is complex and surfactant-generated forms may be artifacts of their preparation. Co-solvents such as methylpentanediol or isopropanol employed in Bax and Bcl-xL dimer crystalization, respectively, may contribute to dimer formation. In contrast to the mammalian counterparts, some viral Bcl-2 proteins appear to be constitutive dimers and have architectures structurally unique to those observed for mammalian proteins (Figures 2 and 3).

Alternate Functions for Bcl-2 Proteins?

Although the main protagonists of the Bcl-2 family now have well-understood roles in apoptosis signaling, even if the exact details of MOMP are not understood, others are less well characterized. This includes Bcl-2 proteins such as A1, Bcl-B, and Bok. Structurally Boo, the mouse homolog of human Bcl-B (Bcl-2L10), has a Bcl-2 fold but only binds the known BH3-only proteins with very weak affinity, suggesting that the human and mouse homologs have diverged functionally. The main difference between Bcl-B and other multi-motif proteins is the presence of an unstructured loop between helices α5 and α6 shown to be important for regulating its protein levels in cells through ubiquitylation and proteosomal degradation.
Bcl-2 proteins may modulate biochemical pathways other than mitochondria-regulated apoptosis. Bcl-xL, Bcl-2, and Bax interact weakly with the tumor repressor and transcription factor p53. NMR studies have shown weak specific interaction between p53 and Bcl-xL, with a Kd of 370 nM, that is released on Puma binding Bcl-xL in the groove, providing a potential allosteric mechanism for p53 activation of apoptosis. Bcl-2 family proteins may be involved in regulating mitochondrial remodeling through fusion and fission.

It has been proposed that Bcl-xL regulates autophagy through interaction with Beclin-1 in a BH3-like interaction (Kd = 2 μM). Other potential pathways regulated include energy metabolism and cell cycle progression, but details are yet to emerge on interactions and structures. At present, the molecular details of these processes are not firmly established, with many likely to be indirect effects.

Viral Bcl-2 Proteins: Keeping Cells Alive when Hosting a Pathogen

Molecular mimicry through expression of sequence, structural and functional orthologs of Bcl-2 proteins is an important survival strategy of viruses. The significance of successful subversion of host cell apoptosis has been demonstrated by construction of deletion mutants for several viruses. Adenovirus, murine cytomegalovirus, Epstein-Barr virus (EBV), γ-herpesvirus, myxomavirus, and vaccinia virus trigger apoptosis during infection in the absence of functional viral Bcl-2 proteins. By retaining key structural, but not necessarily sequence features, viral Bcl-2 homologs can inhibit both BH3-only and Bax-like death signals. Readily identifiable viral Bcl-2-like proteins include those found in adenovirus (vBcl-2), Kaposi sarcoma-associated herpesvirus (KS-Bcl-2), Epstein-Barr virus (BHRF1), murine γ-herpesvirus, herpesvirus saimiri ORF16, and the recently identified FPV039 from Fowlpox virus. N1L, CNPV058 in canarypox virus, and vNRF1, a Bcl-B homolog from avian γ-herpesvirus, however, in general, the sequence divergence of viral Bcl-2 proteins from recognized Bcl-2 proteins has made them difficult to identify by sequence comparison alone. Structures of these viral Bcl-2 molecules show they are highly similar to mammalian family members. KS-Bcl-2 and BHRF1 adopt Bcl-2 folds comprising 8 alpha helices and have a TM region indicating that membrane interaction and perhaps interactions in the membrane are necessary for their activity.

More recently, a number of viral Bcl-2 members were identified in pox viruses that, while displaying virtually no sequence identity with mammalian Bcl-2 members adopt a Bcl-2 fold. These include myxoma virus M11L and vaccinia virus F1L and N1L. These three proteins comprise only seven alpha helices, with helix 7 (numbering based on the structure of Bcl-xL: Figure 2) being absent. Solving the structures of N1L and F1L demonstrated the considerable structural diversity to the Bcl-2 fold. N1L and F1L adopt dimeric configurations; with F1L forming a domain-swapped dimer mediated by an exchange of α1 helices between two F1L protomers. Intriguingly, the topology of the F1L dimer is reminiscent of the Bcl-xL:Beclin-1 BH3 domain-swapped dimer observed by Oberstein et al., where truncating the α1-α2 loop results in helix α1 no longer being accommodated within the Bcl-2 fold but located in a neighboring protomer. In contrast, N1L forms a dimer by association of two independently folded N1L chains. Lacking a TM region, N1L has a cytosolic location and no mammalian Bcl-2 protein has been shown to associate in a similar configuration (Figures 2 and 3). Biochemical interaction studies revealed significant variations in the ligand-binding profile of vBcl-2 proteins with respect to the range and nature of their ligands as well as their affinities. Vaccinia virus F1L has been shown to engage Bim, Bak, and Bax only and with moderate affinities. In contrast, SPPV14 interacts with several BH3-only proteins (Bim, BID, Bmf, Hrk, and Puma) as well as Bak and Bax at considerably higher affinities (Table 1). In the case of vaccinia virus, expression levels of F1L are high and driven by a strong early/late latency promoter. All vBcl-2 are single genes without splice sites and there is some level of conservation of the location within the genome in the pox viruses, indicating common progenitors. Another contrast with the mammalian Bcl-2 family is that no inhibitors of Mcl-1-specific binders (Noxa) have been found. Immunoprecipitation analysis has indicated N1L associates with Bad and ORFV125 binds Noxa, but no affinities have been determined with purified proteins. Expression of Bcl-xL and Mcl-1 potentially neutralizes all pro-apoptotic proteins. Viral blocking of the Mcl-1-specific inhibitor Noxa does not appear to be required to maintain host cell viability and Mcl-1 may not be a significant survival signal in the cell types infected.

Recently a structure of the inhibitory peptide from cytomegalovirus Bcl-2 homolog, viral mitochondrial localized inhibitor of apoptosis (vMIA), in complex with Bax demonstrated a unique binding location distinct from the canonical BH3-biding site. Binding was mapped to inter-helical loop regions α1-α2, α3-α4, α5-α6 with residues contributed from α9 and the C-terminus (equivalent to the lowermost loops in Bcl-xL of Figure 2). Electrostatic interactions have a significant role in the interaction and the affinity was measured at Kd of 22 nM. In contrast to other Bcl-2 members that inhibit recruitment of Bax to mitochondria, vMIA recruits Bax to mitochondria independent of the Bax TM helix and does not rely on the α1 site.

Structural Plasticity of vBcl-2 Proteins Enables Additional Functionality

Although a number of apoptosis-modulating viral Bcl-2 proteins target endogenous Bcl-2 family members, several recently determined structures point to additional biological activities that can be regulated by the Bcl-2 fold. Vaccinia virus N1L is able to subvert Bcl-2-mediated host signaling. Further evidence suggests an additional role for N1L as a modulator of NF-κB signaling, an important mediator of the host innate immune response. N1L is thus endowed with dual functionality. To date, no other viral Bcl-2 protein has been shown to harbor both anti-apoptotic and NF-κB modulatory activity. However, the ability to modulate NF-κB is not limited to N1L, two additional vaccinia virus factors AS2 and B14 have also been shown to adopt Bcl-2 folds and act on the NF-κB pathway, but not the apoptotic pathway. Similar to...
N1L, both A52 and B14 do not harbor a transmembrane region and appear to be located in the cytosol.121 For the purpose of NF-κB modulation, the loop-connecting helices 4 and 5 appears to be the site of activity, at least in the case of A52120 and the hydrophobic BH3-binding groove that mediates Bcl-2 family member interactions is in a closed conformation and is not involved in NF-κB signaling. Mutagenesis data supports the alternative binding mode with the apoptotic and NF-κB functions on independent surfaces in N1L.122

Additional activities, other than modulation of NF-κB signaling, have been attributed to viral Bcl-2 proteins. Work on vaccinia virus K7 revealed a Bcl-2-like fold that was utilized to engage RNA helicases.123 The region on K7 that mediates helicase interactions was mapped using NMR to a shallow groove along the α1 helix, a region that corresponds to the N1L dimer interface. N1L dimerization was shown to be critical for inhibition of NF-κB signaling via a surface patch that covers the dimer interface and comprises the α1 and α6 helices.122 Non-groove-mediated functions of Bcl-2-like proteins are not limited to viral members of the family and structural evidence has emerged that Bax may also harbor an alternative interaction site for BH3-only proteins.57 Again, a surface region involving helices α1 and α6 was identified as the alternative site, suggesting that this region of Bcl-2 proteins is available for functional interactions in both viral and mammalian family members. However, the structural data for the α1/α6 interface is still rather weak for Bax.

Comparison of Cellular with Viral Bcl-2 Family Members

Although cellular and viral Bcl-2 proteins adopt an identical fold, a number of differences hint at the different purposes for which these molecules evolved. Mammalian Bcl-2 members typically comprise eight alpha helices, a feature that is also observed for readily identifiable vBcl-2 proteins, such as KsBcl-2106 and BHRF1.107,108 However, more distant vBcl-2 proteins, such as M11L,31 F1L27 and HV68-vBcl-2,109 only contain seven alpha helices leading to a reduction in chain length required to form the Bcl-2 fold. The sequences of mammalian multi-motif Bcl-2 proteins vary in sequence length and are generally long due to the insertion of residues in the inter-helical loops, whereas their viral counterparts are typically shorter adopting a more economical compact fold lacking long inter-helical loops and in the case of the more distantly related vBcl-2 homologs loss of α7. N1L encodes the entire Bcl-2 fold within 115 residues,29,30 making it the member with the shortest primary sequence of the group, this contrasts with human Bcl-α\textsubscript{L} that is 233 residues in length with a 50-residue α1-α2 IDR loop.36 An exception is provided by vaccinia virus F1L, which is encoded by 226 residues, including a ~60-residue N-terminal extension. The N-terminus of F1L has recently been identified to harbor additional biological activities, notably a caspases-9 inhibitory function124,125 as well as an unexpected inflammasome regulatory role.126 This would establish F1L as the first vBcl-2 to modulate inflammasome activity directly by binding NLRP1/ NALP1, in a manner reminiscent of Bcl-α\textsubscript{L},127 pointing toward an additional level of functional mimicry.

Viral Bcl-2 Proteins Interact with BH3 Proteins with Relatively Low Affinity

When comparing affinities of cellular Bcl-2 proteins for their ligands with their viral homologs, a striking feature is the higher affinity of most cellular Bcl-2 proteins compared with viral Bcl-2 proteins. Furthermore, cellular pro-survival Bcl-2 proteins tend to engage a much wider range of pro-apoptotic proteins9 than the viral counterparts. Whereas Bcl-xL shows high affinity for all pro-apoptotic Bcl-2 members except Noxa,9 vaccinia virus F1L only binds Bim, Bak and Bax,27 with affinities that are at least 20-fold lower compared with those of Bcl-xL. Additionally, two of the most promiscuous BH3-only proteins Bid and Puma, are only engaged by a limited number of viral Bcl-2 proteins (Table 1). It is conceivable that the more selective ligand-binding profiles of a viral Bcl-2 protein reflect the circumstance that only specific pro-apoptotic Bcl-2 proteins require targeting during viral infection. The smaller number of ligands identified for certain vBcl-2 proteins might also be reflected in the changes within the canonical binding groove.

Although the core structural features of ligand engagement by viral Bcl-2 members are conserved with their mammalian counterparts, some intriguing differences exist. The four key hydrophobic interactions with BH3 motifs are retained in all vBcl-2:BH3 motif structures, whereas the conspicuous salt bridge formed by an aspartic acid from the BH3 motif with an arginine residue from the accepting Bcl-2 protein is not observed in the M11L:BakBH3 complex. This suggests that the salt bridge may not be a defining feature for vBcl-2–BH3 interactions as it seems for their cellular counterparts. M11L exhibits only minimal movement in the binding groove when binding a BH3 motif ligand,27 and displays high-affinity binding to a number of point mutants of Bak BH3 motif. In contrast, Bcl-xL\textsubscript{L} undergoes substantial changes in the binding groove (in the order of 9 Å) on BH3 motif binding,35,128 and appears to be unable to engage Bak BH3 point mutants.31 This suggests that M11L engagement of BH3 ligands is more robust, and not subject to subtle control mechanisms as required for the modulation of apoptosis signaling by endogenous cellular Bcl-2 proteins. The reduced binding groove movement and robustness of ligand binding in the case of M11L could be a consequence of high-level optimization of M11L to engage only a small subset of pro-apoptotic Bcl-2 members.

Concluding Remarks

Bcl-2 proteins couple apoptotic stimuli with mitochondrial membrane permeabilization to initiate the caspase cascade. One of the most striking observations is that of the sequence and structural similarity between the multi-motif pro-apoptotic Bax and Bak and their pro-survival counterparts. This might imply that the mode of action of pro-survival and pro-apoptotic proteins are similar and that specific binding partners and interactions define their activity. Our understanding of this family is evolving, but current research is presenting a more unified mechanism with the canonical BH3-binding groove being the target in both pro-survival and pro-apoptotic proteins with high-affinity BH3 interactions in the former and moderated to low-affinity interaction observed for Bax and Bak.59-61
The thermodynamics of these processes remain poorly elucidated and converting the in vitro findings to a more physiological setting is required. Many questions also remain as to how Bax and Bak are inhibited by pro-survival proteins from the mammalian and viral Bcl-2 family and the molecular details of their mode of action at intracellular membrane surfaces are currently not available.

The role of viral Bcl-2 proteins in apoptosis is probably more restricted than the mammalian Bcl-2 family, for instance no viral homolog of Mcl-1 has yet been found, as they only have to keep host cell apoptosis in abeyance during replication. Conformational change in viral Bcl-2 proteins is less important for their function with their primary requirement being optimized binding of their main targets, the initiators of apoptosis. What messages can we take from Bcl-2 mimicry? In the most parsimonious case, viral Bcl-2 proteins could simply antagonize the pan-pro-survival antagonist Bim preventing activation of Bax or Bak. The absence of observed specificity for other BH3-only proteins, particularly Bid/tBid and Puma, may suggest that subtle differences exist that govern activation of Bim expression compared with Bid and Puma. However, considering the absence of definitive expression studies that identify differential expression of potent BH3-only proteins during viral infections this remains speculative.

Determination of the structures and binding properties of Bcl-2 family proteins has been a fruitful tool in delineating biological roles and the role of individual Bcl-2 proteins and their viral counterparts. It has allowed predictions of possible functional importance of the members of the Bcl-2 family in regulating cell fate and a detailed molecular understanding is being put to use in designing inhibitors for members of this family to trigger tumor cell death by inactivation of pro-survival proteins. 129,130 Development of antagonists against viral Bcl-2 proteins may prove a viable therapeutic approach to treating diseases etiologically linked to viral infection. For example, EBV expresses the pro-survival Bcl-2 homolog BHRF1, and chronic EBV infection is strongly associated with development of Burkitt's lymphoma. Constitutive BHRF1 expression 131 has a prominent role in B-cell transformation 102 and may be contributing to virus-associated lymphomagenesis, in addition to being associated with potent resistance to chemotherapy in mouse models of Burkitt's lymphoma. 107 Viral Bcl-2 proteins only mimic select functions of mammalian proteins, thus presenting the tantalizing prospect of easier therapeutic aminability by limiting the number of potential off-target effects. Given the recent advances in designing BH3 mimetics against mammalian pro-survival Bcl-2 proteins to activate apoptosis for cancer therapies, 129 such structure-based approaches against viral Bcl-2 proteins may well be feasible, exploiting the fact that the Bcl-2 fold is put to work in a similar context but with a rather different purpose.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgements. Our research is supported by the Cancer Council Victoria (grant 575549, MGH), National Health and Medical Research Council of Australia (CDA fellowship 637372, MK and Project (APP1007918) to MK).
Bcl-2 mimicry
M Kvasnakul and MG Hinds

36. Wasiienko ST, Stewart TL, Meyers AF, Barry M. Vaccinia virus encodes a previously uncharacterized mitochondrial-associated inhibitor of apoptosis. Proc Natl Acad Sci USA 2003; 100: 14345–14350.

37. Wei MC, Lindsten T, Mootha YK, Weiler S, Gross A, Ashiya M et al. BID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 2000; 14: 2060–2071.

38. Dewson G, Kluck RM. Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. J Cell Sci 2009; 122: 2801–2808.

39. Sedák TW, Ohiwa ZH, Yang E, Wang K, Bishe LH, Thompson CB et al. Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc Natl Acad Sci USA 1995; 92: 7834–7838.

40. Liu QA, Gehring K. Heterodimerization of BAK and MCL-1 activated by detergent micelles. J Biol Chem 2010; 285: 41202–41210.

41. Moldoveanu T, Liu Q, Toddi A, Watson M, Sh ore G, Gehring K. The X-ray structure of a BAK homodimer reveals an inhibitory zinc binding site. Mol Cell 2006; 24: 677–688.

42. Hsu YT, Youle RJ. Nonionic detergents induce dimerization among members of the Bcl-2 family. J Biol Chem 1997; 272: 13829–13834.

43. Wallgren M, Lidman M, Pedersen A, Braastrom K, Karlsson BG, Groener G. Recognition of the anti-apoptotic Bcl-2 protein into liposomes and biochemical evidence for its detergent-driven association with the pro-apoptotic bax protein. PLoS One 2013; 8: e61452.

44. Losonczi JA, Olejniczak ET, Biet SF, Harlan JE, Mack J, Fesik SW. NMR studies of the anti-apoptotic Bcl-X-L in micelles. Biochemistry 2000; 39: 11024–11033.

45. Bogner C, Leber B, Andrews DW. Apoptosis: embedded in membranes. Curr Opin Cell Biol 2010; 22: 845–851.

46. Hsu YT, Youle RJ. Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J Biol Chem 1998; 273: 10777–10783.

47. Griffiths GJ, Dubrez L, Morgan CP, Jones NA, Whitehouse J, Corfe BM et al. Cell damage-induced conformational changes of the pro-apoptotic Bax protein in vivo precede the onset of apoptosis. J Cell Biol 1999; 144: 903–914.

48. O'Neill JW, Manion MK, Maguire B, Hockenberry DM. BCL-XL dimerization by three-dimensional domain swapping. J Mol Biol 2008; 386: 367–381.

49. Densov A, Ayre T, Prasaj J, Kozlov G, Gehring K. Human dimerization of BCL-X-L through alpha-helix swapping. Biochemistry 2007; 46: 734–740.

50. Feng Y, Lin Z, Shen X, Chen K, Jiang H, Liu D. Bcl-XL forms two distinct homodimers on non-ionic detergents: implications in the dimerization of Bcl-2 family proteins. J Biol Chem 2008; 283: 2423–2425.

51. Folls AV, Chupik JE, Fischer JC, Yun MK, Grace CR, Nourse A et al. PUMA binding induces partial unfolding within BCL-X-L to disrupt p53 binding and promote apoptosis. Nat Chem Biol 2013; 9: 163–168.

52. Oberstein A, Jeffrey PO, Shi Y. Crystal structure of the Bcl-xL-Bcl-2 peptide complex: Bcl-2 mimics the BH3-only proapoptotic BAK. J Biol Chem 2001; 276: 13123–13132.

53. Lee EF, Dewson G, Smith BJ, Evangelista M, Pettikiriarachchi A, Dogovski C et al. NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Biochemistry 2003; 42: 7834–7843.

54. Griffiths GJ, Leber B, Andrews DW. Apoptosis: embedded in membranes. Curr Opin Cell Biol 2010; 22: 845–851.

55. O'Neill JW, Manion MK, Maguire B, Hockenberry DM. BCL-XL dimerization by three-dimensional domain swapping. J Mol Biol 2008; 386: 367–381.

56. Densov A, Ayre T, Prasaj J, Kozlov G, Gehring K. Human dimerization of BCL-X-L through alpha-helix swapping. Biochemistry 2007; 46: 734–740.

57. Feng Y, Lin Z, Shen X, Chen K, Jiang H, Liu D. Bcl-XL forms two distinct homodimers on non-ionic detergents: implications in the dimerization of Bcl-2 family proteins. J Biol Chem 2008; 283: 2423–2425.

58. Folls AV, Chupik JE, Fischer JC, Yun MK, Grace CR, Nourse A et al. PUMA binding induces partial unfolding within BCL-X-L to disrupt p53 binding and promote apoptosis. Nat Chem Biol 2013; 9: 163–168.

59. Oberstein A, Jeffrey PO, Shi Y. Crystal structure of the Bcl-xL-Bcl-2 peptide complex: Bcl-2 mimics the BH3-only proapoptotic BAK. J Biol Chem 2001; 276: 13123–13132.

60. Lee EF, Dewson G, Smith BJ, Evangelista M, Pettikiriarachchi A, Dogovski C et al. NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Biochemistry 2003; 42: 7834–7843.
94. Aunet A, Martin SJ. Emerging role for members of the Bcl-2 family in mitochondrial morphogenesis. Mol Cell 2009; 36: 355–363.
95. Pericaiaville RM, Stewart DP, Koss B, Lynch J, Milasta S, Batimna M et al. Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fission to pro-oxidation. Nat Cell Biol 2012; 14: 579–583.
96. Michels J, Kopp O, Serronova L, Lisea D, Castedo M, Kroemer G et al. Functions of BCL-X L at the interface between cell death and metabolism. Int J Cell Biol 2013; 2013: 705924.
97. Cuconati A, White E. Viral homology of BCL-2: role of apoptosis in the regulation of virus infection. Genes Dev 2002; 16: 2465–24678.
98. Pilder S, Logan J, Shenk T. Deletion of the gene encoding the adenovirus 5 early region results in cellular polypeptide leads to degradation of viral and host cell DNA. J Virol 1984; 52: 664–671.
99. Jurak I, Schumacher U, Simic H, Voigt S, Brune W. Murine cytomegalovirus m35.8 protein inhibits Bax-mediated cell death. J Virol 2008; 82: 4812–4822.
100. Brune W, Nevels M, Shenk T. Murine cytomegalovirus m41 open reading frame encodes a Golgi-localized antiapoptotic protein. J Virol 2003; 77: 11633–11643.
101. Flemming P, Kvansakul M, Voigt V, Kluck RM, Huang DC et al. Functions of a Bcl-2 homolog from Kaposi sarcoma virus. Proc Natl Acad Sci USA 2001; 98: 11032–11045.
102. Altman M, Hammerschmidt W. Epstein-Barr virus provides a new paradigm: a requirement for the immediate activation of apoptosis. PLoS bio 2005; 3: e404.
103. Gangappa S, van Dyk LF, Jewett TJ, Speck SH. Viral HHV, Identification of the in vivo role of a viral bcl-2. J Exp Med 2002; 195: 931–940.
104. Macen JL, Graham KA, Lee SF, Schreiber M, Boshkov LK, McFadden G. Expression of the myxoma virus tumor necrosis factor receptor homologue and M11L genes is required to prevent virus-induced apoptosis in infected rabbit T lymphocytes. Virology 1996; 218: 232–237.
105. Banadyga L, Sabbatini P, Debbas M, Wold WS, Kucher DL, Gooding LR. The 19-kilodalton adenovirus E1B transforming protein inhibits programmed cell death and prevents cytotoxicity by tumor necrosis factor alpha. Mol Cell Biol 1992; 12: 2570–2580.
106. Huang Q, Petros AM, Virgin HW, Fesik SW, Olejniczak ET. Structural characterization of the murine cytomegalovirus m41 open reading frame. J Virol 2003; 77: 11633–11643.
107. Kvansakul M, Wei AH, Fletcher JI, Hawkins CJ, Riglar DT, Lee EF, Fairlie WD et al. Vaccinia virus protein A52 and B14 share a B-cell-like fold but have evolved to inhibit NF-kappaB rather than apoptosis. PLoS Pathog 2008; 4: e1000128.
108. Chen RA, Jacobs N, Smith GL. Vaccinia virus strain Western Reserve protein B14 is an intracellular virulence factor. J Gen Virol 2006; 87: 1451–1458.
109. Loh J, Huang Q, Petros AM, Nettesheim D, van Dyk LF, Labrada L et al. vaccinia virus proteins AS2 and B14 share a B-cell-like fold but have evolved to inhibit NF-kappaB rather than apoptosis. PLoS Pathog 2008; 1: e1000394.
110. Aouacheria A, Banyai M, Rigal D, Schmidt CJ, Gillet G. Characterization of vnr-13, the ortholog of Bcl-2 from Herpesvirus saimiri. J Gen Virol 2007; 88: 11302–11305.
111. Banadyga L, Lam SC, Okamoto T, Kvansakul M, Huang DC, Barry M. Deerpox virus encodes an inhibitor of apoptosis that regulates Bak and Bax. J Virol 2011; 85: 10222–10234.
112. Tulman ER, Afonso CL, Lu Z, Zsak L, Kutish GF, Rock DL. The genome of canarypox virus contains multiple genes that may contribute to virulence. J Virol 2001; 75: 11685–11694.
113. Westphal D, Legdenwood EC, Tandoll JD, Hibma MH, Ueda N, Fleming SB et al. The crf virus inhibitor of apoptosis functions in a Bcl-2-like manner, binding and neutralizing a set of BH3-only proteins and active Bax. Apoptosis 2003; 9: 1317–1330.
114. Ma J, Edlich F, Bermeja GA, Norris KL, Youle RI, Tjandra N. Structural mechanism of Bax inhibition by cytomegalovirus protein vMIA. Proc Natl Acad Sci USA 2012; 109: 20901–20906.
115. DiPerna G, Stack J, Bowie AG, Boyd A, Katwil G, Zhang Z et al. Poxy virus protein N1 targets the -kappaB kinase complex, inhibits signaling to NF-kappaB by the tumor necrosis factor superfamily of receptors, and inhibits NF-kappaB and IRF3 signaling by toll-like receptors. J Biol Chem 2004; 279: 36570–36578.
116. Banadyga L, Lam SC, Okamoto T, Kvansakul M, Huang DC, Barry M. Deerpox virus nucleoprotein triggers killing of infected cells by proapoptotic signaling. J Virol 2011; 85: 10222–10234.
117. Graham SC, Bahar MW, Cooray S, Chen RA, Whalen DM, Abresca NG et al. Vaccinia virus proteins AS2 and B14 share a B-cell-like fold but have evolved to inhibit NF-kappaB rather than apoptosis. PLoS Pathog 2008; 4: e1000128.
118. Chen RA, Jacobs N, Smith GL. Vaccinia virus strain Western Reserve protein B14 is an intracellular virulence factor. J Gen Virol 2006; 87: 1451–1458.
119. de Motes CM, Cooray S, Ren H, Almeida GMF, McEachern B, Bahar MW et al. Inhibition of apoptosis and NF-κB activation by Vaccinia virus protein A1C occur via distinct binding surfaces and make different contributions to virulence. PLoS Pathog 2011; 7: e1002430.
120. Karvera AP, Thompson GS, Vogel A, Schmidt CW, Bowie AG, Khan AR et al. Poxy virus K7 protein adopts a B-cell-like fold: biochemical mapping of its interactions with human DEAD box RNA helicase DDX1. J Mol Biol 2009; 384: 853–865.
121. Yu E, Zhai D, Jin C, Gerlic M, Reed JC, Liddington R. Structural determinants of caspase-9 inhibition by the vaccinia virus protein, F1L. J Biol Chem 2011; 286: 30748–30758.
122. Zhai D, Yu E, Jin C, Welsh K, Shuai CW, Chen L et al. Vaccinia virus protein F1L is a caspase-9 inhibitor. J Biol Chem 2010; 285: 5566–5580.
123. Gerlic M, Faustin B, Postiga A, Yu EC, Proell M, Gombosuren N et al. Vaccinia virus F1L protein promotes virulence by inhibiting inflammasome activation. Proc Natl Acad Sci USA 2013; 110: 7808–7813.
124. Bruey J, Bruey-Sedano N, Luciano F, Vaz D, Balaji R, Xu C et al. Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALPL1; Cell 2007; 129: 45–56.
125. Lux X, Dai S, Zhu Y, Marrack P, Kappler JW. The structure of a Bcl-xL/Bim fragment provides insights for Bim function. Immunity 2003; 19: 341–352.
126. Lessene G, Czabotar PE, Colman PM. BCL-2 family antagonists for cancer therapy. Nat Rev Drug Discov 2008; 7: 989–1000.
127. Roberts AW, Seymour JF, Brown JR, Wierda WG, Kipps TJ, Khaw SL et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol 2012; 30: 488–496.
128. Kelly GL, Long HM, Stylianou J, Thomas WA, Leese A, Bell AI et al. An Epstein-Barr virus anti-apoptotic protein constitutively expressed in transformed cells and implicated in Burkitt lymphomagenesis: the Wp/BHRF1 link. PLoS Pathog 2009; 5: e1000341.
129. Flanagan AM, Letai A, BH3 domains define selective inhibitory interactions with BHRF-1 and KSHV BCL-2. Cell Death Differ 2008; 15: 580–588.
130. Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher J et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 2005; 19: 1294–1305.
131. Fletcher J, Meusburger S, Hawkins CJ, Riglar DT, Lee EF, Fairlie WD et al. Apoptosis is triggered when prosurvival Bcl-2 proteins cannot restrain Bax. Proc Natl Acad Sci USA 2008; 105: 18081–18087.
132. Smits C, Czabotar PE, Hinds MG, Day CL. Structural plasticity underpins promiscuous binding of the prosurvival protein A1. Structure 2008; 16: 618–629.

Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/