Diverse Arrangement of Photosynthetic Gene Clusters in Aerobic Anoxygenic Phototrophic Bacteria

Qiang Zheng¹, Rui Zhang¹, Michal Koblížek², Ekaterina N. Boldareva², Vladimir Yurkov³, Shi Yan⁴, Nianzhi Jiao¹*

¹ State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China, ² Institute of Microbiology CAS, Opatovický mlýn, Treboň, Czech Republic, ³ Department of Microbiology, University of Manitoba, Winnipeg, Canada, ⁴ Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany

Abstract

Background: Aerobic anoxygenic phototrophic (AAP) bacteria represent an important group of marine microorganisms inhabiting the euphotic zone of the ocean. They harvest light using bacteriochlorophyll (BChl) α and are thought to be important players in carbon cycling in the ocean.

Methodology/Principal Findings: Aerobic anoxygenic phototrophic (AAP) bacteria represent an important part of marine microbial communities. Their photosynthetic apparatus is encoded by a number of genes organized in a so-called photosynthetic gene cluster (PGC). In this study, the organization of PGCs was analyzed in ten AAP species belonging to the orders Rhodobacterales, Sphingomonadales and the NORS/OM60 clade. Sphingomonadales contained comparatively smaller PGCs with an approximately size of 39 kb whereas the average size of PGCs in Rhodobacterales and NORS/OM60 clade was about 45 kb. The distribution of four arrangements, based on the permutation and combination of the two conserved regions bchF/N8HLM-IhaA-pufABC and crtf-bchCXYZ, does not correspond to the phylogenetic affiliation of individual AAP bacterial species. While PGCs of all analyzed species contained the same set of genes for bacteriochlorophyll synthesis and assembly of photosynthetic centers, they differed largely in the carotenoid biosynthetic genes. Spheroidenone, spirilloxanthin, and zeaxanthin biosynthetic pathways were found in each clade respectively. All of the carotenoid biosynthetic genes were found in the PGCs of Rhodobacterales, however Sphingomonadales and NORS/OM60 strains contained some of the carotenoid biosynthetic pathway genes outside of the PGC.

Conclusions/Significance: Our investigations shed light on the evolution and functional implications in PGCs of marine aerobic anoxygenic phototrophs, and support the notion that AAP are a heterogenous physiological group phylogenetically scattered among Proteobacteria.

Introduction

Aerobic anoxygenic phototrophic (AAP) bacteria represent an important group of marine microorganisms inhabiting the euphotic zone of the ocean. They harvest light using bacteriochlorophyll (BChl) α and various carotenoids serving as auxiliary pigments. These phototrophic microorganisms are thought to be important players in oceanic carbon cycling [1–3]. Culture-independent studies have shown that marine AAP bacterial communities are mostly represented by Alpha- and Gammaproteobacteria [4,5]. Most cultured marine Alphaproteobacterial AAPs belong to Roseobacter clade and the order Sphingomonadales, which includes members of the genera Erythrobacter and Citromicrobium [6–8]. AAP bacterial isolates related to Gammaproteobacteria belong to the clade NORS/OM60 which contains Congregibacter litoralis KT71 [9,10] and strain HTCC2080 [11].

Compared to the oxygentic phototrophs, the anoxygenic species contain a relatively simple photosynthetic apparatus, which consists of a reaction center surrounded by one to three types of antenna complexes [12]. Both aerobic and anaerobic anoxygenic phototrophs have most of the photosynthetic genes organized in a so-called photosynthesis gene cluster (PGC) [13]. The PGC contains genes for the photosynthetic reaction center, light harvesting complexes, BChl and carotenoid biosynthesis, as well as some regulatory factors. Despite the fact that the basic set of genes in PGC is conserved, the gene organization of operons in PGC largely varies among different AAP bacterial lineages. Two conserved subclusters, crtf-bchCXYZ-puf (about 10 kb) and bchF/N8HLM-IhaA-puf (about 12–15 kb) were identified in PGCs of different phototrophic Proteobacteria [14–16]. The orientation of the genes in each subcluster was the same, although the gene order could vary slightly (e.g. pufBA and pufLM). Interestingly, the
regulatory elements such as the transcriptional regulator ppsR gene were conserved as well, suggesting that the operons in the PGCs are co-expressed. The organization of puf (photosynthetic unit forming, approximately 3 kb) operon varies among different AAP bacterial species. The presence/absence of pufC and pufQ, as well as various gene orders of puf genes, were observed [5,15–17]. Further investigation indicated that such gene organization is crucial for environmental adaptation [14].

Table 1. Main characteristics of genomes and PGCs of studied species.

Clade	Organism	Genome size (kb)	PGC size (kb)	Genome GC%	PGC GC%	PGC/Genome
Rhodobacterales	D. shibae DFL 12	4,417.8	48.1	65	67	1.09%
	Rb. denitrificans Och 114	4,331.2	44.6	58	60	1.03%
	Rb. litoralis Och 149	4,678.9	48.3	57	59	1.03%
	Roseovarius sp. 217	4,762.6	45.1	60	64	0.95%
	Jannaschia sp. CCS1	4,404.0	45.8	62	62	1.04%
	L. vestfoldensis SKA53	3,063.7	41.2	59	60	1.34%
Sphingomonadales	Citromicrobium sp. JL354	3,273.3	38.7	65	67	1.18%
	Erythrobacter sp. NAP1	3,265.3	38.9	61	62	1.19%
NORS/OM60 clade	Cb. litoralis KT71	4,328.1	44.7	58	59	1.03%
	Gamma-HTCC2080	3,576.1	43.6	51	53	1.22%

GC% = relative percentage of guanine and cytosine nucleotides. PGC/Genome = PGC as % of genome size.

doi:10.1371/journal.pone.0025050.t001

Figure 1. Phylogenetic analysis of pufM gene sequences from GenBank database. Symbols “★” represents the pufM sequences from whole genome sequence. The whole PGC’s of the ten strains highlighted in boxes were also analyzed (Fig. 2). Bootstrap percentages from both neighbor joining (above nodes) and maximum parsimony (below nodes) are shown. Scale bar represents 10% nucleotide substitution percentage.

doi:10.1371/journal.pone.0025050.g001
Despite its diversity, complexity and functional importance for AAP bacteria, a detailed investigation of the gene and operon arrangement of PGC has not been performed in their entirety. In this study, we analyzed the structure and arrangement of PGC in the AAP bacterial genomes available to date, with the aim of addressing the frequency of homologous gene recombination as well as the differences in carotenoid gene composition and biosynthetic pathways.

Results and Discussion

Ten fully sequenced AAP species were analyzed for their photosynthetic genes and PGC composition. According to phylogenetic analysis using both 16S rRNA and pufM genes, the ten strains were classified into three main groups: Roseobacter clade (order Rhodobacterales), Erythrobacter-Citromicrobium clade (order Sphingomonadales) and NOR5/OM60 clade (Gammaproteobacteria) (Fig. 1). Roseobacter clade contained six strains belonging to five genera: Roseobacter (Rsb.) denitrificans OCh 114 [18] and Rsb. litoralis Och 149 [19], Loktanella vestfoldensis SKA53, Dinoroseobacter shibae DFL12 [20], Jannaschia sp. CCS1, and Roseovarius sp. 217 [21]. Two species belonged to the order Sphingomonadales: Erythrobacter sp. NAP1 [7] and Citromicrobium sp. JL354 [22]. Two species were members of Gammaproteobacteria: Congregibacter (Cb.) litoralis KT71 [9,10] and marine Gammaproteobacterium HTCC2080 [11]. The genome size varied from approximately 3,064 kb (L. vestfoldensis) to 4,763 kb (Roseovarius sp. 217). The PGCs represented roughly 1% of the genomes (Table 1). The GC content in the PGCs varied from 52.9% to 66.7%, which was similar to the total GC contents of corresponding genomes (Table 1). This may indicate that PGCs possibly evolve with their genomes long enough to keep homogenous genomic characteristics. The fact that the PGC is a stable part of the phototrophs genome is also indicated also by the fact that the phylogenetic trees constructed for 16S rRNA, pufM gene and concatenated PGC core genes show basically the same topology (Fig. 1 and Fig. S2).

The structure and arrangement of PGC

The PGCs have a mosaic structure and consist of five main sets of genes: bch genes encoding enzymes of BChl biosynthetic pathways, puf operons encoding proteins forming the reaction centers, puh operons involved in the RC assembly, crt genes responsible for biosynthesis of carotenoids and various regulatory genes. A core set of 27 genes were identified, which were present in all analyzed PGCs (Fig. S1). Most of them came from the BChl a biosynthetic pathway. The genes bcbCDPGHIHLMNOPXYZ, with exception of 8-vinyl reductase, represent the complete biosynthetic pathway from protoporphyrin XI to BChl a. In contrast, there are only two genes involved in carotenoid synthesis which are common for all PGCs. Other shared core genes encode proteins pufABLM and assembly factors puhABCE and lhaA of the bacterial photosynthetic units.

More complete PGC structures are observed in AAP of Roseobacter clade compared to Sphingomonadales or NOR5/OM60 clades. The majority of Roseobacter-related species contained all the puf genes organized in pufQALMC operon, which is involved in the assembly of the photosynthetic units. The only

Figure 2. Photosynthetic gene cluster structure and arrangement in AAP species. Green, bch genes; red, puf and regulators genes; pink, puh genes; orange, crt genes; blue, hem and cyc gene; yellow, LhaA gene; blank, uncertain or unrelated genes; grey, hypothetical protein. The horizontal arrows represent putative transcripts.
doi:10.1371/journal.pone.0025050.g002
exception was *L. vestfoldensis* SKA53, in which some photosynthetic genes are located outside the PGC and spread throughout the genome. Previously it was reported that the PGC in *Rh. litoralis* Och 149 is located on a linear plasmid, with two *Rpa* genes between *bchF-NBHLM-LhaA*-puf and *crtI*-bchCXY-zapuf, which act as a centromere-like anchor when plasmids replicate [19,23].

The PGC organization in *Erythrobacter* sp. NAP1 and *Citrobacterium* sp. JL354 (order *Sphingomonadales*) is almost identical in terms of gene arrangement and composition. When compared to Roseobacters, this group contains less carotenoid genes and no light-harvesting 2 (LH2) genes. The presence of a smaller number of photosynthetic genes in *Sphingomonadales* is consistent with the smaller size of their PGCs (Table 1).

Similarly, PGCs of two NOR5/OM60 strains have very comparable gene composition and organization. It contains less transcriptional regulators compared to the other groups. Conversely, a BLUF (blue light using flavin adenine dinucletotide sensors) was usually observed in upstream regions of PGCs of NOR5/OM60 clade [9].

Two conserved gene arrangements are found in all analyzed PGCs: *bchF-NBHLM-LhaA*-pufABC and *crtI*-bchCXY-zapuf (Fig. 2). According to their direction and order, the ten PGCs can be divided into three groups: Type I (forward *bchF-NBHLM-LhaA*-puf plus forward *crtI*-bchCXY-zapuf) includes *Rh. denitrificans* Och 114 and *Rh. litoralis* Och 149. *Cb. litoralis* K171, Gamma-proteobacterium HTCC2080 and *Roseovarius* sp. 217 belong to type II (forward *bchF-NBHLM-LhaA*-puf plus reverse *crtI*-bchCXY-zapuf, and the last five organisms form type III (forward *crtI*-bchCXY-zapuf plus forward *bchF-NBHLM-LhaA*-puf). The last possible arrangement (type IV, reverse *bchF-NBHLM-LhaA*-puf plus forward *crtI*-bchCXY-zapuf) has not been yet found in AAP (or AAP candidates) bacterial genomes (Fig. S1), however it is present in the purple non-sulfur anaerobic bacteria *Rba. sphaeroides* and *Rba. capsulatus* (Fig. 2 and Fig. S2). The distribution of PGC types does not correspond to their phylogenetic affiliation. For example, the *Roseobacter* clade shows all three PGC arrangement types observed in AAP genomes. This suggests that complex operon recombination in PGC occurred after phylogenetic divergence of AAP bacterial genera.

There are four conserved regions in PGCs for BChl a expressing AAP bacteria: *bchF-NBHLM, bchCXY-zapuf, bchIDO* and *bchOP*. Gene *bchF*, which exists in most *Rhodobacter*, was found in *Cb. litoralis* K171 (Fig. 2). There are carotenoid genes between *bchCXY-zapuf* and *bchIDO*, except in *D. shibae* DLF 12 and *Jannaschia* sp. CCS1. The region between *bchOP* and *bchF-NBHLM* is of variable sequences in different AAP bacteria clades. In *Roseobacter* clade and *Sphingomonadales*, there are two regulators (*ppsR* and *ppsA*) which are sensitive to light intensity and oxygen concentration [24]. In NOR5/OM60 clade, a *crtI* gene was found, which controls aerobic repression of BChl, carotenoid, and LH2 gene expression [25,26].

Four structural types of *puf* gene organization were observed in the ten PGCs: *pufQBA-LMC*, *pufQBA-LPM*, *psfLMC* and *pufLMCBA*. Unlike the purple non-sulfur species *Rba. sphaeroides* and *Rba. capsulatus*, all the AAP strains studied lack the *pufX* gene in the PGC. The *pufQ* gene, is absent in the *puf* operon of NOR5/OM60 and *Sphingomonadales* clades. In addition, *Sphingomonadales* and *L. vestfoldensis* SKA53 do not have a *pufC* gene. The gene encoding 1-deoxy-D-xylulose-5-phosphate synthase (*DXPS*) is always located downstream of *puf* genes in the *Roseobacter* clade. DXPS is part of a mevalonate-independent pathway for isopentenylpyrophosphate (*IPP*) biosynthesis, a precursor for carotenoid and bacteriochlorophyll biosynthesis [27]. Interestingly, a switch of order in the *puf* gene cluster is observed in NOR5/OM60 clade (*pufLMC-BA*) compared to the other two AAP clades (*pufBA-LMC*).

The structure of *pufABC-hyp-ascF-puhE* is conserved in *Roseobacter* and *Sphingomonadales* clades. However, in NOR5/OM60 clade, *pufABC* and *pufE* are located together and *ascF* is at a site near BLUF. LhaA, encoding a possible LHI assembly protein [28], occupies the upstream region of *puf* genes. In downstream *puf* genes, there are *hemY* (NOR5/OM60 clade) or *hemA* (*Roseobacter* and *Sphingomonadales* clade) [29,30].

The composition and organization of carotenoid genes in PGC

The main difference among analyzed PGCs was found in the genes encoding the carotenoid biosynthetic pathway. The standard set of *crt* genes identified in *Rba. capsulatus* contains *crtABK(DF)-crtE* (Table 2). A slightly reduced set of genes (*crtAIBCDEF*) was also found in some *Roseobacter* species (Table 2). However, the organization of the *crt* operon in *Roseobacter* clade is most variable among PGCs (Fig. 2). The almost complete structure *crtABK-hyp-crtDF* is present in the genera *Roseobacter* and *Dinoroseobacter* (Fig. 2), while in *D. shibae*, *crtI* and *crtBBK* are separated. Homologous recombination occurred between *crtAIB*.

Table 2. The composition of carotenoid genes in AAP bacteria.

	Alpha	Gamma		Gamma		
	Rhodobacterales	Sphingomonadales	NORS	Rhodobacterales	Sphingomonadales	NORS
	1	2	3	4	5	
crtA	○	○	○	○	○	○
crtI	○	○	○	○	○	○
crtB	○	○	○	○	○	○
crtC	○	○	○	○	○	○
crtD	○	○	○	○	○	○
crtE	○	○	○	○	○	○
crtF	○	○	○	○	○	○
crtJ	○	○	○	○	○	○
crtY	○	○	○	○	○	○
crtZ	○	○	○	○	○	○
crtW	○	○	○	○	○	○

1. Roseobacter clade (*R. denitrificans* Och114, *R. litoralis* Och149, *D. shibae* DLF 12, *L. vestfoldensis* SKA53, *Jannaschia* sp. CCS1, *Roseovarius* sp. 217 included). 2. *Rhodobacter* genus (*Rhodobacter* *sphaeroides A4* and *Rhodobacter* *capsulatus BEC404*). The *crt* gene was found only in *Rhodobacter* *capsulatus* BEC404 and NOR5/OM60 gamma-proteobacteria. 3. *Erythrobacter* sp. NAP1. 4. *C. bathyomarinum* JL354. 5. NOR5 clade (*Cb. litoralis* K171 and *G. gammatomicus* HTCC2080 included). The genes located in the PGC are marked by ‘○’; the genes outside PGC are marked by ‘’. The gene *CrtK* is not included in the Table as it does not participate in any known carotenoid biosynthetic pathway.

doi:10.1371/journal.pone.0025050.t002
and *crtCDEF* in *Jannaschia* sp. CCS1. Comparably, *crtICDEF* and *crtCDF* are missing in NOR5/OM60 clade and order *Sphingomonadales*, respectively. The re-arrangement of *crt* genes may result from events of gene duplication and loss, accounting for the absence of *crtA* gene in *Sphingomonadales* and NOR5 clade (Table 2), and duplication of some of the *crt* genes, such as the *crtE* and *crtB* found outside the PGC in *Bradyrhizobium* sp. ORS270 [31].

The biosynthetic pathway for carotenoids in AAP bacterial strains

A typical feature of AAP bacteria is their pigmentation due to abundant carotenoids, which spans from yellow/orange to brown or from pink/red to purple. While some of the carotenoids serve as harvesting pigments, most of them do not participate in the light harvesting likely having a photoprotection function [32,33]. As suggested earlier, spheroidenone is the main light harvesting carotenoid in Roseobacters [34–36] (Table S1). Spheroidenone is also produced by anaerobic purple non-sulfur photoautotrophic organisms such as *Rba. sphaeroides* or *Rhodovulum marinum* when grown under aerobic conditions [37,38]. This is consistent with the closer phylogenetic relationship of these two organisms to Roseobacter related photoheterotrophic species (Fig. 1 and Fig. S2). This indicates the presence of the same carotenoid biosynthetic pathway in all *Rhodobacterales*. The central biosynthetic pathway for carotenoids in the *Roseobacter* clade is the spheroidene pathway (Fig. 3, Table S1), and all the necessary genes (*crtAIBCDF*) for it are located in the PGCs (Fig. 2 and Table 2).

In most studied *Erythrobacter* species, erythroxanthin sulfate was shown to be the main carotenoid [7,39] (Table S1), however, it does not participate in the photosynthetic processes [39]. Light is harvested by other pigments such as bacteriorubixanthinal, zeaxanthin and β-carotene [39]. The main carotenoid identified in *Citromicrobium* sp. JL354 was nostoxanthin (Table S1). We assume that both species share similar carotenoid biosynthetic pathways (Fig. 3). First, β-carotene is produced from lycopene by the action of lycopene cyclase (*crtI* gene product). Zeaxanthin is obtained by two

![Figure 3. Tentative carotenoid biosynthesis in AAP bacteria.](https://www.plosone.org/doi/10.1371/journal.pone.0025050.g003)
step hydroxylation of β-carotene catalyzed by β-carotene hydroxylase (crtZ gene product). Interestingly, the key genes (crtD and crtZ) for zeaxanthin pathway are not organized in the PGCs, but are spread throughout the chromosome (Table 2). Zeaxanthin is then a starting intermediate for synthesis of both all-trans xanthophylls (in genus *Citromicrobium*) and echinoxanthin (in genus *Erythrobacter* (Fig. 3).

The major carotenoids in *Ch. litoralis* KT71 is spirilloxanthin, the same as in Rhodospirillum rubrum DSM 467T [10] (Table S1). There are two possible options for spirilloxanthin biosynthesis: typical-spirilloxanthin biosynthetic pathway and unusual-spirilloxanthin pathway (Fig. 3). Interestingly, the gene *crtD* was found to be out of PGA in *Ch. litoralis* KT71 (Table 2), indicating that *Ch. litoralis* KT71 might use the shorter unusual-spirilloxanthin pathway.

In summary, this study showed that most of the photosynthetic genes in AAP species were organized in the PGC. Two conserved regions *bchF* and *bchLM* and *crtF-bchCXYZ* were identified in all studied PGCA. Based on their orientation we can divide the studied strains into four different groups. The composition of *bch, puf* and *puh* genes in the analyzed PGCs was relatively similar, and the main difference was found among *crt* genes. Such variability was mainly connected with different carotenoid biosynthetic pathways present in AAP groups: spheroidenone biosynthetic pathway in Roseobacters, zeaxanthin pathway in *Sphingomonadales* and spirilloxanthin pathway in gammmaproteobacterial NOS5/OM60 clade. Our investigation shed light on the evolution and functional implications of PGCs from marine aerobic anoxygenic phototrophs.

Methods

Photosynthetic superoperon sequences and phylogenetic analysis

Ten full-length PGC sequences and gene locations were obtained from the GenBank genome data base. The GenBank accession numbers are: *Citromicrobium* sp. JL54 (ADAE00000000) [22], Loktanella vestfoldiensis SKA53 (NZ_AAMS00000000), Dinoroseobacter *shibae* DFL.12 (NC_009592) [20], *Roseobacter denitrificans* OCh 114 (NC_008209) [18], *Jannaschia* sp. CCS1 (NG_007802), *Roseobacter litoralis* Och 149 (NC_ABIG00000000) [19], Roseovarius sp. 217 (NC_AAIM00000000) [21], *Roseobacter* sp. CCS2 (NZ_AAYB00000000), *Roseobacter* sp. AzK-3h (NC_ABCR00000000), *Erythrobacter* sp. NAP1 (NC_AAIB00000000), *Roseobacter* sp. AzK-3h (NC_ABCR00000000), *Erythrobacter* sp. NAP1 (NC_AAIB00000000) [7], Congregibacter *litoralis* KT71 (Ch. *litoralis* KT71) (NC_AAOA00000000) [9,10], Marine *gammaproteobacterium* HTCC 2060 (NC_AAIM00000000) [11].

For comparison two anaerobic anoxygenic phototroph *Rhodo-bacter sphaeroides* strain 2.4.1 (NC_007493) and *Rhodobacter capsulatus* SB 1003 (NC_014034) also were included in the analysis. Another three green sulfur bacteria genome information used to outgroup of phylogenetic tree, and their GenBank accession numbers are *Chloroflexus aggregans* DSM 9485 (NC_009767), *Chloroflexus aurantiacus* J-10-fl (NC_010175) and *Roseosphaerella castenholzii* DSM 13941 (NC_009767). In some cases the automatic gene annotation was corrected manually.

Nearly complete *pufM* (>900 bps) genes and 27 core proteins in PGCs were used to construct phylogenetic trees [17]. Both *pufM* gene sequences collected from NCBI database were aligned using Clustal X and phylogenetic trees were constructed using the neighbour-joining and maximum-parsimony algorithms of MEGA software 3.0 [40]. The phylogenetic trees were supported by bootstrap for resampling test with 1000 replicates.

Pigment analyses

Six strains were used for pigment analyses: *Rhodobacter denitrificans* OCh 114 (DSM 7001), *Roseobacter* Och 149 (DSM 6996) and *Erythrobacter* DSM 6997 were purchased from the DSMZ culture collections. *D. shibae* JL1447, *Och. bathyomarinum* JL354 and *Erythrobacter* sp. JL475 were isolated and maintained in the laboratory [22]. The strains were grown in Erlenmeyer flasks with rich organic medium [8] at room temperature (25 °C) using a light-dark cycle. The grown cells were harvested by centrifugation and extracted using 100% methanol (in the case of *Sphingomonadales* species) or 7:2 (v/v) acetone-methanol (in the case of *Roseobacter* species). The pigment extract and analysis were done by high performance liquid chromatography (HPLC) as described previously [41]. Briefly, the chromatography was performed using the Agilent 1100 Series system (Agilent Technologies Inc., Palo Alto, CA, USA). Pigments were separated on a heated (35 °C) Phenomenex Luna 3 μ C3(2) 100 Å column with binary solvent system (50 min 100% A, 20 min 100% B, 25 min 100% B, 27 min 100% A, 30 min 100% A; A: 70% methanol+26 mM ammonium acetate, B: methanol) and detected by a UV-VIS diode-array detector (Agilent DAD 6131B).

Supporting Information

Figure S1 Photosynthetic gene cluster structure and arrangement in other phototrophs. Green, *bch* genes; red, *puf* and regulator genes; pink, *puh* genes; orange, *crt* genes; blue, *hem* and *cyc* gene; yellow, *lha* gene; blank, uncertain or unrelated genes; grey, hypothetical protein.

Figure S2 Neighbor joining phylogenetic analysis of 27 core proteins in PGCs from GenBank database. The core proteins are *bchBCDFGHILMNOPXYZ-crtCF-pufABLM-LhaA-puhABCE-ascF* (DOC).

Table S1 The major carotenoid composition in AAP bacteria.

Acknowledgments

The authors would like to thank Dr. Yonghui Zeng for his helpful suggestions.

Author Contributions

Conceived and designed the experiments: QZ RZ MK NJ. Performed the experiments: QZ MK ENB. Analyzed the data: QZ RZ MK VY SY. Contributed reagents/materials/analysis tools: QZ RZ MK NY. Wrote the paper: QZ RZ MK VY NJ.

References

1. Kolber ZS, Plummer FG, Lang AS, Beatty JT, Blankenship RE, et al. (2001) Contribution of aerobic phototrophic bacteria to the carbon cycle in the ocean. Science 292: 2492–2495.

2. Jiao N, Zhang Y, Zeng Y, Hong N, Liu R, et al. (2007) Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ Microbiol 9: 3091–3099.

3. Kobližek M (2011) Role of Photoheterotrophic Bacteria in the Marine Carbon Cycle. In: Microbial Carbon Pump in the Ocean N. Jiao, F. Azam, S. Sanders, eds. Science/AAAS, Washington D.C.. pp 49–51.

4. Béjà O, Suzuki MT, Heidelberg JF, Nelson WC, Preston CM, et al. (2002) Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415: 630–633.
5. Ytin N, Suzuki MT, Teiling H, Weber M, Venner JC, et al. (2007) Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes. Environ Microbiol 9: 1644–1653.

6. Shiha T, Sadako AS, Taija N (2014) Characterization of aerobic bacteria which contain bacteriochlorophyll a. Appl Environ Microbiol 80: 43–45.

7. Kohlbecker A, Böjö, Bidigare RR, Christensen S, Benitez-Nelson B, et al. (2003) Isolation and characterization of Erythrobacter sp. strains from the upper ocean. Arch Microbiol 180: 327–338.

8. Yurkov VV, Krieger S, Stackebrandt E, Beatty JT (1999) Citromicrobium bathyomarinum, a novel aerobic bacterium isolated from deep-sea hydrothermal vent plume waters that contains photosynthetic pigment-protein complexes. J Bacteriol 181: 4517–4519. Arch Microbiol 180: 331–333.

9. Yurkov VV, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Adv Microb Physiol 38: 33–55.

10. Swingley WD, Blankenship RE, Raymond J (2009) Evolutionary relationships among purple photosynthetic bacteria and the origin of proteobacterial photosynthetic systems. C. Neil Hunter, Fevzi Daldal, Marion C. Thurnauer, J. Thomas Beatty, eds. The Purple Phototrophic Bacteria. pp 33–55. Springer Science+Business Media B. V., 85–116.

11. Yurkov VV, Csotonyi JT (2009) New light on aerobic anoxygenic phototrophs. Microbiol Mol Biol Rev 73: 946–972.

12. Yurkov VV, Krieger S, Stackebrandt E (2004) Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis. Proc Natl Acad Sci USA 101: 2091–2096.

13. Zsebo KM, Hearst JE (1984) Genetic-physical mapping of a photosynthetic gene cluster from Rhodobacter capsulatus. J Bacteriol 158: 2891–2896.

14. Liotenberg S, Steunou AS, Picaud M, Reiss-Husson F, Astier C, et al. (2008) Congregibacter litoralis: a redox-responding repressor of bacteriochlorophyll, carotenoid, and light harvesting-II gene expression in Rhodobacter capsulatus. J Bacteriol 190: 4307–4313.

15. Eilen S, Ponnampalam SN, Bauer CE (1998) CtrJ found to distant binding sites interacts cooperatively to aerobically repress photosynthesis and light harvesting-II gene expression in Rhodobacter capsulatus. J Bacteriol 179: 18391–18396.

16. Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16: 565–574.

17. Yurkov VV, Beatty JT (1998) Topological model of the Rhodobacter capsulatus light-harvesting complex I assembly protein LhaA (Previously known as ORF1696). J Bacteriol 180: 4374–4375.

18. Hippler B, Hornuth G, Hoffmann T, Hungerer C, Schumann W, et al. (1997) Characterization of Barillus subtulis hemN. J Bacteriol 179: 7181–7185.

19. Wang LY, Elliott M, Elliott T (1999) Conditional stability of the HemA protein (glutaminyl-tRNA reductase) regulates heme biosynthesis in Salmonella typhimurium. J Bacteriol 181: 1211–1219.

20. Yurkov VV, Beatty JT (1998) The Purple Phototrophic Bacteria. pp 7–29. Springer Science+Business Media B. V., 85–116.

21. Yurkov VV, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62: 605–724.

22. Yurkov VV, Comonty JI (2009) New light on aerobic anoxygenic phototrophs. In The purple Phototrophic Bacteria Hunter N, Daldal F, Thurman MC, Beatty JT, eds. New York, USA: Springer Science+Business Media B. V., pp 31–55.

23. Elsen S, Ponnampalam SN, Bauer CE (1998) CtrJ found to distant binding sites interacts cooperatively to aerobically repress photosynthesis and light harvesting-II gene expression in Rhodobacter capsulatus. J Bacteriol 179: 4307–4313.

24. Hippler B, Hornuth G, Hoffmann T, Hungerer C, Schumann W, et al. (1997) Characterization of Barillus subtulis hemN. J Bacteriol 179: 7181–7185.

25. Wanger-Dohler I, Biel B (2006) Environmental Biochemistry of the Marine Rhodovibrio Lanzu. Annual Review of Microbiology 60: 253–280.

26. Takachi S (2009) Distribution and Biosynthesis of Carotenoids. C. Neil Hunter, Fevzi Daldal, Marion C. Thurnauer, J. Thomas Beatty, eds. The Purple Phototrophic Bacteria. pp 97–117.

27. Yurkov VV, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62: 605–724.

28. Yurkov VV, Comonty JI (2009) New light on aerobic anoxygenic phototrophs. In The purple Phototrophic Bacteria Hunter N, Daldal F, Thurman MC, Beatty JT, eds. New York, USA: Springer Science+Business Media B. V., pp 31–55.

29. Kohlbecker A, Falskow PG, Kolber ZS (2006) Diversity and distribution of photosynthetic bacteria in the Black Sea. Deep Sea Research Part II 53: 17–19.

30. Yurkov VV, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62: 605–724.

31. Yurkov VV, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62: 605–724.

32. Yurkov VV, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62: 605–724.

33. Yurkov VV, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62: 605–724.

34. Yurkov VV, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62: 605–724.

35. Yurkov VV, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62: 605–724.

36. Yurkov VV, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62: 605–724.