Two-loop stability of singlet extensions of the SM with dark matter

Marco O. P. Sampaio

11th February, 2015

HPNP 2015, University of Toyama

Based on: arXiv:1411.4048 with Raul Costa, António Morais and Rui Santos
http://scanners.hepforge.org
Outline

1. Singlet models & Why?

2. Radiative corrections & RGEs

3. Results & The Pheno
Singlets & the Higgs portal

How?

- Scalar sector prone to coupling to hidden sectors!

Only SM singlets with dimension < 4 are: $H^H, B_{\mu\nu}, HL$

\[V = V_{SM}(H^H) + H^H \times \mathcal{O}_\delta^{(2)}(\phi_i) + V_{New}(\phi_i) \]
Singlets & the Higgs portal

How?

- Scalar sector prone to coupling to hidden sectors!
 Only SM singlets with dimension < 4 are: $H^\dagger H$, $B_{\mu\nu}$, HL

$$V = V_{SM}(H^\dagger H) + H^\dagger H \times \mathcal{O}_\delta^{(2)}(\phi_i) + V_{New}(\phi_i)$$

- Couplings to SM through mixing (dilutes higgs couplings):

 Higgs fluctuation $\leftarrow h = \sum_a \kappa_a H_a$, $\sum_a |\kappa_a|^2 = 1$
Singlets & the Higgs portal

How?

- Scalar sector prone to coupling to hidden sectors!

 Only SM singlets with dimension < 4 are: \(H^\dagger H \), \(B_{\mu\nu} \), \(HL \)

\[
V = V_{SM}(H^\dagger H) + H^\dagger H \times \mathcal{O}_\delta^{(2)}(\phi_i) + V_{\text{New}}(\phi_i)
\]

- Couplings to SM through mixing (dilutes higgs couplings):

 Higgs fluctuation \(\leftrightarrow h = \sum_a \kappa_a H_a \), \(\sum_a |\kappa_a|^2 = 1 \)

Why?

- Simple (& natural?) parametrization of DM
- \(V_{\text{eff}} @ T \neq 0 \) can be compatible with EW-Baryogenesis
- Improve stability of SM @ high energies (?)
A minimal model with dark matter & new visible scalar

SM plus $S = (S + iA)/\sqrt{2}$, with residual \mathbb{Z}_2 symmetry $A \rightarrow -A$ after $\mathcal{U}(1)$ symmetry by soft terms (in parenthesis)

$$V = \frac{m^2}{2} H^\dagger H + \frac{\lambda}{4} (H^\dagger H)^2 + \frac{\delta_2}{2} H^\dagger H|S|^2 + \frac{b_2}{2} |S|^2 + \frac{d_2}{4} |S|^4 + \left(\frac{b_1}{4} S^2 + a_1 S + \text{c.c.} \right)$$
A minimal model with dark matter & new visible scalar

SM plus $S = (S + iA)/\sqrt{2}$, with residual \mathbb{Z}_2 symmetry $A \to -A$ after $U(1)$ symmetry by soft terms (in parenthesis)

$$V = \frac{m^2}{2} H^\dagger H + \frac{\lambda}{4} (H^\dagger H)^2 + \frac{\delta_2}{2} H^\dagger H S^2 + \frac{b_2}{2} |S|^2 + \frac{d_2}{4} |S|^4 + \left(\frac{b_1}{4} S^2 + a_1 S + c.c. \right)$$

- \mathbb{Z}_2 phase ($v_S \neq 0, v_A = 0$): 2 Higgs mix + 1 dark

$$\begin{pmatrix} H_{126} \\ H_{\text{new}} \\ H_{\text{DM}} \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} h \\ s \\ A \end{pmatrix}$$
A minimal model with dark matter & new visible scalar

SM plus \(S = (S + iA)/\sqrt{2} \), with residual \(\mathbb{Z}_2 \) symmetry \(A \rightarrow -A \) after \(U(1) \) symmetry by soft terms (in parenthesis)

\[
V = \frac{m^2}{2} H^\dagger H + \frac{\lambda}{4} (H^\dagger H)^2 + \frac{\delta_2}{2} H^\dagger H |S|^2 + \frac{b_2}{2} |S|^2 + \frac{d_2}{4} |S|^4 + \left(\frac{b_1}{4} S^2 + a_1 S + c.c. \right)
\]

- \(\mathbb{Z}_2 \) phase (\(v_S \neq 0, v_A = 0 \)): 2 Higgs mix + 1 dark

\[
\begin{pmatrix}
H_{126} \\
H_{\text{new}} \\
H_{\text{DM}}
\end{pmatrix} =
\begin{pmatrix}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
h \\
s \\
A
\end{pmatrix}
\]

- \(\mathbb{Z}_2 \) phase (\(v_S \neq 0, v_A \neq 0 \)): 3 Higgs mix

\[
\begin{pmatrix}
H_{126} \\
H_{\text{light}} \\
H_{\text{Heavy}}
\end{pmatrix} =
\begin{pmatrix}
R_{1h} & R_{1S} & R_{1A} \\
R_{2h} & R_{2S} & R_{2A} \\
R_{3h} & R_{3S} & R_{3A}
\end{pmatrix}
\begin{pmatrix}
h \\
s \\
a
\end{pmatrix}
\]
A minimal model with dark matter & new visible scalar

SM plus $S = (S + iA)/\sqrt{2}$, with residual \mathbb{Z}_2 symmetry $A \to -A$ after $U(1)$ symmetry by soft terms (in parenthesis)

$$V = \frac{m^2}{2} H^\dagger H + \frac{\lambda}{4} (H^\dagger H)^2 + \frac{\delta_2}{2} H^\dagger H |S|^2 + \frac{b_2}{2} |S|^2 + \frac{d_2}{4} |S|^4 + \left(\frac{b_1}{4} S^2 + a_1 S + c.c. \right)$$

- \mathbb{Z}_2 phase ($v_S \neq 0$, $v_A = 0$): 2 Higgs mix + 1 dark

$$\begin{pmatrix} H_{126} \\ H_{\text{new}} \\ H_{\text{DM}} \end{pmatrix} = \begin{pmatrix} \kappa_{126} & -\sin \alpha & 0 \\ \kappa_{\text{new}} & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} h \\ S \\ A \end{pmatrix}$$

- \mathbb{Z}_2 phase ($v_S \neq 0$, $v_A \neq 0$): 3 Higgs mix

$$\begin{pmatrix} H_{126} \\ H_{\text{light}} \\ H_{\text{Heavy}} \end{pmatrix} = \begin{pmatrix} \kappa_{126} & R_{1S} & R_{1A} \\ \kappa_{\text{light}} & R_{2S} & R_{2A} \\ \kappa_{\text{Heavy}} & R_{3S} & R_{3A} \end{pmatrix} \begin{pmatrix} h \\ S \\ A \end{pmatrix}$$

- Many OBSs related to SM up to κ_a factors (Ex. $\frac{\sigma_{a}}{\sigma_{SM}} \propto \kappa_{a}^2$)
Outline

1. Singlet models & Why?

2. Radiative corrections & RGEs

3. Results & The Pheno
The effective potential and the RGEs

Previous global scan studies → mostly tree level
V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf, G Shaughnessy, PRD79 (2009) 015018
M. Gonderinger, H. Lim, M. Ramsey-Musolf, PRD86 (2012) 043511 (1-loop & special points)
R. Coimbra, MOPS, R. Santos, EPJ C73 (2013) 2428
The effective potential and the RGEs

Previous global scan studies → mostly tree level
V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf, G Shaughnessy, PRD79 (2009) 015018
M. Gonderinger, H. Lim, M. Ramsey-Musolf, PRD86 (2012) 043511 (1-loop & special points)
R. Coimbra, MOPS, R. Santos, EPJ C73 (2013) 2428

Radiative corrections \((\varepsilon \equiv \hbar/(4\pi)^2, \ t \equiv \log \mu) \):

\[
\Lambda + \text{\includegraphics[width=0.15\textwidth]{circle}} + \text{\includegraphics[width=0.15\textwidth]{square}} + \ldots
\]

\[
\begin{align*}
V_{\text{eff}} &= V^{(0)} + \varepsilon V^{(1)} + \varepsilon^2 V^{(2)} + \ldots \\
&\vdots
\end{align*}
\]

S. Martin, PRD65 (2002) 116003
The effective potential and the RGEs

Previous global scan studies → mostly tree level

V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf, G Shaughnessy, PRD79 (2009) 015018
M. Gonderinger, H. Lim, M. Ramsey-Musolf, PRD86 (2012) 043511 (1-loop & special points)
R. Coimbra, MOPS, R. Santos, EPJ C73 (2013) 2428

Radiative corrections \((\varepsilon \equiv \hbar/(4\pi)^2, \ t \equiv \log \mu) \):

\[
\Lambda + \bigcirc + \bigcirc \bigcirc + \ldots
\]

\[
\begin{align*}
V_{\text{eff}} &= V^{(0)} + \varepsilon V^{(1)} + \varepsilon^2 V^{(2)} + \ldots \\
\frac{dV_{\text{eff}}}{dt} &= 0 \\
\frac{dL}{dt} &= \varepsilon \beta_L^{(1)} + \varepsilon^2 \beta_L^{(2)} + \ldots
\end{align*}
\]
The effective potential and the RGEs

Previous global scan studies \rightarrow mostly tree level

V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf, G Shaughnessy, PRD79 (2009) 015018
M. Gonderinger, H. Lim, M. Ramsey-Musolf, PRD86 (2012) 043511 (1-loop & special points)
R. Coimbra, MOPS, R. Santos, EPJ C73 (2013) 2428

Radiative corrections ($\varepsilon \equiv \hbar/(4\pi)^2$, $t \equiv \log \mu$):

$$\begin{align*}
\Lambda + & + \\
V_{\text{eff}} &= V^{(0)} + \varepsilon V^{(1)} + \varepsilon^2 V^{(2)} + \ldots \\
G_{ij}^{-1} &= \Pi_{ij}^{(0)} + \varepsilon \Pi_{ij}^{(1)} + \varepsilon^2 \Pi_{ij}^{(2)} + \ldots \\
\frac{dV_{\text{eff}}}{dt} &= 0 \\
\frac{dL}{dt} &= \varepsilon \beta_L^{(1)} + \varepsilon^2 \beta_L^{(2)} + \ldots
\end{align*}$$

S. Martin, PRD65 (2002) 116003
M. Machacek, M. Vaughn Nucl.Phys. B222 (1983) 83
The effective potential and the RGEs

Previous global scan studies \rightarrow **mostly tree level**

V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf, G Shaughnessy, PRD79 (2009) 015018
M. Gonderinger, H. Lim, M. Ramsey-Musolf, PRD86 (2012) 043511 (1-loop & special points)
R. Coimbra, MOPS, R. Santos, EPJ C73 (2013) 2428

Radiative corrections ($\varepsilon \equiv \hbar/(4\pi)^2$, $t \equiv \log \mu$):

\[
\begin{align*}
\Lambda + & \quad \includegraphics[width=0.5\textwidth]{potential}\quad + \ldots \\
V_{\text{eff}} = & \quad V^{(0)} + \varepsilon V^{(1)} + \varepsilon^2 V^{(2)} + \ldots \quad \frac{dv_{\text{eff}}}{dt} = 0 \\
G_{ij}^{-1} = & \quad \Pi^{(0)}_{ij} + \varepsilon \Pi^{(1)}_{ij} + \varepsilon^2 \Pi^{(2)}_{ij} + \ldots \quad \frac{dL}{dt} = \varepsilon \beta^{(1)}_L + \varepsilon^2 \beta^{(2)}_L + \ldots \\
& \quad \includegraphics[width=0.5\textwidth]{potential2} + \ldots \\
M. Machacek, M. Vaughn Nucl.Phys. B222 (1983) 83
\end{align*}
\]
The effective potential and the RGEs

Previous global scan studies → mostly tree level

V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf, G Shaughnessy, PRD79 (2009) 015018
M. Gonderinger, H. Lim, M. Ramsey-Musolf, PRD86 (2012) 043511 (1-loop & special points)
R. Coimbra, MOPS, R. Santos, EPJ C73 (2013) 2428

Radiative corrections \((\varepsilon \equiv \hbar/(4\pi)^2, \; t \equiv \log \mu) \):

\[
\Lambda + \boxed{O} + \boxed{\ldots}
\]

\[
\left\{ \begin{array}{l}
V_{\text{eff}} = V^{(0)} + \varepsilon V^{(1)} + \varepsilon^2 V^{(2)} + \ldots \\
G_{ij}^{-1} = \Pi_{ij}^{(0)} + \varepsilon \Pi_{ij}^{(1)} + \varepsilon^2 \Pi_{ij}^{(2)} + \ldots \\
\end{array} \right.
\]

\[
\boxed{\frac{dV_{\text{eff}}}{dt}} = \boxed{0}
\]

\[
\boxed{\frac{dL}{dt}} = \varepsilon \beta_L^{(1)} + \varepsilon^2 \beta_L^{(2)} + \ldots
\]

\[
\boxed{\frac{1}{v_i} \frac{dv_i}{dt}} = \varepsilon \gamma_i^{(1)} + \varepsilon^2 \gamma_i^{(2)} + \ldots
\]

S. Martin, PRD65 (2002) 116003

M. Machacek, M. Vaughn Nucl.Phys. B222 (1983) 83

- Got general scalar RGEs @ 2-loop
 R. Costa, A. Morais, MOPS, R. Santos 1411.4048
 + combined SM contributions (checked with SARAH)

- **Checked** special limits

 2HDM @ 1-loop – P.M. Ferreira, D.R.T. Jones JHEP 0908 (2009) 069
 U(n) Complex singlets @ 2-loops – C. Tamarit, PRD90 (2014) 5, 055024
Stability conditions under RGE evolution

Initial data @ $\mu = M_Z$ need $\{L, v_i\}$ relating to input m_i^2
Stability conditions under RGE evolution

Initial data @ $\mu = M_Z$ need $\{L, v_i\}$ relating to input m_i^2, but

$$L(M_Z) = L^{(0)}$$

& $\beta_L = \varepsilon \beta_L^{(1)}$

- 0-loop input relations \Rightarrow 1-loop accuracy RGEs

SM seems to be metastable @ 2-loops!

G. Degrassi et al, JHEP 1208 (2012) 098
Stability conditions under RGE evolution

Initial data @ \(\mu = M_Z \) need \(\{L, v_i\} \) relating to input \(m_i^2 \), but

\[
L(M_Z) = L^{(0)} + \varepsilon L^{(1)}(m^2_i, v_i) + \ldots \quad \text{&} \quad \beta_L = \varepsilon \beta_L^{(1)} + \varepsilon^2 \beta_L^{(2)} + \ldots
\]

- 0-loop input relations \(\Rightarrow \) 1-loop accuracy RGEs
- 1-loop input relations \(\Rightarrow \) 2-loop accuracy RGEs

Used 2-loop \(\leftarrow \) check robustness under small corrections

Stability conditions (imposed also in evolution):
- Boundedness from below: \(\lambda > 0 \wedge d_2 > 0 \wedge \delta_2 > -\sqrt{\lambda d_2^2} \)
- Perturbative unitarity:
 \[|\lambda|, |d_2|, |\delta_2|, \mid \frac{3}{2} \lambda + d_2 \pm \sqrt{(\frac{3}{2} \lambda + d_2)^2 + d_2^2} \mid \leq 16\pi \]

SM seems to be metastable @ 2-loops!

G. Degrassi et al, JHEP 1208 (2012) 098
Stability conditions under RGE evolution

Initial data @ $\mu = M_Z$ need $\{L, v_i\}$ relating to input m_i^2, but

$$L(M_Z) = L^{(0)} + \varepsilon L^{(1)}(m_i^2, v_i) + \ldots & \beta_L = \varepsilon \beta_L^{(1)} + \varepsilon^2 \beta_L^{(2)} + \ldots$$

- 0-loop input relations \Rightarrow 1-loop accuracy RGEs
- 1-loop input relations \Rightarrow 2-loop accuracy RGEs

Used 2-loop \leftarrow check robustness under small corrections

Stability conditions (imposed also in evolution):

- **Boundedness from below**: $\lambda > 0 \land d_2 > 0 \land \delta_2 > -\sqrt{\lambda d_2}$
- **Perturbative unitarity**:
 $$\left\{ |\lambda|, |d_2|, |\delta_2|, \left| \frac{3}{2} \lambda + d_2 \pm \sqrt{\left(\frac{3}{2} \lambda + d_2 \right)^2 + d_2^2} \right| \right\} \leq 16\pi$$
Stability conditions under RGE evolution

Initial data @ $\mu = M_Z$ need $\{L, v_i\}$ relating to input m_i^2, but

$$L(M_Z) = L^{(0)} + \varepsilon L^{(1)}(m_i^2, v_i) + \ldots \quad \& \quad \beta_L = \varepsilon \beta_L^{(1)} + \varepsilon^2 \beta_L^{(2)} + \ldots$$

- 0-loop input relations \Rightarrow 1-loop accuracy RGEs
- 1-loop input relations \Rightarrow 2-loop accuracy RGEs

Used 2-loop \leftarrow check robustness under small corrections

Stability conditions (imposed also in evolution):

- **Boundedness from below:** $\lambda > 0 \land d_2 > 0 \land \delta_2 > -\sqrt{\lambda d_2}$
- **Perturbative unitarity:**

$$\left\{ |\lambda|, |d_2|, |\delta_2|, \left| \frac{3}{2} \lambda + d_2 \pm \sqrt{\left(\frac{3}{2} \lambda + d_2\right)^2 + d_2^2} \right| \right\} \leq 16\pi$$
Stability conditions under RGE evolution

Initial data \(\mu = M_Z \) need \{L, v_i\} relating to input \(m_i^2 \), but

\[
L(M_Z) = L^{(0)} + \varepsilon L^{(1)}(m_i^2, v_i) + \ldots & \beta_{L} = \varepsilon \beta_{L}^{(1)} + \varepsilon^2 \beta_{L}^{(2)} + \ldots
\]

- 0-loop input relations \(\Rightarrow \) 1-loop accuracy RGEs
- 1-loop input relations \(\Rightarrow \) 2-loop accuracy RGEs

Used 2-loop \(\leftarrow \) check robustness under small corrections

Stability conditions (imposed also in evolution):

- Boundedness from below: \(\lambda > 0 \land d_2 > 0 \land \delta_2 > -\sqrt{\lambda d_2} \)
- Perturbative unitarity:

\[
\left\{ |\lambda|, |d_2|, |\delta_2|, \left|\frac{3}{2}\lambda + d_2 \pm \sqrt{\left(\frac{3}{2}\lambda + d_2\right)^2 + d_2^2}\right| \right\}
\]

SM seems to be metastable \(@ \) 2-loops!

G. Degrassi et al, JHEP 1208 (2012) 098
1. Singlet models & Why?

2. Radiative corrections & RGEs

3. Results & The Pheno
Phenomenological constraints imposed in *ScannerS*:

- Electroweak precision observables – STU
- Collider data (LEP, Tevatron, LHC) HiggsBounds/Signals
- Dark matter relic density below Planck measurement & bounds from LUX on σ_{SI} (micrOMEGAs)
RGE stability bands – NO PHENO!

Dark matter phase $m_{H_{\text{new}}} (\text{GeV})$

λ

$\log_{10}(\frac{\mu}{\text{GeV}})$

Vacuum stability consequences

Broken phase $m_{H_{\text{light}}} (\text{GeV})$

$\kappa_{H_{126}}$

$\log_{10}(\frac{\mu}{\text{GeV}})$

Lower bound on new visible scalar mass

If new Higgs found lighter than $\simeq 140$ GeV, dark matter phase disfavoured! Lower bound for heaviest new visible scalar mass
RGE stability bands – NO PHENO!

Vacuum stability consequences

Broken phase

If new Higgs found lighter than ~ 140 GeV
dark matter phase disfavoured!

Lower bound on new visible scalar mass

Lower bound for heaviest new visible scalar

If new Higgs found lighter than ~ 140 GeV
dark matter phase disfavoured!

If new Higgs found lighter than ~ 140 GeV
dark matter phase disfavoured!
Combination with Pheno – Dark matter phase

Known (126 GeV) Higgs coupling vs new mass

All points (3σ) $m_{H_{\text{new}}} < 2m_{\text{DM}}$:

- 3σ
- 2σ
- 1σ

Stable models + saturate relic dens.

Combination with Pheno – Dark matter phase

Dark matter phase

$m_{H_{\text{new}}} (\text{GeV})$

$\kappa_{H_{126}}$

$|vS\delta^2| (\text{GeV})$

$\log_{10}(\mu \text{ GeV})$
Combination with Pheno – Dark matter phase

Known (126 GeV) Higgs coupling vs new mass

All points (3σ)

\(m_{H_{\text{new}}} < 2m_{\text{DM}}: \)

- 3σ
- 2σ
- 1σ

Dark matter phase

\(m_{H_{\text{new}}} \) (GeV)

\(\kappa H_{126} \)

\(\log_{10}(\frac{\mu}{\text{GeV}}) \)

Known (126 GeV) Higgs coupling vs new mass

All 3σ points combined with RGEs
Combination with Pheno – Dark matter phase

Dark matter phase

Known (126 GeV) Higgs coupling vs new mass

All points (3σ)

$m_{H_{\text{new}}} < 2m_{\text{DM}}$

3σ, 2σ, 1σ

Dark matter phase

$m_{H_{\text{new}}} (\text{GeV})$

$\kappa_{H_{126}}$

Log 10 (μ GeV)

Stable models + saturate relic dens.
Conclusions

1. Obtained 2-loop RGEs of minimal complex singlet model with dark matter

2. Found impact of imposing stability up to GUT/Planck scale:
 - Stability bands in both phases
 - A new mixing heavy scalar ($\gtrsim 140$ GeV) in the spectrum
 - New light mixing scalar ($\lesssim 140$ GeV) disfavours dark phase

3. Combined with collider/dark phenomenology and found:
 - LHC & RGEs \Rightarrow stabilizer Higgs, $m_{H_{\text{new}}} \gtrsim 170$ GeV
 - Imposing “completeness” implies $m_{DM} \gtrsim 50$ GeV

THANK YOU!
Conclusions

1. Obtained 2-loop RGEs of minimal complex singlet model with dark matter

2. Found impact of imposing stability up to GUT/Planck scale:
 - Stability bands in both phases
 - A new mixing heavy scalar ($\gtrsim 140$ GeV) in the spectrum
 - New light mixing scalar ($\lesssim 140$ GeV) disfavours dark phase

3. Combined with collider/dark phenomenology and found:
 - LHC & RGEs \Rightarrow stabilizer Higgs, $m_{H_{\text{new}}} \gtrsim 170$ GeV
 - Imposing “completeness” implies $m_{\text{DM}} \gtrsim 50$ GeV
Conclusions

1. Obtained 2-loop RGEs of minimal complex singlet model with dark matter

2. Found impact of imposing stability up to GUT/Planck scale:
 - Stability bands in both phases
 - A new mixing heavy scalar ($\gtrsim 140$ GeV) in the spectrum
 - New light mixing scalar ($\lesssim 140$ GeV) disfavours dark phase

3. Combined with collider/dark phenomenology and found:
 - LHC & RGEs \Rightarrow stabilizer Higgs, $m_{H_{\text{new}}} \gtrsim 170$ GeV
 - Imposing “completeness” implies $m_{DM} \gtrsim 50$ GeV
Conclusions

1. Obtained 2-loop RGEs of minimal complex singlet model with dark matter

2. Found impact of imposing stability up to GUT/Planck scale:
 - Stability bands in both phases
 - A new mixing heavy scalar ($\gtrsim 140$ GeV) in the spectrum
 - New light mixing scalar ($\lesssim 140$ GeV) disfavours dark phase

3. Combined with collider/dark phenomenology and found:
 - LHC & RGEs \Rightarrow stabilizer Higgs, $m_{H_{\text{new}}} \gtrsim 170$ GeV
 - Imposing “completeness” implies $m_{\text{DM}} \gtrsim 50$ GeV

THANK YOU!
BACKUP
Scan parameter	Dark matter phase	Broken phase		
	Min	Max	Min	Max
m_h (GeV)	124.7	127.1	124.7	127.1
m_{s_1} (Gev)				
-Theoretical	0	1000	0	1000
-Phenomenological	12	1000	12	1000
m_{s_2} (Gev)				
-Theoretical	0	1000	0	1000
-Phenomenological	6	1000	12	1000
ν_h (GeV)	246	246	246	246
ν_S (GeV)	0	1000	0	1000
ν_A (GeV)	0	0	0	1000
a_1 (GeV3)	-10^8	0	n/a	
Combination with Pheno – Dark matter phase

New visible Higgs coupling vs mass

Known (126 GeV) Higgs coupling vs new mass

All points (3σ) $m_{H_{\text{new}}} < 2m_{\text{DM}}$:
- 3σ
- 2σ
- 1σ
Combination with Pheno – Dark matter phase

New visible Higgs coupling vs mass

Known (126 GeV) Higgs coupling vs new mass

All points (3σ)

\(m_{H_{\text{new}}} < 2m_{\text{DM}}: \)

\(3\sigma \)

\(2\sigma \)

\(1\sigma \)

Stable models + saturate relic dens.

All 3σ points combined with RGEs

\(\log_{10}\left(\frac{\mu}{\text{GeV}} \right) \)
Combination with Pheno – Dark matter phase

New visible Higgs coupling vs mass

Known (126 GeV) Higgs coupling vs new mass

$m_{H_{\text{new}}} < 2m_{\text{DM}}$:
3σ, 2σ, 1σ

Stable models + saturate relic dens.

All 3σ points combined with RGEs

Marco O. P. Sampaio

gravitation.web.ua.pt/msampaio

University of Aveiro
Combination with Pheno – Broken phase

κ_{H} vs $m_{H_{\text{heavy}}}$

$|m_{H_{\text{light}}}-m_{H_{126}}| > 5$:

- 3σ
- 2σ
- 1σ
Combination with Pheno – Broken phase

$\kappa_{H_{\text{heavy}}}$

$m_{H_{\text{heavy}}}$ < $2m_{H_{\text{light}}}$:

All points (3σ)

$m_{H_{\text{light}}} - m_{H_{126}}$ > 5:

All points (3σ)

$\kappa_{H_{126}}$

$m_{H_{\text{light}}}$ (GeV)

$m_{H_{\text{heavy}}}$ (GeV)

$\kappa_{H_{\text{light}}}$

$m_{H_{\text{light}}}$ (GeV)

$m_{H_{\text{heavy}}}$ (GeV)
Combination with Pheno – Broken phase

\[\kappa_{H_{\text{heavy}}} \quad \log_{10}\left(\frac{\mu}{\text{GeV}}\right)\]

\[m_{H_{\text{heavy}}} \quad (\text{GeV})\]

\[\kappa_{H_{126}} \quad \log_{10}\left(\frac{\mu}{\text{GeV}}\right)\]

\[m_{H_{\text{heavy}}} \quad (\text{GeV})\]

\[\kappa_{H_{\text{light}}} \quad \log_{10}\left(\frac{\mu}{\text{GeV}}\right)\]

\[m_{H_{\text{light}}} \quad (\text{GeV})\]
Error measure

Dark matter phase

$\log_{10}(\mu \text{GeV})$

$\delta_{12}^\lambda(\%)$

$\Delta_{12}(\%)$

initial λ

$\log_{10}(\mu \text{GeV})$

$\Delta_{12}(\%)$
Implemented micrOMEGAS interface → present relic density

Involves:

- Creating LanHep model file
- Link and compile micrOMEGAS routines with ScannerS

Physical idea:

- Only 1 dark A out of equilibrium
- A non-relativistic (CDM)
- relic number density n_A governed by the Boltzmann eq.

\[
\frac{dn_A}{dt} + 3H n_A = - \left< \sigma_A | v | \right> \left(n_A^2 - (n_A^{EQ})^2 \right)
\]

Barger et al. PRD79 (2009) 015018
The origin of the lower bound on the mass of the new heavy scalar is related to the local minimum conditions:

\[
\lambda = \frac{m_{H_{new}}^2 + m_{H_{126}}^2}{v^2} \pm \sqrt{\left[\frac{m_{H_{new}}^2 - m_{H_{126}}^2}{v^2} \right]^2 - \left(\frac{v_{S} \delta_2}{v} \right)^2}.
\]

In the limiting case of no mixing \((v_{S} \rightarrow 0)\) we obtain \(\lambda = 2m_{H_{new}}^2/v^2\) or \(\lambda = 2m_{H_{126}}^2/v^2\). Furthermore

\[
\kappa_{H_{126}}^2 = \frac{1}{2} \left[1 \pm \sqrt{\left(\frac{m_{H_{new}}^2 - m_{H_{126}}^2}{v^2} \right)^2 - \left(\frac{v v_{S} \delta_2}{v} \right)^2} \right].
\]

The upper boundary of the stability band matches the plus sign case. Noting that in the stability region \(m_{H_{new}}^2 - m_{H_{126}}^2 > 0\), then \(\kappa_{H_{126}}^2 = 1\) is only possible when \(m_{H_{new}}^2 \rightarrow +\infty\).
Tree level unitarity module

\((\ldots, |\Phi_i\rangle, \ldots) \equiv \left(\frac{1}{\sqrt{2!}} |\phi_1\phi_1\rangle, \ldots, \frac{1}{\sqrt{2!}} |\phi_N\phi_N\rangle, |\phi_1\phi_2\rangle, \ldots, |\phi_{N-1}\phi_N\rangle \right) \)

Tree level unitarity in \(2 \rightarrow 2\) **high energy scattering:**

\[|\Phi_i\rangle \times |\Phi_j\rangle, \]

Lee, Quigg, Thacker; PRD16, Vol.5 (1977)

In SM, the 2-particle states are \(w^+w^-, hh, zz, hz\) ⇒ constrains quartic coupling \(\lambda\), ⇒ \(m_h^2 < 700\) GeV

In BSM ⇒ bounds on combinations of quartic \(\lambda a_4\)

Reduces to finding eigenvalues of \(a_4(0)\) numerically ⇒ fast!
(\ldots, \left| \Phi_i \right\rangle, \ldots) \equiv \left(\frac{1}{\sqrt{2}} \left| \phi_1 \phi_1 \right\rangle, \ldots, \frac{1}{\sqrt{2}} \left| \phi_N \phi_N \right\rangle, \left| \phi_1 \phi_2 \right\rangle, \ldots, \left| \phi_{N-1} \phi_N \right\rangle \right)

Tree level unitarity in $2 \rightarrow 2$ high energy scattering:

$$\left| \Phi_i \right\rangle \times \left| \Phi_j \right\rangle, \Re \left\{ a_{ij}^{(0)} \right\} < \frac{1}{2}, \quad a_{ij}^{(0)} = \frac{\left\langle \Phi_i \left| i T_{ij}^{(0)} \right| \Phi_j \right\rangle}{16\pi} \sim \sum a_4 \cdots \lambda a_4$$

Lee, Quigg, Thacker; PRD16, Vol.5 (1977)
Tree level unitarity module

\[(\ldots, |\Phi_i\rangle, \ldots) \equiv \left(\frac{1}{\sqrt{2!}} |\phi_1\phi_1\rangle, \ldots, \frac{1}{\sqrt{2!}} |\phi_N\phi_N\rangle, |\phi_1\phi_2\rangle, \ldots, |\phi_{N-1}\phi_N\rangle \right)\]

Tree level unitarity in $2 \rightarrow 2$ high energy scattering:

\[|\Phi_i\rangle \times |\Phi_j\rangle, \Re \{a_{ij}^{(0)}\} < \frac{1}{2}, a_{ij}^{(0)} = \frac{\langle \Phi_i | iT^{(0)} | \Phi_j \rangle}{16\pi} \sim \sum a_4 \ldots \lambda a_4\]

Lee, Quigg, Thacker; PRD16, Vol.5 (1977)

- In SM, the 2-particle states are w^+w^-, hh, zz, hz
 \[\Rightarrow \text{constrains quartic coupling } \lambda, \Rightarrow m_h^2 < 700 \text{ GeV}\]
Tree level unitarity module

\[(\ldots, |\Phi_i\rangle, \ldots) \equiv \left(\frac{1}{\sqrt{2!}} |\phi_1\phi_1\rangle, \ldots, \frac{1}{\sqrt{2!}} |\phi_N\phi_N\rangle, |\phi_1\phi_2\rangle, \ldots, |\phi_{N-1}\phi_N\rangle \right)\]

Tree level unitarity in $2 \rightarrow 2$ high energy scattering:

\[|\Phi_i\rangle \times |\Phi_j\rangle, \Re\{a_{ij}^{(0)}\} < \frac{1}{2}, \quad a_{ij}^{(0)} = \frac{\langle \Phi_i | iT^{(0)} | \Phi_j \rangle}{16\pi} \sim \sum a_4 \ldots \lambda_{a_4}\]

Lee, Quigg, Thacker; PRD16, Vol.5 (1977)

- In SM, the 2-particle states are $w^+ w^-, hh, zz, hz$
 \[\Rightarrow \text{constrains quartic coupling } \lambda, \Rightarrow m_h^2 < 700 \text{ GeV}\]

- In BSM \[\Rightarrow \text{bounds on combinations of quartic } \lambda_{a_4}\]
Tree level unitarity module

\[(\ldots, |\Phi_i\rangle, \ldots) \equiv \left(\frac{1}{\sqrt{2}!} |\phi_1\phi_1\rangle, \ldots, \frac{1}{\sqrt{2}!} |\phi_N\phi_N\rangle, |\phi_1\phi_2\rangle, \ldots, |\phi_{N-1}\phi_N\rangle \right) \]

Tree level unitarity in $2 \rightarrow 2$ high energy scattering:

$$|\Phi_i\rangle \times |\Phi_j\rangle, \Re\{a_{ij}^{(0)}\} < \frac{1}{2}, \quad a_{ij}^{(0)} = \frac{\langle \Phi_i\mid iT^{(0)}\mid \Phi_j\rangle}{16\pi} \sim \sum a_4 \ldots \lambda_{a_4}$$

Lee, Quigg, Thacker; PRD16, Vol.5 (1977)

- In SM, the 2-particle states are w^+w^-, hh, zz, hz
 \[\Rightarrow \text{constrains quartic coupling } \lambda, \Rightarrow m_h^2 < 700 \text{ GeV}\]

- In BSM \[\Rightarrow \text{bounds on combinations of quartic } \lambda_{a_4}\]

- Reduces to finding eigenvalues of $a_{ij}^{(0)}$ numerically \[\Rightarrow \text{fast!}\]