The Evolution of Temperature and Bolometric Luminosity in Type-II Supernovae

T. Faran,1* E. Nakar,2 and D. Poznanski2
1 Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
2 School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel.

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
In this work we present a uniform analysis of the temperature evolution and bolometric luminosity of a sample of 29 type-II supernovae (SNe), by fitting a black body model to their multi-band photometry. Our sample includes only SNe with high quality multi-band data and relatively well sampled time coverage. Most of the SNe in our sample were detected less than a week after explosion so their light curves cover the evolution both before and after recombination starts playing a role. We use this sample to study the signature of hydrogen recombination, which is expected to appear once the observed temperature drops to \(\approx 7,000 \) K. Theory predicts that before recombination starts affecting the light curve, both the luminosity and the temperature should drop relatively fast, following a power-law in time. Once the recombination front reaches inner parts of the outflow, it sets the observed temperature to be nearly constant, and slows the decline of the luminosity (or even leads to a re-brightening). We compare our data to analytic studies and find strong evidence for the signature of recombination. We also find that the onset of the optical plateau in a given filter, is effectively the time at which the black body peak reaches the central wavelength of the filter, as it cools, and it does not correspond to the time at which recombination starts affecting the emission.

1 INTRODUCTION

Type II supernovae (SNe) are defined by the prominent hydrogen lines in their spectra. They are believed to originate from the collapse of an iron core of massive stars (\(\gtrsim 8 M_\odot \)) that retain their hydrogen envelope. The most common subtype, comprising \(\sim 70 \) percent of all type II SNe, is characterized by a phase of roughly constant magnitude in the optical bands, hence their name type II-Plateau (II-P). This plateau phase typically starts \(1-2 \) weeks after the explosion and lasts for \(\sim 100 \) d. Pre-explosion images have revealed that the progenitors of this class are red supergiants, in the mass range of (7–16 \(M_\odot \)) (Smartt 2015; for individual progenitor detections see e.g. Van Dyk et al. 2003a, Van Dyk et al. 2003b, Van Dyk et al. 2012). Type II-Linear (II-L) SNe constitutes another subclass of type II SNe (e.g., Patat et al. 1994; Arcavi et al. 2012; Faran et al. 2014a,b). They are spectroscopically very similar to type II-P events (Faran et al. 2014b, see), but their light curves are declining in all bands. In both types (II-P and II-L) there is typically a sharp drop in the luminosity after \(\sim 100 \) d and the luminosity starts to follow roughly the exponential decay expected from emission powered by the decay of \(^{56}\text{Ni} \). The distinction between these two classes is not well defined, and studies have used different definitions for II-L SNe. However, several recent works have shown that there exists a continuum of decline rates between slow declining and fast declining SNe (Anderson et al. 2014; Faran et al. 2014a), which suggests that a separation into two different classes may be artificial. Other type II sub-classes will not be discussed here. In this paper we focus on the light curves of type II-P and type II-L SNe, without making the distinction between the two types, and refer to them in short as type II SNe. Our goal here is to perform a uniform analysis of the bolometric luminosity and temperature evolution of a large sample of type II SNe and to compare our findings to theoretical models, focusing on the transition to the plateau, which takes place during the first two weeks.

There are several dozen type II SNe with detailed multi-wavelength observations. These are typically presented and analyzed individually (e.g., Leonard et al. 2002b; Maguire et al. 2010; Pastorello et al. 2009; Inserra et al. 2011; Takáts et al. 2014, 2015; Fraser et al. 2011; Tomasella et al. 2013; Dall’Ora et al. 2014; Barbarino et al. 2015; Valenti et al. 2015). There are only a few studies that analyze the bolometric properties and temperatures of a sample of type-II SNe. Bersten & Hamuy (2009) extracted bolometric light curves and effective temperature evolution for 33 SNe II-P, using calibrations for bolometric corrections from 3 well observed SNe. Valenti et al. (2016) derived the effective temperature from black body fits to photometric data of 30 type-II SNe, and calculated pseudo-bolometric light curves by integration over the optical bands. Lusk (2016) provides bolometric light curves and temperatures for 5 peculiar type II-P SNe that
originated from blue supergiants, by integrating over the observed photometry and correcting for the missing flux in the UV.

The theoretical interpretation of type II light curves is that the emission until the end of the plateau is dominated by the cooling emission, i.e., the leakage of radiation energy that was deposited in the envelope by the shock that unbinds it (Falk & Arnett 1977). Energy deposited by the decay of ^{56}Ni may contribute to this phase (e.g., Falk & Arnett 1977; Young 2004; Utrobin 2007), but this contribution is found to be subdominant (Nakar et al. 2016). The end of the plateau marks the release of all the internal energy deposited by the shock in the envelope. At later times the SN enters its nebular phase and the entire luminosity is driven by the decay of ^{56}Ni.

During the early stages of the light curve (~1–3 weeks) the leakage of radiation is facilitated mostly by the drop in the optical depth of the outflow due to its expansion (Arnett 1980). Models predict that during this phase both the temperature and the bolometric luminosity drop roughly as power-laws in time (Nakar & Sari 2010; Rabinak & Waxman 2011; Shusman et al. 2016a). Once the observed temperature drop to ~ 7000 K, hydrogen recombination becomes important and a recombination front starts moving from the outside towards inner parts of the ejecta. During this phase, recombination, rather than expansion, is the main driver of the drop in the optical depth of the outflow. As a result the observed temperature remains almost constant while the luminosity starts dropping much more slowly or even rises.

In this work we derive the temperatures and bolometric evolution of 29 type-II SNe with high quality multi-band light curves, by fitting a black body spectrum to their spectral energy distribution (SEDs). As will be discussed extensively below, these are far from trivial. SNe II are not blackbodies, and at different times several effects lead to systematic offsets from a pure black body in various bands. Nevertheless, guided by the data and theoretical insight, we derive the underlying black body properties. We compare the temporal evolution of the temperature and luminosity to the theoretical predictions, paying special attention to signs of the recombination processes in the envelope. In Section 2 we describe the contents of our SN sample and the data, in Section 3 we explain how the black body fits to the data are done. Section A describes the results of the fitting and the possible effect of extinction on the results, and Section 5 presents a comparison of our results to theoretical expectations. We summarize our results in Section 6.

2 THE SAMPLE

We construct from the literature a sample of 29 type-II SNe with good temporal coverage and multi-band photometry. The sample mostly relies on the SNe collected in Pejcha & Prieto (2015), Faran et al. (2014a) and (Faran et al. 2014b). The SNe in the sample were required to have sufficiently early data (starting less than 20 days after the explosion) and a well sampled light curves so the early behavior could be compared to the late behavior and to theoretical models. Some objects did not enter the sample despite having well sampled photometric curves, because their data was not good enough to produce good quality temperature and luminosity curves. Ten of the objects have *Swift* UV observations, 10 have JHK data, and 7 objects have both JHK and UV. The photometric data were corrected for galactic extinction according to Cardelli et al. (1989), but not for host galactic extinction, since there is no method that can provide an accurate estimate for $E(B-V)_{\text{host}}$ (see for example the discussion in Faran et al. 2014a). We note however, that Faran et al. (2014a) found that $E(B-V)_{\text{host}}$ is typically small, of order 0.1 for nearby SNe. The explosion day is set as the mid-point between the first detection and the last non-detection of the SN, and the uncertainty is conservatively set as half the difference. Distance measurements were collected from NED1 and averaged, using only distances based on the Tully-Fisher method, Cepheids, and SNe Ia. All of the objects are at low redshift with $z<0.03$. The SN properties and their references are summarized in Table 1.

3 BLACK BODY FITTING

We calculate the temperature and bolometric luminosity of the SNe at each epoch by fitting a black body to the photometric data, according to $L_{\text{bol}} = 4\pi\sigma T^4 R^2$. We create a two-dimensional grid of temperatures evenly spaced by 20K, and black body radii (R) in the range of 10^{12}–10^{16}cm with spacing that corresponds to 0.002 mag. We then compute synthetic photometry from the black body distribution for every T and R values in each of the filter bands. Since data in different photometric bands were sometimes taken at different epochs, linear interpolation is used to account for the missing epochs. The interpolation is constrained to a maximum of 10 days from the nearest data point at early or late phases (before day 10 or after day 70), and to 20 days during intermediate phases, where the SN properties evolve more slowly.

A correct estimation of the photometric uncertainties is needed when fitting a black body to the photometry. Due to the relatively small number of data points, the fit is sensitive to errors that are under- or over-estimated. We therefore set a minimum value of 0.05 magnitudes to the error (such that the error is the maximal value between the given photometric error and 0.05 mag), which is a typical value for the scatter in our light curves. We assign the effective wavelength of the filter transmission curve to each band, and fit the data to find the black body temperature and radius by minimizing χ^2. The uncertainty on the temperature is found by marginalizing the likelihood over the radius and finding the contour in which $\chi^2 = \chi^2_{\text{min}} + 1$. To find the uncertainty in the luminosity, we calculate L_{bol} for every T and R, and find the contour in which $\chi^2 = \chi^2_{\text{min}} + 1$. The maximal and minimal values of L_{bol} are taken to be the upper and lower errors, respectively.

The SN spectrum is expected to follow a black body shape only in a limited frequency range, where $h\nu \sim kT$. At high frequencies the flux is suppressed by line blanketing, and at much lower frequencies, in the Rayleigh-Jeans (RJ) regime, it is predicted to be brighter than the RJ tail due

1 The NASA/IPAC Extragalactic Database (NED) is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA).
to the fact that the thermalization depth in this range is frequency dependent (Shussman et al. 2016a). We observe both effects in our data, and fit a black body only to the wavelength regions where it provides a good approximation.

In agreement with the theoretical predictions, we see that at high temperatures JHK observations cannot be well described by a standard black body spectrum, and tend to the fact that the thermalization depth in this range is frequency dependent (Shussman et al. 2016a). We observe both effects in our data, and fit a black body only to the wavelength regions where it provides a good approximation.

As the temperature drops below $\sim 10,000 - 12,000K$, line blanketing by iron group elements becomes strong and creates a deficiency in the measured UV flux, compared to a pure black body. The main species responsible for the strong absorption are Fe III and Ti III (Kasen & Woosley 2009). Line opacity is highly sensitive to the temperature, and even a slight cooling of the photosphere induces a fast recombination of Fe III and Ti III to Fe II and Ti II (Kasen & Woosley 2009; Eastman et al. 1996). The flux absorption becomes stronger and shifts further to the optical bands as the temperature continues to decrease to $8,000K$. Figure 1 demonstrates the effect of line blanketing on the SED of SN2012aw on day 41. Data taken at wavelengths shorter than 5000 were found to be affected by line blanketing and were excluded from the fit (grey points), and only bands with wavelengths longer than 5000 were used (red points). The resulting black body at a temperature of $6420K$ fits the observed spectrum very well and is also in very good agreement with a spectrum taken at the same epoch. The observed spectrum also confirms the flux cut-off around the B-band. In order to determine the time where the flux in each photometric band is suppressed by line-blanketing, we run the black body fitting procedure on each of the following filter groups: UV-UBVRIJHK, UBVRIJHK, BVRIJHK, VRIJHK, and RIJHK, i.e., each time excluding the bluest band. We first determine, as an example, when the flux in the UV bands falls below the black body curve. This means that until that epoch we can use the UV-UBVRIJHK or right on it. However, as the temperature continues to decrease to ~ 5000 K, 1–17 (2017)

Table 1. SN Sample Details

SN name	Bands	Explosion day (MJD)	μ	z_{post}	Reference
SN1999em	U,B,V,R,I,J,H,K	51476 ± 4	29.84 ± 0.05	0.002	Leonard et al. (2002a)
SN1999gi	B,V,R,I	51519 ± 4	30.24 ± 0.04	0.002	Faran et al. (2014a)
SN2000dc	B,V,R,I	51762 ± 4	32.93 ± 0.14	0.010	Faran et al. (2014a)
SN2001cm	B,V,I	52064 ± 1	33.18 ± 0.10	0.011	Faran et al. (2014a)
SN2001cy	B,V,R,I	52086 ± 6	33.01 ± 0.12	0.015	Faran et al. (2014b)
SN2001do	B,V,R,I	52134 ± 2	32.35 ± 0.15	0.010	Faran et al. (2014b)
SN2001fa	B,V,R,I	52198 ± 3	34.24 ± 3.42	0.017	Faran et al. (2014b)
SN2001x	B,V,R,I	51963 ± 5	31.59 ± 0.11	0.005	Faran et al. (2014a)
SN2002gd	B,V,R,I	52553 ± 15	32.90 ± 0.21	0.009	Faran et al. (2014a)
SN2003hf	B,V,R,I	52684 ± 2	35.51 ± 3.55	0.031	Faran et al. (2014b)
SN2003ik	B,V,R,I	52860 ± 2	34.41 ± 0.20	0.023	Faran et al. (2014b)
SN2003iq	B,V,R,I	52920 ± 2	32.28 ± 0.08	0.008	Faran et al. (2014a)
SN2003z	B,V,R,I	52665 ± 5	31.23 ± 3.12	0.004	Faran et al. (2014a)
SN2004A	B,V,R,I	53087 ± 7	31.61 ± 0.32	0.003	Gurugubelli et al. (2008)
SN2004bu	B,V,R,I	53228 ± 2	33.94 ± 0.13	0.017	Maguire et al. (2010)
SN2004at	U,B,V,R,I,J,H,K	53271 ± 1	28.41 ± 0.07	0.000	Maguire et al. (2010)
SN2005ca	Swift UVOT,U,B,V,R,I,J,H,K	53549 ± 0	29.36 ± 0.01	0.002	Pastorello et al. (2009)
SN2006bp	Swift UVOT,U,B,V,r,i	53834 ± 1	31.11 ± 0.05	0.004	Quimby et al. (2007)
SN2007od	Swift UVOT,U,B,V,R,I,J,H,K	54399 ± 8	32.29 ± 0.17	0.006	Inserra et al. (2011)
SN2008in	Swift UVOT,U,B,V,R,I,J,H	54822 ± 10	30.52 ± 0.09	0.005	Roy & Kumar (2012)
SN2009N	Swift UVOT,B,g,V,r,i,l,J	54845 ± 11	31.68 ± 0.08	0.003	Takáts et al. (2014)
SN2009bw	Swift UVOT,U,B,V,R,I,J,H,K	54917 ± 3	30.60 ± 0.02	0.004	Inserra et al. (2012)
SN2009ib	U,u,B,g,V,r,i,l,J	55041 ± 10	31.48 ± 0.31	0.004	Takáts et al. (2015)
SN2012A	Swift UVOT,U,B,g,V,r,i,l,J,H,K	55929 ± 5	29.72 ± 0.17	0.003	Tomasella et al. (2013)
SN2012aw	Swift UVOT,U,u,B,g,V,r,i,l,J,H,K	56002 ± 1	29.89 ± 0.07	0.003	Bose et al. (2013)
SN2012cc	u,B,g,V,r,i,l,J,H,K	56143 ± 10	31.57 ± 0.45	0.005	Barbarino et al. (2015)
SN2013ab	Swift UVOT,U,B,g,V,r,i,l	56340 ± 1	31.71 ± 0.66	0.005	Bose et al. (2015a)
SN2013by	Swift UV,u,B,g,V,r,i	56407 ± 11	30.84 ± 0.15	0.004	Valenti et al. (2015)
SN2013ej	Swift UV,*U,u,B,g,V,r,i,l	56497 ± 1	29.77 ± 2.98	0.002	Richmond (2014)

References

- Leonard et al. (2002a)
- Pejcha & Prieto (2015)
- Kasen & Woosley (2009)
- Dall’Ora et al. (2014)
- Quimby et al. (2007)
- Inserra et al. (2011)
- Tomasella et al. (2013)
- Barbary et al. (2015)
- Inserra et al. (2012)
- Takáts et al. (2015)
- Faran et al. (2014a)
- Faran et al. (2014b)
- Faran et al. (2014a)
- Inserra et al. (2011)
- Leonard et al. (2002a)
- Faran et al. (2014a)
- Richmond (2014)
incide with the intersection between the temperature curves calculated with the bluest band, and the one calculated without it. Eventually, we construct the final temperature and luminosity curves using the transitions determined for each of the objects.

At early phases, when the temperature is higher than 10^4K, the peak of F_λ occurs at wavelengths shorter than 3000 and UV observations are therefore crucial to constrain the fit parameters. JHK observations lie far from the peak of F_λ even at low temperatures (\sim6000 K), and therefore do not play a critical role in constraining the temperature. However, due to the exclusion of many of the bluer bands by line blanketing, it is necessary to have more data points in the red to improve the fit, meaning that JHK data become important at late epochs.

In order to quantify the importance of UV and InfraRed (IR) photometry, we run a simulation and estimate the expected errors on the temperature in the absence of UV and IR. We produce synthetic photometry from black body distributions at temperatures 5000K–25,000K in 1000K bins, simulating a spread in the data using the typical photometric errors in each band. We then fit the synthetic data to a black body, repeating the process 100 times per temperature bin. The mean value and standard deviation (STD) of the best-fitting temperatures are computed, where we treat the STD as a measure of the typical statistical error. The uncertainties deduced from the simulation are presented as a function of the temperature in Figure 2. From the upper panel of Figure 2 one can see that at temperatures of \sim20,000K, the uncertainties on the temperature are quite high (over 800K) even with UV data. This reflects the fact that F_λ peaks at \sim1300, while the effective wavelength of the bluest filter we use ($Swift$–uvw2) is only at 2230. Below T=15,000K, fits that do not include UV (but do include U) are able to reproduce the temperature with an accuracy of \sim500K. When U-band data is excluded, the fit reaches that accuracy below T=12,000K.

At lower temperatures, corresponding to late epochs, most of the flux at wavelengths shorter than the V band can be used. In the bottom panel of Figure 2 it is evident that JHK data are important at T>7000K if the B band is not included, as the STD of the fit temperature is relatively high and rises rapidly with the model temperature. Although fitting with the V, R and I bands is still able to produce errors below 10%, we will see in Section 4.1 that the flux in the V band is typically absorbed by iron blanketing at \sim6000K. In the absence of JHK observations, we are left with only 3 data points for many objects - V, R and I. In these cases, it is impossible to determine when the V band falls below the black body curve, since we cannot examine the fit done without V, having only 2 data points at longer wavelengths. As a result, when an object does not have JHK data we typically cannot trust the temperature curve below \sim6000K and we do not fit the data below this temperature.

Throughout this paper, we consider only objects with U or UV data to deduce physical parameters at high temperatures (above \sim10,000K), and objects with JHK data at low temperatures (below \sim6000K).

![Figure 1](image.png)

Figure 1. Black body fit of SN2012aw on day 41. The grey points represent bands that are affected by iron-blanketing and were therefore excluded from the fit. The black body curve fits the data very well above 5000, whereas at shorter wavelengths the SED is no longer represented by a black body. A spectrum taken on day 41 (Bose et al. 2013) is also shown to coincide well with the data, and confirms the flux cutoff around the B-band.

4 RESULTS

4.1 Temperature

The temperature curves are computed from the black body fits at each epoch and are presented in Figure 3 (a list of all the results is also available in Appendix A). After the explosion, the envelope expands and cools adiabatically. The typical temperatures during the first 10 days are above 10,000 degrees. In cases where UV data exist, the typical errors for that temperature range are smaller than \sim500K, and are comparable to the errors predicted by our simulations (see Section 3). Between 20 and 40 days after the explosion, the temperature curves start evolving more slowly compared to early phases. The flattening typically happens between 6000K and 7000K, and is therefore consistent with being associated with a recombination wave that propagates into the envelope and dictates the black body temperature to be the temperature of hydrogen recombination. This effect is analyzed and discussed in Section 5.2. We note that objects without JHK data do not show this flattening, since as discussed in Section 3, for these SNe we were not able to determine the time where the V-band can no longer be used and the fit stops when the temperature reaches 6000K.

As in Valenti et al. (2016), we observe that excluding UV data from the fit systematically leads to lower temperatures. This is true also for U, B and V, where the temperature produced without the bluest band is lower than that produced with it, before its flux is affected by iron blanketing. Since we do not observe this behavior in the simulation described in Section 3, the effect is not statistical and points to a deviation of the spectrum from a black body. We suggest that this is related to the re-distribution of energy that is absorbed by line blanketing. Most of the absorbed...
radiation is expected to be re-emitted close to the absorption wavelength (see Pinto & Eastman 2000). As a result, the flux of the bluest band we use will be higher than the black body at the same temperature. Since the bands near the peak of the spectrum have the highest effect on the fit, that will result in higher fit temperatures. We redo the fits without the bluest band, and measure the flux under the resulting black body curve. We then measure the flux excess in the bands that lie above the black body curve, and the flux deficiency (due to line blanketing) in the bands below the black body curve and find that they are of the same order. This reinforces the assumption that the absorbed radiation by iron group elements is emitted at wavelengths close to the black body peak, and may add an uncertainty to the temperature and bolometric luminosity that we measure. Above 10,000K, the temperatures calculated with the bluest band are ≈10% higher than the ones calculated when it is omitted, and the difference becomes less significant at lower temperatures. The effect on the luminosity is higher and can get up to ≈10–20%. Therefore, the temperatures and bolometric luminosities presented in this paper can be overestimated by up to ≈10–20%.

We record the temperatures at which the flux in different bands starts being affected by line blanketing, and find that the typical temperature for UV is ≈11,000K, and ≈8000K in the U and B bands. The V band seems to be affected around ≈6000K. These results agree with the temperatures shown in Eastman et al. (1996)’s Figure 7.

Bersten & Hamuy (2009) fit a black body to the photometry of SN1999em corrected to $A_V^{\text{host}} = 0.18$ and present its temperature and bolometric luminosity curves. After correcting our data to $A_V^{\text{host}} = 0.18$, we extract the temperature curve and compare it to the middle panel in Bersten & Hamuy (2009)’s Figure 8. We find a good agreement between the values of the temperature and its evolution. The temperature computed at the first epoch, ~5 days, is around 13,000K in both curves and decreases to show a "bump" around day 16. Eventually, both curves settle on a temperature of ~6000K in the middle of the plateau. Valenti et al. (2016) also fit a black body to several SNe that are included in our sample, but unfortunately the values are not provided, and we cannot perform a quantitative comparison.

4.2 Luminosity

The bolometric luminosity for each of the SNe is computed from the fit and the curves are presented in Figure 4. Similarly to the temperature, the luminosity typically decreases as a power law during early epochs. The luminosity in most of the objects relents from its fast decline and starts to decrease more moderately, where the flattening seems to coincide with the break in the temperature. There are 3 objects whose luminosity not only flattens but also starts to rise. This happens for SN2004A and SN2009N at day 30 after explosion, and for SN2005cs at day 23. The transition in luminosity happens quite sharply and occurs when the temperatures are 6000K, 5900K and 6900K for the 3 objects, respectively. The change in the evolution of the luminosity is probably also related to the recombination of the envelope. We will discuss this further in Section 5. At the end of the plateau, the bolometric luminosity falls sharply.

We compare our bolometric luminosity curves to pseudo-bolometric curves from the literature by correcting for the different assumed distances to the SNe, and shifting in time to match the assumed explosion day. While broadly speaking there is mostly agreement between our work and previous efforts, there are still some discrepancies. The comparison is presented in Figure 5. Pseudo-bolometric luminosities that were not computed with UV nor JHK data, as done for SN2009bw, SN2008in, and SN2004A, can be underestimated by up to 30%.

4.3 The Effect of Extinction

Host interstellar or circumstellar dust can introduce extinction that is not corrected for in our data (see Section 2),
Figure 3. The temperature as a function of time for each SN in the sample.
Figure 4. The bolometric luminosity curves as calculated from the black body fits for each SN in the sample.
resulting in an underestimation of the fit temperatures and luminosities. Although it is quite difficult to find a good estimation for A_V^{bol}, it is possible to quantify the effect a certain A_V value has on the fit parameters as a function of the temperature. We repeat the fitting procedure two more times assuming $E(B-V) = 0.1$ and $E(B-V) = 0.05$, and $T_V = 3.1$, using the galactic extinction laws of Cardelli et al. (1989). As most type-II SNe in or sample are expected to have extinction of $A_V = 0.1$ (Faran et al. 2014a), this value is effectively an upper limit on the possible required corrections.

In Figure 6 we present the relation between the best fit temperatures resulting from the correction to $E(B-V)^{\text{bol}} = 0.1$ ($A_V^{\text{bol}} \approx 0.3$) and $E(B-V)^{\text{bol}} = 0.05$ ($A_V^{\text{bol}} \approx 0.1$) as a function of the uncorrected SN temperatures. The dependence of the corrected temperatures on $T(A_V^{\text{bol}} = 0)$ can be well described by a third order polynomial, according to the following relations:

$T(A_V = 0.3) \approx 3.17T_3^3 - 58T_3^2 + 1630T_3 - 1730$ \hspace{1cm} (1)

and:

$T(A_V = 0.15) \approx 0.69T_3^3 - 9.14 \times 10^{-2}T_3^2 + 1150T_3 - 424$ \hspace{1cm} (2)

where $T_3 = T(A_V = 0)/10^3$. These relations offer a convenient way to estimate the error on a fit temperature, in the typical extinction range of $A_V^{\text{bol}} = 0 - 0.3$ mag.

Figure 5. Comparison between the bolometric luminosity curves calculated in this paper (blue) and pseudo-bolometric curves from the literature (red), where the integrated wavelength range is specified. ‘bolometric’ light curves include bolometric corrections or are based on black body fits. Otherwise, the light curves are the integrated luminosity in the observed bands without any bolometric corrections. The luminosity of SN1999em presented here was calculated after correcting for $A_V = 0.18$, in order to compare to Bersten & Hamuy (2009). Discrepancies between the curves at early times are probably due to missing UV flux in the pseudo-bolometric curves. SN2012ec (Barbarino et al. 2015), SN2012aw (Dall’Ora et al. 2014), SN2012A (Tomasella et al. 2013), SN2013ab (Bose et al. 2015a), SN2005cs (bolometric corrections) (Pastorello et al. 2009), SN2004et (Maguire et al. 2010), SN2004A (Hendry et al. 2006; Maguire et al. 2010), SN2012aw (Dall’Ora et al. 2014), SN2012A (Tomasella et al. 2013), SN2013ab (Bose et al. 2015b), SN2009N (Bersten & Hamuy 2009), SN2008in (Roy & Kumar 2012), SN2009em (Bersten & Hamuy 2009), SN2009bw (Inserra et al. 2012), SN2008in (Roy & Kumar 2012), SN2005cs (bolometric corrections) (Pastorello et al. 2009), SN2004et (Maguire et al. 2010), SN2004A (Hendry et al. 2006; Maguire et al. 2010), SN1999em (Bersten & Hamuy 2009), SN2007od (Inserra et al. 2011), SN2013ej (Bose et al. 2015b).
Figure 6. The best fit temperatures resulting from an extinction correction of \(A_V^{\text{host}} = 0.3 \) (black dots) and \(A_V^{\text{host}} = 0.15 \) (blue dots), as a function of \(T(A_V) = 0 \). The grey dashed line indicates \(T = T^{\text{host}}_{\text{bol}} \). The third order polynomial fits to the data are plotted in red and can be used to translate between the uncorrected and corrected temperatures.

Since the effect of extinction on the RJ is weak, we expect the luminosity to behave as \(L_{AV} \propto \frac{T_{AV}}{T_0} \) at high temperatures. We fit the data with \(T(A_V) > 8000K \) according to this relation for both \(A_V=0.3 \) and \(A_V=0.15 \) and present the data and the fit in Figure 7. This, together with the previous relation for the temperatures, allows also the bolometric luminosity to be corrected for extinction as the relation holds down to low temperatures of \(\sim 8000K \). Below that temperature, the corrections to \(L \) are less than 10\%, which is of the order of the uncertainty.

5 COMPARISON TO THEORY

5.1 The Temperature at the Beginning of the Plateau

The formation process of the plateau in Type-II SNe and the origin of its shape (i.e., its luminosity and temperature evolution) are not fully understood. The common wisdom states that the plateau is formed due to a recombination wave that propagates into the envelope in Lagrangian coordinates. The recombination front defines the photosphere and therefore also fixes its temperature to the temperature of hydrogen recombination in the envelope. According to this view, the plateau should start when \(T = 7500K \). However, more detailed theoretical models show that the peak in each photometric band is observed slightly before the black body peak enters the observed band. This is why redder bands peak at later time. Recombination prevents the observed temperature from falling below \(\sim 6000K \), which is the main reason that after the peak the luminosity in the optical and IR bands falls rather slowly, and creates what is referred to as the plateau. We therefore expect to find photospheric temperatures higher than \(7500K \) when the plateau starts.

We define the plateau starting time, \(t_p \), in a specific band to be the day at which the light curve changes by less than 0.02 magnitudes per day. To find \(t_p \), we fit a low order polynomial to the first 15-20 days and find the day where the derivative equals 0.02 mag/day. In order to estimate the uncertainties in \(t_p \), we use the photometric errors of the data to generate random Gaussians errors, from which we create simulated data. We run the fit 1000 times on simulated data and use the mean of the results as the value of \(t_p \) and the standard deviation as its uncertainty. The value of \(t_p \) can be sensitive to the order of the polynomial and to the time range chosen for the fit. The maximal discrepancies introduced by changing those parameters are typically not larger than one day. We therefore set a minimal error of one day on \(t_p \).

In Table 2 we present the \(t_p \) values computed in the \(R \) and \(I \) bands. Some objects have only an upper limit on \(t_p \), since they were first observed already on the plateau. Nevertheless, for most of the objects it is clear that the plateau in \(R \) starts slightly before the plateau in \(I \), as predicted by theory. In Figure 8 we demonstrate the different locations of the plateau in the \(R \) and in the \(I \) band for SN2012aw.

The temperatures associated with \(t_p \) in \(R \) and \(I \) are computed by interpolating the temperature curves to \(t_p \). We plot the temperatures at \(t_p \), i.e. \(T_{p} = T(t = t_p) \) in the \(R \)-band for each SN in Figure 9. The blue arrows indicate the effect that \(A_V^{\text{host}} = 0.3 \) would have on \(T_p \) at \(T = 8000K \) and \(T = 11,000K \), according to equation 1. Objects with only lower limits (i.e., first data point lies already on the plateau) are presented by red triangles. Almost all \(T_p \) values lie above \(8000K \), and many of them above \(10,000K \). The low luminosity SN2005cs shows an exceptionally high lower limit of \(T_p \gtrsim 16,500K \). The observed range of \(T_p \) (with the exception of SN2005cs) is consistent with the theoretical light curves prediction by Shussman et al. (2016a). For example, the predicted \(R \)-band \(T_p \) for explosion energy of \(10^{51} \) erg of progenitors with radii
in the range of $400 - 800 \, R_\odot$ and ejecta masses in the range of $7 - 15 \, M_\odot$ is between about $10,000 \, K$ and $12,000 \, K$.

5.2 Signs of Recombination in the Temperature and Luminosity Curves

As discussed in Sections 4.1 and 4.2, the evolution of the temperature and the bolometric luminosity is characterized well by a power-law, that flattens when the temperature drops to $\sim 6000 - 7000 \, K$. We compute the early values of the logarithmic derivatives of the luminosity and temperature, α_L and α_T, respectively, during the first 15 days after the explosion. SNe that do not have U or UV data are excluded, since the temperatures at these epochs are typically higher than $12,000 \, K$, where U-band data (or bluer) are important to constrain the fit (see Section 3). We also calculate the late logarithmic derivatives between 40 and 100 days, while the SN light curve is on the plateau. For this we choose only SNe with IR data for the reasons discussed in Section 3. The results are summarized in Table 3. The best fit values for the early power law are highly sensitive to the exact value of the zero point in time. Since we make conservative explosion day estimates (see Section 2), some of the uncertainties on the explosion day are as large as 5-10 days, and introduce non-negligible uncertainties to the values of the power law. The uncertainty values introduced from the fit itself and from the uncertainty on the explosion day are presented separately in Table 3. The values in the parentheses are the errors produced by the fit, and the upper and lower values are the differences from the α values that we get using the lower and upper boundaries of the explosion day estimate, respectively. In cases where the explosion day uncertainty is large (as in SN2013by, SN2012ec, SN2009jb and SN2008in) the upper and lower uncertainties are quite large. However, the explosion day uncertainty naturally has very little effect on the late values of α.

An example of the fit for α_T is shown in Figure. 10. It depicts the temperature curve of SN2005cs, on a logarithmic scale. The best-fit logarithmic derivative computed during the first 15 days is $\alpha_T = -0.47 \pm 0.03$, and during days 40-100 is $\alpha_T = -0.06 \pm 0.07$. There is a clear flattening of the temperature curve between $t=19d$ and $t=35d$, when the temperature is between $6500 \, K$ and $7500 \, K$. In Figure 11 we present the temperature curves and the power law fits for all the objects that have both UV and IR data. From the values of the logarithmic derivatives (table 3) it is clear that at some point the temperature evolution flattens. At early time most values are in the range $\Delta T_{\text{early}} \sim -0.6 - -0.2$ while at late time all best fit values are in the range $\Delta T_{\text{late}} \sim -0.15 - 0$. The weighted mean values of the logarithmic derivatives are $\Delta T_{\text{early}} = -0.38 \pm 0.01$ and $\Delta T_{\text{late}} = -0.08 \pm 0.02$. Although it is not possible to point out the exact temperature at the transition, one can see that the range of temperatures between the two power law regimes is $\sim 6000-7000 \, K$, which is the temperature range expected from hydrogen recombination in type-II SN envelopes.

We also calculate the early and late logarithmic derivatives of L_{bol}. Similar to the temperature, the bolometric luminosity curves generally have a higher logarithmic derivative in the early phases. Most of the values of α_L_{early} are between -0.3 and -0.9, while most values of α_L_{late} are between -0.6 and -0.2, with weighted mean values of $\bar{\alpha}_{L_{\text{early}}} = -0.46 \pm 0.01$ and $\bar{\alpha}_{L_{\text{late}}} = -0.22 \pm 0.03$. When including the effect of extinction, we find that the values of α_T, α_L early and α_L early increase by ~ 0.1 and ~ 0.2 respectively, with an extinction value of $E(B-V) = 0.1$mag. This result is also consistent with the expectation from recombination which is expected to cause a flatter, or even rising, light curves once the recombination front reaches facilitate the release of radiation from inner regions.

An interesting question is whether there are correlations between the early and late evolution, or between temperature and luminosity evolution. In Figure 12 we plot $\alpha_{L_{\text{late}}}$ vs. $\alpha_{T_{\text{early}}}$ (upper panel) and $\alpha_{L_{\text{late}}}$ vs. $\alpha_{L_{\text{early}}}$ (lower panel). The color coding refers to the decline rate of the V-band light curve per 100 days, calculated by linearly fitting the magnitude decline rate between day 25 and 75. The figures show no clear correlations between early and late evolution or between the late decline rate and the temperature evolution (early or late). However, there is a linear correlation between α_T and α_L.

Shussman et al. (2016a) provides theoretical predictions of $\alpha_{L_{\text{early}}}$ and $\alpha_{L_{\text{early}}}$ based on numerical simulations of SN explosions of a large set of RSG progenitors. They find that before recombination α_T is not strictly constant, and that it makes a transition from about -0.35 to -0.6. The time of steepening in α_T depends on the progenitor radius and ejecta velocity and for typical parameters it ranges between a day and two weeks. Since the data we have is not detailed enough to see the transition between the two power-laws, but only a single average power-law index, the analytic prediction is $\alpha_{T_{\text{early}}} \approx -0.35 - -0.6$. This range is marked in figure 12 and it is broadly consistent with the observed values listed in table 2. The theoretical model for the luminosity evolution predicts $\alpha_{L_{\text{early}}} \approx -0.35$. This value depends slightly on the progenitor radius (up to about ± 0.05) and more strongly on the progenitor structure (i.e., density profile). The comparison of the prediction to the values listed in table 2 shows that they are consistent for most SNe but not for all. Moreover, the value of $\alpha_{L_{\text{early}}}$ is inconsistent with being similar to all
Temperature and Bolometric Luminosity Evolution in SNe-II

Figure 9. The temperatures at the onset of the plateau phase in the R band. Lower limits are marked by red triangles. The onset of the plateau is defined as the day in which the light curve changes by less than 0.02 magnitudes per day. Most of the temperatures lie above 8000K, which reinforced our claim that the flattening of the light curve is not caused by recombination. The blue arrows show the effect of extinction on T_p at $T \approx 11000$K and $T \approx 8000$K for $A_V = 0.3$. The plateau temperatures agree with radiative transfer results calculated by Shussman et al. (2016b) for a set of 124 RSGs, represented by the shaded area.

Figure 10. The temperature curve of SN2005cs on logarithmic scale. The temperature behaves as a broken power law, where in early phases it declines rapidly with a power of -0.47 ± 0.03, and at late phases the power law is -0.06 ± 0.07. This transition in the power law happens within the temperature range 6500–7500K, and we interpret it as the time when the color shell reaches the recombination temperature.

5.3 Deviation from Black Body

At high temperatures, we find that a black body is not able to describe the whole observed spectrum not only at short wavelengths, where line blanketing is important, but also at long wavelengths on the RJ tail. In the left panel of Figure. 13 we show the SED of SN2012A on day 8, where the temperature is $\sim 15,000$K. The dashed blue line is the best fit to all of the data points, which clearly fails to fit the JHK observations. This effect is observed in all SNe that have early JHK data, which always seem to be brighter than the RJ tail at the temperature corresponding to the optical and UV flux.

Deviation of the RJ tail from a black body spectrum of early type II emission was seen in numerical simulations (e.g., Tominaga et al. 2011) and was modeled recently analytically by Shussman et al. (2016a). According to the model the reason for the deviation is that the flux at different wavelengths is determined at different locations in the outflow at different gas temperatures. Shussman et al. (2016a) find that on the RJ tail the modified spectrum can be approximated as $F_{\nu} \propto \nu^{1.4}$ and they also provide an approximation for the entire spectrum. The black solid line in the left panel of Figure. 13 is the best fit of Shussman et al. (2016a) model to the data of SN2012A. The model seems to fit the data very well throughout the UV and the IR and follows the JHK flux where it departs from a standard black body.

At lower temperatures both the standard black body model and the modified black body models are able to describe the JHK observations, as seen in the right panel of Figure. 13. The reason is that these bands are closer to the peak of the spectrum, where the models are essentially...
The times at which the R- and the I-bands enter the plateau phase, and the corresponding temperatures at those epochs.

SN name	t_p	R-Band T_p	I-Band T_p	
SN1999em	8.0 (1.0)	11400$^{+600}_{-400}$	8.0 (1.1)	11400$^{+700}_{-400}$
SN1999gi	10.0 (1.0)	7900$^{+400}_{-300}$	10.0 (1.0)	7900$^{+400}_{-300}$
SN2000dc	13.0 (1.0)	7000$^{+300}_{-300}$	13.0 (1.0)	7000$^{+300}_{-300}$
SN2001cm	6.0*	9600$^{+500}_{-500}$		
SN2001cy	6.0*	11400$^{+700}_{-700}$	6.0*	11400$^{+700}_{-700}$
SN2001do	8.0 (1.0)	7500$^{+400}_{-300}$	11.0 (1.0)	7100$^{+500}_{-300}$
SN2001fa	8.0 (1.0)	10600$^{+1000}_{-700}$	9.0 (1.0)	10000$^{+1000}_{-700}$
SN2001x	13.0*	10800$^{+700}_{-700}$	13.0*	10800$^{+700}_{-700}$
SN2002gd	6.0 (3.0)	10000$^{+2400}_{-1700}$	6.0 (3.0)	10000$^{+2400}_{-1700}$
SN2003hf	13.0 (1.0)	10600$^{+700}_{-700}$	14.0 (1.1)	10400$^{+700}_{-700}$
SN2003hk	15.0*	10500$^{+800}_{-500}$	16.0*	10500$^{+800}_{-500}$
SN2003iq	7.0*	9600$^{+500}_{-500}$	7.0*	9600$^{+500}_{-500}$
SN2003z	9.0 (1.5)	11000$^{+1100}_{-1100}$	12.0 (1.6)	9300$^{+700}_{-700}$
SN2004A	11.0*	8000$^{+300}_{-300}$	11.0*	8000$^{+300}_{-300}$
SN2004du	10.0 (1.0)	9500$^{+500}_{-500}$	11.0 (1.0)	9300$^{+500}_{-500}$
SN2004et	9.0*	11600$^{+1000}_{-800}$	9.0*	11600$^{+1000}_{-800}$
SN2005cs	3.0*	16400$^{+800}_{-700}$	3.0*	16400$^{+800}_{-700}$
SN2006bp	8.0 (1.0)	7900$^{+400}_{-300}$	8.0 (1.0)	7900$^{+400}_{-300}$
SN2007od	9.0 (1.0)	8700$^{+400}_{-300}$	9.0 (1.0)	8700$^{+400}_{-300}$
SN2008in	9.0*	10600$^{+200}_{-200}$	9.0*	10600$^{+200}_{-200}$
SN2009N	14.0*	10100$^{+300}_{-300}$	14.0*	10100$^{+300}_{-300}$
SN2009bw	9.0 (1.0)	10900$^{+900}_{-500}$	11.0 (1.0)	9800$^{+500}_{-500}$
SN2009ib	13.0*	9100$^{+200}_{-200}$	13.0*	9100$^{+200}_{-200}$
SN2012A	13.0 (1.7)	10600$^{+700}_{-400}$	14.0 (1.0)	10400$^{+600}_{-500}$
SN2012aw	10.0 (1.1)	10800$^{+300}_{-300}$	13.0 (3.1)	10000$^{+1200}_{-700}$
SN2012cc	15.0*	10000$^{+400}_{-400}$	15.0*	10000$^{+400}_{-400}$
SN2013ab	9.0 (1.0)	11600$^{+800}_{-500}$	9.0 (1.0)	11600$^{+800}_{-500}$
SN2013by	8.0 (1.0)	10700$^{+600}_{-500}$	8.0 (1.0)	10700$^{+600}_{-500}$
SN2013ej	12.0 (1.6)	10200$^{+600}_{-500}$	11.0 (1.4)	10400$^{+600}_{-500}$

Table 2. The times at which the R- and the I-bands enter the plateau phase, and the corresponding temperatures at those epochs.

6 SUMMARY

We calculated the temperaures and bolometric luminosities of 29 type-II SNe, by fitting black body models to their SEDs. We use the results to study the properties at the beginning of the plateau, to look for the signature of hydrogen recombination and to compare the observation before recombination becomes important to theoretical models. Our main findings are listed below.

- The temperature at the onset of the plateau phase in the R-band is above 8000K for all SNe in our sample, and exceeds 10,000K in many of them. This temperature changes as a function of the observed band, and is determined by the temperature at which the peak of the black body spectrum roughly coincides with the center of the filter transmission curve. This result is consistent with recent theoretical models and is different than the common statement that the plateau phase starts once hydrogen recombinations becomes important. The temperatures we find agree with the predicted values for typical RSG progenitors of type-II SNe (Shussman et al. 2016a).
- We find that the temperature evolves with time as a power law, which flattens at ~6000 ~8000K. We observe a similar evolution in the bolometric luminosity, where the logarithmic derivative at early phases is higher than that at late phases. The flattening is most likely a result of the recombination wave that exposes the inner layers. The values of the logarithmic derivatives for T and L_{bol} at early phases agree with predictions from simulations and analytic works (Shussman et al. 2016a; Nakar & Sari 2010).
- SN spectra deviate from a standard black body, both at low temperatures and short wavelengths due to line blanketing, and also at high temperatures and long wavelengths. We show that the SNe in our sample follow the analytic result from (Shussman et al. 2016a), that the flux on the RJ tail follows $F_{\nu} \propto \nu^{1.4}$.
Table 3. The early and late logarithmic derivatives of the temperature and the bolometric luminosity. The values of $\alpha_{T,\text{early}}$ and $\alpha_{L,\text{early}}$ increase by $= 0.1$ and $= 0.2$ respectively, with an extinction value of $E(B - V) = 0.1$ mag.

ACKNOWLEDGEMENTS

This research was supported by the I-Core center of excellence of the CHE-ISF. TF and EN were partially supported by an ERC starting grant (GRB/SN), an ISF grant (1277/13) and an ISA grant.
Figure 11. Temperature curves of objects that have both UV and JHK data. The numbers indicate the values of the best-fit early and late logarithmic derivative computed during the first 15 days, and during days 40-100 after the explosion, respectively. A clear flattening of the temperature is observed as the SN approaches the temperature of hydrogen recombination.
Figure 12. Top: the logarithmic derivative of the temperature at late times (40-100 days after the explosion) vs. the logarithmic derivative of the temperature at early times (up to 15 days after the explosion). The colors represent the decline rate of the V-band light curve. The values of the different objects agree with each other within the error-bars, and there is no apparent correlation with the light curve decline rate. Bottom: the same as the top figure for the bolometric luminosity. In this case, the early values of the logarithmic derivatives agree within the errors, but the late values show a wider spread. SNe whose luminosity declines faster at late phases (i.e., during the plateau phase) have faster declining light curves.
Figure 13. left: The SED of SN2012A at 8 days after the explosion. The standard Planck formula is only able to fit the peak of the distribution, but fails to fit the RJ tail. A modified black body model from Shussman et al. (2016a) is shown to be compatible throughout the whole wavelength range. right: An SED of SN2012A at 50 days past explosion. At this stage, after the onset of recombination and at low temperatures, both the modified black body and the standard model are able to describe the data.
REFERENCES

Anderson J. P., et al., 2014, ApJ, 786, 67
Arcavi I., et al., 2012, ApJ, 756, L30
Arnett W. D., 1980, ApJ, 237, 541
Barbarino C., et al., 2015, MNRAS, 448, 2312
Bersten M. C., Hamuy M., 2009, ApJ, 701, 200
Bose S., et al., 2013, MNRAS, 433, 1871
Bose S., et al., 2015a, MNRAS, 450, 2373
Bose S., et al., 2015b, ApJ, 806, 160
Cardelli J. A., Clayton G. C., Mathis J. S., 1989, ApJ, 345, 245
Dall’Ora M., et al., 2014, ApJ, 787, 139
Eastman R. G., Schmidt B. P., Kirshner R., 1996, ApJ, 466, 911
Falk S. W., Arnett W. D., 1977, ApJS, 33, 515
Faran T., et al., 2014a, MNRAS, 442, 844
Faran T., et al., 2014b, MNRAS, 445, 554
Fraser M., et al., 2011, MNRAS, 417, 1417
Gurugubelli U. K., Sahu D. K., Anupama G. C., Chakradhari N. K., 2008, Bulletin of the Astronomical Society of India, 36, 79
Hendry M. A., et al., 2006, MNRAS, 369, 1303
Inserra C., et al., 2011, MNRAS, 417, 261
Inserra C., et al., 2012, MNRAS, 422, 1122
Kasen D., Woosley S. E., 2009, ApJ, 703, 2205
Leonard D. C., et al., 2002a, PASP, 114, 35
Leonard D. C., et al., 2002b, AJ, 124, 2490
Lusk J. A., 2016, SuperBoL: Module for calculating the bolometric luminosities of supernovae, Astrophysics Source Code Library (ascl:1609.019)
Maguire K., et al., 2010, MNRAS, 404, 981
Nakar E., Sari R., 2010, ApJ, 725, 904
Nakar E., Poznanski D., Katz B., 2016, ApJ, 823, 127
Pastorello A., et al., 2009, MNRAS, 394, 2266
Patat F., Barbon R., Cappellaro E., Turatto M., 1994, A&A, 282, 731
Pejcha O., Prieto J. L., 2015, ApJ, 799, 215
Pinto P. A., Eastman R. G., 2000, ApJ, 530, 757
Quimby R. M., Wheeler J. C., Hofflich P., Alerlof C. W., Brown P. J., Rykoff E. S., 2007, ApJ, 666, 1093
Rabinak I., Waxman E., 2011, ApJ, 728, 63
Richmond M. W., 2014, Journal of the American Association of Variable Star Observers (JAAVSO), 42, 333
Roy R., Kumar B., 2012, in Astronomical Society of India Conference Series. p. 115
Shussman T., Waldman R., Nakar E., 2016a, preprint, (arXiv:1610.05323)
Shussman T., Nakar E., Waldman R., Katz B., 2016b, preprint, (arXiv:1602.02774)
Smartt S. J., 2015, Publ. Astron. Soc. Australia, 32, e016
Takats K., et al., 2014, MNRAS, 438, 368
Takats K., et al., 2015, MNRAS, 450, 3137
Tomassella L., et al., 2013, MNRAS, 434, 1636
Tominaga N., Morokuma T., Blinnikov S. I., Baklanov P., Sorokina E. I., Nomoto K., 2011, ApJS, 193, 20
Utrobin V. P., 2007, A&A, 461, 233
Valenti S., et al., 2014, MNRAS, 438, L101
Valenti S., et al., 2015, MNRAS, 448, 2608
Valenti S., et al., 2016, MNRAS, 459, 3939
Van Dyk S. D., Li W., Filippenko A. V., 2003a, PASP, 115, 448
Van Dyk S. D., Li W., Filippenko A. V., 2003b, PASP, 115, 1289
Van Dyk S. D., et al., 2012, ApJ, 756, 131
Young T. R., 2004, ApJ, 617, 1233

APPENDIX A: A LIST OF THE TEMPERATURES AND BOLOMETRIC LUMINOSITIES

This paper has been typeset from a TeX/LaTeX file prepared by the author.
Table A1. A List of the Temperatures and Bolometric Luminosities

MJD	t−\(t_{\text{explosion}}\)	T(K)	\(L(10^{42}\ \text{erg} \cdot \text{s}^{-1})\)
51481	5	11670	1.435.19
51482	6	11748	1.535.17
51483	7	11498	1.505.12
51484	8	11076	1.425.10
51485	9	10681	1.355.11
51486	10	10329	1.275.07
51487	11	99445	1.195.09
51488	12	95394	1.135.06
51489	13	92503	1.085.05
51491	15	84813	1.005.04
51492	16	83002	0.975.06
51493	17	83402	0.995.05
51494	18	83402	1.005.05
51495	19	83102	0.995.05
51496	20	81602	0.965.05
51498	22	78993	0.905.05
51501	25	72501	0.865.04
51504	28	73201	0.855.04
51505	29	70401	0.835.03
51507	31	70601	0.835.03
51508	32	70401	0.835.03
51510	34	69501	0.815.03
51513	37	67401	0.785.03
51514	38	66001	0.785.03
51516	40	64401	0.755.03
51518	42	63401	0.755.03
51519	43	63201	0.755.03
51520	44	63601	0.765.02
51522	46	64801	0.765.02
51523	47	64601	0.765.02
51526	50	63001	0.765.02
51527	51	62601	0.765.02
51528	52	62601	0.765.02
51530	54	62201	0.765.02
51538	62	60001	0.765.02
51541	65	60332	0.765.02
51546	70	61501	0.765.02
51547	71	61401	0.765.02
51551	75	62701	0.765.02
51556	80	61201	0.765.02
51557	81	59201	0.765.02
Table A1 – continued A List of the Temperatures and Bolometric Luminosities

Date	Time	Temperature	Bolometric Luminosity
51558	82	5891 ± 141	0.76 ± 0.09
51565	89	6080 ± 156	0.77 ± 0.04
51570	94	6200 ± 164	0.76 ± 0.03
51572	96	6200 ± 171	0.77 ± 0.03
51576	100	6480 ± 188	0.75 ± 0.04
51578	102	6600 ± 193	0.71 ± 0.04
51581	105	6780 ± 200	0.69 ± 0.04
51586	110	5400 ± 212	0.40 ± 0.08
51592	116	4900 ± 224	0.29 ± 0.05
51599	123	4900 ± 236	0.23 ± 0.04
51604	128	5500 ± 247	0.17 ± 0.02
51606	130	5620 ± 253	0.16 ± 0.01
51607	131	5620 ± 256	0.16 ± 0.01
51613	137	5640 ± 258	0.14 ± 0.01
51614	138	5640 ± 259	0.14 ± 0.01
51619	143	5760 ± 256	0.14 ± 0.01
51620	144	5760 ± 256	0.14 ± 0.01
51624	148	5920 ± 251	0.15 ± 0.01
51627	151	5920 ± 251	0.15 ± 0.01
51629	153	5940 ± 253	0.14 ± 0.01
51634	158	5960 ± 259	0.13 ± 0.01
51637	161	5880 ± 258	0.13 ± 0.01
51638	162	5600 ± 246	0.10 ± 0.02
51639	163	5460 ± 237	0.11 ± 0.03
51640	164	5300 ± 236	0.10 ± 0.03
51641	165	502 ± 154	0.09 ± 0.06
51642	166	5640 ± 174	0.11 ± 0.03
51643	167	5880 ± 171	0.11 ± 0.03
51644	168	5920 ± 165	0.13 ± 0.03
51650	174	5580 ± 173	0.09 ± 0.02
51653	177	5460 ± 161	0.08 ± 0.02
51655	179	6080 ± 159	0.10 ± 0.03
51656	180	5560 ± 159	0.08 ± 0.02

SN1999gi

Date	Time	Temperature	Bolometric Luminosity
51524	5	8680 ± 722	0.57 ± 0.07
51525	6	8480 ± 347	0.59 ± 0.03
51528	9	8100 ± 297	0.62 ± 0.02
51529	10	7880 ± 261	0.62 ± 0.02
51530	11	7720 ± 269	0.62 ± 0.02
51531	12	7560 ± 269	0.62 ± 0.02
51534	15	7430 ± 260	0.60 ± 0.06
51540	21	6860 ± 119	0.59 ± 0.03
51545	26	6760 ± 119	0.56 ± 0.03
Table A1 – continued A List of the Temperatures and Bolometric Luminosities

51550	31	6120.524	292 0.52±0.02
51556	37	5920.328	274 0.50±0.01
51577	58	5320.443	219 0.56±0.01
51582	63	5260.322	219 0.43±0.01
51590	71	5080.723	197 0.50±0.02
51614	95	5140.122	218 0.42±0.02
51619	100	4960.200	198 0.42±0.02
51624	105	4880.305	181 0.42±0.02
51629	110	4880.300	185 0.40±0.01
51634	115	4700.738	177 0.30±0.01
51638	119	4580.165	169 0.31±0.01
51643	124	4220.145	139 0.25±0.01
51648	129	4060.211	183 0.19±0.02
51653	134	3760.926	130 0.13±0.01
51658	139	3300.165	142 0.15±0.03
51664	145	3640.104	107 0.11±0.01
51669	150	3620.103	108 0.11±0.01

SN2000dc

51766	4	8540.353	327 1.39±0.06
51767	5	8290.327	300 1.46±0.06
51773	11	7100.243	213 1.76±0.04
51775	13	7020.231	214 1.60±0.05
51777	15	6940.236	208 1.63±0.04
51779	17	6880.226	210 1.55±0.04
51781	19	6540.196	187 1.50±0.03

SN2001cm

52069	5	9580.454	424 1.63±0.11
52070	6	9840.455	435 1.77±0.12
52071	7	9960.571	467 1.70±0.13
52072	8	9780.497	451 1.73±0.13
52077	13	9280.438	413 1.54±0.09
52082	18	8380.320	329 1.31±0.08
52087	23	7440.303	273 1.13±0.04

SN2001cy

52092	6	11400.887	605 3.36±0.33
52093	7	11140.358	687 3.15±0.29
52094	8	10920.215	527 3.00±0.27
52095	9	10720.214	516 2.90±0.26
52096	10	10620.599	468 2.89±0.34
52097	11	10480.348	519 2.81±0.22
52098	12	10200.115	386 2.68±0.39
52099	13	10240.335	480 2.66±0.20
Table A1 – continued A List of the Temperatures and Bolometric Luminosities

Time (d)	Temperature (K)	Bolometric Luminosity (L☉)
52100	14	9878.1460 ± 122
52102	16	10002.0128 ± 333
52104	18	9680.1954 ± 812
52106	20	9460.1137 ± 412
52112	26	8400.6999 ± 568
52117	31	7740.5513 ± 495
52122	36	7260.5290 ± 422
52132	46	6660.9526 ± 356
52137	51	6540.3899 ± 336
52142	56	6440.3220 ± 299
52147	61	6380.3577 ± 326
52152	66	6220.3338 ± 290
52157	71	6080.3277 ± 260
52162	76	5940.5233 ± 233
52167	81	5890.5276 ± 216
52172	86	6060.3318 ± 294
52177	91	5820.5269 ± 269
52182	96	5600.2762 ± 242

SN2001do

Time (d)	Temperature (K)	Bolometric Luminosity (L☉)
52137	3	8780.3859 ± 339
52138	4	8110.3977 ± 362
52139	5	8300.6852 ± 551
52140	6	7780.5749 ± 490
52141	7	7680.5441 ± 446
52142	8	7500.3144 ± 462
52145	11	7100.7423 ± 412
52148	14	6580.3073 ± 345
52151	17	6720.9989 ± 359
52154	20	6380.3709 ± 312
52157	23	6240.3312 ± 318
52160	26	6200.7400 ± 298
52163	29	5900.2374 ± 273
52166	32	5600.6721 ± 245
52169	35	5640.2731 ± 251
52172	38	5520.2589 ± 241
52175	41	5340.2399 ± 227
52181	47	5120.2182 ± 208
52184	50	5160.2288 ± 206
52187	53	4860.3202 ± 174
52190	56	4940.2022 ± 192
52193	59	4960.2197 ± 200
52198	64	4760.3199 ± 168
52203	69	4000.5249 ± 239
Table A1 – continued A List of the Temperatures and Bolometric Luminosities

SN2001fa			
52202	4	14820 $^{+262}_{-1073}$	12.54 $^{+2.21}_{-1.66}$
52203	5	13500 $^{+1011}_{-479}$	11.47 $^{+1.65}_{-1.29}$
52204	6	11980 $^{+774}_{-971}$	9.75 $^{+0.89}_{-0.86}$
52205	7	11320 $^{+882}_{-991}$	9.2 $^{+0.90}_{-0.72}$
52206	8	10580 $^{+283}_{-410}$	8.46 $^{+0.70}_{-0.56}$
52207	9	9800 $^{+779}_{-441}$	7.36 $^{+0.49}_{-0.42}$
52208	10	9560 $^{+558}_{-414}$	6.99 $^{+0.44}_{-0.37}$
52209	11	9160 $^{+316}_{-377}$	6.36 $^{+0.35}_{-0.31}$
52217	19	7680 $^{+246}_{-246}$	3.77 $^{+0.12}_{-0.11}$
52218	20	7610 $^{+409}_{-419}$	3.36 $^{+0.28}_{-0.17}$
52219	21	7760 $^{+748}_{-662}$	3.20 $^{+0.32}_{-0.21}$
52221	23	7580 $^{+452}_{-461}$	2.96 $^{+0.22}_{-0.17}$
52223	25	7600 $^{+522}_{-474}$	2.67 $^{+0.20}_{-0.15}$
52228	30	7380 $^{+527}_{-438}$	2.23 $^{+0.16}_{-0.12}$
52231	33	6980 $^{+532}_{-599}$	2.26 $^{+0.12}_{-0.10}$
52250	52	6900 $^{+440}_{-326}$	1.89 $^{+0.10}_{-0.08}$
52278	80	5960 $^{+748}_{-407}$	0.5 $^{+0.03}_{-0.02}$
52283	85	5740 $^{+933}_{-733}$	0.46 $^{+0.05}_{-0.04}$
52288	90	6380 $^{+137}_{-920}$	0.46 $^{+0.10}_{-0.05}$
52293	95	5260 $^{+811}_{-597}$	0.35 $^{+0.02}_{-0.02}$

SN2001x			
51976	13	10840 $^{+224}_{-333}$	1.76 $^{+0.16}_{-0.12}$
51984	21	8600 $^{+1259}_{-419}$	1.39 $^{+0.28}_{-0.06}$
51989	26	8600 $^{+773}_{-759}$	1.34 $^{+0.21}_{-0.15}$
51995	32	7920 $^{+594}_{-512}$	1.1 $^{+0.10}_{-0.08}$
52000	37	7560 $^{+526}_{-453}$	1.1 $^{+0.08}_{-0.06}$
52005	42	7160 $^{+741}_{-411}$	1.0 $^{+0.06}_{-0.05}$
52012	49	6900 $^{+524}_{-388}$	1.0 $^{+0.05}_{-0.04}$
52017	54	6780 $^{+421}_{-363}$	1.0 $^{+0.05}_{-0.04}$
52022	59	6760 $^{+592}_{-367}$	1.0 $^{+0.05}_{-0.04}$
52027	64	6640 $^{+522}_{-456}$	1.0 $^{+0.05}_{-0.04}$
52032	69	6580 $^{+592}_{-342}$	1.0 $^{+0.04}_{-0.03}$
52040	77	6460 $^{+538}_{-338}$	0.9 $^{+0.04}_{-0.03}$
52045	82	6340 $^{+325}_{-388}$	0.9 $^{+0.03}_{-0.03}$
52050	87	6230 $^{+550}_{-350}$	0.9 $^{+0.03}_{-0.03}$
52055	92	6160 $^{+340}_{-295}$	0.8 $^{+0.03}_{-0.03}$
52060	97	6080 $^{+328}_{-297}$	0.8 $^{+0.02}_{-0.02}$
52068	105	5760 $^{+254}_{-253}$	0.66 $^{+0.02}_{-0.02}$
52074	111	5400 $^{+241}_{-235}$	0.58 $^{+0.01}_{-0.01}$
52081	118	4960 $^{+205}_{-197}$	0.45 $^{+0.01}_{-0.01}$
52089	126	4620 $^{+157}_{-167}$	0.24 $^{+0.01}_{-0.01}$
52096	133	4760 $^{+253}_{-222}$	0.26 $^{+0.01}_{-0.01}$
Table A1 – continued A List of the Temperatures and Bolometric Luminosities			
-----------------------------	-----------------	-----------------	
52103	140	4580	0.190.01
52110	147	4580	0.180.01
SN2002gd			
52555	2	13120	1.040.15
52556	3	12340	1.020.10
52559	6	10080	0.990.07
52562	9	8640	0.790.05
52570	17	8580	0.740.12
52573	20	8680	0.720.15
52576	23	8280	0.670.11
52579	26	7940	0.650.15
52582	29	7860	0.590.08
52585	32	7880	0.570.08
52590	37	8180	0.610.19
52598	45	7420	0.560.11
52608	55	6840	0.540.08
52613	60	6880	0.540.09
52618	65	6900	0.540.11
52634	81	6460	0.510.05
52659	106	5680	0.290.03
52664	111	5300	0.110.01
SN2003hf			
52867	3	19000	11.39 0.17
52868	4	22904	21.50 0.14
52869	5	19820	18.58 0.11
52870	6	15560	12.45 0.12
52871	7	13960	11.19 0.13
52872	8	13120	10.75 0.25
52873	9	12180	10.13 0.15
52874	10	11820	10.05 0.21
52875	11	11380	9.83 0.02
52876	12	11040	9.61 0.09
52877	13	10660	9.33 0.06
52879	15	10040	8.52 0.12
52880	16	9740	8.11 0.05
52881	17	9420	7.66 0.47
52884	20	8641	6.51 0.10
52886	22	8480	6.14 0.06
52888	24	7960	5.41 0.48
52890	26	7620	4.80 0.37
52892	28	7440	4.29 0.27
52894	30	7440	3.91 0.29
52896	32	7400	3.58 0.25
Table A1 – continued A List of the Temperatures and Bolometric Luminosities

RA	Temperature (K)	Bolometric Luminosity (L)	
52898	34	6980$^{544}_{594}$	3.2$^{0.10}_{0.14}$
52900	36	6700$^{559}_{430}$	3.0$^{0.15}_{0.12}$
52902	38	6500$^{665}_{560}$	2.7$^{0.17}_{0.14}$
52904	40	6600$^{635}_{729}$	2.7$^{0.21}_{0.17}$
52906	42	6740$^{1007}_{765}$	2.0$^{0.22}_{0.19}$
52910	46	6380$^{896}_{671}$	2.4$^{0.16}_{0.16}$
52913	49	6220$^{926}_{723}$	2.3$^{0.28}_{0.16}$
52919	55	6780$^{1205}_{965}$	2.0$^{0.40}_{0.21}$

SN2003hk

RA	Temperature (K)	Bolometric Luminosity (L)	
52873	13	10500$^{562}_{413}$	4.1$^{0.28}_{0.25}$
52875	15	9600$^{739}_{419}$	3.8$^{0.21}_{0.21}$
52877	17	9300$^{445}_{403}$	3.5$^{0.19}_{0.15}$
52880	20	8600$^{374}_{411}$	3.1$^{0.13}_{0.12}$
52881	21	8600$^{373}_{343}$	2.9$^{0.15}_{0.14}$
52883	23	8720$^{374}_{347}$	2.7$^{0.12}_{0.12}$
52885	25	8500$^{670}_{626}$	2.5$^{0.21}_{0.21}$
52887	27	8580$^{735}_{608}$	2.4$^{0.27}_{0.20}$
52889	29	8280$^{1191}_{878}$	2.2$^{0.42}_{0.24}$
52893	33	8560$^{925}_{798}$	2.2$^{0.26}_{0.26}$
52900	40	7620$^{651}_{590}$	1.6$^{0.18}_{0.13}$
52903	43	7260$^{452}_{433}$	1.5$^{0.10}_{0.07}$
52906	46	7140$^{467}_{415}$	1.4$^{0.08}_{0.07}$
52910	50	6760$^{422}_{462}$	1.3$^{0.06}_{0.05}$
52913	53	6480$^{377}_{336}$	1.2$^{0.04}_{0.04}$
52916	56	6500$^{390}_{330}$	1.1$^{0.04}_{0.04}$
52919	59	6480$^{340}_{340}$	1.1$^{0.05}_{0.05}$
52922	62	6400$^{370}_{361}$	1.1$^{0.06}_{0.05}$
52928	68	5440$^{358}_{311}$	1.0$^{0.04}_{0.04}$
52931	71	5960$^{320}_{293}$	1.0$^{0.03}_{0.03}$
52935	75	5840$^{299}_{296}$	0.9$^{0.03}_{0.03}$
52943	83	5300$^{311}_{294}$	0.7$^{0.03}_{0.03}$
52948	88	5760$^{429}_{380}$	0.7$^{0.03}_{0.03}$

SN2003liq

RA	Temperature (K)	Bolometric Luminosity (L)	
52922	2	12940$^{332}_{319}$	1.8$^{0.25}_{0.20}$
52927	7	9620$^{460}_{438}$	1.8$^{0.12}_{0.10}$
52930	10	9260$^{537}_{592}$	1.7$^{0.10}_{0.09}$
52933	13	8700$^{376}_{345}$	1.5$^{0.07}_{0.07}$
52936	16	8110$^{401}_{563}$	1.4$^{0.13}_{0.11}$
52939	19	8080$^{419}_{543}$	1.4$^{0.14}_{0.11}$
52942	22	7880$^{598}_{503}$	1.4$^{0.12}_{0.09}$
52945	25	7680$^{572}_{470}$	1.3$^{0.11}_{0.08}$
52948	28	7560$^{541}_{463}$	1.3$^{0.10}_{0.07}$
52955	35	6680$^{415}_{350}$	1.2$^{0.06}_{0.04}$
Table A1 – continued A List of the Temperatures and Bolometric Luminosities

Date	Temperature	Luminosity
52960	40	6280\(59)_{377} \quad 1.20^{+0.04}_{-0.04}
52963	43	6880\(377)_{372} \quad 1.19^{+0.06}_{-0.05}
52966	46	6520\(373)_{348} \quad 1.11^{+0.05}_{-0.04}
52969	49	6540\(398)_{332} \quad 1.11^{+0.05}_{-0.04}
52972	52	6240\(322)_{303} \quad 1.11^{+0.04}_{-0.03}
52977	57	5560\(299)_{254} \quad 1.12^{+0.04}_{-0.03}
52992	72	6000\(282) \quad 0.96^{+0.03}_{-0.03}
52996	76	5980\(24)_{216} \quad 0.94^{+0.03}_{-0.03}
53002	82	5980\(307)_{290} \quad 0.88^{+0.03}_{-0.02}
53017	97	5580\(170)_{82} \quad 0.56^{+0.06}_{-0.04}
53023	103	5020\(32)_{216} \quad 0.38^{+0.02}_{-0.01}
53026	106	5040\(24)_{193} \quad 0.29^{+0.01}_{-0.01}
53042	122	5120\(55)_{461} \quad 0.20^{+0.01}_{-0.01}
53045	125	4620\(36)_{223} \quad 0.20^{+0.01}_{-0.01}
53048	128	4520\(36)_{229} \quad 0.20^{+0.01}_{-0.01}

SN2003z

Date	Temperature	Luminosity
52670	5	1220\(43)_{698} \quad 0.23^{+0.03}_{-0.02}
52671	6	12300\(31)_{329} \quad 0.23^{+0.03}_{-0.02}
52674	9	10320\(35)_{297} \quad 0.19^{+0.01}_{-0.01}
52676	11	9520\(44)_{414} \quad 0.17^{+0.01}_{-0.01}
52679	14	8740\(1802)_{177} \quad 0.15^{+0.05}_{-0.01}
52691	26	7200\(35)_{606} \quad 0.15^{+0.01}_{-0.01}
52694	29	7380\(396)_{443} \quad 0.15^{+0.01}_{-0.01}
52701	36	7180\(73)_{419} \quad 0.13^{+0.01}_{-0.01}
52704	39	7040\(44)_{405} \quad 0.13^{+0.01}_{-0.01}
52707	42	6700\(4)_{332} \quad 0.13^{+0.01}_{-0.01}
52712	47	7560\(44)_{574} \quad 0.13^{+0.02}_{-0.01}
52717	52	6880\(1378)_{954} \quad 0.14^{+0.03}_{-0.02}
52722	57	6280\(31)_{606} \quad 0.13^{+0.01}_{-0.01}
52727	62	5900\(36)_{273} \quad 0.12^{+0.01}_{-0.01}
52734	69	6220\(31)_{324} \quad 0.12^{+0.01}_{-0.01}
52739	74	5600\(36)_{256} \quad 0.11^{+0.01}_{-0.01}
52751	86	6180\(4)_{1707} \quad 0.11^{+0.01}_{-0.01}
52766	101	4840\(42)_{605} \quad 0.10^{+0.01}_{-0.01}
52771	106	5640\(32)_{290} \quad 0.09^{+0.00}_{-0.00}
52778	113	5900\(31)_{289} \quad 0.09^{+0.00}_{-0.00}

SN2004A

Date	Temperature	Luminosity
53018	11	7960\(359)_{337} \quad 1.06^{+0.04}_{-0.04}
53032	25	6360\(197)_{192} \quad 0.90^{+0.02}_{-0.02}
53037	30	6020\(592)_{510} \quad 0.85^{+0.03}_{-0.03}
53045	38	5860\(529)_{438} \quad 0.85^{+0.04}_{-0.03}
53050	43	5860\(529) \quad 0.89^{+0.03}_{-0.03}
53052	45	5900\(329)_{297} \quad 0.89^{+0.03}_{-0.02}
Table A1 – continued A List of the Temperatures and Bolometric Luminosities

Date	Hour	Temperature	Bolometric Luminosity
53065	58	5740	0.90 ± 0.02
53066	59	5760	0.91 ± 0.02
53076	69	5700	0.91 ± 0.02
53081	74	5710	0.90 ± 0.03
53099	92	5620	0.85 ± 0.02

SN2004du

Date	Hour	Temperature	Bolometric Luminosity
53231	3	14644	4.5 ± 0.44
53233	5	11420	3.6 ± 0.36
53235	7	10140	3.3 ± 0.25
53237	9	9500	3.2 ± 0.17
53239	11	9120	3.0 ± 0.17
53242	14	8900	2.9 ± 0.15
53244	16	8680	2.7 ± 0.13
53246	18	8560	2.6 ± 0.14
53250	22	8155	2.3 ± 0.15
53251	23	8160	2.2 ± 0.16
53253	25	8120	2.2 ± 0.16
53255	27	8040	2.1 ± 0.20
53257	29	7920	2.1 ± 0.19
53259	31	7780	2.0 ± 0.17
53263	35	7480	1.9 ± 0.14
53265	37	7320	1.8 ± 0.12
53267	39	7180	1.8 ± 0.12
53269	41	7120	1.7 ± 0.11
53271	43	7060	1.7 ± 0.10
53273	45	7100	1.7 ± 0.17
53276	48	6760	1.6 ± 0.09
53279	51	6420	1.5 ± 0.06
53282	54	6380	1.5 ± 0.06
53285	57	6360	1.5 ± 0.06
53288	60	6320	1.5 ± 0.05
53292	64	6180	1.5 ± 0.04
53301	73	5780	1.4 ± 0.04
53309	81	5980	1.4 ± 0.04
53329	101	5340	1.2 ± 0.04

SN2004et

Date	Hour	Temperature	Bolometric Luminosity
53278	7	11580	2.4 ± 0.27
53279	8	11280	2.3 ± 0.25
53280	9	10900	2.3 ± 0.22
53281	10	10620	2.2 ± 0.21
53282	11	10380	2.1 ± 0.19
53283	12	10140	2.0 ± 0.17
53284	13	10020	2.0 ± 0.16
Table A1 – continued A List of the Temperatures and Bolometric Luminosities

Date	Temp	Bol Luminosity
53286	15	9750 ± 15/473
53287	16	9680 ± 14/462
53288	17	9660 ± 14/447
53289	18	9580 ± 14/432
53294	23	8380 ± 14/195
53296	25	821 ± 14/235
53297	26	798 ± 14/224
53298	27	788 ± 14/215
53299	28	776 ± 14/209
53301	30	760 ± 14/213
53302	31	734 ± 14/183
53306	35	712 ± 14/162
53307	36	704 ± 14/153
53309	38	696 ± 14/143
53312	41	686 ± 14/146
53315	44	674 ± 14/132
53316	45	670 ± 14/139
53317	46	660 ± 14/144
53318	47	660 ± 14/143
53319	48	660 ± 14/143
53320	49	659 ± 14/141
53324	53	652 ± 14/146
53326	55	652 ± 14/180
53327	56	650 ± 14/186
53328	57	648 ± 14/179
53329	58	648 ± 14/177
53330	59	648 ± 14/186
53331	60	645 ± 14/187
53332	61	642 ± 14/187
53333	62	640 ± 14/187
53335	64	630 ± 14/186
53350	79	648 ± 14/179
53353	82	626 ± 14/176
53354	83	634 ± 14/171
53355	84	632 ± 14/196
53375	104	602 ± 14/152
53376	105	608 ± 14/161
53378	107	602 ± 14/153
53381	110	598 ± 14/156
53406	135	588 ± 14/194
53412	141	594 ± 14/203

SN2005cs

Date	Temp	Bol Luminosity
53552	3	16327 ± 14/245
53553	4	15058 ± 14/201
Table A1 – continued A List of the Temperatures and Bolometric Luminosities

	Temperature	Bolometric Luminosity
53554	5 13509.98	0.60 \pm 0.06
53555	6 12563.34	0.54 \pm 0.06
53557	8 10418.78	0.42 \pm 0.03
53558	9 9680.37	0.38 \pm 0.02
53559	10 9540.25	0.38 \pm 0.02
53560	11 9260.34	0.36 \pm 0.02
53562	13 8379.88	0.34 \pm 0.02
53563	14 8082.46	0.30 \pm 0.02
53564	15 7962.27	0.29 \pm 0.02
53565	16 7702.19	0.27 \pm 0.01
53566	17 7560.22	0.27 \pm 0.01
53568	19 7360.18	0.26 \pm 0.01
53569	20 7260.16	0.25 \pm 0.01
53571	22 6960.15	0.24 \pm 0.01
53572	23 6920.16	0.24 \pm 0.01
53573	24 6900.17	0.24 \pm 0.01
53574	25 6880.19	0.24 \pm 0.01
53575	26 6780.19	0.24 \pm 0.01
53577	28 6720.17	0.24 \pm 0.01
53579	30 6670.16	0.24 \pm 0.01
53580	31 6570.24	0.24 \pm 0.01
53583	34 6600.18	0.24 \pm 0.01
53584	35 6600.18	0.24 \pm 0.01
53585	36 6500.20	0.24 \pm 0.01
53586	37 6700.21	0.24 \pm 0.01
53588	39 6500.22	0.24 \pm 0.01
53589	40 6500.22	0.24 \pm 0.01
53591	42 6300.18	0.24 \pm 0.01
53593	44 6300.17	0.24 \pm 0.01
53595	46 6300.17	0.24 \pm 0.01
53599	50 6300.17	0.24 \pm 0.01
53600	51 6340.17	0.24 \pm 0.01
53605	56 6250.18	0.24 \pm 0.02
53606	57 6300.18	0.29 \pm 0.01
53610	61 6200.20	0.28 \pm 0.02
53612	63 6200.18	0.29 \pm 0.01
53613	64 6300.18	0.30 \pm 0.01
53615	66 6310.18	0.30 \pm 0.01
53617	68 6220.17	0.29 \pm 0.01
53619	70 6200.17	0.29 \pm 0.01
53624	75 6100.19	0.29 \pm 0.01
53626	77 6240.15	0.30 \pm 0.01
53628	79 6220.15	0.30 \pm 0.01
53629	80 6406.18	0.3 \pm 0.01
53640	91 5520.58	0.29 \pm 0.01
Table A1 – continued A List of the Temperatures and Bolometric Luminosities

53836	2	10662$^{280}_{+232}$	0.96$^{+0.06}_{-0.06}$
53837	3	9779$^{267}_{+208}$	0.91$^{+0.04}_{-0.04}$
53838	4	9380$^{163}_{+152}$	0.90$^{+0.02}_{-0.02}$
53839	5	8713$^{173}_{+213}$	0.90$^{+0.02}_{-0.02}$
53840	6	8292$^{225}_{+173}$	0.90$^{+0.02}_{-0.02}$
53841	7	8085$^{158}_{+155}$	0.90$^{+0.02}_{-0.02}$
53842	8	7796$^{175}_{+169}$	0.90$^{+0.02}_{-0.02}$
53843	9	7447$^{150}_{+135}$	0.90$^{+0.02}_{-0.02}$
53844	10	7176$^{156}_{+269}$	0.90$^{+0.02}_{-0.02}$
53846	12	6724$^{143}_{+130}$	0.80$^{+0.02}_{-0.02}$
53847	13	6640$^{124}_{+126}$	0.80$^{+0.02}_{-0.02}$
53848	14	6513$^{169}_{+170}$	0.80$^{+0.02}_{-0.02}$
53849	15	6360$^{231}_{+215}$	0.80$^{+0.02}_{-0.02}$
53850	16	6296$^{303}_{+190}$	0.80$^{+0.02}_{-0.02}$
53852	18	6050$^{181}_{+186}$	0.80$^{+0.02}_{-0.02}$
53854	20	5789$^{198}_{+198}$	0.80$^{+0.02}_{-0.02}$
53857	23	5880$^{365}_{+313}$	0.80$^{+0.02}_{-0.02}$
53858	24	5840$^{315}_{+314}$	0.80$^{+0.02}_{-0.02}$
53859	25	5740$^{338}_{+298}$	0.80$^{+0.02}_{-0.02}$
53860	26	5680$^{335}_{+291}$	0.80$^{+0.02}_{-0.02}$
53861	27	5560$^{314}_{+283}$	0.80$^{+0.03}_{-0.02}$
53862	28	5580$^{312}_{+292}$	0.80$^{+0.03}_{-0.02}$
53866	32	5420$^{277}_{+273}$	0.80$^{+0.03}_{-0.02}$
53867	33	5340$^{264}_{+253}$	0.80$^{+0.03}_{-0.02}$
53870	36	5300$^{271}_{+264}$	0.80$^{+0.03}_{-0.02}$
53886	52	4960$^{228}_{+229}$	0.80$^{+0.04}_{-0.03}$

SN2007od			
54410	11	8720$^{582}_{+504}$	6.60$^{+0.37}_{-0.31}$
54411	12	8640$^{627}_{+520}$	6.50$^{+0.36}_{-0.32}$
54412	13	8420$^{535}_{+436}$	6.50$^{+0.32}_{-0.29}$
54413	14	8560$^{330}_{+288}$	6.50$^{+0.30}_{-0.24}$
54414	15	8380$^{195}_{+180}$	6.10$^{+0.37}_{-0.25}$
54416	17	8140$^{153}_{+157}$	5.70$^{+0.22}_{-0.21}$
54417	18	8000$^{188}_{+180}$	5.45$^{+0.24}_{-0.24}$
54418	19	7960$^{200}_{+213}$	5.30$^{+0.26}_{-0.29}$
54422	23	7846$^{229}_{+223}$	5.16$^{+0.45}_{-0.28}$
54426	27	7680$^{201}_{+172}$	4.96$^{+0.23}_{-0.19}$
54428	29	7600$^{186}_{+184}$	4.75$^{+0.21}_{-0.20}$
54429	30	7580$^{186}_{+176}$	4.75$^{+0.21}_{-0.19}$
54433	34	7500$^{187}_{+167}$	4.50$^{+0.19}_{-0.18}$
Table A1 — continued A List of the Temperatures and Bolometric Luminosities

54436	37	7420	192	4.40	0.22	54439	40	7150	232	4.12	0.27					
54441	42	7060	161	3.90	0.15	54442	43	7000	154	3.91	0.13					
54446	47	6860	137	3.70	0.12	54449	50	6690	149	3.40	0.13					
54450	51	6890	146	3.50	0.13	54451	52	6890	153	3.54	0.13					
54456	57	6660	184	3.40	0.17	54460	51	6440	190	3.00	0.16					
54462	63	6440	128	2.90	0.10	54464	65	6660	144	3.00	0.12					
54473	74	6720	131	2.40	0.09											

SN2008in

54830	8	10600	168	0.70	0.02	54831	9	9690	241	0.60	0.07					
54833	11	9380	519	0.50	0.04	54835	13	9120	399	0.50	0.03					
54839	17	7570	235	0.40	0.03	54841	19	7510	312	0.40	0.02					
54843	21	7540	345	0.40	0.02	54846	24	7300	338	0.40	0.02					
54851	29	6910	279	0.40	0.02	54855	33	6660	254	0.38	0.02					
54856	34	6420	203	0.37	0.01	54858	36	6340	183	0.36	0.01					
54860	38	6320	183	0.36	0.01	54861	39	6240	175	0.36	0.01					
54862	40	6240	170	0.36	0.01	54864	42	6220	155	0.36	0.01					
54868	46	6140	205	0.36	0.01	54874	52	6220	266	0.35	0.01					
54878	56	6100	243	0.34	0.01	54879	57	6083	296	0.34	0.01					
54880	58	6240	272	0.34	0.01	54883	61	6140	239	0.33	0.01					
54884	62	6180	213	0.33	0.01	54885	63	6170	226	0.33	0.01					
54886	64	6220	209	0.33	0.01	54888	66	6180	202	0.33	0.01					
54889	67	6060	187	0.31	0.01	54890	68	6060	190	0.31	0.01					
54893	71	6060	206	0.30	0.01	54895	73	6021	232	0.30	0.01					
Table A1 — continued A List of the Temperatures and Bolometric Luminosities

Time	Temperature	Bolometric Luminosity	Error
54900	78	59402.26	0.29
54901	79	6460.79	0.31
54906	84	5880.23	0.26
54912	90	6080.88	0.25
54915	93	5840.19	0.24
54917	95	5860.19	0.23
54925	103	5960.23	0.23
54927	105	5640.22	0.18
54932	110	5240.20	0.17
54937	115	4270.18	0.10
SN2009N			
54858	13	10120.335	0.54
54859	14	8154.29	0.53
54860	15	8050.23	0.52
54861	16	7895.27	0.51
54863	18	7295.14	0.51
54864	19	6940.14	0.49
54865	20	6660.13	0.49
54867	22	6410.97	0.47
54869	24	6320.13	0.46
54871	26	6160.12	0.46
54872	27	6100.11	0.46
54875	30	5900.12	0.45
54878	33	5800.12	0.45
54880	35	5750.11	0.45
54887	42	5500.11	0.45
54888	43	5480.11	0.45
54889	44	5480.11	0.45
54890	45	5480.11	0.45
54891	46	5460.10	0.45
54896	51	5340.10	0.45
54897	52	5340.10	0.45
54902	57	5320.10	0.45
54904	59	5320.10	0.45
54906	61	5340.11	0.45
54907	62	5360.11	0.45
54908	63	5360.11	0.45
54909	64	5360.11	0.45
54910	65	5340.11	0.45
54911	66	5320.11	0.45
54913	68	5320.11	0.45
54915	70	5300.11	0.45
54916	71	5300.11	0.45
54917	72	5280.11	0.45
Table A1 – continued A List of the Temperatures and Bolometric Luminosities

SN2009ibw								
54923	6	158260785	2.29004	0.09				
54924	7	140433654	2.16008	0.08				
54925	8	11720233	1.72006	0.05				
54926	9	1102234	1.64009	0.10				
54927	10	10360370	1.45006	0.06				
54930	13	9240277	1.25005	0.04				
54931	14	9040280	1.20004	0.04				
54932	15	8880288	1.16005	0.05				
54935	18	8320392	1.00004	0.07				
54937	20	7630214	0.86004	0.02				
54942	25	7090342	0.79005	0.04				
54945	28	6820446	0.72004	0.03				
54946	29	6780495	0.74004	0.03				
54949	32	6500367	0.68003	0.03				
54951	34	6840474	0.67019	0.08				
54952	35	6560362	0.61003	0.02				
54953	36	6400352	0.64003	0.02				
54956	39	5950320	0.59002	0.02				
54957	40	5760322	0.59002	0.02				
54961	44	5680424	0.56002	0.02				
54967	50	5480314	0.52002	0.02				
54971	54	5420246	0.50002	0.02				
54974	57	5420244	0.50001	0.01				
54978	61	5490316	0.51003	0.04				
54979	62	5460375	0.50004	0.03				
54983	66	5600320	0.51001	0.01				
54984	67	5540329	0.51003	0.05				
55010	93	5450329	0.45001	0.01				
55033	116	5720351	0.36003	0.02				
55037	120	5800365	0.34003	0.02				
55040	123	5960370	0.33004	0.02				
55044	127	6230420	0.31001	0.03				
55050	133	8550344	0.28012	0.07				

SN2009ib								
55054	13	9120388	0.70002	0.02				
55056	15	8190335	0.66009	0.02				
55057	16	8100394	0.66014	0.04				

MNRAS 000, 1–17 (2017)
Table A1 – continued A List of the Temperatures and Bolometric Luminosities

55063	22	7806	519	0.60±0.07
55064	23	7760	936	0.60±0.07
55066	25	7304	444	0.60±0.04
55067	26	7340	453	0.60±0.04
55068	27	7100	489	0.57±0.04
55069	28	7100	479	0.50±0.04
55070	29	6929	579	0.50±0.04
55071	30	6840	620	0.50±0.04
55072	31	6818	414	0.50±0.04
55073	32	6643	508	0.50±0.04
55074	33	6660	377	0.50±0.03
55075	34	6640	530	0.50±0.03
55077	36	6380	303	0.50±0.02
55079	38	6340	320	0.50±0.02
55082	41	6306	393	0.50±0.02
55083	42	6120	324	0.50±0.02
55084	43	6130	341	0.50±0.02
55085	44	6130	278	0.50±0.02
55086	45	6140	290	0.50±0.02
55087	46	6140	284	0.50±0.02
55088	47	6100	273	0.50±0.02
55089	48	5940	221	0.49±0.02
55090	49	5950	274	0.49±0.02
55091	50	5900	265	0.49±0.02
55092	51	5870	270	0.49±0.02
55093	52	5880	284	0.49±0.02
55094	53	5880	254	0.49±0.02
55095	54	5745	314	0.49±0.02
55096	55	5960	273	0.49±0.02
55097	56	5940	274	0.49±0.02
55099	58	5810	205	0.49±0.02
55100	59	5870	294	0.49±0.02
55104	63	5840	266	0.49±0.02
55105	64	5820	272	0.49±0.02
55109	68	5760	271	0.49±0.02
55111	70	5720	259	0.49±0.02
55116	75	5360	191	0.49±0.02
55117	76	5520	257	0.49±0.02
55121	80	5540	254	0.49±0.02
55122	81	5520	254	0.49±0.02
55124	83	5500	218	0.49±0.02
55128	87	5200	154	0.49±0.02
55131	90	5500	227	0.49±0.02
55132	91	5480	214	0.49±0.02
55134	93	5480	216	0.49±0.02
Table A1 – continued A List of the Temperatures and Bolometric Luminosities

	SN2012A		

Faran et al.	MNRAS 000, 1–17 (2017)		
Temperature and Bolometric Luminosity Evolution in SNe-II

Table A1 – continued A List of the Temperatures and Bolometric Luminosities

Temperature	Bolometric Luminosity
55099	70 6653419 300 0.460.03
56000	71 6583812 320 0.460.02
56001	72 6663318 328 0.460.03
56002	73 6654140 333 0.460.02
56003	74 6663282 289 0.460.02
56004	75 6663326 306 0.460.02
56005	76 6663232 291 0.460.02
56006	77 6663260 256 0.460.02
56008	79 6663270 270 0.460.02
56009	80 6563270 279 0.460.02
56010	81 6603260 263 0.460.02
56011	82 6703280 263 0.460.02
56012	83 6603284 289 0.460.02
56014	85 6603290 289 0.460.02
56015	86 6643131 241 0.460.02
56016	87 6663232 215 0.460.02
56017	88 6583232 220 0.460.02
56019	90 6603260 263 0.460.02
56021	92 6663244 283 0.460.02
56023	94 6583245 283 0.460.02
56027	98 6703239 283 0.460.02
56030	101 6663260 271 0.460.02
56031	102 6403283 253 0.460.02
56033	104 6283252 217 0.460.02
56034	105 6243187 184 0.460.02
56035	106 6203232 214 0.460.02
56037	108 6103126 185 0.460.02
56039	110 5543212 186 0.460.02

SN2012aw

Temperature	Bolometric Luminosity
56006	4 1423513153 175 0.660.08
56007	5 137531560 208 0.560.15
56008	6 125401207 227 0.560.14
56009	7 11880191 481 0.660.09
56010	8 11479323 371 0.660.09
56011	9 11239317 367 0.660.09
56012	10 10805129 299 0.660.08
56013	11 10639202 298 0.660.07
56014	12 10214333 296 0.660.07
56015	13 9760129 205 0.660.07
56016	14 9553120 398 0.660.07
56017	15 9430028 262 0.660.07
56018	16 8930251 205 0.660.04
56019	17 8423179 464 0.660.07
56020	18 7980137 126 1.560.05
Table A1 – continued A List of the Temperatures and Bolometric Luminosities

Number	Temperature	Luminosity	
56022	20	7640	1.4904
56024	22	7400	1.4604
56025	23	737	1.4606
56026	24	7260	1.4705
56027	25	7160	1.4006
56028	26	7120	1.4006
56029	27	7020	1.3706
56030	28	6960	1.3605
56031	29	6880	1.3405
56032	30	6790	1.3305
56033	31	6740	1.3205
56034	32	6700	1.3105
56035	33	6620	1.3005
56036	34	6621	1.2905
56037	35	6540	1.2905
56039	37	6440	1.2805
56040	38	6425	1.2805
56041	39	6438	1.2805
56042	40	6440	1.2704
56043	41	6380	1.2605
56044	42	6360	1.2505
56046	44	6280	1.2405
56047	45	6238	1.2304
56049	47	6160	1.2205
56050	48	6106	1.2105
56051	49	6000	1.2004
56052	50	5811	1.2004
56053	51	5780	1.2004
56054	52	6080	1.2004
56056	54	6140	1.2004
56057	55	6200	1.2004
56058	56	6280	1.3004
56059	57	6380	1.3104
56061	59	6420	1.3304
56062	60	6375	1.3104
56064	62	6420	1.3405
56066	64	6060	1.2905
56070	68	6000	1.2705
56072	70	5960	1.2605
56086	84	5900	1.2305
56087	85	5840	1.2105
56088	86	5480	1.1105
56089	87	5480	1.1105
56097	95	5760	1.1105
Table A1 – continued A List of the Temperatures and Bolometric Luminosities

SN2012ec

56154	11	10020	2.26°0.09
56155	12	9780	2.14°0.08
56158	15	9068	1.85°0.16
56159	16	8080	1.65°0.04
56165	22	6880	1.44°0.15
56168	25	6440	1.36°0.14
56171	28	6480	1.33°0.13
56173	30	6620	1.40°0.29
56176	33	6560	1.40°0.12
56179	36	6260	1.29°0.11
56181	38	6160	1.22°0.15
56182	39	6120	1.20°0.06
56186	43	6180	1.30°0.05
56190	47	6120	1.29°0.05
56195	52	6150	1.33°0.06
56199	56	6220	1.36°0.04
56202	59	6090	1.33°0.04
56204	61	6000	1.29°0.04
56208	65	5960	1.30°0.04
56211	68	5840	1.29°0.03
56212	69	5780	1.24°0.04
56216	73	5680	1.29°0.05

SN2013ab

56344	4	17620	5.54°0.18
56345	5	15490	4.73°0.35
56346	6	14258	4.15°0.40
56347	7	12768	3.64°0.19
56348	8	11885	3.33°0.11
56349	9	11210	3.00°0.13
56350	10	10380	2.73°0.04
56351	11	9996	2.54°0.09
56352	12	9645	2.41°0.08
56353	13	9340	2.21°0.10
56354	14	9040	2.08°0.04
56355	15	8924	2.04°0.13
56356	16	9080	2.04°0.07
56357	17	8828	2.00°0.09
56358	18	8605	1.96°0.06
56359	19	8620	1.94°0.06
56360	20	8365	1.87°0.07
56361	21	8220	1.83°0.05
56362	22	7960	1.75°0.04

MNRAS 000, 1–17 (2017)
Table A1 – continued A List of the Temperatures and Bolometric Luminosities

56363	23	7920	223
56364	24	7650	222
56365	25	7540	195
56366	26	7380	198
56368	28	7190	200
56370	30	7080	354
56372	32	7014	380
56373	33	6941	349
56374	34	6800	329
56376	36	6720	327
56377	37	6680	314
56378	38	6680	303
56380	40	6620	315
56381	41	6580	313
56382	42	6500	290
56383	43	6580	313
56384	44	6650	294
56388	48	6260	278
56389	49	6220	274
56390	50	6240	287
56394	54	6290	288
56395	55	6380	319
56397	57	6500	299
56398	58	6380	303
56402	62	6300	296
56403	63	6280	307
56404	64	6380	308
56405	65	6320	293
56406	66	6240	288
56407	67	6220	283
56409	69	6340	278
56411	71	6300	293
56412	72	6220	297
56413	73	6180	292
56414	74	6120	292
56415	75	6700	344
56416	76	6460	362
56419	79	6140	286
56420	80	6080	284
56421	81	5760	244
56422	82	5960	249
56423	83	5940	247
56426	86	6110	411
56427	87	5880	251
56428	88	5760	256
Temperature and Bolometric Luminosity Evolution in SNe-II

Table A1 – continued A List of the Temperatures and Bolometric Luminosities

56429	89	6020.72	0.90±0.02
56430	90	5860.255	0.92±0.02
56431	91	5760.246	0.90±0.02
56432	92	6180.200	0.90±0.02
56433	93	5770.346	0.86±0.06
56434	94	5580.229	0.83±0.02
56435	95	5680.244	0.83±0.02
56436	96	5900.259	0.81±0.02
56437	97	5780.277	0.73±0.02
56438	98	5660.351	0.69±0.03
56439	99	5760.276	0.66±0.01
56440	100	5446.318	0.62±0.02
56441	101	5480.245	0.59±0.01
56442	102	5110.247	0.54±0.02
56443	103	4860.222	0.45±0.02
56444	104	4860.270	0.46±0.02
56445	105	4810.226	0.43±0.02
56446	106	4700.233	0.40±0.02
56448	108	4380.159	0.39±0.01
56449	109	4580.148	0.35±0.01
56451	111	4550.170	0.32±0.01
56454	114	4880.217	0.29±0.01
56456	116	4620.196	0.26±0.01
56457	117	4840.180	0.27±0.01
56458	118	4880.194	0.26±0.01
56460	120	4760.173	0.25±0.01
56461	121	5520.143	0.25±0.01
56464	124	4800.243	0.24±0.01
56466	126	4770.202	0.23±0.01
56468	128	4460.209	0.26±0.02
56470	130	4620.196	0.24±0.01
56476	136	4480.220	0.23±0.01
56477	137	4880.222	0.23±0.01
56478	138	4980.226	0.21±0.01
56479	139	4680.241	0.22±0.01
56480	140	4800.223	0.21±0.01
56481	141	4640.251	0.22±0.01
56485	145	5080.278	0.20±0.01
56487	147	4940.241	0.20±0.01
56489	149	4840.257	0.19±0.01

SN2013by

56407	0	22890.733	23.65±1.80
56408	1	19258.196	18.89±6.2
56409	2	16860.249	16.3±0.88
Table A1 — continued A List of the Temperatures and Bolometric Luminosities

Code	Temp (K)	Lbol (M_L)
56410	43700	1.2549 ± 0.0009
56411	43500	1.2401 ± 0.0011
56412	43300	1.2253 ± 0.0013
56413	43000	1.2105 ± 0.0015
56414	42700	1.1957 ± 0.0017
56415	42500	1.1809 ± 0.0019
56416	42300	1.1661 ± 0.0021
56417	42000	1.1513 ± 0.0023
56418	41700	1.1365 ± 0.0025
56419	41500	1.1217 ± 0.0027
56420	41300	1.1069 ± 0.0029
56421	41100	1.0921 ± 0.0031
56422	40900	1.0773 ± 0.0033
56423	40700	1.0625 ± 0.0035
56424	40500	1.0477 ± 0.0037
56425	40300	1.0329 ± 0.0039
56426	40100	1.0181 ± 0.0041
56427	39900	1.0033 ± 0.0043
56428	39700	0.9885 ± 0.0045
56429	39500	0.9737 ± 0.0047
56430	39300	0.9589 ± 0.0049
56431	39100	0.9441 ± 0.0051
56432	38900	0.9293 ± 0.0053
56433	38700	0.9145 ± 0.0055
56434	38500	0.8997 ± 0.0057
56435	38300	0.8849 ± 0.0059
56436	38100	0.8701 ± 0.0061
56437	37900	0.8553 ± 0.0063
56438	37700	0.8405 ± 0.0065
56439	37500	0.8257 ± 0.0067
56440	37300	0.8109 ± 0.0069
56441	37100	0.7961 ± 0.0071
56442	36900	0.7813 ± 0.0073
56443	36700	0.7665 ± 0.0075
56444	36500	0.7517 ± 0.0077
56445	36300	0.7369 ± 0.0079
56446	36100	0.7221 ± 0.0081
56447	35900	0.7073 ± 0.0083
56448	35700	0.6925 ± 0.0085
56449	35500	0.6777 ± 0.0087
56450	35300	0.6629 ± 0.0089
56451	35100	0.6481 ± 0.0091
56452	34900	0.6333 ± 0.0093
56453	34700	0.6185 ± 0.0095
56454	34500	0.6037 ± 0.0097
56455	34300	0.5889 ± 0.0099
56456	34100	0.5741 ± 0.0101
56457	33900	0.5593 ± 0.0103
56458	33700	0.5445 ± 0.0105
56459	33500	0.5297 ± 0.0107
56460	33300	0.5149 ± 0.0109
56461	33100	0.4991 ± 0.0111
56462	32900	0.4843 ± 0.0113
56463	32700	0.4695 ± 0.0115
56464	32500	0.4547 ± 0.0117
56465	32300	0.4399 ± 0.0119
56466	32100	0.4251 ± 0.0121
56467	31900	0.4103 ± 0.0123
56468	31700	0.3955 ± 0.0125
56469	31500	0.3807 ± 0.0127
56470	31300	0.3659 ± 0.0129
56471	31100	0.3511 ± 0.0131
56472	30900	0.3363 ± 0.0133
56473	30700	0.3215 ± 0.0135
56474	30500	0.3067 ± 0.0137
56475	30300	0.2919 ± 0.0139
56476	30100	0.2771 ± 0.0141
56477	29900	0.2623 ± 0.0143
56478	29700	0.2475 ± 0.0145
Table A1 – continued A List of the Temperatures and Bolometric Luminosities

		\(T\)	\(L_{\text{bol}}\)
56481	74	5182\(_{286}\) _238	1.40\(_{0.06}\) _0.07
56482	75	5173\(_{261}\) _261	1.34\(_{0.05}\) _0.05
56483	76	5182\(_{294}\) _288	1.26\(_{0.05}\) _0.04
56486	79	5080\(_{253}\) _253	1.07\(_{0.05}\) _0.04
56487	80	5012\(_{263}\)	1.00\(_{0.05}\) _0.05
56488	81	4816\(_{255}\) _254	0.88\(_{0.05}\) _0.04
56489	82	5173\(_{293}\) _433	0.70\(_{0.05}\) _0.10

SN2013ej

		\(T\)	\(L_{\text{bol}}\)
56500	3	13900\(_{724}\) _841	4.00\(_{0.33}\) _0.28
56501	4	13053\(_{537}\) _538	4.02\(_{0.29}\) _0.24
56502	5	12853\(_{465}\) _465	4.33\(_{0.46}\) _0.38
56503	6	11493\(_{170}\) _173	4.14\(_{0.57}\) _0.42
56504	7	11488\(_{259}\) _259	4.19\(_{0.40}\) _0.34
56505	8	11271\(_{467}\) _470	4.08\(_{0.60}\) _0.37
56506	9	11145\(_{625}\) _625	4.21\(_{0.36}\) _0.29
56507	10	10489\(_{353}\) _350	4.07\(_{0.32}\) _0.24
56508	11	10452\(_{339}\) _339	4.06\(_{0.31}\) _0.26
56509	12	10220\(_{403}\) _403	4.07\(_{0.28}\) _0.23
56510	13	10018\(_{124}\) _124	3.99\(_{0.86}\) _0.35
56511	14	10600\(_{302}\) _302	4.41\(_{0.99}\) _0.64
56512	15	10560\(_{288}\) _286	4.42\(_{0.98}\) _0.64
56513	16	10330\(_{144}\) _121	4.25\(_{1.16}\) _0.74
56514	17	10183\(_{152}\) _972	4.26\(_{1.12}\) _0.59
56515	18	9856\(_{127}\) _1043	3.91\(_{0.88}\) _0.57
56516	19	9410\(_{148}\) _709	3.67\(_{0.51}\) _0.38
56520	23	9580\(_{116}\) _1108	3.81\(_{0.95}\) _0.62
56521	24	9785\(_{153}\) _1125	3.96\(_{1.13}\) _0.69
56522	25	9775\(_{135}\) _1142	3.84\(_{1.11}\) _0.65
56524	27	8975\(_{157}\) _979	3.29\(_{0.93}\) _0.46
56525	28	9054\(_{168}\) _1187	3.29\(_{0.82}\) _0.56
56526	29	8620\(_{113}\) _855	3.03\(_{0.41}\) _0.38
56528	31	8640\(_{131}\) _860	2.90\(_{0.59}\) _0.37
56529	32	8730\(_{154}\) _896	2.93\(_{0.60}\) _0.40
56533	36	8180\(_{1006}\) _941	2.50\(_{0.43}\) _0.28
56534	37	8060\(_{1004}\) _781	2.42\(_{0.41}\) _0.26
56538	41	7040\(_{1359}\) _962	1.91\(_{0.43}\) _0.21
56539	42	7560\(_{1394}\) _1000	2.09\(_{0.51}\) _0.27
56541	44	7520\(_{1363}\) _997	1.93\(_{0.47}\) _0.25
56544	47	7400\(_{1301}\) _971	1.84\(_{0.42}\) _0.23
56546	49	6920\(_{1157}\) _846	1.60\(_{0.31}\) _0.16
56553	56	6520\(_{958}\) _757	1.46\(_{0.21}\) _0.12
56554	57	6940\(_{1224}\) _853	1.52\(_{0.28}\) _0.16
56560	63	6500\(_{1223}\) _751	1.32\(_{0.21}\) _0.13
56562	65	6520\(_{958}\) _757	1.37\(_{0.19}\) _0.11
Table A1 – continued A List of the Temperatures and Bolometric Luminosities

56563	66	6800$^{1097}_{825}$	1.34$^{0.24}_{0.12}$		
56567	70	6440$^{713}_{732}$	1.29$^{0.17}_{0.09}$		
56568	71	6340$^{915}_{713}$	1.21$^{0.16}_{0.09}$		
56573	76	6600$^{1069}_{771}$	1.18$^{0.15}_{0.10}$		
56574	77	6800$^{1097}_{825}$	1.16$^{0.21}_{0.11}$		
56577	80	6920$^{1125}_{843}$	1.14$^{0.21}_{0.11}$		
56578	81	6540$^{758}_{758}$	1.02$^{0.15}_{0.09}$		
56589	92	6700$^{1056}_{794}$	0.79$^{0.13}_{0.07}$		
56594	97	6560$^{993}_{799}$	0.59$^{0.09}_{0.05}$		
56596	99	5980$^{912}_{630}$	0.44$^{0.04}_{0.02}$		
56600	103	6420$^{1135}_{837}$	0.29$^{0.04}_{0.02}$		
56607	110	6180$^{1358}_{933}$	0.15$^{0.03}_{0.01}$		
56610	113	6980$^{2924}_{1539}$	0.16$^{0.09}_{0.02}$		
56613	116	5960$^{1415}_{1131}$	0.12$^{0.03}_{0.01}$		
56616	119	6440$^{1638}_{1072}$	0.13$^{0.03}_{0.01}$		
56617	120	5960$^{1722}_{1075}$	0.13$^{0.03}_{0.01}$		