Abstract: N-Protected 3-iodoindoles were reacted with (di)azine halides in a sequentially Pd-catalyzed one-pot fashion, i.e., by Masuda borylation–Suzuki coupling (MBSC) sequence. This methodology was successfully applied to the concise syntheses of marine indole alkaloids meridianin C, D, F, and G, as well as to the bisindole alkaloid scalaridine A, which were obtained in moderate to excellent yield.

Keywords: natural products; one-pot reactions; alkaloids; Masuda borylation–Suzuki coupling

1. Introduction

Marine flora and fauna display an extraordinary chemical diversity and harbor an enormous richness of natural products [1]. Every year, a large number of new natural products are discovered and studied, with nearly 1500 new compounds published in 2019 alone [2]. Since natural products often exhibit biological activity, the isolation and characterization of novel marine metabolites play major roles in the development of active ingredients and agrochemicals [3]. Indole alkaloids have been isolated from various marine sources, such as sponges, tunicates, red alga, acorn worms, and symbiotic bacteria [4], and are part of numerous in-depth studies due to their frequent bioactivities, such as cytotoxicity [5], antiviral [6], antimicrobial [7], antifungal [8], anti-inflammatory [9], and anti-serotonin [10] properties. Interesting representatives amongst indole alkaloids include meridianins A–G, isolated from the tunicate *Aplidium meridianum* [11,12], described as potent inhibitors of various protein kinases [13], or the bisindole scalaridine A, discovered in the sponge *Scalarispongia* sp., exhibiting cytotoxicity against human leukemia cells (Figure 1) [14].

Figure 1. Indole alkaloids meridianins A–G from tunicate *Aplidium meridianum* and scalaridine A from marine sponge *Scalarispongia* sp.
The concatenation of a Masuda borylation [15,16] and a Suzuki coupling has been described in literature [17–21]; however, we conceptualized a general protocol for coupling of a broad spectrum of heterocycles [22–24], in particular a broad selection of 7-azaindoles, such as meriolins [25–32], which are potent kinase inhibitors [33–36], and apoptosis inducers were readily accessed [37]. Most characteristically, the Masuda borylation–Suzuki coupling (MBSC) sequence takes advantage of the concept of a single catalyst system without the addition of another catalyst loading in the sense of a sequentially Pd-catalyzed one-pot process [38,39]. In the first Pd-catalyzed step the (hetero)aryl halide is borylated with pinacolborane in the presence of triethylamine to scavenge the hydrohalide, furnishing the (hetero)aryl pinacolboronate. This borylated derivative is further reacted with a second (hetero)aryl halide in the sense of a Suzuki reaction in the same reaction vessel to provide an unsymmetrically substituted bis(hetero)aryl product.

As illustrations of this powerful MBSC protocol, several indole-containing natural products, such as meridianins A and G (Figure 1) [22], the bisindoles hyrtinadine A [23], alocasin A, and their analogues as efficient MRSA (methicillin-resistant \textit{Staphylococcus aureus}) antibacterials [40], as well as the thiazole containing alkaloid camalexin [24] were synthesized in a concise fashion (Figure 2).

![Figure 2. Natural products alocasin A, hyrtinadine A and camalexin synthesized via MBSC sequence.](image)

The first synthesis of meridianins set out from transforming 3-acetylindoles into the corresponding enaminones and subsequent cyclization with guanidine [25,26,28]. Later, cycloaddition of nitrosoarenes with alkynylpyrimidines [29], and Pd-catalyzed Cacchi ring-building indole synthesis [31] were introduced as shorter synthetic routes. Employing a three-component carboxylative alkylation as a key step, followed by cycloaddition, we disclosed a concise two-step protocol [41]. Already in 2000, Suzuki coupling was recognized as a key step towards syntheses of selected meridianins [32], and in 2011 we showed that the MBSC is well suited for the synthesis of meridianins A and G [22].

Total syntheses of scalaridine A have been achieved using Ir-catalyzed C-H borylation and Pd-catalyzed Suzuki coupling as key steps [42], as well as several Pd-catalyzed steps including hydrostannylation and Kosugi–Migita–Stille cross-coupling in a multistep synthesis [43], and a Cu-catalyzed Suzuki–Miyaura approach starting from indole boronates in a two-step fashion [44].

Herein, we report the syntheses of the bromo substituted meridianins C, D, and F, as well as meridianin G, and the synthesis of scalaridine A via one-pot Masuda borylation–Suzuki coupling sequence in mostly good yields.

2. Results and Discussion

The MBSC sequence represents an elegant transform for the retrosynthetic analysis of complex heteroaromatic biaryl systems from (hetero)aryl halides as starting materials in a sequentially Pd-catalyzed one-pot procedure (Scheme 1).
Scheme 1. General MBSC transform of (hetero)aryl indoles and its extension to bridged bisindoles.

Therefore, in analogy to the synthesis of meridianins A and G [22], our approach to meridianins C, D, F, and G starts from N-Boc- and N-tosyl-protected 3-iodoindoles 1a–d. The starting material is prepared in a one-pot process of selective iodation in position three and subsequent N-protection according to Witsulski’s [45] and our protocols [23,24]. The indoles 1 are converted to the boronate intermediates by Masuda borylation in the presence of tetrakis(triphenylphosphane)palladium(0), pinacolyl borane (HBpin), and triethylamine in dry 1,4-dioxane (Scheme 2).

Scheme 2. Synthesis of meridianins C, D, F, and G by MBSC sequence.

3a (meridianin D): R^1 = H, R^2 = Br, R^3 = H, 25%
3b: R^1 = R^2 = Br, R^3 = Tos
3c: R^1 = Br, R^2 = H, R^3 = Tos
3d: R^1 = R^2 = H, R^3 = Tos
3e (meridianin C): R^1 = Br, R^2 = R^3 = H, 48%
3f (meridianin F): R^1 = R^2 = Br, R^3 = H, 66%
3g (meridianin G): R^1 = R^2 = R^3 = H, 80%

PG: protecting group
After full conversion of the indole 1, methanol is added to scavenge the remaining excess of HBpin. Subsequent addition of cesium carbonate and 4-chloropyrimidine-2-amine (2) initiates the Suzuki coupling reaction in the same reaction vessel. The Boc protecting group is cleaved under the Suzuki conditions furnishing the natural product meridianin D (3a) in a yield of 25%. Although the concomitant cleavage of the protecting group during the Suzuki step is elegant, it turned out that this does not work equally well in all substrate combinations [24,37,40]. Indeed, the tosyl group is more robust and can be equally well cleaved upon reaction of the tosylated intermediates 3b–d in the presence of potassium hydroxide in an additional step in the one-pot process to give access to meridianin C (3e) (48%), meridianin F (3f) (66%), and meridianin G (3g) (80%). The analytic data are in excellent agreement with the published data of the isolated natural compounds [11,12] (for the comparison of the NMR data, see Supplementary Materials, Chapter S3). Moreover, N-tosyl protected indoles 1 appear to be more stable and more practical than N-Boc protected substrates, because no dehalogenation is observed by storage at room temperature.

For the synthesis of scalaridine A (7), 3-iodo-5-methoxy-1-tosyl-1H-indole (1e) is employed as a starting material and similarly converted to the respective pinacolyl boronate intermediate in the sense of a Masuda borylation (Scheme 3). After full conversion, methanol is added to scavenge the excess of HBpin. In comparison to the meridianin protocol, increasing the amount of catalyst and HBpin is favorable considering two Masuda borylations per N-heterocyclic-bridged bisindole. Then, cesium carbonate and half an equivalent of 3,5-dibromopyridine (4) are added for the concluding pseudo three-component Suzuki coupling. Addition of potassium hydroxide cleaves the tosyl group and the alkaloid precursor O,O′-dimethyl scalaridine A (5) is obtained in a yield of 64%.

![Scheme 3. Synthesis of the natural product precursor O,O'-dimethyl scalaridine A (5).](image)

The total synthesis is completed by twofold demethylation [46] of 5 in refluxing acetic acid with hydrobromic acid furnishing the bisindole alkaloid scalaridine A (6) in a good yield (Scheme 4). The disappearance of the signal for the methyl groups (δ 3.82) and appearance of the OH signal (δ 8.81) in the 1H NMR spectrum indicates the formation of the natural compound 6 (see experimental section). The overall yield over 2 steps is 44% (starting from 1e).
Scheme 4. Synthesis of scalaridine A (6) by demethylation of O\textsubscript{2}O\textprime{}-dimethyl scalaridine A.

3. Materials and Methods

3.1. General Considerations

All cross-coupling reactions were carried out in oven-dried Schlenk tubes under nitrogen atmosphere. By using MBraun system MB-SPS-800, dry 1,4-dioxane was obtained. Dry triethylamine was stored in a Schlenk flask with potassium hydroxide pallets under nitrogen atmosphere. The used N\textprime{}-protected 3-iodo-1H-indoles 1 were prepared using a literature-known one-pot process \cite{23,24,45}. 4-chloropyrimidine-2-amine (2) was synthesized by suspending 2,4-dichloroprimidine in ammonia (aq, 5\%) for 2 d \cite{47}. All other used chemicals were purchased at Sigma-Aldrich Chemie GmbH (St. Louis, MO, USA), Acros Organics (Waltham, MA, USA), ABCR GmbH & CO. KG (Karlsruhe, Germany), Alfa Aesar GmbH (Tewksbury, MA, USA) and Merck Serono KGaA (Darmstadt, Germany) and used as supplied.

For purification of the reaction mixtures, a flash chromatography was performed on silica gel 60 (0.015–0.040 mm) from Macherey-Nagel GmbH & Co. KG under a pressure of 2 bar. Therefore, the crude reaction mixtures were adsorbed on Celite® 545 (0.02–0.10 mm) from Macherey-Nagel GmbH & Co. KG. For TLC Silica gel 60 F\textsubscript{254} 6 × 6 cm2 aluminum sheets by Macherey-Nagel GmbH & Co. KG were used. The spots were detected with UV light at 254 and 365 nm. 1H, 13C, and 135-DEPT NMR spectra were recorded on Bruker Avance III 300 and Bruker Acance III 600 spectrometers. DMSO-d\textsubscript{6} was used as deuterated solvents. For 1H spectra, the residual proton signal of the deuterated solvent was locked as the internal standard (DMSO-d\textsubscript{6}, δ H 2.50, δ C 39.5). The multiplicities of signals were abbreviated as follows: s: singulet, d: doublet, t: triplet, and dd: doublet of doublets. The types of carbon atoms were abbreviated as follows: CH\textsubscript{3}: primary carbon atom, CH\textsubscript{2}: secondary carbon atom, CH: tertiary carbon atom, and C\textsubscript{quat}: quartary carbon atom. For determination a 135-DEPT NMR spectra was used. Mass spectra were measured on Varian MAT 311 A. All peaks with an intensity of >10\% corresponding to the base peak were stated. The melting points (uncorrected) were measured on Reichert-Jung S3 Thermovar \cite{48}. Elementary analysis was carried out in the micro analytical laboratory of Institut für Pharmazeutische und Medizinische Chemie der Heinrich-Heine-Universität, Düsseldorf.

3.2. Synthesis of Meridianin D (3a)

\([\text{Pd(PPh\textsubscript{3}})\textsubscript{4}] (19 \text{ mg}, 19 \text{ \textmu{}mol}, 3 \text{ mol \%}) \text{ and the tert-butyl 6-bromo-3-iodo-1H-indole-1-carboxylate (1a}) (278 \text{ mg}, 0.66 \text{ mmol}) \text{ were placed in a dry screw-cap Schlenk vessel with a septum and a magnetic stir bar under nitrogen atmosphere and suspended in dry 1,4-dioxane (5.00 mL). After the addition of dry triethylamine (0.92 mL, 6.59 mmol) and 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.14 mL, 0.99 mmol) the mixture was stirred at 80 °C (preheated oil bath) for 4 h (monitored by TLC). After cooling to room temperature, methanol (5.00 mL), cesium carbonate (0.54 g, 1.65 mmol), and 4-chloropyrimidine-2-amine}
Molecules 2022, 27, 2233

3.3.3. Synthesis of Meridianin C (3e), Meridianin F (3f), and Meridianin G (3g)

3.3.3.1. General Procedure for the Synthesis of Meridianins 3e–g via MBSC Sequence

[2] [47] (85 mg, 0.66 mmol) were added. Then, the mixture was stirred at 100 °C (preheated oil bath) for 4 h. After cooling to room temperature, the solution was diluted with dichloromethane and adsorbed onto Celite®. The solvent was removed under reduced pressure and the product was purified by flash chromatography on silica gel (eluent: dichloromethane/methanol/ammonia (aqueous 25%) 100:5:1). The obtained solid was dried under vacuo at 60 °C for 4 days. Compound 3a (43 mg, 25%) was obtained as a yellow solid, Mp 211–213 °C (217–221 °C [26]). Rf (dichloromethane/methanol/ammonia (aqueous 25%) 100:5:1): 0.32.

1H NMR (300 MHz, DMSO-d6): δ 6.46 (s, 2H), 7.00 (d, J = 5.3 Hz, 1H), 7.23 (dd, J = 8.5, 1.9 Hz, 1H), 7.62 (d, J = 1.8 Hz, 1H), 8.11 (d, J = 5.3 Hz, 1H), 8.26 (d, J = 2.9 Hz, 1H), 8.56 (d, J = 8.5 Hz, 1H), 11.78 (s, 1H). 13C NMR (75 MHz, DMSO-d6): δ 105.2 (CH), 113.2 (Cquat), 113.3 (Cquat), 113.7 (CH), 124.5 (CH), 124.6 (CH), 127.0 (Cquat), 127.9 (Cquat), 157.1 (CH), 162.2 (Cquat), 163.5 (Cquat). HR-MS (ESI) (m/z) calcd for (C12H7+3BrN4 + H)+: 289.0088; Found: 289.0081.

3.3.2. Synthesis of 4-(5-Bromo-1H-indol-3-yl)pyrimidin-2-amine, Meridianin C (3e)

According to the general procedure starting from 5-bromo-3-iodo-1-tosyl-1H-indole (1c) compound 3e (91 mg, 48%) was isolated as a yellow solid, Mp 208–210 °C (238–240 °C [41]). Rf (dichloromethane/methanol/ammonia (aqueous 25%) 100:5:1): 0.25.

1H NMR (300 MHz, DMSO-d6): δ 6.50 (s, 2H), 7.01 (d, J = 5.4 Hz, 1H), 7.29 (dd, J = 8.6, 2.0 Hz, 1H), 7.41 (d, J = 8.6 Hz, 1H), 8.11 (d, J = 5.3 Hz, 1H), 8.26 (d, J = 2.9 Hz, 1H), 8.76 (d, J = 2.0 Hz, 1H), 11.86 (s, 1H). 13C NMR (75 MHz, DMSO-d6): δ 105.2 (CH), 113.2 (Cquat), 113.3 (Cquat), 113.7 (CH), 124.5 (CH), 124.6 (CH), 127.0 (Cquat), 127.9 (Cquat), 157.1 (CH), 162.2 (Cquat), 163.5 (Cquat). HR-MS (ESI) (m/z) calcd for (C12H7+3BrN4 + H)+: 289.0088; Found: 289.0083. Anal calcd for C12H7BrN4 (289.1): C 49.85, H 3.14, N 19.38; Found: C 50.04, H 3.14, N 19.38; Found: C 50.04, H 3.14, N 19.09.

3.3.3. Synthesis of 4-(5,6-Dibromo-1H-indol-3-yl)pyrimidin-2-amine, Meridianin F (3f)

According to the general procedure starting from 5,6-dibromo-3-iodo-1-tosyl-1H-indole (1b) compound 3f (0.160 g, 66%) was obtained as a colorless solid, Mp 290–292 °C (167–169 °C [28]). Rf (dichloromethane/methanol/ammonia (aq, 25%) 100:5:1): 0.22.

1H NMR (300 MHz, DMSO-d6): δ 6.56 (s, 2H), 7.02 (d, J = 5.3 Hz, 1H), 7.85 (s, 1H), 8.14 (d, J = 5.3 Hz, 1H), 8.31 (d, J = 1.7 Hz, 1H), 8.97 (s, 1H), 11.94 (s, 1H). 13C NMR (75 MHz, DMSO-d6): δ 105.1 (CH), 113.2 (Cquat), 114.9 (Cquat), 116.1 (Cquat), 116.5 (CH), 126.1 (Cquat), 126.5 (CH), 130.4 (CH), 136.7 (Cquat), 157.3 (CH), 161.8 (Cquat), 163.5 (Cquat). HR-MS (ESI) (m/z) calcd for (C12H7+2BrN4 + H)+: 366.9157; Found: 366.9157. Anal calcd for C12H7Br2N4 (368.03): C 39.16, H 2.19, N 15.22; Found: C 39.36, H 2.36, N 14.93.
3.3.4. Synthesis of 4-(1H-indol-3-yl)pyrimidin-2-amine, Meridianin G (3g)

According to the general procedure starting from 3-iodo-1-tosyl-1H-indole (1d) compound 3g (111 mg, 80%) was isolated as a colorless solid, Mp 190–191 °C (195–197 °C [22]).

\[\text{R}_1 \text{ (dichloromethane/methanol/ammonia (aqueous 25%)} 100:5:1) 0.26 \]

\[^1 \text{H NMR (600 MHz, DMSO-\text{d}_6)}: \delta 6.41 (s, 2H), 7.01 (d, J = 5.3 Hz, 1H), 7.12 (td, J = 7.4, 6.9, 1.1 Hz, 1H), 7.17 (dd, J = 8.1, 6.9, 1.3 Hz, 1H), 7.44 (d, J = 8.0 Hz, 1H), 8.10 (d, J = 5.3 Hz, 1H), 8.19 (d, J = 2.9 Hz, 1H), 8.58 (d, J = 7.9 Hz, 1H), 11.66 (s, 1H). \]

\[^13 \text{C NMR (150 MHz, DMSO-\text{d}_6)}: 105.3 (CH), 111.8 (CH), 113.7 (\text{C}_{\text{quat}}), 120.2 (CH), 121.9 (CH), 122.4 (CH), 125.3 (\text{C}_{\text{quat}}), 128.2 (CH), 137.0 (\text{C}_{\text{quat}}), 157.0 (\text{CH}), 162.7 (\text{C}_{\text{quat}}), 163.5 (\text{C}_{\text{quat}}). \]

HR-MS (ESI) (m/z) calcd for [C_{12}H_{10}N_{4} + H]^+ 211.0978; Found: 211.0977.

3.4. Synthesis of Scalaridine A (6)

3.4.1. Synthesis of 3,5-Bis(5-methoxy-1H-indol-3-yl)pyridine (5)

\[[\text{Pd(PPh}_3)_4] (57.0 mg, 0.0490 mmol, 5 mol %) and 3-iodo-5-methoxy-1-tosyl-1H-indole (1e) (0.427 g, 1.00 mmol) were placed in a dry screw-cap Schlenk vessel with a septum and a magnetic stir bar under nitrogen atmosphere and were suspended in dry 1,4-dioxane (5.00 mL). The solution was degassed with nitrogen for 10 min. Dry triethylamine (1.40 mL, 23.1 mmol) and cesium carbonate (0.810 g, 2.50 mmol) were added, followed by hydrobromic acid (2.00 mL, 48%). The mixture was heated to 120 °C for 16 h. After cooling to room temp methanol (7.00 mL), cesium carbonate (0.810 g, 2.50 mmol), and 3,5-dibromopyridine (0.120 g, 0.500 mmol) were added and the suspension was stirred at 60 °C (preheated oil bath) for 16 h. Thereafter, the reaction mixture was again cooled to room temp and potassium hydroxide (0.140 mg, 2.50 mmol) was added, the suspension was stirred at 100 °C (preheated oil bath) for 3 h. The reaction mixture was cooled to room temp and the crude product was adsorbed onto Celite® and purified by flash chromatography on silica gel (elucent: dichloromethane/methanol/ammonia (aqueous 25%) 100:1:1). The obtained solid was washed with diethyl ether, filtered, and dried in vacuo at 60 °C for 1 day. Compound 5 (0.120 g, 64%) was isolated as a beige solid, Mp 218–219 °C (107–111 °C [42]).

\[\text{R}_2 (\text{dichloromethane/methanol/ammonia (aqueous 25%)} 100:1:1) 0.37 \]

\[^1 \text{H NMR (300 MHz, DMSO-\text{d}_6)}: \delta 3.82 (s, 6H), 6.86 (dd, J = 8.8, 2.4 Hz, 2H), 7.38 (d, J = 2.4 Hz, 2H), 7.40 (d, J = 8.9 Hz, 2H), 7.85 (d, J = 2.7 Hz, 2H), 8.24 (t, J = 2.1 Hz, 1H), 8.77 (d, J = 2.7 Hz, 2H), 11.39 (s, 2H). \]

\[^13 \text{C NMR (75 MHz, DMSO-\text{d}_6)}: \delta 55.4 (\text{CH}_3), 100.7 (\text{CH}), 111.6 (\text{CH}), 112.1 (\text{C}_{\text{quat}}), 112.8 (\text{CH}), 125.0 (\text{CH}), 125.2 (\text{C}_{\text{quat}}), 130.2 (\text{CH}), 131.8 (\text{C}_{\text{quat}}), 132.0 (\text{C}_{\text{quat}}), 143.9 (\text{CH}), 154.2 (\text{C}_{\text{quat}}). \]

MS (EI) (m/z): 370 (26), 369 (100), 326 (13), 184 ([C_{12}H_{20}NO]$, 15), 177 (12), 163 (13), 155 ([C_{11}H_{12}O]$, 14), 141 (26). HR-MS (ESI) (m/z) calcd. for [C_{23}H_{19}N_{2}O_{2} + H]^+ 370.1550; Found: 370.1551.

3.4.2. Synthesis of 3,3′-(Pyridine-3,5-diyl)bis(1H-indol-3-yl), Scalaridine A (6) by Demethylation of Compound 5

3,5-Bis(5-methoxy-1H-indol-3-yl)pyridine (5) (85.0 mg, 0.230 mmol) was placed in a dry screw-cap Schlenk vessel with a septum and a magnetic stir bar under nitrogen atmosphere and was dissolved in acetic acid (2.00 mL). After hydrobromic acid (2.00 mL, aq, 48%) were added the suspension was stirred at 120 °C (preheated oil bath) for 16 h. After cooling to room temp, the solvent was evaporated under reduced pressure. The residue was diluted in ammonia (10.0 mL, aqueous 25%) and stirred at room temp for 1 h. The crude product was extracted with ethyl acetate (3 × 100 mL), adsorbed onto Celite® and purified by flash chromatography on silica gel (elucent: ethyl acetate). Compound 6 (53 mg, 68%) was obtained as a yellow solid, Mp 319–320 °C (319–320 °C [42]).

\[\text{R}_3 (\text{ethyl acetate}) 0.34 \]

\[^1 \text{H NMR (300 MHz, DMSO-\text{d}_6)}: \delta 6.71 (dd, J = 8.6, 2.2 Hz, 2H), 7.23 (d, J = 2.2 Hz, 2H), 7.30 (d, J = 8.7 Hz, 2H), 7.78 (d, J = 2.7 Hz, 2H), 8.18 (t, J = 2.2 Hz, 1H), 8.69 (d, J = 2.1 Hz, 2H), 8.81 (s, 2H), 11.26 (d, J = 2.7 Hz, 2H). \]

\[^13 \text{C NMR (75 MHz, DMSO-\text{d}_6)}: \delta 102.6 (\text{CH}), 111.1 (\text{CH}), 112.0 (\text{CH}), 112.6 (\text{C}_{\text{quat}}), 124.5 (\text{CH}), 125.7 (\text{C}_{\text{quat}}), 130.0 (\text{CH}), 130.6 (\text{C}_{\text{quat}}). \]
133.0 (C\text{quat}), 144.5 (CH), 151.1 (C\text{quat}). MS (ESI) (m/z): 342 (22), 341 ([M]^+, 100), 312 (14). HR-MS (ESI) (m/z) calcd. for (C_{21}H_{15}N_{3}O_{2} + H)^+: 342.1237; Found: 342.1240.

4. Conclusions

The Masuda borylation–Suzuki coupling sequence is a practical and catalyst-efficient tool for the synthesis of bi(hetero)aryls and (hetero)aryl-bridged bisindoles. Here, we showcased the concise two-step syntheses of the naturally occurring brominated marine alkaloids meridianins C, D, and F, as well as meridianin G and the marine bisindole scalaridine A. The operational simplicity and concision of the MBSC sequence is well suited for the rapid synthesis of libraries of related bi(hetero)aryls and corresponding bridged systems with biological activity, which are currently underway.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/molecules27072233/s1, Supporting Information: Synthetic and analytic details, and 1H and 13C NMR spectra of compounds 1–6, comparison of experimental NMR data with NMR data of the isolated natural products.

Author Contributions: The work consists of parts of the planned Ph.D. thesis of M.K., which was supervised by T.J.J.M., and the master thesis of G.A.S., which was also supervised by T.J.J.M. The conceptualization was outlined and accompanied by T.J.J.M. Synthetic studies were performed by M.K. (80%) and G.A.S. (20%). All analytical assignments were performed by M.K. (85%) and G.A.S. (15%). Writing of the original draft was done by M.K., and review and editing by all coauthors. Project administration and funding acquisition was carried out by T.J.J.M. All authors have read and agreed to the published version of the manuscript.

Funding: The authors cordially thank GRK 2158 (Deutsche Forschungsgemeinschaft) and the Fonds der Chemischen Industrie for financial support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data of this work are included in the manuscript and the Supplementary Materials.

Acknowledgments: The authors thank Felix Krickl for experimental assistance in the course of his bachelor thesis. Thanks to the CeMSA@HHU (Center for Molecular and Structural Analytics @ Heinrich Heine University) for recording the mass-spectrometric and the NMR-spectroscopic data.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or in the decision to publish the results.

Sample Availability: The data presented in this study are available on request from the corresponding author.

References
1. Proksch, P.; Putz, A.; Ortlepp, S.; Kjer, J.; Bayer, M. Bioactive natural products from marine sponges and fungal endophytes. Phytochem. Rev. 2010, 9, 475–489. [CrossRef]
2. Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2021, 38, 362–413. [CrossRef] [PubMed]
3. Debbab, A.; Aly, A.H.; Lin, W.H.; Proksch, P. Bioactive Compounds from Marine Bacteria and Fungi. Microb. Biotechnol. 2010, 3, 544–563. [CrossRef] [PubMed]
4. Kobayashi, J.I.; Murayama, T.; Ishibashi, M.; Kosuge, S.; Takamatsu, M.; Ohizumi, Y.; Kobayashi, H.; Ohta, T.; Nozoe, S.; Takuma, S. Hyrtiosins A and B, new indole alkaloids from the Okinawan marine sponge Hyrtios erecta. Tetrahedron 1990, 46, 7699–7702. [CrossRef]
5. Tsuji, S.; Rinehart, K.L.; Gunasekera, S.P.; Kashman, Y.; Cross, S.S.; Lui, M.S.; Pomponi, S.A.; Diaz, M.C. Toppentin, bromotoppentin, and dihydrodeoxybromotoppentin: Antiviral and antitumor bis(indolyl) imidazoles from Caribbean deep-sea sponges of the family Halichondriidae. Structural and synthetic studies. J. Org. Chem. 1988, 53, 5446–5453. [CrossRef]
33. Dorsch, D.; Sirrenberg, C.; Müller, T.J.J. Preparation of 4-(Pyrollopyridinyl)pyrimidinyl-2-amines as Antitumor Agents. Patent WO2007107221 A1, 27 September 2007.

34. Dorsch, D.; Wuchrer, M.; Burgdorf, L.T.; Sirrenberg, C.; Esdar, C.; Müller, T.J.J.; Merkul, E. Preparation of Pyrollopyridinylpyrimidinylamines as Inhibitors of Cell Proliferation. Patent WO2008155000 A1, 24 December 2008.

35. Dorsch, D.; Sirrenberg, C.; Müller, T.J.J.; Merkul, E. Preparation of 3-(4-pyridinyl)-1H-pyrrolo[2,3-b]pyridines as Anti-Tumor Agents. Patent DE102008025751 A1, 3 December 2009.

36. Dorsch, D.; Sirrenberg, C.; Müller, T.J.J.; Merkul, E.; Karapetyan, G. 7-Azaindole Derivatives as Kinase Inhibitors and Their Preparation and Use in the Treatment of Tumors. Patent WO2012104007 A2, 9 August 2012.

37. Drießen, D.; Stuhldreier, F.; Frank, A.; Stark, H.; Wesselborg, S.; Stork, B.; Müller, T.J.J. Novel meriolin derivatives as rapid apoptosis inducers. Bioorg. Med. Chem. 2019, 27, 3463–3468. [CrossRef]

38. Müller, T.J.J. Sequentially Palladium-Catalyzed Processes. Top. Organomet. Chem. 2006, 19, 149–205. [CrossRef]

39. Lessing, T.; Müller, T.J.J. Sequentially Palladium-Catalyzed Processes in One-Pot Syntheses of Heterocycles. Appl. Sci. 2015, 5, 1803–1836. [CrossRef]

40. Rehberg, N.; Sommer, G.A.; Drießen, D.; Kruppa, M.; Adeniyi, E.T.; Chen, S.; Wang, L.; Wolf, K.; Tasch, B.O.A.; Ioerger, T.R.; et al. Nature-Inspired (di)Azine-Bridged Bisindole Alkaloids with Potent Antibacterial In Vitro and In Vivo Efficacy against Meticillin-Resistant Staphylococcus aureus. J. Med. Chem. 2020, 63, 12623–12641. [CrossRef]

41. Karpov, A.S.; Merkul, E.; Rominger, F.; Müller, T.J.J. Concise Syntheses of Meridianins by Carbonylative Alkynylation and a Four-Component Pyrimidine Synthesis. Angew. Chem. Int. Ed. 2005, 44, 6951–6956. [CrossRef] [PubMed]

42. Kim, S.H.; Sperry, J. Synthesis of scalaridine A. Tetrahedron Lett. 2015, 56, 5914–5915. [CrossRef]

43. Ansari, N.H.; Söderberg, B.C.G. Short syntheses of the indole alkaloids alocasin A, scalaridine A, and hyrtinadine A-B. Tetrahedron 2016, 72, 4214–4221. [CrossRef]

44. Ranjani, G.; Nagarajan, R. Insight into Copper Catalysis: In Situ Formed Nano Cu2O in Suzuki–Miyaura Cross-Coupling of Aryl/Indolyl Boronates. Org. Lett. 2017, 19, 3974–3977. [CrossRef] [PubMed]

45. Witulski, B.; Buschmann, N.; Bergsträßer, U. Hydroboration and Suzuki–Miyaura Coupling Reactions with the Electronically Modulated Variant of an Ynamine: The Synthesis of (E)-β-Arylenamides. Tetrahedron 2000, 56, 8473–8480. [CrossRef]

46. Kim, S.H.; Sperry, J. Synthesis of Alocasin A. J. Nat. Prod. 2015, 78, 3080–3082. [CrossRef] [PubMed]

47. Hilbert, G.E.; Johnson, T.B. Researches on pyrimidines. CXIII. An improved method for the synthesis of cytosine1. J. Am. Chem. Soc. 1930, 52, 1152–1157. [CrossRef]

48. Kofler, A.; Kolsk, J. Beitrag zur mikroskopischen Identifizierung organischer Stoffe nach L. Kofler. IV. Microchim. Acta 1970, 58, 1063–1088. [CrossRef]