Neutrosophic Soft Bitopological Spaces

Ahmed B. AL-Nafee1*, Said Broumi2, Florentin Smarandache3

1Ministry of Education Open Educational College, Department of Mathematics, Babylon, Iraq.
E-mail: Ahm_math_88@yahoo.com

2Laboratory of Information Processing, Faculty of Science Ben M’Sik, University Hassan II, B.P 7955, Morocco.
E-mail: broumisaid78@gmail.com

3Department of Mathematics, University of New Mexico 705 AVE Gallup, NM 87301, USA.
E-mail: smarand@unm.edu

*Correspondence: Ahm_math_88@yahoo.com

Abstract: In this paper, we built bitopological space on the concept of neutrosophic soft set, we defined the basic topological concepts of this spaces which are N3-(bi)*-open set, N3-(bi)*-closed set, (bi)*-neutrosophic soft interior, (bi)*-neutrosophic soft closure, (bi)*-neutrosophic soft boundary, (bi)*-neutrosophic soft exterior and we introduced their properties. In addition, we investigated the relations of these basic topological concepts with their counterparts in neutrosophic soft topological spaces and we introduced many examples.

Keywords: Neutrosophic soft bitopological spaces, Star bineutrosophic soft open set, star bi neutrosophic soft closed set, fuzzy set.

1. Introduction

The concept of soft set is defined by Molodtsov [1] as follows: Let M be an initial universe set and E be a set of parameters. Let P(M) denotes the set of all the subsets of M. Consider B≠ ∅, B ⊆ E. The collection (βB) is termed to be the soft set, where β is a mapping by β:B→P(M), and later this concept has been redefined by Naim Cagman [20]. Smarandache [2] introduced neutrosophic set as a generalization of fuzzy set [3] and intuitionistic fuzzy set [4]. P. K. Maji [5] defended the concept of neutrosophic soft set by combining the concept of neutrosophic set and soft set. This concept has been modified by [6,7]. The concept of neutrosophic soft topological space was introduced by Bera [8]. Taha et al.[9] redefined the neutrosophic soft topological spaces differently from the study [8]. Other theoretical studies on these concepts were presented by a number of researchers, for example, Narmada, Georgiou, Cageman, Al-Nafee, Evanzalin and Salama, (see [10, 11, 22, 13, 14, 15, 16, 17, 18, 19, 20]).

Kelly, [21] introduced the concept of bitopological space. This concept is introduced as an extension of topological space. This concept has been introduced with interest in fuzzy set, soft set and neutrosophic set (see [22, 23, 24, 25]). Therefore, we find it important and necessary to build a bitopological spaces on the concept of neutrosophic soft set. In this paper, bitopological space on the concept of neutrosophic soft set is built, the basic topological concepts of this spaces which are N3-(bi)*-open set, N3-(bi)*-closed set, (bi)*-neutrosophic soft interior, (bi)*-neutrosophic soft closure, (bi)*-neutrosophic soft boundary, (bi)*-neutrosophic soft exterior are defined, the relations of these basic topological concepts with their counterparts in neutrosophic soft topological spaces are investigated and many examples on this concepts are given.

DOI: 10.5281/zenodo.4725946

November 20, 2020 Accepted: March 25, 2021
2. Preliminary

In this section, we will refer to the basic definitions required in our work.

2.1. Definition [26]

The neutrosophic set N over M is defined as follows:

\[N = \{ < m \cdot H_N(m), G_N(m), J_N(m) > : m \in M \} \]

where, the functions \(H, G, J : M \rightarrow [0,1] \) and \(0 \leq H_N(m) + G_N(m) + J_N(m) \leq 3 \).

From philosophical point of view the neutrosophic set takes the value from real standard or non-standard subsets of \([0,1] \). But in real life application in scientific and engineering problems it is difficult to use a neutrosophic set with value from real standard or non-standard subset of \([0,1] \). Hence we consider the neutrosophic set which takes the value from the subset of \([0,1] \).

Firstly, neutrosophic set defined by Maji [5] and later this concept and its operations have been redefined by [7]. Our work in this research is based on the definition below:

2.2. Definition [7]

Let \(M \) be an initial universe set and \(B \) be a set of parameters. Let \(P(M) \) denote the set of all the neutrosophic sets of \(M \). Then, a neutrosophic soft set \(\beta_B \) over \(M \) is a set defined by a set valued function \(\beta \) representing a mapping from \(B \) to \(P(M) \), where \(e \beta \) is called approximate function of the neutrosophic soft set \(\beta_B \).

In other words, \(\beta_B \) is a parameterized family of some elements of the set \(P(M) \) and therefore it can be written as a set of ordered pairs,

\[\beta_B = \{ (r, \{ < m \cdot H_B(r,m), G_B(r,m), J_B(r,m) > : m \in M \}) : r \in B \}. \]

Where,

\[H_B(r,m), G_B(r,m), J_B(r,m) \in [0,1], \]

respectively called the truth-membership, indeterminacy-membership, falsity-membership function of \(\beta(r) \). Since supremum of each \(H, G, J \) is 1 so the inequality,

\[0 \leq H_B(r,m) + G_B(r,m) + J_B(r,m) \leq 3 \]

is obvious.

From now on, the set of all neutrosophic sets over \(M \) is denoted by \(N(M) \).

2.3. Definition [9,5]

Let \(\beta_B \) and \(\mu_B \in N(M) \) such that;

\[\beta_B \bigcap \mu_B \bigcap \bigcap = \{ (r, \{ < m(1-H_B(r,m),1-G_B(r,m),1-J_B(r,m)) > : m \in M \}) : r \in B \}. \]

Then:

\[\hat{N} = \{ (r, \{ < m(1-H_B(r,m),1-G_B(r,m),1-J_B(r,m)) > : m \in M \}) : r \in B \} \] \(\hat{N} \) Absolute neutrosophic soft set .

\[\hat{N} = \{ (r, \{ < m(1-H_B(r,m),1-G_B(r,m),1-J_B(r,m)) > : m \in M \}) : r \in B \} \] \(\hat{N} \) Null neutrosophic soft set .

\[\beta_B \bigcap \mu_B \bigcap \bigcap = \{ (r, \{ < m(1-H_B(r,m),1-G_B(r,m),1-J_B(r,m)) > : m \in M \}) : r \in B \}. \]

\[\beta_B \bigcap \mu_B \bigcap \bigcap = \{ (r, \{ < m(1-H_B(r,m),1-G_B(r,m),1-J_B(r,m)) > : m \in M \}) : r \in B \}. \]

\[\beta_B \bigcap \mu_B \bigcap \bigcap = \{ (r, \{ < m(1-H_B(r,m),1-G_B(r,m),1-J_B(r,m)) > : m \in M \}) : r \in B \}. \]

\[\beta_B \bigcap \mu_B \bigcap \bigcap = \{ (r, \{ < m(1-H_B(r,m),1-G_B(r,m),1-J_B(r,m)) > : m \in M \}) : r \in B \}. \]

2.4. Definition

Let \(\beta_B \in N(M) \), The complement of \(\beta_B \) is denoted by \((\beta_B)^C \) and is defined as:

\[(\beta_B)^C = \{ (r, \{ < m(1-H_B(r,m),1-G_B(r,m),1-J_B(r,m)) > : m \in M \}) : r \in B \}. \]
2.5. Definition [9]

Let $T \subseteq (N_3(M))$. The collection T is called a neutrosophic soft topology on M, if the following conditions are true:

1) $M, \emptyset \in T$.
2) If $\beta_j \in T ; j \in J$, then $\bigcup_{j \in J} \beta_j \in T \forall j \in J$.
3) If $\beta, \mu \in T$, then $\beta \cap \mu \in T$.

Then the triplet (M, B, T) is a neutrosophic soft topological space or $(N_3$-Top for short).

Members of T are called "a neutrosophic soft open sets" $(N_3$-T-open for short) and their complements are "a neutrosophic soft open sets" $(N_3$-T-closed for short).

"The neutrosophic soft interior of $\beta \in N_3(M)$ ($(\beta)^0$ for short)" is defined as:

$$(\beta)^0 = \bigcup \{ \omega_B : \omega_B \text{ is a } N_3\text{-T-open set, } \omega_B \subseteq \beta \}.$$

"The neutrosophic soft closure of $\beta \in N_3(M)$ ($(\overline{\beta})$ for short)" is defined as:

$$(\overline{\beta}) = \bigcap \{ \omega_B : \omega_B \text{ is a } N_3\text{-T-closed set, } \beta \subseteq \omega_B \}.$$

2.6. Example

Let $M = \{m_1, m_2, m_3\}$, $B = \{r\}$ and $\beta, \mu, \gamma, \delta \in N_3(M)$. Such that

$\beta = \{(r, [< m_1^{(1,1,0) >}, < m_2^{(0,0,1) >}, < m_3^{(0,1,0) >}])\}$,
$\mu = \{(r, [< m_1^{(1,1,0) >}, < m_2^{(0,0,1) >}, < m_3^{(0,1,0) >}])\}$,
$\gamma = \{(r, [< m_1^{(0,0,1) >}, < m_2^{(0,0,1) >}, < m_3^{(0,1,0) >}])\}$,
$\delta = \{(r, [< m_1^{(0,0,0) >}, < m_2^{(0,0,0) >}, < m_3^{(0,1,0) >}])\}$.

Then, $T_2 = \{\emptyset, \overline{\beta}, \beta, \mu, \gamma\}$ is a neutrosophic soft topology on M.

2.7. Example

Let $M = \{m_1, m_2, m_3\}$, $B = \{r\}$ and $\beta, \mu, \gamma, \delta \in N_3(M)$. Such that

$\beta = \{(r, [< m_1^{(1,1,0) >}, < m_2^{(0,0,1) >}, < m_3^{(0,1,0) >}])\}$,
$\mu = \{(r, [< m_1^{(1,1,0) >}, < m_2^{(0,0,1) >}, < m_3^{(0,1,0) >}])\}$,
$\gamma = \{(r, [< m_1^{(0,0,1) >}, < m_2^{(0,0,1) >}, < m_3^{(0,1,0) >}])\}$,
$\delta = \{(r, [< m_1^{(0,0,0) >}, < m_2^{(0,0,0) >}, < m_3^{(0,1,0) >}])\}$.

Then, $T_2 = \{\emptyset, \overline{\beta}, \beta, \mu, \gamma\}$ is a neutrosophic soft topology on M.

3. Neutrosophic soft bitopological space

In this section, we defined the neutrosophic soft bitopological space or $(N_3$-Bi-Top for short) on the concept of neutrosophic soft set and the basic topological concepts of this spaces which are N_3-biopen and N_3-biclosed.

3.1. Definition

Let (M, B, T_1) and (M, B, T_2) be two N_3-Top spaces defined on M. Then (M, B, T_1, T_2) is called a neutrosophic soft bitopological space or $(N_3$-Bi-Top for short).

3.2. Example

Let $M = \{m_1, m_2\}$, $B = \{r\}$ and $\beta, \mu \in N_3(M)$ such that
\[\beta_B = [(r, [< m_1^{(0,0,0.2,0.5)}, < m_2^{(0,0,0.4,0.8)} >]), \mu_B = [(r, [< m_1^{(0,0,0.2,0.4)}, < m_2^{(0,0,0.4,0.8)} >])]. \]

Then, \(T_1 = [\overline{\partial}_B, \overline{M}_B, \beta_B] \) is an \(N_{3}\)-Top on \(M \) and \(T_2 = [\overline{\partial}_B, \overline{M}_B, \mu_B] \) is an \(N_{3}\)-Top on \(M \).

Therefore, \((M,B,T_1,T_2) \) is an \(N_{3}\)-Bi-Top space.

3.3. Definition

Let \((M,B,T_1,T_2) \) be an \(N_{3}\)-Bi-Top space. The members of \((M,B,T_1,T_2) \) are called bineutrosphic soft open sets (\(N_{3}\)-biopen for short) and their complements are bineutrosphic soft closed sets (\(N_{3}\)-biclosed for short).

3.4. Remark

a) Every neutrosophic soft open (closed) set in \((M,B,T_1) \) or \((M,B,T_2) \) is an \(N_{3}\)-biopen (\(N_{3}\)-biclosed) set.

b) Every \(N_{3}\)-Bi-Top space \((M,B,T_1,T_2) \) induces two \(N_{3}\)-Top spaces as \((M,B,T_1) \) and \((M,B,T_2) \).

c) If \((M,B,T_1) \) is an \(N_{3}\)-Top space then \((M,B,T_1,T_2) \) is an \(N_{3}\)-Bi-Top space.

3.5. Theorem

If \((M,B,T_1,T_2) \) is an \(N_{3}\)-Bi-Top space, then \((M,B,T\cap T_2) \) is an \(N_{3}\)-Top space.

Proof

Let \((M,B,T_1,T_2) \) be an \(N_{3}\)-Bi-Top space.

(1) Clearly that \(\overline{\partial}_B, \overline{M}_B \in (T_1\cap T_2) \).

(2) Let \(\beta_B, \mu_B \in (T_1\cap T_2) \), then \(\beta_B, \mu_B \in T_1 \) and \(\beta_B, \mu_B \in T_2 \). This implies that, \(\beta_B \cap \mu_B \in T_1 \) and \(\beta_B \cap \mu_B \in T_1 \).

Therefore, \(\beta_B \cap \mu_B \in (T_1\cap T_2) \).

(3) Let \(\beta_B \in (T_1\cap T_2) ; j \in J \). Then \(\beta_B, \mu_B \in T_1 \) and \(\beta_B, \mu_B \in T_2 ; j \in J \).

Therefore \(\cup_{|j|} \beta_B \in T_1 \) and \(\cup_{|j|} \beta_B \in T_2 ; \forall j \in J \).

Thus, we have \(\cup_{|j|} \beta_B \in (T_1\cap T_2) \).

Hence, \((M,B,T\cap T_2) \) is an \(N_{3}\)-Top space.

3.6. Remark

If we take the operation of union instead of the operation of intersection, then the above theorem is not generally correct.

3.7. Example

Let \(M = \{m_1, m_2\} \), \(B = \{r\} \) and \(\beta_B, \mu_B \in N_{3}(M) \) such that

\[\beta_B = [(r, [< m_1^{(0,3,0.5,0.7)}, < m_2^{(0,2,0.4,0.6)} >]), \mu_B = [(r, [< m_1^{(0,3,0.5,0.7)}, < m_2^{(0,2,0.4,0.6)} >])]. \]

Then, \(T_1 = [\overline{\partial}_B, \overline{M}_B, \beta_B] \) is an \(N_{3}\)-Top on \(M \) and \(T_2 = [\overline{\partial}_B, \overline{M}_B, \mu_B] \) is an \(N_{3}\)-Top on \(M \). Thus, \((M,B,T_1,T_2) \) is an \(N_{3}\)-Bi-Top space. But, \((M,B,T\cup T_2) \) is not an \(N_{3}\)-Top space. Because, \(\beta_B \cup \mu_B \) does not belong to \((T_1\cup T_2) \).

4. \(N_{3}\)-(bi)*-open set in neutrosophic soft bitopological space

In this section, \(N_{3}\)-(bi)*-open set, \(N_{3}\)-(bi)*-closed set, (bi)*-neutrosophic soft interior, (bi)*-neutrosophic soft closure, (bi)*-neutrosophic soft boundary, (bi)*-neutrosophic soft exterior are defined based on the idea of \(\delta \)-open set which was defined in [27].

4.1. Definition

A subset \(\beta_B \in N_{3}(M) \) of an \(N_{3}\)-Bi-Top space \((M,B,T_1,T_2) \) is called star bineutrosophic soft open (\(N_{3}\)-(bi)*-open, for short) in \((M,B,T_1,T_2) \) if and only if \(\beta_B \subseteq (\overline{\partial}_B^\delta)^{T_1\cup T_2} \) and their complement is an \(N_{3}\)-(bi)*-closed set.
set of all N>-(bi*)-open [N>-(bi*)-closed] sets in (M, B, T1, T2) is denoted by $M^{(Bi)*-NSO}$ and $M^{(Bi)*-NSC}$ respectively.

4.2. Example

Let $M = \{m_1, m_2, m_3\}$, $B = \{r\}$ and $\beta_B, \mu_B \in N(M)$ such that

\[
\begin{align*}
\beta_B &= \{(r, < m_{1,1,0}^1, < m_{1,0,1}^2, < m_{0,1,0}^1)\}, \\
\mu_B &= \{(r, < m_{1,1,0}^1, < m_{1,0,1}^2, < m_{0,1,0}^1)\}.
\end{align*}
\]

$T_1 = (\overline{B}_B, \overline{M}_B)$ is an N>Top on M and $T_2 = (\overline{B}_B, \overline{M}_B, \beta_B, \mu_B)$ is an N>Bi-Top space.

Note that:

\[
\begin{align*}
\beta_B &= \{(r, < m_{1,1,0}^1, < m_{1,0,1}^2, < m_{0,1,0}^1)\} \\
&\subseteq (\beta_B)^{T_1 \circ T_2} = \{(r, < m_{1,1,0}^1, < m_{1,0,1}^2, < m_{0,1,0}^1)\}, \\
\mu_B &= \{(r, < m_{1,1,0}^1, < m_{1,0,1}^2, < m_{0,1,0}^1)\} \\
&\subseteq (\mu_B)^{T_1 \circ T_2} = \{(r, < m_{1,1,0}^1, < m_{1,0,1}^2, < m_{0,1,0}^1)\}, \\
\gamma_B &= \{(r, < m_{1,1,0}^1, < m_{0,1,0}^2, < m_{1,1,0}^1)\} \\
&\subseteq (\gamma_B)^{T_1 \circ T_2} = \{(r, < m_{1,1,0}^1, < m_{1,0,1}^2, < m_{0,1,0}^1)\}, \\
\delta_B &= \{(r, < m_{1,0,1}^1, < m_{1,1,0}^2, < m_{1,0,1}^1)\} \\
&\subseteq (\delta_B)^{T_1 \circ T_2} = \{(r, < m_{1,0,1}^1, < m_{1,1,0}^2, < m_{1,0,1}^1)\}, \\
\epsilon_B &= \{(r, < m_{1,0,1}^1, < m_{1,1,0}^2, < m_{1,0,1}^1)\} \\
&\subseteq (\epsilon_B)^{T_1 \circ T_2} = \{(r, < m_{1,0,1}^1, < m_{1,1,0}^2, < m_{1,0,1}^1)\}, \\
\theta_B &= \{(r, < m_{1,0,1}^1, < m_{1,1,0}^2, < m_{1,0,1}^1)\} \\
&\subseteq (\theta_B)^{T_1 \circ T_2} = \{(r, < m_{1,0,1}^1, < m_{1,1,0}^2, < m_{1,0,1}^1)\}.
\end{align*}
\]

In general in any N>Bi-Top space, $\overline{B}_B, \overline{M}_B$ are clearly N>-(bi*)-open sets.

Hence:

\[
\begin{align*}
M^{(Bi)*-NSO} &= \{(\overline{B}_B, \overline{M}_B), \beta_B, \mu_B, \gamma_B\}, \\
M^{(Bi)*-NSC} &= \{(r, < m_{1,0,1}^1, < m_{1,1,0}^2, < m_{1,0,1}^1)\}.
\end{align*}
\]
4.3. Remark
Let \(\beta_B \) and \(\mu_B \) be an \(N_3-(bi)\)-open sets, then \(\beta_B \cap \mu_B \) is not necessary an \(N_3-(bi)\)-open set.

4.4. Example
Let \(M = \{m_1, m_2, m_3, m_4, m_5\}, B = \{r\} \) and \(\beta_B, \mu_B, \gamma_B, \varepsilon_B, \delta_B, \alpha_B \in N_3(M) \).

Such that

\[
\beta_B = \{(r, \{< m_1^{(1,1,0)}, < m_2^{(0,0,1)}, < m_3^{(0,0,1)}, < m_4^{(0,0,1)}\})\}, \\
\mu_B = \{(r, \{< m_1^{(0,0,1)}, < m_2^{(0,0,1)}, < m_3^{(0,0,1)}, < m_4^{(0,1,0)}\})\}, \\
\gamma_B = \{(r, \{< m_1^{(1,1,0)}, < m_2^{(0,0,1)}, < m_3^{(0,0,1)}, < m_4^{(0,1,0)}\})\}, \\
\varepsilon_B = \{(r, \{< m_1^{(0,0,1)}, < m_2^{(1,1,0)}, < m_3^{(0,1,0)}, < m_4^{(0,0,1)}\})\}, \\
\delta_B = \{(r, \{< m_1^{(1,1,0)}, < m_2^{(1,1,0)}, < m_3^{(1,1,0)}, < m_4^{(0,0,1)}\})\}, \\
\alpha_B = \{(r, \{< m_1^{(0,0,1)}, < m_2^{(1,1,0)}, < m_3^{(1,1,0)}, < m_4^{(0,0,1)}\})\}.
\]

\(T_1 = \{\emptyset, M, \beta_B, \mu_B, \gamma_B\} \) is an \(N_3\)-Top on \(M \) and \(T_2 = \{\emptyset, M, \beta_B, \mu_B, \gamma_B, \varepsilon_B, \delta_B, \alpha_B\} \) is an \(N_3\)-Top on \(M \). Thus, \((M,B,T_1,T_2) \) is an \(N_3\)-Bi-Top space. Then

\(\varepsilon_B \) and \(\{(r, \{< m_1^{(1,1,0)}, < m_2^{(0,0,1)}, < m_3^{(0,1,0)}, < m_4^{(0,0,1)}\})\} \) are an \(N_3-(bi)\)-open sets, but the intersection of them \(\{(r, \{< m_1^{(1,1,0)}, < m_2^{(0,0,1)}, < m_3^{(1,1,0)}, < m_4^{(0,0,1)}\})\} \) is not an \(N_3-(bi)\)-open set.

4.5. Theorem
Let \((M,B,T_1,T_2) \) be an \(N_3\)-Bi-Top space, then every neutrosophic soft open set in \((M,B,T_2) \) is an \(N_3-(bi)\)-open set in \((M,B,T_1,T_2) \).

Proof
Let \(\beta_B \) be a neutrosophic soft open set in \((M,B,T_2) \). Then \((\beta_B)^{T_2} = \beta_B \). Since \(\beta_B \equiv (\beta_B)^{T_1} \), \(\beta_B \equiv (\beta_B)^{T_2} \). Therefor \(\beta_B \equiv (\beta_B)^{T_1} \equiv (\beta_B)^{T_2} \). Thus \(\beta_B \) is an \(N_3-(bi)\)-open set in \((M,B,T_1,T_2) \).

4.6. Remark
The converse of above remark is not true in general. In Example 3.4 note that, \(\{(r, \{< m_1^{(1,1,0)}, < m_2^{(0,0,1)}, < m_3^{(0,1,0)}, < m_4^{(0,0,1)}\})\} \) is an \(N_3-(bi)\)-open set in \((M,B,T_1,T_2) \), but not a neutrosophic soft open set in \((M,B,T_2) \).

4.7. Definition
If \((M,B,T_1,T_2) \) is an \(N_3\)-(Bi)-Top space and \(\beta_B \in N_3(M) \), then the largest \(N_3-(bi)\)-open set contained in \(\beta_B \) is called \((bi)\)-neutrosophic soft interior of \(\beta_B \), \((\beta_B)^{(bi)} \) for short . i.e.

\((\beta_B)^{(bi)} = \cup \{\omega_B : \omega_B \text{ is a } N_3-(bi)\text{-open set, } \omega_B \subseteq \beta_B\} \).

4.8. Theorem
Let \((M,B,T_1,T_2) \) be an \(N_3-(bi)\)-Top space and \(\beta_B \in N_3(M) \). Then \(\beta_B \) is an \(N_3-(bi)\)-open set if and only if \(\beta_B = (\beta_B)^{(bi)} \).

Proof
Let \(\beta_B \) be an \(N_3-(bi)\)-open set. Then \(\beta_B \) is itself an \(N_3-(bi)\)-open set which contains \(\beta_B \). Therefore, \(\beta_B \) is the largest \(N_3-(bi)\)-open set contained in \(\beta_B \) and \(\beta_B = (\beta_B)^{(bi)} \). Conversely, suppose that \(\beta_B = (\beta_B)^{(bi)} \), then \(\beta_B \) is the largest \(N_3-(bi)\)-open set contained in \(\beta_B \). Thus, \(\beta_B \) is an \(N_3-(bi)\)-open set.
4.9. **Theorem**
Let $\beta_B, \mu_B \in N_3(M)$.

a) $(\beta_B)^{0(bi)}\subseteq \beta_B$.
b) $((\beta_B)^{0(bi)})^* = (\beta_B)^{0(bi)}$.
c) $(\beta_B)^{0(bi)}\subseteq (\mu_B)^{0(bi)}$; whenever $\beta_B \subseteq \mu_B$.
d) $(\beta_B \cap \mu_B)^{0(bi)} = (\beta_B)^{0(bi)} \cap (\mu_B)^{0(bi)}$.
e) $(\beta_B \cup \mu_B)^{0(bi)} \supseteq (\beta_B)^{0(bi)} \cup (\mu_B)^{0(bi)}$.
f) $(\bar{\beta}_B)^{0(bi)} = \bar{\beta}_B$.
g) $(\bar{0}_B)^{0(bi)} = \bar{0}_B$.

Proof
(a), (f), (g), (c) (Straightforward).

(b) Let $\mu_B = (\beta_B)^{0(bi)}$. Then $\mu_B = (\mu_B)^{0(bi)}$ (from Theorem 4.8). Thus, $((\beta_B)^{0(bi)}^*)^0{(b)} = (\beta_B)^0{(b)}$.

d) Since, $(\beta_B \cap \mu_B)^{0(bi)} \subseteq (\beta_B)^{0(bi)}$ and $(\beta_B \cap \mu_B)^{0(bi)} \subseteq (\mu_B)^{0(bi)}$. Then, $(\beta_B \cap \mu_B)^{0(bi)} \subseteq (\beta_B)^{0(bi)} \cap (\mu_B)^{0(bi)}$.

Since, $(\beta_B)^{0(bi)} \subseteq \beta_B$ and $(\mu_B)^{0(bi)} \subseteq \mu_B$, then $(\beta_B)^{0(bi)} \cap (\mu_B)^{0(bi)} \subseteq \beta_B \cap \mu_B$. But $(\beta_B)^{0(bi)} \cap (\mu_B)^{0(bi)}$ is a $N_3(bi)$-open subset of $\beta_B \cap \mu_B$. Therefore, from the detention, we have that $(\beta_B \cap \mu_B)^{0(bi)} \supseteq (\beta_B)^{0(bi)} \cap (\mu_B)^{0(bi)}$.

Hence, $(\beta_B \cap \mu_B)^{0(bi)} = (\beta_B)^{0(bi)} \cap (\mu_B)^{0(bi)}$.

e) Since, $\beta_B \subseteq (\beta_B \cup \mu_B)$ and $\mu_B \subseteq (\beta_B \cup \mu_B)$, therefore $(\beta_B \cup \mu_B)^{0(bi)} \supseteq (\beta_B)^{0(bi)}$ and $(\beta_B \cup \mu_B)^{0(bi)} \supseteq (\mu_B)^{0(bi)}$. So, $(\beta_B \cup \mu_B)^{0(bi)} \supseteq (\beta_B)^{0(bi)} \cup (\mu_B)^{0(bi)}$.

4.10. **Example**
Let us consider $\beta_B, \mu_B, \gamma_B \in N_3(M)$ in Example 2.6. Such that, $T_1 = [\bar{\beta}_B, \bar{\mu}_B, \beta_B \mu_B]$ is an N_3-Top on M and $T_1 = [\bar{\gamma}_B, \bar{M}_B, \beta_B \bar{M}_B \beta_B]$ is an N_3-Top on M. Thus, (M, B, T_1, T_2) is an N_3-Bi-Top space.

Note that: 1) $(\beta_B \cup \gamma_B)^{0(bi)} \not\subseteq (\beta_B)^{0(bi)} \cup (\gamma_B)^{0(bi)}$. 2) $\gamma_B \not\subseteq (\gamma_B)^{0(bi)}$.

4.11. **Definition**
If (M, B, T_1, T_2) is an N_3-Bi-Top space and $\beta_B \in N_3(M)$, then the intersection of all N_3-bi-closed sets containing β_B is called a bi'-neutrosophic soft closure of β_B, $(\beta_B)^{(bi)}$ for short. i.e.

$$(\beta_B)^{(bi)} = \cap \{(\omega_B), \omega_B \text{ is an } N_3(bi)-\text{closed set, } \beta_B \subseteq \omega_B\}.$$

4.12. **Theorem**
Let $\beta_B, \mu_B \in N_3(M)$.

a) $\beta_B \subseteq (\beta_B)^{(bi)}$.
b) $((\beta_B)^{(bi)})^* = (\beta_B)^{(bi)}$.
c) $(\beta_B)^{(bi)} \subseteq (\mu_B)^{(bi)}$; whenever $\beta_B \subseteq \mu_B$.
d) $(\beta_B \cap \mu_B)^{(bi)} \subseteq (\beta_B)^{(bi)} \cap (\mu_B)^{(bi)}$.
e) $(\beta_B \cup \mu_B)^{(bi)} \subseteq (\beta_B)^{(bi)} \cup (\mu_B)^{(bi)}$.

53
4.17. Theorem
Let \((M, B, T_1, T_2)\) be an \(N_3\)-\(Bi\)-Top space and \(\beta_B \in N_3(M)\).

\[
\begin{align*}
(\beta_B)_{\omega B}^C = (\beta_B)^{C^0(\beta_B^*)} & \quad \text{and} \quad (\beta_B)_{\omega B}^C = (\beta_B)^{C^0(\beta_B^*)}.
\end{align*}
\]

Proof
(a) We know that, \((\beta_B)^{\omega B} = \cap \{\omega_B : (\omega_B)^C \} \) is \(N_3\)-\(Bi\)-open set, \(\beta_B \subseteq \omega_B\). So, we have that,

\[
(\beta_B)^{C^0(\beta_B^*)} = \cup \{\omega_B^C : (\omega_B)^C \text{ is an } N_3\text{-}Bi\text{-open set, } (\omega_B)^C \subseteq (\beta_B)^C \} = ((\beta_B)^{C^0(\beta_B^*)}).
\]

(b) If we take, \((\beta_B)^C\) instead of \(\beta_B\) in (a), we get that,

\[
((\beta_B)^C)^{C^0(\beta_B^*)} = ((\beta_B)^{C^0(\beta_B^*)}).
\]

4.18. Definition
If \((M, B, T_1, T_2)\) is an \(N_3\)-\(Bi\)-Top space and \(\beta_B \in N_3(M)\), then \(\beta_B\) is an \(N_3\)-\(Bi\)-closed set if and only if \(\beta_B = (\beta_B)^{C^0(\beta_B^*)}\).

Proof
Let \(\beta_B\) be an \(N_3\)-\(Bi\)-closed set, then \(\beta_B\) is itself an \(N_3\)-\(Bi\)-closed set which contains \(\beta_B\). Therefore, \(\beta_B\) is the intersection of all \(N_3\)-\(Bi\)-closed sets containing \(\beta_B\) and \(\beta_B = (\beta_B)^{C^0(\beta_B^*)}\).

Conversely, suppose that \(\beta_B = (\beta_B)^{C^0(\beta_B^*)}\), then \(\beta_B\) is the intersection of all \(N_3\)-\(Bi\)-closed sets containing \(\beta_B\). Thus, \(\beta_B\) is an \(N_3\)-\(Bi\)-closed set.
4.19. Theorem
Assume that \((M, B, T_1, T_2)\) is an \(N^3\)-(Bi)-Top space and \(\beta_B \in N^3(M)\).

- \((bi)^*\)-br \((\beta_B) \cup (\beta_B)^0\) = \((bi)^*\)-ext \((\beta_B) \cup (\beta_B)^0\).
- \((bi)^*\)-br \((\beta_B) \cup (\beta_B)^0\) = \((bi)^*\)-ext \((\beta_B) \cup (\beta_B)^0\).
- \((bi)^*\)-br \((\beta_B) \cap (\beta_B)^0\) = \(\emptyset\).
- \((bi)^*\)-br \((\beta_B) \supseteq (bi)^*\)-br \((\beta_B)\).

Proof Straightforward.

4.20. Theorem
Assume that \((M, B, T_1, T_2)\) is an \(N^3\)-(Bi)-Top space and \(\beta_B \in N^3(M)\).

- \(\beta_B \in M^{(bi)}\) if and only if \((bi)^*\)-br \((\beta_B) \cap (\beta_B) = \emptyset\).
- \(\beta_B \in M^{(bi)}\) if and only if \((bi)^*\)-br \((\beta_B) \subseteq (\beta_B)\).

Proof Straightforward.

Conclusion
In this research, bitopological space on the concept of neutrosophic soft set is built, the basic topological concepts of this spaces which are \(N^3\)-(bi)-open set, \(N^3\)-(bi)-closed set, (bi)-neutrosophic soft interior, (bi)-neutrosophic soft closure, (bi)-neutrosophic soft boundary, (bi)-neutrosophic soft exterior are defined and many examples on this concepts are given.

This paper is just a beginning of a new structure and we have studied a few ideas only, it will be necessary to carry out more theoretical research to establish a general framework for the practical application.

we hope that the findings in this paper will help researchers enhance and promote the further study on neutrosophic soft bitopological space.

References
[1] D. Molodtsov, "Soft set theory-First results", Computers & Mathematics with Applications, 37, pp.19–31, 1999.
[2] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability, American Research Press, Rehoboth, NM, 1999.
[3] L. Zadeh, "Fuzzy sets", Inform and Control, 8, pp.338–353, 1965.
[4] K. Atanassov, "Intuitionistic Fuzzy Sets", Fuzzy Sets and Systems, 20, pp.87–96, 1986.
[5] P. Maji, "Neutrosophic soft set", Annals of Fuzzy Mathematics and Informatics, 5(1), pp.157-168, 2013.
[6] F. Karaasla, "Neutrosophic soft sets with applications in decision making", International Journal of Information Science and Intelligent System, 4(2), pp.1-20, 2015.
[7] Deli, I., & Broumi, S. (2015). Neutrosophic soft matrices and NSM-decision making. Journal of Intelligent & Fuzzy Systems, 28(5), 2233-2241.
[8] T. Bera and N. Mahapatra, "Introduction to neutrosophic soft topological space", Opsearch, 54(4), pp.841-867, 2017.
[9] Y. Taha, G. A. Cigdem and B. Sadi, "A New Approach to Operations on Neutrosophic Soft Sets and to Neutrosophic Soft Topological Spaces", Communications in Mathematics and Applications, vol. 10(3), pp. 481 – 493, 2019.
[10] A. B. AL-Nafee, "New Family of Neutrosophic Soft Sets", Neutrosophic Sets and Systems, 38, pp. 482-496, 2020.
[11] A. B. AL-Nafee, R. Al-Hamido and F. Smarandache, “ Separation Axioms in Neutrosophic Crisp Topological Spaces”, Neutrosophic Sets and Systems, 25 , pp. 25 - 33, 2019.
[12] A. B. AL-Nafee, A. A. Salama, & F. Smarandache, "New Types of Neutrosophic Crisp Closed Sets", Neutrosophic Sets and Systems, 36, pp. 175 -183, 2020.
[13] A. B. AL-Nafee, “On “Soft Turing Point with Separation Axioms”, JUBPAS, vol. 26, no. 7, pp. 200 - 209, May 2018.
[14] A. Al-NAfee and L. Al-swidi, "Separation Axioms Using Soft Turing Point of a Soft Ideal in Soft Topological Space", Journal of New Theory, no. 25, pp. 29-37, Oct. 2018.

[15] A. B. AL-NAfee and R. D. Ali. On Idea of Controlling Soft Gem-Set in Soft Topological Space, Jour of Adv Research in Dynamical & Control Systems, Vol. 10, 13-Special Issue, 606-615, 2018. http://jardcs.org/backissues/abstract.php?archiveid=6022.

[16] E. P Evanzalin, I. H Jude and K. Sivaranjani, "Introduction to neutrosophic soft topological spatial region", Neutrosophic Sets and Systems, vol. 31, pp. 297 – 304, 2020.

[17] A. A. Salama and S. Alblowi, “Neutrosophic set and neutrosophic topological spaces”, ISOR J. Mathematics, vol. 3, no. 3, pp.31 – 35, 2012.

[18] D. R. Narmada, R. Dhavaseelan and S. Jafari, "On Separation Axioms in an Ordered Neutrosophic Bitopological Space", Neutrosophic Sets and Systems, vol. 18, pp. 27-36, 2017.

[19] D. N. Georgiou, A. C. Megaritis and V. I. Petropoulos, “On soft topological spaces”, Appl. Math. Inf. Sci, 7(2) 1889-1901. 2013.

[20] N. C. a’gman, Contributions to the theory of soft sets, Journal of New Results in Science, 4 (2014), 33-41.

[21] J. C. Kelly,”Bitopological spaces”, Proceedings of the London Mathematical Society, 3(1), 71-89, 1963.

[22] B. M. Ittanagi, “Soft bitopological spaces”. International Journal of Computer Applications, 107(7), 1-4, 2014.

[23] A. Kandil, A. A. Nouh & S. A El-Sheikh, “On fuzzy bitopological spaces”, Fuzzy sets and systems, 74(3), 353-363, 1995.

[24] Y. O.Taha, O.Alkan “Neutrosophic Bitopological Spaces”, Neutrosophic Sets and Systems, vol. 30, pp.88-97, 2019.

[25] R. Al-Hamido,“Neutrosophic Crisp Bi-Topological Spaces”, Neutrosophic Sets and Systems, vol. 21, 66-73. 2018.

[26] F. Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Inter. J.Pure Appl. Math. 24, 287-297, 2005.

[27] I. D. Jaleel and L. A. Al-Swidi, δ-OPEN SET IN BITOPOLITICAL SPACE . M.sc. thesis University of Babylon, 2003.