The effect of replacing sedentary behavior by different intensities of physical activity in body composition: a systematic review

Melyssa Alves Souza¹, Thatiane Lopes Valentim Di Paschoale Ostolin²
¹Laboratório de Diabetes Experimental e Sinalização Celular, Universidade Federal de São Paulo (UNIFESP) – Santos (SP), Brazil
²Laboratório de Epidemiologia e Movimento Humano, UNIFESP – Santos (SP), Brazil

ABSTRACT

Introduction: The isotemporal substitution model (ISM) is a statistical approach that estimates the effects of replacing, in minutes, a block of physical activity or sedentary behavior by another block with different intensity. Previous studies have used the ISM to evaluate the effect of different isotemporal substitutions on body composition. Thus, the ISM can contribute to the understanding of changes in body composition related to distinct lifestyles and, hence, guiding future recommendations for maintaining and/or improving body composition. Objective: To review the effect of replacing sedentary behavior by physical activity on body composition change analyzed through ISM. Methods: Original articles in English were identified from searches in PubMed and Periódicos Capes databases. The search was carried out by two researchers. Last search was performed in October 2020. Results: A total of 17 included articles, which evaluated different applications of ISM in relation to body composition change, mostly obtained by BMI and body fat. The physical activity was mainly assessed by using an accelerometer. Several methodological differences among the included studies limited comparisons between findings, including the sample profile and cut off points for physical activity. Conclusion: Among the studies that evaluate the effect of replacing sedentary behavior for different intensities of physical activity through ISM, replacing sedentary behavior by moderate-to-vigorous physical activity presented a more consistent effect in body composition change in comparison to replacement by other physical activity intensities, even for small blocks of time (five minutes).

Keywords: method; body composition; sedentary behavior; physical activity.

INTRODUCTION

The isotemporal substitution model (ISM) was developed after publication of Willett’s nutritional studies. These studies investigate total energy intake, highlighting the importance of these findings for nutritional epidemiology. Mekary et al. applied these modeling methods to physical activity epidemiology. Thus, the authors detailed the physical activity pattern (type and amount of time spent in each activity) to elaborate a statistical approach known as ISM.
Therefore, ISM is defined as a strategy to estimate the effects of replacing a block of time spent in physical activity for another with the same amount of time. Regarding the ISM, the most used blocks were time spent in watching television, slow and fast walk, running, and other activities (swimming, bicycle riding, aerobics, playing tennis, climbing stairs). Time spent in these activities generate coefficients to total physical activity.

Since it is not possible to add minutes in the day to perform effort and the duration of a day is finite, other variables may decrease for increasing time in such activities. Thus, the ISM was adjusted for total activity and has been developed to minimize limitations inherent to the method, receiving the name of compositional isotemporal substitution or compositional data analysis. Recently, ISM includes time spent in sleep and daily time of 24h.

Although the 150 minutes of moderate-to-vigorous physical activity (MVPA) per week were the minimum recommended to be considered physically active, one in each four adults does not meet the criteria and inactivity has been growing, especially in children and elderly. Physical effort, if done regularly, can prevent and bring benefits regarding chronic diseases, such as cancer, diabetes and cardiovascular diseases. In contrast, sedentary behavior is associated with worse quality of life in children and adolescents and increased risk of all-cause mortality in older adults, which reinforces the importance of establishing goals and recommendations, not only for encouraging physical activity, but also for preventing and reducing sedentary behavior. Therefore, ISM can contribute to development of behavior change interventions.

At first, the ISM included relative values. However, the percentage of physical exercise lacks clarity, mainly because what means 5% of vigorous physical activity to someone may not be to another. Recently, ISM uses absolute values of physical activity (i.e., block of time spent in each activity in minutes instead of percentage) to be more "touchable" and, hence, to facilitate the interpretation. Furthermore, physical activity guidelines use minutes as a unit for recommendation.

Mekary & Ding suggests that ISM can be a golden standard model for physical activity epidemiology. Additionally, ISM is considered accurate to estimate the effect of replacing a block of time spent in one type of activity by another with the same amount of time. Therefore, ISM can be used to test hypothetical lifestyle interventions based on substitution of sedentary behavior by physical activity, for example.

Body composition can be obtained by anthropometric measures. It allows to evaluate and predict the performance, health and survival in children and adults, as well as to identify social and economic equity and inequity. On the other hand, the interpretation of anthropometric measures depends on the evaluated population, for example, waist circumference is not accurate to cardiovascular disease in pregnant women or in post-partum and body mass index is not accurate to elite athlete’s evaluation. Therefore, it is recommended to combine one or more measures to minimize these aforementioned limitations. Moreover, sedentary behavior and physical activity can be obtained by subject self-report through questionnaires, or objectively measured through pedometers or accelerometers.

The purpose of the present study was to identify, review and synthesize studies that investigate whether replacing sedentary behavior by the same amount of time of different intensities of physical activity determine body composition change, when analyzed through ISM. Secondarily, we aimed to provide basis for development of behavior change interventions.

METHODS

Study design

This systematic review was guided and reported according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement.

Literature search

The literature search was performed for English language literature published and indexed until May 2019 in databases of PubMed and Periódicos Capes that include publications indexed in Medline/PubMed (NLM), Scopus (Elsevier), Science Citation Index Expanded (Web of Science), OneFile (GALE), PMC (PubMed Central).

The search strategy was based on keywords: “isotemporal substitution model” AND “physical activity” AND “body composition”. Table 1 shows the search strategy. The updated search was performed on October 8, 2020.

The search was conducted by a single researcher (MAS). The reviewer screened and selected the eligible articles regarding inclusion and exclusion criteria. The full texts were also evaluated in order to verify the eligibility criteria. Another reviewer (TLVDPO) checked the potential citations for completion and accuracy.

Table 1: Search strategy and number of founded articles in each database.

Step	Terms	
(1)	Isotemporal Substitution Model	
(2)	Physical Activity	
(3)	Body Composition	
(4)	#1 AND #2 AND #3	
Pubmed	*(isotemporal substitution model)[All Fields]* AND *(physical activity)[All Fields]* AND *(body composition)[All Fields]* AND English[lang]	18 articles found
Portal de Periódicos Capes	*(isotemporal substitution model) AND (physical activity) AND (body composition)	81 articles found
Disagreements related to the eligibility of the studies were discussed. References of the relevant articles were also searched.

Eligibility criteria

The eligibility criteria were studies that investigated whether replacing sedentary behavior for the same amount of time of physical activity at different intensities determined body composition change analyzed through ISM.

Regardless of population, the body composition change must be estimated as an outcome of the ISM. Additionally, physical activity should be categorized, at least, in sedentary behavior or sedentary time, light-intensity physical activity (LIPA) and moderate-to-vigorous physical activity (MVPA). However, articles that reported and/or only used patterns of sedentary behavior (sedentary bouts and breaks) in ISM analysis were not included, as well as articles that did not described physical activities according to intensities (LIPA, moderate physical activity, vigorous physical activity, MVPA or very vigorous physical activity).

According to the chosen theme, there was no restriction on articles publication data. Only articles in English were included.

Data extraction and synthesis

One reviewer (MAS) performed the screening of titles and abstracts to identify potentially eligible studies, as well as the full-texts. Then, the reviewers (MAS and TLVDPO) extracted data from included studies and proceeded with a qualitative synthesis, as follows: author and year, study design, sample size, objective, ISM and main findings (Table 2). We also detailed the

Table 2: Description of the selected studies on study design, sample size, isotemporal substitution model and main findings.
Author, year
Leppanen et al. 2016[26]
Varela-Mato et al. 2017[21]
Aggio et al. 2015[14]
Danquah et al. 2018[26]
Pozo-Cruz et al. 2017[26]
Boyle et al. 2017[14]
Leppanen et al. 2017[26]
Author, year

Collings et al. 201627
Collings et al. 201723
Dumuid et al. 201831
Loprinzi et al. 201533
Falconer et al. 201519
Petersen et al. 201735

Continue…
Author, year	Study design	Sample size	Objective	ISM	Main findings
Curtis et al. 2020	This study used cross-sectional data from the baseline assessment of a randomized controlled trial, evaluating the effectiveness of a Health Physical Activity Intervention, around in Australia	430 participants.	This study therefore aimed to examine the association of time-use compositions with PA and mental well-being in a sample of young and middle-aged adults. To examine whether time-use composition was associated with BMI, PA and mental health; and symptoms of depression, anxiety, and stress and use the compositional isotemporal substitution model to examine how reallocations between sleep, SB, LPA, and MVPA were associated with these PA and mental well-being variables.	15 minutes SB to LPA	↓ BMI ↓ z-BMI
Panades et al. 2019	The PREDIMED-Plus study is a 6-year ongoing multicenter, randomized clinical trial, with two intervention arms for the primary prevention of cardiovascular dysfunction in Spain	2189 women	To explore cross-sectional associations between inactive time and cardio-metabolic risk factors; and to assess the impact of replenishment 30 min per day of inactive time by 30 min of LPA, MVPA and time in bed on markers of cardio-metabolic health.	30 min SB to LPA	↓ BMI ↓ body fat ↓ Visceral fat
Oviedo-Caro et al. 2020	Exploratory cross-sectional study	130 healthy pregnant women aged 18-45 years	The aims of this study are (a) to assess the associations between the activity composition and adiposity and CRF during mid pregnancy and to investigate how time reallocations between activity behaviors are associated with favorable or unfavorable adiposity and CRF.	15 to 30 minutes SB to LPA or MVPA	↓ BMI ↓ sum of skinfold thickness ↓ FMI
Jones et al. 2020	The present study is a secondary analysis of data collected in 2015 for the Physical activity, Exercise, Diet, And Lifestyle Study. It was a cross-sectional survey study, which invited all schools with at least in the greater Dunedin (New Zealand) area to participate.	465 children aged 9–11 years participated	They aimed at assess associations of accelerometer-measured SB with adiposity and fitness in children aged 9–11 years and whether associations varied when total ST was separated into long bouts (≥10 min) and short bouts of ST (<10 min)	30 minutes SB to LPA, and MVPA	↓ adiposity
Tan et al. 2020	This prospective study was drawn from a national school-based healthy lifestyle intervention program, which was conducted from September 2013 to June 2014 in China. As a multicenter randomized study, this study was undertaken with a multistage cluster sampling method, selecting 94 elementary, middle, and high schools.	15,100 participants 7–18 years	The purpose of this current study was to investigate the prospective association of VPA, MPA, walking and sedentary time with the changes in weight status, by applying ISM regression analysis.	30 minutes of SB to walking	ND BMI/ ND z-BMI/ ND weight
				30 minutes of SB to LPA	ND BMI/ ND z-BMI/ ND weight
				30 minutes of SB to MPA	ND BMI/ ND z-BMI/ ND weight

PA: physical activity; LIPA: light-intensity physical activity; MPA: moderate physical activity; VPA: vigorous physical activity; MVPA: moderate to vigorous physical activity; SB: sedentary behavior; ISM: isotemporal substitution model; CRF: cardiorespiratory fitness; FMI: fat mass index; FFMI: fat free mass index; FFM: fat free mass; BMI: body mass index; WC: waist circumference; ND: no difference.
assessments of physical activity, sedentary behavior and body composition.

RESULTS

Studies characteristics

After duplicates were excluded, a total of 67 articles remained for screening and selection. The eligibility criteria were presented in a flow diagram (Figure 1).

We excluded articles that did not use the ISM as previously described19 or analyzed the substitution by using data as percentage instead minutes1, had other outcomes in the ISM differently than body composition data20 and did not classify physical activity intensities1.

Therefore, we included 18 original articles that used ISM to estimate the body composition change after replacing one block of time of activity by another with the same amount of time. After analyzing the references of included studies, an additional article was included in this review, as can be seen in Figure 1.

Most of the original articles included were cross-sectional studies. They commonly use ISM in association with the partition model and single behavior model.

We were not able to perform a meta-analysis due to methodological heterogeneity observed in the included studies, especially regarding the amount of time replaced that varies from five to sixty minutes and the cut points used to obtain sedentary behavior and physical activity category.

Sample profile

The sample of the included studies was heterogeneous, including truck drivers21, office workers22, children14,23-31, healthy pregnant women32, Inuit Greenlanders33, newly diagnosed type 2 diabetes35. However, the sample was mostly composed of white subjects and from the north hemisphere14,19,24,25,27,30,32-34. Two studies were made with New Zealanders children26,29 and one study with breast cancer survivors35.

Physical activity and sedentary behavior assessment

Physical activity and sedentary behavior were mainly assessed by using accelerometry. Some studies used cut-points to determine the intensities in physical activity in Metabolic Equivalent of Task (MET)20,27,31, while other studies used counts19,21,23,26,28,29,31,35,36 or steps31, both by minutes. The studies used Freedson’s or Evenson’s calibration for accelerometer assessment37,38.

One study used the effort perception scale coming from International Physical Activity Questionnaire - Short Form (IPAQ-SF)30.

Body composition

The body composition was obtained by using bioimpedance21-23,25,27,29,32, plethysmography14,24, anthropometry19,21,32-36,22,23,26-31, ultrasound system33, and dual-energy X-ray absorptiometry27,28,34.

Isotemporal substitution model

The blocks replaced varied between five24 to sixty minutes22,25,28,33. Regardless of block duration, replacing blocks of sedentary behavior for blocks with the same amount of time of MVPA was associated with body composition change, mainly for body fat percentage and waist circumference14,21,23,29,29,33.

DISCUSSION

We aimed to identify, review, and summarize studies that investigate whether replacing sedentary behavior by physical activity at different intensities determines body composition change by using a specific statistical approach. Physical inactivity is a worldwide public health problem due to contemporary
lifestyle\[^{4,6}\], but also because more than half of the population is engaged in activities based on sedentary behavior\[^{20}\]. Sedentary lifestyle is associated with deleterious health consequences as greater risk for all-cause mortality, cancer incidence and mortality, and cardiovascular diseases\[^{6}\]. Among the included studies, even the smallest replacement of sedentary behavior (five minutes)\[^{14}\] by any physical activity category can result in body composition change, according to the ISM. As expected, when high block of time is replaced or high intensity physical activity category, high body composition change, especially for adiposity values.

Although accelerometer-based sedentary behavior and physical activity was the main assessment, the cut-points to determine physical activity as categories differed according to the included studies, which can be explained by the sample’s profiles. As already known, there specific cut-points\[^{8,41-44}\] that have been validated for different subjects from children to older adults, including clinical groups.

The blocks of time replaced vary according to the included studies. Valera-Malato\[^{21}\] used blocks of 30 minutes to match with physical activity guidelines, while Petersen et al.\[^{19}\], Loprinzi et al.\[^{24}\], Aggio et al.\[^{23}\] replaced blocks of 60 minutes, respectively sedentary time replaced by LIPA and moderate physical activity, as well as LIPA with MVPA\[^{31}\], sedentary behavior by another PA category\[^{29}\], sedentary behavior by LIPA and MVPA\[^{31}\]. Standardizing the amount of time for analyzing the composition of time spent on different activities could facilitate the comparison of results between studies and favor a more precise basis for developing strategies to promote physical activity and prevent sedentary behavior. In contrast, in other studies\[^{29,23-24}\], there’s a tendency to replace small blocks of time to reproduce small lifestyle changes, especially decrease in sedentary behavior and, hence, reinforce and stimulate a change in physical activity daily level in addition to meeting the MVPA recommendations\[^{31}\].

In the present systematic review, we focused on identifying the effect of replacing sedentary behavior and/or LIPA by another physical activity category in body composition change, regardless of a specific population. However, obesity among other chronic non-communicable diseases can be observed not only in a unique population profile, but as a worldwide phenomenon\[^{42}\]. In addition, obesity is a major public health problem due to alarming growth in children and adolescents\[^{46-48}\], adults\[^{49-50}\], and elderly\[^{51}\]. Therefore, we take into account these data to draw our search strategy and eligibility criteria.

Regular practice of physical exercises, in turn, is a prevention key of these diseases associated with a diet based on fresh or minimally processed foods\[^{45,52}\]. However, truck-drivers profile, for instance, is part of a group resistant to health interventions, highlighting the need for engagement in MVPA\[^{31}\]. Also, the potential of ISM contribution to design interventions is reinforced since the model can investigate the replacement of different amounts of time and physical activity categories.

Moreover, Loprinzi’s study\[^{29}\] emphasizes inherent changes in the sample profile. The progressive decrease in physical activity and increase in sedentary behavior with ageing can be explained by changes in the dopaminergic system, or by social conventions (e.g., dating, taking a driver’s license). Other limitations affect older adults (above 65 years) as physiologic capabilities, diseases. This profile is least physically active of all age groups\[^{55}\]. Thus, future studies should also investigate sedentary behavior, LIPA and adiposity with aging.

Both Collings’ studies\[^{32,33}\] point out that it is time for public health to look at the concept of dose-dependent relationships of physical activity. If time is limited for physical exercise, or greater spontaneous movement, high intensity activities interventions offer an opportunity to benefit body composition and others health patterns. Therefore, the ISM is an easy method to evaluate possibilities of dose-dependent interventions that can be widely explored in future research.

Sedentary behavior is already studied and is largely associated with all-cause mortality, mental health and quality of life\[^{46,54,55}\]. But sedentary behavior itself is poorly investigated in studies with ISM. Among the included studies, only one study evaluated replacement of sitting time by standing\[^{22}\]. The accelerometer must also be discussed since some devices were not able to differentiate the body position. Previous review about health-related findings from the ISM raises a question regarding the difference in sedentary behavior, including standing and sitting time and the effect on health\[^{46}\]. However, the literature still requires taking into account this ambiguity about sedentary behavior. In Danquah’s\[^{22}\] study demonstrated a small but significant change in fat-free mass, fat mass and waist circumference when replacing sitting time by standing.

The methods of body composition assessment were described in Table 3. Among all the biases of each method, the ones with the highest risk of error are self-reported weight and height. It is important to mention that Pozo-Cruz\[^{28}\] study used self-reported waist circumference, although provided instruction of how to measure via phone call\[^{35}\].

Different types of accelerometer models and its respective use (i.e., wrist and waist) difficult to standardize the procedures. Also, the device being waterproof or not interfere in physical activity measurement, particularly because water activities in swimming pools or sea depend on subjective reports.

Another unexplored bias was the season of the year of data collection. Only two\[^{21,23}\] of the included articles raised this issue as necessary, whereas behavior can be different depending on the temperature, sunrise and sunset time, and other seasonal aspects.

The main limitations were related to the cross-sectional design, which does not indicate causality of the findings, the use of non-waterproof accelerometer, ceasing water activities data, and, lastly, the cut-points definition for physical activity (as shown in Table 4). Effects can be overestimated in a cross-sectional study due to residual confounders. According to the eligibility criteria,
Table 3: Characteristics of the included studies, physical activity and sedentary behavior and body composition assessment and additional measures.

Study	Physical activity and sedentary behavior	Body Composition	Additional measures
Leppanen et al. 201624	Triaxial accelerometer	Plethysmography and waist circumference	Cardiorespiratory exercise testing; handgrip strength; PREFIT fitness test battery
Varela-Mato et al. 201721	Waterproof accelerometer	Height (stadiometer); waist-to-hip ratio; bioimpedance and BMI	Blood pressure; Hospital Anxiety and Depression Scale; FBG, TGs, HDL-C, LDL-C, TC
Aggio et al. 201525	Triaxial accelerometer	Bioimpedance (fat body mass as percentage)	Dynamometry; sit and-reach test using a standard sit-and-reach box; peak flow meter.
Danquah et al. 201826	Waterproof accelerometer	Bioimpedance (fat free mass and fat body mass as percentage); Waist circumference	-
Pozo-Cruz et al. 201726	Accelerometer	Height and weight, BMI	-
Boyle et al. 201720	Accelerometer	Self-reported height, weight, and waist circumference.	-
Leppanen et al. 201714	Triaxial accelerometer	Plethysmography	PREFIT fitness test battery
Collings et al. 201627	Heart rate and movement sensor	Height (stadiometer) Bioimpedance (weight) score-z BMI, DEXA	Maximal cycle ergometer test
Collings et al. 201725	Accelerometer	Height and weight (stadiometer) and bioimpedance; score-z BMI; waist circumference	-
Dumuid et al. 201820	Accelerometer	Bioimpedance (body fat mass as percentage); height (stadiometer); score-z BMI;	Socioeconomic status and measurement of serum cotinine
Loprinzi et al. 201525	Accelerometer	DEXA for BMI and fat body mass as percentage; waist circumference and skinfold thickness (triceps and biceps)	-
Falconer et al. 201526	Accelerometer	Height and weight, BMI, waist circumference.	Serum cholesterol, triglycerides, HOMA-IR, glucose, blood pressure.
Petersen et al. 201728	Accelerometer and heart rate monitor	Height and weight, BMI, waist circumference, visceral and subcutaneous fat by ultrasound system	Lifestyle profile by interview
Curtis et al. 202026	Accelerometer	Self-reported height and weight	Mental subscale, sociodemographic factors
Panades et al. 201929	Triaxial accelerometer	Height and weight, BMI, waist circumference, Dual-energy X-ray absorptiometry (DEXA)	FBG, HbA1c, LDL-C, HDL-C, TG Blood pressure Self-reported socioeconomic status
Oviedo-Caro et al.202029	Multi-sensor monitor	Height, weight by bioelectrical impedance analysis, skinfold thickness, BMI, fat mass index	Cardiorespiratory fitness, sociodemographic factors
Jones et al. 202020	Accelerometer	Height, weight by bioelectrical impedance analysis, BMI, fat mass index	Cardiorespiratory fitness, sociodemographic factors
Tan et al. 202030	International Physical Activity Questionnaire Short Form	Height, weight, BMI, z-score BMI	-

PREFIT: fitness test battery including lower and upper body muscular strength, motor and cardiorespiratory fitness; FBG: fasting blood glucose; TGs: triglycerides; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; TC: total cholesterol; BMI: body mass index; DEXA: Dual-energy X-ray absorptiometry; HOMA-IR: Homeostatic Model Assessment-Insulin Resistance; HbA1c: glycated hemoglobin.

the included studies did not present ethnic diversity, which can difficult the generalizability of the data. Similarly, body composition was evaluated by using different methods, which combined with other differences regarding the development of the ISM of each included study did not allow us to perform a meta-analysis. Therefore, our review only analyzed the studies.

It is important to consider that establishing goals based on small changes in lifestyle behavior can be more feasible when compared to major changes that require not only individual commitment, but also community support. Additionally, identifying the minimum amount of time that can be replaced and induce short and/or long-term health benefits is equally necessary. Therefore, ISM can contribute to address these possible lifestyle changes and, hence, provide a basis for development of several behavior-based interventions. Although we focused on body composition change, ISM can estimate other outcomes, for instance changes in...
metabolic biomarkers that are relevant in many diseases such as obesity, diabetes, cancer, pulmonary diseases.

Therefore, ISM is a statistical approach applied to physical activity epidemiology, which its use has been rising, especially to replace sedentary behavior by physical activity regardless of intensity. Although the blocks of time vary according to the included studies, replacing even small blocks of time (five minutes) per day of sedentary behavior by MVPA is associated with body composition change. These data obtained by using the ISM can contribute to development of behavior-based interventions and to guide public policies in order to promote physical activity and prevent sedentary behavior.

ACKNOWLEDGEMENTS

We would like to thank Prof. Dr Victor Zuniga Dourado and the post-graduation course in Exercise Physiology Applied to Clinic – Universidade Federal de São Paulo under his coordination for encouraging and inspiring this research.

Table 4: Physical activity and sedentary behavior assessment.

Study	Wear time	SB	LIPA	Moderate Physical Activity	Vigorous Physical Activity	MVPA	Sleep	Magnitude
Leppanen et al. 2016	7 days for 24 hours	< 305	306-817	818-1968	> 1969	> 818	Diary	Vector magnitudes in 10-s epochs
Varela-Mato et al. 2017	7 days for 24 hours	< 100	-	-	> 100	< 20 steps/min during 60 min	Step/min	
Aggio et al. 2015	7 days during awakening	< 100	-	-	> 3000	-	-	Counts per minute
Pozo-Cruz et al. 2017	7 days during awakening	< 1.5	1.5-3	3-6	≤ 6	≤ 4000	Self-report	Counts per minute
Boyle et al. 2017	7 days during awakening	< 100	100-1951	-	> 1952	Self-report	Counts per minute	
Leppanen et al. 2017	7 days for 24 hours	≤ 305	306-817	818-1968	> 1969	> 818	-	Vector magnitudes in 10-s epochs
Collings et al. 2016	6-8 days for 24 hours	< 1.5	1.5-3	3-6	> 6	-	-	MET
Collings et al. 2017	9 days for 24 hours	< 820	820-3907	-	> 3908	Parents report	Counts per minute	
Dumuid et al. 2011	7 days for 24 hours	≤ 25	26-573	-	≥ 547	0 counts per minute during ≥ 20 min	Counts per 15 seconds	
Loprinzi et al. 2015	7 days for 24 hours	< 99	≥ 100-1951	1952-5724	5724-9498	-	-	Counts per minute
Falconer et al. 2015	7 days for 24 hours	≤ 100	< 3	≤ 1952	3-5.99	6-8.99 ≥ 1952	-	MET
Petersen et al. 2017	5 days for 24 hours	1-1.5	1.5-3	3-6	> 6	> 3	-	MET
Curtis et al. 2020	7 days for 24 hours	> 188	> 403	> 1131	-	Diary and noncount night period	MET	
Panades et al. 2019	7 days for 24 hours	< 1.5	1.5-3	-	> 3	-	-	Sum of time spent in the activities
Oviedo-Caro et al. 2020	9 days for 24 hours	-	-	-	-	-	-	-
Jones et al 2020	8 days for 24 hours	< 483	484-1587	-	1590	-	-	Counts per minute
Tan et al 2020	7 days	Sitting, lying but not sleeping	Walking	Slight exhaustion	Extreme exhaustion	-	-	

MET: Metabolic Equivalent of Task; MVPA: Moderate-to-vigorous physical activity.

Assessed through International Physical Activity Questionnaire - Short Form.

Assessed through International Physical Activity Questionnaire - Short Form.

Assessed through International Physical Activity Questionnaire - Short Form.
REFERENCES

1. Mekary RA, Willett WC, Hu FB, Ding EL. Isotemporal substitution paradigm for physical activity epidemiology and weight change. Am J Epidemiol. 2009;170(4):519-27. http://doi.org/10.1093/aje/kwp163

2. Willett W, Stampfer MJ. Total energy intake: Implications for epidemiologic analyses. Am J Epidemiol. 1986;124(1):17-27. http://doi.org/10.1093/oxfordjournals.aje.a114366

3. Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr. 1997;65(4 Suppl):1220S-8S. http://doi.org/10.1093/ajcn/65.4.1220S

4. Dumuid D, Wake M, Clifford S, Burgner D, Carlin JB, Mensah FK, et al. The Association of the Body Composition of Children with 24-Hour Activity Composition. J Pediatr. 2019;208:43-9.e9. http://doi.org/10.1016/j.jpeds.2018.12.033

5. Pedulić Ž, Dumuid D, Olds TS. Integrating sleep, sedentary behaviour, and physical activity research in the emerging field of time-use epidemiology: Definitions, concepts, statistical methods, theoretical framework, and future directions. Kinesiology, 2017;49(2):1-17.

6. American College of Sports Medicine (ACSM). Guidelines for exercise testing and prescription. 10th edition. Philadelphia: Wolters Kluwer Health, 2018.

7. Keane E, Li X, Harrington JM, Fitzgerald AP, Perry LJ, Kearney PM. Physical activity, sedentary behavior and the risk of overweight and obesity in school-aged children. Pediatr Exerc Sci. 2017;29(3):408-18. http://doi.org/10.1123/pes.2016-0234

8. McPhee JS, French DP, Jackson D, Nazroo J, Pendleton N, McPhee JS, French DP, Jackson D, Nazroo J, Pendleton N, et al. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sport Med. 2017;47(9):1821-45. https://doi.org/10.1007/s40279-017-0716-0

9. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred items for reporting systematic reviews and meta-analyses: a recommendation of PRISMA. Epidemiol Serv Saude. 2015;24(2):335-42. http://dx.doi.org/10.1590/1518-8787-2014-0985-0017

10. Wu XY, Han LH, Zhang JH, Luo S, Hu JW, Sun K. The influence of sedentary time, physical activity, and obesity in school-aged children. Pediatr Exerc Sci. 2017;29(3):408-18. http://doi.org/10.1123/pes.2016-0234

11. Keane E, Li X, Harrington JM, Fitzgerald AP, Perry LJ, Kearney PM. Physical activity, sedentary behavior and the risk of overweight and obesity in school-aged children. Pediatr Exerc Sci. 2017;29(3):408-18. http://doi.org/10.1123/pes.2016-0234

12. Rezende LFM, Rey-López JP, Matsudo VKR, Luiz ODC. Sedentary behavior and health outcomes among primary and secondary school students. Rev Paul Pediatr. 2016;34(1):56-63. http://doi.org/10.1016/j.rppedep.2016.09.002

13. World Health Organization (WHO). Physical status: the use and interpretation of Anthropometry. Available from: https://www.who.int/childgrowth/publications/physical_status/en/

14. Leppänen MH, Henriksson P, Delisle Nyström C, Henriksson H, Ortega FB, Pomeroy J, et al. Longitudinal physical activity, body composition, and physical fitness in preschoolers. Med Sci Sports Exerc. 2017;49(10):2078-85. http://doi.org/10.1249/MSS.0000000000001313

15. Matsudo S, Araujo T, Matsudo V, Andrade D, Andrade E, Oliveira LC, et al. Questionario Internacional de Atividade Física (IPAQ): estudo de validade e reprodutibilidade no Brasil. Soc Bras Ativ Fis Saude. 2001;6(2):5-18. https://doi.org/10.12820/rbafs.v6n2p5-18

16. Migueles JH, Cadenas-Sanchez C, Ekelund U, Nyström CD, Mora-Gonzalez J, Løf M, et al. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sport Med. 2017;47(9):1821-45. https://doi.org/10.1007/s40279-017-0716-0

17. Skender S, Ose J, Chang-Claude J, Paskow M, Brühmann B, Siegel EM, Steindorf K, et al. Accelerometry and physical activity questionnaires - a systematic review. BMC Public Health. 2016;16:515. https://doi.org/10.1186/s12889-016-3172-0

18. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Principal items for reporting systematic reviews and meta-analyses: a recommendation of PRISMA. Epidemiol Serv Saude. 2015;24(2):335-42. http://dx.doi.org/10.1590/1518-8787-2014-0985-0017

19. Falconer CL, Page AS, Andrews RC, Cooper AR. The potential impact of replacing sedentary time in adults with type 2 Diabetes. Med Sci Sports Exerc. 2015;47(10):2070-5. http://doi.org/10.1249/MSS.0000000000000651

20. Ferreira RW, Rombaldi AJ, Ricardo LIC, Hallac PC, Azevedo MR. Prevalence of sedentary behavior and its correlates among primary and secondary school students. Rev Paul Pediatr. 2016;34(1):56-63. http://doi.org/10.1016/j.rppedep.2016.09.002

21. Varela-Mato V, O’Shea O, King JA, Yates T, Stensel DJ, Biddle SJ, et al. Cross-sectional surveillance study to phenotype lorry drivers’ sedentary behaviours, physical activity and cardio-metabolic health. BMJ Open. 2017;7(6):e013162. http://doi.org/10.1136/bmjopen-2016-013162

22. Danquah IH, Pedersen ESL, Petersen CB, Aadahl M, Holtermann A, Tolstrup JS. Estimated impact of replacing sitting with standing at work on indicators of body composition: Cross-sectional and longitudinal findings using isotemporal substitution analysis on data from the Take a Stand! study. PLoS One. 2018;13(6):e0198000. http://doi.org/10.1371/journal.pone.0198000

23. Collings PJ, Brage S, Bingham DD, Costa S, West J, McEachan RRC, et al. Physical Activity, Sedentary Time, and Fatness in a Biennial Sample of Young Children. Med Sci Sports Exerc. 2017;49(5):930-8. http://doi.org/10.1249/MSS.0000000000001180

24. Leppanen MH, Nyström CD, Henriksson P, Pomeroy J, Ruiz JR, Ortega FB, et al. Physical activity intensity, sedentary behavior, body composition and physical fitness in 4-year-old children: results from the ministop trial. Int J Obes. 2016;40(7):1126-33. http://doi.org/10.1038/ijo.2016.54

25. Aggio D, Smith L, Hamer M. Effects of reallocating time in different sedentary and active domains on body composition and physical fitness. Med Sci Sports Exerc. 2017;49(5):930-8. http://doi.org/10.1249/MSS.0000000000001180

26. Collings PJ, Westgate K, Väistö J, Wijndaele K, Atkin AJ, Haapala J, et al. Cross-Sectional Associations of Objectively-Measured Physical Activity and Sedentary Time with Body Composition and Cardiorespiratory Fitness in Mid-Childhood: The PANIC Study. Int J Behav Nutr Phys Act. 2015;12:83. http://doi.org/10.1186/s12966-015-0249-6

27. Collings PJ, Westgate K, Väistö J, Wijndaele K, Atkin AJ, Haapala J, et al. Cross-Sectional Associations of Objectively-Measured Physical Activity and Sedentary Time with Body Composition and Cardiorespiratory Fitness in Mid-Childhood: The PANIC Study. Int J Behav Nutr Phys Act. 2015;12:83. http://doi.org/10.1186/s12966-015-0249-6
