Research Article

Cytotoxic Phenolic Compounds from Fruit Glandular Trichomes of *Macaranga tanarius*

Thi Mai Huong Doan,1,2 Thuy Linh Nguyen,1 Thi Thanh Van Trinh,1 Van Nam Vu,1 Thi Dao Phi,1 Marc Litaudon,3 Fanny Roussi,3 Van Minh Chau,1 and Van Cuong Pham1,2

1Advanced Center for Bioorganic Chemistry, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
2Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
3Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR2301, University of Paris-Saclay, 91198 Gif-sur-Yvette, France

Correspondence should be addressed to Thi Mai Huong Doan; huongdm@imbc.vast.vn and Van Cuong Pham; phamvc@imbc.vast.vn

Received 4 July 2019; Revised 7 September 2019; Accepted 12 September 2019; Published 13 October 2019

A new flavonoid, macatanarin D (1), together with five known stilbenes (2-6), was isolated from fruit glandular trichomes of *Macaranga tanarius*. Their structures were elucidated on the basis of spectroscopic methods and through comparison with data reported in the literature. All isolated compounds were evaluated for their cytotoxic activities against KB and MCF-7 cell lines. Compounds 3, 4, and 5 showed the strongest activities against both cell lines with IC50 values in the range of 0.03–0.12 μM, and compound 2 only showed a significant cytotoxicity against KB cell line (IC50 = 0.26 μM) and a moderate cytotoxicity against MCF-7 (IC50 = 10.4 μM). Compounds 1 and 6 showed weak cytotoxic activities against KB cell line with IC50 values of 29.3 and 24.7 μM, respectively.

1. Introduction

Macaranga (Euphorbiaceae) is a large genus of about 300 species mainly distributed in Southern Asia, of which 13 species are native to Vietnam [1, 2]. In Vietnam, several species of this genus known as “Ba soi” have been used in traditional medicine for the treatment of swellings, wounds, and diarrhoea [2, 3]. Phytochemical studies of *Macaranga* species have led to the discovery of various compounds such as flavonoids [4–6] and stilbenes [7, 8], which are regarded as the main constituents [9]. They are responsible for the cytotoxic and antioxidant activities generally found in plants of this genus [9]. *Macaranga tanarius* is known as “Bach dan nam” in Vietnam. The dried roots are used as an emetic agent, whereas fresh leaves are used as an anti-inflammatory drug to heal wounds [10].

A previous chemical investigation of *Macaranga tanarius* fruits led to the isolation of seven new and six known prenylated stilbenes [11]. In another study, it was also demonstrated that vedelianin, one of the most potent cytotoxic metabolites of this chemical series, was located in the glandular trichomes present on the surface of fruits of this species [12]. Plant glandular trichomes are considered to be natural cell factories of high biotechnological interest [13]. This result, combined with the highly cytotoxic activity of an AcOEt extract of glandular trichomes of *Macaranga tanarius* fruits, led us to further investigate chemically these epidermal outgrowths. Herein, we report the isolation of five known prenylated stilbenes (2–6) and the structure elucidation of the new flavonoid macatanarin D (1) and their cytotoxic activities against KB and MCF-7 cancer cell lines.

2. Materials and Methods

2.1. General Experimental Procedures. Optical rotations were determined on a JASCO P-2000 polarimeter (Hachioji,
Tokyo, Japan). High-resolution ESIMS was measured on a Varian 910 spectrometer (Varian, California, USA). IR spectra were obtained on a Bruker 23 TENSOR 37 FT-IR spectrometer (Bruker, Billerica, MA, USA). UV spectra were measured using a UV-1601 spectrometer. The 1H and 13C, HMBC, NOESY/ROESY, and COSY NMR spectra were recorded on a Bruker AM500 FTNMR spectrometer (Bruker, Billerica, MA, USA), and tetramethylsilane (TMS) was used as an internal standard. Column chromatography (CC) was performed using a silica gel (Kieselgel 60, 70–230 mesh and 230–400 mesh, Merck, Darmstadt, Germany) or Sephadex™ LH-20 (Supelco, Bellefonte, PA, USA). Thin-layer chromatography (TLC) used precoated silica gel 60 F254 (1.05554.0001, Merck, Darmstadt, Germany), and compounds were visualized by spraying with aqueous 10% H_2SO_4 and heating for 1.5–2 min.

2.2. Plant Samples. The fruits of Macaranga tanarius were collected in A Luoi, Thua Thien Hue, Vietnam, in June 2017 and were identified by Dr. Nguyen The Cuong of the Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST). A voucher specimen (VN-2406) was deposited at the Herbarium of the Institute of Ecology and Biological Resources of the Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam. The harvested fruits were carefully dried in a confined space at 40°C for 48 hours. The glandular trichomes were then separated and collected for further investigations by gently hand-rubbing dried fruits on a sieve of stainless-steel mesh.

2.3. Extraction and Isolation. Dry glandular trichomes (200 g) were successively extracted with EtOH (5 x 0.5 L). The extracts were combined and concentrated under diminished pressure. The residue (24 g) was suspended in water (70 mL) and extracted successively with n-hexane and EtOAc. The n-hexane and EtOAc solutions were concentrated under reduced pressure to afford 4.9 g and 10.5 g, respectively. The water solution was concentrated under diminished pressure to afford 4.9 g and 10.5 g, respectively.

2.4. Cytotoxic Assay. The cytotoxic assays were carried out in triplicate in 96-well microtiter plates against KB cell line (mouth epidermal carcinoma cells) and MCF-7 cell line (breast cancer cells). Cells were maintained in Dulbecco’s DMEM medium, supplemented with 10% fetal calf serum, L-glutamine (2 mM), penicillin G (100 UI/mL), streptomycin (100 μg/mL), and gentamicin (10 μg/mL). Stock solutions of compounds were prepared in DMSO/ H$_2$O (1/9), and the cytotoxic assays were carried out in 96-well microtiter plates against cancer or normal cells (3 x 10^5 cells/mL) using a modification of the published method [14]. After 72 h incubation at 37°C in air/CO$_2$ (95: 5) with or without test compounds, cell growth was estimated by colorimetric measurement of living cells stained by neutral red. Optical density was determined at 540 nm with a Titertek Multiskan photometer. The IC$_{50}$ value was defined as the concentration of the sample necessary to inhibit the cell growth to 50% of the control. Ellipticine was used as a reference compound.

3. Results and Discussion

Compound 1 was isolated as a yellow powder, and its molecular formula of C$_27$H$_{28}$O$_8$ was established by HRESIMS at m/z 481.1864 [M+H]$^+$ (calcd. for C$_{27}$H$_{29}$O$_8$, 481.1862). The FT-IR showed absorption bands at $\tilde{\nu}_{\text{max}}$ 3414, 1657, 1610, and 1475 cm$^{-1}$ indicating the presence of hydroxy, α, β-unsaturated carbonyl and aromatic ring functionalities, respectively. The UV absorption maximum at 366, 327, and 271 nm was typical for a flavonol-type compound [15]. The presence of a substituted flavonol skeleton was suggested by the analysis of 1H and 13C-NMR spectroscopic data (Table 1). The NMR spectroscopic data of compound 1 were similar to those of macakurizin B, which has been previously isolated from M. kurzii, except for the presence of a prenyl, acetyl, and OH groups [6]. In the 1H-NMR spectrum, the presence of an ABX system at δ_H 6.92 (d, J = 8.5 Hz), 7.80 (dd, J = 2.5, 8.5 Hz), and 7.83 (d, J = 2.5 Hz) and a singlet proton at δ_H 6.45 was observed in the aromatic region. Additionally, the 1H-NMR data also exhibited an acetyl group at δ_H 1.88 (3H, s), and two isoprenoid units: a 3-methyl-2-butenyl group (J$_\text{H}$ 1.71 and 1.72 (each 3H, s), 5.31 (1H, t, J = 7.5 Hz), and 3.28 (2H, d, J = 7.5 Hz), and a 2,2-dimethyl-3-hydroxy-dihydroxypropeno ring (J$_\text{H}$ 1.20 and 1.34 (each 3H, s), 3.67 (1H, dd, J = 5.5, 7.5 Hz), 2.77 (1H, dd,
The analysis of 13C-NMR data and 2D HSQC spectrum of 1 revealed the presence of 27 carbons, corresponding to a flavonol derivative with one acetyl group and two isoprene moieties (Table 1).

The HMBC correlations of H-1‴ (δ_H 3.28) with C-2′′ (δ_C 128.2), C-3′′ (δ_C 127.5), C-4′′ (δ_C 156.1), C-5′′ (δ_C 122.6), C-6′′ (δ_C 131.6) and OH (δ_H 7.29) with C-4′′ (δ_C 156.1), C-5′′ (δ_C 122.6), and C-3′′ (δ_C 127.5) determined the linkage of the isoprenyl chain with C-3′′ and position of OH group at C-4′′ on ring B (Figure 1). Furthermore, the COSY correlations of CH$_2$-4′′-H-5‴-C-6‴ and the HMBC cross peaks of H-4‴ (δ_H 3.94) and CH$_3$-7‴ (δ_C 21.5) with C-4‴ (δ_C 156.1), C-5‴ (δ_C 144.9), and C-3‴ (δ_C 127.5) determined the linkage of the isoprenyl chain with C-3‴ and position of OH group at C-4‴ on ring B (Figure 1). Furthermore, the COSY correlations of CH$_2$-4‴-H-5‴-C-6‴ and the HMBC cross peaks of H-4‴ (δ_H 3.94) and CH$_3$-7‴ (δ_C 21.5) with C-4‴ (δ_C 156.1), C-5‴ (δ_C 144.9), and C-3‴ (δ_C 127.5) determined the linkage of the isoprenyl chain with C-3‴ and position of OH group at C-4‴ on ring B (Figure 1). Furthermore, the COSY correlations of CH$_2$-4‴-H-5‴-C-6‴ and the HMBC cross peaks of H-4‴ (δ_H 3.94) and CH$_3$-7‴ (δ_C 21.5) with C-4‴ (δ_C 156.1), C-5‴ (δ_C 144.9), and C-3‴ (δ_C 127.5) determined the linkage of the isoprenyl chain with C-3‴ and position of OH group at C-4‴ on ring B (Figure 1).

The relative configuration of C-5‴ was established by proton coupling constant analysis and NOESY spectrum. The pseudoaxial orientation of H-5‴ can be deduced from its coupling constants with a gauche ($J = 5.5$ Hz) and an anti ($J = 7.5$ Hz). This observation was confirmed by the NOESY data analysis, which showed NOE correlations between H-5‴ (δ_H 3.67) and OH (δ_H 7.29) with C-4‴ (δ_C 156.1), C-5‴ (δ_C 144.9), and C-3‴ (δ_C 127.5) determined the linkage of the isoprenyl chain with C-3‴ and position of OH group at C-4‴ on ring B (Figure 1). Furthermore, the COSY correlations of CH$_2$-4‴-H-5‴-C-6‴ and the HMBC cross peaks of H-4‴ (δ_H 3.94) and CH$_3$-7‴ (δ_C 21.5) with C-4‴ (δ_C 156.1), C-5‴ (δ_C 144.9), and C-3‴ (δ_C 127.5) determined the linkage of the isoprenyl chain with C-3‴ and position of OH group at C-4‴ on ring B (Figure 1). Furthermore, the COSY correlations of CH$_2$-4‴-H-5‴-C-6‴ and the HMBC cross peaks of H-4‴ (δ_H 3.94) and CH$_3$-7‴ (δ_C 21.5) with C-4‴ (δ_C 156.1), C-5‴ (δ_C 144.9), and C-3‴ (δ_C 127.5) determined the linkage of the isoprenyl chain with C-3‴ and position of OH group at C-4‴ on ring B (Figure 1). Furthermore, the COSY correlations of CH$_2$-4‴-H-5‴-C-6‴ and the HMBC cross peaks of H-4‴ (δ_H 3.94) and CH$_3$-7‴ (δ_C 21.5) with C-4‴ (δ_C 156.1), C-5‴ (δ_C 144.9), and C-3‴ (δ_C 127.5) determined the linkage of the isoprenyl chain with C-3‴ and position of OH group at C-4‴ on ring B (Figure 1).

The structures of the known stiblenes: schwefinfurthin H (2) [19], vedelianin (3) [20], schwefinfurthin F (4) [19], schwefinfurthin E (5) [19], and 4′-deprenyl-mappain (6) [21] were determined by analysis of spectroscopic data and comparison with reported data. So far, about 90% of the isolated compounds come from the leaves of Macaranga genus while 10% were isolated from other plant parts such stem and root barks, fruits, seeds, and flowers. No phytochemical studies had been conducted to date on glandular trichomes of Macaranga fruits. It is important to note that collecting time clearly influences the harvesting yield of glandular trichomes. While the young fruits do not have glandular trichomes and overripe fruits contain low yield of glandular trichomes, the adult/mature fruits, with clearly visible trichome glands, give the best results. In Vietnam, it is best to harvest mature fruits in June.

Since prenylated stilbenes and flavonoids of Macaranga genus are reported to have potent cytotoxic activities [9, 22], compounds 1–6 were evaluated for their cytotoxic activity against KB and MCF-7 human cancer cell lines. Ellipticine was used as a reference compound. The results are shown in Table 2. Compounds 1 and 6 showed moderate cytotoxic activities against KB cell line with IC$_{50}$ values of 29.3 and

Position	δ_C	δ_H mult. (J in Hz)	Position	δ_C	δ_H mult. (J in Hz)
2	141.3	4‴ 26.0		2.40 dd (7.5, 17.0)	
3	136.7	5‴ 67.1		3.67 dd (5.5, 7.5)	
4	170.7	6‴ 77.5		—	
5	153.2	7‴ 25.5		1.34 s	
6	104.4	8‴ 20.4		1.20 s	
7	161.1	1‴ 28.1		3.28 d (7.5)	
8	93.5	2‴ 122.6		5.31 d (7.5)	
9	156.1	3‴ 131.6		—	
10	104.4	4‴ 17.7		1.71 s	
1‴	122.0	5‴ 25.5		1.72 s	
2‴	128.2	7.83 d (2.5)	C-o	172.0 —	
3‴	127.5	—	COCH$_3$	21.5 1.88 s	
4‴	156.1	—	3-OH	6.74 s	
5‴	114.9	6.92 d (8.5)	4′-OH	7.29 s	
6‴	126.0	7.80 dd (2.5, 8.5) 5‴-OH	3.09 br s		

a125 MHz; b500 MHz. Assignments were made using the HSQC, HMBC, COSY, and NOESY spectra.
24.7 μM, respectively. Compounds 3, 4, and 5 showed the strongest activities against both KB and MCF-7 cell lines with IC_{50} values in the range of 0.03–0.12 μM, which is evenly stronger than ellipticine. It was worth noting that three aforementioned compounds possessed the same hexahydroxanthene moiety but a variable number of hydroxy groups, which may explain the difference in their cytotoxic potencies. Compound 2 also showed a significant cytotoxicity against KB cell line (IC_{50} = 0.26) but compared to compounds 3, 4, and 5, cytotoxicity appears to be much less active against the MCF-7 cell line with an IC_{50} value of 10.4.

4. Conclusion

An undescribed flavonoid, macatanarin D (1), together with five known prenylated stilbenes (2–6) were isolated from glandular trichomes of fruits of *Macaranga tanarius*. Most of the compounds isolated have shown potent cytotoxic activities against the two cancer cell lines KB and MCF-7. It is postulated that these specialized metabolites are an important first line of defense against herbivorous insects and/or pathogens.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

This work was financially supported by the Vietnam Academy of Science and Technology (QTFR01.01/18-19) and the framework of International Associated Laboratory (LIA "NATPROCHEMLAB") between the Centre National de la Recherche Scientifique (CNRS, ICSN, France) and the Vietnam Academy of Science and Technology (Institute of Marine Biochemistry, VAST, Vietnam). Additional research support was provided through the Ministry of Science and Technology of Vietnam (Grant number DTDLCN.14/16).

Supplementary Materials

Figure 1S: HR-ESI-MS of 1. Figure 2S: 1H NMR spectrum of 1. Figure 3S: 13C NMR spectrum of 1. Figure 4S: HSQC spectrum of 1. Figure 5S: HMBC spectrum of 1. Figure 6S: COSY spectrum of 1. 1H and 13C NMR spectroscopic data of isolated compounds 2–6. (Supplementary Materials)

References

[1] J. A. Beutler, R. H. Shoemaker, T. Johnson, and M. R. Boyd, "Cytotoxic geranyl stilbenes from *Macaranga schweinfurthii*," *Journal of Natural Products*, vol. 61, no. 12, pp. 1509–1512, 1998.
[2] P. H. Ho, *An Illustrated Flora of Vietnam*, Trees Publishing House, Ho Chi Minh, Vietnam, vol. 2, 1999.
[3] V. V. Chi, *Dictionary of the Medicinal Plants in Vietnam*, Trees Publishing House, Ho Chi Minh, Vietnam, 2012.
[4] S. Suithivaiyakit, S. Unganont, P. Suithivaiyakit, and A. Suksamrarn, "Diterpenylated and prenylated flavonoids from *Macaranga denticulata*," *Tetrahedron*, vol. 58, no. 18, pp. 3619–3622, 2002.
[5] X. Li, L. Xu, P. Wu et al., "Prenylflavonoids from the leaves of *Macaranga sampsongii*," *Chemical & Pharmaceutical Bulletin*, vol. 57, no. 5, pp. 495–498, 2009.

Table 2: Cytotoxic activities of compounds 1–6 against KB and MCF-7 cell lines.

Compounds	KB (μM)	MCF-7 (μM)
1	29.3 ± 2.0	81.4 ± 3.9
2	0.26 ± 0.10	10.4 ± 1.0
3	0.050 ± 0.009	0.050 ± 0.006
4	0.10 ± 0.07	0.12 ± 0.05
5	0.050 ± 0.007	0.030 ± 0.009
6	24.7 ± 1.2	82.2 ± 3.7
Ellipticine	1.3 ± 0.2	2.4 ± 0.1

Ellipticine was used as a positive control.
[6] T. T. T. Van, D. T. M. Huong, P. V. Cuong et al., “Acetyl-
cholinesterase inhibitors from the leaves of Macaranga kur-
zii,” Journal of Natural Products, vol. 75, no. 11, pp. 2012–2015, 2012.

[7] P. Pailee, S. Sangpetsiripan, C. Mahidol, S. Ruchirawat, and
V. Prachyawarakorn, “Cytotoxic and cancer chemopreventive
properties of prenylated stilbenoids from Macaranga sia-
mensis,” Tetrahedron, vol. 71, no. 34, pp. 5562–5571, 2015.

[8] J. A. Beutler, J. Jato, G. M. Cragg, and M. R. Boyd,
“Schweinfurthin D, a cytotoxic stilbene from Macaranga
swinefurthii,” Natural Product Letters, vol. 14, no. 5, pp. 399–404, 2000.

[9] J. M. Joseph, “Phytochemistry and pharmacology of the genus
Macaranga: a review,” Journal of Medicinal Plants Research,
vol. 8, no. 12, pp. 489–503, 2014.

[10] T. P´eresse, G. J´ez´equel, P.-M. Allard et al., “Cytotoxic pre-
ylated stilbenes isolated from Macaranga tanarius,” Journal
of Natural Products, vol. 80, no. 10, pp. 2684–2691, 2017.

[11] T. P´eresse, N. Elie, D. Touboul et al., “Dual beam depth profiling
and imaging with argon and bismuth clusters of prenylated
stilbenes on glandular trichomes of Macaranga vedeliana,”
Analytical Chemistry, vol. 89, no. 17, pp. 9247–9252, 2017.

[12] T. P´eresse, G. J´ez´equel, P.-M. Allard et al., “Cytotoxic pre-
ylated stilbenes isolated from Macaranga tanarius,” Journal
of Natural Products, vol. 80, no. 10, pp. 2684–2691, 2017.

[13] A. Huchelmann, M. Boutry, and C. Hachez, “Plant glandular
trichomes: natural cell factories of high biotechnological in-
terest,” Plant Physiology, vol. 175, no. 1, pp. 6–22, 2017.

[14] T. Mosmann, “Rapid colorimetric assay for cellular growth
and survival: application to proliferation and cytotoxicity
assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983.

[15] D.-S. Yang, Z.-L. Li, W.-B. Peng et al., “Three new prenylated
flavonoids from Macaranga denticulata and their anticancer
effects,” Fitoterapia, vol. 103, pp. 165–170, 2015.

[16] B. T. Ngadjui, E. Dongo, B. M. Abegaz, S. Fotso, and
H. Tamboue, “Dinklagins A, B and C: three prenylated fl-
avonoids and other constituents from the twigs of Dorstenia
dinklagei,” Phytochemistry, vol. 61, no. 1, pp. 99–104, 2002.

[17] T. Mei-Huims, C. Chang-Hung, C. Yih-Ming, and K. Yueh-
Hsiung, “Allelopathic prenylfavanones from the fallen leaves
of Macaranga tanarius,” Journal of Natural Products, vol. 64,
pp. 827–828, 2001.

[18] A. Kamdemwaffo, P. Coombes, D. Mulholland, A. Nkengfack,
and Z. Fomum, “Flavones and isoflavones from the west
African fabaceae Erythrina vogelii,” Phytochemistry, vol. 67,
no. 5, pp. 459–463, 2006.

[19] B. J. Yoder, S. Cao, A. Norris et al., “Antiproliferative pre-
ylated stilbenes and flavonoids from Macaranga alnifolia-
from the Madagascar Rainforest#1,” Journal of Natural
Products, vol. 70, no. 3, pp. 342–346, 2007.

[20] O. Thouin, E. Hnawia, F. Guiérette-Voegelein, and
T. Sévenet, “Vedelianin, a hexahydroxanthene derivative
 isolated from Macaranga vedeliana,” Phytochemistry, vol. 31,
no. 4, pp. 1439–1442, 1992.

[21] S. Almutairi, B. Eapen, S. M. Chundi et al., “New anti-try-
panosomal active prenylated compounds from African
propolis,” Phytochemistry Letters, vol. 10, pp. 35–39, 2014.

[22] D.-S. Yang, S.-M. Wang, W.-B. Peng et al., “Minor prenylated
flavonoids from the twigs of Macaranga adenantha and their
cytotoxic activity,” Natural Products and Bioprospecting,
vol. 5, no. 2, pp. 105–109, 2015.