Development Of Poor Family Selection System Using Simple Multi Attribute Rating Technique Exploiting Rank Method

I Santosa¹, D A Wijaya², Mulaab³, A Rachmad⁴, T Novianti⁵

Email : iwan@trunojoyo.ac.id

¹,²,³,⁴ Department of Informatics Engineering, University of Trunojoyo Madura, Jl. Raya Telang, Kamal, Bangkalan, Madura 69162 Indonesia
³ Department of Computer Engineering, University of Muhammadiyah Surabaya, Jl. Sutorejo no 59, Surabaya 60113 Indonesia

Abstract. In overcoming the problem of poverty, the Office of Community and Village Empowerment of Sampang Regency implements the GEMASAHABAT (Joint Movement Towards Harmonious and Dignified Movement). This program is a program of providing assistance to poor families, but with a large number of poor families, a ranking process is needed to find out poor families that are right on target. The program can be assisted by the existence of a method designed into a decision support system that can include assessment parameters related to ranking poor families, a method deemed appropriate in assisting the ranking process, namely the Simple Multi-Attribute Branch Technique Exploiting Ranks (SMARTER) method, where the method is part of the Multiple Criteria Decision-Making method. This method was chosen because it can rank data with multiple criteria. The results of this study are software that was developed based on 100% functionality test and 91% of speed tests stated that high speed and ease of implementation.

1. Introduction

Sampang Regency Development Vision 2013 - 2018 as mentioned in the Regional Medium-Term Development Plan (RPJMD) is "The realization of a Healthy Bureaucracy, Strong Communities and Friendly Environments for the Achievement of the Dignified Sampang District" with the mission "Improving Quality and Affordable Basic Services" to improve handling people with social welfare problems including handling poverty problems. The RPJMD also mandates that in poverty alleviation, an ongoing program based on village community empowerment is needed in the community.

As a manifestation of one of these visions and missions, Sampang Regency implements the GEMA SAHABAT Program (Joint Movement towards Harmonious and Dignified Sampang) which is a commitment to poverty alleviation programs between the Sampang Regent and the Governor of East Java Province in accordance with the Joint agreement as the development of the JALIN KESRA program (Another Road to Community Welfare).

The Government of Sampang District has designed a program to overcome poverty through GEMASAHABAT, where the program is not only a short-term effort to provide assistance to poor families but this program is sustainable to anticipate the poverty trap. Therefore, to facilitate the ranking of poor household heads, a decision-making system design is needed, namely the selection
procedure for ranking poor families so that assistance can be achieved on target. The decision support system uses the SMARTER (Simple Multi-Attribute Rating Technique Exploiting Ranks) method. SMARTER is a variant of the SMART method that is characterized by being applicable to problems of a compensatory nature in that it makes use of the additive aggregation procedure for alternative criteria[1]. SMARTER is a method of improvement from the SMART method because assigning exact numerical weights in SMART can be a difficult task which is susceptible to uncertainty and the confidence level associated with such weights[2]. This method is an extension of Weighted Sum that allows stakeholders to use value functions to assess alternative with respect to criteria[3]. This Model are particularly suited to discrete problems, i.e. problems were the number of alternatives is limited[4].

This method was chosen because it can complete practical decision making with a simple and easy-to-understand concept, with the ranking method, it is expected that the assessment will be more appropriate because it is based on the criteria weighting and sub-criteria weight that has been set so that it will get more results accurate to the head of poor households who are considered the most appropriate to receive this assistance.

2. Methodology

The Smarter (Simple Multi-Attribute Rating Technique Exploiting Ranks) method is a modification of the SMART (Simple Multi-Attribute Rating technique) method proposed by Edwards and Baron (1994), where both methods are used to determine the weight of each criterion. Weighting in the SMARTER method uses a range between 0 to 1, making it easier to calculate and compare values for each alternative[5].

General SMARTER method formula:

$$\sum_{j=1}^{K} W_i W_j, \forall i = 1 \text{ ton} \quad (1)$$

Weight W got from:

$$W_k = \left(\frac{1}{K} \right) \sum_{j=K}^{K} \left(\frac{1}{j} \right)$$

There are two things that underlie the SMARTER method (according to Edwards and Baron), namely:

1. Simple technique, so that it can be used by decision-makers.
2. Easy techniques to get reliable decisions.

What distinguishes between SMARTER and SMART methods is the weighting problem [6]. In the SMARTER method, weights are calculated using the Rank Order Centroid (ROC) weighting formula. This ROC is based on the level of importance or priority of the criteria [7]. ROC weighting is obtained by a simple mathematical procedure of priority. The basic idea can be illustrated by 2 attributes, A and B. If A is ranked first, then the weight must be between 0.5 and 1 so that the midpoint of the interval of 0.75 is taken as an approximate weight, which is the basis of a principle of minimum commitment. Like weight, B will be 0.25 (is the midpoint between 0 and 0.5) [5].

This procedure can be formulated as follows (if there are K criteria):

- \(W_1 > W_2 > W_3 > \ldots \ldots > W_K \)
- \(W_1 = (1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k})/k \)
- \(W_2 = (0 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k})/k \)
- \(W_3 = (0 + 0 + \frac{1}{3} + \ldots + \frac{1}{k})/k \)

- \ldots \ldots

Example: 2 attributes

- \(W_1 = (1 + 0.5) = 0.75 \)
- \(W_2 = (0 + 0.5) = 0.25 \)
Example: 3 attributes
$W_1 = (1 + \frac{1}{2} + \frac{1}{3}) = 0.6111$
$W_2 = (0 + \frac{1}{2} + \frac{1}{3}) = 0.2777$
$W_3 = (0 + 0 + \frac{1}{3}) = 0.1111$

In general, if K is the number of criteria, the weighting of the criteria to K is:

$$W_k = \left(\frac{1}{K}\right) \sum_{j=K}^{K} \left(\frac{1}{i}\right)$$ \hspace{1cm} (3)
The criteria used as input or parameters in the system include:

Table 1. Criteria as Input

No	Criteria	No	Criteria
1	No Sort Family	16	Drinking water source
2	sub-district	17	How to get drinking water
3	Village	18	The main source of lighting
4	Address	19	Electric power installed
5	Name of family head	20	Cooking fuel
6	Number of family members	21	Use of bowel facilities
7	Number of families	22	Toilet type
8	Welfare Status (Decile)	23	Feces disposal site
9	Status of ownership of residential buildings	24	Ownership of 5.5 kg gas cylinders or more
10	Status of residential land ownership	25	Refrigerator / refrigerator ownership
11	Widest floor type	26	AC ownership
12	Widest wall type	27	Water heater ownership
13	Widest wall quality	28	Telephone connection ownership
14	Widest roof type	29	Television ownership
15	Widest roof quality	30	Gold ownership
31	Ownership of computers	32	Bike ownership
33	Motorcycle ownership	34	Car Ownership
35	Boat ownership	36	Outboard motor ownership
37	Owned motorboat	38	Ship ownership
39	Land ownership	40	Home ownership in another location
41	There are members of a household that have their own business	42	Have a KKS
43	PKH program participants	44	Participants in the Raskin program
45	KUR program participants		

Description in figure 1:

1. Start, the admin logs in using a password and username, if the password and username are incorrect then the admin must log in again.
2. If the admin has successfully logged in, the system will display a start page.
3. On the home page, the admin can see the menu selection and can input data (sub-district, village, sub-village, family data).
4. Admin to collect assessment indicators (criteria and sub-criteria).
5. The system performs the weighting process for each indicator using the formula:

\[
ROC : W_k = \left(\frac{1}{K}\right) \sum_{j=1}^{K} \left(\frac{1}{I}\right)
\]

(4)
6. Admin to assess each family using indicators that have been weighted by the system, by entering the value in accordance with the evaluation of the situation of the related family.
7. After the admin makes an assessment the system will calculate the entire amount of value that is owned by the family.
8. The system ranks ascending automatically, end.

The test is carried out using the functionality test which is carried out with the aim to find out whether the conceptual translator into a decision support system has been done correctly or not, the following will be explained in Table 2 below:

Table 2. System Functionality Test

Description	Testing Procedure	Input	Output	Conclusion
Log in to the system	Admin enters username and password then presses the login button	Input any username and password	Display warning form username and password incorrect	accepted
		Enter correct username, wrong password	Display the warning form username and password incorrect	accepted
		Incorrect username input, correct password	Display warning form username and password incorrect	accepted
Input and edit master data	The user selects the input menu and edits the master data	Data input is completely filled in accordance with the available forms	Data will be saved and will be displayed by the system	accepted
		Change the data in the edit form correctly	Data in the table will change according to what has been changed	accepted
Erase data	The user selects the deleted data in the master table	Click the delete button according to the table column you want to delete	The system will display a pop up if the data will be deleted or not.	accepted
See data	Select the data view menu	Select the menu to display	The system will display the selected data	accepted

Testing the User Acceptance Test conducted at the Office of Community and Village Empowerment is to give the user the right to directly assess the ranking system of poor families in the form of questionnaires. The assessment categories used for the questionnaire in units of % include:

1. Very High / Very Easy
2. High / Easy
3. Low / Difficult
4. Very Low / Very Difficult
Table 3. Question Table

No	Question
1	How fast is the data input process
2	Data Search Speed
3	Data Processing Speed
4	Ease of Weighting
5	Ease of use of the software

3. Result and Discussion

From the system functionality test, it is found that the system runs well, because every time a problem is related to the user, the researcher will immediately improve the user interface that is being developed. So for the 100% functionality test results, the user can use software that has been produced from this research. In testing the data input speed, data processing, and data search resulted in 91.6% expressed high speed, as shown in Figure 2 below.

Figure 2. Speed Testing Results

For testing the ease of giving weight and ease of use of the application used 37.5% stated very easy and 62.5% stated easy. As shown in Figure 3 below. This shows that the implementation of software developed is quite helpful for the job. The work became more efficient in terms of time, compared to the old system which was still manual.
Figure 3. Weighting Test Results and User Interface

The new system provides convenience in the ranking according to the weighting that has been carried out against existing criteria.

4. Conclusion

The conclusion that can be drawn from the development of software prototypes for the Decision Support System ranking of poor families using the SMARTER method is that the system can make it easier for administrators to rank poor families automatically by and also the use of the SMARTER method can provide efficient use of the many assessment indicators in weighting the value of each criterion. Further research can be proposed for the development and improvement of the Decision Support System for ranking poor families is that by using different indicators it is possible that the assessment process can be different. a comparison using this method can then be combined with other methods.

5. Acknowledgment

This research was supported by the Sampang District Community Empowerment Service. We are grateful to our lecturers and students majoring in informatics engineering who provided expertise that greatly assisted research, although it was not related to all interpretations of conclusions from this paper. We would like to thank the head of the informatics engineering laboratory for assistance with the methodology and for providing support for this research. We also want to show our gratitude to the research laboratories who also support this research by providing suggestions and criticisms to improve the results of research that has been done. Although the results are less than the maximum in implementation.
6. References

[1] da Silva D D, de Vasconcelos N V C and Cavalcante C A V 2015 Multicriteria decision model to support the assignment of storage location of products in a warehouse Mathematical Problems in Engineering 2015

[2] Barfod M B, Kaplan S, Frenzel I and Klauenberg J 2016 COPE-SMARTER–A decision support system for analyzing the challenges, opportunities and policy initiatives: A case study of electric commercial vehicles market diffusion in Denmark Research in Transportation Economics 55 3-11

[3] Componation P J, Dorneich M C and Nicholls G M 2017 Team Member Perceptions of Alternative Decision Analysis Approaches Engineering Management Journal 29 45-54

[4] Lakicevic M, Srdjevic B and Velichkov I 2018 Combining AHP and Smarter in Forestry Decision Making Baltic Forestry 24 42-9

[5] Alfita R 2012 Decision Support System of Reserve Building Cultural Revitalization Determination Using Simple Multi-Attribute Rating Technique Exploiting Ranks Method Prosiding Seminars 1

[6] Sari J P, Gernowo R and Suseno J E 2018 Deciding Endemic Area of Dengue Fever using Simple Multi Attribute Rating Technique Exploiting Ranks. In: 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE): IEEE) pp 482-7

[7] Tangkesalu A A and Suseno J E 2018 Information System of Performance Assessment on Startup Business using Simple Multi-Attribute Rating Technique Exploiting Ranks (SMARTER). In: E3S Web of Conferences: EDP Sciences) p 13002