Dynamical Model for Chemically Driven Running Droplets

Uwe Thiele,* Karin John,† and Markus Bär‡

Max-Planck-Institut für Physik komplexer Systeme,
Nöthnitzer Str. 38, D-01187 Dresden, Germany

Abstract

We propose coupled evolution equations for the thickness of a liquid film and the density of an adsorbate layer on a partially wetting solid substrate. Therein, running droplets are studied assuming a chemical reaction underneath the droplets that induces a wettability gradient on the substrate and provides the driving force for droplet motion. Two different regimes for moving droplets – reaction-limited and saturated regime – are described. They correspond to increasing and decreasing velocities with increasing reaction rates and droplet sizes, respectively. The existence of the two regimes offers a natural explanation of prior experimental observations.
It is well known that a drop of liquid can start to move if it is exposed to an external gradient. For instance, a drop of liquid immersed in another liquid that is placed in a temperature gradient will move towards the higher temperature due to Marangoni forces caused by surface tension gradients [1]. Alternatively, a temperature gradient [2] or a wettability gradient induced by a chemical grading of the substrate [3, 4] cause drop motion.

Drops may also move in initially homogeneous surroundings. This is possible because such active drops change their surrounding and produce an internal gradient that drives their motion. One example are drops immersed in another liquid that contain a soluble surfactant undergoing an isothermal chemical reaction at the surface of the drop [5, 6]. Recent experiments found a different sort of chemically driven running droplets on solid substrates. There, the driving wettability gradient is produced by a chemical reaction at the substrate underneath the drop [7–9].

In these experiments, a small droplet of solvent is put on a partially wettable substrate. A chemical dissolved in the droplet starts to react with the substrate resulting in the deposition of a less wettable coating. The substrate below becomes less wettable than the substrate outside the droplet. Eventually, the symmetry is broken by fluctuations and the drop starts to move away from the 'bad spot', thereby changing the substrate and leaving a less wettable trail behind (see Fig. 1). Similar phenomena can be seen in reactive (de)wetting [10], in camphor boats [11], and in the migration of reactive islands in alloying [12].

\[v = C \tan \theta^* (1 - \exp(-rL/v)) \]

where \(r \) is the reaction rate, \(L \) the droplet's length and \(C \) a constant. The dynamic contact angle \(\theta^* \) is assumed to be same at the advancing and receding ends of the droplet, i.e. the droplet profile is approximated by a spherical cap. \(\theta^* \) is
given by \(\cos \theta^e = (\cos \theta^a_e + \cos \theta^r_e) / 2 \), where the static contact angles at the advancing edge \(\theta^a_e \) and at the receding edge \(\theta^r_e > \theta^a_e \) are different due to the chemical gradient. The expression for the velocity is found assuming a first order reaction on the substrate yielding chemical concentrations \(\alpha_a = 0 \) and \(\alpha_r = 1 - \exp(-rL/v) \) at the respective ends of the droplet. The expression for the velocity predicts a monotone increase of the droplet velocity with the droplet length \(L \) and the reaction rate \(r \), in line with early experimental observations [8]. Recent experiments [9] show the opposite trend; the velocity decreases with increasing drop sizes and reaction rate.

In this Letter we propose and analyze a dynamical model for self-propelled running droplets. It consists of coupled evolution equations describing the interdependent spatiotemporal dynamics of the film thickness \(h \) and a chemical concentration \(\alpha \) that changes the substrate wettability. This model is capable of reproducing both experimentally found regimes. In particular, we identify two distinct regimes of running drops separated by a maximum of the velocity. For small droplet size or reaction rate, the chemical gradient in the drop is limited by the progress of reaction. In contrast for large droplets and fast reaction, the chemical concentration at the receding end saturates at a maximum value. Below, we show that the velocity of reaction-limited droplets increases, while the velocity of saturated droplets decreases with increasing reaction rate and drop size. In addition, we find that the dynamic contact angles at the advancing and receding edges of the droplets differ substantially. If we take into account fast diffusion of the chemical substance, the droplet velocity in the saturated regime decreases much faster and only stationary drops are found at large reaction rates. The velocity of the droplets may increase [8] or decrease [9] with their volume.

A liquid layer on a smooth solid substrate is modelled by an evolution equation for the film thickness profile \(h(\vec{x}, t) \) derived from the Navier-Stokes equations using long-wave approximation [14]

\[
\partial_t h = -\nabla \cdot \left[\frac{h^3}{3\eta} \nabla (\gamma \Delta h + \Pi(h)) \right]
\]

with \(\gamma \) and \(\eta \) being the surface tension and viscosity of the liquid, respectively. The disjoining pressure \(\Pi(h) \) accounts for the wetting properties of the substrate [15]. We use the form \(\Pi(h) = 2S_a d_0^3/h^3 + (S_p/l) \exp((d_0 - h)/l) \) [16, 17], where \(S_a \) and \(S_p \) are the apolar and polar components of the total spreading coefficient \(S = S_a + S_p \), respectively, \(d_0 = 0.158 \text{nm} \) is the Born repulsion length and \(l \) is a correlation length [16]. We choose \(S_a > 0 \) and \(S_p < 0 \) thereby combining a stabilizing long-range van der Waals and a destabilizing short-range polar interaction. The latter contains the influence of the coating and crucially influences the static contact angle [16]. Such a model allows for solutions representing static droplets with a finite mesoscopic equilibrium contact.
To account for the varying wettability caused by the chemical reaction we let the polar part of the spreading coefficient S_p depend linearly on the coating density, i.e. on the concentration $\alpha(\vec{x}, t)$ of a chemical species adsorbed at the substrate:

$$S_p = S_p^0 (1 + \frac{\alpha}{g'}) < 0.$$ \hspace{1cm} (2)

The equilibrium contact angle θ_e is given by $\cos \theta_e = S/\gamma + 1$ [16]. This implies that θ_e increases with α, i.e. the coated substrate is less wettable. The constant S_p^0/g' defines the magnitude of the wettability gradient. Note, that Eq. (2) corresponds to the linear relation between $\cos \theta_e$ and α assumed in [8, 9, 13].

The evolution of the chemical concentration on the substrate is modelled by a reaction-diffusion equation for $\alpha(\vec{x})$

$$\partial_t \alpha = R(h, \alpha) + d' \Delta \alpha,$$ \hspace{1cm} (3)

where the function $R(h, \alpha)$ describes the reaction that changes the wettability of the substrate and the second term allows for a (usually small) diffusion of the chemical species along the substrate. The main results, however, are obtained without diffusion. As reaction term we choose

$$R(h, \alpha) = r' \Theta(h - h_0) \left(1 - \frac{\alpha}{\alpha_{\text{max}}} \right).$$ \hspace{1cm} (4)

The time scale of the reaction is defined by the rate constant r'. It is assumed that the reaction at the substrate occurs only underneath the droplet; this is modelled by the step function $\Theta(h - h_0)$. The value of h_0 is chosen slightly larger than the thickness of the precursor film. The chemical concentration of the coating saturates at a value α_{max}, because the reaction is assumed to be fast enough to produce a complete adsorption layer. Changes in details of the reaction term like the replacement of the step function by an explicit proportionality to h do not affect our results qualitatively. The physical motivation behind the actual choice is a fast equilibration of the reactant concentration within the moving droplet, caused by diffusion and convective motion within the droplet.

We rewrite Eqs. (1) to (4) by introducing scales $3\gamma \eta / l \kappa^2$, $\sqrt{l \gamma / \kappa}$, α_{max} and l for t, \vec{x}, α and h, respectively. Then, $\kappa = (|S_p|/l) \exp(d_0/l)$ is the dimensionless spreading coefficient. Defining the dimensionless reaction rate $r = 3r' \gamma \eta / l \kappa^2$, diffusion constant $d = 3d' \eta / \kappa l^2$, wettability gradient $g = g' / \alpha_{\text{max}}$ and ratio of the effective molecular interactions $b = 2S_a d_0^2 / l^2 \kappa$, we obtain from
FIG. 2: Profiles of the droplet $h(x,t)$ ((a) and (b)) and concentration α of coating ((c) and (d)) in the two qualitatively different running droplet regimes. (a) and (c) Reaction-limited regime at $r = 0.0001$ moving with velocity $v = 0.026$. (b) and (d) Saturated regime at $r = 0.001$ with $v = 0.032$. The streamlines plotted in (a) and (b) indicate the convective motion inside the droplet in the comoving frame [19]. The remaining parameters are $g = 1.0, d = 0.0, b = 0.5$ and the droplet volume is 30000.

Eqs. (1) to (4) the dimensionless coupled evolution equations for the thickness profile h and the substrate coverage α

$$\begin{align*}
\partial_t h &= -\nabla \cdot \left\{ h^3 \nabla \left[\Delta h + \frac{b}{h^3} - \left(1 + \frac{\alpha}{g} \right) e^{-h} \right] \right\} \\
\partial_t \alpha &= r \Theta(h - h_0) (1 - \alpha) + d \Delta \alpha
\end{align*}$$

(5) (6)

In the one-dimensional version of Eqs. (5,6), we calculate by use of continuation techniques [18] two-dimensional running droplets moving with constant speed. This is achieved by switching to the comoving frame $x - vt$ and imposing appropriate boundary conditions [19].

Fig. 2 shows the constant profiles of such moving droplets ((a) and (b)) together with the corresponding concentration profiles for α ((c) and (d)) for two qualitatively different regimes (prominently visible in the α profiles). In ((a) and (b)) the streamlines in the comoving frame indicate the convective motion in the droplets.
In Figs. 2 (a,c) the limiting factor for the motion is the small reaction rate. The reaction time is long compared to the viscous time scale, i.e. the droplet passes too fast for the coverage α to approach its saturation value. In the case $d = 0$, we can estimate the value of α at the receding end to be $\alpha_r = 1 - \exp(-rL/v)$ where L is the length of the droplet. We call this regime reaction-limited. In Figs. 2 (b,d) the reaction at the receding edge has reached its saturating value, i.e. $\alpha_r \approx 1$ and $rL/v >> 1$. After the droplet has passed, the concentration α stays at the saturation level. We call this regime saturated. One can not exactly predict where the transition between the regimes occurs, because the velocity of the droplet and the driving wettability gradient determine each other dynamically. We found that in both regimes the advancing contact angle is substantially smaller than the receding one. This contradicts the assumption of identical dynamic contact angles in the approximate theory [13].

![Diagram]

FIG. 3: Moving drops in three dimensions. Shown are the film thickness profiles in the (a) reaction-limited and (b) saturated regime. (c) and (d) represent the corresponding contour lines. The velocity converged to $v \approx 0.018$ and $v \approx 0.044$, respectively. The direction of movement is indicated by arrows, the parameters correspond to Figs. 2 (a,c), respectively, and the droplet volume is 7.5×10^5. Only a part of the computational domain size of 500×500 is shown.
FIG. 4: Characterization of running droplets stationary in a comoved frame. Shown are (a) the velocity v in dependence of the reaction rate r (logarithmic scale) without ($d = 0$, solid line) and with ($d = 1.0$, dotted line) diffusion.; (b) the tangents of the advancing θ_a (solid line) and receding θ_r (dashed line) dynamic contact angles in the reaction-limited regime; (c) the absolut value of the difference of $\tan \theta_a$ (solid line) and $\tan \theta_r$ (dashed line) and the tangents of the static contact angle $\theta_e(\alpha)$ at the corresponding α values. Also in (c) only the reaction-limited regime $r < r_m$ is shown where always $\theta_a > \theta_e(\alpha_a)$ and $\theta_r < \theta_e(\alpha_r)$. The remaining parameters are as in Fig. 2.

We have tested that the above model also allows for stationary moving droplets in three dimensions (Fig. 3) by integrating Eqs. (5) and (6) in time starting from adequate initial conditions [20]. After a transient the droplets approach constant shape and velocity. We show resulting droplets for the reaction-limited (Figs. 3 (a,c)) and the saturated (Figs. 3 (b,d)) regime. Both drops have oval shape with an asymmetry between advancing and receding part that is stronger in the saturation-limited regime due to the larger wettability gradient.

A closer analysis of the one-dimensional version of Eqs. (5,6) gives insight into the properties
of the running droplets and their existence and stability conditions. Fig. 4 (a) shows the droplet velocity in dependence of the reaction rate \(r \) without and with diffusion. The dependence of the velocity on reaction rate \(r \) for the running droplets is non-monotonic. There exists a value \(r_m \) where the velocity is maximal. The case \(r < r_m \) \([r > r_m] \) defines the reaction-limited [saturated] regime.

The velocity increase for \(r < r_m \) is easily explained by the increasing value of \(\alpha_r \) at the back of the drop caused by the faster reaction. The decreasing velocity for \(r > r_m \) originates from a slow increase of \(\alpha \) in the contact region at the front of the drop, while \(\alpha \) at the back remains constant at its saturation value (\(\alpha_r \approx 1 \)). We have also studied the case where diffusion of \(\alpha \) plays is sizable. There, the rapidly produced \(\alpha \) diffuses to the substrate in front of the droplet and diminishes the driving gradient between front and back of the drop. The velocity curve is similar for small \(r \) but decreases even faster beyond the maximum and drops to zero at large enough \(r \); there, no running droplets are found anymore. The latter phenomena is reminiscent to observations of moving spots in reaction-diffusion systems of activator-inhibitor-type [21–23]. Therein, a transition from moving to stationary droplets (drift pitchfork bifurcation) occurs when the inhibitor is produced to fast.

Fig. 5: The transition between (i) reaction-limited and (ii) saturation-limited regime is most clearly seen in the dependence of velocity \(v \) on drop size, i.e. droplet volume \(V \). Curves are plotted for different reaction rates \(r \) (see legend). The remaining parameters are as in Fig. 2.

Figs. 4 (b) and (c) give, respectively, the tangents of the measured advancing and receding dy-
namic contact angles \((\tan \theta_{a/r})\) and their differences \(\Delta \tan \theta_{a/r} = \tan \theta_{a/r} - \tan \theta_{e}(\alpha_{a/r})\) from the static contact angles as a function of the droplet’s velocity in the case \(d = 0\). All contact angles given correspond to the mesoscopic contact angles measured at the inflection points of the computed drop profiles. To determine the static contact angle we take the value of \(\alpha\) at the inflection point to calculate a space independent polar spreading coefficient in Eq. (5). Fig. 4 (b) shows that the two dynamic contact angles may differ quite strongly. However, a comparison of Figs. 4 (b) and (c) shows that the difference between the static and the dynamic contact angles is much smaller.

Experimentally, an important measure is the dependence of droplet velocity on droplet length or volume [8, 9]. We show in Fig. 5 the dependence of \(v\) on the droplet volume. For small reaction rates \(r\) we find that the velocity increases with drop length. The increase becomes more pronounced for larger \(r\). This corresponds to the reaction-limited regime and the experiments in [8]. Upon further increase of \(r\), the curve shows a velocity maximum at an intermediate drop size. For bigger drops, the velocity decreases monotonic similar to the observations of [9]. Inspection of the corresponding profiles suggests that the regime of decreasing velocity is again the saturated regime.

To conclude, we have modelled chemically driven moving droplets by a dynamical model consisting of coupled evolution equations for the film thickness profile and the concentration of a surface coating that is produced underneath the droplet. This model exhibits moving droplets with constant speed and shape in two- and three dimensions. A systematic analysis of the velocities of two-dimensional droplets allows us to distinguish the reaction limited and saturated regimes, which are characterized by an increase resp. decrease of droplet velocities with increasing droplet size or reaction rate. The behavior in the saturated regime indicates that the velocity of the droplets in our model depend not only on the values of the chemical coating at the advancing and receding ends of the droplet, but are in addition determined by the concentration profiles of \(\alpha\) near the contact lines. The two regimes offer a natural explanation of the conflicting experimental observation in [8, 9].

Financial support by German-Israeli Foundation (GIF) is gratefully acknowledged.

* Electronic address: thiele@mpipks-dresden.mpg.de, http:\www.uwethiele.de
† Electronic address: john@mpipks-dresden.mpg.de
[1] M. G. Velarde, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. 356, 829 (1998).
[2] F. Brochard, Langmuir 5, 432 (1989).
[3] E. Raphaël, C. R. Acad. Sci. Ser. II 306, 751 (1988).
[4] M. K. Chaudhury and G. M. Whitesides, Science 256, 1539 (1992).
[5] A. Y. Rednikov, Y. S. Ryazantsev, and M. G. Velarde, Phys. Fluids 6, 451 (1994), and references therein.
[6] A. S. Mikhailov, and D. Meinköhn, 334, in L. Schimansky-Geier and T. Pöschel (Eds.), Lecture Notes in Physics 484, (Springer, Berlin, 1997).
[7] C. D. Bain, G. D. Burnettthall, and R. R. Montgomery, Nature 372, 414 (1994).
[8] D. F. Dos Santos and T. Ondarcuhu, Phys. Rev. Lett. 75, 2972 (1995).
[9] S. W. Lee, D. Y. Kwok, and P. E. Laibinis, Phys. Rev. E 65, 051602 (2002).
[10] D. W. Zheng, W. J. Wen, and K. N. Tu, Phys. Rev. E 57, R3719 (1998).
[11] Y. Hayashima et al., Phys. Chem. Chem. Phys. 4, 1386 (2002).
[12] A. K. Schmid, N. C. Bartelt, and R. Q. Hwang, Science 290, 1561 (2000).
[13] F. Brochard-Wyart and P.-G. de Gennes, C. R. Acad. Sci. Ser. II 321, 285 (1995).
[14] A. Oron, S. H. Davis, and S. G. Bankoff, Rev. Mod. Phys. 69, 931 (1997).
[15] J. N. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1992).
[16] A. Sharma, Langmuir 9, 861 (1993).
[17] U. Thiele et al., Colloid Surf. A 206, 135 (2002).
[18] E. J. Doedel et al., AUTO97: Continuation and bifurcation software for ordinary differential equations (Concordia University, Montreal, 1997).
[19] The stationary profiles are computed in a box of length S and in a comoving frame $x - vt$. Boundary conditions are $h(S) = h(0)$ and $d\partial_x\alpha(z = S) + v\alpha(z = S) = 0$ resp. $\partial_x\alpha(z = 0) = 0$ stemming from $\alpha(S) \to 0$ as $S \to \infty$ and the assumption of constant α-profile behind the drop towards $-\infty$.

The streamlines in Fig. 2 correspond to lines of constant streamfunction $\psi(x, z)$ in the comoving frame given by

$$\psi(x, z) = \left(\frac{3z^2h}{2} - \frac{z^3}{2}\right) \partial_x p(h, \alpha) + vz \quad (7)$$

where the pressure $p(h, \alpha)$ corresponds to the expression in square brackets in Eq. (5).
[20] The integration in time starts from a liquid ‘cylinder’ with a small added noise using periodic boundary
conditions. Initially, the α field is slightly shifted to fix the direction of movement. In the course of the simulation it is set to its initial value far behind the droplet. An explicite scheme is used on 96×96 and 128×128 grids and for drops moving in different directions with respect to the underlying grid.

[21] K. Krischer and A. Mikhailov, Phys. Rev. Lett. 73, 3165 (1994).

[22] M. Or-Guil et al., Phys. Rev. E 57, 6432 (1998).

[23] H. U. Bödeker et al., Phys. Rev. E 67, 056220 (2003).