The tectono-stratigraphic evolution of the Fucino Basin (central Apennines, Italy): new insights from the geological mapping of its north-eastern margin.

G. Mondati, M. Spadi, E. Gliozzi, D. Cosentino, F. Cifelli, G. P. Cavinato, M. Tallini and M. Mattei

1. Introduction

The Fucino Basin is the largest intermontane basin of the central Apennines (Figure 1). It is located in the axial zone of the chain (Abruzzo region, central Italy) and is bordered by active normal faults showing historical and current seismicity (e.g. Amoroso et al., 2015; Beccaccini et al., 1992; Galadini & Messina, 1994; Ghisetti & Vezzani, 1997 and reference therein), as evidenced by the 13th January 1915 Mw 7, Avezzano earthquake (Galadini & Galli, 1999). The Fucino Basin is a NW-SE trending half-graben that cuts the pre- and syn-orogenic carbonate succession of the Abruzzi Apennines. It is bounded by the southeast dipping Tre Monti – Celano – Aielli Fault (Cavinato et al., 2002), and by the southwest dipping fault system of the Pescina – Celano Fault (Cavinato et al., 2002) and the S. Benedetto dei Marsi – Gioia dei Marsi Fault (Alfonsi & Sagnotti, 1996) (Figure 2).

The Fucino Basin is filled by a thick late – to post-orogenic succession of Upper Miocene and Plio-Pleistocene continental deposits (Cavinato et al., 2002; Giaccio et al., 2019), which unconformably overlie Meso-Cenozoic carbonate units and Upper Miocene terrigenous deposits of the Marsica Flysch (Figure 1) (Cosentino et al., 2010). In this context, the knowledge of the post-orogenic geological evolution of the Fucino Basin can be a key to understand the onset of the post-orogenic extensional tectonics in the axial zone of the central Apennines, and to define the long-term slip rate of the main bounding active faults.

Starting from the 30’s (e.g. Beneo, 1939), the Fucino Basin captured the interest of several authors, who tried to define the stratigraphy of the continental deposits and consequently to determine the age of the onset of the extensional tectonics responsible for the creation of this intermontane basin (e.g. Bertini & Bosi, 1976; Bosi et al., 1995, 2003; Cavinato et al., 2002; Cavinato & De Celles, 1999; Zarlenega, 1987). Although many authors worked on the stratigraphy of the Fucino Basin, there is not a consensus on the stratigraphic setting of the basin infill. Indeed, starting from Bertini and Bosi (1976), different schemes for the Fucino Basin have been suggested, resulting in various stratigraphic architectures of its continental deposits (e.g. Bosi et al., 1995; Cavinato et al., 2002; Zarlenega, 1987).

In this paper, we present a new geological map of the north-eastern margin of the Fucino Basin (Main Map), where the oldest deposits of the basin infill crop out. Our map extends from Celano, to the north, to Pescina, to the south, covering an area of about 30 km² (Figure 2). The new geological map derives from field work, coupled with facies analysis, palaeontological investigation, and palaeomagnetic analysis. This multidisciplinary approach leads us to suggest a new stratigraphic setting for the oldest deposits of the basin infill, which is essential to better understand the early evolutionary stage of the Fucino Basin. In this study we define two new synthems: the...
Le Vicenne Synthem and the Celano-Collarmele Synthem, which are related, respectively, to the late Messinian and the Piacenzian-Gelasian evolution of the Fucino Basin.

2. Methods

The Main Map was realized at 1:17,000 scale by using the CTR topography maps (1:10,000 scale) of the Abruzzo Region, while fieldwork mapping was performed at 1:5000 scale. Regarding the Meso-Cenozoic succession, the lithostratigraphic units were mapped and grouped according to the related palaeogeographic domain as defined in the 1:50,000 scale Avezzano and Sulmona geological maps (CARG project, Centamore et al., 2006a, 2006b). The Plio-Quaternary continental deposits are defined as UBSU (Unconformity-Bounded Stratigraphic Unit) (Chang, 1975).

Fieldwork activities were integrated with micropalaeontological analysis (90 samples) on ostracod assemblages to provide age constraints and clues for more detailed palaeodepositional reconstructions. In addition, palaeomagnetic investigations were performed in two stratigraphic sections of the Celano-Collarmele Synthem to improve the constraints for the early evolutionary stage of the Fucino Basin.

3. Results: stratigraphic architecture and time constraints

Two synthems, the Le Vicenne Synthem and the Celano-Collarmele Synthem, characterize the
stratigraphy of the outcropping succession. The Le
Vicenne Synthem unconformably overlies both the
pre-orogenic and syn-orogenic successions of the
region. The Celano-Collarmele Synthem, which
unconformably overlies both the Le Vicenne Synthem
and the bedrock succession, is bounded by an upper
flat surface, which correlates the ‘Collarmele-Pescina
terrace’ (Bertini & Bosi, 1976; Blumetti et al., 1993;
Bosi, 1989; Bosi & Messina, 1992; Demangeot, 1965;
Messina, 1996; Raffy, 1983; Zarlenga, 1987).

3.1. Le Vicenne Synthem

In the study area, sands, clays, and marls, containing
brackish water ostracods, unconformably underlie
the Plio-Quaternary deposits of the Fucino Basin.
Based on our new field evidence, we included these
deposits, which are gently tilted toward the Fucino
Basin, in a new synthem, namely the Le Vicenne
Synthem. This synthem is characterized by a basal
unconformity with the underlying bedrock. Within
the Le Vicenne Synthem, we distinguished the Madonna delle Grazie Fm. (MDG), which was pre-
viously mapped as *Lazio-Abruzzi flysch* (Cavinato et al., 2002) or *Complesso torbiditico altomioenico laziale-abruzese Auct.* (Centamore et al., 2006a).

MDG outcrops mainly in the Belvedere and Collar-
mele areas (Figure 3), and also between Mt. Etra and
Mt. Secino (see map). Close to Collarmele village,
the top of MDG is truncated by a clear erosional sur-
face (angular unconformity), which is overlaid by the
Celano-Collarmele Synthem.

MDG, which is more than 300 m-thick, has been
divided in two members: Fonte Nuova (lower mem-
er) and Belvedere (upper member). However, due
to poor outcrop conditions, in the main map these two members are not distinguished. The Fonte
Nuova Member is made up of compact massive
dark-grey clays, with a high content of organic matter (Figure 3a). These clays are characterized by centi-
meter layers bearing coalified plant fragments. Inter-
calations of ca. 50 cm-thick sandy and silty-sandy
layers, showing wavy-parallel and crossed laminations
can also be found. This member generally shows a
coarsening upward trend, with the occurrence of pla-
nar laminated silty beds and centimetric compact
sandy layers. The upper part of the Fonte Nuova
Member shows slump folding related to soft sediment
deformations characterized by 5-10 cm-scale folds
with vertical axial planes.

The Belvedere Member consists mainly of a sandy
succession. The lower part of this member shows
grey laminated silty clays, with intercalations of thin highly oxidized layers, rich in plant fragments. The middle and upper part of this member show thick massive yellowish sandy layers, with intercalations of laminated silts (Figure 3b). Somewhere, the massive sandy layers pass upward to planar laminated sands.

In both the MDG members, the micropalaeontological analyses show the presence of brackish water ostracod assemblages, which are defined by the occurrence of nine species of ostracods, referable to seven genera. The recognized ostracods are (Figure 4): Loxoconcha cf. L. ludica Olteanu, 1989; Loxoconcha eichwaldi (Livental, 1929); Loxoconcha schweyeri dacica Olteanu, 1995; Loxocorniculina djafarovi (Schneider in Suzin, 1956); Amnicythere cf. A. idonea (Markova in Mandelstam et al., 1962); Cyprideis anlavauxensis Carbonnel, 1978; Caspiocypris alta (Zalanyi, 1929); Camptocypria sp. 1 Gliozzi & Grossi, 2004; Zalanyella venusta (Zalanyi, 1929).

3.2. Celano – Collarmele Synthem

The Celano – Collarmele Synthem (CCS) includes all the continental deposits cropping out at the footwall of the Pescina – Celano Fault (Cavinato et al., 2002), which unconformably overlie the MDG and the carbonate bedrock. This synthem contains six heteropic formations, which are mainly characterized by fluvial deposits and deltaic conglomerates that laterally pass to silty sands, and silts, referring mainly to marginal lacustrine environment (Figure 5). Close to the northern border of the palaeolake, especially where dip slope cliff occurred, the lacustrine fine deposits are interbedded with carbonate breccias (i.e. Aielli area). The distinguished heteropic formations are: Casa Colombaia Fm., Alto di Cacchia Fm., Colle Caprino Fm., Aielli Fm., Stazione di Pescina Fm., and Ponte della Valle Fm.

The Alto di Cacchia Fm. (ACF) crops out in the north-western sector of the study area. It is ca. 150 m-thick and consists mainly of clast-supported conglomerates with a sandy-silty matrix (Figure 5a). The clasts are mainly sourced from a Meso-Cenozoic carbonate platform succession. This formation shows different carbonate conglomerate facies, characterized by planar bedding and different grain size, which have been interpreted as lags and bar sheets on a fluvial fan. The presence of a horizontal stratification and
Imbricate clasts suggest a bedload deposition from stream flow. On the base of these observations, ACF is interpreted as channel lag deposits (Gh, Miall, 2006). The Alto di Cacchia Fm. partially corresponds to the Complesso di Cupoli (Bosi et al., 1995), Depositi del I Ciclo fluvio-lacustre (Zarlenga, 1987), and to the La Selvotta Unit and Cupoli Unit (Cavinato et al., 2002).

The Casa Colombaia Fm. (CCF), which takes its name from the Casa Colombaia section, is at least 70 m-thick and consists of clast-supported conglomerates, silty-sands, and silts (Figure 5b). The conglomerates are well organized in tabular bodies with thickness between 40 cm and 1 m, showing clinoform geometries (fan-delta). In the western part of the study area, the high number of imbricated clasts allow us to define a main palaeocurrent flowing from NW to SE. These conglomerates pass laterally to fine-grained deposits, which are characterized by alternations of: (1) silty layers with planar-to-wavy laminations, associated with symmetric and climbing ripples; (2) sandy and sandy-silty layers, defined by wavy parallel lamination; and (3) silty layers with no sedimentary structures. This formation crops out along the piedmont zone of the study area, from the base of Alto di Cacchia relief to Pescina village.

The fine-grained deposits of CCF are characterized by rather homogeneous ostracod assemblages consisting of: Candona cf. C. triangulata Klie, (1939); Candona wettneri Hartwig, 1899; Casiocypris tiberina Spadi et al., 2018; Casiocypris sp. 2; Casiocypris sp. 3; Cypria sp. n. sp.; Neglecandona neglecta Sars, 1887; Neglecandona cf. N. angulata Müller, 1900; cf. Typhlocypris alpina (Stepanaitys in Mandelstam et al., 1962) sensu Krstić, 2006; Ilyocypris gibba (Ramdohr, 1808); Ilyocypris bradyi Sars, 1890; Ilyocypris inermis Kaufmann, 1900; Eucypris sp.; Trajancypris clavata (Baird, 1838); Potamocypris zschokkei (Kaufmann, 1900); and Paralamnocythere bicornis Fuhrmann, 1991. These ostracod assemblages are sometimes accompanied by Characeae gyrogonites and Bithynia opercula. The presence of Candoninae and Ilyocypris, together with Characeae and Bithynia, suggests a shallow freshwater lacustrine environment (Figure 6).

In the Casa Colombaia section, we performed a palaeomagnetic analysis that shows in both the basal conglomerates and in the fine-grained deposits a normal polarity (Figure 7), which allows us to better constrain the chronostratigraphy of CCF. Magnetic mineralogy results indicate the dominance of a low coercivity component, as evidenced by Hcr values generally lower than 50 mT (Figure 7b) and suggested
by IRM acquisition curves that reach magnetic saturation in the applied field of 0.1 T (Figure 7c).

A stable and coherent ChRM was isolated in most of the measured samples, using both thermal and alternating field (AF) demagnetization techniques. The normal polarity ChRM has been isolated between 180–230 and 480–630°C (Figure 7d, e) or between 5 and 60–100 mT (Figure 7f), suggesting the presence of magnetite as the main magnetic carrier, together with a small fraction of hematite. All the samples are characterized by a single component of magnetization with normal polarity (Figure 7g, h).

CCF partially corresponds to the Complesso di Cupoli, Formazione di Casoli, and Formazione di Collarmele (Bosi et al., 1995), Depositi del IV Ciclo fluvio-lacustre (Zarlenga, 1987), and to Case Colombaia Unit, Aielli Stazione Unit and Cerchio Unit (Cavinato et al., 2002).

Moving from Casa Colombaia section to the north, ACF and CCF are partially interlayered with clayey deposits that we refer to the Colle Caprino Fm. (COF). COF is more than 220 m-thick and mainly consists of laminated grey clays and brownish silty clays. These fine-grained sediments are interbedded with thin layers of carbonate breccias, maximum 2 m-thick, which are characterized by poorly sorted sub-angular to angular clasts (Figure 5c). On the base of sedimentological and lithological features, together with the ostracod assemblage showing only Caspiocypris, the fine-grained deposits of COF refer to a deeper-water lacustrine environment, which was characterized by the arrival of debris flows sourced by the active tectonic margin of the sedimentary basin.

COF partially corresponds to Depositi del I Ciclo fluvio-lacustre (Zarlenga, 1987), Complesso di Aielli (Bosi et al., 1995), and Colle Caprino Unit (Cavinato et al., 2002).
et al., 2002). Toward the top of the formation, the increase of debris-flows defines a gradual transition to a massive carbonate breccias, which refers to the Aielli Fm. The Aielli Fm. (AIF) is ca. 70 m-thick and consists mainly of clast-supported, poorly-sorted, well-cemented, and slope-derived carbonate breccias (Figure 5d), often characterized by the presence of metric blocks, more than 1 m in size. The internal organization of this deposit is chaotic. Thickness can vary from 10 m up to 50 m. AIF mainly outcrops around Aielli village, with some outcrops also in the area of Colle Caprino and La Selvotta. AIF shows many similarities with the ‘Brecce dell’Aquila Auct.’ (Colle Macchione-L’Aquila Synthem, Cosentino et al., 2017), which suggest for its deposition air-lubricated inertial

Figure 6. SEM pictures of selected ostracods from the Casa Colombaia Fm. (a) Caspiocypris tiberina, left valve in external view, sample CC1; (b) Caspiocypris tiberina, right valve in external view, sample CC5; (c) “Typhlocypris” alumna, right valve in external view, sample CC2; (d) Caspiocypris sp. 2, left valve in external view, sample CC4; (e) Caspiocypris sp. 2, right valve in external view, sample CC12; (f) Potamocypris zschokkei, right valve in external view, sample Cava di Cupoli N 4C; (g) Caspiocypris sp. 3, left valve in external view, sample A5; (h) Caspiocypris sp. 3, right valve in external view, sample CC11; (i) llyocypris inermis, right valve in external view, sample VDC1; (j) llyocypris bradyi, left valve in external view, sample A5; (k) Neglecandona cf. N. neglecta, left valve in external view, sample CC5; (l) Candona weltneri, right valve in external view, sample CC6; (m) Cypria sp. n. sp., right valve in external view, sample CC3Car; (n) Trajancypris clavata, right valve in external view, sample Ponte dei Ponti; (o) Eucypris sp., left valve in external view, sample Cerchio 14; (p) llyocypris gibba, right valve in external view, sample PF1; (q) Paralimnocythere bicornis, right valve in external view, sample CHP3; (r) Candona cf. C. triangulata, right valve in external view, sample CC3Car. The white bars correspond to 0.1 mm.
granular flows (sturzstrom, sensu Hsü, 1975; Pierson & Costa, 1987), which can arrive also into the lacustrine environment. AIF correlates the Brecce antiche of Zarlenga (1987), is included in the Complesso di Aielli of Bosi et al. (1995), and is described inside the Colle Caprino Unit (Cavinato et al., 2002).

The Stazione di Pescina Fm. (SPF), which crops out at the eastern sector of the study area, is ca. 80 m-thick and mainly consists of coarse-to-medium, clast-supported, and moderately sorted conglomerates. Somewhere, palaeosols with thickness ranging from 50 cm to 1 m were observed. The internal architecture of these coarse-grained deposits is mainly characterized by channelized structures (Figure 5e), showing fining upward channel-fill conglomerates. The channel facies laterally pass to fine-grained sediments with sheet-like and lenticular forms, interpreted as overbank deposits due to overflow events. The channelized fluvial facies suggests a stacked multi-storey gravel channels of a braided plain environment. The upper boundary of the SPF is a flat surface (abandonment surface) located to the north of Pescina village, which lies at elevations...
of 855 and 865 m. This surface corresponds to the upper boundary of the Celano-Collarmele Synthem, which correlates the ‘Collarmele-Pescina terrace’. This palaeosurface is downthrown toward southwest by NW-SE normal faults. SPF partially corresponds to Depositi del II Ciclo fluvo-lacustre (Zarlenga, 1987), Formazione di Pescina (Bosi et al., 1995), and to the Pescina and Collarmele Unit (Cavinato et al., 2002). In fluvial deposits that correlates SPF, Blumetti et al. (1997) found a fragment of an equid jawbone, which was referred to Equus cf. altidens.

The Ponte della Valle Fm. (PVF) is ca. 20 m-thick and includes several proximal and distal alluvial fans and fan delta deposits. It consists of well cemented sheet-like breccias, with few interbedded lacustrine carbonates and silty sandy layers (Figure 5f). In the area of Collarmele, these alluvial fans and fan delta deposits lie on the Meso-Cenozoic bedrock through an angular unconformity. Close to Pescina, distal alluvial fans of PVF are interfingered with fluvial conglomerates of SPF and are characterized by the precipitation of a fibrous to radial carbonate cement. PVF corresponds to the breccia a cemento terroso ros sastro included within the Depositi del II Ciclo fluvo-lacustre of Zarlenga (1987), to the breccias and alluvial fans within the Formazione di Pescina (Bosi et al., 1995), and to the coalescing alluvial fan and fan delta deposits described by Cavinato et al. (2002).

4. Discussion

The field work carried out at the north-eastern margin of the Fucino Basin allows us to suggest a new stratigraphic setting for its filling deposits, which are arranged in two synthems: (1) the Le Vicenne Synthem (uppermost Messinian); and (2) the Celano-Collarmele Synthem (upper Piacenzian-Gelasian). The occurrence of the fine- and medium-grained deposits related to the late Messinian Lago-Mare event (MDG) is of great interest to better understand the role that the Fucino Basin played during the Late Mesinian Lago-Mare event (5.40-5.33 Ma), which occurred throughout the Mediterranean at the end of the Messinian Salinity Crisis (Cita, 1982; Hsü et al., 1973; Roveri et al., 2014). The ostracod assemblages from MDG point to a shallow aquatic environment, characterized by a range in salinity between oligohaline to mesohaline. Thus, we can infer that, during the latest Messinian, the Fucino area was characterized by a large brackish lagoon in connection with the Mediterranean base level.

MDG correlates the sedimentary succession of the latest Messinian Le Vicenne Basin (Cipollari et al., 1999a; Gliozzi, 1999; Gliozzi et al., 2012), which crops out 10 km to the southeast, along the Aschi-Pescina country road. The Le Vicenne sedimentary succession, which is characterized by polygenic conglomerates, clays, and silty clays bearing Paratethyan ostracod assemblages, unconformably overlies a highly deformed Meso-Cenozoic carbonate succession (Cipollari et al., 1999a; Colacchichi et al., 1967). Moreover, the Le Vicenne stratigraphic succession shows an open syncline structure, characterized by an E-W axis. This evidence points to consider the Le Vicenne Basin as a latest Messinian thrust-top basin, developed during the compressional deformation of the Marsica region of the central Apennines (e.g. Cipollari et al., 1999a, 1999b; Cosentino et al., 2010; Cosentino & Cipollari, 2012).

The high diversity ostracod assemblage of the Le Vicenne Basin (Gliozzi, 1999; Gliozzi et al., 2012) allows us to identify some ostracod species shared with the MDG, which are: Loxoconcha echwaldi, Lox oconcha cf. L. ludica, Loxocorniculina djafarovi, Zala nyella venusta, Camptocypris sp. 1, Cyprideis anlavauxensis [reported by Gliozzi (1999) as Cyprideis aff. tuberculata], and Amnicythere idonea vel pontica.

Based on the proposed correlation, we consider MDG as sedimented in a thrust-top structural setting, during the deformation of the frontal zone of the central Apennines. Hence, the upper Messinian deposits of both the Fucino and Le Vicenne basins would represent the rest of a wider thrust-top sedimentary basin developed during the first compressional deformation that involved in the Apennine Chain the ‘Gran Sasso – Western Marsica’ tectonic unit (Cosentino et al., 2010).

In the Fucino Basin, the Plio-Quaternary deposits related to the early stage of the post-orogenic evolution of the Marsica region unconformably overlie both the upper Messinian MDG and the bedrock succession. The facies architecture suggested in this work for the Plio-Quaternary deposits represents something
new with respect to the stratigraphic setting proposed for the study area (Bosi et al., 1995; Cavinato et al., 2002; Zarlenza, 1987). Except for the Upper Pleistocene continental deposits and the recent covers, the rest of the Plio-Quaternary succession is grouped in a single synthem: the Celano-Collarmele Synthem (Figure 8).

Within the Celano-Collarmele Synthem, the facies distribution of these continental deposits allows us to reconstruct some lateral changes in the depositional environment of the Fucino Basin, from the deepwater lacustrine deposits (COF) to the marginal lacustrine facies of CCF, which laterally passes to channelized coarse-grained fluvial deposits of the Palaeo-Giovenco River (SPF). In the Aielli area, a quasi-homogeneous chaotic body of carbonate breccias (AIF), which rests above COF, can be related to air-lubricated inertial granular flows and rock-avalanches, likewise the Breccie dell’Aquila Auct. (Antonielli et al., 2020; Cosentino et al., 2017). Similarly to the SE margin, where marginal lacustrine facies (CCF) are heteropic to fluvial deposits (SPF), to the NW, deltaic to alluvial-fan conglomerates (ACF) show progradation into the palaeolake environment of the Fucino Basin.

The age of the Celano-Collarmele Synthem is well constrained by the presence of *Casiocypsis tiberina* within the ostracod assemblages of CCF, combined

Figure 8. Comparison among the chronostratigraphical schemes of the Plio-Quaternary deposits of the north-eastern margin of the Fucino Basin as proposed by previous authors and the chronostratigraphy defined in this work.
with palaeomagnetic results. *Caspiocypris tiberina* was previously recorded at Cava Toppetti section (Tiberino Basin) (Spadi et al., 2018, 2019) and its distribution was dated, through magnetostratigraphy, palynology, and mammals biochronology, to a time span between the late Piacenzian and the pre-Olduvai Gelasian interval (Abbazzi et al., 1997).

The combination along the Casa Colombaia section of *Caspiocypris tiberina* and normal magnetic polarity allows us to correlate this section to the Gauss Normal Chron, particularly to the C2An1n sub-chron (late Piacenzian, 2.58-3.04 Ma), as for the lowermost part of the Cava Toppetti section (Tiberino Basin, Abbazzi et al., 1997; Spadi et al., 2018). Given its stratigraphic position, the Casa Colombaia section seems to be the oldest part of the Plio-Quaternary succession of the Fucino Basin. For this reason, we consider the starting age of the post-orogenic extensional tectonics responsible for the creation of the Fucino Basin as late Piacenzian, likewise in other extensional intermontane basins of central Italy (Cosentino et al., 2017).

Possibly, the Celano-Collarmele Synthem could reach the Gelasian in its upper part, like in the correlatable upper Piacenzian-Gelasian synthems of the central-northern Apennines (Cosentino et al., 2017). It is worth noting that similar *Caspiocypris*-dominated ostracod assemblages were recently recognized in the San Nicandro Fm. (L’Aquila Basin, Nocentini et al., 2018; Spadi et al., 2016). In this chronostatigraphic framework, the occurrence of mammal remains referred to *Equus cf. altidens* (Blumetti et al., 1997) in fluvial deposits that correlate SPF is at odds with the *Caspiocypris*-bearing ostracod assemblage of the Celano-Collarmele Synthem, which points to a late Piacenzian-Gelasian age. According to Gliozzi et al. (1997) and Palombo (2009), *E. altidens* shows a distribution from the late Early Pleistocene (ca. 1.4 Ma) up to the Middle Pleistocene (ca. 0.46 Ma), whereas Masini and Sala (2007) indicates the presence of *E. altidens* since the base of the Early Pleistocene (ca. 1.8 Ma). It is possible to explain this controversy with the uncertainty in referring an equid jawbone to a well-defined species of *Equus*, coupled with the uncertain attribution of the equid jaw made by Blumetti et al. (1997) to *Equus cf. altidens*. A possible species of fossil equid consistent with the chronostatigraphy of the upper part of the Celano-Collarmele Synthem could be *Equus stenonis* (ca. 2.5-1.3 Ma, Gliozzi et al., 1997), which can be easily distinguished from *E. altidens* mainly by the different proportions in the leg bones (Caloi, 1994).

5. Conclusions

This work on the Fucino Basin provides new data to better understand the early stage stratigraphic evolution of this post-orogenic intermontane basin. The new stratigraphic architecture of the continental deposits of the Fucino Basin, which we suggest in this paper, reveals some novelties in the evolution of this sedimentary basin. The Plio-Quaternary succession unconformably overlies both the late Messinian deposits of Le Vicenne Synthem, which were previously referred to as late Miocene foredeep siliciclastic deposits (Bosi et al., 1995; Cavinti et al., 2002), and the pre-orogenic bedrock succession. The Le Vicenne Synthem shows a Paratethyan ostracod contingent (*Loxocorniculina djafarovi* Zone, Grossi et al., 2008), which characterizes the last Lago-Mare event of the Messinian Salinity Crisis (5.40-5.33 Ma). These late Messinian ostracod assemblages define a brackish shallow-water environment and allow us to correlate these Lago-Mare deposits with that cropping out in the Le Vicenne Basin (Cipollari et al., 1999a; Gliozzi, 1999; Gliozzi et al., 2012). As a consequence, during the latest Messinian the Fucino area was a part of a more extended thrust-top basin that was developing at the leading edge of the central Apennines, at the Mediterranean base level.

Except for the recent covers, the deposits of the Plio-Quaternary succession cropping out at the north-eastern margin of the Fucino Basin are considered as part of the same synthem (e.g. the Celano–Collarmele Synthem). This synthem includes six different heteropic formations that show transitional environments from fluvial to marginal lacustrine facies, with indication also of deeper-water lacustrine environments.

Ostracod assemblages from the marginal lacustrine deposits of the Celano–Collarmele Synthem (CCF) are characterized by the presence of *Caspiocypris tiberina*, already found within the late Piacenzian-Gelasian Fosso Bianco Fm. of the Tiberino Basin. In addition, palaeomagnetic analysis carried out in the Casa Colombaia section shows normal polarity, allowing us to refer the section to the C2An1n sub-chron (2.58-3.04 Ma) of the Gauss Normal Chron. These evidence allow us to constrain the onset of the extensional tectonics, hence the continental post-orogenic deposition of the Fucino Basin, to the late Piacenzian (ca. 3 Ma), likewise in the Tiberino and L’Aquila intermontane basins (Cosentino et al., 2017).

Finally, the new stratigraphic framework for the Fucino Basin may be also useful to refine the long-term slip rates of the still active normal faults that affect the north-eastern margin of the Fucino Basin.

Software

The vector and raster data for the making of the geological map were elaborated with QGIS 3.4 Madeira, while geological cross-sections, stratigraphic correlation scheme, layout and final editing were performed using Adobe Illustrator®.
Acknowledgments

The grant to Dipartimento di Scienze, Università degli Studi Roma Tre (MIUR-Italy Dipartimenti di Eccellenza, articolo 1, commi 314–337 legge 232/2016) and Italian Ministry of Education and Research (MIUR) through PRIN 2015 (# 20158A9CBM_002) are gratefully acknowledged. This paper benefited from thorough and helpful reviews by Francesco Dela Pierre, Giancarlo Scardia, and Heike Apps.

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

E. Glozzì http://orcid.org/0000-0001-5608-1995
D. Cosentino http://orcid.org/0000-0002-7470-476X
M. Tallini http://orcid.org/0000-0003-4641-7824

References

Abbazzi, L., Albianelli, A., Ambrosetti, P., Argenti, P., Basilici, G., Gentili, S., Masini, F., & Pontinni, M. R. (1997). Paleoentological and sedimentological records in Pliocene distal alluvial fan deposit (Cava Toppetti near Todi, central Italy). Bollettino della Societa Paleontologica Italiana, 36(3), 5–22.

Alfonsi, L., & Sagnotti, L. (1996). Magnetic fabric of Plio-Pleistocene clayey sediments from the footwall of the Avezzano earthquake fault (central Apennines, Italy). Italian Journal of Quaternary Sciences, 9(1), 145–154.

Amoroso, S., Bernardini, F., Blumetti, A. M., Cividino, R.,Doglioni, C., Galadini, F., Galli, P., Graziani, L., Guerrieri, L., Messina, P., Michetti, A. M., Potenza, F., Pucci, S., Roberts, G., Serva, L., Smedile, A., Smeraglia, L., Tertulliani, A., Tironi, G., ..., Vittori, E. (2015). Quaternary geology and paleoseismology in the Fucino and L’Aquila basins. Geofieldal Field Trips, 8(1,2), 1–88. https://doi.org/10.3301/GFT.2016.02

Antonielli, B., Della Setta, M., Esposito, C., Scarascia Mugnozza, G., Schilliò, L., Spadi, M., & Tallini, M. (2020). Quaternary rock avalanches in the Apennines: New data and interpretation of the huge clastic deposit of the L’Aquila Basin (central Italy). Geomorphology, 361, 107194. https://doi.org/10.1016/j.geomorph.2020.107194

Baird, W. (1838). The natural history of the British Entomostraca. Part IV. Magazine of Zoology and Botany, 2(8), 132–144.

Beccacini, A., Cavinato, G. P., & Vittori, E. (1992). Contributo alle conoscenze macro e mesostrutturali dei rilievi settentrionali del bacino del Fucino. In: Tozzi, M., Cavinato, G. P., Parotto, M. (Eds.), Studi preliminari all’acquisizione dati del Progetto CROP 11 Civitavecchia-Vasto. Studi Geol. Camerti, Spec., 1991/2, 11–19.

Benno, E. (1939). Le terrazze quaternarie della regione Fucense ed i loro rapporti con i fenomeni orogenetici della Marsica (Appennino abruzzese). Bollettino- Società Geologica Italiana, 58(1), 77–104.

Bertini, T., & Bosi, C. (1976). Sedimenti continentali probabilmente pliocenici nella Valle del Salto e nella Conca del Fucino (Rieti e L’Aquila). Bollettino- Società Geologica Italiana, 95(3-4), 767–801.

Blumetti, A. M., Coltorti, M., Dramis, F., Ferrelli, L., Michetti, A. M., Petronio, C., Pieruccini, P., & Sardella, R. (1997). Segnalazione di Equus cf. altidens nei depositi terrazzati della valle del Fiume Giovenco (L’Aquila) ed implicazioni per la tettonica e la stratigrafia quaternaria del Bacino del Fucino. Geotialia, 1º Forum FIST, 2, 219–221.

Blumetti, A. M., Dramis, F., & Michetti, A. M. (1993). Fault-generated mountain fronts in the central Apennines (central Italy): geomorphological features and seismotectonic implications. Earth Surface Processes and Landforms, 18(3), 203–223. https://doi.org/10.1002/esp.3290180304

Bosi, C. (1989). Tentativo di correlazione fra le successioni plio-pleistoceniche. In: C.N.R., Centro di Studio per la Geologia Tecnica & ENEA, P.A.S.: “Elementi di tettonica pliocenico-quaternaria ed indizi di sismicità olocenica nell’Appennino laziale-abruzzese”. Soc. Geol. It., Rome, 97-104.

Bosi, C., Galadini, F., Giaccio, B., Messina, P., & Sposato, A. (2003). Plio-Quaternary continental deposits in the Latium-Abruzzi Apennines: The correlation of geological events across different intermontane basins. Il Quaternario, 16(1bis), 53–76.

Bosi, C., Galadini, F., & Messina, P. (1995). Stratigrafia plio-pleistocenica della Conca del Fucino. Il Quaternario, 8(1), 83–94.

Bosi, C., & Messina, P. (1992). Ipotesi di correlazione fra successioni morfo-litostratigrafiche plio-pleistoceniche nell’Appennino laziale-abruzzese. Studi Geologici Camerti, vol. spec. CROP 11, 257–264.

Caloi, L. (1994). Il genere Equus nell’Italia centrale. Studi Geologici Camerti, vol. spec. 1994, 469–486.

Carbonnel, G. (1978). La zone a Loxoconcha dyararovi Schneider (Ostracoda, Miocène supérieur) ou le messinien de la vallée du Rhône. Revue de Micropaléontologie, 21(3), 106–118.

Cavinato, G. P., Carusi, C., Dall’Asta, M., Miccadei, E., & Piacentini, T. (2002). Sedimentary and tectonic evolution of Plio-Pleistocene alluvial and lacustrine deposits of Fucino basin (central Italy). Sedimentary Geology, 148(1-2), 29–59. https://doi.org/10.1016/S0037-0738(01)00209-3

Cavinato, G. P., & De Celles, P. G. (1999). Extensional basins in the tectonically bimodal central Apennines fold-thrust belt, Italy: Response to corner flow above a subducting slab in retrograde motion. Geology, 27(10), 955–958. https://doi.org/10.1130/0091-7613(1999)027<0955:EBITBT>2.3.CO;2

Centamore, E., Crescenti, U., & Dramis, F. (2006a). Note preliminari successioni morfo-litostratigrafiche plio-pleistoceniche nell’Appennino laziale-abruzzese. Studi Geologici Camerti, vol. spec. CROP 11, 76–94.

Centamore, E., Crescioni, U., & Dramis, F. (2006b). Note preliminari successioni morfo-litostratigrafiche plio-pleistoceniche nell’Appennino laziale-abruzzese. Studi Geologici Camerti, vol. spec. CROP 11, 76–94.

Chang, K. H. (1975). Unconformity-bounded stratigraphic units. Geologocal Society of America Bulletin, 86(11), 1544–1552. https://doi.org/10.1130/0016-7606(1975)86<1544:USU>2.0.CO;2
Miall, A. D. (2006). Reconstructing the architectural record and sequence stratigraphy of the preserved fluvial architecture as a tool for reservoir development: A reality check. AAPG Bulletin, 90(7), 989–1002. https://doi.org/10.1306/02220605065

Müller, G. W. (1900). Deutschlands Süßwasser-Ostracoden. Original-Abhandlungen Gesamtgeb. der Zoologie, 30, 1–112.

Nocentini, M., Cosentino, D., Spadi, M., & Tallini, M. (2018). Plio-Quaternary geology of the Paganica-San Demetrio-Castelnuovo Basin (central Italy). Journal of Maps, 14(2), 411–420. https://doi.org/10.1744567.2018.1481774

Olteanu, R. (1989). New Ostracodes in upper Neogene from Romania. Mém. Inst. Géol. Géophys. Bucuresti, 34, 123–182.

Olteanu, R. (1995). Dacian ostracodes. In F. Marinescu, & I. Papaianopol (Eds.), Chronostratigraphie und Neostreptotypen. Neogene der Zentrale Paratethys Bd. IX. (pp. 268–386). Dacien.

Palombo, M. R. (2009). Biochronology of terrestrial mammals and Quaternary subdivisions: A case study of large mammals from the Italian peninsula. Il Quaternario, 22(2), 291–306.

Pierson, T. C., & Costa, J. E. (1987). A rheologic classification of subaerial sediment-water flows. In J. E. Costa & G. F. Wieczorek (Eds.), Debris flows/avalanches: Process, Recognition, and Mitigation. Geological Society of America reviews in Engineering Geology (v. 7, pp. 1–12). Geological Society of America.

Raffy, J. (1983). Le versant tyrrhenien de l’Apennin central. Étude géomorphologique. Thèse présentée devant l’Université de Paris – Sorbonne, 6 Juin 1979, 442 pp.

Ramer, F. A. (1808). Über die Gattung Cypris Müller und drei zu derselben gehörige neue Arten. Magazin Gesell. Naturfor. Freunde Berlin Entdeck. Gesam. Naturkunde, 2, 85–93.

Roveri, M., Bertini, A., Cosentino, D., Di Stefano, A., Gennari, R., Gliozzi, E., Grossi, F., Iaccarino, S. M., Lugli, S., Manzi, V., & Taviani, M. (2008). A high-resolution stratigraphic framework for the latest Messinian events in the Mediterranean area. Stratigraphy, 5(3-4), 323–342.

Roveri, M., Flecker, R., Krijgsman, W., Lofj., Lugli, S., Manzi, V., Sierro, F. J., Bertini, A., Camerlenghi, A., De Lange, G., Govers, R., Hilgen, F. J., Hübscher, C., Meijer, P. T., & Stoica, M. (2014). The Messinian Salinity crisis: Past and future of a great challenge for marine sciences. Marine Geology, 352, 25–58. https://doi.org/10.1016/j.margeo.2014.02.002

Sars, G. O. (1890). Oversigt af Norges Crustaceer med foreløbige Bemærkninger over de nye eller mindre bekjendte Arter. Forhandlinger Videnskabs-Selskabet i Christiania, 1–80.

Sars, G. O. (1887). Nye bidrag tilkundkaben om middelha- vens invertebrat fauna: 4. Ostracoda Mediterranean (Sydeuropaeske Ostrakoder). Arkiv for Mathematik og naturvidenskab, 12, 173–324.

Spadi, M., Gliozzi, E., Cosentino, D., & Nocentini, M. (2016). Late Piacenzian-Gelasian freshwater ostracods (Crustacea) from the L’Aquila Basin (central Apennines, Italy). Journal of Systematic Palaeontology, 14(7), 617–642. https://doi.org/10.1080/14772019.2015.1079561

Spadi, M., Gliozzi, E., & Medici, M. C. (2018). A Plio-Pleistocene Casiocypris species flock (Candoninae, Ostracoda) from the palaeolake Tiberino (Umbria, central Italy). Journal of Systematic Palaeontology, 16(5), 417–434. https://doi.org/10.1080/14772019.2017.1310143

Spadi, M., Gliozzi, E., & Medici, M. C. (2019). Piacenzian-Gelasian non-marine ostracods from the Dunarobba fossil Forest (Tiberino Basin, Umbria, central Italy). Papers in Palaeontology, 5(Part 3), 391–413. https://doi.org/10.1002/spp2.1240

Stoica, M., Krijgsman, W., Fortuin, A., & Gliozzi, E. (2016). Paratethyan ostracods in the Spanish Lago-Mare: More evidence for interbasinal exchange at high Mediterranean sea level. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 854–870. https://doi.org/10.1016/j.palaeo.2015.10.034

Suzin, A. V. (1956). Ostrakody Tretichnykh otlozheniy severnogo predkavkazya. Moskva, 1–191.

Zalanyi, B. (1929). Morpho-systematische Studien über fossile Muschelrebs. Geol. Hung. Pal., 5, 85–152.

Zarlenga, F. (1987). I depositi continentali del Bacino del Fucino (L’Aquila, Italia Centrale). Geologica Romana, 26, 223–252.