RAYMOND CHARLES CASEY

10 October 1917 — 26 April 2016

Elected FRS 1970

BY PETER F. RAWSON1,* , ADRIAN W. A. RUSHTON2 AND MARTIN I. SIMPSON3

1Department of Geography, Geology and Environment, University of Hull, Cottingham Road, Hull HU6 7RX, UK; Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
2Department of Palaeontology, Natural History Museum, Cromwell Road, London SW7 5BD, UK
3Lansdowne, Military Road, Chale, Isle of Wight PO38 2HH, UK

Raymond Casey was an internationally recognized expert in two entirely different fields—geology and philately. He achieved this despite leaving school at 14. By then he was already collecting and studying fossils from his home town, Folkestone, and in 1939, despite not having a degree, he obtained a post with the Geological Survey of Great Britain in the modest role of assistant to C. J. Stubblefield. After war-time service in the RAF, he returned to the Survey in a similar role, but spent much of his ‘spare time’ researching and publishing on Lower Cretaceous palaeontology and stratigraphy. His fortunes began to change when, at the age of 38, he was admitted to Reading University to study for a doctorate. His thesis on Lower Greensand stratigraphy and palaeontology was recognized as an outstanding study that led to major publications including a nine-part monograph of the ammonite faunas. Then, in the late 1950s, he also began to study faunas from Jurassic–Cretaceous boundary beds in eastern England as part of his official work and this led to him visiting the Soviet Union on several occasions from 1963 onward. On the first visit he met the academician Nalivkin in Leningrad, who, as well as being an eminent geologist, was a keen philatelist. This led to Raymond

* peter.rawson1@btinternet.com
taking an enthusiastic interest in pre-revolutionary Russian postal history, which resulted in numerous publications and awards and, after his retirement, became his main focus of interest.

EARLY YEARS

Raymond Casey was born on 10 October 1917 at Folkestone, Kent, the son of Samuel Gardiner Casey and Gladys Violet Helen Casey (née Garrett). Shortly after Raymond’s first birthday, and only a few days before the end of the Great War, his father died, on 6 November 1918, in the great flu pandemic. At that time the family home was at 99 Dover Street in Folkestone. From the age of four, Raymond began collecting fossils from the local seashore, and that started his lifelong interest in palaeontology.

He went to St Mary’s School, Folkestone, which he left at the age of 14 to work in the local branch of W. H. Smith. While still at St Mary’s he must have also started to study at night school, for on 16 July 1932 the *Folkestone Herald* recorded that a week earlier he was representing the school at the annual Folkestone elementary schools sports day; only two weeks later the edition of 30 July 1932 noted that he had passed level TJ1 in English (first class) and Calculation and Drawing (second class) at Folkestone’s Junior Evening School. He continued to study at night school for at least another two years, when he obtained a level TJ2 (second class) pass in Practical Science (*Folkestone Herald*, 2 June 1934). He also made use of the local public library and Folkestone Museum, whose curator encouraged him to work on the collections and use the museum’s library, which held Palaeontographical Society monographs.

PROFESSIONAL CAREER

At the age of 17 Raymond displayed ‘a large series of Ammonites showing evolution of cephalopod forms’ at a *conversazione* of the Folkestone Natural History Society on 5 January 1935 (*Folkestone Herald*, 12 January 1935). Only a year later he published his first paper, on some ammonites from the local Gault Clay (1). His fossil discoveries attracted the attention of a leading ammonite worker, Dr L. F. Spath, whom Raymond first met at the age of 15, and who later acknowledged the importance of Raymond’s collection from the Folkestone Sands (Spath 1942, p. 669). In 1937 Raymond was elected a member of the Geologists’ Association and in 1938 became a Fellow of the Geological Society. The following year he took a post at the Geological Survey of Great Britain as an assistant to Cyril (later Sir) James Stubblefield. His career was soon interrupted by the Second World War, but he returned to the Survey afterwards for the rest of his career.

Raymond joined the RAF in 1940 and initially qualified as a pilot, but was then grounded having injured his foot—while collecting a fossil (Moyes 2017). He then had various duties, including training aircrew and serving as a military policeman. For a time, he was posted to Northern Ireland, where on one occasion he was in a squad trying to control a barrage balloon being attached to a winch. When one squaddie lost his grip and another let go, Raymond suddenly found himself being carried aloft. Quickly he also let go before it was too late. He became the camp ‘smuggler’, slipping across the border into the Irish Republic to fetch items that were rationed or unavailable in Northern Ireland. Subsequently, his IQ having been
determined as 152, he served as an educator for servicemen about to be demobbed (Ed Smith, personal communication, and author AR).

On 17 April 1943 Raymond married Norah Alice Kathleen Pakeman (figure 1) at St Ives in Huntingdonshire, where she was then living. They had first met and become friends as young children in Folkestone, and Norah was still resident in Folkestone when the September 1939 Register was taken. The marriage certificate recorded Raymond’s residence as St Mary’s, Folkestone, though at the time he was a Leading Aircraftman in the RAF, so probably not living at home. During the war his family home was destroyed by enemy shellfire and much of his early fossil collection was lost, though some of the rarer specimens survived, having been borrowed by Spath and stored in the British Museum (Natural History). In 1945 his promise as a palaeontologist led the Geological Society of London to award him the Daniel Pigeon Fund for his proposed ‘investigation of the Folkestone Beds of the Lower Greensand’.

Figure 1. Raymond and Norah.
In 1946, after the war, Raymond returned to the Geological Survey as an assistant experimental officer and was promoted to experimental officer in 1949. For many years he continued working mainly for C. J. Stubblefield, then the most distinguished palaeontologist in the Geological Survey, who was undertaking important work on Carboniferous rocks. In those days the Survey still carried traces of its traditional military-style hierarchical layers of seniority and its class division into scientific and experimental officers. As one of the latter, Raymond was officially carrying out a technician’s role and was neither expected nor encouraged to publish original research. His duties included collecting fossils in support of the field mapping then current, and collecting samples from boreholes; following which there was the task of numbering of each sample and making a written record of the location and stratigraphic level of each one in the Survey’s registers of fossils. He also prepared the samples for study by the appropriate scientific officer, whose task would be formal identification, interpretation and (if appropriate) the publication of the results. Raymond had great dexterity in ‘developing’ fossils, i.e. clearing adhering matrix to display their shape and special features. He used sharp needles and worked only by hand, even on hard rocks like the Carboniferous Limestone, and he spurned the use of ‘new-fangled tools’ such the electric engravers that are now so widely employed.

During this period, from 1946 to about 1950, Raymond collected and registered more than 10,000 fossils representative of parts of a dozen Geological Survey map-areas, mostly from Carboniferous strata in northern and central England; this includes particularly prolific collections from the area of Clitheroe, Lancashire. In the next few years he was directed to at least nine map-areas in the south of England and East Anglia, from Bath to King’s Lynn, to collect fossil material from Jurassic and Cretaceous rocks, whence he obtained and registered a further 6000 specimens.

In addition to this official field work, Raymond continued (in his own time) to collect fossils that particularly interested him, mainly from the Gault Clay and Lower Greensand, and records show that he made nearly 50 separate donations of fossils to the Geological Survey that together totalled over 3000 specimens, and included type-specimens and other select examples. Study of this material took place partly during his lunch breaks at the Survey, when he would read up on the older geological literature on the English or French Cretaceous. Early in his career, he was observed doing this by the chief palaeontologist of the day. As this was not relevant to his official work, Raymond was told that he had ‘ideas above his station’, and should rather be ‘refreshing himself’ and resting, the better to execute his official duties. Despite such discouragement, he found ways of continuing his studies, and in the period to 1955 he published more than 20 papers, mainly on Lower Cretaceous stratigraphy, and on ammonites and Bivalvia. By then he was gaining an international reputation and his research was recognized through the award of the Geologists’ Association Foulerton Award in 1953 and the Geological Society’s Murchison Fund in 1955.

As a result, Raymond was encouraged by Professor Percy Allen, the then head of the Department of Geology at Reading University, to apply to study for a PhD there, despite not having a first degree. A letter of support (British Geological Survey (BGS), Casey Archive) sent on 24 March 1955 to Professor Allen from an eminent American palaeontologist, Alfred R. Loeblich Jr, emphasized the value of Raymond’s work and that ‘Even at present working in his “leisure time”, he has become our best student of the Aptian–Albian ammonites’. He also pointed out that Raymond had been invited to contribute to the Bivalvia volume of the *Treatise on invertebrate paleontology*, ‘the honor is given only to the outstanding workers and
recognized authorities in their field’. Raymond should not ‘spend the rest of his life only as a preparator for the Geological Survey of Great Britain’.

The application was successful and in 1955–56 the Survey, apparently with reluctance, allowed Raymond a year’s leave of absence on half-pay to study full-time, and he also received a Goldsmith’s Scholarship. He then returned to work at the Survey and was promoted to senior geologist in 1957, while continuing to write his doctoral thesis. The PhD was completed in 1958 and it was subsequently described by Professor Allen as ‘one of the best theses I have encountered, in this University or in any other’ (Allen letter in BGS, Casey Archive). In return for seeing the thesis, Shell donated £1000 towards its publication costs (BGS, Casey Archive).

Obtaining the PhD was a turning point in Raymond’s career. But he still met some resistance at the Geological Survey, for he ‘made history in 1960 by being the first Geological Survey officer to appeal against non-promotion’ (Ed Smith, personal communication). The appeal was upheld (BGS, Casey Archive) and he became a principal geologist from 1 January 1960. He was awarded a DSc by Reading University in 1963, and went on to become senior principal scientific officer (Special Merit) in 1964. The Geological Survey’s ‘Summary of Progress’ for 1964 recorded that this was the first time a Geological Survey museum officer had received this promotion. Then, in 1970, he was elected a Fellow of the Royal Society. The same year, he was seconded to the Overseas Geological Survey as a member of a Central Treaty Organisation (CENTO) team assessing the geology and mineral resources of Pakistan, Turkey and Iran, when he also visited Afghanistan.

Raymond officially retired from the Geological Survey (from 1966 renamed the Institute of Geological Sciences) in 1979, but stayed on for a while, Ed Smith remaining as his assistant, until the early 1980s. He continued to do geological research, and became an honorary research fellow at the Natural History Museum, where he was based until 2003.

Scientific work

Raymond’s research focused on Mesozoic sequences and their faunas and he became eminent in two distinct areas. Following on from his childhood interests, he made major contributions to our understanding of the Lower Greensand Group and Gault Formation (Aptian–Albian) of south-east England and the Isle of Wight and he continued to work on this area for the rest of his research career. Through his official work at the Geological Survey, he also made major contributions to our understanding of the Jurassic–Cretaceous boundary faunas in eastern England and the Soviet Union.

Aptian–Albian successions and faunas

Both the Folkestone and Gault formations are well exposed in the cliffs around Raymond’s home town and it was on these local rocks that his first publications focused. His earliest paper (1), on some ammonites from the Gault Clay, was published while he was still working locally. This was followed by an account of part of the Lower Greensand from the same area, which appeared in 1939 (2), the year he joined the Geological Survey. His interest in this part of the Lower Cretaceous continued for the rest of his career. In particular he focused on the Lower Greensand Group, which was the topic of his PhD thesis, completed in 1958.

Two major publications arose from the thesis, the first being a masterly account of ‘The stratigraphical palaeontology of the Lower Greensand’ (8). In this, Raymond proposed a
biostratigraphical scheme for the Aptian to Lower Albian which, unlike previous zonations, was based on careful, bed-by-bed field collecting. One of the important discoveries was that the often quoted ‘Ammonites deshayesi’ and ‘Ammonites martini’ in the English literature had been consistently misidentified, reflecting an excessive ‘lumping’ of species and a too generalized view of the actual fauna. Raymond divided the many earlier, incorrect records of ‘Ammonites deshayesi’ into several species of Deshayesites occurring in his forbesi zone while showing that the true D. deshayesi occurred higher in the succession in the Isle of Wight. The zonation forms the foundation of subsequent north-west European zonal schemes and has significantly contributed to the continuing development of a parallel zonation for the Mediterranean region (e.g. Reboulet et al. 2011). Raymond also showed his breadth of knowledge of many different fossil groups, erecting new taxa (at species to family level) of ammonites, bivalves, gastropods, brachiopods, polyzoa and problematica.

The second major publication was a beautifully illustrated nine-part monograph on the Lower Greensand ammonite faunas (5). Raymond’s contribution to Lower Greensand ammonite taxonomy in these two publications was substantial and included numerous new taxa: one subfamily, nine genera, 10 subgenera, 144 species and 48 formally named varieties. Virtually all of these taxa are still regarded as valid, many having since been recorded in mainland Europe, although the named varieties are not all recognized as species or subspecies in their own right. However, Raymond’s tendency for ‘splitting’ rather than ‘lumping’ has resulted in these varietal differences being well documented—as Raymond put it to MIS: better a new species than a misidentification.

While ammonites remained his main interest, Raymond also published papers on echinoderms and bivalves, the latter being a particular interest (3, 4) which led him to becoming a contributor to the Bivalve volume of the Treatise on invertebrate paleontology (11). Also of note was his account of the preservation of the digestive tract of a fossil gastropod (6). Raymond had earlier shown this discovery to Dr L. R. Cox, the authority on Mollusca at the Natural History Museum, but had met with a sceptical response and was discouraged from publishing it. Shortly afterwards, however, Cox himself found traces of phosphatized soft tissues in a bivalve mollusc, and suddenly the way was clear for Raymond to submit his paper for publication (as related to AWAR by R. Casey).

Raymond continued working in these areas well into his retirement, publishing his last paper, on the delimitation of the Aptian–Albian boundary, in his eighty-first year (16). But long before he retired, he had commenced work on a very different theme, triggered by a natural disaster.

Jurassic–Cretaceous boundary beds in eastern England and the Soviet Union

On the night of 31 January–1 February 1953 a great storm surge, driving south down the North Sea, hit much of the English East Coast, causing 307 deaths and extensive flooding, especially in East Anglia. In response to the flooding, the Fenland Flood Relief Scheme was developed and led to the exposure of new sections in the Sandringham Sand Formation in west Norfolk. At that time the sands had yielded very few fossils, so their age was poorly constrained: they rest unconformably on the Upper Jurassic Kimmeridge Clay Formation and are overlain by clays with a substantially younger Barremian (Lower Cretaceous) fauna. The new exposures were unusually fossiliferous and yielded an ammonite, Hectoroceras, that was previously known only from East Greenland. Raymond dated the fauna as Berriasian (earliest Cretaceous).
This and subsequent finds led him in 1962 (9) to re-examine ammonites (Subcraspedites and Paracrasspedites) from the nearby Spilsby Sandstone of Lincolnshire, which Swinnerton (1935) had compared with material from the Lower Cretaceous Riasan Beds on the Russian Platform. Raymond realized that the specimens from the lower part of the Spilsby Sandstone were actually Volgian (late Jurassic) genera and only those from the higher beds were Early Cretaceous. Hence, he suggested that the local Jurassic–Cretaceous boundary lay within the Spilsby Sandstone, at the mid Spilsby nodule bed. This new area of research prompted Raymond to apply to go to the Soviet Union to examine the Russian faunas, and he succeeded in not only visiting Moscow and Leningrad the following year but also going out in the field there, to the type areas of the Volgian and Riasan beds in the Volga basin. The visit was made in May to June 1963 under the auspices of the recently developed Anglo-Soviet Cultural Agreement and was facilitated by Academician D. V. Nalivkin of Leningrad, with whom Raymond formed a real friendship.

Soon after this initial work on the English Jurassic–Cretaceous boundary faunas and their correlation with the Russian sequences, further temporary exposures in Norfolk on the King’s Lynn by-pass and in gas pipeline trenches provided a wealth of new material. The faunas proved to be unique in western Europe and crucial for correlating Jurassic–Cretaceous boundary beds across the Boreal Realm. Following on from Raymond’s Special Merit promotion in 1964, he was able to set up a Jurassic–Cretaceous Boundary Special Project, which continued for over 10 years and gave him a free hand to pursue the project as he saw fit. One of his first contributions to the project was to examine the strata in the English Jurassic that are equivalent to the Russian Middle Volgian. As a result, he was able to show that two of the ammonite zones of the Kimmeridge Clay in southern England that were equivalent to the lowest Middle Volgian in Russia had been interpreted wrongly—they had been put in the reverse of their natural order. Raymond also inferred that there was a large gap between the Middle and Upper Volgian substages in the Volga basin that represents the time interval when much of the Portland Group was deposited in southern England (10).

Raymond returned to the Soviet Union frequently during the remainder of his career, becoming familiar with the language and travelling widely across both European and Asian parts of the USSR. According to Ed Smith (personal communication) the Russians were greatly interested in his work, particularly as new reserves of oil had been discovered at the Jurassic–Cretaceous boundary in the Crimea and Siberia.

Raymond was also determined to enable some of his Soviet and East European contacts to come to England. With that in mind, he approached one of us (PFR, then a lecturer at Queen Mary College (QMC)) to help organize an International Symposium on the Boreal Lower Cretaceous. Supported jointly by QMC and the Institute of Geological Sciences (IGS), the conference took place on 17–30 September 1972, with talks held at QMC, museum collections studied in the IGS and the Natural History Museum in London and at the Sedgwick Museum in Cambridge, and an eight-day field programme extending from the Isle of Wight to Speeton in Yorkshire. Sadly, although the meeting attracted delegates from North America, Malaysia, Australia and Europe, only two geoscientists came from behind the ‘Iron Curtain’, both from Poland. However, the succeeding conference volume (12) included three papers by Russian workers.

In that volume, one of the most important papers was Raymond’s own contribution on ‘The ammonite succession at the Jurassic–Cretaceous boundary in eastern England’ (13). Here he described and illustrated the ammonite faunas of the Spilsby Sandstone and Sandringham
Figure 2. Raymond (left) with Misha Mesezhnikov: collecting ammonites on the eastern slopes of the Northern Urals, June 1977. (Online version in colour.)

Sands formations, which included much new material—one subfamily (Platylenticeratinae), four new genera (*Shulginites*, *Runctonia*, *Lynnia* and *Paratollia*) and one new subgenus (*Volgidiscus*). He proposed a biozonation for these beds, which remains in use with the exception of the *oppressus* zone, which Cope (2019) has suggested cannot be retained as a distinct unit. He also discussed the correlation of these sequences with those of the Russian Platform and Siberia.

In the same paper, Raymond also re-identified some flattened ammonites from the lowest beds of the Speeton Clay in Yorkshire that Neale (1962) had assigned to species of *?Laugeites*, *Paracraspedites*, *Subcraspedites* and *Tollia* and regarded as of Early Cretaceous (Berriasian) age. Raymond (13) placed them in *Peregrinoceras* and *?Surites (Bojarkia)*, characteristic of his highest Ryazanian (Lower Cretaceous) *albidum* zone.
The following year, Raymond became chairman of the newly formed Jurassic–Cretaceous Boundary (Northwest Europe) Working Group of the IUGS Cretaceous Subcommission. This held its first meeting in Hannover in May 1974 (14).

In summary, Raymond Casey made major contributions to our understanding of the palaeontology, biostratigraphy and palaeogeography of the Upper Jurassic and Lower Cretaceous sequences of England and their relevance to, and correlation with, equivalent strata and faunas from continental Europe and the Boreal sequences of Russia. His success was based partly on his outstanding ability as a palaeontologist whose expertise spread beyond ammonites to embrace several other taxonomic groups (e.g. 3, 6, 8, 11); partly on his meticulous field work to establish the true stratigraphic (i.e. time) distribution of species, and partly on his rigorous re-assessment of previously published research. Thus, his monograph on the Lower Greensand ammonites (5) marked a major step forward in the understanding not only of the English faunas and their stratigraphic distribution and evolution, but also of those in many parts of continental Europe and as far afield as Patagonia and Japan. It is still a widely cited publication across the world.

Raymond’s second major area of research, on the previously poorly known ammonite faunas occurring across the Jurassic–Cretaceous boundary in eastern England, demonstrated the close relationship of these faunas to those occurring on the Russian Platform. His ideas and his field experience had a major influence on Soviet geologists, with whom he published three papers (e.g. 15). He was a welcome visitor to the Soviet Union, where he was able to do field work in areas normally closed to Western visitors (figure 2). He became widely recognized as the leading authority on Jurassic–Cretaceous boundary ammonite faunas in boreal regions, and again his work is still widely cited.

Philately

Raymond’s first visit to the Soviet Union, in 1963, led to a totally different interest, triggered by meeting academician D.V. Nalivkin, who, as well as being an eminent geologist, was a keen philatelist. This visit led to Raymond becoming interested in Russian postal history, and within five years he was publishing on that theme. During his geological visits he exchanged stamps and covers with Soviet collectors, bringing his material to and fro quite easily as usually he passed customs through the diplomatic channel. One of us (PFR) was in a hotel bedroom in Leningrad with Raymond in March 1978 when he announced that a philatelist would be arriving who was an Estonian KGB officer—and he duly arrived in the regulation long black leather overcoat! After his retirement and the collapse of the Soviet Union, Raymond revisited Russia several times for philatelic purposes, by which time he was a recognized expert.

Geological Survey staff heard a lot about Raymond’s philatelic interests, which lay especially with covers and postmarks used by pre-revolutionary Russian postal services. He specialized in collecting Russian rural mail, ship mail and military mail. He established the localities of early Russian post offices, especially the military stations of the Russo-Japanese war and Sino-Russian conflicts. His work aroused great interest in the USSR, but on his third visit he was somewhat worried that he might be put into awkward situations by Soviet agents, or find himself detained and/or his collection confiscated. He accordingly arranged to take his wife Norah with him, considering that her presence would oblige his hosts to be civil,
and, if there was anything in Raymond’s suspicions of danger, it was a successful plan; Norah charmed everyone, and the visit went very smoothly.

Raymond’s expertise led to significant advances in the knowledge of Russian postal history, the receipt of eight gold medals between 1984 and 1997 and appearances on Russian TV. He published numerous papers, especially during his retirement when philately became his main area of research. He was a fellow of the Royal Philatelic Society, served as editor of the *British Journal of Russian Philately* and achieved membership of the exclusive Grand Prix Club.

Raymond also bought and sold at international auctions. He once gave an account to his BGS colleagues of a major auction in New York, when an important collection was being sold off; he knew that items of the greatest interest were to be had. He went to New York in time to attend the preview, and there he noted the star items and some more modest items that might also be worth bidding for. When the auction began, bidding was intense and the lots were reaching unexpectedly high prices. During an interval in the sale, Raymond scouted around and found that the desirable items were all being knocked down to an agent, who was bidding on behalf of a collector who was absent. When the auction resumed, Raymond continued to bid as high as he dared in the hope of getting at least one choice item, but he was outbid every time; presumably the agent’s instruction had been ‘buy: money no object’. At the next pause in the auction, the agent was seen making an anxious phone call—presumably to say ‘prices are very high, Sir’. Next day the agent appeared to have withdrawn, and Raymond was able to secure a less favoured lot that, as he had noted at the pre-auction viewing, included some interesting ‘dumb’ postmarks; and he knew that by forcing the bidding up on all the items on the previous day, he had helped to set new prices that would reflect on the value of his existing collection.

In 2012 one of the rarer items from his private collection, a 1916 envelope sent to Peking, sold for €408,000, surpassing an auction estimate of €70,000. At one time, his collection was apparently worth several million pounds, but with a drop in the market what remained after his death was worth much less.

CASEY THE PERSON

Raymond was an interesting personality whom former friends and colleagues remember fondly. He was a tall man, lanky in his youth but a more substantial figure in his prime. He was very strong, as shown by the casual ease with which he handled large concretions when examining them (AWAR). On meeting a new acquaintance, his normal attitude was one of friendliness, and he chatted as easily with the office junior as with the chief palaeontologist. However, his friendliness might be dimmed when he sensed insincerity or snobbery. He had a lively but somewhat stubborn temperament, especially in later life. He told one of us (MIS) that he was regarded by Stubblefield, when working as his assistant, as being ‘bolshie’ with a ‘working class attitude’, but Raymond simply put this down to the class system of the time.

He certainly had a mischievous streak and was a great raconteur with a good, rather dry sense of humour. This came out even in his creation of new fossil names. Although he had never been taught Latin, Raymond was familiar with the International Code of Zoological Nomenclature (ICZN) rules of nomenclature and picked up readily the flavour of Neolatin as used by palaeontologists since the nineteenth century for zoological names. In his work on Bivalvia, he named a bivalve genus, without explanation, as *Noramya*, clearly after his wife (5). He also conceived a new genus related to *Venus* and thought to name it after his
Survey colleague, Michael Calver: from ‘Michael’ he made the anagram ‘Chimela’, which he proposed in 1952 (3). He also devised a new and convincingly Greek-sounding generic name *Gythemon*, published in the same paper; that name caught the attention of another of Raymond’s colleagues, Richard Melville, who had a good knowledge of the classics as well as of zoological nomenclature. He wondered where Raymond had found this name; after all, had not d’Orbigny, the French savant and wholesale namer of fossils, more or less used up all the available names of minor nymphs and shepherds from the classics? Melville searched in his encyclopaedia and classical catalogue, but to no avail. At last he sought out Raymond and, throwing down his copy of Lamprière, said ‘I give up! Where did you find that name?’ Upon which, Raymond scandalized Melville by looking up innocently and saying simply, ‘I made it up.’ Melville later, when working on a new edition of the ICZN codes, inserted the name *Gythemon* into Article 11 of the code as an example of an available name that is ‘an arbitrary combination of letters’.

The ICZN includes a recommendation that zoological names should not give offence; Raymond’s name for a new heteromorphic ammonite, *Rossalites*, alludes by inference to a racy limerick about ‘the Curate from Rossal who found a peculiar fossil...’ and that definitely earned the disapproval of one of AWAR’s acquaintances.

Even on his death bed Raymond enjoyed pointing out to the hospital staff that while he was in fact a proper doctor (of science), they were simply surgeons.

Raymond’s interest in the Cretaceous must have been obsessive at times, and he admitted neglecting his wife and family for his work. One example was when he became troubled by an anomaly in the ammonite zonation of the Cenomanian Stage. On a Christmas Day in the late 1950s he and his family were watching TV and listening to the Queen’s speech. We don’t know what it was that Her Majesty said, but Raymond suddenly realized where the anomaly lay and how it might be resolved. To do that he needed to check the work of Maurice Collignon, who had studied key faunas in Madagascar. Unfortunately, it was Christmas Day (and the Internet was still half a century away); the next day was Boxing Day, a bank holiday, and although the Geological Museum might be open to the public, all the office staff were on holiday and the library was locked. Even so, Raymond made his way to the Geological Survey and persuaded the security staff to let him into the library to take a look at the critical literature. It turned out that Raymond’s insight was correct, and the index species supposedly marking the highest Cenomanian zone actually occurred in the lowest Cenomanian (7).

He also admitted to being totally disorganized in his private life, telling one of his philatelic friends, Jack Moyes, that on a visit to Russia with Norah, her response to questions about what she did for a living was ‘I look after Raymond’ (Moyes 2017). They were a devoted couple and Raymond once told PFR that Norah was the only girl-friend he ever had. They had two sons, Peter and Chris. Sadly, Norah died in 1974, five years before Raymond’s retirement, and he fell into a profound depression for some time afterwards. But he recovered to continue with his geological research and, increasingly, his philatelic studies during a long retirement.

Raymond Casey died on 26 April 2016.

Acknowledgements

We are grateful to archivist Andrew Morrison and Louise Neep (palaeontology department) of the British Geological Survey for providing historical and collections data, and Beris Cox, Adrian Morter, Ed Smith and Steve Tunnicliff...
Author profiles

Peter F. Rawson

Professor Peter Rawson studied geology at the University of Hull, where he completed a PhD on Lower Cretaceous ammonites from the Speeton Clay: his external examiner was Raymond Casey. He then joined Queen Mary College and remained on the staff there for 17 years before moving to University College London in 1983, where he is now emeritus professor. His research interests embrace improving the geological timescale for, and global correlation of, Cretaceous deposits; Late Jurassic to Early Cretaceous global biogeography, palaeogeography, sea levels and climate; and Early Cretaceous ammonites. Since 1991 he has worked extensively on Argentine ammonite faunas and is a corresponding [honorary] member of the Asociacion Geologica Argentina. He has been joint editor of and contributor to several Geological Society publications, including the Atlas of Palaeogeography and Lithofacies (1992) and The Geology of England and Wales (2006). He also chaired the IUGS’s International Subcommission on Cretaceous Stratigraphy from 1994 to 2004. Peter ‘retired’ to Scarborough in 2006 and is an honorary professor at the University of Hull.

Adrian W. A. Rushton

Dr Adrian Rushton studied natural sciences at University of Cambridge and completed a PhD under the guidance of Professor O. M. B. Bulman FRS. In 1964 he secured a post with the Geological Survey of Great Britain, and worked there as a biostratigrapher and palaeontologist specializing in Lower Palaeozoic rocks. Although his specialities differed greatly from those of Raymond Casey, they were colleagues and in frequent, almost daily, contact for about 15 years. As editor of the Palaeontographical Society Monographs for two decades, Adrian had responsibility for seeing the last two parts of Casey’s monograph of the Lower Greensand ammonites through the press. Adrian has contributed to some 35 Geological Survey memoirs and also to syntheses sponsored by the Geological Society of London, including correlation charts for the Cambrian and Ordovician systems and the Atlas of Palaeogeography and Lithofacies. He retired from the Geological Survey in 1997, and has since worked at the Natural History Museum, London, as an honorary research associate.
Martin Simpson is a freelance palaeontologist who studied at University of Portsmouth and University of Glasgow. He is based on the Isle of Wight, where he has spent the last 40 years collecting fossils from the Lower Greensand near his home. Although specializing in fossil lobsters, he amassed a large collection of ammonites and collaborated with Raymond Casey from 1984 until Raymond’s death in 2016, jointly publishing a paper on this material in 1998. Martin has published numerous papers on decapod crustacean taxonomy and Lower Aptian stratigraphy, as well as commercial guidebooks. For many years he ran a shop on the island and led fossil hunting trips for tourists and schoolchildren, encouraging the growth of geotourism in this classic area on local and national television. He is spending his retirement working on his long overdue monograph.

References to other authors

Cope, J. C. W. (Available online 5 April 2019) A review of Raymond Casey’s contribution to Jurassic stratigraphy. *Proc. Geol. Assoc.* (doi:10.1016/j.pgeola.2019.03.001)

Moyes, J. 2017 Dr Raymond Casey: a personal memoir. *Br. J. Russian Philat.* 106, 96–97.

Neale, J. W. 1962 Ammonoidea from the lower D Beds (Berriasian) of the Speeton Clay. *Palaeontology* 5, 272–296.

Reboulet, S., Rawson, P. F. & Moreno-Bedmar, J. A. 2011 Report on the 4th International Meeting of the IUGS Lower Cretaceous Ammonite Working Group, the ‘Kilian Group’ (Dijon, France, 30 August 2010). *Cretaceous Res.* 32, 786–793. (doi:10.1016/j.cretres.2011.05.007)

Spath, L. F. 1942 A monograph of the Ammonoidea of the Gault: part XV. *Palaeontographical Soc. Monogr.* 96, 669–720. (doi:10.1080/02693445.1942.12035669)

Swinnerton, H. H. 1935 The rocks below the Red Chalk of Lincolnshire, and their cephalopod faunas. *Q. J. Geol. Soc.* 91, 1–46. (doi:10.1144/GSL.JGS.1935.091.01-04.02)

Bibliography

The following publications are those referred to in the text. A full bibliography is available online at https://doi.org/10.6084/m9.figshare.c.4888188.

1. 1936 Recent additions to the Albian ammonoid faunas of Folkestone. *Geol. Mag.* 73, 444–448.
2. 1939 The upper part of the Lower Greensand around Folkestone: with a report on the field meeting at Folkestone and Sandling, 15th May 1938. *Proc. Geol. Assoc.* 50, 362–378. (doi:10.1016/S0016-7878(39)80034-7)
3. 1952 Some genera and subgenera, mainly new, of Mesozoic heterodont lamellibranchs. *Proc. Malacol. Soc.* 29, 121–176. (doi:10.1093/oxfordjournals.mollus.a064613)
4. 1955 The pelecypod family Corbiculidae in the Mesozoic of Europe and the Near East. *J. Washington Acad. Sci.* 45 (12), 366–372.
5. 1960–80 A monograph of the Ammonoidea of the Lower Greensand, Palaeontographical Society monographs, parts 1–10. London: Palaeontographical Society.
6. 1960 A Lower Cretaceous gastropod with fossilized intestines. *Palaeontology* 2, 270–276.
7. Cenomanian ammonite zones. *Geol. Mag.* 97, 173–175. (doi:10.1017/S0016756800061306)
8. 1961 The stratigraphical palaeontology of the Lower Greensand. *Palaeontology* 3, 487–621.
(9) 1962 The ammonites of the Spilsby Sandstone, and the Jurassic–Cretaceous boundary. *Proc. Geol. Soc. Lond.* **1598**, 95–100.

(10) 1967 The position of the Middle Volgian in the English Jurassic. *Proc. Geol. Soc. Lond.* **1640**, 128–133.

(11) 1969 Contributions. In *Treatise on invertebrate paleontology. Part N, Mollusca 6: Bivalvia*, vols 1 and 2 (ed. R. C. Moore). Boulder, CO: Geological Society of America and University of Kansas Press.

(12) 1973 (With P. F. Rawson) The Boreal Lower Cretaceous. *Geol. J.* **5** (Special Issue), 131–144.

(13) 1973 The ammonite succession at the Jurassic–Cretaceous boundary in eastern England. *Geol. J.* **5** (Special Issue), 193–266.

(14) 1975 (With P. Allen, G. Dorhöfer, F. Gramann, N. F. Hughes, E. Kemper, P. F. Rawson, & F. Surlyk) Stratigraphical subdivision of the Jurassic–Cretaceous boundary beds in NW Germany. *Newsl. Stratigr.* **4**, 4–5. (doi:10.1127/nos/4/1975/4)

(15) 1977 (With M. S. Mesezhnikov & N. I. Shulgina) Correlation of the Jurassic–Cretaceous boundary deposits of England, Russian Platform, the subpolar Urals and Siberia. *Izvestiia Akademii Nauk SSSR, Seriia Geologischeskaia* **7**, 14–33 [in Russian].

(16) 1999 The age of the Argiles à Boucaillella of Normandy, the systematic position of the Cretaceous ammonite genera *Boucaillella* and *Archoplites*, and the delimitation of the Aptian/Albian boundary. *Cretaceous Res.* **20**, 609–628. (doi:10.1006/cres.1999.0170)