Total phenolic and flavonoids contents and in vitro evaluation of antioxidant activity of several *Calendula officinalis* (Marigold) extracts

Mounia Chroho,¹ Aziz Drioiche, ² Soukaina Saidi,¹,² Touriya Zair,² Latifa Bouissane¹

¹Laboratory of Organic and Analytic Chemistry, Faculty of Sciences and Technology Beni Mellal, University Sultan Moulay Slimane, Beni Mellal; ²Research team Chemistry of Bioactive Molecules and Environment, Laboratory of Innovative Materials and Biotechnologies of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco

Correspondence: Mounia Chroho, Faculty of Sciences and Technology (FST) Campus Mghilla, BP 523, 23000 Beni Mellal, Morocco.

Tel.: 00212642702006

E-mail: chroho_mounia@yahoo.fr

Key words: *Calendula officinalis*; polyphenols; flavonoids; phytochemistry; antioxidant activity.

Contributions: All authors have made substantial contribution in this work, including drafting the manuscript and revising it.

This article has been accepted for publication but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the final one. Please cite this article as doi: 10.4081/jbr.2021.9680
Conflicts of interest: The authors have no conflicts of interest to declare.

Abstract

The search for natural antioxidants to replace synthetic antioxidants is one of humanity’s health priorities. Medicinal and Aromatic Plants (MAP) contain phenolic compounds that act as natural antioxidants. The aim of this work is to study total phenols and flavonoids contents and evaluate the antioxidant power of various extracts of *Calendula officinalis*. Extracts were prepared in two steps: hot solid-liquid extraction, by Soxhlet and from the plant powder using a solvent (Methanol/water 70/30, Acetone/water 70/30) followed by a liquid-liquid extraction by splitting the obtained extract by two increasingly polarized solvents (Ethyl acetate and Butanol). Total phenols and flavonoids were evaluated using gallic acid and quercetin as standards, respectively. The antioxidant activity of extracts was determined by DPPH (2,2-diphényl 1-picrylhydrazyle) free radical reduction method. The two crude fractions of Methanol and Acetone presented the highest levels of total phenols (7,58±0,38 mg GAE/g dm and 6,80±0,34 mg GAE/g dm respectively), and flavonoids (7,37±0,37 mg QE/g dm and 7,93±0,40 mg QE/g dm respectively). Ethyl acetate fractions showed a high antioxidant activity. This study demonstrated that extracts from *Calendula officinalis* flowers present a promising source of natural antioxidant.
I. Introduction

Medicinal and Aromatic Plants (MAP) and other natural products contain hundreds of compounds that act as natural antioxidants \(^1\). Plants contain a variety of molecules capable of trapping free radicals such as phenolic compounds, nitrogen compounds, vitamins and more \(^2,3\). These natural antioxidants have recently attracted much attention due to their health benefits as an effective way to eliminate and reduce the action of free radicals that cause oxidative stress, and as protective agents against it in biological systems \(^4\). In addition, natural antioxidants offer alternatives to synthetic antioxidants widespread in food and pharmaceuticals and that can be toxic and harmful to health \(^5,6\).

The introduction of natural antioxidants in cosmetics and especially in photoprotective products (sunscreen) is also one of the axes of recent research in dermatology and cosmetics. The exposure of the skin to the sun even with the application of photoprotective products, allows penetration of some of the ultraviolet rays. These cause the formation of free radicals that can damage membranes, DNA or proteins in the body and cause serious skin damages such as premature aging and, in the most serious cases, skin cancers \(^7\). The formulation of new sunscreens that also contain antioxidants will fight the effect of penetrated UV rays and neutralize the formed free radicals.

Calendula officinalis, known as Marigold, is a plant of the family Asteraceae, native to the Mediterranean region, and several properties have been attributed to it. *Calendula* extracts have shown antioxidant, anti-inflammatory, analgesic, antibacterial and antiviral powers \(^8,9\). It has also been reported to have tumour inhibition activity as well as protective activities from cancer development and adverse effects of radiotherapy and chemotherapy \(^10,11\).
Organic extract from *Calendula* flowers showed inhibitory properties against human immunodeficiency virus (HIV) and has shown promise in the treatment of AIDS to replace anti-HIV drugs that present several adverse effects.

Calendula officinalis is also known for its virtues of skin treatment and its use in cosmetics and dermatology is widespread, this is due to the terpenoids carotenoids, flavonoids and volatile oils content in its extracts, and that have appreciable cosmetic activities for the skin. *Calendula officinalis* is used in cosmetics for its toning, antiseptic and anti-irritant properties, it is also used for healing wounds and skin rashes, some extracts of *Calendula officinalis* are applied externally to treat skin ulcers, eczema and conjunctivitis, and also to remove blue spots on the skin.

Naveed et al. evaluated the effect of creams formulated from emulsions (Water/Oil) and containing *Calendula* extracts on the skin, the study showed that these *Calendula* creams have a whitening power by producing a decrease in the content of melanin in the skin, anti-inflammatory effects as they are able to decrease cutaneous erythema, in addition to the hydration effects of the skin and the anti-wrinkle effects. But *Calendula* extract is not suitable for people with oily skin as it increases the sebum content in the skin. The addition of *Calendula officinalis* extracts in cosmetic emulsions can contribute to improving their stability without the use of chemical stabilizers.

Calendula officinalis’s dry flower is also used in food as a spice and orange dye because of its carotenoid content, it is sometimes called «fake saffron», its use is generally recognized to be safe on the part of the FDA (Food and Drug Administration) Set FEMA (Flavors and Extracts Manufacturers Association), (number 2658 in the Known Safe Substances table).

Calendula officinalis is a good source of natural antioxidants, particularly phenolic substances, and other compounds that trap harmful free radicals, but studies of its phenolic content...
and antioxidant potency of its extracts have been considered rare 19,20 and only a few studies have addressed this problem 19–22.

Calendula officinalis is part of the rich and diverse Moroccan flora, it is called in Moroccan dialecce Jemmra and is used in traditional Moroccan medicine 23,24. In this work, we present our study carried out on spontaneous Calendula officinalis and originating from the El Hammam region in Khenifra Morocco. The study consists first of identifying the important families of secondary metabolites using a phytochemical screening of the flowers powder, then to prepare various extracts and then to determine the content of these extracts in total polyphenols and flavonoids and evaluate their antioxidant power by the free radical DPPH (2,2-diphényl 1-picrylhydrazyle) trapping test.

II. Materials and methods

1. Plant material

The Flowers of Calendula officinalis studied were collected in full bloom in May 2019 in the region EL Hammam Khénifra Morocco, where they grow spontaneously at an altitude of 1250 m. Identification of species was confirmed in the Scientific Institute of Rabat. The samples were dried in darkness and at room temperature.

2. Phytochemical screening

It aims to highlight the important families of secondary metabolites contained in the plant. This is a qualitative study based on coloring and/or precipitation reactions from different plant extracts. These extracts are obtained by decoction, infusion or maceration by solvents. Phytochemical screening is also based on the use of several reagents. Table 1 lists the reagents used in the research of different families.
The characterization tests of different chemical groups were carried out according to Bruneton (2009) and N'Guessan et al. (2009).25,26

3. Extraction of Polyphenols

The extraction of phenolic compounds was carried out in two steps: First a hot solid-liquid extraction, by Soxhlet and from the plant powder using a solvent, followed by a liquid-liquid extraction by splitting the obtained extract by two solvents with increasing polarity.

Solid-liquid extraction was carried out by two solvents, Methanol/Water 70/30 (Me) and Acetone/Water 70/30 (Ac), 30 g of the plant powder is placed in a filter paper cartridge and introduced into a Soxhlet, the flask is filled with 350 mL of a solvent hydrolic solution at 70%, after several cycles, until the plant is exhausted and the colouring disappears, the solvent is evaporated and the extract is recovered with warm distilled water.

The crude extract thus obtained is subjected to liquid-liquid extraction (the splitting) by two increasingly polarized solvents, ethyl acetate and butanol, to obtain four fractions: crude fraction (F0), ethyl acetate fraction (F1), butanol fraction (F2) and aqueous fraction (F3) (Figure 1). The four fractions finally obtained from the hydro-methanol solution are then indexed; Me (F0), Me (F1), Me (F2), Me (F3), and those from the hydro acetone solution are indexed Ac (F0), Ac (F1), Ac (F2), Ac (F3).
Figure 1: The fractionation process to obtain the four fractions: crude fraction (F0), ethyl acetate fraction (F1), butanol fraction (F2) and aqueous fraction (F3)

3.1. Determination of total polyphenols contents in *Calendula officinalis*

The total phenol content of the extracts was determined by Folin–Ciocalteu method. In 100 mL volumetric flask, 5 µl of each extract is mixed with 1,5 mL of Folin–Ciocalteu reagent (10%) and 1,5 mL of sodium carbonate (Na₂CO₃) at 7,5% (m/v). Then the flask is completed with distilled water. The whole is left for 30 minutes at room temperature. The absorbance is measured at 760 nm.

Gallic acid is used as a positive control. The polyphenol content of the studied extracts is calculated from the regression equation of gallic acid calibration ($y = 0.095x + 0.003$). The results are expressed in milligram of Gallic Acid Equivalent per gram of dry matter (mg GAE/g dm). The polyphenol content is calculated using the following formula:
\[T = \frac{C \times V}{m \text{ (dry matter)}} \times D \]

- C: The concentration measured by the regression equation of gallic acid calibration
- V: Sample volume
- D: Dilution factor

3.2. Determination of Flavonoids contents in *Calendula officinalis*

Flavonoids content was estimated by the Aluminum Trichloride AlCl₃ method. 10 µl of each fraction was mixed with 0.1 mL of aluminum trichloride 10%, followed by 20 mL of distilled water and supplemented at 50 mL with absolute methanol. The whole is incubated in darkness at room temperature for two hours, the absorbance is measured at 430 nm. Flavonoids are quantified using a calibration curve performed with Quercetin \((y = 0.073X - 0.081)\). The flavonoid content is expressed in milligrams of Quercetin Equivalent per gram of dry matter (mg QE/g dm).

4. Antioxidant power: DPPH radical scavenging activity

The antioxidant activity was evaluated by measuring the trapping power of the DPPH radical (2,2-diphényl 1-picrylhydrazyle). For this purpose, an ethanolic solution of DPPH is prepared by dissolving 2,4 mg of DPPH in 100 mL of ethanol.

A series of dilutions of each extract were prepared with concentrations ranging from 0,125 mg/mL to 5 mg/mL. The tests are performed by mixing 200 µl of each extract solution at different concentrations with 2,8 mL of the DPPH ethanolic solution. After 30 min in darkness, the absorbance is measured at 517 nm. Ascorbic acid inhibition of the free radical DPPH was also analyzed at the same concentrations for comparison.
Antioxidant activity is determined by two parameters:

- The percentage of DPPH inhibition (I%) calculated from sample absorbance A_{sample} as follows:
 \[I\% = \left(\frac{A_{control} - A_{sample}}{A_{control}} \right) \times 100 \]
 where $A_{control}$: absorbance of the solution containing only DPPH radical solution and A_{sample}: absorbance of sample solution to be tested in the presence of DPPH.

- IC$_{50}$: The antioxidant concentration required to decrease the initial concentration by 50%, it is inversely related to the antioxidant capacity. This parameter is defined graphically from the absorbance curve as function of concentrations.

III. Results et discussion

1. Phytochemical screening

The phytochemical characterisation tests carried out on the extracts from *Calandula officinalis* flowers showed the presence of the following chemical families: tannins, flavonoids, saponosides, triterpene and quinones. On the other hand, we note the absence of alkaloids. These constituents have been cited in other studies as bioactive secondary metabolites present in *Calendula officinalis* flowers 9,29, in addition to other chemical compounds such as phenolic acids and coumarin 30, flavonols glycosides 31,32. Other active constituents are included such as mucilages and carotenoids to which the flower owes its orange colour 30,33.

2. Extractions yields

The yield of the crude extracts (F0) is calculated in relation to the mass of the dry matter at which the solid-liquid extraction was carried out.
\[R\% \,(F0) = \frac{\text{Mass of crude extract}}{\text{Mass of dry matter powder}} \times 100 = \frac{m_0}{30} \times 100 \]

The yield of the other fractions (F1), (F2) and (F3) is calculated in relation to the mass of the crude extract to which the liquid-liquid extraction was carried out.

\[R\% \,(F1,2,3) = \frac{\text{Mass of the fraction}}{\text{Mass of crude extract}} \times 100 = \frac{m_{1,2,3}}{m_0} \times 100 \]

The yield differs from one extraction solvent to another and is also dependent on the splitting solvent. This is due to the different polarity of solvents which allows the separation of different metabolites because of their solubility in the solvent and their structural complexity.

The highest yield is that of the butanolic fraction of the crude acetonic extract Ac (F2), while the low yield is that of the ethyl acetate fraction of the crude methanolic extract Me (F1). Hot solid-liquid extraction by Methanol has a better yield than by Acetone, and the yield of liquid-liquid extraction by Butanol is higher than that of ethyl acetate (Figure 2).

![Extractions yield](image)

Figure 2 : Extractions yield of Calendula officinalis different extracts

3. **Determination of total polyphenols and Flavonoids contents in Calendula officinalis**
The total polyphenols contents of different extracts are shown in Figure 3. The results show that all fractions present a significant contents of polyphenols, but they differ according to the splitting solvents. The extraction solvents Methanol and Acetone do not have much influence on the content. The two crude fractions, fraction of Methanol Me (F0) and fraction of Acetone Ac (F0), had the highest levels of 7.58±0.38 mg QE/g dm and 6.80±0.34 mg GAE/g dm, respectively (Table 2).

The lowest levels of polyphenols are those for aqueous extracts, 1.75±0.09 mg GAE/g dm and 0.73±0.04 mg GAE/g dm for aqueous methanol extract Me(F3) and aqueous acetone extract Ac(F3) respectively (Table 2). The low polyphenol content of aqueous extracts compared to crude extracts shows that the fractionation (liquid-liquid extraction by ethyl acetate and butanol) was able to extract a large quantity of polyphenols from the plant.

Flavonoid content of extracts ranges from 1.24±0.06 to 7.93±0.40 mg QE/g dm (Table 2), the crude methanol and acetone fractions, Me (F0) and Ac (F0), represent the highest content of Flavonoids (7.37±0.37 and 7.93±0.40mg EQ/g dm respectively) with a small gap between them in favour of Acetone extract. Aqueous fractions represent the lowest contents (Figure 4).

The phenol content values found are much lower than those found by Jasmina and al. on three extracts of *Calendula officinalis* (Water, Ethanol and Solution 50/50 hydroethanolic) and which were of the order of 45.13 mg GAE/g dm, 31.86 mg GAE/g dm and 29.79 mg GAE/g dm respectively. The high phenol content of the aqueous extract is due to the solubility of phenols, flavonoids and their glycosides in water. As for the flavonoid content values, they are higher than those found for these three extracts (Water, Ethanol and Solution 50/50 hydroethanolic) and which are 0.12 QE/g dm, 0.10 QE/g dm and 0.17 QE/g dm respectively.

20
The polyphenol content of *Calendula officinalis* flowers found by Ćetković, using the UV spectrophotometric method, are in the order of 15.12 mg/g of the sample, and the flavonoid content was 5.13 mg/g of the sample.

The difference in phenol content of the same plant depends, in addition to the extraction solvent, on several factors such as the environmental conditions of the plant (altitude, temperature, light) as well as soil conditions and the state of maturation of the plant.

A study comparing three different extracts of *Calendula officinalis*, by ethanol, ethyl acetate and n-hexane, Ethanol was confirmed to be the best solvent for the extraction of phenols and flavonoids from the plant *Calendula officinalis*.

4. **Antioxidant power : DPPH radical scavenging activity**

We evaluated the antioxidant power for all Methanol and Acetone fractions except aqueous fractions since their polyphenols and flavonoids were the lowest. The results obtained expressing the percentages of antioxidant activity by concentrations are presented in Figures 5 and 6.

The antioxidant tests showed that the six fractions Me (F0), Me (F1), Me (F2), Ac (F0), Ac (F1) and Ac (F2) show an antioxidant activity that increases with the increase in concentration. All fractions reach a maximum inhibition percentage between 82% and 93%.

The potency of ethyl acetate fractions appears to be highest, followed by crude fractions and finally butanolic fractions.

To better characterize this antiradical power, we determined the IC₅₀ values (concentration of the extract needed to inhibit the activity of DPPH by 50%). The results obtained are shown in Figure 7. The extracts Ac (F1) and Me (F1) present the strong antioxidant activities relative to the lowest values of the IC₅₀ parameter and which are of the order of 0.649±0.03 mg/mL and
0,723±0,04 mg/mL respectively, followed by the values of the extracts Me (F0) and Ac (F0) (0,926±0,05 mg/mL and 1,088±0,05 mg/mL respectively) and finally the values of the extracts Ac (F2) and Me (F2) whose values are 1,679±0,08 mg/mL and 2,697±0,13 mg/mL respectively.

Although the butanolic fractions had a high content of total polyphenols and flavonoids compared to the ethyl acetate fractions, they did not have a high antioxidant activity, it means that the phenols they contain are not the main polyphenols responsible for antiradical power. It is deduced that the polyphenols responsible for antioxidant potency are contained in the crude fractions and have been well extracted in the fractions of ethyl acetate. This explains the poverty of butanolic extracts of these phenols and subsequently their low antioxidant capacity.

The antioxidant power of *Calendula officinalis* flower extracts has been demonstrated in other *in vitro* and *in vivo* studies. A comparison of the potency of three extracts (ethanol, ethyl acetate and n-hexane) showed that the ethanolic extract had the highest antioxidant activity compared to the other two extracts 37. Hydroethanolic extract (50/50) of *Calendula officinalis* from south-eastern Serbia showed strong antiradical potency tested on DPPH free radicals and exceeded 96% 20.
Abdullah and al. studied *in vitro* the antioxidant power of *Calendula officinalis* flowers extracts on human skin cells. They were exposed to these extracts before being exposed to oxidizing attacks by the H₂O₂ hydrogen peroxide capable of killing them. The study showed that these extracts contain compounds that can remove free radicals and subsequently protect
against oxidative stress in human skin cells. The protective power of Calendula extract has also been demonstrated in vitro against nitrogen monoxide free radicals.

The antioxidant activity of Calendula officinalis was demonstrated in vivo by Preeti and al., Calendula extract was given orally to rats and the results showed inhibition of superoxide production in macrophage and increased reduced glutathione levels in blood and liver.

The antioxidant power of Calendula officinalis extracts is related to their content of polyphenols and flavonoids, which are the most important group of natural antioxidants. The biological effects of these antioxidants are mainly attributed to their action to reduce free radicals such as hydroxyl and superoxide radicals by producing low reactivity phenoxylic radicals. The antioxidant power of Calendula officinalis is at the origin of its therapeutic properties and it can be a promising source of antioxidant in the treatment of serious diseases such as cardiovascular disease, inflammation and cancer.

Conclusion

This study on Calendula officinalis from Morocco revealed its content in secondary metabolites (Tanins, flavonoids, Saponosite, Triterpene and Quinone). Extracts obtained from the flowers plant contain total phenolic compounds and exhibit antioxidant activity. The difference in phenol content and antioxidant power between the extracts of the hydromethanolic solvent (30/70) and the hydroacetonic solvent (30/70) is not very great, however the antioxidant power is strongest for the fractions of ethyl acetate. Calendula officinalis can be considered as a source of natural antioxidants and used in the development of biomedical and cosmetic products, but for safe use of this plant further studies must be conducted to investigate its heavy metal content, toxicity and biological properties.

References
1. Panda SK. Assay Guided Comparison for Enzymatic and Non-Enzymatic Antioxidant Activities with Special Reference to Medicinal Plants. In: Antioxidant Enzyme. 2012. p. 381–400.

2. Agati G, Azzarello E, Pollastri S, Tattini M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Science. 2012 Nov 1;196:67–76.

3. Cai Y, Sun M, Corke H. Antioxidant Activity of Betalains from Plants of the Amaranthaceae. J Agric Food Chem. 2003 Apr 1;51(8):2288–94.

4. Cao G, Sofic E, Prior RL. Antioxidant Capacity of Tea and Common Vegetables. J Agric Food Chem. 1996 Jan 1;44(11):3426–31.

5. Ito N, Fukushima S, Tsuda H. Carcinogenicity and Modification of the Carcinogenic Response by bha, Bht, and Other Antioxidants. CRC Critical Reviews in Toxicology. 1985 Jan 1;15(2):109–50.

6. Shebis Y, Iluz D, Kinel-Tahan Y, Dubinsky Z, Yehoshua Y. Natural Antioxidants: Function and Sources. Food and Nutrition Sciences. 2013 Jun 5;04(06):643.

7. Aubin F. Rayonnement ultraviolet et peau [Internet]. [cited 2018 May 2]. Available from: http://www.jle.com/fr/ouvrages/e-docs/rayonnement_ultraviolet_et_peau_20172/ouvrage.phtml

8. Jiménez-Medina E, Garcia-Lora A, Paco L, Algarra I, Collado A, Garrido F. A new extract of the plant calendula officinalis produces a dual in vitroeffect: cytotoxic anti-tumor activity and lymphocyte activation. BMC Cancer [Internet]. 2006 Dec [cited 2018 May 2];6(1). Available from: http://bmccancer.biomedcentral.com/articles/10.1186/1471-2407-6-119

9. Varka E-M, Tsatsaroni E, Xristoforidou N, Darda A-M. Stability Study of O/W Cosmetic Emulsions Using <i>Rosmarinus officinalis</i> and <i>Calendula officinalis</i> Extracts. Open Journal of Applied Sciences. 2012;02(03):139–45.

10. Butnariu M, Coradini CZ. Evaluation of Biologically Active Compounds from Calendula officinalis Flowers using Spectrophotometry. Chemistry Central Journal [Internet]. 2012 Dec [cited 2018 Apr 28];6(1). Available from: http://ccj.springeropen.com/articles/10.1186/1752-153X-6-35

11. Bunghez I-R, Ion R-M. Complex spectral characterization of active principles from marigold (calendula officinalis). Journal of science and arts. 2011;14(1):59–64.

12. Kalvatchev Z, Walder R, Garzaro D. Anti-HIV activity of extracts from Calendula officinalis flowers. Biomedicine & Pharmacotherapy. 1997 Apr 1;51(4):176–80.

13. Isaac O. Die Ringelblume: Botanik, Chemie, Pharmakologie, Toxikologie, Pharmazie und therapeutische Verwendung. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 1992. 787 p.
14. Akhtar N. Evaluation of various functional skin parameters using a topical cream of Calendula officinalis extract. African Journal of Pharmacy and Pharmacology. 2011 Feb;28(2):199–206.

15. Duke J. Handbook of Medicinal Herbs, Second Edition. Boca Raton: CRC Press [Internet]. 2002 [cited 2018 May 2]. Available from: https://www.taylorfrancis.com/books/9781420040463

16. Joanne B, Linda A A, David P. Herbal Medicines. 2002.

17. Hall RL, Oser BL. Recent progress in the consideration of flavoring ingredients under the Food Additives Amendment. 3. gRAS substances. Food technology [Internet]. 1965 [cited 2018 May 2];19(2). Available from: http://agris.fao.org/agris-search/search.do?recordID=US201302362835

18. Fierascu I, Bunghez I-R, Fierascu C, Ion R-M, Dinu-pîrvu E, Ni D. Characterization and antioxidant activity of phytosynthesised silver nanoparticles using calendula officinalis extract. 2014;62:8.

19. Preethi KC, Kuttan G, Kuttan R. Antioxidant Potential of an Extract of Calendula officinalis. Flowers in Vitro. and in Vivo. Pharmaceutical Biology. 2006 Jan;44(9):691–7.

20. Velickovic J, Dimitrijevic D, Mitic S, Mitic M, Kostic D. The determination of the phenolic composition, antioxidative activity and heavy metals in the extracts of Calendula officinalis L. Savremene tehnologije. 2014;3(2):46–51.

21. Cordova CAS, Siqueira IR, Netto CA, Yunes RA, Volpato AM, Filho VC, et al. Protective properties of butanolic extract of the Calendula officinalis L.(marigold) against lipid peroxidation of rat liver microsomes and action as free radical scavenger. Redox Report. 2002 Apr 1;7(2):95–102.

22. Herold A, Cremer L, Calugaru A, Tamas V, Ionescu F, Manea S, et al. Antioxidant properties of some hydroalcoholic plant extracts with antiinflammatory activity. Roum Arch Microbiol Immunol. 2003;62(3–4):217–27.

23. Bammou M, Daoudi A, Sellam K, Raffai LE, Ibibijen J, Nassiri L. [Ethnobotanical Survey of Asteraceae Family used in Meknes-Tafilalet Region (Morocco)]. 2015;13(4):27.

24. El Amri J, El Badaoui K, Zair T, Bouharb H. Ethnobotanical study of medicinal plants in the region El Hajeb (central Morocco). Journal of research in Biology. 2014;4(8):1568–80.

25. Bruneton J. Pharmacognosie : Phytochimie, Plantes médicinales. 4e édition. Cachan: Tec & Doc Lavoisier; 2009.

26. N’Guessan K, Kadja B, Zirihi G, Traoré D, Aké-Assi L. Screening phytochimique de quelques plantes médicinales ivoiriennes utilisées en pays Krobou (Agboville, Côte-d’Ivoire). Sciences & Nature [Internet]. 2009 Dec 7 [cited 2018 May 13];6(1). Available from: http://www.ajol.info/index.php/scinat/article/view/48575
27. Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In: Methods in Enzymology [Internet]. Academic Press; 1999 [cited 2018 May 13]. p. 152–78. (Oxidants and Antioxidants Part A; vol. 299). Available from: http://www.sciencedirect.com/science/article/pii/S0076687999990171

28. Kosalec I, Bakmaz M, Pepeljnjak S, Vladimir-Knezević S. Quantitative analysis of the flavonoids in raw propolis from northern Croatia. Acta Pharm. 2004 Mar;54(1):65–72.

29. Alnuqaydan A, Lenehan C, Hughes R, J. Sanderson B. Extracts from Calendula officinalis Offer in Vitro Protection Against H2O2 Induced Oxidative Stress Cell Killing of Human Skin Cells. Phytotherapy Research. 2014 Sep 1;29.

30. Muley B, Khadabadi S, Banarase N. Phytochemical Constituents and Pharmacological Activities of Calendula officinalis Linn (Asteraceae): A Review. Tropical Journal of Pharmaceutical Research [Internet]. 2009 Nov 24 [cited 2018 May 13];8(5). Available from: http://www.ajol.info/index.php/tjpr/article/view/48090

31. Vidal-Ollivier E, Elias R, Faure F, Babadjamian A, Crespin F, Balansard G, et al. Flavonol Glycosides from Calendula officinalis Flowers. Planta Med. 1989 Feb;55(1):73–4.

32. Pietta P, Bruno A, Mauri P, Rava A. Separation of flavonol-2-O-glycosides from Calendula officinalis and Sambucus nigra by high-performance liquid and micellar electrokinetic capillary chromatography. Journal of Chromatography A. 1992 Feb 28;593(1):165–70.

33. Cetkovic G, Djilas S, Canadanovic-Brunet J, Tumbas V. Thin-layer chromatography analysis and scavenging activity of marigold (Calendula officinalis L) extracts. Acta periodica technologica. 2003;(34):93–102.

34. Elazzouzi H, Zekri N, Zair T, Alaoui El Belghiti M. Total phenolic and flavonoid contents of Anacyclus pyrethrum Link plant extracts and their Antioxidant activity. Karbala International Journal of Modern Science [Internet]. 2019 Dec 6 [cited 2020 Sep 15];5(4). Available from: https://kijoms.uokerbala.edu.iq/home/vol5/iss4/10

35. Dixon R, Paiva N. Stress-Induced Phenylpropanoid Metabolism. Plant Cell. 1995 Jul;7(7):1085–97.

36. Deliorman Orhan D, Harteviöglu A, Küpeli E, Yesilada E. In vivo anti-inflammatory and antinociceptive activity of the crude extract and fractions from Rosa canina L. fruits. Journal of Ethnopharmacology. 2007 Jun;112(2):394–400.

37. Wei L, Yanxiang G, Jian Z, Qi W. Phenolic, Flavonoid, and Lutein Ester Content and Antioxidant Activity of 11 Cultivars of Chinese Marigold. Journal of Agricultural and Food Chemistry. 2007;8478–84.

38. Ahmad H, Khan I, Wahid A. Antiglycation and antioxidation properties of Juglans regia and Calendula officinalis: possible role in reducing diabetic complications and slowing down ageing. Journal of traditional Chinese medicine = Chung i ts a chih ying wen pan /
sponsored by All-China Association of Traditional Chinese Medicine, Academy of Traditional Chinese Medicine. 2012 Sep 1;32:411–4.
Table 1: Reagents used in the search for secondary metabolites families

Family sought	Reagents used
alkaloids	Dragendorff reagent
Catchic Tanins	Isoamyl alcohol and hydrochloric acid
Gallic Tanins	Stiasny reagent, sodium acetate and iron chloride
Sterols and Triterpenes	Acetic anhydride and concentrated sulphuric acid
Flavonoids	Dilute hydrochloric alcohol, magnesium shavings and iso-amyl alcohol
Quinonic substances	Chloroform, dilute ammonia and hydrochloric acid

Table 2: Numerical values of total phenols and flavonoids contents and the antioxidant power parameter IC50 of various Calendula officinalis extracts

	Me (F0)	Ac (F0)	Me (F1)	Ac (F1)	Me (F2)	Ac (F2)	Me (F3)	Ac (F3)
Total phenols content								
(mg GAE/g dm)	7,58±0,38	6,80±0,34	2,16±0,11	2,59±0,13	3,05±0,15	4,67±0,23	1,75±0,09	0,73±0,04
Flavonoids content								
(mg QE/g dm)	7,37±0,37	7,93±0,40	3,21±0,16	3,86±0,19	5,25±0,26	5,38±0,27	1,24±0,06	1,25±0,06
antioxidant power	0,926±0,05	1,088±0,05	0,723±0,04	0,649±0,03	2,697±0,13	1,679±0,08	---	---
parameter IC50 (mg/mL)								