Interrogation of human hematopoiesis at single-cell and single-variant resolution

Jacob C. Ulirsch 1,2,3,4,17, Caleb A. Lareau 1,2,3,4,5,17, Erik L. Bao 1,2,3,6,17, Leif S. Ludwig 1,2,3, Michael H. Guo 3,7,8,9, Christian Benner10,11, Ansuman T. Satpathy 12, Vinay K. Kartha 3,13, Rany M. Salem 3,7,8,9, Joel N. Hirschhorn 3,7,8,9, Hilary K. Finucane 3,14, Martin J. Aryee 3,5,15, Jason D. Buenrostro 3,13 and Vijay G. Sankaran 1,2,3,16

Widespread linkage disequilibrium and incomplete annotation of cell-to-cell state variation represent substantial challenges to elucidating mechanisms of trait-associated genetic variation. Here we perform genetic fine-mapping for blood cell traits in the UK Biobank to identify putative causal variants. These variants are enriched in genes encoding proteins in trait-relevant biological pathways and in accessible chromatin of hematopoietic progenitors. For regulatory variants, we explore patterns of developmental enhancer activity, predict molecular mechanisms, and identify likely target genes. In several instances, we localize multiple independent variants to the same regulatory element or gene. We further observe that variants with pleiotropic effects preferentially act in common progenitor populations to direct the production of distinct lineages. Finally, we leverage fine-mapped variants in conjunction with continuous epigenomic annotations to identify trait-cell type enrichments within closely related populations and in single cells. Our study provides a comprehensive framework for single-variant and single-cell analyses of genetic associations.

Hematopoiesis is a paradigm of cellular differentiation that is highly coordinated to ensure balanced proportions of mature blood cells. Despite a sophisticated understanding gained primarily from model organisms, many aspects of this process remain poorly understood in humans. At the population level, there is substantial variation in commonly measured blood cell traits, such as hemoglobin levels and specific blood cell counts, which can manifest as diseases at extreme ends of the spectrum. Identifying genetic variants that drive these differences in blood traits in human populations may reveal regulatory mechanisms and genes critical for blood cell production and hematological diseases.

To these ends, genome-wide association studies (GWAS) have identified thousands of genomic loci linked to complex phenotypes, including blood cell traits, but a major challenge has been the identification of causal genetic variants and relevant cell types underlying the observed associations. In particular, linkage disequilibrium (LD) has confounded the precise identification of functional variants. In an effort to address these issues, several analytical approaches have been developed. The first, termed genetic fine-mapping, attempts to resolve trait-associated loci to likely causal variants by modeling LD structure and the strength of associations. In practice, a major limitation has been the computational burden imposed when allowing for multiple causal variants and methods that assume exactly one causal variant per locus are thus most commonly used, despite strong evidence that many loci contain multiple independent associations.

The second suite of approaches focus instead on identifying functional tissue enrichments. It has been well established that ~80–90% of associated loci do not tag coding variants and that ~40–80% of the narrow-sense heritability for many complex traits can be resolved to genomic regulatory regions. Given this observation, tissue-specific measurements of regulatory-element activity are often overlapped with significant loci (for example, in epigenomic fine-mapping) or with polygenic signal from millions of variants (for example, in partitioned heritability) to identify the variants and cell types most likely to underlie the measured trait or disease.

These enrichment methods have identified causal tissues for diseases, including pancreatic islets for diabetes and central nervous system cells for schizophrenia, but are only beginning to be applied to highly related traits and cell types within single systems such as the hematopoietic hierarchy.

To gain insights into hematopoietic lineage commitment and differentiation, we performed GWAS and genetic fine-mapping for 16 blood cell traits on individuals from the UK Biobank (UKB), identifying multiple likely causal variants in hundreds of individual regions. We comprehensively annotated fine-mapped variants and identified high-confidence molecular mechanisms and putative target genes at scale. This allowed us not only to gain insights into patterns of developmental regulation but also to learn about the pleiotropic regulatory processes underlying blood cell production and maintenance. Finally, we describe and validate a new method...
(g-chromVAR) to discriminate between closely related cell types in an effort to identify relevant stages of hematopoiesis that are affected by these common genetic variants. Applying g-chromVAR to data from single hematopoietic cells revealed substantial heterogeneity of genetic enrichment within classically defined hematopoietic progenitor populations. Thus, we demonstrate that using a well-powered method to identify trait-relevant cell populations provides a critical step toward broadly deciphering causal mechanisms underlying phenotypic variation.

Results

Fine-mapping pinpoints hundreds of likely causal variants. We performed GWAS on ~115,000 individuals from the UKB for 16 blood cell traits representing seven distinct hematopoietic lineages (erythroid, platelet, lymphocyte, monocyte, and granulocyte (neutrophil, eosinophil, and basophil)) (Fig. 1a). Similarly to previous reports, these traits were highly heritable, with common genetic variants explaining an average of 15.4% of narrow-sense heritability (h^2) (Supplementary Fig. 1). Traits from the same lineage typically had high genetic correlations, such as red blood cell (RBC) count and hemoglobin ($r=0.89$, $P=7.1 \times 10^{-23}$), whereas traits from distinct lineages had low genetic correlations, with some exceptions such as platelet count and lymphocyte count ($r=0.26$, $P=3.8 \times 10^{-10}$) (Supplementary Fig. 1). This suggests that genetic regulation of blood production could potentially occur across various stages of hematopoiesis.

To begin to dissect the nature and stage specificity of these genetic effects, we performed genetic fine-mapping to identify high-confidence variants across 2,056 3-Mb regions containing a genome-wide-significant association. Traditional fine-mapping approaches assume only one causal variant per locus and either are agnostic to LD or use small reference panels, which are inaccurate when scaled to large sample sizes. To overcome these limitations, we calculated LD directly from the imputed genotype probabilities (dosages) for individuals in our GWAS, rather than from a hard-called reference panel (Fig. 1b).

Across all common variants (minor allele frequency (MAF) > 0.1%, INFO > 0.6) in 2,056 regions, our method identified 38,654 variants with >1 posterior probability (PP) of being causal for a trait association, representing a substantial proportion of the narrow-sense heritability explained by all common variants (trait average of 24.9% of the common variant h^2 for $PP > 0.01$) (Supplementary Fig. 1 and Supplementary Table 1). 993 regions (48%) contained at least one variant with $PP > 0.50$ (Fig. 1c), providing strong evidence that our approach was successful in pinpointing causal variants. The posterior expected number of independent causal variants was greater than two for 35% of regions and greater than three for 13% of regions (Fig. 1d). Given their increased complexity, regions with a greater expected number of causal variants had lower top-configuration posterior probabilities (Supplementary Fig. 2 and Supplementary Table 2). The majority of variants (74%) with $PP > 0.75$ had MAF > 5% (Fig. 1e), consistent with the known polygenic nature of blood cell traits.

Fine-mapped variants had potentially diverse mechanisms, ranging from putative regulatory variants in accessible chromatin to coding variants, including 164 unique missense variants and 6 loss-of-function variants with $PP > 0.10$ (Fig. 1f, Supplementary Fig. 3, and Supplementary Table 3).

To validate our approach, we investigated the overlap of fine-mapped variants (binned by posterior probability) with several molecular mechanisms underlying phenotypic variation. Specifically, we identified 13 RBC, 28 platelet, 8 monocyte, 11 lymphocyte, and 46 granulocyte (neutrophil, basophil, and eosinophil) traits (Supplementary Table 4). Across traits representing the five major hematopoietic lineages, we used k-means clustering to categorize the developmental timing of accessible chromatin peaks containing fine-mapped variants (Fig. 2a,b and Supplementary Fig. 8). For example, across RBC traits, we identified 80 fine-mapped regulatory variants, of which 26% (21/80) were restricted to erythroid progenitors, 18% (14/80) were restricted to megakaryocyte–erythroid progenitors (MEPs) and erythroid progenitors, and 29% (23/80) could regulate transcription across the entire erythroid lineage from hematopoietic stem cells (HSCs) to erythroid progenitors, whereas 14% (11/80) could only act in other hematopoietic lineages (Fig. 2a).

Next, we investigated the molecular mechanisms underlying fine-mapped regulatory variants. To nominate a high-confidence molecular mechanism, we required that a variant (i) disrupt one of 426 motifs corresponding to known binding preferences for human transcription factors and (ii) show occupancy by the corresponding transcription factor in a relevant primary hematopoietic tissue or hematopoietic cell line, on the basis of 2,115 uniformly processed ChIP-seq profiles. In total, we identified one or more such mechanisms for 145 distinct fine-mapped noncoding variants (Fig. 2c).

Dissecting mechanisms of core gene regulation in hematopoiesis. We next sought to delineate the precise mechanisms underlying the effects of fine-mapped genetic variants on hematopoietic traits. For all 140,739 variants with $PP > 0.001$, we combined several lines of functional and predictive evidence to better understand (i) the cell populations, (ii) the molecular mechanisms, and (iii) the target genes involved in blood cell production (Supplementary Fig. 4). First, we identified fine-mapped ($PP > 0.10$) nonsynonymous and loss-of-function coding variants in genes associated with RBC (77 genes), platelet (59), monocyte (20), lymphocyte (28), and granulocyte (neutrophil, basophil, and eosinophil) (46) traits (Supplementary Table 3). Within the set of genes identified from variants associated with RBC traits, we found both validated GWAS genes (SH2B3 (ref. 11) and TRIM58 (ref. 12)) (Supplementary Fig. 5) and several genes linked to diverse Mendelian disorders involving RBCs (HFE, TMPRRSS6, PKFM, PKLR, PIEZO1, SPTA1, ANK1, RHD, GYPA, and KLFL1). Genes perturbed by fine-mapped coding variants were enriched for known and novel trait-relevant biological pathways. For example, genes associated with RBC traits were involved in iron homeostasis, genes for platelet traits were involved in coagulation and wound healing, genes for lymphocyte traits were involved in T cell migration and activation, and genes for monocyte and granulocyte traits were involved in cytokine and inflammatory responses (Supplementary Fig. 6 and Supplementary Table 3). Of note, we identified several pathways corresponding to cholesterol and lipid regulation that were enriched in genes linked to RBC traits (Supplementary Fig. 6), suggesting a connection between lipid metabolism and RBCs, which are major stores of cholesterol.

To investigate the exact stages of hematopoietic differentiation during which variants could regulate transcription, we overlapped fine-mapped variants ($PP > 0.10$) with chromatin accessibility profiles (ATAC-seq) for 18 hematopoietic progenitor, precursor, and differentiated cell populations primarily sorted from the bone marrow or blood of healthy donors (Fig. 1a, Supplementary Fig. 7, and Supplementary Table 4). Across traits representing the five major blood cell lineages, we used k-means clustering to categorize the developmental timing of accessible chromatin peaks containing fine-mapped variants (Fig. 2a,b and Supplementary Fig. 8). For example, across RBC traits, we identified 80 fine-mapped regulatory variants, of which 26% (21/80) were restricted to erythroid progenitors, 18% (14/80) were restricted to megakaryocyte–erythroid progenitors (MEPs) and erythroid progenitors, and 29% (23/80) could regulate transcription across the entire erythroid lineage from hematopoietic stem cells (HSCs) to erythroid progenitors, whereas 14% (11/80) could only act in other hematopoietic lineages (Fig. 2a).

In some cases, we identified small clusters of variants that followed slightly different regulatory programs, such as variants that could only regulate transcription in upstream multipotent progenitors and variants associated with lymphocyte count that could regulate transcription in T cell, but not B cell, subsets (Fig. 2a,b and Supplementary Fig. 8).
Fig. 1 | Overview of hematopoiesis, UKB GWAS, and fine-mapping. a. Schematic of the human hematopoietic hierarchy showing the primary cell types analyzed in this work. Colors used in this schematic are consistent throughout all figures; mono, monocyte; gran, granulocyte; ery, erythroid; mega, megakaryocyte; CD4, CD4+ T cell; CD8, CD8+ T cell; B, B cell; NK, natural killer cell; mDC, myeloid dendritic cell; pDC, plasmacytoid dendritic cell; MPP, multipotent progenitor; LMPP, lymphoid-primed multipotent progenitor; CMP, common myeloid progenitor; CLP, common lymphoid progenitor; GMP, granulocyte–macrophage progenitor; MEP, megakaryocyte–erythroid progenitor. The 16 blood traits that were genetically fine-mapped are shown below the hierarchy; WBC, white blood cell; MPV, mean platelet volume; MCV, mean corpuscular volume; MCHC, mean corpuscular hemoglobin concentration; MCH, mean corpuscular hemoglobin.

b. Schematic of the UKB GWAS and fine-mapping approach. Briefly, blood traits for ~115,000 individuals were fine-mapped, allowing for multiple causal variants and using imputed genotype dosages as the reference for LD.

c. Number of fine-mapped regions for each trait; the highest posterior probability of a variant being causal is indicated.

d. Breakdown of the number of causal variants (min = 1, max = 5) for all regions in each trait.

e. Empirical distribution of the MAF of variants in each posterior probability bin.

f. Proportion of fine-mapped variants within intronic, promoter, coding, UTR, and intergenic regions.

g. Local-shifting enrichments of fine-mapped variants across all traits for varying posterior probability bins.
Fig. 2 | Mechanisms of core gene regulation in blood production.

a. Heat maps depicting RBC-trait-associated variants (PP > 0.10) across the erythroid lineage (a) and lymphocyte-count-associated variants (PP > 0.10) across the lymphoid lineage (b), with clustering by chromatin accessibility. Each row represents a fine-mapped variant, each column denotes a cell type within the relevant lineage, and color corresponds to relative chromatin accessibility along the lineage at each variant (blue, least accessible chromatin; red, most accessible chromatin). Putative target genes (predicted by ATAC–RNA correlation and/or PCHi-C) and disrupted transcription factors (predicted by ChIP-seq occupancy and motif disruption) are indicated to the right. c. Transcription factor motifs disrupted in lineage-specific hematopoietic traits. Each row represents a set of traits where variants disrupt specified transcription factor motifs and are occupied by the respective transcription factor in hematopoietic cells. The unique margin sums across each lineage are shown in the bar plot for each transcription factor. The expected number of variants with evidence of ChIP-seq plus motif disruption across all posterior probabilities was estimated by using 100,000 permutations and is shown as a single point. PLT, platelet; LYMPH, lymphocyte; MONO, monocyte; GRAN, granulocyte. d. Examples of molecular mechanisms identified from the analysis in c, including putative causal variants that disrupt binding in cis of transcription factors known to be involved in regulating hematopoiesis for various blood cell traits: rs10758656 and rs66480687 are associated with RBC traits; rs75522380 and rs74340846 are associated with platelet traits; rs4970966 is associated with monocyte count; and rs7971658 is associated with lymphocyte count. In the ATAC-seq plots, black represents accessibility throughout hematopoiesis whereas other stacked colors represent accessibility for the cell types shown in Fig. 3d. Cons., conservation. e. Examples of putative target genes identified from the analysis in a and b: rs11642657 and rs12151289 are associated with monocyte count; rs73660574 is associated with RBC traits; rs553535973 is associated with lymphocyte count; and rs114694170 is associated with platelet traits. Colors for accessible chromatin are the same as in d. In PCHi-C, s indicates the CHICAGO interaction score from ref. 33.
Fig. 3 | Characterization and validation of the CCND3 and AK3 regions with multiple causal variants. a, b. Regional association plots (n = 116,667 individuals; BOLT-LMM P values) for RBC count in the CCND3 locus from the initial GWAS (a) and after conditioning on the sentinel variant, rs9349205 (b). c, d. Fine-mapping identifies two putative causal variants (rs9349205, PP = 0.94; rs112233623, PP = 0.99) located 161 bp apart (c), both of which lie within the same erythroid-specific accessible chromatin (d). e. Luciferase reporter assays (n = 9 biological replicates) for four haplotypes (left) corroborate independent additive effects for rs9349205 (red; two-sided Wald test \(P = 1.78 \times 10^{-3} \)) and rs112233623 (blue; two-sided Wald test \(P = 2.86 \times 10^{-6} \)) on RBC count (right). a.u., arbitrary units. f, g. Regional association plots (n = 116,666 individuals, BOLT-LMM P values) for platelet count in the AK3 locus from the initial GWAS (f) and after conditioning on the sentinel variant, rs12005199 (g). h, i. Fine-mapping identifies two putative causal variants (rs12005199, PP = 0.99; rs409950, PP = 0.99) 123 bp apart (h), both located within a strong megakaryocyte-specific accessible chromatin region (i). j. Luciferase reporter assays (n = 9 biological replicates) for four haplotypes (left) corroborate independent additive effects for rs12005199 (red; two-sided Wald test, \(P = 5.19 \times 10^{-4} \)) and rs409950 (blue; two-sided Wald test, \(P = 3.57 \times 10^{-5} \)) on platelet count (right). In e and j, mean and standard error are shown for both phenotype and regulatory activity.
phocyte, and 18 granulocyte high-confidence molecular mechanisms for variants also in accessible chromatin in primary hematopoietic tissue (Fig. 2a,b, Supplementary Fig. 8, and Supplementary Table 5). These variants most commonly disrupted the binding sites of key transcriptional regulators of hematopoietic lineage commitment and differentiation (false-discovery rate (FDR) < 10% for 33 transcription factors). For example, we observed seven PU.1 (SPI1) regulatory variants, we built hematopoietic-specific enhancer–promoter maps by using (i) measurements of physical DNA interactions in 15 primary hematopoietic cell populations from promoter capture Hi-C (PChI-C) and (ii) the correlation between chromatin accessibility and expression of genes in cis across 16 primary hematopoietic populations. Altogether, we identified one or more experimentally supported target genes for 415 variant–trait associations, providing testable biological hypotheses for 79% of the fine-mapped regulatory variants (Fig. 2a,b, Supplementary Figs. 5 and 8, and Supplementary Tables 6 and 7). Interestingly, a number of variants were predicted to alter the transcription of genes encoding hematopoietic transcription factors (Fig. 2d–e and Supplementary Fig. 8). For example, IRF8 and CEBPA, which encode two essential transcription factors involved in monocyte differentiation, were targets of fine-mapped variants associated with monocyte count that fell within accessible chromatin in monocyte precursors (Fig. 2e). Similarly, we determined that GFI1B, KLF2, and MEF2C were targets of fine-mapped variants in progenitor-specific accessible chromatin associated with mean reticulocyte volume, lymphocyte count, and platelet count, respectively (Fig. 2e). Overall, this functional analysis will likely facilitate experimental investigation into how common genetic variants regulate hematopoietic lineage commitment and differentiation.

Regions with multiple causal variants. We next conducted a closer examination of the 785 trait-associated regions with multiple independent causal signals. Among proximal pairs of variants in which both variants had PP > 0.50, the majority were >10 kb apart (76%), although the variants in seven pairs were within fewer than 100 bp of each other (Supplementary Fig. 9 and Supplementary Table 8). Across all pairs, 42% of the variants were of the same class (for example, coding–coding variants), and pairs of variants in accessible chromatin but in different regulatory regions within 1 Mb of each other were typically lineage specific (Supplementary Fig. 9). Examples of coding–coding pairs included hemoglobin-associated rs1800730 and rs1799945 (PP > 0.66; 4 bp apart) in HFE, the classic gene mutated in hereditary hemochromatosis; white blood cell (WBC)-count-associated rs146125856 and rs148783236 (PP > 0.98; 24 bp apart) in USP8, which encodes an immune-specific ubiquitin ligase and is mutated in Cushings disease; and platelet count, respectively (Fig. 2e). Overall, this functional analysis will likely facilitate experimental investigation into how common genetic variants regulate hematopoietic lineage commitment and differentiation.

Mechanisms of pleiotropic variants across distinct blood cell lineages. We next sought to examine the effects of variants associated with two or more of the seven distinct blood cell types for which phenotypes were available in the UKB. We hypothesized that these pleiotropic variants could either (i) ‘tune’ overall blood production by simultaneously increasing or decreasing the levels of terminal blood cells across multiple lineages or (ii) ‘switch’ blood cell production such that one lineage would be favored at the expense of others (Fig. 4a).

We restricted our analyses to quantified blood cell counts for interpretability and identified 172 pleiotropic variants that colocalized to two or more traits (Fig. 4b–d, Supplementary Fig. 12, and Supplementary Table 9). Notably, we again observed that each variant significantly affected enhancer activity additively and in concordance with the population phenotypes (Fig. 3f–i).

One example of a variant exhibiting a switch mechanism is rs78744187 (PP = 0.99 and 0.99), which increased RBC count while concomitantly decreasing basophil count (Fig. 4c). rs78744187 is located in an enhancer specific for common myeloid progenitors (CMPs), a heterogeneous population containing progenitors for both basophils and RBCs, approximately 36 kb downstream of CEBPA, which encodes a key myeloid transcription factor. We previously reported the association between rs78744187 and basophil count, but not RBC count, and showed that this variant was a switch for production of the closely related basophil and mast cell lineages. A second switch variant, rs218265 (PP = 0.99 and 0.64), located within a gene desert 1.15 Mb upstream of KIT, increased neutrophil count but decreased RBC count. KIT encodes the receptor protein for stem cell factor, a growth-stimulating cytokine involved in hematopoietic progenitor cell proliferation. rs218265 falls within a region of accessible chromatin that is exclusively open in multipotent and heterogeneous populations (Fig. 4d), consistent with a role for this enhancer variant in regulating KIT expression in the common progenitors of neutrophils and RBCs. Taken together, our results suggest that tuning the dosage of key regulatory genes in upstream progenitors may switch the production of one lineage in favor of another during the early stages of lineage commitment.
As an example of a pleiotropic variant exhibiting the predominant tuning mechanism, we found that rs17758695 (PP = 0.99, 0.99, and 0.99) was associated with decreases in eosinophil, monocyte, and RBC count (Fig. 4e). This variant is located within a progenitor-specific region of accessible chromatin in the intron of *BCL2*, which encodes an antiapoptotic protein known to regulate hematopoietic differentiation. This is consistent with the idea that regulating a general cell death protein such as BCL2 in a common multipotent progenitor would tune the production of multiple cell types, in contrast to the switch variants proximal to key regulators of hematopoietic differentiation. An additional tuning variant is the missense variant rs12459419 (PP = 0.30, 0.28, and 0.11) in the *CD33* gene, which was associated with decreases in eosinophil, monocyte, and platelet count. *CD33* is broadly expressed in hematopoietic progenitors and encodes a surface marker of myeloid differentiation (Supplementary Fig. 12). In summary, our analyses support a prominent role for pleiotropy in hematopoietic differentiation, whereby individual variants can act in upstream progenitors to simultaneously tune or switch production and maintenance of multiple lineages.

g-chromVAR, a new method to measure fine-mapped GWAS trait enrichment among closely related tissues. We next shifted our focus in the reciprocal direction—by using fine-mapping to determine the exact stages of human hematopoiesis at which the regulatory genetic variation underlying each blood cell trait is most likely acting. Although methods have recently been developed to calculate enrichment of genetic variation for genomic annotations, a method that takes into account both (i) the strength and specificity of the genomic annotation and (ii) the probability of variant causality, while accounting for LD structure, is needed to resolve associations within the closely related, stepwise hierarchies that define hematopoiesis. To this end, we developed a new approach called genetic-chromVAR (g-chromVAR), a generalization of the recently described chromVAR method, to measure the enrichment of regulatory variants in each cell state by using fine-mapped variant posterior probabilities and quantitative measurements of regulatory activity (Fig. 5a; details in Supplementary Note and Methods). We show that g-chromVAR is generally robust to variant posterior probability thresholds and numbers of background peaks (Supplementary Fig. 13), captures true enrichments in a simulated setting (Supplementary Fig. 14), is robust to the choice of fine-mapping method (Supplementary Table 10), and can identify novel enrichments in large epigenomic datasets (Supplementary Table 11; details in Supplementary Note).
To validate g-chromVAR in a realistic setting, we used it along with seven other methods to estimate the enrichment of each of the 16 blood cell traits within the accessible chromatin of 18 hematopoietic progenitor and terminal cell populations (Figs. 1a and 5c, Supplementary Figs. 15 and 16, and Supplementary Table 4). To compare g-chromVAR’s performance to that of other state-of-the-art enrichment tools, we leveraged knowledge of the hematopoietic system and devised a lineage specificity test (Supplementary Note), which is a nonparametric rank-sum test that compares the relative ranking of lineage-specific and non-lineage-specific enrichments for each of the compared methodologies. We found that g-chromVAR was the most specific of all the tested methods while still retaining sufficient power to identify 22 trait–cell type associations (Fig. 5d and Supplementary Figs. 13a and 16).

Having validated our approach, we investigated cell type enrichments for each of the 16 traits. We found that the most lineage-restricted or terminal populations were typically most strongly enriched for a corresponding trait association (Fig. 5e–h). For example, RBC count was most strongly enriched in erythroid precursors (Fig. 5e), and lymphocyte count was most
strongly enriched in CD4+ and CD8+ T cells (Fig. 5h). In several instances, we observed significant enrichments for traits in earlier progenitor cells within each lineage, including enrichment for platelet traits in CMPs and enrichment for monocyte traits in a specific subpopulation of granulocyte–macrophage progenitors (GMPs) (Supplementary Fig. 13a). We sought to investigate these enrichments in progenitor cells further at the single-cell level.
GWAS trait enrichment in single-cell chromatin accessibility data. Although the strongest g-chromVAR enrichments for blood traits were in the most lineage-restricted precursors, we reasoned that investigating progenitor populations that had robust enrichment signals, such as CMPs and MEPs, could inform principles of the genetic regulation of terminal blood cell production^51–53. To this end, we scored 2,034 single bone marrow–derived hematopoietic stem and progenitor cells^64 for GWAS enrichment by using g-chromVAR (Fig. 6a). Composite single-cell and bulk cell type enrichments were highly correlated (R = 0.84) (Fig. 6b), and enrichments along inferred pseudotime trajectories of cellular differentiation mirrored our observations from bulk data, albeit with finer granularity (Fig. 6c,d). These results suggest that g-chromVAR is able to recover known biology from sparse single-cell ATAC-seq (scATAC-seq) profiles.

To explore potential heterogeneity within each of the 11 hematopoietic progenitor populations, we estimated the variation in regulatory genetic enrichments for each trait within the populations. We found that classically defined CMP (n = 502 cells) and MEP (n = 138 cells) populations exhibited significant heterogeneity in g-chromVAR enrichments for both erythroid and megakaryocyte traits (Fig. 6e). We thus hypothesized that the CMP population could be subdivided into megakaryocyte–erythrocyte-primed and monocyte-primed subtypes, whereas the MEP population could be further subdivided into erythrocyte-primed and megakaryocyte-primed subtypes. To test this hypothesis, we performed unsupervised clustering on chromatin accessibility profiles for the CMP and MEP populations (Supplementary Fig. 17) and found that the (GWAS-naive) subpopulations were indeed differentially enriched for the specific GWAS traits. In agreement with these genetic enrichments, we observed differential chromatin accessibility of motifs for lineage-specific master transcription factors between the subpopulations that corresponded to the trait enrichment signals, as increased chromatin accessibility for GATA1 motifs within the clusters enriched for erythroid traits (Fig. 6f,g and Supplementary Table 12). Additional studies are needed to determine whether these differences are due to distinct lineage-biased subpopulations or whether they reflect gradations along a common axis of differentiation. Regardless, our findings demonstrate that genetic variation acts heterogeneously within classically defined progenitor populations.

Discussion

Two outstanding challenges in the post-GWAS era are (i) the precise identification of causal variants within associated loci and (ii) determination of the exact mechanisms by which these variants result in the observed phenotypes. To address the first point, we used robust genetic fine-mapping to identify hundreds of putative causal variants for 16 blood cell traits, allowing for up to five causal variants in each locus. At PP > 0.10, we identified 240 fine-mapped coding variants as well as 647 regulatory variants in accessible chromatin in at least one of 18 primary hematopoietic populations. Several compelling anecdotes, including a number of instances in which the activity of a single regulatory element is modulated by multiple functional variants, highlight the advantages of allowing for multiple causal variants when fine-mapping.

To address the second point, we compiled and derived functional annotations to nominate regulatory mechanisms and identify putative target genes. Overall, our comprehensive approach identified a high-confidence regulatory mechanism for 145 variants and an experimentally supported target gene for 79% of variants in accessible chromatin for distinct lineages. Our investigations into fine-mapped pleiotropic variants revealed that ~90% of these variants act to tune total hematopoietic production, whereas the remaining ~10% favor production of one lineage at the expense of another (switch variants). To further improve identification of causal cell types, we developed a new enrichment method (g-chromVAR) that can discriminate between closely related cell types and applied it to directly probe the regulatory dynamics of hematopoiesis within classically defined progenitor populations in bulk and at the single-cell level. Our ‘top loci’ method is complementary to enrichment methods that investigate polygenic signals, such as S-LDSC.

Overall, our integrated approach is designed to sequentially identify causal genetic variants, their molecular mechanisms, their target genes, and the cell types in which they act. We expect that better-powered fine-mapping studies, more numerous and higher-quality bulk and single-cell epigenomic datasets, and improved computational tools will extend the inferences discussed herein. Altogether, our study represents a paradigm for the comprehensive mapping of variants to function, which can be applied broadly to gain insights into the specific mechanisms of variants associated with a range of human traits and diseases.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, statements of data availability and associated accession codes are available at https://doi.org/10.1038/s41588-019-0362-6.

Received: 28 January 2018; Accepted: 28 January 2019; Published online: 11 March 2019

References

1. Doulaton, S., Notta, F., Laurenti, E. & Dick, J. E. Hematopoiesis: a human perspective. Cell Stem Cell 10, 120–136 (2012).
2. Sankaran, V. G. & Orkin, S. H. Genome-wide association studies of hematologic phenotypes: a window into human hematopoiesis. Curr. Opin. Genet. Dev. 23, 339–344 (2013).
3. Astle, W. J. et al. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 167, 1415–1429 (2016).
4. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omniogenic. Cell 169, 1177–1186 (2017).
5. Farh, K. K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).
6. Wellcome Trust Case Control Consortium. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet. 44, 1294–1301 (2012).
7. Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832–838 (2010).
8. Flister, M. J. et al. Identifying multiple causative genes at a single GWAS locus. Genome Res. 23, 2096–2102 (2013).
9. Galanneau, G. et al. Fine mapping at three loci known to affect fetal hemoglobin levels explains additional genetic variation. Nat Genet. 42, 1049–1051 (2010).
10. Chung, C. C. et al. Fine mapping of a region of chromosome 11q13 reveals multiple independent loci associated with risk of prostate cancer. Hum. Mol. Genet. 20, 2869–2878 (2011).
11. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).
12. Gusev, A. et al. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am. J. Hum. Genet. 95, 535–552 (2014).
13. Thurner, M. et al. Integration of human pancreatic islet genomic data refines regulatory mechanisms at type 2 diabetes susceptibility loci. Cell 170, e31977 (2018).
14. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
15. Benner, C. et al. Prospects of fine-mapping trait-associated genomic regions by using summary statistics from genome-wide association studies. Am. J. Hum. Genet. 101, 539–551 (2017).
16. Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. *Bioinformatics* **32**, 1493–1501 (2016).
17. Trynka, G. et al. Disentangling the effects of colocalizing genomic annotations to functionally prioritize non-coding variants within complex- trait loci. *Am. J. Hum. Genet.* **97**, 139–152 (2015).
18. Giani, F. C. et al. Targeted application of human genetic variation can improve red blood cell production from stem cells. *Cell Stem Cell* **18**, 73–78 (2016).
19. Thom, C. S. et al. Trim58 degrades dynwe and regulates terminal erythropoiesis. *Dev. Cell* **30**, 688–700 (2014).
20. Wakabayashi, A. et al. Insight into GATA1 transcriptional activity through interrogation of cis elements disrupted in human erythroid disorders. *Proc. Natl Acad. Sci. USA* **113**, 4433–4439 (2016).
21. Sidore, C. et al. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers. *Nat. Genet.* **47**, 1272–1281 (2015).
22. Kulakovskiy, I. V. et al. HOCOMOCO: expansion and enhancement of the collection of transcription factor binding sites models. *Nucleic Acids Res.* **44**, D116–D125 (2016).
23. Oki, S. et al. ChiPAtlas: a data-mining suite powered by full integration of public ChIP-seq data. *EMBO Rep.* **19**, e46255 (2018).
24. Arinobu, Y. et al. Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloid and erythroid lineages. *Cell Stem Cell* **1**, 416–427 (2007).
25. Hoppe, P. S. et al. Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios. *Nature* **535**, 299–302 (2016).
26. Loughran, S. J. et al. The transcription factor Erg is essential for definitive hematopoiesis and the function of adult hematopoietic stem cells. *Nat. Immunol.* **9**, 810–819 (2008).
27. Carmichael, C. L. et al. Hematopoietic overexpression of the transcription factor Erg induces lymphoid and erythroid-megakaryocytic leukemia. *Proc. Natl Acad. Sci. USA* **109**, 15437–15442 (2012).
28. Kruse, E. A. et al. Dual requirement for the ETS transcription factors Fli-1 and Erg in hematopoietic stem cells and the megakaryocyte lineage. *Proc. Natl Acad. Sci. USA* **106**, 13814–13819 (2009).
29. Vo, K. K. et al. FLI1 level during megakaryopoiesis affects thrombopoiesis and platelet biology. *Blood* **129**, 3486–3494 (2017).
30. Wang, S., He, Q., Ma, D., Xue, Y. & Liu, F. Irf4 regulates the choice between T and B cell fate decisions. *Cell Death Differ.* **22**, 1272–1281 (2015).
31. Elagib, K. E. et al. RUNX1 and GATA-1 cooperation in megakaryocytic differentiation. *Blood* **101**, 4333–4341 (2003).
32. Blyth, K. et al. Runx1 promotes B-cell survival and lymphoma development. *Blood Cells Mol. Dis.* **43**, 12–19 (2009).
33. Javierre, B. M. et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. *Cell* **167**, 1369–1384 (2016).
34. Buenrostro, J. D. et al. Integrated single-cell analysis maps the continuous blood hierarchy across ontogeny. *Science* **351**, 260–263 (2016).
35. Javierre, B. M. et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. *Cell* **167**, 1369–1384 (2016).
36. Wang, S., He, Q., Ma, D., Xue, Y. & Liu, F. Irf4 regulates the choice between T lymphoid–primed progenitor and myeloid lineage fates during embryogenesis. *Dev. Cell* **34**, 621–631 (2015).
37. Guo, M. H. et al. Comprehensive population-based genome sequencing provides insight into hematopoietic regulatory mechanisms. *Nat. Methods* **14**, 263–267 (2017).
38. Zhang, D.-E. et al. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein α-deficient mice. *Proc. Natl Acad. Sci. USA* **94**, 566–567 (1997).
39. Edling, C. E. & Hallberg, B. c-Kit: a hematopoietic cell essential receptor tyrosine kinase. *Int. J. Biochem. Cell Biol.* **39**, 195–1998 (2007).
40. Opferman, J. T. & Kothari, A. Anti-apoptotic BCL-2 family members in development. *Cell Death Differ.* **25**, 37 (2017).
41. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. *Nat. Genet.* **48**, 245–252 (2016).
42. Paul, S. P., Taylor, L. S., Stansbury, E. K. & McVicar, D. W. Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2. *Blood* **96**, 483 (2000).
43. Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. *Nat. Methods* **14**, 975–978 (2017).
44. Drissen, R. et al. Distinct myeloid progenitor–differentiation pathways identified through single-cell RNA sequencing. *Nat. Immunol.* **17**, 1666–1676 (2016).
45. Lee, J. et al. Lineage specification of human dendritic cells is marked by IRF8 expression in hematopoietic stem cells and multipotent progenitors. *Nat. Immunol.* **18**, 877–888 (2017).
46. Guo, M. H. et al. Comprehensive population-based genome sequencing provides insight into hematopoietic regulatory mechanisms. *Nat. Methods* **14**, 263–267 (2017).
47. Notta, F. et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. *Science* **351**, 260–263 (2016).
48. Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. *Cell* **163**, 1663–1677 (2015).
49. Khajuria, R. K. et al. Ribosome levels selectively regulate translation and lineage commitment in human hematopoiesis. *Cell* **173**, 90–103.e19 (2018).

Acknowledgements
We thank members of the Sankaran, Buenrostro, and Finucane laboratories for their helpful discussions. This work was supported by National Institutes of Health (NIH) grants RO1 DK103794 and R33 H1L120791 (to V.G.S.), by the New York Stem Cell Foundation (NYSCF; to V.G.S.), and by the Harvard Society and Broad Institute Fellows programs (to J.D.B.). J.C.U. is supported by an NIH training grant (T32 GM07226-43). C.A.L. is supported by an NIH predoctoral fellowship (F31 CA232670). E.L.B. is supported by the Howard Hughes Medical Institute Medical Research Fellows Program. V.G.S. is supported as an NYSCF-Robertson Investigator. This research was conducted by using the UK Biobank resource under projects 11898 and 31063.

Author contributions
J.C.U., C.A.L., E.L.B., M.J.A., J.D.B., and V.G.S. designed the study. J.C.U., C.A.L., E.L.B., and M.H.G. analyzed data. L.S.L. performed experiments. C.B., A.T.S., V.K.K., R.M.S., and J.H.N. contributed ideas and insights. H.K.E., M.A., J.D.B., and V.G.S. supervised this work. J.D.B. and V.G.S. obtained funding. J.C.U., C.A.L., E.L.B., and V.G.S. wrote the manuscript with input from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41588-019-0362-6.
Reprints and permissions information is available at www.nature.com/reprints.
Correspondence and requests for materials should be addressed to J.D.B. or V.G.S.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
Methods

Genome-wide association studies. GWAS were carried out for 16 different blood cell indices in 114,910–116,667 ‘white British’ individuals from the UKB. Imputation was performed using the combined 1000 Genomes Phase 3–UK10K panel (ftp://ftp.broadinstitute.org:21/pride/ukb/1000g-uk10k-remap.hci-hms.0.3.13-20201203.tar.gz). To account for population substructure in blood cell traits, we regressed each phenotype against the first ten principal components of genetic ancestry, age, and sex. We then inverse-normalized the residuals, which were used as the phenotype measurements for the genetic association tests. Specifically, we regressed each phenotype measurement against probabilistic imputed allele dosage by using a linear mixed-model approach as implemented in BOLT-LMM v2.2.2 (ref. 3). Genome-wide significance was defined as $P < 5 \times 10^{-8}$.

Linkage disequilibrium score regression. We used LD score regression (LDSC) to compute narrow-sense heritability estimates and genetic correlations for the 16 blood cell indices in the UKB. Reference LD scores were computed with a set of unrelated European individuals from the UK10K cohort. To remove genetically related individuals, we first used PLINK to construct a filtered list of variants with $\text{MAF} > 0.10$ and no pair of variants with $r^2 > 0.10$. These LD- and MAF-pruned variants were then used to calculate an identity-by-descent (IBD) matrix, and one individual from each pair of samples with IBD proportion $(\chi^2)_\text{uni0302}$ was removed to produce a final subset of 3,677 unrelated individuals to serve as the reference panel for LDSC. After applying the recommended variant filtering, z scores for an average of 6,655,000 variants per trait were used as input to LDSC. For heritability estimates for variants identified by fine-mapping or linkage to the sentinel variant, we note that these estimates may be either greater or smaller than the reported values, as previously noted4.

Fine-mapping. Sentinel association regions were constructed as follows: first, all variants were ranked by decreasing z statistic. Next, we derived 3-Mb regions centered on the top variant; each region is ~3 cM, so all relevant LD structure should be fully captured for nearly every region (Yu et al.58 reported that 95% of region recombination rates fall within 3 Mb). This process was repeated for each top association variant that did not overlap any 3-Mb regions created thus far until there were no genome-wide-significant variants remaining in undefined regions. Within each region, we identified all imputed variants with $\text{MAF} > 0.1$ and imputation quality $(\text{INFO}) > 0.6$ and extracted z scores from the summary statistics for each variant. We next derived dosage LD matrices for each region by using LDStore on the genotype probability (Jgen) files used for the association studies. To be exact, we computed LD matrices from 120,086 individuals who had a phenotype for at least one of the 16 blood cell traits.

Fine-mapping was performed on genome-wide-significant GWAS regions by using FINEMAP v1.1 software with the z score and LD matrices as input4. The output from FINEMAP is (i) a list of potential causal configurations together with their posterior probabilities and Bayes factors, (ii) the posterior probability marginalized over the causal configurations that individual variants are causal, and (iii) the posterior probability that there is a specific number (between 1 and 5) of statistically independent associations in each region. Default FINEMAP settings were used and all variants with $\text{PP} > 0.1$ were retained for downstream analyses. For the CCND3 and AK3 regions in which follow-up luciferase reporter assays were performed, we reran FINEMAP allowing for up to ten causal variants, confirming approximately four independent effects in the CCND3 locus (60.6% PP) but identifying approximately eight independent effects for the AK3 locus (59.9% PP).

To confirm select regions with multiple putative causal variants, we performed conditional analysis with BOLT-LMM by first conditioning on the variant with the lowest P value in the region and then adding to the model in a stepwise manner the variant with the lowest conditional P value until no additional variant reached the genome-wide significance threshold of 5×10^{-8} in the combined model.

Local annotation shifting. We implemented a slightly modified version of GoShifter to calculate the enrichment between fine-mapped variants with $\text{PP} > 0.01$ for each trait and five different genomic annotations (details in Supplementary Note). To obtain the annotation for hematopoietic accessible chromatin, we used the consensus peak set for all blood cell types, performed row and column quantile normalization on the counts matrix, and kept only peaks that had a maximum count in the top 80% for at least one of the 18 cell types. Coding, intronic, promoter, and 5′ UTR annotations were obtained from the UCSC Genome Browser as previously processed (see URLs).

Variant classification and annotation. To partition fine-mapped variants into bins of non-overlapping annotations (Figs. 1f and 4b), we overlapped variant positions with genomic intervals and then classified each variant on the basis of the following hierarchy: (i) coding; (ii) promoter; (iii) UTR; (iv) hematopoietic chromatin accessible; (v) intronic; and (vi) intergenic. For example, for a variant falling in an accessible chromatin region that was an annotated promoter, this variant was assigned to the ‘promoter’ class. Variant Effect Predictor (VEP) was used to further annotate the functions of coding variants5.

To define pleiotropic variants and relative effect directions, we considered a subset of the 7 of the 16 total traits that were defined as ‘count’ traits for distinct cell types: basophil, eosinophil, neutrophil, platelet, RBC, monocyte, and lymphoid count, where the traits used for the respective lineages. Note that basophils, eosinophils, and neutrophils were represented together as granulocytes for visualization purposes (Fig. 4b) but were still considered to be distinct cell types. Tuning variants were defined as those that exhibited the same direction of effect for the minor allele across all lineages. Conversely, switch variants were designated when the minor allele had differing effect directions for two or more lineages.

Gene-set enrichment analysis. Gene-set enrichments of fine-mapped coding variants with $\text{PP} > 0.10$ were calculated with Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA)5, by using all protein-coding genes as the background model and requiring a minimum overlap of two genes and FDR-adjusted $P < 0.01$ for each gene set. Only Gene Ontology (GO) biological processes were considered.

ATAC-seq and scATAC-seq analysis and data preprocessing. Chromatin accessibility profiles for a total of 18 cell populations, including 16 previously reported, were assayed by using scATAC-seq. An ATAC-seq assay was designed for primary blood cells, as previously described9. Sequencing data for each of the 18 populations were uniformly processed by using a custom pipeline that includes removal of sequencing adaptors, alignment using Bowtie2 (ref. 62), and removal of PCR duplicates with the Picard RemoveDuplicates command. Additional variant calling was derived from the Hi-C sorted populations of blood cells by using MACS2 (ref. 63). To derive a consensus set of loci for downstream analysis, individual peaks were resized to a uniform width of 500 bp, centered on the summit from the MACS2 call as previously described9. To derive a consensus peak set for the blood cell type peaks, peaks were combined by removing any other peaks overlapping a peak with greater signal at the summit within a particular cell type. A total of 451,283 peaks representing a conserved set across these 18 sorted populations were called. The average number of fragments in this consensus peak set ranged from 4.4 million (pDCs) to 37.1 million (CMPs) for a mean of 19.3 million reads in peaks per sorted cell type (Supplementary Table 4).

FACS-sorted cells for nine distinct cellular populations derived from CD34+ human bone marrow, which included cell types spanning the myeloid, erythroid, and lymphoid lineages, were additionally profiled as previously described9,10. Single cells were sorted and then assayed by using scATAC-seq across a total of 30 single independent-cell experiments representing six human donors, with each cell population assayed from two or more distinct donors. In total, our raw dataset comprised 3,072 single-cell chromatin-accessibility landscapes with 2,034 cells passing stringent quality filtering. These cells yielded a median of 8,268 fragments per cell with 76% of those fragments mapping to peaks, resulting in a median of 6,442 fragments in peaks per cell, again using a consensus peak set that was inferred for these specific progenitor populations9,10.

To infer dynamic GWAS enrichments across hematopoietic differentiation, pseudotime orderings of single cells across three lineages (erythroid, lymphoid, and myeloid) were estimated by using an adaptation of the waterfall algorithm as previously described. In brief, this supervised approach fits a regression line through relevant cluster centroids (total $k = 14$) in principal-component space. The pseudotime values then represent the Euclidean distance along the interpolated lineages. These were scaled such that the center of the HSC cluster was 0 in all trajectories. Further details and diagnostics for this approach are discussed in a previous work.

To assess the regulatory heterogeneity of single cells, we computed a z statistic for each trait or cell type’s z scores to test whether the observed variance was greater than expected. Under the null distribution, the variance of z scores was 1 from the definition of our statistic (see chromVAR methods described below), and we observed greater variance than expected only for traits within the CMP and MEP populations. Within the CMP and MEP populations, we applied k-medoids clustering on the first five principal components within each sorted population from global chromatin accessibility profiles for each cell9. For both the CMP and MEP populations, the optimal cluster number was determined by maximum average silhouette width. Post hoc analyses of heterogeneity within the partitioned clusters of erythroid-enriched CMPs confirmed that megakaryocyte–erythroid enrichment was not distinct within CMPs.

Isolation of myeloid and plasmacytoid dendritic cells. Peripheral blood cells from healthy volunteers were enriched for cell-surface markers by using the strategy shown in Supplementary Fig. 7. 55,000 cells from two healthy volunteers (two replicates total) were sorted into RPMI-1640 supplemented with 10% FBS, washed with PBS, and immediately transposed as previously above. Purities after sorting of >95% were confirmed by flow cytometry for all of the samples.

Target gene identification. Raw sequencing reads for sorted populations were obtained from previous described bulk RNA-seq experiments11,12 and were aligned to the hg19 reference genome by using STAR version 2.5.1b1 with default parameters. Per-gene transcript quantifications were summed over biological and technical replicates to provide a single transcript count per sorted cell type.
for 16 total populations matching the analogous bulk ATAC-seq profiles (RNA for megakaryocytes and mDCs was absent). To determine empirical peak–gene associations, Pearson correlation was computed for each peak within a 1-Mb window centered on the transcription start site for each gene by using the log-transformed counts per million value for each feature.

PChi-C datasets for 15 terminal hematopoietic cell types as well as for CD34+ hematopoietic stem and progenitor cells were processed as previously reported26,27. Specifically, variants in accessible chromatin regions were only considered to physically interact with a gene’s promoter when the CHICAGO score was > 5.

Transcription factor motif analysis. Prediction of the effects of fine-mapped variants on transcription factor binding sites (TFBS) was performed by using the motifBreakR package28 and a comprehensive collection of human TFBS models (HOCOMOCO)29. For all fine-mapped variants with PP > 0.1, we applied the “informative on motif!” scoring algorithm and used a P-value cutoff of 5 × 10−4 for TFBS matches; all other parameters were kept at default settings.

To identify recurrent motifs that were disrupted by fine-mapped variants or were spatially proximal to these motifs, we used the findOverlaps() function from the GenomicRanges package30. To identify variants near motifs (Supplementary Fig. 8d), we extended the range of the motif by 20 bp in both directions. For motif-breaking and motif-proximal variants, variant–motif pairs were filtered such that they intersected a relevant factor in hematopoietic tissue from 2,115 uniformly processed datasets in ChiP-Atlas. Relevant transcription factors were defined by ‘bagging’ motifs on the basis of the similarity of their position-weight matrices (Pearson R > 0.7). A match was determined when the name of the transcription factor from the ChiP-Atlas dataset exactly matched the name of the motif or any motif in the same ‘bag’. Conservation profiles for motif-disrupting variants were obtained as phyloP estimates31.

To determine whether specific transcription factors were disrupted or proximal to variants more than expected by chance, we performed 100,000 permutations where we sampled the number of unique variants with PP > 0.10 from across all variants in the 2,054 investigated regions. The expected number of transcription factors that were disrupted or proximal to variants was taken to be the mean across all permutations, and significance was determined as one over the number of times that the number of overlaps was greater for variants with PP > 0.10 than for the random sample.

Luciferase reporter analysis. Firefly luciferase reporter constructs (pGL4.24) were generated by cloning 300- to 400-bp genomic regions centered on the variant(s) of interest (AK3, 325 bp; CCND3, 363 bp) upstream of the minimal promoter by using BglII and XhoI sites. The firefly luciferase constructs (500 ng) were cotransfected with a pRL-SV40 Renilla luciferase reporter construct (50 ng) into 100,000 K562 cells by using Lipofectamine LTX (Invitrogen) according to the manufacturer’s protocol. After 48 h, luciferase activity was measured by Dual-Glo Luciferase assay system (Promega) according to the manufacturer’s protocol.

For each sample, the ratio of firefly to Renilla luminescence was measured and normalized to the empty pGL4.24 construct. A total of four haplotypes were constructed per locus to examine the effects of two fine-mapped putative causal variants. For the CCND3 locus, we examined the effects of rs112233623 (reference, C; alternate, T) and rs9349205 (reference, G; alternate, A), which are 161 bp apart. For the AK3 locus, we examined the effects of rs409950 (reference, A; alternate, C) and rs12005199 (reference, A; alternate, G), which are also separated by 123 bp. A total of nine experimental replicates per haplotype (four haplotypes per locus), including the empty pGL4.24 construct, were measured across two experimental batches.

To compute the additive and multiplicative effects of each variant, we used a generalized linear model of the following form for both the AK3 and CCND3 loci separately.

\[Y_{ijk} = \beta_0 + \beta_1 \text{SNP}_{i} + \beta_2 \text{SNP}_{j} + \beta_{ij} \text{SNP}_{i} \text{SNP}_{j} + \beta_{01} \text{SNP}_{i} + \beta_{12} \text{SNP}_{j} + \beta_{02} \text{SNP}_{i} \text{SNP}_{j} + \beta_{11} \text{SNP}_{i} \text{SNP}_{j} + \beta_{00} \text{SNP}_{i} \text{SNP}_{j} + \epsilon_{ijk}, \]

where the mean and variance of \(Y_{ijk} \) are taken over all values of \(b \) and \(i \).

Coding Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Code availability. g-chromVAR is available as an open-source R package distributed freely at http://calebware.github.io/gchromVAR. All code required to reproduce the results discussed herein has been made available at http://github.com/calebware/singlecell_bloodtraits.

Data availability. All processed data are available on GitHub (https://github.com/calebware/singlecell_bloodtraits/). ATAC-seq profiles are available from the Gene Expression Omnibus (GEO) under accession GSE119453 and from the Sequence Read Archive (SRA) under accession PRJNA491478.
References
56. Loh, P. R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–290 (2015).
57. Hormozdian, F. et al. Leveraging molecular quantitative trait loci to understand the genetic architecture of diseases and complex traits. Nat. Genet. 50, 1041–1047 (2018).
58. Yu, A. et al. Comparison of human genetic and sequence-based physical maps. Nature 409, 951–953 (2001).
59. McLaren, W. et al. The Ensembl variant effect predictor. Genome Biol. 17, 122 (2016).
60. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).
61. Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 29.1–29.9 (2015).
62. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
63. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
64. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).
65. Shin, J. et al. Single-Cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17, 360–372 (2015).
66. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
67. Mifsud, B. et al. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet. 47, 598–606 (2015).
68. Coetzez, S. G., Coetzez, G. A. & Hazelett, D. J. motifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sites. Bioinformatics 31, 3847–3849 (2015).
69. Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).
70. Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R. & Siepel, A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 20, 110–121 (2010).
71. Schmidt, E. M. et al. GREGOR: evaluating global enrichment of trait-associated variants in epigenomic features using a systematic, data-driven approach. Bioinformatics 31, 2601–2606 (2015).
72. Chung, D., Yang, C., Li, C., Gelernter, J. & Zhao, H. GPA: a statistical approach to prioritizing GWAS results by integrating pleiotropy and annotation. PLoS Genet. 10, e1004787 (2014).
73. Pickrell, J. K. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am. J. Hum. Genet. 94, 559–573 (2014).
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- **n/a**
- **Confirmed**

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
- Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection BOLT-LMM (2017 version) was used to generate summary statistics; Luciferase reporter assay data was analyzed with R-3.4, and ATAC-seq profiles for myeloid dendritic cells and plasmacytoid dendritic cell were analyzed using bowtie2 and MACS2.

Data analysis We developed g-chromVAR which is available on GitHub (https://github.com/caleblareau/gchromVAR). The majority of analyses were performed in R-3.4, and the specific packages used as well as reproducible analysis code is available on GitHub (https://github.com/caleblareau/singlecell_bloodtraits). We also used FINEMAP v1.1, S-LDSC (2017 version), bgenix (2017 version), qctools (2017 version), BOLT-LMM (2017 version), MACS2, and bowtie2.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

All processed and raw data are available on GitHub (https://github.com/caleblareau/singlecell_bloodtraits). ATAC-seq profiles are available from NCBI GEO GSE119453 and SRA PRJNA491478.
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- [X] Life sciences
- [] Behavioural & social sciences
- [] Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

- **Sample size**
 We did not determine sample size for UKB GWAS data. For Luciferase reporter experiments, typically, $n = 3$ replicates are performed for 1 variant, but we wanted to obtain robust estimates of 2 variant haplotypes so we performed $n = 9$ replicates per condition.

- **Data exclusions**
 In order to meet fine-mapping model assumptions, variants with MAF < 0.1% and INFO < 0.6 were excluded, as were non-white British samples and samples without measured blood cell phenotypes from the UKB interim release. HLA and sex chromosomes were also excluded.

- **Replication**
 Regulatory genetic variant associations were successfully validated with Luciferase reporter assays. Otherwise no replication was attempted.

- **Randomization**
 We did not allocate participants into groups.

- **Blinding**
 Statement from the UKB: Recruitment were via centrally coordinated identification and invitation from population-based registers (such as those held by the NHS) of potentially eligible people living within a reasonable travelling distance of an assessment centre (located around the UK). This central recruitment strategy will allow invitations to be targeted to enhance generalisability and to make allowance for the impact on participation rates of various factors (e.g. age, sex, ethnicity, socioeconomic status). Each assessment centre will aim to recruit as many as possible of the nearby target population during a period of about six months to one year (depending on the local population density and transport links), and will then be relocated in order to achieve recruitment across most of the UK.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a	Involved in the study	n/a	Involved in the study
[X]	Antibodies	[]	ChiP-seq
[X]	Eukaryotic cell lines	[]	Flow cytometry
[X]	Palaeontology	[]	MRI-based neuroimaging
[]	Animals and other organisms		
[]	Human research participants		
[]	Clinical data		

Eukaryotic cell lines

- **Policy information about** cell lines
- **Cell line source(s)**
 K562 cells were obtained from ATCC.
- **Authentication**
 Validated by the Human Cell Line Identity Verification platform of the Dana-Farber Cancer Institute (http://moleculardiagnosticscore.dana-farber.org/human-cell-line-identity-verification.html).
- **Mycoplasma contamination**
 All cell lines tested negative.
- **Commonly misidentified lines**
 (See ICLAC register)
 None.

Human research participants

- **Policy information about** studies involving human research participants
- **Population characteristics**
 UKB recruited nearly 500,000 people aged 40-69 years in 2006-2010 from across the UK. We only analyzed individuals of "white" British ancestry who passed QC. Please note that only deidentified data was utilized in this study.
Recruitment | Please see Population characteristics and Blinding sections for details on UKB recruitment.
Ethics oversight | This project was approved by the UKB under project 11898 and 31063.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots

- The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
- The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
- All plots are contour plots with outliers or pseudocolor plots.
- A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation	Samples were prepared from bone marrow or peripheral blood, as has been described previously (Corces et al., Nat. Genet., 2016; Buenrostro et al., Cell, 2018).
Instrument	Becton Dickinson FACS Aria II
Software	BD FACSDiva and FlowJo
Cell population abundance	Cell population abundances were determined for each phenotypic population, as has been described previously (Corces et al., Nat. Genet., 2016; Buenrostro et al., Cell, 2018).
Gating strategy	The following antibodies were used for flow cytometry: BDCA-3-APC (Clone ADS-14H12; Miltenyi), CD123-BV421 (Clone 6H6; Biolegend), CD11c-PECy7 (Clone B-ly6; BD), HLA-DR-APCCy7 (Clone G46-6; BD), CD1C-PE (Clone ADS-8E7; Miltenyi), CD3-FITC (Clone UCHT1; BD), CD19-AlexaFluor 488 (Clone HIB19; Biolegend), CD45-V500 (Clone HI30; BD).

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.