Preconception mental health and the relationship between antenatal depression or anxiety and gestational diabetes mellitus: a population-based cohort study

Grace A. Thiele1, Deirdre M. Ryan2, Tim F. Oberlander3 and Gillian E. Hanley1*

Abstract

Background: Antenatal depression and anxiety are highly prevalent conditions that have been associated with increased risk for myriad adverse outcomes. Current literature exploring the connection between antenatal mental health and gestational diabetes mellitus (GDM) is limited, presenting conflicting evidence. We sought to evaluate the association between antenatal depression/anxiety (DEP-ANX) and GDM using population-based, administrative data, accounting for aspects of preconception mental health.

Methods: In this population-based retrospective cohort study, we included all singleton births in British Columbia, Canada from April 1, 2000, to December 31, 2014. We identified instances of DEP-ANX from outpatient and inpatient records that included relevant diagnostic codes and stratified our cohort by preconception DEP-ANX persistence. Logistic regression models were run to estimate odds of GDM given antenatal DEP-ANX. Models were adjusted for the birthing person’s socio-demographics and pregnancy characteristics. Using an expanded cohort, we ran conditional logistic regression models that matched birthing people to themselves (in a subsequent pregnancy) based on discordance of exposure and outcome.

Results: Out of the 228,144 births included in this study, 43,664 (19.1%) were to birthing people with antenatal health service use for DEP-ANX. There were 4,180 (9.6%) cases of GDM among those antenatal exposure to DEP-ANX compared to 15,102 (8.2%) among those without exposure (SMD 0.049). We observed an unadjusted odds ratio (OR) of 1.19 (95% CI: 1.15 – 1.23) and fully adjusted OR of 1.15 (95% CI: 1.11 – 1.19) overall. Apparent risk for GDM given antenatal DEP-ANX was highest among the no DEP-ANX history stratum, with a fully adjusted OR of 1.24 (95% CI: 1.15 – 1.34). Associations estimated by matched sibling analysis were non-significant (fully adjusted OR 1.19 [95% CI: 0.86 – 1.63]).

Conclusions: Results from this population-based study suggest an association between antenatal DEP-ANX and GDM that varied based on mental health history. Our analysis could suggest that incident cases of DEP-ANX within pregnancy are more closely associated with GDM compared to recurring or chronic cases.

*Correspondence: Gillian.hanley@vch.ca
1 Department of Obstetrics & Gynaecology, University of British Columbia, Rm 590 828 West 10th Ave, Vancouver, BC V5Z 1M9, Canada
Full list of author information is available at the end of the article

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Introduction
Depression and anxiety are highly prevalent among individuals of reproductive age [1–3], and nearly 20% of birthing people experience an episode of depression or anxiety during pregnancy [4, 5]. Preconception mental health disorders increase risk for an antenatal episode [6–9], and both preconception and antenatal depression/anxiety have been independently associated with adverse perinatal outcomes such as gestational diabetes mellitus (GDM) [10, 11]. While the risk from preconception and antenatal mental health disorders is a critical issue, very little research has aimed to understand how different mental health trajectories are associated with adverse outcomes like GDM.

GDM is a unique subtype of diabetes mellitus (DM), indicated by glucose intolerance first detected during pregnancy. GDM has been shown to pose significant risks to perinatal health, increasing the likelihood of hemorrhage, preeclampsia, and operative delivery [12–14]. Instances of GDM have been shown to also have lasting impacts on cardiovascular and metabolic health, with elevated risk for future cardiovascular disease and type 2 DM for both the birthing person and child [15–17]. Cases of comorbid antenatal depression/anxiety (DEP-ANX) and GDM have been further shown to increase the likelihood of adverse outcomes, including preeclampsia to preterm birth [18, 19].

Current literature investigating the link between antenatal DEP-ANX and GDM is limited, and presents conflicting evidence regarding the significance and magnitude of this association [11, 20–26]. There are similarly contradictory results regarding the connection between depression/anxiety history and GDM [10, 27, 28]. Our understanding of this relationship is thus largely guided by studies focused on bidirectional associations between DEP-ANX and DM [29, 30]. DEP-ANX and DM are hypothesized to originate from shared pathways, in which trauma, genetics, environment, and inequities contribute to the activation of physiological responses driving both conditions [31, 32].

In this study, we aimed to incorporate preconception mental health into a study of how antenatal depression/anxiety influences risk for GDM. We hypothesized that compared to those without history of DEP-ANX, individuals with chronic histories would have higher odds of GDM related to antenatal DEP-ANX, given increased exposure to chronic stress and its cumulative effects (allostatic load) [33, 34].

Materials and methods
We conducted a population-based, retrospective cohort study of all live births in British Columbia (BC), Canada from April 1, 2000, to December 31, 2013. Birthing person data were collected from 10-years preconception through delivery. Population Data (PopData) BC created our cohort through the BC Perinatal Data Registry (BCPDR) [35], containing nearly 100% of births in BC, regardless of place of delivery. They then linked these data with the Discharge Abstract Database (DAD) [36], documenting all BC hospital stays and day surgeries; the Medical Services Plan (MSP) Payment Information File [37], describing all BC medical visits; vital statistics data [38], containing birth information; and the Central Demographics File (previously BC Consolidation file) [39], detailing demographic and registration data for provincial health coverage (MSP).

Ethics approval for our use of deidentified administrative data was approved by the University of British Columbia Behavioural Research Ethics Board. Data access was approved by the Data Stewards. Both approvals include a waiver of informed consent from participants. All inferences, opinions, and conclusions drawn are those of the authors and do not reflect opinions or policies of the Data Stewards.

Study cohort
Our cohort included singleton births to birthing people with complete record of neighborhood-based income quintiles and final gestational age (GA). We excluded births to individuals who had pre-existing DM, and/or any record of health service use with diagnostic codes corresponding to bipolar disorder, schizophrenia, psychosis, or mania (Supplemental Table 1). Finally, we required that birthing people be registered with MSP for >100 days/year from 5-years preconception to birth. We loosened this criterion to 3-years preconception for our sibling cohort analyses, described below, to increase statistical power (see Fig. 1).

Measures
Time periods of interest. We determined approximate date of conception (DOC) by subtracting final GA (reported in the BCPDR) from the offspring’s date of birth (DOB), then subtracting two weeks. Final GA is approximated by the BCPDR based (in order of accuracy) on earliest ultrasound, last menstrual period, or newborn examination. We defined pregnancy as the
The period between the DOC and DOB, and preconception periods (0 – 1 year, 2 – 3 years, 4 – 5 years, 6 – 10 years, and > 10 years) using the approximate DOC.

Mental health measures. Depression and anxiety were classified as a single exposure, DEP-ANX, due to high rates of co-occurrence (particularly within the perinatal period) [40], overlapping risk factors, and neurobiological similarities [41–45]. We identified DEP-ANX cases within each period based on the presence of relevant diagnostic codes (Supplemental Table 2) from fee-for-service provider visits and hospitalization data. MSP outpatient records are coded using the International Classification of Disease, Ninth Revision, Clinical Modification (ICD-9-CM), while DAD hospitalizations are coded using the ICD-10-CM. Mental health was further described by DEP-ANX history, independent of antenatal DEP-ANX, according to observed DEP-ANX persistence across preconception. Persistence was categorized into the following groups (Fig. 2): 1) no history; 2) episodic history; 3) chronic history with discontinuous treatment; and 4) chronic history with continuous treatment.

Outcomes
Instances of GDM were identified from the BCPDR based on results of routine prenatal screening (typically between 24 and 28 weeks) [46].

Covariates
Birthing person and coparent age, coparent status, income quintile, marital status, number of living
children, and birth year were used to describe individual-level demographics. Pregnancy health and prenatal care were characterized by smoking status (during the current pregnancy), history of premature birth, parity, preconception body mass index category (BMI; equal to weight [kilograms] divided by height [meters] squared), pregnancy and non-pregnancy induced hypertension (PIH and non-PIH), intrauterine growth restriction (IUGR), frequency of prenatal visits, and frequency of antenatal hospitalization.

We described labor and delivery by use of induction, mode of delivery (vaginal or non-vaginal), and presence of a midwife at birth. Finally, neonatal outcomes were summarized by infant sex, final GA, small-for-gestational-age (SGA; birth weight below 10th percentile for final GA and sex), large-for-gestational-age (LGA; birth weight over 90th percentile for final GA and sex), admission to the neonatal intensive care unit (NICU), and preterm birth.

Statistical analysis

We compared socio-demographics, health during pregnancy, labor and delivery, and neonatal outcomes between those with and without antenatal DEP-ANX using standardized differences. Differences of 0.1 or more were deemed clinically meaningful [47]. We repeated this process to identify differences in our cohort based on persistence of preconception DEP-ANX.

We modeled the relationship between antenatal DEP-ANX and GDM using logistic regression. Covariates were added in a stepwise fashion to identify potential confounders that significantly improved model fit. Associations between antenatal DEP-ANX exposure and GDM were quantified using absolute risk differences (RDs) and odds ratios (ORs). Unadjusted associations were assessed first (Base Model), followed by adjustment for socio-demographics, including birthing person age category, income quintile, marital status, number of living children, and year of birth (Model 1). Finally, we
added characteristics of pregnancy, including preconception BMI, PIH, non-PIH, antenatal hospitalization, and IUGR (Model 2). Regressions were also run following stratification according to persistence of preconception DEP-ANX.

To better adjust for genetic and epigenetic (social and environmental) factors that might confound the relationship between antenatal DEP-ANX and GDM, we conducted analyses in a sibling cohort nested within our larger cohort [48]. This analyzes the association between DEP-ANX and GDM across pregnancies to the same birthing person, rather than comparing across different birthing people. We restricted to birthing people who delivered more than once within the study period and stratified by preconception DEP-ANX history (no history vs. any history). We ran unconditional logistic regression models for the full sibling cohort and each stratum using clustered standard errors to account for correlation between sibling pairs. Associations estimated by these models were used to determine whether the relationship between antenatal DEP-ANX and GDM observed in the full cohort persisted within the sibling cohort. We then ran conditional regression models that matched birthing people to themselves (in successive deliveries), selecting only discordant pregnancies. Only individuals who were discordant in exposure and outcome in ≥2 pregnancies contributed to this model.

All P-values were two-sided and statistical significance was defined with an alpha of 0.05. All statistical analyses were carried out using RStudio software.

Results

Between April 1, 2000, and December 31, 2013, there were 582,459 births recorded in BC. Of these, we excluded all multiple births (N = 17,789), and births without income (N = 18,635) or final GA (N = 727) information reported. We further excluded births parents with any health service use for excluded mental health conditions (N = 16,380) and birthing people with pre-existing diabetes (N = 2,398). Birthing people registered with MSP for < 100 days/year from 5-years preconception to delivery were also excluded (N = 298,386). Our final cohort consisted of 228,144 births to 166,974 birthing people. The chronic, continuous group was older, less likely to be married and have other living children, and more likely to smoke than those with no DEP-ANX history.

Unadjusted logistic regression models, which examine the relationship across pregnancies to the same birthing person, suggested a significant association between antenatal DEP-ANX and GDM among our full cohort (OR 1.19 [95% CI: 1.15 – 1.23]) as seen in Table 2. This association was maintained after adjusting for birthing person age category, neighborhood-based income quintile, marital status, number of living children, and year of birth (Model 1; aOR 1.20 [95% CI: 1.15 – 1.24]). Following adjustment for preconception BMI, PIH, non-PIH, antenatal hospitalization, and IUGR (Model 2), we saw a slight attenuation in risk for GDM given antenatal DEP-ANX; however, the association remained significant (aOR 1.16 [95% CI: 1.11 – 1.20]).

Stratified analysis revealed differential associations between antenatal DEP-ANX and GDM across persistence groups (Table 2). Unadjusted odds for GDM given antenatal DEP-ANX were highest among those with no DEP-ANX history (OR 1.23 [95% CI: 1.14 – 1.32]) and remained so in the fully adjusted model (Model 2 aOR 1.25 [95% CI 1.16 – 1.35]). Comparatively, the unadjusted association between antenatal DEP-ANX and GDM among those with a chronic, continuous history of DEP-ANX was significantly smaller (OR 1.11 [95% CI: 1.05 – 1.18]). This association was minimally attenuated after adjusting for socio-demographics and pregnancy characteristics (Model 2 aOR 1.10 [95% CI: 1.04 – 1.17]). Among those with an episodic history of DEP-ANX, odds of GDM given antenatal DEP-ANX resembled those among our chronic, continuous group. Associations within our chronic, discontinuous strata were not statistically significant.

To increase statistical power for our stratified sibling analysis, we expanded our cohort to include those registered with MSP < 100 days/year from 3- to 5-years preconception (N = 86,471). Our expanded cohort consisted of 314,615 births to 220,461 birthing people. Logistic regression models run with this expanded cohort (Table 3) provided comparable ORs to those from our
Table 1 Comparison of socio-demographic and clinical characteristics among individuals with and without antenatal DEP-ANX

Birth parent socio-demographic factors	Antenatal DEP-ANX	Standardized difference a
Birth parent age group, N (%)		
< 20 years	6136 (3.3)	1610 (3.7)
20 – 24 years	23,958 (13.0)	5797 (13.3)
25 – 29 years	48,480 (26.3)	11,021 (25.2)
30 – 34 years	62,232 (33.7)	14,104 (32.3)
35 – 39 years	35,735 (19.4)	8858 (20.3)
≥ 40 years	7939 (4.3)	2274 (5.2)
Neighborhood-based income quintile, N (%)		
1	37,931 (20.6)	9215 (21.1)
2	38,793 (21.0)	9204 (21.1)
3	38,433 (20.8)	9140 (20.9)
4	38,792 (21.0)	9238 (21.2)
5	30,531 (16.5)	6867 (15.7)
Marital status, N (%)		
Divorced	2760 (1.5)	926 (2.1)
Married	128,164 (69.5)	27,473 (62.9)
Never married	36,243 (19.6)	10,321 (23.6)
Other	14,493 (7.9)	3925 (9.0)
Single	2820 (1.5)	1019 (2.3)
Coparent status		
Coparent listed, N (%)	178,246 (96.6)	41,219 (94.4)
Coparent age (years), Mean (SD)	33.5 (6.3)	33.7 (6.6)
Number of living children, N (%)		
0	80,664 (43.7)	20,789 (47.6)
1	69,341 (37.6)	14,748 (33.8)
2	23,917 (13.0)	5627 (12.9)
3	6987 (3.8)	1692 (3.9)
4 or more	3571 (1.9)	808 (1.9)
Pregnancy characteristics and risk factors		
Year of birth, N (%)		
< 2008	46,504 (25.2)	11,452 (26.2)
2008 – 2010	67,685 (36.7)	16,298 (37.3)
> 2010	70,291 (38.1)	15,914 (36.4)
Smoking status during pregnancy, N (%)		
No history of smoking	152,610 (82.7)	33,947 (77.7)
Continued during pregnancy	15,947 (8.6)	5104 (11.7)
Discontinued during pregnancy	15,923 (8.6)	4613 (10.6)
History of premature birth, N (%)	7641 (4.1)	1983 (4.5)
Nulliparous, N (%)	79,464 (43.1)	20,423 (46.8)
Preconception BMI, N (%) b		
< 18.5 (underweight)	6193 (3.4)	1523 (3.5)
18.5 – 24.99 (normal)	77,149 (41.8)	18,000 (41.2)
25.0 – 29.99 (overweight)	28,378 (15.4)	7166 (16.4)
≥ 30 (obese)	18,167 (9.8)	4948 (11.3)
Missing	54,593 (29.6)	12,027 (27.5)
Table 1 (continued)

Antenatal DEP-ANX	No N = 184,480	Yes N = 43,664	Standardized difference a
Gestational diabetes, N (%)	15,102 (8.2)	4180 (9.6)	0.049
Insulin-dependent	4155 (2.3)	1232 (2.8)	0.036
Non-insulin dependent	10,947 (5.9)	2948 (6.8)	0.034
Hypertension, N (%)			
Pregnancy-induced	9167 (5.0)	2560 (5.9)	0.040
Other c	6017 (3.3)	1607 (3.7)	0.023
Prenatal care, N (%)			
≥ 10 prenatal visits	58,805 (31.9)	16,148 (37.0)	0.108
Prior hospital admission	16,573 (9.0)	5361 (12.3)	0.107
IUGR, N (%)	3047 (1.7)	815 (1.9)	0.016
Nature of labor, N (%)			
Vaginal delivery	129,673 (70.3)	29,538 (67.6)	0.057
Induced labor	37,292 (20.2)	9651 (22.1)	0.046
Midwifery care	27,286 (14.8)	4521 (10.4)	0.134
Postpartum and neonatal characteristics			
Infant sex, N (%)	89,827 (48.7)	21,095 (48.3)	0.008
Gestational age (weeks), mean (SD)	38.7 (1.9)	38.6 (2.0)	0.067
Size at birth d			
Small-for-gestational-age, N (%) e	15,701 (8.5)	3858 (8.8)	0.012
Large-for-gestational-age, N (%) f	19,883 (10.8)	4725 (10.8)	0.001
Admission to NICU, N (%)	4454 (2.4)	1317 (3.0)	0.037
Preterm birth, N (%)	14,404 (7.8)	3978 (9.1)	0.047

Abbreviations: DEP-ANX depression and/or anxiety, BMI body mass index, IUGR intrauterine growth restriction, NICU neonatal intensive care unit

a A standardized difference of 0.1 or greater was deemed meaningful and designated with a (*)
b Equal to weight (kilograms) divided by height (meters) squared
c Comprised of preexisting hypertension, high blood pressure, hypertensive kidney disease, proteinuria, HELLP (Hemolysis, Elevated Liver enzymes, and Low Platelets) syndrome, and other hypertensive disorders
d Percentiles determined based on birth weights within gestational age (GA) and infant sex subgroups
e Below the 10th percentile of weight for final GA and sex
f Above the 90th percentile of weight for final GA and sex

original cohort (Overall: OR 1.17 [95% CI: 1.13 – 1.20], Model 2 aOR 1.14 [95% CI: 1.10 – 1.18]). Results from our unmatched sibling cohort analysis further demonstrated that restricting this cohort to birthing people with more than 1 eligible pregnancy did not significantly affect the strength or direction of previously observed associations (Overall: OR 1.18 [95% CI: 1.12 – 1.24], Model 2 aOR 1.15 [95% CI: 1.09 – 1.21]).

Unadjusted conditional logistic regression models, which examine the relationship across pregnancies to the same birthing person, suggested substantially different strengths of association (Overall: OR 1.05 [95% CI: 0.96 – 1.15]; No history: OR 2.27 [95% CI: 1.68 – 3.07]; Any history: OR 1.01 [95% CI: 0.90 – 1.13]). Adjusting for socio-demographics and pregnancy characteristics revealed attenuated associations between GDM and antenatal DEP-ANX with loss of statistical significance across the full cohort (Model 2 aOR 1.07 [95% CI: 0.96 – 1.18]), no DEP-ANX history group (Model 2 aOR 1.18 [95% CI: 0.86 – 1.63]), and any DEP-ANX history group (Model 2 aOR 1.02 [95% CI: 0.90 – 1.16]); however, the direction of association remained positive in all three cases.

Comment
Principal findings
In this population-based, retrospective cohort study, we found a modest association between antenatal DEP-ANX and GDM that differed in effect size based on preconception mental health. Overall, individuals with antenatal DEP-ANX that had no history of DEP-ANX appeared to be at higher risk for GDM than those with an episodic
or chronic, continuous history. While these relationships were attenuated, they largely remained statistically significant after adjusting for socio-demographics and pregnancy characteristics in our original and expanded cohort. Matched sibling pairs analysis resulted odds ratios of similar magnitude among those with no DEP-ANX, but the association was no longer statistically significant and thus we cannot rule out residual confounding as an explanation for the associations in the main cohort.

Results in the context of What is Known

The positive association between DEP-ANX and GDM is consistent with prior literature. Several observational studies have demonstrated significant associations between antenatal DEP-ANX and GDM of varying effect size, reporting increased risks between 52 – 300% from unadjusted and adjusted analysis [11, 22, 28, 49]. In contrast, several studies have suggested that no association exists between GDM and DEP-ANX [20, 25]. Importantly, the magnitudes of these associations are similar to

Table 2

Association between antenatal DEP-ANX and GDM across preconception DEP-ANX persistence strata. RDs and ORs represent the log likelihood of GDM among those with antenatal DEP-ANX compared to those without

Sample of interest	Frequency of GDM, N (%)	Base model	Adjusted OR (95% CI) a
DEP-ANX history			
Full cohort	228,144	15,102 (8.2)	4180 (9.6)
	Absolute RD, %	1.39 (1.08 – 1.69)	1.19 (1.15 – 1.23)
	Unadjusted OR	1.20 (1.15 – 1.24)	1.16 (1.11 – 1.20)

Stratified analysis

Sample of interest	Frequency of GDM, N (%)	Base model	Adjusted OR (95% CI) a
No history	91,109	6279 (7.7)	898 (9.3)
	Absolute RD, %	1.61 (1.00 – 2.22)	1.23 (1.14 – 1.32)
	Unadjusted OR	1.26 (1.17 – 1.36)	1.25 (1.16 – 1.35)
Episodic	62,994	4266 (8.1)	927 (8.9)
	Absolute RD, %	0.74 (0.14 – 1.33)	1.10 (1.02 – 1.18)
	Unadjusted OR	1.14 (1.06 – 1.23)	1.13 (1.05 – 1.22)
Chronic, discontinuous	7470	506 (9.4)	227 (10.9)
	Absolute RD, %	1.45 (0.10 – 2.99)	1.17 (0.99 – 1.38)
	Unadjusted OR	1.21 (1.02 – 1.43)	1.17 (0.98 – 1.39)

Sample of interest

Sample of interest	Frequency of GDM, N (%)	Base model	Adjusted OR (95% CI) a
Base analysis			
Full cohort	228,144	15,102 (8.2)	4180 (9.6)
	Absolute RD, %	1.39 (1.08 – 1.69)	1.19 (1.15 – 1.23)
	Unadjusted OR	1.20 (1.15 – 1.24)	1.16 (1.11 – 1.20)

Stratified analysis

Sample of interest	Frequency of GDM, N (%)	Base model	Adjusted OR (95% CI) a
No history	91,109	6279 (7.7)	898 (9.3)
	Absolute RD, %	1.61 (1.00 – 2.22)	1.23 (1.14 – 1.32)
	Unadjusted OR	1.26 (1.17 – 1.36)	1.25 (1.16 – 1.35)
Episodic	62,994	4266 (8.1)	927 (8.9)
	Absolute RD, %	0.74 (0.14 – 1.33)	1.10 (1.02 – 1.18)
	Unadjusted OR	1.14 (1.06 – 1.23)	1.13 (1.05 – 1.22)
Chronic, discontinuous	7470	506 (9.4)	227 (10.9)
	Absolute RD, %	1.45 (0.10 – 2.99)	1.17 (0.99 – 1.38)
	Unadjusted OR	1.21 (1.02 – 1.43)	1.17 (0.98 – 1.39)
what we have reported (increased risk of 5 – 20%) and their lack of statistical significance may reflect limited statistical power.

Clinical implications

We observed a slightly larger effect size in the associations between GDM and incident DEP-ANX vs. recurring or chronic DEP-ANX, highlighting the potential role of GDM-induced stress in the development of antenatal DEP-ANX. GDM diagnosis has been previously shown to be a significant stressor, with lasting impacts on the birth person's physical and emotional well-being [50]. While we cannot rule out residual confounding, an alternative explanation may be that antenatal DEP-ANX and GDM share biological origins (i.e., hypothalamus–pituitary–adrenal (HPA) axis dysregulation and cytokine-mediated inflammatory responses), as has been explored outside the perinatal context [31]. Despite their lower risk for GDM due to antenatal DEP-ANX, significant associations observed for those with preconception DEP-ANX history could also support the hypothesis that allostatic load plays a role in the relationship between GDM and antenatal DEP-ANX. These findings may be explained by a bidirectional mechanism in which development of either condition contributes to development of the other [29, 30].

Regardless of the mechanism connecting antenatal DEP-ANX and GDM, and even in the case of residual confounding, our findings suggest that DEP-ANX and GDM often co-occur and emphasize the importance of ongoing prenatal screening for both GDM and DEP-ANX, particularly among those without a history of either condition. Differences in association based on preconception DEP-ANX persistence may be due to diagnostic bias that delays DEP-ANX treatment among those with discontinuous or no history of DEP-ANX. Further, more regular preconception interactions with mental health services may facilitate easier access to mental health care during pregnancy, thereby mitigating the effects of antenatal DEP-ANX or preventing DEP-ANX recurrence in response to a GDM diagnosis. This points to the importance of addressing barriers to mental health services, particularly during pregnancy, and the value of providing consistent mental health care throughout a birthing person's life.

Strengths and limitations

This study is strengthened by its use of population-based administrative datasets and operationalization of more granular definitions for understanding individual DEP-ANX histories. This more nuanced approach allowed for deeper exploration of the relationship between DEP-ANX and GDM. Our study also possessed key limitations. Compared to included individuals, those who were excluded from our study (largely due to not having lived in the province for 5-years preconception) tended to be of lower socioeconomic status with more limited records of overall health status, potentially affecting generalizability of our findings. We did not have access to pharmacy data, prohibiting us from evaluating the role of psychotropic medication in the observed association. Additionally, our definitions for DEP-ANX relied on treatment records filed with provincial health, thus omitting data from individuals seeking care from providers outside BC’s universal health coverage (counselling psychologists, social workers, etc.) and those with under- or un-treated DEP-ANX. Omission of these data may have caused some misclassification of DEP-ANX persistence and/or antenatal DEP-ANX, particularly for those with chronic histories who may have well-established treatment regimens outside of the health system.

Our use of data for 10-years preconception despite applying a registration criterion for 5-years preconception may have also introduced misclassification, specifically for individuals who experienced DEP-ANX prior to 5-years preconception but were not living in the province at that time. This is unlikely to be associated with GDM status, though, and would therefore bias toward the null. Our inability to determine whether GDM preceded antenatal DEP-ANX made interpreting results more challenging. As we do not have date of diagnosis for GDM in the BCPDR and cannot assume that the first DEP-ANX diagnosis code reported in health services data represents actual onset of DEP-ANX, we cannot determine which diagnosis came first. Finally, we cannot rule out the possibility of residual confounding related to both socioeconomic factors that are known to be important determinants of mental health during pregnancy and to yet unmeasured factors that contribute to both GDM and antenatal DEP-ANX.
Conclusions
Results from this population-based retrospective cohort study suggest an association between antenatal DEP-ANX and GDM that varied based on mental health history. Our analysis could suggest that incident cases of DEP-ANX within pregnancy are more closely associated with GDM compared to recurring or chronic cases. These findings present a novel perspective on the relationship between DEP-ANX and GDM.

Abbreviations
GDM: Gestational diabetes mellitus; DM: Diabetes mellitus; DEP-ANX: Depression/anxiety; BC: British Columbia; PopData BC: Population Data BC; BCPDR: BC Perinatal Data Registry; DAD: Discharge Abstract Database; MSP: Medical Services Plan; GA: Gestational age; DOC: Date of conception; DOB: Date of birth; ICD: International Classification of Diseases; BMI: Body mass index; PIH: Pregnancy induced hypertension; non-PIH: Non-pregnancy induced hypertension; IIUGR: Intrauterine growth restriction; SGA: Small-for-gestational-age; LGA: Large-for-gestational-age; NICU: Neonatal intensive care unit; RD: Risk difference; OR: Odds ratio; HPA: Hypothalamus-pituitary-adrenal axis.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12884-022-05002-5.

Acknowledgements
Not applicable.

Authors’ contributions
GT contributed to conception of the study and study design, performed and interpreted the statistical analyses and drafted the manuscript. GH contributed to the conception of the study and study design, interpretation of analyses, and participated in drafting and revising the manuscript. DR and TO both contributed to interpretation of analyses and participated in drafting and revising the manuscript. All authors read and approved the final manuscript.

Funding
This work was supported by the Canadian Institutes of Health Research. Dr. Hanley is funded by a Michael Smith Foundation for Health Research Scholar Award.

Availability of data and materials
Access to data provided by the Data Steward(s) is subject to approval but can be requested for research projects through the Data Steward(s) or their designated service providers.

Declarations
Ethics approval and consent to participate
All methods were performed in accordance with relevant guidelines and regulations. Ethics approval for our use of deidentified, administrative data was approved by the University of British Columbia (UBC) Behavioural Research Ethics Board (H21-01401). Data access was approved by Population Data (PopData) BC and the relevant Data Stewards. Approvals from both the UBC Behavioural Research Ethics Board and PopData BC included a waiver of informed consent from participants.

Consent for publication
Not applicable.

Competing interests
The authors have no conflicts to disclose.

Author details
1 Department of Obstetrics & Gynaecology, University of British Columbia, 590 628 West 10th Ave, Vancouver, BC V5Z 1M9, Canada. 2 Departments of Psychiatry, University of British Columbia (UBC), 938 W 28th Ave, Vancouver, BC V5Z 4H4, Canada. 3 Department of Pediatrics, University of British Columbia (UBC), 938 W 28th Ave, Vancouver, Canada.

Received: 18 May 2022 Accepted: 23 August 2022

References
1. Lang AF, Boyle JA, Fitzgerald GL, Teede H, Mazza D, Moran LJ, et al. Optimizing preconception health in women of reproductive age. Minerva Ginecol. 2018;70(1):21.
2. Statistics Canada. Table 13-10-0619-01 Mental health characteristics: Perceived need for mental health care. 2019.
3. Shim RS, Baltrus P, Ye J, Rust G. Prevalence, Treatment, and Control of Depressive Symptoms in the United States: Results from the National Health and Nutrition Examination Survey (NHANES), 2005–2008. The Journal of the American Board of Family Medicine. 2011;24(1):33–8.
4. Gavin Nl, Gaynes BN, Lohr KN, Meltzer-Brody S, Gantlethner G, Swinson T. Perinatal Depression: A Systematic Review of Prevalence and Incidence. Obstet Gynecol. 2005;106(5, Part 1):1071–83.
5. Dennis CL, Falah-Hassani K, Shiri R. Prevalence of antenatal and postnatal anxiety: Systematic review and meta-analysis. Br J Psychiatry. 2017;210(5):315–23.
6. Leigh B, Milgrom J. Risk factors for antenatal depression, postnatal depression and parenting stress. BMC Psychiatry. 2008;8(1):24.
7. Marcus SM, Flynn HA, Blow FC, Barry KL. Depressive Symptoms among Pregnant Women Screened in Obstetrics Settings. J Womens Health. 2003;12(4):373–80.
8. Patton GC, Romaniuk H, Spry E, Coffey C, Olsson C, Doyle LW, et al. Prediction of perinatal depression from adolescence and before conception (VIHCS): 20-year prospective cohort study. Lancet. 2015;386(9996):875–83.
9. Gallo R, Coklin A, Nicholson JM. Risk factors associated with trajectories of mothers’ depressive symptoms across the early parenting period: an Australian population-based longitudinal study. Arch Womens Ment Health. 2014;17(2):115–25.
10. Bowers K, Laughon SK, Kim S, Mumford SL, Brite J, Kiely M, et al. The Association between a Medical History of Depression and Gestational Diabetes in a Large Multi-ethnic Cohort in the United States: Depression and gestational diabetes. Paediatr Perinat Epidemiol. 2013;27(4):323–8.
11. Minschart C, De Weerdt K, Eleegast A, Van Crombrugge P, Moyson C, Verhaeghe J, et al. Antenatal Depression and Risk of Gestational Diabetes, Adverse Pregnancy Outcomes, and Postpartum Quality of Life. J Clin Endocrinol Metab. 2021;106(8):e3110–24.
12. American Diabetes Association. 14. Management of Diabetes in Pregnancy—2021. Dia Care. 2021 Jan;44(Supplement 1):S200–10.
13. Lucas IM, Barr ELM, Barzi F, Longmore DK, Lee I, Kirkwood M, et al. Gestational diabetes is associated with postpartum hemorrhage in Indigenous Australian women in the PANDORA study: A prospective cohort. Int J Gynecol Obstet. 2021;155(2):296–304.
14. Muche AA, Olayemi OO, Getek Y. Effects of gestational diabetes mellitus on risk of adverse maternal outcomes: a prospective cohort study in Northwest Ethiopia. BMC Pregnancy Childbirth. 2020;20(1):73.
15. Metzger BE. Long-term Outcomes in Mothers Diagnosed With Gestational Diabetes Mellitus and Their Offspring. Clin Obstet Gynecol. 2007;50(4):973–9.
16. Yu Y, Arah OA, Liew Z, Cnattingius S, Olsen J, Sørensen HT, et al. Maternal diabetes during pregnancy and early onset of cardiovascular disease in offspring: population based cohort study with 40 years of follow-up. BMJ. 2019;4:16398.
17. Kramer CK, Campbell S, Retnakaran R. Gestational diabetes and the risk of cardiovascular disease in women: a systematic review and meta-analysis. Diabetologia. 2019;62(6):905–14.
18. Packer CH, Pilliod RA, Chuatoux LR, Caughhey AB, Valent AM. Increased rates of adverse perinatal outcomes in women with gestational diabetes and depression. J Matern Fetal Neonatal Med. 2021;34(23):3862–6.

19. Byrn MA, Penk oksker S. Antenatal Depression and Gestational Diab etes: A Review of Maternal and Fetal Outcomes. Nurs Wome ns Health. 2013;17(1):22–33.

20. Bek a Q, Bow ker S, Savu A, Kin gston D, Johnson JA, Kaul P. Develop ment of Perinatal Mental Illness in Women With Gestational Diabetes Mellitus: A Population-Based Cohort Study. Can J Diabetes. 2018;42(4):350–355.e1.

21. Byrn M, Penkoko sker S. The Relationship Between Gestational Diabetes and Antenatal Depression. J Obstet Gynecol Neonatal Nurs. 2015;44(2):246–55.

22. Pace R, Rahme E, Da Costa D, Das gupta K. Association between gesta tional diabetes mellitus and depression in parents: a retrospective cohort study. CLEP. 2018;10:1827–38.

23. Kozhim annil KB, Pereira MA, Harlow BL. Association Between Diab etes and Gestational Diabetes Mellitus: A Population-Based Study. J Obstet Gynecol Neonatal Nurs. 2015;44(2):350-355.e1.

24. Morrison C, McCook JG, Bailey BA. First trimester depression scores predict development of gestational diabetes mellitus in pregnant rural Appalachian women. J Psychosom Obstet Gynecol. 2016;37(1):21–5.

25. Katon WJ, Russo J, Gavin AR, Melville JL, Katon WJ. Diabetes and Depression in Pregnancy: Is There an Association? Journal of Women’s Health. 2011;20(7):983–9.

26. Wilson CA, Newham J, Rankin J, Ismail K, Reynolds RM, et al. Is an increased risk of perinatal mental disorder in women with gestational diabetes? A systematic review and meta-analysis. Diabet Med. 2020;37(4):602–22.

27. Wilson BL, Dyer JM, Latendresse G, Wong B, Bakoh L. Exploring the Psychosocial Predictors of Gestational Diabetes and Birth Weight. J Obstet Gynecol Neonatal Nurs. 2015;44(6):760–71.

28. Wilson CA, Santorelli G, Dickerson J, Ismail K, Reynolds RM, Simonoff E, et al. Is there an association between anxiety and depression prior to and during pregnancy and gestational diabetes? An analysis of the Born in Bradford cohort. J Affect Disord. 2020;276:345–50.

29. Joseph J, Goldlen SH. Cortisol dysregulation: the bidirectional link between stress, depression, and type 2 diabetes mellitus: Role of cortisol in stress, depression, and diabetes. Ann NY Acad Sci. 2017;1391(1):20–34.

30. Pan A, Lucas M, Sun Q, van Dam RM, Franco OH, Manson JE, et al. Bidirec tional Association Between Depression and Type 2 Diabetes Mellitus in Women. Arch Intern Med [Internet]. 2010 Nov 22 [cited 2022 Apr 4];70(21).

Available from: https://doi.org/10.1001/archinternmed.2010.356.

31. Moulton CD, Pickup J, Ismail K. The link between depression and diabetes: the search for shared mechanisms. Lancet Diabetes Endocrinol. 2015;3(6):461–71.

32. Mendenhall E, Kohrt BA, Norris SA, Ndetei D, Prabhakaran D. Non-com municable disease syndemics: poverty, depression, and diabetes among low-income populations. The Lancet. 2017;389(10072):951–63.

33. McEvans BS, Gianaros PJ. Central role of the brain in stress and adaptation: Links to socioeconomic status, health, and disease: Central links between stress and SES. Ann NY Acad Sci. 2010;1186(1):190–222.

34. Evans GW, Li D, Whipple SS. Cumulative risk and child development. Psychol Bull. 2013;139(6):1342–96.

35. Perinatal Services BC [creator]. British Columbia Perinatal Data Registry [Internet]. Population Data BC [publisher], 2021 [cited 2021 Aug 15]. Available from: http://www.perinatalservicesbc.ca/health-professionals/data-survey/perinatal-data-registry.

36. Canadian Institute for Health Information [creator]. Discharge Abstract Database (Hospital Separations) [Internet]. Population Data BC [publisher], 2020 [cited 2020 Oct 9]. Available from: http://www.popdata.bc.ca/data.

37. British Columbia Ministry of Health [creator]. Medical Services Plan (MSP) Payment Information File [Internet]. Population Data BC [publisher], 2020 [cited 2020 Oct 8]. Available from: http://www.popdata.bc.ca/data.

38. British Columbia Vital Statistics Agency [creator]. Vital Statistics and Births [Internet]. Population Data BC [publisher], 2021 [cited 2021 Jan 26]. Available from: http://www.popdata.bc.ca/data.

39. British Columbia Ministry of Health [creator]. Consolidation File (MSP Registration & Premium Billing) [Internet]. Population Data BC [publisher], 2021 [cited 2021 Feb 1]. Available from: http://www.popdata.bc.ca/data.

40. Ross LE, McLean LM. Anxiety disorders during pregnancy and the post partum period: A systematic review. J Clin Psychiatry. 2006;67(8):1285–98.

41. Barrett J, Woch KE, Gonzalez A, Ali N, Steiner M, Hall GB, et al. Maternal affect and quality of parenting experiences are related to amygdala response to infant faces. Soc Neurosci. 2012;7(3):252–68.

42. Moses-Kolko EL, Perlman SB, Wisner KL, James J, Saul AT, Phillips ML. Abnormally Reduced Dorsomedial Prefrontal Cortical Activity and Effective Connectivity With Amygdala in Response to Negative Emotional Faces in Postpartum Depression. AJP. 2010;167(11):1373–80.

43. Silverman ME, Loudon H, Liu X, Mauro C, Leiter G, Goldstein MA. The neural processing of negative emotion postpartum: a preliminary study of amygdala function in postpartum depression. Arch Womens Ment Health. 2011;14(4):355–9.

44. Silverman ME, Loudon H, Safer M, Protopopescu X, Leiter G, Liu X, et al. Neural Dysfunction in Postpartum Depression: An fMRI Pilot Study. CNS Spectr. 2007;12(11):853–62.

45. Wonch KE, de Medeiros CB, Barrett JA, Dadin A, Cunningham WA, Hall GB, et al. Postpartum depression and brain response to infants: Differential amygdala response and connectivity. Soc Neurosci. 2016;11(6):600–17.

46. DCPG Expert Committee,Feig DS, Berger H, Donovan L, Godbout A, Kader T, et al. 2018 Diabetes and Pregnancy. Can J Diabetes 42 Supplement 1 S255.S282.

47. Stuart EA, Lee BK, Leacy FP. Prognostic score–based balance measures can be a useful diagnostic for propensity score methods in comparative effectiveness research. J Clin Epidemiol. 2013;66(8):S84-S90.e1.

48. Hanley GE, Bickford C, Ip A, Lanphear N, Lanphear B, Weikum W, et al. Association of Epidural Analgesia During Labor and Delivery With Autism Spectrum Disorder in Offspring. JAMA. 2021;326(12):1178.

49. Versteegen M, Bodzak CT, Larkin H, Appleton AA. Maternal depres sion, adverse childhood experiences, and social support in relation to gestational diabetes risk: results from the Albany Infant and Mother Study (AIMS). BMC Pregnancy Childbirth. 2021;21(1):335.

50. Parsons J, Sparrow K, Ismail K, Hunt K, Rogers H, Forbes A. Experiences of gestational diabetes and gestational diabetes care: a focus group and interview study. BMC Pregnancy Childbirth. 2018;18(1):25.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.