Salivary proteome of a Neotropical primate: potential roles in host defense and oral food perception

Fabiola Carolina Espinosa-Gómez, Corresp., Equal first author, 1, 2, 3, Eliel Ruiz-May, Equal first author, 4, Juan Carlos Serio-Silva, 2, Colin A. Chapman, 1, 5, 6, 7

1 Dept. of Anthropology and McGill School of Environment, McGill University, Montreal, Quebec, Canada
2 Red de Biología y Conservación de Vertebrados, Instituto de Ecología AC, Xalapa, Veracruz, Mexico
3 Facultad de Medicina Veterinaria y Zootecnia, Universidad Popular Autónoma del Estado de Puebla, Puebla, Puebla, Mexico
4 Red de Estudios Moleculares Avanzados, Instituto de Ecología AC, Xalapa, Veracruz, Mexico
5 Department of Anthropology, Center for the Advanced Study of Human Paleobiology, George Washington University, Washington DC, Washington DC, United States
6 School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
7 Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an, Xi’an, China

Corresponding Author: Fabiola Carolina Espinosa-Gómez
Email address: fabiolacarolina.espinosa@upaep.mx

Background. Saliva contains a very complex mixture of proteins for defense against microbiological pathogens and for oral food perception. Howler monkeys are Neotropical primates that can consume a mostly leaf diet, they are well known to thrive in highly disturbed habitats where may cope with a diversity of dietary challenges and infection risks. We aimed to describe the salivary proteome of howlers to contribute to better understanding of their physiology. Methods. We analyzed the salivary proteins of wild black howler monkeys (Alouatta pigra), by SDS-PAGE-1-D and Nano LC-MS/MS and categorized them by their function involved in host defense and oral food perception. Results. Our proteomic analysis identified 156 proteins in howler saliva including a number of host defense peptides that are the first line of defense in mammals, such as defensin, cathelicidin, dermcidin, and lactotransferrin, and proteins with anti-bacterial, anti-fungal, and anti-viral capacity, such as IgA, IgG, IgM, BPI, salivary heat shock 70 kDa protein, beta-2-microbulin, and protein S-100. We also identified key proteins necessary for taste perception, including salivary carbonic anhydrase VI, cystatin D, IgA, and fatty acid-binding protein. Proteins to detect astringent foods were identifying, including four members of cystatins (A, B, C and D), lactoperoxidase, and histidine-rich proteins. No chitinase and amylase were identified as would be expected because howlers do not eat insects and little starch. These findings provide basic information to future studies in oral biology, ingestive physiology, and physiological ecology of mammals and non-human primates.
Salivary proteome of a Neotropical primate: potential roles in host defense and oral food perception

Fabiola Carolina Espinosa-Gómez1,2,3*, Eliel Ruiz-May4*, Juan Carlos Serio-Silva2, and Colin A. Chapman1,5

1 Dept. of Anthropology and McGill School of Environment, McGill University, Montreal, Quebec, Canada
2 Red de Biología y Conservación de Vertebrados, Instituto de Ecología AC, Xalapa, México
3 Facultad de Medicina Veterinaria y Zootecnia. Universidad Popular Autónoma del Estado de Puebla, Puebla, México
4 Red de Estudios Moleculares Avanzados, Instituto de Ecología AC, Xalapa, México
5 Department of Anthropology, Center for the Advanced Study of Human Paleobiology, George Washington University, Washington DC, United States.
6 School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
7 Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an, China

* These authors contributed equally to this work.

Corresponding Author: Fabiola Carolina Espinosa-Gómez, 21 sur #1103, Barrio de Santiago, Puebla, Puebla, 72410, México, Email address: fabiolacarolina.espinosa@upaep.mx
Abstract

Background. Saliva contains a very complex mixture of proteins for defense against microbiological pathogens and for oral food perception. Howler monkeys are Neotropical primates that can consume a mostly leaf diet, they are well known to thrive in highly disturbed habitats where may cope with a diversity of dietary challenges and infection risks. We aimed to describe the salivary proteome of howlers to contribute to better understanding of their physiology.

Methods. We analyzed the salivary proteins of wild black howler monkeys (Alouatta pigra), by SDS-PAGE-1-D and Nano LC-MS/MS and categorized them by their function involved in host defense and oral food perception.

Results. Our proteomic analysis identified 156 proteins in howler saliva including a number of host defense peptides that are the first line of defense in mammals, such as defensin, cathelicidin, dermcidin, and lactotransferrin, and proteins with anti-bacterial, anti-fungal, and anti-viral capacity, such as IgA, IgG, IgM, BPI, salivary heat shock 70 kDa protein, beta-2-microbulin, and protein S-100. We also identified key proteins necessary for taste perception, including salivary carbonic anhydrase VI, cystatin D, IgA, and fatty acid-binding protein. Proteins to detect astringent foods were identifying, including four members of cystatins (A, B, C and D), lactoperoxidase, and histidine-rich proteins. No chitinase and amylase were identified as would be expected because howlers do not eat insects and little starch. These findings provide basic information to future studies in oral biology, ingestive physiology, and physiological ecology of mammals and non-human primates.

Introduction

Saliva plays a crucial role handling both nutritious and toxic foods. Saliva maintains oral health by protecting the digestive tract, maintaining tooth strength, and providing antimicrobial activity against bacteria, viruses, and fungus (Fábian et al., 2012). Oral food perception is facilitated by salivary proteins (Canon & Neyraud 2016; Rodrigues et al., 2017; Fábian et al., 2015), so that individuals may choose a nutritious diet and avoid harmful secondary metabolites or toxins found in some foods (Lamy et al., 2017). The function of saliva can vary with diet and its proteome may be influenced by pathogens (Thamadilok et al., 2019; Karasov & Douglas, 2013; Lamy, et al., 2010; Da Costa, et al., 2008). Thus, physical and chemical properties of saliva, specially its proteome, relates to the animal’s health and their ability to feed safely in particular kinds of environment (Lamy & Mau, 2012).

Saliva plays an important role in defense against pathogens. Research on oral biology in humans and other mammal species has identified that salivary proteins and peptides displayed additive and synergistic anti-bacterial, antiviral, and anti-fungal functions (Fábian et al., 2012; Wang, Peterson & Loring, 2014). Salivary components allowing this include: immunoglobulins, chaperone 70 kDa heat shock proteins, lysozyme, amylase, histatins, proline-rich proteins (PRPs), peroxidases, mucins, bactericidal/permeability-increasing protein (BPI), BPI-like proteins, palate lung and nasal epithelial clone proteins (PLUNC), proteins S100, clusterin, defensin, and statherin (Amerongen & Veerman, 2002; Amerongen, Bolscher & Veerman, 2004; Carneiro et al., 2012; Fábian et al., 2012).
Food preferences also may correspond to the expression of some peptides and proteins in saliva, and the taste sensitivity for specific tastants (Salles et al., 2010; Canon & Neyaroud, 2016). The gustatory sensation is the result of the interaction of water-soluble chemicals in the mouth with the taste buds, this interaction is mediated by ions, hormones and salivary proteins that function as tastant-binding proteins (Scott, 2005; Fábián et al., 2015; Canon & Neyaroud, 2016). For instance, sweet-taste sensitivity in humans is related with higher levels of cystatins and lower levels of amylase in saliva (Rodrigues et al., 2017). Other salivary proteins allow fatty acid taste perception (Mounayar et al., 2014), such as carbonic anhydrase VI (CA-VI), cystatin SN, cystatin D, zinc-alpha-2-glycoprotein, fatty-acid binding protein, and proline-rich proteins (PRPs).

Other salivary proteins participate in the detection of astringency when they interact with plant secondary metabolites, such as polyphenols (Horne, Hayes & Lawless, 2002). This tactile sensation represents a warning cue discouraging the ingestion of foods with high concentrations of polyphenols (e.g. tannins), which are a plant defense against herbivory (Freeland, 1991). Salivary proteins precipitate polyphenols preventing its negative physiological effects (Bennick, 2002). It has been found in humans and some mammals, increased levels of some salivary proteins (e.g., basic PRPs, cystatin, statherin, histatins (histidine-rich proteins), mucins, amylase, IgA, glycoprotein 1 and 2) in response to astringent compounds that collaborate with the acceptance of food to make it less aversive and more palatable (Canon & Neyaroud, 2016; Martin, Kay & Torregrosa, 2018; Nayak & Carpenter, 2008; Ployon et al., 2018; Torregrosa et al., 2014).

The diet of herbivorous represents a significant challenge because their foods contain different types and concentrations of plant secondary metabolites (Foley, Iason & McArthur, 1999). Among them, tannins are one of the most studied and they deter herbivore feeding through two principal effects. The first involves making foods unpalatable as they have an astrignent and bitter taste (Horne, Hayes & Lawless, 2002). The second involves binding dietary proteins and digestive enzymes reducing protein and food digestibility (Austin, et al., 1989; Martinez-Gonzalez et al., 2017; Moore et al., 2014; Robbins et al., 1987). Therefore, salivary proteins are the first line of defense against dietary tannins (Shimada, 2006).

Howler monkeys (genus Alouatta) are the most folivorous New World primate and have the widest geographical distribution of any primate in the Americas. These monkeys do well in highly fragmented and perturbed landscapes (Kowalewski et al., 2015; Chaves & Bicca-Marques, 2016), which may mean that they select the right foods and have an effective host-defense system. Their diet is leaf-based or fruit-based according food availability (Dias & Rangel-Negrín, 2015). Their ability to eat fibrous (Espinosa-Gómez et al., 2013) tannin-rich leaves and toxic unripe fruits contribute to their adaptability (Garber, Righini & Kowalewski 2015; Milton 1979). Black howler monkeys (Alouatta pigra) can consume plants with high concentration of tannins (Espinosa-Gómez et al., 2018; Righini, Garber & Rothman, 2017) and these monkeys continuously secrete salivary proteins with tannin-binding affinity (Espinosa-
118 Gómez et al., 2018). Their tannin-binding salivary proteins (TBSPs) might be PRPs, but this
119 remains to be confirmed (Espinosa-Gómez et al., 2018).

120 Black howler monkeys face habitat loss and fragmentation, and thus deal with nutritional
121 stress and a high risk of disease transmission (Kowalewski et al., 2011; Chapman, Gillespie &
122 Goldberg, 2005; Chapman et al., 2013). The objectives of our study are to (i) identify the
123 proteins of whole saliva of black howler monkeys (*Alouatta pigra*) by proteomic analysis, (ii)
124 distinguish proteins/peptides related to oral food perception, and (iii) characterize proteins
125 related with host-defense and antimicrobial properties.

126 **Materials & Methods**

127 **Saliva samples**

128 All research protocols reported here were reviewed and approved by the government of Mexico
129 (SEMARNAT SGPA/DGVS/10426/14) and complied with the legal and ethical guidelines of the
130 IUCN (1998), and of the Mexican authorities (Diario Oficial de la Federación, 1999). We used
131 the saliva samples obtained by FCEG as part of a complementary research project to evaluate the
132 relationship of dietary tannins and tannin-binding salivary proteins (Espinosa-Gómez, 2017,
133 unpublished data).

134 Samples were obtained from 14 free-ranging black howler monkeys occupying four
135 forest fragments near Balancán, Mexico (17°44’05’’N; 91°30’17’’W). This disturbed forest
136 landscape lies within cattle pastures (Pozo-Montuy et al., 2013). Monkeys were darted and
137 anaesthetized by a veterinarian with ketamine hydrochloride (8 mg/kg estimated body mass,
138 Ketaset, Fort Dodge Animal Health, Iowa USA). Once monkeys were stabilized following
139 sedation, the body weight was determined and the saliva flow was stimulated by an intra-
140 muscular administration of the parasympathomimetic compound pilocarpine-hydrochloride (0.5
141 mg/ body mass) (Espinosa-Gómez et al., 2018; Da Costa et al., 2008). The whole saliva was
142 collected from the mouth of each monkey using a micropipette, placed in a tube, and
143 immediately frozen in liquid nitrogen. All saliva samples were transported from the field to the
144 Proteomic Lab at INECOL, AC in Xalapa, Veracruz, México in a cryogenic container and then
145 stored in an ultra freezer at -80°C until analysis.

146 **Saliva preparation and SDS-PAGE**

147 At the lab, saliva aliquots were thawed, cells and debris were removed by centrifugation at
148 16,000 g for 10 min at 4°C, and the supernatant was captured. We determined the salivary total
149 protein concentration by the Bradford method (Bradford, 1976) using bovine serum albumin
150 (BSA) as a standard. Absorbance was measured at 595 nm with a microtiter plate reader
151 (SpectroMAX 340, Molecular Devices, Union City, CA, USA). We fractionated salivary
152 proteins using 12% one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis
153 (SDS-PAGE) following Laemmli (Laemmli, 1970). The 1D-SDS PAGE (8 x 7.3cm x 1.5mm)
154 was run with 30 μg of salivary total protein with SDS loading buffer 4:1 (Biorad, CA, USA).
155 Molecular mass markers (Precision Plus Protein Dual Color Standards, BioRad 1610374, CA,
USA) were run in each gel to calibrate the molecular masses of the salivary proteins. Protein bands were fixed with a mixture of 26% ethanol, 14% formaldehyde, and 60% water for 3 hr, followed by 3 hr in a mixture of 50% methanol and 12% acetic acid (Steck, Leuthard, & Bürk, 1980). We followed the procedures suggested by Beeley et al., (1991) to detect PRPs, which allows PRPs stain pink or pinkviolet. Briefly, gels were stained overnight with a 0.25% Coomassie brilliant blue R-250 solution (Biorad 1610400) in 40% (v/v) methanol and 10% (v/v) acetic acid. We de-stained the protein bands with several changes of 10% acetic acid.

In-gel digestion proteins

The clear proteins bands observed in our protein gels provided sufficient clean samples for proteomic analysis using the Nano LC-MS/MS approach. Protein bands were manually removed from gels and cut into 13 different molecular weight ranges (bands a - m) by excising these regions with a sharp straight edge and then destained with 2.5 mM ammonium bicarbonate (NH4HCO3) in 50 % acetonitrile (ACN), and then dehydrated with 100 μL of 100% ACN. Samples were then reduced with 20 μl of 10 mM DTT in 50 mM NH4HCO3 and incubated for 45 min at 56°C. Subsequently, the samples were cooled to room temperature and proceeded with the alkylation by adding 20 μL of 100 mM iodoacetamide in 50 mM NH4HCO3, and incubating in the dark for 30 min. Then, the samples were washed with 100 μL of 100% ACN for 5 min, then with −100 μL of 5 mM NH4HCO3 for 5 min and then with 100 μL of 100% ACN for 5 min. Finally, samples were dried with CentriVap (Labconco Kansas, Missouri) for 5 min and rehydrated with 10 μL of digestion solution containing 12.5 ng/μL mass spectrometry grade Trypsin Gold (Promega, Madison, WI, USA) in 5 mM NH4HCO3 and incubated in a water bath at 37°C overnight. The reaction was stopped at -80 °C. The peptides were extracted with 30 μL of 50% acetonitrile with 5% formic acid by centrifugation at 1000 x g for 30s and desalted with ZipTip-μC18 tips (Merck Millipore, Darmstadt, Germany) and dried using a CentriVap (Labconco Kansas, Missouri, USA).

Mass spectrometry (Nano LC-MS/MS analysis)

Suspended samples (5 μl of 0.1 % formic acid) were injected into a nanoviper C18 trap column (3 μm, 75 μm X 2 cm, Dionex) at 3 μl min-1 flow rate and separated on an EASY spray C18 RSLC column (2 μm, 75 μm x 25 cm) with a flow rate of 300 nl min-1 connect to an UltiMate 3000 RSLC system (Dionex, Sunnyvale, CA) and interfaced with an Orbitrap FusoinTM TribidTM (Thermo-Fisher Scientific, San Jose, CA) mass spectrometer equipped with an “EASY Spray” nano ion source (Thermo-Fisher Scientific, San Jose, CA). For peptide separation, a chromatographic gradient using MS grade water (solvent A) and 0.1% formic acid in 90% acetonitrile (solvent B) for 30 min was set as followed: 10 min solvent A, 7-20% solvent B within 25 min, 20% solvent B for 15 min, 20-25% solvent B for 15 min, 25-95% solvent B for 20 min, and 8 min solvent A. The mass spectrometer was operated in positive ion mode with nanospray voltage set at 3.5 kV and source temperature at 280°C. External calibrant included caffeine, Met-Arg-Phe-Ala (MRFA), and Ultramark 1621. The mass spectrometer was operated in a data-dependent mode to automatically switch between MS and MS/MS. The survey full-scan
MS spectra were acquired in the Orbitrap analyzer, scanning of mass range was set to 350-1500 m/z at resolution of 120,000 (FWHM) using an automatic gain control (AGC) setting to 4.0e5 ions, maximum injection time to 50 ms, dynamic exclusion 1 at 90S and 10 ppm mass tolerance. A top speed survey scan for 3s were selected for subsequent decision tree-based Orbitrap collision-induced dissociation (CID) or higher-energy collisional dissociation (HCD) fragmentation (Swaney, McAlister & Coon, 2008; Frese et al., 2011). The signal threshold for triggering an MS/MS event was set to 1.0e4 and the normalized collision energy was set to 35 and 30% for CID and HCD, respectively. The AGC of 3.0e4 and isolation window of 1.6 m/z was set for both fragmentations. Additional parameter for CID included activation Q was set to 0.25 ms and injection time to 50 ms. For HCD, first mass was set to 120 m/z and injection time to 100 ms. The settings for decision tree were as follows: for HCD fragmentation charge states 2 or 3 were scan in a range of 650-1200 m/z, charge states 4 were scan in a range of 900-1200 m/z, and charge states 5 were scan in a range of 950-1200 m/z; for CID fragmentation charge states 3 were scan in a range of 650-1200 m/z, charge state 4 were scan in a range of 300-900 m/z, and charge state 5 in scan range of 300-950 m/z. All data were acquired with Xcalibur 4.0.27.10 software (Thermo-Fisher Scientific).

Database search and protein/peptide identification

Raw data were analyzed with Proteome Discoverer 2.1 (PD, Thermo Fisher Scientific Inc.) and subsequent searches were carried out using Mascot server (version 2.4.1, Matrix Science, Boston, MA) and SQUEST HT (Eng et al., 1994). The search with both engines was conducted against Homo sapiens, Macaca fascicularis, Macaca mulatta, and the complete UniProt reference proteome (http://www.uniprot.org/). We included as parameters in the search: full-tryptic protease specificity, two missed cleavage allowed, static modifications covered carbamidomethylation of cysteine (+57.021 Da). Furthermore, dynamic modifications included methionine oxidation (+15.995 Da) and deamidation in asparagine/glutamine (+0.984 Da). For the MS2 method, in which identification was performed at high resolution in the Orbitrap, precursor and fragment ion tolerances of ±10 ppm and ± 0.2Da were applied. Resulting peptide hits were filtered for maximum 1% FDR using the Target Decoy PSM validator. We considered a MASCOT score >20 for proteins identified with two or more peptides and MASCOT score >34 for proteins identified with one single peptide.

Bioinformatic Analysis

Proteins were screened for the predicted presence of N-terminal endoplasmic reticulum (ER) targeting signal peptide (SP) using the Signal P 4.1 program (http://www.cbs.dtu.dk/services/SignalP/, Petersen, et al., 2011). In addition, we used the server Secretome P 2.0 to determine non-classical and leaderless protein secretion in proteins identified in the saliva of monkeys (http://www.cbs.dtu.dk/services/SecretomeP/, Bendtsen et al., 2014). The program MHMM server v. 2.0 were used for the prediction of transmembrane helices in salivary proteins (http://www.cbs.dtu.dk/services/TMHMM/). Proteins were classified base on
GO ontology enrichment of biological processes using David ontology tool (Sherman, & Lempicki, 2009) (https://david.ncifcrf.gov/). We used REVIGO web server (http://revigo.irb.hr/) with a median similarity for the visual representation of the clustering of biological processes.

Search for proteins/peptides related with host-defense and taste sensitivity

To distinguish the salivary proteins related with taste sensitivity (beside with astringent detection in mouth), host defense, and antimicrobial properties (anti-bacterial, antiviral and anti-fungal), we carried out detailed scrutiny of the UniProt functional annotation (http://www.uniprot.org/) and also reviewed papers on salivary proteomics/peptidomics from humans and other animals that have identified proteins with specific functions on immunity and taste sensitivity of food. Most of the salivary proteins related with a specific function in an animal specie, has been identified in several others, which suggest that their function is conserved across species.

Results

Salivary protein separation by SDS-PAGE

We observed similar salivary protein patterns on 1-D electrophoresis gels in all individuals. There were multiple bands (a – m) ranging from 10 to 250 kDa (Figure 1), with the most intense protein bands being located at low molecular weight from 10-15 kDa (k, l, m). However, the intensity of the bands did vary, with the j band being more apparent in individuals P-M1 and P-F1, the band k was more intense in B-F2, and bands l and m displayed a darker and more significant area of staining in B-F2 and P-M1. We visualized a main protein band (j) with an apparent molecular mass between 22-30 kDa that displayed a pink staining, which might be PRP according to Beeley et al., (1991) and described in Espinosa-Gómez et al., (2018).

Identification of salivary proteins by Nano LC-MS/MS

We use proteomics to evaluate all 13-protein bands fractionated on SDS-PAGE-1D; we digested and subjected to LC MS-MS pools of the same protein band from all individuals, and 156 proteins were identified (Table S1). Among these, 55 were predicted with both signal peptide (SP) and transmembrane helices domains (TMHMM), including well-known secreted proteins, such as the Lactoperoxidase (P22079), Lactotransferrin (P02788), Serotransferrin (A5A6I6), the glycosylated Prosaposin (P07602), and the Histidine-rich glycoprotein (P04196). Besides, we were able to predict five non-secreted proteins with TMHMM (Fig. 2A). Using Secretome P 2.0 (http://www.cbs.dtu.dk/services/SecretomeP/, Bendtsen et al., 2004) we predicted ten proteins with a non-classical and leaderless secretion that include for example, Galectin-7 (P47929), Putative ubiquitin-conjugating enzyme E2 N-like (Q5JXB2), Putative ubiquitin-conjugating enzyme E2 N-like (Q5JXB2). After gene ontology enrichment by David Bioinformatics Resources 6.8 (https://david.ncifcrf.gov/, Huang et al., 2009) and clustering by REVIGO web server (http://revigo.irb.hr/, Supek et al., 2011), we obtained a tree map displaying key biological processes associated with howler monkey saliva, including negative regulation of endopeptidase
activity, defense response to fungus, gluconeogenesis, protein folding, cytoskeleton organization, platelet degranulation, and epidermis development. Each of these major groups included several gene ontology (GO) groups (Fig. 2B). The most representative group corresponded to negative regulation of endopeptidase activity that clustered gene ontology, such as proteolysis (GO:0006508), protein stabilization (GO:0050821), retina homeostasis (GO:0001895), retinoic acid metabolism (GO:0042573), negative regulation of endopeptidase activity (GO:0010951), and negative regulation of endothelial cell chemotaxis (GO:2001027).

The second most prominent cluster was the defense response to fungus conglomerating GO like protein kinase A signaling (GO:0010737), complement activation classical pathway GO:0006958 (GO:0006958), defense response to fungus (GO:0050832), response to ethanol (GO:0045471), and zinc ion (GO:0010043). The third most representative cluster named gluconeogenesis gathered the GO oxidation-reduction process (GO:0055114), cellular aldehyde metabolism (GO:0006081), and gluconeogenesis (GO:0006094).

Howler monkey salivary proteins associated with host-defense in mammals

It is widely recognized that salivary proteins have many functional properties, and some have more than one function. According to data available on UniProt functional annotation (http://www.uniprot.org/) and review papers on salivary proteomics/peptidomics from humans and other mammals, we identified 10 proteins with dual function, including oral food perception and host-defense (6.4% of total identified proteins). We also identified proteins related with taste sensitivity or innate/acquired immunity (Fig. 3). We identified 28 salivary proteins/peptides (17.9% of total identified proteins) associated with functions, such as host defense, innate immunity, and antimicrobial properties (anti-bacterial, antiviral and anti-fungal). There were identified cationic peptides, and defense proteins (such as immunoglobulins) that have been reported as effective against parasites, fungi and cancer cells. Table 1 presents the complete list of proteins/peptides identified in saliva of howler monkeys related with host-defense and anti-microbial properties, and the references where the link between these proteins and that immune function has been reported.

Howler monkey salivary proteins associated with oral food perception

We detected 16 proteins in saliva of howler monkeys (10.25% of total identified proteins) related with oral food perception; the complete list is shown in Table 2. There were identified six proteins associated with gustatory sensitivity of sweet, salty, umami, fatty-acids, and pungent flavors. For instance, carbonic anhydrase VI or “gustin” was identified and plays an important role in human taste perception of fatty acids (Morzel et al., 2014). Likewise we identified four types of cystatins, histidine-rich glycoprotein, and IgA, which are associated with a major inhibition of the feeling of astringency and bitter taste (Nayak & Carpenter, 2008; Canon & Neyaroud, 2016; Shimada, 2006).
Discussion

We identified 156 salivary proteins from black howler monkey (Alouatta pigra); a leaf and fruit eating primate that belongs to the most folivorous New World primate genus. The distinct proteins identified belong to most protein families described in mammals (de Sousa-Pereira et al., 2015); we categorized them according their likely function based on previous literature, nevertheless, we only can speculate about the function of these salivary proteins related to host defense and oral food perception in howler monkeys. Some proteins we identified have dual functions in oral food perception and innate immunity, which molecular weights correspond to the protein bands with higher densities in 1D-SDS PAGE (10-17 kDa) as cystatins and histidine-rich glycoprotein. This may indicate they are secreted in higher concentrations in saliva of howlers; however, their functional importance in howler monkey saliva remains to be investigated. We found by LC-MS/MS for the first time in saliva of primates, three types of salivary cystatins (A, B, and D); for instance, in humans have been described three S-type cystatins and C-cystatin (de Sousa-Pereira et al., 2014; Vitorino et al., 2004), also only S-type cystatins have been found in apes as western lowland gorillas (Gorilla gorilla) and chimpanzees (Pan troglodytes) (Thamadilok et al., 2019). Our results emphasize the essential physiological role that salivary proteins may have in maintaining the host-defense capacity and evaluating food properties, including taste and astringency. To the best of our knowledge, our study provides the first evaluation of the salivary proteome of a wild Neotropical primate. We provide a high number of predicted intracellular proteins - up to 57.05 % of total identified proteins. Some proteins were predicted to have non-classical secretion (Fig. 2A, Table S1), thus, further experimental validation of their subcellular location is needed.

Salivary proteins linked with host-defense in mammals

A major finding of our research with howler monkeys is the identification salivary proteins and cationic molecules belonging to the two major antimicrobial peptides families: cathelicidins and defensins that rapidly inactivate infectious agents (Wiesner & Vilcinskas, 2010; Zanetti, 2005). Cathelicidins have been identified in cattle, sheep, rat, and dogs, but not in humans (de Sousa-Pereira et al., 2015). We also identified the antimicrobial peptide dermcidin that is recognized as a first line of skin defense in primates and has been identified in eccrine sweat glands of humans. Some argue that dermcidin is not found in other body fluids, such as nasal secretions, tears, saliva, semen, milk, and urine (Schittek, 2012); however, we identified this peptide in saliva of howler monkeys and it has been found in tears and cervicovaginal fluid in humans (Shaw, Smith & Diamandis, 2007). Dermcidin-homologous genes exist only in apes (Pan troglodytes, Gorilla gorilla, Pongo abelii) and Old and New World monkeys (Schittek, 2012).

Our proteomic analysis identified four members of the cystatin family (A, B, C, and D) in saliva of howlers that may inhibit the action of endogenous, bacterial, and parasitic protozoan proteases (Fábián et al., 2012). Similarly, the GO analysis of the salivary proteins indicates the most representative group corresponded to negative regulation of endopeptidase activity (Fig. 2B). Cystatins comprise a large superfamily of related proteins with diverse biological activities.
found in variable tissues, but salivary cystatins are important due to their functions in immunomodulation, antimicrobial, and antiviral (Dickinson, 2002). A number of members of this protein family have been identified in saliva of humans (Carneiro et al., 2012) and in different mammals (e.g., cystatin D has been found in rat, cystatin S in dogs, cystatin C is present in Artiodactyla, Rodentia, Lagomorpha, Carnivora, and Primates (de Sousa-Pereira et al., 2015).

As one would expect, we identified carbonic anhydrase VI (CA-VI), which is an active mammalian isozyme specifically secreted by salivary glands that have multiple functions (Kivelä et al., 1999). The CA-family are zinc metalloenzymes responsible for the conversion of carbon dioxide to bicarbonate (CO2 + H2O ⇌ HCO3), which buffers saliva. CA-VI also has the ability to bind enamel and act in pH homeostasis of oral cavity and prevention of dental caries (Kimoto et al., 2006). Adding strength to the host-defense capacity of *Alouatta pigra*, we identified lactoperoxidase LPO, bactericidal permeability-increasing protein BPI, and histidine-rich glycoprotein, that are primarily responsible for innate immunity (Bingle & Craven, 2004; Marra et al., 1990; Shin et al., 2011; Wiesner et al., 2010; Wijkstrom-Frei, et al., 2003). The microglobulin we identified is critical for immune modulation in vertebrate animals and has been identified as a biomarker for cancer cells malignancies (Li et al., 2016). Salivary heat shock 70 kDa protein may represent an important immune defense mechanism in saliva of howlers, as this protein has been identified in humans to bind bacteria and increases the release of proinflammatory cytokines from immune cells (Fábián, et al., 2012; 2009). It is important to emphasize the presence of three salivary secretory immunoglobulins in saliva of howlers as IgA, IgG, IgM and other five isoforms (Table 1). IgA is known to induce an antigen-unspecific manner by commensal microbiota; therefore, these secretory antibodies may bind multiple antigens and are thought to eliminate commensal bacteria and self-antigens to avoid systemic recognition (Schroeder & Cavacini, 2010; Teeuw et al., 2004).

Several salivary proteins related with innate immunity of mammals were not identified in black howler monkeys (e.g., mucins de Sousa-Pereira, et al., 2015). The failure to detect mucins may be due to the difficulty of assessing these proteins because of their large molecular mass, high viscosity, and poor solubility in aqueous solvents (Herzberg et al., 1979). However, we recognized that our preparation procedure of saliva samples, using 16000g x 10 min to separate the supernatant could result in loss of mucins in the precipitate. Other important proteins highly related to oral homeostasis, such as sthaterins and PRPs were also not identified.

We actually observed pink-staining bands in our SDS-PAGE gels, following the procedures suggested by Beeley et al. (1991) to detect PRPs, suggesting the presence of these proteins; however, some factors in our method could have interfered to detect PRPs such as the centrifugation process, and the use of trypsin for the protein digestion. Moreover, it is known that the identification of PRPs by mass spectrometry is unusually difficult (Leymarie et al., 2002); it could be possible that multiple PTM generated specific mass spectrum of modified peptides, which mass/charge (m/z) values could match with public databases (Kim, Zhong & Pandey, 2016). It is also possible that the sequences of PRPs are highly specific in *Alouatta pigra*.
Many of the proteins identified in howler monkey saliva are likely components of the early mammalian host defense against infection (de Sousa-Pereira, et al., 2015). However, howler monkey saliva may have evolved a specific set of protein families to help them cope with infection risk and permit them to deal with habitat loss, fragmentation, and nutritional stress (Chapman et al., 2005; Chapman et al., 2013). Zoonotic protozoa infection is related to degree of human contact with wild howler monkeys (Kowalewski et al., 2011).

Salivary proteins linked with taste perception and food preference

We identified several important proteins in saliva of howler monkeys that might allow them to be selective and discerning while feeding, likely facilitate their feeding selectivity. Salivary proteins to perceive beneficial traits of food were found (e.g., CA-VI, lactotransferrin, ER-Golgi intermediate compartment 53 kDa protein, microbulin, defensing, cystatin D, fatty acid-binding protein, salivary heat shock 70 kDa protein, and IgA). We also identified salivary proteins that have been related to acceptance/detection of bitter and astringent solutions in humans, which may help howler monkeys to perceive and cope with negative characteristics of food, such as bitterness and astringency (related to plant secondary metabolites and toxic compounds) including cystatins (Desamou et al., 2012; Morzel et al., 2014; Mounayar et al., 2014; Quintana et al., 2009), histidine-rich glycoprotein (Dinnella et al., 2010), albumin and IgA (Desamou et al., 2012). The feeding flexibility of howler monkeys enables them to thrive in small and disturbed habitat patches, where food scarcity is common (Chaves & Bicca-Marques, 2016). To our knowledge, physiological studies on taste in howler monkeys have not been conducted and there are no data of taste detection thresholds or on the ability to discriminate between different qualities of tastants (Hernández-Salazar, Dominy & Laska, 2015). Consequently, for now we can only assume that the salivary proteins that we identified help these primates to choose the right diet.

Humans can differentiate among five flavors: sweet, sour, salty, bitter and umami (Van Dongen et al., 2012); although recently it has been proposed that humans can taste fatty acids (Mattes, 2011). Generally, it is accepted that each taste quality in food is related to its nutritional content (e.g., sweetness is associated with sugar, mono, and disaccharides; saltiness with sodium and protein content (van Dongen et al., 2012); and umami with sodium and protein (van Langeveld et al., 2017). Also, gustatory stimuli categorized as bitter and sour are associated with compounds that are potentially harmful (e.g., free protons or organic acid; bitter taste is related to some toxins, Lamy et al., 2016).

Howler monkeys are herbivorous energy-maximizers and their diet is mainly leaves and ripe/unripe fruits (Chapman, 1987; Chapman, 1988; Righini, Garber & Rothman, 2017), but they can feed only on leaves for extended periods (Behie & Pavelka, 2005). A fruit-based diet is linked with a low protein intake and a decrease in mineral concentration (Silver et al., 2000), which may require selecting protein-rich and mineral-rich food items. For this purpose, howlers may benefit by secreting salivary proteins associated with gustatory sensitivity of salty and umami flavors (e.g., beta-defensin, CA-VI; cystatin D, and fatty acid-binding protein, IgA,
A leaf-diet is a diet poor in energy and fatty-acids, but high in fiber and often tannins (Righini, Garber & Rothman, 2017; Espinosa-Gómez et al., 2018), which makes selecting food difficult (Silver et al., 2000). Under these conditions, monkeys should select food items high in energy (carbohydrates, fatty-acids), but low in PSMs (tannins). Some studies in humans have found a relationship between sweet taste sensitivity and salivary proteins as cystatins (Rodrigues et al., 2019) and CA-VI (Rodrigues et al., 2017). We found in howler monkeys saliva four varieties of cystatins (Table 1 and 2), which may help them to increase their sensitivity for sweet foods, although it remains to be investigated. For fatty-acids or lipids, it has been shown that these nutrients are important in the diet of howler monkeys (Righini, Garber & Rothman, 2017) and free fatty acids are one of the most abundant classes of nutrient metabolites in black howler monkeys foods (Amato et al., 2017). CA-VI or “gustin” plays principal role in taste sensitivity of fatty acids and sweet, salty, and sour flavors (Feeney & Hayes, 2014).

Corresponding to howler monkeys’ ability to feed on tannin-rich diet (Espinosa-Gómez et al., 2015; Espinosa-Gómez et al. 2018), we identified several salivary proteins that have been related with the capacity to accept astringent and bitter foods e.g., cystatins (Dsamou et al., 2012; Dinella et al., 2010; Quintana et al., 2009), glyceraldehyde-3-phosphate (Quintana et al., 2009), lactoperoxidase (Morzel et al., 2014), histidine-rich glycoproteins (Dinella et al., 2010), and albumin (Dsamou et al., 2012) (Table 2). PRPs, histatins, statherins, cystatins, and amylase are salivary proteins with considerable affinity for tannins and are involved in astringency and bitter taste (Lamy et al., 2016; Torregrosa et al., 2014)). We did not identify the well-known salivary PRPs and statherins identified as first line of defense against tannins (Shimada, 2006). However, we observed in our electrophoresis gels strong bands with pink-staining that may indicate the presence of PRPs (Beeley et al., 1991). Similarly, mucins also seem to have a role in astringency, but we did not identify mucins. This may be linked to their high molecular mass, high viscosity, and poor solubility in aqueous solvents (Lamy et al., 2010).

This study supports the suggestion that α-amylase is not a component of saliva of animals feeding only on plants due their low ingestion of starch (Boehlke, Zierau & Hannig, 2015), as this enzyme was not identified in saliva of howlers. Also, chitinase was not found in our proteomic analysis, which is consistent with howlers’ feeding behavior as this protein has been identified in insectivorous-omnivorous non-human primates (Tabata et al., 2019).

Conclusions

Our research characterized the salivary protein of wild black howler monkeys and for the first time used a proteomic approach. We identified salivary proteins involved in host defense and oral food perception that helps understand the ecological adaptability of this species. However, for now we can only speculate that their salivary protein array is an advantage to face infection risk and low quality diets present in disturbed habitats (Chapman et al., 2013; Chapman et al., 2005). Salivary protein composition correlates with the feeding behavior of herbivorous primary feeders with energy-maximizing strategy. We also identified several important proteins involved
with detection of astringency and bitterness. Correspondingly to their low starch and
invertebrates-free diet, we did not identify salivary amylase or chitinase. The identification of 28
proteins in saliva of howlers that have been described with anti-bacterial, anti-fungal, and anti-
viral capacity, might be involved to facilitate this species’ ecological adaptability.

Acknowledgements
We thank Javier Hermida (DVM) for his professional support during the capture of the monkeys.
We especially appreciate the work and dedication of field assistants Dolores Tejero, Antonio
Jauregui, Monserrat Ayala, Celina Oliva, and Tonatiuh Fernando. We are also very grateful to
José Miguel Elizalde-Contreras for his invaluable advice and work at the proteomic lab. The
authors thank to Marcus Clauss for helpful comments on this manuscript.

References
Amato, K. R., Ulanov, A., Ju, K. S., & Garber, P. A. 2017. Metabolomic data suggest regulation
of black howler monkey (Alouatta pigra) diet composition at the molecular level.
American Journal of Primatology, 79(4), 1-10.
Amerongen, A. V. & Veerman, E. C. 2002. Saliva-the defender of the oral cavity. Oral Diseases,
8(1), 12-22.
Amerongen, A. V., Bolscher, J. G. M., & Veerman, E. C. I. 2004. Salivary proteins: protective
and diagnostic value in cariology? Caries Research, 38(3), 247-253.
Austin, P.J., Suchar, L. A., Robbins CT, Hagerman AE. 1989. Tannin-binding proteins in saliva
of deer and their absence in saliva of sheep and cattle. Journal of Chemical Ecology,
15(4), 1335-1347.
Balbin, M., Hall, A., Grubb, A., Mason, R. W., Lopez-Otin, C., & Abrahamson, M. 1994.
Structural and functional characterization of two allelic variants of human cystatin D
sharing a characteristic inhibition spectrum against mammalian cysteine proteinases.
Journal of Biological Chemistry, 269(37), 23156-23162.
Becerra, L., Soares, R.V., Bruno, L.S., Siqueira, C.C., Oppenheim, F.G., Offner, G.D., &
Troxler, R.F. 2003. Patterns of secretion of mucins and non-mucins glycoproteins in
human submandibular/sublingual secretion. Archives of Oral Biology, 48(2), 147-154.
Beeley JA, Sweeney D, Lindsay JC, Buchanan ML, Sarna L & Khoo KS. 1991. Sodium dodecyl
sulphate-polyacrylamide gel electrophoresis of human parotid salivary proteins.
Electrophoresis, 12(12), 1032-1041.
Behie, A. M., & Pavelka, M. S. 2005. The short-term effects of a hurricane on the diet and
activity of black howlers (Alouatta pigra) in Monkey River, Belize. Folia Primatologica,
76(1), 1-9.
Bendtsen, J.D., Jensen, L.J., Blom, N., von Heijne, G. and Brunak, S., 2004. Feature-based
prediction of non-classical and leaderless protein secretion. Engineering, Design and
Selection, Volume 17, Issue 4, April 2004, Pages 349–356,
https://doi.org/10.1093/protein/gzh037
Bennick A. 2002. Interaction of plant polyphenols with salivary proteins. Critical Reviews in Oral Biology & Medicine 13(2), 184-196.

Biesbrock, A. R., Reddy, M. S., & Levine, M. J. 1991. Interaction of a salivary mucin-secretory immunoglobulin A complex with mucosal pathogens. Infection and immunity, 59(10), 3492-3497.

Bingle, C. D., & Craven, C. J. 2004. Meet the relatives: a family of BPI-and LBP-related proteins. Trends in Immunology, 25(2), 53-55.

Blaydon, D. C., Nitoiu, D., Eckl, K. M., Cabral, R. M., Bland, P., Hausser, I., and Zvulunov, A. 2011. Mutations in CSTA, encoding Cystatin A, underlie exfoliative ichthyosis and reveal a role for this protease inhibitor in cell-cell adhesion. The American Journal of Human Genetics, 89(4), 564-571.

Boehlke, C., Zierau, O., & Hannig, C. 2015. Salivary amylase--The enzyme of unspecialized euryphagous animals. Archives of Oral Biology, 60(8), 1162-1176.

Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72, 248-254.

Canon F, Neyraud E. 2017. Interactions between saliva and flavour compounds. In: Guichard E, Salles C, Morzel M, Le Bon AM, ed. Flavour: From food to perception, John Wiley & Sons. 284-309.

Carneiro, L. G., Venuleo, C., Oppenheim, F. G., & Salih, E. 2012. Proteome data set of human gingival crevicular fluid from healthy periodontium sites by multidimensional protein separation and mass spectrometry. Journal of periodontal research, 47(2), 248-262.

Chapman, C. A., Ghai, R., Jacob, A., Koojo, S. M., Reyna-Hurtado, R., Rothman, J. M., & Goldberg, T. L. 2013. Going, going, gone: a 15-year history of the decline of primates in forest fragments near Kibale National Park, Uganda. In: Marsh LK, Chapman CA (eds) Primates in fragments: complexity and resilience. Springer, New York, NY, p 89−100.

Chapman, C. A., Gillespie, T. R., & Goldberg, T. L. 2005. Primates and the ecology of their infectious diseases: How will anthropogenic change affect host-parasite interactions? Evolutionary Anthropology 14(4), 134-144.

Chapman, C.A. 1987. Flexibility in diets of three species of Costa Rican primates. Folia Primatologica 49:90-105.

Chapman, C.A. 1988. Patterns of foraging and range use by three species of neotropical primates. Primates 29:177-194.

Chaves, Ó. M., & Bicca-Marques, J. C. 2016. Feeding strategies of brown howler monkeys in response to variations in food availability. PLoS One, 11(2), e0145819. doi:10.1371/journal.pone.0145819

Da Costa, G., Lamy, E., Capela e Silva, F., Andersen, J., Sales Baptista, E., Coelho, A. 2008. Salivary amylase induction by tannin-enriched diets as a possible countermeasure against tannins. Journal of Chemical Ecology 34(3), 376-387.
Dale, B. A., & L. P. Fredericks. (2004). Antimicrobial peptides in the oral environment: expression and function in health and disease, p. 223-251. In Gallo R. L. (ed.), Antimicrobial peptides in human health and disease. Horizon Bioscience, Wymondham, United Kingdom.

de Sousa-Pereira, P., Cova, M., Abrantes, J., Ferreira, R., Trindade, F., Barros, A., Gomes, P., Colac, B., Amado, F., Esteves, P., & Vitorino, R. 2015. Cross-species comparison of mammalian saliva using an LC–MALDI based proteomic approach. Proteomics, 15(9), 1598-1607.

Dinnella, C., Recchia, A., Vincenzi, S., Tuorila, H. and Monte Leone, E. (2010) Temporary modification of salivary protein profile and individual responses to repeated phenolic astringent stimuli. Chemical Senses, 35(1), pp. 75–85.

Dsamou, M., Palicki, O., Septier, C., Chabanet, C., Lucchi, G., Ducoroy, P., Chagnon, M. C. and Morzel, M. 2012. Salivary protein profiles and sensitivity to the bitter taste of caffeine. Chemical Senses, 37(1), pp. 87–95.

Diario Oficial de la Federación. 1999. Norma Oficial Mexicana NOM-062-ZOO-1999, 22 de Agosto de 2001.

Dias, P. A. D., & Rangel-Negrín, A. 2015. Diets of howler monkeys. In Howler monkeys (pp. 21-56). Springer, New York, NY.

Dickinson, D. P. 2002. Salivary (SD-type) cystatins: over one billion years in the making—But to what purpose? Critical Reviews in Oral Biology & Medicine, 13(6), 485-508.

Doumas, S., Kolokotronis, A., & Stefanopoulos, P. (2005). Anti-inflammatory and antimicrobial roles of secretory leukocyte protease inhibitor. Infection and Immunity, 73(3), 1271-1274. e0208317. https://doi.org/10.1371/journal.pone.0208317

Eng, J. K., McCormack, A. L., & Yates, J. R. 1994. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society for Mass Spectrometry, 5(11), 976-989.

Espinosa-Gómez, F. C., Serio-Silva, J. C., Santiago-García, J. D., Sandoval-Castro, C. A., Hernández-Salazar, L. T., Mejía-Varas, F., Ojeda-Chávez J. & Chapman, C. A. (2018). Salivary tannin-binding proteins are a pervasive strategy used by the folivorous/frugivorous black howler monkey. American Journal of Primatology, 80(2), e22737.

Espinosa-Gómez, F., Gómez-Rosales, S., Wallis, I. R., Canales-Espinosa, D., & Hernández-Salazar, L. 2013. Digestive strategies and food choice in mantled howler monkeys Alouatta palliata mexicana: bases of their dietary flexibility. Journal of Comparative Physiology B, 183(8), 1089-1100.

Fábián, T. K., Beck, A., Fejérdy, P., Hermann, P., & Fábián, G. 2015. Molecular mechanisms of taste recognition: considerations about the role of saliva. International Journal of Molecular Sciences, 16(3), 5945-5974.

Fábián, T. K., Gótaí, L., Beck, A., Fábián, G., & Fejérdy, P. 2009. The Role of Molecular Chaperones (HSPAs/HSP70s) in Oral Health and Oral Inflammatory Diseases: A
Fábián, T. K., Hermann, P., Beck, A., Fejérdy, P., & Fábián, G. 2012. Salivary defense proteins: their network and role in innate and acquired oral immunity. International Journal of Molecular Sciences, 13(4), 4295-4320.

Feeney, E. L., & Hayes, J. E. 2014. Exploring associations between taste perception, oral anatomy and polymorphisms in the carbonic anhydrase (gustin) gene CA6. Physiology & Behavior, 128, 148-154.

Foley, W.J., Iason, G.R., & McArthur, C., 1999. Role of plant secondary metabolites in the nutritional ecology of mammalian herbivores: How far have we come in 25 years? In: Jung HJ, Fahey GC., (ed). Nutritional ecology of herbivores: proceedings of the Vth International Symposium on the Nutrition of Herbivores. American Society of Animal Science, Savoy, Illinois, pp 130-209.

Freeland WJ. 1991. Plant secondary metabolites: biochemical coevolution with herbivores. In: Palo T, Robbins C. ed. Plant defenses against mammalian herbivory. Boca Raton, FL Florida: CRC Press, 61-81.

Frese, C. K, Altelaar, A. F. M., Henrich, M. L., Nolting, D., Zeller, M., Griep-Raming, J., Heck, A. J. R., & Mohammed, S. 2011. Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos. Journal of proteome research, 10(5), 2377-2388.

Garber, P. A., Righini, N., & Kowalewski, M. M. 2015. Evidence of alternative dietary syndromes and nutritional goals in the genus Alouatta. In Howler monkeys (pp. 85-109). Springer, New York, NY.

Geisberger, R., Lamers, M., & Achatz, G. 2006. The riddle of the dual expression of IgM and IgD. Immunology, 118(4), 429-437.

Glander KE. 1982. The impact of plant secondary compounds on primate feeding behavior. American Journal of Physical Anthropology 25(S3), 1-18.

Groenink, J., Walgreen-Weterings, E., Nazmi, K., Bolscher, J. G. M., Veerman, E. C. I., Van Winkelhoff, A. J., & Nieuw Amerongen, A. V. 1999. Salivary lactoferrin and low-Mr mucin MG2 in Actinobacillus actinomycetemcomitans-associated periodontitis. Journal of clinical periodontology, 26(5), 269-275.

Hayakawa, T., Yamashita, K., Ohuchi, E., & Shinagawa, A. 1994. Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP-2). Journal of cell science, 107(9), 2373-2379.

Henskens, Y. M., Veerman, E. C., & Nieuw Amerongen, A. V. 1996. Cystatins in health and disease. Biological Chemistry-Hoppe Seyler, 377(2), 71-86.

Herzberg, M. C., Levine, M. J., Ellison, S. A., and Tabak, L. A. 1979. Purification and characterization of monkey salivary mucin. Journal of Biological Chemistry, 254(5), 1487-1494.
Horne, J., Hayes, J., & Lawless, H. T. 2002. Turbidity as a measure of salivary protein reactions with astringent substances. Chemical Senses, 27(7), 653-659.

Jensen, J. L., Xu, T., Lamkin, M. S., Brodin, P., Aars, H., Berg, T., & Oppenheim, F. G. 1994. Physiological regulation of the secretion of histatins and statherins in human parotid saliva. Journal of dental research, 73(12), 1811-1817.

Karasov, W., and Douglas, A. E. 2013. Comparative digestive physiology. Comprehensive Physiology. 3(2): 741–783. doi:10.1002/cphy.c110054.

Kim, M. S., Zhong, J., & Pandey, A. 2016. Common errors in mass spectrometry-based analysis of post-translational modifications. Proteomics, 16(5), 700-714.

Kimoto, M., Kishino, M., Yura, Y., & Ogawa, Y. 2006. A role of salivary carbonic anhydrase VI in dental plaque. Archives of Oral Biology, 51(2), 117-122.

Kivelä, J., Parkkila, S., Parkkila, A. K., Leinonen, J., & Rajaniemi, H. 1999. Salivary carbonic anhydrase isoenzyme VI. The Journal of Physiology, 520(2), 315-320.

Kowalewski, M. M., Garber, P. A., Cortés-Ortiz, L., Urbani, B., & Youlatos, D. (Eds.). 2015. Howler monkeys: behavior, ecology, and conservation. Springer. ISBN: 978-1-4939-1959-8

Kowalewski, M. M., Salzer, J. S., Deutsch, J. C., Raño, M., Kuhlenschmidt, M. S., & Gillespie, T. R. 2011. Black and gold howler monkeys (Alouatta caraya) as sentinels of ecosystem health: patterns of zoonotic protozoa infection relative to degree of human–primate contact. American Journal of Primatology, 73(1), 75-83.

Lemmleri UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685.

Lamy, E., & Mau, M. 2012. Saliva proteomics as an emerging, non-invasive tool to study livestock physiology, nutrition and diseases. Journal of Proteomics, 75(14), 4251-4258.

Lamy, E., Graça, G., da Costa, G., Franco, C., e Silva, F. C., Baptista, E. S., & Coelho, A. V. 2010. Changes in mouse whole saliva soluble proteome induced by tannin-enriched diet. Proteome science, 8(1), 65.

Lamy, E., Pinheiro, C., Rodrigues, L., Capela-Silva, F., Lopes, O., Tavares, S., & Gaspar, R. 2016. Determinants of tannin-rich food and beverage consumption: oral perception vs. psychosocial aspects.

Lamy, E., Rodrigues, L., Louro, T.M., & Silva, F.C. (2017). The role of saliva in food sensory perception: relevant knowledge to design healthy foods. Mendez-Vilas,A. (Eds) Science within Food: Up-to Date Advances on Research and Educational Ideas, Formatex Research Center.

Leymarie, N., Berg, E. A., McComb, M. E., O'Connor, P. B., Grogan, J., Oppenheim, F. G., & Costello, C. E. 2002. Tandem mass spectrometry for structural characterization of proline-rich proteins: application to salivary PRP-3. Analytical chemistry, 74(16), 4124-4132.
Li, L., Dong, M., & Wang, X. G. (2016). The implication and significance of beta 2 microglobulin: A conservative multifunctional regulator. Chinese Medical Journal, 129(4), 448.

Lorenz, E., Muhlebach, M. S., Tessier, P. A., Alexis, N. E., Hite, R. D., Seeds, M. C., Peden, D.B. & Meredith, W. 2008. Different expression ratio of S100A8/A9 and S100A12 in acute and chronic lung diseases. Respiratory medicine, 102(4), 567-573.

Lupetti, A., Paulusma-Annema, A., Welling, M. M., Senesi, S., van Dissel, J. T., & Nibbering, P. H. 2000. Candidacidal activities of human lactoferrin peptides derived from the N terminus. Antimicrobial agents and chemotherapy, 44(12), 3257-3263.

Marra, M. N., Wilde, C. G., Griffith, J. E., Sable, J. L., & Scott, R. W. 1990. Bactericidal/permeability-increasing protein has endotoxin-neutralizing activity. The Journal of Immunology, 144(2), 662-666.

Martin, L. E., Kay, K. E., & Torregrossa, A. M. 2019. Bitter-Induced Salivary Proteins Increase Detection Threshold of Quinine, But Not Sucrose. Chemical senses. 44(6), 379–388.

Martinez-Gonzalez, A. I., Díaz-Sánchez, Á. G., de la Rosa, L. A., Vargas-Quequena, C. L., Bustos-Jaimes, L., & Alvarez-Parrilla, E. 2017. Polyphenolic Compounds and Digestive Enzymes: In Vitro Non-Covalent Interactions. Molecules, 22(4), 1-24. doi:10.3390/molecules22040669

Mattes, R.D. Accumulating evidence supports a taste component for free fatty acids in humans. Physiology & Behavior. 2011, 104, 624–631.

McArthur C, Sanson GD & Beal AM. 1995. Salivary proline-rich proteins in mammals: roles in oral homeostasis and counteracting dietary tannin. Journal of Chemical Ecology 21(6), 663-691.

McHeyzer-Williams, M., Okitsu, S., Wang, N., & McHeyzer-Williams, L. 2012. Molecular programming of B cell memory. Nature reviews Immunology, 12(1), 24.

Mehrotra, R., Thorton, D. J., & Sheehan, J. K. 1998. Isolation and physical characterization of the MUC7 (MG2) mucin from saliva: evidence for self-association. Biochemical Journal, 334(2), 415-422.

Milton, K. 1979. Factors influencing leaf choice by howler monkeys: a test of some hypotheses of food selection by generalist herbivores. The American Naturalist, 114(3), 362-378.

Martin L E, Nikonova LV, Kay K, Paedae AB, Contreras RJ, Torregrossa AM.2018. Salivary proteins alter taste-guided behaviors and taste nerve signaling in rat. Physiology & behavior, 184, 150-161.

Moore, B.D., Andrew, R.L., Külheim, C., & Foley, W. J. 2014. Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytologist 201(3), 733-750.

Morzel, M., Chabanet, C., Schwartz, C., Lucchi, G., Ducoroy, P., & Nicklaus, S. 2014. Salivary protein profiles are linked to bitter taste acceptance in infants. European journal of pediatrics, 173(5), 575-582.
Motoyama, J. P. L., Kim-Motoyama, H., Kim, P., Nakagama, H., Miyagawa, K., & Suzuki, K. 2007. Identification of dermcidin in human gestational tissue and characterization of its proteolytic activity. Biochemical and Biophysical Research Communications, 357(4), 828-833.

Mounayar, R., Morzel, M., Brignot, H., Tremblay-Franco, M., Canlet, C., Lucchi, G., Ducoroy P, Feron, G. & Neyraud, E. 2014. Salivary markers of taste sensitivity to oleic acid: a combined proteomics and metabolomics approach. Metabolomics, 10(4), 688-696.

Nacken, W., Roth, J., Sorg, C., & Kerkhoff, C. 2003. S100A9/S100A8: Myeloid representatives of the S100 protein family as prominent players in innate immunity. Microscopy research and technique, 60(6), 569-580.

Naumann, H. D., Tedeschi, L. O., Zeller, W. E., and Huntley, N. F. 2017. The role of condensed tannins in ruminant animal production: advances, limitations and future directions. Revista Brasileira de Zootecnia, 46(12), 929-949.

Nayak, A., & Carpenter, G. 2008. A physiological model of tea-induced astringency. Physiology & Behavior 95(3), 290-294.

Oppenheim, F. G., Xu, T., McMillian, F. M., Levitz, S. M., Diamond, R. D., Offner, G. D., & Troxler, R. F. 1988. Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungicidal effects on Candida albicans. Journal of Biological Chemistry, 263: 7472±7477.

Petersen, T.N., Brunak, S., von Heijne, G., & Nielsen, H. 2011. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nature Methods, 8, 785–786

Ployon, S., Morzel, M., Belloir, C., Bonnotte, A., Bourillot, E., Briand, L., Lesniewska, E., Lherminier, J., Aybeke, E. & Canon, F. 2018. Mechanisms of astringency: Structural alteration of the oral mucosal pellicle by dietary tannins and protective effect of bPRPs. Food chemistry, (253), 79-87.

Pozo-Montuy, G., Serio-Silva, J. C., Chapman, C. A., & Bonilla-Sánchez, Y. M. 2013. Resource use in a landscape matrix by an arboreal primate: evidence of supplementation in black howlers (Alouatta pigra). International Journal of Primatology, 34(4), 714-731.

Quintana, M., Palicki, O., Lucchi, G., Ducoroy, P., Chambon, C., Salles, C., & Morzel, M. 2009. Short-term modification of human salivary proteome induced by two bitter tastants, urea and quinine. Chemosensory Perception, 2(3), 133-142.

Righini, N., Garber, P. A., & Rothman, J. M. 2017. The effects of plant nutritional chemistry on food selection of Mexican black howler monkeys (Alouatta pigra): the role of lipids. American journal of primatology, 79(4), 1-15.

Robbins, C.T., Hanley, T. A., Hagerman, A. E., Hjeljord, O., Baker, D. L., Schwartz, C. C., & Mautz, W.W. 1987. Role of tannins in defending plants against ruminants: reduction in protein availability. Ecology 68(1), 98-107.

Rodrigues, L., Costa, G., Cordeiro, C., Pinheiro, C., Amado, F., & Lamy, E. 2017. Salivary proteome and glucose levels are related with sweet taste sensitivity in young adults. Food & Nutrition Research, 61(1), 1389208.
Rodrigues, L., Espanca, R., Costa, A. R., Antunes, C. M., Pomar, C., Capela-Silva, F., Pinheiro, C.C., Domingues, P., Amado F. & Lamy, E. 2019. Comparison of salivary proteome of children with different sensitivities for bitter and sweet tastes: association with body mass index. International Journal of Obesity, 43(4), 701-712.

Ross, S. C., & Densen, P. 1984. Complement deficiency states and infection: epidemiology, pathogenesis and consequences of neisserial and other infections in an immune deficiency. Medicine, 63(5), 243-273.

Salazar, L. T. H., Dominy, N. J., & Laska, M. 2015. The sensory systems of Alouatta: Evolution with an eye to ecology. In Howler monkeys (pp. 317-336). Springer, New York, NY.

Salles, C., Chagnon, M. C., Feron, G., Guichard, E., Laboure, H., Morzel, M., Semon, E., Tarrega, A. & Yven, C. 2010. In-mouth mechanisms leading to flavor release and perception. Critical reviews in food science and nutrition, 51(1), 67-90.

Schitte, B. 2012. The multiple facets of dermcidin in cell survival and host defense. Journal of innate immunity, 4(4), 349-360.

Schroeder, H. W., & Cavacini, L. 2010. Structure and function of immunoglobulins. Journal of Allergy and Clinical Immunology, 125(2), S41-S52.

Scott, K. 2005. Taste recognition: food for thought. Neuron, 48(3), 455-464.

Shaw, J. L., Smith, C. R. & Diamandis E.P. 2007. Proteomic analysis of human cervicovaginal fluid. Journal of Proteome Research; 6:2859–2865.

Sherman, B. T., & Lempicki, R. A. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols, 4(1), 44-57.

Shimada T. (2006). Salivary proteins as a defense against dietary tannins. Journal of Chemical Ecology 32(6), 1149-1163.

Shin, O. S., Uddin, T., Citorik, R., Wang, J. P., Della Pelle, P., Kradin, R. L., Bingle, C.D., Bingle, L., Camilli, A., Bhuiyan, T.R., Shirin, T., Ryan, E.T., Calderwood, S.B., Finberg, R.W., Qadri, F., LaRocque, R.C., Harris JB. 2011. LPLUNC1 modulates innate immune responses to Vibrio cholerae. Journal of Infectious Diseases, 204(9), 1349-1357.

Silletti, E., Bult, J. H. F., & Steiger, M. 2012. Effect of NaCl and sucrose tastants on protein composition of oral fluid analysed by SELDI-TOF-MS. Archives of oral biology, 57(9), 1200-1210.

Silver, S. C., Ostro, L. E., Yeager, C. P., & Dierenfeld, E. S. (2000). Phytochemical and mineral components of foods consumed by black howler monkeys (Alouatta pigra) at two sites in Belize. Zoo Biology. 19(2), 95-109.

Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T., 2011. Revigo summarizes and visualizes long lists of gene ontology terms. PLoS One 6.

Swaney, D. L., McAlister, G. C., & Coon, J. J. 2008. Decision tree-driven tandem mass spectrometry for shotgun proteomics. Nature Methods 5, 959–964.

Tabata, E., Kashimura, A., Uehara, M., Wakita, S., Sakaguchi, M., Sugahara, Y., Yurimoto, T., Sasaki, E., Matoska, V., Bauer, P.O., Oyama, F. 2019. High expression of acidic chitinase and chitin digestibility in the stomach of common marmoset (Callithrix
jacchus), an insectivorous nonhuman primate. Scientific Reports 9, 159
doi:10.1038/s41598-018-36477-y
Tao, R., Jurevic, R. J., Coulton, K. K., Tsutsui, M. T., Roberts, M. C., Kimball, J. R., Wells, N.,
Berndt, J., & Dale, B. A. 2005. Salivary antimicrobial peptide expression and dental
caries experience in children. Antimicrobial agents and chemotherapy, 49(9), 3883-3888.
Teeuw, W., Bosch, J. A., Veerman, E. C.I., & Amerongen, A. N. 2004. Neuroendocrine
regulation of salivary IgA synthesis and secretion: implications for oral health. Biological
chemistry, 385:1137–1146.
Thamadilok, S., Choi, K., Ruhl, L., Schulte, F., Latif Kazim A., Hardt, M., Gokcumen, O., Ruhl, S. 2019. Human and Nonhuman Primate Lineage-Specific Footprints in the Salivary Proteome. Molecular Biology and Evolution, msz223,
https://doi.org/10.1093/molbev/msz22
Thomas, E. L., Jefferson, M. M., Joyner, R. E., Cook, G. S., & King, C. C. (1994). Leukocyte Myeloperoxidase and Salivary Lactoperoxidase: Identification and Quantitation in Human Mixed Saliva. Journal of Dental Research, 73(2), 544–555.
Torregrossa, A.M., Nikonova, L., Bales, M. B., Villalobos Leal, M., Smith, J. C., Contreras, R.J., & Eckel, L. A. (2014). Induction of Salivary Proteins Modifies Measures of Both Orosensory and Postingestive Feedback during Exposure to a Tannic Acid Diet. PLoS One, 9, e105232.
Troxler, R. F., Oner, G. D., Xu, T., Vanderspek, J. C., and Oppenheim, F. G. 1990. Structural relationships between human salivary histatins. Journal of Dental Research, 69: 2-6.
van Dongen, M. V., van den Berg, M. C., Vink, N., Kok, F. J., & de Graaf, C. 2012. Taste–nutrient relationships in commonly consumed foods. British Journal of Nutrition, 108(1), 140-147.
vander Langerveld, A. W., Gibbons, S., Koelliker, Y., Civille, G. V., de Vries, J. H., de Graaf, C., & Mars, M. 2017. The relationship between taste and nutrient content in commercially available foods from the United States. Food quality and preference, 57, 1-7.
Vitorino, R., Lobo, M.J.C., Ferrer-Correia, A.J., Dubin, J.R., Tomer, K.B., Domingues, P.M., Amado, F.M. 2004. Identification of human whole saliva protein components using proteomics. Proteomics 4: 1109–1115
Wang, Y. C., Peterson, S. E., & Loring, J. F. 2014. Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell research, 24(2), 143.
Wiesner, J., & Vilcinskas, A. 2010. Antimicrobial peptides. The ancient arm of the human immune system. Virulence, 1, 440–464.
Wijkstrom-Frei, C., El-Chemaly, S., Ali-Rachedi, R., Gerson, C., Cobas, M. A., Forteza, R., Salathe, M. & Conner, G. E. 2003. Lactoperoxidase and human airway host defense. American Journal of Respiratory Cell and Molecular Biology, 29(2), 206-212.
Zanetti, M. (2005). The role of cathelicidins in the innate host defenses of mammals. Current Issues in Molecular Biology, 7(2), 179-196.
Table 1 (on next page)

Salivary proteins associated with host defense of mammals, identified in the saliva of the Neotropical black howler monkey *Alouatta pigra* by Nano LC-MS/MS.
Table 1:

Salivary proteins associated with host defense of mammals, identified in the saliva of the Neotropical black howler monkey *Alouatta pigra* by Nano LC-MS/MS.

Protein (Uniprot accession number)	Peptide sequence	MASCOT score	Function	Reference	
Beta-2-microglobulin	EVDEQMLNVV NK	38.5	Immune response, involved in the presentation of peptide antigens to the immune system. Component of the class I major histocompatibility complex.	Li et al., 2016	
Bactericidal permeability-increasing protein BPI (Q8TDL5)	VINEPTAAAMA YGLHK	245	Innate immunity in mouth, nose and lungs; binds bacterial lipopolysaccharide, bactericidal against both smooth and rough forms of Gram-negative bacteria, including *Neisseria meningitides*	Bingle & Craven 2004; Marra et al., 1990; Shin et al., 2011	
Beta-Defensin 1 (Q95M66)	MLMLAAQNIL NPKDGKPVVTP SQDMVLGNYY LTMEEEGR	51	Antibacterial, antiviral and antifungal activity. Defense response to Gram-negative and Gram-positive bacterium, important antimicrobial effect against mycobacteria	Wiesner & Vilcinskas, 2010	
Carbonic anhydrase VI (P23280)	HVIEIHVHNS K LTALGQLLR	35.345	Anti-caries protein in saliva	Kimoto et al., 2006	
Cathelicidin antimicrobial peptide (Q1KLX0)		47.03	Antimicrobial activity against gram-negative and gram-positive bacteria and *Candida albicans* and are effective in vitro against oral microorganisms such as *Streptococcus mutans*, *Porphyromonas gingivalis*, and *Actinobacillus actinomycetemcomitans*	Tao et al. 2005; Dale & Fredericks, 2004	
Protein Name	Accession Number	Amino Acid Sequence	Molecular Weight	Function Description	Reference(s)
----------------------	------------------	---------------------	------------------	--	--
Clusterin (P10909)	AATESFASDPIL	34.44		Antimicrobial humoral response, innate immunity, response to virus	Uniprot.orross; Amerogen & P Veerman, 2002
Complement C3 (P01024)	SLGLNPNHIIHY	150.64		Plays a central role in the activation of the complement system. Immune and inflammatory response.	Ross & Densen, 1984
Complement C4-A (P0C0L4)	TLVTQNSGVEA	117.4		Innate immune and inflammatory response. Complement activation, classical pathway.	Ross & Densen, 1984
Cystatin B (Q8I030)	SCHLAMAPNH	196.35		Innate immunity, inhibit proteases of bacteria.	Fábián et al., 2012; Dsamou et al. 2011; Blaydon et al., 2011; Henskens, Veerman & Nieuw Amerongen, 1996
Cystatin-A (P01040)	GQPFEVLIIASD	60.9		Innate immunity, inhibit proteases, favor cell-cell adhesion. Is able to protect skin barrier from allergic reactions, including atopic dermatitis. Inhibition proteolytic activity of major allergens	Fábián et al., 2012; Magister & Kos 2013; Blaydon et al., 2011
Cystatin-C (O19093)	ALEEANADLEV	95.95		Found in high concentrations in body fluids. Prominent in immune cells. Strong inhibitor of all papain-like proteases.	Magister & Kos 2013
Cystatin-D (P28325)	LGDSWDVK	79.62		Has a function in saliva as inhibitor of either endogenous or exogenous enzymes with cathepsin S- or H-like properties, inhibit proteases of bacteria	Balbin et al., 1994
Dermcidin (P81605)	VTSFLDPWADP	58.41		Antimicrobial activity thereby limiting skin infection by potential pathogens in the first few hours after bacterial colonization. Highly effective	Schittek, 2012
Protein Name	Sequence Information	Function	Reference(s)		
---	--	---	---		
Histidine-rich glycoprotein (P04196)	GTFAQSLHHC DKLHVPENF, VLGAFSGALA HLDDLK, VNVDEVGEEALGR, KVLGAFSGAL AHLDDLK, LGLNVLVCVL AQHFGK	Antimicrobial humoral immune response mediated by antimicrobial peptide. Antibacterial, antiviral and antifungal activity, overall against *C. albicans*, *Trichosporon pullulans* and *Cryptococcus neoformans*. Chemotaxis	Wiesner & Vilcinskas, 2010; Troxler et al. 1990; Oppenheim et al. 1988; Jensen et al., 1994		
Ig heavy chain V-I region Mot (P06326)	QVQLVQSGAEVK WLQGSQELPR, GFSPKDVVLVR WQQGNVFSCSVMHEALHNHYTQK LICQATGFSPR, VFAIPPSFASIFLT	V region of the variable domain of immunoglobulin heavy chains that participates in the antigen recognition. Humoral immunity	McHeyzer-Williams et al., 2012		
Immunoglobulin heavy constant alpha 1, IgA (P01876)	WLQGSQELPR, GFSPKDVVLVR WQQGNVFSCSVMHEALHNHYTQK LICQATGFSPR, VFAIPPSFASIFLT	More abundant in whole saliva. Protects mucosal surfaces from toxins, viruses, and bacteria by means of direct neutralization or prevention of binding to the mucosal surface	Schroeder & Cavacini, 2010; Teeuw et al., 2004		
Immunoglobulin heavy constant gamma 1, IgG (P01857)	WLQGSQELPR, GFSPKDVVLVR WQQGNVFSCSVMHEALHNHYTQK LICQATGFSPR, VFAIPPSFASIFLT	Immune response, including neutralization of toxins and viruses. Predominant isotype found in the body. It has the longest serum half-life of all immunoglobulin isotypes	Schroeder & Cavacini, 2010		
Immunoglobulin heavy constant mu, IgM (P01871)	WLQGSQELPR, GFSPKDVVLVR WQQGNVFSCSVMHEALHNHYTQK LICQATGFSPR, VFAIPPSFASIFLT	Adaptive immune response, antibacterial humoral response. Inactivate parasites, bacteria, and fungi	Biesbrock, Reddy & Levine, 1991; Mehrotra, Thornton & Sheehan, 1998; Dsamou et al., 2012; Mounayar et al., 2014; Geisberger, Lamers & Achatz, 2006; McHeyzer-Williams et al., 2012		
Protein Name	Sequence	Score	Biological Function	Reference(s)	
------------------------------------	-----------------	-------	--	--	
Immunoglobin heavy variable 1-46	SEDTAVYYCAR	40.76	V region of the variable domain of immunoglobin heavy chains that participates in the antigen recognition. Humoral immunity.	Williams et al., 2012 McHeyzer-Williams et al., 2012	
Immunoglobin heavy variable 3-13	EVQLVESGGGLVQPGGLR	49.65	Antimicrobial humoral immune; defense response to bacterium.	Schroeder & Cavacini, 2010	
Immunoglobin heavy variable 3-23	AEDTAVYYCAK	45.47	Antimicrobial humoral immune; defense response to bacterium.	Schroeder & Cavacini, 2010	
Immunoglobin heavy variable 3-7	NSLYLQMNSLR	51.09	Antigen binding. Humoral immunity	Schroeder & Cavacini, 2010	
Leukocyte elastase inhibitor	HNSSGSILFLGR	58.3	Anti-inflammatory	Doumas, Kolokotronis & Stefanopoulos, 2005 Thomas et al. 1994; Wijkstrom-Frei et al., 2003	
Lactoperoxidase LPO	GSYNPVTHIYTQADVK	478	Defense response to bacterium. Effective against Pseudomonas aeruginosa, Burkholderia cepacia and Haemophilus influenzae	Thomas et al. 1994; Wijkstrom-Frei et al., 2003	
Lactotransferrin	GFFEVTVDVSQLTCADEFLR	335	Bacteriostatic, microbicidal, action against parasites. Prevent bacterial biofilm development in P. aeruginosa infection. Antifungal activity against C.albicans	Groenink et al. 1999; Lupetti et al. 2000; Wiesner & Vilcinskas, 2010	
Matrix metalloproteinase (F6W5A7)	AFALWSAVTPTFTR	35	Inhibitor of metallo-proteinases. Leukocyte migration	Hayakawa et al. 1994	
Protein S100-A8 (P05109)	AQEILSQLPIK	97	Acute inflammatory response; Plays a prominent role in the regulation of inflammatory processes and immune response. Induce neutrophil chemotaxis and adhesión. Defense response to	Lorez et al., 2008; Nacken et al., 2003.	
Salivary Heat shock 70 kDa protein (Q5R7D3)	RPTELLSNPQFI				
VDGATR | 259
bacteria, fungus.
Binding of bacteria, immune response | Fábián et al., 2009 |
Table 2 (on next page)

Proteins associated with oral food perception identified in saliva of the Neotropical black howler monkey *Alouatta pigra* by Nano LC-MS/MS.
Table 2: Proteins associated with oral food perception identified in saliva of the Neotropical black howler monkey *Alouatta pigra* by Nano LC-MS/MS.

Protein (Uniprot accession number)	Peptide sequence	MASCOT score	Function	Reference
Beta-2-microbulin (O77523)	EVDEQMLNVV	38.53	Reduce gustatory sense of sour flavors	Neyraud et al., 2006
Beta-Defensin 1 (Q95M66)	MLMLAAQNIL	51	Gustatory sense of salty flavors	Silletti et al., 2012
Carbonic anhydrase VI (P23280)	HVIEIHIVHYNK	35.345	Higher concentrations are related to lower acceptance of bitter solutions. Positivity related to taste sensitivity of fatty acids. Related with pungent flavors.	Morzel et al., 2014; Mounayar et al., 2014; Canon & Neyraud, 2018
Cystatin-A (P01040)	GQPFEVLIASDGFK	60.9	Lower levels of Cystatins are related to hypersensitivity of astringency and bitter taste	Desamou et al., 2012; Dinella et al., 2010; Morzel et al., 2014
Cystatin-D (P28325)	LGDSWDVK	79.62	Positivity related to taste sensitivity of fatty acids. Reduce hypersensitivity to bitterness	Mounayar et al., 2014
ER-Golgi intermediate compartment 53 kDa protein (F6SS58)	IDNSQVESGSL	57.322	Mannose binding, sweet taste	Uniprot.org
Protein/Protein Description	Primary Amino Acid Sequence	Molecular Weight	Functional Effect	References
--	----------------------------	------------------	--	--
Fatty acid-binding protein	LEDEIDFLAQELAR	92	Fatty-acid taste. High specificity for fatty acids, lipid binding	Mounayar et al., 2014
Glyceraldehyde-3-phosphate	HVVYPTAWMNQLPLAAIEIQK	28.69	Reduce sensitivity of bitter taste	Quintana et al., 2009
Histidine-rich glycoprotein	GTFAQLSELHC	149	Are involved in the sensation of astringency, can decrease astringent sensation. Tannin-binding salivary proteins; play protective role to the pellicle by the scavenging tannins	Dinella et al., 2010; Wiesner & Vilcinskas, 2010; Troxler et al. 1990; Oppenheim et al. 1988.
Immunoglobulin, IgA	WLQGSQELPR, GFSPKDVLVR	70.03	Higher concentrations are related to hypersensitivity of bitter taste. Positivity related to taste sensitivity of fatty acids. Reduce hypersensitivity to bitterness	Desamou et al., 2012; Mounayar et al., 2014; Morzel et al., 2014; Fábián et al., 2015; Becerra et al., 2003
Lactoperoxidase LPO	GSYNPVTHIYT, AQDVK	478	Reduce hypersensitivity to bitterness	Morzel et al., 2014; Fábián et al., 2015
Lactotransferrin	GFFEVTVDVSQ, LTCADFLR	335	Sweet	Becerra et al., 2003
Salivary Heat shock 70 kDa protein	RPTELLSNPQFI, VDGATR	259	Related to umami taste or glutamate taste sensitivity. Reduce sensitivity of pungent flavors.	Fábián et al., 2015; Canon & Neyraud, 2018
Serum albumin (F7HCH2)	NVIPALELVEPIKK	68.829	Higher concentrations are related to hypersensitivity of bitter taste	Quintana et al., 2009; Dsamou et al., 2011
Figure 1

Representative SDS-PAGE-1-D of saliva proteins from five wild black howler monkeys. Protein bands were stained according to Beeley, et al., (1991) to reveal potential PRPs. We observed similar protein patterns from 10 to 250 kDa and identified 13 protein bands in all individuals (N= 14). Molecular weights (MW) of protein markers are shown in kDa on the left. B= Brisa group; P= Playon group; M= male; F= female.
Figure 2

Classification of proteins identified in black howler monkey (*Alouatta pigra*) saliva by Nano LC-MS/MS.

(A) Prediction of N-terminal endoplasmic reticulum (ER) targeting signal peptide (SP, http://www.cbs.dtu.dk/services/SignalP/, Petersen, et al., 2011), non-classical secretion (http://www.cbs.dtu.dk/services/SecretomeP/, Bendtsen, et al., 2014), and transmembrane helices ([TMHMM](http://www.cbs.dtu.dk/services/TMHMM/)) in identified proteins. **(B)** Proteins were classified base GO ontology enrichment using David ontology tool (https://david.ncifcrf.gov/). We used REVIGO web server (http://revigo.ib.ribo.hu/) for the visual representation of the clustering of biological process. Names in italics indicate the GO enrichment of biological process and names with transparency indicate the clusters obtained by REVIGO using abs_log10_pvalue.
Figure 3

Probable biological role of the salivary proteins of howler monkeys.

Proteins are grouped according their participation in immunity and oral food perception reported in UniProt functional annotation (http://www.uniprot.org/) and in papers on salivary proteomics/peptidomics from humans and other animals. Ten proteins are involved in both biological functions.