Cardiopulmonary Resuscitation Performance may Improve with Consideration of Performer’s Characteristics

Hikaru Nachi1,2, Sho Nachi2, Hideshi Okada3, Kodai Suzuki4, Takahito Miyake1, Takahiro Yoshida1, Shoji Ogura2 and Eiichi Chihara3

1Division of General Medicine, Department of Anesthesiology, Asahi University School of Dentistry, Mizuho, Japan
2Department of Anesthesiology, Asahi University Murakami Memorial Hospital, Gifu, Japan
3Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan

Abstract

Background: In basic life support, chest compressions are a very important and basic skill. Acquiring the ability to perform chest compressions is affected by individual characteristics such as physique and physical strength, although all persons can learn to perform Cardiopulmonary Resuscitation (CPR), including chest compressions. The aim of this study was to examine differences in physique between males and females and Basic Life Support (BLS) skill using a portable manikin with automated corrective feedback.

Methods: Participants were 120 fourth-year preclinical dental school students (87 males, 33 females). For skill assessment, students performed chest compressions and single rescuer CPR using a Laerdal Resusci Anne Skill Reporter TM manikin for 2 minutes each before and after CPR. Outcome measures were (1) compression depth (mm), (2) compression rate (number of compressions per minute), (3) compression release depth (recoil, mm), and (4) hand position before and after the BLS course.

Results: After the BLS course, compression depth and rate improved significantly. Both before and after the BLS course, male students performed deeper chest compressions than female students. In females, the duration of acceptable chest compressions was significantly shorter than in males.

Conclusion: CPR performance was significantly different between males and females, probably due to differences in physique. Therefore, it is necessary for individualized instruction adapted to the learner’s characteristics.

Keywords: Resuscitation; Basic life support; Chest compression

Introduction

Basic Life Support (BLS) is a level of medical care provided for victims of life-threatening illnesses or injuries until they can receive comprehensive medical care at a hospital. It can be provided by trained medical personnel, including emergency medical technicians and paramedics, and by qualified bystanders. Therefore, it is very important to acquire BLS skills. However, studies have documented that the quality of cardiopulmonary resuscitation (CPR) even by nurses and physicians is often poor, even when they have been trained in CPR [1-6].

It has been reported that the acquisition of chest compression skills is affected by individual characteristics such as physique and physical strength, but all persons are capable of learning CPR, including chest compression [7-9]. In particular, differences in physique between males and females is very important; a previous study showed that chest compression quality over 15 minutes performed by females was lower and females is very important; a previous study showed that chest compression quality was significantly poorer than in males.

As such, it is important for the acquisition of CPR skills.

The recent development of a new device that can objectively evaluate BLS skills [11] leads to the possibility of more effective BLS instruction. The aim of this study was to examine differences in physique between males and females and BLS skill using a portable manikin with automated corrective feedback.

Methods

Participants

The participants were 120 fourth-year preclinical dental school students (87 males, 33 females). This study was approved by the university’s Institutional Review Board. Each student provided written consent for study participation. Before the study, all of them attended a BLS course by the Japanese Association for Acute Medicine. At first, instruction for chest compression was performed using a practice-while-watching method. Next, instruction included scenario training if a maneuver was insufficient.

Assessment of CPR psychomotor skills

For the skills assessment, students performed compressions and single rescuer CPR using a Laerdal Resusci Anne Skill Reporter TM manikin before and after CPR for 2 minutes each. Outcome measures were (1) compression depth (mm), (2) compression rate (number of compressions per minute), (3) compression release depth (recoil, mm), and (4) hand position. The acceptable range of CPR was 1) a single minimum compression depth of ≥ 50 mm, 2) an optimal target range of 100 and 120 compressions per minute, and 3) hand position on the lower half of the sternum, based on American Heart Association guidelines [12].

*Corresponding author: Hideshi Okada, MD, PhD, Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan, Tel: +81562306448; E-mail: hideshi@gifu-u.ac.jp

Received: December 30, 2017; Accepted: January 05, 2018; Published: January 10, 2018

Citation: Nachi H, Nachi S, Okada H, Suzuki K, Miyake T, et al. (2018) Cardiopulmonary Resuscitation Performance may Improve with Consideration of Performer’s Characteristics. J Health Educ Res Dev 6: 244. doi: 10.4172/2380-5439.1000244

Copyright: © 2018 Nachi H, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Hand position, compression depth, compression rate, and recoil

Appropriate performance of each skill was assessed during 2 minutes of CPR. Regarding hand position, all participants used the correct

Sex (n)	Male	Female	p value
Age (years)	24 (22-25)	23 (22-25)	0.38
Height (cm)	170 (168-174.5)	158 (155-161)	< 0.001
Weight (kg)	69 (62-81.5)	53.3 (46-62.1)	< 0.001
BMI (kg/m²)	24 (21-26.6)	20.1 (19.3-22.3)	< 0.001

Values are medians (interquartile range); BMI: Body Mass Index.

Table 1: Characteristics of the Study Participants.
hand position after the BLS course. After the BLS course, compression depth was significantly deeper than before the course (Figure 1A). Although the compression rate was faster than the acceptable range of 100 to 120 compressions per minute before and after the BLS course, it was significantly slower and closer to the acceptable range after the BLS course (Figure 1B). There were no significant differences in recoil before and after the BLS course (Figure 1C).

Comparisons by gender

Before the BLS course, males performed significantly deeper compressions than females (Figure 2A). The compression rate and depth of recoil were slower and shallower for females than for males (Figure 2B and 2C). After the BLS course, males had significantly higher compression depth than females (Figure 3A). Recoil depth was shallower for females than for males (Figure 3B). There were no significant differences in compression rate between males and females (Figure 3C).

Correlation between chest compression characteristics and physique after the BLS course

In males, compression depth and recoil were weakly but significantly correlated with height and weight (Table 2A). On the other hand, compression depth was significantly correlated with height in females ($r=0.63$, $p<0.001$) (Table 2B). In addition, compression depth was weakly but significantly correlated with weight in females ($r=0.37$, $p<0.05$).

Change in chest compressions over 2 minutes after the BLS course

Chest compression depth gradually became shallower over time for 96.7% of study participants (Figure 4A). Compression recoil and rate did not change over time. Among the 116 students (83 males and 33 females) for whom chest compression depth gradually became more shallow, there were 88 students (73 males and 15 females) who performed acceptable chest compressions at the start. There were 48 students (45 males and 3 females) who performed acceptable chest compressions continuously for 2 minutes.

The group that initially performed acceptable chest compressions but whose chest compression depth became shallower was further investigated. Females had a significantly shorter duration of acceptable chest compressions than males (Figure 4B).
In conclusion, the present study showed CPR performance varied significantly between males and females, which were probably due to differences in physique. Therefore, individualized instruction adapted to the learner's characteristics is necessary.

Study Limitation

Since the sample size was small, further study is required. In the current study, chest compression was performed on springs inside a manikin, which compress in a linear fashion. However, during actual clinical conditions, chest compressions are non-linear, which is a substantial difference between the conditions in this study and actual clinical practice [21].

References

1. Abella BS, Alvarado JP, Myklebust H, Edelson DP, Barry A, et al. (2005) Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest. JAMA 293: 305-310.
2. Abella BS, Sandbo N, Vassilatos P, Alvarado JP, O’Hearn N, et al. (2005) Chest compression rates during cardiopulmonary resuscitation are suboptimal: a prospective study during in-hospital cardiac arrest. Circulation 111: 428-434.
3. Aufderheide TP, Liturie KG (2004) Death by hyperventilation: a common and life-threatening problem during cardiopulmonary resuscitation. Crit Care Med 32: S45-S51.
4. Dine CJ, Gersh RE, Leary M, Riegel BJ, Bellini LM, et al. (2008) Improving cardiopulmonary resuscitation quality and resuscitation training by combining audiovisual feedback and debriefing. Crit Care Med 36: 2817-2822.
5. Nyman J, Sihvonen M (2000) Cardiopulmonary resuscitation skills in nurses and nursing students. Resuscitation 47: 179-184.
6. Wik L, Kramer-Johansen J, Myklebust H, Sorebo H, Svensson L, et al. (2005) Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA 293: 299-304.
7. Ashton A, McCluskey A, Gwinnutt CL, Keenan AM (2002) Effect of resuscitation fatigue on performance of continuous external chest compressions over 3 min. Resuscitation 55: 151-155.
8. Gasco C, Avellanal M, Sanchez M (2000) Cardiopulmonary resuscitation training for students of odontology: skills acquisition after two periods of learning. Resuscitation 45: 189-194.
9. Hong DY, Park SO, Lee KR, Baek KJ, Shin DH (2012) A different resuscitation strategy between 30:2 cardiopulmonary resuscitation and hands-only cardiopulmonary resuscitation that considers rescuer factors: a randomised cross-over simulation study with a time-dependent analysis. Resuscitation 83: 353-359.
10. Hansen D, Vranckx P, Broekmans T, Eijnde BO, Beckers W, et al. (2012) Physical fitness affects the quality of single operator cardiocerebral resuscitation in healthcare professionals. Eur J Emerg Med 19: 28-34.
11. Niles D, Sutton RM, Dohnogue A, Kalsi MS, Roberts K, et al. (2009) “Rolling Refreshers”: a novel approach to maintain CPR psychomotor skill competence. Resuscitation 80: 909-912.
12. Meaney PA, Bobrow BJ, Mancini ME, Christenson J, de Caen AR, et al. (2013) Cardiopulmonary resuscitation quality: [corrected] improving cardiac resuscitation outcomes both inside and outside the hospital: a consensus statement from the American Heart Association. Circulation 128: 417-435.
13. Glatz AC, Nishisaki A, Niles DE, Hanna BD, Ellefjönn J, et al. (2013) Sternal wall pressure comparable to leaning during CPR impacts intrathoracic pressure and haemodynamics in anaesthetized children during cardiac catheterization. Resuscitation 84: 1674-1679.
14. Trowbridge C, Parekh JN, Ricard MD, Potts J, Patrickson WC, et al. (2009) A randomized cross-over study of the quality of cardiopulmonary resuscitation among females performing 30:2 and hands-only cardiopulmonary resuscitation. BMC Nurs 8: 6.
15. Yasuda Y, Kato Y, Sugimoto K, Tanaka S, Tsunoda N, et al. (2013) Muscles used for chest compression under static and transportation conditions. Prehosp Emerg Care 17: 162-169.
16. Ock SM, Kim YM, Chung J, Kim SH (2011) Influence of physical fitness on the performance of 5-minute continuous chest compression. Eur J Emerg Med 18: 251-256.

17. Berg RA, Hemphill R, Abella BS, Aufderheide TP, Cave DM, et al. (2010) Part 5: adult basic life support. 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 122: S685-705.

18. Foo NP, Chang JH, Lin HJ, Guo HR (2010) Rescuer fatigue and cardiopulmonary resuscitation positions: A randomized controlled crossover trial. Resuscitation 81: 579-584.

19. Sugerman NT, Edelson DP, Leary M, Weidman EK, Herzberg DL, et al. (2008) Rescuer fatigue during actual in-hospital cardiopulmonary resuscitation with audiovisual feedback: a prospective multicenter study. Resuscitation 80: 981-984.

20. McDonald CH, Heggie J, Jones CM, Thorne CJ, Hulme J (2013) Rescuer fatigue under the 2010 ERC guidelines, and its effect on cardiopulmonary resuscitation (CPR) performance. Emerg Med J 30: 623-627.

21. Tomlinson AE, Nysaether J, Kramer-Johansen J, Steen PA, Dorph E (2007) Compression force-depth relationship during out-of-hospital cardiopulmonary resuscitation. Resuscitation 72: 364-370.