Conservation and phylogenetic stepwise changes of aquaporin (AQP) 4 palmitoylation in vertebrate evolution

Takashi Hayashi

Section of Cellular Biochemistry, Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan

Correspondence: Takashi Hayashi
E-mail: thayashi@ncnp.go.jp
Received: September 24, 2017
Published online: November 06, 2017

The aquaporin (AQP) family channels control water transport across cell membranes in various organs of mammals. Among 13 AQP family subtypes (AQP0-12), AQP4 is predominantly expressed in the central nervous system. Previous studies revealed that AQP4M1 full-length splice variant is specifically palmitoylated at two cysteine residues (Cys13 and Cys17) in its N-terminus and the palmitoylation of these sites regulates the supramolecular assembly of AQP4 isoforms on the membrane. Here, I further focused on conservation of these palmitoylation sites found in animal AQP4 orthologs. Analysis of sequence databases provides an insight into phylogenetic stepwise changes of AQP4 palmitoylation motifs in vertebrate lineages. AQP4 palmitoylation mechanism itself has been almost completely conserved throughout vertebrate species in spite of the divergence of AQP4 full-length amino acid sequences during molecular evolution. My findings indicate that dynamic regulation of AQP4 made possible by reversible post-translational protein palmitoylation may be critical for the specific refined functions of water transport in the vertebrate central nervous system.

Keywords: aquaporin4; AQP4; post-translational protein palmitoylation; vertebrate, orthologs

To cite this article: Takashi Hayashi. Conservation and phylogenetic stepwise changes of aquaporin (AQP) 4 palmitoylation in vertebrate evolution. Neurotransmitter 2017; 4: e1608. doi: 10.14800/nt.1608. Copyright: © 2017 The Authors. Licensed under a Creative Commons Attribution 4.0 International License which allows users including authors of articles to copy and redistribute the material in any medium or format, in addition to remix, transform, and build upon the material for any purpose, even commercially, as long as the author and original source are properly cited or credited.

Introduction

Water channels of the aquaporin (AQP) family proteins are found to be present from archaea to animals and plants [1]. 13 different subtypes of the AQP family channels (AQP0-AQP12) have been characterized in various organs of mammals including human. In these AQP subtypes, AQP4 is predominantly expressed in brain-fluid interfaces of the central nervous system [2, 3]. AQP4 particularly locates at the end-feet of astrocytes that regulates the brain-blood barrier (BBB) and at the ependymal cerebrospinal fluid (CSF) barriers for water transport across cell membranes. Previous studies showed that AQP4 is dysregulated in various neurological disorders such as Alzheimer’s disease, amyotrophic lateral sclerosis, Parkinson’s disease, multiple sclerosis, neuromyelitis optica, epilepsy, traumatic brain injury and stroke [4, 5]. Experimentally, dysfunction of AQP4 induces impaired synaptic plasticity and behavior [2, 5]. AQP4 forms tetramers and two splicing isoforms have been identified, 323 amino acids-containing full-length isoform (AQP4M1) and 301 amino acids-containing shorter isoform with translation initiation at Met23 (AQP4M23), both of which can act as water channels. The existence of N-terminal 22 amino acids of AQP4M1 results in the regulation of
Table 1. The BLAST alignments of palmitoylation sites in vertebrate AQP4 orthologs.

Species (common name)	Species (Latin name)	Identity (%)	AQP4 C15,C17
Chimpanzee	Pan troglodytes	98	BRRRCKPLTRRN
Gorilla	Gorilla gorilla	97	BRRRCKPLTRRN
Sumatran orangutan	Pongo abelii	97	BRRRCKPLTRRN
White-cheeked crested gibbon	Nomascus leucogenys	97	BRRRCKPLTRRN
Thresus monkey	Macaca mulatta	97	BRRRCKPLTRRN
Crab-eating macaque	Macaca fascicularis	97	BRRRCKPLTRRN
Japanese macaque	Macaca fuscata	N.D.	
Celebes crested macaque	Macaca nigra	97	BRRRCKPLTRRN
Golden snub-nosed monkey	Rhinopithecus roxeliana	97	BRRRCKPLTRRN
Black snub-nosed monkey	Rhinopithecus bieti	97	BRRRCKPLTRRN
African green monkey	Chlorocebus sabaeus	N.D.	
Green monkey	Chlorocebus aethiops		
African green monkey	Chlorocebus djamdjam	97	BRRRCKPLTRRN
Drift	Mandrillus leucophaeus	97	BRRRCKPLTRRN
Soody mangabeysy	Cercocebus atys	97	BRRRCKPLTRRN
Silver baboon	Papio hamadryas	97	BRRRCKPLTRRN
Mal's night monkey	Adapis nancymaen	97	BRRRCKPLTRRN
Common marmoset	Callithrix jacchus	97	BRRRCKPLTRRN
White-headed capuchin	Cebus apella-guianus	97	BRRRCKPLTRRN
Bolivian squirrel monkey	Saimiri boliviensis	97	BRRRCKPLTRRN
Philippine tarsier	Calufo syvicha	97	BRRRCKPLTRRN
Coquerel's sifaka	Propithecus coquereli	97	BRRRCKPLTRRN
Northern greater galago	Otolemur garnettii	97	BRRRCKPLTRRN
Dasyurida	Dasyu phillyemus	97	BRRRCKPLTRRN
Gray mouse lennar	Geosminus vonergetus	97	BRRRCKPLTRRN
Scandinavian	Thapsus chinesis	97	BRRRCKPLTRRN
Mammalia	Odobenus rosmarus	97	BRRRCKPLTRRN
Common beaver	Odobenus rosmarus	97	BRRRCKPLTRRN
Northern prairie mouse	Monodelphis asellus	97	BRRRCKPLTRRN
Desert woodrat	Neotoma lepida	97	BRRRCKPLTRRN
Chinese hamster	Cricetulus griseus	97	BRRRCKPLTRRN
Lesser Egyptian jerboa	Jaculus jaculus	97	BRRRCKPLTRRN
Thirteen-lined ground squirrel	Ictidomyys ixteineata	97	BRRRCKPLTRRN
Galapagos marine mouse	Mormo mormo mormo	97	BRRRCKPLTRRN
Lagomorpha	Oryctolagus cuniculus	97	BRRRCKPLTRRN
American pika	Ochotona princeps	97	BRRRCKPLTRRN
Mustelida	fc	97	
Cynomurida	Ptenos cirratus	97	BRRRCKPLTRRN
Amur tiger	Panthera tigris altaica	97	BRRRCKPLTRRN
Leopard	Panthera pardus	97	BRRRCKPLTRRN
Cheetah	Acinonyx jubatus	97	BRRRCKPLTRRN
Dog	Canis lupus familiaris	97	BRRRCKPLTRRN
Polar bear	Ursus maritimus	97	BRRRCKPLTRRN
Giant panda	Allouropoda melanoloma	97	BRRRCKPLTRRN
Arctic fox	Vulpes lagopus	97	BRRRCKPLTRRN
Ferret	Mustela putorius furo	97	BRRRCKPLTRRN
American mink	Neovison vison	N.D.	
Pacific walrus	Odobenus rosmarus divergens	97	BRRRCKPLTRRN
Walrus	Odobenus rosmarus divergens	97	BRRRCKPLTRRN
European harbour seal	Phoca vitulina	N.D.	
Hawaiian monk seal	Neomamandus schauinslandi	97	BRRRCKPLTRRN
Pholidota	Manis javanica	97	BRRRCKPLTRRN
Malayan pangolin	Manis javanica	97	BRRRCKPLTRRN
Perissodactyla	Cerdocnemus simum simum	97	BRRRCKPLTRRN
Przewalski's horse	Equus przewalski	97	BRRRCKPLTRRN
Horse	Equus caballus	97	BRRRCKPLTRRN
Donkey	Equus asinus	97	BRRRCKPLTRRN
Chiroptera	Myotis brandti	97	BRRRCKPLTRRN
Dugong	Dugong dugong	97	BRRRCKPLTRRN
Great round-eared bat	Hipposideros armita	97	BRRRCKPLTRRN
New world monkey	Cyonella vandu	97	BRRRCKPLTRRN
Cape flying fox	Pteropus alecto	97	BRRRCKPLTRRN
Greater short-nosed fruit bat	Cynopterus sphinx	N.D.	
Erythropodida	Nycticeius agilis	97	BRRRCKPLTRRN
Cetartiodactyla	Balaenoptera acutirostris	97	BRRRCKPLTRRN
Bottlenose dolphin	Tursiops truncatus	97	BRRRCKPLTRRN
Phoenicopterusforms	American flamingo	Phoenicopterus ruber ruber	
---------------------	-------------------	---------------------------	
Psittaciformes	Yellow-tailed sandgrouse	Pterocles gutturalis	
Columbiformes	Rock pigeon	Columba livia	
	Band-tailed pigeon	Patagioenas fasciata monilis	
Gruidae	Grey crowned crane	Balearica regulorum gibbericeps	
	Sunbitter	Eurypyga helias	
	Brown mesite	Mesites unicolor	
Oldenuliformes	Macqueen’s bustard	Otis macleayi	
Charadriiformes	Red-throated loon	Gavia stellata	
	Little egret	Egretta garzetta	

Galliformes	Red-legged partridge	Alectoris cabeciblanca
	Japanese quail	Coturnix japonica
	Northern bobwhite	Colinus virginianus
	Chicken	Gallus gallus
	turkey	Meleagris gallopavo
	Helmeted guineafowl	Numida meleagris

Anseriformes	Mallard	Anas platyrhynchos
	Swan goose	Anser cygnoides
	Chinese goose	Anser cygnoides domestica

| Struthioniformes | Ostrich | Struthio camelus |
| | Southern ostrich | Struthio camelus australis |

| Tinamiformes | White-throated tinamou | Tinamus globifer |
| | White-tailed tinamou | T. leucurus |

| Apterigiformes | Kiwi | Apteryx australis manillai |

Archontaea	Squirrel cuckoo	Cacomantis atratus
	American alligator	Alligator mississippiensis
	Chinese alligator	Alligator sinensis
	Spectacled caiman	Caiman crocodilus
	Gharial	Gavialis gangeticus

Testudines	Green sea turtle	Chelonia mydas
	Chinese soft-shelled turtle	Pelodiscus sinensis
	Painted turtle	Chrysemys picta bellii
	Snapping turtle	Chelydra serpentina
	East African black turtle	Pelusios subniger

Squamata	Green skink	Acrochordus carolinensis
	Little striped whiptail	Aspidoscelis inscripta
	Common tegu	Tupinambis angouline
	Schlegel’s Japanese gecko	Gehyra japonica
	Yellow-headed dwarf gecko	Lycodactylus lutipunctatus
	Central bearded dragon	Pogona villosa
	Central bearded dragon	Pogona vitticeps
	Mangeorge snake	Boiga dondaphila
	Burnese python	Python brongersi
	King cobra	Ophiophagus hannah
	Pit vipers	Protobothrops mucrosquamatus
	Common garter snake	Thamnophis sirtalis

| Sphenodontia | Tuatara | Sphenodon punctatus |

| Squamata | Green iguana | Iguana iguana |
| | Green skink | Acrochordus carolinensis |

| Superclass: Gnathostomata | Class: Reptilia | 83 |

Archontaea	Squirrel cuckoo	Cacomantis atratus
	American alligator	Alligator mississippiensis
	Chinese alligator	Alligator sinensis
	Spectacled caiman	Caiman crocodilus
	Gharial	Gavialis gangeticus

Testudines	Green sea turtle	Chelonia mydas
	Chinese soft-shelled turtle	Pelodiscus sinensis
	Painted turtle	Chrysemys picta bellii
	Snapping turtle	Chelydra serpentina
	East African black turtle	Pelusios subniger

Squamata	Green skink	Acrochordus carolinensis
	Little striped whiptail	Aspidoscelis inscripta
	Common tegu	Tupinambis angouline
	Schlegel’s Japanese gecko	Gehyra japonica
	Yellow-headed dwarf gecko	Lycodactylus lutipunctatus
	Central bearded dragon	Pogona villosa
	Central bearded dragon	Pogona vitticeps
	Mangeorge snake	Boiga dondaphila
	Burnese python	Python brongersi
	King cobra	Ophiophagus hannah
	Pit vipers	Protobothrops mucrosquamatus
	Common garter snake	Thamnophis sirtalis

| Sphenodontia | Tuatara | Sphenodon punctatus |

| Superclass: Gnathostomata | Class: Amphibia | 73 |

Anura	Tennessee clawed frog	Xenopus (Sekuran) teteplatus
	African clawed frog	Xenopus laevis
	High Himalaya frog	Nanorana perleri

| Superclass: Gnathostomata | Class: Sarcopterygii | 66 |

Cynodontiformes	Common carp	Cyprinus carpio
	Common carp	Cyprinus carpio
	Golden-lined barbel	Sinocyclocheilus anisitsi
	Golden-lined barbel	Sinocyclocheilus grahami
	Zebrabream	Danio rerio

Percomorphiformes	Burn’s mouthbreeder	Haemichromis burtoni
	Burton’s mouthbreeder	Haemichromis burtoni
	Nile tilapia	Oreochromis niloticus
	Nile tilapia	Oreochromis niloticus
	Mozambique tilapia	Oreochromis mossambica
	Lyretail cichlid	Neolamprologus brichardi
	Lyretail cichlid	Neolamprologus brichardi
	Nyerere’s Victoria cichlid	Pundamilia nyererei
	Nyerere’s Victoria cichlid	Pundamilia nyererei
	Asian sea bass	Lateolabrax calcarifer
	European seabass	Decapterus labrax
	Spiny chronus	Acropomochromis polyacanthus
	Zebra danio	Danio rerio
	Stegastes partitus	Stegastes partitus
	Sebastes owstoni	Sebastes owstoni
	Boleophthalmus pectinirostris	Boleophthalmus pectinirostris

| Superclass: Gnathostomata | Class: Actinopterygii | 67 |

http://www.smartsctech.com/index.php/nt
Taxon	Scientific Name	Encyclopedia Name	Authority	Page
Crocodile croaker	Larimichthys crocea			67
Ballan wrasse	Labrus bergylta			65
Cyprinodontiformes				
Murriongig	Aequoridius limneus			62
Shepherdfish	Fundulus heteromelsus			65
Turquoise killifish	Nothobranchius lunzeri			65
Mangrove rivulus	Kryptolebias marmoratus			65
Guery	Poecilia refulata			65
Amazon molly	Poecilia formosa			65
Salimolly	Poecilia latipenna			65
Atlantic molly	Poecilia macroria			65
Goldfish	Xiphophorus maculatus			65
Beloniformes				
Japanese medaka	Oryzias latipes			64
Japanese medaka	Oryzias latipes			64
Batanchoctiformes				
Gulf killifish	Opisthichthys beta			64
Scorpiformes				
Black rockfish	Nototuta coniceps			64
Black rockfish	Nototuta coniceps			64
False killifish	Sebastiscus marmoratus			64
Channeoformes				
Red piranha	Pygocentrus nattereri			65
Red piranha	Pygocentrus nattereri			65
Mexican tetra	Acanaplan mexicanus			65
Esoctiformes				
Northern pike	Esox luitus			65
Northern pike	Esox luitus			65
Northern pike	Esox luitus			65
Clipaliformes				
Atlantic herring	Clupea harengus			62
Salmoniformes				
Rainbow trout	Oncorhynchos mykiss			62
Rainbow trout	Oncorhynchos mykiss			62
Coho salmon	Oncorhynchos kisutch			62
Coho salmon	Oncorhynchos kisutch			62
Atlantic Salmon	Salmo salar			62
Atlantic Salmon	Salmo salar			62
Tetradontiformes				
Japanese pufferfish	Takifugu rubripes			63
Japanese pufferfish	Takifugu rubripes			63
Spotted green pufferfish	Takifugu rubripes			63
Pleuronectiformes				
Long arm sole	Gymnoglossus semilaevis			65
Long arm sole	Gymnoglossus semilaevis			65
Olive flounder	Paralechthys olivaceus			65
Olive flounder	Paralechthys olivaceus			65
European flounder	Pleistichthys fosus			65
Gasterosteiformes				
Tiger tail seahorse	Hippocampus comes			64
Silluriformes				
Channel catfish	Ictalurus punctatus			63
Channel catfish	Ictalurus punctatus			63
Anguilliformes				
European eel	Anguilla anguilla			63
Swamp eel	Monopterus albus			63
Swamp eel	Monopterus albus			63
Osteoglossiformes				
Asian arowana	Salagonogerus formosus			65
Asian arowana	Salagonogerus formosus			65
Lepisosteiformes				
Spotted gar	Lepisosteus occidentalis			71
Spotted gar	Lepisosteus occidentalis			71
Superclass: Chondrichthyes				
Osteodontiformes				
Elephant shark	Callorhinchus miti			69
Squaliformes				
Spiny dogfish	Squalus acanthias			70
Superclass: Agnatha				
Pelomyzoniformes				
Sea lamprey	Pelomyzon manius			69
European river lamprey	Lampetra fluviatilis			69
Superclass: Agnatha				
Myxiformes				
Atlantic hagfish	Myxine glutenea			47
Inshore hagfish	Eptatretus burgeri			47
Pacific hagfish	Eptatretus stouti			47
Diphne: Chordata				
Subphylum: Cephalochordata				
Amphioxiformes				
Florida lancelet	Branchiostoma floridae			47
Belcher's lancelet	Branchiostoma belcheri			47
Diphne: Chordata				
Subphylum: Urochordata				
Enterogona	Cliona intestinalis			47
Diphne: Nematoda				
Roundworm	Caenorhabditis elegans			37
Diphne: Actinopoda				
Pacific white shrimp	Litopenaeus vannamei			49
Silver leaf whitefly	Bemisia tabaci			52
Fruit fly	Drosophila melanogaster			44
Horn fly	Haemadipsia irritans			48
Green leather	Cicadella viridis			46
Yellow fever mosquito	Aedes aegypti			38
Amino acid sequences around palmitoylation sites corresponding to human AQP4M1 Cys13 and Cys17 in vertebrate AQP4 orthologs are shown. Percent identities between orthologs across two species were obtained by performing BLAST search (with BLOSUM62) with full-length amino acid sequence of human AQP4M1. The highest identity score among several AQP4 homologs is shown for invertebrate species. N. D.: sequence not determined; M23: only isoform AQP4M23 is identified for indicated species.

Figure 1. Palmitoylation of vertebrate AQP4. (A) Schematic structure of AQP4 and location of its N-terminal palmitoylation sites. Both AQP4M1 and AQP4M23 contain six transmembrane regions, N-terminal and C-terminal cytoplasmic domains. Squared “C” mean the palmitoylation sites in mammalian AQP4M1, Cys13 and Cys17. (B) The BLAST alignments of vertebrate AQP4M1. Percent identity among orthologs across any two species were obtained by performing BLAST search (with BLOSUM62) with full-length amino acid sequences of vertebrate AQP4M1 orthologs. Homo sapiens (human), Mus musculus (mouse), Gallus gallus (chicken), Anolis carolinensis (green anole), Xenopus tropicalis (western clawed frog), Danio rerio (zebrafish) are compared as representative of each vertebrate class.

AQP4 to form the orthogonal square array of particles on the membrane\[^6,7\].

One key modification of mammalian AQP4 proteins is the reversible addition of the lipid palmitate to intracellular cysteine residues at the AQP4M1-specific N-terminus. This process, post-translational protein palmitoylation, acts as a sticky ‘tag’ that can direct channels and receptors to specific regions of the plasma membrane, or to specific intracellular membranes or vesicles\[^8\]-\[^11\]. Genetic evidence strongly links impaired palmitoylation to abnormal mammalian brain development and/or function, including human neuropsychiatric disorders\[^12\]-\[^17\]. Previous researches revealed that S-palmitoylation at Cys13 and Cys17 of
AQP4M1 N-terminus controls heterologous assembly between AQP4M1 and AQP4M23 channels and their ability of water transport.

Many ion channels, including AQP4, are found to be evolutionarily conserved; orthologs with identical domains and transmembrane topology are found in organisms from worms to man [18]. In this report, I further focused on conservation and loss of AQP4M1 palmitoylation sites found in animal AQP4 orthologs. Analysis of sequence databases provides evidence for the complete conservation and phylogenetic stepwise changes of palmitoylation motifs in AQP4 regulations during vertebrate evolution.

Methods

For analysis of the AQP4 orthologs, currently available protein sequences, cDNA sequences, expressed sequence tags (ESTs) and genomic sequences are obtained by searching the National Center for Biotechnology Information (NCBI) databases, Genbank, EST banks, elephant shark genome project (http://esharkgenome.imcb.a-star.edu.sg/), Joint Genome Institute (http://genome.jgi-psf.org) and the Ensembl database (http://www.ensembl.org/) by sequence homologies.

Results and discussion

Acquisition and complete conservation of palmitoylation sites in vertebrate AQP4

Recent expansive progress in genome analyses revealed that many animal species possess AQP4 orthologs (Table 1). Similar to other AQP paralogs (AQP0-AQP12), AQP4 has evolutionarily conserved six transmembrane domains and N-terminal and C-terminal cytoplasmic regions (Fig. 1A). Generally speaking, structurally or functionally important amino acid residues are conserved during molecular evolution against mutation pressure. The homology comparison of full-length amino acid sequence of vertebrate AQP4M1 orthologs showed ~96% identity among mammalian species, ~88% identity between human and birds, ~84% identity between human and reptiles, ~76% identity between human and amphibians, ~64% identity between human and fishes (Fig. 1B). Random mutations are observed all over vertebrate AQP4 sequences during evolution. Sequence alignment among AQP4M1 orthologs revealed that cysteine residues at their N-terminal palmitoylation sites are almost completely conserved in vertebrate lineages from hagfishes to human (Table 1). Palmitoylation sites are exceptionally lost only in two fishes in total 224 vertebrate species (99% conservation). AQP4 homologs are also known in some invertebrate species [19,21], which exhibit approximately 40-50% amino acid sequence identity with human AQP4M1. Sequence data show that no palmitoylation motif exists in invertebrates AQP4 homologs, indicating that the acquisition event of AQP4 N-terminal palmitoylation sites may occur in the common vertebrate ancestor around 500 million years ago in the late Cambrian to the early Ordovician periods. To date, these post-translational modification sites in AQP4M1 are evolutionarily conserved against mutation pressure throughout vertebrate species. While there is no strict consensus rule in amino acid sequence around known palmitoylated cysteines, positively charged basic residues (Arg and Lys) often locate around the palmitoylation sites, which may contribute to membrane binding [8,22]. Actually, arginine and lysine residues are notably detected around the palmitoylation sites in almost all vertebrate AQP4 orthologs (Table 1).

Phylogenetic stepwise changes of AQP4 palmitoylation motifs in vertebrate evolution

As described above, sequence analysis of total 224 vertebrate species from primitive hagfishes [23] to human showed that the palmitoylation sites are almost completely conserved with limited exceptions (Table 1). Cyclostomes consist of hagfishes and lampreys, which are the primitive jawless vertebrates belonging to the superclass Agnatha. Hagfish AQP4 orthologs have four cysteine residues in their N-termini and one of these cysteines is corresponding to mammalian AQP4M1 Cys17. In the superclass Gnathostomata (jawed vertebrates), 41 species in total 43 cartilaginous and bonny fishes have more than one cysteine in their AQP4M1 N-termini (95%). Although almost all fish AQP4 orthologs possess multiple cysteine residues in their N-termini, there is no consensus sequence around these cysteines. 31 species in total 43 fishes hold the cysteine residue corresponding to mammalian AQP4M1 Cys17 (72%). On the other hand, the cysteine residue corresponding to mammalian AQP4M1 Cys13 is poorly conserved in 21 species (49%) and 19 fishes have the both palmitoylation sites (44%). Similar to many other teleost fish genes, most teleost fishes have more than two different types of AQP4. Redundant AQP4 orthologs in fishes may be consistent with their ancient whole genome duplication [24,25]. Corresponding residues to mammalian AQP4M1 Cys13 and Cys17 are broadly conserved in tetrapods, namely, amphibians, reptiles, birds and mammals with a few exceptions. In addition, the third cysteine at the corresponding site to mammalian AQP4M1 Arg19 is paraphylogenetically recognized in a cartilaginous fish (elephant shark), most of ray-finned fishes, amphibians, reptiles and birds, but not in a lobe-finned fish (coelacanth) and mammals. Mutations around these cysteines are often detected even in the same order or in the same family, whereas Lys12, Gly14, Leu16, Glu20 and Ile22 are
also extremely conserved throughout whole tetrapods. Clade-specific conservations at respective sites should have considerable influence on palmitoylation efficiency in each vertebrate class.

To be specific, both palmitoylation sites corresponding to mammalian AQP4M1 Cys13 and Cys17 are completely conserved in western clawed frog as representative of amphibians and 12 reptiles (100% conservation). Characteristic sequence “-G/S-KCGRLCKCEAI-” and its several variations exist in the N-termini of reptile AQP4 orthologs, which may developed from amphibian sequence with a couple of mutations (Fig. 2). In the class Aves, AQP4 orthologs have been identified in total 59 bird species. Typical bird sequences “-G/S-KCGRLCKCE-S/R-I-” suggest that mutations from reptile Ala/Thr to bird Ser/Arg occurred in the incipient birds (Fig. 2). The bird AQP4M1 Cys13 is exceptionally replaced by phenylalanine only in rifleman (98% conservation) and Cys17 is replaced by tryptophan or phenylalanine in three bird species, Anna's hummingbird, yellow-throated sandgrouse and brown mesite (95% conservation). Concerning Cys to Trp or Phe mutations, these triplet codons can be substituted by changing single nucleotide from cysteine-coding TGT or TGC to TGG for Trp and TTT or TTC for Phe. In 106 mammals, AQP4M1 Cys13 is completely conserved (100% conservation) and Cys17 is exceptionally replaced by tryptophan only in 2 species, American pika and Malayan pangolin (98% conservation). The class Mammalia comprises three subclasses: the Prototheria (platypus and several species of echidna), the Metatheria (extant Marsupialia, e.g. koala) and the Eutheria (extant Placentalia, e.g. mouse). Finally, sequence comparison of AQP4 orthologs made it possible to clarify the process of acquisition, conservation, substitution or loss of these palmitoylation sites in mammalian evolution. Compared with reptile AQP4 sequences, sequences around palmitoylation sites of platypus “-GKCGRLCKCEAI-”, typical metatherians “-GKCGPLCKPNSI-” and typical eutherians “-GKCGR1LCRSSIL-” enable us to predict that the common ancestor of mammals presumably had “-GKCGR1LCRSSIL-” (Fig. 2, mutation sites from reptiles are underlined and an insertion in platypus is double underlined). From the viewpoint of a post-translational protein modification, findings presented in this report indicate that N-terminal reversible palmitoylation sites of AQP4, which is likely to play crucial roles in dynamic controls of water transport in the vertebrate central nervous system, are completely conserved in the vertebrate lineage from hagfishes to human. Further accumulation of sequence data will reveal the timeline of establishment and divergence of these palmitoylation sites-containing motifs in more detail. Especially, sequence information on lampreys and lower chordates such as lancelets and sea squirts will clarify the origin of the AQP4 palmitoylation mechanism.

Dynamic regulation of ion channels and receptors made possible by reversible post-translational protein palmitoylation may be critical for more effective membrane localization and trafficking in refined functions. So far we have shown that palmitoylation sites of ionotropic glutamate receptors (iGluRs), the major excitatory neurotransmitter receptors in vertebrate central nervous system, and those of iGluRs-binding proteins are extremely conserved in various
species of whole vertebrate [26-28]. Furthermore, palmitoylation sites of hyperpolarization-activated cyclic nucleotide-gated (HCN) 2 channel is conserved in vertebrates [29]. By contrast, palmitoylation sites of dopamine D1-like, D1 and D5, receptors, are broadly found in vertebrates and invertebrates [30]. Future genome analysis would permit us to understand detailed history of acquisition and refinement of the post-translational protein palmitoylation in vertebrates.

Acknowledgements

This work was supported in part by the Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), AMED-RRIME from the Japan Agency for Medical Research and Development (AMED), the Takeda Science Foundation, the Mitsubishi Foundation, the Brain Science Foundation, the Suzuken Memorial Foundation and the Astellas Foundation for Research on Metabolic Disorders.

Conflicting interests

The authors have declared that no conflict of interests exist.

References

1 Zardoya R. Phylogeny and evolution of the major intrinsic protein family. Biol Cell 2005; 97:397-414.
2 Nagelhus EA, Ottersen OP. Physiological roles of aquaporin-4 in brain. Physiol Rev 2013; 93:1543-1562.
3 Papadopoulos MC, Verkman AS. Aquaporin water channels in the nervous system. Nat Rev Neurosci 2013; 14:265-277.
4 Liu H, Qiu G, Zhao F, Yu W, Sun S, Li F, et al. Lost polarization of aquaporin4 and dystroglycan in the core lesion after traumatic brain injury suggests functional divergence in evolution. Biomed Res Int 2015; 2015:471631.
5 Hubbard JA, Szu JI, Binder DK. The role of aquaporin-4 in synaptic plasticity, memory and disease. Brain Res Bull 2017.
6 Suzuki H, Nishikawa K, Hiroaki Y, Fujiyoshi Y. Formation of aquaporin-4 arrays is inhibited by palmitoylation of N-terminal cysteine residues. Biochim Biophys Acta 2008; 1778:1181-1189.
7 Crane JM, Verkman AS. Reversible, temperature-dependent supramolecular assembly of aquaporin-4 orthogonal arrays in live cell membranes. Biophys J 2009; 97:3010-3018.
8 Fukata Y, Fukata M. Protein palmitoylation in neuronal development and synaptic plasticity. Nat Rev Neurosci 2010; 11:161-175.
9 Linder ME, Deschenes RJ. Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol 2007; 8:74-84.
10 Nadolski MJ, Linder ME. Protein lipidation. FEBS J 2007; 274:5202-5210.
11 Resh MD. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1999; 1451:1-16.
12 Fallin MD, Lasseter VK, Wolyniec PS, McGrath JA, Nestadt G, Valle D, et al. Genomewide linkage scan for bipolar-disorder susceptibility loci among Ashkenazi Jewish families. Am J Hum Genet 2004; 75:204-219.
13 Mansouri MR, Marklund L, Gustavsson P, Davey E, Carlsson B, Larsson C, et al. Loss of ZDHHC15 expression in a woman with a balanced translocation t(X;15)(q13.3:cen) and severe mental retardation. Eur J Hum Genet 2005; 13:970-977.
14 Mukai J, Dhilla A, Drew LJ, Stark KL, Cao L, Mac Dermott AB, et al. Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion. Nat Neurosci 2008; 11:1302-1310.
15 Otani K, Ujike H, Tanaka Y, Morita Y, Kishimoto M, Morio A, et al. The ZDHHC8 gene did not associate with bipolar disorder or schizophrenia. Neurosci Lett 2005; 390:166-170.
16 Raymond FL, Tarpey PS, Eddins S, Tofis C, O'Meara S, Teague J, et al. Mutations in ZDHHC9, which encodes a palmitoyltransferase of NRAS and HRAS, cause X-linked mental retardation associated with a Marfanoid habitus. Am J Hum Genet 2007; 80:982-987.
17 Young FB, Butland SL, Sanders SS, Sutton LM, Hayden MR. Putting proteins in their place: palmitoylation in Huntington disease and other neuropsychiatric diseases. Prog Neurobiol 2012; 97:220-238.
18 Okamura Y, Nishino A, Murata Y, Nakajo K, Iwasaki H, Ohtsuka Y, et al. Comprehensive analysis of the ascidian genome reveals novel insights into the molecular evolution of ion channel genes. Physiol Genomics 2005; 22:269-282.
19 Pietrantonio PV, Jagge C, Keeley LL, Ross LS. Cloning of an aquaporin-like cDNA and in situ hybridization in adults of the mosquito Aedes aegypti (Diptera: Culicidae). Insect Mol Biol 2000; 9:407-418.
20 Campbell EM, Ball A, Hoppler S, Bowman AS. Invertebrate aquaporins: a review. J Comp Physiol B 2002; 178:935-955.
21 Finn RN, Chauvine F, Stavang JA, Belles X, Cerda J. Insect glycerol transporters evolved by functional co-option and gene replacement. Nat Commun 2015; 6:7814.
22 El-Husseini Ael D, Breed DS. Protein palmitoylation: a regulator of neuronal development and function. Nat Rev Neurosci 2002; 3:791-802.
23 Herr JE, Clifford AM, Goss GG, Fudge DS. Defensive slime formation in Pacific hagfish requires Ca2+- and aquaporin-mediated swelling of released mucin vesicles. J Exp Biol 2014; 217:2288-2296.
24 Glasauer SM, Neuhauuss SC. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Genet Genomics 2014; 289:1045-1060.
25 Hermans RA, Hvidsten TR, Sandve SR, Liberles DA. Extracting functional trends from whole genome duplication events using comparative genomics. Biol Proced Online 2016; 18:11.
26 Thomas GM, Hayashi T. Smarter neuronal signaling complexes from existing components: how regulatory modifications were acquired during animal evolution: evolution of palmitoylation-dependent regulation of AMPA-type ionotropic
glutamate receptors. Bioessays 2013; 35:929-939.

27 Hayashi T. Evolutionarily conserved palmitoylation-dependent regulation of ionotropic glutamate receptors in vertebrates. Neurotransmitter 2014; 1:e388.

28 Hayashi T. The origin and diversity of PICK1 palmitoylation in the Eutheria. Neurotransmitter 2015; 2:e802.

29 Itoh M, Kaizuka T, Hayashi T. Evolutionary acquisition and divergence of vertebrate HCN2 palmitoylation. Neurotransmitter 2017; 4:e1603.

30 Adachi T, Hayashi T. Evolutionarily conserved phosphorylation and palmitoylation-dependent regulation of dopamine D1-like receptors in vertebrates. Neurotransmitter 2016; 3:e1434.