Estudo angiotomográfico das variações do tronco celíaco e da artéria hepática em 100 pacientes

Computed tomography angiography study of variations of the celiac trunk and hepatic artery in 100 patients

Ivelise Regina Canito Brasil1, Igor Farias de Araujo2, Adriana Augusta Lopes de Araujo Lima3, Ernesto Lima Araujo Melo4, Ronaldo de Matos Esmeraldo5

Brasil IRG, Araujo IF, Lima AALA, Melo ELA, Esmeraldo RM. Estudo angiotomográfico das variações do tronco celíaco e da artéria hepática em 100 pacientes. Radiol Bras. 2018 Jan/Fev;51(1):32–36.

Resumo

Objetivo: Relatar as principais variações anatômicas do tronco celíaco e da artéria hepática em sua origem.

Materiais e Métodos: Foram analisadas, de forma prospectiva, 100 angiotomografias abdominais consecutivas realizadas em serviço público no período de um ano. Os achados foram categorizados segundo a classificação de Sureka et al. e de Michels.

Resultados: De um total de 100 pacientes, 43 tiveram tronco celíaco normal, ou seja, tronco hepatogastroesplênico e artéria mesentérica superior originando-se separadamente da aorta abdominal. Quatro tipos de variação do tronco celíaco foram encontrados em nosso trabalho. Otenta e dois pacientes apresentaram o padrão de anatomia normal, ou seja, a artéria hepática originando-se da artéria hepática comum e bifurcando-se em artéria hepática direita e artéria hepática esquerda. Seis tipos de variação da artéria hepática foram encontrados em nosso estudo.

Conclusão: O nosso trabalho apresenta índices de variações que diferem dos artigos encontrados na literatura. Esses achados chamam a atenção para a necessidade do conhecimento das variações anatômicas no nosso meio, colaborando e facilitando o seu reconhecimento, sua utilização no planejamento técnico operatório e evitando lesões inadvertidas que poderiam comprometer o resultado dos procedimentos médicos, levando a complicações.

Unitermos: Anatomia; Tomografia computadorizada; Artéria celíaca; Artéria hepática; Transplante hepático.

Abstract

Objective: To describe the main anatomical variations of the celiac trunk and the hepatic artery at their origins.

Materials and Methods: This was a prospective analysis of 100 consecutive computed tomography angiography studies of the abdomen performed during a one-year period. The findings were stratified according to classification systems devised by Sureka et al. and Michels.

Results: The celiac trunk was “normal” (i.e., the hepatogastrosplenic trunk and superior mesenteric artery originating separately from the abdominal aorta) in 43 patients. In our sample, we identified four types of variations of the celiac trunk. Regarding the hepatic artery, a normal anatomical pattern (i.e., the proper hepatic artery being a continuation of the common hepatic artery and bifurcating into the right and left hepatic arteries) was seen in 82 patients. We observed six types of variations of the hepatic artery.

Conclusion: We found rates of variations of the hepatic artery that are different from those reported in the literature. Our findings underscore the need for proper knowledge and awareness of these anatomical variations, which can facilitate their recognition and inform decisions regarding the planning of surgical procedures, in order to avoid iatrogenic intraoperative injuries, which could lead to complications.

Keywords: Anatomy; Computed tomography, Celiac artery; Hepatic artery; Liver transplantation.

INTRODUÇÃO

A trifurcação do tronco celíaco foi descrita por Haller em 1756. Em 1955, Michels, baseado na dissecação de 200 cadáveres, desenvolveu uma classificação do padrão anatômico do tronco celíaco. Em 1966 foi internacionalmente proposta a classificação das variações anatômicas da artéria hepática (1–4).

O tronco celíaco e a artéria mesentérica superior são dois ramos abdominais da aorta. O tronco celíaco origina-se logo depois do hiato aórtico ao nível da transição das vértebras torácicas para as vértebras lombares. Logo após sua origem na aorta, seguindo o padrão anatômico dito comum, ele trifurca-se em artéria esplênica, artéria hepática comum e artéria gástrica esquerda (4,6–10).
Sabe-se, hoje, que a vasculatura abdominal possui, comumente, vários padrões de origem, e conhecer os casos de variações anatômicas mais usuais é determinante no planejamento cirúrgico e nos exames intervençionistas (6,10,12–19).

Com os avanços das técnicas de imagem em angiotomografia e angiorressonância, tanto na aquisição dos dados quanto no pós-processamento em estações de trabalho, é possível fornecer informações de modo a auxiliar um determinado planejamento cirúrgico, o que pode, eventualmente, contribuir, em última análise, com a redução de índices de morbimortalidade. Temos como exemplo outra aplicação importante, que necessita de detalhes sobre as informações da anatomia vascular, durante a infusão de quimioterápicos via cateter para tratamento de tumores hepáticos malignos irresssecáveis. As cirurgias laparoscópicas podem ser entendidas como um modelo da importância do domínio das variações vasculares, a fim de evitar iatrogenias, visto que o campo cirúrgico é limitado (11,13,14,16,18–22).

A evolução da tomografia passou a permitir a aquisição de uma maior quantidade de imagens computadorizadas com múltiplas fileiras de detectores submilimétricas em um menor intervalo de tempo. Assim, essa técnica proporcionou facilidades na obtenção de imagens da vasculatura padrão abdominal e de suas variações, como o auxílio em situações emergenciais, por exemplo, no sangramento gastrointestinal (11,13,16,18,20,21,23).

O objetivo do nosso trabalho foi estudar e avaliar os padrões de variações anatômicas do tronco celíaco e da artéria hepática por tomografia computadorizada multifacetores na nossa população.

MATERIAIS E MÉTODOS

O presente estudo foi aprovado pelo Comitê de Ética e Pesquisa do Hospital Geral de Fortaleza, no Estado do Ceará. Todos os pacientes submetidos à pesquisa fizeram o exame por indicação médica, devido a causas não ligadas à pesquisa, não sendo, assim, necessária a obtenção de termo de consentimento livre e esclarecido. O estudo durou um ano, de junho de 2013 a junho de 2014, e analisou, de forma prospectiva, 100 angiotomografias abdominais consecutivas realizadas no hospital, no período citado. Foram excluídos do estudo pacientes com história prévia de cirurgia abdominal.

Exame de tomografia computadorizada

Os exames foram realizados em equipamento de tomografia computadorizada com múltiplas fileiras de detectores (Brilliance 64-slice; Philips Healthcare, Eindhoven, Holanda). Foram adquiridas imagens-fonte com 0,6 mm de espessura reconstruídas com 2 mm de espessura e 1 mm de incremento. O meio de contraste venoso utilizado foi o iohibridol (Henetix 300; Guerbet Produtos Radiológicos, Rio de Janeiro, Brasil), na concentração de 300 mg/mL, administrado por bomba injetora (OptiVantage; Mallinckrodt, Cincinnati, EUA), mediante acesso periférico de 18–20 gauge em membro superior, com fluxo de 4 mL/s. Não foram identificadas reações ao uso do contraste nos pacientes do estudo.

Interpretação radiológica

Os dados das imagens obtidas foram arquivados eletronicamente, restaurados em estação de trabalho (Advantage Workstation 4.4; General Electric Healthcare, Milwaukee, EUA) e reconstruídos em técnicas de multiplanar reconstruction, maximum intensity projection e volume rendering. Essas técnicas foram aplicadas ativamente durante a fase de interpretação, realizada por médico radiologista com 14 anos de experiência em imagem abdominal e vascular.

O estudo analisou a anatomia do tronco celíaco e a origem das artérias hepática comum, esplênica, gástrica esquerda e mesentérica superior. Atentou, também, para a origem da artéria hepática direita, da artéria hepática esquerda, da artéria gastroduodenal e de eventuais artérias hepáticas acessórias.

RESULTADOS

Variações do tronco celíaco

Os 100 pacientes foram categorizados de acordo com a classificação de Sureka et al. (3) (Tabela 1). Encontramos padrão anatômico normal do tronco celíaco – tronco hepatogastroesplênico e artéria mesentérica superior originando-se da aorta abdominal – em 43% dos pacientes, e cinco tipos de variações anatômicas: tronco hepatoesplênico com artéria gástrica esquerda emergindo 0,4–2,5 cm antes da bifurcação do tronco celíaco e artéria mesentérica superior originando-se da aorta abdominal em 47% dos pacientes; tronco gastroesplênico com artéria hepática comum e artéria mesentérica superior originando-se da aorta abdominal em 2% dos pacientes; tronco gastroesplênico com artéria hepática originando-se da artéria mesentérica abdominal em 43% dos pacientes.

Tabela 1—Variação do tronco celíaco nos 100 pacientes, segundo a classificação disponível em Sureka et al. (3).

| Padrão anatômico – tronco celíaco | Número de pacientes |
|-----------------------------------|--------------------|
| Anatomia normal (THGE + AMS)       | 43                 |
| Variações anatômicas              | 57                 |
| THE + AGE + AMS                   | 47                 |
| TGE + AHC + AMS                   | 2                  |
| TGE + THM                         | 3                  |
| TCM                               | 0                  |
| THM + AGE + AE                    | 0                  |
| THEM + AGE                        | 1                  |
| Anatomia ambígua                  | 4                  |

THGE, tronco hepatogastroesplênico; AMS, artéria mesentérica superior; THE, tronco hepatoesplênico; AGE, artéria gástrica esquerda; TGE, tronco gastroesplênico; AHC, artéria hepática comum; THM, tronco hepático mesentérico; AE, artéria esplênica; THEM, tronco hepatoesplênico e mesentérico; TCM, tronco celíaco mesentérico.
superior em 3% dos pacientes; tronco hepatoesplênico-sentérico com artéria gástrica esquerda originando-se da aorta abdominal em 1% dos pacientes; e padrão anatômico ambíguo em 4% dos pacientes, visto que não apresentaram nenhum dos outros padrões de variação anatômica.

**Variações da artéria hepática**

Os 100 pacientes foram categorizados de acordo com a classificação de Michels\(^5\) (Tabela 2). Encontramos padrão anatômico normal – a artéria hepática originando-se da artéria hepática comum e bifurcando-se em artéria hepática direita e artéria hepática esquerda (tipo I) – em 82% dos pacientes, e seis tipos de variações anatômicas: artéria hepática esquerda originando-se da artéria gástrica esquerda (tipo II) em 1% dos pacientes (Figura 1); artéria hepática direita originando-se da artéria mesentérica superior (tipo III) em 10% dos pacientes; artéria hepática esquerda acessória originando-se da gástrica esquerda (tipo V) em 1% dos pacientes; artéria hepática direita acessória originando-se da artéria mesentérica superior (tipo VI) em 1% dos pacientes; artéria hepática comum originando-se da artéria mesentérica superior (tipo IX) em 4% dos pacientes (Figura 2); e padrão anatômico tipo XI em 1% dos pacientes. Não encontramos, em nosso estudo, pacientes com padrões anatômicos tipos IV, VII, VIII e X.

| Tipo | Número de pacientes | Descrição |
|------|---------------------|-----------|
| I    | 82                  | AHP originando-se da AHC, bifurcando em AHD e AHE |
| II   | 1                   | AHE originando-se da AGE |
| III  | 10                  | AHD originando-se da AMS |
| IV   | 0                   | AHD e AHE originando-se da AGE |
| V    | 1                   | AHE acessória originando-se da AGE |
| VI   | 1                   | AHD acessória originando-se da AMS |
| VII  | 0                   | AHD acessória originando-se da AMS e AHE acessória originando-se da AGE |
| VIII | 0                   | Nova origem da AHD e da AHE acessória ou nova origem da AHE e da AHD acessória |
| IX   | 4                   | AHC originando-se da AMS |
| X    | 0                   | AHC originando-se da AGE |
| XI   | 1                   | Alguma variação não descrita nos tipos I a X |

AHP, artéria hepática própria; AHC, artéria hepática comum; AHD, artéria hepática direita; AHE, artéria hepática esquerda; AGE, artéria gástrica esquerda; AMS, artéria mesentérica superior.

**DISCUSSÃO**

Analisamos, prospectivamente, 100 angiotomografias abdominais consecutivas realizadas no Hospital Geral de Fortaleza, no período de um ano. A avaliação por métodos de imagem do fígado tem sido motivo de uma série de publicações recentes na literatura radiológica nacional\(^24–29\).

Segundo a anatomia visceral padrão, o tronco celíaco origina-se da aorta abdominal e trifurca-se em artéria gástrica esquerda, artéria esplênica e artéria hepática comum\(^4,7,30\). Sabendo que são possíveis 15 tipos de variações anatômicas do tronco celíaco, detectamos, em nosso trabalho, 6 tipos dessas variações, mesmo valor encontrado no trabalho de Sureka et al.\(^3\). Em nosso trabalho, o valor encontrado do padrão anatômico normal do tronco celíaco foi 43%, no estudo de dissecação de Michels\(^5\) foi 89%, no trabalho de Sureka et al.\(^3\) foi 91%, no estudo de Sankar et al.\(^8\) foi 86%, no trabalho de Panagouli et al.\(^31\) foi 85,1% para estudos com cadáveres, 89,5% para estudos de imagem e 95,4% para estudos de transplantes de fígado, no estudo de Song et al.\(^18\) foi 89,1%, no estudo de Chen et al.\(^32\), que analisou uma população japonesa definida como homogênea, o valor encontrado foi 89,8%, e no estudo de Araujo-Neto et al.\(^33\) foi 90%.

Em nosso trabalho, 57% dos pacientes tinham variação do tronco celíaco, ao passo que Panagouli et al.\(^31\) a relataram em 10,6% dos pacientes em seu estudo, Sureka et al.\(^3\) em 5,5%, Sankar et al.\(^8\) em 14%, Song et al.\(^18\) em 9,6% e Chen et al.\(^32\) em 10,2%.

O padrão anatômico de variação mais encontrado em nosso estudo – 47% dos casos – foi tronco hepatoesplênico
com artéria gástrica esquerda saindo 0,4–2,5 cm antes da bifurcação do tronco celiaco e artéria mesentérica superior originando-se da aorta abdominal. Este padrão anatômico também foi observado no trabalho de Sureka et al. (3), mas em somente 2,3%, no trabalho de Michels (5) em 4% dos pacientes, e no estudo de Song et al. (18) em 4,42%. No trabalho de Araujo-Neto et al. (33), a principal variação encontrada foi tronco hepatoesplênico com artéria gástrica esquerda originando-se da aorta, em 8,3%.

Sobre a anatomia da artéria hepática, temos como padrão anatômico mais frequentemente encontrado o tipo I segundo a classificação de Michels (5), ou seja, artéria hepática originando-se da artéria hepática comum e bifurcando-se em artéria hepática direita e artéria hepática esquerda (3,5,15,34). No nosso trabalho, o padrão anatômico da artéria hepática mais encontrado foi o tipo I de Michels, em 82% dos casos, padrão também relatado por Gümüs et al. (15) em 66,8%, por Sureka et al. (3) em 55% e por Chen et al. (1) em 51%. No estudo brasileiro de Sebben et al. (2) com cadáveres foi encontrado o valor de 73%. No estudo com transplantes hepáticos desenvolvido no Paraná, Freitas et al. (30) encontraram 76,82% para o padrão normal.

Em nosso trabalho, 18% dos pacientes tinham variação da artéria hepática, também constatada por Gümüs et al. (15) em 33,2% de seus pacientes, por Sureka et al. (3) em 45%, por Chen et al. (1) em 49%, por Sebben et al. (2) em 27%, por Freitas et al. (30) em 23,18%, por Chen et al. (32) em 10,2% e por Araujo-Neto et al. (33) em 21,7%.

O padrão anatômico de variação mais encontrado em nosso estudo – 10% dos casos – foi artéria hepática direita originando-se da artéria mesentérica superior. Nos estudos analisados, este também foi o principal padrão de variação anatômica encontrado, mas em porcentuais diferente. No trabalho de Gümüs et al. (15), 10,1% dos pacientes apresentaram esse padrão anatômico, no estudo de Sureka et al. (3), 11%, no trabalho de Chen et al. (1), 15%, no estudo de Sebben et al. (2), 10%, e no estudo de Freitas et al. (30), 11,38% para a essa principal variação.

O nosso estudo mostra uma visão do padrão anatômico encontrado em nosso território. Diante dessa realidade, é possível concluir que, pelo fato de o Brasil ser um país miscigenado, os índices de variação anatômica, apesar de possuírem pontos de similaridade, também apresentam trechos de variações que diferem bastante da literatura internacional, principalmente quando comparamos o padrão de variação do tronco celiaco com populações homogêneas (2,9,14,32). Vale ressaltar que existem alguns pontuais trabalhos brasileiros que analisaram o padrão anatômico da artéria hepática e de seus ramos, em estudos com cadáveres e com transplantes hepáticos. No entanto, estudos brasileiros que tratam das variações anatômicas do tronco celiaco são realmente muito raros, sendo esse o resultado em nosso estudo que mais diferiu da literatura (2,9,14,22,30).

Com base nesses achados, para o maior entendimento do padrão anatômico da população brasileira, estudos dessa natureza precisam ser estimulados, em razão da sua escassez. Assim, poderemos ter um melhor planejamento técnico operatório e evitar lesões inadvertidas que podem comprometer o resultado dos procedimentos médicos, levando a complicações, o que pode contribuir, em última análise, com a redução de índices de morbidade e mortalidade em procedimentos endovasculares, cirurgias abdominais e transplantes, em especial, hepático e pancreático (2,14,22,30).

REFERÊNCIAS
1. Chen H, Yano R, Emura S, et al. Anatomic variation of the celiac trunk with special reference to hepatic artery patterns. Ann Anat. 2009;191:399–407.
2. Sebben GA, Rocha SL, Sebben MA, et al. Variações da artéria hepática: estudo anatômico em cadáveres. Rev Col Bras Cir. 2012;40:221–6.
3. Sureka B, Mittal MK, Mittal A, et al. Variations of celiac axis, common hepatic artery and its branches in 600 patients. Indian J Radiol Imaging. 2013;23:223–33.
4. Venieratos D, Panagouli E, Lolis E, et al. A morphometric study of the celiac trunk and review of the literature. Clin Anat. 2013;26:741–50.
5. Michels NA. Newer anatomy of the liver and its variant blood supply and collateral circulation. Am J Surg. 1966;112:337–47.
6. Catalano OA, Singh AH, Uppot RN, et al. Vascular and biliary variants in the liver: implications for liver surgery. Radiographics. 2008;28:359–78.
7. Nayak SR, Prabhu LV, Krishnamurthy A, et al. Additional branches of celiac trunk and its clinical significance. Rom J Morphol Embryol. 2008;49:247–9.
8. Sankar KD, Bhanu PS, Susan PJ. Variant anatomy of the celiac trunk and its branches. Int J Morphol. 2011;29:581–4.
9. Varma KS, Pamidi N, Vollala VR. Common celiacomesenteric trunk: a rare anatomic variation. J Vasc Bras. 2009;8:271–3.
10. Wang Y, Cheng C, Wang L, et al. Anatomical variations in the origins of the celiac axis and the superior mesenteric artery: MDCT angiographic findings and their probable embryological mechanisms. Eur Radiol. 2014;24:1777–84.
11. Melo-Leite AF, Mota Jr A, Chagas-Neto FA, et al. Acquired portosystemic collaterals: anatomy and imaging. Radiol Bras. 2016;49:251–6.
12. Atasoy Ç, Ozyürek E. Prevalence and types of main and right portal vein branching variations on MDCT. AJR Am J Roentgenol. 2006;187:676–81.
13. Winston CB, Lee NA, Jarnagin WR, et al. CT angiography for delineation of celiac and superior mesenteric artery variants in patients undergoing hepatobiliary and pancreatic surgery. AJR Am J Roentgenol. 2007;188:W13–9.
14. Freitas ACT, Godoy JL, Matias JEF, et al. Comparação entre exames de imagem e achados operatórios em doadores para transplante hepático intervivos. Arq. Gastroenterol. 2007;44:325–31.
15. Gümüs H, Bükte Y, Özdemir E, et al. Variations of the celiac trunk and hepatic arteries: a study with 64-detector computed tomographic angiography. Eur Rev Med Pharmacol Sci. 2013;17:1636–41.
16. Jezi R, Crotoneo AR, Giancristofaro D, et al. Multidetector-row CT angiographic imaging of the celiac trunk: anatomy and normal variants. Surg Radiol Anat. 2008;30:303–10.
17. Saylısoy S, Atasoy Ç, Ersöz S, et al. Multislice CT angiography in the evaluation of hepatic vascular anatomy in potential right lobe donors. Diagn Interv Radiol. 2005;11:51–9.
18. Song SY, Chung JW, Yin YH, et al. Celiac axis and common hepatic artery variations in 5002 patients: systematic analysis with spiral CT and DSA. Radiology. 2010;255:278–88.
19. Reis FRS, Cardia PP, D’Ippolito G. Computed tomography angiography in patients with active gastrointestinal bleeding. Radiol Bras. 2015;48:381–90.
20. Erbay N, Raptopoulos V, Pomfret EA, et al. Living donor liver transplantation in adults: vascular variants important in surgical planning for donors and recipients. AJR Am J Roentgenol. 2003;181:109–14.
21. Schmidt S, Demartines N, Soler L, et al. Portal vein normal anatomy and variants: implication for liver surgery and portal vein embolization. Semin Intervent Radiol. 2008;25:86–91.
22. Soares RV, Coelho JCU, Matias JEF, et al. Anatomia da artéria hepática em doadores e receptores de transplante hepático inter vivos. Rev Col Bras Cir. 2006;33:63–7.
23. Araujo-Neto SA, Mello-Júnior CF, Franca HA, et al. Multidetector computed tomography angiography of the celiac trunk and hepatic arterial system: normal anatomy and main variants. Radiol Bras. 2016;49:49–52.
24. Giardino A, Miller FH, Kalb B, et al. Hepatic epithelioid hemangioendothelioma: a report from three university centers. Radiol Bras. 2016;49:288–94.
25. Cruz JF, Cruz MAF, Machado Neto J, et al. Prevalence and sonographic changes compatible with fatty liver disease in patients referred for abdominal ultrasound examination in Aracaju, SE. Radiol Bras. 2016;49:1–5.
26. Siqueira GRS, Guimarães MD, Franco LFS, et al. Exophytic hepatocellular carcinoma, simulating a mesenchymal tumor, in a non-cirrhotic liver. Radiol Bras. 2017;50:62–3.
27. Staziaki PV, Teixeira BC, Pedrazzani BM, et al. Hepatoblastoma with solid and multicystic aspect mimicking a mesenchymal hamartoma: imaging and anatomopathologic findings. Radiol Bras. 2017;50:68.
28. Ramalho M, Matos AP, AlObaidy M, et al. Magnetic resonance imaging of the cirrhotic liver: diagnosis of hepatocellular carcinoma and evaluation of response to treatment – Part 1. Radiol Bras. 2017;50:38–47.
29. Ramalho M, Matos AP, AlObaidy M, et al. Magnetic resonance imaging of the cirrhotic liver: diagnosis of hepatocellular carcinoma and evaluation of response to treatment – Part 2. Radiol Bras. 2017;50:115–25.
30. Freitas ACT, Coelho JCU, Matias JEF, et al. Anatomia arterial hepática: estudo em 150 transplantes hepáticos. Rev Col Bras Cir. 2000;28:13–6.
31. Panagouli E, Venieratos D, Lolis E, et al. Variations in the anatomy of the celiac trunk: a systematic review and clinical implications. Ann Anat. 2013;195:501–11.
32. Chen H, Yano R, Emura S, et al. Anatomic variation of the celiac trunk with special reference to hepatic artery patterns. Ann Anat. 2009;191:399–407.
33. Araujo-Neto SA, Franca HA, Mello-Júnior CF, et al. Anatomical variations of the celiac trunk and hepatic arterial system: an analysis using multidetector computed tomography angiography. Radiol Bras. 2015;48:358–62.
34. Özbülbül NI. CT angiography of the celiac trunk: anatomy, variants and pathologic findings. Diagn Interv Radiol. 2011;17:150–7.