Ulcerative Colitis Is Under Dual (Mitochondrial and Nuclear) Genetic Control

Alexandra Rosa, PhD,†,‡ Patrícia Abrantes, PhD,†,‡ Inês Sousa, PhD,‡,§ Vânia Francisco, MSc,†,‡ Patrícia Santos, MSc,†,‡ David Francisco, MSc,†,‡ Joana M. Xavier, PhD,§ and Sofia A. Oliveira, MD, PhD†,‡

Background: Cellular oxidative stress and genetic susceptibility have been implicated in the multifactorial etiology of ulcerative colitis (UC). The nuclear genome association with UC has been intensely investigated, but the role of the mitochondrial DNA (mtDNA) has received far less attention and may account for part of the missing heritability. This study is a comprehensive analysis of the mtDNA contribution to UC susceptibility.

Methods: The association of mitochondrial single-nucleotide polymorphisms (mtSNPs) and haplogroups with UC was tested in 488 cases and 833 controls of European ancestry from the NIDDK IBD Genetics Consortium Ulcerative Colitis Genome-Wide Association Study available through dbGaP and from the Illumina Genotype Control Database (studies 64 and 65).

Results: No evidence of population stratification could be detected using 218 ancestry informative markers for European Americans. Seven of the 58 tested mtSNPs were nominally associated with UC, and A10550G in MT-ND4L withstands the Bonferroni correction (P = 1.29E-06, odds ratio [OR] 95% CI 1.71 [1.08–2.69]), which suggests that it constitutes an independent risk factor from nuclear-encoded susceptibility loci. We detected additive (but not multiplicative) epistatic interactions between A10550G and all 11 top GWAS hits. Subhaplogroup K1 (P = 0.021, OR [95% CI] = 1.71 [1.08–2.69]) increased the risk for UC, whereas the U5b lineage conferred protection (P = 0.016, OR [95% CI] = 0.34 [0.14–0.82]).

Conclusions: These results suggest that UC has a dual mitochondrial and nuclear genetic control that warrants further replication in independent data sets and reinforces its etiopathogenic complexity.

(Inflamm Bowel Dis 2016;22:774–781)

Key Words: ulcerative colitis, mitochondrial DNA, single-nucleotide polymorphism, genetic association studies, genetic predisposition to disease

C rohn’s disease and ulcerative colitis (UC) are the most prevalent forms of inflammatory bowel disease (IBD), affecting over 2.5 million people of European ancestry. UC is a chronic relapsing inflammatory condition characterized by mucosal ulcers in the rectum and colon. Several key players have been implicated in its multifactorial etiology, including environmental factors (e.g., smoking, diet, drugs, geographical and social status, stress), commensal microbiota, epithelial barrier dysfunction, innate and adaptive immune responses, cellular oxidative stress, and genetic susceptibility. Genome-wide association studies (GWAS) and meta-analyses have brought the most rapid novel insights into UC pathogenesis. Among the 163 IBD-associated loci, 110 are shared between UC and Crohn’s disease, and the 23 UC-specific loci are primarily immune response mediators (IL10, IL23R, IL26, and MHC genes in chromosome 6p21) and genes involved in the epithelial barrier function (ECM1, CDH1, HNF4α, and LAMB1). However, these genetic risk factors collectively explain only approximately 20% to 25% of the heritability and less than 10% of the total disease variance, which suggests that additional genetic players (e.g., rare variants, extranuclear genome) must be identified.

Hypothesis-free GWAS have pinpointed common genetic risk factors in the nuclear-encoded genome, but the association of the second genome, the mitochondrial DNA (mtDNA), and of their interaction, has received far less attention. mtDNA variation has been associated with non-Mendelian, nonmaternally inherited, complex autoimmune, and inflammatory disorders. Although mitochondrial
single-nucleotide polymorphisms (mtSNPs) are represented in most genotyping platforms used in GWAS, their analysis has been neglected or underreported.5

Mitochondria are the main intracellular source of reactive oxygen species (ROS) because their primary function is production of ATP through oxidative phosphorylation in the electron transport chain. High levels of ROS and oxidative stress have been implicated in the pathophysiology of IBD, while the Krebs cycle and oxidative phosphorylation in the mitochondria are among the few downregulated pathways in active UC biopsies.9 These organelles also play a central role in intracellular signaling, apoptosis, and metabolic pathways such as tricarboxylic acid cycle and the metabolism of amino acids, lipids, cholesterol, and steroids.

The human mtDNA is a haploid, nonrecombining circular genome of approximately 16,600 nucleotides encoding for 13 electron transport chain polypeptides, 22 transfer RNAs, and 2 ribosomal RNAs. Particular combinations of mtSNPs define haplogroups and their subclades that tend to be associated with broad geographic areas and/or populations.10 Although presumed to be selectively neutral, mtSNPs of phylogenetic relevance and especially those in the mtDNA-coding region are likely to assume a functional role on the expression of some complex traits. mtDNA polymorphisms and haplogroups may act independently or synergistically with nuclear genetic factors and mtDNA-encoded gene/nuclear-encoded gene interactions may explain part of the UC genetic vacuum.

To determine whether the mitochondrial genome may account for part of the missing heritability in UC, in this study we tested the association of mtSNPs and haplogroups in 1321 UC cases and healthy controls of European ancestry from the NIDDK IBD Genetics Consortium Ulcerative Colitis (NIDDK IBD UC) GWAS11 available through the NCBI Database of Genotypes and Phenotypes (dbGaP),12 and from Illumina Genotype Control Database (iControlDB) studies, controlling for population stratification with the analysis of ancestry informative markers (AIMs).

MATERIALS AND METHODS

Study Subjects and Genotyping

The criteria and procedures for the recruitment of patients with UC are described in detail elsewhere.11 Briefly, cases of self-reported white, European non-Hispanic ancestry, were ascertained in North American institutions and were selected to have either left-sided or extensive UC (i.e., patients only with proctitis were excluded). Genotyping was performed at the Feinstein Institute for Medical Research with the Illumina HumanHap550v3 Genotyping BeadChips (detailed methodology described in Silverberg et al11). The phenotype and genotype data investigated in this study is deposited in the Database of Genotypes and Phenotypes (dbGaP)12 under the dbGaP study accession number phs000345.v1.p1 (http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap). Control data were obtained from studies 64 and 65 (n = 833) deposited in the Illumina iControlDB at http://genominformaticsalliance.org/science/icontroldb.illum. A χ² test was used to compare the sex distribution between UC cases and controls.

Population Stratification Assessment

Among the 300 AIMs described to be most informative for discriminating northwest and southeast European ancestries among European Americans and which may be used to correct for population substructure (http://genepath.med.harvard.edu/~reich/EUROSNP.htm),13 156 were directly genotyped in the UC data set as they were included in the Illumina HumanHap550v3 microarrays. Sixty-two ungenotyped AIMs were replaced by a proxy SNP available in the array and identified using the SNP Annotation and Proxy Search (SNAP) tool (http://www.broadinstitute.org/mpg/snap/)14 (r² = 1 in the CEU population panel and the 1000 Genomes Pilot 1 SNP data set, maximum distance 500 kb), and the remaining 82 AIMs could not be confidently substituted. Of the original 300 AIMs, a panel of 218 AIMs (see Table, Supplemental Digital Content 1, http://links.lww.com/IBD/B189) was therefore used for population stratification of this data set.

Principal component analysis (PCA), FST statistics, and the inflation factor λ were computed using EIGENSOFT 3.0, with default parameters. PCs were computed for 488 patients with UC and 833 controls with or without HapMap reference samples from 4 populations (174 CEU—US Utah residents with Northern and Western Europe ancestry; 176 YRI—Yoruba people of Ibadan, Nigeria; 86 CHB—individuals from Beijing, China; 89 JPT—individuals from Tokyo, Japan). The genotypes for these 525 HapMap individuals at the 218 AIMs were downloaded from the International HapMap Project Web site (http://hapmap.ncbi.nlm.nih.gov/biomart/martview, Release 27).15 FST values indicate which proportion of the total genetic variance is attributable to the differences between populations and to the differences between individuals of the same population. This measure of genetic structure varies between 0 (no genetic differentiation of population units) and 1 (complete differentiation of population units). The λ inflation factor indicates population stratification when λ >1.000 and is used to correct the chi-square association tests when stratification exists.16

mtDNA Haplogroup Classification

Given the nonrecombining nature of mtDNA, haplogroups are defined by the haplotypic combination of multiple mtSNPs throughout the molecule, rather than the status at any single point mutation. Among the genotyped mtSNPs, and considering the updated human mtDNA phylogeny in PhyloTree (build 16; http://phylotree.org/),17 we selected the SNPs with phylogenetic relevance to classify our samples into the most prevalent haplogroups in North American population of European ancestry: West Eurasian haplogroups R0/HV, H, V, J, T, U, K, N1, I, and W; Eastern Eurasian and Native American haplogroups A, B2, C, and D4.
Near Eastern and Central Asian haplogroups M and Z; and African haplogroup L. The nomenclature of clades follows that proposed by Torroni et al.,18 Macaulay et al.,19 and Richards et al.6

Sixteen samples were excluded from the mtDNA haplogroup analysis because it was not possible to classify them within the above-mentioned haplogroups.

Association Analyses

For the mtSNPs analysis, a quality filtering was applied to consider only those with an SNP call rate $\geq 95\%$ and minor allele frequency (MAF) $\geq 1\%$. Heterozygote genotypes were considered as missing. For the haplogroup classification, all mtSNP genotypes available were used because rare variants may be of phylogenetic relevance. For instance, the A5656G mtSNP did not pass the quality filtering, but its single occurrence in haplogroup U phylogeny in PhyloTree proved useful for classifying U5b1 samples (further analyzed in the U5b cluster).

For haplogroups’ analyses, we compared each haplogroup with all others pooled together. Rare haplogroups ($<2\%$) were included in the “others” category (haplogroups A, B2, C, D4, N1, L, M, and Z). Because no phylogeographic reasoning exists for these clades, the “others” category was not considered for the association analysis. To adjust the association analyses for relevant confounding factors, sex was included as covariate in a binomial logistic regression (log-additive model) computed with the R freeware version 3.1.2.21 Pairwise conditional analyses, additive, and epistatic interactions between mtSNPs and top GWAS nuclear SNPs were performed sex-adjusted by logistic regression (log-additive model) in R.

Results were considered nominally significant below the conventional level of 0.05. Because some mtSNPs are in linkage disequilibrium and the haplogroup comparisons are not independent, no corrections for multiple testing were performed in both SNP and haplogroup association analyses, and uncorrected P values are reported.

ETHICAL CONSIDERATIONS

This study was approved by the ethics committee of the Centro Hospitalar Lisboa Norte, E.P.E./Faculdade de Medicina de Lisboa, Lisboa, Portugal.

RESULTS

Characterization of the Dataset

The NIDDK IBD UC GWAS11 data available through dbGaP (study accession number phs000345.v1.p1) consists of phenotypes and genotypes of 488 patients obtained on the Illumina HumanHap550v3 Genotyping BeadChips (which include 156 mtSNPs) and are the focus of the work presented here. The remaining data for 540 UC cases genotyped on the Illumina HumanHap300v2 BeadChips could not be further investigated here because mtSNPs were not represented in these arrays. Control data (N = 833) was obtained from the Illumina iControlDB database. No information was available regarding the age at examination (AAE) of the cases, but the controls’ average AAE $\pm SD$ was 48.2 ± 11.3 years (n = 798). The 2 groups differ significantly ($P = 4.09E-33$) in the sex distribution (49.2% and 18.0% of males in the cases and controls, respectively), and because UC seems to occur more frequently in women than in men,1 the association analyses reported in this study are adjusted for sex (very similar results were obtained in unadjusted association tests, data not shown).

Population Stratification Assessment

The effect of population stratification is particularly problematic in mtDNA studies owing to its smaller effective population size when compared with autosomal markers.22 Because we investigated the mtDNA association on part of the data set used in the NIDDK IBD UC GWAS, we assessed whether a hidden ancestry and/or geographic substructure was present in this subset of samples using genotypes at 218 biallelic AIMs (see Table, Supplemental Digital Content 1, http://links.lww.com/IBD/B189).

To validate the intercontinental resolution of these 218 AIMs, we performed a PCA with patients with UC and controls plus HapMap CEU, CHB, JPT, and YRI individuals (Fig. 1A). HapMap populations cluster into distinct groups (except CHB and JPT samples which overlap; $F_{ST}[CHB, JPT] = 0.006$, with significant differences between populations ($P < 2.00E-09$, pairwise $F_{ST} = 0.186–0.243$). UC samples are in closer proximity to the CEU cluster ($F_{ST}[patients with UC, CEU] = 0.003$, $F_{ST}[UC controls, CEU] = 0.004$) than to any other HapMap group (pairwise $F_{ST} = 0.167–0.218$), and again the distribution of UC cases and controls overlaps and no genetic differentiation is detected among them ($F_{ST}[patients with UC, UC controls] = 0.000$).

Figure 1B depicts the top 2 principal components of the PCA analysis performed with the patients with UC and controls only, which shows in greater detail that these 2 groups seem to overlap, with no major outliers. Analysis of variance for population differences along the eigenvectors demonstrated that UC cases and controls did not differ with regard to the first 2 principal components, nor did they differ in the overall PCA test findings ($P = 0.810$). The inflation factor ($\lambda = 1.000$) and F_{ST} index ($F_{ST}[patients with UC, UC controls] = 0.000$) support the inexistence of population stratification and genetic differentiation, respectively, between these subsets, and therefore adjustment for ancestry in association tests is not required.

SNP Association Analyses

We first tested the association of top NIDDK IBD UC GWAS findings (rs3806308, rs10753575, rs6426833, rs1004819, rs11465804, rs11209026, rs10889677, rs2395185, rs7134599, rs1558744, rs2870946) in this subgroup of samples. These autosomal SNPs were associated with UC with 1.36E-05 $\leq P \leq 0.019$ (see Table, Supplemental Digital Content 2, http://links.lww.com/IBD/B190), therefore validating this subset. As expected, the associations were not as significant as originally...
FIGURE 1. Population stratification analysis. The top 2 axes of genetic variation, determined as eigenvectors in principal components analysis (PCA) of genotypes at 218 ancestry-informative markers in 488 patients with UC (red symbols) and 833 controls (green symbols) with (A) or without (B) HapMap reference samples (174 CEU—US Utah residents with Northern and Western Europe ancestry; 176 YRI—Yoruba people of Ibadan, Nigeria; 86 CHB—individuals from Beijing, China; 89 JPT—individuals from Tokyo, Japan). CEU, CHB, JPT, and YRI HapMap samples are shown in dark blue, pink, light blue, and yellow, respectively.
TABLE 1. Mitochondrial Single Nucleotide Polymorphisms (mtSNPs) Associated with Ulcerative Colitis Risk

mtSNP	dbsNP ID	Gene	Variant Type	Allele	Patients (n/N, %)	Controls (n/N, %)	P	OR (95% CI)
T250C	rs41400048	—	—	C	22/486 (4.5)	18/826 (2.2)	0.036	2.05 (1.05–4.01)
A3480G	rs28358584	ND1	Synonymous	G	49/479 (10.2)	53/819 (6.5)	0.030	1.61 (1.05–2.48)
A7786G	rs41534044	CO2	Synonymous	G	6/484 (1.2)	29/832 (3.5)	0.010	0.30 (0.12–0.75)
T10034C	rs41347846	TG	—	C	22/484 (4.5)	18/827 (2.2)	0.035	2.06 (1.05–4.03)
G10398A	rs28538262	ND3	Thr114Ala	A	358/484 (74.0)	661/831 (79.5)	0.008	0.68 (0.52–0.90)
A10550G	rs28358280	ND4L	Synonymous	G	38/471 (8.1)	15/787 (1.9)	1.29E-06	4.80 (2.54–9.05)
C10873T	rs2857264	ND4	Synonymous	T	454/468 (97.0)	815/827 (98.5)	0.027	0.40 (0.18–0.90)

Sex-adjusted P values and their respective OR and 95% CI are shown only for nominally significant associations. P < 0.05.
alleles at several defining SNPs, this apparent inconsistency may result from the synergistic effect of other haplogroup-defining SNPs over A3480G and A10550G, and/or from the protective 10398A allele in haplogroup K and its state reversion to 10398G in K1 (Fig. 2). Furthermore, it could be partially explained by a higher number of control individuals having the K haplogroup (58/833) than the 3480G (53/819) or the 10550G (15/787) alleles, because of missing calls (Tables 1 and 2). Some of the 58 control individuals carrying the K haplogroup had missing calls in A3480G or A10550G, but all of them were classified in the K haplogroup as their genotypes at other SNPs (e.g., A11467G, A12308G, G12372A, T9698C, and T14798C) supported this classification.

CONCLUSIONS

Since the colon of patients with UC is characterized by an energy deficiency state and elevated ROS, mitochondria may contribute to the pathogenic process because of their pivotal role in cellular energy metabolism and ROS generation. Given that ATP depletion compromises the regeneration and barrier function of the colonic mucosa and high ROS levels help to sustain the chronic inflammation, certain mtSNPs and haplogroups may influence the susceptibility to UC. We specifically tested whether the mtDNA genome contributes to the missing heritability in UC in a subset of samples with no detectable population stratification and in which previously reported top GWAS findings were validated. The chief finding of this association study was that the A10550G variant in MT-ND4L increases UC risk by approximately 4.8-fold, which is higher than the increase in the risk conferred by any single nuclear genome-encoded variant associated thus far with UC. This supports the notion that UC has a dual (nuclear and mitochondrial) genetic control.

FIGURE 2. Simplified phylogenetic tree depicting the mtSNPs used for haplogroup classification. mtSNPs are named after their base pair position in the mitochondrial reference sequence (NC_001807) and alleles are given in forward evolutionary time direction [ancestral base] [position number] [derived base], according to www.phylotree.org. Mutations that are reversions to an ancestral state (back mutations) are indicated with an exclamation mark. mtSNPs found to be homoplasic in our data set are underlined in this tree. Full boxes indicate phylogenetic clades found in our data set, whereas dashed boxes represent intermediate nodes.

MT-ND4L encodes the core subunit of the respiratory chain NADH dehydrogenase (complex I) and is believed to belong to
Synonymous SNPs such as A10550G (Met27Met) have been associated with several diseases, including colorectal cancer and body mass index. The reported lack of population stratification among cases and controls using this method in the WTCCC data set is consistent with the modest association of relatively rare mitochondrial subhaplogroups with UC in the NIDDK data set, but does not exclude the possibility that mtSNP associations in the WTCCC data set are confounded by the geographical origin, which is known to correlate well with autosomal principal components. Therefore, future studies are therefore warranted to further validate and fine-map these associations in other populations and to subsequently determine how this variation contributes to UC etiopathogenesis.

Genetic polymorphisms in nuclear-encoded genes involved in mitochondrial energy metabolism (e.g., OCTN, UCP2, DLD, and NF-κB) have been associated with UC. OCTN and UCP2 have been implicated in intestinal barrier function in vivo, and NF-κB is known to regulate epithelial cell proliferation. Biological processes disrupted in patients with UC. In our study, we did not test genetic interactions between the mitochondrial genome and the above-mentioned genes because they were not the top findings in the GWAS under investigation, but we detected an epistatic effect between A10550G and the 11 top SNPs in the NIDDK UC GWAS map (e.g., isocitrate dehydrogenase, inorganic phosphatase, and enoyl-CoA hydratase). Oxidative phosphorylation. The above-mentioned genes do not seem to be correlated. Genetic expression and proteomic characterization of active UC biopsies have reported significant downexpression of citrate cycle and respiratory chain mitochondrial proteins and show high levels of a number of oxidative stress response proteins (e.g., selenium-binding protein, SOD, and thioredoxin-dependent peroxide reductase) and energy-generation proteins (e.g., isocitrate dehydrogenase, 1-lactate dehydrogenase B-chain, inorganic phosphatase, and enoyl-CoA hydratase). Because mitochondrial-related pathways were not enriched among UC GWAS hits, Cardinale et al suggested that perturbation of the mitochondrial respiration and ATP production are not etiopathogenic drivers but rather secondary to inflammation. It is however important to note that the mitochondrial genome was not investigated in this meta-analysis of UC GWAS scans, therefore underscoring the putative contribution of 13 mtDNA-encoded polypeptides related to oxidative phosphorylation. The importance of oxidative stress contribution to UC is further supported by the successful use of therapeutic drugs in patients
and animal models that, directly or indirectly, scavenge free radicals, increase antioxidative capacity of cells, and inhibit prooxidative enzymes.38,39 Finally, it would be of interest to develop a more comprehensive line of research regarding the role of mtDNA variation in UC risk (e.g., full mtDNA sequencing, heteroplasmy levels) and to test the interactions between the mtSNPs, polymorphisms in the nuclear genome and environmental factors previously reported for UC. Deeper understanding of the cellular and genetic contributors to oxidative damage in UC may expand the existing therapeutic targets toward cellular redox homeostasis.

ACKNOWLEDGMENTS

The NIDDK IBD Genomics Consortium Ulcerative Colitis (NIDDK IBD UC) Genome-Wide Association Study was conducted by the NIDDK IBD UC Investigators and supported by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). The data from the NIDDK IBD UC reported here were supplied by the NIDDK Central Repositories. This manuscript was not prepared in collaboration with Investigators of the NIDDK IBD UC study and does not necessarily reflect the opinions or views of the NIDDK IBD UC study, the NIDDK Central Repositories, or the NIDDK. The authors sincerely thank the NIDDK IBD UC Investigators for sharing their data through dbGAP.

REFERENCES

1. Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review.

2. Danese S, Sans M, Fiocchi C. Inflammatory bowel disease: the role of environmental factors.

3. Jena G, Trivedi PP, Sandala B. Oxidative stress in ulcerative colitis: an old concept but a new concern.

4. Zhang YZ, Li YY. In .

5. Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease.

6. Zhang YZ, Li YY. Inflammatory bowel disease: pathogenesis.

7. Xavier JM, Shafiee NM, Ghaderi F, et al. Association of mitochondrial polymorphism m.709G>A with Behçet's disease.

8. Canter JA, Olson LM, Spencer K, et al. Mitochondrial DNA polymorphism A4917G is independently associated with age-related macular degeneration.

9. Cardinale CJ, Wei Z, Li J, et al. Transcriptome profiling of human ulcerative colitis mucosa reveals altered expression of pathways enriched in the genetic susceptibility loci.

10. Kivisild T, Shen P, Wall DP, et al. The role of selection in the evolution of human mitochondrial genomes.

11. Silverberg MS, Cho JH, Rioux JD, et al. Ulcerative colitis-risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study.

12. Danese S, Sans M, Fiocchi C. Inflammation in the carnitine deficiency of in patients with ulcerative colitis.

13. Price AL, Butler J, Patterson N, et al. Discerning the ancestry of European Americans in genetic association studies.

14. Johnson AD, Handsaker RE, Pulit S, et al. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap.

15. The International HapMap Consortium. Integrating common and rare genetic variation in diverse human populations.

16. Devlin B, Roeder K. Genomic control for association studies.

17. van Oven M, Kayser M. Updated comprehensive phylogenetic tree of human mitochondrial DNA variation.

18. Torroni A, Huoponen K, Francalacci P, et al. Classification of European mtDNAs from an analysis of three European populations.

19. Macaulay V, Richards M, Hickey E, et al. The emerging tree of West Eurasian mtDNAs: a synthesis of control-region sequences and RFLPs.

20. Richards M, Macaulay V, Hickey E, et al. Tracing European founder lineages in the Near Eastern mtDNA pool.

21. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2014. Available at: http://www.R-project.org/. Accessed January 1, 2014.

22. Zwaan N, Fuchs ML, Malhi S, et al. HapMap 3.0 database of genotypes and annotation of proxy SNPs using HapMap.

23. Kivisild T, Shen P, Wall DP, et al. The role of selection in the evolution of human mitochondrial genomes.

24. Bär F, Bochmann W, Widok A, et al. Mitochondrial gene polymorphisms that protect mice from colitis.

25. Kimchi-Sarfaty C, Oh JM, Kim IW, et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity.

26. Polya K, Li Y, Zhu H, et al. Somatic mutations of the mitochondrial genome in human colorectal cancers.

27. Faquar A, Baumbach C, Kriebl J, et al. Mitochondrial genetic variants identified to be associated with BMI in adults.

28. Hudson G, Gomez-Duran A, Wilson IJ, et al. Recent mitochondrial DNA mutations increase the risk of developing common late-onset human diseases.

29. Biffi A, Anderson CD, Nalls MA, et al. Principal-component analysis for assessment of population stratification in mitochondrial medical genetics.

30. Waller S, Tremelling M, Bredin F, et al. Evidence for association of OCTN1 and IBD5 with ulcerative colitis.

31. Huang G, Gomez-Duran A, Wilson IJ, et al. Recent mitochondrial DNA mutations increase the risk of developing common late-onset human diseases.

32. Shekhawat PS, Srinivas SR, Matern D, et al. Spontaneous development of intestinal and colonic atrophy and inflammation in the carnitine-deficient jvs (OCTN2(-/-)) mice.

33. Zwaan N, Fuchs ML, Malhi S, et al. HapMap 3.0 database of genotypes and annotation of proxy SNPs using HapMap.

34. McKnight SL, Cho JH, Rioux JD, et al. Mitochondrial genetic variants to colorectal cancer.

35. Macaulay V, Richards M, Hickey E, et al. The emerging tree of West Eurasian mtDNAs: a synthesis of control-region sequences and RFLPs.

36. Damiani CR, Beneton CA, Stoffel C, et al. Oxidative stress and metabolism in animal model of colitis induced by dextran sulfate sodium.

37. Piechota-Polanczyk A, Fichna J. The role of oxidative stress in carcinogenesis and treatment of inflammatory bowel diseases.

38. Schneidem ergs Arch Pharmacol. 2014;387:605–620.

39. Copyright © 2016 Crohn's & Colitis Foundation of America, Inc. Unauthorized reproduction of this article is prohibited.