УДЛИНЕНИЕ ЛОКТЕВОЙ КОСТИ МЕТОДОМ ДИСТРАКЦИОННОГО ОСТЕОСИНТЕЗА У ДЕТЕЙ С ВРОЖДЕННОЙ ЛУЧЕВОЙ КОСОРУКОСТЬЮ

© Н.В. Авдейчик, С.И. Голяна, Д.Ю. Гранкин, А.В. Сафонов

ФГБУ «Научно-исследовательский детский ортопедический институт им. Г.И. Турнера» Минздрава России, Санкт-Петербург

Поступила: 19.06.2019
Одобрена: 15.11.2019
Принята: 09.12.2019

Обоснование. Врожденная лучевая косорукость характеризуется лучевой девиацией кисти, укорочением предплечья и ограничением функции верхней конечности. Укорочение локтевой кости встречается при всех типах лучевой косорукости. До оперативного лечения локтевая кость была укорочена в среднем на 33,3 % по сравнению с локтевой костью интактной конечности.

Цель — оценить результаты удлинения локтевой кости методом дистракционного остеосинтеза в зависимости от уровня остеотомии у пациентов с врожденной лучевой косорукостью III–IV типов.

Материалы и методы. Проведен ретроспективный анализ результатов лечения 36 пациентов с врожденной лучевой косорукостью III–IV типов в период с 1998 по 2018 г. Средний возраст пациентов составил 7,4 ± 3,5 года. Пациенты были разделены на три группы в зависимости от уровня выполнения остеотомии локтевой кости. Проанализированы основные показатели: процент укорочения и коррекция угла деформации локтевой кости, лучевая девиация кисти, период коррекции, полученное удлинение, индекс фиксации и остеосинтеза, осложнения.

Результаты. Период наблюдения составил в среднем 5,8 года. Процент укорочения локтевой кости по отношению к интактной конечности до оперативного лечения составлял в среднем 33,3 %, а после — 16 %. В дооперационном периоде угол деформации локтевой кости — 20,5 ± 14,8°, а после операции — 7,4 ± 5,6°, полученная коррекция угла деформации — 63,9 %. Локтевая кость была удлинена на 3,2 ± 1,1 см. У пациентов с остеотомией в проксимальном отделе локтевой кости достигнутое удлинение было на 32 и 18,4 % больше, чем у пациентов, которым выполняли остеотомию в средней и нижней третях. В 1-й группе период коррекции был на 24,4 и 28,9 % больше, чем во 2-й и 3-й группах соответственно. Индекс фиксации в 1-й группе был на 53,6 и 45,7 % меньше, чем во 2-й и 3-й группах. Наиболее частые осложнения — формирование ложного сустава (15 %), воспалительные процессы (10 %), вторичные деформации предплечья (7,5 %).

Заключение. Исследование показало, что для удлинения локтевой кости у пациентов с врожденной лучевой косорукостью III–IV типов оптимальной зоной остеотомии является ее проксимальный отдел. Однако при девиации кисти более 20° рекомендовано выполнение остеотомии в дистальном отделе локтевой кости с одновременной коррекцией деформации.

Ключевые слова: врожденная лучевая косорукость; удлинение локтевой кости; компрессионно-дистракционный остеосинтез.

LENGTHENING OF THE ULNA BY EXTERNAL FIXATION IN CHILDREN WITH CONGENITAL RADIAL CLUB HAND

© N.V. Avdeychik, S.I. Golyana, D.Yu. Grankin, A.V. Safonov

The Turner Scientific Research Institute for Children's Orthopedics, Saint Petersburg, Russia

For citation: Avdeychik NV, Golyana SI, Grankin DYu, Safonov AV. Lengthening of the ulna by external fixation in children with congenital radial club hand. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2019;7(4):57-66. https://doi.org/10.17816/PTORS7457-66

Received: 19.06.2019
Revised: 15.11.2019
Accepted: 09.12.2019

_for citation: Avdeychik NV, Golyana SI, Grankin DYu, Safonov AV. Lengthening of the ulna by external fixation in children with congenital radial club hand. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2019;7(4):57-66. https://doi.org/10.17816/PTORS7457-66

 LENGTHENING OF THE ULNA BY EXTERNAL FIXATION IN CHILDREN WITH CONGENITAL RADIAL CLUB HAND

© N.V. Avdeychik, S.I. Golyana, D.Yu. Grankin, A.V. Safonov

The Turner Scientific Research Institute for Children's Orthopedics, Saint Petersburg, Russia

For citation: Avdeychik NV, Golyana SI, Grankin DYu, Safonov AV. Lengthening of the ulna by external fixation in children with congenital radial club hand. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2019;7(4):57-66. https://doi.org/10.17816/PTORS7457-66

Received: 19.06.2019
Revised: 15.11.2019
Accepted: 09.12.2019

© Ортопедия, травматология и восстановительная хирургия детского возраста. Том 7. Выпуск 4. 2019
Врожденная лучевая косорукость характеризуется лучевой девиацией кисти, значительным укорочением предплечья и выраженным ограничением функции всей верхней конечности [1–3]. В 80 % случаев эта патология сочетается с гипоплазией I пальца, а в 50 % — с аплазией I луча [4]. Более выражено укорочение лучевой косорукости в среднем от 51,4 до 75,3 % длины локтевой кости на интактной конечности [13, 14], что приводит к косметическим дефектам, особенно у пациентов с односторонним поражением. У пациентов с двусторонним поражением, в связи со значительным укорочением предплечий, отмечается ограничение самообслуживания.

С целью устранения разницы в длине предплечий применяют метод компрессионно-дистракционного остеосинтеза [15–18]. Исходя из данных литературы, для восстановления длины нижних конечностей чаще используют метод Илизарова. Гораздо меньше публикаций посвящено применению этой методики для удлинения костей верхней конечности. В данных исследованиях описан метод дистракционного остеосинтеза у детей с различными диагнозами: деформацией Маделунга, множественной экзостозной хондродисплазией, повреждением эпифизарной зоны костей предплечья, врожденной лучевой и локтевой косорукостью [17].

Результаты удлинения локтевой кости у пациентов с врожденной лучевой косорукостью в мировой литературе получены только для небольших групп пациентов (до 4–15 человек), возраст которых варьировал от 1 года до 17 лет [19–23]. Представлены примерно одинаковые данные по индексу фиксации, остеосинтеза и наблюдаемым осложнениям [19, 22, 24]. Однако авторы выполняют остеотомию на разных уровнях:
одные — в проксимальной трети [17, 24], другие — в средней [20] или дистальной трети [19, 22, 25] локтевой кости.

Отсутствие единого мнения и подходов к лечению детей с данными типами лучевой косорукости послужило поводом для ретроспективной оценки результатов удлинения локтевой кости методом дистракционного остеосинтеза в зависимости от уровня остеотомии.

Цель — оценить результаты удлинения локтевой кости методом дистракционного остеосинтеза у пациентов с врожденной лучевой косорукостью III–IV типов (по классификации Bayne и Klug) в зависимости от уровня остеотомии.

Материалы и методы

В период с 1998 по 2018 г. в отделении реконструктивной микрохирургии и хирургии кисти ФГБУ «НИДОИ им. Г.И. Турнера» Минздрава России обследованы и получили лечение 285 детей с врожденной лучевой косорукостью. Удлинение локтевой кости методом дистракционного остеосинтеза было произведено 36 пациентам (40 предплечий) с врожденной лучевой косорукостью III–IV типов (по классификации Bayne и Klug), в том числе 23 мальчикам и 13 девочкам, средний возраст детей составил 7,4 ± 3,5 года (диапазон от 3 до 15 лет). Врожденная лучевая косорукость III типа отмечена у трех пациентов. Одностороннее поражение было представлено в 91,7 % случаев, двустороннее — в 8,3 %. У 15 пациентов врожденная лучевая косорукость входила в состав генетического синдрома. Синдром Холта – Орама зарегистрирован у 10 пациентов, TAR-синдром — у трех и VATER-синдром — у двух пациентов.

Двухэтапное удлинение локтевой кости на стороне поражения выполнено трем пациентам, а двум пациентам с TAR-синдромом — дважды на обоих конечностях.

Всем пациентам до этапа удлинения локтевой кости была осуществлена центрация кисти на локтевую кость. Кроме того, ряду пациентов были проведены реконструктивные операции различного вида на I луче кисти на стороне поражения.

Все пациенты были разделены на три группы. Пациентам 1-й группы остеотомию выполняли в проксимальной трети локтевой кости, пациентам 2-й группы — в средней трети предплечья на вершине деформации, в 3-й группе — в нижней трети локтевой кости. Период наблюдения в группах исследования составил от 1 года до 12 лет (средний период наблюдения — 5,8 ± 0,4 года).

При планировании оперативного вмешательства мы использовали клинический, рентгенологический, в том числе компьютерно-томографический, методы исследования.

При клиническом осмотре как в предоперационном, так и в отдаленном послеоперационном периоде оценивали следующие показатели: амплитуду движения в локтевом суставе, пальцах кисти. Амплитуду движений в локтевом суставе мы не рассматривали, так как она была минимальна у всех пациентов в связи с ранее проведенной центрацией кисти.

Рентгенографию костей предплечья с захватом локтевого сустава и кисти выполняли в двух стандартных проекциях. По рентгенограммам предплечий оценивали длину локтевой кости на пораженной и интактной конечностях, вычисляли процент укорочения локтевой кости по отношению к здоровой, угол деформации локтевой кости, угол девиации кисти.

В процессе предоперационного планирования с целью выбора уровня и вида остеотомии учитывали следующие факторы: вершину деформации локтевой кости и угол девиации кисти.

- Если вершина деформации находилась в проксимальном отделе локтевой кости, а угол девиации кисти не превышал 20°, то остеотомию выполняли на уровне верхней трети локтевой кости.
- Если угол деформации локтевой кости превышал 20° и находился в средней трети диафиза, то остеотомию выполняли в средней трети.
- При деформации локтевой кости в дистальном отделе и девиации кисти более 20° остеотомию выполняли в нижней трети предплечья.

Метод остеотомии зависел от вида девиации кисти: при лучевой девиации кисти (в сагittalной плоскости) проводили остеотомию по Minervini [26], в случае ладонно-лучевой (в сагиттальной и фронтальной плоскостях) — шарнирную остеотомию.

Всего было выполнено 40 остеотомий, из них шарнирной — 3, по Minervini — 2. В остальных случаях предпочтение отдавали косой остеотомии в сагittalной плоскости.

С целью оценки результатов удлинения локтевой кости были изучены следующие показатели: время дистракции, период коррекции, индекс фиксации и остеосинтеза, длина регенерата. Кроме того, были проанализированы послеоперационные осложнения по классификации J. Caton [27].

Функциональные возможности, а также косметическое состояние предплечья до и после удлинения локтевой кости мы не оценивали.

Удлинение локтевой кости с помощью компрессионно-дистракционного остеосинтеза осуществляли по обще принятой методике. Проводили
спицы либо стержни в проксимальном и дистальном отделах локтевой кости с последующей фиксацией их в двух чрескостных опорах, а также одну спицу проводили через II–V пястные кости с фиксацией кисти к выносным опорам. Затем выполняли остеотомию локтевой кости.

Дистракцию начинали на 5–7-е сутки после оперативного вмешательства — по 0,25 мм 3 раза в сутки. В течение всего периода остеосинтеза пациенты получали консервативное лечение (физиотерапевтическое лечение, ЛФК, массаж). После созревания дистракционного ретгерата компрессионно-дистракционный аппарат демонтировали и иммобилизовали верхнюю конечность гипсовой лонгетом либо циркулярной гипсовой повязкой.

Результаты комплексного обследования и лечения пациентов подвергали статистической обработке в системе Statistica 7.0 for Windows с помощью методов параметрической и непараметрической статистики. Определяли средние значения и стандартные отклонения, а также выполняли корреляционный анализ и рассчитывали коэффициент корреляции.

Результаты

Результаты исследования представлены в табл. 1.

Амплитуда движения в локтевом суставе у пациентов во всех группах как в предоперационном, так и в послеоперационном периоде значительно не отличалась.

У пациентов с врожденной лучевой косорукостью отмечены сгибательно-разгибательные контрактуры локтевого сустава: сгибание в среднем составило 131,5 ± 16,1°, разгибание — 9,9 ± 6,2°.

Показатель	Первая группа		Вторая группа		Третья группа				
Клиническое обследование									
Сгибание в локтевом суставе, град.	131,3 ± 15,9	129,4 ± 5,3	≥0,05	126,7 ± 17,8	128,3 ± 19,7	≥0,05	133 ± 16,4	133,6 ± 16,7	≥0,05
Разгибание в локтевом суставе, град.	12,5 ± 8,2	13,1 ± 9,3	≥0,05	8,3 ± 4,1	7,5 ± 2,7	≥0,05	8 ± 3,8	7,8 ± 3,9	≥0,05
Угол девиации кисты, град.	13,7 ± 5,8	11,2 ± 9,1	≥0,05	11,8 ± 7,2	12,8 ± 8,5	≥0,05	17,9 ± 10,9	9,3 ± 5,8	≥0,05
Рентгенологическое обследование									
Укорочение локтевой кости по отношению к здоровой, %	35,6 ± 13,9	15,9 ± 10,7	≤0,05	34,3 ± 18,2	17,5 ± 12,4	≤0,05	31,1 ± 10,6	15,6 ± 10,4	≤0,05
Угол деформации локтевой кости, град.	15,1 ± 11,8	3,5 ± 0,9	≤0,05	22,5 ± 16,0	1,8 ± 1,2	≤0,05	24,6 ± 16	1,6 ± 1,0	≤0,05
Послеоперационный период									
Период коррекции, дни	46,7 ± 11,6	35,3 ± 14,0		33,2 ± 16,2		≤0,05			
Полученное удлинение, мм	37,6 ± 10,2	24 ± 9,7		28,8 ± 8,6		≤0,05			
Полученное удлинение в процентах от исходной величины локтевой кости	38,7 ± 12,1	35,4 ± 14,7		33,7 ± 13,8		≤0,05			
Индекс фиксации, дней/см	22 ± 9,9	47,4 ± 21,5		40,5 ± 21,2		≤0,05			
Индекс остеосинтеза, дней/см	35,4 ± 10,5	75,5 ± 45,6		54,3 ± 20,8		≤0,05			
Средний угол девиации кисти в разных группах в до- и послеоперационном периодах статистически не различался. Однако до оперативного лечения у пациентов 1-й и 2-й групп колебался от 2 до 20°, а у пациентов 3-й группы — от 10 до 40°. У 5 пациентов 3-й группы, которым одномоментно выполняли коррекцию лучевой девиации кисти, средний угол до операции составил 31 ± 11,4°, а в послеоперационном периоде — 5,7 ± 2,4°.

Укорочение локтевой кости по отношению к интактной конечности до оперативного лечения в среднем составило 33,3 ± 12,3 %, а после оперативного лечения — 16 ± 10,5 %. Локтевая кость была удлинена в среднем на 36 % по сравнению с ее исходной длиной.

У пациентов с врожденной лучевой косорукостью III–IV типов в дооперационном периоде угол деформации локтевой кости в среднем составил 20,5 ± 14,8° (минимальный — 5°, максимальный — 40°). Значительная деформация (35–40°) локтевой кости была отмечена у одного пациента 1-й группы и двух пациентов 2-й группы с IV типом лучевой косорукости, а также у одного пациента 2-й группы с III типом косорукости. Этим пациентам оперативное лечение осуществлено в возрасте 6–7 лет в связи с наличием сопутствующей патологии, декомпенсация которой служила противопоказанием для оперативного лечения ортопедической патологии. Выраженная вторичная деформация локтевой кости была обусловлена длительно существующим натяжением недоразвитых мягких тканей и мышц по лучевой поверхности предплечья, отсутствием консервативного и оперативного лечения. После первого этапа лечения (центрации кисти) в процессе роста ребенка угол деформации локтевой кости сохранялся в пределах 35–40°. У данных пациентов выполняли остеотомию в средней трети локтевой кости на вершине деформации. У пациентов младшего возраста в процессе роста ребенка мы наблюдали уменьшение деформации локтевой кости в ее средней трети после центрации кисти, что позволило выполнять им в последующем остеотомию в проксимальном либо дистальных отделах.

Угол деформации локтевой кости после лечения уменьшился, но сохранялся в среднем равнялся 7,4 ± 5,6°. Коррекция в среднем составила 63,9 %.

У пациентов 1-й группы период коррекции был на 24,4 и 28,9 % больше, чем у пациентов 2-й и 3-й групп соответственно. Это было обусловлено тем, что в данной группе полученное укорочение было на 32 и 18,4 % больше, чем у пациентов 2-й и 3-й групп соответственно.

Индекс фиксации у пациентов 1-й группы был на 53,6 и 45,7 % меньше, чем во 2-й и в 3-й группах.

В табл. 2 представлены основные осложнения, с которыми мы столкнулись при удлинении локтевой кости у пациентов с врожденной лучевой косорукостью.

При удлинении локтевой кости осложнения были отмечены в всех группах пациентов. Наиболее часто мы встречались с осложнениями в 1-й (56,3 %) и во 2-й (56,7 %) группах.

Осложнения 1 степени (по классификации Caton) были выявлены во всех группах. Воспаление мягких тканей в месте выхода чрескостных элементов было обусловлено длительно существующим натяжением недоразвитых мягких тканей и мышц по лучевой поверхности предплечья, отсутствием консервативного и оперативного лечения. После первого этапа лечения (центрации кисти) в процессе роста ребенка угол деформации локтевой кости сохранялся в пределах 35–40°. У данных пациентов выполняли остеотомию в средней трети локтевой кости.

| Угол деформации локтевой кости после лечения уменьшился, но сохранялся в среднем равнялся 7,4 ± 5,6°. Коррекция в среднем составила 63,9 %. |
|---|---|---|---|
| У пациентов 1-й группы период коррекции был на 24,4 и 28,9 % больше, чем у пациентов 2-й и 3-й групп соответственно. Это было обусловлено тем, что в данной группе полученное укорочение было на 32 и 18,4 % больше, чем у пациентов 2-й и 3-й групп соответственно. | | | |
| У пациентов 1-й группы период коррекции был на 24,4 и 28,9 % больше, чем у пациентов 2-й и 3-й групп соответственно. Это было обусловлено тем, что в данной группе полученное укорочение было на 32 и 18,4 % больше, чем у пациентов 2-й и 3-й групп соответственно. | | | |
| У пациентов 1-й группы период коррекции был на 24,4 и 28,9 % больше, чем у пациентов 2-й и 3-й групп соответственно. Это было обусловлено тем, что в данной группе полученное укорочение было на 32 и 18,4 % больше, чем у пациентов 2-й и 3-й групп соответственно. | | | |
осложнение не повлияло на конечный результат лечения. У одного пациента 3-й группы в ходе дистракции усилилась контрактура пальцев кисти. После курса восстановительного лечения удалось ее устранить и добиться удовлетворительной (дооперационной) амплитуды движений в пястнофаланговых и межфаланговых суставах кисти.

Осложнения II степени встречались наиболее часто и были представлены во всех группах. Наибольшее количество осложнений в виде формирования ложного сустава на уровне созревания дистракционного регенерата зарегистрировано у пациентов 1-й и 2-й групп в 18,7 и 50 % случаев соответственно. Кроме того, в 5,6 % случаев у пациентов 3-й группы зафиксированы перелом регенерата и формирование ложного сустава после демонтажа компрессионно-дистракционного аппарата. Во всех случаях для восстановления целостности локтевой кости была произведена пластика дефекта свободным губчато-кортикальным аутотрансплантатом, сформированным из гребня подвздошной кости.

Осложнения III степени были отмечены только у пациентов 1-й группы в 18,8 % случаев (три пациента). В двух случаях наблюдали дислокацию проксимального отдела локтевой кости в проксимальном ее отделе, в одном случае — в дистальном. Данным пациентам в последующем была выполнена коррекция деформации локтевой кости через 3 года после операции.

При клиническом осмотре через 3 года отмечена лучевая девиация кисти до 20°, состояние после пластики II луча кисти в достаточном объеме. Ребенок обслуживает себя самостоятельно, жалоб активно не предъявляет. Родители удовлетворены полученным результатом.

Клинический пример оперативного лечения пациента 1-й группы (рис. 1)

Пациент П., 5 лет, поступил в отделение с диагнозом правосторонней лучевой косорукости, аплазии I пальца кисти. Ранее был оперирован: выполнена центрация правой кисти. При клиническом осмотре отмечены укорочение правого предплечья на 4 см, аплазия лучевой кости, лучевая девиация правой кисти 15°, кисть пассивно невозможно вывести в среднее положение, аплазия I пальца кисти (рис. 1, а). С учетом незначительной девиации кисти, вершины деформации локтевой кости в проксимальном ее отделе было принято решение выполнить остеотомию в верхней трети. Послеоперационный период протекал без особенностей. Локтевая кость была удлинена на 3,7 см, коррекция деформации локтевой кости составила 25°. В последующем была проведена пластика II луча кисти на стороне поражения.

При клиническом осмотре через 3 года отмечена лучевая девиация кисти до 20°, состояние после пластики II пальца правой кисти. Амплитуда движений в локтевом суставе и пальцах кисти — в достаточном объеме. Ребенок обслуживает себя самостоятельно, жалоб активно не предъявляет. Родители удовлетворены полученным результатом.

Клинический пример оперативного лечения пациента 3-й группы (рис. 2)

Пациентка Л., 6 лет, поступила в отделение с диагнозом TAR-синдрома, врожденной двусторонней лучевой косорукости, гипоплазии первых пальцев кистей. Ранее была оперирована: выполнена центрация правой и левой кисти. При клиническом осмотре отмечено укорочение обоих предплечий, аплазия лучевой кости, ладонно-лучевая девиация правой кисти 40°, кисть пассивно невозможно вывести в среднее положение, гипоплазия первых пальцев кистей (рис. 2, а). С учетом выраженной девиации кисти было принято решение произвести шарнирную остеотомию правой кисти в нижней трети.

Рис. 1. Рентгенограмма верхней конечности пациента П., 5 лет, до удлинения локтевой кости (а), после выполнения остеотомии (б), в конце периода фиксации (в) и через 3 года (г, д)
Послеоперационный период протекал без особенностей. Локтевая кость была удлинена на 3,5 см. Коррекция ладонно-лучевой девиации кисти составила 35°. При клиническом осмотре через 2 года (рис. 2, в) отмечалась лучевая девиация кисти до 10°. Ребенок обслуживает себя самостоятельно, жалоб активно не предъявляет. Родители удовлетворены полученным результатом. В последующем было выполнено удлинение локтевой кости слева.

Обсуждение

Хирургическое лечение пациентов с врожденной лучевой косорукостью остается сложной проблемой детской ортопедии. В результате оперативного лечения улучшается внешний вид, увеличиваются функциональные возможности верхней конечности, улучшается способность к самообслуживанию. Пациенты начинают чаще использовать данную конечность в процессе жизнедеятельности. Данные факторы влияют на социальную адаптацию и качество жизни пациента [19, 22, 28]. Удлинение предпочтительно производить в начале подросткового возраста, так как лечение не мешает психосоциальному развитию. В нашем исследовании средний возраст пациентов составил 7,4 ± 3,5 года, что соответствует данным мировой литературы [19–23].

Ограничение амплитуды движений в локтевом суставе достаточно часто встречается у пациентов с врожденной лучевой косорукостью. При наличии выраженной контрактуры в локтевом суставе удлинение локтевой кости не может быть проведено [29]. В среднем амплитуда движений в локтевом суставе составляет 99° [30]. У пациентов в нашем исследовании также выявлена контрактура локтевого сустава, амплитуда движений в среднем составила 120°.

По данным ряда авторов, локтевую кость возможно удлинить на 4–6 см [17, 21, 22, 25]. У наших пациентов удлинение в среднем составило 3,2 ± 1,1 см. Полное восстановление длины предплечья не является обязательным требованием [26]. Индексы фиксации и остеосинтеза, полученные в исследовании у пациентов 1-й и 3-й групп, были сопоставимы с данными, представленными в литературе [17, 20, 25, 31]. Высокий индекс остеосинтеза у пациентов 2-й группы (75,5 ± 45,6 дня/см) был связан с возникшими осложнениями (ложный сустав локтевой кости) и попытками консервативного лечения с целью формирования регенерата.

В литературе описано значительное количество осложнений при использовании метода Илизарова для удлинения костей верхней конечности вплоть до 100 % случаев. Наиболее часто встречаются воспалительные процессы, контрактуры в суставах, перелом регенерата [13, 19, 21, 22, 25]. Однако в нашем исследовании воспаление мягких тканей в месте выхода чрескостных элементов наблюдалось только в 10 % случаев, а контрактуры суставов и перелом регенерата — в 2,5 % случаев.

Наиболее частое осложнение, зарегистрированное у пациентов нашей клиники во время удлинения локтевой кости, — формирование атрофического регенерата. В последнем случае было выявлено какие-то осложнения, включая замедленную консолидацию при удлинении локтевой кости. Так, место остеотомии, быстрый темп дистракции, значительное удлинение, воспалительные явления, а также питание пациента могут влиять на формирование атрофического регенерата [32–35]. Выраженные рубцовые изменения, антитрофические расстройства, атрофия, потеря развития конечности, повреждения...
эндоста и нарушение внутрикостного кровообращения из-за многократных оперативных вмешательств отрицательно влияют на топографию конечности и, соответственно, на процесс остеогенеза [36, 37].

По данным Catagni [20], формирование атрофического регенерата происходит в 20% случаев при выполнении остеотомии в средней трети локтевой кости. Однако автор отмечает, что длительная иммобилизация в аппарате внешней фиксации позволяет решить данную проблему. В наших наблюдениях данное осложнение зафиксировано у пациентов, которым выполняли остеотомию локтевой кости либо в средней трети диафиза (50% случаев формирования ложного сустава) либо на границе верхней и средней третей. Нарушение кровообращения в средней трети предплечья из-за выраженного недоразвития предплечья, значительное расхождение костных фрагментов вследствие устранения деформации локтевой кости, «стандартный» темп дистракции привели к формированию атрофического регенерата. Увеличение периода фиксации в компрессионно-дистракционном аппарате не принесло результатов, что потребовало дополнительного оперативного вмешательства. Таким образом, выполнение остеотомии в проксимальном или дистальном отделе локтевой кости либо снижение темпа дистракции позволит снизить риск возникновения ложного сустава.

Кроме того, в 7,5% случаев мы столкнулись с осложнениями, которые не были описаны в литературе при лечении пациентов с врожденной лучевой косорукостью. Так, вывих локтевого сустава произошел в 5% случаев. Это объясняется тем, что у пациентов с врожденной лучевой косорукостью отмечается недоразвитие проксимального отдела локтевой кости (слабость и недостаточная выраженность венечного отростка), а также нарушение стабильности и конгруэнтности в локтевом суставе, что и привело к дислокации проксимального отдела локтевой кости кзади в процессе удлинения. Избежать этого осложнения можно путем фиксации плечевой кости в период дистракции (при выполнении остеотомии в проксимальном отделе локтевой кости) и демонтажа фиксирующей опоры в период стабилизации. У 1 пациента (2,5%) произошел рецидив девиации кисти, что обусловлено недостаточной стабильностью кисти в компрессионно-дистракционном аппарате, где кисть была зафиксирована только стержнем, установленным в V пястной кости. Фиксацию кисти необходимо производить спицей, проведенной через четыре пястные кости.

Заключение

При удлинении локтевой кости у пациентов с врожденной лучевой косорукостью III и IV типов по классификации Bayne и Klug зоной выбора для остеотомии является проксимальный отдел кости.

При девиации кисти более 20° рекомендуется выполнение остеотомии в дистальном отделе локтевой кости с одномоментной коррекцией деформации.

Дополнительная информация

Источник финансирования. Финансирование в данном исследовании не было предусмотрено.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Этическая экспертиза. Исследование выполнено в соответствии с этическими стандартами Хельсинской декларации Всемирной медицинской ассоциации с поправками Минздрава России, одобрен оо этическим комитетом ФГБУ «НИДОИ им. Г.И. Турема» Минздрава России (протокол № 2017/6 от 28.11.2017).

Авторы в письменной форме получили добровольное согласие пациентов (или их законных представителей) на участие в исследовании и публикацию медицинских данных.

Вклад авторов

Н.В. Авдейчик — разработка методологии исследования. Написание всех разделов статьи. Прооперировал 13 пациентов.

С.И. Голиана — руководство и участие в разработке методологии исследования. Этапное редактирование текста статьи. Прооперировал 10 пациентов.

Д.Ю. Гранкин — участие в обработке данных, написание резюме, списка литературы, редактирование статьи.

А.В. Сафонов — участие в разработке исследования, прооперировал 17 пациентов.

Все авторы внесли существенный вклад в проведение исследования и подготовку статьи, прочли и одобрили финальную версию перед публикацией.

Литература

1. Goldberg MJ, Meyn M. The radial clubhand. Orthop Clin North Am. 1976;7(2):341-359.
2. Tonkin MA. Radial longitudinal deficiency (radial dysplasia, radial clubhand). In: Green's Operative Hand
Surgery. 4th ed. Ed. by D.P. Green, R.N. Hotchkiss, W.C. Federson. Philadelphia: Churchill Livingstone; 1999. P. 345-358.

3. D’Arcangelo M, Gupta A, Scheker LR. Radial club hand. In: The Growing Hand: Diagnosis and Management of the Upper Extremity in Children. Ed. by A. Gupta, S.P.J. Kay, L.R. Scheker. London: Harcourt Publishers Ltd; 2000. P. 147-170.

4. Kozin SH. Upper-extremity congenital anomalies. J Bone Joint Surg Am. 2003;85(8):1564-1576. https://doi.org/10.2106/00004623-200308000-00021.

5. Ekbom AG, Laurell T, Arner M. Epidemiology of congenital upper limb anomalies in 562 children born in 1997 to 2007: a total population study from stockholm, sweden. J Hand Surg Am. 2010;35(11):1742-1754. https://doi.org/10.1016/j.jhsa.2010.07.007.

6. Avdeychik N.V., Gоворов А.В., Голяна С.И., Сафонов А.В. Врожденная лучевая косорукость у детей в структуре генетических синдромов // Ортопедия, травматология и восстановительная хирургия детского возраста. - 2015. - Т. 3. - № 4. - С. 29-36.

7. Гребенюк Е.Б., Полков Д.А. Интрамедулярное армирование при удлинении предплечья у больных с врожденными аномалиями развития // Genij ortopedii. 2006;(3):104-109. (In Russ.).

8. Bayne LG, Klug MS. Long-term review of the surgical treatment of radial deficiencies. J Hand Surg Am. 1997;12(2):169-179. https://doi.org/10.1016/s0363-5023(87)80267-8.

9. Vergara-Amador E, Lopez Rincon L, Herrera Rodriguez S. Radial longitudinal deficiency. Analysis of clinical and radiological results. Rev Esp Cir Ortop Traumatol. 2019;63(3):217-226. https://doi.org/10.1016/j.recot.2018.10.004.

10. Paley D. The Paley ulnarization of the carpus with ulnar shortening osteotomy for treatment of radial club hand. SICOT J. 2017;3:5. https://doi.org/10.1051/sicot/2016040.

11. Takagi T, Seki A, Takayama S, Watanabe M. Current concepts in radial club hand. Open Orthop J. 2017;11:369-377. https://doi.org/10.2174/1871432501711010369.

12. Najd Mazhar F, Shariatzehad H, Balvardi M, et al. Recurrence rate of radial deviation following the centralization surgery of radial club hand. Med J Islam Repub Iran. 2018;32:18. https://doi.org/10.14196/mjirri.32.18.

13. Yoshida K, Kawabata H, Wada M. Growth of the ulna after repeated bone lengthening in radial longitudinal deficiency. J Pediatr Orthop. 2011;31(6):674-678. https://doi.org/10.1097/BPO.0b013e318221ebe7.

14. Vuillermin C, Butler L, Ezaki M, Oishi S. Ulna growth patterns after soft tissue release with rib-lobe flap in radial longitudinal deficiency. J Pediatr Orthop. 2018;38(4):244-248. https://doi.org/10.1097/BPO.0000000000000807.

15. Peterson BM, McCarroll HR, Jr, James MA. Distraction lengthening of the ulna in children with radial longitudinal deficiency. J Hand Surg Am. 2007;32(9):1402-1407. https://doi.org/10.1016/j.jhsa.2007.07.024.

16. Бородин В.В. Лечение по Илизарову приобретенной лучевой косорукости: Автореф. дис... канд. мед. наук. – Курган, 1992. [Borodin VV. Lechenie po Ilizarovu priobretennomu luchevoy kosorukosti. Kurgan; 1992. (In Russ.)]

17. Стариков О.В. Реконструктивно-восстановительное лечение врожденной косорукости по методу Г.А. Илизарова: Автореф. дис... канд. мед. наук. – Курган, 2002. [Starikov OV. Rekonstruktivno-vosstanovitel'noe lechenie vrozhdennoy kosorukosti po metodu G.A. Ilizarova. Kurgan; 2002. (In Russ.)]

18. Хмызов С.А., Гарбузняк И.Н. Эффективность комбинированного лечения детей с врожденной косорукостью в сочетании с аномалиями кисти // Травма. – 2014. – Т. 15. – № 4. – С. 95–100. [Khmyzov SA, Garbuznyak IN. The effectiveness of combined treatment of children with congenital clubhand combined with hand anomalies. Trava. 2014;15(4):95-100. (In Russ.)]

19. Hill RA, Ibrahim T, Mann HA, Siapkara A. Forearm lengthening by distraction osteogenesis in children: a report of 22 cases. J Bone Joint Surg Br. 2011;93(11):1550-1555. https://doi.org/10.1302/0301-620X.93B11.27538.

20. Catagni MA, Szabo RM, Cattaneo R. Preliminary experience with Ilizarov method in late reconstruction of radial hemimelia. J Hand Surg Am. 1993;18(2):316-321. https://doi.org/10.1016/0363-5023(93)90367-C.

21. Kawabata H, Shibata T, Masatomi T, Yasui N. Residual deformity in congenital radial club hands after previous centralisation of the wrist. Ulnar lengthening and correction by the Ilizarov method. J Bone Joint Surg Br. 1998;80(5):762-765. https://doi.org/10.1302/0301-620X.80B5.8839.

22. Pickford MA, Scheker LR. Distraction lengthening of the ulna in radial club hand using the Ilizarov technique. J Hand Surg Br. 1998;23(2):186-191. https://doi.org/10.1016/s0363-5023(98)90367-C.

23. Horii E, Nakamura R, Nakao E, et al. Distraction lengthening of the forearm for congenital and developmental problems. J Hand Surg Br. 2000;25(1):15-21. https://doi.org/10.1054/jhsb.1999.0309.

24. Бойчев Б., Комфорти В., Чоканов К. Оперативная хирургия детского возраста. – Том 7. – Выпуск 4. – Курган, 2002. (In Russ.)

25. Caton J. L'allongement bilatéral des membres inférieurs chez les sujets de petite taille en France. Résultats de l'enquête GEOP; notre expérience: Traitement des...
инеалитес де лонгвер де меберсе инфериорс и дес сюдс де петит тайл че а лянф и а ладолесен: Симпозиум сюд ла дирушне дЖ. Катон (Лйон). Rev Chir Orthop. 1991;77(1):74-77.

26. Raimondo RA, Skaggs DL, Rosenwasser MP, Dick HM. Lengthening of pediatric forearm deformities using the Ilizarov technique: functional and cosmetic results. J Hand Surg Am. 1999;24(2):331-338. https://doi.org/10.1053/jhso.1999.0331.

27. Bhat SB, Kamath AF, Sehgal K, et al. Multi-axial correction system in the treatment of radial club hand. J Child Orthop. 2009;3(6):493-498. https://doi.org/10.1007/s11832-009-0196-3.

28. Azar FM, Canale T, Beaty ОР. Campbell’s Operative Orthopaedics, 11th ed. Mosby; 2007.

29. Saini N, Patni P, Gupta S, et al. Management of radial clubhand with gradual distraction followed by centration. Indian J Orthop. 2009;43(3):292-300. https://doi.org/10.4103/0019-5413.543461.

30. Masada K, Tsuyuguchi Y, Kawai H, et al. Operations for forearm deformity caused by multiple osteochondromas. J Bone Joint Surg Br. 1989;71(1):24-29. https://doi.org/10.1302/0301-620X.71B1.2914999.

31. Farr S, Mindler G, Ganger R, Girsch W. Bone lengthening in the pediatric upper extremity. J Bone Joint Surg Am. 2016;98(17):1490-1503. https://doi.org/10.2106/JBJS.16.00007.

32. Tjernstrom B, Olerud S, Rehnberg L. Limb lengthening by callus distraction. Complications in 53 cases operated 1980-1991. Acta Orthop Scand. 1994;65(4):447-455. https://doi.org/10.3109/1743679408995491.

33. Mader K, Gausepohl T, Pennig D. Shortening and deformity of radius and ulna in children: correction of axis and length by callus distraction. J Pediatr Orthop B. 2003;12(3):183-191. https://doi.org/10.1097/01.bph.0000057485.91570.e9.

34. Paley D. Problems, obstacles, and complications of limb lengthening by the Ilizarov technique. Clin Orthop Relat Res. 1990;250:81-104.

35. Li Y, Han B, Tang J, et al. Identification of risk factors affecting bone formation in gradual ulnar lengthening in children with hereditary multiple exostoses: A retrospective study. Medicine (Baltimore). 2019;98(5):e14280. https://doi.org/10.1097/MD.00000000000014280.

36. Борзунов Д.Ю., Шастова А.Л. “Ишемический” дистракционный регенерат: толкование, определение, проблемы, варианты решения // Травматология и ортопедия России. – 2019. – Т. 25. – № 1. – С. 68–76. [Borzunov DY, Shastova AL. “Ischemic” distraction regenerate: interpretation, definition, problems and solutions. Traumatology and Orthopedics of Russia. 2019;25(1):68-76. (In Russ.)]. https://doi.org/10.21823/2311-2905-2019-25-1-68-76.

37. Kojimoto H, Yasui N, Goto T, et al. Bone lengthening in rabbits by callus distraction. The role of periosteum and endosteon. J Bone Joint Surg Br. 1988;70(4):543-549. https://doi.org/10.1093/0301-620X.70B4.3403595.

Сведения об авторах

Наталья Валерьевна Аведчих* — врач — травматолог-ортопед отделения реконструктивной микрохирургии и хирургии кисти ФГБУ «НИДОИ им. Г.И. Турнера» Минздрава России, Санкт-Петербург. https://orcid.org/0000-0001-8948-9225. E-mail: natali_avdeichik@mail.ru.

Сергей Иванович Голина — канд. мед. наук, руководитель отделения реконструктивной микрохирургии и хирургии кисти ФГБУ «НИДОИ им. Г.И. Турнера» Минздрава России, Санкт-Петербург. https://orcid.org/0000-0003-1319-8979. E-mail: ser.golyana@yandex.ru.

Денис Юрьевич Гранкин — научный сотрудник отделения реконструктивной микрохирургии и хирургии кисти ФГБУ «НИДОИ им. Г.И. Турнера» Минздрава России, Санкт-Петербург. https://orcid.org/0000-0003-1923-7289. E-mail: grankin.md@gmail.com.

Андрей Валерьевич Сафонов — канд. мед. наук, заведующий отделением реконструктивной микрохирургии и хирургии кисти ФГБУ «НИДОИ им. Г.И. Турнера» Минздрава России, Санкт-Петербург. https://orcid.org/0000-0003-1923-7289. E-mail: safo125@gmail.com.

Natalia V. Avdeychik* — MD, Orthopedic and Trauma Surgeon of the Department of Reconstructive Microsurgery and Hand Surgery. The Turner Scientific Research Institute for Children's Orthopedics, Saint Petersburg, Russia. https://orcid.org/0000-0001-7837-4676. E-mail: natali_avdeichik@mail.ru.

Sergey I. Golyana — MD, PhD, Scientific Supervisor of the Department of Reconstructive Microsurgery and Hand Surgery. The Turner Scientific Research Institute for Children's Orthopedics, Saint Petersburg, Russia. https://orcid.org/0000-0003-1319-8979. E-mail: ser.golyana@yandex.ru.

Denis Yu. Grankin — MD, Research Associate of the Department of Reconstructive Microsurgery and Hand Surgery. The Turner Scientific Research Institute for Children's Orthopedics, Saint Petersburg, Russia. https://orcid.org/0000-0003-1923-7289. E-mail: grankin.md@gmail.com.

Andrey V. Safonov — MD, PhD, Chief of the Department of Reconstructive Microsurgery and Hand Surgery. The Turner Scientific Research Institute for Children's Orthopedics, Saint Petersburg, Russia. https://orcid.org/0000-0003-1923-7289. E-mail: safo125@gmail.com.