Why Statistics in Data Science?

We need grounded means for reasoning about data generated from real world with some degree of randomness.

What will you learn?

- Probability: properties of data generated by a known/assumed randomness model
- Statistics: properties of a randomness model that could have generated given data
- The R programming language
Sample spaces and events

- An **experiment** is a measurement of a random process
- The **outcome** of an experiment takes values in some set Ω, called the **sample space**.

Examples:
- Tossing a coin: $\Omega = \{H, T\}$
- Month of birthdays $\Omega = \{Jan, \ldots, Dec\}$
- Population of a city $\Omega = \mathbb{N} = \{0, 1, 2, \ldots, \}$ [Countably infinite sample space]
- Length of a street $\Omega = \mathbb{R}^+ = (0, \infty)$ [Uncountably infinite sample space]
- Tossing a coin twice: $\Omega = \{H, T\} \times \{H, T\} = \{(H, H), (H, T), (T, H), (T, T)\}$
- Testing for Covid-19 (univariate): $\Omega = \{+, -\}$
- Testing for Covid-19 (multivariate): $\Omega = \{f, m\} \times \mathbb{N} \times \{+, -\}$, e.g., $(f, 25, -) \in \Omega$

- An **event** is some subset of $A \subseteq \Omega$ of possible outcomes of an experiment.
 - $L = \{Jan, March, May, July, August, October, December\}$ a long month with 31 days
- We say that an event A **occurs** if the outcome of the experiment belongs to the set A.
 - If the outcome is Jan then L occurs

 Look at seeing-theory.brown.edu
Probability functions on finite sample space

A **probability function** is a mapping from events to **real numbers** that satisfies certain axioms. *Intuition: how likely is an event to occur.*

Definition. A *probability function* P on a finite sample space Ω assigns to each event A in Ω a number $P(A)$ in $[0,1]$ such that

(i) $P(\Omega) = 1$, and

(ii) $P(A \cup B) = P(A) + P(B)$ if A and B are disjoint.

The number $P(A)$ is called the probability that A occurs.

- **Fact:** $P(\{a_1, \ldots, a_n\}) = P(\{a_1\}) + \ldots + P(\{a_n\})$
 [Generalized additivity]

- **Assigning probability to a singleton is enough**

- **Examples:**
 - $P(\{H\}) = P(\{T\}) = \frac{1}{2}$
 - $P(\{\text{Jan}\}) = \frac{31}{365}, P(\{\text{Feb}\}) = \frac{28}{365}, \ldots P(\{\text{Dec}\}) = \frac{31}{365}$
 - $P(L) = \frac{7}{12}$ or $31\cdot\frac{7}{365}$?

- **$P(\{a\})$** often abbreviated as $P(a)$, e.g., $P(\text{Jan})$ instead of $P(\{\text{Jan}\})$
Properties of probability functions

- \(P(A^c) = 1 - P(A) \)
- \(P(\emptyset) = 0 \)
- \(A \subseteq B \Rightarrow P(A) \leq P(B) \) \[Impossible event\] \[Monotonicity\]
- \(P(A \cup B) = P(A) + P(B) - P(A \cap B) \) \[Inclusion-exclusion principle\]
- Example: \(P(A \cup B) = P(A) + P(B \setminus A) \)
- probability that at least one coin toss over two lands head?
 - Tossing a coin twice: \(\Omega = \{H, T\} \times \{H, T\} = \{(H, H),(H, T),(T, H),(T, T)\} \)
 - \(A = \{(H, H),(H, T)\} \) first coin is head
 - \(B = \{(H, H),(T, H)\} \) second coin is head
 - Answer \(P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{1}{2} + \frac{1}{2} - \frac{1}{4} = \frac{3}{4} \)
Assigning probability is **NOT** an easy task: a prob. function can be an approximation of reality

- **Frequentist** interpretation: probability measures a “proportion of outcomes”.
 - A fair coin lands on heads 50% of times
 - \[P(A) = \frac{|A|}{|\Omega|} \]
 - \[P(\{ \text{at least one H in two coin tosses}\}) = \frac{|\{(H, H), (H, T), (T, H)\}|}{4} = \frac{3}{4} \]

- **Bayesian** (or epistemological) interpretation: probability measures a “degree of belief”.
 - (We believe that) Iliad and Odyssey were written by the same person at 90%
Probability functions on countably infinite sample space

DEFINITION. A probability function on an infinite (or finite) sample space Ω assigns to each event A in Ω a number $P(A)$ in $[0, 1]$ such that

(i) $P(\Omega) = 1$, and
(ii) $P(A_1 \cup A_2 \cup A_3 \cup \cdots) = P(A_1) + P(A_2) + P(A_3) + \cdots$

if A_1, A_2, A_3, \ldots are disjoint events.

(ii) is called **countable additivity**. It is equivalent to σ-additivity: for $A_1 \subseteq A_2 \subseteq \ldots$

$$P(\lim_{n \to \infty} A_i) = \lim_{n \to \infty} P(A_i)$$

Example

- Experiment: we toss a coin repeatedly until H turns up.
- Outcome: the number of tosses needed.
- $\Omega = \{1, 2, \ldots\} = \mathbb{N}^+$
- Suppose: $P(H) = p$. Then: $P(n) = (1 - p)^{n-1}p$
- Is it a probability function? $P(\Omega) = \ldots$
Conditional probability

- Long months and months with ‘r’
 - $L = \{ \text{Jan, Mar, May, July, Aug, Oct, Dec} \}$ — a long month with 31 days
 - $R = \{ \text{Jan, Feb, Mar, Apr, Sep, Oct, Nov, Dec} \}$ — a month with ‘r’
 - $P(L) = \frac{7}{12}$ \hspace{1cm} $P(R) = \frac{8}{12}$

- Anna is born in a long month. What is the probability she is born in a month with ‘r’?

 $$P(R|L) = \frac{P(L \cap R)}{P(L)} = \frac{P(\{\text{Jan, Mar, Oct, Dec}\})}{P(L)} = \frac{4/12}{7/12} = \frac{4}{7}$$

- **Intuition:** probability of an event in the restricted sample space $\Omega \cap L$
 - *a-priori* probability $P(R) = \frac{8}{12}$
 - *a-posteriori* probability $P(R|L) = \frac{4}{7} < \frac{8}{12}$
Conditional probability

Definition. The *conditional probability* of A given C is given by:

$$P(A | C) = \frac{P(A \cap C)}{P(C)},$$

provided $P(C) > 0$.

Properties:
- $P(A | C) \neq P(C | A)$, in general
- $P(\Omega | C) = 1$
- if $A \cap B = \emptyset$ then $P(A \cup B | C) = P(A | C) + P(B | C)$

The Multiplication Rule: For any events A and C:

$$P(A \cap C) = P(A | C) \cdot P(C).$$

More generally, the **Chain Rule**:

$$P(A_1 \cap A_2 \cap A_3 \ldots \cap A_n) = P(A_1) \cdot P(A_2 | A_1) \cdot P(A_3 | A_1 \cap A_2) \cdot \ldots \cdot P(A_n | \cap_{i=1}^{n-1} A_i)$$
Example: no coincident birthdays

- \(B_n = \{ n \text{ different birthdays} \} \)
- For \(n = 1 \), \(P(B_1) = 1 \)
- For \(n > 1 \),
 \[
P(B_n) = P(B_{n-1}) \cdot P(\{\text{the } n\text{-th person's birthday differs from the other } n-1\}|B_{n-1})
 = P(B_{n-1}) \cdot (1 - \frac{n-1}{365}) = \ldots = \prod_{i=1}^{n-1} \left(1 - \frac{i}{365}\right)
 \]
The law of total probability

The Law of Total Probability. Suppose C_1, C_2, \ldots, C_m are disjoint events such that $C_1 \cup C_2 \cup \cdots \cup C_m = \Omega$. The probability of an arbitrary event A can be expressed as:

$$P(A) = P(A \mid C_1)P(C_1) + P(A \mid C_2)P(C_2) + \cdots + P(A \mid C_m)P(C_m).$$

- **Intuition:** case-based reasoning

Fig. 3.2. The law of total probability (illustration for $m = 5$).
Example: case-based reasoning

Factory 1’s light bulbs work for over 5000 hours in 99% of cases.
Factory 2’s bulbs work for over 5000 hours in 95% of cases.
Factory 1 supplies 60% of the total bulbs on the market and Factory 2 supplies 40% of it.

Question: What is the chance that a purchased bulb will work for longer than 5000 hours?

- $A = \{ \text{bulbs working for longer than 5000 hours} \}$
- $C_1 = \{ \text{bulbs made by Factory 1} \}$, hence $C_2 = \{ \text{bulbs made by Factory 2} \}$
- Since $\Omega = C_1 \cup C_2$ and $C_1 \cap C_2 = \emptyset$, by the multiplication rule:

$$P(A) = P(A|C_1) \cdot P(C_1) + P(A|C_2) \cdot P(C_2)$$

Answer: $P(A) = 0.99 \cdot 0.6 + 0.95 \cdot 0.4 = 0.974$
Example: The Monty Hall problem

https://www.mathwarehouse.com/monty-hall-simulation-online/
(See also Exercise 2.14 of textbook [T])

Tree-based sequential description of probability function
Assume player choose Door 1

Car location:	Host opens:	Total probability:	Stay:	Switch:
Door 1	1/2	1/6	Car	Goat
1/3				
Door 2	1/2	1/6	Car	Goat
1/3				
Door 3	1/2	1/6	Goat	Car
1/3				
Door 3	1/2	1/6	Goat	Car
1/3				
Independence of events

Intuition: whether one event provides any information about another.

An event A is independent of B, if $P(B) = 0$ or $P(A|B) = P(A)$

- For $P(R|L) = \frac{4}{7} \neq \frac{8}{12} = PR(R)$ - knowing Anna was born in a long month change the probability she was born in a month with ’r’!
- Tossing 2 coins:
 - A_1 is “H on toss 1” and A_2 is “H on toss 2”
 - $P(A_1) = P(A_2) = \frac{1}{2}$
 - $P(A_2|A_1) = P(A_2 \cap A_1)/P(A_1) = \frac{1}{4}/\frac{1}{2} = \frac{1}{2} = P(A_1)$
- Properties:
 - A independent of B iff $P(A \cap B) = P(A) \cdot P(B)$
 - A independent of B iff B independent of A \(\textbf{[Symmetry]}\)
 - A independent of B iff A^c independent of B
Physical independence and stochastic independence

Independence

An event A is independent of B, if $P(B) = 0$ or $P(A|B) = P(A)$

- Physical independence implies stochastic independence
 - However, physical independence is quite a subtle matter (see the butterfly effect)
- But there are stochastic independent events that are physically dependent
 - Suppose a fair die is rolled twice.
 - A = “a three is obtained on the second roll”
 - B = “the sum of the two numbers obtained is less than or equal to 4”
 - Exercise at home. Prove that $P(A|B) = P(A)$
Conditional independence of events

Intuition: whether one event provides any information about another given a third event occurred. Technically, consider $P(\cdot|C)$ in independence.

Conditional independence

An event A is conditionally independent of B given C such that $P(C) > 0$, if $P(B|C) = 0$ or

$$P(A|B \cap C) = P(A|C)$$

- **Properties:**
 - A conditionally independent of B iff $P(A \cap B|C) = P(A|C) \cdot P(B|C)$
 - A conditionally independent of B iff B conditionally independent of A \(\text{[Symmetry]}\)

- **Exercise at home.** Prove or disprove:
 - If A is independent of B then A is conditionally independent of B given C
Independence of two or more events

Events A_1, A_2, \ldots, A_m are called independent if

$$P(A_1 \cap A_2 \cap \cdots \cap A_m) = P(A_1)P(A_2)\cdots P(A_m)$$

and this statement also holds when any number of the events A_1, \ldots, A_m are replaced by their complements throughout the formula.

Alternative definition

Events A_1, A_2, \ldots, A_m are called independent if for every $J \subseteq \{1, \ldots, m\}$:

$$P(\bigcap_{i \in J} A_i) = \prod_{i \in J} P(A_i)$$

Exercise at home: show the two definitions are equivalent
Independence of two or more events

Alternative definition

Events A_1, A_2, \ldots, A_m are called independent if for every $J \subseteq \{1, \ldots, m\}$:

$$P\left(\bigcap_{i \in J} A_i \right) = \prod_{i \in J} P(A_i)$$

• It is **stronger** than pairwise independence

$$P(A_i \cap A_j) = P(A_i) \cdot P(A_j) \text{ for } i \neq j \in \{1, \ldots, m\}$$

• Example: what is the probability of at least one head in the first 10 tosses of a coin?

$A_i = \{\text{head in } i\text{-th toss}\}$

$$P\left(\bigcup_{i=1}^{10} A_i \right) = 1 - P\left(\bigcap_{i=1}^{10} A_i^c \right) = 1 - \prod_{i=1}^{10} P(A_i^c) = 1 - \prod_{i=1}^{10} (1 - P(A_i))$$