Adherence to international guidelines for the management of *Helicobacter pylori* infection among gastroenterologists and gastroenterology fellows in Italy: A Survey of the Italian Federation of Digestive Diseases - FISMAD

Rocco Maurizio Zagari¹,² | Marco Romano³ | Leonardo Frazzoni¹,²
Giovanni Marasco² | Elton Dajti¹,² | Paolo Giorgio Arcidiacono⁴ | Alessandro Armuzzi⁵
Federico Biagi⁶ | Renato Cannizzaro⁷ | Giulia Martina Cavestro⁸ | Carolina Ciacci⁹
Fabio Monica¹⁰ | Sergio Peralta¹¹ | Franco Radaelli¹² | Franco Bazzoli¹,²

¹Gastroenterology Unit, IRCCS Azienda Ospedaliero-Universitaria, S. Orsola Hospital, Bologna, Italy
²Department of Medical and Surgical Sciences, University of Bologna, Italy
³Division of Hepatogastroenterology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
⁴Pancreatobiliary Endoscopy and Endosonography Division, IRCCS San Raffaele Scientific Institute, Milan, Italy
⁵Department of Medical and Surgical Sciences, IRCCS A. Gemelli University Hospital, Rome, Italy
⁶Gastroenterology Unit, IRCCS Istituti Clinici Scientifici Maugeri, University of Pavia, Italy
⁷Centro Riferimento Oncologico IRCCS, Istituto Nazionale Tumori, Aviano, Italy
⁸Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
⁹Gastrointestinal Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Italy
¹⁰Gastroenterology and Digestive Endoscopy, ‘Cattinara’ Academic Hospital, Trieste, Italy
¹¹Gastroenterology and Hepatology Unit, University of Palermo, Italy
¹²Gastroenterology Unit, Valduce Hospital, Como, Italy

**Abstract**

**Background:** Information on the management of *Helicobacter (H.) pylori* infection by gastroenterologists and gastroenterology fellows are scarce. We aimed to assess practice of gastroenterologists and gastroenterology fellows and their adherence to guidelines for diagnosis and treatment of *H. pylori* infection in Italy.

**Materials and Methods:** All gastroenterologists and gastroenterology fellows attending the National Congress of Digestive Diseases - FISMAD were invited to fill-in an on-line questionnaire. The questionnaire included questions on the diagnosis and treatment of *H. pylori* infection.

**Results:** A total of 279 gastroenterologists and 61 gastroenterology fellows participated to the study. The ¹³C-urea breath test was the most preferred method among gastroenterologists and fellows for the diagnosis of *H. pylori* infection (40.4% and 57.6%, respectively) and the confirmation of eradication (61.3% and 70%, respectively).
Sequential therapy was the most preferred first-line treatment of *H. pylori* for both gastroenterologists and gastroenterology fellows (31.8% and 44%, respectively), followed by bismuth quadruple therapy (31% and 27.6%, respectively) and clarithromycin triple therapy (26.8% and 22.4%, respectively). Only 30% of gastroenterologists and 38.5% of fellows used the clarithromycin triple therapy for the recommended duration of 14 days. Bismuth quadruple therapy was the most preferred second-line therapy for both gastroenterologists and fellows. The majority of gastroenterologists and fellows would prefer an empirical therapy at third line (72.6% and 62.5%, respectively) and a susceptibility-guided therapy at fourth line (46.7% and 71.4%, respectively).

**Conclusions:** Practices of gastroenterologists and gastroenterology fellows are in line with guidelines’ recommendations, apart from the first-line treatment of *H. pylori* infection. Targeted educational interventions to improve adherence to guidelines are needed.

**KEYWORDS**
diagnosis, gastroenterologists, gastroenterology fellows, guidelines, *Helicobacter pylori*, treatment

## 1 | INTRODUCTION

Although the prevalence of *Helicobacter (H.) pylori* infection has been decreasing over the last decades, this bacterium still infects more than half of the world’s population. H. pylori infection causes chronic gastritis, peptic ulcer and gastric malignancies, and it is also an organic cause of dyspepsia and extra-gastric diseases. Thus, all patients testing positive for *H. pylori* should be offered an eradication therapy.5

The management of *H. pylori* infection still represents an issue in clinical practice. The use of culture or molecular test to assess antibiotic susceptibility of *H. pylori*, the treatment to prescribe, and the test to confirm eradication are still debated. In particular, the eradication of *H. pylori* is becoming more difficult due to the increasing prevalence of antibiotic resistance, and a number of antimicrobial regimens are now recommended.

Recent international guidelines by three separate authoritative groups from Europe, America and Canada provided evidence-based recommendations to help physicians in the diagnosis and treatment of *H. pylori* infection, and a recent review reconciling guidelines showed a substantial agreement among guidelines’ recommendations. Currently, the 13C-urea breath test (UBT) is considered the best method for both the diagnosis of *H. pylori* and the confirmation of eradication; testing for eradication should be performed at least 1 month after the end of therapy. As for the treatment, a 14-day clarithromycin triple therapy is suggested only in patients who are from regions with a low prevalence (<15%) of clarithromycin resistance, whereas bismuth and non-bismuth quadruple therapies are mandatory in settings of high (15%) or unknown clarithromycin resistance. Since few years, the new formulation of single-capsule bismuth quadruple therapy is available in many countries, including Italy.

Gastroenterologists play an important role in the management of *H. pylori* infection both in treating patients and in the guidance of practitioners. However, information on the practice of gastroenterologists in the diagnosis and treatment of *H. pylori* infection and their adherence to guideline recommendations is scarce. A recent study reported that treatment of *H. pylori* infection by European gastroenterologists is discrepant with current recommendation. Similarly, a survey carried out in China showed among clinicians, of whom 85% were gastroenterologists, a gap between real-world practices and guidelines for the management of *H. pylori* infection. In addition, there is consistent evidence that compliance of also primary care physicians with *H. pylori* guidelines is low. It has been suggested that the poor practice of primary care physicians may be a further, albeit indirect, evidence of the suboptimal management of *H. pylori* infection by gastroenterologists.

Further information on the adherence of gastroenterologists to guidelines recommendations are needed in order to optimize the management of *H. pylori* infection in clinical practice. In addition, such information could inform scientific societies on the need for targeted educational interventions, that may be effective in increasing knowledge and compliance with *H. pylori* guidelines.

The aim of this study was to assess practice patterns of gastroenterologists and gastroenterology fellows and their adherence to international guidelines for the diagnosis and treatment of *H. pylori* infection in Italy.

## 2 | MATERIAL AND METHODS

This is a survey conducted among gastroenterologists and gastroenterology fellows attending the 23rd National Congress of the Italian Federation of Digestive Diseases (FISMAD), that was held in Bologna, Italy, from 29th March to 1st April 2017. The FISMAD is the Federation of the three scientific societies of digestive diseases: the Italian Society of Digestive Diseases (SIGE), the Italian Association of Hospital Gastroenterologists (AIGO), and the Italian Society of Digestive Endoscopy (SIED). All gastroenterologists and
gastroenterology fellows attending the congress were invited to fill-in an on-line questionnaire through a link uploaded in the FISMAD website (www.FISMAD.it) using dedicated computers allocated in the registration area. Responses were collected electronically during the 4 days of the Congress. Subjects not willing to participate to the study were asked to fill-in only the first section of the questionnaire, including demographic and professional characteristics of participants. There were no incentives for the participation in the study. This study was an initiative of the Scientific Committee of FISMAD and was conducted after approval by the Governing Council of the Federation itself. Written informed consent to anonymous use of data provided in the questionnaire was individually obtained from all participating physicians.

2.1 | Questionnaire

The questionnaire was developed according to the available international guideline recommendations on the management of H. pylori infection.9–11 The questionnaire had three sections, including a total of 16 multiple-choice questions. The first section contained five questions regarding demographic and professional characteristics of the participants. The second section included four questions on the diagnosis of H. pylori infection, such as the preferred test for the initial and post-treatment diagnosis, the interval between the end of therapy and the test for confirmation of eradication, and the availability of antimicrobial susceptibility testing, such as culture or molecular tests. The third section contained seven questions regarding the treatment of H. pylori, including the proportion of patients treated with a first-line therapy, the local prevalence of clarithromycin resistance, the previous use of key antibiotics, the preferred first-, second-, and third-line therapy and the management of patients after failure of three lines of treatment. The questionnaire is presented as Appendix S1.

2.2 | Statistical analysis

We performed descriptive analyses using percentages for categorical variables. We calculated statistical differences between percentages using the Chi-square test or Fisher’s test when appropriate. A p value < .05 was considered statistically significant. Statistical analysis was performed using STATA version 16 (Stata Corp, College Station, Texas, USA).

3 | RESULTS

3.1 | Study sample

A total of 534 gastroenterologists and 140 gastroenterology fellows were eligible for the study. Of these, 279 (52.2%) gastroenterologists and 61 (43.6%) fellows completed the questionnaire. Not all participants answered to all the questions, thus the number of responses for each question varied accordingly. The majority of gastroenterologists (62.3%) practiced in community hospitals, whereas 25.2% worked in teaching hospitals and 11.9% in private hospitals; as expected, the majority (85.3%) of gastroenterology fellows practiced in teaching hospitals. Gastroenterologists who participated to the study were similar to non-participants in terms of gender, area of residence and hospital setting, but were significantly older (p = .02), whereas no difference was found between participant and non-participant gastroenterology fellows. Table 1 shows demographic and professional characteristics of gastroenterologists and gastroenterology fellows.

3.2 | Diagnosis of H. pylori infection

The most preferred test for the diagnosis of H. pylori infection among gastroenterologists and fellows was UBT (40.4% and 57.6%, respectively), followed by stool antigen test (SAT) (32.1% and 30.5%, respectively). The majority of gastroenterologists (61.3%) and fellows (70%) would prefer UBT for the confirmation of H. pylori eradication.

Almost all gastroenterologists (85.3%) and fellows (88.3%) correctly prescribed a test for H. pylori eradication at least 4 weeks after the end of treatment.

Unfortunately, culture or molecular tests to assess antimicrobial susceptibility of H. pylori were available for only one third of gastroenterologists (33.7%). A significant higher proportion of fellows referred that such tests were available in their hospital (75%, p < .001). Table 2 shows practice patterns of gastroenterologists and gastroenterology fellows in the diagnosis of H. pylori infection.

3.3 | Treatment of H. pylori infection

Nearly half of gastroenterologists (45%) reported that less than 50% of their patients with H. pylori infection were naïve to treatment, which means that they treated more often patients with previous eradication failures. No significant difference was found with gastroenterology fellows.

About half of gastroenterologists (59%) and fellows (52.5%) reported that local prevalence of clarithromycin resistance was ≥15%, whereas for 18% of gastroenterologists and 11.9% of fellows was <15%; the prevalence of clarithromycin resistance was unknown for 22.2% of gastroenterologists and 35.6% of fellows.

Before prescribing a therapy, almost all gastroenterologists (91%) and a significant lower proportion of fellows (81.4%, p = .03), correctly investigated the previous use of macrolides or fluoroquinolones.

The most preferred first-line therapy for H. pylori infection among gastroenterologists and fellows was sequential therapy (31.8% and 44.8%, p = .58, respectively), followed by single-capsule bismuth quadruple therapy (31% and 27.6%, p = .61, respectively), and clarithromycin triple therapy (26.8% and 22.4%, p = .49, respectively). Only a minority of gastroenterologists
(8%) and fellows (3.4%) would prefer concomitant therapy. As regards the duration, the majority of gastroenterologists (82.7%, 216/261) and fellows (86.2%, 50/58) prescribed a 10-day therapy. Figure 1 shows the duration of first-line treatment by type of regimen. Notably, only 30% (22/70) of gastroenterologists and 38.5% (5/13) of fellows prescribed the clarithromycin triple therapy for the recommended duration of 14 days.

The most preferred second-line regimen among gastroenterologists and fellows was single-capsule bismuth quadruple therapy (57.8% and 57.1%, respectively), followed by levofloxacin triple therapy (31.4% and 30.4%, respectively). Again, the most preferred duration of second-line therapy was 10 days for both gastroenterologists (85.2%, 196/230) and gastroenterology fellows (87.7%, 43/49).

After failure of second-line therapy, the majority of gastroenterologists (72.6%) and fellows (62.5%) still preferred an empirical rather than susceptibility-guided therapy. Either single-capsule bismuth quadruple therapy or levofloxacin triple therapy, if not already used, was the most frequent third-line therapy for both gastroenterologists (49.8%) and fellows (37.5%).

Only after failure of third-line therapy, the most preferred strategy was a susceptibility-guided therapy based on culture or molecular test; this approach was significantly more frequent among fellows than gastroenterologists (71.4% vs. 46.7%, p < .0001).

### Table 3

|             | Gastroenterologists | Gastroenterology fellows |
|-------------|---------------------|--------------------------|
| Gender      |                     |                          |
| Male        | 169 (66.3)          | 41 (51.9)                |
| Female      | 86 (33.7)           | 38 (48.1)                |
| Age group*  |                     |                          |
| <30         | 0                   | 39 (49.4)                |
| 30–40       | 60 (23.6)           | 40 (50.6)                |
| 41–50       | 74 (29.1)           | 0                        |
| 51–60       | 70 (27.6)           | 0                        |
| >60         | 50 (19.7)           | 0                        |
| Geographic area° |               |                          |
| North-East  | 54 (21.3)           | 15 (19)                  |
| North-West  | 53 (20.9)           | 9 (11.4)                 |
| Center      | 65 (25.6)           | 26 (32.9)                |
| South       | 82 (32.3)           | 29 (36.7)                |
| Hospital setting* |           |                          |
| Community hospital | 158 (62.2) | 2 (2.5)                  |
| Teaching hospital | 77 (30.3) | 73 (92.4)                |
| Private hospital | 19 (7.5)  | 4 (5.1)                  |

*Missing data for one non-participant and one participant gastroenterologist. °Missing data for one non-participant gastroenterologist.

Table 3 shows practice patterns of gastroenterologists and gastroenterology fellows in the treatment of *H. pylori* infection.

### 3.4 Management of *H. pylori* according to the hospital setting

Compared with community hospitals, a significant higher proportion of physicians in teaching hospitals used UBT for confirmation of *H. pylori* eradication (69.8% vs. 56.3%, p = .02). Culture and genetic tests to assess *H. pylori* susceptibility were more frequently available in teaching than community hospitals (61.2% vs. 33.1%, respectively, p < .00001). This would partially explain the previous finding that antimicrobial susceptibility tests were more available for fellows than gastroenterologists, as fellows practiced in teaching hospitals more than gastroenterologists (85.3% vs. 25.2%, respectively, p < .0001) (Table 4).

There were no significant differences between teaching and community hospitals for the treatment of *H. pylori* infection, apart from a higher proportion of physicians in teaching hospitals who preferred a concomitant therapy at first line (10.5% vs. 3.5%, respectively, p = .03). After failure of three lines of treatment, more physicians in teaching than community hospitals preferred a susceptibility-guided therapy (63.4% vs. 45.2%, respectively, p = .003) (Table 5).
4 | DISCUSSION

This study describes practice patterns of gastroenterologists and gastroenterology fellows in the diagnosis and treatment of *H. pylori* infection in Italy and their adherence to international guidelines.9–11

In accordance with Maastricht V/Florence Consensus Report,9 UBT was the most preferred method for both diagnosis of *H. pylori* infection and confirmation of eradication. These data are in line with previous studies reporting that UBT was the most common method for the pre- and post-treatment diagnosis of *H. pylori* infection among gastroenterologists in Europe and Asia; the UBT was used for confirmation of eradication in 73% and 88% of cases by European14 and Chinese15 gastroenterologists, respectively. It is well known that antibiotics should be discontinued at least 4 weeks before testing in order to avoid false-negative test results9; in our study, almost all gastroenterologists and trainees properly performed the test at least 4 weeks after the end of therapy. This is in contrast with Chinese survey showing that only 75% of clinicians assessed accurately the effect of treatment performing the test at least 4 weeks after the completion of therapy.15

We found that the culture or molecular tests to assess antimicrobial susceptibility of *H. pylori* are not widely available in Italy. In fact, such tests were available for only one third of the gastroenterologists, a rate that reached 61% in teaching hospitals. Antimicrobial susceptibility testing is not available in most centers in North America,11 and this is likely to happen also in Europe. In the future, molecular tests applied to fecal samples, if proven reliable, can help improving the assessment of antibiotic resistance of *H. pylori*, thus obviating the need for endoscopy.21 Indeed, a susceptibility-guided first-line therapy could improve the efficacy of eradication regimen, decrease indirect costs related to treatment failure, and counteract the increasing emergence of antimicrobial-resistant *H. pylori* strains.22–24

### Table 2 Diagnosis of *H. pylori* infection

| Preferred test to diagnose *H. pylori* infection | Gastroenterologists | Gastroenterology fellows | P Value |
|-----------------------------------------------|---------------------|--------------------------|---------|
| Participants, n.                              | 265                 | 59                       |         |
| 13C-Urea breath test                          | 107 (40.4)          | 34 (57.6)                |         |
| Stool antigen test                            | 85 (32.1)           | 18 (30.5)                |         |
| Serology                                      | 5 (1.9)             | 0                        |         |
| Histology                                     | 53 (20)             | 6 (10.2)                 |         |
| Rapid urease test                             | 15 (5.7)            | 1 (1.7)                  | .07     |

### Preferred test to assess *H. pylori* eradication

| Interval between the end of anti-*H. pylori* treatment and testing for eradication | Participants, n. | 279 | 60 |
|----------------------------------------------------------------------------------|------------------|-----|----|
| 2 weeks                                                                          | 10 (3.6)         | 2 (3.3) |     |
| 4 weeks                                                                          | 141 (50.5)       | 33 (55) |     |
| 6 weeks                                                                          | 49 (17.6)        | 12 (20) |     |
| 8 weeks                                                                          | 48 (17.2)        | 8 (13.3) |    |
| >8 weeks                                                                         | 31 (11.1)        | 5 (8.3)  | .88 |

### Availability of antimicrobial susceptibility *H. pylori* testing

| Availability of antimicrobial susceptibility *H. pylori* testing | Participants, n. | 267 | 60 |
|----------------------------------------------------------------|------------------|-----|----|
| No                                                               | 167 (62.5)       | 13 (21.7) |     |
| Yes, both culture and genetic test                              | 16 (6)           | 20 (33.3) |    |
| Yes, only culture                                               | 74 (27.7)        | 25 (41.7) |    |
| Yes, only genetic test                                          | 0                | 0              |    |
| I do not know                                                   | 10 (3.8)         | 2 (3.3)  | <.001 |
There is evidence that a previous course of clarithromycin and quinolone is associated with an increased risk of antibiotic resistance of *H. pylori* to that antimicrobial agent,\(^{25}\) that will consequently impact on the outcome of eradication treatment.\(^{26}\) Thus, guidelines recommend to investigate the previous use of antibiotics in order to derive an individual-based information on likely antimicrobial resistance of *H. pylori*.\(^9\) This approach may be useful for the choice of the best therapy, in particular in areas of low or unknown clarithromycin resistance. Accordingly, we found that almost all gastroenterologists and fellows investigated a previous use of macrolides or quinolones before prescribing an eradication therapy.

Current guidelines advocate that the choice of the first-line *H. pylori* eradication therapy should be based on the knowledge of the regional prevalence of clarithromycin antibiotic resistance.\(^9\)–\(^{11}\) For about 60% of gastroenterologists, the regional prevalence of clarithromycin resistance was >15%, whereas for about 20% of them was <15% and for the remaining 20% was unknown. Unfortunately, there are no epidemiological studies on representative sample of patients that assessed the prevalence of clarithromycin resistance in Italy. Some studies carried out in a few clinical centers enrolling selected samples of patients reported a high prevalence of clarithromycin resistance, around 30%.\(^{27,28}\) On the other hand, a meta-analysis, including seven Italian studies showed a pooled prevalence of clarithromycin resistance of 15% with a lower limit of the 95% confidence interval of 11%.\(^7\) The European registry of *H. pylori* management reported a clarithromycin resistance of 11.9% in the Center of Europe, a geographic area including only Italy and France.\(^{14}\) Indeed, the real prevalence of clarithromycin resistance remains still uncertain and may vary across regions in Italy.

Sequential therapy was the most preferred first-line treatment for *H. pylori* infection by gastroenterologists and gastroenterology fellows in Italy. These data seem to be true: the European registry reported that sequential therapy accounted for 61% of first-line therapies in Centre Europe, where about 90% of prescriptions come from Italy.\(^{14}\) Sequential therapy, which is a 5-day amoxicillin-containing double therapy followed by a 5-day clarithromycin triple therapy, was initially designed to overcome the issue of clarithromycin resistance. Unfortunately, sequential regimen is undermined by single and, especially, dual resistance to clarithromycin and metronidazole.\(^{29,30}\) Eradication rates with sequential therapy are consistently lower than that of concomitant or bismuth quadruple therapy.\(^{14,31,32}\) Based on these data, all international guidelines have discouraged the use of sequential therapy in clinical practice.\(^9\)–\(^{11}\) Indeed, sequential therapy has been falling into disuse in Europe accounting for only about 8% of first-line treatments; this regimen provided eradication rates <90% across all European countries, including Italy.\(^{14}\) However, several reasons may explain the current popularity of this un-recommended regimen in Italy. Sequential therapy was developed in Italy in the year 2000 and was proposed as one of the first-line therapies by national guidelines in 2015,\(^{33}\) before the publication of the updated international recommendations. In addition, some Italian studies reported an unexpected, good performance of this regimen with eradication rates >90%, even in patients with clarithromycin resistant strains.\(^{34,35}\)

In our study, about 80% of gastroenterologists referred that the prevalence of clarithromycin resistance in their region was high or unknown, but only 40% would prefer bismuth quadruple or concomitant therapies for the first-line treatment of *H. pylori* infection. This means that at least half of gastroenterologists...
**TABLE 3** Treatment of *H. pylori* infection

| Proportion of patients with *H. pylori* infection treated with first-line therapy (naive patients) | Gastroenterologists n = 279 | Gastroenterology fellows n = 61 | p Value |
|---|---|---|---|
| Participants, n. | 269 | 60 | |
| <30% | 56 (20.8) | 8 (13.3) | |
| 30%-50% | 65 (24.2) | 11 (18.3) | |
| 50%-70% | 58 (21.6) | 17 (28.3) | |
| >70% | 87 (32.3) | 22 (36.7) | |
| I do not know | 3 (1.1) | 2 (3.3) | .28 |

| Regional prevalence of *H. pylori* clarithromycin resistance | Gastroenterologists n = 266 | Gastroenterology fellows n = 59 | p Value |
|---|---|---|---|
| Participants, n. | 266 | 59 | |
| <15% | 50 (18.0) | 7 (11.9) | |
| ≥15% | 157 (59) | 31 (52.5) | |
| I do not know | 59 (22.2) | 21 (35.6) | .07 |

| Investigation on previous use of macrolides and fluoroquinolones. | Gastroenterologists n = 268 | Gastroenterology fellows n = 59 | |
|---|---|---|---|
| Participants, n. | 268 | 59 | |
| No | 24 (9) | 11 (18.6) | |
| Yes, for both macrolides and quinolones | 218 (81.3) | 41 (69.5) | |
| Yes, but only for macrolides | 24 (8.9) | 4 (6.8) | |
| Yes, but only for fluoroquinolones | 2 (0.8) | 3 (5.1) | .01 |

| Preferred first-line therapy for *H. pylori* infection | Gastroenterologists n = 261 | Gastroenterology fellows n = 58 | |
|---|---|---|---|
| Participants, n. | 261 | 58 | |
| Clarithromycin-based triple therapy | 70 (26.8) | 13 (22.4) | |
| Sequential therapy | 83 (31.8) | 26 (44.8) | |
| Single-capsule bismuth quadruple therapy | 81 (31) | 16 (27.6) | |
| Concomitant therapy | 22 (8.4) | 2 (3.4) | |
| Hybrid therapy | 2 (0.8) | 0 | |
| Other | 3 (1.1) | 1 (1.7) | .41 |

| Preferred second-line therapy for *H. pylori* infection | Gastroenterologists n = 258 | Gastroenterology fellows n = 56 | |
|---|---|---|---|
| Participants, n. | 258 | 56 | |
| Repeat the same treatment, possibly for more days | 1 (0.4) | 2 (3.6) | |
| Sequential or concomitant therapy | 11 (4.3) | 1 (1.8) | |
| Single-capsule bismuth quadruple therapy | 149 (57.8) | 32 (57.1) | |
| Levoﬂoxacin-based triple therapy | 81 (31.4) | 17 (30.4) | |
| Other | 16 (6.2) | 3 (7.2) | .22 |

| Preferred third-line therapy for *H. pylori* infection | Gastroenterologists n = 259 | Gastroenterology fellows n = 56 | |
|---|---|---|---|
| Participants, n. | 259 | 56 | |
| Repeat the same second-line treatment, possibly for more days | 4 (1.5) | 2 (3.6) | |
| Single-capsule bismuth quadruple therapy or levoﬂoxacin-based triple therapy | 129 (49.8) | 21 (37.5) | |
| Rifabutin-based triple therapy | 18 (6.9) | 3 (5.4) | |
| Susceptibility-guided therapy based on culture or genetic test | 71 (27.4) | 21 (37.5) | |
| Other | 37 (14.3) | 9 (16.1) | .36 |

Management of patient after failure of three lines of treatment
### TABLE 3 (Continued)

| Participants, n.          | Gastroenterologists n = 279 | Gastroenterology fellows n = 61 | p Value |
|---------------------------|-----------------------------|--------------------------------|---------|
| No further eradication therapy for *H. pylori* | 259 (93) | 56 (93) | .001 |
| Rifabutin-based triple therapy | 44 (17) | 1 (1.8) | | |
| Susceptibility-guided therapy based on culture or genetic test | 44 (17) | 5 (8.9) | | |
| Referral the patient to a colleague with more experience in *H. pylori* treatment | 121 (46.7) | 40 (71.4) | | |
| Other | 26 (10) | 3 (5.4) | | |

### TABLE 4

| Preferred test to diagnose *H. pylori* infection | Community hospital n = 181 | Teaching hospital n = 122 | p Value |
|-------------------------------------------------|-----------------------------|---------------------------|---------|
| 13C-Urea breath test | 69 (39.9) | 52 (44.8) | | |
| Stool antigen test | 62 (35.8) | 36 (31) | | |
| Serology | 3 (1.7) | 2 (1.7) | | |
| Histology | 32 (18.5) | 17 (14.7) | | |
| Rapid urease test | 7 (4.1) | 9 (7.8) | .52 |

| Preferred test to assess *H. pylori* eradication | Community hospital n = 181 | Teaching hospital n = 122 | p Value |
|-------------------------------------------------|-----------------------------|---------------------------|---------|
| 13C-Urea breath test | 99 (56.3) | 83 (69.8) | | |
| Stool antigen test | 62 (35.2) | 32 (26.9) | | |
| Serology | 2 (1.1) | 2 (1.7) | | |
| Histology | 10 (5.7) | 1 (0.8) | | |
| Rapid urease test | 3 (1.7) | 1 (0.8) | .07 |

| Interval between end of anti-*H. pylori* treatment and testing for eradication | Community hospital n = 181 | Teaching hospital n = 122 | p Value |
|-------------------------------------------------------------------------------|-----------------------------|---------------------------|---------|
| 2 weeks | 6 (3.3) | 3 (2.5) | | |
| 4 weeks | 82 (45.3) | 77 (63.6) | | |
| 6 weeks | 37 (20.4) | 18 (14.9) | | |
| 8 weeks | 40 (22.1) | 12 (9.9) | | |
| >8 weeks | 16 (8.8) | 11 (9.1) | .01 |

| Availability of antimicrobial susceptibility *H. pylori* testing | Community hospital n = 175 | Teaching hospital n = 116 | p Value |
|-----------------------------------------------------------------|-----------------------------|---------------------------|---------|
| No | 110 (62.9) | 41 (35.3) | | |
| Yes, both culture and genetic test | 7 (4) | 27 (23.3) | | |
| Yes, only culture | 51 (29.1) | 44 (37.9) | | |
| Yes, only genetic test | 0 | 0 | | |
| I do not know | 7 (4) | 4 (3.5) | <.001 |

Note: Community hospitals: n. 175 gastroenterologists and 6 gastroenterology fellows. Teaching hospitals: n. 70 gastroenterologists and 52 gastroenterology fellows.
### TABLE 5  Treatment of *H. pylori* infection in community and teaching hospitals

| Proportion of patients with *H. pylori* infection treated with first-line therapy (naïve patients) | Community hospital  | Teaching hospital  | p Value |
|---|---|---|---|
| Participants, n. | 175 | 118 | .38 |
| <30% | 30 (17.1) | 28 (23.7) | |
| 30%-50% | 44 (25.1) | 21 (17.8) | |
| 50%-70% | 41 (23.4) | 29 (24.6) | |
| >70% | 58 (33.1) | 37 (31.4) | |
| I do not know | 2 (1.1) | 3 (2.5) | |

| Regional prevalence of clarithromycin resistance | Community hospital  | Teaching hospital  | p Value |
|---|---|---|---|
| Participants, n. | 175 | 114 | .20 |
| <15% | 32 (18.3) | 19 (16.7) | |
| ≥15% | 107 (61.1) | 61 (53.5) | |
| I do not know | 36 (20.6) | 34 (29.8) | |

| Investigation on previous use of macrolides and quinolones before therapy | Community hospital  | Teaching hospital  | p Value |
|---|---|---|---|
| Participants, n. | 173 | 117 | .36 |
| No | 14 (8.1) | 17 (14.5) | |
| Yes, for both macrolides and quinolones | 142 (82.1) | 88 (75.2) | |
| Yes, but only for macrolides | 16 (9.3) | 11 (9.4) | |
| Yes, but only for fluoroquinolones | 1 (0.6) | 1 (0.9) | |

| Preferred first-line therapy for *H. pylori* infection | Community hospital  | Teaching hospital  | p Value |
|---|---|---|---|
| Participants, n. | 171 | 113 | .17 |
| Clarithromycin-based triple therapy | 43 (25.2) | 34 (30.1) | |
| Sequential therapy | 53 (31) | 43 (38.1) | |
| Single-capsule bismuth quadruple therapy | 54 (31.6) | 30 (26.6) | |
| Concomitant therapy | 18 (10.5) | 4 (3.5) | |
| Hybrid therapy | 1 (0.6) | 1 (0.9) | |
| Other | 2 (1.2) | 1 (0.8) | |

| Preferred second-line therapy for *H. pylori* infection | Community hospital  | Teaching hospital  | p Value |
|---|---|---|---|
| Participants, n. | 168 | 109 | .29 |
| Repeat the same treatment, possibly for more days | 1 (0.6) | 2 (1.8) | |
| Sequential or concomitant therapy | 9 (5.4) | 1 (0.9) | |
| Single-capsule bismuth quadruple therapy | 98 (58.3) | 61 (55.9) | |
| Levofloxacin-based triple therapy | 50 (29.8) | 38 (34.9) | |
| Other | 10 (6) | 7 (6.4) | |

| Preferred third-line therapy for *H. pylori* infection | Community hospital  | Teaching hospital  | p Value |
|---|---|---|---|
| Participants, n. | 168 | 110 | .84 |
| Repeat the same second-line treatment, possibly for more days | 3 (1.8) | 3 (2.7) | |
| Single-capsule bismuth quadruple therapy Or levofloxacin-based triple therapy | 80 (47.6) | 52 (47.2) | |
| Rifabutin-based triple therapy | 7 (4.2) | 7 (6.4) | |
| Susceptibility-guided therapy based on culture or genetic test | 51 (30.4) | 34 (30.9) | |
| Other | 27 (16.1) | 14 (12.7) | |

Management of patient after failure of three lines of treatment (Continues)
prescribed a non-recommended regimen in naïve patients. Bismuth quadruple therapy was preferred by only one third of gastroenterologists and trainees in gastroenterology; this finding would confirm that the use of bismuth quadruple therapy at first line is still uncommon in Europe; however, a time-trend analysis showed an increase in the use of this regimen from 0.2% of prescriptions in 2013 to 22% in 2018 in Europe. Notably, we found that only about one third of participants who preferred a clarithromycin triple therapy prescribed a 14-day regimen. A Cochrane meta-analysis showed that the optimal duration of triple therapy is 14 days, which is now the recommended treatment duration of clarithromycin triple therapy. Unfortunately, the use of triple therapy for less than 14 days is still common among gastroenterologists in the eradication of H. pylori.  

Single-capule bismuth quadruple therapy was the most preferred second-line therapy by gastroenterologists, followed by levofloxacin triple therapy, which is in agreement with international recommendations. After failure of a second-line treatment, guidelines suggest a therapy guided by antimicrobial susceptibility testing or, in alternative, if such tests are not available, an empirical therapy with a regimen that had not been already used. In our study, the majority of gastroenterologists and trainees would prefer an empirical therapy, in particular single-capule bismuth quadruple therapy or levofloxacin triple therapy, and this would reflect the scarce availability of culture or molecular tests in clinical practice. Only after failure of third-line therapy, the most frequent approach of gastroenterologists was a therapy driven by antimicrobial susceptibility testing; this approach was significantly more frequent among fellows than gastroenterologists for the greater availability of susceptibility testing in teaching than community hospitals.

To our knowledge, this is the most comprehensive study assessing practice patterns of gastroenterologists and gastroenterology fellows in the diagnosis and treatment of H. pylori infection in Europe. Previous studies reported either attitudes of primary care physicians or practices of gastroenterologists, but not gastroenterology fellows, with particular focus on the first-line treatment of H. pylori. Another comprehensive survey on the adherence of gastroenterologists to guideline for the management of H. pylori infection was carried out only in China. In addition, this is the first study providing data on the availability of culture and molecular tests for antimicrobial susceptibility of H. pylori in clinical practice in Europe.

This study has several limitations. The main limitation is the low participation rate of about 50% for gastroenterologists and 40% for gastroenterology fellows. However, the participation rate was high compared to that of other surveys on the same topic, ranging from 11% to 30%. We think that our study sample is not too far to be representative of gastroenterologists and gastroenterology fellows in Italy. The National Congress of Digestive Diseases - FISMAD is the annual Congress of the three major scientific societies of digestive diseases, thus gastroenterologists and trainees who attend this Congress are very likely to represent the entire population of gastroenterologists and gastroenterology fellows in Italy. In addition, the characteristics of participants were similar to that of non-participants, apart from age, thus minimizing the introduction of selection bias. Other limitations of this study are those inherent to questionnaire-based surveys, such as about telling the truth, with responses that may be skewed toward adherence to guidelines. Finally, there is a general delay from publication of recommendations to their implementation in routine clinical practice, and our survey was carried out only after 6–12 months since the publication of the guidelines.

In conclusion, the management of H. pylori infection by gastroenterologists and gastroenterology fellows is in line with guidelines’ recommendations in Italy, apart for the first-line treatment of H. pylori infection. In contrast with international recommendations,
sequential therapy is the most preferred first-line therapy, whereas bismuth and non-bismuth quadruple therapies are still underused. A minority of gastroenterologists and fellows would prefer clarithromycin triple therapy, but only one third uses the recommended 14-day regimen. Unfortunately, this is a cause of high rate of eradication failures and may negatively affect the practice of primary care physicians in the treatment of H. pylori. Finally, antimicrobial susceptibility tests are not widely available in clinical practice; thus, physicians would prefer a susceptibility-guided therapy only after failure of three lines of treatment. In future, scientific societies should implement targeted educational interventions in order to improve the adherence of gastroenterologists and gastroenterology fellows to guidelines’ recommendations for the first-line treatment of H. pylori infection.

ACKNOWLEDGEMENT
Open Access funding provided by Universita degli Studi di Bologna within the CRUI-CARE Agreement. [Correction added on 20 May 2022, after first online publication: CRUI funding statement has been added.]

CONFLICT OF INTEREST
The authors have no conflict of interest to declare.

AUTHOR CONTRIBUTIONS
RMZ and FB conceived the study and drafted the protocol. RMZ, MR, and LF performed statistical analysis and drafted the manuscript. All the other authors revised the manuscript and approved the final version.

ORCID
Rocco Maurizio Zagari https://orcid.org/0000-0001-9949-8619

REFERENCES
1. Hooi J, Lai W, Ng W, et al. Global prevalence of Helicobacter pylori Infection: systematic review and meta-analysis. Gastroenterology. 2017;153:420-429.
2. Boltin D, Niv Y, Schütte K, Schulz C. Review: Helicobacter pylori and non-malignant upper gastrointestinal diseases. Helicobacter. 2019;24(Suppl 1):e12637.
3. Eusebi L, Telese A, Marasco G, Bazzoli F, Zagari RM. Gastric cancer prevention strategies: a global perspective. J Gastroenterol Hepatol. 2020;35:1495-1502.
4. Gravina A, Zagari RM, De Musis C, Romano L, Loguercio C, Romano M. Helicobacter pylori and extragastric diseases: a review. World J Gastroenterol. 2018;24:3204-3221.
5. Sugano K, Tack J, Kuipers E, et al. Kyoto global consensus report on Helicobacter pylori gastritis. Gut. 2015;64:1353-1367.
6. Thung I, Aramin H, Vavinskaya V, et al. Review article: the global emergence of Helicobacter pylori antibiotic resistance. Aliment Pharmacol Ther. 2016;43:514-533.
7. Savoldi A, Carrara E, Graham D, Conti M, Tacconelli E. Prevalence of antibiotic resistance in Helicobacter pylori: a systematic review and meta-analysis in world health organization regions. Gastroenterology. 2018;155:1372-1382.
8. Zagari RM, Rabitti S, Eusebi L, Bazzoli F. Treatment of Helicobacter pylori infection: a clinical practice update. Eur J Clin Invest. 2018;48:e12857.
9. Malfertheiner P, Megraud F, O’Morain C, et al. Management of Helicobacter pylori infection-the Maastricht V/Florence consensus report. Gut. 2017;66:6-30.
10. Fallone C, Chiba N, van Zanten S, et al. The Toronto consensus for the treatment of Helicobacter pylori infection in adults. Gastroenterology. 2016;151:51-69.
11. Chey W, Leontiadis G, Howden C, Moss S. ACG clinical guideline: treatment of Helicobacter pylori infection. Am J Gastroenterol. 2017;112:212-238.
12. Fallone C, Moss S, Malfertheiner P. Reconciliation of recent Helicobacter pylori treatment guidelines in a time of increasing resistance to antibiotics. Gastroenterology. 2019;157:44-53.
13. Zagari RM, Romiti A, Ierardi E, et al. The “three-in-one” formulation of bismuth quadruple therapy for Helicobacter pylori eradication with or without probiotics supplementation: efficacy and safety in daily clinical practice. Helicobacter. 2018;23:e12502.
14. Nyssen O, Bordin D, Tepes B, et al. European registry on Helicobacter pylori infection (Hp-EuReg): patterns and trends in first-line empirical eradication prescription and outcomes of 5 years and 21 533 patients. Gut. 2021;70:40-54.
15. Song C, Xie C, Zhu Y, et al. Management of Helicobacter pylori infection by clinicians: a nationwide survey in a developing country. Helicobacter. 2019;24:e12656.
16. Márkus B, Herszényi L, Matyasovszky M, et al. The diagnosis and therapy of Helicobacter pylori infection in Hungary: comparison of strategies applied by family physicians and internists. Dig Dis. 2019;37:434-443.
17. McNicholl A, Amador J, Ricote M, et al. Spanish primary care survey on the management of Helicobacter pylori infection and dyspepsia: information, attitudes, and decisions. Helicobacter. 2019;24:e12593.
18. Jukic I, Vukovic J, Rusic D, et al. Adherence to Maastricht V/ Florence consensus report for the management of Helicobacter pylori infection among primary care physicians and medical students in Croatia: a cross-sectional study. Helicobacter. 2021;26:e12775.
19. Graham DW, El-Serag H. European registry on Helicobacter pylori management shows that gastroenterology has largely failed in its efforts to guide practitioners. Gut. 2021;70:1-2.
20. Boltin D, Dotan I, Birkenfeld S. Improvement in the implementation of Helicobacter pylori management guidelines among primary care physicians following a targeted educational intervention. Ann Gastroenterol. 2019;32:52-59.
21. Iannone A, Giorgio F, Russo F, et al. New fecal test for non-invasive Helicobacter pylori detection: a diagnostic accuracy study. World J Gastroenterol. 2018;24:3021-3029.
22. Gingold-Belfer R, Niv Y, Schmilovitz-Weiss H, Levi Z, Boltin D. Susceptibility-guided versus empirical treatment for Helicobacter pylori infection: a systematic review and meta-analysis. J Gastroenterol Hepatol. 2021;36(10):2649-2658. publish ahead of print.
23. Kang S, Kim Y, Ahn J, et al. Role of antimicrobial susceptibility testing before first-line treatment containing clarithromycin for Helicobacter pylori eradication in the clinical setting. Antibiot (Basel, Switzerland). 2021;10:1-11.
24. Romano M, Marmo R, Cuomo A, et al. Pretreatment antimicrobial susceptibility testing is cost saving in the eradication of Helicobacter pylori. Clin Gastroenterol Hepatol. 2003;1:273-278.
25. McNulty C, Lasseter G, Shaw I, et al. Is Helicobacter pylori antibiotic resistance surveillance needed and how can it be delivered? Aliment Pharmacol Ther. 2012;35:1221-1230.
26. Boltin D, Levi Z, Gingold-Belfer R, et al. Impact of previous exposure to macrolide antibiotics on Helicobacter pylori infection treatment outcomes. Am J Gastroenterol. 2019;114:900-906.
27. Fiorini G, Zullo A, Saracino I, Pavoni M, Vaira D. Antibiotic resistance pattern of Helicobacter pylori strains isolated in Italy during 2010–2016. Scand J Gastroenterol. 2018;53:661-664.
28. Palmitessa V, Monno R, Panarese A, et al. Evaluation of antibiotic resistance of Helicobacter pylori strains isolated in Bari, Southern Italy, in 2017–2018 by phenotypic and genotyping methods. Microb Drug Resist. 2020;26:909-917.
29. Nyssen O, McNicholl A, Megraud F, et al. Sequential versus standard triple first-line therapy for Helicobacter pylori eradication. Cochrane Database Syst Rev. 2016;6:CD009034.
30. Georgopoulos S, Xirouchakis E, Martinez-Gonzales B, et al. Randomized clinical trial comparing ten day concomitant and sequential therapies for Helicobacter pylori eradication in a high clarithromycin resistance area. Eur J Intern Med. 2016;32:84-90.
31. Lee B, Kim J, Kim B, et al. Consistency of Helicobacter pylori eradication rates of first-line concomitant and sequential therapies in Korea: a nationwide multicenter retrospective study for the last 10 years. Helicobacter. 2021;26:e12780.
32. Wang Y, Zhao R, Wang B, et al. Sequential versus concomitant therapy for treatment of Helicobacter pylori infection: an updated systematic review and meta-analysis. Eur J Intern Med. 2018;41:13.
33. Zagari RM, Romano M, Ojetti V, et al. Guidelines for the management of Helicobacter pylori infection in Italy: the III working group consensus report 2015. Dig Liver Dis. 2015;47:903-912.
34. Gatta L, Scarpignato C, Fiorini G, et al. Impact of primary antibiotic resistance on the effectiveness of sequential therapy for Helicobacter pylori infection: lessons from a 5-year study on a large number of strains. Aliment Pharmacol Ther. 2018;47:1261-1269.
35. Fiorini G, Zullo A, Saracino I, Gatta L, Pavoni M, Vaira D. Pylera and sequential therapy for first-line Helicobacter pylori eradication: a culture-based study in real clinical practice. Eur J Gastroenterol Hepatol. 2018;30:621-625.
36. Yuan Y, Ford AC, Khan K, et al. Optimum duration of regimens for Helicobacter pylori eradication. Cochrane Database Syst Rev. 2013;12:CD008337.
37. Nyssen OP, Vaira D, Tepes B, et al. Room for Improvement in the Treatment of Helicobacter pylori Infection: lessons from the European registry on H. pylori Management (Hp-EuReg). J Clin Gastroenterol. 2021;70:40-54, publish ahead of print.
38. Escala Perez-Reyes AY, Jiménez Carranza AE, Bussalleu RA. [How do gastroenterologists in Peru deal with Helicobacter pylori infection? Study based on a survey conducted in 2014]. Rev Gastroenterol Peru. 2105;35:295-305.
39. Grimshaw J, Russell I. Effect of clinical guidelines on medical practice: a systematic review of rigorous evaluations. Lancet (London, England). 1993;342:1317-1322.

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Zagari RM, Romano M, Frazzoni L, et al. Adherence to international guidelines for the management of Helicobacter pylori infection among gastroenterologists and gastroenterology fellows in Italy: A Survey of the Italian Federation of Digestive Diseases - FISMAD. Helicobacter. 2022;27:e12862. https://doi.org/10.1111/hel.12862