Despite the fact that the neonatal period of calves comprises only a short time in their lives, this is the period of the highest incidence and mortality rates from diseases (16, 22, 35). Calf diseases are very important in terms of both economic and animal welfare concerns because they cause calf deaths, high treatment costs and low efficiency in animal performance (19). The goals of raising calves are health, performance, and profitability. Investments made in line with these objectives play an important role in ensuring the profitability for livestock owners and businesses economically. Therefore, it is of great importance to prevent illnesses and to improve calf recovery rates by making early diagnosis in this period (24).

During the neonatal period, colisepticemia, enterocolitis, rotavirus, coronavirus, and cryptosporidiosis diarrhea are common in calves. Additionally, respiratory tract diseases are a problem observed during this period (13, 17, 21, 25). As with other animals, young newborn calves have a high incidence of disease. During the first 15 days in the calves’ lives, septicemia and diarrhea are the most common diseases, and it is the period when death is most commonly seen (1, 18, 22). Determination of routine clinical parameters to monitor the health status of animals is a practical method for early diagnosis of diseases (5, 6). It has been observed that the daily monitoring of cows during the postpartum period, a critical period in dairy cattle, is of great importance for the future of the herd (5). It is known that daily assessments are extremely important for calves (23).

Passive transfer immunity is one of the most important factors affecting the health of the calves in the neonatal period (11, 27, 34). The passage of immunoglobulins during pregnancy is minimal because the placenta of ruminants is epitheliochorial, so the
newborn calves are hypogammaglobulinemic, and they need to consume colostrum as soon as possible after birth (2, 34). Calves that fail to receive this passive transfer are not protected against infectious diseases, and they have higher morbidity and mortality rates (3, 19, 23, 30).

Identification of the early signs of disease by monitoring clinical features daily and correlating the findings with failure of transfer of passive immunity (FTPI) values could be important in the first 15 days of the neonatal period, which is the critical period for the calves.

The aim of this study was to determine the early clinical predictors of diarrhea in calves and also to investigate the correlation between diarrhea and with FTPI.

Material and methods

Animals. The animals used in this study were 82 newborn Holstein calves at a farm. This study was performed in agreement with the guidelines for animal experiments (UU Ethics Committee No: 2014-17/09). There were 43 male and 39 female calves. The average live birth weight was 40.07 ± 0.75 kg for males and 38.08 ± 0.82 kg for females. According to the farm management program, 2.5 liters of colostrum was offered to the calves by the employees within 3 hours after birth. They received 2.5 liters of freshly milked colostrum from their dams with nipple twice a day for the first three days of life. The calves were housed in individual boxes from the third day until one month. From the 3rd day onwards, alfalfa hay, calf starter feed and water were given *ad libitum*. On average, 2.5 liters of milk were given twice a day for one month.

Daily clinical monitoring of the calves. General clinical examinations were performed by the same veterinarian between 8:00 am and 11:00 am every day for 15 days from the time they were born, and the data were recorded. The calves were evaluated according to the modified as in Table 1 (5, 6, 22, 28).

Collection of blood samples. Anticoagulant-free blood (8-10 ml) was taken from the calves at the moment of birth.

Tab. 1. Daily clinical monitoring form of calves

Calf	Ear number	Age (day)	Gender F/M	Age of mother	
	Clinical parameters	Score 1	Score 2	Score 3	
	posture	normal	low shoulder		
	eyes looking	live	not alive	dull glance	
	suckling reflex	good	medium	weak-no	
	movements of the ears	active	decreased	no	
	position of the ears	upright	nearly upright, moderate	low	
	palpebral reflex	have	slight decrease	significantly reduced-lost	
	behavior, lethargy score	0-1	2	3-4	
	Body temperature parameters	rectal degree (°C)	38.5-39.4	38.0-38.5, 39.5-39.7	< 38.0, > 39.7
	muzzle-nose temperature	at body temperature, warm	slight cold	cold	
	oral temperature	at body temperature, warm	slight cold	cold	
	ears temperature	at body temperature, warm	slight cold	cold	
	heart rate/min.	90-130	80-90, 130-140	< 80, > 140	
	enophthalmus	no	slight	moderate-severe	
	skin elasticity, sec.	1	2-4	> 4	
	color of conjunctiva and mucous membranes	normal-pink	slight pale hyperemic	moderate-severe pale, hyperemic cyanotic	
	CFT, sec	1-2	> 2	> 3	
	muzzle appearance	moist	slightly moist	dry	
	Respiratory system findings	lacrimation	no	slight	moderate-severe
	nasal discharge	no	slight	moderate-severe	
	respiratory freq./min	20-40	16-20, 40-44	< 16, > 44	
	cough	no	induced single	spontaneous-induced multiple	
	Digestive system findings	feces consistency score	1-2	3	4
	the smell of feces	normal	slightly fetid	fetid	
	the color of feces	light brown	yellow	grey	
(before the calves were given the colostrum) and then on
the 1st (24th hour), 3rd and 7th days after birth. Serum was
obtained by centrifugation of the non-anticoagulated blood
for 5 minutes at 5,000 rpm and was stored in –20\textdegree C in 2 ml
Eppendorf tubes until analysis.

Evaluation of passive transfer parameters. Immunoglobulin G (IgG) concentrations were measured from
the obtained sera. The quantities of IgG in the study were
determined by ELISA from serum samples (Bio-X Diagnostic
Bovine ELISA Kit) at days 0, 1, 3, and 7. Calves
with an IgG concentration < 10 g/L were evaluated as FTPI
(23-25). As this classification is based on references (3, 7),
calves with an IgG value less than 5 g/L have severe FTPI;
calves with the range of 5-10 g/L have partial FTPI; calves
with the range of 10-15 g/L have sufficient passive transfer;
good passive transfer is between 15-20 g/L; and calves with
higher than 20 g/L have very good passive transfer.

Statistical analysis. IBM SPSS 22.0 was used for statisti-
cal and descriptive analysis. Whether or not there was any
difference between the values of each parameter on different
days was examined by the Friedman test. If a difference was
determined, Wilcoxon’s test or a Paired Sample T-test was
applied, according to whether the groups showed a normal
distribution. Categorical variables were compared between
diarrheic and non diarrheic groups with Pearson’s chi-square
test and Fisher’s exact test. For all analysis, P < 0.05 was
determined to be significant.

Results and discussion

In the first 15 days, diarrhea was observed in 53
(64.63\%) of the 82 newborn calves that received daily
observation and clinical examination. However, there
were no health problems in 20 calves. Pneumonia was
observed in 6 (7.31\%) calves, including one of the ani-
mals with diarrhea; 3 calves (3.65\%) had septicemia;
and 2 calves (2.43\%) had omphalophlebitis and diar-
rhea. In the first 15 days of the neonatal period, 64.63\%
of the diarrhea that occurred belonged to diarrhea cases
as mentioned in the references (18, 31).

Clinical examination finding	Before the diarrhea (n = 53)/ non-diarrheic (n = 220)*	Score 2 (n)	Score 3 (n)	Score 2 + Score 3 (n)	Score 2 + Score 3 (%	P value
Fetid feces	diarrhea	15	8	23	43.40	< 0.01
	non-diarrheic	32	13	45	20.45	
Change in the consistency	diarrhea	19	–	19	35.85	< 0.001
of the feces	non-diarrheic	30	–	30	13.63	
Change in feces color	diarrhea	16	3	19	35.85	< 0.001
	non-diarrheic	15	10	25	11.36	
Decrease in the temperature	diarrhea	15	4	19	35.85	0.147
of the ears	non-diarrheic	41	16	57	25.90	
Increase of pulse	diarrhea	8	11	19	35.84	0.361
	non-diarrheic	25	69	94	42.72	
Nasal discharge	diarrhea	11	4	15	28.30	< 0.001
	non-diarrheic	17	2	19	8.63	
Lacrimation	diarrhea	5	5	10	18.87	0.418
	non-diarrheic	38	15	53	24.09	
Extension of CFT time	diarrhea	12	–	12	22.64	0.954
	non-diarrheic	36	13	49	22.27	
Changing color in conjunct	diarrhea	5	3	8	15.09	0.919
va and mucosa	non-diarrheic	17	15	32	14.54	
Lethargy score 2	diarrhea	7	1	8	15.09	< 0.01
	non-diarrheic	9	–	9	4.09	
Decrease in suckling reflex	diarrhea	7	–	7	13.20	0.781
	non-diarrheic	20	6	26	11.81	
Decrease in the skin elastic	diarrhea	6	–	6	11.32	0.655
ity	non-diarrheic	29	1	30	13.63	
Enophthalmus	diarrhea	6	–	6	11.32	0.776
	non-diarrheic	21	1	22	10.00	
Change in posture position	diarrhea	6	–	6	11.32	0.095
	non-diarrheic	9	1	10	4.54	
Thirty (56.60%) of the 53 total diarrheic calves were males, and 23 (43.40%) were females. Although the proportion of male calves with diarrhea was not much higher, male calves are heavier than females at birth, which is consistent with the suggestion in the literature that the amount of colostrople male calves receive is insufficient compared to the amount females receive. In addition, the fact that the ratio of IgG in the male calves was lower than that in the females supports this view. Indeed, IgG levels were 13.01 ± 1.82 g/L in female animals with diarrhea on day 3 and 12.63 ± 0.99 g/L in male animals with diarrhea. As a matter of fact, the FTPI rate in a study was 16.0% in female calves and 22.6% in male calves (10).

The diarrhea was classified according to 3 different time periods: 0–5 days, 6–10 days and 11–15 days. Two diarrhea cases were observed in the first period (only on the 5th day) (3.77%), 39 in the 6–10 day period (73.58%) and 12 in the 11–15 day period (22.65%). Notably, 73.58% of them were found between 6 and 10 days after birth, as indicated in other references (14, 21).

Clinical findings were seen the day before diarrhea occurred in more than 10% of 53 diarrheic calves, and the same clinical findings in calves without diarrhea are presented in Table 2. Other findings on the daily clinical monitoring form were not significant.

As diarrhea was seen between days 5 and 15 in the first 15-day period, the number of detections of the same clinical findings in days 4-14 in 20 calves without diarrhea was presented in Table 2. As seen in Table 2, the most common findings on the previous day before diarrhea in the calves were the fetid feces (43.40%), changes in the consistency and color of the feces and a decrease in the temperature of the ears (35.85%). Compared with non diarrheic calves, fetid feces (P < 0.01), changes in the consistency and color of the feces and nasal discharge were more common among diarrheic calves on the day before diarrhea (P < 0.001). Comparing non diarrheic calves with the diarrheic calves, nasal discharge (P < 0.001) and lethargy (P < 0.01) were observed more frequently the day before diarrhea. Changes in the feces are expected in the diarrheic calves the day before the onset of diarrhea. This may be a sign of a disrupted digestive activity (22). Comparing non diarrheic calves with the diarrheic calves, nasal discharge and lethargy were observed more frequently the day before diarrhea. Observation of more lethargy may be considered a sign of the onset of the disease (8). More nasal discharge may be due to the stimulation of the parasympathetic nerves (4). Although postural changes on the day before diarrhea were not very common, this finding may be an important predictor when detected because it is close to statistical significance (P < 0.095).

Table 3 shows the rate of co-occurrence of the most common findings the day before diarrhea. In diarrheic calves, only 6 had changes in all three feces scores, namely: the fetid of the feces, a change in the consistency of the feces, and a change in feces color, on the day before diarrhea. As shown in Table 3, 37.74% of the cases had two of the 3 fecal changes present together. This suggests that the observation of two of the fecal changes increases the likelihood of diarrhea after one day. In addition, it was observed that it could be an important clinical predictor prior to diarrhea when the temperature of the ears decreased in combination with at least one fecal change (P < 0.01). Since these calves have been observed for more than a year, the decrease in the temperature of the ears was not dependent solely on winter conditions.

The mean, minimum and maximum values of the IgG on different days are presented in Table 4 below. IgG level of the calves in the study was highest on the 3rd day, which agrees with the references (12, 34) which indicate that IgG levels reached the highest value in 36–48 hours. It has even been stated that IgG reached the maximum concentration in 2–3 days of age (32).

Significant clinical findings were observed more frequently before diarrhea during the first 15-day period.

Tab. 3. Co-occurrence of some important findings before diarrhea and comparison with non-diarrheic calves

Some clinical examination finding	Before the diarrhea (n = 53)/non-diarrheic (n = 220)	n	%	P value
Any two of the three feces scores	diarrhea	20	37.74	< 0.001
	non-diarrheic	21	9.54	
Fetid feces	diarrhea	11	20.75	< 0.05
+ Change in the consistency of the feces	non-diarrheic	20	9.09	
Fetid feces	diarrhea	11	20.75	< 0.001
+ Change in feces color	non-diarrheic	11	5.00	
Change in the consistency of the feces + Change in feces color	diarrhea	9	16.98	< 0.01
	non-diarrheic	10	4.54	
Three feces scores together	diarrhea	6	11.32	< 0.05
	non-diarrheic	7	3.18	
Finding at least one feces change + Decrease in the temperature of the ears	diarrhea	14	26.41	< 0.01
	non-diarrheic	24	10.90	

Tab. 4. Mean, minimum and maximum values of IgG in different days

IgG (g/L)	Day 0 (n = 63)	Day 1 (n = 82)	Day 3 (n = 82)	Day 7 (n = 82)
min	0.93	1.27 ± 0.06	1.21	1.88
max	3.50	13.23 ± 0.77	13.84 ± 0.75	12.48 ± 0.79

Explanation: a, b, c – means with different superscript letters differ significantly at p ≤ 0.05
than in those without diarrhea. They were evaluated according to the presence of FTPI, but no significant difference was found. Table 5 shows that FTPI was 29.26% (8.53% + 21.25% and 7.31% + 21.95%) on the 1st and 3rd day and 39.02% (9.75% + 29.26%) on the 7th day. The FTPI was 29.26% on the 1st and 3rd day, when IgG < 10 g/L is taken as a criterion. While this ratio is higher than in some studies (9, 20), it agrees with the FTPI incidence reported in others (3, 8, 34). The high FTPI ratio may be due to the insufficient amount of colostrum given (2.5 liters, 2 times per day for the first 3 days). In fact, higher volumes of colostrum are recommended (26, 34). While this ratio on the 7th day is higher than on the 1st and 3rd days, this increase may be due to the tendency of Ig to decrease (12, 15). The difference was found. Table 5 shows that FTPI was much higher than on the 1st and 3rd day. The FTPI was 29.26% (8.53% + 21.25% and 7.31% + 21.95%) on the 1st and 3rd day. The FTPI was 29.26% on the 1st and 3rd day, when IgG < 10 g/L is taken as a criterion. While this ratio is higher than in some studies (9, 20), it agrees with the FTPI incidence reported in others (3, 8, 34). The high FTPI ratio may be due to the insufficient amount of colostrum given (2.5 liters, 2 times per day for the first 3 days). In fact, higher volumes of colostrum are recommended (26, 34). While this ratio on the 7th day is higher than on the 1st and 3rd days, this increase may be due to the tendency of Ig to decrease (12, 15). The high rate of diarrhea in the first 15 days in the calves with FTPI was much longer than without FTPI. For example, the duration of diarrhea in calves with severe FTPI was respectively 5.00 ± 0.81, 4.80 ± 0.96 and 4.28 ± 0.74 days on the 1st, 3rd and 7th days, whereas 2.08 ± 0.22, 1.67 ± 0.22 and 1.85 ± 0.26 days in calves with good PT levels. This may be because while FTPI plays an important role in the pathogenesis of diseases, it is not sufficient on its own, and other factors such as environmental and hygienic conditions are important in pathogenesis (22, 29). On the other hand, although the rate of diarrhea is high, the fact that most of the cases were mild may indicate that they were not exposed to serious infections. In fact, despite the high morbidity rate, the lack of deaths supports this explanation.

Daily inspections of the calves and early interventions, especially in the first 15 days, played their part in the absence of death, because the rate of diarrhea in the calves was very high.

In conclusion, it is important for calves to be monitored daily during the first 15 days, and early clinical predictors of diarrhea in this period are fetid feces and changes in the appearance and color of the feces. The coexistence of any two of these changes in fecal findings further increases the likelihood of diarrhea. In addition, coexistence of any fecal changes with decrease in the temperature of the ears may be clinical predictors of diarrhea. Because of daily monitoring of the calves, it was observed that there was no death, even though the morbidity rate was high. In addition, it was observed once again that the rate of diarrhea was higher in the calves with FTPI.

Tab. 5. IgG concentrations on different days (n = 82)

Day	Severe FTPI (< 5 g/L)	Partial FTPI (5-10 g/L)	Sufficient PT (10-15 g/L)	Good PT (15-20 g/L)	Very Good PT (> 20 g/L)
1	7 (8.53%)	17 (21.25%)	30 (36.58%)	19 (23.17%)	9 (10.97%)
3	6 (7.31%)	18 (21.95%)	28 (34.14%)	19 (23.17%)	11 (13.41%)
7	8 (9.75%)	24 (29.26%)	27 (32.92%)	17 (20.73%)	6 (7.31%)

Explanations: PT – passive transfer; FTPI – failure of transfer of passive immunity.

Tab. 6. Classification of diseased calves in the first 15 days according to IgG concentrations on different days (n = 82)

Number of calves at 1st day IgG level	Severe FTPI (< 5 g/L)	Partial FTPI (5-10 g/L)	Sufficient PT (10-15 g/L)	Good PT (15-20 g/L)	Very Good PT (> 20 g/L)
	7	17	30	19	9
Number and ratio of calves with diarrhea and duration (day) of diarrhea	6	13	76.47% (5.00 ± 0.81)	56.66% (2.11 ± 0.25)	
	28	27	72.86% (2.64 ± 0.50)	51.66% (2.08 ± 0.22)	
Total number and the ratio of diarrheal calves according to FTPI	19/24	79.16%		24/32	80.34%
Number of calves at 3rd day IgG level	6	18	28	19	11
Number and ratio of calves with diarrhea and duration (day) of diarrhea	5	14	77.77% (4.80 ± 0.96)	67.85% (2.05 ± 0.96)	
	19	19	78.87% (3.50 ± 0.43)	62.17% (1.67 ± 0.22)	
Total number and the ratio of diarrheal calves according to FTPI	19/24	79.16%		24/32	80.34%
Number of calves at 7th day IgG level	8	24	27	17	6
Number and ratio of calves with diarrhea and duration (day) of diarrhea	7	17	70.83% (4.28 ± 0.74)	70.37% (2.21 ± 0.31)	
	19	19	70.37% (2.16 ± 0.39)	70.37% (2.21 ± 0.31)	
Total number and the ratio of diarrheal calves according to FTPI	24/32	75.00%		30/50	60.00%

Explanations: FTPI – failure of transfer of passive immunity.
References

1. Bartels C. J., Holzhauser M., Jorritsma R., Swart W. A., Lam T. J.: Prevalence, prediction and risk factors of enteropathogens in normal and non-normal faeces of young Dutch dairy calves. Prev. Vet. Med. 2010, 93, 162-169.

2. Bartier A. L., Windeyer M. C., Doeppel L.: Evaluation of on-farm tools for colostrum quality measurement. J. Dairy Sci. 2015, 98, 1878-1884.

3. Berge A. C., Besser T. E., Moore D. A., Sischo W. M.: Evaluation of the effects of oral colostrum supplementation during the first fourteenth days on the health and performance of preweaned calves. J. Dairy Sci. 2009, 92, 286-295.

4. Beule A. G.: Physiology and pathophysiology of respiratory mucosa of the nose and the paranasal sinuses. Laryngorhinootologie. 2010, 9, 15-34.

5. Bijnholt S., Muller K., Leiding C., Hoedemaker M., Bollewin H., Kaske M.: The daily clinical routine examination of dairy cows in the first two weeks after calving: Which parameters are decisive? 8th ECBHM Symposium Proceeding, 28-30 August 2013, Bern. p. 125.

6. Charlton S. J.: Calf rearing guide. Context, Leicestershire. 2009, p. 100-124.

7. Chigwirwe M., Hagey J. V., Aly S. S.: Determination of neonatal serum immunoglobulin G concentrations associated with mortality during the first 4 months of life in dairy heifer calves. J. Dairy Res. 2015, 82, 400-406.

8. Cramer M. C., Ollivert T. L., Stanton A. L.: Associations of behavior-based measurements and clinical disease in preweaned, group-housed dairy calves. J. Dairy Sci. 2016, 99, 7334-7443.

9. Elsohaby I., McClure J. T., Keefe G. P.: Evaluation of digital and optical refractometers for assessing failure of transfer of passive immunity in dairy calves. J. Vet. Intern. Med. 2015, 29, 721-726.

10. Filteau V., Bouchard E., Fecteau G., Dutil L., DuTremblay D.: Health status and risk factors associated with failure of passive transfer of immunity in newborn beef calves in Quebec. Can. Vet. J. 2003, 44, 907-913.

11. Farmann-Fratczak K., Rzasza A., Sotoianik T.: The influence of colostral immunoglobulin concentration in heifer calves’ serum on their health and growth. J. Dairy Sci. 2011, 94, 5536-5543.

12. Godden S.: Colostrum management for dairy calves. Vet. Clin. N. Am-Food A. 2008, 24, 19-39.

13. Gulliksen S. M., Jor E., Lie K. I., Hamnes I. S., Loken T., Akerstedt J., Ostera O.: Enteropathogens and risk factors for diarrhoea in Norwegian dairy calves. J. Dairy Sci. 2009, 92, 5057-5066.

14. Izzo M. M., Kirkland P. D., Mohler V. L., Gunns A. A., House J. K.: Prevalence major enteric pathogens in young dairy calves in Switzerland. Vet. Rec. 2008, 163, 362-366.

15. Jezek J., Nemec M., Malovrh T., Klinkon M.: Indicators of passive immunity and health status of calves. Acta Vet-Beograd. 2010, 60, 513-523.

16. Leslie K.: Health and Immum function in dairy calves. WCDS Adv. Dairy Technol. 2012, 24, 177-188.

17. Lorenz I., Earley B., Gilmore J., Hogan I., Kennedy E., More S. J.: Calf health from birth to weaning III. housing and management of calf pneumonia. Ir. Vet. J. 2011, 64, 14.

18. Lorenz I., Fagan J., More S. J.: Calf health from birth to weaning. II. Management of diarrhoea in pre-weaned calves. Ir. Vet. J. 2011, 64, 9.

19. Lorenz I., Mee J. F., Earley B., More S. J.: Calf health from birth to weaning. I. General aspects of disease prevention. Ir. Vet. J. 2011, 64, 10.

20. Macfarlane J. A., Grove-White D. H., Royal M. D., Smith R. F.: Identification and quantification of factors affecting neonatal immunological transfer in dairy calves in the UK. Vet. Rec. 2015, 176, 625.

21. Mawly J. A., Grinberg A., Prattley D., Moffat J., Marshall J., French N.: Risk factors for neonatal calf diarrhoea and enteropathogen shedding in New Zealand dairy farms. Vet. J. 2015, 203, 155-260.

22. McGuirk S. M.: Disease management of dairy calves and heifers. Vet. Clin. N. Am. Food A. 2008, 24, 139-153.

23. McGuirk S. M.: Management of dairy calves from birth to weaning, [in:] Risco C. A., Retemal P. M. (ed.): Dairy production medicine. Wiley-Blackwell, Iowa 2011, p. 175-194.

24. McGuirk S. M., Peek S. F.: Timely diagnosis of dairy calf respiratory disease using a standardized scoring system. Anim. Health Res. Rev. 2014, 15, 145-147.

25. Megancik V., Hafjalk G., Piepers S., Opsomer G.: Evaluation of a protocol to reduce the incidence of neonatal calf diarrhoea on dairy herds. Prev. Vet. Med. 2015, 118, 64-70.

26. Osaka I., Matsui Y., Terada F.: Effect of mass of IgG intake and agalactia on colostrum feeding on serum IgG concentration in Holstein calves. J. Dairy Sci. 2014, 97, 6608-6612.

27. Parish S. M., Tyler J. W., Besser T. E., Gay C. C., Krytenberg D.: Prediction of serum IgG concentration in Holstein calves using serum gamma glutamyltransferase activity. J. Vet. Intern. Med. 1997, 11, 344-347.

28. Poulsen K. P., McGuirk S. M.: Respiratory disease of the bovine neonate. Vet. Clin. N. Am. Food A. 2009, 25, 121-137.

29. Quigley J.: Passive immunity in newborn calves. Adv. Dairy Technol. 2002, 14, 273-292.

30. Torsein M., Lindberg A., Sandgren C. H., Waller K. P., Törnquist M., Svensson C.: Risk factors for calf mortality in large Swedish dairy herds. Prev. Vet. Med. 2011, 99, 136-147.

31. Uheh F. L., Kaufmann T., Sager H., Albin M., Zanoni R., Schelling E., Windeler H.: Association of behavior-based measurements and clinical disease in preweaned, group-housed dairy calves. J. Vet. Intern. Med. 2013, 27, 1-9.

32. Waller K. P., Törnquist M., Svensson C.: Risk factors for calf mortality in large Swedish dairy herds. Prev. Vet. Med. 2011, 99, 136-147.

33. Villarroel A., Miller T. B., Johnson E. D., Noyes K. R., Ward J. K.: Factors affecting serum total protein and immunoglobulin G concentration in replacement dairy calves. J. Adv. Dairy Res. 2013, 1, 2.

34. Vogels Z., Chuck G. M., Marton J. M.: Failure of transfer of passive immunity and agammaglobulinemia in calves in south-west Victorian dairy herds: prevalence and risk factors. Aust. Vet. J. 2013, 91, 150-158.

35. Windeyer M. C., Leslie K. E., Godden S. M., Hodgkins D. C., Lissemore D. K., LeBlanc S. J.: Factors associated with morbidity, mortality and growth of dairy heifer calves up to 3 months of age. Prev. Vet. Med. 2014, 113, 231-240.

Corresponding author: Onur TOPAL, PhD, Bursa Uludag University, Faculty of Veterinary Medicine, Department of Internal Medicine, Gürkule 16059, Bursa, Turkey; e-mail: onurtopal@uludag.edu.tr