Effects of targeted muscle reinnervation on spinal cord motor neurons in rats following tibial nerve transection

Weili Lu, Jian-Ping Li, Zhen-Dong Jiang, Lin Yang, Xue-Zheng Liu

Department of Human Anatomy, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong Province, China; Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Correspondence to: Xue-Zheng Liu, MD, 544758611@qq.com; Lin Yang, MD, iyzwll@aliyun.com.

https://doi.org/10.4103/1673-5374.332153

Introduction

Fitting prostheses is the primary method to help patients with an amputation to restore their limb function. The current commercial prostheses in China have disadvantages, as they are single function and provide only slow prosthetic control and, thus, clumsy movements (Fan et al., 2015; Kang et al., 2016). Achieving intuitive control of multifunctional prostheses is important for patients with a high level of amputation, so they can learn to use bionic artificial limbs intuitively. This, in turn, promotes motor function recovery and improves patients’ quality of life (Loyalaka et al., 2014; Krasoulis et al., 2020). The key to accomplishing intuitive control of multifunctional prostheses is by collecting the sources of the surface electromyogram (EMG) signals that are used for normal myoelectric prostheses (Wang et al., 2020). In recent years, studies have found that EMG signals collected from a residual limb of patients with an amputation can be used to calibrate prosthetic limb movements (Wilke et al., 2019; Williams et al., 2019; Krasoulis et al., 2020). Researchers record surface EMG signals generated by limb movements and decode the EMG signals to achieve normal prosthetic movements through motors; this is expected to provide multifunctional, intuitive bionic prostheses for patients with amputations (Hazubski et al., 2020). Unfortunately, after amputation, the source of neural information is limited; a higher level of amputation leads to fewer remaining limb muscles and more limb movements that need to be restored (Kuiken et al., 2007).

Targeted muscle reinnervation (TMR) offers the possibility of reconstructing limb motor function and obtaining sufficient motor nerve information for people with disabilities (Kuiken et al., 2004). TMR is a novel neural-machine interface technology that involves the transfer of remaining peripheral nerves of an amputated limb into specific target muscles, allowing the target muscles to act as bioamplifiers to reconstruct the motor nerve information source lost after amputation (Kuiken et al., 1993; Hargrove et al., 2013). A previous study showed that TMR can successfully establish a connection between transplanted nerves and the target muscle, restore the transport of neurotrophic factors between nerve and muscle, and allow normal multifunctional myoelectric prostheses to intuitively provide potential sources of information (Wang et al., 2020). The regeneration rate of brachial plexus nerves transferred to pectoralis major muscles using TMR surgery is very slow (Huang et al., 2016), and the effect of TMR on the residual nerve fibers and motor neurons is still unclear. Therefore, this study aimed to investigate the effect of TMR surgery on injured motor neurons in the spinal cord of rats after tibial nerve transection (TNT).

Materials and Methods

Targeted muscle reinnervation (TMR) is a surgical procedure used to transfer residual peripheral nerves from amputated limbs to targeted muscles, which allows the target muscles to become sources of motor control information for function reconstruction. However, the effect of TMR on injured motor neurons is still unclear. In this study, we aimed to explore the effect of hind limb TMR surgery on injured motor neurons in the spinal cord of rats after tibial nerve transection. We found that the reduction in hind limb motor function and atrophy in mice caused by tibial nerve transection improved after TMR. TMR enhanced nerve regeneration by increasing the number of axons and myelin sheath thickness in the tibial nerve, increasing the number of anterior horn motor neurons, and increasing the number of choline acetyltransferase-positive cells and immunofluorescence intensity of synaptophysin in rat spinal cord. Our findings suggest that TMR may enable the reconnection of residual nerve fibers to target muscles, thus restoring hind limb motor function on the injured side.

Key Words: function reconstruction; motor neuron; nerve injury; nerve implant; Nissl staining; spinal cord; synaptophysin; targeted muscle reinnervation; tibial nerve; transection

Discussion

From the Contents

From the Contents	Page
Introduction	1827
Materials and Methods	1828
Results	1829
Discussion	1830

Abstract

Targeted muscle reinnervation (TMR) is a surgical procedure used to transfer residual peripheral nerves from amputated limbs to targeted muscles, which allows the target muscles to become sources of motor control information for function reconstruction. However, the effect of TMR on injured motor neurons is still unclear. In this study, we aimed to explore the effect of hind limb TMR surgery on injured motor neurons in the spinal cord of rats after tibial nerve transection. We found that the reduction in hind limb motor function and atrophy in mice caused by tibial nerve transection improved after TMR. TMR enhanced nerve regeneration by increasing the number of axons and myelin sheath thickness in the tibial nerve, increasing the number of anterior horn motor neurons, and increasing the number of choline acetyltransferase-positive cells and immunofluorescence intensity of synaptophysin in rat spinal cord. Our findings suggest that TMR may enable the reconnection of residual nerve fibers to target muscles, thus restoring hind limb motor function on the injured side.

Key Words: function reconstruction; motor neuron; nerve injury; nerve implant; Nissl staining; spinal cord; synaptophysin; targeted muscle reinnervation; tibial nerve; transection

Introduction

Fitting prostheses is the primary method to help patients with an amputation to restore their limb function. The current commercial prostheses in China have disadvantages, as they are single function and provide only slow prosthetic control and, thus, clumsy movements (Fan et al., 2015; Kang et al., 2016). Achieving intuitive control of multifunctional prostheses is important for patients with a high level of amputation, so they can learn to use bionic artificial limbs intuitively. This, in turn, promotes motor function recovery and improves patients’ quality of life (Loyalaka et al., 2014; Krasoulis et al., 2020). The key to accomplishing intuitive control of multifunctional prostheses is by collecting the sources of the surface electromyogram (EMG) signals that are used for normal myoelectric prostheses (Wang et al., 2020). In recent years, studies have found that EMG signals collected from a residual limb of patients with an amputation can be used to calibrate prosthetic limb movements (Wilke et al., 2019; Williams et al., 2019; Krasoulis et al., 2020). Researchers record surface EMG signals generated by limb movements and decode the EMG signals to achieve normal prosthetic movements through motors; this is expected to provide multifunctional, intuitive bionic prostheses for patients with amputations (Hazubski et al., 2020). Unfortunately, after amputation, the source of neural information is limited; a higher level of amputation leads to fewer remaining limb muscles and more limb movements that need to be restored (Kuiken et al., 2007).

Targeted muscle reinnervation (TMR) offers the possibility of reconstructing limb motor function and obtaining sufficient motor nerve information for people with disabilities (Kuiken et al., 2004). TMR is a novel neural-machine interface technology that involves the transfer of remaining peripheral nerves of an amputated limb into specific target muscles, allowing the target muscles to act as bioamplifiers to reconstruct the motor nerve information source lost after amputation (Kuiken et al., 1993; Hargrove et al., 2013). A previous study showed that TMR can successfully establish a connection between transplanted nerves and the target muscle, restore the transport of neurotrophic factors between nerve and muscle, and allow normal multifunctional myoelectric prostheses to intuitively provide potential sources of information (Wang et al., 2020). The regeneration rate of brachial plexus nerves transferred to pectoralis major muscles using TMR surgery is very slow (Huang et al., 2016), and the effect of TMR on the residual nerve fibers and motor neurons is still unclear. Therefore, this study aimed to investigate the effect of TMR surgery on injured motor neurons in the spinal cord of rats after tibial nerve transection (TNT).
Experimental animals Forty specific-pathogen-free (SPF) adult Sprague-Dawley rats, 20 male and 20 female, weighing 220 ± 20 g, were purchased from the Guangdong Medical Laboratory Animal Center, Guangzhou, China (license No. SCXK (Yue) 2013-0002). The rats were kept in a SPF environment at the Zhuhai campus of Zunyi Medical University, Zhuhai, China. The rats were housed in individual cages at a constant room temperature of 22 ± 2°C and relative humidity of 40–60% with a 12-hour dark/light cycle. The animals were randomly divided into four groups: normal control, TNT, TMR-6W (6 weeks after TMR surgery), and TMR-12W (12 weeks after TMR surgery), with ten rats in each group. The 40 Sprague-Dawley rats were randomly divided into the four groups using a random number table to avoid human factors affecting the experimental results. This study was approved by the Animal Ethics Committee of the Zhuhai campus of Zunyi Medical University, Zhuhai, China (approval No. 2019-2-273) on March 11, 2019. This study was reported in accordance with the ARRIVE 2.0 guidelines (Animal Research: Reporting of In Vivo Experiments) (Percie du Sert et al., 2020).

Surgical procedures Rats were anesthetized with isoﬂurane (1.38–2.4% induction and 2.0–3.0% maintenance; Shenzhen Ruinside Life Technology Co. Ltd., Shenzhen, China) using a gas anesthesia machine suitable for rats (RWD Life Science Co., Ltd., Shenzhen, China). The rats were anesthetized in a neutral position and a midline incision was made on the back. The parietal bone was removed in the area corresponding to the dorsal root of the thirteenth thoracic vertebra. The muscle starting and ending points, the fat on the surface of the gastrocnemius muscle, the greater the muscle percentage of the gastrocnemius muscle, the normal side (A), TNT (B), and TMR (C) groups. (D–F) Surgical view of the left hind limb of rats. (D) The tibial nerve and its branches were exposed. (E) The tibial nerve and motor branch to the medial head of the gastrocnemius muscle were transected. (F) The proximal end of the transected tibial nerve was sewn over the medial belly of the gastrocnemius muscle. TMR: Targeted muscle reinnervation; TNT: tibial nerve transection.

Figure 1 Establishment of the left hind limb TNT and TMR models in rats (posterior view).

The left hind limb TMR model in Sprague-Dawley rats was established using a surgical operating microscope as described in the Materials and Methods section. (A–C) Schematic diagram of the left hind limb model in rats in the normal (A), TNT (B), and TMR (C) groups. (D–F) Surgical view of the left hind limb of rats. (D) The tibial nerve and its branches were exposed. (E) The tibial nerve and motor branch to the medial head of the gastrocnemius muscle were transected. (F) The proximal end of the transected tibial nerve was sewn over the medial belly of the gastrocnemius muscle. TMR: Targeted muscle reinnervation; TNT: tibial nerve transection.

The sciatic functional index (SFI) is used to assess motor function recovery after sciatic nerve injury through gait analysis. SFI reflects the recovery of hind limb muscle strength and muscle coordination, and also evaluates the functional recovery of the sciatic nerve (Chen et al., 2020). The SFI data from the TMR-6W group were recorded and also evaluated the functional recovery of the sciatic nerve (Chen et al., 2020). The SFI data from the TMR-6W group were entered and analyzed at intervals of six sections. The section thickness was 5 μm. The slides were scanned using an upright microscope (ECLIPSE E100, Nikon) with a 40x objective lens. The number of sections was manually calculated in three non-overlapping areas (100 × 100 μm).

Luxol fast blue staining of the tibial nerve To show the morphological structures and pathological changes of the nerve myelin sheaths, luxol fast blue (LFB) staining was performed. The rats were anesthetized as above. Then, the tibial nerve was removed, fixed for 48 hours, and embedded in paraffin; paraffin sections were then cut with a microtome (RM 2016, Leica Instruments Ltd., Wetzlar, Germany). After deparaffinization, the sections were placed into LFB staining solution (Wuhan Servicebio Technology Co., Ltd., Wuhan, China) and stained overnight at 60°C in the dark for 12 hours. Then sections were rinsed in 95% alcohol to remove excess stain and rinsed three times in distilled water. The sections were differentiated in 0.05% lithium carbonate aqueous solution (Wuhan Servicebio Technology Co., Ltd.) for 15 seconds and then in 70% ethyl alcohol for another 30 seconds. The sections were dehydrated, cleared, mounted with neutral resin, and observed with an upright light microscope (ECLIPSE E100, Nikon, Tokyo, Japan). Serial transverse slides of the paraffin-embedded nerve tissue were obtained and analyzed at intervals of six sections. The slides were scanned using an upright microscope (ECLIPSE E100, Nikon) with a 40x objective lens. The number of sections was manually calculated in three non-overlapping areas (100 × 100 μm).

Nissl staining of the spinal cord We used Nissl staining to identify spinal cord motor neurons. A decrease in the number of Nissl bodies and abnormal motor neuron morphology indicated that nerve cells may be damaged. Paraffin sections of the lumbar enlargements of the spinal cord were deparaffinized and rehydrated, and the sections were stained with toluidine blue (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) for 5 minutes, washed with water, and differentiated with 1% glacial acetic acid (Sinopharm Chemical Reagent Co., Ltd.). The reaction was terminated with tap water. The degree of stain differentiation was controlled by observation under an upright microscope (ECLIPSE E100, Nikon). After washing with water, the sections were dried in an oven (Sinopharm Chemical Reagent Co., Ltd.), cleared with xylene for 5 minutes, and mounted with neutral gum (Sinopharm Chemical Reagent Co., Ltd.). Serial coronal slices of the paraffin-embedded lumbar enlargements of the spinal cord were obtained and analyzed at intervals of six sections. The section thickness was 5 μm. The slides were scanned using an upright microscope (ECLIPSE E100, Nikon) with a 40x objective lens. The...
number of motor neurons in the lateral nucleus of the anterior horn of the spinal cord was manually calculated in three non-overlapping areas (220 × 350 μm²).

Immunohistochecmical staining

Protein S100-B immunohistochemical staining was used to identify the myelin sheaths of tibial nerves. There are many cholinergic neurons in the spinal cord. Acetylcholine is a neurotransmitter used by all cholinergic neurons; thus, choline acetyltransferase (ChAT) is used as a marker of cholinergic neurons. The changes in ChAT activity and the number of ChAT-positive cells after spinal cord injury can reflect the functional status of nerve cells in the spinal cord (Petrova et al., 2015). In this study, anti-ChAT antibody immunohistochemical staining was used to specifically label motor neurons in the anterior horn of the spinal cord. Serial coronal slides of the paraffin-embedded tibial nerve or lumbosacral enlargements of the spinal cord were obtained and analyzed at intervals of six sections. Paraffin sections of the tibial nerve or lumbosacral enlargements of the spinal cord were deparaffinized and rehydrated to water. Sections were subjected to heat-induced antigen retrieval and cooled naturally, and endogenous peroxidase activity was blocked with 3% hydrogen peroxide (Sinopharm Chemical Reagent Co., Ltd.). Subsequently, sections were blocked with 3% bovine serum albumin at room temperature for 30 minutes and incubated with primary antibody at 4°C overnight in a humid box. The primary antibodies used were mouse anti-S100-B antibody to stain tibial nerves (1:2000, Cat# bsm-10832M, RRID:AB_2895151, Bios, Woburn, MA, USA) or rabbit anti-ChAT antibody to stain spinal cords (1:400, Cat# bs-0042R, RRID: AB_10856836, Bios). Sections were then incubated with horseradish peroxidase–conjugated rabbit secondary antibody from the ChemMate DAKO EnVision Detection Kit (1:1000, Cat# G500705, RRID:AB_2895152, DAKO, Glostrup, Denmark) for 50 minutes at room temperature and developed with 3,3′-diaminobenzidine at room temperature. Thereafter, sections were counterstained with hematoxylin, washed with tap water, and differentiated in hematoxylin differentiation solution (Sinopharm Chemical Reagent Co., Ltd.) for 30 seconds. After washing with water, the sections were returned to blue with hematoxylin blue solution and were rinsed with running water. After dehydration and mounting, the sections were scanned using an upright microscope (ECLIPSE E1000, Nikon) with a 40× objective lens. ImageJ (National Institutes of Health, Bethesda, MD, USA) (Schneider et al., 2012) was used to measure the average optical density of S100-B in the tibial nerve and ChAT in the lateral anterior horn of the spinal cord.

Immunofluorescence staining

Synaptophysin (SYN) is a protein localized to synaptic vesicles; its expression is closely associated with the transport of synaptic vesicles and the release of neurotransmitters (Thiel, 1993). Serial coronal slides of the paraffin-embedded lumbosacral enlargements of the spinal cord tissue blocks were obtained and analyzed at intervals of six sections. Paraffin sections of the lumbosacral enlargements of the spinal cord of rats in each group were deparaffinized, rehydrated to water, and subjected to antigen retrieval. The sections were quenched with autofluorescence quencher (Abcam, Cambridge, UK) for 5 minutes and washed with running water for 10 minutes. Thereafter, sections were blocked with bovine serum albumin blocking buffer for 30 minutes, incubated with rabbit anti-SYN antibody (1:500, Cat# bs-23504R, RRID: AB_2895150, Bios) at 4°C overnight in a humid box, and incubated with goat anti-rabbit IgG/Cy3 antibody (1:500, Cat# bs-0295G-Cy3, RRID: AB_10892956, Bios) for 50 minutes at room temperature. After nuclear counterstaining with 4′,6-diamidino-2-phenylindole (Abcam) for 10 minutes, the sections were mounted with anti fluorescence quenching medium (Abcam) and observed under an inverted fluorescence microscope (Eclipse Ti-SR, Nikon) using a 40× objective lens. ImageJ (National Institutes of Health) (Schneider et al., 2012) was used to measure the average optical density of SYN immunoreactivity in the lateral anterior horn of the spinal cord.

Statistical analysis

No statistical methods were used to predetermine sample sizes; however, our sample sizes are similar to those reported in a previous publication (Chen et al., 2020). No animals or data points were excluded from the analysis. SFI and histological analyses were conducted blindly. All data are expressed as the mean ± standard deviation (SD). One-way analysis of variance followed by Bonferroni’s multiple comparisons test was performed using GraphPad Prism version 6.0.0 for Windows (GraphPad Software, San Diego, California USA, www.graphpad.com). The axon number data were normally distributed and the variances were unequal, so Welch’s t-test was used to analyze the difference of distribution in four groups for axon number and myelin sheath thickness in rat tibial nerves. The variances were equal for the remaining data, so one-way analysis of variance with post hoc Bonferroni correction was performed for comparisons between multiple groups. A value of P < 0.05 was considered statistically significant.

Results

General conditions of rats

All rats drank and ate normally, the surgical wounds were free from infection and ulceration, and no signs of neurological disorders were observed.

Effect of TMR surgery on the recovery of motor function in rats

Gait analysis of rats in the normal control group showed clear footprints (Figure 2). At week 6, the SFI values of the TNT group were significantly lower than the normal group (P < 0.05), while the SFI values of the TMR group were significantly higher than the TNT group and were significantly lower than the normal group (P < 0.05; Figure 2E). At week 12, the SFI values of the TMR group were also significantly lower than the normal group (P < 0.05; Figure 2E), and the SFI values of the TMR group were significantly higher than the TNT group, which was significantly lower than the normal group (P < 0.05; Figure 2E). In addition, the SFI values were similar at 6 weeks and 12 weeks in rats from the TMR group.
Figure 3 | The wet weight percentages of gastrocnemius muscles of rats. The wet weight percentages of gastrocnemius muscle can indirectly reflect nerve regeneration efficacy. Data are expressed as the mean ± SD, n = 10. *P < 0.05, vs. normal group; #P < 0.05, vs. TMT group (one-way analysis of variance with post hoc Bonferroni correction). SD: Standard deviation; TMR: targeted muscle reinnervation; TNT: tibial nerve transection; 6W: 6 weeks; 12W: 12 weeks.

Figure 4 | Number of axons and myelin sheath thickness in the tibial nerve in rats. (A–D) Representative LFB staining images of nerve cross sections from the normal, TNT, TMR-6W, and TMR-12W groups. (E–H) Higher magnification images of the black boxes in A–D. Blue areas are tissue sections stained with LFB staining solution. Scale bars: 50 μm. Measurement data are shown on histograms I and J. (I) The number of axons per unit area. (J) Myelin sheath thickness. Data are expressed as the mean ± SD, n = 3. *P < 0.05, vs. normal group; #P < 0.05, vs. TNT group (Welch’s t-test). LFB: Luxol fast blue; TNT: tibial nerve transection; TMR: targeted muscle reinnervation; 6W: 6 weeks; 12W: 12 weeks; SD: standard deviation.

Effects of TMR surgery on S100-B immunoreactivity in the tibial nerves of rats
S100-B immunoreactivity on the operated side of rats was significantly increased in the TNT group compared with the normal group (P < 0.05) and was significantly decreased in the TMR-6W and TMR-12W groups compared with the TNT group (P < 0.05; Figure 5).

Effects of TMR surgery on spinal cord motor neurons in rats
The number of motor neurons was significantly lower in the TNT group than in the normal group (P < 0.05; Figure 6). The number of motor neurons was significantly higher in the TMR-6W group than in the TNT group (P < 0.05). In comparison with the TMR-6W group, the number of motor neurons in the TMR-12W group was increased, but there was no statistically significant difference between the two groups (P > 0.05; Figure 6).

The ChAT-positive cells were arranged in a disordered manner, and the number of cholinergic neurons were significantly reduced in the TNT group compared with the normal group (P < 0.05; Figure 7I). ChAT immunoreactivity was also significantly decreased in the TMR group compared with the normal group (P < 0.05). In comparison with the TNT group, the number of cholinergic neurons in the spinal cord was significantly increased (P < 0.05) and ChAT immunoreactivity was significantly enhanced (P < 0.05; Figure 7I) in the TMR-6W and TMR-12W groups.

Effects of TMR surgery on synaptophysin expression in spinal cord motor neurons in rats
Immunofluorescence staining revealed strong SYN immunoreactivity in motor neurons in the anterior horn of the spinal cord of rats in the normal group. Compared with the normal group, SYN-positive cells were arranged in a disordered manner and SYN immunoreactivity was significantly reduced in the TNT group (P < 0.05; Figure 8). Compared with the TNT group, SYN immunoreactivity in motor neurons in the anterior horn of the spinal cord was significantly enhanced in the TMR-6W and TMR-12W groups (P < 0.05; Figure 8).
Choline acetyltransferase immunoreactivity in the spinal cords of rats.

Representative immunohistochemical staining images of ChAT in the normal (A), TNT (B), TMR-6W (C), and TMR-12W (D) groups; E–H are enlarged views of the local areas in A–D. Scale bars: 200 μm in A–D, 50 μm in E–H. (I) The number of ChAT-positive neurons in the anterior horn of the spinal cord. The cell numbers were significantly reduced in the TNT group compared with the normal group. The number of cholinergic neurons in the spinal cord was significantly increased in the TMR-6W and TMR-12W groups compared with the TNT group. (J) Average optical density of ChAT. ChAT expression was significantly decreased in the TNT group compared with the normal group. ChAT expression was significantly enhanced in the TMR-6W and TMR-12W groups compared with the TNT group. Data are expressed as the mean ± SD, n = 3. *P < 0.05, vs. normal group; #P < 0.05, vs. TNT group (one-way analysis of variance with post hoc Bonferroni correction). ChAT: Choline acetyltransferase; TNT: Tibial nerve transection; TMR: Targeted muscle reinnervation; 6W: 6 weeks; 12W: 12 weeks; SD: standard deviation.

Discussion

TMR is a surgical procedure used to transfer residual peripheral nerves from amputated limbs to targeted muscles, allowing the target muscles to become sources of motor control information for function reconstruction. TMR after upper-extremity amputation can effectively reconstruct muscle and nerve function (Huang et al., 2016); subsequent low-frequency electrical stimulation and treadmill training have a positive effect on generation of connections between the target muscles and transplanted nerves (Zhang et al., 2015). However, the effect of TMR on the fibers and cell bodies of injured motor neurons is still unclear, so it is important to establish a suitable TMR model to study this effect. In this study, we transected the tibial nerve and medial head of the gastrocnemius muscle and transferred the proximal end of the transected tibial nerve into the medial belly of the rat hindlimb muscle to establish a rat hindlimb TMR model. Because the tibial nerve is thick and the medial head of the gastrocnemius muscle is located superficially, this method gives the advantage of allowing us to easily analyze the effect of TMR on motor neurons and to use a less traumatic surgical technique; this model reduces the chance of muscle atrophy caused by surgical trauma and facilitates nerve reconstruction of the muscle. In this study, we transected the medial head of the gastrocnemius muscle to reduce the original innervation of the gastrocnemius muscle; this is beneficial to determine the trophic effect of TMR on denervated muscles.

Our study showed that significant denervation atrophy was observed in the target gastrocnemius muscle after TNT. This result is consistent with the finding of a previous study (Weng et al., 2018). Moreover, we observed a relationship between reduced muscle atrophy of the gastrocnemius muscle and TMR. This suggests that the residual nerve may have established an effective connection with the target muscle, which may be the main reason for partial recovery of motor function. In addition, we noticed that, over a longer time period (12 weeks), the SFI values and gastrocnemius muscle wet weight percentages on the operated side in the TMR group did not reach the levels observed in the normal group, reflecting partial recovery of motor function.

TNT is a severe nerve injury, as nerve trunk continuity is destroyed. The residual fiber can undergo retrograde degeneration due to ischemic nerve inflammation and edema (Wang et al., 2006). The neurotrophic factors from the cell bodies at the residual end of the nerve are upregulated in response to injury, which can promote the regeneration of axons (Marshall and Farah, 2021). However, the nerve regeneration is slow, and the speed of Wallerian degeneration is faster than nerve regeneration (Conforti et al., 2014; Girouard et al., 2018). The status of the proximal nerve cell bodies is also an important factor for neuronal survival and regeneration. The protective effect of TMR on residual fibers is unclear. The morphological characteristics of peripheral nerves can be evaluated in terms of the number of axons in nerve cross sections and the morphological changes in the myelin sheath. In this study, we measured the changes in myelin sheath thickness of the peripheral nerve and the number of neuronal axons wrapped in the myelin sheaths using LFB staining. Our results showed that the number of axons was significantly lower and myelin sheath thickness was thinner in rats undergoing TNT than in rats in the normal group. This result is consistent with a previous study investigating another peripheral nerve injury model (Wr peripheral nerve injury model (Wang et al., 2013), which further confirms our successful establishment of the TNT model. At 6 weeks after TNT, axon numbers were restored to normal, with no statistically significant difference found between TMR and normal groups. Myelin sheath thickness was improved after 12 weeks of TMR but had not fully returned to normal. Our results indicate that TMR may initiate faster repair of neurons than glial cells, but the impact of this aspect has been rarely studied thus far. Therefore, we are interested in addressing in our future research whether we can improve the rate of neural regeneration by simultaneously increasing the rate of myelin regeneration.

Schwann cells are the main cells that cause changes in protein expression at the injured site, which can promote the release of neurotrophic factors such as nerve growth factor and ciliary neurotrophic factor, and that maintain the microenvironment to promote axon regeneration (Kim et al., 2019). The expression levels of S100-B are positively correlated with the severity of neurological disorders such as acute brain injury, brain tumors, and neurodegenerative diseases (Itoyama et al., 2020; Yang et al., 2020). In this study, we found that S100-B expression in the myelin sheaths of residual fibers was significantly increased after TNT; suggesting that the microenvironment is not conducive for Schwann cells to be converted to promote axonal regeneration after transection, which results in further nerve fiber degeneration. After the residual tibial nerve stump was transposed into the medial head of the gastrocnemius muscle, we found that S100-B expression in the TMR group was significantly downregulated, suggesting that TMR surgery may improve the microenvironment of nerve fibers to promote nerve regeneration. TNR completely blocks the transport of neurotrophic factors between the nerve and muscle, causing accumulation of large amounts of anterogradely transported materials in the nerve stump.
Peripheral nerve injuries or transaction injuries lead to the destruction of myelin sheaths, disintegration of the axonal cytoskeleton, and axonal swelling through retrograde degeneration, leading to the death of neurons in the injured area (Giorgetti et al., 2019; Liu and Wang, 2020). ChAT is the rate-limiting enzyme in acetylcholine synthesis; the functional status of motor neurons can be measured by the expression levels of ChAT. In this study, cross sections from the lumbosacral enlargements of the spinal cord were stained for reactivity to Nissl and ChAT using immunohistochemistry methods. The number of motor neurons and Nissl bodies and ChAT expression levels in the anterior horn of the spinal cord on the injured side were significantly reduced after TNT. The decrease in the number of Nissl bodies and ChAT expression levels indicates that TNT causes a stress state in the cell bodies of motor neurons and a significant decrease in protein synthesis in motor neurons, which may destroy the stability of the intracellular environment and trigger a series of immune responses, ultimately leading to neuronal apoptosis (Silman et al., 2008). In this study, we found that the number of anterior horn motor neurons and Nissl bodies were significantly increased and ChAT expression was upregulated in the TMR group compared with the TNT group, indicating that the tibial nerve stumps established new connections with the target muscles in the TMR surgery group. These new connections may improve the intracellular environment of motor neurons in the anterior horn of the spinal cord, which is conducive to the survival of the anterior horn motor neurons.

SYN is a protein localized to synaptic vesicles. Synaptic vesicles are present in presynaptic terminals of neurons. They participate in the release of activity-dependent neurotransmitters and play an irreplaceable role in the process of synaptic plasticity. Our results showed that SYN expression was significantly reduced in the TNT group compared with the normal group, suggesting that TNT may damage the protein synthesis function of motor neurons in the anterior horn of the spinal cord. Significant restoration of SYN levels was observed in the TMR-6W and TMR-12W groups but not in the TNT group. TMR surgery may improve the intracellular environments of nerve cell bodies, thus enhancing neuron survival.

Limitations

These experiments have some limitations. Firstly, we observed that TNT surgery decreased motor neuron survival, but we did not explore the molecular mechanisms behind this protection. Secondly, animal experiments and clinical applications may give different results, and we should investigate the effects of TMR in a clinical research setting.

Conclusions

In this study, we successfully established a hind limb TMR model in Sprague-Dawley rats. Our findings show that the TMR technique enables the reconnection of residual nerve fibers with the target muscle, restores motor function in the hind limb on the injured side, and improves the microenvironment for the survival of residual nerve fibers and neuronal cell bodies, leading to reinnervation of hind limb muscles. We aim to explore the mechanisms that regulate the protective effect of TMR on motor neuron survival. In future studies, we will continue to explore rehabilitation methods or drugs that can better promote motor function recovery after TMR.

Acknowledgments: The authors would like to thank the Key Laboratory of Human-Machine-Intelligence Synergistic System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Chinese Academy of Sciences-Guangdong Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence Synergistic Systems for their technical assistance.

Author contributions: XCL, LY, and WL conceived the project; WL established the animal models and collected the data; JPL and ZD1 analyzed the data; WL wrote the paper with help from all other authors. All authors approved the final version of the paper.

Conflicts of interest: The authors declare that there are no conflicts of interest associated with this manuscript.

Open access statement: This is an open access journal, and articles are distributed under the terms of the Creative Commons AttributionNonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.