Collagenase Is a Major Gene Product of Induced Rabbit Synovial Fibroblasts

JUDITH AGGELER,* STEVEN M. FRISCH,* and ZENA WERB*

*Laboratory of Radiobiology and Environmental Health, University of California, San Francisco, California 94143; and *Department of Biochemistry, University of California, Berkeley, California 94720

ABSTRACT We have investigated the effects of the tumor-promoting phorbol diester, 12-O-tetradecanoylphorbol-13-acetate (TPA), on rabbit synovial fibroblasts, and found that this agent induced a major switch in gene expression in these cells that was marked by the specific induction of the neutral proteinase, collagenase, and was always accompanied by alterations in cell morphology. Procollagenase synthesis and secretion was first observed 6–12 h after the addition of TPA. The rate of collagenase production (1.5 U, or ~0.2–1 µg secreted procollagenase protein per 10^5 cells per 24 h) depended on the TPA concentration (1–400 ng/ml) and time of exposure (1–72 h). Procollagenase was the most prominent protein visible by direct silver staining or by autoradiography after SDS PAGE of [^35S]methionine-labeled proteins. The two procollagenase bands of Mr 53,000 and 57,000, which migrated as a family of spots on two-dimensional gels and were immunoprecipitated by antibodies to purified rabbit collagenase, accounted for 23% of the newly synthesized, secreted protein in TPA-treated cells. Cell-free translation of mRNA from TPA-treated cells in rabbit reticulocyte lysate produced a single band of immunoprecipitable preprocollagenase (Mr 55,000) as a major product (5% of total) that migrated as a single spot on two-dimensional gels. Secreted procollagenase, preprocollagenase, and active collagenase (purified to homogeneity; specific activity 1.2 × 10^4 U/mg protein) had related peptide maps. Two other major secreted proteins, a neutral metalloproteinase of Mr 51,000 and a polypeptide of Mr 47,000, were also induced by TPA. In contrast to the induction of these four polypeptides, TPA decreased synthesis and secretion of a number of proteins, including collagen and fibronectin. Thus, collagenase is a convenient marker for major alterations in the pattern of protein synthesis and secretion by rabbit synovial fibroblasts treated with TPA.

The extracellular scaffolding of loose connective tissue and basement membrane present in most tissues is composed of a complex matrix of proteins, many of which are relatively resistant to degradation by proteinases. This extracellular matrix is remodeled during development, growth, and healing, and matrix destruction is central to the pathology of many diseases. Therefore, it is important to identify and characterize those enzymes that can degrade specific matrix components, such as collagen, elastin, glycoproteins, and proteoglycans, and to understand how cells can control matrix structure by specific alterations in proteinase activity. For example, it has been suggested that increased secretion of both collagenase and plasminogen activator by tumor cells may play a central role in malignant tumor invasion and metastasis by allowing cells to migrate through complex connective tissue barriers and enter the blood circulation (22, 27).

We have been interested in the role of the specific neutral proteinase, collagenase, in both normal and pathologic processes. In previous studies we and others have demonstrated that a variety of agents can stimulate fibroblastic cells to produce collagenase, as determined by collagen-degrading activity (1, 3, 9, 14, 42). In these studies collagenase activities ranging over 5 orders of magnitude (0.001–10 U per 10^5 cells per 24 h) have been reported. In the present study we show that the phorbol diester tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA), is one of the most potent

1 Abbreviations used in this paper: DME, Dulbecco's modified Eagle's medium; FBS, fetal bovine serum; kd, kilodalton; proproCL, preprocollagenase; proCL, procollagenase; TPA, 12-O-tetradecanoylphorbol-13-acetate.

THE JOURNAL OF CELL BIOLOGY VOLUME 98 MAY 1984 1656–1661 © The Rockefeller University Press 0021-9525/84/051656/06 $1.00
inducers of collagenase activity and that rabbit synovial fibroblasts treated with TPA are stimulated to produce collagenase as ≤5% of their total protein synthesis. We have correlated the synthesis and secretion of active collagenase and its inactive precursor procollagenase (proCL) by using enzymologic, immunochromosomal, and biosynthetic radiolabeling techniques and have shown that induction of collagenase marks a major switch in phenotypic expression in rabbit synovial fibroblasts.

MATERIALS AND METHODS

Cell Culture: Rabbit synovial fibroblasts were harvested from the knee joints of 4–6-wk-old New Zealand white rabbits and maintained in Dulbecco’s modified Eagle’s medium (DME) supplemented with 10% fetal bovine serum (FBS) (42). Cells were subcultured weekly (1:5) with 0.25% trypsin and used between passages 1 and 7. For most experiments cells were plated into flasks in DME-FBS 16–48 h before washing with Hanks’ balanced salt solution and addition of serum-free medium supplemented with 0.2% lactalbumin hydrolysate. TPA (Sigma Chemical Co., St. Louis, MO) was dissolved in ethanol (1 mg/ml) and stored at –20°C.

Collagenase Assay: Enzymatic activity of collagenase was determined by means of a collagen fibril assay, using samples activated with 1,1-toluidine-2-phenylthiourea (TPCK)-trypsin (10 μg/ml; Sigma Chemical Co.) for 30 min at 25°C (42, 43). Solubilized [3H]-labeled peptides were measured by liquid scintillation spectrometry. In all samples reported the protein concentration of the eluates was >98%, as determined by shamtigation with trypsin premixed with soybean trypsin inhibitor. 1 U of collagenase activity hydrolyzes 1 μg of collagen per minute at 37°C.

Labeling of Cellular and Secreted Proteins: Cells plated into 12-well culture dishes (25-mm diam. Linbro Division, Flow Laboratories Inc., Hamden, CT) and exposed to TPA were pulse-labeled with 25 μCi/ml [35S]methionine (1,350 Ci/mmol, Amersham Corp.) for 30 min at 25°C (42, 43). Solubilized [3H]-labeled peptides were measured by liquid scintillation spectrometry. In all samples reported the protein concentration of the eluates was >98%, as determined by shamtigation with trypsin premixed with soybean trypsin inhibitor. 1 U of collagenase activity hydrolyzes 1 μg of collagen per minute at 37°C.

Cell-free Translation of Fibroblast mRNA: RNA was prepared from rabbit synovial fibroblasts according to the method of Monson (26). Cells were collected by scraping into 3 M guanidine thiocyanate (pH 8.0), 0.1% β-mercaptoethanol, 2% Sarkosyl (ICN Pharmaceuticals Inc., Plainview, NY), and 50 mM EDTA, and lysates were then overlaid onto a CCl₃ cushion and centrifuged for 22 h at 26,000 rpm in a Beckman Model L ultracentrifuge (Beckman Instruments Inc., Palo Alto, CA) with an SW27 rotor. The pellet was dissolved by heating in 1 ml EDTA, and RNA was precipitated with ethanol/lithium acetate. The final pellet was dissolved in H₂O at 1 ml/mg and stored at –80°C. The average yield was 40 μg total RNA/confluent T175 flask (~10⁶ cells). For isolation of poly(A)*-containing RNA, samples of total rabbit RNA were passed over an oligo(dT) cellulose column (Collaborative Research, Boston, MA) according to the method of Aviv and Leder (5). Synovial fibroblast proteins were synthesized in vitro according to the method of Pelham and Jackson (32) using rabbit reticulocyte lysate (methylionine-free, BRL, Bethesda, MD). A typical sample (50 μl) contained BRL reaction mixture, 0.08 M potassium acetate buffer (pH 7.2), 15 μCi [35S]methionine, and 5 μg of total RNA or 0.5 μg of poly(A)*-containing RNA. After 60 min at 30°C, the reaction was stopped by addition of 3 μg RNase A (Worthington Biochemical Corp., Freehold, NJ) followed by incubation at 30°C for 15 min, and addition of 2 × Laemmli sample buffer. In some cases, newly translated proteins were immunoprecipitated from these reaction mixtures before addition of sample buffer.

RESULTS

TPA Induces Procollagenase Production

TPA concentrations of 1–400 ng/ml (1.6 × 10⁻⁹ to 6.4 × 10⁻⁷ M) caused a dose-dependent increase in activatable proCL secreted by rabbit synovial fibroblasts (1–3). The range of TPA concentrations that induced proCL secretion is similar to that observed for other effects of TPA (31, 36), but the amount of collagenase activity produced was much greater than that previously reported for other cell types (9, 22, 27, 40, 41). When proCL secretion by TPA-treated cells was analyzed by SDS PAGE of [15S]methionine-labeled proteins, dramatic differences were observed between the secreted proteins of control and TPA-stimulated cells (Fig. 1a). Polypeptide bands of 47, 51, 53, and 57 kD were specifically increased, accounting for 40–50% of the secreted protein. The two polypeptides of 53 and 57 kD were identified as proCL by immunoprecipitation with specific IgG (Fig. 1b); the 57 kD band is a more highly glycosylated form of proCL (28, 29). These proCL bands accounted for 23% of the labeled secreted protein in maximally stimulated cells, as judged by densitometry of one-dimensional gels. Based on the specific activity of purified active collagenase (1.17 × 10⁴ U/mg protein), this corresponds to secretion of ~0.4 μg of proCL per 10⁵ cells per 24 h, as confirmed by direct silver staining (25) of proCL in unconcentrated culture medium (not shown). [35S]Methionine-labeled proCL activated by limited trypsin digestion was converted to active collagenase of 42 and 47 kD, identical to the purified enzyme (not shown). This is consistent with the concept that active collagenase is derived from its inactive form.
Onset of ProCL Synthesis Occurs within 6-12 h of TPA Treatment

Increased production of collagenase was first observed in the medium of rabbit synovial fibroblasts between 6-12 h after the addition of TPA (Figs. 2 and 3). Although incubation with TPA for as little as 1 h was sufficient to induce subsequent collagenase secretion, a 6-h pulse of TPA produced a near-maximum effect when measured at 72 h (Fig. 2a). Accumulation of secreted collagenase in the medium often slowed 2-3 d after initial TPA treatment (Fig. 2b), probably owing to metabolic inactivation of the ester (30, 39). Cells treated continuously with TPA were maintained in a stimulated state for a longer time (Fig. 2b). The increase in collagenase activity, as measured enzymatically, was paralleled by increases in newly synthesized proCL protein analyzed by SDS PAGE (Fig. 3). Increased synthesis of proCL protein was observed as early as 6 h after addition of TPA (Fig. 3), and proCL represented a substantial proportion of the pulse-labeled, secreted protein even 72 h after induction, indicating that synthesis was sustained for several days after an initial 6-h treatment. As is the case for induction of collagenase by proteinases (42) and by cytochalasin B (14), distinct alterations in cell shape were always observed in TPA-stimulated cells during the initial 1-12 h induction period (2).

Collagenase Synthesis Rates Are Reflected by Translatable mRNA

The consistent delay in collagenase secretion after addition of TPA to cells suggested to us that specific changes in translatable collagenase mRNA might be taking place during the initial induction period (8). We therefore translated mRNA from control and TPA-treated cells in rabbit reticulocyte lysate and analyzed the polypeptides by one- and two-dimensional PAGE. In TPA-treated cells preprocollagenase (preproCL) (29) was identified as a major polypeptide of 55 kd that was immunoprecipitated by specific antibodies to rabbit collagenase and that constituted ~5% of the total in vitro synthesized protein (Fig. 4a). This was comparable to the percentage of proCL (53 kd) associated with cell layers after a short pulse-labeling period, which approximates the in vivo rate of protein synthesis. ProCL and preproCL were
DISCUSSION

We have described a cell culture system in which a major switch in protein secretion phenotype is induced in rabbit synovial fibroblasts treated with the tumor-promoting phorbol diester, TPA. As part of the altered gene expression, these cells are induced to synthesize and secrete the neutral proteinase, procollagenase. Because collagen is resistant to the action of most mammalian proteinases and is cleaved only by collagenase, detailed information about the control of collagenase secretion and activity is necessary to understand a wide variety of processes that involve either connective tissue destruction or remodeling. Collagenase accounted for up to 5% of the newly synthesized pulse-labeled protein and of the protein translated in vitro from TPA-induced cell RNA, and for ~23% of the secreted protein. Although the high specific activity of rabbit fibroblast collagenase (>10^4 U/mg) indicates that a large amount of degradation can be accomplished by a very small amount of collagenase protein, stimulated rabbit synovial fibroblasts secreted so much collagenase that it could easily be identified by autoradiography or by silver staining after SDS PAGE of unconcentrated medium. Other cell types typically secrete 1/10 to 1/1,000 of the collagenase activity of TPA-induced synovial fibroblasts, and all measurements of enzyme activity are complicated by balancing collagenase activity with inhibition by endogenous collagenase inhibitors (41).

In addition to the proCL doublet, TPA also induced synthesis and secretion of two major polypeptides of 47 and 51 kd. It has been reported that collagenase secretion is usually accompanied by the secretion of neutral metalloproteinase activities that degrade gelatin, casein, and proteoglycans (13, 45, 47), and these are separated from collagenase during purification (47). Recent experiments (12) have identified the 51-kd secreted protein as a metalloproteinase with multiple substrates, including proteoglycans, fibronectin, and laminin. The 47 kd polypeptide was induced only by very high concentrations of TPA (>50 ng/ml). TPA is a potent inducer of plasminogen activators (4, 23, 50), and it is possible that the 47 kd polypeptide is a plasminogen activator.

It is interesting to note that collagen, the specific substrate for collagenase, is synthesized and secreted by rabbit synovial fibroblasts. Our data indicate that procollagenase synthesis was reduced in TPA-induced cells, a pattern opposite to that of collagenase. This negative control of procollagen synthesis in TPA-treated cells is one indication that stimulation of collagenase synthesis and secretion was a specific effect of TPA treatment, rather than a by-product of the generalized increase in protein secretion caused by this agent (2). This model system promises to be useful not only for elucidating the molecular mechanisms controlling the induction of a major gene product, but also for understanding the cellular control of connective tissue degradation and turnover (6).

In the present study we have used the tumor-promoting diester, TPA, to characterize the induction of collagenase production by rabbit synovial fibroblasts. This agent was chosen for these studies because of its potency as an inducer, but it has the drawbacks that its effects on cells are pleomorphic, it persists in cells, and its mechanism of action is largely unknown. TPA has been reported to alter a variety of cellular functions, many of which appear to involve membranes, such as endocytosis and spreading (34), secretion (9,
FIGURE 5 Peptide mapping of rabbit collagenase. To compare different forms of rabbit synovial fibroblast collagenase, radiolabeled proteins secreted (CM) by rabbit synovial fibroblasts after 24 h of treatment with 0 (lane 1), 10 (lane 2), or 50 ng/ml (lane 3) TPA. [35S]Methionine-labeled proteins from the cell-free translation (TL) of 5 μg total RNA isolated from control (lane 4) or 400 ng/ml TPA-treated (lane 5) cells. Immunoprecipitation (IP) of [35S]methionine-labeled collagenase from cell-free translations of isolated RNA (lane 6) or medium (lane 7) from cells treated with 100 ng/ml TPA. [35S]Methionine-labeled proteins of control (lane 8) or 10 ng/ml TPA-treated (lane 9) cells (Ce) pulse-labeled for 30 min. (b and c) Two-dimensional gel analyses of rabbit synovial fibroblast proteins synthesized by cell-free translation of equal amounts of mRNA derived from untreated control cells (b) or cells treated with 400 ng/ml TPA for 48 h (c). Arrow indicates preproCL (55 kd); the prominent actin spot is circled at the lower left in each panel.

We thank Michael Banda for monitoring the purity of our TPA by HPLC, Scheffer Tseng for characterizing the procollagens by DEAE-cellulose chromatography, and Jennie Chin and Ole Behrendtsen for excellent technical assistance.

This work was supported by the U.S. Department of Energy (contract no. DE-AM03-76SF00102) and by a Fellowship in Medical Research to J. Aggeler from the Bank of America-Giannini Foundation. Some of these data have been published in abstract form (1, 3).

Received for publication 17 October 1983, and in revised form 13 January 1984.

REFERENCES

1. Aggeler, J., S. M. Frisch, and Z. Werb. 1982. Procollagenase gene expression is correlated with cell shape change. J. Cell Biol. 95 (2, pt. 2):400a. (Abstr.)

2. Aggeler, J., S. M. Frisch, and Z. Werb. 1983. Changes in cell shape correlate with collagenase gene expression in rabbit synovial fibroblasts. J. Cell Biol. 98:1662-1671.

3. Aggeler, J., C. Mainardi, J. L. Kramer, and Z. Werb. 1979. Regulation of collagenase and plasminogen activator secretion by phorbol esters and cytochalasin B: correlation of biochemistry and morphology. J. Cell Biol. 83 (2, pt. 2):435a. (Abstr.)

4. Aggeler, J., J. Kash, and Z. Werb. 1981. Expression of the catalytic activity of plasminogen activator under physiologic conditions. Biochem. Biophys. Acta. 675:62-68.
5. Aviv, H., and P. Leder. 1972. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc. Natl. Acad. Sci. USA 69:1408-1412.

6. Bisell, M. J., H. G. Hall, and G. Parry. 1982. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99:31-68.

7. Bohatay, A. E., and W. M. Hunter. 1973. The labeling of proteins to high specific radioactivities by conjugation to a 11H-containing acylating agent. Biochem. J. 133:329-339.

8. Brickerhoff, C. E., R. H. Gross, H. Nagase, L. Sheldon, R. C. Jackson, and E. D. Harris, Jr. 1982. Increased level of translatable collagenase messenger ribonucleic acid in rabbit synovial fibroblasts treated with phorbol myristate acetate or crystals of monosodium urate monohydrate. Biochemistry. 21:14788-14794.

9. Brickerhoff, C. E., R. M. McMillan, J. V. Faeby, and E. D. Harris, Jr. 1979. Collagenase production by synovial fibroblasts treated with phorbol myristate acetate. Arthritis Rheum. 22:1109-1116.

10. Cawston, T. E., and J. A. Tyler. 1979. Purification of pig synovial collagenase to high specific activity. Biochem. J. 183:647-656.

11. Cleveland, D. W., S. G. Fischer, M. W. Kirschner, and U. K. Laemmli. 1977. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J. Biol. Chem. 252:1102-1106.

12. Frisch, S. M., J. R. Chin, and Z. Werb. 1983. Molecular cloning of a cDNA encoding a secreted connective tissue-degrading metalloproteinase induced by changes in cytoketal structure. J. Cell Biol. 97 (2, Pt. 5):430a. (Abstr.)

13. Galloway, W. A., G. Murphy, J. D. Sandy, J. Gavrilovic, T. E. Cawston, and J. J. Harris, Jr. 1983. Purification and characterization of a rabbit bone metalloproteinase that degrades proteoglycan and other connective-tissue components. Biochem. J. 209:741-752.

14. Harris, E. D., Jr., J. J. Reynolds, and Z. Werb. 1975. Cytochalasin B increases collagenase production by cells in vitro. Nature (Lond.) 257:243-244.

15. Jones, P. P. 1980. Analysis of radiolabeled lymphocyte proteins by one- and two-dimensional polyacrylamide gel electrophoresis. In Selected Methods in Cellular Immunology, B. B. Mitchell and S. M. Shigi, editors. W. H. Freeman and Co., San Francisco. 398-440.

16. Juvà, K., and D. J. Prockop. 1966. Modified procedure for the assay of H2O2 or O2-. Anal. Chem. 38:77-83.

17. Kessler, S. W. 1976. Cell membrane antigen isolation with the staphylococcal protein A-antibody adsorbent. J. Immunol. 117:1482-1490.

18. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.) 227:680-685.

19. Lin, J. I., L. V. Colman, and B. M. Ojakian. 1981. Tumorpromoter-induced changes in the permeability of epithelial cell monolayers. J. Biol. Chem. 256:335-341.

20. Love, M. E., M. Pacifi, and J. P. Holzer. 1978. Effects of phorbol-12-myristate-13-acetate on the phenotypic program of cultured chondroblasts and fibroblasts. Cancer Res. 38:2350-2356.

21. Mosteller, J. M., and S. C. Silverstein. 1980. Phorbol myristate acetate stimulates microtubule and 10-nm filament extension and lysosome redistribution in mouse macrophages. J. Cell Biol. 86:641-655.

22. Nagase, H., C. E. Brinckerhoff, C. A. Vater, and E. D. Harris, Jr. 1983. Biosynthesis and secretion of procollagenase by rabbit synovial fibroblasts. Inhibition of procollagenase secretion by monensin and evidence for glycosylation of procollagenase. Biochem. J. 214:281-288.

23. Nagase, H., R. C. Jackson, C. E. Brinckerhoff, C. A. Vater, and E. D. Harris, Jr. 1981. A precursor form of latent collagenase produced in a cell-free system with mRNA from rabbit synovial cells. J. Biol. Chem. 256:11951-11954.

24. O'Brien, T. G., and J. Diamond. 1981. Injection of tritium-labeled 12-O-tetracosanoic acid prolinase into cells in culture. Cancer Res. 38:2562-2566.

25. Ojakian, G. K. 1981. Tumor promoter-induced changes in the permeability of epithelial cell tight junctions. Cell 23:93-103.

26. Pelham, H. R. B., and R. J. Jackson. 1976. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur. J. Biochem. 67:234-236.

27. Phair-Washington, L., S. C. Silverstein, and E. Wang. 1980. Phorbol myristate acetate stimulates microtubule and 10-nm filament extension and lysosome redistribution in mouse macrophages. J. Cell Biol. 86:641-655.

28. Phair-Washington, L., E. Wang, and S. C. Silverstein. 1980. Phorbol myristate acetate stimulates pinocytosis and membrane spreading in mouse peritoneal macrophages. J. Cell Biol. 86:641-650.

29. Proctor, R. A., D. F. Modger, and P. J. Obrietan. 1982. Fibronectin binding to Staphylococcus aureus. J. Biol. Chem. 257:14788-14794.

30. Quigley, J. P. 1979. Phorbol ester-induced morphological changes in transformed chick fibroblasts: evidence for direct catalytic involvement of plasminogen activator. Cell 17:131-141.

31. Raftery, D., R. M. Crowe, and R. Pullack. 1979. Tumor promoters induce changes in the chick embryo fibroblast cytoskeleton. Cell 18:361-368.

32. Rovera, G., T. G. O'Brien, and L. Diamond. 1979. Induction of differentiation in human promyelocytic leukemia cells by tumor promoters. Science (Wash. DC) 204:868-870.

33. Seaman, W. E., T. D. Gindhart, M. A. Blackman, B. Datal, N. Talal, and Z. Werb. 1981. Natural killing of tumor cells by human peripheral blood cells. Suppression of killing in vitro by tumor-promoting phorbol diesters. J. Clin. Inves. 67:1324-1333.

34. Srinich, G. P., E. A. Bauer, J. J. Jeffrey, and A. Z. Eisen. 1977. Human skin collagenase: isolation of precursor and active forms from both fibroblasts and organ cultures. Biochemistry. 16:1607-1615.

35. Webster, Z. 1972. Degradation of collagen. In Collagen in Health and Disease, J. B. Weiss and M. L. V. Jayson, editors. Churchill Livingstone, Edinburgh. 121-134.

36. Webster, Z., and J. Aggeler. 1978. Proteases induce secretion of collagenase and plasminogen activator by fibroblasts. Proc. Natl. Acad. Sci. USA. 75:1839-1843.

37. Webster, Z., and M. C. Burleigh. 1981. A specific collagenase from rabbit fibroblasts in monolayer culture. J. Biol. Chem. 257:373-385.

38. Webster, Z., and R. J. Chin. 1981. Biosynthetic radiolaelation of cellular and secreted precursors of mononuclear phagocytes. In Methods for Studying Mononuclear Phagocytes, D. O. Adams, P. Edelson, and H. S. Koren, editors. Academic Press, New York. 861-872.

39. Webster, Z., T. Dingle, J. J. Reynolds, and A. J. Barrett. 1978. Proteoglycan-degrading enzymes of rabbit fibroblasts and granulocytes. Biochem. J. 173:949-958.

40. Webster, Z., C. L. Mainardi, C. A. Vater, and E. D. Harris, Jr. 1977. Endogenous activation of latent collagenase by rheumatoid synovial cells. Evidence for a role of plasminogen activator. New Engl. J. Med. 296:1017-1023.

41. Webster, Z., and J. J. Reynolds. 1974. Stimulation by endotoxins of the secretion of collagenase and neutral protease from rabbit synovial fibroblasts. J. Exp. Med. 140:1482-1497.

42. Webster, Z., and J. J. Reynolds. 1975. Immunochemical studies with a specific antiserum to rabbit collagenase collagenase. Biochem. J. 151:655-663.

43. Webster, Z., and J. J. Reynolds. 1975. Purification and properties of a specific collagenase from rabbit synovial fibroblasts. Biochem. J. 151:645-653.

44. Wigler, M., and I. B. Weinstein. 1976. Tumor promoter induces plasminogen activator. Nature (Lond.) 259:232-233.