Rainy season period and climate classification in sugarcane plantation regions in Indonesia

P D Riajaya
Indonesian Sweetener and Fiber Crops Research Institute

Email: primariajaya@yahoo.com

Abstract. Sugarcane plantations in Indonesia are mainly grown on dry land with wide ranges of climatic conditions. This study aimed to present information about the average rainy season period and climate classification in each sugarcane development area in Indonesia. The rainy season period was determined based on early of the dry season and rainy season for 10 years from 2009-2018 in 67 Zone of Season (ZOM) of 342 ZOM issued by The Agency for Meteorology, Climatology and Geophysics of Indonesia. The rainy season period in sugarcane regions ranges from 20-25 ten day period in 59% of the zones in Sumatra, 15-20 ten day period in 73% of the zones in Java and Madura, 20-25 ten day period and 10-15 ten day period in 33% and 34% zones in Sulawesi, 12 ten day period in West Nusa Tenggara and 16-25 ten day period in Papua. Climate classification was also identified in each zone of sugarcane regions based on Oldeman classification map. Information about rainy season period and climate classification enables in the planning and production of crops for certain regions. Further studies on the prediction of water availability during sugarcane growth are needed.

Keywords: Saccharum officinarum, agroclimatic conditions, climate information

1. Introduction
Sugarcane is one of the important estate crops as the main source of sugar in Indonesia, the regions include Java, Sumatra, Sulawesi and West Nusa Tenggara. The five largest sugar producing provinces are East Java, Lampung, Central Java, South Sumatra and West Java [1] with wide ranges of agroclimatic conditions. Sugar consumption continues to increase to meet domestic consumption and industrial needs. The productivity of sugarcane and sugar is strongly influenced by climatic conditions from planting to harvest. Distribution of sugarcane throughout the world is very limited by its suitability to the climate conditions. The climate element affects each phase of sugarcane growth, because its growth is related to annual cropping cycle, so that it faces different environmental conditions throughout the growing season.

To improve sugarcane productivity, climate information related to rainfall is needed such as the beginning of the rainy season related to planting planning and the end of the rainy season or the start of the dry season related to sugarcane harvesting and transportation planning. The length of the rainy season is related to the duration of the rainy season received by plants and irrigation needed to meet plant water requirements and production estimates. The average rainfall to support high productivity is 1100-1500 mm/year with equitable distribution. Evapotranspiration during the growth of sugarcane ranges from 800 mm to 2000 mm [2]. Excessive rainwater during planting inhibits germination since it
damages the planting material, and if it occurs after planting is likely to cause flooding. Thus, the ideal planting time is conducted during the dry months, or at the beginning of the dry season.

Sugarcane plants require optimal rainfall during the vegetative phase to stimulate rapid growth, stalk elongation and internode formation. However, during the period of maturity requires dry conditions with low rainfall to improve the quality of sugarcane juice and reduce the water content in plant tissues. The efficiency of water use in sugarcane plants increased at irrigation rates from 56 to 83 kg/mm, which led to an increase in sugarcane yields ranging from 67.8 to 136.1 t/ha/year [3], and at fertilizer rates from 127.5 to 146.6 kg/mm [4]. Climate change due to 1°C temperature rise can reduce production by 10% and increase irrigation by 10% [5]. Water deficit can even reduce sugarcane yield by up to 60% [6, 7]. Therefore, the development of sugarcane is directed to the areas with high water availability for growth and production. The sugar industry relies heavily on weather information, especially on climate variability from planting to harvest, after-harvest transportation and milling processes.

Global climate change affects local climate patterns and variability. Of which, sugarcane productivity fluctuates according to the season. The areas of sugarcane development in Indonesia have different rainfall patterns between regions, thus the level of productivity also varies between regions following the rainfall pattern and other factors. The level of regional vulnerability to climate change in each development area is different, so that climate is still the dominant factor affecting the productivity of sugarcane in Indonesia. Climate and water are two components that must be considered especially in the tropics for agricultural development. This study aimed to present information about the average rainy season period and climate classification in each sugarcane development area in Indonesia. This information enables in crop management and irrigation planning in the sugarcane development areas. The implication of this study is to provide advantage in determining the expansion of sugarcane areas with longer rainy season period.

2. Materials and Methods
The data used were the beginning of the rainy season and the beginning of the dry season issued by The Meteorology, Climatology and Geophysical Agency (MCGA) of Indonesia from 2009 to 2018 (10 years) in 342 seasonal zones (ZOM) and collected in 2018. The early rainy season and the beginning of the dry season were released at the beginning of the season each year. A total of 67 ZOM out of 342 ZOM covers the areas of sugarcane development in Indonesia. The sugarcane development areas in each province were adjusted to the ZOM determined. A total of 17 ZOM (No. 4-46) are in Sumatra, 37 ZOM (No. 74-198) are in Java and Madura, 9 ZOM (No. 286-321) are in Sulawesi, 2 ZOM (No. 237-238) in West Nusa Tenggara and 2 ZOM (No. 341-342) in Papua.

The MCGA determined the criteria for early of the rainy season and dry season [8]. Early of the rainy season is determined by the amount of rainfall equal to or more than 50 mm/ten day period and is followed by two periods of the next ten days. The early of the dry season is determined by the amount of rainfall less than 50 mm/ten day period followed by two periods of the next ten days. The beginning of the rainy season and the dry season are expressed in the range of ten days (ten day period).

There are three ten day periods in each month, first ten day period (I) on 1-10 days, second ten day period (II) on days 11-20, and third ten day period (III) on the 21st onward of the month. The rainy season period was determined based on the length of the period from the early of the rainy season to the beginning of the dry season the following year. The beginning of the dry season, the rainy season and the annual rainy season period were compiled and then averaged in each ZOM of sugarcane development areas in each province. Climate classification in each zone was determined based on Oldeman climate maps [9-12]. Oldeman maps are commonly used to identify climate type in the regions of sugarcane plantation.
3. Results and Discussion

3.1. Rainy season period and climate classification in Sumatra

The areas of sugarcane in Sumatra spreads from North to South with a relatively long rainy season period of 18.6-26.1 ten day period with an average of 23.06 ten day period or 7.6 months (Table 1). The rainy season period occurred for around eight months which indicates sufficient rainwater supply to meet the water needs of sugarcane. The rainy season started from September to October and ended in April-May. Thus, there are only four dry months for the ripening phase of sugarcane or sugarcane milling period in the sugar mill. Planning for sugarcane planting time must be in line with the pattern of crop water needs, especially in areas with an average rainy season of 7.6 months. This is due to sugarcane ripening process is strongly influenced by the interactions of climatic elements, genotype and crop cultivation. If rainfall occurs during the harvest period, it will reduce the efficiency of the harvest. Therefore, the use of plant growth regulators are needed to stimulate sugarcane ripening when excessive rainfall occurs at harvesting time [13].

Table 1. The average of rainy season, dry season, rainy season period and climate classification in sugarcane regions in Sumatra

No. ZOM	Regions	Early of rainy season	Early of dry season	Period of rainy season (ten day period)	Climate classification*
4	Bener Meriah, Central Aceh, Eastern part of Nagan Raya, North Gayo Lues	Oct III	Apr III	18.6	B1
6	Langkat/ Deli Serdang/North Medan			25.0	C1
7	East Langkat, Serdang Bedagai, Southern part of Medan, Binjai, Sergai, Tebing Tinggi, Pematang Siantar, Simalungun, Asahan			25.5	C1-D1
9	Langkat, Deli Serdang, East Karo Banyuasin, Musi Banyuasin, North East Muara Enim, North East Prabumulih, North Ogan Ilir, East OKI	Sep III	May I	21.8	C1-D1
32	East Musi Rawas, South West Musi Banyuasin, North Lahat, Central Muara Enim, South West Prabumulih, South West Ogan Ilir, north OKU	Sep II	May III	26.1	B1
33	East Empat Lawang, Central and South Lahat, Pagar Alam, South Muara Enim, South East OKU Selatan, South West OKU	Sep III	May III	25.1	B1
34	Central and South Empat Lawang, Central and South Lahat, Pagar Alam, South Muara Enim, South East OKU Selatan, South West OKU	Sep III	May III	26.6	B1
35	West OKU, East Palembang, South East Banyuasin	Sep III	May II	23.7	B2
36	North East OKU, South East Ogan Ilir, South West OKI	Sep III	May I	23.6	B2
37	South East OKU, South West OKU, South East OKU	Sep III	May III	24.8	B1
No. ZOM	Regions	Early of rainy season	Early of dry season	Period of rainy season (ten day period)	Climate classification*
---------	--	-----------------------	---------------------	--	--------------------------
39	Eastern part of West Lampung, Northern part of Tanggamus, South Way Kanan, Western part of North Lampung, Western part of Central Lampung, Central part of South OKU	Sep II	May III	25.7	B1
40	Southern part of North Lampung	Oct II	May I	20.7	C1-C2
41	South East OKI, Northern part of West Tulangbawang, Tulangbawang, and Mesuji	Oct II	Apr III	21.1	C2
43	Southern part of West Tulangbawang, Northern part of Central Lampung, Eastern part of North Lampung	Oct II	May I	21.1	C2
44	Eastern part of Central Lampung, Eastern part of East Lampung	Oct II	May I	21.4	C2
45	Southern part of Central Lampung, Metro, Western part of East Lampung	Oct II	Apr III	21.3	C2
46	Western part of Central Lampung, Eastern part of North Tanggamus, Pringsewu, North Pesawaran	Oct II	Apr III	19.9	D2
Average				23.1	

* Based on Oldemen classification map [10]

The observation showed that 8 out of 17 ZOM have the rainy season period below the average range, i.e. 18.6-21.8 ten day period (7 months), especially in Lampung (Table 1). In general, the rainy season period in sugarcane plantations in Sumatra is longer than in Java and other provinces. Hence, expanding sugarcane area in Lampung is a priority because it has a long rainy season period. This condition is ideal for sugarcane growth with a dominant C2 climate classification (5-6 wet months and 2-3 dry months). Meanwhile, the regions with a B1 climate type and rainy season exceed the average, such as in Aceh and North Sumatra, sugarcane can be harvested throughout the season as raw materials for producing brown sugar. Sugarcane plant requires at least three dry months for the ripening phase and harvesting, so ideally it has a climate type 2 subdivisions with 2-3 dry months. The sugarcane areas in Sumatra are dominated by B1-C2 climate types.

Cardozo et al. [14] obtained a correlation between the cumulative rainfall of 120 days before harvest with total yield of sugar in all types of maturity varieties. The response of varieties to cumulative rainfall varies, the early maturity varieties respond higher to the total yield of sugar than those of medium and late maturities. Rainfall during the stem elongation phase or 120 days before harvest is important because this phase requires the most water and affects the total yield of sugar obtained. Cabral et al. [15] also found that rainfall for the first 120 days determined the final yield of sugarcane in Brazil with a total evapotranspiration of about 69% of total rainfall. Carr and Knox [16] concluded that there is a linear relationship between evapotranspiration, sugarcane and sugar production with an average water efficiency of 100 kg/ha/mm water for sugarcane production and 13 kg/ha/mm water for sugar production.
3.2. Rainy season period and climate classification in Java and Madura

The average of rainy season in sugarcane areas in Java and Madura ranges from October to November and early of dry season in April (Table 2). The average of rainy season period was 17.93 ten day period or 5.9 months shorter than Sumatra. The Eastern part of Java has a shorter rainy season, particularly in Madura (15-16 ten day period) with ZOM number 195-198. The region with ZOM number 74-75 has a longer rainy season than the other regions in Java, which is 22.5-24.6 ten day period with the late dry season (May-June). The region with less than 15 ten day period of rainy season are very vulnerable to drought, thus additional irrigation and planting time management are needed. Sanghera et al. [17] emphasized the need to select the right planting time and varieties according to their maturities to support the sustainability of the sugar industry. On the other hand, Zhao et al. [18] reported that water stress occurred at 22-27 days during the stem elongation phase reduced the rate of stem elongation and formation of tillers, particularly in sandy soil compared to organic soil. Stress symptoms in sugar cane occur at 7-10 days earlier in sandy soil than organic soil. Therefore, development of sugarcane varieties which can increase productivity under water stress conditions are needed [19], this is due to losses can reach 50% even greater in high stress conditions. Meanwhile, Liu et al. [20] highlighted genotype selection program under sufficient water conditions to moderate levels of water shortage. Carr and Knox [16] reported that drought-resistant varieties respond by closing the stomata first. Of which, the development of leaves or stalk is a more sensitive indicator to drought than stomatal conduction or photosynthesis.

Table 2. The average of rainy season, dry season, rainy season period and climate classification in sugarcane regions in Java and Madura.

No. ZOM	Regions	Early of rainy season	Early of dry season	Period of rainy season (ten day period)	Climate classification*
		Month ten day period			
74	South Subang, West Sumedang, North Bandung, South Purwakarta	Oct II	Jun I	24.6	B1-B2
75	Central Subang, North Purwakarta	Oct III	May III	22.5	D2
76	North Subang, West Karawang	Oct III	Apr II	18.4	D3
77	Northern part of West Indramayu, Eastern part of North Subang	Oct III	Mar III	15.7	D3
80	Southern part of West Indramayu, Western part of Central Subang	Oct III	May II	20.8	C2
130	North East Jepara, North Pati	Nov II	Apr III	16.9	D2
131	North East Pati, North Rembang	Nov II	Apr II	16.1	E
132	Central Pati	Oct III	Apr III	19.2	D3
133	South Pati, Central and South Rembang, North East Grobogan	Oct II	Apr III	20.0	C2-D3
148	North and Central Blora, East Grobogan, North West Bojonegoro, South West Tuban	Oct III	Apr II	18.0	C2
149	East Rembang, South Blora, North Tuban	Nov I	Apr II	16.4	E-D3
151	Central and East Lamongan	Nov I	Apr II	17.3	D3-C2
152	Southern part of South Bojonegoro	Oct III	Apr III	18.0	C2
161	Central Jombang, West Mojokerto, North East Kediri	Nov I	Apr III	18.1	C2
162	West Surabaya, South Gresik, North West and South Sidoarjo, North Mojokerto, Central Pasuruan	Nov I	Apr II	17.3	C2-C3-D3
The sugarcane development areas in Sulawesi are concentrated in South Sulawesi and Gorontalo and are currently developing into South East Sulawesi with the establishment of a new sugar mill. The average of rainy season period is 19.67 ten day period (Table 3). The rainy season started from November-December to March, and in some areas started from February to July, such as in Bone (ZOM no. 297-298). Jeneponto (ZOM no. 290) showed the shortest rainy season period (12.9 ten day period), with D4 climate type, whereas the longest 25.4 ten day period is in Southern Bone (C3 climate type). In

No.	Area Description	Rainy Season Period	Average Rainfall (mm)	Climate Type	
164	South Sidoarjo, North Pasuruan, Pasuruan city	Nov II	Apr II	16.2	C3-D3-E
165	South Mojosari, South Pasuruan	Nov I	Apr II	16.9	D3-C3
167	South East Kediri	Oct II	Apr III	20.2	C3
168	East Buitar, West Malang	Oct II	Apr II	19.2	C3
169	South Malang	Oct II	Apr III	20.1	C3
173	West and South Probolinggo, North Lumajang	Oct III	Apr II	17.9	D3
174	North East Pasuruan, North Probolinggo	Nov III	Apr I	14.0	E
176	South Lumajang, South West Jember	Oct II	Apr II	18.7	C3
177	Central Lumajang	Oct II	Apr III	18.9	C3
181	North East Probolinggo, North Situbondo/Bondowoso	Nov III	Apr I	14.1	E
182	North East and East Situbondo, North East Banyuwangi	Dec I	Apr I	13.0	E
183	South East Situbondo	Dec I	Apr III	16.2	E
184	East Probolinggo, West Situbondo	Nov III	Apr II	15.0	E
185	South Bondowoso, North East Jember	Nov III	Apr III	17.7	D3
187	North Jember	Oct II	Apr III	19.8	C2
188	North West Jember	Oct I	May I	21.7	C2
189	Central Jember	Oct II	Apr III	20.5	C3-C2
190	South Jember	Nov II	Apr III	17.4	C3-D3-E
195	South Bangkalan	Nov II	Apr I	15.5	D3
196	Central and North Bangkalan	Nov II	Apr III	16.9	C3
197	West and South Sampang	Nov III	Apr II	16.1	C3
198	Central Sampang	Nov III	Apr II	16.1	C3

* Based on Oldemen classification map [11]

Out of 37 ZOM in Java and Madura, there are 16 ZOM which have a rainy season below the average. Expansion of sugarcane area is not recommended to areas with a rainy season less than 4 months unless there are irrigation facilities. In areas with a short rainy season sugarcane will face drought during the stalk elongation phase which reduces the stalk length. Sugarcane plants need optimal rainfall for vegetative growth to support the rapid growth phase, elongation of stem and internode [21, 22]. The initial phase of growth is very sensitive to the availability of water, thus water stress causes a decline in plant populations in all varieties tested [23]. Sugarcane regions in Java and Madura are dominated by C3-D3 climate types and in some areas have E climate types.

Kumari et al. [24] calculated the total water needs of sugarcane are 18.492 m3 higher than other plants, such as tobacco (2.278 m3), rice (11.461 m3) and corn (6.387 m3). Climatic factors that influence the water needs of plants consist of temperature, wind speed, air humidity, sunshine duration and rainfall. Besides, the other factors which also influence crop water needs are types of varieties, crop age (crop duration), soil structure and percolation rate. The need to choose suitable varieties and water-saving technologies is important in regions with limited water availability.

3.3. Rainy season period and climate classification in Sulawesi

The sugarcane development areas in Sulawesi are concentrated in South Sulawesi and Gorontalo and are currently developing into South East Sulawesi with the establishment of a new sugar mill. The average of rainy season period is 19.67 ten day period (Table 3). The rainy season started from November-December to March, and in some areas started from February to July, such as in Bone (ZOM no. 297-298). Jeneponto (ZOM no. 290) showed the shortest rainy season period (12.9 ten day period), with D4 climate type, whereas the longest 25.4 ten day period is in Southern Bone (C3 climate type). In
Gorontalo, rainy season period is 24.3 ten day period with C1-C2 climate type. The rainy season period in the new development areas of sugarcane including South Konawe, Bombana and Rumbia is 23.6 ten day period with D2, D3 and C3 climate types.

Most of the areas in Gowa, Takalar and Jeneponto are dry land with more than 6 dry months, so that it is suitable for planting sugarcane with drought-resistant and late-maturity types. Conversely, in areas with 5-6 wet months and 2-3 to 4-6 dry months can be planted with early to mid-maturity varieties of sugarcane, because this area has a short period of ripening phase. In addition, radiation and temperature affect harvesting time, and optimum radiation and temperature in the stem elongation phase affect production compared to other phases [25].

Table 3. The average of rainy season, dry season, rainy season period and climate classification in sugarcane regions in Sulawesi.

No. ZOM	Regions	Early of rainy season	Early of dry season	Period of rainy season (ten day period)	Climate classification
286	West Gowa/Takalar	Dec I	Mar III	15.5	D4
287	West Barru/Pangkep/Maros, Central Makassar, Gowa/Takalar, West Jeneponto	Nov I	May I	19.2	D3
289	Central Gowa, North Jeneponto, Eastern part of Takalar	Nov I	May III	21.5	D3
290	Central and East Jeneponto	Nov III	Mar III	12.9	D4
295	South Bone, East Sinjai	Nov I	Jul III	25.4	C3
297	East Bone	Feb I	Jul III	17.2	D2
298	East Bone	Feb I	Jul III	17.4	D2
313	Rumbia, Bombana, South Konawe	Oct III	Jun II	23.6	C3-D3-D2
321	North Gorontalo	Dec I	Jul I	24.3	C1-C2

*Based on Oldemen classification map [12]

3.4. Rainy season period and climate classification in West Nusa Tenggara and Papua
Rainy season period in West Nusa Tenggara is very short, which is only 12.2 ten day period (Table 4), below the average rainy season period in Java, thus determining sugarcane planting time and the use of drought resistant varieties is very important. The rainy season period started from the third week of November to mid-March. The availability of land is quite abundant but must be supported by irrigation facilities to support the successful development of sugarcane. Sugarcane is widely developed in Dompu District, West Nusa Tenggara, because there is a new sugar mill.

The climate classification in Bima and Dompu is D4-E4 types with a rainy season of 3-4 months even in some areas less than 3 months and a dry season of more than six months. Additional irrigation, particularly during tillers formation, is absolutely necessary to support the growth of sugarcane and to assist nitrogen absorption given at the beginning of growth. Prolonged stress due to a long dry season will reduce the growth and photosynthetic activity of sugarcane [26] which ultimately reduces biomass and sugarcane production [27, 28]. Sugarcane which has high efficiency in using nitrogen can help plants tolerate stress due to drought [29]. Leaf and stem growth as well as the number of green leaves can be used as an indicator that plants need to be irrigated to reduce the decrease in biomass accumulation [30].

The rainy season period in Merauke is 16.3 ten day period shorter than Jayapura (25.7 ten day period). In Jayapura, rainy season period started earlier from mid-October to the third week of June with a shorter dry period (Table 4). Climate classification in Jayapura is C1 type with a dry month of less than 2 months, this causes a period for a very short maturity phase. Meanwhile, Merauke has a D3 climate classification, similar to sugarcane regions in Java with 4-6 dry and 3-4 wet months.
Table 4. The average of rainy season, dry season, rainy season period and climate classification in sugarcane regions in West Nusa Tenggara and Papua

No. ZOM	Regions	Early of rainy season	Early of dry season	Period of rainy season (ten day period)	Climate classification*
		Month ten day period			
	Nusa Tenggara Barat				
237	North Bima and Dompu	Nov III	Mar II	12.2	E4-D4
238	Dompu	Nov III	Mar II	12.2	D4
	Papua				
341	Jayapura City, North Keerom,	Oct II	Jun III	25.7	C1
	Northeast Jayapura				
342	Merauke	Nov III	May I	16.3	D3

* Based on Oldemen classification map [9]

The distribution or percentage of the rainy period in Sumatra showed that 59% region have a rainy season period of 20-25 ten day period, 29% region with 25.1-30 ten day period, and 12% region with rainy season period 15-20 ten day period (Figure 1). In Java and Madura, 73% of ZOM have a 15.1-20 ten day period of rainy season and 19% of ZOM with 20.1-25 ten day period and only 8% of ZOM with 10-15 ten day period (Figure 2). The percentage of regions with rainy season period of 10-15 ten day period and 20.1-25 ten day period in Sulawesi is 33% and 34% of ZOM, respectively (Figure 3). In addition, 11% of ZOM in Sulawesi have a rainy season period of 25.1-30 ten-day period. Most of the regions with the opportunity to get longer rain (20-25 ten day period) are located in Sumatra, even in certain regions have longer rainy period of 25.1-30 ten day period. This condition is more suitable for sugarcane which can be harvested at any time for traditional (local) brown sugar production. Meanwhile, sugarcane areas in Java and Madura are dominated by dry land with a dominant rainy season of 15.1-20 ten day period.

Figure 1. Percentages of rainy season period in sugarcane regions in Sumatra

Figure 2. Percentages of rainy season period in sugarcane regions in Java and Madura

Figure 3. Percentages of rainy season period in sugarcane regions in Sulawesi

Sugarcane productivity is a function of water availability and water deficit in an area. Water deficit significantly reduces sugarcane production. There is a negative correlation between the potential rate of production and water deficit with a decrease in linear production [30]. Water availability is a major factor in the variability of production every year and the decline in productivity is closely related to the distribution of rainfall. Ruan et al. [31] projected an increase in sugarcane biomass dry matter, fresh matter and sugar yields of 7.8-14.2, 16.6-36.1, 2.7-6.1 kg/ha/mm, respectively in relation to rainfall. Santos and Sentelhas [32] found that a decrease or increase in annual rainfall of 10% in Brazil had a smaller effect on soil water availability than temperature changes, so that the effect of increasing
temperature as a result of climate change had more influence on sugarcane productivity variability, especially on dry land. Singels and Bezuidenhout [33] stated that the effect of rainfall on sugar production in South Africa is more influenced by its distribution than total rainfall, as long as rainfall is well distributed.

Dry land is the area most affected by the phenomenon of climate change which is characterized by increasing temperatures and stress due to drought. Adaptation strategies, such as planting time and the use of drought tolerant varieties are needed [35]. In areas where drought often limits sugarcane production, obtaining drought-resistant varieties is a priority. Tena et al. [36] conducted a survey on the preferences of sugarcane farmers in Ethiopia and found that farmers prioritized drought-resistant varieties rather than increasing yields due to climate change. The development of sugarcane in Indonesia is mostly carried out on dry land so that the government and policy makers must support sustainable agriculture and new technologies that are adaptive to climate change.

4. Conclusion

The rainy season period in sugarcane regions in Indonesia ranges from 20-25 ten day period in 59% of the seasonal zone in the Sumatra, 15-20 ten day period in 73% of the regions in Java and Madura, 20-25 and 10-15 ten day period in 33% and 34% of the regions in Sulawesi. Areas with a rainy period of 25-30 ten day period are more suitable for the development of sugarcane as raw material for the brown sugar industry and areas with a rainy season of 10-15 ten day period require additional irrigation to meet the water needs of sugarcane plants. Of which, areas with 15-20 ten day period is ideal for sugarcane growth. Climate classification was also identified in each zone of sugarcane regions based on Oldeman classification map. Information about the rainy season period and climate classification enables in crop management, irrigation planning especially in areas with short rainy seasons and the expansion of sugarcane plantations in Indonesia.

Acknowledgements

The author acknowledges The Meteorology, Climatology and Geophysical Agency of Indonesia for providing the climatic data in the regions of sugarcane plantation in Indonesia.

References

[1] BPS-Statistics Indonesia 2018 Indonesian Sugarcane Statistics 2017 (http://www.bps.go.id) p 104
[2] FAO 2012 Crop yield response to water Sugarcane p174-80
[3] da Silva V de P R, da Silva B B and Albuquerque W G 2013 Agricultual Water Management 128:102-109
[4] Ghiberto P J, Libardi P L, Brito A S and Trivelin P C O 2011 Agricultural Water Management 102 1-7
[5] Afghan S and Ijaz M W 2015 Pakistan Sugar J. 30 17-24
[6] Ramesh P 2000 J.Agron. Crop Sci. 185 83-9
[7] Gentile A, Dias I I, Mattos R S, Ferreira T H and Menossi M 2015 Front. Plant Sci. 6 58
[8] Badan Meteorologi, Klimatologi dan Geofisika 2018 Prakiraan Musim Hujan 2018/2019 di Indonesia (Jakarta: BMKG) P 142
[9] Oldeman L R, Las I and Muladi 1980 The agroclimatic maps of Kalimantan, Maluku, Irian Jaya and Bali, West and East Nusa Tenggara Contr. Centr. Res. Inst. Agric. Bogor 60 32
[10] Oldeman L R, Las I and Darwis S N 1979 An agroclimatic map of Sumatra Contr. Centr. Res. Inst. Agric. Bogor 52 35
[11] Oldeman L R 1975 Contr. Centr. Res. Inst. Agric. Bogor, No.17:22 p
[12] Oldeman, LR 1977 An agroclimatic map of Sulawesi Contr. Centr. Res. Inst. Agric. Bogor 33 30
[13] Cardozo N P and Sentelhas P C 2013 Scientia Agricola 70 449-56
[14] Cardozo N P, Sentelhas P C, Panosso A R, Palhares A L and Ide B Y 2015 *Int. J. Biometeorol.* **59** 1913-25
[15] Cabral O M R, Rocha H R, Gach J H, Ligo M A V, Tatsch J D, Freitas H C and Brasilio E 2012 Bioenergy **4** 555-65
[16] Carr M K V and Knox J W 2011 *Expl.Agric.* **47** 1-25
[17] Sanghera G S, Sing R P, Singh O and Tyagi V 2018 *J. of Plant Sci. Res.* **34** 137-52
[18] Zhao D, Glaz B and Comstock J C 2010 *American J. Agric. and Biol. Sci.* **5** 403-14
[19] Sanghera G S and Kumar A 2018 *J. Plant Sci. Res.* **34** 23-35
[20] Liu J, Basnayake J, Jackson P A, Chen X, Zhao J, Zhao P, Yang L, Bai Y, Xia H, Zan F, Qin W, Yang K, Yao L, Zhao L, Zhu J, Lakshmanan P, Zhao X and Fan Y 2016 *Field Crops Res.* **196** 418-25
[21] Srivastava A K and Rai M K 2012 *Biodiversitas* **13** 214-27
[22] Kumarasinghe N C and Wijayawardhana L M J R 2011 Impact of climate change on the sugarcane cultivation in Sri Lanka *Proc.of International Conference on the Impact of Climate Change on Agriculture* (Kamburupitiya: University of Ruhuna) pp 124-9
[23] Barbosa F S, Coelho R D, Maschio R, Lima C J G and Silva E M 2014 *Eng. Agric. Jaboticabal* **34** 203-62
[24] Kumari M, Singh O P and Meena D C 2017 *Int. J. Agric. Env. Biotech.* **10** 253-62
[25] Ramburan S 2011 *South African J. of Plant and Soil* **28** 75-84
[26] Barbosa A M, Guidorizi K A, Catuchi T A, Marques T A, Ribeiro R V and Souza G M 2015 *Acta Physiologiae Plantarum* **22** 189-97
[27] Zhao D and Yang-Rui L 2015 Climate change and sugarcane production: potential impact and mitigation strategies *Int. J. Agron.* 10p. doi:10.1155/2015/547386
[28] Zhao D, Glaz B and Comstock J C 2010 *American Journal of Agricultural and Biological Sciences* **5** 403-14.
[29] Dinh T H, Watanabe K, Takaragawa H, Nakabaru M and Kawamitsu Y *Plant Production Sci.* **20** 412-22
[30] Caetano J M 2017 *Rev.Ceres. Vicosae* **64** 298-306
[31] Ruan H, Feng P, Wang B, Xing H, O’Leary G J, Huang Z, Guo H and Liu d L 2018 *European Journal of Agronomy* **96** 108-19
[32] Santos D L and Sentelhas P C 2012 *Brazil. Ambi-Aqua. Taubate* **7** 7-17
[33] Singels A and Bezuidenhout C N 1999 *South African J. of Plant and Soil* **16** 2:96-101
[34] Mosqueda E B, Gonzales A D B and Alfaro C A T 2014 *J. Crop Improvement* **28** 772-94
[35] Afzal M, Ghulam S, Ilyas M, Jan S S A and Jan S A 2018 *Pure and Appl. Biol.* **793** 965-72
[36] Tena E, Mekbib F, Shimelis H and Mwadzingeni L 2016 *Cogent Food and Agriculture* **2** 15