The effect of demineralization towards gasification performance of low-rank coal

Jenny Rizkiana1, Reyhan Fitri Ananda1, Nasywa Kamilah1, Ghiifary Azka Nur Aulia1, Sandy Fajar Maulana1, Aghietyas Choirun Az Zahra1, Winny Wulandari1, and Dwiwahju Sasongko1

1 Chemical Engineering Department, Institut Teknologi Bandung, Jalan Ganesha 10
Bandung 40132

E-mail: jr@che.itb.ac.id

Abstract. Gasification process is an alternative way to utilize low-rank coal. However, gas production is not very high due to the high content of volatile matters and high mineral content. One interesting way to increase gas production is by reducing the mineral content in the coal by acid leaching process. In the present study, acid leaching is occupied to pre-treat the coal by using HF solution so that the mineral content in the coal can be leached out. The results show that acid leaching process successfully decreased the ash content in the coal. However, in terms of gas production, it appears that acid leaching slightly decreases the total gas production. It could happen since acid processing of coal might increase its crystallinity and thus it becomes more difficult to be gasified.

1. Introduction
The increase in the world’s population becomes a great factor in the rise of energy demand [1]. The world’s energy consumption was at 13,105 million tons in 2015 and reached 13,276.3 million tons in 2016, while Indonesia’s energy consumption increases at 164.8 million tons and 175 million tons respectively [2]. One alternative in generating energy to meet the energy demand is through oxidation of hydrogen gas. Currently, 98% of hydrogen is produced from coal and 50% of it comes from the natural gas reforming process [3]. Coal places second after crude oil as an energy source until 2016 [2]. Hydrogen gas from coal can be utilized to generate a turbine to produce energy [4] and potentially used as fuel cell feedstock that is environmentally friendly in the future [5].

Since 2016, the use of coal as a fuel to generate energy has been declining to comply with the regulation to reduce CO2 emission in order to suppress environmental damage [6]. Indonesia Government in the United Nations Framework Convention on Climate Change (UNFCC). In Indonesia National Energy General Plan (RUEN), coal is viewed as a primary energy source that is capable of supplying energy for more than 30% of total energy in 2025. Based on its coal rank, lignite and sub-bituminous coal dominate in Indonesia at 24,641 million tons with bituminous and anthracite as minorities at 3,814 million tons [7]. Thermal decomposition of lignite and sub-bituminous coal discharges coal ash that contains high silica and sulfur content. Both components give off inhibition effect toward the coal utilization process.
Gasification is a conversion method of low ranked coal that allows maximum energy to be extracted with a minimum amount of residue and high carbon conversion [8-9]. Gasification emits less CO$_2$ compared to other coal utilization methods [10]. Gasification has high efficiency and flexibility in producing gas to generate electricity and synthesize liquid fuel [11-12]. Steam as gasification agent to gasification process intensifies hydrogen gas production. Potassium carbonate gives a favorable effect toward gasification process with steam as the gasification agent [13]. The increase of reaction rate results in raise of gas yield. However, SiO$_2$ content in coal ash is not preferable in gasification process as it inhibits gasification process.

Coal ash removal can be accomplished by using acid, base, alcohol, or combination of acid, base, and alcohol [14-18]. Literature concludes that acid solution gives the most effective result in coal mineral removal contained in coal ash. The coal ash removal process is called demineralization. Demineralization process improves the gasification process in 2 methods, silica removal, and pore formation to increase surface area. Several factors need to be considered in the demineralization process, they are type of acid solution, concentration, temperature, demineralization time, and coal particle size. The effect of factors mentioned previously can be seen in the reduction of coal ash produced after demineralization. Furthermore, the silica content in demineralized coal will diminish compared to the one in raw coal. This paper covers the effect of coal demineralization using HF solution toward coal gasification in removing silica and sulfur content.

2. Methodology
The experiment methodology includes material preparation, coal demineralization, coal gasification, and analysis and data interpretation.

2.1. Material preparation
Coal is crushed into sizes less than 232 μm (> 48 mesh) and then dried in an oven at 110°C for 14 hours. The determination of ash content in coal is achieved through combustion in a furnace at 750°C or 2 hours. Element content in ash is analyzed using EDS, while the composition of coal is determined through proximate and ultimate analysis. The two analyses of raw lignite (RL) and demineralized lignite (DL) are shown in Table 1.

Parameter	RC (%-weight) dry basis	DC (%-weight) dry basis
Proximate		
Ash	9.54	1.63
Volatile matter	47.38	51.53
Fixed carbon	43.08	46.84
Ultimate		
Sulfur	1.07	1.07
Carbon	64.38	64.38
Hydrogen	3.74	3.74
Nitrogen	1.14	1.14
Oxygen	19.71	19.71

2.2. Coal demineralization
10g of dried coal is dissolved in a 250 mL HF solution in a Teflon glass. The solution low-rank for 4 hours at 70°C. Then, the solution is neutralized using aqua DM before being filtered. The solid residue from the filtration is later dried in an oven for 14 hours at 110°C before being stored in a desiccator.
2.3. Coal gasification

The gasification process is carried out with a fixed bed downdraft reactor for 80 minutes using steam as a gasification agent with steam production temperature at 90-92˚C. 3g of each raw lignite and demineralized lignite is used for the gasification process. Nitrogen, as gas carrier, is flown with a rate of 85 cm³/minute. The furnace used is heated beforehand with a heating rate of 6˚C/minute until the operating temperature in the reactor reaches 700˚C. The outlet gas is later condensed with cooling water at 14-16˚C. Condensed gas becomes tar while incondensable gas is stored in a gas bag every 10 minutes. The amount of incondensable gas produced is compared with the amount of fixed carbon in the feed sample per gram.

2.4. Analysis and data interpretation

Data obtained in material preparation and coal demineralization are processed, analyzed, and presented in graphs. Raw lignite and demineralized lignite contents are determined in proximate and ultimate analysis, while ash content determination from feed is done through ASTM D.3174. Synthesis gas compositions are analyzed using gas chromatography (GC) with thermal conductivity detector (TCD) that is connected with 2 types of columns, namely Porapak Q and Molesieve 5A. The GC result is further analyzed for graph fabrication. Surface area and char sizes obtained from gasification process are analyzed through nitrogen isothermal adsorption method.

3. Results and Discussion

3.1. Ash element content of Raw Lignite (RL) and Demineralized Lignite (DL)

Coal demineralization process is a pre-treatment one to reduce coal ash elements which are silica and alumina. Ash mineral content distribution in LC and DL is determined through EDS mapping analysis shown in Table 2.

Element	Compositions (%-weight) dry basis	
	RL	DL
Carbon (C)	3.13	0.66
Oxygen (O)	4.34	0.67
Sodium (Na)	0.26	0.04
Magnesium (Mg)	0.20	0.04
Aluminum (Al)	0.41	0.05
Silica (Si)	0.37	0.03
Sulfur (S)	0.07	0.02
Potassium (K)	0.02	0.002
Calcium (Ca)	0.02	0.004
Phosphor (P)	0.05	0.01
Iron (Fe)	0.67	0.11
Total	9.54%	1.63%

Coal that has been demineralized with HF has lower ash content compared to the raw lignite. HF not only dissolves silica but also almost all minerals in raw lignite. The result shows 91.7% silica content reduction, 90.3% aluminum content reduction, and also 88.9% potassium content. According to Steel et al. (2001) [19], HF solution is very reactive in dissolving all mineral components in coal but pyrite. At 3 M, HF is able to make aluminosilicate to be soluble in water.
3.2. Single fuel gasification: Raw Lignite (RL) and Demineralized Lignite (DL)

Feed characteristics determine the distribution of a carbon fuel gasification product [20]. Lignite coal contains complex organic compounds, namely vitrinite and liptinite, oxidized organic compounds, and water [21].

3.2.1. Gasification of RL and DL product conversion. The main products of coal gasification process generally composed of synthesis gas (H₂, CO, CO₂, and CH₄), liquid product (volatile matter and condensable gas, and char [21].

![Figure 1. Gas, liquid, and solid products of gasification process of RL and DL](image)

Figure 1 shows the distribution of RL and DL gasification products. The main components of liquid product include large aromatic compound (mixture of oxygenation, phenolic esters, phenolic alkyls, heterocyclic ethers, polyaromatic hydrocarbons, etc.) and alkali metal compounds [21]. As both components are soluble in HF solution, DL has lower liquid product conversion compared to RL. As for the gas product, DL synthesis gas conversion is less than the RL one, which means that demineralization treatment does not enhance synthesis gas conversion of RL gasification. Synthesis gas conversion depends on several factors, one of them is the char structure [22].

Carbon conversion of the DL gasification is higher than the RL one due to the demineralization process that improves lignite carbon conversion to char compared to RL. In gasification with H₂O medium, lignite ash with high silica content helps molecular breakdown of large hydrocarbons to smaller compounds such as methane and ethane [21]. Demineralization using HF and HCl upgrades the crystallinity of the char structure; therefore it is hard to break compared to coal without any pre-treatments [23]. This results in aromatic polycyclic hydrocarbons to have high densities to form bonds that are very strong and resistant to heat, making it difficult to decompose into liquid and gas products.

3.2.2. Gasification of RL and DL synthesis gas profile and trend. Based on Basu [22], solid-gas reactions that are likely to happen in char gasification process include Boudouard, methanation, and primary water-gas. After the synthesis gas is formed, a gas-gas reaction takes place, which forms a new gas compound. Common reactions include steam reforming and water gas shift. In determining the tendency of the gasification reaction, gas compositions of every 10 minutes are analyzed using Shimadzu Gas Chromatograph 2014 that has been calibrated with industrial standard synthesis gas. This experiment covers gasification process at low temperature and is kept constant at 700 ± 40°C. Figure 2 shows synthesis gas profile and H₂/CO ratio of RL gasification for 80 minutes.
Figure 2. (a) Synthesis gas profile and (b) H$_2$/CO ratio every 10 minutes of RL gasification

Generally, H$_2$ and CO$_2$ contents increase while CO gas yield decreases. This causes H$_2$/CO ratio to relatively rise until the 80th minute. At the 10th minute, H$_2$ gas yield is at its lowest while CO$_2$ and CO gas yield are quite high. This means that in the beginning, Boudouard reaction and water gas reaction dominate. The high CO$_2$ content is derived from residual pyrolysis result when a new gasification agent, steam, is released in the 0th minute. There is an increase in methane yield from the 0th minute to the 30th minute. This shows that a methanation reaction takes place from RL carbon and H$_2$. From the 0th minute to the 20th minute, a decrease in CO gas identifies Boudouard reaction rate drops and reaction sifts toward the primary water gas reaction, which is indicated by a rapid rise in H$_2$ concentration. Char conversion reaction is dominated by the primary water gas reaction marked by the increase in H$_2$ concentration, a drop in CO concentration, and constant CO$_2$ content.
Figure 3. (a) Synthesis gas profile and (b) H\textsubscript{2}/CO ratio every 10 minutes of DL gasification.

Figure 3 shows the synthesis gas profile and H\textsubscript{2}/CO ratio from gasification of DL. The results of synthesis gas profile from gasification of RL and DL have a similar pattern. Both results show a constant H\textsubscript{2} concentration until the 80th minute. The synthesis gas profile of DL gasification fluctuates more compared to the RL one due to higher alkali and alkaline earth metal content in RL that gives a more stable gasification rate [24]. Methane gas that appears at the beginning of DL gasification is a residual gas produced from lignite pyrolysis, such as RL gasification [25-26]. However, DL gasification produces more methane than RL as methane cracking process in DL gasification is lower than the one in RL gasification [27]. According to Sun et al. (2007) [28] and Wei et al. (2011) [29], coal demineralization lessens catalytic effect toward the methane cracking process by Fe and Mg in coal ash. At the 40th minute of DL gasification and the 60th minute of RL gasification, a drip of steam condensate occurs that makes the primary water gas reaction producing more H\textsubscript{2} and CO\textsubscript{2}.

3.2.3. Gasification of RL and DL synthesis gas yield. Synthesis gas compositions depend on characteristics of carbon, type of gasification medium, and operating condition [20]. Figure 4 presents the yield of each component in synthesis gas from gasification of RL and DL.
RL gives better H₂, CO, CO₂, and CH₄ yield compared to DL. This shows that coal demineralization by HF leaching method slightly lessens the synthesis gas yield. The result is supported by research done by Murata et al. (1996) [30] that states HF leaching degrades conversion rate of char in coal gasification. It is possible that when the coal is pre-treated by a strong acid, the coal tends to be more crystalline; as such, it becomes more difficult to be gasified. Even though more pores are formed, the crystallinity of the carbon makes it harder to be gasified compared with the raw coal.

4. Conclusions
Acid leaching pre-treatment have been done for low rank coal by using HF solution. It appears to be the good method to demineralize coal. However, pre-treating the coal reduces gasification performance in terms of a decrease in synthesis gas and H₂ yield. An increase in char yield is caused by a drop in coal reactivity significantly that affects the catalytic effect on the overall gasification process. It is possible that pre-treatment using acid increases coal crystallinity as such it becomes more difficult to be gasified.

5. References
[1] Pinto F, Franco C, André R N, Tavares C, Dias M, Gulyurtlu I and Cabrita I 2003 Effect of experimental conditions on co-gasification of coal, biomass and plastics wastes with air/steam mixtures in a fluidized bed system Fuel 82 1967–76
[2] British Petroleum 2017 BP Statistical Review of World Energy 2017 pp 1–52 (British Petroleum)
[3] Dunn S 2003 Hydrogen futures: toward a sustainable energy system Int J Hydrogen Energy 27 235-64
[4] Weiland N T, Means N C and Morreale B D 2012 Product distributions from isothermal co-pyrolysis of coal and biomass Fuel 94 563–70
[5] Midilli A, Ay M, Dincer I and Rosen M A 2005 On hydrogen and hydrogen energy strategies I: Current status and needs Renewable and Sustainable Energy Reviews 9 255–71
[6] Ellis N, Masnadi M S, Roberts D G, Kochanek M A and Ilyushechkin A Y 2015 Mineral matter interactions during co-pyrolysis of coal and biomass and their impact on intrinsic char co-gasification reactivity Chemical Engineering Journal 279 402–8
[7] Direktorat Jenderal Mineral dan Batubara 2017 Laporan Kinerja Direktorat Jenderal Mineral dan Batubara (Jakarta: Kementerian Energi dan Sumber Daya Mineral)
[8] Ahmed I I, Nipattummakul N and Gupta A K 2011 Characteristics of syngas from co-gasification of polyethylene and woodchips Applied Energy 88 165–74
[9] Cormos C.-C 2012 Hydrogen and power co-generation based on coal and biomass/solid wastes co-gasification with carbon capture and storage International Journal of Hydrogen Energy 37 5637–48
[10] Krerkkaiwan S, Fushimi C, Tsutsumi A and Kuchonthara P 2013 Synergetic effect during co-
pyrolysis/gasification of biomass and sub-bituminous coal Fuel Processing Technology 115
11–18

[11] Zhang Z, Pang S and Levi T 2017 Influence of AAEM species in coal and biomass on steam co-
gasification of chars of blended coal and biomass Renewable Energy 101 356–63

[12] Pinto F, André R N, Carolino C and Miranda M 2014 Hot treatment and upgrading of syngas
obtained by co-gasification of coal and wastes Fuel Processing Technology 126 19–29

[13] Shahbaz M, Yusup S, Inayat A, Patrick D O and Ammar M 2017 The influence of catalysts in
biomass steam gasification and catalytic potential of coal bottom ash in biomass steam
gasification: A review Renewable and Sustainable Energy Reviews 73 468-76

[14] Steel K M, Besida J, O’Donnell T A and Wood D G 2001 Production of Ultra Clean Coal Part
I—Dissolution behaviour of mineral matter in black coal toward hydrochloric and
hydrofluoric acids Fuel Processing Technology 70 171-92

[15] Mukherjee S and Borthakur P C 2001 Chemical demineralization/desulphurization of high
sulphur coal using sodium hydroxide and acid solutions Fuel 80 2037–40

[16] Behera S K, Chakraborty S and Meikap B C 2017 Chemical demineralization of high ash Indian
c-coal by using alkali and acid solutions Fuel 196 102-9

[17] Ratankanndilok S, Ngamprasertsith S and Prasassarakich P 2001 Coal desulfurization with
methanol/water and methanol/KOH Fuel 80 1937-42

[18] Wu Z and Steel K M 2007 Demineralization of a UK bituminous coal using HF and ferric ions
Fuel 86 2194-200

[19] Steel K M, Besida J, O’Donnell T A and Wood D G 2001 Production of Ultra Clean Coal - Part
II - Ionic equilibria in solution when mineral matter from black coal is treated with aqueous
hydrofluoric acid Fuel Processing Technology 70 193–219

[20] Mendiburu A Z, Carvalho J A and Coronado C J R 2014 Thermochemical equilibrium modeling
of biomass downdraft gasifier: Stoichiometric models Energy 66 189–201

[21] Mallick D, Mahanta P and Moholkar V S 2017 Co-gasification of coal and biomass blends:
Chemistry and engineering Fuel 204 106–28

[22] Basu P 2013 Gasification Theory, Biomass Gasification, Pyrolysis and Torrefaction 2nd edition
(Elsevier Inc.)

[23] Zhu W, Song W and Lin W 2008 Catalytic gasification of char from co-pyrolysis of coal and
biomass Fuel Processing Technology 89 890–96

[24] Bell A T and Veraa M J 1977 Effect of alkali metal catalysts on gasification of coal char Fuel
57 194–200

[25] Fermoso J, Arias B, Plaza M G, Pevida C, Rubiera F, Pis J J, García-Peña F and Casero P 2009
High-pressure co-gasification of coal with biomass and petroleum coke Fuel Processing
Technology 90 926–32

[26] Lee W J, Kim S D and Song B H 2002 Steam gasification of an australian bituminous coal in a
fluidized bed Korean Journal of Chemical Engineering 19 1091–6

[27] Ramarao M, Kumar S M, Vivekanandan S, Suresh D V, Kumar S P and Jayaprakash D 2017
Effect of Biomass Blending on Gasification: A Review Advanced in Natural and Applied
Sciences 11 300–10

[28] Sun Z Q, Wu J H, Haghighi M, Bromly J, Ng E, Wee H L, Wang Y and Zhang D K 2007
Methane cracking over a bituminous coal char Energy and Fuels 21 1601–5

[29] Wei L, Tan Y S, Han Y Z, Zhao J T, Wu J and Zhang D 2011 Hydrogen production by methane
cracking over different coal chars Fuel 90 3473–79

[30] Murata S, Murakami A and Nomura M 1996 Steam gasification of coal: The effects of acid- and
alkali leaching of coal on its gasification rate The 211th ACS National Meeting 41(1) 237-40
(USA, March 24-28)