Biomimetic Polymer Film with Brilliant Brightness Using a One-Step Water Vapor–Induced Phase Separation Method

Weizhi Zou, Lorenzo Pattelli, Jing Guo, Shijia Yang, Meng Yang, Ning Zhao,* Jian Xu,* and Diederik S. Wiersma*

The scales of the white Cyphochilus beetles are endowed with unusual whiteness arising from the exceptional scattering efficiency of their disordered ultrastructure optimized through millions of years of evolution. Here, a simple, one-step method based on water vapor–induced phase separation is developed to prepare thin polystyrene films with similar microstructure and comparable optical performance. A typical biomimetic 3.5 μm PS film exhibits a diffuse reflectance of 61% at 500 nm wavelength, which translates into a transport mean free path below 1 μm. A complete optical characterization through Monte Carlo simulations reveals how such a scattering performance arises from the scattering coefficient and scattering anisotropy, whose interplay provides insight into the morphological properties of the material. The potential of bright-white coatings as smart sensors or wearable devices is highlighted using a treated 3.5 μm film as a real-time sensor for human exhalation.

1. Introduction

Disordered materials exhibiting a bright, broadband diffuse reflection\(^{[1-3]}\) play a key role in many applications, including...
before solvent evaporation, have been reported exhibiting a scattering strength comparable to that of the beetle.[27] However, the relatively complex preparation process of sonication-induced degradation to obtain PMMA with low polydispersity in order to control the NIPS process and drive the formation of a specific network structure represents a limitation for large-scale preparation and practical applications. Moreover, despite increasing efforts to engineer novel materials inspired by the Cyphochilus beetles, the interplay between its scattering performance and the complex network topology is still not entirely understood, with several aspects proposed to explain its outstanding optical properties.[13,19,28] Additionally, comparisons between different scattering materials have been mostly limited so far to measurements of total integrated reflectance which, despite being the relevant quantity for most applications, does not provide any insight into the optical and geometrical properties of the material at the single scattering level, i.e., relative to its individual constituent elements. In this respect, extending optical characterization to the single scattering level represents an important step forward to build a scattering “fingerprint” for the growing array of bioinspired materials, gaining insights into potentially different scattering mechanism underlying their whiteness.

In this work, we describe a one-step spin-coating assisted water vapor–induced phase separation (VIPS) method that does not involve any pre- or postprocessing to fabricate biomimetic bright-white polystyrene (PS, n = 1.59)[29] films. We exploit the continuous diffusion of water vapor into the polymer solution to increase the amount of nonsolvent in the system and induce the polymer phase separation process. Using this technique, we obtained highly efficiently scattering layers able to reflect up to 61% (subtracting specular reflection) at 500 nm wavelength for a freestanding film with a thickness of just 3.5 µm. We retrieved a freestanding film with a thickness of just 3.5 µm. Inset: Photo of the Cyphochilus white beetle. b) SEM image of the cross-section of the 3.5 µm PS film. Scale bar: 2 µm. Inset: Photo of the freestanding 3.5 µm film cut out with a white beetle shape, showing its good machinability and mechanical stability (also see Figure S1 in the Supporting Information).

to the good mechanical stability and flexibility of the material, we envision that bright-white coatings will play an increasingly important role in the emerging field of smart sensors and wearable devices for monitoring purposes.[32–34]

2. Results and Discussion

A typical PS film prepared using the VIPS method is shown in Figure 1b. A 25 wt% PS solution in N,N-dimethylformamide (DMF) was spin-coated in an environment with a relative humidity of 95%. PS films with various thicknesses can be obtained by controlling the spin-coating speed and the volume of polymer solution used, with a lower thickness limit of ≈3 µm, below which the films present a less uniform thickness and poor mechanical stability (see the Experimental Section). Above this limit, all films are freestanding, flexible, and easily machinable, as shown illustratively in Figure 1b and Figure S1 in the Supporting Information. At a thickness of 3.5 µm, the film exhibits a typical disordered bicontinuous structure made by sub-µm backbone blocks with a polymer volume fraction of about 60% (see the Experimental Section). Morphologically, the bicontinuous structure exhibits a laminated arrangement as shown in the SEM image, highlighting the anisotropic structure of the polymer network between the in-plane and out-of-plane directions. The thin film shows a broadband diffuse reflectance (i.e., calculated excluding the specular component, see the Experimental Section) over the visible range, varying from 64% at 400 nm to 52% at 800 nm (Figure 2a).

The scattering performance of our PS films is evaluated in terms of the scattering mean free path l, and the transport mean free path l, representing respectively the average distance between two consecutive scattering events and the average distance over which the original propagation direction is completely randomized. These two parameters are connected by the degree of scattering asymmetry g through the so-called similarity relation l/l = l/(1−g), where g is the average cosine of the scattering angular distribution and can typically vary from 0 (i.e., isotropic scattering) to 1 (i.e., forward propagation).[35] Although less common, it should be noted that the asymmetry factor can also become negative (resulting in l < l) in the case of resonant scattering or strong positional correlations.[36,37]
In the diffusive regime, the total reflectance is mainly determined by the ratio between the slab thickness and the transport mean free path, according to the so-called Ohm’s law for light.[38] Indeed, this simple approach has been used several times in the literatures, even though its validity breaks down at low sample thickness.[39,40] Moreover, in this picture, any information on the single scattering balance between \(l_t \) and \(g \), which holds insights into the microscopic structure of the material, is lost due to the similarity relation. In our case, however, thanks to the reduced thickness of the films, a residual ballistic transmitted intensity can be collected with a distant optical fiber (see the Experimental Section) allowing a complete optical characterization that does not rely on Ohm’s law nor on the diffusive approximation. Considering as our two main observables the total integrated reflectance and the prominence of the ballistic peak with respect to the diffusely transmitted background, we performed an extensive set of Monte Carlo calculations to predict their values over the relevant range of wavelength, sample thickness, and scattering parameters assuming negligible absorption (see the Supporting Information). The resulting lookup table allows to directly solve the radiative transfer equation, enabling the retrieval of scattering parameters in configurations well beyond the validity range of diffusion theory. Aiming at characterizing the overall turbidity of our samples, we assume structurally isotropic slabs in our calculations. This still allows us to evaluate the scattering parameters of interest also for structurally anisotropic samples since the optical thickness is mainly determined by their components along the perpendicular direction to the film.[13,41] Even in this simplified picture, to our knowledge, we provide the first broadband characterization of the scattering asymmetry parameter \(g \) for network-like materials, providing novel information on their structural properties. The estimated optical parameters are directly obtained from our lookup table routine providing as query values the experimental measurements of collimated (i.e., ballistic) transmission and integrated diffuse reflectance, as shown in Figure 2b,c and Figure S7 in the Supporting Information for the 3.5 \(\mu \)m film.

As can be seen, the retrieved transport mean free path along the perpendicular direction of the slab is comparable to that of the Cyphochilus beetle \(l_t = 1.47 \mu \)m\(^3\)) at near-infrared frequencies, and is appreciably shorter in the visible range, falling below 1 \(\mu \)m for \(\lambda < 515 \) nm. Interestingly, we find that the simple monotonic trend of \(l_t \) results from a more complex interplay between the scattering anisotropy and the scattering mean free path as retrieved from ballistic transmission measurements (Figure 2b). Indeed, the scattering mean free path reaches a remarkably low minimum of 0.41 \(\mu \)m at a wavelength of 600 nm, which is however compensated by a peak in the scattering asymmetry. This interplay between scattering efficiency and asymmetry—and in particular their spectral dependence over visible wavelengths—allows to infer the dominant scattering mechanism determining the white appearance. With regard to the spectral dependence of the parameter \(g \) (Figure 2c), there is a general lack of reports in the literature, especially for fiber-based or structurally anisotropic materials. A potentially related example is that of dentine, whose internal structure characterized by aligned tubules might also give rise to a peak of the scattering asymmetry in the visible range.[42,43] As described in the following, our results support this hypothesis and suggest that the scattering asymmetry peak position and amplitude can be used to infer about the size distribution of the elongated scattering elements (see the Supporting Information). In this respect, the spectral dependence of the scattering anisotropy represents an untapped source of information that could be used to tell apart different scattering mechanisms in thin layers of turbid materials.

To illustrate the formation mechanism of the bicontinuous network structure, we prepared different films varying the rotating speed of the spin-coater and the solution volume used under the same solution concentration of 25 wt% and the relative humidity of 95%. The resulting films (Figure 3) show that the bicontinuous topology is progressively lost as the film thickness exceeds \(~10 \mu \)m, above which it is superseded by a more isotropic cellular-type structure. Additional structural changes associated with thicker samples include an increase of the air phase volume fraction (see the Experimental Section), a reduced degree of structural anisotropy, and the formation of a dense skin layer on the external surface (see Figure S2 in the Supporting Information), as opposed to the porous surface that is characteristic of bicontinuous structures obtained by the VIPS method.[44–47] For intermediate thickness, however, the two structures coexist as can be seen in Figure 3c for the 10.3 \(\mu \)m film, where the bicontinuous structure is still present near the surface.

As schematically shown in Figure 3, the occurrence of the bicontinuous network can be explained using mass-transfer-diffusion theory.[46,47] In general, there are two mechanisms
for VIPS: nucleation-growth (NG) and spinodal decomposition (SD). \cite{48} When the polymer solution is at the metastable state, phase separation occurs via the NG mechanism, leading to a cellular-like porous structure. On the other hand, SD represents the dominant phase separation mechanism when the system is at the unstable state, leading to the bicontinuous network structure. \cite{49,50} Due to the affinity between water and the DMF solvent, water vapor diffuses into the liquid film during the spin-coating and solvent evaporation process. This results in a reduced polymer solubility that brings the solution into the metastable state. If enough water diffuses into the solution in a short time, the phase separation degree of the polymer solution is aggravated and the solution transits quickly from the metastable to the unstable state. Thin films under high relative humidity undergo a rapid water content increase, leading to the formation of the bicontinuous structure. Conversely, at higher thicknesses and/or lower relative humidity (see also control experiments at reduced relative humidity in Figure S3 in the Supporting Information), the system will remain in the metastable state long enough for the NG process to take place, resulting in a typical cellular-like structure. Another important factor influencing the phase separation is polymer concentration. In fact, polymer concentration determines the so-called critical residence time of the system in the metastable state due to the entanglement of polymer chains. \cite{51} A lower concentration is associated with a shorter critical residence time in the metastable region, which allows the NG process to complete rapidly, hindering the subsequent unstable state to form a bicontinuous structure. As shown in the control experiments (Figure S4, Supporting Information), thin films (6–7 \textmu m thick) prepared at 95\% RH from 15–20 wt\% PS solutions also show a cellular-like morphology. For these reasons, high polymer concentration, high relative humidity, and thin solution thickness are required to form the more efficiently scattering bicontinuous structure akin to that of the Cyphochilus beetle.

The superior optical properties of the bicontinuous topology as opposed to the cellular-like one are confirmed by our optical characterization. In particular, Figure 4a shows the total reflectance and scattering efficiency at a wavelength of 500 nm attained by the different films shown in Figure 3, resulting in a comparable transport mean free path to that measured for the Cyphochilus beetle\cite{33} as long as the film thickness remains below 10 \textmu m, i.e., before the morphology transition to the isotropic, cellular-like structure. The complete reflectance spectra are reported in Figures S5 and S6 in the Supporting Information for samples prepared under different conditions, confirming the enhanced scattering efficiency of samples characterized by the denser, anisotropic bicontinuous structure. A comparison between the optical performance of VIPS PS films and other artificial bright-white materials made with low refractive index scattering elements is presented in Table 1.

The transition from the anisotropic bicontinuous structure to the cellular-like structure is also apparent by the different spectral dependence of the retrieved optical properties. In particular, the structural transition is accompanied by both a different power-law dependence of the reduced scattering coefficient (defined as $\mu'_s = 1/l_s$; Figure 4b) and a change of the scattering mean free path l_s (Figure 4c). As regards the asymmetry parameter g, its spectral dependence in bicontinuous films exhibits a peak of increased forward scattering at visible frequencies, as compared to the flatter response for cellular-like structures (Figure 4d). In this case, we retrieved the asymmetry factor only for the 18.0 \textmu m thick film, since this is the thickest sample that still exhibits a detectable ballistic transmission signal. A redshift of the parameter g peak is also observed, which is in qualitative agreement with a simple model based on light scattering from infinite cylinders with a Gaussian radii distribution, suggesting that thicker films are characterized by larger and more polydisperse scattering elements as confirmed by SEM images of the same samples (see Figure S8 in the Supporting Information). This analysis suggests that the high scattering efficiency of bicontinuous networks can be ascribed to the optical and geometrical properties of their constituent isolated fibers rather than to some collective scattering effect. Considered together, the increased structural isotropy, polydispersity and filament size observed for thicker PS films account for their decreased overall scattering efficiency. \cite{13,17,19} SEM images show that an optimal filament size is obtained in thin bicontinuous films, close to that of (244 ± 51) nm measured for the Cyphochilus beetle.
beetle and well within the ideal 200–300 nm range determined theoretically (Figure S9, Supporting Information).\cite{17}

Besides their utility as diffusing layers, the highly porous structure of these thin films lends itself to other interesting applications. In particular, their morphology allows liquids, vapors and gases to percolate through the structure, which can cause dramatic changes in the scattering properties enabling optical sensing applications.\cite{27,52–54} Based on the excellent water permeability of the bicontinuous network structure,\cite{45} we demonstrate a potential application of the biomimetic film as a real-time optical moisture sensor. The surface wettability of the thin bicontinuous film was changed from hydrophobic (static contact angle 81°) to superhydrophilic (static contact angle 0°) by cold air plasma treating (Figure 5a,b; Figure S10, Supporting Information).\cite{55,56} When immersed in water, the treated film immediately switches from a white opaque to a transparent appearance due to the reduced refractive index contrast caused by water infiltration (Figure 5b). As an exemplary application exploiting this effect, we describe the use of the bright-white superhydrophilic film as an optical moisture sensor for real-time monitoring of human exhalation. As shown in Figure 5c–e using the 3.5 μm sample, different exhalation rates and durations give rise to different optical signals according to the rapid change in reflectivity of the sample. This example illustrates the potential use of thin, superhydrophilic bright-white films as fast responding sensing elements for human breath.

Table 1. Average transport mean free path at a wavelength of 500 nm for typical artificial low-n highly scattering media.

Material	ξ [\(\mu m\)]
PS film (this work)	0.98 ± 0.03
PMMA film by NIPS\cite{27}	≈ 1
Photonic glass\cite{3}	2.9
SC-CO$_2$ foaming surface\cite{52}	3.5–4
CNC paper\cite{14}	≈ 4
P(VdF-HFP)$_{hyb}$ PDRC coatings\cite{5}	≈ 6
Syringe filter\cite{3}	6

3. Conclusion

In conclusion, inspired by the scales of the Cyphochilus beetle, we developed a simple, one-step water vapor–induced phase separation method to prepare a series of thin bright-white PS films with optical performances comparable or superior to those of the white beetle and previously reported artificial materials, with the additional advantages given by freestanding stability, machinability, flexibility, and activatable superhydrophilicity which make them compatible with a wide array of optical devices and applications. Due to the applicability of the phase-separation method to many polymers and the convenience of
the coating techniques, we envision that diverse and large-area thin bright-white polymeric films might establish as a competitive alternative to nanoparticle-based coatings. By performing a broadband optical characterization of the scattering properties based on the rigorous solution of the radiative transfer model, we revealed how structural transitions are associated with spectral signatures at the single and multiple scattering levels. Indeed, up to date, the description of optical properties in bright-white materials has been largely limited to the framework of diffusive approximation, disregarding the role of the scattering asymmetry associated with their network structure. Especially for the case of thin or ultrathin scattering materials, the use of more accurate radiative transport models providing information down to the single scattering level can provide further insight needed to compare the increasing amount of advanced optical materials, including the Chyphochilus beetle itself, and understand if they rely on similar scattering mechanisms or if they are characterized by a different interplay between scattering parameters. Even though spinodal decomposition of bio-macromolecules is currently supposed to be the driving mechanism behind the formation of bicontinuous networks in the biological world, conclusive evidence is still lacking. Our VIPS method requires only mild conditions as potentially found in most organisms and results in samples that are similar to the white Chyphochilus scales both in terms of morphology and scattering performance. In this respect, optical characterization at the single-scattering level of self-assembled polymeric structures might provide a valuable tool to shed light on the growth process of white beetle scales and help characterizing the different morphological pathways that are possibly playing a role in their formation.

4. Experimental Section

Materials: Polystyrene ($M_w = 250$ kDa, purchased from Acros), N,N’-dimethylformamide (analytical grade, purchased from Beijing Chemical Works), potassium carbonate (K_2CO_3, 99.5%, guaranteed reagent, purchased from Innochem) and sodium chloride (NaCl, analytical grade, purchased from Beijing Chemical Works) were used as received.

Film Preparation Process: Granular PS was dissolved in DMF under mechanical agitation at 80 °C for 24 h. A spin-coater (KW-4A, Setcas, China) was covered by a hood. A culture dish containing water or aqueous solution of salt was placed in the hood to control the relative humidity, which was monitored by a hygrometer (608-H2, error of ±2%, Testo AG, Germany). A relative humidity (RH) of 95 ± 2% was obtained by the natural evaporation of water in the sealed spin-coater at room temperature. RHs of 43% and 71% were maintained by using the supersaturation solutions of K_2CO_3 and NaCl, respectively. Polymer solution was dropped via a syringe and spin coated onto a cover slip (2×2 cm2). A liquid film formed on the slip in less than 1 s. Then the spin-coater was turned off, and the liquid film was kept in the humid atmosphere to evaporate the solvent. By controlling the injection volume of polymer solution and the spinning speed, the thickness of the films prepared could be adjusted from a few microns to tens of microns. Considered significant thickness fluctuations and poor mechanical stability due to excessive spinning speed or too little polymer solution covered the substrate, the limit of film thickness is controlled above 3 µm. Specifically, films of 3.5, 6.0, 10.3, 18.0, 28.5, and 84 µm were prepared by using approximately 0.01 mL at 9000 r min$^{-1}$, 0.01 mL at 8000 r min$^{-1}$, 0.02 mL at 8000 r min$^{-1}$, 0.05 mL at 7500 r min$^{-1}$, 0.08 mL at 5000 r min$^{-1}$, and 0.25 mL at 2500 r min$^{-1}$, respectively. Following solvent evaporation, the obtained films were taken out and dried in a vacuum oven at 70 °C overnight. The photo of the setup is shown in Figure S11 in the Supporting Information.

Total Reflectance Measurement: Total reflectance was measured by a UV–vis–NIR spectrometer (Lambda 950, Perkin Elmer, USA) with a 150 mm integrating sphere. A light beam of about 0.3 × 1 cm2 was...
incident at 8° and a window at –8° was opened to eliminate the specular reflection (except for measurement of transparent bulk PS film), which was about 2% in our case, as shown in the inset of Figure 2a. A common beam depolarizer was used to obtain unpolarized incident light. A standard white diffuser (SRS-99-020, Labsphere, USA) was used for the calibration before measurement.

Angular-Resolved Measurement: A halogen lamp (HL2000, Ideaoptics, China) was fixed along the direction orthogonal to the film surface in a goniometer (RI, Ideaoptics, China). The detector (NOVA-EX, Ideaoptics, China) connected with a goniometer by a 600 µm core optic fiber (FIB-M-600-NIR, Ideaoptics, China) recorded scattering light signal from 300 to 1000 nm wavelength at different angles subtending a solid angle 3.9°. The light source was fixed at 0° and the detector was rotated from 90° to 270° in the transmittance mode. Ballistic light was estimated as the ratio between the diffused light intensity extrapolated at 180° and the actual intensity collected at 180°. Integration time was adjusted from 1000 to 4000 ms depending on the film thickness. Agular measurements are taken in steps of 5°.

Morphological Characterization: The morphology of the films was observed by SEM (JSM-7500F, JEOL, Japan) at an accelerating voltage of 5 kV. The films were coated with platinum by a sputter coater (JFC-3000FC, JEOL, Japan) before investigation. Film thickness was measured using the cross-section SEM image and an average data of 20 different points was reported. The thickness of samples is 3.5 ± 0.1 µm thick, respectively.

Volume Fraction of Microstructure: The morphology of the films was evaluated by SEM (JSM-7500F, JEOL, Japan) at an accelerating voltage of 5 kV. The films were coated with platinum by a sputter coater (JFC-3000FC, JEOL, Japan) before investigation. Film thickness was measured using the cross-section SEM image and an average data of 20 different points was reported. The thickness of samples is 3.5 ± 0.1 µm thick, respectively.

Static Contact Angle Test: Static contact angle (CA, θ) was measured using a drop shape analysis instrument (KRÜSS DSA 100, Germany) at ambient temperature via a sessile drop method. A water droplet of 5 µL was employed on the untreated sample and 1 µL was employed on the treated sample and each contact angle value was an average of three measurements on different positions of the surface.

Exhalation Monitoring Test: A 445 nm blue laser diode source was used delivering an optical power of 117 mW as measured by an optical power meter (Model 843-R, Newport, USA) equipped with a 919P thermopile sensor without the scattering sample. All tests were carried out in ambient environment with an RH of 35 ± 2%.

Supporting Information
Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements
W.Z. and L.P. contributed equally to this work. This work was financially supported by the National Nature Science Foundation of China (Grant Nos. 51673203 and 51522308) and the Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH025). W.Z., N.Z., and J.X. thank Prof. Jian Zi, Prof. Lei Shi, and Dr. Yujie Bai at Fudan University for fruitful discussions; Ideaoptics company (Shanghai, China) for help in angular-resolution measurement; Dr. Zijian Xu and Dr. Xiangzhi Zhang at Shanghai Synchrotron Radiation Facility for help in morphological analysis. L.P. and D.S.W. acknowledge funding from Ente Cassa di Risparmio Firenze, Prog. No. 2015-0781, and Laserlab-Europe, H2020 EC-GA (654148).

Conflict of Interest
The authors declare no conflict of interest.

Keywords
biomimicry, Cyphochilus, Monte Carlo simulation, phase separation, polymer

Received: December 13, 2018
Revised: February 7, 2019
Published online: February 25, 2019
[29] D. Schrader, in Polymer Handbook (Eds.: J. Brandrup, E. H. Immergut, E. A. Grulke, A. Abe, D. R. Bloch), Vol. 2, Wiley, New York 1989.

[30] M. Hammer, A. Roggan, D. Schweitzer, G. Muller, Phys. Med. Biol. 1995, 40, 963.

[31] G. Mazzamuto, L. Pattelli, C. Toninelli, D. S. Wiersma, New J. Phys. 2016, 18, 023036.

[32] W. Wu, H. Haick, Adv. Mater. 2018, 30, 1705024.

[33] H. Jin, Y. S. Abu-Raya, H. Haick, Adv. Healthcare Mater. 2017, 6, 1700024.

[34] G. Konvalin, H. Haick, Acc. Chem. Res. 2014, 47, 66.

[35] A. Ishimaru, Wave Propagation and Scattering in Random Media, Wiley, New York 1999.

[36] R. Gómez-Medina, L. S. Froufe-Pérez, M. Yépez, F. Scheffold, M. Nieto-Vesperinas, J. J. Sáenz, Phys. Rev. A 2012, 85, 035802.

[37] B. X. Wang, C. Y. Zhao, Phys. Rev. A 2018, 97, 023836.

[38] D. J. Durian, Phys. Rev. E 1994, 50, 857.

[39] K. M. Yoo, R. R. Alfano, Opt. Lett. 1990, 15, 320.

[40] R. Elaloufi, R. Carminati, J. J. Greffet, J. Opt. Soc. Am. A 2004, 21, 1430.

[41] E. Alerstam, Phys. Rev. E 2014, 89, 063202.

[42] A. Fernandez-Oliveras, M. Rubiño, M. M. Perez, J. Eur. Opt. Soc. – Rapid 2012, 7, 12016-1.

[43] I. A. Mjör, Dentin Dentinog. 1984, 1, 1.

[44] Y. S. Su, C. Y. Kuo, D. M. Wang, J. Y. Lai, A. Deratani, C. Pochat, D. Bouyer, J. Membr. Sci. 2009, 338, 17.

[45] J. T. Tsai, Y. S. Su, D. M. Wang, J. L. Kuo, J. Y. Lai, A. Deratani, J. Membr. Sci. 2010, 362, 360.

[46] V. P. Khare, A. R. Greenberg, W. B. Krantz, J. Membr. Sci. 2005, 258, 140.

[47] Y. Yip, A. J. McHugh, J. Membr. Sci. 2006, 271, 163.

[48] C. Y. Kuo, H. A. Tsai, J. Y. Lai, D. M. Wang, A. Deratani, C. Pochat-Bohatier, H. Matsuyama, presented at ICOM, Seoul, South Korea, August 2005.

[49] I. M. Lifshitz, V. V. Slyozov, J. Phys. Chem. Solids 1961, 19, 35.

[50] J. W. Cahn, J. Chem. Phys. 1965, 42, 93.

[51] S. L. Su, D. M. Wang, J. Y. Lai, J. Membr. Sci. 2017, 529, 35.

[52] J. M. Corres, Y. R. Garcia, F. J. Arregui, I. R. Matias, IEEE Sens. J. 2011, 11, 2383.

[53] B. Ding, M. Wang, J. Yu, G. Sun, Sensors 2009, 9, 1609.

[54] J. Cimadoro, L. Ribba, S. Ledesma, S. Goyanes, Macromol. Mater. Eng. 2018, 303, 1800237.

[55] R. W. Paynter, Surf. Interface Anal. 2000, 29, 56.

[56] T. Murakami, S. Kuroda, Z. Osawa, J. Colloid Interface Sci. 1998, 202, 37.

[57] S. L. Burg, A. J. Parnell, J. Phys.: Condens. Matter 2018, 30, 413001.

[58] W. M. Haynes, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL 2014.