Ionization structure and Fe Kα energy for irradiated accretion disks

X. L. Zhou¹,²⋆, Y. H. Zhao¹,² and R. Soria³

¹Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
²National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012, China
³Mullard Space Science Laboratory, University College London, Holmbury St Mary, Surrey RH5 6NT, UK

Accepted 2011 . Received 2010; in original form 2010

ABSTRACT

We study the radial ionization structure at the surface of an X-ray illuminated accretion disk. We plot the expected iron Kα line energy as a function of the Eddington ratio and of the distance of the emitting matter from the central source, for a non-rotating and a maximally-rotating black hole. We compare the predicted disk line energies with those measured in an archival sample of active galactic nuclei observed with Chandra, XMM-Newton and Suzaku, and discuss whether the line energies are consistent with the radial distances inferred from reverberation studies. We also suggest using rapidly-variable iron Kα lines to estimate the viscosity parameter of an accretion disk. There is a forbidden region in the line energy versus Eddington ratio plane, at low Eddington ratios, where an accretion disk cannot produce highly-ionized iron Kα lines. If such emission is observed in low-Eddington-ratio sources, it is either coming from a highly-ionized outflow, or is a blue-shifted component from fast-moving neutral matter.

Key words: accretion, accretion discs — X-rays: galaxies — galaxies: active — quasars: emission lines

1 INTRODUCTION

Recent high-resolution spectral studies by Chandra, XMM-Newton and Suzaku have revealed that emission lines at 6.7 or 6.9 keV (probably emitted by highly ionized iron) are common features in the X-ray spectra of active galactic nuclei (AGNs, e.g., Pounds et al. 2003; Reeves et al. 2004; Yaqoob & Padmanabhan 2004; Bianchi et al. 2004; Shu et al. 2010; Patrick et al. 2010). The Kα emission lines produced by ionized iron in optically thin, photoionized material in AGNs have been studied by Bianchi & Matt (2002). Their results may require an iron overabundance by a factor of a few to account for the observed line strength.

The energy and ionization balance at the surface of an accretion disk can change due to the X-ray illumination, and this affects the line emission. Thus, it is important to determine the radial ionization structure of X-ray photoionized accretion disks, in order to study the reflected spectra and the associated iron Kα emission. The energy of the iron Kα line generally increases as iron becomes more stripped, from 6.4 keV for Fe I to 6.97 keV for Fe XXVI (Kaspi et al. 2002; Pareschi & Kallman 2003). This provides a diagnostic of the accretion disk structure; we can compare the calculated photoionization structure of the disk with the observed energy of the iron Kα line, assuming that the line was emitted from the disk.

In this letter, we calculate the radial ionization structure of an X-ray illuminated AGN accretion disk as a function of Eddington ratio, \(\lambda_{\text{Edd}} \equiv L_{\text{bol}}/L_{\text{Edd}} \), where \(L_{\text{bol}} \) is the bolometric luminosity and \(L_{\text{Edd}} \) is the Eddington luminosity. We then compare the predicted range of ionization parameters and iron Kα line energies with a sample of recent line observations. We plot the predicted and observed line energies \(E_{\alpha} \) as a function of \(\lambda_{\text{Edd}} \). This gives us clues on the origin of the iron Kα lines. Throughout this Letter, we assume standard cosmological parameters \(h_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}, \Omega_m = 0.27, \text{ and } \Omega_{\Lambda} = 0.73. \)

2 METHODS AND RESULTS

X-ray reflection from the surface of cold matter around compact accreting objects has been studied by many authors (Basko et al. 1974; Guilbert & Rees 1983; Lightman & White 1988; White et al. 1988; George & Fabian 1991; Matt et al. 1991; Done et al. 1992; Ross & Fabian 1993; Matt et al. 1993; Czerny & Zycki 1993).
performed our calculation for three values of h next to the Schwarzschild curves. For each value of h, the radial values are plotted as labels in Figure 1, from a large range of values has been used in previous studies, ~ 0.06 for a Schwarzschild BH and $\eta = 0.31$ for a maximally spinning astrophysical BH (Thorne 1974). Here we assume a standard value of viscosity parameter of $\alpha \approx 0.1$, although a large range of values has been used in previous studies, from $\alpha \approx 0.01$ (Miller & Stone 2000; Starling et al. 2004) to $\alpha \approx 0.3$ (Esin et al. 1997).

We took the values of the iron Kα line energy emitted by an X-ray illuminated disk as a function of α from the calculations of Matt et al. (1993, Fig 1b). Note that the relation between E_{α} and ξ is almost independent of the incident angle of the illuminating flux; here we assume that E_{α} is only a function of the iron ionization state. Using Eq.(1), we calculated E_{α} as a function of λ_{Edd} for different values of h and r (Figure 1). Plotted as black lines are the results for a Schwarzschild BH; the blue lines are the results for a maximally-spinning Kerr BH. We repeated the calculation for six values of r between $5r_g$ and $200r_g$ in the Schwarzschild case, and the same six values of r in the Kerr case. The radial values are plotted as labels in Figure 1, next to the Schwarzschild curves. For each value of r, we performed our calculation for three values of $h = 5r_g$, $8r_g$, and $15r_g$. The curves corresponding to those three values of h are plotted as solid, dashed and dot-dashed lines, respectively.

3 COMPARISON WITH OBSERVATIONS

We compared the predicted and measured values of the line energy in the $(E_{\alpha}, \lambda_{\text{Edd}})$ plane (Figure 2; only the calculations for a Schwarzschild BH are plotted, for simplicity). The Eddington ratios λ_{Edd} of the observed sample are taken from Zhou & Zhang (2010) and Zhou & Wang (2003), who studied a large sample of X-ray luminous AGNs. Using our theoretical curves, we can directly estimate the effective distance of the line-emitting region from the illuminating X-ray source, in the various sources. For instance, observational values falling on the dashed line corresponding to $(r = 35r_g, h = 8r_g)$ indicate a distance $R = (r^2 + h^2)^{1/2} \approx 36 r_g$. This distance determines a characteristic time lag between primary X-ray source and line emission. From the observed values of time lag and intrinsic line width, one can estimate the BH mass and spin, with the iron line reverberation method (Reynolds et al. 1999; Liu et al. 2010). In the rest of this section, we compare the line emission distances inferred from the $(E_{\alpha}, \lambda_{\text{Edd}})$ plane with those estimated in the published literature, for a sample of Seyfert galaxies.

NGC 7314: simultaneous observations of the NLS1 NGC 7314 with Chandra and RXTE have revealed variability in the spectral features on a timescale < 12.5 ks (Yaqoob et al. 2003), corresponding to a light-crossing distance of $\approx 500r_g$ and a Keplerian radius of $\approx 18.5r_g$ for a BH mass of $10^6 M_\odot$ (Zhou & Wang 2003). This is in excellent agreement with the Fe xxv emission region ($\approx 20r_g$).
Fe Kα line from accretion disks

4 DISCUSSION AND CONCLUSIONS

Iron at the surface of an accretion disk is significantly ionized when the Eddington ratio λ_{Edd} is larger than a critical value. Assuming a standard viscosity parameter $\alpha \sim 0.1$, the critical value above which iron in the innermost part of the disk becomes ionized is $\lambda_{\text{Edd}} \sim 0.1$ for a Schwarzschild BH, and $\lambda_{\text{Edd}} \sim 0.3$ for a maximally-rotating astrophysical BH. We studied the radial ionization structure of an X-ray illuminated accretion disk, and calculated the energy (increasing with the ionization parameter) of the iron Kα lines emitted from the disk. We plotted those energies as family of curves in the $(E_\alpha, \lambda_{\text{Edd}})$ plane, parameterized in terms of radial distance of the emitters and height of the illuminating X-ray source above the disk plane (lamppost model), for a non-rotating and a maximally-rotating BH. We compared our model with the observed Kα line energies from a sample of AGNs.

A substantial fraction of AGNs show highly-ionized iron Kα emission. The origin of the ionized emission is still debated. Our results suggest that it may come from two different sources: the accretion disk (for $\lambda_{\text{Edd}} \gtrsim 0.1$) or the photoionized material in the outflow (for $\lambda_{\text{Edd}} \lesssim 0.1$). Our model presented here is based on simple assumptions, such as constant density without vertical stratification (Matt et al. 1993), but our main goal is to illustrate an important physical effect, which is unlikely to depend substantially on the details of the disk structure.

The critical λ_{Edd} depends on α, which parameterizes our ignorance of detailed accretion physics (Hill et al. 2002; Miller et al. 2006). Despite forty years of observational, experimental, and theoretical studies since Shakura & Sunyaev (1973), we are still unable to determine the disk viscosity accurately. The theoretical dependence of the observed Kα line energy on α suggests that we can reverse the argument: if we have independent measurements of a BH mass, spin, and luminosity, we can estimate α using the ionization curves in the $(E_\alpha, \lambda_{\text{Edd}})$ plane, by combining the information on centroid energy and rapid variability timescale. It is plausible that $\alpha \sim 0.1$ is in agreement of iron line observations of a few AGNs.

Iron near the disk surface cannot be ionized at low accretion rates and low Eddington ratios. There is a forbidden region in the $(E_\alpha, \lambda_{\text{Edd}})$ plane, below which ionized Kα line emission cannot come from an irradiated disk. Observationally, several low-luminosity AGNs in that region show Kα emission features at 6.5–6.7 keV (Fabian et al. 2006; Zoghbi et al. 2010).

Finally, we emphasize that the current observations do not yet allow us to put robust constraints on the origin of the highly-ionized iron Kα lines. The line parameters derived from X-ray spectral fitting are strongly model-dependent, and have large uncertainties. Future observations with the next generation of X-ray space telescopes (such as the proposed GRAVITAS mission) will resolve the profile and con-
Table 1. Observed rest-frame central energies of the iron Kα lines in our sample of galaxies. Col.(1): common name of the object; Col.(2): redshift, from the NASA/IPAC Extragalactic Database (NED); Col.(3): source of the X-ray data; Col.(4–6): centroid energies (\(f\) fixed); Col.(7): Eddington ratio, from Zhou & Zhang (2010) and Zhou & Wang (2005); Col.(8): references for the X-ray spectra: (1) Patrick et al. (2010); (2) Gallo et al. (2004a); (3) Takahashi et al. (2010); (4) Schmoll et al. (2009); (5) Bianchi et al. (2001); (6) Bianchi et al. (2005); (7) Fabian et al. (2009); (8) Turner et al. (2002); (9) Reeves et al. (2004); (10) Pounds et al. (2003); (11) Reeves et al. (2001); (12) Reynolds et al. (2004); (13) Longinotti et al. (2005); (14) McKernan & Yaqoob (2004); (15) Matt et al. (2001); (16) Pounds et al. (2001); (17) Bianchi et al. (2003); (18) Yaqoob et al. (2003); (19) Petrucci et al. (2002).

Source	Redshift	Mission	\(E_{\alpha 1}\) (keV)	\(E_{\alpha 2}\) (keV)	\(E_{\alpha 3}\) (keV)	\(\log(\lambda E_{\alpha 3})\)	Ref.
Mrk 335	0.0258	Suzaku	6.27土0.13	6.69土0.06	6.98土0.06	0.05	1
I Zw 1	0.0589	XMM-Newton	6.4f	6.84土0.09	...	0.12	2
Ton S180	0.0620	Suzaku	...	6.4土0.1	...	0.29	3
Fairall 9	0.0470	Suzaku	6.16士0.2	6.74士0.04	6.98士0.02	-1.72	1,4
ESO 198-G24	0.0455	Chandra, XMM-Newton	6.38士0.06	...	6.97f	-1.36	5,6
Ark 120	0.0327	Suzaku	6.36士0.08	...	6.96士0.04	-0.99	1
1H 0707-495	0.0406	XMM-Newton	...	6.5 - 6.7	...	-0.04	7
NGC 3516	0.0089	Chandra, XMM-Newton	6.41士0.01	6.53士0.04	6.84士6.97	-1.89	8
NGC 3783	0.0097	Chandra, XMM-Newton	6.39士0.01	...	7.00士0.02	-1.36	9
Mrk 766	0.0129	XMM-Newton	6.40f	6.67士0.08	...	-0.26	10
Mrk 205	0.0708	XMM-Newton	6.39士0.03	6.74士0.12	...	-0.57	11
NGC 4593	0.0990	XMM-Newton	6.39士0.01	6.95士0.05	-0.71	12	
IRAS 13439+2438	0.1076	XMM-Newton	6.0士0.3	...	7.0士0.1	-0.58	13
IC 4329A	0.0161	Chandra	6.301土0.076	...	6.906士0.028	-0.83	14
NGC 5506	0.0062	XMM-Newton	6.41士0.03	6.75士0.10	...	-0.38	15
Mrk 509	0.0344	XMM-Newton	6.36士0.03	...	6.91士0.09	-1.10	16
NGC 7213	0.0058	XMM-Newton	6.39士0.01	6.65士0.04	6.94士0.05	-1.79	17
NGC 7314	0.0048	Chandra	6.405士0.016	6.607士0.017	6.931士0.011	-0.65	18
MCG-02-58-22	0.0469	XMM-Newton	6.29士0.26	...	6.97f	-1.78	5,6
Mrk 841	0.0364	XMM-Newton	6.41士0.05	6.97f	-1.78	19	

strain the origin of those lines, and test X-ray reverberation mapping in a large sample of AGNs.

ACKNOWLEDGEMENTS

We are very grateful to an anonymous referee for helpful comments to improve the manuscript substantially. We thank the discussion and suggestion from Prof. J. M., Wang. This work is supported by the National Natural Science Foundation of China under grant 11003022 and the Guoshoujing Telescope. The Guoshoujing Telescope (formerly named the Large Sky Area Multi-Object Fiber Spectroscopic Telescope; LAMOST) is funded by the National Development and Reform Commission, operated and managed by the Key Laboratory of Optical Astronomy, NAOC, CAS. This research has made use of results obtained with Chandra, XMM-Newton and Suzaku, which are collaborative missions contributed by the USA (NASA), the ESA member states and the space agencies of Japan (JAXA).

REFERENCES

Ballantyne D. R., Fabian A. C., Ross R. R., 2002, MNRAS, 329, L67
Basko M. M., Sunyaev R. A., Titarchuk L. G., 1974, A&A, 31, 249
Bhuyani S., Nandra K., 2010, MNRAS, 408, 1020
Bianchi S., Matt G., 2002, A&A, 387, 76
Bianchi S., Matt G., Balestra I., Perola G. C., 2003, A&A, 407, L21
Bianchi S., Matt G., Balestra I., Guainazzi M., Perola G. C. 2004, A&A, 422, 65
Bianchi S., Matt G., Nicastro F., Porquet D., Dubau J. 2005, MNRAS, 357,599
Bianchi S., Guainazzi M., Matt G., Fonseca B. N., Ponti G., 2009, A&A, 495, 421
Blackman E. G., 1999, MNRAS, 306, L25
Boller T. et al., 2002, MNRAS, 329, L1
Czerny B., Życki P. T., 1994, ApJ, 431, L5
Done C., Mulchaey J. C., Mushotzky R. F., Arnaud K. A., 1992, ApJ, 395, 275
Esin A. A., McClintock J. E., Narayan R., 1997, ApJ, 489, 865
Fabian A. C., Miniutti, G., Gallo L., Boller T., Tanaka Y., Vaughan S., Ross R. R., 2004, MNRAS, 353, 1071
Fabian A. C. et al., 2009, Nature, 459, 540
Gallo L. C., Tanaka Y., Boller T., Fabian A. C., Vaughan S., Brandt W. N., 2004, A&A, 417, 29
Gallo L. C., Tanaka Y., Boller T., Fabian A. C., Vaughan S., Brandt W. N., 2004, MNRAS, 353, 1064
George I. M., Fabian A. C., 1991, MNRAS, 249, 352
Guilbert P. W., Rees M. J., 1988, MNRAS, 233, 475
Kaspi S. et al., 2002, ApJ, 574, 643
Krolik J. H., Madan P., Życki P. T. 1994, ApJ, 420, L57
Ji H., Burin M., Schartman E., Goodman J., 2006, Nature, 444, 343
Fe Kα line from accretion disks

Lightman A. P., White T. R., 1988, ApJ, 335, 57
Liu B. F., Taam R. E., 2009, ApJ, 707, 233
Liu Y. et al., 2010, ApJ, 710, 1228
Longinotti A. L., Cappi M., Nandra K., Dadina M., Pellegrini S., 2003, A&A, 410, 471
Longinotti A. L., Nandra K., Petrucci P. O., O’Neill P. M., 2004, MNRAS, 355, 929
Magdziarz P., Zdziarski A. A., 1995, MNRAS, 273, 837
Matt G., Perola G. C., Piro L., 1991, A&A, 247, 25
Matt G., Fabian A. C., Ross R. R., 1993, MNRAS, 262, 179 (M93)
Matt G., Guainazzi M., Perola G. C., Fiore F., Nicastro F., Cappi M., Piro L. 2001, A&A, 377, L31
McKernan B., Yaqoob T., 2004, ApJ, 608, 157
Miller J. M., Raymond J., Fabian A. C., Steeghs D., Homan, J., Reynolds C., van der Klis M., Wijnands R., 2006, Nature, 441, 953
Miller L., Turner T. J., Reeves J. N., Braito V., 2010, MNRAS, 408, 1928
Miller K. A., Stone J. M., 2000, ApJ, 534, 398
Miniutti G., Fabian A. C., 2004, MNRAS, 349, 1435
Nayakshin S., Kazanas D., Kallman T. R., 2000, ApJ, 537, 833
Nayakshin S., Kallman T. R., 2001, ApJ, 546, 406
Paerels F. B. S., Kahn S. M., 2003, ARA&A, 41, 291
Patrick A. R., Reeves J. N., Porquet D., Markowitz A. G., Lobban A. P., Terashima Y., 2010, MNRAS, ArXiv Astrophysics e-prints
Petrucci P. O. et al., 2002, A&A, 388, L5
Pounds K. A., Reeves J. N., O’Brien P. T., Page K. L., Turner M., Nayakshin S., 2001, ApJ, 559, 181
Pounds K. A., Reeves J. N., Page K. L., Wynn G. A., O’Brien P. T., 2003, MNRAS, 342, 1147
Poutanen J., Nagendra K. N., Svensson R., 1996, MNRAS, 283, 892 óż
Qiao E., Liu B. F. 2009, PASJ, 61, 403
Reeves J. N., Turner M. J. L., Pounds K. A., O’Brien P. T., Boller Th., Ferrando P., Kendziorra E., Vercellone S. 2001, A&A, 365, L134
Reeves J. N., Nandra K., George I. M., Pounds K. A., Turner T. J., Yaqoob T., 2004, ApJ, 602, 648
Reynolds C. S., Begelman M. C., 1997, ApJ, 488, 109
Reynolds C. S., Young A. J., Begelman M. C., Fabian A. C., 1999, ApJ, 514, 164
Reynolds C. S., Brenneman L. W., Wilms J., Kaiser M. E. 2004, MNRAS, 352, 205
Rózańska A., Czerny B., 2000, A&A, 360, 1170
Ross R. R., Fabian A. C., 1993, MNRAS, 261, 74
Ross R. R., Fabian A. C., Brandt W. N., 1996, MNRAS, 278, 1082
Shakura N. I., Sunyaev R. A., 1973, A&A, 24, 337
Schmoll S. et al., 2009, ApJ, 703, 2171
Shu X. W., Yaqoob T., Wang J. X., 2010, ApJS, 187, 581
Starling R. L. C., Siemiginowska A., Uttley P., Soria R., 2004, MNRAS, 347, 67
Takahashi H., Hayashida K., Anabuki N., 2010, PASJ, 62, 1483
Tanaka Y., Boller T., Gallo L., Keil R., Ueda Y., 2004, PASJ, 56, 9
Thorne K. S., 1974, ApJ, 191, 507
Turner T. J. et al., 2002, ApJ, 574, 123

Turner T. J., Kraemer S. B., Reeves J. N., 2004, ApJ, 603, 62
White T. R., Lightman A. P., Zdziarski A. A., 1988, ApJ, 331, 939
Yaqoob T., George I. M., Kallman T. R., Padmanabhan U., Weaver K. A., Turner T. J., 2003, ApJ, 596, 85
Yaqoob T., Padmanabhan U., 2004, ApJ, 604, 63
Young A. J., Reynolds C. S., 2000, ApJ, 529, 101
Zhou X. L., Wang J. M., 2005, ApJ, 618, L83
Zhou X. L., Zhang S. N., 2010, ApJ, 713, L11
Zoghbi A., Fabian A. C., Uttley P., Miniutti G., Gallo L. C., Reynolds C. S., Miller J. M., Ponti G., 2010, MNRAS, 401, 2419