Torsion induced effects in magnetic nanowires

Denis D. Sheka, 1,* Volodymyr P. Kravchuk, 2, † Kostiantyn V. Yershov, 2, 3, † and Yuri Gaididei 2, §

1 Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
2 Bogolyubov Institute for Theoretical Physics, 03143 Kyiv, Ukraine
3 National University of “Kyiv-Mohyla Academy”, 04655 Kyiv, Ukraine

(Dated: March 19, 2015)

Effects of the curvature on the magnetization structure in nanomagnetic particles of nontrivial geometry were studied for cylinders, 2–4 torus, 5 spherical shells, 6 hemispherical caps, 7,8 cylindrical capped nanomembranes, 9 and cone shells. 10,11

Very recently we have developed fully three dimensional (3D) approach for studying statics and dynamics of thin magnetic shells and wires of arbitrary shape. 10,12 This theory gives a possibility to derive the energy for arbitrary curves and surfaces and arbitrary magnetization vector fields on the assumption that the magnetostatic effects can be reduced to an effective anisotropy. We have shown 12 that the curvature induces two effective magnetic interactions: (i) curvature induced effective anisotropy, which is bilinear with respect to curvature and torsion and (ii) curvature induced effective Dzyaloshinskii-like interaction, which is linear with respect to curvature and torsion. This novel approach opens doors for studying several perspective directions in nanomagnets, including topologically induced patterns 6,13 and magnetochiral effects 12,13.

The simplest system which displays both the properties of the curvature and torsion is a helix wire, which is characterized by constant curvature and torsion. The interest to such a geometry is motivated by recent experiments on rolled-up ferromagnetic microheli-

x coils. 14,15 Depending on the anisotropy direction different artificial complex helimagnetic–like configurations were experimentally realized: hollow–bar–, corkscrew–, and radial–magnetized 3D micro–heli-

x coils. 14 Rolled magnetic structures are now widely discussed in the context of possible application in flexible and stretchable magneto-

electronic devices, 16 in particular, rolled-up GMR sensors, 17 for magnetofluidic applications, spin-

wave filters, 18,19 and microrobots. 20 Helix coil magnetic structures have the potential to be used a variety of bioapplication areas, such as in medical procedures, cell biology, or lab–on–a–chip. 21

In the current study we apply our theory 11 aimed to describe magnetization statics and linear dynamics in the helix wire. We analyze equilibrium states for different types of anisotropy. The ground state is determined by the relationship between the curvature, torsion and the anisotropy strength: we describe possible magnetization distributions analyti-

cally. For three types of anisotropy (easy-tangential, easy-normal and easy-binormal) we compute phase diagrams of possible ground states. In each of these cases the ground state is either onion one (for weak anisotropy) or anisotropy-aligned state (for strong anisotropy), these results are summarized in Fig. 3. For example, in the most interesting case of easy-tangential anisotropy a quasi-tangential magnetization distribution appears for strong enough anisotropy, see Fig. 2(a,b). We show that pure tangential magnetization distribution is impossible. The deviation from the tangential state is determined by the the curvature and torsion; besides there exists the coupling between the helix chirality and the magnetochirality of magnetization distribution.

We study the problem of spin wave dynamics in the helix wire. Our analysis shows that the curvature and torsion act on magnons in two ways: besides the standard potential scattering of magnons, there appears an effective torsion induced magnetic field. The vector potential of effective field is mainly determined by the product of the torsion and the magnetochirality. The origin of this field is the curvature induced effective Dzyaloshinskii-like interaction. 11 Finally, the torsion breaks the symmetry of spin wave spectrum with respect to the direction of

I. INTRODUCTION

During the past few years there is a growing interest to curvature effects in physics of nanomagnetism. A crucial aspect of the interest is caused by recent achievements in nanotechnologies of flexible, stretchable and printable magneto-

electronics (see Ref. 1 and references therein). Effects of the curvature on the magnetization structure in nanomagnetic particles of nontrivial geometry were studied for cylinders, 2–4 torus, 5 spherical shells, 6 hemispherical caps, 7,8 cylindrical capped nanomembranes, 9 and cone shells. 10,11

Very recently we have developed fully three dimensional (3D) approach for studying statics and dynamics of thin magnetic shells and wires of arbitrary shape. 10,12 This theory gives a possibility to derive the energy for arbitrary curves and surfaces and arbitrary magnetization vector fields on the assumption that the magnetostatic effects can be reduced to an effective anisotropy. We have shown 12 that the curvature induces two effective magnetic interactions: (i) curvature induced effective anisotropy, which is bilinear with respect to curvature and torsion and (ii) curvature induced effective Dzyaloshinskii-like interaction, which is linear with respect to curvature and torsion. This novel approach opens doors for studying several perspective directions in nanomagnets, including topologically induced patterns 6,13 and magnetochiral effects 12,13.

The simplest system which displays both the properties of the curvature and torsion is a helix wire, which is characterized by constant curvature and torsion. The interest to such a geometry is motivated by recent experiments on rolled–up ferromagnetic microheli-

x coils. 14,15 Depending on the anisotropy direction different artificial complex helimagnetic–like configurations were experimentally realized: hollow–bar–, corkscrew–, and radial–magnetized 3D micro–heli-

x coils. 14 Rolled magnetic structures are now widely discussed in the context of possible application in flexible and stretchable magneto-

electronic devices, 16 in particular, rolled-up GMR sensors, 17 for magnetofluidic applications, spin-

wave filters, 18,19 and microrobots. 20 Helix coil magnetic structures have the potential to be used a variety of bioapplication areas, such as in medical procedures, cell biology, or lab–on–a–chip. 21

In the current study we apply our theory 11 aimed to describe magnetization statics and linear dynamics in the helix wire. We analyze equilibrium states for different types of anisotropy. The ground state is determined by the relationship between the curvature, torsion and the anisotropy strength: we describe possible magnetization distributions analyti-

cally. For three types of anisotropy (easy-tangential, easy-normal and easy-binormal) we compute phase diagrams of possible ground states. In each of these cases the ground state is either onion one (for weak anisotropy) or anisotropy-aligned state (for strong anisotropy), these results are summarized in Fig. 3. For example, in the most interesting case of easy-tangential anisotropy a quasi-tangential magnetization distribution appears for strong enough anisotropy, see Fig. 2(a,b). We show that pure tangential magnetization distribution is impossible. The deviation from the tangential state is determined by the the curvature and torsion; besides there exists the coupling between the helix chirality and the magnetochirality of magnetization distribution.

We study the problem of spin wave dynamics in the helix wire. Our analysis shows that the curvature and torsion act on magnons in two ways: besides the standard potential scattering of magnons, there appears an effective torsion induced magnetic field. The vector potential of effective field is mainly determined by the product of the torsion and the magnetochirality. The origin of this field is the curvature induced effective Dzyaloshinskii-like interaction. 11 Finally, the torsion breaks the symmetry of spin wave spectrum with respect to the direction of
II. THE MODEL OF A CURVED WIRE

We consider the model of a curved cylindrical wire. Let \(\gamma(s) \) be a 1D curve embedded in 3D space \(\mathbb{R}^3 \) with \(s \) being the arc length coordinate. It is convenient to use Frenet–Serret reference frame with basic vectors \(e_\alpha \):

\[
e_1 = \gamma', \quad e_2 = \frac{e_1'}{|e_1'|}, \quad e_3 = e_1 \times e_2
\]

with \(e_1 \) being the tangent, \(e_2 \) being the normal, and \(e_3 \) being binormal to \(\gamma \). Here and below the prime denotes the derivative with respect to the arc length \(s \), and curvilinear components of vector fields. The relation between \(e'_\alpha \) and \(e_\alpha \) is determined by Frenet–Serret formulas:

\[
e'_\alpha = F_{\alpha\beta} e_\beta, \quad \|F_{\alpha\beta}\| = \left|\begin{array}{ccc} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{array}\right|.
\]

Here \(\kappa \) and \(\tau \) are the curvature and torsion of the wire, respectively.

The wire of a finite thickness \(h \) can be defined as the following space domain

\[
r(s, u, v) = \gamma(s) + u e_2 + v e_3,
\]

where \(u \) and \(v \) are coordinates within the wire cross section (\(|u|, |v| \lesssim h \)).

Let us describe the magnetic properties of the wire. Our analysis is carried out under the following assumptions: (i) We assume the magnetization spatial one-dimensionality, which can be formalized as \(m = m(s, t) \). This assumption is appropriate for the cases when the thickness \(h \) does not exceed the characteristic magnetic length. We also suppose that \(h \ll 1/\kappa, 1/\tau \). (ii) We neglect the dipolar interaction in comparison with anisotropy one.

The magnetic energy of a classical Heisenberg ferromagnet with uniaxial anisotropy has the following form:

\[
E = AS \int ds \left(\mathcal{E}_{\text{ex}} + \mathcal{E}_{\text{an}} \right),
\]

\[
\mathcal{E}_{\text{ex}} = -m \cdot \nabla^2 m, \quad \mathcal{E}_{\text{an}} = -\frac{(m \cdot e_{\text{an}})^2}{w^2}
\]

with \(A \) being the exchange constant, \(w = \sqrt{A/K} \) being the magnetic length, \(K \) being the constant of anisotropy, \(e_{\text{an}} \) being the unit vector along the anisotropy axis, and \(S \) being the cross-section area.

Typically, orientation of the anisotropy axis \(e_{\text{an}} \) is determined by the wire geometry, e.g. it can be tangential to the wire,\(^{14}\) which means in general complicated spatial dependence due to the curvilinear geometry. Therefore it is convenient to represent the energy of the magnet in the curvilinear reference frame \((1) \), where \(\mathcal{E}_{\text{an}} \) has a simplest form. For an arbitrary thin wire the exchange energy density can be presented as follows\(^{12}\)

\[
\mathcal{E}_{\text{ex}} = \mathcal{E}_{\text{ex}}^0 + \mathcal{E}_{\text{ex}}^A + \mathcal{E}_{\text{ex}}^D, \quad \mathcal{E}_{\text{ex}}^0 = |m'|^2,
\]

\[
\mathcal{E}_{\text{ex}}^A = K_{\alpha\beta} m_\alpha m_\beta, \quad \mathcal{E}_{\text{ex}}^D = F_{\alpha\beta} \left(m_\alpha R_\beta - m_\beta R_\alpha\right).
\]

Here the first term \(\mathcal{E}_{\text{ex}}^0 \) describes the common isotropic part of exchange expression which has the same form as for the straight wire. The second term \(\mathcal{E}_{\text{ex}}^A \) describes an effective anisotropy–like interaction, where the components of the tensor \(K_{\alpha\beta} = F_{\alpha\beta} F_{\beta\gamma} \) are bilinear with respect to the curvature \(\kappa \) and the torsion \(\tau \). This term is similar to the “geometrical potential”.\(^{25}\) Note that the curvature caused “geometric” effective magnetic field was considered recently for curved magnonic waveguides.\(^{26}\) The last term \(\mathcal{E}_{\text{ex}}^D \) in the exchange energy functional is the curvature induced effective Dzyaloshinskii-like interaction, which is linear with respect to curvature and torsion. We will see below that this effective interaction causes an effective magnetic field; namely this interaction is responsible for the magnetochniral effects.

We consider three types of curvilinear uniaxial anisotropy which correspond to possible curvilinear directions \((1) \), see Table I: (i) an easy–tangential anisotropy corresponds to the anisotropy axis \(e_{\text{an}} \) directed along \(e_1 \), where the anisotropy interaction tries to orient the magnetization along the curve. Note that in soft magnets such kind of anisotropy appears effectively as a shape anisotropy caused by the dipolar interaction.\(^{27}\) (ii) An easy–normal anisotropy is determined by the normal vector \(e_2 \). (iii) An easy–binormal anisotropy direction corresponds to the binormal basic vector \(e_3 \).

All three types of anisotropic magnets can be realized experimentally: In straight nanostraps/nanowires the anisotropy can have well–defined uniaxial directions, e.g., in-plane along the strip, in-plane perpendicularly to the strip, or out-of-plane, which corresponds to the uniformly magnetized samples in the corresponding direction. Using the coiling process,\(^{14}\) it is possible to obtain 3D microhelix coil strips with different magne-
tization orientation: corkscrew-, radial-, and hollow-bar
magnetized, see Table I to get a link between anisotropy type
and the magnetization orientation.

For the further analysis it is convenient to introduce the angular parametrization of the magnetization unit
vector \(\mathbf{m} \) using the local Frenet–Serret reference frame:
\[
\mathbf{m} = \sin \theta \cos \phi \mathbf{e}_1 + \sin \theta \sin \phi \mathbf{e}_2 + \cos \theta \mathbf{e}_3,
\]
where angular variables \(\theta \) and \(\phi \) depend on both spatial and temporal coordinates. Then the energy density (5)
reads:\(^{12}\)
\[
\begin{align*}
\varepsilon_{\text{ex}} &= \left[\theta' - \tau \sin \phi \right]^2 + \left[\sin \theta (\phi' + \kappa) - \tau \cos \theta \cos \phi \right]^2, \\
\varepsilon_{\text{EN}}^{\text{ET}} &= - \frac{\sin^2 \theta \cos^2 \phi}{u^2}, \quad \varepsilon_{\text{EN}}^{\text{EB}} = - \frac{\sin^2 \theta \sin^2 \phi}{u^2}, \\
\varepsilon_{\text{an}}^{\text{EN}} &= - \frac{\cos^2 \theta}{w^2}.
\end{align*}
\]
Here \(\varepsilon_{\text{an}}^{\text{EN}} \), \(\varepsilon_{\text{EN}}^{\text{ET}} \), and \(\varepsilon_{\text{an}}^{\text{EB}} \) denotes anisotropy energy
densities of easy–tangential, easy–normal, and easy–
binormal types, respectively.

The magnetization dynamics follows the Landau–
Lifshitz equation. In terms of angular variables \(\theta \) and \(\phi \) these equations read
\[
\begin{align*}
\frac{M_s}{\gamma_0} \sin \theta \partial_t \phi &= \frac{\delta E}{\delta \theta}, \\
\frac{M_s}{\gamma_0} \sin \theta \partial_t \theta &= \frac{\delta E}{\delta \phi},
\end{align*}
\]
with \(M_s \) being the saturation magnetization and \(\gamma_0 \) being the gyromagnetic ratio.

III. EQUILIBRIUM MAGNETIZATION STATES
OF A HELIX WIRE WITH EASY–TANGENTIAL
ANISOTROPY

We study the curvilinear effects using the helix geometry, which is the simplest geometry which manifests the properties of both curvature and torsion. The typical parameterization of the helix wire reads
\[
\gamma(\chi) = \hat{x} R \cos \chi + \hat{y} R \sin \chi + \hat{z} \chi,
\]
where \(R \) is the helix radius, \(p = P/(2\pi) \) with \(P \) being the pitch of the helix, and \(\chi \) is azimuthal angle of a cylindrical frame of reference with \(z \)-axis aligned along the helix axis. The helix has the constant curvature \(\kappa = R/(R^2 + p^2) \) and the torsion \(\tau = p/(R^2 + p^2) \). For the further analysis it is instructive to rewrite (9) as a function of the arc length \(s \) and in terms of curvature and torsion
\[
\gamma(s) = \hat{x} \kappa s_0^2 \cos \left(\frac{s}{s_0} \right) + \hat{y} \kappa s_0^2 \sin \left(\frac{s}{s_0} \right) + \hat{z} s_0 \tau s,
\]
\[
\begin{align*}
s_0 &= \frac{1}{\sqrt{\kappa^2 + \tau^2}}.
\end{align*}
\]
In order to derive the explicit form of Landau–Lifshitz
equations, we substitute the energy functional (7) into
the Landau–Lifshitz equations (8):
\[
\begin{align*}
- \frac{M_s}{2\gamma_0} \sin \theta \partial_t \phi &= \tau \cos \phi \left(\kappa \cos 2\theta - 2\partial_s \phi \sin^2 \theta \right) \\
+ \partial_s \theta - \sin \theta \cos \theta \left[(\kappa + \partial_s \phi)^2 - \tau^2 \cos^2 \phi \right] - \frac{1}{2} \frac{\partial \varepsilon_{\text{an}}^{\text{EN}}}{\partial \theta}, \\
\frac{M_s}{2\gamma_0} \sin \theta \partial_t \theta &= \sin \theta \cos \theta \left[2\partial_t \theta (\kappa + \partial_s \phi) - \kappa \tau \sin \phi \right] \\
+ \sin^2 \theta \left[\partial_s \phi + 2\tau \partial_s \cos \phi - \tau^2 \sin \phi \cos \phi \right] - \frac{1}{2} \frac{\partial \varepsilon_{\text{an}}^{\text{EN}}}{\partial \phi},
\end{align*}
\]
where \(\varepsilon_{\text{an}} \) is the density of the anisotropy energy, see (7b).

We are most interested in the case of easy–tangential
anisotropy, which is typical for the wires. In this case the anisotropy energy density has the form \(\varepsilon_{\text{an}}^{\text{ET}} \), see (7b).

First we discuss the limit case \(\tau = 0 \) (ring wire instead of the helix). For any plane curve the energy functional (7) with easy–tangential or easy–normal anisotropy is
minimalized by the plane magnetization distribution, \(\theta_0 = \pi/2 \). The energy minimization in respect to \(\phi \) results in the pendulum equation
\[
\kappa^2 \partial_{\chi \chi} \phi - \sin \phi \cos \phi = 0,
\]
with \(\kappa \) being the reduced curvature.

The ground state of a ring is a homogeneous (in the curvilinear reference frame) vortex state \(\phi^{\text{vor}} \) in case of
relatively small reduced curvature \(\kappa < \kappa_0 \approx 0.657 \) and inhomogeneous
onion solution \(\phi^{\text{on}} \) for \(\kappa > \kappa_0 \)
\[
\phi^{\text{vor}} = 0, \pi, \quad \phi^{\text{on}} = \frac{\pi}{2} - \arccos(x, k), \quad x = \frac{2\chi}{\pi} K(k).
\]
Here \(\arccos(x, k) \) is the Jacobi amplitude\(^{28}\) and the modulus
\(k \) is determined by condition
\[
2\kappa k K(k) = \pi
\]
with \(K(k) \) being the complete elliptic integral of the first kind.\(^{28}\)

A. Quasi-tangential state

Similar to the case of a ring wire, discussed above, we
first look for the homogeneous (in the curvilinear reference frame) solution. Such kind of solutions is possible due to the constant curvature \(\kappa \) and the torsion \(\tau \). We can easily solve the static equations, see Eq. (11), using the substitution \(\theta(s) = \theta^t \) and \(\phi(s) = \phi^t \):
\[
\tan 2\theta^t = - \frac{2\epsilon \sigma \kappa}{1 - \epsilon^2 + \sigma^2}, \quad \phi^t = 0, \pi,
\]
where \(\epsilon = \cos \phi^t = \pm 1 \), the quantity \(\sigma \equiv \omega \tau \) is the reduced torsion. Explicitly \(\theta^t \) reads
\[
\begin{align*}
\theta^t &= \frac{\pi}{2} - \arctan \frac{2\epsilon \sigma \kappa}{V_0}, \\
V_0 &= 1 + \sigma^2 - \epsilon^2 + V_1, \\
V_1 &= \sqrt{(1 - \epsilon^2 + \sigma^2)^2 + 4\epsilon^2 \sigma^2}.
\end{align*}
\]
The dependence $\theta^t(\kappa, \sigma)$ is presented in Fig. 1.

In the limit case of very strong anisotropy ($\kappa, \sigma \ll 1$), the magnetization distribution becomes almost tangential, see Fig. 2(a) with the asymptotic behavior

$$\theta^t \approx \frac{\pi}{2} - \mathcal{C}\kappa, \quad \text{for } \kappa, \sigma \ll 1. \quad (17)$$

That is why we refer to the state (15) as to the quasi-tangential state. Such a state is an analogue of the vortex state for the case of the torsion presence.

Even in the strong anisotropic case the magnetization deviates from the tangential distribution: the inclination angle depends on the sign of $\mathcal{C}\sigma$. One can interpret the sign of σ as the helix chirality (different for right-handed helix when $\sigma > 0$ and left-handed one when $\sigma < 0$); the quantity \mathcal{C} can be interpreted as the magnetochirality, hence one can say about coupling between the two chiralities.

In the case of very weak anisotropy ($\kappa, \sigma \gg 1$) one has the almost homogeneous magnetization distribution (exchange approximation), see Fig. 2(b).

The energy density (7) of the quasi-tangential ground state (15) reads

$$\mathcal{E}^t = -\frac{1 - \kappa^2 - \sigma^2 + V_1}{2w^2}, \quad (18)$$

It should be noted that the magnetization state in the helix nanowire was recently studied: in particular, the magnon spectrum was shown to be affected by the curvature, which acts mainly as effective anisotropy. However the ground state was forcedly supposed to be the tangential one in Ref. 29.

B. Onion state

Let us discuss the case of a weak anisotropy. In analogy with the ring wire, we are looking for a solution periodic with respect to χ, which is an analogue of the onion solution (13). Hence we look for solutions of the following form

$$\theta^{on}(s) = \frac{\pi}{2} + \vartheta(\chi), \quad \phi^{on}(s) = -\chi + \varphi(\chi) \quad (19a)$$

with $\vartheta(\chi)$ and $\varphi(\chi)$ being 2π-periodic functions. Using an analogy with the ring case ($\sigma = 0$) with exact onion solution (13) we name (19a) an onion solution.

Numerically we found onion solutions for $\kappa > \kappa_0 \approx 0.657$ in a wide range of σ, see Figs. 2(c), 3(a). The symmetry of the static form of Eqs. (11) dictates the symmetry of 2π-periodic functions ϑ and φ, which has...
the following Fourier expansion
\[
\vartheta(\chi) = \sum_{n=1}^{N} \vartheta_n \cos(2n-1)\chi, \quad \varphi(\chi) = \sum_{n=1}^{N} \varphi_n \sin 2n\chi,
\]
where \(N \to \infty\). By substituting series (19b) into the static version of Eqs. (11), one get the set of nonlinear equations for amplitudes \(\vartheta_n\) and \(\varphi_n\), see (A5). Finally, the energy of the onion state \(\mathcal{E}^{on}(\sigma, \vartheta_0)\), averaged over the helix period, can be calculated numerically using amplitudes \(\vartheta_n\) and \(\varphi_n\), see Appendix A for details.

C. Phase diagram

Now we summarize results on the equilibrium magnetization distribution. By comparing energies of different states, we compute the energetically preferable states for different curvature and torsion values. The resulting phase diagram is presented in Fig. 3(a). The ground state corresponds to the case, when \(\kappa > \vartheta_0(\sigma)\); the magnetization is directed nonhomogeneously in accordance to (19), see Fig. 2(c).

The boundary between two phases \(\vartheta_0 = \vartheta_0(\sigma)\) can be derived using the condition
\[
\mathcal{E}^t(\sigma, \vartheta_0) = \mathcal{E}^{on}(\sigma, \vartheta_0),
\]
where \(\mathcal{E}^{on}\) is energy density of the onion state averaged over the helix period \(2\pi s_0\), see (A6). The onion solution (19) is energetically preferable when its energy is lower than the energy of the quasi-tangential state (18). We computed the boundary curve numerically for \(N = 1\) and \(N = 3\), see dot-dashed and solid lines, respectively in the Fig. 3(a). The obtained curves are very close, so the approximation \(N = 1\) is reasonable. This is because the onion state of the helix wire is very close to an uniform magnetization, see Fig. 2(c).

For the approximate description of the boundary dependence we use the trial function
\[
\vartheta_b^{ET} = \sqrt{\vartheta_0^2 + 2\sigma^2},
\]
which fits the numerically calculated curve \(\vartheta_0(\sigma)\) with an accuracy of about \(5 \times 10^{-2}\).

IV. SPIN WAVE SPECTRUM IN A HELIX WIRE WITH EASY-TANGENTIAL ANISOTROPY

We limit our consideration of spin waves by the case of the quasi-tangential magnetization state. First we linearize the Landau–Lifshitz equations (11) on the background of the quasi-tangential ground state (15),
\[
\theta(s,t) = \theta^t + \delta \theta(s,t), \quad \phi(s,t) = \phi^t + \delta \phi(s,t),
\]
then for \(\theta\) and \(\phi\) we get the set of linear equations:
\[
\begin{align*}
\partial_t \varphi - \partial_t \varphi &= -\partial_t \xi \xi + V_1 \xi - 2 A \partial_t \xi \varphi, \\
-\partial_t \varphi &= -\partial_t \xi \varphi + V_2 \varphi + 2 A \partial_t \varphi,
\end{align*}
\]
where \(\partial_t\) is the derivative with respect to dimensionless time \(t' = \Omega_0 t\) with \(\Omega_0 = 2K\gamma/M_s\) and \(\partial_t\) is the derivative with respect to dimensionless coordinate \(\xi = s/s_0\). Here \(V_1\) is determined according to (16), the quantities \(V_2\) and \(A\) have the following form:
\[
\begin{align*}
V_2 &= \frac{1 + \vartheta^2 + \sigma^2 + V_1}{2}, \\
A &= -\kappa \cos \theta' - \sigma \xi \sin \theta' = -\sigma \xi V_2 \sqrt{\frac{2}{V_1 V_0}}.
\end{align*}
\]
While \(V_1\) and \(V_2\) appear as scalar potentials, \(A\) acts as a vector potential \(A = A_1 e_1\) of effective magnetic field. This comes obvious if we combine the set of linearized equations for \(\theta\) and \(\phi\) in a single equation for the complex-valued function \(\psi = \theta + i \phi\),
\[
-\partial_t \psi = H \psi + W \psi^*, \quad H = (-\partial_t - A)^2 + U.
\]
This differential equation has a form of a generalized Schrödinger equation, originally proposed for the description of spin waves on the magnetic vortex background.\(^{30}\) The Eq. (25a) has properties, which are absent for the standard quantum–mechanical problems, e.g. nonconservation of probability density etc, see Ref. \(30\) for details. The “potentials” in Eq. (25a) read
\[
\begin{align*}
U &= \frac{V_1 + V_2}{2} - A^2, \\
W &= \frac{V_1 - V_2}{2} - 1 - \frac{2\sigma^2 \mathcal{E}^t}{2}.
\end{align*}
\]
An effective magnetic field \(A\) is originated from the curvature induced effective Dzyaloshinskii-like interaction, see Eq. (5); the energy density \(\mathcal{E}^{ex}_{ex}\), harmonized using (22), reads\(^{31}\)
\[
\mathcal{E}^{ex}_{ex} = -\frac{2}{u^2} A |\psi|^2 \partial_t \arg \psi.
\]
Now we apply the traveling wave Ansatz for the spin-wave complex magnon amplitude
\[
\psi(\xi, t') = u e^{i\Phi} + v e^{-i\Phi}, \quad \Phi = q \xi - \Omega t' + \eta,
\]
with \(q = kw\) being the dimensionless wave number, \(\Omega = \omega/\Omega_0\) the dimensionless frequency, \(\eta\) is arbitrary phase, and \(u, v \in \mathbb{R}\) being constants. By substituting the Ansatz (27) into the generalized Schrödinger equation (25), one can derive the spectrum of the spin waves:
\[
\Omega(q) = 2Aq + \sqrt{(q^2 + V_1)(q^2 + V_2)}.
\]
Similar to the straight wire case with $\Omega_s(q) = 1 + q^2$, the spectrum of spin waves in the helix wire has a gap. However its value essentially depends on the curvature and the torsion. Moreover, the spectrum gap occurs at finite $q = q_0$, see Fig. 4. This means the asymmetry in the spectrum with respect to the change $q \to -q$: spin waves have different velocities depending on the direction (along the helix axis or in opposite direction). This asymmetry in the dispersion law (28) occurs in the first term $2Aq$, which is originated from the effective Dzyaloshinskii interaction δ_{D}.

In this context it is instructive to mention that the spin wave spectrum in the presence of Dzyaloshinskii-Moriya interaction is known to be asymmetric with respect to wave vector inversion and has the minimum at finite wave vectors. The curvature induced asymmetry in the spin waves propagation in nanotubes and its analogy with the Dzyaloshinskii-Moriya interaction was discussed recently in Ref. 32. The spin-wave spectrum for the helix wire was calculated recently in Ref. 29, however the deviations from the tangential ground state were not taken into account and the effective Dzyaloshinskii was not considered.

In order to make analytical estimations, we consider now the dispersion law in case of strong anisotropy ($|\lambda| \gg 1$):

$$\Omega(q) = 1 - \frac{\kappa^2}{2} + (q - \epsilon_\phi)^2 + \mathcal{O} \left(\frac{1}{|\lambda|^2} \right).$$

One can see that the spin wave spectrum becomes asymmetrical one with increasing the curvature and the torsion: the minimum of the frequency corresponds to $\eta_0 = \sigma C$, its sign is determined by the product of the helix chirality and the magnetochirality.

The further increase of the curvature and torsion decrease the gap $\Omega(q_0)$; there is a critical curve $\kappa_c = \kappa_c(\sigma)$, where the gap vanishes, $\Omega(q_0) = 0$ and $\partial_q \Omega(q_0) = 0$. One can easily find that $q_c = \epsilon \sqrt{A^2 - U}$ and the critical curve $\kappa_c = \kappa_c(\sigma)$ can be found as a solution of algebraic equation

$$4A^2U = W^2. \quad (30)$$

The critical curve $\kappa_c(\sigma)$, calculated numerically is plotted in Fig. 3(a) (dashed red curve). For the approximate description of the critical dependence we use the trial function

$$\kappa_c^{\text{trial}} = \sqrt{1 + 2\sigma^2}, \quad (31)$$

which fits the numerical results with an accuracy of about 5×10^{-3}, see the dotted curve in Fig. 3(a).

V. HELIX WITH OTHER ANISOTROPY ORIENTATIONS

Let us discuss other types of anisotropies: easy–normal and easy–binormal, see Eq. (7b) and Table I.

A. Easy–normal anisotropy

Let us start the analysis of the easy–normal anisotropy with the limit case of the ring ($\tau = 0$). In this case, similarly to the easy–tangential anisotropy, the magnetization lies within the ring plane: $\theta = \pi/2$. The energy minimization with respect to ϕ results in the pendulum
FIG. 4: (Color online) Top row demonstrates dispersion laws for spin waves in the helix wire for different anisotropies. The ground states are homogeneous in the curvilinear reference frame. Symbols correspond to simulation data, see Sec. VI, and lines to the analytics, see Eq. (28) and (37). Few examples of dispersion relation are shown at the bottom row in terms of density plots to demonstrate that (28) is a single frequency branch in the system.

equation:

\[
\kappa^2 \partial_{\chi} \phi + \sin \phi \cos \phi = 0.
\]
(32)

In analogy with the easy–tangential anisotropy the ground state is the exactly normal state \(\phi^n = \pm \pi/2 \) in case of relatively small reduced curvature \(\kappa < \kappa_0 \) and inhomogeneous onion solution \(\phi^{on}_n(\chi) = \pi/2 - \phi^{on}(\chi) \) for \(\kappa > \kappa_0 \), where function \(\phi^{on}(\chi) \) is defined by (13).

In case of finite torsion there also exists exactly normal state

\[
\theta^n = \frac{\pi}{2}, \quad \phi^n = \xi\frac{\pi}{2}, \quad \sigma^n = \frac{1 - \kappa^2 - \sigma^2}{\omega^2},
\]
(33)

where \(\xi = \pm 1 \), see Fig. 5(a). Such a state is energetically preferable for relatively small values of \(\kappa \) and \(\sigma \). The magnetization in the normal state is directed exactly radially, which is well pronounced in experiments with 3D microhelix coil strips.\(^{14}\)

In case of weak anisotropy, there is the periodic (in curvilinear reference frame) onion solution, which has the form (19), see Fig. 5(b). Using the same numerical procedure as in Sec. III B, we evaluate the onion solution and compute the phase diagram, see Fig. 3(b).

For the approximate description of the boundary \(\kappa^E_N(\sigma) \) between two phases we use the fitting function

\[
\kappa^E_b = \kappa_0 \sqrt{1 - \left(\frac{\sigma}{\sigma_0} \right)^2}, \quad \sigma_0 \approx 0.67,
\]
(34)

which fits the numerically calculated curve \(\kappa^E_b(\sigma) \) with an accuracy of about \(3 \times 10^{-3} \).

Let us discuss now the linear excitations on the background of the normal solution. Using the same approach as in Sec. IV, we linearize Landau–Lifshitz equations (11) on the background of the normal solution (33), \(\theta = \theta^n + \theta', \phi = \phi^n + \phi' \). After linearization one gets a generalized Schrödinger–like equation for the complex variable \(\psi = \psi + i\varphi \),

\[
-i \partial_{\xi} \psi = (-\partial_\xi + U^n) \psi + W^n \psi^*.
\]
(35a)

Here the “potentials” read

\[
U^n = 1 - \kappa^2 + \sigma^2, \quad W^n = \frac{1}{2} (\xi \sigma - i \kappa)^2.
\]
(35b)
Let us compare this equations with the generalized Schrödinger–like equation (25). First of all, there is no effective vector potential, since there is no asymmetry by effective Dzyaloshinskii interaction like in easy–tangential case. The second difference is that the potential W in (35b) is a complex–valued one, hence the scattering problem is similar to the two-channel scattering process. Similar to (27) we apply the following traveling wave Ansatz for the spin-wave complex magnon amplitude

$$\psi(\xi,t') = \psi_1 e^{i\Phi} + \psi_2 e^{-i\Phi}, \ \Phi = q\xi - \Omega t' + \eta, \ \psi_{1,2} \in \mathbb{C}. \quad (36)$$

The difference is that constants $\psi_{1,2}$ are complex ones. Now by substituting the Ansatz (36) into the generalized Schrödinger equation (35), one can derive the spectrum of the spin waves:

$$\Omega(q) = \sqrt{(1 + q^2) (1 + q^2 - \kappa^2 - \sigma^2)} \quad (37)$$

This dispersion relation is reproduced by the numerical simulations with a high accuracy, see Fig. 4(b). The critical dependence, where the gap of the spectrum vanishes, reads

$$\kappa_c = \sqrt{1 - \sigma^2}, \quad (38)$$

see thick dashed curve in Fig. 4(b). In the region between solid and dashed curves the radial state is metastable.

B. Easy–binormal anisotropy

If the anisotropy axis is directed along e_3, one has the easy–binormal anisotropy, ϵ_{an}^{eb}, see (7b). The magnetization of the homogeneous (in the curvilinear reference frame) state reads

$$\tan 2\theta^b = \frac{2\epsilon_x \kappa}{1 + \kappa^2 - \sigma^2}, \quad \cos \phi^b = \epsilon = \pm 1. \quad (39)$$

Explicitly θ^b reads

$$\theta^b = \frac{\pi}{2} [1 + \text{sgn}(\epsilon\sigma)] - \arctan \frac{2\epsilon \sigma \kappa}{V^b_0},$$

$$V^b_0 = 1 + \kappa^2 - \sigma^2 + V^b_1,$$

$$V^b_1 = \sqrt{(1 + \kappa^2 - \sigma^2)^2 + 4\kappa^2 \sigma^2}. \quad (40)$$

The magnetization of this state is close to the direction of the helix axis, hence we name it quasi–binormal state, see Fig. 6(a). It corresponds to the hollow–bar magnetization distribution in the helix microcrills.\footnote{For different magnetization distributions see also Table 1.}

The energy of the axial state reads

$$\epsilon^b = -\frac{1 - \kappa^2 - \sigma^2 + V^b_1}{2w^2}. \quad (41)$$

Let us mention the formal analogy between the energy ϵ^b, the “potentials” V^b_0, V^b_1 for the quasi-binormal state and the corresponding expressions ϵ^t [cf. (18)], V^t_0, V^t_1 [cf. (16)] for the quasi-tangential state: the expressions for the quasi-tangential state can be used for the quasi-binormal one under the replacement $\varsigma \leftrightarrow \sigma$.

The analogy between two states becomes deeper if we use another parametrization for the magnetization m

$$m = \cos \Theta e_1 - \sin \Theta \sin \Phi e_2 + \sin \Theta \cos \Phi e_3, \quad (42)$$

where $\Theta = \Theta(s)$ and $\Phi = \Phi(s)$ are the angles in the Frenet-Serret frame of reference: the polar angle Θ describes the deviation of magnetization from the tangential curve direction, while the azimuthal angle Φ corresponds to the deviation from the binormal. Similar to (7), one can rewrite the energy terms as follows (cf. Appendix A from the Ref. 12 for details):

$$\epsilon_{ex}^{eb} = \left[\Theta' - \kappa \sin \Phi\right]^2 + \left[\sin \Theta(\Phi' + \tau) - \kappa \cos \Theta \cos \Phi\right]^2,$$

$$\epsilon_{an}^{eb} = -\frac{\sin^2 \Theta \cos^2 \Phi}{w^2}. \quad (43)$$

Now one can easily see that the energy functional of the easy–tangential magnet transforms to the energy functional of the easy–binormal magnet under the following conjugations: $\theta \rightarrow \Theta$, $\phi \rightarrow \Phi$, and $\varsigma \leftrightarrow \sigma$.

Similarly to the easy–tangential case, there exist two ground states: the homogeneous state (quasi-binormal) and the periodic onion solution, see Fig. 6(b). The phase diagram, which separates these two states, is plotted in the Fig. 3(c).

Now we discuss the magnons for the easy–binormal case. In analogy with the easy–tangential case, the linearized equations can be reduced to the generalized Schrödinger equation (25a) with the following “potentials”:

$$V^b_2 = \frac{1 + \kappa^2 + \sigma^2 + V^b_1}{2},$$

$$A^b = -\kappa \cos \theta^b - \sigma \sin \theta^b = -\kappa \epsilon V^b_1 \sqrt{\frac{2}{V^b_1 V^b_0}}. \quad (44)$$

The dispersion law has formally the form (28) with the corresponding “potentials” described above. The dispersion curve is plotted in the Fig. 4(c) for some typical parameters, it is confirmed by the numerical simulations. The critical curve $\kappa_c(\sigma)$, where the gap of the spectrum vanishes, can be found numerically using condition (30). The critical curve $\kappa_c(\sigma)$, calculated numerically is plotted in the Fig. 3(c) (dashed red curve). For the approximate description of the critical dependence we use the trial function

$$\kappa_{\text{trial}} = \sqrt{\frac{\sigma^2 - 1}{2}}, \quad (45)$$

which fits the numerical results of Fig. 3(c) with an accuracy of about 2×10^{-2}, see the dotted curve in Fig. 3(c). In the region between solid and dashed curves the quasi-binormal state is metastable.
VI. SIMULATIONS

In order to verify our analytical results we numerically simulate the magnetization dynamics of a helix-shaped chain of discrete magnetic moments \(m_i \) with \(i = 1, N \). Form of the chain is described by Eq. (10). Magnetization dynamics of this system is determined by the set of Landau-Lifshitz equations

\[
\frac{1}{\omega_0} \frac{dm_i}{dt} = m_i \times \frac{\partial E}{\partial m_i} + \alpha m_i \times \left[m_i \times \frac{\partial E}{\partial m_i} \right],
\]

(46)

where \(\omega_0 = 4\pi \gamma M_s \), \(\alpha \) is the damping coefficient, \(E \) is the dimensionless energy, normalized by \(4\pi M_s^2 \Delta s^3 \) with \(\Delta s \) being the sampling step of the natural parameter \(s \). We consider three contributions to the energy of the system:

\[
E = E^{\text{ex}} + E^{\text{an}} + E^f,
\]

(47a)

The first term in Eq. (47a) is the exchange energy

\[
E^{\text{ex}} = -2 \frac{\ell_{\text{ex}}^2}{\Delta s^2} \sum_{i=1}^{N-1} m_i \cdot m_{i+1},
\]

(47b)

where \(\ell_{\text{ex}} = \sqrt{A/4\pi M_s^2} \) is exchange length. The second term determines the uniaxial anisotropy contribution

\[
E^{\text{an}} = -\lambda \sum_{i=1}^{N} (m_i \cdot e_i^{\text{an}})^2,
\]

(47c)

where \(e_i^{\text{an}} \) is the coordinate dependent unit vector along the anisotropy axis, \(\lambda = K/4\pi M_s^2 \) – dimensionless anisotropy constant. The last term in (47a) determines interaction with the external magnetic field \(b \)

\[
E^f = -\sum_{i=1}^{N} b_i \cdot m_i,
\]

(47d)

where \(b_i \) – dimensionless external field, normalized by \(4\pi M_s \).

The dynamical problem is considered as a set of 3N ordinary differential equations (46) with respect to 3N unknown functions \(m_i^x, m_i^y, m_i^z \) with \(i = 1, N \). For a given initial conditions the set (46) is integrated numerically. During the integration process the condition \(|m_i(t)| = 1 \) is controlled.

We considered the helix wire with length \(L = 500\Delta s \), the exchange length \(\ell_{\text{ex}} = 3\Delta s \) and anisotropy constant \(\lambda = 1 \) are fixed. The curvature \(\kappa \) and the torsion \(\tau \) were varied under the restriction \(\kappa \Delta s/\pi \ll 1 \).

A. Ground states

In order to find the ground magnetization state of a given helix wire we perform the integration of (46) in overdamped regime (\(\alpha = 0.1 \)) on a long time interval \(\Delta t \gg (\omega_0^{-1})^{-1} \) for five different initial states, namely the tangential, onion, normal, binormal, and the random states. The final static state with the lowest energy is considered to be the ground state.

We obtain that for each type of anisotropy the ground state is either onion one or anisotropy-aligned state (quasi-tangential, normal and quasi-binormal state for easy-tangential, easy-normal and easy-binormal anisotropy, respectively), see Figs. 2, 5, 6.

B. Dispersion relations

For each anisotropy-aligned ground state the magnon dispersion relation is obtained numerically. It is carried out in two steps. In the first step the helix wire is relaxed...
in external spatially nonuniform weak magnetic field
\[b^j_i = b_0 e^j_i \cos s_i k^j \]
for a range of wave-vectors \(k^j = j/(300\Delta s) \) with \(j = 0, 300 \). Here \(b_0 \ll 1 \) is the field amplitude, \(s_i = (i - 1)\Delta s \) is position of the magnetic moment \(m_i \). The coordinate dependent unit vector \(e^j_i \) determines the magnetic field direction: \(e^2_i = e_3 \) for helix state and \(e^1_i = e_1 \) for radial and binormal states.

In the second step we switch off the magnetic field and simulate the magnetization dynamics with the damping value \(\alpha = 0.01 \) close to natural one. Then the space-time Fourier transform is performed for one of the magnetization components (we consider normal component for the quasi-tangential state and tangential component for other two ground states). The frequency \(\Omega \) which corresponds to the maximum of the Fourier signal is marked by a symbol for a given wave-vector \(q \) corresponds to the maximum of the Fourier signal is marked below, see bottom raw of Fig. 4. The absence of additional peaks in the spectrum is demonstrated by the dispersion maps below, see bottom raw of Fig. 4.

\section{VII. CONCLUSION}

In conclusion, we have presented a detailed study of statics and linear dynamics of magnetization in the helix wire. We have described ground states for three types of uniaxial anisotropy, according to possible curvilinear directions. All three cases have been realized experimentally in rolled-up ferromagnetic microhelix coils.\(^{14}\) We have calculated the phase diagram of possible states in case of easy-tangential anisotropy: the quasi-tangential configuration \((15)\) forms the ground state for the strong anisotropy case. In this case the deviations from the strictly tangential direction (corkscrew orientation\(^{14}\)) are caused by the torsion, the direction of the deviation depends on both helix chirality and the magnetochirality of the magnetization structure, see Eq. (17). In case of weak anisotropy there is the onion state ground state \((19)\) in analogues to the onion state in magnetic ring wires\(^{33,34}\). In case of easy-normal anisotropy there can be realized strictly normal magnetization distribution \((33)\). The magnetization distribution \((39)\) of the quasi-binormal state is directed almost along the binormal (hollow–bar orientation\(^{14}\)).

The torsion of the wire manifests itself in the magnetization dynamics: an effective magnetic field, induced by the torsion breaks the mirror symmetry with the spin wave direction. The dispersion low of spin waves \((28)\) is essentially affected by this field.

We considered the simplest example of the curved wire with constant curvature and torsion. Our results can be generalized for the case of variables parameters \(\kappa(s) \) and \(\tau(s) \). To summarize we can formulate few general remarks about the curvature and torsion effects in the spin wave dynamics. The linear magnetization dynamics can be described by the generalized Schrödinger equation \((25)\). In case of the straight wire, one has the standard Schrödinger equation for the complex magnon amplitude \(\psi \) with the typical potential scattering. Th curvature induces additional effective potential, the ‘geometrical potential’.\(^{25}\) This is described by the modification of effective potential \(U \) in Eq. \((25b)\). Besides, there is a curvature induced coupling potential \(W \): the problem becomes different in principle from the usual set of coupled Schrödinger equations, see the discussion in Ref.\(^{30}\). Due to the torsion influence there appears an effective magnetic field. The vector potential of this field is constant for the helix wire, see \((24)\), hence the effective magnetic flux density \(B = \nabla \times A \) vanishes. Nevertheless the presence of magnetic field with the vector potential \(A \) breaks the mirror symmetry of the problem: the motion of magnetic excitations in different spatial direction is not identical.

Let us mention the connection between the vector potential and the effective Dzyaloshinskii-like interaction: the total energy of the Dzyaloshinskii interaction \(E^D_{ex} \propto \int ds A \cdot j \) with the current \(j = |\psi|^2 \nabla \arg \psi \), see Eq. \((26)\). Using an explicit form of the integrand one can find that \(E^D_{ex} \propto \sigma_i q_i \), which reflects the relation between the topology of the wire (namely, helix chirality) with the topology of the magnetic structure (namely, the magnetochirality). In this context it is instructive to note that there is a deep analogy between the Dzyaloshinskii–Moriya interaction and the Berry phase theory.\(^ {35}\)

We expect that our approach can be easily generalized for the arbitrary curved wires, where all potentials becomes spatially dependent: \(U(s), W(s), \) and \(A(s) \). Depending on the curvature and the torsion these potentials can repel or attract magnons. In latter case there can appear a well with possible bound states, i.e. local modes.

\section{ACKNOWLEDGMENTS}

The authors thank D. Makarov for stimulating discussions and acknowledge the IFW Dresden, where part of this work was performed, for kind hospitality.

\section{Appendix A: Onion-state solution}

We start from the static form of Landau-Lifshitz equations \((11)\):
\begin{align}
F(\theta, \phi) &= 0, & G(\theta, \phi) &= 0 \quad (A1)
\end{align}

with \(F \) and \(G \) being the nonlinear operators,
\begin{align}
F(\theta, \phi) &= -\partial_{\chi \chi} \theta - \sigma \cos \phi \left(\kappa \cos 2\theta - 2\partial_\chi \phi \sin^2 \theta \right) + \sin \theta \cos \theta \left[(\kappa + \partial_\chi \phi)^2 - (1 + \sigma^2)\cos^2 \phi \right], \\
G(\theta, \phi) &= \sin^2 \theta \left[-\partial_{\chi \chi} \phi + (1 + \sigma^2)\sin \phi \cos \phi - 2\sigma \partial_\chi \theta \cos \phi \right] + \sin \theta \cos \theta \left[\kappa \sigma \sin \phi - 2\partial_\chi \theta (\kappa + \partial_\chi \phi) \right]. \quad (A2)
\end{align}
By substituting here the expansion (19) in the form
\[\theta(\chi) = \frac{\pi}{2} + \epsilon \sum_{n=1}^{N} \varphi_n \cos(2n-1)\chi, \quad (A3) \]
\[\phi(\chi) = -\chi + \epsilon \sum_{n=1}^{N} \varphi_n \sin 2n\chi, \]
and expanding results into series over \(\epsilon \) up to the \(N \)-th order, one get the Fourier expansion of operators \(F \) and \(G \) as follows
\[F(\theta, \phi) = \sum_{n=1}^{N} F_n(\theta_1, \ldots, \theta_n; \varphi_1, \ldots, \varphi_n) \cos(2n-1)\chi, \]
\[G(\theta, \phi) = \sum_{n=1}^{N} G_n(\theta_1, \ldots, \theta_n; \varphi_1, \ldots, \varphi_n) \sin 2n\chi, \quad (A4) \]

Here \(F_n \) and \(G_n \) are polynomials of the order \(N \) with respect to \(\vartheta_k \) and \(\varphi_k \). Then the Landau-Lifshitz equations (A1) results in the set of nonlinear polynomial equations
\[F_n(\theta_1, \ldots, \theta_n; \varphi_1, \ldots, \varphi_n) = 0 \]
\[G_n(\theta_1, \ldots, \theta_n; \varphi_1, \ldots, \varphi_n) = 0, \quad n = 1, N, \quad (A5) \]

which can be solved numerically on \(\vartheta_k \) and \(\varphi_k \) with any precision.

In order to calculate the energy of the onion state, we substitute the magnetization angles \(\theta \) and \(\phi \) in the form (A3) into the energy density (7), expand the results over \(\epsilon \) up to the \(2N \)-th order and average the result over the helix period,
\[\mathcal{E}^{on}(\sigma, \kappa) = \frac{1}{2\pi} \int_0^{2\pi} \mathcal{E} d\chi, \quad (A6) \]
\[\mathcal{E} = \mathcal{E}_{ex} + \mathcal{E}_{an}^{SF} = \mathcal{E}(\theta_1, \ldots, \theta_n; \varphi_1, \ldots, \varphi_n). \]
30 D. D. Sheka, I. A. Yastremsky, B. A. Ivanov, G. M. Wysin, and F. G. Mertens, Phys. Rev. B 69, 054429 (2004).
31 Up to a full derivative with respect to ξ.
32 R. Hertel, SPIN 03, 1340009 (2013).
33 M. Kläui, C. A. F. Vaz, L. Lopez-Diaz, and J. A. C. Bland, Journal of Physics: Condensed Matter 15, R985 (2003).
34 A. P. Guimarães, Principles of Nanomagnetism, NanoScience and Technology (Springer-Verlag Berlin Heidelberg, 2009).
35 F. Freimuth, S. Blügel, and Y. Mokrousov, J. Phys.: Condens. Matter 26, 104202 (2014).