Performance, carcass traits, and relative organ weight of broiler supplemented by guanidinoacetic acid: A meta-analysis

Y Hardiyanto12*, A Jayanegara1, R Mutia1, S Nofyangtri2,
1Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University
2Nutrition and Research Department, Gold Coin Indonesia

*Email: yanto.hardiyanto@gmail.com

Abstract. Guanidinoacetic acid (GAA) is formed by the arginine and glycine that are catalysed by arginine:glycine amidinotransferase in the kidney. In the liver, GAA is methylated by s-adenosyl methionine and converted to creatine, then deposited into muscle as energy supply. This meta-analysis was done by integrating 20 articles from various journals. Supplementation doses ranged from 0 to 8000 ppm/kg feed. The mixed model methodology was employed with GAA level and broiler strain as fixed effects and studies as random effects. The results showed that increasing GAA level improved average daily gain day 0-21 and reduced feed conversion ratio day 0-35 (P<0.05). A higher GAA also accompanied by decreasing relative liver weight (P<0.05). GAA supplementation did not affect average daily feed intake and percentage of carcass traits (carcass, legs, breast, wings, drum, thigh) and other parameters such as abdominal fat, gizzard, heart, bursa, thymus and spleen (P>0.05). It was concluded that supplementation of GAA improved the performance of broilers.

1. Introduction
Guanidinoacetic Acid (GAA) is a precursor of creatine [1] that plays a role in energy metabolism. GAA is formed in the kidney by arginine and glycine catalyzed by the enzyme arginine:glycine amidinotransferase (AGAT), then GAA transferred to the liver via blood circulation [2]. In the liver, GAA is methylated by s-adenosyl methionine and converted to creatine, then stored in the muscles. Creatine can affect muscle development [3] and supports the energy supply in adenosine triphosphate (ATP) and adenosine diphosphate (ADP) form [4]. Creatine will be converted into creatinine every day and it’s irreversible, therefore the needs of creatine must be supplied to meet the requirement.

GAA supplementation in poultry feed is used more often than creatine. GAA has more stable molecules compared to direct creatine supplementation [5]. In addition, GAA was also resistant to pelleting temperatures [6]. GAA recovery after receiving heat treatment from 100°C to 190°C was still good (97-100%). Additional GAA in broiler feed was able to increase performance and carcass percentage. Supplementation of 600 ppm in the feed with energy reduction up to four percent, had a better feed conversion ratio (FCR) than control and also higher carcass percentage, breast and thigh yield [4]. According to another research [7], there was an increasing daily weight gain at 0-48 and 0-
55 days of age. This improvement might be caused by its ability to increase villus height, villus width and crypt depth [8] thereby increased ability to absorb nutrients for maintenance and production.

GAA can be found in animal derived raw materials such as poultry by product, meat bone meal and fish meal, even in small quantities. Meanwhile, when performing broiler feed formulation, the majority nutritionist used grain raw materials such as corn, wheat and soybean meal. Thus, it has an impact on low GAA content in the feed and it’s not sufficient to support the desired body weight gain. Moreover, if broilers are exposed to heat stress, creatine biosynthesis is low [9]. Based on this, GAA supplementation is urgently needed to support energy utilization in the body [10].

The use of antibiotics in feed as an antibiotic growth promoter (AGP) has been banned in many countries, including Indonesia since 2018. The use of antibiotics is allowed for therapeutic purposes with maximum seven days implementation and it should follow withdrawal time regulation for each antibiotic. Until now, searching for alternative AGP is still the main topic for feed producers to provide feed with similar performance as when antibiotics are used. Although it has different modes of action with antibiotics, GAA has potential to be an alternative of AGP to increased body weight gain and improved FCR [10]. There was no standard for GAA requirements in the feed. Therefore, it is necessary to analyze the relationship of level GAA to broiler performance.

2. Materials and methods

2.1. Development of database
A database was gathered from various published articles. Articles were searched through google search engines using keywords “Guanidinoacetic acid” and “Broiler”. The parameter included in the database were average daily gain (ADG), average daily feed intake (ADFI), feed conversion ratio (FCR), carcass traits (carcass, leg, breast, drum, thigh), abdominal fat and relative organs weight (liver, gizzard, heart, bursa, thymus, spleen). A total of 21 articles were found after searching the keywords. The next step was article evaluation, each article should mention one of desired variable responses and also broiler strain and GAA level. In the tabulating process, similar variables were converted in the same measurement units. Variable responses ADG and ADFI were measured in g/day unit, and FCR was measured in g/g unit. Variable leg, breast, wings, drum, and thigh were measured in % carcass unit. All parameters of relative organs weight, carcass and abdominal fat were measured in % body weight unit. After the evaluation step, one article was removed due to not mentioning broiler strain. Finally, 36 studies from 20 articles were used and tabulated into database.

2.2. Analysis of data
The data was analysed using the mixed-model methodology [13][14]. Different studies were grouped as random effects, then broiler strain and level of guanidinoacetic acid were grouped as fixed effects. Replication in each study was calculated as a weighting factor during data analysis. The model used in this study was based on the p-value. It was significant when the p-value was <0.05 and it was considered tendency to be significant when p-value was between 0.05 and 0.1. All statistical analysis was done using SAS OnDemand for Academics.

3. Results and discussion

3.1. Database of studies
Compilation of studies included in this meta-analysis shown in Table 1. Levels of GAA ranged from 0 to 8000 ppm. This range was higher than recommendation [15] that was in range from 600 to 1200 ppm. Various strains of broiler were used in the studies such as Hubbard, Ross 308, Ross 708, Cobb 500, Hubbard x Cobb 500 and Arbor Acres. Majority of the studies used male broiler rather than...
female or mixed sex. Replication of the studies ranged from 4 to 16 replications each treatment. The studies of GAA were relatively new, it was started in 2007 and then continued in 2013 until 2020.

Table 1. Studies included in meta-analysis.

No.	Reference	Year	Study	Rep.	Broiler strain	Sex	GAA level (ppm)
1	El-Faham et al [16]	2019	1-2	6	Hubbard	Male	0-1200
2	Majededin et al [17]	2020	3	12	Ross 308	Male	0-1200
3	Lemme et al [18]	2007	4	8	Ross 308	Male	0-1200
4	Lemme et al [18]	2007	5	8	Ross 308	Female	0-1200
5	Tossenberger et al [6]	2016	6	8	Ross 308	Male	0-6000
6	Cordova et al [19]	2018	7-8	16	Ross 708	Male	0-600
7	Heger et al [4]	2014	9-13	6	Ross 308	Male	0-600
8	Ahmadipour et al [20]	2018	14	4	Ross 308	Male	0-2000
9	Ahmadipour et al [21]	2018	15	4	Ross 308	Male	0-1500
10	Mohabibifar et al [22]	2019	16	8	Cobb 500	Male	0-1800
11	Ahmadipour et al [23]	2018	17	4	Ross 308	Male	0-2000
12	Majededin et al [12]	2018	18	6	Ross 308	Male	0-1200
13	Boney et al [24]	2020	19-20	12	Hubbard x Cobb 500	Mix	0-600
14	Mousavi et al [25]	2013	21-23	6	Cobb 500	Mix	0-600
15	Majededin et al [26]	2019	24	6	Ross 308	Male	0-1200
16	Kodambashi et al [27]	2017	25-26	6	Ross 308	Male	0-1200
17	Cordova et al [28]	2018	27-28	10	Ross 708	Male	0-600
18	Abudabos et al [29]	2014	29-32	5	Ross 308	Male	0-600
19	Amiri et al [30]	2019	33-34	6	Ross 308	Male	0-1200
20	Zhang et al [31]	2017	35	6	Arbor Acres	Male	0-8000
21	Fosoul et al [32]	2019	36	5	Ross 308	Male	0-1800

Rep.: Replication

3.2. Effect of GAA level to performance parameters
The effect of GAA level on performance parameters shown in table 2. The level of GAA was significantly increased ADG day 0-21 and reduced FCR day 0-35 (p<0.05). These results were similar with previous findings [1] [4] [17] [18]. In present study, GAA level was not significant on ADFI (p>0.05) at all day parameters. This was in contrast with previous finding [18], that additional GAA at level 800 and 1200 ppm on male broilers significantly reduced ADFI (p<0.05). Supplementation of GAA more than 1200 ppm can alter the taste of feed. In other hand, reduction of ADFI might be caused by improvement of energy metabolism. Energy efficiency per gram of weight gain increased after supplementation of GAA [4]. Supplementing GAA increased creatine deposition and ratio of phosphocreatine (PCr) to adenosine triphosphate (ATP) in the muscle. This indicated that buffering capacity of PCr to ATP hydrolysis was increased and muscle capacity to growth was gained [11]. Furthermore, biochemical processes in tissue and cell such as cell metabolism, cell motility, and muscle contraction will be more efficient when PCr to ATP ratio increased [12].

3.3. Effect of GAA level to carcass traits and relative organs weight
GAA level was significantly reduced relative liver weight (p<0.05), but not significant on gizzard, heart, bursa, thymus, spleen and all carcass traits (p>0.05). Liver is involved in detoxification, removal of waste products and metabolism of fat, carbohydrates, protein, vitamin and mineral in the body [33]. Proportion of liver depending on species, body weight and age of animal. Reduction of relative liver weight indicated lipogenesis was reduced and the percentage of abdominal fat might be limited [23]. In the present study, abdominal fat was not affected by GAA level (P>0.05), but there was interaction between broiler strain and GAA level (P<0.05). The regression model had negative slope means in particular strain, abdominal fat was reduced with additional GAA. As mentioned in table 3, there was interaction between broiler strain and GAA level to variable thigh (P<0.05). It means supplementation
of GAA in particular strain reduced thigh yield and increased another commercial cut such as breast meat. Breast yield can be influenced by manipulation of energy density in the feed [4].

Table 2. Effect of GAA level to performance parameter.

Response variable	Unit	Parameter estimates	Model Statistics					
		intercept	SE intercept	slope	SE slope	p-value	AIC	Strain x level
ADG day 0-10	g/day	20.874	0.846	0.0002	0.000183	0.744	150.70	0.692
ADG day 0-21	g/day	31.118	0.975	0.0009	0.000521	0.045	112.10	0.040
ADG day 0-35	g/day	72.434	1.227	0.0012	0.001013	0.125	218.00	0.019
ADG day 0-42	g/day	53.978	1.653	0.0020	0.000575	0.408	236.40	0.004
ADFI day 0-10	g/day	26.895	0.382	-0.0004	0.000235	0.849	136.10	0.442
ADFI day 0-21	g/day	45.410	2.161	0.0004	0.000444	0.223	112.40	0.133
ADFI day 0-35	g/day	105.180	1.521	-0.0001	0.001254	0.159	234.70	0.415
ADFI day 0-42	g/day	95.881	2.059	0.0005	0.000681	0.592	255.40	0.831
FCR day 0-10	g/g	1.269	0.045	-0.0000	0.000011	0.593	-48.80	0.276
FCR day 0-21	g/g	1.452	0.043	-0.0000	0.000022	0.121	-1.30	0.266
FCR day 0-35	g/g	1.449	0.043	-0.0000	0.000026	0.006	-57.00	0.066
FCR day 0-42	g/g	1.824	0.025	-0.0001	0.000015	0.244	-43.70	0.001

ADG: average daily gain, ADFI: average daily feed intake, FCR: feed conversion ratio, SE: standard of error, AIC: Akaike information criterion (smaller is better)

Table 3. Effect of GAA level to carcass traits and relative organs weight.

Carcass traits	Unit	Parameter estimates	Model Statistics					
		intercept	SE intercept	slope	SE slope	p-value	AIC	Strain x level
Carcass % BW		78.574	1.5328	0.00009	0.00046	0.130	327.10	0.856
Leg % carcass		28.2777	1.7251	-0.00002	0.00036	0.954	237.00	0.958
Breast % carcass		35.5910	2.5687	0.00016	0.00050	0.058	464.80	0.636
Wings % carcass		8.7289	0.5560	0.00010	0.00019	0.909	113.30	0.437
Drum % carcass		13.5049	0.4007	-0.00014	0.00053	0.403	143.70	0.322
Thigh % carcass		18.1898	0.8071	-0.00064	0.00057	0.155	180.90	0.044
Abd_Fat % BW		1.3136	0.0970	-0.00016	0.00003	0.904	43.10	0.007
Relative organs weight								
Liver % BW		2.7328	0.2736	-0.00015	0.00003	0.016	39.90	0.128
Gizzard % BW		1.4340	0.3007	-2.3E-06	0.00039	0.862	43.40	0.867
Heart % BW		0.6940	0.0661	-0.00003	0.00005	0.586	32.20	0.945
Bursa % BW		0.1338	0.0179	8.33E-06	0.00001	0.948	-12.80	0.296
Thymus % BW		0.2800	0.0542	-6.32E-06	0.00005	1.000	12.50	na
Spleen % BW		3.3E-06	0.0000	3.33E-06	0.00001	0.515	-15.70	0.255

BW: body weight, Abd_Fat: abdominal fat, SE: standard of error, AIC: Akaike information criterion (smaller is better), na: not available

4. Conclusions
The results showed that increasing GAA level improved average daily gain day 0-21 and reduced feed conversion ratio day 0-35 (P<0.05). A higher GAA also accompanied by decreasing relative liver weight (P<0.05). GAA supplementation did not affect average daily feed intake and percentage of carcass traits (carcass, legs, breast, wings, drum, thigh) and other parameters such as abdominal fat, gizzard, heart, bursa, thymus and spleen (P>0.05). It was concluded that supplementation of GAA improved the performance of broilers.
References

[1] Michiels J, Maertens L, Buyse J, Lemme A, Rademacher M, Dierick NA, and de Smet S 2012 Supplementation of guanidinoacetic acid to broiler diets: effects on performance, carcass characteristics, meat quality, and energy metabolism Poult. Sci. 91 402–412

[2] Dilger RN, Bryant-Angeloni K, Payne RL, Lemme A, and Parsons CM 2013 Dietary guanidinoacetic acid is an efficacious replacement for arginine for young chicks Poult. Sci. 92 171–177

[3] Esser AFG, Gonçalves DRM, Rorig A, Cristo AB, Perini R, and Fernandes JIM 2017 Effects of guanidinoacetic acid and arginine supplementation to vegetable diets fed to broiler chickens subjected to heat stress before slaughter Rev. Bras. 62 477–485

[4] Heger J, Zelenka J, Machander V, De La Cruz C, Lešták M, and Hampel D 2014 Effects of guanidinoacetic acid supplementation to broiler diets with varying energy content Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 62 1955–1962

[5] Zhang L, Li JL, Gao T, Lin M, Wang XF, Zhu XD, Gao F, and Zhou GH 2014 Effects of dietary supplementation with creatine monohydrate during the finishing period on growth performance, carcass traits, meat quality and muscle glycolytic potential of broilers subjected to transport stress Anim. 8 1398–1408

[6] Tossenberger J, Rademacher M, Nemeth K, Halas V, and Lemme A 2016 Digestibility and Metabolism of Dietary Guanidino Acetic Acid Fed to Broilers J. Poult. Sci. 95 2058–2067

[7] Córdova-Noboa HA, Oviedo-Rondón EO, Sarsour AH, Barnes J, Sapcote D, López D, Gross L, Rademacher-Heilshorn M, and Braun U 2018 Effect of guanidinoacetic acid supplementation on live performance, meat quality, pectoral myopathies and blood parameters of male broilers fed corn-based diets with or without poultry by-products Poult. Sci. 97 2494–2505

[8] Ren QC, Xuan JJ, Yan XC, Hu ZZ, and Wang 2020 Effect of dietary supplementation of guanidino acetic acid on growth performance, thigh meat quality and development of small intestine in Patridge-shank broilers J. Agric. Sci. 1–8

[9] Gonzalez-Esquerra R and Leeson S 2006 Concentrations of putrescine, spermidine, and spermine in duodenum and pancreas as affected by the ratio of arginine to lysine and source of methionine in broilers under heat stress Poult. Sci. 85 1398–1408

[10] Khajali F, Lemme A, and Rademacher-Heilshorn M 2020 Guanidinoacetic acid as a feed supplement for poultry Worlds Poult. Sci. J. 76 270–291

[11] Wallimann T, Wyss M, Brdiczka D, Nicolay K, and Eppenberger HM 1992 Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis Biochem. J. 281 21–40

[12] Majdeddin M, Golian A, Kermanshahi H, De Smet S and Michiels J 2018 Guanidinoacetic acid supplementation in broiler chickens fed corn-soybean diets affects performance in the finisher period and energy metabolites in breast muscle independent of diet nutrient density Br. Poult. Sci. 59 443–451

[13] St-Pierre NR 2001 Integrating quantitative findings from multiple studies using mixed model methodology J. Dairy. Sci. 847 41–55

[14] Sauvant D, Schmidely P, Daudin JJ, and St-Pierre NR 2008 Meta-analyses of experimental data in animal nutrition Anim. 2 1203-1214

[15] European Food Safety Authority 2009 Safety and efficiency of guanidino acetic acid as feed additive for chickens for fattening The EFSA Journal 988: 1–30

[16] El-Faham AI, Abdallah AG, El-Sanhoury MHS, Ali NGM, Abddeelazziz MAM, Abdelhady AYM, and Arafa ASM 2019 Effect of graded levels of guanidine acetic acid in low protein broiler diets on performance and carcass parameters EJNF. 22 223-233

[17] Majdeddin M, Braun U, Lemme A, Golian A, Kermanshahi H, De Smet S, and Michiels J 2020 Guanidinoacetic acid supplementation improves feed conversion in broilers subjected to heat stress associated with muscle creatine loading and arginine sparing Poult. Sci. 99 4442–4453
[18] Lemme A, Ringel J, Rostagno HS, and Redshaw MS 2007 Supplemental guanidino acetic acid improved feed conversion, weight gain, and breast meat yield in male and female broilers 16th European Symposium on Poultry Nutrition 335-338.

[19] Cordova-Noboa HA, Oviedo-Rondon EO, Sarsour AH, Barnes J, Saprute D, Lopez D, Gross L, Rademacher-Heilshorn M, and Braun U 2018 Effect of guanidinoacetic acid supplementation on live performance, meat quality, pectoral myopathies and blood parameters of male broilers fed corn-based diets with or without poultry by-products Poult. Sci. 97 2494-2505

[20] Ahmadipour B, Naeini SZ, Sharifi M, and Khajali F 2018 Growth performance and right ventricular hypertrophy responses of broiler chickens to guanidinoacetic acid supplementation under hypobaric hypoxia J. Poult. Sci. 55 60-64

[21] Ahmadipour B, Sharifi M, and Khajali F 2018 Pulmonary hypertensive response of broiler chickens to arginine and guanidinoacetic acid under high-altitude hypoxia Acta Vet. Hung. 66 116–124

[22] Mohebbifar A, Torki M, and Abdolmohammadi A 2019 Effects of dietary guanidinoacetic acid supplementation on performance, blood parameters and meat quality of male broilers with cold-induced ascites Iran. J. App. Anim. Sci. 9 125-133

[23] Ahmadipour B, Khajali F, and Shariri MR 2018 Effect of guanidinoacetic acid supplementation on growth performance and gut morphology in broiler chickens Poult. Sci. J. 6 19-24

[24] Boney JW, Patterson PH, and Solis F 2020 The effect of dietary inclusions of guanidinoacetic acid on D1-42 broiler performance and processing yields J. Appl. Poult. Res. 29 220-228

[25] Mousavi SN, Afsar A, and Lotfollahian H 2013 Effects of guanidinoacetic acid supplementation to broiler diets with varying energy contents J. Appl. Poult. Res. 22 47-54

[26] Majdeddin M, Golian A, Kermanshahi H, Michiels J, and De Smet S 2019 Effects of methionine and guanidinoacetic acid supplementation on performance and energy metabolites in breast muscle of male broiler chickens fed corn-soybean diets Br. Poult. Sci. 60 554-563

[27] Kodambashi Emami N, Golian A, Rhoads DD, and Danesh Mesgaran M 2017 Interactive effects of temperature and dietary supplementation of arginine or guanidinoacetic acid on nutritional and physiological responses in male broiler chickens Br. Poult. Sci. 58 87-94

[28] Cordova-Noboa HA, Oviedo-Rondon EO, Sarsour AH, Barnes J, Ferzola P, Rademacher-Heilshorn, and Braun U 2018 Performance, meat quality, and pectoral myopathies of broilers fed either corn or sorghum based diets supplemented with guanidinoacetic acid Poult. Sci. 97 2479-2493

[29] Abu Dhabi's AM, Saleh F, Lemme A, and Zakaria HAH 2014 The relationship between guanidino acetic acid and metabolisable energy level on diets of performance of broiler chickens Ital. J. Anim. Sci. 13 548-556

[30] Amiri M, Ghasemi HA, Haj Khodadadi I, and Farahani AHK 2019 Efficacy of guanidinoacetic acid at different dietary crude protein levels on growth performance, stress indicators, antioxidiant status, and intestinal morphology in broiler chickens subjected to cyclic heat stress Anim. Feed Sci. Technol. 254 1-14

[31] Zhang D, Juntao LI, Yaoyao T, Libin Y, and Zhang L 2017 Evaluation on tolerance arbor acres broilers to guanidinoacetic acid Chin. J. Anim. Nutr. 29 456-464

[32] Fosoul SSAS, Azarfar A, Gheisari A, and Khosravinia H 2019 Performance and physiological responses of broiler chickens to supplemental guanidinoacetic acid in arginine deficient diets Br. Poult. Sci. 60 161-168

[33] Zaefarian F, Abdollahi MR, Cowieson A, and Ravindran V. Avian liver: the forgotten organ. Anim. 9 1-23