SNPs Identified as Modulators of ECG Traits in the General Population Do Not Markedly Affect ECG Traits during Acute Myocardial Infarction nor Ventricular Fibrillation Risk in This Condition

Raha Pazoki1,2, Jonas S.S.G. de Jong2,3, Roos F. Marsman2, Nienke Bruinsma2, Lukas R. C. Dekker3, Arthur A. M. Wilde2, Connie R. Bezzina2*, Michael W. T. Tanck1*

1 Department of Clinical Epidemiology, Biostatistics & Bioinformatics, Academic Medical Center, Amsterdam, The Netherlands, 2 Department of Clinical and Experimental Cardiology, Heart Failure Research Center, Academic Medical Center, Amsterdam, The Netherlands, 3 Department of Cardiology, Catharina Hospital, Eindhoven, The Netherlands

Abstract

Background: Ventricular fibrillation (VF) in the setting of acute ST elevation myocardial infarction (STEMI) is a leading cause of mortality. Although the risk of VF has a genetic component, the underlying genetic factors are largely unknown. Since heart rate and ECG intervals of conduction and repolarization during acute STEMI differ between patients who do and patients who do not develop VF, we investigated whether SNPs known to modulate these ECG indices in the general population also impact on the respective ECG indices during STEMI and on the risk of VF.

Methods and Results: The study population consisted of participants of the Arrhythmia Genetics in the NEtherlandS (AGNES) study, which enrolls patients with a first STEMI that develop VF (cases) and patients that do not develop VF (controls). SNPs known to impact on RR interval, PR interval, QRS duration or QTc interval in the general population were tested for effects on the respective STEMI ECG indices (stage 1). Only those showing a (suggestive) significant association were tested for association with VF (stage 2). On average, VF cases had a shorter RR and a longer QTc interval compared to non-VF controls. Eight SNPs showed a trend for association with the respective STEMI ECG indices. Of these, three were also suggestively associated with VF.

Conclusions: RR interval and ECG indices of conduction and repolarization during acute STEMI differ between patients who develop VF and patients who do not. Although the effects of the SNPs on ECG indices during an acute STEMI seem to be similar in magnitude and direction as those found in the general population, the effects, at least in isolation, are too small to explain the differences in ECGs between cases and controls and to determine risk of VF.

Citation: Pazoki R, de Jong JSSG, Marsman RF, Bruinsma N, Dekker LRC, et al. (2013) SNPs Identified as Modulators of ECG Traits in the General Population Do Not Markedly Affect ECG Traits during Acute Myocardial Infarction nor Ventricular Fibrillation Risk in This Condition. PLoS ONE 8(2): e57216. doi:10.1371/journal.pone.0057216

Editor: Monika Stoll, Leibniz-Institute for Arteriosclerosis Research at the University Muenster, Germany

Received June 25, 2012; Accepted January 22, 2013; Published February 20, 2013

Copyright: © 2013 Pazoki et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors are supported by research grants from the Netherlands Heart Foundation (grants 2001D019, 2003T302 and 2007B02), the Leducq Foundation (grant 05-CVD) and the Netherlands Heart Institute (ICIN project 27). CRB is an Established Investigator of the Netherlands Heart Foundation (grant 2005T024). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: m.w.tanck@amc.uva.nl (MWTT); c.r.bezzina@amc.uva.nl (CRB)

† These authors contributed equally to this work.

Introduction

Sudden cardiac death (SCD) is a leading cause of death in adults in the Western world [1]. The overwhelming majority (~80%) of SCDs in adults are caused by the sequelae of coronary artery disease, namely myocardial ischemia or acute myocardial infarction (MI) [2]. While the risk of VF is known to have a genetic component, the underlying genetic factors are yet largely unknown [3–5].

Electrocardiographic indices of conduction and repolarization are considered important quantifiable intermediate phenotypes for arrhythmia risk [6]. In support of this concept, ECG indices measured during the acute phase of ST elevation MI (STEMI) were associated with risk of ensuing VF [7]. A number of studies have demonstrated that heart rate, PR interval, QRS duration and QTc interval are heritable traits [8–10] and over the last years genome-wide association studies (GWAS) in large samples of the general population have uncovered several common single nucleotide polymorphisms (SNPs) affecting these ECG traits [11–21].

The objective of this study was to assess whether SNPs, previously associated with heart rate and ECG indices of conduction and repolarization in GWAS in the general population, modulate ECG indices and risk of VF during acute STEMI. Specifically, we hypothesized that ECG-related SNPs modulate...
Studies of SNPs and Genotyping

Ethics statement
The study protocol was approved by the Institutional Review Board of the Academic Medical Center, University of Amsterdam, and was conducted according to the principles of the Declaration of Helsinki. All participants gave written informed consent.

Study samples
The study population consisted of participants of the Arrhythmia Genetics in the Netherlands (AGNES) case-control study which has been described in detail previously [3,4]. In brief, the AGNES study enrols patients with a first acute STEMI. Cases are defined as patients who were successfully resuscitated after documented VF that occurred between the onset of symptoms and coronary intervention. Controls are defined as acute STEMI patients who did not develop VF. Patients with a previous MI or major co-morbidity were excluded. All individuals studied were of self-declared European ancestry.

Measurement of ECG indices
The first recorded ECG that was acquired during STEMI and before reperfusion treatment was used for analysis. For cases, both ECGs acquired pre-VF as well as post-VF were included. ECGs of insufficient quality (due to e.g. baseline drift or missing leads) and ECGs with rhythms other than sinus rhythm or atrial fibrillation (AF) were excluded. Patients with AF (n = 23) were excluded for the analyses of PR interval, but included for the other ECG indices. All ECGs were digitized at 400 dpi (giving a spatial resolution 0.064 mm or 1.6 ms / pixel on an ECG traced at 25 mm / sec). Calibrated measurements were performed on-screen after 4 times enlargement of the digitized ECGs in ImageJ (National Institutes of Health, Bethesda, Maryland, http://rsb.info.nih.gov/ij/). RR-interval (heart rate) was measured from the onset of ventricular depolarization. QRS duration was measured from the onset of ventricular depolarization to the J point. QTc interval was measured using the tangent method [22]. Lead II was used when the T wave was of sufficient amplitude to warrant QT measurement, otherwise leads V5 or V2 were used. QT was corrected for heart rate (QTc) using Fridericia’s formula (QTc = QT / (cube root (RR))). ST deviation was calculated as the sum of all ST deviation from baseline at 60 ms after the J point in all 12 leads. ST deviation was not reported if individual leads were disconnected or in patients with left bundle branch block. The mean of three consecutive beats wherever possible was measured for all parameters and used in subsequent analyses. Patients with AV block, PR interval ≥ 200 ms or QRS duration ≥ 120 ms were excluded from the ECG analyses involving the continuous endpoints PR interval, QRS duration and QTc interval. For PR interval and QRS duration, additional dichotomous endpoints were assessed i.e. PR interval ≥ 200 ms and QRS duration ≥ 120 ms. Patients with AV block were included in the dichotomized PR interval endpoint as PR > 200 ms.

Selection of SNPs and Genotyping
We inspected the published GWAS concerning heart rate and ECG indices of conduction and repolarization and identified SNPs reported to be associated with these parameters at genome-wide significant P-values (P<5×10^-8) [23]. In case of high linkage disequilibrium (r²≥0.75) between identified SNPs, only a single SNP, capturing the maximum amount of variation present in the correlated SNPs, was selected for our analysis. This was the case for SNPs at the SCN1A, SCN5A, KCNH2, KCNQ1, CNOT7, ARHGAP24, NOS1AP, CDKN1A, GJA1 and MYH6 loci. A total of 65 SNPs were identified in this way. Genotypes for these SNPs were either obtained by direct genotyping (Illumina610 Quad genotyping array) or were estimated by imputation using HapMap build 36 as the reference panel. Details on genotyping and imputation in the AGNES sample have been described previously [4].

Statistical Analysis
We tested differences between cases and controls in continuous variables with an independent sample t-test, or the Mann-Whitney U test when the data was not normally distributed. We compared differences in the percentages of categorical variables with the Pearson χ² test. We used linear regression modelling in association analyses of continuous endpoints and logistic regression modelling for association analyses of dichotomous endpoints (VF, PR≥200 ms and QRS≥120 ms). In all models, we assumed an additive genetic model and corrected for age, sex and the culprit artery (harbouring the occluding lesion) [7] as well as the possible interaction between culprit artery and the SNPs. The occurrence of the latter was first tested using a Wald test.

Our analysis plan had a two-stage design. In the first stage, we tested for association of the selected SNPs with the corresponding ECG parameter during STEMI. In the second stage, we selected those SNPs with a (suggestive) significant effect on the ECG parameter and analyzed their effect on the occurrence of VF.

The Bonferroni thresholds for statistical significance were P≤0.0002 for the first stage (corrected for two tests per SNP and six outcomes: HR, QTc, PQ, PQ, QRS≥200 ms, QRS and QRS≥120, resulting in a total of 210 tests) and P≤(0.05/number of SNPs carried over from stage 1) for the second stage. For both stages, P-values between the Bonferroni threshold and 0.05 were considered as a suggestive trend.

Power and detectable effects
Given the observed standard deviations in our study population for heart rate and the ECG indices, the reported effects of the identified SNPs would result in effect sizes ≤ 0.2 SD. With the present range in sample sizes (417 – 515), the power to detect an effect size of 0.2 of a SNP with a minor allele frequency (MAF) ranging from 0.05 to 0.5 would range from 1 to 31% for a two-sided p-value of 0.0002 (Bonferroni threshold) and from 24 – 90% for a two-sided p-value of 0.05 (suggestive trend). The present study, therefore, lacks the power to significantly detect effect sizes as found in the general population (from the GWAs). However, given the fact that our heart rate and ECG indices were measured in patients experiencing a STEMI, we hypothesized that the SNP effects might be markedly increased in this sensitized population.

Given the present range in sample sizes, the study had 80% power to detect effect sizes of 0.7 to 0.3 (± 5% explained variance) for the quantitative traits at MAFs ranging from 0.05 to 0.5 assuming an additive genetic model and a two-sided significance threshold of 0.0002 (Stage 1). For PR interval with an overall standard deviation of 20 ms, for example, this translates into detectable allele effects (beta) ranging from 14 to 6 ms. For the dichotomized endpoints, we were able to detect odds ratio’s ranging from 2.3 to 1.6 (Stage 1, α = 0.0002).
Results

VF and ischemic ECG indices

Baseline characteristics of the study population are shown in Table 1. As reported previously [3,4], AGNES cases had a lower prevalence of diabetes mellitus and hypercholesterolemia, and lower mean body mass index (BMI) than AGNES controls. AGNES cases more often had a family history of sudden cardiac death as compared to controls.

STEMI ECGs of sufficient quality were available for 599 patients. Of these, 79 (13%) patients had QRS\(\geq120\) ms, and 85 (14%) patients had a PR\(\geq200\) ms or higher degree AV block; several patients had a combination of these ECG abnormalities. Because of these exclusions and missing values, the number of available observations varied between 417 and 515. VF cases showed, on average, a shorter RR interval, a longer QTc interval, and a greater ST segment deviation and more often prolongation of the QRS interval\(\geq120\) ms as compared to controls (Table 1). Location of the culprit coronary lesion modified the effect of QRS duration and QTc interval on risk of VF (Table 2). For instance, QRS duration was more prolonged in cases compared to controls only among patients with a left circumflex artery (LCX) occlusion (\(P_{\text{interaction}}=0.002\)). QTc-interval tended to be more prolonged among patients with left anterior descending artery (LAD) or LCX occlusion (\(P_{\text{interaction}}=0.026\)).

ECG candidate SNPs and STEMI ECG indices (Stage 1)

None of the 65 SNPs tested displayed an association with the corresponding ECG trait that passed the Bonferroni-corrected significance threshold of \(P\leq0.0002\), nor showed an interaction with culprit artery. Eight SNPs displayed a trend (\(0.0002<\ P<0.05\)) in association with STEMI ECG indices (Table 3). Regarding the continuous ECG outcomes, SNPs rs223116 and rs291860 showed a trend for association with RR interval (\(P=0.004\) and 0.114, respectively) and SNP rs6795970 showed a trend for association with PR interval (\(P=0.004\)). SNPs rs186512 and rs883079 showed a trend for association with QRS duration (\(P=0.010\) and 0.007, respectively). SNPs rs17779747 and rs8049607 showed a trend for association with QTc interval (\(P=0.004\) and 0.036, respectively). Regarding the dichotomized ECG endpoints, the C-allele of SNP rs11708996 showed a trend for association with PR\(\geq200\) ms with an odds ratio of 2.39 (95% CI: 1.33 – 4.30; \(P=0.004\)). None of the QRS SNPs showed any significant association with QRS\(\geq120\) ms.

STEMI ECG SNPs and risk of VF (Stage 2)

We next tested the eight SNPs from Stage 1 showing a trend for association with the ECG parameters for association with VF. Of these eight, none passed the Bonferroni-corrected significance threshold (\(P\leq0.0063\)) for association with risk of VF during STEMI. However, two SNPs, namely rs6795970 and rs17779747, were nominally associated with VF (\(P=0.009\) and 0.026,

Table 1. Baseline characteristics of the AGNES case-control set.

Characteristic	N\(^{*}\)	Total (n = 969\(^{1}\))	Cases (n = 516)	Controls (n = 453)	
Sex (male)		783 (80.6)	412 (80.0)	371 (81.2)	
Mean age at myocardial infarction		56.4 ±11	55.9 ±11.2	56.9 ± 10.8	0.174
Family history of sudden death		909, 459, 450	291 (32.0)	174 (37.9)	117 (26.0)

CVD risk factors

Current smoking	914, 473, 441	565 (61.8)	303 (64.1)	262 (59.4)	0.1531
Diabets mellitus	893, 462, 431	62 (6.9)	21 (4.6)	41 (9.5)	0.004
Hypertension	294 (30.2)	149 (28.9)	145 (31.7)	0.3633	
Hypercholesterolemia	297 (30.6)	127 (24.7)	170 (37.2)	< 0.0001	
Body mass index (BMI, kg/m\(^{2}\))	879, 439, 440	26.5 ±3.9	26.1 ±3.8	26.9 ± 4.0	0.0042
Peak CK-MB	735, 337, 398	227 [294]	241 [354]	215 [247]	0.006
Ischemic ECG					
RR interval (ms)	453, 214, 239	807 ±204	743 ±188	864 ±203	< 0.0001
ST segment deviation (mm)	474, 188, 286	15 [17]	20 [20]	13 [12]	< 0.0001
PR interval (ms)	417, 195, 222	157 ±20	158 ±19	157 ±20	0.358
QRS duration (ms)	452, 214, 238	93 ±13	93 ±14	93 ± 13	0.860
QTc interval (ms)	424, 200, 224	410 ±35	415 ±37	405 ±31	0.003
PR\(>200\) ms	515, 249, 266	57 (11.0)	32 (12.7)	25 (9.5)	0.153
QRS\(>120\) ms	509, 252, 257	57 (11.2)	38 (15.1)	19 (7.4)	0.007
Culprit artery	811, 430, 381				
RCA	220 (27.1)	109 (25.3)	111 (29.1)	0.304	
LAD	475 (58.6)	260 (60.5)	215 (56.4)	0.202	
LCX	116 (14.3)	61 (14.2)	55 (14.4)	0.685	

CK-MB, creatine kinase-MB; LAD, left anterior descending artery; LCX, left circumflex artery; RCA, right coronary artery. *In case of missing values, the sample sizes of the total, case and control sets (total, case, control) for which information was available are given. ^Normally distributed continuous variables are presented as mean ± SD or as Median [interquartile range] otherwise. Categorical variables data are presented as number (%). † \(^{P}\) value for comparison of cases and controls using independent t-test, Mann-Whitney test, or chi-square test where appropriate.

doi:10.1371/journal.pone.0057216.t001
ECG candidate SNPs, STEMI ECG indices and VF

Discussion

In the current study, we confirm and extend previous observations that heart rate and ECG indices of conduction and repolarization differ between acute STEMI patients who develop VF and acute STEMI patients who do not develop VF. Although our analysis only detected nominal association with the STEMI ECG traits for only a minority of SNPs, the effect size and direction for the association of these SNPs was comparable to that found for the corresponding trait in the general population. Furthermore, of the eight SNPs displaying such association, three also displayed a trend for association with VF.

Ischemic ECG indices and VF

Ischemic ECGs of patients with VF (cases) showed, on average, shorter RR intervals, longer QTc intervals and more ST segment deviation than patients without VF (controls). When the culprit artery harbouring the occluding lesion was taken into account, cases with an LCX occlusion had a longer QRS duration. This finding is similar to our previous findings in a smaller sample of STEMI patients with and without VF [7]. However, the observation in this previous study of longer QRS interval in cases with an RCA occlusion was not observed in the present study. With respect to QTc interval, cases with either an LAD or LCX occlusion had a longer QTc-interval compared to controls. This extends our earlier findings, where similar (though non-significant) differences in QTc interval were found for the same culprit arteries. The observed longer QRS duration and QTc interval in cases with VF reflect cardiac conduction delay and prolonged repolarization time, respectively, consistent with a more pro-arrhythmic substrate in cases [24].

ECG candidate SNPs, STEMI ECG indices and VF

Recent GWAS have identified multiple common genetic variants affecting heart rate, conduction and repolarization in individuals from the general population [11–21]. However, whether these variants also influence ECG indices in the setting of STEMI has not yet been investigated. In our study, none of the association P-values exceeded our stringent pre-set threshold for statistical significance. Eight SNPs displayed a suggestive association to the corresponding STEMI ECG parameter, and of note all eight SNPs displayed an effect that was similar in direction and magnitude to that observed in the general population [11–21]. However our findings also demonstrate that SNPs which are known to exert only small effects on ECG parameters in the general population, do not have a markedly increased effect on ECG indices in the setting of acute STEMI.

Table 2. ECG characteristics of AGNES cases and controls according to the artery harbouring the stenotic lesion.

Culprit artery	Cases (N)	Mean±SD	Controls (N)	Mean±SD	P value*	Interaction P value
RR interval						
LAD	130	728±170	124	822±180	<0.0001	
LCX	25	751±185	35	866±213	0.047	0.974
RCA	43	791±230	70	944±214	0.001	
PR interval						
LAD	117	158±19	112	159±18	0.879	
LCX	24	150±17	33	151±19	0.647	0.423
RCA	39	163±20	67	157±22	0.168	
QRS duration						
LAD	130	93±13	123	91±13	0.288	
LCX	25	98±11	35	88±9	0.002	0.002
RCA	43	94±16	70	98±12	0.134	
QTc interval						
LAD	120	422±37	113	413±28	0.036	
LCX	24	415±28	33	391±30	0.020	0.026
RCA	40	399±38	68	399±35	0.939	

LAD, left anterior descending artery; LCX, left circumflex artery; RCA, right coronary artery

*P value of comparison between cases and controls using a logistic regression model adjusted for age and sex. (All patients with AV block or PR=200 ms or QRS≤120 ms & AF are excluded)

doi:10.1371/journal.pone.0057216.t002

respective) independent of the culprit artery. Another SNP, rs225116 displayed a nominal association with VF in patients with an occlusion in the LCX (P=0.039) or RCA (P=0.037) only (Table 4).
Table 3. Association analysis of SNPs with ECG indices of conduction and repolarization during myocardial ischemia.

SNP	Coded/Non-Coded Allele	GWAS Minor Allele (Frequency)	Beta (SE)	P value	P value Interaction	Gene	
RR SNPs							
rs11154022	A/G	Inc	A (0.33)	6.5 (14.9)	0.664	0.975	8 kb from GJA1
rs12666989	C/G	Dec	C (0.20)	−10.7 (17.6)	0.543	0.175	LFSF1
rs12731740	T/C	Inc	T (0.12)	10.3 (22.3)	0.646	0.277	CD3-MIR29C-MIR29B2
rs17287293	G/A	Inc	G (0.14)	22.6 (19.7)	0.273	0.128	SOX5-BCAT1
rs174547	C/T	Dec	C (0.31)	−11.7 (15.0)	0.438	0.343	FADS1
rs223116	A/G	Dec	A (0.24)	−45.6 (15.9)	0.004	0.461	THTPA-NGDN-ZFHX2-MYH7
rs2745967	G/A	Inc	G (0.38)	−1.2 (14.1)	0.932	0.168	CD34-PLXNA2
rs281868	G/A	Dec	A (0.49)	−33.8 (13.8)	0.014	0.061	SLC35A1
rs314370	C/T	Dec	C (0.20)	−5.5 (17.4)	0.751	0.197	SLC12A9
rs452036	A/G	Dec	A (0.39)	10.4 (14.5)	0.472	0.823	MYH6
rs853899	G/A	Dec	G (0.38)	22.6 (19.7)	0.273	0.128	SOX5-BCAT1
rs9398652	A/C	Dec	A (0.12)	−9.2 (21.9)	0.674	0.292	GJA1-HSF2
PR SNPs							
rs11047543	A/G	Dec	A (0.14)	−1.97 (1.94)	0.312	0.696	SOX5
rs11708996	C/G	Inc	C (0.16)	−0.64 (2.11)	0.763	0.722	SCN5A
rs11897119	C/T	Inc	C (0.38)	0.41 (1.42)	0.775	0.407	MEIS1
rs1896312	C/T	Inc	C (0.29)	0.37 (1.49)	0.807	0.399	TBX5-TBX3
rs251253	C/T	Dec	C (0.41)	−1.59 (1.37)	0.248	0.744	N1K2-S
rs3807989	A/G	Inc	A (0.42)	0.17 (1.42)	0.904	0.571	CAV1-CAV2
rs3825214	G/A	Dec	G (0.20)	−0.16 (1.74)	0.925	0.766	TBX5
rs4940092	G/A	Dec	G (0.33)	−0.74 (1.48)	0.616	0.462	WNT11
rs6795970	A/G	Inc	A (0.39)	4.06 (1.42)	0.004	0.031	SCN10A
rs7660702	T/C	Inc	C (0.30)	−0.04 (1.42)	0.979	0.462	ARHGAP24
QRS SNPs							
rs10850409	A/G	Dec	A (0.25)	−0.39 (0.98)	0.696	0.380	TBX3
rs10865879	T/C	Inc	C (0.25)	−0.45 (1.07)	0.671	0.792	SCN5A-EXOG
rs11153730	C/T	Inc	T (0.49)	0.72 (0.87)	0.008	0.383	C6orf204-SLC35F1-PLN-BRD7P3
rs11708996	C/G	Inc	C (0.16)	0.94 (1.37)	0.493	0.232	SCN5A
rs11710077	T/A	Dec	T (0.18)	0.59 (1.12)	0.596	0.517	SCN5A
rs11848785	G/A	Dec	G (0.27)	−0.34 (1.05)	0.743	0.756	S palabras
rs13165478	A/G	Dec	A (0.37)	−1.45 (0.91)	0.115	0.559	HAND1-SAP30L
rs1321311	A/C	Inc	A (0.24)	−0.43 (1.08)	0.691	0.858	CDKN1A
rs1362212	A/G	Inc	A (0.16)	0.65 (1.29)	0.616	0.834	TBX20
rs17020136	C/T	Inc	C (0.21)	0.24 (1.08)	0.827	0.251	HEATR5B-STRN
rs1733724	A/G	Inc	A (0.27)	−0.51 (1.03)	0.621	0.274	DKK1
rs7784776	C/T	Inc	C (0.13)	1.31 (1.31)	0.320	0.453	GOSR2
rs1886512	A/T	Dec	A (0.37)	−2.39 (0.92)	0.010	0.880	KLF12
rs2051211	G/A	Dec	G (0.26)	−0.35 (1.03)	0.734	0.271	EXOG
rs2242285	A/G	Inc	A (0.43)	−0.24 (0.87)	0.784	0.888	URI1G-SLC25A26
rs4074536	C/T	Inc	C (0.32)	1.19 (0.99)	0.232	0.749	CASQ2
rs4687718	A/G	Dec	A (0.12)	1.70 (1.34)	0.207	0.487	TTK-PKPCD-CACNA1D
rs6795970	A/G	Dec	A (0.39)	0.52 (0.91)	0.569	0.326	SCN10A
rs7342028	T/G	Inc	T (0.25)	1.89 (1.03)	0.068	0.051	VTI1A
rs7562790	G/T	Inc	G (0.43)	−0.22 (0.91)	0.812	0.529	CRIM1
rs7784776	G/A	Inc	G (0.41)	−0.82 (0.93)	0.383	0.265	IGFBP3
rs883079	C/T	Inc	C (0.26)	2.77 (1.02)	0.007	0.147	TBX5
rs9436640	G/T	Dec	G (0.48)	−0.68 (0.89)	0.445	0.278	NFIA
small percentage of the variation in these indices. For instance, in a meta-analysis for identification of QTc-associating SNPs by Pfeufer and co-workers [15], SNPs at 10 different loci in aggregate explained only around 3% of the variance in this trait. The effects of these common genetic variants on the STEMI ECG are small and insufficient to explain the differences found in STEMI ECGs of cases and controls. This underscores the need for further studies aimed at uncovering additional genetic variants, such as rare variants associated with larger effects, which would lead to a more-

Table 3. Cont.

SNP	GWAS End point	Coded/Non Coded Allele	GWAS Effect	Minor Allele (Frequency)	Beta (SE)	P value	P value Interaction	Gene
QRS SNPs								
rs9851724	QRS	C/T	Dec	C (0.35)	−1.25 (0.92)	0.177	0.527	SCN10A
rs991014	QRS	T/C	Inc	T (0.43)	−0.40 (0.91)	0.665	0.427	SETBP1
rs9912468	QRS	G/C	Inc	G (0.40)	0.28 (0.96)	0.770	0.511	PRKCA
QTc SNPs								
rs1091907	QTc	A/G	Inc	G (0.11)	−0.01 (2.09)	0.997	0.774	ATP1B1
rs11970286	QTc	T/C	Inc	T (0.47)	0.13 (2.31)	0.954	0.996	PLN
rs1209454	QTc	A/G	Inc	A (0.14)	4.74 (3.20)	0.139	0.439	NOS1AP
rs12053903	QTc	C/T	Dec	C (0.33)	−4.13 (2.55)	0.106	0.911	SCN5A
rs12143842	QTc	T/C	Inc	T (0.24)	3.47 (2.69)	0.197	0.874	NOS1AP
rs12210810	QTc	C/G	Dec	C (0.04)	1.34 (3.33)	0.801	0.590	PLN

Table 4. Association analysis of SNPs with VF in AGNES cases versus AGNES controls.

SNP	GWAS End point	Coded/Non Coded Allele	GWAS Effect	Minor Allele (Frequency)	Odds ratio [95% CI]*	P value	P value Interaction	Gene
rs223116	RR	A/G	Dec	A (0.24)	0.86 [0.64 – 1.17]	0.340	0.0163	THTPA-NGDN-
LAD								
LCX					2.08 [1.04 – 4.17]	0.039		
RCA					1.61 [1.03 – 2.51]	0.037		
rs281868	RR	G/A	Dec	A (0.49)	0.99 [0.81 – 1.21]	0.929	0.237	SLC35F1
rs6795970	PR	A/G	Inc	A (0.39)	0.77 [0.63 – 0.94]	0.009	0.897	SCN10A
rs11708996	PR=200 ms	C/G	Inc	C (0.16)	1.24 [0.93 – 1.65]	0.144	0.235	SCN5A
rs1886512	QRS	A/T	Dec	A (0.37)	0.98 [0.80 – 1.20]	0.824	0.549	KLF12
rs883079	QRS	C/T	Inc	C (0.26)	0.90 [0.72 – 1.13]	0.359	0.819	Tbx5
rs17779747	QTc	T/G	Dec	T (0.34)	1.27 [1.03 – 1.57]	0.026	0.921	KCNJ2
rs8049607	QTc	T/C	Inc	C (0.49)	1.05 [0.87 – 1.29]	0.597	0.942	LITAF

*effect estimate is given per copy of the coded allele adjusted for age, sex and culprit artery. † P values for interaction between SNPs and culprit artery on risk of VF

doi:10.1371/journal.pone.0057216.t004
complete representation of the allelic architecture of these differences in STEMI ECGs.

Strengths and Limitations
In this study, we had the unique opportunity to study the effect of genetic variants, known to impact on ECG indices in the general population, on VF in a well-defined case-control set of patients with a first acute STEMI. Our study is rather unique in that the availability of STEMI ECGs and DNA from patients in whom STEMI is complicated by VF is very scarce due to the high mortality in these patients. On the other hand, as a consequence, our sample size is limited, which can result in insufficient statistical power. Furthermore, the STEMI ECGs used in this study were retrieved retrospectively and, therefore, the time between the onset of complaints and acquisition of the STEMI ECG varied among the study participants. Also since the ECGs were retrieved retrospectively, some were of insufficient quality for analysis, limiting the size of the sample available for analysis. The first recorded ECG that was acquired during STEMI and before reperfusion treatment was used for this analysis. Due to the nature of this complex and specific phenotype under investigation a resting ECG without STEMI prior to the index event is missing from these patients could, therefore, not be tested. Our analysis did not account for effects which may arise from differences in infarct size, intake of amiodarone or cardioversion. However, with respect to infarct size, additional adjustment for peak CKMB as a marker of infarct size, resulted in similar effect estimates but with larger confidence intervals, mainly related to the reduced sample size as peak CKMB was not available in all patients (Table S1).

Conclusion
In conclusion, ECG indices of conduction and repolarization differ between STEMI patients with VF and STEMI patients who do not develop VF. Although the effects of some SNPs on ECG parameters during an acute STEMI were similar in magnitude and direction as those found in the general population, the effects were too small to explain the differences in conduction and repolarization indices and to exert any marked impact on risk of VF. Nevertheless, rs6795970, located within the SCN10A gene, associated with longer PR interval in the general population and with longer PR interval and risk of VF during STEMI in our study, merits investigation in future larger studies.

Supporting Information
Table S1 Association analysis of SNPs with VF in AGNES cases versus AGNES controls with additional correction for peak CKMB levels.

Author Contributions
Conceived and designed the experiments: AAMW CRB LRCD MWTT. Performed the experiments: RFM NB. Analyzed the data: RP JSSGdJ MWTT. Wrote the paper: RP JSSGdJ RFM AAMW CRB MWTT.

References
1. Myerburg RJ, Castellanos A (2007) Cardiac Arrest and Sudden Cardiac Death. In: Libby P, Bonow RO, Mann DL, Zipes DP, editors. Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine. Oxford: Elsevier.
2. Huikuri HV, Castellanos A, Myerburg RJ (2001) Sudden death due to cardiac arrhythmias. N Engl J Med 345: 1473–1482.
3. Dekker LR, Bezina CR, Heurteaux JP, Tanck MW, Koch KT, et al. (2006) Familial sudden death is an important risk factor for primary ventricular fibrillation: a case-control study in acute myocardial infarction patients. Circulation 114: 1140–1145.
4. Bezina CR, Pasoki R, Bardai A, Marsman RF, de Jong JS, et al. (2010) Genome-wide association study identifies a susceptibility locus at 2q12 for ventricular fibrillation in acute myocardial infarction. Nat Genet 42: 688–691.
5. Kaikonen KS, Kortelainen ML, Linnma E, Huikuri HV (2006) Family history and the risk of sudden cardiac death as a manifestation of an acute coronary event. Circulation 114: 1462–1467.
6. Kolder IC, Tanck MW, Bezina CR (2012) Common genetic variation modulating cardiac ECG parameters and susceptibility to sudden cardiac death. J Mol Cell Cardiol 52: 620–629.
7. Lemmeret ME, de Jong JS, van Sipdonk AM, Crijns HJ, Wellens HJ, et al. (2008) Electrocardiographic factors playing a role in ischemic ventricular fibrillation in ST elevation myocardial infarction are related to the culprit artery. Heart Rhythm 5: 71–78.
8. Havlik RJ, Garrison RJ, Folsom AR, Feinleib M (1980) Variability of heart rate, P-R, QRS and QT durations in twins. J Electrocardiol 13: 45–48.
9. Hanson B, Tuna N, Bouchard T, Heston L, Eckert E, et al. (1989) Genetic factors in the electrocardiogram and heart rate of twins reared apart and together. Am J Hum Genet 43: 606–609.
10. Russell MW, Law I, Sholinsky P, Folsom AR (1990) Heritability of ECG measurements in adult male twins. J Electrocardiol 30 Suppl: 64–68.
11. Chambers JC, Zhao J, Terracciano CM, Bezina CR, Zhang W, et al. (2010) Genetic variation in SCN10A influences cardiac conduction. Nat Genet 42: 149–152.
12. Pfeufer A, van NC, Marciante KD, Arking DE, Larson MG, et al. (2010) Genome-wide association study of PR interval. Nat Genet 42: 153–159.
13. Holm H, Gudbjartsson DF, Arnar DO, Thorleifsson G, Thorgeirsson G, et al. (2008) Common variants in T-box binding element functionally affect SCN5A/SCN10A enhancer. J Clin Invest 122: 2519–2530.
14. Sotodouehinia N, Isaacs A, de Bakker PI, Dorr M, Newton-Cheh C, et al. (2010) Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction. Nat Genet 42: 1068–1076.
15. Pfeufer A, Sanna S, Arking DE, Muller M, Gateva V, et al. (2009) Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat Genet 41: 407–414.
16. Nolte IM, Wallace C, Newhouse SJ, Wagnoett D, Fu J, et al. (2009) Common genetic variation near the phosphohamaban gene is associated with cardiac repolarisation: meta-analysis of three genome-wide association studies. PLoS One 4: e6138.
17. Arking DE, Pfeufer A, Post W, Kao WH, Newton-Cheh C, et al. (2006) A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat Genet 38: 644–651.
18. Newton-Cheh C, Ejgenheim M, Rice KM, de Bakker PI, Yin X, et al. (2009) Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat Genet 41: 399–406.
19. Marroni F, Pfeufer A, Aschunluo Y, Franklin CS, Isaacs A, et al. (2009) A genome-wide association scan of RR and QT interval duration in 3 European genetically isolated populations: The EUROSPLAN project. Circ Cardiovasc Genet 2: 322–328.
20. Cho YS, Go MJ, Kim YJ, Hye JY, Oh JH, et al. (2009) A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 41: 527–534.
21. Ejgenheim M, Newton-Cheh C, Sotodouehinia N, de Bakker PI, Muller M, et al. (2010) Genome-wide association analysis identifies multiple loci related to resting heart rate. Hum Mol Genet 19: 3885–3894.
22. Postema PG, de Jong JS, Van der Bilt IA, Wilde AA (2008) Accurate electrocardiographic assessment of the QT interval: teach the tangent. Heart Rhythm 5: 1015–1018.
23. Peir I, Velenkus R, Alshuler D, Daly MJ (2008) Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol 32: 381–383.
24. Zareba W, Moss AJ, le Cessie S (1996) Dispersion of ventricular repolarization and arrhythmic cardiac death in coronary artery disease. Am J Cardiol 74: 550–553.
25. Van den Boogaard M, Wong LY, Tessadori F, Bakker ML, Dreizophrener LK, et al. (2012) Genetic variation in T-box binding element functionally affects SCN5A/SCN10A enhancer. J Clin Invest 122: 2519–2530.