On the distance α-spectral radius of a connected graph

Haiyan Guo*, Bo Zhou†
School of Mathematical Sciences, South China Normal University, Guangzhou 510631, P.R. China

Abstract
For a connected graph G and $\alpha \in [0, 1)$, the distance α-spectral radius of G is the spectral radius of the matrix $D_\alpha(G)$ defined as $D_\alpha(G) = \alpha T(G) + (1 - \alpha)D(G)$, where $T(G)$ is a diagonal matrix of vertex transmissions of G and $D(G)$ is the distance matrix of G. We give bounds for the distance α-spectral radius, especially for graphs that are not transmission regular, propose some graft transformations that decrease or increase the distance α-spectral radius, and determine the unique graphs with minimum and maximum distance α-spectral radius among some classes of graphs.

AdMS classifications: 05C50, 15A18

Key words: distance α-spectral radius, graft transformation, maximum degree, clique number, tree, unicyclic graph

1 Introduction
We consider simple and undirected graphs. Let G be a connected graph of order n with vertex set $V(G)$ and edge set $E(G)$. For $u, v \in V(G)$, the distance between u and v in G, denoted by $d_G(u,v)$ or simply d_{uv}, is the length of a shortest path from u to v in G. The distance matrix of G is the $n \times n$ matrix $D(G) = (d_G(u,v))_{u,v \in V(G)}$. For $u \in V(G)$, the transmission of u in G, denoted by $T_G(u)$, is defined as the sum of distances from u to all other vertices of G, i.e., $T_G(u) = \sum_{v \in V(G)} d_G(u,v)$. The transmission matrix $T(G)$ of G is the diagonal matrix of transmissions of G. Then $Q(G) = T(G) + D(G)$ is the distance signless Laplacian matrix of G.

Throughout this paper we assume that $\alpha \in [0, 1)$. We consider the convex combinations $D_\alpha(G)$ of $T(G)$ and $D(G)$, defined as

$$D_\alpha(G) = \alpha T(G) + (1 - \alpha)D(G).$$

*ghaiyan0705@163.com
†Corresponding author. E-mail: zhoubo@scnu.edu.cn
Obviously, $D_0(G) = D(G)$ and $2D_{1/2}(G) = Q(G)$. We call the eigenvalues of $D_\alpha(G)$ the distance α-eigenvalues of G. As $D_\alpha(G)$ is a symmetric matrix, the distance α-eigenvalues of G are all real, which are denoted by $\mu_\alpha^{(1)}(G), \ldots, \mu_\alpha^{(n)}(G)$, arranged in nonincreasing order, where $n = |V(G)|$. The largest distance α-eigenvalue $\mu_\alpha^{(1)}(G)$ of G is called the distance α-spectral radius of G, written as $\mu_\alpha(G)$. Obviously, $\mu_\alpha^{(1)}(G), \ldots, \mu_\alpha^{(n)}(G)$ are the distance eigenvalues of G, and $2\mu_\alpha^{(1)}(G), \ldots, 2\mu_\alpha^{(n)}(G)$ are the distance signless Laplacian eigenvalues of G. Particularly, $\mu_0(G)$ is just the distance spectral radius and $2\mu_{1/2}(G)$ is just the distance signless Laplacian spectral radius of G. The distance eigenvalues and especially the distance spectral radius have been extensively studied, see the recent survey [1] and references therein. The distance signless Laplacian eigenvalues and especially the distance signless Laplacian spectral radius have also received much attention, see, e.g., [2, 3, 4, 7, 11, 12, 19].

In this paper, we give sharp bounds for the distance α-spectral radius, and particularly an upper bound for the distance α-spectral radius of connected graphs that are not transmission regular, and propose some types of graft transformations that decrease or increase the distance α-spectral radius. We also determine the unique graphs with minimum distance α-spectral radius among trees and unicyclic graphs, respectively, as well as the unique graphs (trees) with maximum and second maximum distance α-spectral radii, and the unique graph with maximum distance α-spectral radius among connected graphs with given clique number, and among odd-cycle unicyclic graphs, respectively.

2 Preliminaries

Let G be a connected graph with $V(G) = \{v_1, \ldots, v_n\}$. A column vector $x = (x_{v_1}, \ldots, x_{v_n})^T \in \mathbb{R}^n$ can be considered as a function defined on $V(G)$ which maps vertex v_i to x_{v_i}, i.e., $x(v_i) = x_{v_i}$ for $i = 1, \ldots, n$. Then

$$x^T D_\alpha(G)x = \alpha \sum_{u \in V(G)} T_G(u) x_u^2 + 2 \sum_{\{u,v\} \subseteq V(G)} (1 - \alpha) d_G(u,v) x_u x_v,$$

or equivalently,

$$x^T D_\alpha(G)x = \sum_{\{u,v\} \subseteq V(G)} d_G(u,v) \left(\alpha(x_u^2 + x_v^2) + 2(1 - \alpha)x_u x_v\right).$$

Since $D_\alpha(G)$ is a nonnegative irreducible matrix, by the Perron-Frobenius theorem, $\mu_\alpha(G)$ is simple and there is a unique positive unit eigenvector corresponding to $\mu_\alpha(G)$, which is called the distance α-Perron vector of G. If x is the distance α-Perron vector of G, then for each $u \in V(G)$,

$$\mu_\alpha(G)x_u = \alpha T_G(u)x_u + (1 - \alpha) \sum_{v \in V(G)} d_G(u,v) x_v,$$

or equivalently,

$$\mu_\alpha(G)x_u = \sum_{v \in V(G)} d_G(u,v)(\alpha x_u + (1 - \alpha)x_v),$$
which is called the \(\alpha \)-eigenequation of \(G \) at \(u \). For a unit column vector \(x \in \mathbb{R}^n \) with at least one nonnegative entry, by Rayleigh’s principle, we have \(\mu_\alpha(G) \geq x^\top D_\alpha(G)x \) with equality if and only if \(x \) is the distance \(\alpha \)-Perron vector of \(G \).

Lemma 2.1. Let \(G \) be a connected graph with \(\eta \) being an automorphism of \(G \), and \(x \) a distance \(\alpha \)-Perron vector of \(G \). Then for \(u, v \in V(G) \), \(\eta(u) = v \) implies that \(x_u = x_v \).

Proof. Let \(P = (p_{uv})_{u,v \in V(G)} \) be the permutation matrix such that \(p_{uv} = 1 \) if and only if \(\eta(u) = v \) for \(u,v \in V(G) \). We have \(D_\alpha(G) = P^\top D_\alpha(G)P \) and \(Px \) is a positive unit vector. Thus \(\mu_\alpha(G) = x^\top D_\alpha(G)x = (Px)^\top D_\alpha(G)(Px) \), implying that \(Px \) is also a distance \(\alpha \)-Perron vector of \(G \). Thus \(Px = x \), and the result follows. \(\square \)

Let \(G \) be a graph. For \(v \in V(G) \), let \(N_G(v) \) be the set of neighbors of \(v \) in \(G \), and \(d_G(v) \) be the degree of \(v \) in \(G \). Let \(G - v \) be the subgraph of \(G \) obtained by deleting \(v \) and all edges containing \(v \). For \(S \subseteq V(G) \), let \(G[S] \) be the subgraph induced by \(S \). For a subset \(E' \subseteq E(G) \), \(G - E' \) denotes the graph obtained from \(G \) by deleting all the edges in \(E' \), and in particular, we write \(G - xy \) instead of \(G - \{xy\} \) if \(E_1 = \{xy\} \). Let \(\overline{G} \) be the complement of \(G \). For a subset \(E' \subseteq E(\overline{G}) \), denote \(G + E' \) the graph obtained from \(G \) by adding all edges in \(E' \), and in particular, we write \(G + xy \) instead of \(G + \{xy\} \) if \(E' = \{xy\} \).

For a nonnegative square matrix \(A \), the Perron-Frobenius theorem implies that \(A \) has an eigenvalue that is equal the maximum modulus of all its eigen-values; this eigenvalue is called the spectral radius of \(A \), denoted by \(\rho(A) \). Obviously, \(\mu_\alpha(G) = \rho(D_\alpha(G)) \) for a connected graph \(G \).

Restating Corollary 2.1 in [14] p. 38, we have

Lemma 2.2. [14] Let \(A \) and \(B \) be square nonnegative matrices. If \(A \) is irreducible, \(A \geq B \), and \(A \neq B \), then \(\rho(A) > \rho(B) \).

By Lemma 2.2, we have

Lemma 2.3. Let \(G \) be a connected graph with \(u, v \in V(G) \). If \(u \) and \(v \) are not adjacent, then \(\mu_\alpha(G + uv) < \mu_\alpha(G) \).

The transmission of a connected graph \(G \), denoted by \(\sigma(G) \), is the sum of distance between all unordered pairs of vertices in \(G \). Clearly, \(\sigma(G) = \frac{1}{2} \sum_{v \in V(G)} T_G(v) \). A graph is said to be transmission regular if \(T_G(v) \) is a constant for each \(v \in V(G) \).

Lemma 2.4. Let \(G \) be a connected graph of order \(n \). Then

\[
\mu_\alpha(G) \geq \frac{2\sigma(G)}{n}
\]

with equality if and only if \(G \) is transmission regular.
Proof. Let $x = \frac{1}{\sqrt{n}}(1,1,\ldots,1)^\top$. Obviously, $xx^\top = 1$. Then

$$\mu_\alpha(G) \geq x^\top D_\alpha(G)x = \sum_{\{u,v\} \subseteq V(G)} d_G(u,v) \left(\alpha \left(x_u^2 + x_v^2\right) + 2(1-\alpha)x_u x_v\right) = \frac{2\sigma(G)}{n}.$$

Equality holds if and only if x is the distance α-Perron vector of G, equivalently,

$$\mu_\alpha(G)x_u = \alpha T_G(u)x_u + (1-\alpha) \sum_{v \in V(G)} d_G(u,v)x_v = T_G(u)x_u \text{ for } u \in V(G),$$

i.e., $T_G(u) = \mu_\alpha(G)$ for $u \in V(G)$.

Let $J_{s \times t}$ be the $s \times t$ matrix of all 1’s, $0_{s \times t}$ the $s \times t$ matrix of all 0’s, and I_s the identity matrix of order s.

Let K_n, P_n, and S_n be the complete graph, the path, and the star on n vertices, respectively.

3 Bounds for the distance α-spectral radius

In this section, we give some sharp bounds for the distance α-spectral radius, some of which may serve as a gentle warm-up exercise.

Note that $D_\alpha(K_n) = \alpha(n-1)I_n + (1-\alpha)(J_{n \times n} - I_n)$, and thus $\mu_\alpha(K_n) = n-1$. By Lemma 2.3, we have

Theorem 3.1. Let G be a connected graph of order n. Then

$$\mu_\alpha(G) \geq n - 1$$

with equality if and only if $G \cong K_n$.

If (d_1,\ldots,d_n) is the nonincreasing degree sequence of a graph G of order at least 2, then d_1 (resp. d_2) is the maximum (resp. second maximum) degree, d_n (resp. d_{n-1}) is the minimum (resp. second minimum) degree of G. The diameter of G is the maximum distance between all vertex pairs of G.

We use the techniques from [24].

Theorem 3.2. Let G be a connected graph of order $n \geq 2$ with maximum degree Δ and second maximum degree Δ'. Then

$$\mu_\alpha(G) \geq \frac{1}{2} \left(\alpha(4n - 4 - \Delta - \Delta') + \sqrt{\alpha^2(4n - 4 - \Delta - \Delta')^2 - 4(2\alpha - 1)(2n - 2 - \Delta)(2n - 2 - \Delta')}\right)$$

with equality if and only if G is regular with diameter at most 2.

Proof. Let x be the distance α-Perron vector of G. Let

$$x_u = \min\{x_w : w \in V(G)\} \text{ and } x_v = \min\{x_w : w \in V(G) \setminus \{u\}\}.$$
From the α-eigenequations of G at u and v, we have
\[
(\mu_{\alpha}(G) - \alpha T_G(u))x_u = (1 - \alpha) \sum_{w \in V(G)} d_G(u, w)x_w \\
\geq (1 - \alpha) \sum_{w \in V(G)} d_G(u, w)x_v \\
= (1 - \alpha)T_G(u)x_v
\]
and
\[
(\mu_{\alpha}(G) - \alpha T_G(v))x_v = (1 - \alpha) \sum_{w \in V(G)} d_G(v, w)x_w \\
\geq (1 - \alpha) \sum_{w \in V(G)} d_G(v, w)x_u \\
= (1 - \alpha)T_G(v)x_u.
\]
Thus
\[
(\mu_{\alpha}(G) - \alpha T_G(u))(\mu_{\alpha}(G) - \alpha T_G(v)) \geq (1 - \alpha)^2T_G(u)T_G(v),
\]
i.e.,
\[
\mu_{\alpha}^2(G) - \alpha(T_G(u) + T_G(v))\mu_{\alpha}(G) + (2\alpha - 1)T_G(u)T_G(v) \geq 0.
\]
Note that $\mu_{\alpha}(G) > \alpha T_G(u)$, $\mu_{\alpha}(G) > \alpha T_G(v)$, and thus $\mu_{\alpha}(G) > \frac{\alpha(T_G(u)+T_G(v))}{2}$.

Thus
\[
\mu_{\alpha}(G) \geq f(T_G(u), T_G(v))
\]
with
\[
f(s, t) = \frac{\alpha(s + t) + \sqrt{\alpha^2(s + t)^2 - 4(2\alpha - 1)st}}{2}.
\]

It is easily seen that $T_G(u) \geq d_G(u) + 2 \cdot (n - 1 - d_G(u)) = 2n - 2 - d_G(u)$. Similarly, $T_G(v) \geq 2n - 2 - d_G(v)$. Assume that $d_G(u) \geq d_G(v)$. Then
\[
T_G(u) \geq 2n - 2 - \Delta \text{ and } T_G(v) \geq 2n - 2 - \Delta'.
\]
Obviously, $f(s, t)$ is strictly increasing for $s, t \geq 1$. Thus
\[
\mu_{\alpha}(G) \geq f(2n - 2 - \Delta, 2n - 2 - \Delta')
\]
as desired.

Suppose that the lower bound for $\mu_{\alpha}(G)$ is attained. Then all entries of x are equal to x_u or x_v, and hence are the same. Therefore all transmissions are equal, and the diameter d is at most 2. If $d = 1$, then G is complete. If $d = 2$, then $\mu_{\alpha}(G) = T_G(w) = 2n - 2 - d_w$ for $w \in V(G)$, and thus G is regular.

Conversely, if G is regular with diameter at most 2, then $T_G(w) = 2n - 2 - d_G(w)$ for $w \in V(G)$, and thus the lower bound for $\mu_{\alpha}(G)$ is attained. \qed
Theorem 3.3. Let G be a connected graph of order $n \geq 2$ with minimum degree δ and second minimum degree δ'. Let d be the diameter of G. Let $S = dn - \frac{d(d-1)}{2} - 1 - \delta(d-1)$ and $S' = dn - \frac{d(d-1)}{2} - 1 - \delta'(d-1)$. Then

$$
\mu_\alpha(G) \leq \frac{1}{2} \left(\alpha(2dn - 2 - (d-1)(d + \delta + \delta')) \right. \\
+ \sqrt{\alpha^2(2dn - 2 - (d-1)(d + \delta + \delta'))^2 - 4(2\alpha - 1)SS'}
$$

with equality if and only if G is regular with $d \leq 2$.

Proof. Let x be the distance α-Perron vector of G. Let

$$x_u = \max\{x_w : w \in V(G)\} \text{ and } x_v = \max\{x_w : w \in V(G) \setminus \{u\}\}.$$

From the α-eigenequations of G at u and v, we have

$$(\mu_\alpha(G) - \alpha T_G(u))x_u = (1 - \alpha) \sum_{w \in V(G)} d_G(u, w)x_w$$

$$\leq (1 - \alpha) \sum_{w \in V(G)} d_G(u, w)x_v$$

$$= (1 - \alpha)T_G(u)x_v$$

and

$$(\mu_\alpha(G) - \alpha T_G(v))x_v = (1 - \alpha) \sum_{w \in V(G)} d_G(v, w)x_w$$

$$\leq (1 - \alpha) \sum_{w \in V(G)} d_G(v, w)x_u$$

$$= (1 - \alpha)T_G(v)x_u.$$

Thus we have

$$\mu_\alpha^2(G) - \alpha(T_G(u) + T_G(v))\mu_\alpha(G) + (2\alpha - 1)T_G(u)T_G(v) \leq 0.$$

Thus

$$\mu_\alpha(G) \leq f(T_G(u), T_G(v))$$

with

$$f(s, t) = \frac{s + t}{2} \alpha(s + t) + \sqrt{\alpha^2(s + t)^2 - 4(2\alpha - 1)st}.$$

Assume that $d_G(u) \leq d_G(v)$. Note that

$$T_G(u) \leq d_G(u) + \sum_{i=2}^{d-1} i + d \left(n - 1 - d_G(u) - \sum_{i=2}^{d-1} 1 \right)$$

$$= dn - \frac{d(d-1)}{2} - 1 - d_G(u)(d-1)$$

$$\leq dn - \frac{d(d-1)}{2} - 1 - \delta(d-1)$$

...
and similarly,
\[T_G(v) \leq dn - \frac{d(d-1)}{2} - 1 - \delta'(d-1). \]
Since \(f(s,t) \) is strictly increasing for \(s, t \geq 1 \), we have
\[\mu_a(G) \leq f \left(dn - \frac{d(d-1)}{2} - 1 - \delta(d-1), dn - \frac{d(d-1)}{2} - 1 - \delta'(d-1) \right), \]
as desired.

Suppose the upper bound for \(\mu_a(G) \) is attained. Then all entries of \(x \) are equal, and thus all transmissions are equal. If \(d \geq 3 \), then from the the above argument, for every vertex \(w \), there is exactly one vertex \(w' \) with \(d_G(w, w') = 2 \), and thus \(d = 3 \), and for a vertex \(z \) of eccentricity 2,
\[d_G(z) + (n - 1 - d_G(z)) \cdot 2 = T_G(z) = 3n - \frac{3 \times (3-1)}{2} - 1 - (3-1)\delta, \]
implying that \(\delta \geq n - 2 \). Obviously, \(G \not\cong P_4 \). For a diametrical path \(P = v_0v_1v_2v_3, v_0 \) and \(v_3 \) should be adjacent to all vertices outside \(P \), implying that \(d = 2 \), a contradiction. Therefore \(G \) is regular with \(d \leq 2 \).

Conversely, if \(G \) is regular with \(d \leq 2 \), then \(T_G(w) = 2n - 2 - d_G(w) \) for \(w \in V(G) \), and thus the upper bound for \(\mu_a(G) \) is attained. \(\square \)

For an \(n \times n \) nonnegative matrix \(A = (a_{ij}) \), let \(r_i \) be the \(i \)-th row sum of \(A \), i.e., \(r_i = \sum_{j=1}^{n} a_{ij} \) for \(i = 1, \ldots, n \), and let \(r_{\min} \) and \(r_{\max} \) be the minimum and maximum row sums of \(A \), respectively.

Lemma 3.1. Let \(A = (a_{ij}) \) be an \(n \times n \) nonnegative matrix with row sums \(r_1, \ldots, r_n \). Let \(S = \{1, \ldots, n\} \), \(r_{\min} = r_p \), \(r_{\max} = r_q \) for some \(p \) and \(q \) with \(1 \leq p, q \leq n \), \(\ell = \max \{r_i - a_{ip} : i \in S \setminus \{p\}\} \), \(m = \min \{r_i - a_{iq} : i \in S \setminus \{q\}\} \), \(s = \max \{a_{ip} : i \in S \setminus \{p\}\} \) and \(t = \min \{a_{iq} : i \in S \setminus \{q\}\} \). Then
\[
\begin{align*}
& a_{qq} + m + \sqrt{(m - a_{qq})^2 + 4t(r_{\max} - a_{qq})} \\
& \leq \rho(A) \\
& \leq a_{pp} + \ell + \sqrt{\ell^2 - a_{pp}^2} + 4s(r_{\min} - a_{pp}) \end{align*}
\]
Moreover, the first equality holds if \(r_i - a_{iq} = m \) and \(a_{iq} = t \) for all \(i \in S \setminus \{q\} \), and the second equality holds if \(r_i - a_{ip} = \ell \) and \(a_{ip} = s \) for all \(i \in S \setminus \{p\} \).

A connected graph \(G \) on \(n \) vertices is distinguished vertex deleted regular (DVDR) if there is a vertex \(v \) of degree \(n - 1 \) such that \(G - v \) is regular.

Lemma 3.2. Let \(G \) be a non-complete connected graph of order \(n \). Then \(G \) is a DVDR graph if and only if each vertex of \(G \) except one vertex \(v \) of degree \(n - 1 \) has the same transmission.

For a connected graph \(G \), let \(T_{\min}(G) \) and \(T_{\max}(G) \) be the minimum and maximum transmissions of \(G \), respectively. As in \(\text{(3)} \), we have the following bounds. For completeness, we include a proof here.
Lemma 3.1 to D by replacing some non-diagonal entries of each row with row sum greater than m_2 in D. Let $D(1)$ be the matrix obtained from $D_\alpha(G)$ by replacing all (w, v)-entries by $1 - \alpha$ for $w \in V(G) \setminus \{v\}$, and replacing the submatrix M by M'. Obviously, $D_\alpha(G)$ and $D(1)$ are nonnegative and irreducible, $D_\alpha(G) \geq D(1)$. By Lemma 2.2, $\mu_\alpha(G) \geq \rho(D(1))$ with equality if and only if $D_\alpha(G) = D(1)$. By applying Lemma 3.1 to $D(1)$, we obtain the lower bound for $\mu_\alpha(G)$. Suppose that this lower bound is attained. Then $D_\alpha(G) = D(1)$. As all (w, v)-entries are equal to $1 - \alpha$ for $w \in V(G) \setminus \{v\}$, implying that $d_G(v) = n - 1$. As $T_G(v) = T^\text{max}(G)$, G is a complete graph. Conversely, if G is a complete graph, then it is obvious that the lower bound for $\mu_\alpha(G)$ is attained.

Let C be the submatrix of $D_\alpha(G)$ obtained by deleting the row and column corresponding to vertex u. Let C' be the matrix obtained from C by adding positive numbers to non-diagonal entries of each row with row sum less than m_1 in C such that each row sum in C' is m_1. Let $D(2)$ be the matrix obtained from $D_\alpha(G)$ by replacing all (w, u)-entries by $(1 - \alpha)e(u)$ for $w \in V(G) \setminus \{u\}$, and replacing the submatrix C by C'. Obviously, $D_\alpha(G)$ and $D(2)$ are nonnegative and irreducible, $D(2) \geq D_\alpha(G)$. By Lemma 2.2, $\mu_\alpha(G) \leq \rho(D(2))$ with equality if and only if $D_\alpha(G) = D(2)$. By applying Lemma 3.1 to $D(2)$, we obtain the upper bound for $\mu_\alpha(G)$. Suppose that this upper bound is attained. By Lemma 2.2 then $D_\alpha(G) = D(2)$. As all (w, u)-entries are equal to $(1 - \alpha)e(u)$ for $w \in V(G) \setminus \{u\}$, implying that $e(u) = 1$, i.e., $d_G(u) = n - 1$. Note that $T_G(w) = m_1 + 1 - \alpha$ for all $w \in V(G) \setminus \{u\}$ and $T^\text{min}(G) = T_G(u) = n - 1$. If $m_1 + 1 - \alpha = n - 1$, then G is a complete graph, which is a DVDR graph. Otherwise, $m_1 + 1 - \alpha > n - 1$, and thus by Lemma 3.2 G is a DVDR graph.

Conversely, if G is a DVDR graph, then G is either complete or non-complete, and by Lemma 3.2 when G is non-complete and the above argument, it is obvious that the upper bound for $\mu_\alpha(G)$ is attained.

We mention that more bounds for $\mu_\alpha(G)$ may be derived from some known bounds for nonnegative matrices, see, e.g., [4].
Let G be a connected graph on n vertices. As $\mu_{\alpha}(G) \leq T_{\text{max}}(G)$ with equality if and only if G is transmission regular. Recently, Liu et al. [13] showed that

$$T_{\text{max}}(G) - \mu_0(G) > \frac{nT_{\text{max}}(G) - 2\sigma(G)}{(nT_{\text{max}}(G) - 2\sigma(G) + 1)n}$$

and

$$T_{\text{max}}(G) - \mu_1(G) > \frac{nT_{\text{max}}(G) - 2\sigma(G)}{(2(nT_{\text{max}}(G) - 2\sigma(G)) + 1)n}.$$

Theorem 3.5. Let G be a connected non-transmission-regular graph of order n. Then

$$T_{\text{max}}(G) - \mu_{\alpha}(G) > \frac{(1 - \alpha)nT_{\text{max}}(G)(nT_{\text{max}}(G) - 2\sigma(G))}{(1 - \alpha)n^2T_{\text{max}}(G) + 4\sigma(G)(nT_{\text{max}}(G) - 2\sigma(G))}.$$

Proof. Let x be the α-Perron vector of G. Denote by $x_u = \max\{x_w : w \in V(G)\}$ and $x_v = \min\{x_w : w \in V(G)\}$. Since G is not transmission regular, we have $x_u > x_v$, and thus:

$$\mu_{\alpha}(G) = x^\top D_{\alpha}(G)x = \alpha \sum_{w \in V(G)} T_G(w)x_w^2 + 2(1 - \alpha) \sum_{\{w, z\} \subseteq V(G)} d_{wz}x_wx_z < 2\alpha\sigma(G)x_u^2 + 2(1 - \alpha)\sigma(G)x_u^2,$$

implying that $x_u^2 > \frac{\mu_{\alpha}(G)}{2\sigma(G)}$. Note that

$$T_{\text{max}}(G) - \mu_{\alpha}(G) = T_{\text{max}}(G) - \alpha \sum_{w \in V(G)} T_G(w)x_w^2 - 2(1 - \alpha) \sum_{\{w, z\} \subseteq V(G)} d_{wz}x_wx_z$$

$$= \sum_{w \in V(G)} (T_{\text{max}}(G) - T_G(w))x_w^2 + (1 - \alpha) \sum_{\{w, z\} \subseteq V(G)} d_{wz}(x_w - x_z)^2$$

$$\geq \sum_{w \in V(G)} (T_{\text{max}}(G) - T_G(w))x_v^2 + (1 - \alpha) \sum_{\{w, z\} \subseteq V(G)} d_{wz}(x_w - x_z)^2$$

$$= (nT_{\text{max}}(G) - 2\sigma(G))x_v^2 + (1 - \alpha) \sum_{\{w, z\} \subseteq V(G)} d_{wz}(x_w - x_z)^2.$$

We need to estimate $\sum_{\{w, z\} \subseteq V(G)} d_{wz}(x_w - x_z)^2$. Obviously,

$$\sum_{\{w, z\} \subseteq V(G)} d_{wz}(x_w - x_z)^2 \geq N_1 + N_2,$$

where $N_1 = \sum_{w \in V(G) \setminus V(P)} \sum_{z \in V(P)} d_{wz}(x_w - x_z)^2$ and $N_2 = \sum_{\{w, z\} \subseteq V(P)} d_{wz}(x_w - x_z)^2$. Let $P = w_0, w_1, \ldots, w_\ell$ be the shortest path connecting u and v, where $w_0 = u$, $w_\ell = v$, and $\ell \geq 1$. For $w \in V(G) \setminus V(P)$, by Cauchy-Schwarz inequality, we have

$$d_{wu}(x_w - x_u)^2 + d_{wv}(x_w - x_v)^2 \geq (x_w - x_u)^2 + (x_w - x_v)^2 \geq \frac{1}{2}(x_u - x_v)^2,$$
and thus
\[N_1 \geq \sum_{w \in V(G) \setminus V(P)} (d_{wu}(x_w - x_u)^2 + d_{wv}(x_w - x_v)^2) \]
\[\geq \sum_{w \in V(G) \setminus V(P)} \frac{1}{2}(x_u - x_v)^2 \]
\[= \frac{n - \ell - 1}{2}(x_u - x_v)^2. \]

For \(1 \leq i \leq \ell - 1\), by Cauchy-Schwarz inequality, we have
\[d_{w_0w_i}(x_{w_0} - x_{w_i})^2 + d_{w_iw_{\ell}}(x_{w_i} - x_{w_{\ell}})^2 \]
\[\geq \min\{i, \ell - i\} \left((x_{w_0} - x_{w_i})^2 + (x_{w_i} - x_{w_{\ell}})^2 \right) \]
\[\geq \min\{i, \ell - i\} \cdot \frac{1}{2}(x_{w_0} - x_{w_{\ell}})^2 \]
\[= \frac{1}{2} \min\{i, \ell - i\}(x_u - x_v)^2, \]

and thus
\[N_2 \geq d_{uv}(x_u - x_v)^2 + \sum_{i=1}^{\ell-1} \left(d_{w_0w_i}(x_{w_0} - x_{w_i})^2 + d_{w_iw_{\ell}}(x_{w_i} - x_{w_{\ell}})^2 \right) \]
\[\geq \ell(x_u - x_v)^2 + \sum_{i=1}^{\ell-1} \frac{1}{2} \min\{i, \ell - i\}(x_u - x_v)^2 \]
\[= \left(\ell + \frac{1}{2} \sum_{i=1}^{\ell-1} \min\{i, \ell - i\} \right)(x_u - x_v)^2 \]
\[= \begin{cases} \frac{\ell^2 + 8\ell}{8}(x_u - x_v)^2 & \text{if } \ell \text{ is even}, \\ \frac{\ell^2 + 8\ell - 1}{8}(x_u - x_v)^2 & \text{if } \ell \text{ is even}. \end{cases} \]

Case 1. \(u\) and \(v\) are adjacent, i.e., \(\ell = 1\).

In this case, we have
\[\sum_{\{w,z\} \subseteq V(G)} d_{wz}(x_w - x_z)^2 \geq N_1 + N_2 \]
\[\geq \frac{n - 1 - 1}{2}(x_u - x_v)^2 + (x_u - x_v)^2 \]
\[= \frac{n}{2}(x_u - x_v)^2. \]

Thus
\[T_{\max}(G) - \mu_\alpha(G) \geq (nT_{\max}(G) - 2\sigma(G))x_v^2 + (1 - \alpha) \sum_{\{w,z\} \subseteq V(G)} d_{wz}(x_w - x_z)^2 \]
\[\geq (nT_{\max}(G) - 2\sigma(G))x_v^2 + (1 - \alpha)\frac{n}{2}(x_u - x_v)^2. \]
Viewed as a function of x_v, $(nT_{\max}(G) - 2\sigma(G))x_v^2 + (1 - \alpha)^\frac{1}{2}(x_u - x_v)^2$ achieves its minimum value \(\frac{(1 - \alpha)(nT_{\max}(G) - 2\sigma(G))}{(1 - \alpha)n + 2(nT_{\max}(G) - 2\sigma(G))}x_u^2 \). Recall that $x_u^2 > \frac{\mu_\alpha(G)}{2\sigma(G)}$. Then we have

\[
T_{\max}(G) - \mu_\alpha(G) > \frac{(1 - \alpha)n(nT_{\max}(G) - 2\sigma(G))}{(1 - \alpha)n + 2(nT_{\max}(G) - 2\sigma(G))T_{\max}(G)} - \frac{\mu_\alpha(G)}{2\sigma(G)} \frac{2\sigma(G)((1 - \alpha)n + 2(nT_{\max}(G) - 2\sigma(G)))}{2}\]

which implies that

\[
T_{\max}(G) - \mu_\alpha(G) > \frac{(1 - \alpha)nT_{\max}(G)(nT_{\max}(G) - 2\sigma(G))}{(1 - \alpha)n^2T_{\max}(G) + 4\sigma(G)(nT_{\max}(G) - 2\sigma(G))}. \]

Case 2. u and v are not adjacent, i.e., $\ell \geq 2$.

Suppose first that ℓ is even. Then

\[
\sum_{\{w,z\} \subseteq V(G)} d_{wz}(x_w - x_z)^2 \geq N_1 + N_2
\]

\[
\geq \frac{n - \ell - 1}{2}(x_u - x_v)^2 + \frac{\ell^2 + 8\ell}{8}(x_u - x_v)^2
\]

\[
= \frac{\ell^2 + 4\ell + 4n - 4}{8}(x_u - x_v)^2.
\]

Thus

\[
T_{\max}(G) - \mu_\alpha(G) \geq (nT_{\max}(G) - 2\sigma(G))x_v^2 + (1 - \alpha)\sum_{\{w,z\} \subseteq V(G)} d_{wz}(x_w - x_z)^2
\]

\[
\geq (nT_{\max}(G) - 2\sigma(G))x_v^2 + (1 - \alpha)\frac{\ell^2 + 4\ell + 4n - 4}{8}(x_u - x_v)^2.
\]

Viewed as a function of x_v, $(nT_{\max}(G) - 2\sigma(G))x_v^2 + (1 - \alpha)^\frac{1}{2}(x_u - x_v)^2$ achieves its minimum value \(\frac{(1 - \alpha)(nT_{\max}(G) - 2\sigma(G))}{(1 - \alpha)(\ell^2 + 4\ell + 4n - 4 + 8(nT_{\max}(G) - 2\sigma(G)))}x_u^2 \). As $x_u^2 > \frac{\mu_\alpha(G)}{2\sigma(G)}$, we have

\[
T_{\max}(G) - \mu_\alpha(G) > \frac{(1 - \alpha)(nT_{\max}(G) - 2\sigma(G))(\ell^2 + 4\ell + 4n - 4)}{(1 - \alpha)(\ell^2 + 4\ell + 4n - 4)nT_{\max}(G) + 16\sigma(G)(nT_{\max}(G) - 2\sigma(G))} \cdot \frac{\mu_\alpha(G)}{2\sigma(G)},
\]

i.e.,

\[
T_{\max}(G) - \mu_\alpha(G) > \frac{(1 - \alpha)(nT_{\max}(G) - 2\sigma(G))(\ell^2 + 4\ell + 4n - 4)T_{\max}(G)}{(1 - \alpha)(\ell^2 + 4\ell + 4n - 4)nT_{\max}(G) + 16\sigma(G)(nT_{\max}(G) - 2\sigma(G))}.
\]

As a function of ℓ, the expression in the right hand side in the above inequality is strictly increasing for $\ell \geq 2$. Thus we have

\[
T_{\max}(G) - \mu_\alpha(G) > \frac{(1 - \alpha)(nT_{\max}(G) - 2\sigma(G))(n + 2)T_{\max}(G)}{(1 - \alpha)(n + 2)nT_{\max}(G) + 4\sigma(G)(nT_{\max}(G) - 2\sigma(G))}\]
As a function of ℓ is strictly increasing for ℓ and thus, as early, we have

$$T_{\text{max}}(G) - \mu_\alpha(G) > \frac{(1 - \alpha)nT_{\text{max}}(G)(nT_{\text{max}}(G) - 2\sigma(G))}{(1 - \alpha)n^2T_{\text{max}}(G) + 4\sigma(G)(nT_{\text{max}}(G) - 2\sigma(G))}.$$

Now suppose that ℓ is odd.

Then

$$\sum_{\{w,z\} \subseteq V(G)} d_{wz}(x_w - x_z)^2 \geq N_1 + N_2 \geq \frac{n - \ell - 1}{2}(x_u - x_v)^2 + \frac{\ell^2 + 4\ell + 4n - 5}{8}(x_u - x_v)^2 = \frac{\ell^2 + 4\ell + 4n - 5}{8}(x_u - x_v)^2.$$

Thus, as early, we have

$$T_{\text{max}}(G) - \mu_\alpha(G) \geq (nT_{\text{max}}(G) - 2\sigma(G))x_v^2 + (1 - \alpha)\frac{\ell^2 + 4\ell + 4n - 5}{8}(x_u - x_v)^2 \geq \frac{(1 - \alpha)(\ell^2 + 4\ell + 4n - 5)(nT_{\text{max}}(G) - 2\sigma(G))}{(1 - \alpha)(\ell^2 + 4\ell + 4n - 5) + 8(nT_{\text{max}}(G) - 2\sigma(G))} x_v^2 \geq \frac{(1 - \alpha)(\ell^2 + 4\ell + 4n - 5)(nT_{\text{max}}(G) - 2\sigma(G))}{(1 - \alpha)(\ell^2 + 4\ell + 4n - 5) + 8(nT_{\text{max}}(G) - 2\sigma(G))} \frac{\mu_\alpha(G)}{2\sigma(G)},$$

implying that

$$T_{\text{max}}(G) - \mu_\alpha(G) > \frac{(1 - \alpha)(nT_{\text{max}}(G) - 2\sigma(G))(\ell^2 + 4\ell + 4n - 5)T_{\text{max}}(G)}{(1 - \alpha)(\ell^2 + 4\ell + 4n - 5)nT_{\text{max}}(G) + 16\sigma(G)(nT_{\text{max}}(G) - 2\sigma(G))}.$$

As a function of ℓ, the expression in the right hand side in the above inequality is strictly increasing for $\ell \geq 3$. Thus we have

$$T_{\text{max}}(G) - \mu_\alpha(G) > \frac{(1 - \alpha)(nT_{\text{max}}(G) - 2\sigma(G))(4 + n)T_{\text{max}}(G)}{(1 - \alpha)(4 + n)nT_{\text{max}}(G) + 4\sigma(G)(nT_{\text{max}}(G) - 2\sigma(G))} > \frac{(1 - \alpha)nT_{\text{max}}(G)(nT_{\text{max}}(G) - 2\sigma(G))}{(1 - \alpha)n^2T_{\text{max}}(G) + 4\sigma(G)(nT_{\text{max}}(G) - 2\sigma(G))}.$$

The result follows by combining Cases 1 and 2. \hfill \square

If $\alpha = 0, \frac{1}{2}$, then the bound for $T_{\text{max}}(G) - \rho_0(G)$ in Theorem 4.1 reduces to

$$T_{\text{max}}(G) - \mu_0(G) > \frac{(nT_{\text{max}}(G) - 2\sigma(G))nT_{\text{max}}(G)}{n^2T_{\text{max}}(G) + 4(nT_{\text{max}}(G) - 2\sigma(G))\sigma(G)}$$

and

$$T_{\text{max}}(G) - \mu_{\frac{1}{2}}(G) > \frac{(nT_{\text{max}}(G) - 2\sigma(G))nT_{\text{max}}(G)}{n^2T_{\text{max}}(G) + 8(nT_{\text{max}}(G) - 2\sigma(G))\sigma(G)}.$$
4 Effect of graft transformations on distance α-spectral radius

In this section, we study the effect of some graft transformations on distance α-spectral radius.

A path $u_0 \ldots u_r$ (with $r \geq 1$) in a graph G is called a pendant path (of length r) at u_0 if $d_G(u_0) \geq 3$, the degrees of u_1, \ldots, u_{r-1} (if any exists) are all equal to 2 in G, and $d_G(u_r) = 1$. A pendant path of length 1 at u_0 is called a pendant edge at u_0.

A vertex of a graph is a pendant vertex if its degree is 1. The neighbor of the pendant vertex in a graph is called a quasi-pendant vertex. A non-pendant edge in a graph is an edge such that both end vertices are not pendant vertices. A cut edge of a connected graph is an edge whose removal yields a disconnected graph.

If P is a pendant path of G at u with length $r \geq 1$, then we say G is obtained from H by attaching a pendant path P of length r at u with $H = G[V(G) \setminus (V(P) \setminus \{u\})]$. If the pendant path of length 1 is attached to a vertex u of H, then we also say that a pendant vertex is attached to u.

Theorem 4.1. Let G be a connected graph and uv a non-pendant cut edge of G. Let G_{uv} be the graph obtained from G by identifying vertices u and v to vertex v and attaching a pendant vertex u to v. If at least one of $\{u, v\}$ is a quasi-pendant vertex in G, then $\mu_\alpha(G) > \mu_\alpha(G_{uv})$.

Proof. Assume that v is a quasi-pendant vertex in G. Let v' be a pendant neighbor of v, and let G_1 and G_2 be the components of $G - uv$ containing u and v, respectively, see Fig. 1.

Let x be the distance α-Perron vector of G_{uv}. By Lemma 2.1, $x_u = x_{v'}$.

As we pass from G to G_{uv}, the distance between a vertex in $V(G_1) \setminus \{u\}$ and a vertex in $V(G_2)$ is decreased by 1, the distance between a vertex $V(G_1) \setminus \{u\}$ and u is increased by 1, and the distances between all other vertex pairs remain unchanged. Thus

\[
\mu_\alpha(G) - \mu_\alpha(G_{uv}) \\
\geq x^\top (D_\alpha(G) - D_\alpha(G_{uv})) x \\
= \sum_{w \in V(G_1) \setminus \{u\}} \sum_{z \in V(G_2)} \left(\alpha (x_w^2 + x_z^2) + 2(1 - \alpha)x_w x_z \right)
\]
and
\[\bigcup_{i \in [18, 12]} \]

Produced subgraphs or remain unchanged. Thus at most \(d \) a vertex in \(V \)

\[\text{Theorem 4.2.} \]

\[\text{Proof.} \]

\[\text{Let} \]

\[G \]

\[\text{be a connected graph with} \]

\[k \]

\[\text{edge–disjoint nontrivial induced subgraphs} \]

\[G_1, \ldots, G_k \]

\[\text{such that} \]

\[V(G_i) \cap V(G_j) = \{u\} \]

\[\text{for} \]

\[1 \leq i < j \leq k \]

\[\text{and} \]

\[\bigcup_{i=1}^k V(G_i) = V(G), \]

\[\text{where} \]

\[k \geq 3. \]

\[\text{Let} \]

\[K \]

\[\text{be a nonempty subset of} \]

\[\{3, \ldots, k\} \]

\[\text{and let} \]

\[N_K = \bigcup_{i \in K} N_{G_i}(u). \]

\[\text{For} \]

\[v' \in V(G_1) \setminus \{u\} \]

\[\text{and} \]

\[v'' \in V(G_2) \setminus \{u\}, \]

\[\text{let} \]

\[G' = G \setminus \{uw : w \in N_K\} \]

\[\text{and} \]

\[G'' = G \setminus \{uw : w \in N_K\} \]

\[\{v''w : w \in N_K\}. \]

\[\text{Then} \]

\[\mu_\alpha(G) < \mu_\alpha(G') \]

\[\text{or} \]

\[\mu_\alpha(G) < \mu_\alpha(G''). \]

\[\text{Proof.} \]

\[\text{Let} \]

\[x \]

\[\text{be the distance} \]

\[\alpha \text{-Perron vector of} \]

\[G. \]

\[\text{Let} \]

\[V_K = (\bigcup_{i \in K} V(G_i)) \setminus \{u\}. \]

\[\text{Let} \]

\[\Gamma = \sum_{w \in V(G_2) \setminus \{u\}} \sum_{z \in V_K} \left(\alpha \left(x_w^2 + x_z^2 \right) + 2(1 - \alpha)x_wx_z \right) \]

\[- \sum_{w \in V(G_1) \setminus \{u\}} \sum_{z \in V_K} \left(\alpha \left(x_w^2 + x_z^2 \right) + 2(1 - \alpha)x_wx_z \right). \]

\[\text{As we pass from} \]

\[G \]

\[\text{to} \]

\[G' \]

\[\text{the distance between a vertex in} \]

\[V(G_2) \]

\[\text{and a vertex in} \]

\[V_K \]

\[\text{is increased by} \]

\[d_G(u, v'), \]

\[\text{the distance between a vertex} \]

\[w \]

\[\text{in} \]

\[V(G_1) \setminus \{u\} \]

\[\text{and a vertex in} \]

\[V_K \]

\[\text{is decreased by} \]

\[d_G(w, u) - d_G(w, v'), \]

\[\text{which is} \]

\[\text{at most} \]

\[d_G(u, v'), \]

\[\text{and the distances between all other vertex pairs are increased} \]

\[\text{or remain unchanged. Thus} \]

\[\mu_\alpha(G') - \mu_\alpha(G) \]

\[\geq x^T(D_\alpha(G') - D_\alpha(G))x \]

\[\geq \sum_{w \in V(G_2)} \sum_{z \in V_K} (d_G(u, v') \left(\alpha \left(x_w^2 + x_z^2 \right) + 2(1 - \alpha)x_wx_z \right)) \]

\[- \sum_{w \in V(G_1) \setminus \{u\}} \sum_{z \in V_K} (d_G(u, v') \left(\alpha \left(x_w^2 + x_z^2 \right) + 2(1 - \alpha)x_wx_z \right)) \]

\[\text{Therefore} \]

\[\mu_\alpha(G) - \mu_\alpha(G_{uv}) > 0, \text{ i.e.,} \]

\[\mu_\alpha(G) > \mu_\alpha(G_{uv}). \]

\[\square \]

The previous theorem has been established for \(\alpha = 0, \frac{1}{2} \) in \[18, 12\].
\[d_G(u, v') \left(\Gamma + \sum_{z \in V} (\alpha (x_w^2 + x_z^2) + 2(1 - \alpha)x_wx_z) \right) \]
\[> d_G(u, v') \Gamma. \]

If \(\Gamma \geq 0 \), then \(\mu_\alpha(G') - \mu_\alpha(G) > d_G(u, v') \Gamma \geq 0 \), implying that \(\mu_\alpha(G) < \mu_\alpha(G') \).

Suppose that \(\Gamma < 0 \). As we pass from \(G \) to \(G'' \), the distance between a vertex in \(V(G_1) \) and a vertex in \(V_K \) is increased by \(d_G(u, v'') \), the distance between a vertex \(w \) in \(V(G_2) \setminus \{u\} \) and a vertex in \(V_K \) is decreased by \(d_G(w, u) - d_G(w, v') \), which is at most \(d_G(u, v'') \), and the distances between all other vertex pairs are increased or remain unchanged. Thus

\[
\begin{align*}
\mu_\alpha(G'') - \mu_\alpha(G) & \geq x^T (D_\alpha(G'') - D_\alpha(G))x \\
& \geq \sum_{w \in V(G_1)} \sum_{z \in V_K} (d_G(u, v'') (\alpha (x_w^2 + x_z^2) + 2(1 - \alpha)x_wx_z)) \\
& \quad - \sum_{w \in V(G_2) \setminus \{u\}} \sum_{z \in V_K} (d_G(u, v'') (\alpha (x_w^2 + x_z^2) + 2(1 - \alpha)x_wx_z)) \\
& = d_G(u, v'') \left(-\Gamma + \sum_{z \in V_K} (\alpha (x_u^2 + x_z^2) + 2(1 - \alpha)x_ux_z) \right) \\
& > d_G(u, v'')(\Gamma) \\
& > 0,
\end{align*}
\]

implying that \(\mu_\alpha(G'') - \mu_\alpha(G) > 0 \), i.e., \(\mu_\alpha(G) < \mu_\alpha(G'') \). \(\square \)

Weak versions of previous theorem for \(\alpha = 0 \) have been given in [21, 20] and a weak version for \(\alpha = \frac{1}{2} \) may be found in [12].

For positive integer \(p \) and a graph \(G \) with \(u \in V(G) \), let \(G(u; p) \) be the graph obtained from \(G \) by attaching a pendant path of length \(p \) at \(u \). Let \(G(u; 0) = G \), and in this case a pendant path of length 0 is understood the trivial path consisting of a single vertex \(u \).

For nonnegative integers \(p, q \) and a graph \(G \), let \(G_u(p, q) \) or simply \(G_{p, q} \) be the graph \(H(u; q) \) with \(H = G(u; p) \).

The following corollary has been given for \(\alpha = 0 \) in [17, 20] and \(\alpha = \frac{1}{2} \) in [11, 12].

Corollary 4.1. Let \(H \) be a nontrivial connected graph with \(u \in V(H) \). If \(p \geq q \geq 1 \), then \(\mu_\alpha(H_u(p, q)) < \mu_\alpha(H_u(p + 1, q - 1)) \).

Proof. Let \(G = H_u(p, q) \). Let \(P = uu_1 \ldots u_p \) and \(Q = uv_1 \ldots v_q \) be two pendant paths of lengths \(p \) and \(q \), respectively in \(G \). Using the notations in Theorem 4.2 with \(k = 3 \), \(G_1 = P \), \(G_2 = Q \), \(G_3 = H \), \(v' = u_{p-q+1} \) and \(v'' = v_1 \), we have \(G' \cong G'' \cong H_u(p + 1, q - 1) \), and thus by Theorem 4.2 we have \(\mu_\alpha(H_u(p, q)) < \mu_\alpha(H_u(p + 1, q - 1)) \). \(\square \)

Theorem 4.3. Let \(G \) be a connected graph with three edge-disjoint induced subgraphs \(G_1, G_2 \) and \(G_3 \) such that \(V(G_1) \cap V(G_3) = \{u\} \), \(V(G_2) \cap V(G_3) = \{v\} \),
\(\cup_{i=1}^{3} V(G_i) = V(G) \), and \(G_1-u, G_2-v, \) and \(G_3-u-v \) are all nontrivial. Suppose that \(uv \in E(G_3) \). For \(u' \in N_{G_1}(u) \) and \(v' \in N_{G_2}(v) \), let

\[
G' = H + \{ u'w : w \in N_{G_3-u}(u) \} + \{ uw : w \in N_{G_3-u-v}(v) \}
\]

and

\[
G'' = H + \{ vw : w \in N_{G_3-u}(u) \} + \{ v'w : w \in N_{G_3-u-v}(v) \},
\]

where \(H = G - \{ uw : w \in N_{G_3-u}(u) \} - \{ vw : w \in N_{G_3-u-v}(v) \} \). Then \(\mu_\alpha(G) < \mu_\alpha(G') \) or \(\mu_\alpha(G) < \mu_\alpha(G'') \).

Proof. Let \(x \) be the distance \(\alpha \)-Perron vector of \(G \). Let

\[
\Gamma = \sum_{w \in V(G_2)} \sum_{z \in V(G_3) \setminus \{u,v\}} \left(\alpha \left(x_w^2 + x_z^2 \right) + 2(1-\alpha)x_wx_z \right) - \sum_{w \in V(G_1)} \sum_{z \in V(G_3) \setminus \{u,v\}} \left(\alpha \left(x_w^2 + x_z^2 \right) + 2(1-\alpha)x_wx_z \right).
\]

As we pass from \(G \) to \(G' \), the distance between a vertex in \(V(G_2) \) and a vertex in \(V(G_3) \setminus \{u,v\} \) is increased by 1, the distance between a vertex in \(V(G_1) \) and a vertex in \(V(G_3) \setminus \{u,v\} \) may be increased, unchanged, or decreased by 1, and the distances between any other vertex pairs remain unchanged. Thus

\[
\mu_\alpha(G') - \mu_\alpha(G) \geq x^\top (D_\alpha(G') - D_\alpha(G))x \\
\geq \sum_{w \in V(G_2)} \sum_{z \in V(G_3) \setminus \{u,v\}} \left(\alpha \left(x_w^2 + x_z^2 \right) + 2(1-\alpha)x_wx_z \right) - \sum_{w \in V(G_1)} \sum_{z \in V(G_3) \setminus \{u,v\}} \left(\alpha \left(x_w^2 + x_z^2 \right) + 2(1-\alpha)x_wx_z \right) \\
= \Gamma.
\]

If \(\Gamma \geq 0 \), then \(\mu_\alpha(G') - \mu_\alpha(G) \geq 0 \), i.e., \(\mu_\alpha(G) \leq \mu_\alpha(G') \). If \(\mu_\alpha(G) = \mu_\alpha(G') \), then \(\mu_\alpha(G') = x^\top D_\alpha(G')x \), implying that \(x \) is the distance \(\alpha \)-Perron vector of \(G' \). By the \(\alpha \)-eigenequations of \(G \) and \(G' \) at \(v \), we have

\[
0 = \mu_\alpha(G')x_v - \mu_\alpha(G)x_v \\
= \sum_{w \in V(G_3) \setminus \{u,v\}} (d_{G'}(v,w) - d_G(v,w))(\alpha x_v + (1-\alpha)x_w) \\
= \sum_{w \in V(G_3) \setminus \{u,v\}} (\alpha x_v + (1-\alpha)x_w) \\
> 0,
\]

a contradiction. Thus, if \(\Gamma \geq 0 \), then \(\mu_\alpha(G) < \mu_\alpha(G') \).

Suppose that \(\Gamma < 0 \). As earlier, we have

\[
\mu_\alpha(G'') - \mu_\alpha(G) \geq x^\top (D_\alpha(G'') - D_\alpha(G))x \\
\geq \sum_{w \in V(G_1)} \sum_{z \in V(G_3) \setminus \{u,v\}} \left(\alpha \left(x_w^2 + x_z^2 \right) + 2(1-\alpha)x_wx_z \right)
\]
Corollary 4.2.

\[\sum_{w \in V(G_2)} \sum_{z \in V(G_3) \setminus \{u,v\}} (\alpha (x_w^2 + x_z^2) + 2(1 - \alpha)x_w x_z) \]
\[= -\Gamma \]
\[> 0, \]
and thus \(\mu_\alpha(G) < \mu_\alpha(G'') \). \qed

A weak version of previous theorem for \(\alpha = \frac{1}{2} \) has been established in [23].

For nonnegative integers \(p, q \) and a graph \(G \) with \(u, v \in V(G) \), let \(G_{u,v}(p, q) \) be the graph \(H(v; q) \) with \(H = G(u; p) \).

Similar versions for the following corollary have been given for \(\alpha = 0, \frac{1}{2} \) in [11].

Corollary 4.2. Let \(H \) be a connected graph of order at least 3 with \(uv \in E(H) \). Suppose that \(\eta(u) = v \) for some automorphism \(\eta \) of \(G \). For \(p \geq q \geq 1 \), we have \(\mu_\alpha(H_{u,v}(p, q)) < \mu_\alpha(H_{u,v}(p+1, q-1)) \).

Proof. Let \(G = H_{u,v}(p, q) \). Let \(P = uu_1 \ldots u_p \) and \(Q = vv_1 \ldots v_q \) be two pendant paths of lengths \(p \) and \(q \) in \(G \) at \(u \) and \(v \), respectively. Using the notations of Theorem 4.3 with \(G_1 = P, G_2 = Q, G_3 = H, u' = u_1 \) and \(v' = v_1 \), we have \(G' \cong H_{u,v}(p-1, q+1) \) and \(G'' \cong H_{u,v}(p+1, q-1) \), and thus by Theorem 4.3 we have

\[\mu_\alpha(H_{u,v}(p, q)) < \max\{\mu_\alpha(H_{u,v}(p-1, q+1)), \mu_\alpha(H_{u,v}(p+1, q-1))\}. \] (1)

If \(p = q \) (\(p = q + 1 \), respectively), then \(H_{u,v}(p-1, q+1) \cong H_{u,v}(p+1, q-1) \) (\(H_{u,v}(p, q) \cong H_{u,v}(p-1, q+1) \), respectively) as \(\eta(u) = v \) for some automorphism \(\eta \) of \(G \), and thus from (1), we have \(\mu_\alpha(G) < \mu_\alpha(H_{u,v}(p+1, q-1)) \). Suppose that \(p \geq q + 2 \) and \(\mu_\alpha(G) < \mu_\alpha(H_{u,v}(p-1, q+1)) \).

If \(p \not\equiv q \) (mod 2), then by using (1) repeatedly, we have

\[\mu_\alpha(G) \leq \mu_\alpha(H_{u,v}(\frac{p+q+3}{2}, \frac{p+q-3}{2})) \]
\[< \mu_\alpha(H_{u,v}(\frac{p+q+1}{2}, \frac{p+q-1}{2})) \]
\[< \mu_\alpha(H_{u,v}(\frac{p+q+3}{2}, \frac{p+q-3}{2})) , \]
which is impossible. If \(p \equiv q \) (mod 2), then by using (1) repeatedly, we have

\[\mu_\alpha(G) \leq \mu_\alpha(H_{u,v}(\frac{p+q}{2} + 1, \frac{p+q}{2} - 1)) \]
\[< \mu_\alpha(H_{u,v}(\frac{p+q}{2}, \frac{p+q}{2})) \]
\[< \mu_\alpha(H_{u,v}(\frac{p+q}{2} - 1, \frac{p+q}{2} + 1)) , \]
which is also impossible. Therefore \(\mu_\alpha(H_{u,v}(p, q)) < \mu_\alpha(H_{u,v}(p+1, q-1)) \). \qed
5 Graphs with small distance α-spectral radius

In this section, we will determine the graphs with minimum distance α-spectral radius among trees and unicyclic graphs.

Theorem 5.1. Let G be a tree of order $n \geq 4$. Then $\mu_\alpha(G) \geq \mu_\alpha(S_n)$ with equality if and only if $G \cong S_n$.

Proof. Let G be a tree of order n with minimum distance α-spectral radius. Let d be the diameter of G. Obviously, $d \geq 2$. Suppose that $d \geq 3$. Let $v_0v_1 \ldots v_d$ be a diametral path of G. Note that v_1 is a quasi-pendant vertex in G. By Theorem 4.1, $\mu_\alpha(Gv_1v_2) < \mu_\alpha(G)$, a contradiction. Thus $d = 2$, i.e., $G \cong S_n$.

In Theorem 5.1, the case $\alpha = 0$ has been known in [17] and the case $\alpha = \frac{1}{2}$ has been known in [12, 19].

For $n - 1 \geq 3$ and $1 \leq a \leq \lfloor \frac{n-2}{2} \rfloor$, let $D_{n,a}$ be the tree obtained from vertex-disjoint S_{a+1} with center u and S_{n-a-1} with center v by adding an edge uv. Let T be a tree of order n with minimum distance α-spectral radius, where $T \not\cong S_n$. Let d be the diameter of T. Obviously, $d \geq 3$. Suppose that $d \geq 4$. Let $v_0v_1 \ldots v_d$ be a diametral path of T. Note that v_1 is a quasi-pendant vertex in T and $T_{v_1v_2} \not\cong S_n$. By Theorem 4.1, $\mu_\alpha(T_{v_1v_2}) < \mu_\alpha(T)$, a contradiction. Thus $d = 3$, implying that $T \cong D_{n,a}$ for some a with $1 \leq a \leq \lfloor \frac{n-2}{2} \rfloor$.

Lemma 5.1. [19] Let G be a unicyclic graph of order $n \geq 6$ different from S_n^+, where S_n^+ is the graph obtained from S_n by adding an edge between two vertices of degree one. Then

$$
\sigma(G) \geq n^2 - n - 4 > \sigma(S_n^+) = n^2 - 2n.
$$

Theorem 5.2. Let G be a unicyclic graph of order $n \geq 8$. Then $\mu_\alpha(G) \geq \mu_\alpha(S_n^+)$ with equality if and only if $G \cong S_n^+$.

Proof. Suppose that $G \not\cong S_n^+$. We only need to show that $\mu_\alpha(G) > \mu_\alpha(S_n^+)$. By Lemmas 2.4 and 5.1 we have

$$
\mu_\alpha(G) \geq \frac{2\sigma(G)}{n} \geq \frac{2(n^2 - n - 4)}{n}.
$$

As $\mu_\alpha(G)$ is bound above by the maximum row sum of $D_\alpha(G)$, and it is attained if and only if all row sums of $D_\alpha(G)$ are equal [14, p. 24, Theorem 1.1]. Thus

$$
\mu_\alpha(S_n^+) = T_{\text{max}}(S_n^+) = 2n - 3.
$$

Since $n \geq 8$, we have

$$
\mu_\alpha(G) \geq \frac{2(n^2 - n - 4)}{n} \geq 2n - 3 > \mu_\alpha(S_n^+),
$$

as desired. □

The result in Theorem 5.2 for $\alpha = 0, \frac{1}{2}$ has been known in [22, 19].
6 Graphs with large distance α-spectral radius

In this section, we will determine the graphs with maximum distance α-spectral radius among some classes of graphs. For examples, we determine the unique connected graphs of order $n \geq 4$ with maximum and second maximum distance α-spectral radius, respectively in Theorem 6.2 and the unique graph with maximum distance α-spectral radius among connected graphs with fixed clique number in Theorem 6.3.

For $2 \leq \Delta \leq n-1$, let $B_{n,\Delta}$ be a tree obtained by attaching $\Delta - 1$ pendant vertices to a terminal vertex of the path $P_{n-\Delta+1}$. In particular, $B_{n,2} = P_n$ and $B_{n,n-1} = S_n$. The following theorem for $\alpha = 0, \frac{1}{2}$ was given in [17, 12] for trees.

Theorem 6.1. Let G be a connected graph of order $n \geq 5$ with maximum degree Δ, where $2 \leq \Delta \leq n-1$. Then $\mu_\alpha(G) \leq \mu_\alpha(B_{n,\Delta})$ with equality if and only if $G \cong B_{n,\Delta}$.

Proof. Let G be a graph with maximum distance α-spectral radius among connected graphs of order n with maximum degree Δ. Obviously, G has a spanning tree T with maximum degree Δ. By Lemma 2.3, $\mu_\alpha(G) \leq \mu_\alpha(T)$ with equality if and only if $G \cong T$. Thus G is a tree.

It is trivial if $\Delta = 2, n-1$. Suppose that $3 \leq \Delta \leq n-2$. We only need to show that $G \cong B_{n,\Delta}$.

Let $u \in V(G)$ with $d_G(u) = \Delta$. Suppose that there exists a vertex different from u with degree at least 3. Then we may choose such a vertex w of degree at least 3 such that $d_G(u,w)$ is as large as possible. Obviously, there are two pendant paths, say P and Q, at w of lengths at least 1. Let p and q be the lengths of P and Q, respectively. Assume that $p \geq q$. Let $H = G[V(G) \setminus ((V(P) \cup V(Q)) \setminus \{w\})]$. Then $G \cong H_w(p,q)$. Obviously, $G' = H_w(p+1,q-1)$ is a tree of order n with maximum degree Δ. By Corollary 4.1, $\mu_\alpha(G) < \mu_\alpha(G')$, a contradiction. Then u is the unique vertex of G with degree at least 3, and thus G consists of Δ pendant paths, say Q_1, \ldots, Q_Δ at u. If two of them, say Q_i and Q_j with $i \neq j$ are of lengths at least 2, then $G \cong H'_u(r,s)$, where $H' = G[V(G) \setminus ((V(Q_i) \cup V(Q_j)) \setminus \{u\})]$, and r and s are the lengths of Q_i and Q_j, respectively. Assume that $r \geq s$. Obviously, $G'' = H'_u(r+1,s-1)$ is a tree of order n with maximum degree Δ. By Corollary 4.1, $\mu_\alpha(G) < \mu_\alpha(G'')$, also a contradiction. Thus there is exactly one pendant path at u of length at least 2, implying that $G \cong B_{n,\Delta}$. \hfill \square

If G is a connected graph of order 1 or 2, then $G \cong P_n$. If G is a connected graph of order 3, then $G \cong P_3, K_3$, and by Lemma 2.3, $\mu_\alpha(K_3) < \mu_\alpha(P_3)$.

Ruzieh and Powers [16] showed that P_n is the unique connected graph of order n with maximum distance 0-spectral radius, and it was proved in [18] that $B_{n,3}$ is the unique tree of order n different from P_n with maximum distance 0-spectral radius. For $\alpha = \frac{1}{2}$, the following theorem was given in [12].

Theorem 6.2. Let G be a connected graph of order $n \geq 4$, where $G \not\cong P_n$. Then $\mu_\alpha(G) \leq \mu_\alpha(B_{n,3}) < \mu_\alpha(P_n)$ with equality if and only if $G \cong B_{n,3}$.

19
Proof. First suppose that \(G \) is a tree. If \(n = 4 \), then the result follows from Theorem \ref{thm:4.1}. Suppose that \(n \geq 5 \). Let \(\Delta \) be the maximum degree of \(G \). Since \(G \not\cong P_2 \), we have \(\Delta \geq 3 \). By Theorem \ref{thm:6.1} \(\mu_\alpha(G) \leq \mu_\alpha(B_{n,\Delta}) \) with equality if and only if \(G \cong B_{n,\Delta} \). By Corollary \ref{cor:4.1} \(\mu_\alpha(G) \leq \mu_\alpha(B_{n,\Delta}) \leq \mu_\alpha(B_{n,3}) < \mu_\alpha(P_n) \) with equalities if and only if \(\Delta = 3 \) and \(G \cong B_{n,\Delta} \), i.e., \(G \cong B_{n,3} \).

Now suppose that \(G \) is not a tree. Then \(G \) contains at least one cycle. If there is a spanning tree \(T \) with \(T \not\cong P_n \), then by Lemma \ref{lem:2.3} and the above argument, we have \(\mu_\alpha(G) < \mu_\alpha(T) \leq \mu_\alpha(B_{n,3}) \). If any spanning tree of \(G \) is a path, then \(G \) is a cycle \(C_n \). Now we only need to show that \(\mu_\alpha(C_n) < \mu_\alpha(B_{n,3}) \).

Let \(C_n = u_1u_2 \ldots u_nu_1 \) and \(T' = C_n - u_1u_2 - u_2u_3 + u_2u_n \). Obviously, \(T' \cong B_{n,3} \). Let \(x \) be the distance \(\alpha \)-Perron vector of \(C_n \). By Lemma \ref{lem:2.3} we have \(x_{u_1} = \cdots = x_{u_n} \). As we pass from \(C_n \) to \(T' \), the distance between \(u_2 \) and \(u_1 \) is increased by 1, the distance between \(u_2 \) and \(u_i \) with \(3 \leq i \leq \left\lceil \frac{n+1}{2} \right\rceil \) is increased by \(n - 2i + 3 \), the distance between \(u_2 \) and \(u_i \) with \(\left\lceil \frac{n+1}{2} \right\rceil \) \(\leq i \leq n \) is decreased by 1, and the distances between all other vertex pairs are increased or remain unchanged. Thus

\[
\begin{align*}
\mu_\alpha(T') - \mu_\alpha(C_n) &= x^\top(D_\alpha(T') - D_\alpha(G))x \\
&\geq \alpha \left(x_{u_2}^2 + x_{u_1}^2 \right) + 2(1 - \alpha)x_{u_2}x_{u_1} - \sum_{i = \left\lceil \frac{n+1}{2} \right\rceil + 2}^n \left(\alpha \left(x_{u_2}^2 + x_{u_i}^2 \right) + 2(1 - \alpha)x_{u_2}x_{u_i} \right) \\
&\quad + \sum_{i = 3}^{\left\lceil \frac{n+1}{2} \right\rceil} (n - 2i + 3) \left(\alpha \left(x_{u_2}^2 + x_{u_i}^2 \right) + 2(1 - \alpha)x_{u_2}x_{u_i} \right) \\
&= 2x_{u_1}^2 \left(1 - \left(n - \left\lceil \frac{n+1}{2} \right\rceil \right) - 1 \right) + \sum_{i = 3}^{\left\lceil \frac{n+1}{2} \right\rceil} (n - 2i + 3) \\
&= 2x_{u_1}^2 \left(1 + \left(n - 1 - \left\lceil \frac{n+1}{2} \right\rceil \right) \left(\left\lceil \frac{n+1}{2} \right\rceil - 2 \right) \right) \\
&\geq 2x_{u_1}^2 > 0,
\end{align*}
\]

and therefore \(\mu_\alpha(C_n) < \mu_\alpha(B_{n,3}) \), as desired. \(\square \)

A clique of \(G \) is a subset of vertices whose induced subgraph is a complete graph, and the clique number of \(G \) is the maximum number of vertices in a clique of \(G \). For \(2 \leq \omega \leq n \), let \(K_{\infty,\omega} \) be the graph obtained from a complete graph \(K_\omega \) and a path \(P_{n-\omega} \) by adding an edge between a vertex of \(K_\omega \) and a terminal vertex of \(P_{n-\omega} \) if \(\omega < n \) and let \(K_{\infty,\omega} = K_n \) if \(\omega = n \). In particular, \(K_{\infty,2} \cong P_n \) for \(n \geq 2 \). The following result for \(\alpha = 0, \frac{1}{2} \) was given in \cite{15, 11}.

Theorem 6.3. Let \(G \) be a connected graph of order \(n \geq 2 \) with clique number \(\omega \geq 2 \). Then \(\mu_\alpha(G) \leq \mu_\alpha(K_{\infty,\omega}) \) with equality if and only if \(G \cong K_{\infty,\omega} \).

Proof. It is trivial if \(\omega = n \) and it follows from Theorem \ref{thm:6.2} if \(\omega = 2 \). Suppose that \(3 \leq \omega \leq n - 1 \). Let \(G \) be a graph with maximum distance \(\alpha \)-spectral
radius among connected graphs of order n with clique number ω. We only need
to show that $G \cong Ki_{n,\omega}$.

Let $S = \{v_1, \ldots, v_{\omega}\}$ be a clique of G. By Lemma 6.3 $G - E(G[S])$ is a
tree. Let T_i be the component of $G - E(G[S])$ containing v_i, where $1 \leq i \leq \omega$.
For $1 \leq i \leq \omega$, by Corollary 4.1 if T_i is nontrivial, then T_i is a pendant path at
v_i. Note that any two distinct vertices in $G[S]$ are adjacent. By Corollary 4.2 there is only one nontrivial T_i, and thus $G \cong Ki_{n,\omega}$. \hfill \square

Recall that $Ki_{n,3}$ is the unique unicyclic graph of order $n \geq 3$ with maximum
distance 0-spectral radius [22], and the unique odd-cycle unicyclic graph of order
$n \geq 3$ with maximum distance 1-spectral radius [12].

Theorem 6.4. Let G be a unicyclic odd-cycle graph of order $n \geq 3$. Then
$\mu_\alpha(G) \leq \mu(Ki_{n,3})$ with equality if and only if $G \cong Ki_{n,3}$.

Proof. If $n = 3, 4$, the result is trivial. Suppose that $n \geq 5$. Let G be a graph
with maximum distance α-spectral radius among unicyclic odd-cycle graphs of
order n. We only need to show that $G \cong Ki_{n,3}$.

Let $C = v_1 \ldots v_{2k+1}v_1$ be the unique cycle of G, where $k \geq 1$. Let T_i be
the component of $G - E(C)$ containing v_i for $1 \leq i \leq 2k + 1$. Let $U_1 = V(T_{2k}) \cup V(T_{2k+1}), U_2 = \cup_{k+1 \leq i \leq 2k-1} V(T_i)$ and $U_3 = \cup_{1 \leq i \leq k-1} V(T_i)$. Let x be the distance α-Perron vector of G. Let

$$\Gamma = \sum_{u \in U_1} \sum_{v \in U_3} (\alpha (x_u^2 + x_v^2) + 2(1 - \alpha)x_u x_v) - \sum_{u \in U_1} \sum_{v \in U_2} (\alpha (x_u^2 + x_v^2) + 2(1 - \alpha)x_u x_v).$$

Suppose that $k \geq 2$. Let $G' = G - v_1v_{2k+1} + v_{2k+1}v_{2k-1}$. Note that the length
of C is odd. As we pass from G to G', the distance between a vertex in S_1 and
a vertex in S_3 is increased by at least 1, the distance between S_2 and $V(T_{2k+1})$
is decreased by 1, and the distance between all other vertex pairs are increased or
remain unchanged. Thus

$$\mu_\alpha(G') - \mu_\alpha(G) \geq x^\top (D_\alpha(G') - D_\alpha(G))x$$

$$\geq \sum_{u \in U_1} \sum_{v \in U_3} (\alpha (x_u^2 + x_v^2) + 2(1 - \alpha)x_u x_v) - \sum_{u \in V(T_{2k+1})} \sum_{v \in U_2} (\alpha (x_u^2 + x_v^2) + 2(1 - \alpha)x_u x_v)$$

$$> \sum_{u \in U_1} \sum_{v \in U_3} (\alpha (x_u^2 + x_v^2) + 2(1 - \alpha)x_u x_v) - \sum_{u \in U_1} \sum_{v \in U_2} (\alpha (x_u^2 + x_v^2) + 2(1 - \alpha)x_u x_v).$$

If $\Gamma \geq 0$, then $\mu_\alpha(G') > \mu_\alpha(G)$, a contradiction. Thus $\Gamma < 0$. Let $G'' = G - v_kv_{2k-1} + v_{2k}v_1$. As we pass from G to G'', the distance between a vertex in S_1 and a vertex in U_2 is increased by at least 1, the distance between U_3 and
$V(T_{2k})$ is decreased by 1, and the distance between all other vertex pairs are
increased or remain unchanged. As above, we have

$$\mu_\alpha(G'') - \mu_\alpha(G) \geq x^\top (D_\alpha(G'') - D_\alpha(G))x$$

$$> 0,$$
for the distance α

study the distance α

Some spectral properties of G.

Lemma 7.1. Let A, B be $n \times n$ Hermitian matrices. Then

\[
\lambda_j(A + B) \leq \lambda_i(A) + \lambda_{j-i+1}(B) \quad \text{for} \quad 1 \leq i \leq j \leq n,
\]

and

\[
\lambda_j(A + B) \geq \lambda_i(A) + \lambda_{j-i+n}(B) \quad \text{for} \quad 1 \leq j \leq i \leq n.
\]

As in the recent work of Atik and Panigrahi [3], we have

Theorem 7.1. Let G be a connected graph and λ be any eigenvalue of $D_\alpha(G)$ other than the distance α-spectral radius. Then

\[
2\alpha T_{\text{min}}(G) - T_{\text{max}}(G) + (1 - \alpha)(n - 2) \leq \lambda \leq T_{\text{max}}(G) - (1 - \alpha)n.
\]

Proof. Let $D_\alpha(G) = A + B$, where $A = (\alpha T_{\text{min}}(G) - (1 - \alpha))I_n + (1 - \alpha)J_{n \times n}$. Then B is a nonnegative symmetric matrix with maximum row sum $T_{\text{max}}(G) - \alpha T_{\text{min}}(G) - (1 - \alpha)(n - 1)$. Thus $|\lambda_n(B)| \leq \lambda_1(B) \leq T_{\text{max}}(G) - \alpha T_{\text{min}}(G) - (1 - \alpha)(n - 1)$. Thus $\mu_\alpha(G') > \mu_\alpha(G)$, also a contradiction. It follows that $k = 1$, i.e., the unique cycle of G is of length 3.

Obviously, T_i is a tree for $1 \leq i \leq 3$. For $1 \leq i \leq 3$, by Corollary 4.1 if T_i is nontrivial, then it is a path with a terminal vertex v_i. Then by Corollary 4.2, only one T_i is nontrivial. Thus $G \cong K_{i_n, 3}$. \qed

7 Remarks

Some spectral properties of $D_\alpha(G)$ have been established in [5]. In this paper, we study the distance α-spectral radius of a connected graph. We consider bounds for the distance α-spectral radius, local transformations to change the distance α-spectral radius, and the characterizations for graphs with minimum and/or maximum distance α-spectral radius in some classes of connected graphs. Lots of results in the literature are generalized and/or improved.

Besides the distance α-spectral radius, we may concern other eigenvalues of $D_\alpha(G)$ for a connected graph G. We give examples.

For an $n \times n$ Hermitian matrix A, let $\lambda_1(A), \ldots, \lambda_n(A)$ be the eigenvalues, arranged in a non-increasing order.

Lemma 7.1. [6] Let A, B be $n \times n$ Hermitian matrices. Then

\[
\lambda_j(A + B) \leq \lambda_i(A) + \lambda_{j-i+1}(B) \quad \text{for} \quad 1 \leq i \leq j \leq n,
\]

and

\[
\lambda_j(A + B) \geq \lambda_i(A) + \lambda_{j-i+n}(B) \quad \text{for} \quad 1 \leq j \leq i \leq n.
\]
For matrix A, we have $\lambda_1(A) = \alpha T_{\min}(G) + (1 - \alpha)(n - 1)$ and $\lambda_j(A) = \alpha T_{\min}(G) - 1 + \alpha$ for $j = 2, \ldots, n$. For $j = 2, \ldots, n$, we have by Lemma 7.1 that

$$
\lambda_j(D_\alpha(G)) \leq \lambda_1(B) + \lambda_j(A) \\
\leq T_{\max}(G) - \alpha T_{\min}(G) - (1 - \alpha)(n - 1) + \alpha T_{\min}(G) - 1 + \alpha \\
= T_{\max}(G) - (1 - \alpha)n.
$$

Similarly, for $j = 2, \ldots, n$,

$$
\lambda_j(D_\alpha(G)) \geq \lambda_n(B) + \lambda_j(A) \\
\geq -T_{\max}(G) + \alpha T_{\min}(G) + (1 - \alpha)(n - 1) + \alpha T_{\min}(G) - 1 + \alpha \\
= 2\alpha T_{\min}(G) - T_{\max}(G) + (1 - \alpha)(n - 2).
$$

This completes the proof.

Let G be a connected graph and λ be any eigenvalue of $D_\alpha(G)$ other than the distance α-spectral radius. By previous theorem, we have

$$
|\lambda| \leq T_{\max}(G) - (1 - \alpha)(n - 2).
$$

The distance α-energy of a connected graph G of order n is defined as

$$
E_\alpha(G) = \sum_{i=1}^{n} \left| \mu_{\alpha}^{(i)}(G) - \frac{2\alpha \sigma(G)}{n} \right|.
$$

Obviously, $E_0(G)$ is the distance energy of G [10, 24], while

$$
E_{1/2}(G) = \frac{1}{2} \sum_{i=1}^{n} \left| 2\mu_{1/2}^{(i)}(G) - \frac{2\sigma(G)}{n} \right|
$$

is half of the distance signless Laplacian energy of G [8]. Thus, it is possible to study the distance energy and the distance signless Laplacian energy in a unified way.

Acknowledgement. This work was supported by the National Natural Science Foundation of China (No. 11671156).

References

[1] M. Aouchiche, P. Hansen, Distance spectra of graphs: A survey, Linear Algebra Appl. 458 (2014) 301–386.

[2] M. Aouchiche, P. Hansen, Two Laplacians for the distance matrix of a graph, Linear Algebra Appl. 439 (2013) 21–33.

[3] F. Atik, P. Panigrahi, On the distance and distance signless Laplacian eigenvalues of graphs and the smallest Gersgorin disc, Electron. J. Linear Algebra 34 (2018) 191–204.
[4] R.B. Bapat, D. Kalita, M. Nath, D. Sarma, Convex and quasiconvex functions on trees and their applications, Linear Algebra Appl. 533 (2017) 210–234.

[5] S. Cui, J. He, G. Tian, The generalized distance matrix, Linear Algebra Appl. 563 (2019) 1–23.

[6] D. Cvetković, P. Rowlinson, S. Simić, An Introduction to the Theory of Graph Spectra, Cambridge University Press, Cambridge, 2010.

[7] K.C. Das, Proof of conjectures on the distance signless Laplacian eigenvalues of graphs, Linear Algebra Appl. 467 (2015) 100–115.

[8] K.C. Das, M. Aouchiche, P. Hansen, On (distance) Laplacian energy and (distance) signless Laplacian energy of graphs, Discrete Appl. Math. 243 (2018) 172–185.

[9] X. Duan, B. Zhou, Sharp bounds on the spectral radius of a nonnegative matrix, Linear Algebra Appl. 439 (2013) 2961–2970.

[10] G. Indulal, Sharp bounds on the distance spectral radius and the distance energy of graphs, Linear Algebra Appl. 430 (2009) 106–113.

[11] H. Lin, X. Lu, Bounds on the distance signless Laplacian spectral radius in terms of clique number, Linear Multilinear Algebra 63 (2015) 1750–1759.

[12] H. Lin, B. Zhou, The effect of graft transformation on the distance signless Laplacian spectral radius, Linear Algebra Appl. 504 (2016) 433–461.

[13] S. Liu, J. Shu, J. Xue, On the largest distance (signless Laplacian) eigenvalue of non-transmission-regular graphs, Electron. J. Linear Algebra 34 (2018) 459–471.

[14] H. Minc, Nonnegative Matrices, John Wiley & Sons, New York, 1988.

[15] M. Nath, S. Paul, A note on the distance spectral radius of some graphs, Discrete Math. Algorithms Appl. 6 (2014) 1450015, 8 pp.

[16] S.N. Ruzieh, D.L. Powers, The distance spectrum of the path Pn and the first distance eigenvector of connected graphs, Linear and Multilinear Algebra 28 (1990) 75–81.

[17] D. Stevanović, A. Ilić, Distance spectral radius of trees with fixed maximum degree, Electron. J. Linear Algebra 20 (2010) 168–179.

[18] Y. Wang, B. Zhou, On distance spectral radius of graphs, Linear Algebra Appl. 438 (2013) 3490–3503.

[19] R. Xing, B. Zhou, J. Li, On the distance signless Laplacian spectral radius of graphs, Linear Multilinear Algebra 62 (2014) 1377–1387.
[20] R. Xing, B. Zhou, F. Dong, The effect of a graft transformation on distance spectral radius, Linear Algebra Appl. 457 (2014) 261–275.

[21] G. Yu, H. Jia, H. Zhang, J. Shu, Some graft transformations and its applications on the distance spectral radius of a graph, Appl. Math. Lett. 25 (2012) 315–319.

[22] G. Yu, Y. Wu, Y. Zhang, J. Shu, Some graft transformations and its application on a distance spectrum, Discrete Math. 311 (2011) 2117–2123.

[23] X. Zhang, C. Godsil, Connectivity and minimal distance spectral radius of graphs, Linear Multilinear Algebra 59 (2011) 745–754.

[24] B. Zhou, A. Ilić, On distance spectral radius and distance energy of graphs, MATCH Commun. Math. Comput. Chem. 64 (2010) 261–280.