Bioassay Guided Phyto-chemical Investigation of *Bergenia ciliata* (Haw) Sternb: A Rocky Himalayan Medicinal Plant of Nepal

Pujya Wagle¹, Birendra Tamrakar², Swagat Shrestha³, Lekh Nath Gautam⁴,*

¹Nepal Academy of Science and Technology, Khumaltar, Nepal
²Tri-Chandra Multiple Campus, Department of Chemistry, Ghantaghar, Kathmandu, Nepal
³Kathmandu Valley College, Chhauni, Nepal
⁴Department of Plant Resources, Natural Product Research Laboratory (NPRL), Thapathali, Nepal

Email address: retronlp@yahoo.com (L. N. Gautam)

To cite this article:
Pujya Wagle, Birendra Tamrakar, Swagat Shrestha, Lekh Nath Gautam. Bioassay Guided Phyto-chemical Investigation of *Bergenia ciliata* (Haw) Sternb: A Rocky Himalayan Medicinal Plant of Nepal. *Journal of Drug Design and Medicinal Chemistry*. Vol. 2, No. 2, 2016, pp. 21-25. doi: 10.11648/j.jddmc.20160202.11

Received: January 23, 2016; Accepted: February 9, 2016; Published: April 14, 2016

Abstract: *Bergenia ciliata* (Haw) Sternb. (Saxifragaceae) is a promising, but rare and vulnerable Himalayan medicinal herb of Nepal. It grows on moist crevices of rocks and boulders. Commonly, it is known as pashanved (pasan = rock stone, ved = piercing) or rock foil. It grows between the rocks possessing lithotropic property. A decoction of rhizomes and roots of this species is used in the Ayurveda, Unani and folk systems of medicine for the treatment of ulcers, fevers, tumors, eye sores and lungs, liver, heart, urinary diseases. Due to over-exploitation for medicinal value, it is in the process of extinction. So conservation by cultivation is highly recommended. The present study was carried out on bio-guided fractionation of rhizomes powder of *B. ciliata* (Sternb) which is known to possess several pharmacological properties. It afforded the bioactive natural product bergenin (Isocoumarin, 3%) from ethyl acetate fraction. In addition, other four compounds namely afzelechin (2.5%), leucocyanidin, β-sitosterol and β-sitosterol glycoside were isolated from ethyl acetate fraction. co-TLC/2D-TLC, HRMS, LC-MS, NMR, IR methods were employed to identify these compounds.

Keywords: *Bergenia ciliata*, Saxifragaceae, Rhizomes, Chemical Constituents, Bergenin, Afzelechin, Leucocyanidin, β-sitosterol Glycoside

1. Introduction

B. ciliata (Haw) sternb is an evergreen perennial herb growing to 0.31 meter (1 ft) - 1.0 meter (3.2 ft) by 0.5 meter (1.8ft) found in temperate Himalayas in range 400 to 4300 meter up to the frontier of vegetation. It is frost resisting and shade loving plant grows in extremely hard condition in moist stony slopes, debris, crevices, rock builders and forest shade. It is stunted creeping herb with a stout and cylindrical root stock called rhizomes (which are buff and brown outside, pinkish brown inside), stalked leaves, circular, obovate or elliptic 5-35 cm long freshly denticulate, bright green and densely ciliated at margins, sparsely hairy to glabrous on both surfaces. Its leaves are edible (pakora), used as tonic and also as plates in picnic parties and agricultural fields. It flowers and fruits in between February to August. Its beautiful pinkish white or purple flowers of cymose panicles and rounded capsules with entire bristly margins have ornamental (decorative) value as good luck (in Phool sangrum). This plant possesses urolithotropic, anti-calcipication, styptic, astringent, anti-hepatotoxic, anti-inflammatory, anti-pyretic, antiviral, antimalarial, anti-hypertensive activity and cytoprotective effects [1], antibacterial, anti-stress, anticancer, anti-diabetic, analgesic and diuretic properties [2]. So it has strong abilities for curing respiratory-cough, pulmonary-heart, livers and urinary diseases alleviating bleeding, but intensifying immunity. Its rhizome (in the form of powder, paste or juice) is widely used in Ayurveda, Unani and other traditional/cultural system of medicines for renal disorders, oxidative stress, fever,
2. Materials and Methods

The fresh rhizomes were randomly collected neglecting altitudinal variation from Dhaulagiri zone of 2000-4300m height during August, 2005. The voucher specimen BS-134 was authenticated at the national Herbarium and plant laboratory, Godawari, Nepal.

The air dried powdered rhizomes (1.0kg) of the plant were successively extracted with methanol (3×1000ml) at 60°C using Soxhlet apparatus. The concentrated alcoholic extract (250gm) was diluted with cold distilled water (1000ml) and defatted with petroleum ether (1.5×1000ml) and petrol extract was concentrated to afford petrol extract (18gm). After defatting it was successively fractionated with chloroform (1.5×1000ml), ethyl acetate (1.5×1000ml) and methanol (1.5×1000ml). These extracts were concentrated under reduced pressure in Rota evaporator of Buchi type to yield chloroform extract (25gm), viscous ethyl acetate (100gm) and methanol (30gm). Brine shrimp bioassay procedure [6] and zone of inhibition test from agar basis of the comparison of their physical and spectral data were indicative of presence of respective –OH and COOR. The values at 3291, 3292 cm⁻¹ are aromatic groups. NMR spectrum values ranging from δ 60.3 - 164.4 indicated the presence of 14 carbons. The value at δ 60.3 was methoxy group and δ 164.4 was assigned as ester (COOR) group. These spectral evidences suggested the compound to be isocoumarin. Furthermore the structure was supported by mass fragmentation pattern, 208, C₁₀H₁₃O₅⁺ as base peak and others like 152, 165, 180, 195, 222, 237 to be consistent with the reported structural features. ¹H-¹H COSY, HMBC and HMQC were also utilized for identification. To further verify the structure, two derivatives were prepared. Simple acylation reaction in presence acetic anhydride and pyridine at 0°C for 16 hr provided the penta-O-acetyl bergenin as a white solid with δ 5.18 (J = 10.1 Hz) and triplet at δ 4.55 (J = 9.8 Hz) suggested 6a and 5a proton with their trans configuration. The respective triplet at δ 4.15 (J = 8.6 Hz) and δ 4.40 (J = 8.6 Hz) showed C-3 and C-4 protons were also in trans orientation. The multiplet at δ 2.84 showed C-2 proton. The two protons at δ 3.30-3.45 were C-16 protons. ¹³C-NMR values ranging from δ 60.3 - 164.4 indicated the presence of 14 carbons. The value at δ 60.3 was methoxy group and δ 164.4 was assigned as ester (COOR) group. These spectral evidences suggested the compound to be isocoumarin.
tri-methoxy bergenin as a colored mass with HRMS found as 357.1137. Progress of the reaction was monitored via LC-MS. Therefore, the compound was identified as bergenin [9].

Figure 1. Bergenin and its two different derivatives.

2, 3 trans, 2R, 3S Flavan 3-OL, (+) Afzelechin
It was isolated as pale crystalline solid with M P 220-222°C, Rf 0.32 (1: 9, MeOH: CHCl₃) and recrystallized from ethyl acetate. The yield was 2.5%. HRMS (ESI) calculated for flavan tetro ([(M+H)+]: 275.0875 and found 275.0879 corresponding to the molecular formula C₁₅H₁₄O₅. IR spectra on KBr showed phenolic –OH at 3410 cm⁻¹ aromatic C = C at 1600 cm⁻¹ & 1510 cm⁻¹ and aromatic C-O at 1241 cm⁻¹. The ¹H-NMR was consistent with 3- flavanol, a catechin. The doublet at δ 7.31 (J = 8.5Hz) showed H-2' and 6'. Similar doublet at δ 6.77 (J = 8.5Hz) were H-3' & 5'. The doublet at δ 5.91 & δ 5.94 with (J = 2.4 Hz) and are 6-H & 8-H of long range coupling. The singlet at δ 4.86 was H-2 and multiplet at δ 4.17 was H-3. The doublet of doublet at δ 2.73-2.87 (J = 3.17Hz) was H-4. The mass fragmentation patterns were strongly supported the proposed skeleton. The ¹³C-NMR showed the presence of 15 carbons in the molecule. Three different chemical derivatives were prepared utilizing enhanced directing effect of two phenolic –OH groups in electrophilic aromatic substitution. Bromo, Iodo, and formyl group were substituted at 7 position and characterized from NMR comparison, LC-MS analysis and HRMS of the final product (353.9925, 400.9835 and 303.0814) respectively. Thus, the compound was identified as (+)afzelechin [10].

Figure 2. Chemoselective formylation and halogenation of Afzelechin.

2-(3, 4 –dihydroxyphenyl)-3, 4, 5, 7-chromane tetro, Flavan 3, 4-diols, Hexahydroxyflavan, (Leucocyanidin)
The compound was pale yellow amorphous powder with Rf 0.37 (1: 9, MeOH: CHCl₃). It gives the positive test of anthocyanidin. The yield was 130mg (0.0013%). HRMS (ESI) calculated for this cyanidin is ([M+H]+): 307.0773 and found: 307.0769 corresponding to the molecular formula C₁₅H₁₄O₇. The IR spectra showed the presence of –OH at 3410 cm⁻¹, other peaks at 1080, 1055, 1028, 890 cm⁻¹ were due to 8-pyranone form. The ¹H-NMR values at δ 4.9 & δ 4.04 (J = 10.3 Hz) showed that 2-H and 3-H are in trans configuration. The values at δ 5.9 (J = 2.1Hz) showed the 6 and 8 protons. The C-3 & C-4 δ 5.1 protons (J = 6.3 Hz) showed their cis orientation. The six –OH (4-phenolics and 2-alcoholic) groups protons are exchangeable with D₂O are at δ 6.5 its integration showed the no of protons. Remaining 2', 5' & 6'-H are conformed from the coupling constants at 3J = 1.1 Hz & 4J = 1.85 Hz. Thirteen different carbon were observed from ¹³C-NMR spectrum. In addition, the obtained penta-nitrated and tetra-O-methylated leucocyanidin analogs from chemical modification suggested that the compound is leucocyanidin [11].

Figure 3. Two different molecules from Leucocyanidin.
β-Sitosterol

It was isolated as white crystalline, MP 136°C, R_f 0.32 (1:9, ethyl acetate: hexane). It gave positive Libermann-Burchard test indicating the compound to be sterol. HRMS (ESI) calculated for this steroid is ([M+H]⁺): 415.3895, found: 415.3888 corresponding to the molecular formula C₂₉H₅₀O. The β-Sitosterol was also confirmed by co-TLC/2D-TLC and LC-MS analysis with the sample already isolated in our laboratory.

All NMR, IR and mass spectral patterns were identical with that of reported β-Sitosterol [12].

![β-Sitosterol](image)

Figure 4. Structure of an isolated steroid.

β-Sitosterol 3-O-β-D glucopyranoside

It was white powder, MP above 280°C, R_f 0.66 (1:4, methanol: chloroform). HRMS (ESI) calculated for this steroid is ([M+H]⁺): 577.4423, found: 577.4418 corresponding to the molecular formula C₃₅H₆₀O₆. The co-spot/2D-TLC and LC-MS with already authenticated glycoside in lab also confirmed it.

![β-Sitosterol-3-O-β-D glucopyranoside](image)

Figure 5. Structure of a glycoside.

¹H NMR spectrum pattern was similar to that of β-sitosterol with some additional peaks relating to a carbohydrate moiety. The multiplet at δ 4.27 Hz was assigned for the proton of C-3. Its de-shielding may be due to attachment of β-O glucoside moiety at C-3 carbon. The proton signals at δ 3.96 Hz, 4.03 Hz, 4.27 Hz, 4.52 Hz, 4.53 Hz and 5.02 Hz in the de-shielded region were assigned for respective C-5’, C-2’, C-3’, C-4’, C-6’, and C-1’ protons of glucoside moiety. ¹³C-NMR pattern was also similar to β-sitosterol with six more peaks confirming the glucose ring. Furthermore, the structure was supported by ¹H-¹H COSY, HMBC and HMQC. All these spectral values were found to be consistent with β-Sitosterol glucoside reported previously [12].

4. Conclusions

It can be stated that the B. ciliata of Nepalese origin showed interesting composition of bergenin and (+) afzelechin with medicinal and ornamental applications in traditional and folk medicine. So, it served as the valuable source of these two compounds which could potentially be used in medicinal chemistry program to discover the potent drug molecule. Research work showed that the ethyl acetate extract/fraction exhibit extreme bioactivity. It is also found that the active principles are potent in bioassay. To the best of our knowledge the above five compounds were isolated from this Himalayan plant of Nepalese origin for the first time. Further work is necessary in terms of chemical and pharmacological aspect. We have obtained different mixtures which are still to be determined.

Acknowledgement

Authors are thankful to NPRL, Thapathali; Trichandra multiple campus, Ghantaghar; Universal college, Maitidevi and Kathmandu Valley College, Chhauni for their respective laboratory infrastructure, chemicals and financial support. We would like to thank the local people of Dhaulagiri zone for their valuable contribution in collection and explanation of traditional and ethnobotanical importance of plant. The pertinent spectral analysis as well as specific literature support is highly acknowledged for S. L. Shrestha, Ph. D. and A. R. Shrestha, Ph. D. in Japan.

References

[1] Rajbhandari, M.; Wegner, U.; Schopke, T.; Lindequist, U.; Mentel, R. Inhibitory effect of Bergenia ligulata on influenza virus A. Pharmazie, 2003, 58, 268-271.

[2] Shah, M. C.; Joshi, M. C. An Ethnobotanical study of Kumaun Region of India Econ. Bot. 1971, 25, 414-422.

[3] Manandhar. N. P. Plants and People of Nepal Timber Press. Oregon. 2002, ISBN 0-88192-527-6.

[4] Bahl, C. P.; Murari, R.; Parthasarathy, M. R.; Seshadri, T. R. Components of Bergenia stracheyi and B. ligulata. Indian J chem., 1974, 12(10), 1038.

[5] Bohm, B. A.; Donevan, L. S.; Bhat, U. G. Flavonoids of some species of Bergenia. Francoa, Parnassia and Lepuroptalon. Biochem Syst Ecol, 1986, 14(1), 75-77.

[6] Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobson, L. B., Nichols, D. E., and McLaughlin, J. L. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Medica, 1982, 45, 31-34.
[7] Seeley, H. W.; Van Denmark, P. J. A Laboratory manual of Microbiology. 2nd ed. Bombay: D B. Taraporewala Sons and Co; 1975. Microbes in action; pp. 55–80.

[8] Nazir, N.; Koul, S.; Qurishi, M. A.; Najar, M. H.; Zargar, M. I. Evaluation of antioxidant and antimicrobial activities of Bergenin and its derivatives obtained by chemoenzymatic synthesis Eur. J. Med. Chem. 2011, 46(6), 2415-2420.

[9] Ogan A. U. Humiriaceae. An isocoumarin from the bark of Sacoglitis gabonensis. Photochemistry. 1971, 10, 2832-2833.

[10] Yoshida, T.; Seno, K.; Takama, Y.; Okuda, T. Bergenin derivatives from Mallotus japonicas Phytochemistry 1982, 21, 1180-1182.

[11] Haslam E. (+)-catechin-3-gallate and a polymeric proanthocyanidin from Bergenia species. J Chem Soc Perkin 1 1969, 14, 1824-1828.

[12] Gautam, L. N.; Awale, S; Kalauni, S. K.; Shrestha, K. & Gewali, M. B. Phytochemical and Biological Studies on Podocarpus nerifolius D. Don, A Himalayan Conifer of Nepal Scientific World, 2005, 3(3), 22-25.