Abstract: This study describes some characteristics of the Rubiaceae family pertaining to the occurrence and distribution of secondary metabolites in the main genera of this family. It reports the review of phytochemical studies addressing all species of Rubiaceae, published between 1990 and 2014. Iridoids, anthraquinones, triterpenes, indole alkaloids as well as other varying alkaloid subclasses, have shown to be the most common. These compounds have been mostly isolated from the genera *Uncaria*, *Psychotria*, *Hedyotis*, *Ophiorrhiza* and *Morinda*. The occurrence and distribution of iridoids, alkaloids and anthraquinones point out their chemotaxonomic correlation among tribes and subfamilies. From an evolutionary point of view, Rubioideae is the most ancient subfamily, followed by Ixoroideae and finally Cinchonoideae. The chemical biosynthetic pathway, which is not so specific in Rubioideae, can explain this and large amounts of both iridoids and indole alkaloids are produced. In Ixoroideae, the most active biosynthetic pathway is the one that produces iridoids; while in Cinchonoideae, it produces indole alkaloids together with other alkaloids. The chemical biosynthetic pathway now supports this botanical conclusion.

Keywords: Rubiaceae; Rubioideae; Cinchonoideae; Ixoroideae; iridoids; alkaloid; anthraquinones; triterpenes
1. Introduction

The Rubiaceae family is characterized by the production of bioactive metabolites with great pharmacological potential. These metabolites can be used as chemotaxonomic markers even for genera and subfamilies [1,2]. Usually, taxa are classified according to different botanical characteristics; classical taxonomic systems only consider the plant morphological characters, while modern systems correlate their various combinations, including the chemical composition. Studies correlating classical plant taxonomy to chemical data can be found as far back as 1699 [3].

Phytochemical compounds can be a useful tool for characterizing, describing and classifying plant species. The distribution of secondary metabolites in Rubiaceae follows patterns that may help characterize the botanical group (subfamily, tribe or genera). These patterns relative to chemotaxonomy are often used to establish the botanical origin [4].

In recent years, Rubiaceae species have been thoroughly studied from a phytochemical viewpoint. However, very few studies have used this knowledge as a tool in taxonomic studies. When conducting bioprospecting studies of a plant, all botanical and chemotaxonomic information is of great importance, since it increases the likelihood of finding bioactive compounds, which enables the discovery of new Nature-originated drugs [5]. Therefore, the present study aims to conduct a literature survey on phytochemical studies addressing species of Rubiaceae published from 1990 to 2014, and describe their secondary metabolites occurrence and distribution in the subfamilies, tribes and main genera of this family.

2. Taxonomic Classification of Rubiaceae

The Rubiaceae family has a cosmopolitan distribution, mostly concentrated in the tropics. Being one of the largest in the Magnoliopsida class, it ranks fourth in diversity of species among Angiosperms [4]. It includes approximately 637 genera and 13,000 species [5,6]. In Brazil, nearly 120 genera and 1400 species occur, representing one of the most important economic, ornamental and medicinal plant families in the Brazilian flora [7].

The Rubiaceae family taxonomic classification is complex and there are still some gaps which have to be filled. According to the classification of Robbrecht [8], the Rubiaceae family is divided into four subfamilies: Rubioideae, Cinchonoideae, Antirhoeoideae and Ixoroideae. However, more recent studies suggest this family to be divided into three subfamilies: Rubioideae, Cinchonoideae and Ixoroideae, as some authors do not recognize Antirhoeoideae as a subfamily, since molecular studies have shown it to be polyphyletic with no standardized occurrence of a chemical marker [9–16]. Due to the abundance of species, the subfamilies were divided into 43 tribes (an intermediate clade between genus and subfamily) [16], which are listed in Figure 1.

Due to the lack of studies that can complement the extant information on geographical distribution, morpho-anatomical characteristics and molecular data, there are still genera and species not allocated into any tribe [16]. The evaluation of the chemical profile of these species may indicate a more complete phylogenetic distribution, since the secondary metabolites are the results of adaptation and evolution of a specific taxon to environment [17]. Thus, the profile of secondary metabolites distribution can bring new information for the taxonomic classification of this family.
Figure 1. Subfamilies and tribes belonging to the Rubiaceae family [16].

3. Chemical and Biological Aspects of Rubiaceae

The Rubiaceae family presents a large diversity of substances such as iridoids, indole alkaloids, anthraquinones, terpenoids (diterpenes and triterpenes), flavonoids and other phenolic derivatives, with emphasis on production of bioactive alkaloids [2]. Alkaloids are secondary metabolites that can
generate various drugs with important pharmacological effects and used to find out physiological responses and biochemical mechanisms of action [18].

The number of described products, the structural diversity and pharmacological activities reported for various species of Rubiaceae demonstrate this family to be a promising source of new bioactive substances, which may give rise to new products as active molecules or even drug prototypes. Many of these plants have widespread use in folk medicine and some showed anti-inflammatory, analgesic, antibacterial, mutagenic, antiviral, antioxidant, effect on vascular diseases as well as activity on the central nervous system [19].

In the Ixoroideae subfamily, the genus Coffea is one of the most economically important, mainly the species Coffea arabica, popularly known as coffee, which has caffeine as one of its principal chemical components. This substance acts as stimulant of the central nervous system, as well as vasoconstrictor, bronchodilator and diuretic, besides being one of the components of migraine drugs [18]. Genipa, the Brazilian jenipapo (Genipa americana) with antiangiogenic, anti-inflammatory and antioxidant activity [20–22] is another important genus from which genipin was isolated, a colorless iridoid, used by indigenous people to tattoo their skin, since it produces a black coloration when it reacts with skin proteins. Its fruits are used to make wines, liqueurs, jams, soft drinks, etc. [23].

In the Cinchonoideae subfamily, Cinchona species are the source of quinine, isolated in 1820 by Pelletier and Caventou [24], and which for about 200 years was the only active substance against malaria, and can be considered as responsible for the development of synthetic antimalarials [1,25]. More than 50 new substances were isolated from alkaloid-rich Uncaria species [19], as Uncaria tomentosa, known as “unha de gato”, is one of most used plants in Brazilian folk medicine. Studies have shown that alkaloids isolated from this plant have immunostimulant and antitumor activity [26,27]. Other groups of substances such as triterpenes and procyanidins presented anti-inflammatory activity [28,29].

Psychotria, belonging to the Rubioideae subfamily, are plants that produce substances with activity on the central nervous system, such as Psychotria viridis, popularly known as “ayahuasca” which means “soul wine”. P. viridis is used in religious ceremonies in association with Banisteriopsis caapi, a species from the Malpighiaceae family [30,31]. Their hallucinogenic effect is due to the synergy that occurs between the alkaloid N,N-dimethyltryptamine (DMT), present in the leaves of P. viridis, and β-carboline indole alkaloids (harmine, harmaline and tetrahydroharmine) present in the bark of B. caapi [32]. Cephaelis is another important genus, especially C. ipecacuanha, a plant traditionally used by the Brazilian population, an important source of emetine, an alkaloid with emetic, antihelminthic and expectorant effects [33,34]. In Brazil, species of Palicourea are considered responsible for about half of all cattle deaths brought about by natural poisoning [35]. Some selected isolated compounds from Rubiaceae species are shown in Table 1 and Figure 2.

4. Chemotaxonomic Considerations

Chemotaxonomic studies use chemical characteristics, particularly secondary metabolites from a group of organisms to determine their taxonomic classification [36]. This correlation between phytochemical compounds and morphological data becomes an important tool to determine plant classification, phylogeny and evolution [37–39].
The plant evolution process, from a morphological point of view, occurred by the successive appearance of small weeds, larger herbs, shrubs and, finally, trees achieving the climax with primitive angiosperms. Then, the evolutionary polarity became inverted, woody plant being gradually replaced by herbaceous plants [40,41]. As explained by Gottlieb: “The most conspicuous evolutionary trend in the gross morphology of land plants concerns the successive appearance of small weeds, larger herbs, shrubs and, finally, trees. This trend had attained or even had passed its climax with the primitive angiosperms and within this division the evolutionary polarity became inverted, woody plants being gradually replaced by herbaceous plants.

Table 1. Some metabolites isolated from Rubiaceae.

Genera	Class	Substance	Structure
Cephaelis	Alkaloid	Emetine	I
	Lactone	Chelidonic acid	II
	Alkaloid	Cephalin	III
	Alkaloid	Psycotrin	IV
Cinchona	Alkaloid	Quinine	V
	Triterpene	Cincholic acid	VI
	Triterpene	Quinovic acid	VII
	Alkaloid	Quinidine	VIII
	Alkaloid	Cinchonine	IX
	Alkaloid	Cinchonidine	X
Coffea	Methyl xantine	Caffeine	XI
	Diterpene	Cafestol	XII
	Anthraquinone	Galiosin	XIII
	Anthraquinone	Copareolatin	XIV
	Anthraquinone	Munjistin	XV
Corynanthe	Alkaloid	Yohimbine	XVI
Galium	Iridoide	Macedonine	XVII
Genipa	Monoterpene	Genipin	XVIII
Hedyotis	Anthraquinone	Alizarin	XIX
Landerbergia	Alkaloid	Quinidine	VIII
	Alkaloid	Cinchonine	IX
	Alkaloid	Cinchonidine	X
Morinda	Anthraquinone	Alizarin	XIX
Mussaenda	Triterpene	Arjunolic acid	XX
Oldenlandia	Anthraquinone	Alizarin	XIX
Psychotria	Alkaloid	Psycotrin	IV
	Alkaloid	Cephalin	III
Relbunium	Anthraquinone	Purpurin	XXI
Remijia	Alkaloid	Quinidine	VIII
	Alkaloid	Cinchonine	IX
	Alkaloid	Cinchonidine	X
Rubia	Anthraquinone	Purpurin	XXI
	Anthraquinone	Alizarin	XIX

* shown in Figure 2.
Figure 2. Different classes of compounds isolated from Rubiaceae.
These successional phenomena are paralleled by micromolecular compositions. The ubiquitous flavonoids excepted, polyketides and terpenoids dominate the chemical compositions of bryophytes and pteridophytes. Shikimate-derived aromatics became numerically significant only in gymnosperms and attain predominance over other biosynthetic classes in primitive angiosperms. Concomitantly, here secondary metabolism reflects the trend from woody to herbaceous forms by inactivation of cinnamoyl/cinnamyl-derivatives through two phenomena: (i) extension of the shikimate pathway by reduction of cinnamyl alcohols to allylphenols and propenylphenols and (ii) gradual curtailment of the final steps of the shikimate pathway. The former alternative is most frequent in the primitive magnoliean block, where oxidative oligomerization of the precursors leads to neolignans. The first consequence of the latter alternative, the accumulation of phenylalanine and tyrosine, again very frequent in the magnoliean block, occurs also in the rosiflorean block. Oxidative elaboration of these amino acids leads to benzyloisoquinolines. Further shortening of the shikimate pathway is restricted to the rosiflorean block. It leads to the accumulation of chorismic acid, the precursor of anthranilate- and of tryptophane-derived alkaloids, and of shikimic acid, the precursor of gallic acid- and ellagic acid-derived tannins. With gallic acid, the possibilities of diversifying the production of micromolecules through gradual curtailment of the shikimate pathway seem to be exhausted. In the most highly advanced, mostly sympetalous, angiosperms, shikimate-derived secondary metabolites play a relatively minor role. In these lineages, the full potential of acetate utilization leads to polyacetylenes, while mevalonate utilization leads to steroidal alkaloids, iridoids, alkaloids, sesquiterpene lactones, etc. In comparison with the polyketides and terpenoids of less advanced plant groups mentioned above, these compounds all show a high state of oxidation.” [40].

Regarding the distribution of the major secondary metabolites in Rubiaceae, indole alkaloids are indicated as the main chemical markers of this family [42–46]. Iridoids, anthraquinones, triterpene glycosides, flavonoids, lignoids, terpenes and phenols derivatives, were also reported [47]. Indole alkaloids occur just in families belonging to the Gentianales order (Loganiaceae, Rubiaceae, Apocynaceae and Naucleaceae), where one observes monoterpen indole alkaloids mainly [48]. The occurrence of indole alkaloids out of Gentianales order is quite rare and when found they are usually simple indole alkaloids.

A good correlation between the biosynthetic pathways and morphological aspects of the Ixoroideae, Cinchonoideae and Rubioideae subfamilies is obtained by evaluating chemical data, combined with the parameters cited by Robbrecht [8]. Each one of these subfamilies presents a different and typical profile of indole alkaloids, iridoids and anthraquinones which are considered as Rubiaceae chemotaxonomic markers [49]. Other studies based on chemotaxonomic data obtained by gas chromatography coupled to mass spectrometry show that the iridoid glycosides are present in several different species belonging to the Rubiaceae subfamilies [50–52]. Monoterpene indole alkaloids, especially which are derivatives of tryptamine and monoterpen (iridoid) secoliganin are another predominant class in Rubiaceae. Quinoline alkaloids, which are products from the monoterpen indole and isoquinoline alkaloids rearrangement, yielding emetine-type alkaloids, are also characteristic of Rubiaceae, however, strychnine class alkaloids are not present in this family. Other alkaloid types are quite heterogeneous leading to a hard chemotaxonomic correlation [53].

Several studies have reported the use of chemical data to assist plant taxonomy [53]. Interest in this area increased due to the appearance of fast and accurate analytical techniques. However, there are still
limitations on the application of chemical data in systematics. Even with a growing number of phytochemical studies, there are still many plants that remain without any chemical study.

5. Data Obtained Through the Bibliographic Survey

The present study sought to survey phytochemical studies of all species of Rubiaceae published in ScienceDirect and CAS SciFinder websites between 1990 and 2014. The data compiled in this review show the distribution of the studied species classified by their respective tribes and subfamilies as well as the isolated compounds and their chemical classes (Table 2).

Based on the obtained data, the main occurrence of iridoids, anthraquinones, triterpenes, indole alkaloids and alkaloids belonging to different chemical subclasses, was observed. The chemical profile, as expressed by the occurrence of major categories of secondary metabolites (alkaloids, anthraquinones and iridoids) showed to be quite different for each subfamily. Furthermore, the study of specific classes may contribute to chemotaxonomic correlations, since there are compounds with restricted distribution [54]. These same classes of substances served as a distribution pattern to create and modify plant classification systems as proposed by Dahlgren [54].

In Ixoroideae subfamily, the iridoids are found as chemotaxonomic markers, in Cinchonoideae the indole alkaloids predominate over other substances and in Rubioideae the anthraquinones are the major class of secondary metabolites (Figure 3). These global findings corroborate those found in the Brazilian Rubiaceae chemotaxonomic study by Bolzani [15].

Other studies also describe indole alkaloids as the class of substances of major occurrence in Cinchonoideae, especially in Guettardeae tribe [50,55]. Studies by Wijnsma and Verpoorte [56] and Bolzani et al. [15] describe the occurrence of standardized chemical markers: iridoids in Ixoroideae; indole alkaloids in Cinchonoideae and anthraquinones in Rubioideae. These data corroborate the one presented in this review.

Therefore, it was observed triterpenes widely distributed in all subfamilies, therefore a chemotaxonomic correlation cannot be established. The occurrence of a common pattern in secondary metabolism may suggest, strongly, taxons having a common ancestor. Thus, if there are morphological similarities, they can either be due to a common ancestry or convergent evolution [54]. Furthermore, the seco-iridoids are iridoids precursors and also participate in the biosynthesis of monoterpene indole alkaloids, so they may be involved in two distinct chemotaxonomic subdivisions [57,58]. Thus, different species may exhibit different chemical substance classes, but having the same precursor, which may indicates a phylogenetic relationship [59–64].
Table 2. Compounds isolated from Rubiaceae species, organized by subfamily and tribe.

Subfamily	Tribe	Species	Compound (s)	References
Cinchonoideae	CHI	Chinococca alba	**Triterpene glycosides:** chiococcasaponins I–V	
Cetoalcohols: 4-hydroxy-heptadecan-7-one; 5-hydroxy-octadecan-11-one				
Phenylcoumarines: 5,7,4′-trimethoxy-4-phenylcoumarine				
Lignans: exostemin; matairesinol; D-mannitol				
Seco-iridoids: albosides I–III				
Nor-seco-pimarane: merilactone				
Triterpene: 3β-hydroxyolean-12,15-dien-28-oic acid	[65]			
			Triterpene glycosides: Oα-D-apiofuranosyl (1→3)-[α-D-apiofuranosyl (1→4)]-α-L-rhamnopyranosyl (1→2)-α-L-arabinopyranosyl 3-O-β-D-glucopyranosyl-3β-hydroxyolean-12,15-dien-28-oate; 28-O-α-D-apiofuranosyl (1→3)-α-L-rhamnopyranosyl (1→2)-α-L-arabinopyranosyl 3-O-β-D-glucopyranosyl-3β-hydroxyolean-12,15-dien-28-oate	[70]
			Flavonoids: 4′-methoxykaempferol-7-(acetylxy)-3,5-O-α-L-rhamnoside; apigenin; 7-O-methoxyquercetrin; quercetin	
Triterpenes: α-amirin; β-amirin; ursolic acid; oleanolic acid	[71]			
		Chinococca braquiata	**Flavonoids:** 4′-methoxykaempferol-7-(acetylxy)-3,5-O-α-L-rhamnoside; apigenin; 7-O-methoxyquercetrin; quercetin	
Triterpenes: α-amirin; β-amirin; ursolic acid; oleanolic acid	[73]			
		Coutarea hexandra	**Coumarins:** 5-O-β-D-glucopyranosyl-4-(4-hydroxyphenyl)-7-methoxy-2H-chromen-2-one; 5-O-β-D-galactopyranosyl-4-(4-hydroxyphenyl)-7-methoxy-2H-chromen-2-one	
Cucurbitacins: 23,24-dihydrocucurbitacin F; 23,24-dihydro-25-acetylcurculbitacin F; 2-O-β-D-glucopyranosyl-23,24-dihydrocucurbitacin F	[74]			
			Nor-diterpenes: ent-16,17-didroxicauran-19-nor-4-en-3-one; ent-16,17-dihydroxy-kauran-19-nor-4-en-3-one	
Phenylcoumarins: 5,7,4′-trimethoxy-4-phenylcoumarin; 7,4′-dimethoxy-5-hydroxy-4-phenylcoumarin; 5,7,4′-trimethoxy-3′-hydroxy-4-phenylcoumarin; 5,7,4′-trimethoxy-8-hydroxy-4-phenylcoumarin (exostemin I); 5,7,4′-trimethoxy-8,3′-dihydroxy-4′-phenylcoumarin | [75] |
Table 2. Cont.

Subfamily	Tribe	Species	Compound(s)	References
CHI	Exostema acuminatum	7,4′-dimethoxy-5,3′-hydroxy-4′-phenylcoumarin	[75]	
	Exostema caribaem	Phenylcoumarin: 5-O-β-D-galactopyranosyl-7-methoxy-3′, 4′-dihydroxy-4-phenylcoumarin	[76]	
	Hintonia latiflora	Phenylcoumarin: 5-O-(6′acetyl-β-D-glucopyranosyl)-7,3′,4′-trihydroxy-4-phenylcoumarin	Phenylstyrene: 6-O-β-D-glucopyranosyl-2,3′,4′β-trihydroxy-4-methoxy-β-phenylstyrene	[77]
	Hintonia standleyana	Phenylcoumarin: 3′O−β-D-glucopyranosyl-23,24-dihydrocucurbitacin F; 5-O-(β-D-apiofuranosyl-(1→6)-β-D-glucopyranosyl)-7-methoxy-3′,4′-dihydroxy-4-phenylcoumarin; desoxycordifolinic acid	[78]	
CIN	Cinchona ledgeriana	Quinolinic alkaloids: quinine; quinidine; cinchonidine and cinchonine	[79,80]	
	Cinchona robusta	Anthraquinones: robustaquinones A–H; 1,3,8-trihydroxy-2-methoxyanthraquinone; copareolatin 6-methyl ether	[81]	
	Ladenberga oblongifolia	Alkaloids: epicinchonicinol; cinchonicinol; mixture of dihydrocinchonicinol and dihydrocinchonicinol	[82]	
	Remijia peruviana	Quinolinic alkaloids: quinine; cuprein; cinchonine; acetylcupreine; N-ethylquinine	[83]	
	Sickingia tinctoria	Indole alkaloids: sickingin; 5-carboxystrictosidine; ophiorines A–B; lyalosidic acid	[85]	
	Sickingia williamsii	Indole alkaloids: sickingin; 5α-carboxystrictosidine; ophiorines A–B; lyalosidic acid	[85]	
GUE	Antirhea acutata	Triterpene-methyl ester: nor-seco-cycloartane	[86]	
	Antirhea lucida	Indole alkaloids: N,N-methyl-3′-indolylmethyl-5-methoxytryptamine; N,N-dimethyltryptamine; 6-methoxy-2-methyl-1,2,3,4-tetrahydro-13-carboline	[87]	
	Antirhea portoricensis	Indole alkaloids: 20-epiantirhine; isoantirhine; antirhine; yohimbol; epi-yohimbol; 19(S)-hydroxydihydrocorinanteol	[88]	
	Chomelia obtusa	Triterpenes: 3-O-β-D-quinoypyranylosyl-28-O-β-D-glycopyranosyl quinovic acid; 3-O-β-D-quinoypyranylosyl-28-O-β-D-glycopyranosyl cincholic acid; ursolic acid; oleanolic acid	Flavonoids: (3-O-β-D-glycopyranosyl quercetin; 3-O-[α-L-rhamnopyranosyl-(1→6)-β-D-galactopyranoside] quercetin; 3,5-O-dicafeoyl quinic acid; 4,5-O-dicafeoyl quinic acid	[89]
Subfamily	Tribe	Species	Compound (s)	References
---------------	----------------	-----------------------	---	------------
Cinchonoideae	GUE	**Guettarda graziellae**	Triterpenes: α-amyrin acetate; cycloartenone; 3β,19α,23-trihydroxyurs-12-ene; 3β-O-β-D-glucopyranosylquinovic acid; 3β,6β,19α,23-tetrahydroxyurs-12-en-28-oic acid; acid ursolic acid	[90]
			Iridoid: guettardodiol	
			Seco-iridoid: sarracenin; 7α-morroniside; 7β-morroniside	
		Guettarda noumeana	Quinolinic alkaloids: cupreine; dihydrocupreine; N-methylhydroquinicinol; N-methylquinicinol	[92]
			Triterpenes: ursolic acid; oleanolic acid; pomolic acid; rotundic acid; 3β,6β,19α,23-tetra-hydroxyurs-12-en-28-oic acid; clethric acid	
			Monoterpane: 5-O-caffeoylquinic acid; loliolide	[93]
			Seco-iridoid: secoxiloganin	
		Guettarda pohliana	Triterpenes glycosides: 28-O-β-D-glycopyranosyl-3-O-β-D-quinovopyranosyl quinovic acid; 28-O-β-D-glycopyranosyl quinovic acid; 28-O-β-D-glycopyranosyl-3-O-β-D-glycopyranosyl cinchonic acid; quinovic acid; daucosterol	[94]
			Phenolic compound: 4,5-O-dicafeoylquinic acid	
		Cinchonoideae	Phenolic compounds: 1-O-α-D-glucuronide 3-O-benzoyl ester; guettardionoside	
			Indole alkaloid: cadambine	
			Guettarda speciosa	[95]
			Iridoid glycoside: sweroside; morroniside	
			Steroids: 5β; ecdysone; icariside D1	
			Triterpene: quinovic glycoside C	
		Machaonia brasiliensis	Steroids: 3β-O-β-glucopyranosyl stigmasterol; 3β-O-β-glucopyranosyl sitosteryl	[96]
			Seco-iridoid: secologanoside	
			Flavonoid: 7-O-β-glucopyranosyl quercetagentin	
			Clorogenic acids: 4,5-O-dicafeoylquinic acid; 5-O-cafeoylquinic acid.	
		Neolamarckia cadamba	Indole alkaloids: neolamarckines A–B	[97]
		Neolaugeria resinosa	Oxindole alkaloids: neolaugeric; isoneolaugeric; 15-hydroxyneolaugeric	[98]
		Timonius timon	Triterpene: 3β,6β,23-trihydroxy-olean-12-en-28-oic acid; 3β,6β,19α,23-tetrahydroxy-olean-12-en-28α-oic acid	[99]
Subfamily	Tribe	Species	Compound (s)	References
-----------	-------	---------	--	------------
HAM/HIL	Chione venosa var. venosa	Acetophenone derivatives: ortho-hydroxy-acetophenone-azine; acetophenone-2-O-β-D-glucopyranoside; acetophenone-2-O-[β-D-apiofuranosyl-(1→6')-O-β-D-glucopyranosyl]	[100]	
			Iridoid glycosides: 4α-morroniside; sweroside; diderroside	
			Triterpene: daucosterol	
HAM	Deppea blumenaviensis	β-carboline alkaloids: deppeaninol	[101]	
	Hamelia magniflora	Indole alkaloids: magniflorine; ajmalicine	[102]	
	Hamelia patens	Indole alkaloids: (−)-hamelin; tetrahydroalstonin; aricine; pteropodine; isopteropodine; uncarine F; speciophylline; palmirine; mitraphylline; rumberine	[103]	
Hymenodictyon excelsum	Hymenodictyon floribundum	Hymenodictyon floribundum Glycosides: scopolin; himexelsin or xeroboside; scopoletin	[105]	
	Isertia haenkeana	Indole alkaloids: dihydroquinamine; epidihydroquinamine; apodihydrocinchonamine; 3-carbomethoxy-5-(1'−hydroxyethyl) pyridine	[107]	
ISE	Isertia pittieri	Triterpene glycosides: pyrocincholic acid 3β-O-α-D-quinovopyranosyl-28-[β-D-glucopyranosyl(1→6')-β-D-glucopyranosyl] ester; pyrocincholic acid 3β-O-β-D-quinovopyranosyl(1→6)-α-D-glucopyranosyl-28-[β-D-glucopyranosyl(1→2)-β-D-glucopyranosyl] ester; quinovic acid 3α-O-R-L-rhamnopyranosyl(28→1)-β-D-glucopyranosyl ester; quinovic acid 3β-O-β-D-glucopyranosyl(1→4)-R-L-rhamnopyranosyl-(28→1)-β-D-glucopyranosyl ester	[108]	
Subfamily	Tribe	Species	Compound (s)	References
----------	-------	---------	--------------	------------
Cinchonoideae	NAU	**Adina cordifolia**	**Coumarins**: umbelliferone; skimmia; 7-methoxycoumarin and 7-hydroxy-8-acetyl coumarin	[109]
			Flavonoid glycosides: quercetin 3-O-R-L-rhamnopyranosyl(16)-(3-O-trans-p-coumaroyl)-α-D-galactopyranoside; quercetin 3-O-R-L-rhamnopyranosyl(1→6)-[4-O-trans-p-coumaroyl]-R-L-rhamnopyranosyl(1→2)]-(4-O-trans-p-coumaroyl)-α-D-galactopyranoside; kaempferol 3-O-R-L-rhamnopyranosyl(1→6)-[4-O-trans-p-coumaroyl]-R-L-rhamnopyranosyl(1→2)]-(3-O-trans-p-coumaroyl)-β-D-galactopyranoside	[110]
			Secoiridoid glucosides: adinosides A–E; grandifloroside 11-methyl ester	[111]
		Adina racemosa	**Triterpenes glycosides**: quinovic acid 3-O-β-D-glucopyranosyl (1→4)-β-D-fucopyranoside; quinovic acid 3-O-β-D-glucopyranosyl (1→4)-β-D-fucopyranoside (28→1)-β-D-glucopyranosyl ester; quinovic acid 3-O-β-D-glucopyranosyl (1→4)-α-L-rhamnopyranosyl-(28→1)-β-D-glucopyranosyl ester; quinovic acid 3-O-β-D-glucopyranosyl (1→2)-β-D-glucopyranosyl-(28→1)-β-D-glucopyranosyl ester; quinovic acid 3-O-β-D-glucopyranosylquinovic acid 28-O-α-arabinopyranosyl-(1→2)-β-D-glucopyranosyl ester	[112]
			27-Nor-triterpene glycosides: rubellosides C–D	[113]
		Adina polycephala	**Iridoids**: genipin-1-O-α-L-rhamnopyranosyl (1→6)-α-D-glucopyranoside	[114]
		Cephalanthus glabratus	**Oxindole alkaloids**: tetrahydroalstonine; mitraphyline; uncarine E	[115]
			Triterpenes glycosides: 3-O-α-β-D-glucopyranosylcinchonic acid; cinchonic acid 28-O-α-glucopyranosyl ester; 3-O-β-glucopyranosylcinchonic acid (1→4)-β-fucopyranosylcinchonic acid; 3-O-β-glucopyranosylcinchonic acid (1→4)-β-fucopyranosylcinchonic acid 28-O-β-glucopyranosyl ester; 3-O-β-glucopyranosylcinchonic acid 28-O-α-arabinopyranosyl(1→2)-β-glucopyranosyl ester; 3-O-β-glucopyranosylquinovic acid 28-O-α-arabinopyranosyl(1→2)-β-glucopyranosyl ester	[116]
			Indole alkaloids: corynanthine; α-yohimbine; dihydrocorynanthine; corynantheine; corynantheidine	[117]
Subfamily	Tribe	Species	Compound(s)	References
-----------	-------	---------------------	---	------------
Cinchonoideae	NAU	Mitragyna diversifolia	Monoterpe indole alkaloids: mitradiversifoline; specionoxeine-N(4)-oxide; 7-hydroxyisopaynantheine; 3-dehydroaynantheine; 3-isopaynantheine-N(4)-oxide	[118]
			27-Nor-glycosides triterpene: inermisides I–II	
Mitragyna inermis			7-hydroxyisopaynantheine; 3-dehydroaynantheine; 3-isopaynantheine-N(4)-oxide	[119]
		Indole alkaloids: naucleactonin D; nauclefilline; angustoline; angustine; naucleficine; nauclefidine	[120]	
		Triterpenes: barbinervic acid; quinovic acid; 3-O-α-L-rhamnopyranoside acid; betulinic acid; oleanolic acid; ursolic acid; strictosamide		
Mitragyna parvifolia		Oxindole alkaloids: 16,17-dihydro-17β-hydroxyisomitrphylline; 16,17-dihydro-17β-hydroxyamitrphylline; 2-isomitrphylline; mitrphylline	[121]	
		Indole alkaloids: mitragynine; speciogynine; speciociatine; 7-hydroxy-mitrphylline; paynantheine		
Mitragyna rotundifolia		Triterpene glycosides: quinovic acid 3-O-β-D-6-deoxy-glucopyranoside 28-O-β-D-glucopyranosyl ester; quinovic acid 27-O-α-L-rhamnopyranosyl ester; 3-O-α-L-rhamnopyranoside; quinovic acid 27-O-β-D-glucopyranosyl ester; 3-O-α-L-rhamnopyranoside; cincholic acid 3-O-β-D-6-deoxy-glucopyranoside; cincholic acid 28-O-β-D-glucopyranosyl ester	[123]	
		Indole alkaloids: 3α-5α-tetrahydrodeoxycordifoline; cadamine acid		
Mitragyna speciosa		Gluco-indole alkaloids: 3β-dihydroisocadambine; cadamine; 3α-dihydrocadambine; 16-carbomethoxynaufoline; nauclechine; 5,11,12,5α-tetrahydroindolo[3,2-g]-pyridino[4,3-b]indolizine	[124]	
Naulea cadamba		Triterpene glycosides: quinovic acid 3-O-α-L-rhamnopyranosyl (28→1)-β-D-glucopyranosyl ester; 3-O-α-L-rhamnopyranoside; cincholic acid 3-O-β-D-glucopyranosyl ester; cincholic acid 28-O-β-D-glucopyranosyl ester	[125]	
Naulea diderrichii		Indole alkaloids: 3α-5α-tetrahydrodeoxycordifoline; cadamine acid	[126]	
Naulea latifolia		Indole alkaloids: latifoliamides A–E; angustoline	[127]	

Table 2. Cont.
Subfamily	Tribe	Species	Compound(s)	References
Nauclea officinalis		**Indole alkaloids**: nauclefinics A–E; naucleidinal; angustoline		[129]
		Indole alkaloids: naucline; angustine; angustidine; nauclefine; naucleline		[130]
		Triterpenes: 3β,19α,23,24-tetrahydroxyurs-12-en-28-oic acid; 2β,3β,19α,24-tetrahydroxyurs-12-en-28-oic acid; 3-oxo-urs-12-ene-27; 28-dioic acid; quinovic acid 3-β-rhamnopyranoside	[131]	
Nauclea orientalis		**Tetrohydro-β-carboline monoterpene alkaloid glucosides**: naucleorine; epimethoxynaucleorine; strictosidine lactam		[132]
		Triterpenes: oleanolic acid; 3,4,5-trimethoxyphenol; 3-hydroxyurs-12-en-28-oic acid methyl ester; 3α,23-dihydroxyurs-12-en-28-oic acid; 3α,19α,23-trihydroxyurs-12-en-28-oic acid methyl ester		[133]
		Indole alkaloids: nauclealines A–B; naucleosides A–B; strictosamide; vincosamide; pumiloside		[134]
		Indole alkaloids: naucleaorals A–B		[135]
Cinchonoideae	NAU	**Indole alkaloids**: naucleidinal; magniflorine; naucleofficine D; diastereoisomers of 3,14-dihydroangustoline; strictosidine; desoxycordifoline; 3α,5α-tetrahydrodeoxycordifoline lactam		[136]
Nauclea pobeguinii		**Phenolic compound**: kelampayoside A		[137]
		Indole alkaloid: nauclequinine; nauclefoline; nauclefidine		[138]
Neonauclea purpurea		**Quinolinic alkaloid**: 2,6-dimethoxy-1,4-benzoquinone		[139]
		Indole alkaloids: cadambine; α-dihydrocadambine		[139]
Neonauclea sessilifolia		**Triterpene glycosides**: 3-O-β-D-glucopyranosyl quinovic acid; 3-O-β-D-glucopyranosyl-(1→2)-β-D-quinovopyranosyl quinovic acid; 3-O-β-D-quinovopyranosyl pyrocincholic acid 28-O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl ester; 3-O-α-L-rhamnopyranosyl-(1→4)-β-D-quinovopyranosyl pyrocincholic acid 28-O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl ester	[139]	
		Triterpene: ursolic acid		[139]
Table 2. Cont.

Subfamily	Tribe	Species	Compound(s)	References
Cinchonoideae	NAU	Cinchona	Chromone-secoiridoid glycosides: sessilifoside; 7′′-O-β-D glucopyranosylsessilifoside	[140]
			Indole alkaloid glycosides: neonaucleosides A–C	
Neonauclea	sessilifolia	Neonauclea sessilifolia	Glycosides: 5-hydroxy-2-methylchromone-7-O-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside; sweroside; loganin; grandifloroside; quinovic acid 3β-O-β-D-quinovopyranosyl-28-O-β-D-glucopyranoside	[140]
Ochreinauclea	maingayii	Ochreinauclea maingayii	Indole alkaloids: neonaucleine; cadamine; naucledine	[141]
Pausinystalia	johimbe	Pausinystalia johimbe	Oxindole alkaloids: corynoxine; corynoxine B; isocorynoxeine; epi-allo-corynantheine; dihydrocorynantheine pseudoinodoxyl	[19]
Uncaria	attenuata	Uncaria attenuata	Indole alkaloids: 19-epi-3-iso-ajmalicine	[19]
			Triterpene: ursolic acid	
Uncaria	borneensis	Uncaria borneensis	Alkaloids: isorhynchophylline; rynchophylline; isocorynoxeine; corynoxeine; Indole alkaloids: allo-yohimbine; pseudo-yohimbine; 3-epi-β-yohimbine	[143]
			Triterpene: ursoic acid	
Uncaria	calophylla	Uncaria calophylla	Indole alkaloids: dihydro-corynantheine; gambirine; isogambirine; gambireine; rotundifoline; callophylline; callophyllines A–B; yohimbine; pseudoyohimbine; β-yohimbine; α-yohimbine	[144]
			Indole alkaloids: callophyllines A–B; 3-epi-β-yohimbine; gambirine	[144]
Uncaria	cordata var.	Uncaria cordata var.	Indole alkaloids: dihydrocorynantheine	[143]
cordata				
	var. ferruginea			
Uncaria	elliptica	Uncaria elliptica	Pentacyclic oxindole alkaloids: formosanine; isomitraphylline; mitraphylline	[145]
			Indole alkaloids: ajmalicine	
			Triterpenes: 3β,6β,19α-trihydroxy-23-oxo-urs-12-en-28-oic acid; 3β,6β,19α,23-trihydroxy-23-oxo-urs-en-28-oic acid; 3,6-dixo-19α-hydroxy-urs-12-ene-28-oic acid; 3β,6β,6diacetoxy-19-hydroxy-urs-12-ene-28-oic acid; quinovic acid 3β-O-β-D-quinopyranosyl-(28→1)-β-D-glucopyranosyl ester	[145]
Uncaria	gambir	Uncaria gambir	Proanthocyanidins: gambiriins A1–A2 ; gambiriins B1–B2; (+)-catechin; (+)-epicatechin; procyanidin B1; procyanidin B3; gambiriin	[146]
Uncaria	glabrata	Uncaria glabrata	Monoterpene indole alkaloids: 14α-hydroxyrauniticine; rauniticine; uncarine C–E; glabratine; deoxycordifoline	[147]
Subfamily	Tribe	Species	Compound (s)	References
-----------	-------	---------	--------------	------------
Uncaria guianensis	Cinchonoideae	NAU	**Indole alkaloid**: 3-isoajmalicine	
Oxindole alkaloids: isomitraphylline; mitraphylline; isomitraphylinic acid	[38]			
			Indole alkaloid: ajmalicine	
Oxindole alkaloids: formosanine or uncarine B; isomitraphylline; mitraphylline	[148]			
			Triterpenes: quinovic acid 3β-O-β-D-quinovopyranoside; quinovic acid 3β-O-β-D-fucopyranosyl-(27→1)-β-D-quinovopyranosyl ester; quinovic acid 3β-O-[β-D-glucopyranosyl-(1→3)-β-D-fucopyranosyl]-(27→1)-β-D-glucopyranosyl ester; quinovic acid 38-O-β-D-fucopyranoside	[149]
Uncaria hirsuta		NAU	**Bis(monoterpenoid) indole alkaloid glucosides**: hirsutaside D; bahienoside A–B; neonaucleoside B	[150]
			Phenolic compound: chlorogenic acid	
Alkaloid: uncarine B				
Flavonoids: quercitrin; rutin; hiperin; neohesperidin	[151]			
Uncaria lanosa var. glabrata and Uncaria lanosa var. ferra		NAU	**Pentacyclic oxindole alkaloids**: isopteropodine; pteropodine	[143]
Uncaria longiflora var. longiflora		NAU	**Alkaloids**: isorhynchophylline; rhynchophylline; iso-corynoxeine; corynoxeine	[143]
Uncaria longiflora var. pteropoda		NAU	**Pentacyclic oxindole alkaloids**: pteropodine; isopteropodine	[143]
Uncaria macrophylla		NAU	**Oxindole alkaloids**: rhynchophylline; isorhynchophylline; corynoxeine; corynoxine B	[153]
Uncaria rhynchophylla		NAU	**Indole alkaloids**: tetrahydroalstonine; tetrahydroalstonine-N-oxide; akuamigine; (4R)-akuamigina-N-oxide; (4S)-akuamigine-N-oxide; corynantheine; dihydrocorynantheine; dihydrocorynantheine-N-oxide; hirsuteine; geissoschizine methyl ether; hirsutine N-oxide; akuamigine pseudoindoxyl; rauniticine pseudoindoxyl; 3-isorauninticine pseudoindoxyl; dihydrocorynantheine pseudoindoxyl; vallesiachotamine; vincoside lactam; strictosamide; rhynchophyne; 2′-O-β-D-glucopyranosyl-11-hydroxyvincoside lactam; angustine; angustoline; angustidine	[154]
Table 2. Cont.

Subfamily	Tribe	Species	Compound(s)	References
Cinchonoideae	NAU		**Sesquiterpene indole alkaloids:** (5S)-5-carboxystrictosidine; 3,4-dehydro-(5S)-5-carboxystrictosidine	
			Indole alkaloids: cadambine; 3α-dihydrocadambine; 3β-isodihydrocadambine	
			Pentacyclic oxindole alkaloids: isorhynchophylline; rhynchophylline; corynoxeine; isocorynoxeine; corynoxeine; rhynchophylline N-oxide; isorhynchophylline N-oxide; macrorynchophylline A; 18-19-dehydrocorynoxinic acid; 22-O-demethyl-22-O-β-D-glucopyranosyl isocorynoxeine	[154]
			Oxindole alkaloids: rhynchophylline; corynoxeine; corynanteine; hirsutine	[155]
			Oxindole alkaloids: isocorynoxeine; isorhynchophylline; corynoxeine; rhynchophylline	[156]
			Indole alkaloids: corynanteine; dihydrocorynanteine	
Uncaria rhynchophylla			**Pentacyclic oxindole alkaloids:** 22-O-demethyl-22-O-β-glucopyranosyl isorhynchophylline; 22-O-demethyl-22-O-β-glucopyranosyl rhynchophylline acid; 22-O-demethyl-22-O-β-glucopyranosyl isocorynoxeine; isorhynchophylline acid; 9-hydroxy isocorynoxeine; 18,19-dehydrocorynoxinic acid A; 18,19-dehydrocorynoxinic acid B; rhynchophylline acid; 9-hydroxy corynoxeine; isocorynoxeine N-oxide; rhynchophylline acid N-oxide; corynoxeine N-oxide; isocorynoxeine; rhynchophylline; isorhynchophylline N-oxide; isorhynchophylline; corynoxeine	[157]
			Indole alkaloid: vincoside lactam	
			Phenolic compounds: chlorogenic acid; neochlorogenic; cryptochlorogenic; quinic acid; cis-5-caffeoylquinic acid; procyanidin b1; procyanidin b2; catechin; epi-catechin; rutin	
Uncaria salaccensis			**Oxindole alkaloids:** 3-oxo-7-hydroxy-3,7-secorhynchophylline	[158]
Uncaria sinensis			**Alkaloids:** isorhynchophyllic acid; pteropodic acid; 3α-dihydrocadambine; 3β-isodihydrocadambine	[159]
			Proanthocyanidin: procyanidin B-1	[160]
Uncaria tomentosa			**Pentacyclic alkaloids:** isomitraphylline; mitraphylline; uncarine F; speciophylline; isopterophylline; pterophylline; isocorynoxeine	[161]
			Tetracyclic alkaloids: corynoxeine; isorincophylline; rincophylline	
Subfamily	Tribe	Species	Compound(s)	References
-----------	-------	--------------------	--	------------
Cinchonoideae	NAU	**Uncaria tomentosa**	*Alkaloids*: cinchonain Ia; cinchonain Ib	
Oxindole alkaloids: uncarines C–E; mitraphylline; isomitraphylline				
Iridoid glycosides: 7-deoxyloganic acid				
Triterpenes glycosides: 3-oxo-6β-19α-dihydroxyurs-12-en-28-oic acid; 3β,6β,19α,23-tetrahydroxyurs-12-en-28-oic acid; 3β-methoxy-16α-hydroxyurs-12,19(29)-dien-27,28-dioic acid; 3β-hydroxyurs-12-en-27,28-dioic acid				
Oxindole alkaloids: pteropodine; isopteropodine; speciophylline; uncarine F; mitraphylline; isomitraphylline; rincophylline; isorincophylline				
Iridoids: tomentosides A–B				
Phenolic compound: (−)-epi-cathequin				
Triterpenes: oleanolic acid; 3β,6β,19α-trihydroxyurs-12-en-28-oic acid				
Triterpenes: 3β,6β,19α-trihydroxyurs-12-en-23-al-28-oic acid; 3β,19α-dihydroxy-6-oxo-urs-12-en-23-al-28-oic acid; 3β,19α-dihydroxy-6-oxo-urs-12-en-23-ol-28-oic acid				
Triterpenes: 23-nor-24-esomethylene-3β,6β-19α-trihydroxyurs-12-en-28 oic acid; 3β,6β,19α-trihydroxyurs-12-en-28-oic acid; 3-oxo-6β,19α-dihydroxyurs-12-en-28 oic acid; oleanic acid	[162, 163, 164, 165, 166, 167, 169, 170, 171, 169]			
Ixorideae	ALB	**Alberta magna**	*Indole alkaloids*: villocarines A–D	
Iridoids: (+)-5-acetaldehyde-1-formyl-2-methylcyclopentan; 5-acetaldehyde-1-formyl-2-methylcyclopent-1-ene; 1,4α,5,6,7α-hexahydro-1-hydroxy-7-methylcyclopenta-pyran-4-carboxaldehyde; 4,4α,5,7α-tetrahydro-1-hydroxy-4-(hydroxymethylene)-7-methylcyclopentane-pyran-3-(1H)-one; 5-deoxyxstansioside; 6,10-bisdeoxyaucubin; boschnaloside	[172, 173]			
Subfamily	Tribe	Species	Compound (s)	References
-----------	-------	---------	--------------	------------
Coffea sp	Alkaloid: caffeine	[174]		
Coffea bengalensis	Alkaloid: caffeine	Diterpene: 16-epicafestol	[175]	
Nematostylis anthophylla	Triterpene glycosides: randianin; 2″-O-acetylrandianin; 6″-O-acetylrandianin	[176]		
Tricalysia dubia	Diterpenes: tricalysiol A–B; tricalysiolide B; tricalysioside G tricalysioside L	[177]		
Tricalysia okelensis	Ent-kaurane glycosides: ent-kauran-3α,16α,17-triol-19-al 3-O-[5-O-vanilloyl-β-D-apiopyranosyl(1→6)]-β-D-glucopyranoside; ent-kauran-3α,16α,17-triol-19-al; 3-O-[5-O-E-sinapoyl-β-D-apiopyranosyl(1→6)]-β-D-glucopyranoside	[178]		
Calycophyllum spruceanum	Seco-iridoids: 7-methoxydiderroside,6′-O-acetylidiherroside; 8-O-tigloylidiherroside; loganetin; loganin; secoxyloganin; kingiside; diderroside	[180]		
Chimarrhis turbinata	Indole monoterpene alkaloids: strictosidine; strictosidine acid; 5α-arboxystrictosidine; isovallesiachotamine; vallesiachotamine; turbinatine; 3,4-dehydro-strictosidine; turbinatine	[181]		
Crossopteryx febrifuga	Triterpene glycosides: 3β-(α-L-rhamnopyranosyloxy)-28-O-(β-D-glucopyranosyl)urs-12,20(30)-diene-27,28-dioic acid	[182]		
Emmenopterys henryi	Triterpenes: 3β,19α,23-trihydroxyurs-12-en-24-al-28-oic acid; 3β,19α,24-trihydroxy-23-norurs-12-en-28-oic acid; 3β,12β-dihydroxy-5α-pregnane-14,16-dien-20-one; and 12β-hydroxy-5α-pregnane-14,16-dien-3,20-dione; 3β,19α,23,24-tetrahydroxyurs-12-en-28-oic acid; pomolic acid; 3β,6β,19α,23-tetrahydroxyurs-12-en-28-oic acid; 3β,6β,23-trihydroxyolean-12-en-28-oic acid; 3β,6β,19α,23-tetrahydroxyolean-12-en-28-oic acid; 3β,23,24-trihydroxyolean-12-en-28-oic acid; 3β,12β-dihydroxy-5α-pregnane-16-en-20-one; 12β-dihydroxy-5α-pregnane-16-en-3,20-dione	[183]		
Pogonopus speciosus	Alkaloids: 1′,2′,3′,4′-tetrahydroxutubulosine; tubulosine; psychotrine	[184]		
Pogonopus tubulosus	Alkaloid: tubulosine	[185]		
	Alkaloids: tubulosine; psychotrine; cephaeline	[186]		
Table 2. Cont.

Subfamily	Tribe	Species	Compound(s)	References
Ixorideae		Simira glazioii	Alkaloids: aribin; ophiorine B; lyaloside	[187]
			Monoterpenes: methyl 3,4-dimethoxyacinamate	
		Simira eliezeriana	Diterpenes: simirane A [(5R,6R,8R,9R,10S,11S,13S)-6 β,11β -dihydroxy-2,4(18),15-	
			erythroxylationtriene-1-one]; simirane B [(5S,8R,9R,10S,11S,13S)-11-hydroxy-2,4(18),15-	
			erythroxylationtriene-1-one]	[188]
		Alibertia edulis	Iridoids: 6β-hydroxy-7-epigardoside methyl ester	[189]
			Diterpenes: ent-kaurane-2β,3α,16α-triol	
		Alibertia macrophylla	Triterpenes: lupenone; geranicone; α-amirenone; β-amirenone; lupeol; oleanolic acid;	
			ursolic acid	[190]
			Glucosidic iridoids: 6α-hydroxygeniposide; 6β-hydroxygeniposide; gardenoside;	
			shanziside methylster	
			Phenolic acids: protocatechuic; vanilic; caffeic	
		Alibertia myrciifolia	Coumarin: scopoletin	[64]
			Flavonoid: corymbosin	[191]
			Iridoid: 10-O-vanillygeniposid acid	[192]
		Alibertia sessilis	Triterpenes: pomolic acid methyl ester; ursolic acid methyl ester;	[193]
			oleanolic acid methyl ester	
			Phenolic compounds: 3,4,5-trimethoxyphenyl-1-O-β-D-(5-O-syringoyl)-apiofuranosyl-	
			(1→6)-β-D-glucopyranoside	[64]
			Iridoids: geniposidic acid; geniposide; 6α-hydroxygeniposide; 6β-hydroxygeniposide	
			Lignans glycosides: (+)-lyoniresinol-3α-O-β-D-glucopyranoside; (-)-lyoniresinol-3α-O-	
			β-D-glucopyranoside	
			Flavonoids: quercetin-3-O-β-D-(2′′-O-trans-p-coumaroyl)-rutinoside; kaempferol-3-O-	
			β-D-(2′′-O-trans-p-coumaroyl)-rutinoside	[46]
			Triterpenes: oleanolic acid; ursolic acid; epi-betulinic acid	
			Iridoids: gardenoside; deacetylaseruloside; 10-dehydrogardenoside; β-gardiol; α-gardiol	
Burchellia bubalina		Iridoids: β-gardiol; α-gardiol; garjasmine	[60]	
Canthium gilfillani		Iridoid: geniposidic acid	[61]	
Table 2. Cont.

Subfamily	Tribe	Species	Compound (s)	References
Ixorideae	GAR	Catunaregam nilotica	Triterpene glycosides: 28-O-β-D-glucopyranosyl-3-O(α-L-rhamnopyranosyl-(1→3)-O-β-D-glucopyranosyl)-(1→3)-β-D-glucopyranosyl oleanolate; 3-O-[2',3'-di-O-(β-D-glucopyranosyl)]-β-D-glucopyranosyl oleanolic acid; 3-O-(O-α-L-rhamnopyranosyl-(1→3))-β-D-glucopyranosyl oleanolic acid; 3-O-[O-β-D-glucopyranosyl-(1→3)]-β-D-glucopyranosyl oleanolic acid	[194]
		Catunaregam spinosa	Triterpene glycosides: catunarosides A–D; swartziatrioside; aralia-saponin V–IV	[195]
		Coptosapelta flavescens	Anthraquinones: 1,4-dimethoxy-2-methylanthraquinone; 2-amino-3-methoxycarbonyl-1,4-naphtoquinone	[196]
		Duroia hirsuta	Iridoid: plumericin	[197]
		Duroia macrophylla	Iridoid lactone: duroin	[198]
		Flavonol: ether flavonol-3-O-methyl	[198]	
		Gardenia collinsae	Triterpenes: 20R,24R-epoxy-3-oxodammarane-25ξ, 26-diol; C-24-epimer; 20R,24R-octolone	[200]
		Gardenia gummifera	Cycloartane triterpenes: dikamaliartanes A–F	[201]
		Flavonoid: 3',5,5'-trihydroxy-4',6,7,8-tetramethoxyflavone	[201]	
		Gardenia jasminoides	Coumarines: ferrulic acid; skimmin; uracil; 5,8-di-(3-methyl-2,3-dihydroxy-butyloxy)sporalen; 3-O-α-D-glucopyranosyl-(1→4)-β-D-glucopyranosyl-oxypeucedanin	[202]
		Iridoids: genipin 1-O-β-D-isomaltoside; 1,10-di-O-β-D-glucopyranoside; genipin 1-O-β-D-gentiobioside; geniposide; scandoside methyl ester; deacetylasperulosidic acid methyl ester; 6-O-methyldeacetylasperulosidic acid methyl ester; gardenoside	[59]	
		Iridoids: 6-O-[E]-sinapoyl gardoside; 4'-O-[E]-p-coumaroyl-gentiobiosylgenipin; 6'-O-[E]-caffeoyl-deacetylasperulosidic acid methyl ester	[203]	
		Iridoid: 6-O-sinapoylgeniposide	[204]	
		Monoterpenes: gardenone; gardendiol	[205]	
Subfamily	Tribe	Species	Compound (s)	References
-----------	-------	---------	--------------	------------
Ixorideae	GAR	Gardenia jasminoides	Carotenoids: crocetin; crocetin mono (β-D-glucosyl) ester; crocetin di-(β-D-glucosyl) ester; crocetin mono-(β-gentiobiosyl) ester; crocetin (β-D-glucosyl)-(β-gentiobiosyl) ester; crocin [crocetin-di-(β-gentiobiosyl)ester]; crocetin (β-gentiobiosyl)-(β-neapolitanosyl) ester; crocetin-di-(β-neapolitanosyl) ester	[207]
			Monoterpenes: jasminosides J–K; 6′-O-trans-sinapoyljasminoside B; 6′-O-trans-sinapoyljasminoside L; jasminosides M–P; jasminoside C; jasminol E; sacranoside B	[208]
			Flavonoid: luteolin-7-O-β-D-glucopyranoside	[209]
			Triterpenes: ursolic acid; oleanolic acid; methyl 3,4-di-O-caffeoylquinate; methyl 5-O-cafeoyl-3-O-sinapoylquininate; methyl 3,5-di-O-cafeoyl-4-O-(3-hydroxy-3-methyl)glutaroylquininate; methyl 5-O-cafeoyl-4-O-sinapoylquininate	[201]
			Glycosides: 2-methyl-L-erythritol-4-O-(6-O-trans-sinapoyl)-β-D-glucopyranoside; 2-methyl-L-erythritol-1-O-(6-O-trans-sinapoyl)-β-D-glucopyranoside	[210]
			Iridoids: 6′-O-trans-p-coumaroyl geniposidic acid; 11-(6-O-trans-sinapoyl glucopyranosyl)-gardendiol; 10-(6-O-trans-sinapoyl glucopyranosyl)gardendiol; 6′′-O-trans-sinapoylgenipin gentiobioside; 10-O-succinoylgeniposide; 6′-O-acetylgeniposide; 6′′-O-trans-p-coumaroylgenipin gentiobioside	[211]
			Iridoids: gardaloside	[212]
			Iridoids: garjasmine; dunnisin; α-gardiol; β-gardiol; diffusoside A diffusoside B; genameside C; deacetylasperulosidic acid	[213]
		Gardenia jasminoides	Iridoid glycoside: 6′′-O-trans-feruloylgenipin gentiobioside; 2′-O-trans-p-coumaroylgardoside; 2′-O-trans-feruloylgardoside	[201]
var. radicans		Gardenia lucida	Cycloartane triterpenes: dikamaliartanes A–F	[201]
			Flavonoid: 3′,5,5′-trihydroxy-4′,6,7,8-tetramethoxyflavone	[201]
		Gardenia sootepensis	Sesquiterpene: sootepdienone	[215]
		Gardenia saxatilis	Triterpenes: lupenone; lupeol; betulinic acid; messagentic acid A; messagentic acid B; oleanolic acid; ursolic acid; acid (27-O-feruloyloxybetulinic acid; 27-O-p-(Z)- and 27-O-p-(E)-coumarate esters of betulinic acid and a mixture of uncarinic acid E (27-O-p-(E)-coumaroyloxyoleanolic acid) and 27-O-p-(E)-coumaroyloxyursolic acid	[214]
Subfamily	Tribe	Species	Compound(s)	References
-----------	-------	---------	-------------	------------
Ixorideae	GAR	Gardenia thailandica	Flavonoids: 5,7-dihydroxy-7, 2’, 3’, 4’, 5’, 6’-hexamethoxyflavone; 5,7-dihydroxy-2’, 3’, 4’, 5’, 6’-pentamethoxyflavone; 5-hydroxy-7, 2’, 3’, 4’, 5’, 6’-pentamethoxyflavone; 5,7-dihydroxy-2’, 3’, 4’, 5’-tetramethoxyflavone; Triterpenes: thailandiol; gardenolic acid; quadrangularic E acid; 3β-hydroxy-5α-cycloart-24(31)-en-28-oic acid	[216]
Ixorideae	GAR	Gardenia fructus	Iridoids: genipin 1-O-β-gentiobioside; 10-O-acetylgentiobioside; 6α-hydroxygejntiobioside; 6β-hydroxygejntiobioside; gejntosiode; picrocrocinic acid; 6’-O-sinapoyljasminoside; 10-O-(4’-O-methylsuccinoyl) gejntosiode; jasminosides Q–R; 6-O-p-coumaroylgejntosiode; 6’-O-acetylgentiobioside; 6’-O-sinapoylgejntosiode	[217]
Ixorideae	GAR	Genipa americana	Iridoids: genipaol; genipin; tarenoside; gejntposidic acid; gejntosiode; genamesides A–D; gejntpin-gentiobioside; gejntosiode; gardendiol; shanzhiside	[219]
Ixorideae	GAR	Genipa spruceana	Monoterpenes: genipacetal; genipic acid; genipinic acid	[220]
Ixorideae	GAR	Lamprothamnus zanguebaricus	Phenolic acids: 1-(3-hydroxy-4-methoxy-5-methylphenyl)-ethanone; 1-(3-hydroxy-4-methoxyphenyl)-ethanone	[221]
Ixorideae	GAR	Oxyanthus pallidus	Cycloartane glycosides: pallidiosides A–C	[222]
Ixorideae	GAR	Oxyanthus pyriformis	Cyanogenic glycosides: prunasin; amygdalin	[223]
Ixorideae	GAR	Oxyanthus speciosus	Phenolic compounds: 2-(2-hydroxy)-ethanol-β-D-glucopyranoside	[61]
Ixorideae	GAR	Pavetta owariensis	Proanthocyanidins: pavetannin A1; pavetannin A2; cinnamtannin B1; pavetanninB1; pavetannin B3; pavetannin B5; pavetannin B6	[224]
Subfamily	Tribe	Species	Compound(s)	References
-----------	-------	---------	-------------	------------
Ixorideae	GAR	Psydrax livida	Phenolic compounds: psydroside; Monoterpenes: psydrin	[61]
		Randia dumetorum	Iridoid: 11-methylixoside; Triterpenes: α-L-arabinosyl(1→3)-β-galactopyranosyl(1→3)-β-hydroxyolean-12-en-28-methyloate	[225]
		Randia Formosa	Triterpenes glycosides: randiasaponins I–VII; ilexoside XXVII; ilexoside XXXVII	[227]
		Randia siamensis	Triterpenes: ursolic acid; pseudoginsenoside-RP 1; pseudoginsenoside-RT 1	[228]
		Randia spinosa	Iridoid glycosides: randinoside; galioside; deacetylasperulosidic acid methyl ester; scandoside methyl ester; geniposide; gardenoside	[229]
		Rothmannia macrophylla	Iridoids: macrophylloside	[230]
		Rothmannia urcelliformis	Iridoid: genipin; Iridoid alcoidal: gardenamide A; 4-oxonicotinamide-1-(1′-β-D-ribofuranoside)	[231]
		Schumannophyton problematicum	Alkaloids: rohitukine; rohitukine N-oxide; flavopiridol	[232]
		Scyphiphora hydrophyllacea	Iridoid: scyphiphorin A1–A2; scyphiphorin B1–B2	[233,234]
		Tocoyena brasiliensis	Triterpene glycosides: 3-O-β-D-quinovopyranosyl quinovic acid; 3-O-β-D-glucopyranosyl quinovic acid; 28-O-β-glucopyranosyl ester derivative of quinovic acid	[235]
		Tocoyena bullata	Iridoid glycoside: gardenoside	[236]
		Tocoyena formosa	Iridoids: α-gardiol; β-gardiol; gardenoside	[237]
		Enterospermum madagascariensis	Sesquiterpenes: 2-hydroxy-10-epi-zonarene; 2,15-dihydroxycalemanene; guai-4,6-dien-3-one	[238]
IXO		Enterospermum pruinosum	Triterpene glycosides: longispinogenin; 3,16-di-O-β-D-glucopyranoside; triacetyllongispinogenin; digluco side	[239]
		Ixora coccinea	Triterpene: ursolic acid; Proanthocyanidins: ixoratannin A-2; epicatechin; procyanidin A2; cinnamtannin B-1; Flavonoids: kaempferol-7-O-α-L-rhamnoside; kaempferol-3-O-α-L-rhamnoside; quercetin-3-O-α-L-rhamnopyranoside; kaempferol-3,7-O-α-L-dirhamnkoside	[240]
Table 2. Cont.

Subfamily	Tribe	Species	Compound (s)	References
Ixorideae	IXO	Ixora coccinea	**Triterpenes**: lupeol; ixorene; 17β-dammara-12,20-diene-3β-ol	
Fenolic compounds: 3-O-caffeoylquinic acid; 5-O-caffeoylquinic acid; catechin; epicatechin; rutin; quercetin; kaempferol; quercetin 3-O-glucoside; quercetin 3-O-galactoside; kaempferol 7-O-glucoside	[242,243]			
			Triterpene glycosides: heinsiagenin A-3β-O-(β-glucopyranosyl-(1→2)-β-D-glucopyranosyl-(1→6)-[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranosyl-(1→2)-β-D-glucopyranoside); heinsiagenin A-3β-O-(α-L-rhamnopynosyl-(1→2)-β-D-glucopyranosyl-(1→2)-β-D-glucopyranoside)	[245]
			Mussaenda dona aurora Iridoid glycoside: shanshiside D	[246]
			Mussaenda erythrophylla Flavonoid: 5-hydroxy-7,4′-dimethoxyflavones; Phenolic compounds**: 3-iso-cumaryloxycyclopropane-1-oic acid; 4-hydroxy-3-methoxy cinnamic acid	[247]
MUS	Mussaenda incana	Iridoid glycosides**: barlerin; mussaenoside		
Triterpene: lupeol	[248]			
	Mussaenda macrophylla	Iridoid: 6-epi-barlerin	[249]	
	Mussaenda roxburghii	Iridoid: shanzhiol	[250]	
	Mussaenda pubescens	Triterpene glycosides**: mussaendosides R–S; 6 α-hydroxyeniposide; 3β-O-β-D-glucopyranosyl quinovic acid 28-O-β-D-glucopyranosyl ester	[252]	
OCT	Villaria odorata	Alkenoyloxy alkenol: villarinol		
Iridoids: morindolide; hydrophylin A; hydrophylin B				
Sesquiterpene: vomifoliol	[253]			
	Pavetta owariensis	**Proanthocyanidins**: proanthocyanidin A-2; proanthocyanidin A-4; pavetannin A		
Flavonoids: (+)-catechin; (−)-epicatechin; (+)-epicatechin	[224]			
PAV	Tarenna attenuata	Iridoids: tarecinisosides A–G	[255]	
	Tarenna gracilipes	Cycloartane glycosides**: tareciliosides H–M		
Cycloartane glycosides: tareciliosides A–G | [256] | [257] |
Table 2. Cont.

Subfamily	Tribe	Species	Compound (s)	References
Ixorideae	PAV	Tarenna madagascariensis	Iridoids: tarennin; gardenoside; geniposidic acid	
Phenolic compounds: p-cumaric acid; cafeic acid; chlorogenic acid				
Flavonoids: kaempferol 3-O-β-D-glucopyranoside-7-O-α-L-rhamnopyranoside; kaempferol 3-O-α-L-rhamnopyranoside-7-O-α-L-rhamnopyranoside; quercetin 3-O-α-L-rhamnopyranoside-7-O-α-L-rhamnopyranoside; kaempferol 3-O-α-L-(3″-O-acetyl)-rhamnopyranoside-7-O-α-L-rhamnopyranoside; kaempferol 3-O-α-L-(4″-O-acetyl) rhamnopyranoside-7-O-α-L-rhamnopyranoside	[258]			
POS	Molopanthera paniculata	Iridoid glycosides: barlerin; shanzhiside methyl ester		[259]
SAB	Sabicea brasiliensis	Phenolic compounds: 5-O-caffeoylquinic acid; 3,5-O-dicafeoylquinic acid; 4,5-O-dicafeoylquinic acid		
Coumarine: scopoletin				
Triterpene: ursolic acid		[260]		
SAB	Sabicea grisea var. grisea	Steroid: octacosanol		
Coumarine: scopoletin		[261]		
VAN	Canthium berberidifolium	Iridoid glycosides: 6-O-β-D-apiofuranosyl-mussaenosidic acid		
Phenolic diglycosides: canthosides A–D | | [263] |
Table 2. Cont.

Subfamily	Tribe	Species	Compound (s)	References
Ixorideae	VAN	*Canthium multiflorum*	*Iridoid*: 6-oxo-genipin; macrophylloside; garjasmine; gardenine; gardenamide; deacetylasperrulosic acid; 6α-hydroxygeniposide; gatioside; aitchisonide B	
Triterpenes: vanillic acid 4-O-β-D-(6-O-benzoylglucopyranoside); oleanolic acid; quinovic acid	[264]			
		Canthium schimperianum	*Cyanogenic glycoside esterified with an iridoid glycoside*: 2R-[(2-methoxybenzoylgenoposidyl)-5-O-β-D-apiofuranosyl-(1→6)-β-glucopyranosyl-oxy]-2-phenyl acetonitrile; oxyanthin	[265]
		Fadogia agrestis	*Monoterpenes glycosides*: (2E,6Z)-2,6-dimethyl-8-[(O-α-L-rhamnopyranosyl-(1→3)-α-L-rhamnopyranosyl)-oxy]-octadien-1-yl-α-L-rhamnopyranoside; (2E,6Z)-2,6-dimethyl-8-[(O-α-L-rhamnopyranosyl-(1→3)-α-L-rhamnopyranosyl)-oxy]-octadien-1-yl-α-β-D-glucopyranosyl-(1→2)-α-L-rhamnopyranoside; (2E,6Z)-2,6-dimethyl-8-[(O-α-L-rhamnopyranosyl-(1→3)-(2-O-(2,6-DZ)-8-hydroxy-2,6-dimethylloctadienoyl)α-L-rhamnopyranosyl)-(1→3)]α-L-rhamnopyranoside; (2E,6Z)-2,6-dimethyl-8-[(O-α-L-rhamnopyranosyl-(1→3)-(2-O-(2,6-DZ)-8-hydroxy-2,6-dimethylloctadienoyl)α-L-rhamnopyranosyl)-(1→3)]α-L-rhamnopyranoside; (2E,6Z)-2,6-dimethyl-8-[(O-α-L-rhamnopyranosyl-(1→3)-(2-O-(2,6-DZ)-8-hydroxy-2,6-dimethylloctadienoyl)α-L-rhamnopyranosyl)-(1→3)]α-L-rhamnopyranoside; (2E,6Z)-2,6-dimethyl-8-[(O-α-L-rhamnopyranosyl-(1→3)-(2-O-(2,6-DZ)-8-hydroxy-2,6-dimethylloctadienoyl)α-L-rhamnopyranosyl)-(1→3)]α-L-rhamnopyranoside	[266]
		Fadogia ancylantha	*Triterpenes glycosides*: 3-O-β-D-glucopyranosyl-3-β-hydroxyolean-12-en-28-oic acid 28-O-[R-L-rhamnopyranosyl-(1→2)-β-D-glucopyranosyl] ester; 3-O-β-D-glucopyranosyl-3-β-hydroxyolean-12-en-28-oic acid 28-O-[D-apiofuranosyl-(1→2)-β-D-glucopyranosyl] ester	[267]
		Fadogia homblei	*Coumarine*: scopoletin	
Flavones: luteolin; quercetin-3-O-β-D-galactoside
Triterpenes: lupeol; betulinic acid; 3β-dodecanoyllup-20(29)-en-28-al; lup-20(29)-en-3β-yhexadecanoate; oleanolic acid; ursolic acid
Lignan: 4,4′-dihydroxy-3,3′-dimethoxy-7,9′; 7′,9-diepoxyllignan(−)-pinoresinol | [268] |
Table 2. Cont.

Subfamily	Tribe	Species	Compound (s)	References
Ixorideae				
VAN	*Vangueria spinosa	Proanthocyanidin: (−)-epicatechin-3-O-β-glucopyranoside	[269]	
		Triterpenes: ursolic acid; acyl lupeol		
		Coumarin: scoopoletin	[270]	
		Flavonoids: naringenin; kaempferol; quercetin; myricitrin; rutin		
	*Augusta longifolia			
		Iridoid glycosides: 10-O-cafeoyl scandoside methyl ester; 6-methoxy scandoside methyl ester; scandoside methyl ester; methyl deactetyl asperulosidate; 10-O-cafeoyl daphylloside	[272]	
		Triterpene: ursolic acid		
	*Myrioneuron nutans	Iridoid glycosides:	[271]	
		10-O-caffeoyl scandoside methyl ester; 6-methoxy scandoside methyl ester; methyl deactetyl asperulosidate; 10-O-cafeoyl daphylloside		
		Alkaloid: myrobotinol		
	*Wendlandia formosana	Iridoid glycosides:	[272]	
		10-O-cafeoyl daphylloside		
		Triterpene: ursolic acid		
	*Wendlandia tinctoria	Iridoid glycosides:	[273,274]	
		5-dehydro-8-epi-adoxosidic acid; 5-dehydro-8-epi-mussaenoside; 10-O-dihydroferuloyldiacetyldaphylloside; wendoside; 8-epi-mussaenoside		
		Iridoids: 5-dehydro-8-epi-adoxosidic acid; wendoside		
Rubioideae				
ARG	*Argostemma yappii	Pyrrolidinoindole alkaloid: (+)-isochimonanthine	[275]	
		Seco-iridoid glycoside: 3′-O-cafeoylsweroside; loganine; 8-epikingiside; loganic acid; sweroside		
	*Anthocephalus chinensis	Phenolic apiglycosides: kelampayosides A–B	[276]	
		Indole alkaloids: cadambine; strictosidine lactam; 5α-carboxystrictosidine; desoxycordifoline		
	*Coussarea brevicaulis	Triterpenes: 3-epi-spathodic acid; coussaric acid; barbinervic acid; scutellaric acid	[277]	
		Phenylpropanoid glycosides: 1′-O-benzyl-α-L-rhamnopyranosyl-(1″→6′)-β-D-glucopyranoside; α-L-xylpyranosyl-(4″→2′)-(3-O-β-D-glucopyranosyl)-10-O-(E)-cafeoyl-β-D-glucopyranoside; 1,6-di-O-cafeoyl-β-D-glucopyranoside; 1-O-(E)-caffeoyl-β-D-glucopyranoside 1-O-(E)-feruloyl-β-D-glucopyranoside	[278]	
	*Coussarea hydrangeifolia	Triterpenes: lupeol; lupeyl acetate; botulin; betulinic acid; 3-epi-betulinic acid; 3-epi-betulinaldehyde; oleanolic acid; ursolic acid; lup-20(29)-en-3β,25-diol; lup-20(29)-en-11R-ol-25,3β-lactone; 3-deoxybetulonic acid	[279]	
	*Coussarea paniculata	Triterpenes: lupeol; lupeyl acetate; botulin; betulinic acid; 3-epi-betulinic acid; 3-epi-betulinaldehyde; oleanolic acid; ursolic acid; lup-20(29)-en-3β,25-diol; lup-20(29)-en-11R-ol-25,3β-lactone; 3-deoxybetulonic acid		
	*Coussarea platyphylla	Triterpenes: betulinic acid; betulinic acid	[280]	
		Iridoid: monotropein		
		Diterpene: trans-phytol		
	*Cruckshanksia pumila	Iridoids: asperuloside; 7-α-methoxyxwersoside; swertiamarine	[246,281]	
Subfamily	Tribe	Species	Compound(s)	References
-----------	-------	---------	-------------	------------
COU	Heterophyllae pustulata	**Anthraquinones:** soranjidiol; soranjidiol-1-methyl ether; rubiadin; rubiadin-1-methyl ether; dammacanthal; dammacanthal	[282]	
		Anthraquinones: soranjidiol; rubiadin; rubiadin-1-methyl ether	[283]	
KNO	Knoxia corymbosa	**Chromone glycosides:** corybmosins K1–K4; noreugenin; undulatoside A	[284]	
	Knoxia valerianoides	**Anthraquinones:** 2-hydroxymethylknoxiavaledin; 2-ethoxymethylknoxiavaledin; 2-formylknoxiavaledin	[285]	
	Pentas bussei	**Pentacyclic cyclol-type naphthohydroquinone:** eriobrucinol; methyl 5,10-dihydroxy-7-methoxy-1,1,3α-trimethyl-1a,2,3,3a,10c,10d-hexahydro-1H-4-oxacyclobuta[cd]-indenof[5,6-a]naphthalene-9-carboxylate	[287]	
	Pentas lanceolata	**Anthraquinones:** 5,6-dihydroxydammacanthol; nordammacanthol; lucidin-ω-methyl ether; dammacanthal	[289]	
	Pentas micrantha	**Anthraquinones:** tectoquinone; lucidin-ω-methyl ether; rubiadin; damnacanthal; 5,6-dihydroxydammacanthol; munjistin methyl ester	[292]	
	Pentas schimperi	**Anthraquinones:** schimperiquinones A–B; cleomiscosin A; 2-hydroxymethylanthraquinone	[293]	
	Lasianthus fordii	**Iridoid glycosides:** asperuloside; deacetylasperuloside; methyl deacetyl-asperuloside; megastigmane glucoside; lasiантhionoside A–C	[295]	
Subfamily	Tribe	Species	Compound (s)	References
-----------	-------	---------	---	------------
LAS	Rubioideae	*Lasianthus gardneri*	*Triterpenes*: lupenone; lupeol; ursolic acid; canaric acid; 3,4-*seco*-lupane	[296]
			Iridoids: iridolactone; iridoid dimer of asperuloside; asperulosidic acid	[297]
		Lasianthus wallichii	*Iridoid glycosides*: asperuloside; 6-hydroxygeniposide; deacetylasperulosidic acid; asperulosidic acid	[297]
		Ronabea emetic	*Iridoid glycosides*: asperuloside; 6-hydroxygeniposide; deacetylasperulosidic acid; asperulosidic acid	[298]
		Coelospermum billardieri	*Iridoids*: coelobillardin	[299]
MOR	Morinda citrifolia		*Anthraquinone glycosides*: digiferruginol-1-methylether-11-*O*-β-gentiobioside; digiferruginol-11-*O*-β-primeveroside; damnamcanthol-11-*O*-β-primeveroside; 1-methoxy-2-primeverosyloxymethyl-anthraquinone-3-olate; 1-hydroxy-2-primeverosyloxymethyl-anthraquinone-3-olate; 1-hydroxy-5,6-dimethoxy-2-methyl-7-primeverosyloxanthraquinone	[300]
			Anthraquinones: alizarin or 1,2-dihydroxyanthraquinone	[301]
			Anthraquinones: 5,15-dimethylmorindol; alizarin 1-methyl ether; anthragallol 1,3-dimethyl ether; anthragallol 2-dimethyl ether; 6-hydroxy-anthragallol 1,3-dimethyl ether; demorindone-5-dimethylether	[302]
			Iridoids: morindacin; asuperlosidic acid; deacetylasperulosidic acid	[302]
			Fatty acid glucosides: 1,6-di-*O*-octanoyl-β-D-glicopiranose; 6-*O*-(β-D-gluco pyranosyl)-1-O-decanoyl-β-D-glicopyranose	[303]
			Iridoid glycosides: 6R-hydroxyadoxoside; 6β,7β-epoxy-8-*epi*-splendoside; americanin A; narcissoside; asperuloside; asperulosidic acid; boreriagenin; citrifolin B epimer a; citrifolin B epimer b; cytidine; deacetylasperuloside; dehydromethoxygaertneroside; *epi*-dihydropoornin; methyl R-D-fructofuranoside; methyl β-D-fructofuranoside; nicotifloroside	[304]
			Fatty acid glycosides: β-sitosterol 3-O-β-D-gluco pyranoside	[304]
			Iridoid glycosides: 9-*epi*-6α-methoxy geniposidic acid	[305]
			Iridoids: morindacin	[305]
			Triterpenes: 1-O-(3′-methylbut-3′-enyl)-β-D-gluco pyranoside; 1-n-butyl-4-(5′-formyl-2′-furanyl)methylsuccinate; 4-*epi*-borreriagenin	[302]
			Iridoid glycosides: asperulosidic acid; deacetylasperulosidic acid; 1-n-butyl-4-methyl-2-hydroxy succinate; 1-n-butyl-4-methyl-3-hydroxy succinate	[306]
Table 2. Cont.

Subfamily	Tribe	Species	Compound(s)	References
Morinda	MOR	citrifolia	**Iridoid glycosides:** citrifoside, yopaaosides A–C; 10-O-acetylmonotropein; 6-O-acetylscandoside	[307]
		coreia	**Iridoid glycosides:** yopaaosides A–C; 10-O-acetylmonotropein; 6-O-acetylscandoside	
			Phenolic glycosides: 3,4,5-trimethoxyphenyl 1-O-β-apiofuranosyl (1′→6′)-β-glucopyranoside	[308]
		elliptica	Anthraquinones: scopoletin, 2-formyl-1-hydroxyanthraquinone, 1-hydroxy-2-methylantraquinone; oruwal, oruwalol, damnacanthal, nor-damnacanthal, soranjidiol, 1-methylether; 2-methylantraquinone; anthraquinone-2-aldehyde; l-hydroxy-2-methylantraquinone; 1-methoxy-2-methyl-antraquinone; hexacosanoic acid	[309–311]
		lucida	Anthraquinones: oruwal, oruwalol, damnacanthal, nor-damnacanthal, soranjidiol, alizarin-1-methyl ether, rubiadin, rubiadin-1-methyl ether; 2-methylantraquinone; anthraquinone-2-aldehyde; l-hydroxy-2-methylantraquinone; 1-methoxy-2-methyl-antraquinone; hexacosanoic acid	[312]
			Flavonoids: quercetin, quercetin 7,4'-dimethylether, luteolin 7-glucoside; apigenin 7-glucoside; quercetin 3-rhamnoside; kaempferol 3-rhamnoside; quercetin 3-rutinoside; kaempferol 3-rutinoside; chrysoeriol 7-neohesperidoside	[313]
			Flavonoids: quercetin, quercetin-3-O-rutinoside; kaempferol-7-O-rhamnosylsophoroside; chrysoeriol-7-O-neohesperidoside; quercetin-7,4'-dimethylether; quercetin-3-O-rhamnoside; kaempferol-3-O-rhamnoside; kaempferol-3-O-rutinoside; apigenin-7-O-glucoside; luteolin-7-O-glucoside; kaempferol; apigenin; luteolin	[314]
			Iridoids: epoxygaertneroside; methoxygaertneroside; gaertneroside; gaertneric acid	[315]
			Iridoid: 6′-O-acetyl-3″-methoxygaertneroside	
			Monoterpene: monotropein	[316]
		officinalis	Anthraquinones: 1,3,8-trihydroxy-2-methoxy anthraquinone; 2-hydroxy-1-methoxy-anthraquinone; rubiadin	[317]
			Anthraquinones: soranjidiol, lucidin-α-methyl ether, damnacanthal, 1-methoxy-2-methyl anthraquinone; 3-hydroxy-1-methoxy-2-methoxymethyl anthraquinone; anthragallol; nordamnacanthal; flavourpurin; damnacanthal; lucidin; soranjidiol	[318]
			Iridoid glycoside: asperulosidic acid	
			Anthraquinones: nordamnacanthal; damnacanthal; lucidin; soranjidiol; rubiadin 1-methylether	[319]
			nor-Iridoids: umbellatolides A–B	[320]
		umbellata	nor-Iridoids: umbellatolides A–B	[321]
Table 2. Cont.

Subfamily	Tribe	Species	Compound(s)	References
Lerchea bracteata		*Lerchea bracteata*	Alkaloids: dihydrocorynantheol; dihydrositsirikine; β-hunterburnin methocloride; α-hunterburnnine methocloride; dihydrocorynantheol; melinonine B; methobromide; yombine methobromide; 4-methylantherine; diploceline; malindine; iso-malindine; dihydro-3-epi-corynantheol methocloride (lercheine)	[322]
Myrioneuron faberi		*Myrioneuron faberi*	Alkaloid: myriberine A	[323]
Ophiorrhiza blumeana		*Ophiorrhiza blumeana*	Indole alkaloids: bracteatin; ophiiorrhizine; ophiiorrhizine-12-carboxylate; cinchonamine	[324]
Ophiorrhiza bracteata		*Ophiorrhiza bracteata*	Indole alkaloids: bracteatin	[325]
Ophiorrhiza communis		*Ophiorrhiza communis*	Indole alkaloids: harman; strictosidinic acid	[326]
Ophiorrhiza hayatanana		*Ophiorrhiza hayatanana*	Anthraquinones: ophiohayatones A–C	[327]
Ophiorrhiza kunstleri		*Ophiorrhiza kunstleri*	Indole alkaloids: ophiorrhines A–B	[328]

Rubioideae OPH

Species	Monoterpene glycosides: demethylsecologanol; 3-O-glucosylsenburiside II	Indole alkaloids: camptothecin; 9-methoxycamptothecin; pumiloside; (3R)-deoxypumiloside; 10-methoxycamptothecin; strictosamide; lyalosidic acid; ophiorrhines A–B; harman	References
Ophiorrhiza liukiensis	Triterpene: ursolic acid; epi-vogeloside	Monoterpene: sweroside	[329]
	Flavonoid: hyperin		
	Coumarin: scopoletin		
	β-Carbolinic alkaloids: lyalosidic acid; lyaloside; 10-hydroxylyalosidic acid; ophiorrhines A–B; ophiorrhines methyl ester A–B		[330]

| **Ophiorrhiza japonica** | β-Carbolinic alkaloids: lyalosidic acid; lyaloside; 10-hydroxylyalosidic acid; ophiorrhines A–B; ophiorrhines methyl ester A–B | | |

| **Ophiorrhiza pumila** | Pentacyclic alkaloid: camptothecin | | [331] |
| | Anthraquinones: 1-hydroxy-2-methylanthraquinone; 3-hydroxy-2-methylanthraquinone; 3-hydroxyanthraquinone-2-carbaldehyde; 1-hydroxy-2-hydroxymethylanthraquinone; 3-hydroxy-2-hydroxymethylanthraquinone; 1,3-dihydroxy-2-methylanthraquinone | | [332] |
Table 2. Cont.

Subfamily	Tribe	Species	Compound (s)	References
Rubioideae				
Ophiorrhiza pumila			**Alkaloids**: camptothecin; 9-methoxycamptothecin; pumiloside; (3R)-deoxypumiloside	[329]
OPH			**Alkaloids**: camptothecin; (3S)-pumiloside; (3S)-deoxypumiloside; (3R)-deoxy-pumiloside; strictosamide	[333]
			Alkaloids: camptothecin; pumiloside; (3S)-deoxypumiloside; (3R)-deoxypumiloside; strictosamide 9-methoxycamptothecin	[330]
Ophiorrhiza rosacea	OPH		**Indole alkaloids**: ophiorrhines A and B	[328]
Ophiorrhiza rugosa var decumbens			**Anthraquinones**: 1-hydroxy-2-hydroxymethyl-3-methoxyanthraquinone; 2-\(n\)-butoxy-methyl-1,3-dihydroxyanthraquinone	[334]
Ophiorrhiza trichocarpon			**Indole alkaloids**: ophiorrhisides A–F; 3,4,5,6-tetradehydrolitchantoside; lyaloside; dolichantoside; 5-oxostrictosidine	[335]
Ophiorrhiza tomentosa			**Indole alkaloids**: harman; strictosidinic acid	[326]
Paederia foetidae	Rubioideae		**Phenolic acid**: ethyl \(p\)-methoxy-trans-cinnamate	[336]
			Iridoid glycosides: paederoside; paederoside B; asperuloside; paederosidic acid; methylpaederosidate; saprosmoside E	[337]
			Iridoid glycosides: paederoside; asperuloside; paederosidic acid; asperulosidic acid; paederosidic acid methyl ester; geniposide	[338]
			Iridoid glycosides: paederoside; asperuloside; asperulosidic acid; asperulosidic acid; geniposidic acid; deacetylasperulosidic acid; decatilasperuloside methyl ester	[339]
			Iridoid: 6\(\beta\)-\(\beta\)-D glucosylpaederosic acid	[340]
			Iridoid glycosides: asperuloside; paederoside; scanderoside	[341,342]
			Iridoid glycosides: 6\('\)-O-E-feruloyl monotropein; 10-O-E-feruloyl monotropein	[343]
			Iridoid glycoside: paederoside B	[344]
PAE				
Paederia scandens				
PRI				
Rennellia elliptica			**Anthraquinone**: 1,2-dimethoxy-6-methyl-9,10-anthraquinone; 1-hydroxy-2-methoxy-6-methyl-9,10-anthraquinone; nordamnacanthal; 2-formyl-3-hydroxy-9,10-anthraquinone; damnacanthal; lucidin-\(\omega\)-methyl ether; 3-hydroxy-2-methyl-9,10-anthraquinone; rubiadin; 3-hydroxy-2-methoxy-6-methyl-9,10-anthraquinone; rubiadin-1-methyl ether; 3-hydroxy-2-hydroxymethyl-9,10-anthraquinone	[345]
Subfamily	Tribe	Species	Compound (s)	References
-----------	-------	----------------------------------	--	------------
	PSY	Camptotheca acuminata	Alkaloids: camptothecin; 10-hydroxycamptothecin	[346]
		Carapichea affinis	Alkaloids: 2-O-β-D-glucopyranosydemethylgalange; 6-O-deoxy-6,7-di-O-methyl ipecoside; 6,7-di-O-methyl ipecoside tetracetate	[347]
		Cephaelis acuminata	Alkaloids: 2-O-β-D-glucopyranosydemethylgalange; 6-O-deoxy-6,7-di-O-methyl ipecoside; 6,7-di-O-methyl ipecoside tetracetate	[348]
		Cephaelis dichroa	Indole alkaloids: vallesiachotamine lactone; vallesiachotamine; strictosamide; strictosidine; austugine	[350]
		Cephaelis ipecacuanha	Tetrahydroisoquinoline-monoterpene glucosides: 3-O-demethyl-2-O-methylgalange; 6-O-methyl ipecoside; 7-O-methyl ipecoside; 3-O-demethyl-2-O-methylgalange; 2-O-methylgalange	[351]
		Chassalia curviflora var. ophoxyloides	Indole alkaloids: alstrostine A; rudgeifoline	[352]
		Margaritopsis cymuligera	Pyrrolidinoindoline alkaloids: hodgkinsine; quadrigemine C	[353]
		Palicourea acuminata	Indole alkaloid: strictosidinic acid; methylester strictosidine; palicoside; bahienoside B; 5α-carboxystrocitridine; desoxycoordinine; lagamboside; vallesiachotamine	[355]
		Palicourea adusta	Monoterpenoid glucosidol alkaloids: lyaloside; tetra-(O-acetyl)-lyaloside; (E)-O-(6′)-cinnamoyl-4′-hydroxy-3′,5′-dimethoxylyaloside; (E)-tetra-(O-acetyl)-O-(6′)-cinnamoyl-4′-hydroxy-3′-methoxylyaloside; (E)-tetra-(O-acetyl)-O-(6′)-cinnamoyl-4′-hydroxy-3′,5′-dimethoxylyaloside	[356]
Subfamily	Tribe	Species	Compound(s)	References
-----------------	-------	--------------	--	------------
Palicourea crosa		Palicourea crosa	Monoterpenoid indole alkaloids: 3,4-dihydro-1-(1-β-D-glucopyranosyloxy-1,4α,5,7-tetrahydro-4-methoxy carbonylcyclopenta[c]pyran-7-yl)-β-carboline-N2-oxide; croceaine A; psychollatine	[357]
Palicourea coriacea		Palicourea coriacea	Glucoindole alkaloids: 3-epi-strictosidinic acid; strictosidinic acid; strictosidinic ketone Alkaloid: calycanthine Triterpene: ursolic acid	[358]
Palicourea crosa		Palicourea crosa	Monoterpe Indole Alkaloids: croceaines A–B	[359]
Palicourea rigida		Palicourea rigida	Indole alkaloid: vallesiachotamine	[360]
Prismatomeris connata		Prismatomeris connata	Anthraquinone glycosides: 1-O-methylrubiadin 3-O-β-primeveroside; damnacanthol 3-O-β-primeveroside; rubiadin 3-O-β-primeveroside; lucidin 3-O-β-primeverosideo; 1,3-dihydroxy-2-(methoxymethyl) anthraquinone 3-O-β-primeveroside; digiferruginol α-gentiobiose Phenolic compound glycoside: prismaconnatoside	[361]
Prismatomeris malayana		Prismatomeris malayana	Anthraquinone: 1,3-dihydroxy-5,6-dimethoxy-2-methoxymethyl-9,10-anthraquinone; 2-hydroxymethyl-1-methoxy-9,10-anthraquinone; tectoquinone; 1-hydroxy-2-methyl-9,10-anthraquinone; rubiadin; rubiadin-1-methyl ether; 1,3-dihydroxy-5,6-dimethoxy-2-methyl-9,10-anthraquinone; nordamnacanthal; damnacanthal	[362]
Prismatomeris tetrandra		Prismatomeris tetrandra	Iridoids: prismatomerin	[363]
Psychotria bahiensis		Psychotria bahiensis	Bis(monoterpenoid) indole alkaloid glucosides: bahienoside A; bahienoside B; 5R-carboxystricotsidine; angustine; strictosamide; (E)- and (Z)-vallesiachotamine	[364]
Psychotria barbiflora		Psychotria barbiflora	β-Carbolinic alkaloids: harman; strictosidinic acid	[365]
Psychotria brachyceras		Psychotria brachyceras	Monoterpen indole alkaloids: brachycerine	[366]
Psychotria camponutans		Psychotria camponutans	Pyranonaphthoquinones: pentalongin; psychorubrin; 1-hydroxy-3,4-dihydro-1H-benz[g]isochromene-5,10-dione	[367]
Psychotria colorata		Psychotria colorata	Alkaloids: (−)-calycanthine; isocalycanthine; (+)-chimonanthine; hodgkinsine; quadrigemine C; (8-8a), (8′-8′a)-tetrahydroisocalycanthine 3a(R), 3′a(R)	[368]
Psychotria calocarpa		Psychotria calocarpa	Alkaloids: psychotriasine	[369]
Subfamily	Tribe	Species	Compound (s)	References
-----------	-------	---------	--------------	------------
Rubioideae	PSY	Psychotria correae	*Indole alkaloids*: isodolichantoside; correantoside; 10-hydroxycorreantoside; correantines A–C e 20-epi-correantine B; C13-Norisoprenoids: megastigm-5-ene-3,9-diol; S(+)-dehydrovomifoliol; *Carotenoids*: lutein	[372]
		Psychotria glomerulata	*Quinoline alkaloids*: glomerulatines A–C; calycanthine; *iso*-calycanthine	[373]
		Psychotria ipecacuanha	*Alkaloids*: emetine; cephaeline	[374]
		Psychotria leiocarpa	*Indole alkaloids*: umbellatine; brachicerine; lyaloside; strictosamide; myrianthosines A–B; *n*,*β*-D-glucopyranosyl vincosamide quadrigemine A; *Iridoid glucosides*: asperuloside; deacetylasperuloside; loganin	[375]
		Psychotria myriantha	*Indole alkaloids*: strictosidinic acid	[376]
		Psychotria nuda	*Alkaloid*: strictosamide	[377]
		Psychotria lyciiflora	*Alkaloids*: meso-chimonanthine; hodgkinsine; *N*-demethyl-meso-chimonanthine; quadrigemine C; *isopsycotridine* B; *psychotridine*: quadrigemine I; oleoidine; caledonine	[379]
		Psychotria oleoides	*Alkaloids*: strictosamide; 10-hydroxyisodeppeaninol; *N*-oxide-10-hydroxy-antirhine	[380]
		Psychotria prunifolia	*Indole-β-carboline alkaloids*: 10-hydroxyisodeppeaninol; *N*-oxide-10-hydroxy-antirhine; 14-oxoprunifoline; strictosamide	[381]
		Psychotria suterella	*Indole alkaloids*: lyaloside; naucletine; strictosamide	[382]
		Psychotria umbellata	*Indole alkaloids*: psycollatine	[383]
		Psychotria vellosiana	*Triterpenes*: squalene; lupeolids; *Coumarin*: scopoletin	[384]
		Psychotria viridis	*Alkaloid*: dimethyltryptamine	[385]
		Rudgea jasminoides	*Anthraquinone*: 1,4-naphthohydroquinone	[386]
Subfamily	Tribe	Species	Compound (s)	References
---------------	-------	--------------------	---	------------
		PUT	*Naphthohydroquinones*: mollugin 6-methyl ether; plocanaphthin	[388]
			Lignans: syringaresinol; pinoresinol; lariciresinol	
			Coumarin: scopoletin	
			Anthraquinones: balonone; balonone; methyl ether; plocamanones A–C; knoxiadin; 5,6-dimethyl ether; plocamanone D; chionone; isozygein dimethyl ether; lucidin 1,3-dimethyl ether; lucidin; 1-hydroxy-2-methyl-9,10-anthraquinone; tectoquinone; rubiadin 3-methyl ether; rubiadin 1-methyl ether; rubiadin dimethyl ether; rubiadin; lucidin 3-methyl ether; munjistin ethyl ester; ibericin; dammacanthol o-ethyl ether; alizarin dimethyl ether; alizarin 1-methyl ether; anthragallol 1,2-dimethyl ether; 3-hydroxy-2-(hydroxymethyl)-9,10-anthraquinone	[389]
			Triterpenes: 3-epi-pomolic acid 3α-acetate; baloic acid; meth; 19α-hydroxyoleananonic acid; 3β-hydroxyolean-11,13(18)-dien-28-oic acid; 3α-acetoxy-19α-hydroxyursa-12-en-28-oic acid; baloic acid; 19α-hydroxyoleanonic acid	[390]
			Flavonoids: calabricosides A–B	
			Iridoid: asperuloside; paederosic acid; paederoside	
			Lignan glycosides: liroidendrin; dihydrodehydrodiconiferyl alcohol-4-O-β-D-glucopyranoside; 7S,8R,8′R(−)-lariciresinol-4,4′-O-β-D-glucopyranoside.	[391]
			Indole alkaloids: spermacoceine; borrerine; borreverine; isoborreverine	[392]
			Indole alkaloids: verticillatines A–B	
			Iridoids: scandoside methyl ester; 6′-O-(2-glyceryl) scandoside methyl ester; asperuloside acid	[393]
			Iridoid glycoside: dunnisinine	[394]
	SPE		*Iridoid glycoside*: dunnisinin	[394]
			Iridoid: dunnisinine	
			Iridoid glycoside: dunnisinine	
			Galianthe brasiensis: asperuloside; deacetylasperuloside; mixture of Z- and E-6-O-p-coumaroylscandoside methyl ester	[395]
			Galianthe ramosa: epicatechin	[396]
			Triterpene: ursolic acid	
			β-carboline indole alkaloid: 1-(hydroxymethyl)-3-(2-hydroxypropan-2-yl)-2-(5-methoxy-9H-β-carbolin-1-yl) cyclopentanol	[396]
Subfamily	Tribe	Species	Compound(s)	References
-----------------	--------	--------------------------	---	------------
Galianthe ramosa		*β*-carboline alkaloid: 1-(hydroxymethyl)-3-(2-hydroxypropan-2-yl)-2-(5-methoxy-9H-β-carbolin-1-yl)cyclopentanol; 9-methoxyindole alkaloid	[396]	
Galianthe thalictroides		*β*-carboline indole alkaloid: 1-methyl-3-(2-hydroxypropan-2-yl)-2-(5-methoxy-9H-β-carbolin-1-yl)-cyclopentanol; 1-(hydroxymethyl)-3-(2-hydroxypropan-2-yl)-2-(5-methoxy-9H-β-carbolin-1-yl)-cyclopentanol	[397]	
Anthraquinones:			*Anthraquinones:* 1-methylalizarin; morindaparvin-A	
Coumarin:			*Coumarin:* scopoletin	
Hedyotis auricularia		*β*-Carboline alkaloid: auricularine		
Hedyotis capitellata		*β*-Carboline alkaloids: capitelline; cyclocapitelline; isocyclocapitelline; hedyocapitelline; hedyocapitine	[398]	
Hedyotis chrysotricha		*β*-Carboline alkaloid: chrysotricine		
Rubioideae	SPE	**Hedyotis capitellata**	*β*-Carboline alkaloids: capitelline; (−)-isocyclocapitelline; (+)-cyclocapitelline; isochrysotricine; chrysotricine	[400]
			β-Carboline alkaloids: capitelline; (+)-isocyclocapitelline; (+)-cyclocapitelline; isochrysotricine; chrysotricine	[401]
Hedyotis chrysotricha		*β*-Carboline alkaloid: chrysotricine	[402]	
Hedyotis corymbosa		*Iridoid glucosides:* asperuloside; scandoside methyl ester	[403]	
			Iridoinds: hedycoryside A–C	[404]
Hedyotis crassifolia		*Triterpenes:* ursolic acid; 3β-hydroxyurs-11-ene-23(13)-lactone; 3α,13β-dihydroxyurs-11-ene-28-oic acid; oleanolic acid; 3β-D-glucopyranosyl-β-sitosterol and 3β,6β-dihydroxyolean-12-ene-28-oic acid	[405]	
Hedyotis diffusa		*Iridoid glycosides:* dunnisinoside; E-6-O-p-methoxycinnamoyl scandoside methyl ester; Z-6-O-p-methoxycinnamoyl scandoside methyl ester; E-6-O-p-feruloyl scandoside methyl ester; E-6-O-p-coumaroyl scandoside methyl ester; Z-6-O-p-coumaroyl scandoside methyl ester	[406]	
			Iridoid glucosides: diffusosides A–B	[407]
Subfamily	Tribe	Species	Compound(s)	References
-----------	-------	------------------	--	------------
		Hedyotis diffusa	Anthraquinones: 2-methyl-3-methoxyanthraquinone; 2-methyl-3-hydroxyanthraquinone; 2-methyl-3-hydroxy-4-methoxyanthraquinone; 2,3-dimethoxy-6-methylantherquinone	
			Flavonoids: quercetin; quercetin 3-O-glucopyranoside; quercetin 3-O-sambubioside; quercetin 3-O-sophoroside; quercetin 3-O-rutinoside	[398]
		Hedyotis dichotoma	Anthraquinones: 1,4-dihydroxy-2,3-dimethoxyanthraquinone; 1,4-dihydroxy-2-hydroxy-methylantherquinone; 2,3-dimethoxy-9-hydroxy-1,4-anthraquinone; 2-hydroxymethyl-10-hydroxy-1,4-anthraquinone	
			Flavonoids: isovitexin	[398]
		Hedyotis intricata	Triterpene: lupeol; oleanolic acid	
			Iridoid: asperuloside	[408]
		Hedyotis hedyotidea	Iridoids: deacetylasperulosidic acid ethyl ester; hedyotoside; asperulosidic acid; asperuloside; deacetylasperuloside	[409]
		Hedyotis herbacea	Flavonoids: kaempferol 3-O-rutinoside; rutin; kaempferol 3-O-glucoside; kaempferol 3-O-arabinopyranoside; kaempferol 3-O-arabino pyranoside; quercetin 3-O-galactoside	
			[398,410]	
		Hedyotis nudicaulis	Triterpene glycosides: nudicaucins A–C; guaiacins D	[410]
		Hedyotis pinifolia	Anthraquinones: 1,6-dihydroxy-7-methoxy-2-methylantherquinone; 1,6-dihydroxy-2-methylanthraquinone; 3,6-dihydroxy-2-methylantherquinone; 1,3,6-trihydroxy-2-methylantherquinone	
			[410]	
		Hedyotis tenelliflora	Iridoids: teneoside B	[413]
		Hedyotis verticillata	Flavonoids: kaempferitrin	[398]
		Hedyotis vestita	Stereoid: phytol	
			Flavonoids: rutin; isohrametin 3-O-rutinoside; vomifoliol 9-O-β-D-glucopyranoside; auricularin	
			Iridoid: 6α-methoxygenyposes; Phenolic compound: sodium (1S,4aR,5R,7aR)-7-hydroxymethyl-5-methoxy-1-β-D-glucopyranosyl-1,4α,5,7α-tetrahydrocyclopenta[c]pyran-4-carboxylate	
		Mitracarpus frigidus	Pyranonaphthoquinone: psychorubrin	[415]
		Mitracarpus scaber	Pentalongin hydroquinone diglycoside: haronoside	[416]
Subfamily	Tribe	Species	Compound(s)	References
-------------------	-------	--------------------	--	------------
Rubioideae	SPE	*Oldenlandia umbellata*	Anthraquinones: 1,2,3-trimethoxyanthraquinone; 1,3-dimethoxy-2-hydroxyanthraquinone; 1,2-dimethoxyanthraquinone; 1-methoxy-2-hydroxyanthraquinone; 1,2-dihydroxyanthraquinone	[422]
		Richardia grandiflora	Phenolic compounds: o-hydroxybenzoic acid; m-methoxy-p-hydroxybenzoic acid	[423]
		Saprosma fragrans	Anthraquinones: 4-dihydroxy-1-methoxyanthraquinone-2-corboxaldehyde; damnacanthal	[424]
		Saprosma hainanense	Alkaloids: saprosmine A; saprosmine B; marcarine A; quinolone; cleistopholine; 4-methoxycarbonyl-5; 10-benzogquinolinequinone; liriodenine	[425]
		Saprosma scortechinii	Iridoid: 6-O-epi-acetylsaunderside	[426]
			Iridoid: 10-O-benzoyldeactylasperulosidic acid; 3,4-dihydro-3α-methoxy-paederoside; saprosmosides A–H	[426]
			Bis-iridoid glucosides: saprososides A–F	[427]
Subfamily	Tribe	Species	Compound (s)	References
-----------	----------------------------	--------------------------------	---	------------
	Saprosma ternatum	**Rubioideae**	**Alkaloid:** vittadinoside **Coumarins:** scopoletin **Iridoid glycosides:** epiasperulose; epipaeeroidal acid; epipaeeroidis **Triterpenes:** betulinic acid; betulinaldehyde	[428]
SPE			**Triterpenes:** morolic acid; oleanolic acid; ursolic acid; 3,5-dioxofriedelane	
	Spermacoce verticillata	**Flavonoids:** 3-O-α-L-rhamnopyranosyl quercetin; quercetin **Anthraquinones:** 2-hydroxy-3-methylanthaquinone	[429]	
	Asperula maximowiczii	**Iridoids:** asperuloides A–C	[430]	
		Coumarins: daphnin; daphnetin; daphnetin glucoside **Iridoids:** deacetylasperulose acid; scandroside; asperulose; asperulosidic acid; methyl ester of deacetylasperulose acid; dafilloside; geniposidic acid; 10-hydroxyloganin; deacetylasperuloside	[431]	
	Crucianella graeca	**Iridoid:** deacetylasperulose acid 6'-glucoside sodium salt **Anthraquinones:** 1-hydroxy-2-carbomethoxyanthaquinone; 6-methylantragallol-2-methyl ether; 6-methylantragallol-2,3-dimethyl ether; 6-methoxy-2-methylquinizarin; 1-hydroxy-2-methyl-6-methoxyanthaquinone	[432]	
		Iridoids: asperuloside; asperulosidic acid; deacetylasperulosidic acid	[433]	
	Crucianella maritima	**Coumarins:** daphnin; daphnetin glucoside **Iridoids:** scandoside	[431]	
Rubioideae		**Iridoids:** scandoside; asperulosidic acid; methyl ester of deacetylasperulosidic acid; daphilloside	[431]	
	Cruciata glabra	**Coumarins:** daphnin; daphnetin glucoside **Iridoids:** scandoside	[431]	
		Iridoids: scandoside; asperuloside; asperulosidic acid; methyl ester of deacetylasperulosidic acid; daphilloside	[431]	
	Cruciata laeves	**Monoterpenoid glycosides:** cruciaside A (2,5-O-β-D-diglucopyranosyl-3-hydroxy-p-cymene); cruciaside B (5-O-β-D-glucopyranosyl-2,3-dihydroxy-p-cymene)	[434]	
		Coumarin glycosides: daphnin; daphnetin glucoside; 7-O-(6′-acetoxy-β-D-glucopyranosyl)-8-hydroxyoumarin; 7-O-[6′-O-(3′′,4′′-dihydroxycinnamoyl)-β-D-glucopyranosyl]-8-hydroxyoumarin	[435]	
	Cruciata pedemontana	**Iridoids:** scandoside; asperuloside; asperulosidic acid; methyl ester of deacetylasperulosidic acid; daphilloside	[431]	
		Monoterpenoid glycosides: cruciaside A (2,5-O-β-D-diglucopyranosyl-3-hydroxy-p-cymene); cruciaside B (5-O-β-D-glucopyranosyl-2,3-dihydroxy-p-cymene)	[434]	
	Cruciata taurica	**Coumarin glycosides:** daphnin; daphnetin glucoside; 7-O-(6′-acetoxy-β-D-glucopyranosyl)-8-hydroxyoumarin; 7-O-[6′-O-(3′′,4′′-dihydroxycinnamoyl)-β-D-glucopyranosyl]-8-hydroxyoumarin	[435]	
Subfamily	Tribe	Species	Compound(s)	References
----------------	-------------	---------------------	--	------------
Crucianella graeca		*Iridoids*: deacetylasperulosidic acid; scandoside; asperuloside; asperulosidic acid; geniposidic acid; 10-hydroxyloganin; deacetylasperuloside; iridoid V3	[431]	
Galium album		*Iridoid glycosides*: secogalioside; asperuloside; deacetyl asperulosidic acid; scandoside; monotropein; asperulosidic acid; geniposidic acid; 10-hydroxyloganin; 10-hydroxymorroniside (isomers 7\(\alpha\) e7\(\beta\)); daphylloside	[436]	
Galium aparine		*Anthraquinone aldehyde*: nordamnacanthal		[437]
Galium lovense		*Iridoid glycosides*: secogalioside; asperuloside; deacetyl asperulosidic acid; scandoside; monotropein; asperulosidic acid; geniposidic acid; 10-hydroxyloganin; 10-hydroxymorroniside (isomers 7\(\alpha\) e7\(\beta\)); daphylloside; 7-\(\beta\)-hydroxy-11-methyl forsythide; 7-\(O\)-acetyl-10-acetoxyloganin	[436]	
Galium rivale		*Iridoid glycosides*: monotropein; scandoside; eacetylasperulosidic acid; geniposidic acid; asperulosidic acid		[438]
Galium macedonicum		*Iridoid*: macedonine		[439]
Galium sinaicum		*Anthraquinones*: 6,7-dimethoxyxanthopurpurin; 6-hydroxy-7-methoxyrubia; 5-hydroxy-6-hydroxymethyl antragallol 1,3-dimethyl ether; 7-carboxyantragallol 1,3-dimethyl ether; antragallol l-methyl ether 3-\(O\)-\(\beta\)-D-glucopyranoside; antragallol l-methyl ether 3-O-rutinoside; antragallol 3-O-rutinoside; alizarin 1-methyl ether 2-O-primeveroside	[440]	
Galium spurium		*Flavonoids*: asperulosidic acid ester; asperuloside; caffeic acid; kaempferol-3-O-L-rhamnopyranoside; quercetin-3-O-[\(\alpha\)-L-rhamnopyranosyl(1\(→\)6)-\(\beta\)-D-glucopyranoside]; isorhamnetin-3-O-glucopyranoside; quercetin-3-O-\(\alpha\)-L-rhamnopyranoside; kaempferol-3-O-[\(\alpha\)-L-rhamnopyranosyl(1\(→\)6)-\(\beta\)-D-glucopyranoside]; quercetin	[441]	
Galium verum		*Anthraquinones*: 1,3-dihydroxy-2 methoxy methyl; 1,3-dimethoxy-2-hydroxy; 1,3-dihydroxy-2-acetoxy; 1-hydroxy-2-hydroxy-methyl; 1,3-dihydroxy-2-methyl; 1-methoxy-2-hydroxy; 1,3-dihydroxy-2-hydroxy-methyl-6-methoxy; 1,6-dihydroxy-2-methyl antraquinones		[442]
Galium verum var. asiaticum		*Iridoid glycoside*: 10-\(p\)-dihydrocoumaroyl-6-\(\alpha\)-hydroxygeniposide; 10-\(p\)-dihydrocoumaroyl deacetylasperuloside; asperulosidic acid methyl ester; asperuloside; asperulosidic acid; deacetylasperuloside; scandoside	[443]	
Table 2. Cont.

Subfamily	Tribe	Species	Compound(s)	References
Rubia akane		Anthraquinones: 1,3-dihydroxyanthraquinone-2-al; lucidin-3-O-primeveroside		[437]
			Naphtoquinones: dihydromollugin; 2-carboxmethoxy-3-(3′-hydroxy)-isopentyl-1,4-naphthohydroquinone 1,4-O-di-β-glucoside; 2-carboxmethoxy-3-(3′-hydroxy) isopentyl-1,4-naphthohydroquinone 4-O-β-glucoside	
			Anthraquinones: xanthopurpurin; 2-methyl-1,3,6-trihydroxy-9,10-anthraquinone 3-O-β-glucoside; 2-methyl-1,3,6-trihydroxy-9,10-anthraquinone; 2-methyl-1-hydroxy-9,10-anthraquinone; 3-O-α-rhamnosyl(1→2)-β-glucoside; 3-O-(6′-O-acetyl)-α-rhamnosyl (1→2)-β-glucoside; 2-methyl-1,3,6-trihydroxy-9,10-anthraquinone 3-O-(3′,6′-O-diacetyl)-α-rhamnosyl (1→2)-β-glucoside	[444]
Rubia cordifolia	RUB		Iridoids glycoside: 6-methoxygeniposidic acid; 6-methoxygeniposidic acid methyl ester	
			Triterpene: oleanolic aldehyde acetate	
			Fenolic compound: furomollugin	[445]
Rubia peregrina		Anthocyanins: cyanidin 3-O-glucoside; delphinidin 3-O-glucoside; cyanidin 3-O-arabinoside		[446]
		Anthraquinones glycosides: 1,3,6-trihydroxy-2-methyl anthraquinone; (2-methyl-1,3,6-trihydroxy-9,10-anthraquinone-3-O-α-L-rhamnopyranosyl (1→2)-β-D-glucopyranoside); 1-hydroxy-2-hydroxy-methylene-9,10-anthraquinone-11-O-β-D-glucopyranosyl (1→6)-β-D-glucopyranoside; digiferruginol glycoside		
Rubia schumanniana		Triterpene: 3β-hydroxy-urs-30-p-Z-hydroxycinnamoyl-12-en-28-oic-acid; 3β-hydroxy-olean-30-p-E-hydroxycinnamoyl-12-en-28-oic-acid; 3β,6α-dihydroxy-urs-14-en-12-one		
		Cyclopeptides: rubischumanins A–C; C-6β-oxy-RA IV; RA-IV; O-seco-RA-V		[448]
Rubia yunnanensis		Triterpene: rubiarbonol K		[449]
Table 2. Cont.

Subfamily	Tribe	Species	Compound(s)	References
Rubioideae	**RUB**	**Rubia tinctorum**	**Anthraquinones**; alizarin; lucidin; mollugin; xanthopurpurin; rubiadin	[450]
			Anthraquinones; 1-hydroxy-2-hydroxymethylanthraquinone 3-glucoside	
			2-hydroxymethyl-anthraquinone 3-glucoside	
			3,8-dihydroxymethylanthraquinone 3-glucoside	[451]
			Rubia yunnanensis	
			Anthraquinones; pseudopurpurin; lucidin; alizarin; purpurin; alizarin-2-methylether; lucidin-ω-ethyl ether; lucidin primeveroside; nordammacanthal; munjistin ethyl ester; lucidin primeveroside; ruberithric acid	[452,453]
			Cyclic hexapeptides; rubiyunnanins A–B	[454]
Rubia yunnanensis			**Triterpenes**; rubiarbonones D–F; rubiarbosides F–G; rubiarbonone A; rubiarbonol A–B; rubiarbonol B; rubiarbonol A; rubiarbonol G; rubiarbicoside A	[455]
Lucilia pinciana	****	**Lucilia pinciana**	**Triterpenes**; luculiaic acid A	[456]
			Triterpenes; vogeloside; epi-vogeloside; loganoside; loganin; cincholic acid 28-O-β-D-glucopyranosyl ester; cincholic acid 3-O-β-D-glucopyranosyl ester; cincholic acid 3-O-β-D-glucopyranosyl ester	[457]

ALB: Albertae; ARG: Argostemmateae; CHI: Chiococceae; CIN: Cinchoneae; COF: Coffeae; CON: Condamineae; COU: Coussareae; GAR: Gardenieae; GUE: Guettardeae; HAM: Hamelieae; HIL: Hillieae; HYM: Hymenodictyeae; ISE: Iser tieae; I XO: Ixoreae; KNO: Knoxieae; LAS: Lasiantheae; MOR: Morindeae; MUS: Mussaendeae; NAU: Naucleeae; OCT: Octotropideae; OPH: Ophiirhizeae; PAE: Paederieae; PAV: Pavetteae; POS: Posoquerieae; PRI: Prismatomerideae; PSY: Psychotrieae; PUT: Putorieae; RUB: Rubieae; SAB: Sabiceae; SPE: Spermacoceae; VAN: Vanguerieae. * Genera not allocated to any tribe. ** Genera unclassified to subfamily.
This survey found Rubioideae subfamily has the highest chemical diversity in Rubiaceae subfamily. Among the described tribes, the most chemically studied are: Naucleeae (44), Gardenieae (39), Psycotrieae (34), Spermacoceae (35), Rubieae (25) and Ophiorrhizeae (14); other tribes have around five to six studied species. In general, the species with the largest number of phytochemical studies recorded from 1990 to 2014 belong to the genera *Uncaria*, *Psychotria*, *Hedyotis*, *Ophiorrhiza* and *Morinda*. Plants from the Psycotrieae tribe were shown to be the major producers of alkaloids, since all phytochemical studies with genera belonging to this tribe (*Camptotheca*, *Carapichea*, *Cephaelis*, *Chassalia*, *Margaritopsis*, *Palicourea* and *Psychotria*) resulted in the isolation of alkaloids. In the Gardenieae tribe, the presence of iridoids was observed, not only in this survey, but also in other studies [59–62,64]. Studies showed *Rubia*, *Galium* and *Morinda* genera (subfamily Rubioideae) as important sources of anthraquinones, such as aglycone and rarely glycosides [56].

However, studies establishing a chemotaxonomic classification of plants are quite complex, since there are different types of secondary metabolites that can be distinct in correlated species. These differences in the production of secondary metabolites can be attributed to a number of factors such as genetic mutation, blocking of a biosynthetic pathway and changes in the metabolism due to infection. Soil and climatic variations such as altitude, soil type, macronutrients, micronutrients and water availability, plant age, ultraviolet radiation, rainfall, seasonality and circadian rhythm, also have great influence on the production of metabolites. Besides the fact that the chemical composition can be variable in accordance with the plant organ, it is necessary to study the plant as a whole, to be able to infer a degree of similarity [59–64].

Considering the chemical profile of the Rubiaceae family and the metabolic pathways used to produce it, Rubioideae is the most ancient subfamily from an evolutive point of view [16], then it was subdivided into Ixoroidae and finally into Cinchonoideae. The chemical biosynthetic pathway now supports this botanical conclusion. In Rubioideae, anthraquinones are the main metabolites and the pathways are not so specific, being iridoids and indole alkaloids produced also in a large amount.
In Ixoroideae, the most active biosynthetic pathway is the one that produces iridoids; while in Cinchonoideae, it is the one that produces indole alkaloids together with other alkaloids.

6. Conclusions

This review has encompassed phytochemical studies of Rubiaceae species for the past 24 years. These substances have been isolated mainly from *Uncaria*, *Psychotria*, *Hedyotis*, *Ophiarrhiza* and *Morinda* genera. From the Rubioideae subfamily, 139 species were studied; 80 from the Ixoroideae, and 74 from the Cinchonoideae. Some correlations between iridoids, triterpenes, alkaloids and anthraquinones occurrence and distribution between tribes and subfamilies could be observed, providing chemotaxonomic clues. From an evolutionary point of view, the Rubioideae is the most ancient subfamily [16], then it was subdivided into the Ixoroideae and finally into the Cinchonoideae.

Acknowledgments

The authors are thankful to the Brazilian Agencies CNPq, CAPES and FAPEAM for the financial support.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Barreiro, E.J. Produtos naturais bioativos de origem vegetal e o desenvolvimento de fármacos. *Quim. Nova* 1990, 13, 29–39.
2. Farias, F.M. Psychotria myriantha müll arg. (rubiaceae): Caracterização dos alcalóides e avaliação das atividades antimitotáxia e sobre o sistema nervoso central. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil, 2006.
3. Fairbrothers, D.E. Chemosystematics with emphasis on systematic serology. In *Modern Methods in Plant Taxonomy*; Heywood, V.H., Ed.; International Association for Plant Taxonomy: Stockholm, Sweden, 1968; Volume 18, pp. 141–174.
4. Mabberley, D.J. *The Plant-book: A Portable Dictionary of the Vascular Plants Utilizing Kubitzki's The Families and Genera of Vascular Plants (1990-), Cronquist’s An Integrated System of Classification of Flowering Plants (1981), and Current Botanical Literature, Arranged Largely on the Principles of Editions 1–6 (1896/97–1931) of Willis’s A Dictionary of the Flowering Plants and Ferns*, 2nd ed.; Cambridge university press: Cambridge, UK, 1997.
5. Pereira, C.G.; Meireles, M.A.A. Supercritical fluid extraction of bioactive compounds: Fundamentals, applications and economic perspectives. *Food Bioprocess Tech.* 2010, 3, 340–372.
6. Mongrand, S.; Badoc, A.; Patouille, B.; Lacomblez, C.; Chavent, M.; Bessoule, J.J. Chemotaxonomy of the Rubiaceae family based on leaf fatty acid composition. *Phytochemistry* 2005, 66, 549–559.
7. Souza, V.C.; Lorenzi, H. *Botânica sistemática: Guia ilustrado para identificação de Fanerógamas nativas e exóticas no Brasil, baseado em APG II*; Instituto Plantarum: Nova Odessa, Brazil, 2008.
8. Robbrecht, E. Tropical woody Rubiaceae. *Oper. Bot. Belg.* 1988, 1, 599–602.
9. Verdcourt, B. Remarks on the classification of the Rubiaceae. *Bull. Jard. Bot. l'Etat Brux./Bull. Rijksplant. Bruss.* 1958, 28, 209–290.
10. Bremekamp, C.E.B. Remarks on the position, the delimitation and the subdivision of the Rubiaceae. *Acta Bot. Neerl.* 1966, 15, 1–33.
11. Andersson, L. Circumscription of the tribe Isertieae (Rubiaceae). In Proceedings of the Second International Rubiaceae Conference, Meise, Belgium, 13–15 September, 1995; Volume 7, pp. 139–164.
12. Bremer, B.; Andreasen, K.; Olsson, D. Subfamilial and tribal relationships in the Rubiaceae based on rbcL sequence data. *Ann. Mo. Bot. Gard.* 1995, 82, 383–397.
13. Andersson, L.; Rova, J.H.; Guarin, F.A. Relationships, circumscription, and biogeography of *Arcytophyllum* (Rubiaceae) based on evidence from cpDNA. *Brittonia* 2002, 54, 40–49.
14. Rova, J.H.; Delprete, P.G.; Andersson, L.; Albert, V.A. A trnL-F cpDNA sequence study of the Condamineae-Rondeletieae-Sipaneae complex with implications on the phylogeny of the Rubiaceae. *Am. J. Bot.* 2002, 89, 145–159.
15. Bolzani, V.D.S.; Young, M.C.M.; Furlan, M.; Cavalheiro, A.J.; Araújo, A.R.; Silva, D.H.S.; Loped, M.N. Secondary metabolites from Brazilian Rubiaceae plant species: Chemotaxonomical and biological significance. *Rec. Res. Dev. Phytochem.* 2001; 5, 19–31.
16. Bremer, B. A review of molecular phylogenetic studies of rubiaceae 1. *Ann. Mo. Bot. Gard.* 2009, 96, 4–26.
17. Wink, M. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. *Phytochemistry* 2003, 64, 3–19.
18. Simões, C.M.O.; Schenkel, E.P.; Gosmann, G.; Mello, J.C.P.; Mentz, L.A.; Petrovick, P.R. *Farmacognosia: Da planta ao medicamento*, 6th ed; UFSC University Press: Florianópolis, Brazil, 2004; p. 1104.
19. Heitzman, M.E.; Neto, C.C.; Winiarz, E.; Vaisberg, A.J.; Hammond, G.B. Ethnobotany, phytochemistry and pharmacology of *Uncaria* (Rubiaceae). *Phytochemistry* 2005, 66, 5–29.
20. Almog, J.; Cohen, Y.; Azoury, M.; Hahn, T.R. Genipin—A novel fingerprint reagent with colorimetric and fluorogenic activity. *J. Forensic Sci.* 2004, 49, 255–257.
21. Koo, H.J.; Song, Y.S.; Kim, H.J.; Lee, Y.H.; Hong, S.M.; Kim, S.J.; Kim, B.C.; Jin, C.; Lim, C.J.; Park, E.H. Antiinflammatory effects of genipin, an active principle of gardenia. *Eur. J. Pharmacol.* 2004, 495, 201–208.
22. Kim, B.C.; Kim, H.G.; Lee, S.A.; Lim, S.; Park, E.H.; Kim, S.J.; Lim, C.J. Genipin-induced apoptosis in hepatoma cells is mediated by reactive oxygen species/c-Jun NH 2-terminal kinase-dependent activation of mitochondrial pathway. *Biochem. pharmacol.* 2005, 70, 1398–1407.
23. Pinto, A.C. O Brasil dos viajantes e dos exploradores e a química de produtos naturais brasileira. *Quim. Nova* 1995, 18, 608–615.
24. Pelletier, P.J.; Caventou, J.B. Recherches chimiques sur les quinquinas. In *Annales de Chimie et de Physique*, 1st ed.; Gay-Lussac, J.L., Arago, F. Eds.; Chez Crochard: Paris, France, 1820; Volume 3.
25. Viegas, C.; Bolzani, V.S.; Barreiro, E.J. Os produtos naturais e a química medicinal moderna. *Quim. Nova* 2006, 29, 326–337.
26. Lemaire, I.; Assinewe, V.; Cano, P.; Awang, D.V.; Arnason, J.T. Stimulation of interleukin-1 and-6 production in alveolar macrophages by the neotropical liana, *Uncaria tomentosa* (una de gato). *J. Ethnopharmacol.* 1999, 64, 109–115.

27. Gonçalves, C.; Dinis, T.; Batista, M.T. Antioxidant properties of proanthocyanidins of *Uncaria tomentosa* bark decoction: A mechanism for anti-inflammatory activity. *Phytochemistry* 2005, 66, 89–98.

28. Callaway, J.C.; Raymon, L.P.; Hearn, W.L.; McKenna, D.J.; Grob, C.S.; Brito, G.S.; Mash, D.C. Quantitation of *N,N*-dimethyltryptamine and harmala alkaloids in human plasma after oral dosing with ayahuasca. *J. Anal. Toxicol.* 1996, 20, 492–497.

29. Grob, C.S.; Mckenna, D.J.; Callaway, J.C.; Brito, G.S.; Neves, E.S.; Oberlaender, G.; Saide, O.L.; Labigalini, E.; Tacla, C.; Miranda, C.T. Human psychopharmacology of hoasca, a plant hallucinogen used in ritual context in Brazil. *J. Nerv. Ment. Dis.* 1996, 184, 86–94.

30. Deulofeu, V. Chemical compounds isolated from *Banisteriopsis* and related species. In *Ethnopharmacological Search for Psychoactive Drugs*; Efron, D., Ed.; U.S. Govt. Printing Office: Washington, WA, USA, 1967; Volume 18, pp. 393–402.

31. Freedland, C.S.; Mansbach, R.S. Behavioral profile of constituents in ayahuasca, an Amazonian psychoactive plant mixture. *Drug Alcohol. Depend.* 1999, 54, 183–194.

32. Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. *Environ. Health Perspect.* 2001, 109, (Suppl S1), 69.

33. De-Moraes-Moreau, R.L.; Haraguchi, M.; Morita, H.; Palermo-Neto, J. Chemical and biological demonstration of the presence of monofluoroacetate in the leaves of *Palicourea marcgravii* St. Hil. *Braz. J. Med. Biol. Res.* 1995, 28, 685–692.

34. Di Stasi, L.C.; Hiruma-Lima, C.A. *Plantas medicinais na Amazônia e na Mata Atlântica*, 2nd ed.; UNESP University Press: São Paulo, Brazil, 2008; Volume 1, p. 604.

35. Dominguez, X.A. *Métodos de investigación fitoquímica*. Limusa: Mexico City, Mexico, 1973; Volume 1, p. 281.

36. Bremer, B. Combined and separate analyses of morphological and molecular data in the plant family Rubiaceae. *Cladistics* 1996, 12, 21–40.

37. Otto, A.; Wilde, V. Sesqui-, di-, and triterpenoids as chemosystematic markers in extant conifers—A review. *Bot. Rev.* 2001, 67, 141–238.

38. Carbonezi, C.A.; Hamerski, L.; Flausino, O.A., Jr.; Furlan, M.; Bolzani, V.D.S.; Young, M.C.M. Determinação por RMN das configurações relativas e conformações de alcalóides oxindólicos isolados de *Uncaria guianensis*. *Quim. Nova* 2004, 27, 878–881.

39. Dahlgren, R. A revised system of classification of the angiosperms. *Bot. J. Linn. Soc.* 1980, 80, 91–124.

40. Gottlieb, O.R. The role of oxygen in phytochemical evolution towards diversity. *Phytochemistry* 1989, 28, 2545–2558.

41. Gottlieb, O.R. Phytochemicals: Differentiation and function. *Phytochemistry* 1990, 29, 1715–1724.

42. Young, M.C.M.; Araújo, A.R.; da Silva, C.A.; Lopes, M.N.; Trevisan, L.M.; Bolzani, V.D.S. Triterpenes and saponins from *Rudgea viburnioides*. *J. Nat. Prod.* 1998, 61, 936–938.

43. Young, M.C.M.; Braga, M.R.; Dietrich, S.M.; Gottlieb, H.E.; Trevisan, L.M.; Bolzani, V.D.S. Fungitoxic non-glycosidic iridoids from *Alibertia macrophylla*. *Phytochemistry* 1992, 31, 3433–3435.
44. Bolzani, V.D.S.; Trevisan, L.M.; Young, M.C.M. Caffeic acid esters and triterpenes of
Alibertia macrophylla. *Phytochemistry* **1991**, *30*, 2089–2091.

45. Koike, K.; Cordell, G.A.; Farnsworth, N.R.; Freer, A.A.; Gilmore, C.J.; Sim, G.A. New cytotoxic
diterpenes from *Rondeletia panamensis* (Rubiaceae). *Tetrahedron* **1980**, *36*, 1167–1172.

46. Olea, R.S.G.; Roque, N.F.; Bolzani, V.D.S. Acylated flavonol glycosides and terpenoids from
the leaves of *Alibertia sessilis*. *J. Braz. Chem. Soc.* **1997**, *8*, 257–259.

47. Schripsema, J.; Dagnina, D.; Grosman, G. Alcalóides indólicos. In *Farmacognosia da planta ao
medicamento*; Simões, C.M.O., Ed.; Editora da UFSC. 2004: Florianópolis, Brazil, 2004; Volume 5,
pp. 819–846.

48. Young, M.; Braga, M.; Dietrich, S.; Bolzani, V.; Trevisan, L.; Gottlieb, O. In *Chemosystematic
Markers of Rubiaceae*, Proceedings of the Second International Rubiaceae Conference, Meise,
Belgium, 13–15 September, 1995; pp. 205–212.

49. Inouye, H.; Takeda, Y.; Nishimura, H.; Kanomi, A.; Okuda, T.; Puff, C. Chemotaxonomic
studies of rubiaceous plants containing iridoid glycosides. *Phytochemistry* **1988**, *27*, 2591–2598.

50. Valant-Vetschera, K.M.; Wollenweber, E. Exudate flavonoid aglycones in the alpine species of
Achillea sect. *Ptarmica*: Chemosystematics of *A. moschata* and related species (Compositae–
Anthemidaceae). *Biochem. Syst. Ecol.* **2001**, *29*, 149–159.

54. Gottlieb, O.R. *Micromolecular Evolution, Systematics and Ecology: An Essay into a Novel Botanical
Discipline*, 1st ed.; Springer Science & Business Media: Berlin, Germany, 1982; Volume 19, p. 94.

55. Dahlgren, G. The last Dahlgrenogram. System of classification of the dicotyledons. In *Plant
Taxonomy Phytogeography and Related Subjects: The Davis and Hedge Festschrift*; Tan, K.,
Mill, R.R., Elias, T.S., Davis, P.H., Hedge, I.C., Davis, P.H., Hedge, I.C., Eds.; University Press:
Edinburgh, UK, 1989; pp. 249–260.

56. Santos, A.R.D.; Barros, M.P.D.; Santin, S.M.D.O.; Sarragiotto, M.H.; Souza, M.C.D.; Eberlin, M.N.;
Meurer, E.C. Polar constituents of the leaves of *Machaonia brasiliensis* (Rubiaceae). *Quim. Nova*
2004, *27*, 525–527.

57. Wijnsma, R.; Verpoorte, R. Anthraquinones in the Rubiaceae. In *Fortschritte der Chemie
organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products*; Springer-Verlag
Wien: Viena, Austria, 1986; pp. 79–149.

58. Nagakura, N.; Ruffer, M.; Zenk, M.H. The biosynthesis of monoterpenoid indole alkaloids from
stricotsidine. *J. Chem. Soc. Perkin. I* **1979**, doi:10.1039/P19790002308.

59. Poser, G.V.; Mentz, L.; Simões, C.; Schenkel, E.; Gosmann, G.; Mello, J.D.; Mentz, L.; Petrovick, P.
Diversidade biológica e sistemas de classificação. In *Farmacognosia: da planta ao medicamento*;
Simões, C.M.O., Ed.; University Press: Florianópolis, Brazil, 2004; Volume 5, p. 82.

60. Chen, Q.C.; Zhang, W.Y.; Youn, U.J.; Kim, H.J.; Lee, I.S.; Jung, H.J.; Na, M.K.; Min, B.S.;
Bae, K.H. Iridoid glycosides from *Gardeniae Fructus* for treatment of ankle sprain. *Phytochemistry*
2009, *70*, 779–784.
60. Drewes, S.E.; Horn, M.M.; Munro, O.Q.; Ramesar, N.; Ochse, M.; Bringmann, G.; Peters, K.; Peters, E.M. Stereostructure, conformation and reactivity of P- and a-gardiol from *Burchellia bubalina*. *Phytochemistry* **1999**, *50*, 387–394.

61. Nahrstedt, A.; Rockenbach, J.; Wray, V. Phenylpropanoid glycosides, a furanone glucoside and geniposidic acid from members of the rubiaceae. *Phytochemistry* **1995**, *39*, 375–378.

62. Baillieul, F.; Delaveau, P.; Koch, M. Apodantheroside, an iridoid glucoside from *Feretia apodanthera*. *Phytochemistry* **1980**, *19*, 2763–2764.

63. Bringmann, G.; Ochse, M.; Wolf, K.; Kraus, J.; Peters, K.; Peters, E.M.; Herderich, M.; Aké Assi, L.; Tayman, F.S.K. 4-Oxonicotinamide-1-(1′-β-ribofuranoside) from *Rothmannia longiflora* (Rubiaceae). *Phytochemistry* **1999**, *51*, 271–276.

64. Luciano, J.H.S.; Lima, M.A.S.; Souza, E.B.; Silveira, E.R. Chemical constituents of *Alibertia myrcifolia* Spruce ex K. Schum. *Biochem. Syst. Ecol.* **2004**, *32*, 1227–1229.

65. Borges, R.M.; Valença, S.S.; Lopes, A.A.; Barbi, N.S.; Silva, A.J.R. Saponins from the roots of *Chiococca alba* and their in vitro anti-inflammatory activity. *Phytochem. Lett.* **2013**, *6*, 96–100.

66. Abd El-Hafiz, M.A.; Weniger, B.; Quirion, J.C.; Anton, R. Ketoalcohols, lignans and coumarins from *Chiococca alba*. *Phytochemistry* **1991**, *31*, 2546–2547.

67. Carbonezi, C.A.; Martins, D.; Young, M.C.M.; Lopes, M.N.; Furlan, M.; Bolzani, V.S. Iridoid and seco-iridoid glucosides from *Chiococca alba* (Rubiaceae). *Phytochemistry* **1999**, *51*, 781–785.

68. Borges-Argáez, R.; Medina-Baizabál, L.; May-Pat, F.; Peña-Rodríguez, L.M. A new ent-kaurane from the root extract of *Chiococca alba*. *J. Braz. Chem. Soc.* **2009**, *20*, 2029–2031.

69. Mata, R.; Camacho, M.D.R.; Mendoza, S.; Cruz, M.D.C. A phenylstyrene from *Hintonia latiflora*. *Phytochemistry* **1992**, *31*, 2546–2547.
Déciga-Campos, M.; Guerrero-Analco, J.A.; Quijano, L.; Mata, R. Antinociceptive activity of 3-O-β-D-glucopyranosyl-23,24-dihydrocucurbitacin F from *Hintonia standleyana* (Rubiaceae). *Pharmacol. Biochem. Behav.* 2006, 83, 342–348.

Maehara, S.; Simanjuntak, P.; Kitamura, C.; Ohashi, K.; Shibuya, H. Bioproduction of *Cinchona* Alkaloids by the Endophytic Fungus *Diaporthe* sp. Associated with *Cinchona ledgeriana*. *Chem. Pharm. Bull.* 2012, 60, 1301–1304.

Maehara, S.; Simanjuntak, P.; Maetani, Y.; Kitamura, C.; Ohashi, K.; Shibuya, H. Ability of endophytic filamentous fungi associated with *Cinchona ledgeriana* to produce *Cinchona* alkaloids. *J. Nat. Med.* 2013, 67, 421–423.

Schripsema, J.; Ramos-Valdivia, A.; Verpoorte, R. Robustaquinones, novel anthraquinones from an elicited *Cinchona robusta* suspension culture. *Phytochemistry* 1999, 51, 55–60.

Okunade, A.L.; Lewis, W.H.; Elvin-Lewis, M.P.; Casper, S.J.; Goldberg, D.E. Cinchonicine-derived alkaloids from the bark of the Peruvian *Ladenbergia oblongifolia*. *Fitoterapia* 2001, 72, 717–719.

Ruiz-Mesia, L.; Ruiz-Mesía, W.; Reina, M.; Martinez-Diaz, R.; de Inés, C.; Guadaño, A.; González-Coloma, A. Bioactive cinchona alkaloids from *Remijia peruviana*. *J. Agric. Food Chem.* 2005, 53, 1921–1926.

Díaz, J.G.; Sazatornil, J.G.; Rodríguez, M.L.; Mesia, L.R.; Arana, G.V. Five New Alkaloids from the Leaves of *Remijia peruviana*. *J. Nat. Prod.* 2004, 67, 1667–1671.

Aquino, R.; Garofalo, L.; Tommasi, N.; Ugaz, O.L.; Pizza, C. Glucoindole alkaloids from bark of two *Sickingia* species. *Phytochemistry* 1994, 37, 1471–1475.

Lee, D.; Cuendet, M.; Axelrod, F.; Chavez, P.I.; Fong, H.H.S.; Pezzuto, J.M.; Douglas Kinghorn, A. Novel 29-nor-3,4-seco-cycloartane triterpene methyl esters from the aerial parts of *Antirhea acutata*. *Tetrahedron* 2001, 57, 7107–7112.

Weniger, B.; Rafik, W.; Bastida, J.; Quirion, J.C.; Anton, R. Indole alkaloids from *Antirhea lucida*. *Planta Med.* 1995, 61, 569–569.

Barros, M.P.D.; Santin, S.M.D.O.; Costa, W.F.D.; Vidotti, G.J.; Sarragiotto, M.H.; Souza, M.C.D.; Bersani-Amado, C.A. Chemical constituents and anti-inflammatory and antioxidant activities evaluation of the leaves extracts of *Chomelia obtusa* Cham. & Schltldl.(Rubiaceae). *Quim. Nova* 2008, 31, 1987–1989.

Lima, G.S.; Moura, F.S.; Lemos, R.P.L.; Conserva, L.M. Triterpenes from *Guettarda grazielaee* M: RV Barbosa (Rubiaceae). *Rev. Bras. Farmacogn.* 2009, 19, 284–289.

Montagnac, A.; Litaudon, M.; Pais, M. Quinine-and quinicine-derived alkaloids from *Guettarda noumeanae*. *Phytochemistry* 1997, 46, 973–975.
94. De Oliveira, P.R.N.; Testa, G.; de Sena, S.B.; da Costa, W.F.; Helena, M.; de Souza, M.C. Saponinas triterpênicas das raízes de Guettarda pohliana Müll. Arg.(Rubiaceae). Quim. Nova 2008, 31, 755–758.

95. Cai, W.H.; Matsunami, K.; Otsuka, H.; Shinzato, T.; Takeda, Y. A glycerol α-d-glucuronide and a megastigmene glycoside from the leaves of Guettarda speciosa L. J. Nat. Med. 2011, 65, 364–369.

96. Dos Santos, A.R.; de Barros, M.P.; de OSantin, S.; Sarragiotto, M.H.; de Souza, M.C.; Eberlin, M.N.; Meurer, E.C. Constituintes polares das folhas de Machaonia brasiliensis (Rubiaceae). Quim. Nova 2004, 27, 525–527.

97. Qureshi, A.K.; Mukhtar, M.R.; Hirasawa, Y.; Hosoya, T.; Nugroho, A.E.; Morita, H.; Shirotia, O.; Mohamad, K.; Hadi, A.H.A.; Litaudon, M. Neolamarckines A and B, new indole alkaloids from Neolamarckia cadamba. Chem. Pharm. Bull. 2011, 59, 291–293.

98. Weniger, B.; Jiang, Y.; Anton, R.; Bastida, J.; Varea, T.; Quirion, J.C. Oxindole alkaloids from Neolaugeria resinosa. Phytochemistry 1993, 32, 1587–1590.

99. Khan, I.A.; Sticher, O.; Rali, T. New triterpenes from the leaves of Timontius timon. J. Nat. Prod. 1993, 56, 2163–2165.

100. Lendl, A.; Werner, I.; Glasl, S.; Kletter, C.; Mucaj, P.; Presser, A.; Reznicek, G.; Jurenitsch, J.; Taylor, D.W. Phenolic and terpenoid compounds from Chione venosa (sw.) urban var. venosa (Bois Bandé). Phytochemistry 2005, 66, 2381–2387.

101. Kan-Fan, C.; Zuanazzi, J.A.; Quirion, J.C.; Husson, H.P.; Henriques, A. Deppeaninol, A New β-Carboline Alkaloid from Deppea blumenaviensis (Rubiaceae). Nat. Prod. Lett. 1995, 7, 317–321.

102. Rumbero, A.; Vásquez, P. Structure and stereochemistry of magniflorine, a new indole alkaloid from Hamelia magniflora Wernha. Tetrahedron Lett. 1991, 32, 5153–5154.

103. Paniagua-Vega, D.; Cerda-García-Rojas, C.M.; Ponce-Noyola, T.; Ramos-Valdivia, A.C. A new monoterpenoid oxindole alkaloid from Hamelia patens micropropagated plantlets. Nat. Prod. Commun. 2012, 7, 1441–1444.

104. Nareeboon, P.; Komkhunthot, W.; Lekcharoen, D.; Wetprasit, N.; Piryapolsart, C.; Sutthivaiyakit, S. Acetylenic fatty acids, triglyceride and triterpenes from the leaves of Hymenodictyon excelsum. Chem. Pharm. Bull. 2009, 57, 860–862.

105. Mitaine-Offer, A.C.; Tapondjou, L.; Djoukeng, J.; Bouda, H.; Lacaille-Dubois, M.A. Glycoside derivatives of scopoletin and β-sitosterol from Hymenodictyon floribundum. Biochem. Syst. Ecol. 2003, 31, 227–228.

106. Borges, C.M.; Diakanawma, C.; de Mendonça, D.I. Iridoids from Hymenodictyon floribundum. J. Braz. Chem. Soc. 2010, 21, 1121–1125.

107. Bruix, M.; Rumbero, A.; Vázquez, P. Apodihydrocinchonamine, an indole alkaloid from Isertia haenkeana. Phytochemistry 1993, 33, 1257–1261.

108. Um, B.-H.; Weniger, B.; Lobstein, A.; Pouplin, T.; Polat, M.; Aragón, R.; Anton, R. Triterpenoid Saponins from Isertia pittieri. J. Nat. Prod. 2001, 64, 1588–1589.

109. Iqbal, P.F.; Bhat, A.R.; Azam, A. Antiamoebic coumarins from the root bark of Adina cordifolia and their new thiosemicarbazone derivatives. Eur. J. Med. Chem. 2009, 44, 2252–2259.
110. Itoh, A.; Tanahashi, T.; Nagakura, N.; Takenaka, Y.; Chen, C.C.; Pelletier, J. Flavonoid glycosides from Adina racemosa and their inhibitory activities on eukaryotic protein synthesis. *J. Nat. Prod.* 2004, 67, 427–431.

111. Itoh, A.; Fujii, K.; Tomatsu, S.; Takao, C.; Tanahashi, T.; Nagakura, N.; Chen, C.C. Six Secoiridoid Glucosides from Adina racemosa. *J. Nat. Prod.* 2003, 66, 1212–1216.

112. Fan, G.J.; He, Z.S. Triterpenoid glycosides from Adina rubella. *Phytochemistry* 1997, 44, 1139–1143.

113. He, Z.; Fang, S.Y.; Wang, P.; Gao, J.H. 27-nor-triterpenoid glycosides from Adina rubella. *Phytochemistry* 1996, 42, 1391–1393.

114. Zhang, Y.; Gan, M.; Lin, S.; Liu, M.; Song, W.; Zi, J.; Wang, S.; Li, S.; Yang, Y.; Shi, J. Glycosides from the bark of Adina polycephala. *J. Nat. Prod.* 2008, 71, 905–909.

115. Jorge, T.C.M.; Ozima, A.P.; Düsman, L.T.; Souza, M.C.; Pereira, G.F.; Vidotti, G.J.; Sarragiotto, M.H. Alkaloids from Cephalanthus glabratus (Rubiaceae). *Biochem. Syst. Ecol.* 2006, 34, 436–437.

116. Zhang, Z.; Li, S.; Zhang, S. Six new triterpenoid saponins from the root and stem bark of Cephalanthus occidentalis. *Planta Med.* 2005, 71, 355–361.

117. Staerk, D.; Lemnich, E.; Christensen, J.; Kharazmi, A.; Olsen, C.E.; Jaroszewski, J.W. Leishmanicidal, antiplasmodial and cytotoxic activity of indole alkaloids from Corynanthe pachyceras. *Planta Med.* 2000, 66, 531–536.

118. Cao, X.F.; Wang, J.S.; Wang, X.B.; Luo, J.; Wang, H.Y.; Kong, L.Y. Monoterpene indole alkaloids from the stem bark of Mitragyna diversifolia and their acetylcholine esterase inhibitory effects. *Phytochemistry* 2013, 96, 389–396.

119. Cheng, Z.H.; Yu, B.Y.; Yang, X.W. 27-Nor-triterpenoid glycosides from Mitragyna inermis. *Phytochemistry* 2002, 61, 379–382.

120. Donfack, E.V.; Lenta, B.N.; Kongue, M.D.T.; Fongang, Y.F.; Ngouela, S.; Tsamo, E.; Dittrich, B.; Laatsch, H. Naucleactonin D, an Indole Alkaloid and other Chemical Constituents from Roots and Fruits of Mitragyna inermis. *Z. Naturforsch. B* 2012, 67, 1159–1165.

121. Toure, H.; Babadjamian, A.; Balansard, G.; Faure, R.; Houghton, P. Complete 1H and 13C NMR chemical shift assignments for some pentacyclic oxindole alkaloids. *Spectroscopy Lett.* 1992, 25, 293–300.

122. Pandey, R.; Singh, S.C.; Gupta, M.M. Heteroyohimbinoid type oxindole alkaloids from Mitragyna parvifolia. *Phytochemistry* 2006, 67, 2164–2169.

123. Kang, W.; Hao, X. Triterpenoid saponins from Mitragyna rotundifolia. *Biochem. Syst. Ecol.* 2006, 34, 585–587.

124. Takayama, H. Chemistry and pharmacology of analgesic indole alkaloids from the rubiaceous plant, Mitragyna speciosa. *Chem. Pharm. Bull.* 2004, 52, 916–928.

125. Takayama, H.; Tsutssumi, S.I.; Kitajima, M.; Santiarworn, D.; Liawruangrath, B.; Aimi, N. Gluco-indole Alkaloids from Nauclea cadamba in Thailand and Transformation of 3a-Dihydrocadambine into the Indolopyridine Alkaloid, 16-Carbomethoxynaufoline. *Medica* 1983, 49, 188–190.

126. Lamidi, M.; Olivier, E.; Faure, R.; Debrauwer, L.; Nze-Ekekang, L.; Balansard, G., Quinovic acid glycosides from Nauclea diderrichii. *Planta Med.* 1995, 61, 280–281.
127. Lamidi, M.; Ollivier, E.; Mahiou, V.; Faure, R.; Debrauwer, L.; Nze Ekekang, L.; Balansard, G. Gluco-indole alkaloids from the bark of *Nauclea diderrichii*. 1H and 13C NMR assignments of 3–5 tetrahydrodeoxycordifoline lactam and cadambine acid. *Magn. Reson. Chem.* 2005, 43, 427–429.

128. Agomuoh, A.A.; Ata, A.; Udenigwe, C.C.; Aluko, R.E.; Irenus, I. Novel Indole Alkaloids from *Nauclea latifolia* and Their Renin-Inhibitory Activities. *Chem. Biodivers.* 2013, 10, 401–410.

129. Sun, J.; Lou, H.; Dai, S.; Xu, H.; Zhao, F.; Liu, K. Indole alkaloids from *Nauclea officinalis* with weak antimalarial activity. *Phytochemistry* 2008, 69, 1405–1410.

130. Liew, S.Y.; Mukhtar, M.R.; Hadi, A.H.A.; Awang, K.; Mustafa, M.R.; Zaima, K.; Morita, H.; Litaudon, M. Naucline, a new indole alkaloid from the bark of *Nauclea officinalis*. *Molecules* 2012, 17, 4028–4036.

131. Tao, J.Y.; Dai, S.J.; Zhao, F.; Liu, J.F.; Fang, W.S.; Liu, K. New ursane-type triterpene with NO production suppressing activity from *Nauclea officinalis*. *J. Asian Nat. Prod. Res.* 2012, 14, 97–104.

132. He, Z.D.; Ma, C.Y.; Zhang, H.J.; Tan, G.T.; Tamez, P.; Sydara, K.; Bouamanivong, S.; Southavong, B.; Soejarto, D.D.; Pezzuto, J.M. Antimalarial constituents from *Nauclea orientalis* (L.) *Chem. Biodivers.* 2005, 2, 1378–1386.

133. Zhang, Z.; ElSohly, H.N.; Jacob, M.R.; Pasco, D.S.; Walker, L.A.; Clark, A.M. New Indole Alkaloids from the Bark of Nauclea o rientalis. *J. Nat. Prod.* 2001, 64, 1001–1005.

134. Sichaem, J.; Surapinit, S.; Siripong, P.; Khumkr atok, S.; Jong-aramruang, J.; Tip-pyang, S. Two new cytotoxic isomeric indole alkaloids from the roots of *Nauclea orientalis*. *Fitoterapia* 2010, 81, 830–833.

135. Xu, Y.J.; Foubert, K.; Dhooghe, L.; Lemière, F.; Cimanga, K.; Mesia, K.; Apers, S.; Pieters, L. Chromatographic profiling and identification of two new iridoid-indole alkaloids by UPLC–MS and HPLC-SPE-NMR analysis of an antimalarial extract from *Nauclea pobeguinii*. *Phytochem. Lett.* 2012, 5, 316–319.

136. Anam, E.M. Novel Nauclequiniine from the Root Extract of *Nauclea pobequinii* (Pob. & Pellegr.) Petit (Rubiaceae). *J. Chem. B Organ. Chem. Med. Chem.* 1997, 36, 54–56.

137. Karaket, N.; Supaibulwatana, K.; Ounsuk, S.; Bultel-Ponce, V.; Pham, V.C.; Bodo, B. Chemical and bioactivity evaluation of the bark of *Neonauclea purpurea*. *Nat. Prod. Commun.* 2012, 7, 169–170.

138. Itoh, A.; Tanahashi, T.; Nagakura, N.; Nishi, T. Two triterpenoid saponins from *Neonauclea sessilifolia*. *Chem. Pharm. Bull.* 2003, 51, 1335–1337.

139. Kang, W.Y.; Li, G.H.; Hao, X.J. Two New Triterpenes from *Neonauclea sessilifolia*. *Acta Bot. Sin.* 2003, 45, 1003–1007.

140. Itoh, A.; Tanahashi, T.; Nagakura, N.; Nishi, T. Two chromone-secoiridoid glycosides and three indole alkaloid glycosides from *Neonauclea sessilifolia*. *Phytochemistry* 2003, 62, 359–369.

141. Mukhtar, M.R.; Osman, N.; Awang, K.; Hazni, H.; Qureshi, A.K.; Hadi, A.H.A.; Zaima, K.; Morita, H.; Litaudon, M., Neoaucline, a new indole alkaloid from the leaves of *Ochreinauclea maingayii* (Hook. f.) Ridsd.(Rubiaceae). *Molecules* 2011, 17, 267–274.

142. Raman, V.; Avula, B.; Galal, A.M.; Wang, Y.H.; Khan, I.A. Microscopic and UPLC–UV–MS analyses of authentic and commercial yohimbe (*Pausinystalia yohimbe*) bark samples. *J. Nat. Med.* 2013, 67, 42–50.
143. Kam, T.S.; Lee, K.H.; Goh, S.H. Alkaloid distribution in Malaysian Uncaria. Phytochemistry 1992, 31, 2031–2034.
144. Kam, T.S.; Lee, K.H.; Goh, S.H. Dimeric indole alkaloids from Uncaria callophylla. Phytochemistry 1991, 30, 3441–3444.
145. Diyabalanage, T.K.K.; Kumarihamy, B.M.M.; Wannigama, G.P.; Jayasinghe, L.; Merlini, L.; Scaglioni, L. Alkaloids of Uncaria elliptica. Phytochemistry 1997, 45, 1731–1732.
146. Taniguchi, S.; Kuroda, K.; Doi, K.I.; Tanabe, M.; Shibata, T.; Yoshida, T.; Hatano, T. Revised structures of gambiriins A1, A2, B1, and B2, chalcone-flavan dimers from gambir (Uncaria gambir extract). Chem. Pharm. Bull. 2007, 55, 268–272.
147. Arbain, D.; Ibrahim, S.; Sargent, M.V.; Skelton, B.W.; White, A.H. The alkaloids of Uncaria cf. glabrata. Aust. J. Chem. 1998, 51, 961–964.
148. Laus, G.; Keplinger, K. Alkaloids of peruvian Uncaria guianensis (Rubiaceae). Phyton 2003, 43, 1–8.
149. Yépez, A.M.P.; de Ugaz, O.L.; Alvarez, C.M.P.; de Feo, V.; Aquino, R.; de Simone, F.; Pizza, C. Quinovic acid glycosides from Uncaria guianensis. Phytochemistry 1991, 30, 1635–1637.
150. Xin, W.B.; Chou, G.X.; Wang, Z.T. Bis (monoterpine) indole alkaloid glucosides from Uncaria hirsuta. Phytochem. Lett. 2011, 4, 380–382.
151. Wu, T.S.; Chan, Y.Y. Constituents of leaves of Uncaria hirsuta Haviland. J. Chin. Chem. Soc. 1994, 41, 209–212.
152. Salim, F.; Ahmad, R. Alkaloids from Malaysian Uncaria longiflora var. pteropoda. Biochem. Syst. Ecol. 2011, 39, 151–152.
153. Sakakibara, I.; Takahashi, H.; Terabayashi, S.; Yuzurihara, M.; Kubo, M.; Ishige, A.; Higuchi, M.; Komatsu, Y.; Okada, M.; Maruno, M. Effect of oxindole alkaloids from the hooks of Uncaria macrophylla on thiopental-induced hypnosis. Phytomedicine 1998, 5, 83–86.
154. Ndagijimana, A.; Wang, X.; Pan, G.; Zhang, F.; Feng, H.; Olaleye, O. A review on indole alkaloids isolated from Uncaria rhynchophylla and their pharmacological studies. Fitoterapia 2013, 86, 35–47.
155. Hou, W.C.; Lin, R.D.; Chen, C.T.; Lee, M.H. Monoamine oxidase B (MAO-B) inhibition by active principles from Uncaria rhynchophylla. J. Ethnopharmacol. 2005, 100, 216–220.
156. Laus, G.; Teppner, H. The alkaloids of an Uncaria rhynchophylla (Rubiaceae-Coptosapteleae). Phyton 1996, 36, 185–196.
157. Xie, S.; Shi, Y.; Wang, Y.; Wu, C.; Liu, W.; Feng, F.; Xie, N. Systematic identification and quantification of tetracyclic monoterpine oxindole alkaloids in Uncaria rhynchophylla and their fragmentations in Q-TOF-MS spectra. J. Pharm. Biomed. Anal. 2013, 81, 56–64.
158. Ponglux, D.; Wongseripipatana, S.; Aim, N.; Nishimura, M.; Ishikawa, M.; Sada, H.; Haginiwa, J.; Sakai, S.I. Structure and synthesis of two new types of oxindole alkaloids found from Uncaria salaccensis. Chem. Pharm. Bull. 1990, 38, 573–575.
159. Liu, H.; Feng, X.; Lu, Y.; Zheng, Q. Iso rhynchophyllic acid, a new alkaloid from Uncaria sinensis. Chin. Chem. Lett. 1992, 3, 425–426.
160. Sekiya, N.; Shimada, Y.; Shibahara, N.; Takagi, S.; Yokoyama, K.; Kasahara, Y.; Sakakibara, I.; Terasawa, K. Inhibitory effects of Choto-san (Diao-teng-san), and hooks and stems of Uncaria sinensis on free radical-induced lysis of rat red blood cells. Phytomedicine 2002, 9, 636–640.
161. Montoro, P.; Carbone, V.; de Dios Zuniga Quiroz, J.; De Simone, F.; Pizza, C. Identification and quantification of components in extracts of *Uncaria tomentosa* by HPLC-ES/MS. *Phytochem. Anal. 2004*, *15*, 55–64.

162. Wirth, C.; Wagner, H. Pharmacologically active procyanidines from the bark of *Uncaria tomentosa*. *Phytomedicine 1997*, *4*, 265–266.

163. Muhammad, I.; Dunbar, D.C.; Khan, R.A.; Ganzera, M.; Khan, I.A. Investigation of Una De Gato I. 7-Deoxyloganic acid and 15N NMR spectroscopic studies on pentacyclic oxindole alkaloids from *Uncaria tomentosa*. *Phytochemistry 2001*, *57*, 781–785.

164. Aquino, R.; Tommasi, N.; Simone, F.; Pizza, C. Triterpenes and quinovic acid glycosides from *Uncaria tomentosa*. *Phytochemistry 1997*, *45*, 1035–1040.

165. Laus, G.; Keplinger, D. Separation of stereoisomeric oxindole alkaloids from *Uncaria tomentosa* by high performance liquid chromatography. *J. Chromatogr. A 1994*, *662*, 243–249.

166. García Prado, E.; Gimenez, G.; de la Puerta Vázquez, R.; Espartero Sánchez, J.L.; Sáenz Rodríguez, M.T. Antiproliferative effects of mitraphylline, a pentacyclic oxindole alkaloid of *Uncaria tomentosa* on human glioma and neuroblastoma cell lines. *Phytomedicine 2007*, *14*, 280–284.

167. Rojas-Duran, R.; González-Aspajo, G.; Ruiz-Martel, C.; Bourdy, G.; Doroteo-Ortega, V.H.; Alban-Castillo, J.; Robert, G.; Auberger, P.; Deharo, E. Anti-inflammatory activity of Mitraphylline isolated from *Uncaria tomentosa* bark. *J. Ethnopharmacol. 2012*, *143*, 801–804.

168. Wurm, M.; Kacani, L.; Laus, G.; Keplinger, K.; Dierich, M.P. Pentacyclic oxindole alkaloids from *Uncaria tomentosa* induce human endothelial cells to release a lymphocyte-proliferation-regulating factor. *Planta Med. 1998*, *64*, 701–704.

169. Kitajima, M.; Hashimoto, K.I.; Yokoya, M.; Takayama, H.; Sandoval, M.; Aimi, N. Two new nor-triterpene glycosides from peruvian “Uña de Gato”(*Uncaria tomentosa*). *J. Nat. Prod. 2003*, *66*, 320–323.

170. Aquino, R.; de Feo, V.; de Simone, F.; Pizza, C.; Cirino, G. Plant metabolites. New compounds and anti-inflammatory activity of *Uncaria tomentosa*. *J. Nat. Prod. 1991*, *54*, 453–459.

171. Kitajima, M.; Hashimoto, K.I.; Yokoya, M.; Takayama, H.; Aimi, N. Two New 19-Hydroxyursolic Acid-type Triterpenes from Peruvian “Uña de Gato” (*Uncaria tomentosa*). *Tetrahedron 2000*, *56*, 547–552.

172. Matsuo, H.; Okamoto, R.; Zaima, K.; Hirasawa, Y.; Ismail, I.S.; Lajis, N.H.; Morita, H. New Vasorelaxant Indole Alkaloids, Villocarines A–D from *Uncaria villosa*. *Bioorg. Med. Chem. 2011*, *19*, 4075–4079.

173. Drewes, S.E.; Horn, M.M.; Connolly, J.D.; Bredenkamp, B. Enolic iridolactone and other iridoids from *Alberta magna*. *Phytochemistry 1998*, *47*, 991–996.

174. Ashihara, H.; Sano, H.; Crozier, A. Caffeine and related purine alkaloids: Biosynthesis, catabolism, function and genetic engineering. *Phytochemistry 2008*, *69*, 841–856.

175. Begum, B.; Hasan, C.M.; Rashid, M.A. Caffeine from the Mature Leaves of *Coffea bengalensis*. *Biochem. Syst. Ecol. 2003*, *31*, 1219–1220.
176. Dai, Y.; Harinantenaina, L.; Brodie, P.J.; Birkinshaw, C.; Randrianaivo, R.; Applequist, W.; Ratsimbason, M.; Rasamison, V.E.; Shen, Y.; TenDyke, K. Two antiproliferative triterpene saponins from *Nematostylis anthophylla* from the highlands of Central Madagascar. *Chem. Biodivers.* 2013, *10*, 233–240.

177. Nishimura, K.; Hitotsuyanagi, Y.; Sugeta, N.; Sakakura, K.; Fujita, K.; Fukaya, H.; Aoyagi, Y.; Hasuda, T.; Kinoshita, T.; He, D.H. Tricalysiolides AF, new rearranged ent-kaurane diterpenes from *Tricalysia dubia*. *Tetrahedron* 2006, *62*, 1512–1519.

178. He, D.H.; Otsuka, H.; Hirata, E.; Shinzato, T.; Bando, M.; Takeda, Y. Tricalysiosides AG: Rearranged ent-kauranoid glycosides from the leaves of *Tricalysia dubia*. *J. Nat. Prod.* 2002, *65*, 685–688.

179. Xu, W.H.; Jacob, M.R.; Agarwal, A.K.; Clark, A.M.; Liang, Z.S.; Li, X.C. Ent-Kaurane Glycosides from *Tricalysia okelensis*. *Chem. Pharm. Bull.* 2010, *58*, 261.

180. Ngalamulume, T.; Kilonda, A.; Toppet, S.; Compernolle, F.; Hoornaert, G. An ursadienedioic acid glycoside from *Crossopteryx febrifuga*. *Phytochemistry* 1991, *30*, 3069–3072.

181. Ito, A.; Lee, Y.H.; Chai, H.B.; Gupta, M.P.; Farnsworth, N.R.; Cordell, G.A.; Pezzuto, J.M.; Kinghorn, A.D. 1′,2′,3′,4′-tetradehydrotubulosine, a cytotoxic alkaloid from *Pogonopus speciosus*. *J. Nat. Prod.* 1999, *62*, 1346–1348.

182. Bastos, A.B.F.D.O.; Carvalho, M.G.; Velandia, J.R.; Braz-Filho, R. Chemical constituents from *Simira glaziovii* (K. schum) steyerm. and 1H and 13C NMR assignments of ophiorine and its derivatives. *Quim. Nova* 2002, *25*, 241–245.

183. De Araújo, M.F.; Curcino Vieira, I.J.; Braz-Filho, R.; de Carvalho, M.G. Simiranes A and B: Erythroxylenes diterpenes and other compounds from *Simira eliezeriana* (Rubiaceae). *Nat. Prod. Res.* 2011, *25*, 1713–1719.

184. Silva, V.C.; Giannini, M.J.S.M.; Carbone, V.; Piacente, S.; Pizza, C.; Bolzani, V.S.; Lopes, M.N. New antifungal terpenoid glycosides from *Alibertia edulis* (Rubiaceae). *Helv. Chim. Acta* 2008, *91*, 1355–1362.

185. Da Silva, V.C.; de Oliveira Faria, A.; da Silva Bolzani, V.; Nasser Lopes, M. A New ent-Kaurane Diterpene from Stems of *Alibertia macrophylla* K. Schum.(Rubiaceae). *Helv. Chim. Acta* 2007, *90*, 1781–1785.
191. Zani, C.; Chaves, P.; Queiroz, R.; de Oliveira, A.; Cardoso, J.; Anjos, A.; Grandi, T. Brine shrimp lethality assay as a prescreening system for anti-\textit{Trypanosoma cruzi} activity. \textit{Phytochemistry} 1995, 20, 13480.

192. Luciano, J.H.S.; Lima, M.A.S.; Souza, E.B.; Silveira, E.R.; Vasconcelos, I.M.; Fernandes, G.S.; Souza, E.B. Antifungal iridoids, triterpenes and phenol compounds from \textit{Alibertia myrciifolia} Sprunge Ex. Schum. \textit{Quim. Nova} 2010, 33, 292–294.

193. Ahmad, V.U. \textit{Handbook of Natural Products Data: Pentacyclic Triterpenoids}; Elsevier Science: New York, NY, USA, 1994; Volume 2, p. 1556.

194. Lemmich, E.; Cornett, C.; Furu, P.; Jorstian, C.L.; Knudsen, A.D.; Olsen, C.E.; Salih, A.; Thilborg, S.T. Molluscicidal saponins from \textit{Catunaregam nilotica}. \textit{Phytochemistry} 1995, 39, 63–68.

195. Gao, G.; Lu, Z.; Tao, S.; Zhang, S.; Wang, F. Triterpenoid saponins with antifeedant activities from stem bark of \textit{Catunaregam spinosa} (Rubiaceae) against \textit{Plutella xylostella} (Plutellidae). \textit{Carbohydr. Res.} 2011, 346, 2200–2205.

196. Kongyen, W.; Rukachaisirikul, V.; Sawangjaroen, N.; Songsing, P.; Madardam, H. Anthraquinone and naphthoquinone derivatives from the roots of \textit{Coptosapelta flavescens}. \textit{Nat. Prod. Commun.} 2014, 9, 219–220.

197. Page, J.E.; Madrinan, S.; Towers, G.H.N. Identification of a plant growth inhibiting iridoid lactone from \textit{Duroia hirsuta}, the allelopathic tree of the “Devil’s Garden”. \textit{Cell. Mol. Life Sci.} 1994, 50, 840–842.

198. Aquino, R.; de Tommasi, N.; Tapia, M.; Lauro, M.R.; Rastrelli, L. New 3-methoxyflavones, an iridoid lactone and a flavonol from \textit{Duroia hirsuta}. \textit{J. Nat. Prod.} 1999, 62, 560–562.

199. Martins, D.; Carrion, L.L.; Ramos, D.F.; Salome, K.S.; da Silva, P.E.A.; Barison, A.; Nunez, C.V. Triterpenes and the Antimycobacterial Activity of \textit{Duroia macrophylla} Huber (Rubiaceae). \textit{Biomed. Res. Int.} 2013, 2013, doi:org/10.1155/2013/605831.

200. Nuanyai, T.; Sappapan, R.; Vilaiwan, T.; Pudhom, K. Dammarane triterpenes from the apical buds of \textit{Gardenia collinsae}. \textit{Phytochem. Lett.} 2011, 4, 183–186.

201. Kunert, O.; Sreekanth, G.; Babu, G.S.; Rao, B.V.R.A.; Radhakishan, M.; Kumar, B.R.; Saf, R.; Rao, A.V.N.A.; Schühly, W. Cycloartane triterpenes from dikamali, the gum resin of \textit{Gardenia gummifera} and \textit{Gardenia lucida}. \textit{Chem. Biodivers.} 2009, 6, 1185–1192.

202. Moon, H.I.; Oh, J.S.; Kim, J.S.; Chen, P.C.; Zee, O.P. Phytochemical Compounds from the Underground Parts of \textit{Gardenia jasminoides} var. \textit{radicans} Makino. \textit{Korean J. Pharmacogn.} 2002, 33, 1–4.

203. Machida, K.; Takehara, E.; Kobayashi, H.; Kikuchi, M. Studies on the constituents of \textit{Gardenia} species. III. New iridoid glycosides from the leaves of \textit{Gardenia jasminoides} cv. \textit{fortuneana} Hara. \textit{Chem. Pharm. Bull.} 2003, 51, 1417–1419.

204. Fu, X.M.; Chou, G.X.; Wang, Z.T. Iridoid Glycosides from \textit{Gardenia jasminoides} Ellis. \textit{Helv. Chim. Acta} 2008, 91, 646–653.

205. Zhou, X.Q.; Bi, Z.M.; Li, P.; Tang, D.; Cai, H.X. A new iridoid glycoside from \textit{Gardenia jasminoides}. \textit{Chin. Chem. Lett.} 2007, 18, 1221–1223.

206. Zhao, W.M.; Xu, J.P.; Qin, G.W.; Xu, R.S. Two monoterpenes from fruits of \textit{Gardenia jasminoides}. \textit{Phytochemistry} 1994, 37, 1079–1081.
207. Pfister, S.; Meyer, P.; Steck, A.; Pfänder, H. Isolation and structure elucidation of carotenoid-glycosyl esters in Gardenia fruits (Gardenia jasminoides Ellis) and saffron (Crocus sativus Linne). J. Agric. Food Chem. 1996, 44, 2612–2615.

208. Yang, L.; Peng, K.; Zhao, S.; Chen, L.; Qiu, F. Monoterpenoids from the fruit of Gardenia jasminoides Ellis (Rubiaceae). Biochem. Syst. Ecol. 2013, 50, 435–437.

209. Yang, L.; Peng, K.; Zhao, S.; Zhao, F.; Chen, L.; Qiu, F. 2-Methyl-l-erythritol glycosides from Gardenia jasminoides. Fitoterapia 2013, 89, 126–130.

210. Yu, Y.; Xie, Z.L.; Gao, H.; Ma, W.W.; Dai, Y.; Wang, Y.; Zhong, Y.; Yao, X.S. Bioactive iridoid glucosides from the fruit of Gardenia jasminoides. J. Nat. Prod. 2009, 72, 1459–1464.

211. Yang, L.; Peng, K.; Zhao, S.; Zhao, F.; Chen, L.; Qiu, F. Monoterpenoids from the fruit of Gardenia jasminoides Ellis (Rubiaceae). Biochem. Syst. Ecol. 2013, 50, 435–437.

212. Liu, Y.; Xie, Z.L.; Gao, H.; Ma, W.W.; Dai, Y.; Wang, Y.; Zhong, Y.; Yao, X.S. Bioactive iridoid glucosides from the fruit of Gardenia jasminoides. J. Nat. Prod. 2009, 72, 1459–1464.
226. Jangwan, J.S.; Singh, R. *In vitro* cytotoxic activity of triterpene isolated from bark of *Randia Dumetorum* Lamk. *J. Curr. Chem. Pharm. Sci.* 2014, 4, 1–9.

227. Sahpaz, S.; Gupta, M.P.; Hostetmann, K. Triterpene saponins from *Randia formosa*. *Phytochemistry* 2000, 54, 77–84.

228. Jansakul, C.; Intarit, K.; Itharat, A.; Phadungcharoen, T.; Ruangrungsi, N.; Merica, A.; Lange, G.L. Biological activity of crude extract and saponin pseudoginsenoside-RT1 derived from the fruit of *Randia siamensis*. *Pharm. Biol.* 1999, 37, 42–45.

229. Sahpaz, S.; Gupta, M.P.; Hostettmann, K. Triterpene saponins from *Randia formosa*. *Phytochemistry* 2000, 54, 77–84.

230. Jansakul, C.; Intarit, K.; Itharat, A.; Phadungcharoen, T.; Ruangrungsi, N.; Merica, A.; Lange, G.L. Biological activity of crude extract and saponin pseudoginsenoside-RT1 derived from the fruit of *Randia siamensis*. *Pharm. Biol.* 1999, 37, 42–45.

231. Ling, S.K.; Tanaka, T.; Kouno, I. Iridoids from *Rothmannia macrophylla*. *J. Nat. Prod.* 2001, 64, 796–798.

232. Bringmann, G.; Hamm, A.; Kraus, J.; Ochse, M.; Noureldeen, A.; Jumbam, D.N. Gardenamide A from *Rothmannia urcelliformis* (Rubiaceae)—Isolation, Absolute Stereostructure, and Biomimetic Synthesis from Genipine. *European J. Org. Chem.* 2001, 2001, 1983–1987.

233. Kumara, P.M.; Soujanya, K.N.; Ravikanth, G.; Vasudeva, R.; Ganeshiah, K.N.; Shaanker, R.U. Rohitukine, a chromone alkaloid and a precursor of flavopiridol, is produced by endophytic fungi isolated from *Dysoxylum binectariferum* Hook. f and *Amoora rohituka* (Roxb). *Wight & Arn. Phytomedicine* 2014, 21, 541–546.

234. Zeng, Y.B.; Mei, W.L.; Zhao, Y.X.; Zhuang, L.; Hong, K.; Dai, H.F. Two new epimeric pairs of iridoid from mangrove plant *Scyphiphora hydrophyllacea*. *Chin. Chem. Lett.* 2007, 18, 1509–1511.

235. Von Poser, G.L.; Seibt, L.T. Gardenoside from *Tocoyena bullata*. *Biochem. Syst. Ecol.* 1998, 26, 669–670.

236. Latha, P.G.; Nayar, M.N.S.; Sing, O.V.; George, K.R.; Panikkar, K.R.; Pushpangadan, P. Isolation of antigenotoxic ursolic acid from *Ixora coccinea* flowers. *Actual. Biol.* 2001, 23, 21–24.

237. Raharivelomanana, P.; Bianchini, J.P.; Ramanoeina, A.R.P.; Rasoharahona, J.R.E.; Chatel, F.; Faure, R. Structures of Cadinane- and Guaiane-type Sesquiterpenoids from *Enterospermum madagascariensis* (Baill.) Homolle. *Magn. Reson. Chem.* 2005, 43, 1049–1052.

238. Rasoanaivo, P.; Multari, G.; Federici, E.; Galeffi, C. Triterpenoid diglucoside of *Enterospermum pruninosum*. *Phytochemistry* 1995, 39, 251–253.

239. Versiani, M.A.; Ikram, A.; Khalid, S.; Faizi, S.; Tahiri, I.A. Ixoroid: A new triterpenoid from the flowers of *Ixora coccinea*. *Nat. Prod. Commun.* 2012, 7, 831–834.
243. Ikram, A.; Versiani, M.A.; Shamshad, S.; Ahmed, S.K.; Ali, S.T.; Faizi, S. Ixorene, a New Dammarane Triterpene from the Leaves of *Ixora coccinea* Linn. *Rec. Nat. Prod.* 2013, 7, 302–306.

244. Jaiswal, R.; Karar, M.G.E.; Gadir, H.A.; Kuhnert, N. Identification and Characterisation of Phenolics from *Ixora coccinea* L.(Rubiaceae) by Liquid Chromatography Multi-stage Mass Spectrometry. *Phytochem. Anal.* 2014, 25, 567–576.

245. Wynants, C.; Toppet, S.; Kilonda, A.; Hoornaert, G. Two triterpenoid saponins from *Heinsia crinata*. *Phytochemistry* 1994, 36, 1489–1492.

246. Vidyalakshmi, K.; Rajamanickam, G. An iridoid with anticancer activity from the sepals of *Mussaenda dona* aurora. *Indian J. Chem. B* 2009, 48, 1019–1022.

247. Eswaraiah, M.C.; Elumalai, A. Isolation of phytoconstituents from the stems of *Mussaenda erythrophylla*. *Pharm. Sin.* 2011, 2, 132–142.

248. Dinda, B.; Debnath, S.; Majumder, S.; Arima, S.; Sato, N.; Harigaya, Y. Chemical constituents of *Mussaenda incana*. *Ind. J. Chem.* 2005, 44, 2362–2366.

249. Dinda, B.; Majumder, S.; Arima, S.; Sato, N.; Harigaya, Y. Iridoid glucoside and sterol galactoside from *Mussaenda macrophylla*. *J. Nat. Med.* 2008, 62, 447–451.

250. Chandra, D.U.; Ghosh, R.; Chowdhury, S.; Dinda, B. New iridoid from aerial parts of *Mussaenda roxburghii*. *Nat. Prod. Commun.* 2012, 7, 1–2.

251. Zhao, W.; Yang, G.; Xu, R.; Qin, G. Three monoterpenes from *Mussaenda pubescens*. *Phytochemistry* 1996, 41, 1553–1555.

252. Zhao, W.; Xu, J.; Qin, G.; Xu, R. Saponins from *Mussaenda pubescens*. *Phytochemistry* 1995, 39, 191–193.

253. Macabeo, A.; Avila, J.A.; Alejandro, G.; Franzblau, S.G.; Kouam, S.F.; Hussain, H.; Krohn, K. Villarinol, a new alkenyloxyalkenol derivative from the endemic Philippine Rubiaceae species *Villaria odorata*. *Nat. Prod. Commun.* 2012, 7, 779–780.

254. Tan, M.A.; Villacorta, R.A.U.; Alejandro, G.J.D.; Takayama, H. Iridoids and a Norsesquiterpenoid from the Leaves of *Villaria odorata*. *Nat. Prod. Commun.* 2014, 9, 1229–1230.

255. Yang, X.W.; Ma, Y.L.; He, H.P.; Wang, Y.H.; Di, Y.T.; Zhou, H.; Li, L.; Hao, X.J. Iridoid Constituents of *Tarenna attenuata*. *J. Nat. Prod.* 2006, 69, 971–974.

256. Zhao, Z.; Matsunami, K.; Otsuka, H.; Shinzato, T.; Takeda, Y. Tareciliosides HM: Further cycloartane glycosides from leaves of *Tarenna gracilipes*. *Chem. Pharm. Bull.* 2011, 59, 902–905.

257. Zhao, Z.; Matsunami, K.; Otsuka, H.; Shinzato, T.; Takeda, Y. Tareciliosides AG: Cycloartane glycosides from leaves of *Tarenna gracilipes* (HAY.) OHWI. *Chem. Pharm. Bull.* 2008, 56, 1153–1158.

258. Djoudi, R.; Bertrand, C.; Fiasson, K.; Fiasson, J.L.; Comte, G.; Fenet, B.; Antoine Rabesa, Z. Polyphenolics and iridoid glycosides from *Tarenna madagascariensis*. *Biochem. Syst. Ecol.* 2007, 35, 314–316.

259. Kato, L.; Oliveira, C.; Melo, M.P.; Freitas, C.S.; Schuquel, I.T.A.; Delprete, P.G. Glucosidic iridoids from *Molopanthera paniculata* Turcz.(Rubiaceae, Posenquerieae). *Phytochem. Lett.* 2012, 5, 155–157.
Batista, J.C.; Santin, S.M.D.O.; Schuquel, I.T.A.; Arruda, L.L.M.D.; Bersani-Amado, C.A.; Oliveira, C.M.A.D.; Kato, L.; Ferreira, H.D.; Silva, C.C.D. Chemical constituents and evaluation of antioxidant and anti-inflammatory activities of roots of *Sabicea brasiliensis* wernh (Rubiaceae). *Quim. Nova* **2014**, *37*, 638–642.

Oliveira, A.M.D.; Conserva, L.M.; de Souza Ferro, J.N.; Brito, F.D.A.; Lemos, R.P.L.; Barreto, E. Antinociceptive and anti-inflammatory effects of octacosanol from the leaves of *Sabicea grisea* var. *grisea* in mice. *Int. J Mol. Sci.* **2012**, *13*, 1598–1611.

De Oliveira, A.; Lima, R.; Ferro, J.; Lemos, R.; Conserva, L.; Barreto, E. Chemical Constituents from the Stems and Preliminary Antinociceptive Activity of *Sabicea grisea* var. *grisea*. *Chem. Nat. Compd.* **2014**, *49*, 1119–1120.

Kanchanapoom, T.; Kasai, R.; Yamasaki, K. Iridoid and phenolic diglycosides from *Canthium berberidifolium*. *Phytochemistry* **2002**, *61*, 461–464.

Kouam, S.F.; Ngouonpe, A.W.; Bullach, A.; Lamshöft, M.; Kuigoua, G.M.; Spiteller, M. Monoterpenes with antibacterial activities from a Cameroonian medicinal plant *Canthium Multiflorum* (Rubiaceae). *Fitoterapia* **2013**, *91*, 199–204.

Schwarz, B.; Wray, V.; Proksch, P. A cyanogenic glycoside from *Canthium schimperianum*. *Phytochemistry* **1996**, *42*, 633–636.

Anero, R.; Díaz-Lanza, A.; Ollivier, E.; Baghdikian, B.; Balansard, G.; Bernabé, M. Monoterpene glycosides isolated from *Fadogia agrestis*. *Phytochemistry* **2008**, *69*, 805–811.

Mencherini, T.; Picerno, P.; del Gaudio, P.; Festa, M.; Capasso, A.; Aquino, R. Saponins and polyphenols from *Fadogia ancylantha* (Makoni tea). *J. Nat. Prod.* **2010**, *73*, 247–251.

Mohammed, A.M.A.; Coombes, P.H.; Crouch, N.R.; Mulholland, D.A. Chemical Constituents from *Fadogia homblei* De Wild (Rubiaceae). *Int. Lett. Chem. Phys. Astron.* **2013**, *9*, 116–124.

Chatterjee, S.K.; Bhattacharjee, I.; Chandra, G. Isolation and identification of bioactive antibacterial components in leaf extracts of *Vangueria spinosa* (Rubiaceae). *Asian Pac. J. Trop. Med.* **2011**, *4*, 35–40.

Pham, V.C.; Jossang, A.; Sevenet, T.; Nguyen, V.H.; Bodo, B. Absolute Configuration of Myrobotinol, New Fused-Hexacyclic Alkaloid Skeleton from *Myrioneuron nutans*. *J. Org. Chem.* **2007**, *72*, 9826–9829.

Pham, V.C.; Jossang, A.; Sevenet, T.; Nguyen, V.H.; Bodo, B. Absolute Configuration of Myrobotinol, New Fused-Hexacyclic Alkaloid Skeleton from *Myrioneuron nutans*. *J. Org. Chem.* **2007**, *72*, 9826–9829.

Lakshmana Raju, B.; Lin, S.J.; Hou, W.C.; Lai, Z.Y.; Liu, P.C.; Hsu, F.L. Antioxidant iridoid glucosides from *Wendlandia formosana*. *Nat. Prod. Res.* **2004**, *18*, 357–364.

Dinda, B.; Debnath, S.; Arima, S.; Sato, N.; Harigaya, Y. Iridoid glucosides from *Wendlandia tinctoria* roots. *Chem. Pharm. Bull.* **2006**, *54*, 1030–1033.

Dinda, B.; Debnath, S.; Banik, R.; Sato, N.; Harigaya, Y. Iridoid glucosides from *Wendlandia tinctoria* roots. *Nat. Prod. Commun.* **2011**, *6*, 747–748.

Sargent, M.V.; Wahyuni, F.S. (+)-Isochimonanthine, a Pyrrolidinoindole Alkaloid from *Argostemma yappii* King. *Aust. J. Chem.* **2000**, *53*, 159–160.
276. Kitagawa, I.; Wei, H.; Nagao, S.; Mahmoud, T.; Hori, K.; Kobayashi, M.; Uji, T.; Shibuya, H. Indonesian Medicinal Plants. XIV. Characterization of 3′-O-Caffeoyls weroside, a new secoiridoid glucoside, and kelampayosides A and B. two new phenolic apioglucosides, from the bark of Anthocephalus chinensis (Rubiaceae). *Chem. Pharm. Bull.* **1996**, *44*, 1162–1167.

277. Su, B.N.; Kang, Y.H.; Pinos, R.E.; Santarsiero, B.D.; Mesecar, A.D.; Soejarto, D.D.; Fong, H.H.S.; Pezzuto, J.M.; Kinghorn, A.D. Isolation and absolute stereochemistry of coussaric acid, a new bioactive triterpenoid from the stems of Coussarea brevicaulis. *Phytochemistry* **2003**, *64*, 293–302.

278. Hamerski, L.; BomM, M.D.; Silva, D.H.S.; Young, M.C.M.; Furlan, M.; Eberlin, M.N.; Castro-Gamboa, I.; Cavalheiro, A.J.; Bolzani, S.V. Phenylpropanoid glucosides from leaves of Coussarea hydrangeifolia (Rubiaceae). *Phytochemistry* **2005**, *66*, 1927–1932.

279. Prakash Chaturvedula, V.; Schilling, J.K.; Johnson, R.K.; Kingston, D.G. New cytotoxic lupane triterpenoids from the twigs of Coussarea paniculata. *J. Nat. Prod.* **2003**, *66*, 419–422.

280. Araujo, F.C.V.D.; Marques, F.G.; Silva, C.C.D.; Santin, S.M.D.O.; Nakamura, C.V.; Zamuner, M.L.M.; Souza, M.C.D. Terpenes isolated of Coussarea platyphylla Müll. Arg. (Rubiaceae). *Quim. Nova* **2009**, *32*, 1760–1763.

281. Piovano, M.; Chamy, M.C.; Garbarino, J.A.; Nicoletti, M. Iridoids from Cruckshanksia pumila (Rubiaceae). *Biochem. Syst. Ecol.* **2003**, *31*, 1201–1203.

282. Núñez-Montoya, S.C.; Comini, L.R.; Sarmiento, M.; Becerra, C.; Albesa, I.; Argüello, G.A.; Cabrera, J.L. Natural anthraquinones probed as Type I and Type II photosensitizers: singlet oxygen and superoxide anion production. *J. Photochem. Photobiol. B* **2005**, *78*, 77–83.

283. Barrera-Vázquez, M.F.; Comini, L.R.; Martini, R.E.; Núñez-Montoya, S.C.; Bottini, S.; Cabrera, J.L. Comparisons between conventional, ultrasound-assisted and microwave-assisted methods for extraction of anthraquinones from Heterophyllaea pustulata Hook f. (Rubiaceae). *Ultrason. Sonochem.* **2014**, *21*, 478–484.

284. Wang, Y.B.; Huang, R.; Zhang, H.B.; Li, L. Chromone glycosides from Knoxia corymbosa. *J. Asian Nat. Prod. Res.* **2006**, *8*, 663–670.

285. Zhou, Z.; Jiang, S.H.; Zhu, D.Y.; Lin, L.Z.; A Cordell, G. Anthraquinones from Knoxia valerianoides. *Phytochemistry* **1994**, *36*, 765–768.

286. Yoo, N.H.; Jang, D.S.; Lee, Y.M.; Jeong, I.H.; Cho, J.H.; Kim, J.H.; Kim, J.S. Anthraquinones from the roots of Knoxia valerianoides inhibit the formation of advanced glycation end products and rat lens aldose reductase in vitro. *Arch. Pharm. Res.* **2010**, *33*, 209–214.

287. Bukuru, J.; Nguyen Van, T.; Van Puyvelde, L.; He, W.; De Kimpe, N. New pentacyclic cyclol-type naphthoquinone from the roots of Pentas bussei. *Tetrahedron* **2003**, *59*, 5905–5908.

288. Bukuru, J.F.; Van, T.N.; Van Puyvelde, L.; Mathenge, S.G.; Mudida, F.P.; De Kimpe, N. A Benzochromene from the Roots of Pentas bussei. *J. Nat. Prod.* **2002**, *65*, 783–785.

289. Endale, M.; Patrick, A.J.; Akala-Hoseah, M.; Ronon-Nelson, K.; Eyase-Fredrick, L.; Solomon, D.; Albert, N.; Njogu, M.M.; Per, S.; Mate, E. Antiplasmodial Quinones from Pentas longiflora and Pentas lanceolata. *Planta Med.* **2012**, *78*, 31–35.

290. Schripsema, J.; Caprini, G.P.; van der Heijden, R.; Bino, R.; de Vos, R.; Dagnino, D. Iridoids from Pentas lanceolata. *J. Nat. Prod.* **2007**, *70*, 1495–1498.

291. Hari, L.; de Buyck, L.F.; de Pootert, H.L. Naphthoquinoid pigments from Pentas longiflora. *Phytochemistry* **1991**, *30*, 1726–1727.
292. Endale, M.; Ekberg, A.; Alao, J.P.; Akala, H.M.; Ndakala, A.; Sunnerhagen, P.; Erdélyi, M.; Yenesew, A. Anthraquinones of the Roots of *Pentas micrantha*. *Molecules* **2012**, *18*, 311–321.

293. Donfack, A.R.N.; Tala, M.F.; Wabo, H.K.; Jerz, G.; Zeng, G.Z.; Winterhalter, P.; Tan, N.H.; Tane, P. Two new anthraquinone dimers from the stem bark of *Pentas schimperi* (Rubiaceae). *Phytochem. Lett.* **2014**, *8*, 55–58.

294. Cai, Y.F.; Huang, Q.S. Determination of oleanolic acid and ursolic acid in *Damnacanthus indicus* from different places by RP-hPLC. *Zhong Yao Cai* **2012**, 35, 694–696.

295. Kanchanapoom, T.; Kasai, R.; Yamasaki, K. Iridoid and phenolic glycosides from *Morinda coreia*. *Phytochemistry* **2002**, *59*, 551–556.
309. Abdullah, M.A.; Ali, A.M.; Marziah, M.; Lajis, N.H.; Ariff, A.B. Establishment of cell suspension cultures of *Morinda elliptica* for the production of anthraquinones. *Plant Cell Tissue Organ Cult.* 1998, 54, 173–182.

310. Ismail, N.H.; Ali, A.M.; Aimi, N.; Kitajima, M.; Takayama, H.; Lajis, N.H. Anthraquinones from *Morinda elliptica*. *Phytochemistry* 1997, 45, 1723–1725.

311. Chiang, L.; Abdullah, M.A. Enhanced anthraquinones production from adsorbent-treated *Morinda elliptica* cell suspension cultures in production medium strategy. *Process Biochem.* 2007, 42, 757–763.

312. Pham, M.H.; Nguyen, D.T.; Do, T.D. Isolation and Identification of Scopoletin From Roots of Nho Dong (*Morinda longissima* Y.Z. Ruan, Rubiaceae). *Tap. Chi. Duoc. Hoc.* 2005, 45, 12–13.

313. Rath, G.; Ndonzao, M.; Hostettmann, K. Antifungal anthraquinones from *Morinda lucida*. *Pharm. Biol.* 1995, 33, 107–114.

314. Cimanga, K.; De Bruyne, T.; Lasure, A.; Li, Q.; Pieters, L.; Claeys, M.; Berghe, D.V.; Kambu, K.; Tona, L.; Vlietinck, A. Flavonoid O-glycosides from the leaves of *Morinda morindoides*. *Phytochemistry* 1995, 38, 1301–1303.

315. Cimanga, R.K.; Kambu, K.; Tona, L.; Hermans, N.; Apers, S.; Totté, J.; Pieters, L.; Vlietinck, A.J. Cytotoxicity and *in vitro* susceptibility of Entamoeba histolytica to *Morinda morindoides* leaf extracts and its isolated constituents. *J. Ethnopharmacol.* 2006, 107, 83–90.

316. Tamura, S.; Kubata, B.K.; Itagaki, S.; Horii, T.; Taba, M.K.; Murakami, N. New anti-malarial phenylpropanoid conjugated iridoids from *Morinda morindoides*. *Bioorg. Med. Chem. Lett.* 2010, 20, 1520–1523.

317. Shin, J.S.; Yun, K.J.; Chung, K.S.; Seo, K.H.; Park, H.J.; Cho, Y.M.; Baek, N.I.; Jang, D.; Lee, K.T. Monotropein isolated from the roots of *Morinda officinalis* ameliorates proinflammatory mediators in RAW 264.7 macrophages and dextran sulfate sodium (DSS)-induced colitis via NF-kB inactivation. *Food Chem. Toxicol.* 2013, 53, 263–271.

318. Bao, L.; Qin, L.; Liu, L.; Wu, Y.; Han, T.; Xue, L.; Zhang, Q. Anthraquinone compounds from *Morinda officinalis* inhibit osteoclastic bone resorption *in vitro*. *Chem. Biol. Interact.* 2011, 194, 97–105.

319. Ruksilp, T.; Sichaem, J.; Khumkratok, S.; Siripong, P.; Tip-pyang, S. Anthraquinones and an iridoid glycoside from the roots of *Morinda pandurifolia*. *Biochem. Syst. Ecol.* 2011, 39, 888–892.

320. Borrotto, J.; Coll, J.; Rivas, M.; Blanco, M.; Concepción, O.; Tandrón, Y.A.; Hernández, M.; Trujillo, R. Anthraquinones from *in vitro* root culture of *Morinda royoc*. *Plant Cell Tissue Organ Cult.* 2008, 94, 181–187.

321. Ban, N.K.; Giang, V.H.; Linh, T.M.; Lien, L.Q.; Ngoc, N.T.; Thao, D.T.; Nam, N.H.; Cuong, N.X.; van Kiem, P.; van Minh, C. Two new 11-noriridoids from the aerial parts of *Morinda umbellata*. *Phytochemistry* 2013, 6, 267–269.

322. Arbain, D.; Lajis, N.H.; Putra, D.P.; Sargent, M.V.; Skelton, B.W.; White, A.H. A New Quaternary Corynanthe Alkaloid from *Lerchea bracteata*. *ChemInform* 1993, 24, doi:10.1039/P19920003039.

323. Huang, S.D.; Zhang, Y.; Cao, M.M.; Di, Y.T.; Tang, G.H.; Peng, Z.G.; Jiang, J.D.; He, H.P.; Hao, X.J. Myrberine A, a new alkaloid with an unprecedented heteropentacyclic skeleton from *Myrioneuron faberi*. *Org. Lett.* 2013, 15, 590–593.
324. Arbain, D.; Dachriyanus, F.; Sargent, M.V.; Skelton, B.W.; White, A.H. Unusual indole alkaloids from *Ophiorrhiza blumeana* Korth. *J. Chem. Soc. Perkin Trans. 1* 1998, 2537–2540.

325. Arbain, D.; Byrne, L.T.; Sargent, M.V. Isomalindine-16-carboxylate, a zwitterionic alkaloid from *Ophiorrhiza cf. communis*. *Aust. J. Chem.* 1997, 50, 1109–1110.

326. Hamzah, A.S.; Arbain, D.; V. Sargent, M.; Lajis, M.N. The Alkaloids of *Ophiorrhiza communis* and *O. tomentosa*. *Pertanika J. Sci. Technol.* 1994, 2, 33–38.

327. Chan, H.H.; Li, C.Y.; Damu, A.G.; Wu, T.S. Anthraquinones from *Ophiorrhiza hayatana* OHWI. *Chem. Pharm. Bull.* 2005, 53, 1232–1235.

328. Arbain, D.; Putra, D.P.; Sargent, M.V.; Susila, R.; Wahyuni, F.S. Indole alkaloids from two species of *Ophiorrhiza*. *Aust. J. Chem.* 2000, 53, 221–224.

329. Kitajima, M.; Fujii, N.; Yoshino, F.; Sudo, H.; Saito, K.; Aimi, N.; Takayama, H. Camptothecins and two new monoterpenoid glucosides from *Ophiorrhiza liukiuensis*. *Chem. Pharm. Bull.* 2005, 53, 1355–1358.

330. Kitajima, M. Chemical studies on monoterpenoid indole alkaloids from medicinal plant resources *Gelsemium* and *Ophiorrhiza*. *J. Nat. Med.* 2007, 61, 14–23.

331. Saito, K.; Sudo, H.; Yamazaki, M.; Koseki-Nakamura, M.; Kitajima, M.; Takayama, H.; Aimi, N. Feasible production of camptothecin by hairy root culture of *Ophiorrhiza pumila*. *Plant Cell Rep.* 2001, 20, 267–271.

332. Kitajima, M.; Fischer, U.; Nakamura, M.; Ohsawa, M.; Ueno, M.; Takayama, H.; Stöckigt, J.; Aimi, N. Anthraquinones from *Ophiorrhiza pumila* tissue and cell cultures. *Phytochemistry* 1998, 48, 107–111.

333. Yamazaki, M.; Mochida, K.; Asano, T.; Nakabayashi, R.; Chiba, M.; Udomson, N.; Yamazaki, Y.; Goodenowe, D.B.; Sankawa, U.; Yoshida, T. Coupling deep transcriptome analysis with untargeted metabolic profiling in *Ophiorrhiza pumila* to further the understanding of the biosynthesis of the anti-cancer alkaloid camptothecin and anthraquinones. *Plant Cell and Physiol.* 2013, 54, 686–696.

334. Raveendran, V.V.; Vijayan, F.P.; Padikkala, J. Antitumor activities of an anthraquinone fraction isolated from *in vitro* cultures of *Ophiorrhiza rugosa* var decumbens. *Integr. Cancer Ther.* 2011, 11, 120–128.

335. Kitajima, M.; Ohara, S.; Kogure, N.; Santiarworn, D.; Takayama, H. β-Carboline-type indole alkaloid glycosides from *Ophiorrhiza trichocarpon*. *Tetrahedron* 2013, 69, 9451–9456.

336. Uddin, N.; Hossain, M.K.; Haque, M.R.; Hasan, C.M. Chemical Investigation of *Paederia foetidae* (Rubiaceae). *Asian J. Chem.* 2013, 25, 1163–1164.

337. Suzuki, S.; Endo, Y. Studies on the Constituents of the Fruits of *Paederia scandens*. Structure of A New Iridoid, Paederia lactone. *J. Tohoku Pharm. Univ.* 2004, 51, 17–21.

338. Quang, D.N.; Hashimoto, T.; Tanaka, M.; Dung, N.X.; Asakawa, Y. Iridoid glycosides from roots of Vietnamese *Paederia scandens*. *Phytochemistry* 2002, 60, 505–514.

339. Wu, Z.J.; Wang, J.H.; Fang, D.M.; Zhang, G.L. Analysis of iridoid glycosides from *Paederia scandens* using HPLC–ESI-MS/MS. *J. Chromatogr.B* 2013, 923, 54–64.

340. He, D.H.; Chen, J.S.; Wang, X.L.; Ding, K.Y. A new iridoid glycoside from *Paederia scandens*. *Chin. Chem. Lett.* 2010, 21, 437–439.
341. Liu, M.; Zhou, L.; Chen, Z.; Hu, C. Analgesic effect of iridoid glycosides from Paederia scandens (LOUR.) MERRILL (Rubiaceae) on spared nerve injury rat model of neuropathic pain. Pharmacol. Biochem. Behav. 2012, 102, 465–470.

342. Hou, S.; Zhu, W.; Pang, M.; Jeffry, J.; Zhou, L. Protective effect of iridoid glycosides from Paederia scandens (LOUR.) MERRILL (Rubiaceae) on uric acid nephropathy rats induced by yeast and potassium oxonate. Food Chem. Toxicol. 2014, 64, 57–64.

343. Kim, Y.L.; Chin, Y.-W.; Kim, J.; Park, J.H. Two new acylated iridoid glucosides from the aerial parts of Paederia scandens. Chem. Pharm. Bull. 2004, 52, 1356–1357.

344. Zou, X.; Peng, S.; Liu, X.; Bai, B.; Ding, L. Sulfur-containing iridoid glucosides from Paederia scandens. Fitoterapia 2006, 77, 374–377.

345. Osman, C.P.; Ismail, N.H.; Ahmad, R.; Ahmat, N.; Awang, K.; Jaafar, F.M. Anthraquinones with antiplasmodial activity from the roots of Rennellia elliptica Korth.(Rubiaceae). Molecules 2010, 15, 7218–7226.

346. Lorence, A.; Medina-Bolivar, F.; Nessler, C.L. Camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata hairy roots. Plant Cell Rep. 2004, 22, 437–441.

347. Bernhard, M.; Fasshuber, H.; Robien, W.; Brecker, L.; Greger, H. Dopamine-iridoid alkaloids in Carapichea affinis (Psychotria borucana) confirm close relationship to the vomiting root Ipecac. Biochem. Syst. Ecol. 2011, 39, 232–235.

348. Itoh, A.; Baba, Y.; Tanahashi, T.; Nagakura, N. Tetrahydroisoquinoline-monoterpenyl glycocides from Cephaelis acuminata. Phytochemistry 2002, 59, 91–97.

349. Itoh, A.; Ikuta, Y.; Baba, Y.; Tanahashi, T.; Nagakura, N. Ipecac alkaloids from Cephaelis acuminata. Phytochemistry 1999, 52, 1169–1176.

350. Solis, P.N.; Wright, C.W.; Gupta, M.P.; Philipson, J.D. Alkaloids from Cephaelis dichroa. Phytochemistry 1993, 33, 1117–1119.

351. Itoh, A.; Tanahashi, T.; Nagakura, N.; Nayeshiro, H. Tetrahydroisoquinoline-monoterpenyl glucosides from Alangium lamarckii and Cephaelis ipecacuanha. Phytochemistry 1994, 36, 383–387.

352. Yoshimatsu, K.; Shimomura, K. Emetic alkaloid formation in root culture of Cephaelis ipecacuanha. Phytochemistry 1991, 30, 505–507.

353. Schinnerl, J.; Orlowska, E.A.; Lorbeer, E.; Berger, A.; Brecker, L. Alstrostines in Rubiaceae: Alstrostone A from Chassalia curviflora var. ophioxyloides and a novel derivative, rudgeifoline from Rudgea cornifolia. Phytochemistry. Lett. 2012, 5, 586–590.

354. Brand, G.; Henriques, A.T.; Passos, C.S.; Baldoqui, D.C.; Oliveira Santin, S.M.; Ferreira da Costa, W.; Sarragiotto, M.H. Pyrrolidinoindoline alkaloids from Margaritopsis cymuligera (Muell. Arg.) CM Taylor (Rubiaceae). Biochem. Syst. Ecol. 2012, 45, 155–157.

355. Berger, A.; Fasshuber, H.; Schinnerl, J.; Brecker, L.; Greger, H. Various types of tryptamine-iridoid alkaloids from Palicourea acuminata (Psychotria acuminata, Rubiaceae). Phytochem. Lett. 2012, 5, 558–562.

356. Valverde, J.; Tamayo, G.; Hesse, M. β-Carboline monoterpenoid glucosides from Palicourea adusta. Phytochemistry 1999, 52, 1485–1489.

357. Narine, L.L.; Maxwell, A.R. Monoterpenoid indole alkaloids from Palicourea crocea. Phytochem. Lett. 2009, 2, 34–36.
358. Nascimento, C.A.; Gomes, M.S.; Liao, L.M.; de Oliveira, C.; Kato, L.; da Silva, C.C.; Tanaka, C. Alkaloids from *Palicourea coriacea* (Cham.) K. Schum. *Z. Naturforsch. B* 2006, 61, 1443–1446.

359. Düsman, L.T.; Marinho Jorge, T.C.; Souza, M.C.D.; Eberlin, M.N.; Meurer, E.C.; Bocca, C.C.; Basso, E.A.; Sarragiotto, M.H. Monoterpane Indole Alkaloids from *Palicourea crocea*. *J. Nat. Prod.* 2004, 67, 1886–1888.

360. Soares, P.R.O.; Oliveira, P.L.; Oliveira, C.M.A.; Kato, L.; Guillo, L.A. In vitro antiproliferative effects of the indole alkaloid vallesia chotamine on human melanoma cells. *Arch. Pharm. Res.* 2012, 35, 565–571.

361. Hao, J.; Feng, S.X.; Qiu, S.X.S.; Chen, T. Anthraquinone Glycosides from the Roots of *Prismatomeris connata*. *Chin. J. Nat. Med.* 2011, 9, 42–45.

362. Feng, S.X.; Bai, J.; Qiu, S.; Li, Y.; Chen, T. Iridoid and phenolic glycosides from the roots of *Prismatomeris connata*. *Nat. Prod. Commun.* 2012, 7, 561–562.

363. Tuntiwachwuttikul, P.; Butsuri, Y.; Sukkoet, P.; Prawat, U.; Taylor, W.C. Anthraquinones from the roots of *Prismatomeris malayana*. *Nat. Prod. Res.* 2008, 22, 962–968.

364. Krohn, K.; Gehle, D.; Dey, S.K.; Nahar, N.; Mosihuzzaman, M.; Sultana, N.; Sohrab, M.H.; Stephens, P.J.; Pan, J.J.; Sasse, F. Prismatomerin, a new iridoid from *Prismatomeris tetrandra*. Structure elucidation, determination of absolute configuration, and cytotoxicity. *J. Nat. Prod.* 2007, 70, 1339–1343.

365. Stephens, P.J.; Pan, J.J.; Krohn, K. Determination of the absolute configurations of pharmacological natural products via density functional theory calculations of vibrational circular dichroism: the new cytotoxic iridoid prismatomerin. *J. Org. Chem.* 2007, 72, 7641–7649.

366. Paul, J.; Maxwell, A.; Reynolds, W. Novel bis (monoterpenoid) indole alkaloids from *Psychotria bahiensis*. *J. Nat. Prod.* 2003, 66, 752–754.

367. Oliveira, A.M.; Lemos, R.P.L.; Conserva, L.M. β-Carboline alkaloids from *Psychotria barbiflora* DC. (Rubiaceae). *Biochem. Syst. Ecol.* 2013, 50, 339–341.

368. Nascimento, N.C.; Menguer, P.K.; Henriques, A.T.; Fett-Neto, A.G. Accumulation of brachycerine, an antioxidant glycoside indole alkaloid, is induced by abscisic acid, heavy metal, and osmotic stress in leaves of *Psychotria brachyceras*. *Plant Physiol. Biochem.* 2013, 73, 33–40.

369. Jacobs, J.; Claessens, S.; de Kimpe, N. First straightforward synthesis of 1-hydroxy-3,4-dihydro-1*H*-benz[g]isochromene-5,10-dione and structure revision of a bioactive benz[g] isochromene-5,10-dione from *Psychotria camponutans*. *Tetrahedron* 2008, 64, 412–418.

370. Verotta, L.; Pilati, T.; Tató, M.; Elisabetsky, E.; Amador, T.A.; Nunes, D.S. Pyrrolidinoindoline Alkaloids from *Psychotria colorata*. *J. Nat. Prod.* 1998, 61, 392–396.

371. Zhou, H.; He, H.P.; Wang, Y.H.; Hao, X.J. A new dimeric alkaloid from the leaf of *Psychotria calocarpa*. *Helv. Chim. Acta* 2010, 93, 1650–1652.

372. Achenbach, H.; Lottes, M.; Waibel, R.; Karikas, G.A.; Correa, M.D.; Gupta, M.P. Alkaloids and other compounds from *Psychotria correae*. *Phytochemistry* 1995, 38, 1537–1545.

373. Solis, P.N.; Ravelo, A.G.; Antonio Palenzuela, J.; Gupta, M.P.; González, A.; David Phillipson, J. Quinoline alkaloids from *Psychotria glomerulata*. *Phytochemistry* 1997, 44, 963–969.

374. Garcia, R.M.A.; Oliveira, L.O.; Moreira, M.A.; Barros, W.S. Variation in emetine and cephaeline contents in roots of wild Ipecac (*Psychotria ipecacuanha*). *Biochem. Syst. Ecol.* 2005, 33, 233–243.
Lopes, S.; Von Poser, G.L.; Kerber, V.A.; Farias, F.M.; Konrath, E.L.; Moreno, P.; Sobral, M.E.; Zuanazzi, J.A.S.; Henriques, A.T. Taxonomic significance of alkaloids and iridoid glucosides in the tribe Psychotrieae (Rubiaceae). *Biochem. Syst. Ecol.* **2004**, *32*, 1187–1195.

Farias, F.M.; Passos, C.S.; Arbo, M.D.; Zuanazzi, J.A.S.; Steffen, V.M.; Henriques, A.T. Monoamine levels in rat striatum after acute intraperitoneal injection of strictosidinic acid isolated from *Psychotria myriantha* Mull. Arg. (Rubiaceae). *Phytomedicine* **2010**, *17*, 289–291.

Farias, F.M.; Passos, C.S.; Arbo, M.D.; Barros, D.M.; Gottfried, C.; Steffen, V.M.; Henriques, A.T. Strictosidinic acid, isolated from *Psychotria myriantha* Mull. Arg. (Rubiaceae), decreases serotonin levels in rat hippocampus. *Fitoterapia* **2012**, *83*, 1138–1143.

Farias, F.M.; Konrath, E.L.; Zuanazzi, J.A.S. Strictosamide from *Psychotria nuda* (Cham. et Schltdl) Wawra (Rubiaceae). *Biochem. Syst. Ecol.* **2008**, *36*, 919–920.

Jannic, V.; Guéritte, F.; Laprévote, O.; Serani, L.; Martin, M.T.; Sèvenet, T.; Potier, P. Pyrrolidinoindoline Alkaloids from *Psychotria oleoides* and *Psychotria lyciiflora*. *J. Nat. Prod.* **1999**, *62*, 838–843.

Faria, E.O.; Kato, L.; de Oliveira, C.M.; Carvalho, B.G.; Silva, C.C.; Sales, L.S.; Schuquel, I.T.; Silveira-Lacerda, E.P.; Delprete, P.G. Quaternary β-carboline alkaloids from *Psychotria prunifolia* (Kunth) Steyerm. *Phytochem. Lett.* **2010**, *3*, 113–116.

De Oliveira Figueiredo, P.; Perdomo, R.T.; Garcez, F.R.; Matos, M.D.F.C.; de Carvalho, J.E.; Garcez, W.S. Further constituents of *Galianthe thalictroides* (Rubiaceae) and inhibition of DNA topoisomerases I and IIα by its cytotoxic β-carboline alkaloids. *Bioorg. Med. Chem. Lett.* **2014**, *24*, 1358–1361.

Lucilia, K.; Oliveira, C.; Faria, E.O.; Ribeiro, L.C.; Carvalho, B.G.; Silva, C.C.D.; Schuquel, I.T.; Santin, S.M.; Nakamura, C.V.; Britta, E.A. Antiprotozoal alkaloids from *Psychotria prunifolia* (Kunth) Steyerm. *J. Braz. Chem. Soc.* **2012**, *23*, 355–360.

Van De Santos, L.; Fett Neto, A.G.; Kerber, V.A.; Elisabetsky, E.; Quirion, J.C.; Henriques, A.T. Indole monoterpene alkaloids from leaves of *Psychotria suterella* Mull. Arg. (Rubiaceae). *Biochem. Syst. Ecol.* **2001**, *29*, 1185–1187.

Fragoso, V.; Nascimento, N.C.; Moura, D.J.; Richter, M.F.; Saffi, J.; Fett-Neto, A.G. Antioxidant and antimitagenic properties of the monoterpene indole alkaloid psychollatine and the crude foliar extract of *Psychotria umbellata* Vell. *Toxicol. in Vitro* **2008**, *22*, 559–566.

Moreno, B.P.; Fiorucci, L.L.R.; do Carmo, M.R.B.; Sarragiotto, M.H.; Baldoqui, D.C. Terpenoids and a coumarin from aerial parts of *Psychotria vellosiana* Benth. (Rubiaceae). *Biochem. Syst. Ecol.* **2014**, *56*, 80–82.

Blackledge, R.D.; Taylor, C.M. *Psychotria Viridis*—A Botanical Source of Dimethyltryptamine (DMT). *Microgram J.* **2003**, *1*, 18–22.

Oliveira, M.D.C.; Negri, G.; Salatino, A.; Braga, M.R. Detection of anthraquinones and identification of 1,4-naphthohydroquinone in cell suspension cultures of *Rudgea jasminoides* (Cham.) Müll. Arg. (Rubiaceae). *Braz. J. Bot.* **2007**, *30*, 167–172.

Fraga, B.M.; Diaz, C.E.; Quintana, N. Naphthohydroquinones and lignans from the roots of *Plocama pendula*, a canary island paleoendemism. *Biochem. Syst. Ecol.* **2010**, *38*, 784–788.

Fraga, B.M.; Quintana, N.; Diaz, C.E. Anthraquinones from natural and transformed roots of *Plocama pendula*. *Chem. Biodivers.* **2009**, *6*, 182–192.
390. Fraga, B.M.; Díaz, C.E.; Quintana, N. Triterpenes from Natural and Transformed Roots of *Plocama pendula*. *J. Nat. Prod.* 2006, 69, 1092–1094.

391. Calis, I.; Heilmann, J.; Tasdemir, D.; Linden, A.; Ireland, C.M.; Sticher, O. Flavonoid, Iridoid, and Lignan Glycosides from *Putoria calabrica*. *J. Nat. Prod.* 2001, 64, 961–964.

392. Baldè, A.; Pieters, L.; Gergely, A.; Wray, V.; Claeyts, M.; Vlietinck, A. Spermacoceine, a bis-indole alkaloid from *Borreria verticillata*. *Phytochemistry* 1991, 30, 997–1000.

393. Moreira, V.F.; Oliveira, R.R.; Mathias, L.; Braz-Filho, R.; Cercino Vieira, I.J. New chemical constituents from *Borreria verticillata* (Rubiaceae). *Helv. Chim. Acta* 2010, 93, 1751–1757.

394. Wei, X.; Xie, H.; Ge, X.; Zhang, F. Iridoids from *Dunnia sinensis*. *Phytochemistry* 2000, 53, 837–840.

395. Moura, V.M.; Santos, A.R.; Nurnberg, V.; de Souza, M.C.; Santin, S.M.O. Iridoid glycosides from *Galianthe brasiliensis*. *Biochem. Syst. Ecol.* 2005, 33, 451–453.

396. De Freitas, C.S.; Kato, L.; de Oliveira, C.; Queiroz, L., Jr.; Santana, M.J.; Schuquiel, I.T.; Delprete, P.G.; da Silva, R.A.; Quintino, G.O.; da Silva, N.B. β-Carboline Alkaloids from *Galianthe ramosa* Inhibit Malate Synthase from *Paracoccidioides* spp. *Planta Med.* 2014, 80, 1746–1752.

397. Figueiredo, P.O.; Garcez, F.R.; Maria de Fátima, C.; Perdomo, R.T.; Queiroz, L.M.; Pott, A.; Garcez, A.J.; Garcez, W.S. A New Cytotoxic β-Carboline Alkaloid from *Galianthe thalictroides*. *Planta Med.* 2011, 77, 1852–1854.

398. Lajis, N.H.; Ahmad, R. Phytochemical studies and pharmacological activities of plants in genus *Hedyotis oldenlandia*. *Stud. Nat. Prod. Chem*. 2006, 33, 1057–1090.

399. Ahmad, R.; Shaari, K.; Lajis, N.H.; Hamzah, A.S.; Ismail, N.H.; Kitajima, M. Anthraquinones from *Hedyotis capitellata*. *Phytochemistry* 2005, 66, 1141–1147.

400. Phuong, N.M.; van Sung, T.; Porzel, A.; Schmidt, J.; Merzweiler, K.; Adam, G. β-Carboline alkaloids from *Hedyotis capitellata*. *Phytochemistry* 1999, 52, 1725–1729.

401. Phuong, N.M.; van Sung, T.; Schmidt, J.; Porzel, A.; Adam, G. Capitelline-A New Indole Alkaloid from *Hedyotis capitellata*. *Nat. Prod. Lett.* 1998, 11, 93–100.

402. Peng, J.N.; Feng, X.Z.; Zheng, Q.T.; Liang, X.T. A β-carboline alkaloid from *Hedyotis chrysotricha*. *Phytochemistry* 1997, 46, 1119–1121.

403. Sudarsono, A. Distribution of Asperuloside, Scandoside Methyl Ester in Plant Organs of *Hedyotis corymbosa* (L.) Lamk (*Oldenlandia Corymbosa* Linn) of Rubiaceae Family. *Maj. Farm. Indones.* 2004, 15, 62–67.

404. Jiang, W.; Kuang, L.; Hou, A.J.; Qian, M.; Li, J.Z. Iridoid glycosides from *Hedyotis corymbosa*. *Helv. Chim. Acta* 2007, 90, 1296–1301.

405. Huu, B.C.; Phi Phung, N.K. Contribution to the study on chemical constituents of *Hedyotis crassifolia* L., (Rubiaceae). *Vietnam J. Chem.* 2014, 45, 363.

406. Xu, G.H.; Kim, Y.H.; Chi, S.W.; Choo, S.J.; Ryoo, I.J.; Ahn, J.S.; Yoo, I.D. Evaluation of human neutrophil elastase inhibitory effect of iridoid glycosides from *Hedyotis diffusa*. *Bioorg. Med. Chem. Lett.* 2010, 20, 513–515.

407. Zhang, Y.; Chen, Y.; Fan, C.; Ye, W.; Luo, J. Two new iridoid glucosides from *Hedyotis diffusa*. *Fitoterapia* 2010, 81, 515–517.
408. Dominguez, X.; Sanchez, H.; Palacios Estrada, T. Estudio Quimico de *Hedyotis intricata*. Rubiaceae. *Rev. Latinoam. Quím*. 1992, 22, 46–46.

409. Peng, J.N.; Feng, X.Z.; Liang, X.T. Iridoids from *Hedyotis hedyotidea*. *Phytochemistry* 1998, 47, 1657–1659.

410. Hamzah, A.S.; Aimi, N.; Lajis, N.H.J. Constituents of *Hedyotis herbacea* (Rubiaceae). *Biochem. Syst. Ecol*. 1996, 24, 273.

411. Konishi, M.; Hano, Y.; Takayama, M.; Nomura, T.; Hamzah, A.S.; Jasmani, H. Triterpenoid saponins from *Hedyotis nudicaulis*. *Phytochemistry* 1998, 48, 525–528.

412. Duy, L.H.; Phi Phung, N.K. Anthraquinones from *Hedyotis pinifolia*. *Vietnam J. Chem*. 2014, 47, doi:10.15625/4647.

413. Zhao, J.F.; Yuan, Q.M.; Yang, X.D.; Zhang, H.B.; Li, L. Two new iridoid glycosides from *Hedyotis tenelliflora* Blume. *Helv. Chim. Acta* 2005, 88, 2532–2536.

414. Hang, N.H.; Khoi, N.D.T.; Truong, T.L.; Linh, N.P.; Tuyen, P.N.K.; Phung, N.K.P.; Nga, V.T. Further study on the chemical constituents of *Hedyotis vestita* (Rubiaceae). *Vietnam J. Chem*. 2014, 51, 648–652.

415. Fabri, R.L.; Grazul, R.M.; Carvalho, L.O.; Coimbra, E.S.; Cardoso, G.M.M.; Souza-Fagundes, E.M.; Silva, A.D.; Scio, E. Antitumor, antibiotic and antileishmanial properties of the Pyranonaphthoquinone *Psychorubrin* from *Mitracarpus frigidus*. *An. Acad. Bras. Cienc.* 2012, 84, 1081–1090.

417. Ekpendu, T.O.E.; Adesomoju, A.A.; Ekundayo, O.; Okogun, J.I.; Laakso, I. Constituents of the volatile oil of *Mitracarpus scaber* Zucc. *Flavour Frag. J*. 1993, 8, 269–271.

418. Ekpendu, T.O.E.; Adesomoju, A.A.; Okogun, J.I. Chemical Studies of *Mitracarpus villosus* (Sw.) De—A Medicinal Rubiaceous Weed. *J. Chem. Soc. Niger*. 2001, 26, 69–71.

419. Otsuka, H.; Yoshimura, K.; Yamasaki, K.; Cantoria, M.C. Isolation of 10-\(\text{O}\)-acyl iridoid glucosides from a Philippine medicinal plant, *Oldenlandia corymbosa* L.(Rubiaceae). *Chem. Pharm. Bull*. 1991, 39, 2049–2052.

420. Kim, S.H.; Ahn, B.Z.; Ryu, S.Y. Antitumour effects of ursolic acid isolated from *Oldenlandia diffusa*. *Phytother. Res*. 1998, 12, 553–556.

421. Lu, H.C.; He, J. A study on chemical constituents of *Oldenlandia diffusa* (Willd) Roxb. *Nat. Prod. Res. Dev*. 1996, 8, 34–37.

422. Siva, R.; Mayes, S.; Behera, S.K.; Rajasekaran, C. Anthraquinones dye production using root cultures of *Oldenlandia umbellata* L. *Ind. Crops Prod*. 2012, 37, 415–419.

423. Tomaz, A.C.D.A.; Nogueira, R.B.S.; Pinto, D.S.; Agra, M.D.F.; Souza, M.D.F.V.D.; Da-Cunha, E.V.L. Chemical constituents from *Richardia grandiflora* Cham. & Schltdl. Steud. (Rubiaceae). *Rev. Bras. Farmacogn*. 2008, 18, 47–52.

424. Singh, D.; Verma, N.; Raghuwanshi, S.; Shukla, P.; Kulshreshtha, D. Antifungal anthraquinones from *Saprosma fragrans*. *Bioorg. Med. Chem. Lett*. 2006, 16, 4512–4514.

425. Wang, L.; Chen, G.Y.; Han, C.R.; Yuan, Y.; Yang, B.; Zhang, Y.; Wang, J.; Zhong, X.Q.; Huang, X. Two novel alkaloids from the stem of *Saprosma hainanense* and their cytotoxic activities in vitro. *Chem. Pharm. Bull*. 2011, 59, 338–340.
426. Ling, S.K.; Komorita, A.; Tanaka, T.; Fujioka, T.; Mihashi, K.; Kouno, I. Iridoids and anthraquinones from the Malaysian medicinal plant, *Saprosma scortechinii* (Rubiaceae). *Chem. Pharm. Bull.* 2002, 50, 1035–1040.

427. Ling, S.K.; Komorita, A.; Tanaka, T.; Fujioka, T.; Mihashi, K.; Kouno, I. Sulfur-Containing Bis-iridoid Glucosides and Iridoid Glucosides from *Saprosma scortechinii*. *J. Nat. Prod.* 2002, 65, 656–660.

428. Lu, X.L.; Cao, X.; Liu, X.Y.; Long, C.; Liu, J.H.; Xu, Q.Z.; Jiao, B.H. Iridoid glycosides from *Saprosma ternatum*. *Planta Med.* 2010, 76, 1746–1748.

429. Ferreira, J.R.J.C.; Lemos, R.P.L.; Conserva, L.M. Chemical constituents from *Spermacoce verticillata* (Rubiaceae). *Biochem. Syst. Ecol.* 2012, 44, 208–211.

430. Park, A.; Kim, H.J.; Lee, J.S.; Woo, E.R.; Park, H.; Lee, Y.S. New Iridoids from *Asperula maximowiczii*. *J. Nat. Prod.* 2002, 65, 1363–1366.

431. Mitova, M.I.; Anchev, M.E.; Panev, S.G.; Handjieva, N.V.; Popov, S.S. Coumarins and Iridoids from *Crucianella graeca*, *Cruciata glabra*, *Cruciata laevipes* and *Cruciata pedemontana* (Rubiaceae). *Z. Naturforsch. B* 1996, 51, 631–634.

432. El Lakany, A.M.; Kader, M.S.A.; Sabri, N.N. Anthraquinones with antibacterial activities from *Cruciaria maritima* L. growing in Egypt. *Nat. Prod. Sci.* 2004, 10, 63–68.

433. Venditti, A.; Altieri, A.; Bianco, A. Monoterpenoids glycosides content from two Mediterranean populations of *Cruciaria maritima* L. *Nat. Prod. Res.* 2014, 28, 586–588.

434. De Rosa, S.; Mitova, M.; Handjieva, N.; Ersoz, T.; Calis, I. Aromatic monoterpenoid glycosides from *Cruciaria taurica*. *Nat. Prod. Res.* 2003, 17, 109–113.

435. De Rosa, S.; Mitova, M.; Handjieva, N.; Çalış, I.H. Coumarin glucosides from *Cruciaria taurica*. *Phytochemistry* 2002, 59, 447–450.

436. Handjieva, N.; Mitova, M.; Ančev, M.; Popov, S. Iridoid glucosides from *Galium album* and *G. lovence*. *Phytochemistry* 1996, 43, 625–628.

437. Morimoto, M.; Tanimoto, K.; Sakatani, A.; Komai, K. Antifeedant activity of an anthraquinone aldehyde in *Galium aparine* L. against *Spodoptera litura* F. *Phytochemistry* 2002, 60, 163–166.

438. Rosa, S.; Iodice, C.; Mitova, M.; Handjieva, N.; Popov, S.; Ančev, M. Triterpene saponins and iridoid glucosides from *Cruciaria taurica*. *Phytochemistry* 2000, 54, 751–756.

439. Mitova, M.; Handjieva, N.; Spassov, S.; Popov, S. Macedonine, a non-glycosidic iridoid from *Galium macedonicum*. *Phytochemistry* 1996, 42, 1227–1229.

440. El-Gamal, A.A.; Takeya, K.; Itokawa, H.; Halim, A.F.; Amer, M.M.; Saad, H.E.A.; Awad, S.A. Anthraquinones from the polar fractions of *Galium sinaicum*. *Phytochemistry* 1996, 42, 1149–1155.

441. Yang, S.W. Antioxidative constituents of the aerial parts of *Galium spurium*. *Biomol. Ther.* 2011, 19, 336–341.

442. Banthorpe, D.V.; White, J.J. Novel anthraquinones from undifferentiated cell cultures of *Galium verum*. *Phytochemistry* 1995, 38, 107–111.

443. Lee, T.G.; Kim, D.K. Articles: Iridoid Compounds from the Whole Plant of *Galium verum* var. *asiaticum*. *Nat. Prod. Sci.* 2013, 19, 227–230.

444. Miyazawa, M.; Kawata, J. Identification of the key aroma compounds in dried roots of *Rubia cordifolia*. *J. Oleo Sci.* 2006, 55, 37–39.
445. Wu, L.J.; Wang, S.X.; Hua, H.M.; Li, X.; Zhu, T.R.; Miyase, T.; Ueno, A. 6-Methoxygeniposidic acid, an iridoid glycoside from Rubia cordifolia. Phytochemistry 1991, 30, 1710–1711.

446. Longo, L.; Scardino, A.; Vasapollo, G. Identification and quantification of anthocyanins in the berries of Pistacia lenticus L., Phillyrea latifolia L. and Rubia peregrina L. Innov. Food Sci. Emerg. 2007, 8, 360–364.

447. Liu, Y.; Chen, B.; Bai, Y.; Duddeck, H.; Hiegemann, M. Digiferriginol glycoside from Rubia schumanniana. Phytochemistry 1991, 30, 947–949.

448. Kuang, B.; Han, J.; Zeng, G.Z.; Chen, X.Q.; He, W.J.; Tan, N.H. Three new triterpenoids from Rubia schumanniana. Nat. Prod. Bioprop. 2012, 2, 166–169.

449. Zou, C.; Hao, X.J.; Chen, C.; Zhou, J. A new antitumor glycycyclohexapeptide and arborane type new triterpenoids Rubia yunnanensis. Acta Bot. Yunn. 1992, 14, 114.

450. Marec, F.; Kollarova, I.; Jegorov, A. Mutagenicity of natural anthraquinones from Rubia tinctorum in the Drosophila wing spot test. Planta Med. 2001, 67, 127–131.

451. El-Emary, N.A.; Backheet, E.Y. Three hydroxymethylanthraquinone glycosides from Rubia tinctorum. Phytochemistry 1998, 49, 277–279.

452. Perassolo, M.; Quevedo, C.; Busto, V.; Ianone, F.; Giulietti, A.M.; Talou, J.R. Enhance of anthraquinone production by effect of proline and aminoindan-2-phosphonic acid in Rubia tinctorum suspension cultures. Enzyme Microb. Technol. 2007, 41, 181–185.

453. Orbán, N.; Boldizsár, I.; Szucs, Z.; Dános, B. Influence of different elicitors on the synthesis of anthraquinone derivatives in Rubia tinctorum L. cell suspension cultures. Dyes Pigments 2008, 77, 249–257.

454. Fan, J.T.; Chen, Y.S.; Xu, W.Y.; Du, L.; Zeng, G.Z.; Zhang, Y.M.; Su, J.; Li, Y.; Tan, N.H. Rubiyunnanins A and B, two novel cyclic hexapeptides from Rubia yunnanensis. Tetrahedron Lett. 2010, 51, 6810–6813.

455. Liou, M.-J.; Wu, T.S. Triterpenoids from Rubia yunnanensis. J. Nat. Prod. 2002, 65, 1283–1287.

456. Kang, W.Y.; Du, Z.Z.; Yang, X.S.; Hao, X.J. Note: A new triterpene from Luculia pinciana Hook. J. Asian Nat. Prod. Res. 2005, 7, 91–94.

457. Kang, W.; Hao, X. Terpenoid glycosides from stem of Luculia pinceana. J. Chin. Mater. Med. 2007, 32, 2606–2609.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).