Influence of Sleep Duration on Postpartum Weight Change in Black and Hispanic Women

Sharon J. Herring1,2,3,4, Daohai Yu4, Andrea Spaeth2, Grace Pien5, Niesha Darden2,4, Valerie Riis6, Veronica Bersani2,4, Jessica Wallen2,4, Adam Davey7, and Gary D. Foster2,8,9

Objective: The primary purpose of this study was to examine associations of objectively measured sleep duration with weight changes in black and Hispanic mothers over the first postpartum year.

Methods: Data were from 159 mothers (69% black, 32% Hispanic). Nocturnal sleep duration was assessed using wrist actigraphy at 6 weeks and 5 months post partum, examined as a continuous variable and in categories (<7 vs. ≥7 hours/night, consistent with American Academy of Sleep Medicine recommendations). Body weights were abstracted from medical records in pregnancy and measured at 6 weeks, 5 months, and 12 months post partum. Outcomes included early postpartum (6 weeks to 5 months) and late postpartum (5 to 12 months) weight changes.

Results: The majority of participants slept <7 hours/night at 6 weeks (75%) and 5 months (63%) post partum. Early postpartum weight change did not differ by 6-week sleep duration category. By contrast, adjusted average late postpartum weight gain (SE) was 1.8 (0.7) kg higher in participants sleeping <7 hours/night at 5 months post partum compared with those sleeping ≥7 hours/night (P = 0.02). Results did not show statistically significant associations of continuous measures of sleep duration, nor of measures of sleep quality, with postpartum weight changes.

Conclusions: Sleeping <7 hours/night was associated with late postpartum weight gain in minority mothers.

Introduction

The postpartum period represents a critical opportunity for young, ethnic minority women to experience—or avoid—excess weight gain and incident cardiometabolic disease (1,2), especially for the nearly three-quarters of black and Hispanic women who enter pregnancy already having obesity (3). These women may be particularly disadvantaged, as they are at highest risk for retaining weight at the end of the first postpartum year, and may actually begin gaining weight 4 to 6 weeks after childbirth (4–6). Excess weight accrued after childbirth may be particularly harmful, as its damaging effects cross generations; data suggest that even small increases in maternal BMI result in a host of new perinatal complications in subsequent pregnancies (e.g., pre-eclampsia, gestational diabetes, fetal overgrowth) (7). Understanding modifiable determinants of postpartum weight change is critical for the development of effective interventions to slow the trajectory of weight gain, particularly among those mothers at highest risk.

One potentially modifiable risk factor of increasing interest is sleep duration, as numerous epidemiologic studies have found an increased risk of new or persistent obesity and cardiometabolic disorders among adults and children with insufficient nocturnal sleep (8–10). Partial and complete sleep restriction alters levels of several hormones involved in the regulation of appetite, including increases in ghrelin and...
Because the primary aim of this investigation was to examine the association between objectively measured sleep duration and weight change over the first postpartum year, only participants who had complete measured sleep and weight data at all prespecified time points were included, yielding a final analytic sample of 159 women. Participants excluded from analyses were more likely to be married (36% vs. 12%) and feed their infants some breast milk (61% vs. 44%) compared with those who were included in analyses. Average weights (at 6 weeks, 5 months, and 12 months after childbirth) and prevalence of early pregnancy obesity (36% vs. 39%) were not significantly different between the two groups.

Methods

Study design and participants

Study subjects were participants in a longitudinal cohort study of maternal cardiometabolic risk factors, sleep, and offspring health over the first year after childbirth (grant 2012065 from the Doris Duke Charitable Foundation). Designed to identify modifiable and nonmodifiable contributors of 1-year postpartum weight gains in ethnic minority, socioeconomically disadvantaged mothers, cohort participants were recruited between 2012 and 2013 in late pregnancy or at delivery from Temple University Hospital, an urban academic medical center in Philadelphia, Pennsylvania, that serves predominately black and Hispanic, Medicaid-insured patients. At 6 weeks and 5 months after childbirth (baseline and second study visits, respectively), trained research staff administered a questionnaire assessing demographics, medical history, and lifestyle behaviors, obtained maternal anthropometric measures, and provided participants with a wrist actigraph to wear over the subsequent week. At 12 months after childbirth (final study visit), staff again administered the questionnaire and obtained anthropometric measures.

Eligibility criteria included age ≥16 years, <1 month after childbirth at recruitment, fluency in English, and plans to stay in Philadelphia for the first postpartum year. Women were excluded if they delivered multiples (e.g., twins, triplets), had preexisting cardiometabolic disease (e.g., cardiovascular disease, diabetes mellitus, hypertension), or carried a diagnosis of obstructive sleep apnea. We recruited 540 women (85% of those approached), of whom 251 subsequently became ineligible for cohort enrollment because of stillbirth/infant death (n=4), relocation outside of Philadelphia (n=14), or failure to attend baseline assessments (n=233), leaving 289 enrolled mothers. All women provided written informed consent, and the institutional review board of Temple University approved the protocol.

Because the primary aim of this investigation was to examine the association between objectively measured sleep duration and weight change...
Postpartum weight change

At 6 weeks, 5 months, and 12 months after childbirth, maternal body weights in kilograms were measured in light clothing, without shoes, using a calibrated SECA digital scale at our research facility or at participants’ homes by trained research staff. In the rare case when research weights were missing (n=7 [4%] at 6 weeks, n=10 [6%] at 5 months, and n=7 [4%] at 12 months), we included electronic health record weights abstracted from physician visits±14 days of a study assessment, given the strong concordance between maternal electronic health record weights and research weights (23). We focused our analyses on two nonoverlapping, measured weight change outcome variables over the first postpartum year: early postpartum weight change and late postpartum weight change. We subtracted 5-month postpartum weight from 6-week postpartum weight to calculate early postpartum weight change. Late postpartum weight change was defined as 12-month postpartum weight minus 5-month postpartum weight.

Covariates

Sociodemographic variables. We collected information on sociodemographics, including maternal race/ethnicity, age, education, parity, marital status, and eligibility to receive benefits from the Special Supplemental Nutrition Program for Women, Infants, and Children (income proxy), all reported by the participants at 6 weeks post partum.

Perinatal variables. We calculated early pregnancy BMI using participants’ first measured prenatal weight and height, both abstracted from medical records. Similar to other studies among childbearing women, we chose to use participants’ first trimester weight as the proxy for maternal pregravid weight because measured prepregnancy weight is infrequently available and self-reported weight varies by BMI and sociodemographic factors (24,25). One hundred fourteen (72%) participants had a first trimester weight available for analysis; we created a regression model (described in a prior publication) for the remaining women to predict first trimester prenatal weight (26). Initial BMI categories were underweight (<18.5 kg/m²), healthy weight (18.5-24.9 kg/m²), overweight (25-29.9 kg/m²), or obesity (≥30 kg/m²). However, preliminary findings revealed similar postpartum mean weight changes for underweight, healthy weight, and overweight early pregnancy BMI categories, and thus, we collapsed these three BMI groups into one (women without early pregnancy obesity, <30 kg/m²), and compared them to women with obesity (≥30 kg/m²) for this analysis.

We additionally calculated mothers’ total gestational weight gain, defined as delivery weight (abstracted from prenatal records, mean 0.7 weeks before delivery) minus first trimester weight. Because gestational weight gain was nonnormally distributed, we log-transformed and standardized its distribution before entry into regression models. We also created categories of gestational weight gain (excessive vs. adequate/inadequate) based on each woman’s early pregnancy BMI using 2009 Institute of Medicine gestational weight gain guidelines (25).

Psychosocial and additional behavioral variables. Physical activity was assessed using questions adapted from the 2001 Behavioral Risk Factor Surveillance System survey (27). We asked participants to recall overall frequency and duration of time spent in activities of light intensity (e.g., walking), moderate intensity (e.g., vacuuming), and vigorous intensity (e.g., running) in a usual week over the past month at 6 weeks and 5 months post partum. Because so few women engaged in moderate and/or vigorous activity at either time point (<10%), only data for walking were analyzed. Mothers were categorized into three groups using cut points adapted from Bentley et al. (28): (1) not walking at least 10 minutes at a time in a usual week, (2) walking between 10 and 60 minutes, or (3) walking >60 minutes. The walking measure has moderate reliability across gender and race (kappa coefficient = 0.4) and fair validity compared with physical activity logs (kappa coefficient = 0.2) (29). We also queried participants about time spent watching television and using the computer at each visit, quantified as average hours per day.

Data classifying mothers’ eating behaviors were collected at 6 weeks and 5 months post partum using the 51-item Three-Factor Eating Questionnaire, which measures dietary restraint, disinhibition, and subjective feelings of hunger (30). Higher scores represent higher levels of the eating behavior studied. The instrument has demonstrated reliability (alphas range from 0.80 to 0.93) and criterion validity (31).

At 6 weeks and 5 months after childbirth, participants additionally reported cigarette smoking habits, employment status, and infant milk feeding, the latter categorized as exclusive breastfeeding, breastfeeding/formula mix, or formula only. Symptoms of postpartum depression were evaluated at each visit with the 10-item Edinburgh Postnatal Depression Scale (32), a widely used self-report screening measure. We used a cut point of ≥9 to define depressive symptoms, validated in a large sample of low-income, urban women (33).

Statistical analyses

We built independent linear regression main effects models to evaluate relationships of sleep duration, examined as a continuous variable and in categories, with each postpartum weight change variable, first by starting with the full model of exposures and covariates at the corresponding time point (e.g., 6 weeks or 5 months after childbirth) and then iteratively eliminating the least significant predictor (P ≥ 0.05), followed by adding back a potentially significant variable (P < 0.25), one at a time. Although we initially divided mean actigraphy-measured sleep duration into five categories, the small numbers of participants in some sleep groups, and the similar mean postpartum weight changes among those mothers with <5, 5 to <6, and 6 to <7 hours compared with those with 7 to <8 and ≥8 hours of nightly sleep at each time point, led us to collapse our sleep duration variable into two groups: <7 versus ≥7 hours/night. For example, adjusted associations between 5-month postpartum sleep duration categories and late postpartum weight changes (in kilograms) included: ≤5 hours/night (n=11, β [SE] = 1.4 [1.4]); 5 to <6 hours/night (n=37, β [SE] = 0.8 [1.0]); 6 to <7 hours/night (n=52, β [SE] = 2.4 [0.9]); 7 to <8 hours/night (n=47, referent); and ≥8 hours/night (n=12, β [SE] = −0.5 [1.4]). The binary cut point is consistent with American Academy of Sleep Medicine recommendations for adequate versus short sleep duration and prior data linking <7 hours of nightly sleep to obesity (10,15). Post hoc multiple comparison adjustments were made via the Tukey–Kramer method in the multiple linear regression setting. We explored effect modification by including biologically plausible interaction terms into the models. We used the same modeling strategy to additionally assess individual relationships of sleep quality measures with postpartum weight changes at each time point. SAS version 9.4 (SAS Institute, Cary, North Carolina) was used to carry out all analyses.
Results

Demographics and weight change
Mean postpartum weeks at baseline was 6.0 ± 1.9; mean postpartum months was 4.6 ± 0.5 and 12.1 ± 0.7 at the second and final study visits, respectively. Participant characteristics are presented in Table 1. Mean postpartum weight change from 6 weeks to 5 months was 1.0 ± 4.3 kg; respectively. When stratified by early pregnancy BMI, there was a clear difference in weight change over the first postpartum year between participants with obesity and those without obesity (Figure 1), with the former experiencing a mean weight gain and the latter experiencing mean weight loss.

Sleep duration, continuity, and timing
On average, participants wore the actigraph wristwatch for 6 nights (range: 3-13), with the majority (>70%) wearing the device for 6 or 7 nights at each time period. Mean sleep durations were 6.4 ± 1.0 and 6.6 ± 1.1 hours/night at 6 weeks and 5 months post partum, respectively. Short sleep duration was common; 75% of the sample slept <7 hours at 6 weeks post partum and 63% slept <7 hours at 5 months post partum. Less than 1% of participants had nightly sleep durations of ≥ 9 hours at either time point. Average WASO decreased from 6 weeks (101.4 minutes) to 5 months (78.5 minutes) post partum, whereas mean sleep efficiency modestly increased between time points (74% at 6 weeks, 78% at 5 months). In all, 38% and 32% of participants had late sleep timing (midpoint of sleep >5 AM) at 6 weeks and 5 months post partum. Psychosocial and behavioral variables collected at 6 weeks and 5 months after childbirth were analyzed by category of sleep duration at each time point (Table 2). No statistically significant differences were found.

Associations between sleep and postpartum weight change
Table 3 shows the results of the multivariable linear regression analyses with sleep duration as a categorical variable. Early postpartum weight change did not differ by 6-week sleep duration category (P = 0.76). By contrast, adjusted average late postpartum weight gain (SE) was 1.8 (0.7) kg higher in participants sleeping <7 hours/night at 5 months after childbirth compared with those sleeping ≥7 hours/night (P = 0.02). Additional predictors of early and/or late postpartum weight change on multivariable analyses (Table 3) were early pregnancy BMI (both early and late), gestational weight gain (early and late), parity (late only), and smoking status (late only).

There was no significant linear association either between sleep duration at 6 weeks after childbirth and early postpartum weight change (adjusted β [SE]=0.3 [0.3], P=0.30) or between sleep duration at 5 months after childbirth and late postpartum weight change (adjusted β [SE]=−0.5 [0.3], P=0.14). Adding a quadratic term of sleep duration into models also did not result in statistical significance (data not shown).

We next investigated whether the effect of sleep duration on postpartum weight change varied according to early pregnancy BMI and categorical sleep duration (P=0.04), such that participants with obesity who slept <7 hours/night at 5 months after childbirth had greater late postpartum weight gains (adjusted mean [SE]=2.6 [0.8] kg) than longer sleepers with obesity (adjusted mean [SE]=−1.1 [1.0] kg) or women without obesity (adjusted means [SE]=−1.5 [0.7] kg and −1.9 [0.8] kg for women without obesity sleeping <7 hours/night and ≥ 7 hours/night, respectively; Figure 2). There was a trend toward an interaction between continuous sleep duration at 5 months after childbirth and BMI category (adjusted β [SE]=−1.5 [0.8], P=0.058 for continuous sleep duration × early pregnancy obesity).

No significant associations were found between sleep timing or continuity (WASO, sleep efficiency, sleep midpoint) and postpartum weight change at either time point (Table 4).

Discussion
In this prospective cohort study using objective measures of sleep to explore the relationship between sleep duration and weight change over the first postpartum year, we found that black and Hispanic women who slept <7 hours/night at 5 months after childbirth were more likely to gain weight between 5 and 12 months after childbirth,

Table 1 Sample characteristics and perinatal variables (n = 159)

Mean ± SD or % (n)	n
Age (y)	24.8 ± 6.0
Race	
Black	69% (110)
Other (Caucasian, American Indian)	31% (49)
Ethnicity	
Hispanic	32% (51)
Non-Hispanic	68% (108)
Education	
High school graduate or less	75% (119)
Some college or more	25% (40)
Parity	
Primiparous	38% (57)
Multiparous	62% (92)
Marital status	
Married or living as married	25% (38)
Single, separated, or divorced	75% (112)
WIC eligible (at or below 185% of the US poverty income guidelines)	
< 30 (without obesity)	62% (99)
≥ 30 (with obesity)	38% (60)
Gestational weight gain (IOM guidelines)	
Excessive	42% (66)
Adequate/inadequate	58% (93)

| Measured at baseline (6 weeks post partum) except where noted. |
| Sample sizes indicate that some women did not have complete data for all variables. |
| IOM, Institute of Medicine; WIC, Special Supplemental Nutrition Program for Women, Infants, and Children. |
even after adjustment for important covariates, namely early pregnancy BMI category, gestational weight gain, cigarette smoking, ethnicity, and parity. Findings are consistent with those of Siega-Riz, Gunderson, and Taveras that showed independent associations between self-reported short sleep duration categories at 3 or 6 months after childbirth and weight retention (34-36); however, to our knowledge, the current study is the first to address the question using objective measures of sleep and weight. We did not detect statistically significant associations of continuous measures of sleep duration with postpartum weight changes.

The present study examined sleep duration as both a continuous and categorical variable. This approach was taken because many previous studies of sleep across the life course have used sleep as a continuous variable, revealing negative linear associations with weight gain and/or BMI. However, studies have also shown that the association between sleep and body weight is nonlinear (e.g., U-shaped or J-shaped), and there may be weight differences by sleep duration category (8-10). This later finding has been particularly apparent in studies linking self-reported short sleep duration with postpartum weight change (34-36) and may be the etiology of the nonsignificant associations in our study between continuous measures of sleep duration and weight change. Our relatively small number of subjects at extremes of sleep duration also contributed to our inability to fully explore the shape of the relationship between sleep duration and postpartum weight gain.

We found a particular risk of short sleep duration on late postpartum weight change among women with obesity. Previous studies, however, have been inconsistent regarding an interaction between BMI and postpartum sleep duration (34-36). Whether this is due to our large sample of racial/ethnic minorities is unclear and merits additional study. We also did not find that sleep duration at 6 weeks after childbirth impacted weight change from 6 weeks to 5 months after birth; however, our analyses did not include daytime napping, and thus, we may have incorrectly categorized mothers as short sleepers in the early postpartum period when napping is common (17). Because naps may differ from overnight sleep in length and amount of deep sleep and rapid-eye-movement sleep (37), scoring algorithms validated for nighttime sleep estimation may not be equivalent for naps (38). More studies are needed to ensure that actigraphy can reliably detect napping (vs. nonwear time or periods of quiet rest) to better investigate the association between early postpartum sleep duration and weight change immediately after childbirth.

In addition to sleep duration, the timing and continuity of sleep may be independent risk factors for obesity and poor cardiometabolic health (13,14). However, data linking sleep quality variables with adiposity have largely been mixed, with studies relying on different approaches and/or cut points to define sleep measures (39,40). In this study, we did not detect statistically significant associations of WASO, sleep midpoint, or sleep efficiency with postpartum weight changes. Although Sharkey and colleagues found that women with 16-week postpartum weight retention had later sleep offset times and lower sleep efficiencies than those without postpartum weight retention (41), their study was limited by its small sample (n=21), inclusion only of women with a history of major depression or bipolar disorder, and predominance of Caucasian mothers. Adequately powered studies in diverse samples are needed to further investigate associations of sleep quality with postpartum weight gain.

Figure 1 Early and late postpartum mean (SE) weight trajectories stratified by early pregnancy BMI. P<0.001 between participants with and without obesity at each time point.
We found that postpartum weight change was also positively associated with early pregnancy BMI, Hispanic ethnicity, and primiparity in our analyses and negatively linked to smoking and gestational weight gain. These data are consistent with findings from similar samples of ethnic minority women (1,4,6,42). For example, in a study of 450 women with overweight and obesity (nearly half self-identifying as black race), Ostbye et al. found that weight gain external to the index pregnancy began as early as 6 weeks after childbirth, and lower gestational weight gains were not protective from additional weight accumulation after birth (4). Among 427 predominately black and Hispanic mothers, Gould Rothberg et al. found that ongoing tobacco smoking significantly reduced postpartum weight retention (1). Additionally, several studies have found that the prevalence of high weight gains/weight retention ranged from 40% to 60% among low-income Hispanic women (42,43). Thus, any intervention designed to encourage postpartum weight loss should target mothers at highest risk for weight gain (e.g., those women who are primiparous, with early pregnancy obesity, and with Hispanic ethnicity).

Strengths of our study include objective assessments of weight and sleep measured at multiple time points, a relatively large sample of socioeconomically disadvantaged black and Hispanic women followed over 12 months, and detailed information on a number of potential sociodemographic and behavioral covariates. We did not collect objective measures of physical activity and diet, which is a limitation. There is also the possibility of selection bias because the analyses only included women with available data on measured postpartum weight and sleep. However, few baseline variables were different among those included versus not, and it is unlikely that predictors of postpartum weight change would be different. Although we may have included women with undiagnosed obstructive sleep apnea in this sample, adding frequent snoring to our models did not change the results (data not shown). And despite that some studies suggest sleeping > 9 hours/night is also a risk factor for weight gain (10), the small number of women with sleep durations in this range precluded our ability to examine the relationship between long sleep duration and postpartum weight change. Finally, findings may not be generalizable to non-Hispanic whites or non-English–speaking women.

In summary, objectively measured nighttime sleep durations < 7 hours were associated with late postpartum weight gains among black and

TABLE 2 Psychosocial and behavioral variables at 6 weeks and 5 months post partum by category of sleep duration (<7 h/night vs. ≥ 7 h/night) at each time point

	6 weeks post partum		5 months post partum	
	<7 hours, n = 120	≥ 7 hours, n = 39	<7 hours, n = 100	≥ 7 hours, n = 59
Cigarette smoking habit				
Current smoker	27% (31)	24% (9)	31% (24)	30% (15)
Nonsmoker	73% (82)	76% (28)	69% (54)	70% (35)
Breastfeeding status				
Exclusively breastfeeding	12% (14)	19% (7)	5% (4)	6% (3)
Breast milk/formula mix	43% (48)	35% (13)	45% (35)	26% (13)
Formula only	45% (51)	46% (17)	50% (39)	68% (34)
Employment				
Working	27% (31)	24% (9)	41% (32)	32% (16)
Not working or on maternity leave	73% (82)	76% (28)	59% (46)	68% (34)
Depressive symptoms				
No (<9 EPDS score)	78% (86)	86% (32)	91% (71)	90% (45)
Yes (≥9 EPDS score)	22% (24)	14% (5)	9% (7)	10% (5)
Low-intensity activity (walking)				
None to < 10 min/wk	46% (51)	64% (23)	32% (24)	50% (25)
10-59 min/wk	10% (11)	11% (4)	11% (8)	8% (4)
≥60 min/wk	44% (48)	25% (9)	57% (43)	42% (21)
TV (h/d) a,b	4.2 ± 2.8	4.4 ± 3.0	3.1 ± 2.4	3.7 ± 2.5
Computer use (h/d) a,b	3.9 ± 3.2	4.1 ± 3.8	3.7 ± 2.9	4.1 ± 3.1
Eating behavior a,b				
Disinhibition	3.8 ± 2.2	3.5 ± 2.3	4.5 ± 3.0	4.8 ± 3.1
Cognitive restraint	3.7 ± 3.1	2.6 ± 2.3	4.5 ± 4.0	4.1 ± 3.7
Hunger	3.8 ± 2.5	3.7 ± 2.5	4.2 ± 3.4	4.9 ± 3.3

Data presented as mean ± SD or % (n). Sample sizes indicate that some women did not have complete data for all variables.

* a n = 113 at 6 weeks post partum; n = 78 at 5 months post partum (for <7 hours/night).

* b n = 37 at 6 weeks post partum; n = 50 at 5 months post partum (for ≥7 hours/night).

EPDS, Edinburgh Postnatal Depression Scale.
TABLE 3 Coefficient estimates modeling sleep duration category with early (6 weeks to 5 months) and late (5 to 12 months) postpartum weight changes (kg)

	Early postpartum weight change	Late postpartum weight change		
	\(\beta \pm SE \)	\(P \) value	\(\beta \pm SE \)	\(P \) value
Sleep (h/night)\(^a \)				
< 7 h	0.2 ± 0.7	0.02		
≥ 7 h Reference				
Early pregnancy BMI				
With obesity	1.9 ± 0.7	0.008		
Without obesity	Reference			
Gestational weight gain (kg\(^{lo10}\))	−2.8 ± 1.0	0.008		
Ethnicity				
Hispanic	—	2.0 ± 0.8		
Non-Hispanic	Reference			
Parity				
Primiparous	—	1.8 ± 0.8		
Multiparous	Reference			
Cigarette smoking habit\(^b \)				
Current smoker	—	−1.4 ± 0.8		
Nonsmoker	Reference			

\(^a\)Variables were measured at 6 weeks post partum for associations with early postpartum weight change and at 5 months post partum for associations with late postpartum weight change.

Figure 2 Adjusted late postpartum mean weight change (SE) according to objectively measured sleep duration and obesity status. This was based on linear regression model for late postpartum weight change including interaction terms for early pregnancy BMI, gestational weight gain, parity, smoking status, and ethnicity with sleep duration, \(P < 0.01 \) between participants with obesity sleeping < 7 h/night and all other groups, whereas all other pairwise comparisons were not statistically significant.
TABLE 4 Associations of sleep continuity or timing with early (6 weeks to 5 months) and late (5 to 12 months) postpartum weight changes (kg)

Sleep variable	Early postpartum weight change \(\beta \pm SE \)	\(P \) value	Late postpartum weight change \(\beta \pm SE \)	\(P \) value
Sleep midpoint				
> 5 AM	-1.1 ± 0.6	0.08	-0.3 ± 0.8	0.74
≤ 5 AM	Reference		Reference	
WASO (min)	0.01 ± 0.01	0.14	-0.005 ± 0.01	0.70
Sleep efficiency (%)	-0.003 ± 0.04	0.94	0.02 ± 0.01	0.74

Sleep variables measured at 6 weeks post partum for associations with early postpartum weight change and at 5 months post partum for associations with late postpartum weight change.

Each sleep variable analyzed in separate multivariable regression models, adjusted for gestational weight gain and early pregnancy BMI.

© 2018 The Obesity Society

References

1. Gould Rothberg BE, Magriples U, Kershaw TS, Rising SS, Ickovics JR. Gestational weight gain and subsequent postpartum weight loss among young, low-income, ethnic minority women. Am J Obstet Gynecol 2011;204:52.e1-52.e11. doi:10.1016/j.ajog.2010.08.028
2. Kew S, Ye C, Hanley AJ, et al. Cardiometabolic implications of postpartum weight changes in the first year after delivery. Diabetes Care 2014;37:1998-2006.
3. Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL. Trends in obesity among adults in the United States, 2005 to 2014. JAMA 2016;315:2284-2291.
4. Ostbye T, Peterson BL, Krause KM, Swamy GK, Lovelady CA. Predictors of postpartum weight change among overweight and obese women: results from the Active Mothers Postpartum study. J Womens Health 2012;21:215-222.
5. Lederman SA, Alfasi G, Deckelbaum RJ. Pregnancy-associated obesity in black women in New York City. J Womens Health 2002;6:37-42.
6. Walker LO. Low-income women’s reproductive weight patterns empirically based clusters of prepregnant, gestational, and postpartum weights. Womens Health Issues 2009;19:398-405.
7. Villamor E, Caan tinogius S. Interpregnancy weight change and risk of adverse pregnancy outcomes: a population-based study. Lancet 2006;368:1164-1167.
8. Wu Y, Zhai L, Zhang D. Sleep duration and obesity among adults: a meta-analysis of prospective studies. Sleep Med 2014;15:1456-1462.
9. Knutson KL. Sleep duration and cardiometabolic risk: a review of the epidemiologic evidence. Best Pract Res Clin Endocrinol Metab 2010;24:731-743.
10. Patel SR, Hu FB. Short sleep duration and weight gain: a systematic review. Obesity (Silver Spring) 2008;16:643-653.
11. Taheri S, Lin L, Austin D, Young T, Mignot E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med 2004;1:e62. doi:10.1371/journal.pmed.0010062
12. Patel SR, Hu FB. Short sleep duration and weight gain: a systematic review. Obesity (Silver Spring) 2008;16:643-653.
13. Baron KG, Reid RJ, Kern AS, Zee PC. Role of sleep timing in caloric intake and BMI. Obesity (Silver Spring) 2011;19:1374-1381.
14. Facco FL, Grobman WA, Reid RJ, et al. Objectively measured short sleep duration and later sleep midpoint in pregnancy are associated with a higher risk of gestational diabetes. Am J Obstet Gynecol 2017;217:447.e1-447.e13. doi:10.1016/j.ajog.2017.05.066
15. Consensus Conference Panel; Watson NF, Badr MS, Belenky G, et al. Joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society on the recommended amount of sleep for a healthy adult: methodology and discussion. J Clin Sleep Med 2015;11:931-952.
16. Cottrell L, Karraker KH. Correlates of nap taking in mothers of young infants. J Sleep Res 2007;16:209-212.
17. Montgomery-Downs HE, Insana SP, Clegg-Kraynak MM, et al. Normative longitudinal maternal sleep: the first 4 postpartum months. Am J Obstet Gynecol 2010;203:467.e1-467.e1. doi:10.1016/j.ajog.2010.06.057
18. Ancoli-Israel S, Cole R, Alessi C, Chambers M, Moockcroft W, Pollak CP. The role of actigraphy in the study of sleep and circadian rhythms. Sleep 2003;26:342-392.
19. Marino M, Li Y, Rueschman MN, et al. Measuring sleep: accuracy, sensitivity, and specificity of wrist actigraphy compared to polysomnography. Sleep Res Rev 2013;19:174-1755.
20. Herring SJ, Foster GD, Pien GW, et al. Do pregnant women accurately report sleep time? A comparison between self-reported and objective measures of sleep duration in pregnancy among a sample of urban mothers. Sleep Breath 2013;17:1323-1327.
21. Oakley NR. Validation with Polysomnography of the Sleepwatch Sleep/Wake Scoring Algorithm Used by the Actiwatch Activity Monitoring System. Hend, OR: Mini Mitter; 1997.
22. Roenneberg T, Kuehnle T, Juda M, et al. Epidemiology of the human circadian clock. Sleep Med Rev 2007;11:429-438.
23. Leo MC, Lindberg NM, Vesco KK, Stevens VJ. Validity of medical chart weights and heights for obese pregnant women. EGEMS (Wash DC) 2014;2:1051. doi:10.1360/c327-9214-1051
24. Krukowski RA, West DS, DiCarlo M, et al. Are early first trimester weights valid proxies for preconception weight? BMC Pregnancy Childbirth 2016;16:357. doi:10.1186/s12884-016-1159-6
25. Institute of Medicine. Weight Gain During Pregnancy: Reexamining the Guidelines. Washington, DC: National Academies Press; 2009.
26. Herring SJ, Nelson DB, Davey A, et al. Determinants of excessive gestational weight gain in urban, low-income women. Womens Health Issues 2012;22:e439-e446. doi:10.1016/j.whi.2012.05.004
27. Centers for Disease Control and Prevention. 2001 Behavioral Risk Factor Surveillance System Summary Data Quality Report. Atlanta, GA: Centers for Disease Control and Prevention; 2002.
28. Bentley R, Jolley D, Kavanagh AM. Local environments as determinants of walking in Melbourne, Australia. Soc Sci Med 2010;70:1806-1815.
29. Yone MM, Ham SA, Ainsworth BE, et al. Reliability and validity of the instrument used in BFSS to assess physical activity. Med Sci Sports Exerc 2007;39:1267-1274.
30. Stunkard AJ, Messick S. The Three-Factor Eating Questionnaire to measure dietary restraint, disinhibition and hunger. J Psychosom Res 1985;29:71-83.
31. d’Amore A, Massignan C, Montera P, Moles A, De Lorenzo A, Scucchi S. Relationship between dietary restraint, binge eating, and leptin in obese women. Int J Obes Relat Metab Disord 2001;25:373-377.
32. Cox JL, Holden JM. Sagovsky R. Detection of postnatal depression. Development of the 10-item Edinburgh Postnatal Depression Scale. Br J Psychiatry 1988;150:782-786.
33. Chaudron LH, Szilagyi PG, Tang W, et al. Accuracy of depression screening tools for identifying postpartum depression among urban mothers. Pediatrics 2010;125:e609-e617. doi:10.1542/peds.2008-3301
34. Gunderson EP, Rifas-Shiman SL, Oken E, et al. Association of fewer hours of sleep with iron status at 3 and 12 months postpartum. Obesity (Silver Spring) 2010;18:1996-2003.

Hispanic women. Because weight gains over the first postpartum year are associated with an adverse cardiometabolic profile (e.g., higher blood pressure, greater insulin resistance, lower adiponectin, higher low-density lipoprotein cholesterol levels), emerging as early as 12 months after childbirth (2), strategies to promote postpartum weight loss are critical to the design of interventions to improve maternal health outcomes. Further research is needed to determine whether extending nocturnal sleep duration offers a useful approach for slowing the trajectory of postpartum weight gain, particularly among black and Hispanic mothers who enter pregnancy with obesity.
36. Taveras EM, Rifas-Shiman SL, Rich-Edwards JW, Gunderson EP, Stuebe AM, Mantzoros CS. Association of maternal short sleep duration with adiposity and cardiometabolic status at 3 years postpartum. *Obesity (Silver Spring)* 2011;19:171-178.

37. Kawada T, Suzuki H, Shimizu T, Katsunata M. Agreement in regard to total sleep time during a nap obtained via a sleep polygraph and accelerometer: a comparison of different sensitivity thresholds of the accelerometer. *Int J Behav Med* 2012;19:398-401.

38. Ancoli-Israel S, Martin JL, Blackwell T, et al. The SBSM guide to actigraphy monitoring: clinical and research applications. *Behav Sleep Med* 2015;13(suppl 1): S4-S38.

39. Gohil A, Hannon TS. Poor sleep and obesity: concurrent epidemics in adolescent youth. *Front Endocrinol (Lausanne)* 2018;9:364. doi:10.3389/fendo.2018.00364

40. Chen J, Patel SR, Redline S, et al. Weekly sleep trajectories and their associations with obesity and hypertension in the Hispanic/Latino population. *Sleep* 2018;41. doi:10.1093/sleep/zsy150

41. Sharkey KM, Boni GM, Quattrucci JA, Blatch S, Carr SN. Women with postpartum weight retention have delayed wake times and decreased sleep efficiency during the perinatal period: a brief report. *Sleep Health* 2016;2:225-228.

42. Kas G, Benicio MH, Velasquez-Melendez G, Valente JG, Struchiner CJ. Gestational weight gain and prepregnancy weight influence postpartum weight retention in a cohort of Brazilian women. *J Nutr* 2004;134:661-666.

43. Walker LO, Freeland-Graves JH, Milani T, et al. Weight and behavioral and psychosocial factors among ethnically diverse, low-income women after childbirth: II. Trends and correlates. *Women Health* 2004;40:19-34.