Ghost Fano resonance in a double quantum dot molecule attached to leads

M. L. Ladrón de Guevara,1, 2 F. Claro,1 and Pedro A. Orellana2
1 Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile
2 Departamento de Física, Universidad Católica del Norte, Casilla 1280, Antofagasta, Chile

We study the electronic transport through a double quantum dot molecule attached to leads, and examine the transition from a configuration in series to a symmetrical parallel geometry. We find that a progressive reduction of the tunneling through the antibonding state takes place as a result of the destructive quantum interference between the different pathways through the molecule. The Fano resonance narrows down, disappearing entirely when the configuration is totally symmetric, so that only the bonding state participates of the transmission. In this limit the antibonding state becomes completely localized.

PACS numbers: 73.21.La, 73.23.-b, 73.63.Kv

I. INTRODUCTION

The tunneling of electrons through quantum dot structures has been the subject of active research during the last years. For the confinement of electron in all three dimensions, quantum dots are characterized by the discreteness of the energy levels, and for this reason are often called “artificial atoms”. One of the main features of transport through quantum dots is that the coherence of electrons is greatly preserved, as manifested in phenomena such as the Aharonov-Bohm oscillations in multiply connected geometries, the Kondo effect in dots strongly coupled to electron reservoirs, and Fano-type line shapes in transport through multiple channels.

Two or more quantum dots can be coupled to form an “artificial molecule”, in which electrons are shared by the different sites. The formation of bonding and antibonding states in such molecules has been studied by means of transport, as well as spectroscopy experiments. Theoretical work on electron transport through serial quantum dot configurations is contained in Refs., and quantum interference effects have been explored in parallel and “T-shaped” geometries. Particular interest in quantum dot molecules lies in their potential application in quantum computing devices. In this context, diverse proposals have been made, where the quantum bits are built with electron spin states or with the coherent mode generated by discrete states in an artificial molecule.

In this work we study the electronic transport through a double quantum dot molecule attached to leads, in a transition from a connection in series to a completely symmetrical parallel configuration. We examine the linear conductance at zero temperature and obtain the associated densities of states of each of the dots. We find that the conductance spectrum is composed of a Lorentzian centered at the bonding energy and a Fano line shape at the energy of the antibonding state. The latter arises due to the presence of a bound state of the molecule, immersed in the band continuum. A progressive line narrowing of the Fano peak is observed as the system transits from the series to the symmetrical parallel configuration. For the perfectly symmetrical geometry, the antibonding state is totally uncoupled of the leads, the bonding state becoming the only one that participates in the transmission. In this extreme case, the antibonding state is localized, with zero localization length. Although exponentially localized states generally exist outside the band continuum, this state is in the conduction band and acts like a ghost of the Fano resonance.

II. MODEL

We consider two neighboring quantum dots forming a molecule, coupled to left and right leads as shown in Fig. Only one energy level in each dot is assumed relevant and the interdot and intradot electron-electron interactions are neglected. The system can be modelled by a non-interacting two-impurity Anderson Hamiltonian, which can be written as

\[H = H_m + H_l + H_I, \]

where \(H_m \) describes the dynamics of the isolate molecule,

\[H_m = \sum_{i=1}^{2} \varepsilon_i d_i^\dagger d_i - t_c (d_2^\dagger d_1 + d_1^\dagger d_2). \]
Here ϵ_i is the energy of dot i, d_i (d_i^\dagger) annihilates (creates) an electron in dot i and t_c is the interdot tunneling coupling. H_I is the Hamiltonian for the noninteracting electrons in the left and right leads

$$H_I = \sum_{k_\alpha \in \{L,R\}} \epsilon_{k_\alpha} c_{k_\alpha}^\dagger c_{k_\alpha},$$

where c_{k_α} ($c_{k_\alpha}^\dagger$) is the annihilation (creation) operator of an electron of quantum number k_α and energy ϵ_{k_α} in the contact α. Finally, H_I accounts for the tunneling between dots and leads,

$$H_I = \sum_{k_\alpha \in \{L,R\}} V_{k_\alpha} d_{1L}^\dagger c_{k_\alpha} + \text{h.c.}$$

$$+ \sum_{k_\alpha \in \{L,R\}} V_{k_\alpha} d_{2L}^\dagger c_{k_\alpha} + \text{h.c.},$$

with V_{k_α} the tunneling matrix element. The linear conductance G is related to the transmission $T(\varepsilon)$ of an electron of energy ε by the Landauer formula at zero temperature:

$$G = \frac{2e^2}{h} T(\varepsilon_F).$$

To obtain explicitly G, we use the equation of motion approach for the Green’s function. The retarded Green’s function is defined by

$$G_{ij}^r(t) = -i \theta(t) \langle \{ d_i(t), d_j^\dagger(0) \} \rangle, \quad i, j = 1, 2,$$

where $\theta(t)$ is the step function. In the absence of interaction, the total transmission $T(\varepsilon)$ can be expressed as

$$T(\varepsilon) = tr\{ G^a(\varepsilon) \Gamma_R G^r(\varepsilon) \Gamma_L \}$$

where $G^{r(a)}(\varepsilon)$ is the Fourier transform of the retarded (advanced) Green’s function of the molecule, and the matrix $\Gamma^{L,R}$ describes the tunneling coupling of the two quantum dots to the left (right) lead, with

$$\Gamma_{ij}^{L,R} = 2\pi \sum_{k_{L(R)}} V_{ik_{L(R)}} V_{j k_{L(R)}}^* \delta(\varepsilon - \epsilon_{k_{L(R)}}), \quad i, j = 1, 2.$$ (8)

The equation of motion method uses the Heisenberg equations for the Fermi operators of the molecule, which are inserted in the time derivatives of the Green’s functions of Eq. (6). This leads to first order differential equations for the G_{ij}^r’s, containing Green’s functions for different dot operators, as well as others involving dot and lead operators. Through the same procedure, equations for these new Green’s functions are obtained, until having a closed set. A Fourier transform of such a set of equation takes it to an algebraic linear system for the $G_{ij}^r(\varepsilon)$’s, the solution of which leads to the following expression for G^r:

$$G^r(\varepsilon) = \frac{1}{\Omega} \left(\begin{array}{cc} \varepsilon - \varepsilon_2 + i \frac{\Gamma_{22}}{2} & -t_c + i \frac{\Gamma_{21}}{2} \\ -t_c + i \frac{\Gamma_{12}}{2} & \varepsilon - \varepsilon_1 + i \frac{\Gamma_{11}}{2} \end{array} \right),$$ (9)

where

$$\Omega = (\varepsilon - \varepsilon_1 + i \frac{\Gamma_{11}}{2})(\varepsilon - \varepsilon_2 + i \frac{\Gamma_{22}}{2}) - (t_c + i \frac{\Gamma_{12}}{2})(t_c + i \frac{\Gamma_{21}}{2}),$$ (10)

with $\Gamma_{ij} = \Gamma_{ij}^L + \Gamma_{ij}^R$. A useful quantity which provides insight into the electronic distribution is the local density of states in dot i. It can be written in terms of the diagonal matrix elements of the retarded Green’s function,

$$\rho_i(\varepsilon) = -\frac{1}{\pi} \text{Im} G_{ii}^r(\varepsilon), \quad i = 1, 2.$$ (11)

We are interested in the particular situation described in Fig. 2 in which $\Gamma_{11}^L = \Gamma_{11}^R \equiv \gamma_1$ and $\Gamma_{12}^L = \Gamma_{12}^R \equiv \gamma_2$, so that $\gamma_2 = 0$; a represents a connection in series, and $\gamma_2 = \gamma_2$ a symmetrical configuration in parallel. For this case, the non diagonal matrix elements of the matrices $\Gamma^{L,R}$ obey $\Gamma_{21}^L = \Gamma_{21}^R = \Gamma_{21}^R = \sqrt{\gamma_1 \gamma_2}$. \newpage

III. Conductance and Local Density of States

Introducing Eqs. (9)-(11) in Eq. (7) and then in (6), and using the above values of the $\Gamma^{L,R}$ matrix elements, we obtain the following expression for the conductance:

$$G(\varepsilon) = \frac{2e^2}{h} \frac{4}{C_1} \left| t_c \gamma_1 - \gamma_1 \gamma_1 (\varepsilon - \bar{\varepsilon}) \right|^2,$$ (12)

where

$$C_1 = \left[(\varepsilon - \bar{\varepsilon})^2 - (\Delta \varepsilon / 2)^2 - t_c^2 - \left(\frac{\Delta \gamma}{2} \right)^2 \right] + 4 \left[\gamma (\varepsilon - \bar{\varepsilon}) - t_c \gamma_1 \right]^2,$$ (13)

with $\bar{\varepsilon} = (\varepsilon_1 + \varepsilon_2) / 2$, $\Delta \varepsilon = \varepsilon_1 - \varepsilon_2$, $\gamma_1 = (\gamma_1 + \gamma_2) / 2$, $\Delta \gamma = \gamma_1 - \gamma_2$ and $\gamma_1 \gamma_2 = \sqrt{\gamma_1 \gamma_2}$. The densities of states at each of the quantum dots are, in turn,

$$\rho_i(\varepsilon) = \frac{1}{\pi C_1} \left\{ \gamma (\varepsilon - \bar{\varepsilon}) + \left(\frac{\Delta \gamma}{2} \right)^2 + 4 t_c \gamma_1 \gamma_1 (\varepsilon - \bar{\varepsilon}) \right\}.$$ (14)
and

$$\rho_2(\varepsilon) = \frac{1}{\pi C_1} \left\{ \tilde{\gamma} t_c^2 + \frac{(\Delta \gamma)^2}{4} + (\varepsilon - \frac{\Delta \varepsilon}{2})^2 \right\} ,$$ \hspace{1cm} (15)$$

with C_1 the same as Eq. 13.

First, let us consider the case with $\Delta \varepsilon = 0$. It follows from Eqs. 12-13 that $G(\varepsilon)$ has two resonances, corresponding to the bonding and antibonding states, at the energies

$$\varepsilon_{\pm} = \bar{\varepsilon} \pm \sqrt{t_c^2 - \frac{(\Delta \gamma)^2}{4}},$$ \hspace{1cm} (16)$$

which in general differ from the eigenvalues for the isolate molecule, $\varepsilon_{\pm}^0 = \bar{\varepsilon} \pm t_c$. The resonances can be distinguished only when $|t_c| > |\Delta \gamma|/2$, and the separation between them decreases as $|\Delta \gamma|/2$ approaches $|t_c|$. Thus, the level attraction produced by the connection to the leads becomes smaller as the coupling strength γ_2 increases, up to vanishing when $\gamma_2 = \gamma_1$, where the bonding and antibonding states coincide with those of the isolated molecule. A similar level attraction is reported by Kubala et al. in Ref. 19 in an Aharonov-Bohm ring with a quantum dot in each of its arms.

We notice also that the conductance vanishes at the Fermi energy

$$\varepsilon_A = \bar{\varepsilon} + t_c \bar{\gamma}/\gamma_{12},$$ \hspace{1cm} (17)$$

provided $\gamma_2 \neq 0, \gamma_1$. This antiresonance-like behavior, characterized by strictly zero transmission, is a consequence of destructive quantum interference between the different pathways through the dots, and does not exist for the connection in series, where only one possible pathway exists. Also, it can be shown that $G(\varepsilon)$ reaches the quantum limit $2e^2/h$ at specific values of the energy provided $|t_c| \geq |\Delta \gamma|/2$. For the molecule connected in series perfect transmission requires that the interdot coupling strength be at least $\gamma_1/2$, while in the parallel configuration with a weak interdot coupling it behaves as an ideal channel if the dot-lead coupling strengths are all of similar magnitude. Without loss of generality we can set $\bar{\varepsilon} = 0$, convention we adopt in what follows.

In Fig. 2 we have plotted the conductance as a function of the Fermi energy for $\Delta \varepsilon = 0$, $t_c = \gamma_1$, and different values of γ_2. For the configuration in series (Fig. 2a) the bonding and antibonding resonances are clearly resolved. For $\gamma_2 \neq 0, \gamma_1$, as in Figs. 2(b) and (c), the conductance exhibits the antiresonance mentioned above, and there is a progressive increase (reduction) of the width of the bonding (antibonding) resonance, as γ_2 becomes larger ($\gamma_2 < \gamma_1$). When $\gamma_2 = \gamma_1$ (Fig 2d) the antiresonance and the peak associated to the antibonding state are no longer present.

It can be shown that the conductance for $\Delta \varepsilon = 0$ is composed by a Breit-Wigner and a Fano line shape centered at the bonding and antibonding energies, respectively. Defining the quantities $\Gamma_–$ and Γ_+ by

$$\Gamma_\pm = \bar{\gamma} \pm \gamma_{12},$$ \hspace{1cm} (18)$$

in the limit $\Gamma_+ \gg \Gamma_–$ and around $\varepsilon = -t_c$, $G(\varepsilon)$ can be approximated by

$$G(\varepsilon) \approx \frac{2e^2}{h} \frac{\Gamma_+^2}{\Gamma_+^2 + (\varepsilon + t_c)^2},$$ \hspace{1cm} (19)$$

and around $\varepsilon = t_c$, by the Fano line shape of width $\Gamma_–$

$$G(\varepsilon) \approx \frac{2e^2}{h} \frac{\Gamma_–^2}{\Gamma_–^2 + 4t_c^2} \frac{(Q + e_-)^2}{1 + e_-^2},$$ \hspace{1cm} (20)$$

where $Q = -2t_c/\Gamma_+$ and $e_- = (\varepsilon - t_c)/\Gamma_– (\Gamma_– \neq 0)$. The width of the bonding resonance Γ_+ ranges from $\gamma_{1}/2$ for the connection in series to $2\gamma_{1}$ in the symmetrical case, while $\Gamma_–$ decreases from $\gamma_{1}/2$ to become infinitely small when γ_2 approaches γ_1. A similar line reduction in the conductance spectrum is discussed in Ref. 20 in a junction with two resonant impurities. This line narrowing (widening) in the conductance can be interpreted as an increase (reduction) of the lifetime $\tau = h/\Gamma$ of the corresponding molecular state, with Γ the associated linewidth. The strong narrowing of the Fano peak when
γ_2 is close to γ_1 is a signal of slow transitions between the antibonding state and the leads. The lifetime of the antibonding state becomes infinitely long when γ_2 approaches γ_1. Typically, the γ's are of the order of meV's, so that the lifetimes of quantum dot attached to leads in series are of the order of picoseconds. However, if in the present configuration $\gamma_1 = 10$ meV and $\gamma_2 = 9.9$ meV, one obtains $\Gamma_- = 5.5 \times 10^{-3}$ meV, then the lifetime of the antibonding state is $\tau_- \simeq 33$ ns, that is, four orders of magnitude larger. It is interesting to note that, as follows from expressions (12), (13) and as displayed by Fig. 2(d), when $\gamma_2 = \gamma_1$, the Fano resonance entirely disappears and the conductance reduces exactly to the Lorentzian

$$G(\varepsilon) = \frac{2e^2}{h} \frac{4\gamma_1^2}{(\varepsilon + t_c)^2 + 4\gamma_1^2},$$

expression with the form of the conductance of a single quantum dot centered at the bonding energy, with an effective line broadening $\gamma_a = 2\gamma_1$. This would indicate that only the bonding state contributes to the transmission through the molecule.

Additional insight into the physics underlying these results can be obtained by examining the local density of states in each of the quantum dots. For $\Delta \varepsilon = 0$ the density of states at both quantum dots is the same, and the electron has the same probability of being found at one or the other (covalent limit). It is straightforward to show that $\rho_{1,2} = \rho$ is a superposition of two Lorentzians of widths Γ_+ and Γ_- at the bonding and antibonding energies, respectively,

$$\rho(\varepsilon) = \frac{1}{2\pi} \left[\frac{\Gamma_+}{(\varepsilon + t_c)^2 + \Gamma_+^2} + \frac{\Gamma_-}{(\varepsilon - t_c)^2 + \Gamma_-^2} \right].$$

Fig. 3 shows this quantity as a function of the Fermi energy, for $\Delta \varepsilon = 0, t_c = \gamma_1$ and different values of γ_2: (a) $\gamma_2 = 0$, (b) $\gamma_2 = 0.3\gamma_1$, (c) $\gamma_2 = 0.6\gamma_1$ and (d) $\gamma_2 = \gamma_1$.

Now the antiresonance takes place in $\varepsilon_A = t_c$ and the resonances are further apart than for $\Delta \varepsilon = 0$, as one would expect, with their positions depending quadratically on $\Delta \varepsilon$. As before, the conductance is a convolution of a Lorentzian at the bonding energy and a Fano line shape at the antibonding energy. For $\Delta \varepsilon \lesssim t_c$ the Lorentzian has a constant line broadening $2\gamma_1$,

$$G(\varepsilon) \simeq \frac{2e^2}{h} \frac{4\gamma_1^2}{(\varepsilon - \varepsilon_b)^2 + 4\gamma_1^2},$$

with $\varepsilon_b = -[t_c + (\Delta \varepsilon)^2/(8t_c)]$. The Fano line shape has a width dependent of the difference of energies of the quantum dots levels, $\Gamma_a = \gamma_1(\Delta \varepsilon)^2/[8(t_c^2 + \gamma_1^2)]$,

$$G(\varepsilon) \simeq \frac{2e^2}{h} \frac{\gamma_a^2}{\gamma_1^2 + t_c^2} \frac{(\varepsilon + Q)^2}{1 + \gamma_a^2},$$

where $\gamma_a = [\varepsilon - t_c(1 + \Gamma_a/\gamma_1)]/\Gamma_a$ and $Q = t_c/\gamma_1$. Fig. 4 shows the conductance for $\Delta \varepsilon = \gamma_1/2$ and $t_c = \gamma_1$, together with the corresponding pure Breit-Wigner and Fano curves given by Eqs. (26) and (28). Notice that the line broadening of the Fano peak depends quadratically on the value of $\Delta \varepsilon$, but differences of energy $\Delta \varepsilon$ of the order of γ_1 result in Fano peaks narrow enough; for instance, if $\Delta \varepsilon = t_c, \Gamma_a = \gamma_1/16 \ll \gamma_1$. The local densities of states ρ_1 and ρ_2 are, respectively,

$$\rho_1(\varepsilon) = \frac{1}{\pi} \frac{(\Delta \varepsilon - 2t_c + 2\varepsilon)^2}{4C_2},$$

$$\rho_2(\varepsilon) = \frac{1}{\pi} \frac{(\Delta \varepsilon + 2t_c - 2\varepsilon)^2}{4C_2},$$
FIG. 4: Conductance as a function of the Fermi energy, for $\Delta \varepsilon = \gamma_1/2$, $t_c = \gamma_1$ and $\gamma_2 = \gamma_1$. The dash and dotted lines are the Lorentzian and the Fano line shape of Eqs. 20 and 20, respectively.

and, as observed in Fig 5, are the superposition of a Breit-Wigner resonance close to the bonding energy and a Fano line shape around the antibonding energy, similarly to the conductance. It can be seen from the above analysis that

FIG. 5: Local densities of states ρ_1 (solid line) and ρ_2 (dash line) as a function of the Fermi energy, for $\Delta \varepsilon = \gamma_1/2$, $t_c = \gamma_1$ and $\gamma_2 = \gamma_1$.

for quantum dots with different energies, both molecular states always contribute to the conductance.

IV. CONCLUSIONS

In this work, we studied the conductance and density of states at zero temperature of a quantum dot molecule attached to leads in the range between a connection in series and a symmetric parallel configuration. We found that the conductance is composed of Breit-Wigner and Fano line shapes at the bonding and antibonding energies, respectively, with their line broadenings controlled by the asymmetry of the configuration. The narrowing (widening) of a line in the conductance can be interpreted as an increase (reduction) of the lifetime of the corresponding molecular state. From the densities of states it can be deduced that the antibonding state becomes progressively more localized as the asymmetry of the configuration is reduced. Surprisingly, when the configuration is completely symmetrical the tunneling through the antibonding state is totally suppressed and the bonding state is the only one participating in the transmission. In this limit, the antibonding becomes a coherent localized state with zero localization length. The strong reduction of the decoherence processes exhibited by the present system may have applications in quantum computing.

Acknowledgments

F. C. and M. L. L. G. were supported in part by Cátedra Presidencial en Ciencia, and F. C. also received support from FONDECYT, grant 1020829. P. A. O. would like to thank financial support from Milenio ICM P99-135-F and FONDECYT under grant 1020269.

1 M. A. Kastner, Rev. Mod. Phys. 64, 849 (1992).
2 P. L. McEuen et al., Phys. Rev. Lett. 66, 1926 (1991); R. C. Ashoori et al., ibid. 71, 613 (1993); P. L. McEuen, Science 276, 1729 (1997).
3 A. Yacoby et al., Phys. Rev. Lett. 74, 4047 (1995); R. Schuster et al., Nature 385, 417 (1997); E. Buks et al., ibid 391, 871 (1998); Yang Ji et al. Science 290, 779 (2000).
4 D. Goldhaber-Gordon et al., Nature (London) 391, 156 (1998); D. Goldhaber-Gordon et al., Phys. Rev. Lett. 81, 5225 (1998); S. M. Cronenwett et al., Science 281, 540 (1998); W. G. van der Wiel et al., ibid 289, 2105 (2000).
5 J. Göres et al., Phys. Rev. B 62, 2188 (2000); A. A. Clerk, X. Waintal, P. W. Brouwer, Phys. Rev. Lett. 86, 4636 (2001); I. G. Zacharia, D. Goldhaber-Gordon, G. Granger, M. A. Kastner, Yu, B. Khavin, Hadas Shtrikman, D. Mahalu and U. Meirav, Phys. Rev. B 64, 155311 (2001); Ken-su.ke Kobayashi, Hisashi Aikawa, Shingo Katsumoto and Yasuhiro Iye, Phys. Rev. Lett. 88, 256806 (2002).
6 R. H. Blick, D. Pfannkuche, R. J. Haug, K. v. Klitzing and K. Eberl, Phys. Rev. Lett. 80 4032 (1998).
7 H. Jeong, A. M. Chang and M. R. Melloch, Science 293 2221 (2001).
8. A. W. Holleitner, C. R. Decker, H. Qin, K. Eberl and R. H. Blick, Phys. Rev. Lett. 87, 256802 (2001).
9. A. W. Holleitner, R. H. Blick, A. K. Hüttel, K. Eberl and J. P. Kotthaus, Science 297, 70 (2002).
10. G. Schedelbeck, W. Wegscheider, M. Bichler and G. Abstreiter, Science 278, 1792 (1997).
11. T. H. Oosterkamp, T. Fujisawa, W. G. van der Wiel, K. Ishibashi, R. V. Hijman, S. Tarucha and Leo. P. Kouwenhoven, Nature 395, 873 (1998).
12. G. Klimeck, G. Chen and S. Datta, Phys. Rev. B 50, 2316 (1994); Cheng Niu, Li-jun Liu and Tsung-han Lin, ibid. 51, 5130 (1995); C. A. Stafford and S. D. Darma, Phys. Rev. Lett. 72, 3590 (1994); A. Aharony, O. Entin-Wohlman and Y. Imry, Phys. Rev. B 61, 5452 (2000); A. Aharony, O. Entin-Wohlman, Y. Imry and Y. Levinson, Phys. Rev. B 62, 13561 (2000); Ramón Aguado and David C. Langreth, Phys. Rev. Lett. 85, 1946 (2000); Pedro A. Orellana, G. A. Lara, Enrique V. Anda, Phys. Rev.B 65, 155317 (2002).
13. Tae-Suk Kim and S. Hershfield, Phys. Rev. B 63, 245326 (2001); Y. Takazawa, Y. Imai and N. Kawakami, cond-mat/0205016v1.
14. Kicheon Kang and Sam Young Cho, cond-mat/0210009v1.
15. Daniel Boese, Walter Hofstetter, Herbet Schoeller, Phys. Rev. B 66, 125315 (2002).
16. Daniel Loss and David DiVincenzo, Phys. Rev. A 57, 120 (1998).
17. R. H. Blick, A. K. Hüttel, A. W. Holleitner, E. M. Höhberger, H. Qin, J. Kirschbaum, J. Weber, W. Wegscheider, M. Bichler, K. Eberl and J. P. Hotthaus, to appear in Physica E.
18. Supriyo Datta, “Electronic transport in mesoscopic systems” (Cambridge Univ. Press, 1997).
19. Björn Kubala and Jürgen König, Phys. Rev. B 65, 245301.
20. T. V. Shahbazyan and M. E. Raikh, Phys. Rev. B 49, 17123 (1994).