For the past two decades, the causal agent of anthracnose occurring on strawberry in Korea was considered *Colletotrichum gloeosporioides*. However, the recent molecular analysis has shown that the genus *Colletotrichum* has undergone many taxonomic changes with introduction of several new species. As a result, it revealed that *C. gloeosporioides* indeed consisted of more than 20 distinct species. Therefore, the Korean pathogen isolated from strawberry should be reclassified. The shape and size of the conidia of the pathogen were not distinctively different from those of *C. gloeosporioides* and *C. fructicola*, but it differed in shape of the appressoria. A combined sequence analysis of partial actin, glyceraldehyde-3-phosphate dehydrogenase genes, and the internal transcribed spacer regions showed that the strawberry isolates formed a monophyletic group with authentic strains of *C. fructicola*. On the basis of these results, the anthracnose fungi of the domestic strawberry in Korea were identified as *C. fructicola* and distinguished from *C. gloeosporioides*.

Keywords: anthracnose, *Colletotrichum fructicola*, strawberry

Anthracnose crown rot, to which all currently grown strawberry (*Fragaria × ananassa* Duch.) cultivars are susceptible, is a major disease in over 30% of nurseries and after transplanting stage in Korea (Nam et al., 2009). The causal pathogen *Colletotrichum gloeosporioides* was first reported by Kim et al. (1992).

C. gloeosporioides that occurs in many crops is a species aggregate containing a number of polymorphic subgroups which show varying degrees of pathogenicity, host-specificity and genetic homogeneity (Hyde et al., 2009a). However, the recent epitypification of *C. gloeosporioides* has enabled accurate classification by comparative analysis with pathogens isolated from the various plants (Cannon et al., 2008). The sequence analysis of the type strains was an important element in the research of identification and phylogenetic relationship of *Colletotrichum* (Cai et al., 2009; Phoulivong et al., 2010). Anthracnose pathogens, previously reported to be *Colletotrichum* sp., that occur on coffee in Thailand were shown as three new species of *C. asianum*, *C. fructicola*, and *C. siamense* based on the multi-gene sequence analysis and morphological characteristics (Prihastuti et al., 2009). In the past few years, anthracnose pathogens from tropical fruits, which were identified as *C. gloeosporioides* based on their morphological characteristics, are subdivided into *C. asianum*, *C. fructicola*, *C. horii*, *C. kahavae*, and *C. gloeosporioides* by comparing of the nucleotide sequences with that of the *C. gloeosporioides* epitype (Phoulivong et al., 2010). As a result, many species of *Colletotrichum*, including *C. gloeosporioides*, have been defined, mainly based on the results of molecular phylogenetic analysis (Damm et al., 2010). Although the internal transcribed spacer (ITS) sequence do not separate *C. gloeosporioides* complex, some single genes or combinations of genes, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glutamine synthetase, can be used to reliably distinguish most taxa (Weir et al., 2012).

Therefore, *C. gloeosporioides*, previously reported pathogen on strawberries in Korea, is necessary to re-evaluate, taking into account the changed species boundary and the recent phylogenetic results of the genus *Colletotrichum*.

Isolation and culture of strains. Eleven strains isolated from strawberry plants from 2005 to 2011 (Table 1). Diseased petiole, roots, and crown tissues were surface sterilized by dipping in 2% NaOCl for 2 min, rinsed thrice with sterile water, and dried on sterile tissue paper. Samples were then placed on water agar and incubated at 27°C. The growing edges of any fungal hyphae developing from the tissue were then transferred aseptically to potato dextrose agar (PDA; Difco, Detroit, MI, USA). Single spore isolations were also carried out using the procedure described...
by Prihastuti et al. (2009). Pure cultures were stored at 4°C on PDA slants.

Pathogenicity test. Each isolated pathogen was prepared at 1×10^5 conidia/mL and sprayed 1 mL per plant on the Seolhyang cultivar of strawberry plants. Six plants per an isolate were used for test. The inoculated plants were incubated in a dew plastic house at 27°C and 100% relative humidity (RH) for 2 days and then moved to a plastic house held between 24°C and 30°C. After 60 days, disease index on each plant was rated on a scale of 0–4: 0, healthy; 1, < 50% of petioles affected; 2, > 50% of petioles affected; 3, wilted; 4, necrosis formed on the entire plant (Nam et al., 2006). Disease index data from isolates were subjected to analysis of means and standard error. All data analysis was performed using the Costat program (CoHort software, Berkeley, CA). All isolates caused anthracnose symptoms on the Seolhyang strawberry cultivar (Table 1). Disease index of the isolates was the highest (DI > 3) for CGF071204, CGF100713, and CGF110101. Smith and Black (1990) showed that pathogenicity of *C. gloeosporioides*, *C. acutatum*, and *C. fragariae* can be differentiated by factors such as strawberry tissue and cultivars. *C. gloeosporioides* and *C. acutatum* were reported to have a wide host range, while *C. fragariae* were restricted to strawberry plants (Freeman et al., 1998; Hyde et al., 2009b). *Colletotrichum* isolated from strawberry in Korea and Japan was pathogenic to strawberry and apple fruit (Nam et al., 1998), and avocado, broad bean, common sowthistle, cyclamen, pea, and strawberry under non-wound inoculation condition (Okayama and Tsujimoto, 1994), respectively.

Morphological and cultural characteristics. Isolates were measured for colony characteristics, and shape and size of

Table 1. Sources and pathogenicity test of *Colletotrichum* isolates used in this study

Isolates	Isolated year	Cultivar	Plant part	Origin	Pathogenicity test (DI)¹	Sequence analysis²
CGF050604	2005	Johong	Crown	Busan	1.3 ± 0.7	K1 K1
CGF060617	2006	Redpearl	Crown	Gangneung, Gangwon	1.0 ± 0.7	K1 K1
CGF071204	2007	Seolhyang	Root	Nonsan, Chungnam	3.0 ± 0.6	K2 K2
CGF080805	2008	Kumhyang	Petiole	Nonsan, Chungnam	1.8 ± 0.7	K2 K2
CGF080806	2008	Seolhyang	Petiole	Nonsan, Chungnam	1.7 ± 0.8	K2 K2
CGF080901	2008	Seolhyang	Crown	Buyeo, Chungnam	2.5 ± 0.7	K2 K2
CGF081103	2008	Seolhyang	Crown	Nonsan, Chungnam	1.5 ± 0.5	K2 K2
CGF090501	2009	Seolhyang	Crown	Gyeryong, Chungnam	0.5 ± 0.2	K2 K2
CGF090701	2009	Seolhyang	Crown	Nonsan, Chungnam	2.3 ± 0.6	K2 K2
CGF100713	2010	Sinseolmae	Crown	Eumseong, Chungbuk	3.2 ± 0.4	K2 K2
CGF110101	2011	Seolhyang	Crown	IkSan, Jeonbuk	3.0 ± 0.4	K2 K2

¹DI (Disease index): 0, healthy; 1, < 50% petioles affected; 2, > 50% petioles affected; 3, wilted; 4, necrosis formed on the entire plants.

²Haplotypes of the Korean isolates.

Table 2. Morphological characteristics of *Colletotrichum* species from strawberry

Species	Colony characters	Conidia	Appressoria	Growth rate (mm/day)			
Colletotrichum sp. (CGF050604, 060617 071204, 080806, 090701)	White, becoming grey to dark grey at the center	14.6±0.47, n = 10; 3.99±0.11, n = 10	Cylindrical, Ovoid, sometimes clavate	9.98±1.8, n = 8			
C. gloeosporioides (Prihastuti et al., 2009)	Grey, becoming dark grey to black	8-11, 3-4.5	Cylindrical	Circular to slightly irregular	N/A		
C. fructicola (Prihastuti et al., 2009)	Cottony, dense pale grey aerial mycelium, grey to dark grey colony, fast growing	11.37±0.96 (9.7-14), 3.54±0.35 (3-4.3)	Cylindrical, Ovoid, sometimes clavate	10.72±0.53 (9.67-11.5)			
C. fragariae (Gunnell and Gubler, 1992)	Pale mouse grey to dark mouse grey	14-22.5, 3.5-5	Cylindrical	N/A	N/A	N/A	13-14
the conidia after 7 days of incubation on PDA media. The colony diameters were measured daily for 7 days, and the growth rate for these 7 days was calculated as the average of mean daily growth (mm per day). The colors of the conidial masses and zonation were recorded at 7 days. Appressoria were produced using a slide culture technique, in which a conidial suspension was placed in a hole on the glass slide and covered with a cover slip. The slide was placed in an empty Petri dish with wet filter paper and incubated at 28°C for 2–4 days. Colonies of the isolates on PDA first appeared as white, then becoming grey to dark grey at the center over time, and growth rate was shown 9.98 ± 1.8 mm per day (Table 2). The shape and size of the conidia were cylindrical and 14.6 ± 0.47 × 3.99 ± 0.11 μm, respectively. The shape and size of the appressoria were ovoid, sometimes clavate and 9.93 ± 0.32 × 4.90 ± 0.10 μm, respectively (Table 2). Prihastuti et al. (2009) reported that the colony characteristics and conidial shape and size of C. fructicola were similar to those of C. gloeosporioides, but that ovoid, sometimes clavate appressoria in C. fructicola

Table 3. Reference sources of Colletotrichum gloeosporioides complex isolates used in this study

Species	Source	GenBank accession number
C. aenigma	ICMP 18608T	JX010244
C. aescynomenes	ICMP 17673T	JX010176
C. alatae	ICMP 17919T	JX010190
C. alienum	ICMP 12071T	JX010251
C. aotearoa	ICMP 18537T	JX010205
C. asianum	ICMP 18580T	FJ972612
C. boninense	ICMP 17904T	JX010292
C. clidemiae	ICMP 18658T	JX010265
C. cordylinicola	ICMP 18579T	JX010226
C. fructicola	ICMP 18581T	JX010165
C. fructicola (syn. C. ignotum)	ICMP 18646T	JX010173
C. fructicola (syn. Glomerella cingulata var. minor)	ICMP 17921T	JX010181
C. gloeosporioides	ICMP 17821T	JX010152
C. gloeosporioides (syn. Gloeosporium pedemontanum)	ICMP 19121T	JX010148
C. horii	ICMP 10492T	GQ329690
C. kahawae subsp. ciggaro	ICMP 18539T	JX010230
C. kahawae subsp. ciggaro (syn. Glomerella cingulata var. migrans)	ICMP 17922T	JX010238
C. kahawae subsp. ciggaro (syn. Glomerella rufomaculans var. vaccinii)	ICMP 19122T	JX010228
C. kahawae subsp. kahawae	ICMP 17816T	JX010231
C. musae	ICMP 19119T	JX010146
C. nupharicola	ICMP 18187T	JX010187
C. psidii	ICMP 19120T	JX010219
C. queenslandicum	ICMP 1778T	JX010276
C. salsoale	ICMP 19051T	JX010242
C. siamense	ICMP 18578T	JX010171
C. siamense (syn. C. hymenocallidis)	ICMP 18642T	JX010278
C. siamense (syn. C. jasmini-sambac)	ICMP 19118T	HM131511
C. theobromicola	ICMP 18649T	JX010294
C. theobromicola (syn. C. fragariae)	ICMP 17927T	JX010286
C. theobromicola (syn. C. gloeosporioides f. stylosanthis)	ICMP 17957T	JX010289
C. ti	ICMP 4832T	JX010269
C. tropicale	ICMP 18653T	JX010264
C. xanthorrhoeae	ICMP 17903T	JX010261
Glomerella cingulata f. sp. camelliae	ICMP 10643	JX010224

*T = ex-type or authentic, (T) = ex-type or authentic of synonymised taxon.
were different from circular to slightly irregular one in the latter species. Size of conidia and appressoria of the strawberry isolate differed from *C. frugariae* by Gunnell and Gubler (1992). Therefore, *Colletotrichum* isolates from strawberries in Korea were similar to *C. gloeosporioides* and *C. fructicola* in shape and size of conidia, but the shape of the appressoria was close to *C. fructicola* rather than *C. gloeosporioides*.

Phylogenetic analysis. The sequences of eleven strains from strawberry and the ex-type or authentic strains of anthracnose available from GenBank (Table 3) were used in this study. Genomic DNA was extracted by using the method of Park et al. (2005). For the amplification of the ITS, partial actin (ACT), and GAPDH genes, 3 different primer sets were used: ITS5 and ITS4 (White et al., 1990); ACT512F and ACT783R (Prihastuti et al., 2009); and GDF1 and GDR1 (Peres et al., 2008); respectively. The amplification was performed with Maxime polymerase chain reaction (PCR) PreMix (I-Taq, iNtRoN BioTechnology, Korea) in a final volume of 20 μl containing 10 pmol of each primer set and PCR conditions were performed as described by Prihastuti et al. (2009). PCR products were electrophoresed through a 1% agarose gel stained with ethidium bromide and purified using a PCR quick-spin PCR product purification kit (iNtRON BioTechnology, Korea) according to the manufacturer’s instructions. The nucleotide sequences were determined by Bioneer Corporation (Chungwon, Korea). The sequences were proofread, edited, and merged onto comparable sequences using the PHYDIT program version 3.2 (Chun, 1995). To determine the phylogenetic positions of the *Colletotrichum* isolates, the alignments of the 3 gene sequence of 11 Korean isolates and 34 reference sequences retrieved from GenBank were performed with Clustal × 1.81 (Thompson et al., 1997). Nucleotide sequences were aligned manually where necessary. A maximum likelihood tree was inferred in MEGA v. 5.05, using TN93+I that was selected as the most suitable nucleotide mode by Modeltest (Tamura et al., 2011). Bootstrap analysis was performed with 1,000 replications for branch stability. Sequences of ITS, ACT, and GAPDH regions of three isolates CGF080901, CGF090501, and CGF100713 were deposited in GenBank (JX125050, JX125051, and JX125052; KC283023, KC283024, and KC283025; KC283017, KC283018, and KC283019, respectively).

PCR amplification of the ITS region generated 466 bp fragments for all isolates from strawberry plants. Sequence analysis of ITS region showed no sequence difference among all isolates and authentic of *C. fructicola* (ICMP 18581, ICMP 18646, and ICMP 17921) (data not shown).

PCR amplification of the ACT gene generated 217-226 bp fragments for all isolates from strawberry plants. Korean isolates present two haplotypes (K1 and K2) (Table 1). The ACT sequence of K1 (CGF050604 and CGF060617) differed from those of other nine Korean isolates (K2) by 3nt polymorphic characters at 14, 96, and 129 position and 7nt deletion at 23–29 position (Table 4). ACT sequence of K1 is identical to that of *C. fructicola* strain ICMP 17921 (syn. *Glomerella cingulate* var. *minor*), whereas K2 showed a sequence similarity of 99.4% with *C. fructicola* ICMP 18646 (syn. *C. ignotum*).

PCR amplification of the GAPDH genes generated 232 bp fragments for all isolates. K1 differed from those of other Korean isolates (K2) by 3nt polymorphic characters at 47, 57 and 117 position (Table 4). GAPDH sequence of K1 showed a sequence similarity of 99.5% with that of *C. fructicola* strain ICMP 17921, whereas K2 showed a sequence similarity of 99.1% with *C. fructicola* ICMP 18581 and *C. fructicola* ICMP 18646.

The combined analysis showed that the 11 strains isolated from Korea formed a monophyletic group with authentic of *C. fructicola* (ICMP 18581, ICMP 18646, and ICMP 17921) and clearly distinct from other *C. gloeosporioides* complex (Fig. 1). All isolates were divided into two subgroups: one subgroup (K1) contained two Korean isolates and *C. fructicola* strain ICMP 17921 with a bootstrap value of 77%. The other subgroup (K2) contained 9 Korean isolates and *C. fructicola* ICMP 18581 and *C. fructicola* ICMP 18646 with a bootstrap value of 63%.

Since *C. fructicola* was first isolated from the berries of *Coffea arabica* in the Chiang Mai region of Thailand (Prihastuti et al., 2009), it has been found in tropical fruits such as chili, papaya, and longan (Phoulivong et al., 2010). Recently, *G. cingulata* var. *minor* and *C. ignotum* placed in synonymy with *C. fructicola* (Weir et al., 2012). K1 was

Haplotype	Nucleotide position	ACT	GAPDH
K1	14 23 24 25 26 27	T	G
K2	47 57 117		

Table 4. Polymorphisms in ACT and GAPDH for two haplotypes (K1 and K2) of Korean isolates.
more closely related to *C. fructicola* strain ICMP 17921 (syn. *G. cingulata* var. *minor*) from Ficus than K2, whereas K2 grouped to *C. fructicola* ICMP 18581 and *C. fructicola* ICMP 18646 (syn. *C. ignotum*).

The *Colletotrichum* species isolated from strawberries worldwide are as follows: *C. gloeosporioides* (Gunnell and Gubler, 1992), *C. fragariae* (Smith et al., 1990), *C. acutatum* (Smith et al., 1986), *C. dematium* (Beraha and Wright, 1973), and *Gloeosporium* spp. (Wright et al., 1960), but as *C. gloeosporioides* (perfect stage: *G. cingulata*) in Korea (Kim et al., 1992; Nam et al., 1998). Three anthracnose stains (KACC 40695, KACC 40696, and KACC 40812) from strawberry plants stored in Korean Agricultural Culture Collection (KACC) were identified as *C. gloeosporioides* based on sequence analysis of ITS and partial β-tubulin gene and cultural characteristics (Kim et al., 2006). In ITS analysis, KACC 40695 and KACC 40812 formed the monophyletic group with K2 and showed 100% sequence similarity among K2, while KACC 40696 was closely related to *C. aenigma* strain ICMP 18608, *C. alienum* strain ICMP 12071, and *C. siamense* ICMP 18578 (syn. *C. hymenocallidis*) and differed from ex-types of *C. fructicola* (data not shown). As we performed comparative analysis with three KACC strains using ITS sequence in the present study, phylogenetic analysis with combined genes will be needed to establish for accurate identification of the three stains. The *C. fragariae*, originally reported as a disease of strawberry in Florida, USA (Brooks, 1931), placed in synonymy with *C. theobromicola* (Weir et al., 2012). All isolates from Korea were clearly distinguished from *C. theobromicola* (syn. *C. fragariae*) based on morphological and molecular phylogenetic analysis.

In the present study, anthracnose fungi that occur in the domestic strawberry were identified as *C. fructicola* and
distinguished from *C. gloeosporioides* based on their morphological and molecular phylogenetic features.

Acknowledgments

This work was carried out with the support of “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ90703904)” Rural Development Administration, Republic of Korea.

References

Beraha, L. and Wright, W. R. 1973. A new anthracnose of straw- berry caused by *Colletotrichum dematium*. *Plant Dis. Rep.* 57: 445–448.

Brooks, A. N. 1931. Anthracnose of strawberry caused by *Colle-totrichum fragariae* f. sp. *Phytopathology* 21:739–744.

Cai, L., Hyde, K. D., Taylor, P. W. J., Weir, B. S., Waller, J., Abang, M. M., Zhang, J. Z., Yang, Y. L., Phoulivong, S., Liu, Z. Y., Prihastuti, H., Shivas, R. G., McKenzie, E. H. C. and Johnston, P. R. 2009. A polyphasic approach for studying *Colletotrichum*. *Fungal Divers.* 39:183–204.

Cannon, P. F., Buddie, A. and Bridge, P. D. 2008. The typification of *Colletotrichum gloeosporioides*. *Mycotaxon* 104:189–204.

Chun, J. 1995. Computer-assisted classification and identification of actinomycetes. Ph. D. thesis. University of Newcastle, Newcastle upon Tyne, UK.

Damm, U., Baroncelli, R., Cai, L., Kudo, Y., O’Connell, R., Weir, B., Yoshino, K. and Cannon, P. F. 2010. *Colletotrichum*: species, ecology and interactions. *IMA Fungus* 1:161–165.

Freeman, S., Katan, T. and Shabi, E. 1998. Characterization of *Colletotrichum* species responsible for anthracnose diseases of various fruits. *Plant Dis.* 82:596–605.

Gunnell, P. S. and Gubler, W. D. 1992. Taxonomy and morphology of *Colletotrichum* species pathogenic to strawberry. *Mycologia* 84:157–165.

Hyde, K. D., Cai, L., Cannon, P. F., Crouch, J. A., Crous, P. W., Damm, U., Goodwin, P. H., Chen, H., Johnston, P. R., Jones, E. B. G., Liu, Z. Y., McKenzie, E. H. C., Moriwaki, J., Noire-ung, P., Pennycook, S. R., Pfenning, L. H., Prihastuti, H., Sato, T., Shivas, R. G., Tan, Y. P., Taylor, P. W. J., Weir, B. S., Yang, Y. L. and Zhang, J. Z. 2009a. *Colletotrichum*-names in current use. *Fungal Divers.* 39:147–182.

Hyde, K. D., Cai, L., McKenzie, E. H. C., Yang, Y. L., Zhang, J. Z. and Prihastuti, H. 2009b. *Colletotrichum*: a catalogue of confusion. *Fungal Divers.* 39:1–17.

Kim, D. H., Jeon, Y. A., Go, S. J., Lee, J. K. and Hong, S. B. 2006. Reidentification of *Colletotrichum gloeosporioides* and *C. acutatum* isolates stored in Korean agricultural culture collection (KACC). *Res. Plant Dis.* 12:168–177. (in Korean)

Kim, W. G., Cho, W. D. and Lee, Y. H. 1992. Anthracnose of strawberry caused by *Colletotrichum gloeosporioides* Penz. *Plant Pathol.* 8:213–215. (in Korean)

Nam, M. H., Jung, S. K., Yoo, S. J., Seo, K. S. and Kim, H. G. 1998. Cultural and pathogenic characteristics between *Colle-totrichum gloeosporioides* and *Glomerella cingulata* isolated from strawberry in Korea. *Kor. J. Plant Pathol.* 14:654–660. (in Korean).

Nam, M. H., Jung, S. K., Lee, Y. S., Choi, J. M. and Kim, H. G. 2006. Effects of nitrogen, phosphorus, potassium and calcium nutrition on strawberry anthracnose. *Plant Pathol.* 55:246–249.

Nam, M. H., Nam, Y. G., Kim, T. I., Kim, H. S., Jang, W. S., Lee, W. K., Lee, I. H., Kang, H. K., Park, Y. J., Choi, J. M. and Whang, K. S. 2009. Compendium of Strawberry Diseases and Pests. Chungnam Strawberry Association. 204pp. (in Korean).

Okayama, K. and Tsujimoto, A. 1994. Occurrence of strawberry anthracnose caused by *Glomerella cingulata* (Stoneman) Spaulding et Schrenk and pathogenicity of the fungus. *Ann. Phytopath. Soc. Japan* 60:617–623. (in Japanese)

Park, M. S., Seo, G. S., Bae, K. S. and Yu, S. H. 2005. Characterization of *Trichoderma* spp. associated with green mold of oyster mushroom by PCR-RFLP and sequence analysis of ITS regions of rDNA. *Plant Pathol. J.* 21:229–236.

Peres, N. A., MacKenzie, S. J., Peever, T. L. and Timmer, L. W. 2008. Postbloom fruit drop of citrus and key lime anthracnose are caused by distinct phylogenetic lineages of *Colletotrichum acutatum*. *Phytopathology* 98:345–352.

Phoulivong, S., Cai, L., Chen, H., McKenzie, E. H. C., Abdel- salam, K., Chukeatirote, E. and Hyde, K. D. 2010. *Colletotri-chum gloeosporioides* is not a common pathogen on tropical fruits. *Fungal Divers.* 44:33–43.

Prihastuti, H., Cai, L., Chen, H., McKenzie, E. H. C. and Hyde, K. D. 2009. Characterization of *Colletotrichum* species associated with coffee berries in northern Thailand. *Fungal Divers.* 39:89–109.

Smith, B. J. and Black, L. L. 1986. First report of *Colletotrichum acutatum* on strawberry in the United States. *Plant Dis.* 70: 1074.

Smith, B. J. and Black, L. L. 1990. Morphological cultural and pathogenic variation among *Colletotrichum* species isolated from strawberry. *Plant Dis.* 74:69–76.

Tamura, K., Peterson, D., Peterson, N., Stecher, G and Nei, M. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol. Biol. Evol.* 28:2731–2739.

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Res.* 24:4876–4882.

Weir, B. S.,Johnson, P. R. and Damm, U. 2012. The *Colletotri-chum gloeosporioides* species complex. *Stud. Mycol.* 73:115– 180.

White, T. J., Bruns, T., Lee, S. and Taylor, J. W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: A Guide to Methods and Application (eds. M. A. Innis, D. H. Gelfand, J. J. Sninsky, J. J. and Y. J. White). Academic Press. San Diego, CA, USA.

Wright, W. R., Smith, M. A., Ramsey, G. B. and Beraha, L. 1960. *Gloeosporium* rot of strawberry fruit. *Plant Dis. Rep.* 44:212–213.