v-Myb of E26 leukemia virus up-regulates bcl-2 and suppresses apoptosis in myeloid cells

Jonathan Frampton, 1 Torbjörn Ramqvist, and Thomas Graf

European Molecular Biology Laboratory, D-69117 Heidelberg, Germany

Many oncogenes have been shown to be deregulated transcription factors, yet direct target genes mediating cell transformation remain elusive. Here we describe such a target for v-Myb by exploiting a temperature-sensitive mutant of the E26 avian leukemia virus encoding Myb–Ets. Myeloblasts transformed by the mutant differentiate into macrophages or die by apoptosis when shifted to the nonpermissive temperature as a result of inactivation of v-Myb. During this process mRNA of the antiapoptotic oncoprotein Bcl-2 is down-regulated with kinetics similar to those of Mim-1, a differentiation-related protein whose expression is directly regulated by Myb. Forced expression of bcl-2 rescues the cells from apoptosis, without preventing either their withdrawal from the cell cycle or their differentiation. v-Myb appears to act directly on the bcl-2 gene, because a bcl-2 promoter-driven reporter is activated by Myb–Ets and v-Myb–VP16 and requires intact Myb binding sites within the promoter. Surprisingly, inactivation of v-Myb in multipotent progenitors transformed by E26 virus does not induce apoptosis, indicating that bcl-2 regulation by the oncoprotein is required for the transformation of some cell types but not others.

[Key Words: Myb; leukemia; myeloid cell transformation; programmed cell death]

Received July 3, 1996; revised version accepted September 11, 1996.

The c-Myb protein, which contains three homeodomain-related DNA binding repeats, acts as a sequence-specific transcription factor (for review, see Lüscher and Eisenman 1990; Graf 1992). Inactivation experiments in mice (Mucenski et al. 1991) have shown that it plays a central role in definitive hematopoiesis. Also, its abundant expression in various immature blood cell types suggests that it affects differentiation and/or growth control in a number of different lineages (Westin et al. 1982; Kastan et al. 1989). Myb was identified originally by its occurrence in two acute avian leukemia retrovirus strains, E26 and AMV (Roussel et al. 1979). In the E26 strain, the v-Myb oncoprotein is fused to v-Ets, and this is a prerequisite for the high leukemogenic capacity of the virus [Metz and Graf 1991a]. The infection of yolk sac cells from 2-day-old embryos with E26 virus results in the transformation (i.e., induction of proliferation) of two different cell types: myeloblasts, which can differentiate into both macrophages and neutrophil granulocytes; and Myb–Ets-transformed progenitors (MEPs), which have the potential to differentiate into thrombocytes, erythrocytes, eosinophils, and myeloblasts [Graf et al. 1992, Frampton et al. 1995]. v-Myb alone is sufficient to transform myeloid cells, because both E26 mutants lacking the ets oncogene and the AMV strain are capable of transforming cells of this lineage (for review, see Lüscher and Eisenman 1990; Graf 1992).

In an attempt to unravel the mechanism of transformation by the E26 virus, our laboratory has developed, through the use of biological screens, a number of temperature-sensitive (ts) mutants with lesions in v-Myb. The mutation in the prototypic mutant, ts21, corresponds to a threonine to arginine substitution in the third repeat (R3) of the Myb DNA-binding domain [Frykberg et al. 1988]. It completely abolishes specific Myb DNA binding activity at 42°C, the nonpermissive temperature [Frampton et al. 1995]. ts21-transformed myeloblasts shifted to 42°C are arrested in their growth and differentiate into macrophages [Beug et al. 1984, 1987], whereas under the same conditions ts21-transformed MEPs are not growth-arrested and differentiate into thrombocytes [Frampton et al. 1995]. Using a differential screening technique to search for downstream targets we have identified mim-1 as a direct target gene of Myb [Ness et al. 1989]. However, because Mim-1 is a protein expressed in the granules of neutrophil granulocytes, it probably plays no role in establishing the transformed phenotype. A number of additional direct v-Myb targets have been identified recently, but none could be linked to the transforming capacity of the oncoprotein (for review, see Frampton et al. 1996). Targets relevant for transformation by v-Myb (as well as for other transcription factor-type oncogenes), therefore, remain to be identified.

1Corresponding author. Present address: Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK.
Here we show that v-Myb acts as a survival factor for myeloid cells by directly up-regulating the antiapoptotic \textit{bcl-2} gene, making this gene a first target relevant to transformation by the oncogene.

Results

Myeloblasts transformed by \textit{ts21 E26} undergo apoptosis when shifted to 42°C

When \textit{ts21 E26}-transformed myeloblasts were shifted from 37°C (the permissive temperature) to 42°C (the non-permissive temperature) for 2 days we observed not only differentiating cells but also cell death (Beug et al. 1984, 1987). J. Frampton and T. Graf, unpubl.). This prompted us to ask whether the cells had died by apoptosis. Indeed, \textit{ts21} myeloblasts shifted to 42°C for 60 hr exhibited fragmented nuclei and chromatin condensations (Fig. 1A).

Figure 1. Induction of apoptosis in \textit{ts21} transformed myeloblasts shifted to 42°C. (A) Giemsa stained cytospins of \textit{ts21 [Mybts21-Ets]} transformed myeloblasts grown at 37°C or shifted to 42°C for 60 hr. Cells with characteristics of programmed cell death can be seen in the shifted population. (B) Immunofluorescence staining of apoptotic cells in the \textit{ts21} transformed cell sample shifted to 42°C. The same field is viewed with different filters to show staining of all nuclei (Hoechst) and those that are apoptotic (TUNEL). Note that the apoptotic cells can also be recognized by Hoechst staining because of their condensed chromatin. (C) Quantification of the induction of apoptosis in individual myeloblast clones. Six independent clones transformed by either wild-type E26 or \textit{ts21} were grown at 37°C (open bars) or 42°C (solid bars) for 60 hr and the percentage of apoptotic cells determined by TUNEL staining. The average number of positive cells at 37°C compared with 42°C was 11.2% and 58.0% for \textit{ts21} cells and 2.5% and 7.7% for wild-type E26 cells.

v-Myb suppresses apoptosis

The antiapoptotic effect of \textit{ts21 E26} is mediated by v-Myb

The fact that the lesion in \textit{ts21 E26} is located in the DNA binding domain of Myb, completely abolishing the specific DNA binding capacity of v-Myb at 42°C (Frampton et al. 1995), suggests that the observed antiapoptotic effect of Myb–Ets is a result of the Myb portion of the oncoprotein. However, it is possible that the mutation acts indirectly by affecting the v-Ets portion of the molecule, which, like v-Myb, consists of DNA binding and transactivation domains. Earlier work with MEPs transformed by a mutant of E26 with a lesion in the DNA binding domain of Ets (\textit{ts1.1 E26}) that renders its DNA-binding capacity temperature-sensitive showed that the cells are induced to differentiate predominantly along the erythroid lineage when shifted to 42°C; however, v-Ets inactivation had no effect on the differentiation of \textit{ts1.1-transformed} myeloid cells. (Golay et al. 1988, Kraut et al. 1994). We, therefore, tested whether programmed cell death would be induced in \textit{ts1.1-transformed} myeloid cell clones tested, none exhibited a significant increase in apoptosis at 42°C, even as late as 80 hr after shift. In contrast and as expected, a sizable proportion of two \textit{ts21}-transformed myeloblast clones grown in parallel and shifted under identical conditions died by apoptosis.

These results support the idea that the antiapoptotic effect of Myb–Ets is confined to the v-Myb portion of the fusion protein. However, they do not rule out the possibility that apoptosis is prevented by an interaction between the two domains within the fusion protein. To examine this possibility we assessed whether myeloid cells transformed by a separately expressed temperature-sensitive v-Myb would undergo apoptosis at 42°C. Because cells transformed by v-Myb have a limited growth potential, we used myeloid cells transformed by a variant of \textit{ts21 E26} in which Myb and Ets are expressed sep-
Figure 2. Requirement of functional v-Myb for protection from apoptosis. (A) Comparison of the number of apoptotic cells in two clones transformed by ts21 (Myb^{ts}-Ets) and in three myeloblast clones transformed by ts1.1 (Myb-Ets^{wt}) grown at 37°C [open bars] or 42°C [solid bars] for 72 hr. (B) Comparison of the number of apoptotic cells in four myeloblast clones transformed by tsMyb/Ets and in two clones transformed by Myb/Ets grown at 37°C [open bars] or 42°C [solid bars] for 72 hr.

The antiapoptotic effect of v-Myb is cell type-specific

We have shown previously that ts21 E26-transformed MEPs shifted to the nonpermissive temperature differentiate into mature thrombocytes within 2–3 days (Frampton et al. 1995). To test whether this also leads to an increased rate of apoptosis we shifted eight clones individually transformed by either ts21 or wild-type E26 to 42°C for 60 hr, or kept them at 37°C. Surprisingly, none of the clones showed an increased rate of apoptosis at the nonpermissive temperature. On the contrary, the majority of the ts21 clones actually exhibited a slightly decreased rate of apoptosis at 42°C. This effect was mutant-specific as it was not seen with wild-type E26-transformed MEPs (Fig. 3).

Inactivation of v-Myb in transformed myeloblasts down-regulates bcl-2 expression

To examine whether bcl-2 expression is affected by v-Myb inactivation, a Northern blot analysis was performed with RNAs from ts21 and wild-type E26 myeloblasts grown at 37°C or shifted to 42°C. As shown in Figure 4A, bcl-2 RNA was almost completely down-regulated after a 24-hr shift to 42°C in the ts21 but not in the wild-type cells, and became reexpressed within only 2 hr when the cells were backshifted to 37°C. The loss of bcl-2 RNA and its rapid reappearance after backshift was paralleled by the pattern of expression of mim-1, a previously identified direct target gene of v-Myb. In the same experiment RNA of c-fms (a marker of mature myeloid cells that encodes the CSF-1 receptor) was up-regulated at 42°C and remained unchanged for 2 hr after backshift. In contrast to the results obtained with myeloid cells, no significant change in the expression of bcl-2 RNA could be observed in ts21-transformed MEPs after shift to 42°C (Fig. 4B).

The observed down-regulation of bcl-2 RNA in ts21-transformed myeloblasts within 1 day at 42°C, together with the finding that increased apoptosis became apparent only after 2–3 days, raised the question of whether both processes are related. We therefore examined by Western blotting the change in Bcl-2 protein levels when ts21-transformed myeloblasts grown at 37°C were shifted to 42°C for 24 hr. In addition, we probed the blot for MAP kinase as a control for protein levels and for cdc2 as an indication of the cell cycling status. As shown in Figure 4C, Bcl-2 expression was reduced significantly whereas no change was seen for MAP kinase. In contrast the cdc2 protein was no longer detectable, reflecting the fact that the cells had exited the cell cycle. This result confirms the known relatively long half-life of Bcl-2 (Kittada et al. 1993) compared with cdc2 kinase.

We also tested whether the reexpression of bcl-2 mRNA upon backshift to 37°C occurred in the presence of the protein synthesis inhibitor cycloheximide. Back-shifting of ts21 myeloblasts that had been grown at 42°C for 40 hr was performed for 2 hr in the presence or absence of 5 μg/ml cycloheximide. As can be seen in Figure 4D, the extent of reactivation was little affected by this treatment.

In summary, bcl-2 mRNA is down-regulated in myeloid cells when v-Myb is inactivated and becomes rapidly reexpressed upon v-Myb reactivation even when de novo protein synthesis is inhibited. In addition, the relatively late onset of apoptosis compared with the reduction in RNA expression correlates with the presence of residual Bcl-2 protein and probably reflects the protein’s high stability.

 Forced expression of bcl-2 in ts21 myeloblasts shifted to 42°C prevents apoptosis but not growth arrest

To test whether apoptosis induced by v-Myb inactiva-
v-Myb suppresses apoptosis

Figure 4. Down-regulation of bcl-2 RNA expression in ts21 transformed myeloblasts shifted to 42°C. [A] Northern blot of RNAs from wild-type E26 and ts21 transformed myeloblasts grown at 37°C, 42°C for 24 hr, or 42°C for 24 hr and then shifted back to 37°C for 2 hr. The blot was probed sequentially with bcl-2, mim-1, c-fms, and B-actin cDNA probes. [B] Northern blot of RNAs from ts21 transformed MEPs grown as described in A and probed with bcl-2 and B-actin. Quantification of the signals by scanning of the autoradiograms allowed an approximate comparison of the bcl-2/B-actin RNA ratios. Setting the ratio to unity for the 37°C lanes, then the ts21 myeloblasts at 42°C exhibit a ratio of <0.15 as compared with 0.8 for ts21 MEPs under the same conditions. [C] Western blot of total cell extracts derived from 10^6 ts21 myeloblasts grown at 37°C or at 42°C for 24 hr. The lysates were run on a 10% polyacrylamide gel, blotted, and probed sequentially with antibodies directed against Bcl-2, MAP kinase, and cdc2, by use of the ECL technique. [D] Northern blot of RNAs from ts21 transformed myeloblasts probed for bcl-2 and B-actin. The RNAs were prepared from cells grown at 37°C, 42°C for 40 hr, 42°C for 40 hr, and then backshifted to 37°C for 2 hr, or 42°C for 40 hr, and backshifted to 37°C in the presence of 5 μg/ml cycloheximide (CHX).

Forced expression of bcl-2 can prevent apoptosis induced by v-Myb inactivation in all seven clones tested, to a level comparable to clones transformed by wild-type E26 (Fig. 5B). To determine whether the cells still became quiescent, they were labeled with bromodeoxyuridine (BrdU) and their DNA content was analyzed by flow cytometry. As shown in Figure 6, 55% and 63%, respectively, of the ts21 and ts21/bcl-2 transformed myeloblasts grown at 37°C incorporated BrdU and >40% of these cells had progressed to G2/M. In contrast, only 16% and 17.5% respectively of the cells were labeled in the corresponding populations after shift to 42°C and of these <20% had entered G2/M. The BrdU negative population with low DNA content seen in the ts21 cells grown at 42°C probably consists of fragmented DNA.
nuclei from apoptotic cells because no such population is seen in the ts21/bcl-2 sample.

These findings show that the induction of apoptosis in ts21 myeloblasts at 42°C can be prevented by forced bcl-2 expression, without affecting the cell’s withdrawal from the cell cycle.

ts21/bcl-2 myeloblasts shifted to 42°C differentiate into both macrophage- and granulocyte-like cells

Next we tested whether ectopic bcl-2 expression has an effect on the temperature-induced differentiation of ts21/bcl-2 transformed myeloblasts. For this purpose, we analyzed the cell morphology of 11 clones transformed by either ts21 or ts21/bcl-2, kept at 37°C or shifted to 42°C for 3 days. In several of the shifted clones, ectopic expression of bcl-2 led to the formation of granules characteristic of immature avian neutrophil granulocytes (Lucas and Jamroz 1961, Golay et al. 1988). In the same clones similar cells were already detectable at 37°C, although at lower proportions than at 42°C. This is illustrated for clone C10 in the micrograph of Figure 7A and quantified for all clones in Figure 7B. Other clones shifted to 42°C resembled immature macrophages, although their differentiation was less dramatic than that of ts21 clones shifted to 42°C. This is shown for clone D4 in Figure 7A. When a pool of ts21/bcl-2 transformed myeloblasts shifted to 42°C was examined for the expression of the Myb target gene mim-1 they showed a clear decrease of expression with time although this downregulation was less severe than in ts21 myeloblasts in the absence of ectopically expressed Bcl-2 (Fig. 7C).

These results show that forced bcl-2 expression in ts21 myeloblasts shifted to 42°C allows the detection of granulocyte-like cells in addition to the macrophage-like cells that are typically seen when bcl-2 is not overexpressed. In addition, it appears that bcl-2 partially impairs macrophage differentiation.

Withdrawal of cMGF from Myb–Ets transformed myeloblasts causes growth arrest but not apoptosis

The proliferation of myelomonocytic cells transformed by the E26 virus is dependent on the presence of chicken myelomonocytic growth factor (cMGF) (Beug et al. 1982, Leutz et al. 1984). To determine whether factor withdrawal has an impact on cell death, ts21 myeloblasts were thoroughly washed and resuspended at 37°C in the presence or absence of cMGF. As a control, the cells were also shifted to 42°C in the presence of cMGF. Thirty hours later the number of apoptotic cells was determined and the growth rate of the population assessed by thymidine incorporation. As shown in Figure 8A, ts21 myeloblasts grown at 37°C exhibited no appreciable increase in cell death upon removal of the growth factor. Nevertheless, growth factor withdrawal resulted in a 3- to 4-fold decrease in thymidine incorporation [Fig. 8B]. As expected, ts21 myeloblasts shifted to 42°C showed a significant increase in apoptosis in addition to a decreased level of thymidine incorporation.

These results show that growth factor depletion of Myb–Ets transformed myeloid cells leads to their withdrawal from the cell cycle without inducing apoptosis.

Myb binds to specific sites on the bcl-2 P2 promoter

The observed rescue by Bcl-2 of ts21 myeloblasts shifted to 42°C and the rapid reexpression of bcl-2 RNA during backshift raised the possibility that the bcl-2 gene is regulated directly by Myb. The human bcl-2 promoter has been shown to have two major sites of transcription initiation [Seto et al. 1988], an upstream site [P1], which has
Myb transactivates a reporter driven by the bcl-2 P2 promoter, requiring intact Myb binding sites

To determine whether Myb transactivates the bcl-2 P2 promoter, we constructed a luciferase reporter driven by the chicken bcl-2 P2 region and tested its activity in transient transfection assays. For comparison, we tested a reporter driven by the MRE from the mim-1 gene. Cotransfection of a vector expressing the Myb–Ets fusion protein with the bcl-2 P2 promoter led to a ~12-fold activation of the promoter, compared with a ~27-fold effect on the mim-1 promoter (Fig. 10A). In addition, Myb–Ets was significantly more active on the wild-type bcl-2 P2 promoter than on a mutated version in which each of the four MREs were altered so as to impair binding by Myb (Fig. 10B). As the E26 v-Myb lacking the Ets sequences was found to stimulate transcription from the bcl-2 P2 promoter only by a factor of 1.5–2, we determined whether the activity of v-Myb could be enhanced by fusing the oncoprotein with the strong VP16 activation domain. This had been found previously to increase its activity on the mim-1 promoter (Frampton et al. 1993). As shown in Figure 10C, v-Myb–VP16 gave a 4- to 5-fold activation of the wild-type bcl-2 P2 promoter and only a marginal activation of its mutated version.

These observations indicate that the bcl-2 P2 promoter can be transactivated both by Myb–Ets and by v-Myb–VP16 and that this requires intact Myb binding sites within the promoter.

Discussion

Using a temperature-sensitive mutant of the E26 leukemia virus encoding Myb–Ets we have shown here that a functional form of v-Myb prevents primary chicken myeloblasts from undergoing apoptosis. This is paralleled by the ability of the oncoprotein to maintain high levels of bcl-2 expression through what appears to be a direct effect on the promoter of the gene. The antiapoptotic properties of Myb–Ets can explain, at least in part, its capacity to transform myelomonocytic cells and makes it the first nuclear oncoprotein for which a transformation relevant target gene has been identified. Using a similar ts mutant approach, v-rel has been shown to rescue T cells from apoptosis, although a direct target responsible for this effect has not been described (White

Figure 8. Effect of growth factor withdrawal on transformed myeloblasts. Two ts21 transformed myeloblast clones were grown for 60 hr at 37°C or at 42°C in the presence of cMGF (open and solid bars, respectively) or at 37°C in the absence of cMGF (gray bars). Aliquots of the cells were then stained with Hoechst to determine the proportion of apoptotic cells (A) or labeled for 2 hr with 3H-thymidine (B) to determine their growth potential.

Figure 9. The chicken bcl-2 promoter and Myb binding sites. (A) Schematic representation of the chicken bcl-2 promoter showing the first two exons. (NRE) Negative regulatory element; (ORF) open reading frame. The blowup shows the sequence of exon 2 until the translation initiation codon. Consensus Myb recognition elements (Sites 1–4) are indicated by bold letters; sequences that are protected by Myb (see below) are boxed. The location of the mutations introduced within the four potential Myb binding sites is indicated [A to G or T to C]. (B) DNase I nuclease protection analysis of the chicken bcl-2 P2 promoter with bacterially expressed Myb. DNA prepared in the absence of Myb (lane 1); with 0.2 µg of Myb (lane 2); with 2 µg of Myb (lane 3). The two regions protected from digestion by DNase are indicated and correspond to the boxed sequences in A.
A number of observations suggest that v-Myb directly mediates the differentiation block. Our data suggest that a combination of the latter possibilities might be correct because forced expression of bcl-2 in ts21 cells shifted to 42°C not only prevented apoptosis but also slightly impaired differentiation into macrophages. This phenomenon deserves further study. The finding that cMGF withdrawal causes growth arrest without inducing apoptosis is consistent with a constitutive up-regulation of bcl-2 in Myb–Ets-transformed myeloblasts. In contrast, in spontaneously transformed myeloid cell lines such as FDCP-1 or FDCP-2, factor deprivation induces apoptosis [Fairbairn et al. 1993]. In addition, it has been shown recently that forced expression of Myb–Ets in FDCP-2 cells (kept in the presence of erythropoietin) prevents them from apoptotic death following withdrawal of IL-3 [Athanasiou et al. 1996].

Although activation and maintenance of bcl-2 expression appears to be required for the myeloid cell transforming capacity of v-Myb, it is not likely to be sufficient. Thus, the oncoprotein not only blocks differentiation but also facilitates differentiation and induces cell proliferation (for review, see Graf 1992). Several myeloid differentiation specific genes have been described that are directly activated or repressed by v/c-Myb in conjunction with other transcription factors, such as mim-1 gene (Ness et al. 1989). Finally, and again as for the mim-1 gene, we observed reexpression of bcl-2 RNA in the presence of cycloheximide, indicating that de novo protein synthesis is not required upon reactivation of v-Myb. These results support the idea that v-Myb regulates the bcl-2 promoter by directly binding to it.

The finding that Myb–Ets is more active in regulating bcl-2 P2 than v-Myb raises the possibility that the Ets portion of the fusion protein also participates in bcl-2 activation, such as by binding to other sites of the promoter. Indeed, several GA/sT Ets core binding sites can be identified in the P2 promoter. However, in myeloid cells transformed by a ts mutant of E26 with a lesion in Ets, we observed no effect on apoptosis upon shifting to the nonpermissive temperature. In addition, since Myb–Ets has been found to be more active than v-Myb on promoters not known to contain Ets responsive elements, such as that of the mim-1 gene [Frampton et al. 1993], the Ets domain of the oncoprotein might not bind to DNA but instead serve to recruit other factors to the transcription activation complex. This would be consistent with the recent identification of nuclear proteins that specifically interact with c-Ets-1 [Sieweke et al. 1996].
ful that they play a role in cell transformation by v-Myb.

The observed capacity of v-Myb to regulate bcl-2 expression cannot be a general explanation for the transforming capacity of the oncoprotein because ts21-transformed MEPs do not undergo apoptosis and retain high levels of bcl-2 expression. This indicates that bcl-2 is controlled independently from v-Myb in MEPs and suggests that the mechanism by which the oncogene transforms cells differs according to the cell type involved. In support for this notion is the fact that v-Myb does not transform fibroblasts (or does so only weakly) [Graf 1973; Beug et al. 1984]. The diversity of transformation mechanisms by v-Myb probably reflects the requirement to act in concert with other tissue-restricted transcription factors. For example, Myb–Ets regulates the expression of the mim-1 gene in transformed myeloblasts but not in MEP cells [Ness et al. 1989]; this is accounted for by its cooperation with C/EBPβ, a protein whose expression in hematopoietic tissues mirrors that of Mim-1 [Burk et al. 1993; Ness et al. 1993].

Myb, Bcl-2, and leukemogenesis

A question raised by our findings is whether the antiapoptotic effect of v-Myb is relevant to the leukemogenic potential of the oncogene. As the predominant type of leukemic cells induced by the E26 virus corresponds to immature erythroid/MEP-type cells, with variable contributions of myeloblasts [Radke et al. 1982, Graf et al. 1992], the answer is not simple. v-Myb of E26, either alone or in combination with a separately expressed v-Ets, is not leukemogenic or only weakly so [Metz and Graf 1991b] and may reflect the factor dependence of both v-Myb and Myb/Ets transformed myeloblasts [Leutz et al. 1984]. Indeed, viruses containing E26 v-Myb (in the absence of Ets) together with either an autocrine growth-inducing oncogene, such as v-erbB or the cMGF gene, cause acute myeloblastic leukemias [Metz et al. 1991]. In addition, the highly mutated v-Myb protein of AMV virus possibly causes monoblastic leukemia because the transformed cells also appear to produce an autocrine growth factor [for review, see Graf 1992]. This might make it difficult to determine whether AMV, like E26, protects primary myeloid cells from apoptosis.

Our observations raise the possibility that alterations in the c-myb gene, resulting in bcl-2 up-regulation and prevention of apoptosis, may contribute to the generation of human myeloid leukemias. Although rearrangements, amplifications or overexpressions of c-myb have been reported for only a relatively small number of human lymphoid and myeloid malignancies [for review, see Lüscher and Eisenman 1990, Shen-Ong 1990], more subtle alterations such as point mutations might have been missed. It is striking that most human acute and chronic myeloid leukemias in blast crisis express high levels of bcl-2 [Delia et al. 1992]. Whether this is caused by a deregulated c-myb gene or simply reflects their immature stage of differentiation is unclear. In the light of the observed v-Myb-induced protection of myeloid cells from apoptosis under conditions of growth factor deprivation it seems worth reexamining individual cultures of human myeloid leukemias for their response to cytokine starvation.

Does the proposed function of v-Myb reflect the activity of cellular Myb proteins?

Several indirect lines of evidence suggest that v-Myb may mimic an antiapoptotic function of c-Myb in myeloid cells. Thus, immature myelomonocytic cells express high levels of both c-myb [Gonda and Metcalf 1984; Kastan et al. 1989] and bcl-2 [Quéva et al. 1992], and these genes are downregulated as the cells mature [Kastan et al. 1989; Delia et al. 1992]. Neutrophils, which are known to have a short life span due to their propensity to die by apoptosis, can be prevented from dying by overexpression of bcl-2 [Lagasse and Weissman 1994]. Similarly, we have observed that the presence or absence of constitutively expressed bcl-2 in ts21-transformed myeloblasts shifted to 42°C results, respectively, in either the formation of immature granulocytes in addition to monocytic cells or to apoptotic death and monocytic cells. As in our system, differentiated macrophages lack bcl-2 expression. This suggests that cells committed to differentiate into granulocytes die by apoptosis because they lose bcl-2 and that monocyte/macrophage-type cells survive because they do not require bcl-2 for survival.

The observation that a c-Myb expressing murine retrovirus transforms myelomonocytic cells kept at high cell densities [Ferrao et al. 1995] is also compatible with a myeloid cell survival-inducing function of the protein. In addition, c-Myb overexpression in the avian myeloid line BM2 has been shown to prevent phorbolster-induced apoptosis [Smarda and Lipsick 1994], although in another study, using the murine M1 myeloid cell line, c-Myb was found to accelerate TGF-β-induced apoptosis [Selvakumaran et al. 1994]. Finally, the observation that expression of a dominant negative Myb/Engrailed chimera dramatically increases apoptosis in T-cells [Taylor et al., this issue] indicates that c-Myb has a survival-inducing function in this cell type.

Neither the overexpression nor the dominant-interfering approaches exclude the possibility that other Myb family members play a role in regulating apoptosis. In particular, because B-Myb, like c-Myb, is also expressed in myeloblasts [Golay et al. 1991] and its ectopic expression accelerates TGF-β induced apoptosis in the M1 cell line [Bies and Wolff 1995], it might likewise be involved in the regulation of programmed cell death. To resolve the question of whether c-Myb indeed promotes the survival and/or life expectancy of myeloid cells under physiological conditions, it will be crucial to reexamine myelopoiesis in both knockout and transgenic mice.

Our inability to show a significant activity of c-Myb on the bcl-2 P2 promoter construct [J. Frampton, unpubl.]
seems to contradict the proposal that, like v-Myb, it regulates bcl-2 expression. However, because c-Myb has been shown to transactivate the bcl-2 P2 promoter in 3T3 cells (D. Taylor, P. Badiani, and K. Weston, submitted), it is possible that the QT6 cell line used in our experiments lacks a coactivator necessary for regulation of the gene. That v-Myb is more active on the bcl-2 P2 promoter than c-Myb reflects findings made earlier with the mim-1 promoter (Quêva et al. 1992) and might be due to the lack of the negative regulatory domain present in its cellular counterpart (Sakura et al. 1989; Dubendorff et al. 1992). Our results, therefore, suggest that v-Myb-encoding retroviruses have evolved to efficiently evade a cellular mechanism that down-regulates bcl-2 expression in myeloid cells as a consequence of c-Myb inactivation. In this view, ts mutants of E26 with a lesion in v-Myb might serve as a simple model to study how c-Myb regulates the bcl-2 gene.

Materials and methods

Viruses and virus constructs

The ts21 wild-type E26 have been described previously (Beug et al. 1984). The viruses expressing Myb and Ets as separate proteins also have been described (Metz and Graf 1991b). To achieve expression of Bcl-2 in myeloid cells transformed by the ts21 virus we constructed a retrovirus that produces a bicistronic mRNA encoding Myb*-Ets and Bcl-2. The basic retroviral structure was derived from pM3, which contains the gag-myb-ets sequences between AEV LTRs (Introna et al. 1990). A PeuII fragment from the plasmid pCITE2a (Novagen) containing the EMC virus IRES (lang et al. 1988) and a multiple cloning site was inserted immediately 3' to the termination codon of the fusion protein at a unique KpnI site. To generate a Bcl-2 expressing virus a 0.7 kb EcoRI-SspI fragment from the chicken bcl-2 cDNA was subcloned from the plasmid pBl-31 (Caizas-Hatem et al. 1992) into pBluescript-KS between the EcoRI site and a blunt-ended BamHI site. This was subsequently shuttled into the polyclinerm 3' of the IRES element between the Neol and XbaI sites, using the Neol at the bcl-2 ATG codon.

Constructs used in transient transfection assays

The bcl-2/P2 reporter plasmid was derived from the pXPl promoter-less luciferase vector (deWet et al. 1987) into which we cloned a PCR amplified fragment of the chicken bcl-2 gene from residues 303 to 1 (Eguchi et al. 1992). The 5' and 3' oligonucleotides used to PCR amplify this region were 5'-GAG-GAAGCGTTGCTCAAGT-3' (site 1) and 5'-GGTTTCCGAGGG-GAAGCGTTGCTCAAGT-3' (site 2). An equivalent fragment mutated at the four consensus MRES was inserted to generate the bcl-2/P2 Mut reporter. Mutation was achieved by PCR using the oligonucleotides 5'-GCAACGCTCTAATCGTCGAGTGGTGGG-3' (sites 1 + 2), 5'-TAAAAATTAGAACGGCGACAGT-3' (site 3) and 5'-AAGCCACGCGGTAAATAAA-3' (site 4) in which the underlined residues are the mutated sites in the MRESs (boldface). The mim-1-luciferase control reporter construct has been described (Ness et al. 1989).

Most of the plasmids encoding the Myb activator proteins have been described previously: Myb-Ets (pM3; Introna et al. 1990), Myb (pMI3; Introna et al. 1990), and MybVP16 (Frampton et al. 1993). A vector control was constructed from pMI3 by removal of all sequences between the retroviral LTRs by digestion with SstI followed by religation (pMI3AX, F. Lim, unpubl.).

QT6 quail fibroblasts were transfected with reporter and activator constructs by calcium phosphate coprecipitation. Cells (3 x 10^6) were transfected with 500 ng of the reporter and variable amounts of the activator. Additionally 250 ng of an RSV LTR-β-galactosidase construct was included as an internal control. Cell extracts were made and assayed for luciferase and β-galactosidase activities after 3 days. All values were normalized for β-galactosidase activity.

DNAsel protection assay for in vitro DNA–protein binding

A HindIII–XbaI fragment derived from the bcl-2/P2-luciferase construct was labeled by fill-in with Klenow polymerase in the presence of [α-32P]dCTP. Further digestion was performed with BamHI to generate a 480-bp fragment labeled at the promoter-proximal end. DNAsel footprinting was carried out using standard procedures (Sambrook et al. 1989).

The Myb protein used in the footprinting analysis was obtained following transformation of bacterial strain BL21(DE3) with the pET–Myb5' construct (F. Lim, unpubl.), containing c-Myb coding sequences up to the carboxyl terminus of the DNA binding domain. Colonies were grown to exponential phase and then induced for 3 hr by the addition of 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG). To prepare proteins the bacteria were pelleted, resuspended, and sonicated in one volume of 10 mM HEPES at pH 7.9 and 100 mM KCl. After centrifugation, the pellet material was resuspended in one volume of STED (40 mM Tris-HCl at pH 7.4, 0.25 mM EDTA, 1 mM DTT, and 25% sucrose). Proteins in the pellet, which consisted of up to 50% of Myb, were denatured by adding urea to a concentration of 4 M at 4°C for 30 min. The solubilized denatured proteins were renatured by dialysis against STED and 1 M urea and then STED.

Cell culture and transformation assays

Chicken cells were obtained from 2-day-old blastoderm of a White Leghorn flock (Lohmann, Cuxhaven). Blastoderm medium consisted of DMEM, 10% fetal calf serum, 2.5% chicken serum, 0.2% NaHCO3, 56 μg/ml conalbumin, 80 mM β-mercaptoethanol, and 0.9 μg/ml insulin. Unless otherwise indicated, all cells were maintained at 37°C in 5% CO2. Production of virus stocks and the generation of transformed myeloblasts and MEFs by infection of 2-day-old chick embryos has been described previously (Graf et al. 1992). Myeloblast colonies were grown in DMEM containing 10% HEPES, 8% fetal calf serum, 2% chicken serum, and 10 units/ml cMGF (Leutz et al. 1984), whereas MEFs were maintained in blastoderm medium (see above).

Cytological and flow cytometric characterization of cells

To visualize the morphology of individual transformed colonies, cells were subjected to cytoseparation and stained with a version of the May Grünwald–Giemsas protocol (Diff Quik, Harleco). To determine the extent of apoptosis cells were pelleted and resuspended in 100 ng/ml Hoechst 33258 in PBS. Staining of apoptotic cells with dUTP-FITC was done on cytospin preparations using a modification (Sgonc et al. 1994) of the TUNEL method (Gavrieli et al. 1992). Proliferation of cells was determined by incorporation of [3H]-thymidine into newly synthesized DNA as described previously (Beug et al. 1984). To determine DNA content, cells were fixed in 70% ethanol, pelleted, and resuspended in 50 mM sodium citrate, 0.1 mg/ml RNaseA, and 0.01 mg/ml propidium iodide. Following incuba-
tion at 37°C for 2 hr the stained cells were analyzed on a FACScan flow cytometer (Becton Dickinson) using Consort software.

To measure the proportion of cells undergoing S phase, cells were labeled for a defined time with 20 μM BrdU and then pelleted and fixed in 70% ethanol for 15 min at room temperature. The genomic DNA was denatured by incubation of the fixed cells in 0.5 ml 1 N HCl and 0.5% Triton 20 at 37°C for 15 min. After washing twice in 1 ml ice-cold PBS and 1% BSA the cell pellet was resuspended in 50 μl anti-BUDR monoclonal antibody (Partec) diluted 1:50 in PBS and 0.1% Triton X-100. After 20 min on ice followed by one wash in PBS and 1% BSA, bound anti-BUDR was detected by incubating the cells in 50 μl 1:40 diluted goat antimouse Ig–FITC for 30 min on ice. The cells were washed and then analyzed by flow cytometry in the presence of propidium iodide as described above.

Isolation and analysis of RNA

RNA was isolated and processed as described previously (Chomczynski and Sacchi 1987). Total RNA was fractionated on 0.8% agarose–MOPS–formaldehyde gels, blotted onto nylon membrane (Hybond-N, Amersham) and probed under high stringency conditions with 32P-labeled, randomly primed fragments as described in standard protocols (Sambrook et al. 1989).

The probes used were as follows: Chicken bcl-2 cDNA was a 2.2-kb EcoRI fragment from clone pBlI-31 [Ishii et al. (1992)]; chicken mim-1 cDNA was a 1-kb EcoRI fragment from clone pMim1 [Ness et al. (1989)]; chicken c-fms (kind gift of U. Fuhrmann, European Molecular Biology Laboratory, Heidelberg, Germany), and chicken β-actin cDNA was a 1-kb HindIII fragment.

Western blotting

A crude protein lysate was prepared from 1 × 10⁶ cells by incubation for 30 mins on ice in lysis buffer (250 mM NaCl, 50 mM Tris-HCl at pH 7.4, 1 mM EDTA, 0.1% Triton X-100, and protease inhibitors). After clearing by centrifugation the supernatant was adjusted to 1 × protein gel sample buffer, electrophoresed on a 10% SDS–polyacrylamide gel and transferred to Immobilon membrane [Amersham]. Blocking of unspecific reactions, antibody binding, and development of the blot by the ECL technique were as described by the manufacturer.

Acknowledgments

We thank Suzanne Cory and Yutaka Eguchi for the human and chicken bcl-2 cloned sequences, respectively, and Eric Nigg and Subrata Haldar for antibodies against Cdc2 and Bcl-2. We are also grateful to Filip Lim for various unpublished retroviral and protein expression constructs. Finally we would like to thank Athanasiou, M., G.J. Mavrothalassitis, C.C. Yuan, and D.G. Blair. 1996. The Gag–Myb–Ets fusion oncogene alters the apoptotic response and growth factor dependence of interleukin-3 dependent murine cells. Oncogene 12: 337–344.

Beug, H., M.J. Hayman, and T. Graf. 1982. Myeloblasts transformed by the avian acute leukemia virus E26 are hormone-dependent for growth and for the expression of a putative myb-containing protein, p135 E26. EMBO J. 1: 1069–1073.

Beug, H., A. Leutz, P. Kahn, and T. Graf. 1984. Ts mutants of E26 leukemia virus allow transformed myeloblasts, but not erythroblasts or fibroblasts to differentiate at the nonpermissive temperature. Cell 39: 579–588.

Beug, H., P. Blundell, and T. Graf. 1987. Reversibility of differentiation and proliferative capacity in avian myelomonocytic cells transformed by tsE26 leukemia virus. Genes & Dev. 1: 277–286.

Bies, I. and L. Wolf. 1995. Acceleration of apoptosis in transforming growth factor beta 1-treated M1 cells ectopically expressing B-myb. Cancer Res. 55: 501–504.

Burk, O., S. Mink, M. Ringwald, and K.-H. Klemppnauer. 1993. Synergistic activation of the chicken mim-1 gene by v-myb and C/EBP transcription factors. EMBO J. 12: 2027–2038.

Cazals-Hatem, D.L., D.C. Louie, S. Tanaka, and J.C. Reed. 1992. Molecular cloning and DNA sequence analysis of cDNA encoding chicken homologue of the Bcl-2 oncoprotein. Biochem. Biophys. Acta. 1132: 109–113.

Chomczynski, P. and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol-chloroform extraction. Anal. Biochem. 162: 156–159.

dWevet, J.R., K.V. Wood, M. DeLuca, D.R. Helsinki, and S. Subramani. 1987. Firefly luciferase gene: Structure and expression in mammalian cells. Mol. Cell. Biol. 7: 725–737.

Delia, D., A. Ayello, D. Soligo, E. Fontanella, C. Melani, F. Pezella, M.A. Pierotti, and G.D. Porta. 1992. bcl-2 proto-oncogene expression in normal and neoplastic human myeloid cells. Blood 79: 1291–1298.

Dubendorff, J.W., L.J. Whitaker, J.T. Elman, and J.S. Lipsick. 1992. Carboxy-terminal elements of c-Myb negatively regulate transcriptional activation in cis and in trans. Genes & Dev. 6: 2524–2535.

Eguchi, Y., D.L. Ewert, and Y. Tsviujmo. 1992. Isolation and characterization of the chicken bcl-2 gene: Expression in a variety of tissues including lymphoid and neuronal organs in adult and embryo. Nucleic Acids Res. 20: 4187–4192.

Evan, G.I., A.H. Wyllie, C.S. Gilbert, T.D. Littlewood, H. Land, M. Brooks, C.M. Waters, L.Z. Penn, and D.C. Hancock. 1992. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69: 119–128.

Fairbairn, L.J., G.J. Cowling, B.M. Reipert, and T.M. Dexter. 1993. Suppression of apoptosis allows differentiation and development of a multipotent hemopoietic cell line in the absence of added growth factors. Cell 74: 823–832.

Ferra, P., E.M. Macmillan, L.K. Ashman, and T.J. Gonda. 1992. Enforced expression of full length c-Myb leads to density-dependent transformation of murine haematopoietic cells. Oncogene 11: 1631–1638.

Frampton, J. and T. Graf. 1996. Myb proteins: Regulators of haemopoietic cell growth, differentiation and apoptosis. In Transcription factors in eukaryotes (ed. A.G. Papavassiliou) R.G. Landes, Austin, TX.

Frampton, J., T. Kouzardes, G. Döderlein, T. Graf, and K. Weston. 1993. Influence of the v-Myb transactivation domain on the oncprotein’s transformation specificity. EMBO J. 12: 1333–1341.

Frykberg, L., T. Metz, G. Brady, M. Introna, H. Beug, B. Vennström, and T. Graf. 1988. A point mutation in the DNA binding domain of the v-myb oncogene of E26 virus confers
temperature sensitivity for transformation of myelomonocytic cells. Oncogene Res. 3: 313–322.

Gavriel, Y., Y. Sherman, and S.A. Ben-Sasson. 1992. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119: 493–501.

Golay, J., M. Introna, and T. Graf. 1988. A single point mutation in the v-ets oncogene affects both erythroid and myelomonocytic cell differentiation. Cell 55: 1147–1158.

Golay, J., A. Capucci, M. Arsura, M. Castellano, V. Rizzo, and M. Introna. 1991. Expression of c-myb and B-myb, but not A-myb, correlates with proliferation in human hematopoietic cells. Blood 77: 149–158.

Gonda, T.J. and D. Metcalf. 1984. Expression of v-myb, myc and fos proto-oncogenes during the differentiation of a murine myeloid leukemia. Nature 310: 249–251.

Graf, T. 1973. Two types of target cells for transformation with avian myelocytomatosis virus. Virology 54: 398–413.

Graf, T. 1992. Myb: A transcriptional activator linking proliferation and differentiation in hematopoietic cells. Curr. Opin. Genet. Dev. 2: 249–255.

Graf, T., K.M. McNagny, G. Brady, and J. Frampton. 1992. Chicken “erythroid” cells transformed by the Gag–myb–ets encoding E26 leukemia virus are multipotent. Cell 70: 201–213.

Haas, J., C. Babij, J. Whitfield, C.M. Pfarr, D. Lallemand, M. Yaniv, and L.L. Rubin. 1995. A C-jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron 14: 927–939.

Introna, M., J. Golay, J. Frampton, T. Nakano, S.A. Ness, and T. Graf. 1990. Mutations in v-myb alter the differentiation of myelomonocytic cells transformed by the oncogene. Cell 63: 1287–1297.

Jang, S.K., H.-G. Krausslich, M.J.H. Nicklin, G.M. Duke, A.C. Palmenberg, and E. Wimmer. 1988. A segment of the 5′ non-translated region of encephalomyocarditis virus RNA directs internal ribosome entry of ribosomes during in vitro translation. J. Virol. 62: 2636–2643.

Kastan, M.B., K.D. Stone, and C.I. Civic. 1989. Nuclear oncogene expression as a function of lineage, differentiation stage, and proliferation status of normal human hematopoietic cells. Blood 74: 1517–1524.

Kitada, S., T. Miyashita, S. Tanaka, and J.C. Reed. 1993. Investigations of antisense oligonucleotides targeted against bcl-2 RNAs. Antisense Res. Dev. 3: 157–169.

Kraut, N., J. Frampton, K.M. McNagny, and T. Graf. 1994. A functional Ets DNA-binding domain is required to maintain multipotency of hematopoietic progenitors transformed by Myb-Ets. Genes & Dev. 8: 33–44.

Lagasse, E. and I.L. Weissman. 1994. bcl-2 inhibits apoptosis of neutrophils but not their engulfment by macrophages. J. Exp. Med. 179: 1047–1052.

Leutz, A., H. Beug, and T. Graf. 1984. Purification and characterization of cMGF, a novel chicken myelomonocytic growth factor. EMBO J. 3: 3191–3197.

Lucas, A. and C. Jamroz. 1981. Atlas of avian hematology. Monograph of the United States Department of Agriculture, Washington, DC.

Lüscher, B. and R.N. Eisenman. 1990. New light on MYC and MYB. Part II. MYB. Genes & Dev. 4: 2235–2241.

Metz, T. and T. Graf. 1991a. Fusion of the nuclear oncoproteins v-Myb and v-Ets is required for the leukemogenicity of E26 virus. Cell 66: 95–105.

---. 1991b. v-myb and v-ets transform chicken erythroid cells and cooperate both in trans and in cis to induce distinct differentiation phenotypes. Genes & Dev. 5: 369–380.

Metz, T., T. Graf, and A. Leutz. 1991. Activation of cMGF expression is a critical step in avian myeloid leukemogenesis. EMBO J. 10: 837–844.

Miyashita, T. and J. Reed. 1995. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80: 293–299.

Miyashita, T., M. Harigai, M. Hanada, and J.C. Reed. 1994a. Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res. 54: 3131–3135.

Miyashita, T., S. Krajewska, M. Krajeewska, H.G. Wang, H.K. Lin, D.A. Liebermann, B. Hoffman, and J.C. Reed. 1994b. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9: 1799–1805.

Mucenski, M.L., K. McClain, A.B. Kier, S.H. Swedlerow, C.M. Schreiner, T.A Miller, D.W. Priesty, W.J. Scott, Jr., and S.S. Potter. 1991. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 65: 677–689.

Negrini, M., E. Silini, C. Kozak, Y. Tsujimoto, and C.M. Croce. 1987. Molecular analysis of mbcl-2: Structure and expression of the murine gene homologous to the human gene involved in follicular lymphoma. Cell 49: 455–463.

Ness, S.A., A. Marknall, and T. Graf. 1989. The v-myb oncogene product binds to and activates the promyelocytic-specific mim-1 gene. Cell 59: 1115–1125.

Ness, S.A., E. Kowenz-Leutz, T. Casini, T. Graf, and A. Leutz. 1993. Myb and NF-M: Combinatorial activators of myeloid genes in heterologous cell types. Genes & Dev. 7: 749–759.

Queva, C., S.A. Ness, F.A. Grässer, T. Graf, B. Vandenbunder, and D. Stébelin. 1992. Expression patterns of c-myb and of v-myb induced myeloid-1 [mim-1] gene during the development of the chick embryo. Development 114: 125–133.

Radke, K., H. Beug, S. Kornfeld, and T. Graf. 1982. Transformation of both erythroid and myeloid cells by E26, an avian leukemia virus that contains the myb gene. Cell 31: 643–653.

Reddy, M.A., B.S. Yang, X. Yue, C.J. Barnett, I.L. Ross, M.J. Sweet, D.A. Hume, and M.C. Ostrowski. 1994. Opposing actions of c-ets/PU.1 and c-myb protooncogene products in regulating the macrophage-specific promoters of the human and mouse colony-stimulating factor-1 receptor (c-fms genes). J. Exp. Med. 180: 2309–2319.

Roussel, M., S. Saule, C. Lagrou, C. Rommens, H. Beug, T. Graf, and D. Stehelin. 1979. Three new types of viral oncogene of cellular origin specific for haematopoietic cell transformation. Nature 281: 452–454.

Sakura, H., C. Kanci-Ishii, T. Nagase, H. Nakagoshi, T.J. Gonda, and S. Ishii. 1989. Delineation of three functional domains of the transcriptional activator encoded by the c-myc protooncogene. Proc. Natl. Acad. Sci. 86: 5758–5762.

Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular cloning: A laboratory manual. 2nd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Selvakumaran, M., H.K. Lin, R.T. Siin, J.C. Reed, D.A. Liebermann, and B. Hoffman. 1994. The novel primary response gene MyD118 and the proto-oncogenes myb, myc, and bcl-2 modulate transforming growth factor beta 1-induced apoptosis of myeloid leukemia cells. Mol. Cell. Biol. 14: 2352–2360.

Seto, M., U. Jaeger, R.D. Hockett, W. Graninger, S. Bennett, P. Goldman, and S.J. Korsmeyer. 1988. Alternative promoters and exons, somatic mutation and deregulation of the Bcl-2-lg fusion gene in lymphoma. EMBO J. 7: 123–131.

Sgonc, S., G. Boeck, H. Dietrich, J. Gruber, H. Rechel, and G. Wick. 1994. Simultaneous determination of cell surface antigens and apoptosis. Trends Genet. 10: 41–42.

Shapiro, L.H. 1995. Myb and Ets proteins cooperate to transactivate an early myeloid gene. J. Biol. Chem. 270: 8763–8771.
v-Myb suppresses apoptosis

Shen-Ong, G.L.C. 1990. The myb oncogene. Biochim. Biophys. Acta. 1032: 39–52.
Sieweke, M., H. Tekotte, J. Frampton, and T. Graf. 1996. MafB is an interaction partner and repressor of Ets-1 that inhibits erythroid differentiation. Cell 85: 49–60.
Smarda, J. and J.S. Lipsick. 1994. c-Myb prevents TPA-induced differentiation and cell death in v-Myb transformed monoblasts. Oncogene 9: 237–245.
Taylor, D., P. Badiani, and K. Weston. 1996. A dominant interfering Myb mutant causes apoptosis in T cells. Genes & Dev. (this issue).
Westin, E.H., R.C. Gallo, S.K. Arya, A. Eva, L.M. Souza, M.A. Baluda, S.A. Aaronson, and F. Wong-Staal. 1982. Differential expression of the amv gene in human hematopoietic cells. Proc. Natl. Acad. Sci. 79: 2194–2198.
Weston, K. 1992. Extension of the DNA binding domain consensus of the chicken c-Myb and v-Myb proteins. Nucleic Acids Res. 20: 3043–3049.
White, D.W., A. Roy, and T.D. Gilmore. 1995. The v-Rel oncoprotein blocks apoptosis and proteolysis of I kappa B-alpha in transformed chicken spleen cells. Oncogene 10: 857–868.
Young, R.L. and S.J. Korsmeyer. 1993. A negative regulatory element in the bcl-2 5'-untranslated region inhibits expression from an upstream promoter. Mol. Cell. Biol. 13: 3686–3697.
v-Myb of E26 leukemia virus up-regulates bcl-2 and suppresses apoptosis in myeloid cells.

J Frampton, T Ramqvist and T Graf

Genes Dev. 1996, 10:
Access the most recent version at doi:10.1101/gad.10.21.2720

References

This article cites 60 articles, 22 of which can be accessed free at: http://genesdev.cshlp.org/content/10/21/2720.full.html#ref-list-1

License

Email Alerting Service

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.