On the perturbation of positive semigroups

Christian Seifert and Daniel Wingert

Abstract

We prove a perturbation result for positive semigroups, thereby extending a heat kernel estimate by Barlow, Grigor’yan and Kumagai for Dirichlet forms ([4]) to positive semigroups. This also leads to a generalization of domination for semigroups on L_p-spaces.

Keywords: positive C_0-semigroups, kernel estimates
MSC 2010: 47D06, 47B65, 60J75

1 Introduction

In recent years there has been increasing interest in heat kernel estimates for non-local Dirichlet forms. One important tool for deriving upper bounds is a perturbation result proven in [4, Lemma 3.1], which is used in several recent articles [3, 5, 6, 7]. The aim of this paper is to prove this perturbation result in the more general context of positive semigroups, so that it can also be applied to perturbations of Dirichlet forms by (suitable) measures. They are of substantial interest for example in quantum mechanics. In view of Banach lattices our result can be seen as a generalization of domination for positive semigroups; compare Theorem 2.1 and [2, Proposition C-II, 4.8].

In the remaining part of this section we explain the situation. The perturbation result is stated in Section 2, where also some examples are given.

Let (Ω, m) be a σ-finite measure space (in fact, it suffices to have a localizable space, where $L_1(m)' = L_\infty(m)$; cf. [10, Theorem 5.1]). Let $T: [0, \infty) \to L(L_2(m))$ be a strongly continuous semigroup on $L_2(m)$ (equipped with the inner product $(\cdot | \cdot)$), i.e.,

$$T(0) = I, \quad T(s + t) = T(s)T(t) \quad (s, t \geq 0),$$

and

$$\lim_{t \to 0} T(t)u = u \quad (u \in L_2(m)).$$

Let A be the generator of T, i.e.,

$$D(A) := \left\{ u \in L_2(m); \lim_{t \to 0} \frac{1}{t}(T(t)u - u) =: Au \text{ exists} \right\}.$$
Note that A also uniquely defines T.

For $1 \leq p < \infty$ the space $L_2(m) \cap L_p(m)$ is dense in $L_p(m)$. Thus, if there exist $M \geq 1$ and $\omega \in \mathbb{R}$ such that

$$
\|T(t)u\|_p \leq Me^{\omega t}\|u\|_p \quad (u \in L_2(m) \cap L_p(m))
$$

(1)

then T can be extended to a strongly continuous semigroup T_p on $L_p(m)$. We remark that $T_p(t)u = T(t)u$ for all $t \geq 0$ and $u \in L_2(m) \cap L_p(m)$. Let A_p be the generator of T_p. Then, for $\lambda > \omega$ (where ω is as in (1)), for $1 \leq p,q < \infty$ we have $\lambda \in \sigma(A_p) \cap g(A_q)$ and

$$(\lambda - A_p)^{-1}u = (\lambda - A_q)^{-1}u \quad (u \in L_p(m) \cap L_q(m)).$$

The case $p = \infty$ is more delicate, since $L_2(m) \cap L_\infty(m)$ is in general not dense in $L_\infty(m)$. Therefore, consider the adjoint semigroup T^* of T generated by the adjoint A^* of A, and let $T_\infty(t) := T^*_1(t)'$ (the dual operator of $(T^*)_1(t)$) for all $t \geq 0$. Note that T_∞ is still a semigroup, but it may not be strongly continuous. However, for λ sufficiently large we observe $\lambda \in \rho(A) \cap \rho(A^*_1)$ and

$$(\lambda - A)^{-1}u = ((\lambda - A^*_1)^{-1})'u \quad (u \in L_2(m) \cap L_\infty(m)).$$

Remark 1.1. Let $1 \leq p, q \leq \infty$, $B_p \in L(L_p(m))$, $B_q \in L(L_q(m))$ such that $B_p|_{L_p(m) \cap L_q(m)} = B_q|_{L_q(m) \cap L_q(m)}$. Then B_p can be extended to $L_p(m) + L_q(m)$ via

$$
B_p(u + v) := B_pu + B_qv \quad (u \in L_p(m), v \in L_q(m)).
$$

This is indeed well-defined, since the operators are equal on the intersection.

By the previous remark, if T acts on $L_2(m)$ and T^* acts on $L_1(m)$ then we can extend T and the resolvent of A to $L_2(m) + L_\infty(m)$.

Recall that $L_p(m)$ is also a Banach lattice for all $1 \leq p \leq \infty$. A semigroup T_p on $L_p(m)$ is called positive, if $T_p(t)u \geq 0$ for all $t \geq 0$ and $0 \leq u \in L_p(m)$. For details concerning positive semigroups see e.g. [2, 9].

Remark 1.2. Let $1 \leq p < \infty$, T_p be a C_0-semigroup on $L_p(m)$ with generator A_p. Then T_p is positive if and only if $(\lambda - A_p)^{-1}$ is positive for all $\lambda > \omega$, where ω is as in (1).

2 A perturbation result

There is a perturbation result for the heat kernels of Dirichlet forms proven by Barlow, Grigor’yan and Kumagai in [4, Lemma 3.1] using Meyers decomposition of stochastic processes [8]. Here we prove an analogous perturbation result within an analytic context. More precisely, we show that such a perturbation result for semigroups is in fact equivalent to a certain condition on the corresponding generators. This condition is fulfilled for the perturbations regarded in [4], however we do not assume the forms associated with the semigroups to be symmetric Dirichlet forms. Our perturbation theorem also extends well-known results on domination of semigroups; cf. Remark 2.3 below.

2
Theorem 2.1. Let T_0 be a positive C_0-semigroup on $L_2(m)$ with generator A_0, T a positive C_0-semigroup on $L_2(m)$ with generator A. Assume there exist $M \geq 1$ and $\omega \in \mathbb{R}$ such that
\[
\|T(t)u\|_1 \leq Me^{\omega t}\|u\|_1 \quad (u \in L_2(m) \cap L_1(m)), \quad \|T_0(t)^*v\|_1 \leq Me^{\omega t}\|v\|_1 \quad (v \in L_2(m) \cap L_1(m))
\]
for all $t \geq 0$. Then the following are equivalent:

(a) There exists $C_1 \in \mathbb{R}$ such that for $t \geq 0$ we have
\[
T(t)u \leq T_0(t)u + C_1te^{\omega t}\|u\|_11\Omega \quad (0 \leq u \in L_2(m) \cap L_1(m)).
\]

(b) There exists $C_2 \in \mathbb{R}$ such that
\[
(Au|v) \leq (u|A_0^*v) + C_2\|u\|_1\|v\|_1 \quad (0 \leq u \in D(A) \cap L_1(m), 0 \leq v \in D(A_0^*) \cap L_1(m)).
\]

(c) There exists $C_3 \in \mathbb{R}$ such that for $\lambda > \omega$ we have
\[
(\lambda - A)^{-1}u \leq (\lambda - A_0)^{-1}u + \frac{C_3}{(\lambda - \omega)^2}\|u\|_11\Omega \quad (0 \leq u \in L_2(m) \cap L_1(m)).
\]

Remark 2.2. As the proof will show, in “(a) \Rightarrow (b)” we have $C_2 := C_1$, in “(b) \Rightarrow (c)” we have $C_3 := C_2M^2$ and in “(c) \Rightarrow (a)” we have $C_1 := C_3M^2$.

Remark 2.3. In case $C_1 = C_2 = C_3 = 0$ we recover well-known domination results, see e.g. [2, Proposition C-II, 4.8] for domination of positive semigroups in Banach lattices.

Proof of Theorem 2.1. “(a) \Rightarrow (b)” Let $0 \leq u \in D(A) \cap L_1(m), 0 \leq v \in D(A_0^*) \cap L_1(m)$. Then, for $t > 0$,
\[
\left(\frac{1}{t}(T(t)u - u) | v\right) \leq \left(\frac{1}{t}T_0(t)u | v\right) + C_1e^{\omega t}\|u\|_1\|v\|_1 - \left(\frac{1}{t}u | v\right).
\]

The limit $t \to 0$ yields the assertion.

“(b) \Rightarrow (c)” Let $0 \leq u \in L_2(m) \cap L_1(m), 0 \leq v \in L_2(m) \cap L_1(m), \lambda > \omega$. Since T and T_0 are positive, also the resolvents of A and A_0 (and hence also of A_0^*) are positive. Thus $\tilde{u} := (\lambda - A)^{-1}u, \tilde{v} := (\lambda - A_0)^{-1}v \geq 0$. Furthermore, $\tilde{u} \in D(A) \cap L_1(m)$ and $\tilde{v} \in D(A_0^*) \cap L_1(m)$. Hence,
\[
((\lambda - A)^{-1}u - (\lambda - A_0)^{-1}u | v) = (A\tilde{u} | \tilde{v}) - (\tilde{u} | A_0^*\tilde{v}) \leq C_2\|\tilde{u}\|_1\|\tilde{v}\|_1.
\]

Since $\|\tilde{u}\|_1 = \|(\lambda - A)^{-1}u\|_1 \leq \frac{M}{\lambda - \omega}\|u\|_1$ and similarly for \tilde{v}, we obtain
\[
((\lambda - A)^{-1}u - (\lambda - A_0)^{-1}u | v) \leq \frac{C_2M^2}{(\lambda - \omega)^2}\|u\|_1\|v\|_1.
\]
Thus,
\[(\lambda - A)^{-1}u - (\lambda - A_0)^{-1}u \leq \frac{C_2 M^2}{(\lambda - \omega)^2} \|u\|_1 \mathbb{1}_\Omega.\]

“(c) ⇒ (a)”: Let \(0 \leq u \in L_2(m) \cap L_1(m)\) and \(\lambda > \omega\). In view of Remark 1.1, by induction on \(n\) we obtain
\[(\lambda - A)^{-n}u \leq (\lambda - A_0)^{-n}u + \frac{C_3}{(\lambda - \omega)^2} \sum_{k=0}^{n-1} \|(\lambda - A)^{-k}u\|_1 (\lambda - A_0)^{-n+1+k} \mathbb{1}_\Omega.\]

Note that \(\|(\lambda - A)^{-k}u\|_1 \leq \frac{M}{(\lambda - \omega)^{\kappa}} \|u\|_1\) and \(\|(\lambda - A_0)^{-k}u\|_1 \leq \frac{M}{(\lambda - \omega)^{\kappa}} \|u\|_1\) for all \(k \in \mathbb{N}\) by the Hille-Yoshida-Phillips Theorem. Hence, also \((\lambda - A_0)^{-k} \mathbb{1}_\Omega = ((\lambda - A_0)^{-k})' \mathbb{1}_\Omega \leq \frac{M}{(\lambda - \omega)^{\kappa}} \mathbb{1}_\Omega\) for \(k \in \mathbb{N}\). Thus, we observe
\[(\lambda - A)^{-n}u \leq (\lambda - A_0)^{-n}u + \frac{nC_3 M^2}{(\lambda - \omega)^{n+1}} \|u\|_1 \mathbb{1}_\Omega \quad (n \in \mathbb{N}).\]

Let \(t > 0\). For large enough \(n\) we have \(\frac{n}{t} > \omega\). Hence,
\[\left(\frac{n}{t}\right)^n (\frac{n}{t} - A)^{-n}u \leq \left(\frac{n}{t}\right)^n (\frac{n}{t} - A_0)^{-n}u + \left(\frac{n}{t}\right)^n \frac{nC_3 M^2}{(\frac{n}{t} - \omega)^{n+1}} \|u\|_1 \mathbb{1}_\Omega = \left(\frac{n}{t}\right)^n (\frac{n}{t} - A_0)^{-n}u + \frac{(\frac{n}{t})^{n+1}}{(\frac{2}{t} - \omega)^{n+1}} tC_3 M^2 \|u\|_1 \mathbb{1}_\Omega.\]

For \(n \to \infty\), we obtain
\[T(t)u \leq T_0(t)u + e^{\omega t} tC_3 M^2 \|u\|_1 \mathbb{1}_\Omega.\]

We can now specialise to contraction semigroups.

Corollary 2.4. Let \(T_0\) be a positive \(C_0\)-semigroup on \(L_2(m)\) with generator \(A_0\), \(T\) a positive \(C_0\)-semigroup on \(L_2(m)\) with generator \(A\). Assume that
\[\|T(t)u\|_1 \leq \|u\|_1 \quad (u \in L_2(m) \cap L_1(m)), \quad \|T_0(t)^*v\|_1 \leq \|v\|_1 \quad (v \in L_2(m) \cap L_1(m))\]
for all \(t \geq 0\). Let \(C \in \mathbb{R}\). Then the following are equivalent:

(a) For \(t \geq 0\) we have
\[T(t)u \leq T_0(t)u + Ct \|u\|_1 \mathbb{1}_\Omega \quad (0 \leq u \in L_2(m) \cap L_1(m)).\]

(b) We have
\[(Au | v) \leq (u | A_0^* v) + C \|u\|_1 \|v\|_1 \quad (0 \leq u \in D(A) \cap L_1(m), 0 \leq v \in D(A_0^*) \cap L_1(m)).\]

(c) For \(\lambda > 0\) we have
\[(\lambda - A)^{-1}u \leq (\lambda - A_0)^{-1}u + \frac{C}{\lambda^\kappa} \|u\|_1 \mathbb{1}_\Omega \quad (0 \leq u \in L_2(m) \cap L_1(m)).\]
In order to link our result to the version treated in [4], where estimates on the kernels were given, we state an easy consequence of Theorem 2.1.

Corollary 2.5. Let T_ω be a positive C_0-semigroup on $L_2(m)$ with generator A_ω, T a positive C_0-semigroup on $L_2(m)$ with generator A. Assume there exist $M \geq 1$ and $\omega \in \mathbb{R}$ such that

$$
\|T(t)u\|_1 \leq Me^{\omega t}\|u\|_1 \quad (u \in L_2(m) \cap L_1(m)), \quad \|T_\omega(t)^*v\|_1 \leq Me^{\omega t}\|v\|_1 \quad (v \in L_2(m) \cap L_1(m))
$$

for all $t \geq 0$, and there exists $C \in \mathbb{R}$ such that

$$
(Au \mid v) \leq (u \mid A_\omega^*v) + C\|u\|_1\|v\|_1 \quad (0 \leq u \in D(A) \cap L_1(m), 0 \leq v \in D(A_\omega^*) \cap L_1(m)).
$$

Let T_ω have a kernel k^0, i.e., $k^0: [0, \infty) \times \Omega^2 \rightarrow [0, \infty)$ is measurable such that

$$
T_\omega(t)u = \int_\Omega k^0_t(\cdot, y)u(y)\,dm(y) \quad (u \in L_2(m), t \geq 0).
$$

Then T has a kernel k satisfying

$$
k_t(x, y) \leq k^0_t(x, y) + CM^4e^{\omega t} \quad (m^2\text{-a.a. } (x, y) \in \Omega^2, t \geq 0).
$$

Note that the existence of the kernel follows from [1, Theorem 5.9], the kernel estimate then from the estimate for the semigroups in Theorem 2.1 and the monotone convergence theorem; see also [12, Korollar 2.1.11].

Example 2.6. We will now apply our theorem to Dirichlet forms perturbed by measures and jump processes. Let (Ω, m) be a locally compact metric measure space and τ_0 a regular Dirichlet form on $L_2(m)$. Let μ be a non-negative Borel measure on Ω which is absolutely continuous with respect to τ_0-capacity. Furthermore, let μ be in the extended Kato class with Kato bound less than 1. Define $\tau_{\mu} := \tau_0 - \mu$, let A_{μ} be the operator associated with τ_{μ} and T_{μ} the C_0-semigroup (for perturbation of Dirichlet forms by measures we refer to [11]). Then A_{μ} is self-adjoint and by [11, Theorem 3.3] the semigroup T_{μ} satisfies (1) for all $1 \leq p < \infty$. Let $j: \Omega \times \Omega \rightarrow \mathbb{R}$ be measurable, symmetric, $0 \leq j \leq C$, and assume that

$$
\int_\Omega j(\cdot, y)\,dm(y) \in L_\infty(m).
$$

Define τ by

$$
\tau(u, v) := \tau_{\mu}(u, v) + \frac{1}{2}\int_{\Omega^2} (u(x) - u(y))(v(x) - v(y))j(x, y)\,dm^2(x, y),
$$

and A be the associated operator and T the C_0-semigroup. Then, for $0 \leq u \in D(A) \cap L_1(m)$ and $0 \leq v \in D(A_{\mu}^*) \cap L_1(m)$ we compute

$$
(-Au \mid v) - (u \mid A_{\mu}^*v) = -\frac{1}{2}\int_{\Omega^2} (u(x) - u(y))(v(x) - v(y))j(x, y)\,dm^2(x, y)
$$

$$
\leq \int u(x)v(y)j(x, y)\,dm^2(x, y) \leq C\|u\|_1\|v\|_1.
$$

Thus, by Corollary 2.5 we obtain an estimate for the kernel of the semigroup T by the kernel for T_{μ} (of course, only if there exists a kernel for T_{μ}). Note that the case $\mu = 0$ recovers the result in [4, Lemma 3.1].
Example 2.7. We will also provide a counterexample. Define

\[D(\tau_0) := H^1(0, 1), \]
\[\tau_0(u, v) := \int_0^1 u'(x)v'(x) \, dx, \]
\[D(\tau) := \{ u \in H^1(0, 1); \ u(0) = u(1) \}, \]
\[\tau(u, v) := \tau_0(u, v). \]

Let \(A \) and \(A_0 \) be the associated operators with \(\tau \) and \(\tau_0 \), respectively (\(A \) is the Laplace with Neumann boundary conditions and \(A_0 \) the Laplace with periodic boundary conditions). Then, for \(u \in D(A) \) and \(v \in D(A_0^*) = D(\Lambda_0) \), an easy calculation shows

\[(-Au \mid v) - (u \mid -A_0^*v) = u'(0)(v(1) - v(0)). \]

Hence, (2) can hardly be satisfied. Therefore, perturbations by boundary conditions may behave differently.

Acknowledgements

The authors thank Peter Stollmann, Daniel Lenz and Hendrik Vogt for many stimulating conversations.

References

[1] Y.A. Abramovich and C.D. Aliprantis, *An invitation to operator theory*. Graduate Studies in Mathematics, 50, American Mathematical Society, Procivence, RI, 2002.

[2] W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, *One-parameter Semigroups of Positive Operators*. Springer, 1986.

[3] M.T. Barlow, R.F. Bass, Z.Q. Chen and M. Kassmann, *Non-local Dirichlet forms and symmetric jump processes*. Trans. Amer. Math. Soc. 361(4) (2009), 1963–1999.

[4] M.T. Barlow, A. Grigor’yan and T. Kumagai, *Heat kernel upper bounds for jump processes and the first exit time*. J. Reine Angew. Math. 626 (2009), 135–157.

[5] Z.Q. Chen and T. Kumagai, *Heat kernel estimates for jump processes of mixed types on metric measure spaces*. Probab. Theory Relates Fields 140(1-2) (2008), 277–317.

[6] M. Foondun, *Heat kernel estimates and Harnack inequalities for some Dirichlet forms with non-local part*. Electron. J. Probab. 14(11) (2009), 314–340.
[7] A. Grigor’yan and J. Hu, *Off-diagonal upper estimates for the heat kernel of the Dirichlet forms on metric spaces*. Invent. Math. **174**(1) (2008), 81–126.

[8] P.-A. Meyer, *Renaissance, recollectement, mélanges, ralentissement de processus de Markov*. Ann. Inst. Fourier **25** (3-4) (1975), 464–497.

[9] E.M. Ouhabaz, *Analysis of Heat Equations on Domains*. Princeton Univ. Press, Princeton, NJ, 2005.

[10] I.E. Segal, *Equivalences of Measure Spaces*. Am. J. Math. **73**(2) (1951), 275–313.

[11] P. Stollmann and J. Voigt, *Perturbation of Dirichlet Forms by Measures*. Pot. An. **5** (1996), 109–138.

[12] D. Wingert, *Evolutionsgleichungen und obere Abschätzungen an die Lösungen des Anfangswertproblems*. Doctoral Thesis (2011). url: http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-107849.

Christian Seifert
Technische Universität Hamburg-Harburg
Institut für Mathematik
21073 Hamburg, Germany
christian.seifert@tuhh.de

Daniel Wingert
Technische Universität Chemnitz
Fakultät für Mathematik
09107 Chemnitz, Germany
daniel.wingert@mathematik.tu-chemnitz.de