Geochemistry of Aromatic Fractions in Es₄ Oil Extracts from the South Slope of Dongying Sag and Its Implications

CHANG Xiang-chun, LI Zeng-xue, YAN Cheng-peng

Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals Shandong University of Science and Technology Qingdao, China 266510
E-mail: xcchang@sina.com

Abstract

In view of the characteristics of oils from different production areas in the South Slope of Dongying Sag, detailed geochemical analysis of aromatic hydrocarbon in Es₄ extracts were conducted. The results show that some typical high plants-sourced compounds are widely spread, such as pyrene, benzo[a]pyrene, fluoranthene, chryaene, benzo[a]fluoranthene, perylene and cadalene. The ratios of 1,2,5-/1,3,6-TMN are 0.39~1.04, 9-MP isomeride is in high content of 7.02-12.53%, and about 0.05%~14.50% of retene is detected, suggesting the Es₄ extracts are typical terrestrial origin. In F-DBF-DBT series, dibenzothiophene(DBT) is dominated with content of 33.07-73.17%, while dibenzofurane(DBF) is 9.56-33.20%, showing a reduction condition of brackish-saline lake. Furthermore three types of depositional environment can be distinguished according to the reduction intensities. The RICs are characterized by double peak with tricyclic aromatic compounds in predominance, ratios of 2,3,6-/2,3,6+1,2,5)-TMN are 0.37-0.64, MPI1 and MPI2 are 0.21-0.61 and 0.24-0.72 respectively, corresponding to the maturity of 0.53-0.77%Rc, indicating a mature stage.

© 2011 Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
Selection and/or peer-review under responsibility of the Intelligent Information Technology Application Research Association.

Keywords: Oil extract; Aromatic fraction; South slope of dongying sag; Biomarker; Geochemistry

1. Introduction

The South Slope of Dongying Sag is the most typical and biggest ramp in Jiyang depression, covering an area of about 2500km² (Fig.1). The tectonics is simple and characterized by monocline and nose-shaped structure complicated by later rifting. Since the discovery of oils from Es₄ by well Tong4 in 1965, the exploration in The South Slope of Dongying Sag has been conducted for more than 30 years. Till now, Lean, Wangjiagang, Chunhua, Boxing, Xiaoying, Guangli, Jingjia, Bamianhe and Boxing oilfields are discovered in this ramp with proved reserves up to 5.5×10⁸t.

Several researches were conducted on the saturated hydrocarbons from oils in the South Slope of Dongying Sag[1-2], but aromatic hydrocarbons were less documented. The occurrences of aromatic fractions also suggest the influence of source inputs, sedimentary environments and thermal evolution[3],

1878-0296 © 2011 Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
Selection and/or peer-review under responsibility of the Intelligent Information Technology Application Research Association.
doi:10.1016/j.proenv.2011.12.106
and is the essential supplements for saturated hydrocarbon study.

2. Samples and experiments

Eight Es4 oil-bearing sandstone samples were collected from the South Slope of Dongying Sag. Firstly, oils were extracted from these samples, then asphaltenes in crude oils were removed by ligarine. Subsequently those deasphaltened crude oil samples were fractionated into saturate, aromatic and polar fractions by SiO2:Al2O3 (2:3) column chromatography. The GC-MS analysis of aromatic fractions was performed on a HP5890-II gas chromatograph coupled with HP-5971 series mass selective detector, operating in full scan acquisition mode. The GC column is HP-5MS silicon capillary column (30 m×i.d.0.25mm×0.25μm). Temperature programmed for aromatic fraction: oven temperature was held at 60℃ for 2 min, ramped to 150℃ at 8 ℃·min⁻¹, then to 320℃ at 4℃·min⁻¹, and held for 10 min. The scan range was approximately 50–550 amu. Injector temperature was 280℃. Helium was used as carrier gas at 1.4 mL·min⁻¹.

3. Results and discussions

3.1 Source inputs

Abundant aromatic fractions are detected in Es4 extracts, including naphthalenes, phenanthrenes, biphenyl, fluorenes, dibenzothiophenes, dibenzofuranes and so on(Fig.2). Meanwhile, some compounds typically suggesting higher plant-source inputs are detected, such as pyrene, benzo(ghi)perylene, fluoranthene, chrysene, benzo(j)fluoranthene and perylene[4].

The naphthalenes amount to 1.04%~33.86% of the total aromatic fractions in Es4 extracts(Table 1), including naphthalene, methyl naphthalenes, dimethyl naphthalenes, trimethyl naphthalenes (TMN). The distribution of alkyl naphthalenes is related to the type of organic matter and depositional environment[5]. 1,2,5-trimethyl naphthalene is derived from pentacyclic triterpenoid amyrin from higher plants or dicyclic diterpenoid juniperic acid from resin and can be used as an indicator for higher plant-source input[6]. 1,2,5-/1,3,6-TMN ratios are low in marine oils in the Tarim Basin within the range of 0.15–0.29, while those in nonmarine oils are higher than 0.3 with the maximum of 1.48[7]. The ratios in Es4 extracts from the South Slope of Dongying Sag are within the range of 0.39–1.04, suggesting the characteristics of nonmarine oils.

Fig.1 The regional structure and the occurrences of oil fields in the South Slope of Dongying Sag
Table 1 The content of aromatic hydrocarbon of Es4 oils Es4 oils from the South Slope of Dongying Sag

Oil field	well	F.M.	Phenanthrene series	Naphthalene series	Diphenyl series	F-DBT-DBF series	Dicyclic compounds	Tricyclic compounds	Tetracyclic compounds	Pentacyclic compounds
Chunhua	Chun17	Es4	73.59	5.66	0.28	6.21	5.94	73.59	12.35	1.60
	Chun 79	Es4	74.24	6.03	0.22	3.11	6.25	74.24	14.96	1.17
Liangjialou	Liang218	Es4	59.27	23.23	0.64	6.43	23.87	59.27	9.07	0.69
Zhenglizhuang	Fan134	Es4	62.81	20.70	0.71	6.62	21.41	62.81	7.77	0.60
Guangli	Lai74	Es4	40.80	33.86	1.19	11.88	35.05	41.17	9.04	0.97
Jingjia	Jing29	Es4	75.94	1.04	0.06	3.30	1.10	76.07	18.84	0.62
Gaoqing	Gao421	Es4	75.02	5.77	0.16	5.27	5.92	75.02	12.46	0.92
	Gao 421	Es4	26.75	11.87	0.43	6.53	12.30	26.75	46.54	7.76

Note: F-DBT-DBF series include fluorine, dibenzothiophene, dibenzofurane series and Benzo[a]fluorine, Benzo[a]dibenzothiophene series; dicyclic compounds: include naphthalene and biphenyl series; tricyclic compounds include Phenanthrene series and anthracene; tetracyclic compounds include aspyrene and chryseneseries, fluoranthene andbenzanthrene; and pentacyclic compounds include benzopyrene, benzofluoranthrene and perylene.

The phenanthrenes is the main component of aromatic fractions in Es4 extracts, amounting to 26.75%–75.94%, including phenanthrene (P), methyl phenanthrene (MP), dimethyl phenanthrene, trimethyl phenanthrene and so on. The occurrence of phenanthrene series is influenced by the type of organic matter and depositional environment in addition to thermal evolution\(^{[8]}\). Except for the influence of thermal evolution, content variations of 3-, 2- and 1-MP isomeride are unconspicuous among oils of different genuses, while 9-MP is variable. The contents of 9-MP isomeride are low in marine oils but abundant in nonmarine oils\(^{[9]}\). For oil Extracted from the South Slope of Dongying Sag the contents of 9-MP isomeride are so high as to be 7.02%–12.53%, suggesting a nonmarine genesis of oils.

About 0.05%–14.50% of retene was detected in Es4 samples. Retene is a compound of the phenanthrene series, 1-methyl-7-isopropyl phenanthrene, which nearly occurred in all nonmarine oils and is believed to be derived from the resin of terrestrial higher plants, especially the higher plants of conifers\(^{[9]}\).
The phenanthrenes is the main component of aromatic fractions in Eș4 extracts, amounting to 26.75%–75.94%, including phenanthrene (P), methyl phenanthrene (MP), dimethyl phenanthrene, trimethyl phenanthrene and so on. The occurrence of phenanthrene series is influenced by the type of organic matter and depositional environment in addition to thermal evolution[8]. Except for the influence of thermal evolution, content variations of 3-, 2- and 1-MP isomeride are unconspicuous among oils of different geneses, while 9-MP is variable. The contents of 9-MP isomeride are low in marine oils but abundant in nonmarine oils[9]. For oil Extracted from the South Slope of Dongying Sag the contents of 9-MP isomeride are so high as to be 7.02%–12.53%, suggesting a nonmarine genesis of oils.

About 0.05%–14.50% of retene was detected in Eș4 samples. Retene is a compound of the phenanthrene series, 1-methyl-7-isopropyl phenanthrene, which nearly occurred in all nonmarine oils and is believed to be derived from the resin of terrestrial higher plants, especially the higher plants of conifers [9].

3.2 Sedimentary environment

Compositional characteristics of the F-DBT-DBF series are an effective indicator for distinguishing depositional environment. Oils from marine and saline lake environments have high contents of dibenzothiophene (DBT), while oils from fresh and brackish lakes are dominated by fluorine (F), oils of paludal facies and coal measure environment are abundant in dibenzofuranes (DBF)[10-11]. The F-DBT-DBF series may be sourced from the same precursor with similar basic skeletons and a five-membered ring. An α-C atom is linked on No.9 carbon, which is more active than other C atoms and easily substituted. Under weak oxidation or weak reduction conditions, α-C atom is oxidized to form abundant DBF, while in normal reduction conditions; α-C is saturated by H atom to improve the concentrations of F. Under strong reduction conditions like saline lake or marine environment, it can be reduced into S-bearing aromatic hydrocarbons and abundant with DBT [12]. DBF and DBT are thought to be related to the absolute oxidation and reduction environments respectively[13], simple triangle diagram of F-DBT-DBF series can only distinguish typical sedimentary environments and unfit for the transitional ones, thus plot of DBF/(DBF+F) vs. DBT/(DBT+F) is proposed to differentiate transitional environments[14].

From Fig. 3, it can be seen that DBT are dominated with 33.07-73.17% in content, while DBF is 6–60.59%, suggesting a reduction condition. Furthermore, three subtypes can be distinguished according to the reduction intensities, such as weak reduction in Liangjialou and Guangli oilfields, moderate reduction in Chunhua and Zhenglizhuang oilfields, and strong reduction with high salinity in Jinjia and Gaoqing oilfields.

3.3 Thermal maturity

Generally speaking, chromatograms of aromatic hydrocarbons from immature-low mature oils show back or double peaks with tetracyclic and pentacyclic compounds in predominance, while those from moderate-high mature oils show the front peaks with abundant dicyclic and tricyclic compounds[15]. Aromatic hydrocarbons from Eș4 oils are predominated by tricyclic compounds with double peak occurrence (Fig.2) and low aromatic steroids contents, indicating a low maturity.

In addition, 2,3,6-/(2,3,6+1,2,5)-TMN ratio is sensitive to the maturity without effect by migration fractionation, with the values in 0.4-0.6 in mature oils and source rocks[15]. The ratios in Eș4 extracts are 0.37-0.64, showing characteristics of mature oils(Table 2).
Fig. 3 the correlation among F-DBF-DBT of Es4 oils from the South Slope of Dongying Sag

Table 2 Geochemical parameters of aromatic hydrocarbon of Es4 oils from the South Slope of Dongying Sag

Oil field	well	F.M.	1,2,5,1,3,6-TMN	2,3,6/(2,3,6+1,2,5)TMN	MPI	MPI1	MPI2	4-/1-MDBT	DBT/DBF	Rc (%)	9-MP (%)
Chunhua	Chun79	Es4	0.66	0.48	2.54	0.58	0.64	3.28	1.80	0.75	11.34
	Liangjialou	Es4	0.47	0.59	1.81	0.52	0.58	4.92	1.37	0.71	12.18
Zhenglizhuang	Fan134	Es4	0.80	0.43	1.98	0.52	0.62	1.87	1.63	0.71	12.27
Guangli	Lai74	Es4	0.58	0.52	0.81	0.38	0.42	1.26	0.99	0.63	7.94
Jingjia	Jing29	Es4	0.54	0.56	1.08	0.61	0.72	3.40	6.18	0.77	7.65
Gaoqing	Gao421	Es4	0.99	0.53	2.71	0.59	0.69	4.43	3.46	0.75	12.53
	Gao421	Es4	0.39	0.64	0.38	0.21	0.24	0.79	1.12	0.53	7.02

Note: TMN: Trimethyl-naphthalene; MPI1: 1.5(3-MP+2-MP)/(P+9-MP+1-MP); MPI2: 3×2-MP/(P+9-MP+1-MP); DBT/DBF: ∑Dibenzothiophenes/∑Dibenzofurans; 9-MP: 9-Methyl-PhenanthreneRadke (1988)[16] brought forward methyl phenanthrene indices to evaluate thermal maturity using the relative concentrations of phenanthrene and methyl phenanthrene in oils, and established an equation to convert R_o through MPI1 ($R_o=0.6\text{ MPI}_1+0.40$). After that, the indices and equation are widely used by scholars both at home and abroad. The MPI1 and MPI2 in Es4 extracts from the South Slope of Dongying Sag are 0.21–0.61 and 0.24–0.72, respectively, corresponding to the Rc values of 0.53%–0.77%, indicating a mature stage.

4. Conclusions

(1) Abundant aromatic fractions occurred in Es4 oils extracted from the South Slope of Dongying Sag, including some typical higher plant-sourced compounds. Ratios of 1,2,5-/1,3,6-TMN are within the range of 0.39-1.04, showing the genetic characteristics of terrestrial oils, which has been further confirmed by the high contents of 9-MP.

(2) The F-DB-DBT series in Es4 oil extracts are dominated by DBF, suggesting a strong reduction condition of brackish-saline lake environment. However, three different intensities of weak, moderate and strong reduction can be distinguished.

(3) RIC of aromatic fractions demonstrates a dual peak with dominant tricyclic compounds and low contents of aromatic steroids. Maturity parameters like 2,3,6-/2,3,6+1,2,5-TMN MPI1, MPI2 and converted Rc are 0.37-0.64, 0.21–0.61, 0.24–0.72 and 0.53-0.77%, uniformly indicating Es4 oil extracts
Acknowledgment

This research project was financially supported by the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (Grant No.BS2010HZ016), University Research Program of Shandong Province (Grant No.J09LE08) and SDUST Research Fund(2010KYTD103)

Reference

[1] Zhang Linye, Jiang Youlu, Liu Hua, Tan lijuan and Zhang le. Relationship between source rock and oil accumulation in Dongying Sag[J]. Petroleum Exploration and Development, 2003, 30(3), p61-64.
[2] Zhu Guangyou, Jing Qiang. Geochemical characteristics of two sets of excellent source rocks in Dongying Depression[J]. Acta Sedimentologica Sinica, 2003, 21(3), p506-512.
[3] Lu Shuangfang, Zhao Xixia, Wang Ziwen. The characteristics of aromatic products of hydrocarbon generated from coal[J]. Acta Petrolei Sinica, 1996, 17 (1), p47-53.
[4] Meng Qianxiang, Zhang Xionglin, Cui Mingzhong. Distribution features of aromatics in lacustrine low-mature crude oils from different environment [J]. Acta Sedimentologica Sinica, 1998, 17(1), p121-120.
[5] Radke M, Rulk T J, Friend S P. Distribution of naphthalenes in crude oils from Java Sea: Source and maturation effects[J]. Geochimica et Cosmochimica Acta, 1994, 58(17), p3675-3685.
[6] Alexander R, Larcher A V, Kagir I, Price P L. The use of plant-derived biomarker for correlation of oils with source rocks in the Cooper/Eromango basin systems, Australia[J]. APEA, 1988, 28, p310~323.
[7] Zhu Yangming, Zhang Hongbo, Fu Jiamo, Sheng Guoying. Distribution and composition of aromatic hydrocarbon in various oils from tarim basin[J]. Acta Petrolei Sinica, 1998, 19(3), p33-37.
[8] Budzinski H, Cirrigues P, Cannan J, Devillers J, Domine D, Radkem, Oudins Ji. Alkylated phenanthrene distribution as maturity and origin indicators in crude oils and rock extracts[J]. Geochimica et Cosmochimica Acta, 1995, 59 (10), p2043-2056.
[9] Zhang Liping, Huang Difanm Liao Zhiqin. High contents of retene and methyl retene in Silurian carbonate, Michigan Basin[J]. Chinese Science Bulletin, 1999, 44 (13), p1425-1429.
[10] Huang Xianyu, Jiao Dan, Lu Liqiang, Huang Junhua, Xie Shucheng. Distribution and Geochemical Implication of Aromatic Hydrocarbons across the Meishan Permian-Triassic Boundary [J]. Journal of China University of Geosciences, 2006, 17(1), p49~54.
[11] Li Jinggui, Li Mei, Wang Zhaoyun. Dibenzofuran Series in Terrestrial Source Rocks and Crude Oils and Applications to Oil-Source Rock Correlations in the Kuche Depression of Tarim Basin, NW China[J]. Chinese Journal of Geochemistry, 2004, 23(2), p113-123.
[12] Lin Renz, Wang Peirong, DaiYunjian. Petroleum Geo-Chemical Significance of Polycyclic Aromatic Hydrocarbons in Fossil Fuels. In Collection on Organic Geochemistry[C]. Geological Press, Beijing (in Chinese), 1987, 129-140.
[13] Huang Guanghui. Geochemical implications and origins of fluorine and its homologues in fuel. In Annual Report of organic geochemistry laboratory of institute of Geochemistry, CAS[C]. Science Press, Beijing, 1988, 211-220.
[14] Li Shuifu, Hesheng. Geochemical characteristics of dibenzothiophene, dibenzofuran and fluorine and their homologues and their environmental indication[J]. Geochimica, 2008, 37(1), p45-50.
[15] Chen Zhilin, Li Sujuan, Wangzhong. A Study on Maturity Indicatorssome of Some Aromatics in Low-Midmature Thermal Evolution Zones[J]. Acta Sedimentologica Sinica, 1997, 15(2), p192-196.
[16] Radke M. Application of aromatic compounds as maturity indicators in source rocks and crude oils[J]. Marine and Petroleum Geology, 1988, 5, p224-236.