A cytological study of the O₅ chromosomal inversion of *Drosophila subobscura* (Diptera, Drosophilidae)

Francesc Mestres, Maria Teresa Figueras and Luis Serra

Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona - Spain.

Abstract

The O₅ chromosomal inversion has been a cornerstone for understanding different aspects of the American colonization by *Drosophila subobscura*. To obtain more information of this evolutionary event it is important to know the pattern of bands of this inversion in detail. Comparing this pattern with that of *D. melanogaster* it is possible to predict which genes are located inside or close to the O₅ inversion and use them as genetic markers. In this study, the complete band pattern of the O₅ inversion is presented. Furthermore, the most important genes located inside it have been predicted. Finally, a constriction located close to the proximal breakage point of the O₅ inversion has been observed many times and its possible genetic significance is discussed.

Key words: *Drosophila subobscura*, chromosomal inversion, colonization, lethal genes.

Received: April 16, 2002; **accepted:** October 4, 2002

Introduction

Until 1978, *D. subobscura* was considered a species with a Palearctic area of distribution. In that year this species was first found in the Chilean locality of Puerto Montt (Brncic *et al.*, 1981), but in 1982 it was also detected in Port Townsend (Washington) (Beckenbach and Prevosti, 1986). The species is now found in Chile from La Serena to Punta Arenas and in many localities of Argentina in the Andes mountain range. In North America the species is spread along the West Coast (Prevosti *et al.*, 1987; 1989). This phenomenon of colonization has been studied at different genetic levels: the chromosomal polymorphism (Prevosti *et al.*, 1985; 1988; 1990), the allozyme polymorphism (Prevosti *et al.*, 1983; Balanyà *et al.*, 1994), the lethal genes (Mestres *et al.*, 1990; 1992; 1995; Solé *et al.*, 2000), the polygenes for quantitative traits (Pegueroles *et al.*, 1995; 1999; Huey *et al.*, 2000), the mtDNA (Latorre *et al.*, 1986; Rozas *et al.*, 1990), the genomic DNA variation (Rozas and Aguadé, 1991) and the effect of inbreeding (Pegueroles *et al.*, 1996).

From the beginning our research group tried to search for the origin of the colonization. The chromosomal polymorphism obtained in the American populations of *D. subobscura* (Prevosti *et al.*, 1985; 1988; 1990) showed a high similarity with that from the Western Mediterranean area (Prevosti *et al.*, 1984) with the important exception of the O₅ inversion. This inversion is present in the American populations but it has never been found in the Western Mediterranean samples. The O₅ inversion from America has an interesting property, it is always completely associated with a lethal gene (Mestres *et al.*, 1990; 1992; 1995). In spite of its association with a lethal gene its frequency shows a clinal distribution with latitude in both colonized areas. However, in the Palearctic region the distribution of O₅ is rather erratic (Krimbas and Loukas, 1980; Krimbas, 1993; Mestres *et al.*, 1994; Zivanovic and Mestres, 2000) and its frequency is extremely low with the exception of South Scandinavia (Sperlich, 1964; Pinsker and Sperlich, 1981). Furthermore its combination with lethal genes is variable. Thus, an O₅ inversion from Gävle (Sweden) was lethal free, while another one from Lilla Edet (also in Sweden) was found to be semilethal (Mestres *et al.*, 1992). O₅ inversions from Taulé (France) and Zanjic (Yugoslavia), on the other hand, were associated with lethal genes. However, these lethals were neither allelic between each other nor with those from the American populations (Mestres *et al.*, 1992; Zivanovic and Mestres, 2000). The constant association of the lethal effect and the O₅ inversion in America can be used as a tracer to detect the local Palearctic population from which the colonization started. It is most probable that a single O₅ gene arrangement with the lethal gene was among the chromosome sample of the colonizing flies (Mestres and Serra, 1995). Thus, if an O₅ inversion carrying the lethal gene found in America is detected in a Palearctic population, this could be the one from which the...
colonization started. As the lethal genes from Taulé and Zanjic are different from those found in America, the origin of the colonization remains still unknown.

The breakage points of the O5 inversions from Europe and America seem to be the same (Mestres et al., 1992; Zivanovic and Mestres, 2000), but the behavior of the O5 arrangement from America and from the Palearctic region is different. In America significant latitudinal clines can be found (Prevosti et al., 1985; 1988; 1990); its frequency is higher than expected from inbreeding experiments (Pegueroles et al., 1996) and a significantly higher segregation can be observed in recombination studies (Mestres et al., 1998). All these results seem to support that the O5 inversion is associated with an heterotic effect in America (Mestres et al., 2001). Although the breakage points of all O5 inversions studied are identical, the possibility of recurrence in this inversion must be taken into account.

For all these reasons the O5 inversion has a key function for understanding the American colonization by D. subobscura. The aim of the present study is to obtain more information about the cytology of this inversion. The detailed analysis of the banding pattern of the O5 inversion will allow a comparison with the genetic and karyotypic information available in other species of Drosophila (mainly D. melanogaster), and it might be possible to recognize the genes that are located in the inversion or in its neighborhood.

Material and Methods

All O5 chromosomal lines available carry a lethal gene and no homokaryotypic strain O5/O5 could be established by inbreeding. However, the lethal gene of the O5 chromosomal lines are not allelic in all cases. For instance, as previously mentioned, the lethal gene associated with the American O5 inversion is not allelic with that from Taulé (France). Thus, it is possible to obtain O5/O5 individuals with O chromosomes of different origin. For this purpose the T15 (from Taulé) and the G7A (from Gilroy, California), both O5 chromosomal lines with different lethal genes, were crossed. The strategy of these crosses is presented in Figure 1. One Va/O5 male from Taulé was crossed with Va/O5 virgin females from Gilroy. The parental individuals are heterokaryotypic balanced over a chromosome Va (Varicose) from the Va/Ba balanced lethal strain (Sperlich et al., 1977). The Varicose chromosome carries the X-ray induced overlapping inversions O_{VIII+210} and the naturally occurring O_{3-14} region. Among the offspring the karyotypes: Va/O5, O5/O5 and Va/Va are expected, but Va/Va genotypes die because the Va gene is a recessive lethal. The problem is the time of lethal effect of the Va gene. Since the Va gene of D. subobscura shows the same behavior as the Delta gene of D. melanogaster, it is generally assumed that they are homologous genes (Krimbas, 1993). In D. melanogaster, the Delta gene is embryonic lethal (Lindsley and Zimm, 1992). However, if the Va/Va genotypes can survive the larval stadium, then both homokaryotypes (O5/O5 and Va/Va) might be present in the F1 larval offspring. Certainly, it would be possible to distinguish these genotypes by their pattern of bands, but this would slow down the analysis. To overcome this problem, one possibility is to perform a more complex strategy of crosses preventing the appearance of Va/Va individuals (Mestres et al., 1992). Another option is to determine the time of the lethal effect of Va lethal during development. This study can be done cytologically by examining the karyotype of a greater sample of larvae of the Va/Ba lethal balanced strain (Va/Va homozygotes are O_{3-14}/O_{3-14} in the distal region of the chromosome O5, whereas Ba/Ba homozygotes are O_{3-14}/O_{3-14}). When larvae of the Va/Ba strain were analyzed all homokaryotypic individuals were O_{3-14}/O_{3-14} (Figure 2). This result confirms that the Va gene (as expected by its equivalence with the Delta gene of D. melanogaster) is an embryonic lethal, and the Ba gene expresses lethal effects after pupation. Thus, in the

![Image](314x221 to 546x377)

Figure 1 - Crosses performed in order to obtain the homokaryotypes O_{3-14}.

(P)	Genotype	Va/O5 (Taulé) x Va/O5 (Gilroy)
Phenotype		
Va	Va	

(F1)	Genotype	O5 (Taulé)/O5 (Gilroy) + Va/O5 (Taulé) + Va/O5 (Gilroy) + Va/Va
Phenotype		+
Va	Va	lethal

![Image](396x261 to 410x377)

Figure 2 - Homokaryotypes O_{3-14} (Ba/Ba) obtained in the crosses among Va/Ba individuals. The arrow indicates the distal tip of the chromosome, where the pattern of bands allows clear differentiation of the O_{3-14} and the O_{3-14} chromosomal arrangements. 400X.
crosses between the lethal chromosomal lines T15 and G7A all homokaryotypes must be O5/O5.

The polytene chromosomes were stained and squashed in aceto-orcein solution and observed using a light microscope.

Results and Discussion

The pattern of bands in the O5/O5 homokaryotypes is presented in Figure 3. The pairing is accurate indicating the full coincidence of the breakage points confirming previous observations (Mestres *et al.*, 1992; Zivanovic and Mestres, 2000). Although it is not possible to exclude a recurrent origin of new O3 inversions by mutation, the probability of this phenomenon is expected to be very low. Using the method proposed by Sperlich and Pfriem (1986) the estimate of this recurrence would be between 1.368 x 10^-7 and 9.488 x 10^-8 (Mestres and Serra, 1995) assuming that the breakage points are randomly distributed along the O chromosome of *D. subobscura*. However, this is most unlikely, because many “hot spots” can be identified in this chromosome (Kunze-Mühl and Müller, 1958; Krimbas, 1993). The proximal breakage point is mapped in the 83 B-C section and very close to the “hot spot” located in the 83 C - 84 A section (where the breakage points of the O22, O15 and O9 inversions are also located). The distal breakage point is between the 87 D - 87 E, not far from the breakage points of the inversions O12, O17 and O22. Furthermore, in the chromosomes of the homokaryotypes O3/O3 a constriction was recognized in many cases close to the left breakage points of the O3 inversion (Figs. 4a, 4b, 4c and 4d). This constriction could be related in some way to a “hot spot” of the O

Figure 3 - Pattern of bands of the O3 chromosomal inversion in the homokaryotypes O3/O3. 1000X. Arrows indicate the breakage points of the inversion.

Figure 4 - Different pictures where the constriction located near the O3 inversion proximal breakage point (indicated by an arrow) is presented. (a, b and c) 400X. (d) 1000X.
chromosomes of *D. subobscura* where breaks occur more frequently than in other regions and might be discussed in the context of a possible recurrence of the O_5 inversion.

As the pattern of bands obtained in the homokaryotype O_5/O_5 is very clear, it could be directly compared with that of the 3R - chromosome arm of *D. melanogaster*. The region covered by the O_5 inversion corresponds approximately to the section 86 - A to 89 - F of the 3R chromosome of *D. melanogaster*. According to Lindsley and Zimm (1992) the most important genes located in this segment are: *Odh* (Octanol dehydrogenase), *Sdh-2* (Sorbitol dehydrogenase), *ants* (antennas), *cu* (curled), *man* (mandarin), *Hsp 70A* (Heat - shock protein), *trr* (tetrapter), *ry* (rosy), *Ace* (acetyl cholinesterase), *aur* (aurora), *red* (red Malpighian tubes), *trx* (trithorax), *cv-c* (crossveinless c), *Tm1* (Tropomyosin I), *jvl* (javelinlike), *Po* (Pyridoxal oxidase), *Sb* (Stubble), *ss* (spineless), *Ubx* (Ultrabithorax), *abd-A* (abdominal A), *Abd-B* (Abdominal B) and *cal* (coal). Thus, some of these genes could be used as molecular markers for the O_5 inversions from American and Palearctic populations. The DNA of the *Odh* (86 - D 1-4) and the *Sdh-2* (86 - D) genes has been sequenced in *D. melanogaster* (Luque et al., 1994; Luque et al., 1998). Both genes are located inside, but close to the proximal breakage point of the O_5 inversion in *D. subobscura*. The DNA sequence of a fragment of the *Odh* gene of *D. subobscura* has been recently used to characterize the O_5 and other inversions in American and Palearctic populations of *D. subobscura* (Abad, 2000). Homeotic genes such as *trx* (88 - B3), *Ubx* (89 - E1), *abd-A* (89 - E2) and *Abd-B* (89 - E2) have also been characterized at the molecular level in *D. melanogaster* (Martin et al., 1995). These genes map inside and close to the distal breakpoint of the O_5 inversion, thus it might become possible to cover the two ends of this inversion and use them for future investigations.

Acknowledgements

This work was supported by grants PB96-0793-C04-03 from the Dirección General de Enseñanza Superior (Spain), BOS2000-0295-C02-02 from de Dirección General de Investigación (Spain) and 2000SGR 00068 and 2001SGR 00207 from the Generalitat de Catalunya (Spain).

References

Abad, L (2000) Utilización del gen octanol deshidrogenasa (*Odh*) como marcador molecular para el análisis de poblaciones de *D. subobscura*. Master Dissertation, Universitat de Barcelona, Barcelona.

Balanyà J, Segarra C, Prevosti A and Serra L (1994) Colonization of America by *D. subobscura*: The founder event and a rapid expansion. J of Hered 85:427-432.

Beckenbach AT and Prevosti A (1986) Colonization of North America by the European species *D. subobscura* and *D. ambigua*. Am Midl Nat 115:10-18.

Brncic D, Prevosti A, Budnik M, Monclús M and Ocaña J (1981) Colonization of *D. subobscura* in Chile. I. First population and cytogenetic studies. Genetica 56:3-9.

Huery RB, Gilchrist GW, Carlson ML, Berrigan D and Serra L (2000) Rapid evolution of a geographic cline in size in an introduced fly. Science 287:308-309.

Krimbas CB (1993) *D. subobscura*: Biology, Genetics and Inversion Polymorphism. Verlag Dr. Kovac, Hamburg.

Krimbas CB and Loukas M (1980) The inversion polymorphism of *D. subobscura*. Evol Biol 12:163-234.

Kunze-Müth E und Müller E (1958) Weitere Untersuchungen über die chromosomale Struktur und natürlichen Strukturtypen von *D. subobscura*. Chromosoma 9:559-570.

Latorre A, Moya A and Ayala FJ (1986) Evolution of mitochondrial DNA in *D. subobscura*. Proc Natl Acad Sci USA 83:8649-8653.

Lindsley DL and Zimm GG (1992) The genome of *D. melanogaster*. Academic Press Inc., San Diego, USA.

Luque T, Atsian S, Danielsson O, Jörnwall H and González-Duarte R (1994) Structure of the *D. melanogaster* glutathione-dependent formaldehyde dehydrogenase/octanol dehydrogenase gene (class III alcohol dehydrogenase). Eur J Biochem 225:985-993.

Luque T, Hjelmqvist L, Marfany G, Danielsson O, El-Ahmad M, Persson B, Jörnwall H and González-Duarte R (1998) Sorbitol dehydrogenase of *Drosophila*. Gene, protein, and expression data show a two-gene system. The J Biol Chem 237:34293-34301.

Martin CH, Mayeda CA, Davis CA, Ericsson CL, Knaefls JD, Mathog DR, Celniker SE, Lewis EB and Palazzolo MJ (1995) Complete sequence of the *bithorax* complex of *Drosophila*. Proc Natl Acad Sci USA 92:8398-8402.

Mestres F and Serra L (1995) On the origin of the O_5 chromosomal inversion in American populations of *D. subobscura*. Hereditas 123:39-46.

Mestres F, Sanz J and Serra L (1998) Chromosomal structure and recombination between inversions in *D. subobscura*. Hereditas 128:105-113.

Mestres F, Serra L and Ayala FJ (1995) Colonization of the Americas by *D. subobscura*: Lethal - gene allelism and association with chromosomal arrangements. Genetics 140:1297-1305.

Mestres F, Pegaurelos G, Prevosti A and Serra L (1990) Colonization of America by *D. subobscura*: Lethal genes and the problem of the O_5 inversion. Evolution 44:1823-1836.

Mestres F, Balanyà J, Arenas C, Solé E and Serra L (2001) Colonization of America by *D. subobscura*: Heterotic effect of chromosomal arrangements revealed by the persistence of lethal genes. Proc Natl Acad Sci USA 98:9167-9170.

Mestres F, Balañà J, Segarra C, Prevosti A and Serra L (1992) Colonization of America by *D. subobscura*: Analysis of the O_5 inversions from Europe and America and their implications for the colonizing process. Evolution 46:1564-1568.

Mestres F, Balañà J, Segarra C, Prevosti A and Serra L (1994) O chromosome inversion polymorphism in Northern and Atlantic Europe and its implications in the American colonization by *D. subobscura*. Z zoolog Evolut - forschr 32:108-116.

Pegaurelos G, Mestres F and Serra L (1996) Analysis of inbreeding in a colonizing population of *D. subobscura*. Genetica 98:289-296.
Pegueroles G, Mestres F, Argemi M and Serra L (1999) Pheno-
typic plasticity in colonizing populations of D. subobscura.
Genetics and Mol Biol 22:511-516.

Pegueroles G, Papaceit M, Quintana A Guillén A, Prevosti A and
Serra L (1995) An experimental study of evolution in progres-
sse: clines for quantitative traits in colonizing and
Palearctic populations of D. subobscura. Evol Ecol
9:453-465.

Pinsker W and Sperlich D (1981) Geographical pattern of
allozyme and inversion polymorphism on chromosome O of
D. subobscura and its evolutionary origin. Genetica 57:51-
64.

Prevosti A, De Frutos R, Alonso G, Latorre A, Monclús M and
Martínez MJ (1984) Genetic differentiation between natural
populations of D. subobscura in the Western Mediterranean
area with respect to chromosomal variation. Génét Sél Evol
16:143-156.

Prevosti A, García MP, Serra L, Aguadé M, Ribó G and Sagarré E
(1983) Association between allelic isozyme alleles and
chromosomal arrangements in European populations and
Chilean colonizers of D. subobscura. Isozymes 10:171-191.

Prevosti A, Serra L, Segarra C, Aguadé M, Ribó G and Monclús
M (1990) Clines of chromosomal arrangements of D.
subobscura in South America evolve closer to Old World
patterns. Evolution 44:218-221.

Prevosti A, Ribó G, Serra L, Aguadé M, Balañá J, Monclús M and
Mestres F (1988) Colonization of America by D.
subobscura: Experiment in natural populations that supports
the adaptive role of chromosomal - inversion polymor-
phism. Proc Natl Acad Sci USA 85:5597-5600.

Prevosti A, Serra L, Aguadé M, Ribó G, Mestres F, Balañá J and
Monclús M (1989) Colonization and Establishment of the
Palearctic species D. subobscura in North and South Amer-
ica. In: Fontdevila A (ed) Evolutionary Biology of Transient
Unstable Populations. Springer Verlag, Berlin, pp 114-129.

Prevosti A, Serra L, Monclús M, Mestres F, Latorre A, Ribó G and
Aguadé M (1987) Colonización de América por D.
subobscura. Evol Biol (Col) 1:1-24.

Prevosti A, Serra L, Ribó G, Aguadé M, Sagarré E, Monclús M
and García MP (1985) The colonization of D. subobscura in
Chile. II. Clines in the chromosomal arrangements. Evolu-
tion 39:838-844.

Rozas J and Aguadé M (1991) Using restriction - map analysis to
characterize the colonization process of D. subobscura on
the American continent. I. rp49 region. Mol Biol Evol
8:447-457.

Rozas J, Hernández M, Cabrera VM and Prevosti A (1990) Colo-
nization of America by D. subobscura: Effect of the founder
event on the mitochondrial DNA polymorphism. Mol Biol
Evol 7:103-109.

Solé E, Mestres F, Balanyá J, Arenas C and Serra L (2000) Colo-
nization of America by D. subobscura: spatial and temporal
lethal-gene allelism. Hereditas 133:65-72.

Sperlich D (1964) Chromosomale Strukturanalysen und Ferti-
ilatsprufung an einer marginal Population von D.
subobscura. Z Vererbungslehre 95:73-81.

Sperlich D and Pfriem P (1986) Chromosomal polymorphism in
natural and experimental populations. In: Ashburner M,
Carson HL and Thompson Jr, JN (eds) The genetics and Bi-
ology of Drosophila. v. 3 ed Academic Press, NY, pp 257-
309.

Zivanovic G and Mestres F (2000) Lethal genes in O5 chro-
mosomes of D. subobscura from Europe and America. J Zool
Syst Evol Res 38:123-126.