Pomeron in the $\mathcal{N} = 4$ SYM at strong couplings

A V Kotikov1, L N Lipatov2

1 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
2 Theoretical Physics Department, Petersburg Nuclear Physics Institute, 188300, Gatchina, Russia
E-mail: kotikov@theor.jinr.ru, lipatov@mail.desy.de

Abstract. We show the result for the BFKL Pomeron intercept at $\mathcal{N} = 4$ Supersymmetric Yang-Mills model in the form of the inverse coupling expansion $j_0 = 2 - 2\lambda^{-1/2} - \lambda^{-1} + 1/4\lambda^{-3/2} + 2(1 + 3\zeta_3)\lambda^{-2} + O(\lambda^{-5/2})$, which has been calculated recently in [1] with the use of the AdS/CFT correspondence.

1. Introduction

The investigation of the high energy behavior of scattering amplitudes in the $\mathcal{N} = 4$ Supersymmetric Yang-Mills (SYM) model [2]-[?] is important for our understanding of the Regge processes in QCD. Indeed, this conformal model can be considered as a simplified version of QCD, in which the next-to-leading order (NLO) corrections [8, 9] to the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [10]-[14] are comparatively simple and numerically small. In the $\mathcal{N} = 4$ SYM the equations for composite states of several reggeized gluons and for anomalous dimensions (AD) of quasi-partonic operators turn out to be integrable at the leading logarithmic approximation [15, 16, 17]. Further, the eigenvalue of the BFKL kernel for this model has the remarkable property of the maximal transcendentality [3]. This property gave a possibility to calculate the AD γ of the twist-2 Wilson operators in one [18, 19], two [3, 20], three [21], four [22, 23] and five [24] loops using the QCD results [24] and the asymptotic Bethe ansatz [26] improved with wrapping corrections [23] in an agreement with the BFKL predictions [2, 3].

On the other hand, due to the AdS/CFT-correspondence [28, 29, 30], in $\mathcal{N} = 4$ SYM some physical quantities can be also computed at large couplings. In particular, for AD of the large spin operators Beisert, Eden and Staudacher constructed the integral equation [31] with the use the asymptotic Bethe-ansatz. This equation reproduced the known results at small coupling constants and is in a full agreement (see [32, 33, 34]) with large coupling predictions [35, 36, 37].

With the use of the BFKL equation in a diffusion approximation [2, 5], strong coupling results for AD [35, 36, 37] and the pomeron-graviton duality [38, 39] the Pomeron intercept was calculated at the leading order in the inverse coupling constant (see the Erratum [40] to the paper [21]). Similar results were obtained also in Ref. [41]. The Pomeron-graviton duality in the $\mathcal{N} = 4$ SYM gives a possibility to construct the Pomeron interaction model as a generally covariant effective theory for the reggeized gravitons [42].

Below we present the strong coupling corrections to the Pomeron intercept $j_0 = 2 - \Delta$ in next orders. These corrections were obtained in Ref. [4] with the use of the recent calculations [43]-[47] of string energies.
2. BFKL equation at small coupling constant

The eigenvalue of the BFKL equation in $\mathcal{N} = 4$ SYM model has the following perturbative expansion \[2, 3\] (see also Ref. \[5\])

$$ j - 1 = \omega = \frac{\lambda}{4\pi^2} \left[\chi(\gamma_{BFKL}) + \delta(\gamma_{BFKL}) \frac{\lambda}{16\pi^2} \right], \quad \lambda = g^2 N_c, $$

where λ is the t'Hooft coupling constant. The quantities χ and δ are functions of the conformal weights m and \tilde{m} of the principal series of unitary Möbius group representations, but for the conformal spin $n = m - \tilde{m} = 0$ they depend only on the BFKL anomalous dimension

$$ \gamma_{BFKL} = \frac{m + \tilde{m}}{2} = \frac{1}{2} + i\nu $$

and are presented below \[2, 3\]

$$ \chi(\gamma) = 2\Psi(1) - \Psi(\gamma) - \Psi(1 - \gamma), $$

$$ \delta(\gamma) = \Psi''(\gamma) + \Psi''(1 - \gamma) + 6\zeta_3 - 2\zeta_2 \chi(\gamma) - 2\Phi(\gamma) - 2\Phi(1 - \gamma). $$

Here $\Psi(z)$ and $\Psi'(z)$, $\Psi''(z)$ are the Euler Ψ-function and its derivatives. The function $\Phi(\gamma)$ is defined as follows

$$ \Phi(\gamma) = 2 \sum_{k=0}^{\infty} \frac{1}{k + \gamma} \beta'(k + 1), \quad \beta'(z) = \frac{1}{4} \left[\Psi'(\frac{z}{2}) - \Psi'(\frac{z}{2}) \right]. $$

Due to the symmetry of ω to the substitution $\gamma_{BFKL} \rightarrow 1 - \gamma_{BFKL}$ expression (1) is an even function of ν

$$ \omega = \omega_0 + \sum_{m=1}^{\infty} (-1)^m D_m \nu^{2m}, $$

where

$$ \omega_0 = 4 \ln 2 \frac{\lambda}{4\pi^2} \left[1 - \frac{\lambda}{16\pi^2} \right] + O(\lambda^3), $$

$$ D_m = 2 \left(2^{2m+1} - 1 \right) \zeta_{2m+1} \frac{\lambda}{4\pi^2} + \frac{\delta(2m)(1/2)}{(2m)!} \frac{\lambda^2}{64\pi^4} + O(\lambda^3). $$

According to Ref. \[3\] we have

$$ \tau_1 = 2\zeta_2 + \frac{1}{2\ln 2} \left(11\zeta_3 - 32L_3 \frac{\pi}{2} - 14\pi \zeta_2 \right) \approx 7.5812, \quad L_3(x) = -\int_0^x \ln^2 \left[2\sin \left(\frac{y}{2} \right) \right] dy. $$

Due to the Möbius invariance and hermicity of the BFKL hamiltonian in $\mathcal{N} = 4$ SYM expansion \(6\) is valid also at large coupling constants. In the framework of the AdS/CFT correspondence the BFKL Pomeron is equivalent to the reggeized graviton \[39\]. In particular, in the strong coupling regime $\lambda \rightarrow \infty$

$$ j_0 = 2 - \Delta, $$

where the leading contribution $\Delta = 2/\sqrt{\lambda}$ was calculated in Refs. \[40, 41\]. Below we find NLO terms in the strong coupling expansion of the Pomeron intercept.
3. AdS/CFT correspondence

Due to the energy-momentum conservation, the universal AD of the stress tensor $T_{\mu\nu}$ should be zero, i.e.,

$$\gamma(j = 2) = 0.$$ \hspace{1cm} (11)

It is important, that the AD γ contributing to the DGLAP equation \[48\]-\[52\] does not coincide with γ_{BFKL} appearing in the BFKL equation. They are related as follows \[8, 53, 54\]

$$\gamma = \gamma_{BFKL} + \frac{\omega}{2} = \frac{j}{2} + i\nu,$$ \hspace{1cm} (12)

where the additional contribution $\omega/2$ is responsible in particular for the cancelation of the singular terms $\sim 1/\gamma^3$ obtained from the NLO corrections \[11\] to the eigenvalue of the BFKL kernel \[8\]. Using above relations one obtains

$$\nu(j = 2) = i.$$ \hspace{1cm} (13)

As a result, from eq. \[6\] for the Pomeron trajectory we derive the following representation for the correction Δ \[11\] to the graviton spin 2

$$\Delta = \sum_{m=1}^{\infty} D_m.$$ \hspace{1cm} (14)

According to \[10\] and \[14\], we have the following small-ν expansion for the eigenvalue of the BFKL kernel

$$j - 2 = \sum_{m=1}^{\infty} D_m \left((-\nu^2)^m - 1\right),$$ \hspace{1cm} (15)

where ν^2 is related to γ according to eq. \[12\]

$$\nu^2 = -\left(\frac{j}{2} - \gamma\right)^2.$$ \hspace{1cm} (16)

On the other hand, due to the ADS/CFT correspondence the string energies E in dimensionless units are related to the AD γ of the twist-two operators as follows \[29, 30\]

$$E^2 = (j + \Gamma)^2 - 4, \quad \Gamma = -2\gamma,$$ \hspace{1cm} (17)

and therefore we can obtain from \[16\] the relation between the parameter ν for the principal series of unitary representations of the Möbius group and the string energy E

$$\nu^2 = -\left(\frac{E^2}{4} + 1\right).$$ \hspace{1cm} (18)

This expression for ν^2 can be inserted in the r.h.s. of Eq. \[15\] leading to the following expression for the Regge trajectory of the graviton in the anti-de-Sitter space

$$j - 2 = \sum_{m=1}^{\infty} D_m \left[\left(\frac{E^2}{4} + 1\right)^m - 1\right].$$ \hspace{1cm} (19)

\[1\] Note that our expression \[17\] for the string energy E differs from a definition, in which E is equal to the scaling dimension Δ_{sc}. But eq. \[17\] is correct, because it can be presented as $E^2 = (\Delta_{sc} - 2)^2 - 4$ and coincides with Eqs. (45) and (3.44) from Refs. \[29\] and \[30\], respectively.
4. Graviton Regge trajectory and Pomeron intercept

We assume, that eq. (19) is valid also at large j and large λ in the region $1 \ll j \ll \sqrt{\lambda}$, where the strong coupling calculations of energies were performed \[43, 47\]. These energies can be presented in the form

$$\frac{E^2}{4} = \sqrt{\lambda} \frac{S}{2} \left[h_0(\lambda) + h_1(\lambda) \frac{S}{\sqrt{\lambda}} + h_2(\lambda) \frac{S^2}{\lambda} \right] + O\left(S^{7/2}\right),$$

(20)

where

$$h_i(\lambda) = a_{i0} + \frac{a_{i1}}{\sqrt{\lambda}} + \frac{a_{i2}}{\lambda} + \frac{a_{i3}}{\sqrt{\lambda^3}} + \frac{a_{i4}}{\lambda^2}.$$

(21)

The contribution $\sim \sqrt{S}$ can be extracted directly from the Basso result \[44, 45\] taking $J_{an} = 2$ according to \[46\]:

$$h_0(\lambda) = \frac{I_3(\sqrt{\lambda})}{I_2(\sqrt{\lambda})} + \frac{2}{\sqrt{\lambda}} = \frac{I_1(\sqrt{\lambda})}{I_2(\sqrt{\lambda})} - \frac{2}{\sqrt{\lambda}},$$

(22)

where $I_k(\sqrt{\lambda})$ is the modified Bessel functions. It leads to the following values of coefficients a_{0i}

$$a_{00} = 1, \quad a_{01} = -\frac{1}{2}, \quad a_{02} = a_{03} = \frac{15}{8}, \quad a_{04} = \frac{135}{128}.$$

(23)

The coefficients a_{10} and a_{20} come from considerations of the classical part of the folded spinning string corresponding to the twist-two operators (see, for example, \[47\])

$$a_{10} = \frac{3}{4}, \quad a_{20} = -\frac{3}{16}. $$

(24)

The one-loop coefficient a_{11} is found recently in the paper \[46\], considering different asymptotical regimes with taking into account the Basso result \[44\] (ζ_3 is the Euler ζ-function)

$$a_{11} = \frac{3}{16}(1 - \zeta_3).$$

(25)

Comparing the l.h.s. and r.h.s. of (19) at large j values gives us the coefficients D_m and Δ (see Appendix A in \[1\]).

5. Conclusion

We have shown the intercept of the BFKL pomeron at weak coupling regime and demonstrated an approach to obtain its values at strong couplings (for details, see Ref. \[1\]).

At $\lambda \rightarrow \infty$, the correction Δ for the Pomeron intercept $j_0 = 2 - \Delta$ has the form

$$\Delta = \frac{2}{\lambda^{1/2}} \left[1 + \frac{1}{2\lambda^{1/2}} - \frac{1}{8\lambda} - \left(1 + 3\zeta_3 \right) \frac{1}{\lambda^{3/2}} + \left(2a_{12} - \frac{145}{128} - \frac{9}{2} \zeta_3 \right) \frac{1}{\lambda^2} + O\left(\frac{1}{\lambda^{5/2}}\right) \right].$$

(26)

The fourth corrections in (26) contain unknown coefficient a_{12}, which will be obtained after the evaluation of spinning folded string on the two-loop level. Some estimations were given in Section 6 of \[1\].

Acknowledgments

A.V.K. was supported in part by RFBR grant No. 13-02-01060-a. He thanks Eugene Levin and the Organizing Committee of International Moscow Phenomenology Workshop for invitation.

\[2\] Here we put $S = j - 2$, which in particular is related to the use of the angular momentum $J_{an} = 2$ in calculations of Refs \[43, 47\].

\[3\] Using a similar approach, the coefficients $\sim \lambda^{-1}$ and $\sim \lambda^{-3/2}$ were calculated also in the paper \[55\]. After correction of some errors, the results in \[55\] coincide with ours.
References

[1] Kotikov A V and Lipatov L N 2013 Nucl. Phys. B 874 889
[2] Kotikov A V and Lipatov L N 2000 Nucl. Phys. B 582 19
[3] Kotikov A V and Lipatov L N 2003 Nucl. Phys. B 661 19
[4] Kotikov A V and Lipatov L N 2001 DGLAP and BFKL evolution equations in the N=4 supersymmetric gauge theory Preprint [hep-ph/0112346]
[5] Fadin V F and Fiore R 2008 Phys. Lett. B 661 139
[6] Fadin V F, Fiore R and Grabovsky A V 2010 Nucl. Phys. B 831 248
[7] Balitsky I and Chirilli G A 2010 Phys. Lett. B 687 204
[8] Fadin V F and Lipatov L N 1998 Phys. Lett. B 429 127
[9] Camici G and M. Ciafaloni M Phys. Lett. B 430 349
[10] Lipatov L N 1976 Sov. J. Nucl. Phys. 23 338
[11] Fadin V F, Kuraev E A and Lipatov L N 1975 Phys. Lett. B 60 50
[12] Fadin V F, Kuraev E A and Lipatov L N 1975 Sov. Phys. JETP 44 443
[13] Fadin V F, Kuraev E A and Lipatov L N 1977 Sov. Phys. JETP 45 199
[14] Balitsky I and Lipatov L N 1978 Sov. J. Nucl. Phys. 28 822
[15] Lipatov L N 1993 Phys. Lett. B 309 394
[16] Lipatov L N 1993 High energy asymptotics of mult-color QCD and exactly solvable lattice models it Preprint [hep-th/0311037]
[17] Lipatov L N 1997 Proc. Int. Conf. "Perspectives in Hadronic Physics" (Triest) (Singapore: World Scientific) p. 562
[18] Lipatov L N 2001 Nucl. Phys. Proc. Suppl. A 99 175
[19] Dolan F A and Osborn H 2002 Nucl. Phys. B 629 3
[20] Kotikov A V, Lipatov L N and Velizhanin V N 2003 Phys. Lett. B 557 114
[21] Kotikov A V, Lipatov L N, Onishchenko A I and Velizhanin V N 2004 Phys. Lett. B 595 521
[22] Kotikov A V, Lipatov L N, Rej A, Staudacher M and Velizhanin V N 2007 J. Stat. Mech. 0710 P10003
[23] Bajnok Z, Janik R A and Lukowski T 2009 Nucl. Phys. B 816 376
[24] Lukowski T, Rej A and Velizhanin V N 2010 Nucl. Phys. B 831 105
[25] Moch S, Vermaseren J A M and Vogt A 2004 Nucl. Phys. B 688 101
[26] Beisert N and Staudacher M 2005 Nucl. Phys. B 727 1
[27] Staudacher M 2005 JHEP 0505 054
[28] Maldacena J 1998 Adv. Theor. Math. Phys. 2 231
[29] Gubser S S, Klebanov I R and Polyakov A M 1998 Phys. Lett. B 428 105
[30] Witten E 1998 Adv. Theor. Math. Phys. 2 253
[31] Beisert N, Eden B and Staudacher M 2007 J. Stat. Mech. 0701 P021
[32] Benn M K, Benvenuti S, Klebanov I R and Scardicchio A 2007 Phys. Rev. Lett. 98 131603
[33] Kotikov A V and Lipatov L N 2007 Nucl. Phys. B 769 217
[34] Basso B, Korchemsky G P and Kotanski J 2008 Phys. Rev. Lett. 100 091601
[35] Gubser S S , Klebanov I R and Polyakov A M 2002 Nucl. Phys. B 636 99
[36] Frolov S and Tseytlin A A 2002 JHEP 0206 007
[37] Roiban R , Tirziu A and Tseytlin A A 2007 JHEP 0707 056
[38] Polchinski J and Strassler M J 2002 Phys. Rev. Lett. 88 031601
[39] Polchinski J and Strassler M J 2003 JHEP 0305 012
[40] Kotikov A V, Lipatov L N, Onishchenko A I and Velizhanin V N 2006 Phys. Lett. B 632 754
[41] Brower R C, Polchinski J, Strassler M J and Tan C I 2007 JHEP 0712 005
[42] Lipatov L N 2013 Phys. Part. Nucl. 44 391
[43] Gromov N, Serban D, Shenderovich I and Volin D 2011 JHEP 1108 046
[44] Basso B 2011 An exact slope for AdS/CFT Preprint [arXiv:1109.3154 [hep-th]]
[45] Basso B 2011 Scaling dimensions at small spin in N=4 SYM theory Preprint [arXiv:1205.0054 [hep-th]]
[46] Gromov N and Valatka S 2012 JHEP 1203 058
[47] Roiban R and Tseytlin A A 2011 Nucl. Phys. B 848 251
[48] Gribov V N and Lipatov L N 1972 Sov. J. Nucl. Phys. 15 438
[49] Gribov V N and Lipatov L N 1972 Sov. J. Nucl. Phys. 15 675
[50] Lipatov L N 1975 Sov. J. Nucl. Phys. 20 94
[51] Altarelli G and Parisi G 1977 Nucl. Phys. B 126 298
[52] Dokshitzer Yu L 1977 Sov. Phys. JETP 46 641
[53] Salam G P 1998 JHEP 9807 019
[54] Salam G P 1999 Acta Phys. Polon. B 30 3679
[55] Costa M S, Goncalves V and Penedones J 2012 JHEP 1212 091