Atrial High-Rate Episode Duration
Thresholds and Thromboembolic Risk: A Systematic Review and Meta-Analysis

Dimitrios Sagris, MD; Georgios Georgiopoulos, MD; Konstantinos Pateras, PhD; Kalliopi Perlepe, MD; Eleni Korompoki, MD; Haralampos Millionis, MD; Dimitrios Tsiachris, MD; Cheuk Chan, MD; Gregory Y. H. Lip, MD; George Ntaios, MD

BACKGROUND: Available evidence supports an association between atrial high-rate episode (AHRE) burden and thromboembolic risk, but the necessary extent and duration of AHREs to increase the thromboembolic risk remain to be defined. The aim of this systematic review and meta-analysis was to identify the thromboembolic risk associated with various AHRE thresholds.

METHODS AND RESULTS: We searched PubMed and Scopus until January 9, 2020, for literature reporting AHRE duration and thromboembolic risk in patients with implantable electronic devices. The outcome assessed was stroke or systemic embolism. Risk estimates were reported as hazard ratio (HR) or relative risk alongside 95% CIs. We used the Paule-Mandel estimator, and heterogeneity was calculated with I² index. Among 27 studies including 61,919 patients, 23 studies reported rates according to the duration of the longest AHRE and 4 studies reported rates according to the cumulative day-level AHRE duration. In patients with cardiac implantable devices, AHREs lasting ≥30 seconds significantly increased the risk of stroke or systemic embolism (HR, 4.41; 95% CI, 2.32–8.39; I², 5.5%), which remained consistent for the thresholds of 5 minutes and 6 and 24 hours. Patients with previous stroke or transient ischemic attack and AHREs lasting ≥2 minutes had a marginally increased risk of recurrent stroke or transient ischemic attack. The risk of stroke or systemic embolism was higher in patients with cumulative AHRE ≥24 hours compared with those of shorter duration or no AHRE (HR, 1.25; 95% CI, 1.04–1.52; I², 0%).

CONCLUSIONS: This systematic review and meta-analysis suggests that single AHRE episodes ≥30 seconds and cumulative AHRE duration ≥24 hours are associated with increased risk of stroke or systemic embolism.

Key Words: atrial high-rate episode ■ embolism ■ implantable device ■ stroke

The increasing use of cardiac implanted electronic devices (CIEDs), such as pacemakers or implantable defibrillators and implantable loop recorders (ILRs), expanded our ability to assess the burden of atrial arrhythmias in a fully quantitative way. These devices can identify short episodes of subclinical atrial fibrillation (AF) and other atrial tachyarrhythmias, collectively described as atrial high-rate episodes (AHREs). To date, relevant studies have used different strategies to quantify and classify AHRE burden, with the 2 main approaches being the duration of the longest single AHRE and the overall time spent in atrial tachyarrhythmia during a day (or else, cumulative day-level AHRE duration). The available evidence from studies using CIEDs and ILRs supports an association between AHRE burden and stroke or systemic embolism risk, but it is unclear how much or how little AHRE is necessary to increase the risk of thromboembolic events. The aim of this systematic review and meta-analysis was to identify the thromboembolic risk associated
CLINICAL PERSPECTIVE

What Is New?
• Among patients with cardiac implantable devices taking part in 27 studies, single atrial high-rate episodes ≥30 seconds in length and cumulative atrial high-rate episode duration ≥24 hours are associated with increased risk of stroke or systemic embolism.
• In patients with previous cryptogenic stroke or transient ischemic attack monitored with an implantable loop recorder, atrial high-rate episodes lasting ≥2 minutes significantly increase the risk of recurrent stroke or transient ischemic attack.

What Are the Clinical Implications?
• Although short atrial high-rate episodes may increase the thromboembolic risk, it is still unclear whether this risk is high enough to allow for a potential beneficial effect of oral anticoagulation.

Nonstandard Abbreviations and Acronyms

Abbreviation	Definition
AHRE	atrial high-rate episode
ILR	implantable loop recorder

with AHREs by deriving pooled estimates for various thresholds of AHRE burden.

METHODS

The authors declare that all supporting data are available within the article and its online supplementary file. This systematic review and meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement framework and was registered in PROSPERO (CRD42020152057).

Search Strategy and Inclusion Criteria

We searched PubMed and Scopus until January 9, 2020, using the terms “atrial high rate episodes” or “subclinical atrial fibrillation” or “atrial tachyarrhythmia” or “occult atrial fibrillation” or “new-onset atrial fibrillation” or “atrial fibrillation duration” or “atrial fibrillation and “device” or “implantable” or “loop recorder” or “continuous monitoring” and “stroke” or “embolism” or “transient ischemic attack.” In addition, we contacted experts in the field and searched the references of related letters, reviews, and editorials to identify potentially eligible studies. To be eligible for the present analysis, relevant studies had to be published as full-text articles in English language and report data on the burden of AHRE, as well as on the associated rates of thromboembolic events, reported as stroke or systemic embolism rates in adult patients with CIEDs or ILRs irrespective of the presence of previous cerebrovascular event.

Quality of Studies and Grading of Evidence

Two independent researchers (D.S. and K.P.) used the modified Newcastle Ottawa Scale to evaluate the quality of the nonrandomized studies included in this meta-analysis, as previously described. The certainty of the body of evidence for the association between different thresholds of longest and cumulative AHRE and thromboembolic risk was adjudicated by the Grades of Recommendation, Assessment, Development, and Evaluation Working Group system, which takes into account 5 main domains (ie, risk of bias, consistency of effect, imprecision, indirectness, and publication bias). Any discrepancy or uncertainty was resolved by consensus among all authors.

Definition of AHRE Burden, Outcome, and Data Extraction

Two indexes were used to quantify the burden of AHRE: the duration of the longest AHRE and the day-level cumulative duration of all AHREs. The outcome assessed was stroke or systemic embolism. Eligible studies were assessed independently by 2 authors (D.S. and G.G.), and data were extracted using a pre-specified form.

Statistical Analysis

For each eligible study, we assessed the annual incidence rate for stroke or systemic embolism in (1) patients with AHRE burden above the reported AHRE threshold and (2) patients with AHRE burden below the reported AHRE threshold or no AHRE. The related risk estimates of stroke or systemic embolism in each study were reported as hazard ratio (HR) or as relative risk (RR) alongside 95% CIs. If the risk estimates were not initially reported in the study, the raw events/nonevents were used to calculate the risk estimates [RR = (IE/CE)/(IE+IN)] and their SEs [(SElog RR) = √((IN/(IE/CE)+(CN/CE-CN))) based on the binomial distribution. Where applicable, adjusted HRs were used in the meta-analysis. Among 2 studies conducted in the same patient population,

CLINICAL PERSPECTIVE

What Is New?
• Among patients with cardiac implantable devices taking part in 27 studies, single atrial high-rate episodes ≥30 seconds in length and cumulative atrial high-rate episode duration ≥24 hours are associated with increased risk of stroke or systemic embolism.
• In patients with previous cryptogenic stroke or transient ischemic attack monitored with an implantable loop recorder, atrial high-rate episodes lasting ≥2 minutes significantly increase the risk of recurrent stroke or transient ischemic attack.

What Are the Clinical Implications?
• Although short atrial high-rate episodes may increase the thromboembolic risk, it is still unclear whether this risk is high enough to allow for a potential beneficial effect of oral anticoagulation.

Nonstandard Abbreviations and Acronyms

Abbreviation	Definition
AHRE	atrial high-rate episode
ILR	implantable loop recorder

with AHREs by deriving pooled estimates for various thresholds of AHRE burden.

METHODS

The authors declare that all supporting data are available within the article and its online supplementary file. This systematic review and meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement framework and was registered in PROSPERO (CRD42020152057).

Search Strategy and Inclusion Criteria

We searched PubMed and Scopus until January 9, 2020, using the terms “atrial high rate episodes” or “subclinical atrial fibrillation” or “atrial tachyarrhythmia” or “occult atrial fibrillation” or “new-onset atrial fibrillation” or “atrial fibrillation duration” or “atrial fibrillation and “device” or “implantable” or “loop recorder” or “continuous monitoring” and “stroke” or “embolism” or “transient ischemic attack.” In addition, we contacted experts in the field and searched the references of related letters, reviews, and editorials to identify potentially eligible studies. To be eligible for the present analysis, relevant studies had to be published as full-text articles in English language and report data on the burden of AHRE, as well as on the associated rates of thromboembolic events, reported as stroke or systemic embolism rates in adult patients with CIEDs or ILRs irrespective of the presence of previous cerebrovascular event.

Quality of Studies and Grading of Evidence

Two independent researchers (D.S. and K.P.) used the modified Newcastle Ottawa Scale to evaluate the quality of the nonrandomized studies included in this meta-analysis, as previously described. The certainty of the body of evidence for the association between different thresholds of longest and cumulative AHRE and thromboembolic risk was adjudicated by the Grades of Recommendation, Assessment, Development, and Evaluation Working Group system, which takes into account 5 main domains (ie, risk of bias, consistency of effect, imprecision, indirectness, and publication bias). Any discrepancy or uncertainty was resolved by consensus among all authors.

Definition of AHRE Burden, Outcome, and Data Extraction

Two indexes were used to quantify the burden of AHRE: the duration of the longest AHRE and the day-level cumulative duration of all AHREs. The outcome assessed was stroke or systemic embolism. Eligible studies were assessed independently by 2 authors (D.S. and G.G.), and data were extracted using a pre-specified form.

Statistical Analysis

For each eligible study, we assessed the annual incidence rate for stroke or systemic embolism in (1) patients with AHRE burden above the reported AHRE threshold and (2) patients with AHRE burden below the reported AHRE threshold or no AHRE. The related risk estimates of stroke or systemic embolism in each study were reported as hazard ratio (HR) or as relative risk (RR) alongside 95% CIs. If the risk estimates were not initially reported in the study, the raw events/nonevents were used to calculate the risk estimates [RR = (IE/CE)/(IE+IN)] and their SEs [(SElog RR) = √((IN/(IE/CE)+(CN/CE-CN))) based on the binomial distribution. Where applicable, adjusted HRs were used in the meta-analysis. Among 2 studies conducted in the same patient population,
the HR for the AHRE threshold of 6 minutes was extracted from the primary publication,8 whereas RRs for the AHRE thresholds of 6 and 24 hours were calculated by the data provided from the secondary publication, which was a subanalysis.8 For one study,10 CIs around the mean estimates were calculated as previously suggested.11 In one study,12 we estimated the HR and 95% CI from the corresponding log-rank test.13

Meta-Analysis Technique

We performed meta-analyses separately for each index of AHRE burden (ie, the duration of the longest AHRE and the day-level cumulative duration of all AHREs) and for each available threshold of AHRE duration. In each meta-analysis, the comparator group was the patients without any AHRE or AHRE lasting less than the threshold that was under study. To test for heterogeneity, we used the I2 index that permits quantification of discrepancy among studies.7 Independently of the reported statistical significance of the I2 index, we applied both random-effects and fixed-effects meta-analysis to minimize the risk of possible false-positive results. We used the Paule-Mandel estimator, which produces less biased results in case of limited number of studies that are available for synthesis.14 The mean effect size and CIs of individual studies were illustrated with forest plots.

We performed prespecified sensitivity analyses, where feasible, by (1) synthesizing only studies with adjusted risk estimates, (2) assessing patients with previous stroke or transient ischemic attack (TIA), and (3) synthesizing only studies reporting the outcome of stroke. The presence of publication bias was investigated graphically by funnel plots of precision and statistically by regression tests for asymmetry. The Egger and the Begg and Mazumdar test were implemented. We conducted fixed-effect meta-regression analysis to assess the impact of increasing thresholds of longest AHRE on the association between higher arrhythmic burden and the risk of stroke/systemic embolism. We performed both linear and nonlinear meta-regression, including polynomials and splines, to capture possible complex associations.15 In meta-regression analyses, each study was used once with respect to individual estimates of risk of thromboembolism corresponding to prespecified AHRE thresholds; thus, no overlap in individual studies and thresholds of AHRE burden was encountered.

Statistical analysis was performed with R, version 4.0.2 (R Core Team). The packages *metafor*16,17 and *meta*14 were used for performing the meta-analysis and producing the diagnostic measures in R. The level of statistical significance was set at P<0.05.

RESULTS

Literature Search Yield and Characteristics of Included Studies

The literature search identified 27 eligible studies with a total population of 61 919 patients2,9,10,12,18–40 (flow diagram; Figure S1). Twenty-three studies reported rates of stroke or systemic embolism according to the duration of the longest AHRE,9,10,12,19–35,37,39,40 and 4 studies reported rates according to the cumulative day-level AHRE duration.2,18,36,38 Twenty-four studies reported data on stroke or systemic embolism in patients submitted to CIED implantation because of severe heart failure or history of symptomatic ventricular tachyarrhythmias,* whereas 3 studies reported results on recurrent cerebrovascular event in patients with previous embolic stroke of undetermined source or TIA, who were submitted to long-term monitoring with ILR.23,26,35 The main characteristics of the included studies are summarized in Tables S1 and S2. Most studies were adjudicated as moderate to good quality according to the Newcastle Ottawa Scale (Table S3).

Stroke or Systemic Embolism According to the Duration of the Longest AHRE

Among 40 536 patients from 23 studies with available data for the longest AHRE duration,8–10,12,19–35,37,39,40 40 221 patients had CIED attributable to history of severe heart failure or ventricular tachyarrhythmias, and 315 patients attributable to prior embolic stroke of undetermined source or TIA. The incidence rates of stroke or systemic embolism per each threshold of longest AHRE duration are displayed in Figure 1 (top panel).

In 2 studies that investigated the AHRE thresholds of ≥10 and 20 seconds,10,32 there was no difference in the risk of stroke or systemic embolism between patients with AHRE above this threshold and patients with AHRE of shorter duration or no AHRE (HR, 0.88; 95% CI, 0.55–1.41; and HR, 1.13; 95% CI, 0.58–2.28, for the random-effects model, respectively; Figure 2).

In 4 studies that investigated the AHRE threshold of ≥30 seconds,21,27,34,39 the risk of stroke or systemic embolism was higher in patients with AHRE above this threshold and patients with AHRE of shorter duration or no AHRE (HR, 4.58; 95% CI, 2.52–8.34; I2, 9.7%; and HR, 4.41; 95% CI, 2.32–8.39; I2, 5.5%, for the fixed-effects and random-effects model, respectively; Figure 2). In the sensitivity analysis of 3 studies reporting results on stroke,27,34,39 the results were similar (HR, 4.18; 95% CI, 1.92–9.11; I2, 22.7% for the random-effects model).

In 12 studies that investigated the AHRE thresholds of ≥5 to 6 minutes,4 the risk of stroke or systemic
embolism was higher in patients with AHRE above this threshold and patients with AHRE of shorter duration or no AHRE (HR, 1.81; 95% CI, 1.51–2.16; I², 19.6%; and HR, 1.93; 95% CI, 1.55–2.40; I², 11.4%, for the fixed-effects and random-effects model, respectively; Figure 2). In the sensitivity analysis of studies reporting adjusted HRs, patients with AHRE ≥5 minutes had significantly higher risk of stroke or systemic embolism compared with those with AHRE duration <5 minutes (adjusted HR, 1.91; 95% CI, 1.02–3.55; I², 52.7% for the random-effects model). We did not identify significant interaction between studies reporting adjusted and nonadjusted risk estimates (P for interaction, 0.827; nonadjusted HR/RR, 1.98; 95% CI, 1.42–2.78). In the sensitivity analysis of 6 studies reporting results on stroke, patients with AHRE ≥5 to 6 minutes had higher risk of stroke compared with subjects without AHRE or with AHRE of shorter duration (HR, 2.83; 95% CI, 1.81–4.44; I², 0% for the random-effects model).

A single study used a threshold of 10 minutes and was not further synthesized. A single study reported data that allowed the calculation of RR on the risk of stroke or systemic embolism for the threshold of 6 hours and was not further synthesized.

In 4 studies that investigated the AHRE threshold of ≥24 hours, the risk of stroke or systemic embolism was higher in patients with AHRE above this threshold and patients with AHRE of shorter duration or no AHRE (HR, 1.99; 95% CI, 1.53–2.59; I², 48%; and HR, 2.39; 95% CI, 1.53–3.74; I², 32.4%, for the fixed-effects and random-effects model, respectively; Figure 2).

Studies in Patients After Stroke or TIA

In 3 studies using ILRs in patients after an embolic stroke of undetermined source or TIA, patients with at least one AHRE ≥2 minutes had a marginally higher risk of recurrent stroke or TIA compared with patients with lower burden (HR, 1.96; 95% CI, 1.04–3.68; and HR, 1.81; 95% CI, 1.51–2.16; I², 19.6%; and HR, 1.93; 95% CI, 1.55–2.40; I², 11.4%, for the fixed-effects and random-effects model, respectively; Figure 2).

Figure 1. Incidence rates of stroke or systemic embolism per 100 patient-years in patients with atrial high-rate episode (AHRE) burden above the reported threshold (top panel) and patients with AHRE burden below the reported threshold or no AHRE (bottom panel).

Studies reporting on the longest single AHRE duration are summarized in the top panel, whereas studies reporting on the cumulative day-level AHRE burden are summarized in the bottom panel. The reported data from Swiryn et al 10 did not allow the calculation of incidence rates. *Denoted studies of patients with previous stroke or transient ischemic attack.
Meta-Regression

In the linear meta-regression, we did not identify a significant association between increasing AHRE thresholds and the risk of stroke or systemic embolism (HR, 1.08 per 1 log minute increase; 95% CI, 0.93–1.26) (Figure S2). Respectively, nonlinear meta-regression did not indicate a significant association between increasing AHRE thresholds and the risk of stroke or systemic embolism (Figure S2).

Stroke or Systemic Embolism According to the Cumulative Day-Level AHRE Duration

Four studies including 21,695 patients reported rates of stroke or systemic embolism according to the cumulative day-level burden of AHRE. The incidence rates of stroke or systemic embolism per available threshold of cumulative day-level AHRE burden are presented in Figure 1 (bottom panel).

For each of the thresholds of 5 minutes and 3.8 hours, we identified only a single study, which were not further synthesized.

Figure 2. Risk estimates (hazard ratio [HR]/relative risk [RR]) and 95% CIs for the risk of stroke or systemic embolism based on the duration of the longest atrial high-rate episode (AHRE).

Studies are listed by the AHRE threshold. Boxes represent the HRs/RRs and lines represent the 95% CIs for individual studies. All patients included in the analysis for the threshold of 2 minutes had prior embolic stroke of undetermined source or transient ischemic attack and were monitored with implantable loop recorders. All other patients included in this analysis had a cardiac implantable electronic device because of heart failure or significant dysrhythmias.

1.96; 95% CI, 1.03–3.71; \(I^2 \), 1.9%, for the fixed-effects and random-effects model, respectively; Figure 2.)
In 3 studies that investigated the threshold of a cumulative day-level AHRE duration of ≥6 hours,2,18,36 the risk of stroke or systemic embolism was higher in patients with AHRE above this threshold based on the fixed-effects model (HR, 1.19; 95% CI, 1.03–1.38; I^2, 48.2%; Figure 3). Interestingly, this effect did not remain consistent in the random-effects model (HR, 1.52; 95% CI, 0.81–2.87; I^2, 63.7%; Figure 3). In 2 studies that investigated the threshold of a cumulative day-level AHRE duration of ≥24 hours,2,36 the risk of stroke or systemic embolism was higher in patients with AHRE above this threshold and patients with AHRE of shorter duration or no AHRE (HR, 1.25; 95% CI, 1.04–1.52; I^2, 0%, in both the fixed-effects and random-effects model; Figure 3).

Publication Bias and Grade of Evidence

Diagnostics were performed for the main meta-analyses of the article. On the basis of the funnel plots and regression tests, the least evidence for publication bias appears in the meta-analyses of the thresholds of 30 seconds, 5 minutes, and 24 hours of longest AHRE, whereas visual and statistical evidence for publication bias appears in the meta-analyses of the threshold of 5 hours of cumulative AHRE (Egger and Begg and Mazumdar tests, $P<0.01$; Figure S3).

On the basis of the Grades of Recommendation, Assessment, Development, and Evaluation Working Group system, the degree of certainty was moderate for the association between AHREs lasting ≥30 seconds and ≥5 minutes and the risk of stroke or systemic embolism; high for the association between AHREs lasting ≥24 hours and the risk of stroke or systemic embolism; and moderate for the association between cumulative day-level AHRE burden ≥24 hours and the incidence of stroke or systemic embolism (Table S4).

![Figure 3](https://example.com/figure3.png)

Figure 3. Risk estimates (hazard ratio [HR]/relative risk [RR]) and 95% CIs for the risk of stroke or systemic embolism based on the cumulative day-level duration of atrial high-rate episodes (AHREs).

Studies are listed by the AHRE threshold. Boxes represent the HR and lines represent the 95% CIs for individual studies. All studies reported risk estimates for stroke, except from the study of Shanmugam et al.38
DISCUSSION

The present systematic review and meta-analysis of 27 studies including 61,919 patients with CIEDs and ILRs suggests that single AHRE episodes ≥30 seconds and cumulative AHRE duration ≥24 hours are associated with increased risk of stroke or systemic embolism. The increased risk of stroke or systemic embolism remained consistent also for single AHRE episodes of ≥5 to 6 minutes, ≥6 hours, and ≥24 hours.

A previous meta-analysis suggested that AHREs lasting <1 minute were related to higher risk of thromboembolic events, but it did not differentiate between lower thresholds, like 10, 20, and 30 seconds. We analyzed these thresholds separately and concluded that the AHRE threshold >30 seconds is associated with increased risk of stroke or systemic embolism, but not shorter AHREs. Whether there is an association between even shorter AHRE thresholds and thromboembolic risk that was not evident because of lack of statistical power needs further evaluation in future studies.

The meta-regression graphically suggested a linear association between AHRE threshold and stroke risk, although the statistical result was not significant. Although this result may be limited by the potential overlap of the various duration thresholds, it suggests a potential dose-dependent relation between AHRE duration and thromboembolic risk and generates the hypothesis that AHRE may need to be considered as a continuous variable.

Traditionally, when it comes to treatment decisions on stroke prevention, AF is considered in a binary manner (ie, present or absent), without taking into consideration the burden of AF. In specific, the pattern of AF (ie, paroxysmal or permanent) is not taken into consideration to guide decisions about antithrombotic treatment, as it is believed that it does not add significantly to the assessment of risk based on patient characteristics (ie, the CHA2DS2-VASc score). Despite the evidence that AHRE of short duration increases the thromboembolic risk, it is still unclear whether this risk is high enough to allow for a potential beneficial effect of oral anticoagulation that would exceed the associated bleeding risk. Although some studies provided results-adjusted risk estimates for the use of anticoagulants, the CHA2DS2-VASc, and the existence of previous paroxysms of AF, this was not consistent across all studies. The absence of detailed report on the vascular risk factors based on the CHA2DS2-VASc score and the use of anticoagulation in some of the included studies may have affected the synthesized thromboembolic risk of the study. The inherent limitations of all meta-analyses apply also to the present meta-analysis, such as variations in the definitions of AHRE and comorbidities used in the studies, differences in the selection criteria among trials, differences in outcomes definition across the studies, and differences in the length of follow-up. Finally, the risk of stroke in patients with heart failure, which represented a large proportion of the patients included in this meta-analysis, may be associated not only with the presence of AHRE but also with the presence of heart failure.

CONCLUSIONS

The present study suggests that single AHREs ≥30 seconds and cumulative AHRE duration ≥24 hours are associated with increased risk of stroke or systemic embolism. The increased risk of stroke or systemic embolism remained consistent also for single AHRE episodes of ≥5 to 6 minutes, ≥6 hours, and ≥24 hours.

ARTICLE INFORMATION

Received June 5, 2021; accepted August 24, 2021.
Affiliations

Department of Internal Medicine, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larissa, Greece (D.S., K.P., G.N.); School of Biomedical Engineering and Imaging Sciences, King’s College, London, United Kingdom (G.G., C.C.); Department of Biostatistics and Research Support, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands (K.P.); Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece (E.K.); Department of Internal Medicine, University Hospital of Ioannina, Ioannina, Greece (H.M.); Athens Heart Center, Athens Medical Center, Athens, Greece (D.T.); 1st Cardiology Department, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece (D.T.); Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom (G.Y.L.); and Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark (G.Y.L.).

Acknowledgments

Author contributions: Dr Sagris: study design, data acquisition, statistical analysis and interpretation, and manuscript preparation; Dr Georgiopoulos: study design, data acquisition, statistical analysis and interpretation, and manuscript preparation; Dr Pateras: data acquisition, statistical analysis and interpretation, and manuscript preparation; Dr Perlepe: data acquisition, statistical analysis and interpretation, and manuscript preparation; Dr Korompoki: interpretation and critical revision of the manuscript; Dr Milionis: interpretation and critical revision of the manuscript; Dr Tsachiras: interpretation and critical revision of the manuscript; Dr Chan: interpretation and critical revision of the manuscript; Dr Lip: interpretation and critical revision of the manuscript; Dr Ntaios: study design and statistical analysis and interpretation, manuscript preparation, and study supervision.

Sources of Funding

None.

Disclosures

Dr Georgiopoulos is supported by a postdoctoral research grant by the Alexander S. Onassis Foundation. Dr Lip is a consultant for Bayer/Janssen, BMS/Pfizer, Boehringer Ingelheim, Verseon, and Daichi-Sankyo; and speaker for BMS/Pfizer, Boehringer Ingelheim, and Daichi-Sankyo. No fees are directly received personally. Dr Ntaios reports speaker fees/advisory boards/research support from Abbott, Amgen, Bayer, BMS/Pfizer, Boehringer-Ingelheim, Elen, and Galenica. All fees are paid directly to his institution (University of Thessaly). The remaining authors have no disclosures to report.

Supplementary Material

Tables S1–S4

Figures S1–S3

REFERENCES

1. Chen LY, Chung MK, Alien LA, Ezekowitz M, Furie KL, McCabe P. Atrial fibrillation and stroke: moving beyond atrial fibrillation as a binary entity: a scientific statement from the American Heart Association. Circulation. 2018;137:e623–e644. doi: 10.1161/CIRCULATIONAHA.118.030568
2. Boriani G, Glotzer TV, Santini M, West TM, De Melis M, Sepsi M, Gasparini M, Lewalter T, Camma J, Singer DE. Device-detected atrial fibrillation and risk for stroke: an analysis of >10,000 patients from the SOS AF project (stroke prevention strategies based on atrial fibrillation). J Am Coll Cardiol. 2014;63:1439–1448. doi: 10.1016/j.jacc.2014.03.072
3. Schnabel RB, Haueuls KG, Healey JS, Freedman B, Boriani G, Brachmann J, Brandes A, Bustamante A, Casadei B, Crijns HJGM, et al. Searching for atrial fibrillation poststroke. Circulation. 2019;139:1834–1850. doi: 10.1161/CIR CULATIONAHA.119.034267
4. Mohr D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097
5. Wells G, Shea B, O’Connell D, Peterson J, Welch V, Losos M, Tugwell P. 2000. The Newcastle–Ottawa Scale (NOS) for assessing the quality of non-randomized studies in meta-analysis. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed March 14, 2021.

6. Guytet GH, Oxman AD, Kunz R, Brozek J, Alonso-Coello P, Rind D, Devereaux PJ, Montori VM, Freyschuss BO, Vist G, et al. GRADE guidelines 6: rating the quality of evidence–imprecision. J Clin Epidemiol. 2011;64:1283–1293. doi: 10.1016/j.jclinepi.2011.01.012
7. Pateras K, Nikolakopoulou S, Roes K. Data-generating models of dichotomous outcomes: heterogeneity in simulation studies for a random-effects meta-analysis. Stat Med. 2018;37:1115–1124. doi: 10.1002/sim.7569
8. Van Gelder IC, Healey JS, Crijns HJGM, Wang J, Hohnloser SH, Gold MR, Capucci A, Lau C-P, Morillo CA, Hobbett AH, et al. Duration of device-detected subclinical atrial fibrillation and occurrence of stroke in assert. Eur Heart J. 2017;38:1339–1344. doi: 10.1093/eurheartj/ehx042
9. Healey JS, Connolly SJ, Gold MR, Israel CW, Van Gelder IC, Capucci A, Lau C-P, Fan E, Yang S, Bailleul C, et al. Subclinical atrial fibrillation and the risk of stroke. N Engl J Med. 2012;366:120–129. doi: 10.1056/NEJMoa105575
10. Swiny S, Orlov MV, Benditt DG, DiMarco JP, Lloyd-Jones DM, Karst E, Qu F, Slawsky MT, Turkel M, Walton AL. Clinical implications of brief device-detected atrial tachyarrhythmias in a cardiac rhythm management device population: results from the registry of atrial tachycardia and atrial fibrillation episodes. Circulation. 2016;134:1130–1143. doi: 10.1161/CIRCULATIONAHA.115.020252
11. Altman DG, Bland JM. How to obtain the confidence interval from a P value. BMJ. 2011;343:d2090. doi: 10.1136/bmj.d2090
12. Petrac D, Radelicj V, Delic-Brijačić D, Manola Š, Cindrić-Bogdan G, Pavlović N. Persistent atrial fibrillation is associated with a poor prognosis in patients with atrioventricular block and dual-chamber pacemaker. Pacing Clin Electrophysiol. 2012;35:695–702. doi: 10.1111/j.1540-8159.2012.03376.x
13. Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007;8:16. doi: 10.1186/1745-6215-8-16
14. Veroniki AA, Jackson D, Viechtbauer W, Bender R, Bowden J, Knapp G, Kuss O, Higgins JP, Langan D, Salanti G. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods. 2016;7:55–79. doi: 10.1002/jrsm.1164
15. Gasparini A, Armstrong B, Kenward MG. Multivariate meta-analysis for non-linear and other multi-parameter associations. Stat Med. 2012;31:3821–3838. doi: 10.1002/sim.5471
16. Viechtbauer W. Conducting meta-analyses in R with the package metap. J Stat Softw. 2010;36:i19
17. Schwarzer G. Meta: an R package for meta-analysis. R News. 2007;7:40–45.
18. Amara W, Montagnier C, Cheggour S, Boursier M, Guly C, Barnay C, George F, Deplagne A, Fromentin S, Mitolé M, et al. Early detection and treatment of atrial arrhythmias alleviates the arrhythmic burden in paced patients: the SETAM study. Pacing Clin Electrophysiol. 2017;40:527–536. doi: 10.1111/pace.13062
19. Bertini M, Borleffs CJW, Delgado V, Ng ACT, Piers SRD, Shanks M, Antoni ML, Biffi M, Boriani G, Schalij MJ, et al. Prediction of atrial fibrillation in patients with an implantable cardioverter-defibrillator and heart failure. Eur J Heart Fail. 2010;12:1101–1110. doi: 10.1038/ejhfq126
20. Botto GL, Padeletti L, Santini M, Capucci A, Gulizia M, Zoleffi F, Favale S, Molon G, Ricci R, Biffi M, et al. Presence and duration of atrial fibrillation detected by continuous monitoring: crucial implications for the risk of thromboembolic events. J Cardiovasc Electrophysiol. 2009;20:241–248. doi: 10.1111/j.1540-8167.2008.01320.x
21. Caldwell JC, Contractor H, Petkar S, Ali R, Clarke B, Garratt CJ, Neyses L, Mamas MA. Atrial fibrillation is under-recognized in chronic heart failure: insights from a heart failure cohort treated with cardiac resynchronization therapy. Europe. 2009;11:1295–1300. doi: 10.1093/europace/eup201
22. Capucci A, Santini M, Padeletti L, Gulizia M, Botto G, Boriani G, Girolami M, Zoleffi F, Favale S, Zoleffi F, Di Berardino N, et al. Monitored atrial fibrillation duration predicts arterial embolic events in patients suffering from brady- cardiia and atrial fibrillation implanted with antiarrhythmia pacemakers. J Am Coll Cardiol. 2005;46:1913–1920. doi: 10.1016/j.jacc.2005.07.044
23. Christensen LM, Krieger DW, Højberg S, Pedersen OD, Karlsen D, Jacobsen MD, Worck R, Nielsen H, AEgidius K, Jeppesen LL, et al. Searching for atrial fibrillation poststroke. Eur J Neurol. 2014;21:884–889. doi: 10.1111/ene.12400
24. Glotzer TV, Hellkamp AS, Zimmerman J, Sweeney MO, Yee R, Marinichak R, Paroschos A, Love J, Radoslovich G, et al. Atrial fibrillation and thromboembolic Risk...
high rate episodes detected by pacemaker diagnostics predict death and stroke: report of the atrial diagnostics ancillary study of the mode selection trial (MOST). Circulation. 2003;107:1614–1619. doi: 10.1161/01. CIR.0000057981.70380.45

25. Gonzalez M, Keating RF, Markowitz SM, Liu CF, Thomas G, Ip JE, Lerman BB, Cheung JW. Newly detected atrial high rate episodes predict long-term mortality outcomes in patients with permanent pacemakers. Heart Rhythm. 2014;11:2214–2221. doi: 10.1016/j.hrthm.2014.08.019

26. Israel C, Kitisoiu A, Kalyani M, Deelawar S, Ejiangue LE, Rogalewski A, Hagemeister C, Minnerup J, Schäßitz WR. Detection of atrial fibrillation in patients with embolic stroke of undetermined source by prolonged monitoring with implantable loop recorders. Thromb Haemost. 2017;117:1962–1969. doi: 10.1160/TH17-02-0072

27. Jons C, Jacobsen UG, Joergensen RM, Olsen NT, Dixen U, Johannessen A, Hukuri H, Messier M, McNitt S, Thomesen PE. The incidence and prognostic significance of new-onset atrial fibrillation in patients with acute myocardial infarction and left ventricular systolic dysfunction: a CARISMA substudy. Heart Rhythm. 2011;8:342–348. doi: 10.1016/j.hrthm.2010.09.090

28. Kaplan RM, Keoler J, Ziegler PD, Sarkar S, Zweibel S, Passman RS. 2016;8:342–348. doi: 10.1016/j.hrthm.2010.09.090

29. Kim BS, Chun KJ, Hwang JK, Park SJ, Park KM, Kim JS, On YK. 2017;117:1962–1969. doi: 10.1160/TH17-02-0072

30. Li YG, Miyazawa K, Pastori D, Szekely O, Shahid F, Lip GYH. Atrial fibrillation in patients with cardiac implantable electronic devices. Circ Arrhythm Electrophysiol. 2016;9:e005393. doi: 10.1161/CIRCEP.117.005393

31. Martin DT, Bersohn MM, Waldo AL, Wathen MS, Choucair WK, Lip GY. Oral anticoagulation versus antiplatelet therapy in patients with device-detected atrial fibrillation. Heart Rhythm. 2015;12:2368–2375. doi: 10.1016/j.hrthm.2015.07.007

32. Nakano M, Kondo Y, Nakano M, Kaiyama T, Hayashi T, Ito R, Takahira JP, Goette A, Huening A, Lip GYH, Simantirakis E, et al. Probing oral anticoagulation in patients with atrial high rate episodes: rationale and design of the apixaban for the reduction of thromboembolism in patients with device-detected sub-clinical atrial fibrillation (ARTESSIA) trial. Am Heart J. 2017;189:137–145. doi: 10.1016/j.ahj.2017.04.008

33. Miyazawa K, Pastori D, Li YQ, Szekely O, Shahid F, Boriani G, Lip GYH. Atrial fibrillation: systematic review and meta-analysis of randomized controlled trials. J Cardiovasc Electrophysiol. 2018;29:707–714. doi: 10.1111/jce.13470

34. Ntaios G, Vemmos K, Lip GY. 2017;117:1962–1969. doi: 10.1160/TH17-02-0072

35. Pedersen KB, Madsen C, Sandgaard NCP, Diederichsen ACP, Bak S, Brandes A. Subclinical atrial fibrillation in patients with recent transient ischemic attack. J Cardiovasc Electrophysiol. 2018;29:707–714. doi: 10.1111/jce.13470

36. Perino AC, Fan J, Askari M, Heidenreich PA, Keung E, Raitt MH, Piccini JP, Ziegler PD, Turakhia MP. Practice variation in anticoagulation prescription and outcomes after device-detected atrial fibrillation. Circulation. 2019;139:2502–2512. doi: 10.1161/CIRCULATIONNAHA.118.038988

37. Reiffel JA, Verma A, Kowey PR, Halperin JL, Eger B, Wachter R, Pouliot E, Ziegler PD. Incidence of previously undiagnosed atrial fibrillation using insertable cardiac monitors in a high-risk population: the REVEAL AF study. JAMA Cardiol. 2017;2:1120–1127. doi: 10.1001/jamacardio.2017.3196

38. Shannugam N, Boecklein A, Proff J, Ong P, Valencia O, Maier SK, Bauer WR, Paul V, Sack S. Detection of atrial high-rate events by continuous home monitoring: clinical significance in the heart failure-cardiac resynchronization therapy population. Europace. 2012;14:230–237. doi: 10.1093/europace/eur293

39. Wilton SB, Exner DV, Wyse DG, Yetsir E, Wells G, Tang ASL, Healey JS. Frequency and outcomes of postrandomization atrial tachyarrhythmias in the resynchronization/defibrillation in ambulatory heart failure trial. Circ Arrhythm Electrophysiol. 2016;9:e003807. doi: 10.1161/ CIRCEP.115.003807

40. Witt CT, Kronborg MB, Nohr EA, Mortensen PT, Gerdes C, Nielsen JC. Early detection of atrial high rate episodes predicts atrial fibrillation and thromboembolic events in patients with cardiac resynchronization therapy. Heart Rhythm. 2015;12:2368–2375. doi: 10.1016/j.hrthm.2015.07.007

41. Belkin MN, Soria CE, Waldo AL, Borleffs CJW, Hayes DL, Tung R, Singh JP, Upadhyay GA. Incidence and clinical significance of new-onset device-detected atrial tachyarrhythmia. Circ Arrhythm Electrophysiol. 2018;11:e005393. doi: 10.1161/CIRCEP.117.005393

42. Hindricks G, Potpara T, Dagens N, Arbelo E, Bax JJ, Blomström-Lundqvist C, Boriani G, Castella M, Dan G-A, Dilaveris PE, et al. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS); the Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021;42:373–498. doi: 10.1093/eurheartj/ehaa162

43. Lopes RD, Alings M, Connolly SJ, Beresh H, Granger CB, Mazuecos JB, Boriani G, Nielsen JC, Conen D, Hohnloser SH, et al. Rationale and design of the apixaban for the reduction of thromboembolism in patients with device-detected sub-clinical atrial fibrillation (ARTESIA) trial. Am Heart J. 2017;189:137–143. doi: 10.1016/j.ahj.2017.04.058

44. Kirchhof P, Black BL, Calvert M, Camm AJ, Chlouverakis G, Diener H-C, Goette A, Huening A, Lip GYH, Simantirakis E, et al. Probing oral anticoagulation in patients with atrial high rate episodes: rationale and design of the non-vitamin K antagonist oral anticoagulants in patients with atrial high rate episodes (NOAH-AFNET 6) trial. Am Heart J. 2017;190:12–18. doi: 10.1016/j.ahj.2017.04.058

45. Ntaios G, Hart RG. Embolic stroke. Circulation. 2017;136:2403–2405. doi: 10.1161/CIRCULATIONAHA.117.030509

46. Ntaios G, Vemmos K, Lip GY. Oral anticoagulation versus antiplatelet or placebo for stroke prevention in patients with heart failure and sinus rhythm: systematic review and meta-analysis of randomized controlled trials. Int J Stroke. 2019;14:856–861. doi: 10.1177/1747493019877296
Supplemental Material
| Study | Study design | Patients included | Age | Prior stroke/TIA n (%) | Recorder type | Indication for device implantation | Anticoagulation n (%) | AHRE definition | Time cut offs | Follow-up (mont hs) | Outcome | Study population | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Glotzer et al 2003 | Randomized | 312 | 74 | 55 (17.6) | PMs | sinus node dysfunction | NA | longest episode | 5 min | 27 | Stroke | MOST |
| Capucci et al 2005 | Observational Prospective | 725 | 71 ±11 | 13 (1.8) | PMs | class I or II ACC/AHA indication for dual-chamber pacing: node disease (82.8%) AV block (4.7%), drug-induced bradycardia in (4.4%), other (8.1%) | 261(36,4) | longest episode | 24 h | 22 | Stroke | NA |
| Botto et al 2008 | Observational Retrospective | 568 | 70 ± 10 | 8 (1.4) | PMs | bradycardia according to current guidelines | 165 (29) | longest episode | >5 min | >24 h | 12 | Stroke/ TIA | NA |
| Caldwell et al 2009 | Observational Retrospective | 162 | 66 ±1.8 | NA | CRT | HF NYHA class III–IV CHF | NA | longest episode | 30 sec | 14.1 ±1 | Stroke or SE | NA |
| Berini et al 2010 | Observational Prospective | 495 | 62.2 ±11.7 | NA | ICD | heart failure according to the current AHA/ACC/ESC guidelines | 263(54) | longest episode | 10 min | 16.4 ±11.2 | Stroke or SE | NA |
| Shanmugan et al 2011 | Observational Prospective | 560 | 66 ±10 | 1 (0.18) | CRT | HF with no history of AF | 67 (12,0) | day-level cumulative burden | 14 min (3.8 h to threshold) | 12.3 (IQR 8.4-13) | Stroke or SE | EVEREST |
| Jons et al 2011 | Randomized | 271 | 63.3 ±11 | NA | ICM | post MI <40% EF | 56 (20,6) | longest episode | 30 sec | 24 | Stroke | CARISM A |
| Healey et al 2012 | Observational Prospective | 2580 | 76 ±7 | 312 (12,1) | PMs or ICD | sinus-node or atrioventricular-node disease or any indication for ICD | 0(0) | longest episode | 6 min | 30 | Stroke or SE | ASSERT* |
| Petrac et al 2012 | Observational Retrospective | 308 | 67 ±10 | NA | PMs | second- or third-degree AV block | 48 (15,6) | longest episode | 5 min | 36 ±20 | Stroke | NA |
| Gonzalez et al 2014 | Observational Retrospective | 224 | 74 ±12 | 13 (6) | PMs | Sinus node dysfunction AV block | 7 (3.1) | longest episode | 5 min | 79.2 ±24 | Stroke | NA |
| Christensen et al 2014 | Observational Prospective | 85 | 56.7 | 85 (100) | ILR | cryptogenic stroke | 18 (20,7) | longest episode | 2 min | 19 ±10.3 | Stroke | SURPRIS E |
| Boriani et al 2014 | Observational Pooled analysis from five prospective studies | 10016 | 70 | 589(6) | CIEDs | class II/II indication for an implantable cardiac rhythm device | 1822(18) | day-level cumulative burden | 5 min | 12 h | 24 (14-40) | Stroke | TRENDS, PANORA MA |
| Witt et al 2015 | Observational Retrospective | 394 | 67 (59-74) | 58 (14,7) | CRT | HF (standard indication for CRT treatment) | 56(14,2) | longest episode | 6 min | 50.4 (IQR 30–79.2) | Stroke or SE | NA |
| Kim et al 2016 | Observational Retrospective | 880 | 62.7 ±14 | 70 (8) | PM, ICDs, and CRTs | classes I-II recommendation of the current ACCF/AHA/HRS guidelines for device implantation | 40 (4,5) | longest episode | 5 min | 55 (20-90.2) | Stroke | NA |
| Wilton et al 2016 | Randomized, prospective | 972 | 66.1 | NA | ICDs and CRTs | HF | 286 (29,4) | longest episode | 30 sec | 41±19 | Stroke | RAFT |
| Swiry et al 2016 | Observational | 5379 | 69.7 | 186 (5.9%) | PMs and ICDs | indication for a cardiac rhythm management | 823 (15,3) | longest episode | >20 sec | 22.9 | Stroke or SE | RATE |
| Study | Type | n | Mean ± SD | Highest risk patients | Longest episode | Stroke | Notes |
|------------------------------|-----------------------|------|-----------|------------------------|----------------|--------|------------------------|
| Reiffel et al, 2017 | Observational, prospective | 326 | 71.5 ± 9.9 | 80 (20.3) ICM (Reveal XT or Reveal LINQ; Medtronic) | 72 (56.3) | 6 min | 22.5 Stroke REVEAL AF |
| Israel et al, 2017 | Observational, prospective | 123 | 65 ± 9 | 123 (100) ILR ESUS | NA | longest episode | 2 min | 12.7 ± 5.5 Stroke NA |
| Amara et al, 2017 | Randomized, single-blind | 595 | 79 ± 8 | 60 (10.1) PMs Sinus node dysfunction, AV block and other conduction defects | 0(0) | day-level cumulative burden | 6 h | 12.8 ± 3.3 Stroke SETAM |
| Kawakami y et al, 2017 | Observational, prospective | 343 | 80±7 | 52 (15) PMs sinus node disease or atrioventricular block | 53 (15) | longest episode | 6 min | 52± 30 Stroke or SE NA |
| Martin et al, 2017 | Randomized, single-blind | 2718 | 64.4 | 243(8,9) ICD and CRTs | 302 (11) | longest episode | 10 sec | 24 Stroke or SE IMPACT |
| VanGelder r et al, 2017 | Observational, prospective | 2455 | 76.3 ± 6.7 | 297 (12) PMs and ICD PCM for sinus node or AV node disease, ICD for any indication | 0(0) | longest episode | 6 h | 24h 30 Stroke or SE ASSERT* |
| Nakano et al, 2018 | Observational, retrospective | 348 | 70±16 | NA PMs, ICDs, and CRTs Class I or II indication according to the Japanese Circulation Society | 0(0) | longest episode | 30 sec | 65±58 Stroke NA |
| Pedersen et al, 2018 | Observational, prospective | 105 | 65.4 (27.2 - 0.8) | 105 (100) ILR THA patients . CHA,DS,-Vasc 4 | 0(0) | longest episode | 2 min | 12.7 (12.4 - 13) Stroke NA |
| Perino et al, 2019 | Observational, retrospective | 10212 | 72±10 | 0 (0) CIEDs Database of CIEDs (not mentioned) | 1032 (10) | day-level cumulative burden | 6 min | 6 h 24 h 45 Stroke Veterans Affairs National Patient Care Database |
| Li et al, 2019 | Observational, prospective | 594 | 69 ± 14 | 59 (9.9) PMs, ICDs, CRTs NA | NA | longest episode | 5 min | 50.4 Stroke or SE NA |
| Kaplan et al, 2019 | Observational, retrospective | 21768 | 68.6±1 2.7 | 3047 (14) IPMs, ICDs, CRTs according to ACC/AHA guidelines | 0(0) | longest episode | 6 min and 23.5 h 6 months | Stroke or SE Optum© Electronic Health Record database, Medtronic CareLinkTM database of CIEDs |
| Miyazawa et al, 2019 | Observational, prospective | 856 | 72.0 (62.0–80.0) | 92 (10.7) ICDs, CRT current indications for ICD / CRT implantation according to ESC guidelines | 151 (19.7) | longest episode | 5 min | 48.2 ± 32.3 Stroke or SE NA |

CIEDs: cardiac implantable electronic devices, PM: pacemaker, ICD: implantable cardioverter defibrillators, ICM: implantable cardiac monitor, CRT: cardiac resynchronization therapy, ILR: implantable loop recorder, ESUS: embolic stroke of undetermined source, NA: not applicable

*: Both studies conducted in the ASSERT population
Author	Thresholds	Patients included	Relative Risk (95% CI)	Events	IR (%/yr)	
30 sec						
Caldwell et al 2009	<30sec	74	2.74	0.14 - 52.70	0.86*	1.16
	≥30sec	27			0.86*	
Nakano et al 2018	<30sec	293	6.93	3.20 - 14.90	0.7	
	≥30sec	55			4.3	
2min						
Christensen et al 2014	<2min	69	3.29	1.26 - 8.57	7	6.5
	≥2min	18			21.3	
Israel et al 2017	<2min	94	1.25	0.49 - 3.20	13	12.8
	≥2min	29			5	15.9
Pedersen et al 2018	<2min	98	1.59	0.23 - 10.81	6	6.1
	≥2min	7			1	14.3
5min						
Botto et al 2008	<5min	166	2.07	0.46 - 9.30	2	1.2
	≥5min	402			2.48	
Petrac et al, 2012	<5min	274	1.34	0.31 - 5.75	12	1.46
	≥5min	34			1.56	
Reiffel et al, 2017	<6min	198	1.55	0.32 - 7.55	3	0.66
	≥6min	128			3	1.56
Kaplan et al 2019	<6min	19443	1.46	1.14 - 1.87	158	NA
	≥6min	8589				
10 min						
Bertini et al 2010	<10min	309	0.92	0.10 - 8.12	4	0.97
	≥10min	84			1	0.89
6h						
VanGelder et al 2017	<6h	2121	3.14	1.49 - 6.62	13.3*	NA
	≥6h	234			4.9*	
24h						
Botto et al 2008	<24h	345	3.094	0.94 - 10.15	4	8
	≥24h	223			NA	
VanGelder et al 2017	<24h	2226	4.31	1.92 - 9.69	14.3*	NA
	≥24h	129			3.9*	
Kaplan et al 2019	<24h	24270	1.691	1.26 - 2.28	206	NA
	≥24h	3762			54	

* Corresponding events based on provided incidence rate
IR: incidence rate
Table S3. Quality assessment of the selected studies based on the Newcastle-Ottawa Scale (NOS).

Study	Selection	Comparability	Outcome	Overall stars	Quality Assessment
Swiryn et al 2017	★	★	★	9/9	Good quality
Botto et al 2008	★	★	★	5/9	Medium quality
Van Gelder et al 2017	★	★	★	9/9	Good quality
Perino et al 2019	★	★	★	7/9	Good quality
Boriana et al 2014	★	★	★	7/9	Good quality
Li et al 2019	★	★	★	8/9	Good quality
Kim et al 2016	★	★	★	8/9	Good quality
Jons et al 2011	★	★	★	6/9	Fair quality
Israel et al 2017	★	★	★	5/9	Medium quality
Gonzalez et al 2014	★	★	★	8/9	Good quality
Glotzer et al 2003	★	★	★	8/9	Good quality
Christensen et al 2014	★	★	★	7/9	Good quality
Capucci et al 2005	★	★	★	6/9	Fair quality
Amara et al 2017	★	★	★	7/9	Good quality
Kaplan et al 2019	★	★	★	9/9	Good quality
Berini et al 2010	★	★	★	6/9	Fair quality
Caldwell et al 2009	★	★	★	5/9	Medium quality
Kawakamy et al 2017	★	★	★	8/9	Good quality
Martin et al 2017	★	★	★	9/9	Good quality
Miyazawa et al 2019	★	★	★	8/9	Good quality
Nakano et al 2018	★	★	★	8/9	Good quality
Ogino et al 2017	★	★	★	9/9	Good quality
Pedersen et al 2018	★	★	★	6/9	Fair quality
Shammugan et al 2011	★	★	★	7/9	Good quality
Wilton et al 2016	★	★	★	8/9	Good quality
Witt et al 2015	★	★	★	9/9	Good quality
Healey et al 2012	★	★	★	8/9	Good quality
Petrac et al 2012	★	★	★	6/9	Fair quality
Reiffel et al 2017	★	★	★	5/9	Medium quality

Legend:
- **Selection**: Is the Case Definition Adequate?
- **Representativeness of the Cases**: Selection of Controls
- **Selection of the non-exposed cohort**: Definition of Controls
- **Comparability of Cases and Controls on the Basis of the Design or Analysis**: Comparability of Controls
- **Ascertainment of Exposure**: Ascertainment of Exposure
- **Same method of ascertainment for cases and controls**: Same method of ascertainment
- **Non-Response Rate**: Was follow-up long enough for outcomes to occur
- **Outcome**: Adequacy of follow-up of cohorts

Quality Assessment:
- ★ ★ ★ ★ ★: Good quality
- ★ ★ ★ ★: Fair quality
- ★ ★ ★: Medium quality
- ★ ★: Poor quality
| Number of studies | Study design | Risk of Bias | Inconsistency | Indirectness | Imprecision | Other considerations | Certainty |
|-------------------|--------------------|--------------|---------------|--------------|-------------|----------------------|-----------|
| **30 seconds AHRE duration** | | | | | | | |
| 4 | Observational and Randomized (1:1) | Few concerns | Low | Low | Moderate | Low publication Bias | Moderate |
| **5 to 6 minutes AHRE duration** | | | | | | | |
| 13 | Observational | Low | Moderate | Low | Moderate | Low publication Bias | Moderate |
| **24 hours AHRE duration** | | | | | | | |
| 5 | Observational | Low | Moderate | Low | Low | Low publication Bias | High |
| **24 hours AHRE duration** | | | | | | | |
| 2 | Observational | Few concerns | Low | Low | Moderate | | Moderate |
Figure S1. Flow diagram of studies identified, screened and included in the meta-analysis.

Identification

- Records identified through PubMed search (n = 3638)
- Records identified through Scopus search (n = 581)

Screening and eligibility

- Articles assessed for eligibility (n = 4219)
- Full text / abstract articles excluded (Duplicates, reviews, editorials or irrelevant studies (n = 2450))
- Studies assessed by abstract (n = 1769)
- Studies excluded based on abstract assessment (n = 1733)

Included

- Studies included in quantitative synthesis (n = 36)
 - Eligible studies excluded due to:
 - Subpopulation of other included study (n = 2)
 - Studies with non-implantable cardiac monitor (n = 2)
 - Studies did not report outcomes under investigation to allow further analysis and excluded from the analysis (n = 3)
 - One study did not report time thresholds
- Studies included in the analysis (n = 28)
Figure S2. Linear and non-linear fixed effects meta regression based on the threshold of the longest AHRE duration.

When the high-leverage study from Capucci et al 2005 was excluded there was still no significant association between increasing AHRE thresholds and the risk of stroke or systemic embolism (HR per 1 ln min increase=1.09, 95% CI 0.878-1.36, P=0.412).
Figure S3. Diagnostic plots for each time threshold.
A: funnel plots and regression tests for the threshold of 30 seconds; B: funnel plots and regression tests for the threshold of AHRE >2 minutes; C: funnel plots and regression tests for the threshold of AHRE >5 minutes; D: funnel plots and regression tests for the threshold AHRE >24 hours; E: funnel plots and regression tests for the threshold cumulative day-level AHRE burden ≥24 hours