DECOMPOSITION OF AN INTEGER AS THE SUM OF TWO CUBES TO A FIXED MODULUS

David Tsirekidze
Stanford University
USA
david19@stanford.edu

Ala Avoyan
Tbilisi State University
Republic of Georgia
a.avoyan@iset.ge

Abstract. The representation of any integer as the sum of two cubes to a fixed modulus is always possible if and only if the modulus is not divisible by seven or nine. For a positive non-prime integer N there is given an inductive way to find its remainders that can be represented as the sum of two cubes to a fixed modulus N. Moreover, it is possible to find the components of this representation.

AMS subject classification (2000): 11A07, 11B50, 11D25,

Keywords and phrases: sum of two cubes; diophantine equation.

1 Introduction

Any odd prime number, p, can be written as the sum of two squares if and only if it is of the form $p = 4k + 1$, where $k \in \mathbb{N}$. Generally, number n can be represented as a sum of two squares if and only if in the prime factorization of n, every prime of the form $4k + 3$ has even exponent. There is no such a nice characterization for the sum of two cubes. In this paper we give an inductive way which allows to find the representation of a non-prime integer as a sum of two cubes to a given modulus.

Definition 1.1. $N \geq 2$ let

$$\delta(N) = \frac{\#\{n \in \{1, \ldots, N\} : n \equiv x^3 + y^3 \pmod{N} \text{ has a solution}\}}{N}.$$

Broughan [1] proved the following theorem

1
Theorem 1.1. 1. If $7 \mid N$ and $9 \nmid N$ then $\delta(N) = 5/7$
2. If $7 \nmid N$ and $9 \mid N$ then $\delta(N) = 5/9$
3. If $7 \mid N$ and $9 \mid N$ then $\delta(N) = 25/63$
4. If $7 \nmid N$ and $9 \nmid N$ then $\delta(N) = 1$.

In the last case $\delta(N) = 1$, therefore, any integer can be represented as a sum of two cubes to a fixed modulus N.

By the Theorem 1.1 for all N we can deduce number of its remainders that can be decomposed as a sum of two cubes. In this paper we introduce the way to find these remainders and also their decompositions as a sum of two cubes to a fixed modulus N in case when we know the factorization of this number.

2 Main Results

Theorem 2.1. Let us consider an equation $n \equiv u^3 + v^3 \pmod{N}$, $n \in [0, N - 1]$. Then it has solution in \mathbb{Z} in the following congruences:
1. $7 \mid N$, $9 \nmid N$ and $n \equiv 0, 1, 2, 5, 6 \pmod{7}$;
2. $7 \nmid N$, $9 \mid N$ and $n \equiv 0, 1, 2, 7, 8 \pmod{9}$;
3. $7 \mid N$, $9 \mid N$ and $n \equiv 0, 1, 2, 7, 8, 9, 16, 19, 20, 26, 27, 28, 29, 34, 35, 36, 37, 43, 44, 47, 54, 55, 56, 61, 62 \pmod{63}$;
4. $7 \nmid N$ and $9 \nmid N$.

Proof. For simplicity, we prove only the first case of the theorem. One can easily verify that cube of any integer number can have the following remainders modulo 7: 0, 1, 6. Therefore, the sum of two cubes can have remainders 0, 1, 2, 5, 6 modulo 7. The number of positive integers with these remainders is $(5/7) \cdot N$ in the interval $[0, N - 1]$. There is no other number n for which the equation has a solution. Hence, from Theorem 1.1 the first case of Theorem 2.1 is proved. Other two cases can be proved analogously.

Definition 2.1. Let us denote the set of all values of n for which $n \equiv u^3 + v^3 \pmod{N}$ by $A(N)$.

Theorem 2.2. If $(N, M) = 1$, then $\delta(MN) = \delta(M) \cdot \delta(N)$

Proof. Suppose

$$m \equiv u^3 + v^3 \pmod{M} \quad m \in [0, M - 1] \quad (1)$$

$$n \equiv x^3 + y^3 \pmod{N} \quad n \in [0, N - 1] \quad (2)$$

Let X be such that $M \mid X$ and $N \mid X - 1$. By the Chinese Remainder Theorem such X always exists.

Let us construct X^*, A and B by the following way

$$X^* \equiv X \cdot n - (X - 1) \cdot m \pmod{MN} \quad (3)$$

$$A = X \cdot x - (X - 1) \cdot u \quad (4)$$

$$B = X \cdot y - (X - 1) \cdot v \quad (5)$$
It can be shown that $X^* \equiv A^3 + B^3 \pmod{MN}$.
Indeed,

$$X^* - (A^3 + B^3) \equiv X \cdot n - (X - 1) \cdot m - (X^3 \cdot x^3 - (X - 1)^3 \cdot u^3 + X^3 \cdot y^3 - (X - 1)^3 \cdot v^3) \equiv$$

$$\equiv X \cdot n - (X - 1) \cdot m - (X^3(x^3 + y^3) - (X - 1)^3(u^3 + v^3)) \equiv$$

$$\equiv X \cdot (n - X^2(x^3 + y^3)) + (X - 1) \cdot ((X - 1)^2(u^3 + v^3) - m) \pmod{MN}$$

As,

$$n - X^2(x^3 + y^3) \equiv (x^3 + y^3)(1 - X)(1 + X) \equiv 0 \pmod{N} \text{ and } X \equiv 0 \pmod{M}$$

And $(N, M) = 1$, we obtain

$$X \cdot (n - X^2(x^3 + y^3)) \equiv 0 \pmod{MN}$$

Analogously,

$$(X - 1)^2(u^3 + v^3) - m \equiv (u^3 + v^3) \cdot ((X - 1)^2 - 1) \equiv 0 \pmod{M} \text{ and } X - 1 \equiv 0 \pmod{N}$$

Consequently, as $(N, M) = 1$

$$(X - 1) \cdot ((X - 1)^2(u^3 + v^3) - m) \equiv 0 \pmod{MN}$$

Finally,

$$X^* - (A^3 + B^3) \equiv X \cdot (n - X^2(x^3 + y^3)) + (X - 1) \cdot ((X - 1)^2(u^3 + v^3) - m) \equiv 0 \pmod{MN}$$

For any $m \in A(M)$ and any $n \in A(N)$, there exists $X^* \in A(MN)$. Obviously, $X^* \equiv n \pmod{N}$ and $X^* \equiv m \pmod{M}$. Thus, for different pairs (m_1, n_1) and (m_2, n_2) we cannot obtain the same X^* (by Chinese Remainder Theorem).

Now take any element from $A(MN)$ set, $X^* \equiv A^3 + B^3 \pmod{MN}$. Suppose $(x, y), (u, v)$ pairs are the solutions of the following Diophantine equation:

$$A = X \cdot x - (X - 1) \cdot u$$

$$B = X \cdot y - (X - 1) \cdot v.$$

If we consider

$$m \equiv (u^3 + v^3) \pmod{M} \text{ and } n \equiv (x^3 + y^3) \pmod{N}.$$

Then $X^* \equiv A^3 + B^3 \pmod{MN}$. Therefore, there is one-to-one correspondence between the elements of the set $A(MN)$ and pairs of elements from the sets $A(M)$ and $A(N)$. Hence, we proved that $\delta(MN) = \delta(M) \cdot \delta(N)$
Remark 2.1. Let us assume we are given any number K and suppose we know the representation of any element in each set $A(1), A(2), ..., A(K - 1)$ as a sum of two cubes to a fixed modulus. And our task is to find the representation of the elements of $A(K)$. Let K be a non-prime number and $K = M \cdot N$, where $(M, N) = 1$ and $N, M > 1$. Suppose $m \in A(M)$, $n \in A(N)$ and (1), (2) hold. Solve Diophantine equation $M \cdot q - N \cdot l = 1$, let $X = Mq$ and construct X^*, A, B according to (3), (4), (5). As it was shown above

$$X^* \equiv A^3 + B^3 \pmod{K} \quad (6)$$

Therefore $X^* \in A(K)$ and (6) is the representation for X^* as a sum of two cubes to a fixed modulus K.

3 Conclusion

This paper is an attempt to explicitly find the way to solve equation $n \equiv a^3 + b^3 \pmod{K}$. Using inductive way that is given in this paper it is possible to construct $A(K)$ set and represent any element of this set as a sum of two cubes to a fixed non-prime modulus K. For further research this issue can be considered for prime number K.

References

[1] K. A. Broughan, Characterizing the Sum of Two Cubes, Journal of Integer Sequences, (2003).

[2] E. Grosswald, Representation of Integers as Sums of Squares, Springer, N.Y., (1985).

[3] S. Finch and P. Sebah, Squares and cubes modulo n, arXiv :math/0604465, (2006), 8-10.

[4] K. L. Hua, Introduction to Number Theory, Springer-Verlag, (1982).

[5] S. Lang, Old and new conjectured diophantine inequalities, Bull. Amer. Math. Soc., 23, (1990), 37-75.

[6] L. J. Mordell, Diophantine Equations, Academic Press, (1969).

[7] A. G. Vosper, The critical pairs of subsets of a group of prime order. J. London Math. Soc., 31, (1956), 200-205, 280-283.