ON A THEOREM OF BANACH
AND KURATOWSKI AND \(K\)-LUSIN SETS

TOMEK BARTOSZYN\'SKI AND LORENZ HALBEISEN

ABSTRACT. In a paper of 1929, Banach and Kuratowski proved—assuming the continuum hypothesis—a combinatorial theorem which implies that there is no non-vanishing \(\sigma\)-additive finite measure \(\mu\) on \(\mathbb{R}\) which is defined for every set of reals. It will be shown that the combinatorial theorem is equivalent to the existence of a \(K\)-Lusin set of size \(2^{\aleph_0}\) and that the existence of such sets is independent of ZFC + \(\neg\)CH.

0. Introduction. In [1], Stefan Banach and Kazimierz Kuratowski investigated the following problem in measure theory:

Problem. Does there exist a non-vanishing finite measure \(\mu\) on \([0,1]\) defined for every \(X \subseteq [0,1]\), which is \(\sigma\)-additive and such that for each \(x \in [0,1]\), \(\mu(\{x\}) = 0\)?

They showed that such a measure does not exist if one assumes the continuum hypothesis, denoted by CH. More precisely, assuming CH, they proved a combinatorial theorem [1, Théorème II] and showed that this theorem implies the nonexistence of such a measure. The combinatorial result is as follows:

Banach-Kuratowski theorem. Under the assumption of CH, there is an infinite matrix \(A^i_k \subseteq [0,1]\) (where \(i,k \in \omega\)) such that:

(i) For each \(i \in \omega\), \([0,1] = \bigcup_{k \in \omega} A^i_k\).

(ii) For each \(i \in \omega\), if \(k \neq k'\), then \(A^i_k \cap A^i_{k'} = \emptyset\).
(iii) For every sequence \(k_0, k_1, \ldots, k_i, \ldots \) of \(\omega \), the set \(\cap_{i \in \omega} (A^i_0 \cup A^i_1 \cup \cdots \cup A^i_{k_i}) \) is at most countable.

In the following we call an infinite matrix \(A^i_k \subseteq [0, 1] \) (where \(i, k \in \omega \)) for which (i), (ii) and (iii) hold, a BK-matrix.

Wacław-Sierpiński proved—assuming CH—in [11] and [12] two theorems involving sequences of functions on \([0, 1]\) and showed in [11] and [13] that these two theorems are equivalent to the Banach-Kuratowski theorem, or equivalently, to the existence of a BK-matrix.

Remark. Concerning the problem in measure theory mentioned above, we like to recall the well-known theorem of Stanisław Ulam (cf. [15] or [7, Theorem 5.6]), who showed that each \(\sigma \)-additive finite measure \(\mu \) on \(\omega_1 \), defined for every set \(X \subseteq \omega_1 \) with \(\mu(\{x\}) = 0 \) for each \(x \in \omega_1 \), vanishes identically. This result implies that if CH holds, then there is no non-vanishing \(\sigma \)-additive finite measure on \([0, 1]\).

In the sequel we show that even if CH fails, a BK-matrix—which will be shown to be equivalent to the existence of a \(K \)-Lusin set of size \(2^{\aleph_0} \)—may still exist.

Our set-theoretical terminology (including forcing) is standard and may be found in textbooks like [2], [4] and [6].

1. The Banach-Kuratowski theorem revisited. Before we give a slightly modified version of the Banach-Kuratowski proof of their theorem, we introduce some notation.

For two functions \(f, g \in \omega^\omega \), let \(f \preceq g \) if and only if for each \(n \in \omega \), \(f(n) \leq g(n) \).

For \(\mathcal{F} \subseteq \omega^\omega \), let \(\lambda(\mathcal{F}) \) denote the least cardinality such that, for each \(g \in \omega^\omega \), the cardinality of \(\{ f \in \mathcal{F} : f \preceq g \} \) is strictly less than \(\lambda(\mathcal{F}) \). If \(\mathcal{F} \subseteq \omega^\omega \) is a family of size \(\lambda \), where \(\lambda \) is the cardinality of the continuum, then we obviously have \(\aleph_1 \leq \lambda(\mathcal{F}) \leq \lambda^+ \). This leads to the following definition:

\[
\mathcal{l} := \min \{ \lambda(\mathcal{F}) : \mathcal{F} \subseteq \omega^\omega \land |\mathcal{F}| = \lambda \}.
\]

If one assumes CH, then one can easily construct a family \(\mathcal{F} \subseteq \omega^\omega \) of cardinality \(\lambda \) such that \(\lambda(\mathcal{F}) = \aleph_1 \) and therefore CH implies that \(\mathcal{l} = \aleph_1 \).
The crucial point in the Banach-Kuratowski proof of their theorem is [1, Théorème II']. In our notation it reads as follows:

Proposition 1.1. The existence of a BK-matrix is equivalent to \(l = \aleph_1 \).

For the sake of completeness and for the reader's convenience, we give the Banach-Kuratowski proof of Proposition 1.1.

Proof. (\(\Leftarrow \)). Let \(F \subseteq \omega^\omega \) be a family of cardinality \(\mathfrak{c} \) with \(\lambda(F) = \aleph_1 \). In particular, for each \(g \in \omega^\omega \), the set \(\{ f \in F : f \preceq g \} \) is at most countable. Let \(f_\alpha, \alpha < \mathfrak{c} \), be an enumeration of \(F \). Since the interval \([0, 1] \) has cardinality \(\mathfrak{c} \), there is a one-to-one function \(\Xi \) from \([0, 1] \) onto \(F \).

For \(x \in [0, 1] \), let \(n_x^i := \Xi(x)(i) \). Now for \(i, k \in \omega \), define the sets \(A^i_k \subseteq [0, 1] \) as follows:

\[
x \in A^i_k \quad \text{if and only if} \quad k = n_x^i.
\]

It is easy to see that these sets satisfy the conditions (i) and (ii) of a BK-matrix. For (iii), take any sequence \(k_0, k_1, \ldots, k_i, \ldots \) of \(\omega \) and pick an arbitrary \(x \in \bigcap_{i \in \omega} (A^i_0 \cup A^i_1 \cup \cdots \cup A^i_{k_i}) \). By definition, for each \(i \in \omega \), we get \(n_x^i \leq k_i \), which implies that for \(g \in \omega^\omega \) with \(g(i) := k_i \) we have \(\Xi(x) \preceq g \). Now, since \(\lambda(F) = \aleph_1 \), \(\Xi(x) \in F \) and \(x \) was arbitrary, the set \(\{ x \in [0, 1] : \Xi(x) \preceq g \} = \bigcap_{i \in \omega} (A^i_0 \cup A^i_1 \cup \cdots \cup A^i_{k_i}) \) is at most countable.

(\(\Rightarrow \)). Let \(A^i_k \subseteq [0, 1] \) (where \(i, k \in \omega \)), be a BK-matrix, and let \(F \subseteq \omega^\omega \) be the family of all functions \(f \in \omega^\omega \) such that \(\bigcap_{i \in \omega} A^i_{f(i)} \) is nonempty. It is easy to see that \(F \) has cardinality \(\mathfrak{c} \). Now, for any sequence \(k_0, k_1, \ldots, k_i, \ldots \) of \(\omega \), the set \(\bigcap_{i \in \omega} (A^i_0 \cup A^i_1 \cup \cdots \cup A^i_{k_i}) \) is at most countable, which implies that for \(g \in \omega^\omega \) with \(g(i) := k_i \), the set \(\{ f \in F : f \preceq g \} \) is at most countable. Hence, \(\lambda(F) = \aleph_1 \).

2. \(K \)-Lusin sets. In this section we show that \(l = \aleph_1 \) is equivalent to the existence of a \(K \)-Lusin set of size \(\mathfrak{c} \).

We work in the Polish space \(\omega^\omega \).
Fact 2.1. A closed set $K \subseteq \omega^\omega$ is compact if and only if there is a function $f \in \omega^\omega$ such that $K \subseteq \{g \in \omega^\omega : g \preceq f\}$.

(See [2, Lemma 1.2.3].)

An uncountable set $X \subseteq \omega^\omega$ is a Lusin set if, for each meager set $M \subseteq \omega^\omega$, $X \cap M$ is countable.

An uncountable set $X \subseteq \omega^\omega$ is a K-Lusin set if, for each compact set $K \subseteq \omega^\omega$, $X \cap K$ is countable.

Lemma 2.2. Every Lusin set is a K-Lusin set.

Proof. By Fact 2.1 every compact set $K \subseteq \omega^\omega$ is meager (even nowhere dense), and therefore, every Lusin set is a K-Lusin set. \square

Lemma 2.3. The following are equivalent:

(a) $\mathfrak{l} = \aleph_1$.

(b) There is a K-Lusin set of cardinality \mathfrak{c}.

Proof. This follows immediately from the definitions and Fact 2.1. \square

Remark. Concerning Lusin sets we would like to mention that Sierpiński gave in [14] a combinatorial result which is equivalent to the existence of a Lusin set of cardinality \mathfrak{c}.

For $f, g \in \omega^\omega$, define $f \preceq^* g$ if $f(n) \leq g(n)$ for all but finitely many $n \in \omega$. The cardinal numbers \mathfrak{b} and \mathfrak{d} are defined as follows:

$$\mathfrak{b} := \min\{|\mathcal{F}| : \mathcal{F} \subseteq \omega^\omega \text{ and } \forall g \in \omega^\omega \exists f \in \mathcal{F}(f \nsubseteq^* g)\}$$

$$\mathfrak{d} := \min\{|\mathcal{F}| : \mathcal{F} \subseteq \omega^\omega \text{ and } \forall g \in \omega^\omega \exists f \in \mathcal{F}(g \nsubseteq^* f)\}.$$

Lemma 2.4. $\mathfrak{l} = \aleph_1$ implies $\mathfrak{b} = \aleph_1$ and $\mathfrak{d} = \mathfrak{c}$. Moreover, K-Lusin sets are exactly those (uncountable) subsets of ω^ω whose all uncountable subsets are unbounded. (Families like that are also called strongly unbounded and they play an important role in preserving unbounded families in iterations, see, e.g., [2] for details.)
Proof. Assume \(l = \aleph_1 \), then, by Lemma 2.3, there exists a \(K \)-Lusin set \(X \subseteq \omega^\omega \) of cardinality \(c \). It is easy to see that every uncountable subset of \(X \) is unbounded, so \(b = \aleph_1 \). On the other hand, every function \(g \in \omega^\omega \) dominates only countably many elements of \(X \). Hence no family \(\mathcal{F} \subseteq \omega^\omega \) of cardinality strictly less than \(c \) can dominate all elements of \(X \), and thus \(d = c \).

Proposition 2.5. Adding \(\kappa \) many Cohen reals produces a Lusin set of size \(\kappa \).

(See [2, Lemma 8.2.6].)

Theorem 2.6. The existence of a \(K \)-Lusin set of cardinality \(c \) is independent of \(\text{ZFC} + \neg \text{CH} \).

Proof. By Proposition 2.5 and Lemma 2.2 it is consistent with \(\text{ZFC} \) that there is a \(K \)-Lusin set of cardinality \(c \).

On the other hand, it is consistent with \(\text{ZFC} \) that \(b > \aleph_1 \) or that \(d < c \) (cf. [2]). Therefore, by Lemma 2.4, it is consistent with \(\text{ZFC} \) that there are no \(K \)-Lusin sets of cardinality \(c \).

By Lemma 2.3 and Proposition 1.1, as an immediate consequence of Theorem 2.6, we get the following.

Corollary 2.7. The existence of a \(\text{BK} \)-matrix is independent of \(\text{ZFC} + \neg \text{CH} \).

3. Odds and ends. An uncountable set \(X \subseteq [0, 1] \) is a Sierpiński set if, for each measure zero set \(N \subseteq [0, 1] \), \(X \cap N \) is countable.

Proposition 3.1. The following are equivalent:

(a) \(\text{CH} \).

(b) There exists a Lusin set of cardinality \(c \) and an uncountable Sierpiński set.
There exists a Sierpiński set of cardinality ω and an uncountable Lusin set.

(See [9, p. 217].)

Proposition 3.2. It is consistent with ZFC that there exists a K-Lusin set of cardinality ω, but there are neither Lusin nor Sierpiński sets.

Proof. Let Mω denote the ω2-iteration of Miller forcing—also called “rational perfect set forcing”—with countable support. Let us start with a model V in which CH holds, and let Gω2 = ⟨mι : ι < ω2⟩ be the corresponding generic sequence of Miller reals. Then, in V[Gω2], Gω2 is a K-Lusin set of cardinality ω = ℵ2. For this we have to show the following property:

For all f ∈ ω ∩ V[Gω2], the set {ι : mι \prec f} is countable.

Suppose not, and let f ∈ ω ∩ V[Gω2] be a witness. Further, let p be an Mω-condition such that

\[p \Vdash_{M\omega} \text{"for some } n_0 \in \omega, \text{ the set } \{ι : \forall k \geq n_0 (m_ι(k) < \dot{f}(k))\} \text{ is uncountable."} \]

We can assume that these dominated reals are among \(m_α : α < β < \omega_2 \) and that β is minimal. This way, f is added after step β of the iteration. Let \(a^* := \text{cl}(\dot{f}) \) be the (countable) set of ordinals such that, if we know \(\{m_ι : ι \in a\} \), then we can compute \(\dot{f} \). (Notice that \(a^* \) is much more than just the support of \(\dot{f} \), since it contains all supports of all conditions that are involved in conditions involved in \(\dot{f} \), and so on.) Let N be a countable model such that \(p, f \in N, a^* \subseteq N \), and let Mα be the iteration of Miller forcing, where we put the empty forcing at stages \(α \notin a^* \) (essentially, Mα is the same as Mβ(...)).

The crucial lemma—which is done in [10, Lemma 3.1] for Mathias forcing, but also works for Miller forcing—is the following: If \(N \models p \in M_{α^*} \), then there exists a q ∈ Mω2 which is stronger than p such that \(\text{cl}(q) = a^* \) and q is (N,Mα)-generic over N. In particular, if \(\{m_ι : ι < \omega_2\} \) is a generic sequence of Miller reals consistent with q, then \(\{m_ι : ι \in a^*\} \) is Mα-generic over N (consistent with p).
So, fix such a \(q \). Now we claim that for \(\gamma \in \beta \setminus N \), \(q \) forces that \(\dot{f}(k) > m_\gamma(k) \) for some \(k \geq n_0 \): Take any \(\gamma \in \beta \setminus N \) and let \(q^* \) be a condition stronger than \(q \). Let \(q^*_1 = q_1 | \beta \), and let \(q^*_2 = q^* | a \). Without loss of generality, we may assume that \(q^*_2 = q \). Now, first we strengthen \(q^*_1 \) to determine the length of stem of \(q^*_1(\gamma) \) and make it equal to some \(k > n_0 \). Next we shrink \(q^*_2 \) to determine the first \(k \) digits of \(\dot{f} \). Finally we shrink \(q^*_1(\gamma) \) such that \(q^*_1(\gamma)(k) > \dot{f}(k) \). Why can we do this? Although \(f \) is added after \(m_\gamma \), from the point of view of model \(N \), it was added before. So, working below condition \(q^*_2 \) (in \(M_{\alpha^*} \)) we can compute as many digits of \(\dot{f} \) as we want without making any commitments on \(m_\gamma \) and vice versa. Even though the computation is in \(N \), it is absolute. This completes the first part of the proof.

On the other hand, it is known (cf. [5]) that in \(V[G_{\omega_2}] \), there are neither Lusin nor Sierpiński sets of any uncountable size, which completes the proof.

Proposition 3.3. It is consistent with ZFC that \(b = \aleph_1 \) and \(d = \omega \), but there is no \(K \)-Lusin set of cardinality \(\omega \).

Proof. Take a model \(M \) in which we have \(c = \aleph_2 \) and in which Martin’s Axiom MA holds. Let \(G = \langle c_\beta : \beta < \omega_1 \rangle \) be a generic sequence of Cohen reals of length \(\omega_1 \). In the resulting model \(M[G] \) we have \(b = \aleph_1 \) (since the set of Cohen reals forms an unbounded family) and \(d = \aleph_2 \). On the other hand, there is no \(K \)-Lusin set of cardinality \(c \) in \(M[G] \). Why? Suppose \(X \subseteq \omega \) has cardinality \(\aleph_2 \). Take a countable ordinal \(\alpha \) and a subset \(X' \subseteq X \) of cardinality \(\aleph_2 \) such that \(X' \subseteq M[G_\alpha] \), where \(G_\alpha := \langle c_\beta : \beta \leq \alpha \rangle \). Now \(M[G_\alpha] = M[c] \) (for some Cohen real \(c \)) and \(M[c] \models \text{MA (} \sigma \text{-centered)} \) (cf. [8] or [2, Theorem 3.3.8]). In particular, since MA (\(\sigma \)-centered) implies \(p = c \) and \(p \leq b \), we have \(M[c] \models b = \aleph_2 \). Thus there is a function which bounds uncountably many elements of \(X' \). Hence, by Lemma 2.4, \(X \) cannot be a \(K \)-Lusin set.

Let \(Q \) be a countable dense subset of the interval \([0, 1]\). Then \(X \subseteq [0, 1] \) is concentrated on \(Q \) if every open set of \([0, 1]\) containing \(Q \) contains all but countably many elements of \(X \).
Proposition 3.4. The following are equivalent:

(a) There exists a K-Lusin set of cardinality \mathfrak{c}.

(b) There exists a concentrated set of cardinality \mathfrak{c}.

Proof. (b) \rightarrow (a). Let Q be a countable dense set in $[0,1]$, and let $\varphi : [0,1] \setminus Q \rightarrow \omega$ be a homeomorphism. If $U \subseteq \omega$ is compact, then $\varphi^{-1}[U]$ is compact, so closed in $[0,1]$ and $[0,1] \setminus \varphi^{-1}[U]$ is an open set containing Q. Hence, the image under φ of an uncountable set $X \subseteq [0,1]$ concentrated on Q is a K-Lusin set of the same cardinality as X.

(a) \rightarrow (b). The preimage under φ of a K-Lusin set of cardinality \mathfrak{c} is a set concentrated on Q of the same cardinality.

Remark. A Lusin set is concentrated on every countable dense set, and concentrated sets always have strong measure zero. However, the existence of a strong measure zero set of size \mathfrak{c} does not imply the existence of a concentrated sets of size \mathfrak{c}. In fact, the existence of a strong measure zero set of size \mathfrak{c} is consistent with $\mathfrak{d} = \aleph_1$ (see [3]).

REFERENCES

1. Stefan Banach and Kazimierz Kuratowski, *Sur une généralisation du problème de la mesure*, Fund. Math. 14 (1929), 127–131.

2. Tomek Bartoszyński and Haim Judah, *Set theory: On the structure of the real line*, A.K. Peters, Wellesley, Massachusetts, 1995.

3. Tomek Bartoszyński and Saharon Shelah, *Strongly meager and strong measure zero sets*, Arch. Math. Logic, to appear.

4. Thomas Jech, *Set theory*, Pure Appl. Math., Academic Press, London, 1978.

5. Haim Judah and Saharon Shelah, *Killing Luzin and Sierpiński sets*, Proc. Amer. Math. Soc. 120 (1994), 917–920.

6. Kenneth Kunen, *Set theory, an introduction to independence proofs*, Stud. Logic Found. Math., North Holland, Amsterdam, 1983.

7. John C. Oxtoby, *Measure and category*, 2nd ed., Graduate Texts in Math., Springer-Verlag, New York, 1980.

8. Judy Roitman, *Adding a random or Cohen real: Topological consequences and the effect on Martin’s axiom*, Fund. Math. 103 (1979), 47–60.

9. Fritz Rothberger, *Eine Äquivalenz zwischen der Kontinuumshypothese und der Existenz der Lusinschen und Sierpiński schen Mengen*, Fund. Math. 30 (1938), 215–217.
10. Saharon Shelah and Otmar Spinas, *The distributivity numbers of $\mathcal{P}(\omega)/\text{fin}$ and its square*, Trans. Amer. Math. Soc. 352 (2000), 2023–2047.

11. Waclaw Sierpiński, *Sur un théorème de MM. Banach et Kuratowski*, Fund. Math. 14 (1929), 277–280.

12. ———, *Remarques sur un théorème de M. Fréchet*, Monatsh. für Math. und Physik 39 (1932), 233–238.

13. ———, *Sur l’équivalence de deux conséquences de l’hypothèse du continu*, Stud. Math. 4 (1933), 15–20.

14. ———, *Le théorème de M. Lusin comme une proposition de la théorie générale des ensembles*, Fund. Math. 29 (1937), 182–190.

15. Stanislaw Ulam, *Zur Masstheorie in der allgemeinen Mengenlehre*, Fund. Math. 16 (1930), 140–150.