Ce and Fe doped LaNiO$_3$ synthesized by micro-emulsion route: Effect of doping on visible light absorption for photocatalytic application

Aamir Ghafoor1, Ismat Bibi1,*, Farzana Majid2, Shagufta Kamal1, Sadia Ata4, Nosheen Nazar1, Munawar Iqbal1, Muhammad A S Raza8 and Maha M Almoneef8*

1 Institute of Chemistry, the Islamia University of Bahawalpur, Bahawalpur, Pakistan
2 Department of Physics, University of the Punjab, Lahore, Pakistan
3 Department of Applied Chemistry and Biochemistry, GC University, Faisalabad, Pakistan
4 School of Chemistry, University of the Punjab, Lahore, Pakistan
5 Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
6 Department of Chemistry, The University of Lahore, Lahore, Pakistan
7 Department of Agronomy, Faculty of Agriculture and Environmental Sciences, the Islamia University of Bahawalpur, Bahawalpur, Pakistan
8 Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University (PNU), Riyadh 11671, Saudi Arabia

* Author to whom any correspondence should be addressed.
E-mail: drismat@iub.edu.pk and mmalmoneef@pnu.edu.sa

Keywords: perovskite, doping, solar light absorption, photocatalysis, kinetics

Abstract

A series of La$_{1-x}$Ce$_x$Ni$_{1-y}$Fe$_y$O$_3$ (x, y = 0.00–0.25) NPs was fabricated via micro-emulsion route and effect of doping was investigated on the basis of optical, photocatalytic and structural properties. The as-synthesized NPs were characterized via XRD, Raman analysis, SEM and UV–visible techniques. The XRD results confirmed the rhombohedral perovskite phase particles with particles of 60–80 nm range. UV–vis absorption edge showed significant red shift thereby tuning the band gap from 2.77 to 2.64 eV. The photocatalytic effectiveness of LaNiO$_3$ and La$_{0.80}$Ce$_{0.20}$Ni$_{0.80}$Fe$_{0.20}$O$_3$ catalysts was performed by degrading Congo red (CR) dye under visible light exposure. Substituted catalyst exhibited superior photodegradation by showing 97% degradation in comparison to pristine LaNiO$_3$ (63% only) in 120 min. Degradation of CR followed the pseudo fist order kinetics. In addition, the catalyst dose effect, dye concentration and pH variation was studied for Cr dye degradation. Enhanced photocatalytic activity and narrow bandgap of Ce and Fe doped LaNiO$_3$ introduce such materials as efficient visible active photocatalysts to be utilized in dye removal application from waste water and in photovoltaic applications, respectively.

1. Introduction

In recent years, a great concern for health and environmental remediation has driven an inclusive interest to design and implement different materials and routes in removing the harmful and toxic pollutants from industrial waste water. Degradation of organic particulates in wastewater by oxidative photocatalysis has gained much attention [1–3]. Effluents from industrial units, i.e., textile, tanneries, leather, printing industries containing water soluble organic dyes are discharged into water bodies. These water-soluble organic dyes and other pollutants are thought to be the major source of water pollution as they are non-biodegradable and toxic, which impose a series health issues to humans, animals, plants and marine organisms [4–8]. Regrettably, only a few industrial units treat their wastes by different techniques including chemical, physical and biological approaches. But these methods are inadequate to remove pollutants effectively, which need advanced approach for the mitigation of pollutants [9–15]. Actually, these dye eradicating techniques have their own limitations, i.e., selective for specific dyes only, low removal efficiency, causing secondary pollution issue, and high operational cost. Hence, there is demand of efficient, novel, economic, ecofriendly approach for complete removal of these pollutants.
organic particulates from untreated water [10, 16–20]. In this regard, several chemical methods are employed extensively yet every technique has its own limitations [21–23]. Among the other chemical routes, the photodegradation using semiconductor metal oxides under solar irradiation has proved to be an efficient strategy and also it is ecofriendly and low-cost approach. Since as the solar spectrum comprises small fraction of UV (4%) and has high fraction of visible light (46%) so, in order to utilize this maximum fraction of visible light, it is necessary to fabricate novel efficient photocatalysts active under solar, which can be achieved by modifying the electronic structure and tuning the bandgap by doping [24, 25].

Recently, perovskite type metal oxides (ABO$_3$) have been recognized as an efficient heterogeneous photocatalysts. In perovskites, the B-site transition metal ions are generally considered to be active for their catalytic property by involving their d-orbital electrons, while A-site rare earth containing cation in trivalent state are thought to be less decisive [1–3, 17, 26]. It is confirmed however that doping at A-site may remarkably improve the catalytic activity of the ABO$_3$ perovskites through the pathways of tuning the electronic state of the B-site cations or, and creating vacancies (oxygen) in the crystalline structure. LaNiO$_3$ (LNO) is one of the broadly studied perovskite metal oxides because of high stability, eco-benign and low energy band gap (2.26 eV). Doping at A/B, A-B site or its composite with other materials might be considered as an efficient strategy to enhance its photocatalytic performance. This strategy not only tunes the energy band gap, but also generates oxygen vacancies, which inhibit the photoinduced electron-hole recombination on photocatalyst surface thereby improving the catalytic efficacy [27]. Recently Zhang et. al reported the improved photocatalytic properties of LaNiO$_3$/Ni$_2$C composites for H$_2$ evolution. Shahid and co-researchers displayed the high photo efficiency of La$_{1-x}$Gd$_x$Ni$_{1-y}$Co$_y$O$_3$ NPs for the removal of RhB dye. Li et al also revealed the enhanced photocatalytic competence for La$_{1-x}$Ce$_x$NiO$_3$ for MO dye degradation, which was highly promising. Zeng et al reported the superior photodegradation of MO by B-site substituted LaNi$_{1-x}$Fe$_x$O$_3$ prepared via sol-gel route [28–31]. From literature point of view, photodegradation study of Ce and Fe doped LaNiO$_3$ catalyst synthesized by microemulsion route has not been reported yet. Hence, a series of La$_{1-x}$Ce$_x$Ni$_{1-y}$Fe$_y$O$_3$ NPs synthesized via micro-emulsion method and their photocatalytic efficiency was investigated CR dye degradation. Moreover, the effect of process variables, i.e., catalyst loading, dye dosage and pH variation on photocatalytic performance of La$_{0.80}$Ce$_{0.20}$Ni$_{0.80}$Fe$_{0.20}$O$_3$ was investigated in detail.

2. Material and methods

2.1. Reagents and chemicals

The salts and solvents like Ce(NO$_3$)$_3$·6H$_2$O, La(NO$_3$)$_3$·6H$_2$O, Ni(NO$_3$)$_2$·6H$_2$O, Fe(NO$_3$)$_3$·9H$_2$O and CTAB were acquired from Sigma Aldrich. The NH$_4$OH and CR dye were purchased from the BDH.

2.2. Synthesis of La$_{1-x}$Ce$_x$Ni$_{1-y}$Fe$_y$O$_3$

Various compositions of La$_{1-x}$Ce$_x$Ni$_{1-y}$Fe$_y$O$_3$ (x, y = 0.00–0.25) NPs were synthesized by micro-emulsion technique at low temperature. For this, the aqueous solutions of all the respective metal nitrates were prepared in stoichiometric amount and were mixed according to composition scheme. All the mixed solutions were placed on hot plates with magnetic stirring and temperature was raised up to 80 °C. After attaining the required temperature, stirring was continued, but heating was switched off until room temperature was reached. Then, NH$_4$OH was added drop wise to maintain the pH ~11 and stirring was continued for 6 h. Then, precipitates were washed by distilled water several times to attain neutral pH and were dried overnight in oven at 100 °C. Finally, the calcined was performed at 700 °C for 6 h and subjected to characterization (figure 1S in supporting information available online at stacks.iop.org/MRX/8/085009/mmedia). Before calcination step, on adding aqueous ammonia solution lanthanum and nickel nitrates are converted into corresponding metal hydroxides, which on calcination temperature were decomposed finally into LaNiO$_3$ [32]. (Equations (1)–(2)).

$$\text{La(NO}_3\text{)}_3 + \text{Ni(NO}_3\text{)}_2 \rightarrow \text{La(OH)}_3 + \text{Ni(OH)}_2 \quad (1)$$

$$\text{La(OH)}_3 + \text{Ni(OH)}_2 + \frac{1}{2} \text{O}_2 \rightarrow \text{LaNi}_3 + \frac{5}{2} \text{H}_2\text{O} \quad (2)$$

2.3. Characterization

The X-ray diffraction analysis (X’Pert PRO diffractometer) in 20°–60° range was performed for structural analysis, whereas morphology was evaluated by SEM analysis (JOEL-JSM-6490LASEM). The Raman study was performed at 298 K by T6400 triple JobinYvon-Atago/Bussan spectrometer. Hitachi F-7000 spectrophotometer was used for photoluminescence spectrum (PL) studies. The UV-Vis studies were performed by employing Shimadzu 3101 UV–Vis spectrophotometer.
2.4. Dye degradation evaluation

The PCA of pure LaNiO$_3$ and La$_{0.80}$Ce$_{0.20}$Ni$_{0.80}$Fe$_{0.20}$O$_3$ NPs was investigated by studying the photodegradation of CR dye (figure 2S in supporting information) under solar light exposure (200 W Argon lamp). A 0.08 g of La$_{0.80}$Ce$_{0.20}$Ni$_{0.80}$Fe$_{0.20}$O$_3$ was added to 200 ml of CR dye (10 mg l$^{-1}$) along with 10 ml of H$_2$O$_2$ (10%). The mixture was kept in dark (stirred) for 0.5 h and placed in reactor for specific time intervals, then, a 5 ml of suspension was taken, filtered and absorbance was checked at $\lambda_{\text{max}} = 498$ nm. The CR dye removal (%) was calculated (equation (3))

$$\text{Degradation} \, \% = 1 - \frac{C_t}{C_0} \times 100 \quad (3)$$

Where, C_0 and C_t represent the dye concentration at zero time and specific time ‘t’, respectively.

3. Results and discussion

3.1. XRD analysis

Figure 1 depicts XRD analysis of La$_{1-x}$Ce$_x$Ni$_{1-x}$Fe$_x$O$_3$ compositions sintered at 700 °C in 2θ, i.e., 20°–60° range. The characteristic diffraction peaks appeared at 2θ i.e. 23.20°, 32.80°, 47.28° and 58.48° were indexed as (101), (110), (202) and (122) Miller planes, which is a rhombohedral crystalline structure of the LaNiO$_3$ (JCPDS # 034–1028) [35, 34]. For $x = 0.05$ and $y = 1.0$ compositions, the most intense peak at 32.80° was shifted slightly toward lower 2θ axis along with minor decline in intensity which indicated the successful substitution of Ce$^{3+}$ and Fe$^{3+}$ contents in perovskite structure thus causing some structural defects and reduction in crystallinity of doped compositions. This shifting might be ascribed to relatively low difference of ionic radii of Ce$^{3+}$ (115 pm) and La$^{3+}$ (117 pm) at A-site compared with Ni$^{3+}$ (0.70 pm) and Fe$^{3+}$ (0.64 pm) at B-site which induces structural defects [35, 36]. For compositions with $x, y > 1.0$ the most intense peak, i.e., 32.80° was declined significantly with origination of some additional low intensity peaks at 2θ = 27.5°, 43.2° and 45.8° in diffraction pattern which were assigned to La$_2$O$_3$ [JCPDS # 83–1355], NiO [JCPDS #78–0643] and CeO$_2$ [JCPDS #320196] phases present along with major perovskite phase. Peak at 27.5° was originated due to overlap of CeO$_2$ and La$_2$O$_3$ phases [37]. It is reported that high doping content of Ce$^{3+}$ ions in La$_{1-x}$Ce$_x$NiO$_3$ result in the segregation of Ce from perovskite phase in the form of CeO$_2$ which clarify that some of the Ce ions existed as Ce$^{4+}$ (0.98 pm) [38, 39]. Moreover, the segregation of CeO$_2$ out of the perovskite phase is accompanied with NiO segregation, which is in accordance with the decline in La/Ni ratio, in addition to the fact that segregated CeO$_2$ and NiO cannot react mutually to form perovskite structure [40]. Similar effects were also observed by Lima et al who synthesized La$_{1-x}$Ce$_x$NiO$_2$ NPs with different concentration of Cerium ion ($x = 0.00, 0.05, 0.4$ and 0.7) via precipitation technique [38].

Cell volume (V_{cell}) was declined from 332.66 nm for pristine LNO to 330.10 nm for highest doping composition. The observed suppression in V_{cell} might be attributed again to significant ionic radii difference of B-site (Ni$^{3+}$, Fe$^{3+}$) cations than A-site (La$^{3+}$, Ce$^{3+}$) ions which results in decrease of lattice parameters and hence origination in lattice strain. The crystallite size related to most intense diffraction peak i.e. at 32.80° was

![Figure 1. XRD patterns of various compositions of La$_{1-x}$Ce$_x$Ni$_{1-x}$Fe$_x$O$_3$ (x, y = 0.00–0.25) sintered at 700 °C.](image-url)
calculated to be in 56–83 nm range. The increase in x-ray density (ρ_{x-ray}) values in substituted compositions might be due to doping of cations having greater atomic masses at host cations with lower masses as well as decline in V_{cell} on substitution onwards. While less values of bulk densities (ρ_{m}) in comparison to ρ_{x-ray} values was an indication of presence of some porosity in doped catalysts. The theoretical porosity calculated from ρ_{m} and ρ_{x-ray} data was calculated to be increased from 65.71% to 68% with increase in doping amount (table 1).

The possible high porosity make such materials as efficient photocatalysts in degradation of dye effluents from industrial wastewater [27].

3.1.2. Surface analysis
Figures 2(a)–(f) shows the FESEM micrographs of Ce and Fe doped LaNiO$_3$ NPs. Almost all the compositions displayed relatively spherical and elongated shaped particles showing heterogeneous agglomeration having narrow range of grain size distribution. The approximated size analyzed from SEM micro images was calculated to be in 60–80 nm range which was found to be in agreement with XRD results (56–83 nm). The agglomeration of nanocrystallites might be due to fact that the nanoparticles having narrow dimensions and enough surface energy may merge together easily to form large clusters or aggregates [41]. This agglomeration was yet more significant in low doping compositions as demonstrated from SEM micrographs.

3.1.3 Raman spectra
To get more insight in to the structure, La$_{1-x}$Ce$_x$Ni$_{1-y}$Fe$_y$O$_3$ (x, y = 0.00, 0.10 and 0.20) NPs Raman analysis was performed (figure 3(A)). Group theory proposes that LaNiO$_3$ having rhombohedral structure with R3 c space group shows five modes active in Raman spectrum: $\Gamma_{Raman} = A_{1g} + 4E_{g}$ modes [42, 43]. Five main Raman peaks: $E_g(1)$, $E_g(2)$, $A_g(1)$, $E_g(3)$ and $E_g(4)$ were observed at 71, 152, 209, 399, and 453 cm$^{-1}$.

Table 1. Effect of Ce and Fe doping on various structural parameters of La$_{1-x}$Ce$_x$Ni$_{1-y}$Fe$_y$O$_3$ (x, y = 0.00–0.25) NPs calcined at 700 $^\circ$C.
Doping amount (x, y)
0.00
Cell volume (\AA^3)
332.66
Crystallite size (nm)
60.35
X-ray density (g cm$^{-3}$)
6.142
Bulk density (g/cm$^{-3}$)
2.106
Porosity (%)
65.71

Figure 2. (A)–(F) SEM optical micrographs of La$_{1-x}$Ce$_x$Ni$_{1-y}$Fe$_y$O$_3$ (x, y = 0.00–0.25) compositions.
respectively. The band located at 71 cm\(^{-1}\) is out of recorded range of Raman spectra. Rotational–vibrational mode \((A_g(1))\) appeared at 209 cm\(^{-1}\) relates to an antiferrodistortive type soft mode of \(R \overline{3}c\) structure (crystalline) \([44]\). \(E_g(3)\) mode might be attributed to the NiO\(_6\) octahedra vibrations. Broadening in \(A_g(1)\) and \(E_g(3)\) modes was observed with increase in Ce and Fe concentration in LNO, this effect was however more pronounced in \(A_g(1)\) mode. The substitution of overall larger sized host cations by smaller sized substituted cations causes compressive strain in lattice at both sites (tetrahedral and octahedral), which cause a blue-shift in \(E_g(2)\) and \(E_g(3)\) bands \([45\textbf{–}47]\). On increasing the doping content from \(x, y = 0.00\) to 0.25, a shift of about 45 cm\(^{-1}\) in the \(A_g(1)\) mode was observed. Earlier reports propose that position of \(A_{1g}\) mode in LaNiO\(_3\) might be scaled by almost \(\sim 23\text{ cm}^{-1}/^\circ\) with tilting angle \([42\textbf{–}44]\).

Figure 3. (A) Blue shifting in \(A_g(1)\) and \(E_g(3)\) modes of Raman spectra of Ce and Fe doped LaNiO\(_3\) and (B) Photoluminescence spectra showing decline in PL intensity of \(La_{1-x}Ce_xNi_{1-y}Fe_yO_3\) \((x, y = 0.00\text{--}0.25)\) NPs with increase in dopant concentration.

Figure 4. (a)–(b): (A) The UV–Vis diffuse reflectance absorption spectra and (B) Tauc’s plot showing red shift in optical bandgap on substitution of Ce and Fe in LaNiO\(_3\).
3.2. Optical analysis

3.2.1. Photoluminescence (PL) property

PL spectroscopy, being a reliable tool has been employed to analyze the electronic structure, migration and recombination of photoinduced electron-hole pair phenomenon in a material [48, 49]. The charge transferring rate of these light induced carriers is associated to intensity of PL peak, and the peak height specifies the rate at which holes and electron combine [50]. Figure 3(B) depicts the induced fluorescence intensity of all compositions of La\textsubscript{1-x}Ce\textsubscript{x}Ni\textsubscript{1-y}Fe\textsubscript{y}O\textsubscript{3} (x, y = 0.00–0.25) recorded at λ\textsubscript{exc} = 480 nm. As the graph shows, the similar and symmetrical PL emission peaks were appeared at 538 nm for all the samples and their intensities were reduced onwards with increase in doping content in LNO crystal structure. This decline in intensity specifies the inhibitory character of doped elements in the recombination of e-, h+ thereby enhancing the charge separation and ultimately improving the photocatalytic performance of substituted LNO samples [27].

Probably, on substitution of host cations by Ce3+ and Fe3+ in perovskite structure, more electronic states are generated which inhibits the recombination of e--h+ and efficiently stabilize the charge carriers in doped materials [51]. Among all the synthesized materials, the La\textsubscript{0.80}Ce\textsubscript{0.20}Ni\textsubscript{0.80}Fe\textsubscript{0.20}O\textsubscript{3} composition showed the weakest intensity of the PL emission peak. The decline in PL intensity was in consistent with the increase in charge separation or suppression in e-, h+ recombination, which suggested that the La\textsubscript{0.80}Ce\textsubscript{0.20}Ni\textsubscript{0.80}Fe\textsubscript{0.20}O\textsubscript{3} composition should impart improved photocatalytic performance by taking the advantage of its highest charge separation and lower recombination possibility of the photoinduced electron-hole pair.

3.2.2. UV-Visible analysis

To study the optical behavior of pure and doped LNO compositions, the UV–vis DRS spectra was recorded in 220–800 cm range (figure 4(A)). The Pure LNO sample displayed an absorption edge at around 378 nm. However, the absorption tail of substituted LNO samples was shifted towards visible region indicating red-shifting in absorption which showed the high visible active absorption of doped materials. The red-shift noticed in DRS might be due to the interaction between 3d orbital of Ni3+ and 3d orbital of Fe3+ which introduces intra-energy band gap states [27]. Further, the other possible reason for this shifting could be ascribed to charge-transferring transition between the valance and conduction bands of doping elements and LaNiO\textsubscript{3} [51].

The UV–visible absorption spectra of pristine LNO and La\textsubscript{1-x}Ce\textsubscript{x}Ni\textsubscript{1-y}Fe\textsubscript{y}O\textsubscript{3} (x, y = 0.05–0.25) NPs is shown in figure 4(B). Tauc’s model was employed to calculate the band gap energy (E\textsubscript{g}) [52] (equation (4)).

\[
(\alpha h\nu)^n = k(h\nu - E_g)
\] (4)

Where, α and h\nu are the coefficient and photon energy of irradiation, while k and n denotes the type of transition, respectively. For pristine LNO, the E\textsubscript{g} was found to be 2.77 eV while for x, y = 0.05–0.25 compositions declining trend in band gap i.e. 2.74–2.64 eV was noticed. The following causes might be accounted for this narrowing in band gap: (i) the generation of impurity energy band levels due to Fe3+ doping in LNO lattice, which occurred in center of CB and VB leading to reduction in E\textsubscript{g}, (ii) charge transferring transition i.e. excitation of 3d orbital electrons of Fe3+ into conduction band of LNO (iii) or charge transfer between Fe3+ (Fe3+ + Fe3+ → Fe2+ + Fe4+) ions [27, 51].

Figure 5. UV-Visible spectra of Congo red dye treated by, (A) LaNiO\textsubscript{3} and (B) La\textsubscript{0.80}Ce\textsubscript{0.20}Ni\textsubscript{0.80}Fe\textsubscript{0.20}O\textsubscript{3} NPs as a function of increase in irradiation time.
3.3. Photocatalytic efficiency

The PCA of pristine LaNiO₃ and La₀.₈₀Ce₀.₂₀Ni₀.₈₀Fe₀.₂₀O₃ NPs particles was calculated for CR dye. Figures 5(A) –(B) shows the spectra of the CR dye treated using pure and substituted LNO for 15 min under visible light exposure (CR dye + photo-catalyst). A 63% degradation of CR was observed in case of pure LNO after 120 min exposure of irradiation, however, the doped material (La₀.₈₀Ce₀.₂₀Ni₀.₈₀Fe₀.₂₀O₃) exhibits improved PCA, i.e., >97%. The enhanced catalytic activity of substituted LNO might be ascribed to structural defects caused by substitution of cations having different ionic radii and electronic charge because oxygen or cation vacancies are generated to maintain the electro neutrality by small sized Ce⁴⁺ ions substituting large sized La³⁺ ions. Indeed, dopants not only alter the energy band gap (Eg) of base (LNO), but also promote the e⁻ and h⁺ and preclude them to recombine [53–55]. Table 2 shows the degradation comparison of CR by different photocatalytic reported earlier. The findings revealed that the La₀.₈₀Ce₀.₂₀Ni₀.₈₀Fe₀.₂₀O₃ NPs are highly efficient for the removal of dyes. Also, in view of present condition of ecological contamination [56–61], to develop and employ the efficient approaches for the mitigation of toxic pollutants [23, 62–64] is obligatory and La₀.₈₀Ce₀.₂₀Ni₀.₈₀Fe₀.₂₀O₃ NPs under visible light irradiation is highly promising in this regard.

Table 2. Efficiency of some photocatalysts reported and present investigation for photodegradation of CR dye.

Photocatalyst	Dye	%Removal	Time (min)	References
CuO nanorods	CR	67	180	[65]
NiO NPs	CR	84	160	[66]
MnFe₂O₄/TA/ZnO	CR	84.2	90	[67]
Ni₀.₈₀Cu₀.₆₀Al₂O₄	CR	90.5	180	[68]
g-C₃N₄/RGO/BFO	CR	87	60	[69]
ZnO-CuO/ES	CR	83	240	[70]
fs-CoFe₂O₄	CR	92	180	[71]
La₁₋ₓCeₓNi₁₋ₓFeₓO₃	CR	97	120	This study

In comparison to above mentioned photocatalysts, Ce and Fe substituted LNO photocatalyst in present study showed improved photodegradation efficiency. The Langmuir–Hinshelwood model was used for kinetic study (equation 5).

\[
\text{Rate} = -\frac{dc}{dt} = \frac{K_rK_c}{1 + K_c}
\]

(5)

Where, \(-\frac{dc}{dt}\) is the degradation rate with time (t), whereas \(K_r\) and \(K_c\) represent the photoreaction rate constants and dye adsorption coefficient, respectively. Equation (5) can be modified to equation (6).

\[
\text{Rate} = -\frac{dc}{dt} = K_rK_c = kc
\]

(6)

Where, \(k\) (min⁻¹) denotes rate constant. At time \(t = 0\) min and \(C = C_0\), Equation (6) changes to equations (7) and (8).

\[
C_t = C_0 e^{-kt}
\]

(7)
The relation $-\ln C_t / C_0$ versus time (t) was employed to estimate the rate constant (k) [72–74]. The linear fitting of $-\ln C_t / C_0$ versus time (t) reveals that CR dye followed first order kinetics (figures 6(A)–(C)). Rate constants for pristine LNO and La$_{0.80}$Ce$_{0.20}$Ni$_{0.80}$Fe$_{0.20}$O$_3$ for CR dye degradation under visible irradiation were 0.0084 and 0.012 (min$^{-1}$) respectively.

3.4. Effect of reaction parameters on dye degradation

3.4.1 Catalyst dosage

The rate of photodegradation of dyes is considered to be influenced by the concentration of catalyst dose. The effect of La$_{0.80}$Ce$_{0.20}$Ni$_{0.80}$Fe$_{0.20}$O$_3$ catalyst dose on CR dye removal using catalyst dose 10 to 40 mg/100 ml dye solution and the degradation rates were 0.0116, 0.0126, 0.0130, 0.0120 (min$^{-1}$) for 10–40 mg/100 ml, respectively (figure 7(A)). Outcome showed that rate of degradation was augmented with the catalyst dose up to 30 mg and declined beyond this dose. Low rate of degradation at low catalyst dose may probably due to the fact that more light gets transmitted through the reaction mixture and minor transmitted will only be consumed in photocatalytic reaction. At high concentration of catalyst loading however, the increase in photodegradation is due to active sites on the catalyst surface due to doping [27]. This is essentially due to increase in number of hydroxyl ions generated on illumination of catalyst. After applying the optimum dosage of catalyst, the decline in rate of reaction is due to opacity of reaction mixture, which causes scattering of light. Also, the agglomeration of photocatalyst particles at higher dose results in decline in active sites accessible for catalytic degradation thereby deactivating the activated molecules by the collision with those of in ground states [51].

3.4.2. Dye initial concentration

The dye concentration impact on the removal of dye was considered in 10–40 mg L$^{-1}$ range using the optimum dose of catalyst, i.e., 30 mg L$^{-1}$. The values of rate constants for aforementioned concentrations of dye were 0.0130, 0.0136, 0.0119, 0.012 min$^{-1}$ respectively. Outcome displayed that rate of degradation was enhanced with the dye concentration up to 20 mg L$^{-1}$ and then, it was declined (figure 7(B)). Infact, the generation of radicals (hydroxyl) on the surface of catalyst and reaction between OH$^-$ radicals and dye molecules was higher, which enhanced the dye removal. Initially, on increasing the concentration of dye more dye ions are available for excitation as well as for energy transfer [51]. This is due to the adsorption of dye on the surface (catalyst), which is favored at higher dye concentration until reaching the critical level, the catalyst surface becomes fully covered leading to constant rate of reaction [27]. Decline in degradation efficacy at higher concentration of dye, on the other hand happens due to several reasons. On increasing the conc. of dye, more dye ions are getting adsorbed on catalyst surface and major extent of visible light is absorbed by the dye molecules, which may decrease the light penetration and resultantly, dye removal rate was diminished [51]. The active sites was occupied dye ions, generation of hydroxyl radicals may also be decreased. The intermediates adsorbed on the catalyst surface also impedes the hydroxyl radical generation, which declined the CR dye removal [27].

3.4.3. Effect of pH

Figure 7(C) shows the impact of pH on PCA of La$_{0.80}$Ce$_{0.20}$Ni$_{0.80}$Fe$_{0.20}$O$_3$ catalyst for CR dye removal. The rate constants for photodegradation of CR at various pH values were calculated as 0.0096, 0.0102, 0.011 and 0.0092 min$^{-1}$ respectively. Results depicted that rate constant was increased up to pH 8.0 after that it was
decreased for pH 10. This trend in variation of photoreaction might be due to the formation of oxygen anion O_2^- radical due to the reaction between photoinduced e^- and O_2 molecules, which facilitates the rate of photocatalytic degradation process. Decline in degradation rate with increase in pH might be ascribed to repulsive forces between the negatively charged surface of La$_{0.80}$Ce$_{0.20}$Ni$_{0.80}$Fe$_{0.20}$O$_3$ and anionic species. In acidic pH range, it is probable that a large amount of conjugate base (Cl$^-$ ions) may be increased in the solution. A possible reaction might be occurred between Cl$^-$ ions and OH$^-$ radicals thus producing ClO$^-$ radicals, which being less reactive in comparison to OH$^-$ radicals may result a decrease in rate of photodegradation reaction [27].

3.5. Photodegradation mechanism
Photocatalytic degradation of CR dye depends upon the electron/hole pairs, which is related to band gap energy [24]. Upon irradiation, the electrons (e^-) in valence band (VB) of La$_{0.80}$Ce$_{0.20}$Ni$_{0.80}$Fe$_{0.20}$O$_3$ by absorbing light energy \geq band gap, are excited to conduction band (CB) leaving behind the holes (h^+) in valance band (VB). Reaction between the photo excited electron and O_2 produce O_2^- radical and finally, this is converted in to HOO$^-$ radical, which changes in to HO$^-$ radical by reacting with water molecule (figure 8). This HO$^-$ destruct dye by oxidation mechanism into phyroducts [31]. Photoinduced holes in valance band (h$_{VB}^+$) also yield HO$^-$ radicals by breaking down the water molecule, which directly involve in degradation of dye [27]. There is possibility of recombination of photoinduced e^- and h^+, which may suppress the degradation competence of the catalyst. The chance of this possible recombination can be minimized by creation of structural defects, lattice distortion and oxygen anion (O_2^-) vacancies catalyst. Perovskite based catalysts with lattice distortion provide a pathway for the suppression of $e^-$$-$$h^+$ recombination thereby displaying better catalytic competence. Actually, these oxygen anion vacancies in perovskite structure enhance O_2 adsorption onto the catalyst surface, thus improving the degradation efficacy. Doped catalysts generate HO$^-$ species, which degrade the dye into H$_2$O and CO$_2$ and inorganic ions [1, 2, 27, 51, 75] (equations (9)–(13)). The effect of different scavengers on the degradation of CR dye over La$_{0.80}$Ce$_{0.20}$Ni$_{0.80}$Fe$_{0.20}$O$_3$ was studied using KI, Ascorbic acid and n-butanol as scavengers and response is presented in supporting information.

Figure 8. Schematic illustration of the reaction mechanism involved during photocatalysis of La$_{0.80}$Ce$_{0.20}$Ni$_{0.80}$Fe$_{0.20}$O$_3$ NPs for the photodegradation of Congo red dye.

\[\text{La}_{0.80}\text{Ce}_{0.20}\text{Ni}_{0.80}\text{Fe}_{0.20}\text{O}_3 + h\nu (\text{visible light}) \rightarrow \text{La}_{0.80}\text{Ce}_{0.20}\text{Ni}_{0.80}\text{Fe}_{0.20}\text{O}_3 (e_{\text{CB}}^+ + h_{\text{VB}}^+) \]

(9)

\[e_{\text{CB}}^+ + \text{O}_2 \rightarrow \text{O}_2^- \]

(10)

\[\text{O}_2^- + \text{H}_2\text{O} \rightarrow \rightarrow \rightarrow \text{HO}' \]

(11)

\[h_{\text{VB}}^+ + \text{H}_2\text{O} \rightarrow \text{HO}' \]

(12)

\[\text{HO}' + \text{dye} \rightarrow \text{CO}_2 + \text{H}_2\text{O} + \text{inorganic ions} \]

(13)

4. Conclusion

Herein we report the Ce and Fe substituted LaNiO₃ NPs synthesized successfully by micro-emulsion approach and the influence of doping (Ce and Fe) on structural and photocatalytic properties of LaNiO₃ in detail. The rhombohedral crystalline phase of as-prepared NPs was established from XRD results. SEM results showed relatively clustering and agglomeration in particles with average crystallite size in 60–80 nm range. Optical bandgap was decreased from 2.77 eV for pure LaNiO₃ to 2.64 eV for \(x, y \) relative clustering and agglomeration in particles with average crystallite size in 60–80 nm range. Optical bandgap was decreased from 2.77 eV for pure LaNiO₃ to 2.64 eV for \(x, y \) substitution in LaNiO₃ which might be ascribed to suppression of photoinduced electron-hole recombination in consistent with significant decline in PL intensity. Improved photocatalytic activity of \(x, y \) substitution in LaNiO₃ makes them useful materials to be used as efficient photocatalysts active under visible irradiation for photodegradation of dyes in wastewater.

Acknowledgments

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

ORCID iDs

Nosheen Nazar @ https://orcid.org/0000-0003-1786-5775
Munawar Iqbal @ https://orcid.org/0000-0001-7393-8065
Muhammad A S Raza @ https://orcid.org/0000-0002-4197-7665

References

[1] Parveen S, Bhatti I, Ashar A, Javed T, Mohsin M, Hussain M, Khan M, Naz S and Iqbal M 2020 Synthesis, characterization and photocatalytic performance of iron molybdate (Feₓ(MoO₄)₁₋ₓ) for the degradation of endosulfan pesticide Mater. Res. Exp. 7 055016
[2] Iqbal M, Fatima M, Javed T, Anam A, Nazir A, Kanwal Q, Shehzadi Z, Khan M, Nisar J and Abbas M 2020 Microwave assisted synthesis of zinc vanadate nanoparticles and photocatalytic application Mater. Res. Exp. 7 015070
[3] Inderyas A, Bhatti I, Ashar A, Ashraf M, Ghani A, Yousaf M, Mohsin M, Ahmad M, Rafique S and Masood N 2020 Synthesis of immobilized ZnO over polyurethane and photocatalytic activity evaluation for the degradation of azo dye under UV and solar light irradiation Mater. Res. Exp. 7 025033
[4] Iqbal M, Abbas M, Nisar J, Nazir A and Qamar A 2019 Biosays based on higher plants as excellent dosimeters for ecotoxicity monitoring: a review Chem. Int. 5 1–80
[5] Abbas M, Adil M, Ehtisham-ul-Haque S, Munir B, Yameen M, Ghaffar A, Shar G A, Tahir M A and Iqbal M 2018 Vibrio Fischeri bioluminescence inhibition assay for ecotoxicity assessment: a review Sci. Total Environ. 626 1295–309
[6] Jalal G, Abbas N, Deeba F, Butt T, Jilal S and Sarfraz S 2021 Efficient removal of dyes in textile effluents using aluminum-based coagulants Chem. Int. 7 197–207
[7] Sasmaz M, Seng U and Obek E 2021 Boron bioaccumulation by the dominant macrophytes grown in various discharge water environments Bull. Environ. Contam. Toxicol. 106 1650–8
[8] Sasmaz M, Seng U and Obek E 2020 Strontium accumulation by the terrestrial and aquatic plants affected by mining and municipal wastewater (Elazığ, Turkey) Environ. Geochem. Health 43 1–14
[9] Obek E and Sasmaz A 2011 Bioaccumulation of aluminum by Lemma gibba L. from secondary treated municipal wastewater effluents Bull. Environ. Contam. Toxicol. 86 217–20
[10] Elsherif K M, El-Dali A, Alkarewi A A and Mabrok A 2021 Adsorption of crystal violet dye onto olive leaves powder: equilibrium and kinetic studies Chem. Int. 7 789–89
[11] Awwad A M, Shamshour M W and Amer M W 2021 Fe(OH)₃/kaolinite nanoplatelets: equilibrium and thermodynamic studies for the adsorption of Pb(II) ions from aqueous solution Chem. Int. 7 90–102
Santos J C, Souza M J, Ruiz J A, Melo D, Mesquita M E and Pedrosa A M G 2012 Synthesis of LaNiO3 perovskite by the modified Hiwa iron-kaolin clay: equilibrium and thermodynamic aspects Chem. Int. 7 139–44

Abbas N, Butt M T, Ahmad M M, Deeba F and Hussain N 2021 Photoremediation potential of Typha latifolia and water hyacinth for removal of heavy metals from industrial wastewater Chem. Int. 7 103–11

Bokhari T H, Ahmad N, Jilani M L, Saeed M, Usman M, Haq A U, Rehman R, Iqbal M, Nazir A and Javed T 2020 UV/H2O2, UV/H2O2/SnO2 and Fe3+/H2O2 based advanced oxidation processes for the degradation of disperse violet 63 in aqueous medium Mater. Res. Exp. 7 015351

Zhang W, Ma Y, Zhu X, Liu S, An T, Bao J, Hu X and Tian H 2021 Fabrication of Ag decorated g-C3N4/LaFe2O4 Z-scheme heterojunction as highly efficient visible-light photocatalyst for degradation of methylene blue and tetracycline hydrochloride J. Alloy. Com. 864 158914

Ashhad M, Ehtisham-ul-Haque S, Bilal M, Ahmad N, Ahmad A, Abbas M, Nisar J, Khan M, Nazir A and Ghaffar A 2020 Synthesis and characterization of Zn doped WO3 nanoparticles: photocatalytic, antifungal and antibacterial activities Mater. Res. Exp. 7 015407

Chham A, Khouya E, Oumam M, Abouririche A, Gmouh S, Mansouri S, Elhammoudi N, Hanafi N and Hannache H 2018 The use of insoluble matter of Moroccan oil shale for removal of dyes from aqueous solutions Chem. Int. 46 67–77

Shindy H A 2016 Basics in colors, dyes and pigments chemistry: a review Chem. Int. 2 29–36

Awad M A, Salem N M, Amer M W and Shammout M W 2020 Adsorptive removal of Pb(II) and Cd(II) ions from aqueous solution onto modified Hiwa iron-kaolin clay: equilibrium and thermodynamic aspects Chem. Int. 7 139–44

Iwasaki T, Shimamura Y, Makino Y and Watano S 2016 Mechanochemically assisted synthesis and visible light photocatalytic activities Inorganic Synthesis 2016.3: Advanced synthesis of ZnO nanomaterials by mechanochemical routes Springer 253–61

Moradi G, Rahmanzadeh M and Khosravian F 2014 The effects of partial substitution of Ni by Zn in LaNiO3 perovskite catalyst for CO oxidation Mater. Res. Exp. 7 015351

Arshad M, Ehtisham-ul-Haque S, Bilal M, Ahmad N, Ahmad A, Abbas M, Nisar J, Khan M, Nazir A and Ghaffar A 2020 Synthesis and characterization of Zn doped WO3 nanoparticles: photocatalytic, antifungal and antibacterial activities Mater. Res. Exp. 7 015407

Zhang H, Luo Z, Liu Y and Jiang Y 2020 Noble-metal-free Ni3C as co-catalyst on LaNiO3 with enhanced photocatalytic activity Int. J. Hydrog. Energy 45 9671–91

Sanda M D A, Badu M, Awduda J A and Boadi N O 2021 Development of TiO2-based dye-sensitized solar cells using natural dyes extracted from some plant-based materials Chem. Int. 7 9–20

Aal R M A, Gituro M A and Essam Z M 2017 Novel synthetized near infrared cyanine dyes as sensitizer for dye sensitized solar cells based on nano-ZnO Chem. Int. 3 358–67

Khan M, Hasan M, Bhatti K, Rizvi H, Wahab A, Rehman S-u, Afzal M J, Nazneen A, Nazir A and Iqbal M 2020 Effect of Ni doping on the structural, optical and photocatalytic activity of MoO3, prepared by Hydrothermal method Mater. Res. Exp. 7 015061

Bibi I, Qayyum M, Ata S, Majid F, Kamal S, Alwadai N, Sultan M, Rehman F, Iqbal S and Iqbal M 2021 Effect of dopant on ferroelectric, dielectric and photocatalytic properties of chromium-doped cobalt perovskite prepared via micro-emulsion route RSC Adv. 20 103726

Shindy H A 2016 Basics in colors, dyes and pigments chemistry: a review Chem. Int. 2 29–36

Awad M A, Salem N M, Amer M W and Shammout M W 2020 Adsorptive removal of Pb(II) and Cd(II) ions from aqueous solution onto modified Hiwa iron-kaolin clay: equilibrium and thermodynamic aspects Chem. Int. 7 139–44

Iwasaki T, Shimamura Y, Makino Y and Watano S 2016 Mechanochemically assisted synthesis and visible light photocatalytic activities Inorganic Synthesis 2016.3: Advanced synthesis of ZnO nanomaterials by mechanochemical routes Springer 253–61

Moradi G, Rahmanzadeh M and Khosravian F 2014 The effects of partial substitution of Ni by Zn in LaNiO3 perovskite catalyst for CO oxidation Mater. Res. Exp. 7 015351

Arshad M, Ehtisham-ul-Haque S, Bilal M, Ahmad N, Ahmad A, Abbas M, Nisar J, Khan M, Nazir A and Ghaffar A 2020 Synthesis and characterization of Zn doped WO3 nanoparticles: photocatalytic, antifungal and antibacterial activities Mater. Res. Exp. 7 015407

Zhang H, Luo Z, Liu Y and Jiang Y 2020 Noble-metal-free Ni3C as co-catalyst on LaNiO3 with enhanced photocatalytic activity Appl. Catal. B 277 119166

Iqbal S, Bibi I and Iqbal M 2021 Visible-light-driven photocatalytic efficiency of Co3O4 and Cd-doped LaNiO3 and effect of doping on photochemical, electrochemical, and ferroelectric properties Int. J. Energy Res. 45 8971–91

Iwasaki T, Shimamura Y, Makino Y and Watano S 2016 Mechanochemically assisted synthesis and visible light photocatalytic properties and visible light photocatalytic properties of lanthanum nickel oxide nanoparticles Optik 127 9081–7

Santos J C, Souza M J, Ruiz J A, Melo D, Mesquita M E and Pedrosa A M G 2012 Synthesis of LaNiO3 perovskite by the modified peroxidase gel method and study of catalytic properties in the syngas production J. Brazil. Chem. Soc. 23 1588–62

Moradi G, Rahnamazadeh M and Khosravian F 2014 The effects of partial substitution of Ni by Zn in LaNiO3 perovskite catalyst for methane dry reforming J. CO2 Utilizat. 3 67–71

Shah A A, Ahmad S and Azam A 2020 Investigation of structural, optical, dielectric and magnetic properties of LaNiO3 and LaNi1−xMxO3 (M = Fe, Cr & Co; 0 ≤ x ≤ 5%) nanoparticles J. Magnet. Magnet. Mater. 494 165812

Li L, Jiang B, Tang D, Zhang Q and Zheng Z 2018 Hydrogen generation by acetic acid steam reforming over Ni-based catalysts derived from La1−xCexNiO3 perovskite Int. J. Hydrog. Energy 43 6795–803

Yang E-H, Kim N Y, Noh Y-J, Lim S S, Jung I-S, Lee J S, Hong G H and Moon D J 2015 Steam CO2 reforming of methane over La1−xCe0.5Ni0.5O3 perovskite catalysts Int. J. Hydrog. Energy 40 11881–93

Lima S, Assaf J, Petia M and Fierro J 2006 Structural features of La1−xCe0.5Ni0.5O3 mixed oxides and performance for the dry reforming of methane Appl. Catal. A 311 94–101

Franchini C A, Aranaez W, de Farias A M D, Fassu C G and Fraga M A 2014 Ce-substituted LaNiO3 mixed oxides as catalyst precursors for glycerol steam reforming Appl. Catal. B 147 193–202

Kausar A, Iqbal M, Javed A, Aftab K, Nazli Z-i-H, Bhatti H N and Nouren S 2018 Dyes adsorption using clay and modified clay: a review J. Mol. Liq. 256 395–407

Bibi I, Maqbool H, Iqbal S, Majid F, Kamal S, Alwadai N and Iqbal M 2021 La1−xCexNi0.5O3 perovskite nanoparticles synthesis by micro-emulsion route: dielectric, photocatalytic and photocatalytic properties evaluation Ceram. Int. 47 5852–31

Kumar Y, Bhatt H, Praipat C, Poswall H, Basu S and Singh S 2018 Effect of structural disorder on transport properties of LaNiO3 thin films J. Appl. Phys. 124 065302

Gou G, Grinberg I, Rappe A M and Rondinelli J M 2011 Lattice normal modes and electronic properties of the correlated metal LaNiO3 Phys. Rev. B 84 144101

Weber M, Guennoun M, Dinx N, Pesquerda D, Sánchez F, Herranz G, Fontcuberta J, López-Conesa L, Estrade S and Peirió F 2016 Multiple strain-induced phase transitions in LaNiO3, thin films Phys. Rev. B 94 014118

Ajamal S, Bibi I, Majid F, Ata S, Kamran K, Jilani K, Nouren S, Kamal S, Ali A and Iqbal M 2019 Effect of Fe and Bi doping on LaCoO3 structural, magnetic, electric and catalytic properties J. Mater. Res. Technol. 8 4031–42

Majid F, Nazir A, Ata S, Bibi I, Mehmood H S, Malik A, Ali A and Iqbal M 2020 Effect of hydrothermal reaction time on electrical, structural and magnetic properties of cobalt ferrite Z. Phys. Chem. 234 323–53
Bibi I, Maqbool H, Iqbal S, Majid F, Kamal S, Alwadai N and Iqbal M 2020 La1
Ukpaka C P, Lezorghia S B and Nwosu H 2020 Crude oil degradation in loamy soil using Neem root extracts: An experimental study
Sinanoglu D and Sasmaz A 2019 Geochemical evidence on the depositional environment of Nummulites accumulations around Elazig,
Mao M, Xu J, Zhao S, Li X, Li Y and Liu Z 2019 High performance hydrogen production of MoS2-modified perovskite LaNiO3 under visible light J Mol. Liq. 301 112343
Iqbal S, Bibi I, Ata S, Kamal S, Ibrahim S M and Iqbal M 2020 Gd and Co-substituted LaNiO3 and their nanocomposites with r-GO for photocatalytic applications Diam. Relat. Mater. 110 108119
Li Y, Yao S, Wen W, Xue L and Yan Y 2010 Sol–gel combustion synthesis and visible-light-driven photocatalytic property of perovskite LaNiO3 J. Alloy. Compd. 491 560–4
Ata S, Shaheen I, Ghafoor S, Sultan M, Majid F, Bibi I and Iqbal M 2018 Graphene and silver decorated ZnO composite synthesis, characterization and photocatalytic activity evaluation Diam. Relat. Mater. 90 26–51
Ahmad M, Bhatti I, Qureshi K, Ahmad N, Nisar J, Zuber M, Ashar A, Khan M and Iqbal M 2020 Graphene oxide supported Fe3+ (MoO4)2 nano rods assembled round-ball fabrication via hydrothermal route and photocatalytic degradation of nonsteroidal anti-inflammatory drug J. Mol. Liq. 301 112343
Qureshi K, Ahmad M Z, Bhatti I A, Nisar J and Iqbal M 2019 Graphene oxide decorated ZnWO4 architecture synthesis, characterization and photocatalytic activity evaluation J. Mol. Liq. 285 778–89
Chokor A A 2021 Total petroleum and aliphatic hydrocarbons profile of the River Niger surface water at Okpu and Iyiowa-Odekpe regions in South-Eastern, Nigeria Chem. J. Geochem. Explor. 198 144–69
Ukpaka C P, Lezorghia S B and Nwosu H 2020 Crude oil degradation in loamy soil using Neem root extracts: An experimental study Chem. Int. 6 160–7
Ukpaka C P and Eno O N 2020 Modeling of Azadirachta indica leaves powder efficiency for the remediation of soil contaminated with crude oil Chem. Int. 7 62–70
Sasmaz A 2020 The Abbara porphyry gold–copper systems in the Red Sea Hills, Neoproterozoic Arabian–Nubian Shield, NE Sudan J. Geochem. Explor. 214 106593
Sinanoglu D and Sasmaz A 2019 Geochemical evidence on the depositional environment of Nummulites accumulations around Elazig, Sivas, and Eskişehir (Turkey) in the middle Eocene sub–epoch Arab. J. Geosci. 12 1759
Sasmaz A, Kryuchenko N, Znovinsky E, Suyarko V, Konakci N and Akgül B 2018 Major, trace and rare earth element (REE) geochemistry of different colored fluorites in the Bobrynets region, Ukraine Ore Geol. Rev. 102 338–50
Adetutu I A, Iwuoha G N and Michael H Jr 2020 Carcinogenicity of dioxin-like polychlorinated biphenyls in transform soil in vicinity of University of Port Harcourt, Choba, Nigeria Chem. Int. 6 144–50
Iwuoha G N and Akinsuyeye A 2019 Toxicological symptoms and leachates quality in Elelenwo, Rivers State, Nigeria Chem. Int. 5 198–205
Deeba F, Abbasi N, Butt M T and Irfan M 2019 Ground water quality of selected areas of Punjab and Sind Provinces, Pakistan: chemical and microbiological aspects Chem. Int. 5 241–6
Sadollahkhani A, Bupoto J Z, Elbasj, Nur O and Willander M 2014 Photocatalytic properties of different morphologies of CuO for the degradation of Congo red organic dye Ceram. Int. 40 11311–7
Bhat S A, Zafar F, Mondal A H, Kareem A, Mirza A U, Khan S, Mohammad A, Haq Q M R and Nishat N 2020 Photocatalytic degradation of carcinogenic Congo red dye in aqueous solution, antioxidant activity and bactericidal effect of NiO nanoparticles J. Iran. Chem. Soc. 17 215–27
Boutra B, Guy N, Ozcar M and Trari M 2020 Magnetically separable MnFe2O4/TA/ZnO nanocomposites for photocatalytic application of Congo Red under visible light J. Magnet. Magnet. Mater. 497 165994
Akika F, Benamira M, Lahmar H, Tiberia A, Chabi R, Avramova I, Suzer Ş and Trari M 2018 Structural and optical properties of Cu-substitution of NiAl2O4 and their photocatalytic activity towards Congo red under solar light irradiation J. Photochem. Photobiol. A 364 542–50
Shekardasht M B, Givianrad M H, Gharbani P, Mirjafary Z and Mehrizad A 2020 Preparation of a novel Z-scheme g-C3N4/ RGO/ Bi2FeO4 nanocomposite for photocatalytic degradation of Congo Red dye under visible light Diam. Relat. Mater. 109 108008
Khaire M F, Sapawe N and Danish M 2019 Photocatalytic study of ZnO–CuO/ES on degradation of Congo red Mater. Today Proc. 19 1333–9
Ali N, Said A, Ali F, Razia F, Ali Z, Bilal M, Reinert L, Begum T and Iqbal M H 2020 Photocatalytic degradation of Congo red dye from aqueous environment using cobalt ferrite nanostructures: development, characterization, and photocatalytic performance Water Air Soil Poll. 231 1–16
Zhao X, Shen Y, Li C, Zhang L, Zhang X, Ning X, Zhan L and Luo J 2019 Construction of LaNiO3 nanoparticles modified g-C3N4 nanosheets for enhancing visible light photocatalytic activity towards tracyline degradation Sep. Purif. Technol. 211 171–88
Jifikhar A, Yousaf S, Ali F A A, Haidar S, Khan S U-D, Shakir I, Iqbal F and Warsi M F 2020 Erbium-substituted NiO-4C00.6FeO4 ferrite nanoparticles and their hybrids with reduced carbon dioxide as magnetically separable powder photocatalyst Ceram. Int. 46 1203–10
Rahman A, Zuliqvar S, Musaddiq S, Shakir I, Warsi M F and Shahid M 2020 Facile synthesis of CFe1–xGd1–yCr1+xNiO/rGO ternary hybrid heterostructures with enhanced visible light photocatalytic activity for waterborne pollutants J. Photochem. Photobiol. A 397 112583
Bibi I, Maqbool H, Iqbal S, Majid F, Kamal S, Alwadai N and Iqbal M 2020 Lax1–yGd1–zCr1–xNiO perovskite nanoparticles synthesis by micro-emulsion route: Dielectric, magnetic and photocatalytic properties evaluation Ceram. Int. 47 5822–31