Asymptotic spectral stability of the Gisin-Percival state diffusion

K. R. Parthasarathy1 and A. R. Usha Devi2,3

1Indian Statistical Institute, Theoretical Statistics and Mathematics Unit, Delhi Centre, 7 S. J. S. Sansanwal Marg, New Delhi 110 016, India
2Department of Physics, Bangalore University, Bangalore-560 056, India
3Inspire Institute Inc., Alexandria, Virginia, 22303, USA.

(Dated: September 22, 2017)

Abstract

Starting from the Gisin-Percival state diffusion equation for the pure state trajectory of a composite bipartite quantum system and exploiting the purification of a mixed state via its Schmidt decomposition, we write the diffusion equation for the quantum trajectory of the mixed state of a subsystem S of the bipartite system, when the initial state in S is mixed. Denoting the diffused state of the system S at time t by $\rho_t(B)$ for each $t \geq 0$, where B is the underlying complex n-dimensional vector-valued Brownian motion process and using Itô calculus, along with an induction procedure, we arrive at the stochastic differential of the scalar-valued moment process $\text{Tr}[\rho_{mt}(B)]$, $m = 2, 3, \ldots$ in terms of dB and dt. This shows that each of the processes \{Tr[$\rho_{mt}(B)$], $t \geq 0$\} admits a Doob-Meyer decomposition as the sum of a martingale $M_{t^m}(B)$ and a non-negative increasing process $S_{t^m}(B)$. This ensures the existence of $\lim_{t \to \infty} \text{Tr}[\rho_{mt}(B)]$ almost surely with respect to the Wiener probability measure μ of the Brownian motion B, for each $m = 2, 3, \ldots$. In particular, when S is a finite level system, the spectrum and therefore the entropy of $\rho_t(B)$ converge almost surely to a limit as $t \to \infty$. In the Appendix, by employing probabilistic means, we prove a technical result which implies the almost sure convergence of the spectrum for countably infinite level systems.
I. INTRODUCTION

Let \mathcal{H} be a complex Hilbert space describing the states of a quantum system. We consider the Gisin-Percival continuous time quantum diffusion trajectories \cite{1,2} \{|$\Psi_t(B)$\}, $t \geq 0$ with values on the unit sphere of the Hilbert space \mathcal{H}, driven by a standard n-dimensional complex vector-valued Brownian motion \{$(B_1,t), (B_2,t), \ldots, (B_n,t)$, $t \geq 0$\} with Wiener probability measure μ on the space of continuous paths:

$$d|Ψ_t\rangle = \sum_{k=1}^{n} \tilde{L}_{k,t} |\Psi_t$\rangle dB_k - \left(i \tilde{H}_t + \sum_{k=1}^{n} \tilde{L}_{k,t}^\dagger \tilde{L}_{k,t} \right) |\Psi_t$\rangle dt, (1.1)$$

where $|$\Psi_0$\rangle = |\phi_0$\rangle $\in \mathcal{H}$ is the initial state. Here, we have denoted

$$\tilde{L}_{k,t} = L_k - \langle L_k \rangle \psi_t, \quad \langle L_k \rangle \psi_t = \langle \Psi_t | L_k | \Psi_t \rangle$$

$$\tilde{H}_t = H + i \left(\langle L_k L_k^\dagger \rangle \psi_t - \langle L_k^\dagger L_k \rangle \psi_t \right),$$

where $L_k, k = 1, 2, \ldots, n$ and H are bounded operators in \mathcal{H}, with H being self-adjoint.

We shall denote the Hilbert space of \mathcal{H}-valued norm square integrable functions \{|$\Psi_t(B)$\}, $t \geq 0$\} by $L^2(\mu) \otimes \mathcal{H} = L^2(\mu, \mathcal{H})$. The map $t \rightarrow |\Psi_t(B)\rangle$ is a non-anticipating state-valued Brownian functional in $L^2(\mu, \mathcal{H})$. Our best estimate of all observable properties of the quantum system at a time instant $t \geq 0$ is reflected by the knowledge of the state diffusion trajectory up to that time. This, in turn, can be used to predict the behavior of the system at a later time. Note that a pure state remains pure under the Gisin-Percival quantum state diffusion (1.1) at all times $t \geq 0$. However, a clear description on the nature of the spectrum of a diffusion trajectory \{\rho_t(B), t \geq 0\} of mixed quantum states at a later time, based on the knowledge of such continuous time diffusion up to time t, demands a thorough analysis. Massen and Kümmerer \cite{3} had investigated this topic in the case of a discrete time trajectory associated with a random chain of quantum states resulting from repeated measurements on a quantum system. Motivated by this work we study here the continuous time trajectory of a quantum system and arrive at a trace formula for the scalar-valued moment processes \{Tr[\rho_t^m(B)], t \geq 0\}, $m = 1, 2, \ldots$ of mixed states $\rho_t(\cdot)$ undergoing Gisin-Percival state diffusion. We show that \{Tr[\rho_t^m(B)], t \geq 0\} for $m > 1$ are submartingale processes \cite{4,5} in the space of continuous paths, with Wiener probability measure μ. By the submartingale convergence theorem \cite{4,5} it follows that $\lim_{t \rightarrow \infty}$ Tr[\rho_t^m(B)] exists almost surely for each of the bounded, non-negative, scalar-valued submartingale moment processes.
\{0 \leq \text{Tr}[\rho^n(B)] \leq 1, t \geq 0\}, \ m = 2, 3, \ldots \). Thus, the spectrum of \(\rho_t(B)\) converges almost surely with respect to the Wiener probability measure \(\mu\) as \(t \to \infty\).

II. CONTINUOUS TIME QUANTUM DIFFUSION TRAJECTORY OF MIXED STATES

Let us consider the Gisin-Percival equation \((1.1)\) describing diffusion of pure states \(\{|\Psi_t\rangle, t \geq 0\} \in L^2(\mu, \mathcal{H}), \ \mathcal{H} = \mathcal{H}_S \otimes \mathcal{H}_{S'}\), where \(\mathcal{H}_S\) and \(\mathcal{H}_{S'}\) denote Hilbert spaces with \(\dim \mathcal{H}_S \geq \dim \mathcal{H}_{S'}\). We restrict to operator parameters \(\mathbb{L}_k = L_k \otimes I_{S'}, \ H = H \otimes I_{S'}\), where \(L_k, H\) are operators in \(\mathcal{H}_S\) and \(I_{S'}\) is the identity operator in \(\mathcal{H}_{S'}\). Thus,

\[
\tilde{L}_{k,t} = (L_k - \langle L_k \otimes I_{S'} \rangle_{\Psi_t}) \otimes I_{S'},
\]

\[
\tilde{H}_t = \left[H + i \left(L_k \langle L_k^\dagger \otimes I_{S'} \rangle_{\Psi_t} - L_k^\dagger \langle L_k \otimes I_{S'} \rangle_{\Psi_t} \right) \right] \otimes I_{S'},
\]

\[
(2.1)
\]

Starting from a non-product and therefore, an entangled bipartite pure state \(|\Psi_0\rangle \in \mathcal{H}_S \otimes \mathcal{H}_{S'}\), the Gisin-Percival state diffusion \((1.1)\) results in a pure state quantum trajectory \(\{|\Psi_t(B)\rangle, t \geq 0\}\), which is a non-anticipating Brownian functional with values on the unit sphere of \(\mathcal{H} = \mathcal{H}_S \otimes \mathcal{H}_{S'}\). We express \(|\Psi_t\rangle\) in terms of its Schmidt decomposition,

\[
|\Psi_t\rangle = \sum_\alpha \sqrt{p_{\alpha,t}} |\alpha_S \otimes \alpha_{S'}\rangle_t, \ \sum_\alpha p_{\alpha,t} = 1, \ p_{\alpha,t} \geq 0 \ \forall \ t \geq 0,
\]

\[
(2.2)
\]

where \(\{|\alpha\rangle_{S,t}\}\) and \(\{|\alpha\rangle_{S',t}\}\) are the set of eigenstates of the subsystem density matrices

\[
\rho_{S,t} = \text{Tr}_{S'}[|\Psi_t\rangle\langle\Psi_t|] = \sum_\alpha p_{\alpha,t} |\alpha_S\rangle_t\langle\alpha_S|,
\]

\[
\rho_{S',t} = \text{Tr}_S[|\Psi_t\rangle\langle\Psi_t|] = \sum_\alpha p_{\alpha,t} |\alpha_{S'}\rangle_t\langle\alpha_{S'}|.
\]

The eigenvalues (Schmidt coefficients) \(p_{\alpha,t} \geq 0\) of the density matrices \(\rho_{S,t}, \rho_{S',t}\) are arranged in the decreasing order \(p_{1,t} \geq p_{2,t} \geq \ldots\).

In this case, the operators \(\tilde{L}_{k,t}, \tilde{H}_t\) of \((2.1)\) take the form,

\[
\tilde{L}_{k,t} = L_k - \langle L_k \rangle_t,
\]

\[
\tilde{H}_t = H + i \left(L_k \langle L_k^\dagger \rangle_t - L_k^\dagger \langle L_k \rangle_t \right)
\]

\[
(2.3)
\]
Hereafter, our discussions will be centered on the properties of the quantum diffusion trajectory of mixed states \(\{ \rho_{S,t}(B), t \geq 0 \} \) in the space of density operators in \(\mathcal{H}_S \) and hence, we shall write \(\rho_{S,t} = \rho_t \), by dropping the suffix \(S \) for brevity.

Proposition: Consider the state-valued process \(\{ |\Psi_t(B)|, t \geq 0 \} \) on the unit sphere of \(\mathcal{H} = \mathcal{H}_S \otimes \mathcal{H}_{S'} \) obeying the Gisin-Percival state diffusion equation (1.1), with \(\tilde{L}_{k,t}, k = 1, 2, \ldots, n, \) and \(\tilde{H}_t \) as in (2.1), (2.3), and (2.4). Then, \(\{ \rho_t(B) = \text{Tr}_{S'}[|\Psi_t(B)| \langle \Psi_t(B) |], t \geq 0 \} \) satisfies the following classical stochastic differential equation:

\[
d\rho_t = \sum_{k=1}^{n} \left(\tilde{L}_{k,t} \rho_t dB_k + \rho_t \tilde{L}_{k,t}^\dagger dB_k^* \right) + \left\{ [\rho_t, i \tilde{H}_t] - \sum_{k=1}^{n} \left(\rho_t \tilde{L}_{k,t}^\dagger \tilde{L}_{k,t} + \tilde{L}_{k,t}^\dagger \tilde{L}_{k,t} \rho_t - 2 \tilde{L}_{k,t} \rho_t \tilde{L}_{k,t}^\dagger \right) \right\} dt. \tag{2.5}
\]

Proof: Consider the Gisin-Percival state diffusion equation (1.1) in \(L^2(\mu, \mathcal{H}_S \otimes \mathcal{H}_{S'}) \), with an initial entangled bipartite pure state \(| \Psi_0 \rangle \in \mathcal{H}_S \otimes \mathcal{H}_{S'} \) and with the operator parameters \(\tilde{L}_{k,t}, \tilde{H}_t \) of (1.1) as given in (2.3), and (2.4). Using the classical Itô multiplication rule,

\[
dB_{k,t} dB_{t,t} = 0, \quad dB_{k,t} dB_{t,t}^* = 2 \delta_{k,t} dt, \quad (dt)^2 = 0 \tag{2.6}
\]

and simplifying, we obtain the following stochastic differential equation for the process \(\{ |\Psi_t(B)| \langle \Psi_t(B) | , t \geq 0 \} \):

\[
d \left(|\Psi_t \rangle \langle \Psi_t | \right) = (d |\Psi_t \rangle \langle \Psi_t |) + (d |\Psi_t \rangle \langle \Psi_t |) + (d |\Psi_t \rangle \langle \Psi_t |) + (d |\Psi_t \rangle \langle \Psi_t |) \tag{2.7}
\]

\[
= \sum_{k=1}^{n} \left[\tilde{L}_{k,t} \otimes I_{S'} |\Psi_t \rangle \langle \Psi_t | dB_k^* + |\Psi_t \rangle \langle \Psi_t | \tilde{L}_{k,t}^\dagger \otimes I_{S'} dB_k \right] + \left\{ \left[|\Psi_t \rangle \langle \Psi_t |, i \tilde{H}_t \otimes I_{S'} \right] - \sum_{k=1}^{n} \left(|\Psi_t \rangle \langle \Psi_t | \tilde{L}_{k,t}^\dagger \tilde{L}_{k,t} \otimes I_{S'} \right) + \tilde{L}_{k,t}^\dagger \tilde{L}_{k,t} \otimes I_{S'} \langle \Psi_t | \langle \Psi_t | - 2 \tilde{L}_{k,t} \otimes I_{S'} |\Psi_t \rangle \langle \Psi_t | \tilde{L}_{k,t}^\dagger \otimes I_{S'} \right\} dt. \tag{2.7}
\]

Taking partial trace over \(S' \) in (2.7) results in (2.5).

Remark: Since \(\tilde{L}_{k,t}, \tilde{H}_t \) are related to \(L_k, H \) (see (2.3)) by translation via scalar quantities \(\text{Tr} [\rho_t L_k], k = 1, 2, \ldots, n \), the stochastic differential equation (2.5) can be rewritten as

\[
(L_k)_t = (L_k \otimes I_{S'}) \Psi_t = \text{Tr}[\rho_{S,t} L_k]. \tag{2.4}
\]
(see Section IV of Ref. [2] for a discussion on the translational invariance of the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) generator [6, 7] of the quantum dynamical semi-group \(\{ T_t, t \geq 0 \} \))

\[d \rho_t = \sum_{k=1}^{n} \left(\tilde{L}_{k,t} \rho_t d B_k + \rho_t \tilde{L}_{k,t}^\dagger d B_k^* \right) \]

\[+ \left([\rho_t, i H] - \sum_{k=1}^{n} \left(\rho_t L_k L_k^\dagger \rho_t - 2 L_k \rho_t L_k^\dagger \rho_t \right) \right) dt, \tag{2.8} \]

it follows that (i) \(\{ \rho_t(B), t \geq 0 \} \) obeys a diffusion equation; (ii) it is a Markov process with initial value \(\rho_0 \) and with the infinitesimal generator \(L^\omega \) at \(\rho \) given by

\[L^\omega (\rho) = [\rho, i H] - \sum_{k=1}^{n} \left(\rho L_k L_k^\dagger + L_k^\dagger L_k \rho - 2 L_k \rho L_k^\dagger \right), \tag{2.9} \]

in the GKSL form [6, 7].

From the stochastic differential equation (2.5), and equivalently (2.8), for the quantum trajectory \(\{ \rho_t(B), t \geq 0 \} \) it follows immediately that \(d \text{Tr}[\rho_t(B)] = 0 \), with initial condition \(\text{Tr}[\rho_0] = \langle \Psi_0 | \Psi_0 \rangle = 1 \). Thus, \(\text{Tr}[\rho_t(B)] = 1 \) for all \(t \geq 0 \). In other words, (2.5) and (2.8) are, indeed, state diffusion equations.

III. THE SCALAR-VALUED MOMENT PROCESSES \(\{ \text{Tr}[\rho_t^m(B)], t \geq 0 \} \) AND ASYMPTOTIC SPECTRAL STABILITY

Based on the Gisin-Percival diffusion equation (2.5) we now present the following Theorem.

Theorem 1: The processes \(\{ \rho_t^m(B), t \geq 0 \}, m = 2, 3, \ldots \) satisfy the stochastic differential equations

\[d \rho_t^m = 2 \sum_{k=1}^{n} \text{Re} \left(\sum_{r=0}^{m-1} \rho_t^r \tilde{L}_{k,t} \rho_t^{m-r} d B_k \right) \]

\[+ \left\{ \tilde{L}(\rho_t^m) + 2 \sum_{k=1}^{n} \left(\sum_{m_1+m_3 \neq 0, m_1+m_2+m_3=m} \rho_t^{m_1} \tilde{L}_{k,t} \rho_t^{m_2} \tilde{L}_{k,t}^\dagger \rho_t^{m_3} \right) \right\} dt \tag{3.1} \]
where
\[\tilde{\mathcal{L}}(\rho_t^m) = \left[\rho_t^m, i \tilde{H}_t \right] - \sum_{k=1}^{n} \left(\rho_t^m \tilde{L}_{k,t}^\dagger \tilde{L}_{k,t} + \tilde{L}_{k,t}^\dagger \tilde{L}_{k,t} \rho_t^m - 2 \tilde{L}_{k,t} \rho_t^m \tilde{L}_{k,t}^\dagger \right). \] (3.2)

The summation in the second and third lines of (3.1) involves positive integers \(m_1, m_2, m_3 \) such that \(m_1 + m_2 + m_3 = m \).

Proof: We derive the stochastic differential equation satisfied by \(\rho_t^2(B) \) using (2.5) and by simple application of Itô’s classical stochastic calculus [8]:

\[d \rho_t^2 = (d \rho_t) \rho_t + \rho_t (d \rho_t) + (d \rho_t)^2 = 2 \sum_{k=1}^{n} \text{Re} \left[\left(\tilde{L}_{k,t} \rho_t^2 + \rho_t \tilde{L}_{k,t} \rho_t \right) dB_k \right] + \left\{ \tilde{\mathcal{L}}(\rho_t^2) + 2 \sum_{k=1}^{n} \left(\rho_t \tilde{L}_{k,t} \rho_t \tilde{L}_{k,t} + \tilde{L}_{k,t} \rho_t \tilde{L}_{k,t}^\dagger \right) \right\} dt, \] (3.3)

which is in agreement with (3.1) for \(m = 2 \). Then, it immediately follows by mathematical induction that if (3.1) holds for some positive integer \(m \), it also holds for \(m + 1 \). \(\square \)

We now state our result on the scalar-valued moment processes \(\text{Tr}[\rho_t^m(B)] \), \(m = 2, 3, \ldots \) of the continuous time quantum diffusion trajectory \(\rho_t(\cdot) \).

Theorem 2: Under the Gisin-Percival continuous time diffusion (2.5) the non-negative bounded scalar-valued moment processes \(0 \leq \text{Tr}[\rho_t^m(B)] \leq 1, \ m = 2, 3, \ldots \) of the quantum trajectory \(\{\rho_t(B), t \geq 0\} \) admit the following stochastic differentials:

\[d \text{Tr}[\rho_t^m] = 2m \sum_{k=1}^{n} \text{Re} \left(\text{Tr}[\rho_t^m \tilde{L}_{k,t}] dB_k \right) + 2m \sum_{k=1}^{n} \left(\sum_{m'=1}^{m-1} \text{Tr}[\rho_t^{m'} \tilde{L}_{k,t} \rho_t^{m-m'} \tilde{L}_{k,t}^\dagger] \right) dt. \] (3.4)

Proof: Taking trace in (3.1) and noting that \(\text{Tr}[\tilde{\mathcal{L}}(\cdot)] = 0 \) (see (3.2)), one obtains the stochastic differential equations (3.4) for the scalar-valued moment processes \(\text{Tr}[\rho_t^m(B)], m = 2, 3, \ldots \) of the continuous time quantum diffusion trajectory \(\rho_t(\cdot) \). \(\square \)

Corollary 1: The scalar-valued moment process \(\text{Tr}[\rho_t^m(B), t \geq 0] \), admits the Doob-Meyer decomposition [4, 5]:

\[\text{Tr}[\rho_t^m(B)] = M_t^{(m)}(B) + S_t^{(m)}(B), \] (3.5)

where \(\{M_t^{(m)}(B), t \geq 0\} \) is the martingale given by

\[M_t^{(m)}(B) = \text{Tr}[\rho_0^m] + 2m \int_0^t \sum_{k=1}^{n} \text{Re} \left(\text{Tr}[\rho_s^m \tilde{L}_{k,s}] dB_{k,s} \right) \] (3.6)
and \(\{S_t^{(m)}(B), t \geq 0\} \) is the non-negative increasing process given by

\[
S_t^{(m)}(B) = 2m \int_0^t \sum_{k=1}^n \left(\sum_{m'=1}^{m-1} \text{Tr}[\rho_s^{m'} \tilde{L}_{k,s} \rho_s^{m-m'} \tilde{L}_{k,s}^\dagger] ds \right)
\] \hspace{1cm} (3.7)

Proof: Immediate from Theorem 2 and the fact that each trace term on the right hand side of (3.7) is nonnegative. \(\square \)

Remark: It follows from the Doob-Meyer decomposition (3.5) that the scalar-valued moments \(\text{Tr}[\rho_t^n(B), t \geq 0] \) increase on average i.e.,

\[
\mathbb{E}_s \{ \text{Tr}[\rho_t^n(B)] | B(s), t \geq s \} \geq \text{Tr}[\rho_s^n(B)].
\] \hspace{1cm} (3.8)

Corollary 2: For each \(m = 2, 3, \ldots \)

\[
\lim_{t \to \infty} \text{Tr}[\rho_t^n(B)], \text{ a.s. } B(\mu)
\]

exists with respect to the Wiener probability measure \(\mu \).

Proof: From Corollary 1 it follows that \(\{\text{Tr}[\rho_t^n(B)]\} \) is a nonnegative bounded submartingale for each \(m = 2, 3, \ldots \) and hence, the required convergence is a consequence of the submartingale convergence theorem [4, 5]. \(\square \)

Corollary 3: Equations (3.4) can be expressed in terms of the resolvent [9] \((1 - x \rho_t)^{-1}\) of \(\rho_t \), where \(-1 < x < 1\), as follows:

\[
d\text{Tr}[(1 - x \rho_t)^{-1}] = 2 \sum_{k=1}^n \text{Re} \left(\frac{d}{dx} \left\{ \text{Tr}\left[(1 - x \rho_t)^{-1} \rho_t L_{k,t} \right] d B_k \right\} \right)
\]

\[
+ 2 \sum_{k=1}^n \frac{d}{dx} \left\{ \text{Tr}\left[\rho_t L_{k,t} (1 - x \rho_t)^{-1} L_{k,t}^\dagger (1 - x \rho_t)^{-1} \right] \right\} dt.
\] \hspace{1cm} (3.9)

Proof: Immediate from the properties of the resolvent [9]. \(\square \)

Corollary 4: Let \(S \) be a finite dimensional Hilbert space of dimension \(d \). Suppose \(p_{1,t}(B) \geq p_{2,t}(B) \geq \ldots \geq p_{d,t}(B) \) is an enumeration of the eigenvalues of \(\rho_t(B) \) in Theorem 2. Then,

\[
\lim_{t \to \infty} p_{\alpha,t}(B) \quad \text{a.s. } B(\mu)
\]

exists for every \(1 \leq \alpha \leq d \) with respect to the Wiener probability measure \(\mu \).

Proof: This is immediate from Corollary 2, Theorem 2. \(\square \)

Remark: Corollary 4 implies that, when \(S \) is a finite level quantum system, the Gisin-Percival state diffusion trajectory for any mixed initial state \(\rho_0 \) in \(\mathcal{H}_S \) has an asymptotically stable spectrum almost surely. In the Appendix we prove the almost sure convergence of
the spectrum for countably infinite level systems using a probabilistic approach. However, in the infinite dimensional case, the sum of the limits of all eigenvalues $\sum_{\alpha} \lim_{t \to \infty} p_{\alpha,t}$ can be strictly less than unity with a positive probability. In other words, the trajectory of the state diffusion in the infinite dimensional case can get knocked out of the set of those described by density operators.

APPENDIX

Let the system Hilbert space \mathcal{H}_S be equipped with a finite or countable infinite orthonormal basis and let $t \to \sigma_t$ be a map from the interval $[0, \infty)$ to the space of density operators in \mathcal{H}_S such that for any fixed t, the eigenvalues $p_{\alpha,t}$, $\alpha = 1, 2, \ldots$, of σ_t are enumerated in decreasing order, inclusive of their multiplicity, as

$$p_{1,t} \geq p_{2,t} \geq \ldots \geq 0,$$ \hspace{1cm} (A.1)

$$\sum_{\alpha \geq 1} p_{\alpha,t} = 1.$$ \hspace{1cm} (A.2)

We assume that the limits

$$\lim_{t \to \infty} \text{Tr} [\sigma_t^m] = \lim_{t \to \infty} \sum_{\alpha \geq 1} p_{\alpha,t}^m = \kappa_m$$ \hspace{1cm} (A.3)

exist for each $m = 1, 2, \ldots$, and, by definition, $\kappa_1 = 1$. Then the following theorem holds.

Theorem: There exists a sequence $\{p_{\alpha}, \alpha \geq 1\}$ satisfying the following:

$$p_1 \geq p_2 \geq \ldots \geq 0,$$ \hspace{1cm} (A.4)

$$\sum_{\alpha \geq 1} p_{\alpha} \leq 1,$$ \hspace{1cm} (A.5)

$$\lim_{t \to \infty} p_{\alpha,t} = p_{\alpha}, \alpha \geq 1.$$ \hspace{1cm} (A.6)

Proof: For each $0 \leq t < \infty$, introduce a random variable ξ_t assuming the values $p_{\alpha,t}$ with respective probabilities $p_{\alpha,t}$, $\alpha \geq 1$, so that

$$\mathbb{E} \xi_t^m = \sum_{\alpha \geq 1} p_{\alpha,t}^{m+1}$$

8
\[\text{Tr } [\sigma_t^{m+1}], \ m = 0, 1, 2, \ldots \]

\[(A.7) \]

Denote by \(\mu_t \), the probability measure, which is the distribution of \(\xi_t \). Each \(\mu_t \) is a probability measure in the compact interval \([0, 1]\). By equations \((A.3)\) and \((A.7)\) it follows that the \(m \)th moment of the distribution \(\mu_t \) converges to \(\kappa_{m+1} \) for each \(m \) as \(t \to \infty \). Hence there exists a probability measure \(\mu \) in the interval \([0,1]\) such that \(\mu_t \) converges \textit{weakly} \[10\] to \(\mu \) as \(t \to \infty \) i.e., for every real continuous function \(\phi \) on \([0,1]\),

\[\lim_{t \to \infty} \int_0^1 \phi(x) \mu_t(dx) = \int_0^1 \phi(x) \mu(dx). \]

\[(A.8) \]

(Indeed, this is a consequence of the fact that the space of all probability measures in the compact metric space \([0,1]\) is a compact metric space in the topology of weak convergence and moments determine a distribution uniquely \[10, 11\]).

Now our goal is to determine the spectrum of \(\mu \) i.e., the smallest closed set with \(\mu \)-probability equal to 1. To this end, we choose and fix a sequence

\[0 < t_1 < t_2 < \ldots \]

\[(A.9) \]

by the diagonalization procedure, such that \(t_n \to \infty \) as \(n \to \infty \) and,

\[\lim_{n \to \infty} p_{\alpha,t_n} = p_\alpha. \]

\[(A.10) \]

exists for every \(\alpha \geq 1 \). Then,

\[p_1 \geq p_2 \geq \ldots \geq 0. \]

\[(A.11) \]

By Fatou’s lemma \[11\],

\[1 = \lim_{n \to \infty} \sum_{\alpha \geq 1} p_{\alpha,t_n} \geq \sum_{\alpha \geq 1} p_\alpha. \]

\[(A.12) \]

Now three cases arise:

Case (i): \(p_1 = 0 \).

By \((A.11)\), it follows that \(p_2 = p_3 = \ldots = 0 \). By choosing \(\phi(x) = x \) in \((A.8)\), we get

\[\lim_{t \to \infty} \int_0^1 x \mu_t(dx) = \int_0^1 x \mu(dx). \]

\[(A.13) \]

Hence,

\[\lim_{n \to \infty} \sum_{\alpha \geq 1} p_{\alpha,t_n}^2 = \int_0^1 x \mu(dx). \]

\[(A.14) \]
As $\sum_{\alpha \geq 1} p_{\alpha,t}^2 \leq p_{1,t}$, we obtain

$$\int_0^1 x \mu(dx) = 0,$$

which implies that μ is a probability measure degenerate at 0. Now (A.11) leads to

$$\lim_{t \to \infty} \sum_{\alpha \geq 1} p_{\alpha,t}^2 = 0.$$

Thus,

$$\lim_{t \to \infty} p_{\alpha,t} = 0, \quad \forall \quad \alpha \geq 1.$$

Case (ii): $p_1 = 1$.

In this case, (A.11) and (A.12) imply

$$p_2 = p_3 = \cdots = 0.$$

By (A.11),

$$\lim_{n \to \infty} \sum_{\alpha \geq 1} p_{\alpha,t_n}^2 \geq \lim_{n \to \infty} p_{1,t_n}^2 = 1.$$

Thus,

$$\int_0^1 x \mu(dx) = 1.$$

This is possible only if μ is degenerate at the point 1. Thus, by (A.14)

$$\lim_{t \to \infty} \sum_{\alpha \geq 1} p_{\alpha,t}^2 = 1.$$

Since $\sum_{\alpha \geq 1} p_{\alpha,t} = 1$, it follows that

$$\lim_{t \to \infty} p_{1,t} = 1, \quad \lim_{t \to \infty} p_{\alpha,t} = 0, \quad \forall \quad \alpha \geq 2.$$

Thus, the theorem needs to be proved only in Case (iii).

Case (iii): $0 < p_1 < 1$.

Now there exist $\alpha_1, \alpha_2, \ldots,$ and $1 > q_1 > q_2 > \ldots > 0$ such that

$$p_1 = p_2 = \cdots = p_{\alpha_1} = q_1$$

$$p_{\alpha_1+1} = p_{\alpha_1+2} = \cdots = p_{\alpha_1+\alpha_2} = q_2 < q_1$$

$$\vdots$$

$$p_{\alpha_1+\alpha_2+\ldots+\alpha_{r-1}+1} = p_{\alpha_1+\alpha_2+\ldots+\alpha_{r-1}+2} = \cdots = p_{\alpha_1+\alpha_2+\ldots+\alpha_r} = q_r < q_{r-1}$$

$$\vdots$$
which may be a terminating or a non-terminating sequence.

Since \(q_1 = p_1 \) and \(0 < q_1 < 1 \), choose an arbitrary \(\epsilon \geq 0 \) such that \(0 < q_1 + \epsilon < 1 \) and consider the open set \((q_1 + \epsilon, 1]\) in the compact space \([0, 1]\). Since, \(p_{1,t_n} \to q_1 \) as \(n \to \infty \), we have

\[
p_{1,t_n} \leq q_1 + \epsilon \quad \text{for all large } n
\]

and therefore \(p_{\alpha,t_n} \leq q_1 + \epsilon \) for all \(\alpha \geq 1 \) and for all large \(n \). Thus \(\mu_{t_n} \) has its support in \([0, q_1 + \epsilon]\) for large \(n \). Hence the support of \(\mu \) is contained in \([0, q_1 + \epsilon]\). Arbitrariness in \(\epsilon \) implies that the support of \(\mu \) is contained in \([0, q_1]\).

Now consider an open interval \((q_2 + \epsilon, q_1 - \epsilon) \subset [q_2, q_1]\), where \(\epsilon \) is arbitrary, positive, but \(\epsilon < \frac{q_1 - q_2}{2} \). Then,

\[
\max \left(p_{\alpha_1+1,t_n}, p_{\alpha_1+2,t_n}, \ldots p_{\alpha_1+\alpha_2,t_n} \right) \leq q_2 + \epsilon \\
\min \left(p_{1,t_n}, p_{2,t_n}, \ldots p_{\alpha_1,t_n} \right) \geq q_1 - \epsilon
\]

for all sufficiently large \(n \). In other words,

\[
\mu_{t_n} \left((q_2 + \epsilon, q_1 - \epsilon) \right) = 0
\]

for all large \(n \) and hence,

\[
\mu \left((q_2 + \epsilon, q_1 - \epsilon) \right) = 0.
\]

The arbitrariness in \(\epsilon \) implies

\[
\mu \left((q_2, q_1) \right) = 0.
\]

By a similar argument we obtain

\[
\mu \left((q_{r+1}, q_r) \right) = 0
\]

whenever \(q_{r+1} > 0 \). Thus the spectrum of \(\mu \) is contained in \(\{q_1, q_2, \ldots\} \cup \{0\} \).

By (A.8), for any continuous function \(\phi \),

\[
\lim_{n \to \infty} \sum_{\alpha \geq 1} \phi(p_{\alpha,t_n}) p_{\alpha,t_n} = \sum_r \phi(q_r) \mu \left(\{ q_r \} \right). \tag{A.15}
\]

Choose \(\phi \) to be the function defined by

\[
\phi(x) = \begin{cases}
1, & x \in [q_s - \epsilon, q_s + \epsilon] \\
0, & \text{if } x \notin (q_s - 2\epsilon, q_s + 2\epsilon) \\
\text{linear in } [q_s - 2\epsilon, q_s - \epsilon] \cup [q_s + \epsilon, q_s + 2\epsilon].
\end{cases} \tag{A.16}
\]
Then, \((A.15) \) takes the form

\[
\lim_{n \to \infty} \sum_{j=1}^{\alpha_s} \phi(p_{\alpha_1 + \alpha_2 + \ldots + \alpha_{s-1} + j, t_n}) p_{\alpha_1 + \alpha_2 + \ldots + \alpha_{s-1} + j, t_n} = \mu \left(\{ q_s \} \right). \tag{A.17}
\]

or

\[
\alpha_s q_s = \mu \left(\{ q_s \} \right)
\]

for all \(s > 1 \). The same holds for \(s = 1 \) with a slight (and obvious) modification in the choice of \(\phi \).

Thus the limit \(\{ p_{\alpha} \} \) is independent of the choice of the diagonalization procedure. In other words,

\[
\lim_{t \to \infty} p_{\alpha, t} = p_{\alpha}, \quad \forall \quad \alpha \geq 1.
\]

thus ensuring the convergence of the spectrum. \(\square \)

ACKNOWLEDGEMENTS

Major part of this work was done when the second author (ARU) was visiting Indian Statistical Institute, Delhi, during her sabbatical leave from Bangalore University; her research is supported by the Major Research Project (Grant No. MRPMAJOR-PHYS-2013-29318) of the University Grants Commission (UGC), India.

\[1\] N. Gisin, and J. Percival, J. Phys. A 167, 315 (1992).
\[2\] K. R. Parthasarathy, and A. R. Usha Devi, arXiv:1705.00520v2 [quant-ph]; Accepted for publication in J. Math. Phys.
\[3\] H. Maassen and B.Küfferer, IMS Lecture Notes - Monograph Series, Dynamics & Stochastics 48, 252 (2006).
\[4\] J. L. Doob, Stochastic processes, (Wiley, 1953).
\[5\] D. Williams, Probability with martingales, (Cambridge University Press, 1991).
\[6\] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys. 17, 821 (1976).
\[7\] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
\[8\] H. P. McKean, Stochastic integrals, (Academic Press, 1969).
[9] T. Kato, *Perturbation theory for linear operators*, Chapter I, (Springer, 1995).

[10] P. Billingsley, *Probability and Measure*, Anniversary Edition, (John Wiley and Sons, 2011).

[11] K. R. Parthasarathy, *Introduction to Probability and Measure*, (Hindustan Book Agency, 2005).