Impaired liver function attenuates liver regeneration and hypertrophy after portal vein embolization

Yumiko Kageyama, Takashi Kokudo, Katsumi Amikura, Yoshihiro Miyazaki, Amane Takahashi, Hirohiko Sakamoto

Division of Gastroenterological Surgery, Saitama Cancer Center, Kita-adachi gun, Saitama Prefecture 362-0806, Japan

Author contributions: Kageyama Y designed and performed the research and wrote the paper; Kokudo T contributed to the analysis and supervised the report; Amikura K designed the research and supervised the report; Miyazaki Y, Takahashi A and Sakamoto H supervised the report.

Institutional review board statement: This study was reviewed and approved by the Ethics Committee of the Saitama Cancer Center.

Informed consent statement: Patients were not required to give informed consent because the analysis used anonymous clinical data that were obtained after each patient agreed to treatment by written consent.

Conflict-of-interest statement: We have no financial relationships to disclose.

Data sharing statement: No additional data are available.

Abstract

AIM
To clarify the clinical factors associated with liver regeneration after major hepatectomy and the hypertrophic rate after portal vein embolization (PVE).

METHODS
A total of 63 patients who underwent major hepatectomy and 13 patients who underwent PVE in a tertiary care hospital between January 2012 and August 2015 were included in the analysis. We calculated the remnant liver volume following hepatectomy using contrast-enhanced computed tomography (CT) performed before and approximately 3-6 mo after hepatectomy. Furthermore, we calculated the liver volume using CT performed 2-4 wk after PVE. Preoperative patient characteristics and laboratory data were analyzed to identify factors affecting postoperative liver regeneration or hypertrophy rate following PVE.

RESULTS
The remnant liver volume/total liver volume ratio negatively correlated with the liver regeneration rate after hepatectomy ($\rho = -0.850, P < 0.001$). The regeneration rate was significantly lower in patients with an indocyanine green retention rate at 15 min (ICG-R15) of $\geq 20\%$ in the right hepatectomy group but not in the left hepatectomy group. The hypertrophic rate after PVE positively correlated with the regeneration rate after hepatectomy ($\rho = 0.648, P = 0.017$). In addition, the hypertrophic rate after PVE was significantly lower in...
patients with an ICG-R15 ≥ 20% and a serum total bilirubin ≥ 1.5 mg/dL.

CONCLUSION

The regeneration rate after major hepatectomy correlated with hypertrophic rate after PVE. Both of them were attenuated in the presence of impaired liver function.

Key words: Regeneration after hepatectomy; Major hepatectomy; Portal vein embolization; Clinical factors; Hypertrophy

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Little is known about the clinical factors associated with liver regeneration after major hepatectomy. In the present study, the liver regeneration rate after major hepatectomy correlated with the remnant liver volume and hypertrophic rate after portal vein embolization. The regeneration rate after major hepatectomy and hypertrophic rate after portal vein embolization were attenuated in the presence of impaired liver function.

Kageyama Y, Kokudo T, Amikura K, Miyazaki Y, Takahashi A, Sakamoto H. Impaired liver function attenuates liver regeneration after hepatectomy; Portal vein embolization; Clinical factors; Hypertrophy. World J Hepatol. 2016; 8(28): 1200-1204. Available from: URL: http://www.wjgnet.com/1948-5182/full/v8/i28/1200.htm DOI: http://dx.doi.org/10.4254/wjh.v8.i28.1200

INTRODUCTION

Curative resection is the most effective treatment for liver cancer[1]. Although resection-related mortality and morbidity have substantially decreased in recent years, the postoperative mortality rate remain to be as high as 1%-5%[2-7]. The capacity of hepatic regeneration after hepatectomy and the hypertrophic rate after portal vein embolization (PVE) are important for allowing surgeons to determine the appropriate extent of resection[8-11]. Better regeneration after hepatectomy and liver hypertrophy after PVE may prevent posthepatectomy complications, including hepatic failure[12,13]. Little is known about preoperative clinical factors influencing postoperative liver regeneration.

The aim of this study was to clarify the relationship between preoperative clinical factors and the regenerative capacity of the remnant liver after hepatectomy. Furthermore, we examined the relationship between the regeneration rate after hepatectomy and hypertrophic rate after PVE and clinical factors that affect the hypertrophic rate after PVE.

MATERIALS AND METHODS

Liver volume analysis

A total of 63 patients who underwent major hepatectomy in the Division of Gastroenterological Surgery, Saitama Cancer Center, between January 2012 and August 2015 were included in the analysis. The liver volume was measured using enhanced computed tomography (CT) images taken before and approximately 3-6 mo after hepatectomy[14]. For volumetric analysis, a three-dimensional image analysis software was used (SYNAPSE VINCENT; Fuji Medical Systems, Tokyo, Japan). The regeneration rate was calculated as follows: (liver volume after hepatectomy/estimated remnant liver volume before hepatectomy) × 100] - 100 (%). The indications for PVE were determined by the balance between the indocyanine green fractional disappearance rate (ICG-K) and the volumetric ratio of the future remnant liver volume. PVE was performed in patients whose values were estimated as follows: (ICG-K) × (remnant liver volume/total liver volume) < 0.05[23]. The liver volume after PVE was calculated using enhanced CT images taken 2-4 wk after PVE. The hypertrophic rate after PVE was estimated as follows: [(remnant liver volume after PVE/remnant liver volume before PVE) × 100] - 100 (%). Preoperative patient characteristics and laboratory data, including platelet count, total bilirubin, and indocyanine green retention rate at 15 min (ICG-R15), were analyzed to identify factors affecting postoperative liver regeneration. For the measurement of ICG-R15, Indocyanine green (Diagnogreen, Daiichi-Sankyo, Tokyo, Japan) was administered at dose of 0.5 mg/kg by the antecubital vein of the opposite arm. Then, venous peripheral blood samples were collected every 5 min for 15 min to measure the ICG absorbance. ICG-K and ICG-R15 were calculated by fitting the serum disappearance curve by a single-exponential decay equation.

Statistical analysis

Statistical analysis was performed using the JMP 11 software (SAS Institute, Inc., Cary, NC). Categorical variables were analyzed using the Wilcoxon rank sum test. Correlations between two parameters were examined by calculating the Spearman’s rank correlation coefficient. A 2-tailed P value of < 0.05 was considered statistically significant.

RESULTS

Liver regeneration after hepatectomy

Among the 63 patients, 42 were men and 21 were women, with a mean age of 68.1 years (range: 45-89 years). The diseases indicating the need for hepatectomy were metastatic liver carcinoma (n = 31), intrahepatic cholangiocarcinoma (n = 14), hilar cholangiocarcinoma (n = 10), hepatocellular carcinoma (n = 4), gallbladder carcinoma (n = 2), hemangioma (n = 1), and neuroendocrine tumor (n = 1). A total of 22 patients had background liver diseases, including chronic viral hepatitis (n = 6), alcoholic hepatitis (n = 1), and obstructive jaundice (n = 15). Preoperative chemotherapy within 6 mo was performed in 18 patients and 13 patients underwent preoperative PVE. The operative procedures
performed in the 63 patients included right hepatectomy or extended right hepatectomy (n = 26), left hepatectomy or extended left hepatectomy (n = 32), right trisegmentectomy (n = 3), and left trisegmentectomy (n = 2). The median remnant liver volume/total liver volume ratios after right hepatectomy and extended right hepatectomy, left hepatectomy and extended left hepatectomy, right trisegmentectomy, and left trisegmentectomy were 42.5%, 68.4%, 26.2% and 40.3%, respectively. Their median regeneration rates were 65.6%, 25.7%, 138.1% and 101.2%, respectively. The remnant liver volume/total liver volume ratio negatively correlated with the regeneration rate after hepatectomy ($\rho = -0.850$, $P < 0.0001$; Figure 1).

Factors associated with liver regeneration
Because the liver regeneration rates were significantly different between the patients who underwent right hepatectomy or extended right hepatectomy (right hepatectomy group) and left hepatectomy or extended left hepatectomy (left hepatectomy group), we analyzed these two groups separately. In the right hepatectomy group, regeneration rate was significantly lower in patients with an ICG-R15 of $\geq 20\%$. It was not associated with platelet count, total bilirubin, diabetes mellitus, viral hepatitis, obstructive jaundice, or preoperative chemotherapy. The ICG-R15 value negatively correlated with liver regeneration rate in the right hepatectomy group ($\rho = -0.477$, $P = 0.014$; Figure 2). In the left hepatectomy group, no factor was associated with the regeneration rate (Table 1). In the 13 patients who underwent preoperative PVE, the median hypertrophic rate was 32.2% (range: 2.7%-58.3%). The hypertrophic rate positively correlated with the regeneration rate after hepatectomy ($\rho = 0.648$, $P = 0.017$; Figure 3). The hypertrophic rate was significantly lower in patients with an ICG-R15 of $\geq 20\%$ and total bilirubin of ≥ 1.5 mg/dL (Table 2).

DISCUSSION
Our study demonstrated that the liver regeneration rate was significantly lower in patients with an ICG-R15 of $\geq 20\%$ in the right hepatectomy group, but not in the left hepatectomy group. The hypertrophic rate after PVE positively correlated with the regeneration rate after hepatectomy. In addition, the hypertrophic rate after PVE was significantly lower in patients with an ICG-R15 of $\geq 20\%$ and a serum total bilirubin of ≥ 1.5 mg/dL.

Although several studies reported factors affecting liver regeneration after hepatectomy, the factors vary among studies. Yamanaka et al$^{[16]}$ reported that the extent of resection and impaired liver function were associated with the liver regeneration, whereas Ogata et al$^{[17]}$ reported that serum hyaluronan was a predictor of liver regeneration in patients with hepatocellular carcinoma. In living-donor liver transplantation, remnant liver volume$^{[18]}$, sex$^{[19]}$, and age$^{[20]}$ have been reported to be associated with liver regeneration. Aoki et al$^{[21]}$ reported that sex and alanine aminotransferase values were associated with liver regeneration in the early phase, and the final regeneration rate was associated with the ratio of re-
Our study demonstrated the correlation between the hypertrophic rate after PVE and liver regeneration rate after hepatectomy. The hypertrophic rate positively correlated with the regeneration rate, and regeneration rate after major hepatectomy and hypertrophic rate after PVE were attenuated in the presence of impaired liver function. In conclusion, the regeneration rate after major hepatectomy correlated with the remnant liver volume and hypertrophic rate after PVE. The regeneration rate after right hepatectomy and hypertrophic rate after PVE were attenuated in the presence of impaired liver function.

COMMENTS

Background
Although resection-related mortality and morbidity have substantially decreased in recent years, the postoperative mortality rate has remained as high as 1%-5%. Portal vein embolization (PVE) is proposed to induce hypertrophy of the anticipated liver remnant to reduce such complications. The capacity of hepatic regeneration after hepatectomy and the hypertrophic rate after PVE are important for allowing surgeons to determine the appropriate extent of resection. Better regeneration after hepatectomy and liver hypertrophy after PVE may prevent posthepatectomy complications, including hepatic failure.

Research frontiers
Little is known about preoperative clinical factors influencing postoperative liver regeneration and liver hypertrophy after PVE.

Innovations and breakthroughs
In this study, the relationship between preoperative clinical factors and the regenerative capacity of the remnant liver after hepatectomy were clarified. Furthermore, the authors examined the relationship between the regeneration rate after hepatectomy and hypertrophic rate after PVE and clinical factors that affect the hypertrophic rate after PVE.

Applications
This study suggests that the regeneration rate after major hepatectomy correlated with the remnant liver volume and hypertrophic rate after PVE, and the
regeneration rate after right hepatectomy and hypertrophic rate after PVE were attenuated in the presence of impaired liver function.

Terminology
PVE: A procedure in the preoperative treatment of patients selected for major hepatic resection. PVE is performed via either the percutaneous transhepatic or the transhepatic route and is usually reserved for patients whose future liver remnants are too small to allow resection.

Peer-review
The manuscript is an interesting one. The authors, using 63 patients who underwent major hepatectomy and 13 patients who underwent portal vein embolization, calculated regeneration rate correlated with the remnant liver volume. In conclusion, they found that the regeneration rate after right hepatectomy and the hypertrophic rate after PVE were attenuated in the presence of impaired liver function. It is a well-written and presented manuscript.

REFERENCES

1. Venook AP. Treatment of hepatocellular carcinoma: too many options? J Clin Oncol 1994; 12: 1323-1334 [PMID: 8201395]
2. Wei AC, Tung-Ping Poon R, Fan ST, Wong J. Risk factors for perioperative morbidity and mortality after extended hepatectomy for hepatocellular carcinoma. Br J Surg 2003; 90: 33-41 [PMID: 12520572 DOI: 10.1002/bjs.4018]
3. Belghiti J, Hiramatsu K, Benoist S, Massault P, Sauvanet A, Farges O. Seven hundred forty-seven hepatectomies in the 1990s: an update to evaluate the actual risk of liver resection. J Am Coll Surg 2000; 191: 38-46 [PMID: 10898182 DOI: 10.1016/S1072-7515(00)00261-1]
4. Gomez M, Malik HZ, Bonney GK, Wong V, Tooood GJ, Lodge JP, Prasad KR. Steatosis predicts postoperative morbidity following hepatic resection for colorectal metastasis. Br J Surg 2007; 94: 1395-1402 [PMID: 17607707 DOI: 10.1002/bjs.5820]
5. Kaneko K, Shirai Y, Wakai T, Yokoyama N, Akazawa K, Hatakeyama K. Low preoperative platelet counts predict a high mortality after partial hepatectomy in patients with hepatocellular carcinoma. World J Gastroenterol 2005; 11: 5888-5892 [PMID: 16270404 DOI: 10.3748/wjg.v11.i37.5888]
6. Mullen JT, Ribiero D, Reddy SK, Donadon M, Zorzi D, Gautham S, AbdallaEK, Curley SA, Capussotti L, Clary BM, Vauthey JN. Hepatic insufficiency and mortality in 1,059 noncirrhotic patients undergoing major hepatectomy. J Am Coll Surg 2007; 204: 854-862 [PMID: 17481498 DOI: 10.1016/j.jamcollsurg.2006.12.032]
7. Balzan S, Belghiti J, Farges O, Ogata S, Sauvanet A, Delefosse D, Durand F. The “50-50 criterion” on postoperative day 5: an accurate predictor of liver failure and death after hepatectomy. Ann Surg 2005; 242: 824-828, discussion 828-829 [PMID: 16327492 DOI: 10.1097/01.sla.0000189131.90876.9e]
8. Okamoto E, Kyo A, Yamanaka N, Tanaka N, Kuwata K. Prediction of the safe limits of hepatectomy by combined volumetric and functional measurements in patients with impaired hepatic function. Surgery 1984; 95: 586-592 [PMID: 6324403]
9. Yamanaka N, Okamoto E, Kuwata K, Tanaka N. A multiple regression equation for prediction of posthepatectomy liver failure. Ann Surg 1984; 200: 658-663 [PMID: 6486915 DOI: 10.1097/00000658-198411000-00018]
10. Shimada M, Matsumata T, Maeda T, Itasaka H, Suehiro T, Sugimachi K. Hepatic regeneration following right lobectomy: estimation of regenerative capacity. Surg Today 1994; 24: 44-48 [PMID: 8054774 DOI: 10.1007/BF01676884]
11. Kubota K, Makuuchi M, Kusaka K, Kobayashi T, Miki K, Hasegawa K, Hariraha Y, Takayama T. Measurement of liver volume and hepatic functional reserve as a guide to decision-making in resectional surgery for hepatic tumors. Hepatology 1997; 26: 1176-1181 [PMID: 9362359]
12. Aoki T, Imamura H, Hasegawa K, Matsukawa A, Sano K, Sugawara Y, Kokudo N, Makuuchi M. Sequential preoperative arterial and portal venous embolization in patients with hepatocellular carcinoma. Arch Surg 2004; 139: 766-774 [PMID: 15249411 DOI: 10.1001/archsurg.139.7.766]
13. Di Stefano DR, de Baere T, Denys A, Hakime A, Gorin G, Gillet M, Saric J, Trillaud H, Petit P, Bartoli JM, Elias D, Delpero JR. Preoperative percutaneous portal vein embolization: evaluation of adverse events in 188 patients. Radiology 2005; 234: 625-630 [PMID: 15591428 DOI: 10.1148/radiol.2342031996]
14. Aoki T, Imamura H, Matsuyama Y, Kishi Y, Kobayashi T, Sugawara Y, Makuuchi M, Kokudo N. Convergence process of volumetric liver regeneration after living-donor hepatectomy. J Gastrointest Surg 2011; 15: 1594-1601 [PMID: 21710329 DOI: 10.1007/s11605-011-1590-x]
15. Okochi O, Kaneko T, Sugimot o H, Inoue S, Takeda S, Nakao A. ICG pulse spectrophotometry for perioperative liver function in hepatectomy. J Surg Research 2002; 103: 109-113 [PMID: 11855925 DOI: 10.1006/jshr.2001.6328]
16. Yamanaka N, Okamoto E, Kawamura E, Kato T, Oryiama T, Fujimoto J, Furukawa K, Tanaka T, Tomoda F, Tanaka W. Dynamics of normal and injured human liver regeneration after hepatectomy as assessed on the basis of computed tomography and liver function. Hepatology 1993; 18: 79-85 [PMID: 8392029 DOI: 10.1002/hep.1840018114]
17. Ogata T, Okuda K, Ueno T, Saito N, Aoyagi S. Serum hyaluronan as a predictor of hepatic regeneration after hepatectomy in humans. Eur J Clin Invest 1999; 29: 780-785 [PMID: 10469166 DOI: 10.1046/j.1365-2362.1999.00513.x]
18. Marcos A, Fisher RA, Ham JM, Shiffman ML, Sanyal AJ, Luketic VA, Sterling RK, Fulcher AS, Pounier PM. Liver regeneration and function in donor and recipient after right lobe adult to adult living donor liver transplantation. Transplantation 2000; 69: 1375-1379 [PMID: 10798757 DOI: 10.1097/00007890-200004150-00028]
19. Pomfret EA, Pompomeli JJ, Gordon FD, Erbay N, Lyn Price L, Lewis WD, Jenkins RL. Liver regeneration and surgical outcome in donors of right-lobe liver grafts. Transplantation 2003; 76: 5-10 [PMID: 12865779 DOI: 10.1097/01.TP.0000079064.08263.3E]
20. Yokoi H, Isaji S, Yamagiwa K, Tabata M, Sakurai H, Usubi M, Mizuno S, Uemoto S. Donor outcome and liver regeneration after right-lobe graft donation. Transpl Int 2005; 18: 915-922 [PMID: 16008740 DOI: 10.1111/j.1392-2277.2005.00158.x]

P- Reviewer: Chiu KW, Qin JM, Sazci A, Zhang X S- Editor: Qiu S L- Editor: A E- Editor: Li D
