Keys factors influencing multidrug-resistant tuberculosis: A Mixt Effects Modelling Study in Burundi

Arnaud IRADUKUNDA, BSc, MD (c)¹, ², ³*, Gabin-Pacifique NDAYISHIMIYE ,BSc², Darlene SINARINZI, BSc²,Emmanuel Nene Odjidja , MSc³, ⁴, Nestor NTAKABURIMVO ,BSc², ⁵, Innocent SHIMIRIMANA,MD¹ and Cheilla IZERE , MSc ⁶

¹ Department of Medicine, University of Burundi, PB1550, Bujumbura, Burundi
² Department of Statistics, Lake Tanganyika University, PB 5304, Mutanga, Burundi
³ Monash University, Australia
⁴ Royal Society of Tropical Medicine and hygiene, 303-306 High Holbon, London, UK
⁵ Department of Computer Mathematics, Clermont Auvergne University, PB 63000, France

* Correspondence: arnaudiradukunda5@gmail.com
Abstract

Background: Tuberculosis is a serious global public health problem, and it is in the top 10 causes of mortality in low and middle income countries. MDR-TB and XDR-TB still being a challenge for clinicians and staff operating in national TB programs. Particularly in sub-Saharan African countries, it particularly coexists with high burden of other infectious and non-communicable diseases, creating a complex public health situation which is difficult to address. Tackling this will require targeted public health intervention based on evidence well defines the at risk population. In this study, using data from two referral anti tuberculosis in Burundi, we model the determinants factors associated with MDR-TB in Burundi.

Methods: Prospective data of a sample of 180 tuberculosis randomly selected from a population of patients admitted in 2019 in two referral anti tuberculosis centres in Burundi: Kibumbu Sanatorium Centre and Bujumbura anti-tuberculosis Center. The associated factors were carried out by fixed and random effect logistic regression. Model performance was assessed by Area under Curve (AUC). Model was internally validated via bootstrapping with 1000 replications. All analysis were conducted in R 3.5.0.

Results: Over 180 participants of the study, 60 patients of them were MDR-TB and 120 were Drug Susceptible. High MDR-TB is observed in patients who lives in rural zone (51.3%), in collective residence (69.2%), in house with more than six people (59.5%), many people who live in the same room (70.0%), in patients with TB treatment history (86.4%) and in diabetics people (66.6%). HIV was 32.3% and 67.7% positive respectively in MDR-TB patients and Drug susceptible patients. More than half of cases (75%) and controls (73.3%) belonged to the age group of ≤ 45 years. The Pearson's Chi-squared test with Yates' continuity correction showed the house’s rooms (p=0.010), People by house (p<0.001), currently workers (p=0.019), MDR-TB close contact (p<0.001), Collective residence (p=0.004), Residence area (p=0.007) and tobacco consumption (<0.001) were not independent with MDR-TB. After modelling using fixed and random effects, Residence (AOR: 1.31, 95% CI: 1.12-1.80), People by house (AOR: 4.15, 95% CI: 3.06-5.39), MDR-TB close contact (AOR: 6.03, 95% CI: 4.01-8.12), History TB treatment (AOR: 2.16, 95% CI: 1.06-3.42), Tobacco consumption (AOR: 3.17, 95% CI: 2.06-5.45) and Diabetes (AOR: 4.09, 95% CI: 2.01-16.79) were statistically associated with MDR-TBs. With 2000 stratified bootstrap replicates, the model had an excellent predictive performance (AUC), accurately predicting 88.15%(95% CI: 82.06%-92.8%) of all observations. Drug susceptible patients with no close contact had the low probability around 10% to develop MDR-TB.

Conclusion: The relatively high prevalence of tuberculosis and associated factors of MDR-TB in Burundi raises a call for concern especially in this context where there exist an equally high burden of chronic diseases, chronic malnutrition, HIV/SIDA and others infectious diseases. Targeting interventions based on these identified factors will allow judicious channel of resources and effective public health planning.
Keys words: Tuberculosis, Multidrug-resistance, random effects, BIC, bootstrap, Burundi

Background

Tuberculosis (TB) is an infectious disease caused by an intracellular pathogen called Mycobacterium tuberculosis (Mtb) [1]. TB still being a serious global public health problem, and it is in the top 10 causes of mortality in low and middle income country. Also, TB is the leading cause of death from a single infectious agent (ranking above HIV/AIDS) [2]. It is known in the world for its magnitude, vulnerability and morbidity factors [1]. Globally, an estimated 10.0 million people felt ill with TB in 2018 [3]. The burden of the disease varies enormously among countries, from fewer than five to more than 500 new cases per 100,000 population per year, and nearly 2 million among HIV-negative people die from the disease [3, 4]. In addition, 251,000 deaths among HIV-positive people [5].

The current antibiotic treatment of active drug-susceptible TB, requires administration of a combination therapy for 6 months, including the first-line drugs rifampin (RIF), isoniazid (INH), pyrazinamide (PZA) and ethambutol (EMB) for 2 months, followed by RIF and INH for 4 months [6]. According to the poor response to the conventional treatment with first-line drugs, Tuberculosis’s treatment is difficult and the cure rates for multidrug-resistant (MDR) tuberculosis are low [4, 7]. Furthermore, about 1.7 billion people are known to be latently infected by mycobacterium tuberculosis with about 10% of them reactivating to active TB in their lifetime [6]. The prevention of latent TB reactivation is also used a long treatment. It consists at least 6 months of INH, or 3 to 4 months of RIF plus INH [1, 8].

In 2018, WHO reported that there were an estimated 484,000 incident cases of MDR/rifampin-resistant (RR) TB cases, including about 378,000 MDR-TB cases and 44,21 (214,000 deaths) [6]. The average proportion of MDR-TB cases with XDR-TB was 6.2%. Poor regimen selection, inadequate drug supply and poor adherence of patients to the 6-months therapy may lead to development of drug-resistant Mtb strains, including multidrug-resistant (MDR-TB: resistant at least to INH and RIF) and extensively-drug-resistant (XDR-TB) strains [9]. MDR-TB and XDR-TB still being a challenge for clinicians and staff operating in national TB programs [10]. Considering the high worldwide prevalence of TB and current increasing burden of COVID-19, recent study showed a mortality much higher than isolated COVID-19 in the patients with dual infection [11, 12].

In the African Region, where the burden of HIV-associated TB is highest, 87% of TB patients had a documented HIV test result. A total of 477,461 TB cases among HIV-positive people were reported, of which 86% were on antiretroviral therapy [1]. According to the SDG of United Nations, the consolidated goal for health is defined as “Promote wellbeing and ensure healthy lives and for all at all ages”. Target3.3, explicitly mentions TB: “By 2030, to end the epidemics of AIDS, tuberculosis, malaria and neglected tropical diseases and combat hepatitis, water-borne diseases and other communicable diseases”. According to the recent study conducted in six sub-Saharan Countries (Central African Republic, Cameroon, Burundi, Democratic Republic of the Congo and Rwanda), 53% presented a mutation in pncA. The frequency of resistance per country ranged Burundi in the third position in with 66% after Rwanda (87%), Democratic Republic of the Congo (68%) [44]. The aim of the present study was to identify key factors influencing MDR among tuberculosis patients and probabilities prediction in order to provide evidence for planning of the targeted programmatic interventions to reduce burden of multidrug-resistant tuberculosis in Burundi.

Arnaud IRADUKUNDA et al
Patients and Methods

Study Area, Study Design and Data sources
Case-control study was conducted with a convenience sample (n=180) participants in Burundi from 1st August 2019 to 15th January 2020. Data used in this study were collected in two referrals anti tuberculosis centres. The sample consisted of all confirmed cases of TB, considering the International Classification of Diseases 10th revision (ICD-10) [1]. Cases were MDR-TB patients who were on treatment at Kibumbu Sanatorium centre and they have been collected from 1st August 2019 to 15th January 2020. Controls smear-positive cases who were on the first line anti-TB and have been collected during study period in Anti-Tuberculosis Centre of Bujumbura.

Population and Sampling methods
Control is defined by a confirmed pulmonary tuberculosis with a positive bacteriologic and negative gen-Xpert MTB/RIF. Our population were stratified in 2 groups in both centres. In each group. Random sampling were done. The minimal size of sample was calculated as below:

\[
n = \frac{Z_{\alpha/2}^2 \times p(1-p) \times \kappa}{d^2}
\]

\(Z_{\alpha/2}\) The normal distribution quintile with 95\% of confidence (1.96), n minimal size sample, \(p\) prevalence of MDR-TB, \(\kappa\): No response rate (10\%) and \(d\) acceptable margin (5\%). As the prevalence of MDR-TB is unknown, a WHO’s estimated value of \(p = 0.03\) was used. According to these parameters, the cases minimal size of the sample is 50 patients. One case out of two (at least) control strategy have been used.

Outcome and Independent Variables
Outcome variable was MDR-TB (Yes/No) and was defined by a confirmed pulmonary tuberculosis with a positive bacteriologic and gen-Xpert MTB/RIF tests. Independent variables are Sex (Men /Women), Age (years), Marital status (Unmarried/Married/Separated), Education level (None/Primary/Secondary/University), Patients residence (Urban/Rural), Collective residence(Yes/No),Work(Yes/No),People by house (6≤/6), Rooms by house (One/Two/Three/Four/Five),People by room(One/Two/Three/Four/Five).TB treatment history(Yes /No), MDR-TB Previous close contact(Yes/No) Tobacco consumption (Yes/No),Alcohol consumption (Yes/No), HIV status(Positive/Negative),Diabetes(yes/No) and , ID and patient’s province as random effects.

Data Management and Analysis
Data analysis were undertaken in different steps: descriptive statistic, binary logistic modelling with fixed and random effects, power predictive of final model and probabilities prediction. MDR-TB associated risk factors were done by logistic regressions .Odds ratios (ORs) at 95\% confidence level for each covariate were calculated to identify predictors of MDR-TB. The risk estimate equation for multiple logistic regression is as follows:
Where \(p \) is outcome realization probability, \(\beta_0 \), intercept, \(\beta_i \) coefficients, \(X_i \), independents variables and \(\varepsilon \) error significant variables on 15% threshold were introduced in multivariate logistic modelling to determine a combined effect on the outcome. Finally, the predictors of the model were manually selected step by step using decreasing method on a 5% threshold. The likelihood ratio test, the score test and the Wald test were used to determine significance of independent variables on the outcome[13]. To select the best model for this study, the Bayesian Information Criterion (BIC) based on adjustment [14-16] were used in a given equation as:

\[
\text{BIC} = p \times \ln(n) - 2 \ln(L)
\]

Where \(p \) model parameters number, \(n \) observations number, and \(L \) refers to the maximum value of the likelihood function of the model. The best model is one with lowest BIC’s value. The relevance of the final model to make prediction was assessed by Pearson residuals test. Receiving Operating characteristics (ROC) and Area under Curve (AUC) were respectively used to compare and evaluate performance and predictive power of the model. Furthermore, the ROC was used to determine the discriminatory performance of the model, determining the false positive and false negative rates. The Mann Whitney statistics method showed that the two distributions were offset: Drug susceptible patients had an average higher scores than MDR-TB people. Each individual’s score was ranked in ascending order. Thus, the AUC which determined the number of observations accurately predicted was calculated. The R software (3.5.0) was used in processing and data analysis, lme4, and forest model packages were also used to carry out results in this study [17]. In validating internal performance of the model, a bootstrapping procedure with 2000 replications was conducted.
Results

Socio-Demographic Characteristics of the Patients

A total 180 respondents, 60 cases and 120 controls in the study (Table 1). The mean age of study’s participant is 36.25±14.17, the youngest was 15 year old and the oldest was 85 years old. Mean age in women and men are respectively 35.78±17.14 and 36.47±12.63. That difference is insignificant (p= 0.784). The median age is 33 years. This study shows that overall prevalence of MDR-TB was 33.3% (95% CI [30.74-59.26]). The table below shows characteristics participants according to the MDR and Drug susceptible profile.

Table 1: Socio-demographics characteristics of participants

Characteristics	Modalities	N	C⁹	Co	P⁺	95% CI	p
Sex	Women	57	19	38	33.3	[21.40-47.06]	0.999
	Men	123	41	82	33.3	[25.09-42.40]	
Age (Years)	<45 Years	133	45	88	33.8	[25.86-42.54]	0.910
	≥45 Years	47	15	32	31.9	[19.09-47.12]	
Education level	None	34	5	29	14.7	[4.95-31.06]	0.057
	Primary	89	34	55	38.2	[28.10-49.11]	
	Secondary	45	18	27	40.0	[25.70-55.67]	
	University	12	3	9	25.0	[5.49-57.19]	
Marital status	Single	63	17	46	26.9	[16.57-39.65]	0.282
	Married	96	37	59	38.5	[28.78-49.03]	
	Separated	21	6	14	28.6	[11.28-52.18]	
Residence	Rural	39	20	19	51.3	[34.78-67.58]	0.007
	Urban	141	40	101	28.4	[21.10-36.57]	
Collective résidence	No	167	51	116	30.5	[23.67-38.13]	0.004
	Yes	13	9	4	69.2	[38.57-90.91]	
With jobs	Yes	148	55	93	37.2	[29.37-45.48]	0.019
	No	32	5	27	15.6	[5.28-32.79]	
People by house	≤6	143	38	105	26.6	[19.54-34.60]	<0.001
	>6	37	22	15	59.5	[42.10-75.25]	
Room by house	One	32	10	22	31.3	[16.12-50.01]	
	Two	88	21	67	23.9	[15.42-34.14]	
	Three	51	25	26	49.0	[34.75-63.40]	<0.010
	Four	7	2	5	28.6	[3.67-70.96]	
	Five	2	2	0	100	[15.81-100.0]	
People by Room	One	10	7	3	70.0	[34.75-93.33]	
	Two	87	23	64	26.4	[17.55-36.98]	
	Three	67	24	43	35.8	[24.47-48.47]	
	Four	13	5	8	38.5	[13.86-68.42]	
	Five	3	1	2	33.3	[0.84-90.57]	
HIV	No	149	50	99	33.5	[26.04-41.74]	0.999
	Yes	31	10	21	32.3	[16.68-51.37]	

Arnaud IRADUKUNDA et al
Table 2: Logistic regressions

Variables	Modalities	N	AOR	95% CI	p
Residence	Urban	141	Reference		
	Rural	39	1.31	[1.12-1.80]	0.020
People per house	≤6	143	Reference		
	>6	37	4.15	[3.06-5.39]	<0.001
MDR-TB close contact	No	160	Reference		
	Yes	20	6.03	[4.01-8.12]	<0.001
History TB treatment	No	148	Reference		
	Yes	32	2.16	[1.06-3.42]	<0.001
Tobacco	No	143	Reference		
	Yes	37	3.17	[2.06-5.45]	<0.001

N: Effective, C: Cases, C*: Control+: Multidrug –resistance proportions

More than half of cases (75%) and controls (73.3%) belonged to the age group of ≤45 years. Men constituted 68.3% of cases and 68.3% of controls. Less than the overall prevalence is observed in young people over 45 years (31.9%), people with no any education level (14.7%) or University(38.2%), single(26.9%) or separated people (28.6%), urban people (28.4%), no workers(15.6%) , Less than six (26.6%) by house , people who lives in the house with one (31.3%) ,two(23.9%) or four (28.6%)rooms ,two people by room(26.4%), in no diabetics people(32.2%) and HIV patients(32.3%). High prevalence are observed in people who lives in rural zone (51.3%),in collective residence (69.2%), in household with more than six people by house (59.5%), one people by room(70.0%),people with TB treatment history(86.4%) and in diabetics people(66.6%).

Inferential analysis

According to the Pearson's Chi-squared test with Yates' continuity correction, MDR-TB is significantly associated with the room’s number by house (p=0.010), People by house (p<0.001), currently workers (p=0.019), MDR-TB close contact (p<0.001), Collective residence (p=0.004), Residence area (p=0.007) and tobacco consumption (<0.001). In contrary, Sex, Age (Years), Diabetes, Education level and People by room were not associated with MDR-TB. Therefore, the table below shows determinants of MDR-TB founded by using logistic regressions with fix and random effects (Table 2).
A saturated equation model was derived from the above multivariate model. After controlling the confounding variables using fixed and random effects, an adjusted odds ratio, their lower and upper bound along with a corresponding p-value were derived. In the adjusted model, the significant associations are showed. Six factors are significantly associated with tuberculosis MDR: Patient residence (OR=1.31; 95% CI=1.12-1.80; p=0.020), people per house (OR=4.15; 95% CI=3.06-5.39; p<0.001), MDR-TB close contact (OR=6.03; 95% CI=4.01-8.12; p<0.001), TB treatment history (OR=2.16; 95% CI=1.06-3.42; p<0.001), Tobacco (OR=3.17; 95% CI=2.06-5.45; p<0.001) and Diabetes (OR=4.09; 95% CI=2.01-6.79; p=0.030). In contrary, some socio-demographics factors as Sex, marital status and Age of participant were not significantly associated. Furthermore, Room by house, collective residence and having work are not significantly associated with MDR-TB. The figures below shows the Area Under Curve and Outliers of our final model.

Figure 1: Area under curve
Figure 2: Cook’s distance

The model predictive power evaluation based 2000 stratified bootstrap replicates and binormal Smoothing showed that the AUC: 88.15% (95% CI: 82.06%-92.8%) which consequently suggest an excellent discrimination (Figure 1). Cook’s distance shows that 3 points (19, 52 and 99) are outliers, it means the influential points are not numerous (Figure 2). Pearson residuals test of ($X^2 = 183.86$, df = 173) was determined with a p-value of 0.272 which shows the model was well adjusted on the observations. A McFadden’s statistic (R^2: 0.346) also indicates that this model has a good fit.

Cross validation and decision tree

In supervised learning, the resubstitution error rate is supposed to indicate the performance of the model when it is employed in the population. However, we know, being estimated on learning data, it is biased. By using K folds method, the cross-validation error rate each group were 0.33,
0.333, 0.133, 0.200, 0.2333 and 0.333 respectively. The mean error which is the best quality estimator than the substitution error rate is 0.2611. The figure 3 below show the pruned classification tree.

![Pruned Classification Tree](image)

Figure 3. Decision tree

In Validation of decision tree using the "Complexity Parameter" and cross validated error, printcp and pltcp functions were used to validate the model. The tree were pruned to avoid any overfitting of the data and the convention is to have a small tree and the one with least cross. Drug susceptible (DS) patients with no close contact had the probability around 10% to develop MDR-TB. That probability is 6% in Urban patients. DS patients with no tuberculosis history treatment had 72% to stay drug susceptible.

Discussion

In this study, we determined the proportions of MDR-TB in different categories of patients and identified main factors associated with MDR-TB. The growing prevalence of MDR-TB strains is a major public health problem globally and in Burundi.

In this study, six main risk factors of MDR-TB are identified. Besides the major biological factors leading the MDR-TB, as the mutation ability, virulence variation and the fitness of drug-resistant mycobacterium TB strains [18]; multivariable logistic regression analysis showed that significant independent factors for the occurrence of MDR-TB variables were: Patients residence, high number of people by house, MDR-TB close contact, TB history treatment, Tobacco consumption and Diabetes was identified as strongest association with MDR-TB, which are consistent with previous study[18,19].

This study showed that patients who had contact with known MDR-TB patients were about 6.03 times more likely to develop MDR-TB than control patients. Similar findings have been reported in previously studies conducted in Africa (Ethiopia) and South America (Peru) [20, 21]. In low-income countries, it can be explained by delays in diagnosis and treatment of MDR-
TB patients than Control patients, especially due to sub-optimal availability of diagnostic and treatment coupled with poor infection prevention measures at health care facility level and at home.

Patients with history of TB treatment had about 2 times the risk to become MDR-TB (AOR: 2.16). This finding was consistent with studies conducted in Central Nepal and South Africa [22, 23]. Around 85% of retreatment TB patients were MDR-TB in our study. Those results are comparable to those found in the previous study conducted in China which show that more than 30% of retreated patients were MDR-TB [18].

In addition, many research showed that MDR-TB was frequently identified in patients with a history of TB treatment, which is also evidenced in this study through a significant statistical association [24-30]. Contrary to this study, findings of other studies reported that HIV was as principal risk factor, with creation of fertile ground to the TB disease. The TB-HIV co-infection rate was 11.67%. This finding is comparable with the estimated prevalence in studies conducted in Ethiopia in 2012 and 2017 [21, 31]. Probably due to the high mortality rate among MDR-TB patients, HIV-positive patients are less among MDR-TB than drug susceptible TB patients. Our findings are contrary to those showed by a study conducted in Europe in which HIV was found to be an independent determinant for MDR-TB [32]. Also, majority of Cases (31.6%) than controls (10.8%) had previous history of TB treatment. Developing MDR-TB depends on type of TB patients during their previous treatment. Similar findings are observed in recent study conducted in Ethiopia in 2020 which showed that MDR-TB is less observed in controls patients (14.4%) than cases patients (91.7%) [33].

According to the poverty in Burundian population with low income and very low index of wellbeing, the current study showed that socio-demographic factors are associated with MDR-TB. Collective residence was significantly associated with the MDR-TB. This is correlated to the findings of multilevel logistic regression which showed that 20 patients with close contact with MDR-TB patients had high risk (6.03 times) to become MDR-TB. Recent study conducted in Ethiopia (2020), Sudan (2012) and Namibia (2019) respectively showed that close contact with known MDR-TB patients was among the determinants factors of MDR-TB [33-35]. As close contact with MDR-TB patients increases in living in the same house hold, the transmission risk of MDR-TB also increases the same house and the many people in the same room. Therefore, health education for TB patients and their family members on TB infection is necessary to control the MDR-TB spread in among household members. Also, in this study education level of patients were not significant associated to MDR-TB (p=0.057) but residence was significantly associated (p=0.007). According to multilevel analysis, patients from rural region, had 1.31 times the risk to develop MDR-TB than urban patients. Those findings are constant with a study conducted in Pakistan which showed the significant association [36]. This risk can be due to high illiteracy in rural’s patients. The last one my cause TB patients to have low skills on TB. It can also delayed health-seeking behavior during the disease occurrence, lead to misuse of treatment and no adherence to the treatments.

The current study showed that living in less roomed house, in particular more than six patients by house had high risk to become MDR-TB. Similar findings are observed in two recent studies conducted in Addis in 2013 and 2019 respectively [37,38]. Knowing the diabetes as public health burden, our study showed that more than half (66.7%) of diabetics patients was MDR-TB and had 4.09 times the risk to develop MDR-TB. No similar findings are observed in a previous study conducted in 2018 in Serbia which didn’t showed no significant association with MDR-TB [39]. However, this study didn’t indicate that Age, sex, education level, marital status, current work, people by room and HIV infection were significantly associated with development of MDR-TB, as several other previous study [40-43]. DS patients with no close contact had the probability around 10% to develop MDR-TB. That probability decrease from
10 % to 6% in Urban patients. DS patients with no tuberculosis history treatment had 72% to stay drug susceptible.

The major strength of this study was inclusion of patients from two national areas, and selecting Cases and Controls based on the result of biological test. Some increasing of the case control study was achieved by increasing the number of controls (two controls were used). Another strength is combining descriptive and inferential statistics, logistic regressions with fix and random effects, Wald test and Pearson's Chi-squared test with Yates' continuity correction. Cross validation and decision tree. Limitations of his study should be noted during interpretation, conclusion, generalisation and policy formulation because it concerned few people for no longer time in two areas in the country. In addition, some information on uses of different substances were not sufficient.

Conclusion

This study showed that MDR-TB was founded 33.3% of participants. Around three quarters of cases (75%) and controls (73.3%) belonged to the age group of ≤45 years. Men constituted more than 60% of cases and controls. High MDR-TB over 50% is observed in people who lives in rural zone, in collective residence, in more than six people per house, one people by room, people with TB treatment history and in diabetics people. According to the Pearson's Chi-squared test with Yates' continuity correction, MDR-TB was significantly associated with the room’s number by house, People per house, currently workers, Collective residence, Residence area and tobacco consumption. Besides the major biological factors leading the MDR-TB, multivariable logistic regression analysis showed that six variables were significantly independent factors for the occurrence of MDR-TB: Patients residence, high number of people by house, MDR-TB close contact, TB history treatment, Tobacco consumption and Diabetes was identified as strongest association with MDR-TB, which are consistent with previous study. Resources in Burundi are scarce, therefore, the tackling the high burden of tuberculosis diseases and its MDR should be based on instituting systems for early detection and prompt treatment especially those identified as high risks.

To our knowledge, no recent study on MDR-TB factors have been carried in Burundi. At the community level, efforts should be channelled towards intensifying innovative and inclusive health promotion aimed at behavioural change in people lifestyle. At the health system, identification of factors could allow those at high risks to be identified early and well-targeted with the needed treatment with good health care services. Finally, provision of term care for those identified with risk factors will depend on not just consistent treatment but also on the overall health systems’ strengthening. This will ensure sustainability and effectiveness of public health interventions aimed at tackling MDR-TB along with other high burden infectious and chronic diseases.
List of Abbreviations

Abbreviations	Full meanings
AIDS	
AOR	Adjusted Odds Ratio
AUC	Area Under Curve
BIC	Bayesian Information Criterion
Mbt	Mycobacterium tuberculosis
HIV	
TB	Tuberculosis
INH	Isoniazid
PZA	Pyrazinamid
EMB	Etambitol
RIF	Rifampicin
MDR	Multidrug resistance
XDR	Extra drug resistance
WHO	World Health Organisation
OR	Odds Ratio
ROC	Receiving Operating Characteristics
Rce	Residence
MTCC	Multidrug resistance close contact
THT	Tuberculosis history treatment

Data Sharing and Statement
The dataset used in this study are available from the corresponding author on reasonable request

Ethics approval and consent to participate
We first submitted the research proposal to the Kamenge Teaching Hospital University and received ethical clearance. Written permission was acquired from ethical committees of the two anti-tuberculosis centres to use theirs dataset for this study. All participants’ responses were promised and have been confidential and will not be shared with anyone other than our investigative team members. Patient data were anonymised and replaced with unique codes in effort to secure patient identity. Participants were not required to take the survey. Informed consent was waived by the ethics committee which approved the study. All methods were carried out in accordance with relevant guidelines and regulations.

Acknowledgment
We would like to thank Kamenge University teaching Hospital, Bujumbura anti tuberculosis center and Sanatorium of Kibumbu for theirs permissions to conduct this study.

Funding
Not Applicable

Disclosure
The authors reports no conflicts of interest in this study.
Consent for Publication
Not Applicable

Author’s declarations
All authors contributed toward data analysis, drafting and critically revising the paper and agree to be accountable all the aspect of the work. Specifically, AI and IS conceptualised and designed the study and wrote the first draft. IS lead and represented the team in study permissions. CI and ENO provided technical support, reviewed the first draft and wrote some sections of the manuscript. NN, GPN and SD lead the data collection and assisted in writing first draft and also provided reviews for subsequent versions of this manuscript. All authors read and approved the final version of this manuscript to submission.

REFERENCES
1. Shirley V M A, Allan DS, Andrezza MD et al. Spatial and temporal analysis of tuberculosis in an area of social inequality in Northeast Brazil, BMC Public Health (2019) 19:873
2. World Health Organization. Global Tuberculosis Report. Geneva: World Health Organization; 2019
3. United Nations General Assembly. Resolution 73/3: Political declaration of the high-level meeting of the General Assembly on the fight against tuberculosis. United Nations; 2018
4. André MK, Georges N, Ginette CMK, et al. Facteurs de risque de la tuberculose multi-résistante dans la ville de Kinshasa en République Démocratique du Congo, PMJ, 2015
5. Treatment Action Group, Stop TB Partnership. Tuberculosis research funding trends 2005–2017.New York: Treatment Action Group; 2018 (http://www.treatmentactiongroup.org/content/tbrd2018 , accessed November 2020)
6. Angelo I, Lanfranco F and Federico G, Drug-Resistant Tuberculosis 2020: Where We Stand, Applied science Journal, 2020.
7. Organisation Mondiale de la Santé. Plan mondial halte à la tuberculose 2011-2015. Geneva.2015 (http://www.stoptb.org/assets/documents/global/plan/stopTB2011_overview_fr.pdf, accessed October 2020)
8. Zenner D, Beer N, Harris R J, et al., Treatment of Latent Tuberculosis Infection: An Updated Network Meta-analysis. Ann. Intern. Med. 2017, 67, 248–255
9. Nahid P, Mase SR, Migliori GB, Sotgiu G, Bothamley GH, Brozek JL et al. Treatment of Drug-Resistant Tuberculosis. An Official ATS/CDC/ERS/IDSA Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2019, 200, e93–e142.
10. Giovanni B M, Simon T, Alimuddin Z et al. MDR/XDR TB management of patients and contacts: Challenges facing the new decade. The 2020 clinical update by the Global Tuberculosis Network, International Journal of Infectious Diseases, 2020
11. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020, 382: 1708–1720
12. Khurana AK, Aggarwal D. The (in) significance of TB and COVID-19 co-infection. Eur Respir J 2020, 56: 2002105, (https://doi.org/10.1183/13993003.02105-2020 ,Accessed October 2020)
13. Kamble TS, Kashid DN and Sakate D. Consistent and robust variable selection in regression based on Wald test. Communications in Statistics-Theoretical Methods 2019, 48(8), pp.1981-2000.
14. Josepht P. K and Ame A. Effect of Testing Logistic Regression Assumptions on the Improvement of the Propensity Scores”, Int J Stat Appl., 8(1) (2018) 9-17

Arnaud IRADUKUNDA et al
15. HEINZE G, WALLISCH C and DUNKLER D, “Variable selection – A review and recommendations for the practicing statistician”, Biom J Biom Z., 60(3) (2018) 431-4987
Afrique SCIENCE 15(5) (2019) 74 – 87
16. VERBYLA A P, “A note on model selection using information criteria for general linear models estimated using REML”, Aust N Z J Stat., 61(1) (2019) 39 - 50
17. R Development Core Team, “R: A language and environment for statistical computing”, R Foundation for Statistical Computing, (2016), Vienna, Austria. ISBN 3-900051-07-0, (https://cran.rproject.org/, Accessed, September 29, 2020)
18. Libo Lg, Qunhong W, Lijun G et al, Factors contributing to the high prevalence of multidrug-resistant tuberculosis: a study from China, BMJ 67(7)(2012) :632–8.
19. World Health Organization. Multidrug and Extensively Drug-resistant TB (M/XDRTB): 2010 Global Report on Surveillance and Response. Switzerland, Geneva: World Health Organization, 2010.
20. Brewer TF, Choi HW, Carlos S. Self-Reported Risks for Multiple-Drug Resistance among New Tuberculosis Cases: Implications for Drug Susceptibility Screening and Treatment. PLoS One. 2011, 6(10). Epub 2011 Oct 14.
21. Demelash A, Berhanu S and Lemessa O. Determinants of multidrug-resistant tuberculosis in Addis Ababa, Ethiopia, Infection and Drug Resistance: 10 (2017) 209–213
22. Marahatta SB, Kaewkungwal J, Ramasoota P, Singhasivanon P. Risk factors of multidrug resistant tuberculosis in central Nepal. Kathmandu Univ Med J (KUMJ). 2010, 8(32):392–397.
23. Andrews JR, Shah NS, Weissman D, Moll AP, Friedland G, Gandhi NR. Predictors of multidrug- and extensively drug-resistant tuberculosis in a high HIV prevalence community. PLoS One. 2010, 5(12):1–6.
24. Mekonnen F, Tessema B, Moges F, Gelaw A, Eshetie S, and Kumera G. Multidrug resistant tuberculosis: prevalence and risk factors in districts of Metema and West Armachiho, Northwest Ethiopia, BMC Infectious Diseases, vol. 15, no. 1, p. 461, 2015.
25. Kebede G, Alebachew.Z, Tsegaye F et al. The first population-based national tuberculosis prevalence survey in Ethiopia, 2010-2011, Be International Journal of Tuberculosis and Lung Disease, vol. 18, no. 6, pp. 635–639, 2014.
26. Tessema B, Beer J, Emmrich F, Sack U and Rodloff A C. First- and second-line anti-tuberculosis drug resistance in Northwest Ethiopia, Be International Journal of Tuberculosis and Lung Disease, vol. 16, no. 6, pp. 805–811, 2012.
27. WHO, Towards Universal Access to Diagnosis and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis by 2015, World Health Organization, Geneva, Switzerland, 2015.
28. Adane K, Amenì G, Bekele S, Abebe M, and Aseffa A. Prevalence and drug resistance profile of Mycobacterium tuberculosis isolated from pulmonary tuberculosis patients attending two public hospitals in East Gojjam zone, Northwest Ethiopia,” BMC Public Health, vol. 15, no. 1, p. 572, 2015.
29. Maru M, Mariam S H, Airgecho T, Gadissa E, and Aseffa A. Prevalence of tuberculosis, drug susceptibility testing, and genotyping of mycobacterial isolates from pulmonary tuberculosis patients in Dessie, Ethiopia, Tuberculosis Research and Treatment, vol. 2015, Article ID 215015, 10 pages, 2015.

Arnaud IRADUKUNDA et al
30. Kibriti M, Tsehay A, Haftamu H, et al., Prevalence and Factors Associated with Multidrug-Resistant Tuberculosis (MDR-TB) among Presumptive MDR-TB Patients in Tigray Region, Northern Ethiopia, Canadian Journal of Infectious Diseases and Medical Microbiology. Vol.2019: 2019: 2923549.

31. Federal Ministry of Health of Ethiopia. Guidelines for Clinical and Programmatic Management of TB, TB/HIV and Leprosy in Ethiopia. 5th ed. Addis Ababa, Ethiopia: Federal Ministry of Health of Ethiopia, 2013.

32. Faustini A, Hall AJ, Perucci C A. Risk factors for multidrug resistant tuberculosis in Europe: a systematic review. Thorax. 2006, 61 (2):158–163.

33. Daniel.B, Endrias.M.W, Determinants of Drug-Resistant Tuberculosis in Southern Ethiopia: A Case–Control Study, Infection and Drug Resistance, Vol 2020: 13 Pages1823-1829.

34. Philip MRF H, Surbhi MO, Rosalia IN, Abbas ZE, Lauren AL. Multidrug-resistant tuberculosis in Namibìa. BMC Infect Dis. 2012, 12. doi :10.1186/1471-2334-12-166

35. Elduma AH, Mansournia MA, Foroushani AR, et al. Assessment of the risk factors associated with multidrug-resistant tuberculosis in Sudan: a case-control study. Epidemiol Health. 2019,41:e2019014.doi:10.4178/epih.e2019014

36. Ahmad AM, Akhtar S, Hasan R, Khan JA, Hussain SF, Rizvi N. Risk factors for multidrug-resistant tuberculosis in urban Pakistan: a multicenter case-control study. Int J Mycobacteriol. 2012, 1(3):137–142. doi:10.1016/j.ijmyco.2012.07.007

37. Hirpa S, Medhin G, Girma B, et al. Determinants of multidrug-resistant tuberculosis in patients who underwent first-line treatment in Addis Ababa: a case control study. BMC Public Health. 2013, 13:782. doi: 10.1186/1471-2458-13-782

38. Abdulhalik W, Wondwosen K, Fessahaye A. Risk factors for multidrug-resistant tuberculosis among tuberculosis patients: a case-control study. Infect Drug Resist. 2017, 10:10 91–96.

39. Maja S, Dejana V, Dragan B, Gordana A, Kristie L F, Isidora V et al. Risk factors for multidrug-resistant tuberculosis among tuberculosis patients in Serbia: a case-control study, BMC Public Health (2018) 18:1114

40. Kibret KT, Moges Y, Memiah P, Biadgilign S. Treatment outcomes for multidrug-resistant tuberculosis under DOTS-plus: a systematic review and meta-analysis of published studies. Infect Dis Poverty. 2017, 6(1):7.

41. Workicho A, Kassahun W, Alemseged F. Risk factors for multidrug-resistant tuberculosis among tuberculosis patients: a case-control study. Infect Drug Resist. 2017, 10:91–6.

42. Lv XT, Lu XW, Shi XY, Zhou L. Prevalence and risk factors of multi-drug resistant tuberculosis in Dalian. China J Int Med Res. 2017, 45(6):1779–86.

43. Zhao JN, Zhang XX, He XC, Yang GR, Zhang XQ, Xin WG, Li HC. Multidrug resistant tuberculosis in patients with chronic obstructive pulmonary disease in China. PLoS One. 2015,10(8):e0135205.
44. Daneau G, Gumugboga M, De Rijk P, Trebcq A, Rigouts L, Van Deun A, De Jong B C, The majority of patients with multidrug-resistant tuberculosis in sub-Saharan Africa present a concomitant resistance to pyrazinamide, International Journal of Microbiology, IJMYCO 475,7 (2016) No. of Pages 2