INVITED REVIEW ARTICLE

New treatment paradigm with systemic therapy in intermediate-stage hepatocellular carcinoma

Masatoshi Kudo

Received: 28 February 2022 / Accepted: 24 March 2022 / Published online: 8 May 2022
© The Author(s) 2022

Abstract
Since the approval of sorafenib for the treatment of unresectable hepatocellular carcinoma in 2007 (in 2009 in Japan), five more regimens have been approved: lenvatinib, and atezolizumab plus bevacizumab for first-line treatment, and regorafenib, cabozantinib, and ramucirumab for second-line treatment, which are currently available for clinical use. The positive results of durvalumab, a programmed cell death ligand 1 antibody, plus tremelimumab, an anti-cytotoxic T-lymphocyte-associated protein 4 antibody, were also presented at the 2022 American Society Clinical Oncology Gastrointestinal Cancers Symposium as superior to sorafenib in prolonging the overall survival; this combination is expected to be approved by the end of 2022. These systemic therapies are changing the treatment paradigm not only for advanced hepatocellular carcinoma but also for intermediate-stage hepatocellular carcinoma. This review focuses on the role of systemic therapy in intermediate-stage hepatocellular carcinoma.

Keywords Hepatocellular carcinoma • Systemic therapy • Molecular targeted therapy • Immune checkpoint inhibitors • Immune microenvironment

Abbreviations
PD-L1 Programmed cell death ligand 1
CTLA-4 Cytotoxic T-lymphocyte-associated protein 4
ASCO American society of clinical oncology
HCC Hepatocellular carcinoma
OS Overall survival
CR Complete response
AE Adverse event

Introduction
In Japan, the approval of sorafenib in 2009 marked a new era in the treatment of hepatocellular carcinoma (HCC) [1, 2]. However, many phase III clinical trials had failed to show survival benefit as first- and second-line treatments for advanced HCC [3–21](Table 1). Subsequently, several drugs were eventually approved for use as HCC treatment every year since 2017 [22–27], such as regorafenib in 2017 [24] lenvatinib in 2018 [22], ramucirumab in 2019 [26], and the atezolizumab plus bevacizumab combination in 2020 [25]. Currently, three regimens (sorafenib, lenvatinib, atezolizumab plus bevacizumab) are used as first-line treatment, and another three regimens (regorafenib, ramucirumab, cabozantinib) are used as second-line treatment. In addition, positive results for the combination of the programmed cell death ligand 1 (PD-L1) antibody durvalumab plus the anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) antibody tremelimumab showing overall survival (OS) benefit to sorafenib and the non-inferiority of durvalumab to sorafenib were presented at 2022 American Society Clinical Oncology Gastrointestinal Cancers Symposium (ASCO-GI 2022) [28], and this combination therapy is expected to be approved by the end of 2022. In addition, positive results of KEYNOTE-394 conducted in Asia was presented at ASCO-GI [29]. Also, interim analysis of COSMIC-312 was presented at ESMO-Asia, but trial is still ongoing [30]. Currently, the biggest challenge is to determine “in what order and to what patients these drugs should be administered” [31–37] (Fig. 1). In addition, clinical trials of immunotherapy are currently underway not only for the advanced stage but also for the early and intermediate stages, and the future development of HCC drug therapy is also attracting much attention [27].
TACE refractoriness was quickly implemented in other centers and then updated in 2014 [42]. Since then, the concept of “TACE refractoriness” was initially proposed in Japan in 2011 [41]. TACE refractoriness will be a challenging problem. In particular, the concept of “TACE refractoriness” was initially proposed in Japan in 2011 [41] and then updated in 2014 [42]. Since then, the concept of TACE refractoriness was quickly implemented in other centers.

Role of systemic therapy in intermediate stage HCC

Concept of TACE refractoriness

Currently, the most drastic paradigm change is the treatment strategy for intermediate-stage HCC. Intermediate-stage HCC is defined as the presence of multiple HCC nodules based on the AASLD and EASL guidelines [38, 39], and the only recommended treatment used to be TACE. In the 2017 edition of the Japan Society of Hepatology’s Clinical Practice Guidelines for Hepatocellular Carcinoma, the recommended treatment for 4 or more multiple HCCs or large HCCs of larger than 3 cm includes resection, hepatic arterial infusion chemotherapy, and molecular targeted therapy in addition to TACE [40]. In particular, the concept of “TACE refractoriness” was initially proposed in Japan in 2011 [41] and then updated in 2014 [42]. Since then, the concept of TACE refractoriness was quickly implemented in other centers.

Table 1 Phase 3 Trials of Systemic Therapy for HCC

Target Population	Design	Trial number	Trial name	Result	Presentation	Publication	1st author
First line							
1. Sorafenib vs Placebo	NCT0105443	S-MAP Asia-Pacific	Positive	ASCO 2007	JCO 2008	NEJM 2006	Cheng JM (1)
2. Sorafenib vs Placebo	NCT00492752		Positive	ASCO 2008	Lancet-O 2009		Cheng AL (2)
3. Sorafenib vs Erlotinib	NCT0091818	SEARCH	Negative	ASCO 2012	JCO 2013		Zhi AX (3)
4. Sorafenib vs Erlotinib	NCT0091818	BRISK-FI	Negative	AASLD 2012	JCO 2013		Johnson PJ (4)
5. Sorafenib vs Erlotinib	NCT0091818	LIGHT	Negative	ASCO-GI 2013	JCO 2015		Capan C (5)
6. Sorafenib vs Erlotinib	NCT0091818	CALGB 80202	Negative	ASCO-GI 2016	JAMA Oncol 2019		Kudo M (6)
7. Sorafenib vs Erlotinib	NCT0105633	SORAMIC	Negative	EASL 2016	Lancet GH 2018		Vignani V (7)
8. Sorafenib vs Erlotinib	NCT0105633	SARAH	Negative	EASL 2017	Lancet-O 2017		Chow PS (8)
9. Sorafenib vs Erlotinib	NCT0105633	REGENT	Negative	ASCO 2017	JCO 2018		
10. Sorafenib vs Erlotinib	NCT0105633	TACE-2	Negative	ESMO Asia 2019	NEJM 2020		
Advanced							
11. Sorafenib vs Nivolumab	NCT01171266	REFLECT	Positive	ASCO 2017	Lancet 2017		
12. Sorafenib vs Nivolumab	NCT02576509	CheckMate-459	Negative	ASCO-GI 2019	Lancet-O 2021		
13. Sorafenib vs Nivolumab	NCT0126645	SORAMIC	Negative	ASMO 2016	J Hepatol 2019		
14. Sorafenib vs Atezolizumab + Bevacizumab	NCT03343479	IMbrave150	Positive	ESMO Asia 2020	RESOLVO		
15. Sorafenib vs Durvalumab + Tremelimumab	NCT03341273	Rationale301	Ongoing	ASCO-GI 2019	RESOLVO	NEJM 2020	
16. Sorafenib vs Atezolizumab + Cabozantinib	NCT03341273	CheckMate 900	Ongoing	ASCO-GI 2021	RESOLVO		
17. Sorafenib vs Tislelizumab	NCT03341273	LENVIVO	Ongoing	ASCO-GI 2021	RESOLVO		
18. Lenvatinib vs Sorafenib vs Nivolumab + Ipilimumab	NCT03403967	CheckMate 900	Ongoing	ASCO-GI 2021	RESOLVO		
Second line							
1. Brivanib vs Placebo	NCT00852955	BRISK-FS	Negative	EASL 2012	JCO 2013		
2. Everolimus vs Placebo	NCT01035299	EVOLVE-1	Negative	ASCO-GI 2014	JAMA 2014		
3. Ramucirumab vs Placebo	NCT01140347	REACH	Negative	ASCO 2014	ESMO 2014		
4. S-1 vs Placebo	JapicCTI	S-CUBE	Negative	ASCO 2015	Lancet GH 2017		
5. ADI-PEG 20 vs Placebo	NCT01285585	N/A	Negative	ASCO 2016	Ann Oncol 2018		
6. Regorafenib vs Placebo	NCT01174344	RESOURCE	Positive	WCCG 2016	Lancet 2017		
7. Tivantinib vs Placebo	NCT01755767	METV-111	Negative	ASCO 2017	Lancet-O 2018		
8. Tivantinib vs Placebo	NCT02020157	JET-111	Negative	ESMO 2017	Cancer Sci 2020		
9. OT vs Placebo	NCT01655693	ReLive	Negative	ILCA 2017	Lancet GH 2019		
10. Cabozantinib vs Placebo	NCT01908426	CELESTIAL	Negative	ASCO-GI 2018	NEJM 2018		
11. Ramucirumab vs Placebo	NCT02435433	REACH-2	Negative	ASCO 2019	Lancet-O 2019		
12. Pembrolizumab vs Placebo	NCT02704201	KEYNOTE-240	Negative	ASCO-GI 2022	JCO 2020		
13. Pembrolizumab vs Placebo	NCT02625638	KEYNOTE-394	Negative	ASCO-GI 2022	JCO 2020		
14. Atezolizumab + SORafenib vs SORafenib	NCT04775996	Regorafenib	Ongoing	ASCO-GI 2022	JCO 2020		

Fig. 1 Possible sequential systemic therapy for hepatocellular carcinoma. Both atezolizumab + bevacizumab and durvalumab + tremelimumab will be the first-line systemic therapy. When one regimen is selected, another first line regimen will be selected as second-line regimen since in that way substantial triple regimen (anti-PD-L1 + anti-CTLA-4 + anti-VEGF) will be possible. (Modified from ref# 50)
countries worldwide [43, 44]. In Taiwan, sorafenib was initially approved for use in advanced HCC alone; given that the concept of TACE refractoriness was specified in Japan’s “Consensus-based Clinical Practice Guidelines for the Treatment of HCC” [41, 42], changes were made in Taiwan’s insurance system[45]. Using these criteria for implementing the concept of TACE refractoriness, two retrospective clinical studies showed that “patients who switched to sorafenib as soon as TACE being ineffective” showed longer survival than “patients who continuously repeat TACE after it is not effective”[46, 47]. In the OPTIMIS study [48], a global non-interventional prospective study conducted to validate the results of the retrospective clinical study, clearly showed that switching to molecular targeted therapy at the time of TACE refractoriness was more effective in prolonging the survival [48]. As a result, this “concept of TACE refractoriness and early switch to molecular targeted therapy at that point” has become a global consensus.

Concept of TACE unsuitability

Recently, the concept of “TACE unsuitability” has been proposed in Asia and Japan [49, 50]. This concept refers to the following three conditions: (1) the condition of being susceptible to TACE refractoriness, (2) the condition in which the liver function can easily deteriorate to Child–Pugh class B after receiving TACE, and (3) the condition of resistance to TACE (Table 2). The “Consensus Statement and Recommendation on the treatment strategy for intermediate-stage HCC” was published by the APPLE Expert Panel [49] and the Expert Panel of the Japan Society of Hepatology (HCC Treatment Manual) [50]. A patient who exceeded the up-to-seven criteria is susceptible to TACE refractoriness or to become to Child–Pugh class B. In such cases, lenvatinib is expected to (1) induce tumor necrosis and achieve downstaging, (2) inhibit recurrence by suppressing the release of hypoxia-inducing VEGF as a result of TACE, and (3) normalize the tumor vessels to enhance the effect of TACE when administered before TACE. In fact, LEN-TACE sequential therapy prolongs the prognosis of patients exceeding the up-to-seven criteria, compared with TACE [51]. This LEN-TACE sequential therapy is gradually becoming a common approach for patients in Japan who have TACE unsuitability [52]. Lenvatinib is also effective in patients with TACE-resistant conditions such as confluent multinodular type HCC, and poorly differentiated HCC [53, 54]; TACE is more beneficial in these populations when lenvatinib is introduced before TACE [55]. In fact, the evidence of TACE efficacy was established by conducting a meta-analysis of 6 randomized controlled trials comparing TACE and no therapy [56]. Meanwhile, no comparative trials have performed whether TACE or upfront systemic therapy is superior. In that sense, upfront systemic therapy prior to TACE for TACE-unsuitable patients may be a choice of treatment to achieve complete response (pathological CR) while preserving liver function[52].

The latest AASLD treatment algorithm by the AASLD Expert panel has been revised to include systemic therapy as a treatment option in addition to TACE as the recommended initial treatment for HCC patients with high tumor burden[57]. This means that the concept that was initially proposed in Japan is gradually applied overseas.

Table 2	Definition of TACE failure/refractoriness and TACE unsuitability (cited from ref # [42, 49, 59])
TACE failure/refractoriness	**TACE unsuitability**
(1) Intrahepatic lesion	TACE-unsuitability is defined as each one of the following 3 clinical conditions that prevent a survival benefit from TACE or conditions that TACE is even harmful:
i Two or more consecutive insufficient responses of the treated tumor (viable lesion >50%) even after changing the chemotherapeutic agents and/or reanalysis of the feeding artery seen on response evaluation CT/MRI at 1–3 months after having adequately performed selective TACE	(i) Unlikely to respond to TACE: Confluent multinodular type, massive or infiltrative type, simple nodular type with extranodular growth, poorly differentiated type, intrahepatic multiple disseminated nodules, or sarcomatous changes after TACE
ii Two or more consecutive progressions in the liver (tumor number increases as compared to tumor number before the previous TACE procedure) even after having changed the chemotherapeutic agents and/or reanalysis of the feeding artery seen on response evaluation CT/MRI at 1–3 months after having adequately performed selective TACE	(ii) Likely to develop TACE failure/refractoriness: up-to-7 criteria out nodules
(2) Continuous elevation of tumor markers immediately after TACE even though slight transient decrease is observed	(iii) Likely to become Child-Pugh B or C after TACE: up-to-7 criteria out nodules (especially, biolobar multifocal nodules), mALBI grade 2b
(3) Appearance of vascular invasion	
(4) Appearance of extrahepatic spread	
SORA-TACE sequential therapy

The administration of molecular targeted agents with VEGF inhibitory activity prior to TACE may normalize the tumor blood vessels and increase the microvascular density, tumor interstitial pressure, and vascular permeability, thereby enhancing the efficacy of TACE through improved drug delivery [58]. This is the rationale for combining TACE with molecular targeted agents with VEGF inhibitor. To date, TACE has been used along with different molecular targeted agents in 6 clinical trials, all of which showed negative results except for the TACTICS trial [59]. The primary endpoint was PFS/TTP in TACTICS trial [59], SPACE trial [60], TACE-2 trial [61], and Post-TACE trial [62], but only the TACTICS trial showed positive results, with a PFS HR of 0.59 (95% CI: 0.41–0.78) [59]. The PFS of the BRISK-TA [63] and ORIENTAL [64] trials was also significantly favorable (PFS HR: 0.61, 95% CI: 0.74–0.99 for BRISK-TA; PFS HR: 0.86, 95% CI: 0.74–0.99 for ORIENTAL). However, the primary endpoint of the BRISK-TA trial and the ORIENTAL trial was OS, thus indicating that the trials failed to show its clinical benefit [63, 64]. In terms of OS HRs, the BRISK-TA and ORIENTAL trials, with OS as the primary endpoint, as well as SPACE, TACE-2, and Post-TACE, with OS as the secondary endpoint, showed no significant prolongation of OS as compared with patients treated with TACE alone. However, since the TACTICS trial significantly prolonged the PFS, which was the primary endpoint, the OS result was anticipated, which was the coprimary endpoint. However, the final OS data made available during the ASCO-GI 2021 showed that patients treated with a combination of TACE plus sorafenib had an OS of 36.2 months (95% CI 30.5–44.1), while those with treated with TACE alone had an OS of 30.8 months (95% CI 23.5–40.8, HR 0.86, 95% CI 0.61–1.22; P = 0.40); therefore, the results were considered negative [65]. The factors contributing to this negative result were as follows: (1) 156 patients set as Phase 2 trial were underpowered to meet the OS endpoint and (2) 76.3% of patients in the TACE alone group received post-treatment (50% of whom were treated with sorafenib), resulting in an extremely long post-progression survival (PPS: 17.3 months). However, considering that the OS results were negative despite the longest OS (36.2 months) and ΔOS (5.4 months) among previous combination trials of TACE and a molecular targeted agent, The results clearly showed it is no longer possible to use OS as the primary endpoint in future trials of TACE plus systemic therapy in an era with various many effective post-treatment options [65].

In any case, the results of the TACTICS trial proved that the combination of TACE and molecular targeted agents can prolong the PFS, which is the co-primary endpoint. Considering the correlation between OS HR and PFS HR in the six TACE combination trials to date, the correlation coefficient (r) is 0.56, clearly showing that PFS HR was poorly correlated with OS HR [65]. This result is in contrast to Llovet et al.’s plot of PFS HR and OS HR for primary and second-line agents used in patients with advanced HCC, which shows a moderate correlation coefficient of R=0.84 [57, 66]. In the case of combination therapy with TACE and molecular targeted agents, the impact of PPS prolongation with post-treatment is much stronger than that with first- and second-line treatments for advanced HCC, and the actual impact of PFS on OS is much weaker, which possibly led to the negative results. In addition, the regression line of the correlation of the six trials to date are somewhat smoother than those for advanced HCC, suggesting that the TACE combination trial was more strongly influenced by PPS [65]. In the future, as recently stated in the AASLD guidelines, the PFS [57] or ORR [67] could be used as surrogate end-point for TACE combination trial since PPS has improved and OS can no longer be verified due to the effect of multiple highly effective post-treatment therapies.

The TACTICS trial also showed that (1) PFS and OS prolongation in patients exceeding up-to-seven criteria were superior to those within the up-to-seven criteria, and (2) clinically meaningful PFS and OS prolongation were observed even in patients within the up-to-seven criteria by a combination therapy of TACE and sorafenib [65].

LEN-TACE sequential therapy

Previous studies showed that the use of lenvatinib as initial treatment may be better for improving the prognosis than use of TACE alone in patients who are unsuitable for TACE, such as those with bilobar multiple nodules [52]. In 2019, the Proof-of-Concept study showed that for cases exceeding the up-to-seven criteria, the upfront lenvatinib followed by TACE resulted in a favorable treatment effect [51]. This study included a comparison of the treatment outcomes of 37 patients who received the upfront lenvatinib in TACE-naïve patients who exceeded the up-to-seven criteria as an initial treatment for intermediate-stage HCC and 642 patients who received TACE alone. Of these, 30 patients in the upfront lenvatinib group, excluding 7 patients with observation periods of 6 months or less, were compared with 60 patients in the TACE alone group, whose characteristics were matched by propensity score matching. First, in terms of changes in liver function based on the ALBI scores, TACE caused a more irreversible deterioration in liver function compared with lenvatinib group. The PFS was also significantly longer in the lenvatinib group (16.0 months) compared with that in the TACE alone group (3.0 months) (HR: 0.19, 95% CI
The OS was also clearly better in the lenvatinib-TACE sequential therapy (LEN-TACE sequential therapy) group, with OS of 37.9 months in the LEN-TACE sequential therapy group and 21.3 months in the TACE alone group (HR 0.48, 95% CI 0.16–0.79, P < 0.01). About 70% of the patients in the lenvatinib group received TACE, and four of these patients achieved a complete response and achieved cancer-free, drug-free status (including one patient who was drug free after treatment with lenvatinib alone). Thus, LEN-TACE sequential therapy showed favorable results in patients exceeding the up-to-seven criteria, which were previously extremely difficult to control with TACE alone. Therefore, lenvatinib, which provides a very high response rate, should be used as first-line treatment for intermediate-stage HCC patients exceeding the up-to-seven criteria. The extremely high response rate and preservation of liver function associated with LEN-TACE sequential therapy compared with TACE alone were the main reasons why the LEN-TACE sequential group showed good OS. The response rate of lenvatinib was 40.6% in the REFLECT study, while the response rate was 61.3% in the Japanese patients with intermediate-stage HCC [68]. The response rate in this Proof-of-concept study was 73.3%, which is extremely high. The reason for this high response rate is that many TACE-naïve patients have an ALBI grade 1 liver function, and have fewer adverse events (AEs) and lower rates of dose reduction, and discontinuation; this findings suggest that dose intensity of lenvatinib can be maintained for long time [69]. The high response rate is thought to be due to the following reasons: (1) it induces tumor shrinkage and necrosis, (2) when additional TACE is performed later, superselective TACE has a curative effects and thus preserves the liver function; (3) when lenvatinib is administered as initial treatment, it suppresses the release of hypoxia-inducible VEGF and other cytokines, thereby inhibiting recurrent metastasis; and (4) by normalizing the tumor blood vessels with lenvatinib, the permeability of blood vessels is reduced and the tumor interstitial pressure is lowered, which makes it easier for lipiodol-containing anticancer drugs to spread more evenly in the entire tumor, thereby enhancing the embolization effect and achieving pathological CR. Consequently, the administration of lenvatinib prior to TACE therapy is a theoretically effective treatment for intermediate-stage HCC patients exceeding the up-to-seven criteria, and is now becoming a common treatment strategy for intermediate-stage HCC with a high tumor burden (Fig. 2). The paradigm of the therapeutic strategy for HCC is currently undergoing a major change, as there is little evidence showing the demerits of administering lenvatinib prior to TACE, in patients with a high tumor burden.

For bilobar multiple nodules, the administration of lenvatinib as initial treatment is undoubtedly the most ideal way to achieve a high response rate without deteriorating the liver function. In addition, for large HCCs (5 cm or larger), the amount of lipiodol in a single cTACE is often insufficient, requiring divided sessions of TACE. In addition, DEB-TACE is sometimes performed for patients with large HCC; however, there is often high risk of residual cancer at the tumor margins, or that the VEGF, FGF, angiopoietin-2 will be released, inducing rapid recurrence and metastasis. In both bilobar multiple and large HCC cases, if lenvatinib is administered in advance to normalize the tumor blood vessels, suppress the increase in VEGF expression after TACE, and reduce the residual tumor volume prior to the performance of selective TACE, a very good therapeutic effect can be obtained, and the liver function can be preserved. As a result, lenvatinib is a reasonable treatment for TACE-unsuitable patients who are likely to become refractory to TACE, such as those exceeding the up-to-seven criteria; it has the potential to become the first-line treatment for intermediate-stage HCC patients with a high tumor burden, patients with TACE-resistant HCCs, or patients with poor liver function of modified ALBI grade 2b [70]. Patients with poorly differentiated HCC showed better response to lenvatinib [53, 54]. Lenvatinib is also effective in patients with confluent multinodular type HCC and simple nodular type with extranodal growth. LEN-TACE sequential therapy may be a reasonable and effective treatment strategy for not only patients exceeding the up-to-seven criteria, but also for those with TACE resistant HCCs or with a modified ALBI grade 2b [52, 71](Figs. 2 and 3).

ABC conversion therapy

The atezo+bev combination therapy is a combination regimen that was approved in 2020 based on the positive IMbrave150 trial [23]. The ORR in the intermediate stage was 44% under RECIST 1.1, indicating an extremely high response rate [72].

Of the 102 patients treated with the atezo+bev in a total of 3 institution, 74 have been followed up for more than 12 weeks. Of the 74 patients with a Child–Pugh grade A who were treated with first-line atezo+bev therapy, 24 (32.4%) achieved curative conversion therapy such as resection, ablation or curative TACE (Atezo/Bev followed by curative conversion: ABC conversion), and all were cancer free and drug free. Among the 24 patients, 6 underwent resections, 5 underwent radiofrequency ablation, and 12 underwent curative TACE [71]. As a result, an extremely high curative conversion rate of 32.4% was achieved. Of the 4
patients with PET-positive intermediate-stage HCC, all of 4 had curative conversion (resection 2, ablation 1, TACE plus ablation 1) and achieved cancer free and drug free status (100%) [71]. This finding indicates that atezo+bev, unlike molecular targeted agents, has markedly reduced the tumor size in responders, and it has a strong tumor shrinkage effect even in patients with very aggressive PET-positive HCC such as confluent multinodular type HCC and the poorly differentiated HCC. In some patients who underwent resection, ablation, or curative TACE, it is possible to achieve pathological CR and become drug free (ABC conversion therapy) (Figs. 2 and 3).

In general, it is common practice in the field of oncology to start a systemic therapy and continue the same regimen as long as the patient showed good response. This concept is equally true for advanced HCC as well. However, in case of intermediate-stage HCC without vascular invasion or extra-hepatic spread, when tumor reduction is achieved, ablation and curative TACE are very effective measures in addition to resection to achieve pathological CR [71]; therefore, continuing the systemic therapy is not recommended in case of intermediate-stage HCC. Even if deep tumor shrinkage is achieved with atezo+bev therapy, the possibility of curative conversion at the PR status should be considered. The prognosis in patients who achieve curative conversion is

Table 3 Phase II/III Clinical Trials of Early and Intermediate Stage HCC

Target Population	Design	Registration number	Trial name	Result	Presentation	Publication	1st author
Early Adjuvant (Prevention of recurrence)	1. Vitamin K2 vs Placebo	NCT0165633	N/A	Negative	N/A	Hepatology 2011	Yoshida H (73)
	2. Perhexiline vs Placebo	JapaCT016290	MIK-333	Negative	ASCO 2010	JG 2014	Okita K (74)
	3. Perhexiline vs Placebo	NCT01649086	MIK333K-333	Negative	N/A	N/A	N/A
	4. Sorafenib vs Placebo	NCT0652770	STORM	Negative	ASCO 2014	Lancet-O 2015	Bruix J (75)
	5. Nivolumab (Ph II)	UMIN005026448	NIVOLVE	Ongoing	ASGO-GI 2022	N/A	Kudo M
	6. Nivolumab vs Placebo	NCT03834568	CheckMate 950	Ongoing	N/A	N/A	N/A
	7. Durvalumab +/- Bevacizumab vs Placebo	NCT03974286	EMERALD-2	Ongoing	N/A	N/A	N/A
	8. Pembrolizumab vs Placebo	NCT03867804	KEYNOTE-957	Ongoing	N/A	N/A	N/A
	9. Atezolizumab + Bevacizumab vs Placebo	NCT04102908	Mitrave 050	Ongoing	N/A	N/A	N/A
Improvement of RFA	1. RFA +/- LTLD	NCT06317981	HEAT	Negative	ELOA 2013	N/A	N/A
	2. RFA +/- LTLD	NCT02212659	OPTIMA	Ongoing	COR 2017	N/A	N/A
Intermediate Improvement of TACE	1. TACE +/- Sorafenib	NCT04492399	Post-TACE	Negative	ASCO-GI 2010	EJC 2011	Kudo M (62)
	2. TACE +/- Sorafenib (ge 1)	NCT08255218	SPACE	Negative	ASCO-GI 2012	J Hepatol 2016	Lencioni R (60)
	3. TACE +/- Brivanib	NCT09087532	BRISK-TA	Negative	ELOA 2013	N/A	N/A
	4. TACE +/- Onartib	NCT01465464	ORIENTAL	Negative	EASL 2015	Lancet GH 2017	Kudo M (64)
	5. TACE +/- Sorafenib	NCT10049794	TACE-2	Negative	ASCO 2016	Lancet GH 2017	Meyer T (61)
	6. TACE +/- Sorafenib (ge II)	NCT12197042	TACTICS	Positive	ASCO-GI 2018	Gut 2020	Kudo M (59)
	7. TACE + Durvalumab +/- Bevacizumab vs TACE	NCT03796907	EMERALD-1	Ongoing	Lancet 2016	N/A	N/A
	8. TACE+Lenvatinib +/- Pembrolizumab vs TACE	NCT04261177	LEAP-012	Ongoing	Lancet 2017	N/A	N/A
	9. TACE-Nivolumab +/- Lirilimumab vs TACE	NCT04381932	CheckMate 748	Ongoing	Lancet 2018	N/A	N/A
	10. TACE-Nivolumab vs TACE	NCT04388888	TACE-3	Ongoing	Lancet 2019	N/A	N/A

Fig. 2 Novel treatment strategy for intermediate stage HCC. For intermediate-stage HCC unsuitable for TACE, LEN–TACE sequential therapy or ABC conversion therapy should be applied. In both cases, systemic therapy should be used upfront, and curative treatments such as resection, ablation and curative TACE should be followed to achieve a cancer-free and drug-free status.
extremely good; thus, systemic treatment for intermediate-stage HCC should be a completely different concept from the sequential therapy using multiple effective drugs in advanced HCC.

As mentioned earlier, intermediate-stage HCC patients treated with atezo+bev showed a response rate of 44% [72]. This result indicates that one out of every two patients has the potential to achieve curative conversions. In other words, the response of intermediate-stage HCC patients to atezo+bev therapy is extremely high; if a deep response is achieved, the patient should not continue the drug until PD occurs, but should immediately switch to a curative treatment without hesitation. This is because, as is the case with lenvatinib, it is almost impossible to achieve pathological CR with systemic therapy alone, such as atezo+bev; even if it appears to be CR according to the mRECIST, viable cancer often remains after resection. Hence, curative conversion should therefore be performed. Bevacizumab should not be administered for at least 6 weeks in patients who underwent resection and at least 3 weeks in those who underwent ablation or TACE to provide a such duration between treatments in order to avoid bleeding risk during the procedure. In any case, curative conversion can be achieved in >30% of patients with intermediate-stage (ABC conversion therapy) (Figs. 2 and 3). Incidentally, a difference was observed in the 2 treatment strategies, LEN-TACE sequential therapy and ABC conversion therapy. Atezo+bev was used to achieve tumor shrinkage, while lenvatinib was used to reduce the tumor blood flow and necrosis (Fig. 4).

Therefore, there are several treatment option in treatment strategy of intermediate-stage HCC (Fig. 3).

Future perspective

As shown in Fig. 5, ongoing phase III clinical trials on the efficacy of anti-PD-1/PD-L1 antibodies alone or in combination with anti-VEGF/TKIs or anti-CTLA-4 antibodies are conducted not only in patients with advanced-stage HCC but also in those with intermediate- and early-stage HCC. The results of immunotherapy adjuvant trials are highly anticipated, especially since all previous clinical trials in adjuvant setting have failed (73–75)(Table 3). The positive results for advanced HCC highly suggest
that clinical trials on immunotherapy (+anti-VEGF antibody/TKI) for intermediate- and early-stage HCC will be successful. If this happens, OS in patients with early and intermediate-stage HCC will be dramatically improved.

Data availability N/A.

Declarations

Conflict of interest Lecture: Eisai, Bayer, MSD, BMS, EA Pharma. Eli Lilly, Chugai; Grants: Eisai, Takeda, Otsuka, Taiho, EA Pharma, Gilead Sciences, Abbvie, Sumitomo Dainippon Pharma, Chugai, Ono Pharma; Advisory Consulting: Eisai, Ono, MSD, BMS, Roche.

Ethical statement N/A.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Llovet JM, Ricci S, Mazzaferro V et al (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359(4):378–390
2. Cheng AL, Kang YK, Chen Z et al (2009) Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10(1):25–34
3. Cheng AL, Kang YK, Lin DY et al (2013) Sunitinib versus sorafenib in advanced hepatocellular cancer: results of a randomised phase III trial. J Clin Oncol 31(32):4067–4075
4. Zhu AX, Rosmorduc O, Evans TR et al (2015) SEARCH: a phase III, randomized, double-blind, placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma. J Clin Oncol 33(6):559–566
5. Johnson PJ, Qin S, Park JW et al (2013) Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: results from the randomized phase III BRISK-FL study. J Clin Oncol 31(28):3517–3524
6. Cainap C, Qin S, Huang WT et al (2015) Linifanib versus Sorafenib in patients with advanced hepatocellular carcinoma: results of a randomized phase III trial. J Clin Oncol 33(2):172–179
7. Abou-Alfa GK, Shi Q, Knox JJ et al (2019) Assessment of treatment with sorafenib plus doxorubicin vs sorafenib alone in patients with advanced hepatocellular carcinoma: Phase 3 CALGB 80802 randomized clinical trial. JAMA Oncol 5(11):1582–1588
8. Kudo M, Ueshima K, Yokosuka O et al (2018) Sorafenib plus low-dose cisplatin and fluorouracil hepatic arterial infusion chemotherapy versus sorafenib alone in patients with advanced hepatocellular carcinoma (SILIUS): a randomised, open label, phase 3 trial. The lancet Gastroenterol Hepatol 3(6):424–432
9. Vilgrain V, Pereira H, Assenat E et al (2017) Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. Lancet Oncol 18(12):1624–1636
10. Chow PKH, Gandhi M, Tan SB et al (2018) SIReNIB: selective internal radiation therapy versus Sorafenib in Asia-Pacific patients with hepatocellular carcinoma. J Clin Oncol 36(19):1913–1921
11. Yau T, Park JW, Finn RS et al (2022) Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 549): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol 23(1):77–90
12. Ricke J, Klumpen HJ, Amthauer H et al (2019) Impact of combined selective internal radiation therapy and sorafenib on survival in advanced hepatocellular carcinoma. J Hepatol 71(6):1164–1174
13. Llovet JM, Decaens T, Raoul JL et al (2013) Brivanib in patients with advanced hepatocellular carcinoma who were intolerant to sorafenib or for whom sorafenib failed: results from the randomized phase III BRISK-PS study. J Clin Oncol 31(28):3509–3516
14. Zhu AX, Kudo M, Assenat E et al (2014) Effect of everolimus on survival in advanced hepatocellular carcinoma after failure of sorafenib: the EVOLVE-1 randomized clinical trial. JAMA 312(1):57–67
15. Zhu AX, Park JO, Ryoo BY et al (2015) Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol 16(7):859–870
16. Kudo M, Morimitsu M, Numata K et al (2017) S-1 versus placebo in patients with sorafenib-refractory advanced hepatocellular carcinoma (S-CUBE): a randomised, double-blind, multicentre, phase 3 trial. The lancet Gastroenterol Hepatol 2(6):407–417
17. Abou-Alfa GK, Qin S, Ryoo BY et al (2018) Phase III randomized study of second line ADI-PEG 20 plus best supportive care versus placebo plus best supportive care in patients with advanced hepatocellular carcinoma. Ann Oncol 29(6):1402–1408
18. Rimassa L, Assenat E, Peck-Radosavljevic M et al (2018) Tivantinib for second-line treatment of MET-high, advanced hepatocellular carcinoma (METIV-HCC): a final analysis of a phase 3, randomised, placebo-controlled study. Lancet Oncol 19(5):682–693
19. Kudo M, Morimoto M, Morimitsu M et al (2020) A randomized, double-blind, placebo-controlled, phase 3 study of tivantinib in Japanese patients with MET-high hepatocellular carcinoma. Cancer Sci 111(10):3759–3769
20. Merle P, Blanc JF, Philip JM et al (2019) Doxorubicin-loaded nanoparticles for patients with advanced hepatocellular carcinoma after sorafenib treatment failure (RELIVE): a phase 3 randomised controlled trial. Lancet Gastroenterol Hepatol 4(6):454–465
21. Finn RS, Ryoo BY, Merle P et al (2020) Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma: KEYNOTE-240: a randomized, double-blind, phase iii trial. J Clin Oncol 38(3):193–202
22. Kudo M, Finn RS, Qin S et al (2018) Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet (London, England) 391(10126):1163–1173
23. Finn RS, Qin S, Ikeda M et al (2020) Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med 382(20):1894–1905
24. Bruix J, Qin S, Merle P et al (2017) Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESOURCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet (London, England) 389(10064):56–66
25. Abou-Alfa GK, Meyer T, Cheng AL et al (2018) Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med 379(1):54–63
26. Zhu AX, Kang YK, Yen CJ et al (2019) Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased alpha-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 20(2):282–296
27. Kudo M (2020) Recent advances in systemic therapy for hepatocellular carcinoma in an aging society: 2020 update. Liver Cancer 9:640–662
28. Abou-Alfa GK, Chan SL, Kudo M et al (2022) Phase 3 randomized, open-label, multicenter study of tremelimumab and durvalumab as first-line therapy in patients with unresectable hepatocellular carcinoma: HIMALAYA. ASCO-GI, January 20–22, San Francisco, USA, 2022.
29. Qin S, Chen Z, Fang W et al (2022) Pembrolizumab plus best supportive care versus placebo plus best supportive care as second-line therapy in patients in Asia with advanced hepatocellular carcinoma (HCC): Phase 3 KEYNOTE-394 study. J Clin Oncol 40(4_suppl):383
30. Kelley RK, Yau T, Cheng AL et al (2021) Cabozantinib plus atezolizumab versus sorafenib as first-line systemic treatment for advanced hepatocellular carcinoma: Results from the randomized phase III COSMIC-312 trial. ESMO-Asia 2021(November):19–20
31. Finkelmeier F, Scheiner B, Leyh C et al (2021) Cabozantinib in advanced hepatocellular carcinoma: efficacy and safety data from an international multicenter real-life cohort. Liver Cancer 10(4):360–369
32. Tovoli F, Dadduzio V, De Lorenzo S et al (2021) Real-Life clinical data of cabozantinib for unresectable hepatocellular carcinoma. Liver Cancer 10(4):370–379
33. Hiraoaka A, Kumada T, Fukunishi S et al (2020) Post-progression treatment eligibility of unresectable hepatocellular carcinoma patients treated with lenvatinib. Liver Cancer 9(1):73–83
34. Alsina A, Kudo M, Vogel A et al (2020) Effects of subsequent systemic anticancer medication following first-line lenvatinib: a post hoc responder analysis from the phase 3 reflect study in unresectable hepatocellular carcinoma. Liver cancer 9(1):93–104
35. Hiraoaka A, Kumada T, Tada T et al (2021) What can be done to solve the unmet clinical need of hepatocellular carcinoma patients following lenvatinib failure? Liver Cancer 10(2):115–125
36. Matsuki S, Kawai K, Suzuki Y et al (2020) Pathological complete response in conversion hepatectomy induced by lenvatinib for advanced hepatocellular carcinoma. Liver Cancer 9(3):358–360
37. Koroki K, Kanogawa N, Maruta S et al (2021) Posttreatment after lenvatinib in patients with advanced hepatocellular carcinoma. Liver Cancer 10(5):473–484
38. Marrero JA, Kulik LM, Sirlin CB et al (2018) Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guideline by the american association for the study of liver diseases. Hepatology (Baltimore, MD) 68(2):723–750
39. EASL Clinical Practice Guidelines (2018) Management of hepatocellular carcinoma. J Hepatol 69(1):182–236
40. Kokudo N, Takemura N, Hasegawa K et al (2019) Clinical practice guidelines for hepatocellular carcinoma: the Japan Society of Hepatology 2017 (4th JSH-HCC guidelines) 2019 update. Hepatol Res 49(10):1109–1113
41. Kudo M, Izumi N, Kokudo N et al (2011) Management of hepatocellular carcinoma in Japan: consensus-based clinical practice guidelines proposed by the Japan society of hepatology (JSH) 2010 updated version. Digestive diseases (Basel, Switzerland) 29(3):339–364
42. Kudo M, Matsui O, Izumi N et al (2014) Transarterial Chemoembolization Failure/Refractoriness: JSH-LCSGI Criteria 2014 Update. Oncology 87(Suppl 1):22–31
43. Raouf JL, Gilabert M, Piana G (2014) How to define transarterial chemoembolization failure or refractoriness: a European perspective. Liver Cancer 3(2):119–124
44. Vogel A, Cervantes A, Chau I et al (2018) Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol Official J Eur Soc Med Oncol 29(Suppl:4):iv238–iv255
45. Taiwan yi zhi (2018) Management consensus guideline for hepatocellular carcinoma: 2016 updated by the Taiwan Liver Cancer Association and the Gastroenterological Society of Taiwan. J Formos Med Assoc 117(5):381–403
46. Ogasawara S, Chiba T, Ooka Y et al (2014) Efficacy of sorafenib and management of hepatocellular carcinoma: 2018 practice guideline by the American association for the study of liver diseases. Mos Med Assoc 117(5):381–403
47. Arizumi T, Ueshima K, Chishina H et al (2014) Validation of the criteria of transcatheter arterial chemoembolization failure or refractoriness in patients with advanced hepatocellular carcinoma patients refractory to transarterial chemoembolization. Oncology 87(6):407–417
48. Peck-Radosavljevic M, Kudo M, Raouf JL et al (2018) Outcomes of patients (pts) with hepatocellular carcinoma (HCC) treated with
transarterial chemoembolization (TACE): Global OPTIMIS final analysis. J Clin Oncol 36(15_suppl):4018
49. Kudo M, Han KH, Ye SL et al (2020) A changing paradigm for the treatment of intermediate-stage hepatocellular carcinoma: Asia-Pacific primary liver cancer expert consensus statements. Liver Cancer 9(3):245–260
50. Kudo M, Kawamura Y, Hasegawa K et al (2021) Management of hepatocellular carcinoma in Japan: JSH consensus statements and recommendations 2021 update. Liver Cancer 10(3):181–223
51. Kudo M, Ueshima K, Chan S et al (2019) Lenvatinib as an initial treatment in patients with intermediate-stage hepatocellular carcinoma beyond up-to-seven criteria and child-Pugh liver function: a proof-of-concept study. Cancer 11(8):1084
52. Kudo M (2019) A new treatment option for intermediate-stage hepatocellular carcinoma with high tumor burden: initial lenvatinib therapy with subsequent selective TACE. Liver Cancer 8:299–311
53. Kawamura Y, Kobayashi M, Shindoh J et al (2020) (18)F-fluorodeoxyglucose uptake in hepatocellular carcinoma as a useful predictor of an extremely rapid response to lenvatinib. Liver Cancer 9(1):84–92
54. Kawamura Y, Kobayashi M, Shindoh J et al (2020) Pretreatment heterogeneous enhancement pattern of hepatocellular carcinoma may be a useful new predictor of early response to lenvatinib and overall prognosis. Liver Cancer 9(3):275–292
55. Kawamura Y, Kobayashi M, Shindoh J et al (2020) Lenvatinib-transarterial chemoembolization sequential therapy as an effective treatment at progression during lenvatinib therapy for advanced hepatocellular carcinoma. Liver Cancer 9:756–770
56. Llovet JM, Burroughs A, Bruix J (2003) Hepatocellular carcinoma. Lancet (London, England) 362(9399):1907–1917
57. Llovet JM, Villanueva A, Marrero JA et al (2021) Trial Design and Endpoints in Hepatocellular Carcinoma: AASLD Consensus Conference. Hepatology (Baltimore, MD) 73(Suppl 1):158–191
58. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science (New York, NY) 307(5706):58–62
59. Kudo M, Ueshima K, Ikeda M et al (2020) Randomised, multicentre prospective trial of transarterial chemoembolisation (TACE) plus sorafenib as compared with TACE alone in patients with hepatocellular carcinoma: TACTICS trial. Gut 69(8):1492–1501
60. Lencioni R, Llovet JM, Han G et al (2016) Sorafenib or placebo plus TACE with doxorubicin-eluting beads for intermediate stage HCC: The SPACE trial. J Hepatol 64(5):1090–1098
61. Meyer T, Fox R, Ma YT et al (2017) Sorafenib in combination with transarterial chemoembolisation in patients with unresectable hepatocellular carcinoma (TACE 2): a randomised placebo-controlled, double-blind, phase 3 trial. Lancet Gastroenterol Hepatol 2(8):565–575
62. Kudo M, Imanaka K, Chida N et al (2011) Phase III study of sorafenib after transarterial chemoembolisation in Japanese and Korean patients with unresectable hepatocellular carcinoma. Eur J Cancer (Oxford, England : 1990) 47(14):2117–2127
63. Kudo M, Han G, Finn RS et al (2014) Brivanib as adjuvant therapy to transarterial chemoembolization in patients with hepatocellular carcinoma: a randomized phase III trial. Hepatology (Baltimore, MD) 60(5):1697–1707
64. Kudo M, Cheng AL, Park JW et al (2018) Orantinib versus placebo combined with transcatheter arterial chemoembolisation in patients with unresectable hepatocellular carcinoma (ORIENTAL): a randomised, double-blind, placebo-controlled, multicentre, phase 3 study. Lancet Gastroenterol Hepatol 3(1):37–46
65. Kudo M, Ueshima K, Ikeda M et al (2022) Final results of TACTICS: a randomized, prospective trial comparing transarterial chemoembolization plus sorafenib to transarterial chemoembolization alone in patients with unresectable hepatocellular carcinoma. Liver Cancer. https://doi.org/10.1159/000522547
66. Llovet JM, Montal R, Villanueva A (2019) Randomized trials and endpoints in advanced HCC: Role of PFS as a surrogate of survival. J Hepatol 70(6):1262–1277
67. Kudo M, Montal R, Finn R et al (2022) Objective response predicts survival in advanced hepatocellular carcinoma treated with systemic therapies. Clin Cancer Res Official J Am Assoc Cancer Res. https://doi.org/10.1158/1078-0432.CCR-21-3135
68. Yamashita T, Kudo M, Ikeda K et al (2020) REFLECT-a phase 3 trial comparing efficacy and safety of lenvatinib to sorafenib for the treatment of unresectable hepatocellular carcinoma: an analysis of Japanese subset. J Gastroenterol 55(1):113–122
69. Ueshima K, Nishida N, Hagiwara S et al (2019) Impact of baseline ALBI grade on the outcomes of hepatocellular carcinoma patients treated with lenvatinib: a multicenter study. Cancers 11(7):952
70. Kudo M (2022) Newly developed modified ALBI grade shows better prognostic and predictive value for hepatocellular carcinoma. Liver Cancer 11(1):1–8
71. Kudo M (2021) A novel treatment strategy for patients with intermediate-stage HCC who are not suitable for TACE: upfront systemic therapy followed by curative conversion. Liver Cancer 10(6):539–544
72. Cheng AL, Qin S, Ikeda M et al (2022) Updated efficacy and safety data from IMbrave150: atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J Hepatol 76(4):862–873
73. Yoshida H, Shiratori Y, Kudo M et al (2011) Effect of vitamin K2 on the recurrence of hepatocellular carcinoma. Hepatology (Baltimore, MD) 54(2):532–540
74. Okita K, Izumi N, Matsui O et al (2015) Peretinoin after curative therapy of hepatitis C-related hepatocellular carcinoma: a randomized double-blind placebo-controlled study. J Gastroenterol 50(2):191–202
75. Bruix J, Takayama T, Mazzaferrro V et al (2015) Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol 16(13):1344–1354

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.