Mass spectrometric quantitation of covalently bound cell wall proteins in *Saccharomyces cerevisiae*

Qing Yuan Yin¹, Piet W. J. de Groot¹, Luitzen de Jong¹, Frans M. Klis² & Chris G. De Koster¹

¹Laboratory for Biomacromolecular Mass Spectrometry; and ²Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, WW Amsterdam, The Netherlands

OnlineOpen: This article is available free online at www.blackwell-synergy.com

Correspondence: Frans M. Klis, Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands. Tel.: +31 20 5257834; fax: +31 20 5257924; e-mail: f.m.klis@uva.nl

Received 9 March 2007; revised 7 May 2007; accepted 7 May 2007. First published online 6 July 2007.

DOI:10.1111/j.1567-1364.2007.00272.x

Editor: Richard Calderone

Keywords
cell wall protein; proteomics; MS; glycosylphosphatidylinositol-anchored protein; pir protein; transglycosylase.

Abstract
The cell wall of yeast consists of an internal skeletal layer and an external layer of glycoproteins covalently linked to the stress-bearing polysaccharides. The cell wall protein (CWP) population consists of over 20 different proteins, and may vary in composition. We present two complementary methods for quantifying CWPs, based on isobaric tagging and tandem MS: (1) absolute quantitation of individual CWPs, allowing estimation of surface densities; and (2) relative quantitation of CWPs, allowing monitoring of the dynamics of the CWP population. For absolute quantitation, we selected a representative group of five proteins (Cwp1p, Chr1p, Scw4p, Gas1p, and Ecm33p), which had 6.7×10^3, 4.4×10^3, 38×10^3, 11×10^3 and 6.5×10^3 of wall-bound copies per cell, respectively. As Cwp1p is predominantly incorporated in the birth scar, this corresponds to a protein density of 2.2×10^5 copies μm$^{-2}$. For relative quantitation, we compared wild-type cells to gas1Δ cells, in which the cell wall integrity pathway is constitutively activated. The levels of Chr1p, Chr2p, Ecm33p, Gas5p, Pst1p and Pir3p increased about three- to fivefold, whereas the level of Scw4p was significantly decreased. We propose that our methods are widely applicable to other fungi.

Introduction
Fungal cells are surrounded by a sturdy wall, enabling them to withstand the internal osmotic pressure, and providing protection against mechanical injury. The fungal wall is also instrumental in adhesion to abiotic and biotic surfaces and in pathogenesis. The cell wall of *Saccharomyces cerevisiae* has two layers: an internal layer, which consists of a network of branched 1,3-glucan molecules extended with covalently attached 1,6-glucan and chitin molecules, and an outer layer, which is mainly composed of mannoproteins covalently linked to the underlying glycans (Klis *et al.*, 2006). A similar cell wall structure is also found in other ascomycetous yeasts, such as the human pathogens *Candida albicans*, *C. glabrata*, *Exophiala dermatitidis* and *Sporothrix schenckii*, in the fission yeast *Schizosaccharomyces pombe*, and to a lesser extent in mycelial ascomycetous fungi (Travassos, 1985; Brul *et al.*, 1997; Montijn *et al.*, 1997; De Groot *et al.*, 2004, 2007; Weig *et al.*, 2004; Danveld *et al.*, 2005; Klis *et al.*, 2006).

In the external protein layer of baker's yeast, at least 20 different types of cell wall proteins (CWPs) have been identified (Protchenko *et al.*, 2001; Yin *et al.*, 2005; Verstrepen & Klis, 2006). Most of them are glycosylphosphatidylinositol (GPI)-modified and are therefore called GPI-CWPs. GPI-CWPs include flocculins, adhesins, transglycosidases, proteins involved in iron utilization, and proteins of unknown function (Klis *et al.*, 2006). A smaller group of CWPs are directly linked to the β-1,3-glucan network through an alkali-sensitive linkage (ASL), including the family of Pir-CWPs (Pir, proteins with internal repeats) (Mrsa *et al.*, 1997). Pir-CWPs may be involved in crosslinking the β-1,3-glucan network through their repeats, presumably by the formation of a carboxyl ester bond between a specific glutamine residue and a glucosyl hydroxy group (Ecker *et al.*, 2006). The composition of the cell wall proteome is highly dynamic, and depends on growth conditions such as nutrient availability, temperature, external pH, and oxygen level (Klis *et al.*, 2006). Furthermore, the expression and incorporation into the cell wall of CWPs is temporally and spatially controlled. When the cell wall is stressed, either constitutively due to a genetic defect, or temporarily and dose-dependently by growing the cells in the presence of cell wall-perturbing compounds, the cells tend to become swollen, as their walls are less capable of withstanding the turgor...
pressure. In response to cell wall stress, the cell wall integrity pathway is activated, resulting in increased expression of a specific set of CWPs, massive deposition of chitin in the lateral walls, and much higher levels of the CWP–polysaccharide complex CWP → β-1,6-glucan–chitin (Kapteyn et al., 1997; Jung & Levin, 1999; Lagorce et al., 2003; Levin, 2005). A representative cell wall mutant is gas1Δ, in which a gene encoding a β-1,3-glucan remodeling enzyme is deleted (Popolo & Vai, 1999).

Quantitation of CWPs by gel-based methods is notoriously difficult, because CWPs are heavily glycosylated and often also phosphorylated. They occur as mixtures of multiple glycoforms and phosphoforms, resulting in multiple fuzzy spots per protein (Weig et al., 2004). In this study, we used isobaric tagging and tandem MS (MS/MS) for absolute and relative quantitation of CWPs. Our method is gel-independent and does not require a specific antiserum or a tagged form of the target proteins. In addition, as the number of fully sequenced fungal genomes is rapidly growing, and because many fungi, such as Candida spp., Sc. pombe, Aspergillus niger, Fusarium oxysporum and Ustilago maydis, also the oomycete Phytophthora ramorum, possess covalently bound CWPs, our methods will be widely applicable (Ruiz-Herrera et al., 1996; Schoffelmeer et al., 1996, 2001; Brul et al., 1997; Weig et al., 2004; Damveld et al., 2005; Meijer et al., 2006; De Groot et al., 2007).

Materials and methods

Yeast strains and media

Cells from the wild-type strain FY833 (MATα his3Δ200 ura3-52 leu2Δ1 lys2Δ202 trp1Δ63), and the mutant strain AR104 (FY833 gas1::LEU2), were grown to exponential phase at 30 °C in YPD medium (1% yeast extract, 2% Bactopeptone and 2% glucose). At harvest, the OD600 nm was 1.2; OD600 nm = 1.0 corresponds to 1.66 ± 0.05 × 107 cells mL−1 (mean ± SD, n = 3) as measured with a Multisizer Coulter Counter (Beckman Coulter, Fullerton, CA).

Cell wall isolation and protein content determination

Cell walls were isolated as described by De Groot et al. (2004). The cell wall protein content was determined with the BCA protein assay (Perbio Science, Erembodegem, Belgium) as described by Kapteyn et al. (1997).

Cell wall digestion

Sodium dodecyl sulfate-extracted cell walls were reduced, alkylated, and freeze-dried overnight, as previously described (Yin et al., 2005). Freeze-dried cell walls (4 ± 0.1 mg; mean ± SD, n = 3) were resuspended in 50 μL of 0.5 M triethylammonium bicarbonate, pH 8.5, and incubated overnight at 37°C with sequencing-grade trypsin (Roche Applied Science, Mannheim, Germany), using a protein/enzyme ratio of 50:1. This procedure has been immunologically shown to result in a complete loss of the signal in the case of Cwp1p, Pir2p, and Ccw14p, indicating that tryptic digestion is exhaustive (Yin et al., 2005). Digested samples were centrifuged, and the supernatants containing the solubilized peptides were completely dried in a vacuum concentrator.

Preparation of defined standard solutions of labeled peptides

The synthetic peptides WFTDLK(68–73) (for Crh1p), SSSGFYIK(106–114) (for Cwp1p), VIDGFNK(285–291) (for Ecm33p), TAEFK(248–252) (for Gas1p) and WLLEQIQR(301–308) (for Scw4p) were purchased from KJ Ross-Petersen ApS (Klampenborg, Denmark). The sequence identity of the peptides was verified by amino acid analysis and confirmed by MS. Synthetic peptides, 0.4–0.7 mg, were dissolved in 10 μL of 0.5 M triethylammonium bicarbonate, pH 8.5. Five microliters of iTRAQ114 reagent (Applied Biosystem, Foster City, CA) was added, and the mixture was incubated at room temperature for 1 h. The iTRAQ114 labeled synthetic peptides were diluted 100- to 1000-fold, and were used as stock solutions. The concentrations of the standard peptides in stock solutions were determined spectrophotometrically on the basis of the molar extinction coefficients of phenylalanine, tryptophan or tyrosine residues (195, 5579, and 1405 M−1 cm−1, respectively) (Fasman, 1976). The UV absorbances at 257.5 nm (for peptides TAEFK and VIDGFNK), 280 nm (for peptides WFTDLK and WLLEQIQR) and 274 nm (for peptide SSSGFYIK) were used to calculate peptide concentrations. Stock solutions of the five peptides were mixed to obtain a working standard solution, in which the concentration of each peptide was normalized to 0.32–0.54 μM.

Isobaric labeling of cell wall peptides and synthetic peptides

Absolute and relative amounts of CWPs were determined using the iTRAQ methodology (Ross et al., 2004). Figure 1a presents an overview of the essential steps of the quantitation experiments. In brief, peptide samples were incubated with one or more of the four available iTRAQ reagents (Applied Biosystem) to derivatize the N-termini and the lysine residues of the peptides. Each iTRAQ reagent molecule consists of a reporter group (based on N-methylpiperazine), a mass balance group (the carbonyl group), and a peptide-reactive group (N-hydroxysuccinimide ester) (Fig. 1b). The overall added mass of reporter and balance components of the molecule is kept constant so that
derivatized peptides from different samples are isobaric (i.e. of the same mass) and chromatographically indistinguishable, but yield specific reporter ions at m/z 114, 115, 116 or 117 following collision-induced dissociation in a mass spectrometer. The relative concentrations of the peptides are thus deduced from the relative intensities of the corresponding reporter ions.

For absolute quantitation, dried peptides from 2 mg of cell walls were resuspended in 20 μL of acetonitrile and 10 μL of 0.5 M triethylammonium bicarbonate, pH 8.0. Ten microliters of iTRAQ115 reagent was added, and the reaction mixture was incubated at room temperature for 1 h. The labeled peptides were dried to remove organic solvent, and resuspended in 10 μL of H2O. Subsequently, the labeled cell wall peptides were mixed with the working standard solution of the synthetic peptides at ratios of 1:5, 1:1 and 5:1 (v:v). For relative quantitation, equal amounts of dried cell walls from wild-type and gas1Δ cells were digested with the endoprotease trypsin. The resulting peptides were labeled with iTRAQ reagents (iTRAQ114 on the wild-type sample and iTRAQ116 on the gas1Δ sample). The experiment was repeated on samples from a replicate culture with a different combination of iTRAQ tags, i.e. iTRAQ117 for the wild-type sample, and iTRAQ114 for the gas1Δ sample.

Matrix-assisted laser-desorption ionization (MALDI)-MS/MS analysis

For absolute quantification, peptides were collected on Ziptip μC18 pipette tips (Millipore, Bedford, MA), washed with 0.1% formic acid, and eluted with 60% acetonitrile/0.1% formic acid. Subsequently, 0.5 μL of the eluate was mixed with 0.5 μL of α-hydroxy cinnaminic acid (10 mg/mL in acetonitrile/ethanol 1:1, v:v). The mixture was spotted on a MALDI target plate and allowed to dry. MS was performed using a QSTAR XL Hybrid LC/MS/MS system (Applied Biosystems, Framingham, MA) with its oMALDI (orthogonal MALDI) ion source. To obtain precursor masses of target peptides, the mass spectrometer was set to perform data acquisition in the positive ion mode, with a selected mass range of m/z 800–2000. Peptides were selected for MS/MS, and the time of summation of MS/MS events was set at 3 s.

Liquid chromatography (LC)-MS/MS analysis

For relative quantification, six LC-MS/MS runs were performed for each sample of mixed peptides from wild-type and gas1Δ cells. Proteolytic digests derived from 30 μg of freeze-dried cell walls were fractionated on a 150 mm × 75 μm (length × inner diameter) reversed-phase capillary column (PepMap C18, Dionex). Sample introduction and mobile phase delivery at 300 nL min⁻¹ were performed using an Ultimate nano-LC system (Dionex, Sunnyvale, CA) equipped with a 10-μL injection loop. Mobile phase A was

Fig. 1. (a) Experimental steps of absolute and relative quantitation of cell wall proteins using iTRAQ. For absolute quantitation, wild-type cell wall peptides were labeled with iTRAQ115 reagent and then mixed with iTRAQ114-labeled synthetic peptides. The peptide mixture a was subsequently subjected to MALDI-MS/MS. For relative quantitation, equal amounts of dry cell walls from wild-type and gas1Δ cells were digested with trypsin. The resulting peptides were labeled with iTRAQ114 and iTRAQ116, respectively. The experiment was repeated on samples from a replicate culture with iTRAQ117 for the wild-type sample and iTRAQ114 for the gas1Δ sample (see ‘Materials and methods’). The peptide mixture b was subsequently subjected to LC-MS/MS. (b) A diagram of the iTRAQ reaction. Each iTRAQ reagent molecule consists of a reporter group (based on N-methylpiperazine), a mass balance group (the carbonyl group), and a peptide-reactive group (N-hydroxysuccinimide ester). The overall mass of reporter and balance components of the molecule is kept constant using differential isotopic enrichment with 13C, 15N, and 18O atoms. Peptides from differently labeled samples are therefore chromatographically indistinguishable and isobaric, but yield specific reporter ions at m/z 114, 115, 116 or 117 following MS/MS.
water + 0.1% formic acid, and mobile phase B was 80% acetonitrile + 0.1% formic acid. For the separation of peptides, a linear gradient of 5–95% B over 30 min was employed. Eluting peptides were directly electrosprayed into a Micromass quadrupole time-of-flight mass spectrometer (Waters, Milford, MA). The most abundant ions from the survey spectrum, ranging from m/z 350 to 2000, were automatically selected for collision-induced fragmentation using MASSLYNX software. Fragmentation was conducted with argon as collision gas at a pressure of 4 × 10⁻⁵ bars as measured on the quadrupole pressure gauge. Resulting MS/MS spectra were processed with the MAXENT3 algorithm embedded in MASSLYNX software to generate peak lists.

Data analysis

Mass spectra were transformed and submitted to MASCOT (version 2.05, Matrix Science, London, UK) by the script provided in the data acquisition and analysis software ANALYST QS (Applied Biosystems), or by the peak list (pkl) file generated from the software MASSLYNX (Waters). Each MS/MS spectrum was searched against an in-house database (Yin et al., 2005), resulting in a set of tryptic peptide matches with confidence values. These peptide identifications were then combined using the MASCOT search engine to yield a set of cell wall protein identifications with confidence values. The MASCOT searches were run using the following parameters: fixed carbamidomethyl modification of cysteine residues; fixed iTRAQ modification of free amines in the N-terminus and lysine; and variable methionine oxidation, and glutamine and asparagine deamidation. Incomplete tryptic digestion with one missed cleavage was allowed; precursor error tolerance was set at ± 0.8 Da; MS/MS fragment tolerance was set at ± 0.4 Da; and charge was set at +1. Furthermore, only peptides matching the identified protein better than any other protein in the database (first rank) with P < 0.05 for random occurrence were retained for further analysis. For each MS/MS spectrum acquired, signature ion peak areas at m/z 114.1, 115.1, 116.1 and 117.1 were extracted using ANALYST QS or MASSLYNX software.

For absolute quantitation, in the three mixing experiments, MS/MS spectra that showed the closest signal-to-noise ratios at the signature ion region were selected for quantitation. For relative quantitation, the ratios of the raw peak heights were normalized against the amount of dried cell walls used. Because the accuracy of ion intensity measurement may be affected by its signal-to-noise ratio in the time-of-flight type of mass spectrometer used in this study, spectra with the intensity of reporter ion peaks below a predefined threshold were considered as noise and were filtered using MASSLYNX software. The remaining spectra were used to calculate the mean peptide ratios and SDs. We took into consideration that each protein can potentially be identified by a number of peptides and every peptide can be measured multiple times. Finally, protein ratios from the duplicate labeling experiments (iTRAQ114 vs. iTRAQ116 and iTRAQ117 vs. iTRAQ114) were averaged. For proteins quantified with only two peptides, the raw data were manually inspected, and a protein ratio was calculated only if the two peptide ratios differed by no more than 25%.

Results and discussion

Cellular quantitation of covalently linked cell wall proteins

Previously, we identified 19 covalently bound CWPs of *S. cerevisiae*, seven of which (Crh1p, Crh2p, Gas1p, Gas3p, Gas5p, Scw4p, and Scw10p) were classified as glycoside hydrolases (Henrissat & Davies, 1997). Phenotypic analysis of deletion mutants lacking the corresponding encoding genes indicated that most of them have altered cell wall properties, which reinforces the importance of the identified proteins for proper cell wall formation. These studies, however, did not provide quantitative information on the CWPs identified. To address this question, we determined as a first step the total number of CWP molecules in a log-phase haploid cell. Yeast cells, 5 × 10⁶ (harvested from 25 mL of medium), were freeze-dried, yielding a dry weight of 9.3 ± 0.2 mg (mean ± SD, n = 3), which corresponds to 18.6 ± 0.4 pg (mean ± SD, n = 3) biomass per cell. In parallel, the same number of cells was used to isolate cell walls as previously described (De Groot et al., 2004), showing that the cell wall dry weight accounted for c. 21% of the total biomass (3.9 ± 0.3 pg cell⁻¹; mean ± SD, n = 3). This is in agreement with a previous report showing that in rich medium the cell wall accounts for c. 20% of the dry biomass per cell (Aguilar-Uscanga & François, 2003). The peptide parts of the covalently bound CWPs were determined using the BCA protein assay to be 4% of the wall biomass, which corresponds to 0.16 pg cell⁻¹, consistent with a previous report (Kapteyn et al., 2001). Assuming a mean molecular mass of CWPs of 50 kDa, a haploid cell contains 1.9 × 10⁶ covalently attached CWP molecules.

As CWPs seem to be uniformly distributed over the cell surface (Tokunaga et al., 1986; Baba & Osumi, 1987), it is possible to estimate their surface density by calculating the cell surface of an average yeast cell. Yeast cells were assumed to approximate two prolate spheroids (the mother cell and the bud cell) in conjunction with each other. The surface area S was calculated from the semi-major (a) and semi-minor (b) axes and the equation $S = 2\pi (b^2 + ab \text{sin } \alpha)$, where $\alpha = \arccos(a/b)$. The values for the major and minor axes of the adult cell (4.57 and 3.82 μm, respectively) and for the major and minor axes of the bud (1.85 and 1.70 μm,
respectively) were averaged from the data of 126 wild-type strains in *Sa. cerevisiae* Morphological Database (SCMD, http://scmd.gi.k.u-tokyo.ac.jp). The surface area S was calculated to be $c. 60 \mu m^2$, which corresponds to an average CWP density in the cell wall of $c. 31 \times 10^3$ molecules μm^{-2}. Considering that a spherical protein such as hemoglobin ($M_i 64 500$), which has a diameter of about 5.5 nm (Lehninger *et al*., 1993), needs about 24 nm2 to accommodate it on a surface (corresponding to $c. 38 \times 10^5$ copies μm^{-2}) in hexagonal packing; http://mathworld.wolfram.com/CirclePacking.html, these results suggest that CWPs are closely packed on the cell surface, as also suggested by ultrastructural studies (Tokunaga *et al*., 1986; Baba & Osumi, 1987) and consistent with their being largely present in the form of a monolayer. It has to be noted that CWPs are frequently heavily glycosylated and may carry extended N-chains of up to 200 sugar residues (Orlean, 1997) and thus occupy more space than their protein parts alone. This predicted dense packing of CWPs on the cell surface is also consistent with the observation that the N-chains of CWPs have been shown to limit the permeability of the yeast cell wall for macromolecules (De Nobel *et al*., 1990).

Absolute quantitation of five covalently linked cell wall proteins

In a recent genome-wide study using fusion constructs with a C-terminally attached green fluorescent protein (GFP), the absolute quantity of yeast proteins was determined (Ghaemmaghami *et al*., 2003). Unfortunately, the analysis of CWPs using GFP fusion constructs did not take into account that the C-terminal hydrophobic part of GPI-modified proteins is removed in the endoplasmic reticulum by a transamidase complex (Ohishi *et al*., 2000). Their estimates do not, therefore, reflect the protein amount at the cell surface, and are probably too low. For example, a yeast cell was estimated to contain only $c. 2000$ copies of Cwp1p (*Saccharomyces* Genome Database; Ghaemmaghami *et al*., 2003). We therefore developed an alternative approach for CWP quantitation based on using defined concentrations of synthetic peptides, isobaric tagging with the iTRAQ reagent, and tandem MS (Ross *et al*., 2004). To this end, five CWPs were selected to determine their absolute quantities, including a member from each of three carbohydrate-active enzyme families (the two GPI-dependent CWPs Crh1p and Gas1p, and the ASL-CWP Scw4p) found in the cell wall, Ecm33p, another GPI-dependent CWP of unknown function, which has been postulated to be a carbohydrate-active enzyme as well (Klis *et al*., 2006), and the structural CWP Cwp1p.

To develop a suitable internal standard, one peptide from each target protein was chosen on the basis of its amino acid sequence and the cleaving characteristics of the protease trypsin. The selection criteria we used were as follows: (1) the peptides were observed in previous MS/MS experiments, indicating that they are sensitive to the ionization process; (2) the peptides do not contain methionine or cysteine residues, so that they are stable under oxidative conditions; (3) the peptides contain as few serine and threonine residues as possible, as these may undergo a side reaction with the iTRAQ reagent; and (4) the peptides must be unique for the corresponding protein but not too large to complicate synthesis and analysis. Five peptides (Table 1) were thus order-synthesized, derivatized with an isobaric iTRAQ tag, and evaluated by MALDI-MS/MS. This evaluation process provided qualitative information about peptide ionization efficiency in MS collision-induced fragmentation, and about their identity (data not shown).

When titrated with a defined amount of the synthetic peptide, an iTRAQ-labeled tryptic peptide from natural CWP is chromatographically indistinguishable from the internal standard peptide and has an identical mass. Therefore, in a typical MALDI-MS spectrum of CWPs (Fig. 2a), the subsequent MALDI-MS/MS analysis provides a highly specific and sensitive measurement of both the internal standard and the analyte, directly from a mixture of hundreds of cell wall peptides. In this MS spectrum, peaks of interest (i.e. synthetic peptides and their native counterparts from target CWPs) could be easily recognized on the

Table 1. Absolute quantitation of covalently linked cell wall proteins

Protein	Synthetic peptide	Residue numbers	Peptide mass	Observed mass*	Copies cell$^{-1} \times 10^{-3}$
GPI protein					
Crh1p	WFTDLK	68–73	808.41	1097.63	44
Cwp1p	SSSGFYAIK	106–114	958.48	1247.70	67
Ecm33p	VIDGFNK	285–291	791.42	1080.64	6.5
Gas1p	TAEFK	248–252	594.30	883.52	11
ASL protein					
Scw4p	WLLEQIQR	301–308	1084.60	1229.71	38

*Observed masses ([M+H]$^+$) of iTRAQ-labeled peptides in the MS spectrum (Fig. 2a). The iTRAQ reagent labels the N-termini and the ε-amino group from lysine residues of peptides. Peptide identities were confirmed by MS/MS before and after the labeling.

GPI, glycosylphosphatidylinositol; ASL, alkali-sensitive linkage.
shows a representative MS/MS spectrum. The series of both y and b product ions from MS/MS and the precursor ion m/z have been used to verify the identity of this peptide. The isobaric tags from the iTRAQ label produced abundant MS/MS signature ions of m/z 114.1 and 115.1, representing the ion of the N-methylpiperazinylated N-terminus. The stability of the resulting alkylated immonium ion is universal for essentially all modified tryptic peptides, as it is independent of the amino acid at the N-terminus of the peptide. The relative intensities of the signature ions correspond to the proportions of the synthetic and natural peptides. Figure 2c zooms in on the reporter region of the MS/MS spectra of the peptide VIDGFNK derived from 5 × 10^8 yeast cells that were titrated with 1.1, 5.4 and 26.9 pmol of standard peptides (from top to bottom, respectively). The peaks in the middle spectrum showed the closest signal-to-noise ratio, and the ratio of the peak areas at m/z 114.1 and 115.1 was then used to determine the amount (5.4 pmol) of this peptide in the original cell wall material, resulting in an estimated 6.5 × 10^7 wall-bound Ecm33p molecules per cell (Table 1). The absolute quantitation of all five CWPs is summarized in Table 1.

Our experimental results are in reasonable agreement with the notion that dividing haploid cells contain on average 1.9 × 10^6 covalently attached CWPs per cell (see above), considering that there are over 20 CWPs incorporated in the wall of a log-phase-grown cell. Cwp1p is the most abundant cell wall protein observed in this study; the amount of 67 × 10^3 per cell is indeed much higher than previously reported by Ghaemmaghami et al. (2003). Assuming that Cwp1p is preferentially incorporated in the birth scar area (Smits et al., 2006), and using an estimated birth scar area of c. 3 µm^2 (measured from Fig. 2, Smits et al., 2006), this would correspond to a local density of Cwp1p of c. 22 × 10^3 copies µm^−2. As the average CWP density of the cell wall is c. 31 × 10^3 molecules µm^−2, this suggests that Cwp1p is the major CWP found in this area. Interestingly, Cwp1p can function as a crosslinking protein, because it is one of the few GPI-CWPs that also possesses a Pir repeat, which may be used to couple it directly to β-1,3-glucan in addition to its linkage to β-1,6-glucan (Kapteyn et al., 2001). This suggests that it may protect the birth scar against cell wall damage during cytokinesis. Wall-bound Crh1p is present at 44 × 10^3 copies per cell. As its incorporation in the wall is cell cycle-dependent, and as it is only found at the emerging bud site and, later in the cell cycle, in the neck region, its local density is considerable, consistent with its reported function in interconnecting chitin to β-glucan (Rodríguez-Peña et al., 2000; Cabib et al., 2007). The low copy numbers per cell of the wall-bound forms of Gaslp and Ecm33p are consistent with the empirical and theoretical evidence that Gaslp and Ecm33p are mainly targeted to the plasma membrane (Conzelmann et al., 1988; Caro et al.,

![Image](Image92x349 to 273x713)
Relative quantitation of the cell wall proteome

To examine the changes in the CWP population as a result of cell wall stress, we performed a quantitative proteomics study comparing wild-type and gas1Δ cells. In total, 367 peptides were identified, of which 113 were suitable for quantitation (Table 2). Fourteen cell wall proteins were unambiguously identified, and their abundance ratios (gas1Δ cells vs. wild-type cells) were quantified. Although most of the abundance ratios of covalently bound proteins were derived from multiple observations, this was not the case for proteins from Pir family. The members of this protein family are highly homologous, and all contain a variable number of glutamine-containing internal repeats and a C-terminal domain containing four cysteine residues with fixed spacing (Fig. 3). The internal repeat domain is highly mannosylated, and is therefore not identified by our approach. Only the C-terminal regions of these proteins provide suitable tryptic peptides for identification and quantitation. However, as this region is highly conserved, the sequences of four frequently identified peptides (Fig. 3, bold and underlined) are (partially) shared between the members of the Pir family. Therefore, unambiguously identification and quantitation of individual Pir proteins can only be based on those peptides that are unique to each individual protein (Fig. 3). This resulted in a relatively low frequency of observations of unique peptides from Pir1p and Pir3p. It has to be noted that none of the identified peptides in this study is unique to the fifth member of this family (Pir5/YJL160C). Therefore, its presence cannot be verified. Finally, in a previous study, we identified six other covalently linked CWPs in exponentially growing yeast cells (Yin et al., 2005); two of them could not be identified by trypsin digestion, but were instead identified using the endoproteinase Glu-C and are thus missed here. The remaining four CWPs are relatively rare, and might have been missed because of the lower sensitivity inherent in the approach taken in the current study.

The protein level of isolated walls of gas1Δ cells is about twice as high as in wild-type cell walls, consistent with the known constitutive activation of the cell wall integrity pathway in these cells (7.7% vs. 4.0%, own observation; Kapteyn et al., 1997). This implies that, without any changes in the relative protein composition in the wall, the abundance ratios should average about two. The abundance ratios in Table 2 indicate that activation of the cell wall integrity pathway as a result of the cell wall defects in gas1Δ cells triggers a considerable increase in the absolute cell wall levels of five putative carbohydrate-active enzymes (Crh1p, Crh2p, Gas5p, and also Ecm33p and Pst1p), and four predicted structural CWPs (Cwp1p, Pir2p, Pir3p, and Pir4p), whereas the level of Scw4p is strongly decreased. For comparison, we have included the corresponding mRNA ratios obtained by microarray analysis of gas1Δ and wild-type cells (Lagorce et al., 2003). Interestingly, the ratios of the wall-bound forms

Protein	Number of quantified peptides	Protein ratio ± SD*	mRNA ratio	Function and properties	Protein family
GPI protein					
Cnh1p	15	4.65 ± 0.65	3.84	GH16, transglycosylase crosslinking chitin to β-1,6-glucan	
Cnh2p	6	3.58 ± 0.59	0.86	GH16, transglycosylase crosslinking chitin to β-1,6-glucan	
Cwp1p	24	2.95 ± 0.79	1.10	Contains a Pir-like repeat	
Ecm33p	6	4.76 ± 1.39	1.15	Related to cell wall biogenesis	
Gas1p*	4	0.18 ± 0.05	0.04	GH72, transglucosidase extending β-1,3-glucan	
Gas3p	6	0.99 ± 0.26	0.81	GH72	
Gas5p	2	3.00 ± 0.61	1.42	GH72, transglucosidase	
Pst1p	17	5.33 ± 1.74	3.87	Related to cell wall biogenesis	
Ssr1p	7	1.42 ± 0.25	0.83	CFEM domain	
ASL protein					
Pir1p	1	1.09	3.26	Conserved 4-C domain	
Pir2p	8	2.98 ± 0.80	2.30	Conserved 4-C domain	
Pir3p	2	3.17 ± 0.34	6.64	Conserved 4-C domain	
Pir4p	7	2.09 ± 0.27	3.42	Conserved 4-C domain	
Scw4p	8	0.50 ± 0.08	0.78	GH17, β-1,3-glucanase	

*Protein ratios (gas1Δ/wild type) are means of peptide ratios from two duplicated labeling experiments.
1mRNA data were obtained from www.dkfz.de/funct_genome/yeast-data.html.
2GPI, glycosylphosphatidylinositol; ASL, alkali-sensitive linkage; GH, glycoside hydrolases, classification according to Henrissat & Davies (1997); CFEM, common in fungal extracellular membrane/wall proteins.
3Gas1p data in gas1Δ cells represent the background noise of MS experiments.
of the ASL proteins tend to be lower than the corresponding transcript ratios. As these proteins, at least partially, may end up in the medium (Russo et al., 1992; Kapteyn et al., 2001), this raises the question of whether, in gas1Δ cells ASL proteins are less efficiently incorporated into the walls. Conversely, the protein ratios of Crh2p and Ecm33p are considerably higher than the corresponding transcript ratios.

Gas1p, Gas3p and Gas5p are classified in glycoside hydrolase family 72, and are thought to be directly involved in β-1,3-glucan remodeling (Popolo & Vai, 1999; Mouyna et al., 2000). In gas1Δ cell walls, a considerable amount of β-1,3-glucan is present (Ram et al., 1998). This raises the question of whether, in a gas1Δ mutant, another member of this family may compensate for the loss of Gas1p function in β-1,3-glucan remodeling. Our data suggest that Gas5p but not Gas3p may become more relevant, as in gas1Δ cells three times more Gas5p is incorporated into the cell wall. Our observation is in agreement with the results of Schuldiner et al. (2005), who found a genetic interaction between GAS1 and GAS5 by epistatic miniarray profiling. Interestingly, a search for suppressor genes of the synthetic lethality of a kex2Δgas1Δ mutant revealed that increased expression of GAS5 was able to rescue the mutant (Tomishige et al., 2000; Cabib et al., 2001; Pardo et al., 2004), suggesting that their functions might be related.

Fig. 3. MS identification of the members of the Pir family. Only the C-terminal regions of the proteins are depicted. The numbers correspond to the positions of amino acid residues in the ORFs of each Pir protein. Identification and quantitation cannot be realized on the basis of the tryptic peptides b and c, which occur in all members of the Pir family, or on a and d, which are shared by two members (highlighted). Pir1p–Pir4p contain a unique tryptic peptide (bold and underlined). A unique tryptic peptide from Pir5p or tryptic peptides from the region preceding the conserved four-cysteine (indicated by asterisks) domain have never been observed. Owing to trypsin miscleavage, peptide a appears in two forms: GGILTDGK and GGILTDGKGR. Peptides c and d are generated due to aspecific enzymatic activity of trypsin (chymotrypsin).

Ps1p was here for the first time identified as an authentic covalently linked cell wall protein, probably because its strong upregulation in gas1Δ cells allowed its identification by MS. The increased level of Ps1p in the wall is also consistent with the increased mRNA ratio of 3.87 observed by Lagorce et al. (2003). The level of wall-bound Ecm33p, which is a homolog of Pst1p, is also strongly increased in gas1Δ cells. This raises the question of whether this protein, which is normally mainly targeted to the plasma membrane, might now function in directly counteracting cell wall damage. Interestingly, similar to deletion of GAS1, deletion of ECM33 is known to result in strong hypersensitivity to the cell wall perturbing Calcofluor White, swollen round cells, and an increased amount of β-1,6-galactosylated proteins being secreted into the growth medium (De Groot et al., 2001; Pardo et al., 2004), suggesting that their functions might be related.

Crh1p and Crh2p belong to glycoside hydrolase family 16. Their role in cell wall biogenesis has been implicated in linking chitin to the β-1,6-glucan network (Rodríguez-Peña et al., 2000; Cabib et al., 2007). In the gas1Δ cell wall, β-1,3-glucan levels detected in the alkali-resistant fraction were reduced, although the chitin level was increased as compared to the wild type (Ram et al., 1998). The insolubility of β-1,3-glucan in alkali is due to its linkage to chitin. With the limited availability of β-1,3-glucan, there seems to be an increased demand for enzymes that can crosslink chitins to β-1,6-glucan (Kapteyn et al., 1997). This explanation is in agreement with our observation that the levels of both Crh1p and Crh2p have increased about fourfold.

Acknowledgements

We thank Richard Sprenger (Academic Medical Center, Clinical Proteomics Group) for his technical support. We acknowledge the financial support of the Council for Medical Sciences of the Netherlands Organization for Scientific Research (NWO-ZonMW) in purchasing the Q-TOF mass spectrometer, and the Council for Chemical Sciences of The Netherlands Organization for Scientific Research.
(NWO-CW) in purchasing the nano-HPLC. Frans Klis acknowledges financial support from the European Commission (STREP FungWall grant, contract LSHB-CT-2004-511952).

Statement

Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

References

Aguilar-Uscanga B & François JM (2003) A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett Appl Microbiol 37: 268–274.

Baba M & Osumi M (1987) Transmission and scanning electron microscopic examination of intracellular organelles in freeze-substituted Kloeckera and Saccharomyces cerevisiae yeast cells. J Electron Microsc Tech 5: 249–261.

Brul S, King A, van der Vaart JM, Chapman J, Klis FM & Verrips CT (1997) The incorporation of mannoproteins in the cell wall of S. cerevisiae and filamentous Ascomycetes. Antonie Van Leeuwenhoek 72: 229–237.

Cabib E, Blanco N, Grau C, Rodríguez-Peña JM & Arroyo J (2007) Chr1p and Chr2p are required for the cross-linking of chitin to β(1–6)glucan in the Saccharomyces cerevisiae cell wall. Mol Microbiol 63: 921–935.

Caro LH, Tettelin H, Vossen JH, Ram AFJ, van den Ende H & Klis FM (1997) In silico identification of glycosylphosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13: 1477–1489.

Conzelmann A, Riezman H, Desponds C & Bron C (1988) A major 125-kd membrane glycoprotein of Saccharomyces cerevisiae is attached to the lipid bilayer through an inositol-containing phospholipid. Embo J 7: 2233–2240.

Damveld RA, Arentshorst M, VanKuyk PA, Klis FM, van den Ende H, Llobell A, Cabib E & Klis FM (1997) Altered extent of β1,3-glucan content. J Bacteriol 181: 3886–3889.

Henriëtta B & Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7: 637–644.

Jung US & Levin DE (1999) Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol Microbiol 34: 1049–1057.

Kapteyn JC, Ram AFJ, Groos EM, Kollar R, Montijn RC, Van Den Ende H, Llobell A, Cabib E & Klis FM (1997) Altered extent of cross-linking of β1,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutants with reduced cell wall β1,3-glucan content. J Bacteriol 179: 6279–6284.

Kapteyn JC, ter Riet B, Vink E, Blad S, De Nobel H, Van Den Ende H & Klis FM (2001) Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol Microbiol 39: 469–479.

Klis FM, Boorsma A & de Groot PWJ (2006) Cell wall construction in Saccharomyces cerevisiae. Yeast 23: 185–202.

Lagorce A, Hauser NC, Labourdette D, Rodriguez C, Martin-Yken H, Arroyo J, Hoheisel JD & Francois J (2003) Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J Biol Chem 278: 20345–20357.

Lehninger AL, Nelson DL & Cox MM (1993) Principles of Biochemistry. Worth Publishers, New York.

Levin DE (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69: 262–291.

Meijer HJ, van de Vondervoort PJ, Yin QY, de Koster CG, Klis FM, Govers F & de Groot PWJ (2006) Identification of cell wall-associated proteins from Phytophthora ramorum. Mol Plant Microbe Interact 19: 1348–1358.

Montijn RC, Van Wolven P, De Hoog S & Klis FM (1997) β-Glucosylated proteins in the cell wall of the black yeast Exophiala (Wangiella) dermatitidis. Microbiology 143: 1673–1680.

Mouyna I, Fontaine T, Vai M, Monod M, Fonzi WA, Diaquin M, Popolo L, Hartland RP & Latgé JP (2000) Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem 275: 14882–14889.
Mrsa V, Seidl T, Gentzsch M & Tanner W (1997) Specific labelling of cell wall proteins by biotinylation. Identification of four covalently linked O-mannosylated proteins of Saccharomyces cerevisiae. Yeast 13: 1145–1154.

Ohishi K, Inoue N, Maeda Y, Takeda J, Riezman H & Kinoshita T (2000) Gas1p and gpi8p are components of a glycosylphosphatidylinositol (GPI) transamidase that mediates attachment of GPI to proteins. Mol Biol Cell 11: 1523–1533.

Orlean P (1997) Biogenesis of yeast wall and surface components. Molecular and Cellular Biology of the Yeast Saccharomyces, Vol. 3 (Pringle JR, Broach J & Jones E, eds), pp. 229–362. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

Pardo M, Monteoliva L, Vazquez P, Martinez R, Molero G, Nombela C & Gil C (2004) PST1 and ECM33 encode two yeast cell surface GPI proteins important for cell wall integrity. Microbiology 150: 4157–4170.

Popolo L & Vai M (1999) The Gas1 glycoprotein, a putative wall polymer cross-linker. Biochim Biophys Acta 1426: 385–400.

Protchenko O, Ferea T, Rashford J, Tiedeman J, Brown PO, Botstein D & Philpott CC (2001) Three cell wall mannoproteins facilitate the uptake of iron in Saccharomyces cerevisiae. J Biol Chem 276: 49244–49250.

Ragni E, Fontaine T, Gissi C, Latgé JP & Popolo L (2007) The Gas family of proteins of Saccharomyces cerevisiae: characterization and evolutionary analysis. Yeast 24: 297–308.

Ram AFJ, Kapteyn JC, Montijn RC, Caro LHP, Douwes JE, Baginsky W, Mazur P, van den Ende H & Klis FM (1998) Loss of the plasma membrane-bound protein Gas1p in Saccharomyces cerevisiae results in the release of beta1,3-glucan into the medium and induces a compensation mechanism to ensure cell wall integrity. J Bacteriol 180: 1418–1424.

Rodríguez-Peña JM, Cid VJ, Arroyo J & Nombela C (2000) A novel family of cell wall-related proteins regulated differently during the yeast life cycle. Mol Cell Biol 20: 3245–3255.

Ross PL, Huang YN, Marchese JN et al. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using aminoreactive isobaric tagging reagents. Mol Cell Proteomics 3: 1154–1169.

Ruiz-Herrera J, Leon CG, Carabez-Trejo A & Reyes-Salinas E (1996) Structure and chemical composition of the cell walls from the haploid yeast and mycelial forms of Ustilago maydis. Fungal Genet Biol 20: 133–142.

Russo P, Kalkkinen N, Sareneva H, Paakkola J & Makarow M (1992) A heat shock gene from Saccharomyces cerevisiae encoding a secretory glycoprotein. Proc Natl Acad Sci USA 89: 3671–3675.

Schöffeleme EAM, Kapteyn JC, Montijn RC, Cornelissen BC & Klis FM (1996) Glucosylation of fungal cell wall proteins as a potential target for novel antifungal agents. Modern Fungicides and Antifungal Compounds (Lyr H, Russel PE & Sisler HD, eds), pp. 157–162. Intercept, Andover.

Schöffeleme EAM, Vossem JH, van Doorn AA, Cornelissen BJ & Haring MA (2001) FEM1, a Fusarium oxysporum glycoprotein that is covalently linked to the cell wall matrix and is conserved in filamentous fungi. Mol Genet Genomics 265: 143–152.

Schuldiner M, Collins SR, Thompson NJ et al. (2005) Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123: 507–519.

Smits GJ, Schenkmn LR, Brul S, Pringle JR & Klis FM (2006) Role of cell cycle-regulated expression in the localized incorporation of cell wall proteins in yeast. Mol Biol Cell 17: 3267–3280.

Tokunaga M, Kusamichi M & Koike H (1986) Ultrastructure of outermost layer of cell wall in Candida albicans observed by rapid-freezing technique. J Electron Microsc (Tokyo) 35: 237–246.

Tomishige N, Noda Y, Adachi H, Shimoi H & Yoda K (2005) SKGI, a suppressor gene of synthetic lethality of kex2gas1Δ mutations, encodes a novel membrane protein that affects cell wall composition. Yeast 22: 141–155.

Travassos LR (1985) Sporothrix schenckii. Fungal Dimorphism: with Emphasis on Fungi Pathogenic for Humans (Szaniszlo PJ, ed), pp. 121–163. Plenum, New York.

Verstrepen KJ & Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60: 5–15.

Weig M, Jansch L, Gross U, De Koster CG, Klis FM & De Groot PWJ (2004) Systematic identification in silico of covalently bound cell wall proteins and analysis of protein–polysaccharide linkages of the human pathogen Candida glabrata. Microbiology 150: 3129–3144.

Yin QY, de Groot PWJ, Dekker HL, de Jong L, Klis FM & de Koster CG (2005) Comprehensive proteomic analysis of Saccharomyces cerevisiae cell walls: identification of proteins covalently attached via glycosylphosphatidylinositol remnants or mild alkali-sensitive linkages. J Biol Chem 280: 20894–20901.