The state of the technical level of domestic agricultural machinery

N F Kashapov¹, M M Nafikov¹,², A R Nigmatzyanov² and I G Gajnadtinov³

¹Kazan (Volga Region) Federal University. Kazan, Russia
²Tatar Institute of Agribusiness Personnel Retraining. Kazan, Russia
³Kazansky state agrarian university. Kazan, Russia

arnig76@yandex.ru

Abstract: Comparative tests of domestic and foreign equipment designed for carrying out soil tillage and sowing, plant protection techniques and the application of organic and mineral fertilizers under the conditions of compliant regulatory documentation, carried out in recent years, have shown that by basic technical and economic and agrotechnical indicators domestic technology is not inferior to foreign counterparts and may well replace them in a crisis relationship. It has been shown that it has been carried out in recent years under the conditions of the regulatory documentation, It was shown that technical indicators of domestic equipment were not affected by the equipment.

Modern agricultural production is impossible without technology that goes to agricultural producers through the market. In recent years, a significant share of the Russian agricultural machinery market was taken by foreign firms, which led to an increase in the number of foreign machinery in the countryside. Imported equipment is poorly adapted to work in our conditions, often fails and requires the purchase of appropriate consumables, over time there is a need to replace units, purchase spare parts. In addition, prices for spare parts are quite high. In connection with the foregoing, the import substitution of foreign agricultural equipment, as well as its units, spare parts and consumables is an urgent task under sanctions.

In the Russian Federation, large and medium agricultural holdings, small agricultural enterprises, peasant farms (peasant farms), individual entrepreneurs, personal subsidiary farms of individuals (private farms) are engaged in agricultural business (Table 1).

Farm categories	Number of objects	Area of agricultural land, kg	The proportion of the area share in%
Large and medium agricultural organizations	27779	3867	64,1
Small agricultural enterprises	20404	1201	14,6
The largest number (64.1%) of the share of agricultural land is occupied by large and medium agricultural holdings, the other categories of farms are significantly inferior to them.

The availability of agricultural equipment available in farms of all forms of ownership (Table 2) also has a big difference: in personal subsidiary farms and other individual farms of citizens of tractors - 37% of the total, tractor mowers - 61, tractor plows - 36%; in farms and individual entrepreneurs of tractors - 14%, tractor mowers - 12, tractor plows - 22, combine harvesters - 28%; in large and medium-sized agricultural organizations of tractors - 40%, tractor mowers - 22, tractor plows - 34, grain combine harvesters - 59%.

As can be seen from Table 3, the average load of arable land on one tractor, the area of grain crops per one combine harvester, is greatest in small farms, large and medium agroholdings and peasant farms.

According to the “Strategy for the development of agricultural engineering for the period up to 2020”, for the effective management of agribusiness in the countryside, the tractor park should be about 610 thousand units, and grain and forage harvesters no less than 147 thousand units. A separate
subprogram "Agricultural Engineering, Food and Processing Industry" includes the provision of agricultural producers, food processing and processing industry with reliable high-performance agricultural machinery, equipment to reduce overhead costs, as well as capable of working on modern waste-free, energy-saving technologies, which in turn is efficient will affect[1].

Agricultural machines in the field perform a large number of technological operations aimed at changing the state of processing objects. Therefore, the absence of one or another type of equipment violates the performance of the necessary cycle of technological operations for the production of agricultural products. The system of agricultural machinery used in the late 90s. It included about 3 thousand names of agricultural machines and implements, their modifications and devices, which took into account the zonal principle of agricultural production.

At present, the market of agricultural machinery and equipment in the Russian Federation, as well as throughout the world, is mainly oligopolistic, i.e. It has a limited number of large manufacturing enterprises. At the same time, it is changing, since buyers have an unlimited choice, for example, the possibility of acquiring agricultural equipment produced by regional enterprises, as well as analogues from near and far abroad [2].

In order to import substitution in the Russian Federation, mechanisms are being used to support the renewal of the agricultural machinery park through the State Program for the Development of Agriculture and Regulation of Agricultural Products, Raw Materials and Food Markets for 2013-2020, the subprogram “Technical and Technological Modernization, Innovative Development”, the main event “Renovating the Park agricultural machinery” (subsidies to producers of agricultural machinery for reimbursement of the cost of production and real zatsiyu agricultural machinery); financial lease (leasing) through Rosagroleasing OJSC and other leasing companies; credit programs of OJSC “Rosselkhozbank” and other banks; special programs of enterprises that provide discounts, increase the warranty period, etc.; recycling programs; regional programs, including the subsidization of part of the costs of agricultural producers for the purchase of equipment from regional budgets [3].

Considering the global tendencies of the widespread use of direct-seeded seeding complexes, modular modular units and machines for applying liquid organic fertilizers, anhydrous ammonia, and liquid complex fertilizers, it is advisable to start their production at plants in the Russian Federation[4,5,6,7,8].

The analysis has shown that domestic combine harvesters of various classes are at the level of foreign ones or somewhat inferior in terms of specific technical level indicators. However, they have a clear advantage in the implementation of different options for harvesting non-grain parts of the crop, and they are preferable by the price-performance criterion. The payback period of domestic combines is 2-3 times less than foreign ones, since their cost is lower (by 1.5-1.8 times) and the prices for spare parts (by 5-6 times). Foreign combine harvesters are effective in harvesting crops with a yield of more than 30 c / ha, but the areas with such a yield in Russia are less than 20%. Domestic harvesters are suitable for work in all climatic zones. They are more effective in harvesting wet, long-straw and weedy breads, the cost of harvesting grain crops is 20-30% less. Therefore, the potential for import substitution of foreign combines can be assessed as sufficient.

References
[1] The head of the Ministry of Industry and Trade of Russia on measures to develop domestic engineering (Electronic resource). URL: http://www.test.lobbying.ru/content/sections/articleid_12023_linkid_122.html
[2] Agricultural machinery: national agricultural catalog (Electronic resource). URL http://www.selhoz-katalog.ru/pdf/kat_selhoz_17-2018.pdf
[3] Russian analogues of foreign agricultural machinery, import substitution of aggregates, spare parts and consumables M. FGBNU "Rosinformagrotekh, 2015. – 340 p
[4] N. F. Kashapov, M. M. Nafikov, M. Kh. Gazetdinov, Sh. M. Gazetdinov and A. R. Nigmatzyanov 2018 About one approach to the assessment of technical equipment of agricultural enterprises in conditions of economy modernization IOP Conference Series: Materials Science and Engineering, Vol 412 012038
[5] N F Kashapov, M M Nafikov, I R Gilmanshin, M Kh Gazetdinov, M M Nafikova and A R Nigmatzyanov 2017 Energy-saving technologies of cultivation of sugar sorghum IOP Conference Series: Materials Science and Engineering V 240 012032

[6] N F Kashapov, M M Nafikov, M Kh Gazetdinov, M M Nafikova and A R Nigmatzyanov 2017 Comparative evaluation of different machines for seedbed for sorghum IOP Conference Series: Materials Science and Engineering V 240 012033

[7] N F Kashapov, M M Nafikov, M X Gazetdinov, M M Nafikova, A R Nigmatzyanov 2016 Justification of the choice of units for mains-noah soil cultivation of sweet sorghum and their effectiveness IOP Conference Series: Materials Science and Engineering V 134 012013

[8] N F Kashapov, M M Nafikov, M KH Gazetdinov, M M Nafikova, A R Nigmatzyanov 2015 Economic justification of the choice of machines and tools for primary tillage under sweet sorghum proceedings of the International scientific-technical conference MNTK "IMTOM–2015" Part 1 pp 285-88.