Modulatory mechanism underlying how dietary constituents attenuate orofacial pain

Mamoru Takeda and Yoshihito Shimazu

Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Japan

(Received May 30, 2019; Accepted August 6, 2019)

Abstract: Physiological pain protects the body and its systems from damage, but pathological pain has no obvious biological role. Complementary alternative medicine (CAM) agents are being increasingly studied in the treatment of clinical pain, and some dietary constituents (polyphenols, carotenoids, and fatty acids) and supplements may modify pain pathways. Because these substances modulate neuronal excitability—including the trigeminal pain pathway via various voltage-gated ion channels and transient receptor potential and ligand-gated channels, dietary constituents could contribute to CAM as therapeutic agents for attenuating orofacial nocuous sensory information. This review summarizes the current understanding of the mechanisms by which dietary constituents might attenuate excitability of trigeminal nociceptive neurons implicated in blocking pain, particularly in relation to the authors’ recent experimental data, and discusses the development of functional foods and the contribution of dietary constituents in the relief of clinical dental pain without the side effects of nonsteroidal anti-inflammatory drugs.

Keywords: complementary and alternative medicine, nociceptive neurons, nonsteroidal anti-inflammatory drug, transient receptor potential, trigeminal system, voltage-gated channels

Introduction

Some dietary constituents and supplements might affect protective biological mechanisms, such as those in cardiovascular, neural, and anticancer systems [1,2]. Complementary alternative medicine (CAM) therapies such as herbal medicines and acupuncture are often used in pain management, especially after the failure of conventional Western medicine [3-5] or when adverse side effects are a concern [4-7]. Among dietary constituents, substances that contain polyphenol compounds (resveratrol, chlorogenic acids, catechin, and genistein), carotenoids (lutein), and fatty acids (docosahexaenoic acid [DHA] and decanoic acid [DA]) could affect peripheral and central nociceptive neuronal pathways, including the trigeminal pain pathway, via voltage-gated ion (Na⁺, K⁺, and Ca²⁺) channels and transient receptor potential (TRP) and ligand-gated channels (glutamate, opioid, and acetylcholine receptors) [8-30]. Table 1 summarizes the possible molecular targets through which dietary constituents modulate such pathways in vitro.

Physiological pain has evolved to limit biological damage; however, pathological pain has little biological benefit. Dietary constituents might serve as CAMs that attenuate nocuous sensory information by contributing to relief of nociceptive and/or pathological pain. Conventional pharmacological agents for pathological pain relief include the classic opioids and nonsteroidal anti-inflammatory drugs (NSAIDs), which inhibit cyclooxygenase (COX)-2 cascades [31-35]. However, both these drug classes are associated with numerous side effects, such as stomach ulcer. Dietary constituents might therefore be part of an important alternative treatment plan for pathological pain. This review summarizes the mechanisms by which dietary constituents might modulate nociceptive excitability associated with trigeminal pain, in light of the authors’ experimental in vivo data.

In addition, the physiological value of such dietary agents as CAM agents is considered.

Ascending pathways for trigeminal nociceptive information

The trigeminal nociceptive sensory pathway is divided into the lateral and medial systems. Lateral pain conveys information underlying sensory discrimination of pain, including its location, intensity, and quality, while the medial pain system conveys the emotional aspect of pain. Noxious orofacial signals are transmitted through trigeminal ganglion (TG) neurons to second-order neurons in the spinal trigeminal nucleus caudalis (SpVc) and upper cervical (C1-C2) spinal cord [36]. This SpVc/C1-C2 nexus is an important signaling station for trigeminal nociceptive inputs generated by tissue inflammation and damage [36]. SpVc/C1-2 nociceptive neurons comprise nociceptive-specific (N8) and wide dynamic range (WDR) neurons [36]. NS neurons respond only to noxious stimulation of receptive fields and thus possibly send location-related information to higher centers [36]. In contrast, WDR neurons respond to noxious and non-noxious stimulation [37,38]; graded nociceptive stimulation is applied to the most sensitive area of the receptive field, thus inducing increased firing frequency in proportion to stimulus intensity. Therefore, WDR neurons act physiologically to transmit stimulus-intensity information to a higher center. Projection neurons in the SpVc and C1-C2 send axons to the ventromedial posterior (VMP) and medial thalamic nuclei and the parabrachial nucleus (PBN) [37,39], whereby the VMP transmits nociceptive information to primary and secondary somatosensory cortical neurons.

Modulatory mechanism by which dietary constituents modulate trigeminal nociceptive pain

Peripheral mechanism

Mechanical stimulation of peripheral tissues activates TRP ankyrin 1 (TRPA1) mechanotransduction in TG neurons, which in turn evokes generator potentials [40-42]. In vitro and in vivo studies have revealed the potent inhibitory action of dietary lutein and resveratrol on TRPA1 pathways [27,29] and thus the amplitude of generator potential and subsequent trigeminal ganglia activation. In addition, resveratrol and DHA inhibited generation of action potentials in vitro, depolarizing step pulse-induced voltage-gated Na⁺ currents in primary sensory neurons [15,19,25], whereas voltage-gated K⁺ currents in primary sensory neurons were potentiated by resveratrol and chlorogenic acid [13,30]. These dietary constituents may therefore act as local anesthetic agents in vitro. Recently, the present authors reported that local injection of resveratrol, chlorogenic acid, and DHA dose-dependently inhibited the nociceptive reflex and SpVc WDR neuronal activity [43-45]. Thus, dietary intake of these substances could attenuate excitability of nociceptive TG neurons through mechanical stimulation-induced generator potential and subsequent initiation of action potentials (Fig. 1).

Electrophysiological experiments using a rat skin-nerve preparation indicated that the muscarinic acetylcholine (mACH) M1 receptor had an inhibitory or desensitizing influence on the peripheral terminal of C-nociceptors [46]. Another study showed membrane hyperpolarization after mACHRs stimulation via activation of low-threshold, voltage-operated K⁺ channels in nucleus raphe magnus (NRM) neurons [47]. The present authors’ recent in vivo electrophysiological and behavioral experiments showed that topical DA reversibly evoked transient mechanical hypalgesia, presumably via the same mechanism described above in TG neurons [48,49]. Together, these data suggest that DA is a potential therapeutic CAM for treatment of trigeminal nociception (Fig. 1).
Central mechanism

T-type Ca\(^{2+}\) currents in isolated primary sensory neurons can be inhibited by α-lipoic acid (LA) [26]. Therefore, because such a mechanism could act on the earliest point of trigeminal pain pathways, LA might also dampen SpVc excitation via presynaptic signaling that attenuates voltage-dependent Ca\(^{2+}\) channels. Indeed, LA also affects N-methyl-aspartate (NMDA) currents in cortical neurons postsynaptically [50]. Because intrathecal administration of NMDA receptor antagonists inhibits nociceptive behavior [51,52], the NMDA receptor signaling system likely contributes to spinal nociceptive transmission. Using extracellular recordings after non-noxious and noxious mechanical stimulation in rats, the present authors noted that intravenous administration of LA suppressed excitability of nociceptive SpVc WDR in vivo [53]. Thus, LA might suppress excitatory synaptic pathways by inhibiting presynaptic Ca\(^{2+}\) channels and postsynaptic glutamate receptor signaling (Fig.1). Accordingly, the present authors recently examined whether a similar effect was elicited after acute intravenous administration

Table 1 Possible molecular targets for dietary modulation of neuronal excitability in the pain pathway (in vitro)

Molecular targets	Dietary constituents (foods)	Effects (references)
Voltage-gated ionic channels	● Na\(^+\) channel	● Resveratrol (grape, red wine) Inhibition (19, 20)
	● Docosahexaenoic acid (fish oil) Inhibition (9,10,12,15)	
	● Eicosapentaenoic acid (fish oil) Inhibition (11,21,22)	
	● Genistein (soy bean) Inhibition (16)	
	● Catechin (green tea) Inhibition (25,28)	
	● Quercetin (apple, onion) Inhibition (23)	
	● K\(^+\) channel	● Resveratrol (grape, red wine) Facilitation (13)
	● Chlorogenic acids (coffee) Facilitation (30)	
	● Ca\(^{2+}\) channel	● Resveratrol (grape, red wine) Inhibition (24)
	● Docosahexaenoic acid (fish oil) Inhibition (10)	
	● Eicosapentaenoic acid (fish oil) Inhibition (21)	
	● α-Lipoic acid (spinach, tomato) Inhibition (26)	
TRP channels	● TRPA1	● Resveratrol (grape, red wine) Inhibition (29)
		● Lutein (broccoli, spinach) Inhibition (27)
Ligand-gated ionic channels	● Glutamate receptor	● Resveratrol (grape, red wine) Inhibition (24)
		● Theanine (green tea) Inhibition (14)
	● μ-Opioid receptor	● Resveratrol (grape, red wine) Inhibition (17)
	● Acetylcholine M\(_2\) receptor	● Decanoic acid (palm oil, cheese) Facilitation (18)

Fig. 1 Possible molecular targets for dietary constituents in alleviating trigeminal pain in vivo. Nociceptive pain: as with local application of resveratrol on peripheral tissues, dietary intake reduces generator potential amplitudes and rates of subsequent action potentials, via mechanical transduction (43). During action potential generation, voltage-gated Na\(^+\) currents in trigeminal ganglia are inhibited by resveratrol and DHA applied locally (43,45), while voltage-gated K\(^+\) currents in primary sensory neurons are potentiated by resveratrol and chlorogenic acid (44). Topical application of decanosic acid also induces mechanical hypalgesia, which in turn suppresses trigeminal ganglia excitability through M\(_2\) mAChRs signaling, thereby stimulating membrane hyperpolarization (48,49) and inhibiting action potential firing rates discharged through nociceptive primary afferent fibers to the central terminal and nociceptive neurons in the SpVc. Systemic delivery of LA inhibits Ca\(^{2+}\) currents in presynaptic terminals, while local administration of resveratrol suppresses glutamatergic-activated neurotransmission of SpVc neurons responding to nociceptive mechanical stimulation via the NMDA receptor. Activation of μ-opioid receptor in the presynaptic terminals may decrease neurotransmitter release, which suggests that decreasing excitatory postsynaptic potentials amplitudes to below the action potential threshold blocks a barrage of action potentials conducted to higher centers in the pain pathway, thus attenuating pain perception (53-56). Resveratrol also suppresses synaptic excitability functioning of the SpVc by stimulating descending pain modulation. Glu, glutamate; WDR, wide dynamic range neurons. Inflammatory pain: chronic administration of the dietary constituents resveratrol, lutein, and DHA might attenuate inflammation-induced mechanical inflammatory hyperalgesia, primarily by suppressing SpVc WDR neuronal hyperexcitability via inhibition of peripheral cascades of Cox-2 signaling (64-66). R, resveratrol; Glu, glutamate; WDR, wide dynamic range neurons; TRP, transient receptor potential; Nav, voltage-gated Na\(^+\) channel; Kv, voltage-gated K\(^+\) channel; Cav, voltage-gated Ca\(^{2+}\) channel; ARA, arachidonic acid; (-) suppression; (+) potentiation; Enk, enkephalin; DHA, docosahexaenoic acid; α-LA, α-lipoic acid; Glu, glutamate; PAG, periaqueductal grey; NRM, nucleus raphe magnus; 5HT, 5-hydroxytryptamine; GABA, γ-aminobutyric acid.
of resveratrol and found significant suppression of SpVc-WDR neuronal firing after noxious mechanical stimulation in resveratrol-injected rats [54]. In addition, resveratrol significantly suppressed glutamate-stimulated SpVc WDR firing—the relative magnitude of inhibition was similar to that for NMDA iontophoretic application [55]. These findings suggest that resveratrol can attenuate glutamatergic excitation of SpVc neurons through NMDA receptor signaling (Fig. 1).

Descending pain modulation systems can also affect ascending nociceptive information related to pain. Specifically, intravenous resveratrol inhibits the nociceptive jaw-opening reflex through μ-opioid receptor signaling [56], while in the periaqueductal gray (PAG), GABAergic neuronal inhibition was reversed by enkephalin binding to μ-opioid receptors [57]. Such disinhibition activates glutamatergic followed by serotonergic neurons in the nucleus raphe magnus (NRM) (the PAG-NRM-trigeminal pathway) [56]. In addition, in vitro resveratrol augments ion currents stimulated through 5-HT receptor [58], and conditioning stimulation of peripheral nerve induced 5-HT receptor-mediated GABAergic inhibition on the excitability of SpVc neurons responding to noxious stimulation [59,60]. Together, these findings indicate that excitatory synaptic transmission of the SpVc is suppressed by resveratrol via activation of GABAergic activity mediated by 5-HT receptor (Fig. 1).

How do dietary constituents mechanistically modulate inflammatory pain?

As shown in Fig. 1, the proinflammatory mediator PGE\textsubscript{2} binds to G protein-coupled prostanooid EP receptors. It can also stimulate protein kinase A (PKA) activity in nociceptive peripheral terminals after peripheral stimulation, thus leading to phosphorylation of mechanosensitive TRP channels and voltage-gated Na+ and K+ channels and, ultimately, to a decreased threshold for TRPA1 transducer activation and increased peripheral terminal membrane excitability. These events in turn increase the nerve impulse frequency to the SpVc presynaptic central terminals. Various dietary constituents can inhibit Cox-2 and related inflammatory cytokine activity [35,61]. The present authors recently tested the hypothesis that intraperitoneally administered dietary constituents could attenuate SpVc neuronal hypersensitivity related to mechanical hyperalgesia induced by complete Freund’s adjuvant (CFA) [62,63]. In addition, the authors showed that resveratrol, DHA, and lutein provided in the diet inhibited inflammatory mechanical hyperalgesia and associated nociceptive neuronal hyperexcitability induced by CFA, possibly by inhibiting the Cox-2 converting enzyme from arachidonic acid to PGE\textsubscript{2} [64-66].

This experimental series showed that the lowered escape threshold for mechanical stimulation in inflamed rats returned to control levels with ongoing administration of dietary constituents, (ii) that dietary components also reversed the high-frequency SpVc WDR discharges elicited by mechanical noxious and noxious stimuli, (iii) that dietary constituents returned the spontaneous discharges rates of SpVc WDR neurons as well as the noxious pinch-evoked after-discharge frequency in inflamed rats, and (iv) that control levels of receptive field expansion in inflamed rats were attained [64-66]. Taken together, these findings indicate that resveratrol, lutein, and DHA significantly limited mechanical hyperalgesia induced by inflammation, probably by primary suppression of SpVc WDR neuronal hyperexcitability after attenuated peripheral COX-2 signaling (Fig. 1). Thus, dietary constituents could be used as a potential therapeutic agent, or CAM, for prevention of trigeminal inflammatory hyperalgesia.

Inflammation-induced PGE\textsubscript{2}, facilitates activation of TRPV1 and tetrodotoxin (TTX)-resistant (TTX-R) Na+ channels [19,32,67] in sensory terminals. Acutely administered resveratrol inhibits TTX-sensitive (TTX-S) and TTX-R Na+ currents in acutely dissociated dorsal root ganglion (DRG) neurons, while TTX-R Na+ channels are selectively expressed in small and medium-sized DRG neurons [68], which comprise thinly myelinated and unmyelinated C- and A\texttextsuperscript{δ}-fibers. PGE\textsubscript{2} binds to EP receptors in the peripheral terminal of trigeminal ganglion neurons, thereby leading to PKA-mediated phosphorylation of Na+ channel sensitization by activation of adenylate and increased c-AMP production. During inflammation, such stimulation of the Na+ channels increases nociceptive trigeminal excitability. In an in vitro experiment, PGE\textsubscript{2}, application increased excitability of nociceptive small-diameter trigeminal ganglion via increased TTX-R Na+ currents [69]; therefore, dietary constituents might similarly inhibit excitability of these neurons by suppressing TTX-R Na+ channel sensitization. As shown in Fig. 1, at least some of the peripheral antinociceptive action of dietary constituents is attributable to blocked peripheral sensitization. The undesirable side effects of commonly used analgesic drugs, including NSAIDs, Cox-2 inhibitors, and opioids, have increased interest in CAM agents for treatment of chronic pain [5,70]. Similarly, the potential effects of diet and dietary supplements on trigeminal pain warrant study [6,71].

Functional significance of orofacial pain and future research

Individuals undergoing orthodontic procedures commonly develop orofacial pain, both direct tooth pain and pain referred across other areas [72]. However, despite the impact and frequency of such episodes, the physiological mechanism underlying referred pain is unclear [73]. Pain due to tooth movement might be related to post-procedural conditions [74]. Mechanical pressure-induced production of Cox-2-induced proinflammatory mediators can induce inflammatory orthodontic pain [75]. Indeed, Cox-2 production may substantially increase at local inflammation sites such as periodontal tissue [34]. An immunohistochemical study using a rat model of experimental tooth movement showed Cox-2 in the SpVc [73], but not in periodontal tissue, which suggests that local inhibition of Cox-2 is important in preventing and mitigating inflammatory pain associated with orthodontic tooth movement. Therefore, dietary intake of resveratrol, lutein, and DHA might attenuate mechanical hyperalgesia by inhibiting SpVc WDR excitability through the Cox-2 signaling pathway [64-66].

Strong evidence indicates that activation of glial cells of the SpVc, and subsequent production of cytokines, is an important underlying factor in pathological pain [76]. These responses might extend beyond central glial cells to peripheral satellite glial cells. In addition, because peripheral sensitization of trigeminal nociceptors suggests increased neuron-glial interactions [36], the present authors hypothesize that dietary constituents may be potential therapeutic targets for neuron-glial interactions to inhibit trigeminal inflammatory pain.

Trigeminal pain comprises the lateral and medial systems. The lateral pain pathway is thought to be involved in discriminating pain location, intensity, and quality. In contrast, the motivational and affective aspects of pain are associated with emotional and autonomic responses caused by persistent, intense noxious stimuli in the medial system of pain pathways, although recent studies of the effects of dietary constituents on pain mechanisms have mostly focused on lateral pain, which encompasses the sensory-discriminative aspect of pain. Future studies should thus examine how dietary constituents might affect mental pain.

In conclusion, the authors recently reported that dietary constituents may be potential therapeutic CAM agents for alleviating trigeminal pain and inflammatory hyperalgesia via various voltage-dependent ion and ligand-gated channels and the Cox-2 pathways. These findings will aid in the development of functional foods that could help relieve clinical dental pain without the side effects of nonsteroidal anti-inflammatory drugs.

Conflict of interest

The authors declare that they have no competing interest relevant to this study.

References

1. Frémont L (2000) Biological effects of resveratrol. Life Sci 66, 663-673.
2. Pervaiz S (2003) Resveratrol: from grapevines to mammalian biology. FASEB J 17, 1975-1985.
3. Rao JK, Mihaliak K, Krogen K, Bradley J, Tierny WM, Weinerberger M (1999) Use of complementary therapies for arthritis among patients of rheumatologists. Ann Intern Med 131, 409-416.
4. Konvicka JJ, Meyer TA, McDaid AJ, Roberson CR (2008) Complementary/alternative medicine use among chronic pain clinic patients. J Perianesth Nurs 23, 17-23.
5. Rosenberg EG, Guano I, Chen I, Mehachar AJ, Wood JA, Fasael-Ci et al (2008) Complementary and alternative medicine use by primary care patients with chronic pain. Pain Med 9, 1065-1072.
6. Shir Y, Raja SN, Weissman CS, Campbell JN, Seher Z (2001) Consumption of soy diet before nerve injury prevents the development of neuropathic pain in rats. Anesthesiology 95, 1238-1244.
7. Ernst E (2003) Complementary medicine. Curr Opin Rheumatol 15,135-135.
8. Shinzaki H, Ishida M (1978) Theanine as a glutamate antagonist at a crayfish neuromuscular junction. Brain Res 151, 215-219.
9. Xiao YF, Kang JX, Morgan JP, Leaf A (1995) Blocking effects of polyunsaturated fatty acids on Na+ channels of neonatal rat ventricular myocytes. Proc Natl Acad Sci U S A 92, 11006-11004.
10. Vreugdenhil M, Brehle C, Voskuyl RA, Kang JX, Leaf A, Wadman WJ (1996) Polyunsatu-
rated fatty acids modulate sodium and calcium currents in CA1 neurons. Proc Natl Acad Sci USA 93, 12559-12563.

14. Xiao YW, Wright SM, Zheng SN, NG, MK, GM, JF, PL (1998) Fatty acids suppress voltage-gated Na currents in HEK293 cells transferred with the alpha-subunit of the human cardiac Na channel. Proc Natl Acad Sci USA 95, 2680-2685.

15. Young C, Gean PW, Chiou LC, Shen YZ (2000) Docosahexaenoic acid inhibits synaptic transmission and epileptiform activity in the rat hippocampus. Synapse 37, 90-94.

16. Granados-Soto V, Arguelles CF, Ortiz MI (2002) The peripheral antinociceptive effect of resveratrol is associated with activation of potassium channels. Neuropharmacology 43, 917-922.

17. Kakuda T, Nozawa A, Sugimoto A, Ninno H (2002) Inhibition by theaene of binding of [3H]AMP, [3H]Kainate, and [3H]MDL105,519 to glutamate receptors. Biosci Biotechnol Biochem 66, 1921-1922.

18. Hong MP, Kim HI, Shin YK, Lee CS, Park M, Song JH (2004) Effect of free fatty acids on sodium currents in the dorsal root ganglion neurons. Brain Res 1008, 81-91.

19. Liu L, Yang T, Simon SA (2004) The protein tyrosine kinase inhibitor, genistein, decreases the excitability of primary afferent nerve impulses. Pain 112, 287-296.

20. Gupta VK, Sharma M, Bariy S (2004) Antinociceptive effect of trans-resveratrol in rats: involvement of an opioidergic mechanism. Method Find Exp Clin Pharmacol 26, 667-672.

21. Groomer KM, Tian-yan CA, Goh SM, Sijovih BH, Borton JC (2004) Segmentation-induced by intratruncal fatty acid in isolated guinea pig duodenum and jejunum. J Pharmacol 556, 557-569.

22. Kim HI, Kim TH, Song JH (2005) Resveratrol inhibits Na+ currents in rat dorsal root ganglion neurons. Brain Res 1045, 134-141.

23. Liew R, Stagg MA, MacLeod KT, Collins P (2005) The red wine polyphenol, resveratrol, exerts acute direct actions on guinea-pig ventricular myocytes. Eur J Pharmacol 519, 1-8.

24. Xiaoyan Y, Ma LW, Wang SY, Josephson ME, Wang G, Morgan JP et al. (2006) Potent block of inactivation-deficient Na channels by syn-polyunsaturated fatty acids. Am J Physiol Cell Physiol 290, C236-C240.

25. Jo Y, Vida K, Kishida S, Imuta H, Ounuma H, Nagata T et al. (2005) Acute and chronic effects of eicosapentaenoic acid on voltage-gated sodium channel expressed in cultured human bronchial smooth muscle cells. Biochem Biophys Res Commun 331, 1452-1459.

26. Wallace CH, Baczko I, Jones L, Fercho M, Light PE (2006) Inhibition of cardiac voltage-gated Na+ channels by genipin. Br J Pharmacol 146, 657-665.

27. Guo ZB, Chen XQ, Hu GY (2006) Comparison of excitatory synaptic transmission by trans-resveratrol in rat hippocampus. Brain Res 1111, 44-47.

28. Kirchhoff T, Lim JM, Kim SS, Kim J, Park M, Song JH (2009) Effect of (-) epigallocatechin-3-gallate on Na+ currents in rat dorsal root ganglion neurons. Eur J Pharmacol 604, 20-26.

29. Liu XY, Orestes P, Latham J, Naik AK, Nelson MT, Vitko I et al. (2009) Molecular mechanisms of nicotinic acid modulation of T-type calcium channels in pain pathways. J Neurosci 29, 9500-9509.

30. Horvath G, Szoke É, Kemény Á, Bagoly T, Deli J, Szente L et al. (2012) Lutein inhibits pronociception and hyperalgesia in rats. J Oral Biosci 53, 318-329.

31. Xiao YF, Wright SN, Wang GK, Morgan JP, Leaf A (1998) Fatty acids suppress voltage-gated Na+ currents in HEK293 cells transferred with the alpha-subunit of the human cardiac Na channel. Proc Natl Acad Sci USA 95, 2680-2685.

32. Xiao YF, Ma L, Wang SY, Josephson ME, Wang G, Morgan JP et al. (2006) Potent block of inactivation-deficient Na+ channels by syn-polyunsaturated fatty acids. Am J Physiol Cell Physiol 290, C236-C240.

33. Mark MC, Zheng SN, NG, MK, JF, PL (1998) Fatty acids suppress voltage-gated Na currents in HEK293 cells transferred with the alpha-subunit of the human cardiac Na channel. Proc Natl Acad Sci USA 95, 2680-2685.