Fracture is a condition that arises as a consequence of a break, split or crack in the building frame of any osteological component, affecting the skeletal system on regular basis [1]. It might be partial or total, and medically, it is defined as any disruption in a skeletal structure, ranging from total disintegration to small hairline incursion of its structural parts [2, 3]. A broken bone is a partial or full break that impacts the integrity of the bone ['1, 4]. One of the causes of fracture of the bone is vehicle collisions on the road, which are the major reason for mortality in many human beings [5]. Vehicle crashes on the road are the ninth biggest reason for death worldwide, making them a major public health concern [6]. The fact that the bulk of the casualties is young persons, underprivileged, and vulnerable road users is even more disturbing [7].

Introduction

Fracture is a condition that arises as a consequence of a break, split or crack in the building frame of any osteological component, affecting the skeletal system on regular basis [1]. It might be partial or total, and medically, it is defined as any disruption in a skeletal structure, ranging from total disintegration to small hairline incursion of its structural parts [2, 3]. A broken bone is a partial or full break that impacts the integrity of the bone [1, 4]. One of the causes of fracture of the bone is vehicle collisions on the road, which are the major reason for mortality in many human beings [5]. Vehicle crashes on the road are the ninth biggest reason for death worldwide, making them a major public health concern [6]. The fact that the bulk of the casualties is young persons, underprivileged, and vulnerable road users is even more disturbing [7]. The number of annual road traffic deaths has grown to 1.35 million, according to the WHO's Global Status Report on Road Safety 2018, issued in December 2018 [8]. Vehicle/automobile road collisions are the leading reason of mortality among people aged 5 to 29 years old [9]. Pedestrians, cyclists, and motorcyclists endure a disproportionate amount of the cost, particularly in developing nations [10]. Long bone fractures can happen in several different ways [11], while a transverse fracture is defined by its horizontal nature [12]. Fractures that run parallel to the surface of the bone are known as longitudinal fractures [1]. Another form of fracture that develops when a bone is shattered or breaks apart is a comminuted fracture [1, 13]. Comminuted fractures are referred to as mixed fractures that have both longitudinal and transverse...
components [14, 15]. The first kind, known as a Greenstick fracture, occurs when one side of the bone is shattered whereas the other one is twisted [16]. When two bones are fractured in a spiral pattern and are wrenched apart, it is called a spiral fracture [14]. Every day, new and quickly evolving technologies arise in a range of fields, notably in medicine [17]. Certain earlier tactics, on the other hand, are still frequently utilized, effective, and valuable in this respect. X-rays are one of these methods for identifying bone fractures [18]. X-ray is the oldest, quickest, and most extensively used radiographic modality in the world for visualizing the body’s interior organs and checking suspicious fractures [19]. It has become a very useful and popular technique for identifying fractures in patients, due to its broad availability in regions where many complex and costly imaging modalities are unavailable [20]. Radiologists or physicians carefully evaluate X-ray images to detect the presence and kind of fractures in numerous bones [21]. Finding the exact site of a fracture in a patient who is in pain or has been injured is difficult and time-consuming. Medical imaging methods are now widely used in both research and diagnosis [22]. The technology of X-ray imaging is used to diagnose and represent anatomical aspects in people, such as bones [23]. X-ray scans are commonly used by doctors and radiologists in hospitals to determine whether or not a fracture has occurred, as well as assessing the particular type of the fracture [24]. Road traffic collisions/accidents (RTAs) claim the lives of a large amount of people every year. Each year a wide array of people pertaining to varying ages are injured due to RTAs. In current study the use of x-rays as a first line of diagnosis in emergency situations of road traffic accidents can be endorsed. The present research will aware and acknowledge the patients to use x-rays as a first diagnosis in immediate conditions, because of its reliability and cost/time effectiveness. Furthermore, it will document the type of injuries in Road Traffic accidents which will draw attention towards road safety measures.

M E T H O D S

All patients with RTA-related fractures who underwent X-rays were included in this cross-sectional analysis at the orthopedic department of the DHO/Teaching Hospital in Gujranwala. The research was concluded in three months, from January 13th, 2022 to April 13th, 2022. The study included a total of 100 patients, all of these patients had fractures from road vehicle collisions. Patients with fall-related fractures, sports-related fractures, osteoporosis, and patients undergoing bone surgery were all omitted, as were those who refused to take written approval and others who were recalcitrant. A Siemens Ceiling Mount X-Ray machine was utilized to examine the fracture and collect photos for filming. Whenever applicable, the standard deviation of frequency and percentage were used to express the data. IBM SPSS Statistics 26.0 was used to input the data.

R E S U L T S

Table 1 illustrates the incidence of fractured bones related with road traffic accidents among people involved; ulna 3 (2.5%), radius 6 (4.9%), femur 46 (37.7%), tibia 26 (21.3%), fibula 20 (16.4%), ankle joint 2 (1.6%), humerus 8 (6.6%), knee joint 3 (2.5%), elbow joint 6 (4.9%), spine 1 (0.8%) and phalanges 1 (0.8%), the femur is the most frequently damaged bone (37.7%), while thumb (0.8%) and spine (0.8%) fractures are the least prevalent.

Table 1: Total number of fractured bones

Fractured bones	Frequency	Percent
Ulna	3	2.5
Radius	6	4.9
Femur	46	37.7
Tibia	26	21.3
Fibula	20	16.4
Ankle Joint	2	1.6
Humerus	8	6.6
Knee Joint	3	2.5
Elbow Joint	6	4.9
Spine	1	.8
Thumb	1	.8
Total	122	100.0

Table 2: Proportion of different kinds of fractures

Table 3 indicates the types of vehicles in RTA that are more to less dangerous and cause accidents, with individuals riding bikes 55 (45.1 %) having the greatest accidents and automobile/car passengers 3 (2.5 %) having the fewest fractures.
DISCUSSION

The most prevalent cause of fractures [14, 25]. Shahzad et al., who found that road traffic collisions were the fewest fractures. This study's findings were accidents and automobile/car passengers 3 (2.5%) having individuals riding bikes 55 (45.1%) having the greatest more to less dangerous and causes accidents, with research indicates the types of vehicles in RTA that are to happen. Based on the current study, the findings of this demonstrated that 41 (33.6%) of patients with RTA-related fractures had to have a transverse fracture, which is the most prevalent type, and 1 (0.8%) had a Garden type IV fractures had to have a transverse fracture, which is the most prone skeletal structure to shattered bone and the most frequent damaged bone (37.7%), while thumb (0.8%) and spine (0.8%) fractures are the least prevalent. Studies by Aloudah et al., 2020, and Anibor, et al. 2021 [5,2], indicated that the femur was the most often shattered bone and the most prone skeletal structure to fracture, followed by the tibia/fibula. This study demonstrated that 61 (33.6%) of patients with RTA-related fractures had to have a transverse fracture, which is the most prevalent type, and 1 (0.8%) had a Garden type IV fracture, which has the lowest percentage and is least likely to happen. Based on the current study, the findings of this research were comparable to those of Shahzad et al. 2021, who found that road traffic accidents are the major reason for bone fractures and that transverse bone fractures are the most common type of bone fracture [14]. Current research indicates the types of vehicles in RTA that are more to less dangerous and causes accidents, with individuals riding bikes 55 (45.1 %) having the greatest accidents and automobile/car passengers 3 (2.5 %) having the fewest fractures. This study's findings were comparable to those of Omoke & Ekumankama and Shahzad et al., who found that road traffic collisions were the most prevalent cause of fractures[14, 25].

CONCLUSION

The most probable bone fracture in road traffic accidents is the femur, which is more prevalent in people on bikes. The most prevalent kind of fractured bone is a transverse bone fracture.

REFERENCES

[1] Wedel VL, Galloway A. Broken bones: anthropological analysis of blunt force trauma. Charles C Thomas Publisher; 2013.

[2] Anibor E, Obaroefe M, Shagamu JE. A radiographic survey of bone fractures at Celian Clinic, Ughelli in Delta State, Nigeria. GSC Advanced Research and Reviews. 2021; 7(1):117-22. doi: 10.30574/gscarr.2021.7.1.0028.

[3] Rajaran J. Clinico-Pathological Correlation and Assessment of Burn Wounds (Doctoral dissertation, Thanjavur Medical College, Thanjavur).

[4] Burr DB. Why bones bend but don't break. Journal of Musculoskeletal and Neuronal Interactions, 2011.

[5] Aloudah AA, Almesned FA, Alkanan AA, Alharbi T. Pattern of Fractures Among Road Traffic Accident Victims Requiring Hospitalization: Single-institution Experience in Saudi Arabia. Cureus. 2020 Jan; 12(1):e6550. doi: 10.7759/cureus.6550. PMID: 32042524; PMCID: PMC6996471.

[6] Tapera R. Development of guidelines to reduce road accidents amongst community members in Botswana: a public health issue (Doctoral Dissertation).

[7] Dalal K, Lin Z, Gifford M, Svanström L. Economics of global burden of road traffic injuries and their relationship with health system variables. International journal of preventive medicine. 2013 Dec; 4(12):1442. PMID: 244988501; PMCID: PMC3898451.

[8] Khan NA, Jhanjhi NZ, Brohi SN, Usmani RS, Nayar A. Smart traffic monitoring system using unmanned aerial vehicles (UAVs). Computer Communications. 2020 May; 157:434–43. doi: 10.1016/j.comcom.2020.04.049.

[9] Rockett IR, Regier MD, Kapusta ND, Cohen JH, Miller TR, Hanzlick RL, Todd KH, Sattin RW, Kennedy LW, Kleinig J, Smith GS. Leading causes of unintentional and intentional injury mortality: United States, 2000–2009. American journal of public health. 2012 Nov; 102(11):e84–92. PMID: 22994256; PMCID: PMC3477930; doi: 10.2105/AJPH.2012.300960.

[10] Organization WH. Global status report on road safety 2018: summary. World Health Organization, 2018.

[11] Gómez–Barrena E, Rosset P, Lozano D, Stanovici J, Ermthaller C, Gerhard F. Bone fracture healing: cell

Table 3: Different kinds of RTA vehicles

Vehicle Type	Count	Percentage
Pedestrian	22	18.0
Car	3	2.5
Auto Rickshaw	19	15.6
Truck/Tractor	10	8.2
Total	122	100.0
therapy in delayed unions and nonunions. Bone. 2015 Jan; 70:93-101. PMid: 25093266 DOI: 10.1016/j.bone.2014.07.033.

[12] Song B, Ehlig-Economides C, Economides MJ. Design of multiple transverse fracture horizontal wells in shale gas reservoirs. InSPE Hydraulic fracturing technology conference. 2011 Jan. OnePetro. doi: 10.2118/140555-MS.

[13] Mathison C, Chaudhary R, Beaupre L, Reynolds M, Aede S, Boullane M. Biomechanical analysis of proximal humeral fixation using locking plate fixation with an intramedullary fibular allograft. Clinical Biomechanics. 2010 Aug; 25(7):642-6. PMid: 20483189, doi: 10.1016/j.clinbiomech.2010.04.006.

[14] Shahzad M, Noor-ul-Hassan RM, Shams A, Ibrahim A, Shahid MA, Fatima N, Yasir M, Babar A, Rose S, Khan RM. Frequency of Bone Fractures Detected by Plain Radiography and Keeping CT as Gold Standard. Journal of Health, Medicine and Nursing. ISSN 2422-8419.

[15] Letournel E, Judet R. Fractures of the acetabulum. Springer Science & Business Media; 2012 Dec 6.

[16] Al-Ayyoub M, Al-Zghool D. Determining the type of long bone fractures in x-ray images. WSEAS Transactions on Information Science and Applications. 2013 Aug; 10(8):261-70.

[17] Ostrom AL, Parasaruman A, Bowen DE, Patricio L, Voss CA. Service research priorities in a rapidly changing context. Journal of service research. 2015 May; 18(2):127-59. doi: 10.1177/1094670515576315.

[18] Dimililer K. IBFDS: intelligent bone fracture detection system. Procedia computer science. 2017 Jan; 120:260-7. doi: 10.1016/j.procs.2017.11.237.

[19] Indu MA, Suvalakshmi Ms. Survey on Various Techniques for Bone Fracture Analysis using Image Processing Methods. Journal of Education: Rabindrabharati University. ISSN: 0972-7175.

[20] Marti-Bonmati L, Sopena R, Bartumeus P, Sopena P. Multimodality imaging techniques. Contrast media & molecular imaging. 2010 Jul; 5(4):180-9. doi: 10.1002/cmmi.393.

[21] Joshi D, Singh TP. A survey of fracture detection techniques in bone X-ray images. Artificial Intelligence Review. 2020 Aug; 53(6):4475-517. doi: 10.1007/s10462-019-09799-0.

[22] Smith TO, Drew B, Toms AP, Jerosch-Herold C, Chojnowski AJ. Diagnostic accuracy of magnetic resonance imaging and magnetic resonance arthrography for triangular fibrocartilaginous complex injury: a systematic review and meta-analysis. Journal of Bone and Joint Surgery. 2012 May; 94(9):824-32. PMid: 22552672. doi: 10.2106/