INDUCED QUASI-ACTIONS: A REMARK

BRUCE KLEINER AND BERNHARD LEEB

1. INTRODUCTION

In this note we observe that the notion of an induced representation has an analog for quasi-actions, and give some applications.

We will use the definitions and notation from [KL01].

1.1. Induced quasi-actions and their properties. Let G be a group and $\{X_i\}_{i \in I}$ be a finite collection of unbounded metric spaces.

Definition 1.1. A quasi-action $G \stackrel{\rho}{\curvearrowright} \prod_i X_i$ preserves the product structure if each $g \in G$ acts by a product of quasi-isometries, up to uniformly bounded error. Note that we allow the quasi-isometries $\rho(g)$ to permute the factors, i.e. $\rho(g)$ is uniformly close to a map of the form $(x_i) \mapsto (\phi_{\sigma^{-1}(i)}(x_{\sigma^{-1}(i)}))$ with a permutation σ of I and quasi-isometries $\phi_i : X_i \mapsto X_{\sigma(i)}$.

Associated to every quasi-action $G \stackrel{\rho}{\curvearrowright} \prod_i X_i$ preserving product structure is the action $G \stackrel{\rho_I}{\curvearrowright} I$ corresponding to the induced permutation of the factors; this is well-defined because the X_i’s are unbounded metric spaces. For each $i \in I$, the stabilizer G_i of i with respect to ρ_I has a quasi-action $G_i \curvearrowright X_i$ by restriction of ρ. It is well-defined up to equivalence in the sense of [KL01, Definition 2.3].

If the permutation action ρ_I is transitive, all factors X_i are quasi-isometric to each other, and the restricted quasi-actions $G_i \curvearrowright X_i$ are quasi-conjugate (when identifying different stabilizers G_i by inner automorphisms of G). The main result of this note is that in this case any of the quasi-actions $G_i \curvearrowright X_i$ determines ρ up to quasi-conjugacy, and moreover any quasi-conjugacy class may arise as a restricted action.

Theorem 1.2. Let G be a group, H be a finite index subgroup, and $H \stackrel{\alpha}{\curvearrowright} X$ be a quasi-action of H on an unbounded metric space X.

Date: July 30, 2007.

The first author was partially supported by NSF Grant DMS 0701515.
Then there exists a quasi-action \(G \curvearrowright \prod_{i \in G/H} X_i \) preserving product structure, where

1. Each factor \(X_i \) is quasi-isometric to \(X \).
2. The associated action \(G^{\beta_{G/H}} \curvearrowright G/H \) is the natural action by left multiplication.
3. The restriction of \(\beta \) to a quasi-action of \(H \) on \(X_H \) is quasi-conjugate to \(H \curvearrowright X \).

Furthermore, there is a unique such quasi-action \(\beta \) preserving the product structure, up to quasi-conjugacy by a product quasi-isometry. Finally, if \(\alpha \) is an isometric action, then the \(X_i \) may be taken isometric to \(X \) and \(\beta \) may be taken to be an isometric action.

Definition 1.3. Let \(G, H \) and \(H \curvearrowright X \) be as in Theorem 1.2. The quasi-action \(\beta \) is called the quasi-action induced by \(H \curvearrowright X \).

As a byproduct of the main construction, we get the following:

Corollary 1.4. If \(G^{\rho} \curvearrowright X \) is an \((L, A)\)-quasi-action on an arbitrary metric space \(X \), then \(\rho \) is \((L, 3A)\)-quasi-conjugate to a canonically defined isometric action \(G \curvearrowright X' \).

1.2. **Applications.** The implication of Theorem 1.2 is that in order to quasi-conjugate a quasi-action on a product to an isometric action, it suffices to quasi-conjugate the factor quasi-actions to isometric actions. We begin with a special case:

Theorem 1.5. Let \(G^{\rho} \curvearrowright X \) be a cobounded quasi-action on \(X = \prod_i X_i \), where each \(X_i \) is either an irreducible symmetric space of non-compact type, or a thick irreducible Euclidean building of rank at least two, with cocompact Weyl group. Then \(\rho \) is quasi-conjugate to an isometric action on \(X \), after suitable rescaling of the metrics on the factors \(X_i \).

Remarks

- Theorem 1.5 was stated incorrectly as Corollary 4.5 in [KL01]. The proof given there was only valid for quasi-actions which do not permute the factors.
- Rescaling of the factors is necessary, in general: if one takes the product of two copies of \(\mathbb{H}^2 \) where the factors are scaled to have different curvature, then a quasi-action which permutes the factors will not be quasi-conjugate to an isometric action.
We now consider a more general situation. Let \(G \curvearrowright \prod_{i \in I} X_i \) be a quasi-action, where each \(X_i \) is one of the following four types of spaces:

1. An irreducible symmetric space of noncompact type.
2. A thick irreducible Euclidean building of rank/dimension \(\geq 2 \), with cocompact Weyl group.
3. A bounded valence bushy tree in the sense of [MSW03]. We recall that a tree is bushy if each of its points lies within uniformly bounded distance from a vertex having at least three unbounded complementary components.
4. A quasi-isometrically rigid Gromov hyperbolic space which is of coarse type I in the sense of [KKL98, sec. 3] (see the remarks below). A space is quasi-isometrically rigid if every \((L, A)\)-quasi-isometry is at distance at most \(D = D(L, A) \) from a unique isometry.

By [KKL98, Theorem B], the quasi-action preserves product structure, and hence we have an induced permutation action \(G \curvearrowright I \). Let \(J \subset I \) be the set of indices \(i \in I \) such that \(X_i \) is either a real hyperbolic space \(\mathbb{H}^k \) for some \(k \geq 4 \), a complex hyperbolic space \(\mathbb{C}H^l \) for some \(l \geq 2 \), or a bounded valence bushy tree. Generalizing Theorem 1.5 we obtain:

Theorem 1.6. If the quasi-action \(G_j \curvearrowright X_j \) is cobounded for each \(j \in J \), then \(\alpha \) is quasi-conjugate by a product quasi-isometry to an isometric action \(G_n \curvearrowright \prod_{i \in I} X'_i \), where for every \(i \), \(X'_i \) is quasi-isometric to \(X_i \), and precisely one of the following holds:

1. If \(X_i \) is not a bounded valence bushy tree, then \(X'_i \) is isometric to \(X'_v \), for some \(v \) in the \(G \)-orbit \(G(i) \) of \(i \).
2. If \(X_i \) is a bounded valence bushy tree, then so is \(X'_i \).

As in the previous corollary, it is necessary to permit \(X'_i \) to be non-isometric to \(X_i \). Moreover, there may be factors \(X_i \) and \(X_j \) of type (4) lying in the same \(G \)-orbit, but which are not even homothetic, so it is not sufficient to allow rescaling of factors.

Proof. We first assume that the action \(G \curvearrowright I \) is transitive. Pick \(n \in I \). Then the quasi-action \(G_n \curvearrowright X_n \) is quasi-conjugate to an isometric action \(G_n \curvearrowright X'_n \), where \(X'_n \) is isometric to \(X_n \) unless \(X_n \) is a bounded valence bushy tree, in which case \(X'_n \) is a bounded valence bushy tree but not necessarily isometric to \(X_n \); this follows from:

- [Hin90, Gab92, CJ94, Mar06] when \(X_n = \mathbb{H}^2 \). Note that any quasi-action on \(\mathbb{H}^2 \) is quasi-conjugate to an isometric action.
When X_n is a rank 1 symmetric space other than \mathbb{H}^2, note that Sullivan’s theorem implies that any quasi-action on \mathbb{H}^3 is quasi-conjugate to an isometric action. Also, the proof given in Chow’s paper on the complex hyperbolic case covers arbitrary cobounded quasi-actions, even though it is only stated for discrete cobounded quasi-actions.

- [KL97, Lee00] when X_n is an irreducible symmetric space or Euclidean building of rank at least 2.
- [MSW03] when X_n is a bounded valence bushy tree.

By Theorem 1.2, the associated induced quasi-action of G is quasi-conjugate to the original quasi-action $G \curvearrowright \prod_{i \in I} X_i$ by a product quasi-isometry, and we are done.

In the general case, for each orbit $G(i) \subset I$ of the action $G \curvearrowright I$, we have a well-defined associated quasi-action $G \curvearrowright \prod_{j \in G(i)} X_j$ for which the theorem has already been established, and we obtain the desired isometric action $G \curvearrowright \prod_{i \in I} X'_i$ by taking products.

Corollary 1.7. Let $\{X_i\}_{i \in I}$ be as above, and suppose G is a finitely generated group quasi-isometric to the product $\prod_{i \in I} X_i$. Then G admits a discrete, cocompact, isometric action on a product $\prod_{i \in I} X'_i$, where for every i, X'_i is quasi-isometric to X_i, and precisely one of the following holds:

1. X_i is not a bounded valence bushy tree, and X'_i is isometric to $X'_{i'}$ for some i' in the G-orbit $G(i) \subset I$ of i.
2. Both X_i and X'_i are bounded valence bushy trees.

Proof. Such a group G admits a discrete, cobounded quasi-action on $\prod_{i \in I} X_i$. Theorem 1.6 furnishes the desired isometric action $G \curvearrowright \prod_{i \in I} X'_i$. \square

Remarks.

- Corollary 1.7 refines earlier results [Ahl02, KL01, MSW03].
- A proper Gromov hyperbolic space with cocompact isometry group is of coarse type I unless it is quasi-isometric to \mathbb{R} [KKL98, Sec. 3].
- The classification of the four different types of spaces above is quasi-isometry invariant, with one exception: a space of type (1) will also be a space of type (4) iff it is a quasi-isometrically...
rigid rank 1 symmetric space (i.e. a quaternionic hyperbolic space or the Cayley hyperbolic plane [Pan89]). See Lemma 3.1.

• Two irreducible symmetric spaces are quasi-isometric iff they are isometric, up to rescaling [Mos73, Pan89, KL97]. Two Euclidean buildings as in (2) above are quasi-isometric iff they are isometric up to rescaling [KL97, Lee00].

2. THE CONSTRUCTION OF INDUCED QUASI-ACTIONS

The construction of induced quasi-actions is a direct imitation of one of the standard constructions of induced representations. We now review this for the convenience of the reader.

Let H be a subgroup of some group G, and suppose $\alpha : H \act V$ is a linear representation. Then we have an action $H \act G \times V$ where $(h, (g, v)) = (gh^{-1}, hv)$. Let $E := (G \times V)/H$ be the quotient. There is a natural projection map $\pi : E \to G/H$ whose fibers are copies of V; this would be a vector bundle over the discrete space G/H if V were endowed with a topology. The action $G \act G \times V$ by left translation on the first factor descends to E, and commutes with the projection map π. Moreover, it preserves the linear structure on the fibers. Hence there is a representation of G on the vector space of sections $\Gamma(E)$, and this is the representation of G induced by α.

We use the terminology of [KL01, Sec. 2]. (However, we replace quasi-isometrically conjugate by the shorter and more accurate term quasi-conjugate.)

We will work with generalized metrics taking values in $[0, +\infty]$. A finite component of a generalized metric space is an equivalence class of points with pairwise finite distances. Clearly, quasi-isometries respect finite components.

Let $\{X_i\}_{i \in I}$ be a finite collection of unbounded metric spaces in the usual sense, i.e. the metric on each X_i takes only finite values. On their product $\prod_{i \in I} X_i$ we consider the natural (L^2-)product metric. On their disjoint union $\sqcup_{i \in I} X_i$ we consider the generalized metric which induces the original metric on each component X_i and gives distance $+\infty$ to any pair of points in different components.

We observe that a quasi-isometry $\prod_{i \in I} X_i \to \prod_{i \in I} X'_i$ preserving the product structure gives rise to a quasi-isometry $\sqcup_{i \in I} X_i \to \sqcup_{i \in I} X'_i$, well-defined up to bounded error, and vice versa. Thus equivalence
classes of quasi-actions $\alpha : G \curvearrowright \prod_{i \in I} X_i$ preserving the product structure correspond one-to-one to quasi-actions $\beta : G \curvearrowright \sqcup_{i \in I} X_i$. In what follows we will prove the disjoint union analog of Theorem 1.2. (The index of H can be arbitrary from now on.)

Lemma 2.1. Suppose that Y is a generalized metric space and that $G \curvearrowright Y$ is a quasi-action such that G acts transitively on the set of finite components of Y. Let Y_0 be one of the finite components and H its stabilizer in G. Then the restricted action $H \curvearrowright Y_0$ determines the action $G \curvearrowright Y$ up to quasi-conjugacy.

Proof. If $G \curvearrowright Y'$ is another quasi-action, Y_0' is a finite component with stabilizer H, then any quasi-conjugacy between $H \curvearrowright Y_0$ and $H \curvearrowright Y_0'$ extends in a straightforward way to a quasi-conjugacy between $G \curvearrowright Y$ and $G \curvearrowright Y'$. □

We will now show how to recover the G-quasi-action from the H-quasi-action by quasifying the construction of induced actions as described above.

Definition 2.2. An (L, A)-coarse fibration (Y, \mathcal{F}) consists of a (generalized) metric space Y and a family \mathcal{F} of subsets $F \subset Y$, the coarse fibers, with the following properties:

1. The union $\bigcup_{F \in \mathcal{F}} F$ of all fibers has Hausdorff distance $\leq A$ from Y.
2. For any two fibers $F_1, F_2 \in \mathcal{F}$ holds
 \[d_H(F_1, F_2) \leq L \cdot d(y_1, F_2) + A \quad \forall y_1 \in F_1. \]

We also say that \mathcal{F} is a coarse fibration of Y.

Note that the coarse fibers are not required to be disjoint.

It follows from part (2) of the definition that $d_H(F_1, F_2) < +\infty$ if and only if F_1 and F_2 meet the same finite component of Y. We will equip the “base space” \mathcal{F} with the Hausdorff metric.

Lemma 2.3. If $H \curvearrowright Y$ is an (L, A)-quasi-action then the collection of quasi-orbits $O_y := H \cdot y$ forms an $(L, 3A)$-coarse fibration of Y.

Proof. For $h, h_1, h_2 \in H$ and $y_1, y_2 \in Y$ we have
\[
 d(hy_1, (hh_1^{-1}h_2)y_2) \leq d((hh_1^{-1})(h_1y_1), (hh_1^{-1})(h_2y_2)) + 2A \leq L \cdot d(h_1y_1, h_2y_2) + 3A
\]
and so
\[
 d(O_{y_1}, O_{y_2}) \leq L \cdot d(h_1y_1, O_{y_2}) + 3A.
\]
Let \((Y, \mathcal{F})\) and \((Y', \mathcal{F}')\) be coarse fibrations. We say that a map \(\phi : Y \to Y'\) quasi-respects the coarse fibrations if the image of each fiber \(F \in \mathcal{F}\) is uniformly Hausdorff close to a fiber \(F' \in \mathcal{F}'\), \(d_H(\phi(F), F') \leq C\). The map \(\phi\) then induces a map \(\tilde{\phi} : \mathcal{F} \to \mathcal{F}'\) which is well-defined up to bounded error \(\leq 2C\). Observe that if \(\phi\) is an \((L, A)\)-quasi-isometry then \(\tilde{\phi}\) is an \((L, A + 2C)\)-quasi-isometry.

We say that a quasi-action \(\rho : G \curvearrowright Y\) quasi-respects a coarse fibration \(\mathcal{F}\) if all maps \(\rho(g)\) quasi-respect \(\mathcal{F}\) with uniformly bounded error. The quasi-action \(\rho\) then descends to a quasi-action \(\bar{\rho} : G \curvearrowright \mathcal{F}\) which is unique up to equivalence (cf. [KL01, Definition 2.3]).

We apply these general remarks to the following situation in order to obtain our main construction.

Let \(G\) be a group, \(H < G\) a subgroup (of arbitrary index) and \(H \curvearrowright X\) an \((L, A)\)-quasi-action. Let \(Y = G \times X\) where \(G\) is given the metric \(d(g_1, g_2) = +\infty\) unless \(g_1 = g_2\). That is, \(Y\) consists of \(|G|\) finite components each of which is a copy of \(X\). The quasi-action \(\alpha\) gives rise to a product quasi-action \(H \overset{\rho_H}{\curvearrowright} Y\) via

\[
\rho_H(h, (g, x)) = (gh^{-1}, hx).
\]

We denote by \(\mathcal{F}_H\) the coarse fibration of \(Y\) by \(H\)-quasi-orbits. The isometric \(G\)-action given by

\[
\tilde{\rho}_G(g', (g, x)) = (g'g, x)
\]

commutes with \(\rho_H\). As a consequence, \(\tilde{\rho}_G\) descends to an isometric action

\[(2.4) \quad \hat{\beta} := \tilde{\rho}_G : G \curvearrowright \mathcal{F}_H.\]

If \(H = G\) then \(\alpha\) is quasi-conjugate to \(\hat{\beta}\) via the quasi-isometry \(x \mapsto \rho_H(H) \cdot (e, x)\).

In general, the finite components of \(\mathcal{F}_H\) correspond to the left \(H\)-cosets in \(G\). More precisely, \(gH\) corresponds to \(\cup_{x \in X} \rho_H(H) \cdot (g, x)\), that is, to the union of \(\rho_H\)-quasi-orbits contained in \(gH \times X\). \(H\) stabilizes the finite component \(\cup_{x \in X} \rho_H(H) \cdot (e, x)\). The action of \(H\) on this component is quasi-conjugate to \(\alpha\).

As remarked in the beginning of this section, \(\hat{\beta}\) is the unique \(G\)-quasi-action up to quasi-conjugacy such that \(G\) acts transitively on finite components and such that \(H\) is the stabilizer of a finite component and the restricted \(H\)-quasi-action is quasi-isometrically conjugate to \(\alpha\).
Passing back from disjoint unions to products we obtain Theorem 1.2.

3. Quasi-isometries and the classification into types (1)-(4)

We now prove:

Lemma 3.1. Suppose Y and Y' are spaces of one of types (1)-(4) as in Theorem 1.6. If Y is quasi-isometric to Y', then they have the same type, unless one is a quasi-isometrically rigid rank 1 symmetric space, and the other is of type (4).

Proof. First suppose one of the spaces is not Gromov hyperbolic. Since Gromov hyperbolicity is quasi-isometry invariant, both spaces must be higher rank space of either of type (1) or (2). But by [KL97], two irreducible symmetric spaces or Euclidean buildings of rank at least two are quasi-isometric iff they are homothetic. Thus in this case they must have the same type.

Now assume both spaces are Gromov hyperbolic. Then ∂Y and $\partial Y'$ are homeomorphic.

If Y is a bounded valence bushy tree, then it is well-known that Y is quasi-isometric to a trivalent tree, and ∂Y is homeomorphic to a Cantor set. Therefore Y cannot be quasi-isometric to a space of type (1), since the boundary of a Gromov hyperbolic symmetric space is a sphere. Also, the quasi-isometry group of a trivalent tree T has an induced action on the space of triples in ∂T which is not proper, and hence it cannot be quasi-isometric to a space of type (4).

If Y is a hyperbolic or complex hyperbolic space, then the induced action of $\text{QI}(X)$ on the space of triples in ∂X is not proper, and hence Y cannot be quasi-isometric to a space of type (4).

The lemma follows. □

References

[Ahl02] A. R. Ahlin. The large scale geometry of products of trees. *Geom. Dedicata*, 92:179–184, 2002. Dedicated to John Stallings on the occasion of his 65th birthday.

[Cho96] R. Chow. Groups quasi-isometric to complex hyperbolic space. *Trans. Amer. Math. Soc.*, 348(5):1757–1769, 1996.

[CJ94] A. Casson and D. Jungreis. Convergence groups and Seifert fibered 3-manifolds. *Invent. Math.*, 118(3):441–456, 1994.
[Gab92] D. Gabai. Convergence groups are Fuchsian groups. *Ann. of Math. (2)*, 136(3):447–510, 1992.

[Gro] M. Gromov. Hyperbolic manifolds, groups and actions. In *Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978)*, volume 97 of *Ann. of Math. Stud.*., pages 183–213.

[Hin90] A. Hinkkanen. Abelian and nondiscrete convergence groups on the circle. *Trans. Amer. Math. Soc.*, 318(1):87–121, 1990.

[KKL98] M. Kapovich, B. Kleiner, and B. Leeb. Quasi-isometries and the de Rham decomposition. *Topology*, 37(6):1193–1211, 1998.

[KL97] B. Kleiner and B. Leeb. Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings. *Inst. Hautes Études Sci. Publ. Math.*, (86):115–197 (1998), 1997.

[KL01] B. Kleiner and B. Leeb. Groups quasi-isometric to symmetric spaces. *Comm. Anal. Geom.*, 9(2):239–260, 2001.

[Lee00] B. Leeb. *A characterization of irreducible symmetric spaces and Euclidean buildings of higher rank by their asymptotic geometry*. Bonner Mathematische Schriften [Bonn Mathematical Publications], 326. Universität Bonn Mathematisches Institut, Bonn, 2000.

[Mar06] V. Markovic. Quasisymmetric groups. *J. Amer. Math. Soc.*, 19(3):673–715 (electronic), 2006.

[Mos73] G. D. Mostow. *Strong rigidity of locally symmetric spaces*. Princeton University Press, Princeton, N.J., 1973. Annals of Mathematics Studies, No. 78.

[MSW03] L. Mosher, M. Sageev, and K. Whyte. Quasiconformal groups. *J. Analyse Math.*, 46:318–346, 1986.

[Tuk86] P. Tukia. On quasi-conformal groups. *J. Analyse Math.*, 46:318–346, 1986.

Bruce Kleiner: Mathematics Department, Yale University, New Haven, CT 06520

E-mail address: bruce.kleiner@yale.edu

Bernhard Leeb: Math. Anst., Univ. München, Theresienstr. 39, D-80333 München

E-mail address: b.l@lmu.de