Search for lepton-flavour-violating decays of Higgs-like bosons

LHCb Collaboration⋆
CERN, 1211 Geneva 23, Switzerland

Received: 23 August 2018 / Accepted: 29 October 2018
© CERN for the benefit of the LHCb collaboration 2018

Abstract A search is presented for a Higgs-like boson with mass in the range 45 to 195 GeV/c² decaying into a muon and a tau lepton. The dataset consists of proton-proton interactions at a centre-of-mass energy of 8 TeV, collected by the LHCb experiment, corresponding to an integrated luminosity of 2 fb⁻¹. The tau leptons are reconstructed in both leptonic and hadronic decay channels. An upper limit on the production cross-section multiplied by the branching fraction has recently published the results of a search for dark photons decaying into the dimuon channel, placing a stringent limit for the production of a dimuon in the mass range from 10.6 to 70 GeV/c² [35].

The LHCb detector probes the forward rapidity region which is only partially covered by the other LHC experiments, and triggers on particles with low transverse momenta (pT), allowing the experiment to explore relatively small boson masses. In this paper a search for CLFV decays into a muon and a tau lepton of a Higgs-like boson with a mass ranging from 45 to 195 GeV/c² is presented, using proton-proton collision data collected at √s = 8 TeV. The Higgs-like boson is assumed to be produced by gluon-fusion, similarly to the main production mechanism of the SM Higgs boson at LHC [36].¹ The analysis is separated into four channels depending on the final state of the μ τ lepton decay: (i) single muon τ⁻ → μ⁻τντ, (ii) single electron τ⁻ → e⁻τντ, (iii) single charged hadron τ⁻ → π⁻(π⁰)ντ, and (iv) three charged hadrons τ⁻ → π⁻π⁻π⁺(π⁰)ντ. They are denoted as τμ, ττ, τh1, and τh3 respectively. The main sources of background are Z → τ⁺τ⁻ decays,² heavy flavour production from QCD processes (“QCD" in the following) and electroweak boson production accompanied by jets (“VJ”). This analysis utilizes reconstruction techniques and results

¹ The remaining Higgs production modes (e.g., ~ 10% from Vector-Boson Fusion) are neglected in this study.

² Throughout this note, Z implies Z/γ*, i.e. includes contributions from Z boson production, virtual photon production, and also their interference.

References

[1] The remaining Higgs production modes (e.g., ~ 10% from Vector-Boson Fusion) are neglected in this study.

[2] Throughout this note, Z implies Z/γ*, i.e. includes contributions from Z boson production, virtual photon production, and also their interference.
obtained from the \(Z \rightarrow \tau^+\tau^- \) measurement by the LHCb collaboration [37].

2 Detector and simulation description

The LHCb detector [38,39] is a single-arm forward spectrometer covering the \(2 < \eta < 5 \) pseudorapidity range, designed for the study of particles containing \(b \) or \(c \) quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the primary vertex (PV), a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of 4 Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The tracking system provides a measurement of the momentum of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum distance of a track to a primary vertex (PV), the impact parameter (IP), is measured with a resolution of \((15 + 29/\sqrt{\pt}) \) mm, where \(\pt \) is the component of the momentum transverse to the beam, in GeV/c. Photons, electrons and hadrons are identified by a calorimeter system consisting of scintillating-pad (SPD) and preshower detectors (PS), an electromagnetic calorimeter (ECAL) and a hadronic calorimeter (HCAL). Muons are identified by a system composed of five stations of alternating layers of iron and multiwire proportional chambers.

Simulated data samples are used to calculate the efficiency for selecting signal processes, to estimate the residual background level, and to produce templates for the fit used to determine the signal yield. For this analysis, the simulation is validated primarily by comparing \(Z \rightarrow \ell^+\ell^- \) decays in simulation and data. The Higgs boson is generated assuming a gluon-fusion process, and with mass values from 45 to 195 GeV/c\(^2\) in steps of 10 GeV/c\(^2\), using PYTHIA 8 [40,41] with a specific LHCb configuration [42]. The parton density functions (PDF) are taken from the CTEQ6L set [43]. Decays of hadronic particles are described by EVTGEN [44], in which final-state radiation is generated using PHOTOS [45]. The interaction of the particles with the detector and its response are implemented using the GEANT4 toolkit [46,47] as described in Ref. [48]. Samples of \(H \rightarrow \mu^+\mu^- \) decays generated at next-to-leading order precision by POWHEG-BOX [49–52] with the PDF set MMHT2014nlo68c1 [53] are used for the signal acceptance determination.

3 Signal selection

This analysis uses data corresponding to a total integrated luminosity of 1976 ± 23 pb\(^{-1}\) [54]. The data collected uses a trigger system consisting of a hardware stage followed by a software stage. The hardware trigger requires a muon track identified by matching hits in the muon stations, as well as a global event cut (GEC) requiring the hit multiplicity in the SPD to be less than 600. The software trigger selects muons or electrons with a minimum \(\pt \) of 15 GeV/c.

The \(H \rightarrow \mu^+\mu^- \) candidates are identified and reconstructed into the four channels: \(\mu\tau_e \), \(\mu\tau_{h1} \), \(\mu\tau_{h3} \) and \(\mu\tau_{\mu} \). The \(\tau_{h3} \) candidates are reconstructed from the combination of three charged hadrons from a secondary vertex (SV). The \(\mu^+\mu^- \) candidates are required to be compatible with originating from a common PV. The muon track and the tracks used to reconstruct the tau candidate must be in the geometrical region \(2.0 < \eta < 4.5 \). Electron candidates are chosen amongst tracks failing the muon identification criteria and falling into the acceptance of the PS, ECAL, and HCAL sub-detectors. A large energy deposit, \(E \), in the PS, ECAL, but not in HCAL is required, satisfying: \(E_{\text{PS}} > 50 \text{ MeV} \), \(E_{\text{ECAL}}/p > 0.1 \), and \(E_{\text{HCAL}}/p < 0.05 \), where \(p \) is the reconstructed momentum of the electron candidate, after recovering the energy of the bremsstrahlung photons [55]. Charged hadrons are required to be in the HCAL acceptance, to deposit an energy \(E_{\text{HCAL}} \) with \(E_{\text{HCAL}}/p > 0.05 \), and to fail the muon identification criteria. The pion mass is assigned to all charged hadrons.

The selection criteria need to be optimised over the \(m_H \) range used in this analysis, from 45 to 195 GeV/c\(^2\). Three different sets of selection criteria are considered, dubbed L-selection, C-selection, and H-selection. The C-selection is similar to that used for the analysis of \(Z \rightarrow \ell^+\ell^- \) decays [37]; as such, it is optimised for \(m_H \sim m_Z \). The L-selection and H-selection are optimised for the \(m_H \) regions below and above the \(Z \) mass respectively. All selection sets are applied in parallel to compute background estimation and exclusion limits. Subsequently, for each \(m_H \) hypothesis, the chosen selection is that of L-, C-, or H-selection which provides the smallest expected signal limit, allowing precise separation between adjacent mass regions. As expected, it is found that the C-selection is optimal for a boson mass of 75 and 85 GeV/c\(^2\). Below and above that range the best upper limits are obtained from the L- and H-selections, respectively. In the following discussion these requirements are applied identically for all decay channels and selection sets unless stated otherwise.

The tau candidates are selected with \(\pt > 5 \text{ GeV/c} \) for \(\tau_e \), \(\tau_\mu \), and \(\pt > 10 \text{ GeV/c} \) for \(\tau_{h1} \). For the \(\tau_{h3} \) candidate, the charged hadrons are required to have \(\pt > 1 \text{ GeV/c} \) and one of them with \(\pt > 6 \text{ GeV/c} \). They are combined to form the tau candidates, which are required to have \(\pt > 12 \text{ GeV/c} \) and an invariant mass in the range 0.7 to 1.5 GeV/c\(^2\). In the H-selection, the tau candidates must have \(\pt \) in excess of 20 GeV/c. This requirement is not applied in the \(\mu\tau_\mu \) channel as it favours the selection of \(Z \rightarrow \mu^+\mu^- \) background. The muon from \(H \rightarrow \mu^+\mu^- \) decay is expected to have a relatively large \(\pt \), thus the selection requires
the muon p_T to be greater than 20 GeV/c, 30 GeV/c, and 40 GeV/c in the L-, C-, and H-selections, respectively. A tighter requirement of 50 GeV/c is applied for the muon in the $\mu \tau$ channel in the H-selection due to the $Z \rightarrow \mu^+ \mu^-$ background. Additionally, for the $\mu \tau$ channel, the contribution from $W/Z \rightarrow e +$ jet background is suppressed by requiring the transverse momentum of the muon to be larger than that of the τ candidate.

The relatively large lifetime of the τ lepton is used to suppress prompt background. For the τ_{th3} candidate, a SV is reconstructed. A correction to the visible invariant mass, m, computed from the three-track combination, is obtained by exploiting the direction of flight defined from the PV to the SV. The relation used is $m_{\text{corr}} = \sqrt{m^2 + p^2 \sin^2 \theta + p \sin \theta}$, where θ is the angle between the momentum of the τ_{th3} candidate, and its flight direction. The m_{corr} value is required to not exceed 3 GeV/c2. A time-of-flight variable is also computed from the distance of flight and the partially reconstructed momentum of the τ lepton, and a minimum value of 30fs is required. The m_{corr} and time-of-flight requirements together retain 80% of the signal, while rejecting about 75% of the QCD background. For tau decay channels with a single charged particle, it is not possible to reconstruct a SV, and a selection on the particle IP is applied. A threshold of IP $> 10 \mu m$ selects 85% of the τ_e and τ_{th1} candidates, and rejects about 50% of the V_j background. The threshold is increased to 50 μm for τ_μ candidates, in order to suppress $Z \rightarrow \mu^+ \mu^-$ background. The prompt muon instead is selected by requiring IP less than 50 μm, allowing up to 50% rejection of QCD and $Z \rightarrow \tau^+ \tau^-$ backgrounds.

The two leptons from the Higgs decay should be approximately back-to-back in the plane transverse to the beam. The absolute difference in azimuthal angle of muon and tau candidates is required to be greater than 2.7 radians. This rejects 50% of the V_j background. The transverse momentum asymmetry of the two particles, defined as $A_{\text{pt}} = |p_{\text{t1}} - p_{\text{t2}}|/(p_{\text{t1}} + p_{\text{t2}})$, can be used to effectively suppress various background processes. The background from the V_j processes is suppressed by up to 60% for the $\mu \tau_{th1}$ channel by requiring $A_{\text{pt}} < 0.4$ (0.5) in the L-selection (S-selection), because of the large p_T imbalance between the high-p_T muon from the vector boson and a hadron from a jet. For the $\mu \tau_e$ channel, the worse momentum resolution increases the average A_{pt} value, hence a softer selection $A_{\text{pt}} < 0.6$ is used to preserve efficiency. On the contrary, for the $\mu \tau_e$ channel, a tighter cut is applied to suppress the dominant background from $Z \rightarrow \mu^+ \mu^-$ decays. By requiring $A_{\text{pt}} > 0.3$ (0.4) in the L-selection and C-selection (H-selection), such background is reduced by 80%, while the signal decreases to 70%.

The two leptons from the Higgs decay are required to be isolated from other charged particles. Two particle-isolation variables are defined as $I_{\text{pt}} = (\vec{p}_{\text{cone}})\tau$ and $I_{\text{pt}} = p_{\text{t}}/(\vec{p} + \vec{p}_{\text{cone}})\tau$ where \vec{p} is the momentum of the lepton candidate, the subscript T denotes the component in the transverse plane, and \vec{p}_{cone} is the sum of the momenta of all charged tracks within a distance $R_{\text{ph}} = 0.5$ in the (η, ϕ) plane around the lepton candidate. The isolation requirement $I_{\text{pt}} > 0.9$ is applied to the muon and tau candidates for all decay channels and selection sets, and retain 70% of the signal candidates while rejecting 90% of QCD events. In addition, a cut $I_{\text{pt}} < 2 \text{ GeV/c}$ is applied in the L-selection to both candidates, as the lower p_T reduces the background rejection power of the I_{pt} variable.

The selection criteria common or specific to each selection set and decay channel are summarised in Table 1. The signal selection efficiencies are found to vary from 10 to 50%. Due to the kinematic selection, the decay channels are mutually exclusive and just one $\mu^+ \tau^+$ candidate per event is found.

4 Background estimation

Several background processes are considered: $Z \rightarrow \tau^+ \tau^-$, $Z \rightarrow l^+ l^-$ ($l = e, \mu$), QCD, V_j, double bosons production (VV), $t\bar{t}$, and $Z \rightarrow b\bar{b}$. All backgrounds except $Z \rightarrow \tau^+ \tau^-$ are estimated following the procedures described in Ref. [37]. The expected yields can be found in Table 2. The corresponding invariant-mass distributions compared with candidates observed in the data are shown in Fig. 1. For illustration, examples of $H \rightarrow \mu^+ \tau^+$ distributions from simulation are also superimposed.

The $Z \rightarrow \tau^+ \tau^-$ background is estimated from the cross-section measured by the LHCb collaboration [37] where the reconstruction efficiency is determined from data, and the acceptance and selection efficiency are obtained from simulation. The estimated background includes a small amount of cross-feed from different final states of the tau decay, as determined from simulation. The $Z \rightarrow \mu^+ \mu^-$ background is dominant in the $\mu \tau_{\mu}$ channel. The corresponding invariant-mass distribution is obtained from simulation and normalised to data in the Z peak region, from 80 to 100 GeV/c2. In order to suppress the potential presence of signal in this region, the muons are required to be promptly produced. For other channels, the $Z \rightarrow l^+ l^-$ decay becomes a background source in case a lepton is misidentified. This contribution is computed from the $Z \rightarrow l^+ l^-$ in data, and weighted by the particle misidentification probability obtained from simulation.

The QCD and V_j backgrounds are inferred from data using the same criteria as for the signal but selecting same-sign $\mu^+ \tau^+$ candidates. Their amounts are determined by a fit to the distribution of $p_T(\mu) - p_T(\tau)$, with templates representing each of them. The template for the QCD component is obtained from data requiring an anti-isolation $I_{\text{pt}} < 0.6$ selection. The distribution obtained from simulation is used for the V_j component. Factors are subsequently applied for
the correction of the relative yield of opposite-sign to same-sign candidates. For the QCD background the number of anti-isolated opposite-sign candidates found in data is used in the calculation of the correction factor, where it is found to be close to unity. The factors are found consistent with the simulation. The factors for the $\mu \tau$ simulation are in general larger than unity (1.3 for $\mu \tau$ simulation). The factors for the $\tau \tau$ are close to unity. The factors are found consistent with the Powheg-Box obtained from the $\tau \tau$ channel because of the limited tracking efficiency for the low-momentum hadrons. With the exception of the $\tau \tau$ channel, the tighter selection on the muon p_T and I_p, and $Z \rightarrow b\bar{b}$ processes are estimated from simulation.

5 Results

The signal cross-section multiplied by the branching fraction is given by

$$\sigma(gg \rightarrow H \rightarrow \mu^{\pm} \tau^\mp) = N_{\text{sig}}/(\mathcal{L} \cdot B(\tau \rightarrow X) \cdot \varepsilon),$$ \hspace{1cm} (1)$$

where N_{sig} is the signal yield obtained from the fit procedure described below, \mathcal{L} the total integrated luminosity, $B(\tau \rightarrow X)$ the tau branching fraction, and ε the detection efficiency. The latter is the product of acceptance, reconstruction, and offline selection efficiencies. These efficiencies are obtained from simulated samples and data for each decay channel and selection set, following the methods developed for the $Z \rightarrow \tau^+ \tau^-$ measurement [37]. The acceptance obtained from the POWHEG-BOX generator is identical for the $\mu \tau_e$, $\mu \tau_h$, and $\mu \tau_\mu$ channels, varying from 1.0% for $m_H = 195 \text{ GeV}/c^2$ to 3.2% for $m_H = 75 \text{ GeV}/c^2$. The reconstruction efficiency, which is the product of contributions from trigger, tracking, and particle identification, is in the range 40–70%, but only about 15% in the case of the $\mu \tau_h$ channel due to the limited tracking efficiency for the low-momentum hadrons. With the exception of the $\mu \tau_\mu$ channel, the selection efficiency is 18–30% in the L-selection, and 24–49% in the C-selection and H-selection. In the case of the $\mu \tau_\mu$ channel, the tighter selection on the muon p_T and impact parameter reduces the selection efficiency to 10–15%.

The systematic uncertainties are summarised in Table 3. The uncertainty on the acceptance receives contributions from gluon PDF uncertainty, as well as from factorization and renormalisation scales. The uncertainties on the reconstruction and selection efficiencies are estimated from simulation and are calibrated using data as described in Ref. [37]. The uncertainty associated with the invariant-mass shape is handled by selecting the weakest expected limits among the different choices of distribution (kernel estimation and histograms with different bin widths are used). The uncertainties on the integrated luminosity and acceptance are fully

Selection set	Variable	$\mu \tau_e$	$\mu \tau_h$	$\mu \tau_\mu$	
All	$p_T(\tau)$ [GeV/c]	> 5	> 10	> 12	> 5
	$p_T(\tau_{h1})$ [GeV/c]	–	–	> 1	–
	$p_T(\tau_{h2})$ [GeV/c]	–	–	> 1	–
	$p_T(\tau_{h3})$ [GeV/c]	–	–	> 6	–
	$p_T(\mu) - p_T(\tau)$ [GeV/c]	> 0	–	–	–
	$m(\tau_{h3})$ [GeV/c^2]	–	0.7–1.5	–	–
	$m_{\text{corr}}(\tau_{h3})$ [GeV/c^2]	–	–	> 3	–
	Time-of-flight (τ_{h3}) [fs]	–	–	> 30	–
L-selection	$p_T(\mu)$ [GeV/c]	> 20	> 20	> 20	> 20
	A_{p_T}	< 0.6	< 0.4	–	> 0.3
	$I_p(\tau)$ [GeV/c]	< 2	< 2	< 2	> 2
	$I_p(\mu)$ [GeV/c]	< 2	< 2	< 2	< 2
C-selection	$p_T(\mu)$ [GeV/c]	> 30	> 30	> 30	> 30
	A_{p_T}	–	< 0.5	–	> 0.3
H-selection	$p_T(\tau)$ [GeV/c]	> 20	> 20	> 20	–
	$p_T(\mu)$ [GeV/c]	> 40	> 40	> 40	> 50
	A_{p_T}	–	–	–	> 0.4
correlated among channels, while only a partial correlation is found for the reconstruction efficiency uncertainties. All the other uncertainties are taken as uncorrelated.

The signal yield is determined from a simultaneous extended likelihood fit of the binned invariant-mass distributions of the $\mu\tau$ candidates. The distributions for signal are obtained from simulation, while distributions of the different background sources are obtained using the method described in Sect. 4. The amount of each background component as well as other terms in Eq. (1) containing uncertainties are treated as nuisance parameters and are constrained to a Gaussian distribution with mean and standard deviation corresponding to the expected value and its uncertainty, respectively.

The fit results for all m_H values are compatible with a null signal, hence cross-section upper limits are computed. The exclusion limits of $\sigma(gg \rightarrow H \rightarrow \mu^+\mu^-)$ defined at 95% confidence level are obtained from the CLs method [56]. As mentioned before, for each mass hypothesis the selection considered is that providing the smallest expected limit. The $\sigma(gg \rightarrow H \rightarrow \mu^+\mu^-)$ exclusion limits are shown in Fig. 2, ranging from 22 pb for $m_H = 45$ GeV/c2 to 4 pb for $m_H = 195$ GeV/c2. In the particular case of $m_H = 125$ GeV/c2, using the production cross-section from Ref. [57] gives a best fit for the branching fraction of $B(H \rightarrow \mu^+\mu^-) = 2.4^{+1.6}_{-1.2}$% and an observed exclusion limit $B(H \rightarrow \mu^+\mu^-) < 26$%.

The corresponding exclusion limit on the Yukawa coupling is $\sqrt{|Y_{\mu\tau}|^2 + |Y_{\tau\mu}|^2} < 1.7 \times 10^{-2}$, assuming the decay width $\Gamma_{\text{SM}} = 4.1$ MeV/c2 [58].

6 Conclusion

A search for Higgs-like bosons decaying via a lepton-flavour-violating process $H \rightarrow \mu^+\mu^-$ in pp collisions at $\sqrt{s} = 8$ TeV is presented, with the tau lepton reconstructed in leptonic and hadronic decay modes. No signal has been found. The upper bound on the cross-section multiplied by the branching fraction, at 95% confidence level, ranges from 22 pb for a boson
Fig. 1 Invariant-mass distributions for the $\mu^\pm \tau^\mp$ candidates for the four decay channels (from top to bottom: $\mu\tau_c$, $\mu\tau_b$, $\mu\tau_3$, $\mu\tau_4$) and the three selections (from left to right: L-selection, C-selection, H-selection). The distribution of candidates observed (black points) is compared with backgrounds (filled colour, stacked), and with signal hypothesis (cyan). The signal is normalised to \sqrt{N}, with N the total number of candidates in the corresponding data histogram.

Table 3 Relative systematic uncertainties (in %) on the normalisation factors in the cross-section calculation. When the uncertainty depends on m_H a range is indicated.

	$\mu\tau_c$	$\mu\tau_b$	$\mu\tau_3$	$\mu\tau_4$
Luminosity	1.16	1.16	1.16	1.16
Tau branching fraction	0.22	0.18	0.48	0.23
PDF	2.6–7.1	3.5–7.2	2.6–7.3	3.0–7.9
Scales	0.9–1.9	0.8–1.7	0.9–1.7	0.9–1.9
Reconstruction efficiency	1.8–3.6	1.9–5.4	3.3–7.1	1.5–3.3
Selection efficiency	2.5–6.0	1.9–4.1	4.0–9.3	3.8–8.5
mass of 45 GeV/c², to 4 pb for 195 GeV/c². The search provides information complementary to the ATLAS and CMS collaborations.

Acknowledgements We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (The Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MinECo (Spain); the Royal Society and the Leverhulme Trust (United Kingdom); Laboratory Directed Research and Development program of LANL (USA); Key Institutes. We acknowledge support from CERN and from the national agencies of INFN (Italy); NWO (The Netherlands); MINISW and NCN (Poland); RRCKI and Yandex LLC (Russia); CSCS (Switzerland); IFIN-HH (Romania); CBPF (Brazil); PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the many open-source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany); EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union); ANR, Labex P2IO and OCEVU, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, and the Thousand Talents Program (China); RFBR, RSF and Yandex LLC (Russia); GVA, XuntaGal and GENCAT (Spain); the Royal Society and the Leverhulme Trust (United Kingdom); Laboratory Directed Research and Development program of LANL (USA).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP³.

References

1. M. Blanke et al., ΔF = 2 observables and fine-tuning in a warped extra dimension with custodial protection. JHEP 03, 001 (2009). arXiv:0809.1073
2. G.F. Giudice, O. Lebedev, Higgs-dependent Yukawa couplings. Phys. Lett. B 665, 79 (2008). arXiv:0804.1753
3. J.A. Aguilar-Saavedra, A minimal set of top-Higgs anomalous couplings. Nucl. Phys. B 821, 215 (2009). arXiv:0904.2387
4. M.E. Albrecht et al., Electroweak and flavour structure of a warped extra dimension with custodial protection. JHEP 09, 064 (2009). arXiv:0903.2415
5. A. Goudelis, O. Lebedev, J-h Park, Higgs-induced lepton flavour violation. Phys. Lett. B 707, 369 (2012). arXiv:1111.1715
6. D. McKeen, M. Pospelov, A. Ritz, Modified Higgs branching ratios versus CP and lepton flavour violation. Phys. Rev. D 86, 113004 (2012). arXiv:1208.4597
7. E. Arganda, A.M. Curiel, M.J. Herrero, D. Temes, Lepton flavour violating Higgs boson decays from massive seesaw neutrinos. Phys. Rev. D 71, 035011 (2005). arXiv:hep-ph/0407302
8. E. Arganda, M.J. Herrero, X. Marcano, C. Weiland, Imprints of massive inverse seesaw model neutrinos in lepton flavour violating Higgs boson decays. Phys. Rev. D 91, 015001 (2015). arXiv:1405.4300
9. R. Harnik, J. Kopp, J. Zupan, Flavour violating Higgs decays. JHEP 03, 026 (2013). arXiv:1209.1397
10. J.D. Bjorken, S. Weinberg, A mechanism for nonconservation of muon number. Phys. Rev. Lett. 38, 622 (1977)
11. J.L. Diaz-Cruz, J.J. Toscano, Lepton flavour violating decays of Higgs bosons beyond the standard model. Phys. Rev. D 62, 116005 (2000). arXiv:hep-ph/0008141
12. T. Han, D. Marfatia, H → µH at hadron colliders. Phys. Rev. Lett. 86, 1442 (2001). arXiv:hep-ph/0008141
13. A. Arhrib, Y. Cheng, O.C.W. Kong, Comprehensive analysis on lepton flavour violating Higgs boson to µ± τ∓ decay in supersymmetry without R parity. Phys. Rev. D 87,015025 (2013). arXiv:1210.8241
14. M. Arana-Catania, E. Arganda, M.J. Herrero, Non-decoupling SUSY in LFV Higgs decays: a window to new physics at the LHC. JHEP 09, 160 (2013) [Erratum ibid 10, 192 (2015)]. arXiv:1304.3371
15. K. Agashe, R. Contino, Composite Higgs-mediated flavor-changing neutral current. Phys. Rev. D 80, 075016 (2009). arXiv:0906.1542
16. A. Azatov, M. Toharia, L. Zhu, Higgs mediated flavor-changing neutral current’s in warped extra dimensions. Phys. Rev. D 80,035016 (2009). arXiv:0906.1990
17. G. Perez, L. Randall, Natural neutrino masses and mixings from warped geometry. JHEP 01, 077 (2009). arXiv:0805.4652
18. S. Casagrande, Flavour physics in the Randall–Sundrum model: I. Theoretical setup and electroweak precision tests, JHEP 10, 094 (2008). arXiv:0807.4937
19. H. Ishimori et al., Non-Abelian discrete symmetries in particle physics. Prog. Theor. Phys. Suppl. 183, 1 (2010). arXiv:1003.3552
20. ALEPH collaboration, D. Decamp et al., Searches for new particles in Z decays using the ALEPH detector. Phys. Rep. 216, 253 (1992)
21. DELPHI collaboration, P. Abreu et al., A search for lepton flavour violation in Z decays. Phys. Lett. B 298,247 (1993)
22. L3 collaboration, O. Adriani et al., Search for lepton flavour violation in Z decays. Phys. Lett. B 316, 427 (1993)
23. OPAL collaboration, M.Z. Akrawy et al., A Search for lepton flavour violation in Z decays. Phys. Lett. B 254, 293 (1991)
24. OPAL collaboration, G. Abbiendi et al., Search for lepton flavour violation in e+e− collisions at √s = 189 − 209 GeV. Phys. Lett. B 519, 23 (2001). arXiv:hep-ex/0109011
25. G. Blankenburg, J. Ellis, G. Isidori, Flavour-changing decays of a 125 GeV Higgs-like particle. Phys. Lett. B 712, 386 (2012). arXiv:1202.5704
26. CMS collaboration, A.M. Sirunyan et al., Search for lepton flavour violating decays of the Higgs boson to µτ and στ in proton–proton collisions at √s = 13 TeV. JHEP 06, 001 (2018). arXiv:1712.07173
27. ATLAS collaboration, G. Aad et al., Search for lepton-flavour-violating H → µτ decays of the Higgs boson with the ATLAS detector. JHEP 11, 211 (2015). arXiv:1508.03372
Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia, associated to 8
Institut für Physik, Universität Rostock, Rostock, Germany, associated to 12
Van Swinderen Institute, University of Groningen, Groningen, The Netherlands, associated to 27
National Research Centre Kurchatov Institute, Moscow, Russia, associated to 34
National University of Science and Technology “MISIS”, Moscow, Russia, associated to 34
National Research Tomsk Polytechnic University, Tomsk, Russia, associated to 34
Instituto de Física Corpuscular, Centro Mixto Universidad de Valencia-CSIC, Valencia, Spain, associated to 40
University of Michigan, Ann Arbor, USA associated to 61
Los Alamos National Laboratory (LANL), Los Alamos, USA associated to 61

a Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
b Laboratoire Leprince-Ringuet, Palaiseau, France
c P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
d Università di Bari, Bari, Italy
e Università di Bologna, Bologna, Italy
f Università di Cagliari, Cagliari, Italy
g Università di Ferrara, Ferrara, Italy
h Università di Genova, Genoa, Italy
i Università di Milano Bicocca, Milan, Italy
j Università di Roma Tor Vergata, Rome, Italy
k Università di Roma La Sapienza, Rome, Italy
l AGH-University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
m LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
n Hanoi University of Science, Hanoi, Vietnam
o Università di Padova, Padua, Italy
p Università di Pisa, Pisa, Italy
q Università degli Studi di Milano, Milan, Italy
r Università di Urbino, Urbino, Italy
s Università della Basilicata, Potenza, Italy
i Scuola Normale Superiore, Pisa, Italy
u Università di Modena e Reggio Emilia, Modena, Italy
v MSU, Iligan Institute of Technology (MSU-IIT), Iligan, Philippines
w Novosibirsk State University, Novosibirsk, Russia
x National Research University Higher School of Economics, Moscow, Russia
y Sezione INFN di Trieste, Trieste, Italy
z Escuela Agrícola Panamericana, San Antonio de Oriente, Honduras
aa School of Physics and Information Technology, Shaanxi Normal University (SNNU), Xi’an, China
ab Physics and Micro Electronic College, Hunan University, Changsha, China
† Deceased