VIDEO OF ORTHOPAEDIC TECHNIQUE

Anteroinferior Psoas Technique for Oblique Lateral Lumbar Interbody Fusion

Hai-Feng Zhu, MM1,2, Xiang-Qian Fang, MD, PHD1,2, Feng-Dong Zhao, MD1,2, Jian-Feng Zhang, MD1,2, Xing Zhao, MD1,2, Zhi-Jun Hu, MD and PHD1,2, Shun-Wu Fan, MD1,2

1Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University and 2Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China

Oblique lateral lumbar interbody fusion (OLIF) has been extensively used, with satisfactory outcomes for the treatment of degenerative lumbar disease. This article aims to demonstrate a modified lateral approach, also known as the anteroinferior psoas (AIP) technique for OLIF, which is expected to enhance security by operating under direct vision. The core procedures of our technique are as follows. First, a minimal skin incision is recommended 2 cm backward compared with the normal incision of OLIF, facilitating the oblique placement of the working channel and the orthogonal maneuver for the cage placement. Second, two special custom-made retractors, as an alternative to the index finger, are used to pull the psoas muscle to the dorsal side and pull the abdominal organs together with extraperitoneal fate to the ventral side under direct visualization, making the exposure of the working channel convenient and safe and avoiding radiation exposure. Third, the anterior border of the psoas is bluntly dissected and retracted backwards, obviously enlarging the retroperitoneal anatomic corridor and then expanding clinical indications of OLIF. The benefits of this technique include that it has a short learning curve, satisfactory clinical outcomes, and low risk of perioperative complications.

Key words: Anteroinferior psoas; Direct visualization; Oblique lateral lumbar interbody fusion; Retractor; Retroperitoneal anatomic corridor

Introduction

Oblique lateral interbody fusion (OLIF) is being widely used as an alternative to lateral lumbar interbody fusion (LLIF), which is associated with a high risk of access-related psoas muscle injury and lumbar plexus injury while dissecting the psoas muscle1,2. The OLIF procedure, taking advantage of the anatomical space between the aorta and psoas muscle to access the disc space, can effectively reduce the risk of access-related neurologic and muscular complications3,4. Nevertheless, with the popularization and development of the OLIF technique, more and more surgeons are finding it hard to complete OLIF operations safely, especially beginners. First, as the anatomical space to access the L2-5 discs, fluctuating from 15.00 mm to 19.25 mm for Westerners5 and 9 mm to 13 mm for Chinese, is a little smaller than the diameter of the Medtronic METRx tube (22 mm) and the width of the PEEK cage (18 mm), it is not an easy task to settle the Medtronic METRx tube safely just using the retroperitoneal anatomic corridor. Second, according to a previous technical report6,7, a blunt dissection using an index finger was recommended to expose the retroperitoneal space: applying back-and-forth and up-and-down movements until the anterior psoas border and intervertebral space was felt. This non-direct visual exposure may endanger the anterior big vessels, the segmental arteries, the ovarian/testicular veins, the peritoneum and the ureter8. Hence, we propose a modified lateral approach, also known as the anteroinferior psoas (AIP) technique for OLIF, which is expected to enhance security by operating under direct vision.

Technique

Case study

A 62-year-old woman had suffered from recurrent low back pain accompanied by aching pain of the left thigh, which...
was aggravated during activity and relieved after rest, 3 years prior to her presentation to our hospital. The disease had progressed slowly, but it had become worse suddenly, 3 months prior, without apparent cause. An obvious tenderness and step-like feeling at L4–5 level was found on physical examination by the attending physician. The patient had no knowledge of any underlying disease.

Plain X-ray images of the lumbar spine revealed mild forward slippage of L4, which manifested as instability in lumbar dynamic position, scoliosis, and degenerative change with osteoporosis (Fig. 1). Lumbar CT scan and MRI both showed 1 degree spondylolisthesis of L4 and spinal canal stenosis at L4–5 level (Fig. 2).

The diagnosis was lumbar instability accompanied with L4 degenerative spondylolisthesis (1 degree) and spinal canal stenosis. Strict conservative treatment for more than 3 months was unsuccessful and oblique lateral lumbar interbody fusion was necessary.

Surgical Technique
The surgical procedure of the AIP technique for OLIF is briefly described in what follows.

Position and Incision
After induction of general anesthesia, the patients were positioned in the lateral decubitus position on their right side. Lateral and anteroposterior C-arm fluoroscopic images were

Fig. 1 Preoperative static and dynamic anteroposterior radiograph of the lumbar spine. Mild forward slippage of L4, which manifested as instability in lumbar dynamic position, scoliosis, and degenerative change with osteoporosis.
obtained to confirm the disease segment and the central point of the target intervertebral disc (IVD) space. A minimal skin incision is recommended approximately 3–4 cm anterior to the midpoint of the target IVD and 3 cm in length.

Exposure of the Target Intervertebral Disc Space with the Anteroinferior Psoas Technique
The obliquus externus abdominis and obliquus internus abdominis were bluntly dissected along the direction of the muscle fiber, and the transverses abdominis was incised. Then the retroperitoneal space was bluntly dissected and the peritoneum was mobilized anteriorly using a special custom-made retractor to expose the anterior border of the psoas. The IVD was identified by retracting the anterior border of the psoas posteriorly using a periosteum detached under direct visualization, and then the psoas muscle was dissected from the disc surface and retracted posteriorly using another special custom-made retractor.

Establishment of the Working Channel
The guide pin, probe, sequential dilators, and the tube retractor were sequentially placed in the disc space vertically, and the retractor was fixed to the upper bone endplate of the inferior vertebral body with a pin.

Discectomy, Endplate Preparation, and Cage Placement
Discectomy and endplate preparation were performed and the opposite annulus fibrosus was knocked through using sequential reamers. The disc space was sequentially distracted by trial
until adequate disc space height was obtained, and a peek cage (Clydesdale Spinal System, Medtronic Sofamor Danek, Minneapolis, MN, USA) filled with artificial bone (Wright, Tennessee, USA) was inserted vertically into the intervertebral space.

Pedicle Rod Instrumentation Placement

After the anterior procedure, the patient was turned to the prone position and underwent posterior fixation through the inter-muscular Wiltse procedure with the help of two micro-laminectomy retractors if necessary.

Discussion

There is a general consensus that OLIF has several distinct advantages, such as reducing the need to penetrate the psoas and lumbar plexus\(^2\), avoiding damage to the neural canal, the paraspinal muscle and the posterior ligament complex\(^2\), larger cage placement to improve fusion rates, and relatively broad indications for treatment. However, a steep learning curve and potentially serious complications, such as abdominal great vascular injury\(^10\), obviously hinder the uptake of the OLIF technique. Based on our previous study\(^11\), the AIP technique for OLIF demonstrated a short learning curve, satisfactory clinical outcomes, and low risk of perioperative complications, with surgical procedures completed under direct visualization.

Highlights and Pitfalls

1. Compared with the normal incision of OLIF, the skin incision is recommended to be 2 cm backward, facilitating the oblique placement of the working channel and the orthogonal maneuver for the cage placement.

2. Two special custom-made retractors, as an alternative to the index finger, are used to dissect and pull the psoas muscle to the dorsal side and pull the abdominal organs together with the extraperitoneal fate to the ventral side\(^7,11\). Hence, the entire working channel can be directly visualized, which will certainly decrease potential risk to the ureter, sympathetic chain, peritoneum, and vascular structures and reduce the frequency of intraoperative fluoroscopy.

3. The anterior border of the psoas is bluntly dissected and retracted backwards, making the retroperitoneal anatomic corridor obviously enlarged, which will enable some patients with a narrow anatomical corridor to undergo OLIF operations.

4. Although vascular injury is rare, when it does present it can be catastrophic. The following advice could be useful when encountering vascular injury: (i) pressing the two ends of the damaged vessels with two periosteal detachers; (ii) properly dissociating the two ends of the damaged vessels and vascular ligation or bipolar electrocoagulation hemostasis; and (iii) checking again and confirming that there is no active bleeding after removal of the two periosteal detachers.

Acknowledgments

This work was sponsored by the National Natural Science Fund of China (81472064, 81672150), the Zhejiang Medical and Health Science and Technology Project (2018KY117, 2019ZD041), New Talent in Medical Field of Zhejiang Province, and the Fundamental Research Funds for the Central Universities.

Video Image

Additional video images can be found in the online version of this article.

References

1. Anand N, Baron EM. Urological injury as a complication of the transpsoas approach for discectomy and interbody fusion. J Neurosurg Spine, 2013, 18: 18–23.

2. Fujibayashi S, Hynes RA, Otsuki B, Kimura H, Takemoto M, Matsuda S. Effect of indirect neural decompression through oblique lateral interbody fusion for degenerative lumbar disease. Spine, 2015, 40: E175–E182.

3. Arnold PM, Anderson KK, McGuire RA Jr. The lateral transpsoas approach to the lumbar and thoracic spine: a review. Surg Neurol Int, 2012, 3: S138–S215.

4. Li JX, Phan K, Mobbs R. Oblique lumbar interbody fusion: technical aspects, operative outcomes, and complications. World Neurosurg, 2017, 98: 113–123.

5. Davis TT, Hynes RA, Fung DA, et al. Retropertitoneal oblique corridor to the L2-L3 intervertebral discs in the lateral position: an anatomic study. J Neurosurg Spine, 2014, 21: 785–793.

6. Woods KR, Billys JB, Hynes RA. Technical description of oblique lateral interbody fusion at L1-L5 (OLIF25) and at L5-S1 (OLIF51) and evaluation of complication and fusion rates. Spine J, 2017, 17: 545–553.

7. Quillo-Olvera J, Lin GX, Ho HJ, Kim JS. Complications on minimally invasive oblique lumbar interbody fusion at L2-L5 levels: a review of the literature and surgical strategies. Ann Transl Med, 2018, 6: 101.

8. Orita S, Inage K, Sainoh T, et al. Lower lumbar segmental arteries can intersect over the intervertebral disc in the oblique lateral interbody fusion approach with a risk for arterial injury: radiological analysis of lumbar segmental arteries by using magnetic resonance imaging. Spine, 2017, 1976: 135–142.

9. Mobbs RJ, Phan K, Malham G, See K, Rao PJ. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg, 2015, 1: 2–18.

10. Xu GS, Walker CT, Goetzik J, Turner JD, Smith W, Uribe JS. Minimally invasive anterior, lateral, and oblique lumbar interbody fusion: a literature review. Ann Transl Med, 2018, 6: 104.

11. Zeng ZY, Xu ZW, He DW, et al. Complications and prevention strategies of oblique lateral interbody fusion technique. Orthop Surg, 2018, 10: 98–106.