The quality of bone tissue and its mineral density in patients with chronic obstructive pulmonary disease

Abstract. Background. The objective of the work is to study the effect of chronic obstructive pulmonary disease (COPD) on mineral density (BMD) and trabecular bone score (TBS), depending on the degree of severity and women’s age. Materials and methods. We have examined 30 women aged 57.43 ± 7.87 years, patients with COPD of various stages (GOLD 1–4). We have studied the BMD Total, BMD the lumbar spine (L1–L4), BMD Femur, and BMD Radius by means of dual-energy X-ray absorptiometry (DEXA). TBS of the lumbar spine (L1–L4) was determined by the TBS iNsight method (Med-Imaps, Pessac, France). Results. A significant decrease of the BMD was found at every skeletal area starting from GOLD 3, whereas at the L1–L4 level the BMD began to decrease at GOLD 2. The correlation was found between the severity of COPD and BMD Femur (r = –0.75, p < 0.05), BMD Radius (r = –0.73, p < 0.05), BMD L1–L4 (r = –0.80, p < 0.05) BMD Total (r = –0.73, p < 0.05). Starting from GOLD 2, the values of TBS significantly decreased and corresponded to the partial bone quality loss. The most pronounced changes occurred at the level of TBS L, and corresponded to a significant bone quality loss already at GOLD 2. The TBS progressively decreased and at GOLD 3–4 corresponded to a significant loss of bone quality. The correlation was found between the severity of COPD and TBS of the spine at the level of L1–L4 (r = –0.76, p<0.05), TBS of the spine at the level of L1–L4 (r = –0.75, p<0.05). Conclusions. Age equally affects both BMD and TBS in women with COPD, and from the age of 45, these rates progressively decrease. The effect of COPD on bone tissue according to the severity of the disease is heterogeneous at different segments of the axial skeleton. The earliest changes concern the decrease in BMD L1-L4 (1.19 ± 0.05) g/cm² compared to GOLD 1 (1.39 ± 0.05) g/cm² (p < 0.05) and TBS L1 (1.17 ± 0.06) in comparison with GOLD 1 (1.34 ± 0.06; p < 0.05), whose decrease is observed already at GOLD 2. Keywords: chronic obstructive pulmonary disease; trabecular bone score; bone mineral density
metabolic syndrome [9], atherosclerosis, cachexia, anorexia and osteoporosis (OP) [10].

The simultaneous course of COPD and OP will always be accompanied by a syndrome of “mutual encumbrance”, due to the activated chronic infection [11], smoking effect [12, 13], bronchial permeability disorder, developed hypoxia and oxidative stress [14], as well as systemic steroidal treatment [4, 6, 9, 15].

At the moment, there are two opinions as to the interaction between COPD and attending disorders. On one hand, the comorbid pathology arises out of the collateral systemic inflammation resulting from a series of inflammatory and reparative events occurring in the lungs during the COPD [6, 15]. Further on, the OP develops as a secondary COPD systemic effect. On the other hand, the OP may develop independently from the COPD or, in case of the overall developmental factors, one disease increases the risk of other development [13].

The osteoporosis is a wide-spread systemic skeletal disease characterized by a bone loss and structural changes of bone tissue [16]. The bone state depends on various factors; one of the key determinants of its strength and fracture risk being the bone mineral density (BMD) [17], however, the latter is able to predict only up to 60 % fracture risk [18]. The bone strength and fracture risk is found to depend on other parameters: structural make-up and existing micro-damage, mineralization and bone metabolism rate [16].

The bone tissue is a dynamic open system with a complex multi-level individual and variable morphological make-up, physic-mechanical properties, chemical composition and biological potential [19]. During the adaptive remodeling, the bone may change its structure and properties due to the regulatory system and local conditions under which it exists, and “according to the biological principle of bone number and function correspondence” [19–21].

The trabecular bone metabolism happens much faster (8 times faster) than the cortical one [18]. Due to this fact, the trabecular microarchitecture’s evaluation increases the precision and sensitivity of bone quality evaluation and fracture risk in the clinical practice.

In case of the extant bone pathology, there is a more precise criterion to evaluate its solidity, as the stiffness and strength depend not only on the mineral content determining the X-ray absorbance [20]. It is the nature of structural-functional disorders and the degree of elementary disorganization of its microstructure which affects the pathological changes of the bone. The biological parameters of the bone tissue such as the quality and presence of osteogenic precursor cells and their colony-forming abilities are no less varied [21]. All of these parameters equally determine the bone quality. They are interdependent, though the character of those ties is very complex; it is thus barely possible to predict the special reactions of bone tissue to the metabolic changes of the ailing body affected by COPD, for instance, using only one criterion (namely the BMD). Because of that, during the recent years there is an increasing number of new diagnostic tools helping to determine the trabecular bone quality, and further, to forecast the risk of low-energy fractures in other population groups.

The aim of this study is to explore the COPD influence on BMD and bone quality depending on the disease severity and women’s age.

Materials and methods

In order to achieve the given aim, there was an open observation cohort study performed at the Department of Clinical Physiology and Pathology of Locomotor Apparatus by the SI “D. F. Chebotaryov Institute of Gerontology” by the NAMS of Ukraine, examining 30 female patients with COPD aged 57.43 ± 7.87 years old (age range: 40–70 years). Their participation was voluntary; all the examined subjects obtained detailed information about the study and signed a consent form.

The study involved patients with a verified COPD diagnosis of over-3 year standing. The COPD diagnosis is made in accordance to the GOLD recommendations and the Healthcare Ministry of Ukraine’s Order #555 as of 27.06.2013 [13, 23]. All the examined subjects were distributed into groups depending on the COPD severity (Table 1). The GOLD 1 (light degree) group is made of patients with FEV1/FVC ≥80 – <0.70 % of the values required after the bronchodilator treatment, the GOLD 2 (medium degree) group – ≥50 – <80; the GOLD 3 (severe) group – ≥30 – <50; the GOLD 4 (very severe) group – <30 [4, 13, 23]. Correlation analysis revealed a significant association between COPD severity of illness and its duration (r = 0.78; p < 0.05).

Determination of BMD was performed using dual-energy X-ray absorptiometry (DEXA) (Lunar, 2005, USA). Since osteoporotic changes develop unevenly in different parts of the skeleton, we analyzed the results of DEXA of the total skeleton (Total), the lumbar spine (L1–L4), the femoral neck (Femur), ultra-distal radius (Radius) and total mineral content area (Bone Mineral Content, BMC, g) of the entire skeleton (BMC Total).

Table 1. The group characteristics of COPD-afflicted patients depending on its severity (M ± SD)

Groups	Mean age. years	Height. cm	Weight. kg	Disease duration. years
GOLD 1. n = 6	47.82 ± 13.54	161.00 ± 5.23	66.00 ± 6.29	10.14 ± 7.24
GOLD 2. n = 6	55.71 ± 14.95	164.20 ± 10.86	71.83 ± 14.93	14.09 ± 7.40
GOLD 3. n = 12	61.55 ± 13.57	165.67 ± 8.24	77.75 ± 10.42	19.80 ± 10.42*
GOLD 4. n = 6	60.89 ± 11.97	163.50 ± 4.46	73.00 ± 14.85	23.08 ± 8.55*

Note. The asterisk * marks significant differences of values in comparison to GOLD 1 (p < 0.05).
Trabecular Bone Score (TBS) was determined by the TBS iNsight method (Med-Imaps, Pessac, France). The software package was installed on a computer osteodensitometer to assess the microarchitecture of the trabecular bone on densitometric images of the lumbar spine (L_{1}-L_{4}) (http://www.med-imaps.com) [24–26]. To compare TBS indicators, we used the criteria of their evaluation, created by the Working Group of TBS experts from different countries, by analogy with three categories of BMD assessment for postmenopausal women, namely: normal BMD, osteopenia and osteoporosis [19, 24].

TBS values of 1.35 and more are considered normal, values from 1.2 to 1.35 correspond to a partially disturbed microarchitecture of trabecular bone tissue, and 1.2 or less – a significant violation of it [19].

Statistical processing of the obtained research results was carried out on the basis of the computer program “Statistica 6.1.” (Stat Soft Inc., USA) [27]. The arithmetic mean (M), standard deviation (SD), number of studies (n) were determined. Using parametric and nonparametric statistical methods (Student’s t-test and Wilcoxon’s W-test for independent small samples). The results of p < 0.05 were considered reliable. The relationships between the two variables were assessed by correlation analysis (Pearson’s correlation coefficient).

Results

According to DEXA measurements, 4 (13.33%) patients had normal BMD, 18 (60.0%) were diagnosed with osteopenia, and 8 (26.67%) had osteoporosis.

The assessment of BMD depending on age revealed a decrease in this indicator in the age group 45-59 years at the level of L_{1}-L_{4}: 1.12 ± 0.05 g / cm² against 1.15 ± 0.05 g/cm² in the group of persons younger than 45 years (t = 2.52; p = 0.01), BMD Femur – 1.19 ± 0.03 g / cm² against 1.20 ± 0.04 g/cm² in the group of women 60 years and older: 0.99 ± 0.04 g/cm² (t = 4.75; p < 0.05) and BMD Radius – 0.58 ± 0.02 g / cm² against 0.40 ± 0.03* g/cm² (t = 3.75; p = 0.004), 0.76 ± 0.02 g / cm² (t = 5.03; p = 0.03), respectively, compared to persons younger than 45 years.

When comparing patients with COPD, distributed according to the severity of the disease, a significant decrease in BMD and T-score in the studied areas of the axial skeleton. No statistically significant differences were found when comparing the GOLD 1 and GOLD 2 groups for BMD Total, Femur and Radius, as well as when comparing the GOLD 1 and GOLD 3 groups for BMD Total and BMC Total (Table 2).

The bone evaluation according to the L_{1}-L_{4} BMD and T-score revealed a significant reduction from GOLD 1 to GOLD 2 (p = 0.021), from GOLD 1 to GOLD 3 and GOLD 4 (p<0.001 for both values). The BMD L_{1}-L_{4} reduction amounted to 49.5 % compared to GOLD 1 and GOLD 4 (p<0.01). The BMD and T-score Femur are significantly diminished in case of GOLD 3 and GOLD 4, especially in comparison with GOLD 1 (p = 0.003 and p = 0.004). The BMD and T-score Radius measurements revealed significant differences of values when GOLD 1 and GOLD 3 were compared (p = 0.037) with GOLD 4 (p = 0.0001). The studies of BMD and T-score Total revealed a significant decrease of values with various levels of evidence-based reliability when GOLD 1 and GOLD 3 were compared (p = 0.005) with GOLD 4 (p = 0.004). The BMC Total index did not reveal any significant changes from GOLD 1 to GOLD 2 (p = 0.975) and GOLD 3 (p = 0.032) while the degree of evidence-based reliability was rather high with GOLD 4 (p = 0.009).

The study of COPD’s degree of severity and how it correlated with the axial skeleton BMD demonstrated a close reverse correlation with the axial skeleton BMD (r = -0.71, p<0.05); BMD Total (r = -0.73, p<0.05); BMC Total (r = -0.71, p<0.05); BMD Femur (r = -0.71, p<0.05); BMD Total spine (r = -0.72, p<0.05); BMD L_{1}-L_{4} (r = -0.80, p<0.05); BMD Femur (r = -0.75, p<0.05) and BMC Radius (r = -0.73, p<0.05).

The results of our study show that the women afflicted with COPD demonstrate a progressive age-related lumbar spine BMD reduction starting at the age of 45. The evaluation of axial skeleton state depending on the dis-

Table 2. Indicators of mineral density and bone saturation of the examined patients with COPD depending on the severity of the disease (M ± SD)

Indicators	GOLD 1, n = 6	GOLD 2, n = 6	GOLD 3, n = 12	GOLD 4, n = 6
BMD L_{1}-L_{4}, g/cm²	1.39 ± 0.05	1.19 ± 0.049*	1.05 ± 0.03*	0.93 ± 0.07*
T-score L_{1}-L_{4}, SD	1.90 ± 0.26	−0.17 ± 0.29*	−1.23 ± 0.16*	−2.13 ± 0.38*
BMD Femur, g/cm²	0.96 ± 0.03	0.89 ± 0.05	0.67 ± 0.04*	0.64 ± 0.06*
T-score Femur, SD	0.38 ± 0.42	−0.23 ± 0.20	−1.93 ± 0.16*	−2.08 ± 0.27*
BMD Radius, g/cm²	0.58 ± 0.02	0.55±0.04	0.51 ± 0.03*	0.40 ± 0.03*
T-score Radius, SD	0.58 ± 0.43	−0.37 ± 0.17	−1.11 ± 0.25*	−3.10 ± 0.25*
BMD Total, g/cm²	1.20 ± 0.04	1.18 ± 0.04	1.10 ± 0.02*	1.01 ± 0.03*
T-score Total, SD	1.36 ± 0.38	0.33 ± 0.68	−0.71 ± 0.23*	−1.45 ± 0.29*
BMC Total, g	2853.48 ± 2.54	2843.33 ± 5.51	2501.90 ± 1.99	2214.83 ± 2.44*

Note. The asterisk * marks significant differences of values in comparison to GOLD 1 (p<0.05).
ease severity reflected statistically significant BMD and T-score values of all the studied sites for women with GOLD 3, which were continuously growing; the smallest values were obtained with GOLD 4. Furthermore, the structural-functional bone state changes were inconsistent at various skeletal sites for every individual subject; they were revealed at the lumbar spine level first of all, and this fact is confirmed by the significant L₁-L₄ changes of GOLD 2 patients.

However, there are clinical cases where this parameter’s use for evaluation of vertebral bone quality is restricted [28]. For instance, when there were distinct degenerative-dystrophic changes at the lumbar spine, osteophytes and/or scoliotic deformation, the BMD values are growing. It is also well-known that when the glucocorticoids (GCs) were taken, the risk of vertebral deformation is independent from BMD [29, 30]. Taking into account this information, we were evaluating TBS of the COPD patients as the BMD-independent factor. The obtained findings were then compared with the researcher-suggested normative TBS values [19, 26].

Our studies demonstrate that TBS of lumbar spine was within normal ranges in the GOLD I patients. Starting with GOLD 2, the TBS L₁, TBS L₂, TBS L₁-L₄, and TBS L₁-L₄ values, though corresponding to a partial bone quality deterioration level, revealed a significant reduction in comparison with GOLD 1. The most pronounced changes were observed at the TBS L₁ level and corresponded to significant bone quality deterioration typical of GOLD 2. With GOLD 3, all the examined parameters were significantly reduced, while the GOLD 4 patients had TBS values corresponding to a significant bone quality disorder at all spinal sites, no higher than 1.27 (Table 3).

The study of correlations between the degrees of COPD severity and lumbar spine TBS revealed a close inverse correlation between the GOLD stage and TBS L₁-L₄ (r = -0.76, p<0.05) and TBS L₂-L₄ (r = -0.75; p<0.05).

Analysis of lumbar spine TBS values in relation to the COPD patients’ age brought normal values for the younger women. Starting with 45 years, TBS L₁, TBS L₂, TBS L₁-L₄, and TBS L₂-L₄ decreased significantly in comparison with the ones obtained from the younger women and corresponded to a partial deterioration of bone quality. Furthermore, women of 60 years and older had the TBS values corresponding to a significant deterioration of bone quality. Based on our findings, the most prominent changes are observed with TBS L₁. It starts to decrease significantly after the age of 45 years, amounting to 1.17 ± 0.04 against 1.49 ± 0.03 of women younger than 45 years (p = 0.003). With advancing age, this parameter continues to decrease, and at 60 years and over it amounts to 1.03 ± 0.05 (p = 0.003, compared with women younger than 45 years (Table 4)).

Thus, lumbar spine TBS is a major diagnostic tool for the evaluation of COPD patients’ bone quality as it helps diagnose structural-functional bone disorders from the age of 45 and with GOLD 2.

Discussion

Our findings coincide with the reference data from the international sources on the clinical value of the lumbar spine TBS index [16-18, 20, 22, 24-26]. We’ve also obtained data which are partially coinciding with other study findings. For instance, the study by Casado E. et al. (2016) reported the TBS values in the COPD patients to be lower in those individuals who had a medium (2.57 ± 1.34) or advanced (2.54 ± 1.34) degree of severity than in those who had a slight degree of severity (2.19 ± 1.32, p<0.05). The GC use and a high GC cumulative dose in those patients are associated with the reduced TBS values (p = 0.002 and p = 0.015, respectively) [28]. The study of postmenopausal female patients with COPD demonstrated the association of the reduced TBS with osteophytes and/or scoliotic deformation, the BMD being age-dependent [28].

The TBS study of patients with bronchial asthma confirms its connection with the degree of respiratory pathway obstruction, bronchial hyperreactivity and the inhalator GCS doses [30], while another study reports age, advanced asthma and frequency of systemic GCS use to be more important predictors of TBS values [31].

Watanabe R. et al. (2018) observe that TBS was much lower at the more advanced GOLD stages rather than GOLD 1. A multivariate regression analysis shows that

Indices	TBS L₁	TBS L₂	TBS L₃	TBS L₄	TBS L₁-L₄	TBS L₂-L₄
GOLD 1	1.34 ± 0.06	1.42 ± 0.03	1.46 ± 0.04	1.43 ± 0.05	1.42 ± 0.04	1.44 ± 0.03
GOLD 2	1.17 ± 0.06*	1.29 ± 0.04*	1.28 ± 0.05*	1.31 ± 0.04	1.26 ± 0.04*	1.29 ± 0.04*
p₁-₂	0.05	0.01	0.005	0.062	0.005	0.003
GOLD 3	1.07 ± 0.04*	1.21 ± 0.03*	1.31 ± 0.02*	1.27 ± 0.06*	1.21 ± 0.02*	1.26 ± 0.02*
p₁-₂	0.0002	0.001	0.001	0.017	0.001	0.0002
GOLD 4	1.08 ± 0.09*	1.18 ± 0.07*	1.27 ± 0.07*	1.26 ± 0.03*	1.21 ± 0.07*	1.25 ± 0.06*
p₁-₄	0.02	0.002	0.002	0.004	0.009	0.005

*Note. The asterisk * marks significant differences of values in comparison to GOLD 1 (p < 0.05); p₁-₂ – significance of differences between GOLD 1 and GOLD 2 groups; p₁-₃ – significance of differences between GOLD 1 and GOLD 3 groups; p₁-₄ – significance of differences between GOLD 1 and GOLD 4 groups.*
the BMD and TBS are independent factors; furthermore, the TBS is associated with a systemic inflammation marker, reflected in an increased C-reactive protein rate, while the reduced BMD is most closely associated with a reduced body weight and 25-hydroxyvitamin D rate in the blood serum [32]. Shevroja E. et al. (2017) report that the reduced lumbar spine TBS values are associated with a history of fractures, independently of the FRAX questionnaire data [33].

Our study reveals the fact that the age has an equally important influence on the BMD and TBS of COPD-afflicted female patients. Starting from the age of 45 years, those values are progressively falling. The COPD impact on the bone tissue varies at various sites of axial spine and depending on the degree of severity. The initial changes concern the TBS L1 values whose decrease starts with GOLD 2. This is why TBS index may have a considerable diagnostic value for the structural-functional bone tissue state under the COPD.

Conclusions
Bone mineral density of the axial spine is decreasing significantly when the COPD degree reaches GOLD 3. The most vulnerable site lumbar spine with the significant reduction of BMD L1-L4 is observed when the degree of severity reaches GOLD 2 (1.19 ± 0.05) g/cm² rather than GOLD 1 (1.39 ± 0.05) g/cm² (p < 0.05).

For the women older than 45 years old, the trabecular bone score (TBS) decreases significantly at GOLD 2. Furthermore, the more advanced changes concern TBS L1, and at GOLD 2 the obtained findings reflect significant bone destruction.

The combined study of BMD and TBS has an important diagnostic value for the analysis of structural-functional bone state in the COPD patients and considerably improves osteoporotic diagnostics.

The present study has the following restrictions: its design (cross-sectional study) and lack of control group. In the future, the longitudinal observations involving the COPD patients of both sexes will help us evaluate the BMD and TBS changes in a more detailed manner.

Financial support and conflict of interests. The authors report no conflict of interests; they did not receive any financial support, researcher fees or other forms of remuneration from the individuals or institutions.

Information on the individual author’s contribution: V.V. Povoroznyuk. Concept and design of the study; N.P. Masik. Collection and processing of the materials. Analysis of the obtained data. Writing and formatting of the text; N.I. Dzerovych. Processing of the materials. Editing of the text.

References
1. Mostovoy YM, Slepchenko NS, Dmytriiev KD, Sidorov AA. Chronic obstructive pulmonary disease and the heart: achievements and current questions. Ukr Pulmonol J. 2018;(4):56-61. https://doi.org/10.31215/2306-4927-2018-102-4-56-61. (in Ukrainian).
2. Pertseva TO, Konopkina LI. Modern views on the diagnosis and treatment of chronic obstructive pulmonary disease. Ukr Pulmonol J. 2018;(4):13-15. (in Ukrainian).
3. Feshchenko YI. Urgent challenges of modern pulmonology. Ukr Pulmonol J. 2018;(4):8-12. (in Ukrainian).
4. Feshchenko YI, Gavrysyuk VK, Dziublyk AY, et al. Adapted clinical guideline: chronic obstructive pulmonary disease (part 1). Ukr Pulmonol J. 2019;(2):5-18. https://doi.org/10.31215/2306-4927-2019-104-2-5-18. (in Ukrainian).
5. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for Prevention, Diagnosis and Management of COPD: 2007 Report. Fontana, WI: GOLD; 2007.
6. Masik NP. Vitamin D metabolism disturbances: one more extrapulmonary effect of systemic inflammation in chronic obstructive pulmonary disease. Ukr Pulmonol J. 2015;(3):39-43. (in Ukrainian).
7. Barabanova EN. GOLD 2017: what change were made in global strategy of treatment of chronic obstructive pulmonary disease and why? Pulmonologiya. 2017;27(2):274-282. https://doi.org/10.18093/0869-0189-2017-27-2-274-282. (in Russian).
8. Müllerova H, Maselli DJ, Locantore N, et al. Hospitalized exacerbations of COPD: risk factors and outcomes in the ECLIPSE cohort. Chest. 2015;147(4):999-1007. https://doi.org/10.1378/chest.14-0655.
9. Todoriko LD. Formation of systemic manifestations and definition of progression predictors of chronic obstructive pulmonary disease using a factor analysis. Ukr Pulmonol J. 2019;(1):49-54. https://doi.org/10.31215/2306-4927-2019-103-1-49-54. (in Ukrainian).

Table 4. Trabecular bone quality index of the COPD patients depending on their ages (M ± SD)

Age	TBS L1	TBS L2	TBS L3	TBS L4	TBS L1–L4	TBS L2–L4
Under 45, n = 5	1.49 ± 0.03	1.48 ± 0.02	1.55 ± 0.03	1.49 ± 0.03	1.50 ± 0.02	1.51 ± 0.03
45-59, n = 12	1.17 ± 0.04*	1.29 ± 0.03*	1.31 ± 0.03*	1.32 ± 0.03*	1.28 ± 0.02*	1.31 ± 0.02*
P1,2	0.001	0.001	0.02	0.02	0.001	0.03
60 and older, n = 13	1.30 ± 0.05*	1.17 ± 0.04*	1.28 ± 0.03*	1.26 ± 0.03*	1.19 ± 0.03*	1.24 ± 0.03*
P1,3	0.0001	0.001	0.001	0.02	0.001	0.001
P2,3	0.01	0.01	1.21	0.8	0.01	0.09

Note. The asterisk * marks significant differences of values in comparison to the ones of women younger than 45 years (p < 0.05); p1–2 – significance of differences between the age groups of under 45 and 45-59; groups; p 1-3 – significance of differences between the age groups of under 45 and 60 and older; p 1-4 – significance of differences between the age groups of 45-59 and 60 and older.
10. Gan WQ, Man SF, Senthilselvan A, Sin DD. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax. 2004;59(7):574-580. https://doi.org/10.1136/thx.2003.019588.

11. Ovsyannikov ES, Avdeev SN, Budnevsky AV. Systemic inflammation in patients with chronic obstructive pulmonary disease and obesity. Therapeutic Archive. 2020;92(3):13-18. https://doi.org/10.26442/00403660.2020.03.000265. (in Russian).

12. Jaramillo JD, Wilson C, Stinson DS, et al. Reduced Bone Density and Vertebral Fractures in Smokers. Men and COPD Patients at Increased Risk. Ann Am Thorac Soc. 2015;12(5):648-656. https://doi.org/10.1513/annalsats.201412-591oc.

13. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for Prevention, Diagnosis and Management of COPD: 2017 Report. Fontana, WI: GOLD; 2017. 139 p.

14. Gerych PR. Clinic-functional features of motion of cardio-respiratory pathology for patients with the chronic obstructive pulmonary disease. Bulletin of problems biology and medicine. 2017;11(19):121-127. (in Ukrainian).

15. Barnes PJ, Celli BR. Systemic manifestations and comorbidities of COPD. Eur Respir J. 2009;33(5):1165-1185. https://doi.org/10.1183/09031936.00128008.

16. Povoroznyuk VV, Musienko AS, Dzerovych NI. Trabecular bone score and bone mineral density in men with vertebrel fractures. Bol’ stavy, pozvonochnik. 2015;(17):38-42. https://doi.org/10.22141/2224-1507.1.17.2015.79019. (in Ukrainian).

17. Povoroznyuk VV, Dzerovych NI, Orlyk TV. Trabecular bone score in clinical practice: literature review and results of the own study. Problems of osteology. 2014;17(2):3-13. (in Ukrainian).

18. Povoroznyuk VV, Hans D, Dzerovych NI. Trabecular bone score in clinical practice. Bol’, stavy, pozvonochnik. 2014;(16):14-22. https://doi.org/10.22141/2224-1507.4.16.2014.79638. (in Ukrainian).

19. Povoroznyuk VV, Dzerovych NI, Hans D. Trabecular bone score in clinical practice (review). Orthopaedics, traumatology and prosthetics. 2015;(2):126-136. https://doi.org/10.15674/0030-598720152126-136. (in Ukrainian).

20. Malanchuk VO, Kopchak OV. Evaluation of the quality of facial bones and skull classification of its type on the basis of biomechanical parameters. Ukrainian Medical Journal. 2013;(93):126-131. (in Ukrainian).

21. Brusko AT. The biological law of compliance of quantity and function of bone tissue. Visnyk ortopedii, travmatologii ta protezuvannja. 2010;(1):76-78. (in Ukrainian).

22. Orlyk TV, Povoroznyuk VV, Dzerovych NI. The role of quality trabecular bone in the formation of vertebral pain in post-menopausal women. Problems of osteology. 2015;18(1):51-54. (in Ukrainian).

23. Ministry of Health of Ukraine. Order on June 27, 2013 № 555. On Adoption and Implementation of Medical and Technological Documents on the Standardization of Medical Care for Chronic Obstructive Pulmonary Disease. Available from: https://zakon.rada.gov.ua/rada/show/v0555282-13#Text. Accessed: June 27, 2013. (in Ukrainian).

24. Silva BC, Leslie WD, Resch H, et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image [published correction appears in J Bone Miner Res. 2017 Nov;32(11):2319]. J Bone Miner Res. 2014;29(3):518-530. https://doi.org/10.1002/jbmr.2176.

25. Harvey NC, Glüer CC, Binkley N, et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone. 2015;78:216-224. https://doi.org/10.1016/j.bone.2015.05.016.

26. Shevroja E, Lamy O, Kohliimeier L, Koromani F, Rivadeneira F, Hans D. Use of Trabecular Bone Score (TBS) as a Complementary Approach to Dual-energy X-ray Absorptiometry (DXA) for Fracture Risk Assessment in Clinical Practice. J Clin Densitom. 2017;20(3):334-345. https://doi.org/10.1016/j.jocd.2017.06.019.

27. Labotskii VV. Upravlenie znaniamii: tekhnikoi, metody i sredstva predstavleniya, izvlecheniia i izmereniia znanii: uchebnoe posobie [Knowledge management: technologies, methods and means of representation, extraction and measurement of knowledge: a tutorial]. Minsk: Sovremennaia shkola; 2006. 387 p. (in Russian).

28. Casado E, Del Río L, Gallego M, Arévalo M, Larroso M. Trabecular bone score is severely affected in male patients with chronic obstructive pulmonary disease. Annals of the Rheumatic Diseases. 2016;75(Suppl 2):1170. http://dx.doi.org/10.1136/annrheumdis-2016-eular.4752.

29. González J, Rodríguez-Fraile M, Rivera P, et al. Trabecular bone score in active or former smokers with and without COPD. PLoS One. 2019;14(2):e0209777. https://doi.org/10.1371/journal.pone.0209777.

30. Kim CW. Is Trabecular Bone Score a More Sensitive Marker for Osteoporosis in Asthmatics? Allergy Asthma Immunol Res. 2019;11(3):302-305. https://doi.org/10.4168/aair.2019.11.3.302.

31. Choi YJ, Lee HY, Yoon D, et al. Trabecular Bone Score Is More Sensitive to Asthma Severity and Glucocorticoid Treatment Than Bone Mineral Density in Asthmatics. Allergy Asthma Immunol Res. 2019;11(3):343-356. https://doi.org/10.4168/aair.2019.11.3.343.

32. Watanabe R, Tai N, Hirano J, Ban Y, Inoue D, Okazaki R. Independent association of bone mineral density and trabecular bone score to vertebral fracture in male subjects with chronic obstructive pulmonary disease. Osteoporos Int. 2018;29(3):615-623. https://doi.org/10.1007/s00198-017-4314-7.

33. Shevroja E, Lamy O, Kohliimeier L, Koromani F, Rivadeneira F, Hans D. Use of Trabecular Bone Score (TBS) as a Complementary Approach to Dual-energy X-ray Absorptiometry (DXA) for Fracture Risk Assessment in Clinical Practice. J Clin Densitom. 2017;20(3):334-345. https://doi.org/10.1016/j.jocd.2017.06.019.

Received 06.07.2020
Revised 23.07.2020
Accepted 10.08.2020

Information about authors
V.V. Povoroznyuk, MD, PhD, Professor, Head of the Department of clinical physiology and pathology of locomotor apparatus, State Institution “D.F. Chebotarev Institute of Gerontology of the NAMS of Ukraine”, Kyiv, Ukraine, ORCID ID: http://orcid.org/0000-0002-9770-4113
Nadya Musiuk, MD, Professor at the Department of Internal Medicine 2, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
Natalia Dzerovych, MD, PhD, Leading Research Fellow at the Department of clinical physiology and pathology of locomotor apparatus, State Institution “D.F. Chebotarev Institute of Gerontology of the NAMS of Ukraine”, Kyiv, Ukraine, ORCID ID: http://orcid.org/0000-0002-4278-972X

Vol. 10, No. 3, 2020 http://pjs.zaslavsky.com.ua 153
Якість кісткової тканини та її мінеральна щільність у хворих на хронічне обструктивне захворювання легень

Резюме. Мета — вивчення впливу хронічного обструктивного захворювання легень (ХОЗЛ) на мінеральну щільність кісткової тканини (МЩКТ) та її якість від тяжкості захворювання та віку жінок. Матеріали та методи. Обстежено 30 жінок віком 57,43 ± 7,87 року, хворих на ХОЗЛ різної тяжкості (GOLD 1–4). Досліджували МЩКТ усього скелета, поперекового відділу хребта, шийки стегнової та дистального відділу кісток передпліччя за допомогою двохенергетичної рентгенівської абсорбціометрії (DEXA). Показник trabecular bone score (TBS) поперекового відділу хребта (L1–L4) визначали за допомогою методики TBS iNsight (Med-Imaps, Pessac, Франція). Результати. Установлено вірогідне зменшення МЩКТ усіх ділянок скелета, починаючи з GOLD 3, тоді як на рівні L1–L4 МЩКТ починала знижуватися із GOLD 2 та в загальній групі хворих віком 45–59 років порівняно з більш молодими особами. Установлено негативні кореляційні зв’язки якості кістки, прогресивно знижувалася і при GOLD 4 та в осіб старше 60 років відповідали частковому порушенню якості кістки. Найбільш виражені зміни відбувалися на рівні TBS L1, і відповідали значній втраті якості кістки вже при GOLD 2. Найбільш виражені зміни стосуються МЩКТ L1–L4 (r = –0,76, p < 0,05) та TBS L1–L4 (r = –0,75, p < 0,05). Висновки. Вік однаковою мірою впливає як на МЩКТ, так і на TBS хворих на ХОЗЛ жінок, і, починаючи з 45 років, дані показники прогресивно зменшуються. Вплив ХОЗЛ на кісткову ткінну залежно від тяжкості хвороби є неоднорідним у різних сегментах аксіального скелета. Найпервинні зміни стосуються МЩКТ L1–L4 (1,17 ± 0,05) г/см² порівняно з GOLD 1 (1,39 ± 0,05) г/см² (p < 0,05) і TBS L1 (1,17 ± 0,06) порівняно з GOLD 1 (1,34 ± 0,06; p < 0,05), зниження яких відмічається вже при GOLD 2. Ключові слова: хронічне обструктивне захворювання легень; якість кісткової тканини; мінеральна щільність кісткової тканини.

Резюме. Цель — изучение влияния хронической обструктивной болезни легких (ХОБЛ) на минеральную плотность костной ткани (МПКТ) и ее качество в зависимости от тяжести заболевания и возраста женщин. Материалы и методы. Обследовано 30 женщин в возрасте 57,43 ± 7,87 года, больных ХОБЛ различной стадии (GOLD 1–4). Исследовали МПКТ всего скелета, позвоночного отдела позвоночника (L1–L4), шейки бедренной кости и дистального отдела ко- стной ткани (МПКТ) и ее качество в зависимости от тяжести заболевания и возраста женщин. Установлено достоверное уменьшение МПКТ у всех исследуемых участков скелета у больных, начиная с GOLD 3, тогда как на уровне L1–L4 МПКТ начинала снижаться при GOLD 2 и в возрастной группе 45–59 лет по сравнению с более молодыми пациентами. Установлены корреляционные связи якости кости ХОБЛ и МПКТ. Данные показатели прогрессивно снижаются и при GOLD 4 и у женщин старше 60 лет соответствовала значительной потере качества костной ткани уже при GOLD 2. Установлены отрицательные корреляционные связи между тяжестью ХОБЛ и TBS L1–L4 (r = –0,76, p < 0,05) и TBS L1–L4 (r = –0,75, p < 0,05). Выводы. Возраст в равной степени влияет как на МПКТ, так и TBS больных ХОБЛ женщин, и, начиная с 45-летнего возраста, данные показатели прогрессивно снижаются. Влияние ХОБЛ на костную ткань в зависимости от тяжести заболевания неоднородно в разных сегментах аксиллярного скелета. Самые ранние изменения касаются МПКТ L1–L4 (1,17 ± 0,05) г/см² по сравнению с GOLD 1 (1,39 ± 0,05) г/см² (p < 0,05) и TBS L1 (1,17 ± 0,06) по сравнению с GOLD 1 (1,34 ± 0,06; p < 0,05), снижение которых на- блюдается уже у больных с GOLD 2. Ключевые слова: хроническая обструктивная болезнь легких; качество костной ткани; минеральная плотность костной ткани.