Factors Affecting Conservation Agriculture Technologies at Farm Level in Bangladesh

M. A. Monayem Miah1* M. Enamul Haque2 Richard W. Bell2 M. A. Rouf Sarkar3 M. Abdur Rashid1
1. Agricultural Economics Division, Bangladesh Agricultural Research Institute (BARI), Joydebpur, Gazipur
2. Murdoch University, Australia
3. Agricultural Economics Division, Bangladesh Rice Research Institute (BRRI), Joydebpur, Gazipur

Abstract
Conservation agriculture (CA) is a win-win approach that reduces operational costs, including machinery, labour, and fuel, while increasing yields, profit and better utilization of natural resources. Data and information on farm level CA technology adoption are scarce in Bangladesh. Therefore, the study was conducted at three Upazilas of Rajshahi and Thakurgaon districts to assess adoption and farmers perceptions on CA technology, and to determine the factors of CA technology adoption at farm level in 2017. A total of 405 farmers taking 135 adopters and 270 non-adopters were selected randomly for this study. The study revealed that CA technology adoption is still going on in the study areas. However, the rates of adoptions of crop residue retention (67%) and crop rotations (38.9%) were much higher compared to minimum tillage (14.9%). Residue retention (68.9%) and suitable crop rotations (34.4%) were also practiced by the non-adopters. The age, innovativeness, and extension contact of the farmers and availability of VMP had significant positive influence on the adoption of CA technologies. The major problems of adoption were non-availability of minimum tillage planter, lack of knowledge and awareness of the farmer, and nolte subsidy provision on planter. Increasing the availability of VMP, providing training on CA methods, and providing subsidy on planter are important to increase CA technology adoption at farm level.

Keywords
Conservation tillage; VMP; Residue retention; Crop rotations; Conservation agriculture

孟加拉国农场中影响保护性农业技术的因素

M. A. Monayem Miah1* M. Enamul Haque2 Richard W. Bell2 M.A.Rouf Sarkar3 M. Abdur Rashid1
1. Agricultural Economics Division, Bangladesh Agricultural Research Institute (BARI), Joydebpur, Gazipur
2. Murdoch University, Australia
3. Agricultural Economics Division, Bangladesh Rice Research Institute (BRRI), Joydebpur, Gazipur

摘 要
保护性农业（Conservation agriculture，缩写为 CA）是一种双赢的方法，它可以降低包括机械、劳动力和燃料在内的运营成本，同时提高产量和利润，更好地利用自然资源。孟加拉国缺乏有关农场保护性农业技术所运用的数据和信息。因此，该研究在拉杰沙希（Rajshahi）和塔库尔冈（Thakurgaon）的3个县级地区进行，以评估采用 CA 技术的农民和其对 CA 技术的看法，并确定 2017 年运用 CA 技术因素的农业发展水平。随机抽取了 405 位农民参与调查，其中 135 位采用 CA 技术，270 位保持原状。研究表明，CA 技术在研究领域中仍在继续运用。但是，与最低耕作法（14.9%）相比，农作物残茬保留率（67%）和适宜的轮作（34.4%）的运用率要高得多。没有运用 CA 技术的农民也保留了残茬率（68.9%）和合理的轮作（34.4%）。农民的年龄、创新能力和推广接触以及多功能多熟种植机的可用性对采用 CA 技术产生了积极的影响。运用 CA 技术的主要问题是无法获得少耕播种机，农民缺乏知识和意识，对播种机没有或很少补贴。增加 VMP 的可用性，提供 CA 方法的培训以及为播种机提供补贴，是提高 CA 技术在农场层面采用的重要措施。

关键词
保护性耕作；VMP；残茬保留；轮作和保护性农业

1 前言
在采用农业机械化方面，尤其是在整地、灌溉和脱粒方
人口增长和土地利用的可持续性所带来的食品安全的挑战。同时需要减少劳动力的需求、作物生产的成本并提高农场的盈利能力。所以要更有效地利用土地和作物管理技术，尽可能地降低自然资源对土壤和环境的伤害，以减少耕地的面积，从而生产出更多粮食\[11\]。在这种情况下，保护性农业（CA）和机械化有助于解决孟加拉国农业生产率的下降问题。

CA 并不是实际存在的技术；相反，它指的是应用三个主要原则中的一项或多项的大量特定技术（IIRR and ACT, 2005）。原则为 (a) 对土壤的干扰最小；(b) 农作物残茬保留；(c) 适当的作物轮作\[41\]。土壤耕作是农业土地管理中最重要的一项活动之一，它对土壤的物理、化学和生物特性产生重大影响，从而影响作物的产量\[22\]。少耕法增加了土壤有机质的含量\[6, 15\]，保水能力\[4, 25\]、灌溉需求\[8, 21\]，增加了农作物的产量并降低了生产成本\[32, 12\]，并最大程度地减少了周转作物之间的时间间隔\[16\]。在不同耕作方式下，作物残留在土壤表层对提高农业产量和环境质量起着至关重要的作用\[1, 31\]。通过增加、稳定土壤水分，该系统可以改变土壤表层的肥力和温度，减少土壤侵蚀，线虫数量和阳光对土壤表层的影响，从而大大改变了各种农艺影响因素\[13, 36\]。长期保存作物残茬会增加土壤有机质水平和氮素储备量，并增加大量和微量元素的利用率\[45\]。与连续种植相比，合适的轮作具有许多农艺、经济与环境效益\[2\]。随着时间的推移，轮作可以使农作物的增产潜力和盈利率最大化，有效地抑制杂草生长，减少疾病的发生频率，限制昆虫和其他害虫侵扰\[17\]，增加土壤有机质含量并提供氮的替代来源\[23, 28\]。组成作物外，将豆科植物纳入耕作模式还可以保持土壤肥力，并在很大程度上维持作物的生产力\[49\]。

因此，CA 系统生产率的提高和可持续性很大程度上取决于耕作操作、系统的轮作、就地收获作物残茬管理以及充足的作物营养。CA 是一种双赢的方法，它可以降低包括机械、人工和燃料在内的运营成本，同时提高产量，更好地利用自然资源（Roy et al., 2009）。它可以为农作物提供更多的水，并可以在一定程度上减轻农民目前面临的气候和社会经济挑战\[4\]。

意识到 CA 技术在孟加拉国的重要性后，2012 年 4 月至 2017 年 3 月，澳大利亚默多克大学的科学家在澳大利亚政府的支持下，与孟加拉国农业大学，BARC，BARI，BRRI，西澳大利亚州农业和食品部以及非政府组织合作，开展了由国际农业研究中心资助的“克服农艺和机械化限制，在孟加拉国运用以稻谷为主的多种作物保护性农业开发”项目。该项目已经开发并加速了 CA 技术在孟加拉国不同地区，特别是在雨育地区和补充灌溉地区的特定土壤，农作物和农作物系统中的运用。CA 技术，受访农民收益颇多，他们节省了作物生产技术成本和可持续的资源管理。还通过 CA 技术成功设置了不同的作物，例如小麦、玉米、豆类、油料种子、黄麻和稻米\[44\]。因此，试图评估在农场层面采用 CA 技术的情况，以便向研究人员和政策制定者提供项目反馈。这样他们可以制定合理的政策指南，将 CA 技术传播到该国其它地区。

具体目标:
1. 评估 CA 技术在农场的应用状况。
2. 确定影响农场 CA 技术应用的因素。
3. 评估农民在农场中应用 CA 技术的看法。

2 研究方法

2.1 选择研究地区

CA 技术已在孟加拉国四个地区的七个县（即 Rajbari, Thakurgaon, Rajshahi 和 Mymensingh）中实施或正处于实践阶段。考虑到项目资源、后勤支持和 CA 技术的采用，研究人员有目的地选择了 Rajshahi 区的 Durgapur 和 Godagari 以及 Thakurgaon 区的 Sadar Upazila 这三个县进行研究。

2.2 抽样计划与数据收集

选择家庭时要考虑采用 CA 技术的应用程度。首先，在资料收集装置和保护性农业项目人员的帮助下，准备了农民运用 CA 技术的完整清单（土壤干扰最小，作物残茬保留和合适的作物轮作）。然后，从每个县随机抽取了 45 个农民，一共 135 个农民运用 CA 技术。同样，又随机选择了 270 个没有运用 CA 技术的农民作为参照。因此，样本总数为 405。使用预先测试的采访时间表从选定的农民那里收集数据和信息。数据收集于 2017 年 1 月至 2 月期间。

2.3 分析方法

使用计算机软件对收集的数据进行编辑，审查，汇总和分析。描述性统计数据主要用于介绍研究结果。此外，Logit 模型用于确定农场中 CA 技术运用的因素。在吉吉拉特语中\[10\]，Logit 模型保证估计的概率在 0-1 之间，并且与解释变量没有线性关系。此外，Logit 模型比 Probit 模型更容易计算。由于因变量是二分法的，因此无法使用最小二乘法。使用 STLE 软件（版本 12）遵循最大可能
性估量方法运行 Logit 模型。该模型详述如下：

$$Logit \{ P(Y=1) \} = \log \{ P/(1-P) \} = \alpha + \beta_1 X_1 + \beta_2 X_2 + \ldots \ldots + \beta_n X_n$$

其中，Y 是分类反应变量，其中，1 = 采用 CA 技术者，0 = 另类人；α 是截距；β_1, β_2, β_n 是自变量 X_1, X_2, X_n 的系数；P 是采用 CA 技术的概率，(1-P) 是农民不采用 CA 技术的概率。

Logit 经验模型如下：

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \beta_7 X_7$$

其中，Y 是因变量（1 = 采用者，0 = 非采用者），X_1 = 农民的年龄（岁），X_2 = 受教育程度（就学年限），X_3 = 家庭规模（人数 / HH），X_4 = 农场规模（十进制），X_5 = VMP 的可用性（分数），X_6 = 社会成员资格（权重分数），X_7 = 创新性（权重分数），X_8 = 扩展联系人（权重分数），α = 常数。

β_1, β_2, β_3, β_4, β_5, β_6, β_7, β_8 是要估计的系数。

3 结果与讨论

3.1 保护性农业的运用情况

尽管在世界许多国家都得到了广泛的应用，保护性农业还是孟加拉国的一个新概念。孟加拉国的农民通常运用一两个 CA 原则，但不同时执行三个原则。但是，在孟加拉国不同地区向有兴趣的农民推广 CA 技术，人们做出了巨大的努力。保护性农业的运用情况将在下文讨论。

采用少耕法：在研究地区，正在推广多功能多熟种植机（Versatile Multi–crop Planter，缩写为 VMP），以在土壤干扰最小的情况下进行作物种植。大部分采用保护性农业的农民在单季种植中使用 VMP 来减少对土壤的干扰（表 1）。一项研究发现，与传统的耕作系统相比，通过 VMP 种植的农作物使用的灌溉水量减少了 41%–43%[30]。在研究地区，使用动力耕耘机（PTOS）和乡村犁的情况较少。

表 1 研究地区耕作 / 种植作业的状况
耕作设备 / 种植机

耕作机
多功能多熟种植机
动力耕耘机
乡村犁

调查员要求受访者对作物生产中的精耕细作提出意见。约 73% 采用 CA 的农民和 26.3% 未采用 CA 的农民认为精耕细作对土壤健康和农作物生产率有害。约 74% 未采用技术的农民认为精耕细作对土壤健康和农作物的产量有利（表 2）。这些未采用技术的农民的观点可能是由于缺乏对最小土壤干扰的知识和思维方式。对减少土壤干扰技术表示支持的两类农民都提到使用了密集耕作的各种弊端。表 2 显示，超过 60% 的采用者和近 92% 的非采用者认为,由于精耕细作,土壤肥力将降低。作物田间杂草的出现可能是耕作密集的另一个原因。采用 CA 技术的占 63.3%，未采用 CA 技术的占 11.3%。研究区域中 51% 的采用者和约 17% 的非采用者说，就耕作需要更高的成本。下暴雨或在洪水期间，松散的土壤容易被冲刷掉。

由于密集耕作的现，在有 37% 的采用者和 11.3% 的未使用者提出了这个问题。而还有一些采用者（29%–46%）还提到密集耕作需要更高级的肥料和灌溉（表 2）。

表 2 农民对土壤密集耕作的看法
详细数据

密集耕作的看法
有害
有益
密集耕作的缺点
降低土壤肥力
出现众多杂草
耕作成本较高
土壤侵蚀
需要更新级的肥料
需要更多的灌溉次数
益虫的流失
其它 ^

注：土壤变硬，病虫害发生，需要更高级的种子，更低的产量等。

（1）作物残留物保留的应用情况

残留物在以下方面的权衡取舍：i) 提高谷物产量; ii) 提供牲畜饲料和烹饪材料; iii) 提供地被植物以减少潜在的侵蚀 [31]。残留的农作物可以大大减少无机肥料的使用，从而给农民带来环境和经济效益 [32]。无论是否了解这些残留物的益处，近年来，研究区的许多农民在不同程度上保留了田间的农作物残茬。表 3 显示，采用 CA 的农民 CA 保留的 Boro，Aman，小麦和玉米后，在不同程度上保留田间的农作物残茬。
物残茬的平均高度分别为 6.3", 6.2", 10.5"和 18.8"。尽管采用 CA 的农民对 Boro 和 Aman 小麦的平均残留高度与未采用 CA 的农民保持的高度大致相同, 但后者小麦和玉米的残留高度更高。

表 3 田间残留的作物残茬的平均高度

详细数据	Boro 小麦	Aman 水稻	小麦	玉米
A. 采用 CA 的农民	n=98	n=135	n=135	n=47
最小值 (英寸)	2	4	5	12
最大值 (英寸)	12	10	18	24
平均值 (英寸)	6.3	6.2	10.5	18.8
B. 未采用 CA 的农民	n=213	n=270	n=185	n=76
最小值 (英寸)	2	2	6	12
最大值 (英寸)	12	12	20	24
平均值 (英寸)	6.2	6.2	11.4	21.1

受访农民保留作物残茬的原因有很多。提高土壤肥力是 CA (95.6%) 和非 CA 农民 (97%) 声明的保持一定比例作物残茬的主要原因。许多农民认为, 将水稻或小麦作物砍倒在土壤上方并保留一些残茬时, 秸秆仍然可以清洁用作动物饲料。因此, 在研究区域中, 无论是采用 CA 还是未采用 CA 的农民, 很大一部分人表示他们在保留作物残茬, 使秸秆保持清洁供动物使用。大约 12% 的 CA 农民和保留作物残茬可以确保减少肥料施用, 这可能是由于他们提高了肥力。大部分 CA 和非 CA 农民还指出了其它原因, 例如作物根系变得更加容易 (6.7-11.1%), 运输收割变得容易 (3.7-5.6%) 以及土壤和养分侵蚀减少 (表 4)。

表 4 在田间保留农作物残茬的原因

保留作物残茬的原因	采用 CA 的农民 (n=135)	未采用 CA 的农民 (n=270)		
频率	%	频率	%	
1. 提高土壤肥力	129	95.6	262	97.0
2. 秸秆保持清洁 / 良好的饲料	20	14.8	59	21.9
3. 作物收获后劳动力减少	19	14.1	44	16.3
4. 减少肥料用量	16	11.9	2	0.7
5. 脱粒作物变得容易	9	6.7	30	11.1
6. 运输收割变得容易	5	3.7	15	5.6
7. 提高茬作物的产量	8	5.9	--	--
8. 减少土壤和养分侵蚀	3	2.2	4	1.5
9. 其他 *	8	5.9	10	3.7

注: *临时工不雇在土壤上割茬, 在有益鸟类的栖息地上耕作, 扁豆作物的种植方式, 保持土表水分, 尽早干燥杆秆以及减少杂草的出现。

（2）轮作的应用状况：

轮作是在连续的季节中, 在同一地区种植一系列不同类型的作物来提高土壤肥力。连续种植相同的作物往往会利用相同的土壤根部区域, 这可能导致植物生长所需的养分减少, 减缓根系发育。轮作可在很大程度上改善土壤有机质, 并对土壤理化性质产生巨大影响, 从而影响作物生产力。

由于许多原因, 多年来, 研究区的 CA 和非 CA 农民都在轮作, 因为他们知道单一耕种会降低作物的生产力。一些农民进行轮作以保持土壤肥力。表 5 显示, 这些年来, 一半的 CA 农民和 34.4% 的非 CA 农民采用轮作。令人惊讶的是, 过去约有一半的 CA 农民没有进行轮作。目前, 由于大多数 CA 农民进行了两年的 CA 实践, 他们正在采用合适的轮作方式。但是, 他们尚未计划进行适当的轮作。

表 5 研究区采用轮作的状况

采用轮作的状况	采用 CA 的农民 (n=135)	未采用 CA 的农民 (n=270)		
N	%	N	%	
采用	68	50.4	93	34.4
未采用	67	49.6	177	65.6

研究地区的受访者已经采用了多种种植方式。主要的种植方式有小扁豆 - Boro-T.Aman; 小麦 - Boro-T.Aman 和芥菜 - Boro-T.Aman。大部分 CA 和非 CA 农民都采用了这些种植方式 (表 6), 据报道, 其他重要的方式为小麦 - Maize-T.Aman; 小麦 - Fallow-T.Aman 和小麦 - Mungbean-T.Aman。因为豆类 (小扁豆) 的种植, 农民收益颇丰, 因此, 许多 CA 农民开始以种植方式引入豆类作物。豆科作物轮作能通过生物固氮增加土壤氮浓度的潜力。一些被调查的农民还认为, 适当的轮作可以减少作物中昆虫和疾病的发生。

表 6 研究区采用 CA 农民的作物轮作率

本年度 (n=68)	上一年 (n=68)	两年前 (n=68)						
种植模式 *	n	%	种植模式 *	n	%	种植模式 *	n	%
1	16	23.5	4	15	22.1	4	18	26.5
2	9	13.2	2	9	13.2	2	11	16.2
3	8	11.8	1	6	8.8	1	6	8.8
4	6	8.8	3	6	8.8	3	4	5.9
5	5	7.4	6	4	5.9	5	3	4.4
6	4	5.9	7	3	4.4	6	3	4.4
其它	20	29.4	其它	25	36.8	其它	23	33.8

* 种植模式 (CP): 1. Lentil-Boro-T.Aman; 2. Wheat-Jute-T.Aman; 3. Wheat-Maize-T.Aman; 4. Mustard-Boro-T.Aman; 5. Wheat-Fallow-T.Aman; 6. Wheat-Mungbean-T.Aman; 7. Potato-Maize-T.Aman.
农民的年龄对采用 CA 技术的影响很大，这意味着农民的年龄越大，采用 CA 技术的可能性就越小。也说明年轻的农民是 CA 技术的最大实施者。边际系数表明，如果农民的年龄减少 100%，采用 CA 技术的可能性将增加 0.45%。

一般来说，教育对采用新技术有积极的影响[27,48]。在这一项研究中，教育对采用 CA 技术带来了负面影响，这意味着采用 CA 技术的可能性受教育程度的升高而下降。与研究区域的高学历农民相比，低学历的农民是 CA 技术的最大采用者。边际系数表明，如果就学年减少 100%，则采用 CA 技术的可能性将增加 2.06%。

表 7 研究区未采用 CA 农民的作物轮作率

年度	本年度 (n=93)	上一年 (n=93)	两年前 (n=93)
种植模式	n %	n %	n %
1 17	18.3	15	16.1
2 17	18.3	15	16.1
3 13	14.0	8	9.7
4 8	8.6	8	8
5 6	6.5	7	7
6 6	6.5	7	7
7 4	4.3	6	4
其它	21	22.6	23.8

*种植模式（CP）：1. Lentil-Boro-T.Aman; 2. Wheat-Fallow-T.Aman; 3. Wheat-Jute-T.Aman; 4. Mustard-Boro-T.Aman; 5. Wheat-Maize-T.Aman; 6. Lentil-Fallow-T.Aman; 7. Onion-Jute-T.Aman; 8. Fallow-Boro-T.Aman。

表 8 保护性农业技术的采用率

详细数据	拉杰沙希	塔库尔冈	两个地区
n % 采用率	n % 采用率	n % 采用率	
农户总数	316	348	664
多功能多熟种植机用户的带状栽植	64	20.3	35
作物残茬保留者	15	4.7	--
零耕种	9	2.8	--
轮作农户	189	59.8	256

表 9 受访农民采用 CA 技术的变量的边际效应

解释变量	Dy/dx	SE	概率	
年龄 (岁)	-0.0045***	0.0021	-2.19	0.028
教育程度 (学年)	-0.0206***	0.0071	-2.87	0.004
住户人数 (人数 / HH)	0.0178	0.0124	1.43	0.152
农场大小 (十进制)	0.0222	0.0366	0.60	0.545
VMP 的可用性 (得分)	0.4341***	0.0478	8.94	0.000
社会成员身份 (wt. 分数)	0.0351	0.0249	1.42	0.156
创新性 (wt. 分数)	0.0311**	0.0115	2.69	0.007
延长的合约 (wt. score)	0.0240**	0.0072	3.29	0.001

注：因变量 = 采用 CA 技术（采用者 = 1，未采用者 = 0）；观察数 = 403；LR 卡方检验 (8) = 202.61；对数似然 = -154.27；伪 R² = 0.3964；***, **, * 分别代表 1% 和 5% 的水平；得分较高表示采用 CA 技术的可能性较高。

3.2 影响采用 CA 技术的因素

CA 技术的采用可能会受到不同的社会经济因素的影响，例如年龄、教育程度、多功能多熟种植机的可用性、推广接触和创新性。表 9 列出了决定采用 CA 技术的变量的边际效应。
正且保持在1%的水平上。如果将上述变量增加100%，则采用CA技术的可能性将增加3.11%（表9）。

3.3 农民对采用CA技术的看法

在研究区域运用CA技术的农民需要指出过去一两年中CA技术的优势。他们提到了CA技术在作物生产中的许多好处（表10）。运用CA的农民比例最高的一组（95.6%）表示，他们可以节省许多作物种植作业中的劳动力成本。超过94%的农民认为CA系统极大降低了土地整备和种子播种的成本，因为VMP需要单渠道才能完成播种和播种操作。对农民的另一个重要观察结果是，采用CA技术所需的种子量更少，并且与常规播种相比，种子的播种情况更好（91.1%）。许多农民（95.6%）认为，CA技术可以有效减少灌溉水和肥料的用量。几项研究的结果也认证了农民的说法。许多使用CA的农民告诉我们，由于在分条耕作下对种子进行线播，除草和农药施用（65.2%）及农作物收成（66.7%）变得容易。还有对农民有益的发现：土壤肥力增加（63.0%），及时播种的可能性（60.0%），昆虫和疾病的侵袭率低（34.1%）以及产量高，成本低。

表10 CA农民采用CA技术的优势	频率	% 反响率
1. 劳动力减少并节省了劳动力成本	129	95.6
2. 需要更少的种子 / 良好的种子播种	127	94.1
3. 灌溉次数减少	94	69.6
4. 所需肥料较少	86	63.7
5. 除草和农药施用更加容易	88	65.2
6. 病害防治和害虫控制更简单	90	66.7
7. 土壤肥力增加	85	63.0
8. 可以及时播种	81	60.0
9. 低虫害发病率	46	34.1
10. 产量高，成本低	41	30.4

表11 CA农民运用CA技术的弊端

弊端	频率	% 反响率
1. CA机器不可用	71	52.6
2. 各类肥料不能同时施用	49	36.3
3. VMP操作需要技能操作者	46	34.1
4. 所有土壤均不适合CA实践	44	32.6
5. 出现很多杂草	12	8.9
6. 维持作物轮作十分艰巨	3	2.2
7. 少耕少收	2	1.5

3.4 未来运用CA技术的挑战

采用这种前景广阔的技术并非呈线性特点，其采用取决于许多其他因素，例如环境、社会经济、体制和政治环境以及制约因素，而不仅仅是技术本身。表12是采用CA的未来挑战。

未来，采用CA技术需要面对各类的挑战。排名第一的挑战将是农民缺乏对CA技术益处的了解与认识。一般来说，约93%的受访农民认为这是采用该技术的挑战之一。CA机器的可用性是成功采用CA的前提条件。在该研究区域中，CA机器应用并不广泛，这将是其无法大面积推广的主要障碍。

研究区域的农民教育水平也未达到标准。其中大多数人没有接受过教育或文化程度较低，这对于在农场中成功采用CA技术也是一个挑战。尽管受教育程度较低的农民在研究区域运用CA技术较多。然而，超过80%的受访农民提出了这个问题，认为这是未来要面临的挑战。研究区域中的大多数农民都很贫穷，没有能力购买2WT和CA播种机（VMP）进行耕作。他们主要依靠CA的本地服务提供商和其他机器进行耕作和脱粒操作。大约55%的农民表示这是采用CA的未来挑战。为了在农场层面扩展CA技术，资助CA项目的澳大利亚人对CA机械提供了价格支持（第一年和第二年分别为50%和25%），尤其对那些感兴趣的农民提供了VMP的价格支持。该价格支持条款已在项目完成后废止。约43%的农民认为这种情况下是未来采用CA的挑战。最后，CA技术的成功运用还取决于其他许多组织，例如DAE、银行、研究机构、机械制造商等。强大的前后协作连接项目对于在研究区域更广泛地采用CA技术至关重要。这也是孟加拉国采用CA的重要挑战。
表 12 研究区域采用 CA 的未来挑战

挑战	采用 CA 的农民 (n=135)	未采用 CA 的农民 (n=270)	总数 (n=405)			
1. 缺乏对 CA 的知识 / 意识	124	91.9	252	93.3	376	92.8
3. CA 机器不可用	114	84.4	230	85.2	344	84.9
3. 农民缺乏教育和培训	117	86.7	210	77.8	327	80.7
4. 农民无能力购买 CA 播种机	82	60.7	141	52.2	223	55.1
5. CA 播种机无价格补贴	70	51.9	103	38.1	173	42.7
6. 缺乏与支持组织的合作	30	22.2	13	4.8	43	10.6

4 结论和建议

4.1 结论

对于克服农民劳动力短缺、耕种成本增加、农业生产率和农田盈利能力下降的问题，CA 变得愈发重要。研究领域中，CA 技术的运作过程仍在进行。尽管采用作物残茬保留和轮作的水平较高，但采用少耕法仍然少。传统上，大部分因 CA 农民在田间保留作物残茬，并在一年中进行适当的轮作。农民的年轻化、创新性和外延接触性等内在素质极大地影响了他们采用 CA 技术的能力。VMP 的可用性是在很大程度上影响农民采用该技术（少耕法）的另一个关键因素。尽管 CA 技术在许多方面都显示有潜力，但在其高应用率方面仍面临一些挑战。农民缺乏认识，没有能力购买 CA 播种机，无法获得 CA 装置，没有对 CA 播种机的补贴或价格支持以及缺乏与支持组织的合作。这些都是 CA 播种机高应用率的主要挑战。

4.2 建议

以下建议至关重要，这些建议可以扩大这些目前较为有限的技术的应用率，进一步实现农业可持续发展并增加农田盈利值。

（1）政府应向有较高积极性的农民提供有关 CA 技术的实践和实地培训。在这方面，政府应使用适当的大众媒体传播 CA 技术的积极影响。

（2）示范和实地活动极大影响技术的采用。因此，政府应在农民之间展示 CA 活动，并开展田间活动，以实现 CA 技术的广泛应用。

（3）政府应通过向生产商和感兴趣的农民提供软贷款，向农民提供少耕播种机。补贴价格还可以在向农民分发少耕播种机时发挥重要作用。

（4）项目完成后，技术传播的推广人员通常不会来找农民。因此，政府应设立并发展对 CA 技术传播者的有效监督机制。

（5）政府应当在 DAE、银行、研究机构、机械制造商等不同组织之间进行良性合作，使 CA 技术在孟加拉国得到更好的应用。

参考文献

[1] Alam M. K., N. Salain, S. Islam, R. A. Begum, M. Hasanuzzaman, M. S. Islam, M. M. Rahman. Patterns of change in soil organic matter, physical properties and crop productivity under tillage practices and cropping systems in Bangladesh [J]. Journal of Agricultural Science, 2016a:1–23.

[2] Alam M. K., W. K. Biswas, R. W. Bell. Greenhouse gas implications of novel and conventional rice production technologies in the Eastern–Gangetic plains [J]. Journal of Cleaner Production, 2016b(112): 3977–3987.

[3] Alamgir M. A., M. M. Uddin, T. P. Tiwari, F. Marufa, Performance of wheat varieties under different tillage systems in Bangladesh, Conference on International Research on Food Security, Natural Resource Management and Rural Development organized by the Humboldt–Universität zu Berlin and the Leibniz Centre for Agricultural Landscape Research (ZALF), Tropentag 2015, Berlin, Germany, 2015 September 16–18.

[4] Aziz I., T. Mahmood, K. R. Islam. Effect of long term no–till and conventional tillage practices on soil quality [J]. Soil and Tillage Research, 2013(131): 28 – 35.

[5] Barma N.C.D., P. K. Malaker, Z. I. Sarker, M. A. Khaleque, M. Israil Hossain, M.A.Z. Sarker, M. Bodrusszaman, M.A Hakim, A. Hossain. Adoption of power tiller operated seeder in rice wheat cropping system [P]. WRC, BARI Annual report, Dinajpur. 2014:248–253.

[6] Busari M. A., F. K. Salako. Effect of tillage, poultry manure and NPK fertilizer on soil chemical properties and maize yield on an Alfisol at Abeokuta, south–western Nigeria [J]. Nigerian Journal of Soil Science, 2013(23): 206 – 218.

[7] Cavigelli M. A., J. R. Teasdale, J. T. Spargo. Increasing crop rotation diversity improves agronomic, economic and environmental performance of organic grain cropping systems at the USDA–ARS
Beltville farming systems project. Plant Management Network. https://dl.sciencesocieties.org/publications/cm/pdfs/12/1/2013-0429–02–PS (Accessed at: 30 April, 2017).

[8] Derpsch R., T. Friedrich. Development and current status of no–till adoption in the World, Proceeding on CD. 18th Triennial Conference of the International Soil Tillage Research Organization (ISTRO), Izmir, 15–19 June, 2009.

[9] Giller K. E. Nitrogen fixation in tropical cropping systems. 2nd edition, Cabi Series, CABI Publishing series, 2001. Web. http://books.google.fr/books?id=

[10] Gujarati N. D. Basic Econometrics, 3rd Edition. Singapore: McGraw–Hill Books company Inc. India. Implication for vulnerability analysis and mapping, World Food Programme, 1995.

[11] Fischer R.A., D. Byerlee, G. O. Edmeades. Can technology deliver on the yield challenge to 2050? In: Expert Meeting on How to Feed the World in 2050. FAO, Rome, 24–26 June, 2009.

[12] Haque M.E., R.W. Bell, Vance, W.H., Justice, S.E., Hossain, M.M., Mia, N.N. A new wave of conservation agriculture adoption on smallholder farms using planters for two wheel tractors: progress and bottlenecks for adoption in South Asia, Paper presented at 6th World Congress of Conservation Agriculture. 22–26 June 2014, Winnipeg, Canada.

[13] Haque M. E., R.W. Bell, R.K. Menon, M. M. Hossain. Comparative levels of soil disturbance under reduced and minimum tillage types with two–wheel tractor planting operations. 2nd Conference on Conservation Agriculture for Smallholders (CASH–II), Bangladesh Agricultural University, Mymensingh, Bangladesh, 14–16 February, 2017. Eds. ME Haque, RW Bell, WH Vance, pp 62–63.

[14] Hossain M. I., M. S. Islam, C. A. Meisner, M. Bodruzaman, I. Hossain. Minimum tillage one pass seeder for sustaining cropping intensity and profitability in rice–wheat system [J]. Int. J. Sustain. agril. Tech. 2009 5(6):32–37

[15] Hossain M. I., M. N. A. Siddiqui, G. M. Panaullah, J. M. Duxbury, J. G. Lauren. Raised beds: A resource conserving technology for improved crop production in Bangladesh, A booklet under Cornell University–Food for progress programme in Bangladesh, 2014.

[16] Hossain M. I., M. J. U. Sarker, M. A. Haque. Status of conservation agriculture based tillage technology for crop production in Bangladesh [J]. Bangladesh J. Agril. Res. 2015 40(2): 235–248.

[17] IRR & ACT. Conservation Agriculture– A manual for farmers and extension workers in Africa. International Institute of Rural Re–construction (IIRR). Harare: Africa Conservation Tillage Network, 2005.

[18] Islam A.K.M., M.E. Haque, M.M. Hossain, M.A. Saleque, R.W. Bell. Water and fuel saving technologies: Un–puddled bed and strip tillage for wet season rice cultivation in Bangladesh. 19th World Congress of Soil Science, Soil Solutions for a Changing World, 1–6 August 2010, Brisbane, Australia.

[19] Islam A.K.M.S., M. M. Hossain, M. A. Saleque, M. A. Rabbani, R.I. Sarker. Energy consumption in un–puddled transplanting of wet season rice cultivation in north–west region of Bangladesh [J]. Prog. Agric. 2013(24): 229–237.

[20] Jacobsen S. E., C. R. Jensen, F. Liu. Improving crop production in the arid Mediterranean climate [J]. Field Crops Research, 2012(128): 34 – 47.

[21] Johansen C., M. E. Haque, R. W. Bell, C. Thierfelder, R. J. Esdaile. Conservation agriculture for small holder rain–fed farming: opportunities and constraints of new mechanized seeding systems [J]. Field Crops Research, 2012(132): 18 – 32.

[22] Keshavarzpour F., M. Rashidi. Effect of different tillage methods on soil physical properties and crop yield of watermelon (Citrus vulgaris)[J]. World Applied Sciences Journal, 2008(3): 359–364.

[23] Khan S. A., R. L. Mulvaney, T. R. Ellsworth, C. W. Boast. The myth of nitrogen fertilization for soil sequestration [J]. Journal of Environmental Quality, 2007 36(6):1821–1832.

[24] Komarck A. Costs and benefits of crop residue retention in a Chinese subsistence farming system. Paper presented in the 57th AARES annual conference at the Sydney Convention and Exhibition Centre in Darling Harbour, Sydney, New South Wales, 5–8 February, 2013. Available at: http://ageconsearch.umn.edu/

[25] Lal R. Enhancing ecosystem services with no–till [J]. Renewable Agriculture and Food Systems, 2013(28):102 – 114.

[26] Lauer J. The natural benefits of crop rotations and the cost of monocultures, University of Wisconsin–Madison, 2010. http://www. exten.sion.umn.edu

[27] Miah M.A.M., S. Afroz, M. A. Rashid, S. A. M. Shiblee. Factors...
affecting adoption of improved sesame technologies in some selected areas in Bangladesh: An empirical study [J]. The Agriculturist, 2015 13(1):140–151.

[28] Murell T. S. The science behind the nitrogen credit for soybeans. International Plant Nutrient Institute (IPNI), 2011. http://www.ipni.net

[29] Reza M.S., M. M. H. Riazi, M. M. H. Khan. Productivity and profitability of sugarcane production in northern Bangladesh [J]. Indian Journal of Commerce & Management Studies. 2016 7(1):38–45.

[30] Roy K. C., M. E. Haque, S. E. Justice, M. I. Hossain, C. A. Meisner. Development of agriculture tillage machinery for conservation agriculture in Bangladesh [J]. Agricultural Mechanization in Asia, Africa and Latin America 2009(40): 58–64.

[31] Salahin N., M. K. Alam, A.T.M.A.I. Mondol, M.S. Islam, M. H. Rashid, M. A. Hoque. Effect of tillage and residue retention on soil Properties and crop yields in wheat–mungbean–rice crop rotation under subtropical humid climate [J]. Open Journal of Soil Science, 2017(7): 1–17.

[32] Sarker K.K., W. Xiaoyan, L. Hongwen, X. Chunlin, L. Wening, H. Jin, E. R. Jeff, R.G. Rasaily, Q. Xiaodong. Development strategies of small scale conservation farming practices on two wheeled tractor in Bangladesh [J]. African Journal of Agricultural Research 2012 7(26): 3747–3756.

[33] Silva J. R.V., N. V. Costa, D. Martins. Efeito da palhada de cultivares de cana–de–açúcar na emergência de Cyperus rotundus [J]. Planta Daninha 2003(21):375–380.

[34] Singh Y., B. Singh, J. Timsina. Crop residue management for nutrient cycling and improving soil productivity in rice–based cropping practices in the tropics [J]. Advances in Agronomy, 2005(85): 269–407.

[35] Singh N.P., R.P. Singh, R. Kumar, A.K. Vashist, F. Khan, N. Varghese. Adoption of resource conservation technologies in Indo–Gangetic plains of India: scouting for profitability and efficiency [J]. Agricultural Economics Research Review, 2011 24(1):15–24.

[36] Singh O. P., H. P. Singh, P. S. Badal, R. Singh, D. Pandey. Impact of resource conservation technologies on carbon emission in major wheat growing regions of India [J]. Indian Journal of Agricultural Economics, 2010 65(3):399–411.

[37] Teetes G., B. B. Pendelon. Insects–pests of sorghum: cultural management methods. Department of Entomology, Texas A&M University, 1999. http://www.sorghumipm.tamu.edu

[38] Tiwari K. N. Reassessing the role of fertilizers in maintaining food, nutrition and environmental security [J]. Indian Journal of Fertilizers, 2007(3): 33 – 50.

[39] Velini E. D., E. Negrisoli. Controle de Plantas Daninhas em cana crua. In: Conresco Brasileiro da Ciência das Plantas Daninhas. Foz do Iguaçu Anais. Foz do Iguaçu: Sociedade Brasileira da Ciência das Plantas Daninhas, 2000. pp. 148–164.

[40] Yokouchi T., K. Saito. Factors affecting farmers’ adoption of NERICA upland rice varieties: the case of a seed producing village in central Benin [J]. Food Sec, 2016(8):197–209. DOI: 10.1007/s12571–015–0545–7.

[41] Hobbs P. R., A. Sayre, R. Gupta. The role of conservation agriculture in sustainable agriculture [J]. Philosophical Transactions of the Royal Society B: Biological Sciences 2008 363(1491): 543 – 555.

[42] Kumar V., R. R. Bellinder, R. K. Gupta, R. K. Malik, D. C. Brainard. Role of herbicide–resistant rice in promoting resource conservation technologies in rice–wheat cropping systems of India: a review [J]. Crop Protection, 2008(27):290–301.