Case Report

Two cases with fatal outcome following total lung irradiation for metastatic bone sarcoma

K. Lia, Ø.S. Bruland, H.L. Randem, L.H. Aksnes, J.P. Poulsen, I. Taksdal, K. Sundby Hall

Department of Oncology, Norwegian Radium Hospital, Oslo University Hospital, P.O. Box 4953, Nydalen, 0424 Oslo, Norway
Institute of Clinical Medicine, University of Oslo, 0310 Oslo, Norway
Department of Medical Physics, Norwegian Radium Hospital, Oslo University Hospital, P.O. Box 4953, Nydalen, 0424 Oslo, Norway
Department of Radiology, Norwegian Radium Hospital, Oslo University Hospital, P.O. Box 4953, Nydalen, 0424 Oslo, Norway

1. Introduction

Two comprehensive reviews have addressed total lung irradiation (TLI) in patients with metastases from osteo- and Ewing’s sarcoma [1,2]; a technique that has been used for decades and presented in textbooks [3,4]. Such radiotherapy involves parallel opposing anteroposterior/posterianterior fields encompassing the apices and distal costo-phrenic sinuses of both thoracic cavities. The two lungs may be treated simultaneously or sequentially. Several non-randomized studies have been reported [5–7]. Bilateral lung irradiation might, theoretically, combat micrometastases within the lungs and subsequently prevent overt metastases to develop. We have not identified studies adequately addressing whether TLI might benefit patients with macroscopic metastases.

Radiation pneumonitis was first described in 1922 by Groover et al. [8]. To our knowledge, the literature lacks information about lethal toxicity following such treatment. The tolerance of the lungs to radiation depends on the volume treated, total dose and dose per fraction [9,10]. Lung tissues poorly tolerate high-dose irradiation [11]. The fundamental problem with TLI is that pulmonary parenchymal tolerance to radiation is exceeded before sound tumoricidal doses are achieved [1]. During treatment planning, the general recommendation is to not exceed a total dose of 18–20 Gy in 1.5–2.0 Gy daily fractions administered over 2 weeks in order to respect lung tolerance [1]. For children and young adults under the age of 15 the standard total dose is 15 Gy.

Here we present two clinical cases demonstrating that even lethal lung toxicity may occur after TLI. A brief synopsis of the literature is also presented. We have also, retrospectively, reviewed our single institution experiences involving 53 bone sarcoma patients treated with TLI from 1980 to 2012.

2. Clinical material

2.1. Case 1

A female patient, 17 years of age, was admitted for pain in her left calf, and x-ray revealed a sclerotic lesion in the proximal tibia. Biopsy was performed and histology showed an osteoblastic osteosarcoma of high-grade malignancy. At the time of primary...
She died about 3 weeks later. Autopsy was not performed.

cortef, 100 mg three times a day, the situation did not improve.

The other patient, 18 year old female, presented with a 5 × 8 cm tumor located in the right ala ossis ilii, with infiltrating growth into the iliopsoas and gluteus minimus muscles. She had small metastases in both lungs; about 13 lesions in her right and seven in her left. Biopsy showed a typical Ewing’s sarcoma that was confirmed by the presence of EWS-FL11 fusion transcript. She had a previous history of mild asthma symptoms, but without the need for medication. The intended treatment plan was ISG/SSG IV – an Italian Sarcoma Group/Scandinavian Sarcoma Group Ewing’s protocol [19].

Chemotherapy: She received seven cycles in total (Fig. 3). After six cycles without complications, she was operated with a pelvic resection. The pathological examination of the removed tumor showed a histologically necrotic tumor. A marginal resection margin was achieved. However, the histological tumor response was poor (grade I, Picci grading system) [20]. Postoperatively, she had pain in the right pelvis and leg. An abscess was diagnosed in relation to the operation cavity, successfully treated with drainage and antibiotics.

Radiotherapy: One month after surgery she had recovered and commenced iliac field radiotherapy including the tumor bed with 2 cm margins. Hyperfractionated radiotherapy was given, 1.5 Gy twice daily to a total dose of 40.5 Gy (of planned 42 Gy, 10 fractions per week), employing a three-field technique. Concomitant with radiotherapy the seventh cycle was given according to the protocol mentioned above (Fig. 3). Seven days after radiotherapy she became neutropenic and developed symptoms of ileus. Surgery was necessary and demonstrated a perforation most likely based on radiation induced changes in the small intestine. Repeated surgical interventions during the next months were necessary to stabilize the situation with abscesses; resulting in an ileostomy and weeks with intensive treatment. She had a severe and protracted postoperative course, necessitating 5 weeks with ventilator support. Due to the serious toxicity, further cytostatic treatment was omitted.

Clinical course: Nine teen weeks after the last surgery, her general condition had recovered. The lung metastases were not visible by chest CT at this point, but due to overt metastases at primary diagnosis, we decided to give TLI as consolidation treatment, 19.5 Gy (1.5 Gy × 13).

Two months after total lung irradiation she was admitted to the intensive care unit for pneumonia which progressed rapidly despite various antibiotics. She developed acute respiratory distress syndrome with typical ground-glass opacities and pleural effusions on chest CT. Her lung problems progressed, resulting in the need for ventilator support and high doses of steroids, albeit with no effect. She died 2 months after total lung irradiation. Autopsy was not performed.

2.3. Radiotherapy treatment technique for Cases 1 and 2

Both patients were treated with TLI using parallel opposing fields. Both treatment plans also included additional smaller field segments to improve dose homogeneity (Figs. 4 and 5).

Beam energy was 15 MV on all fields for the 18 year old patient, while the 17 year old patient was treated using 6 MV on the main opposing fields, and 15 MV for the segments.

The dose was calculated in Masterplan v.3.3 (Nucletron – an Elekta company, Veenendaal, The Netherlands) using the collapsed cone algorithm on CT images with 2.5 mm slice thickness. Mean bilateral lung dose was normalized to 19.5 Gy in 13 fractions, treated
2 weeks before radiotherapy

2 months after start of total lung irradiation

2 months and 3 weeks after total lung irradiation

Fig. 2. Chest CT of patient 1.

Fig. 3. Chemotherapy given to patient 2 – modified according to ISG-SSG IV.

Chemotherapy	VA1	CE	VA2	CE	VA3
Week	1	4	7	10	13

Scheduled chemotherapy:

V = Vincristine 2mg/m²
A = Doxorubicin 45mg/m²/day (2 days) i.v. infusion.
I = Ifosfamide 3000mg/m²/day (in 3 days) i.v. infusion.
C = Cyclophosphamide 4000mg/m² i.v. infusion.
E = Etoposide 200mg/m²/day (3 days) i.v. infusion.
A' = Doxorubicin 40mg/m²/day (2 days) i.v. infusion.
C' = Cyclophosphamide 1200mg/m² i.v. infusion.
E' = Etoposide 100mg/m²/day (3 days) i.v. infusion.
I' = Ifosfamide 18000mg/m²/day (in 5 days) i.v. infusion.

Total dose of chemotherapy drugs - patient 2:

	mg/m²
Vinkristin	6
Etoposide	1500
Cyclophosphamide	10400
Doxorubicin	340
Ifosfamide	27000
5 days per week. Entrance doses measured in vivo corresponded well with planned doses for both patients.

Dose statistics for bilateral lungs in patient 1, D98 = 19.1 Gy, 2 ccm of the lungs receiving > 21.4 Gy. For patient 2, D98 = 19.1 Gy, 2 ccm of the lungs receiving > 20.4 Gy.

2.4. Total lung irradiation at the Norwegian Radium Hospital

From 1980 to 2012, 204 patients (including all cancer diagnoses and all ages) were treated with TLI for lung metastases at the Norwegian Radium Hospital (1.5 Gy × 9–15; total doses of
13.5–22.5 Gy). Our institution’s Sarcoma Database identified 53 of these patients; 19 with Ewing’s sarcoma and 34 with osteosarcoma. Some patients (six of 53) had lower doses than intended due to disease progression, a few had higher doses due to compensation for interruptions during radiotherapy. As expected, the majority of the patients died due to rapid progression of their sarcoma metastases. Importantly, 11 patients were long term survivors, eight patients with Ewing’s sarcoma and three with osteosarcoma (Table 1). Eight of these patients had long-term follow-up at our institution.

Table 1
Long time survivors; bone sarcoma patients alive with no signs of pulmonary toxicity.

Diagnosis	Year of diagnosis	Lung metastases at primary diagnosis	Number of lung metastases	Lung surgery	Year of TLI	Last follow up
Osteosarcoma	1981	No^a	2	Yes, prior to TLI	1986	2010
Osteosarcoma	1981	No^a	1	Yes, prior to TLI	1984	2011
Ewing sarcoma	1991	Yes	2	Yes, prior to TLI	1992	2009
Ewing sarcoma	1996	Yes	> 10	No	1997	2012
Ewing sarcoma	1997	Yes	> 10	Yes, after TLI	1998	2011
Ewing sarcoma	1998	Yes	2	No	1999	2012
Ewing sarcoma	2000	Yes	> 10	No	2004	2012
Ewing sarcoma	2004	Yes	1	No	2005	2009
Ewing sarcoma	2009	Yes	> 10	No	2011	2012
Ewing sarcoma	2010	Yes	> 10	No	2012	2012

^a The Sarcoma Database at the Norwegian Radium Hospital is linked to the Cause of Death register in Norway.

^b After 5 years.

^c After 2 years.

3. Discussion

TLI is regarded as a well-tolerated, simple procedure with few acute or late clinical sequelae reported. However, pulmonary irradiation as a therapeutic modality for metastatic bone sarcomas is, although introduced 30 years ago, insufficiently evaluated to clearly determine its benefits [1,3,4].

Pneumonitis has been reported after TLI in Ewing’s sarcoma [21], but no serious toxicity like we reported in these two patients has previously been presented [1,6,7].

The radiation treatments in our patients were audited internally at our institution, but no abnormalities found. When retrospectively comparing the clinical courses of these two young girls, they were both under 20 years of age and had considerable toxicity during chemotherapy. They were both treated with 19.5 Gy (13 fractions) to their total lung volume. This is according the generally accepted total lung tolerance to radiation [1,6,7].

In Case 1, we cannot rule out a contribution from the radiation of electrons emitted from Quadramet 153Sm-EDTMP. However, the track-length of these electrons is very short and lung toxicity has not been reported among groups of osteosarcoma patients given up to as much as 30 times the injected amount given to our patient [13–18].

Our experiences with TLI over three decades have not revealed either serious acute or late toxic effects as experienced in these two patients. However, the majority of the patients died due to progression of lung metastases, 1–6 months after TLI.
Among the 39 patients that subsequently succumbed to their disease (Fig. 6). We have no information in their medical records indicating lung or heart toxicity due to the chemotherapy or radiotherapy given. One patient committed suicide. In the 42% (8/19) with Ewing’s sarcoma and 9% (3/34) of the osteosarcoma who were long-term survivors, no clinically significant lung or heart toxicity were documented, although lung function tests were not performed (Table 1). Interestingly, all three osteosarcoma patients still alive received TLI following complete metastatic surgical removal of visible metastases. In fact they all have fewer metastases and two of them without overt metastases at diagnosis. Hence, the contribution of TLI is questionable.

The cytostatic drugs given to our two patients (Figs. 1 and 3) are not known to give pulmonary side effects except for MTX. The latter may cause pneumonitis, pulmonary fibrosis, interstitial pneumonia and pleural effusion [22,23]. Additive effects might be expected combined with lung irradiation [24,25]. In our two patients, TLI was given 5 weeks and 19 weeks after chemotherapy, respectively. We do not know if the pulmonary function was reduced before irradiation since spirometry was not performed.

We cannot rule out that our two patients, who succumbed, had a genetic predisposition of an individual vulnerability for an abnormal lung toxicity of radiotherapy. A blood test was performed in Case 2 to look for a mutation in the ataxia telangiectasia mutated gene, which is associated with a higher sensitivity to radiation [26]. The mutation was not found. Obviously, we cannot leave out the possibility of other mutations associated with side-effects of irradiation [27,28].

4. Conclusion

Lung metastases remain the most common cause of death in osteosarcoma and Ewing’s sarcoma patients. The two cases presented here demonstrate that lethal lung toxicity may occur following TLI. In any multimodal treatment regiments, pulmonary function should be evaluated before TLI. Impairment of pulmonary function before radiotherapy seems to be a risk factor for higher grade of late toxicity to the lung [24,29]. Hence, if reduced lung function is observed, this indicates that TLI probably should be omitted.

Conflicts of interest statement

The authors have declared no potential conflict of interests.

Acknowledgments

Intensive care unit – doctors, nurses and other health care coworkers taking care of the patients.

References

[1] Whelan JS, Burcombe RJ, Janinis J, Baldelli AM, Cassoni AM. A systematic review of the role of pulmonary irradiation in the management of primary bone tumors. Annals of Oncology 2002;13(1):23–30.
[2] Spunt SL, McCarville MB, Run LE, Poquette CA, Cain AM, Brandao L, et al. Selective use of whole-lung irradiation for patients with Ewing sarcoma family tumors and pulmonary metastases at the time of diagnosis. Journal of Pediatric Hematology/Oncology 2001;23(2):93–8.
[3] Halperin EC, Kun LE, Constine LS, Tarbell NJ. Pediatric radiation oncology New York: Raven Press; 1989: 215–9.
[4] Cassady JR. Radiation therapy in pediatric oncology. Springer-Verlag; 1994: 308–309.
[5] Caldwell WL. Elective whole lung irradiation. Radiology 1976;120(3):659–66.
[6] Caceres E, Zaharia M, Moran M, Tejada F. Adjuvant whole-lung radiation with or without Adriamycin treatment in osteogenic sarcoma. Cancer Treatment Reports 1978;62(2):297–9.
[7] Dunst J, Paulussen M, Jürgens H. Lung irradiation for Ewing’s sarcoma with pulmonary metastases at diagnosis: results of the CEES-studies. Strahlentherapie und Onkologie 1993;169(10):621–3.
[8] Groover TA, Christie AC, Merritt EA. Observations on the use of the copper filter in the oxygen treatment of the deep-seated malignancies. Southern Medical Journal 1922;15(6):440–3.
[9] Marks LB, Bentzen SM, Deasy JO, Kong F-M, Bradley JD, Vogelius IS, et al. Radiation dose-volume effects in the lung. International Journal of Radiation Oncology, Biology, Physics 2010;76(3):70–6.
[10] Vágane R, Bruland ØS, Fossa SD, Olsen DR. Radiological and functional assessment of radiation-induced pulmonary damage following breast irradiation. Acta Oncologica 2008;47(2):248–54.
[11] Cliby C, Moseley L. Targeted irradiation of osteosarcoma using 153Sm-EDTMP. A new promising approach. Acta Oncologica 1996;35(3):381–4.
[12] Franzius C, Bielack S, Skrabut J, Valel B, Jürgens H, Scobier O. High activity samarium-153-EDTMP therapy in unresectable osteosarcoma. Nuklearmedizin 1999;38(8):337–40.
[13] Anderson PM, Wiseman GA, Dispensieri A, Arntd CA, Hartmann LC, Smithson WA, et al. High-dose samarium-153 ethylene diamine tetramethylphosphonate: low toxicity of skeletal irradiation in patients with osteosarcoma and bone metastases. Journal of Clinical Oncology 2002;20(1):189–96.
[14] Franzius C, Schuck A, Bielack SS. High-dose samarium-153 ethylene diamine tetramethylphosphonate: low toxicity of skeletal irradiation in patients with osteosarcoma and bone metastases. Journal of Clinical Oncology 2002;20(7):1953–4.
[15] Anderson PA, Wiseman GA, Erlandson L, Rodrigoz V, Trotz B, Dubansky SA, et al. Gemcitabine radiosensitization after high-dose samarium for osteoblastic osteosarcoma. Clinical Cancer Research 2005;11(19):6895–900.
[16] Luthardt R, Schillig A, Hall KS, Fagoozi F, Picci P, Barbieri E, et al. Primary metastatic Ewing’s family tumors: results of the Italian Sarcoma Group and Scandinavian Sarcoma Group ISG/SSG IV study including myeloablative chemotherapy and total-lung irradiation. Annals of Oncology 2012;23(11):2970–6.
[17] Pollard JM, Gatti RA. Clinical radiation sensitivity with DNA repair disorders: implications for understanding how normal tissues and tumors respond to therapeutic radiation. Cancer Investigation 1999;17(1):56–72.
[18] Kuhr P, Asea A. Radiation-induced effects and the immune system in cancer. Frontiers in Oncology 2012;2:191.
[19] Dale E, Härsaker V, Kristoffersen DT, Bruland O, Olsen DR. CT density in lung cancer patients after radiotherapy sensitizes by metoclopramide. Strahlentherapie und Onkologie 2010;186(3):163–8.