Distributional results for thresholding estimators in high-dimensional Gaussian regression models

Benedikt M. Pötscher and Ulrike Schneider

University of Vienna, University of Goettingen

June 2011

Online at http://mpra.ub.uni-muenchen.de/31882/
MPRA Paper No. 31882, posted 28. June 2011 13:40 UTC
We study the distribution of thresholding estimators within a linear regression model where the number of parameters k can depend on sample size n and may diverge with n. In addition to the case of known error-variance, we define and study versions of the estimators when the error-variance is unknown. We derive the finite-sample distribution of each estimator and study its behavior in the large-sample limit, also investigating the effects of having to estimate the variance when the degrees of freedom $n - k$ does not tend to infinity or tends to infinity very slowly. Our analysis encompasses both the case where the estimators are tuned to perform consistent model selection and the case where the estimators are tuned to perform conservative model selection. Furthermore, we discuss consistency, uniform consistency and derive the minimax rate under either type of tuning.

MSC subject classification: 62F11, 62F12, 62J05, 62J07, 62E15, 62E20

Keywords and phrases: Thresholding, Lasso, adaptive Lasso, penalized maximum likelihood, finite-sample distribution, asymptotic distribution, variance estimation, minimax rate, high-dimensional model, oracle property

1 Introduction

We study the distribution of thresholding estimators such as hard-thresholding, soft-thresholding, and adaptive soft-thresholding in a linear regression model when the number of regressors can be large. These estimators can be viewed as penalized least-squares estimators, with soft-thresholding coinciding with the Lasso (introduced by Alliney and Ruzinsky (1994), Frank and Friedman (1994), and Tibshirani (1996)) and with adaptive soft-thresholding coinciding with the adaptive Lasso (introduced by Zou (2006)) in the case of an orthogonal design matrix. [Thresholding estimators have of course been discussed earlier in the context of model selection (see Bauer, Pötscher and Hackl (1988)) and in the context of wavelets (see, e.g., Donoho, Johnstone, Kerkyacharian, Picard (1995)).] Contributions concerning distributional properties of thresholding and penalized least-squares estimators are as follows: Knight and Fu (2000) study the asymptotic distribution of the Lasso estimator when it is tuned to act as a conservative variable selection procedure, whereas Zou (2006) studies the asymptotic distribution of the Lasso and the adaptive Lasso estimators when they are tuned to act as consistent variable selection procedures. Fan and Li (2001) and Fan and Peng (2004) study the asymptotic distribution of the so-called smoothly clipped absolute deviation estimator when it is tuned to act as a consistent variable selection procedure. In the wake of Fan and Li (2001) and Fan and Peng (2004) a large number of papers have been published that derive the asymptotic distribution of various penalized maximum likelihood estimators under consistent tuning; see the introduction in Pötscher and
Schneider (2009) for a partial list. Except for Knight and Fu (2000), all these papers derive the asymptotic distribution in a fixed-parameter framework. As pointed out in Leeb and Pötscher (2005), such a fixed-parameter framework is often highly misleading in the context of variable selection procedures and penalized maximum likelihood estimators. For that reason, Pötscher and Leeb (2009) and Pötscher and Schneider (2009) have conducted a detailed study of the finite-sample as well as large-sample distribution of various penalized least-squares estimators, adopting a moving-parameter framework for the asymptotic results. [Related results for so-called post-model-selection estimators can be found in Leeb and Pötscher (2003, 2005) and for model averaging estimators in Pötscher (2006).] The papers by Pötscher and Leeb (2009) and Pötscher and Schneider (2009) are set in the framework of an orthogonal linear regression model with a fixed number of parameters and with the error-variance being known.

In the present paper we build on the just mentioned papers by Pötscher and Leeb (2009) and Pötscher and Schneider (2009). In contrast to these papers, we allow for arbitrary design and do not assume the number of regressors k to be fixed, but let it depend on sample size – thus allowing for high-dimensional models. We also consider the case where the error-variance is unknown, which in case of a high-dimensional model creates non-trivial complications as then estimators for the error-variance will typically not be consistent. While the asymptotic distributional results in the known-variance case do not differ in substance from the results in Pötscher and Leeb (2009) and Pötscher and Schneider (2009), not unexpectedly we observe different asymptotic behavior in the unknown-variance case if the number of degrees of freedom $n - k$ is constant, the difference resulting from the non-vanishing variability of the error-variance estimator in the limit. Less expected is the result that – under consistent tuning – for the variable selection probabilities (implied by all the estimators considered) as well as for the distribution of the hard-thresholding estimator, estimation of the error-variance still has an effect asymptotically even if $n - k$ diverges, but does so only slowly.

The paper is organized as follows. We introduce the model and define the estimators in Section 2. Section 3 treats the variable selection probabilities implied by the estimators. Consistency, uniform consistency, and minimax rates are discussed in Section 4. We derive the finite-sample distribution of each estimator in Section 5 and study the large-sample behavior of these in Section 6.

2 The Model and the Estimators

Consider the linear regression model

$$Y = X\theta + u$$

with Y an $n \times 1$ vector, X a nonstochastic $n \times k$ matrix of rank $k \geq 1$, and $u \sim N(0, \sigma^2 I_n)$. We allow k, the number of columns of X, as well as the entries of Y, X, and u to depend on sample size n (in fact, also the probability spaces supporting Y and u may depend on n), although we shall almost always suppress this dependence on n in the notation. Note that this framework allows for high-dimensional regression models, where the number of regressors k is large compared to sample size n, as well as for the more classical situation where k is much smaller than n. Furthermore, let ξ_i,n denote the nonnegative square root of $((X'X/n)^{-1})_{ii}$, the i-th diagonal element of $(X'X/n)^{-1}$. Now let

$$\hat{\theta}_{LS} = (X'X)^{-1} X'Y$$

$$\hat{\sigma}^2 = (n - k)^{-1} (Y - X\hat{\theta}_{LS})'(Y - X\hat{\theta}_{LS})$$

$$\hat{\theta}_{LS} = (X'X)^{-1} X'Y$$

$$\hat{\sigma}^2 = (n - k)^{-1} (Y - X\hat{\theta}_{LS})'(Y - X\hat{\theta}_{LS})$$
denote the least-squares estimator for θ and the associated estimator for σ^2, the latter being defined only if $n > k$. The hard-thresholding estimator $\hat{\theta}_H$ is defined via its components as follows

$$\hat{\theta}_{H,i} = \hat{\theta}_{H,i}(\eta_{i,n}) = \hat{\theta}_{LS,i} \mathbf{1} \left(|\hat{\theta}_{LS,i}| > \tilde{\sigma} \xi_{i,n} \eta_{i,n} \right),$$

where the tuning parameters $\eta_{i,n}$ are positive real numbers and $\hat{\theta}_{LS,i}$ denotes the i-th component of the least-squares estimator. We shall also need to consider its infeasible counterpart $\tilde{\theta}_H$ given by

$$\tilde{\theta}_{H,i} = \tilde{\theta}_{H,i}(\eta_{i,n}) = \hat{\theta}_{LS,i} \mathbf{1} \left(|\hat{\theta}_{LS,i}| > \sigma \xi_{i,n} \eta_{i,n} \right).$$

The soft-thresholding estimator $\tilde{\theta}_S$ and its infeasible counterpart $\tilde{\theta}_S$ are given by

$$\tilde{\theta}_{S,i} = \tilde{\theta}_{S,i}(\eta_{i,n}) = \text{sign}(\hat{\theta}_{LS,i}) \left(|\hat{\theta}_{LS,i}| - \tilde{\sigma} \xi_{i,n} \eta_{i,n} \right)_+,$$

and

$$\tilde{\theta}_{S,i} = \tilde{\theta}_{S,i}(\eta_{i,n}) = \text{sign}(\hat{\theta}_{LS,i}) \left(|\hat{\theta}_{LS,i}| - \sigma \xi_{i,n} \eta_{i,n} \right)_+,$$

where $(\cdot)_+ = \max(\cdot,0)$. Finally, the adaptive soft-thresholding estimator $\tilde{\theta}_AS$ and its infeasible counterpart $\tilde{\theta}_AS$ are defined via

$$\tilde{\theta}_{AS,i} = \tilde{\theta}_{AS,i}(\eta_{i,n}) = \hat{\theta}_{LS,i} \left(1 - \frac{\tilde{\sigma}^2 \xi_{i,n}^2 \eta_{i,n}^2}{\hat{\theta}_{LS,i}^2} \right)_+,$$

and

$$\tilde{\theta}_{AS,i} = \tilde{\theta}_{AS,i}(\eta_{i,n}) = \hat{\theta}_{LS,i} \left(1 - \frac{\sigma^2 \xi_{i,n}^2 \eta_{i,n}^2}{\hat{\theta}_{LS,i}^2} \right)_+,$$

Note that $\tilde{\theta}_H$, $\tilde{\theta}_S$, and $\tilde{\theta}_AS$ as well as their infeasible counterparts are equivariant under scaling of the columns of $(Y : X)$ by non-zero column-specific scale factors. We have chosen to let the thresholds $\tilde{\sigma} \xi_{i,n} \eta_{i,n}$ ($\sigma \xi_{i,n} \eta_{i,n}$, respectively) depend explicitly on $\tilde{\sigma}$ (σ, respectively) and $\xi_{i,n}$ in order to give $\eta_{i,n}$ an interpretation independent of the values of σ and X. Furthermore, often $\eta_{i,n}$ will be chosen independently of i, i.e., $\eta_{i,n} = \eta_n$ where η_n is a positive real number. Clearly, for the feasible versions we always need to assume $n > k$, whereas for the infeasible versions $n \geq k$ suffices.

We note the simple fact that

$$0 \leq \tilde{\theta}_{S,i} \leq \tilde{\theta}_{AS,i} \leq \tilde{\theta}_{H,i} \leq \hat{\theta}_{LS,i} \quad (1)$$

holds on the event that $\hat{\theta}_{LS,i} \geq 0$, and that

$$\hat{\theta}_{LS,i} \leq \tilde{\theta}_{H,i} \leq \tilde{\theta}_{AS,i} \leq \tilde{\theta}_{S,i} \leq 0 \quad (2)$$

holds on the event that $\hat{\theta}_{LS,i} \leq 0$. Analogous inequalities hold for the infeasible versions of the estimators.
Remark 1 (Lasso) (i) Consider the objective function

\[(Y - X\theta)'(Y - X\theta) + 2n\hat{\sigma} \sum_{i=1}^{k} \eta_{i,n} |\theta_i|,\]

where \(\eta_{i,n}\) are positive real numbers. It is well-known that a unique minimizer \(\tilde{\theta}_L\) of this objective function exists, the Lasso-estimator. It is easy to see that in case \(X'X\) is diagonal, we have

\[\tilde{\theta}_{L,i} = \text{sign}(\hat{\theta}_{LS,i}) \left(|\hat{\theta}_{LS,i}| - \hat{\sigma}\eta_{i,n}^2 \right)_+.\]

Hence, in the case of diagonal \(X'X\), the Lasso \(\tilde{\theta}_{L,i}\) reduces to a soft-thresholding estimator with an appropriate threshold; in particular, \(\tilde{\theta}_{L,i}\) coincides with \(\tilde{\theta}_{S,i}\) for the choice \(\eta_{i,n} = \eta_{i,n}^{-1}\).

Therefore all results derived below for soft-thresholding immediately give corresponding results for the Lasso as well as for the Dantzig-selector in the diagonal case. We shall abstain from spelling out further details.

(ii) Sometimes \(\eta_{i,n}\) in the definition of the Lasso is chosen independently of \(i\); more reasonable choices seem to be (a) \(\eta_{i,n} = \eta_{i,n}\psi_{i,n}\) (where \(\psi_{i,n}\) denotes the nonnegative square root of the \(i\)-th diagonal element of \((X'X/n)\)), and (b) \(\eta_{i,n} = \eta_{i,n} \xi_{i,n}^{-1}\) where \(\eta_{i,n}\) are positive real numbers (not depending on the design matrix and often not on \(i\)) as then \(\eta_{i,n}\) again has an interpretation independent of the values of \(\sigma\) and \(X\). Note that in case (a) or (b) the solution of the optimization problem is equivariant under scaling of the columns of \(X\) by non-zero column-specific scale factors.

(iii) Similar results obviously hold for the infeasible versions of the estimators.

Remark 2 (Adaptive Lasso) Consider the objective function

\[(Y - X\theta)'(Y - X\theta) + 2n\hat{\sigma}^2 \sum_{i=1}^{k} (\eta_{i,n}')^2 |\theta_i| / |\hat{\theta}_{LS,i}|,\]

where \(\eta_{i,n}'\) are positive real numbers. This is the objective function of the adaptive Lasso if \(\eta_{i,n}' = \eta_{i,n}'\). Again the minimizer \(\tilde{\theta}_{AL}\) exists and is unique (at least on the event where \(\hat{\theta}_{LS,i} \neq 0\) for all \(i\)). Clearly, \(\tilde{\theta}_{AL}\) is equivariant under scaling of the columns of \(X\) by non-zero column-specific scale factors. It is easy to see that in case \(X'X\) is diagonal, we have

\[\tilde{\theta}_{AL,i} = \hat{\theta}_{LS,i} \left(1 - \sigma^2 \xi_{i,n}^2 \eta_{i,n}'^2 / |\hat{\theta}_{LS,i}| \right)_+.\]

Hence, in the case of diagonal \(X'X\), the adaptive Lasso \(\tilde{\theta}_{AL,i}\) reduces to the adaptive soft-thresholding estimator \(\tilde{\theta}_{AS,i}\) (for \(\eta_{i,n}' = \eta_{i,n}\)). Therefore all results derived below for adaptive soft-thresholding immediately give corresponding results for the adaptive Lasso in the diagonal case. We shall again abstain from spelling out further details. Similar results obviously hold for the infeasible versions of the estimators.

For all asymptotic considerations in this paper we shall always assume without further mentioning that \(\xi_{i,n}/n = ((X'X)^{-1})_{ii}\) satisfies

\[\sup_n \xi_{i,n}^2/n < \infty\]

(3)

for every fixed \(i \geq 1\) satisfying \(i \leq k(n)\) for large enough \(n\). The case excluded by assumption (3) seems to be rather uninteresting as unboundedness of \(\xi_{i,n}^2/n\) means that the information
3.1 Known-Variance Case

The following notation will be used in the paper: Let \(\mathbb{R} \) denote the extended real line \(\mathbb{R} \cup \{-\infty, \infty\} \) endowed with the usual topology. On \(\mathbb{R} \cup \{\infty\} \) we shall consider the topology it inherits from \(\mathbb{R} \). Furthermore, \(\Phi \) and \(\phi \) denote the cumulative distribution function (cdf) and the probability density function (pdf) of a standard normal distribution, respectively. By \(T_{m,c} \) we denote the cdf of a non-central \(T \)-distribution with \(m \in \mathbb{N} \) degrees of freedom and non-centrality parameter \(c \in \mathbb{R} \). In the central case, i.e., \(c = 0 \), we simply write \(T_m \). We use the convention \(\Phi(\infty) = 1 \), \(\Phi(-\infty) = 0 \) with a similar convention for \(T_{m,c} \).

3 Variable Selection Probabilities

The estimators \(\hat{\theta}_H \), \(\hat{\theta}_S \), and \(\hat{\theta}_{AS} \) can be viewed as performing variable selection in the sense that these estimators set components of \(\theta \) exactly equal to zero with positive probability. In this section we study the variable selection probability \(P_{n,\theta,\sigma} \left(\hat{\theta}_i \neq 0 \right) \), where \(\hat{\theta}_i \) stands for any of the estimators \(\hat{\theta}_{H,i} \), \(\hat{\theta}_{S,i} \), and \(\hat{\theta}_{AS,i} \). Since these probabilities are the same for any of the three estimators considered we shall drop the subscripts \(H \), \(S \), and \(AS \) in this section. We use the same convention also for the variable selection probabilities of the infeasible versions.

3.1 Known-Variance Case

Since \(P_{n,\theta,\sigma} \left(\hat{\theta}_i \neq 0 \right) = 1 - P_{n,\theta,\sigma} \left(\hat{\theta}_i = 0 \right) \) it suffices to study the variable deletion probability

\[
P_{n,\theta,\sigma} \left(\hat{\theta}_i = 0 \right) = \Phi \left(n^{1/2} \left(-\theta_i / (\sigma \xi_{i,n}) + \eta_{i,n} \right) \right) - \Phi \left(n^{1/2} \left(-\theta_i / (\sigma \xi_{i,n}) - \eta_{i,n} \right) \right).
\]

(4)

As can be seen from the above formula, \(P_{n,\theta,\sigma} \left(\hat{\theta}_i = 0 \right) \) depends on \(\theta \) only via \(\theta_i \). We first study the variable selection/deletion probabilities under a "fixed-parameter" asymptotic framework.

Proposition 3 For every \(i \geq 1 \) satisfying \(i \leq k = k(n) \) for large enough \(n \) we have:

(a) A necessary and sufficient condition for \(P_{n,\theta,\sigma} \left(\hat{\theta}_i = 0 \right) \to 0 \) as \(n \to \infty \) for all \(\theta \) satisfying \(\theta_i \neq 0 \) (\(\theta_i \) not depending on \(n \)) is \(\xi_{i,n} \eta_{i,n} \to 0 \).

(b) A necessary and sufficient condition for \(P_{n,\theta,\sigma} \left(\hat{\theta}_i = 0 \right) \to 1 \) as \(n \to \infty \) for all \(\theta \) satisfying \(\theta_i = 0 \) is \(n^{1/2} \eta_{i,n} \to \infty \).

(c) A necessary and sufficient condition for \(P_{n,\theta,\sigma} \left(\hat{\theta}_i = 0 \right) \to c_i \) as \(n \to \infty \) for all \(\theta \) satisfying \(\theta_i = 0 \) is \(n^{1/2} \eta_{i,n} \to e_i \), \(0 \leq e_i < \infty \). The constant \(c_i \) is then given by \(c_i = \Phi \left(e_i \right) - \Phi \left(-e_i \right) \).

Proof. We first prove Part (a). Rewrite \(P_{n,\theta,\sigma} \left(\hat{\theta}_i = 0 \right) \) as

\[
\Phi \left(n^{1/2} \xi_{i,n}^{-1} \left(-\theta_i / \sigma + \xi_{i,n} \eta_{i,n} \right) \right) - \Phi \left(n^{1/2} \xi_{i,n}^{-1} \left(-\theta_i / \sigma - \xi_{i,n} \eta_{i,n} \right) \right).
\]

Note that \(n^{1/2} \xi_{i,n}^{-1} \) is bounded away from zero (but may be unbounded) by our maintained assumption (3). Now it is easy to see that this converges to zero for every \(\theta_i \neq 0 \) if and only if

contained in the regressors gets weaker with increasing sample size (at least along a subsequence); in particular, this implies (coordinate-wise) inconsistency of the least-squares estimator. [In fact, if \(k \) as well as the elements of \(X \) do not depend on \(n \), this case is actually impossible as \(\xi_{i,n}^2 / n \) is then necessarily monotonically nonincreasing.]
\(\xi_{i,n} \eta_{i,n} \to 0 \) as \(n \to \infty \). Parts (b) and (c) are obvious since \(P_{n,\theta,\sigma} \left(\hat{\theta}_i = 0 \right) = \Phi \left(\frac{n^{1/2} \eta_{i,n}}{-n^{1/2} \eta_{i,n}} \right) \) whenever \(\theta_i = 0 \). \(\square \)

Part (a) of the above proposition gives a necessary and sufficient condition for the procedure to correctly detect nonzero coefficients with probability converging to 1. Part (b) gives a necessary and sufficient condition for correctly detecting zero coefficients with probability converging to 1.

Remark 4 If \(\xi_{i,n}/n^{1/2} \) does not converge to zero, the conditions on \(\eta_{i,n} \) in Parts (a) and (b) are incompatible; also the conditions in Parts (a) and (c) are then incompatible (except when \(\epsilon_i = 0 \). However, the case where \(\xi_{i,n}/n^{1/2} \) does not converge to zero is of little interest as the least-squares estimator is then not consistent.

Remark 5 *(Speed of convergence in Proposition 3)* (i) The speed of convergence in (a) is \(\xi_{i,n} \eta_{i,n} \) in case \(n^{1/2} \xi_{i,n}^{-1} \) is bounded (an uninteresting case as noted above); if \(n^{1/2} \xi_{i,n}^{-1} \to \infty \), the speed of convergence in (a) is not slower than \(\exp \left(-cn \xi_{i,n}^{-2} \right) \) \(/ \left(n^{1/2} \xi_{i,n}^{-1} \right) \) for some suitable \(c > 0 \) depending on \(\theta_i/\sigma \).

(ii) The speed of convergence in (b) is \(\exp \left(-0.5n^2 \eta_{i,n}^2 \right) \) \(/ \left(n^{1/2} \eta_{i,n} \right) \). In (c) the speed of convergence is given by the rate at which \(n^{1/2} \eta_{i,n} \) approaches \(\epsilon_i \).

Remark 6 For \(\theta \in \mathbb{R}^{k(n)} \) let \(A_n(\theta) = \{ i : 1 \leq i \leq k(n), \theta_i \neq 0 \} \). Then (i) for every \(i \in A_n(\theta) \)

\[
P_{n,\theta,\sigma} \left(\hat{\theta}_i = 0 \right) \leq P_{n,\theta,\sigma} \left(\bigcup_{j \in A_n(\theta)} \{ \hat{\theta}_j = 0 \} \right) \leq \sum_{j \in A_n(\theta)} P_{n,\theta,\sigma} \left(\hat{\theta}_j = 0 \right).
\]

Suppose now that the entries of \(\theta \) do not change with \(n \) (although the dimension of \(\theta \) may depend on \(n \)).\(^1\) Then, given that \(\text{card}(A_n(\theta)) \) is bounded (this being in particular the case if \(k(n) \) is bounded), the probability of incorrect non-detection of at least one nonzero coefficient converges to 0 if and only if \(\xi_{i,n} \eta_{i,n} \to 0 \) as \(n \to \infty \) for every \(i \in A_n(\theta) \). If \(\text{card}(A_n(\theta)) \) is unbounded then this probability converges to 0, e.g., if \(\xi_{i,n} \eta_{i,n} \to 0 \) and \(n^{1/2} \xi_{i,n}^{-1} \to \infty \) as \(n \to \infty \) for every \(i \in A_n(\theta) \) and \(\inf_{i \in A_n(\theta)} |\theta_i| > 0 \) and \(\sum_{i \in A_n(\theta)} \exp \left(-cn \xi_{i,n}^{-2} \right) / \left(n^{1/2} \xi_{i,n}^{-1} \right) \to 0 \) as \(n \to \infty \) for a suitable \(c \) that is determined by \(\inf_{i \in A_n(\theta)} |\theta_i|/\sigma \).

(ii) For every \(i \notin A_n(\theta) \) we have

\[
P_{n,\theta,\sigma} \left(\hat{\theta}_i = 0 \right) \geq P_{n,\theta,\sigma} \left(\bigcup_{j \notin A_n(\theta)} \{ \hat{\theta}_j = 0 \} \right) = 1 - P_{n,\theta,\sigma} \left(\bigcup_{j \notin A_n(\theta)} \{ \hat{\theta}_j \neq 0 \} \right)
\]

\[
\geq 1 - \sum_{j \notin A_n(\theta)} \left[1 - P_{n,\theta,\sigma} \left(\hat{\theta}_j = 0 \right) \right].
\]

Suppose again that the entries of \(\theta \) do not change with \(n \). Then, given that \(\text{card}(A_n^c(\theta)) \) is bounded (this being in particular the case if \(k(n) \) is bounded), the probability of incorrectly classifying at least one zero parameter as a non-zero one converges to 0 as \(n \to \infty \) if and only if \(n^{1/2} \eta_{i,n} \to \infty \) for every \(i \in A_n(\theta) \). If \(\text{card}(A_n^c(\theta)) \) is unbounded then this probability converges to 0, e.g., if \(\sum_{i \notin A_n(\theta)} \exp \left(-0.5n^2 \eta_{i,n}^2 \right) / \left(n^{1/2} \eta_{i,n} \right) \to 0 \) as \(n \to \infty \).

(iii) In case \(XVX \) is diagonal, the relevant probabilities \(P_{n,\theta,\sigma} \left(\bigcup_{i \in A_n(\theta)} \{ \hat{\theta}_i = 0 \} \right) \) as well as \(P_{n,\theta,\sigma} \left(\bigcap_{i \notin A_n(\theta)} \{ \hat{\theta}_i = 0 \} \right) \) can be directly expressed in terms of products of \(P_{n,\theta,\sigma} \left(\hat{\theta}_i = 0 \right) \) or \(1 - P_{n,\theta,\sigma} \left(\hat{\theta}_i = 0 \right) \), and Proposition 3 can then be applied.

\(^1\) More precisely, this means that \(\theta \) is made up of the initial \(k(n) \) elements of a fixed element of \(\mathbb{R}^\infty \).
Since the fixed-parameter asymptotic framework often gives a misleading impression of the actual behavior of a variable selection procedure (cf. Leeb and Pötscher (2005), Pötscher and Leeb (2009)) we turn to a "moving-parameter" framework next, i.e., we allow the elements of \(\theta \) as well as \(\sigma \) to depend on sample size \(n \). In the proposition to follow (and all subsequent large-sample results) we shall concentrate only on the case where \(\xi_{i,n} \eta_{i,n} \to 0 \) as \(n \to \infty \), since otherwise the estimators \(\hat{\theta}_i \) are not even consistent for \(\theta_i \) as a consequence of Proposition 3, cf. also Theorem 15 below. Given the condition \(\xi_{i,n} \eta_{i,n} \to 0 \), we shall then distinguish between the case \(n^{1/2} \eta_{i,n} \to e_i, \ 0 \leq e_i < \infty \), and the case \(n^{1/2} \eta_{i,n} \to \infty \), which in light of Proposition 3 we shall call the case of "conservative tuning" and the case of "consistent tuning", respectively.

Proposition 7 Suppose that for given \(i \geq 1 \) satisfying \(i \leq k = k(n) \) for large enough \(n \) we have \(\xi_{i,n} \eta_{i,n} \to 0 \) and \(n^{1/2} \eta_{i,n} \to e_i \) where \(0 \leq e_i \leq \infty \).

(a) Assume \(e_i < \infty \). Suppose that the true parameters \(\theta^{(n)} = (\theta_{1,n}, \ldots, \theta_{k,n}) \in \mathbb{R}^{kn} \) and \(\sigma_n \in (0, \infty) \) satisfy \(n^{1/2} \theta_{i,n}/(\sigma_n \xi_{i,n}) \to \nu_i \in \mathbb{R} \). Then

\[
\lim_{n \to \infty} P_{n, \theta^{(n)}, \sigma_n} (\hat{\theta}_i = 0) = \Phi(-\nu_i + e_i) - \Phi(-\nu_i - e_i).
\]

(b) Assume \(e_i = \infty \). Suppose that the true parameters \(\theta^{(n)} = (\theta_{1,n}, \ldots, \theta_{k,n}) \in \mathbb{R}^{kn} \) and \(\sigma_n \in (0, \infty) \) satisfy \(\theta_{i,n}/(\sigma_n \xi_{i,n}) \to \zeta_i \in \mathbb{R} \). Then

1. \(|\zeta_i| < 1 \) implies \(\lim_{n \to \infty} P_{n, \theta^{(n)}, \sigma_n} (\hat{\theta}_i = 0) = 1 \).
2. \(|\zeta_i| > 1 \) implies \(\lim_{n \to \infty} P_{n, \theta^{(n)}, \sigma_n} (\hat{\theta}_i = 0) = 0 \).
3. \(|\zeta_i| = 1 \) and \(r_{i,n} := n^{1/2} (\eta_{i,n} - \zeta_i \xi_{i,n}/(\sigma_n \xi_{i,n})) \to r_i \) for some \(r_i \in \mathbb{R} \), imply

\[
\lim_{n \to \infty} P_{n, \theta^{(n)}, \sigma_n} (\hat{\theta}_i = 0) = \Phi(r_i).
\]

Proof. Part (a) follows immediately from (4) and the assumptions. To prove Part (b) we use (4) to write

\[
P_{n, \theta^{(n)}, \sigma_n} (\hat{\theta}_i = 0) = \Phi\left(n^{1/2} \eta_{i,n} \left(1 - \theta_{i,n}/(\sigma_n \xi_{i,n})\right)\right) - \Phi\left(n^{1/2} \eta_{i,n} \left(-1 - \theta_{i,n}/(\sigma_n \xi_{i,n})\right)\right).
\]

The first and the second claim follow immediately. For the third claim, assume first that \(\zeta_i = 1 \). Then

\[
P_{n, \theta^{(n)}, \sigma_n} (\hat{\theta}_i = 0) = \Phi\left(n^{1/2} \left(\eta_{i,n} - \zeta_i \theta_{i,n}/(\sigma_n \xi_{i,n})\right)\right) - \Phi\left(n^{1/2} \eta_{i,n} \left(-1 - \theta_{i,n}/(\sigma_n \xi_{i,n})\right)\right) \to \Phi(r_i).
\]

The case \(\zeta_i = -1 \) is handled analogously. \(\blacksquare \)

In a fixed-parameter asymptotic analysis, which in Proposition 7 corresponds to the case \(\theta_{i,n} \equiv \theta_i \) and \(\sigma_n \equiv \sigma \), the limit of the probabilities \(P_{n, \theta, \sigma} (\hat{\theta}_i = 0) \) is always 0 in case \(\theta_i \neq 0 \), and is 1 in case \(\theta_i = 0 \) and consistent tuning (it is \(\Phi(e_i) - \Phi(-e_i) \) in case \(\theta_i = 0 \) and conservative tuning); this does clearly not properly capture the finite-sample behavior of these probabilities.

2 There is no loss of generality here in assuming convergence of \(n^{1/2} \eta_{i,n} \) to a (finite or infinite) limit, in the sense that this convergence can, for any given sequence \(n^{1/2} \eta_{i,n} \), be achieved along suitable subsequences in light of compactness of the extended real line.
The moving-parameter asymptotic analysis underlying Proposition 7 better captures the finite-sample behavior and, e.g., allows for limits other than 0 and 1 even in the case of consistent tuning. In particular, Proposition 7 shows that the convergence of the variable selection/deletion probabilities to their limits in a fixed-parameter asymptotic framework is not uniform in \(\theta_i \), and this non-uniformity is local in the sense that it occurs in an arbitrarily small neighborhood of \(\theta_i = 0 \) (holding the value of \(\sigma > 0 \) fixed).\(^3\) Furthermore, the above proposition entails that under consistent tuning deviations from \(\theta_i = 0 \) of larger order than under conservative tuning go unnoticed asymptotically with probability 1 by the variable selection procedure corresponding to \(\hat{\theta}_i \). For more discussion in a special case (which in its essence also applies here) see Pötscher and Leeb (2009).

Remark 8 The convergence conditions in Proposition 7 on the various quantities involving \(\theta_{i,n} \) and \(\sigma_n \) are essentially cost-free in the sense that given any sequence \((\theta_{i,n}, \sigma_n)\) we can, due to compactness of \(\mathbb{R} \), select from any subsequence \(n_j \) a further subsubsequence \(n_j(l) \) such that along this subsubsequence all relevant quantities such as \(n_{1/2} \theta_{i,n}/(\sigma_n \xi_{i,n}) \) and \(r_{i,n} \) converge in \(\mathbb{R} \). Proposition 7 can then be applied to this subsubsequence, resulting in a characterization of all possible accumulation points of the variable selection/deletion probabilities.

Remark 9 (Speed of convergence in Proposition 7) (i) The speed of convergence in (a) is given by the slower of the rate at which \(n_{1/2} \eta_{i,n} \) approaches \(\epsilon_i \) and \(n_{1/2} \theta_{i,n}/(\sigma_n \xi_{i,n}) \) approaches \(\nu_i \) provided that \(|\nu_i| < \infty \); if \(|\nu_i| = \infty \), the speed of convergence is not slower than

\[
\exp\left(-cn\theta_{i,n}^2/(\sigma_n^2 \xi_{i,n}^2)\right) / \left| n_{1/2} \theta_{i,n}/(\sigma_n \xi_{i,n}) \right|
\]

for any \(c < 1/2 \). [We have here made use of Lemma VII.1.2 in Feller (1957).]

(ii) The speed of convergence in (b1) is not slower than \(\exp\left(-cn\eta_{i,n}^2 / (n_{1/2} \eta_{i,n})\right) \) where \(c \) depends on \(\zeta_i \). The same is true in case (b2) provided \(|\zeta_i| < \infty \); if \(|\zeta_i| = \infty \), the speed of convergence is not slower than \(\exp\left(-cn\theta_{i,n}^2/(\sigma_n^2 \xi_{i,n}^2)\right) / \left| n_{1/2} \theta_{i,n}/(\sigma_n \xi_{i,n}) \right| \) for every \(c < 1/2 \). In case (b3) the speed of convergence is not slower than the speed of convergence of

\[
\max \left(\exp\left(-cn\eta_{i,n}^2 / (n_{1/2} \eta_{i,n})\right), \left| r_{i,n} - r_i \right| \right)
\]

for any \(c < 2 \) in case \(|r_i| < \infty \); in case \(|r_i| = \infty \) it is not slower than

\[
\max \left(\exp\left(-cn\eta_{i,n}^2 / (n_{1/2} \eta_{i,n})\right), \exp\left(-0.5r_{i,n}^2 / |r_{i,n}|\right) \right)
\]

for any \(c < 2 \).

The preceding remark corrects and clarifies the remarks at the end of Section 3 in Pötscher and Leeb (2009) and Section 3.1 in Pötscher and Schneider (2009).

\(^3\) More generally, the non-uniformity arises for \(\theta_i/\sigma \) in a neighborhood of zero.
3.2 Unknown-Variance Case

In the unknown-variance case the finite-sample variable selection/deletion probabilities can be obtained as follows:

\[
P_{n,\theta,\sigma} (\tilde{\theta}_i = 0) = P_{n,\theta,\sigma} (|\tilde{\theta}_{LS,i}| \leq \tilde{\sigma}_{i,n} \eta_{i,n})
\]

\[
= \int_0^\infty P_{n,\theta,\sigma} (|\tilde{\theta}_{LS,i}| \leq \tilde{\sigma}_{i,n} \eta_{i,n} \mid \tilde{\sigma} = s\sigma) \rho_{n-k}(s) ds
\]

\[
= \int_0^\infty P_{n,\theta,\sigma} (\tilde{\theta}_i(s\eta_{i,n}) = 0) \rho_{n-k}(s) ds
\]

\[
= \int_0^\infty \left[\Phi \left(n^{1/2} (\sigma_{i,n} - s\eta_{i,n})\right) - \Phi \left(n^{1/2} (\sigma_{i,n} - s\eta_{i,n})\right)\right] \rho_{n-k}(s) ds
\]

\[
= \frac{T_{n-k,n^{1/2}\eta_{i,n}/(\sigma_{i,n})}'}{n^{1/2} \eta_{i,n}} - \frac{T_{n-k,n^{1/2}\eta_{i,n}/(\sigma_{i,n})}'}{-n^{1/2} \eta_{i,n}}.
\]

Here we have used (4), and independence of \(\sigma\) and \(\tilde{\theta}_{LS,i}\) allowed us to replace \(\tilde{\sigma}\) by \(s\sigma\) in the relevant formulae, cf. Leeb and Pötscher (2003, p. 110). In the above \(n^{1/2}\) times the square root of a chi-square distributed random variable with \(n-k\) degrees of freedom. It will turn out to be convenient to set \(\rho_{n-k}(s) = 0\) for \(s < 0\), making \(\rho_{n-k}\) a bounded continuous function on \(\mathbb{R}\).

We now have the following fixed-parameter asymptotic result for the variable selection/deletion probabilities in the unknown-variance case that perfectly parallels the corresponding result in the known-variance case, i.e., Proposition 3:

Proposition 10 For every \(i \geq 1\) satisfying \(i \leq k = k(n)\) for large enough \(n\) we have:

(a) A necessary and sufficient condition for \(P_{n,\theta,\sigma} (\tilde{\theta}_i = 0) \to 0\) as \(n \to \infty\) for all \(\theta\) satisfying \(\theta_i \neq 0\) (\(\theta_i\) not depending on \(n\)) is \(\xi_{i,n} \eta_{i,n} \to 0\).

(b) A necessary and sufficient condition for \(P_{n,\theta,\sigma} (\tilde{\theta}_i = 0) \to 1\) as \(n \to \infty\) for all \(\theta\) satisfying \(\theta_i = 0\) is \(n^{1/2} \eta_{i,n} \to \infty\).

(c) A necessary and sufficient condition for \(P_{n,\theta,\sigma} (\tilde{\theta}_i = 0) - c_{i,n} \to 0\) as \(n \to \infty\) for all \(\theta\) satisfying \(\theta_i = 0\) and with \(c_{i,n} = T_{n-k} (e_i) - T_{n-k} (-e_i)\) satisfying \(\limsup_{n \to \infty} c_{i,n} < 1\) is \(n^{1/2} \eta_{i,n} \to e_i\), \(0 \leq e_i < \infty\).

Proof. We prove Part (b) first. Observe that

\[
P_{n,\theta,\sigma} (\tilde{\theta}_i = 0) = \int_0^\infty \left[\Phi \left(n^{1/2} \eta_{i,n}\right) - \Phi \left(-n^{1/2} \eta_{i,n}\right)\right] \rho_{n-k}(s) ds
\]

\[
= T_{n-k} \left(n^{1/2} \eta_{i,n}\right) - T_{n-k} \left(-n^{1/2} \eta_{i,n}\right).
\]

By a subsequence argument it suffices to prove the result under the assumption that \(n-k = n-k(n)\) converges in \(\mathbb{N} \cup \{\infty\}\). If the limit is finite, then \(n-k(n)\) is eventually constant and the result follows since every \(t\)-distribution has unbounded support. If \(n-k \to \infty\) then

\[
\Phi \left(n^{1/2} \eta_{i,n}\right) - \Phi \left(-n^{1/2} \eta_{i,n}\right) - 2 \|T_{n-k} - \Phi\|_\infty
\]

\[
\leq P_{n,\theta,\sigma} (\tilde{\theta}_i = 0) \leq \Phi \left(n^{1/2} \eta_{i,n}\right) - \Phi \left(-n^{1/2} \eta_{i,n}\right) + 2 \|T_{n-k} - \Phi\|_\infty.
\]
Theorem, the result follows. Part (c) is proved analogously.

Remark 4 also applies to Proposition 10 above.

Proposition 10 shows that the dichotomy regarding conservative tuning and consistent tuning is expressed by the same conditions in the unknown-variance case as in the known-variance case. Furthermore, note that $c_{i,n}$ appearing in Part (c) of the above proposition converges to $c_i = \Phi(e_i) - \Phi(-e_i)$ in the case where $n \to \infty$, the limit thus being the same as in the known-variance case. This is different in case $n - k$ is constant equal to m, say, eventually, the sequence $c_{i,n}$ then being constant equal to $T_m(e_i) - T_m(-e_i)$ eventually. We finally note that Remark 4 also applies to Proposition 10 above.

We next investigate the asymptotic behavior of the variable selection/deletion probabilities under a moving-parameter asymptotic framework. We consider the case where $n - k$ is (eventually) constant and the case where $n - k \to \infty$. There is no essential loss in generality in considering these two cases only, since by compactness of $\mathbb{N} \cup \{\infty\}$ we can always assume (possibly after passing to subsequences) that $n - k$ converges in $\mathbb{N} \cup \{\infty\}$.

Theorem 11 Suppose that for given $i \geq 1$ satisfying $i \leq k = k(n)$ for large enough n we have $\xi_{i,n} \eta_{i,n} \to 0$ and $n^{1/2} \eta_{i,n} \to e_i$ where $0 \leq e_i \leq \infty$.

(a) Assume $e_i < \infty$. Suppose that the true parameters $\theta^{(n)} = (\theta_{1,n}, \ldots, \theta_{k,n}) \in \mathbb{R}^{k_n}$ and $\sigma_n \in (0, \infty)$ satisfy $n^{1/2} \theta_{i,n}/(\sigma_n \xi_{i,n}) \to \nu_i \in \mathbb{R}$.

(a1) If $n - k$ is eventually constant equal to m, say, then

$$
\lim_{n \to \infty} P_{n,\theta^{(n)},\nu_i}(\hat{\theta}_i = \hat{\theta}_i) = \int_0^\infty (\Phi(-\nu_i + se_i) - \Phi(-\nu_i - se_i)) \rho_m(s) ds.
$$

(a2) If $n - k \to \infty$ holds, then

$$
\lim_{n \to \infty} P_{n,\theta^{(n)},\nu_i}(\hat{\theta}_i = \hat{\theta}_i) = \Phi(-\nu_i + e_i) - \Phi(-\nu_i - e_i).
$$

(b) Assume $e_i = \infty$. Suppose that the true parameters $\theta^{(n)} = (\theta_{1,n}, \ldots, \theta_{k,n}) \in \mathbb{R}^{k_n}$ and $\sigma_n \in (0, \infty)$ satisfy $\theta_{i,n}/(\sigma_n \xi_{i,n} \eta_{i,n}) \to \zeta_i \in \mathbb{R}$.

(b1) If $n - k$ is eventually constant equal to m, say, then

$$
\lim_{n \to \infty} P_{n,\theta^{(n)},\sigma_n}(\hat{\theta}_i = \hat{\theta}_i) = \int_0^\infty \rho_m(s) ds = \Pr(\chi^2_m > m\zeta_i^2).
$$

10
Proof. (a) Set \(P_n(s) = P_{n,\theta(s),\sigma_n}(\tilde{\theta}(sn_{i,n}) = 0) \) for \(s > 0 \). By Proposition 7 we have that \(P_n(s) \) converges to \(P(s) \) for all \(s > 0 \), where \(P(s) = \Phi(-\nu_1 + se_1) - \Phi(-\nu_1 - se_1) \) for \(s > 0 \). Since \(P_n(s) \) as well as \(P(s) \) are continuous functions of \(s \), are monotonically nondecreasing in \(s \), and have the property that their limits for \(s \to 0 \) are 0 while the limits for \(s \to \infty \) are 1, it follows from Polya’s Theorem that the convergence is uniform in \(s \). But then

\[
\left| P_{n,\theta(s),\sigma_n}(\tilde{\theta}_i = 0) - \int_0^\infty (\Phi(-\nu_i + se_i) - \Phi(-\nu_i - se_i)) \rho_{n-k}(s)ds \right|
\leq \sup_{s > 0} |P_n(s) - P(s)| \int_0^\infty \rho_{n-k}(s)ds \leq \sup_{s > 0} |P_n(s) - P(s)| \to 0
\]

as \(n \to \infty \). This completes the proof in case \(n-k = m \) eventually; in case \(n-k \to \infty \) observe that \(\int_0^\infty (\Phi(-\nu_i + se_1) - \Phi(-\nu_i - se_1)) \rho_{n-k}(s)ds \) then converges to \(\Phi(-\nu_1 + e_1) - \Phi(-\nu_1 - e_1) \) as the distribution corresponding to \(\rho_{n-k} \) converges weakly to pointmass at \(s = 1 \) and the integrand is bounded and continuous.

(b) Observe that \(P_{n,\theta(s),\sigma_n}(\tilde{\theta}_i(sn_{i,n}) = 0) \) converges to 1 for \(s > |\zeta_i| \) and to 0 for \(s < |\zeta_i| \) by Proposition 7 applied to the estimator \(\tilde{\theta}_i(sn_{i,n}) \). Now (5) and dominated convergence deliver the result in (b1).

Next consider (b2): Suppose first that \(|\zeta_i| < 1 \). Choose \(\varepsilon > 0 \) small enough such that \(|\zeta_i| + \varepsilon < 1 \). Then, recalling that \(P_{n,\theta(s),\sigma_n}(\tilde{\theta}_i(sn_{i,n}) = 0) \) is monotonically nondecreasing in \(s \), eq. (5) gives

\[
P_{n,\theta(s),\sigma_n}(\tilde{\theta}_i = 0) \geq \int_{|\zeta_i|+\varepsilon}^\infty P_{n,\theta(s),\sigma_n}(\tilde{\theta}_i(sn_{i,n}) = 0) \rho_{n-k}(s)ds
\geq P_{n,\theta(s),\sigma_n}(\tilde{\theta}_i(|\zeta_i| + \varepsilon) n_{i,n}) = 0) \int_{|\zeta_i|+\varepsilon}^\infty \rho_{n-k}(s)ds.
\]
Now the integral on the r.h.s. converges to 1 since \(|\zeta_i| + \varepsilon < 1 \), and the probability on the r.h.s. converges to 1 by Proposition 7 applied to the estimator \(\hat{\theta}_i((|\zeta_i| + \varepsilon)\eta_i,n) \). Next assume that \(|\zeta_i| > 1 \). Choose \(\varepsilon > 0 \) small enough such that \(|\zeta_i| - \varepsilon > 1 \) holds. Then from eq. (5) we have

\[
P_{n,\theta^{(n)}_n,\sigma_n}(\hat{\theta}_i = 0) \leq \int_0^{|\zeta_i| - \varepsilon} P_{n,\theta^{(n)}_n,\sigma_n}(\hat{\theta}_i(s\eta_i,n) = 0) \rho_{n-k}(s)ds + \int_{|\zeta_i| - \varepsilon}^\infty \rho_{n-k}(s)ds
\]

\[
\leq P_{n,\theta^{(n)}_n,\sigma_n}(\hat{\theta}_i((|\zeta_i| - \varepsilon)\eta_i,n) = 0) + \int_{|\zeta_i| - \varepsilon}^\infty \rho_{n-k}(s)ds
\]

since \(\int_0^{|\zeta_i| - \varepsilon} \rho_{n-k}(s)ds \) is not larger than 1 and the integrand is monotonically nondecreasing in \(s \). Since \(|\zeta_i| - \varepsilon > 1 \) and \(n-k \to \infty \) the second term on the r.h.s. goes to zero, while the first term goes to zero by Proposition 7 applied to the estimator \(\hat{\theta}_i((|\zeta_i| - \varepsilon)\eta_i,n) \).

Next we prove 3.&4. and assume \(\zeta_i = 1 \) first. Then using eq. (5) and performing the substitution \(s = (2(n-k))^{-1}\frac{1}{2} \) we obtain (recalling that \(\rho_{n-k} \) is zero for negative arguments and using the abbreviations \(r_{i,n} = n^{1/2}(\eta_i,n - \theta_i,n/(\sigma_n\xi_i,n)) \) and \(r_{i,n}^* = n^{1/2}(-\eta_i,n - \theta_i,n/(\sigma_n\xi_i,n)) \))

\[
P_{n,\theta^{(n)}_n,\sigma_n}(\hat{\theta}_i = 0) = \int_{-\infty}^\infty \left[\Phi \left(r_{i,n} + n^{1/2}\eta_i,n (2(n-k))^{-1/2} t \right) - \Phi \left(r_{i,n}^* - n^{1/2}\eta_i,n (2(n-k))^{-1/2} t \right) \right] dt
\]

\[
\times (2(n-k))^{-1/2} \rho_{n-k}((2(n-k))^{-1/2} t + 1)dt
\]

\[
= \int_{-\infty}^\infty \left[\Phi \left(r_{i,n} + n^{1/2}\eta_i,n (2(n-k))^{-1/2} t \right) - \Phi \left(r_{i,n}^* - n^{1/2}\eta_i,n (2(n-k))^{-1/2} t \right) \right] dt
\]

\[
\times \phi(t)dt + o(1).
\]

The indicated term in the above display is \(o(1) \) because the expression in brackets inside the integral is bounded by 1 and by the Lemma in the Appendix. Since \(r_{i,n} \to r_i \) and \(r_{i,n}^* \to -\infty \), the integrand converges to \(\Phi(r_i) \) under 3. and to \(\Phi(r_i + dt) \) under 4. The dominated convergence theorem then completes the proof. The case \(\zeta_i = -1 \) is treated similarly.

It remains to prove 5. Again assume \(\zeta_i = 1 \) first. Define \(r'_{i,n} = 2^{1/2} n^{-1/2} \eta_i,n^{-1} (n-k)^{1/2} r_{i,n} \) and \(r''_{i,n} = 2^{1/2} n^{-1/2} \eta_i,n^{-1} (n-k)^{1/2} r_{i,n} \) and rewrite the above display as

\[
P_{n,\theta^{(n)}_n,\sigma_n}(\hat{\theta}_i = 0) = \int_{-\infty}^\infty \left[\Phi \left(n^{1/2}\eta_i,n (2(n-k))^{-1/2} (r_{i,n} + t) \right) - \Phi \left(n^{1/2}\eta_i,n (2(n-k))^{-1/2} (r_{i,n}^* + t) \right) \right] dt
\]

\[
\times \phi(t)dt + o(1).
\]

Observe that \(r'_{i,n} \to r_i' \) and \(r''_{i,n} \to -\infty \). The expression in brackets inside the integral hence converges to 1 for \(t > -r_{i,n}' \) and to 0 for \(t < -r_{i,n}' \). By dominated convergence the integral converges to \(\int_{-r_{i,n}'}^\infty \phi(t)dt = \Phi(r_i') \). The case \(\zeta_i = -1 \) is treated similarly. ■

Theorem 11 shows, in particular, that also in the unknown-variance case the convergence of the variable selection/deletion probabilities to their limits in a fixed-parameter asymptotic framework is not locally uniform in \(\theta_i \). In the case of conservative tuning the theorem furthermore shows that the limit of the variable selection/deletion probabilities in the unknown-variance case is the same as in the known-variance case if the degrees of freedom \(n-k \) go to infinity (entailing
that the distribution of $\hat{\sigma}/\sigma$ concentrates more and more around 1; if $n-k$ is eventually constant, the limit turns out to be a mixture of the known-variance case limits (with σ replaced by $s\sigma$), the mixture being w.r.t. the distribution of $\hat{\sigma}/\sigma$. [We note that in the somewhat uninteresting case $e_i = 0$ this mixture also reduces to the same limit as in the known-variance case.] While this result is as one would expect, the situation is different and more subtle in the case of consistent tuning: If $n-k \to \infty$ the limits are the same as in the known-variance case if $|\zeta_i| < 1$ or $|\zeta_i| > 1$ holds, namely 1 and 0, respectively. However, in the "boundary" case $|\zeta_i| = 1$ the rate at which $n-k$ diverges to infinity becomes relevant. If the divergence is fast enough in the sense that $n^{1/2} \eta_{i,n}/(n-k)^{1/2} \to 0$, again the same limit as in the known-variance case, namely $\Phi(r_i)$, is obtained; but if $n-k$ diverges to infinity more slowly, a different limit arises (which, e.g., in case 4 of Part (b2) is obtained by averaging $\Phi(r_i + \cdot)$ w.r.t. a suitable distribution). The case where the degrees of freedom $n-k$ is eventually constant looks very much different from the known-variance case and again some averaging w.r.t. the distribution of $\hat{\sigma}/\sigma$ takes place. Note that in this case the limiting variable deletion probabilities are 1 and 0, respectively, only if $\zeta_i = 0$ and $|\zeta_i| = \infty$, respectively, which is in contrast to the known-variance case (and the unknown-variance case with $n-k \to \infty$).

Remark 12: As in the known-variance case, the convergence conditions on the various quantities involving $\theta_{i,n}$ and σ_n in Theorem 11 are essentially cost-free for the same reasons as given in Remark 8. Theorem 11 thus provides a full characterization of all possible accumulation points of the variable selection/deletion probabilities in the unknown-variance case.

As just discussed, in the case of conservative tuning we get the same limiting behavior under moving-parameter asymptotics in the known-variance and in the unknown-variance case along any sequence of parameters precisely if $n-k \to \infty$ or $e_i = 0$ (which in the conservatively tuned case can equivalently be stated as $n^{1/2} \eta_{i,n}/(n-k)^{1/2} \to 0$). In the case of consistent tuning the same coincidence of limits occurs precisely if $n-k \to \infty$ fast enough such that $n^{1/2} \eta_{i,n}/(n-k)^{1/2} \to 0$. This is not accidental but a consequence of the following fact:

Proposition 13: Suppose that for given $i \geq 1$ satisfying $i \leq k = k(n)$ for large enough n we have $n^{1/2} \eta_{i,n}(n-k)^{-1/2} \to 0$ as $n \to \infty$. Then

$$\sup_{\theta \in \mathbb{R}^d} \left| P_{n,\theta,\sigma} \left(\hat{\theta}_i = 0 \right) - P_{n,\theta,\sigma} \left(\tilde{\theta}_i = 0 \right) \right| \to 0 \quad \text{for } n \to \infty.$$

Proof. Observe that

$$\left| P_{n,\theta,\sigma} \left(\hat{\theta}_i = 0 \right) - P_{n,\theta,\sigma} \left(\tilde{\theta}_i = 0 \right) \right| \leq \int_0^{\infty} \left\{ \left| \Phi \left(n^{1/2} \left(-\theta_i/\sigma \xi_{i,n} + \eta_{i,n} \right) \right) - \Phi \left(n^{1/2} \left(-\theta_i/\sigma \xi_{i,n} + s\eta_{i,n} \right) \right) \right| + \left| \Phi \left(n^{1/2} \left(-\theta_i/\sigma \xi_{i,n} - \eta_{i,n} \right) \right) - \Phi \left(n^{1/2} \left(-\theta_i/\sigma \xi_{i,n} - s\eta_{i,n} \right) \right) \right| \right\} \rho_{n-k}(s)ds.$$

By a trivial modification of Lemma 13 in Pötscher and Schneider (2010) we conclude that for every $\varepsilon > 0$ there exists a real number $c = c(\varepsilon) > 0$ such that

$$\int_{|s-1|>(n-k)^{-1/2}c} \rho_{n-k}(s)ds < \varepsilon$$

13
for every $n > k$. Using the fact, that Φ is globally Lipschitz with constant $(2\pi)^{-1/2}$, this gives

$$\sup_{\theta \in \mathbb{R}^k, 0 < \sigma < \infty} \left| P_{n, \theta, \sigma} (\theta_i = 0) - P_{n, \theta, \sigma} (\tilde{\theta}_i = 0) \right|$$

\begin{align*}
\leq & \ 2 \int_{|s - 1| > (n-k)^{-1/2}c} \rho_{n-k}(s) ds \\
& + 2(2\pi)^{-1/2}n^{1/2}\eta_{i,n} \int_{|s - 1| \leq (n-k)^{-1/2}c} |s - 1| \rho_{n-k}(s) ds \\
\leq & \ 2\varepsilon + 2(2\pi)^{-1/2}n^{1/2}\eta_{i,n}(n-k)^{-1/2}c
\end{align*}

which proves the result since ε can be made arbitrarily small. \(\blacksquare\)

We note that Theorem 11 shows that the condition $n^{1/2}\eta_{i,n}(n-k)^{-1/2} \to 0$ in the above proposition cannot be weakened.

4 Consistency, Uniform Consistency, and Minimax Convergence Rate

For purposes of comparison we start with the following obvious proposition, which immediately follows from the observation that $\hat{\theta}_{LS,i}$ is $N(\theta_i, \sigma^2 \xi_{i,n}^2/n)$-distributed.

Proposition 14 For every $i \geq 1$ satisfying $i \leq k = k(n)$ for large enough n we have the following:

(a) $\xi_{i,n}/n^{1/2} \to 0$ is a necessary and sufficient condition for $\hat{\theta}_{LS,i}$ to be consistent for θ_i, the convergence rate being $\xi_{i,n}/n^{1/2}$.

(b) Suppose $\xi_{i,n}/n^{1/2} \to 0$. Then $\hat{\theta}_{LS,i}$ is uniformly consistent for θ_i in the sense that for every $\varepsilon > 0$

$$\lim_{n \to \infty} \sup_{\theta \in \mathbb{R}^k} \sup_{0 < \sigma < \infty} P_{n, \theta, \sigma} \left(\left| \hat{\theta}_{LS,i} - \theta_i \right| > \sigma \varepsilon \right) = 0.$$

In fact, $\hat{\theta}_{LS,i}$ is uniformly $n^{1/2}/\xi_{i,n}$-consistent for θ_i in the sense that for every $\varepsilon > 0$ there exists a real number $M > 0$ such that

$$\sup_{n \in \mathbb{N}} \sup_{\theta \in \mathbb{R}^k} \sup_{0 < \sigma < \infty} P_{n, \theta, \sigma} \left(\left| n^{1/2}/\xi_{i,n} \right| \left| \hat{\theta}_{LS,i} - \theta_i \right| > \sigma M \right) < \varepsilon.$$

[Note that the probabilities in the displays above in fact neither depend on θ nor σ. In particular, the l.h.s. of the above displays equal $2\Phi(-\varepsilon n^{1/2}/\xi_{i,n})$ and $2\Phi(-M)$, respectively.]

The corresponding result for the estimators $\hat{\theta}_{H,i}$, $\hat{\theta}_{S,i}$, or $\hat{\theta}_{AS,i}$ and their infeasible counterparts $\hat{\theta}_{H,i}$, $\hat{\theta}_{S,i}$, or $\hat{\theta}_{AS,i}$ is now as follows.

Theorem 15 Let $\hat{\theta}_i$ stand for any of the estimators $\hat{\theta}_{H,i}$, $\hat{\theta}_{S,i}$, or $\hat{\theta}_{AS,i}$. Then for every $i \geq 1$ satisfying $i \leq k = k(n)$ for large enough n we have the following:

(a) $\hat{\theta}_i$ is consistent for θ_i if and only if $\xi_{i,n}\eta_{i,n} \to 0$ and $\xi_{i,n}/n^{1/2} \to 0$.

(b) Suppose $\xi_{i,n}\eta_{i,n} \to 0$ and $\xi_{i,n}/n^{1/2} \to 0$. Then $\hat{\theta}_i$ is uniformly consistent in the sense that for every $\varepsilon > 0$

$$\lim_{n \to \infty} \sup_{\theta \in \mathbb{R}^k} \sup_{0 < \sigma < \infty} P_{n, \theta, \sigma} \left(\left| \hat{\theta}_i - \theta_i \right| > \sigma \varepsilon \right) = 0.$$
Furthermore, $\hat{\theta}_i$ is uniformly $a_{i,n}$-consistent with $a_{i,n} = \min \left(n^{1/2}/\xi_{i,n}, (\xi_{i,n}^{-1})_{i,n} \right)$ in the sense that for every $\varepsilon > 0$ there exists a real number $M > 0$ such that

$$\sup_{n \in \mathbb{N}} \sup_{\theta \in \mathbb{R}^k} \sup_{0 < \sigma < \infty} P_{n,\theta,\sigma} \left(a_{i,n} \left| \hat{\theta}_i - \theta \right| > \sigma M \right) < \varepsilon.$$

(c) Suppose $\xi_{i,n}^{-1} \eta_{i,n} \to 0$ and $\xi_{i,n}^{-1/2} \to 0$ and $b_{i,n} \geq 0$. If for every $\varepsilon > 0$ there exists a real number $M > 0$ such that

$$\limsup_{n \to \infty} \sup_{\theta \in \mathbb{R}^k} \sup_{0 < \sigma < \infty} P_{n,\theta,\sigma} \left(b_{i,n} \left| \hat{\theta}_i - \theta \right| > \sigma M \right) < \varepsilon$$

(7)

holds, then $b_{i,n} = O(a_{i,n})$ necessarily holds.

(d) Let $\hat{\theta}_i$ stand for any of the estimators $\hat{\theta}_{H,i}$, $\hat{\theta}_{S,i}$, or $\hat{\theta}_{AS,i}$. Then the results in (a)-(c) also hold for $\hat{\theta}_i$.

Proof. (a) Observe that

$$\left| \hat{\theta}_i - \hat{\theta}_{LS,i} \right| \leq \hat{\sigma} \xi_{i,n} \eta_{i,n}$$

(8)

holds for any of the estimators. Hence, consistency of $\hat{\theta}_i$ under $\xi_{i,n} \eta_{i,n} \to 0$ and $\xi_{i,n}^{-1/2} \to 0$ follows immediately from Proposition 14(a) since the distributions of $\hat{\sigma}/\sigma$ are tight. Conversely, suppose $\hat{\theta}_i$ is consistent. Then clearly $P_{n,\theta,\sigma} \left(\hat{\theta}_i = 0 \right) \to 0$ whenever $\theta_i \neq 0$ must hold, which implies $\xi_{i,n} \eta_{i,n} \to 0$ by Proposition 10(a). This then entails consistency of $\hat{\theta}_{LS,i}$ by (8) and tightness of the distributions of $\hat{\sigma}/\sigma$; this in turn implies $\xi_{i,n}^{-1/2} \to 0$ by Proposition 14(a).

(b) Since $a_{i,n} \to \infty$, it suffices to prove the second claim in (b). Now for every real $M > 0$ we have

$$P_{n,\theta,\sigma} \left(a_{i,n} \left| \hat{\theta}_{H,i} - \theta_i \right| > \sigma M \right) = P_{n,\theta,\sigma} \left(a_{i,n} \left| \hat{\theta}_{LS,i} - \theta_i \right| > \sigma M, \left| \hat{\theta}_{LS,i} \right| > \hat{\sigma} \xi_{i,n} \eta_{i,n} \right) + 1 \left(a_{i,n} \left| \theta_i \right| > \sigma M \right) P_{n,\theta,\sigma} \left(\left| \hat{\theta}_{LS,i} \right| \leq \hat{\sigma} \xi_{i,n} \eta_{i,n} \right) \leq P_{n,\theta,\sigma} \left(a_{i,n} \left| \hat{\theta}_{LS,i} - \theta_i \right| > \sigma M \right) + 1 \left(a_{i,n} \left| \theta_i \right| > \sigma M \right) P_{n,\theta,\sigma} \left(\left| \hat{\theta}_{LS,i} \right| \leq \hat{\sigma} \xi_{i,n} \eta_{i,n} \right).$$

This gives

$$\sup_{n \in \mathbb{N}} \sup_{\theta \in \mathbb{R}^k} \sup_{0 < \sigma < \infty} P_{n,\theta,\sigma} \left(a_{i,n} \left| \hat{\theta}_{H,i} - \theta_i \right| > \sigma M \right) \leq \sup_{n \in \mathbb{N}} \sup_{\theta \in \mathbb{R}^k} \sup_{0 < \sigma < \infty} P_{n,\theta,\sigma} \left(a_{i,n} \left| \hat{\theta}_{LS,i} - \theta_i \right| > \sigma M \right) + \sup_{n \in \mathbb{N}} \sup_{\theta \in \mathbb{R}^k} \sup_{0 < \sigma < \infty} P_{n,\theta,\sigma} \left(\left| \hat{\theta}_{LS,i} \right| \leq \hat{\sigma} \xi_{i,n} \eta_{i,n} \right)$$

where the first term on the r.h.s. can be made arbitrarily small in view of Proposition 14(b) by choosing M large enough. The second term on the r.h.s. can be written as (cf. (5))

$$\sup_{n \in \mathbb{N}} \sup_{\theta \in \mathbb{R}^k} \frac{1}{\sigma M} \int_0^\infty P_{n,\theta,\sigma} \left(\left| \hat{\theta}_{LS,i} \right| \leq \sigma \xi_{i,n} \eta_{i,n} \right) \rho_{n-k}(s) ds$$

$$\leq \sup_{n \in \mathbb{N}} \sup_{\theta \in \mathbb{R}^k} \int_0^\infty P_{n,\theta,\sigma} \left(\left| \hat{\theta}_{LS,i} \right| \leq \sigma \xi_{i,n} \eta_{i,n} \right) \rho_{n-k}(s) ds.$$
Choose \(c^*(\varepsilon/2)\) as in the proof of Proposition 10. Using continuity of \(\Phi\) and the fact that the probability appearing on the r.h.s. above is monotonically increasing as \(|\theta_i|\) approaches \(\sigma M/a_{i,n}\) from above, this can be further bounded by

\[
\leq \sup_{n \in \mathbb{N}} \int_0^\infty \Phi \left(sn^{1/2} \eta_{i,n} - Ma_{i,n}^{-1} n^{1/2} / \xi_{i,n} \right) \rho_{n-k}(s) ds
\]

\[
\leq \varepsilon/2 + \sup_{n \in \mathbb{N}} \int_0^{c^*(\varepsilon/2)} \Phi \left(sn^{1/2} \eta_{i,n} - Ma_{i,n}^{-1} n^{1/2} / \xi_{i,n} \right) \rho_{n-k}(s) ds
\]

\[
\leq \varepsilon/2 + \sup_{n \in \mathbb{N}} \Phi \left(n^{1/2} \xi_{i,n}^{-1} a_{i,n}^{-1} \left(c^*(\varepsilon/2) \xi_{i,n} \eta_{i,n} a_{i,n} - M \right) \right) \leq \varepsilon/2 + \Phi \left(c^*(\varepsilon/2) - M \right),
\]

the last inequality holding for \(M > c^*(\varepsilon/2)\) and since \(n^{1/2} \xi_{i,n}^{-1} a_{i,n}^{-1} \geq 1\) and \(\xi_{i,n} \eta_{i,n} a_{i,n} \leq 1\). Choosing \(M\) sufficiently large (depending on \(\varepsilon\)) completes the proof for \(\tilde{\theta}_{H,i}\). Next observe that

\[
a_{i,n} \left| \tilde{\theta}_{H,i} - \tilde{\theta}_{S,i} \right| \leq \tilde{\sigma} \min \left(n^{1/2} \eta_{i,n}, 1 \right) \leq \tilde{\sigma}
\]

and similarly \(a_{i,n} \left| \tilde{\theta}_{H,i} - \tilde{\theta}_{AS,i} \right| \leq \tilde{\sigma} \) hold. Since the set of distributions corresponding to \(\rho_{n-k}\) is tight as already noted, this proves (b) then also for \(\tilde{\theta}_{S,i}\) and \(\tilde{\theta}_{AS,i}\).

(c) By a subsequence argument we can reduce the argument to the case where \(n^{1/2} \eta_{i,n} \to e_i \in \mathbb{R}\) and \(n - k\) converges in \(\mathbb{N} \cup \{\infty\}\). Suppose first that \(e_i = \infty\): Observe that then \(a_{i,n} = (\xi_{i,n} \eta_{i,n})^{-1}\) eventually. Choose \(\theta_{i,n}\) and \(\sigma_n\) such that \(\theta_{i,n} / (\sigma_n \xi_{i,n} \eta_{i,n}) = \zeta_i\), where \(\zeta_i\) does not depend on \(n\) and \(0 < |\zeta_i| < 1\) holds, and set the other coordinates of \(\theta^{(n)}\) to arbitrary values (e.g., equal to zero). Observe that there exists a constant \(\delta > 0\) such that

\[
\liminf_{n \to 0} P_{n,\theta^{(n)},\sigma_n} \left(\tilde{\theta}_i = 0 \right) > \delta
\]

holds: If \(n - k\) converges to a finite limit, i.e., is eventually constant, the claim follows from Theorem 11(b1); if \(n - k \to \infty\), then use Theorem 11(b2). By (7) we have for \(\varepsilon = \delta\) and a suitable \(M\) that

\[
\delta > P_{n,\theta^{(n)},\sigma_n} \left(b_{i,n} \left| \tilde{\theta}_i - \theta_{i,n} \right| > \sigma_n M \right) \geq P_{n,\theta^{(n)},\sigma_n} \left(b_{i,n} \left| \tilde{\theta}_i - \theta_{i,n} \right| > \sigma_n M, \tilde{\theta}_i = 0 \right)
\]

\[
= P_{n,\theta^{(n)},\sigma_n} \left(\left| b_{i,n} \theta_{i,n} \right| / \sigma_n > M, \tilde{\theta}_i = 0 \right)
\]

\[
= 1 \left(\left| b_{i,n} \theta_{i,n} \right| / \sigma_n > M \right) P_{n,\theta^{(n)},\sigma_n} \left(\tilde{\theta}_i = 0 \right) > \delta \left(\left| b_{i,n} \theta_{i,n} \right| / \sigma_n > M \right)
\]

for all \(n\) sufficiently large. But this is only possible if \(b_{i,n} \xi_{i,n} \eta_{i,n} \leq M / |\zeta_i| < \infty\) holds eventually, implying that \(b_{i,n} = O(a_{i,n})\). Next consider the case where \(0 < e_i < \infty\): Observe that then \(a_{i,n}\) is of the same order as \(n^{1/2} / \xi_{i,n}\). Then define \(\theta_{i,n}\) and \(\sigma_n\) such that \(n^{1/2} \theta_{i,n} / (\sigma_n \xi_{i,n}) = \nu_i\), where \(\nu_i\) does not depend on \(n\) and \(0 < |\nu_i| < \infty\) holds, and set the other coordinates of \(\theta^{(n)}\) to arbitrary values (e.g., equal to zero). Observe that then (9) also holds, in view of Theorem 11(a1) in case \(n - k\) is eventually constant, and in view of Theorem 11(a2) in case \(n - k \to \infty\). The rest of the proof is then similar as before. It remains to consider the case \(e_i = 0\): It follows from (8), the assumptions on \(\xi_{i,n}\) and \(\eta_{i,n}\), from \(e_i = 0\), and from the observation that \(\tilde{\theta}_{L,S,i}\) is \(N(\theta_i, \sigma^2 \xi_{i,n}^2 / n)\)-distributed, that \(n^{1/2} \xi_{i,n}^{-1} \tilde{\theta}_{L,S,i} / (\theta_i - \tilde{\theta}_i)\) converges in distribution to a standard normal distribution for each fixed \(\theta_i\) and \(\sigma\). Hence, stochastic boundedness of \(\sigma^{-1} b_{i,n} \left| \tilde{\theta}_i - \theta_i \right|\) for each \(\theta_i\) (and a fortiori (7)) necessarily implies that \(b_{i,n} = O(n^{1/2} \xi_{i,n}^{-1}) = O(a_{i,n})\).
(d) The proof for $\hat{\theta}_i$ is similar and in fact simpler: note that now $|\hat{\theta}_i - \hat{\theta}_{LS,i}| \leq \sigma \xi_{i,n} \eta_{i,n}$ holds and that in the proof of (b) the integration over s can simply be replaced by evaluation at $s = 1$. For (c) one uses Proposition 7 instead of Theorem 11. ■

Remark 16 If $n^{1/2} \eta_{i,n} \to e_i = 0$, then $\hat{\theta}_i$ is asymptotically equivalent to $\hat{\theta}_{LS,i}$ in the sense that for every $\varepsilon > 0$

$$\lim_{n \to \infty} \sup_{\theta \in \mathbb{R}^k} \sup_{0 < \sigma < \infty} P_{n,\theta,\sigma} \left(\left(n^{1/2}/\xi_{i,n} \right) |\hat{\theta}_i - \hat{\theta}_{LS,i}| > \sigma \varepsilon \right) = 0.$$

A similar statement holds for $\tilde{\theta}_i$. For $\tilde{\theta}_i$ this follows immediately from (8) and the fact that the family of distributions corresponding to p_{n-k} is tight; for $\hat{\theta}_i$ this follows from the relation $|\hat{\theta}_i - \hat{\theta}_{LS,i}| \leq \sigma \xi_{i,n} \eta_{i,n}$ noted above.

Remark 17 (i) A variation of the proof of Theorem 15 shows that in case of consistent tuning for the infeasible estimators additionally also

$$\lim_{n \to \infty} \sup_{\theta \in \mathbb{R}^k} \sup_{0 < \sigma < \infty} P_{n,\theta,\sigma} \left(a_{i,n} |\hat{\theta}_i - \theta_i| > \sigma M \right) = 0$$

holds for every $M > 1$, and that for the feasible estimators

$$\lim_{n \to \infty} \sup_{\theta \in \mathbb{R}^k} \sup_{0 < \sigma < \infty} P_{n,\theta,\sigma} \left(a_{i,n} |\tilde{\theta}_i - \theta_i| > \sigma M \right) = 0$$

holds for every $M > 1$ provided that $n - k \to \infty$.

(ii) Inspection of the proof shows that the conclusion of Theorem 15(c) continues to hold, if the supremum over \mathbb{R}^k is replaced by the supremum over an arbitrarily small neighborhood of 0 and σ is held fixed at an arbitrary positive value.

(iii) If $\varepsilon \sigma$ and σM are replaced by ε and M, respectively, in the displays in Proposition 14 and Theorem 15 as well as in Remark 16, the resulting statements remain true provided the suprema over $0 < \sigma < \infty$ are replaced by suprema over $0 < \sigma \leq c$, where $c > 0$ is an arbitrary real number.

The preceding theorem shows that the thresholding estimators $\tilde{\theta}_{H,i}$, $\tilde{\theta}_{S,i}$, or $\tilde{\theta}_{AS,i}$ (as well as their infeasible versions) are uniformly $a_{i,n}$-consistent and that this rate is sharp and cannot be improved. In particular, if the tuning is conservative these estimators are uniformly $n^{1/2}/\xi_{i,n}$-consistent, which is the usual rate one expects to find in a linear regression model as considered here. However, if consistent tuning is employed, the preceding theorem shows that these thresholding estimators are then only uniformly $(\xi_{i,n} \eta_{i,n})^{-1}$-consistent, i.e., have a slower minimax convergence rate than the least-squares (maximum likelihood) estimator (or the conservatively tuned thresholding estimators for that matter). For a discussion of the pointwise convergence rate see Section 6.4.

5 Finite-Sample Distributions

5.1 Known-Variance Case

We next present the finite-sample distributions of the infeasible thresholding estimators. It will turn out to be convenient to give the results for scaled versions, where the scaling factor $a_{i,n}$ is
Proposition 18 The cdf \(H_{i,H,n,\theta,\sigma}^i := H_{i,H,n,\theta,\sigma}^i \) of \(\sigma_i^2 \alpha_{i,n}(\theta_{H,i} - \theta_i) \) is given by
\[
H_{i,H,n,\theta,\sigma}^i(x) = \Phi \left(n^{1/2}x / (\alpha_{i,n} \xi_{i,n}) \right) \mathbf{1} \left(|\alpha_{i,n} x + \theta_i / \sigma| > \xi_{i,n} \eta_{i,n} \right) \\
+ \Phi \left(n^{1/2} \left(-\theta_i / (\sigma \xi_{i,n}) + \eta_{i,n} \right) \right) \mathbf{1} \left(0 \leq \alpha_{i,n} x + \theta_i / \sigma \leq \xi_{i,n} \eta_{i,n} \right) \\
+ \Phi \left(n^{1/2} \left(-\theta_i / (\sigma \xi_{i,n}) - \eta_{i,n} \right) \right) \mathbf{1} \left(-\xi_{i,n} \eta_{i,n} \leq \alpha_{i,n} x + \theta_i / \sigma < 0 \right),
\]
or equivalently,
\[
dH_{i,H,n,\theta,\sigma}^i(x) = \left\{ \Phi \left(n^{1/2} \left(-\theta_i / (\sigma \xi_{i,n}) + \eta_{i,n} \right) \right) - \Phi \left(n^{1/2} \left(-\theta_i / (\sigma \xi_{i,n}) - \eta_{i,n} \right) \right) \right\} d\delta_{\alpha_{i,n} \theta_i / \sigma}(x) \\
+ \left\{ n^{1/2} / (\alpha_{i,n} \xi_{i,n}) \right\} \Phi \left(n^{1/2} \left(-\theta_i / (\sigma \xi_{i,n}) - \eta_{i,n} \right) \right) \mathbf{1} \left(\alpha_{i,n} x + \theta_i / \sigma > \xi_{i,n} \eta_{i,n} \right) dx,
\]
where \(\delta_z \) denotes pointmass at \(z \).

Proof. Observe that \(\hat{\theta}_{H,i} / (\sigma \xi_{i,n}) = \left(\hat{\theta}_{LS,i} / (\sigma \xi_{i,n}) \right) \mathbf{1} \left(|\hat{\theta}_{LS,i} / (\sigma \xi_{i,n})| > \eta_{i,n} \right) \) and that \(\hat{\theta}_{LS,i} / (\sigma \xi_{i,n}) \) is \(N \left(\theta_i / (\sigma \xi_{i,n}), 1/\sigma \right) \). Furthermore, we have
\[
H_{i,H,n,\theta,\sigma}^i(x) = P_{n,\theta,\sigma} \left(\sigma_i^2 \alpha_{i,n}(\hat{\theta}_{H,i} - \theta_i) \leq x \right) \\
= P_{n,\theta,\sigma} \left(n^{1/2} \left(\hat{\theta}_{H,i} - \theta_i \right) / (\sigma \xi_{i,n}) \leq n^{1/2} \alpha_{i,n}^{-1} \xi_{i,n} x \right).
\]
Identifying \(\hat{\theta}_{LS,i} / (\sigma \xi_{i,n}) \) and \(\theta_i / (\sigma \xi_{i,n}) \) with \(\bar{y} \) and \(\theta \) in Pötscher and Leeb (2009) and making use of eq. (4) in that reference immediately gives the result for \(dH_{i,H,n,\theta,\sigma}^i \). The result for \(H_{i,H,n,\theta,\sigma}^i \) then follows from elementary calculations.

Proposition 19 The cdf \(H_{i,S,n,\theta,\sigma}^i := H_{i,S,n,\theta,\sigma}^i \) of \(\sigma_i^2 \alpha_{i,n}(\hat{\theta}_{S,i} - \theta_i) \) is given by
\[
H_{i,S,n,\theta,\sigma}^i(x) = \Phi \left(n^{1/2} x / (\alpha_{i,n} \xi_{i,n}) + n^{1/2} \eta_{i,n} \right) \mathbf{1} \left(\alpha_{i,n}^{-1} x + \theta_i / \sigma \geq 0 \right) \\
+ \Phi \left(n^{1/2} x / (\alpha_{i,n} \xi_{i,n}) - n^{1/2} \eta_{i,n} \right) \mathbf{1} \left(\alpha_{i,n}^{-1} x + \theta_i / \sigma < 0 \right),
\]
or equivalently,
\[
dH_{i,S,n,\theta,\sigma}^i(x) = \left\{ \Phi \left(n^{1/2} \left(-\theta_i / (\sigma \xi_{i,n}) + \eta_{i,n} \right) \right) - \Phi \left(n^{1/2} \left(-\theta_i / (\sigma \xi_{i,n}) - \eta_{i,n} \right) \right) \right\} d\delta_{\alpha_{i,n} \theta_i / \sigma}(x) \\
+ \left\{ \left(n^{1/2} / (\alpha_{i,n} \xi_{i,n}) \right) \Phi \left(n^{1/2} \left(-\theta_i / (\sigma \xi_{i,n}) - \eta_{i,n} \right) \right) \mathbf{1} \left(\alpha_{i,n}^{-1} x + \theta_i / \sigma > 0 \right) \right\} dx \\
+ \left\{ \left(n^{1/2} / (\alpha_{i,n} \xi_{i,n}) \right) \Phi \left(n^{1/2} \left(-\theta_i / (\sigma \xi_{i,n}) + \eta_{i,n} \right) \right) \mathbf{1} \left(\alpha_{i,n}^{-1} x + \theta_i / \sigma < 0 \right) \right\} dx.
\]
Proof. Identifying \(\hat{\theta}_{LS,i} / (\sigma \xi_{i,n}) \) and \(\theta_i / (\sigma \xi_{i,n}) \) with \(\bar{y} \) and \(\theta \) in Pötscher and Leeb (2009) and making use of eq. (5) in that reference immediately gives the result for \(dH_{i,S,n,\theta,\sigma}^i \). The result for \(H_{i,S,n,\theta,\sigma}^i \) then follows from elementary calculations.
Proposition 20 The cdf \(H^i_{AS,n,\theta,\sigma} := H^i_{AS,n,\theta,\sigma} \) of \(\sigma^{-1} \alpha_{i,n}(\hat{\theta}_{AS,i} - \theta_i) \) is given by

\[
H^i_{AS,n,\theta,\sigma}(x) = \Phi \left(z_{n,\theta,\sigma}^{(2)}(x, \eta_{i,n}) \right) \mathbf{1} \left((\alpha_{i,n}^{-1} x + \theta_i/\sigma) \geq 0 \right) + \Phi \left(z_{n,\theta,\sigma}^{(1)}(x, \eta_{i,n}) \right) \mathbf{1} \left((\alpha_{i,n}^{-1} x + \theta_i/\sigma) < 0 \right),
\]

where \(z_{n,\theta,\sigma}^{(1)}(x, y) \leq z_{n,\theta,\sigma}^{(2)}(x, y) \) are defined by

\[
0.5 n^{1/2} \xi_{i,n}^{-1}(\alpha_{i,n}^{-1} x - \theta_i/\sigma) = n^{1/2} \sqrt{\left(0.5 \xi_{i,n}^{-1}(\alpha_{i,n}^{-1} x + \theta_i/\sigma) \right)^2 + y^2}.
\]

Or, equivalently,

\[
dH^i_{AS,n,\theta,\sigma}(x) = \left\{ \Phi \left(n^{1/2} \left(-\theta_i/\sigma \xi_{i,n} + \eta_{i,n} \right) \right) - \Phi \left(n^{1/2} \left(-\theta_i/\sigma \xi_{i,n} + \eta_{i,n} \right) \right) \right\} d\delta_{-\alpha_{i,n}/\sigma}(x)
\]

\[
+ (0.5 n^{1/2}/(\alpha_{i,n} \xi_{i,n}^{-1})) \left\{ \phi \left(z_{n,\theta,\sigma}^{(2)}(x, \eta_{i,n}) \right) (1 + n_{t,\theta,\sigma}(x, \eta_{i,n})) \mathbf{1} \left((\alpha_{i,n}^{-1} x + \theta_i/\sigma) > 0 \right) \right.
\]

\[
+ \phi \left(z_{n,\theta,\sigma}^{(1)}(x, \eta_{i,n}) \right) (1 - n_{t,\theta,\sigma}(x, \eta_{i,n})) \mathbf{1} \left((\alpha_{i,n}^{-1} x + \theta_i/\sigma) < 0 \right) \} \text{,}
\]

where \(t_{n,\theta,\sigma}(x, y) = 0.5 \xi_{i,n}^{-1}(\alpha_{i,n}^{-1} x + \theta_i/\sigma) / \left((0.5 \xi_{i,n}^{-1}(\alpha_{i,n}^{-1} x + \theta_i/\sigma))^2 + y^2 \right)^{1/2} \).

Proof. Identifying \(\hat{\theta}_{LS,i}/(\sigma \xi_{i,n}) \) and \(\theta_i/(\sigma \xi_{i,n}) \) with \(\bar{y} \) and \(\theta \) in Pötscher and Schneider (2009) and making use of eqs. (9)-(11) in that reference immediately gives the result. ■

The finite-sample distributions of \(\hat{\theta}_{H,i}, \hat{\theta}_{S,i}, \) and \(\hat{\theta}_{AS,i} \) are seen to be non-normal. They are made up of two components, one being a multiple of pointmass at \(-\alpha_{i,n} \theta_i/\sigma \) and the other one being absolutely continuous with a density that is generally bimodal. For more discussion and some graphical illustrations in a special case see Pötscher and Leeb (2009) and Pötscher and Schneider (2009).

Remark 21 In the case where \(X'X \) is diagonal, the estimators of components \(\theta_i \) and \(\theta_j \) for \(i \neq j \) are independent and hence the above results immediately allow one to determine the finite-sample distributions of the entire vectors \(\hat{\theta}_H, \hat{\theta}_S, \) and \(\hat{\theta}_{AS} \). In particular, this provides the finite-sample distribution of the Lasso \(\theta_L \) and the adaptive Lasso \(\theta_{AS} \) in the diagonal case (cf. Remarks 1 and 2).

5.2 Unknown-Variance Case

The finite-sample distributions of \(\hat{\theta}_{H,i}, \hat{\theta}_{S,i}, \hat{\theta}_{AS,i} \) are obtained next. The same remark on the scaling as in the previous section applies here.

Proposition 22 The cdf \(H^{\infty}_{H,n,\theta,\sigma} := H^{\infty}_{H,n,\theta,\sigma} \) of \(\sigma^{-1} \alpha_{i,n}(\hat{\theta}_{H,i} - \theta_i) \) is given by

\[
H^{\infty}_{H,n,\theta,\sigma}(x) = \Phi \left(n^{1/2}/(\alpha_{i,n} \xi_{i,n}) \right) \int_0^\infty \mathbf{1} \left((\alpha_{i,n}^{-1} x + \theta_i/\sigma) > \xi_{i,n} s n_{i,n} \right) \rho_{n-k}(s) ds
\]

\[
+ \int_0^\infty \Phi \left(n^{1/2} \left(-\theta_i/\sigma \xi_{i,n} + s n_{i,n} \right) \right) \mathbf{1} \left(0 \leq \alpha_{i,n}^{-1} x + \theta_i/\sigma < \xi_{i,n} s n_{i,n} \right) \rho_{n-k}(s) ds
\]

\[
+ \int_0^\infty \Phi \left(n^{1/2} \left(-\theta_i/\sigma \xi_{i,n} - s n_{i,n} \right) \right) \mathbf{1} \left(-\xi_{i,n} s n_{i,n} < \alpha_{i,n}^{-1} x + \theta_i/\sigma < 0 \right) \rho_{n-k}(s) ds,
\]

19
Or equivalently,

\[dH_{H,n,\theta,\alpha}^\circ(x) = \int_0^\infty \left\{ \Phi \left(n^{1/2} \left(-\theta_i/(\sigma_i \xi_{i,n}) + s \eta_{i,n} \right) \right)
- \Phi \left(n^{1/2} \left(-\theta_i/(\sigma_i \xi_{i,n}) - s \eta_{i,n} \right) \right) \right\} \rho_{n-k}(s) ds d\delta_{\alpha_i,\theta_i}(x) + n^{1/2} \alpha^{-1}_{i,n} \xi_{i,n}^{-1} \]

\[\times \phi \left(n^{1/2} x/(\alpha_i \xi_{i,n}) \right) \int_0^\infty 1 \left(\alpha^{-1}_{i,n} x + \theta_i/\sigma \right) > \xi_{i,n} s \eta_{i,n} \right) \rho_{n-k}(s) ds d\delta_{\alpha_i}(x). \]

Proof. We have

\[H_{H,n,\theta,\alpha}^\circ(x) = \int_0^\infty P_{n,\theta,\sigma} \left(\sigma^{-1} \alpha_i, \bar{\theta}_{H,i} - \theta_i \right) \leq x \mid \hat{\theta} = s \sigma \right) \rho_{n-k}(s) ds \\
= \int_0^\infty H_{H,sn_{i,n},\theta,\alpha}(x) \rho_{n-k}(s) ds, \]

where we have used independence of \(\hat{\sigma} \) and \(\bar{\theta}_{LS,i} \) allowing us to replace \(\hat{\sigma} \) by \(s \sigma \) in the relevant formulae, cf. Leeb and Pötscher (2003, p. 110). Substituting (10), with \(\eta_{i,n} \) replaced by \(s \eta_{i,n} \), into the above equation gives (15). Representing \(H_{H,sn_{i,n},\theta,\alpha}(x) \) as an integral of \(dH_{H,sn_{i,n},\theta,\alpha}^\circ(x) \) given in (11) and applying Fubini’s theorem then gives (16). \(\blacksquare \)

Proposition 23 The cdf \(H_{S,n,\theta,\alpha}^\circ := H_{S,sn_{i,n},\theta,\alpha}^\circ \) of \(\sigma^{-1} \alpha_i, \bar{\theta}_{S,i} - \theta_i \) is given by

\[H_{S,n,\theta,\alpha}(x) = \int_0^\infty \Phi \left(n^{1/2} x/(\alpha_i \xi_{i,n}) + n^{1/2} s \eta_{i,n} \right) \rho_{n-k}(s) ds \left(\alpha^{-1}_{i,n} x + \theta_i/\sigma \geq 0 \right) \\
+ \int_0^\infty \Phi \left(n^{1/2} x/(\alpha_i \xi_{i,n}) - n^{1/2} s \eta_{i,n} \right) \rho_{n-k}(s) ds \left(\alpha^{-1}_{i,n} x + \theta_i/\sigma < 0 \right) \\
= T_{n-k,-n^{1/2} x/(\alpha_i \xi_{i,n})} \left(n^{1/2} s \eta_{i,n} \right) 1 \left(\alpha^{-1}_{i,n} x + \theta_i/\sigma \geq 0 \right) \\
+ T_{n-k,-n^{1/2} x/(\alpha_i \xi_{i,n})} \left(-n^{1/2} s \eta_{i,n} \right) 1 \left(\alpha^{-1}_{i,n} x + \theta_i/\sigma < 0 \right). \] (17)

Or, equivalently,

\[dH_{S,n,\theta,\alpha}^\circ(x) = \int_0^\infty \left\{ \Phi \left(n^{1/2} \left(-\theta_i/(\sigma_i \xi_{i,n}) + s \eta_{i,n} \right) \right)
- \Phi \left(n^{1/2} \left(-\theta_i/(\sigma_i \xi_{i,n}) - s \eta_{i,n} \right) \right) \right\} \rho_{n-k}(s) ds d\delta_{\alpha_i,\theta_i}(x) + n^{1/2} \alpha^{-1}_{i,n} \xi_{i,n}^{-1} \]

\[\times \left\{ \int_0^\infty \phi \left(n^{1/2} x/(\alpha_i \xi_{i,n}) + n^{1/2} s \eta_{i,n} \right) \rho_{n-k}(s) ds \left(\alpha^{-1}_{i,n} x + \theta_i/\sigma \geq 0 \right) \\
+ \int_0^\infty \phi \left(n^{1/2} x/(\alpha_i \xi_{i,n}) - n^{1/2} s \eta_{i,n} \right) \rho_{n-k}(s) ds \left(\alpha^{-1}_{i,n} x + \theta_i/\sigma < 0 \right) \right\} dx. \]

Proof. We have

\[H_{S,n,\theta,\alpha}(x) = \int_0^\infty P_{n,\theta,\sigma} \left(\sigma^{-1} \alpha_i, \bar{\theta}_{S,i} - \theta_i \right) \leq x \mid \hat{\theta} = s \sigma \right) \rho_{n-k}(s) ds \\
= \int_0^\infty H_{S,sn_{i,n},\theta,\alpha}(x) \rho_{n-k}(s) ds, \]

where we have used independence of \(\hat{\sigma} \) and \(\bar{\theta}_{LS,i} \) allowing us to replace \(\hat{\sigma} \) by \(s \sigma \) in the relevant formulae. Substituting (12), with \(\eta_{i,n} \) replaced by \(s \eta_{i,n} \), into the above equation and noting that \(\int_0^\infty \Phi(a + bs) \rho_{n}(s) ds = T_{n,\alpha}(b) \) gives (17). Elementary calculations then yield (18). \(\blacksquare \)
Remark 25 In the case where \(X'X\) is diagonal, the finite-sample distributions of the entire vectors \(\tilde{\theta}_H\), \(\tilde{\theta}_S\), and \(\tilde{\theta}_{AS}\) can be found from the distributions of \(\tilde{\theta}_H\), \(\tilde{\theta}_S\), and \(\tilde{\theta}_{AS}\) (see Remark 21) by conditioning on \(\hat{\sigma} = s\sigma\) and integrating w.r.t. \(\rho_{n-k}(s)\). In particular, this provides the finite-sample distributions of the Lasso \(\tilde{\theta}_L\) and the adaptive Lasso \(\tilde{\theta}_{AS}\) in the diagonal case (cf. Remarks 1 and 2).

6 Large-Sample Distributions

We next derive the asymptotic distributions of the thresholding estimators under a moving-parameter (and not only under a fixed-parameter) framework since it is well-known (cf. also the discussion in Section 6.4) that asymptotics based only on a fixed-parameter framework often lead to misleading conclusions regarding the performance of the estimators.
6.1 The Known-Variance Case

We first consider the infeasible versions of the thresholding estimators.

Proposition 26 Suppose that for given \(i \geq 1\) satisfying \(i \leq k = k(n)\) for large enough \(n\) we have \(\xi_{i,n} \eta_{i,n} \rightarrow 0\) and \(n^{1/2} \eta_{i,n} \rightarrow e_i\) where \(0 \leq e_i \leq \infty\).

(a) Assume \(e_i < \infty\). Set the scaling factor \(\alpha_{i,n} = n^{1/2}/\xi_{i,n}\). Suppose that the true parameters \(\theta^{(n)} = (\theta_{1,n}, \ldots, \theta_{k,n}) \in \mathbb{R}^{kn}\) and \(\sigma_n \in (0, \infty)\) satisfy \(n^{1/2} \theta_{i,n}/(\sigma_n \xi_{i,n}) \rightarrow \nu_i \in \mathbb{R}\). Then \(H^i_{n,t,\theta^{(n)},\sigma_n}\) converges weakly to the distribution with cdf

\[
\Phi(x) \mathbf{1}\{|x + \nu_i| > e_i\} + \Phi(-\nu_i + e_i) \mathbf{1}\{0 \leq x + \nu_i \leq e_i\} + \Phi(-\nu_i - e_i) \mathbf{1}\{-e_i \leq x + \nu_i < 0\},
\]

the corresponding measure being

\[
\{\Phi(-\nu_i + e_i) - \Phi(-\nu_i - e_i)\} d\delta_{-\nu_i}(x) + \phi(x) \mathbf{1}\{|x + \nu_i| > e_i\} dx.
\]

[This distribution reduces to a standard normal distribution in case \(|\nu_i| = \infty\) or \(e_i = 0\).]

(b) Assume \(e_i = \infty\). Set the scaling factor \(\alpha_{i,n} = (\xi_{i,n}\eta_{i,n})^{-1}\). Suppose that the true parameters \(\theta^{(n)} = (\theta_{1,n}, \ldots, \theta_{k,n}) \in \mathbb{R}^{kn}\) and \(\sigma_n \in (0, \infty)\) satisfy \(\theta_{i,n}/(\sigma_n \xi_{i,n} \eta_{i,n}) \rightarrow \nu_i \in \mathbb{R}\). Then \(H^i_{n,t,\theta^{(n)},\sigma_n}\) converges weakly to \(\Phi(r_i) \delta_{-\nu_i} + (1 - \Phi(r_i)) \delta_0\).

Proof. The proof of (a) is completely analogous to the proof of Theorem 4 in Pötscher and Leeb (2009), whereas the proof of (b) is analogous to the proof of Theorem 17 in the same reference.

Proposition 27 Suppose that for given \(i \geq 1\) satisfying \(i \leq k = k(n)\) for large enough \(n\) we have \(\xi_{i,n} \eta_{i,n} \rightarrow 0\) and \(n^{1/2} \eta_{i,n} \rightarrow e_i\) where \(0 \leq e_i \leq \infty\).

(a) Assume \(e_i < \infty\). Set the scaling factor \(\alpha_{i,n} = n^{1/2}/\xi_{i,n}\). Suppose that the true parameters \(\theta^{(n)} = (\theta_{1,n}, \ldots, \theta_{k,n}) \in \mathbb{R}^{kn}\) and \(\sigma_n \in (0, \infty)\) satisfy \(n^{1/2} \theta_{i,n}/(\sigma_n \xi_{i,n}) \rightarrow \nu_i \in \mathbb{R}\). Then \(H^i_{n,t,\theta^{(n)},\sigma_n}\) converges weakly to the distribution with cdf

\[
\Phi(x + e_i) \mathbf{1}\{x + \nu_i \geq 0\} + \Phi(x - e_i) \mathbf{1}\{x + \nu_i < 0\},
\]

the corresponding measure being

\[
\{\Phi(-\nu_i + e_i) - \Phi(-\nu_i - e_i)\} d\delta_{-\nu_i}(x) + \phi(x) \mathbf{1}\{x + \nu_i > 0\} + \phi(x - e_i) \mathbf{1}\{x + \nu_i < 0\} dx.
\]

[This distribution reduces to a \(N(-\text{sign}(\nu_i) e_i,1)\)-distribution in case \(|\nu_i| = \infty\) or \(e_i = 0\).]

(b) Assume \(e_i = \infty\). Set the scaling factor \(\alpha_{i,n} = (\xi_{i,n}\eta_{i,n})^{-1}\). Suppose that the true parameters \(\theta^{(n)} = (\theta_{1,n}, \ldots, \theta_{k,n}) \in \mathbb{R}^{kn}\) and \(\sigma_n \in (0, \infty)\) satisfy \(\theta_{i,n}/(\sigma_n \xi_{i,n} \eta_{i,n}) \rightarrow \nu_i \in \mathbb{R}\). Then \(H^i_{n,t,\theta^{(n)},\sigma_n}\) converges weakly to \(\Phi(r_i) \min(1,|\nu_i|)\).

Proof. The proof of (a) is completely analogous to the proof of Theorem 5 in Pötscher and Leeb (2009), whereas the proof of (b) is analogous to the proof of Theorem 18 in the same reference.
Proposition 28 Suppose that for given $i \geq 1$ satisfying $i \leq k = k(n)$ for large enough n we have $\xi_{i,n} = \eta_{i,n} \to 0$ and $n^{1/2} \eta_{i,n} \to e_i$ where $0 \leq e_i \leq \infty$.

(a) Assume $e_i < \infty$. Set the scaling factor $\alpha_{i,n} = n^{1/2}/\xi_{i,n}$. Suppose that the true parameters $\theta^{(n)} = (\theta_{1,n}, \ldots, \theta_{k,n}) \in \mathbb{R}^k$ and $\sigma_n \in (0, \infty)$ satisfy $n^{1/2} \theta_{i,n} / (\sigma_n \xi_{i,n}) \to \nu_i \in \mathbb{R}$. Then $H_{AS,n,\theta^{(n)},\sigma_n}^i$ converges weakly to the distribution with cdf

$$
\Phi \left(0.5(x - \nu_i) + \sqrt{(0.5(x + \nu_i))^2 + e_i^2} \right) 1(x + \nu_i \geq 0) \\
+ \Phi \left(0.5(x - \nu_i) - \sqrt{(0.5(x + \nu_i))^2 + e_i^2} \right) 1(x + \nu_i < 0)
$$

(23)
in case $|\nu_i| < \infty$, the corresponding measure being

$$
\{ \Phi(-\nu_i + e_i) - \Phi(-\nu_i - e_i) \} \ d\delta_{-\nu_i}(x) \\
+ 0.5 \ \left\{ \phi \left(0.5(x - \nu_i) + \sqrt{(0.5(x + \nu_i))^2 + e_i^2} \right) (1 + t(x)) \ 1(x + \nu_i > 0) \\
+ \phi \left(0.5(x - \nu_i) - \sqrt{(0.5(x + \nu_i))^2 + e_i^2} \right) (1 - t(x)) \ 1(x + \nu_i < 0) \right\} \ dx,
$$

where $t(x) = (x + \nu_i) / \sqrt{(x + \nu_i)^2 + 4e_i^2}$. In case $|\nu_i| = \infty$, the cdf $H_{AS,n,\theta^{(n)},\sigma_n}^i$ converges weakly to Φ, i.e., to a standard normal distribution. In case $e_i = 0$ the limit always reduces to a standard normal distribution.

(b) Assume $e_i = \infty$. Set the scaling factor $\alpha_{i,n} = (\xi_{i,n} \eta_{i,n})^{-1}$. Suppose that the true parameters $\theta^{(n)} = (\theta_{1,n}, \ldots, \theta_{k,n}) \in \mathbb{R}^k$ and $\sigma_n \in (0, \infty)$ satisfy $\theta_{i,n} / (\sigma_n \xi_{i,n} \eta_{i,n}) \to \zeta_i \in \mathbb{R}$.

1. If $|\zeta_i| < 1$, then $H_{AS,n,\theta^{(n)},\sigma_n}^i$ converges weakly to $\delta_{-\zeta_i}$.
2. If $1 \leq |\zeta_i| < \infty$, then $H_{AS,n,\theta^{(n)},\sigma_n}^i$ converges weakly to δ_{-1/ζ_i}.
3. If $|\zeta_i| = \infty$, then $H_{AS,n,\theta^{(n)},\sigma_n}^i$ converges weakly to δ_0.

Proof. The proof of (a) is completely analogous to the proof of Theorem 4 in Pötscher and Schneider (2009), whereas the proof of (b) is analogous to the proof of Theorem 6 in the same reference.

Observe that the scaling factors $\alpha_{i,n}$ used in the above propositions are exactly of the same order as $\alpha_{i,n}$ in the case of conservative as well as in the case of consistent tuning and thus correspond to the minimax rate of convergence in both cases. In the case of conservative tuning the limiting distributions have essentially the same form as the finite-sample distributions demonstrating that the moving-parameter asymptotic framework captures the finite-sample behavior of the estimators in a satisfactory way. In contrast, a fixed-parameter asymptotic framework, which corresponds to setting $\theta_{i,n} \equiv \theta_i$ and $\sigma_n \equiv \sigma$ in the above propositions, misrepresents the finite-sample properties of the thresholding estimators whenever $\theta_i \neq 0$ but small, as the fixed-parameter limiting distribution is – in case of hard-thresholding and adaptive soft-thresholding – then always $N(0,1)$, regardless of the size of θ_i. For soft-thresholding we also observe a strong discrepancy between the finite-sample distribution and the fixed-parameter limit for $\theta_i \neq 0$ which is given by $N(-\text{sign}(\theta_i) e_i, 1)$. In particular, the above propositions demonstrate non-uniformity in the convergence of finite-sample distributions to their limit in a fixed-parameter framework.

In the case of consistent tuning we observe an interesting phenomenon, namely that the limiting distributions now correspond to pointmasses (but not always located at zero!), or are
convex combinations of two point masses in some cases when considering the hard-thresholding estimator. This essentially means that consistently tuned thresholding estimators are plagued by a bias problem in that the "bias-component" is the dominant component and is of larger order than the "stochastic variability" of the estimator.\footnote{For the hard-thresholding estimator some randomness survives in the limit in the case $|\zeta| = 1$, where we can achieve a limiting probability for $\hat{\theta}_{H,i} = 0$ that is strictly between 0 and 1. That this randomness does not survive for the other two estimators in the limit seems to be connected to the fact that these estimators are continuous functions of the data, whereas $\hat{\theta}_{H,i}$ is not.} In a fixed-parameter framework we get the trivial limits δ_0 for every value of θ_i in case of hard-thresholding and adaptive soft-thresholding. At first glance this seems to suggest that we have used a scaling sequence that does not increase fast enough with n, but recall that the scaling used here corresponds to the minimax convergence rate. We shall take this issue further up in Section 6.4. The situation is different for the soft-thresholding estimator where the fixed-parameter limit is $\delta_{\text{sign}(\theta_i)}$, which reduces to δ_0 only for $\theta_i = 0$; this is a reflection of the well-known fact that soft-thresholding is plagued by bias problems to a higher degree than are hard-thresholding and adaptive soft-thresholding.

6.2 Uniform Closeness of Distributions in the Known- and Unknown-Variance Case

We next show that the finite-sample cdfs of $\tilde{\theta}_{H,i}$, $\tilde{\theta}_{S,i}$, and $\tilde{\theta}_{AS,i}$ and of their infeasible counterparts $\hat{\theta}_{H,i}$, $\hat{\theta}_{S,i}$, and $\hat{\theta}_{AS,i}$, respectively, are uniformly (w.r.t. the parameters) close in the total variation distance (or the supremum norm) provided the number of degrees of freedom $n - k$ diverges to infinity fast enough. Apart from being of interest in their own right, these results will be instrumental in the subsequent section. We note that the results in this section hold for any choice of the scaling factors $\alpha_{i,n}$.

Theorem 29 Suppose that for given $i \geq 1$ satisfying $i \leq k = k(n)$ for large enough n we have $n^{1/2} \eta_{i,n}(n - k)^{-1/2} \to 0$ as $n \to \infty$. Then

$$\sup_{\theta \in \mathbb{R}^k, 0 < \sigma < \infty} \left\| H_{H,n,\theta,\sigma} - H_{H,n,\theta,\sigma}^{\hat{\theta}} \right\|_{TV} \to 0 \quad \text{for } n \to \infty.$$

Proof. Observe that the total variation distance between two cdfs is bounded by the sum of the total variation distances between the corresponding discrete and continuous parts. Furthermore, recall that the total variation distance between the absolutely continuous parts is bounded from above by the L_1-distance of the corresponding densities. Hence, from (11) and (16) we obtain

$$\left\| H_{H,n,\theta,\sigma} - H_{H,n,\theta,\sigma}^{\hat{\theta}} \right\|_{TV} \leq A + B$$

24
where A is the l.h.s. of (6) and

$$B = \int_{-\infty}^{\infty} \int_{0}^{\infty} \left| B \right| \left(|a_{i,n}^{-1}x + \theta_i/\sigma| > \xi_{i,n}\eta_{i,n} \right)$$

$$-1 \left(|a_{i,n}^{-1}x + \theta_i/\sigma| > \xi_{i,n}\eta_{i,n} \right) \left(\rho_{n-k}(s) ds n^{1/2}a_{i,n}^{-1}\xi_{i,n}^{-1} \Phi \left(n^{1/2}x/(a_{i,n}\xi_{i,n}) \right) \right) dx$$

$$= \int_{0}^{\infty} \int_{-\infty}^{\infty} 1 \left(\left| u + n^{1/2}\theta_i/\left(\sigma\xi_{i,n} \right) \right| > n^{1/2}\eta_{i,n} \right)$$

$$-1 \left(\left| u + n^{1/2}\theta_i/\left(\sigma\xi_{i,n} \right) \right| > sn^{1/2}\eta_{i,n} \right) \left(\phi(u) du \rho_{n-k}(s) ds \right)$$

$$= \int_{0}^{\infty} \int_{-\infty}^{\infty} 1 \left(n^{1/2}\eta_{i,n} (s \wedge 1) < \left| u + n^{1/2}\theta_i/\left(\sigma\xi_{i,n} \right) \right| \leq n^{1/2}\eta_{i,n} (s \vee 1) \right) \left(\phi(u) du \rho_{n-k}(s) ds \right)$$

$$= \int_{0}^{\infty} \left\{ \Phi \left(n^{1/2} \left(-\theta_i/\left(\sigma\xi_{i,n} \right) + \eta_{i,n} (s \vee 1) \right) \right) - \Phi \left(n^{1/2} \left(-\theta_i/\left(\sigma\xi_{i,n} \right) + \eta_{i,n} (s \wedge 1) \right) \right) \right\} \rho_{n-k}(s) ds,$$

where we have made use of Fubini’s theorem and performed an obvious substitution. By a trivial modification of Lemma 13 in Pötscher and Schneider (2010) we conclude that for every $\varepsilon > 0$ there exists a real number $c = c(\varepsilon) > 0$ such that

$$\int_{|s-1| > (n-k)^{-1/2}c} \rho_{n-k}(s) ds < \varepsilon \quad (24)$$

for every $n - k > 0$. Using the fact, that Φ is globally Lipschitz with constant $(2\pi)^{-1/2}$, this gives

$$\sup_{\theta \in \mathbb{R}^k, 0 < \sigma < \infty} B \leq 2 \int_{|s-1| > (n-k)^{-1/2}c} \rho_{n-k}(s) ds$$

$$+ 2(2\pi)^{-1/2} n^{1/2} \eta_{i,n} \int_{|s-1| \leq (n-k)^{-1/2}c} \left| (s \vee 1) - (s \wedge 1) \right| \rho_{n-k}(s) ds$$

$$\leq 2\varepsilon + 2(2\pi)^{-1/2} n^{1/2} \eta_{i,n} (n-k)^{-1/2} c.$$
where A is given by the l.h.s. of (6) and, using (13) and (18),

$$B = n^{1/2}A_{i,n}^{-1}\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbf{1}
$$

$$-\phi\left(\frac{n^{1/2}}{(\alpha_i n)\xi_{i,n}}x + n^{1/2}\eta_{i,n}\right)\rho_{n-k}(s)ds
$$

$$+n^{1/2}A_{i,n}^{-1}\xi_{i,n}^{-1}\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbf{1}
$$

$$-\phi\left(\frac{n^{1/2}}{(\alpha_i n)\xi_{i,n}}x - n^{1/2}\eta_{i,n}\right)\rho_{n-k}(s)ds
$$

Now,

$$B \leq \int_{0}^{\infty} (B_1(s) + B_2(s)) \rho_{n-k}(s)ds$$

where

$$B_1(s) = \int_{-\infty}^{\infty} \left| \phi\left(u + n^{1/2}\eta_{i,n}\right) - \phi\left(u + n^{1/2}s\eta_{i,n}\right) \right| du,$$

$$B_2(s) = \int_{-\infty}^{\infty} \left| \phi\left(u - n^{1/2}\eta_{i,n}\right) - \phi\left(u - n^{1/2}s\eta_{i,n}\right) \right| du,$$

and where we have used the triangle inequality, Fubini’s theorem, and an obvious substitution.

Now, it is elementary to verify that

$$B_1(s) = B_2(s) = 2\left| \Phi(n^{1/2}\eta_{i,n}(s - 1)/2) - \Phi(-n^{1/2}\eta_{i,n}(s - 1)/2) \right|,$$

and that $B_1(s) \leq 2$ holds. Consequently, with $c = c(\varepsilon)$ as in the preceding proof,

$$B \leq 4\int_{|s - 1| > (n-k)^{-1/2}c} \rho_{n-k}(s)ds + \int_{|s - 1| \leq (n-k)^{-1/2}c} (B_1(s) + B_2(s)) \rho_{n-k}(s)ds
$$

$$\leq 4\varepsilon + 4(2\pi)^{-1/2}n^{1/2}\eta_{i,n} \int_{|s - 1| \leq (n-k)^{-1/2}c} \rho_{n-k}(s)ds
$$

$$\leq 4\varepsilon + 4(2\pi)^{-1/2}n^{1/2}\eta_{i,n} (n-k)^{-1/2}c$$

where we have used the fact that Φ is globally Lipschitz with constant $(2\pi)^{-1/2}$. Since $n^{1/2}\eta_{i,n}(n-k)^{-1/2} \rightarrow 0$ and $\varepsilon > 0$ was arbitrary, the proof is complete, because $\sup_{\theta \in \mathbb{R}, 0 < \sigma < \infty} A$ goes to zero by Proposition 13.

Theorem 31 Suppose that for given $i \geq 1$ satisfying $i \leq k = k(n)$ for large enough n we have $n^{1/2}\eta_{i,n}(n-k)^{-1/2} \rightarrow 0$ as $n \rightarrow \infty$. Then

$$\sup_{\theta \in \mathbb{R}, 0 < \sigma < \infty} \left| H_{AS,n,\theta,\sigma}^{(1)} - H_{AS,n,\theta,\sigma}^{*(1)} \right|_{\infty} \rightarrow 0 \quad \text{for} \quad n \rightarrow \infty.$$

Proof. From (14) and (19) we obtain

$$\left| H_{AS,n,\theta,\sigma}^{(1)} - H_{AS,n,\theta,\sigma}^{*(1)} \right|_{\infty} \leq \int_{0}^{\infty} \sup_{x \in \mathbb{R}} \left| \Phi\left(z_{n,\theta,\sigma}^{(1)}(x, \eta_{i,n}) \right) - \Phi\left(z_{n,\theta,\sigma}^{(1)}(x, s\eta_{i,n}) \right) \right| \rho_{n-k}(s)ds
$$

$$+ \int_{0}^{\infty} \sup_{x \in \mathbb{R}} \left| \Phi\left(z_{n,\theta,\sigma}^{(2)}(x, \eta_{i,n}) \right) - \Phi\left(z_{n,\theta,\sigma}^{(2)}(x, s\eta_{i,n}) \right) \right| \rho_{n-k}(s)ds
$$

$$= c_1(s)\rho_{n-k}(s)ds + \int_{0}^{\infty} C_2(s)\rho_{n-k}(s)ds.$$
As above, choose for every \(\varepsilon > 0 \) a real number \(c = c(\varepsilon) > 0 \) such that (24) holds for \(n - k > 0 \). Observe that on the one hand \(C_1(s) \) and \(C_2(s) \) are bounded by 1, and that on the other hand, using the Lipschitz-property of \(\Phi \) and the mean-value theorem,

\[
|C_1(s)| \leq (2\pi)^{-1/2} \sup_{x \in \mathbb{R}} \left| z_n^{(2)}(x, \eta_{i,n}) - z_n^{(2)}(x, s\eta_{i,n}) \right|
\]

\[
= (2\pi)^{-1/2} \sup_{x \in \mathbb{R}} \left| n^{1/2} \sqrt{\left(0.5\xi_{i,n}^{-1}(\alpha_{i,n}x + \theta_i/\sigma)\right)^2 + \eta_{i,n}^2} - n^{1/2} \sqrt{\left(0.5\xi_{i,n}^{-1}(\alpha_{i,n}x + \theta_i/\sigma)\right)^2 + s^2\eta_{i,n}^2} \right|
\]

\[
\leq (2\pi)^{-1/2} n^{1/2} \eta_{i,n}^2 \left| s - 1 \right| \sup_{x \in \mathbb{R}} \left| \left(0.5\xi_{i,n}^{-1}(\alpha_{i,n}x + \theta_i/\sigma)\right)^2 - s^2 + \eta_{i,n}^2 \right|^{-1/2},
\]

where \(\bar{s} \) is a mean-value between \(s \) and 1 which may depend on \(x \). The supremum over \(x \) on the r.h.s. is now clearly assumed for \(x = -\alpha_{i,n} \theta_i/\sigma \), resulting in the bound

\[
|C_1(s)| \leq (2\pi)^{-1/2} n^{1/2} \eta_{i,n} |s - 1|.
\]

The same bound is obtained for \(C_2 \) in exactly the same way. Consequently, using (24) we obtain

\[
\sup_{\theta \in \mathbb{R}^d, \delta < \sigma < \infty} \left\| H_{AS}^{\phi} - H_{AS}^{\phi} \right\|_\infty \leq 2 \int_{|s-1| > (n-k)^{-1/2}} \rho_{n,k}(s) ds + 2(2\pi)^{-1/2} n^{1/2} \eta_{i,n} \int_{|s-1| \leq (n-k)^{-1/2}} |s - 1| \rho_{n,k}(s) ds \leq 2 \left[\varepsilon + (2\pi)^{-1/2} n^{1/2} \eta_{i,n} (n-k)^{-1/2} \right].
\]

Since \(n^{1/2} \eta_{i,n} (n-k)^{-1/2} \to 0 \) and \(\varepsilon > 0 \) was arbitrary, the proof is complete. \(\blacksquare \)

Remark 32 In case of conservative tuning, the condition \(n^{1/2} \eta_{i,n} (n-k)^{-1/2} \to 0 \) is always satisfied if \(n - k \to \infty \). [In fact it is then equivalent to \(n - k \to \infty \) or \(e_i = 0 \).] In case of consistent tuning \(n - k \to \infty \) is clearly a weaker condition than \(n^{1/2} \eta_{i,n} (n-k)^{-1/2} \to 0 \). However, in general, a sufficient condition for \(n^{1/2} \eta_{i,n} (n-k)^{-1/2} \to 0 \) is that \(\eta_{i,n} \to 0 \) and \(\limsup_{n \to \infty} k/n < 1 \).

Remark 33 Since different limiting probabilities arise in the known-variance case (Proposition 7(b)) and the unknown-variance case (Theorem 11(b2)) in the case where \(n - k \to \infty \) but \(n^{1/2} \eta_{i,n} (n-k)^{-1/2} \to 0 \) is violated, it follows that the condition \(n^{1/2} \eta_{i,n} (n-k)^{-1/2} \to 0 \) cannot be weakened.

6.3 The Unknown-Variance Case

6.3.1 Conservative Tuning

We next obtain the limiting distributions of \(\tilde{\theta}_{H,i} \), \(\tilde{\theta}_{S,i} \), and \(\tilde{\theta}_{AS,i} \) in a moving-parameter framework under conservative tuning.

Theorem 4 (Hard-thresholding with conservative tuning) Suppose that for given \(i \geq 1 \) satisfying \(i \leq k = k(n) \) for large enough \(n \) we have \(\xi_{i,n} \eta_{i,n} \to 0 \) and \(n^{1/2} \eta_{i,n} \to e_i \) where
0 \leq e_i < \infty. Set the scaling factor \(\alpha_{i,n} = n^{1/2}/\xi_{i,n} \). Suppose that the true parameters \(\theta^{(n)} = (\theta_{1,n}, \ldots, \theta_{k_n,n}) \in \mathbb{R}^{k_n} \) and \(\sigma_n \in (0, \infty) \) satisfy \(n^{1/2}\theta_{i,n}/(\sigma_n \xi_{i,n}) \to \nu_i \in \mathbb{R} \).

(a) If \(n-k = \text{eventually constant equal to } m \), say, then \(H_{n,n,\theta^{(n)},\sigma_n} \) converges weakly to the distribution with cdf

\[
\int_0^\infty \{ \Phi(x) \mathbf{1}(|x + \nu_i| > se_i) + \Phi(-\nu_i + se_i) \mathbf{1}(0 \leq x + \nu_i \leq se_i) \\
+ \Phi(-\nu_i - se_i) \mathbf{1}(-se_i \leq x + \nu_i < 0) \} \rho_m(s)ds,
\]

the corresponding measure being

\[
\int_0^\infty \{ \Phi(-\nu_i + se_i) - \Phi(-\nu_i - se_i) \} \rho_m(s)dsd\nu_i(x) + \phi(x) \int_0^\infty \mathbf{1}(|x + \nu_i| > se_i) \rho_m(s)dsdx.
\]

[The distribution reduces to a standard normal distribution in case \(|\nu_i| = \infty \) or \(e_i = 0 \).]

(b) If \(n-k \to \infty \) holds, then \(H_{n,n,\theta^{(n)},\sigma_n} \) converges weakly to the distribution given in Proposition 26(a).

Proof. (a) The atomic part of \(dH_{n,n,\theta^{(n)},\sigma_n} \) as given in (16) clearly converges weakly to the atomic part of (25) in view of Theorem 11(a1) and the fact that \(\alpha_{i,n} \theta_{i,n}/\sigma_n = n^{1/2}\theta_{i,n}/(\sigma_n \xi_{i,n}) \to \nu_i \) by assumption; also note that the atomic part converges to the zero measure in case \(|\nu_i| = \infty \) or \(e_i = 0 \) as then the total mass of the atomic part converges to zero. We turn to the absolutely continuous part next. For later use we note that what has been established so far also implies that the total mass of the absolutely continuous part converges to the total mass of the absolutely continuous part of the limit, since it is easy to see that the limiting distribution given in the theorem has total mass 1. The density of the absolutely continuous part of (16) takes the form

\[
\phi(x) \int_0^\infty \mathbf{1} \left(\frac{|x + n^{1/2}\theta_{i,n}/(\sigma_n \xi_{i,n})|}{sn^{1/2}\eta_i} \right) \rho_{n-k}(s)ds.
\]

Observe that for given \(x \in \mathbb{R} \), the indicator function in the above display converges to \(\mathbf{1}(|x + \nu_i| > se_i) \) for Lebesgue almost all \(s \). [If \(e_i = 0 \), this is necessarily true only for \(x \in \mathbb{R} \) with \(x \neq -\nu_i \).] Since \(n-k \to m \) eventually, we get from the dominated convergence theorem that the above display converges to \(\phi(x) \int_0^\infty \mathbf{1}(|x + \nu_i| > se_i) \rho_m(s)ds \) for every \(x \in \mathbb{R} \) (for every \(x \in \mathbb{R} \) with \(x \neq -\nu_i \) in case \(e_i = 0 \)), which is the density of the absolutely continuous part in (25). Since the total mass of the absolutely continuous part is preserved in the limit as shown above, the proof is completed by Scheffé’s Lemma.

(b) Follows immediately from Proposition 26 and Theorem 29. ■

Theorem 35 (Soft-thresholding with conservative tuning) Suppose that for given \(i \geq 1 \) satisfying \(i \leq k = k(n) \) for large enough \(n \) we have \(\xi_{i,n} \eta_i \to 0 \) and \(n^{1/2}\eta_i \to e_i \) where \(0 \leq e_i < \infty \). Set the scaling factor \(\alpha_{i,n} = n^{1/2}/\xi_{i,n} \). Suppose that the true parameters \(\theta^{(n)} = (\theta_{1,n}, \ldots, \theta_{k_n,n}) \in \mathbb{R}^{k_n} \) and \(\sigma_n \in (0, \infty) \) satisfy \(n^{1/2}\theta_{i,n}/(\sigma_n \xi_{i,n}) \to \nu_i \in \mathbb{R} \).

(a) If \(n-k = \text{eventually constant equal to } m \), say, then \(H_{S,n,\theta^{(n)},\sigma_n} \) converges weakly to the distribution with cdf

\[
\int_0^\infty \{ \Phi(x + se_i) \mathbf{1}(x + \nu_i \geq 0) + \Phi(x - se_i) \mathbf{1}(x + \nu_i < 0) \} \rho_m(s)ds,
\]
the corresponding measure being

\[
\int_{0}^{\infty} \{ \Phi(-\nu_i + se_i) - \Phi(-\nu_i - se_i) \} \rho_m(s) ds \delta_{-\nu_i}(x) \\
+ \int_{0}^{\infty} \{ \phi(x + se_i) \mathbf{1}(x + \nu_i > 0) + \phi(x - se_i) \mathbf{1}(x + \nu_i < 0) \} \rho_m(s) ds dx.
\]

(26)

[The atomic part in the above expression is absent in case \(|\nu_i| = \infty\). Furthermore, the distribution reduces to a standard normal distribution if \(e_i = 0\).]

(b) If \(n - k \to \infty\) holds, then \(H_{S,n,\theta^{(n)},\sigma_n}^{\alpha}\) converges weakly to the distribution given in Proposition 27(a).

Proof. (a) The atomic part of \(dH_{S,n,\theta^{(n)},\sigma_n}^{\alpha}\) as given in (18) converges weakly to the atomic part of (26) in view of Theorem 11(a1) and the fact that \(\alpha_{i,n}\theta_{i,n}/\sigma_n = n^{1/2}\theta_{i,n}/(\sigma_n \xi_{i,n}) \to \nu_i\) by assumption; also note that the atomic part converges to the zero measure in case \(|\nu_i| = \infty\) or \(e_i = 0\) as the total mass of the atomic part converges to zero. We turn to the absolutely continuous part next. For later use we note that what has been established so far also implies that the total mass of the absolutely continuous part converges to the total mass of the absolutely continuous part of the limit, since it is easy to see that the limiting distribution given in the theorem has total mass 1. The density of the absolutely continuous part of (18) takes the form

\[
\int_{0}^{\infty} \phi \left(x + sn^{1/2}\eta_{i,n} \right) \rho_{n-k}(s) ds \mathbf{1}(x + n^{1/2}\theta_{i,n}/(\sigma_n \xi_{i,n}) > 0) \\
+ \int_{0}^{\infty} \phi \left(x - sn^{1/2}\eta_{i,n} \right) \rho_{n-k}(s) ds \mathbf{1}(x + n^{1/2}\theta_{i,n}/(\sigma_n \xi_{i,n}) < 0).
\]\n
Observe that for given \(x \in \mathbb{R}\), the functions \(\phi \left(x \pm sn^{1/2}\eta_{i,n} \right)\) converge to \(\phi \left(x \pm se_i \right)\), respectively, for all \(s\). Since \(n - k = m\) eventually, we then get from the dominated convergence theorem that the above display converges to

\[
\int_{0}^{\infty} \phi \left(x + se_i \right) \rho_m(s) ds \mathbf{1}(x + \nu_i > 0) + \int_{0}^{\infty} \phi \left(x - se_i \right) \rho_m(s) ds \mathbf{1}(x + \nu_i < 0)
\]

for every \(x \neq -\nu_i\); the last display is precisely the density of the absolutely continuous part in (26). Since the total mass of the absolutely continuous part is preserved in the limit as shown above, the proof is completed by Scheffé’s Lemma.

(b) Follows immediately from Proposition 27 and Theorem 30. \(\blacksquare\)

Theorem 36 (Adaptive soft-thresholding with conservative tuning) Suppose that for given \(i \geq 1\) satisfying \(i \leq k = k(n)\) for large enough \(n\) we have \(\xi_{i,n},\eta_{i,n} \to 0\) and \(n^{1/2}\xi_{i,n} \to e_i\) where \(0 \leq e_i < \infty\). Set the scaling factor \(\alpha_{i,n} = n^{1/2}/\xi_{i,n}\). Suppose that the true parameters \(\theta^{(n)} = (\theta_{1,n}, \ldots, \theta_{k,n}) \in \mathbb{R}^{k_n}\) and \(\sigma_n \in (0, \infty)\) satisfy \(n^{1/2}\theta_{i,n}/(\sigma_n \xi_{i,n}) \to \nu_i \in \mathbb{R}\).

(a) Suppose \(n - k\) is eventually constant equal to \(m\), say. Then \(H_{A\delta_{n,\theta^{(n)},\sigma_n}}^{\alpha}\) converges weakly to the distribution with cdf

\[
\int_{0}^{\infty} \Phi \left(0.5(x - \nu_i) + \sqrt{(0.5(x + \nu_i))^2 + s^2e_i^2} \right) \rho_m(s) ds \mathbf{1}(x + \nu_i \geq 0) \\
+ \int_{0}^{\infty} \Phi \left(0.5(x - \nu_i) - \sqrt{(0.5(x + \nu_i))^2 + s^2e_i^2} \right) \rho_m(s) ds \mathbf{1}(x + \nu_i < 0)
\]

(28)
in case $|\nu_i| < \infty$, the corresponding measure being given by

$$
\int_0^\infty \{ \Phi (-\nu_i + se_i) - \Phi (-\nu_i - se_i) \} \rho_m(s) \text{d} s \delta_{-\nu_i}(x)
$$

$$
+ 0.5 \int_0^\infty \left\{ \phi \left(0.5(x - \nu_i) + \sqrt{(0.5(x + \nu_i))^2 + s^2\epsilon_i^2} \right) (1 + t(x, s)) \mathbf{1}(x + \nu_i > 0)
\right.
$$

$$
\left. + \phi \left(0.5(x - \nu_i) - \sqrt{(0.5(x + \nu_i))^2 + s^2\epsilon_i^2} \right) (1 - t(x, s)) \mathbf{1}(x + \nu_i < 0) \right\} \rho_m(s) \text{d} s \text{d} x,
$$

where $t(x, s) = (x + \nu_i)/\sqrt{(x + \nu_i)^2 + 4s^2\epsilon_i^2}$.

In case $|\nu_i| = \infty$, the cdf $H_{A_n,0,(n),\sigma_n}^{R_2}$ converges weakly to Φ, i.e., a standard normal distribution. [If $e_i = 0$, the limit always reduces to a standard normal distribution.]

(b) If $n - k \to \infty$, then $H_{A_n,0,(n),\sigma_n}^{R_2}$ converges weakly to the distribution given in Proposition 28(a).

Proof. (a) Observe that

$$
H_{A_n,0,(n),\sigma_n}^{R_2}(x) = \int_0^\infty \Phi \left(z_{1,n,0,(n),\sigma_n}^{(1)}(x, s\theta_{1,n}) \right) \rho_{n-k}(s) \text{d} s \mathbf{1} \left(x + n^{1/2}\theta_{1,n}/(\sigma_n\xi_{1,n}) \geq 0 \right)
$$

$$
+ \int_0^\infty \Phi \left(z_{1,n,0,(n),\sigma_n}^{(2)}(x, s\theta_{1,n}) \right) \rho_{n-k}(s) \text{d} s \mathbf{1} \left(x + n^{1/2}\theta_{1,n}/(\sigma_n\xi_{1,n}) < 0 \right)
$$

(29)

where $z_{1,n,0,(n),\sigma_n}^{(1)}(x, s\theta_{1,n})$ and $z_{1,n,0,(n),\sigma_n}^{(2)}(x, s\theta_{1,n})$ reduce to

$$
0.5(x - n^{1/2}\theta_{1,n}/(\sigma_n\xi_{1,n})) \pm \sqrt{(0.5(x + n^{1/2}\theta_{1,n}/(\sigma_n\xi_{1,n})))^2 + s^2\eta_{1,n}^2}.
$$

Clearly, $\Phi \left(z_{1,n,0,(n),\sigma_n}^{(1)}(x, s\theta_{1,n}) \right)$ as well as $\Phi \left(z_{1,n,0,(n),\sigma_n}^{(2)}(x, s\theta_{1,n}) \right)$ converge for every $s \geq 0$ to

$$
\Phi \left(0.5(x - \nu_i) - \sqrt{(0.5(x + \nu_i))^2 + s^2\epsilon_i^2} \right)
$$

and

$$
\Phi \left(0.5(x - \nu_i) + \sqrt{(0.5(x + \nu_i))^2 + s^2\epsilon_i^2} \right),
$$

respectively, if $|\nu_i| < \infty$, and the dominated convergence theorem shows that the weights of the indicator functions in (29) converge to the corresponding weights in (28). Since $n^{1/2}\theta_{1,n}/(\sigma_n\xi_{1,n})$ converges to ν_i by assumption, it follows that for every $x \neq -\nu_i$ we have convergence of $H_{A_n,0,(n),\sigma_n}^{R_2}$ to the cdf given in (28). This proves part (a) in case $|\nu_i| < \infty$. In case $\nu_i = \infty$, we have that $z_{1,n,0,(n),\sigma_n}^{(2)}(x, s\theta_{1,n})$ converges to x by an application of Proposition 15 in Pötscher and Schneider (2009). Consequently, the limit of $\Phi \left(z_{1,n,0,(n),\sigma_n}^{(2)}(x, s\theta_{1,n}) \right)$ is now $\Phi(x)$. Again applying the dominated convergence theorem and observing that for each $x \in \mathbb{R}$ we have that $\mathbf{1} \left(x + n^{1/2}\theta_{1,n}/(\sigma_n\xi_{1,n}) < 0 \right)$ is eventually zero, shows that $H_{A_n,0,(n),\sigma_n}^{R_2}(x)$ converges to $\Phi(x)$. The case $\nu_i = -\infty$ is proved analogously.

(b) Follows immediately from Proposition 28 and Theorem 31. ■

It transpires that in case of conservative tuning and $n - k \to \infty$ we obtain exactly the same limiting distributions as in the known-variance case and hence the relevant discussion given at
the end of Section 6.1 applies also here. [That one obtains the same limits does not come as a
surprise given the results in Section 6.2 and the observation made in Remark 32.] In the case,
where \(n - k \) is eventually constant, the limits are obtained from the limits in the known-variance
case (with \(\sigma \) replaced by \(\sigma_s \)) by averaging w.r.t. the distribution of \(\tilde{\sigma}/\sigma \). Again the limiting
distributions have essentially the same structure as the corresponding finite-sample distributions.
The fixed-parameter limiting distributions (corresponding to setting \(\theta_{i,n} \equiv \theta_i \) and \(\sigma_{n,i} \equiv \sigma \) in
the above theorems) again misrepresent the finite-sample properties of the thresholding estimators
whenever \(\theta_i \neq 0 \) but small, as the fixed-parameter limiting distribution is — in case of hard-
thresholding and adaptive soft-thresholding — then always \(N(0,1) \), regardless of the size of \(\theta_i \).
For soft-thresholding we also observe a strong discrepancy between the finite-sample distribution
and the fixed-parameter limit especially for \(\theta_i \neq 0 \) but small, which is given by the distribution
with \(\int_0^\infty \phi(x + s \text{sign}(\theta_i) \hat{c}_i) \rho_{m}(s)ds \) regardless of the size of \(\theta_i \). As a consequence, we again
observe non-uniformity in the convergence of finite-sample distributions to their limit in a fixed-
parameter framework also in the case where the number of degrees of freedom is (eventually)
constant.

6.3.2 Consistent Tuning

We next derive the limiting distribution of \(\tilde{\theta}_{H,i} \), \(\tilde{\theta}_{S,i} \), and \(\tilde{\theta}_{AS,i} \) in a moving-parameter framework
under consistent tuning.

Theorem 37 (Hard-thresholding with consistent tuning) Suppose that for given \(i \geq 1 \) satisfying
\(i \leq k = k(n) \) for large enough \(n \) we have \(\xi_{i,n} \eta_{i,n} \to 0 \) and \(n^{1/2} \eta_{i,n} \to \infty \). Set the scaling
factor \(\alpha_{i,n} = (\xi_{i,n} \eta_{i,n})^{-1} \). Suppose that the true parameters \(\theta^{(n)} = (\theta_{1,n}, \ldots, \theta_{k,n}) \in \mathbb{R}^k \) and
\(\sigma_n \in (0, \infty) \) satisfy \(\theta_{i,n}/(\sigma_n \xi_{i,n} \eta_{i,n}) \to \zeta_i \in \mathbb{R} \).

(a) If \(n - k \) is eventually constant equal to \(m \), say, then \(\Phi_{H,n,\theta^{(n)},\sigma_n}^{(i)} \) converges weakly to
\[
\left(\int_{|\zeta_i|}^\infty \rho_m(s)ds \right) \delta_{-\zeta_i} + \left(1 - \int_{|\zeta_i|}^\infty \rho_m(s)ds \right) \delta_0
\]
\[= \Pr(\chi^2_m > m\zeta_i^2) \delta_{-\zeta_i} + \Pr(\chi^2_m \leq m\zeta_i^2) \delta_0.\]

[The above display reduces to \(\delta_0 \) for \(|\zeta_i| = \infty \).]

(b) If \(n - k \to \infty \) holds, then
1. \(|\zeta_i| < 1 \) implies that \(\Phi_{H,n,\theta^{(n)},\sigma_n}^{(i)} \) converges weakly to \(\delta_{-\zeta_i} \).
2. \(|\zeta_i| > 1 \) implies that \(\Phi_{H,n,\theta^{(n)},\sigma_n}^{(i)} \) converges weakly to \(\delta_0 \).
3. \(|\zeta_i| = 1 \) and \(n^{1/2} \eta_{i,n} / (n - k)^{1/2} \to 0 \) imply that \(\Phi_{H,n,\theta^{(n)},\sigma_n}^{(i)} \) converges weakly to
\[\Phi(r_i) \delta_{-\zeta_i} + (1 - \Phi(r_i)) \delta_0\]
provided \(r_{i,n} = n^{1/2} (\eta_{i,n} - \zeta_i \theta_{i,n} / (\sigma_n \xi_{i,n})) \to r_i \) for some \(r_i \in \mathbb{R} \).
4. \(|\zeta_i| = 1 \) and \(n^{1/2} \eta_{i,n} / (n - k)^{1/2} \to 2^{1/2} d_i \) with \(0 < d_i < \infty \) imply that \(\Phi_{H,n,\theta^{(n)},\sigma_n}^{(i)} \) converges weakly to
\[
\left(\int_{-\infty}^\infty \Phi(d_i t + r_i) \phi(t) dt \right) \delta_{-\zeta_i} + \left(1 - \int_{-\infty}^\infty \Phi(d_i t + r_i) \phi(t) dt \right) \delta_0
\]
provided \(r_{i,n} \to r_i \) for some \(r_i \in \mathbb{R} \). [Note that the above display reduces to \(\delta_{-\zeta_i} \) if \(r_i = \infty \), and
to \(\delta_0 \) if \(r_i = -\infty \).]
Theorem 38 (Soft-thresholding with consistent tuning) Suppose that for given \(i \geq 1 \) satisfying \(i \leq k = k(n) \) for large enough \(n \) we have \(\xi_{i,n} \eta_{i,n} \rightarrow 0 \) and \(n^{1/2} \eta_{i,n} \rightarrow \infty \). Set the scaling factor \(\alpha_{i,n} = (\xi_{i,n} \eta_{i,n})^{-1} \). Suppose that the true parameters \(\theta^{(n)} = (\theta_{1,n}, \ldots, \theta_{k,n}) \in \mathbb{R}^{k_n} \) and \(\sigma_n \in (0, \infty) \) satisfy \(\theta_{i,n}/(\sigma_n \xi_{i,n} \eta_{i,n}) \rightarrow \zeta_i \in \mathbb{R} \).

(a) If \(n - k \) is eventually constant equal to \(m \), say, then \(H^{\Phi}_{S_n, \theta^{(n)}, \sigma_n} \) converges weakly to the distribution given by

\[
\int_{|\zeta|} \rho_m(s) ds d\delta_{-\zeta}(x) + \{\rho_m(x)(x + \zeta < 0) + \rho_m(-x)(x + \zeta > 0)\} \, dx
\]

(b) If \(n - k \rightarrow \infty \) holds, then \(H^{\Phi}_{S_n, \theta^{(n)}, \sigma_n} \) converges weakly to \(\delta_{-\text{sign}(\zeta_i) \min(1,|\zeta_i|)} \).

Proof. (a) The atomic part of \(dH^{\Phi}_{S_n, \theta^{(n)}, \sigma_n} \) as given in (18) converges weakly to the atomic part given in (30) by Theorem 11(b1). The density of the absolutely continuous part of \(dH^{\Phi}_{S_n, \theta^{(n)}, \sigma_n} \) can be written as

\[
n^{1/2} \eta_{i,n} \int_{-\infty}^{x} \phi \left(n^{1/2} \eta_{i,n} (x + s) \right) \rho_m(s) ds 1 \left(x + \theta_{i,n}/(\sigma_n \xi_{i,n} \eta_{i,n}) > 0 \right)
+ n^{1/2} \eta_{i,n} \int_{-\infty}^{x} \phi \left(n^{1/2} \eta_{i,n} (x - s) \right) \rho_m(s) ds 1 \left(x + \theta_{i,n}/(\sigma_n \xi_{i,n} \eta_{i,n}) < 0 \right)
\]

recalling the convention that \(\rho_m(s) = 0 \) for \(s < 0 \). Note that with this convention \(\rho_m \) is then a bounded continuous function on the real line. Since \(n^{1/2} \eta_{i,n} \phi \left(n^{1/2} \eta_{i,n} (x + \cdot) \right) \) and
Factor $n^{1/2} \eta_{i,n} \phi(n^{1/2} \eta_{i,n} (x - \cdot))$ clearly converge weakly to δ_{-z} and δ_z, respectively, the density of the absolutely continuous part of $dH_{H_{S,n}, \theta(n), \sigma_n}$ is seen to converge to $\rho_m(-x)1(x + \xi_i > 0) + \rho_m(x)1(x + \xi_i < 0)$ for every $x \neq -\xi_i$. An application of Scheffé's Lemma then completes the proof, noting that the total mass of the absolutely continuous part of $dH_{H_{S,n}, \theta(n), \sigma_n}$ converges to the total mass of the absolutely continuous part of (30) as the same is true for the atomic part in view of Theorem 11(b1) (and since the distributions involved all have total mass 1).

(b) Rewrite $\sigma_n^{-1} \alpha_{i,n}(\tilde{\theta}_{S,i} - \theta_{i,n})$ as

$$-\theta_{i,n}/(\sigma_n \xi_{i,n} \eta_{i,n})1(\tilde{\theta}_{S,i} = 0) + (W_n - (\tilde{\sigma}/\sigma_n) \text{sign}(W_n + \theta_{i,n}/(\sigma_n \xi_{i,n} \eta_{i,n})))1(\tilde{\theta}_{S,i} \neq 0),$$

where W_n is a sequence of $N(0, n^{-1} \eta_{i,n}^2)$-distributed random variables. Observe that $\theta_{i,n}/(\sigma_n \xi_{i,n} \eta_{i,n})$ converges to ξ_i and that W_n converges to zero in $P_{n, \theta(n), \sigma_n}$-probability. Now, if $|\xi_i| < 1$, then $P_{n, \theta(n), \sigma_n}(\tilde{\theta}_{S,i} = 0) \to 1$ by Theorem 11(b2), and hence $\sigma_n^{-1} \alpha_{i,n}(\tilde{\theta}_{S,i} - \theta_{i,n})$ converges to $-\xi_i$ in $P_{n, \theta(n), \sigma_n}$-probability. This proves the result in case $|\xi_i| < 1$. In case $|\xi_i| > 1$ we have that

$$P_{n, \theta(n), \sigma_n}(\tilde{\theta}_{S,i} \neq 0) \to 1$$

and

$$P_{n, \theta(n), \sigma_n}(\text{sign}(W_n + \theta_{i,n}/(\sigma_n \xi_{i,n} \eta_{i,n})) = \text{sign}(\xi_i)) \to 1. \quad (31)$$

Clearly, also $\tilde{\sigma}/\sigma_n$ converges to 1 in $P_{n, \theta(n), \sigma_n}$-probability since $n - k \to \infty$. Consequently, $\sigma_n^{-1} \alpha_{i,n}(\tilde{\theta}_{S,i} - \theta_{i,n})$ converges to $-\text{sign}(\xi_i)$ in $P_{n, \theta(n), \sigma_n}$-probability, which proves the case $|\xi_i| > 1$.

Finally, if $|\xi_i| = 1$, then (31) continues to hold and we can write

$$\sigma_n^{-1} \alpha_{i,n}(\tilde{\theta}_{S,i} - \theta_{i,n}) = (-\xi_i + o(1))1(\tilde{\theta}_{S,i} = 0) - (\alpha_p(1) + (1 + o_p(1)) \text{sign}(\xi_i))1(\tilde{\theta}_{S,i} \neq 0)$$

$$= -\text{sign}(\xi_i) + \alpha_p(1),$$

where $\alpha_p(1)$ refers to a term that converges to zero in $P_{n, \theta(n), \sigma_n}$-probability. This then completes the proof of part (b). ■

Theorem 39 (Adaptive soft-thresholding with consistent tuning) Suppose that for given $i \geq 1$ satisfying $i \leq k = k(n)$ for large enough n we have $\xi_{i,n} \eta_{i,n} \to 0$ and $n^{1/2} \eta_{i,n} \to \infty$. Set the scaling factor $\alpha_{i,n} = (\xi_{i,n} \eta_{i,n})^{-1}$. Suppose that the true parameters $\theta(n) = (\theta_{i,n}, \ldots, \theta_{k,n}) \in \mathbb{R}^k$ and $\sigma_n \in (0, \infty)$ satisfy $\theta_{i,n}/(\sigma_n \xi_{i,n} \eta_{i,n}) \to \xi_i \in \mathbb{R}$.

(a) Suppose $n - k$ is eventually constant equal to m, say. Then $H_{H_{A,S,n}, \theta(n), \sigma_n}$ converges weakly to the distribution with cdf

$$\int_{|x| < \cdot} \rho_m(s)ds1(-\xi_i \leq x < 0) + 1(x \geq 0)$$

in case $0 \leq \xi_i < \infty$, and to the distribution with cdf

$$\int_{0}^{\sqrt{|\xi_i|}} \rho_m(s)ds1(0 \leq x < -\xi_i) + 1(x \geq -\xi_i)$$

$$= \Pr(\chi_m^2 > m| x| \xi_i|)1(0 \leq x < -\xi_i) + 1(x \geq -\xi_i)$$

33
for all j we have that in case z and that otherwise absolutely continuous. In particular, it reduces to have that x < x.

First, for or i

(b) Assume that \(z_{(n,\theta(n))}^1(x, s\eta_{i,n}) \) and \(z_{(n,\theta(n))}^2(x, s\eta_{i,n}) \) now reduce to

\[
n^{1/2} \eta_{i,n} \left[0.5(x - \theta_{i,n}/(\sigma_n \xi_{i,n} \eta_{i,n})) \pm \sqrt{\left(0.5(x + \theta_{i,n}/(\sigma_n \xi_{i,n} \eta_{i,n}))\right)^2 + s^2} \right].
\]

First, for or \(x > -\zeta_i \) we see that \(H_{AS,n,\theta(n),\sigma_n}^\Phi(x) \) eventually reduces to

\[
\int_0^\infty \Phi \left(z_{(n,\theta(n))}^2(x, s\eta_{i,n})\right) \rho_m(s)ds.
\]

Furthermore, for \(x \geq 0 \) we see that \(z_{(n,\theta(n))}^2(x, s\eta_{i,n}) \to \infty \) for all \(s > 0 \) whereas for \(-\zeta_i < x < 0 \) we have that \(z_{(n,\theta(n))}^2(x, s\eta_{i,n}) \to \infty \) for \(s > \sqrt{-x\zeta_i} \) and \(z_{(n,\theta(n))}^2(x, s\eta_{i,n}) \to -\infty \) for \(s < \sqrt{-x\zeta_i} \). As a consequence, we obtain from the dominated convergence theorem that \(H_{AS,n,\theta(n),\sigma_n}^\Phi(x) \) converges to 1 for \(x \geq 0 \) and to \(\int_{-\infty}^{-\sqrt{-x\zeta_i}} \rho_m(s)ds \) for \(-\zeta_i < x < 0 \). Second, for \(x < -\zeta_i \) note that \(H_{AS,n,\theta(n),\sigma_n}^\Phi(x) \) eventually reduces to

\[
\int_0^\infty \Phi \left(z_{(n,\theta(n))}^1(x, s\eta_{i,n})\right) \rho_m(s)ds
\]

and that \(z_{(n,\theta(n))}^1(x, s\eta_{i,n}) \to -\infty \) for all \(s > 0 \) in this case. This shows that for \(x < -\zeta_i \) we have that \(H_{AS,n,\theta(n),\sigma_n}^\Phi(x) \) converges to 0. But this proves the result for the case \(0 \leq \zeta_i < \infty \). In case \(\zeta_i = \infty \) the same reasoning shows that now \(H_{AS,n,\theta(n),\sigma_n}^\Phi(x) \) eventually reduces to

\[
\int_0^\infty \Phi \left(z_{(n,\theta(n))}^2(x, s\eta_{i,n})\right) \rho_m(s)ds
\]

for all x, and that now for \(x \geq 0 \) we have \(z_{(n,\theta(n))}^2(x, s\eta_{i,n}) \to \infty \) for all \(s > 0 \) whereas for \(x < 0 \) we have that \(z_{(n,\theta(n))}^2(x, s\eta_{i,n}) \to -\infty \) for all \(s > 0 \). The proof for the case \(\zeta_i < 0 \) is completely analogous.

(b) Rewrite \(\sigma_n^{-1} \alpha_{i,n} (\tilde{\theta}_{AS,i} - \theta_{i,n}) \) as

\[
-\theta_{i,n}/(\sigma_n \xi_{i,n} \eta_{i,n}) 1 \left(\tilde{\theta}_{AS,i} = 0 \right) + (\sigma_n \xi_{i,n} \eta_{i,n})^{-1} \left(\theta_{LS,i} - \theta_{i,n} - \sigma^2 \xi_{i,n}^2 \eta_{i,n}^2 / \theta_{LS,i} \right) 1 \left(\tilde{\theta}_{AS,i} \neq 0 \right)
\]

\[
= -\theta_{i,n}/(\sigma_n \xi_{i,n} \eta_{i,n}) 1 \left(\tilde{\theta}_{AS,i} = 0 \right) + (W_n - (\sigma^2 / \sigma_n) \xi_{i,n} \eta_{i,n} / \theta_{LS,i}) 1 \left(\tilde{\theta}_{AS,i} \neq 0 \right)
\]

\[
= -\theta_{i,n}/(\sigma_n \xi_{i,n} \eta_{i,n}) 1 \left(\tilde{\theta}_{AS,i} = 0 \right) + (W_n - (\sigma^2 / \sigma_n) (W_n + \theta_{i,n} / (\sigma_n \xi_{i,n} \eta_{i,n})))^{-1} 1 \left(\tilde{\theta}_{AS,i} \neq 0 \right)
\]

34
where W_n is a sequence of $N(0, n^{-1}\eta_{i,n}^2)$-distributed random variables. Note that $\theta_{i,n}/(\sigma_n \xi_{i,n} \eta_{i,n})$ converges to ζ_i by assumption. Now, if $|\zeta_i| < 1$, then $P_{n,\theta,\sigma_n}^n(\hat{\theta}_{AS,i} = 0) \to 1$ by Theorem 11(b2), hence $\sigma_n^{-1}\alpha_{i,n}(\hat{\theta}_{AS,i} - \theta_{i,n})$ converges to $-\zeta_i$ in P_{n,θ,σ_n}-probability, establishing the result in this case. Furthermore, for $1 \leq |\zeta_i| \leq \infty$ rewrite the above display as

$$
(-\zeta_i + o(1)) 1(\hat{\theta}_{AS,i} = 0) + (o_p(1) - \alpha_{i,n}(\zeta_i + o_p(1))^{-1}) 1(\hat{\theta}_{AS,i} \neq 0)
$$

$$
= (-\zeta_i + o(1)) 1(\hat{\theta}_{AS,i} = 0) + (-\zeta_i^{-1} + o_p(1)) 1(\hat{\theta}_{AS,i} \neq 0),
$$

with the convention that $\zeta_i^{-1} = 0$ in case $|\zeta_i| = \infty$. If $|\zeta_i| > 1$ (including the case $|\zeta_i| = \infty$) then $P_{n,\theta,\sigma_n}^n(\hat{\theta}_{AS,i} = 0) \to 1$ by Theorem 11(b2), and hence the last display shows that $\sigma_n^{-1}\alpha_{i,n}(\hat{\theta}_{AS,i} - \theta_{i,n})$ converges to $-\zeta_i^{-1}$ in P_{n,θ,σ_n}-probability, establishing the result in this case. Finally, if $|\zeta_i| = 1$ holds, then the last line in the above display reduces to $-\zeta_i + o_p(1)$, completing the proof of part (b).

We know from the results in Section 6.2 that we obtain the same limiting distributions for $\hat{\theta}_{H,i}$, $\hat{\theta}_{S,i}$, and $\hat{\theta}_{AS,i}$ as for $\hat{\theta}_{H,i}$, $\hat{\theta}_{S,i}$, and $\hat{\theta}_{AS,i}$, respectively, provided $n - k$ diverges to infinity sufficiently fast in the sense that $n^{1/2}\eta_{i,n}(n - k)^{-1/2} \to 0$. The theorems in this section show that for the soft-thresholding as well as for the adaptive thresholding estimator we actually get the same limiting distribution as in the unknown-variance case whenever $n - k$ diverges even if $n^{1/2}\eta_{i,n}(n - k)^{-1/2} \to 0$ is violated. However, for the hard-thresholding estimator the picture is different, and in case $n - k$ diverges but $n^{1/2}\eta_{i,n}(n - k)^{-1/2} \to 0$ is violated, limit distributions different from the known-variance case arise (these limiting distributions still being convex combinations of two pointmasses, but with weights different from the known-variance case). It seems that this is a reflection of the fact that the hard-thresholding estimator is a discontinuous function of the data, whereas the other two estimators considered depend continuously on the data. The fixed-parameter limiting distributions for all three estimators are again the same as in the known-variance case.

In the case where the degrees of freedom $n - k$ are eventually constant, the limiting distribution of the hard-thresholding estimator is again a convex combination of two pointmasses, with weights that are in general different from the known-variance case. However, for the soft-thresholding as well as for the adaptive thresholding estimator the limiting distributions can also contain an absolutely continuous component. This component seems to stem from an interaction of the more pronounced "bias-component" (as compared to hard-thresholding) with the nonvanishing randomness in the estimated variance. The fixed-parameter limiting distributions for hard-thresholding and adaptive thresholding are again given by δ_0 for all values of θ_i as in the known-variance case, whereas for soft-thresholding the fixed-parameter limiting distribution is δ_0 only for $\theta_i = 0$ and otherwise has a pdf given by $\rho_n(-\text{sign}(\theta_i)x)$ (as compared to a limit of $\delta - \text{sign}(\theta_i)$ in the known-variance case).

6.4 Consistent Tuning: Some Comments on Fixed-Parameter Large-Sample Distributions and the "Oracle-Property"

6.4.1 Hard-thresholding and Adaptive Soft-thresholding

As already mentioned at the end of Section 6.1 as well as Section 6.3.2, under consistent tuning the fixed-parameter limiting distributions of the hard-thresholding and of the adaptive soft-thresholding estimator – in the known-variance as well as in the unknown-variance case – always
Applying Theorem 11(b) we obtain that

Proof. (a) By a subsequence argument we may assume that

satisfes

normally distributed. The proof for

holds on the event

N

11(b) (it is in fact simpler as the subsequence argument is not needed).

We next show that if the estimators are scaled by

\(\sigma^{-1} n^{1/2} \xi_{i,n}^{-1} \)

and its consequences see Leeb and Pötscher (2008), Pötscher and Leeb (2009), and Pötscher and Schneider (2009).

Proposition 40 Suppose that for given \(i \geq 1 \) satisfying \(i \leq k = k(n) \) for large enough \(n \) we have \(\xi_{i,n} \eta_{i, n} \to 0 \) and \(n^{1/2} \eta_{i, n} \to \infty \).

(a) \(\sigma^{-1} n^{1/2} \xi_{i,n}^{-1} \left(\hat{\theta}_{H,i} - \theta_i \right) \) as well as \(\sigma^{-1} n^{1/2} \xi_{i,n}^{-1} \left(\hat{\theta}_{H,i} - \theta_i \right) \) converge in distribution to \(N(0,1) \) when \(\theta_i \neq 0 \), and to \(\delta_0 = N(0,0) \) when \(\theta_i = 0 \).

(b) \(\sigma^{-1} n^{1/2} \xi_{i,n}^{-1} \left(\hat{\theta}_{AS,i} - \theta_i \right) \) as well as \(\sigma^{-1} n^{1/2} \xi_{i,n}^{-1} \left(\hat{\theta}_{AS,i} - \theta_i \right) \) converge in distribution to \(N(0,1) \) when \(\theta_i \neq 0 \), and to \(\delta_0 = N(0,0) \) when \(\theta_i = 0 \), provided the tuning parameter additionally satisfies \(n^{1/4} \xi_{i,n} \eta_{i, n} \to 0 \) for \(n \to \infty \).

Proof. (a) By a subsequence argument we may assume that \(n - k \) converges in \(\mathbb{N} \cup \{\infty\} \). Applying Theorem 11(b) we obtain that \(P_{n, \theta, \sigma} \left(\hat{\theta}_{H,i} = 0 \right) \) converges to 1 in case \(\theta_i = 0 \), and to 0 in case \(\theta_i \neq 0 \). Observe that

\[
\sigma^{-1} n^{1/2} \xi_{i,n}^{-1} \left(\hat{\theta}_{H,i} - \theta_i \right) = -\sigma^{-1} n^{1/2} \xi_{i,n}^{-1} \theta_i
\]

holds on the event \(\hat{\theta}_{H,i} = 0 \), while

\[
\sigma^{-1} n^{1/2} \xi_{i,n}^{-1} \left(\hat{\theta}_{H,i} - \theta_i \right) = \sigma^{-1} n^{1/2} \xi_{i,n}^{-1} \left(\hat{\theta}_{LS,i} - \theta_i \right) =: Z_n
\]

holds on the event \(\hat{\theta}_{H,i} \neq 0 \). The result then follows in view of the fact that \(Z_n \) is standard normally distributed. The proof for \(\hat{\theta}_{H,i} \) is similar using Proposition 7(b) instead of Theorem 11(b) (it is in fact simpler as the subsequence argument is not needed).

(b) Again we may assume that \(n - k \) converges in \(\mathbb{N} \cup \{\infty\} \). By the same reference as in the proof of (a) we obtain that \(P_{n, \theta, \sigma} \left(\hat{\theta}_{AS,i} = 0 \right) \) converges to 1 in case \(\theta_i = 0 \), and to 0 in case \(\theta_i \neq 0 \). Now

\[
\sigma^{-1} n^{1/2} \xi_{i,n}^{-1} \left(\hat{\theta}_{AS,i} - \theta_i \right) = -\sigma^{-1} n^{1/2} \xi_{i,n}^{-1} \theta_i
\]

holds on the event \(\hat{\theta}_{AS,i} = 0 \) and the claim for \(\theta_i = 0 \) follows immediately. On the event \(\hat{\theta}_{AS,i} \neq 0 \) we have from the definition of the estimator

\[
\sigma^{-1} n^{1/2} \xi_{i,n}^{-1} \left(\hat{\theta}_{AS,i} - \theta_i \right) = \sigma^{-1} n^{1/2} \xi_{i,n}^{-1} \left(\hat{\theta}_{LS,i} - \theta_i - \hat{\sigma}^2 \xi_{i,n} \eta_{i,n}/\theta_{LS,i} \right)
\]

\[
= Z_n - (\hat{\sigma}/\sigma)^2 \left(\left(\sigma_{i,n} \right)^{-1} Z_n + \sigma^{-1} \xi_{i,n}^{-1} \theta_i \right)^{-1}.
\]
Now, if $\theta_i \neq 0$, then the event $\tilde{\theta}_{AS,i} \neq 0$ has probability approaching 1 as shown above. Hence, we have on events that have probability tending to 1
\[
\sigma^{-1} n^{1/2} \xi_{i,n}^{-1} (\tilde{\theta}_{AS,i} - \theta_i) = Z_n - (\tilde{\sigma}/\sigma)^2 \bigg(\alpha_n(1) + \sigma^{-1} \xi_{i,n}^{-1/2} \eta_{i,n}^{-2} \theta_i \bigg)^{-1} = Z_n - \alpha_n(1),
\]
since $n\eta_{i,n}^2 \to \infty$ and $\xi_{i,n}^{-1/2} \eta_{i,n}^{-2} \to \infty$ by the assumption and since $\theta_i \neq 0$; also note that $\tilde{\sigma}/\sigma$ is stochastically bounded since the collection of distributions corresponding to ρ_m with $m \in \mathbb{N}$ is tight on $(0, \infty)$ as was noted earlier. The proof for $\tilde{\theta}_{AS,i}$ is again similar (and simpler) by using Proposition 7(b) instead of Theorem 11(b).

Remark 41 Inspection of the proof of Part (b) shows that the condition $n^{1/4} \xi_{i,n}^{-1/2} \eta_{i,n} \to 0$ is used for the result only in case $\theta_i \neq 0$. If now $n^{1/4} \xi_{i,n}^{-1/2} \eta_{i,n} \to \omega$ with $0 < \omega < \infty$, then inspection of the proof shows that then in case $\theta_i \neq 0$ we have that $\sigma^{-1} n^{1/2} \xi_{i,n}^{-1} \big(\tilde{\theta}_{AS,i} - \theta_i \big) = Z_n - \sigma^2 \theta_i^{-1} (\tilde{\sigma}/\sigma)^2 + \alpha_n(1)$. Since Z_n and $\tilde{\sigma}/\sigma$ are independent, we see that the distribution of $\sigma^{-1} n^{1/2} \xi_{i,n}^{-1} \big(\tilde{\theta}_{AS,i} - \theta_i \big)$ asymptotically behaves like the convolution of an $N(0, 1)$-distribution and the distribution of $-\sigma^2 \theta_i^{-1} (n-k)^{-1}$ times a chi-square distributed random variable with $n - k$ degrees of freedom (if $n - k \to \infty$ this reduces to an $N(-\sigma^2 \theta_i^{-1}, 1)$-distribution).

If $n^{1/4} \xi_{i,n}^{-1/2} \eta_{i,n} \to \infty$, then $\sigma^{-1} n^{1/2} \xi_{i,n}^{-1} \big(\tilde{\theta}_{AS,i} - \theta_i \big)$ is stochastically unbounded. Note that this shows that the consistently tuned adaptive soft-thresholding estimator – even in a fixed-parameter setting – has a convergence rate slower than $n^{1/2} \xi_{i,n}^{-1}$ if $\theta_i \neq 0$ and if the tuning parameter is "too large" in the sense that $n^{1/4} \xi_{i,n}^{-1/2} \eta_{i,n} \to \infty$. The same conclusion applies to the infeasible estimator $\tilde{\theta}_{AS,i}$ (with the simplification that one always obtains an $N(-\sigma^2 \theta_i^{-1}, 1)$-distribution in case $n^{1/4} \xi_{i,n}^{-1/2} \eta_{i,n} \to \omega$ with $0 < \omega < \infty$).

We further illustrate the fragility of the fixed-parameter asymptotic results under a $\sigma^{-1} n^{1/2} \xi_{i,n}^{-1}$ scaling obtained above by providing the moving-parameter limits under this scaling. Let $F_{H,n,\theta,\sigma} := F_{H,\eta_{i,n},\theta,\sigma}$ denote the cdf of $\sigma^{-1} n^{1/2} \xi_{i,n}^{-1} (\tilde{\theta}_{H,i} - \theta_i)$, and define $F_{s,n,\theta,\sigma}$ and $F_{AS,n,\theta,\sigma}$ analogously. The proofs of the subsequent propositions are completely analogous to the proofs of Theorem 9 in Pötscher and Leeb (2009) and Theorem 5 in Pötscher and Schneider (2009), respectively.

Proposition 42 (Hard-thresholding) Suppose that for given $i \geq 1$ satisfying $i \leq k = k(n)$ for large enough n we have $\xi_{i,n} \eta_{i,n} \to 0$ and $n^{1/2} \eta_{i,n} \to \infty$. Suppose that the true parameters $\theta^{(n)} = (\theta_1^{(n)}, \ldots, \theta_k^{(n)}) \in \mathbb{R}^k$ and $\sigma^{(n)} \in (0, \infty)$ satisfy $n^{1/2} \theta_i^{(n)}/(\sigma_n \xi_{i,n}) \to \nu_i, \in \mathbb{R}$ and $\theta_i^{(n)}/(\sigma_n \xi_{i,n} \eta_{i,n}) \to \zeta_i \in \mathbb{R}$. [Note that in case $\zeta_i \neq 0$ the convergence of $n^{1/2} \theta_i^{(n)}/(\sigma_n \xi_{i,n})$ already follows from that of $\theta_i^{(n)}/(\sigma_n \xi_{i,n} \eta_{i,n})$, and ν_i is then given by $\text{sign}(\zeta_i) \infty$.]

1. Suppose $|\zeta_i| < 1$. Then $F_{H,n,\theta^{(n)},\sigma^{(n)}}$ converges weakly to $\delta_{-\nu_i}$ if $|\nu_i| < \infty$; if $|\nu_i| = \infty$ the total mass of $F_{H,n,\theta^{(n)},\sigma^{(n)}}$ escapes to $-\nu_i$, in the sense that $F_{H,n,\theta^{(n)},\sigma^{(n)}}(x) \to 0$ for every $x \in \mathbb{R}$ if $\nu_i = -\infty$, and that $F_{H,n,\theta^{(n)},\sigma^{(n)}}(x) \to 1$ for every $x \in \mathbb{R}$ if $\nu_i = \infty$.

2. Suppose $|\zeta_i| > 1$. Then $F_{H,n,\theta^{(n)},\sigma^{(n)}}$ converges weakly to Φ.

3. Suppose $|\zeta_i| = 1$ and $n^{1/2} (\eta_{i,n} - \zeta_i \theta_i^{(n)}/(\sigma_n \xi_{i,n})) \to r_i$ for some $r_i \in \mathbb{R}$. Then $F_{H,n,\theta^{(n)},\sigma^{(n)}}(x)$ converges to
\[
\Phi(r_i) \mathbf{1} (\zeta_i = 1) + \int_{-\infty}^x \phi(t) \mathbf{1} (\zeta_i t > r_i) \, dt
\]

37
for every \(x \in \mathbb{R} \). [In case \(r_i = -\infty \) the limit reduces to a standard normal distribution.]

Proposition 43 (Adaptive soft-thresholding) Suppose that for given \(i \geq 1 \) satisfying \(i \leq k = k(n) \) for large enough \(n \) we have \(\xi_{i,n} \eta_{i,n} \to 0 \) and \(n^{1/2} \eta_{i,n} \to \infty \). Suppose that the true parameters \(\theta^{(n)} = (\theta_{1,n}, \ldots, \theta_{k,n}) \in \mathbb{R}^{k_n} \) and \(\sigma_n \in (0, \infty) \) satisfy \(\theta_{i,n}/(\sigma_n \xi_{i,n} \eta_{i,n}) \to \zeta_i \in \mathbb{R} \).

1. If \(\zeta_i = 0 \) and \(n^{1/2} \theta_{i,n}/(\sigma_n \xi_{i,n}) \to \nu_i \in \mathbb{R} \), then \(F_{AS,n,\theta^{(n)},\sigma_n}^i \) converges weakly to \(\delta_{-\nu_i} \).
2. The total mass of \(F_{AS,n,\theta^{(n)},\sigma_n}^i \) escapes to \(\infty \) or \(-\infty \) in the following cases: If \(-\infty < \zeta_i < 0 \), or if \(\zeta_i = 0 \) and \(n^{1/2} \theta_{i,n}/(\sigma_n \xi_{i,n}) \to -\infty \), or if \(\zeta_i = -\infty \) and \(n^{1/2} \xi_{i,n} \theta_{i,n}^{-1} \sigma_n \to -\infty \), then \(F_{AS,n,\theta^{(n)},\sigma_n}^i (x) \to 0 \) for every \(x \in \mathbb{R} \). If \(0 < \zeta_i < \infty \), or if \(\zeta_i = 0 \) and \(n^{1/2} \theta_{i,n}/(\sigma_n \xi_{i,n}) \to \infty \), or if \(\zeta_i = \infty \) and \(n^{1/2} \eta_{i,n} \xi_{i,n} \theta_{i,n}^{-1} \sigma_n \to \infty \), then \(F_{AS,n,\theta^{(n)},\sigma_n}^i (x) \to 1 \) for every \(x \in \mathbb{R} \).
3. If \(|\zeta_i| = \infty \) and \(n^{1/2} \eta_{i,n} \xi_{i,n} \theta_{i,n}^{-1} \sigma_n \to r_i \in \mathbb{R} \), then \(F_{AS,n,\theta^{(n)},\sigma_n}^i \) converges weakly to \(\Phi(+r_i) \).

It is easy to see that setting \(\theta_{i,n} \equiv \theta_i \) in Proposition 42 immediately recovers the "oracle property" for \(\hat{\theta}_{S,i} \). Similarly, we recover the "oracle property" for \(\hat{\theta}_{AS,i} \) from Proposition 43 provided \(n^{1/2} \xi_{i,n} \eta_{i,n} \to 0 \). The propositions also characterize the sequences of parameters along which the mass of the distributions of the hard-thresholding and the adaptive soft-thresholding estimator escapes to infinity; loosely speaking these are sequences along which the bias of the estimators exceeds all bounds.

The theorems in Section 6.2 also show that the last two propositions above carry over immediately to the unknown-variance case whenever \(n - k \to \infty \) sufficiently fast such that \(n^{1/2} \eta_{i,n} (n - k)^{-1/2} \to 0 \) holds. To save space, we do not extend these two propositions to the case where the latter condition fails to hold.

6.4.2 Soft-thresholding

The situation is somewhat different for the soft-thresholding estimator. It follows from Theorem 38 that the distribution of \(\sigma_n^{-1} (\xi_{i,n} \eta_{i,n})^{-1} (\hat{\theta}_{S,i} - \theta_i) \) does not degenerate to pointmass at zero (in fact, has no mass at zero) if \(\theta_i \neq 0 \) and is held fixed. Consequently, \((\xi_{i,n} \eta_{i,n})^{-1} \) is also the fixed-parameter convergence rate of \(\hat{\theta}_{S,i} \), in the sense that scaling with a faster rate (e.g., \(n^{1/2} \xi_{i,n}^{-1} \)) leads to the escape of the total mass of the finite-sample distribution of the so-scaled (and centered) estimator to \(-\text{sign}(\theta_i) \infty \). For \(\theta_i = 0 \) we get with the same argument as for hard-thresholding that \(\sigma_n^{-1} n^{1/2} \xi_{i,n}^{-1} (\hat{\theta}_{S,i} - \theta_i) \) converges to \(\delta_0 \). For the infeasible version \(\hat{\theta}_{S,i} \) the situation is identical. We conclude by a result analogous to Propositions 42 and 43. The proof of this result is completely analogous to the proof of Theorem 10 in Pötscher and Leeb (2009).

Proposition 44 (Soft-thresholding) Suppose that for given \(i \geq 1 \) satisfying \(i \leq k = k(n) \) for large enough \(n \) we have \(\xi_{i,n} \eta_{i,n} \to 0 \) and \(n^{1/2} \eta_{i,n} \to \infty \). Suppose that the true parameters \(\theta^{(n)} = (\theta_{1,n}, \ldots, \theta_{k,n}) \in \mathbb{R}^{k_n} \) and \(\sigma_n \in (0, \infty) \) satisfy \(n^{1/2} \theta_{i,n}/(\sigma_n \xi_{i,n}) \to \nu_i \in \mathbb{R} \). Then \(F_{S,n,\theta^{(n)},\sigma_n}^i \) converges weakly to \(\delta_{-\nu_i} \) if \(|\nu_i| < \infty \); and if \(|\nu_i| = \infty \), the total mass of \(F_{S,n,\theta^{(n)},\sigma_n}^i \) escapes to \(-\nu_i \), in the sense that \(F_{S,n,\theta^{(n)},\sigma_n}^i (x) \to 0 \) for every \(x \in \mathbb{R} \) if \(\nu_i = -\infty \), and that \(F_{S,n,\theta^{(n)},\sigma_n}^i (x) \to 1 \) for every \(x \in \mathbb{R} \) if \(\nu_i = \infty \).

Again, this proposition immediately extends to the unknown-variance case whenever \(n - k \to \infty \) sufficiently fast such that \(n^{1/2} \eta_{i,n} (n - k)^{-1/2} \to 0 \) holds. We abstain from extending the result to the case where the latter condition fails to hold.
6.5 Remarks

Remark 45 (i) The convergence conditions on the various quantities involving $\theta_{i,n}$ and σ_n in the propositions in Sections 6.1 and 6.4 as well as in the theorems in Section 6.3 are essentially cost-free for the same reason as explained in Remark 8.

(ii) We note that all possible forms of the moving-parameter limiting distributions in the results in this section already arise for sequences $\theta_{i,n}$ belonging to an arbitrarily small neighborhood of zero (and with $\sigma > 0$ fixed). Consequently, the non-uniformity in the convergence to the fixed-parameter limits is of a local nature.

7 References

Alliney, S. & S. A. Ruzinsky (1994): An algorithm for the minimization of mixed l_1 and l_2 norms with applications to Bayesian estimation. *IEEE Transactions on Signal Processing* 42, 618-627.

Bauer, P., Pötscher, B. M. & P. Hackl (1988): Model selection by multiple test procedures. *Statistics* 19, 39-44.

Donoho, D. L., Johnstone, I. M., Kerkyacharian, G., D. Picard (1995): Wavelet shrinkage: asymptopia? With discussion and a reply by the authors. *Journal of the Royal Statistical Society Series B* 57, 301-369.

Fan, J. & R. Li (2001): Variable selection via nonconcave penalized likelihood and its oracle properties. *Journal of the American Statistical Association* 96, 1348-1360.

Fan, J. & H. Peng (2004): Nonconcave penalized likelihood with a diverging number of parameters. *Annals of Statistics* 32, 928-961.

Feller, W. (1957): *An Introduction to Probability Theory and Its Applications, Volume 1*. 2nd ed., Wiley, New York.

Frank, I. E. & J. H. Friedman (1993): A statistical view of some chemometrics regression tools (with discussion). *Technometrics* 35, 109-148.

Ibragimov, I. A. (1956): On the composition of unimodal distributions. *Theory of Probability and its Applications* 1, 255-260.

Leeb, H. & B. M. Pötscher (2003): The finite-sample distribution of post-model-selection estimators and uniform versus nonuniform approximations. *Econometric Theory* 19, 100-142.

Leeb, H. & B. M. Pötscher (2005): Model selection and inference: facts and fiction. *Econometric Theory* 21, 21-59.

Leeb, H. & B. M. Pötscher (2008): Sparse estimators and the oracle property, or the return of Hodges’ estimator. *Journal of Econometrics* 142, 201-211.

Knight, K. & W. Fu (2000): Asymptotics for lasso-type estimators. *Annals of Statistics* 28, 1356-1378.

Pötscher, B. M. & H. Leeb (2009): On the distribution of penalized maximum likelihood estimators: the LASSO, SCAD, and thresholding. *Journal of Multivariate Analysis* 100, 2065-2082.

Pötscher, B. M. & U. Schneider (2009): On the distribution of the adaptive LASSO estimator. *Journal of Statistical Planning and Inference* 139, 2775-2790.

Tibshirani, R. (1996): Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society Series B* 58, 267-288.

Zou, H. (2006): The adaptive lasso and its oracle properties. *Journal of the American Statistical Association* 101, 1418-1429.
A Appendix

Recall that \(r(x) = 0 \) for \(x < 0 \).

Lemma 46 \((2m)^{-1/2}r_m((2m)^{-1/2}t + 1)\) converges to \(\phi(t) \) in the \(L_1 \)-sense as \(m \to \infty \).

Proof. Observe that \((2m)^{-1/2}r_m((2m)^{-1/2}t + 1)\) is the density of \(U_m = (2m)^{1/2} \left(\sqrt{\chi_m^2/m} - 1 \right) \) where \(\chi_m^2 \) denotes a chi-square distributed random variable with \(m \) degrees of freedom. By the central limit theorem and the delta-method \(U_m \) converges in distribution to a standard normal random variable. With

\[
g_m(x) = 2^{-m/2} (\Gamma(m/2))^{-1} x^{(m/2)-1} \exp(-x/2) \quad \text{for } x > 0
\]

being the density of \(\chi_m^2 \) we have for \(x > 0 \)

\[
\begin{align*}
p_m(x) &= 2mxg_m(mx^2) = 2^{1-m/2} (\Gamma(m/2))^{-1} m^{1/2} (mx^2)^{(m/2)-1/2} \exp(-mx^2/2) \\
&= (8m)^{1/2} \Gamma((m + 1)/2) (\Gamma(m/2))^{-1} g_{m+1}(mx^2).
\end{align*}
\]

and we have \(p_m(x) = 0 \) for \(x \leq 0 \). Since the cdf associated with \(g_{m+1} \) is unimodal, this shows that the same is true for the cdf associated with \(p_m \). But then convergence in distribution of \(U_m \) implies convergence of \(m^{-1/2}r_m(m^{-1/2}t + 1) \) to \(\phi(t) \) in the \(L_1 \)-sense by a result of Ibragimov (1956), Scheffé’s Lemma, and a standard subsequence argument. ■