An Overview of Different Methods for Aminoglycoside Residue Determination

Sarah Morovatdar¹, Bahman Khameneh², Zahra Khashyarmanesh³ and Bibi Sedigheh Fazly²,⁴*

¹School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
²Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
³Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
⁴Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.

Authors’ contributions
This work was carried out in collaboration among all authors. Author SM prepared the data, prepared tables, performed and wrote the first draft of the manuscript. Author BK designed the study, prepared the tables, wrote the first draft and revised the manuscript. Author ZK wrote part of the first draft, and revised the manuscript. Author BSF designed and supervised the study and revising the manuscript. All the authors read and approved the final version of the manuscript.

ABSTRACT
Aminoglycosides (AGs) are chemical substances that exist in the bacteriologic category of traditional antibiotic (AB) therapy. The importance of the determination of AG as has been described in many situations by researchers. Because of the narrow therapeutic ranges of AGs, considerable efforts have been attributed to the analysis of AGs in pharmaceutical preparations, serum, and urine specimens for therapeutic drug monitoring purposes. Residues of ABs in many different cases like environment and human food, causes a major concern, as prolonged exposure to ABs is a serious health hazard, related to both side effects of prolonged use and the risk of developing bacterial resistance to various ABs. The major challenge is finding a sensitive and reliable method to determine AGs in a complex matrix. The microbiological assay was a simple and...
old method for the determination of AGs. Chromatography and spectroscopy methods are the main instrumental methods for analysis that have been employed for these purposes. Biosensor based instrumental systems have been recently used to determine the AG residues in many cases. Each of these methods has its advantages and disadvantages. This review summarizes different ways (microbiological methods, instrumental methods, and biosensor) for the determination of AGs in all cases. Different databases including PubMed, Scopus, and Web of Science with the words of AGs determination and related words for antimicrobial keywords searched without time limitation.

Keywords: Aminoglycoside; antibiotic residues; antibiotic resistance; instrumental method; biosensor; microbiological assay.

1. INTRODUCTION

Aminoglycosides (AGs) are potent, broad-spectrum antibiotics (ABs) that have been used extensively in clinical and consisting of various molecules including gentamicin, tobramycin, amikacin, plazomicin, streptomycin, neomycin, and paromomycin [1]. These ABs have been used either alone or as part of combination therapy for the treatment of serious infections caused by aerobic Gram-negative bacteria. They also in combination with other ABs have been used for the treatment of selective Gram-positive infections [2,3]. Additionally, AGs have been used for other infectious diseases such as protozoa (paromomycin), Neisseria gonorrhoea (spectinomycin), and mycobacterial infections (tobramycin, streptomycin, and amikacin) [4,5].

The antibacterial activity of AGs is related to the binding to the aminoacyl site of 16S ribosomal RNA (rRNA) within the 30S ribosomal subunit. They show pronounced advantages such as rapid bactericidal activity, synergistic activities with β-lactams, and other cell wall-active agents. They also have been shown significant post-antibiotic effects, while the persistent suppression of bacterial growth is observed up to 7.5 h after the drug has been cleared. These effects are related to both Gram-negative bacilli and Staphyloccocus aureus, but not other Gram-positive cocci [6,7].

AGs are weakly base compounds with polyatomic nature; they are soluble in water and insoluble in organic solvents, and also stable and
difficult to decompose. They are characterized by two or more amino sugars linked by glycosidic bonds to an aminocyclitol component and the whole structure containing many free hydroxyls and at least two amino groups (structural formulas see Fig. 1) [8,9]. The polycationic nature leads to the poor Oral absorption, poor penetration into the cerebrospinal fluid, bronchial secretions, biliary tree and a rapid renal clearance which concentrate very efficiently within the urine. The polycationic charge may also contribute to the nephrotoxicity of AGs [4,10,11].

Because of the broad-spectrum activities and good therapeutic effect, AGs have been used extensively in veterinary medicine and play an important role in the prevention and treatment of animal diseases and also used as feed additives for growth promotion of animals [12,13]. The residues of AGs in animal edible tissues, which due to improper or over-use, may cause harm to the human, such as ototoxicity and nephrotoxicity and environment [14,15]. The other potential problem with AGs is related to the fact that AGs cannot be completely absorbed by the organism and therefore the unabsorbed ABs will not be filtered into groundwater or surface water which finally leads to environmental water pollution [16]. Additionally, the development of AB resistance in bacteria has direct connections with all of them and the relationship between veterinary use of ABs and antibacterial resistance in humans has been a subject of much concern [17,18]. Hence, accurate determination of the residues of AGs is of huge importance [9,19].

This paper reviews different methods for the determination of AGs in various matrices.

Fig. 1. Chemical structures of the aminoglycoside antibiotics
2. MATERIALS AND METHODS

This review evaluates and compares researches on AGs residues determination in different samples in published literature from PubMed, Scopus, Electronic Journals Library, Global Health Databases, and Google Scholar.

2.1 Amikacin

Amikacin is a semi-synthetic antimicrobial compound that is derived from kanamycin A [20]. Amikacin is particularly effective in many serious diseases caused by Gram-negative bacteria that resistant to other AGs [21].

U+ Babends et al. (1955) compared the agar-well diffusion technique and high-performance liquid chromatography (HPLC)– ultraviolet (UV) detector for the determination of amikacin in human serum. The results of in vivo Analysis were similar to those of microbiological tests [22]. In another instrumental method LC with fluorescence detector could detect amikacin with a limit of detection (LOD) and quantification (LOQ) values of 0.05 and 0.1 μg/mL, respectively [23].

In another study, amikacin in the presence of other AGs in pure form and some pharmaceutical preparations was analyzed by Lanthanide Ion Probe Spectrofluorometry (LIPS). The result of the study showed there was not any significant difference between LIPS and fluorimetric method, whereas LIPS is more useful than fluorimetric in the industry because it has no interaction with other ingredients and is more rapid and simple than fluorimetric method [24]. Another method that has been used in both industry and clinical laboratory is the fluorimetric method. This method can detect kanamycin, neomycin, and tobramycin with LOD of 10.0 ng/mL [25] and fluorescence spectrophotometer to quantify amikacin with LOQ of 400.0 μg/mL, that is a poor method for the determination of amikacin now [26] but in 2019 a specific fluorometric depend on molecularly imprinted polymer on high fluorescent g-C3N4 quantum dots method was developed. The LOD values of this method were lower than the previous one (LOD was 1.2 ng/mL), so this method is a reliable method for clinical monitoring [27].

HPLC with Resonance Rayleigh Scattering (RRS) was used for the detection of amikacin, netilmicin, and gentamicin with very low LOD values. This method is validated because of high sensitivity, simplicity, low cost, and lack of interference and could be used for serum and urine sample analysis in hospitals [28] and Electrospray-Ionization Mass Spectrometry (ESI-MS) also, can be used for clinical monitoring. The linear dynamic ranges of detection for amikacin was 10.0–1000.0 ng/mL [29].

Liquid chromatography with tandem mass spectrometry (LC-MS) (2017) was developed for the determination of amikacin in milk, honey, and pork samples. The LOD and LOQ values were 11.0 μg/kg, 33.0 μg/kg in milk and honey respectively, and 12.0 μg/kg, and 40.0 μg/kg respectively in pork sample [31]. LOQ for liver, kidney, muscle and fish sample were 5.0 μg/kg, 1.0 μg/kg, 1.0 μg/kg, 2.0 μg/kg, respectively [32]. In 2020 the dummy Moleculary Imprinted Solid-Phase Extraction (MSPE) coupling with hydrophilic interaction-HPLC with MS was developed for the determination of every AGs in water sample with the lowest concentration (LOD was 0.006 to 0.6 ng/mL) [33]. Hydrophilic interaction MSPE combined with HILIC–MS/MS was developed for the determination of amikacin in a meat sample with LOD of 2.0 μg/kg and LOQ of 7.3 μg/kg [34].

By the colorimetric method, AGs could be detected in milk or pharmaceutical products with LOD value of 0.999 ng/mL [35]. Amikacin also was detected in human serum, with a molecularly imprinted SPR sensor method (LOD 0.0025 μg/mL and LOQ 0.01 μg/mL). This method is rapid and sensitive for the determination of AGs in therapeutic ranges [36] and in the industry was used for simultaneous determination of netilmicin, tobramycin, lincomycin, kanamycin, and amikacin with LOD lower than 2.2 μM except for lincomycin that is 6.7 μM [37]. The most selective method for the detection of amikacin, gentamicin, and tobramycin are colorimetric methods based on the aggregation of gold nanoparticles (0.999 ng/mL).
Amikacin is an AG that is used in cases of resistance to gentamicin. The biosensor method is a novel method that has been used to a considerable extent to determine the amount of amikacin, but the recent instrumental method has good improvement and they are more sensitive than the biosensor method, therefore, it can be used instead of expensive and difficult methods. Generally, the microbiological assay can be used as an analysis for any laboratory due to its ease of operation and may be able to replace device methods. A comparison of different methods of determination of amikacin residues was illustrated in Table 1.

Method	Description	Matrix	LOD	LOQ	Additional information	Reference
Microbiological / Instrumental	Disk diffusion assays/ HPLC-UV ESI-MS	Human serum	_	_		[22]
Instrumental	Fluorimetric	Industry and clinical samples	10.0	_	The linear dynamic ranges of detection for amikacin was 10.0–1000.0 ng/mL Selective method for those AGs which contain primary amino groups	[29]
Instrumental	Fourier-transform infrared derivative spectroscopy	Aqueous sample	0.4 mg/mL	_	A fast and simple method that can be determined amikacin sulfate in pharmaceuticals preparation	[25]
Instrumental	Fluorescence spectrophotometer	_	_	400.0 µg/mL	Poor method for determination of amikacin in nowadays.	[26]
Instrumental	HPLC- RRS	Human serum	_	_	Hasn’t any interference with matrices	[28]
Instrumental	HPLC – CAD	In solution	2.0 µg/mL	5.0 µg/mL	Good for the pharmaceutical industry because prefect in detection and determination of amikacin	[30]
Instrumental	Strong cation-exchange chromatographic (SCX)- HPLC with chemiluminescence (CL)	Water samples	0.7 µg/L	_		[38]
Method	Description	Matrix	LOD	LOQ	Additional information	Reference
---------------	--	-------------------------------------	---------	---------	--	-----------
Instrumental	detection Instrumentation methods combined with HILIC-MS/MS/MS analysis	Meat sample	2.0 µg/kg	7.3 µg/kg		[34]
Instrumental	LIPS	Pure form and some pharmaceutical preparations				[24]
Instrumental	LC-MS/MS	Liver, kidney, muscle and fish samples			Sensitive for the determination of different AGs in the food industry	[32]
Instrumental	LC with MS	Honey, milk and pork samples			Determine different AGs in honey, milk, and pork	[31]
Instrumental	LC	Dosage Forms and human plasma	0.05 µg/mL	0.1 µg/mL	This method can determine gentamicin and neomycin with a similar result	[23]
Biosensor	A copper micro particle-modified carbon fiber microdisk array electrode was fabricated and employed in capillary electrophoresis	Pharmacutical injections below 2.0 mM			This method determines netilmicin, tobramycin, lincomycin, kanamycin with LOD below 2 mM, and for lincomycin, LOD is 6.7 mM.	[37]
Biosensor	The colorimetric method based on the aggregation of gold nanoparticles	Milk and medicine product	0.999 ng/mL		A sensitive and fast method for the determination of food and clinical analysis	[35]
Biosensor	Molecular imprinted SPR nano sensor	Human plasma	0.002 µg/mL	0.01 µg/mL	Rapid and sensitive methods can make improvements in clinical monitoring in the future.	[36]
2.2 Astromicin

HPLC method was used for the determination of astromicin in the is of cefsulodin and piperacillin in human serum. The LOD value was 0.1 µg/mL for astromicin and 0.5 µg/mL for piperacillin and cefsulodin [39]. In another study, the HPLC-evaporative light scattering detector (ELSD) method was employed for easy and fast determination of astromicin. The results showed that LOD and LOQ values were 2.0 µg/mL and 5.0 µg/mL, respectively [40]. Both of these methods can be used for clinical laboratory [39, 40] and there was HPLC method to determine astromicin and other AGs with LOQ 1.58 µg/mL. This method is useful for clinical monitoring in hospital [41].

In 1988, fluorescence polarization immunoassay was developed for the determination of astromicin in the blood sample. The result of the analysis showed it was a good method for clinical monitoring in hospital [42].

Astromycin is a new AG which is mostly measured in blood serum samples by instrumental methods. There is no microbiological assay for this AG, which may be because it is a new AG. A comparison of different methods of determination of astromycin residues is shown in Table 2.

2.3 Gentamicin

Gentamicin has been used extensively to combat both Gram-negative and positive bacterial infections [43, 44].

Barends et al. compared HPLC with UV detector and microbiological assay (S. aureus Alkmaar was used as a microorganism tester) for the determination of gentamicin and tobramycin. The results of the experiment indicated, although they had some small differences, they are interchangeable [45]. Jacques Nouws et al. (1999) developed a microbiological assay to evaluate residual ABs like AGs in milk. For determination of spectinomycin, Bacillus calidolactis was used and for others, AGs like neomycin, kanamycin, gentamycin, dihydro (DH) streptomycin, Bacillus subtilis was employed. The data indicated that this method can determine these AGs in milk under the maximum residue level (MRL) [46].

Felipe Rebello Lourenço et al. studied the agar diffusion method with Staphylococcus epidermidis as a selected microorganism to determine gentamicin in raw material, injectable solution, and dermatological cream with 3 different kinds of design assay (3 x 1, 2x2, and 5 x 1). These three design didn’t show any significant difference and each design was used for a specific condition, for example, the 2 x 2 assay was used for research and both the 5 x 1 and 3 x 1 designs were the most suitable assays for the routine analysis in quality controls in the laboratory [47].

Researchers compared the microbiological method (the organism tested was Staphylococcus for framycetin and B. subtilis for other AGs ABs) with TLC and HPLC-fluorimetric detector in pharmaceutical preparations for determination of gentamicin, tobramycin, sisomicin, diebekacin, framycetin, kanamycin, and netilmicin.

These three methods did not show any significant differences but LOD was 56.0-76.0 ng/mL, 60.0 ng/mL, 60.0 ng/mL, 100.0 ng/mL, 100.0 ng/mL, 60.0 ng/mL, 60.0 ng/mL.

Method	Description	Matrix	LOD	LOQ	Additional information	Reference
Instrumental	HPLC	Human serum	–	1.58 µg/mL	–	[41]
Instrumental	HPLC	Human serum	–	–	–	[39]
Instrumental	HPLC-ELSD	Human serum	2.0 µg/mL	5.0 µg/mL	–	[40]
Biosensor	A fluorescence polarization	Blood samples	–	–	Good for monitoring of astromicin in hospital	[42]
respectively for gentamicin, tobramycin, sisomicin, diebekacin, framyctin, kanamycin and netilminic in TLC, and in HPLC was 0.6–1.5 ng/mL, 1.1 ng/mL, 0.9 ng/mL, 0.7 ng/mL, 0.2–1.8 ng/mL and 0.8 ng/mL respectively; therefore they concluded HPLC is the best method for determination of AGs in pharmaceutical preparations but chemical method (HPLC- fluorimetric detector) had little difference in sensitivity in comparison with radioimmunoassay (radioimmunoassay is more sensitive than chemical assay) [48,49].

LC-MS method determined the lowest concentration of gentamycin even the enzyme-linked immunosorbent assay (ELISA) method in food products. LOD and LOQ were 6.0 µg/kg, 20.0 µg/kg respectively in milk and pork samples, and 4.0 µg/kg, 13.0 µg/kg in honey, respectively [31]. Also, LC-MS/MS was employed for the determination of gentamicin C1, C1a, and C2 with LOQ 30.0 µg/kg in food samples and clinical monitoring [32]. LC-MS method developed (2010) for the determination of AGs in seafood with LOD of 0.0017–0.0100 mg/kg and LOQ of 0.0056–0.0333 mg/kg. The great advantage of this method is the simultaneous determination of neomycin and gentamicin in seafood [50]. In 2020 LC-MS used to detect gentamicin C1, C1a, and C2 with LOQ 0.01 mg/kg in bovine muscle, bovine liver, milk, chicken egg, fish, and shrimp samples [51]. The advantage of this method is the simultaneous determination of different AGs. HILIC–MS/MS method was employed for bovine muscle with LOQ of 23.0 µg/kg [52]. LC-MS determines residual gentamicin C1a/C1/C2/C2a in the kidney and honey. LOQ value for gentamicin C1 was 8.0 µg/kg in honey and 94.0 µg/kg in the kidney, for gentamicin C1a was 12.0 µg/kg in honey and 59.0 µg/kg in kidney and for gentamicin, C2/C2a was 24.0 µg/kg in honey and 70.0 µg/kg in kidney sample [53].

Residual of gentamicin in wastewater was determined by LC–ES-tandem MS method with LOQ of 0.20 1/µg [44]. Resonance Rayleigh Scattering was developed for the determination of gentamicin. The LOD was 6.1–8.1 ng/mL. This method is used for both quality control and clinical laboratories [54].

Capillary electrophoresis tandem mass spectrometry and extraction with molecularly imprinted polymers (CE-MS/MS) device, can detect different types of gentamicin in honey. LOD for gentamicin C1a, gentamicin C1, and gentamicin C2 were 20.7 µg/kg, 28.5 µg/kg and 24.0 µg/kg, respectively and LOQ were 69.1 µg/kg, 94.8 µg/kg, 80.1 µg/kg, respectively [55]. Also, in 2020, Electro spray-Ionization Mass Spectrometry (ESI-MS) and a Flow-Injection Analysis Selected-Ion Monitoring (FIA-SIM) was developed for rapid determination and monitoring of gentamicin, tobramycin, and amikacin, respectively. The linear dynamic ranges of detection for both methods were 10.0–1000.0 ng/mL [29].

In 1997, HPTLC with fluorodensitometric was used to determine gentamicin in plasma and urine. The results indicated that the method was a reliable and valuable technique for quantitative analysis of the bulk drug gentamicin and gentamicin from urine and plasma samples [56].

Capillary electrophoresis electrochemical (CE-EC) was developed for the determination of gentamicin in pharmaceutical preparations with LOD of 9.1 µM [57].

In another article, the ELISA method was good for the determination of gentamicin in milk and kidney with LOD < 0.01 mg/L <0.05 mg/kg, respectively (Also neomycin, streptomycin, and DH streptomycin can be detected by this method in milk and kidney). In comparison with explained methods, the ELISA method has a long distance from MRLs [58].

The determination of gentamicin via enzyme immunoassay method in pharmaceuticals and food was done in 2002. The LOD of this method was 1×10^{-9} mg/ml and gentamicin could be detected in less than 20 minutes [59]. In another study, gentamicin nanoparticle was employed with the LOD value of 0.35 ng/ml. The selectivity and sensitivity of the method were remarkably improved for gentamicin in pharmaceuticals and food [35].

Gentamicin is one of the most widely used AGs for the treatment of infectious diseases. Most reports to determine the amount of gentamicin are the instrumental method, which is both faster than the microbiological assay and less expensive than the biosensor method. In some cases, the microbiological assay can replace the instrumental method with the same sensitivity. A comparison of different methods of gentamicin residues determination is shown in Table 3.
Method	Description	Matrix	LOD	LOQ	Additional information	Reference
Microbiological	Microbiological assay comparison TLC and HPLC	Pharmaceutical preparations	–	–	–	[48, 49]
Microbiological	Multiple systems	Raw milk	25.0 µg	1 µg	–	[46]
Microbiological	Agar diffusion	Raw material, injectable solution, and dermatologic cream	–	–	–	[47]
Microbiological/	Agar-well diffusion/HPLC	Honey sample	–	–	Good strategy for determine three kind of gentamicin (gentamicin C1a/C2/C1) in honey	[55]
Instrumental	CE-MS	Honey sample	–	–	–	
Instrumental	CE-EC	Pharmaceutical preparations	9.1 µM	–	–	[57]
Instrumental	ESI-MS	Human serum	–	–	The linear dynamic ranges of detection were 10–1000 ng/mL	[29]
Instrumental	HPLC with Fluorodensitometric	Plasma and urine	20.0 ng	–	40.0–200.0 ng Because of the selectivity and cheapness of this method can be used for routine analysis of plasma and urine.	[56]
Instrumental	HILIC-MS/MS	Bovine muscle	–	23.0 µg/kg	Suitable for industry	[52]
Instrumental	FIA-SIM	–	–	–	The linear dynamic ranges of detection were 10–1000 ng/mL	[29]
Instrumental	LC–mass spectrometry	Seafood	0.0017/0.0100 0 mg/kg	0.0056–0.0333 mg/kg	–	[50]
Instrumental	LC–ES-tandem MS	Wastewater	–	0.20 µg	This method can be used for aqueous environmental samples	[44]
Method	Description	Matrix	LOD	LOQ	Additional information	Reference
------------------------	--	-------------------------------------	-----------	-----------	---	-----------
Instrumental	LC-MS/MS	Liver, muscle, fish samples	_	_	Gentamic in C1/C1a/C2/2a/2b: 30.0 µg/kg	[32]
Instrumental	LC with tandem mass spectrometry	Honey and pork samples	_	_		[31]
Instrumental	LC-MS	Kidney and honey samples	_	_		[53]
Instrumental	LIPS	Pure form and some pharmaceutical preparations	_	_	There isn’t a significant difference between LIPS and fluorimetric	[24]
Instrumental	Phenylboronic acid solid-phase extraction and LC-MS	Bovine muscle, bovine liver, milk, chicken egg, fish and shrimp samples	_	0.01 mg/kg		[51]
Instrumental	RRS method		6.1–8.1 ng/mL	_		[54]
Biosensor	Colorimetric method base on the aggregation of gold nanoparticles	Pharmaceutic als and food samples	0.354 ng/mL	_	For determination of AGs in food and clinical analysis	[35]
Biosensor	ELSA	Milk and kidney samples	_	_		[58]
Biosensor	Enzyme immunoassay with the use of amperometric enzyme immunosensor	Pharmaceutic als and food samples	10^10 mg/mL	_	This method good for evaluation of residual of gentamicin in food and industry	[59]

2.4 Isepamicin

The general method for the determination of isepamicin is the HPLC method with different detectors. In 1997, researchers compared microbiological, instrumental method (HPLC) and biosensor method (Radioimmunoassay) for the determination of isepamicin in human serum. The LOQ was 0.1 µg/ml for HPLC and radioimmunoassay and 0.5µg/ml for microbiological assay. The result of regression analysis shows a good relationship between these methods and they have not significant differences [60].

In 2001, Vogel et al. developed HPLC-ELSD for the determination of isepamicin in solution. The results indicated that this method was a simple and rapid assay method for the determination of isepamicin with no
derivatization problems but also LOQ was sufficient enough for the quantitative assay of isepamicin sulfate and d-isepamicin [61]. In 1990, researchers used post-column derivatization with o-phthalaldehyde for determination of isepamicin with a spectrofluorometric detector that causes many problems including the creation of degradation products. The LOD value was 100 ng/ml for isepamicin in plasma and 50 ng/ml in urine and dialysate [62]. Both explained assay methods can be used for the measurement of other AGs like gentamicin, kanamycin, etc [61,62].

Also, isepamicin was determined in human serum and rat plasma with HPLC-Fluorescence detector and HPLC-RRS respectively. The results of these methods show that they can be used instead of each other [63,64]. An instrumental method has been the main method for measuring isepamicin but for simplicity in measuring this AG, it is better to use microbiological assay. With the increasing use of isepamicin, a variety of biosensor methods may be developed. A comparison of different methods of isepamicin residues determination is illustrated in Table 4.

Method	Description	Matrix	LOD	LOQ	Additional Information	Reference
Microbiological/Instrumental/Biosensor	Microbiological assay/HPLC/radioimmunoassay	Human serum	–	0.1 µg/ml for HPLC and radioimmunoassay and 0.5 µg/ml for microbiological assay	–	[60]
Instrumental	HPLC	Urine and plasma samples	–	In plasma: 100.0 ng/mL and in urine and dialysate 50.0 ng/mL	Clinical monitoring of isepamicin, tobramycin, kanamycin, netilmicin, and gentamicin	[62]
Instrumental	HPLC-ELSD	–	–	–	–	[61]
Instrumental	HPLC-fluorescence detector	Human serum	–	0.5 µg/ml	Useful for clinical monitoring.	[63]
Instrumental	HPLC with RRS	Rat plasma	–	–	A good method for clinical monitoring	[64]
2.5 Kanamycin

Multiple systems were used to determine kanamycin with LOD of 150.0 1/µg [46]. Copper-one capillary electrodes (OCE) provided µM detection limits, in pharmaceutical preparations (LOD=2.2 µM). Capillary electrophoresis with an ion laser-induced fluorescence detector (CE-LIF) was developed in human serum with LOD of 14.4 nM [65].

HILIC–MS/MS method (2016) was used to detect kanamycin in bovine muscle with LOQ of 56.0 µg/kg [52] also, in 2020 hydrophilic interaction MSPE combined with HILIC–MS/MS was developed for the determination of kanamycin with good sensitivity and selectivity in meat sample. LOD and LOQ values were 0.6 µg/kg and 2.4 µg/kg, respectively [34].

LC-MS was used for the detection of kanamycin in milk, honey, and pork (2017). LOD and LOQ values were 11.0 µg/kg, 36.0 µg/kg in milk, 10.0 µg/kg, 34.0 µg/kg in honey, and 11.0 µg/kg, 36.0 µg/kg in pork, respectively [31]. Also, LC-MS determined kanamycin A with LOQ of 41.0 µg/kg in honey and 85.0 µg/kg in the kidney [53]. LC-MS were used for the determination of kanamycin in 6 different samples. The LOQ value was 0.01 mg/kg [51].

LC-MS/MS was used for the detection of kanamycin in anatolian buffalo milk with LOD of 3.56 µg/kg [66]. Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS) was used for the determination of kanamycin in pork meat with LOD and LOQ of 3.3 µg/kg and 10.9 µg/kg, respectively [67].

An unmodified silver nanoparticle method was employed for the determination of kanamycin in milk with LOD of 2.6 ng/ml which was much lower than MRL [68]. The gold nanoparticle was the most sensitive method for the determination of kanamycin in aqueous solutions (LOD was less than 0.1 nM). This method was used for analyzing milk or meat samples [69]. Aptamer-immobilized electrosprnanoe gold nanoparticles were used for the determination of kanamycin in aqueous solution with LOD values in 120–480 picomolar [71].

Photoluminescence response of an off-on probe based on the spherical gold nanoparticles method was used to determine kanamycin in yellow-fever vaccine and veterinary pharmaceuticals and medical compounds. The LOD and LOQ values were 0.06 µM/mL and 0.2 µM/mL, respectively [72].

As previously explained, the instrumental method is usually for the determination of AGs, and the usual method used for the determination of kanamycin in the food sample was the LC-MS method. Biosensor methods that have been used for the determination of kanamycin have good sensitivity and selectivity. Table 5 showed the comparison of different methods of kanamycin residues determination.

Method	Description	Matrix	LOD	LOQ	Additional information	Reference
Microbiological	Multiple	Raw milk	150.0 1/µg	1/µg	This method is detected kanamycin lower than the MRL range	[46]
Instrumental	CE-LIF	Human serum	14.4 nM	0.2 µg	This method needs both a short time and a small sample for analysis.	[65]
Instrumental	CE-EC	Pharmaceutical	2.2 µM	1/µg		[57]
Method	Description	Matrix	LOD	LOQ	Additional Information	Reference
------------	--	-------------------------------	-------	--------	---	-----------
Instrumental	HILIC–MS/MS	ns Bovine muscle	–	56.0 µg/kg		[52]
Instrumental	MSPE combined with HILIC–MS/MS analysis	Meat sample	0.6 µg/kg	2.4 µg/kg		[34]
Instrumental	SCX-HPLC CL	Water sample	10.0 µg/L	–	A simple and sensitive method comparison other instrumental methods.	[38]
Instrumental	Ultra-high-performance liquid chromatography-tandem mass spectrometry	Pork sample	3.3 µg/kg	10.9 µg/kg		[67]
Instrumental	LIPS spectrofluorometric technique	Pharmaceutical preparations	–	–		[24]
Instrumental	LC-MS	Honey and kidney samples	–	In kidney was 85 µg/kg and honey was 41 µg/kg		[53]
Instrumental	LC-MS/MS	Liver, fish, kidney and muscle samples	–	In liver and fish is 15.0 µg/kg, kidney and muscle is 5.0 µg/kg	A sensitive method for the determination of kanamycin in animal products.	[32]
Instrumental	LC-MS/MS	Anatolian buffalo milk	3.56 µg/kg	–		[66]
Instrumental	LC-MS	Bovine muscle, bovine liver, milk, chicken egg, fish and shrimp samples	–	0.01 mg/kg		[51]
Method	Description	Matrix	LOD	LOQ	Additional information	Reference
------------	--	---	---------	---------	---	-----------
Instrumental	LC with tandem mass spectrometry	Honey, milk and pork samples	–	–	–	[31]
Biosensor	Gold nanoparticles	Aqueous solution	0.1 nM	–	–	[69]
Biosensor	Chlortetracycline-coated silver nanoparticles–UV	Aqueous solution	120-480 picomolar	–	The most sensitive method for detection of kanamycin	[71]
Biosensor	Photoluminescence response of an off-on probe based on spherical gold nanoparticles	In yellow-fever vaccine and veterinary pharmaceutical and medical compound	0.06 µM/mL	0.2 µM/mL	–	[72]
Biosensor	Colorimetric has been developed using unmodified silver nanoparticles	In milk	2.6 ng/mL	–	–	[68]

2.6 Neomycin

There is one microbiological method for the determination of neomycin that is used in multiple systems. The LOD of this method was 2.5 1/µg [46].

In 2005, Regazzeti et al. employed HPLC-ELSD for the determination of neomycin and framycetin sulfate in commercial samples. This method was good for measurement of the neomycin B and C in the industry [73]. HPLC-CL can detect neomycin in the aqueous sample with LOD of 1.5 µg/L [38]. Liquid Chromatography (LC)-Fluorescence Detector (2008) was developed for evaluating the neomycin level in dosage forms and human plasma with LOD of 0.05 µg/mL and LOQ of 0.1 µg/mL [23]. Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) employed for the determination of neomycin in the sample like liver, kidney and muscle and the LOD were 5.0 µg/kg in the liver, 15.0 µg/kg in the kidney, and muscle 30.0 µg/kg [32]. Liquid Chromatography–Mass Spectrometry (LC-MS) can quantify neomycin in bovine muscle, bovine liver, milk, chicken egg, fish and shrimp with LOD of 0.01 mg/kg [51] also LC-MS determine neomycin B (and other AGs) in honey and kidney with LOQ of 125.0 µg/kg and 264.0 µg/kg, receptively [53].

Capillary Electrophoresis-Tandem Mass Spectrometry (CE-MS/MS) methods were developed for the determination of nine AGs in honey samples. LOD and LOQ values of neomycin were 25.7 µg /kg and 85.8 µg /kg, respectively [55]. Hydrophilic Interaction Chromatography With Tandem Mass Spectrometry (HILIC–MS/MS) method developed for the determination of neomycin in bovine muscle, and LOQ was163.0 µg/kg [52] and hydrophilic interaction MSPE combined with HILIC–MS/MS was developed for meat sample with LOD of 13.5 µg/kg and LOQ of 38.0 µg/kg [34]. HPLC-ELSD method was detected
neomycin in the tilapia sample with a LOQ of 5.3 µg/kg [74].

RNA aptamers detected neomycin in the range of µM in solutions [75]. ssDNA method was successfully applied for the detection of heavy metal mercury (II) ion (Hg$^{2+}$) and silver (I) ion (Ag$^{+}$) and AG ABs residues in food [76].

Because the biosensor method is new, few articles have been existed to measure neomycin in different samples. The instrumental method is a both sensitive and available method. Modified-RNA aptamer-based sensor detects neomycin in the submicromolar range. Table 6 Compares the different methods for neomycin residues determination in various samples.

Table 6. Comparison of different determination methods for neomycin in various samples

Method	Description	Matrix	LOD	LOQ	Additional information	Reference
Microbiological	Multiple	Raw milk	2.5 1/µg	_	Evaluated different kind of ABs that is residual in milk with a lower range of MRLs.	[46]
Instrumental	CE-MS	Honey sample	25.7 µg/kg	85.8 µg/kg	Good sensitivity and selectivity for determination of neomycin in the food industry like honey	[55]
Instrumental	HILIC–MS/MS	Bovine sample	163.0 µg/kg	_	A good method for the detection of neomycin and other ABs in bovine.	[52]
Instrumental	MSPE combined with HILIC–MS/MS analysis	Meat sample	13.5 µg/kg	38 µg/kg	_	[34]
Instrumental	HPLC–ELSD	Commercial samples	_	_	LOD has good relation with European Pharmacopoeia	[73]
Instrumental	SPME–HPLC–ELSD	Tilapia	5.3 µg/kg	_	This method can detect the lower concentration of AGs	[74]
Instrumental	SCX–HPLC–CL	Water sample	1.5 µg/L	_	Useful for aqueous sample, but maybe decreased in sensitivity for the complex sample.	[38]
Instrumental	LC–MS/MS	Liver, kidney, fish and muscle samples	_	_	This method can be used for all AGs in every matrix with the most sensitivity and selectivity.	[32]
Instrumental	LC-MS	Kidney and honey	_	In kidney was _	_	[53]
Method	Description	Matrix	LOD	LOQ	Additional information	Reference
--------------	------------------------------	-----------------------------	-----------	-----------	--	-----------
Instrumental	LIPS	Pharmaceutial preparations	265 µg/kg		and in honey was 125 µg/kg	[52]
Instrumental	LC-MS	Bovine muscle, bovine liver, milk, chicken egg, fish and shrimp samples	0.01 mg/kg			[51]
Biosensor	Modified-RNA aptamer-based sensor	Submicromolar range			It using for another small molecule in the complex matrix	[75]
Biosensor	ssDNA for different analyses associated with graphene oxide	Food samples			This method is developed for simultaneous determination of heavy mental and AG antibiotics	[76]

2.7 Sisomicin

For the determination of sisomicin, limited methods have been developed. In one study, Broughton et al. (1976) compared two types of quantification methods (radioimmunoassay and microbiological assay) in the human serum. In the microbiological assay, the agar well diffusion method was used and *Klebsiella* was set as the test organism. The result of radioimmunoassay showed the sensitivity as 140 pg/mL, and in comparison with the microbiological assay, there were not significant differences [77] also, microbiological assay did not show any significant difference with TLC and HPLC-fluorescence method [48,49].

HPLC with UV and fluorescence detectors were used for clinical monitoring of sisomicin and LOD was 62.5 ng/ml [78].

LC-MS method was used for the determination of sisomicin. The LOD and LOQ values were 5.0 µg/kg, 17.0 µg/kg in honey, 4.0 µg/kg, 13.0 µg/kg in milk and 7.0 µg/kg, 23.0 µg/kg in pork, respectively [31] and with LC-MS/MS determine sisomicin in liver, kidney muscle and fish with LOQ of 10.0 µg/kg, 20.0 µg/kg, 10.0 µg/kg, 5.0 µg/kg, respectively [32]. Both methods are useful for the determination of other AGs in food samples.

Microbiological and instrumental methods have been used to determine the amount of sisomicin, and the biosensor method has been compared with the microbiological method. There are good instrumental methods for evaluation of sisomicin in the clinical monitoring and food industry and maybe the microbiological method could be used instead of chemical methods in any laboratories. The comparison of different determination methods for analyzing the sisomicin residues is shown in Table 7.
Table 7. Comparison of different determination methods for sisomicin in various samples

Method	Description	Matrix	LOD	LOQ	Additional information	Reference
Microbiological/Instrumental	Microbiological assay/TLC	Human serum	–	–	The sensitivity of radioimmunoassay was 140 pg.	[77]
Microbiological/Instrumental	Microbiological assay/HPLC	Human serum	–	–	This method can determine netilmicin, astromycin, and micronomicin. It’s a good method for using for serum monitoring because of reproducibility.	[41]
Microbiological/Biosensor	Microbiological assay/HPLC	Human serum	62.5 ng/ml	–	By using this method one can detect the lowest concentration of sisomicin.	[78]
Instrumental	HPLC with fluorescence detector	Milk, honey	–	–	It’s the best method for the determination of AG in the food industry.	[32]
Instrumental	HPLC-UV	Milk	62.5 ng/ml	–	With this method, we can determine different AGs.	[31]

2.8 Streptomycin

Streptomycin is the first AG that was discovered in 1943 [79] and it has lots of uses in many cases (from prevention to treatment in veterinary medicine to human diseases) [80]. Streptomycin usually is in the first line of antibiotic therapy and has good effects on Gram-negative bacterial infections which occur in veterinary and human [81,82]. It also administered as anti-tuberculosis agents in the second-line for the resistant strains to isoniazid and rifampin [83]. The residues of streptomycin in animal-derived products could pose health hazards to consumers [18].

Jacques Nouws et al. (1999) suggested microbiological assay for the determination of AGs in milk. For the determination of spectinomycin multiple systems with B. calidolactis have been described and for other AGs (neomycin, kanamycin, gentamycin, DH streptomycin) B. subtilis was used. The LOD values for neomycin, kanamycin, gentamycin, DH streptomycin, and spectinomycin were 50.0 1/µg, 150.0 1/µg, 25.0 1/µg, 100.0 1/µg, and 3000.0 1/µg, respectively [46].

Liquid Chromatography And Tandem Mass Spectrometry (HPLC-MS/MS) was a robust, rapid, and sensitive method to quantify streptomycin in mice plasma with LOQ of 10.0 ng/mL. This instrumental method could be applied for the preclinical determination of
streptomycin [80] but previously Han et al. [84] and Kim et al. [85] had developed UPLC-MS/MS for anti-tuberculosis drug samples and LC-MS/MS method for human serum respectively. During sample preparation for these methods, there was a decrease in polarity that has a negative effect on the detection and quantification of AGs [84,85]. LC-MS/MS was also used for the determination of streptomycin in honey with LOD of 4.7 µg/kg. This method can be used in a laboratory because it is a fast and accurate method. It also needs small sample and reagents [86].

Both HILIC–MS/MS (2016) and hydrophilic interaction MSPE combined with HILIC–MS/MS were developed for the determination of streptomycin in bovine muscle. LOQ values for these methods were 176.0 µg/kg and 7.3 µg/kg respectively. Hydrophilic interaction MSPE combined with HILIC–MS/MS shows improvement for the determination of streptomycin in comparison with HILIC–MS/MS [34,52]. LOD for hydrophilic interaction MSPE combined with HILIC–MS/MS was 2.2 µg/kg [34]. UPLC–MS was developed for screening drug residues in pork. The LOD and LOQ values were 0.6 µg/kg and 2.0 µg/kg respectively. Compared to the conventional quantitative method, this method could improve instrumental efficiency, thus can be applied in prompt screening for large batch samples [67]. By the HPLC-ELSD method, AG in food could be determined with LOD of 3.0 µg/kg [74].

LC-MS (2017) was developed for the detection of streptomycin and DH streptomycin in honey, milk, pork. The LOD and LOQ values for streptomycin were 4.0 µg/kg, 13.0 µg/kg in honey and 3.0 µg/kg 10.0 µg/kg in milk and 5.0 µg/kg 17.0 µg/kg in pork, respectively. LOD and LOQ were 3.0 µg/kg, 10.0 µg/kg in honey and milk, 4.0 µg/kg, 13.0 µg/kg in pork, respectively for DH streptomycin [31]. CE-MS method detected these AGs with LOD and LOQ of 0.4 µg/kg, 1.4 µg/kg, and 4.7 µg/kg, 15.7 µg/kg, for streptomycin and DH streptomycin, respectively [55]. For the determination of streptomycin and DH streptomycin in food LC-MS/MS was used. The LOQ was 25.0 ng/mL and 30.0 ng/mL, respectively [32], and LC with fluorescence detector was used for the detection of streptomycin and DH streptomycin in food. LOD values were 7.5 µg/kg and 15.0 µg/kg, respectively for streptomycin and DH streptomycin [87]. LC-MS determined streptomycin and DH streptomycin with LOQ of 0.02 and 0.01 mg/kg, respectively in bovine muscle, bovine liver, milk, chicken egg, fish, and shrimp samples [51].

The colorimetric technique was developed for the determination of streptomycin with LOD 60.2 nM in raw milk. These aptamers used to detect very low levels of streptomycin [88]. By colorimetric aptasensor, streptomycin with LOD of 108.7 nM in milk and human serum could be detected [89] and by multi-color quantum dot-based fluorescence immunoassay array streptomycin was detected with LOD of 5.0 pg/mL [90]. In 2020 chlortetracycline-coated silver nanoparticles–UV spectroscopy detected streptomycin in aqueous solution with LOD 1000–11000 picomolar [71].

There is a microbiological assay method for the determination of streptomycin that may be useful for routine analysis in milk. The use of the biosensor method is expanding; as predicted in the next few years, it will replace other methods, even though it is expensive. Table 8 compares the different methods which have been used for the determination of streptomycin residues.

Table 8. Comparison of different determination methods for streptomycin in various samples

Method	Description	Matrix	LOD	LOQ	Additional information	Reference
Microbiologic	Multiple	Raw milk	100.0 1/µg	_	A good method for milk factories for estimating the amount of ABs in milk.	[46]
Instrumental	CE-MS	_	_	_	For determination of both streptomycin and DH streptomycin	[55]
Instrumental	HILIC–MS/MS	Bovine	DH	_		[52]
Method	Description	Matrix	LOD	LOQ	Additional information	Reference
-------------------	--	----------------	------	------	-------------------------	-----------
Instrumental	Hydrophilic interaction MSPE combined with HILIC–MS/MS (SCX)-HPLC-CL detection	Meat sample	2.2	7.3		[34]
Instrumental	UPLC-MS/MS	Water sample	7.5		For determination of the AGs in the aqueous sample.	[38]
Instrumental	UPLC-MS	For drug residues in pork samples	0.6	2.0		[67]
Instrumental	HPLC-ELSD	Food sample	3.0		Using for evaluation of residual AGs in seafood like fish	[74]
Instrumental	HPLC-MS/MS	Mice plasma		10.0		[80]
Instrumental	LIPS spectrofluorometric technique LC-MS/MS	Pharmacutical preparations				[24]
Instrumental	LC-MS/MS	Liver, fish, kidney and muscle samples				[32]
Instrumental	LC-MS/MS	Human serum				[85]
Instrumental	LC-MS/MS	Honey sample	4.7		Using for routine assay in laboratories	[86]
Instrumental	LC-electrospray ionization-MS	Meat sample	1.0-6.0		For determination of both streptomycin and DH streptomycin with good sensitivity	[91]
Instrumental	LC with	Food			For determination	[87]
Method	Description	Matrix Description	LOD	LOQ	Additional Information	Reference
-----------------	---	--	------	------	---	-----------
Instrumental	LC-MS	Honey and kidney samples			Good for the determination of streptomycin and DH streptomycin in food.	[53]
Instrumental	LC-MS	Honey, milk and pork samples				[31]
Instrumental	LC-MS	Bovine muscle, bovine liver, milk, chicken egg, fish and shrimp samples		Strept	Streptomycin 0.02 mg/kg, DH streptomycin 0.01 mg/kg	[51]
Biosensor	Colorimetric technique	Raw milk	60.2 nM			[88]
Biosensor	Colorimetric aptasensor	Milk and human serum samples	108.7 nM			[89]
Biosensor	Chlortetracycline-coated silver nanoparticles–UV spectroscopy	Aqueous solution	1000-11000 picomolar			[71]
Biosensor	Multi-color quantum dot-based fluorescence immunoassay	Milk sample	5.0 pg/mL			[90]

2.9 Tobramycin

Tobramycin is another AG that is similar to gentamicin and kanamycin in many properties such as pharmacokinetic, toxicological, and some microbiological ones [92]. Tobramycin has a good influence on Gram-negative bacteria especially many strain of the *Enterobacteriaceae* and *Pseudomonas* and also, *S. aureus* that have resistance against gentamicin [93].

Lamb et al. (1972) reported factors that influence the microbiological assay to find the most suitable methods for the determination of tobramycin in blood, urine, and pharmaceutical preparations. Various factors such as sample diluents, pH, molarity, iron, and sodium ions were checked and the important ones were diluents, pH, and molarity. They used three kinds of methods including the disc-plate method, turbidimetric assay, and cylinder-plate method. The tested microorganisms were *B. subtilis* and *S. aureus* for turbidimetric and cylinder-plate, respectively.

For diluents effect, the results of the article showed the sensitivity of the cylinder-plate assay was increased 10 times more than the disc assay when increasing pH, therefore the dilution factor affected more on the cylinder-plate assay. By the addition of the ionic compounds like Na⁺ and Fe³⁺ in agar base, the sensitivity of tobramycin determination was decreased even though variations in pH and ion concentration were more...
critical for the cylinder assay, but this assay system was more reproducible and sensitive than the disc [94].

Lode et al. (1975) used the agar diffusion method with B. subtilis as a test organism for the estimate of pharmacokinetic of gentamycin, sisomicin, and tobramycin. They concluded that because of similar chemical structures and molecular weights the pharmacokinetic parameters obtained for the three AGs did not show any significant differences [95]. Also, Hubenov et al. (2007) employed two methods for evaluating the pharmacokinetics of tobramycin with HPLC-fluorescence detection (LOQ of 0.2 µg/and LOD of 0.1 µg/mL) and microbiological assay with B. subtilis (ATCC 6633) as a test organism. The LOD and LOQ values were 0.024 and 0.048 µg/mL, respectively [96].

For determination of tobramycin in food samples LC/MS and LC-MS/MS methods were used. LC/MS determined tobramycin in honey, milk and pork tissue with LOD 6.0 µg/kg, 7.0 µg/kg, and 11.0 µg/kg, and with LOQ 20.0 µg/kg, 23.0 µg/kg and 36.0 µg/kg, respectively. LC-MS/MS determined tobramycin in liver, kidney, muscle and fish with LOQ 1.0 µg/kg, 1.0 µg/kg, 15.0 µg/kg and 3.0 µg/kg, respectively [31,32]. More recently a new method that developed for the determination of tobramycin in food is hydrophilic interaction MSPE combined with HILIC-MS/MS. LOD and LOQ values for this method were 4.3 µg/kg and 15.7 µg/kg, respectively [34].

CE-LIF device was developed to detect tobramycin in human serum (LOD=17.1 nM). The advantages were small sample requirements and short analysis time to quantify drugs in biological samples. Also, CE-LIF detected paromomycin, bekamycin, and kanamycin with LOD of 24.0 nM, 15.0 nM, and 14.4 nM, respectively [65].

HPLC-ELSD method was developed for the detection of tobramycin in tilapia with LOD of 3.0 µg/kg. This method could be used for the detection of residual of AGs in food [74].

The copper-OCE method provided a determination of tobramycin with LOD of 4.7 µM in pharmaceutical preparations (LOD for bekamycin, lincomycin, ribostamycin were 3.4 µM, 4.9 µM, 5.1 µM, respectively) [57].

Working on the determination of tobramycin with biosensor method has been started since 1997 with RNA aptamers [97], but after 9 years, the researchers were able to detect tobramycin with potentiometric measurements only in aqueous solutions [98].

In 2011 RNA aptamer for determination of tobramycin in human serum was developed. The LOD depended on the ratio of serum/buffer (LOD was between 15.0 µM and 17.0 µM) [99], but in 2019 with voltammetric sensor tobramycin could be detected in blood and human serum with LOD of 2.0 µM [100].

For milk and medicine products colorimetric method based on the aggregation of gold nanoparticles with LOD of 0.579 ng/ml was developed. This method is the most sensitive biosensor method [35], and for ophthalmic preparations, it used the visible light effect on surface plasmon resonance of gold nanoparticles with LOD of 3.8×10⁻³M, with the advantage of no chemical derivatization [101]. For the first time in 2020, dynamic aggregation of Sodium Dodecyl Sulfate (SDS)-capped silver nanoparticles have been developed for the determination of tobramycin in exhaled breath dense. LOD values for this method was 0.5 ng/mL [102].

Tobramycin is one of the most widely used AGs in the treatment of diseases. Microbiological, instrumental, and biosensor methods have been used to measure this compound, but given that the biosensor method is a new way to measure in the coming years, it is expected that more and more diverse methods will be used to determine the amount of this AG with more accuracy. The comparison between different methods of tobramycin residue determination is illustrated in Table 9.

Table 9. Comparison of different determination methods for tobramycin in various samples

Method	Description	Matrix	LOD	LOQ	Additional information	Reference
Microbiological	Agar diffusion assay	–	–	–		[95]
Microbiological	Agar-diffusion assays, disc plate, and	Blood, urine, and	–	–		[94]

Method	Description	Matrix	LOD	LOQ	Additional information	Reference
Turbidimetric assay		Cal preparations samples	Microbiological assay: 0.2 µg/mL HPLC assay	Microbiological assay: 0.2 µg/mL HPLC assay	–	[96]
Microbiological assay in meat peptone agar/HPLC	–	Microbiological assay: 0.024 µg/mL HPLC assay	Microbiological assay: 0.048 µg/mL HPLC assay	–	[49]	
Microbiological assay/TLC	–	–	–	–	–	[48]
Electrospray-ionization mass spectrometry	–	Human serum	–	–	The linear dynamic ranges of detection for tobramycin was 25–2500 ng/mL	[29]
CE-EC	Pharmacetical preparations		4.7 µM		–	[57]
Copper-Based Electrodes					A suitable method for clinical monitoring A good method for the detection of tobramycin in pharmaceuti products.	[65]
CE-LIF	Human serum		17.1 nM		–	[25]
Fluorimetric			10.0 ng/mL		–	
MSPE combined with HILIC-MS/MS analysis	Meat sample		4.3 µg kg	18.7 µg kg	–	[34]
SPME-HPLC-ELSD	Tiliapia		3.9 µg/kg		–	[74]
LC-MS/MS	Liver, kidney, muscle and fish samples				In liver, kidney, muscle and fish 1.0 µg/kg, 1.0 µg/kg, 15.0 µg/kg and 3.0 µg/kg	[32]
Method	Description	Matrix	LOD	LOQ	Additional Information	Reference
--------------	--	---------------------------------	------------	------------	--	-----------
Instrumental	Liquid Chromatography with MS LIPS	Honey, milk and pork samples	–	–	Use for both clinical monitoring and in industry	[31]
Instrumental	RRS method	Pure form and some pharmaceutical preparations	–	–	In 1997 just detected tobramycin in solution	[24]
Instrumental	RRS method				Use for both clinical monitoring and in industry	[54]
Biosensor	RNA aptamer	Aqueous solution	–	–	In 1997 just detected tobramycin in solution	[97]
Biosensor	Voltametric sensor	Human serum	2.0 μM	–	Doesn’t need any derivatization for the determination of tobramycin.	[100]
Biosensor	Visible light effect on surface	For ophthalmic preparations	3.8 × 10⁻⁹	1/mol	Must need any derivatization for the determination of tobramycin.	[101]
Biosensor	RNA aptamers	Human serum	–	–	For determination of all AGs in therapeutic range	[99]
Biosensor	Colorimetric nanoprobe based on the dynamic aggregation of SDS-capped silver nanoparticles Colorimetric	Exhaled breath dense	0.5 ng/mL	–	A sensitive method for both in the food industry and clinical monitoring	[102]
Biosensor	Colorimetric nanoprobe based on the dynamic aggregation of SDS-capped silver nanoparticles Colorimetric	For milk and medicine products	0.354 ng/mL	–	A sensitive method for both in the food industry and clinical monitoring	[35]
Biosensor	Potentiometric measurement s	Aqueous solutions	1×10⁻⁵ M	–	–	[98]
2.10 Other AGs

Ultra Performance Liquid Chromatography - Tandem Mass (UPLC-MS) was employed for the determination of etimicin (2016) in pork tissue. LOQ and LOD values were 27.9 μg/kg, and 8.4 μg/kg, respectively [67].

Apramycin and spectinomycin were determined by the LC-MS method in the kidney and honey samples. LOQ and LOD values were 112.0 μg/kg and 2.0 μg/kg for apramycin and spectinomycin were 151.0 μg/kg and 13.0 μg/kg, respectively. Other AGs like streptomycin, paromomycin, kanamycin A, gentamycin C1, gentamycin C2/C2a, gentamycin C1a, and neomycin B can determine, too [53]. Apramycin and DH streptomycin detected by HILIC-MS/MS method in bovine muscle with LOD of 74.0 μg/kg, and 32.0 μg/kg [52]. The report indicates that hydrophilic interaction MSPE combined with HILIC-MS/MS determines apramycin, spectinomycin, netilmicin, and hygromycin B in the meat sample. LOD and LOQ values were 23.6 μg/kg and 40.2 μg/kg for apramycin, 3.4 μg/kg and 8.1 μg/kg for spectinomycin, 2.5 μg/kg and 13.3 μg/kg for netilmicin and 3.2 μg/kg and 9.8 μg/kg for hygromycin B, respectively [34].

Apramycin sulfate is detected by two spectrofluorimetric methods. The first one was based on measuring the inherent native fluorescence and the second one was dependent on enhancing the native fluorescence intensity of the drug-using SDS in veterinary AB drug, pharmaceutical preparations, and milk samples. LOD values for first and second methods were 0.05 μg/mL and 0.02 μg/mL respectively [103]. LC-MS detected apramycin and spectinomycin with LOQ of 0.01 mg/kg and 0.02 mg/kg in bovine muscle, bovine liver, milk, chicken egg, fish, and shrimp [51].

Fortimicin A and 3-0-demethylfortimicin detected by HPLC-UV detector in the range of pg/mL. The assay procedure was also applicable to the determination of other AGs such as gentamicin, tobramycin, kanamycin, and amikacin [104].

Paromomycin was determined with reversed-phase ion-pair HPLC separation coupled with the pulsed amperometric detector (2000) in animal feed matrices (rabbit, chicken, and pig feeds). The statistical analysis of the performance of the method demonstrated its very good reliability and allows us to propose it as the reference procedure for the determination of paromomycin in the considered matrices [105]. In 2010 HPLC-ELSD was employed in the commercial sample which the authors of the article showed that the method is reliable and repeatable for determination of paromomycin (the LOD and LOQ of paromomycin were 2.25 μg/ml and 25.5 μg/ml respectively) [106]. The LOD and LOQ values were 25.0 μg/kg, 83.0 μg/kg in honey, 26.0 μg/kg 90.0 μg/kg in milk and 30.0 μg/kg, 100.0 μg/kg in pork, respectively [31]. LC-MS was used for the determination of paromomycin with LOQ of 117.0 μg/kg and 23.0 μg/kg in kidney and honey samples, receptively [53].

LOD and LOQ values of spectinomycin were 2.0 μg/kg, 7.0 μg/kg respectively in honey and milk and in pork were 3.0 μg/kg, and 10.0 μg/kg, respectively. For netilmicin LOD and LOQ values were 5.0 μg/kg, 17.0 μg/kg in honey, 4.0 μg/kg, 13.0 μg/kg in milk and 8.0 μg/kg, and 27.0 μg/kg in pork, respectively and for hygromycin LOD and LOQ were 5.0 μg/kg, 17.0 μg/kg in honey, 7.0 μg/kg, 23.0 μg/kg in milk, 10.0 μg/kg and 34.0 μg/kg in pork, respectively [31].

For determination of vertilmicin sulfate, arbekacin and dibekacin were developed HPLC-ELSD method that LOD of vertilmicin sulfate was 10.0 μg/mL, arbekacin was 4.5 μg/mL and dibekacin was 5.0 μg/mL[70]. The advantage of this method was the determination of AGs without any derivation [107,108].

3. CONCLUSIONS

AGs are one of the oldest ABs due to their good effects on Gram-negative bacteria; they are widely used in the treatment of diseases today. For this reason, the measurement of AGs in different matrices is of particular importance. Different types of methods have been developed for the determination of a wide variety of AG by microbiological, instrumental, and biosensors in various cases. The increasing number of articles published in this caption reflects a great concern in public health and drug resistance especially for gentamycin and streptomycin because of wide use in the treatment of different diseases.

Generally, based on the kind of AG, different methods have been used to determine the related residues. The microbiological assay is an old, less sensitive, and slow method (needs time of incubation). Due to that, the method is less operational and does not need a very special
expert and experience, it could be used for the determination of AGs in some cases. The instrumental methods are popular methods from past to present. These methods are not only more sensitive than microbiological, but also are faster.

The biosensor method is a new one and attracts attention. The main advantages of them are higher selectivity and sensitivity in compared with conventional ones. But the main drawbacks of the biosensor method are related to the high cost and Availability of experts that make it impossible to use for every laboratory.

The first part is the determination of AGs in human serum or plasma due to the evaluated concentration of AG in the blood that patients give a proper treatment with reductions of ototoxicity and nephrotoxicity. This is especially important for streptomycin and gentamicin, the most common AGs. We predict that the device will be more sensitive and faster in the future.

The second one is, the determination of AGs in food, water, and environment that all people have always exposed and can produce drug resistance in society, therefore in this section should develop methods to separate AGs from other components.

The third one is, using different methods for the determination of AG in the industry. Like the previous part, it needs to develop methods to separate AGs from the other components.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

CONSENT

It’s not applicable.

ETHICAL APPROVAL

It’s not applicable.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Krause K, et al., Aminoglycosides: An Overview. Cold Spring Harb Perspect Med. 2016;6(6).
2. Kumman C, Yuen K. Parenteral aminoglycoside therapy. Selection, administrationandmonitoring. Drugs. 1994;47:902-913.
3. Sun F, et al., 5-Methylindole Potentiates Aminoglycoside Against Gram-Positive Bacteria Including Staphylococcus aureus Persisters Under Hypolonic Conditions. Frontiers in Cellular and Infection Microbiology. 2020;10:84.
4. Durante-Mangoni E, et al. Do we still need the aminoglycosides? International Journal of Antimicrobial Agents. 2009;33(3):201-205.
5. Poulakis P, Falagas ME. Aminoglycoside therapy in infectious diseases. Expert Opinion on Pharmacotherapy. 2013;14(12):1585-1597.
6. Mingeot-Leclercq M-P, Glupczynski Y, Tulkens PM. Aminoglycosides: Activity and resistance. Antimicrobial Agents and Chemotherapy. 1999;43(4):727-737.
7. Novelli A, et al. In vitro postantibiotic effect and postantibiotic leukocyte enhancement of tobramycin. Journal of Chemotherapy. 1995;7(4):355-362.
8. Becker B, Cooper MA. Aminoglycoside antibiotics in the 21st century. ACS Chemical Biology. 2013;8(1):105-115.
9. Stead DA. Current methodologies for the analysis of aminoglycosides. Journal of Chromatography B: Biomedical Sciences and Applications. 2000;747(1-2):69-93.
10. Aronson J, Reynolds D. ABC of monitoring drug therapy. Lithium. BMJ: British Medical Journal. 1992;305(6864):1273.
11. Selimoglu E. Aminoglycoside-induced ototoxicity. Current Pharmaceutical Design. 2007;13(1):119-126.
12. McGlinchey TA, et al., A review of analytical methods for the determination of aminoglycoside and macrolide residues in food matrices. Analytica Chimica Acta. 2008;624(1):1-15.
13. Cheng G, et al. Antibiotic alternatives: The substitution of antibiotics in animal husbandry? Frontiers in Microbiology. 2014;5:217.

14. Duggal P, Sarkar M. Audiologic monitoring of multi-drug resistant tuberculosis patients on aminoglycoside treatment with long term follow-up. BMC Ear, Nose and Throat Disorders. 2007;7(1):5.

15. Tao L, Segi N. Early transcriptional response to aminoglycoside antibiotic suggests alternate pathways leading to apoptosis in sensory hair cells in the mouse inner ear. Frontiers in cellular neuroscience. 2015;9:190.

16. Dolliver HA, Gupta SC. Antibiotic losses from unprotected manure stockpiles. Journal of Environmental Quality. 2008;37(3):1238-1244.

17. Beović B. The issue of antimicrobial resistance in human medicine. International Journal of Food Microbiology. 2006;112(3):280-287.

18. Díaz-Cruz MS, Barceló D. Recent advances in LC-MS residue analysis of veterinary medicines in the terrestrial environment. TrAC Trends in Analytical Chemistry. 2007;26(6):637-646.

19. Farouk F, Azzazy HM, Niessen WM. Challenges in the determination of aminoglycoside antibiotics, a review. Analytica Chimica Acta. 2015;890:21-43.

20. Ovalles FJ, et al. Proposal for determining sulfate counter ion in amikacin sulfate formulations by Fourier-transform infrared derivative spectroscopy. Current Pharmaceutical Analysis. 2013;9(1):20-30.

21. Monteleone PM, et al. Amikacin Sulfate, in Analytical Profiles of Drug Substances. 1993:276(C):385-394.

22. Barends DM, et al. Determination of amikacin in serum by high-performance liquid chromatography with ultraviolet detection. Journal of Chromatography B: Biomedical Sciences and Applications. 1983;37:7-11.

23. Al-Majed AA. A new LC method for determination of some aminoglycoside antibiotics in dosage forms and human plasma using 7-fluo-4-nitrobenz-2-oxa-1,3-diazole as a fluorogenic pre-column label. Chromatographia. 2008;68(11-12):927-934.

24. Rizk M, et al. Fluorimetric determination of aminoglycoside antibiotics using lanthanide probe ion spectroscopy. Talanta. 1995;42(12):1849-1856.

25. El-Shabrawy Y. Fluorimetric determination of aminoglycoside antibiotics in pharmaceutical preparations and biological fluids. Spectroscopy Letters. 2002;35(1):99-109.

26. Izquierdo P, et al. Kinetic fluorimetric determination of aminoglycoside antibiotics by use of OPA and N-acetylcysteine as reagents. Fresenius' Journal of Analytical Chemistry. 1994;349(12):820-823.

27. Hassanzadeh J, et al. Specific fluorometric assay for direct determination of amikacin by molecularly imprinting polymer on high fluorescent g-C3N4 quantum dots. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2019;214:451-458.

28. Zhang L, et al. Description and validation of coupling high performance liquid chromatography with resonance Rayleigh scattering in aminoglycosides determination. Analytica Chimica Acta. 2011;706(2):199-204.

29. Jariwala FB, et al. Rapid determination of aminoglycosides in pharmaceutical preparations by electrospray ionization mass spectrometry. Journal of Analytical Science and Technology. 2020;11(1):1-11.

30. Soliven A, et al. A simplified guide for charged aerosol detection of non-chromophoric compounds—Analytical method development and validation for the HPLC assay of aerosol particle size distribution for amikacin. Journal of Pharmaceutical and Biomedical Analysis. 2017;143:68-76.

31. Yang B, et al. Simultaneous determination of 11 aminoglycoside residues in honey, milk and pork by liquid chromatography with tandem mass spectrometry and molecularly imprinted polymer solid phase extraction. Journal of AOAC International. 2017;100(6):1869-1878.

32. Kaufmann A, Butcher P, Maden K. Determination of aminoglycoside residues by liquid chromatography and tandem mass spectrometry in a variety of matrices. Analytica Chimica Acta. 2012;711:46-53.

33. Zhang Z, et al. Synthesis of dummy-template molecularly imprinted polymer adsorbents for solid phase extraction of aminoglycosides antibiotics from environmental water samples. Talanta. 2020;208:120385.

34. Liu H, et al. Poly (N-acryloyl-glucosamine-co-methylenebisacrylamide)-based hydrophilic magnetic nanoparticles for the
extraction of aminoglycosides in meat samples. Journal of Chromatography A. 2020;1609:460517.
35. Wang R, et al. Determination of aminoglycoside antibiotics by a colorimetric method based on the aggregation of gold nanoparticles. Nano. 2013;8(04):1350037.
36. Yola ML, Atar N, Eren T. Determination of amikacin in human plasma by molecular imprinted SPR nanosensor. Sensors and Actuators B: Chemical, 2014;198:70-76.
37. Yang W-C, Yu A-M, Chen H-Y. Applications of a copper microparticle-modified carbon fiber microdisk array electrode for the simultaneous determination of aminoglycoside antibiotics by capillary electrophoresis. Journal of Chromatography A. 2001;905(1-2):309-318.
38. Serrano JM, Silva M. Rapid and sensitive determination of aminoglycoside antibiotics in water samples using a strong cation-exchange chromatography non-derivationisation method with chemiluminescence detection. Journal of Chromatography A. 2006;1117(2):176-183.
39. Kobayashi S, et al. High performance liquid chromatographic determination of astromicin and piperacillin used in combination in blood samples. The Japanese Journal of Antibiotics. 1986;39(12):3156-3163.
40. Chen Y. HPLC-ELSD analysis of astromicin sulfate and its related substances. Chinese Journal of Pharmaceutical Analysis. 2006;26(2):218-220.
41. Kawamoto T, et al. Determination of sisomicin, netilmicin, aminoglycoside and microcinic in serum by high-performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications. 1984;305:373-379.
42. Uematsu T, et al. A fluorescence polarization immunoassay evaluated for quantifying astromicin, a new aminoglycoside antibiotic. Clinical Chemistry. 1988;34(9):1880-1882.
43. Gonzalez III LS, Spencer JP. Aminoglycosides: A practical review. American Family Physician. 1998;58(8):1811.
44. Löffler D, Ternes TA. Analytical method for the determination of the aminoglycoside gentamicin in hospital wastewater via liquid chromatography–electrospray-tandem mass spectrometry. Journal of Chromatography A. 2003;1000(1-2):583-588.
45. Barens D, et al. The determination of aminoglycoside antibiotics in serum: A comparison of a high performance liquid chromatographic method with a microbiological assay. Pharmaceutisch Weekblad. 1982;4(4):104-111.
46. Nouws J, et al. A microbiological assay system for assessment of raw milk exceeding EU maximum residue levels. International Dairy Journal.1999;9(2):85-90.
47. Lourenço FR, Pinto TDJA. Comparison of three experimental designs employed in gentamicin microbiological assay through agar diffusion. Brazilian Journal of Pharmaceutical Sciences. 200945(3):559-566.
48. Fabre H, et al. Determination of aminoglycosides in pharmaceutical formulations - II. High-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis. 1989;7(12):1711-1718.
49. Sekkat M, et al. Determination of aminoglycosides in pharmaceutical formulations - I. Thin-layer chromatography. Journal of Pharmaceutical and Biomedical Analysis. 1989;7(7):883-892.
50. Hong Y-M, et al. Simultaneous analytical method for the neomycin, gentamicin residues in seafood. Journal of Applied Biological Chemistry. 2010;53(1):25-30.
51. Fuji Y, Kaga T, Nishimura K. Simultaneous determination of aminoglycoside residues in livestock and fishery products by phenylboronic acid solid-phase extraction and liquid chromatography–tandem mass spectrometry. Analytical Sciences. 2019;19P065.
52. Dasenaki ME, Michali CS, Thomaidis NS. Analysis of 76 veterinary pharmaceuticals from 13 classes including aminoglycosides in bovine muscle by hydrophilic interaction liquid chromatography–tandem mass spectrometry. Journal of Chromatography A. 2016;1452:67-80.
53. Kumar, P., et al., Determination of aminoglycoside residues in kidney and honey samples by hydrophilic interaction chromatography–tandem mass...
spectrometry. Journal of separation science. 2012;35(20):2710-2717.
54. Liu SP, Hu XL, Li NB. Resonance rayleigh scattering method for the determination of aminoglycoside antibiotics with trypan blue. Analytical Letters. 2003;36(13):2805-2821.
55. Moreno-González D, et al. Determination of aminoglycosides in honey by capillary electrophoresis tandem mass spectrometry and extraction with molecularly imprinted polymers. Analytica Chimica Acta. 2015;891:321-328.
56. Bhogte CP, Patravale V, Devarajan PV. Fluorodensitometric evaluation of gentamicin from plasma and urine by high-performance thin-layer chromatography. Journal of Chromatography B: Biomedical Sciences and Applications. 1997;694(2):443-447.
57. Voegel PD, Baldwin RP. Evaluation of copper-based electrodes for the analysis of aminoglycoside antibiotics by CE-EC. Electroanalysis. 1997;9(15):1145-1151.
58. Wang S, et al. Development of Enzyme-Linked Immunosorbent Assay (ELISA) for the detection of neomycin residues in pig muscle, chicken muscle, egg, fish, milk and kidney. Meat Science. 2009;82(1):53-58.
59. Khaldeeva E, et al. Determination of gentamicin with an amperometric enzyme immunosensor. Journal of Analytical Chemistry. 2002;57(12):1097-1102.
60. Agrawal AK, Singh SD, Jayachandran C. Comparative pharmacokinetics and dosage regimen of amikacin in afebrile and febrile goats. Indian Journal of Pharmacology. 2002;34(5):356-360.
61. Vogel R, DeFilippo K, Reif V. Determination of isepamicin sulfate and related compounds by high performance liquid chromatography using evaporative light scattering detection. Journal of Pharmaceutical and Biomedical Analysis. 2001;24(3):405-412.
62. Maloney JA, Awni WM. High-performance liquid chromatographic determination of isepamicin in plasma, urine and dialysate. Journal of Chromatography B: Biomedical Sciences and Applications. 1990;526:487-496.
63. Hosokawa S, et al. Determination of isepamicin in human plasma by HPLC with fluorescence detection after derivatization using 6-aminooquinolyl-N-hydroxysuccinimidyl-carbamate. Biological and Pharmaceutical Bulletin. 2008;31(10):1866-1869.
64. Tang J, et al. High Performance Liquid Chromatography (HPLC) method coupled with resonance Rayleigh scattering detection for the determination of isepamicin. Analytical Methods. 2012;4(6):1833-1837.
65. Lin Y-F, Wang Y-C, Chang SY. Capillary electrophoresis of aminoglycosides with argon-ion laser-induced fluorescence detection. Journal of Chromatography A. 2008;1188(2):331-333.
66. Acaroz U, et al. Determination of kanamycin residue in anatolian buffalo Milk by LC-MS/MS. Kafkas Universitesi Veteriner Fakültesi Dergisi. 2020;26(1).
67. Yin Z, et al. Multi-residue determination of 210 drugs in pork by ultra-high-performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography A. 2016;1463:49-59.
68. Xu Y, et al. Colorimetric detection of kanamycin based on analyte-protected silver nanoparticles and aptamer-selective sensing mechanism. Analytica Chimica Acta. 2015;891:298-303.
69. Wang C, et al. Kanamycin detection based on the catalytic ability enhancement of gold nanoparticles. Biosensors and Bioelectronics. 2017;91:262-267.
70. Abedalwafa MA, et al. An aptasensor strip-based colorimetric determination method for kanamycin using cellulose acetate nanofibers decorated DNA–gold nanoparticle bioconjugates. Microchimica Acta. 2020;187:1-9.
71. Saratale GD, et al. Chlortetracycline-Functionalized silver nanoparticles as a colorimetric probe for aminoglycosides: Ultrasensitive determination of kanamycin and streptomycin. Nanomaterials. 2020;10(5):997.
72. Toloza CA, et al. Kanamycin detection at graphene quantum dot-decorated gold nanoparticles in organized medium after solid-phase extraction using an aminoglycoside imprinted polymer. Methods X. 2018;5:1605-1612.
73. Clarot I, et al. Analysis of neomycin sulfate and framycetin sulfate by high-performance liquid chromatography using evaporative light scattering detection. Journal of Chromatography A. 2005;1087(1-2):236-244.
74. Wang J, et al. Urea-formaldehyde monolithic column for hydrophilic in-tube
solid-phase microextraction of aminoglycosides. Journal of Chromatography A. 2017;1485:24-31.

75. De-los-Santos-Álvarez N, et al. Modified-RNA aptamer-based sensor for competitive impedimetric assay of neomycin B. Journal of the American Chemical Society. 2007;129(13):3808-3809.

76. Zhang Y, Zuo P, Ye B-C. A low-cost and simple paper-based microfluidic device for simultaneous multiplex determination of different types of chemical contaminants in food. Biosensors and Bioelectronics. 2015;68:14-19.

77. Broughton A, Strong JE, Bodey GP. Radioimmunoassay of sisomicin. Antimicrobial Agents and Chemotherapy. 1976;9(2):247-250.

78. Matsunaga H, et al. An on-line clean-up procedure for large sample volume analysis of serum aminoglycoside antibiotics by reversed-phase high-performance liquid chromatography. Chemical and Pharmaceutical Bulletin. 1988;36(4):1565-1570.

79. Comroe Jr JH. Pay dirt: The story of streptomycin: Part I. From Waksman to Waksman. American Review of Respiratory Disease. 1978;117(4):773-781.

80. Wang Z, et al. Development of a simple and rapid HPLC-MS/MS method for quantification of streptomycin in mice and its application to plasma pharmacokinetic studies. Biomedical Chromatography. 2019;33(2):e4408.

81. Schatz A, Bugle E, Waksman SA. Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Proceedings of the Society for Experimental Biology and Medicine. 1944;55(1):66-69.

82. Goetting V, Lee K, Tell LA. Pharmacokinetics of veterinary drugs in laying hens and residues in eggs: a review of the literature. Journal of Veterinary Pharmacology and Therapeutics. 2011;34(6):521-556.

83. Park S-I, et al. Pharmacokinetics of second-line antituberculosis drugs after multiple administrations in healthy volunteers. Antimicrobial Agents and Chemotherapy. 2015;59(8):4429-4435.

84. Han M, et al. Method for simultaneous analysis of nine second-line antituberculosis drugs using UPLC-MS/MS. Journal of Antimicrobial Chemotherapy. 2013;68(9):2066-2073.

85. Kim H-J, et al. Simple and accurate quantitative analysis of 20 anti-tuberculosis drugs in human plasma using liquid chromatography–electrospray ionization–tandem mass spectrometry. Journal of Pharmaceutical and biomedical analysis. 2015;102:9-16.

86. Granja RH, et al. Determination of streptomycin residues in honey by liquid chromatography–tandem mass spectrometry. Analytica Chimica Acta. 2009;637(1-2):64-67.

87. Vinas F, Balsalobre N, Hernández-Córdoba M. Liquid chromatography on an amide stationary phase with post-column derivatization and fluorimetric detection for the determination of streptomycin and dihydrostreptomycin in foods. Talanta. 2007;72(2):608-612.

88. Soheili V, et al. Colorimetric and ratiometric aggregation assay for streptomycin using gold nanoparticles and a new and highly specific aptamer. Microchimica Acta. 2016;183(5):1687-1697.

89. Emrani AS, et al. Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles. Food Chemistry. 2016;190:115-121.

90. Song E, et al. Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk. Biosensors and Bioelectronics. 2015;72:320-325.

91. Berrada H, et al. Determination of aminoglycoside and macrolide antibiotics in meat by pressurized liquid extraction and LC-ESI-MS. Journal of Separation Science. 2010;33(4-5):522-529.

92. Reynolds A, Hamilton-Miller J, Brumfitt W. Newer aminoglycosides—amikacin and tobramycin: An in-vitro comparison with kanamycin and gentamicin. Br Med J. 1974;3(5934):778-780.

93. Dienstag J, Neu HC. In vitro studies of tobramycin, an aminoglycoside antibiotic. Antimicrobial Agents and Chemotherapy. 1972;1(1):41-45.

94. Lamb JW, Mann JM, Simmons RJ. Factors influencing the microbiological assay of tobramycin. Antimicrobial Agents and Chemotherapy. 1972;1(4):323-328.
95. Lode H, Kemmerich B, Koeppe P. Comparative clinical pharmacology of gentamicin, sisomicin, and tobramycin. Antimicrobial Agents and Chemotherapy. 1975;8(4):396-401.
96. Hubenov H, et al. Pharmacokinetic studies on tobramycin in horses. Journal of Veterinary Pharmacology and Therapeutics. 2007;30(4):353-357.
97. Jiang L, et al. Saccharide-RNA recognition in an aminoglycoside antibiotic-RNA aptamer complex. Chemistry and Biology. 1997;4(1):35-50.
98. El-Kosasy AM. Potentiometric assessment of Gram-negative bacterial permeabilization of tobramycin. Journal of Pharmaceutical and Biomedical Analysis. 2006;42(3):389-394.
99. González-Fernández E, et al. Impedimetric aptasensor for tobramycin detection in human serum. Biosensors and Bioelectronics. 2011;26(5):2354-2360.
100. Hadi M, Mollaei T. Reduced graphene oxide/graphene oxide hybrid-modified electrode for electrochemical sensing of tobramycin. Chemical Papers. 2019;73(2):291-299.
101. Santos HS, et al. Selective determination of tobramycin in the presence of streptomycin through the visible light effect on surface plasmon resonance of gold nanoparticles. Microchemical Journal. 2014;116:206-215.
102. Rezaei H, et al. A colorimetric nanoprobe based on dynamic aggregation of SDS-capped silver nanoparticles for tobramycin determination in exhaled breath condensate. Microchimica Acta. 2020;187(3):1-9.
103. Mabrouk MM, et al. Simple spectrofluorimetric methods for determination of veterinary antibiotic drug (apramycin sulfate) in pharmaceutical preparations and milk samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020;224:117395.
104. Elrod L, et al. Determination of fortimicin A and 3-O-demethylfortimicin A as 3, 5-dinitrobenzoyl derivatives by reverse-phase high-performance liquid chromatography. Analytical Chemistry. 1984;56(11):1786-1790.
105. Pastore P, Gallina A, Magno F. Description and validation of an analytical method for the determination of paromomycin sulfate in medicated animal feeds. Analyst. 2000;125(11):1955-1958.
106. Liu Y, et al. Development and validation of a liquid chromatography method for the analysis of paromomycin sulfate and its impurities. J Anal Bioanal Techniques. 2010;1(102):2.
107. Wang J, et al. Determination of vertilmicin sulfate and its related substances by HPLC—ELSD and HPLC—MS2. Journal of Chromatographic Science. 2006;44(9):529-534.
108. Wang J, Hu X. Determination of arbekacin sulfate injection and its related substances by HPLC using evaporative light scattering detection. Journal of Liquid Chromatography and Related Technologies. 2010;33(4):441-451.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/67540

© 2021 Morovatdar et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.