Results

The MIC distributions of C/T and CAZ/AVI against 1,138 *P. aeruginosa* isolates are shown below. The mode MIC value for C/T was 22 doubling dilutions lower than that for CAZ/AVI, and it was 23 dilutions lower than the C/T CLSI susceptible breakpoint, whereas the modal MIC value for CAZ/AVI was 2 dilutions lower than its susceptible breakpoint. Among all *P. aeruginosa* isolates, percentages of susceptibility were 96.6% (1,088/1,138) (C/T), 76.6% (CAZ/AVI), 67.0% (imipenem [IMI]), 74.0% (meropenem [MEM]), 71.5% (piperacillin–tazobactam [TZP]), and 64.9% (aztreonam). Among subsets of nonsusceptible isolates, susceptibilities to C/T and CAZ/AVI were 83.5% and 74.4%, respectively (CAZ/NS subset, *n* = 266), 91.0% and 85.1% (IMI-NS, *n* = 296), 87.5% and 80.1% (MEM-NS, *n* = 296), 87.0% and 79.6% (TZP-NS, *n* = 324), and 72.4% and 57.8% among isolates nonsusceptible to all tested β-lactams (*n* = 11).

Conclusion. The activity of C/T exceeded that of CAZ/AVI and other tested comparators against a recent collection of clinical isolates of *P. aeruginosa*, including subsets of isolates nonsusceptible to other β-lactams. Susceptibilities to C/T were 6–14 percentage points higher than observed for CAZ/AVI among β-lactam-NS subsets. C/T promises to be an important treatment option for patients with antimicrobial-resistant *P. aeruginosa* infections.

Table 1: TEAs and Postbacterial Endocarditis Changes in Patients at Risk for Cardiac Safety Concerns

Patients with history of hypertension, n (%)	LEF (n=246)	MOX (n=292)
TEAs in cardiac SCC	8.0 (3.3)	8.6 (3.2)
TEAs in QT prolongation category	1.0 (4.0)	4.1 (6.2)
Patient baseline and postbacterial values of QTcF	215 (88.8)	223 (88.8)
Increase in QTcF	45 (16.4)	57 (22.7)
Increase in QTcF	4.1 (6.3)	9.3 (6.3)
Value QTcF >480 msec	10 (4.1)	9 (3.6)
Value QTcF >500 msec	10 (4.1)	2 (0.8)
Baseline QTcF >480 msec and postbacterial QTcF >480 msec	9 (3.7)	7 (2.6)
Baseline QTcF >500 msec and postbacterial QTcF >500 msec	1 (0.4)	2 (0.7)

Table 2: Nephrotobitory TEAs and Postbacterial Liver Enzyme Changes in Patients at Risk for Hepatic Safety Concerns

Patients with baseline liver enzyme elevation (AST or ALT >ULN)	LEF (n=119)	MOX (n=144)
TEAs in nephrotobitory SCC	10.0 (3.8)	9.7 (4.3)
n (%)	2 (1.7)	2 (1.4)
Any postbacterial value, n (%)	3 (2.5)	3 (2.1)
AST > ULN	234 (88.2)	234 (86.3)
In QTcF	52 (15.0)	49 (16.9)
Increase in QTcF	4.1 (7.2)	6 (6.2)
Value QTcF >480 msec	11 (4.1)	14 (3.5)
Value QTcF >500 msec	10 (4.1)	6 (1.5)
Baseline QTcF >480 msec and postbacterial QTcF >480 msec	10 (3.6)	10 (4.0)
Baseline QTcF >500 msec and postbacterial QTcF >500 msec	1 (0.4)	1 (0.1)

Table 3: Patients aged 266 y, n (%) with C/T and CAZ/AVI

Patients aged 266 y with postbacterial values, n (%)	C/T	CAZ/AVI
n (%)	2 (1.7)	2 (1.4)
Any postbacterial value, n (%)	3 (2.5)	3 (2.1)
AST > ULN	11 (9.0)	22 (15.3)
ALT > ULN	30 (25.1)	40 (28.5)
ALT > ULN	1020 (4.0)	1024 (4.0)
ALT > ULN	5000 (23.4)	1020 (4.0)
ALT > ULN	1020 (4.0)	1024 (4.0)
Total bilirubin value > ULN	1502 (12.0)	1504 (12.0)
ALT > AST + 3 ULN and total bilirubin value > 2 ULN	1505 (12.5)	1506 (12.5)

Discussion

All authors: No reported disclosures.

719. Cefiderocol Retains Anti-Biofilm Activity in MDR Gram-Negative Pathogens

Christine A. Pybus, MS;1 David E. Greenberg, MD;1 UT Southwest Medical Center, Dallas, Texas; 2UT Southwest Medical Center, Dallas, Texas

Session: 68: Novel Antimicrobials and Approaches Against Resistant Bugs

Thursday, October 3, 2019: 12:15 PM

Background. Cefiderocol is a siderophore cephalosporin with potent antibacterial activity against a broad range of Gram-negative pathogens. Microorganisms form biofilms, e.g., cUTI, utilize bacterial siderophores to access free iron. A siderophore antibiotic may have unique antimicrobial properties in the setting of biofilm. In this study, we compared antimicrobial activity of cefiderocol to comparator antibiotics in well-characterized multi-drug-resistant pathogens. We determined the activity of cefiderocol and comparator antibiotics in the biofilm setting.

Methods

Minimum inhibitory concentrations (MICs) in Mueller–Hinton II broth (MHII) and iron-depleted cation-adjusted MHII (ID-CAMHB) were measured. Among subsets of nonsusceptible isolates, susceptibilities to C/T and CAZ/AVI were 83.5% and 74.4%, respectively (CAZ/NS subset, *n* = 266), 91.0% and 85.1% (IMI-NS, *n* = 296), 87.5% and 80.1% (MEM-NS, *n* = 296), 87.0% and 79.6% (TZP-NS, *n* = 324), and 72.4% and 57.8% among isolates nonsusceptible to all tested β-lactams (*n* = 11).

Conclusion. The activity of C/T exceeded that of CAZ/AVI and other tested comparators against a recent collection of clinical isolates of *P. aeruginosa*, including subsets of isolates nonsusceptible to other β-lactams. Susceptibilities to C/T were 6–14 percentage points higher than observed for CAZ/AVI among β-lactam-NS subsets. C/T promises to be an important treatment option for patients with antimicrobial-resistant *P. aeruginosa* infections.

Disclosures

All authors: No reported disclosures.

719. Cefiderocol Retains Anti-Biofilm Activity in MDR Gram-Negative Pathogens

Christine A. Pybus, MS;1 David E. Greenberg, MD;1 UT Southwest Medical Center, Dallas, Texas; 2UT Southwest Medical Center, Dallas, Texas

Session: 68: Novel Antimicrobials and Approaches Against Resistant Bugs

Thursday, October 3, 2019: 12:15 PM

Background. Cefiderocol is a siderophore cephalosporin with potent antibacterial activity against a broad range of Gram-negative pathogens. Microorganisms form biofilms, e.g., cUTI, utilize bacterial siderophores to access free iron. A siderophore antibiotic may have unique antimicrobial properties in the setting of biofilm. In this study, we compared antimicrobial activity of cefiderocol to comparator antibiotics in well-characterized multi-drug-resistant pathogens. We determined the activity of cefiderocol and comparator antibiotics in the biofilm setting.

Methods

Minimum inhibitory concentrations (MICs) in Mueller–Hinton II broth (MHII) and iron-depleted cation-adjusted MHII (ID-CAMHB) were measured for cefiderocol and seven comparator antibiotics in multidrug-resistant isolates of *P. aeruginosa*, *Burkholderia cepacia* complex (Bcc), *Klebsiella pneumoniae*, *Escherichia coli*, and *Acinetobacter baumannii*. MBC (minimum biofilm eradication concentration) assays were used to test cefiderocol’s activity in biofilms formed on pegs. Total biofilm biomass and viable cell number were measured.

Results

The MIC₉₀ of cefiderocol ranged from 0.125 μg/mL (Bcc) to 1 μg/mL (P. aeruginosa) in ID-CAMHB. MIC₉₀ values were consistently lower for cefiderocol in all strains tested compared with other agents (cefotaxime–tobramycin, cefidazime–arvabactam, cefazidime, piperacillin–tazobactam, imipenem–ciprofloxacin, clarithromycin, meropenem–rifampin, meropenem). Among subsets of nonsusceptible isolates, susceptibilities to C/T and CAZ/AVI were 83.5% and 74.4%, respectively (CAZ/NS subset, *n* = 266), 91.0% and 85.1% (IMI-NS, *n* = 296), 87.5% and 80.1% (MEM-NS, *n* = 296), 87.0% and 79.6% (TZP-NS, *n* = 324), and 72.4% and 57.8% among isolates nonsusceptible to all tested β-lactams (*n* = 11).

Conclusion. Cefiderocol effectively reduces biofilm in multidrug-resistant strains of *P. aeruginosa* and is a potent inhibitor of planktonic growth across a range of Gram-negative medically important pathogens.

Disclosures

All authors: No reported disclosures.