MLLT6 maintains PD-L1 expression and mediates tumor immune resistance

Sandeep Sreevalsan1, Marietta Döring3, Maciej Paszkowski-Rogacz2, Melanie Brux1, Carolina Blanck2, Marten Meyer3, Frank Momburg3, Frank Buchholz1,2, & Mirko Theis1,2,*.†

Abstract

Tumor cells subvert immune surveillance by harnessing signals from immune checkpoints to acquire immune resistance. The protein PD-L1 is an important component in this process, and inhibition of PD-L1 elicits durable anti-tumor responses in a broad spectrum of cancers. However, immune checkpoint inhibition that target known pathways is not always effective. A better understanding of the genetic repertoire underlying these processes is necessary to expand our knowledge in tumor immunity and to facilitate identification of alternative targets. Here, we present a CRISPR/Cas9 screen in human cancer cells to identify genes that confer tumors with the ability to evade the cytotoxic effects of the immune system. We show that the transcriptional regulator MLLT6 (AF17) is required for efficient PD-L1 protein expression and cell surface presentation in cancer cells. MLLT6 depletion alleviates suppression of CD8+ cytotoxic T cell-mediated cytolsis. Furthermore, cancer cells lacking MLLT6 exhibit impaired STAT1 signaling and are insensitive to interferon-γ-induced stimulation of IDO1, GRB5, CD74, and MHC class II genes. Collectively, our findings establish MLLT6 as a regulator of oncovgenic and interferon-γ-associated immune resistance.

Keywords cancer; CRISPR screen; immune resistance; MLLT6; PD-L1

Subject Categories Cancer; Immunology; Signal Transduction

DOI 10.15252/embr.202050155 | Received 5 February 2020 | Revised 15 September 2020 | Accepted 22 September 2020 | Published online 15 October 2020

EMBO Reports (2020) 21: e50155

Introduction

Tumor cells evade immune destruction by exploiting immune-modulatory pathways such as immune checkpoints (Ribas & Wolchok, 2018) that are responsible for maintaining peripheral tolerance under physiological conditions (Chen & Mellman, 2013). The interaction between the proteins, programmed cell death 1 (PD-1) expressed on T lymphocytes, and programmed cell death 1 ligand 1 (PD-L1) on tumor cells inhibits the effector function of antigen-specific CD8+ cytotoxic T cells (CTLs) and is an integral part of an important immune checkpoint (Sun et al, 2018). Therapeutic blockade of the PD-1–PD-L1 interaction has led to unprecedented response rates in patients with different tumors and has brought about a new class of cancer therapy (Ribas & Wolchok, 2018). PD-L1 (CD274) expression levels and T cell infiltration in tumor tissues are established prognostic markers and are predictive of the efficacy of checkpoint inhibition therapy (Sun et al, 2018; Havel et al, 2019). Nevertheless, many tumors fulfilling these criteria exhibit primary resistance to therapy (Sharma et al, 2017) or patients who initially respond subsequently relapse despite continuous treatment (Sharma et al, 2017). Oncogenic mechanisms in tumor cells, for instance, amplification of the PD-L1 genomic locus (Green et al, 2010) or mutations in genes such as PTEN (Parsa et al, 2007), TPS5 (Wieser et al, 2018), MYC (Casey et al, 2016), or JAK/STAT (Ikeda et al, 2016) alter PD-L1 expression levels and confer immune resistance. In addition, inflammatory cytokines such as interferon-γ (IFN-γ), often present in the tumor microenvironment, stimulate PD-L1 expression (Ni & Lu, 2018) in concert with other immune-related genes, e.g. IDO1 (Gomes et al, 2018), to grant tumor cells an escape from immune attack (Gomes et al, 2018). Besides these protumorigenic effects of IFN-γ, anti-tumorigenic activities have been reported such as upregulation of MHC class I molecules (Seliger et al, 2008) or induction of chemokines leading to increased recruitment of CTLs to the tumor mass (Kunz et al, 1999). Therefore, a better understanding of the immune-inhibitory mechanisms that are prevalent in individual tumor types and a deeper knowledge of PD-L1 regulation and IFN-γ signaling may facilitate improved tumor stratification and assist in optimizing immune checkpoint therapy.

Loss-of-function genetic screens utilizing the CRISPR/Cas9 system have been successfully employed to study genotype-immunophenotype correlations and to identify novel molecules that affect immune resistance (Zhu et al, 2016; Burr et al, 2017; Manguso et al, 2017; Mezzadra et al, 2017; Patel et al, 2017). However, our knowledge of the genetic repertoire modulating the PD–PD-L1 immune checkpoint is still incomplete. Therefore, we set up a CRISPR/Cas9 loss-of-function screen to identify and characterize additional genes implicated in cancer immune resistance and PD-L1 regulation.

1) National Center for Tumor Diseases (NCT/UCC) Dresden, German Cancer Research Center (DKFZ), University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
2) Medical Systems Biology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
3) Antigen Presentation & T/NK Cell Activation Group, Clinical Cooperation Unit ‘Applied Tumor Immunity’, German Cancer Research Center (DKFZ), Heidelberg, Germany

*Corresponding author. Tel: +49 351 46340277; E-mail: mirko.theis@nct-dresden.de

© 2020 The Authors. Published under the terms of the CC BY NC ND 4.0 license

EMBO reports 21: e50155 | 2020

1 of 15
Results

CRISPR/Cas9 screen identifies regulators of PD-L1

To identify new regulators of both oncosgenic and immune-associated PD-L1 expression, we performed pooled genetic screens in the absence and presence of IFN-γ, respectively, utilizing an sgRNA library targeting 1,572 human genes (Dataset EV1). To select a suitable cell line for the screens, we analyzed PD-L1 transcript levels in 675 different cancer cell lines (Klijn et al, 2015) and chose the human colon carcinoma cell line RKO owing to its high expression levels of PD-L1 (Dataset EV2, Fig EV1A). In order to monitor PD-L1 expression in RKO cells, we generated a reporter line by knocking in eGFP into the endogenous PD-L1 genomic locus (Fig EV1B). Precise tagging was confirmed by sequencing the insertion site, which revealed an eGFP tagged PD-L1 gene (Fig EV1C). To rule out that the eGFP-tag interferes with the localization of the PD-L1 protein, we performed immunofluorescence microscopy and observed that the PD-L1-eGFP fusion protein localizes at the plasma membrane (Fig EV1D).

Furthermore, to ensure that PD-L1 expression can be stimulated, we treated the cells with increasing doses of IFN-γ. We observed a dose-dependent induction of PD-L1-eGFP by IFN-γ with an EC50 of 600 pg/ml (Fig EV1E and F), demonstrating the suitability of the reporter cell line for screening oncogenic and immune-associated PD-L1 expression.

Both screens (with and without IFN-γ, Fig 1A) were performed by transducing the reporter cells with the lentiviral sgRNA library (Dataset EV1, Fig 1A) and enriching PD-L1-eGFPlow cells to > 99.8% purity by FACS (Fig EV2). Sequencing the sgRNAs expressed in the PD-L1-eGFPlow cells revealed that the positive controls targeting the genes PD-L1 (log2 fold = 1.2–6.3) or eGFP (log2 fold = 6.2–9.6) (Dataset EV3) were among the most substantially enriched sgRNAs in both screens (Fig 1B). Notably, multiple gRNAs targeting the positive control genes PD-L1 and eGFP were enriched. In contrast, we did not observe enrichment of more than one gRNA for any other gene. Strikingly, an sgRNA targeting the signal transducer and activator of transcription 1 (STAT1), a well-characterized mediator of IFN-γ signaling upstream of PD-L1 (Garcia-Diaz et al, 2017), was enriched in the presence of IFN-γ (log2 fold = 4.7) but not in its absence (log2 fold = −3.4; Fig 1B, Dataset EV3). These results corroborate the potential of the screening setup to identify genes modulating PD-L1 expression via the oncogenic or immune-associated pathway.

To monitor the screening procedure and identify genes implicated in basic cellular processes such as cell growth and division, we spiked control sgRNAs into the initial library, targeting essential, and non-essential genes (Evers et al, 2016). The sgRNA library composition was analyzed after culturing cells but without sorting for cells based on PD-L1 expression. We observed that 44 (97.8%) out of 45 essential genes were depleted by more than two-fold (log2 fold < −1) (Fig 1C), whereas 37 (78.7%) out of 47 non-essential genes were unaltered or mildly changed (log2 fold > −1 and < 1) (Fig 1C, Dataset EV3). Strikingly, both PD-L1 screens (with and without IFN-γ) identified the gene MLLT6 (log2 fold = 4.4 (−IFN-γ), 6.6 (+IFN-γ)) (Fig 1B) as required for efficient PD-L1 expression. Notably, MLLT6 did not score in the viability screen (log2 fold = −0.1; Fig 1C) in accordance with findings of Zhang et al (2010). In summary, the screen identified MLLT6 as a putative regulator of PD-L1 that is not essential for cell growth and division.

MLLT6 is required for PD-L1 expression

Myeloid/lymphoid or mixed-lineage leukemia translocated to 6 (MLLT6, also referred to as AF17) encodes a 112 kDa protein that has been reported to exhibit transcriptional regulator activity (Prasad et al, 1994; Saha et al, 1995). Analyzing the Cancer Cell Line Encyclopedia (CCLE) transcriptome database revealed that MLLT6 is widely expressed in diverse cancer types (Fig EV3A). Interestingly, a dataset from Szasz et al, 2016 shows a statistically significant correlation (P = 4.7e-6) between poor overall survival of patients with gastric cancer and high expression levels of MLLT6 (Fig EV3B). Strikingly, the prognostic power of MLLT6 was comparable to that of HER-2 (P = 6.7e-5) (Szasz et al, 2016), a well-established biomarker in several types of cancers, including gastric cancer (Boku, 2014; Fig EV3B).

To validate MLLT6 as a regulator of PD-L1 and to exclude possible effects of tagging PD-L1 with eGFP in the reporter line, we depleted MLLT6 by CRISPR/Cas9-mediated genome editing in RKO wild-type cells. After confirming successful MLLT6 knockout in a monoclonal cell line (Appendix Fig S1B) and MLLT6 mRNA depletion (Fig EV4D), we measured PD-L1 expression by flow cytometry and detected a significant decrease (P < 0.01, MFI MLLT6 KO = 397, MFI control = 423) in PD-L1 abundance on the cell surface (Fig 2A). To confirm these findings in a cancer type other than colon carcinoma (RKO), we generated polyclonal MLLT6 knockout cells of the human osteosarcoma cell line U2OS (Appendix Fig S1C), the cervical carcinoma cell line HeLa (Appendix Fig S2A and B), and the colon carcinoma cell line SW480 (Appendix Fig S2D and E). As observed in RKO cells, flow cytometry analysis revealed a significant decrease in the number of cells with high PD-L1 surface presentation in the U2OS (Fig 2B) and HeLa (Appendix Fig S2C) knockout cells but not in SW480 (Appendix Fig S2F). Hence, efficient PD-L1 surface presentation depends on MLLT6 in diverse cell lines from different cancer types.

To exclude possible Cas9 off-target effects, we investigated if PD-L1 surface presentation can be restored by exogenous expression of LAP-tagged (Poser et al, 2008) MLLT6 encoded on a bacterial artificial chromosome (BAC) in an MLLT6 knockout line (Appendix Fig S3A). Correct localization and expression of MLLT6-LAP fusion protein was confirmed by immunofluorescence (Appendix Fig S3B), and we observed that PD-L1 surface presentation was largely restored in the MLLT6 knockout lines (Fig 2B, MFI control = 369, MFI MLLT6 KO = 290, MFI MLLT6 KO + BAC = 313). Therefore, MLLT6-LAP expression can substitute for endogenously encoded MLLT6, rescuing the loss-of-function phenotype and validating the functional importance of MLLT6 on PD-L1 plasma membrane expression.

These results prompted us to investigate whether the loss of PD-L1 cell surface expression after MLLT6 knockout is a result of reduced cellular levels. Quantification of total cellular PD-L1 by immunoblotting revealed a significant reduction in the levels of PD-L1 in multiple monoclonal MLLT6 knockout lines in RKO cells (Figs 2C and EV4A–C), and this phenotype was rescued by MLLT6-LAP expression (Fig 2C). To exclude sgRNA dependent
effects, we repeated this experiment with three additional sgRNAs targeting different sites of the MLLT6 genomic locus (Appendix Fig S4). All sgRNAs reduced MLLT6 mRNA expression (Appendix Fig S4A) and concomitantly reduced PD-L1 expression levels (Appendix Fig S4B).

To investigate whether MLLT6-dependent PD-L1 protein expression is associated with PD-L1 transcription, we performed qRT–PCR and observed a 42% reduction in PD-L1 mRNA levels in U2OS MLLT6 knockout cells (Fig 2D). Similarly, MLLT6 knockout in RKO cells showed reduction in PD-L1 mRNA levels and MLLT6-LAP expression replenished the levels of PD-L1 (Fig EV4D). These results imply that the reduced PD-L1 level in MLLT6-depleted cells is at least, in part, due to transcriptional regulation of the PD-L1 gene by MLLT6.

MLLT6 also scored as a hit in the screen where cells were treated with IFN-γ to modulate PD-L1 expression (Fig 1B). To investigate the role of MLLT6 in IFN-γ-stimulated expression of PD-L1, we analyzed the cell surface expression of PD-L1

![Figure 1. CRISPR screen identifies MLLT6 as a regulator of PD-L1.](image-url)

A Schematic of the screen for PD-L1 regulators in the presence and absence of IFN-γ. RKO reporter cells expressing PD-L1-eGFP fusion protein (blue) were mutagenized with an sgRNA/Cas9 library. PD-L1low cells were enriched by FACS, and sgRNA target genes were identified by deep sequencing. An enrichment analysis determined frequencies of different sgRNAs and their target genes.

B sgRNA frequencies (log2 of fold change) in PD-L1low cells unstimulated (left) or IFN-γ stimulated (right). Enriched sgRNAs (dashed line) are highlighted; hit genes (black, red) and controls (green, yellow or purple) are shown and labeled with target gene names.

C sgRNA frequencies (log2 of fold change) in viability screen. sgRNAs targeting controls are highlighted; essential (orange), non-essential (blue). Genes attributed to PD-L1 modulation are shown in different colors (red, yellow and purple).
In control cells, we observed PD-L1 cell surface expression induced by IFN-γ (76.0%, Fig 2E) in agreement with previous findings (Garcia-Diaz et al., 2017). In contrast, we observed a strongly reduced sensitivity to IFN-γ in MLLT6 knockout cells (13.1%) (Fig 2E). To further characterize the role of MLLT6 on the immune-associated induction of PD-L1, we analyzed protein and mRNA expression upon IFN-γ treatment. We observed PD-L1 protein and transcript levels induced by IFN-γ in control cells (Fig 2D and F). However, no upregulation of PD-L1 was observed in MLLT6 knockout cells upon IFN-γ stimulation (Fig 2D and F). Taken together, these findings establish MLLT6 as a modulator of oncogenic and IFN-γ-associated PD-L1 expression in colon and cervical carcinoma and osteosarcoma cells.

MLLT6 mediates tumor immune resistance

Tumors are often infiltrated with CD8+ cytotoxic T lymphocytes (CTLs) that present T cell receptors (TCRs) to recognize cancer antigens (Sharma et al., 2017). Inactivating these CTLs can be a prerequisite for neoplasms to grow to full malignancy (Sharma et al., 2017) and is a hallmark of immune resistance (Sun et al., 2018). To investigate whether the depletion of MLLT6 changes the susceptibility of tumor cells to T cell-mediated cytolysis, we measured cell survival of knockout and control cells in the presence of CTLs and an anti-CD3 antibody (anti-CD3 BiTE) (Fig 3A). We first compared the cell surface presentation of EpCAM antigen on MLLT6 knockout and control U2OS cells and observed increased levels of EpCAM surface expression in cells devoid of MLLT6.
cytotoxicity in the presence of IFN-γ. Interestingly, we observed that IFN-γ increases CTL-mediated cytosis in PD-L1 and MLLT6 knockout cells in comparison with control cells (Fig 3E). In summary, these findings show that MLLT6 depletion alleviates the suppression of cytotoxic T cells in the presence and absence of IFN-γ.

IFN-γ signaling and MLLT6

The decreased sensitivity to IFN-γ in absence of MLLT6 (Fig 2) prompted us to hypothesize that MLLT6 might play a role in IFN-γ signal transduction and that other genes in addition to PD-L1 may be affected. To investigate this hypothesis, we systematically analyzed transcriptome changes after IFN-γ stimulation in MLLT6 knockout and control cells by RNA-Seq. We first determined the transcriptome changes resulting from IFN-γ stimulation in U2OS cells and found 168 genes that showed at least a four-fold induction (FDR < 0.05; Fig 4A, Dataset EV4). As expected, a gene ontology enrichment analysis of these genes showed an association with IFN-γ processes (GO: 0034341; P = 1.91e-9; GO: 0060333; P = 5.54e-14; GO: 7.16e-16; GO: 0019221; P = 4.28e-18) confirming our experimental setup. Interestingly, MLLT6 transcript levels were unaltered after IFN-γ treatment (log₂ fold = 0.28, FDR = 0.06), whereas PD-L1 and STAT1 were induced 3.6 (FDR = 0.002) and 7.7 fold (FDR = 3.1e-241), respectively (Fig 4A, Dataset EV4). Notably, the strongest induction was observed for transcripts of the genes IDO1 (log₂ fold = 12.2) and MHC class II molecules CD74 (log₂ fold = 13.9) and HLA-DRA (log₂ fold = 13.5; Fig 4A, Dataset EV4).

Next, we investigated whether MLLT6 knockout leads to changes in the cellular response to IFN-γ stimulation. Interestingly, 118 out of 168 transcripts were now insensitive to IFN-γ (Fig 4A, Dataset EV4, Appendix Fig S7), namely PD-L1 (log₂ fold = -1.0, FDR = 0.05), STAT1 (log₂ fold = -1.0, FDR = 1.6e-29), CD74 (log₂ fold = -7.9, FDR < 1.0e-100), and IDO1 (log₂ fold = -8.1, FDR = 2.0e-83). Remarkably, these genes where mildly reduced (log₂ fold PD-L1 = -0.6; STAT1 = -0.9; IDO1 = -0.8) or even induced (log₂ fold CD74 = 2.8) in MLLT6 knockout cells without IFN-γ stimulation (Dataset EV4, Appendix Fig S8). Of note, MLLT6 knockout reduced MHC class I gene expression in the presence of IFN-γ (log₂ fold HLA-A = -0.6; HLA-B = -1.4; HLA-C = -0.2) but left it unaltered or induced in its absence (log₂ fold HLA-A = 0.8; HLA-B = -0.3; HLA-C = 0.7) (Dataset EV4). However, the IFN-γ induced expression of the immunoproteasome components PSMB8 and PSMB9 were reduced in MLLT6 knockout cells (log₂ fold PSMB8 = -6.4, PSMB9 = -1.8) which might adversely affect MHC I peptide generation (Dataset EV4). In summary, these results present a set of genes that are insensitive to IFN-γ stimulation in cells lacking MLLT6 expression.

To corroborate these findings, we nominated 86 genes from the list for validation by employing NanoString technology (Goytain & Ng, 2020). The NanoString technology quantifies gene expression by utilizing probes containing molecular barcodes that hybridize to transcripts, generating data comparable to qRT-PCR (Goytain & Ng, 2020). This dataset confirms the observations made from RNA-Seq and presents a gene set that changes significantly in the presence of IFN-γ in tumor cells devoid of MLLT6 (Fig 4B, Dataset EV5). Strikingly, many genes in this set namely HLA-DRA (Matern et al, 2019), HLA-DRB1 (Matern et al, 2019), CD74 (Imaoka et al, 2019), IDO1
Figure 3. Knockout of MLLT6 alleviates suppression of CTLs.

A Schematic of the assay measuring CD8+ T cell-mediated cytotoxicity. Cancer cells (gray) with or without genetic modifications were mixed with BiTE or bi-specific antibodies with or without IFN-γ and cytotoxic T lymphocytes (CTLs). Altered tumor cell numbers were determined after allowing for T cell engagement.

B Relative cell numbers (± SD; n = 3; biological replicates) of U2OS mock (black) or polyclonal MLLT6 knockout (gray) cells treated with varying amounts of EpCAM-CD3 BiTE and CTLs (Student’s t-test; **P < 0.01; degrees of freedom (df) = 4).

C Kaplan–Meier survival plot (left) showing changes in survival (percent) of mock (gray) and MLLT6 knockout (red) cells treated with CTLs and EpCAM-CD3 BiTE over a course of 9.5 h. Representative images (right) of time-lapse fluorescence microscopy following U2OS mock (eGFP tagged, green) and MLLT6 knockout (mCherry tagged, red) cells immediately (top left and bottom left) and 9.5 h later (top right and bottom right) (scale bars = 100 μm).

D Relative cell numbers (± SD; n = 3; biological replicates) of mock (black), PD-L1 (dark gray) or MLLT6 (light gray) knockout cells treated with BiTE or bi-specific antibodies and CTLs as indicated (Student’s t-test; **P < 0.01; df = 4). Representative images (right) from bright field microscopy of polyclonal U2OS mock (top), PD-L1 (middle) or MLLT6 (bottom) knockout cells treated without or with EpCAM-CD3 BiTE or bi-specific antibodies.

E Relative normalized cell numbers (± SD; n = 3; biological replicates) of U2OS mock (left), MLLT6 (middle) or PD-L1 (right) knockout cells treated with EpCAM-CD3 BiTE and CTLs in the presence (gray) or absence (black) of IFN-γ (Student’s t-test; **P < 0.01; df = 4).
IFN-γ signaling, we examined the effects of MLLT6 depletion on members of the IFN-γ signal transduction pathway (Fig 5A). IFN-γ binds to two receptors (IFNγR1 and -2) that convey signals via Janus kinases 1 and 2 (JAK1 and JAK2), which in turn phosphorylate and activate STAT proteins (Zhang & Liu, 2017). Upon activation, STAT proteins dimerize and alter the expression of a series of interferon response genes (Zhang & Liu, 2017). To study changes in the components downstream of the IFN-γ pathway, we first examined whether IFNγR1 and -2 expression differ upon MLLT6 knockout and this may thereby explain the reduced sensitivity. We observed that expression of IFNγR1 and -2 was largely unaltered or even increased (IFNγR1: 2.9; IFNγR2: 1.4; Fig 5A). These results demonstrate that the reduced sensitivity to IFN-γ stimulation after MLLT6 knockout is not due to aberrant expression of IFNγR.

To further characterize the role of MLLT6 in IFN-γ signaling, we examined the effects of MLLT6 depletion on members of the IFN-γ signal transduction pathway (Fig 5A). IFN-γ binds to two receptors (IFNγR1 and -2) that convey signals via Janus kinases 1 and 2 (JAK1 and JAK2), which in turn phosphorylate and activate STAT proteins (Zhang & Liu, 2017). Upon activation, STAT proteins dimerize and alter the expression of a series of interferon response genes (Zhang & Liu, 2017). To study changes in the components downstream of the IFN-γ pathway, we first examined whether IFNγR1 and -2 expression differ upon MLLT6 knockout and this may thereby explain the reduced sensitivity. We observed that expression of IFNγR1 and -2 was largely unaltered or even increased (IFNγR1: 2.9; IFNγR2: 1.4; Fig 5A). These results demonstrate that the observed insensitivity to IFN-γ stimulation after MLLT6 knockout is not due to aberrant expression of IFNγR.

We then investigated changes in the components downstream of the IFN-γ receptor that mainly involve JAK/STAT proteins (Zhang & Liu, 2017). Immunoblotting did not show any significant differences in the levels of JAK1 or JAK2 expression in mock and MLLT6 knockout samples treated with and without IFN-γ (Fig 5A). In contrast, a clear difference between MLLT6 wild-type and knockout cells was observed for STAT1 (Fig 5A). While expression level of STAT1 is increased by IFN-γ stimulation in MLLT6 knockout and wild-type cells, total levels stay lower in knockout cells (Fig 5A).

The STAT1 gene encodes two isoforms, STAT1α and STAT1β, that are typically expressed conjointly (Zhang & Liu, 2017) and become phosphorylated upon activation (Zhang & Liu, 2017). Interestingly, it has been shown that the gene sets regulated by the two isoforms are not identical (Zakharova et al., 2003), and therefore, changes in the activation status of STAT1α or –β influence the transcriptional outcome. To investigate the activation status of STAT1 isoforms, we measured phosphorylation by immunoblotting. As reported in the literature (Zhang & Liu, 2017), we observed an induction of tyrosine 701 phosphorylation by IFN-γ (1.6) on both isoforms in wild-type cells. In contrast, loss of MLLT6 expression resulted in a more pronounced STAT1β activation compared to STAT1α (Fig 5A) skewing the ratio between both isoforms. Although STAT1β is transcriptionally active in response to IFN-γ (Semper et al., 2014), it is considered the inhibitory form of STAT1 lacking most of the transactivation domain (Zakharova et al., 2003) and competes with STAT1α for binding to promoter regions (Zakharova et al., 2003; Baran-Marszak et al., 2004; Zhang & Liu, 2017). To validate the functional roles of the STAT1 isoforms in our cellular system, we specifically depleted STAT1α and STAT1β by

Figure 4. Role of MLLT6 in gene expression.
A Scatter plots of pairwise comparisons of transcript expression in U2OS cells. Plots describe log2 fold change in transcript expression in mock and polyclonal MLLT6 knockout cells treated with and without IFN-γ as indicated. Horizontal axis shows log2 fold change in transcript expression and vertical axis represents statistical significance (log10 of P-value, n = 3) with candidates nominated for further validation (red).
B Correlation plots describing log2 fold change in transcripts in RNA sequencing (x-axis) and NanoString (y-axis) measurements in mock cells ± IFN-γ (left) and MLLT6 knockout cells with IFN-γ (right). Transcripts previously described to have a role in tumor immunity (red) and FO-12 (blue) are represented on the plots as indicated.
C Changes (log2 fold) in transcript expression (left) of select immune-related genes in U2OS mock or MLLT6 knockout cells treated with or without IFN-γ and total protein levels measured by immunoblotting (right). Numbers indicate band intensities normalized to GAPDH.

Source data are available online for this figure.
esRNA-mediated RNAi (Kittler et al., 2007) (Fig 5B) and measured expression of IDO1, GBP5, and CD74 before and after stimulation by IFN-γ. We observed that the depletion of STAT1β induced the expression of these three proteins, whereas knockdown of STAT1α downregulated their expression (Fig 5B). The data corroborate our model of STAT1 regulation by MLLT6 (Fig 5C) and indicate a functional role of STAT1α as a transcriptional activator and of STAT1β as a transcriptional repressor. Hence, the observed differences in the phosphorylation of STAT1 isoforms in the absence of MLLT6, concomitantly with a general reduction in total STAT1 expression level, may explain the reduced sensitivity to IFN-γ (Fig 5C).

Discussion

Harnessing the immune system has emerged as an important part of cancer therapy (Chen & Mellman, 2013). A prerequisite to this success has been the development of strategies that release the constraints of immune checkpoints (Ribas & Wolchok, 2018) and insights into the molecular regulation of essential checkpoint molecules offer unique opportunities for innovative therapies (Ribas & Wolchok, 2018). Our genetic CRISPR/Cas9 knockout screen, designed for enrichment of sgRNAs with high efficiency and phenotypic strength, identified previously unclassified genes implicated in cancer immune resistance. Although less suited for relative comparisons, the screen delivered genes implicated in the regulation of PD-L1 expression. In particular, the screen identified the gene MLLT6 as a regulator of factors required for tumor immune evasion. Myeloid/lymphoid or mixed-lineage leukemia translocated to 6 (MLLT6) encodes a protein containing a leucine zipper and a PHD finger motif both associated with transcriptional regulation (Prasad et al., 1994; Saha et al., 1995) and displays pronounced similarities to MLLT10 (Marschalek, 2011). As observed with its paralog, a gene fusion of MLLT6 to the histone H3 lysine 4 (H3K4) methyltransferase MLL (KMT2a) has been reported in diverse cancer types (Prasad et al., 1994), including leukemia (Meyer et al., 2018; Chen et al., 2019). Myeloid/lymphoid or mixed-lineage leukemia (MLL) proteins are known to associate with DOT1L H3K79-methyltransferase (Bernt et al., 2011), a well-known epigenetic modifier controlling transcription of genes with strong implications in carcinogenesis (Bernt et al., 2011; Wang et al., 2016). While the molecular mechanism of the MLL gene in the fusion proteins in cancer transformation is well established (Marschalek, 2011), the role of the fusion partners is often less well understood. Our data suggest that MLLT6 as a fusion partner might contribute to the transformation process by conveying a cancer immune editing strategy. Future work on cells harboring an MLLT6-MLL fusion could reveal if these cells are indeed compromised in immune checkpoint regulation.

T cell activation and inactivation requires the coordination of various costimulatory and coinhibitory signals (Ribas & Wolchok, 2018), and binding of PD-1 to its ligand PD-L1 is one such signal that negatively regulates the immune response (Sun et al., 2018). Unfortunately, the mechanisms governing immune escape in tumors are often similar, if not identical, to those governing self-tolerance (Sanmamed & Chen, 2018). Therefore, cancer patients receiving immune checkpoint inhibitors as part of their therapy exhibit immune-related adverse effects (irAEs; Mellati et al., 2015; Johnson et al., 2016). In addition, primary or acquired resistance to therapy provides a major challenge (Topalian et al., 2012; Ribas et al., 2016). Consequently, novel routes for tumor immune modulation are required. Our results demonstrate that depletion of MLLT6 in tumor cells alleviates suppression of T cell-mediated cytolyis and reduces expression of immune resistance factors. In gastric cancer, increased levels of MLLT6 correlates with a negative prognosis (Szasz et al., 2016), and in leukemia, activating mutations of MLLT6 have been observed at a frequency higher than expected from random mutations (Meyer et al., 2018). Our
results suggest that these findings should be considered in light of MLLT6 as a regulator of tumor immune evasion. Furthermore, an in vivo RNAi screen in immune competent mice has recently identified MLLT6 as a physiological regulator of oncogenic growth (Beronja et al., 2013). Our data indicate that MLLT6 was identified in this screen due to its crucial role in cancer immune resistance. We speculate that HrasG12V transformed cells lacking MLLT6 were eliminated by the host immune cells, while cells expressing MLLT6 evaded the immune system and proliferated in this environment. Based on our results, we propose to reexamine the involvement of immune cells in this interesting in vivo system (Zhang et al., 2010; Beronja et al., 2013).

In addition to immunotherapies based on immune checkpoint blockade, other strategies evoking anti-cancer immunity have been developed, such as bi-specific antibodies (bsAbs) (Runcie et al., 2018) or BiTEs (Huheils et al., 2015). These molecules work by binding to T cell receptor (TCR) complex proteins such as CD3 and a common tumor antigen, thus engaging tumor and T cells (Huheils et al., 2015). Although these agents efficiently elicit an immune response against cancer cells in vitro (Deisting et al., 2015) and in vivo (Zhao et al., 2019), their clinical application is often limited due to the expression of immune repressors such as PD-L1 (Feucht et al., 2016) or IDO1 (Deisting et al., 2015). Our findings show that BiTE or bsAbs-mediated T cell cytolysis is augmented when MLLT6 activity is inhibited. Hence, MLLT6 inhibition can possibly reduce tumor-associated immune suppression and concurrently foster the efficacy of BiTEs or bsAbs. Therefore, a combination of MLLT6 inhibition and T cell engagers is likely to improve clinical outcomes of therapy.

Besides oncogenic expression by cancer-associated signaling (Sharma et al., 2017), cytokine-induced immune resistance has also been reported (Zaidi & Merlino, 2011). IFN-γ is one such cytokine, typically secreted by lymphocytes, that convey both anti- and pro-tumorigenic signals (Zaidi & Merlino, 2011). IFN-γ plays an ambivalent role by stimulating the immune system but at the same time promoting factors that negatively affect the immune response (Garcia-Diaz et al., 2017). Its pronounced anti-tumorigenic activities include the upregulation of MHC class I molecules augmenting T-cell activation (Chang et al., 1992; Manguso et al., 2017), production of chemokines (Hu et al., 2008) recruiting immune effector cells (Pan et al., 2018) for eliminating tumor cells (Alspach et al., 2019). The loss of IFN-γ signaling reduces the efficacy of adoptive cell transfer and checkpoint blockade immunotherapy (Patel et al., 2017) but IFN-γ also promotes the development of regulatory T cells (Tregs) (Agnello et al., 2003) and upregulates the expression of PD-L1 and IDO1 to convey pro-tumorigenic effects (Zaidi & Merlino, 2011). Concomitantly, intratumoral IFN-γ was shown to be associated with expression of MHC class II molecules (Alspach et al., 2019), which in turn correlates with a more aggressive phenotype in human melanomas (Tsuijiski et al., 1987; Brocker et al., 1988; Hemon et al., 2011). Thus, a compelling interest in identifying modulators of IFN-γ signaling in tumors has emerged. Our data demonstrate that MLLT6 is required for signal transduction of IFN-γ by modulating STAT1 activation. Although it is unclear whether such modulation occurs due to a direct or indirect interaction, our data show that loss of MLLT6 in tumor cells reduces MHC class I expression in the presence of IFN-γ but induces the expression in its absence, while MHC class II components are downregulated. However, the expression of the immunoproteasome components PSMB8 and PSMB9 reduces in MLLT6 knockout cells and may therefore adversely affect MHC I peptide generation. Additionally, we show that MLLT6 is required for IFN-γ stimulation of genes associated with immune evasion in tumor cells such as IDO1, CD74, and GBP5. Indoleamine 2,3-dioxygenase 1 (IDO1) is frequently found in the tumor microenvironment (Komiya & Huang, 2018), and high expression correlates with negative prognosis (Kiyozumi et al., 2018; Komiya & Huang, 2018). IDO1 expression leads to increased T cell anergy and enhanced Treg function (Komiya & Huang, 2018) increasing the capacity of tumors to attenuate immune response. Consequently, IDO1 inhibition alone or in combination with antibodies for PD-L1 is currently in clinical trials to enhance anti-tumor immunity (Komiya & Huang, 2018). CD74 is the invariant chain of the MHC class II complex and plays an important role in antigen presentation (Imaoka et al., 2019). Inhibition of CD74 signaling has been shown to restore anti-tumor immune response (Figueiredo et al., 2018) and reduce expression of PD-L1 (Imaoka et al., 2019), making it an interesting molecule for therapeutic targeting (Stein et al., 2007). Guanylate binding protein 5 (GBP5) belongs to a class of GTPases that have recently emerged as central orchestrators of host defense against a wide variety of pathogens and neoplastic diseases (Tretina et al., 2019). GBP5s are induced by IFN-γ, and increased tissue levels have been found associated with unfavorable outcomes in lung adenocarcinoma (Yamakita et al., 2019). Based on our results tumor cells devoid of MLLT6 concomitantly lose expression of these proteins in the presence of IFN-γ, therefore, we speculate that the inhibition of MLLT6 may potentiate the effects of immunotherapies that invoke IFN-γ responses and thus boost their anti-tumorigenic effects. Additionally, combining MLLT6 inhibition with bsAbs, BiTEs or adoptive T cell therapies such as CAR T cells is conceivable.

Taken together, our data establish MLLT6 as a regulator of immune-related genes that operate via the oncogenic and immune-associated signaling network. Although our conclusions are limited to bsAbs or BiTEs used in vitro, we are convinced that exploiting a tumor’s dependency on MLLT6 may open an alternative route to reestablish immune responses against cancer in patients resistant to current treatments.

Materials and Methods

Cell culture

The RKO, SW480 (colon carcinoma), HeLa (cervical carcinoma), and U2OS (osteosarcoma) cell lines were purchased from ATCC and maintained in DMEM (Gibco, ref: 31966-021) supplemented with 10% fetal bovine serum (Gibco, 10270-106) and 100 units/ml of penicillin and 0.1 mg/ml of streptomycin (Gibco, 15140-122) at 37°C and 5% CO₂. Whole blood samples were collected from four healthy donors in EDTA, and peripheral blood mononuclear cells (PBMCs) were isolated by density gradient centrifugation using Ficoll-Paque PLUS (GE Healthcare). Subsequently, CD8⁺ T cells were subjected to negative selection using the CD8⁺ T cell isolation kit (MACS, Miltenyi Biotec), expanded, and activated using
Dynabeads human T-Activator CD3/CD28 (Gibco) in ImmunoCult-XF T-cell expansion medium (Stemcell Technologies). Activation beads were removed after 72 h, and CD8+ T cells were kept in culture for 24 h before functional tests were performed.

Reporter cell line

The RKO reporter cell line expressing PD-L1-eGFP was generated by homology-directed repair (HDR) after Cas9 cleavage of the genomic PD-L1 locus. The HDR template was cloned into the vector pC-Goldy-TALEN (Addgene, 38143) via Esp3I containing an eGFP-P2A-brs sequence flanked by 501 bp and 664 bp left and right homology arms, respectively (Fig EV1B). The HDR-vector was cotransfected with the vector pSpCas9(BB)-2A-Puro (PX459) V2.0 (Addgene, 62988) encoding Streptococcus pyogenes Cas9 and an sgRNA targeting the genomic PD-L1 locus close to the stop codon (gRNA PD-L1_HDR, 5'-GAGGAGACGATCTGAGGCT-3'; P2, 5'-AGCTAAACAAGTTGCCCC-3'; P3, 5'-TTCAGACGAGCTCTGGAGACT-3'; P4, 5'-ATTGTATTA AAAAGACAGCTGCTG-3'; P5, 5'-TGGAGACGCCACTAAAGGGA A-3'; P6, 5'-ACTTTTGTACGTGTTCTGCAAAG-3'). For IFN-γ stimulation, cells were treated with varying amounts (0.5–50 ng/ml) of IFN-γ (BD PharMingen, 554617) in DMEM supplemented with 10% FBS, Pen/Strep and 2 μg/ml of bovine serum albumin (BSA) (Sigma-Aldrich, A7906) for 24 h. Media was then replaced with normal DMEM and various measurements were carried out.

CRISPR library

A sgRNA library was designed systematically to cover six protein classes, which include kinases, nuclear receptors, cell surface proteins (Bausch-Fluck et al., 2015), epigenetic factors, transcription factors, and uncharacterized genes. Genes with low expression (FPKM < 2) in RKO cells (Klijn et al., 2015) were excluded, and 3–7 different sgRNAs were designed to either target the first exon, an early splicing site or the functional domain of the protein. All sgRNAs were chosen to fulfill sequence features associated with high efficiency as previously described (Doench et al., 2016). The total library was composed of 10,722 sgRNA targeting 1,572 genes. 671 sgRNAs targeting control genes were divided into three categories: (i) 45 essential genes as general positive controls, (ii) assay controls, such as PD-L1, eGFP, or STAT1, and (iii) 47 non-essential genes as negative controls with no known function in PD-L1 signaling. Oligonucleotides with sgRNA sequences were ordered as arrayed synthesis (CustomArray Inc.) and PCR-amplified (primer, forward 5'-GATATTGCCAACTCTCACACC-3', reverse 5'-GTGCGGCTAGCTGCGAACC-3'). The PCR product was cloned via Esp3I in the lentiviral vector pL.CRISPR.ESP.1RFP (#57819, Addgene) containing the modified tracr sequence (5'-GTTTAAAGACGATCTGCGAAGAACGACGATA CGAATTTAAATAGGCTACTTCTGATCAACTTGAAAGTGGCAGGACTCCTGCTGCTGTTTTT-3') as previously described (Chen et al., 2013).

Lentivirus production and CRISPR screen

Lentivirus was produced by transfection of HEK293T cells with the lentiviral vectors pL.CRISPR.EFS.tRFP (Addgene, 57818) and the packaging plasmids pSPAX2 (Addgene, 12260) and pMD2.G (Addgene, 12259) at a mass ratio of 1:0.6:0.3. Transfection was performed using 45 μg polyethylenimine (Sigma-Aldrich) per 16 μg DNA. The supernatant containing the virus was collected 72 h after transfection, filtered through a 0.45-μm filter, diluted with cell culture medium in a ratio of 1:2, and added to the cells for 14 h incubation after centrifugation at 1,000 g for 30 min. For the screen, PD-L1-eGFP reporter cells were transduced with the sgRNA library at a multiplicity of infection of 0.15 with a tRFP expression vector that encodes for Streptococcus pyogenes Cas9 and sgRNA. Cells were subjected to FACS on a BD FACSariaIII cell sorter, and 0.85 × 10^6 tRFP+ cells were collected 5 days after infection. After sorting for tRFP+ cells, they were incubated for 8 days and split into two flasks, which were left untreated or treated with 1.0 ng/ml IFN-γ for 48 h. Cells expressing low levels of PD-L1 were enriched by three rounds of FACS on a BD FACSariaIII cell sorter 15, 27 and 41 days after lentiviral transduction (Fig EV2). Genomic DNA was extracted (QiAamp DNA blood kit, Qiagen) from unsorted cells 13 days post-transduction and after three rounds of sorting from sorted cells, 48 days post-transduction. sgRNA sequences were amplified by two rounds of PCR, with the second round primers containing adaptors for Illumina sequencing (PCR 1, forward 5'-GAAAATATTTTTGTTGATAGTATTTGTCGA-3', reverse 5'-ATTGTCTGAAATACGCTCATTTTGG-3'; PCR 2, forward 5'-ACACTCTTTTCCCTACACGACGCTTCCGATCTGCTTTATATATGTTGAAAGG-3', reverse 5'-GTGACTGGAGTTTACACGCGTGCTTCCCGATCTCAACGCTAGAAGCC-3'). The resulting libraries were sequenced with single-end reads on a NextSeq 500. In brief, after targeted PCR amplification, the samples were indexed for NGS sequencing in a successive PCR enrichment followed by purification and capillary electrophoresis (Fragment Analyzer, Agilent). The sequence reads were mapped to sgRNA sequences with the aid of PatMaN (Prueser et al., 2008), a rapid short sequence aligner. As a set of query patterns, we used sgRNA sequences flanked by 5'-GACGACACGCGTCTGAGACTGCTTCCGATCTGCTTTATATATGTTGAAAGG-3', reverse 5'-GTGACTGGAGTTTACACGCGTGCTTCCCGATCTCAACGCTAGAAGCC-3'). The resulting libraries were sequenced with single-end reads on a NextSeq 500. In brief, after targeted PCR amplification, the samples were indexed for NGS sequencing in a successive PCR enrichment followed by purification and capillary electrophoresis (Fragment Analyzer, Agilent). The sequence reads were mapped to sgRNA sequences with the aid of PatMaN (Prueser et al., 2008), a rapid short sequence aligner. As a set of query patterns, we used sgRNA sequences flanked by 5'-GACGACACGCGTCTGAGACTGCTTCCGATCTGCTTTATATATGTTGAAAGG-3', reverse 5'-GTGACTGGAGTTTACACGCGTGCTTCCCGATCTCAACGCTAGAAGCC-3'). The resulting libraries were sequenced with single-end reads on a NextSeq 500. In brief, after targeted PCR amplification, the samples were indexed for NGS sequencing in a successive PCR enrichment followed by purification and capillary electrophoresis (Fragment Analyzer, Agilent). The sequence reads were mapped to sgRNA sequences with the aid of PatMaN (Prueser et al., 2008), a rapid short sequence aligner. As a set of query patterns, we used sgRNA sequences flanked by 5'-GACGACACGCGTCTGAGACTGCTTCCGATCTGCTTTATATATGTTGAAAGG-3', reverse 5'-GTGACTGGAGTTTACACGCGTGCTTCCCGATCTCAACGCTAGAAGCC-3'). The resulting libraries were sequenced with single-end reads on a NextSeq 500. In brief, after targeted PCR amplification, the samples were indexed for NGS sequencing in a successive PCR enrichment followed by purification and capillary electrophoresis (Fragment Analyzer, Agilent). The sequence reads were mapped to sgRNA sequences with the aid of PatMaN (Prueser et al., 2008), a rapid short sequence aligner. As a set of query patterns, we used sgRNA sequences flanked by 5'-GACGACACGCGTCTGAGACTGCTTCCGATCTGCTTTATATATGTTGAAAGG-3', reverse 5'-GTGACTGGAGTTTACACGCGTGCTTCCCGATCTCAACGCTAGAAGCC-3').
TA cloning, and sequencing as described above. A bacterial artificial chromosome (BAC) harboring MLLT6 genomic locus was obtained from Eupheria Biotech. The BAC contained a localization and affinity purification (LAP) cassette (Cheeseman & Desai, 2005) inserted as a carboxy-terminal fusion to MLLT6. Isolated BAC DNA was transfected and selected for stable integration as described (Poser et al., 2008).

esiRNA transfection

U2OS wild-type cells were seeded onto a six-well plate in DMEM supplemented with 10% FBS and Pen/Strep. After 24 h preactivated CD8+ T cells, at varying ratios to cancer cells, in ImmunoCult-XF T Cell Expansion Medium with different amounts of EpCAM-CM3 BiTE or EGFR-CM3 or HER2-CM3 bi-specific antibodies were added onto control and knockout cells. Cells were incubated for 12–15 h and were fixed with 4% paraformaldehyde for 10 minutes at room temperature followed by washes with PBS and were subsequently permeabilized and stained with a mixture of 0.1% Triton X-100 (Serva, 37240) and 1 μg/ml of DAPI (AppliChem, A1001) in PBS for seven minutes at room temperature. Plates were subjected to fluorescent image based automated cell counting on a Celigo Imaging Cytometer (Nexeloms Bioscience). Statistical significance was determined using Student’s two-tailed t-test by GraphPad Prism (version 6.04).

CTL assay

U2OS wild-type and MLLT6 knockout cells were seeded onto a 96-well plate in DMEM supplemented with 10% FBS and Pen/Strep. After 24 h preactivated CD8+ T cells, at varying ratios to cancer cells, in ImmunoCult-XF T Cell Expansion Medium with different amounts of EpCAM-CM3 BiTE or EGFR-CM3 or HER2-CM3 bi-specific antibodies were added onto control and knockout cells. Cells were incubated for 12–15 h and were fixed with 4% paraformaldehyde for 10 minutes at room temperature followed by washes with PBS and were subsequently permeabilized and stained with a mixture of 0.1% Triton X-100 (Serva, 37240) and 1 μg/ml of DAPI (AppliChem, A1001) in PBS for seven minutes at room temperature. Plates were subjected to fluorescent image based automated cell counting on a Celigo Imaging Cytometer (Nexeloms Bioscience). Statistical significance was determined using Student’s two-tailed t-test by GraphPad Prism (version 6.04).

Time-lapse microscopy

U2OS wild-type and MLLT6 knockout cells were transfected with pEGFP-C1 EGFP-3XNLS (Addgene, 58468) and pmCherry-C1 mCherry-NLS (Addgene, 58476) plasmids, respectively, to generate eGFP and mCherry expressing stable lines. A 50:50 mixture of 30,000 WT-eGFP and MLLT6-KO-mCherry cells were seeded into a μ-Slide 8 well-chambered coverslip slide (ibidi) containing 100 μl of DMEM supplemented with 10% FBS and Pen/Strep. The media was replaced with 300 μl of FluoroBrite DMEM (Gibco) containing T cells in the ratio of 3:1 to cancer cells and 0.2 μg of anti-EpCAM-CM3 bi-specific antibodies (Creative Biolabs). Time-lapse microscopy-based imaging was performed employing the Delvatlas Elite deconvolution microscope. Images were acquired on FITC and Alexa 594 channels every 10 min for 10 hours using a 20×/1.00 plan-Apochromat objective at 37°C with 5% CO2. Subsequently, images were deconvolved and z-projected using image processing and analysis software, Fiji (Schindelin et al., 2012). Wild-type and MLLT6 KO cell numbers were determined by manually counting cells on every image captured at 30-min intervals to generate a Kaplan–Meier curve.

Immunofluorescence

Cells were grown on coverslips overnight, fixed in methanol at −20°C for 10 min, quenched in acetic acid for 1 min, and blocked with 0.2% gelatin from cold-water fish skin (Sigma-Aldrich) in PBS (PBS/FSG) for 20 min. Cells were stained by incubation with primary antibodies for 1 h in PBS/FSG and washed with PBS/FSG. The cells were then incubated with fluorescent-dye conjugated secondary antibodies for 1 h at room temperature. After washing with PBS/FSG, coverslips were mounted on glass slides containing 4′,6-diamidino-2-phenylindole (DAPI; ProLong Gold anti-fade; Thermo Fisher Scientific). Images were acquired on an Olympus IX71 equipped with the DeltaVision Elite imaging system using 40×/0.95 plan apo objective, deconvolved, and projected using softWoRx software (Applied Precision). Acquired images were cropped and contrast adjusted using Fiji (Schindelin et al., 2012).

Antibodies

Immunofluorescence: goat anti-eGFP (MPI-CBG, Antibody Facility), mouse anti-α-tubulin (MPI-CBG, Antibody Facility), donkey anti-mouse Alexa594 (Thermo Fisher Scientific, 13497317), donkey anti-goat FITC (Thermo Fisher Scientific, 1543856). Flow cytometry: PE mouse IgG1, κ isotype control (BD PharMingen, 555749), PE mouse anti-human CD274 (BD PharMingen, 557924), FITC mouse anti-human EpCAM (BD PharMingen, 347197), FITC mouse IgG1, κ isotype control (BD PharMingen, 349041), APC anti-human EGFR antibody (BioLegend, 352906), APC mouse IgG1, κ isotype control (FC) antibody (BioLegend, 400122), PE anti-human EGFR antibody (BioLegend, 352903), PE mouse IgG1, κ isotype control (FC) antibody (BioLegend, 400113), FITC anti-human CD340 (erbB2/HER-2) antibody (BioLegend, 324404), FITC mouse IgG1, κ isotype control antibody (BioLegend, 400108). Western Blot: rabbit anti-PD-L1 (E1L3N) XP (Cell Signaling Technology, 13684), rabbit anti-PD-L1 (Thermo Fisher scientific, PA5-28115), goat anti-GAPDH (Acris Antibodies, AP16240PU-N), rabbit anti-IFNGR1 (Cell Signaling Technology, 34808), rabbit anti-IFNAR2, C-term (Gene Tex, GTX81601), rabbit anti-JAK1(6G4) (Cell Signaling Technology, 3344), rabbit anti-JAK2 (D2E12) (Cell Signaling Technology, 3230), rabbit anti-IDO1 (Gene Tex, GTX13753), rabbit anti-HLA-DRB1 (N1C3) (Gene Tex, GTX104919), rabbit anti-HLA-DRA (N2C3) (Gene Tex, GTX113732), rabbit anti-CD74 (Gene Tex, GTX110477), rabbit anti-GBP5 (Gene Tex, GTX81601), rabbit anti-JAK1(6G4) (Cell Signaling Technology, 3230), rabbit anti-IDO1 (Gene Tex, GTX13753), rabbit anti-HLA-DRB1 (N1C3) (Gene Tex, GTX104919), rabbit anti-HLA-DRA (N2C3) (Gene Tex, GTX113732), rabbit anti-CD74 (Gene Tex, GTX110477), rabbit anti-GBP5 (Gene Tex, GTX81601), rabbit anti-STAT1 (BioLegend, 7649), rabbit anti-phospho-STAT1 (Tyr701) (DA47) (Cell Signaling Technology, 7649), IRDye 680LT donkey anti-goat IgG (LI-COR Biosciences, 926-68024), IRDye 800 CW donkey anti-rabbit IgG (LI-COR Biosciences, 926-32213), T cell activation: APC mouse anti-human CD3 (BD PharMingen, 555342), APC-Cy7 CD8 (BD PharMingen, 348813), PE-Cy7 mouse anti-human CD8α (BD PharMingen, 348813), 2020 The Authors

EMBO reports 21: e50135 | 2020 11 of 15
CD25 (BD PharMingen 557741), FITC mouse anti-human CD69 (BD PharMingen, 557049). Bi-specific Antibodies: Recombinant anti-EpCAM-Cd3 bi-specific T cell engagers were from Creative Biolabs (BITE-L022). Recombinant anti-HER2 x anti-CD3 and anti-EGFR x anti-CD3 tetravalent bi-specific (scFv-hlgG1c-scFv)_2 antibodies were cloned and produced by the DKFZ (Heidelberg).

Flow cytometry

Cells were trypsinized, and 250,000 cells were centrifuged at 2,000 g for 3 min and washed in PBS. Cells were stained with phycocerythrin (PE) mouse isotype control or PE mouse anti-HER2 antibody (1 μl in 100 μl PBS), FITC (fluorescein isothiocyanate) mouse IgG1, κ isotype control or FITC mouse anti-human EpCAM antibody (5 μl in 100 μl PBS), APC (allophycocyanin) mouse IgG1, κ isotype control or APC anti-human EGFR antibody, PE mouse IgG1, κ isotype control or PE anti-human EGFR antibody and FITC mouse IgG1, κ isotype control, or FITC anti-human CD340 (erbB2/HER-2) antibody (1 μl in 100 μl PBS) and incubated for 30 min at 4°C and 30 min at room temperature. Cells were then washed with PBS twice and resuspended in 250 μl of PBS and analyzed on BD FACSCalibur, Canto II or MACS Quant VYB flow cytometers. CD8+ T cell activation status was confirmed by staining with antibodies against CD3, CD8, CD25, and CD69 (BD Pharmeden) followed by flow cytometry analysis on a BD LSR II flow cytometer. Statistical significance was determined using Student’s two-tailed t-test by GraphPad Prism (version 6.04).

Western blotting

Protein extracts were prepared from RKO and U2OS cell lines by isolating four million cells washing with 500 μl PBS and treatment with 200 μl lysis buffer (280 mM NaCl, 0.5% Igepal, 5 mM MgCl2-hexahydrate, 10% glycerol, and 50 mM Tris–HCl) containing Halt protease and phosphatase inhibitor cocktail (Thermo Fisher Scientific, 1861281) and 5 μl of 25 U/μl benzonase (Novagen, 70664) for 10 min on ice. Nine μl of samples was then mixed with 3 μl of 4× loading dye (62.5 mM Tris–HCl pH 6.8, 10% glycerol, 1% LDS, 0.005% bromophenol blue, and 50 mM DTT). Samples were then heated at 94°C and 30 min at room temperature. Cells were then washed with PBS twice and resuspended in 250 μl of PBS and incubated for 30 min at 4°C and 30 min at room temperature. Cells were then washed with PBS twice and resuspended in 250 μl of PBS and analyzed on BD FACSCalibur, Canto II or MACS Quant VYB flow cytometers. CD8+ T cell activation status was confirmed by staining with antibodies against CD3, CD8, CD25, and CD69 (BD Pharmeden) followed by flow cytometry analysis on a BD LSR II flow cytometer. Statistical significance was determined using Student’s two-tailed t-test by GraphPad Prism (version 6.04).

RNA sequencing

U2OS wild-type and MLLT6 knockout cell lines were plated on 10 cm dishes for 24 h and then treated with 1.5 ng/ml of recombinant human IFN-γ and 20 mg/ml of bovine serum albumin for 24 h. RNA was isolated as per manufacturer’s instructions using the RNeasy kit (Qiagen, 74104). Samples were run on an agarose gel to check RNA integrity, and 2 μg of total RNA from each sample was submitted for Illumina deep sequencing. Transcript expression levels were quantified with Salmon (Patro et al, 2017) using GENCODE release 28 (Patro et al, 2017) as a transcriptome annotation database. Differential expression analysis was performed in R (https://www.R-project.org, version 3.5) using tximport (Soneson et al, 2015) and DESeq2 (Love et al, 2014) packages.

NanoString

U2OS wild-type and MLLT6 knockout cell lines treated with and without IFN-γ were subjected to RNA isolation as mentioned above. Samples were checked for RNA integrity, and 150 ng of total RNA was added to a master mix containing buffer, gene-specific pool of probes, reporter tags, and universal capture tags and hybridized at 67°C for 20 h. Gene-specific probes and reporter tags were designed by NanoString Technologies Inc. Sequences for the probes and tags are provided in the Dataset EV6. Samples were transferred to an nCounter cartridge and then loaded into the Prep Station for hybridization and immobilization onto the sample cartridge for 3 h. Subsequently, the cartridge was transferred to the nCounter digital analyzer for scanning immobilized fluorescent reporters. Quality checks and data analysis were performed on the nSolver software as per manufacturer’s instructions.

sgRNA and esiRNA sequences

A list of the sgRNA and esiRNA sequences and target genes used for screening is provided in the Dataset EV1. The esiRNAs were purchased from Eupheria Biotech. The targeting regions of the sgRNAs used for validation and characterization were MLLT6_sgRNA-1, 5′-CTGCGTATGTTCGGACGAGA-3′; MLLT6_sgRNA-2, 5′-AGGACACGTACTGACGAGCAGA-3′; MLLT6_sgRNA-3, 5′-GCTCTATGATCGTCACCAACA-3′; MLLT6_sgRNA-4, 5′-TCGACATCCATGCCGGTTCAC-3′; negative control, 5′-GGCAGCGCGCAATTCCCG-3′.

qRT–PCR

Cells were trypsinized, and 1 million cells were isolated and subjected to RNA extraction using the RNeasy kit (Qiagen) as per manufacturer’s protocol. Total RNA (2.5 μg) was annealed with oligo dT at 65°C for 5 minutes, and cDNA was synthesized using SuperScript III Reverse Transcriptase (Thermo Fisher Scientific, 18080085). Quantitative real-time PCR was performed using ABsolute QPCR Mix, Sybr Green, no-ROX (Thermo Fisher Scientific, AB1158). qPCR primers used: TBP, forward 5′-AGGTAGAGGGCCCTTGTGCTC-3′, reverse 5′-GGAGAAACATTTGCTGTTTGTATCA-3′; MLLT6, forward 5′-GGTGCCCTCTCATCCTCCCTTG-3′, reverse 5′-GCAAGGGTGAGGTCTCCAGT-3′; PD-L1, forward 5′-TCATGACCATTGGCCATTGC-3′, reverse 5′-TTTGTCCAGATGACTCTCGGC-3′. Expression levels of genes were determined by 2−ΔΔCt method; C values of gene of interest were normalized to respective TATA-box binding protein (TBP) transcript C values and normalized to control samples.

Statistical analysis

Statistical analysis was carried out with GraphPad Prism (version 6.04). Typically, for two-way comparison Student’s two-tailed t-test (degree of freedom as indicated) was used. P-values of < 0.05 were considered significant. One-way ANOVA was employed to ascertain statistically significant differences between more than two groups.
Testing for differential expression of genes between RNA-Seq samples was performed using the standard workflow of R package DESeq2 (Love et al., 2014), with \(p \)-values calculated using a Wald test, followed by an FDR adjustment according to a Benjamini and Hochberg method. MFI values were calculated by building the arithmetic average of the fluorescence intensities.

Data availability

The DeepSeq data from this publication have been deposited to the NIH Gene Expression Omnibus (GEO) database and assigned the identifier GSE144484 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144484).

Expanded View for this article is available online.

Acknowledgements

We thank the NCT/UCC for funding. We thank all donors of tissue samples for the participation in this study. All donors declared their consent on the use of their tissue material for research experiments. Parts of this project were conducted under the ethics vote of the Ethics Committee of the University of Dresden (EK244072018). We thank the DRESDEN-concept Genome Center, part of the CMCB technology platform TU Dresden, for technical support. We thank Yannick Fuchs, Robert Morgenstern and the group of Ezio Bonifacio for their support with processing of human T lymphocytes. Open access funding enabled and organized by Projekt DEAL.

Author contributions

MT conceived and supervised the study. SS, MT, MD, MB, and CB designed, interpreted, and performed experiments. FB analyzed and interpreted data. MT conceived and supervised the study. SS, MT, MD, MB, and CB designed, supported with processing of human T lymphocytes. Open access funding statement has been added.

Conflict of interest

The authors declare that they have no conflict of interest.

References

Agnellò D, Lankford CS, Bream J, Morinobu A, Gadina M, O’Shea JJ, Frucht DM (2003) Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights. J Clin Immunol 23: 147 – 161

Aalspach E, Lussier DM, Schreibert RD (2019) Interferon gamma and its important roles in promoting and inhibiting spontaneous and therapeutic cancer immunity. Cold Spring Harb Perspect Biol 11: a028480

Baran-Marszak F, Feuillard J, Najjar I, Le Clorennec C, Bechet JM, Dusantier-Fourt I, Bornkamm GW, Raphael M, Fagard R (2004) Differential roles of STAT1alpha and STAT1beta in fludarabine-induced cell cycle arrest and apoptosis in human B cells. Blood 104: 2475–2483

Bausch-Fluck D, Hofmann A, Bock T, Frei AP, Cerciello F, Jacobs A, Moest H, Omasits U, Guidry RL, Yoon C et al (2015) A mass spectrometric-derived cell surface protein atlas. PLoS One 10: e0123134

Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, Krivtsov AV, Feng Z, Punt N, Daigle A, Bullinger L et al (2011) MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 20: 66 – 78

Beronja S, Janki P, Heller E, Lien WH, Keyes BE, Oshimori N, Fuchs E (2013) RNAi screens in mice identify physiological regulators of oncogenic growth. Nature 501: 185 – 190

Boku N (2014) HER2-positive gastric cancer. Gastric Cancer 17: 1–12

Brocker EB, Zwadlo G, Holzmann B, Macher E, Sorg C (1988) Inflammatory cell infiltrates in human melanoma at different stages of tumor progression. Int J Cancer 41: 562 –567

Burr ML, Sparbier CE, Chan YC, Williamson JC, Woods K, Beavis PA, Lam EYN, Henderson MA, Bell CC, Stolzenburg S et al (2017) CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 549: 101 –105

Casey SC, Tong L, Li Y, Do R, Walz S, Fitzgerald KN, Gouw AM, Baylot V, Gutgemann I, Eilers M et al (2016) MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352: 227 –231

Chang CH, Hammer J, Lof JE, Fodor WL, Flavell RA (1992) The activation of major histocompatibility complex class I genes by interferon regulatory factor-1 (IRF-1). Immunogenetics 35: 378 – 384

Cheeseman IM, Desai A (2005) A combined approach for the localization and tandem affinity purification of protein complexes from metazoans. Sci STKE 2005: p11

Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39: 1 –10

Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS et al (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155: 1479 –1491

Chen X, Wang F, Zhang Y, Wang M, Tian W, Teng W, Ma X, Guo L, Fang J, Zhang Y et al (2019) Panoramic view of common fusion genes in a large cohort of Chinese de novo acute myeloid leukemia patients. Leuk Lymphoma 60: 1071 –1078

Deistling W, Raum T, Kuffer P, Baueerle PA, Munz M (2015) Impact of diverse immune evasion mechanisms of cancer cells on T cells engaged by EpCAM/CD3-bispecific antibody construct AMG 110. PLoS One 10: e0141669

Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith DR, Deonj JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith et al (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34: 184 –191

Evers B, Jastrzebski K, Heijmans JP, Gremmum W, Beijersbergen RL, Bernards R (2016) CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat Biotechnol 34: 631 –633

Feucht J, Kayser S, Gorodezki D, Hamieh M, Doring M, Blaeschke F, Schlegel P, Bosmueller H, Quintanilla-Fend L, Ebinger M (2014) CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat Biotechnol 34: 631 –633

Figueiredo CR, Azevedo RA, Mousdell S, Resende-Lara PT, Ireland L, Santos A, Girola N, Cunha R, Schmid MC, Polonelli L et al (2018) Blockade of MIF-CD74 signalling on macrophages and dendritic cells restores the antitumour immune response against metastatic melanoma. Front Immunol 9: 1132

[Correction added on 4 November 2020, after first online publication: Projekt DEAL funding statement has been added.]
Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, Zaretsky JM, Sun L, Hugo W, Wang X et al (2017) Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep 19: 1189–1201

Gomes B, Driessens G, Bartlett D, Cai D, Cauwenberghs S, Crosignani S, Dalvie D, Denies S, Dillon CP, Fantin VR et al (2018) Characterization of the selective indoleamine 2,3-Dioxygenase-1 (IDO1) catalytic inhibitor EOS20027(1P)-0684003 supports IDO1 as a critical resistance mechanism to PD-(L)1 blockade therapy. Mol Cancer Ther 17: 2530–2542

Goyaïin A, Ng T (2020) Nanostring nCounter technology: high-throughput RNA validation. Methods Mol Biol 2079: 125–139

Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O'Donnell E, Chapuy B, Takeyama K, Neuberg D, Golub TR et al (2010) Integrative analysis reveals selective Sp24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116: 3268–3277

Havel Jj, Chowell D, Chan TA (2019) The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer 19: 133–150

Hemon P, Jean-Louis F, Ramgolam M, Brignone C, Viguier M, Bachelez H, Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O

Kunz M, Toksoy A, Goebeler M, Engelhardt E, Brocker E, Giltizer R (1999) Strong expression of the lymphoattractant C-X-C chemokine Mig is associated with heavy infiltration of T cells in human malignant melanoma. J Pathol 189: 552–558

Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15: 550

Manguso RT, Pope HW, Zimmerman MD, Brown FD, Yates KB, Miller BC, Collins NB, Bi K, LaFleur MW, Junee VR et al (2017) In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547: 413–418

Marschalek R (2011) Mechanisms of leukemogenesis by MLL fusion proteins. Br J Haematol 152: 141–154

Matern BM, Olieslagers TJ, Voorter CEM, Groeneveld M, Tilanus MGC (2019) Insights into the polymorphism in HLA-DRA and its evolutionary relationship with HLA haplotypes. HLA 95: 117–127

Mellati M, Eaton KD, Brooks-Worrell BM, Hagopian WA, Martins R, Palmer JP, Hirsch IB (2015) Anti-PD-1 and Anti-PDL-1 monoclonal antibodies causing type 1 diabetes. Diabetes Care 38: e137–e138

Meyer C, Burmeister T, Groger D, Tsaur G, Fehling L, Renneville A, Sutton R, Venn NC, Emerenciano M, Pombo-de-Oliveira MS et al (2018) The MLL recombinome of acute leukemias in 2017. Leukemia 32: 273–284

Mezzadra R, Sun C, Jae LT, Gomez-Eerland R, de Vries E, Wu W, Logtenberg MEW, Sgtler M, Rozeman EA, Hofland I et al (2017) Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature 549: 106–110

Ni L, Lu J (2018) Interferon gamma in cancer immunotherapy. Cancer Med 7: 4509–4516

Pan D, Kobayashi A, Jiang P, Ferrari de Andrade L, Tay RE, Luoma AM, Tsoucas D, Qiu X, Lim K, Rao P et al (2018) A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359: 770–775

Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, Cachola KE, Murray JC, Tihan T, Jensen MC et al (2007) Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 13: 84–88

Patel Sj, Sanjana NE, Kishotn Rj, Eidizadeh A, Vodnala SK, Cam M, Gartner Jj, Murray JC, Tihan T, Jensen MC et al (2007) Association of pembrolizumab treatment with tumor response and survival among patients with advanced melanoma. Jama 315: 1600–1609

Poser I, Sarov M, Hutchins JR, Heriche JK, Toyota Y, Pozniakovsky A, Weigl D, Nitzsche A, Hegemann B, Bird AW et al (2008) BAC Transgeneomics: a high-throughput method for exploration of protein function in mammals. Nat Methods 5: 409–415

Prasad R, Leskowitz D, Gu Y, Alder H, Nakamura T, Saito H, Huebner K, Berger R, Croce CM, Canaan E (1994) Leucine-zipper dimerization motif encoded by the AF17 gene fused to ALL-1 (Mll) in acute leukemia. Proc Natl Acad Sci USA 91: 8107–8111

Pruefer K, Stenzel U, Dannemann M, Green RE, Lachmann M, Kelso J (2016) Fulminant myocarditis with tumor response and survival among patients with advanced melanoma. JAMA 315: 1600–1609

Rabin A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359: 1350–1355

Runcie K, Budman DR, John V, Seetharamu N (2018) Bi-specific and tri-specific antibodies- the next big thing in solid tumor therapeutics. Mol Med 24: 50

Saha V, Chaplin T, Gregorini A, Ayton P, Young BD (1995) The leukemia-associated-protein (LAP) domain, a cysteine-rich motif, is present in a...
wide range of proteins, including MLL, AF10, and MLLT6 proteins. Proc Natl Acad Sci USA 92: 9737–9741
Sanmamed MF, Chen L (2018) A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell 175: 313–326
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9: 676–682
Seliger B, Ruiz-Cabello F, Garrido F (2008) IFN inducibility of major histocompatibility antigens in tumors. Adv Cancer Res 101: 249–276
Semper C, Leitner NR, Lassnig C, Parrini M, Mahlakoiv T, Rammerstorfer M, Lorenz K, Rigler D, Muller S, Kolbe T et al (2014) STAT1beta is not dominant negative and is capable of contributing to gamma interferon-dependent innate immunity. Mol Cell Biol 34: 2235–2248
Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168: 707–723
Soneson C, Love MI, Robinson MD (2015) Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4: 1521
Stein RI, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9: 676–682
Serizzii M, Igarashi M, Sakaguchi K, Eisinger M, Herlyn M, Ferrone S (1987) Immunochemical and functional analysis of HLA class II antigens induced by recombinant immune interferon on normal epidermal melanocytes. J Immunol 138: 1310–1316
Wang X, Chen CW, Armstrong SA (2016) The role of DOT1L in the maintenance of leukemia gene expression. Curr Opin Genet Dev 36: 68–72
Wieser V, Gaugg I, Fleischer M, Shivilangaia G, Wenzel S, Sprung S, Lax SF, Zeimet AG, Fiegl H, Marth C (2018) BRCA1/2 and TP53 mutation status associates with PD-1 and PD-L1 expression in ovarian cancer. Oncotarget 9: 17501–17511
Yamakita I, Mimae T, Tsutani Y, Miyata Y, Ito A, Okada M (2019) Guanylate binding protein 1 (GBP-1) promotes cell motility and invasiveness of lung adenocarcinoma. Biochem Biophys Res Commun 518: 266–272
Zaidi MR, Merlino G (2011) The two faces of interferon-gamma in cancer. Clin Cancer Res 17: 6118–6124
Zakharova N, Lymar ES, Yang E, Malik S, Zhang JJ, Roeder RG, Darnell JE Jr (2003) Distinct transcriptional activation functions of STAT1alpha and STAT1beta on DNA and chromatin templates. J Biol Chem 278: 43067–43073
Zhang Z, Huang L, Reisenauer MR, Wu H, Chen L, Zhang Y, Xia Y, Zhang W (2010) Widely expressed AF17 is likely not required for embryogenesis, hematopoiesis, and animal survival. Genesis 48: 693–706
Zhang Y, Liu Z (2017) STAT1 in cancer: friend or foe? Discov Med 24: 19–29
Zhang C, Li Z, Xu L, Che X, Wen T, Fan Y, Li C, Wang S, Cheng Y, Wang X et al (2018) CXCL9/10/11, a regulator of PD-L1 expression in gastric cancer. BMC Cancer 18: 462
Zhao J, Song Y, Liu D (2019) Recent advances on blinatumomab for acute lymphoblastic leukemia. Exp Hematol Oncol 8: 28
Zhu H, Bengsch F, Svoronos N, Rutkowski MR, Bitler BG, Allegrezza MJ, Yokoyama Y, Kossenkov AV, Bradner JE, Conejo-Garcia JR et al (2016) BET bromodomain inhibition promotes anti-tumor immunity by suppressing PD-L1 expression. Cell Rep 16: 2829–2837

License: This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.