Reliable identification at the species level of Brucella isolates with MALDI-TOF-MS

Florigio Lista, Frans AG Reubsaet, Riccardo De Santis, Rene R Parchen, Ad L de Jong, Jasper Kieboom, Anton L van der Laaken, Ingrid Al Voskamp-Visser, Silvia Fillo, Hugo-Jan Jansen, Jan Van der Plas, and Armand Paauw*

Abstract

Background: The genus Brucella contains highly infectious species that are classified as biological threat agents. The timely detection and identification of the microorganism involved is essential for an effective response not only to biological warfare attacks but also to natural outbreaks. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is a rapid method for the analysis of biological samples. The advantages of this method, compared to conventional techniques, are rapidity, cost-effectiveness, accuracy and suitability for the high-throughput identification of bacteria. Discrepancies between taxonomy and genetic relatedness on the species and biovar level complicate the development of detection and identification assays.

Results: In this study, the accurate identification of Brucella species using MALDI-TOF-MS was achieved by constructing a Brucella reference library based on multilocus variable-number tandem repeat analysis (MLVA) data. By comparing MS-spectra from Brucella species against a custom-made MALDI-TOF-MS reference library, MALDI-TOF-MS could be used as a rapid identification method for Brucella species. In this way, 99.3% of the 152 isolates tested were identified at the species level, and B. suis biovar 1 and 2 were identified at the level of their biovar. This result demonstrates that for Brucella, even minimal genomic differences between these serovars translate to specific proteomic differences.

Conclusions: MALDI-TOF-MS can be developed into a fast and reliable identification method for genetically highly related species when potential taxonomic and genetic inconsistencies are taken into consideration during the generation of the reference library.

Background

The genus Brucella contains highly infectious species that have been found to cause infections in a wide variety of mammals. Most Brucella species have a narrow host range. Infection in humans arises from direct or indirect contact with infected animals or through consumption of contaminated meat or dairy products [1]. Diagnostic laboratory workers are also at risk; 2% of all cases of brucellosis are laboratory acquired. Person-to-person transmission is extremely rare [1-3]. Characteristically, Brucella species have a low infectious dose and are capable of transmission via aerosols, and the treatment of infections is lengthy with a risk of complications. For these reasons, Brucella is classified as a potential warfare threat agent, and Brucella suis has been weaponized in the past by the United States, the former Soviet Union, and China [4].

Brucella species belong to the family Brucellaceae in the order Rhizobiales of the class Alphaproteobacteria and are small, non-motile Gram-negative rods. Until recently, six species, some of which may be subdivided into biovars, were assigned to the Brucella genus. These species are Brucella abortus (seven biovars), Brucella melitensis (three biovars), Brucella suis (five biovars), Brucella ovis, Brucella canis, and Brucella neotomae. However, four new species have recently been described. Three of these species were isolated from sea mammals and ‘wild’ mammals: Brucella ceti, Brucella pinnipedialis, and Brucella microti [5-10]. Finally, a new species, Brucella inopinata, was isolated from a breast implant...
The

Brucella

species primarily considered to be pathogenic for humans are

B. melitensis, B. suis (biovars 1, 3, and 4), B. abortus, and sporadically B. canis [1,2,13]. B. suis biovars 2 and 5 are considered not to be human pathogens because no human cases have been documented for these agents [13].

The DNA-DNA hybridization results suggest that the classification system used for

Brucella

is open to debate. Among the different

Brucella

species, the DNA-DNA hybridization relatedness varies from 87% to 99%, indicating that the

Brucella

species may actually be considered a single species [13-15]. However, the traditional nomenclature was maintained because the specific host range and pathogenicity differ among the

Brucella

species [1]. The conventional methods used to identify

Brucella

isolates are complex, labor-intensive, and time consuming. In addition,

Brucella

is a potential health hazard to laboratory personnel. Traditionally, the identification of

Brucella

species is mainly based on host specificity, pathogenicity, and minor phenotypic differences that are determined using several separate tests, which include tests for the oxidation of carbohydrate and amino acid substrates, phage sensitivity, CO₂ requirement, H₂S production, serum agglutination, and growth in the presence of thionine and basic fuchsin [1]. The scheme to discriminate to the level of biovars is inconclusive because the biological differences between the biovars described are limited, and the interpretation of the results can be subjective [13]. In addition, some

Brucella

isolates appear unable to be typed [13].

DNA-based approaches have been widely introduced to identify microorganisms, including

Brucella

species. A relatively rapid approach is the ‘Bruce-ladder’, a multiplex PCR that is able to distinguish the six classical species [13,16]. To complement the ‘Bruce-ladder’, a single PCR was added to distinguish the marine mammal-derived

Brucellae

as well. This method, called bp26 PCR, is based on the IS711 [13,16].

Another method, mainly developed for the epidemiological investigation of outbreaks, is multilocus variable-number tandem repeat analysis (MLVA). MLVA is based on the differences in the number of tandem repeats in several loci of the bacterial chromosome [17]. The MLVA developed for

Brucella

has been proven to be a reliable, reproducible, and highly discriminatory method that is able to classify all of the

Brucella

strains [13,18-20]. In this study, we the previously described MLVA-16 assay to identify

Brucella

species was used [13,18-20].

Genomic studies have shown that the nomenclature for several

Brucella

species is not consistent if the genetic relationships among species are considered to be the gold standard for discriminating between species [20]. For example,

B. ceti

is divided into two separate groups, one of which is more closely related to

B. pinnipedialis

than to the other group of

B. ceti

[20]. Additionally,

B. suis

biovar 5 is more related to

B. ceti, B. neotomae, B. pinnipedialis

and

B. ovis

than to the other

B. suis

biovars [20].

The timely detection and rapid identification of the microorganisms involved are essential for the most-effective response to an infectious disease outbreak, regardless of whether the outbreak is natural or deliberate. This rapid identification is necessary not only to treat patients effectively but also to establish outbreak management, source tracing, and threat analyses.

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is a rapid method used to analyze biological differences in microorganisms. MALDI-TOF-MS emerged as a new diagnostic tool in established microbiological laboratories [21]. The advantages of MALDI-TOF-MS over conventional techniques are that it is a fast, cost-effective, accurate method, which is suitable for the high-throughput identification of bacteria by less-skilled laboratory personnel because preliminary identification steps are unnecessary [21-24]. The bacteria are identified by comparing the obtained MS spectra to the MS spectra or profiles of MS spectra from a reference library. Hence, the reliability of the identification is based on the content and quality of this library, among other factors. Recently, a reference library to identify

Brucella

species was constructed using 12

Brucella

strains, but using this ‘

Brucella

library’, the discrimination was insufficient for identification at the species level [25]. In contrast, reliable identification at the species level was shown for other genetically closely related species, such as

Fransicella

species,

Bacillus

species, and species from the

Burkholderia

cepacia

complex [26-28].

The aim of this study was to improve identification using MALDI-TOF-MS at the species level of

Brucella

. Therefore, a custom reference library was constructed with strains that represent the known genetic variation of

Brucella

at the species and biovar level according to MLVA. Subsequently, this custom reference library was evaluated using 152

Brucella

isolates that were identified using MLVA.

Methods

Bacterial strains

Seventeen of the 170 isolates included in this study are reference strains representing the classical

Brucella

species, and only the classical reference strain for

B. suis

biovar 4 is missing (Additional file 1: Table S1) [1]. The 170 isolates included in the study were all typed using MLVA [19]. The

Brucella

isolates originated from K. Walravens, Veterinary and Agrochemical Research
Centre (CODA/CERVA), Operational Direction of Bacterial Diseases, Unit of Pathology, Brussels, Belgium, and from the department of Bacteriology of the National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands (Brucella isolated from humans and reference strains). The human isolates from the RIVM were all, except two, isolated from patients in The Netherlands between 1969 and 2008. The strains, together with additional information, are shown in Additional file 1: Table S1.

MLVA analysis

The target DNA for polymerase chain reaction (PCR) assays was extracted by heating bacterial suspensions in sterilized, demineralized water for 90 min at 95°C. The amplification of the different variable-number tandem repeats (VNTR) was performed as previously described [18,19,29-31]. Moreover, as described by Al Dahouk et al., an additional VNTR was added to the initial MLVA-15 [18,19,29,30].

The PCR amplification was performed in 15-μl volumes containing 1U FastStart Taq polymerase (Roche), 1 × PCR Roche reaction buffer (10 mM Tris-HCl, 2.5 mM MgCl₂, and 50 mM KCl at pH 8.3), 0.2 mM dNTPs (Roche) and 0.3 μM of each flanking primer. Thermal cycling, conducted on a Peltier Thermal Cycler DNA Engine DYAD (MJ Research), was performed as follows: an initial heating at 95°C for 5 min followed by 35 cycles of denaturation at 95°C for 30 sec, annealing at 60°C for 30 sec and extension at 70°C for 60 sec. A final extension was performed at 70°C for 5 min.

Lab-on-a-chip genotyping was used as previously described to analyze the number of tandem repeats in each locus [18]. The amplification products were loaded into a 96-well or 384-well PCR plates that were prepared according to the manufacturer’s recommendations (Caliper HT DNA 5 K Kit, Caliper Life Sciences, Hopkinton, USA). Each chip contained 5 active wells: 1 for the DNA marker and 4 for the gel-dye solution. A marker ladder of MW 100, 300, 500, 700, 1, 100, 1, 900, 2, 900, and 4, 900 bp was used for referencing the molecular weight. The number of samples per chip preparation was 400, equivalent to four 96-well plates or one 384-well plate. After gel preparation, the sample plate was loaded into the plate carrier attached to the robot of the Caliper LabChip 90 (Caliper Life Sciences). During the separation of the fragments, the samples were analyzed sequentially, and electropherograms, virtual gel images and tabulated data were shown. The amplification product size estimates were obtained using the LabChip GX (Caliper Life Sciences) [18]. For each fragment size, the corresponding allele was assigned using the conversion table that was previously described [18]. The assigned number of each tandem repeat was imported into the BioNumerics software package (version 5.10, Applied Maths, Belgium). A clustering analysis was performed using the unweighted pair-group method using arithmetic averages (UPGMA). The UPGMA method assumes a constant rate of evolution, which is presumed for Brucella species because genetic recombination in Brucellae and horizontal gene transfer among Brucella species is low [32,33]. In all of the loci, the differences in the number of repeats were weighted equally because at one locus, multiple tandem repeats can be incorporated during one recombination event.

The publicly available MLVA database for Brucella (MLVA-NET for Brucella, http://mlva.u-psud.fr/brucella/) was used to identify or confirm the identity of all of the isolates used in this study. The comparison between the caliper data and MLVA bank showed some discrepancies for the allelic sequences that were obtained using different electrophoretic techniques. Due to the different nature of the gel matrix, these differences were resolved by sequencing [18,30].

Culture conditions and sample preparation for MALDI-TOF-MS analysis

From a frozen stock, the bacteria were cultured on blood agar plates for at least 48 h at 35°C in the presence of 5% CO₂. Before sample preparation, the isolates were regrown for 48 h at 35°C in the presence of 5% CO₂. Sample preparation was performed according to the company guidelines (Bruker Daltonics, Bremen, Germany). Briefly, 30 colonies were suspended in 300 μl of water (MilliQ, Millipore, Billerica, MA, U.S.) and mixed carefully. Next, 900 μl of absolute ethanol (Fisher Scientific, Loughborough, UK) was added and the suspension was mixed. Subsequently, the suspension was incubated for 90 min to inactivate all of the bacteria. After this inactivation step, the suspension samples were centrifuged for 10 min at 10, 000 g. The supernatant was removed. To remove the remaining ethanol residue, the spinning step was repeated, and the remaining supernatant was removed. Subsequently, 50 μl of 70% formic acid was added to the pellet, and the pellet was mixed. Next, 50 μl of pure acetonitrile (LC-MS grade, Fluka/Aldrich, Stenheim, Germany) was added, and the suspension was mixed carefully. The particulate matter that could not be dissolved was spun down by centrifugation for 2 min at 10, 000 g. Finally, four spots were created, using 0.5 μl of the supernatant per spot, onto a MALDI-TOF target plate (MTP 384 target polished steel #209519, Bruker Daltonics) and air dried. Subsequently, the spots were overlaid with 0.5 μl of α-cyano-4-hydroxycinnamic acid (HCCA, Bruker Daltonics) and a 10 mg/ml acetonitrile/
water solution (1:1) with 2.5% trifluoroacetic acid (TFA) (Fluka/Aldrich, Stenheim, Germany) and dried at room temperature.

Mass spectra acquisition

All of the mass spectra were automatically acquired on a Bruker Autoflex III smartbeam instrument (Bruker Daltonics GmbH, Bremen, Germany) in linear mode using the following parameters: 40% laser intensity, positive polarity, 350 ns PIE delay, 20 kV source voltage, 18.7 kV source voltage, 2.8 kV lens voltage, 1.522 kV linear detector voltage, and 800 Da detector gating. Composite mass spectra were generated from 10 different positions per spot using, in total, 2,000 laser shots at each spot generated by a 200-Hz smartbeam laser (355 nm). The mass spectra were recorded at a mass/charge range between 800 Da and 20 kDa. The instrument was externally calibrated with a bacterial test standard (BTS, Bruker). Furthermore, by including *E. coli* DH5α during each extraction procedure, the complete procedure was validated. For the construction of the custom *Brucella* reference library, 24 MS spectra for each bacterium were generated (eight MS-spectra were generated per day on three different days).

MALDI-TOF-MS data analyses

The initial data analysis was performed with Bruker Daltonics MALDI Biotyper 2.0 software (Bruker). The raw spectra were automatically pre-processed in a 5-step approach: (1) mass adjustment, (2) smoothing, (3) baseline subtraction, (4) normalization, and (5) peak detection (Bruker). The MLVA genotyping results were used to set the following parameters: (1) mass adjustment, (2) smoothing, (3) baseline subtraction, (4) normalization, and (5) peak detection (Bruker). The MLVA genotyping results were used to set the reference library for *Brucella* species. From each MLVA-cluster except cluster 8, one isolate was selected to generate a custom reference library for the identification of *Brucella* species (Table 1). For cluster 8, two isolates were selected because this cluster contained both *B. suis* and *B. canis* isolates. These isolates, 18 in total, were used to generate the *Brucella* reference library. From each selected isolate, a main spectra (MSP, a ‘reference peak list’ that is created using a fully automated process in Biotyper 2.0) was created using 24 MS spectra (from three independent measurements at eight different spots) according to company guidelines, using default settings (Bruker). A custom taxonomic tree was created based on the topology of the MLVA tree (Table 1). Subsequently, the MSPs were added to the corresponding taxon nodes. Next, from the remaining 152 isolates, four MS spectra were compared against the generated custom *Brucella* reference library, and the logarithmic score values were calculated. The logarithmic score value is determined by calculating the proportion of matching peaks and peak intensities between the test spectrum and the reference spectra of the database. The highest logarithmic score value is the closest match to a representative isolate in the reference library used. The logarithmic score values range from 0 to 3. If the highest logarithmic score value is < 1.700, the spectrum will be reported as ‘not reliable identification’, indicating that the spectrum could not be used to identify the strain with the reference library used. A logarithmic score value from 1.700 to 1.999 will be reported as ‘probable genus identification’, indicating that the genus identification is reliable. Next, a high logarithmic score value from 2.000 to 2.299 will be reported as ‘secure genus identification, probable species identification’, indicating that the genus identification is secure but that the species identification may be incorrect. A logarithmic score value of 2.300 to 3.000 will be reported as ‘highly probable species identification’, indicating that the isolate is identified at the species level with a high probability [27]. Apart from the Bruker Daltonics MALDI Biotyper 2.0 data analysis, for presentation purposes, the spectra were converted to the Matlab format. This conversion was performed in two steps: the spectra were first converted into the MZXML format, using the Bruker supplied executable CompassXport.exe, and subsequently to the Matlab binary format using the Matlab routine mzxmlread.m (Matlab 7.5). The spectra presented here were processed further using the Matlab Bioinformatics toolbox (Version 3.0) routines mresample.m for resampling, mslowess.m for smoothing, msbackadj.m for baseline subtraction and finally msnorm.m for normalization of the spectra.

Results

MLVA

The MLVA was used to ascertain the identity of all of the isolates used in this study by comparing their MLVA profiles against the publicly available MLVA database for *Brucella* (MLVA-NET for *Brucella*, http://mlva.u-psud.fr/brucella/). All of the isolates except strain W99 were identified at the species level. Strain W99 matched as closely to a *B. abortus* as to a *B. melitensis* in the database, indicating the close relationship between the two species. This isolate is known in the literature as *B. abortus* W99, an A-epitope dominant strain used in a study in which the smooth lipopolysaccharides have been characterized [34]. This W99 strain differs at seven different loci from known *B. melitensis* and *B. abortus* isolates and thus is most likely an outlier.

The clustering of the MLVA results using the UPGMA clustering algorithm divided the 170 isolates into 14 clusters and 3 singletons with a genetic similarity of > 52.5% (Figures 1 and 2). The genetic relatedness of > 52.5% was somewhat arbitrarily selected based on the discriminatory power between species and/or biovars. In the dendrogram including the reference strains (Figures 1 and 2), all
of the isolates clustered as expected from the literature and the species identification using MLVA (17). Although all of the reference strains were identified as the correct biovar, except for the identification of \textit{B. abortus} biovar 5, which was identified as biovar 5 or 9, identification to the biovar level using MLVA proved to be ambiguous because sometimes the profiles were found to be equally similar to multiple bios. Thus, the biovar could not be assigned to 8 (29%), 28 (30%), and 2 (11%) of the \textit{B. abortus}, \textit{B. melitensis}, and \textit{B. suis} isolates, respectively. Cluster 10 only contained isolates of \textit{B. suis} biovar 2. However, the other clusters contained multiple bios. Based on genetic similarity, these clusters and the singletons could be divided into two genetically related groups. The first group, \textit{B. melitensis}/\textit{abortus} (BAM), consists of 6 clusters and 1 singleton (W99) isolate, which are all \textit{B. melitensis} or \textit{B. abortus} species. The second, non-BAM group is genetically more diverse and contains 8 clusters and 2 singletons comprising the other \textit{Brucella} species (\textit{B. suis}, \textit{B. canis}, \textit{B. ovis}, \textit{B. pinnipedialis}, \textit{B. ceti}, and \textit{B. neotomae}). \textit{B. suis} biosvars 1, 2, and 3 and \textit{B. canis} are genetically highly related, whereas \textit{B. suis} biovar 5 is genetically distinct from other \textit{B. suis} biosvars. Epidemiologically related strains, from the same outbreak or isolated from the same patient, were grouped in the same clusters with a genetic relatedness of 70% or more (Figures 1 and 2).

MALDI-TOF-MS

The 608 MS spectra derived from 152, mostly clinical, isolates were compared against the reference library generated for \textit{Brucella} species. Representative MS spectra from the 18 isolates selected for the \textit{Brucella} reference library are shown (Figure 3). Minor visual differences (peaks and intensities) among the MS spectra are detectable. A total of 25 MS spectra had a logarithmic score value from 2.000 to 2.299, indicating ‘secure genus identification, probable species identification’. The highest logarithmic score values of the remaining 583 MS spectra were between 2.300 and 3.000, which indicate ‘highly probable species identification’.

Because \textit{Brucella abortus} W99, a singleton strain, is equally similar to \textit{B. abortus} as to \textit{B. melitensis}, we interpreted this strain as a potential \textit{B. melitensis} strain. When identification at the species level is based on a ‘majority rule’ (i.e., identification is based on the species indicated by at least three out of four MS spectra), 149 (98%) isolates were correctly identified at the species level. Further, when instead of the majority rule, the identification at the species level was based on the highest of the four logarithmic values, which was always > 2.299, 151 (99.3%) of the isolates were correctly identified at the species level, while only 1 (0.7%) isolate was mistakenly identified as \textit{B. canis} instead of \textit{B. suis}.

The isolates 03-3081-2, 04-2987, and 02-00117, which were identified as \textit{B. suis} biovar 3, 1 or 3 and 1 or 3, respectively, based on their MLVA profile similarity, were all grouped into cluster 9, which only contained \textit{B. suis} biovar 1 isolates. Therefore, these three isolates are most likely \textit{B. suis} biovar 1.

The MLVA data further demonstrated that the \textit{B. suis} biosvars 1 (MLVA cluster 9) and 2 (MLVA cluster 10) are genetically distinct clusters, whereas \textit{B. suis} biovar 3 grouped together with \textit{B. canis} isolates in a single
Figure 1 Partial dendrogram MLVA-16 clustering analysis of 170 Brucella isolates, with all 93 of the B. melitensis and 29 B. abortus isolates grouped in Clusters 1, 2, and 3. B. melitensis isolates grouped in Clusters 4, 5, 6, and 7. Outlier B. abortus/melitensis W99 is a singleton (Cluster 5).
genetic cluster (MLVA cluster 8). Next, we determined if the *B. suis* biovars could be identified to their biovar level using MALDI-TOF-MS. Of the 4 *B. canis* isolates and 14 *B. suis* isolates (9 were *B. suis* biovar 1, assuming that the isolates 03-3081-2, 04-2987, and 02-00117 were biovar 1 as discussed previously, 4 were *B. suis* biovar 2, and 1 was *B. suis* biovar 3), only the *B. suis* biovar 3 isolate was mistakenly identified as *B. canis* using either the ‘majority’ or ‘highest score’ rule. For these results, we have considered the library strain W99 to be *B. melitensis*. Removing W99 from the *Brucella* reference library and comparing the 604 MS-spectra against this library only slightly influenced the classification results.

Discussion

An immediate response is required to mitigate the effects of a biological attack. The timely detection of a biological event is essential to respond. Then, exposure to the agent may be reduced by the application of protective measures, the most important of which is airway protection. *B. melitensis*, *B. suis*, and possibly *B. abortus* are...
Figure 3: Representative MALDI-TOF-MS spectra of the Brucella strains used as references in the generated Brucella reference library in the range of 1,000 to 12,000 Da. The relative intensity (R.I.) is shown as a percentage of the total intensity on the y-axis, and the mass to charge ratio (M/Z) is shown on the x-axis. A) B. melitensis Ether. B) B. melitensis 16 M. C) B. melitensis 63/9. D) B. abortus 98/3033. E) B. abortus/melitensis W99. F) B. abortus B19. G) B. abortus Tulya. H) B. canis RM6/66. I) B. suis biovar 3 686. J) B. suis biovar 1 52 Chine. K) B. suis Thorns biovar 2. L) B. ovis Réo. M) B. pinnipedialis 09-00388. N) B. pinnipedialis 17 g-1. O) B. ceti M78/05/02. P) B. suis biovar 5 513. Q) B. ceti M 64/93/1. R) B. neotomae 5 K33.
considered to be potential warfare agents. To date, the detection and identification of *Brucella* species is laborious and time consuming. However, MALDI-TOF-MS may provide a new and rapid method that enables the quick identification of microorganisms. *Brucella* species are very difficult to identify. Not only are the species genetically highly related but also the taxonomy of *Brucella* species is open to debate because discrepancies in the nomenclature used were observed in the past [33]. First, *B. suis* is paraphyletic, from a genetic point of view because it contains not only *B. suis* but also *B. canis* [32]. Further, whole-genome sequencing demonstrated that *B. canis* is genetically highly similar to *B. suis* biovars 3 and 4 [32]. Likely, *B. canis* has arisen from its ancestor *B. suis*. In contrast, *B. suis* biovar 5 is genetically much more related to *B. pinnipedialis* and *B. ceti* than to the other *B. suis* biovars [19,32]. Second, Maquart and coworkers showed that *B. ceti* is divided into two separate clusters, one cluster of which was genetically more related to *B. pinnipedialis* than to the other cluster of *B. ceti* [20]. Third, *B. melitensis* from the western Mediterranean is genetically closer to *B. abortus* than to *B. melitensis* of eastern Mediterranean or American origin [20]. Clearly, the taxonomy of *Brucella* species is based on pathogenesis, host specificity, and geographic source rather than on genetic relationships. These issues complicate the development of new identification methods but also complicate the interpretation of the identification results, which is illustrated by the fact that no specific biological markers for *B. suis* have been identified [14,33]. A new classification, based on genetics, of the taxa within the genus *Brucella* is needed, rather than assigning the names of the conventional species and biotypes to the taxa created using molecular methods. Only species and biotypes that are both genotypically and phenotypically coherent can be maintained. Because this reclassification is beyond the scope of this article, the identification of the *Brucellae* used in this study was based on the MLVA database.

The previously developed 16-MLVA method has been shown to have a high discriminatory power and is able to correctly identify all of the known species of the *Brucella* genus [13,18-20]. Therefore, identification at the species level of isolates based on comparisons with the MLVA database should be considered reliable. However, identification at the biovar level using MALVA analysis proved to be ambiguous, especially for *B. melitensis* and *B. abortus*, as described previously (1, 14). Although we found some discrepancies in the MLVA profiles of the reference strains between the publically available database and our results, these differences are likely due to difficulties in the interpretation of the MLVA profiles because of the small and contiguous sizes of some alleles (Bruce 08, 21, 16 and 19).

In this study, we demonstrated that MALDI-TOF-MS enables the identification of *Brucella* at the species level. Predominantly, isolates of *B. melitensis* and *B. abortus*, the main cause of human brucellosis in The Netherlands, were tested, and all of the isolates were identified correctly. Although the number of *B. suis* biovar 1 and 2 isolates in this study was limited, the isolates present were correctly identified at their biovar level as well. The interpretation of the one isolate of *B. suis* biovar 3 as *B. canis* is likely due to the high similarity of *B. suis* biovars 3 and 4 to *B. canis* [32]. A previous study by Ferreira et al. could not discriminate at the species level [25]. The constructed reference library by Ferreira et al. did not represent the complete diversity between *Brucella* species, which could possibly explain the reduced discriminatory power to the species level. Furthermore, we noticed that strain NCTC 10098 was a *B. melitensis* according the NCTC and not a *B. suis* as it has been used by Ferreira et al. [25]. In addition, in the library of Ferreira et al., no *B. abortus* isolates of cluster 4 (Figure 1) were included.

This study presents an additional observation that further highlights the controversy of combining molecular data with the conventional taxonomy of the genus *Brucella*. As mentioned earlier, the results described are based on the assumption that the *B. abortus* strain W99 is phenotypically more strongly related to *B. melitensis* than to *B. abortus*. This assumption was supported by the results because the MS spectra of the 80 isolates that were identified to be *B. melitensis* using MLVA closely resembled the MS spectrum of W99, whereas none of the MS spectra derived from *B. abortus* isolates had a similar resemblance. Thus, phenotypically, strain W99 is more closely related to *B. melitensis* than to *B. abortus*. It is possible that strain W99 is related to the common ancestor of the BAM group.

MALDI-TOF-MS identification is based on profiles derived from the proteome. To counter the inherent minor variations found between measurements of the MS spectra, the MS profiles in the reference library constructed here consist of the mean of 24 MS spectra. The fact that the identification of genetically highly related species appeared to be feasible demonstrates that even minor genetic differences are translated to specific proteomic differences.

Conclusions

Discrepancies between classical taxonomy and the genetic relatedness of species and biovars complicate the development of detection and identification assays. Despite these difficulties, the accurate identification of *Brucella* species was achieved with MALDI-TOF-MS by constructing a *Brucella* reference library based on genetic relationships according to MLVA data. We conclude that MALDI-TOF-MS can be developed into a
fast and reliable identification method for genetically highly related species when potential taxonomic and genetic inconsistencies are considered during the generation of the reference library.

Additional material

Additional file 1: Table S1

| Strains used during the study with additional information. |

Acknowledgements

We wish to thank K. Walraven for providing strains and D. van der Kleij for her comments and critical reading of the manuscript.

This work was financially supported by the Dutch Ministry of Defense, grant number V1036. This work was part of the European Defence Agency (EDA) project B0060 involving biodefence institutions from Italy and The Netherlands.

Authors’ contributions

| FL participated in the design of the study and coordinated the MLVA work; FR participated in the design of the study and critically revised the manuscript; RDS executed the MLVA experiments, analyzed the data and drafted the manuscript; RP participated in the analysis of the MALDI-TOF-MS data; Adel executed the MALDI-TOF-MS experiments and participated in the MALDI-TOF-MS data analysis; JK participated in the design of the study; A. Vandel executed the MALDI-TOF-MS experiments; IV executed the MALDI-TOF-MS experiments; SF executed the MLVA experiments; HJJ participated in the design of the study and critically revised the manuscript; JVdP participated in the design of the study and critically revised the manuscript; AP participated in the design of the study and performed data analysis on the MLVA and MALDI-TOF-MS data, coordinated the MALDI-TOF-MS experiments, and drafted the manuscript; All authors read and approved the final manuscript.

Received: 4 August 2011 Accepted: 23 December 2011 Published: 23 December 2011

References

1. Brenner DJ, Krieg NR, Staley JT, Corbel MJ, Banai M. Bergey’s Manual of Systemic Bacteriology. In Volume 2 part C. 2nd edition. Edited by: Corbel MJ, Banai M. New York: Springer. 2005:370-386.

2. Franz DR, Jahrling PB, Friedlander AM, McClain DJ, Hoover DL, Byrne WR, Pavlin JA, Christopher GW, Etzen EM. Jr. Clinical recognition and management of patients exposed to biological warfare agents. JAMA 1997, 278:399-411.

3. Yaguppsky P, Baron EJ. Laboratory exposures to brucellae and implications for bioterrorism. Emerg Infect Dis 2005, 11:1180-1185.

4. Yingst SL, Huella LM, Chvatal L, Wollcott M. A rhesus macaque (Macaca mulatta) model of aerosol-exposure brucellosis (Brucella suis): pathology and diagnostic implications. J Med Microbiol 2010, 59:724-730.

5. Cloeckaert A, Verger JM, Cloeckaert A, Lejeune M, Gavini-Rebai B, Foster G, Godfroid J. Classification of Brucella spp. isolated from marine mammals by DNA polymorphism at theomp locus. Microbes Infect 2001, 3:729-738.

6. Foster G, Osterman BS, Godfroid J, Jacques I, Cloeckaert A. Brucella ceti sp. nov. and Brucella pinnipediae sp. nov. for Brucella strains with cetaceans and seals as their preferred hosts. Int J Syst Evol Microbiol 2007, 57:2688-2693.

7. Jahans KL, Foster G, Broughton ES. The characterisation of Brucella strains isolated from marine mammals. Vet Microbiol 1997, 57:373-382.

8. Scholz HC, Hubalek Z, Nesvadbova J, Tomas M, Verger JM, Grayon M, Cloeckaert A, Le Fleche P, Whatmore AM, Daahouk S, Kruger M, Lodri C, et al. Isolation of Brucella microti from soil. Emerg Infect Dis 2008, 14:1316-1317.

9. Scholz HC, Hubalek Z, Sedlacek J, Verger JM, Tomas M, Daahouk S, Melzer T, Kandler F, Neubauer H, Cloeckaert A, et al. Brucella microti sp. nov., isolated from the common vole Microtus arvalis. Int J Syst Evol Microbiol 2008, 58:575-582.

10. Scholz HC, Hofer E, Verger JM, Le Fleche P, Whatmore AM, Daahouk S, Pfeffer M, Kruger M, Cloeckaert A, Tomas M. Isolation of Brucella microti from mandibular lymph nodes of red foxes, Vulpes vulpes, in lower Austria. Vector Borne Zoonotic Dis 2009, 9:153-156.

11. Scholz HC, Nockler K, Gollner C, Bahn P, Verger JM, Tomas M, Daahouk S, Kampfer P, Cloeckaert A, Maquart M, et al. Brucella inopinata sp. nov., isolated from a breast implant infection. Int J Syst Evol Microbiol 2010, 60:801-808.

12. Tiller RV, Gee JE, Longsword DR, Gribble S, Bell SC, Jennesson AV, Bates J, Coutier C, Hoffmaster AR, De BK. Identification of an unusual Brucella strain (BO2) from a lung biopsy in a 52-year-old patient with chronic destructive pneumonia. BMC Microbiol 2010, 10:285.

13. Whatmore AM. Current understanding of the genetic diversity of Brucella, an expanding genus of zoonotic pathogens. Infect Genet Evol 2009, 9:1168-1184.

14. Moreno E, Cloeckaert A, Moriyon I. Brucella evolution and taxonomy. Vet Microbiol 2002, 90:209-227.

15. Verger JM, Grayon M, Cloeckaert A, Lejeune M, Ageron E, Grimont F. Classification of Brucella strains isolated from marine mammals using DNA-DNA hybridization and ribotyping. Res Microbiol 2000, 151:797-799.

16. Lopez-Goni I, Garcia-Yoldi D, Marin CM, de Miguel MJ, Munoz PM, Basco JM, Jacques I, Grayon M, Cloeckaert A, Ferreia AC, et al. Evaluation of a multiplex PCR assay (Bruce-ladder) for molecular typing of all Brucella species, including the vaccine strains. J Clin Microbiol 2006, 44:3484-3487.

17. Top J, Schouls LM, Bonten MJ, Willems RJ. Multiple-locus variable-number tandem repeat analysis, a novel typing scheme to study the genetic relatedness and epidemiology of Enterococcus faecium isolates. J Clin Microbiol 2004, 42:4503-4511.

18. De Santis R, Ciannarucciu A, Faggioni G, Fillo S, Gentile B, Di Giannatale E, Ancora M, Lista F. High throughput MLVA-16 typing for Brucella based on the microfluidics technology. BMC Microbiol 2011, 11:60.

19. Le Fleche P, Jacques I, Grayon M, Al Daahouk S, Bouchon P, Denoeud F, Nockler K, Neubauer H, Guilletou LA, Verger JM, Gavini-Rebai E. Evaluation and selection of tandem repeat loci for a Brucella MLVA typing assay. BMC Microbiol 2006, 6:9.

20. Maquart M, Le Fleche P, Foster G, Tryland M, Ramisse F, Djonne B, Al Daahouk S, Jacques I, Neubauer H, Walraven K, et al. MLVA-16 typing of 295 marine mammal Brucella isolates from different animal and geographic origins identifies 7 major groups within Brucella ceti and Brucella pinnipediae. BMC Microbiol 2009, 9:145.

21. Seig P, Drancourt M, Gourlet F, La Scola B, Ehrmann PE, Rolain JM, Raoult D. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 2009, 49:543-551.

22. Cherkaoui A, Hibbs J, Emonet S, Tangomo M, Girard M, Francois P, Cherkaoui S, Ancora M, Lista F. Identification of an unusual Brucella sp. sp. nov., isolated from the common vole Microtus arvalis. Int J Syst Evol Microbiol 2008, 58:575-582.

23. Melmann A, Bimet F, Boczt C, Borovskaya AD, Drake RR, Eigner U, Fahrl AH, He Y, Ilina EN, Kostrzewa M, et al. High interlaboratory reproducibility of matrix-assisted laser desorption ionization-time of flight mass spectrometry-based species identification of nonfermenting bacteria. J Clin Microbiol 2009, 47:3732-3734.

24. van Veen SQ, Claas EC, Kuiper EI. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 2010, 48:900-907.

25. Ferreira L, Vega CS, Sanchez-Juanes F, Gonzalez-Cabrero S, Menegotto F, Orduna-Domingo A, Gonzalez-Buitrago JM, Munoz-Bellido JL. Identification...
of *Brucella* by MALDI-TOF mass spectrometry. Fast and reliable identification from agar plates and blood cultures. *PLoS One* 2010, 5 e14235.

26. Lasch P, Beyer W, Nattermann H, Stammler M, Siegbrecht E, Grunow R, Naumann D: Identification of *Bacillus anthracis* by using matrix-assisted laser desorption ionization-time of flight mass spectrometry and artificial neural networks. *Appl Environ Microbiol* 2009, 75:7229-7242.

27. Seibold E, Maier T, Kastrzewska M, Zeman E, Splettstoesser W: Identification of *Francisella tularensis* by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry: fast, reliable, robust, and cost-effective differentiation on species and subspecies levels. *J Clin Microbiol* 2010, 48:1061-1069.

28. Vanlaere E, Sergeant K, Dawyndt P, Kallow W, Erhard M, Sutton H, Dare D, Devreese B, Samyn B, Vandamme P: Matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry of intact cells allows rapid identification of *Burkholderia cepacia* complex. *J Microbiol Methods* 2008, 75:279-286.

29. Al Dahouk S, Fleche PL, Nockler K, Jacques I, Grayon M, Scholz HC, Tomaso H, Vergnaud G, Neubauer H: Evaluation of *Brucella* MLVA typing for human brucellosis. *J Microbiol Methods* 2007, 69:137-145.

30. De Santis R, Cammarconi A, Faggioni G, D’Amelio R, Marianelli C, Lista F: Lab on a chip genotyping for *Brucella* spp. based on 15-loci multi locus VNTR analysis. *BMC Microbiol* 2009, 9:66.

31. Kattar MM, Jaafar RF, Araj GF, Le Fleche P, Matar GM, Abi RR, Khalife S, Vergnaud G: Evaluation of a multilocus variable-number tandem-repeat analysis scheme for typing human *Brucella* isolates in a region of brucellosis endemicity. *J Clin Microbiol* 2008, 46:3935-3940.

32. Foster JT, Beckstrom-Sternberg SM, Pearson T, Beckstrom-Sternberg JS, Chain PS, Roberto FF, Hrath J, Brettin T, Keim P: Whole-genome-based phylogeny and divergence of the genus *Brucella*. *J Bacteriol* 2009, 191:2864-2870.

33. Whatmore AM, Perrett LL, MacMillan AP: Characterisation of the genetic diversity of *Brucella* by multilocus sequencing. *BMC Microbiol* 2007, 7:34.

34. Weynants V, Gilson D, Cibecqkaert A, Tiber A, Denoisel PA, Godfrad P, Limet JN, Lenesson JJ: Characterization of smooth lipopolysaccharides and O polysaccharides of *Brucella* species by competition binding assays with monoclonal antibodies. *Infect Immun* 1997, 65:1939-1943.

doi:10.1186/1471-2180-11-267

Cite this article as: Lista et al: Reliable identification at the species level of *Brucella* isolates with MALDI-TOF-MS. *BMC Microbiology* 2011 11:267.