Sigma clique covering of graphs

Akbar Davoodi Ramin Javadi Behnaz Omoomi
Department of Mathematical Sciences
Isfahan University of Technology
84156-83111, Isfahan, Iran

Abstract

The sigma clique cover number (resp. sigma clique partition number) of graph G, denoted by $scc(G)$ (resp. $scp(G)$), is defined as the smallest integer k for which there exists a collection of cliques of G, covering (resp. partitioning) all edges of G such that the sum of sizes of the cliques is at most k. In this paper, among some results we provide some tight bounds for scc and scp.

Keywords: clique covering; clique partition; sigma clique covering; sigma clique partition; set intersection representation; set system.

1 Introduction

Throughout the paper, all graphs are simple and undirected. By a clique of a graph G, we mean a subset of mutually adjacent vertices of G as well as its corresponding complete subgraph. The size of a clique is the number of its vertices. Also, a biclique of G is a complete bipartite subgraph of G. A clique covering (resp. biclique covering) of G is defined as a family of cliques (resp. bicliques) of G such that every edge of G lies in at least one of the cliques (resp. bicliques) comprising this family. A clique (resp. biclique) covering in which each edge belongs to exactly one clique (resp. biclique), is called a clique (resp. biclique) partition. The minimum size of a clique covering, a biclique covering, a clique partition and a biclique partition of G are called clique cover number, biclique cover number, clique partition number and biclique partition number of G and are denoted by $cc(G)$, $bc(G)$, $cp(G)$ and $bp(G)$, respectively.

The subject of clique covering has been widely studied in recent decades. First time, Erdős et al. in [6] presented a close relationship between the clique covering and the set intersection representation. Also, they proved that the clique partition number of a graph on n vertices cannot exceed $n^2/4$ (known as Erdős-Goodman-Pónsa theorem). The connections of clique covering and other combinatorial objects have been explored (see e.g. [14, 16]). For a survey of the classical results on the clique and biclique coverings, see [11, 13].
Chung et al. in [4] and independently Tuza in [15] considered a weighted version of the biclique covering. In fact, given a graph G, they were concerned with minimizing $\sum_{B \in \mathcal{B}} |V(B)|$ among all biclique coverings \mathcal{B} of G. They proved that every graph on n vertices has a biclique covering such that the sum of number of vertices of these bicliques is $O(n^2 / \log n)$ [4, 15]. Furthermore, a clique counterpart of weighted biclique cover number has been studied. Following a conjecture by Katona and Tarjan, Chung [3], Győri and Kostochka [7] and Kahn [10], independently, proved that every graph on n vertices has a clique partition such that the sum of number of vertices in these cliques is at most $n^2/2$. This can be considered as a generalization of Erdős-Goodman-Pósa theorem.

In this paper, we are concerned with a weighted version of the clique cover number. Let G be a graph. The sigma clique cover number of G, denoted by $scc(G)$, is defined as the minimum integer k for which there exists a clique covering \mathcal{C} of G, such that the sum of its clique sizes is at most k. For a clique covering \mathcal{C} of a graph G and a vertex $u \in V(G)$, let the valency of u (with respect to \mathcal{C}), denoted by $V_C(u)$, be the number of cliques in \mathcal{C} containing u. In fact,

$$scc(G) = \min \sum_{C \in \mathcal{C}} |C| = \min \sum_{u \in V(G)} V_C(u),$$

where the minimum is taken over all clique coverings of G. Analogously, one can define sigma clique partition number of G, denoted by $scp(G)$. As a matter of fact, the above-mentioned result in [3, 7, 10] states that for every graph G on n vertices, $scp(G) \leq n^2/2$.

In order to reveal inherent difference between $cc(G)$ and $scc(G)$, we introduce a similar parameter $scc'(G)$ which is defined as the minimum of the sum of clique sizes in a clique covering \mathcal{C} achieving $cc(G)$, i.e.

$$scc'(G) := \min \left\{ \sum_{C \in \mathcal{C}} |C| : \mathcal{C} \text{ is a clique covering of } G \text{ and } |\mathcal{C}| = cc(G) \right\}.$$

It is evident that $scc(G) \leq scc'(G)$. In Section 2, first in Theorem 1, we will see that for some classes of graphs G, the quotient $scc'(G)/scc(G)$ can be arbitrary large. Then, we give some general bounds on the sigma clique cover number and the sigma clique partition number. In particular, we prove that if G is a graph on n vertices with no isolated vertex and the maximum degree of the complement of G is $d - 1$, for some integer d, then $scc(G) \leq cnd[\log ((n - 1)/(d - 1))]$, where c is a constant. We conjecture that this upper bound is best up to a constant factor for large enough n. In Section 3, using a well-known result by Bollobás, we prove the correctness of this conjecture for $d = 2$. In other words, we show that for every even integer n, if G is the complement of an induced matching on n vertices, then $scc(G) \sim n \log n$. Finally, in Section 4 we give an interpretation of this conjecture as an interesting set system problem.
2 Some Bounds

In this section, first we present a class of graphs for which the family of clique coverings achieving $cc(G)$ is disjoint from the family of clique coverings achieving $scc(G)$. Then, we provide several inequalities relating the introduced clique covering parameters. Moreover, we present an upper bound for $scc(G)$ in terms of the number of vertices and the maximum degree of the complement of G.

Theorem 1. There exists a sequence of graphs $\{G_n\}$ such that $scc'(G_n)/scc(G_n)$ tends to infinity as n tends to infinity.

Proof. Let n be a positive integer and G_n be a graph on $3n+2$ vertices, such that $V(G_n) = \{x_0, y_0\} \cup X \cup Y \cup Z$, where $X = \{x_1, \ldots, x_n\}$, $Y = \{y_1, \ldots, y_n\}$ and $Z = \{z_1, \ldots, z_n\}$ and adjacency is as follows. The sets $X \cup \{x_0\}$, $Y \cup \{y_0\}$ and Z are three cliques and every vertex in Z is adjacent to every vertex in $X \cup Y$. Moreover, for all $i, j \in \{1, \ldots, n\}$, x_i is adjacent to y_j if and only if $i = j$ (see Figure 1).

First, note that each clique of G_n covers at most one edge from the set $\{x_iy_i : 1 \leq i \leq n\} \cup \{x_0x_1, y_0y_1\}$. This yields $cc(G_n) \geq n + 2$. Now, we show that G_n has a unique clique covering containing exactly $n + 2$ cliques. Let \mathcal{C} be a clique covering of G_n consisting of $n + 2$ cliques. Assume that the clique $C_i \in \mathcal{C}$ covers the edge x_iy_i, for $1 \leq i \leq n$, and the cliques $C_{n+1} \in \mathcal{C}$ and $C_{n+2} \in \mathcal{C}$ cover the edges y_0y_1 and x_0x_1, respectively. Note that $C_{n+2} \subseteq \{x_0\} \cup X$ and $x_0 \notin \bigcup_{i=1}^{n+1} C_i$. Therefore, $C_{n+2} = \{x_0\} \cup X$. Similarly, $C_{n+1} = \{y_0\} \cup Y$. Also, we have $x_j, y_j \notin C_i$, for every $1 \leq i \neq j \leq n$. Thus, $C_i = \{x_i, y_i\} \cup Z$, $1 \leq i \leq n$. Hence, the clique covering $\mathcal{C} = \{C_i : 1 \leq i \leq n+2\}$ is the unique clique covering of G_n with $n + 2$ cliques and then $cc(G_n) = n + 2$. Consequently,

$$soc'(G_n) = \sum_{C \in \mathcal{C}} |C| = n(n+2) + 2(n+1) = n^2 + 4n + 2.$$

On the other hand, the $n + 4$ cliques $\{x_0\} \cup X$, $\{y_0\} \cup Y$, $X \cup Z$, $Y \cup Z$ and $\{x_i, y_i\}$,
1 \leq i \leq n$, form a clique covering C' and thus,
\[\text{scc}(G_n) \leq \sum_{C \in C'} |C| = 2(n + 1) + 2(2n) + 2n = 8n + 2. \]

Hence, the families of the optimum clique coverings achieving $\text{cc}(G_n)$ and $\text{scc}(G_n)$ are disjoint and $\text{scc}'(G_n)/\text{scc}(G_n)$ tends to infinity.

In the following, we prove some relations between $\text{scc}(G)$, $\text{scp}(G)$ and $\text{cp}(G)$.

Theorem 2. If G is a graph with m edges and $\omega(G)$ is the clique number of G, then

i) \[\frac{2m}{\omega(G) - 1} \leq \text{scc}(G) \leq \text{scp}(G) \leq 2m, \]

ii) \[\frac{\text{scp}^2(G)}{2m + \text{scp}(G)} \leq \text{cp}(G). \]

Also, in all relations, the equalities hold for the triangle-free graphs.

Proof. i) Since the collection of all edges of G is a clique partition for G, we have $\text{scc}(G) \leq \text{scp}(G) \leq 2m$. Now, suppose that C is a clique covering of G such that $\sum_{C \in C} |C| = \text{scc}(G)$. Clearly $m \leq \sum_{C \in C} \binom{|C|}{2}$. Hence,
\[2m \leq \sum_{C \in C} |C|^2 - \text{scc}(G) \leq (\omega(G) - 1) \text{scc}(G). \]

ii) Let $\text{cp}(G) = t$ and $\{C_1, \ldots, C_t\}$ be a clique partition of G. Then, $m = \sum_{i=1}^t \binom{|C_i|}{2}$. Thus,
\[
2m = \sum_{i=1}^t |C_i|^2 - \sum_{i=1}^t |C_i| \\
\geq \frac{1}{t} \left(\sum_{i=1}^t |C_i| \right)^2 - \sum_{i=1}^t |C_i| \\
\geq \frac{1}{t} \text{scp}^2(G) - \text{scp}(G),
\]
where the second inequality is due to Cauchy-Schwarz inequality and the last inequality holds because the function $f(x) = \frac{1}{t} x^2 - x$ is increasing for $x \geq \frac{t}{2}$ and clearly $\text{scp}(G) \geq \text{cp}(G) = t$.

For a vertex $u \in V(G)$, let $N_G(u)$ denotes the set of all neighbours of u in G and let \overline{G} stand for the complement of G. Moreover, let $\Delta(G)$ be the maximum degree of G. Alon in [1] proved that if G is a graph on n vertices and $\Delta(\overline{G}) = d$, then $\text{cc}(G) = O(d^2 \log n)$. In the following, modifying the idea of Alon, we establish an upper bound for $\text{scc}(G)$.
Theorem 3. If G is a graph on n vertices with no isolated vertex and $\Delta(G) = d - 1$, then
\[\text{scc}(G) \leq (e^2 + 1)nd \left[\ln \left(\frac{n-1}{d-1} \right) \right]. \] (1)

Proof. Let $0 < p < 1$ be a fixed number and let S be a random subset of $V(G)$ defined by choosing every vertex u independently with probability p. For every vertex $u \in S$, if there exists a non-neighbour of u in S, then remove u from S. The resulting set is a clique of G. Repeat this procedure t times, independently, to get t cliques C_1, C_2, \ldots, C_t of G.

Let F be the set of all the edges which are not covered by the cliques C_1, \ldots, C_t. For every edge uv, using inequality $(1 - \alpha) \leq e^{-\alpha}$, we have
\[\Pr(uv \in F) = \left(1 - p^2(1-p)^{|N_G(u) \cup N_G(v)|} \right)^t \leq (1 - p^2(1-p)^{2(d-1)})^t \leq e^{-tp^2(1-p)^{2(d-1)}}. \]

The cliques C_1, \ldots, C_t along with all edges in F comprise a clique covering of G. Hence,
\[\text{scc}(G) \leq \mathbb{E} \left(\sum_{i=1}^{t} |C_i| + 2|F| \right) \leq npt + 2 \left(\frac{n}{2} \right) e^{-tp^2(1-p)^{2(d-1)}}. \]

Now, set $p := 1/d$. Since $(1 - 1/d)^{d-1} \geq 1/e$, we have
\[\text{scc}(G) \leq \frac{nt}{d} + n(n-1)e^{-td^2e^{-2}}. \]

Finally, by setting $t := \lceil e^2d^2 \ln(\frac{n-1}{d-1}) \rceil > 0$, we have
\[\text{scc}(G) \leq \frac{n(e^2d^2 \ln(\frac{n-1}{d-1}) + 1)}{d} + n(d-1) \]
\[\leq nd \left[\ln \left(\frac{n-1}{d-1} \right) \right] \left(e^2 + \frac{1}{\ln(\frac{n-1}{d-1})} \right) \]
\[\leq nd \left[\ln \left(\frac{n-1}{d-1} \right) \right] (e^2 + 1). \]

The upper bound in (1) gives rise to the question that for positive integers n, d, how large can be the sigma clique cover number of an $n-$vertex graph where the maximum degree of its complement is $d - 1$. A first candidate for graphs with large scc is the family of complete multipartite graphs.

For positive integers n, k, an orthogonal array $OA(n,k)$ is an $n^2 \times k$ array of elements in \{1, \ldots, n\}, such that in every two columns each ordered pair (i, j), $1 \leq i, j \leq n$, appears exactly once.
Theorem 4. For positive integers \(n, d \) with \(n \geq 2d \), let \(G \) be a complete multipartite graph on \(n \) vertices with at least two parts of size \(d \) and the other parts of size at most \(d \). Then, \(\Delta(G) = d - 1 \) and \(scc(G) \geq nd \). Moreover, if \(d \) is a prime power and \(n \leq d(d+1) \), then \(scc(G) = scp(G) = nd \).

Proof. Let \(C \) be a clique covering for \(G \). For every vertex \(u \), \(N_G(u) \) contains a stable set (a set of pairwise nonadjacent vertices) of size \(d \). Therefore, \(u \) is contained in at least \(d \) cliques of \(C \), i.e. the valency of \(u \), \(\nu_C(u) \) is at least \(d \). Thus, \(scc(G) \geq nd \).

Now, let \(d \) be a prime power. It is known that there exists an orthogonal array \(OA(d, d+1) \). Let \(k = d + 1 \) and denote the \(i \)th row of the orthogonal array by \(a_{i1}, a_{i2}, \ldots, a_{ik} \). Also, let \(H \) be a complete \(k \)-partite graph on \(d(d+1) \) vertices with the parts \(V_1, \ldots, V_k \), where \(V_j = \{v_{j1}, \ldots, v_{jd}\} \), for \(1 \leq j \leq k \). For each \(i \in \{1, \ldots, d^2\} \), the set \(C_i := \{v_{i1a_1}, v_{i2a_2}, \ldots, v_{ika_k}\} \) is a clique of \(H \). Since in every two columns of \(OA \), each ordered pair \((i, j)\), \(1 \leq i, j \leq d \), appears exactly once, the collection \(C := \{C_i : 1 \leq i \leq d^2\} \) forms a clique partition for \(H \). Moreover, for every vertex \(u \in V(H) \), \(\nu_C(u) = d \). On the other hand, \(G \) is an induced subgraph of \(H \). Thus, the collection \(C' := \{C_i \cap V(G) : 1 \leq i \leq d^2\} \) is a clique partition of \(G \) and for every vertex \(u \in V(G) \), \(\nu_{C'}(u) \) is at most \(d \). Hence, \(scc(G) \leq scp(G) \leq nd \). \(\square \)

For positive integers \(t, d \), let us denote the complete \(t \)-partite graph with each part of size \(d \) by \(K_t(d) \). Theorem 3 asserts that \(scc(K_t(d)) \leq cd^2t \log t \), for some constant \(c \). Although Theorem 4 says that \(scc(K_t(d)) = d^2t \) when \(t \leq (d+1) \) and \(d \) is a prime power, we believe that \(scc(K_t(d)) \) is much larger when \(t \) is sufficiently large. This leads us to the following conjecture.

Conjecture 5. There exists a function \(f \) and a constant \(c \), such that for every positive integers \(t \) and \(d \), if \(t \geq f(d) \), then \(scc(K_t(d)) \geq cd^2t \log t \).

In fact, if Conjecture 5 is correct, then the upper bound in (1) is best possible up to a constant factor, at least for sufficiently large \(n \). In the following section, we will prove that Conjecture 5 is true for \(d = 2 \).

3 Cocktail Party Graphs

In this section, we investigate the sigma clique cover number of the Cocktail party graph \(K_t(2) \). Given a positive integer \(t \), the Cocktail party graph \(K_t(2) \) is obtained from the complete graph \(K_{2t} \) with the vertex set \(\{x_1, \ldots, x_t\} \cup \{y_1, \ldots, y_t\} \) by removing all the edges \(x_iy_i, 1 \leq i \leq t \).

Various clique covering parameters of the Cocktail party graphs have been studied in the literature. In 1977, Orlin [12] asked about asymptotic behaviour of \(cc(K_t(2)) \), with this motivation that it arises in an optimization problem in Boolean functions theory. He also conjectured that \(cp(K_t(2)) \sim t \). Gregory et al. [8] proved that for \(t \geq 4 \), \(cp(K_t(2)) \geq 2t \) and for large enough \(t \), \(cp(K_t(2)) \leq 2t \log \log 2t \). The problem that \(cp(K_t(2)) \sim 2t \)
is still an open problem. Moreover, Gregory and Pullman [9], by applying a Sperner-type theorem of Bollobás and Schönheim on set systems, proved that for every integer t, $cc(K_t(2)) = \sigma(t)$, where

$$\sigma(t) = \min \left\{ k : t \leq \left(\frac{k - 1}{\lceil k/2 \rceil} \right) \right\}.$$

Furthermore, the authors in [5], using the pairwise balanced designs, have proved that $scp(K_t(2)) \sim (2t)^{3/2}$.

Here, using the following well-known theorem by Bollobás, we prove a lower bound for the sigma clique cover number of $K_t(2)$ which determines the asymptotic behaviour of $scc(K_t(2))$ and implies that Conjecture 5 is true for $d = 2$.

Bollobás’ Theorem. [2] Let A_1, \ldots, A_t be some sets of size a_1, \ldots, a_t, respectively and B_1, \ldots, B_t be some sets of size b_1, \ldots, b_t, respectively, such that $A_i \cap B_j = \emptyset$ if and only if $i = j$. Then

$$\sum_{i=1}^{t} \left(\frac{a_i + b_i}{a_i} \right)^{-1} \leq 1.$$

Theorem 6. Let $K_t(2)$ be the Cocktail party graph on $2t$ vertices. Then

$$t\delta(t) \leq scc(K_t(2)) \leq t\sigma(t),$$

where $\sigma(t)$ is defined as above and $\delta(t) = \min \left\{ k - 1 : t \leq \left(\frac{k}{\lceil k/2 \rceil} \right) \right\}$.

Proof. Since $cc(K_t(2)) = \sigma(t)$ and every clique in $K_t(2)$ is of size at most t, we have $scc(K_t(2)) \leq t\sigma(t)$.

For the lower bound, assume that $\{C_1, \ldots, C_k\}$ is an arbitrary clique covering for $K_t(2)$. For every $i \in \{1, \ldots, t\}$, define

$$A_i = \{a : x_i \in C_a\}, \quad B_i = \{a : y_i \in C_a\}.$$

Also, let $a_i = |A_i|, b_i = |B_i|$ and $c_i = a_i + b_i$. Then for every $i \neq j$, there exists a clique containing the edge x_iy_j. Hence, $A_i \cap B_j \neq \emptyset$. Moreover, since no clique contains both vertices x_i and y_i, we have $A_i \cap B_i = \emptyset$.

Therefore, by Bollobás’ theorem, we have

$$\sum_{i=1}^{t} \left(\frac{a_i + b_i}{a_i} \right)^{-1} \leq 1.$$

For every integer m, let $f(m) = \left(\frac{m}{\lceil m/2 \rceil} \right)^{-1}$ and $f(x)$ be the linear extension of $f(m)$ in \mathbb{R}^+. Since f is non-increasing and convex, by Jensen inequality, we have

$$f \left(\frac{1}{t} \sum_{i=1}^{t} c_i \right) \leq f \left(\frac{1}{t} \sum_{i=1}^{t} c_i \right) \leq \frac{1}{t} \sum_{i=1}^{t} \left(\frac{c_i}{\lceil c_i/2 \rceil} \right)^{-1} \leq \frac{1}{t} \sum_{i=1}^{t} \left(\frac{a_i + b_i}{a_i} \right)^{-1} \leq \frac{1}{t}.$$
Thus, \(\left\lceil \frac{1}{t} \sum_{i=1}^{t} c_i \right\rceil \geq t \). Therefore,

\[
\delta(t) \leq \left\lceil \frac{1}{t} \sum_{i=1}^{t} c_i \right\rceil - 1 \leq \frac{1}{t} \sum_{i=1}^{t} c_i = \frac{1}{t} \sum_{a=1}^{k} |C_a|.
\]

Consequently, \(t\delta(t) \leq \text{scc}(K_t(2)) \). \(\square \)

Theorem 6 along with the approximation \(\binom{2n}{n} \sim 2^{2n}/\sqrt{\pi n} \) yields the following corollary which proves Conjecture 5 for \(d = 2 \).

Corollary 7. For every integer \(t \), \(\text{scc}(K_t(2)) \sim t \log t \).

4 Concluding Remarks

In previous section, by considering a clique covering as a set system and applying Bollobás’ theorem, we proved Conjecture 5 for \(d = 2 \). In this point of view, this conjecture can be restated as an interesting set system problem and thus it can be viewed as a generalization of Bollobás’ theorem, as follows.

Conjecture 8. Let \(d \geq 2 \), \(t \geq 1 \) and \(\mathcal{F} = \{(A_1^i, A_2^i, \ldots, A_d^i) : 1 \leq i \leq t\} \) such that \(A_j^i \) is a set of size \(k_{ij} \) and \(A_j^i \cap A_{j'}^{i'} = \emptyset \) if and only if \(i = i' \) and \(j \neq j' \). Then, there exists a function \(f \) and a constant \(c \), such that for every \(t \geq f(d) \),

\[
\sum_{i,j} k_{ij} \geq cd^2 t \log t.
\]

Note that Conjecture 8 is true for \(d = 2 \), due to Bollobás’ theorem.

References

[1] N. Alon. Covering graphs by the minimum number of equivalence relations. *Combinatorica*, 6(3):201–206, 1986.

[2] B. Bollobás. On generalized graphs. *Acta Math. Acad. Sci. Hungar.*, 16:447–452, 1965.

[3] F. R. K Chung. On the decomposition of graphs. *SIAM J. Algebraic Discrete Methods*, 2:1–12, 1981.

[4] F. R. K. Chung, P. Erdős, and J. Spencer. On the decomposition of graphs into complete bipartite subgraphs. In *Studies in pure mathematics*, pages 95–101. Birkhäuser, Basel, 1983.
A. Davoodi, R. Javadi and B. Omoomi. Pairwise balanced designs and sigma clique partitions. ArXiv 1411.0266.

P. Erdős, A. W. Goodman, and L. Pósa. The representation of a graph by set intersections. Canad. J. Math., 18:106–112, 1966.

E. Győri and Kostochka, A. V. On a problem of G. O. H. Katona and T. Tarján. Acta Math. Acad. Sci. Hungar., 34:321–327, 1980.

D. A. Gregory, S. McGuinness and W. Wallis. Clique partitions of the cocktail party graph. Discrete Math., 59:267–273, 1986.

D. A. Gregory and N. Pullman. On a clique covering problem of orlin. Discrete Math., 41:97–99, 1982.

J. Kahn. Proof of a conjecture of Katona and Tarján. Period. Math. Hungar., 1:81–82, 1981.

S. D. Monson, N. J. Pullman, and R. Rees. A survey of clique and biclique coverings and factorizations of (0, 1)-matrices. Bull. Inst. Combin. Appl., 14:17–86, 1995.

J. Orlin. Contentment in graph theory: covering graphs with cliques. Nederl. Akad. Wetensch. Proc. Ser. A, 39(5):406–424, 1977.

N. J. Pullman. Clique coverings of graphs—a survey. In Combinatorial mathematics, X (Adelaide, 1982), volume 1036 of Lecture Notes in Math., pages 72–85. Springer, Berlin, 1983.

R. Rees. Minimal clique partitions and pairwise balanced designs. Discrete Math., 61(2-3):269–280, 1986.

Z. Tuza. Covering of graphs by complete bipartite subgraphs: complexity of 0-1 matrices. Combinatorica, 4(1):111–116, 1984.

W. D. Wallis. Finite planes and clique partitions. In Finite geometries and combinatorial designs (Lincoln, NE, 1987), volume 111 of Contemp. Math., pages 279–285. Amer. Math. Soc., Providence, RI, 1990.