Superconductivity Controlled by Polarization in Field-Effect Devices of Confined Geometry

Natalia Pavlenko1,2 and Franz Schwabl1

1Institut für Theoretische Physik T34, Physik-Department der TU München, James-Franck-Strasse, D-85747 Garching b. München, Germany

2Institute of Physics, University of Augsburg, 86135 Augsburg, Germany

We propose a concept for superconducting electric field-effect devices based on superconducting films sandwiched between ferroelectric layers. We provide theoretical calculations that indicate how the field effect in these devices could be amplified, which can be experimentally probed even at the current stage of film fabrication techniques.

PACS numbers: 74.80.-g, 74.80.Dm, 77.80.-e, 79.60.Jv

The electric field effect in superconductors attracts considerable attention in science and technology. The external field can modulate the charge density and resistance, and control a reversible superconductor-insulator switching behavior, which plays a key role in superconducting field-effect transistors (SuFETs) based on dielectric or ferroelectric polarisation. Especially in high-temperature superconducting oxides, where the low carrier density $n \sim 10^{21}$ cm$^{-3}$ yields larger electric penetration depths $\lambda_{TF} \sim 1$ nm, a switch of the ferroelectric polarization is found to produce $\sim 10\%$ modulation in the carrier density n at the interface. The observed changes in n and in the superfluid density n_S are shown to be the key factor responsible for a several K shift of the superconducting transition temperature T_c in the underdoping region where T_c is proportional to $n_S(0)$.

In the superconducting films of a thickness $\gg \lambda_{TF}$, the shift of T_c due to the charge modulation in the interface region of about 1 nm thickness is shunted. Thus, it is especially advantageous for SuFETs to use ultrathin superconducting channels of a few nm thickness.

To make such SuFETs suitable for technological applications, the achievement of T_c shifts beyond the range $5-10$ K is required. This needs the mechanisms of a possibly stronger charge density modulation by the gate polarization in the range 10-30 μC cm$^{-2}$ which is currently achievable in ferroelectric oxides Pb(Zr,Ti)O$_3$ (PZT) and (Ba,Sr)TiO$_3$ (BSTO).

Recently, theoretical studies of superconducting-ferroelectric (S-FE) multilayers have shown that the modulation of charge in the ultrathin superconducting films sandwiched between the ferroelectric layers is much stronger than in ferroelectric-superconductor bilayers typically exploited for SuFETs. In a sandwich-like FE$_1$-S-FE$_2$ heterostructure (Fig. 1(a)), the polarization P_2 in the second gate FE$_2$ pushes an extra charge from the interface S-FE$_2$ into the accumulation region at the interface FE$_1$-S of the S-film. For high-T_c cuprates as the most compatible candidates for the sandwiches, the redistribution of carriers between the interfaces driven by P_1 and P_2 could require S-films of 2-3 unit cell thickness.

In such films, the charge redistribution between CuO$_2$-planes can occur via the interplanar tunneling of Cooper pairs which provides not only the way for the charge modulation, but also enhances the local T_c in the entire S-film. For possible realizations of SuFETs based on FE-S-FE sandwiches, the question that needs to be addressed is how the superconducting properties can be controlled by the voltages in FE-gates which is the subject of present studies.

Here we consider a superconducting film containing $L_S = 2$ or 3 infinite 2D-planes, as shown in Fig. 1(a) for $L_S = 2$. The superconductivity in each plane is described by a BCS-like model with an effective pairing potential V^0 (except that the energy cutoff is determined by the electron bandwidth). These planes are weakly connected by the interplanar Cooper pair tunneling with the tunneling energy $t_\perp/t = 0.05-0.1$ ($t \approx 0.1$ eV for high-T_c cuprates) is the nearest neighbor hopping energy on a square lattice, which sets the energy scale). The S-film is sandwiched between the FE-layers of a thickness given by the number L_F of unit cells in z-direction perpendicular to the interfaces. In SuFETs, the charge redistribution in the S-film can be achieved by reorienting the polarizations P_1 and P_2 in the layers FE$_1$ and FE$_2$ perpendicular to the interfaces by the gate electric field E_g^1 and E_g^2. Hence, we focus essentially on the two possible orientations of ferroelectric dipoles (one of them is shown in Fig. 1(b)), representing them by two values $\pm 1/2$ of a pseudospin (dipole) operator. To describe by this pseudospin formalism the nonzero spontaneous polarization in each FE-layer due to ion displacements below the Curie temperature, we employ an Ising model with the dipole-dipole interaction energy J_F taken into account in addition to the interactions $-E_{g1}^1 \cdot P_1$ and $-E_{g2}^2 \cdot P_2$ with the gate fields E_g. The screening of the polarization at the interfaces by the charge in the S-film is described by the electrostatic charge-ferroelectric dipole interaction $\gamma = \Delta_{SF} \cdot d_{FE}$. Here d_{FE} is the magnitude of the dipole in each FE-unit cell and Δ_{SF} is the distance between the nearest FE-unit cell and S-film. In our analysis, the in
ferface energy γ ranges from zero (isolated S-film) to $\sim t$, which should lie in a typical range of the charge-dipole interactions at the contacts with ferroelectric BSTO(PZT)-layers of $\sim 100-300$ Å thickness where the polarization $\lesssim 25\mu$ C cm$^{-2}$ is suppressed due to strong depolarization fields \mathbf{S}. We study the system far below the Curie temperature, treating the ferroelectric polarization in the mean-field approach $\gamma_{\mathbf{S}}$. Then the superconducting temperature, treating the ferroelectric polarization in the depletion region without affecting the final distribution of the injected charge $(n_1 = n_2 = n)$ which results in the constant T_c in Fig. 1(b).

Based on these advantages of sandwiches, we propose that the operation of an SuFET containing an S-film confined between two FE-layers, can be realized in two steps which are shown in two possible realizations in Fig. 2(a) and (b). Here, step(1) switches the SuFET to the superconducting state with the enhanced T_c caused by the parallel polarization in the FE-gates. This can be achieved by applying the voltages V_g to the gate electrode FE_1 and $-V_g$ to FE_2. In the first realization of step(1)(Fig. 2(a)), the power supply simultaneously moves the opposite charge to the gate electrodes. To reset the SuFET to the state with lower T_c (step(2)), one destroys the accumulation layer at the FE_1-S contact, which is realized here by decreasing the gate voltages V_g and tuning the gate polarization to zero. However, with the gates fabricated from the PZT(BTO)-compounds, a nonzero spontaneous polarization $P_s \neq 0$ at $V_g = 0$ could result only in a partially removed accumulation region.

Thus, in this realization we propose to use the gates made with STO or BSTO with high Sr content, so that $P_s \approx 0$ at temperatures close to T_c. The corresponding modulation of T_c is illustrated in Fig. 2(a) for the s- and d-wave pairing in the superconducting channel. As compared to the FE-S-bilayers and s-symmetry channels, the remarkable shift of T_c in step(1) is obtained for the d-wave sandwiches, which strongly supports the use of high-T_c cuprates in the proposed SuFETs. For a more realistic analysis of d-wave pairing, we choose the band structure with the next-nearest-neighbor hopping which resembles the Fermi surface of YBa$_2$Cu$_3$O$_{7-\delta}$. The electron density is taken near half-filling, where the cases $n = 0.9$ (hole density $x = 1 - n = 0.1$) and $n = 0.75$ ($x = 0.25$) should correspond to the under- and overdoped regions. There are a few important points to note. First, for underdoping, the obtained increase of T_c is stronger than that for overdoping, which agrees well with the recent observations of the strong field-effect in the underdoped region of the cuprate phase diagram $\mathbf{2}$. Second, as the present studies are based on a BCS-type model, the obtained here estimates for the T_c increase in the underdoped region consider only the mean-field boundary for the transition temperature. To get more precise estimates for underdoping, the lowering of T_c by phase fluctuations $\mathbf{4}$ should be analyzed, which is the object of future studies.

In the second realization (Fig. 2(b)), the electric power sweeps the charge from the FE_1-gate electrode and injects it into the S-channel. Here, the FE_2-polarization is used to control the additional enhancement of T_c in the channel. Reversing the FE_2-polarization switches the SuFET into the antiparallel polarization state with the lower T_c. The modulation of T_c by a change of the FE_2-gate field for the fixed FE_1-gate field is shown in Fig. 2(b), where the strong increase of T_c in a d-wave conducting channel is obtained when going from the step
Another possible modification of the second realization could include the injection of additional charge from the FE$_2$-gate electrode into the channel and thus achievement of higher n (or x) in the state with antiparallel polarization. Although the charge densities in both accumulation planes in this case are comparable to those with the parallel P, the question of the inter-planar charge modulation and thickness dependence of T_c needs further theoretical studies.

In conclusion, we have discussed the schemes of SuFETs based on ferroelectric-superconducting sandwiches, where the d-wave channels show great potential for strong modulation of T_c. However, for a successful implementation, important theoretical and technological issues (related to the the growth of good quality interfaces where the interface steps do not significantly affect the charge redistribution in S-film) need to be solved.

This work was supported by the DFG Grants No. SPP-1056, SFB-484 and the BMBF Grant(13N6918A).

![FIG. 1](image1)

FIG. 1: (a) Scheme of FE-S-FE sandwich with the uniform parallel spontaneous polarization in FE-layers. (b) T_c vs γ in sandwiches containing $L_F=10$ FE-monolayers, where the cases of parallel and antiparallel gate polarization are shown for a comparison. Here $V^0/Y = -3.5$, $J_F/t = 1$, $t_c/t = 0.1$, and the electronic band filling $n = 0.3$. All the temperatures are scaled by $T_c(\gamma = 0, L_S = 2)$, and we show here the case of s-wave pairing in S-film.

![FIG. 2](image2)

FIG. 2: Proposed schemes of SuFET based on confined FE-S-FE geometry. In step(1) with parallel gate polarization the SuFET is in the state with enhanced T_c, whereas step(2) destroys (a) or decreases (b) the electron accumulation at FE$_1$-S interface and thus switches SuFET into the state with low T_c.

![FIG. 3](image3)

FIG. 3: Superconducting transition temperature under variation of gate electric fields (a) for scheme shown in Fig.2(a) where the gate fields $E_g^0 = E_{sd}^0 = E_{g}^0$ set the parallel polarization in both STO-gates of thickness $d=300$ nm with the dielectric constant $\varepsilon = 100$ and maximal achievable polarization $P_{max} = 5\mu C cm^{-2}$; (b) for scheme shown in Fig.2(b) where the FE$_1$-gate field is fixed whereas the FE$_2$-gate field is switched resulting in a reverse of the FE$_2$-polarization at the coercive field E_c in step (2). Here $\gamma/t = 0.5$ and FE-layers with a polarization $P_S = 30\mu C cm^{-2}$ are considered. In S-film for d-wave pairing, the planar band structure $\varepsilon_k = -2t(\cos k_x + \cos k_y) - 4t_2\cos k_x\cos k_y$ is chosen with next-nearest-neighbor hopping $t_2/t = -0.4$, $t_c/t = 0.05$ and $V^{0}/Y = -0.5$. All gate fields are scaled by a characteristic maximum field $E_g^{0} \approx 10^6 V/cm$.

[*] Electronic mail: pavlenko@mailaps.org

[1] C.H. Ahn, J.-M. Triscone, and J. Mannhart, Nature 424, 1015 (2003); J. Mannhart, Supercond. Sci. Technol. 9, 49 (1996).

[2] D. Matthey, S. Gariglio, C.H. Ahn, J.-M. Triscone, Physica C 372-376, 583 (2002).

[3] X.X. Xi, C. Doughty, A. Walkenhorst, C. Kwon, Q. Li, and T. Venkatesan, Phys. Rev. Lett. 68, 1240 (1992); C.H. Ahn, S. Gariglio, P. Paruch, T. Tybell, L. Antog-nazza, J.-M. Triscone, Science 284, 1152 (1999).

[4] V.J. Emery and S.A. Kivelson, Phys. Phys. Lett. 74, 3253 (1995).

[5] G.Yu. Logyenov, A. Sawa, C.W. Schneider, and J. Mannhart, Appl. Phys. Lett. 83, 3528 (2003).

[6] N. Pavlenko, Phys. Rev. B 70, 094519 (2004).

[7] M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977).

[8] J. Junquera and P. Ghosez, Nature 422, 506 (2003).

[9] N. Pavlenko and F. Schwabl, Phys. Rev. B 67, 094516
(2003).

[10] N. Pavlenko and F. Schwabl, Appl. Phys. A in press;

N. Pavlenko, Ann. Phys.-Leipzig 13, 52 (2004).