Role of VEGF and CD44v6 in differentiating benign from malignant ascites

Wei-Guo Dong, Xiao-Min Sun, Bao-Ping Yu, He-Sheng Luo, Jie-Ping Yu

AIM: To detect the vascular endothelial growth factor (VEGF) and soluble splice variant 6 of CD44 (sCD44v6) levels in ascites and to explore their role in differentiating benign from malignant ascites.

METHODS: Cirrhotic ascites (n=36), tuberculosis ascites (n=8) and malignant ascites (n=23) were collected and studied. Concentrations of soluble VEGF and sCD44v6 in various kinds of ascites (n=67) were measured using a sandwich enzyme-linked immunosorbent assay.

RESULTS: VEGF and sCD44v6 levels in malignant ascites were 640.74±264.81 pg/ml and 89.22±38.20 ng/ml, respectively, both of which were significantly higher than those in cirrhotic ascites and tuberculosis ascites (p=18.98, 11.89 and q=8.92, 5.09; P<0.01). However, the levels of VEGF and sCD44v6 in cirrhotic and tuberculosis ascites had no significant difference (q=0.48, 0.75; P>0.05). Furthermore, VEGF levels in malignant ascites in patients with ovarian cancer were higher than those with gastric and colon cancer (q=5.03, 6.79; P<0.01, respectively). But differences of VEGF levels between gastric and colon cancer were not significant (q=1.90, P>0.05). Whereas, sCD44v6 levels in malignant ascites from patients with ovarian, gastric and colon cancer had no significant difference (q=0.06, 0.91, 0.35; P>0.05, respectively). In comparison with cirrhotic and tuberculosis ascites, when the upper limit of its VEGF mean levels 119.44 pg/ml (70.90±48.54) and sCD44v6 mean levels 63.59 ng/ml (48.54±19.17) was taken as the minimum cutoff limit, the sensitivity and specificity of VEGF and sCD44v6 of this assay to the diagnosis of malignant ascites were 91.3 %, 90.9 % and 73.9 %, 88.7 % respectively.

CONCLUSION: Elevated levels of VEGF and sCD44v6 may be useful in differential diagnosis of benign and malignant ascites.

INTRODUCTION
Angiogenesis is an absolute requirement for neoplastic growth of solid tumors after tumors reach a critical size of 1-2 mm[11], and is also essential for tumor invasion and metastasis, facilitates the shedding of tumor cells into surrounding blood vessels. Tumor cells have been shown to secrete a variety of angiogenic factors and thereby induce local formation of new blood capillaries. Among these factors, vascular endothelial growth factor (VEGF), also called vascular permeability factor (VPF), is a bifunctional cytokine and has the role in enhancing vascular permeability and stimulating endothelial growth[2-5], and is recognized as one of the most important molecules in the growth, invasion, metastasis and recurrence of human tumors[6-9].

However, tumor invasion and metastasis are considered to be a complex and multi-step process. Since the initial observation that a splice variant of CD44 (CD44v) could endow non-metastasizing cells with metastasis potential[10]. Many studies have demonstrated that CD44v, especially splice variant 6 of CD44 (CD44v6), probably promoting cancer cells to adhere to vascular endothelium and base membranes and enhancing moving ability of cancer cells, is most likely responsible for the invasion and metastasis of several tumor systems[11-13].

Malignant ascites is the direct and prominent manifestation of advanced carcinoma metastasized to the peritoneum[14]. Thus it is reasonable to hypothesize that VEGF and CD44v6 can be detected in malignant ascites. In the present study, we measured the concentration of VEGF and soluble CD44v6 (sCD44v6) using an enzyme-linked immunosorbent assay (ELISA) in various kinds of ascites in order to assess the value of VEGF and CD44v6 in identifying benign and malignant ascites.

MATERIALS AND METHODS

Patients
A total of 67 inpatients with ascites were collected at Renmin Hospital of Wuhan University, Zhongnan Hospital of Wuhan University and Tumor Hospital in Hubei Province from July 2002 to March 2003(Table 1). Informed consent of the patient and approval of the hospital were provided prior to collection of samples and medical records. All the cases were confirmed by cytologic examination of ascites, pathological examination, B-ultrasound and CT scan, etc.

Table 1 Patient characteristics

Diagnosis	No. of Patients	Mean age (range)	Female/ Male
Ascite	67	47(19-96)	26/41
Cirrhotic ascites	36	48(30-96)	10/26
Tuberculous ascites	8	28(19-33)	4/4
Carcinoma ascites	23	66(35-76)	12/11
Ovarian cancer	8	60(35-70)	8/0
Gastric cancer	6	68(38-74)	1/5
Colon cancer	5	64(46-71)	2/3
Hepatocellular cancer	2	-	0/2
Pancreatic cancer	1	-	0/1
Primary peritoneal cancer	1	-	1/0

INTRODUCTION
Angiogenesis is an absolute requirement for neoplastic growth of solid tumors after tumors reach a critical size of 1-2 mm[11], and is also essential for tumor invasion and metastasis, facilitates the shedding of tumor cells into surrounding blood vessels. Tumor cells have been shown to secrete a variety of angiogenic factors and thereby induce local formation of new blood capillaries. Among these factors, vascular endothelial growth factor (VEGF), also called vascular permeability factor (VPF), is a bifunctional cytokine and has the role in enhancing vascular permeability and stimulating endothelial growth[2-5], and is recognized as one of the most important molecules in the growth, invasion, metastasis and recurrence of human tumors[6-9].

However, tumor invasion and metastasis are considered to be a complex and multi-step process. Since the initial observation that a splice variant of CD44 (CD44v) could endow non-metastasizing cells with metastasis potential[10]. Many studies have demonstrated that CD44v, especially splice variant 6 of CD44 (CD44v6), probably promoting cancer cells to adhere to vascular endothelium and base membranes and enhancing moving ability of cancer cells, is most likely responsible for the invasion and metastasis of several tumor systems[11-13].

Malignant ascites is the direct and prominent manifestation of advanced carcinoma metastasized to the peritoneum[14]. Thus it is reasonable to hypothesize that VEGF and CD44v6 can be detected in malignant ascites. In the present study, we measured the concentration of VEGF and soluble CD44v6 (sCD44v6) using an enzyme-linked immunosorbent assay (ELISA) in various kinds of ascites in order to assess the value of VEGF and CD44v6 in identifying benign and malignant ascites.

MATERIALS AND METHODS

Patients
A total of 67 inpatients with ascites were collected at Renmin Hospital of Wuhan University, Zhongnan Hospital of Wuhan University and Tumor Hospital in Hubei Province from July 2002 to March 2003(Table 1). Informed consent of the patient and approval of the hospital were provided prior to collection of samples and medical records. All the cases were confirmed by cytologic examination of ascites, pathological examination, B-ultrasound and CT scan, etc.

Table 1 Patient characteristics

Diagnosis	No. of Patients	Mean age (range)	Female/ Male
Ascite	67	47(19-96)	26/41
Cirrhotic ascites	36	48(30-96)	10/26
Tuberculous ascites	8	28(19-33)	4/4
Carcinoma ascites	23	66(35-76)	12/11
Ovarian cancer	8	60(35-70)	8/0
Gastric cancer	6	68(38-74)	1/5
Colon cancer	5	64(46-71)	2/3
Hepatocellular cancer	2	-	0/2
Pancreatic cancer	1	-	0/1
Primary peritoneal cancer	1	-	1/0
Sample processing
Ascites samples were collected during therapeutic or diagnostic paracentesis and centrifuged at 3,000 rpm for 15 minutes at 4 °C. Cell-free supernatants were collected and aliquots were stored at -70 °C before determination.

Experimental groups
Cirrhotic, tuberculous and malignant ascites were defined as groups 1, 2 and 3, respectively. Malignant ascites from patients with ovarian, gastric and colon cancer were grouped as groups A, B and C, respectively.

Immunooassay for human VEGF
Concentrations of VEGF in ascites were determined with an ELISA kit (R & D Systems) following the manufacturer’s guidelines. All samples were analyzed in the laboratory of the Department of Gastroenterology, Renmin Hospital, Wuhan University. For determination of VEGF, samples were analyzed in duplicate, human recombinant VEGF	extsubscript{HSA} was diluted in series and used as a standard. VEGF concentrations were measured according to the standard curve. Samples with VEGF values beyond the standard curve were diluted and reanalyzed.

ELISA for human sCD44v6
Levels of sCD44v6 in ascites were measured with a sCD44v6 ELISA kit (Bender MedSystems, Austria). Briefly, monoclonal antibody against CD44v6, VFF-7, was absorbed by microwells in 96-well microtiter plates. sCD44v6 in the sample or in the standard bound to antibodies was adsorbed by each microwell. Horseradish peroxidase-conjugated monoclonal antibody against CD44v6 was then added and bound to the sCD44v6 that had been captured by the first antibody. After incubation, unbound enzyme conjugated antibodies were removed by washing and a substrate solution was added to each well. A colorful reactive product was formed, the reaction was terminated by addition of acid, and absorbance was measured at 450 nanometers. A standard curve was prepared from six standard dilutions of sCD44v6, which allowed determination of the levels of sCD44v6 in our samples.

Statistical analysis
The data were presented as mean ± S.D. One-way analysis of variance was used for statistical analysis. Differences were considered significant when P value was less than 0.05.

RESULTS
Concentrations of VEGF in ascites
Figure 1 shows VEGF levels in malignant ascites (640.74±264.81 pg/ml), which were significantly higher than those in cirrhotic ascites (67.05±51.91 pg/ml), tuberculous ascites (88.25±24.12 pg/ml) (P<0.01). However, there was no significant difference of VEGF levels between cirrhotic and tuberculous ascites (P>0.05).

Levels of sCD44v6 in ascites
sCD44v6 levels in malignant ascites (89.22±38.20 ng/ml) were higher than those in cirrhotic ascites (44.79±18.02 ng/ml), tuberculous ascites (50.25±12.57 ng/ml) (P<0.01). But the difference of sCD44v6 levels in cirrhotic and tuberculous ascites was not statistically significant (P>0.05) (Figure 2). We found both VEGF and sCD44v6 levels were increased in malignant ascites.

Comparison of VEGF and sCD44v6 levels in different kinds of malignant ascites
Statistical comparison of VEGF and sCD44v6 levels in these kinds of malignant ascites was not performed due to the limited number of hepatocellular cancer (n=2), pancreatic cancer (n=1) and primary peritoneal carcinoma (n=1).

Figure 1 Comparison of VEGF concentrations in different kinds of ascites. Group 1: cirrhotic ascites, Group 2: tuberculous ascites, Group 3: malignant ascites.

Figure 2 Comparison of sCD44v6 concentrations in different kinds of ascites. Group 1: cirrhotic ascites, Group 2: tuberculous ascites, Group 3: malignant ascites.

Figure 3 Concentrations of VEGF and sCD44v6 in different kinds of malignant ascites. Group A: ovarian cancer, Group B: gastric cancer, Group C: colon cancer. Concentrations of VEGF in group A were higher than those in groups B and C (P<0.01), while the difference of CD44v6 levels among groups A, B and C was not statistically significant (P>0.05).

Figure 3 shows VEGF levels in ascites from patients with ovarian cancer (866.25±208.46 pg/ml), which were higher than those with gastric cancer (541.30±123.17 pg/ml) and colon cancer (402.80±140.10 pg/ml), respectively (P<0.01). There was no significant difference of VEGF levels between gastric and colon cancer (P>0.05). Whereas, no statistical difference of sCD44v6 levels in ascites of patients with ovarian cancer.
ascites, which remains a knotty problem all the time.

Moreover, detecting VEGF levels may contribute to the diagnosis of malignant ascites. Meanwhile, we also found that VEGF was significantly increased in patients with advanced carcinoma. To our knowledge, however, concentration of sCD44v6 has not been examined in malignant ascites, this might be the first study to document sCD44v6 in malignant ascites.

We found sCD44v6 levels were high in malignant ascites, and relatively low in nonmalignant ascites. It implies that elevated CD44v6 appears to be correlated to the invasion and metastasis of cancer cells into peritoneal cavity. But it is unclear why CD44v6 is closely associated with malignant ascites. The ability of CD44v6 to bind peritoneal mesothelial surfaces of abdominal cavity, and a subsequent cancer cell implantation may contribute to it. At the same time, our results showed a higher sensitivity and specificity of sCD44v6 to the diagnosis of malignant ascites. However, no evidence is available to show that detection of sCD44v6 could contribute to the determination of a potential primary cancer causing malignant ascites. It is reasonable to consider sCD44v6 may be a diagnostic index of malignant ascites.

In summary, VEGF and sCD44v6 are detectable in ascites and are significantly elevated in malignant ascites. Prospective monitoring of VEGF and sCD44v6 levels in ascites would be helpful in differential diagnosis of benign and malignant ascites.

REFERENCES

1. Folkman J, Watson K, Ingber D, Hanahan D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 1989; 339: 58-61.
2. Masood R, Cai J, Zheng T, Smith DL, Hinton DR, Gill PS, Folkman J. Vascular endothelial growth factor (VEGF) is an autocrine growth factor for (VEGF) receptor-positive human tumors. Blood 2001; 98: 1904-1913.
3. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989; 246: 1305-1309.
4. Senger D, Galili S, Dvorak A, Peruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascitic fluid. Science 1983; 219: 963-965.
5. Connolly DT, Heuvelman DM, Nelson R, Olander JV, Eppley BL, Deffino JJ, Siegel NR, Leimgruber RM, Feder J. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest 1989; 84: 1470-1478.
6. Che X, Hokita S, Natsugoe S, Tanabe G, Baba M, Takao S, Aikou T. Tumor angiogenesis related to growth pattern and lymph node metastasis in early gastric cancer. Chin Med J 1998; 111: 1090-1093.
7. Erenoglu C, Akin ML, Uluutku H, Tezcan L, Yildirim S, Batkin A, Erenoglu C. Angiogenesis predicts poor prognosis in gastric carcinoma. Dig Surg 2000; 17: 581-586.
9 Xiangming C, Hokita S, Natsugoe S, Tanabe G, Baba M, Takao S, Kuroshima K, Aiko T. Angiogenesis as an unfavorable factor related to lymph node metastasis in early gastric cancer. Ann Surg Oncol 1998; 5: 585-589

10 Gunther U, Hofmann M, Rudy W, Reber S, Zoller M, Haussmann I, Matsuji S, Wenzel A, Ponta H, Herrlich P. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 1991; 65: 13-24

11 Sleeman J, Moll J, Sherman L, Dalp P, Pal S, Ponta H, Herrlich P. The role of CD44 splice variants in human metastatic cancer. Ciba Found Symp 1995; 189: 142-156

12 Harn HJ, Ho L, Chang YJ, Wu CW, Jing SY, Lee HS, Lee WH. Differential expression of the human metastasis adhesion molecule CD44v6 in normal and carcinomatous stomach mucosa of Chinese subjects. Cancer 1996; 75: 1085-1071

13 Harn HJ, Ho L, Shyu YR. Soluble CD44 isoforms in serum as potential markers of metastatic gastric carcinoma. J Clin Gastroenterol 1996; 22: 107-110

14 Fichtner I, Dehmel A, Naundorf H, Finker LH. Expression of CD44 standard and in human breast cancer xenografts and shedding of soluble forms into serum of nude mice. Anti-Cancer Res 1997; 17: 3633-3645

15 Zeimet AG, Widschwendter M, Uhl-Steidl M, Muller-Holzner E, Daxenberger D, Fleischmann E, Hartch C, Daupont O. High serum levels of soluble CD44 variant isoform are associated with favorable clinical outcome in ovarian cancer. Br J Cancer 1997; 76: 1646-1651

16 Enck RE. Malignant ascites. Am J Hosp Palliat Care 2002; 19: 7-8

17 Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FEBS Lett 1999; 435: 9-22

18 Roussia S, Houle F, Landry J, Huot J. P38MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 1995; 15: 2169-2177

19 Brock TA, Dvorak HF, Senger DR. Tumor-secreted vascular permeability factor increases cytosolic Ca2+ AND Von Willebrand factor release in human endothelial cells. Am J Pathol 1991; 138: 213-221

20 Tao HQ, Lin YZ, Wang RN. Significance of vascular endothelial growth factor messenger RNA expression in gastric cancer. World J Gastroenterol 1998; 4: 10-13

21 Konno H, Baba M, Tanaka T, Nikolova T, Kamikawa K, Ota M, Oba K, Shoji A, Kaneko T, Nakamura S. Overexpression of vascular endothelial growth factor is responsible for the hematogenous recurrence of early-stage gastric cancer. Eur Surg Res 2000; 32: 177-181

22 Ichikura T, Tomimatsu S, Ohkura E, Mochizuki H. Prognostic significance of vascular endothelial growth factor (VEGF) and VEGF-C in gastric carcinoma. J Surg Oncol 2001; 78: 132-137

23 Kibashi M, Imaizumi M, Nakajima T, Kakeji Y, Sugimachi K. Overexpression of vascular endothelial growth factor C is related to lymphogenous metastasis in early gastric carcinoma. Oncology 2001; 60: 146-150

24 Tien XJ, Wu J, Meng L, Dong ZW, Shou CC. Expression of VEGF-121 in gastric carcinoma MGC803 cell line. World J Gastroenterol 2000; 6: 281-283

25 Zhao MF, Mao H, Zhen JX, Yuan YW. Effect of vascular endothelial growth factor on adhesion of large intestine cancer cell HT-29. Shijie Huanren Xiuaoa Zazhi 2000; 8: 646-649

26 Ishigami SI, Arai S, Furutani M, Niwano M, Harada T, Mizumoto M, Mori A, Onodera H, Imanura M. Predictive value of vascular endothelial growth factor in metastasis and prognosis of human colorectal cancer. Br J Cancer 1998; 79: 1379-1384

27 Santin AD, Hermonat PL, Ravaghi A, Cannon MJ, Pecorelli S, Parham GP. Secretion of vascular endothelial growth factor in ovarian cancer. Eur J Gynaecol Oncol 1999; 20: 177-181

28 Yamamoto S, Konishi I, Mhandi M, Kuroda H, Komatsu T, Nanbu K, Sakahara H, Mori T. Expression of vascular endothelial growth factor (VEGF) in epithelial ovarian neoplasms: correlation with clinicalopathology and patient survival, and analysis of serum VEGF levels. Br J Cancer 1997; 75: 1221-1227

29 DiriX LY, Vermeulen PB, Pawinski A, Prove A, Benoy I, De Poorter C, Martin M, Van Oosterom AT. Elevated levels of the angiogenic cytokines basic fibroblast growth factor and vascular endothelial growth factor in sera of cancer patients. Br J Cancer 1997; 78: 238-243

30 Krafka S, Weinheld K, Ochs A, Marth C, Zmijja J, Schumacher P, Unger C, Marme D, Gastl G. Vascular endothelial growth factor in the sera and effusion of patients with malignant and nonmalignant disease. Cancer 1999; 85: 178-187

31 Zhang HT, Hu S. Relationship between VEGF in the sera and invasion and metastasis of gastric cancer. Shijie Huanren Xiuaoa Zazhi 2003; 11: 344-345

32 Mao ZB, Xiao MB, Huang JF, Ni HB, Ni RZ, Wei Q, Zhang H. Expression of VEGF in the sera of patients with gastric cancer. Shijie Huanren Xiuaoa Zazhi 2002; 10: 1220-1221

33 Zebrowski BK, Liu W, Ramirez K, Akagi Y, Mills GB, Ellis LM. Markedly elevated levels of vascular endothelial growth factor in malignant ascites. Ann Surg Oncol 1999; 6: 373-378

34 Aslam N, Marino CR. Malignant ascites: new concepts in pathophysiology, diagnosis, and management. Arch Intern Med 2001; 161: 2733-2737

35 Tamsma JT, Keizer HJ, Meinders AE. Pathogenesis of malignant ascites: Starling's law of capillary hemodynamics revisited. Ann Oncol 2001; 12: 1353-1357

36 Schreuton GR, Bell MV, Jackson CG, Cornelis FB, Ferty U, Bell JJ. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci U S A 1999; 89: 1210-12164

37 Harn HJ, Isola N, Cooper DL. The multispecific cell adhesion molecule CD44 is represented in reticulocyte cDNA. Biochem Biophys Res Commun 1991; 178: 1127-1134

38 Herrlich P, Zoller M, Pal S, Ponta H. CD44 splice variants: metastases meet lymphocytes. Immunol Today 1993; 14: 395-399

39 Strobel T, Swanson L, Cannistra SA. In vivo inhibition of CD44 limits intra-abdominal spread of a human ovarian cancer xenograft in nude mice. Cancer Res 1997; 57: 1228-1232

40 Weber GF, Bronston RT, Iliagan J, Cantor H, Schmitts R, Mak TW. Absence of the CD44 gene prevents sarcoma metastasis. Cancer Res 2002; 62: 2291-2296

41 Chen CY, Wang DR. The expression and clinical significance of CD44v6 in human gastric cancers. World J Gastroenterol 2000; 6: 129-127

42 Xin Y, Zhao FK, Zhang SM, Wu DY, Wang YP, Xu L. Relationship between CD44v6 expression and prognosis in gastric carcinoma patients. Shijie Huanren Xiuaoa Zazhi 1999; 7: 210-214

43 Gu HP, Ni CR, Zhang RZ. Relationship of expressions of CD15, CD44v6 and nm23 H1 mRNA with metastasis and prognosis of colon carcinoma. Shijie Huanren Xiuaoa Zazhi 2000; 8: 887-891

44 Mi JQ, Zhang ZH, Sheng MC. Significance of CD44v6 protein expression in gastric carcinoma and precancerous lesions. Shijie Huanren Xiuaoa Zazhi 2000; 8: 156-158

45 Liu YH, Liu JZ, Xiao B, Wang SX. The clinical significance of CD44v6 abnormal expression in gastric cancer. Shijie Huanren Xiuaoa Zazhi 2001; 9: 89-90

46 Wu LY, Hao YD, Shi ML. Relationship between CD44v6 expression and biological behavior of gastric cancer. Shijie Huanren Xiuaoa Zazhi 1999; 7: 1034

47 Xiao CZ, Dai YM, Yu HY, Wang JJ, Ni CR. Relationship between expression of CD44v6 and nm23 H1 and tumor invasion and metastasis in hepatocellular carcinoma. World J Gastroenterol 1998; 4: 412-414

48 Yamaguchi A, Cai T, Yu J, Hirono Y, Ishida M, Lida A, Kimura T, Takeuchi K, Katayama K, Hirose K. Expression of CD44v6 in advanced gastric cancer and its relationship to hematogenous metastasis and long-term prognosis. J Surg Oncol 2002; 79: 230-235

49 Sun XW, Shen BZ, Shi MS, Dai XD. Relationship between CD44v6 expression and risk factors in gastric carcinoma patients. Shijie Huanren Xiuaoa Zazhi 2002; 10: 1129-1132

50 Chen ZF, Deng CS, Xia B, Zhu YQ, Zeng J, Gong LL. Expression of heat shock protein 60, CD44v6 splice variant in human gastric cancer. Shijie Huanren Xiuaoa Zazhi 2001; 9: 988-991
51 Masaki T, Goto A, Sugiyama M, Matsuoka H, Abe N, Sakamoto A, Atomi Y. Possible contribution of CD44 variant 6 and nuclear beta-catenin expression to the formation of budding tumor cells in patients with T1 colorectal carcinoma. Cancer 2001; 92: 2539-2546

52 Xu SH, Feng JG, Li DC, Mou HZ, Lou RC. Relationship between CD44 in the peripheral blood of patients with colorectal cancer and clinicopathological features. Shijie Huaren Xiaohua Zazhi 2000; 8: 432-435

53 Cai Q, Lu HF, Sun MJ, Du X, Fan YZ, Shi DR. Expression of CD44 v3 and v6 proteins in human colorectal carcinoma and its relevance with prognosis. Shijie Huaren Xiaohua Zazhi 2000; 8: 1255-1258

54 Schiffenbauer YS, Meir G, Maoz M, Even-Ram SC, Bar-shavit R, Neeman M. Gonadotropin stimulation of MLS human epithelial ovarian carcinoma cells augments cell adhesion mediated by CD44 and by alpha(v)-integrin. Gynecol Oncol 2002; 84: 296-302

55 Ekici S, Ayhan A, Kendi S, Ozen H. Determination of prognosis in patients with prostate cancer treated with radical prostatectomy: prognostic value of CD44v6 score. J Urol 2002; 167: 2037-2041

56 Saito H, Tsujitani S, Katano K, Ikeguchi M, Maeta M, Kaibara N. Serum concentration of CD44 variant 6 and its relation to prognosis in patients with gastric carcinoma. Cancer 1998; 83: 1095-1101

Edited by Ren SY and Wang XL