On weakly σ-permutable subgroups of finite groups*

Chi Zhang, Zhenfeng Wu, W. Guo†
Department of Mathematics, University of Science and Technology of China
Hefei, 230026, P.R. China
E-mail: zcqxj32@mail.ustc.edu.cn, zhfwu@mail.ustc.edu.cn, wbguo@ustc.edu.cn

Abstract

Let G be a finite group and $\sigma = \{\sigma_i | i \in I\}$ be a partition of the set of all primes \mathbb{P}. A set \mathcal{H} of subgroups of G with $1 \in \mathcal{H}$ is said to be a complete Hall σ-set of G if every non-identity member of \mathcal{H} is a Hall σ_i-subgroup of G. A subgroup H of G is said to be σ-permutable if G possesses a complete Hall σ-set \mathcal{H} such that $HA^x = A^xH$ for all $A \in \mathcal{H}$ and all $x \in G$. We say that a subgroup H of G is weakly σ-permutable in G if there exists a σ-subnormal subgroup T of G such that $G = HT$ and $H \cap T \leq H_{\sigma G}$, where $H_{\sigma G}$ is the subgroup of H generated by all those subgroups of H which are σ-permutable in G. By using this new notion, we establish some new criterias for a group G to be a σ-soluble and supersoluble, and also we give the conditions under which a normal subgroup of G is hypercyclically embedded.

1 Introduction

Throughout this paper, all groups are finite and G always denotes a group. Moreover, n is an integer, \mathbb{P} is the set of all primes. The symbol $\pi(n)$ denotes the set of all primes dividing n and $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G. $|G|_p$ denotes the order of the Sylow p-subgroup of G.

In what follows, $\sigma = \{\sigma_i | i \in I\}$ is some partition of \mathbb{P}, that is, $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$. Π is always supposed to be a non-empty subset of σ and $\Pi' = \sigma \setminus \Pi$. We write $\sigma(n) = \{\sigma_i | \sigma_i \cap \pi(n) \neq \emptyset\}$ and $\sigma(G) = \sigma(|G|)$.

*Research was supported by the NNSF of China (11371335) and Wu Wen-Tsun Key Laboratory of Mathematics of Chinese Academy of Sciences.
†Corresponding author

Keywords: Finite group; σ-permutable subgroup; weakly σ-permutable subgroup; σ-soluble; supersoluble; hypercyclically embedded

Mathematics Subject Classification (2010): 20D10, 20D15, 20D20

1
Following [1,2], G is said to be σ-primary if $G = 1$ or $|\sigma(G)| = 1$; n is said to be a Π-number if $\pi(n) \subseteq \bigcup_{\sigma_i \in \Pi} \sigma_i$; a subgroup H of G is called a Π-subgroup of G if $|H|$ is a Π-number; a subgroup H of G is called a Hall Π-subgroup of G if H is a Π-subgroup of G and $|G : H|$ is a Π-number. A set \mathcal{H} of subgroups of G with $1 \in \mathcal{H}$ is said to be a complete Hall Π-set of G if every non-identity member of \mathcal{H} is a Hall σ_i-subgroup of G for some $\sigma_i \in \Pi$ and \mathcal{H} contains exactly one Hall σ_i-subgroup of G for every $\sigma_i \in \Pi \cap \sigma(G)$. In particular, when $\Pi = \sigma$, we call \mathcal{H} a complete Hall σ-set of G. G is said to be Π-full if G possesses a complete Hall Π-set; a Π-full group of Sylow type if every subgroup of G is a D_{σ_i}-group for all $\sigma_i \in \Pi \cap \sigma(G)$. In particular, G is said to be σ-full (or σ-group) if G possesses a complete Hall σ-set; a σ-full group of Sylow type if every subgroup of G is a D_{σ_i}-group for all $\sigma_i \in \sigma(G)$. A subgroup H of G is called [1] σ-subnormal in G if there is a subgroup chain $H = H_0 \leq H_1 \leq \cdots \leq H_t = G$ such that either H_{i-1} is normal in H_i or $H_i/(H_{i-1})$ is σ-primary for all $i = 1, 2, \cdots, t$.

In the past 20 years, a large number of researches have involved finding and applying some generalized complemented subgroups. For example, a subgroup H of G is said to be c-normal [3] in G if G has a normal subgroup T of G such that $G = HT$ and $H \cap T \leq H_G$, where H_G is the normal core of H. A subgroup H of G is said to be weakly s-permutable [4] in G if G has a subnormal subgroup T such that $G = HT$ and $H \cap T \leq H_{sG}$, where H_{sG} is the largest s-permutable subgroup of G contained in H (note that a subgroup H of G is said to be s-permutable in G if $HP = PH$ for any Sylow subgroup P of G). A subgroup H of G is said to be σ-permutable [1] in G if G possesses a complete Hall σ-set \mathcal{H} such that $HA^x = A^xH$ for all $A \in \mathcal{H}$ and all $x \in G$. By using the above special supplemented subgroups and other generalized complemented subgroups, people have obtained a series of interesting results (see [1,3–11] and so on). Now, we consider the following new generalized supplemented subgroup:

Definition 1.1. A subgroup H of G is said to be weakly σ-permutable in G if there exists a σ-subnormal subgroup T of G such that $G = HT$ and $H \cap T \leq H_{\sigma G}$, where $H_{\sigma G}$ is the subgroup of H generated by all those subgroups of H which are σ-permutable in G.

Following [12], $H_{\sigma G}$ is called σ-core of H.

It is clear that every c-normal subgroup, every s-permutable subgroup, every weakly s-permutable subgroup and every σ-permutable subgroup of G are all weakly σ-permutable in G. However, the following example shows that the converse is not true.

Example 1.2. Let $G = (C_7 \rtimes C_3) \times A_5$, where $C_7 \rtimes C_3$ is a non-abelian group of order 21 and A_5 is the alternating group of degree 5. Let B be a subgroup of A_5 of order 12 and A be a Sylow 5-subgroup of A_5. Let $\sigma = \{\sigma_1, \sigma_2\}$, where $\sigma_1 = \{2, 3, 5\}$ and $\sigma_2 = \{2, 3, 5\}'$. Then B is weakly σ-permutable in G. In fact, let $T = (C_7 \rtimes C_3) \times A$, then $C_7 \rtimes C_3 \leq T_G$ and
\[G : C_7 \times C_3 \] is a σ1-number. Hence \(G/T_G \) is a σ1-group, and so \(T \) is σ-subnormal in \(G \). Since \(T \cap B = 1 \) and \(G = BT \), which means that \(B \) is weakly σ-permutable in \(G \). But \(B \) is neither weakly \(s \)-permutable in \(G \) nor \(c \)-normal in \(G \). In fact, if there exists a subnormal subgroup \(K \) of \(G \) such that \(G = BK \) and \(B \cap K \leq B_{sG} \). Then \(B_{sG} \) is subnormal in \(G \) by [4, Lemma 2.8], and so is subnormal in \(A_5 \) by [13, A, (14.1)]. It follows that \(B_{sG} = 1 \) for \(A_5 \) is a simple group. Hence \(|G : K| = |B| = 2^2 \cdot 3 \). But since \(1 < A_5 < A_5C_7 < G \) is a chief series of \(G \) and also a composition series of \(G \), \(G \) has no subnormal subgroup \(K \) whose index is \(2^2 \cdot 3 \) by Jordan-Hölder theorem. Therefore \(B \) is not weakly \(s \)-permutable in \(G \). Consequently, \(B \) is neither \(s \)-permutable nor \(c \)-normal in \(G \).

Now let \(H = BC_3 \). Then \(H \) is weakly σ-permutable in \(G \) but not σ-permutable in \(G \). Indeed, let \(T = C_7A_5 \). Then \(G = HT \), \(T \) is normal in \(G \) and \(H \cap T = B \). It is easy to see that \(H = \{A_5C_3, C_7\} \) is a complete Hall σ-set of \(G \). Since \(H_{sG} \) is σ-subnormal in \(G \) by Lemma 2.3 (4) below and [1, Theorem B], \(H_{sG} \leq O_{\sigma_1}(G) \) by Lemma 2.2(8) below. Clearly, \(O_{\sigma_1}(G) \leq C_G(O_{\sigma_1}(G)) = C_G(C_7) = C_7A_5 \). Hence \(H_{sG} \leq C_7A_5 \). But since \(B(A_5C_3)x = BA_5C_3^x = A_5C_3^x = C_3^xA_5 = (A_5C_3)^xB \) for all \(x \in G \), \(B \) is σ-permutable in \(G \) for \(C_7 \leq G \).

Hence \(B \leq H_{sG} \leq C_7A_5 \), which implies that \(B = H_{sG} \). So \(H \) is weakly σ-permutable in \(G \), but \(H \) is not σ-permutable in \(G \) for \(H_{sG} = B < H \).

Following [1], \(G \) is called: (i) σ-soluble if every chief factor of \(G \) is σ-primary; (ii) σ-nilpotent if \(H/K \cong (G/C_G(H/K)) \) is σ-primary for every chief factor \(H/K \) of \(G \).

The result in [1,3,4,14,15] are the motivation for the following:

Question 1.3. Let \(G \) be a σ-full group of Sylow type. What is the structure of \(G \) provided that some subgroups are weakly σ-permutable in \(G \)?

In this paper, we obtain the following results.

Theorem 1.4. Let \(G \) be a σ-full group of Sylow type and every Hall \(\sigma_i \)-subgroup of \(G \) is weakly σ-permutable in \(G \) for every \(\sigma_i \in \sigma(G) \). Then \(G \) is σ-soluble.

Theorem 1.5. Let \(G \) be a σ-full group of Sylow type and \(H = \{1,W_1,W_2, \ldots , W_t\} \) be a complete Hall σ-set of \(G \) such that \(W_i \) is a nilpotent \(\sigma_i \)-subgroup for all \(i = 1, \ldots , t \). Suppose that the maximal subgroups of any non-cyclic \(W_i \) is weakly σ-permutable in \(G \). Then \(G \) is supersoluble.

The following results now follow immediately from Theorems 1.4 and 1.5.

Corollary 1.6. If every sylow subgroup is weakly \(s \)-permutable in \(G \), then \(G \) is soluble.

Corollary 1.7. (See Huppert [16, Chap. VI, Theorem 10.3]) If every Sylow subgroup of \(G \) is cyclic, then \(G \) is supersoluble.
Corollary 1.8. (See Miao [17, Corollary 3.4]) If all maximal subgroups of every Sylow subgroup of G are weakly s-permutable in G, then G is supersoluble.

Corollary 1.9. (See Skiba [4, Theorem 1.4]) If all maximal subgroups of every non-cyclic Sylow subgroup of G are weakly s-permutable in G, then G is supersoluble.

Corollary 1.10. (See Srinivasan [15, Theorem 1]) If all maximal subgroups of every Sylow subgroup of G are normal in G, then G is supersoluble.

Corollary 1.11. (See Srinivasan [15, Theorem 2]) If all maximal subgroups of every Sylow subgroup of G are s-permutable in G, then G is supersoluble.

Corollary 1.12. (See Wang [3, Theorem 4.1]) If all maximal subgroups of every Sylow subgroup of G are c-normal in G, then G is supersoluble.

Recall that a normal subgroup E of G is called hypercyclically embedded in G and is denoted by $E \leq Z_u(G)$ (see [18, p. 217]) if either $E = 1$ or $E \neq 1$ and every chief factor of G below E is cyclic, where the symbol $Z_u(G)$ is the U-hypercentre of G, that is, the product of all normal hypercyclically embedded subgroups of G. Hypercyclically embedded subgroups play an important role in the theory of groups (see [7, 8, 18, 19]) and the conditions under which a normal subgroup is hypercyclically embedded in G were found by many authors (see the books [7, 8, 18, 19] and the recent papers [10, 14, 20–23]).

On the base of Theorem 1.5, we will prove the following result.

Theorem 1.13. Let G be a σ-full group of Sylow type and $\mathcal{H} = \{1, W_1, W_2, \ldots, W_t\}$ be a complete Hall σ-set of G such that W_i is nilpotent for all $i = 1, \ldots, t$. Let E be a normal subgroup of G. If every maximal subgroup of $W_i \cap E$ is weakly σ-permutable in G for all $i = 1, 2, \cdots, t$, then $E \leq Z_u(G)$.

The following results directly follow from Theorem 1.13.

Corollary 1.14. Let \mathfrak{F} be a saturated formation containing all supersoluble groups and let E be a normal subgroup of G with $G/E \in \mathfrak{F}$. Suppose that G is a σ-full group of Sylow type and $\mathcal{H} = \{1, W_1, W_2, \cdots, W_t\}$ is a complete Hall σ-set of G such that W_i is nilpotent for all $i = 1, \cdots, t$. If every maximal subgroup of $W_i \cap E$ is weakly σ-permutable in G, for all $i = 1, 2, \cdots, t$, then $G \in \mathfrak{F}$.

Corollary 1.15. (See Asaad [24, Theorem 4.1]) Let G be a group with a normal subgroup E such that G/E is supersoluble. If every maximal subgroup of every Sylow subgroups of E is s-permutable in G, then G is supersoluble.
Corollary 1.16. (See Asaad [25, Theorem 1.3]) Let \mathfrak{F} be a saturated formation containing all supersoluble groups and let E be a normal subgroup of G with $G/E \in \mathfrak{F}$. If the maximal subgroups of every Sylow subgroup of E are s-permutable in G, then $G \in \mathfrak{F}$.

Corollary 1.17. (See Wei [11, Corollary 1]) Let \mathfrak{F} be a saturated formation containing all supersoluble groups and let E be a normal subgroup of G with $G/E \in \mathfrak{F}$. If the maximal subgroups of every Sylow subgroup of E are c-normal in G, then $G \in \mathfrak{F}$.

All unexplained terminologies and notations are standard, as in [8] and [13].

2 Preliminaries

We use \mathfrak{S}_σ and \mathfrak{N}_σ to denote the classes of all σ-soluble groups and σ-nilpotent groups.

Lemma 2.1. (See [1, Lemma 2.1] The class \mathfrak{S}_σ is closed under taking direct products, homomorphic images and subgroups. Moreover, any extension of the σ-soluble group by a σ-soluble group is a σ-soluble group as well.

Following [1] and [2], $O_\Pi(G)$ to denote the subgroup of G generated by all its Π'-subgroups. Instead of $O_{\{\sigma_i\}}(G)$ we write $O_{\sigma_i}(G)$. $O_\Pi(G)$ to denote the subgroup of G generated by all its normal Π-subgroups.

Lemma 2.2. (See [1, Lemma 2.6] and [2, Lemma 2.1]) Let A, K and N be subgroups of G. Suppose that A is σ-subnormal in G and N is normal in G.

1. $A \cap K$ is σ-subnormal in K.
2. If K is a σ-subnormal subgroup of A, then K is σ-subnormal in G.
3. If K is σ-subnormal in G, then $A \cap K$ and $\langle A, K \rangle$ are σ-subnormal in G.
4. AN/N is σ-subnormal in G/N.
5. If $N \leq K$ and K/N is σ-subnormal in G/N, then K is σ-subnormal in G.
6. If $K \leq A$ and A is σ-nilpotent, then K is σ-subnormal in G.
7. If $\left|G:A\right|$ is a Π-number, then $O_\Pi(A) = O_\Pi(G)$.
8. If G is Π-full and A is a Π-group, then $A \leq O_\Pi(G)$.

Let \mathcal{L} be some non-empty set of subgroups of G and E a subgroup of G. Then a subgroup A of G is called \mathcal{L}-permutable if $AH = HA$ for all $H \in \mathcal{L}$; \mathcal{L}^E-permutable if $AH^x = H^xA$ for all $H \in \mathcal{L}$ and all $x \in E$. In particular, a subgroup H of G is σ-permutable if G possesses a complete Hall σ-set \mathcal{H} such that H is \mathcal{H}^G-permutable.

Lemma 2.3. (See [1, Lemma 2.8] and [2, Lemma 2.2]) Let H, K and N be subgroups of G. Let $\mathcal{H} = \{H_1, H_2, \ldots, H_t\}$ be a complete Hall σ-set of G and $\mathcal{L} = \mathcal{H}^K$. Suppose that H is \mathcal{L}-permutable and N is normal in G.

5
(1) If \(H \leq E \leq G \), then \(H \) is \(L^\ast \)-permutable, where \(L^\ast = \{H_1 \cap E, H_2 \cap E, \ldots, H_t \cap E\}^{K \cap E} \). In particular, if \(G \) is a \(\sigma \)-full group of Sylow type and \(H \) is \(\sigma \)-permutable in \(G \), then \(H \) is \(\sigma \)-permutable in \(E \).

(2) The subgroup \(HN/N \) is \(L^\ast\ast \)-permutable, where \(L^\ast\ast = \{H_1N/N, \ldots, H_tN/N\}^{K/N} \).

(3) If \(G \) is a \(\sigma \)-full group of Sylow type and \(E/N \) is a \(\sigma \)-permutable subgroup of \(G/N \), then \(E \) is \(\sigma \)-permutable in \(G \).

(4) If \(K \) is \(L \)-permutable, then \(\langle H, K \rangle \) is \(L \)-permutable \([13, A, \text{Lemma 1.6(a)}] \). In particular, \(H_{\sigma G} \) is \(\sigma \)-permutable in \(G \). Moreover, if \(G \) is a \(\sigma \)-full group of Sylow type, then \(H_{\sigma G} \) is a \(\sigma \)-subnormal of \(G \) (see \([1, \text{Theorems B and C}]\)).

Lemma 2.4. (See \([1, \text{Lemma 3.1}]\)) Let \(H \) be a \(\sigma_1 \)-subgroup of a \(\sigma \)-full group \(G \). Then \(H \) is \(\sigma \)-permutable in \(G \) if and only if \(O^{\sigma_1}(G) \leq N_G(H) \).

Lemma 2.5. Let \(G \) be a \(\sigma \)-full group of Sylow type and \(H \leq K \leq G \).

(1) If \(H \) is weakly \(\sigma \)-permutable in \(G \), then \(H \) is weakly \(\sigma \)-permutable in \(K \).

(2) Suppose that \(N \) is a normal subgroup of \(G \) and \(N \leq H \). Then \(H/N \) is weakly \(\sigma \)-permutable in \(G/N \) if and only if \(H \) is weakly \(\sigma \)-permutable in \(G \).

(3) If \(N \) is a normal subgroup of \(G \), then for every weakly \(\sigma \)-permutable subgroup \(H \) of \(G \) with \((|H|, |N|) = 1 \), \(HN/N \) is weakly \(\sigma \)-permutable in \(G/N \).

Proof. (1) Suppose that there exists a \(\sigma \)-subnormal subgroup \(T \) of \(G \) such that \(G = HT \) and \(H \cap T \leq H_{\sigma G} \). Since \(H \leq K \), \(K = H(K \cap T) \). By **Lemma 2.2** (1), \(K \cap T \) is \(\sigma \)-subnormal in \(K \). Moreover, \(H \cap (K \cap T) = H \cap T \leq H_{\sigma G} \leq H_{\sigma K} \) by **Lemma 2.3** (1)(4). Hence, \(H \) is weakly \(\sigma \)-permutable in \(K \).

(2) First assume that there exists a \(\sigma \)-subnormal subgroup \(T \) of \(G \) such that \(G = HT \) and \(H \cap T \leq H_{\sigma G} \). Then \(G/N = (H/N)(TN/N) \), \(TN/N \) is \(\sigma \)-subnormal in \(G/N \) by **Lemma 2.2** (4) and \(H/N \cap TN/N = (H \cap T)N/N \leq H_{\sigma G}N/N \leq (H/N)_{\sigma(G/N)} \) by **Lemma 2.3** (2). This shows that \(H/N \) is weakly \(\sigma \)-permutable in \(G/N \).

Conversely, assume that \(H/N \) is weakly \(\sigma \)-permutable in \(G/N \). Then \(G/N = (H/N)(T/N) \) and \(H/N \cap T/N \leq (H/N)_{\sigma(G/N)} \), where \(T/N \) is \(\sigma \)-subnormal in \(G/N \). So \(G = HT \) and \(T \) is \(\sigma \)-subnormal in \(G \) by **Lemma 2.2** (5). Let \((H/N)_{\sigma(G/N)} = E/N \). Then \(E \) is \(\sigma \)-permutable in \(G \) by **Lemma 2.3** (3)(4). Hence \(H \cap T \leq E \leq H_{\sigma G} \). This shows that \(H \) is weakly \(\sigma \)-permutable in \(G \).

(3) Assume that there exists a \(\sigma \)-subnormal subgroup \(T \) of \(G \) such that \(G = HT \) and \(H \cap T \leq H_{\sigma G} \). Then \(G/N = (HN/N)(TN/N) \). Since \((|H|, |N|) = 1 \), \((HT \cap N : H \cap N) | HT \cap N : T \cap N | = (|HT \cap N)H : H \cap (HT \cap N)T : T | = 1 \). Hence \(N = N \cap HT = (N \cap H)(N \cap T) = N \cap T \) by \([13, A, \text{Lemma 1.6}]\). It follows that \(N \leq T \). Hence \((HN/N) \cap (TN/N) = (H \cap T)N/N \leq H_{\sigma G}N/N \leq (H/N)_{\sigma(G/N)} \) by **Lemma 2.3** (2)(4).
Besides, by Lemma 2.2 (4), \(T/N \) is \(\sigma \)-subnormal in \(G/N \). Thus \(HN/N \) is weakly \(\sigma \)-permutable in \(G/N \).

\[\square \]

Lemma 2.6. (See [26, Lemma 2.12]) Let \(P \) be a normal \(p \)-subgroup of a group \(G \). If \(P/\Phi(P) \leq Z_d(G/\Phi(P)) \), then \(P \leq Z_d(G) \).

3 Proof of Theorem 1.4

Proof of Theorem 1.4. Assume that this is false and let \(G \) be a counterexample of minimal order. Then \(|\sigma(G)| > 1 \).

1. \(G/N \) is \(\sigma \)-soluble, for every non-identity normal subgroup \(N \) of \(G \).

 Let \(N \) be a non-identity normal subgroup of \(G \) and \(H/N \) is any Hall \(\sigma_i \)-subgroup of \(G/N \), where \(\sigma_i \cap \pi(G/N) \neq \emptyset \). Then \(H/N = H_iN/N \) for some Hall \(\sigma_i \)-subgroup \(H_i \) of \(G \). By the hypothesis, there exists a \(\sigma \)-subnormal subgroup \(T \) of \(G \) such that \(G = H_iT \) and \(H_i \cap T \leq (H_i)_{\sigma G} \). Then \(G/N = (H_iN/N)(TN/N) = (H/N)(TN/N) \). Since \(|H_iN \cap T : H_i \cap T| = |(H_iN \cap T)H_i : H_i| \) is a \(\alpha_i \)-number, \(|(H_iN \cap T : H_i \cap T)|, |H_iN \cap T : N \cap T| \rangle = 1 \). Hence \(H_iN \cap T = (H_i \cap T)(N \cap T) \) by [13, A, Lemma 1.6]. Consequently, \((H_iN/N) \cap (TN/N) \leq (H_i \cap T)N/N \leq (H_iN/N)_{\sigma G} \) by Lemma 2.3 (2)(4). By Lemma 2.2 (4), \(TN/N \) is \(\sigma \)-subnormal in \(G/N \). Therefore \(H/N \) is weakly \(\sigma \)-permutable in \(G/N \). This shows that \(G/N \) satisfies the hypothesis. The minimal choice of \(G \) implies that \(G/N \) is \(\sigma \)-soluble.

2. \(G \) is not a simple group.

 Suppose that \(G \) is a non-abelian simple group. Then 1 is the only proper \(\sigma \)-subnormal subgroup of \(G \). Let \(H_i \) be a non-identity Hall \(\sigma_i \)-subgroup of \(G \), where \(\sigma_i \in \sigma(G) \). By the hypothesis and \(|\sigma(G)| > 1 \), we have \(G = H_iG \) and \(H_i = H_i \cap G \leq (H_i)_{\sigma G} \). By Lemma 2.3 (4), \((H_i)_{\sigma G} \) is \(\sigma \)-subnormal in \(G \), so \(H_i = (H_i)_{\sigma G} = 1 \), a contradiction. So we have (2).

3. Let \(R \) be a minimal normal subgroup of \(G \), then \(R \) is \(\sigma \)-soluble.

 Let \(H \) be any Hall \(\sigma_i \)-subgroup of \(R \), where \(\sigma_i \cap \pi(R) \neq \emptyset \). Then there exists a Hall \(\sigma_i \)-subgroup \(H_i \) of \(G \) such that \(H = H_i \cap R \). By the hypothesis, there exists a \(\sigma \)-subnormal subgroup \(T \) of \(G \) such that \(G = H_iT \) and \(H_i \cap T \leq (H_i)_{\sigma G} \). Since \(|H_iT \cap R : H_i \cap R| = |(H_iT \cap R)H_i : H_i| \) is a \(\alpha_i \)-number, \(|H_iT \cap R : H_i \cap R|, |H_iT \cap R : T \cap R| \rangle = 1 \). Hence, \(R = R \cap H_iT = (H_i \cap R)(R \cap T) \leq H(R \cap T) \) by [13, A, Lemma 1.6(c)]. Since \(R \cap T \) is \(\sigma \)-subnormal in \(R \) by Lemma 2.2 (1) and \(H \cap R \cap T = (R \cap H_i)(R \cap T) \leq (H_i)_{\sigma G} \cap R \leq (H)_{\sigma R} \) by Lemma 2.3 (1)(4), \(R \) satisfies the hypothesis. The minimal choice of \(G \) implies that \(R \) is \(\sigma \)-soluble.

4. Final contradiction.

 In view of (1), (2) and (3), we have that \(G \) is \(\sigma \)-soluble by Lemma 2.1. The final contra-
diction completes the proof of the theorem.

4 Proof of Theorem 1.5

First we prove the following proposition, which is a main step of the proof of Theorem 1.5.

Proposition 4.1. Let G be a σ-full group of Sylow type and $H = \{1, W_1, W_2, \ldots, W_t\}$ be a complete Hall σ-set of G such that W_i is a nilpotent σ_i-subgroup for all $i = 1, \ldots, t$, and let the smallest prime p of $\pi(G)$ belongs to σ_1. If every maximal subgroup of W_1 is weakly σ-permutable in G, then G is soluble.

Proof. First note that if G is σ-soluble, then every chief factor H/K of G is σ-primary, that is, H/K is a σ_i-group for some i. But since W_i is nilpotent, H/K is a elementary abelian group. It follows that G is soluble. Hence we only need to prove that G is σ-soluble. Suppose that the assertion is false, and let G be a counterexample of minimal order. Then clearly $t > 1$, and $p = 2 \in \pi(W_1)$ by the well-known Feit-Thompson’s theorem. Without loss of generality, we can assume that W_i is a σ_i-group for all $i = 1, 2, \ldots, t$.

(1) $O_{\sigma_i}(G) = 1$.

Assume that $N = O_{\sigma_1}(G) \neq 1$. Note that if $W_1 = N$, then G/N is a σ_1'-group, so G/N is soluble by the well-known Feit-Thompson’s theorem and so G is σ-soluble. We may, therefore, assume that $W_1 \neq N$. Then W_1/N is a non-identity Hall σ_1-subgroup of G/N. Let M/N be a maximal subgroup of W_1/N. Then M is a maximal subgroup of W_1. By the hypothesis and Lemma 2.5 (2), M/N is weakly σ_i-permutable in G/N. The minimal choice of G implies that G/N is σ-soluble. Consequently, G is σ-soluble. This contradiction shows that (1) holds.

(2) $O_{\sigma_1}(G) = 1$.

Assume that $R = O_{\sigma_1}(G) \neq 1$. Then $W_1 R/R$ is a Hall σ_1-subgroup of G/R. Let M/R be a maximal subgroup of $W_1 R/R$. Then $M = (M \cap W_1) R$. Since W_1 is nilpotent and $|W_1 R/R : M/R| = |W_1 R/R : (M \cap W_1) R/R| = |W_1 : M \cap W_1|$, $M \cap W_1$ is a maximal subgroup of W_1. By the hypothesis and Lemma 2.5 (3), $M/R = (M \cap W_1) R/R$ is weakly σ_i-permutable in G/R. This shows that G/R satisfies the hypothesis. The choice of G implies that G/R is σ-soluble. By the well-known Feit-Thompson’s theorem, we know that R is soluble. It follows that G is σ-soluble, a contradiction.

(3) If $R \neq 1$ is a minimal normal subgroup of G, then R is not σ-soluble and $G = RW_1$.

If R is σ-soluble, then R is a σ_i-group for some $\sigma_i \in \sigma(G)$. So $R \leq O_{\sigma_1}(G)$ or $R \leq O_{\sigma_1'}(G)$, a contradiction. Therefore, R is not σ-soluble. Assume that $RW_1 < G$. Then by the hypothesis and Lemma 2.5 (1), RW_1 satisfies the hypothesis. Hence RW_1 is σ-soluble by the choice of G. It follows from Lemma 2.1 that R is σ-soluble. This contradiction shows that $G = RW_1$.

(4) G has a unique minimal normal subgroup R.

8
By (3), $G = RW_1$ for every non-identity minimal normal subgroup R of G. Then clearly, G/R is σ-soluble. Hence by Lemma 2.1 G has a unique minimal normal subgroup, which is denoted by R.

(5) W_1 is a 2-group.

Let $q \in \pi(W_1) \setminus \{2\}$. As W_1 is nilpotent, there exists two maximal subgroups M_1 and M_2 of W_1 such that $|W_1 : M_1| = q$ and $|W_1 : M_2| = 2$. By the hypothesis, there exists σ-subnormal subgroups T_i of G, such that $G = M_iT_i$ and $M_i \cap T_i \leq (M_i)_{\sigma G}$, $i = 1, 2$. By Lemma 2.3 (4), $(M_i)_{\sigma G}$ is σ-subnormal in G. Then by Lemma 2.2 (8), $(M_i)_{\sigma G} \leq O_{\sigma_i}(G) = 1$, $i = 1, 2$. Hence $M_i \cap T_i = 1, i = 1, 2$. Consequently, $|G : T_i| = |M_i : M_i \cap T_i| = |M_i|$, $i = 1, 2$, which implies that $|G : T_i|$ is a σ_i-number for $i = 1, 2$. Hence $O^{\sigma_i}(T_i) = O^{\sigma_i}(G)$ for $i = 1, 2$ by Lemma 2.2 (7). Since $t > 1$, $O^{\sigma_i}(G) > 1$. It follows that $1 \neq O^{\sigma_i}(G) \leq (T_i)_G$ for $i = 1, 2$. Then by (4), $R \leq (T_1)_G \cap (T_2)_G \leq T_1 \cap T_2$. It is clear that $W_1 \cap R$ is a Hall σ_i-subgroup of R, and $W_1 \cap R \neq 1$ by (2). So $1 \neq W_1 \cap R \leq T_1 \cap T_2 \cap W_1$. Since $G = M_1T_1 = W_1T_1 = M_2T_2 = W_1T_2$, where $M_1 \cap T_1 = 1$ and $M_2 \cap T_2 = 1$, we have that $|W_1 \cap T_1| = |W_1 : M_i| = q$ and $|W_1 \cap T_2| = |W_1 : M_2| = 2$. Therefore $(W_1 \cap T_1) \cap (W_1 \cap T_2) = 1$, which implies that $1 \neq W_1 \cap R \leq T_1 \cap T_2 \cap W_1 = (T_1 \cap W_1) \cap (T_2 \cap W_1) = 1$. This contradiction shows that W_1 is a 2-group.

(6) Final contradiction.

Let P_1 be a maximal subgroup of W_1. Then $|W_1 : P_1| = 2$. By the hypothesis, there exists a σ-subnormal subgroup K of G such that $G = P_1K$ and $P_1 \cap K \leq (P_1)_{\sigma G}$. By (1) and Lemma 2.2 (8), $(P_1)_{\sigma G} = 1$, Hence $|K| = 2$, and so K is 2-nilpotent by [16, IV, Theorem 2.8]. Let K_2' be the normal Hall $2'$-subgroup of K. Then $1 \neq K_2'$ is σ-subnormal in G, and so $K_2' \leq O_{\sigma_i}(G) = 1$ by Lemma 2.2(8). The final contradiction completes the proof. □

Proof of Theorem 1.5. Assume that the assertion is false, and let G be a counterexample of minimal order.

(1) G is soluble.

Let q is the smallest prime dividing $|G|$. Without loss of generality, we may assume that $q \in \pi(W_1)$. If W_1 is cyclic, then the Sylow q-subgroup of G is cyclic. Hence G is q-nilpotent by [16, IV, Theorem 2.8] and so G is soluble. If W_1 is non-cyclic, then by Proposition 4.1, G is soluble. Hence we always have that G is soluble.

(2) The hypothesis holds on G/R for every non-identity minimal normal subgroup R of G. Consequently G/R is supersoluble.

It is clear that $\mathcal{H} = \{1, W_1R/R, W_2R/R, \cdots, W_iR/R\}$ is a complete Hall σ-set of G/R and $W_iR/R \simeq W_i/W_i \cap R$ is nilpotent. By (1), R is an elementary abelian p-group for some prime p. Without loss of generality, we can assume that $R \leq W_1$. If W_1/R is non-cyclic, then W_1 is non-cyclic. For every maximal subgroup M/R of W_1/R, we have that M is a
maximal subgroup of \(W_1 \). Then by the hypothesis and Lemma 2.5 (2), \(M/R \) is weakly \(\sigma \)-permutable in \(G/R \). Now assume that \(W_i R/R \) is non-cyclic for \(i \neq 1 \) and \(M/R \) be a maximal subgroup of \(W_i R/R \). Then \(M = (M \cap W_i) R \). As \(W_i \) is nilpotent, \(|W_i R/R : M/R| = |W_i R/R : (M \cap W_i) R/R| = |W_i : M \cap W_i| \) is a prime. Hence \(M \cap W_i \) is a maximal subgroup of \(W_i \). By the hypothesis and Lemma 2.5 (3), \(M/R = (M \cap W_i) R/R \) is weakly \(\sigma \)-permutable in \(G/R \). This shows that the hypothesis holds for \(G/R \). Hence \(G/R \) is supersoluble by the choice of \(G \).

3) \(R \) is the unique minimal normal subgroup of \(G \), \(\Phi(G) = 1 \), \(C_G(R) = R = F(G) = O_p(G) \) and \(|R| > p \) for some prime \(p \) (It follows from (2)).

4) For some \(i \in \{1, 2, \cdots, t\} \), \(W_i \) is a \(p \)-group. Without loss of generality, we may assume that \(W_1 \) is a \(p \)-group.

Since \(R \) is a \(p \)-group, \(R \leq W_i \) for some \(i \in \{1, 2, \cdots, t\} \). Moreover, since \(C_G(R) = R \) and \(W_i \) is a nilpotent group, we have that \(W_i \) is a \(p \)-group.

5) Final contradiction.

Since \(\Phi(G) = 1 \), \(R \not\in \Phi(W_1) \) [16, Chapter III, Lemma 3.3]. Hence there exists a maximal subgroup \(V \) of \(W_1 \) such that \(W_1 = RV \). Let \(E = R \cap V \). Then \(|R : E| = |RV : V| = |W_i : V| = p \). Hence \(E \) is a maximal subgroup of \(R \) and \(1 \neq E \leq W_1 \). Since \(|R| > p \) and \(R \leq W_1 \), \(W_1 \) is non-cyclic. Hence by the hypothesis, there exists a \(\sigma \)-subnormal subgroup \(T \) of \(G \) such that \(G = VT \) and \(V \cap T \leq V_{\sigma G} \). Since \(|G : T| \) is \(p \)-number, \(O^p(T) = O^{\sigma_1}(T) = O^\sigma(T) \) by Lemma 2.2 (7). So \(|G : T_G| \) is \(p \)-number. It follows that \(T_G \neq 1 \) and \(R \leq T_G \leq T \) by (2). Since \(V_{\sigma G} \) is \(\sigma \)-subnormal in \(G \) by Lemma 2.3 (4), we have that \(V_{\sigma G} \leq O_{\sigma_1}(G) = O_p(G) = R \) by Lemma 2.2 (8). Hence \(E = R \cap V \leq T \cap V \leq V_{\sigma G} \leq R \). But since \(E \) is a maximal subgroup of \(R \), it follows that \(V_{\sigma G} = R \) or \(V_{\sigma G} = E \). In the former case, we have that \(R \leq V \), a contradiction. In the latter case, \(E = V_{\sigma G} \) is \(\sigma \)-permutable in \(G \) by Lemma 2.3 (4) and \(E \) is a \(\sigma_1 \)-group. It follows from Lemma 2.4 that \(O^\sigma_1(G) \leq N_G(E) \). Hence \(E \leq G \), which contradicts the minimality of \(R \). The final contradiction completes the proof of the theorem.

5 Proof of Theorem 1.13

Assume that the assertion is false and let \((G, E) \) be a counterexample with \(|G| + |E| \) minimal. Without loss of generality, we can assume that \(W_i \) is a \(\sigma_i \)-group for all \(i = 1, 2, \cdots, t \). We now proceed with the proof via the following steps.

1) \(E \) is supersoluble.

In fact, \(\{1, W_1 \cap E, W_2 \cap E, \cdots, W_t \cap E\} \) is a complete Hall \(\sigma \)-set of \(E \) and \(W_i \cap E \) is nilpotent. Consequently, \(E \) is a \(\sigma \)-full group of Sylow type. By Lemma 2.5 (1) and Theorem 1.5. Hence \(E \) is supersoluble.
(2) If \(R \) is a minimal normal subgroup of \(G \) contained in \(E \), then \(R \) is a \(p \)-group for some prime \(p \) and the hypothesis holds for \((G/R, E/R)\). Therefore \(E/R \leq Z_u(G/R) \).

By (1), \(R \) is a \(p \)-group for some \(p \). Without loss of generality, we can assume that \(R \leq W_1 \cap E \). It is clear that \(\mathcal{T} = \{1, W_1/R, W_2/R, \ldots, W_t/R\} \) is a complete Hall \(\sigma \)-set of \(G/R \) and \(W_i/R/R \cong W_i/W_i \cap R \) is nilpotent. Let \(M/R \) be a maximal subgroup of \((W_1 \cap E)/R\). Then by the hypothesis and Lemma 2.5 (2), \(M/R \) is weakly \(\sigma \)-permutable in \(G/R \). Now let \(V/R \) be a maximal subgroup of \(W_i/R/R \cap E/R = (W_i \cap E)/R \), \(i = 2, \ldots, t \). Then \(V = (V \cap W_i)/R \). Since \(W_i/R/R \cap E/R \) is nilpotent, \(|W_i \cap E : V \cap W_i| = |W_i/R \cap E : (V \cap W_i)/R| = |W_i/R/R \cap E/R : V/R| \) is a prime, so \(V \cap W_i \) is a maximal subgroup of \(W_i \cap E \). Then by the hypothesis and Lemma 2.5 (3), \(V/R = (V \cap W_i)/R \) is weakly \(\sigma \)-permutable in \(G/R \), \(i = 2, \ldots, t \). This shows that \((G/R, E/R)\) satisfies the hypothesis. Thus \(E/R \leq Z_u(G/R) \) by the choice of \((G,E)\).

(3) \(R \) is the unique minimal normal subgroup of \(G \) contained in \(E \), \(|R| > p \) and \(O_p'(E) = 1 \).

Let \(L \) be a minimal normal subgroup of \(G \) contained in \(E \) such that \(R \neq L \). Then \(E/R \leq Z_u(G/R) \) and \(E/L \leq Z_u(G/L) \) by (2), and clearly, \(|R| > p \). It follows that \(LR/L \leq Z_u(G/L) \), so \(|R| = p \) by the \(G \)-isomorphism \(RL/L \simeq R \), a contradiction. Hence \(R \) is the unique minimal normal subgroup of \(G \) contained in \(E \). Consequently, \(O_p'(E) = 1 \). Hence (3) holds.

Without loss of generality, we may assume \(p \in \pi(W_1) \).

(4) \(E \) is a \(p \)-group and so \(E \cap W_1 = E \) and \(E \cap W_i = 1 \) for \(i = 2, 3, \ldots, t \).

Let \(q \) be the largest prime dividing \(|E|\) and let \(Q \) be a Sylow \(q \)-subgroup of \(E \). Since \(E \) is supersoluble by (1) (see [16, Chapter VI, Theorem 9.1]), \(Q \) is characteristic in \(E \). Then \(Q \) is normal in \(G \). Hence by (3) we have that \(q = p \) and \(F(E) = Q = O_p(E) = P \) is a Sylow \(p \)-subgroup of \(E \). Thus \(C_E(P) \leq P \) (see [27, Theorem 1.8.18]). But since \(P \leq W_1 \cap E \) and \(W_1 \cap E \) is nilpotent, we have that \(P = W_1 \cap E \). Since \(P \cap W_1 = P = W_1 \cap E \) and \(P \cap W_i = 1 \) for all \(i = 2, \ldots, t \), the hypothesis holds for \((G,P)\). If \(P < E \), then \(R \leq P \leq Z_u(G) \) by the choice of \((G,E)\). It follows that \(|R| = p \), a contradiction. Hence \(E = P \) is a \(p \)-group, and so \(E \leq W_1 \).

(5) \(\Phi(E) = 1 \), so \(E \) is elementary abelian \(p \)-group.

Assume that \(\Phi(E) \neq 1 \). Then clearly, \((G/\Phi(E), E/\Phi(E))\) satisfies the hypothesis. Hence \(E/\Phi(E) \leq Z_u(G/\Phi(E)) \). It follows from (4) and Lemma 2.6 that \(E \leq Z_u(G) \), a contradiction. Thus we have (5).

(6) Final contradiction.

Let \(R_1 \) be a maximal subgroup of \(R \) such that \(R_1 \leq W_1 \). Then \(|R_1| > 1 \) by (3). Claim (5) implies that \(R \) has a complement \(S \) in \(E \). Let \(V = R_1S \). Then \(R \cap V = R_1 \) and \(V \) is a maximal subgroup of \(E \). Hence by (4) and the hypothesis, there exists a \(\sigma \)-subnormal subgroup \(T \) of \(G \) such that \(G = VT \) and \(V \cap T \leq V_{\sigma G} \). Then \(G = VT = ET \) and \(E = V(E \cap T) \). By (5), it is easy to see that \(1 \neq E \cap T \leq G \). Hence \(R \leq E \cap T \) by (3), and so \(R_1 = R \cap V \leq E \cap T \cap V = \)}
\[V \cap T \leq V_\sigma G. \] Consequently, \(R_1 \leq V_\sigma G \cap R \leq R. \) It follows that \(R = V_\sigma G \cap R \) or \(R_1 = V_\sigma G \cap R. \) In the former case, \(R \leq V, \) which contradicts the fact that \(R_1 = R \cap V. \) Thus \(R_1 = V_\sigma G \cap R. \)

By Lemma 2.3(4), we have that \(V_\sigma G \) is \(\sigma \)-permutable in \(G, \) so \(O^{\sigma_1}(G) \leq N_G(V_\sigma G) \) by Lemma 2.4. Hence \(O^{\sigma_1}(G) \leq N_G(V_\sigma G \cap R) = N_G(R_1). \) Moreover, since \(R_1 \unlhd W_1, \) we obtain that \(R_1 \leq G. \) This implies that \(R_1 = 1. \) The final contradiction completes the proof.

References

[1] A. N. Skiba, On \(\sigma \)-subnormal and \(\sigma \)-permutable subgroups of finite groups, J. Algebra, 436 (2015), 1-16.

[2] W. Guo, A. N. Skiba, On II-permutable subgroups of finite groups, arXiv: 1606.03197.

[3] Y. Wang, C-Normality of groups and its properties, J. Algebra, 180 (1996), 954-965.

[4] A. N. Skiba, On weakly \(s \)-permutable subgroups of finite groups, J. Algebra, 315 (2007), 192-209.

[5] M. Assad, Finite groups with certain subgroups of Sylow subgroups complemented, J. Algebra, 323 (2010), 1958-1965.

[6] A. Ballester-Bolinches, Y. Wang, X. Guo, c-supplemented subgroups of finite groups, Glasg. Math. J, 42 (2000), 383-389.

[7] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin, New York, 2010.

[8] W. Guo, Structure Theory for Canonical Classes of Finite Groups, Springer, 2015.

[9] W. Guo, A. N. Skiba, Finite groups with generalized Ore supplement conditions for primary subgroups, J.Algebra, 432 (2015), 205-227.

[10] B. Li, On II-property and II-normality of subgroups of finite groups, J. Algebra, 334 (2011), 321-337.

[11] H. Wei, On c-normal maximal and minimal subgroups of Sylow subgroups of finite groups, Comm. Algebra, 29 (2001), 2193C2200.

[12] A. N. Skiba , On \(\sigma \)-properties of finite groups II, Problems of Physics, Mathematics and Technics, 3(24) (2015), 70-83.

[13] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin, 1992.
[14] W. Guo, A. N. Skiba, Finite groups with permutable complete Wielandt set of subgroups, J. Group Theory, 18 (2015), 191-200.

[15] S. Srinivasan, Two sufficient conditions for supersolvability of finite groups, Israel J.Math., 35 (1980), 210-214.

[16] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.

[17] L. Miao, On weakly s-permutable subgroups of finite groups, Bull. Braz. Math. Soc., 41 (2) (2010), 223C235.

[18] R. Schmidt, Subgroups Lattices of Groups, Walter de Gruyter, Berlin, 1994.

[19] M. Weinsten, Between Nilpotent and Soluble, Polygonal Publishing House, Passaic, 1982.

[20] A. N. Skiba, A characterization of the hypercyclically embedded subgroups of finite groups, J. Pure Appl. Algebra, 215 (2011), 257-261.

[21] A. N. Skiba, On two questions of L.A. Shemetkov concerning hypercyclically embedded subgroups in finite groups, J. Pure Appl. Algebra, 215 (2011), 257-261.

[22] L. A. Shemetkov and A. N. Skiba, On the $\mathfrak{X}\Phi$-hypercentre of finite groups, J. Algebra, 322 (2009), 2106-2117.

[23] W.Guo, Alexander N. Skiba, X. Tang, On Boundary Factors and Traces of Subgroups of Finite Groups, Commun. Math. Stat., 2 (2014), 349-361.

[24] M. Assad, Influence of S-quasinormality on maximal subgroups of Sylow subgroups of Fitting subgroup of a finite group, Arch. Math., (Basel) 56 (1991), 521-527.

[25] M. Assad, On maximal subgroups of finite group, Comm. Algebra 26 (1998), 3647C3652.

[26] X. Chen, W. Guo, A. N. Skiba, Some conditions under which a finite group belongs to a Baer-local formation, Comm. Algebra, 42 (2014), 4188-4203.

[27] W. Guo, The Theory of Classes of Groups, Science Press-Kluwer Academic Publishers, Beijing-New York-Dordrecht-Boston-London, 2000.