Estimating parameterized entanglement measure

Zhi-Wei Wei1 · Ming-Xing Luo2 · Shao-Ming Fei1,3

Received: 26 December 2021 / Accepted: 12 May 2022 / Published online: 14 June 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
The parameterized entanglement monotone, the q-concurrence, is also a reasonable parameterized entanglement measure. By exploring the properties of the q-concurrence with respect to the positive partial transposition and realignment of density matrices, we present tight lower bounds of the q-concurrence for arbitrary $q \geq 2$. Detailed examples are given to show that the bounds are better than the previous ones.

Keywords Quantum entanglement · Entanglement measure · Concurrence

1 Introduction

Entanglement is one of the most remarkable phenomena in quantum mechanics [1, 2]. In recent years, great efforts have been made toward the understanding of the role played by the entanglement in quantum information theory [3]. It has been the most important resources in quantum information processing and communication such as quantum dense coding [4], quantum metrology [5, 6], quantum teleportation [7, 8], quantum secret sharing [9] and quantum cryptography [10]. These applications have strongly motivated the study on detection and quantification of entanglement in an operational way.
Detecting the entanglement of generic mixed states is still a hard problem. The positive partial transpose (PPT) criterion [11] says that for any separable bipartite state ρ_{AB}, the partial transposed matrix $\rho^\Gamma \geq 0$ (Γ represents the partial transposition with respect to the subsystem B in the following) is semi-positive. The PPT criterion is a necessary and sufficient condition of separability only for pure states and $2 \otimes 2$- and $2 \otimes 3$-dimensional mixed states [11, 12]. While the realignment criterion [13–16] says that the realigned matrix $R(\rho)$ of any separable ρ_{AB} satisfies $\|R(\rho)\|_1 \leq 1$, where $\|X\|_1$ denotes the trace norm defined by $\|X\|_1 = \text{Tr} \sqrt{XX^\dagger}$. These separability criteria have been widely used for entanglement detection both theoretically and experimentally in quantum information processing [17].

The quantification of quantum entanglement for a given quantum state is also a difficult undertaking due to the intricate interplay between classical and quantum correlations [18, 19]. It has been proposed that a reasonable measure of entanglement should fulfill certain conditions [18–20]. Some interesting entanglement measures have been provided for bipartite systems such as concurrence [21–23], entanglement of formation [24–26], negativity [27], robustness of entanglement [28] and Rényi-α entropy of entanglement [29]. There are also some entanglement monotones [30] such as the convex-roof extension of negativity [31], Tsallis-q entropy of entanglement [32], as well as the entanglement monotones induced by fidelity [33].

Nevertheless, most proposed entanglement measures or monotones involve extremizations which are difficult to handle analytically. Usually analytical results are only available for two-qubit states [25] or some special higher-dimensional mixed states [34–36] for certain special measures [31, 37]. Therefore, efforts have been made toward the estimation of entanglement measures for general mixed states [38]. The analytical lower bound for the concurrence has been derived in [23] based on the PPT and realignment criteria. In [39], the authors sharpened this bound by relating the concurrence to the local uncertainty relations and the correlation matrix criterion. By using the PPT and realignment criteria, a lower bound for the genuine tripartite entanglement concurrence was obtained in [40].

In particular, the concurrence plays a vital role in entanglement distributions such as entanglement swapping and remote preparation of bipartite entangled states [41]. For any pure state $|\Psi\rangle_{AB}$, the concurrence is given by $C(|\Psi\rangle_{AB}) = \sqrt{2(1 - \text{Tr} \rho_A^2)}$ with $\rho_A = \text{Tr}_B |\Psi\rangle \langle \Psi| [21]$. In fact, the concurrence is related to the specific Tsallis-q entropy $T_q(\rho_A)$ with $q = 2$, $C(|\Psi\rangle_{AB}) = \sqrt{2T_2(\rho_A)} [42, 43]$. Noteworthily, the Tsallis-q entropy provides a generalization of the traditional Boltzmann-Gibbs statistical mechanics and enables one to find a consistent treatment of dynamics in many nonextensive physical systems such as with long-range interactions, long-time memories and multifractal structures [44]. The Tsallis-q entropy also provides many intriguing applications in the realms of quantum information theory [45–48]. Therefore, it is of great significance to provide an entanglement measure from the Tsallis entropy with $q > 2$. Recently, the authors in [49] has presented such parameterized entanglement monotone for $q > 2$.

In this paper, we present analytical tighter lower bounds for the parameterized entanglement monotone q-concurrence given in [49], which is also a well-defined entanglement measure. The rest of this paper is organized as follows. In Sect. 2, we
recall some necessary conditions for bipartite entanglement measures, and the concept of q-concurrence. We derive tighter lower bounds of the q-concurrence for general mixed states, and consider some detailed examples in Sect. 3. We make a conclusion in Sect. 4.

2 Bound on q-concurrence

Let \mathcal{D} denote the set of bipartite states in finite dimensional Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$ associated with subsystems A and B. A well-defined quantum entanglement measure E must satisfy certain conditions $[18–20]$ as follows:

(i) $E(\rho) \geq 0$ for any state $\rho \in \mathcal{D}$, where the equality holds only for separable states.

(ii) E is invariant under local unitary transformations, $E(\rho) = E \left(U_A \otimes U_B \rho U_A^\dagger \otimes U_B^\dagger \right)$ for any local unitaries U_A and U_B.

(iii) E does not increase on average under stochastic LOCC,

$$E(\rho) \geq \sum_i p_i E(\rho_i)$$

for any $\rho \in \mathcal{D}$, where $p_i = \text{Tr} A_i \rho A_i^\dagger$ is the probability of obtaining outcome i, and $\rho_i = A_i \rho A_i^\dagger / p_i$ with A_i the Kraus operators with respect to the stochastic LOCC such that $\sum_i A_i^\dagger A_i = I$.

(iv) E is convex,

$$E\left(\sum p_i \rho_i \right) \leq \sum p_i E(\rho_i).$$

(v) E cannot increase under LOCC, $E(\rho) \geq E(\Lambda(\rho))$ for any LOCC map Λ.

The condition (ii) can be removed if the condition (v) holds. E is said to be an entanglement monotone $[30]$ if the first four conditions hold. In $[50]$, it has been shown that a convex function E satisfies condition (v) if and only if it satisfies condition (ii) and

$$E\left(\sum p_i |i\rangle\langle i|_M \otimes \rho_i \right) = \sum_i p_i E(\rho_i),$$

where $M = A', B'$ is a flag system and $\{|i\rangle\}$ are the local orthogonal basic vectors. In addition, (3) is just the flag additivity which is equivalent to the average monotonicity and the convexity, i.e., the conditions (iii) and (iv) $[51]$. In this case, any entanglement monotone defined in $[30]$ is an entanglement measure.
Any pure state $|\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B$ can be expressed in the Schmidt form under suitable local bases $\{|i\rangle_A\}$ and $\{|i\rangle_B\}$ of \mathcal{H}_A and \mathcal{H}_B, respectively,

$$|\psi\rangle_{AB} = \sum_{i=1}^{d} \sqrt{\lambda_i} |i\rangle_A \langle i|_B,$$

(4)

where λ_i's are the squared Schmidt coefficients with $\sum_{i=1}^{d} \lambda_i = 1$, and $d = \min\{d_A, d_B\}$ with d_A and d_B the dimensions of \mathcal{H}_A and \mathcal{H}_B, respectively [3]. The parameterized entanglement monotone q-concurrence $C_q(|\psi\rangle_{AB})$ of a state $|\psi\rangle_{AB}$ [49] is defined by

$$C_q(|\psi\rangle_{AB}) = 1 - \text{Tr} \rho_A^q$$

(5)

for any $q \geq 2$, where $\rho_A = \text{Tr}_B (|\psi\rangle \langle \psi|)$ is the reduced density operator of the subsystem A. It is direct to verify that $C_q(|\psi\rangle_{AB}) = 1 - \sum_{i=1}^{d} \lambda_i^q$ and $0 \leq C_q(|\psi\rangle) \leq 1 - d^{1-q}$, where the left equality holds if $|\psi\rangle$ is a product state, and the right equality holds for the maximally entangled state $|\psi\rangle = 1/\sqrt{d} \sum_{i} |ii\rangle$. The q-concurrence for general mixed states $\rho \in \mathcal{D}$ is given by convex-roof extension,

$$C_q(\rho) = \min_{\{p_i, |\psi_i\rangle\}} \sum_i p_i C_q(|\psi_i\rangle),$$

(6)

where the infimum is taken over all possible pure state decompositions of $\rho = \sum_i p_i |\psi_i\rangle \langle \psi_i|$, with $\sum_i p_i = 1$ and $p_i \geq 0$.

It has been proved in [49] that the q-concurrence $C_q(\rho)$ is already an entanglement monotone. Therefore, it is also an entanglement measure.

It is hard to derive an analytic formula of the entanglement measure q-concurrence for general mixed states. In the following, we estimate the q-concurrence by deriving its lower bounds based on the PPT and realignment criteria. For a given bipartite state $\rho = \sum_{ijkl} \rho_{ijkl} |ij\rangle \langle kl|$ in computational bases, the partial transposed matrix ρ^Γ with respect to the subsystem B is given by $\rho^\Gamma = \sum_{ijkl} \rho_{ijkl} |kl\rangle \langle ij|$, and the realigned matrix is given by $\mathcal{R}(\rho) = \sum_{ijkl} \rho_{ijkl} |ik\rangle \langle jl|$. For a given pure state $|\psi\rangle$ defined in (4), it is straightforward to show that [23],

$$1 \leq \|\rho^\Gamma\|_1 = \|\mathcal{R}(\rho)\|_1 = \left(\sum_{i=1}^{d} \sqrt{\lambda_i} \right)^2 \leq d,$$

(7)

where $\rho = |\psi\rangle \langle \psi|$. In particular, for $q = 2$, the q-concurrence becomes $C_2(|\psi\rangle) = 1 - \sum_{i=1}^{d} \lambda_i^2 = 2 \sum_{i<j} \lambda_i \lambda_j$. One has then [23],

$$C_2(|\psi\rangle) \geq \frac{1}{d(d-1)} (\|\rho^\Gamma\|_1 - 1)^2$$

(8)

for any pure state $|\psi\rangle$ on $\mathcal{H}_A \otimes \mathcal{H}_B$.

\[Springer \]
Before deriving a tight lower bound of \(q \)-concurrence for \(q \geq 2 \), we first show the following conclusion. For a given pure state \(|\psi\rangle\) defined in (4), let us analyze the monotonicity of the function \(f(q) \) given by,

\[
f(q) = \frac{1 - \sum_{i=1}^{d} \lambda_i^q}{1 - d^{1-q}}
\]

for any \(q \geq 2 \). Set

\[
G_{dq} = \sum_{i=1}^{d} \lambda_i^q \ln \lambda_i \left(d^{1-q} - 1 \right) - \left(1 - \sum_{i=1}^{d} \lambda_i^q \right) d^{1-q} \ln d.
\]

We have

\[
\frac{\partial f}{\partial q} = \frac{G_{dq}}{(1 - d^{1-q})^2}.
\]

We see that the sign of the first derivative of \(f(q) \) with respect to \(q \) depends on the sign of the function \(G_{dq} \), with constraints \(\sum_{i=1}^{d} \lambda_i = 1 \) and \(\lambda_i > 0 \) for \(i = 1, ..., d \). Consider the minimum of \(G_{dq} \) by using Lagrange multipliers [36] subject to the constraints \(\sum_{i=1}^{d} \lambda_i = 1 \) and \(\lambda_i > 0 \). There is only one stable point under the constraints, \(\lambda_i = 1/d, i = 1, \cdots, d \), for which we have \(G_{dq} = 0 \).

The second derivative of \(f(q) \) with respect to \(q \) at the stable point is given by

\[
\frac{\partial^2 G_{dq}}{\partial \lambda_i^2} \bigg|_{\lambda_i = \frac{1}{d}} = d^{2-q} \left[q (q - 1) \ln d - (2q - 1) \left(1 - d^{1-q} \right) \right].
\]

Therefore, we get

\[
\frac{\partial^2 G_{dq}}{\partial \lambda_i^2} \bigg|_{\lambda_i = \frac{1}{d}} \geq 0
\]

for \(q \geq s \equiv 2.4721 \), \(d = 2 \) and \(q \geq 2 \), \(d \geq 3 \). In these cases, the minimum extreme point is the minimum point and \(\partial f/\partial q \geq 0 \). From the above analysis, it is straightforward to have the following conclusion.

Corollary 1 If \(q \geq h \), then \(C_q(\rho) \geq \frac{1 - d^{1-q}}{1 - d^{1-q}} C_h(\rho) \) for either \(h \geq s \), \(d = 2 \) or \(h \geq 2 \), \(d \geq 3 \).

We now derive the main result of this paper.

Theorem 1 For a general bipartite state \(\rho \in \mathcal{D} \), we have

\[
C_q(\rho) \geq \frac{1 - d^{1-q}}{(d - 1)^2} \left(\max \left(\|\rho^T\|_1, \|R(\rho)\|_1 \right) - 1 \right)^2.
\]
for either $q \geq 2$ with $d \geq 3$ or $q \geq 3$ with $d = 2$, and

$$C_q (\rho) > \frac{1 - 2^{1-q}}{2 - 2^{2-s}} \left[\max (\| \rho \|^1, \| R (\rho) \|_1) - 1 \right]^2$$

(15)

for $s \leq q < 3$ with $d = 2$.

Proof For a given pure state (4), from (13) and (11), we can obtain that $f(q)$ in (9) is an increasing function with respect to q in the cases of $q \geq 2$ with $d \geq 3$, and $q \geq s$ with $d = 2$.

In the first case of $d \geq 3$, we have

$$C_q (| \psi \rangle) \geq \frac{1 - d^{1-q}}{1 - d^{-1}} C_2 (| \psi \rangle) \geq \frac{1 - d^{1-q}}{(d - 1)^2} (\| \sigma \|^1 - 1)^2$$

(16)

for $q \geq 2$, where $\sigma = | \psi \rangle \langle \psi |$, the first inequality is due to the monotone increasing of $f(q)$, the second inequality is due to (8).

For case of $d = 2$, similar to (16), we can obtain when $q \geq 3$,

$$C_q (| \psi \rangle) \geq \frac{1 - 2^{1-q}}{1 - 2^{2-s}} C_3 (| \psi \rangle) = (1 - 2^{1-q}) 2C_2 (| \psi \rangle) \geq (1 - 2^{1-q}) (\| \sigma \|^1 - 1)^2,$$

(17)

where the equality is due to $f(2) = f(3)$. When $s \leq q < 3$, we have

$$C_q (| \psi \rangle) \geq \frac{1 - 2^{1-q}}{1 - 2^{1-s}} C_s (| \psi \rangle) > \frac{1 - 2^{1-q}}{1 - 2^{1-s}} C_2 (| \psi \rangle) > \frac{1 - 2^{1-q}}{2 - 2^{2-s}} (\| \sigma \|^1 - 1)^2,$$

(18)

where the second inequality is from the monotonic increase in $C_q (| \psi \rangle)$ with respect to q.

Let $\rho = \sum_i p_i | \psi_i \rangle \langle \psi_i |$ be the optimal pure state decomposition of $C_q (\rho)$ for a given mixed state $\rho \in \mathcal{D}$. For the cases of $q \geq 2$ with $d \geq 3$ and $q \geq 3$ with $d = 2$, we have

$$C_q (\rho) = \sum_i p_i C_q (| \psi_i \rangle)$$
\[\begin{align*}
&\geq \frac{1 - d^{1-q}}{(d-1)^2} \sum_i p_i \left(\| \rho_i^\Gamma \|_1 - 1 \right)^2 \\
&\geq \frac{1 - d^{1-q}}{(d-1)^2} \left(\sum_i p_i \| \rho_i^\Gamma \|_1 - 1 \right)^2 \\
&\geq \frac{1 - d^{1-q}}{(d-1)^2} \left(\| \rho_1^\Gamma \|_1 - 1 \right)^2.
\end{align*} \]

(19)

where \(\rho_i = |\psi_i\rangle\langle \psi_i| \). The first inequality is from (16) and (17), the second inequality is obtained from the convexity of the function \(f(x) = x^2 \), the last inequality is due to the convex property of the trace norm and \(\| \rho_1^\Gamma \|_1 \geq 1 \) in (7).

From (7), similar to (16), (17) and (19), we have that

\[C_q(\rho) \geq \frac{1 - d^{1-q}}{(d-1)^2} \left(\| \rho_1^\Gamma \|_1 - 1 \right)^2 \]

(20)

in the cases of \(q \geq 2 \) with \(d \geq 3 \) and \(q \geq 3 \) with \(d = 2 \). Combining (19) and (20), we can obtain (14). Similarly, from (18) one can obtain (15).

Theorem 1 gives tight lower bounds of the entanglement measure \(C_q(\rho) \). In [49], a lower bound of \(C_q(\rho) \) has been derived,

\[C_q(\rho) \geq \left[\max \left\{ \| \rho_1^\Gamma \|_1^{q-1}, \| \rho_1^\Gamma \|_1^{q-1} \right\} - 1 \right]^2. \]

(21)

In the next section, we calculate the \(q \)-concurrence of isotropic states and show that our lower bound is tighter than the one given in (21).

3 \(q \)-Concurrence for isotropic states

The isotropic states \(\rho_F \) are the convex mixtures of the maximally entangled state and the maximally mixed state [13],

\[\rho_F = \frac{1 - F}{d^2 - 1} \left(I - |\Psi^+\rangle\langle \Psi^+| \right) + F |\Psi^+\rangle\langle \Psi^+|, \]

(22)

where \(|\Psi^+\rangle = \frac{1}{\sqrt{d}} \sum_{i=1}^d |ii\rangle \) is the maximally entangled pure state, \(I \) is the identity operator and \(F \) is the fidelity of \(\rho_F \) with respect to \(|\Psi^+\rangle \). \(F = \langle \Psi^+ \rho_F | \Psi^+ \rangle \), \(0 \leq F \leq 1 \). \(\rho_F \) is separable for \(F \leq 1/d \) and invariant under the operation \(U \otimes U^* \) for any unitary transformation \(U \) [13]. The entanglement of formation [34], tangle and concurrence [36], and Rényi \(\alpha \)-entropy entanglement [29] for the isotropic states have studied. Furthermore, it has proven that \(\| \rho_F^\Gamma \|_1 = \| \rho_1^\Gamma \|_1 = dF \) for \(F > 1/d \) [15, 27].

Springer
By straightforward calculation, the q-concurrence for ρ_F is given by

$$C_q (\rho_F) = \text{co} (\xi (F, q, d)),$$

where $\text{co} (\xi (F, q, d))$ denotes the largest convex function that is upper bounded by the function $\xi (F, q, d)$, and

$$\xi (F, q, d) = 1 - \gamma^{2q} - (d - 1) \delta^{2q},\quad (24)$$

where $\gamma = \sqrt{F}/\sqrt{d} + \sqrt{(d-1)(1-F)}/\sqrt{d}$, $\delta = \sqrt{F}/\sqrt{d} - \sqrt{1-F}/\sqrt{d}$ [49].

To show the tightness of our lower bound (14), let us first consider the case of $q = 3$.

(i) $d = 2$. (24) becomes

$$\xi (F, 3, 2) = \frac{3}{4} (2F - 1)^2,$$

where $F \in (1/2, 1]$. As the second derivative of $\xi (F, 3, 2)$ with respect to F is nonnegative, we have

$$C_3 (\rho_F) = \begin{cases}
0, & F \leq 1/2, \\
\frac{3}{4} (2F - 1)^2, & 1/2 < F \leq 1,
\end{cases}\quad (26)$$

which is just our lower bound (14). Therefore, for $q = 3$ and $d = 2$, our lower bound (14) is just the exact value of the q-concurrence for any two-qubit isotropic state ρ_F, while (21) gives rise to

$$C_3 (\rho_F) \geq \frac{(2F + 1)^2}{12} (2F - 1)^2,$$

whose lower bound is less than the exact value of q-concurrence.

In fact, from (9), we have $f (2) = f (3)$ for $d = 2$. Hence, $C_2 (\rho_F) = 2/3 C_3 (\rho_F)$, which is consistent with the 2-concurrence of any two-qubit isotropic state ρ_F [36]. This implies that our lower bound (14) is exact for both $C_2 (\rho_F)$ and $C_3 (\rho_F)$.

(ii) $d = 3$. From (24), we have

$$\xi (F, 3, 3) = 1 - \gamma^6 - 2\delta^6$$

for any $F \in (1/3, 1]$, where $\gamma = \sqrt{F}/\sqrt{3} + \sqrt{2 - 2F}/\sqrt{3}$ and $\delta = \sqrt{F}/\sqrt{3} - \sqrt{1-F}/\sqrt{6}$. As the first derivative of $\xi (F, 3, 3)$ with respect to F is always positive, $\xi (F, 3, 3)$ is monotonically increasing in the regime where ρ_F is entangled, see Fig. 1. Since the second derivative of $\eta (F, 3, 3)$ with respect to F becomes negative when $F \geq 0.86$, $\eta (F, 3, 3)$ is no longer a convex function for $F \in [0.86, 1]$. As $C_3 (\rho_F)$
is the largest convex function that is upper bounded by (28), we connect the point $F = 0.86$ with the point $F = 1$ by a straight line. Therefore, we obtain, see Fig. 1,

$$C_3(\rho_F) = \begin{cases}
0, & F \leq 1/3, \\
\xi (F, 3, 3), & 1/3 < F \leq 0.86, \\
1.777F - 0.888, & 0.86 < F \leq 1.
\end{cases}$$ (29)

From Theorem 2, we get that

$$C_3(\rho_F) \geq \frac{2}{9} (3F - 1)^2,$$ (30)

while the lower bound (21) gives rise to

$$C_3(\rho_F) \geq \frac{(3F + 1)^2}{72} (3F - 1)^2.$$ (31)

Our lower bound of (30) is tighter than (31), see Fig. 2.

For the case $q = 4$, we have when $d = 2$,

$$\xi (F, 4, 2) = \frac{8 - (2F - 1)^2}{8} (2F - 1)^2.$$ (32)
for any $F \in (1/2, 1]$. As the second derivative of $\xi (F, 4, 2)$ with respect to F is nonnegative, we obtain

$$C_4 (\rho_F) = \begin{cases} 0, & F \leq 1/2, \\ \frac{8 - (2F - 1)^2}{8} (2F - 1)^2, & 1/2 < F \leq 1. \end{cases}$$ \quad (33)$$

From Theorem 2, we have

$$C_4 (\rho_F) \geq \frac{7}{8} (2F - 1)^2,$$ \quad (34)$$

while from (21), one gets

$$C_4 (\rho_F) \geq \frac{(4F^2 + 2F + 1)^2}{56} (2F - 1)^2. \quad (35)$$

Obviously, our lower bound (34) is tighter than (35), see Fig. 3.

4 Conclusion

We have derived tighter lower bounds of the q-concurrence for $q \geq 2$ with $d \geq 3$ and $q \geq s$ with $d = 2$. Moreover, we calculated the q-concurrence for isotropic states. In particular, we obtained the analytical formulae of the q-concurrence for
isotropic states with \(q = 3 \) and \(d = 2, 3 \), as well as with \(q = 4 \) and \(d = 2 \). It turned out that our lower bound is exact for \(q = 2, 3 \) and \(d = 2 \). These results may highlight further investigations on implications of quantum entanglement to quantum information processing.

Acknowledgements This work was supported by the National Natural Science Foundation of China (Nos. 12075159, 12171044); Beijing Natural Science Foundation (Grant No. Z190005); Academy for Multidisciplinary Studies, Capital Normal University; Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology (Grant No. SIQSE202001); the Academician Innovation Platform of Hainan Province.

Data availability All data generated or used during the study appear in the submitted article.

References

1. Schrödinger, E.: Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23, 807 (1935)
2. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)
3. Chuang, I., Nielsen, M.A.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2002)
4. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)
5. Wineland, D.J., Bollinger, J.J., Itano, W.M., Moore, F.L., Heinzen, D.J.: Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A. 46, R6797 (1992)
6. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)
7. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
8. Henderson, L., Hardy, L., Vedral, V.: Two-state teleportation. Phys. Rev. A. 61, 062306 (2000)
9. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A. 59, 1829 (1999)
10. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)
11. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)
12. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A. 223, 1 (1996)
13. Horodecki, M., Horodecki, P.: Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A. 59, 4206 (1999)
14. Rudolph, O.: Computable cross-norm criterion for separability. Lett. Math. Phys. 70, 57 (2004)
15. Rudolph, O.: Further results on the cross norm criterion for separability. Quantum Inf. Process. 4, 219 (2005)
16. Chen, K., Wu, L.-A.: A matrix realignment method for recognizing entanglement. Quantum Info. Comput. 3, 193 (2003)
17. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
18. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)
19. Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A. 57, 1619 (1998)
20. Vidal, G., Tarrach, R.: Robustness of entanglement. Phys. Rev. A. 59, 141 (1999)
21. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)
22. Rungta, P., Bužek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A. 64, 042315 (2001)
23. Chen, K., Albeverio, S., Fei, S.-M.: Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett. 95, 040504 (2005)
24. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A. 54, 3824 (1996)
25. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)
26. Horodecki, M.: Entanglement measures. Quantum Inf. Comput. 1, 3 (2001)
27. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A. 65, 032314 (2002)
28. Simon, C., Kempe, J.: Robustness of multiparty entanglement. Phys. Rev. A. 65, 052327 (2002)
29. Wang, Y.-X., Mu, L.-Z., Vedral, V., Fan, H.: Entanglement Rényi \(\alpha \) entropy. Phys. Rev. A. 93, 022324 (2016)
30. Vidal, G.: Entanglement monotones. J. Mod. Opt. 47, 355 (2000)
31. Lee, S., Chi, D.P., Oh, S.D., Kim, J.: Convex-roof extended negativity as an entanglement measure for bipartite quantum systems. Phys. Rev. A. 68, 062304 (2003)
32. Kim, J.S.: Tsallis entropy and entanglement constraints in multiqubit systems. Phys. Rev. A. 81, 062328 (2010)
33. Guo, Y., Zhang, L., Yuan, H.: Entanglement measures induced by fidelity-based distances. Quantum Inf. Process. 19, 1 (2020)
34. Terhal, B.M., Vollbrecht, K.G.H.: Entanglement of formation for isotropic States. Phys. Rev. Lett. 85, 2625 (2000)
35. Vollbrecht, K.G.H., Werner, R.F.: Entanglement measures under symmetry. Phys. Rev. A. 64, 062307 (2001)
36. Rungta, P., Caves, C.M.: Concurrence-based entanglement measures for isotropic states. Phys. Rev. A. 67, 012307 (2003)
37. Buchholz, L.E., Moroder, T., Gühne, O.: Evaluating the geometric measure of multiparticle entanglement. Ann. Phys. (NY) 528, 278 (2016)
38. Chen, K., Albeverio, S., Fei, S.-M.: Entanglement of formation of bipartite quantum States. Phys. Rev. Lett. 95, 210501 (2005)
39. Liu, L.G., Tian, C.L., Chen, P.X., Yuan, N.C.: A lower bound on concurrence. Chin. Phys. Lett. 26, 060306 (2009)
40. Li, M., Wang, J., Shen, S., Chen, Z., Fei, S.-M.: Detection and measure of genuine tripartite entanglement with partial transposition and realignment of density matrices. Sci. Rep. 7, 1 (2017)
41. Gour, G., Sanders, B.C.: Remote Preparation and Distribution of Bipartite Entangled States. Phys. Rev. Lett. 93, 260501 (2004)
42. Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479 (1988)
43. Landsberg, P.T., Vedral, V.: Distributions and channel capacities in generalized statistical mechanics. Phys. Lett. A 247, 211 (1998)
44. Abe, S., Okamoto, Y.: Nonextensive Statistical Mechanics and Its Applications. Lecture Notes in Physics, vol. 560. Springer, New York (2001)
45. Abe, S., Rajagopal, A.K.: Nonadditive conditional entropy and its significance for local realism. Phys. A Stat. Mech. Appl. 289, 157 (2001)
46. Tsallis, C., Lloyd, S., Baranger, M.: Peres criterion for separability through nonextensive entropy. Phys. Rev. A 63, 042104 (2001)
47. Rossignoli, R., Canosa, N.: Generalized entropic criterion for separability. Phys. Rev. A 66, 042306 (2002)
48. Rajagopal, A.K., Rendell, R.W.: Classical statistics inherent in a quantum density matrix. Phys. Rev. A 72, 022322 (2005)
49. Yang, X., Luo, M.X., Yang, Y.H., Fei, S.-M.: Parametrized entanglement monotone. Phys. Rev. A 103, 052423 (2021)
50. Horodecki, M.: Simplifying monotonicity conditions for entanglement measures. Open Syst. Inf. Dyn. 12, 231 (2005)
51. Liu, C.L., Yu, X.-D., Tong, D.M.: Flag additivity in quantum resource theories. Phys. Rev. A 99, 042322 (2019)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.