Helmint parasites of *Lemniscomys striatus* (striped grass mouse) and *Cricetomys gambianus* (giant African rat) in Nsukka, Nigeria

Ezeudu Terry Adaeze1, Idika Idika Kalu1, Eze Ukamaka Uchenna2, Anyogu Davinson Chuka3, Aneke Inyang Chioma3, Nzeakor Nnamdi Chizoba4, Chah Kenedy F5

1Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu, Nigeria

2Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu, Nigeria

3Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu, Nigeria

4Department of Veterinary Services, Ministry of Agriculture and Rural Development, Awka, Anambra State, Nigeria

ARTICLE INFO

Abstract

Objective: To ascertain the helminth profile of *Lemniscomys striatus* (*L. striatus*) and *Cricetomys gambianus* (*C. gambianus*) in Nsukka, Southeastern Nigeria, and their zoonotic potentials and public health risk.

Methods: A total of 63 rodents were captured during the study period, of which 54 (85.7%) were *L. striatus* and 9 (14.3%) were *C. gambianus*. Following evisceration, various organs from the rodents (the lungs, liver, stomach, small intestines and large intestines) were split open and thoroughly examined under a stereomicroscope. The liver samples were subjected to histopathological processing and examination.

Results: No helminth parasite was found in *C. gambianus* while 44 (81.5%) of *L. striatus* were infected with one or more species of helminth parasites. And 10 (18.5%) and 34 (63%) of *L. striatus* had mixed and single infections, respectively. Three helminth species were recovered during the study. Two nematodes (*Capillaria hepatica* (*C. hepatica*) and *Protospirura* spp.) and one cestode parasite (*Hymenolepis* spp.) were found at prevalence rates of 3.7%, 14.8% and 81.5%, respectively. Histopathology revealed the typical characteristic bipolar plucks of *C. hepatica* ova. There were also massive areas of degenerative necrosis of hepatocytes, fibrous encapsulation of *C. hepatica* ova and infiltration of inflammatory cells.

Conclusions: Two out of the three helminths (*C. hepatica* and *Hymenolepis* spp.) recovered in this study are of serious zoonotic importance and thus pose great public health risk to the community.

Keywords:

Lemniscomys striatus
Cricetomys gambianus
Hymenolepis spp.
Capillaria hepatica
Protospirura spp.
Rodent zoonosis

1. Introduction

Rodents are widely dispersed in our environs and as a result of their small size, they find their ways into our homes, food stores, silos, farms, etc., where they can cause huge losses and contaminate water, fruits, vegetables and food stuffs. Rodents act as vital components in various ecosystems either acting as a prey or predator and sometimes as a carrier/reservoir of diseases[1]. An increased rodent population in an area can be directly related to an increase in zoonotic diseases in human population[2]. As it is well recognized that they harbour a number of ectoparasites and endoparasites that pose threats to health of humans who live in close proximity to rodent populations and even greater risks to those who consume them[3]. The helminths of zoonotic importance harboured by rodents include species of *Trichinella*, *Angiostrongylus* and *Capillaria* (nematodes), *Hymenolepis*, *Raillietina* and *Echinococcus* (cestodes), and *Schistosoma*, *Paragonimus* and *Echinostoma* (trematodes)[4].

Lemniscomys striatus (*L. striatus*), also known as striped grass mouse or zebra mouse, is a species of murine rodents from Africa. They have been recorded in over 24 countries in Africa including Nigeria[5]. These rodents inhabit grasslands, secondary forests, open dry forests, savanna and cultivated/farm lands[5]. They are generally considered diurnal, but some species can be active during...
the night. They are omnivorous in nature, feeding mainly on plants, grassy vegetation, seeds, fruits, but sometimes they also consume insects. On the other hand, *Cricetomys gambianus* (*C. gambianus*), also known as the giant African rat or Gambian pouched rat, is a large murine, nocturnal and fossorial rodent. It is native to Africa and occurs in over 32 countries in Africa (West, East and Central Africa[6]). They possess very poor eye sight and thus depend on their sense of smell and hearing[7]. The rat is known to be omnivorous as they feed on vegetables, insects, palm fruits and kernels, date palm, etc. The species occurs in various habitats including forest and woodland, as well as farmland, cropland, plantations, rural areas and is considered to be an adaptable species that is even known to invade sewers[8].

In some countries, especially in many African countries, rodents are valued as a delicacy and a source of protein[8]. The study area is known for their consumption of these rodents as a delicacy and an alternative source of protein. There are no reports in available literature on the helminth profile of *L. striatus* and *C. gambianus* in Nsukka and its environment. Hence, the current study investigated the prevalent helminth species in these rodents and their potential zoonotic/public health risks and importance.

2. Materials and methods

2.1. Study area

The study was conducted in Nsukka, Enugu State, Southeastern part of Nigeria between the months of February and April, 2015. The rodents were captured using traps set in farmlands, bushes and near homes, etc. They were subsequently transported to the Department of Veterinary Parasitology and Entomology, University of Nigeria Nsukka, where they were euthanized and eviscerated.

2.2. Sample collection

Various organs from the rodents (the lungs, liver, stomach, small intestines and large intestines) were thoroughly examined for parasites. The recovered worms were preserved in bottles containing 10% formal saline solution. The worms were identified under light microscope by observation of their distinctive morphological features as described by Soulsby[9]. Infections with more than one species of helminth parasites (polyparasitism) were referred as mixed infection. The tubular organs were dissected out and placed into appropriately labeled containers before being cut open longitudinally. The contents were emptied into their containers with the aid of a forceps and hand lens if present.

The animal experimental protocol was approved by the Experimental Animal Ethics Committee of the Faculty of Veterinary Medicine, University of Nigeria, Nsukka and in compliance with the Federation of European Laboratory Animal Science Association and the European Community Council Directive of November 24, 1986 (86/609/EEC).

2.3. Histopathology

Liver sections obtained from the rodents (*Lemmiscomys* spp.) at the time of sacrifice were immediately placed in neutral buffered formalin for fixation. The tissue was dehydrated in graded alcohol, cleared in xylene and embedded in paraffin. Five micrometer thick sections were stained with hematoxylin and eosin.

2.4. Data analysis

Data generated were analysed with SPSS version 15 using descriptive statistics and the results were presented in Tables as percentage prevalence.

3. Results

During the study period a total of 63 rodents were captured out of which 54 (85.7%) were identified as *L. striatus* and 9 (14.3%) as *C. gambianus*.

The overall prevalence of helminths in the captured rodents was 69.8% (Table 1). No helminth was found in *C. gambianus* while 44 (81.5%) of *L. striatus* were infected with one or more species of helminth parasites. Ten (18.5%) *L. striatus* had mixed infections while 34 (63%) had single infections (Table 2). Three helminth species were recovered during the study, which were two nematodes (*Capillaria hepatica* (*C. hepatica*) and *Protospirura spp.*) and one cestode parasite (*Hymenolepis spp.*). The prevalence of the three helminth species found in *L. striatus* were *C. hepatica* (3.7%), *Protospirura* spp. (14.8%) and *Hymenolepis* spp. (81.5%) (Table 3).

Table 1

Rodent species	Infected number	Infection (%)
L. striatus (n = 54)	44	81.5
C. gambianus (n = 9)	0	0.0
Total (n = 63)	44	69.8

Table 2

Rodent species	Mixed infection	Single infection
L. striatus (n = 54)	10 (18.5)	34 (63.0)
C. gambianus (n = 9)	0 (0.0)	0 (0.0)

Table 3

Organs	Helminth species	Infected number	Prevalence
Lung	*Nil*	*Nil*	*Nil*
Liver	*Capillaria* spp.	2	3.7%
Stomach	*Protospirura* spp.	8	14.8%
Small intestine	*Hymenolepis* spp.	44	81.5%
Large intestine	*Nil*	*Nil*	*Nil*

Liver from a *C. hepatica*-infected *L. striatus* grossly showed marked enlargement (hepatomegaly) with dark necrotic margins and pale areas of yellowish caseous necrosis in the parenchyma (Figure 1). On histopathological examination using a light microscope, there
were numerous polymorphonuclear leucocytes and granulomas formed by fibrotic walling-off of C. hepatica ova, massive hepatocytes necrosis and replacement of the liver parenchyma by the ova of the Capillaria worms (Figure 2). There were also portions of necrotic liver tissues and a cross section of the adult parasite with the eggs in utero (Figure 2). Some sections of the liver of L. striatus showed numerous C. hepatica ova at different planes of sectioning and the typical characteristic bipolar plugs (Figure 3). The centre of the field was filled with polymorphonuclear cells, macrophages, necrotic hepatocytes and fibrous connective tissues.

Figure 1. Normal liver and C. hepatica-infected liver from L. striatus. A: Gross picture of a normal liver from a L. striatus without C. hepatica infection; B: Gross picture of liver of C. hepatica-infected L. striatus showing markedly enlarged liver (hepatomegaly) with dark necrotic margins and pale areas of yellowish caseous necrosis in the parenchyma.

Figure 2. Liver tissue of striped grass mouse (L. striatus). Black arrows: Numerous polymorphonuclear leucocytes and granulomas formed by fibrotic walling-off of C. hepatica ova, massive hepatocytes necrosis and replacement of the liver parenchyma by the ova of the Capillaria worms; White arrow: Some portions of the degenerating liver tissues on the right, and cross section of the adult parasite with the eggs in the uterus that stained with hematoxylin and eosin 100×.

Figure 3. Section from the liver of striped grass mouse (L. striatus) showing numerous C. hepatica ova at different planes of sectioning. Arrows: The bipolar plugs. The centre of the field was filled with polymorphonuclear cells, macrophages, degenerated hepatocytes and fibrous connective tissues that stained with hematoxylin and eosin 400×.

4. Discussion

In this study, no helminth parasite was recovered from C. gambianus, which could have been as a result of the small sample size of this rodent caught during the study period.

The prevalence of 3.7% obtained in this present study for C. hepatica is comparable to the reports of Sharma et al.[1] in Uttarakhand, India, Kia et al.[10] in Iran and Onyenwe et al.[11] in Nsukka, Nigeria who recorded low prevalence rates of 2.3% in Rattus rattus (R. rattus), 6.9% in Meriones persicus and 5.8% in R. rattus, respectively. The high prevalence rate of 81.5% recorded for Hymenolepis spp. in this study is also comparable to the findings by Gudissa et al.[12] in Addis Ababa, Ethiopia and Sharma et al.[1], but they were different from that of Onyenwe et al.[11] whose study showed a low prevalence of 19.5%. The prevalence of 14.8% recorded for Protospirura spp. in the present study is comparable and in agreement with the findings of Rafique et al.[13] who reported a prevalence range of 14%–30% of Protospirura in captured rodents (R. rattus, Rattus norvegicus and Mus musculus) in Pakistan.

Two out of the three helminths (Capillaria spp. and Hymenolepis spp.) recorded in this study were of zoonotic importance and were the same zoonotic helminths as reported by Onyenwe et al.[11] in R. rattus in Nsukka, Nigeria. Waugh et al.[14] reported on the zoonotic potential of helminths of R. rattus and Rattus norvegicus from Jamaica, recording the presence of six nematodes, two cestodes and an acanthocephalan. Fuehrer[15] reported the occurrence of Capillaria and Hymenolepis in wild rats in the United Kingdom, while d’Ovidio et al.[16] and Garedaghi and Khaki[17] also reported on the presence of Hymenolepis diminuta in gray squirrel from Indiana and Hymenolepis species in captured rodents in Iran, respectively.

The histopathologic features seen in the liver of the C. hepatica-infected L. striatus included inflammatory cell infiltrate, degenerating hepatocytes, fibrous encapsulation of C. hepatica eggs and necrosis, which is in agreement with the findings of Mowat et al.[18] and Berentsen et al.[19] in laboratory rabbits in the United Kingdom and R. rattus in Diego Garcia and British Indian Ocean territory, respectively. The hepatomegaly recorded in this study for
C. hepatica-infected L. striatus and the yellowish caseous necrotic areas on the parenchyma is in agreement with the findings of Berentsen et al.[19].

The finding of C. hepatica eggs in the liver of L. striatus in this study is considered to be of immense public health importance because human C. hepatica infections occur following consumption of food or water loaded or contaminated with embryonated eggs of C. hepatica[20]. Hepatic necrosis, parasitic hepatitis, hepatic fibrosis, persistent fever, hepatomegaly and eosinophilia have been recorded in human infections[21]. Also Hymenolepis spp. infect humans when food contaminated with rat faeces containing viable eggs are ingested[9]. A heavy human infection with Hymenolepis spp. causes catarrhal enteritis with signs of anorexia, vomit, diarrhoea and abdominal pain[22,23].

Based on the results of this study, it was concluded that L. striatus in Nsukka is infected with C. hepatica (3.7%), Proteospirura spp. (14.8%) and Hymenolepis spp. (81.5%). C. hepatica and Hymenolepis spp. are zoonotic and of public health importance especially in a population that consumes some of these wild rodents as delicacies.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgments

The authors wish to thank Professor JI Ihedioha, Associate Dean of the Faculty of Veterinary Medicine, University of Nigeria, Nsukka, for his assistance in identification of the parasites and rodents.

References

[1] Sharma D, Joshi S, Vatsya S, Yadav CL. Prevalence of gastrointestinal helminth infections in rodents of Tarai region of Uttarakhund. J Parasit Dis 2013; 37(2): 181-4.

[2] Kataranovski M, Mirkov I, Belj S, Popov A, Petrovic Z, Gaci Z, et al. Intestinal helminths infection of rats (Rattus norvegicus) in the Belgrade area (Serbia): the effect of sex, age and habitat. Parasite 2011; 18(2): 189-96.

[3] Mohd Zain SN, Behnke JM, Lewis JW. Helminth communities from two urban rat populations in Kuala Lumpur, Malaysia. Parasit Vectors 2012; 5: 47.

[4] Khalil LF. The helminth parasites of rodents and their importance. In: Zaghloul TM, Salit AM, Zakaria M, Helmy Mohammad AM, editors. Proceedings of the second symposium on recent advances in rodent control; 1985 Feb 2–6; State of Kuwait. State of Kuwait: Ministry of Public Health; 1986, p. 141-9.

[5] Van der Straeten E, Decher J, Corti M, Abdel-Rahman EH. Lenniscowmys striatus. Cambridge: The IUCN Red list of threatened species; 2008. [Onlind] Available from: http://www.iucnredlist.org/details/11495/0 [Accessed on 30th September, 2016]

[6] Van der Straeten E, Kerbis-Petersens J, Howell K, Oguge N. Crescidents gambianus. Cambridge: The IUCN Red list of threatened species 2008. [Online] Available from: http://www.iucnredlist.org/details/5522/0 [Accessed on 30th September, 2016]

[7] Ibe CS, Salami SO, Onyeamusi BI. Macroscopic anatomy of the lower respiratory system in a nocturnal burrowing rodent: African giant pouched rat (Cricetomys gambianus, Waterhouse 1840). Anat Histol Embryol 2011; 40(2): 112-9.

[8] Igboke CO, Agina OA, Okoye CN, Onoja RI. Haematological and serum biochemistry profile of the juvenile wild African giant rat (Cricetomys gambianus, Waterhouse – 1840) in Nsukka, south-eastern Nigeria – a preliminary investigation. J Appl Anim Res 2016; 45: 190-4.

[9] Soulsby EJL. Helminths, arthropods and protozoa of domesticated animals. 7th ed. Philadelphia: Lea & Febiger; 1983.

[10] Kia EB, Shahryary-Rad E, Mohebali M, Mahmoudi M, Mobedi I, Zahabian F, et al. Endoparasites of rodents and their zoonotic importance in Germi, Dashteh–Mogan, Ardabil Province, Iran. Iran J Parasitol 2010; 5: 15-20.

[11] Onyenwe IW, Ihedioha JI, Ezeme RI. Prevalence of zoonotic helminths in local house rats (Rattus rattus) in Nsukka, Eastern Nigeria. Anim Res Int 2009; 6(3): 1040-4.

[12] Gudissa T, Mazengia H, Alemu S, Nigussie H. Prevalence of gastrointestinal parasites of laboratory animals at Ethiopian Health and Nutrition Research Institute (EHNRI), Addis Ababa. J Infect Dis Immun 2011; 3: 1-5.

[13] Rafique A, Rana SA, Khan HA, Sohail A. Prevalence of some helminths in rodents captured from different city structures including poultry farms and human population of Faisalabad, Pakistan. Pak Vet J 2009; 29: 141-4.

[14] Waugh CA, Linda JF, Foronda P, Angeles-Santana M, Lorenzo-Morales J, Robinson RD. Population distribution and zoonotic potential of gastrointestinal helminths of wild rats Rattus rattus and R. norvegicus from Jamaica. J Parasitol 2006; 92(5): 1014-8.

[15] Fuehrer HP. An overview of the host spectrum and distribution of Calodium hepaticum (syn. Capillaria hepatica) part 1–Muroidea. Parasitol Res 2014; 113: 619-40.

[16] d’Ovidio D, Noviello E, Pepe P, Del Prete L, Cringoli G, Rinaldi L. Survey of Hymenolepis spp. in pet rodents in Italy. Parasitol Res 2015; 114: 4381-4.

[17] Garedagli Y, Khaki AA. Prevalence of gastrointestinal and blood parasites of rodents in Tabriz, Iran, with emphasis on parasitic zoonoses. Crescent J Med Biol Sci 2014; 1(1): 9-12.

[18] Mowat V, Turton J, Stewart J, Lui KC, Pilling AM. Histopathological features of Capillaria hepatica infection in laboratory rabbits. Toxicol Pathol 2009; 37: 661-6.

[19] Berentsen AR, Vogt S, Guzman AN, Vice DS, Pitt WC, Shiels AB, Spraker TR. Capillaria hepatica infection in black rats (Rattus rattus) on Diego Garcia, British Indian Ocean Territory. J Vet Diagn Invest 2015; 27: 241-4.

[20] Stojevic D, Mihaljevic Z, Marinulic A. Parasitological survey of rats in rural regions of Croatia. Vet Med Czech 2004; 49: 70-4.

[21] Camargo LM, de Souza Almeida Aranha Camargo J, Vera LJ, di Tarique Crispim Barreto P, Tourinho EK, de Souza MM. Capillariasis (Trichiurida, Trichinellidae, Capillaria hepatica) in the Brazilian Amazon: low pathogenicity, low infectivity and a novel mode of transmission. Parasites Vectors 2010; 3: 11.

[22] World Health Organization. Parasitic zoonoses. World Health Organization Technical Report Series 637. Geneva: World Health Organization; 1979. [Online] Available from: http://apps.who.int/tris/ bitstream/10665/41353/1/WHO_TRS_637.pdf [Accessed on 30th September, 2016]

[23] Miyazaki I. An illustrated book of helminthic zoonoses. Tokyo: International Medical Foundation of Japan; 1991.