From quantum to elliptic algebras

J. Avan

LPTHE, CNRS-URA 280, Universités Paris VI/VII, France

L. Frappat

Centre de Recherches Mathématiques, Université de Montréal, Canada

M. Rossi, P. Sorba

Laboratoire de Physique Théorique ENSLAPP
Annecy-le-Vieux Cédez and ENS Lyon, Lyon Cédez 07, France

Abstract

It is shown that the elliptic algebra \(\mathcal{A}_{q,p}(\hat{sl}(2)_c) \) at the critical level \(c = -2 \) has a multidimensional center containing some trace-like operators \(t(z) \). A family of Poisson structures indexed by a non-negative integer and containing the \(q \)-deformed Virasoro algebra is constructed on this center. We show also that \(t(z) \) close an exchange algebra when \(p^m = q^{c+2} \) for \(m \in \mathbb{Z} \), they commute when in addition \(p = q^{2k} \) for \(k \) integer non-zero, and they belong to the center of \(\mathcal{A}_{q,p}(\hat{sl}(2)_c) \) when \(k \) is odd. The Poisson structures obtained for \(t(z) \) in these classical limits contain the \(q \)-deformed Virasoro algebra, characterizing the structures at \(p \neq q^{2k} \) as new \(\mathcal{W}_{q,p}(sl(2)) \) algebras.

Talk presented by M. Rossi at the 6th International Colloquium “Quantum Groups and Integrable Systems”, Prague, 19-21 June 1997.

ENSLAPP-AL-657/97

CRM-2485

PAR-LPTHE 97-37

q-alg/9707034

July 1997

1On leave of absence from Laboratoire de Physique Théorique ENSLAPP.

2URA 1436 du CNRS, associée à l’École Normale Supérieure de Lyon et à l’Université de Savoie.
1 Introduction

The concept of q-deformed Virasoro and W_N algebras has recently arisen in connection with some aspects of integrable systems. In particular these algebras have been introduced \cite{1,2} as an extension of the Virasoro and W_N algebras identified in the quantum Calogero–Moser model \cite{3}. In the same way as Jack polynomials (eigenfunctions of the quantum Calogero–Moser model) arise as singular vectors of W_N algebras \cite{3,4}, MacDonald polynomials (eigenfunctions of the trigonometric Ruijsenaars–Schneider model) are singular vectors of the q-deformed W_N algebras.

These deformed algebras were shown to arise in fact from a procedure of construction mimicking the already known scheme \cite{5} for undeformed Virasoro and W_N algebras: at the critical value $c = -N$, the quantum affine Lie algebra $U_q(\widehat{sl}(N)_c)$ has a multidimensional center \cite{6} where a q-deformed Poisson bracket can be defined as limit of the commutator structure \cite{7}. This Poisson bracket is the semi-classical limit of the q-deformed Virasoro (for $N = 2$) or W_N algebras. Its quantization, performed in \cite{8}, can be considered as the most general definition of q-deformed W_N algebras, often called $W_{q,p}(sl(N))$, p being related to the quantization parameter. In fact, the construction of classical and quantized algebras was not achieved in \cite{7,8} by direct computation but using the q-deformed bozonization \cite{9} of $U_q(\widehat{sl}(N)_c)$. Interestingly the q-deformed W_N algebras are characterized by elliptic structure coefficients: for instance, the q-deformed Virasoro algebra of \cite{1} is defined by the generating operator $T(z)$ such that

$$f_{1,2}(w/z) T(z) T(w) - f_{1,2}(z/w) T(w) T(z) = \frac{(1 - q)(1 - p/q)}{1 - p} \left(\delta\left(\frac{w}{zp}\right) - \delta\left(\frac{wp}{z}\right) \right),$$

where

$$f_{1,2}(x) = \frac{1}{1 - x} \frac{\langle x|, pq^{-1}; p^2 \rangle_{\infty}}{\langle x|, pq, p^2 q^{-1}; p^2 \rangle_{\infty}}, \quad \langle x|a_1 \ldots a_k; t \rangle_{\infty} \equiv \prod_{i=1}^{k} \prod_{n=0}^{\infty} (1 - a_i x t^n).$$

The parameters p and q are rewritten as $q = e^h$, $p = e^{h(1-\beta)}$: h is the deformation parameter and β is the “quantization” parameter, the semi-classical limit $\beta \to 0$ giving back the q-deformed Poisson bracket of \cite{7} and the limit $h \to 0$ giving back the linear Virasoro algebra.

Two natural problems arise in this context. The first is the extension of these Poisson brackets constructions to the elliptic quantum algebra $A_{q,p}(\widehat{sl}(2)_c)$ \cite{10,11,12}, which is a double deformation of $U(\widehat{sl}(2)_c)$, the limit $p \to 0$ giving the quantum affine algebra $U_q(\widehat{sl}(2)_c)$. In this context we will show the existence of a multidimensional center at $c = -2$, where we will construct a set of Poisson brackets containing the q-deformed Virasoro algebra introduced by \cite{3}.

A second question is the analysis of the connection between $A_{q,p}(\widehat{sl}(2)_c)$ and quantized q-deformed Virasoro algebra, both of which depend on elliptic structure functions. Our result is that if $q^{c+2} = p^m$ for any $m \in \mathbb{Z}\backslash\{0\}$, the algebra
\(A_{q,p}(\hat{sl}(2)_c)\) contains a quadratic subalgebra which builds a natural quantization of the Poisson bracket structure of the \(q\)-deformed Virasoro algebra; in such a way we will construct a family of \(W_{q,p}(\hat{sl}(2))\) algebras in the framework of the elliptic quantum algebra \(A_{q,p}(\hat{sl}(2)_c)\).

2 The elliptic quantum algebra \(A_{q,p}(\hat{sl}(2)_c)\)

Consider the \(R\)-matrix of the eight vertex model found by Baxter \[13\]:

\[
R_{12}(x) = \frac{1}{\mu(x)} \begin{pmatrix} a(u) & 0 & 0 & d(u) \\ 0 & b(u) & c(u) & 0 \\ 0 & c(u) & b(u) & 0 \\ d(u) & 0 & 0 & a(u) \end{pmatrix}
\]

where the functions \(a(u), b(u), c(u), d(u)\) are given by

\[
a(u) = \frac{\snh(\lambda - u)}{\snh(\lambda)}, \quad b(u) = \frac{\snh(u)}{\snh(\lambda)}, \quad c(u) = 1, \quad d(u) = k \snh(\lambda - u) \snh(u).
\]

The function \(\snh(u)\) is defined by \(\snh(u) = -i \sin(iu)\) where \(\sin(u)\) is Jacobi’s elliptic function with modulus \(k\). The functions (2.2) can be seen as depending on:

\[
p = \exp\left(-\frac{\pi K'}{K}\right), \quad q = -\exp\left(-\frac{\pi \lambda}{2K}\right), \quad x = \exp\left(\frac{\pi u}{2K}\right),
\]

where \(K, K'\) denote the elliptic integrals \[13\]. The factor \(\mu(x)\) is given by \[12\]:

\[
\frac{1}{\mu(x)} = \frac{1}{\kappa(x^2)} \begin{pmatrix} (p^2; p^2)_{\infty} & \Theta_{p^2}(px^2) & \Theta_{p^2}(q^2) \\ (p; p)_{\infty} & \Theta_{p^2}(p^2x^2) & \Theta_{p^2}(p^2x^2) \end{pmatrix},
\]

\[
\frac{1}{\kappa(x^2)} = (q^4 x^{-2}; p, q^4)_{\infty} (q^2 x^2; p, q^4)_{\infty} (p^2 x^2; p, q^4)_{\infty} (p^2 x^2; p, q^4)_{\infty},
\]

where

\[
(x; p_1, \ldots, p_m)_{\infty} = \prod_{n_i \geq 0} (1 - x p_1^{n_1} \ldots p_m^{n_m})
\]

\[
\Theta_{p^2}(x) = (x; p^2)_{\infty} (p^2 x^{-1}; p^2)_{\infty} (p^2; p^2)_{\infty}.
\]

To avoid singularities in the functions (2.2,2.4) we will suppose \(|q|, |p| < 1\).

Proposition 1 The matrix \(R_{12}\) has the following properties:

- **unitarity:** \(R_{21}(x^{-1}) R_{12}(x) = 1\),
- **crossing symmetry:** \(R_{21}(x^{-1}) t_i = (\sigma^1 \otimes \mathbb{I}) R_{12}(-q^{-1} x) (\sigma^1 \otimes \mathbb{I})\),
- **antisymmetry:** \(R_{12}(-x) = - (\sigma^3 \otimes \mathbb{I}) R_{12}(x) (\sigma^3 \otimes \mathbb{I})\),

where \(\sigma^1, \sigma^2, \sigma^3\) are the Pauli matrices and \(t_i\) is the transposition in the space \(i\).
The proof is straightforward by direct calculation.

For the definition of the elliptic quantum algebra \(A_{q,p}(\hat{sl}(2)_c)\), we need to use a modified \(R\)-matrix \(R_{12}^+(x)\) defined by

\[
R_{12}^+(x) = \tau(q^{1/2}x^{-1})R_{12}(x), \quad \tau(x) = x^{-1} \frac{\Theta_{q^2}(qx^2)}{\Theta_{q^2}(qx^{-2})}.
\]

(2.8)

The matrix \(R_{12}^+(x)\) obeys a quasi-periodicity property:

\[
R_{12}^+(-p^{2}x) = (\sigma^1 \otimes I) (R_{21}^+(x^{-1}))^{-1} (\sigma^1 \otimes I).
\]

(2.9)

The elliptic quantum algebra \(A_{q,p}(\hat{sl}(2)_c)\) has been introduced by \([10]\). It is an algebra of operators \(L_{\pm}^{\pm}(z)\) such that \(L_{\pm}^{\pm}(z) = 0\) if \(\varepsilon \varepsilon' \neq (-1)^n\) and, defining \(L_{\pm}^{\pm}(z) = \sum_{n \in \mathbb{Z}} L_{\varepsilon \varepsilon', n} z^n\) and encapsulating them into \(2 \times 2\) matrices \(L^{\pm}(z)\), one has, with the definition \(R_{12}^{\pm}(x, q, p) = R_{12}^+(x, q, pq^{-2c})\):

\[
\begin{align*}
R_{12}^+(z/w) L_{-}^{+}(z) L_{-}^{+}(w) &= L_{-}^{+}(w) L_{-}^{+}(z) R_{12}^{++}(z/w), \\
R_{12}^+(q^{c/2}z/w) L_{+}^{+}(z) L_{-}^{+}(w) &= L_{-}^{+}(w) L_{+}^{+}(z) R_{12}^{++}(q^{-c/2}z/w), \\
q - \det L^{+}(z) &= L_{++}^{+}(q^{-1}z)L_{--}^{+}(z) - L_{-+}^{+}(q^{-1}z)L_{+-}^{+}(z) = q^{\frac{c}{2}}, \\
L_{\varepsilon \varepsilon'}^{\pm}(z) &= \varepsilon \varepsilon' L_{-\varepsilon, -\varepsilon'}^{\pm}(p^{2}q^{-\frac{c}{2}}z).
\end{align*}
\]

(2.10)

We now state the first important result of our study.

3 The center of \(A_{q,p}(\hat{sl}(2)_c)\)

Theorem 1 At \(c = -2\), the operators generated by

\[
t(z) = Tr(L(z)) = Tr\left(L^{+}(q^{c/2}z)L^{-}(z)^{-1}\right)
\]

(3.1)

commute with the algebra \(A_{q,p}(\hat{sl}(2)_c)\) and then belong to its center.

The formula for \(t(z)\) in the elliptic case is exactly identical to the one in the trigonometric case \([3]\). The proof follows on similar lines using explicitly the crossing symmetry and the unitarity of the \(R\)-matrix.

We now study the specific behaviour of the exchange algebra of \(t(z)\) with \(t(w)\) in the neighborhood of \(c = -2\).

4 Poisson algebra of \(t(z)\)

By virtue of Theorem 1 the elements \(t(z)\) and \(t(w)\) are mutually commuting at the critical level \(c = -2\). This implies a natural Poisson structure on the algebra generated by them: if \([t(z), t(w)] = (c+2)\ell(z, w) + a(c+2)\), then a Poisson bracket
is yielded by \(\{t(z)_{cr}, t(w)_{cr}\} = \ell(z, w)_{cr} \) ("cr" means that all expressions are taken at \(c = -2 \)). We have the following result:

Theorem 2 Under its natural Poisson bracket at \(c = -2 \) the algebra generated by \(t(z) \) is closed. One has indeed (we suppress the subscript "cr" and define \(x = z/w \)):

\[
\{t(z), t(w)\} = -(\ln q) \left(x^{-1} \frac{d}{dx} \ln \tau(q^{1/2}x^{-1}) - x \frac{d}{dx} \ln \tau(q^{1/2}x) \right) t(z)t(w).
\]

(4.1)

Proof: From the definition of the element \(t(z) \), one has

\[
t(z)t(w) = L(z)_{i_1}^{i_1} L(w)_{i_2}^{i_2} = L^+(q^w z)_{i_1}^{j_1}(L^- (z)^{-1})_{j_1}^{i_1} L^+(q^w z)_{i_2}^{j_2}(L^- (w)^{-1})_{j_2}^{i_2}.
\]

(4.2)

The exchange relations of (2.10) and the properties of the matrix \(R_{12}(x) \) given in proposition 3 allow us to move the matrices \(L^+(q^w z), L^- (w)^{-1} \) to the left of the matrices \(L^+(q^w z), L^- (z)^{-1} \). One obtains

\[
t(z)t(w) = \mathcal{Y}(z/w)_{j_1 j_2}^{i_1 i_2} L(w)_{i_2}^{j_2} L(z)_{i_1}^{j_1},
\]

(4.3)

where the matrix \(\mathcal{Y}(z/w) \) is factorized in the following way:

\[
\mathcal{Y}(z/w) = T(z/w) R(z/w).
\]

(4.4)

The matrix factor \(R(z/w) \) depends only on the matrix (2.1):

\[
R(z/w) = \left(\left(R_{12}(w/z) R_{12}(q^{-c^{-1}} z/w) R_{12}(w/z) \right)^{i_2} R_{12}(q^w z/w)^{i_2} \right)^{i_2},
\]

(4.5)

while the numerical prefactor \(T(z/w) \) contains only a \(\tau \) dependence:

\[
T(z/w) = \frac{\tau(q^{1/2}z/w)\tau(q^{-c+1/2}w/z)}{\tau(q^{-c-3/2}z/w)\tau(q^{1/2}w/z)}.
\]

(4.6)

One easily checks the nice behaviour of \(T(z/w) \) and \(R(z/w) \) at \(c = -2 \):

\[
T(z/w)_{cr} = 1, \quad R(z/w)_{cr} = \mathbb{I}_2 \otimes \mathbb{I}_2 \implies \mathcal{Y}(z/w)_{cr} = \mathbb{I}_2 \otimes \mathbb{I}_2.
\]

(4.7)

One then computes the Poisson structure from the exchange algebra (4.3) in the neighborhood of \(c = -2 \). From equations (4.3) and (4.7) one writes

\[
t(z)t(w) = t(w)t(z) + (c + 2) \left(\frac{d\mathcal{Y}}{dc}(z/w) \right)_{j_1 j_2}^{i_1 i_2} L(w)_{i_2}^{j_2} L(z)_{i_1}^{j_1} + o(c + 2)
\]

(4.8)

and therefore

\[
\{t(z), t(w)\} = \left(\frac{d\mathcal{Y}}{dc}(z/w) \right)_{j_1 j_2}^{i_1 i_2} L(w)_{i_2}^{j_2} L(z)_{i_1}^{j_1} \bigg|_{cr}.
\]

(4.9)
The equations (4.4) and (4.7) imply
\[\frac{dY}{dc}(x) \bigg|_{cr} = \frac{dT}{dc}(x) \bigg|_{cr} \otimes I_2 + \frac{dR}{dc}(x) \bigg|_{cr}. \] (4.10)

After a long calculation, using various tricks in elliptic functions theory, one shows that:
\[\frac{dR}{dc}(x) \bigg|_{cr} = 0, \] (4.11)
\[\frac{dT}{dc}(x) \bigg|_{cr} = -\ln(q) \left(x^{-1} \frac{d}{dx} \ln(\tau(q^{1/2}x)) - x \frac{d}{dx} \ln(\tau(q^{1/2}x)) \right). \] (4.12)

From equations (4.9-4.12) formula (4.1) of Theorem 2 immediately follows. \(\square \)

The structure of the Poisson bracket (4.1) derives wholly from the \(\tau \) factor: so any dependence in \(p \) is absent in its structure function.

From the equation (4.1) and the definition of \(\tau(x) \), one gets easily
\[\{ t(z), t(w) \} = -2 \ln q \left[\sum_{n \geq 0} \left(\frac{2x^2q^{4n+2}}{1-x^2q^{4n+2}} - \frac{2x^{-2}q^{4n+2}}{1-x^{-2}q^{4n+2}} \right) + \sum_{n > 0} \left(-\frac{2x^2q^{4n}}{1-x^2q^{4n}} + \frac{2x^{-2}q^{4n}}{1-x^{-2}q^{4n}} \right) - \frac{x^2}{1-x^2} + \frac{x^{-2}}{1-x^{-2}} \right] t(z) t(w), \] (4.13)

where \(x = z/w \). Interpretation of the formula (4.13) must now be given in terms of the modes \(t_n \) of \(t(z) \), defined by:
\[t_n = \oint_{C} \frac{dz}{2\pi iz} z^{-n} t(z). \] (4.14)

The structure function \(f(z/w) \) which defines the Poisson bracket (4.13) is periodic with period \(q^2 \) and has simple poles at \(z/w = \pm q^k \) for \(k \in \mathbb{Z} \). In particular it is singular at \(z/w = \pm 1 \). As a consequence, the expected definition of the Poisson bracket \(\{ t_n, t_m \} \) as a double contour integral of (4.13) must be made more precise. Deformation of, say, the \(w \)-contour while the \(z \)-contour is kept fixed may induce the crossing of singularities of \(f(z/w) \) which in turn modifies the computed value of the Poisson bracket. In particular the singularity at \(z/w = \pm 1 \) implies that one cannot identify a double contour integral with its permuted. As a consequence the quantity
\[\oint_{C_1} \frac{dz}{2\pi iz} \oint_{C_2} \frac{dw}{2\pi i w} z^{-n} w^{-m} f(z/w) t(z) t(w) \] is not antisymmetric under the exchange \(n \leftrightarrow m \) and cannot be taken as a Poisson bracket. This leads us to define the Poisson bracket as:

Definition 1
\[\{ t_n, t_m \} = \frac{1}{2} \left(\oint_{C_1} \frac{dz}{2\pi iz} \oint_{C_2} \frac{dw}{2\pi i w} + \oint_{C_2} \frac{dz}{2\pi iz} \oint_{C_1} \frac{dw}{2\pi i w} \right) z^{-n} w^{-m} f(z/w) t(z) t(w). \] (4.15)
Such a procedure guarantees the antisymmetry of the postulated Poisson structure due to the property \(f(z/w) = -f(w/z) \).

The presence of singularities at \(z/w = \pm q^k \) where \(k \neq 0 \) introduces a dependence of the Poisson bracket (4.15) on the domains of integration. If we choose the contours \(C_1 \) and \(C_2 \) to be circles of radii \(R_1 \) and \(R_2 \) respectively, the following proposition holds:

Proposition 2 For any \(k \in \mathbb{Z}^+ \) such that \(R_1/R_2 \in [q^{+k}, q^{+(k+1)}] \), Definition 4 defines a consistent (that is “antisymmetric and obeying the Jacobi identity”) Poisson bracket whose specific form, depending on \(k \), is:

\[
\{t_n, t_m\}_k = (-1)^{k+1} 2 \ln q \oint_{C_1} \frac{dz}{2\pi iz} \oint_{C_2} \frac{dw}{2\pi i w} \cdot \sum_{s \in \mathbb{Z}} \frac{q^{(2k+1)s} - q^{-(2k+1)s}}{q^s + q^{-s}} \left(\frac{z}{w} \right)^{2s} \left\{ z^n w^{-m} t(w) t(z) \right\}. \tag{4.16}
\]

We observe that the form of the Poisson brackets (4.16) is similar to the form of the Poisson bracket obtained by (3). In particular our Poisson bracket at \(k = 1 \) is the one in (3) where the purely central term is multiplied by \(t(z) t(z) \). However one has to remember that in (3) a particular representation of \(U_q(\hat{sl}(2)_c) \) in terms of quasi-bosons is used. It is possible that an analogous bosonization of \(A_{q,p}(\hat{sl}(2)_c) \) leads to a degeneracy of such terms as \(t(z) t(z) \) giving the result of (3), unlucky at this time a bosonized version of \(A_{q,p}(\hat{sl}(2)_c) \) is available only at \(c = 1 \) (4), using bosonized vertex operators constructed in (5).

5 Quadratic subalgebras in \(A_{q,p}(\hat{sl}(2)_c) \)

We now turn to the task of identifying possible connections between \(A_{q,p}(\hat{sl}(2)_c) \) and \(W_{q,p}(\hat{sl}(2)) \). We first prove:

Theorem 3 If \(p, q, c \) are connected by the relation \(p^m = q^{c+2} \), \(m \in \mathbb{Z} \), the operators \(t(z) \) realize an exchange algebra with all generators \(L^\pm(w) \) of \(A_{q,p}(\hat{sl}(2)_c) \):

\[
t(z)L^+(w) = F(m, q^{\frac{z}{w}}) L^+(w) t(z), \quad t(z)L^-(w) = F(m, -p^{\frac{z}{w}}) L^-(w) t(z), \tag{5.1}
\]

where

\[
F(m, x) = \prod_{s=1}^{2m} q^{-1} \frac{\Theta_{q^s}(x^2 q^2 p^{-s}) \Theta_{q^s}(x^{-2} q^2 p^s)}{\Theta_{q^s}(x^{-2} p^s) \Theta_{q^s}(x^2 p^{-s})} \quad \text{for } m > 0, \tag{5.2a}
\]

\[
F(m, x) = \prod_{s=0}^{2m-1} q \frac{\Theta_{q^s}(x^2 p^s) \Theta_{q^s}(x^{-2} p^{-s})}{\Theta_{q^s}(x^{-2} q^2 p^s) \Theta_{q^s}(x^2 q^2 p^{-s})} \quad \text{for } m < 0. \tag{5.2b}
\]
The proof is easy to perform using the definition of $A_{q,p}(\hat{sl}(2)_c)$ and the properties (especially the quasi-periodicity) of R.

Remark 1: For $m = 0$, the relation can be realized in two ways: either $e = -2$, which is the case studied in chapter 3 and leads directly to a central $t(z) \ (F(m, x) = 1)$; or $q = \exp\left(\frac{2\pi i}{e+2}\right)$, hence $|q| = 1$, which we have decided not to consider owing to the singularities in the elliptic functions defining $A_{q,p}(\hat{sl}(2)_c)$. Hence $m = 0$ will be disregarded from now on.

An immediate corollary is:

Theorem 4 When $p^m = q^{e+2}$, $t(z)$ closes a quadratic subalgebra:

$$t(z)t(w) = \mathcal{Y}_{p,q,m}\left(\frac{w}{z}\right) t(w)t(z) \quad (5.3)$$

where

$$\mathcal{Y}_{p,q,m}(x) = \begin{cases}
\prod_{s=1}^{2|m-1} x^2 \Theta_{q^4}(x^{-2}p^s) \Theta_{q^{4}}(x^2q^{2}p^s) & \text{for } m > 0, \\
\prod_{s=1}^{2|m} x^2 \Theta_{q^4}(x^{-2}p^s) \Theta_{q^{4}}(x^2q^{2}p^s) & \text{for } m < 0.
\end{cases} \quad (5.4)$$

The proof is obvious from (5.1) and the definition (2.7) of $\Theta_a(x)$.

Remark 2: When $m = 1$ the exchange function in (5.3) is exactly the square of the exchange function in the quantized q-deformed Virasoro algebra proposed in

Remark 3: As an additional connection we notice that all functions $\mathcal{Y}_{p,q,m}(x)$ obey the Feigin-Frenkel identities [8] for the exchange function of

$$\mathcal{Y}(xq^2) = \mathcal{Y}(x), \quad \mathcal{Y}(xq) = \mathcal{Y}(x^{-1}) \quad (5.5)$$

Our exchange algebras then appear as natural candidates for $\mathcal{W}_{q,p}(sl(2))$ algebras generalizing the one of

First of all we state the following theorem:

Theorem 5 For $p = q^{2k}$, $k \in \mathbb{Z}\{0\}$, one has

$$F(m, x) = 1 \quad \text{for } k \text{ odd}, \quad (5.6)$$

$$F(m, x) = q^{-2m} x^{-4m} \left[\frac{\Theta_{q^4}(x^2q^2)}{\Theta_{q^4}(x^2)} \right]^{4m} \quad \text{for } k \text{ even}. \quad (5.7)$$
Hence when \(k \) is odd \(t(z) \) is in the center of the algebra \(\mathcal{A}_{q,p}(\hat{\mathfrak{sl}}(2)_c) \), while when \(k \) is even \(t(z) \) is not in a (hypothetical) center of \(\mathcal{A}_{q,p}(\hat{\mathfrak{sl}}(2)_c) \). However in both cases, one has \(t(z), t(w) = 0 \).

Proof: Theorem 5 is easily proved using the explicit expression for \(F(m, x) \) and the definition (2.7) of \(\Theta \)-functions. The case \(k = 0 \) is excluded since it would lead to \(p = 1 \) and singularities in the definition of \(\mathcal{A}_{q,p}(\hat{\mathfrak{sl}}(2)_c) \).

This now allows us to define Poisson structures even though \(t(z) \) is not in the center of \(\mathcal{A}_{q,p}(\hat{\mathfrak{sl}}(2)_c) \) for \(k \) even. They are obtained as limits of the exchange algebras (5.3). Since the initial non-abelian structure for \(t(z) \) is closed, the exchange algebras (5.3) are natural quantizations of the Poisson algebras which we obtain.

Theorem 6 Setting \(q^{2k} = p^{1-\frac{4}{k}} \) for any integer \(k \neq 0 \), one defines in the limit \(\beta \to 0 \) the following Poisson structures (\(x = z/w \)):

\[
\{ t(z), t(w) \} \equiv \lim_{\beta \to 0} \frac{1}{\beta} \left[t(z)t(w) - t(w)t(z) \right]
\]

\[
= 2km \ln q \left\{ \frac{x^2}{1 - x^2} + \frac{x^{-2}}{1 - x^{-2}} + \sum_{n=0}^{\infty} \left[\frac{2x^2 q^{4n}}{1 - x^2 q^{4n}} - \frac{2x^2 q^{4n+2}}{1 - x^2 q^{4n+2}} \right] - \frac{2x^{-2} q^{4n}}{1 - x^{-2} q^{4n}} + \frac{2x^{-2} q^{4n+2}}{1 - x^{-2} q^{4n+2}} \right\} t(z)t(w) \text{ for } k \text{ odd}, \quad (5.8a)
\]

\[
= -2km(2m - 1) \ln q \left\{ \frac{x^2}{1 - x^2} + \frac{x^{-2}}{1 - x^{-2}} + \sum_{n=0}^{\infty} \left[\frac{2x^2 q^{4n}}{1 - x^2 q^{4n}} - \frac{2x^2 q^{4n+2}}{1 - x^2 q^{4n+2}} \right] - \frac{2x^{-2} q^{4n}}{1 - x^{-2} q^{4n}} + \frac{2x^{-2} q^{4n+2}}{1 - x^{-2} q^{4n+2}} \right\} t(z)t(w) \text{ for } k \text{ even}. \quad (5.8b)
\]

Proof: We note that

\[
\{ t(z), t(w) \} = \frac{d\gamma_{p,q,m}}{d\beta} \left(\frac{w}{z} \right) \bigg|_{\beta=0} t(z)t(w) = \frac{d\ln \gamma_{p,q,m}}{d\beta} \left(\frac{w}{z} \right) \bigg|_{\beta=0} t(z)t(w), \quad (5.9)
\]

the two equalities coming from the fact that \(\gamma_{p,q,m} = 1 \) when \(q^{2k} = p \). The proof is then obvious from (5.3.4) and the definition of \(\Theta \)-functions as absolutely convergent products (for \(|q| < 1 \)), hence the series in (5.8) are convergent and define univocally a structure function for \(\{ t(z), t(w) \} \).

The formula (5.8) coincides exactly with the Poisson structure of \(t(z) \) at \(c = -2 \), provided one reabsors \(km \) and \(-km(2m - 1) \) into the definition of the classical limit as \(\beta \to km\beta \) for \(k \) odd and \(\beta \to km(2m - 1)\beta \) for \(k \) even. So Theorem 6 provides us with an immediate interpretation of the quadratic structures (5.3). Since we have seen that the Poisson structures derived from (4.13) contained in particular the \(q \)-deformed Virasoro algebra (up to the delicate point of the central extension which is not explicit in (4.13)), the quadratic algebras (5.3) are inequivalent (for
different values of m) quantizations of the classical q-deformed Virasoro algebra, globally defined on the \mathbb{Z}-labeled 2-dimensional subsets of parameters defined by $p^m = q^{c+2}$. They are thus generalized $\mathcal{W}_{q,p}(sl(2))$ algebras at $c = -2 + \frac{\ln p}{\ln q}$. In such a frame the closed algebraic relation (5.1) may acquire a crucial importance as a q-deformation of the Virasoro-current commutations relations. A better understanding of the undeformed limit $q \to 1$ would help us to clarify this interpretation if one could indeed identify the standard Virasoro–Kac-Moody structure in such a limit. The difficulty lies in the correct definition of this limit for the generators $L^\pm(z)$ and $t(z)$ which should be consistent with such an interpretation. As for the previously mentioned central-extension problem, a help could come from an explicit bosonization of the elliptic algebra, as was done for $U_q(\hat{sl}(N)_c)$ in [11].

6 Conclusion

We have studied some aspects of the elliptic quantum algebra $A_{q,p}(\hat{sl}(2)_c)$, in order to show its importance as a generalization of the quantum affine algebra $U_q(\hat{sl}(2)_c)$. We have seen that the introduction of $A_{q,p}(\hat{sl}(2)_c)$ permits to incorporate in the context of a deformed affine algebra the q-deformed Virasoro algebra introduced by [1], which is the symmetry of trigonometric Ruijsenaars–Schneider model. This is obtained on the particular surface of the space of parameters of $A_{q,p}(\hat{sl}(2)_c)$ given by the equation $p = q^{c+2}$. We expect that the other $\mathcal{W}_{q,p}(sl(2))$ algebras constructed on the surfaces $p^m = q^{c+2}$, $m \neq 1$, will provide us with the mathematical structure required to study other relativistic integrable models, characterizing elliptic quantum algebras as a general framework for the description of symmetries in (quantum) relativistic mechanics.

References

[1] J. Shiraishi, H. Kubo, H. Awata, S. Odake, Lett. Math. Phys. 38 (1996) 33.
[2] H. Awata, H. Kubo, S. Odake, J. Shiraishi, Commun. Math. Phys. 179 (1996) 401.
[3] H. Awata, Y. Matsuo, S. Odake, J. Shiraishi, Phys. Lett. B347 (1995) 49.
[4] A. Matsuo, Inv. Math. 110 (1992) 95; I. Cheredknik, RIMS 776 (1991).
[5] B. Feigin, E. Frenkel, Int. Journ. Mod. Phys. A7 (suppl. 1A) (1992) 197.
[6] N.Yu. Reshetikhin, M.A. Semenov-Tian-Shansky, Lett. Math. Phys. 19 (1990) 133.
[7] E. Frenkel, N. Reshetikhin, Commun. Math. Phys. 178 (1996) 237.
[8] B. Feigin, E. Frenkel, Commun. Math. Phys. 178 (1996) 653.
[9] H. Awata, S. Odake, J. Shiraishi, Commun. Math. Phys. 162 (1994) 61.

[10] O. Foda, K. Iohara, M. Jimbo, R. Kedem, T. Miwa, H. Yan, Lett. Math. Phys. 32 (1994) 259.

[11] S. Khoroshkin, D. Lebedev, S. Pakuliak, Elliptic algebra $A_{q,p}(\hat{sl}_2)$ in the scaling limit, q-alg/9702002.

[12] M. Jimbo, H. Konno, T. Miwa, Massless XXZ model and degeneration of the elliptic algebra $A_{q,p}(\hat{sl}(2))$, hep-th/9610079.

[13] R.J. Baxter, Exactly solved models in statistical mechanics, Academic Press, London, 1982.

[14] H. Fan, B.Y. Hou, K.J. Shi, W.L. Yang, The elliptic quantum algebra $A_{q,p}(\hat{sl}(N))$ and its bosonization at level one, hep-th-9704024 v2.

[15] Y. Asai, M. Jimbo, T. Miwa, Ya. Pugai, J. Phys. A 29 (1996) 6595.