Prevalence of, and risk factors for, HIV, hepatitis B and C infections among men who inject image and performance enhancing drugs: a cross-sectional study

Vivian D Hope,1,2 Jim McVeigh,3 Andrea Marongiu,1 Michael Evans-Brown,4 Josie Smith,5 Andreas Kimergård,6 Sara Croxford,1 Caryl M Beynon,3 John V Parry,1,2 Mark A Bellis,3 Fortune Ncube1

ABSTRACT

Objective: To describe drug use, sexual risks and the prevalence of blood-borne viral infections among men who inject image and performance enhancing drugs (IPEDs).

Design: A voluntary unlinked-anonymous cross-sectional biobehavioural survey.

Setting: 19 needle and syringe programmes across England and Wales.

Participants: 395 men who had injected IPEDs.

Results: Of the participants (median age 28 years), 36% had used IPEDs for <5 years. Anabolic steroids (86%), growth hormone (32%) and human chorionic gonadotropin (16%) were most frequently injected, with 88% injecting intramuscularly and 39% subcutaneously. Two-thirds also used IPEDs orally. Recent psychoactive drug use was common (46% cocaine, 12% amphetamine), 5% had ever injected a psychoactive drug and 9% had shared injecting equipment. ‘Viagra/Cialis’ was used by 7%, with 89% reporting anal/vaginal sex in the preceding year (20% had 5+ female-partners, 3% male-partners) and 13% always using condoms. Overall, 1.5% had HIV, 9% had antibodies to the hepatitis B core antigen (anti-HBc) and 5% to hepatitis C (anti-HCV). In multivariate analysis, having HIV was associated with: seeking advice from a sexual health clinic; having had an injection site abscess/wound; and having male partners. After excluding those reporting male partners or injecting psychoactive drugs, 0.8% had HIV, 8% anti-HBc and 5% anti-HCV. Only 23% reported uptake of the hepatitis B vaccine, and diagnostic testing uptake was poor (31% for HIV, 22% for hepatitis C).

Conclusions: Previous prevalence studies had not found HIV among IPED injectors. HIV prevalence in this, the largest study of blood-borne viruses among IPED injectors, was similar to that among injectors of psychoactive drugs. Findings indicate a need for targeted interventions.

ARTICLE SUMMARY

Article focus

The Vulnerability to infection of people who inject drugs is widely recognised; however, studies have rarely focused on users of image and performance enhancing drugs. These drugs can be used to change one’s appearance for aesthetic reasons, as well as to improve performance.

Over the last decade, the number of men using needle and syringe programmes who report injecting image and performance enhancing drugs has risen in England and Wales; as a result, there has been increased concern about the levels of blood-borne viral infections in this group.

This study describes the nature of drug use and the risk behaviours in this population, as well as the prevalence of HIV, hepatitis B and C.

Key messages

The overall prevalence of HIV among men injecting image and performance enhancing drugs was similar to that among those injecting psychoactive drugs in England and Wales. Previous prevalence studies of people who inject image and performance enhancing drugs had not detected HIV.

When the results of this study are compared with those of a previous study undertaken in England and Wales in the mid-1990s, they suggest that the prevalence of hepatitis B infection among injectors of image and performance enhancing drugs might have increased over time.

Sexual risk behaviours and psychoactive drug use were common among injectors of image and performance enhancing drugs, and the sharing of injecting equipment was also reported. The uptake of diagnostic testing for blood borne-viral infections and the vaccine against hepatitis B was low.
INTRODUCTION

The vulnerability of people who inject drugs (PWID) to HIV and other infections is widely recognised; however, studies have focused on individuals who inject psychoactive drugs (such as opiates and stimulants) rather than on those who inject drugs to enhance image and performance. The number of injectors of image and performance enhancing drugs (IPEDs) in contact with needle and syringe programmes (NSPs) has grown substantially in the UK, and there has been increasing concern about the use of IPEDs and the associated harms in the UK and elsewhere.

A range of illicit drugs can be injected with the aim of changing image and performance. These drugs range from tanning drugs, such as Melanotan-II, to those used in body-building, such as human growth hormone. The most commonly injected and studied IPEDs are anabolic steroids (AS). IPEDs are taken both orally and by injection, with some being predominantly injected and others being taken only orally. Many users of these substances also take an array of different drugs, particularly stimulants, though the use of IPEDs has been associated with a range of harms including infections caused by bacteria and blood-borne viruses (BBVs). The use, and particularly the injection of IPEDs has been associated with an elevated risk for HIV infection through sexual activity.

Australian study found that half of the IPED users sampled had ever experienced an injection-related health problem, with 6% having ever had an abscess. A number of other UK studies have recruited IPED injectors, principally AS injectors; however, none of these collected biological samples. These studies were mostly small (N<100), and typically recruited through gyms, with two recruiting gay men. The prevalence of ever sharing injecting equipment in these studies ranged from 0.3% to 6%, but in one study it was 20%. The sharing of drug vials was more common (2.3% vs. 9.9%), and antidepressants are used by many of these studies.

METHODS

Recruitment

In E&W, PWID have been recruited into a voluntary unlinked-anonymous monitoring survey since 1990, and the methodological details of this cross-sectional survey have been published previously. Briefly, agencies providing services to PWID (eg, NSPs and addiction treatment) at sentinel locations throughout E&W invite clients who have ever injected to participate. Sentinel sites are selected so as to reflect the geographic distribution and range of services offered to PWID. Those who consent to participate (overall refusal rate during 2010/2011, 4.7%) provide a biological sample and self-complete a brief questionnaire focused on psychoactive drug use. The survey has multisite ethics approval. This study purposively recruited IPED injectors through 19 sites that provided NSPs. Participants were recruited either when attending an NSP site or through outreach provision; they provided an oral-fluid sample and self-completed a short, specially developed questionnaire focused on IPED use (types of drug used and routes of administration), related behaviours (injecting practices and sexual behaviours) and health service use.

Laboratory methods

Oral-fluid specimens were collected using the OraSure device (OraSure Technologies Inc, Pennsylvania, USA).
These were tested for anti-HIV using an in-house GACELISA with similar performance to GACELISA HIV 1+2 (Abbott Murex Diagnostics Ltd, Darftord, UK). Reactive specimens underwent further testing according to a proven algorithm that included a second ELISA and Western blot (sensitivity and specificity approaches 100%). Anti-HCV testing employed a previously validated commercial enzyme-immunoassay (Ortho HCV 3.0 S.AVe, Ortho Diagnostics) with 92% sensitivity and 99% specificity, and for anti-HBc an in-house IgG class-specific antibody capture EIA procedure was used which had an estimated sensitivity of 75% and specificity of 99% (JV Parry and A Judd, personal communication). The oral-fluid sample quality was verified by testing each sample for the presence of a predetermined minimum quantity of total IgG (1 mg/L) employing an in-house ELISA method.

Analyses
Descriptive analyses were first undertaken, and then bivariate associations (p<0.05) between outcome variables (anti-HIV, anti-HBc and anti-HCV positivity, equipment sharing and condom use) and covariates (age, drug use, sexual practice and health services use; table 1) were examined using Fisher’s exact (when expected cell frequencies <5) and Pearson’s χ² tests. Where possible associations were found (p<0.10), these were further examined through logistic regression models using the forward stepwise procedures to select variables, with selection based on the likelihood ratio test (p<0.05). All analyses were undertaken using SPSS V.19.

RESULTS
Between May 2010 and May 2011, 400 IPED injectors participated in this study; five (1.25%) women were excluded from the analyses (due to the small number). The participants’ characteristics and health service usage are summarised in table 1. Of those reporting their age (88%, n=347), a quarter (27%) were aged <25 years. During the preceding year, 45% had seen a general practitioner and 58 (15%) had not (37% (47/128) vs 22% (60/267), p<0.001); there were no other significant differences in the IPEDs used by age. During the preceding year, most of the participants (74%) reported that they had usually injected themselves, and the majority (88%) had injected intramuscularly (table 1).

The participants also reported psychoactive drug use (table 1), with 46% snorting cocaine and 12% snorting, drinking or swallowing amphetamine during the preceding year. Ever having injected a psychoactive drug (including heroin and cocaine) was reported by 4.8% (table 1). Those who had injected a psychoactive drug were more likely to report injecting insulin as an IPED than those who had not (21% (4/19) vs 4.8% (18/376), p=0.016); there were no other significant differences in the IPEDs used between those who had injected psychoactive drugs and those who had not.

Overall, 8.9% (95% CI 6.4% to 12%) reported having ever shared a needle/syringe or drugs vial (table 1); 27 (6.8%) had just shared a vial, 6 (1.5%) had just shared a needle/syringe and 2 (0.51%) had shared both. Factors associated with sharing are summarised in table 2. In the multivariable analysis, ever having shared a needle/syringe or drug vial was associated with having ever injected a psychoactive drug, having sought advice from an sexual health/sexual transmitted infections (SH/STI) clinic, subcutaneous injection and having snorted, drunk or swallowed amphetamine (table 2).

Sexual behaviour
Nine-tenths (89%, 350/395) reported having anal or vaginal sex in the preceding year, and 9.1% (36/395) had ≥10 partners (table 1). Considering just female partners, 20% (80/395) of respondents had ≥5 partners. Thirteen (3.3%) reported ≥1 male sexual partner during the preceding year (table 1). Those reporting male sexual partners were older than those who did not (median age 38 years, IQR 12; and 28 years, IQR 11, respectively). Those reporting male sexual partners were also more likely to have ever injected a psychoactive drug (23% (3/13) vs 4.2% (16/382), p=0.020), more likely to report snorting, drinking or swallowing amphetamine during the last year (46% (6/13) vs 11% (41/382), p=0.002), and a higher proportion reported snorting cocaine, but this was not significant (62% (8/13) vs 45% (173/382), p=0.248). Those reporting male sexual partners were also more likely to report having ever shared a needle/syringe or vial (25% (4/13) vs 8.1% (31/382), p=0.021). A higher proportion of those reporting male sexual partners reported always using condoms during the last year, but this difference was not significant (38% (5/13) vs 19% (73/382), p=0.146). There were no differences in the types of IPED used, nor in their routes of administration, between those reporting male partners and those not.
Table 1 Characteristics of male injectors of the IPEDs sampled

Characteristic	n	
Demographic		
Age, years		
Under25	27%	106
25-34	34%	134
35 and over	27%	107
Median (IQR)	28%	(13)
Not reported	12%	48
Had ever been in prison		
Health service use		
Had ever used a Needle and Syringe Programme	75%	298
Had seen a general practitioner in the last year		
about their health	55%	178
Had you got advice at an Accident & Emergency /		
Walk-in in the last year	16%	64
Had taken/used prescribed medication in last year		
Symptom of injury or infection at injection site		
Had ever had redness at an injection site	43%	168
Had ever had an injection site abscess/sore/open		
wound	6.80%	27
Image and performance enhancing drug use, last year		
Years since first used an image and performance		
enhancing drug		
0-4		
36%	141	
5+		
32%	128	
Median (IQR)		
Not reported	32%	126
Oral anabolic steroids		
Oral anti-oestrogens	57%	226
Oral clenbuterol	23%	92
Oral ephedrine	15%	60
Oral thyroid hormones	20%	78
Oral phosphodiesterase type 5 inhibitor (PDE5i; “		
Viagra/Calias”)	9%	37
Oral other image and performance enhancing drug		
(inc. Diuretics, 2,4–dinitrophenol and Pro/designer)	6.6%	26
Injected anabolic steroids	86%	340
Injected growth hormone	32%	128
Injected human chorionic gonadotropin (hCG)	16%	62
Injected insulin injected	5.6%	22
Injected melanotan	8.6%	34
Injected other image and performance enhancing drug		
(inc. erythropoetin, insulin-like growth factor 1	5.1%	20
and nalbuphine hydrochloride)		
Use of other illicit drugs		
Ever injected illicit drug other than an image and	4.8%	19
performance enhancing drug		
Snorted cocaine in the last year	46%	181
Snorted, drunk or swallowed amphetamine in last	12%	47
year		
Injecting practice		
Who usually injected you, last year?		
Someone else		
Myself	74%	294
Not reported	8.4%	33
Intramuscular injection in the last year	88%	346
Subcutaneous injection in the last year	39%	154
Ever shared needle, syringe or vial	8.9%	35
Sexual behaviour		
Number of sexual partners last year		
One	38%	152
Two or more	47%	187
Not reported/no sex	14%	56
Gender of sexual partners last year		
Male partner(s)	3.3%	13
No male partners	82%	323
Not reported/no sex	15%	59
Always condom (anal/vaginal sex) or no sex last	20%	78

[4] Hope VD, McVeigh J, Marongiu A, et al. BMJ Open 2013;3:e003207. doi:10.1136/bmjopen-2013-003207
Table 2 Factors associated with risk behaviours among the IPEDs sampled

	Total	Yes	Unadjusted odds ratio with 95% CI	Adjusted odds ratio with 95% CI
Ever shared a needle, syringe or vial				
Number of sexual partners in the last year				
One	152	8	5.3% 0.3 0.12 – 0.94 *	
Two or more	187	19	10% 0.7 0.28 – 1.6	
Not reported/no sex	56	8	14% 1.0	
Pearson χ² test				0.088
Gender of sexual partners in the last year				
Male partner(s)	13	4	31% 5.5 1.6 – 19 *	
No male partners	323	24	7.4% 1.0	
Not reported/no sex	59	7	12% 1.7 0.69 – 4.1	
Pearson χ² test				0.010
Injected illicit drugs other than IPED				
Yes	19	7	37% 7.2 2.6 – 20 6.3 2.1 – 19	
No/not reported	376	28	7.4% 1.0	
Fisher’s exact test				0.001
Have you got advice from a SH/STI clinic in the last year?				
Yes	68	11	16% 2.4 1.1 – 5.2 2.2 1.0 – 5.1	
No/not sure	327	24	7.3% 1.0	
Pearson χ² test				0.020
Injected growth hormone (as IPED)				
Yes	128	18	14% 2.4 1.2 – 4.8 *	
No	267	17	6.4% 1.0	
Pearson χ² test				0.012
Injected Insulin (as IPED)				
Yes	22	5	23% 3.4 1.2 – 9.8 *	
No	373	30	8.0% 1.0	
Fisher’s exact test				0.035
Subcutaneous injection in the last year?				
Yes	154	21	14% 2.6 1.3 – 5.2 3.0 1.4 – 6.5	
No/not sure	241	14	6% 1.0	
Pearson χ² test				0.008
Snorted cocaine in the last year?				
Yes	181	22	12% 2.1 1.0 – 4.4 *	
No	214	13	6.1% 1.0	
Pearson χ² test				0.034
Snorted, drunk or swallowed amphetamine in the last year?				
Yes	47	11	23% 4.1 1.9 – 9.1 4.1 1.7 – 9.8	
No	348	24	6.9% 1.0	
Pearson χ² test				0.0002
Always used condom for anal/vaginal sex	350	48	14%	
Gender of sexual partners in the last year				
Male partner(s)	13	5	38% 8.1 0.8 – 83 14 1.3 – 155	
No male partners	323	42	13% 1.9 0.25 – 15 2.8 0.35 – 22	
Not reported	14	1	7.1% 1.0	
Pearson χ² test				0.025
Have you ever had a blood test for hepatitis C?				
Yes	82	17	21% 3.2 1.1 – 9 *	
No	201	26	13% 1.8 0.68 – 5.0	
Not sure	67	5	7.5% 1.0	
Pearson χ² test				0.057
Injected anabolic steroids				
Yes	304	46	15% 3.9 0.92 – 17 4.2 0.96 – 18	
No	46	2	4.3% 1.0	
Pearson χ² test				0.048

Continued
Among those who reported sex during the preceding year, 14% (95% CI 11% to 18%, 48/350) had always used condoms. Factors associated with condom use are given in table 2. Always using condoms among those who had had sex during the preceding year was associated in the multivariable analysis with having had a male sexual partner and having not snorted cocaine (table 2).

BBV prevalence

Overall, 1.5% (95% CI 0.7% to 3.3%; n=6) had anti-HIV, 8.8% (95% CI 6.4% to 12%) had ever been infected with hepatitis B (26 anti-HBc positive, adjusted for test sensitivity of 0.75) and 5.5% (95% CI 3.7% to 8.2%) with hepatitis C (20 anti-HCV positive, adjusted for test sensitivity of 0.92). Covariates associated with anti-HIV, anti-HBc or anti-HCV positivity are given in table 3. In the multivariable analysis, anti-HIV positivity was associated with having male sexual partners in the preceding year, ever having an abscess/sore/open wound at the injection site, and having sought advice from an SH/STI clinic in the preceding year (table 3). Having anti-HBc was associated in the multivariable analysis with having obtained advice from an SH/STI clinic and having not injected oneself subcutaneously in the preceding year (table 3). Anti-HCV positivity was associated with having ever injected a psychoactive drug and having taken a phosphodiesterase type 5 inhibitor (PDE5i) in the preceding year in the multivariable analysis (table 3).

After excluding those who reported either sex with men or having ever injected a psychoactive drug, 0.8% had anti-HIV (95% CI 0.28% to 2.4%, 3/366), 8.0% anti-HBc (95% CI 5.6% to 11%, adjusted for test sensitivity, 22/366) and 4.7% anti-HCV (95% CI 3.2% to 7.3%, adjusted for test sensitivity, 16/366), with 10% (95% CI 7.7% to 14%, 38/366) having one or more of these three markers. In this group, having anti-HIV was found to be associated only with ever having had an abscess/wound at an injection site (8% (2/25) vs 0.29% (1/341) for those who had not, p=0.013), and having anti-HBc was only associated with having sought advice from an SH/STI clinic in the preceding year (16% (9/56) vs 4.2% (13/310) for those who had not, p=0.002). The use of three types of IPEDs was associated with having anti-HCV: having taken a PDE5i (21% (5/24) vs 3.2% (11/342) for those who had not, p=0.002); having injected insulin as an IPED (18% (3/17) vs 3.7% (13/349) for those who had not, p=0.032); and having injected a less commonly used IPED (17% (3/18) vs 3.7% (15/348) for those who had not, p=0.037).

In total, 47 (12%, 95% CI 9.1% to 15%) were positive for one or more of the anti-HIV, anti-HBc and anti-HCV, with 43 having just one of these markers and four having two or more of these markers. Two had anti-HBc and anti-HCV, one of these reported injected psychoactive drugs, and neither reported having had sex with men. One, who reported sex with men and injecting psychoactive drugs, had anti-HIV and anti-HBc; the remaining participant had all three markers and did not report either sex with men or injecting psychoactive drugs.

Uptake of interventions related to the three BBVs infections was poor. Overall, only 23% reported receiving a dose of HBV vaccine, 31% ever having a diagnostic HIV test and 22% having an HCV test (table 1).

DISCUSSION

IPED injectors are at risk of infection with HIV as well as other BBVs. This is the first prevalence study to have found HIV among IPED injectors, with the prevalence at 1.5%, similar to that found among injectors of psychoactive drugs in England and Wales (1.2%, 2011). However, anti-HBc and anti-HCV—at 8.8% and 5.5%, respectively—are lower than among psychoactive drug injectors (16% and 43%, respectively, 2011). The prevalence of all three BBVs in this sample would appear to be higher than that found in the general UK population. Once those who reported either sex with men or injecting psychoactive drugs were excluded, 10% had been infected with one or more of HIV, hepatitis B and C.

It is important to consider the limitations of this study. The comparative rarity, marginalisation and illicit nature of injecting drug use impede the construction of a sampling frame, making the representativeness of our sample impossible to measure. This study used an established methodology for recruiting PWID through specialist services; however, the robustness of this...
Table 3 Factors associated the blood-borne virus infections among the IPEDs sampled

	Total	Positive	Unadjusted odds ratio with 95% CI	Adjusted odds ratio with 95% CI
HIV	395	6	1.5%	
Age, years*				
Aged<35 or age unknown	287	1	0.3% 1.0	
Aged 35 or over	102	5	4.9% 14 1.62 – 122	
* Fisher's exact test		p= 0.006		
Gender of sexual partners in the last year*				
Male sexual partner	13	3	23% 38 6.79 – 211 *	
No male partner/no sex	382	3	0.8% 1	
* Fisher's exact test		p= 0.001		
Gender of sexual partners in the last year and age (in years)*				
Male sexual partner	13	3	23% 85 8.13 – 893 79 4.29 – 1450	
No Male partners, aged <35 or age not reported	285	1	0.4% 1.0	
No male partners, aged 35 or over	97	2	2.1% 6 0.54 – 67 9 0.59 – 135	
* Pearson χ² test		p< 0.001		
Injected illicit drugs other than IPED				
Yes	19	2	11% 11 1.87 – 63.95 †	
No/not reported	376	4	1.1% 1	
Fisher's exact test		p= 0.029		
Ever had an abscess/sore/open wound at the injection site?				
Yes	27	2	7.4% 7.3 1.27 – 41.69 77 3.27 – 1795	
No/not sure	368	4	1.1% 1.0	
Fisher's exact test		p= 0.057		
Taken or used any prescribed medication in the last year?				
Yes	111	5	4.5% 13 1.54 – 116 †	
No/not sure	284	1	0.4% 1	
Fisher's exact test		p= 0.008		
Have you got advice from a SH/STI clinic in the last year?				
Yes	68	4	5.9% 10 1.82 – 56.6 24 1.03 – 542	
No/not sure	327	2	0.6% 1	
Fisher's exact test		p= 0.009		
Have you ever been vaccinated against hepatitis B?				
Yes	90	4	4.4% 7.0 1.27 – 39.1 †	
No/not sure	305	2	0.7% 1.0	
Fisher's exact test		p= 0.026		
Have you ever had a blood test for hepatitis C?				
Yes	81	4	4.7% 7.6 1.37 – 42.3 †	
No/not sure	308	2	0.9% 1.0	
Fisher's exact test		p= 0.021		
Have you ever had a blood test for HIV?				
Yes	122	4	3.3% 4.6 0.83 – 25.4 †	
No/not sure	273	2	0.7% 1.0	
Fisher's exact test		p= 0.076		
Ever shared a needle, syringe or vial?				
Yes	35	2	5.7% 5.4 0.95 – 30.6 †	
No/not sure	360	4	1.1% 1.0	
Fisher's exact test		p= 0.091		
Anti-HBc	395	26	6.6%	
Have you got advice from a SH/STI clinic in the last year?				
Yes	68	10	14.7% 1.0 1.0	
No/not sure	327	16	4.9% 3.4 1.4 – 7.7 3.8 1.6 – 8.9	
Fisher's exact test		p= 0.006		
Subcutaneous injection in the last year?				
Yes	154	6	3.9% 1.0	
No/not sure	241	20	8.3% 2.2 0.88 – 5.7 2.6 0.99 – 6.7	
Pearson χ² test		p= 0.085		

Continued
approach for IPED injectors is unknown and cannot currently be assessed due to the very limited knowledge on the size and nature of this group. The use of NSPs to access this group was a pragmatic approach; community-based recruitment approaches, such as Respondent Driven Sampling and Time-Location Sampling, that are often advocated for hard to reach populations are possible alternatives. However, these are likely to be difficult to implement with this group due to the diversity of the drugs used, the clandestine and close-knit nature of this group and because drug use usually takes place in private settings (such as homes or gyms). The findings here also rely on self-reported behaviours—though their reliability has not been assessed among IPED users, these have been found to be reliable for psychoactive drug injectors and infection with BBVs has been determined by laboratory-based biological data from the testing of oral-fluid samples. While oral-fluid testing is highly sensitive for anti-HIV, the sensitivity is reduced for anti-HCV and anti-HBc. While this is the largest study of BBVs in this population, the sample size still restricts its power, and consequently caution is needed when attempting to generalise these findings to the wider population of IPED injectors.

Table 3	Continued				
	Total	Positive	Unadjusted odds ratio with 95% CI	Adjusted odds ratio with 95% CI	
Anti-HCV	395	20	5.1%		
Age, years					
Under 25	106	4	3.8%	1.0	1.0
25–34	134	3	2.2%	0.58	0.13 – 2.7
35 and over	107	10	9.3%	2.6	0.80 – 8.7
Not Reported	48	3	6.3%	1.7	0.37 – 7.9
Pearson χ^2 test					
Injected illicit drugs other than IPED					
Yes	19	3	15.8%	4.0	1.1 – 15
No/Not Sure	376	17	4.5%	1.0	1.0
Fisher’s exact test					
Taken or used any prescribed medication in the last year?					
Yes	111	10	9.0%	2.7	1.1 – 7
No/Not Sure	284	10	3.5%	1.0	1.0
Pearson χ^2 test					
Have you ever had a blood test for hepatitis C?					
Yes	85	8	9.4%	1.7	0.55 – 5.6
No	221	7	3.2%	0.5	0.17 – 1.8
Not Sure	89	5	5.6%	1.0	1.0
Pearson χ^2 test					
Taken PDE5i: Viagra/cialis					
Yes	26	5	19%	5.6	1.9 – 17
No	369	15	4.1%	1.0	1.0
Fisher’s exact test					
Injected insulin (as IPED)					
Yes	22	4	18%	5.0	1.5 – 16
No	373	16	4.3%	1.0	1.0
Fisher’s exact test					
Other injected IPED (inc. EPO, IGF-1 and Nubain)					
Yes	20	3	15%	3.7	0.99 – 14
No	375	17	4.5%	1.0	1.0
Fisher’s exact test					
Ever shared a needle, syringe or vial?					
Yes	35	4	11%	2.8	0.87 – 8.8
No/Not Sure	360	16	4%	1.0	1.0
Fisher’s exact test					

*Combined variable entered into the final model due to an interaction between age and reporting male sexual partners: with 77% of those with male sexual partners aged over 35 years compared with 25% of those not reporting male sexual partners. †Not in the final model.

SH/STI, sexual health or sexual transmitted infections clinic; Anti-HCV, antibodies to the hepatitis C virus; Anti-HBc, antibodies to the hepatitis B core antigen; EPO, erythropoietin; IGF-1, insulin–like growth factor 1; IPED, image and performance enhancing drugs; PDE5i, phosphodiesterase type 5 inhibitor.
injectors. Undertaken >10 years ago using a similar methodology, this found no HIV and an anti-HBc prevalence of 2%,20 suggesting that the prevalence of these infections among IPED injectors might have increased over time. Exposure to BBVs among IPED injectors appears to be associated with sexual risks and the injection of psychoactive drugs; although injecting psychoactive drugs is rare among IPED injectors, unprotected sex with multiple partners is common. The sharing of injecting equipment or drug vials among IPED injectors at 8.9% is much less common than among injectors of psychoactive drugs (in 2011, 37% of psychoactive drug injectors reported recently sharing injecting equipment46). Though exposure was not associated with sharing in the multivariate analyses in this study, BBV transmission through IPED injection cannot be excluded as this study may have lacked sufficient power to detect this.

The associations between having HIV and the use of SH/STI clinics and having male sexual partners suggest that HIV transmission among IPED injectors might be related to sexual activity. This association may reflect AS use by some HIV positive gay and bisexual men to mask the longer-term effects of HIV infection.35 The association with having an abscess/wound at the injection site probably reflects the greater vulnerability of PWID with HIV to injection-related bacterial infections.46 47 The association between exposure to HBV and having obtained advice from an SH/STI clinic is again suggestive of a role for sexual risk in infection, particularly as sexual transmission is the main route by which HBV is now acquired within the UK.48 The association between having anti-HBc and not injecting subcutaneously suggests that certain patterns of IPED use might be related to increased risk, as some IPEDs are only injected subcutaneously and others only intramuscularly, and many users take several types.3 8 12–14 Exposure to HCV, however, would appear to be associated with the injection of psychoactive drugs, an association that has been previously noted; this finding might reflect more frequent injecting in this subgroup. Sexual activity may also play a role, assuming that the use of PDE5i is related to improved or maintaining sexual performance. These associations all require further investigation.

The level sharing found here was in line with that in previous studies of injecting risk among IPED users.20 28–30 32 33 35 36 The association between sharing and subcutaneous injection suggests that sharing—like HBV exposure—may be associated with certain patterns of IPED use. As in previous studies of IPED injectors, sexual activity was common and condom use was poor.20 28 34 Condom use was higher among those with male sexual partners and lower among those who reported snorting cocaine. The more frequent use of condoms by gay and bisexual men probably reflects an awareness of their increased HIV risk.42 The association with cocaine use might possibly be related to its use as a sexual stimulant, with this possibly related to attempts to counteract the reduced libido experienced on discontinuation of AS use or in the periods between courses of AS use (‘off-cycles’).14 In part, this effect may be as a result of the decrease in endogenous testosterone production,49 which is why IPED users self-treat with human chorionic gonadotrophin in an attempt to stimulate endogenous production, with PDE5i used to symptomatically treat erectile dysfunction.50 51 Increased libido following AS administration is also reported by users,14 33 34 51 with similar effects being reported following the use of drugs such as melanotan-II.12

Associations were found between psychoactive drug use and sharing and poor condom use. IPED users who also use psychoactive drugs may be a higher risk—or perhaps less risk averse—subgroup. While this needs further investigation, it suggests—considering the substantial levels of psychoactive drug use found here and in previous studies6 8 28 35 36—that those using IPED and psychoactive drugs should be an important target group for harm reduction interventions.

This study indicates that those providing services to PWID—particularly NSPs, outreach services and general practitioners—should be alert to the needs of those who use IPEDs. In particular, they need to be aware of the range of drugs that may be used by this group and of the associated injecting practices, as these differ from those of psychoactive drug injectors. Considering the BBV prevalence and levels of risk found, specialist services for PWID need to engage with IPED users and ensure that they have access to appropriate injecting equipment and targeted harm reduction advice. They should also ensure that this group has access to testing for BBVs, hepatitis B vaccinations, sexual health services and condoms.

Our findings suggest that sexual risk and the use, and particularly the injection, of psychoactive drugs are possibly the most important factors associated with BBV transmission among IPED injectors. The transmission of HIV and other BBVs through the injecting of IPED cannot be excluded, and this is certainly possible as equipment sharing does occur. However, the participants in this study were largely recruited through NSPs providing injecting equipment and advice. IPED injectors not in contact with NSPs may have a different risk profile and infection risk. Even so, our findings suggest the need for targeted interventions to address sexual health needs, psychoactive drug use and the injection practices among IPED injectors. Considering the limitations of this study, a larger study recruiting from a wider range of settings and collecting dried-blood samples is needed to more fully examine prevalence and, in particular, the associated risk factors and thus the role of IPED injection in transmission of HIV and other BBVs.

Author affiliations
1Public Health England, London, UK
2Centre for Research on Drugs and Health Behaviour, London School of Hygiene & Tropical Medicine, London, UK
3Centre for Public Health, Liverpool John Moores University, Liverpool, UK
4European Monitoring Centre for Drugs and Drug Addiction, Lisbon, Portugal
5Public Health Wales, Temple of Peace & Health, Cathays Park, Cardiff, UK
6Department of Public Health, Aarhus University, Aarhus, Denmark
Acknowledgements The authors are grateful to all the people who injected image and performance enhancing drugs and took part in the survey, as well as to the various services across England and Wales who assisted with their recruitment. The authors would like to thank the support staff who worked on the survey and those who undertook the laboratory work. The survey was undertaken by the Health Protection Agency (now part of Public Health England) which is funded through the Department of Health.

Contributors MEB, AK, JM, AM and VH developed the modified questionnaire used with the IPED injectors. AM undertook the day-to-day co-ordination of the survey of IPED injectors, with support from MEB and VH. The ongoing monitoring survey was managed by VH and FN. Development of the laboratory tests and processes employed was led by JP, who managed their application to this study. All authors contributed to the writing of the paper, with writing and analyses led by VH.

Funding This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None.

Ethics approval London MREC.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data are available.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non-Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

REFERENCES

1. Aceijas C, Stimson GV, Hickman M, et al. Global overview of injecting drug use and HIV infection among injecting drug users. AIDS 2004;18:2295–303.
2. Nelson PK, Mathers BM, Cowie B, et al. Global epidemiology of hepatitis B and hepatitis C in people who inject drugs: results of systematic reviews. Lancet 2011;378:571–83.
3. Evans-Brown M, McVeigh J, Perkins G, et al. Human enhancement drugs: the emerging challenges to public health. Liverpool: North West Public Health Observatory, 2012.
4. McVeigh J, Evans-Brown M, Bellis MA. Human enhancement drugs and the pursuit of perfection. Adicones 2012;24:185–90.
5. Advisory Council on the Misuse of Drugs. Consideration of the anabolic steroids. Home Office, 2010.
6. Iversen J, Topp L, Iversen J, et al. Collaboration of Australian NSPs. Blood-borne virus prevalence and risk among steroid injectors: results from the Australian Needle and Syringe Program Survey. Drug Alcohol Rev 2008;27:59–61.
7. Hention R, Mandelbrot L, Delfieu C. Contamination par le VIH a la Pharmacie d’instructions danubiennes. Presse Med 1992;21:218.
8. Scott MJ, Scott MJ Jr. HIV infection associated with injections of anabolic steroids. JAMA 1989;262:207–8.
9. Rich JD, Dickinson BP, Merriman NA, et al. Hepatitis C virus infection related to anabolic-androgenic steroid injection in a recreational weight lifter. Am J Gastroenterol 1998;93:1598.
10. Sklarek HM, Mantovani RP, Erens E, et al. AIDS in a bodybuilder using anabolic steroids. N Engl J Med 1984;311:1701.
11. Hope VD, Judd A, Hickman M, et al. HIV prevalence among injecting drug users in England and Wales 1990 to 2005: evidence for increased transmission in recent years. AIDS 2005;19:1207–14.
12. Hope VD, Rodgers PA, Jordan L, et al. Sustained increase in the sharing of needles and syringes among drug users in England and Wales. AIDS 2002;16:2494–6.
13. Korkia P, Stimson G. Anabolic steroid use in Great Britain: an exploratory investigation. Final report to the Department of Health for England, Scotland and Wales. The Centre for Research on Drugs and Health Behaviour. October 1993.
14. Lenehan P, Bellis MA, McVeigh J. A study of anabolic steroid use in the North West of England. J Perform Enhanc Drugs 1996;1:57–70.
15. Pates R, Barry C. Steroid use in Cardiff: a problem for whom? J Perform Enhanc Drugs 1996;1:92–7.
16. Burton C. Anabolic steroid use among the gym population in Clwyd. Pharm J 1996;256:557–9.
17. Midgley S, Heather N, Best D, et al. Risk behaviours for HIV and hepatitis infection among anabolic-androgenic steroid users. AIDS Care 2000;12:163–70.
18. Graeme FM, Baker JS, Davies B. Anabolic anabolic steroid use in a recreational gym users: a regional sample of the Mid-Glamorgan area. J Subst Use 2001;6:189–95.
19. Bolding G, Sherr L, Maguire M, et al. HIV risk behaviours among gay men who use anabolic steroids. Addiction 1999;94:1829–35.
20. Bolding G, Sherr L, Urban J, Use of anabolic steroids and associated health risks among gay men attending London gyms. Addiction 2002;97:195–203.
21. Ip EJ, Barnett MJ, Tenerowicz MJ, et al. The anabolic 500 survey: characteristics of male users versus nonusers of anabolic-androgenic steroids for strength training. Pharmacotherapy 2011;31:757–66.
22. Noone A, Durante AJ, Brady AR, et al. HIV infection in injecting drug users attending centres in England and Wales, 1990–1991. AIDS 1993;7:1501–7.
23. Connell JA, Parry JV, Mortimer PP, et al. Novel assay for the detection of immunoglobulin G antihuman immunodeficiency virus in untreated saliva and urine. J Med Virol 1993;41:159–64.
24. Judd A, Parry J, Hickman M, et al. Evaluation of a modified commercial antibody assay for hepatitis C virus in oral fluids and dried blood spots. J Med Virol 2003;71:49–55.
25. Health Protection Agency. Health Protection Services and Microbiology Services. Unlinked anonymous monitoring survey of people who inject drugs in contact with specialist services: data tables. London: Health Protection Agency, 2012.
26. European Centre for Disease Prevention and Control. Hepatitis B and C in the EU neighbourhood: prevalence, burden of disease and screening policies. Stockholm: European Centre for Disease Prevention and Control, 2010. http://www.ecdc.europa.eu/en/publications/Publications/TER_100914_Hep_B_C%20_EU_neighbourhood.pdf
27. Health Protection Agency. HIV in the United Kingdom: 2012 Report. Colindale: Health Protection Services, 2012.
28. Magnani R, Sabin K, Saidel T, et al. Review of sampling hard-to-reach and hidden populations for HIV surveillance. AIDS 2005;19(Suppl 2):S67–72.
44. Latkin CA, Vlahov D, Anthony JC. Socially desirable responding and self-reported HIV infection risk behaviors among intravenous drug users. *Addiction* 1993;88:517–26.
45. De Irala J, Bigelow C, McCusker J, et al. Reliability of self-reported human immunodeficiency virus risk behaviors in a residential drug treatment population. *Am J Epidemiol* 1996;143:725–32.
46. Lloyd-Smith E, Kerr T, Hogg RS, et al. Prevalence and correlates of abscesses among a cohort of injection drug users. *Harm Reduct J* 2005;2:24.
47. Spijkerman IJ, Van Ameijden EJ, Mientjes GH, et al. Human immunodeficiency virus infection and other risk factors for skin abscesses and endocarditis among injection drug users. *J Clin Epidemiol* 1996;49:1149–54.
48. Health Protection Agency, Health Protection Scotland, Public Health Wales, Public Health Agency Northern Ireland. *Shooting up: infections among people who inject drugs in the UK 2011*. London: Health Protection Agency, 2012.
49. Grimes DA, Lopez LM, Gallo MF, et al. Steroid hormones for contraception in men. *Cochrane Database Syst Rev* 2007;(2):CD004316.
50. Evans-Brown M, McVeigh J. Anabolic steroid use in the general population of the United Kingdom. In: Møller V, McNamee MJ, Dimeo P, eds. *Elite sport, doping and public health*. Syddansk: University Press of Southern Denmark, 2009:75–97.
51. Bahrke MS, Yesalis CE. Abuse of anabolic androgenic steroids and related substances in sport and exercise. *Curr Opin Pharmacol* 2004;4(6):614–20.