Procedures to Reduce Haemorrhage during Myomectomy for Fibroids

I Gede Sastra Winata, Nicholas Renata Lazarosony

1Gynecologic Oncology Division, Obstetrics and Gynecology Department,
2Obstetrics and Gynecology Department, Faculty of Medicine Udayana University/Sanglah General Hospital, Denpasar, Indonesia

ABSTRACT

Uterine fibroids are the most common solid tumors in the female pelvis. Myomectomy is the first choice of treatment for woman who want to keep their uterus. Haemorrhage, uterine perforation, cervical injury, and metabolic problems from excessive absorption of the distension medium, such as glycine, are risks of hysteroscopic myomectomy. There are several procedures and techniques to reduce haemorrhage during myomectomy for fibroids. Some research demonstrated excellent outcomes with uterine artery ligation.

Keywords: Artery ligations, fibroids, myomectomy, vasopressin

INTRODUCTION

Uterine fibroids are the most common solid tumors in the female pelvis.1 Asymptomatic fibroids are usually diagnosed through regular checkups. Myomectomy, either by abdominal or laparoscopic technique, should be considered for symptomatic patients or those with larger or increasing tumors who want to preserve their fertility. Patients who do not want to preserve their fertility may be offered a hysterectomy; however, nowadays more women prefer to keep their uterus.1 The ability to have future children is no longer the main reason to seek myomectomy.2

Haemorrhage, uterine perforation, cervical injury, and metabolic problems from excessive absorption of the distension medium, such as glycine, are all risks of hysteroscopic myomectomy.3 Laparoscopic myomectomy carries the standard hazards of laparoscopy, such as trocar (surgical instrument) placement mishaps, as well as excessive uncontrolled bleeding, which necessitates a laparotomy and increases the risk of uterine rupture in subsequent pregnancies.4 Bleeding, fever, infection, visceral injury, and thromboembolism are among short-term consequences of abdominal myomectomy. Transfusion is required in up to 20% cases following abdominal myomectomy.5 Myomectomy can result in intraoperative or postoperative blood loss, as well as haematoma formation. Myomectomy is a more technically difficult than hysterectomy due to the significant blood loss associated with the dissection of large fibroids. If bleeding becomes unmanageable or uterus repair is impossible due to the many defects left by multiple removal of myomas, myomectomy is sometimes converted intraoperatively to hysterectomy. Excessive bleeding may demand an emergency blood transfusion.6 Procedures and techniques to reduce haemorrhage during myomectomy for treating fibroids such as certain medications, tourniquet techniques combined with vasopressin, and ligation of artery, are available.

MEDICATIONS

A few well-designed randomised trials have looked into the impact of each intervention on blood loss.6 Misoprostol, vasopressin, bupivacaine plus epinephrine, tranexamic acid, gelatin-thrombin matrix, pericervical tourniquet, mesna, ascorbic acid, dinoprostone, loop ligation of the myoma pseudocapsule, and a fibrin sealant patch (collagen sponge with thrombin and fibrinogen) were found to reduce bleeding significantly during myoma4. When compared to placebo or no therapy, oxytocin, myoma morcellation, and temporary cutting of the uterine artery did not significantly reduce blood loss.5

Kata kunci: Fibroids, ligasi arteri, miomektomi, vasopressin
Some interventions such as misoprostol and dinoprostone have shown promising effects on reducing blood loss during myomectomy. Prostaglandin E2 analogues were shown to significantly reduce blood loss, probably by causing uterine contraction and reducing uterine blood flow. Trials on oxytocin, a known uterine agent, showed no statistically significant effect on blood loss during myomectomy.

Tranexamic acid, like prostaglandin E2 analogues, has been shown to minimize blood loss following myomectomy. Tranexamic acid is an antifibrinolytic by blocking the lysine-binding site on plasmin, thereby preventing fibrinolysis - the breakdown of a fibrin clot, a coagulation product. Since the 1960s, tranexamic acid has been used in clinical settings to reduce blood loss and the need for blood transfusions in cardiac surgery, liver transplantation, and orthopaedic surgery.

Bupivacaine plus epinephrine has been proved to significantly reduce blood loss.

TOURNIQUET TECHNIQUES

Arteria uterina, which branches out from arteria iliaca interna, and arteria ovarica, branches from aorta abdominals, provide the majority of uterine blood flow. These two end branches of arteries anastomose in ligamentum proprium ovarica. Some study was able to decrease bleeding after myomectomy by using a pericervical tourniquet to reversibly stop blood flow at the uterine artery. Ovarian blood flow was also unaffected, hence ovarian function remained unaffected. The use of diluted vasopressin intramyometrial injection to minimize bleeding during hormonal myomectomy surgeries is possible, but the total dose (20 units diluted in 20 mL normal saline) is limited, and intraoperative arterial or central monitoring is required.

Multiple leiomyomas as well as very large uterine leiomyomas (>20 weeks) can be successfully treated with the pericervical tourniquet procedure. There was a statistically significant difference (p <0.001) in mean blood loss for the no-tourniquet group and the tourniquet group around 200 mL. After surgical ligation of both the internal iliac and ovarian arteries, pregnancy is still possible. After bilateral uterine artery ligation for post-Cesarean section hemorrhage, 12 successful pregnancies have been documented. Obstetricians have commonly used uterine artery ligation to address postpartum hemorrhage before resorting to ultimate hysterectomy. Research demonstrated excellent outcomes in reducing postpartum blood loss with uterine artery ligation for pregnant women with uterine leiomyomas who are having a Cesarean section.

The uterus and the leiomyomas will be affected differently by obstruction of the uterine artery because collateral arteries serve the uterus but not the leiomyomas; if the uterine arteries are occluded, the uterus can regain its perfusion within hours or days, whereas the leiomyomas eventually necrotize. These theoretical implications provide justification for treating leiomyomas with uterine artery ligation without regard of uterine function or future fertility.

REFERENCES

1. Liu WM, Tseng CR, Yi-Jen C, Wang PH. Combining the uterine depletion procedure and myomectomy may be useful for treating symptomatic fibroids. Fertil Steril. 2004;82(1):205-10.
2. Guerre EF Jr. Abdominal myomectomy. In: Diamond MP, Daniell JF, Jones HW III, editors. Hysterectomy. Cambridge: Blackwell Science; 1995. p. 139–47.
3. Alessandri F, Remorgida V, Venturini PI, Ferrero S. Unidirectional barbed suture versus continuous suture with intracorporeal knots in laparoscopic myomectomy: A randomized study. J Minimally Invasive Gynecol. 2010;17(2):725–9.
4. Wang JJ, Yang F, Gao T, Li L, Xia H, Li HF. Gasless laparoscopy versus conventional laparoscopy in uterine myomectomy: A single-centre randomized trial. J Internat Med Res. 2011;39:172–8.
5. Mousa SA, Yassen AM, Alhadary HS, Sadek EES, Abdel-Hady E-S. Hematological profile and transfusion requirement during hysteroscopic myomectomy: A comparative study between oxytocin and tranexamic acid infusion. Egyptian J Anaesthesia 2012;28(2):125–32.
6. Kongnyuy EI, Wysonge CS. Interventions to reduce haemorrhage during myomectomy for fibroids. Cochrane database of systematic reviews 2014;8:CD005355..
7. Atashkhoie S. Effect of oxytocin infusion on reducing operative blood loss during abdominal myomectomy. WHO International Trials Registry Platform; 2012.
8. Kongnyuy EI, van den Broek N, Wysonge CS. A systematic review of randomised controlled trials to reduce hemorrhage during myomectomy for uterine fibroids. Internat J Gynaecol Obstetr. 2008;100(1):4–9.
9. Ouyang Z, Liu P, Yu Y, Chen C, Song X, Liang B, et al. Role of ovarian artery-to-uterine artery anastomoses in uterine artery embolization: initial anatomic and radiologic studies. Surg Radiol Anat. 2012;34:737.
10. Alptekin H, Efe D. Effectiveness of pericervical tourniquet by Foley catheter reducing blood loss at abdominal myomectomy. Clin Exp Obstet Gynecol. 2014;41(4):440–4.
11. Kimura T, Kusui C, Matsumura Y, Ogita K, Isaka S, Nakajima A, et al. Effectiveness of hormonal tourniquet by vasopressin during myomectomy through vasopressin V1a receptor ubiquitously expressed in myometrium. Gynecol Obstet Invest. 2002;54:125.
12. Song T, Kim MK, Kim ML, Jung YW, Yun BS, Seong SJ. Use of vasopressin vs epinephrine to reduce haemorrhage during myomectomy: A randomized controlled trial. Eur J Obstet Gynecol Reproductive Biol. 2015;195:177-81.
13. Stell IG, Hebert PC, Wells GA, Vandemheen KL, Tang AS, Higginson LA, et al. Vasopressin versus epinephrine for inpatient cardiac arrest: A randomised controlled trial. Lancet 2001;358:105–9.
14. Chen YJ, Wang PH, Yuan CC, Yen YK, Yang MJ, Ng HT, et al. Pregnancy following treatment of symptomatic myomas with laparoscopic bipolar coagulation of uterine vessels. Hum Reprod. 2003;18:1077–81.
15. Vercellini P, Trezpici L, Zaina B, Vicentini S, Stellato G, Crosignani PG. Gonadotropin-releasing hormone agonist treatment before abdominal myomectomy: A controlled trial. Fertil Steril 2003;79:1390 –5.
16. Dubuisso JB, Fauconnier A, Babaki-Fard K, Chapron C. Laparoscopic myomectomy: A current view. Hum Reprod Update 2000;6:588 –94.
17. Lichtinger M, Burbank F, Hallson L, Herbert S, Uyeno J, Jones M. The time course of myometrial ischemia and reperfusion after laparoscopic uterine artery occlusion— theoretical implications. J Am Assoc Gynecol Laparosc. 2003;10:553–66.
18. Ikechebelu JI, Ezeama CO, Obiechina NJ. The use of tourniquet to reduce blood loss at myomectomy. Nigerian J Clin Pract. 2010;13(2):154–8.
19. Pisat S, van Herendael BJ. Temporary ligation of the uterine artery at its origin using a removable “shoelace” knot. J Minimally Invasive Gynecol. 2020;27(1):26.