Landscape configuration and habitat complexity shape arthropod assemblage in urban parks

Ming-Hsiao Peng1,2, Yuan-Chen Hung1,2, Kuan-Ling Liu1 & Kok-Boon Neoh1*

The urbanization process systematically leads to the loss of biodiversity. Only certain arthropods are resilient to the urbanization process and can thrive in the novel conditions of urbanized landscapes. However, the degree to which arthropod communities survive in urban habitats depends on landscape and local effects and biological interactions (e.g., trophic interactions). In the present study, we examined the relative importance of various factors at landscape (isolation, edge density and area of surrounding greenery) and local (size of park, canopy cover, understory vegetation cover, defoliation depth, weight of dried leaves, soil temperature, soil moisture, and soil pH) spatial scales on the diversity of ants, beetles and spiders in urban parks. Our results indicated that park edge density was negatively correlated with diversity metrics in ants, beetles, and spiders in urban parks relative to the degree of proximity with the peri-urban forest. In other words, parks that located adjacent to the peri-urban forest may not necessarily have high biodiversity. The results suggested that man-made structures have been effective dispersal barriers that limit the spillover effects of ants and spiders but not the spillover of comparatively strong fliers, such as beetles. However, the area of surrounding greenery may have facilitated the colonization of forest-dependent taxa in distant parks. Large parks with reduced edge density supported a higher arthropod diversity because of the minimal edge effect and increased habitat heterogeneity. Vegetation structure consistently explained the variability of ants, beetles, and spiders, indicating that understory plant litter is crucial for providing shelters and hibernation, oviposition, and foraging sites for the major taxa in urban parks. Therefore, efforts should focus on the local management of ground features to maximize the conservation of biological control in urban landscapes.

Urbanization is spreading at an unprecedented rate in Asia, and the intense land transformation is a critical process contributing to the loss of biodiversity in the biodiverse tropics. Furthermore, urban expansion exaggerates urban heat island effects, causing temperatures in urban areas to be up to 10 °C–12 °C higher than those in the surrounding rural areas1,2. Therefore, urban habitats, with their impervious asphalt roads and buildings, are often considered disturbed habitats, hostile to arthropod survival3.

Urban landscapes are mosaics of man-made structure interspersed by urban greeneries of varying sizes that share varying degrees of connectedness to peri-urban forests. Intrinsic traits of participating organisms (e.g., phenotype) and extrinsic characteristics of the environment such as landscape configuration and local habitat heterogeneity are crucial in shaping local biodiversity and the associated ecological interactions in urban settings4. Studies have indicated that certain arthropods are resilient to the urbanization process, in which the changing environment evolutionarily selects organisms with life-history traits that enable survival in urban habitats5–12. However, the degree to which arthropod communities survive in urban habitats is dependent on landscapes and local effects. For instance, at the landscape scale, the spillover effect caused by the movement of a species to a low-quality habitat occurs through the influx of propagules from a source population inhabiting an adjacent high-quality habitat13, which may restore the loss of biodiversity in urban living spaces. Synergistically,

1Department of Entomology, National Chung Hsing University, 145, Xingda Rd. South District, Taichung 402, Taiwan, ROC. 2These authors contributed equally: Ming-Hsiao Peng and Yuan-Chen Hung. *email: neohkokboon@yahoo.com
landscape-scale low-contrast habitat patch that characteristic of increased species richness and abundance inside habitat patches may reduce the impact of the isolation between urban parks and peri-urban forests13–15. These habitat patches may intensify inter-patch movement as well as provide additional or alternative foraging and nesting resources16, Spillover might also be a function of the habitat suitability surrounding patches. Fine-scale heterogeneity and structurally complex microhabitats may provide more niches spatially or temporally and allow organisms to utilize diverse methods to exploit environmental resources at a local scale17,18. Particularly in urbanized landscapes, habitat heterogeneity increases the survival potential of environment-sensitive species.

The arthropod assembly in urbanized landscapes and the diversities of prey and predators have been the focus of numerous studies on urban ecosystems13,18–21. The urbanization at both landscape and local spatial scales generally negatively affect the diversity of predator and parasitoid insects. For instance, the streets and buildings negatively affected the diversity of predators (Ampulicidae, Sphicidae, and Crabronidae) and parasitoids (Tachinidae) in Rome, Italy, because these man-made structures limited the dispersal capacity of these predators and parasitoids22. Similarly, local effects (garden size, mulch cover, the height of herbaceous vegetation, and tree and shrub richness) and landscape characteristics of the urban cover within 500 m of gardens affected parasitoid diversity in gardens in three counties of the California central coast: Santa Cruz, Santa Clara, and Monterey20. Notably, most predators and parasitoids that survive in urbanized landscapes are habitat generalist species and are thus tolerant to the urbanization process19,22.

Ants and beetles comprise a hyperdiverse group of insects and are crucial in an ecosystem23 because of their different nesting and feeding guilds5–6,6–20. Spiders act as natural enemies and serve as predators’ food in numerous ecosystems24–26. Approximately 400–800 tons of prey are killed by global spider community every year23. Efforts to enhance predators’ and parasitoids’ diversity and their associated biological control services have been extensively investigated in high-value seminatural agroecosystems. Considering the increasing importance of biological conservation in urbanized landscapes and the escalating insect pest status in urban areas24–26, urban developments have prompted broader mandates that include biodiversity conservation and promotion of ecosystems services for biological control in cities. In the present study, we examined the effects of landscape and local scale on the diversity of three major taxa in urban parks in Taichung city, Central Taiwan. We hypothesized that arthropod richness and diversity metrics in urban parks increase with proximity to peri-urban forests. However, this arthropod diversity responds variably to the effects of landscape configuration, composition of habitat, and local habitat heterogeneity depending on their survival potential and life-history traits.

Materials and methods

Study site. The study sites were located in Taichung city (24°04′–24°21′ N, 120°35′–120°41′ E), the second most populated city in Taiwan (approximately 2.8 million people). Taichung experiences a subtropical climate with a mean annual temperature of 23.3 °C, annual rainfall of 1712.1 mm, and relative humidity ranging from 72.3% (December) to 77.9% (June; according to Taiwan central weather bureau). The urban landscape is a mosaic of urban parks, median, agricultural fields, and residential houses. The study area was restricted to urban parks to reduce differential habitat characteristics that may cause difficulty in interpreting the hypothesized ecological processes in the study. In general, urban parks had an intermediate level of disturbance: these sites were usually dominated by grass, herbaceous plants, and recreational structures. Activities such as lawn mowing are prevalent here. A total of 47 parks (size from 0.16 to 27 ha) were selected for sampling. Each park was sampled once between July and October 2016. The parks were at least 1 km apart to ensure each data set obtained was independent.

Sampling and specimen identification. This study aimed to assess the relationships between arthropod assemblages from three major taxa (i.e., ants, beetles, and spiders) and landscape metrics, and habitat complexity in urban areas. Ants, beetles, and spiders were collected using a standardized pitfall trap. The pitfall trap consisted of a plastic container (diameter, 12 cm; height, 9 cm) containing a solution of ethylene glycol and water at a ratio of 1:2. Each pitfall trap was shielded by a corrugated plastic board (16 × 16 cm) to prevent it from getting filled with rain. Based on Liu, et al.12, three to seven pitfall traps were set up for four days in each park at three survey points: a group of trees, an isolated tree, and shrubs. The number of the pitfall trap set in the park was dependent on the size of park. The study regarding the locations indicated that this methodology sampled numerous ground-dwelling ants and achieved up to 80% sampling completeness12. The specimens were transported to the laboratory for further sorting. The specimens were preserved in 90% alcohol until they were identified. A data set of ant published by Liu, et al.12 was used. Yet, the ant species were resorted into genera based on identification keys for the ant fauna of Taiwan to reduce their influence of singletons and doubletons on the final result36,37. Beetle and spider specimens were assigned to the family level because sorting the specimens to a higher taxonomic resolution was not possible given the numerous specimens and inadequate appropriate keys. The identifications were based on Johnson and Triplehorn38, and assisted by spider taxonomists in Department of Life Science, Tunghai University. Timms, et al.39 reported that coarser levels of taxonomic resolution of beetle and spider do not significantly alter the distribution patterns in beta diversity and composition structure compared with higher taxonomic resolutions of the genus or species level. Studies have demonstrated congruence between family-level and species-level taxonomic resolution on the patterns of diversity metrics and compositional structure of our test taxa across treatment effects38,40; however, other reports have documented otherwise39,41,42.

Landscape configuration. The landscape configurations that were considered in the study were isolation, edge density and area of surrounding greeneries. Isolation refers herein to the tendency for survey parks to be relatively isolated in space from the peri-urban forests. The location of the urban park and nearest peri-urban forest were identified, and the distance from the peri-urban forest boundary was determined. The area of surrounding
greenery (i.e., cover of arable fields and mixed semi-natural vegetation) at a scale of 2-km radius from each park was measured (the distance was based on the maximum flight distance of beetle\(^{11}\)). All measurements were made using QGIS version 3.12.3\(^{11}\). The edge density was calculated as total perimeter of park (m) / park size (m\(^2\)). The size of each survey urban park was obtained from Taichung city hall (https://opendata.taichung.gov.tw/dataset/3ac4d845-1a9f-11e8-8f43-00155d021202).

Environmental variable measurements. The in situ environmental variables of each survey point were measured for a 10-m radius from where the pitfall trap was placed to assess the structural complexity. These environmental variables were canopy cover, defoliation depth, and soil profiles, which included surface temperature, moisture, and pH. Moreover, a 1-m\(^2\) quadrat was set at each survey point to estimate the percentage of understory vegetation cover. The plant litter within the quadrat was transported back to the laboratory to assess the dried weight.

Data analyses. We calculated the richness and activity density of ant, beetle, and spider taxa for each survey park. The subsequent analysis was twofold. First, multiple linear regressions were then used to examine whether landscape-scale effects such as isolation, edge density and area of surrounding greenery significantly predict the arthropod assemblage in each survey park. Second, the local-scale effects of whether in situ environmental variables explained arthropod assemblages in each survey park were also examined. All models’ performances were evaluated using the Akaike information criterion (AIC). Furthermore, two measures associated with AIC, namely \(\Delta AICc\) and \(AICc\), were employed. The models were selected using package MuMIn version 1.40.4\(^{11}\) in R version 3.4.1\(^{11}\).

In addition, the association between community composition and in-situ environmental variables were analyzed (CANOCO version 5.0, Microcomputer Power, Ithaca, NY, USA). First, we determined the gradient length of the data set using detrended correspondence analysis. Since the gradient length was more than 4.0, the community composition occurred in each survey park was correlated with environmental variables using canonical correlation analysis (CCA) or redundancy analysis (RDA) was used otherwise. A Monte-Carlo test with 999 unrestricted permutations was conducted to test the significance of the environmental factors. The relative importance of environmental factor was represented by the length of arrow. The analyses of the similarities of arthropod composition across parks of varying sizes were performed (PRIMER version 7, PRIMER-E Ltd., Lutton, UK). The data were first square-root transformed to reduce the variance of skewed activity density data. The parks were categorized into four groups according to size (Large park: > 4 hectare, n = 14; median park: 3.0–3.9 hectare, n = 6; small park: 2.0–2.9 hectare, n = 8; extra small park: < 2 hectare, n = 19) and seven categories of distance from the nearest forest (i.e., < 1.0 km, 1.0–1.9 km, 2.0–2.9 km, 3.0–3.9 km, 4.0–4.9 km, 5.0–5.9 km, and > 6.0 km). The species sampled were pooled across parks belonging to certain size and distance categories. Pairwise similarity matrices of arthropod composition are presented in a clustering dendrogram and heat map. The clusters were further analyzed using a similarity profile permutation test (SIMPROF).

Results

We collected 13 343 ants from 22 genera. The genus *Monomorium* was omnipresent across the range of park sizes (100% occurrence), followed by *Pheidole* (98% occurrence) and *Tetramorium* (91% occurrence), whereas *Plagiolepis, Formica, Cerapachys, Anochetus, Recurvidris, Strumigenys, Anoplolepis, Polyrhachis,* and *Camponotus* were the rarer genera and was only found in one park. 464 beetles from 14 families were collected. Among the families, *Anobiidae* (38% occurrence), *Lymexylidae* (32% occurrence), and *Carabidae* (34% occurrence) were the most prominent. We collected 1245 spiders from 11 families. *Salticidae* was the most dominant in urban parks, comprising 91% of spider occurrence in the surveyed parks, whereas *Thomisidae* (2%) and *Zodariidae* (2%) were singletons.

Association between arthropod diversity and landscape configuration. When isolation, edge density and area of surrounding greenery were combined in a multiple linear regression analysis, model selection by AICc indicated that edge density was the best model, with a model weight of 0.309, for ant genus richness, followed by edge density + area of surrounding greenery (model weight: 0.128) with a \(\Delta AICc < 1.77\) (Table 1). For ant activity density, edge density (model weight: 0.254) entered the model first, followed by edge density + area of surrounding greenery, isolation + edge density, and isolation + edge density + area of surrounding greenery (model weight: 0.215, 0.130, and 0.110, respectively) with a \(\Delta AICc < 1.86\).

For beetle family richness, the landscape effect model with the best goodness of fit based on AICc was edge density (model weight: 0.528), followed by isolation + edge density (model weight: 0.227) with a \(\Delta AICc < 1.68\). For beetle activity density, the most important models (\(\Delta AICc < 1.66\) were edge density, isolation + edge density, and edge density + area of surrounding greenery, with model weights of 0.306, 0.280 and 0.133 respectively.

In the case of spider family richness, two models that performed the best (\(\Delta AICc < 1.93\) were area of surrounding greenery and edge density (model weight: 0.153 and 0.151, respectively). The model with the greatest goodness of fit for spider activity density included edge density (model weight: 0.255), edge density + area of surrounding greenery (model weight: 0.250), and area of surrounding greenery (model weight: 0.103) with a \(\Delta AICc < 1.82\).

Association between arthropod diversity and environmental variables. Model selection to assess the ant genus richness produced four model candidates with a \(\Delta AICc \leq 1.87\) (Table 2). The size was the best model predictor with a model weight of 0.187, followed by weight of dried leaves (model weight: 0.179), canopy cover (model weight: 0.120) and defoliation depth (model weight: 0.074). All the environmental factors were...
Table 1. Results of the multivariate regression analysis testing the responses of the diversity metrics of three taxa to landscape configuration in study sites. Models are ranked according to model AICc. Only models with ΔAICc < 2 are displayed. Abbreviations for landscape configuration: ISO isolation; ED edge density; GR area of surrounding greenery.

Response variable	Predictors	AICc	ΔAICc	Log likelihood	Akaike weight
Ant					
Richness	ED	192.0	0.00	−92.741	0.309
	ED + GR	193.8	1.77	−92.428	0.128
Activity density	ED	628.4	0.00	−310.899	0.254
	ED + GR	628.7	0.34	−309.870	0.215
	ISO + ED	629.7	1.34	−310.372	0.130
	ISO + ED + GR	630.0	1.86	−309.287	0.110
Beetle					
Richness	ED	180.7	0.00	−87.095	0.528
	ISO + ED	182.4	1.68	−86.740	0.227
Activity density	ED	296.8	0.00	−145.126	0.306
	ISO + ED	297.0	0.18	−144.017	0.280
	ED + GR	298.5	1.66	−144.760	0.133
Spider					
Richness	GR	153.5	1.91	−73.457	0.153
	ED	153.5	1.93	−73.469	0.151
Activity density	ED	403.3	0.00	−198.354	0.255
	ED + GR	403.3	0.04	−197.176	0.250

Table 2. Results of the multivariate regression analysis testing the responses of the diversity metrics of three taxa to environmental variables in urban parks. Models are ranked according to model AICc. Only models with ΔAICc < 2 are displayed.

Response variables	Predictors	AICc	ΔAICc	Log likelihood	Akaike weight
Ant					
Richness	Size	192.6	0.01	−93.026	0.187
	Weight of dried leaves	192.7	0.10	−93.072	0.179
	Canopy cover	193.5	0.91	−93.473	0.120
	Defoliation depth	194.5	1.87	−93.957	0.074
Activity density	Size	629.8	0.00	−311.610	0.209
	Canopy cover	630.4	0.61	−311.913	0.154
	Understory vegetation cover	631.1	1.29	−312.253	0.110
	Soil moisture	631.4	1.66	−312.441	0.091
	Soil pH	631.6	1.81	−312.516	0.085
	Weight of dried leaves	631.7	1.97	−312.594	0.078
Beetle					
Richness	Understory vegetation cover	189.7	0.90	−91.569	0.144
	Size	190.3	1.47	−91.852	0.108
	Soil pH	190.4	1.61	−91.923	0.101
	Soil temperature	190.6	1.78	−92.009	0.093
	Canopy cover	190.7	1.86	−92.049	0.089
	Defoliation depth	190.7	1.88	−92.057	0.088
Activity density	Understory vegetation cover	301.2	1.81	−147.319	0.103
	Soil pH	301.2	1.82	−147.322	0.103
	Size	301.3	1.94	−147.382	0.097
	Defoliation depth	301.3	1.94	−147.384	0.097
Spider					
Richness	Weight of dried leaves	151.5	0.00	−72.489	0.206
	Soil pH	152.0	0.44	−72.709	0.166
	Size	153.4	1.89	−73.436	0.080
Activity density	Soil pH	401.1	0.00	−197.290	0.374
	Soil moisture	401.2	0.09	−197.334	0.358
and 10.65% of the beetle and spider community compositions, respectively, were explained by the first two axes for ant showed that the distribution of ant community along all axes was random (F-ratio = 1.1, \(P = 0.308, 999 \) permutations). The first two axes only explained approximately 14.32% of ant community composition. (Fig. 1a).

Cerapachys; Cam, Camponotus; So, Solenopsis; Cr, Crematogaster; Pi, Plagiopliops; Ca, Cardiocondyla; Ano, Anoplolepis; Oc, Ochetellus; Ce, Ceracaps; Cam, Camponotus; Po, Polyrhachis; Ny, Nylanderia; Fo, Formica; St, Strumigenys; An, Anochetus; Re, Recurvirdris. Beetle families: Car, carabidae; Anb anobiidae; Ly, lymexylidae; Si, silvanidae; Cu, curculionidae; Cer, ceratocanthidae; El, elateridae; Cup, cupedidae; Ch, chrysomelidae; Sc, scarabaeidae; Hy, hybosoridae; Ant, antacididae; Df, diphyllostomatidae; Mo, monotomidae. Spider families: Sa, salticidae; At, attidae; Pi, pisauridae; Ly, lycosidae; Ox, oxyopidae; Oo, oonopidae, Any, anyphaenidae; Gr, grapsoidae; Ph, philodromidae; Th, thomisidae; Zo, zodariidae. In-situ environmental variables: Size size of park; CampCovr canopy cover; DeflDept defoliation depth; WeigOfDr weight of dried leaves; SoilTemp soil temperature; SoilMois soil moisture; SoilPH soil pH.

well fitted in the models for estimating ant activity density (\(\Delta AICc \leq 1.97 \)), excluding temperature and defoliation depth. Size, canopy cover and understory vegetation cover displayed model weights of 0.209, 0.154, and 0.110 respectively.

We also constructed six model candidates for beetles with \(\Delta AICc \leq 1.88 \) produced from the model selection on beetle family richness prediction. Among model predictors, understory vegetation cover was the best model predictor with a model weight of 0.144, followed by size (model weight: 0.108), soil pH (model weight: 0.101), soil temperature (model weight: 0.093), canopy cover (model weight: 0.089), and defoliation depth (model weight: 0.088). 13.29% of weight of dried leaves (model weight: 0.206), soil pH (model weight: 0.166) and soil moisture (model weight: 0.080) fit the models (\(\Delta AICc \leq 1089 \)); soil pH (model weight: 0.374) and soil moisture (model weight: 0.358) were the best predictors of spider activity density (\(\Delta AICc \leq 0.09 \)).

Figure 1. Redundancy analysis (RDA) biplot (a) showing the distribution of ant community composition (solid arrows) in relation to in-situ environmental variables (empty arrows). Canonical correlation analysis (CCA) biplot (b,c) showing the relationship between beetle and spider community (empty triangles) and in-situ environmental variables (empty arrows) in survey parks. Ant genera: Te, Tetramorium; Mo, Monomorium; Phe, Pheidole; PA, Paratrechina; Ph, Pheidole; Ta, Tapinoma; Pac, Pachycondyla; Tec, Technomyrmex; So, Solenopsis; Cr, Crematogaster; Pl, Plagiopliops; Ca, Cardiocondyla; Ano, Anoplolepis; Oc, Ochetellus; Ce, Ceracaps; Cam, Camponotus; Po, Polyrhachis; Ny, Nylanderia; Fo, Formica; St, Strumigenys; An, Anochetus; Re, Recurvirdris. Beetle families: Car, carabidae; Anb, anobiidae; Ly, lymexylidae; Si, silvanidae; Cu, curculionidae; Cer, ceratocanthidae; El, elateridae; Cup, cupedidae; Ch, chrysomelidae; Sc, scarabaeidae; Hy, hybosoridae; Ant, antacididae; Df, diphyllostomatidae; Mo, monotomidae. Spider families: Sa, salticidae; At, attidae; Pi, pisauridae; Ly, lycosidae; Ox, oxyopidae; Oo, oonopidae, Any, anyphaenidae; Gr, grapsoidae; Ph, philodromidae; Th, thomisidae; Zo, zodariidae. In-situ environmental variables: Size size of park; CampCovr canopy cover; DeflDept defoliation depth; WeigOfDr weight of dried leaves; SoilTemp soil temperature; SoilMois soil moisture; SoilPH soil pH.

Association between community composition and in-situ environmental variables. The RDA for ant showed that the distribution of ant community along all axes was random (F-ratio = 1.1, \(P = 0.276, 999 \) permutations). The first two axes only explained approximately 14.32% of ant community composition. (Fig. 1a). For beetle and spider, similarly, CCA revealed that the community compositions distributed randomly along all axes (beetle: F-ratio = 1.1, \(P = 0.308, 999 \) permutations; spider: F-ratio = 0.9, \(P = 0.566, 999 \) permutations). 13.29% and 10.65% of the beetle and spider community compositions, respectively, were explained by the first two axes (Fig. 1b,c).

The association between community structure, and park size and isolation. The SIMPROF revealed that the community structures of test taxa were significantly grouped (with 0.91, 0.82 and 0.91 of cophenetic correlation for ant, beetle and spider respectively) based on the taxas activity density in different sizes of parks (Fig. 2a–c). For instance, the ant genera Nylanderia, Formica, and Strumigenys; the beetle families Anthicidae, Diphyllostomatidae, and Monotomidae; and the spider families Thomisidae and Zodariidae exclusively occurred in large parks (area of larger than 4 hectares). By contrast, the ant genera Cardiocondyla and Ochetellus, the beetle families Chrysomelidae and Hybosoridae, and the spider family Philodromidae were only present in small (area of 2.0–2.9 hectares) or extra small (area of less than 2.0 hectares) parks. However, the ant genera Tetramorium, Monomorium, and Pheidolegen; the beetle families Carabidae, Anobiidae, and Lymexylidae; and the spider families Salticidae and Atypidae were habitat generalists that occurred in all sizes of parks.

In terms of isolation, similarly, the community structures of test taxa based on the activity density were significantly grouped (with 0.91, 0.88 and 0.92 of cophenetic correlation for ant, beetle and spider respectively) in...
different categories (Fig. 2d–f). For instance, the ant genera *Camponotus*, *Cerapachys* and *Ochetellus*; the beetle families *Monotomidae*, *Diphyllostomatidae* and *Anthicidae*; the spider families *Philodromidae* and *Thomisidae* were occurred only in park that located less than 3 km from peri-urban forest. However, the ant genera *Strumigenys*, *Anochetus* and *Recurvidris*; and the spider families *Oonopidae*, *Anyphaenidae* and *Zodariidae* presented exclusively in parks that located more than 4 km from the nearby peri-urban forest. Moreover, the ant genera *Monomorium*, *Tetramorium* and *Pheidole*; the beetle families *Anobiidae*, *Carabidae* and *Lymexylidae*; and the spider families *Salticidae* and *Atypidae* were omnipresent at parks with varying distance categories.

Discussion

Urban green areas are usually isolated and accompanied by impermeable surfaces, man-made structures, and elevated local temperatures. Changes in habitat have a substantial effect on biodiversity and are inhospitable for environmentally sensitive species. Landscape and local effects can affect the species and relative abundance of different taxa. The results of the present study demonstrated a limited influx of individuals from source populations in the forests to adjacent urban parks except for beetle. However, some forest-dependent ants and spiders may utilize the surrounding matrix to migrate to distant parks. Species diversity of ants, beetles, and spiders increased with decrease of edge density in parks. In addition, these findings demonstrated that an increase in habitat heterogeneity engendered an increase in species diversity in large urban parks, which primarily supported the diverse community of urban-adapted species that responded favorably to the landscape change.

Association between arthropod diversity and landscape configuration in urban parks. Contrary to our expectations, we did not identify a significant influence of distance from peri-urban forests in diversity metrics of ants and spiders. This nonsignificant association indicates no spillover effects from a source popu-
lation to urban greeneries. This result is consistent with those of studies conducted in less contrast silvicultural habitats. However, studies of urban ground-dwelling ants in Rio de Janeiro City and two cities (Cordoba and Seville) of Southern Spain have reported an increase in species richness with increasing connectedness with forests. One of the proximate explanations concerning the absence of spillover effects in the present study is the size of the fragmented peri-urban forest, which is relatively small. The edge effect reduced the magnitude of the source population. Nevertheless, we discounted the possibility that the small fragmented forests limited the spillover effects because the size of the peri-urban forest that we used as the representative of forest habitats is more than 11 500 ha. An ant inventory was established in the study sites and 60%–70% of ant assemblage identified in the forest borders were forest-dependent species. Hogg and Daane reported that web-building spiders could disperse from oak woodlands to adjacent vineyards, whereas hunting spiders dispersed short distance within their original habitat (oak woodland) by ballooning with the aid of wind or rappelling from nearby trees. However, unlike juvenile spider, adult spiders do not generally disperse over long distances if a hunting site is ideal and will only launch less risky short-range dispersals. In urban ecosystems, skyscrapers, buildings, and roads may become dispersal barriers leading to a limited spillover effect of the taxon from forest to urban parks as evidenced by the nonsignificant correlation between isolation and family diversity.

Despite the non-significant relationship in the present study, some rare forest-dependent ant genera such as Pheidologeton, Polyrhachis, Pachycondyla and Recurviris were collected in urban greeneries located more than 5 km from the peri-urban forest. In the study, we did not sample any habitat other than urban parks (i.e., urban medians). However, the present result demonstrated that area of surrounding greenery had a clear positive influence in ant diversity metrics. Numerous studies have indicated that the urban matrix may contain intermediate to high ant species richness, particularly in large medians and greenways. Although ants are generally considered poor dispersers, some individuals may utilize the nearest urban matrix as dispersal corridors to establish new colonies in distant urban parks. Similarly, Meng and Seifert demonstrated that the area of agricultural matrix within 1 km correlated with changes in spider activity density, particularly, the landscape effect was strongly positively correlated with adult spider and lysocid activity density. It is likely that urban parks may experience an influx of spider species from nearby agricultural matrix habitats, which generally attract high numbers and a variety of arthropods, through ballooning.

Unlike ants and spiders, beetles are generally strong fliers and their colonization events from natural habitats to semi-natural landscapes within a short distance (less than 100 m spillover effects) were evident in areas of oil palm plantations adjacent to riparian reserve and grasslands adjacent to forest habitats in Italy. This phenomenon was also observed in Germany in areas of crop field adjacent to seminatural habitats. A meta-analyses of beetles in Europe, Japan and Canada demonstrated that the reduce in ground beetle assemblage may not necessarily reflected in urbanized area because of the influx of non-forest species. However, our empirical data did not support the hypothesis that the observed species enrichment of beetles in an urban landscape was caused by spillover effects alone. Instead, our results support a more complex interplay between peri-urban forest connectedness and edge density of a park. The latter effect similarly played a pronounced role affecting the diversity metrics of ants and spiders.

The proximate explanations regarding the negative association between diversity metrics and edge density of urban park are twofold. First, the edge effects may have a pronounced effect on species living in small urban greeneries compared with those living in large urban greeneries. The effect is particularly prominent in urban landscapes where urban development is always accompanied by intense road networks. Delgado, et al. studied the road edge effect on the temperature, light intensity, canopy cover, and tree height in laurel and pine forests in the Canary Islands and reported significant changes of temperature, light intensity, and tree structure from the road edge to the forest interior. A similar phenomenon was observed in our study sites; the rise in mean soil temperature was paralleled by an increase in park edge density (Appendix Table 1; Appendix Fig. 1). For a small patch size with an increased edge-to-interior ratio, the edge effects may reach the park interior and affect the survival of forest-dependent species. This hypothesis is supported by numerous empirical works on carabid beetle assemblages in urban greenspaces, which have reported that total species richness and abundance are, in general, lower in smaller patch area compared than in larger patch area. For instance, forest specialist species had a high affinity to inhabit large forest fragments with low edge density, whereas generalists tended to be observed in small forests. We observed several beetle families exclusively inhabit large parks (area > 4 ha), whereas smaller parks (area < 4 ha) principally harbored habitat generalist species. Beetles that were exclusively observed in large parks required stringent local habitat requirements for survival, including more vegetation cover or prey availability at another location.

Studies have drawn differing conclusions regarding ant responses to edge effects in urban landscapes. For instance, Clarke, et al. collected samples from 24 urban natural areas in San Francisco, California, and reported that natural area size and shape did not accurately predict ant species richness and abundance, with numerous smaller natural areas harboring diverse ant populations similar to larger areas. Studies in other semi-natural landscapes also demonstrated that the forest edge is an overlapping habitat of two habitat affinity groups, the forest specialist and open habitat species, and thus may harbor more ant species. Spider species as well as other arthropods. However, in the present study, we determined that smaller parks may be subjected to larger edge effects and contain lower diversity. These results may be contradictory because of the variety of the surrounding habitat matrix in the study sites. For instance, principally positive effects were reported in forest–urban grass dominated habitats borders, whereas, in the present study, park–pedestrian ways and asphalt roads produced heat radiation and contributed to unfavorable living environments in the neighboring habitats.

Second, another nonexclusive phenomenon that may result from the edge effects is the interspecific competition and ant displacement caused by urban-adapted ants, which may be more intense in smaller parks that experience fluctuating abiotic environmental conditions. The study sites contained five urban generalists, Pheidole, Tetramorium, Monomorium, Tapinoma, and Paratrechina, dominating the urban parks. Their activity
densities increased proportionally to the park size, indicating a proneness to habitat edge. These edge-prone ant species may have displaced forest-dependent ants and urban specialists. This hypothesis warrants further investigation. This hypothesis was corroborated by the invasive Argentine ant *Linepithema humile*, which thrives in moist edge habitats in natural boundaries and displaces native ants, beetles and spiders within at least 250 m from the urban edges.

Association between arthropod diversity and local habitat heterogeneity in urban parks. The diversity metrics of ants, beetles, and spiders increased with the increasing park size, reflecting a species–area relationship and indicating that the size of urban parks is critical for these arthropods. The results for ants were supported by a study conducted in New York City, which indicated that ant species richness increased with increasing urban median areas. Similarly, a positive relationship between species number in a patch and the area of the patch of urban parks was also demonstrated in Tokyo metropolitan city and Chiba. Moreover, MacGregor-Fors, et al. reported that the composition of copro-necrophagous beetles was related to the traits of greenspaces (size and location) in Xalapa, Mexico. However, these results contradict findings by Weller and Ganzhorn that species richness of carabid beetles decreased closer to the city center with an increasing degree of isolation of the sites but was uncorrelated with the size of the study sites. These asymmetric results may be because the study only investigated a single carabid beetle community, which only represented 34% occurrence of our sampling, and beetles from different family or feeding guilds may be more responsive to local effects.

Instead we hypothesized that the increment was indirectly caused by its influence on habitat heterogeneity. We determined that the coefficient of variation of canopy openness, weight of dried leaves, and diameter at breast height of a standing trees increased with park size (Appendix Table 1; Appendix Fig. 2). Notably, ant genera such as *Paratrechina*, *Pheidolegeton*, *Tapinoma*, *Tetramorium*, *Monomorium*, *Pachycondyla*, and *Pheidole* were tightly linked to park size. The ant genera *Solenopsis* and *Anoplolepis* may thrive in fine-scale heterogeneity across urban greenery's mosaics that have high plant litter mass and cool microhabitats. This may be because food sources are relatively rare and the environment warmer in urban areas compared with forests or woodlands. Therefore, environment-sensitive ants in an urban ecosystem are dependent on the dense ground cover for a food source. Microhabitats with less understory vegetation cover supported open habitat genera such as *Paratrechina* and *Tapinoma*, which are opportunists that usually inhabit dry and simple habitats and are characterized as poor competitors. These opportunist ant species are abundant when a given microhabitat contains low ant species number or less behaviorally dominant ants. However, *Pheidolegeton*, *Pheidole*, *Pachycondyla*, *Monomorium* and *Cerapachys*, which their occurrences were generally correlated with variables associated with forest, were present in relatively open areas in the present study. We cannot explain precisely the reasons for this phenomenon but we should consider that such ant genera may have evolved to greater heat tolerance to occupy the vacant niche in order to escape interspecific competition.

We also identified a positive association between vegetation structure and beetle family richness and activity density. Vegetation was the most influential factor affecting beetle diversity. In particular, the presence of vegetation provided an abundant food source for the understory herbivorous beetles’ (Hybosoridae and Scaraeidae) survival and population growth. Anobiidae, Lymexylidae, and Carabidae that represented the large proportion of the sampled population showed no compelling evidence for habitat preferences. Anobid beetles and lymexylid beetles are bark/wood-boring pest that majorly found attacking wooden structures and living trees in urban areas. Carabid beetles are generally active predators, less specialized and utilize a greater range of habitats whilst foraging. They are thermophilic and respond favorably to increases in ground temperature. Rather than habitat complexity, carabid beetle occurrence may be more driven by the availability of food prey in urbanized landscapes. The results were somewhat opposite with the findings made by Lassau et al. that the habitat preference of anobid beetles and carabid beetles were more associated with moist areas and habitats with high plant litter mass.

In spiders, we determined that microclimate factors, such as soil pH and temperature, and leaf litter displayed favorable fits in models, which accorded with findings by Argañaraz, et al. who evaluated urban green areas in Córdoba city, Argentina. This result is also consistent with that of Otoshi, et al. who determined that local fine-scale habitat quality (i.e., vegetation cover and species, bare soil) had a larger effect on the spider assemblage in 19 urban garden sites in three California counties (Santa Cruz, Santa Clara, and Monterey) compared with landscape-scale factors (i.e., gradient of development in surrounding areas). In opposite, Nagy et al. reported that no difference in diversities of spiders along the urbanization gradient in the city of Debrecen (Hungary) and its surrounding forested area.

Spiders, ants and carabid beetles are placed at a high trophic position among the test taxa in our study system. We determined that local resource availability may be an equally critical driving force in arthropod persistence in urban ecosystems. Prey–predator dynamics have been widely studied in seminatural landscapes. However, similar patterns cannot be expected in urbanized areas, which are characterized by simplified landscape features. For instance, UHI effects play a pronounced role in one predator’s predation service. A study investigated how urban warming and herbivore abundance affected arthropods natural enemies in street trees and reported that the abundance of spiders did not increase linearly with herbivore abundance. This is because urban warming drastically simplified the community composition of spiders by diminishing the population of certain effective predators. In the present study, Salticidae comprised 88.3% of the total sampled spiders, followed by Atypidae (8.4%). Salticid spiders are polyphagous predators that feed on a wide range of arthropods; the size of prey can reach twofold the size of the spider. The prey–predator interactions have been revealed in various ecosystems and sampled urban areas (e.g., urban parks and vacant lots) and reported that the frequency and density of the myrmecophagic jumping spider *Siler cupreus* Simon were significantly higher in sites infested with Argentine ants compared with infestation-free sites. Our unpublished data using stable isotope
analysis revealed that ants in urbanized landscapes feed on a variety of insect. Information regarding the natural enemy abundance and diversity is insufficient to provide an overall picture of trophic interactions and predator efficiency of a species in a given ecosystem. A biological control in agricultural systems is harnessed by increased landscape complexity by Kühn et al. 2019, but an opposing pattern has been documented in urbanized landscape 2020. Future research should focus on the predator efficiency of natural enemy of whether prey abundance increase near the mean levels of natural enemy abundance (numerical response) or its predation rate (functional response) in a given urbanized landscape.

Conclusion
The results of the present study demonstrated that both landscape and local effects are important in shaping the diversity metrics of ants, beetles, and spiders in urban parks. However, this result should be viewed with caution owing to a lack of high taxonomic resolution because even species within a family may have different tolerances to novel environments in urbanized landscapes. The present results indicated that man-made structures have been effective dispersal barriers that limit the spillover effects of ant and spider to urban park except for relatively strong flying beetles. However, urban greenery at the surrounding matrix potentially facilitates the colonization of the two poor dispersers in the distant parks. The edge density of a given urban park appears to be a major assembly rule in shaping the test taxa. Two proximate mechanisms of edge density effects are (1) an increased edge-to-interior ratio in small parks created hotter and drier areas relative to large parks, which is inhospitable to environment-sensitive taxa. (2) Arthropod displacement by edge-adapted ants. Local fine-scale heterogeneity also significantly explained some of the variability identified in different sizes of parks. In particular, ants, beetles, and spiders are sensitive to changes in the local vegetation structure, especially those in understory plant litter, which can provide shelter, hibernation sites, oviposition sites, and foraging sites for both predators and prey in urban parks 2019. We suggest that focusing on the local management of ground features in urban parks, regardless of park size, may be the optimal approach to maximize the conservation of generalist predators and harness their ecosystem services. Urban greeneries including urban parks are the hotspots for biodiversity in an urban environment and can accommodate over 50% of the species present in peri-urban areas. The richness could be further enhanced if effective management is implemented 2019. Those urban-adapted ground-dwelling insects are keystone species and may mediate the local biological interactions and shape arthropod assembly in urban greeneries.

References
1. Oke, T. R. City size and the urban heat island. Atmos. Environ. 1967(7), 769–779 (1973).
2. Zhou, B., Rybski, D. & Kropp, J. P. The role of city size and urban form in the surface urban heat island. Sci. Rep. 7, 1–9 (2017).
3. Fenoglio, M. S., Rossetti, M. R., Videla, M. & Baselga, A. Negative effects of urbanization on terrestrial arthropod communities: A meta-analysis. Glob. Ecol. Biogeogr. 29, 1412–1429. https://doi.org/10.1111/geb.13107 (2020).
4. McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).
5. Philpott, S. M. et al. Local and landscape drivers of carabid activity, species richness, and traits in urban gardens in coastal California. Insects 10, 112 (2019).
6. Weller, B. & Ganzhorn, J. U. Carabid beetle community composition, body size, and fluctuating asymmetry along an urban-rural gradient. Basic Appl. Ecol. 5, 193–201 (2004).
7. Alaruikka, D., Kotze, D. J., Matveinen, K. & Niemelä, J. Carabid beetle and spider assemblages along a forested urban–rural gradient in southern Finland. J. Insect Conserv. 6, 195–206 (2002).
8. Burkman, C. E. & Gardiner, M. M. Spider assemblages within greenspaces of a deindustrialized urban landscape. Urban Ecosyst. 18, 793–818 (2015).
9. Kaltas, D., Panayiotou, E., Chatzaki, M. & Mylonas, M. Ground spider assemblages (Araneae: Gnaphosidae) along an urban-rural gradient in the city of Heraklion, Greece. Eur. J. Entomol. 111, 59 (2014).
10. Magura, T., Horváth, R. & Tóthmérész, B. Effects of urbanization on ground-dwelling spiders in forest patches, Hungary. Landsc. Ecol. 25, 621–629 (2010).
11. Shochat, E., Stefanov, W. L., Whitehouse, M. E. A. & Faeth, S. H. Urbanization and spider diversity: influences of human modification of habitat structure and productivity. Urban Ecology 14, 435–472 (2008).
12. Liu, K.-L., Peng, M.-H., Hung, Y.-C. & Neoh, K.-B. Effects of park size, peri-urban forest spillover, and environmental filtering on diversity, structure, and morphology of ant assemblages in urban park. Urban Ecosyst. 22, 643–656 (2019).
13. Brudvig, L. A., Damshen, E. I., Tews, K. J., Haddad, N. M. & Levey, D. J. Landscape connectivity promotes plant biodiversity spillover into non-target habitats. Proc. Natl. Acad. Sci. USA 106, 9328–9332 (2009).
14. Mcintyre, N. E., Rango, J., Fagan, W. F. & Faeth, S. H. Ground arthropod community structure in a heterogeneous urban environment. Landsc. Urban Plan. 52, 257–274. https://doi.org/10.1016/S0169-2046(04)00122-5 (2001).
15. Menke, S. B. et al. Urban areas may serve as habitat and corridors for dry-adapted, heat tolerant species; an example from ants. Urban Ecosyst. 14, 135–163 (2011).
16. Dunning, J. B., Danielson, B. J. & Pulliam, H. R. Ecological processes that affect populations in complex landscapes. Oikos 65, 169–175 (1992).
17. MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography Vol. 1 (Princeton University Press, Princeton, 2001).
18. Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).
19. Burkman, C. E. & Gardiner, M. M. Urban greenspace composition and landscape context influence natural enemy community composition and function. Biol. Control 75, 58–67 (2014).
20. Burks, J. M. & Philpott, S. M. Local and landscape drivers of parasitoid abundance, richness, and composition in urban gardens. Environ. Entomol. 46, 201–209 (2017).
21. Magura, T., Lövei, G. L. & Tóthmérész, B. Conversion from environmental filtering to randomness as assembly rule of ground beetle assemblages along an urbanization gradient. Sci. Rep. 8, 1–9 (2018).
22. Correa, D. et al. Impact of urbanization on predator and parasitoid insects at multiple spatial scales. *PloS ONE* **14**, e0214068 (2019).

23. Folgarait, P. J. Ant biodiversity and its relationship to ecosystem functioning: a review. *Biodivers. Conserv.* **7**, 1221–1244 (1998).

24. Hölldobler, B. & Wilson, E. O. *The Ants* (Harvard University Press, Cambridge, 1990).

25. Hölldobler, B. & Wilson, E. O. *Journey to the Ants: A Story of Scientific Exploration* (Harvard University Press, Cambridge, 1994).

26. Nichols, E. et al. Ecoligical functions and ecosystem services provided by Scarabaeinae dung beetles. *Biol. Conserv.* **141**, 1461–1474 (2008).

27. Hanks, L. M. Influence of the larval host plant on reproductive strategies of cambricid beetles. *Annu. Rev. Entomol.* **44**, 483–505 (1999).

28. Keavan, P. G. & Baker, H. G. Insects as flower visitors and pollinators. *Ann. Rev. Entomol.* **28**, 407–433 (1983).

29. Halldad, C. R., Louw, S. V. & Dippenaar-Schoeman, A. S. An assessment of the biological control potential of *Heliothis pista-ciae* (Araneae: Salticidae) on *Syntus natalensis* (Hemiptera: Lygaeidae), a pest of pistachio nuts. *Biol. Control* **31**, 83–90 (2004).

30. Cotes, B. et al. Spider communities and biological control in native habitats surrounding greenhouses. *Insects* **9**, 33 (2018).

31. Michalko, R. & Pekar, S. Different hunting strategies of generalist predators result in functional differences. *Oecologia* **181**, 1187–1197. https://doi.org/10.1007/s00442-016-3631-4 (2016).

32. Michalko, R., Pekar, S., Dulă, M., Entling, M. H. & McGeoch, M. Global patterns in the biocontrol efficacy of spiders: a meta-analysis. *Glob. Ecol. Biogeogr.* **28**, 1366–1378. https://doi.org/10.1111/gbi.12927 (2019).

33. Neoh, K.-B. *Interactive effects of local and landscape factors on farmland carabids*. *Entomol. Sci.* **17**, 45–56 (2014).

34. Morse, D. H. Some determinants of dispersal by crab spiderlings. *J. Biogeogr.* **33**, 1348–1356 (2006).

35. Pećarević, M., Danoff-Burg, J. & Dunn, R. R. Biodiversity on broadway - enigmatic diversity of the societies of ants (Formicidae) in urban remnant forests. *J. Insect Conserv.* **20**, 407–453 (2016).

36. Schroeder, L. M. Population levels and flight phenology of bark beetle predators in stands with and without previous infestations of the bark beetle *Tomus piniperda*. *For. Ecol. Manag.* **123**, 31–40 (1999).
68. Clarke, K. M., Fisher, B. L. & LeBuhn, G. The influence of urban park characteristics on ant (Hymenoptera, Formicidae) communities. *Urban Ecosyst.* 11, 317–334 (2008).

69. Ivanov, K. & Keiper, J. Ant (Hymenoptera: Formicidae) diversity and community composition along sharp urban forest edges. *Biodivers. Conserv.* 19, 3917–3933 (2010).

70. Molnár, T., Magura, T., Töthméresse, B. & Elek, Z. Ground beetles (Carabidae) and edge effect in oak-hornbeam forest and grassland transects. *Eur. J. Soil Biol.* 37, 287–300 (2001).

71. Rodrigues, E. N. L., Mendoza, M. D. S. & Costa-Schmidt, L. E. Spider diversity responds strongly to edge effects but weakly to vegetation structure in riparian forests of Southern Brazil. *Arthropod* 8, 123–133 (2014).

72. Bolger, D. T., Suarez, Á. V., Crooks, K. R., Morrison, S. A. & Case, T. J. Arthropods in urban habitat fragments in southern California: area, age, and edge effects. *Ecol. Appl.* 10, 1230–1248 (2000).

73. Suarez, A. V., Bolger, D. T. & Case, T. J. Effects of fragmentation and invasion on native ant communities in coastal southern California. *Ecol. Res.* 19, 209–216 (2004).

74. Bolger, D. T. Spatial and temporal variation in the Argentine ant edge effect: implications for the mechanism of edge limitation. *Biol. Cons.* 136, 295–305 (2007).

75. Holway, D. A. Edge effects of an invasive species across a natural ecological boundary. *Biol. Conserv.* 121, 561–567 (2005).

76. Yamaguchi, T. Influence of urbanization on ant distribution in parks of Tokyo and Chiba City, Japan I. Analysis of ant species richness. *Ecol. Res.* 19, 209–216 (2004).

77. MacGregor-Fors, I. Contributions: the role of urban greenspaces as reservoirs for biodiversity. *Forests* 7, 146 (2016).

78. Nagy, D. D., Magura, T., Horváth, R., Debán, Z. & Töthméresse, B. Arthropod assemblages and functional responses along an urbanization gradient: a trait-based multi-taxon approach. *Urban For. Urban Gree* 30, 157–168 (2018).

79. Andersen, A. N. Ants: Standard Methods for Measuring and Monitoring Biodiversity 25–34 (Smithsonian Institution Press, Washington, DC, 2000).

80. Luke, S. H., Fayle, T. M., Eggleton, P. & Turner, E. C. & Davies, R. G. Functional structure of ant and termite communities in old growth forest, logged forest and oil palm plantation in Malaysian Borneo. *Biodivers. Conserv.* 23, 2817–2832 (2014).

81. Kyrö, K. et al. Local habitat characteristics have a stronger effect than the surrounding urban landscape on beetle communities on green roofs. *Urban For. Urban Gree* 29, 122–130 (2018).

82. Chung, A. Y. C., Eggleton, P., Speight, M. R., Hammond, P. M. & Chey, V. K. The diversity of beetle assemblages in different habitat types in Sabah, Malaysia. *Entomol. Res.* 40, 475–496 (2000).

83. Robinson, W. H. *Urban Insects and Arachnids: A Handbook of Urban Entomology* (Cambridge University Press, Cambridge, 2005).

84. Tsafack, N. et al. Carabid community structure in northern China grassland ecosystems: Effects of local habitat on species richness, species composition and functional diversity. *PeerJ* 6, e6197 (2019).

85. Magura, T., Töthméresse, B. & Elek, Z. Impacts of leaf-litter addition on carabids in a conifer plantation. *Biodivers. Conserv.* 14, 475–491 (2005).

86. Koivula, M., Punttila, P., Haila, Y. & Nicnielii, J. Leaf litter and the small-scale distribution of carabid beetles (Coleoptera, Carabidae) in the boreal forest. *Ecography* 22, 424–435 (1999).

87. Argázar, C. L., Rubio, G. D. & Gleiser, R. M. Spider communities in urban green patches and their relation to local and landscape traits. *Biodivers. Conserv.* 27, 981–1009 (2018).

88. Lowe, E. C., Wilder, S. M. & Hochuli, D. F. Persistence and survival of the spider *Nephele plumipes* in cities: do increased prey resources drive the success of an urban exploiter? *Urban Ecosyst.* 19, 705–720 (2016).

89. Meineke, E. E., Holmquist, A. J., Wimp, G. M. & Frank, S. D. Changes in spider community composition are associated with urban temperature, not herbivore abundance, *Urban Ecol.* 3, ius010 (2017).

90. Huseynov, E. F. Natural prey of the jumping spider *Menemerus taeniatus* (Araneae: Salticidae). *Eur. J. Entomol.* 102, 797–799 (2005).

91. Johnson, S. R. Use of coleopteran prey by *Philippus audax* (Araneae, Salticidae) in tallgrass prairie wetlands. *J. Arachnol.* 24, 39–42 (1996).

92. Allan, R. A. & Elgar, M. A. Exploitation of the green tree ant, *Oecophylla smaragdina*, by the salticid spider *Cosmaphis bitae-niata*. *Aust. J. Zool.* 49, 129–137 (2001).

93. Touyama, Y., Ihara, Y. & Ito, F. Argentine ant infestation affects the abundance of the native myrmecophagous jumping spider *Siler cupreus* Simon in Japan. *Insectes Soc.* 55, 144–146 (2008).

94. Hogg, B. N. & Daane, K. M. Impacts of exotic spider spillover on resident arthropod communities in a natural habitat. *Ecol. Entomol.* 40, 69–77 (2015).

95. Marino, P. C. & Landis, D. A. Effect of landscape structure on parasitoid diversity and parasitism in agroecosystems. *Ecol. Appl.* 6, 276–284 (1996).

96. Boccaccio, L. & Petacchi, R. Landscape effects on the complex of *Bactrocera oleae* parasitoids and implications for conservation biological control. *Biocontrol* 54, 607 (2009).

97. Boeltz, P. A., Krimmer, E., Krauss, J. & Steffen-Dewenter, I. Agri-environmental schemes promote ground-dwelling predators in adjacent oilseed rape fields: Diversity, species traits and distance-decay functions. *J. Appl. Ecol.* 56, 10–20 (2019).

98. Gagic, V. et al. Food web structure and biocontrol in a four-trophic level system across a landscape complexity gradient. *Proc. R. Soc. B* 278, 2946–2953 (2011).

99. Philpott, S. M. & Bichier, F. Local and landscape drivers of predation services in urban gardens. *Ecol. Appl.* 27, 966–976 (2017).

100. Eötös, C. R., Lövé, G. L. & Magura, T. Predation pressure on sentinel insect prey along a riverside urbanization gradient in Hungary. *Insects* 11, 97 (2020).

101. Eötös, C. R., Magura, T. & Lövé, G. L. A meta-analysis indicates reduced predation pressure with increasing urbanization. *Landsc. Urban Plan.* 180, 54–59 (2018).

102. Mata, L. et al. Conserving herbivorous and predatory insects in urban green spaces. *Sci. Rep.* 7, 40970 (2017).

103. Croci, S., Butet, A., Georges, A., Aguadidad, R. & Clergeau, P. Small urban woodlands as biodiversity conservation hot-spot: a multi-taxon approach. *Landsc. Ecol.* 23, 1171–1186 (2008).

Acknowledgements

We thank Wan-Xuan Li (NCHU) for her technical assistance in the field sampling. The project was supported by the Ministry of Science and Technology, Taiwan (MOST 106-2311-B-005-010-MY3).

Author contributions

M.H.P., K.L.L. and Y.C.H conducted the sampling and prepared the data. M.H.P. analysed the data, wrote the concept version of the manuscript and prepared figures. K.B.N supervised the overall process. All authors approved the final version of the manuscript.
Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-73121-0.
Correspondence and requests for materials should be addressed to K.-B.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020