Rhodymeniocolax mediterraneus sp. nov. (Rhodymeniales, Rhodophyta), parasitic on Rhodymenia ardissonei from the western Mediterranean Sea

Alba Vergés1*, Celia Izquierdo1 and Marc Verlaque2

1Departament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
2UMR 6540, Centre d’Océanologie de Marseille, Université de la Méditerranée, Parc Scientifique et Technologique de Luminy, F13288 Marseille cedex 9, France

A. Vergés, C. Izquierdo and M. Verlaque. 2005. Rhodymeniocolax mediterraneus sp. nov. (Rhodymeniales, Rhodophyta), parasitic on Rhodymenia ardissonei from the western Mediterranean Sea. Phycologia 44: 510±516.

Rhodymeniocolax mediterraneus Vergés, Izquierdo & Verlaque sp. nov., a sublittoral adelphohemiparasite of Rhodymenia ardissonei from the western Mediterranean Sea, is described. The distinctive vegetative and reproductive characteristics of the new species are: plants generally less than 6 mm in height with terete to compressed axes up to 1(±2) mm broad; a cortex composed of one to three layers of cells; spermatangia arranged in sori located on the subapical part of the thallus; cystocarps laterally positioned on branches; and cruciate tetrasporangia borne in sori. A comparison is made with other parasitic genera of Rhodymeniales and other species of Rhodymeniocolax.

INTRODUCTION

As a part of the ‘Flora Phycologica Iberica’ project, which started with the monographs of Fucales (Gómez Garreta 2001) and Kallymenia J. Agardh (Vergés 2001), the monograph of Rhodymeniales is being carried out in the Iberian Peninsula at present (Izquierdo Ramírez 2003; Sánchez 2003). During the study of the genus Rhodymenia Greville (1830), a new species of parasitic Rhodymeniales was discovered on Rhodymenia ardissonei Feldmann. This species, previously reported from Corsica as Rhodymeniocolax sp. by Verlaque (1987), is described herein as Rhodymeniocolax mediterraneus Vergés, Izquierdo & Verlaque sp. nov.

MATERIAL AND METHODS

This study is based on Mediterranean specimens collected subtidally by scuba diving in Corsica (France) during May 1981 and July 1982, and intertidally in Catalonia (Spain) from September 2002 to May 2004. Specimens were collected from 0 to 7 m depth. Specimens were preserved in buffered 5% formaldehyde-seawater until further treatment. Transverse and longitudinal sections were made with a Criocut-1800 (Reichert-Jung) freezing cryotome, stained in acidified 1% aniline-blue distilled water, and mounted permanently in 50% Karo corn syrup. Drawings were made using a Labophot 2 Nikon microscope with a camera lucida and photographs using a Zeiss Axioskop 2 microscope with a digital camera.

Voucher specimens and slides were deposited in the Herbarium of the University of Girona, Spain (HGI), in the algae section with reference letters HGI-A, and the Herbarium of Marc Verlaque, Centre d’Océanologie de Marseille, France, with the reference letter: F (wet specimens).

* Corresponding author (alba.verges@udg.es).

RESULTS

Rhodymeniocolax mediterraneus Vergés, Izquierdo & Verlaque sp. nov.

Figs 1–17

Diagnosis: Thallus 1–4(–6) mm altus, rami teretes vel compressi, 1–5 mm longi et 0.2–1(–2) mm lati, verrucosi si cystocarpia sunt; semiparasita in Rhodymenia ardissonei; structura multiaxialis, incrassatam corticem 1–3 cellulas latum et medullam pseudoparenchymato.
Reproduction. Gametangial thalli monoeccious, procarpic; spermangia in subapical sori, 1–3 µm in diameter; carpogonial branches four-celled and auxiliary branches two-celled borne on an inner supporting cell; carpogonial branches erect; basal fusion cell branched; ovoid to angular carposporangia, 4–10 µm in diameter, produced by each gonimoblast cell; basal nutritive tissue not conspicuous; erect filaments disintegrating around the gonimoblast; cystocarps protruding, often clustered, hemispherical, 200–675 µm across, ostiolate; tetrasporangia in subapical sori, 16–33 × 8–18 µm, decussately or cruciately divided.

Etymology: The epithet refers to the Mediterranean Sea, which is the type region.

Holotype: HGI-A 5836a, gametophyte with cystocarps, parasitic on Rhodymenia ardissonei, deposited at the University of Girona. Collected by C. Izquierdo on 18 May 2003, 0.5 m depth (eight microscope slides: S-5836a-1–S-5836a-8).

Isotypes: Isotype collection deposited at the University of Girona. Four sporophytes (HGI-A 5836b–e), two gametophytes (HGI-A 5836f–g) and eight microscope slides (S-5836b-1–S-5836b-8) realized with the specimen HGI-A 5836b.

Type locality: Cala St Francesc, Blanes (41°41′N, 2°48′E), Spain, Mediterranean Sea.

Selected specimens examined: Spain: Catalonia, BLANES – Cala St Francesc, 0.5 m depth, Cystoseira mediterranea Sauvageau community (C. Izquierdo: 19 May 2002, HGI-A 5845 †); 0.5 m depth, Corallina elongata J. Ellis & Solander community (C. Izquierdo: 16 June 2002, HGI-A 5809 †); 7 July 2002, HGI-A 5810 †; 1 September 2002, HGI-A 5846 †; 22 September 2002, HGI-A 5811 †; 30 March 2003, HGI-A 5814 †; Rhodymenia ardissonei community in a rocky hole (C. Izquierdo: 9 February 2003, HGI-A 5800 †; 18 May 2003, HGI-A 5836 †, HGI-A 5836b †, HGI-A 5836c †; 6 July 2003, HGI-A 5863 †). Calonge, Roques Planes, 0.5 m depth, Rhodymenia ardissonei community in a rocky hole (C. Izquierdo: 18 March 2003, HGI-A 5808 †; 14 May 2003, HGI-A 5834 †, HGI-A 5839 †); (N. Sánchez & A. Vergés: 30 May 2004, HGI-A 6313 †, 6314 †). Palamós, Punta del Moll, 0.5 m depth, Corallina elongata community (C. Izquierdo: 14 May 2003, HGI-A 5835 †). Palamós, Cala Fosca, 0.5 m depth, Rhodymenia ardissonei community in a rocky hole (C. Izquierdo: 25 April 2003, HGI-A 5825 †). Mataró, Platja del fortí, 0.5 m depth, Rhodymenia ardissonei community in a rocky hole (L. Polo & C. Izquierdo: 17 July 2003, HGI-A 5900 †).

France: Corsica. Galeria, 7 m depth, Halopteris filicina (Grateloup) Kützing & Rhodymenia ardissonei communities (M. Verlaque: 24 May 1981, F1229 †; 5 July 1982, F1269–F1271 †; 5 July 1982, F1272 †).

Distribution: Until now Corsica (France) and Catalonia (Spain), north-western Mediterranean, but distribution probably similar to that of the host Rhodymenia ardissonei, which is widely distributed in the Mediterranean Sea (Guiry & Nic Dhoonchaa 2005).

Fig. 5. Transverse section of the thallus (HGI-A 5808).
Fig. 6. Longitudinal section of the base showing small-celled filaments of the parasite between larger medullary cells of the host. Arrowheads: secondary pit-connections between the parasite and the host cells (HGI-A 5800). Scale bars = 500 µm (Figs 1, 2, 3), 3 mm (Fig. 4), 30 µm (Figs 5, 6).
Table 1. Comparison of *Rhodymeniocolax* and the other genera of parasites of the Rhodymeniales.1

References	Champiocolax	Faucheocolax	Gloiocolax	Rhodymeniocolax
Bula-Meyer (1985), Womersley (1996)	Setchell (1923), Sparling (1957), Hawkes & Scagel (1986)	Sparling (1957)	Setchell (1923), Sparling (1957), Irvine & Guiry (1983), Hawkes & Scagel (1986), Womersley (1996), this study	
Number of species	2	1	1	4
Height (mm)	1.0–4.0	1.0–4.5*	1.0–1.5*	0.75–6.0
Thallus	hollow	solid	solid	solid
Diaphragms	present	absent	absent	absent
Cortical filaments	*Champa*-like	anticalinal	anticalinal	pseudoparenchymatous or anticalinal
Cortical layers	1–2	7–8*	7–8*	1–3 (–6)
Gametophytes	in sori	m.d.	m.d.	monocious or dioecious
Spermangia	m.d.	m.d.	m.d.	in sori
Diameter (µm)	2–4	—	—	1–4
Sterile branch	absent	—	—	four-celled, slightly bent
Diameter (µm)	250–1000*	600*	m.d.	ostiolate
Cystocarps	persistent (telar achroinoida)	persistent (telar achroinoida)	persistent (telar achroinoida)	disintegrating
Vegetative erect filaments	present but very slight	present	m.d.	present
Diameter of carposporangia (µm)	7–11	15–30*	m.d.	4–12
Tetrasporangia	tetrahedral, scattered over the thallus	cruciate, scattered over the thallus	cruciate, scattered over the thallus	decussate–cruciate, scattered over the thallus, in sori or nemathecia
Size (µm)	29–42 × 14–25*	15–26 × 10–13*	13–33 × 8–13*	16–33 × 8–18
Hosts	*Champa* spp.	*Fauchea* spp.	*Gloiocladia* spp.	*Rhodymenia* spp.
Distribution	NW Atlantic (Caribbean), S Australia	NE Pacific (from British Columbia to California)	SW Pacific (New Zealand)	Mediterranean, NE Atlantic (British Isles), NE Pacific (from Washington to S California), S Australia

1 *, From the illustrations by the authors; m.d., missing data.

Habitat and Seasonality: *Rhodymeniocolax mediterraneus* grows exclusively from 0 to 10 m depth on *Rhodymenia ardissoni*. The host is either directly attached to the rocky substratum or to sponges, as understory of large erect algae or as monospecific stand in rocky holes. The infected specimens of *R. ardissoni* are intermixed with uninfected ones. The parasite was never found below 10 m depth although R. ardissoni is frequent in the deep sublittoral assemblages. All the studied specimens were fertile. The gametophytes and tetrasporophytes sometimes occurred on the same host. The species was apparently absent on *R. ardissoni* collected in autumn (from October to December). A cryptic form (endoparasitic because pigmented) on *Rhodymenia* grows over the thallus, in sori or nemathecia. Cystocarps are formed in subapical sori on the branches. The outermost cortical cells elongate and form one or two spermatangial mother cells, up to 8 µm in diameter, that cut off outwardly one or two spermatangia measuring up to 3 µm in diameter. Spermatia are shed through mucilage that becomes very thick during spermatangial development (Fig. 7).

Reproductive Structures: The gametophytes are monocious. Spermatangia are formed in subapical sori on the branches. The cortical cells are 5–10 µm in diameter. The pseudoparenchymatous medulla, up to 1200 µm across, consists of nonpigmented, isodiametric to oblong cells, 100 µm long and 20–80 µm in diameter in the centre of the thallus and diminishing in diameter towards the cortex (Fig. 5). At the host–parasite interface, cells of the parasite creep between the cortical and medullary cells of the host without apparent modification to the host’s structure. Cells of both algae are contiguous and secondarily pit-connected (Fig. 6).

Vegetative Structure: The thallus structure is multiaxial. The cortex consists of one to three layers of rounded to ovoid cells. Outer cortical cells are 5–10 µm in diameter. The pseudoparenchymatous medulla, up to 1200 µm across, consists of nonpigmented, isodiametric to oblong cells, 100 µm long and 20–80 µm in diameter in the centre of the thallus and diminishing in diameter towards the cortex (Fig. 5). At the host–parasite interface, cells of the parasite creep between the cortical and medullary cells of the host without apparent modification to the host’s structure. Cells of both algae are contiguous and secondarily pit-connected (Fig. 6).

Plants are procarpic with four-celled carpogonial branches, which are slightly bent and positioned on a modified inner cell that acts as a supporting cell. The first three cells of the carpogonial branch are
angular in shape. The carpogonium is ovoid or round with a simple trichogyne (Fig. 8). The supporting cell, which is 17±28 μm in diameter, is round or occasionally ovoid and bears the two-celled auxiliary branch; 2nd, second cell of the carpogonial branch; 3rd, third cell of the carpogonial branch.

The transfer of the nucleus from the zygote to the auxiliary cell has not been observed after presumed fertilization. From the auxiliary cell, a primary gonimoblast cell is formed and acquires a ‘wineglass’ shape when the gonimoblast is young (Figs 9, 15). Later, the supporting cell, auxiliary mother cell, auxiliary cell and the primary gonimoblast cell form a large and elongated fusion cell (Figs 10, 11). The protein bodies in the auxiliary cell disappear and a deeply stained ring appears at the basal margin of the primary gonimoblast cell from which develop some thick gonimoblast filaments that form gonimolobes (Fig. 11). Most of the cells of the carposporophyte become carposporangia, which measure 4–8(–10) μm in diameter when young and 9–12(–18) μm when mature. The basal nutritive tissue is formed by ovoid cells (Figs 10, 13). Around the young gonimoblast there are some vegetative cells that become erect filaments, most of which disintegrate when the gonimoblast matures (Figs 10–12). The cystocarps are laterally inserted over the thallus and often clustered. The mature cystocarps, protruding, hemispherical, ostiolate, reach up to 625 μm in height (including the pericarp) and 200–675 μm in diameter. The pericarp, 80–125 μm thick, is formed by up to 13 layers of small round cells arranged in radial rows (Fig. 13).

The decussately or cruciately divided tetrasporangia, 16–33 × 8–18 μm, are basally pit-connected to the inner cortical cells and located in extensive sori near the apices of the thallus. The two to three outer cortical cells of tetrasporangial sori are elongated (Figs 16, 17).

DISCUSSION

The four adelphoparasitic (sensu Feldmann & Feldmann 1958) genera presently included in the Rhodymeniales, *Faucheocolax* Setchell (1923), *Rhodymeniocolax* Setchell (1923), *Gloiocolax* Sparling (1957) and *Champiocolax* Bula-Meyer (1985), are easily distinguishable by their host specificity and anatomical and reproductive features (Table 1). *Champiocolax* differs from the other genera by having a hollow thallus with monostromatic diaphragms, four-celled carpogonial branches, a *tela arachnoidea* (persistent distinctive network of cobweb-like filaments surrounding mature carposporophytes, Saunders et al. 1999) and tetrahedral tetrasporangia (Bula-Meyer 1985; Womersley 1996). *Faucheocolax* and *Gloiocolax* are characterised by anticlinal cortical filaments, three-celled carpogonial branches, the presence of a sterile branch on auxiliary mother cells and a *tela arachnoidea* (Sparling 1957; Hawkes & Scagel 1986). According to Sparling (1957, p. 345), the arrangement of the carpogonial branches in the parasitic genera of Rhodymeniales is not very valuable as a distinguishing feature, although in *Gloiocolax* the carpogonial branch is straight and in *Faucheocolax* is slightly bent. Lastly, *Rhodymeniocolax* is well characterised by being parasitic on *Rhodymenia* and in having a pseudoparenchymatous cortex (at least in the young part), four-celled carpogonial branches, no sterile branch on the auxiliary mother cells, disintegrating erect filaments between the gonimoblast and the pericarp and cruciate tetrasporangia.

Two species are currently assigned to the genus *Rhodymeniocolax*, *R. botryoidea* Setchell (1923, as *R. botryoidea*), the

Fig. 14. Transverse section of female gametophyte showing an auxiliary cell branch prior to the development of the gonimoblast (HGI-A 5835).

Fig. 15. Vertical section of a carposporophyte showing primary gonimoblast cell extending gonimoblast filaments (HGI-A 5814). Scale bars = 10 μm (Figs 7–9), 50 μm (Fig. 10), 30 μm (Figs 11–13) and 20 μm (Figs 14, 15).

Figs 16, 17. Tetrasporangial features.

Fig. 16. Surface view of a tetrasporangial sorus with mature tetrasporangia (HGI-A 5800).

Fig. 17. Transverse section of a tetrasporangial sorus (HGI-A 5834). Scale bars = 20 μm (Figs 16, 17).
type species described from southern California and reported from northern Washington to southern California (Hawkes & Scagel 1986), and R. austrinus Womersley (1996) (as R. australis, see Silva 2004), described from southern Australia. A third species occurs in the British Isles and France but it is still unnamed (Irvine & Guiry 1983; Hiscock & Maggs 1984). The habit and anatomical and reproductive structures are very similar for all the species of Rhodymeniocolax; however, they grow on specific host(s) and there are some qualitative and quantitative differences (Table 2). The thallus is tuberculate with short and thick axes, the cystocarps are terminal and tetrasporangia are scattered over most of the thallus in R. botryoides. In R. austrinus anticalinal cortical filaments are found in old cortices, and tetrasporangia occur in extensive nemathecia. Although poorly known, the unnamed species from the Atlantic differs from the Mediterranean Rhodymeniocolax in having smaller dimensions (length and diameter of axes, medullary cells), a more extended cortex (up to five cortical layers) and cystocarps that are subterminal to terminal.

Lastly, R. mediterraneus differs from all the other species in the specific host (Rhodymenia ardissonii), in habit (simple or branched thallus up to 6 mm height, with terete to compressed branches up to 2.0 mm broad), and in having (1) a pseudoparenchymatous cortex, one to three cell layers thick; (2) cystocarps clustered and laterally inserted on branches; and (3) tetrasporangia in subapical sori.

Recent meticulous investigation showed that tetrasporangia are of intercalary origin in most of species of Rhodymeniaceae and reports of terminal tetrasporangia appear to be confined to particular species of the genus Rhodymenia but are seldom if ever substantiated by accurate development studies (cf. the review in Saunders et al. 1999). In Rhodymeniocolax mediterraneus, the material studied did not allow to solve the origin of tetrasporangia and only basal pit-connection of mature tetrasporangia to inner cortical cells was observed.

The genus Rhodymeniocolax is closely related to the anatomy and reproductive structures of its hosts, but differs in having: (1) a probably hemiparasitic way of life; (2) a highly reduced stature; (3) three layers of cortical cells; and (4) a medulla composed of more than two layers of ovoid to elongated cells that are not as large as their host's. There are limited data on the cystocarps of Rhodymenia ardissonii (Codomier et al. 1988) and the reproductive male and female structures are unknown, so comparisons cannot be made with those of Rhodymeniocolax mediterraneus (Table 3).

In conclusion, we propose that these criteria are sufficient to recognize R. mediterraneus as a new species. Saunders et al. (1999, p. 35) emended the definition of the four families

Table 2. Comparison of the species of Rhodymeniocolax.

References	R. botryoides	R. austrinus	R. sp.	R. mediterraneus
Distribution	NE Pacific (from Washington to S California)	S Australia	NE Atlantic (British Isles)	Mediterranean (Spain, France)
Hosts	Rhodymenia pacifica Kylin	Rhodymenia sonderi P.C. Silva (= R. australis Sonder)	Rhodymenia spp.	Rhodymenia ardissonii Feldmann
Thallus	tuberculate to short compact filaments	simple or few branched	simple or branched	simple or few branched
Size (mm)	2–4 (diameter) 1–3 (±4) (height)	1–5 (height)	5 (diameter)	14–6 (height)
Axes	short and thick	terete to compressed	terete to slightly compressed	terete to compressed
Length (mm)	0.75	1.0–1.5 (±2.0)	2.0	1.0–5.0
Diameter/width (mm)	0.8–1.0*	0.3–0.6 (±1.5)	0.75	0.2–1.0 (±2.0)
Cortex	pseudoparenchymatous to short compact filaments	pseudoparenchymatous to anticlinal filaments	m.d. pseudoparenchymatous	
Cortical layers	1–4*	2–6	1–5	1–3
Larger medullary cells, diameter (μm)	m.d.	50–120	15–50	20–60 (±80)
Monococious/dioecious	m.d.	dioecious	m.d.	monococious
Carpogonial branches	four-celled	four-celled	m.d.	four-celled
Location of cystocarps on the axes	terminal	lateral	subterminal to terminal	lateral
Diameter of cystocarps (μm)	500–600*	400–600 immature	200–675	4–10
Ostiulate	yes*	yes m.d.	yes disintegrating	m.d.
Vegetative erect filaments	m.d.	disintegrating	m.d.	disintegrating
Diameter of carposporangia (μm)	6–12	2–4	2–4	1–3
Arrangement of spermangia	in sori	scattered over most of the thallus, cortex unmodified	unknown in sori	in sori, cortex slightly modified
Arrangement of tetrasporangia	in extensive nemathecia	unknown	m.d.	unknown
Size (μm)	17–22 × 9–12*	20–30 × 8–14	—	16–33 × 8–18

1 * From the illustrations by the authors; m.d., missing data.
of the order Rhodymeniales based on a molecular-systematic investigation. The new species described in this paper fulfills almost all the characters of the emended family of the Rhodymniaceae.

ACKNOWLEDGEMENTS

This study was supported by the ‘Flora Phycologica Iberica’ Programme of the Ministerio de Educacion, Cultura y Deporte REN 2001-1473-C03-02/GLO. We are most grateful to John Huisman for the review of the manuscript and helpful comments and suggestions, and also to an anonymous reviewer for improving the manuscript. We also thank Noemi Sanchez for collecting samples and for valuable discussions. C. Izquierdo had a grant from the University of Girona.

REFERENCES

ABBOTT I.A. & HOLLENBERG G.J. 1976. Marine algae of California. Stanford University Press, California, USA. 827 pp.

BULA-MEYER G. 1985. Champioliocar saxae gen. et sp. nov., an adelphoparasite of the Champiaceae (Rhodymeniales, Rhodophyta). Phycologia 24: 429–435.

CODOMIER L., BALLESTEROS E. & SEGOT M. 1988. Croissance et developpement de Rhodymenia ardissoeni J. Feldmann (Rhodymeniales, Rhodymniacées). Giornale Botanico Italiano 122: 189–202.

DAWSON E.Y. 1945. Notes on Pacific coast marine algae. III. Madroño 8: 93–97.

FELDMANN J. & FELDMANN G. 1958. Recherches sur quelques Floridées parasites. Revue Générale de Botanique 65: 49–124.

GOMEZ GARRITA A. [Ed.] 2001. Flora phycologica iberica, vol. 1 Fucales. Universidade de Murcia, Murcia, Spain. 192 pp.

GREVILLE R.K. 1830. Algae britannicae. McLachlan & Stewart, Baldwin & Cradock, Edinburg & London. 218 pp.

GUiry M.D. & NIC DIONNCHA E. 2005. AlgaeBase version 2.1. Worldwide electronic publication, National University of Ireland, Galway. http://www.algaebase.org (15 February 2005).

HAWKES M.W. & SCADEL R.F. 1986. The marine algae of British Columbia and northern Washington: division Rhodophyta (red algae), class Rhodophyceae, order Rhodymeniales. Canadian Journal of Botany 64: 1549–1580.

HISCOCK S. & MAGGS C.A. 1984. Notes on the distribution and ecology of some new and interesting seaweeds from South-west Britain. British Phycological Journal 19: 73–87.

IRVINE L.M. & GUiry M.D. 1983. Rhodymeniales. In: Seaweeds of the British Isles, Volume I. Rhodophyta. Part 2A, Cryptonemiales (sensu stricto), Palmariiales, Rhodymeniales (Ed. by L.M. Irvine). pp. 73–98. British Museum (Natural History), London, UK.

IZQUIERDO RAMÍREZ C. 2003. Morfología, desenvolupament i adaptacions ecosistémiques de dues poblacions de Rhodymenia ardissoeni (Rhodymeniales, Rhodophyta) de la costa catalana en relació a la seva distribució batimètrica. Memòria Treball de Recerca, Universitat de Girona, Spain. 114 pp.

KYLIN H. 1930. Über die Entwicklungsgeschichte der Florideen. Acta Universitatis Lundensis 26(6): 1–104.

SÁNCHEZ N. 2003. La família Faucheaceae (Rhodymeniales, Rhodophyta) a les costes catalana, balear i valenciana. Memòria Treball de Recerca, Universitat de Girona, Spain. 181 pp.

SAUNDERS G.W., STRACHAN I. & KRAFT G.T. 1999. The families of the Rhodymeniaceae. Canadian Journal of Botany 78: 39–49.

SETCHELL W.A. 1923. Parasitic Florideae, II. University of California Publications in Botany 10: 393–396.

SILVA P.C. 2004. Index Nominum Algarum, University Herbarium, University of California, Berkeley. Available online at http://ucjeps.berkeley.edu/INA.html.

SPARLING S.R. 1957. The structure and reproduction of some members of the Rhodymeniaceae. University of California Publications in Botany 29: 319–396.

VERGES A. 2001. El gênie Kallymenia (Kallymeniaceae, Rhodophyta) a la península Ibérica i illes Balears. PhD thesis. University of Girona, Spain. 298 pp.

WEMERLY H.B.S. 1996. The marine benthic flora of southern Australia, part III B. Australian Biological Resources Study, Canberra, Australia. 391 pp.

Received 4 August 2004; accepted 26 April 2005
Communicating editor: W. Nelson

Table 3. Comparison of Rhodymenicolax mediterraneus and its host Rhodymenia ardissoeni.

Character	Rhodymenia ardissoeni	Rhodymenicolax mediterraneus
References	Codomier et al. (1988), Izquierdo Ramírez (2003)	this study
Way of life	autotrophic	hemiparasitic
Height (mm)	<50–60	1–4 (–6)
Cortical layers	1–2	1–3
Medullary layers	2	>2
Larger medullary cells (μm)	80–150 × 40–60	100 × 80
Carpogonial branches	unknown	four-celled
Vegetative erect filaments	absent	disintegrating
Diameter of cystocarps (μm)	600–700	200–675
Ostiole	present	present
Spermatangia	unknown	in sori
Tetrasporangia	cruciate, in sori	decussate-cruciate, in sori
Size (μm)	25–28 × 15–18	16–33 × 8–18

Phycologia, Vol. 44 (5), 2005