Exciton-polariton trapping and potential landscape engineering

C Schneider¹, K Winkler¹, M D Fraser², M Kamp¹, Y Yamamoto³,⁴, E A Ostrovskaya⁵ and S Höfling¹,⁶

¹ Technische Physik, Physikalisches Institut and Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
² Quantum Functional Systems Research Group, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
³ ImPACT Project, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan
⁴ Edward L. Ginzton Laboratory, Stanford University, Stanford, CA 94305-4085, USA
⁵ Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra ACT 2601, Australia
⁶ SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK

E-mail: christian.schneider@physik.uni-wuerzburg.de

Received 6 August 2014, revised 7 July 2016
Accepted for publication 19 July 2016
Published 14 November 2016

Abstract
Exciton-polaritons in semiconductor microcavities have become a model system for the studies of dynamical Bose–Einstein condensation, macroscopic coherence, many-body effects, nonclassical states of light and matter, and possibly quantum phase transitions in a solid state. These low-mass bosonic quasiparticles can condense at comparatively high temperatures up to 300 K, and preserve the fundamental properties of the condensate, such as coherence in space and time domain, even when they are out of equilibrium with the environment. Although the presence of a confining potential is not strictly necessary in order to observe Bose–Einstein condensation, engineering of the polariton confinement is a key to controlling, shaping, and directing the flow of polaritons. Prototype polariton-based optoelectronic devices rely on ultrafast photon-like velocities and strong nonlinearities exhibited by polaritons, as well as on their tailored confinement. Nanotechnology provides several pathways to achieving polariton confinement, and the specific features and advantages of different methods are discussed in this review. Being hybrid exciton-photon quasiparticles, polaritons can be trapped via their excitonic as well as photonic component, which leads to a wide choice of highly complementary trapping techniques. Here, we highlight the almost free choice of the confinement strengths and trapping geometries that provide powerful means for control and manipulation of the polariton systems both in the semi-classical and quantum regimes. Furthermore, the possibilities to observe effects of the polariton blockade, Mott insulator physics, and population of higher-order energy bands in sophisticated lattice potentials are discussed. Observation of such effects could lead to realization of novel polaritonic non-classical light sources and quantum simulators.

Keywords: excitons, polaritons, light–matter coupling, semiconductors, quantum optics, microcavities, Bose–Einstein condensation

(Some figures may appear in colour only in the online journal)
1. Introduction

The term ‘polariton’ is generally used in solid state physics, when an optical excitation is strongly coupled to a matter excitation. The matter excitation can be provided by a plasmon, a photon, an electron, or an exciton. This review article exclusively discusses exciton-polaritons in microcavity systems. The excitons, which are bosonic composite quasiparticles consisting of an electron and a hole bound via their Coulomb attraction in a semiconductor, can be confined in quantum well (QW) structures embedded in optical microcavities. If the conditions for strong light–matter coupling are fulfilled, the properties of the bosonic matter excitation and the photon light field inside the microcavity are mixed, and new eigenstates of the coupled system emerge [1, 2]. Being bosonic quasi-particles, polaritons can, in principle, condense in a single particle energy state [3]. This dynamical condensation of bosons is closely related to the Bose–Einstein condensate (BEC) phase which is usually studied in ultra-cold atomic systems [4]. However, due to the finite lifetime of polaritons even in state-of-the-art microcavities, thermal equilibrium between the polaritons and their environment is very hard to establish. Nevertheless, the long-range spatial [3, 5] and temporal [6–8] coherence of polariton condensates has been demonstrated, revealing the characteristic signatures of a BEC [9]. The effective mass of a microcavity polariton is approximately five orders of magnitude smaller than that of a free electron and nine orders of magnitude smaller than that of an atom. Since the critical temperature for the Bose condensation is inversely proportional to the particle mass [10], polaritons are well suited for the studies of condensation in the temperature range from liquid helium up to room temperature.

Polaritons exist in a semiconductor microcavity environment, hence their properties can be tailored by means of semiconductor lithography and nanotechnology. Manipulation of the polaritonic systems via spatial trapping of excitons and/or photons in real and momentum space can therefore provide access to completely new mesoscopic physics in semiconductors. While photons have to be confined in a cavity to achieve sufficiently long lifetimes to form polaritons, excitons are usually located in quantum wells to enhance the oscillator strength of the emitters and to reduce possible detrimental effects of surface recombinations. Consequently, polaritons formed by the cavity photons and QW excitons are quasi-particles supported by a 2D environment of a quantum well-microcavity system. In order to allow for the observation of phase transitions related to Bose–Einstein condensation at finite temperatures, the exciton-polariton system should be of a finite size, since otherwise the long range order would be destroyed by thermal fluctuations [11]. This condition is usually assured by a finite area of optical (or electrical [12]) excitation. Engineering of additional lateral (i.e. in the QW plane) traps in the semiconductor yields the possibility to create sophisticated potential landscapes with the spatial scales of the order of the polariton wavelength (∼1 μm), and therefore to study interactions and transport of polariton condensates in tailored environments. This possibility, in turn, can be exploited in designing new schemes for highly nonlinear photonic integrated circuits (PICs) and logic elements [13, 14]. Such PICs promise ultra-high processing speeds and very low power consumption, since polaritons can propagate with ultrafast velocities and low decoherence rates. The large polariton nonlinearities inherited from the excitonic component enables manipulation [15], switching and steering of the polariton flow by very weak laser beams [16] and possibly electrical contacts. Additionally, the spin degree of freedom in the polariton system can be actively exploited to add new functionalities to polaritonic logic devices, as discussed in [17].

The possibility to engineer polariton trapping potentials has further triggered the interest in using polaritonic systems to emulate complex many-body phenomena, such as the physics of high-temperature superconductors, graphene, or frustrated spin lattices [18–20]. Quantum emulators are envisaged as a highly desirable tool for understanding complex many-body properties of novel solid state, chemical, and biological systems, which are otherwise hardly accessible. They rely on the emulation of Hamiltonians via potential landscape engineering in highly controllable quantum systems [21]. Polariton gases in microcavities are considered as promising candidates for solid state quantum emulation, as they fulfill a range of important prerequisites: namely, they can form bosonic condensates and enter a superfluid phase [22], possess internal (pseudo-spin) degrees of freedom, can be localized by lithographic or optical techniques possibly at the single polariton level, and their interaction constants are tunable [23, 24]. One example of progress towards quantum emulations is periodic potential landscapes, where higher-band p- and d-orbital-like condensates mimic the fundamental structure of high temperature superconductors [18, 25], offer the possibility to study Dirac cones [19, 26], and are predicted to implement Bose-Hubbard Hamiltonian physics in semiconductors [27].

Predictions of the quantum blockade regime in the dilute polariton systems have gained significant attention [28–30]. This effect would allow one to exploit the fascinating properties of polaritons in integrated quantum light sources, sources of entangled and indistinguishable photons [31], and to generate polariton number states in microcavity traps. The latter effect could pave the way for the study of quantum phase transitions and Bose–Hubbard physics with light, and therefore open new directions in the solid state microcavity research. However, the experimental demonstration of polariton quantum blockade critically relies on the tight trapping of polaritons to enhance polariton–polariton interactions [28], or on the controlled coupling of polariton cavities to facilitate quantum interference [30]. The experimental and technological challenges are significant, and consequently the effect has not been demonstrated yet.

The rapidly expanding research on exciton-polaritons creates an unrelenting demand for elegant and non-destructive methods for trapping polaritons in a microcavity. This review summarizes a number of complementary techniques that have been developed to meet the demand. We discuss the techniques for trapping the excitonic component of the polaritons by manipulating the QWs or by structuring the optical pump, as well as methods for trapping the photonic component by
manipulating a microcavity. We review the most prominent experiments enabled by each of the trapping techniques, and discuss the limitations and prospects.

2. Theory

2.1. Quantum well excitons

The excitons are localized in the plane of the QW, however the in-plane exciton wavefunction is usually delocalized over a large number of the crystalline lattice sites due to the electromagnetic screening in the semiconductor with a characteristic Bohr radius of 5–15 nm and the binding energy of 4–10 meV for typical III/V compounds (except nitrides). Since the physics of quantum well excitons has been studied for several decades, here we will only summarize the most important physical relations and parameters and refer the interested reader to the exhaustive literature (see e.g., [1, 32–34]).

The energy spectrum of a Wannier–Mott exciton in a crystal with a dielectric constant \(\varepsilon \) can be found in the effective mass approximation, by solving the Schrödinger equation for an electron in a hydrogen atom, where the free electron mass, \(m_0 \), is replaced by the reduced mass \(\mu = m_e m_h/(m_e + m_h) \) (here \(m_e \) and \(m_h \) are the effective masses of an electron and a hole, respectively), and the vacuum permittivity \(\varepsilon_0 \) is replaced by \(\varepsilon \varepsilon_0 \).

The Schrödinger equation for the relative electron–hole motion

\[
\left(-\frac{\hbar^2}{2\mu} \nabla^2 - \frac{e^2}{4\pi\varepsilon\varepsilon_0 r} \right) \psi(r) = E\psi(r),
\]

where \(r \) is the relative distance between the electron and the hole, has a solution in the form of the 1s scattering wavefunction

\[
\psi(r) = \frac{1}{\sqrt{\pi a^3}} e^{-r/a}
\]

with the Bohr radius \(a_B = 4\pi\varepsilon\varepsilon_0\hbar^2/(\mu e^2) \) and the corresponding eigenenergy \(E = 2\mu e^4/(8\pi^2\hbar^2\varepsilon\varepsilon_0) \).

In a quantum confined systems, such as quantum wells, the reduced dimensionality leads to modifications in these quantities, and the Bohr radius, as well as the binding energies of the excitons, critically depend on material parameters. In the presence of confinement, excitonic effects generally are enhanced, e.g., in a four fold increase of the exciton binding energy in an ideal 2D system. The effects of confinement on excitons are thoroughly investigated in references [1, 32, 34, 35], to list a few.

The oscillator strength of QWs can be expressed in terms of the overlap integral between the electron and hole wavefunctions. Excitonic effects lead to an increase of the oscillator strength compared to band-to-band transitions. The oscillator strength for a transition \(f \) can be expressed in the effective mass approximation in terms of the periodic (Bloch) part of the wavefunctions in the valence (\(v \)) and in the conduction bands (\(c \)) \(u_{v,c} \) and the envelope \(F_{v,c} \) with the momentum operator \(\hat{p} \) and the polarization vector \(\hat{e} \):

\[
f = \frac{2}{\mu\hbar\omega} |\langle u_v | \hat{e} \hat{p} | u_c \rangle|^2 |\langle F_v | F_c \rangle|^2, \tag{3}
\]

where \(\hbar \omega \) is the energy of the considered transition.

The oscillator strength is closely related to the optical absorption in a QW as follows:

\[
A = \frac{4\pi^2\varepsilon^2\hbar f}{nm_0 L}. \tag{4}
\]

where \(n \) is the refractive index of the material, \(L \) is the well width, and \(A \) is the integrated absorption intensity (in units of eV cm\(^{-1}\)). This quantity can therefore be determined via photon absorption spectroscopy [34].

2.2. Microcavity photons

There exist a wide range of possibilities to trap photons in semiconductor microcavities in one or more dimensions. Common techniques involve total internal reflection on semiconductor-air interfaces, photonic bandgap tailoring, plasmonic resonances, or distributed Bragg reflection [1]. In the research field of microcavity polaritons, distributed Bragg reflector (DBR) based microcavities are most commonly used, since they can provide near unity reflectivity without additional sample processing and lithography steps. We will briefly summarize their basic properties in this section.

The typical cavity hosting exciton-polaritons is composed of layers with different refractive indices, such as AlAs and (Al)GaAs. If the thicknesses of the individual layers are chosen to match the Bragg condition, \(d = \lambda/(4n) \), then in such a DBR, interference of transmitted and reflected light allows to achieve extraordinary high reflectivity in a spectral window of about 100 nm around the Bragg wavelength. In order to form a cavity based on such reflectors, a photonic defect layer has to be included. We will only consider the simplest case here, namely a \(\lambda/n \)-thick defect of a high-index material (such as GaAs).

The optical mode profile in such a Fabry–Pérot resonator can be calculated by the transfer-matrix method, yielding a strong enhancement of the light intensity inside the cavity defect layer and an oscillating decay inside the DBR mirrors. Details of the method are described in [1]. From this decay, we can define an effective cavity length, which is the sum of the physical cavity length \(L_c \) and the depth of the light penetration into the mirrors:

\[
L_{\text{eff}} = L_c + \frac{n_c}{2n_c} \frac{mn_2}{|m - n_2|},
\]

where \(n_i (i = 1, 2) \) are the refractive indices of the DBR layers and \(n_c \) is the refractive index of the cavity layer.

Figure 1(a) depicts the optical field inside the cavity, as calculated by the plane-wave expansion technique. Additionally, figure 1(b) shows the reflectivity spectrum of a full structure consisting of the microcavity and the surrounding DBRs, which is characterized by a high-reflectivity region (the stop-band) and the centered resonance dip. The width of this resonance defines the so-called quality factor or Q-factor via \(Q = \omega/\Delta \omega \), which is directly linked to the lifetime
of photons in the cavity $Q = \omega \tau$. In (Al)GaAs DBR-based microcavities, Q-factors of several 100 000 are available [36, 37], which reflects the high material quality enabled by state-of-the-art epitaxy.

As the photon cannot freely propagate through the microcavity, its dispersion relation is strongly modified, and can be approximated by a parabola for small in-plane momenta, k_x: \[E(k) \approx E_0 + \frac{\hbar^2}{2m_e} k_x^2 , \] (5)
where $E_0 = E(k = 0)$. The resulting effective mass of the photon in a microcavity is defined as $m_e = \hbar n_e / (c L_c)$ and has a value on the order of $10^{-5} m_e$. A detailed derivation of this equation can be found, e.g., in [1, 38].

2.3. Exciton-polaritons and normal mode coupling

Implementing a QW with a high oscillator strength in a microcavity with a sufficiently large Q-factor can give rise to a normal mode coupling between the photonic and excitonic resonance. The energy is transferred back and forth from the excitons in the QW to the microcavity photons, which results in a characteristic Rabi oscillation in the time domain accompanied by a normal mode splitting of the polariton branches. A semi-classical treatment of this effect by modeling the system as two damped coupled oscillators is described in [39, 40]. This coupled oscillator model yields an analytical expression for the normal mode coupling in a straightforward manner. Here, we summarize some important conclusions from this model. Solving the transfer matrix equations yields an expression which connects the frequency of the polariton states with the frequency of the exciton ω_x, the cavity resonance ω_c, the coupling constant V and the dissipation rates γ_{xc}: \[(\omega_x - \omega - i \gamma_x)(\omega_c - \omega - i \gamma_c) = V^2 . \] (6)
This expression yields an equation for ω, which reads \[\omega = \frac{\omega_x + \omega_c - i(\gamma_x + \gamma_c)}{2} \pm \sqrt{V^2 + \frac{1}{4}((\omega_x - \omega_c - i(\gamma_x - \gamma_c))^2} \] (7)
The corresponding energies of the upper (UP) and lower polariton (LP) branches $h \omega$ are plotted as a function of the detuning $h \omega_c - h \omega_x$ in figure 2(a).

The splitting between the upper and LP branches on resonance is the characteristic Rabi splitting $h \Omega$. The Rabi frequency Ω is defined as:

\[\Omega = 2 \sqrt{V^2 - \frac{1}{4} (\gamma_x - \gamma_c)^2} . \] (8)
The coupling constant, V, is a function of the exciton oscillator strength f_n, an effective number of QWs in the microcavity, N_{QW}, and the effective cavity length L_{eff}:

\[V \approx \frac{2 \Gamma_{0} N_{QW}}{n_e L_{eff}} , \] (9)
with

\[\Gamma_{0} = \frac{\pi \epsilon^2}{n_e \pi \epsilon_0 \hbar^2} f_n . \] (10)

For a more detailed discussion of the normal mode coupling regime in the semi-classical description, we refer the reader to reference [39]. The hybridization of light and matter leads to a strong modification of the energy-momentum dispersion relations. In order to derive the polariton dispersion relations, one needs to introduce the Hopfield coefficients $|X|^2$ and $|C|^2$ which determine, respectively, the fraction of exciton and photon in a lower polariton:

\[|X|^2 = \frac{1}{2} \left[1 + \frac{E_x - E_c}{\sqrt{\hbar^2 \Omega^2 + (E_x - E_c)^2}} \right] \] (11)
and

\[|C|^2 = \frac{1}{2} \left[1 - \frac{E_x - E_c}{\sqrt{\hbar^2 \Omega^2 + (E_x - E_c)^2}} \right] \] (12)

As a consequence of the parabolic cavity dispersion, the lower branch of the polariton dispersion also acquires a parabolic shape around its energy minimum, and the effective mass of the LP critically depends on the exciton-photon...
detuning, \(\delta = E_c - E_e \), through the Hopfield coefficients:

\[
m_{LP} = |X|^2m_x^{-1} + |C|^2m_e^{-1}
\]

(see figure 2).

2.4. Polariton lasing and condensation

Exciton-polaritons behave as bosons in the low density limit. Due to their light effective mass, they are excellent candidates for studies of bosonic condensation effects and related phenomena at elevated temperatures in semiconductors. However, there are several restrictions:

- Polaritons only live for a short time (\(\sim 1-100 \text{ps} \)) in a microcavity before they decay. Hence, they can hardly reach true thermal equilibrium. Therefore, the condensate of exciton-polaritons is often referred to as a dynamic, open-dissipative condensate, or a polariton laser. A comprehensive discussion of the ‘polariton laser’ versus ‘condensate’ regime can be found, e.g., in [41].

- At high densities, screening of excitons is dominant, which leads to bleaching of the oscillator strength and the system enters the (fermionic) plasma phase. This typically happens for particle densities on the order of the Mott transition, i.e. \(10^{10}-10^{11} \) electron–hole pairs per cm\(^2\) in GaAs QWs [42].

- Excitons are only stable up to a certain temperature which is determined by their binding energy.

The resulting phase diagram of exciton-polaritons has been drawn by Kavokin et al [1], and is sketched in figure 3 for the case of GaAs QWs in a microcavity.

The planar microcavity exciton-polariton system is inherently two-dimensional (2D), and in accordance with the Hohenberg–Mermin–Wagner theorem, the transition to BEC in a uniform system is only possible at zero temperature [11] for 2D as well as 1D geometries. Restriction of the system to a finite size, however, inhibits excitation of density and phase fluctuations permitting the formation of a condensate or quasi-condensate phase with a macroscopic coherence length. This is true for a polariton system with a finite excitation area, both in one and two dimensions [44, 45]. In most cases, the coherence length of the polariton condensate is thus finite, and is of the order of the optical pumping spot size [3]. At macroscopic lengths, and in the 2D case, it is generally assumed that the system enters the Berezinskii–Kosterlitz–Thouless (BKT) phase, where vortex-antivortex pairs are formed, and the spatial correlation function decays according to a power law [46, 47]. Although the correlation function measurements in exciton-polariton system are suggestive of the BKT phase [48], more conclusive detection of spontaneously formed vortex pairs is required to confirm this regime.

The need to confine polaritons goes far beyond the unambiguous observation of condensation effects. As described in the introduction, the engineered confinement of exciton-polaritons paves the way for creating functional polaritonic circuits and quantum simulators, as well as for fundamental studies of polariton condensation in complex potential landscapes.
2.5. Polaritons in potential landscapes

Since exciton-polaritons are composed of light and matter, both the photonic and the excitonic part of the quasiparticle can be subject to confinement. Theoretical description of the exciton-polaritons in the engineered potentials below condensation threshold generally relies on calculating the eigenstates of photons and excitons under respective confinement conditions and then using the exciton-photon interaction Hamiltonian to derive the corresponding polariton dispersion. This approach was successfully used, e.g. to describe discrete polariton states appearing in a 0D ‘mesa’ trap [49]. Indeed, as will be discussed below in section 3.2.5, such a trap provides a purely photonic confinement of a polariton, and therefore it is sufficient to solve the Maxwell equation for the photon field, $\mathbf{\mathcal{E}}(\mathbf{r})$, with the boundary conditions given by the contour of the mesa, and assuming that at a position \mathbf{r} within the trap the electromagnetic modes are locally equivalent to the planar cavity modes: $\mathbf{\mathcal{E}}(\mathbf{r}) = \mathbf{\mathcal{E}}_0(\mathbf{r}) \exp(i \mathbf{k}_c(\mathbf{r}) z)$, where $\mathbf{k}_c(\mathbf{r})$ is a suitably modified propagation constant. Introducing the field operators of cavity photons, $\hat{\mathcal{A}}$, and excitons, $\hat{\chi}$, the second-quantized Hamiltonian for the two coupled oscillators model (7) [38] can be written as:

$$\hat{H} = \sum_{\mathbf{n}} (\hbar \omega_1 \hat{\mathcal{A}}_\mathbf{n}^\dagger \hat{\mathcal{A}}_\mathbf{n} + \hbar \omega_2 \hat{\chi}_\mathbf{n}^\dagger \hat{\chi}_\mathbf{n}) + \sum_{\mathbf{n},\mathbf{n}'}(\hbar \Omega_{\mathbf{n},\mathbf{n}'} \hat{\mathcal{A}}_{\mathbf{n'}}^\dagger \hat{\chi}_\mathbf{n} + \text{h.c.}),$$

where summation over all quantum numbers of the bound states is assumed. Here, $\hbar \omega_1, \hbar \omega_2$ are the eigenenergies of the photon and exciton modes, and $\Omega_{\mathbf{n},\mathbf{n}'}$ is defined through the Rabi frequency in the planar region, Ω, and the overlap integrals between the corresponding exciton and photon modes [49]. In the absence of excitonic confinement, exciton modes are those of a free particle.

Similarly, using the linear exciton-photon coupling Hamiltonian (7) and (13), it was shown that the structure of the energy bands imposed either on the cavity photon mode (or the exciton mode) by a periodic potential (e.g. periodic array of mesas) translates into the band-gap structure of the polariton spectrum [50, 51]. For the case when only photonic modes are affected by the periodic potential, the energy bands of the LP state are determined as:

$$E_n^{LP} = \frac{1}{2}(E_x + E_cn - \sqrt{\hbar^2 \Omega^2 + (E_cn - E_x)^2}),$$

where $E_x = \hbar \omega_x$, are the photonic Bloch bands, and $E_c = \hbar \omega_c$. Alternatively and equivalently, the LP band structure can be calculated directly by solving the eigenvalue problem for the polariton Bloch states $u_n(r) = u_0(r + a)$ in an effective polaritonic in-plane potential $V(r) = V(r + a)$:

$$\left[\frac{\hbar^2}{2m_{lp}} (-i \nabla + \mathbf{k})^2 + V(r) \right] u_{n,\mathbf{k}}(r) = E_{n,\mathbf{k}}(r) u_{n,\mathbf{k}}(r)$$

where n is the band index and m_{lp} the effective polariton mass in the planar region. A typical structure of LP energy bands $E_{lp}(\mathbf{k})$ is plotted in figure 4 for a square lattice with $a = 3 \mu m$, and the comparison with the low density polariton emission spectrum (see section 3.2.5, figure 17) demonstrates a good agreement. Furthermore, provided the effective polariton potential is deduced with sufficient accuracy, a fractal band-gap spectrum in a Fibonacci lattice has also been shown to well reproduced by this approach [52]. For a considerable polariton density above the condensation threshold, the energy spectrum is significantly affected by the polariton–polariton interaction leading to screening of the band-gap structure [53] and formation of localized gap states [51, 54–56].

Above the condensation threshold, the linear coupled oscillator model no longer holds. With the exception of a very strong confinement in 0D structures, static and dynamic features of the exciton-polaritons condensates in trapping potentials can be well captured by the mean-field description. The mean-field models are derived under the assumption that a significant population is present in each of the intracavity modes, as well as near the energy minimum of the LP dispersion, such that bosonic stimulated scattering into the condensed state is notable.

In the case of coherent, resonant excitation of the condensed state, such as the OPO regime [22], the modified Gross–Pitaevskii equation for the cavity photon and QW exciton mode amplitudes can be written in the form:

![Figure 4](image)
\[i\hbar \partial_t \Psi_k = \left(\frac{\omega^0_k}{2\hbar} - \frac{\hbar^2}{2m_e} \nabla^2 - i\gamma_k \right) \Psi_k + \frac{\Omega}{2} |\Psi| \Psi_k + \alpha \mathcal{E}_p \]
\[i\hbar \partial_t \Psi = \frac{\Omega}{2} |\Psi| \Psi + \left(\frac{\omega_k}{\hbar} + V(\mathbf{r}, t) - i\gamma_k \right) \Psi + G|\Psi|^2 \Psi, \quad (16) \]

where \(\mathcal{E}_p(\mathbf{r}, t) = \mathcal{E}_p \exp(ikr) \exp(-i\omega_k t) \) is the optical pump field, \(\alpha \) is the response coefficient, \(G \) is the exciton-exciton interaction strength, and the exciton and photon modes are characterized by their minimum energies \(\hbar \omega^0_k \). The model in this form was successfully used, e.g., in [53] to describe dynamics of condensation in a periodic potential \(V(\mathbf{r}, t) \) imposed predominantly onto excitonic component of polaritons by surface acoustic wave modulation. Note that the effective mass of the excitons is much larger than that of cavity photons, so that their kinetic energy is ignored in equations (16).

The model equation (16), with the external potential term introduced into the equation for the cavity photon amplitude, could also serve to describe resonant excitation and nonlinear dynamics of exciton-polaritons in excited-polaritons potentials, e.g., those provided by tapered microcavities [16]. It is important to note, however, that in order to describe realistic experimental situations, the mean-field models often need to be augmented to account for non-radiative energy relaxation of excitons. This is usually done by introducing a phenomenological damping term into a modified Gross–Pitaevskii equation [57] in the spirit of thermal relaxation models for atomic condensates [58]. Recently, a stochastic Gross–Pitaevskii equation for the polariton order parameter \(\Psi_{LP} \) was derived from the full microscopic theory, under the assumption of coherent pumping and phonon-assisted energy relaxation [59], and was shown to be successful in describing thermal relaxation of a polariton condensate in an imposed potential landscape.

Finally, as will be discussed in detail in the subsequent section 3.1.5, incoherent, far off-resonant excitation of a polariton condensate provides a unique opportunity to create reconfigurable traps for polaritons induced by an optical pump via an excitonic reservoir. The model for the reservoir-coupled condensate is discussed, e.g., in [60]. In a more general form, this open-dissipative Gross–Pitaevskii equation (or modified complex Ginzburg–Landau equation), takes the form:

\[
\hbar \frac{\partial \Psi_{LP}}{\partial t} = \left[-\frac{\hbar^2}{2m_p} \nabla^2 - g_p |\Psi_{LP}|^2 + g_R \Psi_R(\mathbf{r}, t) \right. \\
\left. + \frac{\hbar^2}{2} (\tau_p R \Psi_R(\mathbf{r}, t) - \gamma_p) \right] \Psi_{LP},
\]

\[
\frac{\partial n_R}{\partial t} = - (\gamma_p + R |\Psi_{LP}|^2) n_R(\mathbf{r}, t) + P(\mathbf{r}). \quad (17)
\]

Here \(\Psi_{LP} \) is the condensate wavefunction, \(n_R \) is the reservoir density, and \(P(\mathbf{r}) \) is the spatially modulated optical pumping rate. The critical parameters defining the condensate dynamics are the loss rates of the polaritons and reservoir excitons \(\gamma_p \), the stimulated scattering rate \(R \), and the strengths of polariton–polariton, \(g_p \), and polariton-reservoir exciton, \(g_R \), interactions. Even without an engineered confining potential, the polaritons can be spatially localized in the vicinity of a single pump spot due to the gain-induced self-trapping effect, which is generic for open-dissipative systems [61–63]. Combination of several pump spots or pumping with structured light beams creates an effective polariton trap due to a strong repulsive potential induced by the reservoir density distribution \(n_R(\mathbf{r}) \). A striking effect of this all-optical trapping scheme is shown in figure 4(b), where the condensate is confined in an effective 1D harmonic potential created by two intense pump spots. The model (17) with various modifications accounting for the adiabatic evolution of the reservoir (see, e.g. [64]) phenomenological energy relaxation, and reservoir diffusion, is successfully used to describe experimental observations of all-optically trapped polariton condensates [65–68].

Theoretical and numerical studies of the model (17) have also resulted in a number of predictions concerning the behaviour of far off-resonantly excited polariton condensates in the presence of an engineered trapping potential. For example, trap-induced deformations of the polariton density [62, 64], instabilities promoting vortex formation [64, 69], and detailed structure of excited states in harmonic potentials [70] were described theoretically, but still await to be systematically tested in experiments.

Finally, it has been predicted that in the presence of spatial confinement, polariton interactions can be notably enhanced [28]. The nonlinear coefficient characterising the polariton interaction in the presence of optical confinement within a cylindrical area of radius \(r_0 \) is calculated as a function of the structure parameters in [28]. The interaction energy reads: \(\hbar \sigma_{int} = 2.67 \hbar\kappa/(2r_0)^2 \), where \(\kappa \) quantifies the polariton blueshift without lateral confinement, and is of the order of \(\hbar\kappa = 1.5 \times 10^{-2} (\mu m)^2 \) meV. If the value for \(\sigma_{int} \) exceeds the polariton linewidth, only one polariton can be injected into the system by a resonant laser, and the regime of polariton blockade is reached.

3. Experimental approaches to polariton confinement

In the following, we will discuss various techniques employed to spatially confine polaritons and highlight the advantages and limitations of each technique. We also summarize important experiments made possible by the techniques under consideration. We will first discuss methods for confining polaritons via their excitonic part. In the second half of this section we will review commonly used approaches to trapping the polaritons via their photonic component.

3.1. Trapping polaritons via the excitonic part

For all techniques employed to localize microcavity polaritons via their excitonic part, it is of crucial importance to retain a high quantum efficiency, prevent surface recombination, and preserve a large exciton oscillator strength. These design rules naturally exclude some methods, such as defining small quantum dots (QDs) via lithography and dry etching of a QW, and set intrinsic limits on others (e.g. application of large local electric fields).
3.1.1. Application of local strain. Since the bandgap of semiconductor crystals critically depends on the distance between two nearest atomic neighbors, externally applied crystal strain can be employed to locally tune the exciton wavelength. One possible scheme exploiting this effect to create a trapping potential for polaritons is presented in figure 5(a) [5]. The sample with a partly removed substrate is held in the cryostat, and a sharp metal tip with a radius of 50 \(\mu \)m locally applies compressive strain on the reverse side. In this manner, a local parabolic potential for QW excitons with the size defined by the width of the tip can be created. The local redshift of the exciton energy at the position of the tip is also reflected in the energy minimum for exciton-polaritons, which is shown in figure 5(b). The depth of this potential can reach several tens of meV [5, 71–73], clearly exceeding the thermal energy at liquid helium and even nitrogen temperatures. The implementation of this technique led to the first successful demonstration of Bose–Einstein condensation of exciton-polaritons in a GaAs-based microcavity under strictly non-resonant and non-local pumping, taking advantage of the diffusion of polaritons into the trap. This effect can be seen in the real space image in figure 5(c). The polaritons are generated by a non-resonant pump laser on the right side of the trap. The emission shown in figure 5(c) is a consequence of polaritons flowing into the potential minimum separated by \(\sim \) 20 microns from the excitation. The flexibility to adjust the strain reversibly, and hence to control the potential shape and depth is another advantage of this technique. However, due to the finite size of the mechanical pin, more complex potential landscapes beyond a single trap seem difficult to realize. The lateral trap size of the 10–100 \(\mu \)m scale makes this technique, at least in this implementation, unsuitable for the observation of size quantization effects or blockade effects on the single polariton level.

3.1.2. Surface acoustic waves. A somewhat related technique, which also exploits a modification of the local strain environment to manipulate the polariton potential landscape, is the application of surface acoustic waves (SAWs) to the polariton system. The field can, for instance, be electrically stimulated by an interdigitated transducer. The sound waves of the acoustic field then propagate along the sample, as sketched in figure 6(a) for a 2D square configuration. Strictly speaking, and similarly to the local static strain technique, the acoustic phonon field has a direct impact on both the excitonic and the photonic part of the polariton:

- As discussed above, the strain pulse locally affects the energy of the QW-exciton via the stress depending bandgap, or more precisely, via the deformation potential interaction energy. This effect is the stronger one of the two.
- Both the physical cavity length and the refractive index of the cavity material are locally modified in the presence of the acoustic field, which leads to a change of the local resonance condition and hence to optical confinement.

The depth of the excitonic confinement exceeds the photonic modulation by more than a factor of two, yet both effects on their own are sufficiently strong to provide effective polariton localization [74]. Figure 6(b) depicts the influence of the SAWs on the bandstructure of the LP branch. As a result of the generation of a 2D polariton superlattice, a strong modification of the polariton dispersion is revealed by the calculations.
as depicted in figure 6(b) [55]. In such a potential landscape, the condensation of polaritons close to the M-point of the BZ in the first spectral gap was observed, where the effective mass of the polaritons acquires a negative sign.

3.1.3. Proton implantation induced intermixing. Local interdiffusion of compound QWs with the barrier material is a promising technique to generate large excitonic trapping potentials with lateral extents below $10 \mu m$. Intermixing techniques have been widely studied in semiconductor laser research [75], and offer a convenient way to tailor QW properties post-growth. However, this comes at the expense of a loss in flexibility, since intermixing naturally is an irreversible process.

One possible scheme to locally tune a QW via rapid thermal annealing without degrading its properties can be facilitated by masking the QW-cavity wafer with a material of very low heat transmittance. Polariton traps can be created at these positions after the annealing process, as the annealing procedure leads to a local redshift of the QW emission. SrF has been identified to be a good candidate for this application [75]. Underneath the masked areas the GaAs QWs (for instance embedded in AlAs barriers) remain widely unaffected by the annealing process if moderate temperatures below $900^\circ C$ and reasonable annealing times are applied. In the surrounding areas, which could for instance be covered by a heat transmitting dielectric or a diffusion enhancing material, such as SiO$_2$, the QW emission energy can be blue-shifted via QW-barrier intermixing.

An alternative technique to induce a local intermixing between the QW material and its barrier employs the deliberate disordering and annealing of the semiconductor heterostructure interfaces by high energy ion implantation [76]. Depending on the atomic species being implanted and the dose (ions per cm2), a rapid thermal anneal can recover the induced damage of the ion beam to a high degree. Protons are the natural choice of ion for this technique, as hydrogen is a common, largely inactive interstitial atom incorporated during growth, and will have a negligible effect on the post-processed material quality.

Despite the thickness of the top DBR layer, the ion energy can be tuned specifically such that the protons deposit the bulk of their energy in the QW-embedded cavity region, thus creating the highest density of vacancies. Figure 7(a) shows the simulated ion and vacancy profile in a typical GaAs microcavity structure with 24/27 mirror pairs on the top/bottom of the cavity. For the chosen energy of 440keV, the ion and vacancy concentration is largely localized in the cavity region.

The applicability of this technique is strongly supported by the studies [77] of proton implantation-induced intermixing on bare GaAs/AlGaAs QWs which show energy shifts in the 100s of meV range, and specifically, that at smaller doses, the luminescence intensity and linewidth can be recovered close to original values, but still with tens of meV shifts, sufficient for a tight and deep trapping of exciton-polaritons in microcavities.

The shift of the LP state will strongly depend on the initial cavity-exciton detuning. Given a blue-detuned (positively-detuned) LP state (figure 7(b)), as the exciton energy E_X^0 (and correspondingly the LP energy) is shifted to the blue with increasing dose, the LP detuning will become red (negative detuned) (figure 7(c)). As far red-detuned polaritons are quite insensitive to the exciton energy, the LP mode will only shift to a maximum energy roughly equivalent to its amount of positive detuning. Provided the Rabi energy is also sufficiently large, implanting a low dose of protons into a polariton microcavity, with subsequent thermal annealing, will create a strong confining potential for a LP state with blue detuning.

Initial experimental studies of the technique on planar samples can reproduce the above described features. An originally blue-detuned sample (figure 7(d)), when implanted with a moderate dose, yields a polariton mode shifted by $\Delta E_{LP} \sim 15$ meV, and shows a large reduction in the effective mass consistent with a shift of the polariton detuning into the red region (figure 7(e)).

3.1.4. Electrostatic traps. By applying electric fields to semiconductor quantum wells, the energy of the exciton can be tuned via the quantum confined Stark effect (QCSE). When locally applied to a sample, this effect can also be exploited to build flexible and elegant exciton traps. A major advantage of
this technique certainly lies in the ability to electrically manipulate the trapping potential. For weak electric fields F, the shift of the exciton energy due to the QCSE can be expressed as:

$$\beta \Delta = \frac{E F^2}{2} \tag{18}$$

where β is the polarizability of the quantum well excitons. Note that, for indirect excitons in coupled QWs (these are excitons where the electron is confined in one QW, and the hole in the other QW [78]), see figures 8(a) and (b) or for excitons in thick QWs, for high fields the energy shift is linear with the applied electric field, $\Delta = -e d_{\text{eff}} F$, where d_{eff} denotes either the separation between the QWs or the width of the thick QW. This trapping technique has been successfully exploited to localize (mostly indirect) excitons and to study cold exciton gases in the presence of confinement. A cross-section of a design for such a trap (reproduced from [79]) is shown in figure 8(c). The electric field strength is laterally modulated due to shielding by SiO$_2$ layer, which leads to the formation of an electrostatic trap for QW excitons, as can be seen by the deeply trapped indirect excitons in figure 8(d). This technology has been used to create exciton traps with complex geometries [80], yielding the possibility to promote bosonic condensation phenomena [81].

A possible scheme for fabrication of electrostatic polariton traps is seen in figure 8(e), which shows semi-transparent contacts fabricated on top of a doped microcavity. Since the QWs are located in the intrinsic region, moderate applied voltages of a few hundred mV should suffice to shift the QW exciton emission up to several meV. It is interesting to note that, while the QCSE has been studied for exciton-polaritons in the linear regime [82–84], certain peculiarities related to phonon enhanced tunneling effects between nearby QWs and carrier screening were observed recently in the non-linear regime [85, 86]. Under specific circumstances, in particular if diffusion of the reservoir is restricted, these effects indeed lead to a blueshift of the polariton resonance in the presence of the electric field, which may present a complication for the realization of electrostatic polariton traps.

An intrinsic limit to the tuning range of the exciton emission is the carrier tunneling out of the finite QW barriers. Furthermore, in order to laterally trap excitons, the QCSE has to be locally applied via a finite-size gate. As a result, lateral electric fields will evolve in the QW [87], which can also lead to dissociation of the excitons. Despite the fact that there still is no conclusive demonstration of an electrostatic polariton Stark trap to date, the development of this technique would be highly advantageous, in particular because of its flexibility. A combination of electrostatic trapping or tuning with other confinement techniques described later in this article could yield the possibility to engineer reconfigurable polariton landscapes with unprecedented properties.

3.1.5. Confinement provided by the excitonic reservoir.

The carrier and exciton reservoir, which is induced by the excitation laser, provides a natural way to create potentials for the exciton-polaritons. This approach provides a very elegant and useful technique to confine, manipulate and steer polaritons by exploiting their strong Coulomb interactions. An
The initial demonstration of this effect was performed in a 1D configuration [88]. Here, the polaritons were already partly confined in a deeply etched wire cavity. The high-energy excitonic reservoir created by the laser pump (tuned far off-resonance from the polariton energy) provided an additional potential barrier due to the strong repulsive interaction with polaritons. As a consequence, the polaritons became confined in all spatial directions close to the edge of the wire (figure 9(a)). Conveniently, the size of the pump-induced trap can be modified by changing the location of the pump spot on the wire cavity. In a similar way, polaritons can be confined all-optically by choosing smart geometries of the excitation laser beam. By using spatial light modulators to shape the optical excitation, ring shaped confinements [66, 67] (see figure 9(b)), confinements created by multiple pump spots [65, 66, 89], and controlled flow patterns in more complex landscapes were generated [90]. Long-lifetime polaritons in large-area optically-induced ring traps are emerging as a platform for studies of fundamental properties of polariton condensation largely decoupled from the excitonic reservoir [91].

The concept of structuring the non-resonant pump profile to produce a targeted mode of the condensate has been further extended in [68] to demonstrate polariton condensates with a defined vorticity. There, the pump beam has been structured via a metal amplitude mask with six pin-holes, which either were misaligned with respect to the laser beam, or structured in a chiral arrangement. As a result, trapped steady-state vortices were produced in the center of the six excitation spots, as confirmed by real space interferometry (see figures 9(c)–(e)).

The technique of controlling the environment for polariton condensate via pump shaping has proven extremely useful due to its flexibility, however the depth of the provided confinement (or the potential height) is limited by the strength of the polariton-exciton repulsive interaction, which is of the order of 1 meV.

3.1.6. Low-dimensional active material. In order to complete this section, we will briefly review some examples of creating microcavity polaritons by using a low-dimensional gain material instead of 2D quantum wells. In this discussion, we will limit ourselves to single semiconductor quantum dots on GaAs. A system composed of a single QD and a microcavity can be described by the single-particle Jaynes–Cummings Hamiltonian [92], giving rise to an energy ladder structure which adds strong non-linearities on the single photon level. For this reason, QD-polaritons are usually studied in the framework of isolated quantum systems, similar to atoms in high finesse microcavities [93]. Naturally, the possible application of QD-polaritons fundamentally differ from the QW case.

Successful realizations of QD-polariton systems were first reported in [94–96] for various photonic resonator geometries. The first successful demonstration of true quantum effects in such systems (i.e. sub-poissonian emission statistics) in fundamental contrast to quantum well microcavity polaritons, was reported by [97] and [98]. Signatures of the photon blockade (or QD-polariton blockade), which is a fundamental effect that occurs due to the single photon non linearity of the Jaynes–Cummings ladder system (see [99]), were observed in [100]. The electrical injection [101], electro-optical manipulation [102], and nonlinear emission [103] have been reported.

While the strong exciton localization in the quantum dot structures has many advantages due to the inherently very
large non-linearities on the single- to few photon or exciton scale (leading to single photon emission and the polariton blockade effect), its main drawback lies in the poorly controlled nature of the fabrication process. It is still very challenging to gain control over the properties of single quantum emitters to such an extent that they can be, e.g., arranged in arrays [104, 105] with designed spectral properties [106]. In this respect, a QW-polariton system, if designed in such a way that nonlinearities are strongly enhanced, would be highly preferable.

3.2. Trapping of polaritons via their photonic part

Complementary to the discussion on the excitonic polariton trapping, in the following we will consider techniques used to confine polaritons via their photonic part. Due to the relatively large extent of the photonic wavefunction, quantization and finite size effects can be observed for relatively large structures on the order of the polariton wavelength. This gives rise to ‘quasi-zero-dimensional’ exciton-polaritons in structures with lateral dimensions of the order of 1–10 μm. Three of the most frequently exploited techniques, namely etching micro-pillars, defining shallow mesas, and depositing metal masks on top of the 2D microcavity are sketched in figure 10, and will be discussed in more detail in this section.

3.2.1. Natural photonic disorder traps. In many microcavities, polariton localization can inherently occur in the so-called photonic disorder potentials. These potentials can arise, e.g., due to natural local elongations of the cavity at the positions of crystal defects and provide an optical confinement. It has also been shown that the condensation of polaritons in a planar 2D cavity is likely to occur in such natural potentials [107]. An accurate characterization of the formation of polaritonic states in natural traps was performed in [108]. Interestingly enough, these defect-induced traps are typically of a Gaussian shape, which is predicted to promote confined Q-factors strongly exceeding those of their mesa (vertical sidewall) counterparts for comparable mode volumes [109]. This makes such natural crystal defect traps highly appealing for the demonstration of large polariton nonlinearities and even photon blockade effects [28]. However, the scalability of this approach is strongly limited due to the randomness of these defects. In a later section, we will discuss in detail a technology enabling implementation of similar structures in a microcavity in a fully controlled manner.

3.2.2. The metal mask technique. A comparatively simple, yet very efficient method to create polariton confinement in a grown microcavity structure is the deposition of metal films on the sample surface. The metal layer changes the boundary conditions for the electromagnetic field with respect to the semiconductor-air interface, and creates an optical node. As a result, a modest shift in the energy of the optical resonance can be observed (on the order of 0.1–1 meV), which leads to an effective photonic confinement. The beauty of this approach certainly lies in its simplicity, and many pioneering experiments with polaritons in periodic potential landscapes...
were initially carried out in such samples. Examples include the first demonstration of a polariton condensate in higher-order Bloch bands of 1D arrays [25] and the formation of polariton condensates in d- and f-states [18], as well as the condensation of polaritons close to the Dirac points in triangular configurations [26]. A compilation of results obtained in the square lattice geometry is shown in figure 11. As can be seen in figure 11(b), this technique yields relatively shallow lattice potentials (∼0.01–1 meV), and therefore the full energy gap, e.g. that between the first and the second band shown in figure 4(a), does not open.

An extension of this approach is related to the excitation of the so-called Tamm plasmon (TP) states at semiconductor-metal interfaces. Localized TPs can evolve at the crystal surface at the interface between a periodic dielectric structure and a metal layer [110], and can be directly optically excited. The electric field distribution of such a TP decays into the periodic DBR structure, with a significant field enhancement close to the semiconductor-metal interface. It is rather straightforward to couple TP modes to matter excitations, and the formation of Tamm plasmon exciton-polaritons has been reported [83, 111, 112]. In stark contrast to the deposition of the metal on
top of a DBR, the lateral confinement provided by the Tamm plasmon can be significant [113].

For both methods, the Tamm plasmon approach or the metal mask deposition (which can also be considered as evanescent coupling of a Tamm state to a cavity photon), one has to compromise between the depth of the polariton confinement and the cavity Q-factor. While the Q-factor increases with the number of mirror pairs deposited onto the top DBR segment, the confinement depth decreases at the same time. This issue renders this approach incapable of providing spatial confinement for high-quality DBR-based microcavities. For instance, for a sample with 16/20 AlGaAs/AlAs mirror pairs and a Q-factor of the order of 2000, a confinement depth of about 200 μeV was experimentally extracted [114]. This number would be reduced to a value between 10–50 μeV for a sample capped by more than 25 mirror pairs, as can be determined by a transfer matrix calculation.

3.2.3. Etched micropillar cavities. Deep etching of micropillars in the sample is perhaps the most straightforward approach to provide lateral confinement of a photon in a DBR microcavity. Additionally, diffusion and propagation of excitons is also limited to the pillar size, which has some important implications on the performance of polariton lasers in the pillar geometry [115]. In this geometry, the optical field is laterally confined by the semiconductor-air interface. This approach has been widely exploited to fabricate vertically emitting lasers and efficient single photon sources [116–118]. In order to realize such structures, typically optical lithography or electron beam lithography is employed to define an arbitrary shape of the pillar in a photo- or electron beam sensitive resist. This resist can be either directly used as an etch mask, or the latter can be evaporated after the lithography step. Plasma etching has been proven to facilitate the realization of nearly perfect posts with vertical sidewalls in the GaAs system. A typical example of such a micropillar with a diameter of 2 μm is shown in figure 12(a). Note that careful optimization of the etching procedure (e.g. reactive ion etching with Cl$_2$/Ar plasma) can lead to almost perfectly vertical and smooth sidewalls, which is crucial when scattering and diffraction losses should be kept minimal [37]. With this technique, it is possible to realize DBR-based 0D microcavities with Q-factors exceeding 250 000 [37]. The finite physical size of this micropillar results in a strong optical confinement for the microcavity photon as a result of the huge difference between the refractive index in the structure ($n \approx 3.5$) and its surroundings.
Hence, the optical mode spectrum splits into a set of characteristic waveguide modes. A characteristic photoluminescence spectrum from such a micropillar cavity is shown in figure 12(b). The parabolic cavity resonance splits into a set of discrete, confined photonic modes, arising from the circular waveguide geometry (see, e.g. [119–121]).

Despite the brute force approach to lateral optical confinement, and associated degradation of the QW properties due to surface related effects, strong coupling effects in such micropillars were successfully demonstrated by Gutbrod et al [122], where the characteristic anticrossing between optical and electronic resonance was fully mapped out via temperature tuning. In this work, the effects of light–matter coupling were amplified by an applied magnetic field, which enhanced the oscillator strength of the integrated QWs and lead to an increase of the light–matter coupling strength. Subsequent benchmark experiments include the first demonstration of polariton condensation in a micropillar cavity in the II/VI system [123] and in the GaAs system [124].

A particular advantage of defining polariton potentials via lithography and etching lies in the scalability of the approach. It is comparably easy to create almost arbitrary potential profiles and to study the behavior of the quantum gas in such tailored environments. In this spirit, polariton condensates in 1D microwires have been generated, and their propagation and coherence properties were investigated [88, 125, 126]. Furthermore, the condensation of polaritons in microwires with a modulated sidewall (in other words, a 1D array of coupled rectangular micropillars, see figure 12(c)) has been reported [54]. The overlap between adjacent pillars leads to photonic coupling, resulting in photonic bands with well pronounced gaps at the edge of the BZ (figure 12(c)), which has been investigated already in the early works by Dasbach et al [127]. As we will detail later, the peculiar band structure of such an array of coupled micropillars featuring full bandgaps and associated negative effective mass regions gives rise to interesting condensation phenomena, such as the formation of gap solitons [54].

Owing to the high flexibility and maturity of the electron beam lithography and etching technologies, 2D arrays of overlapping micropillars can also be realized rather straightforwardly. Initial measurements of the photonic band structure in 2D micropillar lattices were reported by Bayer et al [128]. An example of the implementation of a polariton condensate in a hexagonal potential environment is shown in figure 13(a). The structure features an optical potential landscape resembling the graphene-type lattice (so-called honeycomb structure), which is also reflected in the optical properties of the emitted light. The most striking property of this lattice configuration is the appearance of the Dirac points at specific locations in the BZ. A Dirac point is characterized by its linear dispersion of massless particles. Pronounced luminescence of polaritons in the vicinity of a Dirac point is demonstrated in figure 13(b).

Furthermore, the maturity of this approach has already led to the first generation of polaritonic logic devices designed for integrated photonic experiments. These devices take advantage of the possibility to direct the flow of polaritons along etched channel structures over macroscopic distances, and to manipulate them via optical or electric fields, resulting in the successful implementation of switches, interferometers, and tunneling diodes [15, 16, 129, 130].

The ease of the micropillar approach comes along with a significant disadvantage. In order to provide a strong mode confinement, the structures are commonly etched through the active region (the QWs). As a consequence, nonradiative recombination of the excitons at the surface can occur, and furthermore etching through the QWs is accompanied by degradation of the emission. This effect can be pronounced, and is visible, for instance, in the spectrum of the etched micropillar in figure 12(b), where the emission from a strong uncoupled background resulting from etching through the active region can be seen. Therefore, less destructive methods for deep and flexible polariton confinement are highly desirable.

3.2.4. Photonic crystals and hybrid approaches. Similar to the micropillar cavities, photonic crystal nanocavities can also provide a tight optical confinement. This technique is particularly popular for the fabrication of nanolasers with the smallest footprints and of coupled systems with quantum
dot emitters, due to the small mode volumes and the resulting large light–matter coupling strength [95, 98]. To date, there are only few demonstrations of polariton lasers in conventional photonic crystal nanocavities [131] (figure 14(a)). A (hybrid) photonic crystal approach which fully circumvents the etching of the active medium has been introduced by Zhang et al [132, 133]. Similarly to the methods used to build flexible vertically emitting microlasers [134], only the upper DBR mirror is replaced by a highly reflecting sub-wavelength high contrast grating (HCG), which is a broadband crystal mirror. A sketch of the resulting structure, which has been proven to promote polariton lasing features [132], is shown in figure 14(b). This work has been successfully extended by coupling of such polaritonic boxes to photonic molecules and 1D superlattices [135], which demonstrates the versatility and potential of the approach.

In the HCG-cavity, strong coupling conditions can only be maintained underneath the finite sized grating. This finite size effect results in an effective in-plane confinement of polaritons, restricted to the dimension of the HCG. Another approach to creating 0D polaritons by reducing the lateral area was introduced in [136]. The authors designed a single mode fiber with an integrated Bragg grating, which they used to replace the top DBR. While the curvature of the fiber tip defines the mode volume in such a cavity, the resonance frequency of the resulting hybrid device can be almost arbitrarily varied by varying the distance between the fiber tip and the sample surface. This elegant technique promises ultra-high Q-factors, low mode volumes and, consequently, is a prime candidate for investigating nonlinearities on the single polariton scale. A conceptually similar concept was introduced in [137], where the authors demonstrated strong coupling conditions in a so-called open cavity approach. Here, one DBR is attached to piezo actuators which allow to tune the physical cavity length, while a tight optical confinement is introduced by locally shaping the curvature of the mirror.

3.2.5. Etch-and-overgrowth technique. As indicated in section 3.2.1, a shallow modulation of the cavity length, e.g. via a crystal defect initiated by a gallium droplet, is sufficient to create a well-defined, deep lateral photonic confinement [108]. A straightforward lithographic implementation of this concept
leads to creation of polariton mesa traps. These traps were first reported by El Daif et al. [138] and were subsequently theoretically analyzed with respect to the feasibility to observe polariton BEC states in lattice configurations [50]. Although the realization of such mesa traps is certainly more challenging compared to other approaches, including etching of regular micropillars or deposition of metal masks, the approach is very appealing due to the following reasons: (i) the confinement depth can be tunable in a wide range, mainly by adjusting the height of the defect and the light–matter detuning; (ii) inter-site coupling between neighbouring traps is readily controllable; (iii) surface recombination effects from etching through the active medium are fully avoided. These traps are commonly realized by texturing of the cavity layer of a Fabry–Pérot microcavity structure into elongated (trap) and regular (planar) regions. Since the cavity resonance condition is fulfilled for photons with a longer wavelength, the trap region acts as an attractive potential for photons. If the lateral dimension of the trap region is comparable to the wavelength of the cavity photons or polaritons, discrete 1D or 0D modes emerge in the system.

Such a structure, which is sketched in figure 15(a), can be realized, e.g., via molecular beam epitaxy (MBE) growth in a three-step etch-and-overgrowth procedure. First, the bottom DBR mirror and the cavity layer including all optical active regions (QWs) are grown. In the case of an AlAs cavity including GaAs QWs, a thin GaAs-capping layer should be grown on top of the AlAs cavity layer to protect the sample from oxidation [51], and ideally be placed at a node of the optical field to circumvent absorption. This structure then gets transferred out of the MBE reactor for patterning of the microcavity via lithography and etching prior to epitaxial overgrowth. Routinely, electron beam lithography is used to define the traps. However, existing techniques for creating 3D nanostructures [139, 140] have a great potential for implementation of advanced geometries. In fact, the shallow elongation of the microcavity spacer is preserved even after deposition of the several microns thick top DBR mirror, and can be fully resolved on the sample surface, e.g., via atomic force microscopy, as seen in figure 15(b).

A simulation of the polariton energy-momentum dispersion in such a mesa is shown in figures 15(c) and (d). Due to the finite size effect, a strong mode quantization is evident, which scales with the size of the lateral confinement. Emission from the planar microcavity persists in the background, however this emission can be significantly blue-shifted by increasing the etch depth.

The confinement of polaritons in such a structure can be rather accurately modelled by calculating the single particle energy levels in a finite, cylindrically symmetric (polariton) potential well. The (lateral) well depth is given by the height of the mesa and the corresponding shift in the Bragg resonance

Figure 15. (a) Schematic drawing of the mesa trap structure designed to provide a lateral confinement for polariton condensates. (b) Atomic force microscopy (AFM) image of the surface of an overgrown trap. Simulation of the energy-momentum dispersion of a trap with a diameter of 8.6 μm (c) and 3.6 μm (d) respectively. Reprinted with permission from [49]. Copyright 2006 by The American Physical Society.
energy. Then, the Schrödinger equation can be solved for a particle with the polariton effective mass m_{LP}, yielding the discrete energy levels which can be seen in figures 15(c) and (d) for a diameter of 10 and 3.6 μm [49]. The low-dimensional confinement, which can be designed in a wide range, can be utilized to engineer the scattering properties in such structures. A detailed discussion of the relaxation processes in such low-dimensional polariton structures is presented in [141]. Noteworthy, it is found that the phonon-assisted relaxation between localized levels in the trap is enhanced (compared to 2D samples) as a consequence of momentum space selection rules, whereas energy transfers between 2D and 0D polaritons are strongly suppressed. Consequently, it is suggested that, under non-resonant excitation conditions, the 0D polariton states have to be directly populated from the exciton reservoir, rather than from the 2D polaritons.

The first demonstration of polariton condensation under non-resonant pumping in a mesa was discussed in [51], where the authors investigated a single trap with a diameter of 6 μm and a depth of \sim30 nm.

The full potential of this technique becomes obvious when the traps are arranged in more complex geometries, such as square lattice arrangements (figure 16). The polariton wavefunctions can penetrate into the barrier leading to evanescent photonic coupling between neighboring sites, which is accompanied by the formation of a band structure. Using the linear exciton-photon coupling Hamiltonian [38], it can be shown that the structure of the energy bands imposed on the cavity photon mode by the periodic potential translates into the band structure of the polariton spectrum [50] (see section 2.5).

A comparison between experiment and theory is shown in figure 17(a), which demonstrates polariton emission spectrum below the condensation threshold for a square lattice with a constant of 3 μm. The wavefunction overlap is sufficient to form distinct bands for the three lowest energy levels, which can be perfectly reproduced by the model equation (15) with the parameters: $V = 3.2$ meV, $m_{LP} = 5.6 \times 10^{-6}m_0$.

The nonlinear character of the polaritons in such a lattice is manifested close to the M-point of the BZ, which is shown in the close up image of the gap between the s and p-band in our system, taken along the X-M symmetry direction below (figure 17(b)) and above (figure 17(c)), the condensation threshold. With increasing pump power, the condensate forms in the vicinity of M-points of the BZ and blueshifts into the full gap of the linear spectrum. This
behavior suggests the formation of a spatially localized 2D gap soliton state [142], also observed in the potentials created by surface acoustic waves [55]. These gap states are analogous to their 1D counterparts observed in modulated photonic wires [54] and arrays of mesa traps [56], however the essential requirement for their existence in 2D is the complete energy gap which, at lower energies, is only available at the M-point of the square lattice BZ. Although particular parameters of the microcavity and the polariton potential do affect the process of gap soliton formation, their spatial and spectral properties are rather universal.

4. Conclusions and outlook

Owing to the rapid development of the techniques for manipulating light and matter waves on the scale of their characteristic wavelengths, it has become possible to engineer potential landscapes for light–matter particles in semiconductors. While state-of-the-art microcavities facilitate exciton-polariton propagation over hundreds of microns with the velocities close to the state-of-the-art microcavities facilitate exciton-polariton propagation over hundreds of microns with the velocities close to the speed of light, the polaritons’ hybrid nature allows for their efficient manipulation via electro-optical and all-optical methods.

The possibility to create polariton condensates in a variety of trapping geometries, to engineer and manipulate scattering mechanisms, to control propagation of polaritons in channels, and to form versatile periodic potentials, opens the way towards more advanced fundamental studies and applications of polariton physics.

One interesting opportunity, which we have mentioned in this review, can arise from utilizing polaritons in channel structures for integrated polaritonic schemes. Another interesting option involves exploiting polaritons in periodic potential landscapes to create polaritonic topological insulators [143, 144], which could facilitate unidirectional propagation of polaritons in edge states protected from back-scattering by topology. While the investigation of topological effects in coupled light–matter systems is extremely appealing from the fundamental point of view, there is also a vast variety of possible applications arising from such effects.

Further improvements of trapping schemes at the sub-micron scale could enable the regime of polariton blockade, where nonlinearities occur on the single polariton scale. Successful engineering of potentials allowing for single polariton localization is still a major challenge in the field, however it carries the promise to open new directions in the research field of quantum polaritons.

Furthermore, the inherently lossy nature of the polariton system, combined with the gain derived from the optical pump, offers a possibility to create and control potential landscapes with both real and imaginary part, and therefore to explore non-Hermitian quantum physics. This possibility has already been exploited to observe exceptional points and topological Berry phase in a polaritonic quantum billiard [145], to demonstrate the novel effect of weak polariton lasing in a 1D periodic potential [146], and to load exciton-polaritons into a flat energy band of a 1D ‘Lieb’ lattice potential [147].

Finally, practical applications of the fascinating effects described in this review clearly require a clean, reliable material platform which can support exciton-polaritons well above cryogenic temperature range. Utilizing materials with large exciton binding energies, such as organic semiconductors [148], GaN [149], and ZnO [150], or atomically thin layers of transition metal dichalcogenides [151, 152] can hence lead to novel architectures in integrated photonics and optoelectronics based on coherent bosonic states created and maintained at room temperature.

Acknowledgments

The authors thank A Kavokin, I A Shelykh, I A Savenko, H Flayac, T Fink, T C H Liew, A Nalitov, N Gregersen, N Y Kim, S Brodbeck, R Dall, Y S Kivshar, B Bradel, A Schade, A Löffler, A Imamoglu, V D Kulakovskii, L Worschech, A Forchel for collaborations, uncountable discussions and support throughout all the years.

Expert technical support in sample preparation by M Emmerling, A Wolf, M Wagenbrenner, S Handel, S Kuhn and T Steinl is gratefully acknowledged. This work was funded by the State of Bavaria and the Australian Research Council. M D Fraser acknowledges funding by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).

References

[1] Kavokin A V, Baumberg J J, Malpuech G and Laussy F P 2007 Microcavities (Oxford: Oxford Science Publications)
[2] Yamamoto Y, Tassone F and Cao H 2002 Semiconductor Cavity Quantum Electrodynamics (New York: Springer)
[3] Kasprzak J et al 2006 Bose–Einstein condensation of exciton polaritons Nature 443 409–14
[4] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Observation of Bose–Einstein condensation in a dilute atomic vapor Science 269 198–201
[5] Balili R, Hartwell V, Snoke D, Pfeiffer L and West K 2007 Bose–Einstein condensation of microcavity polaritons in a trap Science 316 1007–10
[6] Deng H, Weihs G, Santori C, Bloch J and Yamamoto Y 2002 Condensation of semiconductor microcavity exciton polaritons Science 298 199–202
[7] Tempel J-S et al 2012 Temperature dependence of pulsed polariton lasing in a GaAs microcavity New J. Phys. 14 083014
[8] Kasprzak J et al 2008 Second-order time correlations within a polariton Bose–Einstein condensate in a CdTe microcavity Phys. Rev. Lett. 100 067402
[9] Deveaud-Plédran B 2012 On the condensation of exciton-polaritons J. Opt. Soc. Am. B 29 A138
[10] Einstein A 1925 Quantentheorie des einatomigen idealen Gases: Zweite Abhandlung Sitz. ber Preuss. Akad. Wiss. I 3–14
[11] Hohenberg P 1967 Existence of long-range order in one and two dimensions Phys. Rev. 158 383
[12] Schneider C et al 2013 An electrically pumped polariton laser Nature 497 348–52
[13] Liew T C H, Kavokin A V and Shelykh I A 2008 Optical circuits based on polariton neurons in semiconductor microcavities Phys. Rev. Lett. 101 010402
[14] Liew T C H et al 2010 Exciton-polariton integrated circuits Phys. Rev. B 82 053302
[15] Sturc C et al 2014 All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer Nat. Commun. 5 267
[16] Gao T et al 2012 Polaron condensate transistor switch. Phys. Rev. B 85 235102
[17] Liew T C H, Shelykh I A and Malpuech G 2011 Polaritonic devices Physica E 43 1543–68
[18] Kim N Y et al 2011 Dynamical d-wave condensation of exciton-polaritons in a two-dimensional square-lattice potential Nat. Phys. 7 681–6
[19] Jacqmin T et al 2014 Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons Phys. Rev. Lett. 112 116402
[20] Masumoto N et al 2012 Exciton-polariton condensates with flat bands in a two-dimensional kagome lattice New J. Phys. 14 065002
[21] Cirac J I and Zoller P 2012 Goals and opportunities in quantum simulation Nat. Phys. 8 264–6
[22] Carusotto I and Ciuti C 2013 Quantum fluids of light Rev. Mod. Phys. 85 299
[23] Takemura N, Treboul S, Wouters M, Portella-Oberli M and Deveaud B 2014 Heterodyne spectroscopy of polariton spinor interactions Phys. Rev. B 90 195301
[24] Takemura N, Treboul S, Wouters M, Portella-Oberli M T and Deveaud B 2014 Polaritonic Feshbach resonance Nat. Phys. 10 500
[25] Lai C W et al 2007 Coherent zero-state and r-state in an exciton-polariton condensate array Nature 450 529–32
[26] Kim N Y et al 2013 Exciton-polariton condensates near the Dirac point in a triangular lattice New J. Phys. 15 035032
[27] Byrnes T, Recher P and Yamamoto Y 2010 Mott transitions of exciton-polaritons and indirect excitons in a periodic potential Phys. Rev. B 81 205312
[28] Verger A, Ciuti C and Carusotto I 2006 Polariton quantum blockade in a photonic dot Phys. Rev. B 73 195306
[29] Liew T C H and Savona V 2010 Single photons from coupled quantum modes Phys. Rev. Lett. 104 183601
[30] Bamba M, Imamoglu A, Carusotto I and Ciuti C 2011 Origin of strong photon antibunching in weakly nonlinear photonic molecules Phys. Rev. A 83 021802
[31] Na N and Yamamoto Y 2010 Massive parallel generation of indistinguishable single photons via the polaritonic superfluid to Mott-insulator quantum phase transition New J. Phys. 12 123001
[32] Klinglshirn C 2004 Semiconductor Optics (New York: Springer)
[33] Weissbuch C and Vinter B 1991 Quantum Semiconductor Nanostructures (New York: Academic)
[34] Masselink W T et al 1985 Absorption-coefficients and exciton oscillator-strengths in AlGaAs-GaAs superlattices Phys. Rev. B 32 8027–34
[35] Andreani L C and Pasquarrello A 1990 Accurate theory of excitons in GaAs-GaAlAs quantum wells Phys. Rev. B 42 8928
[36] Reitzenstein S et al 2007 ALAs/GaAs micropillar cavities with quality factors exceeding 150.000 Appl. Phys. Lett. 90 251109
[37] Schneider C, Gold P, Reitzenstein S, Hofling S and Kamp M 2016 Quantum dot micropillar cavities with quality factors exceeding 250.000 Appl. Phys. B 122 1–6
[38] Deng H, Haug H and Yamamoto Y 2010 Exciton-polariton Bose–Einstein condensation Rev. Mod. Phys. 82 1489–537
[39] Savona V, Andreani L, Schwendimann P and Quattropani T 1995 Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes Solid State Commun. 93 733–9
[40] Khitrova G, Gibbs H, Jahnke F, Kira M and Koch S 1999 Nonlinear optics of normal-mode-coupling semiconductor microcavities Rev. Mod. Phys. 71 1591
[41] Byrnes T, Kim N Y and Yamamoto Y 2014 Exciton-polariton condensates Nat. Phys. 10 803–13
[42] Houdré R et al 1995 Saturation of the strong-coupling regime in a semiconductor microcavity: free-carrier bleaching of cavity polaritons Phys. Rev. B 52 7810
[43] Kovokin A, Malpuech G and Gil B 2003 Semiconductor microcavities: towards polariton lasers MRS Internet J. Nitride Semicond. Rev. 8 e3
[44] Petrov D, Holzmann M and Shlyapnikov G 2000 Bose–Einstein condensation in quasi-2D trapped gases Phys. Rev. Lett. 84 2551
[45] Petrov D, Shlyapnikov G and Walraven J 2000 Regimes of quantum degeneracy in trapped 1d gases Phys. Rev. Lett. 85 3745
[46] Berezhinskii V 1972 Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. II. Quantum systems Sov. J. Exp. Theor. Phys. 34 610
[47] Kosterlitz J M and Thouless D J 1973 Ordering, metastability and phase transitions in two-dimensional systems J. Phys. C: Solid State Phys. 6 1181
[48] Nitsche W H et al 2014 Algebraic order and the Berezhinskii–Kosterlitz–Thouless transition in an exciton-polariton gas Phys. Rev. B 90 205340
[49] Kaitouni R I et al 2006 Engineering the spatial confinement of exciton polaritons in semiconductors Phys. Rev. B 74 155311
[50] Bond D L 2008 Towards R-space Bose–Einstein condensation of photonic crystal exciton polaritons PIERS Online 4 831–7
[51] Winkler K et al 2015 A polariton condensate in a photonic crystal potential landscape New J. Phys. 17 023001
[52] Tanese D et al 2014 Fractal energy spectrum of a polariton gas in a Fibonacci quasiperiodic potential Phys. Rev. Lett. 112 146404
[53] Krizhanovskii D et al 2013 Effect of polariton–polariton interactions on the excitation spectrum of a nonequilibrium condensate in a periodic potential Phys. Rev. B 87 155423
[54] Tanese D et al 2013 Polariton condensation in solitonic gap states in a one-dimensional periodic potential Nat. Commun. 4 1749
[55] Cerda-Méndez E et al 2013 Exciton-polariton gap solitons in two-dimensional lattices Phys. Rev. Lett. 111 146401
[56] Winkler K et al 2016 Collective state transitions of exciton-polaritons loaded into a periodic potential Phys. Rev. B 93 121303
[57] Wouters M, Liew T C H and Savona V 2010 Energy relaxation in one-dimensional polariton condensates Phys. Rev. B 82 245315
[58] Penckwitt A A, Ballagh R J and Gardiner C W 2002 Nucleation, growth, and stabilization of Bose–Einstein condensate vortex lattices Phys. Rev. Lett. 89 260402
[59] Savenko I G, Liew T C H and Shelykh I A 2013 Stochastic Gross–Pitaevskii equation for the dynamical thermalization of Bose–Einstein condensates Phys. Rev. Lett. 110 127402
[60] Wouters M and Carusotto I 2007 Excitations in a nonequilibrium Bose–Einstein condensate of exciton polaritons Phys. Rev. Lett. 99 140402
[61] Roumpos G, Nitsche W H, Höfling S, Forchel A and Yamamoto Y 2010 Gain-induced trapping of microcavity exciton polariton condensates Phys. Rev. Lett. 104 126403
[62] Ostrovskaya E A, Abdullaev J, Desyatnikov A S, Fraser M D, Masumoto N, Nitsche W H et al 2014 Fractal energy spectrum of a polariton–polariton condensate in solitonic condensate vortex lattices Phys. Rev. Lett. 112 116404
[63] Ge L, Nersisyan A, Oztop B and Tureci H E 2013 Pattern formation and strong nonlinear interactions in exciton-polariton condensates (arXiv:1311.4847)
[64] Keeling J and Berloff N G 2008 Spontaneous rotating vortex lattices in a pumped decaying condensate Phys. Rev. Lett. 100 255041
[65] Tosi G et al 2012 Sculpting oscillators with light within a nonlinear quantum fluid Nat. Phys. 8 190–4
[66] Cristofolini P et al 2013 Optical superfluid phase transitions and trapping of polariton condensates Phys. Rev. Lett. 110 186403
[67] Askitopoulos A et al 2013 Polariton condensation in an optically induced two-dimensional potential Phys. Rev. B 88 041308
[68] Dall R et al 2014 Creation of orbital angular momentum states with chiral polaritonic lenses Phys. Rev. Lett. 113 200404
[69] Borgh M O, Franchetti G, Keeling J and Berloff N G 2012 Robustness and observability of rotating polariton lattices in an exciton-polariton condensate Phys. Rev. B 86 035307
[70] Trallero-Giner C et al 2014 Excited states of exciton-polariton condensates in 2D and 1D harmonic traps Phys. Rev. B 89 205317
[71] Balli R, Snoke D, Pfeiffer L and West K 2006 Actively tuned and spatially trapped polaritons Appl. Phys. Lett. 88 031110
[72] Vörös Z, Snoke D, Pfeiffer L and West K 2006 Trapping excitons in a two-dimensional in-plane harmonic potential: experimental evidence for equilibration of indirect excitons Phys. Rev. Lett. 97 016803
[73] Negotia V, Snoke D and Eberl K 1999 Harmonic-trap traps for indirect excitons in coupled quantum wells Phys. Rev. B 60 2661
[74] de Lima M Jr, van der Poel M, Santos P and Hvam J M 2006 Phonon-induced polariton superlattices Phys. Rev. B 97 045501
[75] Hofstetter D, Maisenholder B and Zappe H P 1998 Quantum-well intermixing for fabrication of lasers and phononic integrated circuits IEEE J. Sel. Top. Quantum Electron. 4 794–802
[76] Lu E H 2000 Semiconductor Quantum Wells Intermixing (London: Gordon & Breach Science)
[77] Tan H H, Williams J S, Jagadish C, Burke P T and Gal M 1996 Large energy shifts in GaAs-AlGaAs quantum wells by proton irradiation-induced intermixing Appl. Phys. Lett. 68 2401–3
[78] Zrenner A et al 1992 Indirect excitons in coupled quantum well structures Surf. Sci. 263 496–501
[79] Fraser M, Tan H and Jagadish C 2011 Selective confinement of macroscopic long-lifetime exciton and trion populations Phys. Rev. B 84 245318
[80] Gärtnert A, Prechtel L, Schuh D, Holleitner A and Kotthaus J 2007 Micropatterned electrostatic traps for indirect excitons in coupled GaAs quantum wells Phys. Rev. B 76 085304
[81] Butov L, Lai C, Ivanov A, Gossard A and Chemla D 2002 Towards Bose–Einstein condensation of excitons in potential traps Nature 417 47–52
[82] Fisher T et al 1996 Electro-optic tuning of vacuum Rabi coupling in semiconductor quantum microcavity structures Solid-State Electron. 40 493–6
[83] Gessler J et al 2014 Electro-optic tuning of Tamm-plasmon exciton-polaritons Appl. Phys. Lett. 105 181107
[84] Brodbeck S et al 2013 Room temperature polariton light emitting diode with integrated tunnel junction Opt. Express 21 31098–104
[85] Tsotsis P et al 2014 Tuning the energy of a polariton condensate via bias-controlled Rabi splitting Phys. Rev. Appl. 2 014002
[86] Brodbeck S et al 2015 Impact of lateral carrier confinement on electro-optical tuning properties of polariton condensates Appl. Phys. Lett. 107 041108
[87] Hammack A et al 2006 Excitons in electrostatic traps J. Appl. Phys. 99 066104
[88] Wertz E et al 2010 Spontaneous formation and optical manipulation of extended polariton condensates Nat. Phys. 6 860–4
[89] Cristofolini P et al 2012 Geometrically locked vortex lattices in semiconductor quantum fluids Nat. Commun. 3 1243
[90] Schmutzler J et al 2014 All-optical flow control of a polariton condensate using non-resonant excitation Phys. Rev. B 91 195308
[91] Sun Y et al 2015 Polaritons are not weakly interacting: direct measurement of the polariton–polariton interaction strength (arXiv:1508.06939)
[92] Michler P 2009 Single Semiconductor Quantum Dots (New York: Springer)
[93] Miller R et al 2005 Trapped atoms in cavity QED: coupling quantized light and matter J. Phys. B: At. Mol. Opt. Phys. 38 S551
[94] Reithmaier J P et al 2004 Strong coupling in a single quantum dot-semiconductor microcavity system Nature 432 197–200
[95] Yoshie T et al 2004 Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity Nature 432 200–3
[96] Peter E et al 2005 Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity Phys. Rev. Lett. 95 067401
[97] Press D et al 2007 Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime Phys. Rev. Lett. 98 117402
[98] Hennessy K et al 2007 Quantum nature of a strongly coupled single quantum dot-cavity system Nature 445 896–9
[99] Kasprzak J et al 2010 Up on the Jaynes–Cummings ladder of a quantum-dot/microcavity system Nat. Mater. 9 304–8
[100] Farao A et al 2008 Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade Nat. Phys. 4 859–63
[101] Kistner C et al 2010 Strong coupling in a quantum dot micropillar system under electrical current injection Appl. Phys. Lett. 96 221102
[102] Kistner C et al 2008 Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems Opt. Express 16 15006–12
[103] Nomura M, Kumagai N, Iwamoto S, Ota Y and Arakawa Y 2010 Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system Nat. Phys. 6 279–83
[104] Schneider C et al 2009 Single site-controlled In(Ga)As/GaAs quantum dots: growth, properties and device integration Nanotechnology 20 434012
[105] Schmidt O G 2009 Lateral Alignment of Epitaxial Quantum Dots (Berlin: Springer)
[106] Mereni L O, Dimastrodonato V, Young R J and Pelucchi E 2009 A site-controlled quantum dot system offering both high uniformity and spectral purity Appl. Phys. Lett. 94 223121
[107] Kulakovskii V et al 2010 Bose–Einstein condensation of exciton polaritons in high-Q planar microcavities with GaAs quantum wells JETP Lett. 92 595–9
[108] Zajac J M and Langbein W 2012 Structure and zero-dimensional polariton spectrum of natural defects in GaAs/AlAs microcavities Phys. Rev. B 86 195401
[109] Ding F, Stiftere T, Mai L J, Knoll A and Mahrt R F 2013 Vertical microcavities with high Q and strong lateral mode confinement Phys. Rev. B 87 161116
[110] Kaliteevski M et al 2007 Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror Phys. Rev. B 76 165415
[111] Sasin M E et al 2008 Tamm plasmon polaritons: slow and spatially compact light Appl. Phys. Lett. 92 251112
[112] Symonds C, Lennätre A, Homeyer E, Plenet J and Bellesa J 2009 Emission of Tamm plasmon/exciton polaritons Appl. Phys. Lett. 95 151114
[113] Gazzano O et al 2011 Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission Phys. Rev. Lett. 107 247402

[114] Kim N Y et al 2008 GaAs microcavity exciton-polaritons in a trap Phys. Status Solidi b 245 1076–80

[115] Kochereshko V P et al 2013 Phase diagrams of magnetopolariton gases (arXiv:1309.6983)

[116] Moreau E et al 2001 Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities Appl. Phys. Lett. 79 2865–7

[117] Santori C, Fattal D, Vuckovic J, Solomon G S and Yamamoto Y 2002 Indistinguishable photons from a single-photon device Nature 419 594–7

[118] Heindel T et al 2010 Electrically driven quantum dot-microcavity single photon source with 34% overall efficiency Appl. Phys. Lett. 96 011107

[119] Silva A et al 2008 Quantum dot dipole orientation and excitation efficiency of microcavity modes Opt. Express 16 19201–7

[120] Ulrich S et al 2007 Photon statistics of semiconductor microcavity lasers Phys. Rev. Lett. 98 043906

[121] Reitzenstein S and Forchel A 2010 Quantum dot micropillars J. Phys. D: Appl. Phys. 43 033001

[122] Gutbrod T et al 1998 Weak and strong coupling of photons and excitons in photonic dots Phys. Rev. B 57 9950

[123] Obert M et al 2004 Nonlinear emission in II–VI pillar microcavities: strong versus weak coupling Appl. Phys. Lett. 84 1435–7

[124] Bajoni D et al 2008 Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities Phys. Rev. Lett. 100 047401

[125] Schnitzler J et al 2014 Influence of interactions with noncondensed particles on the coherence of a one-dimensional polariton condensate Phys. Rev. B 89 115119

[126] Fischer J et al 2014 Spatial coherence properties of one dimensional exciton-polariton condensates Phys. Rev. Lett. 113 203902

[127] Dasbach G, Bayer M, Schwab M and Forchel A 2003 Spatial photon trapping: tailoring the optical properties of semiconductor microcavities Semicond. Sci. Technol. 18 S339

[128] Bayer M et al 1999 Optical demonstration of a crystal band structure formation Phys. Rev. Lett. 83 5574

[129] Nguyen H S et al 2013 Realization of a double-barrier resonant tunneling diode for cavity polaritons Phys. Rev. Lett. 110 236601

[130] Marsault F et al 2015 Realization of an all optical exciton-polariton router Appl. Phys. Lett. 107 201115

[131] Azzini S et al 2011 Ultra-low threshold polariton lasing in photonic crystal cavities Appl. Phys. Lett. 99 111106

[132] Zhang B et al 2014 Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity Light Sci. Appl. 3 e135

[133] Fischer J et al 2014 Magneto-exciton-polariton condensation in a sub-wavelength high contrast grating based vertical microcavity Appl. Phys. Lett. 104 091117

[134] Huang M C, Zhou Y and Chang-Hasnain C J 2007 A surface-emitting laser incorporating a high-index-contrast subwavelength grating Nat. Photon. 1 119–22

[135] Zhang B et al 2015 Coupling polariton quantum boxes in sub-wavelength grating microcavities Appl. Phys. Lett. 106 051104

[136] Besga B et al 2015 Polariton boxes in a tunable fiber cavity Phys. Rev. Appl. 3 014008

[137] Dufferwiel S et al 2014 Strong exciton-photon coupling in open semiconductor microcavities Appl. Phys. Lett. 104 192107

[138] El Daif O et al 2006 Polariton quantum boxes in semiconductor microcavities Appl. Phys. Lett. 88 061105

[139] Mai H et al 2012 3d nanoimprinted Fabry–Pérot filter arrays and methodologies for optical characterization Appl. Phys. B 107 755–64

[140] Pires D et al 2010 Nanoscale three-dimensional patterning of molecular resists by scanning probes Science 328 732–5

[141] Para T et al 2009 Enhancement of microcavity polariton relaxation under confinement Phys. Rev. B 79 045319

[142] Ostrovskaya E A, Abdullaev J, Fraser M D, Desyatnikov A S et al 2009 Enhancement of microcavity polariton relaxation under confinement Phys. Rev. B 79 045319

[143] Ostrovskaya E A, Abdullaev J, Fraser M D, Desyatnikov A S and Kivshar Y S 2013 Self-localization of polariton condensates in periodic potentials Phys. Rev. Lett. 110 170407

[144] Nalitov A, Solnyshkov D and Malpuech G 2015 Polariton photonic systems Appl. Phys. Rev. Lett. 114 245701

[145] Bardyn C–E, Karzig T, Refael G and Liew T C 2015 Topological polaritons and excitons in garden variety systems Phys. Rev. B 91 161413

[146] Gao T et al 2015 Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard Nature 526 554

[147] Zang L et al 2015 Weak lasing in one-dimensional polariton superlattices Proc. Natl Acad. Sci. USA 112 E1516

[148] Baboux F et al 2016 Bosonic condensation and disorder-induced localization in a flat band Phys. Rev. Lett. 116 066402

[149] Plumbho J D, Stößerle T, Mai L, Scherf U and Mahrt R F 2014 Room-temperature Bose–Einstein condensation of cavity exciton-polaritons in a polymer Nat. Mater. 13 247–52

[150] Christopoulos S et al 2007 Room-temperature polariton lasing in semiconductor microcavities Phys. Rev. Lett. 98 126405

[151] Lu T-C et al 2012 Room temperature polariton lasing versus photon lasing in a nzo-based hybrid microcavity Opt. Express 20 5530–7

[152] Dufferwiel S et al 2015 Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities Nat. Commun. 6 8579

[153] Lundt N et al 2016 Room temperature Tamm-Plasmon Exciton-Polaritons with a WSe2 monolayer (arXiv: 1604.03916)