Management of epidermal growth factor receptor tyrosine kinase inhibitor-related cutaneous and gastrointestinal toxicities

Derrick Chen-Wee Aw1 | Eng Huat Tan2 | Tan Min Chin3 | Hong Liang Lim4 | Haur Yueh Lee5 | Ross A. Soo6

1Department of General Medicine, Sengkang Health, Alexandra Hospital, Singapore
2Division of Medical Oncology, National Cancer Centre, Singapore
3Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore
4Medical Oncology, Parkway Cancer Centre, Singapore
5Department of Dermatology, Singapore General Hospital, Singapore
6Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore

Correspondence
Ross A. Soo, Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Level 7 NUHS Tower Block, 1E Kent Ridge Road, Singapore 119228, Singapore.
Email: ross_soo@nuhs.edu.sg

Abstract
Patients with advanced stage non–small cell lung cancer with sensitizing epidermal growth factor receptor (EGFR) mutations using EGFR tyrosine kinase inhibitors (TKIs) such as erlotinib, gefitinib and afatinib as first-line treatment had better progression-free survival, overall response rate and quality of life than those on chemotherapy. Although EGFR TKIs are commonly associated with skin-related (rash, xerosis and paronychia) and gastrointestinal-related (diarrhea and stomatitis) adverse events (AEs), these effects are usually mild. But severe cases can occur, significantly affecting patient’s well-being, treatment compliance and quality of life. Therefore, patient education, early diagnosis, and prophylactic treatment are important strategies to optimally manage EGFR TKI-related adverse effects. In this review, we summarize the commonly encountered EGFR TKI-related AEs and provide a current overview of AE management in local practice with a focus on Asian patients.

KEYWORDS
adverse drug events, gastrointestinal tract, mutations, non–small cell lung cancer, skin

1 | BACKGROUND

Eighty percent of lung cancers are advanced-stage non–small cell lung cancer (NSCLC).1 Epidermal growth factor receptor (EGFR) gene mutation, which is a major and potent oncogenic driver in NSCLC is a therapeutic target, with EGFR tyrosine kinase inhibitors (EGFR TKIs), altering the pattern of care in patients with advanced stage NSCLC. With EGFR TKIs (erlotinib, gefitinib and afatinib) as first-line treatment for patients with advanced stage NSCLC with sensitizing EGFR mutations, higher progression-free survival, overall response rate and quality of life than chemotherapy can be achieved.1 These drugs are generally well tolerated as they have a predictable toxicity profile and less serious toxicities than traditional cytotoxic chemotherapy.2 Nevertheless, EGFR TKIs can still produce severe adverse events (AEs) and impair quality of life.

As EGFR is mainly expressed in epithelial cells, such as the skin and gastrointestinal tract, the most common AEs for EGFR TKIs are cutaneous and gastrointestinal related.3 Cutaneous AEs are particularly troublesome as these affect a patient’s psychosocial well-being and increase the risk of secondary skin infections, which ultimately affects dose intensity. A survey of 110 oncologists who administered EGFR inhibitor therapy revealed that rash caused 76% of patients to interrupt their therapy and approximately a third (32%) of patients to discontinue it altogether.4 Cutaneous AEs caused 60% of participants to reduce therapy dose by 10–50%. EGFR TKI-related diarrhea also greatly affects quality of life, causing lethargy, sleep interruptions and major inconvenience to daily life as patients are reluctant to leave the house. Therefore, the prevention and management of AEs would improve the quality of life and treatment adherence of these patients.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2017 The Authors. Asia-Pacific Journal of Clinical Oncology Published by John Wiley & Sons Australia, Ltd
In this review, we provide an overview of the commonly occurring cutaneous and gastrointestinal AEs related to EGFR TKI treatment. In addition, we summarize the preventative and therapeutic measures for these AEs that are commonly practiced in Singapore. As it is also widely accepted that there are differences in skin biology between Asians and Caucasians, we would focus our discussion on Asian patients as earlier similar publications covered the Caucasian population. We would place emphasis on patients who were treated with EGFR TKI as first line as they are more susceptible to AEs compared to patients in later line settings. Management of EGFR TKI-related AE is generally the same across the three TKIs although practices on the type of antibiotics and steroids used and when these are prescribed can vary.

The third-generation TKIs include as osimertinib (AZD9291), rociletinib (CO-1686), HM61713 (olmutinib), EGF816 and ASP8273 are mutant selective, targeting sensitizing EGFR mutations as well as T790M EGFR and is WT EGFR sparing, resulting in less off-target toxicities. Of the agents in this class, only osimertinib has been approved for advanced NSCLC with EGFR T790M mutation following acquired resistance to first- or second-generation EGFR TKIs. As such, we will include discussions on the management of AEs related to this agent. Given the mechanism of action, the AEs related to EGFR TKI blockade with osimertinib such as skin rash, xerosis and paronychia are predictably lower than the previous generation of EGFR TKIs (Table 1). The frequency of diarrhea is 24–41% but grade 3 or more is rare (1–2%). We would place emphasis on patients who were treated with EGFR TKI as first line as they are more susceptible to AEs compared to patients in later line settings. Management of EGFR TKI-related AE is generally the same across the three TKIs although practices on the type of antibiotics and steroids used and when these are prescribed can vary.

Table 1: Time of onset and incidence of skin and gastrointestinal AE with treatments for non–small cell lung cancer

Adverse event	Gefitinib	Erlotinib	Afatinib	Osimertinib			
Skin							
Rash/acet	37	66.2	22	73	42	89.1	Data not available
Dry skin	43	23.9	36	–	49	29.3	34
Pruritus	31	19.4	22	–	55	18.8	23
Gastrointestinal							
Diarrhea	–	46.6	12(40)	21	3(6)	95.2	41
Stomatitis/ mucositis	–	17	–	13	–	72.1	15

2 | COMMONLY OCCURRING EGFR TKI-RELATED CUTANEOUS AEs

As EGFR is involved in epithelial maintenance (i.e. epidermal growth, differentiation, wound healing and keratinocyte migration), it is critical in the physiology and development of the epidermis (which is composed primarily of keratinocytes). An EGFR TKI impairs keratinocyte growth, migration and chemokine expression, resulting in inflammatory cell recruitment and cutaneous injury by inhibiting pathways downstream of EGFR, such as the mitogen-activated protein kinase (MAPK) pathway (Figure 1). Although not fully understood mechanistically, Asians have been consistently demonstrated to have more sensitive skin compared to Caucasians in studies investigating skin responses to irritants. For this reason, we would expect differences in the manifestation of EGFR-TKI induced skin toxicity. In this section, we would describe commonly occurring EGFR TKI-related cutaneous AEs such as rash, xerosis, paronychia and scalp lesions exhibited in Asian patients. Table 1 is a summary of the onset timing and frequency of commonly occurring cutaneous AEs caused by first and second generation EGFR TKI. As data on the time to onset for osimertinib is not available, we only report on the frequency of cutaneous AE that was recently revealed in the AURA3 trial.

2.1 | Papulopustular (acneiform) rash

The earliest and most common EGFR TKI-related cutaneous AE is acneiform rash. The eruption generally evolves through four distinct phases: (1) dysesthesia, erythema and edema as early as 1–2 weeks of first- and second-generation EGFR TKI treatment; (2) erythematous papules and pustules; (3) purulent crusts at 3–6 weeks and (4) telangiectasias. Patients will experience waxing and waning of lesions during the clinical course. Lesions can be painful and pruritic. Symptoms typically resolved within 4 weeks after EGFR TKI is ceased; but there could be partial or even complete resolution despite continued EGFR TKI therapy. Because EGFRs are highly expressed in sebaceous epithelium, eruptions are generally most concentrated in sebaceous areas such as the scalp, face, neck, chest and upper back. The periorbital region, palms and soles are usually spared. The different degrees of severity of the papulopustular rash are illustrated in Figure 2.

2.2 | Xerosis

Abnormal keratinocyte differentiation due to EGFR TKIs can impair the epidermal barrier, decreasing loricrin, the main protein forming the scaffold for the epidermis. This leads to xerosis caused by an unwoven epidermal layer that loses moisture. In this report, we refer to CTCAE v4.03 for the grading of xerosis, which describes dry skin covering <10% with no associated erythema or pruritus, 10–30% with erythema/pruritus and limiting instrumental activities of daily living (ADL) and >30% with pruritus and limiting self-care ADL for
grade 1, 2 and 3, respectively. Xerosis is also considered to be associated with EGFR inhibitors, affecting almost all patients to variable degrees. Xerosis generally occurs late, after the patient has been on anti-EGFR treatment for at least 30–60 days. This condition usually follows or accompanies by acneiform eruption and typically presents as dry, scaly, itchy skin on any part of the body. Some patients have reported vaginal and perineal dryness. Patients with xerosis may develop chronic atrophic eczema which predisposes to secondary infections with Staphylococcus aureus or the Herpes Simplex virus. There have also been incidences of severe cases of pulpitis sicca with painful rhagades.

2.3 | Paronychia

Between 10 and 15% of first and second generations EGFR TKI patients have paronychia; and this condition typically occurs later during treatment (i.e. 4–8 weeks). Paronychia is graded by severity according to CTCAE v4.03 guidelines as illustrated in Figure 3. The big toe is commonly the first area to be affected, and when pyogenic granuloma develops on the nail fold, patient can experience severe pain. Nail matrix inflammation may result in onycholysis or onychodystrophy.

2.4 | Scalp lesions

The EGFR TKIs have been linked to severe scalp inflammation and hair loss (scarring or non-scarring alopecia). Folliculitis decalvans is a severe form of scarring involving the scalp. Generally, 5–6% of the patients develop alopecia 2–4 months after therapy is started, whereas hirsutism (hair curling and rigidity, facial hypertrichosis and trichomegaly) can appear 1–2 months after therapy is started. If trichomegaly involves the eyelashes, eye irritation and conjunctivitis can occur. Alopecia associated with EGFR TKI primarily consists of catagen/telogen hair follicles and different inflammatory infiltrates.

3 | Commonly Occurring EGFR TKI-Related Gastrointestinal AES

The squamous epithelium covering the tongue, esophagus and gastrointestinal tract can be affected by AEs caused by EGF deficiency.
Gastrointestinal symptoms associated with EGFR TKI therapy such as oral complications and diarrhea will be discussed in this section of the review.

3.1 | Oral complications

Oral mucositis and stomatitis are the most common EGFR TKI-related AEs affecting the mucous membrane of the gastrointestinal tract and oral cavity. A patient with oral mucositis may have extensive erythema or aphthous-like stomatitis. Older patients and patients who have poor dental hygiene or use dentures are more prone to develop these complications. Majority of stomatitis/mucositis cases are mild, but can be very painful and make eating and drinking difficult for the patient.

3.2 | Diarrhea

EGFR TKIs-related diarrhea are caused by the presence of EGFR on epithelial cells, particularly the GI tract. We refer to CTCAE v4.03 for the description of the various grades of diarrhea. Briefly, grade 1, 2 and 3 refers to the increase of less than 4, 4 to 6 and more than 7 stools per day over baseline, respectively. Table 1 describes the frequency of diarrhea between the various first and second generation EGFR TKIs. However, the mechanisms underlying diarrhea associated with EGFR TKI therapy remain poorly understood. It was proposed that excess chloride secretion during EGFR TKI treatment causes a secretory form of diarrhea. Conversely, it was thought that EGFR TKI-associated diarrhea is caused by multiple factors, such as changes in gut motility; damage in the colonic crypt and altered intestinal microflora. In our routine practice, we observed that afatinib induced diarrhea earlier during treatment compared to first generation EGFR TKI. More than half of our patients experience diarrhea within 2 to 3 days of therapy and around 70% of patients by 14 days.

3.3 | Managing EGFR TKI-related AEs

Patient education is an important element in managing AEs. Physicians should educate patients on how frequent and how intense specific AEs can be, as well as the consequences of delaying treatment. Optimal management of AEs are based on prophylaxis, which includes pre-emptive interventions that address frequently occurring toxicities, close patient monitoring, assessment of risk factors, early detection, severity grading and early intervention.

AEs in some patients may require a dose modification strategy in which the dose of TKIs is reduced/adjusted or discontinued; and then reintroduced at a lower dose once the AE improves to a lower grade. The dose reduction strategies are different among the various TKIs; and the management of AEs at various grades may be different according to the product information. A major concern for dose titration is that the drug could be less efficacious because of the sub-optimal dosage. This issue was addressed in a combined post hoc analysis of the LUX-Lung 3, LUX-Lung 6 and LUX-Lung 7 studies, which showed that dose reduction of afatinib had limited effects on its efficacy. Patients whose dose was reduced within the first 6 months of treatment had similar median progression free survival (mPFS) as the cohort which remained on the indicated dose of 40 mg. Furthermore, a subgroup analysis of Japanese patients in the LUX-Lung 3 study demonstrated that patients could stay longer on treatment and receive clinical benefit if tolerability-guided dose adjustment of afatinib is practiced.

The topical corticosteroids commonly used for skin-related AEs are desonide (DesOwen), betamethasone valerate (Betnovate) and fluticasone propionate (Cutivate). Examples of topical corticosteroid–antimicrobial combinations are betamethasone valerate and fusidic acid (Fucicort), betamethasone dipropionate (Diprobase) and gentamicin (Diprogenta) and betamethasone valerate and clioquinol (Demanol-C).

3.4 | Management of skin rash

The standard of care for managing rash includes topical and oral corticosteroids or antibiotics (lesions can be superinfected by bacteria). The management of EGFR-TKI induced skin toxicity is different between Caucasian and Asian population considering that the difference in skin sensitivity and higher likelihood of developing post-inflammatory hyper-pigmentation (PIH). Table 2 summarizes the treatment options for each skin toxicity at various grades. For grade 1 rash, a topical anti-inflammatory antibiotic such as clindamycin 1% lotion bis in die (BD) usually suffices. A topical corticosteroid such as desonide 0.05% lotion BD may be added if it is itchy. For grade 2 rash, additional prednisolone may be considered to hasten recovery. Doxycycline 100 mg BD or minocycline 100 mg BD may be considered for 6–8 weeks to prevent another flare. Of note, in previously published EGFR-TKI AE consensus guidelines that focused on Caucasian patients, there was less emphasis on the use of oral steroids for EGFR-TKI induced skin toxicities. As Asian patients are generally very disturbed by the consequence of PIH, in our guidelines, we have a lower threshold to use a short course of oral corticosteroids in order to more aggressively arrest the development of the AE from grade 2 and above.

If secondary bacterial infection is suspected (as evidenced by yellowish crusting, purulent discharge, increased skin pain), an anti-Staphylococcal antibiotic such as cloxacillin or cephalaxin is recommended for a week before commencing secondary prophylaxis with doxycycline or minocycline. Also, the infected lesions can heal faster with potassium permanganate compresses for few days in addition to a topical corticosteroid-antimicrobial preparation. Grades 3 and 4 rashes should be comanaged with a dermatologist. Patients with grade 4 reactions may need attentive skin care and isolation to prevent secondary infections. Scalp rash may be managed using similar basic principles and recommendations. Scalp lesions can be treated with topical betamethasone valerate 0.1% lotion BD or mometasone furoate 0.1% lotion OD. Tar-based shampoo or cetrimide wash are suitable treatment options.

The tetracycline antibiotics are thought to reduce the incidence of EGFR TKI-related skin rash without impacting efficacy through anti-inflammatory properties. A systematic review and meta-analysis of 13 studies revealed 50% reduction in rash from all grade and
Condition	Grade	TKI administration decision	Treatments and interventions
Skin rash	1	Continue TKI at current dose	A topical anti-inflammatory antibiotic such as clindamycin 1% lotion should suffice. Topical corticosteroids may also be considered if itchy\(^a\)
	2	Continue TKI at current dose/If intolerable, interrupt treatment	1. Oral anti-inflammatory antibiotic for at least 6 weeks (doxycycline 100 mg BD, minocycline 100 mg BD) 2. Clindamycin 1% lotion (Dalacin T) BD 3. Consider oral prednisolone 0.5 mg/kg/day for 5–7 days
	3	1. Interrupt TKI treatment 2. Consider referring to a dermatologist 3. Resume TKI at reduced dose if patient recovers to grade ≤2	As above if infection is suspected (yellow crusts, purulent discharge or painful skin): • Anti-Staphylococcal antibiotic (cloxacillin 500 mg QDS, cephalexin 500 mg TDS) for 7 days • Consider skin swab for bacterial culture • Potassium permanganate washes and/or compress BD • Consider topical corticosteroid–antimicrobial combinations\(^b\)
Xerosis and/or Pruritus	1	Continue TKI at current dose	Pruritus: Consider sedating antihistamines\(^c\) and topical antipruritics eg menthol cream
	2	Continue TKI at current dose	Pruritus: As above + consider low to mid-potency topical corticosteroid\(^d\)
	3	1. Interrupt TKI treatment; 2. Refer to a dermatologist. 3. Resume TKI at reduced dose if patient improves	Pruritus: As above
			Xerosis: Moisturizing cream 200–300 g/week
Paronychia	1	Continue TKI at current dose	GABA agonists, tricyclics, aprepitant\(^d\) Xerosis: As above + bath oil
	2	Continue TKI at current dose	• Topical potent corticosteroids\(^e\) • Vinegar soaks (soaking fingers or toes in a solution of white vinegar in water 1:1 for 15 min every day) may be useful.
	3	1. Interrupt TKI treatment 2. Refer to a dermatologist. 3. Resume TKI at reduced dose if patient improves	Potent topical corticosteroids with/or without antimicrobials\(^f\) • Silver nitrate applications to treat exuberant granulation tissue. • Refer to podiatrist/dermatologist for physical treatments. • Consider long-term prophylactic anti-inflammatory antibiotic eg doxycycline

TKI, tyrosine kinase inhibitors.

For afatinib, it is recommended that treatment is interrupted for prolonged grade 2 (more than 7 days) or grade 3 skin reactions; treatment can subsequently be resumed with 10 mg dose reduction only when symptoms are fully resolved or improved to grade 1.

\(^a\)Examples of topical corticosteroids (moderate/low strength): desonide 0.05% lotion/cream, betamethasone valerate 0.05% cream, fluticasone propionate 0.05% cream.

\(^b\)Examples of topical corticosteroid-antimicrobial/antiseptic combinations: betamethasone valerate 0.1% + fusidic acid 1% cream (Fucicort), betamethasone valerate 0.1% + clioquinol.

\(^c\)Examples of sedative antihistamines: hydroxyzine 25 mg t.i.d. [Be careful of fall risk in elderly patients who may suffer excessive daytime drowsiness.]

\(^d\)Examples of GABA agonists (adjust if patient has renal impairment): gabapentin 300 mg every 8 h or pregabalin 50–75 mg every 8 h; examples of tricyclics: doxepin 25–50 mg every 8 h; aprepitant three doses: 125 mg on day 1, and 80 mg on days 2 and 3.

\(^e\)Examples of topical corticosteroids (medium/potent strength): mometasone furoate 0.1% ointment, betamethasone valerate 0.1% + fusidic acid 1% cream (Fucicort), betamethasone valerate 0.1% + clioquinol.

\(^f\)Examples of potent corticosteroid–antimicrobial combinations: betamethasone dipropionate 0.05% + gentamicin (Diprogenta or Beprogenta) cream, betamethasone dipropionate 0.05% + Fucidin ointment.
Management of xerosis and/or pruritus

Patients who develop pruritus may benefit from topical, oral or systemic agents such as steroids, antihistamines or GABA agonists. They can use hydroxyzine (50 mg) at night and a non-sedative antihistamine during the day. A suitable moisturizer should be used regularly to treat xerosis. At least 200–300 g of moisturizer cream per week is highly recommended. One review suggested using urea-free softening cream after showers and a medium strength corticoid. The clinical management of xerosis and/or pruritus in Singapore is summarized in Table 2.

In terms of patient education, patients should be advised to use moisturizers to prevent dryness. Soaps and detergents with strong scents should be avoided. Patients should be advised to bathe in cool or lukewarm water and to avoid long, hot showers. Sheets, clothing and undergarments should be washed using a mild detergent. Wool and other types of fabrics that can make the skin itch are best avoided; instead loose-fitting cotton clothing or other soft fabrics are recommended for regular wear. As dry air can dehydrate the skin, a humidifier can be considered indoors. Cold compresses can be directly applied over itchy areas for comfort.

Management of paronychia

Patients with paronychia can benefit from topical antibiotics/antiseptics and silver nitrate. Grade 1 reactions may be treated with a potent corticosteroid such as betamethasone valerate 0.1% ointment (Betnovate or Dermasone) BD twice a day. Grades 2 and 3 reaction may benefit from potent topical corticosteroid–antimicrobial combinations. If there is exuberant granulation tissue not responding to silver nitrate applications (20%), refer to a dermatologist for physical measures such as electrodesiccation or carbon dioxide laser ablation. Long-term secondary prophylaxis with doxycycline is recommended. Partial or whole nail avulsion may be performed for cases of painful ingrowth of nail into granulation tissue. The clinical management of paronychia in Singapore is summarized in Table 2.

In terms of patient education, patients should be advised against biting and traumatizing their nails, aggressive manicures/pedicures as well as contact with irritating substances. Prolonged exposure to water should also be avoided. If the patient has to wear vinyl gloves, they should use cotton gloves underneath. High-risk patients (diabetics/immunosuppressed patients) and patients repeatedly exposed to moist environments (housekeepers, swimmers, etc.) should take extra precautions to ensure their nails are dry and clean.

Management of stomatitis/mucositis

Prophylactic treatment of stomatitis / mucositis is highly recommended. There are no conclusive data evaluating treatment for these conditions, but experts recommend advising patients with general mouth sensitivity to gargle with a benzylamine rinse. Triamcinolone in dental paste can be used for grade 1 stomatitis / mucositis. For grade 2, oral erythromycin or minocycline should be added. For grade 3, triamcinolone should be substituted with clobetasol ointment and the dose of oral erythromycin/minocycline should be increased.

Patients should be educated on dental hygiene and food. They should see a dental surgeon before treatment is initiated to diagnose and manage all infections or denture problems, except for removing tartar.

In terms of patient education, patients should be advised to care for their oral health by using a brush with soft bristles, sodium bicarbonate and alcohol-free mouthwash; taking special care of dentures as they can cause oral sores. Food should be consumed cold or at room temperature, and food that is acidic, spicy, salty or coarse should be avoided. Patients should drink a lot of water, preferably using a straw to sip liquids. Dry lips should be managed using a lip balm or petroleum jelly. Whenever needed, patients can numb the mouth with ice chips or flavored ice pops.

Management of diarrhea

Loperamide is considered the mainstay pharmacologic treatment for diarrhea; with doses escalated to the highest recommended approved dose as needed. Loperamide, a synthetic oral opioid drug, prolongs the transit time of intestinal contents, decreases daily fecal volume and improves its viscosity and bulk density, as well as diminishes the loss of fluid and electrolytes. Treating physicians should closely follow-up with patients approximately 3 days after the initiation of EGFR TKI therapy.

As with dermatological AEs, each EGFR TKI has specific instructions on dose reduction to overcome drug-induced diarrhea. The following describes the common dose reduction practices for patients prescribed afatinib, which is known to induce diarrhea early (i.e. within 2 to 3 days of application); In the event of grade 1–2 diarrhea, patients should start immediate treatment with loperamide (two tablets = 4 mg) and continue taking one tablet after each episode (up to 16 mg/day) until there are no bowel movements for 12 h. EGFR TKI treatment should be continued at the same dose. If grade 2 diarrhea persists for more than 48 h despite anti-diarrheal treatment, afatinib interruption is recommended. Afatinib can be recommenced at a reduced 10 mg/day dose after diarrhea symptoms have resolved to grade ≤1. Loperamide treatment should be continued and patients should be assessed for dehydration and electrolyte imbalance. Intravenous fluids therapy and electrolyte replacement should be

3.7 Management of stomatitis/mucositis

Prophylactic treatment of stomatitis/mucositis is highly recommended. There are no conclusive data evaluating treatment for these conditions, but experts recommend advising patients with general mouth sensitivity to gargle with a benzylamine rinse. For grade 1 stomatitis/mucositis, oral erythromycin or minocycline should be added. For grade 3, triamcinolone should be substituted with clobetasol ointment and the dose of oral erythromycin/minocycline should be increased.

Patients should be educated on dental hygiene and food. They should see a dental surgeon before treatment is initiated to diagnose and manage all infections or denture problems, except for removing tartar.

In terms of patient education, patients should be advised to care for their oral health by using a brush with soft bristles, sodium bicarbonate and alcohol-free mouthwash; taking special care of dentures as they can cause oral sores. Food should be consumed cold or at room temperature, and food that is acidic, spicy, salty or coarse should be avoided. Patients should drink a lot of water, preferably using a straw to sip liquids. Dry lips should be managed using a lip balm or petroleum jelly. Whenever needed, patients can numb the mouth with ice chips or flavored ice pops.
FIGURE 4 Algorithm for the management of grades 1–4 diarrhea associated with EGFR TKI therapy. EGFR TKI, Epidermal growth factor receptor tyrosine kinase inhibitor. [Colour figure can be viewed at wileyonlinelibrary.com]

considered (Figure 4). In the event of grade 3 or 4 diarrhea, the patient should be admitted to the hospital and aggressive intravenous fluid replacement should be initiated. Patients should continue to receive loperamide treatment, although prophylactic antibiotics can be considered if the patient has neutropenia. EGFR TKI treatment must be interrupted, but can be recommenced at a reduced 10 mg/day dose after diarrhea symptoms have resolved. With these measures, symptoms should improve to grade \(\leq 1 \) by 14 days. If improvements are not seen, afatinib treatment must be ceased permanently.

Certain risk factors have been linked with a higher incidence of grade 3 diarrhea in afatinib-treated patients starting afatinib dose of 50 mg/day. These include a low (<50 kg) bodyweight, female gender and baseline renal impairment (creatinine clearance \(\leq 80 \) mL/min). These factors may be useful in predicting the development of diarrhea. However, these observations are based on small patient numbers and should be confirmed in larger sample sizes. Although early and appropriate treatment for afatinib-associated diarrhea appears to be essential, data to support the routine implementation of prophylactic measures is still inconclusive. Management strategies to reduce the severity, or eliminate diarrhea entirely, are advocated to avoid reducing the dose of afatinib or the need to change the regimen if a clinical response is likely.37

4 | CONCLUSION

The EGFR TKIs has changed the treatment paradigm for advanced NSCLC, providing patients with better efficacy and quality of life than chemotherapy. The EGFR TKIs also have favorable toxicity profiles, but prolonged use may impact patients’ quality of life, treatment compliance and ultimately clinical outcome. The most common AEs for EGFR TKIs are cutaneous (rash, xerosis, paronychia and scalp lesions) and gastrointestinal related (oral complications and diarrhea), because EGFR is mainly expressed in epithelial cells. Importantly, optimize supportive measures by pre-empting AEs, dose modifications strategies which vary with TKIs and by AE grades, individualized proactive/early intervention and appropriate education for both patients and physicians.

A “third-generation” EGFR TKI group known as wild-type EGFR sparing inhibitors may provide an alternative option in the future.50 Trials to determine if this novel class of EGFR TKIs are indicated in the first-line setting are ongoing.

ACKNOWLEDGMENTS

Ross Soo have received honoraria from Astra-Zeneca, BMS, Boehringer-Ingelheim, Eli Lilly, Merck, Novartis, Pfizer, Roche and Taiho; grant funding from Astra-Zeneca. Derrick Aw have received honoraria from Merck-Serono, Roche and Boehringer-Ingelheim. Eng Huat Tan, Tan Min Chin, Hong Liang Lim and Haur Yueh Lee do not have any disclosures. We would like to thank Jason Tang from Boehringer Ingelheim for his secretarial assistance in the preparation of this manuscript.

AUTHORS’ CONTRIBUTIONS

Ross Soo conceived and designed this review. All authors were involved in preparing the manuscript and its final approval.
REFERENCES

1. Sgambato A, Casaluce F, Maione P, et al. The role of EGFR tyrosine kinase inhibitors in the first-line treatment of advanced non small cell lung cancer patients harboring EGFR mutation. Curr Med Chem. 2012;19:3337–3352.

2. Kohler J, Schuler M. Afinatinib, erlotinib and gefitinib in the first-line therapy of EGFR mutation-positive lung adenocarcinoma: a review. Onkologie. 2013;36:510–518.

3. Hirsh V. Managing treatment-related adverse events associated with EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer. Curr Oncol. 2011;18:126–38.

4. Boone SL, Rademaker A, Liu D, et al. Impact and management of skin toxicity associated with anti-epidermal growth factor receptor therapy: survey results. Oncology. 2007;72:152–159.

5. Melosky B, Leight NB, Rothenstein J, et al. Management of EGFR TKI-induced dermatologic adverse events. Curr Oncol. 2015;22:123–132.

6. Arriola E, Reguart N, Artal A, et al. Management of the adverse events of afatinib: a consensus of the recommendations of the Spanish expert panel. Future Oncol. 2015;11:267–277.

7. Mok TS, Wu YL, Amin M, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 2017;376:629–640.

8. Janne PA, Yung JC, Kim DW, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med. 2015;372:1689–1699.

9. Goss G, Tsai CM, Shepherd FA, et al. Osimertinib for pretreated EGFR Thr790Met-positive advanced non-small-cell lung cancer (AURA2): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2016;17:1643–1652.

10. Abdullah SE, Haigentz M, Jr., Pipardi B. Dermatologic toxicities from monoclonal antibodies and tyrosine kinase inhibitors against EGFR: pathophysiology and management. Chemother Res Pract. 2012;2012:351210.

11. Lee E, Kim S, Lee J, et al. Ethnic differences in objective and subjective skin irritation response: an international study. Skin Res Technol. 2014;20:265–269.

12. Chen KL, Lin CC, Cho YT, et al. Comparison of skin toxic effects associated with gefitinib, erlotinib or afatinib treatment for non-small cell lung cancer. JAMA Dermatol. 2015;152:340–342.

13. Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361:947–957.

14. Zhou C, Wu YL, Chen G, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011;12:735–742.

15. Sequist LV, Yang JC, Yamamoto N, et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic adenocarcinoma with EGFR mutations. J Clin Oncol. 2013;31:3327–3334.

16. Jackman DM, Holmes AJ, Lindeman N, et al. Response and resistance in a non-small-cell lung cancer patient with an epidermal growth factor receptor mutation and leptomeningeal metastases treated with high-dose gefitinib. J Clin Oncol. 2006;24:4517–4520.

17. Chanprapaph K, Vachiraonamon V, Rattanaekamkorn P. Epidermal growth factor receptor inhibitors: a review of cutaneous adverse events and management. Dermatol Res Pract. 2014;2014:734249.

18. Grommes C, Oxnard GR, Kris MG, et al. “Pulsatile” high-dose weekly erlotinib for CNS metastases from EGFR mutant non-small cell lung cancer. Neuro Oncol. 2011;13:1364–1369.

19. Tan WL, Tan EH, Lim DW, et al. Advances in systemic treatment for nasopharyngeal carcinoma. Chin Clin Oncol. 2016;5:21.

20. Lacouture ME, Anadkat MJ, Bensadoun RJ, et al. Clinical practice guidelines for the prevention and treatment of EGFR inhibitor-associated dermatologic toxicities. Support Care Cancer. 2011;19:1079–1095.

21. Ehmann LM, Ruzicka T, Wollenberg A. Cutaneous side-effects of EGFR inhibitors and their management. Skin Therapy Lett. 2011;16:1–3.

22. Heidary N, Naik H, Burgin S. Chemotherapeutic agents and the skin: an update. J Am Acad Dermatol. 2008;58:545–570.

23. Services USDAHal. Common Terminology Criteria for Adverse Events v4.03 (CTCAE), 2009.

24. Hepper DM, Wu P, Anadkat MJ. Scarring alopecia associated with the epidermal growth factor receptor inhibitor erlotinib. J Am Acad Dermatol. 2011;64:996–998.

25. Donovan JC, Ghazarian DM, Shaw JC. Scarring alopecia associated with use of the epidermal growth factor receptor inhibitor gefitinib. Arch Dermatol. 2008;144:1524–1525.

26. Graves JE, Jones BF, Lind AC, et al. Nonscarring inflammatory alopecia associated with the epidermal growth factor receptor inhibitor gefitinib. J Am Acad Dermatol. 2006;55:349–353.

27. Pongpudpunt M, Demierre MF, Goldberg LJ. A case report of inflammatory nonscarring alopecia associated with the epidermal growth factor receptor inhibitor erlotinib. J Cutan Pathol. 2009;36:1303–1307.

28. Mitchell EP, Perez-Soler R, Van Cutsem E, et al. Clinical presentation and pathophysiology of EGFRi dermatologic toxicities. Oncology (Williston Park). 2007;21:1–9.

29. Lacouture ME, Maitland ML, Segaert S, et al. A proposed EGFR inhibitor dermatologic adverse event-specific grading scale from the MASCC skin toxicity study group. Support Care Cancer. 2010;18:509–522.

30. Boucher J, Olson L, Pipardi B. Preemptive management of dermatologic toxicities associated with epidermal growth factor receptor inhibitors. Clin J Onkol Nurs. 2011;15:501–508.

31. Hoekzema R, Drillenburg P. Folliculitis decalvans associated with erlotinib. Clin Exp Dermatol. 2010;35:916–918.

32. Yang JC, Reguart N, Barinoff J, et al. Diarrhea associated with afatinib: a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2010;12:313–320.

33. Uribe JM, Gelbmann CM, Traynor-Kaplan AE, et al. Epidermal growth factor inhibitors Ca(2+)-dependent Cl- transport in T84 human colonic epithelial cells. Am J Physiol. 1996;271:C914-C922.

34. Ali-Dasooqi N, Gibson R, Bowen J, et al. HER2 targeted therapies for nasopharyngeal carcinoma. Curr Drug Targets. 2010;11:537–548.

35. Temple G B S, Stopfer P. A Phase I open-label dose escalation study of continuous once-daily oral treatment with BIBW 2992 in patients with advanced solid tumors. Trial. 2010;1200:3.

36. Giaccone GMB, Reck M. Epidermal growth factor receptor inhibitor (EGFR)-associated rash: a suggested novel management paradigm. A consensus position from the EGFRi dermatologic toxicity forum. ECCO; Barcelona 2007.

37. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumors: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–247.

38. Abad-Casintahan F, Chow SK, Goh CL, et al. Frequency and characteristics of acne-related post-inflammatory hyperpigmentation. J Derma-
39. Melosky B, Anderson H, Burkes RL, et al. Pan Canadian rash trial: a randomized phase iii trial evaluating the impact of a prophylactic skin treatment regimen on epidermal growth factor receptor-tyrosine kinase inhibitor-induced skin toxicities in patients with metastatic lung cancer. *J Clin Oncol.* 2016;34:810–815.

40. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer. *N Engl J Med.* 2005;353:123-132.

41. Ocvirk J, Heeger S, McCloud P, et al. A review of the treatment options for skin rash induced by EGFR-targeted therapies: Evidence from randomized clinical trials and a meta-analysis. *Radiol Oncol.* 2013;47:166-175.

42. Porta C, Osanto S, Ravaud A, et al. Management of adverse events associated with the use of everolimus in patients with advanced renal cell carcinoma. *Eur J Cancer.* 2011;47:1287-1298.

43. Jordhoy MS, Fayers P, Loge JH, et al. Quality of life in advanced cancer patients: the impact of sociodemographic and medical characteristics. *Br J Cancer.* 2001;85:1478-1485.

44. Rubel D, Thirumoorthy T, Soebaryo RW, et al. Consensus guidelines for the management of atopic dermatitis: an Asia-Pacific perspective. *J Dermatol.* 2013;40:160-171.

45. Burtness B, Anadkat M, Basti S, et al. NCCN Task Force Report: Management of dermatologic and other toxicities associated with EGFR inhibition in patients with cancer. *J Natl Compr Canc Netw.* 2009;7 Suppl 1:S5-S21; quiz S2-4.

46. Relhan V, Goel K, Bansal S, et al. Management of chronic paronychia. *Indian J Dermatol.* 2014;59:15-20.

47. Bensinger W, Schubert M, Ang KK, et al. NCCN task force report. Prevention and management of mucositis in cancer care. *J Natl Compr Canc Netw.* 2008;6 Suppl 1:S1-S21; quiz S2-4.

48. Lacouture ME, Schadendorf D, Chu CY, et al. Dermatologic adverse events associated with afatinib: an oral ErbB family blocker. *Expert Rev Anticancer Ther.* 2013;13:721-728.

49. Taphoorn MJ, Claassens L, Aaronson NK, et al. An international validation study of the EORTC brain cancer module (EORTC QLQ-BN20) for assessing health-related quality of life and symptoms in brain cancer patients. *Eur J Cancer.* 2010;46:1033-1040.

50. Chee Seng Tan BC, Ross Soo. Next-generation epidermal growth factor receptor tyrosine kinase inhibitors in epidermal growth factor receptor -mutant non-small cell lung cancer. *Lung Cancer.* 2016;93:59-68.

How to cite this article: Aw DC-W, Tan EH, Chin TM, Lim HL, Lee HY, Soo RA. Management of epidermal growth factor receptor tyrosine kinase inhibitor-related cutaneous and gastrointestinal toxicities. *Asia-Pac J Clin Oncol.* 2018;14:23-31. https://doi.org/10.1111/ajco.12687