The space \mathcal{B}' of distributions vanishing at infinity – duals of tensor products

E. A. Nigsch, N. Ortner

April 11, 2016

Abstract

Analogous to L. Schwartz’ study of the space $\mathcal{D}'(\mathcal{E})$ of semi-regular distributions we investigate the topological properties of the space $\mathcal{D}'(\mathcal{B})$ of semi-regular vanishing distributions and give representations of its dual and of the scalar product with this dual. In order to determine the dual of the space of semi-regular vanishing distributions we generalize and modify a result of A. Grothendieck on the duals of $E \hat{\otimes} F$ if E and F are quasi-complete and F is not necessarily semi-reflexive.

Keywords: semi-regular vanishing distributions, duals of tensor products

MSC2010 Classification: 46A32, 46F05

1 Introduction

L. Schwartz investigated, in his theory of vector-valued distributions [24, 25], several subspaces of the space $\mathcal{D}'_{xy} = \mathcal{D}'(\mathbb{R}^n_x \times \mathbb{R}^m_y)$ that are of the type $\mathcal{D}'_x(E_y)$ where E_y is a distribution space.

Three prominent examples are:

*Wolfgang-Pauli-Institut, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria. e-mail: eduard.nigsch@univie.ac.at. Corresponding author.

†Institut für Mathematik, Universität Innsbruck, Technikerstraße 13, 6020 Innsbruck, Austria.
(i) $\mathcal{D}'(\mathcal{S}')$ – the space of semi-temperate distributions, for which the partial Fourier transform is defined [24, p. 123];

(ii) $\mathcal{D}'(\mathcal{D}'_{L^1,y})$ – the space of partially summable distributions, for which the convolution of kernels is defined [7, §2, p. 546], as a generalization of the convolvability condition for two distributions [24, pp. 131, 132];

(iii) $\mathcal{D}'(\mathcal{E}_y)$ – the space of semi-regular distributions (see [23] and [24, p. 99]).

In this paper we will be concerned with the space $\mathcal{D}'(\hat{\mathcal{B}})$ of “semi-regular vanishing” distributions.

Notation and Preliminaries. We will mostly build on notions from [26, 6, 24, 25]. $\mathcal{D}'(E)$ is defined as $\mathcal{D}' \in E$, which space coincides with $\mathcal{D}' \otimes E = \mathcal{D}' \otimes E =: \mathcal{D}' \otimes E$ in the 3 examples above. If E, F are two locally convex spaces then $E \otimes E, E \otimes F$ and $E \otimes F$ denote the completion of their projective, injective, and inductive tensor product, respectively; writing \otimes in place of $\hat{\otimes}$ means that we take the quasi-completion instead. The subscript β in $E \otimes E$ [25, p. 12, 2^\star] refers to the finest locally convex topology on $E \otimes E$ for which the canonical injection $E \times F \to E \otimes E$ is hypocontinuous with respect to bounded sets. Given a locally convex space E, E' denotes its strong dual, E' its weak dual and E' its dual with the topology of uniform convergence on absolutely convex compact sets. In absence of any of these designations, E' carries the strong dual topology. For the definition of $\mathcal{T}(E)$ see [24, p. 63] and [22, p. 94]. \mathcal{B}' is the space of distributions vanishing at infinity, i.e., the closure of \mathcal{E}' in \mathcal{D}'_{L^∞} [26, p. 200]. $\mathcal{N}(E, F)$ and $\mathcal{C}_{00}(E, F)$ denote the space of nuclear and compact linear operators $E \to F$, respectively. The normed space \hat{E}_U for an absolutely convex zero-neighborhood U in E is introduced in [6, Chap. I, p. 7], with associated canonical mapping $\Phi_U: E \to \hat{E}_U$. $\mathcal{L}(E, F)$ is the space of continuous linear mappings $E \to F$. By $\mathcal{B}^c(E, F)$ and $\mathcal{B}(E, F)$ we denote the spaces of separately continuous and continuous bilinear forms $E \times F \to \mathbb{C}$, respectively, and $\mathcal{B}^h(E, F)$ is the space of separately hypocontinuous bilinear forms; for any of these spaces, the index ϵ denotes the topology of bi-equicontinuous convergence.

Motivation. In order to prove, e.g., the equivalence of $S(x - y)T(y) \in \mathcal{D}'(\mathcal{D}'_{L^1,y})$ for two distributions S, T (which means, by definition, that $S, T \in$
\(\mathcal{D}'(\mathbb{R}^n) \) are convolvable) to the inequality

\[
\forall K \subset \mathbb{R}^n \text{ compact } \exists C > 0 \exists m \in \mathbb{N}_0 \quad \forall \varphi \in \mathcal{D}(\mathbb{R}^{2n}) \text{ with } \supp \varphi \subseteq \{(x, y) \in \mathbb{R}^{2n} : x + y \in K\} : \\
|\langle \varphi(x, y), S(x)T(y) \rangle| \leq C \sup_{|\alpha| \leq m} \| \partial^\alpha \varphi \|_\infty ,
\]

it is advantageous to know of a “predual” of \(\mathcal{D}'(\mathcal{D}'_L) \), i.e., the space \(\mathcal{D}'(\mathcal{D}'_x) = \lim_{\rightarrow} X = D_x \mathcal{B} \) for which \((\mathcal{D}'(\mathcal{D}'_x))_b = D_x \mathcal{D}'_L \) [7, Prop. 3, p. 541]. A “predual” of \(\mathcal{D}'(\mathcal{D}) \) and \(\mathcal{D}'(\mathcal{D}'_L) \) can easily be found by Corollary 3 in [24, p. 104], which states that \((\mathcal{D}(\mathcal{D}'))_b = \mathcal{D}'(\mathcal{D})' \) if \(E \) is a Fréchet space. A “predual” of \(\mathcal{D}'(E) \) is the space \(D_x \mathcal{D}'(\mathcal{D}'_x) \) (see Propositions 1 and 2).

In the memoir [23] L. Schwartz investigated the space \(\mathcal{D}'(E) \) of semi-regular distributions. For reasons of comparison we present the main features thereof in Section 2, i.e., in Proposition 1 properties of \(\mathcal{D}'(E) \), in Proposition 2 the dual and a “predual” of \(\mathcal{D}'(E) \) and in Proposition 3 an explicit expression for the scalar product of \(K(x, y) \in \mathcal{D}'(E_x) \) with \(L(x, y) \in \mathcal{D}'(E_y) \). These propositions generalize the corresponding propositions in [23] and new proofs are given.

In [15] we found the condition

\[
\forall \varphi \in \mathcal{D} : (\varphi * S)T \in \mathcal{B}
\]

(1)

for two distributions \(S, T \), in order that \((\partial_j S) * T = S * (\partial_j T) \) under the assumption that \((\partial_j S, T) \) and \((S, \partial_j T) \) are convolvable (see also [9, p. 559]). The equivalence of (1) and

\[
S(x - y)T(y) \in \mathcal{D}'_x(\mathcal{B}_y)
\]

(2)

is proven in [16]. Due to the regularization property

\[
S \in \mathcal{B} \iff S(x - y) \in \mathcal{D}'(\mathcal{B}_x)
\]

for a distribution \(S \) [26, remarque 3', p. 202] we are motivated to investigate the space \(\mathcal{D}'(\mathcal{B}) \) of “semi-regular vanishing distributions” analogously to \(\mathcal{D}'(E) \) in [23], i.e.,

- to state properties of \(\mathcal{D}'(\mathcal{B}) \) in Proposition 4,
- to determine the dual of \(\mathcal{D}'(\mathcal{B}) \) in Proposition 5,
- to express explicitly the scalar product in Proposition 6, and
• to determine the transpose of the regularization mapping $\hat{\mathcal{B}}' \rightarrow \mathcal{D}'(\hat{\mathcal{B}}_x)$, $S \mapsto S(x - y)$ in Proposition 7.

Duals of tensor products. Looking for $([\mathcal{D}'(\hat{\mathcal{B}})'])_b'$ we make use of the following duality result of A. Grothendieck which allows – in contrast to the corresponding propositions in [12, §45, 3.1, p. 301, §45, 3.5, p. 302, §45, 3.7, p. 304], [10, 16.1.7, p. 346], [20, IV, 9.9, p. 175; Corollary 1, p. 176; Ex. 32, pp. 198, 199] and [3, §4, Satz 1, p. 212] – to determine the duals of tensor products $E \otimes F$ in cases where E and F are of “different nature”:

$$[6, \text{Chap. II, § 4, n°1, Lemme 9, Corollaire, p. 90}]: \text{Let } E \text{ and } F \text{ be complete locally convex spaces, } E \text{ nuclear, } F \text{ semireflexive. If the strong dual } ([E \hat{\otimes} F])'_b' \text{ is complete then } ([E \hat{\otimes} F])'_b' = (E'_b \hat{\otimes} F'_b).$$

Note that for our example in the introduction the assumption of semireflexivity is not fulfilled. Nevertheless we reach the conclusion by observing that

$$([\mathcal{D}'(\hat{\mathcal{B}})])'_b = ([\mathcal{D}'(\mathcal{B}_c)])'_b,$$

\mathcal{B}_c being the semireflexive space $\mathcal{D}_{L\infty}$ endowed with the topology of uniform convergence on compact subsets of \mathcal{D}'_{L^1} [26, p. 203] which also can be described by seminorms [17, Prop. 1.3.1, p. 11]. Therefore, in Section 4, we prove a generalization of Grothendieck’s Corollary and a modification which applies to semi-reflexive locally convex Hausdorff spaces F such that the completeness of $([E \hat{\otimes} F])'_b$ can be shown by the existence of a space F_0 such that $([E \hat{\otimes} F_0])'_b$ is complete and $([E \hat{\otimes} F])'_b = ([E \hat{\otimes} F_0])'_b'$.

The kernel identity for $\hat{\mathcal{B}}'$. There is yet another condition equivalent to (1) and (2):

$$\delta(z - x - y)S(x)T(y) \in \mathcal{D}'_z \hat{\otimes} \mathcal{B}'_{xy}$$

which is nothing else than

$$\forall K \subset \mathbb{R}^n \text{ compact } \exists C > 0 \exists m \in \mathbb{N}_0 \forall \varphi \in \mathcal{D}(\mathbb{R}^{2n}) \text{ with } \text{supp } \varphi \subseteq \{(x, y) \in \mathbb{R}^{2n} : x + y \in K\} : \langle \varphi(x, y), S(x)T(y) \rangle \leq C \sup_{|\alpha| \leq m} \|\partial^\alpha \varphi\|_1.$$

This equivalence can be shown by the use of the “kernel identity”

$$\mathcal{B}'_{xy} = \mathcal{B}'_x \hat{\otimes} \mathcal{B}'_y = \mathcal{B}'_x(\mathcal{B}'_y).$$
which we prove in Section 5 (Proposition 10). For similar identities see [24, Prop. 17, p. 59; Prop. 28, p. 98] and [6, Chap. I, Cor. 4, p. 61; Ex., p. 90].

A preliminary version of this paper was presented in two talks in Vienna and in Innsbruck by N. O.

2 Semi-regular distributions.

Whereas L. Schwartz stated that the space $\mathcal{D}'(\mathcal{E})$ is semireflexive [23, p. 110] we prove

Proposition 1 (Properties of $\mathcal{D}'(\mathcal{E})$). The space of semi-regular distributions $\mathcal{D}'(\mathcal{E})$ is

(i) nuclear,

(ii) ultrabornological and

(iii) reflexive.

Proof. (i) The nuclearity follows by Grothendieck’s permanence result in [6, Chap. II, §2, n° 2, Théorème 9, 3°, p. 47] (see also [23, p. 110]).

(ii) M. Valdivia’s sequence space representation of \mathcal{O}_M [28, Theorem 3, p. 478] and [6, Chap. I, §1, n°3, Proposition 6, 1°, p. 46] yield the isomorphisms

$$\mathcal{D}' \otimes \mathcal{E} \cong s' \hat{\otimes}s^N \cong (s' \hat{\otimes}s)^N \cong \mathcal{O}_M^N.$$

By [6, Chap. II, §4, n°4, Théorème 16, p. 131], \mathcal{O}_M is ultrabornological and, hence, also \mathcal{O}_M^N, by [14, Folgerung 5.3.8, p. 106] (see also [10, 13.5.3, p. 281] or [11, §28, 8.(6), p. 392]).

(iii) The semi-reflexivity of $\mathcal{D}'(\mathcal{E})$ by [6, Chap. II, §3, n°2, Proposition 13, p. 76] (see also [23, p. 110]) and the barrelledness of $\mathcal{D}'(\mathcal{E})$ by (ii) yield the reflexivity of $\mathcal{D}'(\mathcal{E})$.

In [23], the dual of $\mathcal{D}'(\mathcal{E})$ is described by the representation of its elements as finite sums of derivatives with respect to y of functions $g(x, y) \in \mathcal{D}_x \hat{\otimes} \mathcal{D}^0_y$ [23, Proposition 1, p. 112]. Thus, $(\mathcal{D}'_x(\mathcal{E}_y))' = \lim_{\to m}(\mathcal{D}_x \hat{\otimes} \mathcal{E}_{c,y}^{m})$ algebraically.

Note that L. Schwarz asserts on the one hand $(\mathcal{D}'_x(\mathcal{E}_y))' = \lim_{\to m}(\mathcal{D}_x \hat{\otimes} \mathcal{E}_y^{m})$ in [23, Prop. 1, p. 112], whereas we find, on the other hand, $(\mathcal{D}'_x(\mathcal{E}_y))' = \lim_{\to m}(\mathcal{D}_x \hat{\otimes} \mathcal{E}_{c,y}^{m})$ algebraically.
\[\lim_{m \to \infty} (D_x \hat{\otimes} E_{c,y}^m) \] in [23, Corollaire 1, p. 116]. It can be shown that the isomorphism is also a topological one. Other representations of the dual of \(D'(E) \) are given in:

Proposition 2 (Dual of \(D'(E) \)). *We have linear topological isomorphisms*

\[(D'(E))'_b \cong D \hat{\otimes} \varepsilon = D \hat{\otimes} \beta E' \]

and linear isomorphisms

\[(D'(E))'_b \cong \varepsilon'(D; \varepsilon) = \varepsilon'(D; \beta) \]
\[\cong N(D'; E') = \mathcal{C}_o(D'; E') \]
\[\cong N(E, D) = \mathcal{C}_o(E, D). \]

For the notation \(D(E'; \varepsilon) \) or \(D(E'; \beta) \) see [25, p. 54].

Proof. The first isomorphism of (4) results from the Corollary cited in the introduction: the 5 hypotheses are fulfilled due to Proposition 1 (ii). The equality \(E \hat{\otimes} \beta F = E \hat{\otimes} \varepsilon F \) is a consequence of the barrelledness of \(E \) and \(F \), in the case above: \(E = D, F = E' \).

The isomorphisms (5) and (6) follow by [25, Proposition 22, p. 103].

The coincidence of nuclear and compact linear operators is a consequence of [6, Chap. II, §2, n°1, Corollaire 4, 1°, p. 39] and the semi-Montel property of \(D \) and \(E' \).

Proposition 3 (Existence and uniqueness of the scalar product). *There is one and only one scalar product*

\[\langle \cdot, \cdot \rangle_x : (E_x' \hat{\otimes} \varepsilon D_y) \times (E_x \hat{\otimes} D_y') \to \mathbb{C} \]

which is partially continuous and coincides on \((E_x' \otimes D_y) \times (E_x \otimes D_y')\) with the product \(\varepsilon_x(\cdot, \cdot)_{E_x' \times E_x} \cdot \varepsilon_y(\cdot, \cdot)_{D_y' \times D_y} \), i.e., for decomposed elements \((S(x) \otimes \varphi(y), \psi(x) \otimes T(y))\) we have

\[\langle \cdot, \cdot \rangle_x(S(x) \otimes \varphi(y), \psi(x) \otimes T(y)) = \varepsilon_x(\psi(x), S(x)) \varepsilon_y(\varphi(y), T(y)). \]
Proof. A first proof is given in [23, Proposition 1, p. 112], by means of the explicit representation of the elements of the strong dual $\mathcal{D}^\hat{} \otimes \mathcal{E}'$ of $\mathcal{D}'(\mathcal{E})$ hinted at before Proposition 2. The uniqueness can be presumed because L. Schwartz uses the word “le produit scalaire”.

A second proof consists in applying the “Théorèmes de croisement”, i.e., [25, Proposition 2, p. 18]: existence, uniqueness and partial continuity of the scalar product follow.

A third proof follows by composition of the vectorial scalar product

$$\langle \, , \rangle: \mathcal{E}_x(D'_y) \times (\mathcal{E}'_x \otimes \beta D_y) \rightarrow \mathcal{D}'_y \otimes \beta D_y$$

[25, Proposition 10, p. 57] with the scalar product

$$\langle \, , \rangle_y: \mathcal{D}'_y \otimes \beta D_y \rightarrow \mathbb{C}. \quad \square$$

3 “Semi-regular vanishing” distributions

Proposition 4 (Properties of $\mathcal{D}'(\mathcal{B})$ and $\mathcal{D}'(\mathcal{B}_c)$). The space of “semi-regular vanishing” distributions $\mathcal{D}'(\mathcal{B}) = \mathcal{D}' \otimes \mathcal{B}$ is ultrabornological but not semireflexive. $\mathcal{D}'(\mathcal{B}_c) = \mathcal{D}' \otimes \mathcal{B}_c$ is semireflexive but not bornological.

Proof. The non-semireflexivity and the semireflexivity, respectively, are consequences of Grothendieck’s permanence result [6, Chap. II, §3, n°2, Proposition 13 e., p. 76] due to the corresponding properties of \mathcal{B} and \mathcal{B}_c, respectively.

The sequence space representations

$$\mathcal{B} \cong c_0 \hat{} \otimes s, \quad \mathcal{O}_M \cong s \hat{} \otimes s', \quad \mathcal{D}' \cong s^{\mathbb{N}}$$

(see [29, Theorem 3.2, p. 415; Theorem 5.3, p. 427] and [28, Theorem 3, p. 478]) show that

$$\mathcal{D}' \otimes \mathcal{B} \cong s^{\mathbb{N}} \otimes (s \hat{} \otimes c_0) \cong \mathcal{O}_M^{\mathbb{N}} \otimes c_0.$$

$\mathcal{O}_M^{\mathbb{N}}$ is ultrabornological (as seen in the proof of Proposition 1 (ii)), nuclear, and by [6, Chap. II, §2, n°2, Théorème 9, 2°, p. 47] also its dual $\mathcal{O}_M^{(\mathbb{N})}$ is nuclear, such that the bornologicity of $\mathcal{O}_M^{\mathbb{N}} \otimes c_0$ follows by [27, Proposition 2, p. 75].

To show that $\mathcal{D}'(\mathcal{B}_c)$ is not bornological we have to find a linear form K in $(\mathcal{D}'(\mathcal{B}_c))^*$, the algebraic dual of $\mathcal{D}' \otimes \mathcal{B}_c$, which is locally bounded (i.e.,
it maps bounded subsets of $D \hat{\otimes} B_C$ into bounded sets of complex numbers) but not continuous. Because B_C is not bornological there exists $T \in (B_C)'$ which is locally bounded but such that $T \not\in (B_C)'$. Fixing any $\varphi_0 \in D$ with $\varphi_0(0) = 1$, we define K by $K(u) := T(u(\varphi_0))$ for $u \in L(D, B_C)$. Then K is locally bounded but not continuous. In fact, taking a net $(f_\nu)_\nu \to 0$ in B_C such that $T(f_\nu)$ does not converge to zero, we define a net $(u_\nu)_\nu$ in $L_b(D, B_C)$ by $u_\nu(\varphi) := \varphi(0)f_\nu$. Then $u_\nu \to 0$, but $K(u) = T(u_\nu(\varphi_0)) = T(f_\nu)$ does not converge to zero.

Analogously to the explicit description of the elements in $(D'(E))'_b$, cited before Proposition 2, let us represent the elements of $(D'(\hat{B}))'$:

Proposition 5' (Dual of $D'(\hat{B})$). If $K(x, y) \in D'_{xy}$ we have the characterization

$$K(x, y) \in (D'_x(\hat{B}_y))' \iff \exists m \in \mathbb{N}_0 \ \exists g_\alpha(x, y) \in \mathcal{D}_x \hat{\otimes} L^1_y,$$

$$|\alpha| \leq m, \alpha \in \mathbb{N}_0^n,$$

such that

$$K(x, y) = \sum_{|\alpha| \leq m} \partial^\alpha g_\alpha(x, y),$$

i.e., $\langle D'(\hat{B}) \rangle' = \lim_{m \to \infty} (\mathcal{D}' \hat{\otimes} D^m_L)$ algebraically.

Furthermore, $(D'(\hat{B}))' = (D' \hat{\otimes} B_C)'$ algebraically.

D^m_L is the strong dual of the Banach space B^m_C [22, p. 99]. Note that $D \hat{\otimes} E = \mathcal{D} \hat{\otimes} E$ for a Banach space E because separately continuous bilinear forms on $D \times E$ are continuous.

Proof of Proposition 5'. The following proof is a copy of the proof of [23, Proposition 1, p. 112].

“\implies”: If $K(x, y) \in (D'_x(\hat{B}_y))' = \mathcal{N}(D'_x, D'_L, y)$ (for the equality, see [25, Prop. 22, p. 103] and [6, Chap. II, §2, n°1, Corollaire 4 1., p. 39]) there exist a bounded sequence $(\varphi_\nu)_{\nu \in \mathbb{N}}$ in D_x, a bounded sequence $(T_\nu)_{\nu \in \mathbb{N}}$ in D'_L, y and a sequence $(\lambda_\nu)_{\nu \in \mathbb{N}}$ in ℓ^1 such that we have for $S \in D'_x$

$$\langle K(x, y), S(x) \rangle = \sum_{\nu} \lambda_\nu \langle \varphi_\nu(x), S(x) \rangle T_\nu(y).$$

The boundedness of $(T_\nu)_{\nu \in \mathbb{N}}$ implies

$$\exists m \in \mathbb{N}_0 \ \exists D > 0 \ \exists f_{\nu, \alpha} \in L^1, \nu \in \mathbb{N}, \alpha \in \mathbb{N}_0^n, |\alpha| \leq m,$$

with $\|f_{\nu, \alpha}\|_1 \leq D$ such that $T_\nu = \sum_{|\alpha| \leq m} \partial^\alpha f_{\nu, \alpha}$
[26, Remarque 2*, p. 202] and, hence,

\[
\langle K(x, y), S(x) \rangle = \sum_{|\alpha| \leq m} \partial^\alpha_y \sum_{\nu} \lambda_\nu \langle \varphi_\nu, S \rangle f_{\nu, \alpha}(y) \quad (7)
\]

and \(K = \sum_{|\alpha| \leq m} \partial^\alpha_y g_\alpha \) if we set \(g_\alpha(x, y) := \sum_{\nu} \lambda_\nu \varphi_\nu(x) \cdot f_{\nu, \alpha}(y) \). In order to see that \(g_\alpha(x, y) \in D_x \hat{\otimes} L^1_y \) it suffices to show that for \(S(x) \in D'_x \) the sequence of partial sums

\[
\sum_{\nu=1}^N \langle \varphi_\nu(x), S(x) \rangle f_{\nu, \alpha}(y), \quad N \in \mathbb{N},
\]

converges in \(L^1 \) and that

\[
D'_x \to L^1_y, \quad S(x) \mapsto \sum_{\nu=1}^\infty \lambda_\nu \langle \varphi_\nu(x), S(x) \rangle f_{\nu, \alpha}(y)
\]

maps bounded sets of \(D' \) into bounded sets of \(L^1 \). This follows from the boundedness of \((\varphi_\nu) \) in \(D \).

\("\Leftarrow": \) If \(K(x, y) \in D'_{xy} \) has the representation

\[
K(x, y) = \sum_{|\alpha| \leq m} \partial^\alpha_y g_\alpha(x, y), \quad g_\alpha(x, y) \in D_x \hat{\otimes} L^1_y,
\]

then also \(g_\alpha(x, y) \in E_x \hat{\otimes} L^1_y \).

By [6, Chap. I, §2, n°1, Théorème 1, 1*, p. 51] there exists \((\lambda_\nu, \nu) \in \ell^1 \), a bounded sequence \((e_{\nu, \alpha})_\nu \) in \(E_x \) and a bounded sequence \((f_{\nu, \alpha})_\nu \in L^1 \) such that

\[
g_\alpha(x, y) = \sum_{\nu} \lambda_\nu f_{\nu, \alpha}(y) e_{\nu, \alpha}(x).
\]

The compactness of the supports of \(g_\alpha \) with respect to \(x \) [24, p. 62] implies the existence of a function \(\phi \in D_x \) such that

\[
g_\alpha(x, y) = \phi(x) \cdot g_\alpha(x, y), \quad |\alpha| \leq m.
\]

Thus,

\[
g_\alpha(x, y) = \sum_{\nu} \lambda_\nu e_{\nu, \alpha}(x) \phi(x) \otimes f_{\nu, \alpha}(y)
\]

and

\[
K(x, y) = \sum_{\nu} \sum_{|\alpha| \leq m} \lambda_\nu e_{\nu, \alpha}(x) \phi(x) \otimes \partial^\alpha_y f_{\nu, \alpha}(y).
\]
Because $(e_{\nu,\alpha}(x)\phi(x))_{\nu,\alpha}$ is bounded (and hence equicontinuous) in \mathcal{D}_x and
$(\partial^\alpha_{\nu} f_{\nu,\alpha}(y))_{|\alpha| \leq m, \nu}$ is an equicontinuous (i.e., bounded) subset of $\mathcal{D}'_{L^1,y}$ this proves that $K \in \mathcal{N}(\mathcal{D}'_x, \mathcal{D}'_{L^1,y})$.

In order to see that $(\mathcal{D}' \hat{\otimes} \mathcal{B})' \subseteq (\mathcal{D}' \hat{\otimes} \mathcal{B}_c)'$ (the converse inclusion is obvious) we return to equality (7). Then for each $f \alpha := \sum_\nu |\lambda_\nu| : f_{\nu,\alpha} | \in L^1$ there exists by [17, Prop. 1.2.1, p. 6] a function $g \alpha \in \mathcal{C}_0$, $g \alpha > 0$ such that $f \alpha / g \alpha \in L^1$.

Then for any element S of the polar $U := \{\varphi\}^\circ$, which is a 0-neighborhood in \mathcal{D}', and any $f \in \mathcal{B}$ we see that

\[
\langle \langle (K(x, y), S(x)), f(y) \rangle \rangle = \langle \sum_{|\alpha| \leq m} \partial^\alpha_y \sum_\nu \lambda_\nu \langle \varphi_\nu, S \rangle f_{\nu,\alpha}(y), f(y) \rangle
\]

\[
= \sum_{|\alpha| \leq m} (-1)^{|\alpha|} \langle \sum_\nu \lambda_\nu \langle \varphi_\nu, S \rangle f_{\nu,\alpha}(y), \partial^\alpha f(y) \rangle
\]

\[
= \sum_{|\alpha| \leq m} (-1)^{|\alpha|} \int \sum_\nu \lambda_\nu \langle \varphi_\nu, S \rangle f_{\nu,\alpha}(y) \partial^\alpha f(y) \, dy
\]

and thus

\[
|\langle \langle (K(x, y), S(x)), f(y) \rangle \rangle| \leq \sum_{|\alpha| \leq m} \left| \int g_\alpha(y) \partial^\alpha f(y) \right| \frac{f_\alpha(y)}{g_\alpha(y)} \, dy
\]

\[
\leq \sum_{|\alpha| \leq m} \|g_\alpha \cdot \partial^\alpha f\|_\infty \int \frac{f_\alpha(y)}{g_\alpha(y)} \, dy.
\]

Hence, $\{\langle (K(x, y), S(x)) : S \in U \} \subseteq (\mathcal{B}_c)'$ is equicontinuous, which implies the claim. \square

Proposition 5 (Dual of $\mathcal{D}' \hat{\otimes} \mathcal{B}$). We have linear topological isomorphisms

\[
(\mathcal{D}' \hat{\otimes} \mathcal{B}_c)_b' \cong \mathcal{D}' \hat{\otimes} \mathcal{D}'_{L^1} = \mathcal{D}' \hat{\otimes} \mathcal{B}_c \mathcal{D}'_{L^1}
\]

and linear isomorphisms

\[
(\mathcal{D}' \hat{\otimes} \mathcal{B})' \cong \mathcal{D}(\mathcal{D}'_{L^1}; \varepsilon) = \mathcal{D}(\mathcal{D}'_{L^1}; \beta)
\]

\[
= \mathcal{N}(\mathcal{D}', \mathcal{D}'_{L^1})
\]

\[
\cong \mathcal{D}'_{L^1,\varepsilon}(\mathcal{D}; \varepsilon) = \mathcal{D}'_{L^1,\varepsilon}(\mathcal{D}; \beta).
\]

Proof. By Proposition 5’ we have $(\mathcal{D}' \hat{\otimes} \mathcal{B})' = (\mathcal{D}' \hat{\otimes} \mathcal{B}_c)'$ algebraically. Furthermore,

\[
(\mathcal{D}' \hat{\otimes} \mathcal{B})_b' \cong (\mathcal{D}' \hat{\otimes} \mathcal{B}_c)_b'.
\]
because $\mathcal{D}' \hat{\otimes} \mathcal{B}$ is distinguished: the bounded sets of $\mathcal{D}' \hat{\otimes} \mathcal{B}_c$ (and also of $\mathcal{D}' \otimes \mathcal{B}$) are contained in the weak closure of bounded sets in $\mathcal{D}' \otimes \mathcal{B}$. Hence,

$$(\mathcal{D}' \otimes \mathcal{B}_c)_b \cong (\mathcal{D}' \hat{\otimes} \mathcal{B})'_b.$$

Therefore, the first isomorphism in (8) results from Grothendieck’s duality Corollary cited in the introduction [6, Chap. II, §4, n°1, Lemme 9, Corollaire, p. 90]: \mathcal{D}' is complete and nuclear, \mathcal{B}_c is complete [22, p. 101] and semireflexive (see [17, Proposition 1.3.1, p. 11] and [24, p. 126]) and $(\mathcal{D}' \hat{\otimes} \mathcal{B})'_b$ is complete, due to Proposition 4. The equality of the ν- and the β-topology in the first line follows because \mathcal{D} and \mathcal{D}'_{L^1} are barrelled spaces [25, p. 13]. □

Remark. We obtain, by Propositions 5 and 7, that $(\mathcal{D}'(\mathcal{B}))'_b = \mathcal{D}'(\mathcal{B})$ equals $\lim_{\tau \to \tau^m}(\mathcal{D}' \hat{\otimes} \mathcal{D}'_{L^1})$ algebraically, which is a representation of the strong dual of $\mathcal{D}'(\mathcal{B})$ as a countable inductive limit.

In fact, for $K \in (\mathcal{D}'(\mathcal{B}))'$ we conclude by the implication “\Rightarrow” above that there exist $m \in \mathbb{N}_0$, $g_a(x, y) \in \mathcal{D}_x \hat{\otimes} L_{1y}$ with $K = \sum_{|\alpha| \leq m} \partial^\alpha g_a$. Hence, $K \in \mathcal{D}_x \hat{\otimes} D_{L^1,y}$. In order to see $\mathcal{D}_x \hat{\otimes} D_{L^1,y} \subset \mathcal{D}_x \hat{\otimes} \mathcal{D}'_{L^1,y}$ it suffices, due to “\Leftarrow” above, to show the implication

$$K(x, y) \in \mathcal{D}_x \hat{\otimes} D_{L^1,y} \implies \exists g_a(x, y) \in \mathcal{D}_x \hat{\otimes} L_{1y} \text{ with } K = \sum_{|\alpha| \leq m} \partial^\alpha g_a.$$

However, this implication is a consequence of

$$\mathcal{D}_{L^1} = \sum_{|\alpha| \leq m} \partial^\alpha L^1 \quad \text{and} \quad \mathcal{D}_x \hat{\otimes} D_{L^1,y} = \sum_{|\alpha| \leq m} \partial^\alpha(D_x \hat{\otimes} L_{1y}).$$

Proposition 6 (Existence and uniqueness of the scalar product). There is one and only one scalar product

$$\langle \cdot, \cdot \rangle_\mathcal{D}_x \otimes_\beta \mathcal{D}'_{L^1,y} \times (\mathcal{D}'_x \hat{\otimes} \mathcal{B}_y) \rightarrow \mathbb{C}$$

which is partially continuous and coincides on $(\mathcal{D}_x \otimes \mathcal{D}'_{L^1,y}) \times (\mathcal{D}'_x \otimes \mathcal{B}_y)$ with the product $\mathcal{D}_x \langle \cdot, \cdot \rangle_\mathcal{D}_x \cdot \mathcal{D}'_{L^1,y} \langle \cdot, \cdot \rangle_\mathcal{B}_y$.

Proof. A first proof follows from the “Théorèmes de croisement” [25, Proposition 2, p. 18].

A second proof consists in the composition of the vectorial scalar product given by [25, Proposition 10, p. 57], i.e.,

$$\langle \cdot, \cdot \rangle_\mathcal{D}_x \cdot \mathcal{D}'_{L^1,y} \rightarrow \mathcal{D}'_{L^1,y} \hat{\otimes} \mathcal{B}_y \rightarrow \mathcal{D}'_{L^1,y} \hat{\otimes} \mathcal{B}_y,$$

and the scalar product $\langle \cdot, \cdot \rangle: \mathcal{D}'_{L^1,y} \hat{\otimes} \mathcal{B}_y \rightarrow \mathbb{C}$. □
Remark. If $K(x, y) \in \mathcal{D}_x \hat{\otimes} \mathcal{D}'_{L^1,y}$ has the representation

$$K(x, y) = \sum_{|\alpha| \leq m} \partial^\alpha_y g_\alpha(x, y)$$

with $g_\alpha(x, y) \in \mathcal{D}_x L^1_y$ and if $L(x, y) \in \mathcal{D}'_x(\hat{\mathcal{B}}_y)$ then

$$\langle \cdot, \cdot \rangle_x(K(x, y), L(x, y)) = \sum_{|\alpha| \leq m} (-1)^{|\alpha|} \int_{\mathbb{R}^n} \mathcal{D}'_x(\partial^\alpha_y L(x, y), g_\alpha(x, y)) \mathcal{D}_x dy.$$

We find a third expression for the scalar product by means of vector-valued multiplication and integration:

Proposition 6' (Scalar product). If $K(x, y) \in \mathcal{D}_x \hat{\otimes} \mathcal{D}'_{L^1,y}$ and $L(x, y) \in \mathcal{D}'_x(\hat{\mathcal{B}}_y)$ then the scalar product $\langle \cdot, \cdot \rangle_x$ (Proposition 6) can also be expressed as

$$\langle \cdot, \cdot \rangle_x(K(x, y), L(x, y)) = \mathcal{D}'_{L^1,xy} \langle (K(x, y))^* L(x, y), 1(x, y) \rangle_{\mathcal{B}_{c,xy}},$$

wherein * denotes the vectorial multiplicative product

$$(\mathcal{D}_x \hat{\otimes} \mathcal{D}'_{L^1,y}) \times (\mathcal{D}'_x \hat{\otimes} \mathcal{B}_y) \rightarrow \mathcal{E}'_x \hat{\otimes} \varepsilon \mathcal{D}'_{L^1,y}.$$

Proof. The vectorial multiplicative product * exists uniquely as the composition of the canonical mapping defined by the “Théorèmes de croisement” [25, Proposition 2, p. 18],

$$(\mathcal{D}_x \hat{\otimes} \mathcal{D}'_{L^1,y}) \times (\mathcal{D}'_x \hat{\otimes} \mathcal{B}_y) \rightarrow (\mathcal{D}_x \hat{\otimes} \mathcal{D}'_x) \in (\mathcal{D}'_{L^1,xy} \hat{\otimes} \mathcal{B}_y)$$

and the ε-product of the two multiplications

$$\mathcal{D}_x \hat{\otimes} \mathcal{D}'_x \rightarrow \mathcal{E}'_x \text{ and } \mathcal{D}'_{L^1,xy} \hat{\otimes} \mathcal{B}_y \rightarrow \mathcal{D}'_{L^1,xy},$$

namely

$$K(x, y)^* L(x, y) = [(\cdot, \cdot) \in (\cdot, \cdot)] \circ \varepsilon.$$

Note that this vectorial multiplication coincides with that defined in [25, Proposition 32, p. 127]. Due to the uniqueness of the scalar product and the continuity of the embedding $\mathcal{E}'_x \hat{\otimes} \mathcal{D}'_{L^1,y} \hookrightarrow \mathcal{D}'_{L^1,xy}$ the result follows. □
Proposition 7 (Existence of the regularization mapping and representation of its transpose). The regularization mapping

\[\mathcal{B}' \to \mathcal{D}'_y \hat{\otimes} \mathcal{B}_x, \quad S \mapsto S(x - y) \]

is well-defined, linear, injective and continuous. Its transpose

\[\mathcal{D}_y \hat{\otimes} \mathcal{D}'_{L^1,x} \to \mathcal{D}_{L^1,c} \]

is linear, continuous and given by

\[K(x, y) \mapsto _{B_{c,x}} \langle 1(x), K(x - y, x) \rangle_{\mathcal{D}'_{L^1,x}(\mathcal{D}_{L^1,c,y})}, \]

Proof. 1. The well-definedness is L. Schwartz’ classical regularization result [26, Remarque 3°, p. 202].

2. Due to the (sequentially) closed graph of the regularization mapping the continuity is implied by [6, Chap. I, Théorème B, p. 17], if \(\mathcal{B}' \) and \(\mathcal{D}' \hat{\otimes} \mathcal{B} \) are ultrabornological. The sequence-space representation of \(\mathcal{B}' \cong c_0 \hat{\otimes} s' \) [2, Theorem 3, p. 13] shows that \(\mathcal{B}' \) is ultrabornological if [27, Proposition 2, p. 75] is applied. The space \(\mathcal{D}' \hat{\otimes} \mathcal{B} \) is ultrabornological by Proposition 4. Alternatively, for applying the closed graph theorem one can use that \(\mathcal{D}' \hat{\otimes} \mathcal{B} \) has a completing web [19, p. 736].

The transpose of the regularization mapping is continuous by [8, Corollary to Proposition 3.12.3, p. 256].

3. The representation in Proposition 6’ yields for \(K(x, y) \in \mathcal{D}_x \hat{\otimes} \mathcal{D}'_{L^1,y} \) and \(S(y - x) \in \mathcal{D}_y \hat{\otimes} \mathcal{B}_y \):

\[\langle \cdot, \cdot \rangle_x (K(x, y), S(y - x)) = \mathcal{D}'_{L^1,x,y} \langle K(x, y)^\ast (y), S(y - x), 1(x, y) \rangle _{B_{c,x,y}}. \]

The linear change of variables

\[x = v - u \quad u = y - x \]
\[y = v \quad v = y \]

and the Theorem of Fubini [24, Corollary, pp. 136, 137] imply that the last expression equals

\[_{B_{c,u,v}} \langle 1(u, v), K(v - u, v)^\ast (S(u) \otimes 1(v)) \rangle_{\mathcal{D}'_{L^1,u,v}} = \hat{\mathcal{B}}_u \langle S(u), _{B_{c,v}} \langle 1(v), K(v - u, v) \rangle_{\mathcal{D}'_{L^1,v}(\mathcal{D}_{L^1,c,u})} \rangle_{\mathcal{D}_{L^1,c,u}} \]

13
if we show that

\[K(v, u) \in \mathcal{D}_v \hat{\otimes} \mathcal{D}'_{L^1, u} \implies K(v - u, v) \in \mathcal{D}'_{L^1, v}(\mathcal{D}_{L^1, c, u}). \] (9)

Then, the multiplicative product \(K(v - u, v) \cdot u \cdot v \) is defined as the image of \((K(v - u, v), S(u) \otimes 1(v))\) under the mapping

\[\mathcal{D}'_{L^1, v}(\mathcal{D}_{L^1, c, u}) \times \mathcal{B}_{c,v}(\mathcal{B}'_u) \xrightarrow{\sim} \mathcal{D}'_{L^1, v}(\mathcal{D}'_{L^1, c, u}). \]

It remains to prove the implication (9): a vectorial regularization property similar to [1, Proposition 15] shows that

\[K(v - w, u) \in \mathcal{D}'_{L^1, c, u} \implies K(v - u, v) \in \mathcal{D}'_{L^1, c, u} \]

because the convolution with \(\varphi \in \mathcal{D} \) maps the space \(\mathcal{D}'_{L^1, c} \) continuously into \(\mathcal{D}_{L^1, c} \). The vector-valued multiplication \(\mathcal{D}'_{L^1} \times \mathcal{B}_{c,v}(E) \to \mathcal{D}'_{L^1}(E) \) by [25, Proposition 25, p. 120] then yields

\[K(v - u, v) \in \mathcal{D}_{L^1, c} \hat{\otimes} \mathcal{D}_{L^1, c, u} = \mathcal{D}'_{L^1, v}(\mathcal{D}_{L^1, c, u}). \]

\[\square \]

4 On the duals of tensor products
- two complements

The goal of this section is the formulation of propositions which yield, as special cases, the strong duals of the spaces \(\mathcal{D}' \hat{\otimes} \mathcal{D}'_{L^1} \) and \(\mathcal{D}' \hat{\otimes} \mathcal{B} \). These spaces are the “endpoints” in the scale of reflexive spaces \(\mathcal{D}' \hat{\otimes} \mathcal{D}'_{L^p} \) and \(\mathcal{D}' \hat{\otimes} \mathcal{D}_{L^q} \), \(1 < p, q < \infty \), the duals of which can be determined by the Corollaire [6, Chap. II, §4, n°1, Lemme 9, Corollaire, p. 90] cited in the introduction.

Proposition 8 (Dual of a completed tensor product). Let \(\mathcal{H} = \varprojlim_k \mathcal{H}_k \) be the strict inductive limit of nuclear Fréchet spaces \(\mathcal{H}_k \) and \(F \) the strong dual of a distinguished Fréchet space. Then

\[(\mathcal{H}'_b \hat{\otimes} F)' = \overline{\mathcal{H}(F'_b)} := \varinjlim_k (\mathcal{H}_k(F'_b)). \]

The space \(\overline{\mathcal{H}(F'_b)} \) is a complete, strict (LF)-space and \(\mathcal{H}'_b \hat{\otimes} F \) is distinguished. If \(F \) is reflexive, \(\mathcal{H}'_b \hat{\otimes} F \) is reflexive, too.
Proof. By [25, Prop. 22, p. 103] we have algebraically

\[(\mathcal{H}_b \hat{\otimes} F)' \cong F'_c(\mathcal{H}; \varepsilon) = F'_c(\mathcal{H}; \beta) = \lim_{k} (F'_c(\mathcal{H}_k; \beta))\]

due to the reflexivity of \(\mathcal{H}\) and due to the fact that a linear and continuous map \(T : F \to \mathcal{H}\) is bounded if and only if there exists \(k\) and a 0-neighborhood \(U\) in \(F\) such that \(T\) maps into \(\mathcal{H}_k\) and \(T(U) \subseteq \mathcal{H}_k\) is bounded. Because \(F\) is the strong dual of a distinguished Fréchet space,

\[F'_c(\mathcal{H}_k) = \text{L}_\beta((\mathcal{H}_k)'_c, F'_b) \cong L_c(F, \mathcal{H}_k) = F'_b \hat{\otimes} \mathcal{H}_k\]

by [25, p. 98, b)]. Hence,

\[F'_c(\mathcal{H}_k) = L_c((\mathcal{H}_k)'_c, F'_c) \cong L_c(F, \mathcal{H}_k) = F'_b \hat{\otimes} \mathcal{H}_k\]

(see [6, Chap. I, p. 75]). All together,

\[(\mathcal{H}_b \hat{\otimes} F)' = \lim_{k} \mathcal{H}_k(F'_b) = \mathcal{H}(F'_b).\]

The strong dual topology on \((\mathcal{H}_b(F))'\) is finer than the topology of uniform convergence on products of bounded subsets of \(\mathcal{H}_b'\) and \(F\) [25, Prop. 22, p. 103], i.e., the embedding \((\mathcal{H}_b(F))'_b \hookrightarrow \mathcal{H} \hat{\otimes} F'_b\) is continuous.

In order to show the continuity of the map

\[\text{Id} : \mathcal{H}(F'_b) \to (\mathcal{H}_b(F))'_b\]

we use an idea from the proof of [7, Prop. 3, p. 542]: it suffices that bounded sets in \(\mathcal{H}(F'_b)\) are bounded in \((\mathcal{H}_b(F))'_b\) because \(\mathcal{H}(F'_b)\) is bornological (note that \(F'_b\) is a Fréchet space by [5, p. 64], and that the inductive limit of the Fréchet spaces \(\mathcal{H}_b \hat{\otimes} F'_b = \mathcal{H}(F'_b)\) is bornological). If \(H \subseteq \mathcal{H}(F'_b)\) is bounded then by the regularity of the inductive limit there exists \(k\) such that \(H\) is bounded in \(\mathcal{H}_k(F'_b)\). By [6, Chap. II, §3, n°1, Prop. 12, p. 73] there are bounded subsets \(A \subseteq \mathcal{H}_k\) and \(B \subseteq F'_b\) such that \(H\) is contained in the closed absolutely convex hull of \(A \otimes B\). For each \(T \in \mathcal{H}_b \hat{\otimes} F \cong L_b(\mathcal{H}, F)\) the set \(T(H)\) is contained in the closed absolutely convex hull of \(T(A \otimes B) = (T(A), B)\), which is bounded because \(T(A) \subseteq F\) is bounded and \(B\) is equicontinuous. Hence, we see that \(H\) is weakly bounded and thus bounded in \((\mathcal{H}_b(F))'_b\) due to the completeness of \(\mathcal{H}_b(F)\).

\[
\square
\]

Remark. (1) The strong topology of \((\mathcal{H}_b(F))'_b\) coincides with the topology induced by \(L_b(\mathcal{H}_b', F'_b) = \mathcal{H} \hat{\otimes} F'_b\). By [25, Prop. 22, p. 103] this is equivalent with saying that bounded subsets of \(\mathcal{H}_b(F) = \mathcal{H}_b \hat{\otimes} F\) are \(\beta\)-\(\beta\)-decomposable.
(2) If the space F is the strong dual of a reflexive Fréchet space then $\mathcal{H}_b' \hat{\otimes} F$ is reflexive too, i.e.,

$$ (\mathcal{H}_b' \hat{\otimes} F)'_b \cong \overline{\mathcal{H}}(F'_b) $$

and

$$ (\overline{\mathcal{H}}(F'_b))'_b \cong \mathcal{H}_b' \hat{\otimes} F $$

(for the second part use a suitable generalization of [25, Corollaire 3, p. 104]). This assertion generalizes the reasoning in [13, p. 314, 4.2, p. 315].

(3) The following list of distribution spaces illustrates possibilities of the applicability of Proposition 8:

$$\begin{align*}
\mathcal{H} : \mathcal{D}, \mathcal{D}_+, \mathcal{D}_-, \mathcal{D}_+\Gamma \\
F : \mathcal{D}'_{L^1}, \mathcal{D}'_{L^1}, \ell^1, S^m, \mathcal{E}^m
\end{align*}$$

(cf. [25, p. 154, p. 186]),

$m \in \mathbb{N}_0$).

One has to show that S^m and \mathcal{E}^m are distinguished.

(4) The dual of the space of partially summable distributions $\mathcal{D}' \hat{\otimes} \mathcal{D}'_{L^1}$ was given first in [7, Prop. 3(2), p. 541], i.e., $(\mathcal{D}' \hat{\otimes} \mathcal{D}'_{L^1})'_b = \overline{\mathcal{D}(B)} = \mathcal{D}\hat{\otimes} B$.

By considering the proof of Proposition 5, i.e., $(\mathcal{D}'(B))'_b = (\mathcal{D}' \hat{\otimes} B_c)'_b = \mathcal{D} \hat{\otimes} \mathcal{D}'_{L^1}$, we were led to the following modification of A. Grothendieck’s Corollary [6, Chap. II, §4, n°1, Lemme 9, Corollaire, p. 90] cited in the introduction.

Proposition 9 (Dual of a completed tensor product). Let \mathcal{H} be a Hausdorff, quasicomplete, nuclear, locally convex space with the strict approximation property, F a quasicomplete, semireflexive, locally convex space. Let F_0 be a locally convex space such that

$$ (\mathcal{H} \hat{\otimes} F)'_b = (\mathcal{H} \hat{\otimes} F_0)'_b $$

and $(\mathcal{H} \hat{\otimes} F_0)'_b$ is complete. Then,

$$ (\mathcal{H} \hat{\otimes} F)'_b \cong \mathcal{H}_b' \hat{\otimes} F'_b $$

and $(\mathcal{H} \hat{\otimes} F)'_b$ is semireflexive.

The proof is an immediate consequence of Proposition 10. The semireflexivity is a consequence of [6, Corollaire 2, p. 118].
Remark. (1) A. Grothendieck’s hypotheses “H complete, F complete and semireflexive” are weakened by the assumption of quasicompleteness at the expense of the additional hypothesis of the strict approximation property for H. The completeness of the strong dual $(H \hat{\otimes} F)'_b$ is implied by the existence of an additional space F_0 with the corresponding property.

(2) By checking the hypotheses of Proposition 9 we have shown in Proposition 5 that

$$(D' \hat{\otimes} B)'_b \simeq D \hat{\otimes} D_{L^1}.$$

Two other applications to concrete distribution spaces are:

$$(D' \hat{\otimes} B)'_b \simeq D \hat{\otimes} D_{L^1} = \overline{D(D_{L^1})}$$

with $F_0 = (D_{L^\infty}, \kappa(D_{L^\infty}, D_{L^1}))$, and

$$(D' \hat{\otimes} c_0)'_b \simeq D \hat{\otimes} \ell^1 = \overline{D(\ell^1)}$$

with $F_0 = (\ell^\infty, \kappa(\ell^\infty, \ell^1))$.

(3) As an application of Proposition 9 we see that spaces like $S' \hat{\otimes} B$ or $O_M \hat{\otimes} c_0$ are distinguished. This does not follow from [6, Chap. II, §3, n°2, Corollaire 2, p. 77]. In fact, $(S' \hat{\otimes} B)'_b \simeq S \hat{\otimes} D_{L^1}$ and $S \hat{\otimes} D_{L^1}$ is barrelled by [6, Chap. I, p. 78].

The proof of Proposition 9 rests on a generalization of Grothendieck’s Corollary on duality (cf. [6, Chap. II, §4, n°1, Lemme 9, Corollaire, p. 90]) which we prove now.

Proposition 10 (Duals of tensor products).

Hypothesis 1: Let E be a nuclear, F a locally convex space.

Then:

(i) Every element u of the dual $B(E, F) = (E \hat{\otimes} F)' = (E \hat{\otimes}_\pi F)'$ is the image (under a canonical mapping) of an element u_0 of a space $E'_A \hat{\otimes}_\pi E'_B$, where A and B are absolutely convex, weakly closed, equicontinuous subsets of E' and F', respectively.

(ii) If the element u, of $E' \hat{\otimes} F' \subset E' \hat{\otimes}_\pi F'$ defined by u_0 is zero then u is zero, from which we have a canonical injection of $B(E, F)$ into $E' \hat{\otimes} F' \subset E' \hat{\otimes}_\pi F'$.
(iii) $\mathcal{B}(E, F)$ is dense in $E' \hat{\otimes} F'$ and strictly dense in $E' \hat{\otimes} F'$.

If, in addition, we have

Hypothesis 2: E is quasicomplete and has the strict approximation property and F is quasicomplete,

then we obtain:

(iv) The topology t_ι induced from $E' \hat{\otimes} F'$ on $\mathcal{B}(E, F)$ is finer than the topology t_b of $(E \hat{\otimes}_\pi F)'_b$, i.e., $t_\iota \geq t_b$.

If, in addition, we have

Hypothesis 3: F is semireflexive,

then we obtain:

(v) The topology induced from $E' \hat{\otimes} F'$ on $\mathcal{B}(E, F)$ is identical with the topology of the strong dual $(E \hat{\otimes}_\pi F)'_b$, i.e., $t_\iota = t_b$. $E' \hat{\otimes} F'$ is the completion of $\mathcal{B}(E, F)$.

(vi) $(E \hat{\otimes}_\pi F)'_b \cong E' \hat{\otimes} F'$ if and only if $(E \hat{\otimes}_\pi F)'_b$ is complete.

$(E \hat{\otimes}_\pi F)'_b \cong E' \hat{\otimes} F'$ if and only if $(E \hat{\otimes}_\pi F)'_b$ is quasi-complete.

(vii) $E \hat{\otimes} F$ is semireflexive.

Proof. We shall modify the proof of Grothendieck and give more details.

(i) If $u \in \mathcal{B}(E, F)$ then the nuclearity of E implies the existence of zero-neighborhoods U in E and V in F and of sequences (e'_n) in E'_U and (f'_n) in F'_V such that

\[
\sum_{n=1}^{\infty} \|e'_n\|_{U^\circ} \|f'_n\|_{V^\circ} < \infty
\]

and

\[
u(e, f) = \sum_{n=1}^{\infty} \langle e, e'_n \rangle \langle f, f'_n \rangle \quad \forall (e, f) \in E \times F
\]

by [6, Chap. II, §2, n°1, Corollaire 4 to Théorème 6, p. 39] or [10, 21.3.5, p. 487]. Setting $A := U^\circ$, $B := V^\circ$ we then define $u_0 \in E'_A \hat{\otimes}_\pi E'_B$ by

\[
u_0 := \sum_{n=1}^{\infty} e'_n \otimes f'_n.
\]
The series in (11) converges because
\[
\sum_{n=1}^{\infty} |\langle e, e'_n \rangle \langle f, f'_n \rangle| \leq \left(\sum_{n=1}^{\infty} \| e_n' \|_{U^*} \| f'_n \|_{V^*} \right) \cdot \| e \|_U \cdot \| f \|_V
\]
due to Lemma 11 and inequality (10). Moreover, \(u_0 = \sum e'_n \otimes f'_n \) converges in the Banach space \(E'_A \widehat{\otimes}_\pi E'_B \):
\[
\| u_0 \| = \left\| \sum_{n=1}^{\infty} (e'_n \otimes f'_n) \right\| = \inf \left\{ \sum_{n=1}^{\infty} \| a_n \|_{U^*} \| b_n \|_{V^*} : u_0 = \sum_{n=1}^{\infty} a_n \otimes b_n \right\}
\leq \sum_{n=1}^{\infty} \| e'_n \|_{U^*} \| f'_n \|_{V^*}.
\]

Next let us describe in detail the canonical mapping \(E'_A \widehat{\otimes}_\pi E'_B \to \mathcal{B}(E,F) \) as the composition of the following three mappings
\[
E'_A \widehat{\otimes}_\pi F'_B \to (E_U)' \widehat{\otimes}_\pi (F_V)' \to (E_U \widehat{\otimes}_\pi F_V)' \to (E \widehat{\otimes}_\pi F)' = \mathcal{B}(E,F). \tag{12}
\]
For the first mapping in (12) we use that \('t \Phi_U : (E_U)' \to E'_A \) is an isomorphism with inverse \(('t \Phi_U)^{-1} : E'_A \to (E_U)' \).

The second mapping in (12) is the continuous extension of the linear map on \((E_U)' \otimes (E_V)' \) corresponding to the continuous bilinear map
\[
(E_U)' \times (E_V)' \to (E_U \widehat{\otimes}_\pi F_V)',
\]
\((e', f') \mapsto e' \otimes f' \).

The third mapping in (12) is given as the transpose of \(\Phi_U \otimes \Phi_V : E \widehat{\otimes}_\pi F \to E_U \widehat{\otimes}_\pi F_V \).

The image of \(u_0 \) in \(\mathcal{B}(E,F) \) coincides with \(u \): denoting the image of \(u_0 \) in all spaces appearing in (12) by \(u_0 \) we obtain by going from right to left in the composition above:
\[
u_0(e, f) = u_0(e \otimes f) = u_0(\Phi_U(e) \otimes \Phi_V(f))
\]
\[
= \left(\sum_{n=1}^{\infty} \langle \Phi_U(e), \Phi_V(f) \rangle \Phi_U^{-1}_n(e'_n) \Phi_V^{-1}(f'_n) \right) \Phi_U(e) \otimes \Phi_V(f)
\]
\[
= \sum_{n=1}^{\infty} \langle \Phi_U(e), \Phi_V(f) \rangle \langle \Phi_U^{-1}(e'_n), \Phi_V^{-1}(f'_n) \rangle
\]
\[
= \sum_{n=1}^{\infty} \langle e, e'_n \rangle \langle f, f'_n \rangle = u(e, f).
\]
(ii) We also have a canonical mapping

$$(^t\Phi_U) \otimes (^t\Phi_V): E'_A \widehat{\otimes} F'_B = E'_A \otimes_i F'_B \to E' \widehat{\otimes} F'$$

which maps u_0 to an element $u \in E' \widehat{\otimes} F'$. Due to $$(^t\Phi_U) \otimes (^t\Phi_V) (u_0) = u_0 \circ (\Phi_U \otimes \Phi_V) \in B(E, F)$$
we conclude from $u_i = 0$ that u_0 vanishes on $\widehat{E}_U \times \widehat{F}_V$. By [6, Chap. I, §5, n°2, Corollaire 1, p. 181] or [10, Theorem 18.3.4, p. 406] the canonical mapping

$$E'_A \widehat{\otimes} F'_B \to B(\widehat{E}_U, \widehat{F}_V)$$

is injective because the zero-neighborhood U can be chosen in such a manner that \widehat{E}_U is a Hilbert space [6, Chap. II, §2, n°1, Lemme 3, p. 37], and, therefore, \widehat{E}_U is reflexive and has the approximation property. Hence, the vanishing of u_0 on $\widehat{E}_U \times \widehat{F}_V$ implies $u_0 = 0$ and a fortiori $u = 0$.

(iii) follows from $E' \otimes F' \subset B(E, F) \subset E' \widehat{\otimes} F' \subset E' \widehat{\otimes} F'$.

(iv) If, in addition, Hypothesis 2 is fulfilled, we obtain by Lemma 12 below that $E \widehat{\otimes}_{\pi} F \cong B^h_c(E'_c, F'_c)$. Two topologies on $B(E, F)$ can be defined corresponding to the following two dual systems (cf. [18, Chap. III, §2, p. 46] or [8, Chap. 3, §2, p. 183]):

$$(B(E, F), E \widehat{\otimes}_{\pi} F \cong B^h_c(E'_c, F'_c))$$

$$j \quad m$$

$$(E' \widehat{\otimes} F', (E' \widehat{\otimes} F')' \cong B^h_c(E', F')).$$

The mapping j is defined as the injection

$$B(E, F) \to E' \widehat{\otimes} F', \quad u \mapsto \sum_{n=1}^{\infty} e'_n \otimes f'_n$$

investigated in (i) and (ii).

The mapping m is the injection of the space $B^h_c(E'_c, F'_c)$ of hypocontinuous bilinear forms on $E'_c \times F'_c$ into the space $B^s(E', F')$ of separately continuous bilinear forms on $E' \times F'$. Furthermore, we have canonical isomorphisms

$$k: E \widehat{\otimes}_{\pi} F \to B^h_c(E'_c, F'_c), \quad z \mapsto [(e', f') \mapsto \langle e' \otimes f', z \rangle],$$

$$\ell: B^s(E', F') \to (E' \widehat{\otimes}_s F'), \quad \ell(w)(e' \otimes f') = w(e', f').$$
On the one hand, we consider on $\mathcal{B}(E, F)$ the relative topology t_ι with respect to the embedding j. Because the topology of $E' \otimes \iota F'$ is the topology of uniform convergence on equicontinuous subsets of $(E' \otimes \iota F')' = \mathcal{B}^*(E', F')$ and equicontinuous subsets of this dual space are precisely the equicontinuous subsets of $\mathcal{B}^*(E', F')$ [6, Chap. I, §3, n’1, Proposition 13, p. 73] we see that a zero-neighborhood base of t_ι is given by the sets $j^{-1}(\ell(B')^\circ)$ with separately equicontinuous subsets B' of $\mathcal{B}^*(E', F')$.

Let us now show that t_ι is finer than t_b; in particular, that for a given bounded set B in $E \bar{\otimes}_\pi F$ the set $B' := m(k(B))$ is separately equicontinuous and that $j^{-1}(\ell(B')^\circ) = B^\circ$.

If $B \subset E \bar{\otimes}_\pi F \cong \mathcal{B}^b_\iota(E'_c, F'_\iota)$ is bounded the set $B(., f')$, for fixed $f' \in F'$, is bounded on all equicontinuous sets U°, U an absolutely convex, closed zero-neighborhood in E, i.e., $\forall U \exists \lambda_U > 0$ such that

$$\sup_{e' \in U^\circ} |B(e', f')| \leq \lambda_U,$$

so $B(., f') \subset \lambda_U U^\circ \cong \lambda_U U$ due to $(E'_c)' = E$. Hence, $B(., f')$ is bounded in E and $B(., f')^\circ$ is a zero-neighborhood in E'_b, which means that $B(., f')$ is equicontinuous on E'_b. Similarly, $B(e', .)$ is equicontinuous on F'_b for $e' \in E'$ fixed. Therefore, $B' := m(k(B))$ is a separately equicontinuous subset of $\mathcal{B}^*(E', F')$ which implies that $(\ell(B')^\circ)$ is a zero-neighborhood in t_ι, which together with $j^{-1}(\ell(B')^\circ) = B^\circ$ will imply $t_b \leq t_\iota$.

In order to prove $j^{-1}(\ell(B')^\circ) = B^\circ$ for a given bounded subset $B \subset E \bar{\otimes}_\pi F$ with $B' = m(k(B))$ we write down the involved mappings explicitly. Let $u \in \mathcal{B}(E, F)$ with $j(u) = \sum_{i=1}^{\infty} e'_n \otimes f'_n$ and $z \in E \bar{\otimes}_\pi F$. Then,

$$\langle j(u), \ell(m(k(z))) \rangle \overset{\circ}{=} \ell(m(k(z))) \left(\sum_{n=1}^{\infty} e'_n \otimes f'_n \right) \overset{\circ}{=\circ} \sum_{n=1}^{\infty} \ell(m(k(z)))(e'_n \otimes f'_n) \overset{\circ}{=} \sum_{n=1}^{\infty} m(k(z))(e'_n, f'_n) \overset{\circ}{=} \sum_{n=1}^{\infty} k(z)(e'_n, f'_n) \overset{\circ}{=} \sum_{n=1}^{\infty} (e'_n \otimes f'_n)(z) \overset{\circ}{=} \langle u, z \rangle$$

1 is the definition of j, 2 follows from the continuity of $\ell(m(k(z)))$. 3, 4 and 5 are the definitions of ℓ, m and k, respectively. The equality 6 is a consequence of the equality for z in the strictly dense subspace $E \otimes F$ of
$E \otimes F$ and the continuity of

$$z \mapsto \sum_{n=1}^{\infty} (e'_n \otimes f'_n)(z)$$

which follows from the representation

$$\sum_{n=1}^{\infty} (e'_n \otimes f'_n)(z) = \sum_{n=1}^{\infty} \|e'_n\|_{U^o} \|f'_n\|_{V^o} \left(\frac{e'_n}{\|e'_n\|_{U^o}} \otimes \frac{f'_n}{\|f'_n\|_{V^o}} \right)(z)$$

and the inequality (using Lemma 11)

$$\left| \sum_{n=1}^{\infty} (e'_n \otimes f'_n)(z) \right| \leq \sum_{n=1}^{\infty} \|e'_n\|_{U^o} \|f'_n\|_{V^o} \left| \left(\frac{e'_n}{\|e'_n\|_{U^o}} \otimes \frac{f'_n}{\|f'_n\|_{V^o}} \right)(z) \right|$$

$$\leq \sum_{n=1}^{\infty} \|e'_n\|_{U^o} \|f'_n\|_{V^o} \left\| \frac{e'_n}{\|e'_n\|_{U^o}} \otimes \frac{f'_n}{\|f'_n\|_{V^o}} \right\|_{U^o \otimes V^o} \|z\|_{U \otimes V}$$

$$\leq \left(\sum_{n=1}^{\infty} \|e'_n\|_{U^o} \|f'_n\|_{V^o} \right) \|z\|_{U \otimes V}.$$

Note that the sets $\{e'_n/\|e'_n\|_{U^o}\}$ and $\{f'_n/\|f'_n\|_{V^o}\}$ are equicontinuous and hence also their tensor product is equicontinuous by [25, p. 14].

(v) The space E is nuclear and quasicomplete and, hence, E is semireflexive (see [21, Prop. 3, exp. 17, p. 5], [6, Chap. II, Cor. 1, p. 38] and [8, Cor. to Prop. 3.15.4, p. 277 and Prop. 3.9.1, p. 231]). Thus, with Hypothesis 3 both spaces E and F are semireflexive. Moreover, by [6, Chap. I, p. 11]:

$$B^s(E'_b, F'_b) = L(E'_b, (F'_b)'_\sigma) = L(E'_b, (F'_\sigma)'_b) = B^s(E'_b, F'_b) = \ldots = B^s(E'_\sigma, F'_\sigma),$$

$$B^s(E'_c, F'_c) = B^s(E'_c, F'_c)$$

and

$$B^h(E'_b, F'_b) = B^s(E'_b, F'_b),$$

because E'_b and F'_b are barrelled [8, Prop. 3.8.4, p. 228]. Hence,

$$B^h_b(E'_c, F'_c) = B^h_b(E'_b, F'_b) = B^h_b(E'_\sigma, F'_\sigma).$$

Let us show that t_b is finer than t_c, $t_b \geq t_c$: if $B \subset B^s(E', F')$ is separately equicontinuous, B is pointwise bounded such that Mackey’s theorem [4, IV.1, Prop. 1 (ii)] implies its boundedness in $B^h_b(E'_b, F'_b)$, i.e., B is bounded in $E \overline{\otimes}_F F$. In virtue of (iii), $E' \overline{\otimes}_F F'$ is the completion of $B(E, F)$ and $E' \overline{\otimes}_F F'$ its quasi-completion.
(vi) follows from \((E \bar{\otimes}_\pi F)' = \mathcal{B}(E, F)\).

(vii) is a consequence of [6, Chap. I, §4, n°2, Corollaire of Prop. 24, p. 118].

Lemma 11. Let \(U\) be an absolutely convex zero-neighborhood in \(E\), \(e' \in E'_{U^\circ}\) and \(e \in E\). Then \(\langle e, e' \rangle \leq \|e\|_U \|e'\|_{U^\circ}\).

Proof. The inequality follows either by restricting the scalar product on \(E \times E'\) to the Banach spaces \(E_U \times E'_{U^\circ}\) (taking into account that \((E_U)' = E'_{U^\circ}\)) or, more elementary:

\[
\|e'\|_{U^\circ} = \sup_{e \in U} |\langle e, e' \rangle| \implies \forall e \in U : |\langle e, e' \rangle| \leq \|e'\|_{U^\circ}
\]

\[
\implies \forall e \in E, \forall \varepsilon > 0 : \left| \frac{e}{\|e\|_U + \varepsilon}, e' \right| \leq \|e'\|_{U^\circ},
\]

i.e., \(\langle e, e' \rangle \leq \|e\|_U \|e'\|_{U^\circ}\).

Lemma 12. By assuming the hypotheses 1 and 2 on \(E\) and \(F\) we have \(E \bar{\otimes}_\pi F \cong \mathcal{B}_h^b(E'_c, F'_c)\).

Proof. The nuclearity of \(E\) implies that \(E \bar{\otimes}_\pi F = E \bar{\otimes}_\varepsilon F\). By the quasi-completeness of \(E\) and \(F\) and the strict approximation property of \(E\), we see that \(E \bar{\otimes}_\varepsilon F = E \varepsilon F = \mathcal{B}_h^b(E'_c, F'_c)\) [24, Corollaire 1, p. 47].

5 Decomposition of the space \(\dot{\mathcal{B}}'_{xy}\)

As mentioned in the introduction the decomposition

\[
\dot{\mathcal{B}}_{xy} = \dot{\mathcal{B}} \bar{\otimes}_\varepsilon \dot{\mathcal{B}}_y
\]

is proven in [24, Proposition 17, p. 59]. It is an analogue of A. Grothendieck’s example

\[
\mathcal{C}_0(M \times N) = \mathcal{C}_0(M) \bar{\otimes}_\varepsilon \mathcal{C}_0(N)
\]

for locally compact topological spaces \(M\) and \(N\) [6, Chap. I, p. 90]. Thus, it seems to us of its own interest to state an analogue decomposition of \(\dot{\mathcal{B}}'_{xy}\) besides its applicability in proving the equivalence \((1) \iff (3)\) hinted at in the introduction.
Proposition 13 (Decomposition of \hat{B}'_{xy}).

\[
\hat{B}'_{xy} = \hat{B}'_x \otimes \hat{B}'_y = \hat{B}'_z \neq \hat{B}'(\hat{B}'_y).
\]

Proof. First, we see that the isomorphism $\hat{B}'_{xy} \cong \hat{B}'_x \otimes \hat{B}'_y$ is a consequence of the sequence-space representation $\hat{B}' \cong c_0 \otimes s'$ [2, Theorem 3, p. 13], A. Grothendieck’s example above and the commutativity of the ε-product:

\[
\hat{B}'_{xy} \cong c_{0,jm} \otimes s'_{kl} \cong (c_{0,j} \otimes c_{0,m}) \otimes (s'_{k} \otimes s'_{l}) \cong (c_{0,j} \otimes s'_{k}) \otimes (c_{0,m} \otimes s'_{l}) \cong \hat{B}'_x \otimes \hat{B}'_y.
\]

Alternatively, for the algebraic equality $\hat{B}'_{xy} = \hat{B}'_x \otimes \hat{B}'_y$, the characterization of \hat{B}' by regularization yields for $K(x, y) \in \mathcal{D}'_{xy}$:

\[
K(x, y) \in \hat{B}'_{xy} \iff K(x - z, y - w) \in \mathcal{D}'_{zw} \otimes \hat{B}_{xy}
\]

and, hence, by [24, Prop. 17, p. 59 and Prop. 28, p. 98]

\[
\iff K(x - z, y - w) \in (\mathcal{D}'_{z} \otimes \mathcal{D}'_{w}) \otimes (\hat{B}_x \otimes \hat{B}_y).
\]

By the commutativity of the ε-product we obtain

\[
\iff K(x - z, y - w) \in \mathcal{D}'_{z} (\hat{B}_x (\mathcal{D}'_{w} \otimes \hat{B}_y)),
\]

and by the vectorial regularization property [1, Proposition 15, p. 11]

\[
\iff K(x, y - w) \in \hat{B}'_x (\mathcal{D}'_{w} \otimes \hat{B}_y) = (\mathcal{D}'_{w} \otimes \hat{B}_y)(\hat{B}'_x)
\]

\[
\iff K(x, y) \in \hat{B}'_x \otimes \hat{B}_y = \hat{B}'_{xy} = \hat{B}'_y(\hat{B}'_x).
\]

For the topological equality we show that any 0-neighborhood in $\hat{B}'_x \otimes \hat{B}'_y = \mathcal{L}_x(\mathcal{D}_{L^1,c,x}, \hat{B}'_y)$ is a neighborhood in \hat{B}'_{xy}, i.e., the topology of \hat{B}'_{xy} is finer than the topology on \hat{B}'_{xy} induced by $\hat{B}'_x \otimes \hat{B}'_y$, i.e., Id: $\hat{B}'_{xy} \to \hat{B}'_x \otimes \hat{B}'_y$ is continuous: a base of 0-neighborhoods in $\mathcal{L}_x(\mathcal{D}_{L^1,c,x}, \hat{B}'_y)$ is given by means of bounded subsets $B_1 \subset \mathcal{D}_{L^1,c,x}, B_2 \subset \mathcal{D}_{L^1,y}$ in the form of sets

\[
W(B_1, B_2) = \{ K(x, y) \in \hat{B}'_x \otimes \hat{B}'_y : K(B_1) \subset B_2 \}
\]

\[
= \{ K \in \hat{B}'_{xy} : |K(B_1, B_2)| \leq 1 \}
\]

But the set $W(B_1, B_2)$ is a 0-neighborhood in \hat{B}_{xy} because $B_1 \otimes B_2$ is a bounded set in $\mathcal{D}_{L^1,xy}$. Hereby we made use of $(\hat{B}')' \cong \mathcal{D}_{L^1}$.

24
Due to the isomorphism
\[\hat{\mathcal{B}}_x' \hat{\otimes}_\varepsilon \hat{\mathcal{B}}_y' \cong c_{0,jm} \hat{\otimes} s_{kl} \]
the space \(\hat{\mathcal{B}}_x' \hat{\otimes}_\varepsilon \hat{\mathcal{B}}_y' \) is ultrabornological (apply [27, Proposition 2, p. 75]). As seen in the proof (2.) of Proposition 7, the space \(\hat{\mathcal{B}}_{xy}' \) is also ultrabornological. Hence, [6, Chap. I, Théorème B, p. 17] implies that \(\text{Id} \) is an isomorphism. □

Acknowledgments. E. A. Nigsch was supported by the Austrian Science Fund (FWF) grants P23714 and P26859.

References

[1] C. Bargetz, E. A. Nigsch, N. Ortner. “Convolvability and regularization of distributions.” Submitted for publication, 2015. arXiv: 1505.04599.

[2] C. Bargetz. “Completing the Valdivia–Vogt tables of sequence-space representations of spaces of smooth functions and distributions.” *Monatsh. Math.* 177.1 (2015), pp. 1–14. issn: 0026-9255. doi: 10.1007/s00605-014-0650-2.

[3] K. D. Bierstedt, R. Meise. “Induktive Limites gewichteter Räume stetiger und holomorpher Funktionen.” *J. Reine Angew. Math.* 282 (1976), pp. 186–220, issn: 0075-4102.

[4] N. Bourbaki. *Espaces vectoriels topologiques. Chapitres 1 à 5. Éléments de mathématique.* Paris: Masson, 1981. isbn: 978-2-225-68410-4.

[5] A. Grothendieck. “Sur les espaces \((F)\) et \((DF)\).” *Summa Brasil. Math.* 3 (1954), pp. 57–121.

[6] A Grothendieck. “Produits tensoriels topologiques et espaces nucléaires.” *Mem. Am. Math. Soc.* 16 (1955). issn: 0065-9266.

[7] Y. Hirata, R. Shiraishi. “On partial summability and convolutions in the theory of vector valued distributions.” *J. Sci. Hiroshima Univ., Ser. A* 24 (1960), pp. 535–562.

[8] J. Horváth. *Topological vector spaces and distributions.* Vol. 1. Reading, Mass.: Addison-Wesley, 1966. isbn: 978-0-486-48850-9.
[9] J. Horváth. “Viejos y nuevos resultados sobre integrales singulares e
hipersingulares.” Rev. Acad. Colomb. Cienc. 29.113 (2005), pp. 547–
569. issn: 0370-3908.

[10] H. Jarchow. Locally Convex Spaces. Stuttgart: B. G. Teubner, 1981.
isbn: 978-3-519-02224-4.

[11] G. Köthe. Topological vector spaces I. Grundlehren der mathematischen
Wissenschaften 159. New York: Springer-Verlag, 1969. isbn: 978-0-
387-04509-2.

[12] G. Köthe. Topological vector spaces II. Grundlehren der Mathematischen
Wissenschaften 237. New York: Springer-Verlag, 1979. isbn: 978-0-387-
90400-9.

[13] J. L. Lions, E. Magenes. “Sur certains aspects des problèmes aux limites
non homogenes pour des opérateurs paraboliques.” Ann. Sc. Norm.
Super. Pisa, Sci. Fis. Mat., III. Ser. 18 (1964), pp. 303–344. issn:
0036-9918.

[14] M. Oberguggenberger. Der Graphensatz in lokalkonvexen topologischen
Vektorräumen. Teubner-Texte zur Mathematik 44. Leipzig: Teubner,
1982.

[15] N. Ortner. “Sur la convolution des distributions.” C. R. Acad. Sci.
Paris Sér. A-B 290.12 (1980), pp. A533–A536. issn: 0151-0509.

[16] N. Ortner. “On convolvability conditions for distributions.” Monatsh.
Math. 160.3 (2010), pp. 313–335. issn: 0026-9255. DOI:
10.1007/s00605-008-0087-6.

[17] N. Ortner, P. Wagner. Distribution-valued analytic functions. Theory
and applications. Hamburg: tredition, 2013. isbn: 978-3-8491-1968-3.

[18] A. P. Robertson, W. Robertson. Topological vector spaces. 2nd ed. Cam-
bridge Tracts in Mathematics and Mathematical Physics 53. London:
Cambridge University Press, 1973. isbn: 978-0-521-20124-7.

[19] W. Robertson. “On the closed graph theorem and spaces with webs.”
Proc. London Math. Soc. (3) 24 (1972), pp. 692–738. issn: 0024-6115.

[20] H. H. Schaefer. Topological Vector Spaces. New York: Springer-Verlag,
1971. isbn: 978-0-387-05380-6.

[21] L. Schwartz. Séminaire Schwartz. Paris, 1953–1954.
[22] L. Schwartz. “Espaces de fonctions différentiables à valeurs vectorielles.” *J. Anal. Math.* 4.1 (1955), pp. 88–148. DOI: 10.1007/BF02787718.

[23] L. Schwartz. “Distributions semi-régulières et changements de coordonnées.” *J. Math. Pures Appl. (9)* 36 (1957), pp. 109–127. ISSN: 0021-7824.

[24] L. Schwartz. “Théorie des distributions à valeurs vectorielles.” *Ann. Inst. Fourier* 7 (1957). ISSN: 0373-0956. DOI: 10.5802/aif.68.

[25] L. Schwartz. “Théorie des distributions à valeurs vectorielles II.” *Ann. Inst. Fourier* 8 (1958). ISSN: 0373-0956. DOI: 10.5802/aif.77.

[26] L. Schwartz. *Théorie des distributions*. Nouvelle édition, entièrement corrigée, refondue et augmentée. Paris: Hermann, 1966.

[27] R. Shiraishi, Y. Hirata. “Convolution maps and semi-group distributions.” *J. Sci. Hiroshima Univ., Ser. A-I* 28 (1964), pp. 71–88. ISSN: 0386-3026.

[28] M. Valdivia. “A representation of the space O_M.” *Math. Z.* 177 (1981), pp. 463–478. ISSN: 0025-5874. DOI: 10.1007/BF01219081.

[29] D. Vogt. “Sequence space representations of spaces of test functions and distributions.” In: *Functional analysis, holomorphy, and approximation theory* (Rio de Janeiro, 1979). Ed. by G. I. Zapata. Lect. Notes Pure Appl. Math 83. New York: Dekker, 1983, pp. 405–443. ISBN: 978-0-8247-1634-9.