Stereoselectivity and Regioselectivity of the Cycloaddition Dimerization of allyl 3-(2-pyridyl) acrylate and allyl 3-(2-pyrrol) acrylate: DFT Calculations

Haydar A. Mohammad Salim¹, Hassan H. Abdallah² and P. Ramasami³

¹ Chemistry department, college of Science, University of Zahko, Duhok, Iraq
² Chemistry Department, College of Education, Salahaddin University, Erbil, Iraq.
³ Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Re´duit 80837, Mauritius

Abstract. A theoretical study of the photochemical dimerization of allyl 3-(2-pyridyl) acrylate and allyl 3-(2-pyrrol) acrylate is reported. The reactions gave dimers with high regioselectivity and stereoselectivity through [2+2] cycloaddition mechanism. All calculations were computed by density functional theory method, B3LYP, in conjunction with the 6-31G(d) basis set. Conformation analysis, geometric parameters and IR spectrum for the target dimers were also studied. Conformation 2 of allyl 3-(2-pyridyl) acrylate and conformation 9 for allyl 3-(2-pyrrol) acrylate were found to be the most stable structures among the different conformations. Vibration frequencies and IR absorption intensities were calculated for the conformers 2 and 9 using the same computational method. In addition, thermodynamic parameters for the reactions of most stable conformations were analysed. The HOMO and LUMO molecular orbitals and the energy gap between them were estimated for the stable conformations.

1. Introduction
In dimerization of organic compounds, cycloaddition reaction of alkenes to form cyclobutane dimers is one of the most studied reaction [1]. Recently, it was found that in the presence of benzophenone, the irradiation of methyl 3-(2-furyl)acrylate gave a mixture of two isomeric dimers [2]. It is also reported that this reaction results in the triplet state of the molecule [3]. In 1992, D’Auria and co-workers found that this triplet state is achieved via energy transfer from benzophenone. Recently, different approaches were used to study photochemical dimerization. For instance, the photodimerisation of cytosine, using CASSCF/CASPT2 study, shows that the most probable reaction occurs along the potential energy hyper surface [4-6]. In the investigations of diradical species, density functional theory (DFT) was largely used [7-9]. It was found that calculations with DFT method give rise to better interaction energies for corannulene dimers than other methods [10]. The dimers of five diazanaphthalenes (DAPs)n were investigated by means of several methods to elucidate their dimer’s preferred relative energies, geometries and nature of the interactions between monomer units [11]. The results indicate that DFT method provides binding energies that are closer to the estimated values. The [2+2] cycloaddition reaction, in particular, represents a significant strategy with high atom economy for the preparation of cyclobutane derivatives. The importance of the cyclobutane containing compounds has been widely demonstrated as target molecules as well as useful building blocks for the construction of complex structures [12]. In particular, cyclobutanes can undergo fragmentation and ring-expansion reactions, due to the inherent ring strain, for the synthesis of both acyclic and cyclic systems [13]. There are different strategies that have been published to show the reactivity of these substrates [14].

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd
This study reports a DFT calculation on two photochemical cycloaddition dimerization reactions, namely, allyl 3-(2-pyridyl) acrylate and allyl 3-(2-pyrrol) acrylate, in order to show the effect of nitrogen heterocyclic ring (pyridine and pyrrole) on the dimerization pathways. This paper also reports the regio- and stereoselective behaviour of the dimerization reactions.

2. Computational Details

Gaussian09 package was used and all the computations were based on DFT method using the B3LYP functional [15, 16] and the 6-31G(d) basis set. Frequency calculations were performed to ensure that a transition state has only one imaginary frequency and a local minimum has no imaginary frequencies. All energies and thermodynamic parameters reported in this paper were obtained from the frequency calculations at the same level of theory.

3. Results and Discussion

3.1. Allyl 3-(2-pyridyl) acrylate

Stereo- and regioselectivity for allyl 3-(2-pyridyl) acrylate 1 was explained using DFT calculation at B3LYP/6-31G(d) level of theory. In order to investigate the most stable conformation, six different stereo and regioselectivity conformers were built and optimized. It was found that allyl 3-(2-pyridyl) acrylate 1 gave the corresponding dimer 2, (see Scheme 1) with high stereo- and regioselectivity.

The suggested stereo and regioselective cyclobutane derivatives that can be obtained in the dimerization are shown in Figure 1, and their energies are listed in Table 1. It can be noted that different structures with different diastereomers give different energies. The most stable structure was found to be 2 among all due to its lowest electronic energy and the lowest value of dipole moment.

Table 1. Electronic energies of the diastereomers of dimerization of allyl 3-(2-pyridyl) acrylate 1.

Conf.	electronic energy (kcal/mol)	Relative energy (kcal/mol)	DM (Debye)	E_{LUMO}-E_{HOMO} (kcal/mol)
2	-791879.3	0	0.972	-138.17
3	-791865.4	13.94	3.381	-133.48
4	-791875.9	3.35	3.840	-136.88
5	-791874.7	4.65	1.291	-133.27
6	-791874.5	4.80	3.997	-131.83
7	-791874.6	6.68	4.132	-133.34
The evaluation of the global reactions in terms of the thermodynamic parameters allows us to determine the stability of the proposed products and therefore, the feasibility of the reactions. Thermodynamic parameters were computed for all optimized structures. The results obtained during dimerization of 1 are collected in Table 2. All conformation reactions are entropically disfavoured and endothermic. The values of Gibbs free energy in all cases were found to be greater than zero, which refer non-spontaneous reactions. The heat of formation for conformation 2 was found to be the lowest.
and this indicates the highest stability of conformation 2. The lowest value of free energy, \(\Delta G \), is (186.33 kcal/mol), and lowest value of entropy, \(\Delta S \), is (-45.26 kcal/mol), for conformation 2 also indicate the stability of this conformation.

Table 2. Thermodynamic parameters for dimerisation of 1 for all conformations.

Conformation	\(\Delta H \) (kcal/mol)	\(\Delta G \) (kcal/mol)	\(\Delta S \) (cal/mol.K)
2	186.37	199.87	-45.26
3	200.04	216.37	-54.77
4	189.51	203.70	-47.60
5	191.06	206.11	-50.47
6	191.05	205.64	-48.94
7	190.82	204.70	-46.53

The vibrational frequencies were calculated to determine the characteristic functional groups of the conformation 2 as the final product of dimerization of compound 1. The FT-IR spectrum was plotted between the percent transmittance against wavenumber and is shown in Figure 3. Table 1 lists the observed IR frequencies and empirical band assignments of the most stable dimer 2. The ring C-C, bonds stretching vibration occur in the regions 1050-1110 cm\(^{-1}\). The ring C-H stretching vibrations are observed at 3100-3150 cm\(^{-1}\). However, the ring C-H bending vibrations occur in the region 500-1500 cm\(^{-1}\). The C3-pyridyl and C4-pyridyl stretching vibrations are observed in 3217.5 cm\(^{-1}\) and 3279.3 cm\(^{-1}\), respectively. The C-C ring deformation occurs around 876 cm\(^{-1}\).

![Figure 3: IR spectrum for structure 2.](image)
Table 3. Some vibrational frequencies and IR absorption intensities of structure 2

Frequency (cm⁻¹)	Intensity (km/mol)	Assignment
3217.5	13.3024	C₁-Pyridine stretching
3279.3	14.4904	C₃-Pyridine stretching
3146.7	1.3481	C₁-H₆ stretching
3122.1	1.7109	C₃-H₃ stretching
1488.3	18.6629	C₃-H₅ bending
1110.4	25.4008	C₁-C₂ stretching
1057.5	8.8362	C₃-C₄ stretching
876.7	1.8909	C₁-C₂-C₃-C₄ ring deformation
700.6	3.2017	C₂-H₇ bending
507.9	5.7490	C₁-H₆ bending

Table 4 lists the optimized geometrical parameters (bond angle and length) of structure 2. The ring C-C bond length are observed in the range of (1.550 - 1.555 Å). The ring C-H bond lengths are found in the range of (1.090 - 1.100 Å). The C₃-Pyridyl and C₄-Pyridyl lengths are found to be 1.510 Å and 1.505 Å respectively. The H₅-C₃-Pyridyl and H₈-C₄-Pyridyl bond angles were calculated at 41.32 and 40.87 degree, respectively.

Table 4. Some geometry parameters of structure 2

Bond	distance (Å)	Bonds	Angle (°)
C₁-C₂	1.552	H₆-C₁-R₉	41.9
C₁-C₃	1.553	H₅-C₃-Pyd	41.3
C₁-H₆	1.097	H₇-C₂-R₁₀	40.5
C₁-R₉	1.508	H₆-C₁-Pyd	40.9
C₃-H₅	1.096	C₁-C₂-C₃-C₄	18.6
C₃-Pyd	1.510	H₈-C₁-C₃-H₈	155.2
C₂-H₇	1.091	H₇-C₂-C₄-H₆	158.4
C₂-R₁₀	1.507		
C₄-H₈	1.092		
C₄-Pyd	1.505		

It is known that the occupation and the energies of the molecular orbitals (MO) give better insight on the excitation, reactivity and hence the stability of the studied molecular structure. Among the MOs, the highest occupies molecular orbital (HOMO) and the lowest occupied molecular orbital (LUMO) are the most important as the energy difference between these orbitals quantifies the excitation energy of the compound. The energies of the HOMO and LUMO for the reactant and the suggested conformations are shown in Figure 4. As shown in figure, the energy band gap (E_{LUMO} - E_{HOMO}) for conformation 2 is the highest, -138.2 kcal/mol.
3.2. Allyl 3-(2-pyrryl) acrylate

The cycloaddition, regioselective and stereoselective reaction of allyl 3-(2-pyrryl) acrylate, 8 was explained using DFT calculations. It is reported that allyl 3-(2-pyrryl) acrylate 8, gave the corresponding dimer 9, (see Scheme 2) with high stereo- and regioselectivity. Six different stereo conformers of the product were built and optimized and listed in Figure 5. The calculated energies of the proposed six conformers are listed in Table 5. The most stable structure was found to be 9 among all as it has the lowest electronic energy as shown in Table 5.

![Scheme 2. Dimerization of allyl 3-(2-pyrryl) acrylate 8.](image-url)
Figure 5. The optimized structures dimerization of allyl 3-(2-pyrryl) acrylate

Table 5. Energies for diastereomers of dimerization of allyl 3-(2-pyrryl) acrylate 8.

Conformation	electronic energy (kcal/mol)	Relative energy (kcal/mol)	DM (Debye)	E_{LUMO} - E_{HOMO} (kcal/mol)
9	-744038.4	0	2.02	-124.35
10	-744031.5	6.87	1.38	-113.86
11	-744034.2	4.23	3.37	-120.40
12	-744034.6	3.79	2.65	-115.52
13	-744034.5	3.94	3.70	-123.39
14	-744036.5	1.84	3.82	-110.65
Thermodynamic parameters were computed for all optimized structures. The results obtained for the dimerization of \(\text{8} \) were collected in Table 6. It is clear from table that all reactions are entropically disfavored and endothermic. Gibbs free energy for all reactions has positive value and this indicates the nonspontaneous characteristics of these reactions. The heat of formation for conformation \(\text{9} \) was found to be the lowest which indicates the highest stability. The lowest values of \(\Delta G \) and \(\Delta S \) of the conformation \(\text{9} \) also indicate the stability of this conformation.

![Figure 6. Diastereomers energies for dimerization of allyl 3-(2-pyrryl) acrylate \(\text{8} \).](image)

Table 6. Thermodynamic parameters for all conformations.

Conformations	\(\Delta H \) (kcal/mol)	\(\Delta G \) (kcal/mol)	\(\Delta S \) (cal/mol.K)
\(\text{9} \)	215.63	227.22	-38.87
\(\text{10} \)	222.60	237.75	-50.83
\(\text{11} \)	219.67	232.68	-43.65
\(\text{12} \)	219.40	231.88	-41.88
\(\text{13} \)	219.68	231.63	-40.06
\(\text{14} \)	217.57	230.62	-43.77

The vibrational frequencies were calculated to determine the characteristic functional groups of conformer \(\text{9} \) of the dimerization reaction. The FT-IR spectrum was plotted between the percent transmittance against wavenumber and is shown in Figure 7. Table 7 lists some of the calculated IR frequencies, their intensities and the empirical band assignments of the dimer \(\text{9} \). The C-C, bonds that participate in the ring formation, stretching vibration occur in the regions (1100 - 950 cm\(^{-1}\)). The ring C-H stretching vibrations are observed at (3000 - 3150 cm\(^{-1}\)). However, the ring C-H bending vibrations occur in the region (500 - 1500 cm\(^{-1}\)). The \(\text{C}_3\)-pyrryl and \(\text{C}_4\)-pyrryl stretching vibrations are observed in 1625 cm\(^{-1}\) and 1631 cm\(^{-1}\), respectively. The C-C ring deformation occurs around 1050 cm\(^{-1}\).
Figure 7. IR spectrum for structure 9.

Table 7. Some vibrational frequencies and IR absorption intensities of structure 9

Frequency (cm$^{-1}$)	Intensity (km/mol)	Assignment
1631.6	10.0911	C_4-(Pyrryl) stretching
1625.6	1.2279	C_3-Pyrryl Stretching
3126.1	4.4206	C_1-H_6 stretching
3099.3	4.0553	C_3-H_5 stretching
1107.9	6.0247	C_1-C_2 stretching
956.4	2.2985	C_3-C_4 stretching
1048.5	12.2903	C_1-C_2-C_4-C_3 ring deformation
3143.1	3.6074	C_2-H_7 bending
515.9	8.7401	C_1-H_6 bending
1516.6	7.5077	C_3-H_5 bending
966.9	27.8104	C_1-C_3 stretching
3019.9	22.1954	C_4-H_8 stretching
1280.7	27.3840	C_4-H_8 bending
The optimized geometrical parameters (bond angle and length) of structure 9 are listed in Table 8. The ring C-C bond lengths are observed in the range of 1.551 to 1.572 Å. The ring C-H bond lengths are found in the range of 1.091 to 1.100 Å. The C3-Pyrryl and C4-pyrryl lengths are found to be 1.485 Å and 1.489 Å, respectively. The H5-C3-Pyrryl and H8-C4-pyrryl bond angles were calculated at 109.15 Å and 111.44 Å, respectively.

Table 8. Some geometry parameters of structure 9

Bond	distance (Å)	Bonds	Angle (°)
C1-C2	1.551	H6-C1-R9	110.8
C1-C3	1.572	H5-C3-Pyrryl	109.2
C1-H6	1.092	H7-C2-R10	111.9
C1-R9	1.509	H6-C4-Pyrryl	111.4
C3-H4	1.094	C1-C2-C3-C4	19.8
C3-Pyrryl	1.485	H6-C1-C3-H5	158.6
C2-H7	1.091	H7-C2-C2-C2-H8	159.1
C2-R10	1.507		
C4-H8	1.100		
C4-Pyrryl	1.489		

Figure 8. HOMO and LUMO energy for reactant and conformers.

The HOMO and LUMO energies for the reactant and conformers are shown in Figure 8. As shown in figure, the HOMO-LUMO gap for conformer 9 is largest, -124.35 kcal/mol, and this makes the conformation 9 the most stable among other conformations.

On comparing the two reactions studied and the results indicate that the dimerization of allyl 3-(2-pyridyl) acrylate is found to be more preferred than the dimerization of allyl 3-(2-pyrryl) acrylate. This is due to the larger energy gap of dimerization of allyl 3-(2-pyridyl) acrylate. Pyridine, a six member heterocyclic ring, makes the dimerization reaction more feasible than pyrrole, a five member heterocyclic ring.

4. Conclusions

The dimerization of allyl 3-(2-pyridyl) acrylate and allyl 3-(2-pyrryl) acrylate were studied using the B3LYP functional in conjunction with the 6-31G(d) basis set. Geometric parameters and IR spectrum of conformers 2 and 9 were studied and were found to be the most stable structures. Thermodynamic parameters for the most stable conformers were studied. The lowest values of heat of formation, Gibbs
free energy, and entropy indicate the stability of conformations 2 and 9. The HOMO-LUMO energy gaps for the stable conformations were found to be larger than the others, and this also confirm the stability of structures 2 and 9.

5. References
[1] Klán P and Wirz J 2009 Photochemistry of Organic Compounds: From Concepts to Practice: (Wiley)
[2] D'Auria M, Piancatelli G and Vantaggi A 1990 Photochemical dimerization of methyl 2-furyl- and 2-thienylacrylate and related compounds in solution Journal of the Chemical Society, Perkin Transactions 1 2999-3002
[3] D'Auria M, D'Annibale A and Ferri T 1992 Photochemical behaviour of furylidene carbonyl compounds Tetrahedron 48 9323-36
[4] González-Ramírez I, Roca-Sanjuán D, Climent T, Serrano-Pérez J J, Merchán M and Serrano-Andrés L 2011 On the photoproduction of DNA/RNA cyclobutane pyrimidine dimers Theoretical Chemistry Accounts 128 705-11
[5] Climent T, González-Ramírez I, González-Luque R, Merchán M and Serrano-Andrés L 2010 Cyclobutane Pyrimidine Photodimerization of DNA/RNA Nucleobases in the Triplet State The Journal of Physical Chemistry Letters 1 2072-6
[6] Roca-Sanjuán D, Olaso-González G, González-Ramírez I, Serrano-Andrés L and Merchán M 2008 Molecular Basis of DNA Photodimerization: Intrinsic Production of Cyclobutane Cytosine Dimers Journal of the American Chemical Society 130 10768-79
[7] Ko K C, Park Y G, Cho D and Lee J Y 2014 Simple but Useful Scheme toward Understanding of Intramolecular Magnetic Interactions: Benzene-Bridged Oxoverdazyl Diradicals The Journal of Physical Chemistry A 118 9596-606
[8] Gromov O I, Golubeva E N, Khrustalev V N, Kálai T, Hideg K and Kokorin A I 2014 EPR, the X-ray Structure and DFT Calculations of the Nitroxide Biradical with One Acetylene Group in the Bridge Applied Magnetic Resonance 45 981-92
[9] D'Auria M 2014 A DFT Study of the Photochemical Dimerization of Methyl 3-(2-Furyl)acrylate and Allyl Urocanate Molecules 19 20482
[10] Josa D, Otero J R and Cabaleiro Lago E M 2011 A DFT study of substituent effects in corannulene dimers Physical Chemistry Chemical Physics 13 21139-45
[11] Kabanda M M and Ebenso E E 2014 MP2, DFT and DFT-D study of the dimers of diazanaphthalenes: a comparative study of their structures, stabilisation and binding energies Molecular Simulation 40 1131-46
[12] Alcaide B, Almendros P and Aragoncillo C 2010 Exploiting [2+2] cycloadition chemistry: achievements with allenes Chemical Society Reviews 39 783-816
[13] Namyslo J C and Kaufmann D E 2003 The Application of Cyclobutane Derivatives in Organic Synthesis Chemical Reviews 103 1485-538
[14] Murakami M, Ashida S and Matsuda T 2005 Nickel-Catalyzed Intermolecular Alkyne Insertion into Cyclobutanones Journal of the American Chemical Society 127 6932-3
[15] Frisch M J et al. 2009 Gaussian 09, Revision B.01. (Wallingford CT
[16] Parr R G and Weitao Y 1989 Density-Functional Theory of Atoms and Molecules: Oxford University Press)