Dynamic Measurement of Extra Long Stroke Cylinder in the Pneumatic System

Ho Chang¹, Chou-wei Lan¹ and Liang-Chia Chen²

¹ Department of Mechanical Engineering, National Taipei University of Technology, Taiwan, China
² Graduate Institute of Automation Technology, National Taipei University of Technology, Taiwan, China

E-mail: f10381@ntut.edu.tw

Abstract. This paper sets up the measure and control system of the dynamic characteristics of the extra long stroke cylinder. In the different types of the control conditions (e.g. different control law, operating pressure and direct control valves), using the measure and control system to measure the relation between the pressure and the velocity of the motion of the long stroke cylinder and to observe the stick slip phenomenon of the motion of the long stroke cylinder. In the innovate measurement system, two pressure sensors are set on the long stroke cylinder to measure the difference of the pressure between the inlet and the exhaust of the long stroke cylinder. In additions, a draw line encoder is set on the system to measure the position and the velocity of the motion of the long stroke cylinder. The measuring data of the measure system is transferred to the computer via A/D interface card and counter card, and Home-made program of Haptic Interface Device is used to control the system, saving the data of the motion of the long stroke cylinder. The system uses different types of direction control valve to control the motion of the long stroke cylinder and compares the difference of the motion of the long stroke cylinder. The results show that the motion of the cylinder that pauses in the middle of the cylinder stroke and causes the stick slip phenomenon is more violent than the stick slip phenomenon in other position. When the length of the pause time reaches the some range, the acceleration of the motion of the cylinder will be rised substantially. This paper not only focuses on the testing method of the dynamic characteristics of the motion of the long stroke cylinder, but also includes the analysis of the dynamic characteristics of the motion of the long stroke cylinder. It provides the data of the dynamic characteristics of the motion of the long stroke cylinder to improve and design the pneumatic system of the long stroke cylinder.

1. Introduction

1.1. Pneumatic System

Pneumatic system is a time varying system. The system parameters of Pneumatic system would be influenced by the different environmental parameters (temperature, operation time, load, etc.). Because of the compressibility, low viscosity and friction of air, the nonlinear phenomena of the valve, Hysteresis phenomenon of the coil and baseline wander of the spool motion the control of pneumatic system is difficult. [1,2] The stick slip phenomenon is a interesting program of the pneumatic position control system. Because the stick slip phenomenon would be influence the motion of the pneumatic actuator, so this paper will be research and discuss the effect of the stick slip phenomenon. Recently the servo control system is replacing the precision mechanical system gradually. Even the same
pneumatic cylinder receives the same signal in the same environment, the leakage rates and friction of the pneumatic cylinder would be make the pneumatic cylinder output the different Output Response and cause the control of the pneumatic cylinder can’t achieve the ideal synchronous control [3].

1.2. The measure and control system of the extra long stroke cylinder
This paper design and set up a dynamic simulation and measuring system of the extra long stroke cylinder, shown in Figure 1. The simulation and measuring system can measure the dynamic data of the motion of pneumatic cylinder and observe the stick slip phenomena of the pneumatic cylinder.

Because the air volume of the extra long stroke pneumatic cylinder is larger than the common pneumatic cylinder, so the compressibility of air makes the position and velocity control of the pneumatic cylinder motion is difficult. If want to precise control the position and velocity of the extra long stroke cylinder, research the dynamic characteristic of the cylinder motion in different operation law is necessary. The simulation experiment is using different control parameter. In the dynamic simulation and measuring system of the extra long stroke cylinder, use two piezo-resistive pressure sensors to measure the pressures of the inlet and the exhaust of the long stroke cylinder, and use a draw line encoder to measure the position and velocity of the pneumatic cylinder motion. The measuring data of the measure system is transferred to the computer via A/D interface card and counter card. When the moment of the pneumatic cylinder motion, the friction of the cylinder is getting decrease and the stick slip phenomenon would be occur. The stick slip phenomenon makes the system instability and cause the position control is not precise. [4] According to the data of the pneumatic cylinder simulation experiment, the dynamic characteristic of the extra long stroke cylinder can be obtained and provide the control parameter of the pneumatic system for designer.

![Figure 1. The simulation and measuring system of the pneumatic cylinder.](image)

2. Experimental system
The purpose of the simulation and measuring system is research the stick slip phenomenon in the different pause position of the pneumatic cylinder motion and analyze the relation between the pressure variation and the stick slip phenomenon. When the cylinder pauses in the same position, the experiment sets the different length of the pause times and analyzes the relation between the length of the pause times and the velocity variation.

The equipments of the simulation and measuring system of the extra long stroke cylinder have shown in figure 2. The stroke of the cylinder is 2100mm. The pneumatic system uses a 5/3 direction control valve and two 2/2 switch valves to control the pneumatic cylinder motion. The load of the pneumatic cylinder is 50 kg.
This paper designs two experiments, the experiment (1) is focus on the relation between the pressure variation and the stick slip phenomenon and the experiment (2) is focus on the relation between the length of the pause times and the velocity variation. The experiment (1) sets the operation pressure of the pneumatic on 3 kgf/cm², 4 kgf/cm² and 5 kgf/cm², and the pause position on 700 mm, 1050 mm and 1400 mm of the cylinder stroke. The experiment (2) sets the operation pressure of the pneumatic on 3 kgf/cm², 4 kgf/cm² and 5 kgf/cm², the pause position on 700 mm, 1050 mm and 1400 mm of the cylinder stroke, and the pause time on 1 sec, 2 sec, 3 sec, 4 sec and 5 sec. The experiment (1), the pneumatic cylinder starts on the initial position and pauses on the position 700 mm, 1050 mm and 1400 mm of the cylinder stroke. When the cylinder reaches the pause position, the proximity-switch would be closed the 5/3 direction control valve and stop the motion of the cylinder. The experiment (2), the pneumatic cylinder starts on the initial position and pauses on the position 700 mm, 1050 mm and 1400 mm of the cylinder stroke. Then after the pause time, the pneumatic cylinder has been driven again. Until the cylinder reaches the terminal position of the cylinder stroke, the cylinder has been stopped.

3. Results and discussion

3.1. The experiment (1)
The experiment (1) saves the data of the pressure, displacement and velocity of the motion of the pneumatic cylinder. When the pneumatic cylinder reaches the pause position, the controller would be closed the 5/3 direction control valve. Because the load of the cylinder still has kinetic energy, so the cylinder would be moved. But the air between the inlet and the exhaust of the long stroke cylinder would be stopped the motion of the cylinder. While the cylinder is getting into motionless, the stick slip phenomenon would be happened. As the pause position is in the middle of the cylinder stroke and the operation pressure is 3 kgf/cm², the error of the position is the largest of the results of the experiment (1). The results of the experiment (1) are shown in Table 1. The variations of the pressure and velocity are shown in Figure 3 and Figure 4. The variation of the pressure and velocity in the figure 4 is more stable than the variation of the pressure and velocity in the figure 3. The variation between the pressure a and pressure b in Figure 3 is violent and unbalance, and according to the results of the table 1, the position control of the pneumatic cylinder in the low pressure is more difficult than the position control of the pneumatic cylinder in the high pressure and the stick slip phenomenon is apparent in the low operation pressure.

3.2. The experiment (2)
The purpose of the experiment (2) is observe the variation of the velocity between before the pause and after the pause in the different pause positions. The results of the experiment (2) are shown in

Figure 2. The equipments of the simulation and measuring system.
Table 2. The variations of the pressure and velocity are shown in Figure 5 and Figure 6. The variation of the velocity in the figure 6 is larger than the variation of the velocity in the figure 5 and according to the results of the experiment (2), the variation of the velocity is large in the middle of the cylinder stroke. In the low operation pressure (3 kgf/cm²), as the pause time is getting to longer, the variation of the velocity is getting larger. But in the high operation pressure (5 kgf/cm²), the effect of the length of the pause time to the variation of the velocity is not apparent.

Pause position	Operation pressure	The cylinder pause position	The error of the position	The max displacement	The max velocity
700 mm	3 kgf/cm²	788 mm	88 mm	800 mm	281 mm/s
700 mm	4 kgf/cm²	785 mm	85 mm	874 mm	324 mm/s
700 mm	5 kgf/cm²	698 mm	-2 mm	812 mm	339 mm/s
1050 mm	3 kgf/cm²	1157 mm	107 mm	1221 mm	344 mm/s
1050 mm	4 kgf/cm²	1134 mm	84 mm	1221 mm	358 mm/s
1050 mm	5 kgf/cm²	1073 mm	23 mm	1197 mm	367 mm/s
1400 mm	3 kgf/cm²	1457 mm	57 mm	1581 mm	408 mm/s
1400 mm	4 kgf/cm²	1457 mm	57 mm	1575 mm	418 mm/s
1400 mm	5 kgf/cm²	1454 mm	54 mm	1475 mm	421 mm/s

Figure 3. The variation of the pressure and velocity of the experiment (1) (3 kgf/cm², 1050mm).

Figure 4. The variation of the pressure and velocity of the experiment (1) (5 kgf/cm², 1050mm).

Figure 5. The variation of the pressure and velocity of the experiment (2).
(The operation pressure is 3 kgf/cm², the pause position is 1050mm, the pause time is 1 sec)
Table 2. The results of the experiment (2).

Operation Pressure	Pause Position	Max Velocity Before Pause	Max Velocity After Pause	Pause Time
3 kgf/cm²	700 mm	300 mm/s	512 mm/s	1.00 sec
3 kgf/cm²	1050 mm	333 mm/s	565 mm/s	1.00 sec
3 kgf/cm²	1400 mm	389 mm/s	543 mm/s	1.00 sec
3 kgf/cm²	700 mm	296 mm/s	523 mm/s	2.00 sec
3 kgf/cm²	1050 mm	343 mm/s	571 mm/s	2.00 sec
3 kgf/cm²	1400 mm	382 mm/s	553 mm/s	2.00 sec
3 kgf/cm²	700 mm	297 mm/s	509 mm/s	3.00 sec
3 kgf/cm²	1050 mm	338 mm/s	580 mm/s	3.00 sec
3 kgf/cm²	1400 mm	385 mm/s	558 mm/s	3.00 sec
3 kgf/cm²	700 mm	294 mm/s	527 mm/s	4.00 sec
3 kgf/cm²	1050 mm	332 mm/s	580 mm/s	4.00 sec
3 kgf/cm²	1400 mm	386 mm/s	567 mm/s	4.00 sec
3 kgf/cm²	700 mm	307 mm/s	539 mm/s	5.00 sec
3 kgf/cm²	1050 mm	337 mm/s	588 mm/s	5.00 sec
3 kgf/cm²	1400 mm	383 mm/s	556 mm/s	5.00 sec

Operation Pressure	Pause Position	Max Velocity Before Pause	Max Velocity After Pause	Pause Time
5 kgf/cm²	700 mm	328 mm/s	455 mm/s	1.00 sec
5 kgf/cm²	1050 mm	380 mm/s	661 mm/s	1.00 sec
5 kgf/cm²	1400 mm	427 mm/s	586 mm/s	1.00 sec
5 kgf/cm²	700 mm	335 mm/s	567 mm/s	2.00 sec
5 kgf/cm²	1050 mm	378 mm/s	689 mm/s	2.00 sec
5 kgf/cm²	1400 mm	422 mm/s	669 mm/s	2.00 sec
5 kgf/cm²	700 mm	343 mm/s	578 mm/s	3.00 sec
5 kgf/cm²	1050 mm	376 mm/s	677 mm/s	3.00 sec
5 kgf/cm²	1400 mm	423 mm/s	681 mm/s	3.00 sec
5 kgf/cm²	700 mm	321 mm/s	582 mm/s	4.00 sec
5 kgf/cm²	1050 mm	374 mm/s	669 mm/s	4.00 sec
5 kgf/cm²	1400 mm	414 mm/s	665 mm/s	4.00 sec
5 kgf/cm²	700 mm	323 mm/s	581 mm/s	5.00 sec
5 kgf/cm²	1050 mm	375 mm/s	688 mm/s	5.00 sec
5 kgf/cm²	1400 mm	416 mm/s	668 mm/s	5.00 sec

Figure 6. The variation of the pressure and velocity of the experiment (2).
(The operation pressure is 3 kgf/cm², the pause position is 1050mm, the pause time is 5 sec.)
4. Conclusion
This paper designs a dynamic simulation and measure system of the extra long stroke cylinder and obtains the following results.

- The position control of the pneumatic cylinder in the low pressure is more difficult than the position control of the pneumatic cylinder in the high pressure.
- The stick slip phenomenon is apparent in the low operation pressure.
- The variation of the velocity is large in the middle of the cylinder stroke.
- In the low operation pressure (3 kgf/cm²), as the pause time is getting to longer, the variation of the velocity is getting larger. But in the high operation pressure (5 kgf/cm²), the effect of the length of the pause time to the variation of the velocity is not apparent.

Using the dynamic simulation and measure system can obtain the dynamic characteristics of the pneumatic cylinder to improve the design of the pneumatic system. The system parameter of the experiment can provide the reference resources for the designer of the pneumatic element.

References
[1] Shearer, J. J. 1956 The Study of Pneumatic Process in the continuous Control of Motion with Compressed Air-I ASME translation pp 233-242
[2] B.W. Anderson 1967 The analysis and design of pneumatic systems (New York: John Willey & Sons Inc.)
[3] Pierre Dauchez 1988 A SYMMETRIC HYBRID POSITION/FORCE SCHEME FOR THE COORDINATION OF TWO ROBOTS IEEE Ch2555-1/88/000 pp 350-356
[4] Houg Jou 1999 The Technology of Hydraulic and Pneumatic (Gau Lih Book Co., Ltd.)