MAXIMAL IDEALS IN COMMUTATIVE BANACH ALGEBRAS

H. G. DALES

Abstract. We show that each maximal ideal in a commutative Banach algebra has codimension 1.

1.

Let A be a commutative algebra (over the complex field, \mathbb{C}). An ideal M in A is maximal if $M \neq A$ and if $M = I$ or $I = A$ for each ideal I in A with $M \subset I$.

We wonder if every maximal ideal in a commutative Banach algebra is of codimension 1 in A?

This is not resolved in [1]; I cannot see a comment on the point in other texts. Here we show that the above is indeed the case.

Let A be an algebra. Then $A^{[2]} = \{ab : a, b \in A\}$ and A^2 is the linear span of $A^{[2]}$, so that A^2 is an ideal in A.

Let A be a commutative algebra without an identity. We denote by A^\sharp the unital algebra formed by adjoining an identity, e, to A, so that A is a maximal ideal in A^\sharp; in the case where A is a Banach algebra, A^\sharp is also a Banach algebra.

In the case where A is a topological algebra, a maximal ideal is either closed or dense in A.

First suppose that M is a maximal modular ideal in a commutative algebra A. Then A/M is a field containing \mathbb{C}. In the case where A is a commutative Banach algebra, M is necessarily closed, and so A/M is a Banach algebra. By the Gel’fand–Mazur theorem $A/M \cong \mathbb{C}$, and M is the kernel of a continuous character. In particular, M has codimension 1. In fact, the Gel’fand–Mazur theorem applies to locally convex F-algebras [1, Theorem 2.2.42], and so the previous comment also applies to this class of topological algebras.

Now suppose that A is a commutative, unital Fréchet algebra. Then a maximal ideal (which is necessarily modular) is not necessarily either closed or of codimension 1, as the following example, which essentially repeats [1, Proposition 4.10.27], shows.

Example 1.1. Let $O(\mathbb{C})$ denote the set of entire functions on \mathbb{C}. This is a commutative, unital algebra for the pointwise algebraic operations, and it is a Fréchet algebra with respect to the topology of uniform convergence on
compact subsets of \(\mathbb{C} \). It is standard that each maximal modular ideal \(M \) of codimension 1 in \(O(\mathbb{C}) \) is closed and is such that there exists \(z \in \mathbb{C} \) such that

\[
M = M_z := \{ f \in O(\mathbb{C}) : f(z) = 0 \}.
\]

Now let \(I \) be the set of functions \(f \in O(\mathbb{C}) \) such that \(f(n) = 0 \) for each sufficiently large \(n \in \mathbb{N} \). Clearly \(I \) is an ideal in \(O(\mathbb{C}) \), and it is easy to see that \(I \) is dense in \(O(\mathbb{C}) \). Since \(O(\mathbb{C}) \) has an identity, \(I \) is contained in a maximal modular ideal, say \(M \), of \(O(\mathbb{C}) \). The ideal \(M \) is dense in \(O(\mathbb{C}) \). Clearly, \(M \) is not of the form \(M_z \) for any \(z \in \mathbb{C} \), and so \(M \) does not have codimension 1 in \(O(\mathbb{C}) \); the quotient \(A/M \) is a ‘large field’.

\[\square \]

2.

Now suppose that \(A \) is a commutative algebra, and that \(M \) is a maximal ideal in \(A \). Set \(I = A^2 + M \), so that \(I \) is an ideal in \(A \) containing \(M \). Thus either \(A^2 \subset M \) or \(A^2 + M = A \).

Consider the case in which \(A^2 \subset M \), so that \(A/M \) is a commutative algebra with zero product. Let \(E \) be a subspace of codimension 1 of \(A \) with \(E \supset M \). Then \(E \) is an ideal in \(A \), and so \(E = M \). Thus it is indeed the case that \(M \) has codimension 1. (This remark is essentially Exercise 6(e) in \cite[Chapter 1]{2}.)

By considering an infinite-dimensional Banach space with zero product, we see that there are examples of maximal ideals of codimension 1 that are closed and that are dense in a commutative Banach algebra \(A \).

It remains to consider the case where \(A^2 + M = A \).

3.

We now show that the latter case does not occur in a commutative Banach algebra \(A \).

Proposition 3.1. Let \(A \) be a commutative Banach algebra. Suppose that \(I \) is an ideal in \(A \) such that \(I \) is dense in \(A \) and \(A^2 + I = A \). Then \(I \) is not maximal.

Proof. Necessarily \(A \) does not have an identity. The norm in \(A^2 \) is denoted by \(\| \cdot \| \).

For each \(n \in \mathbb{N} \), we denote by \(A_n \) the set of elements \(a \in A \) such that there exist \(b_1, \ldots, b_n, c_1, \ldots, c_n \in A \) and \(x \in I \) with

\[
a = b_1 c_1 + \cdots + b_n c_n + x.
\]

Choose an element \(a_0 \in A \setminus I \) such that \(a_0 \) has a representation of the form \((1) \) and such that \(n \) is the minimum natural number with this property. Define

\[
J = A^2 a_0 + I.
\]
Then J is an ideal in A with $a_0 \in J$, and $J \supseteq I$. We shall show that $J \neq A$, and hence that I is not a maximal ideal in A.

Assume towards a contradiction that $J = A$. Then $b_1 \in J$, and so there exists $d_1 \in A^\sharp$ such that

$$b_1 - d_1 a_0 \in I,$$

say $\|d_1\| = m$. Choose $d_2 \in A$ such that $c_1 - d_2 \in I$ and $\|d_2\| < 1/m$; this is possible because I is dense in A.

Now we have

$$b_1 - d_1 (b_1 d_2 + b_2 c_2 + \cdots + b_n c_n) \in I,$$

and so

$$b_1 (e - d_1 d_2) \in d_1 (b_2 c_2 + \cdots + b_n c_n) + I.$$

However $\|d_1 d_2\| \leq \|d_1\| \|d_2\| < 1$, and so the element $e - d_1 d_2$ is invertible in A^\sharp, say with inverse d_3. Thus

$$a_0 \in c_1 d_1 d_3 (b_2 c_2 + \cdots + b_n c_n) + (b_2 c_2 + \cdots + b_n c_n) + I = (e + c_1 d_1 d_3) (b_2 c_2 + \cdots + b_n c_n) + I.$$

In the case where $n > 1$, this shows that $a_0 \in A_{n-1}$, a contradiction of the minimality of the choice of n. In the case where $n = 1$, the argument shows that $b_1 (e - d_1 d_2) \in I$ and hence that $b_1 \in I$, and then that $a_0 = b_1 c_1 \in I$, a contradiction of the fact that $a_0 \notin I$. Thus $J \subset A$. □

There is a closely-related algebraic result that is surely known and in some text.

Proposition 3.2. Let R be a commutative, radical algebra. Suppose that I is an ideal in R such that $R^2 + I = A$. Then I is not maximal.

Proof. The element $c_1 d_1$ in the above proof (with R for A) is such that $e - c_1 d_1$ is invertible in R^\sharp because R is radical, and so the argument of the above proof gives the result. □

Theorem 3.3. Let A be a commutative Banach algebra. Then every maximal ideal M in A has codimension 1 in A. Further, either $A/M \cong \mathbb{C}$ or $A^2 \subset M$.

Proof. Let M be a maximal ideal in A. We have noted that M is either closed or dense in A. We have also noted that either $A^2 \subset M$ or $A^2 + M = A$, and that in the former case M does have codimension 1 in A.

Thus we may suppose that $A^2 + M = A$. By Proposition 3.1 it cannot be that M is dense in A, and so M is closed. Thus A/M has dimension 1, and so M has codimension 1 in A. Further, $A/M \cong \mathbb{C}$. □

Corollary 3.4. Let R be a commutative, radical Banach algebra such that $R^2 = R$. Then R has no maximal ideals.
Proof. Assume that M is a maximal ideal in R. Then it is not the case that $R/M \cong \mathbb{C}$ because R is radical, and it is not the case that $R^2 \subset M$ because $R^2 = R$. In either case, we have a contradiction of Theorem 3.3. Thus R has no maximal ideals. \qed

There are many examples of commutative, radical Banach algebras such that $R^2 = R$. Each commutative, radical Banach algebra with a bounded approximate identity has this property. For example, this is the case for the Volterra algebra \mathcal{V}, which is the space $L^1[0,1]$ with convolution product \star given by
\[
(f \star g)(t) = \int_0^1 f(t-s)g(s) \, ds \quad (t \in [0,1])
\]
for $f, g \in \mathcal{V}$. There are also examples which are integral domains.

The following example shows that there are commutative, radical Banach algebras R such that $R^2 = R$, but such that R does have a maximal ideal, necessarily of codimension 1.

Example 3.5. Let $\mathbb{I} = [0,1]$, and define
\[
R = \{ f \in C(\mathbb{I}) : f(0) = 0 \} ,
\]
taken with the uniform norm $| \cdot |_\mathbb{I}$ and the above truncated convolution product. Then R is a commutative, radical Banach algebra.

Set $I = \{ f \in R : \lim_{t \to 0^+} f(t)/t = 0 \}$, so that I is a linear subspace of R; in fact, I is an ideal in (R, \star).

Take $f, g \in R$ and $\varepsilon > 0$. Then there exists $\delta > 0$ such that
\[
|g(s)|_\mathbb{I} < \varepsilon \quad (0 \leq s \leq \delta).
\]
Thus, for $0 \leq t \leq \delta$, we have
\[
|\int_0^t (f \star g)(s) \, ds| < \varepsilon \int_0^t |g(s)| \, ds < \varepsilon t |f|_\mathbb{I},
\]
and so $f \star g \in I$. Hence $R^2 \subset I \subset M$, and so M is a maximal ideal (of codimension 1) in R. \qed

References

[1] H. G. Dales, *Banach algebras and automatic continuity*, London Mathematical Society Monographs, Volume 24, Clarendon Press, Oxford, 2000.

[2] T. W. Gamelin, *Uniform algebras*, Prentice-Hall, Englewood Cliffs, New Jersey, 1969.

Department of Mathematics and Statistics
University of Lancaster
Lancaster LA1 4YF
United Kingdom
g.dales@lancaster.ac.uk