REVIEW ARTICLE:

The evidence for the influence of musical compositions during pregnancy to the structure and functions of the offsprings’ brain

Hermanto Tri Joewono
Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, dr. Soetomo Academic Hospital, Reproductive Health Master Program, Faculty of Medicine, Universitas Airlangga Surabaya, Indonesia

ABSTRACT

Objective: to compile studies in Surabaya on the effect of Mozart compositions during pregnancy on the number of the offsprings brain neuron, glia, BDNF, apoptotic neurons and, neuronal dendritic density. These series of studies aimed to develop environmental-enrichment model during pregnancy so we can have better brain for the next generation. Better brain means better capacity in processing information, solving the problems, and creating new solutions that depends on the number of neuron, glia, ratio glia/ neuron and synapses. We do believe in the motto of “From Neurons to Nation”

Overview: There were 38 studies, in animal models except two in human subjects, all of them with control, prospective, and randomized. The first group consist of analyze the frequency, sequence, time, duration, gestational age, distant, and intensity of Mozart composition. The second group: try to analyze the mechanism and compare with variety of other compositions including other western music(Chopin, Beethoven, Blues, Jazz, Rock) and Indonesian music(Gamelan Jawa, Sunda, Bali, Pop, Religious). The third group: combine with nutrition, reverse sequence, involving cerebrum and cerebellum, and right-left hemisphere. There were no growth restricted, dead, and malformed offsprings in both groups. The BDNF expression, synapsin I expression, the number of neuron, number of glia, and dendritic density of the exposed groups were higher than control. The neuronal apoptotic index were lower in the exposed groups

Conclusions: Mozart compositions during pregnancy increased the BDNF, synapsin I, number of neuron, number of glia, dendritic density and, also decreased the neuronal apoptosis in offsprings’ brain

Keywords: pregnancy; Mozart compositions; newborn/ offsprings’ neuron; glia; BDNF

Correspondence: Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, dr. Soetomo Academic Hospital, Reproductive Health Master Program, Faculty of Medicine, Universitas Airlangga Surabaya, Indonesia. Email: hermanto.tri@fk.unair.ac.id.
What’s new

We compile our studies on the influence of environment enrichment (the combination of nutrition and Mozart compositions) during pregnancy to the number of offsprings’ brain neurons, glia, BDNF, Synapsin I, Apoptotic Index. The focus is not only the disease but also mal fetal brain growth and development.

Impact

Fetal brain growth and development, structure and markers for brain growth, change the insult during pregnancy to environmental enrichment, fulfillment of fetal rights and, more holistic approach to obstetrics/fetal medicine issues are proposed to be new subjects of Obstetrics/MFM.

It is the right of the unborn child - as the future owner, to have better brain: better biopsychosocial capacity to process information, to solve the problem, and create something new. The forgotten in utero brain growth and development—especially synaptogenesis and neuronal apoptosis, allow obstetricians to have the opportunity and privilege to fulfill this right. We will deal not only with the prevention, prediction and management of maternal, and fetal diseases but also with human brain growth and development. Combination of certain nutrition and musical stimulation during pregnancy could be part of more holistic antenatal care in the future.

INTRODUCTION

Indonesian Human Development Index (a summary measure for assessing long-term progress in three basic dimensions of human development: a long and healthy life, access to knowledge and a decent standard of living) is the lowest in Southeast Asia regions. Indonesia’s HDI value for 2018 is 0.707 — which put the country in the high human development category — positioning it at 111 out of 189 countries and territories. Education had successfully improved the index in many countries which needs one of the things is quality of the brain. One of the capacities the brain is 9 biopsychosocial potential or intelligences – name after Gardner which based on 8 criterias and, related with the brain structure. Diamond found the different structure of Einstein’s brain compared with the other men’s brains. It is already recognized that the main process of growth and development of the fetal brain involves neuronal and, glial cell proliferation, migration, differentiation, myelination, apoptosis, and synaptogenesis.

These processes depend on nutrition, stimulation, and genetic inheritance or nature and nurture conditions — insults will result fetal programming of adult health and diseases including brain region, environment enrichment results in better brain structure, and functions especially the apoptosis, and synaptogenesis. Mistretta & Bradley, Tomatis, Campbell, Logan, Rauscher, Bodner etc, elaborate these findings with auditory stimulation during pregnancy especially composed by Mozart in laboratory, and clinical settings. Connecting these findings we developed model and conceptual framework on research and done by some group of researchers in biomolecular and, clinical levels mostly on musical stimulation during pregnancy and, combined it with research on nutrition and stress during pregnancy, and birth (Fig 1).

Figure 1. Model describing the relationship between nature (stimulation and nutrition) and nature (others including genetic, habits, disease) in Developing Intelligence.

Intelligences start to be developed in the womb, depend on number of neurons, glia and synaps which return depend on the stimulation, nutrition and other condition such as genetic, disease, habits etc. This mini-review tries to compile those studies in Surabaya on the effect of Mozart compositions during pregnancy to the number of the offsprings’ neuron and glia cells, brain BDNF, apoptotic neurons and, neuronal dendritic density. Hopefully, this article provides the evidence for the efficacy of Mozart compositions during pregnancy to the offsprings’ brain structure and function.

Overview

We analyze all the studies that had been done in Surabaya in the last 18 years that correlated the variable Mozart during pregnancy and newborn or offsprings BND, number of neuron and glia, dendritic density, and apoptotic index.

From Group I studies, we developed sequence of 14 Mozart compositions, intensity (65 dB – maximal
loudness), distant (in the mother’s belly/abdominally),
timing (only at night), duration (60 minutes), and
gestational age 20 weeks of pregnancy. Although each
study only in small numbers of animal models, all of
the studies showed consistently the positive effects of
musical stimulation during pregnancy to the cerebrum -
and then to the cerebellum also, of the offsprings’ brain.
Since the year 2000, we started the studies by choosing
the right sequence based on frequency analysis, that was
confirmed in the year 2019 with professional music
production house, which consistently give sinusoidal
pattern in one composition, in ordered sequence and in
1000 x zooming frequency analysis, high proportions of
major keys and played by orchestra. Then, measuring
the best distance between loudspeaker and fetus\(^1\),
analyze the influence to the fetal biophysical profile\(^1\),
fetal heart rate response in day and night\(^1\), started
measuring BDNF in animal model\(^1\). Isumdi study,
compared that default sequence with Thomas Verny:
Love Chords and Don Campbell: Music for Moms and
Moms-to-be CDs and measuring the neuronal apoptotic
index\(^3\), and the gestational age\(^1\). Duration of exposure by
Rino and his team\(^1\), and again day and night but in
animal model\(^1\).

Results of the first group were 1. Mozart gave the best
result 2. Sequence is important 3. In 60 minutes – 14
compositions 4. Start at 20 weeks of gestational age 4.
In the night 5. The loudspeaker must be in mother’s
belly 6. combined with the nutrition the musical
stimulation.

Of note, we have some differences with other
researchers that we use Mozart compositions but NOT
THE SAME what the Western society called Mozart
effect as folllow: it is exposed to the pregnant mother
but intended for the unborn child, place the headset on
mothers’ belly, not mothers’ ears, consisted 14
compositions in fixed order – not only one K448, time:
in the night only, duration: 60 minutes and start at the
20 weeks of pregnancy. All of the studies had been
sumarized in reference no 1 – a book in bahasa
Indonesia that was published in 2012. The following
table is the 14 compilations that had been chosen among
626 Mozart compositions.

From Group 2, and Group 3, we tried to reveal the
mechanism of musical exposure at molecular level by
measuring the BDNF, Synapsin 1, MTORC1\(^2\)\(^-\)\(^5\) at
cellular level and compare Mozart compositions with
other Western compositions Beethoven and Chopin
compositions\(^6\)\(^-\)\(^9\) Jazz, Blues and Rock compositions\(^10\)\(^-\)\(^11\),
and Indonesian compositions Indonesian traditional
Gamelan\(^12\)\(^-\)\(^16\), with Indonesian Pop and Religious\(^1\)\(^-\)\(^20\)
music. We continued with reversed sequence\(^21\)\(^-\)\(^24\) and
combined it with food restriction\(^25\)\(^-\)\(^28\). Compared with
Chopin and Beethoven, Mozart composition gave
higher neuron, dendritic density and lower neuronal
apoptotic index. The same results, found with Jazz,
Blues, Rock compositions, and also with Indonesian
music including traditional Gamelan, Pop and religious
compositions

Table 1. The sequence of Mozart composition (in order)

No.	Title
1.	K 265 Twinkle Twinkle Little Stars
2.	K 525 Eine Kleine Nacht Musik
3.	K 467 Piano Concerto In C Major
4.	K 545 Piano Sonata No 16 In C Major
5.	K 331 Piano Sonata In A Major
6.	K 284 Sonata In D Major
7.	K 492 The Marriage Of Figaro
8.	K 158 Andante In G Minor
9.	K 137 Andante In B Flat Major
10.	K 527 La Ci Darem La Mano, Allegro–From Don Giovanni
11.	K 63 Adagio, V, From The Cessation In G Major
12.	K 131 Symphony No 25 G Major
13.	K 142 German Dance In C Major
14.	K 153 Symphony No 41 C Major

DISCUSSION

These studies also confirmed the Fetal Origins of Adult
Disease – Developmental Origins of Health and Disease: hypothesis developed by Barker, Gluckman,
and Hanson. The different is the insult in their
hypothesis is changed into environmental enrichment
during pregnancy\(^1\). Even this issue is still controversial
and the mechanism underlying the effects is not
completely understood, many researchers had conducted
studies in the last decades.

Compared with other studies, these studies confirmed
the influence of musical exposure during pregnancy to
the BDNF and neuronal apoptosis of the offsprings’
brain as in Table 2.

Mechanism

Pregnancy as window of opportunity to optimalise brain
growth and development has been accepted by many
experts. Rice & Baron\(^29\) stated that vulnerable periods
during the development of the nervous system
proliferation, migration, differentiation, synaptogenesis,
myelination, and apoptosis are sensitive to
environmental insults. Some of them extend from the
embryonic period through adolescence.
Table 2. Comparisons with other studies1, 29-39

Writer	Methods	Results
Thomas Verny	“Nurturing the Unborn Child” - Womb harmonics: nothing gives a child a more solid foundation in life than the experience of being loved and wanted in the womb	
Beatriz Manrique	About 75% of the nervous system maturity is genetically programmed, the rest depends on experiences, providing an enriched environment, to promote better bio-psychological-social development	
Brent Logan	BabyPlus method reduce the fetal neuronal apoptosis, results in better milestone scale achievement	
Rene van de Carr	There is a critical time in an infant’s development beginning at about five months into pregnancy. Interaction between the baby and its environment stimulates brain growth both before and after birth	
Angeluci \textit{et al}	Music exposure significantly enhanced BDNF levels, and decreased NGF in hypothalamic levels	
Marzban \textit{et al}	Rats exposed to Mozart Sonata music had significantly increased BDNF content in the hippocampus as compared to control rats	
Chaudhury S \textit{et al}	Auditory stimulation triggers the BDNF-Trk pathway, which is similar to the pathway stimulated by enriched environment.	
Chikahisa \textit{et al}	Music-exposed mice completed a maze learning task with fewer errors, lower levels of BDNF and higher levels of TrkB and PDK1 in the cortex.	
Kim \textit{et al}	Exposure to music during pregnancy increased neurogenesis in the motor and somatosensory cortex of rat pups	
Sanyal \textit{et al}	Unpatterned noise stimulated group showed an attenuated volume, reduction in the total neuron number, mean neuronal nuclear area was significantly reduced	
Partanen \textit{et al}	Our results show that extensive prenatal exposure to a melody induces neural representations that last for several months	
Xing \textit{et al}	The retrograde version has a negative effect on rats’ and human performance, rhythm is a crucial element in producing the behaviour effects	

How brain percept and process music have been debated for years, including how the fetal brain reduce apoptotic process are not completely understood. Griffith41 and Tramo \textit{et al} 42 and also Lecanuet \textit{et al} 43 explained some part of the process – but there many unanswered questions. These series of studies showed that the sequence of Mozart increase BDNF, Synapsin 1, reduce neuronal apoptotic index, and increase number of neurons, glia and dendritic density. More extensive explanation but inconclusive discussion presented by Lai44, Arabin45, and Partanen \textit{et al}. 46

\textbf{Learning from music as medicine}

There are many studies on usage of music as complementary medicine especially in neurological disease including stroke, disorders of consciousness, seizure – epilepsy that showed positive results. There was also better improvement in patients with coronary artery bypass. The question is, if musical exposure is functioning in pathological conditions, could also be applied in physiologic conditions? This question also make us use “stimulation” term not “therapy” because we use it for healthy fetus.47-55

\textbf{Domain of the issues}

These issues(intelligence/s, fetal brain growth, and development, environmental enrichment) are not the mainstream in medical institutions such as WHO, FIGO, ACOG, SMFM, UNICEF, textbooks, and journals for Obstetricians, Maternal-Fetal Medicine Subspecialist such as Williams Obstetrics, Creasy and Resnik’s Maternal-Fetal Medicine, Fetal Medicine. The psychologist, neuroscientist, and pediatricians address these issues, reflecting the division of mind, and body; care of illness versus disease; in short what we have done so far is a less holistic approach.

Real examples of this less holistic approach in obstetrics are 1. Preconceptional counseling: only to identify and modify risk factors 2. Antenatal care: positive experience, ultrasonography assessment: only to confirm gestational age, find congenital malformation, fetal wellbeing and, adequacy of nutrition and oxygenation 3. Birth: medicalization of birth; 4. Neonatal care: only assessment of the physical conditions. No assessment on the pregnancy perspectives as life-changing events, longterm impact on adult health including intelligences and disease, planning(when, how many, interpregnancy interval), acceptance(unsaved pregnancy, family planning failure), bonding and attachment, fulfilling the fetal rights for optimizing their brain growth and development such as low maternal stress, and special treatment for pregnancy in outbreaks, refugees, disaster.

\textbf{Again and again: The forgotten in utero human brain growth and development}

Most of the experts rely heavily on brain weight as measures of brain growth, and brain growth and development chart proposed by Shonkoff and his team55-56 which show obvious differences compare with that were mentioned by Collin11 and Hill.12
CAUDA

With these series of studies there will be new perspectives and opportunities on preparing the next better generation efforts as follows: 55-62

1. Fetus is better considered as the future owner (biopsychosocial entity) not only biophysical entity that has right to fulfill
2. This kind of environmental enrichment is fulfilling one of his/her rights
3. The womb is not a waiting room, it's a prenatal classroom and maybe one of the most important classroom in his/her life
4. Fetal intelligences are part of health and must be included in the prenatal care - combination of musical stimulation and nutrition may be offered to prepare the fetal neuron – figure 1
5. Redefine of obstetrics as not only dealing with pregnancy, delivery and puerperium but also how to prepare the neurons of the next generation - much longer perspective. The Obstetrics will face a new era: a non-disease issue: intelligences and, the role of Obstetricians and midwives will be much important because they will deal with motto: From (fetal) Neurons to Nations
6. There are some studies needed to answer so many questions - and we realized that we are dealing with the mysteries of the most complicated thing in the universe: the fetal brain, the beauty of music and the miracle of pregnancy
7. In the developed countries the trend in music issue is to train the student skill in music - we have different approach that we expose certain sequence of music to the fetus.

8. Referring to FOAD – DOHaD hypothesis, this approach reflect the important of changing insult into environmental enrichment that make fetal adaptation much better and positive
9. In evolutionary perspective, this effort reflects different approach to survive, not with dealing/adapt with the nature but with better brain and that in turn can have better adaptation capabilities

REFERENCES

1. Hermanto TJ. Prostration Inside the Womb: Headstart in the Womb through Combination of 11-14 Mozart Compilations and Nutrition. 2012. Surabaya: Global Persada Press - in Bahasa Indonesia
2. Toni W, Hermanto TJ. Comparison of The Newborn Umbilical Brain-Derived Neurotrophic Factor Exposed and Nonexposed to Sequence of Mozart Compositions During Pregnancy. MOG 2013;21:109-114
3. Rozi A A, Widjiati, Hermanto TJ. The Influence of Sequence of Mozart Compositions during Pregnancy to the Expression of Brain-Derived Neurotrophic Factor, Number of Neuron and Glia cells at Cerebrum and Cerebellum Rattus norvegicus Offsprings. 2015. unpublished
4. Nareswari I.C.M, Budi W, Widjiati, Hermanto TJ. The Influence of Sequence of Mozart Compositions during Pregnancy to the Expression of Brain-Derived Neurotrophic Factor, MTORC1 and Dendritic Density at Cerebrum and Cerebellum Rattus norvegicus Offsprings. 2015. unpublished
5. Harya N, Widjiati, Hermanto TJ. The Influence of Sequence of Mozart Compositions during
Pregnancy to the Expression of Brain-Derived Neurotrophic Factor and Protein kinase at Cerebrum and Cerebellum Rattus norvegicus Offsprings. 2015. unpublished

6. Permatasari, P., Hermanto, T.J., Widjiati. The Difference Influence Between Mozart, Beethoven, and Chopin Compositions Exposure During Pregnancy to the Cerebrum and Cerebellum Brain-Derived Neurotrophic Factor Expression of Rattus norvegicus Offspring’. 2018. Thesis - under prep for publishing in Sinta

7. Amishinta, A. A., Hermanto, T.J., Widjiati. The Difference Impact of Mozart, Beethoven, and Chopin Compositions During Pregnancy to Dendritic Density of Cerebrum and Cerebellum of Rattus norvegicus Newborn. 2018. Thesis - under prep for publishing in Sinta

8. Fajrin, H.D., Hermanto, T.J., Widjiati. Beethoven and Chopin Compositions Exposure During Pregnancy Gave Higher Cerebrum and Cerebellum Neuronal Apoptosis of Rattus norvegicus Offspring Compared with Mozart Compositions. 2018. Thesis under prep for publishing in Sinta

9. Ningsih, A.H., Hermanto, T.J., Widjiati. Mozart Composition During Pregnancy Gave Higher Number of Neuronal Cells in Cerebrum and Cerebellum of Newborn Rattus norvegicus Compared with Beethoven and Chopin Compositions. 2019. Thesis - under prep for publishing in Sinta

10. Syania MO, Hermanto TJ, Mudjiani B. Mozart Compositions During Pregnancy Gave Higher Number of Cerebral and Cerebellar Offsprings Neurons Compared to Jazz, Blues, and Rock Compositions. Global Journal of Medical Research: Gynecology and Obstetrics. 2019.vol 19 issue 4

11. Setiawati N.S., Hermanto T.J., Widjiati. Mozart Compositions During Pregnancy Gave Higher Number of Cerebral and Cerebellar Offsprings Glia Cells Compared to Jazz, Blues, and Rock Compositions. 2019, under prep for publishing in Sinta

12. Putri, K.E., Hermanto, T.J., Widjiati. The Difference in the Number of Neuron In Cerebrum and Cerebellum Of Rattus Norvegicus Offsprings Which Exposed to Mozart, Javanese, Sundanese and Balinese Gamelan Music During Pregnancy. 2019. Thesis under prep for publishing in Sinta

13. Ardiyani, F., Hermanto, T.J., Widjiati. The Different Influence of Mozart, Jawa, Sunda, and Bali Gamelan Compositions during Pregnancy to the Neuronal Apoptotic Index of Cerebrum and, Cerebellum the Offspring’s Rattus norvegicus. 2019. Thesis under prep for publishing in Sinta

14. Ramadhani, N., Hermanto, T.J., Widjiati. The Difference of Expression of Synapsin 1 In Cerebrum And Cerebellum Rattus norvegicus Offspring Between Exposed to Music Mozart with Traditional Gamelan Java, Sunda, and Bali During Pregnancy. 2019. Thesis under prep for publishing in Sinta

15. Widoyanti, V., Hermanto, T.J., Widjiati. The Difference in Offsprings Rattus norvegicus Brain-Derived Neurotrophic Factor Cerebrum, and Cerebellum Expression Among Those Which Exposed to Mozart Music, Javanese, Sundanese, and Balinese Gamelan During Pregnancy. 2019. Thesis under prep for publishing in Sinta

16. Khasanah, N.R., Hermanto, T.J., Widjiati. Differences in the Number of Glia in Cerebrum And Cerebellum Rattus norvegicus Between Mozart Music with Java, Sunda, and Traditional Gamelan Bali During Pregnancy. 2019. Thesis under prep for publishing in Sinta

17. Muminah, U., Hermanto, T.J. Widjiati. The Difference Of Synapsin Expression In The Cerebrum And Cerebellum of the Rattus norvegicus Offsprings Exposed to Mozart, Pop, and Religious Music Compilations During Pregnancy. 2019. Thesis under prep for publishing in Sinta

18. Estuning, P., Hermanto, T.J., Widjiati. Mozart, Pop, Religio Music Compilations During Pregnancy Cause Differences in the Number of Glial (Astrocytes, Oligodendrocytes, Microglia) Cerebrum and Cerebellum of Offsprings Rattus norvegicus. 2019. Thesis under prep for publishing in Sinta

19. Sholichah, A., Hermanto, T.J., Widjiati. Comparison of the Effect Of Mozart, Pop, and Religious Music Compilations During Pregnancy to the Number of Neurons in Cerebrum and Cerebellum Rattus norvegicus Offsprings. 2019. Thesis under prep for publishing in Sinta

20. Sukmawati, D., Hermanto, T.J., Widjiati. Differences in Rattus norvegicus Offsprings’ Cerebrum And Cerebellum Neuronal Apoptotic Index Exposed to Mozart, Pop, and Religious Music Compilations During Pregnancy. 2019. Thesis under prep for publishing in Sinta

21. Habibie PH, Hermanto TJ, Widjiati. Comparison of Neuronal Cell Apoptotic Indices in the Cerebrum and Cerebellum of Newborn Rattus norvegicus Exposed to Mozart's Music In Default Sequence, Reversed Sequence, and Without Exposure In Utero. 2017. Thesis, unpublished.

22. Nova L, Hermanto TJ, Widjiati. The Sequence of Mozart Compositions in Utero Cause Difference in the Number of Neurons and Glia in Rattus norvegicus Offsprings's Cerebrum and Cerebellum. 2017. Thesis, unpublished

23. Panjaitan HMB, Hermanto TJ, Widjiati. Default Sequence Of Mozart’s Compositions During
Pregnancy Gave Higher Dendritic Density in the Cerebrum and Cerebellum of Rattus norvegicus Offsprings Compared With Reversed Sequence and Control. Majalah Obstetri Ginekologi. 2017. Vol 27, No 1 (2019). http://dx.doi.org/10.20473/mog.V11I2019.5-11

24. Hidayati A, Hermanto TJ, Widjiati. Increased Brain-Derived Neurotrophic Factor in the Cerebrum and Cerebellum of Rattus norvegicus Newborn with Exposure To Mozart's Music in Default Sequence Compared with the Reversed Sequence and Without Exposure During Gestation. Published in Majalah Obstetri Ginekologi. 2017. Vol 26, No 2 (2018). http://dx.doi.org/10.20473/mog.V26I22018.67-73

25. Khotimah FK, Hermanto TJ, Widjiati. The Increase of Dendritic Density in the Cerebrum and Cerebellum of Newborn Rattus norvegicus Due to Mozart Stimulation during Pregnancy with 50% Food Restriction. 2017. Thesis, unpublished

26. Permatasari YP, Hermanto TJ, Widjiati. Effect of Prenatal Mozart Composition on Brain-Derived Neurotrophic Factor Expression in Cerebrum and Cerebellum of Rattus norvegicus Offspring from Food Restriction 50% Model. MOG. 2017. Vol 26, No 1 (2018). http://dx.doi.org/10.20473/mog.V26I1.2018.1-6

27. Sjahruddin DD, Hermanto TJ, Widjiati. The Effect of Prenatal Mozart Music Exposure to the Number of Neuron and Glia Cells (Astrocyte, Oligodendrocyte, Microglia) in the Cerebrum and Cerebellum Of Newborn Rattus norvegicus from the Parent Food Restriction 50% Model Rattus norvegicus. 2017. Thesis, unpublished

28. Alfianto R, Hermanto TJ, Widjiati. Apoptosis in the 50% Food Restriction Model Rattus norvegicus Cerebrum and Cerebellum Neuron Cells Which Exposed to Mozart Music during Gestation. 2017. Thesis, unpublished

29. Verny T. Pre-Parenting. Nurturing Your Child from Conception. 2002. New York: Simon & Schuster

30. Manrique B. Make Way for Baby. Pre and Postnatal Stimulation. Website, accessed January 2020

31. Van de Carr R, Lehrer M. Prenatal Classroom. A Parents’ Guide for Teaching Your Baby in the Womb. 1992. Lake Worth: Humanities Learning

32. Angelucci F, Ricci E, Padua L, Sabino A, Tonali PA. Music exposure differentially alters the levels of brain-derived neurotrophic factor and nerve growth factor in the mouse hypothalamus. Neuroscience Letters. 2007. 429: 152–155

33. Chaudhury S, Nag TC, Jain S and Wadhwa S. 2013. Role of sound stimulation in reprogramming brain connectivity. J. Biosci., 38 605–614

34. Chikahisa S, Sei H, Morishima M, Sano A, Kitaoka K, Nakaya Y, Morita Y. Exposure to music in the perinatal period enhances learning performance and alters BDNF/TrkB signaling in mice as adults. Behav Brain Res. 2006. 16

35. Kim C, Lee S, Shin JW, Chung K, Lee S, Shin M, Baek S, Sung Y, Kim C, Kim K. Music and Noise Influence Neurogenesis and Thickness in Motor and Somatosensory Cortex of Rat Pups. Int Neurourol J. 2013. 17:107-113

36. Marzban M, Shahbazi A, Tondar M, Soleimani M, Bakhshayesh M, Moshkforoush A, Sadati M, Zendehrood SA, Joghataei MT. Effect of Mozart Music on Hippocampal Content of BDNF in Postnatal Rats. Basic and Clinical Neuroscience. 2011. vol 2 no 3

37. Sanyal T, Kumar V, Nag TC, Jain S, Sreenivas V, Wadhwa S. 2013. Prenatal Loud Music and Noise: Differential Impact on Physiological Arousal, Hippocampal Synaptogenesis and Spatial Behavior in One Day-Old Chicks, PLoS ONE 8(7): e67347. doi:10.1371/journal.pone.0067347

38. Sanyal T, Palanisamy P, Nag TC, Roy TS, Wadhwa S. Effect of prenatal loud music and noise on total number of neurons and glia, neuronal nuclear area and volume of chick brainstem auditory nuclei, field L and hippocampus: A stereological investigation. Int J of Developmental Neuroscience. 2013. vol 31 issue 4 June 234-44

39. Xing Y, Xia Y, Kendrick K, Liu X, Wang M, Wu D, Yang H, Jing W, Guo D, Yao D: Mozart, Mozart Rhythm and Retrograde Mozart Effects: Evidences from Behaviours and Neurobiology Bases. Scientific Reports. 2016. 6:18744 DOI: 10.1038/srep18744

40. Rice D, Barone Jr S. Critical Periods of Vulnerability for the Developing Nervous System: Evidence from Humans and Animal Models. Environ Health Perspect. 2000. 108(suppl 3): 511-533

41. Griffiths TD. The Neural Processing of Complex Sound. In Peretz I, Zatorre RJ(eds). The Cognitive Neuroscience of Music. 2003. New York: Oxford University Press Inc

42. Tramo MJ, Cariani PA, Delgutte B, Braida LD. Neurobiology of Harmony Perception. In The Cognitive Neuroscience of Music. 2003. In Peretz I, Zatorre RJ. New York: Oxford University Press Inc

43. Lecanuet J, Schaal B. Sensory performances in the human foetus : a brief summary of research. In: Intellectica. 2002. Revue de l’Association pour la Recherche Cognitive, n°34, 2002/1. Débats actuels sur la cognition chez le bébé. pp. 29-56; doi : https://doi.org/10.3406/intel.2002.1072
The evidence of musical composition influence during pregnancy

44. Lai R. Wagner for the Womb. Principles of Neural Development. May 2011
45. Arabin B. Music during pregnancy. Ultrasound Obstet Gynecol 2002; 20: 425–430
46. Partanen E, Kujala T, Tervaniemi M, Huotilainen M. Prenatal Music Exposure Induces Long-Term Neural Effects. PLoS ONE. 2013. 8(10): e78946. doi:10.1371/journal.pone.0078946
47. Sarkamo T, Tervaniemi M, Laitinen S, Forsblom A, Soininla M, Mikkonen M, Autti T, Silvennoinen HM, Erkila J, Laine M, Peretz I. and Hietanen M. Music listening enhances cognitive recovery and mood after middle cerebral artery stroke. Brain. 2008.131: 866-876 doi:10.1093/brain/awn013
48. Lin L, Lee W, Wang C, Weng C, Lee M, Yang R. Mozart K.448 acts as a potential add-on therapy in children with refractory epilepsy. 2010. Epilepsy and Behaviour. 2010. DOI:https://doi.org/10.1016/j.yebeh.2010.12.044
49. Bodner M, Turner RP, Schwacke J, Bowers C, Norment C. Reduction of Seizure Occurrence from Exposure to Auditory Stimulation in Individuals with Neurological Handicaps: A Randomized Controlled Trial. PLoS ONE. 2012. 7(10): e45303. doi:10.1371/journal.pone.0045303
50. Maguire MJ. Music and epilepsy: A critical review. Epilepsia. 2012. 53(6):947–961. doi: 10.1111/j.1528-1167.2012.03523.x
51. O’Kelly J, James L, Palaniappan R, Taborin J, Fachner J and Magee WL. Neuropsychological and behavioral responses to music therapy in vegetative and minimally conscious states. Frontiers in Human Neuroscience .2013. 25 December doi: 10.3389/fnhum.2013.00884
52. Rollnik JD, and Altenmüller E. Music in disorders of consciousness. Frontiers in Neuroscience. 2014. July | Volume 8 | Article 190 | 1
53. Phadke SD, Parkar H, Yardi S. Effect of Music Intervention on Immediate Post Operative Coronary Artery Bypass Graft Surgery (CABG) Patients. Indian Journal of Physiotherapy & Occupational Therapy. 2014. October-December, Vol. 8, No. 4
54. Street A, Zhang J, Pethers S, Wiffen L, Bond K & Palmer H. Neurologic music therapy in multidisciplinary acute stroke rehabilitation: Could it be feasible and helpful? Topics in Stroke Rehabilitation. 2020. DOI: 10.1080/10749357.2020.1729585
55. Center on the Developing Child. The Science of Early childhood development. In Brief. Harvard University. Accessed 2010
56. Center on the Developing Child. The Timing and Quality of Early Experiences Combine to Shape Brain Architecture. Working Paper 5. Harvard University. Accessed 2010
57. Hermanto T. J. New Role for Obstetricians: Preparing Headstart in the Womb. 2002. Malang: Indonesia Society for Obstetrics-Gynecology Annual Meeting
58. Hermanto T. J. Prenatal University. Indonesiatrek: Toward a New Brighter Generations. 2002. Surabaya: Symposium on Innovation in Medical Education
59. Hermanto TJ. New Antenatal Care. 2007. Mataram: Indonesia Society for Obstetrics-Gynecology Annual Meeting
60. Hermanto TJ. Antenatal Care: Monsternity or Maternality Care? 2008. Jakarta: Maternal Fetal-Medicine Annual Meeting IX
61. Verny T. The Secret Life of the Unborn Child. 1988. New York: Dell Publishing
62. Verny T. Tomorrow's Baby. The Art and Science of Parenting from Conception through Infancy. 2002. New York: Simon & Schuster