Data Augmentation for BERT Fine-Tuning in Open-Domain Question Answering

Wei Yang,1,2∗ Yuqing Xie,1,2∗ Luchen Tan,2 Kun Xiong,2 Ming Li,1,2 and Jimmy Lin1,2
1 David R. Cheriton School of Computer Science, University of Waterloo
2 RSVP.ai

Abstract

Recently, a simple combination of passage retrieval using off-the-shelf IR techniques and a BERT reader was found to be very effective for question answering directly on Wikipedia, yielding a large improvement over the previous state of the art on a standard benchmark dataset. In this paper, we present a data augmentation technique using distant supervision that exploits positive as well as negative examples. We apply a stage-wise approach to fine tuning BERT on multiple datasets, starting with data that is “furthest” from the test data and ending with the “closest”. Experimental results show large gains in effectiveness over previous approaches on English QA datasets, and we establish new baselines on two recent Chinese QA datasets.

1 Introduction

BERT (Devlin et al., 2018) represents the latest refinement in a series of neural models that take advantage of pretraining on a language modeling task (Peters et al., 2018; Radford et al., 2018).Researchers have demonstrated impressive gains in a broad range of NLP tasks, from sentence classification to sequence labeling. Recently, Yang et al. (2019) showed that combining a BERT-based reader with passage retrieval using the Anserini IR toolkit yields a large improvement in question answering directly from a Wikipedia corpus, measured in terms of exact match on a standard benchmark (Chen et al., 2017).

Interestingly, the approach of Yang et al. (2019) represents a simple method to combining BERT with off-the-shelf IR. In this paper, we build on these initial successes to explore how much further we can push this simple architecture by data augmentation, taking advantage of distant supervision techniques to gather more and higher-quality training data to fine tune BERT. Experiments show that, using the same reader model as Yang et al. (2019), our simple data-augmentation techniques yield additional large improvements. To illustrate the robustness of our methods, we also demonstrate consistent gains on another English QA dataset and present baselines for two additional Chinese QA datasets (which have not to date been evaluated in an “end-to-end” manner).

In addition to achieving state-of-the-art results, we contribute important lessons on how to leverage BERT effectively for question answering. First, most previous work on distant supervision focuses on generating positive examples, but we show that using existing datasets to identify negative training examples is beneficial as well. Second, we propose an approach to fine-tuning BERT with disparate datasets that works well in practice: our heuristic is to proceed in a stage-wise manner, beginning with the dataset that is “furthest” from the test data and ending with the “closest”.

2 Background and Related Work

In this paper, we tackle the “end-to-end” variant of the question answering problem, where the system is only provided a large corpus of articles. This stands in contrast to reading comprehension datasets such as SQuAD (Rajpurkar et al., 2016), where the system works with a single pre-determined document, or most QA benchmarks today such as TrecQA (Yao et al., 2013), WikiQA (Yang et al., 2015), and MS-MARCO (Bajaj et al., 2016), where the system is provided a list of candidate passages to choose from. This task definition, which combines a strong element of information retrieval, traces back to the Text Retrieval Conferences (TRECs) in the late 1990s (Voorhees and Tice, 1999), but there is a recent resurgence of interest in this formulation (Chen et al., 2017).
The roots of the distant supervision techniques we use trace back to at least the 1990s (Yarowsky, 1995; Riloff, 1996), although the term had not yet been coined. Such techniques have recently become commonplace, especially as a way to gather large amounts of labeled examples for data-hungry neural networks and other machine learning algorithms. Specific recent applications in question answering include Bordes et al. (2015), Chen et al. (2017), Lin et al. (2018), as well as Joshi et al. (2017) for building benchmark test collections.

3 Approach

In this work, we fix the underlying model and focus on data augmentation techniques to explore how to best fine-tune BERT. We use the same exact setup as the “paragraph” variant of BERTserini (Yang et al., 2019), where the input corpus is pre-segmented into paragraphs at index time, each of which is treated as a “document” for retrieval purposes. The question is used as a “bag of words” query to retrieve the top k candidate paragraphs using BM25 ranking. Each paragraph is then fed into the BERT reader along with the original natural language question for inference. Our reader is built using Google’s reference implementation, but with a small tweak: to allow comparison and aggregation of results from different segments, we remove the final softmax layer over different answer spans; cf. (Clark and Gardner, 2018). For each candidate paragraph, we apply inference over the entire paragraph, and the reader selects the best text span and provides a score. We then combine the reader score with the retriever score via linear interpolation: $S = (1 - \mu) \cdot S_{Anserini} + \mu \cdot S_{BERT}$, where $\mu \in [0, 1]$ is a hyperparameter (tuned on a training sample).

One major shortcoming with BERTserini is that Yang et al. (2019) only fine tune on SQuAD, which means that the BERT reader is exposed to an impoverished set of examples; all SQuAD data come from a total of only 442 documents. This contrasts with the diversity of paragraphs that the model will likely encounter at inference time, since they are selected from potentially millions of articles. The solution to this problem, of course, is to fine tune BERT with the types of paragraphs it is likely to see at inference time. Unfortunately, such data does not exist for modern QA test collections. Distant supervision can provide a bridge.

Starting from a source dataset comprising question–answer pairs (for example, SQuAD), we can create training data for a specific corpus by using passage retrieval to fetch paragraphs from that corpus (with the question as the query) and then searching (i.e., matching) for answer instances in those paragraphs. A hyperparameter here is n, the number of candidates we examine from passage retrieval. Larger values of n will lead to more training examples, but as n increases, so does the chance that a paragraph will spuriously match the answer without actually answering the question.

The above technique allows us to extract positive training examples, but previous work has shown the value of negative examples, specifically for QA (Zhang et al., 2017). To extract negative examples, we sample the top n candidates from passage retrieval for paragraphs that do not contain the answer, with a ratio of d:1. That is, for every positive example we find, we sample d negative examples, where d is also a hyperparameter. Note that these negative examples are also noisy, since they may in fact contain an alternate correct (or acceptable) answer to the question, one that differs from the answer given in the source dataset.

Thus, given a corpus, we can create using distant supervision a new dataset that is specifically adapted to a particular passage retrieval method. For convenience, we refer to training data gathered using this technique that only contain positive examples as DS$(+)$ and use DS(\pm) to refer to the additional inclusion of negative examples.

Next, we have a design decision regarding how to fine tune BERT using the source QA pairs (SRC) and the augmented dataset using distant supervision (DS). There are three possibilities:

- **SRC + DS**: Fine tune BERT with all data, grouped together. In practice, this means that the source and augmented data are shuffled together.
- **DS → SRC**: Fine tune the reader on the augmented data and then the source dataset.
- **SRC → DS**: Fine tune the reader on the source dataset and then the augmented data.

Experiment results show that of the three choices above, the third option is the most effective. More generally, when faced with multiple, qualitatively-different datasets, we advocate a stage-wise fine-tuning strategy that starts with the dataset “furthest” to the task at hand and ending with the dataset “closest”.

Another way to think about using different datasets is in terms of a very simple form of trans-
Table 1: Number of examples in each dataset. A example means a paragraph-question pair.

	SQuAD	TriviaQA	CMRC	DRCD
Train	87,599	87,622	10,321	26,936
Test	10,570	11,313	3,351	3,524
DS(+)	118,406	264,192	10,223	41,792
DS(±)	710,338	789,089	71,536	246,604

For data augmentation, based on preliminary experiments, we find that examining $n = 10$ candidates from passage retrieval works well, and we further discover that effectiveness is insensitive to the amount of negative samples. Thus, we eliminate the need to tune d by simply using all passages that do not contain the answer as negative examples. The second block of Table 4 shows the sizes of the augmented datasets constructed using our distant supervision techniques: DS(+) contains positive examples only, while DS(±) includes both positive and negative examples.

There are two additional characteristics to note about our data augmentation techniques: The most salient characteristic is that SQuAD, CMRC, and DRCD all have source answers drawn from Wikipedia (English or Chinese), while TriviaQA includes web pages as well as Wikipedia. Therefore, for the first three collections, the source and augmented datasets share the same document genre—the primary difference is that data augmentation increases the amount and diversity of answer passages seen by the model during training. For TriviaQA, however, we consider the source and augmented datasets as coming from different genres (noisy web text vs. higher quality Wikipedia articles). Furthermore, the TriviaQA augmented dataset is also much larger—suggesting that those questions are qualitatively different (e.g., in the manner they were gathered). These differences appear to have a substantial impact, as experiment results show that TriviaQA behaves differently than the other three collections.

For model training, we begin with the BERT-Base model (uncased, 12-layer, 768-hidden, 12-heads, 110M parameters), which is then fine-tuned using the various conditions described in the previous section. All inputs to the model are padded to 384 tokens; the learning rate is set to 3×10^{-5} and all other defaults settings are used.

5 Results

Our main results on SQuAD are shown in Table 2. The row marked “SRC” indicates fine tuning with SQuAD data only and matches the BERTserini condition of Yang et al. (2019); we report higher scores due to engineering improvements (primarily a Lucene version upgrade). As expected, fine tuning with augmented data improves effectiveness, and experiments show that while training with positive examples using DS(+) definitely
The SRC + DS(±) fine tune BERT is not the right approach: in fact, the heuristic is borne out empirically, as SRC → DS(±) yields another boost over using DS(±) only. Further confirmation for this heuristic comes from an alternative where we switch the order of the stages, DS(±) → SRC, which yields results worse than DS(±) alone. We note that our best configuration beats BERTserini, the previous state of the art, by over ten points. Note that recall in all our conditions is the same since we are not varying the passage retrieval algorithm, and in each case Anserini provides exactly the same candidate passages. Improvements come solely from a better BERT reader.

Results on TriviaQA are shown in Table 3. With just fine tuning on the source dataset, we obtain a score that is only slightly above the previous state of the art (Wang et al., 2018). Interestingly, using only positive examples leads to worse effectiveness than just using the source dataset. However, fine tuning on both positive and negative examples leads to a three point boost in exact match score, establishing a new high score on this dataset.

Experiments on fine tuning with both source and augmented data show the same pattern as with SQuAD: stage-wise tuning is more effective than just combining datasets, and tuning should proceed in the “furthest to closest” sequence we propose. While data augmentation no doubt helps (beats the source-only baseline), for this dataset the highest effectiveness is achieved by disregarding the source dataset completely; that is, DS(±) beats SRC → DS(±). We attribute this behavior to the difference between TriviaQA and the other datasets discussed in Section 4: it appears that gains from transfer effects are outweighed by genre mismatch.

Results on the Chinese datasets are shown in Table 4. To our knowledge, they have only been evaluated as reading comprehension tests, not in the “end-to-end” setup that we tackle here (requiring retrieval from a sizeable corpus). Although there is no previous work to compare against, our results provide a strong baseline for future work.

Experiment results on the two Chinese datasets support the same conclusions as SQuAD: First, we see that data augmentation using distant supervision is effective. Second, including both positive and negative training examples is better than having positive examples only. Third, when leveraging multiple datasets, our “furthest to closest” heuristic for stage-wise tuning yields the best results. Since the source datasets also draw from (Chinese) Wikipedia, we benefit from fine tuning with both source and augmented data.

Model	EM	F1	R
Dr.QA (Chen et al., 2017)	27.1	77.8	
Dr.QA + Fine-tune	28.4	-	-
Dr.QA + Multitask	29.8	-	-
R3 (Wang et al., 2017)	29.1	37.5	-
Kratzwald and Feuerriegel (2018)	29.8	-	-
Par. R. (Lee et al., 2018)	28.5	83.1	
Par. R. + Answer Agg.	28.9	-	-
Par. R. + Full Agg.	30.2	-	-
MINIMAL (Min et al., 2018)	34.7	42.5	64.0
BERTserini (Yang et al., 2019)	38.6	46.1	85.9
SRC	41.8	49.5	85.9
DS(+)	44.0	51.4	85.9
DS(±)	48.7	56.5	85.9
SRC + DS(±)	45.7	53.5	85.9
DS(±) → SRC	47.4	55.0	85.9
SRC → DS(±)	**50.2**	**58.2**	**85.9**

Table 2: Results on SQuAD

Model	EM	F1	R
R3 (Wang et al., 2017)	47.3	53.7	-
DS-QA (Lin et al., 2018)	48.7	56.3	-
Evidence Agg. (Wang et al., 2018)	50.6	57.3	-
SRC	51.0	56.3	83.7
DS(+)	48.2	53.6	83.7
DS(±)	**54.4**	**60.2**	**83.7**
SRC + DS(±)	53.1	58.6	83.7
DS(±) → SRC	49.8	55.9	83.7
SRC → DS(±)	53.7	59.3	83.7

Table 3: Results on TriviaQA
Model	EM	F₁	R
CMRC			
SRC	44.5	60.9	86.5
DS(+)	45.5	61.1	86.5
DS(±)	48.3	63.9	86.5
SRC + DS(±)	49.0	64.6	86.5
DS(±) → SRC	45.6	61.9	86.5
SRC → DS(±)	49.2	65.4	86.5

DRCM			
SRC	50.7	65.0	81.5
DS(+)	50.5	64.3	81.5
DS(±)	53.2	66.0	81.5
SRC + DS(±)	55.4	67.7	81.5
DS(±) → SRC	53.4	67.1	81.5
SRC → DS(±)	54.4	67.0	81.5

Table 4: Results on the two Chinese datasets: CMRC (top) and DRCM (bottom).

6 Conclusions

In this paper, we have further advanced the state of the art in end-to-end open-domain question answering using simple BERT models. We focus on data augmentation using distant supervision techniques to construct datasets that are closer to the types of paragraphs that the reader will see at inference time. Explained this way, it should not come as a surprise that effectiveness improves as a result. This work confirms perhaps something that machine learning practitioners already know too well: quite often, the best way to better results is not better modeling, but better data preparation.

References

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, and Tong Wang. 2016. MS MARCO: A human generated MAchine Reading COMprehension dataset. arXiv:1611.09268.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. 2015. Large-scale simple question answering with memory networks. arXiv:1506.02075.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. 2017. Reading Wikipedia to answer open-domain questions. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1870–1879.

Christopher Clark and Matt Gardner. 2018. Simple and effective multi-paragraph reading comprehension. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 845–855.

Yiming Cui, Ting Liu, Li Xiao, Zhipeng Chen, Wentao Ma, Wanxiang Che, Shijin Wang, and Guoping Hu. 2018. A span-extraction dataset for Chinese Machine Reading Comprehension. arXiv:1810.07366.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. 2017. TriviaQA: A large-scale distant supervision challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1601–1611.

Bernhard Kratzwald and Stefan Feuerriegel. 2018. Adaptive document retrieval for deep question answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 576–581.

Jinhyuk Lee, Seongjun Yun, Hyunjae Kim, Miyoung Ko, and Jaewoo Kang. 2018. Ranking paragraphs for improving answer recall in open-domain question answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 565–569.

Yankai Lin, Haozhe Ji, Zhiyuan Liu, and Maosong Sun. 2018. Denoising distantly supervised open-domain question answering. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1736–1745.

Sewon Min, Victor Zhong, Richard Socher, and Caiming Xiong. 2018. Efficient and robust question answering from minimal context over documents. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1725–1735.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 2227–2237.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding by generative pre-training. Technical report.
Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. SQuAD: 100,000+ questions for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2383–2392.

Ellen Riloff. 1996. Automatically generating extraction patterns from untagged text. In Proceedings of the Thirteenth National Conference on Artificial Intelligence, pages 1044–1049.

Chih Chieh Shao, Trois Liu, Yuting Lai, Yiying Tseng, and Sam Tsai. 2018. DRCD: a Chinese machine reading comprehension dataset. arXiv:1806.00920.

Ellen M. Voorhees and Dawn M. Tice. 1999. The TREC-8 Question Answering Track evaluation. In Proceedings of the Eighth Text REtrieval Conference (TREC-8), pages 83–106, Gaithersburg, Maryland.

Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang, Tim Klinger, Wei Zhang, Shiyu Chang, Gerald Tesauro, Bowen Zhou, and Jing Jiang. 2017. R3: Reinforced reader-ranker for open-domain question answering. arXiv:1709.00023.

Shuohang Wang, Mo Yu, Jing Jiang, Wei Zhang, Xiaoxiao Guo, Shiyu Chang, Zhiguo Wang, Tim Klinger, Gerald Tesauro, and Murray Campbell. 2018. Evidence aggregation for answer re-ranking in open-domain question answering. arXiv:1711.05116.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019. End-to-end open-domain question answering with BERTserini. arXiv:1902.01718.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015. WikiQA: A challenge dataset for open-domain question answering. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2013–2018.

Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch, and Peter Clark. 2013. Answer extraction as sequence tagging with tree edit distance. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 858–867.

David Yarowsky. 1995. Unsupervised word sense disambiguation rivaling supervised methods. In Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics, pages 189–196.

Haotian Zhang, Jinfeng Rao, Jimmy Lin, and Mark D. Smucker. 2017. Automatically extracting high-quality negative examples for answer selection in question answering. In Proceedings of the 40th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2017), pages 797–800.