Unconventional Genomic Architecture in the Budding Yeast

Saccharomyces cerevisiae Masks the Nested Antisense Gene \(NAG1\)†

Jun Ma,1 Craig J. Dobry,1 Damian J. Krysan,2 and Anuj Kumar1*

Department of Molecular, Cellular, and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216,1 and Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 850, Rochester, New York 146422

Received 8 February 2008/Accepted 18 February 2008

The genomic architecture of the budding yeast Saccharomyces cerevisiae is typical of other eukaryotes in that genes are spatially organized into discrete and nonoverlapping units. Inherent in this organizational model is the assumption that protein-coding sequences do not overlap completely. Here, we present evidence to the contrary, defining a previously overlooked yeast gene, \(NAG1\) (for nested antisense gene) nested entirely within the coding sequence of the YGR031W open reading frame in an antisense orientation on the opposite strand. \(NAG1\) encodes a 19-kDa protein, detected by Western blotting of hemagglutinin (HA)-tagged Nag1p with anti-HA antibodies and by \(\beta\)-galactosidase analysis of a \(NAG1\)-lacZ fusion. \(NAG1\) is evolutionarily conserved as a unit with YGR031W in bacteria and fungi. Unlike the YGR031WP protein product, however, which localizes to the mitochondria, Nag1p localizes to the cell periphery, exhibiting properties consistent with those of a plasma membrane protein. Phenotypic analysis of a site-directed mutant (\(nag1\-I\)) disruptive for \(NAG1\) but silent with respect to YGR031W, defines a role for \(NAG1\) in yeast cell wall biogenesis; microarray profiling of \(nag1\-I\) indicates decreased expression of genes contributing to cell wall organization, and the \(nag1\-I\) mutant is hypersensitive to the cell wall-perturbing agent calcofluor white. Furthermore, production of Nag1p is dependent upon the presence of the cell wall integrity pathway mitogen-activated protein kinase Slt2p and its downstream transcription factor Rlm1p. Thus, \(NAG1\) is important for two reasons. First, it contributes to yeast cell wall biogenesis. Second, its genomic context is novel, raising the possibility that other nested protein-coding genes may exist in eukaryotic genomes.

Eukaryotic gene organization is routinely presumed to follow a colinear design, wherein protein-coding genes are ordered at discrete, nonoverlapping points along a given chromosome (19). This organizational model is manifestly evident in the genome of the budding yeast Saccharomyces cerevisiae. The S. cerevisiae genome was sequenced in 1996, and its 13-Mb sequence was subsequently annotated for genes using a combination of existing genetic information and straightforward computational approaches (30). As part of this process, putative protein-coding open reading frames (ORFs) were predicted by gene-finding algorithms, employing a set of criteria based upon ORF size and spatial organization. Specifically, any ORF greater than 100 codons in length was annotated as a gene, provided it did not significantly overlap a longer ORF. If two ORFs overlapped, the longer of the two sequences was annotated as a gene, and the other was discarded (30, 33). Perhaps in part because of this gene prediction strategy, to date, no verified, completely overlapping protein-coding genes have been identified in the yeast genome.

Recently, several lines of evidence have raised doubts concerning the presumed colinear organization of protein-coding genes in eukaryotic genomes. David et al. (4) have employed a high-density oligonucleotide tiling array to profile RNA expression on both DNA strands over the entire genome in the budding yeast; this study highlights a considerable degree of antisense transcription in the yeast genome— that is, transcripts overlapping known genes in an antisense orientation. In addition, Havilio et al. (10) mined microarray expression data in yeast to identify a significant body of transcripts oriented antisense to known genes. This level of antisense transcription, however, may reflect some degree of “leaky” transcription or a potential regulatory mechanism in S. cerevisiae (12) and does not conclusively indicate that protein-coding sequences can exist antisense to other protein-coding genes. In fact, the only confirmed report of entirely overlapping genes in yeast was presented by Coelho et al. (3), describing the mitochondrial protein Tar1p, which is encoded antisense to the 25S rRNA gene in the nuclear ribosomal DNA repeat region of chromosome XII. Tar1p, however, is not oriented opposite a protein-coding gene but is opposite a structural RNA.

Here, we present the first report of a yeast protein-coding gene nested opposite another protein-coding gene. The yeast ORF YGR031C-A is nested antisense and opposite the known gene YGR031W, the latter encoding a mitochondrial protein of unknown function. Genome-wide transposon-tagging studies had previously suggested that the YGR031C-A ORF may encode a protein, and in this study, we established that this ORF (herein renamed \(NAG1\)) does encode a 19-kDa protein.
that localizes to the yeast cell periphery, contains putative transmembrane domains, and cofractionates with known plasma membrane proteins. Sequence analysis revealed that \textit{NAG1} is conserved among fungi as a unit oriented opposite an ortholog of \textit{YGR031W}. Consistent with its conservation in fungi, \textit{NAG1} contributes to cell wall synthesis and maintenance in \textit{S. cerevisiae}. Disruption of \textit{NAG1} results in cell sensitivity to calcofluor white and altered transcriptional levels for many cell wall biosynthesis/maintenance genes. Furthermore, Nag1p levels increase upon calcofluor white treatment, and \textit{NAG1} expression is dependent upon the Slt2p mitogen-activated protein kinase (MAPK) pathway and its key downstream transcription factor, Rlm1p. In total, these results identify a new protein contributing to cell wall function in yeast, while highlighting both the existence of nested protein-coding genes and the likelihood that other such genes exist in the eukaryotic kingdom.

\section*{MATERIALS AND METHODS}

\textit{S. cerevisiae} strains and growth conditions. \textit{S. cerevisiae} strains containing the \textit{nag1::mTn} allele were generated in the genetic background BY4742 (45). The W303 genetic background was obtained from the Yeast Genetics Stock Center (Berkeley, CA). The \textit{slt2\Delta} and \textit{rlm1\Delta} mutants were from the yeast deletion collection (45) generated in the BY4742 background referenced above. Growth media and basic genetic manipulation were as described previously (8). The \textit{slt2\Delta} mutant was grown at 25\(^\circ\)C to accommodate its cell wall defect. The \textit{nag1::mTn} allele was carried on plasmid pH56S (39); this plasmid was digested with NotI, and the transposon-mutagenized genomic DNA fragment was introduced into strain BY4742 by standard methods of DNA transformation (15). The BY4742 strain containing \textit{NAG1-3\timesHA} was constructed using the PCR-based epitope-tagging method of Longtine et al. (27) using an integration cassette amplified from pFA6a-3HA-KanMX6 with PCR primers containing 40-bp flanking sequences in homology.

Sequence alignments. Sequence similarity searches were performed using BLASTn with Nag1p amino acid sequence against a six-frame translation of the NCBI nonredundant nucleotide database (46). All searches were repeated with the BLOSUM62 and BLOSUM45 scoring matrices, coupled with default parameters, and optimal sequence alignments were generated using CLUSTAL W (41).

Western blotting. The hemagglutinin (HA) tag was integrated at the 3\(^\prime\) end of \textit{NAG1} using the KanMX6 selection cassette from plasmid pFA6a-3HA-KanMX6 (27). Transformants were selected on yeast extract-pepptone-dextrose (YPD) plates containing 200 \(\mu\)g/ml G418. Correct integration was verified by PCR. For Western blotting, yeast strains were grown at 30\(^\circ\)C to mid-log phase in YPD medium unless otherwise noted. The cells were then converted into spheroplasts and subjected to subcellular fractionation based on previously described protocols (21). Unlysed spheroplasts were removed by centrifugation at 1,500 \(\times\) g for 5 min at 4\(^\circ\)C. The total lysate was centrifuged at 13,000 \(\times\) g for 5 min at 4\(^\circ\)C to separate supernatant and pellet fractions (S13 and P13, respectively). Aliquots of each fraction were precipitated with 10\% trichloroacetic acid on ice for 30 min to separate supernatant and pellet fractions (S13 and P13, respectively). Aliquots of each fraction were precipitated with 10\% trichloroacetic acid on ice for 30 min, washed with 100\% acetone, and air dried. The dried pellets were resuspended in sodium dodecyl sulfate sample buffer. Aliquots were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and probed with anti-3\timesHA antibody (antibody directed against three-hemagglutinin tag) (Santa Cruz Biotechnology).

Fluorescence microscopy. The \textit{NAG1} and YGR031W protein-coding sequences along with a 1-kb upstream sequence were cloned into a derivative of the centromeric plasmid YCP50 such that each carried an in-frame 3\(^\prime\) fusion to sequence encoding the Venus variant of yellow fluorescent protein (vYFP), \textit{NAG1-vYFP} and \textit{YGR031W-vYFP}, respectively (31). Plasmids carrying \textit{NAG1-vYFP} and \textit{YGR031W-vYFP}, respectively, were transformed into strain BY4742. Yeast cultures were grown in synthetic medium lacking uracil but supplemented with dextrose (SD-Ura medium) until mid-log phase before examination. To label mitochondria, MitoFluor Red 594 (Molecular Probes) was added to a final concentration of 5 \(\mu\)M, and the culture was incubated for an additional 30 min prior to microscopy. Cells were washed once before examination using the DeltaVision Spectris inverted microscope (Applied Precision, Issaquah, WA).

\section*{RESULTS}

Identification of the \textit{NAG1} gene encoded antisense and opposite the \textit{YGR031W ORF}. In a previous study, we utilized a transposon-based gene trap to identify putative protein-coding sequences in the \textit{S. cerevisiae} genome (24). This gene trap is diagrammed in Fig. 1A; it contains a 5\(^\prime\)-truncated lacZ reporter lacking its promoter and start codon, such that transposon insertion results in \textit{β}-galactosidase activity only if the transposon lands in frame with yeast protein-coding sequence (36, 37). By random transposon mutagenesis with this gene trap, we identified a set of previously nonannotated ORFs that putatively encode proteins, including a set of 54 ORFs positioned opposite and antisense of annotated yeast genes (24).

Within this gene set, we were particularly interested in the ORF designated YGR031C-A, since it is greater than 100 codons in length, is oriented opposite an ORF that putatively encodes a protein, and exhibited easily detected levels of expression during vegetative growth.

Generation of the \textit{nag1-1} site-directed mutant. The \textit{nag1-1} mutant contains a nonsense mutation at codon 41 of \textit{NAG1} (TAT to TAA) that is silent with respect to the YGR031W ORF, constructed by site-directed mutagenesis of a low-copy plasmid carrying the YGR031W locus. Specifically, we first constructed a Gateway-compatible yeast vector for recombination-based cloning of yeast genomic DNA. This Gateway vector was constructed from the centromeric yeast shuttle vector YCP50. YCP50 was digested with Sphi and made blunt with T4 DNA polymerase (New England Biolabs, MA). Gateway cassette A (Invitrogen Corporation, CA) was ligated with the blunt-ended vector, and EcoRI was used to identify the orientation of the cassette. To maintain an intact promoter region for both YGR031W and \textit{NAG1}, we amplified the YGR031W ORF along with 1 kb of sequence upstream of its start codon and 1 kb downstream of its stop codon; this genomic DNA was introduced into Ycp50 by recombination-based cloning (44). The \textit{nag1-1} mutant was generated using the QuikChange site-directed mutagenesis kit (Stratagene, La Jolla, CA) and the following primers: forward primer, 5\'-CGTCTTCTGAATTAAGAAGCACAAGCG-3\'; reverse primer, 5\'-CGTCTCTGTTGTGCTTTATACATTGCGAAGAC-3\'. This construct was subsequently introduced into the yeast deletion strain YGR031WA by standard methods of yeast transformation (15).
The YGR031C-A ORF is positioned antisense and opposite the gene YGR031W on yeast chromosome VII as indicated in Fig. 1B. The YGR031W gene is functionally uncharacterized but is known to encode a mitochondrial protein (13, 34). YGR031C-A consists of a single exon 163 codons in length nested on the opposite strand but completely within the YGR031W genomic locus. The YGR031W gene is more than twice the size of YGR031C-A, and both ORFs are relatively well separated from other upstream and downstream genes. Because of this unusual genetic organization, we hereafter refer to YGR031C-A as NAG1 (for nested antisense gene).

To establish that NAG1 encodes a protein, we first sought to confirm expression of NAG1::mTn as a β-galactosidase chimera. By PCR amplification of the transposon insertion junction and DNA sequencing of this PCR product, we verified integration of our mini-transposon gene trap at codon 52 of NAG1 (Fig. 1B and C). Using quantitative liquid assays, we detected an approximately ninefold increase in β-galactosidase activity under conditions of vegetative growth for Western blotting with anti-HA antibodies, and this analysis revealed a protein product of approximately 19 kDa, corresponding to the predicted molecular mass of Nag1p-3HA. Thus, the NAG1 gene does encode protein, and the size of this protein is consistent with its predicted mass as derived from the NAG1 coding sequence.

NAG1 is part of an evolutionarily conserved unit in fungi. The predicted Nag1p sequence (Fig. 2A) is 163 amino acids in length and exhibits no obvious functional motifs. Similarity searches with this sequence indicated putative NAG1 orthologs in several bacterial species and numerous fungi (Fig. 2B). In particular, Nag1p sequence conservation is strongest over a region of 35 residues extending from amino acids 108 to 142. An optimized alignment of this region highlights a strongly conserved Pro-Ile-Glu-Cys-Pro sequence in Nag1p (residues 134 to 138) as well as invariant Gly, Ala, Ser, and Gly residues in several bacterial species and numerous fungi (Fig. 2B). In particular, Nag1p sequence conservation is strongest over a region of 35 residues extending from amino acids 108 to 142. An optimized alignment of this region highlights a strongly conserved Pro-Ile-Glu-Cys-Pro sequence in Nag1p (residues 134 to 138) as well as invariant Gly, Ala, Ser, and Gly residues at positions 109, 110, 112, and 122, respectively. Interestingly, the NAG1 gene is conserved as a unit with the YGR031W ORF: in each organism carrying a putative ortholog of YGR031W (Fig. 2C). The YGR031W gene itself is highly conserved in organisms ranging from prokaryotes to higher eukaryotes but instead is specific for prokaryotes and fungi. While these alignments indicate sequence similarity, we cannot conclusively assign functions to any putative NAG1 orthologs without experimental analysis of each sequence in each organism.

Subcellular localization of Nag1p. As a means of assessing the subcellular distribution of Nag1p, we cloned the NAG1
A Nag1p Amino Acid Sequence:

```
1  10  20  30  40  50  60
MNSGAVRVSRAAGGRCAAAISPLTMAASFGVARGRTSSNYDVTDDLSELTFFSAVRKR
61  70  80  90  100  110  120
LTSSLPLISARCSACFSTVRVLPSLTIISALMYSNLNLRKLTOAFIGSTQNIQES
121 130 140 150 160
CGFRTSIMATLPPIECPIT1IIGPPLVNSCPFVKFTSSEMTS*
```

B

S. cerevisiae	K. lactis	A. gossypii	V. polyspora	C. glabrata	P. guilliermondii	D. hansenii	N. crassa	E. carotovora	P. acnes	H. ducreyi
1	108	142	143	142	108	108	108	108	108	108

S. cerevisiae	K. lactis	A. gossypii	V. polyspora	C. glabrata	P. guilliermondii	D. hansenii	N. crassa	E. carotovora	P. acnes	H. ducreyi
TCAFS1010H18	GFFD---	SMTW---	P--EPTPPTI	--	--	--	--	--	--	--

C

Genus / Species	Kingdom / Superkingdom	Database ID	nt Seq.	Coordinates	Opposite ORF
S. cerevisiae	Fungi	gbIAF479950.1	1489	YGR031W ortholog	
K. lactis	Fungi	ref	XM_451797.1	863-456	YGR031W ortholog
A. gossypii	Fungi	gbIAE016816.2	47021-47413	YGR031W ortholog	
V. polyspora	Fungi	ref	XM_001642751.1	758-291	YGR031W ortholog
C. glabrata	Fungi	emb	CR380367.1	37088-369708	YGR031W ortholog
P. guilliermondii	Fungi	ref	XM_001481991.1	827-441	YGR031W ortholog
D. hansenii	Fungi	emb	CR382135.1	620-462	YGR031W ortholog
N. crassa	Fungi	ref	XM_950749.1	593-402	YGR031W ortholog
E. carotovora	Bacteria	embl	BX950851.1	151122-1511419	YGR031W ortholog
P. acnes	Bacteria	gbIAE017283.1	1192677-1192862	YGR031W ortholog	
H. ducreyi	Bacteria	gbIAE017143.1	1030374-1030478	YGR031W ortholog	

FIG. 2. NAG1 is conserved as a unit with the YGR031W ORF in bacteria and fungi. (A) Amino acid sequence of Nag1p as predicted by conceptual translation. (B) Putative NAG1 orthologs from prokaryotic and fungal species. A schematic diagram illustrating conserved regions within the identified set of putative NAG1 orthologs is shown at the top. Each line represents the full length of the orthologous sequence; gaps in the multiple-sequence alignment are indicated as such in the figure. The prokaryotic and fungal species include Saccharomyces cerevisiae (S.cer), Kluyveromyces lactis (K.lac), Ashbya gossypii (A.gos), Vanderwaltozyma polyspora (V.pol), Candida glabrata (C.gla), Pichia guilliermondii (P.gui), Debaryomyces hansenii (D.han), Neurospora crassa (N.cra), Erwinia carotovora (E.car), Propionibacterium acnes (P.acn), and Haemophilus ducreyi (H.duc). The inset rectangle highlights the most strongly conserved region of the alignment. Identical residues are indicated as white on black, similar residues are shown as black on gray, and gaps introduced to maximize alignment are indicated by dashes. (C) Since Nag1p has not been recognized previously as a protein, neither its sequence nor the sequence of any ortholog is present in a protein database; thus, the Nag1p amino acid sequence was searched against a six-frame translation of genomic DNA sequence. The coordinates of each putative orthologous gene are indicated here, relative to each indicated database accession ID. In each instance, putative orthologs of NAG1 are found opposite orthologs of YGR031W; thus, the nested organization of NAG1 relative to YGR031W is conserved as an evolutionary unit.
gene along with 1 kb of upstream promoter sequence into a low-copy yeast shuttle vector such that the 3’ end of NAG1 forms an in-frame fusion with sequence encoding vYFP. As shown in Fig. 3A, this carboxy-terminal Nag1p-vYFP chimera localized to the yeast cell periphery under conditions of vegetative growth. Nag1p did not localize to the endoplasmic reticulum; the integral membrane protein Spo7p serves as a marker for the nuclear envelope-endoplasmic reticulum network (40), and the carboxy-terminal Spo7p-RFP chimera (Fig. 3A) did not colocalize with Nag1p-vYFP. The localization of Nag1p was also distinct from that of YGR031WP protein. As mentioned above, YGR031W encodes a mitochondrial protein, as determined in a large-scale study of yeast protein localization (13) and in a separate mass spectrometry-based study of yeast mitochondrial proteins (34). To confirm these results, we generated a carboxy-terminal YGR031WP-vYFP chimera and found this protein localized to the mitochondria under conditions of vegetative growth (Fig. 3B).

Computational analysis of the Nag1p amino acid sequence revealed two putative transmembrane domains of roughly 20 residues positioned toward the center and carboxy terminus of the protein (Fig. 3C). Predictions of transmembrane segments were obtained from the programs HMMTOP (43), PHDhtm (38), TopPred (2), TMpred (14), and TMHMM (23). Each program highlighted transmembrane segments of slightly different lengths, but residues 77 to 94 and 135 to 152 were identified unanimously (Fig. 3C). These putative transmembrane domains flank the region of strong sequence conservation presented in Fig. 2B, although the carboxy-terminal putative transmembrane segment does overlap this conserved region by 8 bp.

In corollary to the studies above, we also examined the possible membrane association of Nag1p by subcellular fractionation. Lysed spheroplasts were prepared from yeast cells carrying HA-tagged Nag1p expressed from its native promoter under conditions of vegetative growth; cell lysates were subjected to centrifugation at 16,000 × g (13,000 rpm). As visualized by Western blotting, HA-tagged Nag1p was present in the pellet fraction following low-speed centrifugation, colocalizing with other known membrane proteins (Fig. 3D). Thus, Nag1p localizes to the cell periphery, is predicted to contain two transmembrane domains, fractionates with membrane proteins, and does not colocalize with endoplasmic reticulum markers—properties consistent with those of a plasma membrane protein.

Phenotypic characterization of NAG1. To investigate NAG1 function, we generated a point mutation (nag1Δ) disrupting NAG1 but silent with respect to the opposite gene YGR031W (Fig. 4A). Specifically, we mutated NAG1 codon 41 (TAT encoding tyrosine) to a stop codon (TAA); this single base change does not affect the amino acid composition of the YGR031W protein, since the complementary TCA-to-TCT substitution at codon 247 still encodes serine. The Nag1 protein, since the complementary TCA-to-TCT change does not affect the amino acid composition of the Nag1 protein. As determined in a large-scale study of yeast protein function, we decided to implement a global strategy, profiling gene expression in nag1Δ by microarray analysis (Fig. 4B). By this approach, biological processes impaired in the nag1Δ mutant should be evident from altered gene expression profiles. Transcriptional profiling of nag1Δ against a wild-type strain under conditions of vegetative growth revealed differential expression of 262 genes. In particular, 149 genes exhibited decreased transcript levels in nag1Δ; this gene set was statis-
FIG. 4. NAG1 contributes to yeast cell wall biogenesis. (A) The nag1-1 point mutation introduces a nonsense mutation at codon 41, without altering the predicted amino acid sequence of the YGR031WP protein product. (B) DNA microarray analysis of the nag1-1 mutant under conditions of vegetative growth. Details of this experimental design are presented in Materials and Methods. The total number of differentially expressed genes in the nag1-1 mutant relative to the wild-type (WT) strain is indicated. Genes associated with the GO cellular process term 7047...
Co-fluor white staining. The transformants. In some calcofluor white-hypersensitive mutants in the W303 background, as assayed in multiple independent lines. The severity is decreased. These phenotypes are consistent across multiple independent transformants. In yeast, cell wall integrity is maintained, in part, through a signaling pathway encompassing the Slt2p/Mpk1p MAPK cascade (Fig. 5A). The Slt2p pathway is activated in response to numerous environmental stimuli, including conditions of hypoxic stress, exposure to mating pheromone, and treatment with agents causing cell wall stress (5, 20, 25, 47). These stimuli are transduced into signals activating the GDP/GTP exchange factor Rom2p and the small GTP-binding protein Rho1p (32). Rho1p binds and activates Pkc1p, which in turn elicits serial activation of a MAPK cascade consisting of the MAPK kinase kinase Bck1p, the MAPK kinases Mkk1p and Mkk2p, and the MAPK Slt2p/Mpk1p (11). The transcription factor Rlm1p acts downstream of Slt2p (6), and Rlm1p activates expression of at least 20 genes, the majority of which contribute to yeast cell wall biogenesis (16) (Fig. 5A).

Interestingly, transcription of both SLT2 and RLMI was downregulated in the nag1-1 site-directed mutant (Fig. 4B). To investigate a possible role for Nag1p acting downstream of the Slt2p pathway, we assayed protein levels of a Nag1p–β-galactosidase chimera in slt2Δ and rmlAΔ deletion strains under conditions of vegetative growth and calcofluor white treatment (Fig. 5B). Nag1p levels were diminished during vegetative growth in both deletion strains but with a more pronounced decrease evident in the rmlAΔ mutant. Consistent with a role for Rlm1p in the transcriptional activation of Nag1p, a Rlm1p binding site consensus sequence [CTA(T/A)TA] is present in the GO term. The majority of these cell surface-related genes are indicated in the heat map to the left with corresponding statistics and P values. The full set of differentially expressed genes in the nag1-1 mutant is presented as supplementary data (see file SF1 in the supplemental material). The full set of genes encoding proteins associated with the plasma membrane (GO cell component ID 5886) is not shown.

The decrease in cell wall-related gene transcription evident in the nag1-1 mutant is unusual for a gene contributing to cell wall biogenesis. More typically, the deletion of a cell wall-related gene leads to an increase in cell wall gene transcription as a compensatory response (16). Of course, most cell wall-associated genes are involved in the biosynthesis or structural organization of the cell wall, and loss of function leads directly to a structural defect that requires a compensatory response to maintain integrity. Since nag1-1 exhibited the opposite effect on cell wall gene transcription, we next asked whether the nag1-1 mutant displayed a phenotype consistent with an altered cell wall structure. Toward this end, we compared the growth of nag1-1 mutant with a wild-type strain in the presence of a set of cell wall perturbants, including calcofluor white, Congo red, caffeine, and caspofungin. As indicated in Fig. 4C, the nag1-1 mutant is sensitive to calcofluor white but showed no apparent growth defects with any of the other drugs. Calcofluor white is a negatively charged fluorescent dye that binds nascent chains of chitin and, to a lesser degree, glucan; as a result, calcofluor white prevents microfibril assembly, thereby interfering with cell wall organization (7, 28). Calcofluor white hypersensitivity has been observed as a pleiotropic phenotype associated with many yeast cell wall mutants (9, 28), and the nag1-1 mutant exhibits sensitivity to calcofluor white at 37°C. A similar phenotype is observed for the nag1-1 mutant at 30°C, although the severity is decreased. These phenotypes are consistent across multiple independent transformants in the BY4742 genetic background. To consider further the function of Nag1p in cell wall biogenesis, we introduced the nag1-1 allele into the yeast strain W303. The wild-type W303 strain is defective for the gene SDD1, encoding a protein involved in the maintenance of cellular integrity (18); therefore, cell wall-related phenotypes are often exacerbated in the W303 genetic background. Accordingly, the nag1-1 mutant yields a more pronounced calcofluor white phenotype at both 30°C and 37°C in the W303 background, as assayed in multiple independent transformants. In some calcofluor white-hypersensitive mutants, cell wall chitin is increased, resulting in increased calcofluor white staining. The nag1-1 mutant, however, did not display either an increased amount or abnormal distribution of calcofluor white staining at 25°C or 37°C (data not shown).

Observed nag1-1 phenotypes are specific to cell wall function. The nag1-1 mutant is viable at both 30°C and 37°C, without obvious fitness defects under conditions of vegetative growth at either temperature. In addition, analysis of nag1-1 mutant for growth sensitivity under conditions of nutritional stress, alternative carbon source, nitrogen stress, and high osmolarity did not reveal mutant phenotypes (data not shown).

Nag1p production is regulated by the Slt2p cell wall integrity pathway. Since many proteins contributing to cell wall function are induced upon treatment with cell wall-perturbing agents, we examined the response of Nag1p upon treatment with calcofluor white in the W303 genetic background (Fig. 4D). Using a Nag1p–β-galactosidase chimera, we investigated Nag1p protein levels under conditions of vegetative growth and in identical growth medium supplemented with calcofluor white. Calcofluor white treatment resulted in a 1.4-fold increase in Nag1p levels relative to those observed during vegetative growth, further supporting its role in cell wall-related processes.

VOL. 7, 2008 NESTED ANTISENSE GENE IN YEAST 1295
present 430 nucleotides upstream of the presumed \textit{NAG1} start codon. Interestingly, this putative, palindromic Rlm1p binding site is shared with the promoter of \textit{GSC2}, the inducible subunit of 1,3-\beta-glucan synthase and a gene that is upregulated by cell wall stress. Upon exposure to calcofluor white, the overall levels of \textit{NAG1} expression were decreased in both \textit{slt2Δ} and \textit{rlm1Δ} mutants relative to the wild type. However, exposure to calcofluor white increased \textit{NAG1} expression in both mutants relative to the untreated cells, suggesting that Slt2p-independent cell wall response pathways may also contribute to \textit{Nag1p} expression (26). On the basis of this analysis, we conclude that the cell wall stress-induced production of \textit{Nag1p} is partially dependent upon Slt2p and Rlm1p.

DISCUSSION

In this paper, we present an unusual orientation of protein-coding genes in the \textit{S. cerevisiae} genome, identifying a previously overlooked gene, \textit{NAG1}, nested antisense and opposite another protein-coding gene, \textit{YGR031W}. This gene superstructure represents an evolutionary unit conserved among many fungal species. The strongly conserved \textit{YGR031W} gene encodes a mitochondrial protein, while \textit{NAG1} encodes a 19-kDa membrane protein localized to the yeast cell periphery. To study \textit{NAG1} function, we constructed a point mutation disrupting \textit{NAG1} but silent with respect to \textit{YGR031W}; this mutant exhibited hypersensitivity to calcofluor white and altered transcript levels for a significant subset of genes mediating cell wall biogenesis. Furthermore, \textit{Nag1p} levels were increased upon calcofluor white treatment and reduced in strains deleted for \textit{SLT2} and \textit{RLM1}, key components of the yeast MAPK cell wall integrity pathway. Collectively, this study highlights a role for \textit{Nag1p} in maintaining yeast cell wall integrity and function, while validating the protein-coding potential of this nested gene.

In particular, the nested organization of genes at the \textit{NAG1} locus holds interesting evolutionary implications. Overlapping genes have been found commonly in viruses and microorganisms, where this type of interleaved and nested gene organization presumably contributes to the maintenance of a compact genome—a beneficial characteristic, since genome size in these organisms is limited by the size of the viral particle or cell (22). Eukaryotic genomes, of course, do not face this constraint, and in this light, two points regarding \textit{NAG1} are noteworthy. First, putative \textit{NAG1} orthologs are exclusively found opposite an ortholog of \textit{YGR031W}. Second, \textit{YGR031W} encodes a mitochondrial protein. Mitochondria are thought to have evolved from purple non-sulfur bacteria (1), wherein this type of nested gene organization might not be uncommon. Extrapolating from this, we can speculate that the \textit{NAG1} locus may represent the remnants of an ancient genetic unit, possibly even tracing back to symbiont gene transfer during mitochondrial evolution. \textit{YGR031W} is strongly conserved in prokaryotes and eukaryotes alike, but over evolutionary time, \textit{NAG1} function may have been lost in organisms lacking a cell wall. Consistent with this possibility, putative \textit{NAG1} orthologs are present only in prokaryotes and fungi (Fig. 2), although further studies would be necessary to determine whether these orthologs are functional.

The cell wall-related function of \textit{Nag1p} is supported by three lines of evidence. First, and most striking, is the fact that the \textit{nag1-1} mutation leads to a significant decrease in the expression of a large set of cell wall genes during vegetative growth. This is opposite to the more common phenomenon whereby deletion of a cell wall gene causes upregulation of cell wall gene transcription to compensate for the resulting cell wall defects. The negative effect of \textit{nag1-1} on cell wall gene expression is more consistent with \textit{Nag1p} functioning as a type of regulatory protein as opposed to having a direct role in cell wall structure or biosynthesis. This analysis is further supported by the relatively mild cell wall phenotype displayed by the \textit{nag1-1} mutant. However, it is important to note that mutation of a number of cell wall-related genes causes calcofluor white hypersensitivity as their only discernible cell wall phenotype; therefore, this second set of observations supporting a cell wall role for \textit{Nag1p} is consistent with other bona fide cell wall proteins.

Third, the effect of cell wall stress and the cell wall integrity MAPK signaling pathway on \textit{NAG1} expression provides compelling support for the cell wall-related function of \textit{Nag1p}. As is the case for many cell wall-related genes, cell wall stress, such as calcofluor white treatment, induces a modest increase in \textit{Nag1p} levels. \textit{NAG1} may share its promoter region with \textit{GSC2} (Fig. 1B), the stress-inducible subunit of 1,3-\beta-glucan synthase, and therefore, \textit{NAG1} expression could be regulated by processes that also regulate \textit{GSC2}. Indeed, this region con-
tains a consensus binding site for Rlm1p, a transcription factor regulated by the cell wall integrity MAPK signaling pathway. Since the Rlm1p binding site is palindromic, it should control transcription of appropriately oriented ORFs on either the Watson or Crick strand.

Consistent with this analysis, NAG1 expression is dependent on both Slt2p and Rlm1p in a significant but not exclusive fashion. Intriguingly, the effect of Slt2p and Rlm1p on NAG1 expression is quite apparent during vegetative growth. Although the cell wall integrity pathway is more commonly thought of as a stress response cascade, it is activated during specific periods of the cell cycle (26). Therefore, NAG1 expression may be controlled through basal signaling of the cell wall integrity pathway. We speculate that this pattern of expression may relate to the positive effect of Nag1p on the transcription of other cell wall genes during vegetative growth. Obviously, a more extensive characterization of Nag1p will be required to confirm this assertion. However, it is clear from our data that Nag1p is a functional protein involved in yeast cell wall integrity.

Here, we have referred to NAG1 as being unique, but, in fact, NAG1 may actually represent the first identified gene of a larger class: the potential certainly exists for other nested antisenes in yeast. By transposon mutagenesis using a simple gene trap reporter, we previously identified a set of at least 54 putative nested genes in yeast (24). While we expect that some, and perhaps the majority, of these nested ORFs do not encode protein, additional studies may uncover other nested protein-coding genes previously overlooked in the yeast genome. These overlooked genes potentially represent a wealth of unexplored yeast biology, with implications impacting gene predictions and gene-finding studies in other eukaryotes as well. As a result, the example set by NAG1 may prove useful in refining annotation efforts applied to other genomes, separate from the relevance of this gene as an interesting component of the signaling pathways and networks contributing to yeast cell surface biology.

ACKNOWLEDGMENTS

We thank Dan Klionsky for providing reagents and for helpful comments regarding the manuscript. This work was supported by NIH grant K08AI062978 (to D.J.K.) and grants RSG-06-179-01-MBC from the American Cancer Society. DB1 053017 from the National Science Foundation, and Basil O’Connor Award 5-FY05-1224 from the March of Dimes (to A.K.).

REFERENCES

1. Cavalier-Smith, T. 2006. Origin of mitochondria by intracellular endosymbiosis of a photosynthetic purple bacterium. Proc. Biol. Sci. 273:1943–1952.
2. Claros, M. G., and G. von Heijne. 1994. TopPred II: an improved software for membrane protein structure predictions. Comput. Appl. Biosci. 10:685–690.
3. Coelho, P. S., A. C. Bryan, A. Kumar, G. S. Shadel, and M. Snyder. 2002. A novel mitochondrial protein, Tar1p, is encoded on the antisense strand of the nuclear 25S rDNA. Genes Dev. 17:3207–3221.
4. de Nobel, H., C. Ruiz, H. Martin, W. Morris, S. Brul, M. Molina, and F. M. Klis. 2000. Cell wall perturbation in yeast results in dual phosphorylation of the Slt2/Mpk1 MAP kinase and in a Slt2-mediated increase in FKS2 kinase expression, glucanase resistance and thermotolerance. Microbiology 146: 2121–2132.
5. Dodou, E., and R. Treisman. 1997. The Saccharomyces cerevisiae MADS-box transcription factor Rlm1 is a target for the Mpk1 mitogen-activated protein kinase pathway. Mol. Cell. Biol. 17:1848–1859.
6. Eborali, M. V., H. Rico, and R. Sentandreu. 1983. Calcofluor white alters the assembly of chitin fibrils in Saccharomyces cerevisiae and Candida albicans cells. J. Gen. Microbiol. 129:1577–1582.
7. Guthrie, C., and G. Fink. 1991. Guide to yeast genetics and molecular biology. Academic Press, San Diego, CA.
8. Hampsay, M. 1997. A review of phenotypes in Saccharomyces cerevisiae. Yeast 13:1099–1133.
9. Hlavho, H., E. Y. Levinson, G. Lerman, M. Kupiec, and E. Eisenberg. 2005. Evidence for abundant transcription of non-coding regions in the Saccharomyces cerevisiae genome. BMC Genomics 6:93.
10. Heinisch, J. J., A. Lorberg, H. P. Schmitz, and J. J. Jacoby. 1999. The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cell wall integrity in Saccharomyces cerevisiae. Microbiol. 132:691–698.
11. Hongay, C. P., P. L. Grisafi, T. Galitski, and G. R. Fink. 2006. Antisense transcription controls cell fate in Saccharomyces cerevisiae. Cell 127:735–745.
12. Huh, W. K., J. V. Falvo, L. C. Gerke, A. S. Carroll, R. W. Howson, J. S. Weissman, and E. K. O’Shea. 2003. Global analysis of protein localization in budding yeast. Nature 425:696–701.
13. Ikeda, M., M. Arai, D. M. Lao, and T. Shimizu. 2002. Transmembrane topology prediction methods: a re-assessment and improvement by a consensus method using a dataset of experimentally-characterized transmembrane topologies. In Silico Biol. 2:19–33.
14. Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
15. Jung, U. S., and D. E. Levin. 1999. Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol. Microbiol. 34:1049–1057.
16. Jung, U. S., A. K. Sobering, M. J. Romeo, and D. E. Levin. 2002. Regulation of the yeast Rlm1 transcription factor by the Mpk1 cell wall integrity MAP kinase pathway. Mol. Microbiol. 43:631–640.
17. Kaeberlein, M., and L. Guarente. 2002. Saccharomyces cerevisiae MPT5 and NDD1 function in parallel pathways to promote cell wall integrity. Genetics 160:83–95.
18. Kaganov, P., A. T. Willingham, and T. R. Gingeras. 2007. Genome-wide transcription and the implications for genomic organization. Nat. Rev. Genet. 8:413–423.
19. Ketela, T., R. Green, and H. Bussey. 1999. Saccharomyces cerevisiae Mid2p is a potential cell wall stress sensor and upstream activator of the PKC1-MPK1 cell wall integrity pathway. J. Bacteriol. 181:3330–3340.
20. Kim, J., V. M. Dalton, K. P. Eggerton, S. V. Scott, and D. J. Klionsky. 1999. Agp5p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macropinocytosis, and peroxisome degradation pathways. Mol. Biol. Cell 10:1337–1351.
21. Knauf, D. C. 2000. Stability and evolution of overlapping genes. Evolution Int. J. Org. Evolution. 54:731–739.
22. Krogh, A., B. Larsson, G. von Heijne, and E. L. Sonnhammer. 2001. Predicting transmembrane protein topology with a hidden Markov model: an application to complete genomes. J. Mol. Biol. 305:587–590.
23. Kumar, A., P. M. Harrison, K. H. Cheung, N. Lan, N. Echols, P. Bertone, P. Miller, M. B. Gerstein, and M. Snyder. 2002. An integrated approach for finding overlooked genes in yeast. Nat. Biotechnol. 20:568–63.
24. Lee, K. S., K. Irie, Y. Gotoh, Y. Watanabe, H. Araki, E. Nishida, K. Matsuno, and D. E. Levin. 1993. A yeast mitogen-activated protein kinase homolog (Mpk1p) mediates signalling by protein kinase C. Mol. Cell. Biol. 13:3075–8075.
25. Levin, D. E. 2005. Cell wall integrity signalling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 69:262–291.
26. Longtime, M. S., A. McKenzie III, D. J. Demarini, D. J. Klionsky, and J. R. Pringle. 1998. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961.
27. Lussier, M.-A., M.-M. White, J. Sheraton, T. di Paolo, J. Treadwell, S. B. Southard, C. I. Horenstein, J. H. Weiner, A. F. J. Ram, J. C. Kaeberlein, T. W. Roemer, D. H. Vo, D. C. Bondoc, J. Hall, W. W. Zhong, A.-M. Sdicu, J. Davies, F. M. Klis, P. W. Robbins, and H. Bussey. 1997. Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics 147:45–50.
28. Ma, J., J. R. Jin, X. Jia, C. J. Dobry, L. Wang, F. Reggiori, J. Zhu, and A. Kumar. 2007. An interrelationship between autophagy and filamentous growth in budding yeast. Genetics 177:205–214.
29. Mes shuffled. 2000. Pre-425:681–689.
30. Philipsen, P., K. Kleine, P. Pohlmann, A. Dusterhoft, K. Hamberg, H. J. Hegemann, B. Obermaier, L. A. Urestarazu, R. Aert, K. Albermann, R. Altmann, B. Andre, V. Baladrz, J. P. Ballesta, A. M. Becam, J. Reinhauer,
J. Boskovic, M. J. Buitrago, F. Bussereau, F. Coster, M. Crouzet, M. D’Angelo, F. Dal Pero, A. De Antoni, and J. Hani. 1997. The nucleotide sequence of Saccharomyces cerevisiae chromosome XIV and its evolutionary implications. Nature 387:93–98.
34. Reinders, J., R. P. Zeheli, N. Pfanner, C. Meisinger, and A. Sickmann. 2006. Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J. Proteome Res. 5:1543–1554.
35. Rieger, K. E., and G. Chu. 2004. Portrait of transcriptional responses to ultraviolet and ionizing radiation in human cells. Nucleic Acids Res. 32: 4786–4803.
36. Ross-Macdonald, P., P. S. Coelho, T. Roemer, S. Agarwal, A. Kumar, R. Jansen, K. H. Cheung, A. Sheehan, D. Symoniatis, I. Umansky, M. Heidtman, F. K. Nelson, H. Iwasaki, K. Hager, M. Gerstein, P. Miller, G. S. Roeder, and M. Snyder. 1999. Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402:413–418.
37. Ross-Macdonald, P., A. Sheehan, G. S. Roeder, and M. Snyder. 1997. A multipurpose transposon system for analyzing protein production, localization, and function in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94:190–195.
38. Rost, B., P. Fariselli, and R. Casadio. 1996. Topology prediction for helical transmembrane proteins at 86% accuracy. Protein Sci. 5:1704–1718.
39. Seifert, H. S., E. Y. Chen, M. So, and F. Heffron. 1986. Shuttle mutagenesis: a method of transposon mutagenesis for Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 83:735–739.
40. Siniossoglou, S., H. Santos-Rosa, J. Rappisilber, M. Mann, and E. Hurt. 1998. A novel complex of membrane proteins required for formation of a spherical nucleus. EMBO J. 17:6449–6464.
41. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680.
42. Tusher, V. G., R. Tibshirani, and G. Chu. 2001. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98:5116–5121.
43. Tusnady, G. E., and I. Simon. 2001. The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850.
44. Wallhout, A. J. M., G. F. Temple, M. A. Bracci, J. L. Hartley, M. A. Lorson, S. van den Heuvel, and M. Vidal. 2000. GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol. 328:575–592.
45. Winzeler, E. A., D. D. Shoemaker, A. Astromoff, H. Liang, K. Anderson, B. Andre, R. Bangham, R. Benito, J. D. Boeke, H. Bussey, A. Chu, C. Connelly, K. Davis, F. Dietrich, S. W. Dow, M. E. Bakkoury, F. Foury, S. H. Friend, E. Gentalen, G. Giaever, J. H. Hegemann, T. J. M. Laub, H. Liao, N. Liebundguth, D. J. Lockhart, A. Lucan-Danila, M. Lussier, N. M’Rabet, P. Menard, M. Mittmann, C. Pai, C. Rebischung, J. L. Revuelta, L. Riles, C. J. Roberts, P. Ross-Macdonald, B. Scherens, M. Snyder, S. Sookhai-Mahades, R. K. Storms, S. Véroneau, M. Voet, G. Volckaert, T. R. Ward, R. Wysocki, G. S. Yen, K. Yu, K. Zimmermann, P. Philippsen, M. Johnston, and R. W. Davis. 1999. Functional characterization of the Saccharomyces cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906.
46. Ye, J., S. McGinnis, and T. L. Madden. 2006. BLAST: improvements for better sequence analysis. Nucleic Acids Res. 34:W6–W9.
47. Zarzov, P., C. Mazzoni, and C. Mann. 1996. The SLT2(MPK1) MAP kinase is activated during periods of polarized cell growth in yeast. EMBO J. 15:83–91.