ALGEBRAIC PROPERTIES OF HTC-IDENTIFIABLE GRAPHS

Bohao Yao and Robin Evans
ALGEBRAIC PROPERTIES OF HTC-IDENTIFIABLE GRAPHS

BOHAO YAO AND ROBIN EVANS

HTC-identifiable graphs are a large family of graphs known to be generically identifiable. We explore some algebraic properties of linear structural equation models that can be represented by an HTC-identifiable graph. In particular, we prove that all mixed graphs are HTC-identifiable if and only if all the regression coefficients can be recovered from the covariance matrix using straightforward linear algebra operations on specified equations. Furthermore, given an HTC-identifiable graph, we provide a set of polynomials that generates the ideal that encompasses all the equality constraints of the corresponding graphical model on the cone of positive definite matrices. We further prove that, for a subset of HTC-identifiable graphs, this set of polynomials are the minimal generators of said ideal.

1. Introduction

It is often natural to model the joint distribution of a random vector \(X = (X_1, \ldots, X_n)^T \) as a collection of noisy linear interdependencies. In particular, we may assume that each variable \(X_i \) can be expressed as a linear function of the remaining variables and a stochastic noise term \(\epsilon_i \sim N(0, \omega_{ii}) \),

\[
X_i = \sum_{j \in \text{pa}(i)} \lambda_{ji} X_j + \epsilon_i. \tag{1}
\]

In matrix form, this system of structural equations could be rewritten as

\[
X = \Lambda^T X + \epsilon, \tag{2}
\]

where \(\Lambda = (\lambda_{ij}) \) is a matrix of coefficients \(\lambda_{ij} \), and \(\epsilon = (\epsilon_i) \) is an error vector with a multivariate normal distribution and covariance \(\Omega = (\omega_{ij}) \). Models of this form are known as linear structural equation models (SEMs). Assuming \((I - \Lambda) \) is invertible, we can rearrange (2) to obtain a covariance matrix for \(X \):

\[
\Sigma := \text{Cov}[X] = (I - \Lambda)^{-T} \Omega (I - \Lambda)^{-1}. \tag{3}
\]

Background on SEMs can be found in [1; 13; 17]. In the present day, SEMs are applied in subject fields as varied as epidemiology, ecology, behavioural sciences, social sciences and economics [9; 10; 11; 16]. The properties of identifiability in SEMs is a topic with a long history. A review of the classical conditions of these properties can be found in [1]. We shall start with the definition of \textit{global identifiability}.

MSC2020: 62r01.

Keywords: algebraic statistics, graphical model, structural equation model, covariance matrix, Gaussian distribution, constraints, identifiability.
Definition 1.1. Let $\phi : \Theta \to N$ be a rational map defined everywhere on the parameter space Θ into the natural parameter space N of an exponential family. The model $M = \text{im} \phi$ is said to be globally identifiable if ϕ is a one-to-one map on Θ.

Necessary and sufficient graphical conditions for linear SEMs to be globally identifiable were found by Drton et al. [5]. Other recent works, such as those by Brito and Pearl [2], consider the weaker identifiability requirement of generic identifiability.

Definition 1.2. Let $\phi : \Theta \to N$ be a rational map defined everywhere on the parameter space Θ into the natural parameter space N of an exponential family. The model $M = \text{im} \phi$ is said to be generically identifiable if $\phi^{-1}(\phi(\theta)) = \{\theta\}$ for almost all $\theta \in \Theta$ with respect to the Lebesgue measure.

From the definitions, we see that all globally identifiable models are also generically identifiable. However, not all generically identifiable models are also globally identifiable as we shall see in the following example from [4, Example 3.1].

Example 1.3. Consider the instrumental variable model in Figure 1. We can recover the observable Λ from the observed Σ using

$$\lambda_{12} = \frac{\sigma_{12}}{\sigma_{11}}, \quad \lambda_{23} = \frac{\sigma_{13}}{\sigma_{12}}.$$

Note that the denominator in the first equation is always positive since Σ is positive definite and the denominator in the second equation is zero if and only if $\lambda_{12} = 0$. Therefore, while the instrumental variable model is generically identifiable, it is not globally identifiable as it is not injective on the whole of Θ (i.e., when $\lambda_{12} \neq 0$).

The first class of graphs that were proven to be generically identifiable is the bow-free acyclic directed mixed graphs by Brito and Pearl [2]. Foygel et al. [7] later introduced a new identifiability criterion known as HTC-identifiability and proved that all HTC-identifiable graphs are also generically identifiable. As all acyclic bow-free graphs are HTC-identifiable, the result obtained by Foygel et al. could be seen as an extension to that of Brito and Pearl. At the time of writing, there is no known graphical criterion which is both necessary and sufficient for an SEM to be generically identifiable. We shall provide a rigorous definition of HTC-identifiability in the next section.

As a large class of generically identifiable graphs, HTC-identifiable graphs warrant a thorough study. In this paper, we will explore the algebraic structure of HTC-identifiable graphs by introducing an identifiability criterion which we call linear identifiability. Linearly identifiable graphs satisfy certain algebraic structures which could be used to recover Λ from Σ efficiently using linear algebra. We will then prove that linear identifiability and HTC-identifiability are equivalent:

Theorem 3.17. For any mixed graph G, $M(G)$ is linearly identifiable if and only if $M(G)$ is HTC-identifiable.
Hence, for HTC-identifiable graphs, we have algorithms which are much more efficient in recovering graphical parameters, (Λ, Ω), relative to graphs which are not HTC-identifiable.

This paper is structured as follows: In Section 2, we will provide the preliminaries on structural equation models with a focus on treks and constraints. In Section 3, we will prove that linearly identifiable and HTC-identifiable are equivalent. In Section 4, we will exploit the algebraic properties of HTC-identifiable graphs found in Section 3 to provide an efficient algorithm to recover the parameters, (Λ, Ω), of any HTC-identifiable graph. We will use these parameters to find the model ideal $J(G)$ of any HTC-identifiable graph G, where $J(G)$ defines the model $M(G)$ in the positive definite cone. We will further prove that this ideal is minimal for a subset of HTC-identifiable graphs. We will discuss some complexity issues with our algorithm.

2. Preliminaries

Following the work of Wright [21], SEMs are often represented by graphical models. Here, each vertex corresponds to a random variable, each directed edge corresponds to the linear dependencies and each bidirected edge corresponds to possible correlations among noise terms.

A directed mixed graph is a triple $G = (V, D, B)$ where V is a set of vertices, D is the set of directed edges (\rightarrow) and B is the set of bidirected edges (\leftrightarrow). In this paper, we will only consider graphs without any loops, that is $i \rightarrow i \notin D$ and $i \leftrightarrow i \notin B$. If $i \rightarrow j \in D$, we say i is a parent of j and j is a child of i. If $i \leftrightarrow j \in B$, we say that i and j are siblings. If a graph contains both $i \rightarrow j \in D$ and $i \leftrightarrow j \in B$, then i is both a parent and a sibling of j. The sets of all parents and siblings of $v \in V$ are denoted $\text{pa}(v)$ and $\text{si(b)}(v)$ respectively.

A directed path of length ℓ is of the form $v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_\ell$ where all vertices are distinct. Similarly, a bidirected path of length ℓ is of the form $v_0 \leftrightarrow v_1 \leftrightarrow \cdots \leftrightarrow v_\ell$ where all vertices are distinct. A directed cycle is a directed path with $v_0 = v_\ell$ and all other vertices v_j are distinct (for $0 < j < \ell$). A directed mixed graph without any directed cycle is acyclic.

Let \mathbb{R}^D be the set of real $|V| \times |V|$ matrices Λ with support D. That is,

$$\mathbb{R}^D := \{ \Lambda \in \mathbb{R}^{|V|\times|V|} : \lambda_{ij} = 0 \text{ if } i \rightarrow j \notin D \}.$$

Let $\mathbb{R}^D_{\text{reg}}$ be the subset of matrices $\Lambda \in \mathbb{R}^D$ for which $(I - \Lambda)$ is invertible. Let PD_V be the cone of positive definite $|V| \times |V|$ matrices and let $PD(B)$ be the subcone of matrices with support B, that is,

$$PD(B) := \{ \Omega \in PD_V : \Omega \text{ symmetric}, \omega_{ij} = 0 \text{ if } i \neq j \text{ and } i \leftrightarrow j \notin B \}.$$

We define the linear structural equation model given by a directed mixed graph $G = (V, D, B)$ to be the family of all multivariate normal distributions on $\mathbb{R}^{|V|}$ with the covariance matrix in the set

$$M(G) := \{(I - \Lambda)^{-1} \Omega (I - \Lambda)^{-1} : \Lambda \in \mathbb{R}^D_{\text{reg}}, \Omega \in PD(B)\}.$$

2A. Treks. A vertex i on a walk π is called a collider on π if the edges preceding and succeeding i on the walk π both have an arrowhead at i (i.e., $\rightarrow i \leftrightarrow \rightarrow i \leftrightarrow \rightarrow i \leftrightarrow \rightarrow i \leftrightarrow$). A trek from i to j is a
walk from i to j without any colliders. Therefore, all treks are of the form
\[v_L^L \leftarrow v_L^{L-1} \leftarrow \cdots \leftarrow v_L^1 \leftarrow v_L^0 \rightarrow v_R^1 \rightarrow \cdots \rightarrow v_R^{r-1} \rightarrow v_R^r, \]
or
\[v_L^L \leftarrow v_L^{L-1} \leftarrow \cdots \leftarrow v_L^1 \leftarrow v_L^0 \rightarrow v_R^1 \rightarrow \cdots \rightarrow v_R^{r-1} \rightarrow v_R^r, \]
where $v_L^L = i$, $v_R^r = j$. For a trek π, let π^L denote the directed walk on the left-hand side of the trek, containing all the vertices with superscripts L. For example, in the first case, $\pi^L = v_L^L \leftarrow v_L^{L-1} \leftarrow \cdots \leftarrow v_L^1 \leftarrow v_L^0$; whereas in the second case, $\pi^L = v_L^L \leftarrow v_L^{L-1} \leftarrow \cdots \leftarrow v_L^1 \leftarrow v_L^0 \rightarrow v_R^1 \rightarrow \cdots \rightarrow v_R^{r-1} \rightarrow v_R^r$. Similarly, let π^R denote the directed walk containing all the vertices with superscripts R. A half-trek is a trek with $|\pi^L| = 0$. Note that the vertex v_L^0 in the second case is a part of both π^L and π^R. Let \(htr(v) \) be the set of nodes in $V \setminus (\{v\} \cup sib(v))$ that can be reached from v via a half-trek. A set of treks $\Pi = \{\pi_1, \pi_2, \ldots\}$ is said to have no sided intersection if $\pi^L_i \cap \pi^L_j = \pi^R_i \cap \pi^R_j = \emptyset$ for all $i \neq j$.

Let T_{vw} be the set of all treks from v to w. For a trek π with no bidirected edges and a source i, the trek monomial is defined as
\[\pi(\Lambda, \Omega) = \omega_{ii} \prod_{x \rightarrow y \in \pi} \lambda_{xy}. \]
For a trek π with a bidirected edge $i \leftrightarrow j$, the trek monomial is defined as
\[\pi(\Lambda, \Omega) = \omega_{ij} \prod_{x \rightarrow y \in \pi} \lambda_{xy}. \]

Theorem 2.1 (trek rule). The covariance matrix Σ for a mixed graph G is given by
\[\sigma_{vw} = \sum_{\pi \in T_{vw}} \pi(\Lambda, \Omega). \quad (4) \]

Proof. The proof originated from [22], and is obtained from expanding out the matrix in (3). If G is acyclic, the RHS of (3) and (4) agree. If G is not acyclic, the RHS of (3) is a power series. Writing $(I - \Lambda)^{-1} = I + \Lambda + \Lambda^2 + \cdots$, the RHS of (3) and (4) again agree. \qed

Definition 2.2. A set of nodes $Y \subset V$ satisfies the half-trek criterion with respect to $v \in V$ if
1. $|Y| = |pa(v)|$,
2. $Y \cap (\{v\} \cup sib(v)) = \emptyset$, and
3. there is a system of half-treks with no sided intersection from Y to $pa(v)$.

Definition 2.3. We say that $\mathcal{M}(G)$ is HTC-identifiable if there exists a family of subsets $\{Y_v : v \in V\}$ of the vertex set V such that for each node $v \in V$, the vertex set Y_v satisfies the half-trek criterion with respect to v and there is a total ordering such that $w < v$ whenever $w \in Y_v \cap htr(v)$.

In the original paper, Foygel et al. classify graphs into three classes: HTC-identifiable, HTC-infinte-to-one and HTC-inconclusive. For the purpose of this paper, we will consider the two latter graph classes simply as “not HTC-identifiable”.

2B. Constraints. Consider two graphs G and G'. If both G and G' are directed acyclic graphs (DAGs), mixed graphs without bidirected edges and directed cycles, then $M(G) = M(G')$ if and only if G and G' have the same d-separation relations [8]. However, this is only helpful in situations where all the variables are observed. If G is a DAG with hidden variables, we can use the latent projection operation [14] to transform G into an acyclic directed mixed graph (ADMG). In this case, the conditional independence relations on the observed vertices are no longer sufficient to describe $M(G)$ in general. The ideal generating these algebraic relations with equality constraints is often referred to as the vanishing ideal,

$\mathcal{I}(G) = \langle f_\text{Verma}(\Sigma) = 0 \text{ for all } \Sigma \in M(G) \rangle$.

Example 2.4. Consider the Verma graph in Figure 2. While there are no conditional independences involving only the observed variables X_1, X_2, X_3 and X_4, we do have an equality constraint on the corresponding covariance matrix Σ, in the sense that $\Sigma \in M(G)$ only if

$$f_\text{Verma}(\Sigma) = \sigma_{11}\sigma_{13}\sigma_{22}\sigma_{34} - \sigma_{12}^2\sigma_{13}\sigma_{34} - \sigma_{11}\sigma_{14}\sigma_{22}\sigma_{33} + \sigma_{12}^2\sigma_{14}\sigma_{33}$$

$$-\sigma_{11}\sigma_{13}\sigma_{23}\sigma_{24} + \sigma_{12}\sigma_{14}\sigma_{23}^2 + \sigma_{12}\sigma_{13}\sigma_{24}^2 - \sigma_{12}\sigma_{13}\sigma_{14}\sigma_{23} = 0.$$

The graph decomposition result [19] leading to Tian's algorithm [15; 20] provides a method to find constraints in non-parametric graphical models. For instance, the constraint in Example 2.4 can be seen as the independence between X_1 and X_4 after fixing X_2 and X_3 (i.e., changing random vertices 2 and 3 into a fixed vertex by removing all incoming edges into those vertices [15]). Though nonparametrically complete, Tian’s algorithm fails to find the following constraint on the “gadget” graph in Figure 3:

$$\sigma_{11}\sigma_{22}\sigma_{34} - \sigma_{13}\sigma_{14}\sigma_{22} + \sigma_{13}\sigma_{12}\sigma_{24} - \sigma_{23}\sigma_{11}\sigma_{24} = 0.$$

Given any graph G, the vanishing ideal $\mathcal{I}(G)$ is traditionally found using Gröbner bases [3] which is computationally expensive. Various attempts, such as that of Drton et al. [6], aim to find a more efficient algorithm for computing $\mathcal{I}(G)$.

In this paper, we are interested in exploiting the algebraic properties of HTC-identifiable graphs to find the set of polynomials that generate $\mathcal{I}(G)$ for any HTC-identifiable graph G. To do this, we will first...
consider a subideal $J(G)$ of $I(G)$, which we call the model ideal, such that

$$V(J(G)) \cap PD_V = M(G),$$

where $V(I)$ refers to the variety defined by an ideal I,

$$V(I) = \{a \in S_{|V|} : f(a) = 0 \text{ for all } f \in I\}$$

for symmetric $|V| \times |V|$ matrices $S_{|V|}$. The model ideal $J(G)$ gives a more practical description of $M(G)$ compared to the vanishing ideal $I(G)$ as $M(G) \subseteq PD_V$ and we are dealing with varieties in PD_V. Hence, we only have to check if the constraints in $J(G)$ are satisfied to verify that $\Sigma \in M(G)$.

Example 2.5. Consider the graph in Figure 4 studied in [18, Example 2.13]. Here, the conditional independences corresponds to the statements $X_1 \perp \perp X_5$, $X_3 \perp \perp X_5 | \{X_1, X_2\}$ and $\{X_1, X_2\} \perp \perp X_4 | \{X_3, X_5\}$. Let $C(G)$ be the conditional independence ideal generated by the determinantal cubics. In the space of $\mathbb{R}(G)$, the vanishing ideal $I(G)$ is generated by $I(G) = C(G) + \langle f_{\text{Verma}} \rangle$. However, in the cone of positive definite matrices, we have $f_{\text{Verma}} \in C(G)$. Hence, $J(G) = C(G)$.

3. Linear identifiability

In this section, we will first define linear identifiability and then explore the properties of linearly identifiable graphs. In particular, we will show that linearly identifiable graphs are equivalent to HTC-identifiable graphs.

First, notice that (3) can be rearranged into

$$(I - \Lambda)^T \Sigma(I - \Lambda) = \Omega.$$ \hfill (5)

By equating each entry in $(I - \Lambda)^T \Sigma(I - \Lambda)$ that corresponds to a zero entry in Ω (i.e., a missing bidirected edge), we obtain a system of equations in terms of the unknowns λ_{ij} only. Since Σ is a covariance matrix, it is symmetric. As any matrix congruent to a symmetric matrix is also symmetric, $(I - \Lambda)^T \Sigma(I - \Lambda)$ is also a symmetric matrix. By assumption, Ω is a positive definite covariance matrix, and is hence symmetric with strictly positive diagonal entries. Therefore, it suffices to equate only the strictly upper or strictly lower triangular entries of both matrices.

Define the matrices $A = (a_{ij}) = (I - \Lambda)^T \Sigma$ and $B = (b_{ij}) = (I - \Lambda)^T \Sigma(I - \Lambda)$, where each entry is a polynomial in which the indeterminates are entries in both Λ and Σ. Expanding the matrix multiplication,
Observe that $a_{ij} \in \mathbb{R}[\Sigma, \Lambda]$ is the polynomial obtained by summing all the covariances for half-treks from i to j, and $b_{ij} \in \mathbb{R}[\Sigma, \Lambda]$ is the polynomial expression for the bidirected edge between i and j. Equating each entry of both matrices in (5), we obtain $b_{ij} = \omega_{ij}$. Therefore, for each missing bidirected edge between i and j, we have the equation $b_{ij} = b_{ji} = 0$. We immediately have a necessary condition for generic identifiability.

Proposition 3.1. If G has more than $\binom{|V|}{2}$ edges, then $\mathcal{M}(G)$ is not generically identifiable.

Proof. Each missing bidirected edge corresponds to an equation $b_{ij} = 0$ while each directed edge corresponds to an unknown λ_{ij}. If we have more than $\binom{|V|}{2}$ edges, then we have more unknowns than equations. Hence, $\mathcal{M}(G)$ is not identifiable. \hfill \Box

We shall now provide the definition for a graphical model to be linearly identifiable.

Definition 3.2. Let G be a mixed graph. We say that $\mathcal{M}(G)$ is **linearly identifiable** if for each vertex v, the system of $m = |\text{pa}(v)|$ linearly independent equations of the form $\{b_{jv} = 0 \mid j \leftrightarrow v \notin B\}$ (defined in (6)) that is expressed as a polynomial (e.g., through substitution) is linear for the m indeterminates $\Lambda_{\text{pa}(v),v} := \{\lambda_{iv} \mid i \in \text{pa}(v)\}$.

If a model is linearly identifiable, then we solve for Λ (as polynomials in Σ) recursively using linear algebra. We can then recover Ω using (5). Hence, all linearly identifiable graphs are generically identifiable. We shall demonstrate linear identifiability with a few examples.

Example 3.3 (a linearly identifiable graph). Consider the saturated graph G with three vertices in Figure 5, left. In this graph, the missing bidirected edges give us the equations

\begin{align*}
 b_{21} &= \sigma_{12} - \lambda_{12}\sigma_{11} = 0, \\
 b_{31} &= \sigma_{13} - \lambda_{13}\sigma_{11} - \lambda_{23}\sigma_{12} = 0, \\
 b_{32} &= \sigma_{23} - \lambda_{13}\sigma_{12} - \lambda_{23}\sigma_{22} - \lambda_{12}(\sigma_{13} - \lambda_{13}\sigma_{11} - \lambda_{23}\sigma_{12}) = 0.
\end{align*}

The vertex 2 has one parent and we have that the first equation is linear in λ_{12}. Solving this, we obtain $\lambda_{12} = \sigma_{12}/\sigma_{11}$. The vertex 3 has two parents. Substituting λ_{12} into the last two equations, we have a
system of two linearly independent equations with unknowns λ_{13}, λ_{23} and coefficients in Σ. Hence, $\mathcal{M}(G)$ is linearly solvable.

However, not all graphs have such a system of equations, which we shall see in next example.

Example 3.4 (a graph that is not linearly identifiable). Consider the graph G in Figure 5, centre, with three bows. The missing bidirected edges give us the equations

$$
\begin{align*}
b_{32} &= \sigma_{23} - \lambda_{13}\sigma_{12} - \lambda_{12}(\sigma_{13} - \lambda_{13}\sigma_{11}) = 0, \\
b_{42} &= \sigma_{24} - \lambda_{14}\sigma_{12} - \lambda_{12}(\sigma_{14} - \lambda_{14}\sigma_{11}) = 0, \\
b_{43} &= \sigma_{34} - \lambda_{14}\sigma_{13} - \lambda_{13}(\sigma_{14} - \lambda_{14}\sigma_{11}) = 0.
\end{align*}
$$

$\mathcal{M}(G)$ is not linearly identifiable as we cannot express any subset of λ_{12}, λ_{13} or λ_{14} linearly in terms of Σ. In fact, from the first two equations, we have

$$
\lambda_{13} = \frac{\sigma_{23} - \lambda_{12}\sigma_{13}}{\sigma_{12} - \lambda_{12}\sigma_{11}} \quad \text{and} \quad \lambda_{14} = \frac{\sigma_{24} - \lambda_{12}\sigma_{14}}{\sigma_{12} - \lambda_{12}\sigma_{11}}.
$$

Substituting these into the third equation, we obtain the quadratic equation $a\lambda_{12}^2 + b\lambda_{12} + c = 0$ with

$$
\begin{align*}
a &= \sigma_{11}\sigma_{34} - \sigma_{11}\sigma_{13}\sigma_{14}, \\
b &= 2\sigma_{12}\sigma_{13}\sigma_{14} - 2\sigma_{11}\sigma_{12}\sigma_{34}, \\
c &= \sigma_{12}^2\sigma_{34} - \sigma_{12}\sigma_{13}\sigma_{24} - \sigma_{12}\sigma_{14}\sigma_{23} + \sigma_{11}\sigma_{23}\sigma_{24}.
\end{align*}
$$

Since $b^2 - 4ac \neq 0$, if $\Sigma \in \mathbb{C}^{|V| \times |V|}$ then $\mathcal{M}(G)$ is not generically identifiable. In fact, if $\Sigma \in \mathbb{C}^{|V| \times |V|}$ and we have to solve a k-th order equation without repeated roots, then $\mathcal{M}(G)$ is k-identifiable.

However, determining whether a graph is linearly identifiable is not straightforward. For example, there are instances where the coefficient of one of the unknowns, λ_{ij}, is zero.

Example 3.5. Consider the graph in Figure 5, right. The missing bidirected edges correspond to the equations

$$
\begin{align*}
b_{31} &= \sigma_{13} - \lambda_{23}\sigma_{12} = 0, \\
b_{32} &= \sigma_{23} - \lambda_{23}\sigma_{22} - \lambda_{12}(\sigma_{13} - \lambda_{23}\sigma_{12}) = 0.
\end{align*}
$$

At first glance, these equations might seem to suggest that $\mathcal{M}(G)$ is linearly identifiable as we can use (8) to solve for λ_{23} and then substitute that solution into (9) to solve for λ_{12}. However, the coefficient of λ_{12} is precisely $b_{31} = 0$. Hence, we cannot find an equation that is linear in λ_{12}, so $\mathcal{M}(G)$ is not linearly identifiable. Indeed, this graph is not even generically identifiable.

As linearly identifiable graphs are not straightforward to classify, we will first introduce a weaker definition that specifically excludes the case where the coefficients of the unknowns might be zero.

Definition 3.6. Let G be a mixed graph. We say that $\mathcal{M}(G)$ is quasilinearly identifiable if there exists a total ordering \prec such that for all vertex v, we can find a system of $m = |pa(v)|$ linearly independent equations of the form $b_{ij} = 0$ for the m indeterminates $\lambda_{pa(v),v} := \{\lambda_{iv} \mid i \in pa(v)\}$ where each equation
is expressed as a polynomial (e.g., through substitution) linear in terms of \(\Lambda_{pa(v),v} \) with coefficients that are functions of \(\Sigma \) and \(\Lambda_{pa(k),k} \) where \(k < v \).

The main difference between quasilinearly identifiable models and linearly identifiable models is that in the former, we do not worry about the specific value of each \(\lambda_{ij} \) at each iteration even if it might cause the coefficients of future unknowns to be zero after substitution.

Example 3.7. In Example 3.5, vertex 1 satisfies the quasilinear condition as \(|pa(1)| = 0\), and a system of zero equations is trivial. Furthermore, the vertex 3 satisfies the quasilinear condition as \(|pa(3)| = 1\) equation with indeterminates in \(\Sigma \) that is linear in \(\{\lambda_{i3} | i \in pa(3)\} \). Finally, the vertex 2 also satisfies the quasilinear condition as \(|pa(2)| = 1\) equation with indeterminates in \(\lambda_{j3} \), where the vertex 3 also satisfies the quasilinear condition, that is linear in \(\{\lambda_{i2} | i \in pa(2)\} \). Hence, the graph in Example 3.5 is quasilinearly identifiable.

If a quasilinearly identifiable model is also linearly identifiable, we could solve for \(\lambda_{jk} \) symbolically for all \(j \in pa(k) \) and substitute this back into the equations \(b_{\ell v} = 0 \) to obtain \(|pa(v)| \) linearly independent equations in \(\lambda_{iv} \).

3A. Properties of quasilinearly identifiable graphs. Consider the equation

\[
b_{ij} = a_{ij} - \sum_{k \in pa(j)} \lambda_{kj} a_{ik} = \sigma_{ij} - \sum_{\ell \in pa(i)} \lambda_{\ell i} \sigma_{\ell j} - \sum_{k \in pa(j)} \lambda_{kj} a_{ik}. \tag{10}
\]

Suppose that \(v \) is the first vertex that satisfies the quasilinear condition. Then, we want to have a set of \(m = |pa(v)| \) linear equations of the form

\[
\sigma_{ij} - \sum_{p \in pa(v)} \lambda_{pv} \sigma_{hv} = 0
\]

for some values of \(i, j, h \), so we can solve for \(\lambda_{pv} \) for all \(p \in pa(v) \).

We see that this can be achieved by picking \(m \) equations of the form \(b_{vj} = 0 \) (i.e., no bidirected edge between \(v \) and \(j \)) such that the last summation in (10) is zero. In other words, for all \(k \in pa(j) \), we have \(a_{vk} = 0 \) (i.e., no half-trek from \(v \) to \(k \)).

Writing this in terms of graph properties, we want to find a vertex \(v \) and a set of vertices \(S \) such that

1. \(|S| = |pa(v)| \),
2. \(S \cap (sib(v) \cup \{v\}) = \emptyset \), and
3. for each vertex \(j \in S \), for all \(k \in pa(j) \), there are no half-treks from \(v \) to \(k \).

We can now define the quasilinear properties above for all vertices using Algorithm 1, which is recursive.

Definition 3.8. Suppose \(G \) is a mixed graph. We say that a vertex \(v \) is **recursively quasilinear in \(G \)** if it is contained in the output of Algorithm 1.

Lemma 3.9. Let \(v \in V \) be an arbitrary vertex. Suppose \(|S_v| = |pa(v)| \) and \(S_v \cap (sib(v) \cup \{v\}) = \emptyset \). Then, for all \(j \in S_v \), there are no half-treks from \(v \) to \(k \) for all \(k \in pa(j) \) if and only if there are no half-treks from \(v \) to \(j \).
Algorithm 1

Input: Mixed graph G.

Output: Set of recursively quasilinear vertices.

** Initialise:** $Q = \emptyset$;

while there exists $v \in V \setminus Q$ such that we can find a set of vertices S_v with properties

1. $|S_v| = |\text{pa}(v)|$,
2. $S_v \cap (\text{sib}(v) \cup \{v\}) = \emptyset$ and
3. for each vertex $j \in S_v$, either $j \in Q$, or for all $k \in \text{pa}(j)$, there are no half-treks from v to k.

do

$Q = Q \cup \{v\}$

end

return Q.

Proof. (\Leftarrow) Suppose we have no half-treks from v to j. Since k is a parent of j, we will not have a half-trek from v to k since otherwise we can append $k \to j$ at the end of this half-trek to form a half-trek from v to j.

(\Rightarrow) Suppose that there are no half-treks between v and the parents of j. Since $S_v \cap (\text{sib}(v) \cup \{v\}) = \emptyset$, v is not a sibling of j. Hence, there are no half-treks from v to j. \square

Theorem 3.10. Let G be a mixed graph. Then $\mathcal{M}(G)$ is quasilinearly identifiable if and only if we have recursively defined that all vertices are recursively quasilinear, i.e., if Algorithm 1 outputs V.

Proof. (\Leftarrow) It suffices to show that if v is recursively quasilinear, then we can find $|\text{pa}(v)|$ equations that are linear in $\{\lambda_{iv} \mid i \in \text{pa}(v)\}$. Suppose that for each vertex v we can find such an S_v satisfying the conditions in Algorithm 1. From condition (2), for each $j \in S_v$, we have an equation of the form $b_{vj} = 0$. Condition (1) states that we can find $|\text{pa}(v)|$ such equations. Expanding all such equations $b_{vj} = 0$ into (10), if $j \in S$ is not recursively quasilinear, condition (3) guarantees that the last summand in (10) is zero. If $j \in S$ is recursively quasilinear, then by condition (3) the last summand in (10) is linear in λ_{lj} with indeterminates in Σ and λ_{kj}.

(\Rightarrow) Suppose that a vertex v is not recursively quasilinear. If either of the first two conditions in Algorithm 1 fails, we no longer have $|\text{pa}(v)|$ linearly independent equations in any subset of $\{\lambda_{iv} \mid i \in \text{pa}(v)\}$. Hence, $\mathcal{M}(G)$ is not quasilinearly identifiable. Now, if the third condition fails, then by definition we have at least one other vertex that is not recursively quasilinear. So we must have at least one other vertex that fails to satisfy the first two conditions in Algorithm 1. \square

Example 3.11. In Example 3.5, vertex 1 is recursively quasilinear trivially. Furthermore, we have $S_3 = \{1\}$ so the vertex 3 is also recursively quasilinear. Moreover, $S_2 = \{3\}$, so vertex 2 is also recursively quasilinear. Hence, the graph is quasilinearly identifiable.
3B. Properties of linearly identifiable graphs. Previously, we found the necessary and sufficient conditions for a graph to be quasilinearly identifiable. The following theorem will determine when a quasilinearly identifiable graph is also linearly identifiable.

Theorem 3.12. Let G be a mixed graph such that $\mathcal{M}(G)$ is quasilinearly identifiable. Then $\mathcal{M}(G)$ is linearly identifiable if and only if for each vertex v, we have a set of vertices S_v satisfying the half-trek criterion with respect to v in addition to the three conditions in Algorithm 1.

Proof. Since $\mathcal{M}(G)$ is quasilinearly identifiable, we have a system of $|\text{pa}(v)|$ linear equations in $\{\lambda_{iv} \mid i \in \text{pa}(v)\}$ for each vertex v. We can rewrite the equations $b_{sv} = a_{sv} - \sum_{\ell \in \text{pa}(v)} \lambda_{\ell v} a_{s\ell} = 0$ for some choice of $s \in S_v$ into the matrix equation

$$
\begin{bmatrix}
a_{s_1 p_1} & \cdots & a_{s_1 p_m} \\
\vdots & \ddots & \vdots \\
a_{s_m p_1} & \cdots & a_{s_m p_m}
\end{bmatrix}
\begin{bmatrix}
\lambda_{p_1 v} \\
\vdots \\
\lambda_{p_m v}
\end{bmatrix}
=
\begin{bmatrix}
a_{s_1 v} \\
\vdots \\
a_{s_m v}
\end{bmatrix},
$$

where $S_v = \{s_1, \ldots, s_m\}$ and $\text{pa}(v) = \{p_1, \ldots, p_m\}$. Note that the leftmost matrix is precisely $A_{S_v, \text{pa}(v)}$. Hence the system of equations is linearly independent if and only if $A_{S_v, \text{pa}(v)}$ is of full rank.

Now, if $A_{S_v, \text{pa}(v)}$ has full rank, by Lemma 3 of Foygel et al. [7], S_v satisfies the half-trek criterion. On the other hand, if S_v satisfies the half-trek criterion, then we have a system of half-treks with no sided intersection from S_v to $\text{pa}(v)$. Since each entry of $A_{S_v, \text{pa}(v)}$ is a polynomial obtained from summing all the covariances for half-trek between $s_i \in S_v$ and $p_j \in \text{pa}(v)$, $A_{S_v, \text{pa}(v)}$ has full rank. \hfill \Box

Example 3.13. In Example 3.5, we have that $\mathcal{M}(G)$ is quasilinearly identifiable. However, $\mathcal{M}(G)$ is not linearly identifiable since $S_2 = \{3\}$ but there are no half-treks from 3 to 2, therefore S_2 does not satisfy the half-trek criterion with respect to 2.

We now have the following necessary and sufficient conditions for linear identifiability.

Definition 3.14. We say that a vertex v satisfies the **linear identifiability criterion** if there exists a set of vertices S_v such that:

- S_v satisfies the half-trek criterion with respect to v.
- For each vertex $j \in S_v$, either j satisfies the linear identifiability criterion or there are no half-treks from v to j.

Proposition 3.15. Let G be a mixed graph. Then $\mathcal{M}(G)$ is linearly identifiable if and only if we can recursively check that all vertices in G satisfy the linear identifiability criterion.

Proof. From Lemma 3.9 and Theorem 3.10, a graphical model is quasilinearly identifiable if and only if for each vertex $v \in V$, we can find a set of vertices S_v such that

- $|S_v| = |\text{pa}(v)|$,
- $S_v \cap (\text{sib}(v) \cup \{v\}) = \emptyset$ and
- for each vertex $j \in S_v$, either j is recursively quasilinear or there are no half-treks from v to j.

Figure 6. A generically identifiable graph that is not HTC-identifiable.

From Theorem 3.12, a quasilinearly identifiable graphical model is linearly identifiable if and only if the sets S_v defined earlier further satisfy the half-trek criterion with respect to v for each vertex $v \in V$. □

3C. Connection to HTC-identifiable graphs. Note that from Definition 2.3, we can rewrite the definition of HTC-identifiability as follows.

Definition 3.16. Let G be an HTC-identifiable graph. Then, $\mathcal{M}(G)$ is HTC-identifiable if and only if for each vertex v, there is a total ordering \prec such that we can find a vertex set S_v such that

1. S_v satisfies the half-trek criterion with respect to v, and
2. for each vertex $j \in S_v$, either $j \prec v$ or there are no half-treks from v to j.

Theorem 3.17. For any mixed graph G, $\mathcal{M}(G)$ is linearly identifiable if and only if $\mathcal{M}(G)$ is HTC-identifiable.

Proof. (\Rightarrow) Define a total ordering on the vertex set where $j \prec v$ if we defined j to satisfy the linear identifiability criterion before v in the recursion. Hence, the conditions in Definition 3.14 are the same as those in Definition 3.16.

(\Leftarrow) We shall proceed by induction. First, let 1 be the first vertex in the total ordering \prec. Then for each vertex $j \in S_1$, there are no half-treks from 1 to j, hence, 1 satisfies the linear identifiability criterion.

Now, suppose that vertices $1 \prec \cdots \prec k$ satisfy the linear identifiability criterion. We want to show that the $(k+1)$-st vertex in the total ordering \prec also satisfies the linear identifiability criterion. Since $\mathcal{M}(G)$ is HTC-identifiable, there exists some S_{k+1} satisfying the half-trek criterion with respect to $k+1$ and if $j \in S_{k+1}$, either $j \prec k+1$ or there are no half-treks from v to j. But if $j \prec k+1$, by our induction hypothesis, j satisfies the linear identifiability criterion. Hence, $k+1$ also satisfies the linear identifiability criterion. □

Linear identifiability can be used to explain the algebraic properties of HTC-identifiable graphs and graphs that are not HTC-identifiable.

Example 3.18. The graph in Figure 6 is modified from Example 3.4 with an additional vertex added. This graph is not linearly identifiable as we cannot find an S_v satisfying both conditions of Definition 3.14 for any vertex v except for $v = \{1\}$ as we can take $S_1 = \emptyset$. Hence, it is not HTC-identifiable. Suppose

$$\Lambda = \begin{bmatrix} 0 & 0.25 & 0.5 & 0.4 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad \Omega = \begin{bmatrix} 1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0 & 0 & 0 & 0 \\ 0.1 & 0 & 1 & 0 & 0 \\ 0.1 & 0 & 0 & 1 & 0 \\ 0.1 & 0 & 0 & 0 & 1 \end{bmatrix}.$$
As we have seen in Example 3.4, equating $b_{32} = b_{42} = b_{43} = 0$, we obtain a quadratic equation in λ_{12}. Solving this, we obtain $\lambda_{12} = 0.25$ or 0.45. If we equate $b_{32} = b_{52} = b_{53} = 0$ and solve the corresponding quadratic equation, we also obtain $\lambda_{12} = 0.25$ or 0.45. However, equating $b_{42} = b_{52} = b_{54} = 0$ and solving the corresponding quadratic equation, we obtain $\lambda_{12} = 0.25$ or 0.354. Since only $\lambda_{12} = 0.25$ is a common solution, this graph is generically identifiable, even though it is not linearly identifiable.

However, graphs that are not HTC-identifiable may be decomposed, using Tian's decomposition [19], into mixed components that are HTC-identifiable. Hence, the parameters for each of the mixed components could be recovered using linear algebra.

Example 3.19. Consider the graph $G = (V, D, B)$ in Figure 7, left, which is not HTC-identifiable. Suppose we decompose G into its mixed components $G_1 = (V_1, D_1, B_1)$ and $G_2 = (V_2, D_2, B_2)$ shown in Figure 7, right. We see that both G_1 and G_2 are HTC-identifiable. Hence, we are able to use linear algebra to recover the parameters Λ_1 and Λ_2 of G_1 and G_2, respectively. However, for a directed edge $i \to j \in D$, the value of λ_{ij} is identical to that of $[\Lambda_k]_{ij}$ for which $i \to j \in D_k$. So even if G is not HTC-identifiable, its parameters Λ could be recovered using linear algebra operations, but not from the system of equations $\{b_{ij} = 0 | i \leftrightarrow j \not\in B\}$.

4. Constraints in linearly identifiable graphs

In this section, we will demonstrate some applications of our result by exploiting the algebraic properties of HTC-identifiable graphs to compute Λ and the model ideal $J(G)$. While algorithms for HTC-identifiable graphs for finding Λ already exist [7], our argument will be purely algebraic in nature. We will also prove that the generators we find for the model ideal are minimal for some subset of HTC-identifiable graphs.

4A. Generators of the model ideal. Let v be a vertex in a linearly identifiable graph G. Suppose $S_v = \{s_1, \ldots, s_k\}$ and $pa(v) = \{p_1, \ldots, p_k\}$. Then,

$$b_{s_i|v} = a_{s_i|v} - \sum_{\ell \in pa(v)} \lambda_{\ell|v} a_{s_i|\ell} = 0$$
Algorithm 2

Input: The HTC-identifiable graph G, the associated sets $\{S_v \mid v \in V\}$ satisfying the half-trek criterion with respect to $v \in V$ and the total ordering $1 < \cdots < |V|$.
Output: Symbolic values of all regression coefficients as a matrix $\Lambda = (\lambda_{ij})$.
** Initialise:** $v = 1$;
while $v \leq |V|$ do
for $s_1, \ldots, s_k \in S_v$ and $p_1, \ldots, p_k \in \text{pa}(v)$ do
Solve for $\lambda_{p_i v}$ for all $1 \leq i \leq k$ using the equation
\[
\begin{bmatrix}
\lambda_{p_1 v} \\
\vdots \\
\lambda_{p_k v}
\end{bmatrix} =
\begin{bmatrix}
a_{s_1 p_1} & \cdots & a_{s_1 p_k} \\
\vdots & \ddots & \vdots \\
a_{s_k p_1} & \cdots & a_{s_k p_k}
\end{bmatrix}^{-1}
\begin{bmatrix}
a_{s_1 v} \\
\vdots \\
a_{s_k v}
\end{bmatrix},
\]
where $a_{ij} = \sigma_{ij} - \sum_{\ell \in \text{pa}(i)} \lambda_{\ell i} \sigma_{\ell j}$.
end
$v = v + 1$.
end
return $\Lambda = (\lambda_{ij})$.

for each $1 \leq i \leq k$. We can rewrite this into a matrix
\[
\begin{bmatrix}
a_{s_1 p_1} & \cdots & a_{s_1 p_k} \\
\vdots & \ddots & \vdots \\
a_{s_k p_1} & \cdots & a_{s_k p_k}
\end{bmatrix} \begin{bmatrix}
\lambda_{p_1 v} \\
\vdots \\
\lambda_{p_k v}
\end{bmatrix} =
\begin{bmatrix}
a_{s_1 v} \\
\vdots \\
a_{s_k v}
\end{bmatrix},
\]
(11)

By definition of linear identifiability, each of the a_{ij} can be expressed solely in terms of Σ, and the square matrix on the left is invertible. Since linearly identifiable graphs are also HTC-identifiable, we have a total ordering on the vertices of the graph. This leads us to an algorithm to recover Λ, Ω and the generators for the model ideal $J(G)$.

Given Σ, Algorithm 2 could also be used to compute the values of Λ numerically. After obtaining either the numeric or the symbolic values of Λ, we can compute the values for Ω using the equation
\[
\Omega = (I - \Lambda)^T \Sigma (I - \Lambda).
\]
(12)

If both Λ and Ω were computed symbolically, we could proceed to find the generators for the model ideal.

Example 4.1. Consider the graph in Figure 8 with the total ordering $1 < 3 < 5 < 2 < 4$ and sets $S_1 = \emptyset$, $S_3 = \{1\}$, $S_5 = \{3\}$, $S_2 = \{3, 5\}$, $S_4 = \{2\}$. Note that these sets satisfy the conditions in Definition 3.16.

Applying Algorithm 2, for the first vertex, there is nothing to do as $\text{pa}(1) = \emptyset$ and hence we have no λ’s to solve for. For the next vertex, we have $\lambda_{23} = a_{12}^{-1} a_{13} = \sigma_{12}^{-1} \sigma_{13}$. Similarly, $\lambda_{45} = a_{34}^{-1} a_{35} = (\sigma_{34} - \lambda_{23} \sigma_{24})/(\sigma_{35} - \lambda_{23} \sigma_{25}) = (\sigma_{12} \sigma_{34} - \sigma_{13} \sigma_{24})/(\sigma_{12} \sigma_{35} - \sigma_{13} \sigma_{25})$ and so forth.
Theorem 4.2. Suppose that Λ is a matrix of rational functions with indeterminates Σ found by Algorithm 2. For an acyclic HTC-identifiable graph G, the model ideal is generated by
\[
\{(I - \Lambda)^T \Sigma (I - \Lambda) \mid i \leftrightarrow j \notin B, i \notin S_j \text{ and } j \notin S_i\}
\]
on the cone of positive definite matrices. For a cyclic HTC-identifiable graph, the model ideal is given by saturating the above ideal by $\det(I - \Lambda)$.

Proof. Equating the entries in (5), the equality constraints on the cone of positive definite matrices are generated by $J(G) = \{(I - \Lambda)^T \Sigma (I - \Lambda) \mid i \leftrightarrow j \notin B\}$.

We claim that if either $i \in S_j$ or $j \in S_i$, $\{(I - \Lambda)^T \Sigma (I - \Lambda) \mid i \leftrightarrow j \notin B\}$ is the zero polynomial. From Algorithm 2, we used the system of equations $\{b_{sv} = 0 \mid s \in S_v\}$ to solve for λ_{pv} for all $p \in pa(v)$. Hence if either $i \in S_j$ or $j \in S_i$, substituting these λ’s back into the polynomial b_{ij} will result in a zero polynomial. Note that for all other choices of (i, j), substituting Λ will not result in b_{ij} being a zero polynomial as the structural equations are linearly independent.

In cyclic graphs, we remove the infeasible solution $\det(I - \Lambda) = 0$ by saturating the ideal. □

Theorem 4.2 could be interpreted as having each missing bidirected edge being either a part of the system of equations used in Algorithm 2 to solve for Λ, or is a generator for the model ideal $J(G)$. In particular, our choice for $J(G)$ is generated by $\binom{|V|}{2} - |D| - |B|$ polynomials. Note that the result of Theorem 4.2 is very similar to [12, Theorem 1] where it was proven that $b_{ij} \in I(G)$ if $i \leftrightarrow j \notin B, i \notin S_j$ and $j \notin S_i$. However, in Theorem 4.2, we showed that these polynomials in fact generate the model ideal.

Example 4.3. Let G be the Verma graph in Figure 2, then we have $S_v = pa(v)$ for all vertex v and
\[
\Lambda = \begin{bmatrix}
0 & \lambda_{12} & \lambda_{13} & 0 \\
0 & 0 & \lambda_{23} & 0 \\
0 & 0 & 0 & \lambda_{34} \\
0 & 0 & 0 & 0
\end{bmatrix}, \quad \Omega = \begin{bmatrix}
\omega_{11} & 0 & 0 & 0 \\
0 & \omega_{22} & 0 & \omega_{24} \\
0 & 0 & \omega_{33} & 0 \\
0 & \omega_{24} & 0 & \omega_{44}
\end{bmatrix}.
\]

In the first iteration of our algorithm, we obtain $\lambda_{12} = \sigma_{11}^{-1} \sigma_{12}$. In the second iteration, we have
\[
\begin{bmatrix}
\lambda_{13} \\
\lambda_{23}
\end{bmatrix} = \begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix}^{-1} \begin{bmatrix}
a_{13} \\
a_{23}
\end{bmatrix},
\]
where $a_{ij} = \sigma_{ij} - \sum_{k \in pa(i)} \lambda_{ki} \sigma_{kj}$. Solving this matrix equation, we obtain
\[
\lambda_{13} = \frac{\sigma_{13} \cdot 2}{\sigma_{11} \cdot 2} \quad \text{and} \quad \lambda_{23} = \frac{\sigma_{23} \cdot 1}{\sigma_{22} \cdot 1},
\]

Figure 8. An HTC-identifiable graph with cycles.
where the conditional covariance matrix of a multivariate normal distribution is given by
\[\Sigma_{AC\cdot B} = \Sigma_{AC} - \Sigma_{AB} \Sigma_{BB}^{-1} \Sigma_{BC}. \]
In the last iteration, we have \(\lambda_{34} = a_{33}^{-1} a_{34} = \sigma_{3412}/\sigma_{3312} \). Note that we could have computed \(\Omega \) symbolically by (5). Finally, since the only pair of non-adjacent vertices is 1 and 4, we have
\[J(G) = \langle b_{41} \rangle = \left(\sigma_{14} - \sum_{k=1}^{3} \lambda_{k4} \sigma_{1k} \right) = \langle \sigma_{14} - \lambda_{34} \sigma_{13} \rangle \]
\[= \langle \sigma_{11} \sigma_{13} \sigma_{22} \sigma_{34} - \sigma_{12}^{2} \sigma_{13} \sigma_{34} - \sigma_{11} \sigma_{14} \sigma_{22} \sigma_{33} + \sigma_{12} \sigma_{14} \sigma_{33} - \sigma_{11} \sigma_{13} \sigma_{23} \sigma_{24} + \sigma_{11} \sigma_{14} \sigma_{23} + \sigma_{12} \sigma_{13}^{2} \sigma_{24} - \sigma_{12} \sigma_{13} \sigma_{14} \sigma_{23} \rangle \]
which is exactly what we have in Example 2.4. Note that the second to last equality comes from the fact that \(\lambda_{14} = \lambda_{24} = 0 \).

4B. Minimality of the generators. Now that, for any HTC-identifiable \(G \), we can find the generators of \(J(G) \), it is natural to ask if generators of the model ideal found in Theorem 4.2 are in fact the minimal generators in the following sense:

Definition 4.4. We say that the polynomials \(f_1, \ldots, f_n \) are minimal generators for \(I \) if we have \(\langle f_1, \ldots, f_n \rangle = I \) but \(\langle f_1, \ldots, f_{i-1}, f_{i+1}, \ldots, f_n \rangle \neq I \) for any \(1 \leq i \leq n \). In other words, the polynomials \(f_1, \ldots, f_n \) generate \(I \) but if we remove any of the \(f_i \) for \(1 \leq i \leq n \), the remaining polynomials no longer generate \(I \).

First, we will define a subset of HTC-identifiability:

Definition 4.5. The sets \(\{ S_v \mid v \in V \} \) in an HTC-identifiable graph have no subset cycles if they satisfy the criterion in Definition 3.16 and there do not exist vertices \(v_1, \ldots, v_n \) with \(v_1 \in S_{v_2}, v_2 \in S_{v_3}, \ldots, v_n \in S_{v_1} \).

Lemma 4.6. Suppose that we have an HTC-identifiable graph \(G = (V, D, B) \) with a collection of sets \(\{ S_v \mid v \in V \} \) that has no subset cycles. Further suppose that there exist vertices \(i, j \in V \) such that \(i \leftrightarrow j \notin B, i \notin S_j \) and \(j \notin S_i \). Then, we can add the bidirected edge \(i \leftrightarrow j \) to obtain another HTC-identifiable graph with the sets \(\{ S_v \mid v \in V \} \) unchanged.

Proof. First, we check that each \(S_v \) still satisfies the half-trek criterion with respect to \(v \).

1. \(|S_v| = |\text{pa}(v)| \) still holds as adding bidirected edges does not impact the number of parents of any vertex \(v \) while each \(S_v \) remains unchanged.

2. Since \(S_i \cap (\{i\} \cup \text{sib}(i)) = \emptyset \), adding the bidirected edge \(i \leftrightarrow j \) where \(j \notin S_i \) preserves that equality. By symmetry, \(S_j \cap (\{j\} \cup \text{sib}(j)) = \emptyset \). For any other vertices \(w \), the equation \(S_w \cap (\{w\} \cup \text{sib}(w)) = \emptyset \) is preserved as \(\text{sib}(w) \) and \(S_w \) remains unchanged.

3. There still exists a system of half-treks with no sided intersection from \(S_v \) to \(\text{pa}(v) \), as adding the bidirected edge does not impact half-treks.
Recall that a graph is HTC-identifiable if S_v satisfies the half-trek criterion with respect to each vertex $v \in V$ and $w \prec v$ whenever $w \in S_v \cap \text{htr}(v)$. For the second condition, by definition by the total ordering in HTC-identifiable graphs, it is equivalent to view the total ordering as a topological ordering $<$ on the directed graph $G' = (V', D', B')$ with $V' = V$, $D' = \{ w \to v \mid w \in S_v \cap \text{htr}(v) \}$, $B' = \emptyset$ since $w \prec v$ in G if and only if $w < v$ in G'. If the sets S_v have no subset cycles, G' is a DAG and a topological ordering exists. Therefore, leaving S_v unchanged, the new graph satisfies both conditions of HTC-identifiability. □

Theorem 4.7. If G is an HTC-identifiable graph with no subset cycles, then the generators of the model ideal $J(G)$ found in Theorem 4.2 are minimal.

Proof. Suppose that $J(G) = (f_1, \ldots, f_n)$ is not a minimal generator of $J(G)$. Without loss of generality, suppose that the constraint f_1 corresponding to the missing edge between v and w is redundant such that $J(G) = (f_2, \ldots, f_n)$. Now, consider the graph G' obtained by adding the bidirected edge $v \leftrightarrow w$ to G. Note that G' is also an HTC-identifiable graph by Lemma 4.6, with $J(G') = (f_2, \ldots, f_n)$.

However, since the constraint f_1 can be generated by polynomials generating $J(G')$, the bidirected edge $v \leftrightarrow w$ in G' can only take one value $\omega_{vw} = 0$, which is a contradiction. □

Corollary 4.8. If G is a bow-free acyclic graph, then the generators of the model ideal $J(G)$ found in Theorem 4.2 are minimal.

Proof. In a bow-free acyclic graph, we have $S_v = \text{pa}(v)$. Since the graph is acyclic, these sets contain no subset cycles. The result follows from Theorem 4.7. □

Example 4.9. If we have an HTC-identifiable graph that does not satisfy the conditions of Lemma 4.6, it is possible that it is no longer HTC-identifiable if we add a bidirected edge.

Consider the graph in Figure 9. Before adding the bidirected edge $1 \leftrightarrow 4$, we must have $S_5 = \{3\}$. Now, for S_3, we can have either $S_3 = \{1\}$ or $S_3 = \{5\}$. However, if we pick the latter, we have $3 \in S_3$ and $5 \in S_3$ which is HTC-nonidentifiable [7, Theorem 2]. Similarly, we have either $S_1 = \{3\}$ or $S_1 = \{5\}$ but by picking the former we have $3 \in S_1$ and $1 \in S_3$ which is HTC-nonidentifiable. Hence, the only choice is $S_1 = \{5\}$, $S_3 = \{1\}$ and $S_5 = \{3\}$.

Now, we have $1 \notin S_4$ and $4 \notin S_1$. Adding the edge $1 \leftrightarrow 4$, we obtain $1 \in S_3 \cap \text{htr}(3)$, $3 \in S_5 \cap \text{htr}(5)$ and $5 \in S_1 \cap \text{htr}(1)$. Hence, the resulting graph is no longer HTC-identifiable as we can no longer find a total ordering.
4C. Time complexity. In this section, we will show that if \(S_v \) is given for every \(v \in V \), we are able to compute \(\Lambda \) and \(\Omega \) numerically in polynomial time. This is useful if we are working in graphs whose \(S_v \) is known or easy to find, such as acyclic bow-free graphs where \(S_v = \text{pa}(v) \).

4C1. Numerical computations. We first introduce a naive bound for the numerical complexity of the above algorithm based on the number of vertices of \(G \). We shall also assume that our numeric values of \(\Sigma \) do not result in any singular matrices in Algorithm 2.

Theorem 4.10. Suppose that \(G \) is HTC-identifiable, then the complexity of finding \(S_v \) for each vertex \(v \) is at most \(O(|V|^2(|V| + r)^3) \) where \(r \leq |D|/2 \) is the number of reciprocal edge pairs in \(D \).

Proof. See [7, Theorem 7]. □

Proposition 4.11. Suppose \(G \) is HTC-identifiable and \(S_v \) is known for each \(v \in V \). Then the complexity of finding \(\Lambda \) and \(\Omega \) numerically is at most \(O(|V|^4) \).

Proof. The complexity of solving \(k \) equations with \(k \) unknowns using naive Gauss–Jordan elimination is \(O(k^3) \). In our algorithm for finding the values of \(\lambda_{ij} \)'s, we first solve a linear equation with at most one unknown, then two linear equations with at most two unknowns and so on until we solve \(|V| - 1 \) linear equations with at most \(|V| - 1 \) unknowns. Since we this process is iterated \(|V| \) times, the complexity of finding the values of \(\lambda_{ij} \)'s is at most \(O(|V|^4) \). Finally, since the complexity of matrix multiplication is \(O(|V|^3) \), we can compute both \(\Lambda \) and \(\Omega \) in \(O(|V|^4) \). □

In particular, the bound of \(O(|V|^4) \) is attained by a complete DAG. Furthermore, in graphs where \(S_v \) is known, Proposition 4.11 could be useful. Otherwise, if \(S_v \) is unknown, the complexity is at most \(O(|V|^2(|V| + r)^3) \).

One might notice that each unknown \(\lambda_{ij} \) corresponds precisely to a directed edge in \(G \). In a sparse graph where \(|D| \) is small, it might be beneficial to express the complexity in terms of \(|D| \) instead.

Proposition 4.12. Suppose \(G \) is HTC-identifiable and \(S_v \) is known for each \(v \in V \). Then the complexity of finding \(\Lambda \) numerically is at most \(O(|D|^3) \).

Proof. This follows from the fact that we have at least \(|D| \) equations with exactly \(|D| \) unknowns. Observe that each time when we apply the Gauss–Jordan elimination, we can solve for any subset of the \(|D| \) unknowns. Therefore, we obtain the optimization problem

\[
\text{maximise } k_1^3 + \cdots + k_{|D|}^3 \text{ subject to } k_1 + \cdots + k_{|D|} = |D| \text{ where } k_1, \ldots, k_{|D|} \in \mathbb{Z}_{\geq 0},
\]

where \(k_i \) is the number of unknowns in the \(i \)-th set of equations. Since the cubic term grows faster than the linear term, the maximum is obtained when \(k_i = |D| \) for some \(i \) and \(k_j = 0 \) for all \(j \neq i \). □

Corollary 4.13. Suppose \(G \) is an HTC-identifiable graph and \(S_v \) is known for each \(v \in V \). Denote \(P = \max_{v \in V} \text{pa}(v) \). Then the complexity of finding \(\Lambda \) numerically is at most \(O(|V|^P^3) \).

Proof. We use the Gauss–Jordan elimination at most \(v \) times, solving for at most \(P \) unknowns each time. □
Symbolic complications. Now, we will show that our algorithm does not run symbolic calculations in polynomial time by providing a simple counter-example. Since finding the generators of \(J(G) \) requires symbolic computation, we cannot compute \(J(G) \) in polynomial time in general.

Consider a complete DAG such as the graph shown in Figure 10. Using our algorithm, solving for \(\lambda \) symbolically, we obtain

\[
\lambda_{14} = \frac{\sigma_{14}}{\sigma_{11}} \cdot \frac{23}{\sigma_{12}} \\
\lambda_{24} = \frac{\sigma_{24}}{\sigma_{22}} \cdot \frac{13}{\sigma_{13}} \\
\lambda_{34} = \frac{\sigma_{34}}{\sigma_{33}} \cdot \frac{12}{\sigma_{12}}
\]

In particular, the regression coefficient \(\lambda_{ij} \) is precisely \(\sigma_{ij}/\sigma_{ii} \cdot S \) in a DAG, where \(S = \text{pa}(j) \setminus \{i\} \) \cite{13}.

Recall that the conditional covariance matrix of a multivariate normal distribution is given by

\[
\Sigma_{A,A-B} = \Sigma_{A} - \Sigma_{A} \Sigma_{B}^{-1} \Sigma_{A,B}.
\]

Now, there are \(|B|! \) different terms in \(\text{det}(\Sigma_{B,B}) \). Since \(\sigma_{ij,v} \propto \text{det}(\Sigma_{-i,-j}) \) which has \((|V|-1)! \) terms, the number of terms in \(\lambda_{ij} \) increases factorially with respect to \(|\text{pa}(i)| \). As Algorithm 2 requires us to invert matrices with entries as functions of \(\lambda \), we might not be able to solve for \(\Lambda \) symbolically in polynomial time. However, the expression may in principle factorise, and therefore we might only have to deal with \(O(\log(n!)) = O(n \log(n)) \) terms.

5. Conclusion

In this paper, we have defined a subset of generically identifiable graphs called \textit{linearly identifiable graphs}. Graphs are linearly identifiable if their model parameters can be recovered from the covariance matrix with straightforward linear algebra operations, given in Algorithm 2 and (12). We have also proven that a graph is linearly identifiable if and only if it is HTC-identifiable.

Furthermore, we have shown that, for some graphs, there is a bijection between the generators of the model ideal, generated by all equality constraints of \(\mathcal{M}(G) \cap PD_V \), and the vertex pairs

\[
\{(i, j) \mid i \leftrightarrow j \notin B, \ i \notin S_j \text{ and } j \notin S_i\}.
\]

In graphs where the collection of sets \(\{S_v \mid v \in V\} \) has no subset cycles, the generators of the vertex pairs are minimal. To prove this, we utilise Lemma 4.6, which fails to hold in all HTC-identifiable graphs as demonstrated in Example 4.9. However, we do conjecture that the generators we found are minimal for all HTC-identifiable graphs.

Conjecture 1. For any HTC-identifiable graph \(G \), the generators of the model ideal \(J(G) \) found in Theorem 4.2 are minimal.
Finally, we have shown that the complexity to recover the parameters of an HTC-identifiable graph G, given that we know $\{S_v \mid v \in V\}$ is at most $O(|V|^4)$. Meanwhile, it is known that the complexity of finding S_v for each vertex v given an HTC-identifiable graph is at most $O(|V|^2(|V| + r)^3)$ where $r \leq |D|/2$ is the number of reciprocal edge pairs in D. Unfortunately, we do not have an efficient algorithm to find the sets S_v without subset cycles, if such a collection of sets exists.

References

[1] K. A. Bollen, *Structural equations with latent variables*, John Wiley & Sons, New York, 1989.
[2] C. Brito and J. Pearl, “A new identification condition for recursive models with correlated errors”, *Struct. Equ. Model.* 9:4 (2002), 459–474.
[3] D. A. Cox, J. Little, and D. O’Shea, *Identities, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra*, 4th ed., Springer, 2015.
[4] M. Drton, “Algebraic problems in structural equation modeling”, pp. 35–86 in *The 50th anniversary of Gröbner bases*, Adv. Stud. Pure Math. 77, Math. Soc. Japan, Tokyo, 2018.
[5] M. Drton, R. Foygel, and S. Sullivant, “Global identifiability of linear structural equation models”, *Ann. Statist.* 39:2 (2011), 865–886.
[6] M. Drton, E. Robeva, and L. Weihs, “Nested covariance determinants and restricted trek separation in Gaussian graphical models”, *Bernoulli* 26:4 (2020), 2503–2540.
[7] R. Foygel, J. Draisma, and M. Drton, “Half-trek criterion for generic identifiability of linear structural equation models”, *Ann. Statist.* 40:3 (2012), 1682–1713.
[8] D. Geiger, T. Verma, and J. Pearl, “Identifying independence in Bayesian networks”, *Networks* 20:5 (1990), 507–534.
[9] J. B. Grace, *Structural Equation Modeling and Natural Systems*, Cambridge University Press, 2006.
[10] S. L. Hershberger, “The growth of structural equation modeling: 1994–2001”, *Struct. Equ. Model.* 10:1 (2003), 35–46.
[11] R. KJ and G. S., “Causation and causal inference in epidemiology”, *Am. J. Public Health* 95 (2005), 144–150.
[12] T. van Ommen and J. M. Mooij, “Algebraic equivalence of linear structural equation models”, in *Proceedings of the Thirty-fifth Conference on Uncertainty in Artificial Intelligence* (Sydney, 2017), 2017.
[13] J. Pearl, *Causality: models, reasoning, and inference*, Cambridge University Press, 2000.
[14] J. Pearl and T. S. Verma, “A statistical semantics for causation”, *Statistics and Computing* 2 (1992), 91 – 95.
[15] T. S. Richardson, R. J. Evans, J. M. Robins, and I. Shpitser, “Nested Markov properties for acyclic directed mixed graphs”, 2017. arXiv 1701.06686
[16] M. E. Sobel, “Causal Inference in the Social Sciences”, *Journal of the American Statistical Association* 95:450 (2000), 647–651.
[17] P. Spirtes, C. Glymour, and R. Scheines, *Causation, prediction, and search*, Lecture Notes in Statistics 81, Springer, 1993.
[18] S. Sullivant, “Algebraic geometry of Gaussian Bayesian networks”, *Adv. in Appl. Math.* 40:4 (2008), 482–513.
[19] J. Tian and J. Pearl, “A general identification condition for causal effects”, pp. 567–573 in *Proceedings of the Eighteenth National Conference on Artificial Intelligence* (Menlo Park, CA, 2002), AAAI Press, 2002.
[20] J. Tian and J. Pearl, “On the testable implications of causal models with hidden variables”, pp. 519–527 in *Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence* (Alberta, 2002), edited by A. Darwiche and N. Friedman, 2013.
[21] S. Wright, “Correlation and causation”, *Journal of Agricultural Research* 20 (1921), 557–585.
[22] S. Wright, “The Method of Path Coefficients”, *The Annals of Mathematical Statistics* 5:3 (1934), 161–215.
Department of Statistics, University of Oxford, Oxford, United Kingdom

ROBIN EVANS: evans@stats.ox.ac.uk
Department of Statistics, University of Oxford, Oxford, United Kingdom
