Gene expression profile of sodium channel subunits in the anterior cingulate cortex during experimental paclitaxel-induced neuropathic pain in mice

Willias Masocha

1 Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait

Corresponding Author: Willias Masocha
Email address: masocha@hsc.edu.kw

Paclitaxel, a chemotherapeutic agent, causes neuropathic pain whose supraspinal pathophysiology is not fully understood. Dysregulation of sodium channel expression, studied mainly in the periphery and spinal cord level, contributes to the pathogenesis of neuropathic pain. We examined gene expression of sodium channel (Nav) subunits by real time PCR in the anterior cingulate cortex (ACC) at day 7 post first administration of paclitaxel, when mice had developed paclitaxel-induced thermal hyperalgesia. The ACC was chosen because increased activity in the ACC has been observed during neuropathic pain. In the ACC of vehicle-treated animals the threshold cycle (Ct) values for Nav1.4, Nav1.5, Nav1.7, Nav1.8 and Nav1.9 were above 30 and/or not detectable in some samples. Thus, comparison in mRNA expression between untreated control, vehicle-treated and paclitaxel treated animals was done for Nav1.1, Nav1.2, Nav1.3, Nav1.6, Nax as well as Navβ1-Navβ4. There were no differences in the transcript levels of Nav1.1-Nav1.3, Nav1.6, Nax, Navβ1-Navβ3 between untreated and vehicle-treated mice, however, vehicle treatment increased Navβ4 expression. Paclitaxel treatment significantly increased the mRNA expression of Nav1.1, Nav1.2, Nav1.6 and Nax, but not Nav1.3, sodium channel alpha subunits compared to vehicle-treated animals. Treatment with paclitaxel significantly increased the expression of Navβ1 and Navβ3, but not Navβ2 and Navβ4, sodium channel beta subunits compared to vehicle-treated animals. These findings suggest that during paclitaxel-induced neuropathic pain there is differential upregulation of sodium channels in the ACC, which might contribute to the increased neuronal activity observed in the area during neuropathic pain.
Gene expression profile of sodium channel subunits in the anterior cingulate cortex during experimental paclitaxel-induced neuropathic pain in mice

Abstract

Paclitaxel, a chemotherapeutic agent, causes neuropathic pain whose supraspinal pathophysiology is not fully understood. Dysregulation of sodium channel expression, studied mainly in the periphery and spinal cord level, contributes to the pathogenesis of neuropathic pain. We examined gene expression of sodium channel (Na\textsubscript{v}) subunits by real time PCR in the anterior cingulate cortex (ACC) at day 7 post first administration of paclitaxel, when mice had developed paclitaxel-induced thermal hyperalgesia. The ACC was chosen because increased activity in the ACC has been observed during neuropathic pain. In the ACC of vehicle-treated animals the threshold cycle (Ct) values for Na\textsubscript{v}1.4, Na\textsubscript{v}1.5, Na\textsubscript{v}1.7, Na\textsubscript{v}1.8 and Na\textsubscript{v}1.9 were above 30 and/or not detectable in some samples. Thus, comparison in mRNA expression between untreated control, vehicle-treated and paclitaxel treated animals was done for Na\textsubscript{v}1.1, Na\textsubscript{v}1.2, Na\textsubscript{v}1.3, Na\textsubscript{v}1.6, Na\textsubscript{x} as well as Na\textsubscript{v}\beta1-Na\textsubscript{v}\beta4. There were no differences in the transcript levels of Na\textsubscript{v}1.1-Na\textsubscript{v}1.3, Na\textsubscript{v}1.6, Na\textsubscript{x}, Na\textsubscript{v}\beta1-Na\textsubscript{v}\beta3 between untreated and vehicle-treated mice, however, vehicle treatment increased Na\textsubscript{v}\beta4 expression. Paclitaxel treatment significantly increased the mRNA expression of Na\textsubscript{v}1.1, Na\textsubscript{v}1.2, Na\textsubscript{v}1.6 and Na\textsubscript{x} but not Na\textsubscript{v}1.3, sodium channel alpha subunits compared to vehicle-treated animals. Treatment with paclitaxel significantly increased the expression of Na\textsubscript{v}\beta1 and Na\textsubscript{v}\beta3, but not Na\textsubscript{v}\beta2 and Na\textsubscript{v}\beta4, sodium channel beta subunits compared to vehicle-treated animals. These findings suggest that during paclitaxel-induced neuropathic pain there is differential upregulation of sodium channels in the
ACC, which might contribute to the increased neuronal activity observed in the area during neuropathic pain.

Willias Masocha

Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait

Phone number: +965 24636078 Email: masocha@hsc.edu.kw

Introduction

Voltage-gated sodium channels \((\text{Na}_v) \) are responsible for action potential initiation and propagation in neurons and other excitable cells. Sodium channels are composed of a pore-forming \(\alpha \) subunit associated with one or more auxiliary \(\beta \) subunits that modulate channel gating, expression and localisation (Catterall et al. 2005; Isom 2001). There are ten sodium channel \(\alpha \) subunits \(\text{Na}_v^{1.1} - \text{Na}_v^{1.9} \) and \(\text{Na}_x \) encoded by genes SCN1A-SCN11A, and four \(\beta \) subunits \(\text{Na}_v^{\beta 1} - \text{Na}_v^{\beta 4} \), encoded by genes SCN1B-SCN4B (Brackenbury & Isom 2008; Cummins et al. 2007; Yu & Catterall 2003). These sodium channel subunits are expressed in a wide variety of tissues and the level of expression of each channel varies between tissues.

Sodium channels play an important role in the propagation of nociceptive signals. Changes in sodium channel function or expression can result in altered pain sensitivity and perception in various conditions including neuropathic pain (Bagal et al. 2015; Cummins et al. 2007). Dysregulated expression of sodium channels in both the periphery and the central nervous system (CNS), which can result in frequent and ectopic firing in neurons, have been associated with the pathogenesis of neuropathic pain (Craner et al. 2002; Lindia et al. 2005; Pertin et al. 2005; Rogers et al. 2006).
In the periphery, the expression all sodium channel α subunits was downregulated, except for Na\(_v\)1.2, in the dorsal root ganglia (DRG) of rats with spared nerve injury (SNI) (Laedermann et al. 2014). Another study observed downregulation of Na\(_v\)1.8 and Na\(_v\)1.9 in the DRG of a chronic constriction injury (CCI) model of neuropathic pain (Dib-Hajj et al. 1999). However, other studies have observed upregulation of sodium channel subunits such as Nav1.3, Nav1.6, Nav1.9, Na\(_v\)\(\beta\)2 and Na\(_v\)\(\beta\)3 in the DRG of animal models of neuropathic pain (Craner et al. 2002; Lindia et al. 2005; Pertin et al. 2005; Shah et al. 2001; Shah et al. 2000).

In the spinal cord Na\(_v\)1.3 was also found to be upregulated in the dorsal horn neurons of CCI and spinal cord injury (SCI) models of neuropathic pain (Hains et al. 2003; Hains et al. 2004). Sciatic nerve injury (axotomy) resulted in upregulation of Nav1.7 in the spinal cord, which had strong correlation with the level of pain behaviour (Persson et al. 2009). In a model of painful diabetic neuropathy there was upregulation of Na\(_v\)\(\beta\)3 expression in spinal cord (Shah et al. 2001). Na\(_v\)\(\beta\)1 expression increased whereas Nav\(\beta\)2 decreased in the spinal cord of neuropathic rats (Blackburn-Munro & Fleetwood-Walker 1999).

In the brain dysregulation of sodium channel expression has been observed in different areas during neuropathic pain. In the prefrontal cortex Na\(_v\)1.1 expression was upregulated in mice with SNI (Alvarado et al. 2013). The expression of Na\(_v\)1.3 was upregulated in the ventral posterolateral (VPL) nucleus of the thalamus of rats with CCI or spinal cord contusion injury (Hains et al. 2005; Zhao et al. 2006).

Recently, we observed increased excitability of the anterior cingulate cortex (ACC) to electrophysiological stimulation in a rat model of paclitaxel-induced neuropathic pain (PINP) (Nashawi et al. 2016). Paclitaxel is a chemotherapeutic drug whose therapeutic use is sometimes
limited by the development of dose-dependent painful neuropathy (Scripture et al. 2006; Wolf et al. 2008). The ACC is an area in the brain involved in pain perception and modulation, and has increased activity during neuropathic pain (Hsieh et al. 1995; Vogt 2005; Xie et al. 2009; Zhuo 2008). In previous studies, we observed changes in the expression of gamma-aminobutyric acid (GABA)-ergic and glutamatergic molecules in the ACC of a mouse model of PINP (Masocha 2015a; Masocha 2015b). However, the expression of sodium channels in the ACC during PINP has not been studied as yet. Studying the expression of sodium channels in the ACC during PINP is important as they might contribute to the increased neuronal excitability, which we observed in the ACC during PINP (Nashawi et al. 2016). Thus, in the current study the gene expression of sodium channel subunits in the ACC was evaluated in mice at a time point when the mice had paclitaxel-induced thermal hyperalgesia (Masocha 2015a; Nieto et al. 2008; Parvathy & Masocha 2013). In previous studies, gene expression changes of other molecules were observed in the ACC of mice with paclitaxel-induced thermal hyperalgesia (Masocha 2015a; Masocha 2015b).

Materials and Methods

Animals

Female BALB/c mice (8 to 12 weeks old; 20 – 30 g; n = 49) supplied by the Animal Resources Centre (ARC) at the Health Sciences Center (HSC), Kuwait University were used. The animals were kept in temperature controlled (24 ± 1°C) rooms with food and water given ad libitum. Animals were handled in compliance with the Kuwait University, HSC, ARC guidelines and in compliance with Directive 2010/63/EU of the European Parliament and of the Council on the protection of animals used for scientific purposes. All animal experiments were approved by the
Paclitaxel administration

Paclitaxel (Cat. No. 1097, Tocris, Bristol, UK) was dissolved in a solution made up of 50% Cremophor EL and 50% absolute ethanol to a concentration of 6 mg/ml and then diluted in normal saline (NaCl 0.9%), to a final concentration of 0.2 mg/ml just before administration. Mice were treated intraperitoneally (i.p.) for 5 consecutive days with paclitaxel 2 mg/kg, the cumulative dose was 10 mg/kg, or its vehicle. This treatment regimen produces painful neuropathy and thermal hyperalgesia in mice on day 7 post first administration (Nieto et al. 2008; Parvathy & Masocha 2013). A group of control mice was left untreated.

Tissue preparation and Real time RT-PCR

Mice were anesthetized with isoflurane, sacrificed by decapitation on day 7 post first administration of paclitaxel. The ACC was dissected and prepared for RNA extraction as described previously (Masocha 2015b).

Gene transcripts of the 10 sodium channel alpha subunits (Na\textsubscript{v}1.1, Na\textsubscript{v}1.2, Na\textsubscript{v}1.3, Na\textsubscript{v}1.4, Na\textsubscript{v}1.5, Na\textsubscript{v}1.6, Na\textsubscript{v}1.7, Na\textsubscript{v}1.8, Na\textsubscript{v}1.9 and Na\textsubscript{x}) and 4 sodium channel beta subunits (Na\textsubscript{v}\beta1, Na\textsubscript{v}\beta2, Na\textsubscript{v}\beta3 and Na\textsubscript{v}\beta4) were quantified in the ACC of untreated, vehicle-treated and paclitaxel-treated mice by real time PCR. Total RNA was extracted from the fresh frozen ACC using the RNeasy Kit (Qiagen GmbH), reverse-transcribed, and the mRNA levels were quantified on an ABI Prism® 7500 sequence detection system (Applied Biosystems) as previously described (Masocha 2009; Masocha 2015a). The primer sequences which were used, listed in Table 1, were ordered from Invitrogen (Life Technologies) and/or synthesized at the
Research Core Facility (RCF), HSC, Kuwait University. Threshold cycle (Ct) values for all cDNA samples were obtained and the amount of mRNA of individual animal sample (n = 8 to 12 per group) was normalized to cyclophilin (housekeeping gene) (ΔCt). The relative amount of target gene transcripts was calculated using the $2^{-\Delta\Delta C_t}$ method as described previously (Livak & Schmittgen 2001). These values were then used to calculate the mean and standard error of the relative expression of the target gene mRNA in the ACC of paclitaxel- and vehicle-treated mice.

Statistical analyses

Statistical analyses were performed using Mann Whitney U test using Graph Pad Prism software (version 5.0). The differences were considered significant at $p < 0.05$. The results in the text and figures are expressed as the means ± S.E.M.
Results

The mRNA expression of sodium channel subunits were analysed in the ACC at day 7, a time when the mice treated with paclitaxel had developed thermal hyperalgesia as we described previously (Masocha 2014; Parvathy & Masocha 2013) i.e. reduction in reaction latency compared to the baseline latency and vehicle-treated mice (5.7 ± 0.3 s compared to 9.6 ± 0.3 s and 9.3 ± 0.3 s, respectively; n = 8 vehicle-treated mice and 10 paclitaxel treated-mice; p < 0.01 for both comparisons).

Expression of sodium channel alpha subunits transcripts in the ACC at 7 days after paclitaxel administration

In vehicle-treated animals the Ct values for Na\(_v\)1.4, Na\(_v\)1.5, Na\(_v\)1.7, Na\(_v\)1.8 and Na\(_v\)1.9 were above 30 and not detectable in some samples, whereas the Ct values for Na\(_v\)1.1, Na\(_v\)1.2, Na\(_v\)1.3, Na\(_v\)1.6 and Na\(_x\) were below 30. Thus, comparison in mRNA expression between control and paclitaxel treated animals was done for Na\(_v\)1.1, Na\(_v\)1.2, Na\(_v\)1.3, Na\(_v\)1.6 and Na\(_x\).

Treatment with vehicle did not alter the expression of the 5 sodium channel alpha subunits evaluated, Na\(_v\)1.1 (p = 1.000), Na\(_v\)1.2 (p = 0.1143), Na\(_v\)1.3 (p = 0.6857), Na\(_v\)1.6 (p = 0.3429) and Na\(_x\) (p = 0.3429), compared to untreated control (Figures 1A and 2A). Amongst the 5 sodium channel alpha subunits (Na\(_v\)1.1, Na\(_v\)1.2, Na\(_v\)1.3, Na\(_v\)1.6 and Na\(_x\)) treatment with paclitaxel did not significantly alter the mRNA expression of the Na\(_v\)1.3 (p = 0.1379), but significantly increased the expression of Na\(_v\)1.1 by 2.1 ± 0.2 fold (p = 0.0002), Na\(_v\)1.2 by 6.2 ± 1.6 fold (p = 0.0003), Na\(_v\)1.6 by 3.8 ± 0.7 fold (p = 0.0051), compared to vehicle-treated controls (Figure 1B). Na\(_x\) was significantly upregulated by 7.6 ± 2.2 fold (p = 0.0012) in the ACC by treatment with paclitaxel compared to treatment with vehicle (Figure 2B). The most upregulated sodium
channel alpha subunits were Na\textsubscript{1.2} and Na\textsubscript{x}, which were increased by more than sixfold after treatment with paclitaxel.

Expression of sodium channel beta subunits transcripts in the ACC at 7 days after paclitaxel administration

Treatment with vehicle did not alter the expression of 3 sodium channel beta subunits, Navβ1 (p = 0.2000), Navβ2 (p = 0.4857), Navβ3 (p = 0.6857), but significantly increased the expression of Navβ4 (p = 0.0286), compared to untreated control (Figure 3A). Amongst the 4 sodium channel beta subunits analysed treatment with paclitaxel significantly increased the expression of Na\textsubscript{β1} by 2.8 ± 0.5 fold (p = 0.0047) and Na\textsubscript{β3} by 4.4 ± 1.1 fold (p = 0.0127), but not Na\textsubscript{β2} (p = 0.2301) and Na\textsubscript{β4} (p = 0.0525), compared to vehicle-treated controls (Figure 3). The most upregulated sodium channel beta subunit was Na\textsubscript{β3}, which was increased by more than fourfold after treatment with paclitaxel.

Discussion

This study presents the first comprehensive analysis of the expression of transcripts of sodium channel subunits in the ACC during neuropathic pain, specifically paclitaxel-induced neuropathic pain (PINP). The ACC is an area of the brain associated with pain perception and modulation (Vogt 2005; Xie et al. 2009; Zhuo 2008).

No reports about the expression of sodium channels in the ACC specifically were found. However, Na\textsubscript{1.1}, Na\textsubscript{1.2}, Na\textsubscript{1.3}, Na\textsubscript{1.6} and also Na\textsubscript{x} have been reported to be expressed predominantly (but not exclusively) in the brain with differential expression in different brain areas such as hippocampus, thalamus, cerebellum etc. (Beckh et al. 1989; Catterall 2000; Gautron et al. 1992; Levy-Mozziconacci et al. 1998; Schaller & Caldwell 2003; Westenbroek et al. 1989; Whitaker et al. 2000; Whitaker et al. 2001). On the other hand, Na\textsubscript{1.4} is expressed
principally in the skeletal muscle, Na\textsubscript{v}1.5 is mainly expressed in cardiac muscle, while Na\textsubscript{v}1.7, Na\textsubscript{v}1.8 and Na\textsubscript{v}1.9 are expressed preferentially in peripheral neurons (Cummins et al. 2007; Dib-Hajj et al. 2015). In the current study using real time PCR all the 10 α subunits and 4 β subunits were detected in the ACC with different degrees of expression. Na\textsubscript{v}1.1, Na\textsubscript{v}1.2, Na\textsubscript{v}1.3, Na\textsubscript{v}1.6 and Na\textsubscript{v}1.10 as well as Na\textsubscript{v}β1 – Na\textsubscript{v}β4 were highly expressed in the ACC. On the other hand, although Na\textsubscript{v}1.4, Na\textsubscript{v}1.5, Na\textsubscript{v}1.7, Na\textsubscript{v}1.8 and Na\textsubscript{v}1.9 were detected in the ACC they were lowly expressed and/or were not detectable in some samples. Thus, the findings of this study are in agreement with studies described above. This suggests that the different sodium channel subunits have different roles in the ACC and the brain in general. Na\textsubscript{v}1.1, Na\textsubscript{v}1.2, Na\textsubscript{v}1.3, Na\textsubscript{v}1.6 and Na\textsubscript{v}1.10 as well as Na\textsubscript{v}β1 – Na\textsubscript{v}β4 most likely have more important roles in neuronal activity in the ACC than Na\textsubscript{v}1.4, Na\textsubscript{v}1.5, Na\textsubscript{v}1.7, Na\textsubscript{v}1.8 and Na\textsubscript{v}1.9. This could be important for drug development of specific sodium channel blockers; for example a specific blocker of Na\textsubscript{v}1.1 or Na\textsubscript{v}1.2 would more likely have more effect in the ACC compared to a specific inhibitor of Na\textsubscript{v}1.7 or Na\textsubscript{v}1.8 based on their expression patterns. Further studies are necessary to understand the specific properties and activities of specific sodium channel subunits in the ACC under normal conditions and during neuropathic pain.

Administration of tetrodotoxin (TTX), a voltage-gated sodium channel blocker, was reported to prevent and treat signs of PINP such as thermal hyperalgesia, cold and mechanical allodynia in mice, suggesting that TTX-sensitive voltage-gated sodium channels play a role in the pathophysiology of PINP (Nieto et al. 2008). Mexiletine, a non-selective voltage-gated sodium channel blocker was also found to have antinociceptive effects in rats with paclitaxel-induced mechanical allodynia and hyperalgesia (Xiao et al. 2008). However, we found no studies that investigated the expression of sodium channels in the periphery or CNS during PINP. In the
current study, Na\textsubscript{v}1.1, Na\textsubscript{v}1.2, Na\textsubscript{v}1.6 and Na\textsubscript{x} as well as Na\textsubscript{v}B1 and Na\textsubscript{v}B3 were upregulated in
the ACC of mice with paclitaxel-induced thermal hyperalgesia. Upregulation of sodium channel
expression has been observed in other areas of the brain during neuropathic pain. In the
prefrontal cortex Na\textsubscript{v}1.1 expression was upregulated in mice with SNI (Alvarado et al. 2013).
Thus, our data are in agreement with the findings of Alvarado et al. and the suggestion that over-
expression of Na\textsubscript{v}1.1 is involved in increased cortical excitability associated with chronic pain
(Alvarado et al. 2013). It is also possible that the increased expression of Na\textsubscript{v}1.2, Na\textsubscript{v}1.6, Na\textsubscript{x},
Na\textsubscript{v}B1 and Na\textsubscript{v}B3 in the ACC are involved in the increased excitability of this area observed
during PINP (Nashawi et al. 2016). Although Na\textsubscript{v}1.3 was not significantly altered in the ACC
during PINP it was reported to be upregulated in the ventral posterolateral (VPL) nucleus of the
thalamus of rats with CCI and spinal cord contusion injury (Hains et al. 2005; Zhao et al. 2006).
The findings of the current study suggest that upregulation of specific sodium channel subunits
might contribute to hyperexcitability in the ACC. Hyperexcitability has been associated with
dysregulation in sodium channels (Devor 2006). A link between upregulation of Na\textsubscript{v}1.3 and
hyperexcitability of neurons in the spinal cord was found in neuropathic pain after spinal cord
injury (Hains et al. 2003). Recently, we observed increased excitability of the ACC to
electrophysiological stimulation in a rat model PINP (Nashawi et al. 2016), which could be in
part be due upregulation of sodium channels amongst other mechanisms such as decreased
GABA availability at the synapse because of increased GABA transporter 1 (GAT-1) expression
(Mascoha 2015b). Changes in the expression of other molecules such as those of the
GABAergic, glutamatergic, muscarinic dopaminergic systems have also been observed in the
ACC during experimental neuropathic pain (Mascoha 2015a; Masocha 2015b; Ortega-Legaspi et
al. 2011; Ortega-Legaspi et al. 2010). These findings suggest that the ACC plays an important
role in the pathophysiology of PINP in addition to other brain areas, the spinal cord and
peripheral nerve damage. Paclitaxel has limited ability to cross the blood-brain barrier (Glantz et
al. 1995; Kemper et al. 2003), thus a direct effect of paclitaxel in the ACC is unlikely. In a rat
model paclitaxel induced microglial activation in the spinal cord (Peters et al. 2007). They
proposed (Peters et al. 2007) that paclitaxel-induced nerve injury possibly induced
neurochemical reorganization within the spinal cord leading to central sensitization (Cata et al.
2006) and that the microglial reaction they observed occurred as a result of degeneration of
central terminals of injured primary afferent fibers or possibly due to the spinal release of factors
from injured neurons rather than direct injury of spinal cord neurons by paclitaxel. In the
periphery paclitaxel causes nerve damage by direct effects on the neurons (Cavaletti et al. 2000;
Scuteri et al. 2006; Theiss & Meller 2000) or via inflammation and the increased infiltration of
macrophages into the dorsal root ganglia (Peters et al. 2007; Zhang et al. 2016), which cause
further nerve damage. Thus, the changes observed in the ACC could be due to an increased
nociceptive input from the peripheral nerves damaged by paclitaxel resulting in central
sensitization. However, information on protein expression is critical to subsequently define the
meaning of expression changes in the mRNA level observed in the ACC.

Conclusions

In conclusion, the findings of this study show that sodium channel subunit transcripts are
differentially expressed in the ACC; with those known to be preferentially expressed in the CNS
being highly expressed in the ACC, whereas those known to be preferentially expressed in the
periphery being lowly expressed in the ACC. More importantly, the results show that during
experimental paclitaxel-induced neuropathic pain there is increased expression of various sodium channel subunit transcripts in the ACC, which could contribute to the increased excitability and activity observed in this brain region during neuropathic pain.
I am grateful to Dr Subramanian S Parvathy, Ms. Salini Soman, Ms. Amal Thomas from the Department of Pharmacology and Therapeutics, Faculty of Pharmacy, for their technical assistance and to the staff from the Animal Resources Centre, HSC, Kuwait University for their support.
References

243

244 Alvarado S, Tajerian M, Millecamps M, Suderman M, Stone LS, and Szyf M. 2013. Peripheral nerve injury
245 is accompanied by chronic transcriptome-wide changes in the mouse prefrontal cortex. Mol Pain
246 9:21.
247
248 Bagal SK, Marron BE, Owen RM, Storer RI, and Swain NA. 2015. Voltage gated sodium channels as drug
249 discovery targets. Channels (Austin) 9:360-366.
250
251 Beckh S, Noda M, Lubbert H, and Numa S. 1989. Differential regulation of three sodium channel
252 messenger RNAs in the rat central nervous system during development. EMBO J 8:3611-3616.
253 Blackburn-Munro G, and Fleetwood-Walker SM. 1999. The sodium channel auxiliary subunits beta1 and
254 beta2 are differentially expressed in the spinal cord of neuropathic rats. Neuroscience 90:153-
255 164.
256
257 Brackenbury WJ, and Isom LL. 2008. Voltage-gated Na+ channels: potential for beta subunits as
258 therapeutic targets. Expert Opin Ther Targets 12:1191-1203.
259 Catterall WA. 2000. From ionic currents to molecular mechanisms: the structure and function of voltage-
260 gated sodium channels. Neuron 26:13-25.
261 Catterall WA, Goldin AL, and Waxman SG. 2005. International Union of Pharmacology. XLVII.
262 Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev
263 57:397-409.
264 Cavaletti G, Cavalletti E, Oggioni N, Sottani C, Minoia C, D'Incalci M, Zucchetti M, Marmiroli P, and
265 Tredici G. 1992. The glial voltage-gated sodium channel: cell- and tissue-specific mRNA expression.
266 Proc Natl Acad Sci U S A 89:7272-7276.
267 Glantz MJ, Choy H, Kearns CM, Mills PC, Wahlberg LU, Zuhowski EG, Calabresi P, and Egorin MJ. 1995.
268 Paclitaxel disposition in plasma and central nervous systems of humans and rats with brain
269 tumors. J Natl Cancer Inst 87:1077-1081.
270 Gautron S, Dos Santos G, Pinto-Henrique D, Koulakoff A, Gros F, and Berwald-Netter Y. 1992. The glial
271 voltage-gated sodium channel: cell- and tissue-specific mRNA expression. Proc Natl Acad Sci U S
272 A 89:7272-7276.
273
274 Hains BC, Saab CY, Klein JP, Black JA, and Waxman SG. 2004. Altered sodium channel expression in
275 second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J Neurosci
276 24:4832-4839.
Hains BC, Saab CY, and Waxman SG. 2005. Changes in electrophysiological properties and sodium channel Nav1.3 expression in thalamic neurons after spinal cord injury. *Brain* 128:2359-2371.

Hsieh JC, Belfrage M, Stone-Elander S, Hansson P, and Ingvar M. 1995. Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. *Pain* 63:225-236.

Isom LL. 2001. Sodium channel beta subunits: anything but auxiliary. *Neuroscientist* 7:42-54.

Kemper EM, van Zandbergen AE, Cleypool C, Mos HA, Boogerd W, Beijnen JH, and van Tellingen O. 2003. Increased penetration of paclitaxel into the brain by inhibition of P-Glycoprotein. *Clin Cancer Res* 9:2849-2855.

Laedermann CJ, Pertin M, Suter MR, and Decosterd I. 2014. Voltage-gated sodium channel expression in mouse DRG after SNI leads to re-evaluation of projections of injured fibers. *Mol Pain* 10:19.

Levy-Mozziconacci A, Alcaraz G, Giraud P, Boudier JA, Caillol G, Couraud F, and Autillo-Touati A. 1998. Expression of the mRNA for the beta 2 subunit of the voltage-dependent sodium channel in rat CNS. *Eur J Neurosci* 10:2757-2767.

Masocha W. 2014. Paclitaxel-induced hyposensitivity to nociceptive chemical stimulation in mice can be prevented by treatment with minocycline. *Sci Rep* 4:6719.

Masocha W. 2015a. Astrocyte activation in the anterior cingulate cortex and altered glutamatergic gene expression during paclitaxel-induced neuropathic pain in mice. *PeerJ* 3:e1350.

Masocha W. 2015b. Comprehensive analysis of the GABAergic system gene expression profile in the anterior cingulate cortex of mice with Paclitaxel-induced neuropathic pain. *Gene Expr* 16:145-153.

Nashawi H, Masocha W, Edafiogho IO, and Kombian SB. 2016. Paclitaxel Causes Electrophysiological Changes in the Anterior Cingulate Cortex via Modulation of the gamma-Aminobutyric Acid-ergic System. *Med Princ Pract* 25:423-428.

Nieto FR, Entrena JM, Cendan CM, Pozo ED, Vela JM, and Baeyens JM. 2008. Tetrodotoxin inhibits the development and expression of neuropathic pain induced by paclitaxel in mice. *Pain* 137:520-531.

Ortega-Legaspi JM, de Gortari P, Garduno-Gutierrez R, Amaya MI, Leon-Olea M, Coffee U, and Pellicer F. 2011. Expression of the dopaminergic D1 and D2 receptors in the anterior cingulate cortex in a model of neuropathic pain. *Mol Pain* 7:97.

Parvathy SS, and Masocha W. 2013. Matrix metalloproteinase inhibitor COL-3 prevents the development of paclitaxel-induced hyperalgesia in mice. *Med Princ Pract* 22:35-41.

Persson AK, Thun J, Xu XJ, Wiesenfeld-Hallin Z, Strom M, Devor M, Lidman O, and Fried K. 2009. Autotomy behavior correlates with the DRG and spinal expression of sodium channels in inbred mouse strains. *Brain Res* 1285:1-13.

Pertin M, Ji RR, Berta T, Powell AJ, Karchewski L, Tate SN, Isom LL, Woolf CJ, Gilliard N, Spahn DR, and Decosterd I. 2005. Upregulation of the voltage-gated sodium channel beta2 subunit in neuropathic pain models: characterization of expression in injured and non-injured primary sensory neurons. *J Neurosci* 25:10970-10980.
337 Peters CM, Jimenez-Andrade JM, Jonas BM, Sevcik MA, Koewler NJ, Ghilardi JR, Wong GY, and Mantyh PW. 2007. Intravenous paclitaxel administration in the rat induces a peripheral sensory neuropathy characterized by macrophage infiltration and injury to sensory neurons and their supporting cells. Exp Neurol 203:42-54.

341 Rogers M, Tang L, Madge DJ, and Stevens EB. 2006. The role of sodium channels in neuropathic pain. Semin Cell Dev Biol 17:571-581.

341 Schaller KL, and Caldwell JH. 2003. Expression and distribution of voltage-gated sodium channels in the cerebellum. Cerebellum 2:2-9.

343 Scripture CD, Figg WD, and Sparreboom A. 2006. Peripheral neuropathy induced by paclitaxel: recent insights and future perspectives. Curr Neuropharmacol 4:165-172.

343 Scuteri A, Nicolini G, Miloso M, Bossi M, Cavaletti G, Windebank AJ, and Tredici G. 2006. Paclitaxel toxicity in post-mitotic dorsal root ganglion (DRG) cells. Anticancer Res 26:1065-1070.

347 Shah BS, Gonzalez MI, Bramwell S, Pinnock RD, Lee K, and Dixon AK. 2001. Beta3, a novel auxiliary subunit for the voltage gated sodium channel is upregulated in sensory neurones following streptozocin induced diabetic neuropathy in rat. Neurosci Lett 309:1-4.

347 Shah BS, Stevens EB, Gonzalez MI, Bramwell S, Pinnock RD, Lee K, and Dixon AK. 2000. beta3, a novel auxiliary subunit for the voltage-gated sodium channel, is expressed preferentially in sensory neurons and is upregulated in the chronic constriction injury model of neuropathic pain. Eur J Neurosci 12:3985-3990.

352 Theiss C, and Meller K. 2000. Taxol impairs anterograde axonal transport of microinjected horseradish peroxidase in dorsal root ganglia neurons in vitro. Cell Tissue Res 299:213-224.

356 Whitaker WR, Clare JJ, Powell AJ, Chen YH, Faull RL, and Emson PC. 2000. Distribution of voltage-gated sodium channel alpha-subunit and beta-subunit mRNAs in human hippocampal formation, cortex, and cerebellum. J Comp Neurol 422:123-139.

360 Whitaker WR, Faull RL, Waldvogel HJ, Plumpton CJ, Emson PC, and Clare JJ. 2001. Comparative distribution of voltage-gated sodium channel proteins in human brain. Brain Res Mol Brain Res 88:37-53.

365 Wolf S, Barton D, Kottschade L, Grothey A, and Loprinzi C. 2008. Chemotherapy-induced peripheral neuropathy: prevention and treatment strategies. Eur J Cancer 44:1507-1515.

368 Xiao W, Naso L, and Bennett GJ. 2008. Experimental studies of potential analgesics for the treatment of chemotheraphy-evoked painful peripheral neuropathies. Pain Med 9:505-517.

380 Zhuo M. 2008. Cortical excitation and chronic pain. Trends Neurosci 31:199-207.
Effects of paclitaxel on sodium channel alpha subunits transcript levels in the anterior cingulate cortex (ACC)

Relative mRNA expression of sodium channel alpha subunits Na\(_{1.1}\), Na\(_{1.2}\), Na\(_{1.3}\) and Na\(_{1.6}\) in the ACC of BALB/c mice (A) vehicle-treated mice versus untreated mice. Each bar represents the mean ± S.E.M of the values obtained from 4 untreated mice and 4 vehicle-treated mice. (B) Relative mRNA expression of sodium channel alpha subunits on day 7 after first administration of the drug or its vehicle. Each bar represents the mean ± S.E.M of the values obtained from 9-11 vehicle-treated mice and 12 paclitaxel-treated mice. ** p < 0.01 compared to vehicle-treated mice.
Figure 2 (on next page)

Effects of paclitaxel on the sodium channel alpha subunit Na\(_x\) transcript levels in the anterior cingulate cortex (ACC)

Relative mRNA expression of Na\(_x\) in the ACC of BALB/c mice (A) vehicle-treated mice versus untreated mice. Each bar represents the mean ± S.E.M of the values obtained from 4 untreated mice and 4 vehicle-treated mice. (B) Relative mRNA expression of sodium channel alpha subunits on day 7 after first administration of the drug or its vehicle. Each bar represents the mean ± S.E.M of the values obtained from 11 vehicle-treated mice and 12 paclitaxel-treated mice. * * p < 0.01 compared to vehicle-treated control mice.
Figure 3 (on next page)

Effects of paclitaxel on sodium channel beta subunits transcript levels in the anterior cingulate cortex (ACC)

Relative mRNA expression of sodium channel beta subunits Na\textsubscript{v}β1 to 4 in the ACC of BALB/c mice (A) vehicle-treated mice versus untreated mice. Each bar represents the mean ± S.E.M of the values obtained from 4 untreated mice and 4 vehicle-treated mice. * p < 0.05 compared to untreated mice. (B) Relative mRNA expression of sodium channel alpha subunits on day 7 after first administration of the drug or its vehicle. Each bar represents the mean ± S.E.M of the values obtained from 8-11 vehicle-treated control mice and 8-12 paclitaxel-treated mice. * p < 0.05 and ** p < 0.01 compared to vehicle-treated mice.
Figure 1: Relative expression of mRNA

A. Untreated control vs. Vehicle

B. Vehicle vs. Paclitaxel
Table 1 (on next page)

PCR primer sequences of cyclophilin, and sodium channel subunits
Table 1. PCR primer sequences of cyclophilin, and sodium channel subunits

Gene	Polarity	Sense Sequence 5’ to 3’	Anti-sense Sequence 5’ to 3’
Cyclophilin		GCTTTTCGCCGCTTGCT	CTCGTCATCCGGCCGTGAT
Na_{1.1}		AACAAGCTTCATTCACATAAATAAG	AGGAGGCGGACAAGCTG
Na_{1.2}		GGGAACGCCCATAAAGAGAAG	ACGCTATCGTAGGAAGGTGG
Na_{1.3}		GGGTGTTGGTGAGGTGGAGG	AATGTAGTAGTGAGGGCTGATAAGAG
Na_{1.4}		CGCGCTGTTCAGCATGTT	CTCCACGTCTTTGGACAAAG
Na_{1.5}		AGACTTCCTCCCATCTCCAGATA	TGTCACCTCCAGAGCTAGGAAG
Na_{1.6}		AGCAAAAGACAAACTGGACGATACC	CACTTGACCTCTGGACACAAACC
Na_{1.7}		TCTTTATTTCATAATCCCCAGCTCAC	GATCGGTTCGTCCTCTCTTTCGC
Na_{1.8}		ACCGACAATCGAGCGAGGAGG	ACAGACTAGAAATGGACAGAATCACC
Nav_{1.9}		TGAGGCAACAACCTACTTCACCAATG	AGCCAGGAACCAAAGGTACTATAGTG
Na_{β1}		GTGTATCTCTGTAGCGGTCTGAG	ATTCTCATAGCGGTAGGATCTGTGACAAG
Na_{β2}		GCAGCAGGCAAGTTTACCT	CACCAAGATGACCCAGAGCAGCAA
Na_{β3}		ACTGAAGAGGCGGAGAAGAC	GGTTAGGGAAGACCAGGAGGATG
Na_{β4}		CCCTGAGTGAGAAACTAGCAGAG	CAGAAGCGAGTACGTCAGATACG