Restoring mitochondrial superoxide levels with elamipretide (MTP-131) protects db/db mice against progression of diabetic kidney disease

Received for publication, September 19, 2019, and in revised form, April 3, 2020 Published, Papers in Press, April 10, 2020, DOI 10.1074/jbc.RA119.011110

Satoshi Miyamoto, Satoshi Miyamoto, Guanshi Zhang, Guanshi Zhang, David Hall, David Hall, Peter J. Oates, Peter J. Oates, Soumya Maity, Soumya Maity, Muniswamy Madesh, Muniswamy Madesh, Xianlin Han, Xianlin Han, and Kumar Sharma

From the 1Center for Renal Translational Medicine, Division of Nephrology–Hypertension and 2Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, the 3Division of Nephrology–Hypertension, Veterans Affairs San Diego Healthcare System, La Jolla, California 92093, the 4Center for Renal Precision Medicine, Division of Nephrology, and 5Division of Diabetes, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas 78229, the 6Audie L. Murphy Memorial Veterans Affairs Hospital, South Texas Veterans Health Care System, San Antonio, Texas 78229, 7Oates Biomedical Consulting, LLC, Old Lyme, Connecticut 06371

Edited by Jeffrey E. Pessin

Exposure to chronic hyperglycemia because of diabetes mellitus can lead to development and progression of diabetic kidney disease (DKD). We recently reported that reduced superoxide production is associated with mitochondrial dysfunction in the kidneys of mouse models of type 1 DKD. We also demonstrated that humans with DKD have significantly reduced levels of mitochondrial metabolites in their urine. Here we examined renal superoxide production in a type 2 diabetes animal model, the db/db mouse, and the role of a mitochondrial protectant, MTP-131 (also called elamipretide, SS-31, or Bendavia) in restoring renal superoxide production and ameliorating DKD. We found that 18-week-old db/db mice have reduced renal and cardiac superoxide levels, as measured by dihydroethidium oxidation, and increased levels of albuminuria, mesangial matrix accumulation, and urinary H2O2. Administration of MTP-131 significantly inhibited increases in albuminuria, urinary H2O2, and mesangial matrix accumulation in db/db mice and fully preserved levels of renal superoxide production in these mice. MTP-131 also reduced total renal lysocardiolipin and major lysocardiolipin subspecies and preserved lysocardiolipin acyltransferase 1 expression in db/db mice. These results indicate that, in type 2 diabetes, DKD is associated with reduced renal and cardiac superoxide levels and that MTP-131 protects against DKD and preserves physiological superoxide levels, possibly by regulating cardiolipin remodeling.

The steadily growing number of patients worldwide with diabetes is projected to increase the prevalence of DKD (1). Exposure to chronic hyperglycemia modulates several pathological pathways, including intracellular signaling pathways, transcription factors, cytokines, chemokines, and growth factors, that lead to development and progression of DKD (2). Reactive oxygen species (ROS) play a crucial role in progression of DKD; however, the role of ROS, particularly that of superoxide (O2•−), in DKD is controversial. Under healthy conditions, normal levels of O2•− and hydrogen peroxide (H2O2) production have been shown to be critical in regulating several fundamental biological processes, including signal transduction, regulation of immune function, and cell growth (3). In mouse models of DKD, overexpression of cytosolic superoxide dismutase (SOD1) protects against mesangial expansion (4), and genetic ablation of SOD1 accelerates renal matrix deposition (5). Conversely, deletion of mitochondrial SOD (SOD2) does not promote susceptibility to DKD (6). In addition, we recently found that O2•− production is reduced in the kidneys of mice with type 1 diabetes (6) and that enhancement of mitochondrial biogenesis and oxidative phosphorylation lead to increased O2•− production but with beneficial effects on kidney function and structure. However, direct measurement of the O2•− radical is difficult because of its short half-life (7, 8).

Dihydroethidium (DHE; hydroethidine) (9)) is a cell-permeable compound that is rapidly oxidized in the presence of O2•− but not H2O2 or peroxynitrite (10). It subsequently interacts with DNA to emit a bright red color (11). An important caveat of this approach is that interpretation of DHE experiments requires special attention, as DHE is particularly prone to auto-oxidation in ambient oxygen (12). Two major oxidation products of DHE are ethidium (E+) and 2-hydroxyethidium (2-OH-E+).

This work was supported by a Veterans Affairs MERIT Award 1I01BX003234 (to K.S.) and NIDDK, National Institutes of Health Grants U01 DK060995, DP3 DK094352-01, and DK083142 (to K.S.). P. J. O. consults with Stealth Biotherapeutics Inc. and has a financial interest with the company. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

This article contains Figs. S1 and S2.

1 Both authors contributed equally to this work.

2 Supported in part by the Japan Society for the Promotion of Science international training program and the Uehara Memorial Foundation. Present address: Center for Innovative Clinical Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.

3 To whom correspondence should be addressed. Tel.: 210-567-4700; Fax: 210-567-4712; E-mail: sharmak3@uthscsa.edu.

4 The abbreviations used are: DKD, diabetic kidney disease; ROS, reactive oxygen species; DHE, dihydroethidium; CL, cardiolipin; PAS, periodic acid-Schiff; RT-qPCR, quantitative RT-PCR; Nox, NADPH oxidase; UCP, uncoupling protein; H2O2, hydrogen peroxide; HbA1c, glycated hemoglobin; H&E, hematoxylin and eosin; LCLAT1, lysocardiolipin acyltransferase 1; lysoCL, lysocardiolipin; Mfn1, mitofusin 1; MTP-131, Bendavia; O2•−, superoxide; Pla2, phospholipase A2.
MTP-131 protects against diabetic kidney disease

Although *in vitro* studies using HPLC have suggested that the specific oxidation product of DHE by O$_2^-$ is 2-OH-E$^+$ (7, 13, 14), a recent report by Hall et al. (9) demonstrated the discrepancy between *in vitro* and *in vivo* results for DHE oxidation products. Using a novel *in vivo* live animal imaging method that utilized the difference of fluorescence lifetimes between the two DHE oxidation products (E$^+$, 6 ns; 2-OH-E$^+$, 12 ns), it was shown that the predominant oxidation product *in vivo* was E$^+$, not 2-OH-E$^+$ (9).

We recently applied a similar *in vivo* fluorescence lifetime measurement and confocal imaging to examine renal O$_2^-$ production in mouse models of type 1 diabetes (6). Surprisingly, O$_2^-$ production was reduced not only in the kidneys but also in heart and liver tissues of type 1 diabetes compared with nondiabetic controls (6). The reduction in renal O$_2^-$ production was associated with reduced mitochondrial electron transport chain activity with diabetes or with *in vivo* inhibition of complex I activity. Interestingly, stimulation of mitochondrial electron transport chain activity led to an increase in renal O$_2^-$ production and reduced evidence of DKD. In support of a similar pattern in human DKD, several metabolites related to mitochondrial function were reduced in the urine of patients with DKD, and kidney biopsies exhibited a reduction in mitochondrial biogenesis in patients with chronic kidney disease (15, 16).

In this study, we used a murine model of type 2 diabetes (db/db) and applied confocal imaging of DHE oxidation to examine O$_2^-$ production in the kidney. As mitochondrial function is reduced in DKD (6), we also evaluated the role of a novel mitochondrion-targeting peptide agent, MTP-131. MTP-131 is a mitochondrion-targeted tetrapeptide (H-D-Arg-Dmt-Lys-Phe-NH$_2$). It has been shown that MTP-131 has many renoprotective effects in various animal models of kidney disease and cell culture studies, including renal ischemic–reperfusion injury (17–19), unilateral ureteral obstruction (20), and hypoxia/reoxygenation-induced tubular injury (21). The mechanism of these effects has generally been ascribed to reduction of ROS and/or improvement in mitochondrial function and efficiency. We hypothesized that MTP-131 has a protective effect in the kidneys of diabetic db/db mice via optimization of renal O$_2^-$ production. We further examined whether MTP-131 had an impact on renal cardiolipins (CLs), a class of key phospholipids that play a major role in restoring normal mitochondrial complex activity (18).

Results

Diabetic db/db mice have reduced renal O$_2^-$ production

To evaluate O$_2^-$ production in the kidneys, 18-week-old db/db and db/m mice underwent administration of DHE for 16 h prior to euthanasia, and kidneys were harvested (6); at this point, all unreacted DHE has been excreted (9). The DHE oxidation signal was prominent in the kidneys of db/m mice (Fig. 1A), but, as expected, diabetic db/db kidneys showed significantly reduced DHE oxidation in glomeruli and cortical tubules (Fig. 1, B–D), indicating reduced O$_2^-$ production.

Metabolic characteristics with MTP-131 treatment

Body weight (Fig. 2A), food intake (Fig. 2B), and glycated hemoglobin (HbA1c) (Fig. 2C) were significantly increased in the db/db groups compared with the nondiabetic (db/m) groups. There were no differences between the db/db and db/db+B (Bendavia/MTP-131) groups during the study period and at the end of the study. Kidney weight per tibial length was increased in the db/db group; however, no difference between treated and untreated diabetic groups was observed (Fig. 2D). Perigonadal fat and liver weights per tibial length were also increased in the db/db group compared with the db/m group (Fig. 2, E and F). There were no significant differences, but a slight trend was noted of a reduction in liver and perigonadal fat weights by MTP-131 treatment. There were no statistical differences in heart weight between groups (Fig. 2G).

MTP-131 protects against progression of DKD

Representative findings of the glomeruli in PAS-stained sections are shown in Fig. 3A. Glomerular hypertrophy was observed in both diabetic db/db groups compared with the nondiabetic db/m groups (Fig. 3, A and B). MTP-131 treatment showed a slight improvement in glomerular size, but this was not significant (Fig. 3, A and B). However, mesangial matrix expansion was observed in the db/db group, and MTP-131 treatment significantly reduced mesangial matrix accumulation compared with the db/db group (Fig. 3, A and C). In the db/db group, the urinary albumin/creatinine ratio was significantly increased at 10, 14, and 18 weeks of age and significantly suppressed in the db/db+B group at 14 and 18 weeks of age (Fig. 3D). Urinary hydrogen peroxide/creatinine levels were markedly increased in the db/db group at 10 and 18 weeks age compared with the db/m groups and sig-
significantly reduced by MTP-131 treatment at 18 weeks of age (Fig. 3E).

MTP-131 reduces perigonadal adipocyte size in db/db mice

We also examined the effect of MTP-131 on adipocyte size to verify whether systemic administration of MTP-131 affected other organs. Representative H&E-stained perigonadal adipose tissue images are shown in Fig. 4A. Interestingly, average adipocyte size was markedly increased in the db/db group and significantly reduced by MTP-131 treatment (Fig. 4B and C).

MTP-131 preserved renal O_2 production in db/db mice

We then examined the effect of MTP-131 on renal O_2 production (as measured by DHE oxidation using confocal microscopy) in db/db mice. Renal tubules showed intense ethidium staining in db/m mice, whereas glomeruli were quite faint (Fig. 5A). db/db mice showed a significant reduction in renal DHE oxidation compared with the db/m group; however, MTP-131 significantly preserved renal O_2 production in cortical tubules and glomeruli (Fig. 5A–C). Interestingly, MTP-131 increased DHE oxidation in cortical tubules in the db/m group (Fig. 5C).

We further examined DHE oxidation using multiphoton microscopy to construct renal 3D images. 3D DHE imaging demonstrated DHE fluorescence primarily in the cytosolic compartment of tubular cells, with reduction of DHE oxidation in db/db mice and restoration by MTP-131 treatment (Fig. 5D). As with the renal cortex, DHE oxidation was also significantly decreased in medullary regions of the db/db group (Fig. 5E). We also measured the protein levels of the five oxidative phosphorylation system complexes I–V in renal cortical tissues; however, none of them showed significant differences among four groups of mice (Fig. S1).
As it has been reported that MTP-131 plays protective roles in the heart (22, 23), we also examined \(\text{O}_2^- \) production in the heart. Although the \(\text{db/db} \) group showed a significant reduction in DHE oxidation, MTP-131 did not maintain \(\text{O}_2^- \) production in heart tissues (Fig. 5, G and H).

Figure 3. MTP-131 (Bendavia) suppressed diabetes-induced mesangial matrix expansion, albuminuria, and urine hydrogen peroxide. A, representative images of PAS-stained kidney sections (×400 magnification). Scale bars = 50 μm. B, glomerular hypertrophy was observed in the \(\text{db/db} \) and \(\text{db/db} + \text{B} \) groups compared with nondiabetic groups. C, PAS-positive mesangial matrix was increased in the \(\text{db/db} \) group and suppressed ~50% by MTP-131 treatment. Fifteen randomly selected glomeruli per mouse were examined (n = 5/group). D, urinary albumin/creatinine ratio at 10, 14, and 18 weeks of age. E, urinary \(\text{H}_2\text{O}_2/ \)creatinine ratio at 6, 10, and 18 weeks of age (n = 5–10/group). MTP-131 suppressed urinary hydrogen peroxide in \(\text{db/db} \) mice at 18 weeks of age. Values are means ± S.E. ***, p < 0.001; **, p < 0.01; *, p < 0.05. ##, p < 0.01 and #, p < 0.05 versus \(\text{db/db} \).

MTP-131 regulates lysocardiolipin, Pla2, and LCLAT1 expression in the kidneys of \(\text{db/db} \) mice

As it has been reported that MTP-131 interacts with CL to protect mitochondrial function (24), we quantified total CL and lysoCL contents in the kidney cortex. Unexpectedly,
there was no difference in total CL content between the groups (Fig. 6A). However, total lysoCL levels were markedly increased in the db/db group and significantly reduced by MTP-131 treatment (Fig. 6B). We examined whether the protein content in the kidney cortex affected the measurement of CL or lysoCL, but there was no difference between the groups (Fig. 6C).

Specific lysoCL species were also measured to verify which lysoCL species were related to the protective effects of MTP-131 (Fig. 6, D–P). It is noteworthy that the major lysoCL species, including 18:2–18:2–18:1, 18:2–18:2–18:2, and combined 18:2–18:1–20:3 and 18:2–18:2–20:2, were significantly increased in the db/db group and inhibited by MTP-131 treatment (Fig. 6, I, J, and M). As lysoCL is involved in CL remodeling, we examined the expression of phospholipase A₂ (Pla₂), an enzyme for deacylation of immature CL to lysoCL (25, 26), and lysocardiolipin acyltransferase 1 (LCLAT1), a key enzyme for CL remodeling and reacylation of lysoCL to CL (27, 28). Quantitative RT-PCR (RT-qPCR) data showed that expression of Pla2 was enhanced in cortical tissues of db/db mice and suppressed by MTP-131 treatment (Fig. 6Q). Interestingly, expression of LCLAT1 was markedly decreased in the kidneys of db/db mice and significantly preserved by MTP-131 treatment (Fig. 6, R and S).

MTP-131 regulates immature cardiolipins and long-chain mature cardiolipins in the kidneys of the db/db mice

Diabetic mice had lower levels of immature CL species (those containing short fatty acid chains such as C16:1 and C16:0), including 18:1–18:1–16:0–16:1 (Fig. 7A) and 18:1–18:1–16:1–16:1 (Fig. 7B), in the renal cortex. MTP-131 treatment preserved immature CL levels significantly (e.g. 16:1–18:1–18:0/16:0–18:1–18:1–18:1, Fig. 7C) or tendentiously (18:1–18:1–16:0–16:1 and 18:1–18:1–16:1–16:1; Fig. 7, A and B). However, long-chain mature CL (Fig. 7, D and E) were greater in the renal cortex of diabetic mice. The accumulation of long-chain CL species was reduced by MTP-131 treatment. Specifically, 18:2–18:2–20:1–20:2 was lower in the renal cortex of the db/db + B group compared with the db/db group (Fig. 7E). In addition, another long-chain mature CL, 18:2–18:2–18:2–20:3,
was decreased in the kidney cortex of MTP-131–treated db/db mice compared with db/m mice with or without MTP-131 (Fig. 7F). These observations clearly indicate that CL species are remodeled to those containing longer fatty acyl chains, as reported previously for diabetic mouse hearts (29), and that MTP-131 treatment protects normal regulation of CL synthesis and remodeling.

MTP-131 regulates mitochondrial fusion machinery in the kidneys of db/db mice

As CL plays important roles in mitochondrial dynamics (30), we measured relative expression of genes regulating mitochondrial fusion and fission. The expression of optic astrophy 1 (Opa1), which regulates mitochondrial fusion and cristae structure in the inner mitochondrial membrane and contributes to ATP synthesis and apoptosis (31, 32), was decreased in db/db mice versus the db/m control (Fig. S2A). In addition, the expression of mitofusin 1 (Mfn1), a mediator of mitochondrial fusion in the outer mitochondrial membrane (33, 34), was up-regulated after MTP-131 treatment in db/db mice compared with the db/db mice with vehicle treatment (Fig. S2B). Another dynamin-related GTPase, mitofusion 2 (Mfn2), did not show a difference among the four groups of mice (Fig. S2C). No significant changes were observed in the level of mediator (e.g. dynamin 1 (Dnm1)) or its receptors (e.g. mitochondrial fission 1 protein (Fis1)), involved in mitochondrial fission (Fig. S2, D and E). These results further confirm that diabetic kidneys have reduced mitochondrial fusion and that MTP-1 treatment may protect mitochondrial fusion. We also assessed the mRNA abundance of several mitochondrial biogenesis transcription factors (mitochondrial transcription factor A (Tfam), peroxisome proliferator–activated receptor α (Ppara), nuclear respiratory factor 1 (Nrf1), and nuclear respiratory factor 2 (Nrf2); Fig. S2, F–I) and found it to be unchanged.

Discussion

Our findings reveal that db/db mice, a well-accepted model of type 2 diabetes, experienced a significant reduction of renal \(\text{O}_2^- \) in association with increased albuminuria, elevated urine \(\text{H}_2\text{O}_2 \), and mesangial matrix expansion. With a new mitochondrial protective agent, MTP-131, renal \(\text{O}_2^- \) levels were preserved, and there was an improvement in urine albumin, \(\text{H}_2\text{O}_2 \), and mesangial matrix expansion. The beneficial effect of MTP-131 is likely due to reduced lysoCL and an increase in LCLAT1. Two prior studies have examined DHE oxidation using kidneys of db/db mice and found an increased DHE oxidation signal in db/db mice compared with db/m mice (35, 36). However, focal fluorescence images of DHE oxidation. Scale bars = 100 \(\mu \text{m} \). B and C, quantification of DHE oxidation in glomerular (B) and cortical tubular (C) tissue. 15 randomly selected glomeruli or tubular lesions per mouse were evaluated (n = 3/group). D, representative multiphoton 3D fluorescence images of DHE oxidation. Arrows, glomeruli. Scale bars = 100 \(\mu \text{m} \). E, representative confocal fluorescence images of DHE oxidation in the renal medulla. Scale bars = 100 \(\mu \text{m} \). F, quantification of DHE oxidation in renal medullary lesions. 15 randomly selected medullary lesions per mouse were evaluated (n = 3/group). G, representative confocal fluorescence images of DHE oxidation in the heart. Scale bars = 50 \(\mu \text{m} \). H, quantification of DHE oxidation in heart tissue. 15 randomly selected lesions per mouse were evaluated (n = 3/group). Values are means ± S.E. ***, \(p < 0.001 \); *, \(p < 0.05 \).

Figure 5. MTP-131 (Bendavia) preserves DHE oxidation in the renal cortex, renal medulla, and heart tissue of db/db mice. A, representative confocal fluorescence images of DHE oxidation in the renal cortex, renal medulla, and heart tissue of db/db mice. A, representative confocal fluorescence images of DHE oxidation. Scale bars = 100 \(\mu \text{m} \). B and C, quantification of DHE oxidation in glomerular (B) and cortical tubular (C) tissue. 15 randomly selected glomeruli or tubular lesions per mouse were evaluated (n = 3/group). D, representative multiphoton 3D fluorescence images of DHE oxidation. Arrows, glomeruli. Scale bars = 100 \(\mu \text{m} \). E, representative confocal fluorescence images of DHE oxidation in the renal medulla. Scale bars = 100 \(\mu \text{m} \). F, quantification of DHE oxidation in renal medullary lesions. 15 randomly selected medullary lesions per mouse were evaluated (n = 3/group). G, representative confocal fluorescence images of DHE oxidation in the heart. Scale bars = 50 \(\mu \text{m} \). H, quantification of DHE oxidation in heart tissue. 15 randomly selected lesions per mouse were evaluated (n = 3/group). Values are means ± S.E. ***, \(p < 0.001 \); *, \(p < 0.05 \).
MTP-131 protects against diabetic kidney disease

Figure A: Total CL

Figure B: Total LysoCL

Figure C: Protein (µg/mg tissue/cortex)

Figure D: 16:1-18:1-16:1

Figure E: 18:2-18:1-16:1

Figure F: 18:2-18:1-18:1

Figure G: 18:2-18:1-22:6

Figure H: 18:2-18:2-16:1

Figure I: 18:2-18:2-18:1

Figure J: 18:2-18:2-18:2

Figure K: 18:2-18:2-18:3

Figure L: 18:2-18:2-20:1

Figure M: 18:2-18:2-20:2

Figure N: 18:2-18:2-20:3

Figure O: 18:2-18:2-20:4

Figure P: 18:2-18:2-22:6

Figure Q: Relative mRNA expression

Figure R: LCLAT1

Figure S: LCLAT1 Dll-actin

	db/m	db/m+B	db/db	db/db+B
β-actin	39	39		
LCLAT1				
MTP-131 protects against diabetic kidney disease

DHE oxidation between kidney and heart tissues may be attributed to the difference in MTP-131 distribution.

In this study, in contrast to the reduction in renal O_2^- production in db/db mice, urine H_2O_2 levels were significantly increased in db/db mice and partly inhibited by MTP-131 treatment. The increased H_2O_2 in the urine may be due to increased renal NADPH oxidase–dependent ROS production (37). In fact, it has been reported that generation of NADPH oxidase (Nox)–derived ROS is increased in the kidneys of multiple models of DKD, with Nox4 likely the most important isozyme that is up-regulated in the diabetic kidney (38). In addition, Nox4 can be a potent source of H_2O_2 production, independent of O_2^- production (39). The increased H_2O_2 is unlikely to originate from mitochondria, as we have reported that isolated mitochondria from diabetic mice have reduced H_2O_2 production (6).

Interestingly, it has been reported that MTP-131 can directly scavenge ROS, including H_2O_2 and free radicals; in addition, the Tyr and 2,6-dimethlytyrosine residues of the peptide play critical roles in its ROS-scavenging ability (19). However, a recent study was unable to detect any scavenging activity of MTP-131 (40). Thus, further work will be needed to determine the mechanism of reduction of urinary H_2O_2 by MTP-131. MTP-131 can also inhibit high-fat diet–induced insulin resistance in muscle tissue (41) and islet cell apoptosis (42). In this study, although there was no difference in HBAlc levels or overall body weight between the db/db and $db/db + B$ groups, MTP-131 treatment partially reduced visceral adipocyte size, which may reduce inflammation and insulin resistance.

The effects of MTP-131 are thought to be partly mediated by interaction with CL and inhibition of cytochrome c–mediated peroxidation (18). In this study, there was no detectable difference in total renal CL content between the control and db/db groups (Fig. 6A), indicating that total CL remains sustained despite severe hyperglycemia. In contrast to total CL content, there was a clear increase in renal total lysoCL content in db/db mice, which was significantly inhibited by MTP-131 treatment (Fig. 6B). It has been reported that an increase in lysoCL is associated with CL oxidation and suppression of CL oxidation by a mitochondrion-targeted nitroxide (XJB-5-131) prevented CL oxidation and hydrolysis (43), suggesting that the much smaller lysoCL pool is a more sensitive end point than the total CL pool (Fig. 6, A versus B).

CL is one of the most unsaturated lipids in the body, and the degree of unsaturation is maintained by means of a constant remodeling process (44). Pla2, is a key enzyme that catalyzes hydrolysis of immature CL to lysoCL, which is involved in CL remodeling (25, 26, 28). In the remodeling process of CL, LCLAT1, also known as ALCAT1 or LYCAT, catalyzes acylation of lysoCL to produce CL (27, 28, 44). In this study, up-regulation of Pla2 and reduction of LCLAT1 expression in the kidneys of db/db mice may lead to accumulation of lysoCL in

Figure 6. MTP-131 (Bendavia) preserves lysoCL, Pla2, and LCLAT1 in the kidneys of db/db mice. A and B, total CL and total lysoCL content in the renal cortex by shotgun lipidomics quantification. C, total protein content/tissue weight in the renal cortex. D–P, quantitative results of lysoCL species by shotgun lipidomics analysis. Q, relative mRNA expression of Pla2 detected by RT-qPCR. Data were normalized to actin ($n = 4$/group). R, representative Western blot images of LCLAT1 and β-actin ($n = 3–4$/group). S, quantitative Western blot result of LCLAT1 ($n = 3–4$/group). Values are means ± S.E. **, $p < 0.01$; *, $p < 0.05$.
production compared with production, which further contributes to production and alleviates DKD phenotypes. Levels in diabetes are summarized in Fig. 8. Under the condition of diabetes, type may gia, and hypermetabolism (27). However, these changes in phenotype may also directly affect mitochondrial function and systemic metabolic changes. It has been reported that LCLAT1 deficiency prevents onset of diet-induced obesity and improves mitochondrial complex I activity and lipid oxidation in the liver. Interestingly, LCLAT1 whole-body-deficient mice also show hyperactivity, hyperphagia, and hypermetabolism (27). However, these changes in phenotype may also directly affect mitochondrial function and systemic metabolic changes. It has been reported that LCLAT1 mRNA and protein expression are significantly decreased in heart tissues of patients with tetralogy of Fallot, a common form of cyanotic congenital heart defect; however, the mechanism underlying the regulation of LCLAT1 remains unknown (45).

On the other hand, LCLAT1 expression is increased in lungs from patients with idiopathic pulmonary fibrosis and in murine models of lung fibrosis (46). It is noteworthy that LCLAT1 mRNA expression levels in peripheral blood mononuclear cells (PBMCs) positively correlates with improved lung function and survival rate in patients with idiopathic pulmonary fibrosis. In addition, overexpression of LCLAT1 attenuates fibrogenesis, and knockdown of LCLAT1 accentuates inflammation and injury in murine models of lung fibrosis, suggesting protective roles of lysocardiolipin acyltransferase 1. The latter data are consistent with the findings in this study, as there was a reduction in matrix accumulation in association with an increase in LCLAT1. The protective role of MTP-131 may be partly explained by stimulation of renal LCLAT1 expression.

Reduced content of immature CL and increased levels of lysoCL species in diabetic kidneys indicate enhanced CL hydrolysis (i.e. up-regulated Pla2) and loss of CL remodeling activity, such as LCLAT1 activity. However, long-chain mature unsaturated CLs were increased in diabetic kidneys and reduced by MTP-131 treatment. Accumulation of CL species containing longer fatty acyl chains (greater than 18 carbon atoms) has been reported as a detrimental factor in diabetic conditions (e.g. diabetic myocardium) (29). It has been reported that tetra 18:2 CL is a fully functional CL species, and increases in long chain CLs are associated with mitochondrial dysfunction (29, 47, 48). Although LCLAT1 has no acyl-chain specificity, we postulate that LCLAT1 tends to remodel lysoCL to mature CLs and unsaturated mature CL in diabetic kidneys. We also found that MTP-131 might protect mitochondrial function by suppressing CL hydrolysis and reducing levels of long-chain (>18C) unsaturated CLs.

The profile of CL and lysoCL after remodeling in diabetic kidneys leads to mitochondrial dysfunction, likely because of increased basal uncoupling and H^+ leakage. CL play an important role in regulating the uncoupling activity of uncoupling proteins (UCPs) and H^+ translocation through the membrane (49). Modest depolarization of the mitochondrial inner membrane is known to attenuate mitochondrial ROS, such as O_2^{-} generation (50). Normal CL could maintain proper activation of UCPs for mitochondrial depolarization to attenuate electron transport chain ROS production without disturbing ATP production (50). The mechanism underlying the role of lysoCL and long-chain unsaturated mature CL in diabetic kidneys might be related to enhanced activation of UCPs and leaking of H^+ across the mitochondrial inner membrane, dissipating the H^+ gradient generated by the respiratory chain. This reduced respiration could lead to reduced O_2^{-} production compared with normal conditions. MTP-131 treatment could reverse the CL remodeling in diabetic kidneys and preserve normal O_2^{-} levels. The mechanisms of disordered CL remodeling and mitochondrial dysfunction in kidneys as well as MTP-131’s potential roles in renoprotection through preserved CL remodeling and mitochondrial O_2^{-} levels in diabetes are summarized in Fig. 8.

Figure 8. Mechanisms of CL remodeling and mitochondrial dysfunction in diabetic kidneys and MTP-131’s potential roles in renoprotection. Diabetic renal cortical tissues had reduced content of immature CL and increased level of lysoCL, indicating enhanced CL hydrolysis, dysregulated CL remodeling, and loss of LCLAT1 activity. Accumulation of bad CL (e.g. long-chain CL) leads to mitochondrial dysfunction, likely because of enhanced basal uncoupling and H^+ leak and reduced electron transport chain (ETC) activity. Reduced respiration leads to decreased mitochondrial O_2^{-} production, which further contributes to mitochondrial dysfunction and DKD phenotypes. The renoprotective mechanism of MTP-131 might be related to its roles in restoring normal CL remodeling by reducing lysoCL and “bad” CL levels. Furthermore, MTP-131 preserves mitochondrial O_2^{-} production and alleviates DKD phenotypes. Red represents effects of diabetes. Under the condition of diabetes, (+) means up-regulated, and (−) means down-regulated. Blue represents effects of MTP-131 treatment to prevent or inhibit diabetes-induced changes.
Experimental procedures

Animal study

Male *db/db* mice (BKS.Cg-Dock7m +/+ Lepr^db/J strain) were purchased from The Jackson Laboratory (Bar Harbor, ME), and the corresponding heterozygote lean *db/m* mice were used as controls. Mice were given standard rodent chow and water *ad libitum*. MTP-131 (Bendavia) was provided by Stealth BioTherapeutics Inc. (Newton, MA). Six-week-old male nondiabetic *db/m* mice and diabetic *db/db* mice were randomly assigned to four groups (n = 15/group): *db/m* mice treated with vehicle (*db/m*), *db/m* mice treated with MTP-131 (Bendavia) (*db/m+B*), *db/db* mice treated with vehicle (*db/db*), and *db/db* mice treated with MTP-131 (*db/db+B*). Vehicle (PBS) or MTP-131 (3 mg/kg of body weight) was injected subcutaneously daily for 4 weeks and then infused subcutaneously via Alzet osmotic minipumps (Durect Corp., Cupertino, CA; 3 mg/kg/day) over an 8-week period. Osmotic minipumps were implanted subcutaneously in the back of all mice. As the life expectancy of the osmotic pump was 4 weeks, all pumps were replaced with new filled pumps when mice reached the age of 14 weeks. HbA1c was measured with a DCA Vantage Analyzer (Siemens, Malvern, PA). Urine albumin and creatinine were measured with the Mouse Albumin ELISA Quantitation Set (Bethyl Laboratories, Montgomery, TX) and the Creatinine Companion Kit (Exocell, Philadelphia, PA) according to the manufacturer’s instructions. Total protein concentration was determined using the BCA Protein Precipitation assay buffer (Cell Signaling Technology, Danvers, MA) according to the manufacturer’s instructions. Total protein concentration was determined using the BCA Protein Assay Kit (Life Technologies). 30 μg of protein per sample was loaded onto a 4%–12% BisTris gel and transferred to a nitrocellulose membrane. The blot was blocked with 5% nonfat dry milk and incubated with anti-LCLAT1 antibody (1:500, Aviva Systems Biology, San Diego, CA) at 4 °C overnight. Following immunoblotting, ECL rabbit IgG and HRP-linked whole anti-
body (GE Healthcare Life Sciences, Chicago, IL) were applied, and the signals were developed with SuperSignal™ West Pico Chemiluminescent Substrate (Life Technologies).

Statistics
Data are expressed as mean ± S.E., with n values as indicated in the text or figure legends. Statistical significance was determined by Student’s t test or one-way analysis of variance, with p < 0.05 considered significant.

Data availability
All data described are contained within the manuscript and Figs S1 and S2. Raw data used for generation of graphs are available upon request.

Author contributions—S. Miyamoto, G. Z., X. H., and K. S. data curation; S. Miyamoto and G. Z. formal analysis; S. Miyamoto, G. Z., and K. S. investigation; S. Miyamoto, G. Z., S. Maity, and X. H. visualization; K. S. conceptualization; K. S. resources; K. S. supervision; and K. S. funding acquisition.

References
1. Tuttle, K. R., Bakris, G. L., Bilous, R. W., Chiang, J. L., de Boer, I. H., Goldstein-Fuchs, J., Hirsch, I. B., Kalantar-Zadeh, K., Narva, A. S., Navaneethan, S. D., Neumiller, J. J., Patel, U. D., Ratner, R. E., Whaley-Connell, A. T., and Molitch, M. E. (2014) Diabetic kidney disease: a report from an ADA Consensus Conference. Am. J. Kidney Dis. 64, 510–533 CrossRef Medline
2. Sharma, K. (2015) Mitochondrial hormesis and diabetic complications. Diabetes 64, 663–672 CrossRef Medline
3. Bieringer, K., Schiavone, S., Miller, F. J., Jr, and Krause, K. H. (2012) Reactive oxygen species: from health to disease. Swiss. Med. Wkly. 142, w13659 Medline
4. Craven, P. A., Melhem, M. F., Phillips, S. L., and DeRubertis, F. R. (2001) Overexpression of Cu²⁺/Zn²⁺ superoxide dismutase protects against early diabetic glomerular injury in transgenic mice. Diabetes 50, 2114–2125 CrossRef Medline
5. Fujita, H., Fujishima, H., Takahashi, K., Sato, T., Shimizu, T., Morii, T., Shimizu, T., Shirasawa, T., Qi, Z., Breyer, M. D., Harris, R. C., Yamada, Y., and Takahashi, T. (2012) SOD1, but not SOD3, deficiency accelerates diabetic renal injury in C57BL/6-Ins2(Akita) diabetic mice. Metabolism 61, 1714–1724 CrossRef Medline
6. Dugan, L. L., You, Y. H., Ali, S. S., Diamond-Stanic, M., Miyamoto, S., DeCleva, A. E., Andreyev, A., Quach, T., Ly, S., Shekhman, G., Nguyen, W., Chepetan, A., Le, T. P., Wang, L., Xu, M., et al. (2013) AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J. Clin. Invest. 123, 4888–4899 CrossRef Medline
7. Maghazli, G. J., Krause, K. H., Stocker, R., and Jaquet, V. (2012) Detection of reactive oxygen species derived from the family of NOX NADPH oxidases. Free Radiac. Biol. Med. 53, 1903–1918 CrossRef Medline
8. Bordt, E. A., and Polster, B. M. (2014) NADPH oxidase- and mitochondrial-derived reactive oxygen species in proinflammatory microglial activation: a bipartisan affair? Free Radiac. Biol. Med. 76, 34–46 CrossRef Medline
9. Hall, D. J., Han, S. H., Chepetan, A., Imai, E., Rogers, M., and Dugan, L. L. (2012) Dynamic optical imaging of metabolic and NADPH oxidase-derived superoxide in live mouse brain using fluorescence lifetime mixing. J. Cereb. Blood Flow Metab. 32, 23–32 CrossRef Medline
10. Fernandes, D. C., Wosniak, J., Jr, Pescatore, L. A., Bertolone, M. A., Liberman, M., Laurindo, F. R., and Santos, C. X. (2007) Analysis of DHE-derived oxidation products by HPLC in the assessment of superoxide production and NADPH oxidase activity in vascular systems. Am. J. Physiol. Cell Physiol. 292, C413–C422 CrossRef Medline
11. Tarpey, M. M., Wink, D. A., and Grisham, M. B. (2004) Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R431–R444 CrossRef Medline
12. Dikalov, S. I., Kirilnik, I. A., Voinov, M., and Grigor’ev, I. A. (2011) EPR detection of cellular and mitochondrial superoxide using cyclic hydroxy-lamines. Free Radiac. Res. 45, 417–430 CrossRef Medline
13. Zhao, H., Kalivendi, S., Zhang, H., Joseph, J., Nithipatikom, K., Vásquez-Vivar, J., and Kalyanaraman, B. (2003) Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radiac. Biol. Med. 34, 1359–1368 CrossRef Medline
14. Dikalov, S. I., and Harrison, D. G. (2014) Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid. Redox Signal. 20, 372–382 CrossRef Medline
15. Sharma, K., Karl, B., Mathew, A. V., Gangoiti, J. A., Wassel, C. L., Saito, R., Pu, M., Sharma, S., You, Y. H., Wang, L., Diamond-Stanic, M., Lindenmeyer, M. T., Forsblom, C., Wu, W., Ix, J. H., et al. (2013) Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J. Am. Soc. Nephrol. 24, 1901–1912 CrossRef Medline
16. Kang, H. M., Ahn, S. H., Choi, P., Ko, Y. A., Han, S. H., Chinga, F., Park, A. S., Tao, J., Sharma, K., Pullmann, J., Bottinger, E. P., Goldberg, I. J., and Susztak, K. (2015) Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21, 37–46 CrossRef Medline
17. Szeto, H. H., Liu, S., Soong, Y., Wu, D., Darrah, S. F., Cheng, F. Y., Zhao, Z., Ganger, M., Tow, C. Y., and Seshan, S. V. (2011) Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J. Am. Soc. Nephrol. 22, 1041–1052 CrossRef Medline
18. Birk, A. V., Liu, S., Soong, Y., Mills, W., Singh, P., Warren, J. D., Seshan, S. V., Pardee, J. D., and Szeto, H. Z. (2013) The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J. Am. Soc. Nephrol. 24, 1250–1261 CrossRef Medline
19. Zhao, K., Zhao, G. M., Wu, D., Soong, Y., Birk, A. V., Schiller, P. W., and Szeto, H. Z. (2004) Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J. Biol. Chem. 279, 34682–34690 CrossRef Medline
20. Mizuguchi, Y., Chen, J., Seshan, S. V., Poppas, D. P., Szeto, H. Z., and Felsen, D. (2008) A novel cell-permeable antioxidant peptide decreases renal tubular apoptosis and damage in unilateral ureteral obstruction. Am. J. Physiol. Renal Physiol. 295, F1545–F1553 CrossRef Medline
21. Zhao, W. Y., Han, S., Zhang, L., Zhu, Y. H., Wang, L. M., and Zeng, L. (2013) Mitochondria-targeted antioxidant peptide SS31 prevents hypoxia/reoxygenation-induced apoptosis by down-regulating p66Shc in renal tubular epithelial cells. Cell Physiol. Biochem. 32, 591–600 CrossRef Medline
22. Dai, D. F., Hsieh, E. J., Chen, T., Menendez, L. G., Basity, N. B., Tsai, L., Beyer, R. P., Crispin, D. A., Shulman, N. J., Szeto, H. H., Tian, R., MacCoss, M. J., and Rabinovitch, P. S. (2013) Global proteomics and pathway analysis of pressure-overload-induced heart failure and its attenuation by mitochondrial-targeted peptides. Circ. Heart Fail. 6, 1067–1076 CrossRef Medline
23. Sloan, R. C., Moukdar, F., Frasier, C. R., Patel, H. D., Bostian, P. A., Lust, M. J., and Rabinovitch, P. S. (2013) Global proteomics and pathway analysis of pressure-overload-induced heart failure and its attenuation by mitochondrial-targeted peptides. Circ. Heart Fail. 6, 1067–1076 CrossRef Medline
24. Birk, A. V., Chao, W. M., Bracken, C., Warren, J. D., and Szeto, H. Z. (2014) Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis. Br. J. Pharmacol. 171, 2017–2028 CrossRef Medline

MTP-131 protects against diabetic kidney disease
25. Hau, Y. H., Dumlao, D. S., Cao, J., and Dennis, E. A. (2013) Assessing phospholipase A2 activity toward cardiolipin by mass spectrometry. *PLoS ONE* **8**, e59267 CrossRef Medline

26. Kiebish, M. A., Yang, K., Liu, X., Mancuso, D. J., Guan, S., Zhao, Z., Sims, H. F., Cerqua, R., Cade, W. T., Han, X., and Gross, R. W. (2013) Dysfunctional cardiac mitochondrial bioenergetic, lipodemic, and signaling in a murine model of Barth syndrome. *J. Lipid Res.* **54**, 1312–1325 CrossRef Medline

27. Li, J., Romestaing, C., Han, X., Li, Y., Hao, X., Wu, Y., Sun, C., Liu, X., Jefferson, L. S., Xiong, J., Lanoue, K. F., Chang, Z., Lynch, C. I., Wang, H., and Shi, Y. (2010) Cardiolipin remodeling by ACLAT1 links oxidative stress and mitochondrial dysfunction to obesity. *Cell Metab.* **12**, 154–165 CrossRef Medline

28. He, Q., and Han, X. (2014) Cardiolipin remodeling in diabetic heart. *Chem. Phys. Lipids* **179**, 75–81 CrossRef Medline

29. Han, X., Yang, J., Yang, K., Zhao, Z., Abendschein, D. R., and Gross, R. W. (2007) Alterations in myocardial cardiolipin content and composition occur at the very earliest stages of diabetes: a shotgun lipodomics study. *Biochemistry* **46**, 6417–6428 CrossRef Medline

30. Kameoka, S., Adachi, Y., Okamoto, K., Iijima, M., and Sekasi, H. (2018) Phosphatidic acid and cardiolipin coordinate mitochondrial dynamics. *Trends Cell Biol.* **28**, 67–76 CrossRef Medline

31. Patton, D. A., Wong, J., Khacho, M., Soubannier, V., Mailloux, R. J., Pilon-Larose, K., MacLaurin, J. G., Park, D. S., McBride, H. M., Trinkle-Mulcahy, L., Harper, M. E., Germain, M., and Slack, R. S. (2014) OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. *EMBO J.* **33**, 2671–2691 CrossRef Medline

32. Santarelli, R., Rossi, R., Scimemi, P., Cama, E., Valentino, M. L., La Morgia, C., Caporali, L., Liguori, R., Magnavita, V., Monteleone, A., Biscaro, A., Arslan, E., and Carelli, V. (2015) OPA1-related auditory neuropathy: site of lesion and outcome of cochlear implantation. *Brain* **138**, 563–576 CrossRef Medline

33. Adams, M. D., Kerlavage, A. R., Fields, C., and Venter, J. C. (1993) 3,400 mycoplasma gene set reduction: a human mitofusin. *J. Cell Sci.* **114**, 867–874 Medline

34. Zhang, Y., Ruan, D. A., Advani, A., Thai, K., Advani, S. L., Kepecs, D., Kabir, M. G., Connelly, K. A., and Gilbert, R. E. (2012) Early-outgrowth bone marrow cells attenuate renal injury and dysfunction via an antioxidant effect in a mouse model of type 2 diabetes. *Diabetes* **61**, 2114–2125 CrossRef Medline

35. Zhang, Y., Wada, J., Hashimoto, I., Eguchi, J., Yasuhara, A., Kanwar, Y. S., Shikata, K., and Makino, H. (2006) Therapeutic approach for diabetic cardiolipin remodeling by a human mitofusin. *J. Cell Sci.* **119**, 1090–1101 CrossRef Medline

36. Zheng, Y., Zafar, Y., Cheng, H., Yang, K., Abendschein, D. R., and Gross, R. W. (2005) Shotgun lipodomics identifies cardiolipin depletion in diabetic myocardium linking altered substrate utilization with mitochondrial dysfunction. *Biochemistry* **44**, 16684–16694 CrossRef Medline

37. Zachman, D. K., Chico, A. J., McCune, S. A., Murphy, R. C., Moore, R. L., and Sparagana, G. C. (2010) The role of calcium-independent phospholipase A2 in cardiolipin remodeling in the spontaneously hypertensive heart failure rat heart. *J. Lipid Res.* **51**, 525–534 CrossRef Medline

38. Klingenberg, M. (2009) Cardiolipin and mitochondrial carriers. *Biochim. Biophys. Acta* **1788**, 2048–2058 CrossRef Medline

39. Sack, M. N. (2006) Mitochondrial depolarization and the role of uncoupling proteins in ischemia tolerance. *Cardiovasc. Res.* **72**, 210–219 CrossRef Medline

40. Zhao, J., Miyamoto, S., You, Y. H., and Sharma, K. (2015) AMP-activated protein kinase (AMPK) activation inhibits nuclear translocation of Smad4 in mesangial cells and diabetic kidneys. *Am. J. Physiol. Renal Physiol.* **308**, F1167–F1177 CrossRef Medline

41. Han, X., Yang, K., Yang, J., Cheng, H., and Gross, R. W. (2006) Shotgun lipodomics of cardiolipin molecular species in lipid extracts of biological samples. *J. Lipid Res.* **47**, 864–879 CrossRef Medline