Rencontres scientifiques de l’IFP “Avancées de la recherche dans la conception rationnelle de catalyseurs et d’absorbants” IFP-Lyon, 14-16 décembre 2005
J. Lecourtier

To cite this version:
J. Lecourtier. Rencontres scientifiques de l’IFP “Avancées de la recherche dans la conception rationnelle de catalyseurs et d’absorbants” IFP-Lyon, 14-16 décembre 2005. Oil & Gas Science and Technology - Revue d’IFP Energies nouvelles, Institut Français du Pétrole, 2006, 61 (4), pp.463-470. 10.2516/ogst:2006033a. hal-02005865

HAL Id: hal-02005865
https://hal-ifp.archives-ouvertes.fr/hal-02005865
Submitted on 4 Feb 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Allocution d’Ouverture

Mesdames et Messieurs, chers Collègues
Avant toute chose, je voudrais vous souhaiter la bienvenue au nom du président de l’IFP et des membres du comité de pilotage de cette conférence internationale consacrée à la conception de catalyseurs et d’adsorbants.

Cette réunion a lieu dans le cadre des « Rencontres scientifiques de l’IFP » qui sont habituellement organisées deux fois par an et dont l’objectif est de discuter des avancées scientifiques les plus récentes et les plus notables dans les divers domaines techniques liés aux industries du pétrole et du gaz.

Elles constituent, pour l’IFP, un moyen efficace de jouer l’un de ses rôles principaux, à savoir favoriser la diffusion vers l’industrie des concepts émergents, ou des nouvelles technologies élaborés dans les laboratoires de recherche.

En invitant plusieurs experts reconnus issus de diverses disciplines et de champs d’application spécifiques, les rencontres scientifiques de l’IFP offrent un forum d’échange et de débat qui permet aux orateurs universitaires et industriels de partager leurs expériences et leurs résultats.

L’un de nos objectifs est de choisir, ensemble, les directions des programmes de recherche à long et à moyen termes, ce qui nous permettra de faire tomber, dans le futur, les barrières technologiques qui freinent aujourd’hui les réalisations de notre industrie.

Depuis leur création, en 1989, ces rencontres scientifiques ont traité de thèmes aussi variés que la thermodynamique du gaz naturel, les réacteurs chimiques polyphasiques, la caractérisation des gisements de pétrole ou les moteurs à deux temps, qui couvrent les divers aspects du programme de recherche de l’IFP.

La présente conférence est axée sur la conception de catalyseurs et d’adsorbants à haute performance, qui doivent permettre aux industries de la pétrochimie, du raffinage et de l’automobile de relever les nombreux défis techniques et économiques liés au développement durable. Au cours des années passées, il a été prouvé que d’importants progrès peuvent découler d’une interaction étroite entre la recherche expérimentale et les techniques avancées de modélisation.

Nous avons prévu de discuter des récents progrès réalisés dans le couplage de techniques expérimentales modernes et des méthodes de modélisation moléculaire. Ces dernières sont basées principalement d’une part sur la théorie de la fonctionnelle de densité et d’autre part sur des approches de simulation Monte Carlo classique. Plusieurs exemples illustrant le potentiel de ces techniques de modélisation atomistique pour comprendre et maîtriser les systèmes
complexes que sont les catalyseurs seront présentés, tels que le craquage des alkanes, la réactivité des surfaces d’oxyde, la synthèse Fischer-Tropsch et la réaction de conversion du gaz à l’eau.

Une table ronde sera consacrée à la fructueuse association de la modélisation moléculaire et de l’expérimentation à haut débit pour identifier de nouveaux catalyseurs efficaces. Au cours des prochaines années, l’un des principaux défis sera de concevoir des techniques intelligentes de « screening » basées sur la compréhension de sites catalytiques actifs et de l’adsorption dans les tamis moléculaires microporeux.

Au cours des cinq dernières années, certaines des avancées les plus notables dans le domaine de la conception des catalyseurs et adsorbants découlant des techniques de modélisation moléculaires méritent d’être signalées.

– En premier lieu, la description détaillée des phases actives CoMo et NiMo des catalyseurs HDS industriels, et de leur interaction avec des molécules réactives.

– Deuxièmement, un regard neuf sur la structure et les propriétés de surface de l’alumine-gamma, d’un intérêt primordial pour la préparation de la plupart des catalyseurs utilisés en raffinage.

– Par ailleurs, les mécanismes extrêmement subtils impliqués dans les hydrogénations sélectives sur les métaux nobles et leurs alliages révélés par la combinaison de simulations ab initio et d’études de science des surfaces.

De plus, la compréhension des mécanismes complexes de séparation par des solides microporeux tels que les zéolites, a fait des progrès significatifs en seulement quelques années grâce à aux techniques de simulation Monte Carlo dans l’ensemble grand canonicque, au point que l’on est en mesure d’envisager la conception assistée par modélisation moléculaire des adsorbants.

Cependant, des défis scientifiques nombreux et variés subsistent, tels que :

– la description des interactions entre les nanoparticules actives et les surfaces de support et leurs effets sur la réactivité ;

– la conception ab initio de nouveaux réseaux nanoporeux complexes ;

– les effets des contributions entropiques qui interviennent dans les séparations par les tamis moléculaires fortement chargés.

D’un point de vue méthodologique, d’importantes questions se posent encore.

Pour la DFT, plusieurs exemples peuvent être cités :

– des méthodes performantes permettant d’inclure la description de l’énergie de dispersion ;

– des calculs à plus grande échelle grâce aux méthodes d’ordre N plus efficaces ou à de nouveaux schémas hybrides du type QM/MM par exemple ;

– des méthodes automatisées plus fiables pour les recherches d’états de transition sur la surface de potentiel Born-Oppenheimer lorsque les chemins de réaction présentent de multiples degrés de liberté.

De plus, dans le domaine des simulations classiques, nous avons besoin de champs de forces qui nous permettent de traiter la séparation des composés oxygénés de la biomasse, par exemple. On attend également d’importants progrès dans la prédiction par les méthodes de physique statistique des coefficients de diffusion effective dans les solides microporeux.

Les différentes séances de cette conférence aborderont certains de ces divers sujets.

Ce sera, je crois, un tour d’horizon extrêmement documenté, en raison de la présence des principales équipes de recherche qui ont apporté une contribution significative au niveau mondial dans la modélisation moléculaire et dans l’approche expérimentale des catalyseurs et des adsorbants.
Nous sommes particulièrement honorés d’accueillir à l’IFP d’aussi éminents spécialistes, qui sont également, pour nombre d’entre vous, d’excellents amis et des correspondants des équipes de l’IFP. La majorité viennent de pays européens comme l’Autriche, la Belgique, le Danemark, l’Allemagne, l’Espagne, le Royaume-Uni, les Pays-Bas, mais nous avons également avec nous des collègues des États-Unis et de la Russie.

Pour conclure, je pense que nous avons, pour ces deux jours, tous les ingrédients qui nous permettront d’assurer des échanges scientifiques de haut niveau et d’apporter de nouveaux aperçus sur les questions ouvertes que nous avons mentionnées ci-dessus. Cela devrait nous aider à mettre en place les stratégies efficaces de recherche dont nous avons besoin pour préparer notre futur ; j’espère également que cette réunion aura pour résultat de renforcer les liens entre tous les participants.

Je voudrais tout spécialement remercier l’ensemble des intervenants pour le temps qu’ils ont consacré à la préparation de leur conférence, ainsi qu’à la rédaction des articles correspondants. Ils sont responsables, dans une très large mesure, du succès de cette conférence.

Enfin, je tiens à féliciter l’équipe de l’IFP : le chef de projet, Pascal Raybaud, de la Direction Chimie et Physico-Chimie Appliquées, son proche conseiller, Gil Mabilon, directeur-adjoint de la Direction Catalyse et Séparation, et Frédérique Léandri, de la Direction Communication, pour avoir entrepris la lourde tâche d’organiser ce séminaire avec enthousiasme, dynamisme et efficacité.

Jacqueline Lecourtier

Directeur scientifique
Opening Address

Ladies and Gentlemen, dear Colleagues

First of all I would like to welcome you in the name of the president of IFP and of the members of the steering committee of this international conference dedicated to the design of catalysts and sorbents.

This meeting takes place in the framework of the "scientific meetings of IFP" which are usually organised twice a year and which aim at discussing the more recent and striking scientific advances in the various technical areas interesting the oil and gas industries.

They constitute, for IFP, an effective means to play one of its main roles which is to facilitate the diffusion towards industry of emerging concepts or new technologies elaborated in research laboratories.

By inviting several recognized experts from different disciplines and from given fields of application, the scientific meetings of IFP provide a forum of exchange and debate allowing university and industrial speakers to share their experiences and their results.

One of our objectives, is to select, together, the directions of long term and medium term research programs allowing us to eliminate in the future the technological barriers restricting today's achievements of our industry.

Since their creation in 1989, these scientific meetings have dealt with topics as varied as thermodynamics of natural gas, multiphase chemical reactors, characterization of oil reservoirs or two stroke engines which cover the different aspects of IFP’s research program.

This conference is focused on the design of high performance catalysts and sorbents in order to allow the petrochemical, refining and automotive industries to face the numerous technical and economic challenges linked to sustainable development. In the past few years, it has been proven that major progress can be expected from close interaction between experimental research and advanced modelling techniques.

We have planned to discuss recent progress in combined cutting-edge experimental and molecular modelling techniques. The latter are based both on density functional theory and on classical Monte Carlo simulation approaches. Several examples illustrating the potential of these techniques to understand and control complex catalyst systems will be presented, such as cracking of alkanes, reactivity of oxide supports, Fischer-Tropsch synthesis and the water gas shift reaction.
A round table will be devoted to the powerful association of molecular modelling and high throughput experimentation to identify new efficient catalysts. It will be a major challenge in the coming years to design intelligent screening techniques based on an understanding of active catalytic sites and of adsorption in microporous molecular sieves.

During the last five years, some of the most noticeable advances in catalyst and sorbent design arising from molecular modelling techniques are worth a mention:

- First, the detailed description of the CoMoS and NiMoS active phases of industrial HDS catalysts, and of their interaction with reactants.
- Second, a fresh look at gamma-alumina bulk and surface properties, of major relevance for the preparation of most catalysts in refining.
- Third, the very subtle mechanisms involved in selective hydrogenations on noble metals and their alloys unravelled by the combination of ab initio simulation and surface science studies.
- Moreover, the understanding of complex separation mechanisms by microporous solids, such as zeolites, has made major progress in just a few years thanks to Grand Canonical Monte Carlo and related simulation techniques to a point where we can envisage also the systematical computational design of sorbents.

However, numerous and various issues remain to be solved, like for instance:

- the description of interactions between active nanoparticles and support surfaces and their effects on reactivity;
- ab initio design of new complex nanoporous frameworks;
- finally, entropic driving forces occurring in separations in highly loaded molecular sieves.

From a methodological standpoint, major issues still exist. For DFT, several examples can be mentioned:

- tractable ways to include a better description for dispersion energy;
- larger scale calculations through for example, faster order N methods or new QM/MM schemes;
- more reliable automated methods for transition state searches on the Born-Oppenheimer surface when reaction paths include many degrees of freedom.

Moreover, in the area of classical simulations, we need potential energy functions enabling us to face requests such as separation of oxygenated compounds from biomass, for example. Much progress is also expected in the prediction by statistical physics methods of effective diffusion coefficients in microporous solids.

The different sessions of this conference will cover some of these various topics.

It will be, I think, a very well-documented review because of the presence of the main research teams having a significant worldwide contribution both in molecular modelling and experimental approach of catalysts and sorbents.

We feel particularly honoured to welcome to IFP eminent specialists who are also, for many of you, excellent friends and correspondents of the IFP teams. The majority are from European countries such as Austria, Belgium, Denmark, Germany, Spain, the United Kingdom, the Netherlands but we also have colleagues from the United States and from Russia.

To summarise, I think that we have, for these two days, all the ingredients to ensure high level scientific exchanges and to bring new insights on open questions such as the above mentioned. This should help us to implement the efficient research strategies required to prepare our future; I also hope that this meeting will result in closer links between all attendees.

I would especially like to thank all the speakers for the time invested in preparing their talk and in writing corresponding articles. They are to a large extend responsible for the success of this conference.
Finally, I would like to congratulate the IFP team: the project leader, Pascal Raybaud, from the Applied Chemistry and Physical Chemistry Research Division, his close advisor, Gil Mabilon, deputy manager of the Catalysis and Separation Research Division, and Frédérique Léandri from the Communication Division for having taken on the heavy task of organising this seminar with enthusiasm, dynamism and efficiency.

Jacqueline Lecourtier

Scientific Director