Original Research Article

Pattern of orthopaedic case presentations at the rivers state university teaching hospital: a ten-year review

Friday E. Aaron, Rex Friday Ogoronte A. Ijah*, Tonye Obene

Department of Surgery, Rivers State University Teaching Hospital (RSUTH), Port Harcourt, Rivers State University, Port Harcourt, Nigeria

Received: 25 February 2022
Revised: 14 March 2022
Accepted: 15 March 2022

*Correspondence:
Dr. Rex Friday Ogoronte A. Ijah,
E-mail: rexijah@gmail.com

ABSTRACT

Background: Pattern of diseases help institutions and governments to know the dominant disease conditions and how to allocate scarce resources. Knowledge of the pattern of orthopedic disease conditions seen and treated in the Rivers State university teaching hospital will help in guiding the repositioning effort of the department/discipline, especially in the light of the new status of the institution as a teaching hospital for teaching, service delivery and research. The aim of this study therefore was to determine the pattern of orthopedic cases seen in the surgery department of the Rivers State university teaching hospital from January 2010 to January 2019.

Methods: A descriptive retrospective cross-sectional study was carried out at the emergency room, clinic, operating theatre, and wards of the surgery department of the Rivers State university teaching hospital, using hospital registers. The study was analyzed using the Microsoft excel spreadsheet.

Results: There were 2854 orthopedic emergency room cases seen, comprising 621 fractures, 463 lumbar spondylosis/ spondylolisthesis, 392 foot ulcer/sepsis, 375 dislocations, 310 acute osteomyelitis, and 864 osteoarthritis with other conditions. The common orthopedic cases seen in the out-patient clinics in descending order of occurrence were lumbar spondylitis / spondylolisthesis (881), osteoarthritis (655), fractures (560), dislocations (227), etc.

Conclusions: Trauma-related disease care constituted the bulk of work of the orthopedic surgeon in our environment in the emergency room, operating theatre and ward admissions, and younger males were more affected.

Keywords: Pattern, Orthopaedic cases, Ten-year review, RSUTH, Port Harcourt, Nigeria

INTRODUCTION

Pattern of disease (or health) provides a panoramic view of the spectrum in focus, detectable from prenatal observations to mortality figures, and are useful for planning, advocacy and distribution of resources. The interest of the world health organization on the global burden and pattern of disease is known and cannot be overemphasized. The need for partnership between orthopedic surgeons in the developed and developing worlds for improvement in clinical care, teaching, and research, has long been advocated. In a study of the pattern of orthopedic injuries in Jammu India, road traffic accident was found to be the commonest cause of the injuries. Significant difference has been reported in the pattern of low back pain seen among young athletes compared to the general adult population, hence shaping early recognition and diagnosis. In the United States of America in a study on horse-related sport injuries, a researcher reported specific orthopedic injury pattern, with recommendations on prevention.

In the African setting, disappointing pattern of elective surgical case cancellations was studied and it was found that general surgery and orthopedic surgery cases were in the majority, with lack of theatre space and theatre facilities being the most frequent reasons for cancellations. In Ethiopia, a study on injuries and...
violence showed that the major reason for the conflict which was characterized by significant morbidity (blunt injuries and fractures) and mortality was land issue, and most of those involved were drunk. A similar study in Addis Ababa reported road traffic accidents as being the commonest cause of injuries with young males dominating the victim population. Orthopedic emergencies were also studied in Addis Ababa, and a spectrum of injuries resulting from road traffic accident, falls, blow/assault, crush by heavy object, machine, bullet/blast, etc. were reported. The pattern of some other orthopedic conditions have been studied and reported in Africa.

Nigeria is no exception, as patterns of orthopaedic surgical conditions have also been reported. A study describing the pattern of hand injuries seen at an emergency department in Kano documented a triad of occupational injuries, injuries from road accidents, and domestic accidents as being the most common. A pattern of low back pain, with 2914 new cases was reported in Ebonyi State in which significant proportion of patients were found to have such pain of mechanical origin that calls for prevention. A pattern of congenital orthopaedic malformations was described in Ibadan, and congenital talipes equinovarus was found to be the commonest. A study in Malawi showed similar findings. The pattern of other orthopaedic and orthopaedic-related conditions have been reported in some parts of Nigeria involving electrical injuries, bone tumours, gunshot injuries, cervical spine injuries, femoral fractures, tibial fractures, diabetic foot lesions, and extremity amputations.

Pattern of diseases help institutions and governments to know the dominant disease conditions and how to allocate scarce resources. Knowledge of the pattern of orthopedic disease conditions seen and treated in the Rivers State university teaching hospital will help in guiding the repositioning of the department/discipline, especially in the light of the new status of the institution as a Teaching Hospital for teaching, service delivery and research. This formed the basis for this study, whose aim was to determine the pattern of orthopedic cases seen in the surgery department (emergency room, clinics, operating theatre, and wards) of the Rivers State university teaching hospital from January 2010 to January 2019.

METHODS

Study area

The study was conducted in Port Harcourt the capital of Rivers State, Nigeria.

Study place and period

The emergency room, clinics, operating theatre, and wards of the surgery department of the Rivers State university teaching hospital, Port Harcourt Nigeria were the study sites of this study carried out in the last quarter of year 2021.

Study design

A study was of cross-sectional descriptive study.

Study instrument

Patient registers used as a study instrument.

Study population

All orthopaedic patients identified in the registers were included in the study.

Sample size determination

Total population was used.

Sampling technique procedure

Total population was used.

Data analysis

The study data (on age, sex, types and number of orthopaedic cases) was scrutinized by all the authors for authenticity or otherwise, and analysed using Microsoft excel spreadsheet.

Ethical approval

The approval of research ethics committee of university of Port Harcourt teaching hospital was obtained.

RESULTS

Demographic characteristics of fracture case are shown in Table 1. There were more males who had fractures than females as evidenced by total number of cases seen in emergency room (males=311, females=278), operating theatre (males=166, females=87), wards (males=272, females=116). However, there were more females seen at the out-patient clinics (males=225, females=242). Mean age of patients with fractures were 38.2 years (clinics), 34.1 years (emergency room), 40.4 years (theatre), and 36.4 years (ward cases).

Table 2 shows the demographic characteristics of patients diagnosed with lumbar spondylolisthesis. There were 268 males and 384 females seen at the out-patient clinics; 195 males and 257 females seen at the accident and emergency room; 16 males and 12 females admitted to the wards; and 3 operated cases. The mean age for lumbar spondylolisthesis was 54.1 years (clinic cases), 52.6 years (emergency room), 42.7 years (theatre), and 57.4 years (ward cases).
Table 3 show the demographics for cases of osteoarthritis. In the out-patient clinics, there were 177 males and 318 females; 128 males; 189 females (accident and emergency); 15 males; 21 females (operating theatre); and 18 males; 30 females (ward admission). The mean ages were 54.9 years (clinics), 50.3 years (accident and emergency), 42.1 years (operating theatre), and 50.8 years (ward admission).

Table 4 shows the orthopedic cases seen at the accident and emergency department. There were 2854 orthopedic emergency room cases seen, comprising 621 fractures, 463 lumbar spondylisis/spondylolisthesis, 392-foot ulcer/sepsis, 375 dislocations, 310 acute osteomyelitis, and 864 osteoarthritis with others.

Table 5 shows the type and number of orthopedic cases seen at the out-patient clinics. The common orthopedic cases seen in descending order of occurrence were lumbar spondylitis/ spondylolisthesis (881), fractures-following road traffic accidents, falls, gunshot-(560), dislocations (227), etc.

Table 6 show the type and number of orthopedic cases operated in operating theatre. Type cases in descending order of frequency were fractures (444), amputation-for DM gangrene, trauma, burns-(56), manipulation of dislocated joints (56), surgery for Blount’s disease (38), surgery for osteoarthritis (38), etc. Eight hundred and eighteen orthopedic cases were operated, and more than half of the cases were surgery for fractures.

The type and number of orthopaedic cases admitted to the ward are shown in Table 7. In descending order, there were 388 cases of fractures (RTA, falls, gunshot), 143 cases of bone tumours, 97 dislocations, etc.

Table 1: Demographics of fractures cases.

Variables	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Total
Out-patient clinics											
Mean age (Years)	37.8	40.3	32.1	44.5	38.2	37.2	44.0	30.3	38.6	38.3	38.2
Male	28	13	20	26	23	18	19	20	31	27	225
Female	25	17	12	30	25	19	37	21	29	27	242
Accident and emergency											
Mean age (Years)	35.9	33.5	45.8	34.5	37.2	37.6	37.6	37.6	39.8	39	34.1
Male	29	22	26	24	28	38	29	35	35	35	311
Female	21	24	27	25	30	27	29	28	28	27	278
Operating theatre											
Mean age (Years)	40.6	43.7	38.2	34.2	51.1	40.4	41.9	34.9	39.7	39.1	40.4
Male	21	12	18	21	21	20	14	24	12	19	166
Female	7	7	13	11	7	7	5	8	11	11	87
Ward admission											
Mean age (Years)	39.7	40.1	31	36.8	33.6	34.3	29.1	38.1	40.7	40.6	36.4
Male	16	13	4	20	5	49	8	44	46	67	272
Female	7	8	-	3	15	3	17	20	36	31	116

Table 2: Demographics of lumbar spondylisis/spondylolisthesis cases.

Variables	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Total
Out-patient clinics											
Mean age (Years)	56.6	55	54.6	51.3	54	53	52.4	54.4	53.6	56	54.1
Male	19	18	25	35	28	28	29	29	26	31	268
Female	42	32	35	35	33	43	42	43	38	41	384
Accident and emergency											
Mean age (Years)	50.7	50.4	54.4	54.2	49.4	54.5	52.9	51.5	54.3	53.9	52.6
Male	19	19	17	26	27	20	20	21	17	19	195
Female	29	20	27	25	29	28	21	23	16	257	
Operating theatre											
Mean age (Years)	50	-	-	41	-	-	-	37	-	42.7	
Male	-	-	-	-	-	-	-	-	-	-	
Female	1	-	-	-	-	-	-	-	-	-	3
Ward admission											
Mean age (Years)	46.7	-	-	-	54	62	81	39.7	60.6	57.4	
Male	-	-	-	-	2	1	3	10	16		
Female	3	-	-	-	2	1	5	1	12		
Table 3: Demographics of osteoarthritis cases.

Variables	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Total
Out-patient clinics											
Mean age (Years)	58.5	55	53	59.6	52.7	50.9	57.4	55.2	53.8	53.1	54.9
Male	20	13	25	23	13	21	13	10	13	26	177
Female	24	26	28	42	45	29	31	26	30	37	318
Accident and emergency											
Mean age (Years)	56.8	57.4	59.4	52.2	57.5	57.3	50.3	58.3	53.4	60	50.3
Male	10	11	21	19	12	15	11	8	10	11	128
Female	20	14	17	19	31	25	20	12	15	16	189
Operating theatre											
Mean age (Years)	28.9	-	39.5	6	54.3	28.5	-	62.5	63	54	42.1
Male	3	-	2	1	4	3	-	1	-	1	15
Female	4	-	-	-	4	4	-	5	4	-	21
Ward admission											
Mean age (Years)	62.5	-	-	58.8	-	67.8	57	59.4	51	58.7	50.8
Male	-	-	-	4	-	3	1	5	2	3	18
Female	4	-	-	2	-	2	2	12	4	4	30

Table 4: Orthopedic cases seen at the accident and emergency department.

Types of case	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Total
Trauma											
Dislocations	41	50	49	29	38	52	40	27	19	30	375
Fractures (RTA, falls, gunshot)	50	46	53	60	57	72	59	70	66	88	621
Infections											
Foot ulcer with sepsis/ cellulitis	31	45	41	56	37	23	41	33	30	37	392
Acute osteomyelitis	25	48	27	35	40	25	34	36	20	20	310
Degenerative diseases											
Lumbar spondylolisthesis (LBP)	48	39	42	51	56	60	50	42	40	35	463
Osteoarthritis and other joint pain	67	78	61	78	83	87	60	64	78	55	864
Total	262	306	273	309	311	319	284	272	253	265	2854

Table 5: Orthopedic out-patient clinic cases.

Types of case	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Total
Trauma											
Dislocations	24	14	21	25	26	20	25	22	21	50	227
Fractures (RTA, falls, gunshot)	53	30	29	20	48	39	49	37	71	184	560
Infections											
Limb/ foot ulcer with sepsis	14	10	11	10	-	13	14	12	15	16	115
Osteomyelitis	15	-	37	13	16	37	20	20	31	35	224
Potts disease	-	-	-	-	-	-	-	-	4	-	4
Bursitis	-	-	-	-	-	-	-	-	2	-	2
Congenital disorders/ defect at birth											
Polydactyly	-	-	6	-	-	-	-	3	5	12	26
Syndactyly	-	-	9	-	-	-	-	9	8	3	32
Talipes equinovalgus/ varus	11	4	10	8	-	17	2	2	13	15	82
Erb’s palsy	-	-	1	1	-	1	1	-	1	-	5

Continued.
Types of case	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Total
Metabolic/ degenerative diseases											
Gout	-	-	-	-	-	-	-	-	22	3	25
Blount’s disease	-	6	10	16	3	4	9	7	3	11	69
Rickets	-	-	-	-	-	-	-	-	2	3	5
Osteoporosis	-	-	-	-	-	-	5	4	8	6	23
Osteoarthritis	44	39	42	40	58	50	44	51	93	194	655
Lumbar spondylosis/ spondylolisthesis	61	50	90	30	61	115	59	60	99	256	681
Degenerative bone disease	-	-	5	-	-	-	5	1	-	36	99
Carpal tunnel syndrome	-	-	-	-	-	-	-	-	-	2	2
Avascular necrosis of head of femur	-	-	-	-	-	-	-	-	-	8	8
Supraspinatus tendinitis	-	-	-	-	-	-	-	-	1	-	1
Scoliosis of thoracic spine	-	3	4	3	-	-	5	3	5	6	29
Bony exostosis	-	-	-	-	-	-	-	-	1	1	2
Ganglion	-	2	3	-	-	-	1	17	4	8	35
Plantar calcaneal spur	-	-	-	-	-	-	-	-	7	-	7
Neoplastic diseases											
Bone tumours	10	10	6	6	5	5	8	7	3	11	71
Post-burn contracture/ post operative complications/ post arthritic malformation											
Contracture of left wrist following burns	-	-	-	-	-	-	-	-	1	-	1
Genu valgum/ varus	-	-	2	-	-	2	-	1	9	23	37
Implant failure	-	-	-	-	-	-	-	2	2	4	

Table 6: Orthopedic cases operated at the theatre.
Lumbar spondylosis/spondylolisthesis and osteoarthritis were the most common orthopedic diseases encountered, presenting mostly as clinic cases. Next to osteoarthritis was fractures from multiple sources-road traffic accidents, falls, and gunshot injuries-mostly presenting as emergencies. Fractures from trauma has been known to be the commonest cause of amputations performed by orthopedic, general, vascular and trauma surgeons in our subregion.34 The finding of predominance of fractures in our emergency orthopedic practice is also not surprising as the world health organization’s record has it that injuries account for 16% of the global burden of diseases, with 90% of the total burden coming from low and middle-income countries.35, 36

Overall, majority of the patients who were seen in the out-patient clinics with fractures were females. This finding aligns with observations in the global epidemiology of fractures recorded more in females as evidenced in previous studies.37-39 However, our experience from the records of the accident and emergency room, operating theatre, and wards shows predominance of males in the occurrence of fractures. However, this finding is without consideration of age variation. The explanation for this could be the bimodal distribution of fracture incidence, in which younger adult male population are known to sustain more fractures than females who dominate the older age group in fracture occurrence. The deduction here is that the male-folk in African setting is more engaged in outdoor economic, political and other activities to care for the family, and hence are more likely to sustain fractures that could have contributed to predominance of males in cases of fractures seen in the accident and emergency rooms, operating theatres, and ward admissions in our study. The overall mean age for fractures was 37.3 years, and also the younger mean ages in the emergency room, operating theatre and the wards seem to support this reasoning. This finding is in agreement with reports from other centers in Nigeria.24, 40

Lumbar spondylosis/spondylolisthesis was seen more among females, with overall mean age of 51.7 years. This finding is in agreement with the reports of other researchers.41-43 Influence of oral contraceptives, pregnancy and parturition, and menopause have been reported to contribute to this picture. However, the mean

Types of case	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Total
Surgery for trigger finger	-	-	-	-	-	-	1	-	-	-	1
Release of left wrist contracture	-	-	-	-	-	-	1	-	-	-	1
Total knee arthroplasty	-	-	-	-	-	-	1	-	-	-	1
Wound debridement	1	-	-	-	-	1	-	-	-	-	2
Sprain	-	1	-	5	5	2	-	-	5	2	20
Bone tumours	8	16	9	8	8	3	6	6	10	7	81
Total	818										

DISCUSSION

Orthopedic surgical practice globally has moved from basic to include advanced practices featuring minimal invasive procedures with robotics in advanced climes.28-33 There are variations in scope of practice depending on availability of trained personnel and equipment. Almost three thousand orthopedic cases were recorded within the ten-year study period. Lumbar spondylosis/spondylolisthesis and osteoarthritis were the most prevalent orthopedic diseases encountered, presenting mostly as clinic cases. Next to osteoarthritis was fractures from multiple sources-road traffic accidents, falls, and gunshot injuries-mostly presenting as emergencies. Fractures from trauma has been known to be the commonest cause of amputations performed by orthopedic, general, vascular and trauma surgeons in our subregion.34 The finding of predominance of fractures in our emergency orthopedic practice is also not surprising as the world health organization’s record has it that injuries account for 16% of the global burden of diseases, with 90% of the total burden coming from low and middle-income countries.35, 36

Types of case	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Total
Trauma											
Dislocations	6	-	-	8	2	9	-	16	18	38	97
Fractures (RTA, falls, gunshot)	23	21	5	28	8	64	-	61	76	88	388
Sprain	1	-	-	1	-	-	1	2	5	10	
Infections											
Osteomyelitis	-	1	-	1	1	1	-	-	-	-	4
Sepsis and debridement/gangrene	-	5	10	-	-	3	-	-	1	-	5
Metabolic/degenerative diseases	4	-	-	5	-	5	3	17	6	28	
Neoplastic diseases											
Bone tumours	16	26	12	16	15	8	12	11	13	14	143

International Surgery Journal | April 2022 | Vol 9 | Issue 4 | Page 786
age recorded in our study appears younger than those seen in previous reports. The number of osteoarthritis recorded among females was almost double that of males, and the overall mean age for osteoarthritis was 49.5 years. This finding is in agreement with the reports of researchers from other climes, as osteoarthritis is known to be commoner in females and usually after the age of fifty.44-46 A report from Cameron in Africa has some commonality with our study.47 Our finding is also similar to the findings of other research works from other centers in Nigeria, although the mean age for osteoarthritis in our study appears a little lower in our study.48-50

Operation for fractures comprise more than half of the bulk of surgical workload of the orthopedic surgeon in our center. This was closely followed by manipulations for joint dislocations. This may be as a result of the fact that this State-administered center recently upgraded to a teaching hospital status, was mainly functioning as a State specialist hospital and referral center for the general hospitals in the local governments areas in Rivers State. There was no super-specialization among the orthopedic team, hence the absence of some operative surgical procedures seen in other climes. It is also for the same reason that orthopaedic ward bed occupancy was largely due to fractures, followed by bone tumours and dislocations. It is hoped that the upgrade coupled with further training of staff and provision needed equipment will lead to super-specialization within the orthopedic team, and subsequent improvement in the pattern of cases to advanced surgeries.

CONCLUSION

About three thousand orthopedic cases were within the ten-year study period, with lumbar spondylosis/ spondylolisthesis and osteoarthritis dominating the outpatient orthopedic clinic care. Trauma-related disease care constitutes the bulk of work of the orthopedic surgeon in our environment in the emergency room, operating theatre and ward admissions, and younger males were more affected.

Recommendations

Establishment of a trauma registry in Port Harcourt will go a long way to track trauma cases for research and planning, knowing that trauma/fractures account for the bulk of emergency practice in our environment. Upgrading the trauma care services at the study centre will go a long way to reduce the morbidity and mortality that could be associated with this burden of disease. Further training of staff for super-specialization is needed for a more robust orthopaedic practice.

ACKNOWLEDGEMENTS

Author would like to thanks to data collection assisting staff Dr. Chisom Christian Nwamadi, who painstakingly extracted needed data from the records of the hospital.

Funding: No funding sources

Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. WHO. fact sheet: The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020: summary, 1996. Available at: https://apps.who.int/iris/handle/10665/41864. Accessed on 1 February 2022.
2. Beveridge M, Howard A. The burden of orthopaedic disease in developing countries. JBJS. 2004;86(8):1819-22.
3. Ghani A, Ahmad MN, Hakak A, Nabi F, Ashraf U, Majeed M. An analytical study of pattern of orthopedic injuries among patients presenting to the emergency department in a tertiary care hospital at GMC Jammu. J Med Sci Clin Res. 2018;11:529-35.
4. Micheli LJ, Wood R. Back pain in young athletes: significant differences from adults in causes and patterns. Arch Pediatr Adolescent Med. 1995;149(1):15-8.
5. Lodger RT. The demographics of equestrian-related injuries in the United States: injury patterns, orthopedic specific injuries, and avenues for injury prevention. J Trauma Acute Care Surg. 2008;65(2):447-60.
6. Chalya P, Gilyomia J, Mubala J, Simbila S, Ngayomela I, Chandika A et al. Incidence, causes and pattern of cancellation of elective surgical operations in a university teaching hospital in the Lake Zone, Tanzania. Afr Health Sci. 2011;11(3).
7. Ayana B, Ahmed E. Interpersonal violence related injury at St Luke hospital, Oromia Region, Ethiopia. East Central Afri J Surg. 2012;17(1):37-42.
8. Wolde A, Abdella K, Ahmed E, Tsegaye F, Babaniyi O, Kobusingye O et al. Pattern of injuries in Addis Ababa, Ethiopia: a one-year descriptive study. East Central Afr J Surg. 2008;13(2):14-22.
9. Elias A, Tezera C. Orthopedic and Major Limb Trauma at the Tikur Anbessa University Hospital, Addis Ababa-Ethiopia. East Central Afr J Surg. 2005;10(2):43-50.
10. Burch VC, Isaacs S, Kalla AA. Ethnicity and patterns of spondyloarthrits in South Africa-analysis of 100 patients. J Rheumatol. 1999;26(10):2195-200.
11. Kalisya LM, Nyavandu K, Machumu B, Kwirutwe S, Rej PH. Patterns of congenital malformations and barriers to care in Eastern Democratic Republic of Congo. PLoS One. 2015;10(7):e0132362.
12. Mbembati N, Museru L, Leshabari M. Childhood burn injuries in children in Dar es Salaam: patterns and perceptions of prevention: short research article. African Safety Promotion. 2002;1(1):42-5.
13. Dafiewhare OR, Ajibade A. Pattern of hand injuries seen in the accident and emergency unit of an urban orthopedic hospital. Nig J Plastic Surg. 2015;11(1):8.
14. Omoke N, Amaraegbulam P. Low back pain as seen in orthopedic clinics of a Nigerian Teaching Hospital. Nig J Clin Practice. 2016;19(2):212-7.

15. Omololu B, Ogunlade S, Alonge T. Pattern of congenital orthopaedic malformations in an African teaching hospital. West Afr J Med. 2005;24(2):92-5.

16. Mkandawire N, Kaunda E. Incidence and patterns of congenital talipes equinovarus (clubfoot) deformity at Queen Elizabeth Central Hospital, Banter, Malawi. East Central Afr J Surg. 2004;9(2):28-31.

17. Opara K, Chukwuanukwu T, Ogbonnaya I, Nwadinigwe C. Pattern of severe electrical injuries in a Nigerian regional burn centre. Nig J Clin Practice. 2006;9(2):124-7.

18. Abdulkareem F, Eyesan S, Akinde O, Ezembakwe M, Nnoo O. Pathological study of bone tumours at the National Orthopaedic Hospital, Lagos, Nigeria. West Afr J Med. 2007;26(4):306-11.

19. Obalum D, Giwa S, Banjo A, Akinsulire A. Primary bone tumours in a tertiary hospital in Nigeria: 25 year review. Nige J Clin Practice. 2009;12(2).

20. Obalum D, Eyesan S, Ezembakwe M, Abdulkareem F. Pattern of osteochondromas in Lagos, Nigeria. Nig Quarterly J Hospital Med. 2008;18(2):69-71.

21. Lasebikan OA, Nwadinigwe CU, Onyebulue EC. Pattern of bone tumours seen in a regional orthopaedic hospital in Nigeria. Nig J Med. 2014;23(1):46-50.

22. Onuminy J, Ohwowhiagbe E. Pattern of civilian gunshot injuries in Irrua, Nigeria. South Afr J Surg. 2005;43(4):170-2.

23. Eyichukwu G, Anyaehie U, Moghalu O. Pattern and Outcome of Management for Traumatic Closed Cervical Spine Injuries at The National Orthopaedic Hospital, Enugu, Nigeria. Nig Health J. 2011;11(1):27-31.

24. Anyaehie U, Ejimofoor O, Akpuaka F, Nwadinigwe C. Pattern of femoral fractures and associated injuries in a Nigerian tertiary trauma centre. Nig J Clin Practice. 2015;18(4):462-6.

25. Ifesanya AO, Alonge TO, Ogunlade SO, Omololu AB, ROA TEN. Changing trends in the pattern of tibial fractures in Nigeria: A review of 70 cases. J Orthop. 2008;5(2):e4.

26. Musa A. Diabetic foot lesions as seen in Nigerian teaching hospital: pattern and a simple classification. East Afr J Public Health. 2012;9(1):51-3.

27. Abbas A, Musa A. Changing pattern for extremity amputations in University of Maiduguri Teaching Hospital, Nigeria. Niger J Med. 2007;16(4):330-3.

28. Bojadjav B, Bojadjav T, Delchev K, Kastelov R, Chavdarov I, editors. Basic Characteristics of Handheld Robotized Systems in Orthopedic Surgery. 2020 International Conference on Software, Telecommunications and Computer Networks (SoftCOM). 2020;IEEE.

29. Melcher C, Korge A, Cunningham M, Foley KT, Härtl R. Metrics Development for Minimal Invasive Unilateral Laminotomy for Bilateral Decompression of Lumbar Spinal Stenosis With and Without Spondylothesis by an International Expert Panel. Global Spine J. 2020;10(2):168S-75.

30. Sah SK, Sinkemani A, Li Y. Current Trends in Clinical Practice for the Minimal Invasive Medial Unicondylar Knee Arthroplasty. Open J Orthop. 2020;10(09):252.

31. De Prado M. Complications in minimally invasive foot surgery. Fuß Sprunggelenk. 2013;11(2):83-94.

32. Spoor A, Öner F. Minimally invasive spine surgery in chronic low back pain patients. J Neurosurg Sci. 2013;57(3):203-18.

33. Mahaisavariya B. Minimal Invasive Orthopaedic Surgery. Siriraj Med J. 2006;58(12):1227-8.

34. Nwankwo O, Katchy A. Surgical limb amputation: A five-year experience at Hilltop Orthopedic Hospital Enugu, Nigeria. Nig J Orthop Trauma. 2004;3(2):139-49.

35. Mock C. Guidelines for essential trauma care: World Health Organization, 2004. Available at: https://www.who.int/violence_injury_prevention/publications/services/en/guidelines_tramacare.pdf. Accessed on 1 February 2022.

36. Obalum D, Eyesan S, Kolawole H, Ogo C. Challenges in trauma management in a developing economy. OA Orthop. 2013;3(3):22.

37. Curtis EM, Van der Velde R, Moon RJ, Van den Bergh JP, Geusens P, de Vries F et al. Epidemiology of fractures in the United Kingdom 1988-2012: variation with age, sex, geography, ethnicity and socioeconomic status. Bone. 2016;87:19-26.

38. Marcano A, Taormina D, E gol KA, Peck V, Tejwani NC. Are race and sex associated with the occurrence of atypical femoral fractures? Clin Orthop Related Res. 2014;472(3):1020-7.

39. Oneill T, Varlow J, Silman A, Reeve J, Reid D, Todd C et al. Age and sex influences on fall characteristics. Ann Rheumatic Dis. 1994;53(11):773-5.

40. Odutawo-Okagbemi DO. Open fractures: epidemiological pattern, initial management and challenges in a sub-urban teaching hospital in Nigeria. Pan Afr Med J. 2019;33.

41. Wang YYJ, Kaplan Z, Deng M, Leung JC. Lumbar degenerative spondylothesis: epidemiology: a systematic review with a focus on gender-specific and age-specific prevalence. J Orthop Translation. 2017;11:39-52.

42. Ishimoto Y, Yoshimura N, Muraki S, Yamada H, Nagata K, Hashizume H et al. Association of lumbar spondylothesis with low back pain and symptomatic lumbar spinal stenosis in a population-based cohort: the Wakayama Spine Study. Spine. 2017;42(11):E666-71.

43. Manchikanti L. Epidemiology of low back pain. Pain Physician. 2000;3(2):167-92.

44. Neogi T, Zhang Y. Epidemiology of osteoarthritis. Rheumatic Dis Clin. 2013;39(1):1-19.

45. Vina ER, Kwok CK. Epidemiology of osteoarthritis: literature update. Curr Opinion Rheumatol. 2018;30(2):160.
46. March LM, Bagga H. Epidemiology of osteoarthritis in Australia. Med J Australia. 2004;180(5):S6.
47. Bija MD, Luma HN, Temfack E, Gueleko ET, Kemta F, Ngandeu M. Patterns of knee osteoarthritis in a hospital setting in sub-Saharan Africa. Clinical Rheumatol. 2015;34(11):1949-53.
48. Akinpelu AO, Alonge TO, Adekanla BA, Odole AC. Prevalence and pattern of symptomatic knee osteoarthritis in Nigeria: A community-based study. Int J Alli Health Sci Pract. 2009;7(3):10.
49. Oboirien M, Agbo SP, Ajiboye LO. Risk Factors in the Development of Knee Osteoarthritis. Int J Orthop. 2018;5(2):905-9.
50. Odole A, Ekediegwu E, Ekechukwu E, Uchenwoke C. Correlates and predictors of pain intensity and physical function among individuals with chronic knee osteoarthritis in Nigeria. Musculoskeletal Sci Pract. 2019;39:150-6.

Cite this article as: Aaron FE, Ijah RFOA, Obene T. Pattern of orthopaedic case presentations at the rivers state university teaching hospital: a ten-year review. Int Surg J 2022;9:781-9.