Charmonium Review

Frederick A. Harris

aDept. of Physics and Astronomy,
The University of Hawaii,
Honolulu, HI 96822, USA

During the last few years there has been a renaissance in charm and charmonium spectroscopy with higher precision measurements at the ψ and $\psi(3770)$ coming from BESII and CLEOc and many new discoveries coming from B-factories. In this paper, I will review the status of $\psi(3770)$ and below.

1. Introduction

An admonishment says “May you live in exciting times”. It turns out that for charm and charmonium spectroscopy, we are. Only 10 CC resonances were discovered from 1974 to 1977; none were discovered from 1978 to 2002. However from 2002 to 2005, seven new CC resonances were discovered by Belle, BaBar, CLEOc, CDF, and D0. I will review the $\psi(3770)$ and below, where there has been much progress from BES, CLEOc, B-factories, etc. Brian Petersen will cover the new resonances were discovered from 1978 to 2002. However from 1974 to 1977; none were discovered from 1978 to 2002. However from 2002 to 2005, seven new CC resonances were discovered by Belle, BaBar, CLEOc, CDF, and D0. I will review the $\psi(3770)$ and below, where there has been much progress from BES, CLEOc, B-factories, etc. Brian Petersen will cover the new states: X, Y, Z, etc.

2. Old but new states

2.1. η_c'

Prior to 2002, there was an unconfirmed candidate for the η_c by the Crystal Ball experiment [1] at a mass of 3594 ± 5 MeV/c^2. In 2002, Belle observed clear peaks in the X mass distribution in $B \rightarrow KX, X \rightarrow K_SK\pi$ at the η_c, the J/ψ, and at a mass of 3654 ± 10 MeV/c^2 [2]. CLEO [3] and BaBar [4] quickly confirmed the higher mass value in $\gamma \gamma \rightarrow K_SK\pi$ with mass measurements of 3642 MeV/c^2 and 3633 MeV/c^2, respectively. Belle also found a peak in $e^+e^- \rightarrow J/\psi X$ at $M_X = 3630$ MeV/c^2 [5].

Combining the results, excluding Crystal Ball, yields a mass of $M_{avg} = 3637 \pm 4$ MeV/c^2, and hyperfine splittings of $\Delta M(1S) = M_{J/\psi} - M_{\eta_c} = 117 \pm 1$ MeV/c^2 and $\Delta M(2S) = M_{\psi(2S)} - M_{\eta_c} = 49 \pm 4$ MeV/c^2. The higher mass is more consistent with lattice calculations (LQCD) and potential models [6].

2.2. h_c

The h_c or 1P_1CC state has $J^{PC} = 1^{+-}$. This state is important to learn more about the hyperfine (spin-spin) interaction of P wave states. It is expected to have a mass near the center of gravity of the $3P_1$ states $m_{h_c} = m_{c,offg.} = 3525.31 \pm 0.07$ MeV/c^2, to be narrow ($\Gamma < 1$ MeV/c^2), and to decay to $\eta_c\gamma$.

In 1992, E760 using 16 pb$^{-1}$ of $p\bar{p}$ data observed a structure near 3526 MeV/c^2 in $p\bar{p} \rightarrow J/\psi\pi^0$ [7]. The successor experiment E835 using 113 pb$^{-1}$ of data was unable to confirm this peak! However E835 also searched for $p\bar{p} \rightarrow h_c \rightarrow \gamma\eta_c, \eta_c \rightarrow \gamma\gamma$ and found a signal at $M = 3525.8 \pm 0.2 \pm 0.2$ MeV/c^2 for $\Gamma = 0.5$ to 1 MeV/c^2 [8].

CLEOc quickly substantiated this with evidence for h_c production from $e^+e^- \rightarrow \psi(2S) \rightarrow \pi^0h_c \rightarrow 3\gamma\eta_c$ at CESR [9] with a sample of $3 \times 10^6 \psi(2S)$ events. Using an inclusive analysis where they measured the mass recoiling from the π^0, they obtained $M(h_c) = 3524.9 \pm 0.7 \pm 0.4$ MeV/c^2. From an exclusive analysis, where they measured h_c decays to $K.SK\pi, KL\pi\pi, K\pi\pi\pi$, and $\pi\pi\eta$, they obtained $M(h_c) = 3523.6 \pm 0.9 \pm 0.5$ MeV/c^2. The consistency between the two measurements was good giving an overall $M(h_c) = 3524.4 \pm 0.6 \pm 0.4$ MeV/c^2.

*Supported by the US Dept. Of Energy under Grant DE-FG03-94ER40833
and a product branching fraction \(B(\psi(2S) \rightarrow \pi^0 h_C) B(h_C \rightarrow \gamma \eta_C) = (4.0 \pm 0.6 \pm 0.4) \times 10^{-4} \), in agreement with a pQCD prediction of \(B = (1.9 - 5.8) \times 10^{-4} \) [10]. The mass splitting \(\Delta M_{hf} = < M(3P_J) > - M(\ell P_1) = 1.0 \pm 0.6 \pm 0.4 \text{MeV}/c^2 \) agrees with expectations \((\approx 0)\), but the sign and difference are not yet well enough determined to provide a real test.

Now the charmonium family below the \(\psi(3770) \) is complete, and the mass values can be used in potential models to predict masses of higher states.

3. \(\psi(2S) \) radiative and hadronic transitions

3.1. \(\psi(2S) \) radiative transitions

CLEOc with its CsI calorimeter \((\Delta E/E = 5.0\% \text{ at } 100 \text{ MeV}) \) allows a good measurement of the inclusive \(\gamma \) spectrum. Using \(3 \times 10^6 \psi(2S) \) events, they measured \(\psi(2S) \rightarrow \gamma \chi_{cJ} \) \((E1 \text{ transition}) \) and \(\psi(2S) \rightarrow \gamma \eta \) \((M1 \text{ transition}) \) [11]. Results are shown in Table 1. Note the big change from PDG04 [12] for \(\psi(2S) \rightarrow \gamma \chi_{c2} \); this will affect \(\chi_{c2} \) branching fractions! The combined transistions, \(\psi(2S) \rightarrow \gamma \chi_{cJ}, \psi(2S) \rightarrow \gamma \chi_{cJ} \rightarrow \gamma J/\psi, J/\psi \rightarrow \mu^+ \mu^-, e^+ e^- \) have also been measured by BESII [13] and CLEOc [14], and the product branching fractions are shown in Table 2. Branching fractions for \(\chi_{cJ} \rightarrow \gamma J/\psi \) are given in Table 3. BESII is calculated using the CLEOc branching fractions for \(\psi(2S) \rightarrow \gamma \chi_{cJ} \) from Table 1 and the BESII results in Table 2.

Decay	PDG04 (%)	CLEOc [%]
\(\psi(2S) \rightarrow \gamma \chi_{c0} \)	8.6 ± 0.7	9.22 ± 0.47
\(\psi(2S) \rightarrow \gamma \chi_{c1} \)	8.4 ± 0.8	9.07 ± 0.55
\(\psi(2S) \rightarrow \gamma \chi_{c2} \)	6.4 ± 0.6	9.33 ± 0.63
\(\psi(2S) \rightarrow \gamma \eta_c \)	0.28 ± 0.08	0.32 ± 0.07

3.2. \(\psi(2S) \) hadronic transitions

The \(\psi(2S) \rightarrow \gamma \chi_{cJ}, \psi(2S) \rightarrow \gamma J/\psi, J/\psi \rightarrow \mu^+ \mu^-, e^+ e^- \) decays can also be used to measure the processes \(\psi(2S) \rightarrow \pi^0 J/\psi \) and \(\pi^0 J/\psi \). These and \(\psi(2S) \rightarrow \pi \pi J/\psi \) results are shown in Table 4 [13–16]. Note that isospin is conserved in the CLEOc \(\pi^+ \pi^- J/\psi \) to \(\pi^0 \pi^0 J/\psi \) ratio. Using CLEOc + BESII, we determine

\[
R = \frac{\Gamma(\psi(2S) \rightarrow \pi^0 J/\psi)}{\Gamma(\psi(2S) \rightarrow \eta J/\psi)} = 0.042 \pm 0.004
\]

\(R \) is much larger than expected using PCAC [17] and may indicate mixing between \(\pi^0, \eta, \) and \(\eta' \) [18].

4. Hadronic decays of charmonium

Decays of \(J/\psi, \eta_c, \chi_{cJ}, \) and \(\psi(2S) \) with definite \(J \) and \(I \) are ideal to study meson and baryon spectroscopy. In particular, radiative decays of \(J/\psi \) are ideal for glueball searches [19]. As an example, Fig. 1 shows Dalitz plots, projections, and the result of a partial wave analysis fit for the decay \(\chi_{c0} \rightarrow \pi^+ \pi^- K^+ K^- \). The Dalitz plots show rich structure, and these decays are ideal for studying scalar states [20].

The pQCD 12% rule [21,22] states that single \(J/\psi \) and \(\psi(2S) \) hadronic decays to final state \(X \) proceed via the annihilation of the \(CC \) pair into three gluons or a virtual photon, and the decay

Decay	PDG04 (%)	BESII (%)	CLEOc [14] (%)
\(\chi_{c0} \)	1.18 ± 0.14	-	2.0 ± 0.3
\(\chi_{c1} \)	31.6 ± 3.3	31.0 ± 3.2	37.9 ± 2.2
\(\chi_{c2} \)	20.2 ± 1.7	17.4 ± 1.8	19.9 ± 1.3

Table 2

Product branching fractions: (BESII [13], CLEOc [14])

Table 3

\(\chi_{cJ} \rightarrow \gamma J/\psi \) branching fractions. BESII calculated using the BES results of Table 2 and the CLEOc results of Table 1.
Table 4
Hadronic transitions: $\psi(2S)$ Branching fractions.

Decay	PDG04	BES	CLEOc [14]
$\pi^+ J/\psi$	$0.10 \pm 0.02\%$	$0.14 \pm 0.01 \pm 0.01\%$	$0.13 \pm 0.01 \pm 0.01\%$
$\eta J/\psi$	$3.16 \pm 0.22\%$	$2.98 \pm 0.09 \pm 0.23\%$	$3.25 \pm 0.06 \pm 0.11\%$
$\pi^+\pi^- J/\psi$	$31.7 \pm 1.1\%$	$32.3 \pm 1.4\%$	$33.54 \pm 0.14 \pm 1.10\%$
$\pi^0\pi^0 J/\psi$	$18.8 \pm 1.2\%$	$-$	$16.52 \pm 0.14 \pm 0.58\%$
$\pi^0\pi^- J/\psi$	1.69 ± 0.12	$1.75 \pm 0.03 \pm 0.08$	2.03 ± 0.04

Figure 1. Dalitz plots, projections, and the result of a partial wave analysis fit for the decay $\chi_{c0} \rightarrow \pi^+ \pi^- K^+ K^-$.

rate should be determined by the wave function at the origin squared ($|\psi(0)|^2$), which is measured by the decay rate into leptons, and therefore

$$Q_h = \frac{B(\psi(2S) \rightarrow X)}{B(J/\psi \rightarrow X)} = \frac{B(\psi(2S) \rightarrow e^+ e^-)}{B(J/\psi \rightarrow e^+ e^-)} \sim 12\%$$

MARK-II found that a number of decays obeyed this rule but that it was badly violated for VP decays to $\rho \pi$ and $K^* K$, the so called $\rho \pi$ puzzle [23]. The suppression was confirmed by BESI with higher sensitivity, and BESI also found the VT mode to be suppressed [24].

There have many attempts at theoretical explanations [25]. Together BESII, CLEOc, and BaBar have all made many new J/ψ and $\psi(2S)$ branching fraction measurements [26]. A summary of a few new Q_h values from BESII is shown in Fig. 2. There is no obvious rule to categorize the suppressed, the enhanced, and the normal decay modes of the J/ψ and $\psi(2S)$. Hopefully the many new measurements will help in understanding this problem.

5. $\psi(3770)$

The $\psi(3770)$ is just above $D \bar{D}$ threshold so it decays mostly to correlated $D \bar{D}$ pairs. Its importance for charm physics has been stressed by many speakers. BESII has 34 pb$^{-1}$ at and around the $\psi(3770)$, and CLEOc has 281 pb$^{-1}$ at the $\psi(3770)$. These samples not only allow precision charm decay measurements, they also better our understanding of the $\psi(3770)$.

The $\psi(3770)$ is thought to be a mixture of S and D wave (mostly D), but since the $\psi(3770)$ is above DD-bar threshold it is expected to decay mostly to $D \bar{D}$. BESII found evidence (see Fig. 3) for non $D \bar{D}$ decay in
ψ(3770) → π⁺π⁻ J/ψ [27] with a branching fraction $B(\psi(3770) \to π⁺π⁻ J/ψ) = (0.34 \pm 0.14 \pm 0.09)\%$ and a width of $\Gamma(\psi(3770) \to π⁺π⁻ J/ψ) = (80 \pm 33 \pm 23)$ keV, to be compared to a prediction of 26 to 147 keV [10]. CLEOc with a larger data sample confirmed this with $B(\psi(3770) \to π⁺π⁻ J/ψ) = (0.189 \pm 0.020 \pm 0.020)\%$ [28].

ψ(3770) Evidence for non DD-bar decay:

![Figure 3. Evidence for non DD bar decay through ψ(3770) → π⁺π⁻ J/ψ by BESII and CLEOc.](image)

CLEOc has also found evidence for non DD bar decays in the hadronic transitions, $\psi(3770) \to π^0 π^0 J/ψ$ and $\psi(3770) \to η J/ψ$ [28] and in radiative decays $\psi(3770) \to γχ_{c1}[29,30]$. However, they have found that hadronic decays at the $\psi(3770)$ are mostly consistent with continuum production [31].

6. Future

We can expect further progress from B factories, BESII, and CLEOc. However, BaBar and CLEOc will stop running in 2008. BEPCII with a design luminosity of 1×10^{33} cm$^{-2}$ s$^{-1}$ and a brand new BESIII detector will start commissioning in summer of 2007 [32]. With B factories, CLEOc, and BESIII, the future of charm and charmonium physics is very bright.

REFERENCES

1. C. Edwards et al. (Crystal Ball), Phys. Rev. Lett. 48, 70 (1982).
2. S. K. Choi et al. (Belle), Phys. Rev. Lett. 89, 102001 (2002).
3. D. M. Asner et al. (CLEO), Phys. Rev. Lett. 92, 142001 (2004).
4. B. Aubert et al. (BaBar), Phys. Rev. Lett. 92 142002 (2004).
5. K. Abe et al. (Belle), Phys. Rev. Lett. 89, 142001 (2002).
6. T. Skwarnicki, Int. J. Mod. Phys. A19, 1030 (2004).
7. T. A. Armstrong et al. (E760), Phys. Rev. Lett. 69, 2357 (1992).
8. M. Andreotti et al. (E835), Phys. Rev. D72, 032001 (2005).
9. J. L. Rosner et al. (CLEOc), Phys. Rev. Lett. 95, 102003 (2006); P. Rubin et al. (CLEOc), Phys. Rev. D72, 092004 (2005).
10. Y. P. Kuang, hep-ph/0601044.
11. S. B. Athar et al. (CLEOc) Phys. Rev. D70, 112002 (2004).
12. S. Eidelman et al., Phys. Lett. B 592, 1 (2004).
13. J. Z. Bai et al. (BES), Phys. Rev. D70, 012006 (2004).
14. N. E. Adam et al. (CLEOc), Phys. Rev. Lett. 94, 232002 (2005).
15. J. Z. Bai et al. (BES), Phys. Lett. B 550, 24 (2002).
16. M. Ablikim et al. (BES), Phys. Rev. D70, 012003 (2004).
17. G. A. Miller, Phys. Rep. 194, 1 (1990).
18. P. Kroll, Int. J. Mod. Phys. A20, 331 (2005).
19. M. Chanowitz, “Glueballs and Hybrids at BES”, talk at Charm06, June 5-7, 2006, Beijing, China.
20. M. Ablikim et al. (BES), Phys. Rev. D72, 092002 (2005).
21. T. Appelquist & H.D. Politzer, Phys. Rev. Lett. 34, 43 (1975).
22. A. De Rujula & S. L. Glashow, Phys. Rev. Lett. 34, 46 (1975).
23. M. E. Franklin et al. (MarkII), Phys. Rev. Lett. 51, 963 (1983).
24. J. Z. Bai et al. (BES), Phys. Rev. Lett. 81, 5080 (1998).
25. See references in P. Wang, et al., Phys. Rev. D70, 114014 (2004).
26. W.-M. Yao et al. (PDG06), J. Phys. G 33, 1 (2006).
27. M. Ablikim et al. (BES), Phys. Lett. B 605, 63 (2005).
28. N. E. Adam et al. (CLEOc), Phys. Rev. Lett. 96, 082004 (2006).
29. T. E. Coan et al. (CLEOc), Phys. Rev. Lett. 96, 182002 (2006).
30. R. A. Briere et al. (CLEOc), Phys. Rev. D74, 031106 (2006).
31. G. S. Adams et al. (CLEOc), Phys. Rev. D73, 122002 (2006).
32. F. A. Harris, Talk at “e⁺e⁻” collisions from the $φ$ to $ψ^*$, Novosibirsk, Russia, 27 Feb - 2 Mar 2006, physics/0606059.