Serum C-Reactive Protein in Nigerians With Type 2 Diabetes Mellitus

*Baba MM, **Kolawole BA, **Ikem RT, **Arogundade FA, *Yusuph H, *Gezawa ID

*Department of Medicine University of Maiduguri Teaching Hospital Borno State Nigeria.
**Department of Medicine Obafemi Awolowo University Ile-Ife Osun State Nigeria.

Abstract
Background: C-reactive protein is an acute-phase proteins, produce in the liver, its release is stimulated by cytokines (interleukin 6 and tumour necrosis factor alpha). Elevated level of it is a risk factor for coronary heart disease. Baseline levels of C-reactive protein in apparently healthy men and women predict long-term risk of a first myocardial infarction. Diabetics are at increased risk for coronary heart disease, data from the Framingham Study showed a two-to three-fold elevation in the risk of clinically evident atherosclerotic disease in patients with type II diabetes compared to those without diabetes. However, but data regarding CRP in Nigerian diabetic is lacking.

Method: A cross-sectional study conducted among patients attending out patient clinic of the Obafemi Awolowo University Teaching Hospitals complex (OAUTHC) Ile Ife, Osun State south western Nigeria. Measurement of C-reactive protein was based on the principle of solid phase enzyme-linked immunosorbent assay (ELISA).

Results: A total of 125 consecutive subjects were recruited comprising 75 patients with type II diabetes mellitus with or without hypertension and 50 apparently healthy age-and-sex comparable controls. There was a significant difference between the mean systolic and diastolic blood pressures of the patients and controls. The fasting blood glucose and C-reactive protein were significantly higher in diabetics compared to controls. There was a positive and significant correlation between FBG and CRP in both patients and controls.

Conclusion: This study showed that diabetics have significantly higher serum C-reactive protein compared to the apparently controls. Also there was a positive and significant correlation between C-reactive protein and fasting blood glucose among both patients and controls.

Date Accepted for Publication: 10th May 2010
NigerJMed 2010: 427 - 431
Copyright®2010 Nigerian Journal of Medicine
dyslipidaemia, hypercoagulability, impaired fibrinolysis, platelet hyperaggregability, oxidative stress and toxic effects of hyperglycaemia.

However study regarding C-reactive protein in Nigerian diabetics is lacking hence decision to carry out this study to find out the relationship between C-reactive and diabetes mellitus in our population.

Materials and Methods
The study design was cross-sectional conducted among patients attending out patient clinic of the Obafemi Awolowo University Teaching Hospitals complex (OAUTHC) Ile Ife, Osun State south western Nigeria. It comprised 75 consecutive patients with type II diabetes mellitus with or without hypertension and 50 apparently healthy age- and sex- comparable controls from the hospital staff and patient relatives who are themselves not relatives of the study patients were recruited. Using a structured pre-evaluated questionnaire, the demographic data, history of cigarette smoking, alcohol consumption, duration of diabetes, duration of hypertension were explored.

The diagnosis of diabetes mellitus was made on the basis of the reported history and medical records. Diabetic with chronic kidney disease, chronic liver disease, congestive cardiac failure or systemic infection were excluded from the study. Also excluded from the study were diabetics on oral contraceptive pills, analgesics or anti-inflammatory drugs and those on HMGcoA reductase inhibitor (statins). Diabetics aged less than eighteen years and those that did not consent were also excluded from the study. Ethical clearance was obtained from the ethics and research Committee of the Obafemi Awolowo University Teaching Hospitals Complex, and all participating subjects signed the informed consent form after being clearly explained to them. The following investigations were carried out: Fasting blood glucose and 2-hour post prandial, fasting lipid, serum electrolytes, urea and creatinine. Urinalysis was done using dip-stick while measurement of C-reactive protein was based on the principle of solid phase enzyme-linked immunosorbent assay (ELISA).

Data Analysis

Results

Demographic and clinical characteristics of the study population
A total of 125 consecutive subjects were recruited comprising 75 patients with type II diabetes mellitus with or without hypertension and 50 apparently healthy age-and-sex comparable controls. Forty-five (60.0%) patients and 31 (62.0%) controls were females with mean ages ± SD of 57.2 ± 9.4 years and 56.6 ± 7.8 years, respectively (p = 0.804). Thirty (40.0%) patients and 19 (38.0%) controls were male with mean ages of 58.3 ± 10.3 years and 58.3 ± 7.3 years, respectively (p = 0.995).

Body mass index differed significantly between patients and controls. The mean BMI of the patients and controls were 26.0±5.1 kg/m² and 21.9±1.6 kg/m², respectively (p = 0.000). Thirty (40.0%) patients and 48 (96.0%) controls had normal BMI (18.5-24.9 kg/m²) (Fishers exact test, p = 0.000), 27 (36.0%) patients and 2 (4.0%) controls were overweight (BMI = 25-29.9 kg/m²) (Fishers exact test, p = 0.000); while, 12 (15.0%) patients were obese (BMI = 30 kg/m²) and the remaining 6 (8.0%) were underweight (BMI < 18.5kg/m²).

Laboratory parameters of the study population
The mean fasting blood glucose of the patients was 9.3
± 2.4 mmol/L and was significantly higher than that of the controls 4.5 ± 1.0 mmol/L (p = 0.000). Patients had significantly higher than controls 2.5 ± 0.5 µg/mL and 1.5 ± 0.4 µg/mL, respectively (p = 0.000). The mean serum total cholesterol of the patients and controls were 5.7 ± 1.3 mmol/L and 3.9 ± 1.2 mmol/L, respectively (p = 0.000). While the serum LDL cholesterol of the patients and controls were 4.0 ± 0.7 mmol/L and 2.1 ± 0.4 mmol/L, respectively (p = 0.000). The mean serum triglycerides between patients and controls 2.5 ± 0.5 µg/mL and 1.5 ± 0.4 µg/mL, respectively (p = 0.000). Serum HDL cholesterol was significantly lower in patients compared to controls 0.9 ± 0.2 mmol/L and 1.78 ± 0.2 mmol/L, respectively (p = 0.000).

There was a positive and significant correlation between FBG and CRP in both patients and controls (r = 0.656, p = 0.000) and (r = 0.551, p = 0.000), respectively. Similar correlations were also observed between CRP and BMI, CRP and systolic blood pressure, CRP and diastolic blood pressure in both patients and controls (r = 0.942, p = 0.000) and (r = 0.893, p = 0.000), (r = 0.667, p = 0.000) and (r = 0.738, p = 0.000), (r = 0.438, p = 0.000) and (r = 0.686, p = 0.000), respectively. However, there was no significant correlation between the durations of hypertension and diabetes with CRP among the study patients (r = 0.135, p = 0.251) and (r = 0.039, p = 0.739) respectively.

On regression analysis, BMI, systolic blood pressure, diastolic blood pressure and FBG were significantly associated with CRP among patients (beta value 0.642, p = 0.000), (beta value 0.409, p = 0.001), (beta = 0.162, p = 0.032) and (beta = 0.119, p = 0.036), respectively. Similarly, in the control group, BMI, systolic blood pressure, diastolic blood pressure, and FBG were significantly associated with CRP (beta = 0.765, p = 0.000).
Table VI Correlation between CRP and duration of hypertension and diabetes in the study patients

Parameters	Spearman correlation coefficient (r)	P Value
Duration of hypertension	0.135	0.251
Duration of diabetes	0.039	0.799

Table VI: Correlation between CRP and duration of hypertension and diabetes in the study patients. The table shows that there is a weak positive correlation between CRP and duration of hypertension, with a Spearman correlation coefficient of 0.135 and a P value of 0.251. There is no significant correlation between CRP and duration of diabetes, with a Spearman correlation coefficient of 0.039 and a P value of 0.799.

Table VII Multiple regression analysis between CRP and body mass index, systolic blood pressure, diastolic blood pressure and fasting blood glucose among study patients.

Parameters	Beta value	P-value
BMI (kg/m²)	0.642	0.000*
SBP (mmHg)	0.409	0.000*
DBP (mmHg)	0.162	0.032*
FBG (mmol/L)	0.119	0.036*

BMI = Body Mass Index, DBP = Diastolic Blood Pressure, SBP = Systolic Blood Pressure, FBG = Fasting Blood Glucose

Table VII: Multiple regression analysis between CRP and body mass index, systolic blood pressure, diastolic blood pressure and fasting blood glucose among study patients. The table shows the beta values and P-values for the relationship between CRP and various other variables. BMI has the highest beta value of 0.642 with a P-value of 0.000*, indicating a strong positive correlation. SBP and DBP also show significant correlations with CRP, while FBG shows a weaker but still significant correlation.

Table VIII Multiple regression analysis between CRP and body mass index, systolic blood pressure, diastolic blood pressure and fasting blood glucose among controls.

Parameters	Beta value	P-value
BMI (kg/m²)	0.602	0.000*
SBP (mmHg)	0.765	0.001*
DBP (mmHg)	0.689	0.001*
FBG (mmol/L)	0.375	0.000*

BMI = Body Mass Index, DBP = Diastolic Blood Pressure, SBP = Systolic Blood Pressure, FBG = Fasting Blood Glucose

Table VIII: Multiple regression analysis between CRP and body mass index, systolic blood pressure, diastolic blood pressure and fasting blood glucose among controls. The table shows the beta values and P-values for the relationship between CRP and various other variables. BMI has the highest beta value of 0.602 with a P-value of 0.000*, indicating a strong positive correlation. SBP and DBP also show significant correlations with CRP, while FBG shows a weaker but still significant correlation.

Discussion

This cross-sectional study of CRP in Nigerians with type II diabetes mellitus with or without hypertension showed that CRP levels are significantly higher in diabetic than controls. Similarly, there was a positive and significant correlation between CRP levels and FBG. Ford had previously reported a similar result, though in his study he used glycosylated haemoglobin to determine the level of glycaemic control in those with diabetes. This study is limited by lack of facilities to test for glycosylated haemoglobin. The pathophysiological mechanisms for the elevated CRP in diabetic is linked to the toxic effects of hyperglycaemia on vascular endothelium, increased oxidative stress and the associated generation of free radicals which is injurious to vascular endothelium and triggers inflammation and cytokines release (interleukin 6, tumour necrosis factor alpha). These cytokines in turn stimulate the synthesis and release of CRP from the liver.

The study also showed a positive and significant correlation between CRP and systolic, as well as diastolic blood pressure. However, there was no significant difference in the serum CRP levels between hypertensive-diabetic and normotensive-diabetic. This result is consistent with what was previously reported by other workers. Similarly, there was no significant correlation between the duration of hypertension and diabetes with CRP among the study patients. This suggests that good glycaemic and blood pressure control are associated with lower serum CRP levels than the absolute duration of hypertension or diabetes. The link between hypertension and CRP was thought to be mediated via angiotensin II. Angiotensin II has, in addition to potent vasoconstricting effect, a proinflammatory effect and CRP has been found to up regulate angiotensin I receptor mRNA and increase the number of angiotensin I receptor binding sites in vascular smooth muscle cells. Angiotensin I receptor is a key atherosclerotic switch facilitating angiotensin-II-induced reactive oxygen species production, vascular smooth muscle cell migration, proliferation, and vascular remodelling.

Lipid abnormalities occur frequently in diabetic, and in this study it was observed that HDL cholesterol level was significantly lower in patients compared to controls. On the other hand, serum total cholesterol, triglycerides and LDL cholesterol levels were significantly higher in patients compared to controls, this result is similar to what was reported by Bruno et al. The underlying pathogenesis and the interrelationships between diabetes mellitus and lipid abnormalities have not been
completely elucidated. However, insulin resistance has been hypothesized to be the common underlying pathogenic mechanism.\(^{21}\)

Conclusion

This study showed that diabetics have significantly higher serum C-reactive protein compared to the apparently controls. Also there was a positive and significant correlation between C-reactive protein and fasting blood glucose among both patients and controls.

References

1. Macy EM, Hayes TE, and Tracy RP. Variability in the measurement of C-reactive protein in healthy subjects. Implication for reference interval and epidemiological applications. *Clin Chem* 1997; 43:52-58.

2. Soinio M, Marniemi J, Laasko M, Letho S, Ronnemaa T. High sensitivity C-reactive protein and coronary heart disease mortality in patients with type II diabetes. A 7-year follow up U.S study. *Diabetes Care* 2006; 29:329-333.

3. Moolhoun H, Schalkwijk C, Rubens MB, Stehouwer Coen DA. C-reactive protein in type 1 diabetes and its relation to coronary calcification. *Diabetes Care* 2002; 25:1813-1817.

4. Lagrand WK, Visser CA, Hermens WT, Niessen Hans WM, Verheugt Freek WA. C-reactive protein as a Cardiovascular Risk Factor. More than Epiphenomenon. *Circulation* 1999; 100:96-102.

5. Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham study. *JAMA* 1979; 241:2035-2038.

6. Stanier J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-year cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. *Diabetes Care* 1993; 16:434-444.

7. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert panel on detection, evaluation and treatment of high blood cholesterol in adults (Adult Treatment Panel III). *JAMA* 2001; 285:2486-2497.

8. Nickenig G, Harrison DG. The AT1-type angiotensin receptor in oxidative stress and atherogenesis. *Circulation* 2002;105:393-396.

9. Bruno G, Merletti F, Biggeri A, Bargero G, Ferrero S. Metabolic Syndrome as a Predictor of All-Cause and Cardiovascular Mortality in Type 2 Diabetes. *Diabetes Care* 2004; 27:2689-2694.

1. Reaven GM. Role of insulin resistance in human disease. *Diabetes* 1988; 37:1595-1607.