Vanadium pentoxide induces pulmonary inflammation and tumor promotion in a strain-dependent manner

Elizabeth A Rondini1, Dianne M Walters2 and Alison K Bauer*1

Abstract
Background: Elevated levels of air pollution are associated with increased risk of lung cancer. Particulate matter (PM) contains transition metals that may potentiate neoplastic development through the induction of oxidative stress and inflammation, a lung cancer risk factor. Vanadium pentoxide (V2O5) is a component of PM derived from fuel combustion as well as a source of occupational exposure in humans. In the current investigation we examined the influence of genetic background on susceptibility to V2O5-induced inflammation and evaluated whether V2O5 functions as a tumor promoter using a 2-stage (initiation-promotion) model of pulmonary neoplasia in mice.

Results: A/J, BALB/cJ (BALB), and C57BL/6J (B6) mice were treated either with the initiator 3-methylcholanthrene (MCA; 10 μg/g; i.p.) or corn oil followed by 5 weekly aspirations of V2O5 or PBS and pulmonary tumors were enumerated 20 weeks following MCA treatment. Susceptibility to V2O5-induced pulmonary inflammation was assessed in bronchoalveolar lavage fluid (BALF), and chemokines, transcription factor activity, and MAPK signaling were quantified in lung homogenates. We found that treatment of animals with MCA followed by V2O5 promoted lung tumors in both A/J (10.3 ± 0.9 tumors/mouse) and BALB (2.2 ± 0.36) mice significantly above that observed with MCA/PBS or V2O5 alone (P < 0.05). No tumors were observed in the B6 mice in any of the experimental groups. Mice sensitive to tumor promotion by V2O5 were also found to be more susceptible to V2O5-induced pulmonary inflammation and hyperpermeability (A/J>BALB>B6). Differential strain responses in inflammation were positively associated with elevated levels of the chemokines KC and MCP-1, higher NFκB and c-Fos binding activity, as well as sustained ERK1/2 activation in lung tissue.

Conclusions: In this study we demonstrate that V2O5, an occupational and environmentally relevant metal oxide, functions as an in vivo lung tumor promoter among different inbred strains of mice. Further, we identified a positive relationship between tumor promotion and susceptibility to V2O5-induced pulmonary inflammation. These findings suggest that repeated exposures to V2O5 containing particles may augment lung carcinogenesis in susceptible individuals through oxidative stress mediated pathways.

Background
Lung cancer is the leading cause of cancer mortality in the U.S. and worldwide [1]. Although cigarette smoke is the main risk factor for lung cancer development, approximately 10-15% of cases occur in never-smokers, implicating other important environmental, occupational, and/or genetic factors [2-4]. Epidemiology studies have suggested that long-term exposure to elevated levels of particulate air pollution increases the risk of and mortality due to lung cancer [5-8]. Particulate matter (PM) is a complex mixture of particles that vary in physiochemical properties and are further classified according to the aerodynamic size (PM2.5 = <2.5 μm; PM10 = ≤10 μm) [9,10]. PM2.5 consists primarily of combustion products derived from automobiles and the burning of coal, fuel oil, and wood [9]. Most adverse health effects have been attributed to this fraction, due to the ability to penetrate...
deep within the alveolar region of the lung [11]. Using models developed by the World Bank, Cohen et. al. [12] predicted that 5% of respiratory cancer mortality worldwide is due to PM\textsubscript{2.5}.

The mechanism(s) contributing to increased lung cancer risk by PM have not been fully characterized, although it has been suggested that pulmonary inflammation mediated by particle-induced oxidative stress may play an important role [13,14]. Generation of reactive oxygen and nitrogen species (ROS/RNS) either directly or through activation of phagocytes can cause oxidative damage to DNA leading to initiation of cancer [14]. Additionally, ROS may potentiate tumor development by stimulating production of pro-inflammatory mediators that can promote expansion of initiated cells by influencing cell proliferation and apoptosis [14]. Oxidative stress induced by PM is dependent on both the surface area of the particle as well as its chemical composition [15]. Transition metals, and in particular vanadium compounds, have been implicated as the active constituents mediating oxidative lung injury in rodents exposed to residual fly oil ash (ROFA) [16-18] as well as in some studies using concentrated ambient air particles [19].

Vanadium pentoxide (V\textsubscript{2}O\textsubscript{5}) is the most common commercial form of vanadium [20]. V\textsubscript{2}O\textsubscript{5} is released into the environment during oil and coal combustion and from metallurgical works [20]. Occupational exposure can be significant in the petrochemical, mining, and steel industries [20]. Additionally, military personnel and the general public can be exposed to high levels of vanadium as a result of incidental or intentional burning of fuel oils, such as exposures that occurred during the Kuwait oil fires in 1991 [21]. Adverse respiratory effects have been reported in humans, primates, and rodents exposed acutely to V\textsubscript{2}O\textsubscript{5}. Coughing, wheezing, chest pain, bronchitis, and asthma-like symptoms as well as impaired lung function occurred in humans exposed to high levels of V\textsubscript{2}O\textsubscript{5}-containing dust [22-25]. In primates, inhalation of V\textsubscript{2}O\textsubscript{5} particles increased bronchoaveolar polymorphonuclear neutrophils (PMNs) and impaired pulmonary function [26], and in rodents, inhalation or intratracheal administration induced PMN influx, synthesis of pro-inflammatory mediators, as well as pulmonary fibrosis [27-30].

Occupational and ambient exposure to vanadium has been associated with an increase in biological markers for oxidative DNA damage [31,32], however limited data are available evaluating an association between V\textsubscript{2}O\textsubscript{5} exposure on lung cancer risk [33,34]. In vitro studies suggest that vanadium functions as both an initiator and promoter of morphological transformation in cultured cell lines [35]. In a National Toxicology Program (NTP) study, continuous inhalation of V\textsubscript{2}O\textsubscript{5} (24 months inhalation; 1-4 mg/m3) resulted in a significant increase (~50%) in the incidence of alveolar/bronchiolar neoplasms in both male and female B6C3F1 mice [30]. Although this study demonstrated the carcinogenic potential of V\textsubscript{2}O\textsubscript{5}, long-term continuous exposure was required before tumors developed and no dose response was observed, which suggests V\textsubscript{2}O\textsubscript{5} may be promoting spontaneous tumors. In addition, different mouse strains were not assessed, which can greatly influence pulmonary responses to environmental pollutants [36] as well as susceptibility to carcinogenesis [37,38].

This study was conducted to further evaluate the role of V\textsubscript{2}O\textsubscript{5} on pulmonary neoplasia among different inbred strains of mice. Using a two-stage (initiation-promotion) model, we hypothesized that inflammation induced by sub-chronic V\textsubscript{2}O\textsubscript{5} administration would promote tumorogenesis in susceptible strains. Three strains of mice were included in this study that display altered susceptibility to chemical carcinogenesis: A/J mice are sensitive, BALB are intermediate, whereas B6 mice are resistant to most short term chemically-induced carcinogenesis protocols (eg. not initiatable using MCA) [37-39]. These same three strains also have similar differential susceptibility in chronic pulmonary inflammation models [40-42]. Results from this study demonstrate that V\textsubscript{2}O\textsubscript{5} functions as an in vivo lung tumor promoter in both A/J and BALB mice. Further, we demonstrate a positive relationship between tumor promotion and susceptibility to V\textsubscript{2}O\textsubscript{5}-induced inflammation, involving the induction of the chemokines KC and MCP-1, the transcription factors NFκB and c-Fos, as well as sustained activation of ERK1/2 in pulmonary tissue.

Methods

Animal husbandry

Male A/J, BALB/cJ (BALB), C57BL/6J (B6) mice were purchased from Jackson Laboratories (Bar Harbor, ME) at 5-6 weeks of age. Animals were housed in plastic, filter-capped cages containing hardwood bedding and maintained in temperature (23 ± 2°C) and humidity (40-60%) controlled rooms with a 12 hour light/dark cycle. Animals were given standard laboratory chow (Teklan foods, Indianapolis, IN) and spring water *ad libitum* and were assessed daily for health status. All mice were allowed one week to acclimatize prior to treatment. Animal use was conducted in AAALAC-accredited facilities and in accordance with the regulatory guidelines of the Michigan State University All University Committee on Animal Use and Care.

Preparation and Administration of Vanadium Pentoxide

Pulmonary administration of vanadium pentoxide (>99.9%, Sigma-Aldrich, St. Louis, MO) was performed...
by oropharyngeal aspiration as previously described [43]. Briefly, V$_2$O$_5$ was suspended in sterile-filtered Dulbecco’s phosphate buffered saline (10 mM PBS, pH 7.4), sonicated for 20 minutes, then further diluted to a working concentration of 2 mg/mL. Prior to aspirations mice were anesthetized using 3% isoflurane in 1-2 L/min oxygen, and V$_2$O$_5$ (4 mg/kg body weight) was administered following the methods of Foster et al. [43]. This dose was chosen based on preliminary dose response studies using protocol 2 (Fig. 1B) described below (data not shown), as well as previous acute lung injury models [28,29]. Control animals received PBS alone (50 μL/mouse). V$_2$O$_5$ suspensions were prepared fresh prior to use and administered to animals within two hours of preparation.

Experimental Procedures

The experimental designs utilized in this study are depicted in Figure 1. Protocol 1 (Fig. 1A) was conducted to investigate whether sub-chronic exposure to V$_2$O$_5$ would promote pulmonary carcinogenesis using a two-stage (initiation-promotion) model. Mice were injected ip. (10 μg/g body weight) with the carcinogen MCA (Sigma, St. Louis, MO) dissolved in corn oil or with corn oil alone. Beginning one week later, mice were treated with 5 weekly aspirations of either V$_2$O$_5$ (4 mg/kg) or PBS as described above. To assess tumor promotion, animals were sacrificed 20 weeks following MCA treatment; the lungs were perfused with saline then inflated and fixed in Telleyesniczky’s fixative for 48 hrs. Tumors were enumerated using an Olympus SZX7 stereomicroscope (Olympus; Center Valley, PA) and sized with digital calipers (Mitutoyo Corporation; Japan). Using this protocol, pulmonary inflammation was additionally assessed in A/J mice 21 days following the last aspiration as described below.

To assess strain differences in inflammation, (protocol 2, Fig. 1B), mice were aspirated once per week for 4 weeks with V$_2$O$_5$ (4 mg/kg) or PBS. At selected time intervals (6 hr, 1, 3, 6, and 21 days) following the last dose, bronchoalveolar lavage fluid (BALF) was collected to quantify differences in cellular infiltrates and protein content, a marker of hyperpermeability, as described previously [44]. At each time point, the right lobes were snap frozen in liquid nitrogen and stored at -80°C and the left lobe was either snap frozen and stored or inflated with and fixed overnight in 10% neutral buffered formalin for histological examination.

Because several studies demonstrated that MCA can induce p38 MAP Kinase, intracellular oxidants, as well as transcription factor activity in HepG2 cells (a hepatoma cell line) [45-47], an additional control experiment was conducted to determine whether carcinogen (MCA) administration influences pulmonary inflammation between strains. Mice were injected ip. with MCA (10 μg/g) dissolved in corn oil or oil alone, then aspirated with 4 weekly doses of PBS (Protocol 3, Fig. 1C) and sacrificed 6 hr or 1 day following the last aspiration. BALF was assessed for protein content and cellular infiltrate as described above.

Immunohistochemical Detection of PMNs

A neutrophil-specific marker (sc-59338) and ABC detection kit (sc-2019) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Left lungs were fixed in 10% NBF for 24 hrs, processed using standard histological procedures, embedded, then cut into 5 μm sections. Strain differences in pulmonary neutrophil infiltration were evaluated using peroxidase biotin-streptavidin immunohistochemistry, and bound enzyme was visual-
ized using the chromagen 3,3’-diaminobenzidine (DAB). Tissues were then lightly counterstained in Gill’s hematoxylin.

Analysis of the chemokines KC, MIP-2, and MCP-1 by ELISA

ELISA kits for keratinocyte-derived chemokine (KC, CXCL1), macrophage inflammatory protein-2 (MIP-2, CXCL2), and monocyte chemoattractant protein 1 (MCP-1, CCL2) were purchased from R&D systems (Minneapolis, MN). Protein was prepared by homogenizing lungs in ice-cold RIPA buffer (10 mM PBS, 0.5% SDS, 0.5% sodium deoxycholate) containing protease inhibitors (Sigma, St. Louis, MO). Homogenates were centrifuged at 13,000 × g for 10 min at 4°C, and protein was quantified using the DC protein assay (BioRad; Carlsbad, CA). For chemokine analysis 25-50 μg of RIPA extracted protein was used in accordance with manufacturer’s instructions. Absorbance was measured at 450 nm using a VersaMax microplate reader (Molecular Devices, Sunnyvale, CA). All data are presented as pg/mg protein.

Transcription factor assay for nuclear NFκB and c-Fos activity

Nuclear protein was prepared from the left lung of mice using the TransAM nuclear extraction kit (Active Motif; Carlsbad, CA) and quantified with the DC protein assay (Biorad; Carlsbad, CA). Strain differences in binding of NFκB (p65 subunit) and AP-1 (c-Fos) were then measured from 8 μg of nuclear protein using TransAM Transcription Factor ELISA kits (Active Motif; Carlsbad, CA). Absorbance was measured at 450 nm using a VersaMax microplate reader (Molecular Devices, Sunnyvale, CA).

Immunoblotting analyses for MAPK activation

Primary antibodies specific for MAPKs were purchased from Cell Signaling (Danvers, MA) and secondary antibodies from Pierce (Thermo Fisher; Rockford, IL). Protein was prepared from right lungs as described above. Samples (100 μg protein) were resolved on 12.5% SDS polyacrylamide gels. Following transfer, PVDF membranes were blocked for 1 hr at room temperature in 5% nonfat dry milk, and then incubated with primary antibodies to detect phosphorylated ERK1/2, JNK1/2, or p38 overnight at 4°C. After washing, blots were incubated in secondary antibody linked to horseradish peroxidase for 1 hr at room temperature, and bands were detected using chemiluminescence. Images were captured using BioRad ChemiDoc illumination system (BioRad; Carlsbad, CA). Following detection, membranes were stripped in Restore stripping buffer (Thermo Fisher; Rockford, IL) then reprobed for total MAPK using procedures described above. Densitometry of bands were quantified with BioRad Quality One software and phosphorylated proteins were normalized to the respective total MAPK prior to statistical analyses.

Statistical analyses

All statistical analyses were conducted using SAS statistical software (SAS institute version 8.2, Cary, North Carolina). Time- and strain-dependent changes in BALF protein, cellularity, chemokines, nuclear transcription factor activity, protein densitometry, and tumor multiplicity/size were analyzed using an analysis of variance (ANOVA). When statistical differences were detected (P < 0.05), comparisons of means were analyzed using the least significant difference (LSD) method. All data are presented as mean ± SEM.

Results

Sub-chronic administration of V2O₅ promotes pulmonary tumorigenesis in A/J and BALB mice

Strain differences in tumor multiplicity and size are presented in Table 1. We found that V₂O₅ functions primar-

Strain	PBS	V₂O₅
A/J	0.0 ± 0.0	0.50 ± 0.50
BALB	0.0 ± 0.0	0.0 ± 0.0
ily as a lung tumor promoter in both A/J and BALB mice following a low dose of MCA given as an initiating agent (Table 1; P < 0.05). For both strains, tumor multiplicity was higher in V_2O_5-treated mice compared to MCA-treated, PBS controls (P < 0.05). Additionally, a significant difference in tumor multiplicity and size was observed between BALB and A/J in the MCA group (Table 1). In the absence of MCA, V_2O_5 exposure alone was not sufficient to initiate tumorigenesis. No tumors were detected in B6 mice in any of the experimental groups examined (data not shown). In A/J and BALB mice, tumors were further evaluated by histopathological analyses in a subset of animals. A majority of the tumors were found to be solid adenomas (80%) and the remaining papillary (20%), consistent with previous studies using MCA [48].

A/J and BALB mice are more susceptible to V_2O_5-induced pulmonary hyperpermeability and inflammation than B6 mice

To determine whether chronic inflammation was associated with tumor promotion, we evaluated strain differences in BALF cellularity and protein content up to 21 days following the final V_2O_5 dose (Fig. 2). In general, susceptibility to pulmonary inflammation and hyperpermeability proceeded in the order A/J>BALB>B6 mice (Fig. 2A-2E). BALF protein content increased significantly in all strains at 6 hr following V_2O_5 exposure and returned to baseline by 21 days (Fig. 2A, P < 0.05). The peak protein response was at 6 hr in BALB and B6 mice compared to 1 day in the A/J strain. Furthermore, protein levels in A/J mice remained significantly elevated above other strains at 3 days.

The effects of V_2O_5 on BALF cellularity are depicted in Fig. 2B-2E. As shown, the extent and duration of the inflammatory response was significantly greater in A/J mice at all time points examined (P < 0.05; Fig. 2B). The most striking difference between strains was observed for PMNs, which was highest at 1 day (Fig. 2D). A/J mice exhibited a ~150-fold increase in the number of PMNs infiltrating the lung representing 36% of the total cells recovered compared to a 43-fold increase in BALB (34%) and only a 16-fold increase (~7%) in B6 mice. By 21 days, inflammation completely resolved in B6 mice, but the total number of cells, primarily macrophages and some lymphocytes, remained elevated in A/J and to a lesser degree in BALB mice (P < 0.05).

The BALF results were further confirmed using histological staining with an anti-PMN marker in lung sections from the most (A/J) and least sensitive (B6) strains 1 day following the final V_2O_5 dose (Figure 3). Figures 3A-D demonstrate higher PMN influx in the A/J strain compared to both B6 mice and PBS controls. Positive staining for PMNs was observed primarily around the bronchioles and in close proximity to the alveolar epithelium, although staining was also seen surrounding larger airways. Increased cellularity of the bronchiolar and alveolar epithelium, indicative of epithelial cell proliferation, was also observed in A/J, but not B6 mice when compared to PBS controls.

In a separate study, we assessed the inflammatory cell profile in the most sensitive strain (A/J) 21 days following the last V_2O_5 dose to determine any synergistic effect of MCA on inflammation (Table 2). For all phenotypes examined (BALF total protein, and total cells including macrophages, lymphocytes, and PMNs), there were significant increases in mice treated with V_2O_5 compared to PBS controls. There were no significant differences between animals treated with MCA or with oil in any of the groups (Table 2), suggesting that V_2O_5 was primarily driving the inflammatory response. The total cell numbers and macrophages in this study were higher compared to Protocol 2 at this time point (21 days), due to the extra weekly dose of V_2O_5 used to maximize promotion.

To further confirm that strain differences in tumor promotion were not due to differences in inflammatory responses to MCA, an additional control experiment was conducted (Fig. 1C, Protocol 3). MCA or oil was administered to mice followed by 4 weekly doses of PBS and differences in BALF protein content and cellularity were measured at 6 hr and 1 day following the last aspiration (Additional file 1, Table S1). BALB mice exhibited a significant increase in protein levels compared to the other strains, similar to that observed in Fig. 2. Both BALB and A/J mice also had higher PMNs compared to B6 mice, however no additional effects of MCA on inflammatory cell types were observed within strains (Additional file 1, Table S1). Thus, these results provide further evidence that strain susceptibility to inflammation induced by V_2O_5 and not to MCA is more strongly associated with lung tumor promotion in our model.

Strain differences in V_2O_5-induced inflammatory chemokine (KC, MIP-2, MCP-1) expression

Differential strain responses were detected for the chemokines KC and MCP-1 (Fig. 4A, C), with higher levels observed in both A/J and BALB compared to B6 mice. KC increased 3-fold and MCP-1 by 2.5-fold at 6 hr and remained elevated in A/J mice at 1 day following the last V_2O_5 dose (Fig. 4A, C; P < 0.05). In BALB mice, chemokine levels increased to a similar extent at 6 hr, but levels declined sharply by 1 day. Comparably, only modest increases (~1.5-fold) were seen in B6 mice. Strain responses were more variable and less pronounced for MIP-2 (Fig. 4B). MIP-2 increased significantly in all strains at 6 hr, with overall changes of 1.5-fold in A/J, 1.1-fold in BALB, and 1.2-fold in B6 mice.
Figure 2 A/J and BALB are susceptible to pulmonary inflammation and hyperpermeability in response to sub-chronic V$_2$O$_5$. A/J, BALB, and B6 mice were exposed to 4 weekly doses of V$_2$O$_5$ (4 mg/kg) by aspiration and sacrificed 0.25, 1, 3, 6, 21 days after the last exposure. A.) Bronchoalveolar lavage (BALF) protein (μg/mL) and B.) total cells, C.) macrophages, D.) PMNs, and E.) lymphocytes per mL of BALF. Data represent the mean ± SEM (n = 5-15 animals/group). *, significantly different than strain-matched PBS controls. †, significantly different than time-matched B6 mice. δ, significantly different than time-matched BALB mice (P < 0.05).
A/J mice have higher transcriptional activity of NFκB and AP-1 than B6 mice following V_2O_5

Nuclear transcription factor activity and MAPK signaling (see below) were evaluated in the most sensitive (A/J) and resistant (B6) strains (Fig. 5). Sub-chronic administration of V_2O_5 resulted in higher nuclear NFκB binding activity in A/J mice at both 6 hr and 1 day, with binding activity at 1 day significantly greater than all other groups (Fig. 5A; P < 0.05). No corresponding changes were observed in B6 mice at the time points assessed (Fig. 5A).

V_2O_5 activates the MAPKs ERK1/2 and p38 in pulmonary tissue

Strain differences in MAPK signaling were assessed in whole lung homogenates (Fig. 6). Compared to PBS controls, a significant increase in phosphorylation of p38 and ERK1/2 were observed in both A/J and B6 mice 6 hr fol-

Table 2: Pulmonary inflammation and hyperpermeability in A/J mice treated with either corn oil or MCA (10 μg/g) and then aspirated with 5 weekly doses of V_2O_5 (4 mg/kg) or PBS.

Treatment	Protein (μg/mL)	Total Cells (×10^3)	Macrophages (×10^3)	Lymphocytes (×10^3)	PMNs (×10^3)
Oil/PBS	129 ± 4.3	79.7 ± 8.8	73.7 ± 7.9	0.572 ± 0.12	0.422 ± 0.12
Oil/V_2O_5	166 ± 4.0*	156 ± 17*	147 ± 18*	4.14 ± 0.65*	0.737 ± 0.23*
MCA/PBS	132 ± 15	83.1 ± 11	76.3 ± 11	0.109 ± 0.07	0.271 ± 0.073
MCA/V_2O_5	198 ± 25*	161 ± 16*	149 ± 18*	6.01 ± 0.81*	1.47 ± 0.38*

* A/J mice were treated with corn oil (control) or MCA (10 μg/g) and then aspirated with 5 weekly doses of either PBS or V_2O_5 (4 mg/kg). Animals were sacrificed 21 days after the last aspiration. Protein (μg/mL) concentration and inflammation were measured in bronchoalveolar lavage fluid (BALF) and data are expressed as cells (×10^3) per mL of BALF. Data represent the mean ± SEM (n = 4-7 animals/group).

* Significantly different from PBS exposed animals (P < 0.05).
lowing V$_2$O$_5$ treatment. By one day, phospho-p38 returned to basal levels in both strains (Fig. 6B), whereas phospho-ERK1/2 remained elevated in A/J mice (Fig. 6A; $P < 0.05$). No significant changes in JNK1/2 were observed between or within strains at any of the time points examined (Fig. 6C). Because MCA has been shown to induce intracellular oxidant levels [46], we also measured the MAPKs ERK1/2 and p38 in B6 and A/J mice from Protocol 3 (Additional file 2, Fig. 1S). There was a slight but non-significant increase in phospho-p38 in MCA-treated B6 mice 6 hr following the last PBS aspiration, however no significant differences between strains were observed for either MAPK examined (Additional file 2, Fig. 1S).

Discussion

Chronic inflammation is a risk factor for several cancer types [49]. Asthmatics and individuals with COPD are at an elevated lifetime risk for developing lung cancer [50]. The importance of inflammation in augmenting pulmonary carcinogenesis is further supported by a wide range of pharmaceutical compounds that inhibit neoplastic development [51] as well as evidence from transgenic mouse models [52,53]. Because tumor promotion involves changes in gene expression, most likely epigenetic in nature, and is the only reversible stage of carcinogenesis, studying promoters may identify additional pathways to target for preventive strategies against human lung cancer.

In the current investigation, we provide evidence that V$_2$O$_5$ functions as an in vivo tumor promoter among differentially susceptible inbred strains of mice. Using a two-stage model of carcinogenesis, a significant increase in tumor multiplicity was observed in both A/J (10.3 ± 0.9 tumors/mouse) and BALB (2.2 ± 0.36) mice exposed to the carcinogen MCA followed by 5 weekly aspirations of V$_2$O$_5$. The effect of V$_2$O$_5$ was limited to tumor promotion, as no significant increase in tumor numbers were observed in animals exposed to V$_2$O$_5$ alone. Susceptibility to promotion paralleled relative strain sensitivity to V$_2$O$_5$-induced inflammation: A/J mice were most sensitive and BALB were intermediate. B6 mice were found to be most resistant to V$_2$O$_5$-induced inflammation, however were used as a control since they are not initiated by the low dose of MCA administered in this study [37].

Differences between the two susceptible strains of mice (A/J and BALB) are not unusual based on past genome mapping studies demonstrating distinct genes responsible for tumorigenesis in these specific strains [54,55]. While both strains are susceptible to lung tumor development, differences in sensitivity between these two strains has been linked to quantitative trait loci containing both tumor suppressor genes as well as inflammatory mediators, such as myeloperoxidase (Mpo), colony stimulating factor (Csf)3, CC chemokine receptor (Ccr10), and Ccl2 (Mcp-1) [54,55]. Although MCA was used as an initiating agent in this study, additional control experiments fur-
ther demonstrated that carcinogen treatment alone did not influence inflammatory indices between strains. Because significant strain responses were observed only in response to V$_2$O$_5$, our findings suggest that that genetic (host) factors contributing to V$_2$O$_5$-induced pulmonary inflammation are also strongly associated to lung tumor promotion.

Vanadium is thought to mediate pulmonary inflammation through generation of multiple reactive oxygen species (O$_2^-$, H$_2$O$_2$, and ·OH) in target cells [56-58]. Production of ROS is associated with phosphorylation of EGF-R and activation of MAPK signaling [57,59-63] as well as the transcription factors NFκB [59,63], AP-1 [59,64], and STAT-1 [65]. Furthermore, vanadium is known to be a phosphatase inhibitor [66] and likely prolongs phosphorylation and signaling along ROS-sensitive pathways. These events, in turn can influence the synthesis and release of pro-inflammatory cytokines and chemokines mediating acute lung injury [29,65,67,68]. Pretreatment of human bronchial epithelial cells with metal chelators and/or free radical scavengers reduces vanadium-generated ROS, MAPK activation, as well as release of chemokines, further supporting a role for oxidative stress in vanadium-induced inflammation [62].

In our study, differential strain induction of chemokines and upstream signaling molecules in response to V$_2$O$_5$ correlated to the extent and duration of inflammatory cells recovered in pulmonary tissue. MIP-2 and KC are principle neutrophil chemoattractants in rodent models, homologous to IL-8 in humans [69], whereas MCP-1 induces monocyte and lymphocyte chemotaxis and migration [70]. We observed moderate, although significant induction of MIP-2 in all strains at 6 hr following vanadium exposure, which likely involved initial PMN influx. However, strain differences in the peak PMN response were more closely associated with pulmonary levels of KC. MCP-1 was highly induced in A/J and BALB mice and expression coincided with the influx of both monocytes and lymphocytes into pulmonary tissue. The transcription factors NFκB and c-Fos as well as the MAPK pERK1/2 were also found to be differentially regulated in the sensitive (A/J) and resistant (B6) mice and corresponded to both altered chemokine induction and BALF cellularity.

The microenvironment is becoming increasingly recognized as actively contributing to the tumorigenic process. Evidence suggests that PMNs and macrophages appear to be involved in tumor development through multiple mechanisms, including more direct, such as induction of DNA damage and regulation of cell cycle [71], as well as indirect mechanisms, such as promotion of angiogenesis by cytokines and chemokines and suppression of adaptive immune responses [71,72]. Local production of cytokines and chemokines may also stimulate expansion of initiated cells by influencing cell proliferation and apoptotic pathways [14]. Several signaling molecules altered by V$_2$O$_5$ in this study have been implicated in lung cancer development. For example, IL-8 has been reported to serve as an autocrine growth factor in lung cancer cell lines [73,74] and both IL-8 and MCP-1 are elevated in bronchiolar epi-
thelium from patients with COPD [75,76] and non-small cell lung cancer (NSCLC) [77]. In mouse models, neutralization of CXCR2, the principle receptor for KC and MIP-2 reduces PMN infiltration [78] as well as tumor growth and angiogenesis, suggesting a role in tumor progression [53,79,80]. Constitutive activation of ERK1/2 [81,82] and the transcription factors NFκB [83] and c-Fos [84] have well known effects on cell cycle regulation. Additional evidence for ERK1/2 in pulmonary tumorigenesis was recently demonstrated in transgenic mice overexpressing mutant Braf and K-ras. Pharmacological inhibition of pERK1/2 resulted in tumor regression by inhibiting cell proliferation and restoring apoptosis [81]. Constitutive activation of ERK1/2 was also observed in V2O5-induced mouse carcinomas from the NTP study containing both K-ras mutations and loss of heterozygosity [85], which supports findings in this model and suggests involvement of ERK1/2 as one pathway driving tumor promotion by V2O5.

Conclusions

Our study provides evidence that V2O5 functions as an *in vivo* tumor promoter and suggests that susceptibility to V2O5-induced inflammation and tumor promotion is influenced by genetic background. Tumor promotion in our model was associated with a robust inflammatory response involving induction of multiple chemokines, the transcription factors NFκB and c-Fos, as well as sustained activation of ERK1/2 in susceptible mice. These findings suggest that activation of oxidative stress-mediated signaling events may be one mechanism contributing to increased lung cancer risk by PM. A limitation in the current study was that the dose of V2O5 utilized was significantly higher than either occupational or ambient exposure levels, and was not meant to be directly used for risk assessment. It should be noted, however, that in the NTP study, a significant increase in pulmonary tumors was also reported after 2 years in B6C3F1 mice, a resistant strain, at more relevant occupational levels of V2O5. Although we found that V2O5 alone did not initiate tumorigenesis, our findings highlight that repeated exposures to inflammatory stimuli augments pulmonary carcinogenesis in susceptible strains. Additional studies examining genetic differences in antioxidant enzyme levels and adenoma susceptibility genes potentially contributing to tumor promotion by V2O5 as well as to other PM constituents warrant further investigation.

Additional material

Additional file 1 Table S1. Pulmonary inflammation and hyperpermeability in B6, BALB, and A/J mice treated with corn oil or MCA (10 μg/g) and then aspirated with 4 weekly doses of PBS.

Additional file 2 Figure S1. The MAPKs ERK 1/2 and p38 are not significantly altered between B6 or A/J mice treated with the carcinogen MCA (10 μg/g) and then aspirated with 4 weekly doses of PBS. Homogenates were prepared from the right lungs of mice treated with either MCA or oil and then 4 weekly aspirations of PBS (n = 3-5/group). Phosphorylated and total levels of MAPK in lung homogenates were analyzed from 75 μg protein by Western blotting. Representative images and mean band intensities are representative of 2-3 independent experiments. No significant differences were observed for either of the MAPK tested (P > 0.05).
Abbreviations
ANOVA: Analysis of variance; AP-1: Activator protein-1; BALB: BALB/c; BS: C57BL/6; BAL: Bronchoalveolar lavage fluid; COPD: chronic obstructive pulmonary disease; ELISA: Enzyme-linked immunosorbent assay; ERK: Extracellular-signal related kinase; KC: Keratinocyte-derived chemokine; MAPK: Mitogen-activated protein kinase; MCP-1: Monocyte chemoattractant protein-1; MIP-2: Macrophage inflammatory protein-2; NSCLC: non small cell lung cancer; NFκB: Nuclear factor-kappa B; IVK: C-Unt N-terminal kinase; PBS: Phosphate buffered saline; PM: Particulate matter; RNS: Reactive nitrogen species; ROS: Reactive oxygen species; ROA: Residual oil fly ash; TBS: Tris buffered saline; TBST: Tris buffered saline with Tween-20; V_{2O5}: Vanadium pentoxide.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
EAR performed V_{2O5} exposures, BAL analysis, and all experimental procedures (immunohistochemistry, ELISAs, immunoblots, transcription factor assays), as well as drafted the manuscript. DMW assisted in experimental design. AKB conceived of the study design and methodology utilized, assisted in V_{2O5} exposures and euthanasia, enumerated pulmonary tumors, and helped to draft the manuscript. All authors read and approved the final manuscript.

Acknowledgements
The authors would like to thank the Department of Pathobiology and Diagnostic Investigation and the Center for Integrative Toxicology at Michigan State University for funding this project.

Author Details
1Department of Pathobiology and Diagnostic Investigation and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA and 2Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, 27834, USA.

Received: 25 November 2009 Accepted: 12 April 2010
Published: 12 April 2010

References
1. Ferlay J, Bray F, Pisani P, Parkin DM. GLOBOCAN 2002: Cancer incidence, mortality, and prevalence worldwide. Lyon, France: IARC Press; 2002.
2. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin 2007; 57:43-66.
3. Thun MJ, Henley SJ, Burns D, Jemal A, Shanks TG, Calle EE. Cancer statistics, 2007. CA Cancer J Clin 2007; 57:43-66.
4. Koutrakis P, Suh H, Tsuda A, Godleski JJ. Lung inflammation induced by concentrated ambient air particles is related to particle composition. Am J Resp Crit Care Med 2002; 165:1610-1617.
5. IARC: Cobalt in Hard Metals and Cobalt Sulfate, Gallium Arsenide, Indium Phosphate and Vanadium Pentoxide Lyon, France: International Agency for Research on Cancer (IARC); 2006.
6. Saad M, Mian AA. Nickel and Vanadium in Air Particulates at Dhahran (Saudi Arabia) During and after the Kuwait Oil Fires. Atmospheric Environment 1994; 28:2249-2253.
7. Hauser R, Eisen EA, Poither L, Christian DC. A prospective study of lung function among boilermaker construction workers exposed to combustion particulates. Am J Ind Med 2001; 39:454-462.
8. Hauser R, Eisen EA, Poither L, Lewis D, Biedrose T, Christian DC. Spirometric abnormalities associated with chronic bronchitis, asthma, and airway hyperresponsiveness among boilermaker construction workers. Chest 2002, 121:2052-2060.
9. Iri거 GER, VISser PJ, SPangenberg PA. Asthma and chemical bronchitis in vanadium plant workers. Am J Ind Med 1999; 35:366-374.
10. Hauser R, Elreyde S, Hoppin JA, Christian DC. Upper airway response in workers exposed to fuel oil ash: nasal lavage analysis. Occup Environ Med 1995, 52:335-338.
11. Knecht EA, Moorman WJ, Clark JC, Lynch DW, Lewis TR. Pulmonary effects of acute vanadium pentoxide inhalation in monkeys. Am Rev Respir Dis 1985, 132:1181-1189.
12. Bonner JC, Rice AB, Ingram JL, Moomaw CR, Rice AB, Morgan DL, Zeldin DC, Langenbach R. Susceptibility of cyclooxygenase-2-deficient mice to pulmonary fibrogenesis. Am J Pathol 2002; 161:459-470.
13. Bonner JC, Rice AB, Moomaw CR, Morgan DL. Airway fibrosis in rats induced by vanadium pentoxide. Am J Pathol Lung Cell Mol Physiol 2000, 278:209-216.
14. Pierce LM, Alessandrini F, Godleski JJ, Paulauskius JD. Vanadium-induced chemokine mRNA expression and pulmonary inflammation. Toxicol Appl Pharmacol 1996, 138:1-11.
15. Ress NB, Chou BJ, Benne RA, Dill JA, Miller RA, Roycroft JH, Hailey JR. Spirometric abnormalities associated with chronic bronchitis, asthma, and airway hyperresponsiveness in populations living near uranium and vanadium mining and milling operations in Montrose County, Colorado, 1950-2000. Radiation Research 2007, 167:71-76.
16. Rivedal E, Roseng LE, Santer T. Vanadium compounds promote the induction of morphological transformation of hamster embryo cells with no effect on gap junctional cell communication. Cell Biol Toxicol 1992, 6:303-314.
47. Kwon YW, Ueda S, Ueno M, Yodoi J, Masutani H: Activation of p53-dependent apoptosis induced by 3-methylcholanthrene: involvement of reactive oxygen species.

49. Coussens LM, Werb Z: Inflammation in the development of lung cancer: Mechanism of p53-dependent apoptosis.

505-517.

51. Bauer AK, Rondini EA: Mechanism of extracellular signal-regulated kinase (ERK)-1 and ERK-2 activation by vanadium pentoxide in rat pulmonary myofibroblasts.

52. Ji H, Houghton AM, Mariani TJ, Perera S, Kim CB, Padera R, Tonon G, McNamara K, Marconcini LA, Hezel A, et al.: Identification of the Par2 receptor antagonist, Sch52 inhibits neutrophil recruitment, mucus production and pulmonary inflammation in CXB mice. J Biol Chem 2002, 277:1837-1844.

53. Wislez M, Fujimoto N, Izzo JG, Hanna AE, Cody DD, Langley RR, Tang H, Samet JM, Graves LM, Quay J, Dailey LA, Devlin RB, Ghio AJ, Wu W, Bromberg PA, Reed W: Activation of MAPKs in human bronchial epithelial cells exposed to metals. Am J Physiol Lung Cell Mol Physiol 2003, 284:L774-782.

54. Festing MF, Lin L, Devereux TR, Gao F, Yang A, Anna CH, White CM, Bresicki DM, Saltin B, Bonardel B, van Schooten FJ: Monocyte chemoattractant protein 1, interleukin 8, and chronic inflammatory response in lung tumors. J Exp Med 2009, 202:L551-558.

55. Peltz G, Wills-Karp M: Multiple ethyl carbamate injections Induction of a high incidence of lung tumors in C57BL/6 mice with pulmonary inflammation in mice: Role of reactive oxygen species. Cancer Genet Cytogenet 1999, 113:111-117.

56. Rondini EA, Bauer AK, Dwyer-Nield LD, Hankin JA, Murphy RC, Malkinson AM. The lung tumor promoter, butylated hydroxytoluene (BHT), causes chronic inflammation in promotion-sensitive BALB/cByJ mice but not in promotion-resistant CXB4 mice. Toxicology 2001, 169:1-15.

57. Wang YZ, Ingram JL, Walters DM, Rice AB, Santos JH, Van Houten B, Bonner JC. Vanadium-induced STAT-1 activation in lung myofibroblasts requires H2O2, and p38 MAP kinase., Free Radic Biol Med 2003, 35:945-953.

58. Grabowski GM, Paulauskis JD, Godleski JJ: Mediating phosphorylation events in the vanadium-induced respiratory burst of alveolar macrophages. Toxicol Appl Pharmacol 1999, 156:170-178.

59. Huang C, Chen N, Ma WY, Dong Z: Vanadium induces AP-1- and NF-kappaB-dependent transcription activity, Int J Oncol 1998, 13:711-715.

60. Ingram JL, Rice AB, Santos J, Van Houten B, Bonner JC. Vanadium-induced H8-EGF expression in human lung fibroblasts is oxidant dependent and requires MAP kinases. Am J Physiol Lung Cell Mol Physiol 2003, 284:L774-782.

61. Wang YZ, Bonner JC. Mechanism of extracellular signal-regulated kinase (ERK)-1 and ERK-2 activation by vanadium pentoxide in rat pulmonary myofibroblasts. Am J Respir Cell Mol Biol 2000, 22:590-596.

62. Samet JM, Graves LM, Quay J, Dailey LA, Devlin RB, Ghio AJ, Wu W, Bromberg PA, Reed W: Activation of MAPKs in human bronchial epithelial cells exposed to metals. Am J Physiol Lung Cell Mol Physiol 2003, 284:L774-782.

63. Timbrell DA, Keane MP, DiGiovine B, Kunkel SL, Strom SR, Burdick MD, Arenberg DA, Keane MP, DiGiovine B, Kunkel SL, Strom SR, Burdick MD, Chapman RW, Minnicozzi M, Celly CS, Phillips JE, Kung TT, Hipkin RW, Fan X, Rindgen D, Dene G, Bond R, et al.: A novel, orally active CXCRI/2 receptor antagonist, Sch52 inhibits neutrophil recruitment, mucus dependent apoptosis induced by 3-methylcholanthrene: involvement of reactive oxygen species. Cancer Genet Cytogenet 1999, 113:111-117.

64. Cho HY, Jedlicka AE, Reddy SP, Kessler TW, Yamamoto M, Zhang YL, Kleeberger SR. Role of NF2R2 in protection against hypoxic lung injury in mice. Am J Respir Cell Mol Biol 2002, 26:175-182.

65. Agbim M, Bergelson S, Pinkus R, Daniel V: Regulatory mechanisms involved in activator-protein-1 (AP-1)-mediated activation of glutathione-S-transferase gene expression by chemical agents., Eur J Biochem 1997, 243:49-57.

66. Bergelson S, Pinkus R, Daniel V: Intracellular glutathione levels regulate Fos/Jun induction and activation of glutathione S-transferase gene expression. Cancer Res 1994, 54:36-40.

67. Kwon YW, Ueda S, Ueno M, Yodoi J, Masutani H: Mechanism of p53-dependent apoptosis induced by 3-methylcholanthrene: involvement of p53 phosphorylation and p38 MAPK. J Biol Chem 2002, 277:1837-1844.

68. Bauer AK, Dixon DM, DeGriff LM, Cho HY, Walker CR, Malkinson AM, Kleeberger SR. Toll-like receptor 4 in butylated hydroxytoluene-induced mouse pulmonary inflammation and tumorigenesis. J Natl Cancer Inst 2003, 95:1778-1781.

69. Huang S, Paulauskis JD, Kobzik L: Oxidant-dependent regulation of mucus and mucociliary function in the mouse by metal-dependent extracellular signal-regulated kinase. J Clin Invest 2002, 109:175-182.

70. Samet JM, Silbajoris R, Wu W, Graves LM: Tyrosine phosphorylases as targets in metal-induced signaling in human airway epithelial cells. Am J Respir Cell Biol 1999, 21:357-364.

71. Carter JD, Ghio AJ, Samet JM, Devlin RB: Cytokine production by human airway epithelial cells after exposure to an air pollution particle is metal-dependent. Toxicol Appl Pharmacol 1997, 146:180-188.

72. Chung SW, Shi MW, Love JA, Christiani DC, Paulauskis JD: Regulation of chemokine mRNA expression in a rat model of vanadium-induced pulmonary inflammation. Inflammation 2000, 24:505-517.

73. Huang S, Paulauskis JD, Kodbz L: Rat KC DNA cloning and mRNA expression in lung macrophages and fibroblasts. Biochem Biophys Res Commun 1999, 164:922-929.

74. Matsuhashi K, Larsen CG, Dubois GC, Oppenheim JJ: Purification and characterization of a novel monocyte chemoattractant and activating factor produced by a human myelomonocytic cell line. J Exp Med 1989, 169:1485-1490.

75. Gungor N, Penning JS, Knaapen AM, Chiu RK, Peluso M, Godschalk RW, van Schooten FJ: Transcriptional profiling of the acute pulmonary inflammatory response induced by LPS: role of neutrophils., Respir Res 2010, 11:24.

76. de Visser KE, Echten A, Coussens LM: Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 2006, 6:24-37.

77. Zhu WW, Webster SJ, Flower D, Wolf PZ, Interleukin-8/CXCL8 is a growth factor for human lung cancer cells. Br J Cancer 2004, 91:1970-1976.

78. Luppi F, Longo AM, de Boer WL, Rafe KB, Hiemstra PS: Interleukin-8 stimulates cell proliferation in non-small cell lung cancer through epidermal growth factor receptor transactivation. Lung Cancer 2007, 56:35-33.

79. de Boer WL, Sant JK, van Schadewijk A, Stolp J, van Krieken JH, Hiemstra PS: Monocyte chemoattractant protein 1, interleukin 8, and chronic airways inflammation in COPD. J Pathol 2000, 190:619-626.

80. Tomaki M, Sugiuira H, Koaari A, Komaki Y, Akta T, Matsumoto T, Nakasishi A, Ogawa H, Hattori T, Ichinose M: Decreased expression of antioxidiant enzymes and increased expression of chemokines in COPD lungs. Pulm Pharmacol Ther 2007, 20:596-605.

81. Arendt DA, Keane MP, DiGiovine B, Kunkel SL, Strom SR, Burdick MD, Iannettoni MD, Strieter RM: Macrophage infiltration in human non-small cell lung cancer: the role of CC chemokines. Cancer Immunol Immunother 2000, 49:63-70.

82. Chapman RW, Minnicozzi M, Celly CS, Phillips JE, Kung TT, Hipkin RW, Fan X, Rindgen D, Dene G, Bond R, et al.: A novel, orally active CXCR1/2 receptor antagonist, Sch52 inhibits neutrophil recruitment, mucus dependent apoptosis induced by 3-methylcholanthrene: involvement of reactive oxygen species. Cancer Genet Cytogenet 1999, 113:111-117.
production, and goblet cell hyperplasia in animal models of pulmonary inflammation. J Pharmacol Exp Ther 2007, 322:486-493.

79. Keane MP, Belperio JA, Xue YY, Burdick MD, Strieter RM: Depletion of CXCR2 inhibits tumor growth and angiogenesis in a murine model of lung cancer. J Immunol 2004, 172:2853-2860.

80. Sparmann A, Bar-Sagi D: Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 2004, 6:447-458.

81. Ji H, Wang Z, Perera SA, Li D, Liang MC, Zaghlul S, McNamara K, Chen L, Albert M, Sun Y, et al.: Mutations in BRAF and KRAS converge on activation of the mitogen-activated protein kinase pathway in lung cancer mouse models. Cancer Res 2007, 67:4933-4939.

82. Roberts PJ, Der CJ: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007, 26:3291-3310.

83. Stathopoulos GT, Sherrill TP, Cheng DS, Scooggins RM, Han W, Polosukhin VV, Connelly L, Yull FE, Fingleton B, Blackwell TS: Epithelial NF-kappaB activation promotes urethane-induced lung carcinogenesis. Proc Natl Acad Sci USA 2007, 104:18514-18519.

84. Angel P, Karin M: The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1991, 1072:129-157.

85. Devereux TR, Holliday W, Anna C, Ross N, Roycroft J, Sills RC: Map kinase activation correlates with K-ras mutation and loss of heterozygosity on chromosome 6 in alveolar bronchiolar carcinomas from B6C3F1 mice exposed to vanadium pentoxide for 2 years. Carcinogenesis 2002, 23:1737-1743.

doi: 10.1186/1743-8977-7-9

Cite this article as: Rondini et al., Vanadium pentoxide induces pulmonary inflammation and tumor promotion in a strain-dependent manner. Particle and Fibre Toxicology 2010, 7:9