Molecular Dynamics of the *Shewanella oneidensis* Response to Chromate Stress*

Steven D. Brown‡§, Melissa R. Thompson§¶**, Nathan C. VerBerkmoes¶, Karuna Choureyy‡, Manesh Shah‡‡, Jizhong Zhou‡, Robert L. Hettich¶§§, and Dorothea K. Thompson‡¶¶

Temporal genomic profiling and whole-cell proteomic analyses were performed to characterize the dynamic molecular response of the metal-reducing bacterium *Shewanella oneidensis* MR-1 to an acute chromate shock. The complex dynamics of cellular processes demand the integration of methodologies that describe biological systems at the levels of regulation, gene and protein expression, and metabolite production. Genomic microarray analysis of the transcriptome dynamics of midexponential phase cells subjected to 1 mM potassium chromate (K₂CrO₄) at exposure time intervals of 5, 30, 60, and 90 min revealed 910 genes that were differentially expressed at one or more time points. Strongly induced genes included those encoding components of a TonB1 iron transport system (tonB1-exbB1-exbD1), hemin ATP-binding cassette transporters (hmuTUV), TonB-dependent receptors as well as sulfate transporters (cysP, cysW-2, and cysA-2), and enzymes involved in assimilative sulfur metabolism (cysC, cysN, cysD, cysH, cysI, and cysJ). Transcript levels for genes with annotated functions in DNA repair (lexA, recX, recA, recN, dinP, and umuD), cellular detoxification (so1756, so3585, and so3586), and two-component signal transduction systems (so2426) were also significantly up-regulated (p < 0.05) in Cr(VI)-exposed cells relative to untreated cells. By contrast, genes with functions linked to energy metabolism, particularly electron transport (e.g. so0902-03-04, mtrA, omcA, and omcB), showed dramatic temporal alterations in expression with the majority exhibiting repression. Differential proteomics based on multidimensional HPLC-MS/MS was used to complement the transcriptome data, resulting in comparable induction and repression patterns for a subset of corresponding proteins. In total, expression of 2,370 proteins were confirmed with 624 (26%) of these annotated as hypothetical or conserved hypothetical proteins. The initial response of *S. oneidensis* to chromate shock appears to require a combination of different regulatory networks that involve genes with annotated functions in oxidative stress protection, detoxification, protein stress protection, iron and sulfur acquisition, and SOS-controlled DNA repair mechanisms. *Molecular & Cellular Proteomics* 5: 1054–1071, 2006.

Hexavalent chromium [Cr(VI)], in the form of chromate (CrO₄²⁻) or dichromate (Cr₂O₇²⁻) species, is a serious anthropogenic pollutant found in the discharged effluents from various manufacturing and military industries (1, 2) and is one of several risk-driving contaminants found at unacceptable levels in groundwater as well as soil and sediment at the United States Department of Energy waste sites (3). The most chemically stable and common forms of chromium in the environment are the trivalent Cr(III) and hexavalent Cr(VI) species, which differ significantly in their physicochemical properties and biological responsiveness (i.e. toxicity). Cr(VI) is highly soluble and a toxic non-essential metal for most organisms with chronic chromate exposure leading to mutagenesis and carcinogenesis, whereas Cr(III) is sparingly soluble and relatively innocuous (4–6).

In situ microbial bioreduction of Cr(VI) to Cr(III) is of particular interest because it may serve as a potential strategy for the detoxification and immobilization of chromate compared with more cost-prohibitive physical and chemical treatment methods (7). Microorganisms exhibiting Cr(VI)-reducing activities and resistance have been detected in chromate-contaminated sites as well as natural, uncontaminated ecosystems (8–10). Previous studies have indicated that species of the γ-proteobacterial genus *Shewanella* are capable of both direct (enzymatic) dissimilatory Cr(VI) reduction (11–13) and indirect (chemical) Cr(VI) reduction driven by the reduction of Fe(III) to Fe(II) (14–16). Myers et al. (12) demonstrated that formate-dependent Cr(VI) reductase activity was localized to the cytoplasmic membrane of anaerobically grown *Shewanella oneidensis* MR-1 (previously named *Shewanella putrefaciens* MR-1). Similarly chromate reductase activity was shown to be preferentially associated with the membrane fraction of *Enterobacter cloacae* cells (17), whereas soluble Cr(VI)-reducing enzymes have been purified to varying degrees from *Pseudomonas putida* MK1 (18), *P. putida* PRS2000 (19), and *Pseudomonas ambigua* G-1 (20). Reductases with other primary cellular functions have been shown...
to be efficient in chromate reduction (21), suggesting that a variety of enzymes may participate in the transfer of electrons to Cr(VI). Studies investigating the effect of nitrite on hexavalent chromium reduction indicated that S. oneidensis MR-1 might possess multiple nongenetic Cr(VI) reduction mechanisms, as well as metal resistance mechanisms, that are dependent on physiological growth conditions (13).

Oxidatively induced DNA damage is considered to be the basis of chromate genotoxicity (22–24) with active transport of chromate across biological membranes being mediated by the sulfate transport system in prokaryotic and eukaryotic cells (7, 25, 26). The chromate resistance mechanisms displayed by microorganisms are diverse and include biosorption, diminished intracellular accumulation through either direct obstruction of the ion uptake system or active chromate efflux, precipitation, and reduction of Cr(VI) to less toxic Cr(III) (for a review, see Ref. 7). Plasmid-determined resistance to chromate has been shown to occur in bacteria, including species of the genera Pseudomonas (27–29) and Alcaligenes (25). A hydrophobic protein, designated ChrA, was found to be responsible for the plasmid-specified resistance phenotype in these organisms (30, 31) and appears to function as a secondary transport system for the extrusion of chromate ions (32). Although Cr(VI) reduction and toxicity resistance mechanisms are considered to be unlinked cellular processes, the biotransformation of Cr(VI) to Cr(III) likely contributes to the detoxification of chromate (33, 34).

The goal of the study described here was to obtain global insight into temporal alterations in mRNA expression and protein synthesis that occur in response to toxic acute levels of chromate and thus to gain an understanding of the potential molecular mechanisms enabling Cr(VI) detoxification under aerobic respiratory conditions. For the most part, the observed alterations in the protein patterns reflected the changes identified at the transcriptomic level. In addition, differential proteomics revealed post-transcriptional levels of regulation that cannot be captured by microarray analysis. The combined transcriptome and proteome analyses suggested a close relationship between chromate stress and cellular iron requirement (or limitation) as indicated by the dramatic induction of genes involved in iron sequestration and uptake. Sulfate transport and assimilatory pathways for cysteine production, DNA damage repair systems, and oxidative stress protection were also major features of the initial response of S. oneidensis MR-1 to acute Cr(VI) exposure. The present study identified a number of genes and their encoded products that have been shown previously to be important for the oxidative stress response of MR-1 (35) and other bacteria. Moreover a number of other genes/proteins not described previously were implicated in the cellular detoxification of chromate. This study represents an essential first step toward a global molecular characterization of the cellular response to acute chromate exposure in a metal-reducing bacterium and provides information necessary for future examination of metal stress-linked gene regulatory networks.

EXPERIMENTAL PROCEDURES

Bacterial Strains, Culture Conditions, and Assays—S. oneidensis strain MR-1 (36) was used for both transcriptomic and proteomic analyses and was propagated in Luria-Bertani (LB) medium (pH 7.2) at 30 °C under aerobic conditions. A Bioscreen C microbiological culture system (Growth Curves USA, Piscataway, NJ) was used to monitor the growth of MR-1 in response to different concentrations of K2CrO4 over 48 h. Chromate reduction was measured using the 1,5-diphenylcarbazide method essentially as described previously (18). RNA Isolation and Preparation of Fluorescein-labeled cDNA—For the time series microarray experiment, a 1:1000 dilution of a fresh overnight culture (16 h) of S. oneidensis MR-1 was used to inoculate prewarmed LB medium in six 250-ml sidearm Pyrex flasks. Batch cultures were grown to mid-exponential phase (A600: 0.5) followed by the addition of prewarmed 2 mM K2CrO4 to a final concentration of 1 mM for three of the six cultures. The remaining three cultures served as the reference (control) samples and were grown in parallel with the treated cells. For microarray hybridization, the control and treated cells were harvested in parallel for total cellular RNA extraction at 5, 30, 60, and 90 min post-K2CrO4 addition. RNA isolation, fluorescent labeling reactions, probe purification, and microarray hybridization were performed as described previously (37).

Microarray Hybridization, Scanning, Image Quantification, and Data Analysis—S. oneidensis MR-1 microarray construction, hybridization, scanning, image quantification, and data analyses were performed as described previously (38, 39). Briefly temporal gene expression analysis was performed using six microarrays for each time point (three biological replicates × two dye reversal reactions) with each slide containing two spots representing each gene at different array locations for a total of 12 signal intensity measurements per gene per time point. The two separately labeled cDNA pools (i.e. the K2CrO4-treated and the corresponding control time point) to be compared were mixed together in a hybridization solution containing 50% (v/v) formamide. Microarray hybridization signals were quantified using ImageGene Version 5.5 (Biodiscovery, Inc., Los Angeles, CA) followed by data transformation and normalization using GeneSite Light (Bidiscovery, Inc.). ArrayStat™ (Imaging Research, Inc., Ontario, Canada) was used to determine the common error of these values, remove outliers, and determine statistical significance via a z test for two independent conditions and the false discovery rate method (nominal α, p < 0.05). Genes exhibiting significant changes in expression at a degree of 2-fold or greater (40) were further analyzed using the program Hierarchical Clustering Explorer Version 3.0 (www.cs.umd.edu/hci/multi-cluster/).

Real Time Quantitative RT (QRT)-PCR Analysis—Microarray data were validated using real time QRT-PCR as described previously (39) except that IQ SYBR Green Supermix (Bio-Rad) was used according to the manufacturer’s instructions instead of SYBR Green I. Six genes representing the range of induced to unchanged gene expression values based on microarray hybridization were analyzed for the four time points of Cr(VI) exposure using real time QRT-PCR. The following genes were selected for comparative QRT-PCR analysis, and primer pairs (given in parentheses) were designed using the program Primer3 (www-genome.wi.mit.edu/cgi-bin/primer/primer3_www.cgi): tonB2 (5′-CAAAGGGTCTACCTCAACCC, 3′-GAACGACATTGCCGTATC- 3′). The abbreviations used are: LB, Luria-Bertani; QRT, quantitative RT; ROS, reactive oxygen species; 2-D, two-dimensional; LTQ, linear trapping quadrupole; ABC, ATP-binding cassette.
Preparation of Proteomes for HPLC-MS/MS Analysis—All chemical reagents were obtained from Sigma unless stated otherwise. Modified sequencing grade trypsin (Promega, Madison, WI) was used in all digestions. HPLC grade water and acetonitrile were acquired from Burdick & Jackson (Muskegon, MI), and 99% formic acid was purchased from EM Science (Darmstadt, Germany).

For large scale proteomic characterization, 500-ml cultures of S. oneidensis MR-1 in 4-liter flasks (a total of 1 liter of culture for treatment and control) were grown to midexponential phase (A490nm 0.5) under the same conditions as described above for the microarray studies and then either exposed to a final K2CrO4 concentration of 1 mM or allowed to continue growing in the absence of added chromium. At time points of 45 and 90 min after treatment with K2CrO4, cells were harvested from each of the following conditions for HPLC-MS/MS analysis: 1) Control 1 (untreated midlog phase), 2) Treatment 1 (45 min post-Cr addition), 3) Treatment 2 (90 min post-Cr addition). For this, cells were pelleted by centrifugation (5,000 × g for 5 min), resuspended in ice-cold LB medium, washed two times in 50 mM Tris, 10 mM EDTA (pH 7.6), and centrifuged at 5,000 × g for 10 min. The supernatant was removed by centrifugation at 5,000 × g for 10 min. The supernatant was centrifuged at 100,000 × g for 60 min in an ultracentrifuge to separate a soluble fraction from a pellet. The pellet (membrane fraction) was then immediately desalted using Sep-Pak Plus C18 solid phase extraction (Waters, Milford, MA). The peptide mass tolerance, 3.0; fragment ion tolerance, 0.5; up to four missed cleavages allowed; fully tryptic peptides only. The MS/MS spectra were acquired following every full scan, two microscans were averaged for every full MS and MS/MS spectra, a 3 m/z isolation width was used, and 35% collision energy was used for fragmentation. The dynamic exclusion was set to 1 with an exclusion duration of 3 min.

Proteome Bioinformatics—A protein database was created by combining the most recent version of the S. oneidensis MR-1 database (Version 8; www.tigr.org) containing a total of 4,798 predicted proteins with 36 common contaminants (trypsin, keratin, etc.). The database can be downloaded from the website compbio.ornl.gov/shewanella_chromium_stress/databases/. For all database searches, DTASelect files are the required format for input into SEQUEST (Ref. 41; ThermoFinnigan) with the following parameters: enzyme type, trypsin; parent mass tolerance, 3.0; fragment ion tolerance, 0.5; up to four missed cleavages allowed; fully tryptic peptides only. The MS/MS spectra from individual RAW files were first converted to mzXML format by using ReAdW software written at the Institute for Systems Biology in Seattle, WA (www.systemsbio.org) and can be downloaded from the SourceForge repository (sashimi.sourceforge.net). Individual spectra were then converted to DTA files by mzXML2Other, also from the Institute for Systems Biology. DTA files are the required format for use with the ThermoFinnigan LTQ Linear Trap Quadrupole Ion Trap Hybrid mass spectrometer. A list was made of all proteins showing a reproducible significant change of at least 40% sequence coverage, five or more unique peptides, and/or a reproducible spectral count difference of 2 × between the control and chromate-treated samples at each time point (adapted from Refs. 39 and 43). The analysis page also contains inter-run contrast files.
(compares duplicate runs on same sample) as well as fractionation comparisons (compares replicate runs of the same proteome broken down by fraction).

RESULTS

Physiological Effect of Chromate during Aerobic Growth of S. oneidensis—Initially we investigated the effects of chromate-induced stress on the growth of aerobically growing cultures of S. oneidensis MR-1 to identify adequate concentrations for transcriptome and proteome analyses. Three independent experiments based on end point culture turbidity determinations indicated that MR-1 responded to K$_2$CrO$_4$ in a dose-dependent manner. MR-1 cells that were grown in the presence of 0.06 and 0.125 mM Cr(VI) attained A_{600} values similar to those attained for cells grown in the absence of heavy metal in the medium after 48 h (Fig. 1A). MR-1 cultured with 0.25, 0.5, and 1 mM K$_2$CrO$_4$ showed ~17, 50, and 66% reductions in growth, respectively. Culture turbidity did not increase for inocula in medium containing 2 mM K$_2$CrO$_4$ after 48 h. To provide a complete description of the growth behavior exhibited by MR-1 in response to different amounts of Cr(VI), culture turbidity was measured at 30-min intervals under aerobic conditions over the course of 48 h using a Bioscreen C reader. As shown in Fig. 1B, growth rates of MR-1 in the presence of 0.06 and 0.125 mM K$_2$CrO$_4$ were decreased slightly relative to growth in the absence of added K$_2$CrO$_4$, but similar maximal turbidity measurements were obtained after 48 h. Extended lag periods, ranging from 20–40 h, followed by biphasic growth with a period of growth arrest and then by complete or partial recovery were observed for MR-1 grown in LB medium containing higher Cr(VI) concentrations (i.e. 0.25, 0.5, and 1 mM; Fig. 1B). However, MR-1 was unable to grow after 48 h in 2 mM K$_2$CrO$_4$ under the conditions tested in the present study (Fig. 1B).

Chromate Reduction—A chromate concentration of 1 mM was selected for global gene and protein expression profiling. To determine whether chromate reduction occurs in the presence of exponentially growing S. oneidensis cells upon addition of 1 mM K$_2$CrO$_4$, a spectrophotometric method using 1,5-diphenylcarbazide (18) was used to monitor chromate conversion over the entire time course of the transcriptome and proteome analyses. No chromate disappearance was observed for Cr(VI)-shocked midlog phase cells over a 150-min period (see Supplemental Fig. S1). Similarly no abiotic conversion of chromate was detected in the LB broth-only control (Supplemental Fig. S1), thus eliminating the possible contribution of Fe$^{3+}$ in the chemical reduction of chromate. After 24 h of incubation in LB medium containing 1 mM K$_2$CrO$_4$, wild-type MR-1 cells transformed ~42% of Cr(VI) (results not shown).

General Transcriptome Dynamic Patterns in Response to Chromate Shock and Array Data Validation—To define the repertoire and temporal expression patterns of MR-1 genes responding to acute Cr(VI) exposure (1 mM K$_2$CrO$_4$), transcriptome dynamics were examined based on time series DNA microarray experiments at 5, 30, 60, and 90 min postshock using whole-genome microarrays. Temporal gene expression profiles of cells exposed to Cr(VI) were compared with those of the untreated control cells grown in parallel. Approximately 20% ($n = 910$) of the total predicted S. oneidensis genes ($n = 4,648$) represented on the microarray showed at least a 2-fold statistically significant ($p < 0.05$) change in expression for at least one of the time points during acute Cr(VI) stress exposure. Generally the number of up- and down-regulated genes increased with time of exposure to chromate. At all four time points, as many as 54 genes were induced more than 2-fold, whereas only 12 genes were repressed at all time points.

![Fig. 1. Dose-response growth curves describing the toxicity of potassium chromate (K$_2$CrO$_4$) for S. oneidensis strain MR-1. A, the minimal inhibitory concentration of K$_2$CrO$_4$ for MR-1 determined in LB broth under aerobic growth conditions at 30 °C after 48 h. B, growth curves of MR-1 over 48 h in LB medium containing the following final concentrations of K$_2$CrO$_4$ were measured using a Bioscreen C apparatus: 0 mM (●), 0.0625 mM (○), 0.125 mM (▽), 0.25 mM (●), 0.5 mM (■), 1 mM (□), and 2 mM (●). The mean A_{600} ± S.E. (bars) for three replicate growth point measurements is shown, and three independent experiments were conducted.](https://www.mcponline.org)
Pairwise complete linkage clustering analysis of expression profile patterns for this subset of ORFs revealed three major clusters of genes exhibiting similar or potentially co-regulated expression patterns (see Supplemental Fig. S2 and Table S1).

Chromate-responsive genes displayed a wide distribution among functional classes based on The Institute for Genomic Research annotations (Ref. 44; www.tigr.org, Comprehensive Microbial Resource) across the entire course of exposure (Fig. 2). The early response (5 min) was characterized predominantly by up-regulation of genes whose products mostly belonged to the functional categories of energy metabolism, hypothetical proteins, and transport(binding proteins (Fig. 2A). General expression patterns during the middle time intervals (30 and 60 min) of K2CrO4 exposure were characterized by a marked increase in the number of down-regulated genes in the following functional categories: biosynthesis of cofactors, prosthetic groups, and carriers; cellular processes; energy metabolism; hypothetical proteins; protein fate; purines, pyrimidines, nucleosides, and nucleotides; regulatory functions; transport and binding proteins; and proteins of unknown function (Fig. 2, B and C). For most functional groups, the maximal transcriptional response in terms of numbers of differentially expressed ORFs occurred at the 90-min (late phase) post-Cr(VI) shock time point (Fig. 2D). At this time

Time (min) after addition of 1 mM K2CrO4	Number of genes	
	Induced	Repressed
5	147	36
30	186	164
60	202	244
90	342	293
At least one time point	483	444
All time points	54	12

Fig. 2. Differentially expressed genes grouped by functional classification according to The Institute for Genomic Research S. oneidensis genome database and shown for the post-treatment time intervals of 5 (A), 30 (B), 60 (C), and 90 (D) min. Column 1, amino acid biosynthesis; column 2, biosynthesis of cofactors, prosthetic groups, and carriers; column 3, cell envelope; column 4, cellular processes; column 5, central intermediary metabolism; column 6, DNA metabolism; column 7, energy metabolism; column 8, fatty acid and phospholipid metabolism; column 9, hypothetical proteins; column 10, mobile and extrachromosomal element functions; column 11, protein fate; column 12, protein synthesis; column 13, purines, pyrimidines, nucleosides, and nucleotides; column 14, regulatory functions; column 15, signal transduction; column 16, transcription; column 17, transport and binding proteins; column 18, unknown function. The solid or open bars represent the numbers of genes whose mRNA abundance levels increased or decreased, respectively.
interval, we observed a large increase in the number of repressed genes involved in energy metabolism.

Real time quantitative RT-PCR was used to provide an independent assessment of gene expression for selected genes across the entire time course of chromate treatment. The six genes (tonB1, tonB2, exbB1, so2426, so3032, and so3585) selected for comparative real time QRT-PCR analysis displayed up-regulated or unchanged expression patterns as identified by microarray analysis. A comparison of gene expression measurements determined by QRT-PCR and microarray analyses indicated that the datasets were highly correlated with an r^2 value of 0.81 ($p < 0.0001$) (see Supplemental Fig. S3).

Induction of Iron Binding and Transport Genes—Of the 910 genes shown to be significantly differentially regulated, we identified a small subgroup comprising 16 genes that exhibited substantially greater expression levels (in some cases >100-fold) compared with the other induced Cr(VI)-responsive genes (Table II). Subgroup IIC (see Supplemental Table S1 and Table II) was dominated by genes encoding products involved in energy metabolism.

Induction of Detoxification, DNA Damage Repair, and Other Stress-related Genes after Chromate Exposure—The biological basis of chromate-induced toxicity is thought to be the generation of reactive oxygen species (ROS) during enzymatic chromate reduction (for reviews, see Refs. 5 and 7). Cr(V) species are transient intermediates in the flavoenzyme-catalyzed one-electron reduction of chromate whose redox cycling results in the formation of ROS and H$_2$O$_2$ generation, which has been shown to be involved in partial chromate reduction (20, 46, 47). Recently the central mechanism of chromium toxicity in *Saccharomyces cerevisiae* was shown to involve oxidative damage to cellular proteins (48). As a strategy for scavenging ROS, bacteria commonly modulate gene expression by inducing genes encoding antioxidant enzymes and proteins. Cr(VI)-stressed *S. oneidensis* MR-1 indicated a 2–5-fold induction of *katG*-1 (SO0725, catalase/peroxidase hydroperoxidase), *katB* (SO1070, catalase), and so4640 (an-

Table II

ORF designation	Gene	Gene product function	Mean (K$_2$CrO$_4$/control)a at time t (min)b
so3032	Siderophore biosynthesis protein, putative	4.5 10.6 15.6 31.1	
so3033	Ferric alcaligin siderophore receptor	3.1 11.8 15.9 21.6	
so3062	Hypothetical protein	3.5 10.3 12.9 16.5	
so3585	Azoreductase, putative	5.6 60.9 28.2 30.1	
so3586	Glyoxalase family protein	3.8 26.4 16.1 13.1	
so3587	Hypothetical protein	3.7 17.5 10.4 14.2	
so3667c	Conserved hypothetical protein	14.5 25.8 23.7 91.1	
so3668c	Conserved hypothetical protein	12.2 14.9 15.9 46.0	
so3669	hugA	15.5 16.5 20.4 120.0	
so3670	tonB1	10.3 15.9 25.0 99.0	
so3671	exbB1	12.8 9.5 15.9 171.8	
so3672	exbD1	15.2 14.5 22.5 242.3	
so3673	hmuT	11.9 13.9 18.2 40.2	
so3674	hmuU	13.6 14.5 16.9 33.6	
so3675	hmuV	27.2 17.3 23.4 101.1	
so3914	TonB-dependent receptor, putative	6.5 7.5 10.5 44.2	

a Relative gene expression (-fold induction) is presented as the mean ratio of the fluorescence intensity of K$_2$CrO$_4$ exposed cells to control cells. Each gene showed significant differential expression ($p < 0.05$) at least at one time point.

b Time in minutes at which cells were harvested for RNA isolation following addition of 1 mM K$_2$CrO$_4$ to the experimental culture.

c Genes so3667 (hugZ) and so3668 (hugX) were recently reannotated and predicted to encode heme iron utilization proteins (45).
oxidant AhpC/Tsa family protein) at the 60- and 90-min time points (see Supplemental Table S1). Differential expression was not measured for sodB, predicted to encode an iron-cofactored superoxide dismutase.

The SOS regulon is a genetic network that enables *Escherichia coli* and related bacteria to maximize their chances of survival when exposed to environmental stresses that damage DNA (for a review, see Ref. 49). Key components in homologous recombination and the SOS pathway of DNA repair were up-regulated at the transcription level in response to Cr(VI) exposure. These up-regulated MR-1 repair genes encoded proteins similar to the LexA (SO4603) repressor, regulatory protein RecX (SO3429), RecA (SO3430), and DNA repair protein RecN (SO3462), which in *E. coli* comprise the

TABLE III

ORF designation	Gene	Gene product function	Mean (K_2CrO_4/control)^a at time t (min)^b
			5 30 60 90
DNA replication, recombination, and repair			
so3429	recX	Regulatory protein RecX	1.8 3.9 4.0 4.7
so3430	recA	RecA protein	1.4 4.9 4.9 4.5
so3462	recN	DNA repair protein RecN	2.2 4.2 4.3 4.3
so4603	lexA	LexA repressor	2.1 5.6 5.4 6.4
soa0013	umuD	UmuD protein	1.5 5.1 6.0 5.5
Energy metabolism: electron transport			
so3034		Ferric iron reductase protein, putative	1.9 2.0 4.5 5.1
Hypothetical and conserved hypothetical proteins			
so1188		Conserved hypothetical protein	2.1 3.1 2.8 4.0
so1189		Conserved hypothetical protein	1.8 2.6 2.5 5.7
so1190		Conserved hypothetical protein	1.7 2.6 2.5 5.7
so1450		Conserved hypothetical protein	2.8 5.0 3.2 11.4
so1757		Conserved hypothetical protein	1.3 3.0 7.8 14.7
so3025		Conserved hypothetical protein	1.8 5.1 5.2 7.7
so3724		Hypothetical protein	6.1 7.1 1.3 27.9
so3725		Hypothetical protein	4.9 6.6 1.4 22.7
so4604		Conserved hypothetical protein	2.4 5.9 5.4 6.6
so4605		Hypothetical protein	4.1 7.0 14.0 6.3
so4650		Conserved hypothetical protein	3.8 4.6 3.0 49.2
so4651		Conserved hypothetical protein	5.0 5.5 2.0 45.0
so4656		Hypothetical protein	3.4 6.8 2.8 25.3
Signal transduction		DNA-binding response regulator	3.7 3.3 3.5 10.7
so2426			
Sulfur metabolism			
so3723	cysC	Adenylylsulfate kinase	4.4 6.7 1.6 17.5
so3726	cysN	Sulfate adenylyltransferase, subunit 1	5.0 7.9 1.4 25.5
so3727	cysD	Sulfate adenylyltransferase, subunit 2	4.8 8.0 1.7 24.8
so3736	cysH	Phosphoadenosine-phosphosulfate reductase	3.5 4.6 1.0 15.8
so3737	cysI	Sulfite reductase (NADPH) homoprotein β-component	3.6 4.7 0.9 13.1
so3738	cysJ	Sulfite reductase (NADPH) flavoprotein α-component	3.8 6.5 1.5 16.3
Transport and binding proteins			
so1482		TonB-dependent receptor, putative	4.3 5.1 3.6 15.2
so1580		TonB-dependent heme receptor	1.9 3.2 4.0 8.4
so2045		Cation efflux family protein	1.9 3.1 2.6 4.6
so3030	alcA	Siderophore biosynthesis protein	2.8 3.0 4.5 9.4
so3031		Siderophore biosynthesis protein, putative	3.6 6.9 10.1 11.4
so3599	cysP	Sulfate ABC transporter, periplasmic sulfate-binding protein	3.6 6.2 1.4 13.3
so4516	viuA	Ferric vibriobactin receptor	5.1 6.8 8.8 22.5
so4523	irgA	Iron-regulated outer membrane virulence protein	2.4 3.6 7.5 10.5
so4652	sbp	Sulfate ABC transporter, periplasmic sulfate-binding protein	4.1 8.4 4.1 41.5
so4654	cysW-2	Sulfate ABC transporter, permease protein	5.1 9.8 2.9 55.0
so4655	cysA-2	Sulfate ABC transporter, ATP-binding protein	3.6 7.1 2.9 25.3
Unknown function/other			
so1114	dinP	DNA damage-inducible protein P	1.9 5.4 5.4 5.0
so1756		Glyoxalase family protein	1.2 2.6 8.1 11.9
so3728	cobA	Uroporphyrin-III C-methyltransferase	4.7 6.5 2.5 18.8

a Relative gene expression (-fold induction) is presented as the mean ratio of the fluorescence intensity of K_2CrO_4-exposed cells to control cells. Each gene showed significant differential expression (p < 0.05) at least at one time point.

b Time in minutes at which cells were harvested for RNA isolation following addition of 1 mK_2CrO_4 to the experimental culture.
core of the SOS response. Expression of *lexA*, *recX*, *recA*, and *recN* increased substantially after 5 min of acute Cr(VI) exposure and then remained at similar induced levels (~4–6-fold) over the rest of the time course (Table III). Other known SOS-controlled genes, like *dinP* (so1114) and plasmid-borne *umuD* (soa0013), also displayed expression profiles like that of *recA* (Table III), thus suggesting the induction of an SOS-like pathway of DNA repair and mutagenesis in *S. oneidensis* MR-1 in response to chromate. The *lexA* and *so4604* genes are coupled by overlapping stop and start codons and co-induced in response to UV irradiation, suggesting expression as an operon (35). The downstream *so4605* gene was in the *lexA* and *so4604* expression cluster in response to both UV and chromate stresses, although the putative initiation codon does not overlap with the stop codon of the *so4604* gene.

A putative azoreductase gene (*so3585*) with an annotated function in detoxification, a glyoxalase family gene (*so3586*) of undefined cellular function, and a gene encoding a hypothetical protein (*so3587*) (44) were located within the cluster of highly induced iron-sequestering genes (Table II). Maximal transcriptional induction of *so3585* (61-fold), *so3586* (26-fold), and *so3587* (18-fold) occurred at the 30-min time point followed by continued up-regulation at the 60- and 90-min time points but at lower levels (Table II). These genes have not been shown previously to be involved in the cellular response to chromate stress. *so3585*, *so3586*, and *so3587* are transcribed in the same direction and exhibit co-regulated temporal expression patterns in response to acute Cr(VI) exposure, suggesting that the encoded proteins might function together in a complex. Another gene predicted to encode a glyoxalase family protein (*SO1756*) exhibited a different temporal expression pattern, characterized by a maximum induction of 12-fold at the 90-min time point (Table III).

Chromate treatment under aerobic growth conditions also resulted in the differential expression of some classic heat shock proteins, chaperones, and proteases, including *groES* (*so0703*), *groEL* (*so0704*), *dnak* (*so1126*), *ibpA* (*so2277*), *htpG* (*so2016*), *hsLV* (*so4162-63*), *clpB* (*so5377*), *lon* (*so1796*), and *so1987*. These genes exhibited a modest up-regulation (~2–4-fold) early in the transcriptional response to chromate (*i.e.* the 5- and/or 30-min time points), and their increased expression may be indicative of damaged cellular proteins as a result of chromate-induced oxidative stress.

Up-regulated Expression of Sulfate Transport and Sulfur Metabolism Genes—The structural similarity of chromate (*CrO4^2−*) anions to such biologically important inorganic anions as *SO4^2−* and *PO4^3−* most likely constitutes the basis for its active transport across cell membranes via the sulfate transport system (7). Chromate has been shown to be a competitive inhibitor of sulfate transport in *Pseudomonas fluorescens* (26). Based on our array experiments, another subset of MR-1 ORFs that were up-regulated in response to chromate consisted of those genes encoding sulfate ABC transporters (*cysP*, *sbr*, *cysW-2*, and *cysA-2*) and enzymes involved in activation and subsequent reduction of sulfate to sulfide (*cysC*, *cysDN*, *cysH*, and *cysIJ*) (Table III; for a review of sulfur metabolism, see Ref. 50). These genes and predicted operons, along with five hypothetical genes (*so3724*, *so3725*, *so4650*, *so4651*, and *so4656*), displayed a distinctive bimodal pattern of temporal expression with an initial induction peak (~4–10-fold) at the 30-min time interval followed by a marked decrease in transcription and then a second induction (~13–89-fold) at 90 min. The putative serine acetyltransferase gene (*cysE*) was induced ~2-fold at 90 min; however, *cysM* and *cysK*, encoding the two enzymes that catalyze the reaction of O-acetylserine with sulfide to yield cysteine, failed to meet our criteria for differential expression. The *so2263–69* genes are immediately downstream of *cysE* and, with the exception of *so2268*, were induced between 2- and 6-fold at one or more time points. In *E. coli*, the B2531–2525 proteins are involved in a sulfur transfer cascade required for the biosynthesis of thiamine, NAD, Fe-S clusters, and thionucleosides (51), and the *SO2263–69* proteins showed 65–92% sequence identity between the respective protein counterparts.

Genes Implicated in Regulating the Cellular Response to Chromate—Chromate stress had a greater impact on the expression of genes linked to transcriptional regulatory functions than those with signal transduction functions (Fig. 2). The 90-min time point yielded the most differential expression for transcriptional regulators with 13 and 17 genes being induced and repressed, respectively. These genes included a number of functionally undefined transcriptional regulators from the MerR, TetR, GntR, MarR, and DeoR families (Supplemental Table S1). Genes encoding signal transduction functions were not largely affected by acute chromate treatment: at any one time point only one to three signal transduction genes were induced, and three or four genes were repressed at a single point during the entire exposure period. Most noteworthy was the up-regulation of gene *so2426*, encoding a DNA-binding response regulator of a two-component signaling system. This gene showed a temporal fold induction profile of 3.7 (5 min), 3.3 (30 min), 3.5 (60 min), and 10.7 (90 min) after challenge with 1 mM chromate (Table III). Interestingly this gene was also markedly induced in response to other heavy metal conditions, such as iron overload (39) and nonradioactive strontium stress (37), and may be involved, at least in part, in the coordinate regulation of the cellular response to heavy metal toxicity.

Chromate-mediated Gene Repression—Next to genes encoding hypothetical proteins, energy metabolism showed the most profound temporal changes in terms of the number of genes down-regulated in response to acute chromate exposure (Fig. 2). Although the total number of induced genes (11–19 genes) remained relatively constant over the time course, the number of repressed genes with functions in energy metabolism changed dramatically with 5, 34, 44, and 67 ORFs showing significant decreases in mRNA abundance at the 5-, 30-, 60-, and 90-min time points, respectively. Many
Table IV

ORF designation	Gene	Gene product function	Mean (K₂CrO₄/control)^a at time t (min)^b
Cellular processes			
so2178	ccpA	Cytochrome c₅₅₁, peroxidase	1.5 2.2 5.0 2.3
so4053		Methyl-accepting chemotaxis protein	1.1 3.4 6.7 4.3
Central intermediary metabolism	speF	Ornithine decarboxylase, inducible	1.3 3.1 11.8 1.3
so0314			
Energy metabolism			
so1962		4-Hydroxyphenylpyruvate dioxygenase	1.1 1.8 1.5 7.2
so3774		Proline dehydrogenase/δ-1-pyrroline-5-carboxylate dehydrogenase, putative	3.1 4.1 2.9 7.5
Anaerobic			
so0101	fdnG	Selenium-containing formate dehydrogenase, nitrate inducible, α subunit	1.1 4.3 8.3 3.5
so0102	fdnH	Formate dehydrogenase, nitrate-inducible, iron-sulfur subunit	1.0 3.6 7.3 4.0
so0103	fdnI	Formate dehydrogenase, nitrate-inducible, cytochrome b₅₅₆ subunit	1.0 3.0 5.4 3.6
so0104	fdnE	FdhE protein	0.9 2.2 5.5 3.0
so0107	fhdD	Formate dehydrogenase accessory protein FdhD	0.8 1.3 6.3 2.9
so0397	fdrC	Fumarate reductase cytochrome b subunit	2.0 3.9 5.1 4.3
so0970	fdrI	Fumarate reductase flavoprotein subunit precursor	0.5 2.5 8.4 2.6
so4513		Formate dehydrogenase, α subunit	1.4 4.1 12.4 4.5
Electron transport			
so0902	nqrA-1	NADH:ubiquinone oxidoreductase, sodium-translocating, α subunit	1.0 2.6 5.0 5.2
so0903	nqrB-1	NADH:ubiquinone oxidoreductase, sodium-translocating, hydrophobic membrane protein NqrB	0.4 4.4 12.8 5.5
so0904	nqrC-1	NADH:ubiquinone oxidoreductase, sodium-translocating, γ subunit	0.5 6.0 7.6 4.1
so1777	mtrA	Decaheme cytochrome c MtrA	1.0 2.7 6.1 3.4
so1778	omcB	Decaheme cytochrome c	1.0 3.3 5.0 3.3
so1779	omcA	Decaheme cytochrome c	1.2 4.2 8.3 5.4
so3920	hydA	Periplasmic iron hydrogenase, large subunit	1.4 3.2 4.6 5.3
so3921	hydB	Periplasmic iron hydrogenase, small subunit	1.6 3.8 5.2 21.3
so4404		Iron-sulfur cluster-binding protein	0.5 2.3 9.0 5.0
Fermentation			
so2136	adhE	Aldehyde-alcohol dehydrogenase	1.3 7.6 9.5 13.7
Hypothetical and conserved hypothetical proteins			
so0108		Conserved hypothetical protein	0.6 1.1 5.8 3.6
so0109		Conserved hypothetical protein	0.7 1.2 5.9 4.5
so0404		Hypothetical protein	0.9 1.6 5.1 2.5
so0470		Hypothetical protein	1.4 3.3 6.2 2.5
so0595		Hypothetical protein	1.8 4.0 5.0 6.3
so0679		Hypothetical protein	0.7 2.3 2.0 7.9
so0941		Hypothetical protein	0.8 4.0 6.6 3.3
so0975		Hypothetical protein	0.8 5.2 9.6 7.3
so1118		Hypothetical protein	1.3 5.6 7.3 1.3
so1119		Hypothetical protein	0.7 2.0 9.0 2.5
so1250		Conserved hypothetical protein	2.9 5.0 4.6 3.6
so1963		Conserved hypothetical protein	1.2 1.4 1.0 5.9
so2407		Conserved hypothetical protein	0.9 5.3 6.5 6.0
so3542		Conserved hypothetical protein	0.9 2.9 5.2 6.0
so4355		Hypothetical protein	1.3 3.0 5.9 3.5
so4593		Hypothetical protein	0.4 2.2 5.4 2.9
Mobile and extrachromosomal element functions			
soa0061		ParA protein, putative	0.8 1.0 9.9 1.4
Protein synthesis			
so0105	selA	L-Seryl-tRNA selenium transferase	1.0 1.6 6.6 3.2
Purines, pyrimidines, nucleosides, and nucleotides	nrdD	Anaerobic ribonucleoside-triphosphate reductase	1.1 2.2 5.8 2.7
so2834			
Regulatory functions			
so0490		Transcriptional regulator	0.7 3.0 5.6 3.4
so1422		Transcriptional regulator, LysR family	1.2 3.1 8.9 2.9

Note: The table represents the selected genes down-regulated at least 5-fold at one or more time points in response to chromate stress.
of these more highly repressed energy metabolism genes had annotated subroles in amino acids and amines (e.g. nqrABC-1), electron transport (e.g. nqrABC-1, mtrA, omcA, omcB, and hydAB), and fermentation (adhE) (Table IV). As shown in Table IV, transcription of genes functioning in cellular processes (e.g. ccpA), central intermediary metabolism (speF), protein synthesis (selA), transcriptional regulation (e.g. so1422, so3297, and so3627), signal transduction (so4155), and transport and binding (e.g. trkH-2 and modAB) was significantly repressed under chromate stress conditions.

Proteome Characterization of the Chromate Stress Response—The transcriptome data were compared with and only one peptide in another, thereby being filtered out. Proteins identified with two peptides in one of the analyses were analyzed in duplicate using 2-D LC-ES-MS/MS with a linear trapping quadrupole mass spectrometer (see "Experimental Procedures" for details). All datasets were searched using SEQUEST (41), filtered and sorted with DTASelect and Contrast (42), and can be accessed directly at compbio.ornl.gov/shewanella_chromium_stress/. The DTASelect files are presented in a viewable html version where every identified spectrum can be viewed by clicking on the spectral number (first column, labeled by filename). The threshold scores used for identification of expressed proteins have been tested rigorously in our laboratory to give a high confidence (see Refs. 43 and 52) and a maximum false-positive rate of 1–2%.

A total of 2,370 of the 4,931 total predicted genes in the S. oneidensis genome were identified with at least two peptides (Table V), representing 48% of the theoretical proteome. Due to the large number of false positives possible at the one-peptide filter level (52), we present a rigorous analysis of the two-peptide dataset only. High stringency filtering was used in this study, giving a maximum false-positive rate of 1–2%. The reproducibility between duplicate protein analyses on the LTQ was as follows: 78.6% (chromate-shocked) and 78.4% (control) for the 45-min poststress time point and 77.7% (chromate-shocked) and 73.5% (control) for the 90-min time point. This level of reproducibility is necessary for semiquantification. Variation is likely due to low abundance proteins identified with two peptides in one of the analyses and only one peptide in another, thereby being filtered out. Although previous studies using 2-D PAGE and LC-MS/MS

Table IV—continued

ORF designation	Gene product function	Mean (K₂CrO₄/control) at time t (min)³⁰
so1911	Unknown function: enzymes of unknown specificity	
soa0060	Oxidoreductase, short chain dehydrogenase/reductase family	
	Acetyltransferase, GNAT family	1.1 4.8 7.1 3.3

* Relative gene expression (-fold repression) is presented as the mean ratio of the fluorescence intensity of K₂CrO₄-exposed cells to control cells. Each gene showed significant differential expression (p < 0.05) at least one time point.

Table V

Condition	No. proteins identified 1 pep	No. proteins identified 2 pep	Av. sequence coverage
	1 pep⁹	2 pep⁹	%
45-min control	2,610	1,911	37.24
45-min shock	2,644	1,959	37.20
90-min control	2,595	1,892	36.38
90-min shock	2,664	1,992	36.45
Total	2,954	2,370	

* Total proteins identified with at least one peptide per protein from duplicate runs.

* Total proteins identified with at least two peptides per protein from duplicate runs.

* Average sequence coverage per protein at the two-peptide level.
have been used for global S. oneidensis proteome studies (39, 53, 54), this study represents, to our knowledge, the largest measurement of the S. oneidensis proteome published to date.

The entire list of identified proteins with total sequence coverage, functional categories, pI, and molecular weight information is given in Supplemental Table S2. No major biases were found between the pI and molecular weights of the predicted proteome from the genome and the observed proteome (Supplemental Table S2). The identified proteins with their peptide count (number of identified peptides), spectral count (number of MS/MS spectra identified per protein), and percent sequence coverage (total percentage of the protein sequence covered by tryptic peptides) for the different growth conditions and individual analyses can be found in Supplemental Table S3.

Proteins identified at the two-peptide level were grouped according to the functional categories assigned by The Institute for Genomic Research annotation (Ref. 44; www.tigr.org, Comprehensive Microbial Resource) (Table VI). Proteins with assigned functions in amino acid biosynthesis, cellular processes, protein fate, protein synthesis, nucleotide metabolism, and transcription were found with greater than 70% identified. More than 90% of the proteins comprising the functional classes of protein synthesis, nucleotide metabolism, and transcription were identified, representing an almost complete characterization of these categories at the proteome level. Proteins generally thought to be of lower abundance, such as those with assigned functions in signal transduction and transcriptional regulation, were identified at levels of 64 and 52%, respectively, of the total number of proteins per category. A total of 624 of the 2,039 predicted hypothetical proteins were identified. Of the 624 proteins in this functional category, 209 were annotated as hypothetical proteins, and 415 were annotated as conserved hypothetical proteins. This represents one of the largest identifications of hypothetical protein expression for a microbial proteome to date.

Comparison of Transcriptome and Proteome Data—Although absolute quantification at the global proteome level was not feasible, semiquantification of differentially expressed proteins between the chromate-treated and control samples could be accomplished by using a combination of percent sequence coverage, number of unique peptides, and spectral count from the mass spectra (39, 43, 55) (see “Experimental Procedures” for details). Other methods for relative quantification, such as ICAT, were considered before the method used here was selected. ICAT labels the cysteine residues of a protein, and in S. oneidensis greater than 50% of the predicted proteome has two or fewer cysteine residues. Moreover almost 20% of the predicted proteome does not contain any cysteine residues. This method would not detect almost 70% of the predicted proteome confidently; thus ICAT was not deemed appropriate for this study.

Comparisons were made between the transcriptome and proteome data to determine the relationship between gene and protein expression. Both up- and down-regulated proteins were measured by comparing the chromate-shocked cell samples to their respective control samples. Using the semiquantitative criteria discussed above, we identified 78 proteins (Supplemental Table S4) as being differentially expressed in response to chromate (Tables VII and VIII and Supplemental Table S4). Supplemental Table S4 divides the proteins identified at 45 min postshock from the proteins identified at 90 min postshock. We propose that reproducibility of at least 70% between replicate analyses at the protein level is necessary for a successful determination of differentially expressed proteins where a protein must be detected in

Table VI

Number	Functional category	Observed proteome	Predicted proteome	Percent identified
1	Amino acid biosynthesis	70	91	76.92
2	Biosynthesis of cofactors, prosthetic groups, and carriers	94	121	76.69
3	Cell envelope	121	180	67.22
4	Cellular processes	188	260	72.31
5	Central intermediary metabolism	28	51	54.90
6	DNA metabolism	97	144	67.36
7	Energy metabolism	199	308	64.61
8	Fatty acid and phospholipid metabolism	48	65	73.85
9	Hypothetical proteins	624	2,039	30.60
10	Mobile and extrachromosomal element functions	34	317	10.73
11	Protein fate	137	185	74.05
12	Protein synthesis	131	141	92.91
13	Purines, pyrimidines, nucleosides, and nucleotides	56	62	90.32
14	Regulatory functions	104	199	52.26
15	Signal transduction	39	61	63.93
16	Transcription	49	54	90.74
17	Transport and binding proteins	148	274	54.01
18	Unknown function	203	379	53.56
Total		2,370	4,931	48.06
proteins were found to be up-regulated with six additional proteins being down-regulated relative to the control sample (Supplemental Table S4). The genes for 23 of these 24 up-regulated proteins showed corresponding induction levels at the 30- and 60-min time points based on microarray hybridizations.

For the 45-min chromate treatment analysis, a total of 24 proteins were found to be up-regulated with six additional proteins being down-regulated relative to the control sample (Supplemental Table S4). The genes for 23 of these 24 up-regulated proteins showed corresponding induction levels at the 30- and 60-min time points based on microarray hybridizations.

TABLE VII
Up-regulated proteins identified in the 90-min chromate-shocked sample

Protein	Transcriptome	Category	Description
SO0343	No changea	7	Aconitate hydratase 1 (acnA)
SO0423	Inducedb	14	Pyruvate dehydrogenase complex repressor (pdhR)
SO0798	Induced	9	Conserved hypothetical protein
SO0934	No change	9	Conserved hypothetical protein
SO1045	No change	9	Hypothetical protein
SO1114c	No change	18	DNA damage-inducible protein P (dinP)
SO1178	No change	17	Magnesium and cobalt efflux protein CorC (corC)
SO1190	Induced	9	Conserved hypothetical protein
SO1482c	Induced	17	TonB-dependent receptor, putative
SO1576	No change	4	Glutathione S-transferase family protein
SO1580c	Induced	17	TonB-dependent heme receptor
SO1755	No change	7	Phosphoglucomutase/phosphomannomutase family protein
SO2290	No change	18	Rhodanese domain protein
SO2426c	Induced	15	DNA-binding response regulator
SO2577	No change	4	Septum site-determining protein MinD (minD)
SO2912c	Induced	5	Formate acetyltransferase (pfkB)
SO2915	Induced	5	Acetate kinase (ackA)
SO3030c	Induced	17	Siderophore biosynthesis protein (alCA)
SO3032c	Induced	17	Siderophore biosynthesis protein, putative
SO3033c	Induced	17	Ferric alcA siderophore receptor
SO3061	Induced	6	DNA topoisomerase III (topB)
SO3407	Induced	9	Conserved hypothetical protein
SO3462c	Induced	6	DNA repair protein RecN (recN)
SO3565c	Induced	5	Azoreductase, putative
SO3566c	Induced	18	Glyoxalase family protein
SO3599	Induced	17	Sulfate ABC transporter, periplasmic protein (cysP)
SO3667c	Induced	9	Conserved hypothetical proteind
SO3669c	Induced	17	Heme transport protein (hugA)
SO3670c	Induced	17	TonB1 protein (tonB1)
SO3671c	Induced	17	TonB system transport protein ExbB1 (exbB1)
SO3673c	Induced	17	Hemin ABC transporter, periplasmic protein (hmuT)
SO3675c	Induced	17	Hemin ABC transporter, ATP-binding protein (hmuv)
SO3723c	Induced	5	Adenylylsulfate kinase (cysC)
SO3726c	Induced	5	Sulfate adenylyltransferase, subunit 1 (cysN)
SO3727c	Induced	5	Sulfate adenylyltransferase, subunit 2 (cysD)
SO3737c	Induced	5	Sulfite reductase (NADPH) hemoprotein (cysI)
SO3738c	Induced	5	Sulfite reductase (NADPH) flavoprotein (cys-J)
SO3907c	No change	9	Conserved hypothetical protein
SO3913c	Induced	9	Conserved hypothetical protein
SO3914c	Induced	17	TonB-dependent receptor, putative
SO4077	Induced	17	TonB-dependent receptor, putative
SO4516	Induced	17	Ferric vibriobactin receptor (viuA)
SO4523	Induced	17	Iron-regulated outer membrane virulence protein (irgA)
SO4543c	Induced	9	Conserved hypothetical protein
SO4562c	Induced	17	Sulfate ABC transporter, periplasmic protein (sbp)
SO4565c	Induced	17	Sulfate ABC transporter, ATP-binding protein (cysA-2)
SO4743	Induced	17	TonB-dependent receptor, putative
SO5042c	No change	9	Hypothetical protein

a No change in expression at the 90-min time point in the microarray analysis. No change defines a gene that was found to not have an induction or repression of expression at any time point on the microarray.
b Induced defines a gene that exhibited at least 2-fold induction at the 90-min time point.
c Proteins also found to be up-regulated in the 45-min chromate exposure samples.
d The functional annotation of SO3667 was revised recently to a heme iron utilization protein, HugZ (45).

both of the replicate analyses to be included as a candidate for semiquantification.

For the 45-min chromate treatment analysis, a total of 24 proteins were found to be up-regulated with six additional proteins being down-regulated relative to the control sample (Supplemental Table S4). The genes for 23 of these 24 up-regulated proteins showed corresponding induction levels at the 30- and 60-min time points based on microarray hybridizations.
S. oneidensis Chromate Stress Response

Protein	Transcriptome	Control 1	Control 2	Treatment 1	Treatment 2	Category	Description
SO398	Repressed a	42.4	18.1	0.0	4.6	7	Fumarate reductase flavoprotein subunit (frdA)
SO400	Repressed	78.8	77.9	55.4	57.2	9	Hypothetical protein
SO548	Repressed	70.0	76.7	47.8	51.1	6	DNA-binding protein, HU family
SO847	Induced	45.9	28.7	0.0	0.0	7	Iron-sulfur cluster-binding protein NapG (napG)
SO848b	Induced c	73.2	52.9	43.8	46.1	7	Periplasmic nitrate reductase (napA)
SO900	Repressed	49.8	37.5	26.5	18.4	7	NADH:ubiquinone oxidoreductase (nqrA-1)
SO970	Repressed	59.9	57.4	34.7	34.9	7	Fumarate reductase flavoprotein subunit precursor
SO1111	Repressed	75.8	70.1	35.7	42.7	17	Bacterioferritin subunit 2 (bfr2)
SO1405	No change d	40.1	31.4	11.1	0.0	18	Transglutaminase family protein
SO1429	No change	42.8	26.8	0.0	0.0	7	Anaerobic dimethyl sulfoxide reductase, A (dmaA-1)
SO1430	No change	31.2	36.2	0.0	0.0	7	Anaerobic dimethyl sulfoxide reductase, B (dmsB-1)
SO1490	Repressed	67.3	70.2	27.2	39.8	7	Alcohol dehydrogenase II (adhB)
SO1518	Repressed	80.4	81.5	48.1	52.4	9	Conserved hypothetical protein
SO1776	Repressed	48.5	41.9	25.7	31.0	3	Outer membrane protein precursor MtrB (mtrB)
SO1777	Repressed	8.7	6.9	0.0	0.0	7	Decaheme cytochrome c MtrA (mtrA)
SO1778	Repressed	43.4	55.1	25.0	25.2	7	Decaheme cytochrome c (omcB)
SO1779	Repressed	51.8	53.5	26.7	29.9	7	Decaheme cytochrome c (omcA)
SO2469	Repressed	22.1	24.7	10.0	12.1	18	Conserved hypothetical protein
SO2490	Repressed	51.8	66.9	33.5	28.9	14	Transcriptional regulator, RpiR family
SO2929b	Repressed	73.8	73.0	36.3	40.0	9	Hypothetical protein
SO3538	Repressed	46.9	34.7	0.0	0.0	14	transcriptional regulator HlyU (hlyU)
SO3565	Repressed	72.0	59.9	36.8	39.6	13	2,3-Cyclic-nucleotide 2-phosphodiesterase (cpdB)
SO3920	Repressed	21.7	27.6	0.0	0.0	7	Periplasmic iron hydrogenase, large subunit (hydA)
SO3967	No change	71.6	56.4	23.0	24.5	17	Molybdenum ABC transporter, periplasmic
SO4513b	No change	44.3	36.2	3.3	3.5	7	Formate dehydrogenase, α subunit
SO4561	No change	37.7	47.4	0.0	0.0	9	Conserved hypothetical protein

a Repressed defines a gene that exhibited at least 2-fold repression at the 90-min time point.
b Reppressed defines a gene that was found to be down-regulated in both the 45- and 90-min chromate exposure experiments.
c Repressed defines a gene that was found to be down-regulated in the 90-min chromate-shocked samples.
d No change defines a gene that was found to not have an induction or repression of expression at any time point on the microarray.

Proteomic analysis of the 90-min chromate treatment sample revealed 48 up-regulated proteins and 26 down-regulated proteins relative to the control sample (Supplemental Table S4 and Tables VII and VIII). After 90 min of chromate exposure, 39 of the 48 proteins up-regulated under Cr(VI) conditions also were induced at the transcript level as identified by microarray analysis. Nine of the up-regulated proteins (AcnA, SO0934, SO1045, CorC, SO1576, SO2290, MinD, SO3907, and SOA0042) revealed no significant change (p < 0.05) in expression at the transcription level, and two of the proteins (AcnA and SO2290) expressed at higher abundance levels under chromate stress conditions did not exhibit a change in their mRNA expression levels at the 90-min time point but did at earlier time points (5, 30, and 60 min). Of the 48 up-regulated proteins, 19 proteins were from the transport and binding category, six proteins were from central intermediary metabolism, and 10 were annotated as hypothetical proteins. All of the transport and binding proteins identified as up-regulated in the 45-min chromate-shocked samples were also identified as up-regulated in the 90-min samples, whereas only four of the six conserved hypothetical proteins showed up-regulation at both postexposure time points. Eighteen of 26 proteins down-regulated 90 min after chro-
Diverse environmental settings. Five major features characterizing the chromate stress response of *S. oneidensis* to chromate shock are due to the stringency of filtering used in the proteome study and inherent measurement differences between microarray versus proteome technology. Supplemental Table S5 demonstrates the correlation of the identified and/or differentially expressed proteins to the top 100 mRNAs induced at each time point. The list is composed of a total of 194 mRNAs, which is a concatenated list representing the top 100 mRNAs at each time point (initial list was 400 genes in total before removal of redundant genes). A total of 67% of the genes in Supplemental Table S5 did not meet the differential criteria at the protein level where 45% were not identified by mass spectrometry and another 22% were not considered differentially expressed. The 67% of down-regulated proteins found not to meet differential expression criteria corresponds to 130 genes of 194, which is comparable in percentage to the total global analysis.

DISCUSSION

A global analysis of the *S. oneidensis* temporal response to a toxic concentration (1 mM) of chromate was performed by integrating whole-genome microarray hybridization and 2-D HPLC-MS/MS techniques. This study provides the first comprehensive molecular description of the response of a dissimilatory metal-reducing bacterium to an acute challenge of toxic chromate, a serious anthropogenic pollutant found in diverse environmental settings. Five major features characterized the molecular dynamics underlying the *S. oneidensis* response to acute chromate stress: 1) the induction of genes/proteins involved in iron transport and sulfur assimilation; 2) co-regulated induction of the gene cluster *so3585*, *so3586*, and *so3587*; 3) up-regulation of DNA repair genes and their encoded protein products; 4) differential expression of a large number of hypothetical genes/proteins; and 5) a dramatic increase in the number of down-regulated energy metabolism genes and proteins over time.

As revealed by transcriptome and proteome analyses, a major feature of the molecular response of *S. oneidensis* MR-1 to acute chromate challenge was the differential regulation of the TonB1-ExbB1-ExbD1 complex, an integral inner membrane system for iron transport, as well as other genes involved in exogenous iron acquisition. Genes that were highly induced based on time series microarray experiments (Table II) and were identified as up-regulated proteins at the 45- and/or 90-min chromate treatment conditions (Table VII) included two putative siderophore biosynthesis proteins (*AlcA* and *SO3032*), a ferric alcaligin siderophore receptor (*SO3033*), HupA heme transport protein (*SO3669*), TonB1 (*SO3670*), a putative TonB-dependent receptor (*SO3914*), a TonB-dependent heme receptor (*SO1580*, *Viua* (*SO4516*), and HmuT (*SO3673*) and HmuV (*SO3675*) of the hemin ABC transporter. Wang and Newton (56) demonstrated that mutants harboring a deletion of the *tonB-trp* region of the *E. coli* chromosome were sensitive to chromic ion (Cr^{3+}) due to defective iron transport systems, and residual iron uptake by these strains was shown to be inhibited by chromic ion. Regulation of iron homeostasis is primarily carried out by the Fur protein (for a review, see Ref. 57). It has been suggested previously that iron uptake regulation may not be the only function of Fur but that it may also serve to sequester iron to prevent the generation of highly reactive hydroxyl radicals via Fenton reactions (58). The putative MR-1 ferritin genes, but not bacterioferritin genes, were induced in response to chromate, and these respective iron storage proteins have been suggested to have roles in short term iron flux and long term iron storage in *E. coli* (59).

In addition to iron transport genes, our global analyses demonstrated that *CysP*, *CysC*, *CysD*, *CysN*, *CysL*, *CysJ*, *Sbp*, and *CysA-2* are up-regulated at both the mRNA and protein levels in response to chromate treatment (Tables III and VII). The enhanced expression of genes encoding proteins involved in sulfate transport and assimilatory sulfate reduction suggests the possibility of chromate-induced sulfur limitation in *S. oneidensis*, perhaps through competitive inhibition of sulfate uptake by chromate, as has been shown previously (26, 30). Partial reduction of Cr(VI) to Cr(V) produces ROS (6, 7, 20), leading to chromate-mediated oxidative stress. Researchers working with a number of different bacteria have observed induction of genes involved in sulfur and iron homeostasis following different oxidative stresses (35, 60–62). A variety of explanations have been proposed including disruption of intracellular redox cycling leading to insufficient sulfite reduction, a reduction in cysteine biosynthesis correlated with cell envelope damage and subsequent leakage of sulfide (63), and increased demand for low molecular weight protective thiol-containing compounds such as glutathione (64). Alternatively induction of genes involved in sulfur metabolism and iron sequestration might represent an adaptive response to sulfur and iron limitation in MR-1 following chromate exposure.

One of the potentially interesting findings to emerge from this integrated global investigation was the co-regulated expression of a cluster of three genes (*so3585*, *so3586*, and *so3587*) at both the mRNA and protein levels. All three genes are transcribed in the same direction on the MR-1 chromo-
some and show a similar transcriptional profile in response to chromate with the peak in up-regulated expression occurring at the 30-min time point (Table II). The proteins encoded by two of these genes (so3585 and so3586) were detected in the chromate-treated samples only (Table VII), suggesting that expression of SO3585 and SO3586 was differentially regulated in response to chromate stress conditions. By contrast, hypothetical protein SO3587 was found in both the control and chromate-shocked samples at the two-peptide level (Supplemental Table S3) even though the gene encoding this protein was shown to be up-regulated over the entire time course in response to chromate stress. In addition, SO3587 was found only in the membrane fractions, and a hydrophobicity plot analysis using the computer program SOSUI (65) identified a putative transmembrane domain (IGIALIFADVSLYLAYFFVGLGV) in SO3587. SO3585 and SO3586 were detected in both the soluble and membrane fractions. Based on their proximity in genome location and co-regulated expression profile within the context of chromate stress, we predict that SO3585, SO3586, and SO3587 function together as a protein complex associated with the cell membrane and play an important role in the response of the cell to chromate toxicity.

* S. oneidensis* SO3585 and SO3586 are annotated as a putative azoreductase and glyoxalase family protein, respectively (44). Glyoxalase systems are known to serve as key detoxification routes for preventing the intracellular accumulation of methylglyoxal, a natural metabolite with toxic electrophilic properties (for a review, see Ref. 66). Azoreductases are responsible for the reductive cleavage of azo dyes, synthetic organic colorants used extensively in the textile, food, and cosmetics industries. Synthetic azo dyes are not readily reduced under aerobic conditions and are considered pollutants. Protein database searches using BLAST Version 2.2.12 (67) with the derived SO3585 primary sequence revealed ~28% sequence identity with *P. putida* ChrR and *E. coli* YieF, two soluble flavoproteins that have been demonstrated to exhibit chromate reductase activity (18, 46, 68). Regions of conservation in the derived amino acid sequence of SO3585 included the characteristic signature, LFVTPEYNYXe{\text{LKNAIDX}}_{2}S (conserved residues in SO3585 are underlined), of the NADH_dh2 family of NAD(P)H oxidoreductases (Ref. 46; results not shown). Recently further investigation demonstrated that the *P. putida* ChrR functions as a quinone reductase and minimizes oxidative stress induced by intracellular H$_{2}$O$_{2}$, which is generated during the course of chromate reduction (69). An MR-1 strain carrying an in-frame deletion mutation in the so3585 locus has been created, and future studies will characterize it to gain insight into the functional role of SO3585 and to assess the importance of azoreductase in the *S. oneidensis* response to chromate.

Another primary feature of the molecular response to chromate was the stimulation of genes whose protein products are involved in DNA repair mechanisms, thus indicating a contribution of genotoxic damage to chromate toxicity in *S. oneidensis*. Genes with functions linked to DNA damage, recombination, and repair (dinP, recX, recA, recN, lexA, and umuD) exhibited similar temporal expression profiles when cells were challenged with 1 mM chromate: the transcript levels for all six genes increased only slightly (1.5–2-fold) early in the treatment followed by induction plateaus of 4–6-fold from the 30-min time point onward (Table III). Only two of these genes (dinP and recN) showed corresponding increases in the abundance levels of their expressed proteins at both the 45- and 90-min time points following chromate treatment (Table VII); RecA and LexA were also identified at the protein level but did not show differential expression. Members of the *E. coli* SOS regulon, which includes genes encoding the DNA damage-inducible (Din) proteins, are controlled by the RecA coprotease activity and LexA repressor and are transcriptionally induced following DNA damage (for a review, see Ref. 49). The induction of homologs for such known SOS-controlled genes as *recA*, *lexA*, *recN*, and *umuD* suggests chromate-induced DNA damage in *S. oneidensis* and subsequent RecA activation and LexA cleavage under the selected conditions. Qiu *et al.* (35) similarly observed induction of the MR-1 SOS response and active detoxification mechanisms following oxidative damage caused by UV radiation. The precise mechanism underlying chromate-induced DNA damage in *S. oneidensis* has not been determined. However, oxidative DNA damage, triggered by Cr(V) complexes reacting with H$_{2}$O$_{2}$ to generate hydroxyl radicals, is considered the basis of chromium genotoxicity (7, 22–24) and likely produces an SOS-like response in MR-1. The study by Qiu *et al.* (35) and this investigation revealed two genes (so4604 and so4605) downstream of the *lexA* gene that were induced following different oxidative stress conditions, and their expression profiles clustered together with *lexA*. However, further studies are required to determine whether these genes are directly involved in the MR-1 SOS response.

In addition to members comprising a potential SOS regulon in *S. oneidensis*, we demonstrated the induction of *topB* (encodes a DNA topoisomerase III) at both the mRNA and protein levels. Topoisomerase III was initially described as exhibiting superhelical DNA relaxing activity (70). A recent study by Nurse *et al.* (71) demonstrated that topoisomerase III can function as the principal cellular decatenase, capable of uncoupling replicating daughter chromosomes *in vivo*. Microarray analysis revealed a temporal expression pattern for *S. oneidensis topB* resembling that of *recA* and other DNA damage-inducible genes (Supplemental Table S1). A chromate-dependent increase in TopB abundance levels was observed only at the 90-min time point (Table VII). Trivalent chromium has been reported to cause DNA damage and inhibit type II topoisomerase-mediated DNA relaxation activity in bacterial cells (72). Although we did not detect chromate reduction during the treatment period (Supplemental Fig. S1), our transcriptome and proteome data suggest that chromate...
has an impact on DNA topology leading to adjustments in the expression levels for cellular topoisomerases. The large portion of genes with unassigned cellular functions among Cr(VI)-induced or Cr(VI)-repressed genes reveals how much of the molecular response of S. oneidensis to chromate toxicity remains to be explored. At each time point after chromate addition, ~39–50% of the total number of induced genes and 31–47% of the total number of repressed genes were functionally classified as hypothetical or conserved hypothetical proteins. Fifty percent of the genes up-regulated at the 90-min interval in response to chromate were functionally unknown, whereas poorly characterized genes constituted 31% of the total number of down-regulated genes at that time point. Nine proteins (SO0798, SO0934, SO1045, SO1190, SO3667, SO3907, SO3913, SO4651, and SOA0042) annotated as hypothetical or conserved hypothetical met our criteria of significance for differential expression and were identified as being up-regulated in response to chromate exposure at the 45- and/or 90-min time points (Table VII). For four of these proteins (SO0934, SO1045, SO3907, and SOA0042), we observed no significant change in expression at the mRNA level, suggesting post-transcriptional regulation of these proteins in response to chromate. Our integrated transcriptome and proteome study implicates these differentially regulated proteins of unknown function in the initial response of MR-1 to toxic chromate, thus revealing gene candidates for future functional analysis.

A recent study by Kolker et al. (45) analyzed expression for a subset of 538 hypothetical proteins that were confidently identified in S. oneidensis MR-1 as a result of large scale microarray and proteomic analyses of cell samples generated under different growth conditions. A total of 788 hypothetical proteins have been identified based on the study by Kolker et al. (45) and the present study: 368 of these functionally undefined proteins were found in both studies, 170 were found only by Kolker et al. (45), and 256 were found only in this study (Supplemental Table S6). The 368 hypothetical proteins identified independently by both studies should be considered as expressed proteins, and their annotations should be changed to unknown or conserved unknown (43). Most of these proteins were found under all growth conditions and identified in most of the replicates. Differences between the datasets revealed by this proteomic study and the one reported by Kolker et al. (45) are likely due to differences in the growth conditions used.

Finally the S. oneidensis response to chromate was distinguished by a time-dependent and dramatic increase in the number of down-regulated genes with functions in energy metabolism (Fig. 2). With the exception of the hypothetical protein category, chromate had the greatest impact on energy metabolism in terms of the number of repressed genes: five (5 min), 34 (30 min), 44 (60 min), and 67 (90 min). Genes with annotated functions in anaerobic energy metabolism and electron transport were particularly affected by chromate treatment with ORFs encoding the formate dehydrogenase subunits (fdnGHI), NADH:ubiquinone oxidoreductase subunits (nqrABC-1), MtrA, OmcA, OmcB, and periplasmic iron hydrogenase subunits (hydAB) showing some of the highest repression -fold values at the 60- or 90-min time point (Table IV). Within this subset of genes, proteins NqrA-1, MtrA, OmcA, OmcB, and HydA were also detected at decreased abundance levels (Table VIII). In addition, MS-based proteomics revealed potential instances of post-transcriptional regulation of gene expression in response to chromate stress. For example, proteome analysis indicated complete repression of the anaerobic dimethyl sulfoxide reductase subunits A (SO1429) and B (SO1430) under chromate treatment conditions, whereas no significant change in expression at the transcript level was observed for dmsA-1 and dmsB-1 (Table VIII).

In summary, we used integrated transcriptome and proteome analyses to reveal a global view of the response of the metal-reducing bacterium S. oneidensis MR-1 to the challenge of acute chromate stress. The molecular response of S. oneidensis to chromate shock elicited a distinctively different transcriptional profile compared with Cr(VI) reduction by MR-1 in a study published recently (73). Approximately 20% of the genes up-regulated during chromate reduction encode putative cytochromes, cytochrome synthesis proteins, or noncytochrome reductases (which were repressed or not differentially expressed in the present study), consistent with cells being potentially limited for iron under Cr(VI)-shocked conditions. The chromate shock response of S. oneidensis requires a combination of different regulatory networks that involve genes with annotated functions in oxidative stress protection, detoxification, protein stress protection, iron and sulfur acquisition, and DNA repair mechanisms.

Acknowledgments.—We thank Liyou Wu, Xueduan Liu, and Tingfen Yan for the construction of whole-genome microarrays for S. oneidensis MR-1 and Xiufeng Wan for hydrophobicity plot analysis.

* This work was supported in part by the United States Department of Energy, Office of Science, Biological and Environmental Research programs, Oak Ridge National Laboratory is managed by University of Tennessee–Battelle LLC for the Department of Energy under Contract DOE-AC05-00OR22725. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

§§ To whom correspondence for mass spectrometry and proteomics should be addressed: Chemical Sciences Division, Oak Ridge National Laboratory, P. O. Box 2008 MS-6131, Oak Ridge, TN 37831-6131. Tel.: 865-574-4968; Fax: 865-576-8559; E-mail: hettichrl@ornl.gov.

*§ To whom correspondence for microarray analysis and Shewanella growth should be addressed: Dept. of Biological Sciences, Molecular & Cellular Proteomics 5.6 1069
Purdue University, 1-118 Lilly Hall of Life Sciences, 915 West State St., West Lafayette, IN 47907-2054. Tel.: 765-496-8301; Fax: 765-494-0876; E-mail: dthomps@purdue.edu.

REFERENCES

1. James, B. R. (1996) The challenge of remediating chromium-contaminated soil. Environ. Sci. Technol. 30, A248–A251
2. Langard, S. (1980) Metals in the Environment, pp. 111–132, Academic Press Inc., New York
3. Riley, S. (1980) Metals in the Environment, pp. 111–132, Academic Press Inc., New York
4. Katz, S. A., and Salem, H. (1993) The toxicology of chromium with respect to its chemical speciation: a review. J. Appl. Toxicol. 13, 217–224
5. Klein, C., Snow, E., and Frenkel, K. (1998) Bacterial reduction of hexavalent chromium in soils. Environ. Microbiol. 3, 139–149
6. Dutta, B. K., Saha, R., and Dasgupta, S. (1999) Chromium reduction by thermophiles from a contaminated soil. Microb. Ecol. 37, 169–176
7. Nyman, J. L., Caccavo, F., Cunningham, A. B., and Gerlach, R. (2002) Changes in bacterial community structure during bioremediation of chromate-contaminated soil. Environ. Sci. Technol. 36, 868–888
8. Wang, Y. T., and Shen, H. (1995) Bacterial reduction of hexavalent chromium. J. Ind. Microbiol. 14, 159–163
9. Dukov, T., and Van Peer, K. (2002) Electrochemical detection of hexavalent chromium reduction by Bacillus cereus and B. subtilis. Environ. Sci. Technol. 36, 868–888
10. Myers, C. R., and Nealson, K. H. (1988) Bacterial manganese reduction and efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. J. Bacteriol. 169, 3853–3860
11. Brown, S. D., Martin, M., Deshpande, S., Seal, S., Huang, K., Alm, E., Yang, Y., Wu, L., Yan, T., Arkin, A., Chourey, K., Zhou, J., and Thompson, D. K. (2006) Global transcriptome analysis of the heat shock response of Shewanella oneidensis MR-1. J. Bacteriol. 188, 1292–1300
12. Gao, H., Wang, Y., Liu, X., Yan, T., Wu, L., Alm, E., Arkin, A., Thompson, D. K., and Zhou, J. (2004) Global transcriptome analysis of the heat shock response of Shewanella oneidensis MR-1. J. Bacteriol. 186, 7796–7803
13. Wang, X.-F., VerBerkmoes, N. C., McCue, L. A., Stanek, D., Connolly, H., Hauser, J. L., Wu, L., Liu, X., Yan, T., Leaphart, A., Hettich, R. L., Zhou, J., and Thompson, D. K. (2004) Transcriptomic and proteomic characterization of the Fur modulator in the metal-reducing bacterium Shewanella oneidensis. J. Bacteriol. 186, 6385–6400
14. Schena, M., Shalon, D., Heller, R., Chai, A., Brown, P. O., and Davis, R. W. (1996) Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc. Natl. Acad. Sci. U.S.A. 93, 10614–10619
15. Eng, J. K., McCormack, A. L., and Yates, J. R., III (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Mass Spectrom. 5, 976–989
16. Tabb, D. L., Hayes-McDonald, W., and Yates, J. R., III (2002) DTASelect and contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome Res. 1, 21–26
17. VerBerkmoes, N. C., Shah, M. B., Lankford, P. K., Pelletier, D. A., Strader, M. B., Tabb, D. L., McDonald, W. H., Barton, J. W., Hurst, G. B., Hauser, L., Davison, B. H., Beatty, J. T., Harwood, C. S., Tabita, F. R., Hettich, R. L., and Larimer, F. W. (2005) Determination and comparison of the baseline proteomes of the versatile microbe Rhodopseudomonas paludis.
tis under its major metabolic states. *J. Proteome Res.* 5, 287–298

44. Heidelberg, J. F., Paulsen, I. T., Nelson, K. E., Gaidos, E. J., Nelson, W. C., Read, T. D., Eisen, J. A., Seshadri, R., Ward, N., Methe, B., Clayton, R. A., Meyer, T., Tsapin, A., Scott, J., Beanen, M., Brinkac, L., Daugherty, S., DeBoy, R. T., Dodson, R. J., Durkin, A. S., Haft, D. H., Koliney, J. F., Madupu, R., Peterson, J. D., Umayam, L. A., White, O., Wolf, A. M., Vamathevan, J., Weidman, J., Imprim, M., Lee, K., Berry, K., Lee, C., Mueller, J., Khouri, H., Gill, J., Utterback, T. R., McDonald, L. A., Feldblyum, T. V., Smith, H. O., Venter, J. C., Nealson, K. H., and Fraser, C. M. (2002) Genome sequence of the dissimilatory metal ion-reducing bacterium *Shewanella oneidensis*. * Nat. Biotechnol.* 20, 1118–1123

45. Kolker, E., Picone, A. F., Galperin, M. Y., Romine, M. F., Higdon, R., Makarova, K. S., Kolker, N., Anderson, G. A., Gliu, X., Auberry, K. J., Babnigg, G., Beliaev, A. S., Edlefsen, P., Elias, D. A., Gorby, Y. A., Holzman, T., Klappenbach, J. A., Konstantinidis, K. T., Land, M. L., Lipton, M. S., McCue, L.-A., Monroe, M., Pasa-Tolic, L., Pinchuk, G., Purvine, S., Serres, M. H., Tsapin, S., Zakrajsek, B. A., Zhu, W., Zhou, J., Larimer, F. W., Lawrence, C. E., Riley, M., Collart, F. R., Yates, J. R., Ill, Smith, R. D., Giometti, C. S., Nealson, K. H., Fredrickson, J. K., and Tiedje, J. M. (2005) Global profiling of *Shewanella oneidensis* MR-1: expression of hypothetical genes and improved functional annotations. *Proc. Natl. Acad. Sci. U. S. A.* 102, 2099–2104

46. Ackerley, D. F., Gonzalez, C. F., Park, C. H., Blake, R. C., II, Keyhan, M., and Matin, A. (2004) Chromate-reducing properties of soluble flavoproteins from *Pseudomonas putida* and *Escherichia coli*. *Appl. Environ. Microbiol.* 70, 873–882

47. Shi, X. L., and Dalai, N. S. (1990) NADPH-dependent flavoenzymes catalyze electron reduction of metal ions and molecular oxygen and generate hydroxyl radicals. *FEBS Lett.* 276, 189–191

48. Sumner, E. R., Shanmuganathan, A., Sideri, T. C., Willetts, S. A., Houghton, J. E., and Avery, S. V. (2005) Oxidative protein damage causes chromium toxicity in yeast. *Microbiology* 151, 1939–1948

49. Little, J. W. (1996) Regulation of Gene Expression in *Escherichia coli*, pp. 453–479, R. G. Landes Co., Georgetown, TX

50. Kredich, N. M. (1996) *Escherichia coli salmonellainium thymophilum: Cellular and Molecular Biology*, 2nd Ed., pp. 514–527, American Society for Microbiology, Washington, D. C.

51. Miura, H., and Esaki, N. (2002) Bacterial cytochrome desulfurases: their function and mechanisms. *Appl. Microbiol. Biotechnol.* 60, 12–23

52. Ram, R. J., VerBerkmoes, N. C., Thelen, M. P., Tyson, G. W., Baker, B. J., Blake, R. C., II, Shah, M., Hettich, R. L., and Banfield, J. F. (2005) Community proteomics of a normal microbial biofilm. *Science* 308, 1915–1920

53. Giometti, C. S., Khare, T., Takkalsen, S. L., Tsapin, A., Zhu, W., Yates, J. R., Ill, and Nealson, K. H. (2003) Analysis of the *Shewanella oneidensis* proteome by two-dimensional gel electrophoresis under nondenaturing conditions. *Proteomics* 3, 777–785

54. VerBerkmoes, N. C., Bundy, J. L., Hauser, L., Asano, K. G., Razumovskaya, J., Larimer, F., Hettich, R. L., and Stephenson, J. L. (2002) Integrating “top-down” and “bottom-up” mass spectrometric approaches for proteomic analysis of *Shewanella oneidensis*. *J. Proteome Res.* 1, 239–252

55. Liu, H., Sadygov, R. G., and Yates, J. R., III (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. *Anal. Chem.* 76, 4193–4201

56. Wang, C. C., and Newton, A. (1969) Iron transport in *Escherichia coli*: relationship between chromium sensitivity and high iron requirement in mutants of *Escherichia coli*. *J. Bacteriol.* 98, 1135–1141

57. Andrews, S. C., Robinson, A. K., and Rodriguez-Quiñones, F. (2003) Bacterial iron homeostasis. *FEMS Microbiol. Rev.* 27, 215–237

58. de Lorenzo, V., Perez-Martín, J., Escolar, L., Pesole, G., and Bertoni, G. (2004) *Iron Transport in Bacteria*, pp. 185–196, American Society for Microbiology, Washington, D. C.

59. Andrews, S. C., Smith, J. M. A., Hawkins, C., Williams, J. M., Harrison, P. M., and Guest, J. R. (1993) Overproduction, purification and characterization of the bacteriophage of *Escherichia coli* and a C-terminally extended variant. *Eur. J. Biochem.* 213, 329–338

60. Palma, M., DeLuca, D., Worgall, S., and Quadri, L. E. N. (2004) Transcriptome analysis of the response of *Pseudomonas aeruginosa* to hydrogen peroxide. *J. Bacteriol.* 186, 248–252

61. Salunkhe, P., Topfer, T., Buer, J., and Tummiler, B. (2005) Genome-wide transcriptional profiling of the steady-state response of *Pseudomonas aeruginosa* to hydrogen peroxide. *J. Bacteriol.* 187, 2565–2572

62. Zheng, M., Doan, B., Schneider, T. D., and Storz, G. (1999) OxyR and SoxRS regulation of fur. *J. Bacteriol.* 181, 4639–4643

63. Benov, L., Kredich, N. M., and Fridovich, I. (1996) The mechanism of the auxotrophy for sulfur-containing amino acids imposed upon *Escherichia coli* by superoxide. *J. Bacteriol.* 21037–21040

64. Newton, G. L., Arnold, K., Price, M. S., Sherrill, C., Delcardayre, S. B., Aharonowitz, Y., Cohen, G., Davies, J., Fahey, R. C., and Davis, C. (1996) Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. *J. Bacteriol.* 178, 1990–1995

65. Mitaku, S., Hirokawa, T., and Tsuchi, T. (2002) Amphiphilicity index of polar amino acids as an aid in the characterization of amino acid preference at membrane-water interfaces. *Bioinformatics* 18, 608–616

66. Ferguson, G. P., Tödtemeyer, S., MacLean, M. J., and Booth, I. R. (1998) Methylyglyoxal production in bacteria: suicide or survival? *Arch. Microbiol.* 170, 209–219

67. McClennan, S., and Madden, T. L. (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. *Nucleic Acids Res.* 32, W20–W25

68. Park, C. H., Gonzalez, C. F., Ackerley, D. F., Keyhan, M., and Matin, A. (2002) Remediation and Beneficial Reuse of Contaminated Sediments, pp. 103–111, Batelle Press, Columbus, OH

69. Gonzalez, C. F., Ackerley, D. F., Lynch, S. V., and Matin, A. (2005) ChrR: a soluble quinone reductase of *Pseudomonas putida* that defends against *H₂O₂*. *J. Biol. Chem.* 280, 22590–22595

70. Dean, F., Krasnow, M. A., Otter, R., Matzuk, M. M., Spengler, S. J., and Cozzarelli, N. R. (1983) *Escherichia coli* type-1 topoisomerases: identification, mechanism, and role in recombination. *Cold Spring Harb. Symp. Quant. Biol.* 2, 769–777

71. Nurse, P., Levine, C., Hassing, H., and Marians, K. J. (2003) Topoisomerase III can serve as the cellular decatenase in *Escherichia coli*. *J. Biol. Chem.* 278, 8653–8660

72. Plaper, A., Jenko-Brinovec, S., Premzl, A., Kos, J., and Raspor, P. (2002) Genotoxicity of trivalent chromium in bacterial cells. Possible effects on DNA topology. *Chem. Res. Toxicol.* 15, 943–949

73. Bencheikh-Latmani, R., Middleton Williams, S., Haucke, L., Cridle, C. S., Wu, L., Zhou, J., and Tebo, B. M. (2005) Global transcriptional profiling of *Shewanella oneidensis* MR-1 during Cr(VI) and U(VI) reduction. *Appl. Environ. Microbiol.* 71, 7453–7460