Calcium Mediated Cold Acclimation in Plants: Underlying Signaling and Molecular Mechanisms

Zahra Iqbal¹, Anjuman Gul Memon², Ausaf Ahmad³ and Mohammed Shariq Iqbal³*

¹ Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand, ² Department of Biochemistry, College of Medicine, Qassim University, Buraydah, Saudi Arabia, ³ Amity Institute of Biotechnology, Amity University Lucknow, Lucknow, India

Exposure of plants to low temperatures adversely affects plant growth, development, and productivity. Plant response to cold stress is an intricate process that involves the orchestration of various physiological, signaling, biochemical, and molecular pathways. Calcium (Ca²⁺) signaling plays a crucial role in the acquisition of several stress responses, including cold. Upon perception of cold stress, Ca²⁺ channels and/or Ca²⁺ pumps are activated, which induces the Ca²⁺ signatures in plant cells. The Ca²⁺ signatures spatially and temporally act inside a plant cell and are eventually decoded by specific Ca²⁺ sensors. This series of events results in the molecular regulation of several transcription factors (TFs), leading to downstream gene expression and withdrawal of an appropriate response by the plant. In this context, calmodulin binding transcription activators (CAMTAs) constitute a group of TFs that regulate plant cold stress responses in a Ca²⁺ dependent manner. The present review provides a catalog of the recent progress made in comprehending the Ca²⁺ mediated cold acclimation in plants.

Keywords: calcium, calmodulin, CAMTA, cold stress, transcription factor

INTRODUCTION

Plants sense and respond to distinct environmental and developmental cues via intricate signal transduction pathways. The signal transduction pathways comprise various protein and non-protein elements. The protein elements encompass various enzymes, receptors, and TFs, while the non-protein elements include second messengers such as Ca²⁺, cyclic AMP, cyclic GMP, inositol triphosphate, diacylglycerol, lipids, and hydrogen ions. Amongst all the reported second messenger molecules, Ca²⁺ is considered central to several signal transduction pathways (Stael et al., 2012; Sarwat et al., 2013; Kudla et al., 2018). Ca²⁺ is an essential plant macro-nutrient that is pivotal for maintaining the structural integrity of cell walls, regulating stomatal guard cells movement, growth of pollen tubes, and elongation of root hairs (Sanders et al., 2002; White and Broadley, 2003; Dodd et al., 2010). Ca²⁺ signals are elicited when a plant experiences any environmental and developmental stimuli, leading to spatial and temporal changes in Ca²⁺ ion concentration in cells. Several reviews have extensively covered different aspects of plant Ca²⁺ signaling (Costa et al., 2018; Kudla et al., 2018; Thor, 2019; Tian et al., 2020; Iqbal et al., 2021a; Pirayesh et al., 2021). Briefly, under control conditions, the levels of Ca²⁺ ions in the cell are usually low (ranging from 100 to 200 nm), but upon receiving signals to respond, the Ca²⁺ channels are transiently opened, resulting in the rapid influx of Ca²⁺ ions inside the cell. This eventually leads to an increase in cytosolic...
Ca\(^{2+}\) ([Ca\(^{2+}\)]\(_{cyt}\)) levels. The levels of Ca\(^{2+}\) ion inside the cell fluctuates either due to Ca\(^{2+}\) influx via dedicated channels or Ca\(^{2+}\) efflux via specific pumps (Xiong et al., 2006; Tuteja and Mahajan, 2007). In Arabidopsis thaliana, plasma membrane-bound Ca\(^{2+}\)-permeable channels are categorized into four main families, namely, cyclic nucleotide-gated channels (CNGCs), glutamate receptor-like channels (GLRs), stretch-activated Ca\(^{2+}\) channels (OSCs), and the MID1-complementing activity (MCA) (Romola, 2002; Kursu et al., 2013; Jha et al., 2016; Liu X. et al., 2018). Several other Ca\(^{2+}\) channels are localized in organelles, such as endoplasmic reticulum, mitochondria, golgi body, and plant vacuole (Costa et al., 2018; Thor, 2019; He et al., 2021; Pandey and Sanyal, 2021). These include autoinhibited Ca\(^{2+}\)-ATPases (ACAs), ER-type Ca\(^{2+}\)-ATPases (ECAs), mitochondrial Ca\(^{2+}\) uniporter (MCU), P1-ATPases (e.g., HMA1), Ca\(^{2+}\) exchangers (CAX), two-pore channel (TPC), 1,4,5-trisphosphate receptor-like channel (InsP\(_3\)R), 1,4,5-trisphosphate (IP\(_3\)), cyclic ADP-ribose (cADPR)-activator ryanodine receptor-like channel (RyR), slow-activating vacuolar channel (SV), and sodium–calcium exchanger (NCX).

The stimuli triggered by environmental or developmental signals generates discrete Ca\(^{2+}\) signatures that are sensed and recognized by specific Ca\(^{2+}\) sensors. This cascade of events eventually results in transcriptional and metabolic responses (Perochon et al., 2011). Ca\(^{2+}\) signals are recognized by most of the Ca\(^{2+}\) sensors via the elongation factor hand (EF-hand) motif. Multiple EF-hand containing proteins are present in plants, and Ca\(^{2+}\) sensors present just one of the many that translate chemical signals into an appropriate biochemical response. The EF-hand motif is represented by a conserved helix–loop–helix structure that binds to one Ca\(^{2+}\) ion. They occur in pairs as distinct domain, hence, the majority of Ca\(^{2+}\) sensors harbor two, four, or six EF-hands (Gifford et al., 2007; Perochon et al., 2011). The pairing in certain cases is generally co-operative, consequently minimizing the required Ca\(^{2+}\) signal for protein saturation. Conformational changes occur upon binding of Ca\(^{2+}\) ion to appropriate Ca\(^{2+}\) sensor. These structural changes prompt the interaction between the sensor and its target protein (TP). Three major classes of Ca\(^{2+}\) sensor families have been recognized in plants, namely, (i) Calmodulins (CaMs) and calmodulin-like proteins (CMLs), (ii) calcineurin B-like proteins (CBLs), and (iii) Ca\(^{2+}\)-dependent protein kinases (CDPKs) (Hrabak et al., 2003; Batistiˇc and Kudla, 2012). CaMs are highly conserved in eukaryotes, while CMLs, CBLs, and CDPKs have only been reported in plants and protists (Day et al., 2002; Reddy and Reddy, 2004). CaMs, CMLs, and CBLs are small protein molecules possessing a Ca\(^{2+}\) sensing domain, thereby, acting as sensor relays. They tend to bind to the downstream effector molecules in a Ca\(^{2+}\) concentration-dependent manner (Luan et al., 2002). Different from the aforementioned Ca\(^{2+}\) sensors, CDPKs possess an effector domain (serine/threonine protein kinase catalytic domain) along with the Ca\(^{2+}\) sensing domain. Accordingly, CDPKs act as sensor responders to directly activate and regulate their TPs upon sensing Ca\(^{2+}\) signals (Hashimoto and Kudla, 2011). Thus, the series of events: perception of stress, the opening of Ca\(^{2+}\) channels, transient changes in Ca\(^{2+}\) levels, sensing of Ca\(^{2+}\) signals by appropriate Ca\(^{2+}\) sensor, and subsequent activation of TPs for downstream molecular and biochemical outputs generates specific responses by the plant to combat the cold stress condition. One such TF is CAMTA that regulates plant responses toward cold stress in a Ca\(^{2+}\) dependent manner (Iqbal et al., 2020b). The CAMTA protein is characterized by the presence of five functional domains: CG- DNA binding motif, TAD- transcriptional activation domain, TIG- for non-specific DNA interaction, Ankyrin repeats- protein–protein interaction, CAMBD- for CaM binding. Concisely, when a plant is exposed to cold stress, the Ca\(^{2+}\) channels are opened leading to a rapid and transient influx of Ca\(^{2+}\) inside the cell. This results in an increase in ([Ca\(^{2+}\)]\(_{cyt}\)), which is sensed by Ca\(^{2+}\) sensor—CaM. Eventually, CaM in a Ca\(^{2+}\) dependent manner regulates the transcriptional activity of the CAMTA gene, withdrawing an appropriate response by the plant against cold stress. The present review summarizes the progress made in the recent years to comprehend the involvement of Ca\(^{2+}\) signaling in cold stress tolerance (Figure 1).

CALCITUM SENSING NETWORK UNDER COLD STRESS

Low temperatures lead to intricate cellular and molecular mechanisms inside plant cells via key components of Ca\(^{2+}\) signaling (Yuan et al., 2018b). Ca\(^{2+}\) channels play critical roles in low-temperature acclimatization of chilling-tolerant A. thaliana and root hair development (Hong-Bo et al., 2008). It has been proposed that Ca\(^{2+}\)-permeable mechanosensitive channels MCA1 and MCA2 regulate cold-induced [Ca\(^{2+}\)]\(_{cyt}\) increase, cold tolerance, and CBF/DREB1-independent cold signaling. The cold-induced [Ca\(^{2+}\)]\(_{cyt}\) was lower in mca1 and mca2 mutants than control plants. The mca1 mca2 double mutant compared to control were more sensitive to chilling and freezing stress (Mori et al., 2018). Additionally, vesicle membrane Ca\(^{2+}/\)H\(^{+}\) antiporter, A. thaliana calcium exchanger 1 (AtCAX1) is implicated in an accurate development of the cold-acclimation response by regulating the induction of CBF/DREB1 and downstream genes (Catalá et al., 2003). Recently, Ca\(^{2+}\)/cation antiporter (CaCA) superfamily proteins have been identified in Saccharum to play pivotal roles in environmental stresses, including cold (Su et al., 2021). Likewise, CNGC is a family of non-selective cation-conducting channels primarily localized to the plasma membrane (Zelman et al., 2012). They are implicated in thermal sensing and thermotolerance in Arabidopsis thaliana and mosses (Finka et al., 2012). CNGCs have been reported to play crucial roles in regulating cold tolerance in plants. Oryza sativa OsCNGC9 transcriptional activation and phosphorylation confers enhanced chilling tolerance in rice (Wang et al., 2021). OsCNGC9 overexpression provides increased cold tolerance, while its mutation leads to defects in cold-induced Ca\(^{2+}\) influx. Rice OsDREB1A TF is responsible for the activation of OsCNGC9 transcription. In crux, OsCNGC9 increases chilling tolerance by regulating cold-induced Ca\(^{2+}\) influx and [Ca\(^{2+}\)]\(_{cyt}\) elevation (Wang et al., 2021). Additionally, CNGC family has been characterized in Chinese jujube (Ziziphus jujuba Mill.),
FIGURE 1 | Cold stress signaling in a plant cell. The plasma membrane is considered as one of the primary target for cold sensing and eventual transmission of Ca^{2+} signals into the plant cell nuclei. Cyclic nucleotide-gated channels (CNGCs), glutamate receptor-like channels (GLRs), and the MID1-complementing activity (MCA) channels are the main plasma membrane Ca^{2+} channels that allow the entry of Ca^{2+} ions into the cytoplasm. Once the Ca^{2+} ion enters the plant cell, they are sensed by Calmodulins (CaMs) and Calmodulin-like proteins (CMLs), Calcineurin B-like proteins (CBLs), and Ca^{2+}-dependent protein kinases (CDPKs). Upon cold exposure, plasma membrane associated cold sensor chilling-tolerance divergence 1 (COLD1) interacts with G protein α subunit (RGA). Ca^{2+}/CaM regulated receptor-like kinase (CRLK) positively regulate cold triggered gene expression by inducing the MEKK1–MKK2–MPK4 pathway. CRLK suppress cold-induced activation of MPK3/6 and is necessary for inducer of CBF expression (ICE) accumulation. ICE proteins are stabilized by either phosphorylation (P) or sumoylation (S). Calmodulin binding transcription activators (CAMTAs) activate C-repeat binding factor (CBF) expression through the CM2 (CCGCGT) promoter motif. CBF proteins eventually activate the expression of various cold-responsive (COR) genes which confers cold tolerance in plants.

and ZjCNGC2 was reported to regulate signaling cascades in response to cold stress (Wang et al., 2020b). Further, it was shown that rice CNGC14 and CNGC16 are involved in promoting tolerance toward heat and chilling stresses, and are regulators of Ca^{2+} signals in response to temperature stress (Cui et al., 2020). Their homologs in A. thaliana (AtCNGC2 and AtCNGC4) are also implicated in tolerance toward low temperature (Cui et al., 2020). CNGCs had also been implicated in modulating cold stress responses along with other biological stresses via Ca^{2+} signals in Brassica oleracea (Kakar et al., 2017), O. sativa (Nawaz et al., 2014), and Nicotiana tabacum (Nawaz et al., 2019).

The endoplasmic reticulum and plasma-membrane localized G-protein regulator CHILLING TOLERANCE DIVERGENCE1 (COLD1) coupled with RICE G-PROTEIN α SUBUNIT1 (RGA1) was reported in cold stress signaling via Ca^{2+} signals and electrophysiological responses in O. sativa (Ma Y. et al., 2015). The COLD1-RGA1 complex regulates the cold stress-driven influx of intracellular Ca^{2+}, eventually resulting in the activation of COR (cold regulated) genes. It remains a subject of further evaluation whether COLD1 plays a role as a Ca^{2+}-permeable channel or as a mediator promoting Ca^{2+}-permeable channel activity. Taking into account another plasma membrane-bound Ca^{2+} channel—GLR—mediate Ca^{2+} fluxes across membranes.
and is responsive to an array of exogenous and endogenous signals in plants. AtGLR3.4 localizes to the plasma membrane and is stimulated by cold stress in a Ca\(^{2+}\)-dependent manner (Meyerhoff et al., 2005; Weiland et al., 2015). AtGLR1.2 and AtGLR1.3 were reported to positively regulate cold tolerance by modulating jasmonate signaling in *A. thaliana* (Zheng et al., 2018). The cold sensitivity of *glr1.2* and *glr1.3* mutants was attenuated by exogenous jasmonate treatment, while the overexpression of *GLR1.2* or *GLR1.3* led to elevated cold tolerance by enhancing endogenous jasmonate levels. Additionally, under cold stress, the expression of genes in the CBF/DREB1 signaling pathway were lowered in *glr1.2* and *glr1.3* mutants, whereas higher in *GLR1.2* and *GLR1.3* over-expression lines (Zheng et al., 2018). Similar to the above finding, tomato *GLR3.3* and *GLR3.5* were reported to regulate cold acclimation-induced chilling tolerance by modulating apoplastic H\(_2\)O\(_2\) production and redox homeostasis (Li H. et al., 2019). Next, annexins are Ca\(^{2+}\) permeable transporters that mediate the accumulation of [Ca\(^{2+}\)]\(_{cyt}\) in responses to abiotic stresses (Lee et al., 2004; Laohavisit et al., 2012; Richards et al., 2014). Recently, ANNEXIN1 was reported to regulate cold-induced Ca\(^{2+}\) influx and freezing tolerance in *A. thaliana* (Liu et al., 2021). The mutation of *AtANN1* decreased freezing tolerance, impaired cold triggered [Ca\(^{2+}\)]\(_{cyt}\) increase, and upregulated cold-responsive CBF and COR genes. The study revealed that *AtANN1* acts downstream of *OST1* in responses to cold stress (Liu et al., 2021). Furthermore, the organellar Ca\(^{2+}\) channel, *GhCAX3* gene from *Gossypium hirsutum* was characterized under various abiotic stresses, including cold. Transgenics compared to control plants were more sensitive to cold stress during seed germination. Overexpression of *GhCAX3* led to the transcript enrichment of some of the abscisic acid (ABA)-and cold-responsive genes. The study concluded that *GhCAX3* plays an imperative part in the cross-talk of cold and ABA signal transduction (Xu et al., 2013). Likewise, IP3 was reported to mediate nitric oxide (NO) triggered chilling tolerance in postharvest peach fruit (Jiao et al., 2019).

ROLE OF CALCIUM SENSORS IN COLD STRESS

Calmodulin and Calmodulin-Like Protein Mediated Responses Toward Cold Stress

Calmodulins and calmodulin-like protein are widely studied Ca\(^{2+}\) sensors that sense and decode rapid and transient fluctuations in the intracellular Ca\(^{2+}\) levels in response to environmental cues. In plants, CaMs and CMLs have been reported to play pivotal roles in developmental and stress biology (Zeng et al., 2015; Ranty et al., 2016; Aldon et al., 2018; Gao et al., 2019). CaMs and CMLs transcripts are induced or suppressed in response to a variety of abiotic stresses (Zeng et al., 2017; Li C. et al., 2019). Initial studies revealed that *CaM3* overexpressing lines had reduced levels of COR transcripts, suggestive of the fact that CaM might act as a negative regulator of cold stress (Townley and Knight, 2002). In a similar vein, *AtCaM4* had been reported to negatively regulate freezing tolerance in *A. thaliana*. The *cam4* mutants exhibited increased tolerance to freezing stress. *AtCaM4* might regulate freezing tolerance in a CBF-independent manner (Chu et al., 2018). In an interesting study, the germination of developing immature *cml39* seeds in comparison to control seeds was not sensitive to cold-stratification. Hence, it was reported that *CML39* has a role in stratification-dependant seed dormancy (Midhat et al., 2018). Lately, the effect of cold stress along with other abiotic stresses was assessed for the expression of CaMs and CMLs in wild-growing grapevine *Vitis amurensis*. *VaCaM8* and *VaCaM10* showed significant differential expression under cold stress (4°C). Incubation at 4°C or 10°C induced the expression of six CML genes (*VaCML21*, *VaCML44*, *VaCML61*, *VaCML78*, *VaCML86*, and *VaCML89*); while reduced the expression of eight CML genes (*VaCML9a*, *VaCML48*, *VaCML57*, *VaCML75*, *VaCML82*, *VaCML85*, *VaCML92*, and *VaCML107*) (Dubrovin et al., 2019). The same group reported four alternatively spliced mRNA forms of the grapevine *CML21* gene (*CML21v1*, *CML21v2*, *CML21v3*, and *CML21v4*). All the four splice variants were highly induced under cold stress. Heterologous expression of *CML21v2* and *VaCML21v4* in *A. thaliana* increased the survival percentage of the transgenics upon freezing. Cold-stress-responsive marker genes: dehydration-responsive element-binding, AtDREB1A and AtDREB2A were induced in *VaCML21v2* overexpression lines, while *AtCOR47*, *AtRD29A*, *AtRD29B*, and *AtKIN1* genes were induced in *VaCML21v4* overexpression lines after freezing stress in the transgenic *Arabidopsis* plants. Thus, it was established that *CML21* acts as a positive regulator of cold stress (Aleyanova et al., 2020). Likewise, *Medicago sativa*, *MsCML46* gene encoding calmodulin-like protein confers tolerance to cold and other abiotic stress in tobacco. The *MsCML46* was upregulated in the leaves and roots after exposure to cold stress. The expression peaked after 1 h in leaves, while in roots, the expression peaked at 3 h (Du et al., 2021). In a similar vein, five *Camellia sinensis* CsCML genes (*CsCML16*, *CsCML18-1*, *CsCML18-2*, *CsCML38*, and *CsCML42*) were functionally characterized under various environmental stresses. The transcript levels of *CsCML16*, *CsCML18-2*, and *CsCML42* were significantly induced by low temperature and salt stress (Ma Q. et al., 2019). Previously, *Solanum habrochaites* (cold-tolerant wild tomato) *ShCML44* gene was functionally characterized under a variety of environmental stresses, including cold stress. The *ShCML44* overexpressed plants had higher antioxidant enzymes activity, better gas exchange and water retention capacity, lower malondialdehyde (MDA) accumulation and membrane damage, reduced reactive oxygen species (ROS), and higher relative water contents (Munir et al., 2016). Very recently, *Solanum lycopersicum* *SICML37* has been shown to interact with proteasome maturation factor SIUMP1 and has been reported in tomato fruit chilling stress tolerance (Tang et al., 2021). Additionally, *Medicago truncatula* MtCML42 has been reported to regulate cold tolerance and flowering time (Sun et al., 2021). Further, in rice, six new putative interacting partners of OsCML16 were identified (OsLRK5a, OsDCNL2, OsWD40-139, OsGDH1, OsCIP, and OsERD2). The *in vitro* peptide-binding assays suggested that OsERD2 could bind both OsCaM1 and OsCML16, while the other five TPs specifically bound
Calcineurin B-Like Proteins Mediated Responses Toward Cold Stress

Calcineurin B-like proteins represent a major class of Ca$^{2+}$-binding proteins and are considered imperative relays in plant Ca$^{2+}$ signaling pathways. CBL and CBL-interacting protein kinase (CIPK) complex are central to Ca$^{2+}$ signaling. This complex had been reported to be implicated in a plethora of external stress signals (Kolukisaoglu et al., 2004; Yu et al., 2014; Mohanta et al., 2015). In this context, CBL9 had been shown to negatively regulate cold tolerance via Ca$^{2+}$ signaling in A. thaliana (Gao and Zhang, 2019). cb9 mutants showed enhanced freezing tolerance under cold-acclimating and non-acclimating conditions. Exposure to cold stress increased [Ca$^{2+}$]cyt in cb9 mutants compared to wild type. Contrarily, ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA)—Ca$^{2+}$ chelator and lanthanum chloride—Ca$^{2+}$ channel blocker significantly altered [Ca$^{2+}$]cyt in cb9 mutants (Gao and Zhang, 2019). Lately, in Camellia sinensis (tea plant), it was shown that CsCBL9 and CsCIPK4/6a/6b/7/11/14b/19/20 were upregulated in both mature leaves and young shoots upon cold stress. Results of two hybrid-assay demonstrated that CsCBL1 potentially interacted with CsCIPK1/10b/12 but not with CsCIPK6a/7/11/14b. Similarly, CsCBL9 interacted with CsCIPK1/10b/12/14b but not with CsCIPK6a/7/11/20. Thus, the study proposed distinct responses to cold stress mediated by CBL–CIPK complexes (Wang et al., 2020a). In addition, CIPKs had also been functionally characterized in Triticum aestivum (Deng et al., 2013), Capsicum annuum (Ma X. et al., 2019), Manihot esculenta (Mo et al., 2018), Malus domestica (Wang et al., 2012; Niu et al., 2018), and Brachypodium distachyon (Luo et al., 2018) under different environmental cues, including cold stress. TaCIPK29 transcript increased after cold treatment (Deng et al., 2013), while CaCIPK1 expression changed in response to cold stress (Ma X. et al., 2019). The expression of MeCIPK7 significantly increased in roots upon cold treatment. The transcript levels of MeCIPK10 and 13 in roots, whereas transcript levels MeCIPK12 and 16 in leaves were also altered upon cold treatment (Mo et al., 2018). This study by Mo et al. (2018) suggested that cassava (Manihot esculenta) CBL–CIPK signal networks function in responses to abiotic stresses. MdCIPK6L ectopic expression significantly enhanced chilling tolerance in transgenic tomatoes (Wang et al., 2012), whereas the ectopic expression of BdCIPK31 renders increased low-temperature tolerance in transgenic tobacco (Luo et al., 2018). Likewise, CBLs had been molecularly characterized under a variety of environmental stresses, including cold in Brassica napus (Zhang H. et al., 2014), Brassica rapa (Jung et al., 2017), Stipa purpurea (Zhou et al., 2016), and Pyrus betulifolia Bunge (Xu Y. et al., 2015). For Brassica napus, BnaCBL1 transcripts significantly increased at 6 h of cold treatment; however, it was downregulated at 24 h. At 24 h of cold treatment, only BnaCBL10 was slightly upregulated, and transcripts of BnaCBL2, -3, -4 were downregulated (Zhang H. et al., 2014). For Brassica rapa, BrCBL1-I transcript levels were highly elevated (30-fold upregulation) after 4 h of cold treatment in one of the in-bred lines of Brassica rapa (Chifu) (Jung et al., 2017). Further, overexpression of SpCBL6 from Stipa purpurea increased cold tolerance and decreased drought tolerance in transgenic A. thaliana (Zhou et al., 2016). On similar grounds, PbCBL1 responded to alterations in the intracellular Ca$^{2+}$ concentrations and was induced by cold stress (Xu Y. et al., 2015).
monocot plant—banana, MaCDPK7 was shown to regulate the fruit ripening process and chilling resistance induced by heat treatment (Wang et al., 2017). Later, the CDPK gene family was characterized in banana for their involvement in the development, fruit ripening, and abiotic stress responses, including cold (Li et al., 2020). Genome-wide identification of the CDPK gene family in Medicago truncatula also revealed that MtCDPK4, 8, 15, 16, and 22 transcripts were quickly elevated after 2 h of cold treatment (Zhao et al., 2021). Previously, the CDPK gene family had been identified and assessed for its involvement under abiotic stress conditions, including cold in Solanum lycopersicum (tomato; Hu et al., 2016), Cucumis melo (melon; Zhang et al., 2017), Cucumis sativus (cucumber; Xu X. et al., 2015), Zea mays (maize; Kong et al., 2013). Moreover, in Populus euphratica, PeCPK10 confers cold and drought stress tolerance. Precisely, overexpression of PeCPK10 increased freezing tolerance in the transgenics. The expression of ABA and stress-responsive genes such as RD29B and COR15A were induced by constitutive expression of PeCPK10 (Chen et al., 2013). In an interesting study, the roles of VaCPK16, VaCPK25, VaCPK30, and VaCPK32 in secondary metabolites biosynthesis and stress resistance was studied in V. amurenensis (grapevine) (Dubrovina et al., 2018). Overexpressing the VaCPK30 gene conferred enhanced resistance to cold and salt stress in transgenics, whereas overexpressing VaCPK16, VaCPK25, and VaCPK32 did not influence temperature and salt stress tolerance. Instead, the overexpression of VaCPK16 and VaCPK32 enhanced stilbene accumulation in V. amurenensis cell cultures (Dubrovina et al., 2018). Earlier the same group had reported the involvement of VaCPK20 in cold and drought stress response pathways (Dubrovina et al., 2015). On similar lines in Zea mays, ZmCPK1 was reported as a negative regulator of cold stress signaling in maize (Weckwerth et al., 2015). ZmCPK1 displayed Ca\(^{2+}\)-independent protein kinase activity. The expression of ZmCPK1 increased, while the expression of ZmCPK25 decreased upon cold stress (Weckwerth et al., 2015). Recently, Malus domestica (apple) MdCPK1a gene was reported to enhance tobacco cold resistance via scavenging ROS accumulation (Dong et al., 2020). The underlying mechanism of cold resistance through the involvement of MdCPK1a was further investigated. The MdCPK1a tobacco transgenics had a better survival ratio and root length when subjected to cold stress. The superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities were higher, while electrolyte leakages (EL), MDA content, and ROS were lower. This was suggestive of the fact that the transgenics underwent less chilling injury than control plants (Dong et al., 2020). Thus, Ca\(^{2+}\) signaling plays a pivotal part in cold acclimation in plants (Table 1).

AtSR/CAMTA Regulated Transcription Under Cold Stress

Upon perception of cold stress, Ca\(^{2+}\) signals are elevated, which might direct Ca\(^{2+}\) to either repress or activate the activity of Ca\(^{2+}\) responding protein. Similarly, the interaction of Ca\(^{2+}\) with Ca\(^{2+}\) sensors either suppresses or enhances the binding to a TF. Depending upon whether the TF itself is a repressor or activator, the transcription of the target gene is repressed or activated. Ca\(^{2+}\)/CaM dependent TFs relay cold-induced Ca\(^{2+}\) transients to transcriptional reprogramming. CAMTAs are one such group of TFs that regulate plant cold stress responses in a Ca\(^{2+}\)-dependent manner. CAMTA proteins have been stipulated to play a direct link between Ca\(^{2+}\) signals and cold acclimation (Eckardt, 2009). CAMTAs also known as signal responsive (SR) protein (Yang and Poovaiah, 2000) or EICBP (ethylene-induced CaM-binding proteins) (Reddy et al., 2000) is a well-characterized CaM dependent TF that regulates gene expression by binding to the signature “CGGG” DNA motif (Galon et al., 2008; Du et al., 2009; Yuan et al., 2018a). Furthermore, CBF cold response pathway plays a pivotal role in cold acclimation (Shi et al., 2018). It is characterized by rapid cold induction of genes encoding the CBF1-3 TFs, followed by the expression of the CBF gene regulator. The CBF/DRE cis-element is recognized by the CBF protein and is characterized by the presence of a conserved CCGAC sequence. The CCGAC sequence is present in the 1000 bp upstream region of a subset of COR genes (Stockinger et al., 1997; Gilmour et al., 1998; Shibahara et al., 2018; Liu et al., 2019). The cis and trans-acting factors implicated in the expression of CBF2 were studied by Doherty et al. (2009). Seven conserved DNA motifs (CM1 to 7) were identified in the promoters of CBF2 and ZAT12 (cold-induced genes). CM4 and CM6 have negative regulatory activity, while CM2 has both negative and positive activity. The study also revealed that CAMTA3 binds to the CM2 motif and is a positive regulator of CBF2 expression. Moreover, camta1 camta3 double mutant plants were impaired in freezing tolerance. This study exhibited a novel role of CAMTA in cold acclimation and provided a plausible link of low-temperature Ca\(^{2+}\) and CaM signaling with cold-regulated gene expression (Doherty et al., 2009). Later, CAMTA3 and CAMTA5 were reported to respond to a rapid decrease in temperature and induce the expression of DREB1s (Kidokoro et al., 2017). Additionally, contrary to circadian clock associated1 and late elongated hypocotyl genes that modulate DREB1 expression only during the day, CAMTA3 and CAMTA5 function both during the day and night (Kidokoro et al., 2017).

Salicylic acid (SA) has a central role in transcriptional machinery at low temperatures (Scott et al., 2004). However, accumulated SA did not influence cold tolerance in atr1 (also referred as CAMTA3) (Kim et al., 2013). CAMTA1 and CAMTA2 in combination with CAMTA3 induced transcripts of CBF1, CBF2, and CBF3 at 2 h and enhanced plant freezing tolerance. Additionally, CAMTA1, CAMTA2, and CAMTA3 work simultaneously to inhibit SA biosynthesis at warm temperatures (22°C). However, the SA levels increased in plants exposed to low-temperatures for more than one week. The study revealed that the isochorismate synthase (ICS) pathway is involved in chilling-induced SA biosynthesis. The accumulation of ICS1, CBBP60g, and SARD1 transcripts were suppressed at warm temperatures by these three CAMTAs, but not at low temperatures (Kim et al., 2013). The analysis of upstream regions to the transcription start site (TSS) in wound-induced genes indicated the presence of rapid stress response DNA element
The study revealed that CAMTA3 modulates cold tolerance in *Vitis amurensis* that luciferase activity level induced by cold stress was lower in camta3 mutants than control plants (Benn et al., 2014). Another interesting study found that heptahedral protein 2 (HHP2) interacts with CBF upstream regulators, such as ICE1, ICE2, and CAMTA3 (Lee and Seo, 2015). At low-temperatures, MYB96 (R2R3-type MYB TF) induced the HHP genes (Lee and Seo, 2015). This suggests

(RSRE), CGCGTT. Moreover, promoter activity assay depicted that luciferase activity level induced by cold stress was lower in camta3 mutants than control plants (Benn et al., 2014).

The study revealed that CAMTA3 modulates cold tolerance in *A. thaliana* via the regulation of genes that harbor RSRE elements in their promoters (Benn et al., 2014). Another interesting study found that heptahedral protein 2 (HHP2) interacts with CBF upstream regulators, such as ICE1, ICE2, and CAMTA3 (Lee and Seo, 2015). At low-temperatures, MYB96 (R2R3-type MYB TF) induced the HHP genes (Lee and Seo, 2015). This suggests

TABLE 1	Calcium signaling components in cold stress acclimation in plants.		
Gene	Ca2+ component	Species	References
----------	---		
MCA1 and MCA2	Ca2+ channel	Arabidopsis thaliana	Mori et al., 2018
AtCAX1	Ca2+ channel	Arabidopsis thaliana	Català et al., 2003
Ca2+/cation antiporter	Ca2+ channel	Saccharum	Su et al., 2021
CNGC9	Ca2+ channel	Oryza sativa	Wang et al., 2021
ZCNGC2	Ca2+ channel	Ziziphus jujuba Mill	Wang et al., 2020b
CNGC14 and CNGC16	Ca2+ channel	Oryza sativa	Cui et al., 2020
AtCNGC4 and AtCNGC4	Ca2+ channel	Arabidopsis thaliana	Cui et al., 2020
AtGLR3.4	Ca2+ channel	Arabidopsis thaliana	Meyerhoff et al., 2005; Weland et al., 2015
AtGLR1.2 and AtGLR1.3	Ca2+ channel	Arabidopsis thaliana	Zheng et al., 2018
GLR3.3 and GLR3.5	Ca2+ channel	Solanum	Li H. et al., 2019
ANNEXIN1	Ca2+ channel	Arabidopsis thaliana	Liu et al., 2021
GhCAX3	Ca2+ channel	Oryza sativa	Xu et al., 2013
CaM3	Ca2+ sensor	Arabidopsis thaliana	Townley and Knight, 2002
CaM4	Ca2+ sensor	Arabidopsis thaliana	Chu et al., 2018
CML39	Ca2+ sensor	Arabidopsis thaliana	Midhat et al., 2018
VcCaM8 and VcCaM10	Ca2+ sensor	Vitis amurensis	Dubrovina et al., 2019
VaCML21, VaCML44, VaCML61, VaCML78, VaCML86, and VaCML89	Ca2+ sensor	Vitis amurensis	Dubrovina et al., 2019
CML21v1, CML21v2, CML21v3, and CML21v4	Ca2+ sensor	Vitis amurensis	Aleynova et al., 2020
MsCML4	Ca2+ sensor	Medicago sativa	Du et al., 2021
CcCML16, 18-2, and 42	Ca2+ sensor	Cannaellina sinensis	Ma Q. et al., 2019
ShCML44	Ca2+ sensor	Solanum habrochaites	Muir et al., 2016
SiCML37	Ca2+ sensor	Solanum lycopersicum	Tang et al., 2021
MtCML42	Ca2+ sensor	Medicago truncatula	Sun et al., 2021
CLR1K	Ca2+ sensor	Arabidopsis thaliana	Yang et al., 2010a,b
CBL9	Ca2+ sensor	Arabidopsis thaliana	Gao and Zhang, 2019
CsCBL9 and CsCIPK4/6a/6b/7/11/14b/19/20	Ca2+ sensor	Cannaellina sinensis	Wang et al., 2020a
TaCIPK29	Ca2+ sensor	Triticum aestivum	Deng et al., 2013
CaCIPK1	Ca2+ sensor	Capsicum annuum	Ma X. et al., 2019
MeCIPK7	Ca2+ sensor	Manihot esculenta	Mo et al., 2018
MdCIPK6L	Ca2+ sensor	Malus domestica	Wang et al., 2012
BdCIPK31	Ca2+ sensor	Brachypodium distachyon	Luo et al., 2018
BnaCBL	Ca2+ sensor	Brassica napus	Zhang H. et al., 2014
BrCBL1-1	Ca2+ sensor	Brassica rapa	Jung et al., 2017
SpCBL6	Ca2+ sensor	Stipa purpurea	Zhou et al., 2016
PtCBL1	Ca2+ sensor	Pyrus betulifolia Bunge	Xu Y. et al., 2015
OsCPK17	Ca2+ sensor	Oryza sativa	Alamdanim et al., 2017
OsCPK24	Ca2+ sensor	Oryza sativa	Liu Y. et al., 2018
MaCIPK7	Ca2+ sensor	Musa acumynata cv.Cavendish	Wang et al., 2017; Li et al., 2020
MtCIPK4, 8, 15, 16, and 22	Ca2+ sensor	Medicago truncatula	Zhao et al., 2021
PeCIPK10	Ca2+ sensor	Populus euphratica	Chen et al., 2013
VaCIPK30	Ca2+ sensor	Vitis amurensis	Dubrovina et al., 2018
VaCIPK20	Ca2+ sensor	Vitis amurensis	Dubrovina et al., 2015
ZmCIPK1	Ca2+ sensor	Zea mays	Weckworth et al., 2015
MoCIPK1a	Ca2+ sensor	Malus domestica	Dong et al., 2020
CAMTA3	TF	Arabidopsis thaliana	Doherty et al., 2009; Kim et al., 2013; Kidokoro et al., 2017; Kim et al., 2017
CAMTA5	TF	Arabidopsis thaliana	Kidokoro et al., 2017
that a cross-wired mesh of pathways exist that incorporates Ca^{2+} signaling to regulate cold stress tolerance through CAMTA3. Kim et al. (2017) revealed that the IQ motifs in AtCAMTA3 residues 850–875 are necessary for its activity (Kim et al., 2017). Post-translational modifications (phosphorylation or dephosphorylation) play imperative part in AtCAMTA3 mediated response to environmental cues. S454 and S964 were identified as two putative phosphorylation sites in AtCAMTA3 protein (Jones et al., 2009). The camta1 camta3 double mutants complemented with mutated AtCAMTA3 protein, S454A and S964A (phosphorylation sites of AtCAMTA3) were partially restored to control plants. Moreover, the suppression of SA biosynthesis in the mutants was compromised, suggestive of the fact that phosphorylation is necessary for the full functionality of AtCAMTA3 (Kim et al., 2017). It is well reported that CAMTA3 is a defense repressor. CAMTA3 is degraded to trigger SA-mediated immune response during pathogen incursion (Galon et al., 2008; Poovaiah et al., 2013; Zhang L. et al., 2014; Fromm and Finkler, 2015; Kim et al., 2017). Intriguingly, SA-mediated signaling pathways also cross-talk with pathways implicated in long-term cold treatments (4°C, 2 weeks) (Kurepin et al., 2013; Miura and Tada, 2014). Nonetheless, AtCAMTA3 protein is also accumulated at low temperatures (Kim et al., 2017). These observations suggest that a complex mesh of networks intersect with each other to overcome the AtCAMTA3 suppression of the SA signaling pathway. Very recently, evolution analyses of CAMTA genes in 112 plant species were performed to study its enhancing effect on cold tolerance (Xiao et al., 2021). Thus, CAMTAs via Ca^{2+}/CaM signaling has an intersecting role in imparting cold tolerance to plants.

CONCLUSION AND FUTURE PERSPECTIVE

The underpinning mechanisms of cold signaling pathways and genes implicated in cold stress have been extensively studied in the past few years. Different signaling pathways converge to allow plants cope with cold stress. Perception of cold stress by the plant is contemplated to be the first event for the induction of Ca^{2+} transients (Ma Y. et al., 2015). The cold stress-triggered Ca^{2+} transients are generated via a number of Ca^{2+} channels and/or Ca^{2+} pumps. These Ca^{2+} transients are relayed and decoded by a variety of Ca^{2+} sensors to regulate gene expression and subsequently confer cold tolerance to plants (Ma Y. et al., 2015; Mori et al., 2018). Considerable advancements have been made to comprehend the underlying components of the Ca^{2+} signaling network, such as, Ca^{2+}–CBL–CIPK, CDPK, and Ca^{2+}–CaM–CAMTA (Weckwerth et al., 2015; Kidokoro et al., 2017; Wang et al., 2020a). Moreover, plant cold tolerance is an intricate process involving dissecting signal transduction pathways. It remains elusive how other signaling pathways intersect with Ca^{2+} signaling pathways to confer cold tolerance in plants. It is still a challenge to deeply decipher the role of Ca^{2+} signals in the cold stress tolerance mechanism and to ascertain whether cold stress-triggered Ca^{2+} transients exist in the cell nucleus. Cutting edge techniques such as multi-omics (Iqbal et al., 2021b), CRISPR/cas9 gene editing systems (Iqbal et al., 2020a), and sensitive Ca^{2+} imaging (Grenzi et al., 2021) can prove to be potent tools to determine the un-discovered aspects of Ca^{2+} signaling pathways. Thus, future research should focus on deciphering the key converging and diverging pathways pivotal to Ca^{2+} mediated cold signaling. Further, gaining in-depth insights as to how Ca^{2+} signatures are induced and decoded in response to cold stress can help better comprehend the involvement of Ca^{2+} ion in cold stress signaling. Nonetheless, efforts should be made to identify low-temperature sensors using biological methods in combination with biochemical and biophysical approaches.

AUTHOR CONTRIBUTIONS

ZI drafted and wrote the manuscript. AGM and AA critically revised the manuscript for consistency and content. MSI conceptualized the idea and reviewed the manuscript. All authors reviewed and approved the final version of the manuscript.

FUNDING

The authors did not receive any external funding.

ACKNOWLEDGMENTS

The authors are thankful to all the contributors in the field of calcium signaling and cold stress biology.

REFERENCES

Aldon, D., Mbengue, M., Mazars, C., and Galaud, J.-P. (2018). Calcium signalling in plant biotic interactions. Int. J. Mol. Sci. 19:665. doi: 10.3390/ijms19030665
Aleyanova, O. A., Kiselev, K. V., Ogneva, Z. V., and Dubrovina, A. S. (2020). The grapevine calmodulin-like protein gene CML21 is regulated by alternative splicing and involved in abiotic stress response. Int. J. Mol. Sci. 21:7939. doi: 10.3390/ijms21217939
Almadanim, M. C., Alexandre, B. M., Rosa, M. T., Sapeta, H., Leitão, A. E., Ramalho, J. C., et al. (2017). Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose-phosphate synthase and is required for a proper cold stress response. Plant Cell Environ. 40, 1197–1213. doi: 10.1111/pce.12916
Batistić, O., and Kudla, J. (2012). Analysis of calcium signaling pathways in plants. Biochim. Biophys. Acta 1820, 1283–1293. doi: 10.1016/j.bbabio.2011.10.012
Benn, G., Wang, C. Q., Hicks, D. R., Stein, J., Guthrie, C., and Dehesh, K. (2014). A key general stress response motif is regulated non-uniformly by CAMTA transcription factors. Plant J. 80, 82–92. doi: 10.1111/tpj.12620
Catalá, R., Santos, E., Alonso, J. M., Ecker, J. R., Martínez-Zapater, J. M., and Salinas, J. (2003). Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell 15, 2940–2951. doi: 10.1105/tpc.015248
Chen, J., Xue, B., Xia, X., and Yin, W. (2013). A novel calcium-dependent protein kinase gene from Populus euphratica, confers both drought and cold stress tolerance. *Biochem. Biophys. Res. Commun.* 441, 630–636. doi: 10.1016/j.bbrc.2013.10.103

Cheng, S.-H., Willmann, M. R., Chen, H.-C., and Shen, J. (2002). Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. *Plant Physiol.* 129, 469–485. doi: 10.1104/pp.005645

Chu, M., Li, J., Zhang, J., Shen, S., Li, C., Gao, Y., et al. (2018). AtCaM4 interacts with a Sec14-like protein, PATL1, to regulate freezing tolerance in Arabidopsis in a CBF-independent manner. *J. Exp. Bot.* 69, 5241–5253. doi: 10.1093/jxb/ery278

Costa, A., Navazio, L., and Szabo, I. (2018). The contribution of organelles to plant intracellular calcium signalling. *J. Exp. Bot.* 69, 4175–4193. doi: 10.1093/jxb/ery185

Cui, Y., Lu, S., Li, Z., Cheng, J., Hu, P., Zhu, T., et al. (2020). CYCLIC NUCLEOTIDE-GATED ION CHANNELS14 and 16 promote tolerance to heat and chilling in rice. *Plant Physiol.* 183, 1794–1808. doi: 10.1104/pp.20.00591

Day, I. S., Reddy, V. S., Ali, G. S., and Reddy, A. (2002). Analysis of EF-hand-containing proteins in Arabidopsis. *Genome Biol.* 3, 1–24. doi: 10.1186/gb-2002-3-10-research0056

Deng, X., Hu, W., Wei, S., Zhou, S., Zhang, F., Han, J., et al. (2013). TaCPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. *PLoS One* 8:e69881. doi: 10.1371/journal.pone.0069881

Dodd, A. N., Kudla, J., and Sanders, D. (2010). The language of calcium signaling. *Annu. Rev. Plant Biol.* 61, 593–620. doi: 10.1146/annurev-arplant-070709-104628

Doherty, C. J., Van Buskirk, H. A., Myers, S. J., and Thomashow, M. F. (2018). The role of calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis. *FEBS Lett.* 582, 943–948. doi: 10.1016/j.fsl.2008.02.037

Gao, Q., Xiong, T., Li, X., Chen, W., and Zhu, X. (2019). Calcium and calcium sensors in fruit development and ripening. *Sci. Horticult.* 253, 412–421. doi: 10.1016/j.scienta.2019.04.069

Gao, Y., and Zhang, G. (2019). A calcium sensor calcineurin B-like 9 negatively regulates cold tolerance via calcium signaling in Arabidopsis thaliana. *Plant Signal. Behav.* 14:e1573099. doi: 10.1080/15592324.2019.1573099

Gifford, J. L., Walsh, M. P., and Vogel, H. J. (2007). Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. *Biochem. J.* 405, 199–221. doi: 10.1042/BJ20070255

Gilmour, S. J., Zarka, D. G., Stockinger, E. J., Salazar, M. P., Houghton, J. M., and Thomashow, M. F. (1998). Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. *Plant J.* 16, 433–442. doi: 10.1046/j.1365-313x.1998.00310.x

Grenzi, M., Resentini, F., Vanneste, S., Zottini, M., Bassi, A., and Costa, A. (2021). Illuminating the hidden world of calcium ions in plants with a universe of indicators. *Plant Physiol.* 187, 550–571. doi: 10.1093/plphys/kia339

Hashimoto, K., and Kudla, J. (2011). Calcium decoding mechanisms in plants. *Biochimie* 93, 2054–2059. doi: 10.1016/j.biochi.2011.05.019

He, J., Rössner, N., Hoang, M. T., Alejandro, S., and Peiter, E. (2021). Transport, functions, and interaction of calcium and manganese in plant organelar compartments. *Plant Physiol.* 187,122. doi: 10.1093/plphys/kiab122

Hong-Bo, S., Li-Ye, C., Ming-An, S., Shi-Qing, L., and Ji-Cheng, Y. (2008). Bioengineering plant resistance to abiotic stresses by the global calcium signal system. *Biotechnol. Adv.* 26, 503–510. doi: 10.1016/j.biotechadv.2008.04.004

Hrabak, E. M., Chan, C. W., Giribiskov, M., Harper, J. F., Choi, J. H., Halford, N., et al. (2003). The Arabidopsis CDPK-SnRK superfamily of protein kinases. *Plant Physiol.* 132, 666–680. doi: 10.1104/pp.102.011999

Hu, Z., Lv, X., Xia, X., Zhou, J., Shi, K., Yu, J., et al. (2016). Genome-wide identification and expression analysis of calcium-dependent protein kinase in tomato. *Front. Plant Sci.* 7:469. doi: 10.3389/fpls.2016.00469

Iqbal, Z., Iqbal, M. S., Ahmad, A., Memon, A. G., and Ansari, M. I. (2020a). New prospects on the horizon: genome editing to engineer plants for desirable traits. *Curr. Plant Biol.* 2020:100171. doi: 10.1016/cpb.2020.100171

Iqbal, Z., Shariq Iqbal, M., Singh, S. P., and Buaoocha, T. (2020b). Ca2+/calmodulin complex triggers CAMTA transcriptional machinery under stress in plants: signaling cascade and molecular regulation. *Front. Plant Sci.* 11:1829. doi: 10.3389/fpls.2020.598327

Iqbal, Z., Iqbal, M. S., Hashem, A., AbdAllah, E. F., and Ansari, M. I. (2021a). Plant defense responses to biotic stress and its interplay with fluctuating dark/light conditions. *Front. Plant Sci.* 12:297. doi: 10.3389/fpls.2021.631810

Iqbal, Z., Iqbal, M. S., Khan, M. I. R., and Ansari, M. I. (2021b). Toward integrated multi-omics intervention: rice trait improvement and stress management. *Front. Plant Sci.* 2021:12. doi: 10.3389/fpls.2021.741419

Jha, K., Sharma, M., and Pandey, G. (2016). Role of cyclic nucleotide gated channels in stress management in plants. *Curr. Genom.* 17, 315–329. doi: 10.2174/126928621666160331202125

Jiao, C., Chai, Y., and Duan, Y. (2019). Inositol 1, 4, 5-trisphosphate mediates nitric-oxide-induced chilling tolerance and defense response in postharvest peach fruit. *J. Agricult. Food Chem.* 67, 4764–4773. doi: 10.1021/acs.jafc.9b00153

Jones, A. M., Maclean, D., Studholme, D. J., Serna-Sanz, A., Andresson, E., Rathjen, J. P., et al. (2009). Phosphoproteomic analysis of nuclei-enriched proteins from Arabidopsis thaliana. *J. Proteom.* 72, 439–451. doi: 10.1016/j.jprot.2009.02.004

Jung, H.-J., Kayum, M. A., Thamilarasan, S. K., Nath, U. K., Park, J.-I., Chung, M.-Y., et al. (2017). Molecular characterisation and expression profiling of CNGC genes in tomato. *Curr. Genom.* 8:602. doi: 10.3389/fpls.2018.00602

Kakar, K. U., Nawaz, Z., Kakar, K., Ali, E., Almoneafy, A. A., Ullah, R., et al. (2017). Comprehensive genomic analysis of the CNGC gene family in Brassica oleracea: novel insights into synteny, structures, and transcript profiles. * BMC Genom.* 18:1–18. doi: 10.1186/s12864-017-4244-y
Kidokoro, S., Yonedu, K., Takasaki, H., Takahashi, F., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2017). Different cold-signaling pathways function in the responses to rapid and gradual decreases in temperature. Plant Cell 29, 760–774. doi: 10.1105/tpc.16.00669

Kim, Y. S., An, C., Park, S., Gilmour, S. J., Wang, L., Renna, L., et al. (2017). CAMTA-mediated regulation of salicylic acid immunity pathway genes in Arabidopsis exposed to low temperature and pathogen infection. Plant Cell 29, 2465–2477. doi: 10.1105/tpc.16.00865

Kim, Y., Park, S., Gilmour, S. J., and Thomashow, M. F. (2013). Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of A. rabiopsis. Plant J. 75, 364–376. doi: 10.1111/tpj.12205

Kolukisaoglu, U., Weind, S., Blazevic, D., Batistic, O., and Kudla, J. (2004). Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol. 134, 43–58. doi: 10.1104/pp.103.033068

Kong, X., Lv, W., Jiang, S., Zhang, D., Cai, G., Pan, J., et al. (2013). Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize. BMC Genom. 14:1–15. doi: 10.1186/1471-2164-14-433

Kudla, J., Becker, D., Grill, E., Hedrich, R., Hippler, M., Kummer, U., et al. (2018). Advances and current challenges in calcium signaling. New Phytol. 218, 414–431. doi: 10.1111/nph.14966

Kurepin, L. V., Dahal, K. P., Savitch, L. V., Singh, J., Bode, R., Ivanov, A. G., et al. (2013). Role of CBFS as integrators of chloroplast redox, phytochrome and plant hormone signaling during cold acclimation. Int. J. Mol. Sci. 14, 12729–12763. doi: 10.3390/ijms140612729

Kurusu, T., Kuchitsu, K., Nakano, M., Nakayama, Y., and Iida, H. (2013). Plant mechanosensing and Ca2+-transport. Trends Plant Sci. 18, 227–233. doi: 10.1016/j.tplants.2012.12.002

Laohavisit, A., Shang, Z., Rubio, L., Cuin, T. A., Véry, A.-A., Wang, A., et al. (2013). Calcium-dependent kinase OsCPK24 functions in cold stress responses in rice. Plant Biol. 38, 511–519. doi: 10.1007/s00299-019-44681-7

Ma, X., Gai, W.-X., Qiao, Y.-M., Ali, M., Wei, A.-M., Luo, D.-X., et al. (2019). Identification of CBL and CIPK gene families and functional characterization of CIPK1 under Phytophthora capsici in pepper (Capsicum annuum L.). BMC Genom. 20:1–18. doi: 10.1186/s12864-019-6125-z

Ma, Y., Dai, X., Xu, Y., Luo, W., Zheng, X., Zeng, D., et al. (2015). COLD1 confers chilling tolerance in rice. Cell 160, 1209–1221. doi: 10.1016/j.cell.2015.01.046

Meyerhoff, O., Müller, K., Roelfsema, M. R. G., Lacombe, B., Hedrich, R., et al. (2015). ANGLR3: A glutamate receptor channel-like gene is sensitive to touch and cold. Planta 222, 418–427. doi: 10.1007/s00425-015-1551-3

Midhat, U., Ting, M. K., Teresinski, H. I., and Snedden, W. A. (2018). The calmodulin-like protein, CML39, is involved in regulating seed development, germination, and fruit development in Arabidopsis. Plant Mol. Biol. 96, 375–392. doi: 10.1007/s11103-018-0703-3

Miura, K., and Tada, Y. (2014). Regulation of water, salinity, and cold stress responses by salicylic acid. Front. Plant Sci. 5:4. doi: 10.3389/fpls.2014.00004

Mo, C., Yan, S., Xia, Y., Ren, N., Zhou, Y., and Jiang, X. (2018). Expression patterns and identified protein-protein interactions suggest that cassava CBL-CIPK signal networks function in responses to abiotic stresses. Front. Plant Sci. 9:269. doi: 10.3389/fpls.2018.0269

Mohanta, T. K., Mohanta, N., Mohanta, Y. K., Parida, P., and Bae, H. (2015). Genome-wide identification of Calcineurin B-Like (CBL) gene family of plants reveals novel conserved motifs and evolutionary aspects in calcium signaling events. BMC Plant Biol. 15:1–15. doi: 10.1186/s12870-015-0543-0

Mori, K., Renhu, N., Naito, M., Nakamura, A., Shiba, H., Yamamoto, T., et al. (2018). Ca2+-permeable mechanosensitive channels MCA1 and MCA2 mediate cold-induced cytosolic Ca2+ increase and cold tolerance in Arabidopsis. Sci. Rep. 8, 1–10. doi: 10.1038/s41598-017-17483-y

Murir, S., Liu, H., Xing, Y., Hussain, S., Ouyang, B., Zhang, Y., et al. (2016). Overexpression of calmodulin-like (ShCML44) stress-responsive gene from Solanum habrochatae enhances tolerance to multiple abiotic stresses. Sci. Rep. 6, 1–20. doi: 10.1038/srep37772

Nawaz, Z., Kakar, K. U., Saand, M. A., and Shu, Q.-Y. (2014). Cyclic nucleotide-gated ion channel gene family in rice, identification, characterization and experimental analysis of expression response to plant hormones, biotic and abiotic stresses. BMC Genom. 15:1–18. doi: 10.1186/1471-2164-15-153

Nawaz, Z., Kakar, K. U., Ullah, R., Yu, S., Zhang, J., Shu, Q.-Y., et al. (2019). Genome-wide identification, evolution and expression analysis of cyclic nucleotide-gated channels in tobacco (Nicotiana tabacum L.). Genomics 111, 142–158. doi: 10.1016/j.ygeno.2018.01.010

Niu, L., Dong, B., Song, Z., Meng, D., and Fu, Y. (2018). Genome-wide identification and characterization of CIPK family and analysis responses to various stresses in apple (Malus domestica). Int. J. Mol. Sci. 19:2311. doi: 10.3390/ijms19072311

Pandey, G. K., and Sanyal, S. K. (2021). Ca2+-ATPase and Ca2+/-cation antipotitors in Functional Desection of Calcium Homeostasis and Transport Machinery in Plants. Berlin: Springer. 89–104.

Perchon, A., Aldon, D., Galaud, J.-P., and Ranty, B. (2011). Calmodulin and calmodulin-like proteins in plant calcium signaling. Biochimie 93, 2048–2053. doi: 10.1016/j.biochi.2011.07.012

Prayesh, N., Giridhar, M., Khedher, A. B., Vothknecht, U. C., and Chigiri, F. (2021). Organellar calcium signaling in plants: an update. Mol. Cell Res. 21:19311. doi: 10.3390/jmcs19072311

Povoaia, B., Du, L., Wang, H., and Yang, T. (2013). Recent advances in calcium/calmodulin-mediated signaling with an emphasis on plant-microbe interactions. Plant Physiol. 163, 531–542. doi: 10.1104/tpc.111.220780

Ranty, B., Aldon, D., Cotelle, V., Galaud, J.-P., Thieleau, P., and Mazars, C. (2016). Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Front. Plant Sci. 7:327. doi: 10.3389/fpls.2016.00327

Reddy, A., Reddy, V. S., and Golovkin, M. (2000). A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif. Biochim. Biophys. Res. Commun. 279, 762–769. doi: 10.1016/bbrc.2000.04.032
Reddy, V. S., and Reddy, A. S. (2004). Proteomics of calcium-signaling components in plants. *Physiochemistry* 65, 1745–1776. doi: 10.1016/j.phytochem.2004.04.033

Richards, S. L., Laohavisit, A., Mortimer, J. C., Shabala, L., Swarbreck, S. M., Shabala, S., et al. (2014). Annexin 1 regulates the H 2 O 2-induced calcium signature in a rabdopsis thaliana roots. *Plant J.* 77, 136–145. doi: 10.1111/tpj.12727

Romola, D. (2002). Glutamate receptors in plants. *Ann. Bot.* 90, 549–557. doi: 10.1093/aob/mcf228

Sander, D., Pelloux, J., Brownlee, C., and Harper, J. F. (2002). Calcium at the crossroads of signaling. *Plant Cell* 14, 5401–5417.

Sarwat, M., Ahmad, P., Nabi, G., and Hu, X. (2013). Ca2+ signals: the versatile regulators of multiple cellular processes. *Crit. Rev. Biotechnol.* 33, 97–109. doi: 10.3109/07388551.2012.672598

Scott, I. M., Clarke, S. M., Wood, J. E., and Mur, L. A. (2004). Salicylate and calcium at the crossroads of signaling. *Plant Signal. Behav.* 2, 79–85. doi: 10.4161/psb.2.2.4176

Weiland, M., Mancuso, S., and Baluska, F. (2015). Signalling via glutamate and GLRs in Arabidopsis thaliana. *Funct. Plant Biol.* 43, 1–25. doi: 10.1071/FP15109

Reddy, V. S., and Reddy, A. S. (2014). Calcium-dependent protein kinases in plants: evolution, expression and implications in response to biotic and abiotic stress. *Front. Plant Sci.* 2021:12. doi: 10.3389/fpls.2021.758187

Yu, X., Li, S., Li, T., Yuan, P., and Poovaiah, B. (2010a). A novel ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death. *J. Biol. Chem.* 285, 38647–38673. doi: 10.1074/jbc.M110.035620

Yu, X., Li, T., Yuan, P., and Poovaiah, B. (2018a). Calcium signaling-mediated receptor-like kinase CRLK1 interacts with MEKK1 in plants. *Plant Signal. Behav.* 5, 991–994. doi: 10.4161/psb.5.8.12233

Yu, X., An, L., and Li, W. (2014). The CBL–CIPK network mediates different signaling pathways in plants. *Plant Cell Rep.* 33, 203–214. doi: 10.1007/s00299-013-1507-1

Yuan, P., Tanaka, K., Du, L., and Poovaiah, B. (2018a). Calcium signaling in plant autoimmunity: a guard model for AtSR1/CAMTA3-mediated immune response. *Mol. Plant.* 11, 637–639. doi: 10.1016/j.molp.2018.02.014

Yuan, P., Yang, T., and Poovaiah, B. (2018b). Calcium signaling-mediated plant response to cold stress. *Int. J. Mol. Sci.* 19:3896. doi: 10.3390/ijms19113896

Zeng, H., Zhang, Y., Zhang, X., Pi, E., and Zhu, Y. (2017). Analysis of EF-hand calcium-binding proteins in soybean genome suggests their potential roles in environmental stresses. *Front. Plant Sci.* 8:877. doi: 10.3389/fpls.2017.00877

Zhang, H., Wei, C., Yang, X., Chen, H., Yang, Y., Mo, Y., et al. (2017). Genome-wide identification and expression analysis of calcium–dependent protein kinase and its related kinase gene families in melon (Cucumis melo L.). *PLoS One* 12:e0176352. doi: 10.1371/journal.pone.0176352
Zhang, H., Yang, B., Liu, W.-Z., Li, H., Wang, L., Wang, B., et al. (2014). Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.). *BMC Plant Biol.* 14:1–24. doi: 10.1186/1471-2229-14-8

Zhang, L., Du, L., Shen, C., Yang, Y., and Poovaiah, B. (2014). Regulation of plant immunity through ubiquitin-mediated modulation of Ca2+-calmodulin–AtSR1/CAMTA3 signaling. *Plant J.* 78, 269–281. doi: 10.1111/tpj.12473

Zhao, C., Wang, P., Si, T., Hou, C.-C., Wang, L., Zayed, O., et al. (2017). MAP kinase cascades regulate the cold response by modulating ICE1 protein stability. *Dev. Cell* 43, 618–629. doi: 10.1016/j.devcel.2017.09.024

Zhao, P., Liu, Y., Kong, W., Ji, J., Cai, T., and Guo, Z. (2021). Genome-wide identification and characterization of calcium-dependent protein kinase (CDPK) and CDPK-Related Kinase (CRK) Gene Families in Medicago truncatula. *Int. J. Mol. Sci.* 22:1044. doi: 10.3390/ijms22031044

Zheng, Y., Luo, L., Wei, J., Chen, Q., Yang, Y., Hu, X., et al. (2018). The glutamate receptors AtGLR1.2 and AtGLR1.3 increase cold tolerance by regulating jasmonate signaling in Arabidopsis thaliana. *Biochem. Biophys. Res. Commun.* 506, 895–900. doi: 10.1016/j.bbrc.2018.10.153

Zhou, Y., Cheng, Y., Yang, Y., Li, X., Supriyo, B., Sun, X., et al. (2016). Overexpression of SpCBL6, a calcineurin B-like protein of Stipa purpurea, enhanced cold tolerance and reduced drought tolerance in transgenic Arabidopsis. *Mol. Biol. Rep.* 43, 957–966. doi: 10.1007/s11033-016-4036-5

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Iqbal, Memon, Ahmad and Iqbal. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.