The role of type 1 interferon in systemic sclerosis

Minghua Wu* and Shervin Assassi
Division of Rheumatology and Clinical Immunogenetics, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA

INTRODUCTION

Systemic sclerosis (Scleroderma, SSc) is an autoimmune disease characterized by vasculopathy, inflammation, and fibrosis that can lead to loss of organ function. Type I interferons (IFNs) are family of cytokines that mitigate the deleterious effects of viral and bacterial infections in the innate immune system. Past several years, research efforts have been focused on the role of type I IFN and IFN-inducible genes in the pathogenesis of SSc. Polymorphisms in the Interferon regulatory factor (IRF)-5, IRF7, and IRFB are associated with SSc. Similarly, polymorphism of SignalTransducer and Activator of Transcription (STAT)-4, has been established as a genetic risk factor of SSc. IRFs and STAT4 proteins are key activators of type I IFN signaling pathways. An IFN signature (increased expression and activation of IFN-regulated genes) has been observed in the peripheral blood and skin biopsy samples of patients with SSc. Furthermore, a plasma IFN-inducible chemokine score correlated with markers of disease severity and autoantibody subtypes in SSc. In this review, we summarize our current knowledge of the role of type I IFNs and IFN-inducible genes in the pathogenesis of SSc and their potential role as biomarkers and therapeutic targets.

Keywords: systemic sclerosis, innate immunity, type 1 IFN, interferon regulatory factor, IFN-inducible cytokines and chemokines

The role of type 1 interferon in systemic sclerosis

Minghua Wu* and Shervin Assassi
Division of Rheumatology and Clinical Immunogenetics, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA

INTRODUCTION

Systemic sclerosis (Scleroderma, SSc) is characterized by immune dysregulation, fibrosis, and vasculopathy although its pathogenesis is not completely understood (1). Disease morbidity and mortality remain high (2, 3). There is no definite cure for SSc and the available treatments have limited efficacy. The major hurdle in developing effective therapies for SSc is an incomplete understanding of disease pathogenesis. A better understanding of SSc pathogenesis is important for identifying more targeted and effective therapeutic approaches.

Recently, there has been an increasing interest in the role of type I interferons (IFNs) in pathogenesis and severity of SSc. IFNs are a heterogeneous family of multifunctional cytokines. They were originally identified as proteins responsible for induction of cellular resistance to viral infections. Type I IFNs include IFN-α, -β, and -ω, and alleviate the effects of viral and bacterial infections in the innate immunity system (4, 5). Type I IFN subtypes-α and -β share common multicomponent, cell surface receptors, and elicit a similar range of biological responses, including antiviral, anti-proliferative (6), and immune modulatory activities.

In this review, we summarize the current knowledge about the role of type I IFN and its inducible genes in the SSc pathogenesis and biomarker development.

INNATE IMMUNITY AND SSc

The innate immune system is the first line of host defense against pathogens. It plays an important part in triggering inflammation and promoting development of fibrosis in many organ systems. The dominant cellular components of innate immunity are mainly neutrophils, macrophages, and dendritic cells. These cells sense pathogens and destroy them, followed by secretion of pro-inflammatory chemokines and cytokines to activate T cells and other components of adaptive immune system. There is an increasing evidence for activation of the innate immune system in SSc. Cells involved in the innate immune system are detected at the end organ damage site of SSc (7, 8). Being the first cells in line in the defense against pathogens of any sort, the antigen presenting cells (APCs) are often considered the most influential cell of the innate immune system. The specific nature of these APCs and how they contribute to the development of fibrosis is still unclear. The perivascular infiltrates in the non-lesional skin of SSc patients mainly consists of macrophages/monocytes and CD4+ T cells suggesting that the aberrant or dysregulated immune system precedes fibrosis (9–11). Alternatively activated macrophages are present in SSc skin biopsies (8, 12, 13), this type of macrophages are potentially important source of profibrotic cytokines including transforming growth factor β (TGF-β) which contribute to resolving inflammation and promoting wound healing (14). The sub-classification of macrophages into classically activated M1 macrophages and alternatively activated M2 macrophages is also of special interest in SSc because the M1 type is clearly more inflammatory and the M2 type is thought to be more involved in tissue remodeling and profibrotic phenotypes. M2 macrophages highly express several receptors such as hemoglobin scavenger receptor (CD163), class A scavenger receptor (CD204), and mannose receptor (CD206) (15, 16). SSc patients show significantly higher serum soluble CD163 levels, and the number of CD163+ and CD204+ activated M2 macrophages is significantly greater in SSc skin (17, 18). The role of M2 macrophages for the development of fibrosis in SSc is still speculative, further studies are needed to clarify the potential mechanism of M2 macrophages in this disorder.

In this non-specific immune system, mast cells, basophils, and natural killer (NK) T cells play more specialized immune functions. For instance, dermal mast cell number density was...
significantly higher in diffuse SSC patients than in unaffected controls (19, 20). Electron microscopy (EM) with immunogold labeling in skin biopsy samples revealed that patients with progressive SSC (worsening skin thickening and/or organ function in the year preceding biopsy) had higher number of mast cells. Furthermore, mast cell vesicles containing active TGF-β in patients with SSC showed higher level of degranulation than those from unaffected controls (21). The number of basophils, a circulating counterpart of mast cells was increased in SSC patients. Spontaneous histamine releasability, its reactivity to IgE and response to IL-3 were increased in basophiles from patients with SSC (22). On the other hand, the absolute number and proportion of NK T cells were decreased in patients with SSC which possibly can lead to down-regulation of the normal immune response (23). Altogether, these observations implicate a dysregulated immune system in the pathogenesis of SSC.

In line with those observations, large efforts have been made to find the genetic risk factors for abnormal immune system in SSC. These studies independently replicated genetic risk factors such as STAT4 (24–26), HLA (27–30), BANK1 (31, 32), Interferon regulatory factor (IRF)-3 (33, 34), IRF-7, and -8 (35–38), and the T cell receptor zeta-chain (CD247) (26) which are involved in innate and adaptive immune system.

TYPE I IFNs AND SSC

Type I IFNs are important key regulators of the innate immune system. They modulate immune cell differentiation and proliferation, as well as inflammatory cytokine production. Recent studies have provided considerable evidence that implicates a dysregulation in type I IFN and IFN-inducible genes in the pathophysiology of autoimmune diseases including SSC (39–43). SSC shares this common characteristic with systemic lupus erythematosus (SLE) (44). Anti-IFNα mAb, sifalimumab, was evaluated in a phase Ia study on the other absolute number and proportion of NK T cells were decreased in patients with SSC which possibly can lead to down-regulation of the normal immune response (23). Altogether, these observations implicate a dysregulated immune system in the pathogenesis of SSC.

In line with those observations, large efforts have been made to find the genetic risk factors for abnormal immune system in SSC. These studies independently replicated genetic risk factors such as STAT4 (24–26), HLA (27–30), BANK1 (31, 32), Interferon regulatory factor (IRF)-3 (33, 34), IRF-7, and -8 (35–38), and the T cell receptor zeta-chain (CD247) (26) which are involved in innate and adaptive immune system.

TYPE I IFNS AND SSC

Type I IFNs are important key regulators of the innate immune system. They modulate immune cell differentiation and proliferation, as well as inflammatory cytokine production. Recent studies have provided considerable evidence that implicates a dysregulation in type I IFN and IFN-inducible genes in the pathophysiology of autoimmune diseases including SSC (39–43). SSC shares this common characteristic with systemic lupus erythematosus (SLE) (44). Anti-IFNα mAb, sifalimumab, was evaluated in a phase Ia study on the other absolute number and proportion of NK T cells were decreased in patients with SSC which possibly can lead to down-regulation of the normal immune response (23). Altogether, these observations implicate a dysregulated immune system in the pathogenesis of SSC.

In line with those observations, large efforts have been made to find the genetic risk factors for abnormal immune system in SSC. These studies independently replicated genetic risk factors such as STAT4 (24–26), HLA (27–30), BANK1 (31, 32), Interferon regulatory factor (IRF)-3 (33, 34), IRF-7, and -8 (35–38), and the T cell receptor zeta-chain (CD247) (26) which are involved in innate and adaptive immune system.

INTERFERON REGULATORY FACTORS AND SSC

Interferon regulatory factors are best characterized as transcriptional regulators of type I IFNs and IFN-inducible genes and play a pivotal role in regulation of many facets of innate and adaptive immune response (57). This family is composed of nine members: IRF1, IRF2, IRF3, IRF4 (also known as ICSBP), IRF5, IRF6, IRF7, IRF8 (also known as ICSBP), and IRF9 (also known as ISGF3γ) (58, 59). As transcriptional factors, each IRF contains a well-conserved DNA-binding domain which is located at the amino terminus and forms a helix-turn-helix-motif. This region recognizes a consensus DNA sequence known as the IFN-stimulated response element (ISRE) in the promoters of targeted genes (59–61). These IRFs coordinate the expression of type I IFNs and type I IFN-inducible genes (57). Several genetic polymorphisms have been associated with SSC in multiple case-control studies and a few family studies (Table 1). Some of these genetic variants are associated with susceptibility for development of SSC, while others act as disease modifiers. Recent genome-wide association studies (GWASs) also confirmed IRFs as genetic susceptibility loci in autoimmune diseases.
IRF5 is a transcription factor which induces the transcription of IFN-α and other early pro-inflammatory cytokines (62, 63). In vitro experiments have shown that in virus-infected cells, IRF5 is activated by phosphorylation, resulting in nuclear translocation and stimulation of IFN-α (64). Initial analysis of the role of IRF5 in the innate antiviral response utilizing IRF5 mutant mice showed impairment of interleukin-6 (IL-6) and TNF-α production in splenic dendritic cells. IRF5 mutant mice are highly sensitive to viral infection and show lower levels of type I IFN in the serum. IFN production was also impaired in the infected macrophages from IRF5 mutant mice (65, 66). Genetic variants of IRF5 are associated with SSc susceptibility (67–69).

The minor allele of the IRF5 single-nucleotide polymorphism (SNP) rs4728142 was shown to be predictive of longer survival in the two independent SSc cohorts. The association of this SNP with survival was independent of age at disease onset, disease type, and autoantibody profiles (33). This minor allele was also associated with lower IRF5 transcript expression in monocytes of patients and controls suggesting functional relevance of rs4728142 or its associated SNPs for IRF5 expression.

IRF7 is one of transcription factors involved in IFN signaling pathways which is activated by TLRs TLR3/7/9 or retinoic acid-inducible gene 1 (RIG-1) in response to nucleic acid (both DNA and RNA) immune complexes. Activated IRF7 leads to secretion of a large amount of type I IFN (70). Its expression can potentially be enhanced via a positive feedback loop through IFN receptor and ISGF3 activation, leading to increased IRF7 over-expression and enhanced via a positive feedback loop through IFN receptor and ISGF3 activation, leading to increased IRF7 over-expression and increased IFNα production (71). IRF7 is essential for the induction of IFN-α/β genes via the virus-activated, MyD88-independent pathway and the TLR-activated, MyD88-dependent pathway (72). Inactive IRF7 resides in the cytoplasm. With pathogenic stimulation, IRF7 is phosphorylated, activated, and translocated into the nucleus, where it forms a transcriptional complex with other co-activators and binds to promoter regions of target genes including IFN-α/β (73, 74). IRF7 also regulates the pro-inflammatory cytokine IL-6 in pDCs and monocytes (75, 76). The viral induction of MyD88-independent IFN-α/β genes is severely impaired in IRF7 null fibroblasts. Consistently, markedly decreased serum IFN-α level were also observed in IRF7 null mice (72). These studies demonstrated the importance of IRF7 dependent systemic IFN response for the innate immunity. Furthermore, recent genetic studies have established IRF7 as a susceptibility locus in SLE (77–80). Similarly, our group recently reported that a functional variant in the IRF7 exon region, rs1131665 was associated with SSc (35). These findings support that IRF7 may represent a common risk factor for systemic autoimmune disease processes, including SSc. Microarray studies revealed up-regulation of IRF7 mRNA level in whole peripheral blood cells from SSc patients with early diseases (40). Another independent study showed no statistically significant difference in IRF7 transcript levels in PBMCs of SSc patients compared to controls by quantitative PCR analysis (81). However, patients with late stage disease and a smaller sample size were investigated in this study. Further investigations are needed to determine the contributory role of IRF7 in pathogenesis of SSc.

IRF8 is another immune cell specific IRF family member. It participates in the MyD88-dependent signaling pathway through interaction with TRAF6 (82). IRF8 is required for the induction of Type I IFN genes by viruses and TLR ligands in DCs (83). IRF8 is known to be involved in the development of dendritic cells (84). IRF8 also promotes B cell differentiation (85). Recently, the IRF8 SNP rs11462873 was identified as a risk factor for limited and anti-centromere positive SSc patients in a large GWAS follow-up study conducted in European and North-American cohorts (36). Another independent study identified rs2280381 polymorphism in IRF8 as a susceptibility locus of SSc in the Japanese population (37). The association of IRF8 genetic variants with SSc supports possible involvement of B cells and dendritic cells in the development of SSc. However, the role and importance of B cells or dendritic cells in the fibrotic component of SSc has not been well established (86–88).

Further fine-mapping and functional studies are crucial for elucidating the role of genetic variants in the IRFs in the pathogenesis of SSc.

INTERFERON INDUCIBLE CYTOKINES AND CHEMOKINES IN SCLERODERMA

Interleukin-6 is one of the most prominent cytokines activated by IFN pathway. It is involved in the pathogenesis of many immune-mediated diseases including SSc (89–91). IL-6 is a classic inflammatory cytokine produced by various cells and involved in B cell differentiation, induction of acute phase proteins in liver cells, proliferation, and differentiation of T cells (92, 93). By binding to the IL-6 receptor (IL-6R)-α chain and the signal transducing component gp130 (CD130), pleiotropic IL-6 activates downstream signaling mediated by STAT1 or STAT3 through tyrosine phosphorylation. Previous studies have shown that IL-6 plays an important role in the initiation and promotion of fibrosis (94, 95). Production of IL-6 and soluble IL-6R by cultured peripheral blood mononuclear cells were significantly higher in patients with SSc.

Table 1 | Polymorphisms in the interferon regulatory factors associated with systemic sclerosis.

IRF	Chromosome (human)	Expression cells	SSc associated SNPs	Reference
IRF5	7q32	B cells; DCs; monocytes	rs2004640; rs2280714; rs10954213; rs3757388	Radstake et al. (26), Dieude et al. (31), Sharif et al. (53)
IRF7	11p15.5	B cells; fibroblasts; pDCs; monocytes	rs1131665; rs4963128; rs702966; rs2248614	Carmona et al. (39)
IRF8	16q24.1	B cells; macrophages; CD8α+DCs; pDCs; T cells	rs11642873; rs2280381	Gorlova et al. (36), Terao et al. (37), Martin et al. (38)
and soluble IL-6R levels significantly correlated with the severity of pulmonary fibrosis in patients with SSc (96). Serum IL-6 levels might be predictive of disease progression in Interstitial lung disease associated with SSc (97). IL-6 shifts T cells from regulatory to pathogenic Th17 response (98), and promotes the differentiation of CD4+ cells to a profibrotic Th2 type while suppressing Th1 differentiation (99). IL-6 stimulation induces increased collagen production in dermal fibroblasts (100, 101). These studies demonstrate that IL-6 is involved in the pathogene-
sis of SSc and may contribute to progression of fibrosis and disease severity in SSc.

A combined score of the plasma IFN-inducible chemokines, IFNY-inducible protein 10 (IP-10/CXCL10), and IFN-inducible T cell a chemoattractant (I-TAC/CXCL11) highly correlated with the IFN gene expression signature in SSc patients in the Genetics versus Environment in Scleroderma Outcome Study (GENISOS) cohort study (102). As expected, SSc patients had higher IFN-inducible chemokine scores than age-, gender-, and ethnicity-matched controls. Among 266 SSc patients, the IFN-inducible chemokine score was associated with presence of anti-U1 RNP antibodies while patients with anti-RNA polymerase III antibodies had lower levels of this chemokine score. The lower IFN chemokine levels in patients with anti-RNA polymerase III antibodies might be of important biological significance because these antibodies are associated with presence of diffuse cuta-
neous involvement and absence of severe interstitial lung dis-
ease. The IFN-inducible chemokine score was not associated with disease duration, disease type, or other auto-antibodies. The chemokine score correlated positively with the concomitantly obtained scores on the Medsger Severity Index for muscle, skin, and lung involvement, as well as creatine kinase levels in SSc. There was also a negative correlation with forced vital capacity and dif-
fusing capacity for carbon monoxide. These results support the aforementioned findings that the IFN activation is associated with the more severe form of SSc. There was no significant change observed in the IFN-inducible chemokine score over time in SSc patients. The fact that the IFN chemokine score did not show a consistent trend of change and that it was not associated with dis-
ease duration at the baseline visit indicates that the IFN signature is a stable marker for the more severe subtype of disease rather than a time-dependent immune dysregulation that improves after the initial phase of SSc (102).

CONCLUSION

There are many distinct immunological and molecular mecha-
nisms that can contribute to pathogenesis and progression of SSc. Dysregulated innate and adaptive immune responses are major contributors to fibrosis and disease severity of SSc. This review summarized a possible role of type I IFN and IFN-inducible genes in pathogenesis of SSc, and provides support for a link between type I IFN and fibrosis in SSc. Potential role of type I IFN or IFN-inducible genes as treatment targets or biomark-
ers in SSc need to be further explored. A better understand-
ing of the relationship between type I IFN and fibrosis could bring us closer to the ultimate goal of reversing or slowing the fibrictic process and regenerating the normal end organ tissue in SSc.

ACKNOWLEDGMENTS

Grant support: NIH/NIAMS-K23AR061436 – DoD PR1206877.

REFERENCES

1. Sapadin AN, Esser AC, Fleischma-
er R. Immunopathogenesis of scleroderma – evolving concepts. Mt Sinai J Med (2001) 68(4-
(5):233–42.

2. Mayes MD, Lacey JV Jr, Beebe-
Dimmer J, Gillespie BW, Cooper
B, Laing TJ, et al. Prevalence, inci-
dence, survival, and disease char-
acteristics of systemic sclerosis in a large US population. Arthritis Rheum (2003) 48(8):2246–55. doi:10.1002/art.11073

3. Elhai M, Meune C, Avouac J,
Kahan A, Allanoire Y. Trends in mortality in patients with systemic sclerosis over 40 years: a systematic review and meta-
analysis of cohort studies. Rheumatology (Oxford) (2012) 51(6):1017–26. doi:10.1093/ rheumatology/ker269

4. Platanias LC. Interferons: laboratory to clinic inves-
tigations. Curr Opin Oncol (1995) 7(6):560–5. doi:10.1097/00001622-199511000-00015

5. Stark GR, Kerr IM, Williams
00001622-199511000-00015

6. Paucber K, Cantell K, Henle W.
Quantitative studies on viral interference in suspended L cells. III. Effect of interfering viruses and interferon on the growth rate of cells. Virology (1962) 17:324–34. doi:10.1016/0042-
6822(62)90123-X

7. Kraling BM, Maul GG, Jimenez SA.
Mononuclear cellular infiltrates in clinically involved skin from patients with systemic sclerosis of recent onset predominantly consist of monocytes/macrophages. Pathobiology (1995) 63(1):48–56. doi:10.1159/000163933

8. Ishikawa O, Ishikawa H.
Macrophage infiltration in the skin of patients with systemic sclerosis. J Rheumatol (1992) 19(8):1202–6.

9. Prescott BJ, Freemont AL, Jones CI, Høyland J, Fielding P. Sequential dermal microvascular and perivas-
cular changes in the development of scleroderma. J Pathol (1992) 166(3):255–63. doi:10.1002/path.
171160307

10. Roumm AD, Whiteside TL,
Medger TA Jr., Rodnan GP.
Lymphocytes in the skin of patients with progressive systemic sclerosis. Quantifica-
tion, subtyping, and clinical correlations. Arthritis Rheum (1984) 27(6):645–53. doi:10.1002/art.1780270607

11. Fiocco U, Rosada M, Cozzi L,
Ortolani C, De Silvestro G, Ruff-
fatti A, et al. Early phenotypic activi-
tation of circulating helper mem-
ory T cells in scleroderma: cor-
relation with disease activity. Ann Rheum Dis (1993) 52(4):272–7. doi:10.1136/ard.52.4.272

12. Higashi-Kuwata N, Makino T,
Inoue Y, Takeya M, Ihn H. Alter-
natively activated macrophages (M2 macrophages) in the skin of patient with localized scleroderma. Exp Dermatol (2009) 18(8):727–9. doi:10.1111/j.1600-
6265.2008.08028.x

13. Andrews BS, Fruin GI, Berman MA, Sandborg CI, Mirick GR, Cesario TC. Changes in circulat-
ing monocytes in patients with progressive systemic sclerosis. J Rheumatol (1987) 14(5):930–5.

14. Anders HJ, Ryu M. Renal macro-
environment and macrophage pheno-
types determine progression or resolution of renal inflam-
mation and fibrosis. Kidney Int (2011) 80(9):915–25. doi:10.1038/ ki.2011.217

15. Gordon S. Alternative activation of macrophages. Nat Rev Immunol (2003) 3(1):23–35. doi:10.1038/ nri978

16. Martinez FO, Gordon S, Locati
M, Mantovani A. Transcriptional profiling of the human monocyte-
to-macrophage differentiation and polarization: new molecules and patterns of gene expres-
sion. J Immunol (2006) 177(10):
7303–11.

17. Higashi-Kuwata N, Jinnin M,
Makino T, Fukushina S, Inoue Y, Muchemwa FC, et al. Character-
ization of monocyte/macrophage subsets in the skin and periph-
eral blood derived from patients with systemic sclerosis. Arthritis Res Ther (2010) 12(4):R128. doi:
10.1186/ar3066

18. Nakayama W, Jinnin M, Makino K,
Kajihara I, Makino T, Fukushina S, Inoue Y, Muchemwa FC, et al. Characterization of monocyte/macrophage subsets in the skin and periph-
eral blood derived from patients with systemic sclerosis. Arthritis Res Ther (2012) 14(2):R3. doi:10.1186/ ar3066

19. Frontiers in Immunology | Molecular Innate Immunity
locus for systemic sclerosis and has additive effects with BANK1: results from a large French cohort and meta-analysis. *Arthritis Rheum* (2011) 63(7):2091–6. doi: 10.1002/art.30379

29. Gourh P, Agarwal SK, Martin E, Divecchia D, Rueda B, Huntting K, et al. Association of the COL13A1-BLK region with systemic sclerosis in North-American and European populations. *J Autoimmun* (2010) 34(2):155–62. doi: 10.1016/j.jaut.2009.08.014

30. Io I, Kawaguchi Y, Kawasaki A, Hasegawa M, Ohashi J, Kawamoto M, et al. Association of the FAM167A-BLK region with systemic sclerosis. *Arthritis Rheum* (2010) 62(3):890–5. doi: 10.1002/art.27303

31. Dieude P, Wipff J, Guédi M, Ruiz B, Melchers I, Hachulla E, et al. BANK1 is a genetic risk factor for diffuse cutaneous systemic sclerosis and has additive effects with IRES5 and STAT4. *Arthritis Rheum* (2009) 60(11):3447–54. doi: 10.1002/art.24885

32. Rueda B, Gourh P, Broen JC, Agarwal SK, Simeon C, Ortega-Centeno N, et al. BANK1 functional variant is associated with susceptibility to diffuse systemic sclerosis in caucasians. *Ann Rheum Dis* (2010) 69(4):700–5. doi: 10.1136/ard.2009.118174

33. Sharif R, Hayes MD, Tan FK, Gorlova OY, Hummers LK, Shah AA, et al. IRF5 polymorphism predicts prognostic indicators in patients with systemic sclerosis. *Ann Rheum Dis* (2012) 71(7):1197–202. doi: 10.1136/annrheumdis-2011-200901

34. Dieude P, Guéddj M, Wipff J, Avouac J, Fajardy I, Diet E, et al. Association between the IRF5 rs2046460 functional polymorphism and systemic sclerosis: a new perspective for pulmonary fibrosis. *Arthritis Rheum* (2009) 60(11):2253–33. doi: 10.1002/art.24183

35. Carmona FD, Gutal R, Simeon CP, Carrera P, Ortego-Centeno N, Vicente-Rabanales E, et al. Novel identification of the IRF7 region as an antinuclear autoantibody propensity locus in systemic sclerosis. *Arthritis Rheum* (2012) 71(1):114–9. doi: 10.1002/art.30371

36. Gorlova O, Martin JE, Rueda B, EuroSclerodema patients with systemic sclerosis. *Clin Exp Rheumatol* (2011) 29(5):839–42.

37. Coustet B, Dieude P, Guedi M, Bouaziz M, Avouac J, Ruiz B, et al. COL13A1-BLK is a genetic risk factor for systemic sclerosis and has additive effects with BANK1: results from a large French cohort and meta-analysis. *Arthritis Rheum* (2011) 63(7):2091–6. doi: 10.1002/art.30379

29. Gourh P, Agarwal SK, Martin E, Divecchia D, Rueda B, Huntting K, et al. Association of the COL13A1-BLK region with systemic sclerosis in North-American and European populations. *J Autoimmun* (2010) 34(2):155–62. doi: 10.1016/j.jaut.2009.08.014

30. Io I, Kawaguchi Y, Kawasaki A, Hasegawa M, Ohashi J, Kawamoto M, et al. Association of the FAM167A-BLK region with systemic sclerosis. *Arthritis Rheum* (2010) 62(3):890–5. doi: 10.1002/art.27303

31. Dieude P, Wipff J, Guédi M, Ruiz B, Melchers I, Hachulla E, et al. BANK1 is a genetic risk factor for diffuse cutaneous systemic sclerosis and has additive effects with IRES5 and STAT4. *Arthritis Rheum* (2009) 60(11):3447–54. doi: 10.1002/art.24885

32. Rueda B, Gourh P, Broen JC, Agarwal SK, Simeon C, Ortega-Centeno N, et al. BANK1 functional variant is associated with susceptibility to diffuse systemic sclerosis in caucasians. *Ann Rheum Dis* (2010) 69(4):700–5. doi: 10.1136/ard.2009.118174

33. Sharif R, Hayes MD, Tan FK, Gorlova OY, Hummers LK, Shah AA, et al. IRF5 polymorphism predicts prognostic indicators in patients with systemic sclerosis. *Ann Rheum Dis* (2012) 71(7):1197–202. doi: 10.1136/annrheumdis-2011-200901

34. Dieude P, Guéddj M, Wipff J, Avouac J, Fajardy I, Diet E, et al. Association between the IRF5 rs2046460 functional polymorphism and systemic sclerosis: a new perspective for pulmonary fibrosis. *Arthritis Rheum* (2009) 60(11):2253–33. doi: 10.1002/art.24183

35. Carmona FD, Gutal R, Simeon CP, Carrera P, Ortego-Centeno N, Vicente-Rabanales E, et al. Novel identification of the IRF7 region as an antinuclear autoantibody propensity locus in systemic sclerosis. *Arthritis Rheum* (2012) 71(1):114–9. doi: 10.1002/art.30371

36. Gorlova O, Martin JE, Rueda B, EuroSclerodema patients with systemic sclerosis. *Clin Exp Rheumatol* (2011) 29(5):839–42.

37. Coustet B, Dieude P, Guedi M, Bouaziz M, Avouac J, Ruiz B, et al. COL13A1-BLK is a genetic risk factor for systemic sclerosis and has additive effects with BANK1: results from a large French cohort and meta-analysis. *Arthritis Rheum* (2011) 63(7):2091–6. doi: 10.1002/art.30379

29. Gourh P, Agarwal SK, Martin E, Divecchia D, Rueda B, Huntting K, et al. Association of the COL13A1-BLK region with systemic sclerosis in North-American and European populations. *J Autoimmun* (2010) 34(2):155–62. doi: 10.1016/j.jaut.2009.08.014

30. Io I, Kawaguchi Y, Kawasaki A, Hasegawa M, Ohashi J, Kawamoto M, et al. Association of the FAM167A-BLK region with systemic sclerosis. *Arthritis Rheum* (2010) 62(3):890–5. doi: 10.1002/art.27303

31. Dieude P, Wipff J, Guédi M, Ruiz B, Melchers I, Hachulla E, et al. BANK1 is a genetic risk factor for diffuse cutaneous systemic sclerosis and has additive effects with IRES5 and STAT4. *Arthritis Rheum* (2009) 60(11):3447–54. doi: 10.1002/art.24885

32. Rueda B, Gourh P, Broen JC, Agarwal SK, Simeon C, Ortega-Centeno N, et al. BANK1 functional variant is associated with susceptibility to diffuse systemic sclerosis in caucasians. *Ann Rheum Dis* (2010) 69(4):700–5. doi: 10.1136/ard.2009.118174

33. Sharif R, Hayes MD, Tan FK, Gorlova OY, Hummers LK, Shah AA, et al. IRF5 polymorphism predicts prognostic indicators in patients with systemic sclerosis. *Ann Rheum Dis* (2012) 71(7):1197–202. doi: 10.1136/annrheumdis-2011-200901

34. Dieude P, Guéddj M, Wipff J, Avouac J, Fajardy I, Diet E, et al. Association between the IRF5 rs2046460 functional polymorphism and systemic sclerosis: a new perspective for pulmonary fibrosis. *Arthritis Rheum* (2009) 60(11):2253–33. doi: 10.1002/art.24183

35. Carmona FD, Gutal R, Simeon CP, Carrera P, Ortego-Centeno N, Vicente-Rabanales E, et al. Novel identification of the IRF7 region as an antinuclear autoantibody propensity locus in systemic sclerosis. *Arthritis Rheum* (2012) 71(1):114–9. doi: 10.1002/art.30371

36. Gorlova O, Martin JE, Rueda B, EuroSclerodema patients with systemic sclerosis. *Clin Exp Rheumatol* (2011) 29(5):839–42.
erythematous plasma and associations with anti-RNA binding protein autoantibodies. Arthritis Rheum (2006) 54(6):1906-16. doi: 10.1002/art.21890

53. Van der Pouw Kraan TC, Wijbrandts CA, van Baarsen LG, Voskuyl AE, Ruttenberg F, Baggen JM, et al. Rheumatoid arthritis subtypes identified by genomic profiling of peripheral blood cells: assignment of a type I interferon signature in a subpopulation of patients. Ann Rheum Dis (2007) 66(8):1008-14. doi:10.1136/ard.2006.063412

54. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol (2010) 11(5):573-84. doi:10.1038/ni.1683

55. Bhattacharyya S, Kelley K, Melchian DS, Tamaoki Z, Fang F, Su Y, et al. Toll-like receptor 4 signaling augments transforming growth factor-beta responses: a novel mechanism for maintaining and amplifying fibrosis in scleroderma. Am J Pathol (2013) 182(1):192–205. doi:10.1016/j.ajpath.2012.09.007

56. Agarwal SK, Wu M, Livingston CR, Parks DH, Mayes MD, Arnett FC, et al. Toll-like receptor 3 upregulation by type I interferon in healthy and scleroderma dermal fibroblasts. Arthritis Rheus Ther (2011) 13(1):R3. doi:10.1186/ar3221

57. Tamura T, Yanai H, Savitsky D, Taniguchi T. The IRF family transcription factors in immunity and oncogenesis. Ann Rev Immunol (2008) 26:535–84. doi:10.1146/annurev.immunol.26.021607.090040

58. Mamanee Y, Heybroeck C, Genin P, Algarte M, Servant MJ, LePage C, et al. Interferon regulatory factors: the next generation. Gene (1999) 237(1):1–14. doi:10.1016/S0378-1119(99)00262-0

59. Taniguchi T, Ogasawara K, Takaoka A, Tanaka N. IRF family of transcription factors as regulators of host defense. Ann Rev Immunol (2001) 19:623-55. doi:10.1146/annurev.immunol.19.1.623

60. Platania LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol (2005) 5(5):375–86. doi:10.1038/nri1540

61. Decker T, Muller M, Stockinger S. The yin and yang of type I interferon activity in bacterial infection. Nat Rev Immunol (2005) 5(8):675–87. doi:10.1038/nri1684

62. Barnes BJ, Richards J, Mancl M, Hanash S, Bertelli E, Pitia PM. Global and distinct targets of IRF-5 and IRF-7 during innate response to viral infection. J Biol Chem (2004) 279(43):45194–207. doi:10.1074/jbc.M40726200

63. Barnes BJ, Kellum MJ, Pinder KE, Frisancho JA, Pitia PM. Interferon regulatory factor 5, a novel mediator of cell cycle arrest and cell death. Cancer Res (2003) 63(19):6424–31.

64. Barnes BJ, Moore PA, Pitia PM. Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon alpha genes. J Biol Chem (2001) 276(26):23382–90. doi:10.1074/jbc.M101216200

65. Honda K, Taniguchi T. IRFs: master regulators of signalling by toll-like receptors and cytokine pattern-recognition receptors. Nat Rev Immunol (2006) 6(9):644–58. doi:10.1038/nri1900

66. Takaoka A, Yanai H, Kondo S, Duncan G, Negishi H, Mizutani T, et al. Integral role of IRF-5 in the gene induction programme activated by toll-like receptor 3. Nature (2005) 434(7030):243–8. doi:10.1038/nature03308

67. Dieude P, Guerdj M, Wipff J, Ruiz B, Hachulla E, Ito S, Hayashi T, Kusaoi M, et al. Association of a functional IRF7 variant with systemic lupus erythematosus. Arthritis Rheum (2011) 63(5):749–54. doi:10.1002/art.30193

68. De Oliveira DB, Almeida GM, Guedes AC, Santos FF, Bonnardum CA, Ferreira PC, et al. Basal activation of type I interferons (alpha2 and beta) and beta 2’5’OAS genes: insights into differential expression profiles of interferon system components in systemic sclerosis. Int J Rheumatol (2011) 2011:275617. doi:10.1155/2011/275617

69. Zhao J, Kong HJ, Li H, Huang B, Yang M, Zhu C, et al. IRF-8/interferon (IFN) consensus sequence-binding protein is involved in toll-like receptor (TLR) signaling and contributes to the cross-talk between TLR and IFN-gamma signaling pathways. J Biol Chem (2006) 281(15):10073–80. doi:10.1074/jbc.M507788200

70. Tailor P, Tamura T, Kong HJ, Kubota T, Kubota M, Berghi P, et al. The feedback phase of type I interferon induction in dendritic cells requires interferon regulatory factor 8. Immunity (2007) 27(2):228–39. doi:10.1016/j.immuni.2007.06.009

71. Hambleton S, Salem S, Bus-tamtante J, Bigley V, Boisson-Dupuis S, Azévedo J, et al. IRF8 mutations and human dendritic cell immunodeficiency. N Engl J Med (2011) 365(2):127–38. doi:10.1056/NEJMoai1100066

72. Lu R, Merkoci-KL, Lanzki DW, Singh H. IRF-4 & 8 orchestrate the pre-B-to-B transition in lymphocyte development. Gene Dev (2003) 17(14):1703–8. doi:10.1101/gad.1104803

73. Whitfield ML, Finlay DR, Murray JJ, Troyanskaya OG, Chi JT, Pergamenschikov A, et al. Systemic and cell-type-specific gene expression patterns in scleroderma skin. Proc Natl Acad Sci U S A (2003) 100(21):12319–24. doi:10.1073/pnas.1635114100

74. Lafayris R, Kissin E, York M, Farina G, Viger K, Fritzer MJ, et al. B cell depletion with rituximab in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheum (2005) 52(2):528–73. doi:10.1002/art.22429

75. Smith V, Van Praet JT, Vandooren B, Van der Cruyssen B, Naeyaert JM, Decuman S, et al. Rituximab in diffuse cutaneous systemic sclerosis, 2013 | Volume 4 | Article 266 | 6
sclerosis: an open-label clinical and histopathological study. *Ann Rheum Dis* (2010) 69(1):193–7. doi:10.1136/ard.2008.095463
89. Sfrent-Cornateanu R, Mihai C, Balan S, Ionescu R, Moldoveanu E. The IL-6 promoter polymorphism is associated with disease activity and disability in systemic sclerosis. *J Cell Mol Med* (2006) 10(4):955–9. doi:10.2755/jcmm010.004.08
90. Lee YH, Lee HS, Choi SJ, Ji JD, Song GG. The association between interleukin-6 polymorphisms and systemic lupus erythematosus: a meta-analysis. *Lupus* (2012) 21(1):60–7. doi:10.1177/0961203311422711
91. Madhok R, Crilly A, Watson J, Capell HA. Serum interleukin 6 levels in rheumatoid arthritis: correlations with clinical and laboratory indices of disease activity. *Ann Rheum Dis* (1993) 52(3):232–4. doi:10.1136/ard.52.3.232
92. Kishimoto T, Hirano T. Molecular regulation of B lymphocyte response. *Annu Rev Immunol* (1988) 6:485–512. doi:10.1146/annurev.im.06.040188.002413
93. Hirano T. Interleukin-6 and its relation to inflammation and disease. *Clin Immunol Immunopathol* (1992) 62(1Pt 2):560–5. doi:10.1016/0192-2236(92)90042-M
94. Qiu Z, Fujimura M, Kiarashima K, Nakao S, Mukaida N. Enhanced airway inflammation and decreased subepithelial fibrosis in interleukin 6-deficient mice following chronic exposure to aerosolized antigen. *Clin Exp Allergy* (2004) 34(8):1321–8. doi:10.1111/j.1365-2222.2004.02013.x
95. Saito F, Tasaka S, Inoue K, Miyamoto K, Nakano Y, Ogawa Y, et al. Role of interleukin-6 in bleomycin-induced lung inflammatory changes in mice. *Am J Respir Cell Mol Biol* (2008) 38(5):566–71. doi:10.1165/rcmb.2007-0299OC
96. Hasegawa M, Sato S, Ihn H, Takehara K. Enhanced production of interleukin-6 (IL-6), oncostatin M and soluble IL-6 receptor by cultured peripheral blood mononuclear cells from patients with systemic sclerosis. *Rheumatology* (Oxford) (1999) 38(7):612–7. doi:10.1093/rheumatology/38.7.612
97. De Lauretis A, Sestini P, Pantelidis P, Hoyles R, Hansell DM, Goh NS, et al. Serum interleukin 6 is predictive of early functional decline and mortality in interstitial lung disease associated with systemic sclerosis. *J Rheumatol* (2013) 40(4):435–46. doi:10.3899/jrheum.120725
98. Laurence A, O’Shea JJ. T(H)-17 differentiation: of mice and men. *Nat Immunol* (2007) 8(9):903–5. doi:10.1038/ni0907-903
99. Glimcher LH, Murphy KM. Lineage commitment in the immune system: the T helper lymphocyte grows up. *Genes Dev* (2000) 14(14):1693–711.
100. Kondo K, Okada T, Matsui T, Kato S, Date K, Yashihara M, et al. Establishment and characterization of a human B cell line from the lung tissue of a patient with scleroderma: extraordinary high level of IL-6 secretion by stimulated fibroblasts. *Cytokine* (2001) 13(4):220–6. doi:10.1006/cyto.2000.0822
101. Duncan MR, Berman B. Stimulation of collagen and glycosaminoglycan production in cultured human adult dermal fibroblasts by recombinant human interleukin 6. *J Invest Dermatol* (1991) 97(4):686–92. doi:10.1111/1523-1747.ep1248371
102. Liu X, Mayes MD, Tan FK, Wu M, Reveille JD, Harper BE, et al. Correlation of interferon-inducible chemokine plasma levels with disease severity in systemic sclerosis. *Arthritis Rheum* (2013) 65(1):226–35. doi:10.1002/art.37742

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 15 June 2013, paper pending published: 10 July 2013; accepted: 19 August 2013; published online: 06 September 2013.

Citation: Wu M and Assassi S (2013) The role of type I interferon in systemic sclerosis. *Front. Immunol.* 4:266. doi: 10.3389/fimmu.2013.00266

This article was submitted to Molecular Innate Immunity, a section of the journal Frontiers in Immunology. Copyright © 2013 Wu and Assassi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.