ABSTRACT

Objective Costs for radiation therapy (rt) and the methods used to cost rt are highly diverse across the literature. To date, no study has compared various costing methods in detail. Our objective was to perform a thorough review of the radiation costing literature to identify sources of costs and methods used.

Methods A systematic review of Ovid medline, Ovid oldmedline, embase, Ovid HealthStar, and EconLit from 2005 to 23 March 2015 used search terms such as “radiation,” “radiotherapy,” “neoplasm,” “cost,” “cost analysis,” and “cost benefit analysis” to locate relevant articles. Original papers were reviewed for detailed costing methods. Cost sources and methods were extracted for papers investigating rt modalities, including three-dimensional conformal rt (3D-crt), intensity-modulated rt (imrt), stereotactic body rt (sbrt), and brachytherapy (bt). All costs were translated into 2014 U.S. dollars.

Results Most of the studies (91%) reported in the 33 articles retrieved provided rt costs from the health system perspective. The cost of rt ranged from US$2,687.87 to US$111,900.60 per treatment for imrt, followed by US$5,583.28 to US$90,055 for 3D-crt, US$10,544.22 to US$78,667.40 for bt, and US$6,520.58 to US$19,602.68 for sbrt. Cost drivers were professional or personnel costs and the cost of rt treatment. Most studies did not address the cost of rt equipment (85%) and institutional or facility costs (66%).

Conclusions Costing methods and sources were widely variable across studies, highlighting the need for consistency in the reporting of rt costs. More work to promote comparability and consistency across studies is needed.

Key Words Radiation therapy, costs, cost analyses, cost-effectiveness analyses, cost–benefit analyses

INTRODUCTION

Based on the World Health Organization’s World Cancer Report 2014, the burden of cancer rose to approximately 14 million incident cases per year in 2012 and is expected to rise to 22 million annually by the mid-2030s. Given this striking increase in incident cancer cases, it becomes imperative to properly manage finances and resources for timely and appropriate patient care.

An integral part of cancer treatment is radiation therapy (rt). Approximately 50% of all cancer patients will receive rt at some point during the course of their treatment. Using ionizing and non-ionizing radiation, rt kills cells or damages dna to prevent cancerous cell growth. Delivery of rt can be achieved using various clinical procedures: three-dimensional conformal rt (3D-crt), intensity-modulated rt (imrt), stereotactic body rt (sbrt), brachytherapy (bt), and so on. The end goal of rt is to cure or shrink early-stage cancer, to prevent cancer recurrence, and to treat symptoms caused by advanced cancer.

Radiation therapy requires high capital expenditure and is staff- and resource-intensive. Because the costs associated with health systems have to be economically sustainable, cost becomes an important factor to take into consideration. Given that health care costs are consuming a rising share of government budgets, understanding the true costs of rt, a procedure so common and so necessary in cancer treatment, is important for managing drivers related to cancer costs. Internationally, the operationalization, definition, and costs of rt show large variation, which emphasizes the importance of using rigorous evidence-based methods to develop an accurate...
representation of the cost of \(rt^2 \). Methods for costing \(rt \) are inconsistent, making it difficult to compare and contrast \(rt \) costs and to determine their accuracy.

The objective of the present study was to conduct a systematic review of the literature to critically assess various \(rt \) costing methods for various cancer types. Specific costs and sources of costs were identified for each study, as were the costing methods used.

METHODS

Database Search
A systematic review of the published literature identified studies assessing the costs of \(rt \) in any type of cancer (Figure 1). A number of electronic databases were used:

- **MEDLINE** (resources from 1946 onward) and Ovid **OLDMEDLINE** were searched for the combined terms “radiation,” “neoplasm,” “cost,” and “cost analysis”;
- **EMBASE** (resources from 1974 onward) was searched for the combined terms “radiotherapy,” “neoplasm,” and “cost effectiveness analysis” or “cost benefit analysis”;
- **Ovid HealthStar** (resources from 1966 onward) was searched for the combined terms “radiation,” “neoplasm,” “cost,” and “cost analysis”; and
- a basic search of the EconLit database for “cost of radiotherapy” was also performed. All searches (excluding EconLit) were limited to studies with human subjects and were searched for the years from 2005 to 23 March 2015. Searches of Ovid **MEDLINE**, EMBASE, EconLit, and Ovid HealthStar were limited to the English language.

FIGURE 1 Flowchart of study selection process. RT = radiation therapy; 3D-CRT = 3-dimensional conformal RT; IMRT = intensity-modulated RT; SBRT = stereotactic body RT; BT = brachytherapy; 4D = 4-dimensional.
Study Selection Studies selected for inclusion had to have provided the cost of rt for any type of cancer. No geographic restrictions were used. The method used for determining costs had to be documented in enough detail to outline the resources for or the sources of the costs (or both) used to cost rt and could come from burden-of-illness studies or comparative analyses. Abstracts were further reviewed, and the studies were included if they investigated at least one of 3D-crt, IMRT, SBRT, RT, or if they mentioned rt in general; studies were excluded if they assessed chemoradiation, radiosurgery, or Calypso 4D (Varian Medical Systems, Palo Alto, CA, U.S.A.). To remain current, studies published before 2005 were excluded. Review articles were also excluded, but were checked for relevant articles within the reference sections. Duplicates and studies that lacked relevant content were also excluded.

Data Extraction The selected articles were thoroughly reviewed (FR, SJS, SYC), and any study-relevant methods—such as patient population, modality, costing method, cost of the various modalities of rt, costing source or sources, costing outcome measures, and year of costs—were extracted. The extracted information was amalgamated into a comprehensive table and critically analyzed for the purposes of the present study. Using the Consumer Price Index, the cost per treatment for each rt modality was inflated to 2014 U.S. dollars for comparison purposes.

RESULTS

Study Characteristics Ovid Medline and Ovid Old Medline generated 268 results, EMBASE produced 206 results, Ovid HealthStar produced 256 results, and EconLit generated 11 results. Of the 741 studies located, 304 were duplicates and were removed. Of the 437 remaining studies, 386 were removed because of lack of relevant content, and another 18 were removed because only abstracts were available (Figure 1). Of the thirty-three original articles included in the analysis, twenty-seven had been conducted in the United States (one of which used international data), four were from Canada, and two were from the Netherlands.

Methods in the Included Studies The costing methods varied widely in the articles reviewed, largely because of the perspective from which the costs were reported (that is, reimbursed costs, charged costs, billed costs, and so on) and also because of the data sources and components included in determining the overall cost of rt.

Of the thirty-three studies considered, thirty (91%) used costing methods that took a health care perspective (that is, Medicare for U.S. studies, and provincial ministry of health for Canadian studies); the remaining three took a societal perspective.

A detailed review of the costing components for rt can be found in Tables 1 and 2. Approximately 94% of the studies reported rt costs for a course of treatment. Two others were reported at more granular levels: one reported at a per-fraction level and one was based on radiation episodes of care. The disease site most often evaluated in rt costing studies was prostate cancer (39%) followed by breast cancer (18%), non-small-cell lung cancer (12%), head-and-neck cancer (9%), cervical cancer (6%), and other sites (bone metastases, metastatic epidural spinal cord, oropharyngeal cancer, or squamous cell cancer of the anus). Thirteen studies used original costing data to conduct the costing analysis, and the remaining twenty studies modelled outcomes using hypothetical patient cohorts.

In the determination of rt costs, almost all studies included professional or physician fees in their cost analyses, which consisted of personnel such as physicians, radiation oncologists, physicists, and nurses. All studies included treatment and planning costs, per the objective of the study. Only 33% of the studies incorporated institution or facility costs into their costing model, which most often included inpatient, outpatient, and technical costs of the hospital. Only five studies (15%) included equipment costs in their cost analyses (that is, computed tomography scanner and planning system, capital cost, specialized construction cost, and maintenance and operating costs of the radiation equipment). Most studies accounted for other costs (overhead, administration, and so on), which included minor equipment such as port films, immobilization devices, multileaf collimator, and other complex treatment devices; however, ten studies did not account for such items in their costing method.

As shown in Figure 2, twenty-two studies provided costs for IMRT, sixteen, for 3D-crt; and six, for SBRT. A number of studies also costed other modalities of rt (rt in general, whole-breast radiation, external-beam partial-breast irradiation, etc.), which are excluded from Figure 2 because they do not fall under the main rt modalities.

Based on modality type, cancer type, and costing components used, costs showed large variability between the studies. The cost for IMRT ranged from US$2,687.87 to US$111,900.60 per treatment, followed by 3D-crt at US$5,583.28 to US$90,055, rt at US$10,544.22 to US$78,667.40, and sbrt at US$6,520.58 to US$19,602.68. Studies by Lanni et al. and Shah et al. included institutional costs in addition to the hospital-specific reimbursement for rt treatment.

DISCUSSION

This literature review was able to retrieve thirty-three papers representing studies conducted over 10 years with the objective of costing rt in a number of cancer types. The results show that costing methods are vastly different across studies and countries, resulting in wide variations in cost estimates for similar treatments. Our findings demonstrate the need for consistent agreed-on costing methods for future economic studies of rt.

A study by Paravati et al. identified sources of variation in rt costing for Medicare beneficiaries with

The document contains a comprehensive review of radiation therapy costing methods, focusing on the methodologies used, the types of costs included, and the results obtained from various studies. It highlights the variability in costing approaches and the need for standardized methods in future economic evaluations.
cancer. Another study by Amin et al. systematically reviewed the literature to identify articles that performed cost-effectiveness analysis of radiation options for prostate cancer to identify the main cost drivers. Both studies also found large variations in the cost of radiation between studies because of factors unrelated to the patient and the

TABLE 1	Radiation costing components for each study					
Disease site	Reference	Professional fees	Equipment	Treatment or planning	Facility or institutional	Other*
Prostate cancer	Konski, 2005¹⁶	X	X	X		
	Konski et al., 2005¹⁵	X	X	X		
	Konski et al., 2006¹⁷	X	X	X		
	Konski et al., 2007¹⁸	X	X	X		
	Perlroth et al., 2010¹¹	X	X	X		
	Hodges et al., 2012¹⁰	X	X	X		
	Perlroth et al., 2012³²	X	X	X		
	Shah et al., 2012²⁴	X	X	X	X	X
	Yong et al., 2012³⁴	X	X	X	X	X
	Eldefrawy et al., 2013⁷	X	X	X	X	
	Haynes et al., 2013⁹	X	X	X		
	Yu et al., 2013²⁹	X				X
	Sher et al., 2014²⁷	X				
Breast cancer	Smith et al., 2011²⁸	X	X			
	Greenup et al., 2012⁸	X	X	X		
	Lanni et al., 2013¹⁹	X	X	X		
	Shah et al., 2013²⁵	X	X	X		
	Sen et al., 2014²²	X	X	X	X	X
	Shah et al., 2014²⁶	X	X	X		
Non-small-cell lung cancer	Lanni et al., 2011²⁰	X	X	X		
	Ramaekers et al., 2013³⁹	X	X	X		
	Shah et al., 2013²³	X	X			
	Mitera et al., 2014²⁷	X	X	X	X	X
Head-and-neck cancer	Kohler et al., 2013¹⁴	X	X	X		
	Ramaekers et al., 2013³⁸	X	X	X		
	Sheets et al., 2014³³	X	X	X		
Cervical cancer	Lesnock et al., 2013²¹	X	X			
	Kim et al., 2015¹¹	X	X			
Others	Furlan et al., 2012³⁶	X	X	X		
	(neoplastic metastatic epidural spinal cord compression)					
	Hess et al., 2012³⁰	X	X	X		
	(bone metastases secondary to breast or prostate cancer)					
	Yong et al., 2012³⁵	X	X	X	X	X
	(oropharyngeal cancer)					
	Hodges et al., 2014¹¹	X	X	X		
	(squamous cell cancer of the anus)					
	Kim et al., 2015¹²	X	X	X		
	(painful vertebral bone metastases)					

* Refers to overhead costs, administrative costs, and so on.
| Reference and disease site | Professional fees | Equipment | Treatment and planning | Facility and institutional | Other a | RT cost details |
|---------------------------|-------------------|-----------|------------------------|--------------------------|--------|-----------------|
| Konski, 2005 b | Medicare reimbursement (professional or physician treatments) | Not available | Assumed treatment b (Medicare reimbursement for technical or hospital treatments) | Medicare reimbursement (technical or hospital treatments) | Not available | Mean Medicare reimbursement (2004 US dollars) IMRT: $24,953 per treatment 3D-CRT: $13,900 per treatment |
| Konski et al., 2005 | 2003 Medicare reimbursements | Not available | 2003 Medicare reimbursements [accounted for technical (hospital fees) and professional components (physician fees)] | Not available | 2003 Medicare reimbursements: | 2003 US dollars RT only: $8117 per treatment RT hormones: $11,219 per treatment |
| Konski et al., 2006 | Medicare reimbursement | Not available | Medicare reimbursement IMRT and 3D-CRT: | Not available | Medicare reimbursement Port films Devices | Using 2004 Medicare conversion factor Treatment costs— IMRT: $38,000 per treatment 3D-CRT: $9,900 per treatment Hospital-based Medicare reimbursement— IMRT: $27,000 per treatment 3D-CRT: $12,800 per treatment |
| Konski et al., 2007 | 2005 resource-based relative value conversion factor | Not available | Assumed treatment b Ambulatory payment classification payment rates (2005) | Ambulatory payment classification payment rates (2005) for technical (hospital) component of the treatment | Not available | 2005 US dollars IMRT: $25,846 Proton-beam therapy: $58,610 per treatment |
| Reference and disease site | Professional fees | Equipment | Treatment and planning | Facility and institutional | Other* | RT cost details |
|---------------------------|------------------|-----------|------------------------|--------------------------|--------|----------------|
| **Prostate cancer** | | | | | | |
| **Perlroth et al., 2010** | Ingenix (private insurance database) | Not available | Assumed treatment^b | Not available | Ingenix (private insurance database) | 2-Year unadjusted mean health expenditures (2004 US dollars) |
| | Physician costs | | | | | Brachytherapy: $67,700 per treatment |
| | | | | | | EBRT: $77,500 per treatment |
| | | | | | | IMRT: $96,300 per treatment |
| **Hodges et al., 2012** | University of Texas Southwestern Medical Center data and CPT codes | Not available | University of Texas Southwestern Medical Center data and CPT codes | Not available | University of Texas Southwestern Medical Center data and CPT codes | 2010 US dollars |
| | Physician | | | | | SBRT: $14,315 per treatment |
| | Physicist | | | | | IMRT: $29,530 per treatment |
| | SBRT costs: | | | | | University of Texas Southwestern Medical Center data (assume same treatment and planning as for IMRT) |
| | Physician costs | | | | | |
| | Planning | | | | | |
| | Simulation | | | | | |
| | Treatment | | | | | |
| | Procedure | | | | | |
| | Immobilization device | | | | | |
| | Beam-modifying device | | | | | |
| | Port films | | | | | |
| **Perlroth et al., 2012** | Ingenix (private insurance database) | Not available | Assumed treatment^c | Not available | Ingenix (private insurance database) | US dollars |
| | Physician costs | | | | | Brachytherapy: $28,600 per treatment |
| | | | | | | EBRT: $18,900 per treatment |
| | | | | | | IMRT: $48,550 per treatment |
| | | | | | | [costs based on first year and assuming base case (conservative management) is $0] |
| Reference and disease site | Professional fees | Equipment | Treatment and planning | Facility and institutional | Other* | RT cost details |
|---------------------------|------------------|-----------|------------------------|--------------------------|----------------|----------------|
| **Prostate cancer** | | | | | | |
| Shah et al., 201224 | | | | | | |
| 2010 Medicare CPT codes using the hospital-based 2010 Medicare Ambulatory Payment Classification | | | | | | |
| Physician fee screen reimbursement rates, staffing requirements, service contracts | | | | | | |
| Equipment requirements | Treatment | Space required to deliver treatment | Technical services | 2010 US dollar Medicare reimbursement: Total institutional cost plus reimbursement (facility + professional) LDR brachytherapy: $2,395+$9,938= $10,582 per treatment HDR brachytherapy: $5,467+$17,514= $21,981 per treatment IMRT: $23,665+29,356= $52,635 per treatment |
| Yong et al., 201224 | Personnel: | Equipment | IMRT and 3D-CRT (based on CVH) | Assumed centre with 3 linear accelerators, performing 1260 cases per year | PMH and CVH: Supplies such as immobilizer and gold seeds Overhead such as department and hospital | 2009 Canadian dollar IMRT: $14,520 per treatment 3D-CRT: $13,501 per treatment |
| 2010 Medicare CPT codes using the hospital-based 2010 Medicare Ambulatory Payment Classification | Personnel: Radiation oncologist, radiation therapist, physicist and nurse (activity-based costing via expert opinion) | IMRT and 3D-CRT (based on CVH) | Assumed centre with 3 linear accelerators, performing 1260 cases per year | PMH and CVH: Supplies such as immobilizer and gold seeds Overhead such as department and hospital | 2009 Canadian dollar IMRT: $14,520 per treatment 3D-CRT: $13,501 per treatment |
| Eldefrawy et al., 20137 | 2010 Medicare reimbursement EBRT: Medical physicist Radiation oncologist Brachytherapy: Medical physicist Radiation oncologist Anesthesiologist | Not available | 2010 mean inpatient cost at institution EBRT: Simulation Planning IMRT Procedure Brachytherapy: Simulation Planning Treatment Dosing | 2010 mean inpatient cost at institution Brachytherapy: Inpatient facility | 2010 mean inpatient cost at institution | 2010 US dollars EBRT: $20,730 per treatment Brachytherapy: $14,061 per treatment |
| Reference and disease site | Professional fees | Equipment | Treatment and planning | Facility and institutional | Other* | RT cost details |
|---------------------------|-------------------|-----------|------------------------|--------------------------|--------|-----------------|
| **Prostate cancer** | | | | | | |
| Hayes et al., 2013⁹ | | Centers for Medicare and Medicaid Services, CPT codes, and ASA units | Centers for Medicare and Medicaid Services, CPT codes, and ASA units | Centers for Medicare and Medicaid Services, CPT codes, and ASA units | | 2012 US dollars |
| | | Not available | Procedure | Inpatient and outpatient direct/indirect costs | 65-Year-old patients—Brachytherapy: $35,374 per treatment IMRT: $48,699 per treatment 75-Year-old patients—Brachytherapy: $28,810 per treatment IMRT: $42,286 per treatment |
| Yu et al., 2013²⁹ | | Physician claims (Medicare) | PRT and IMRT (Medicare): | Not available | Not available | 2008/2009 US costs Proton RT: $32,428 per treatment IMRT: $18,575 per treatment |
| Sher et al., 2014²⁷ | | Physician visit, physics consult (Medicare) | For all modalities (Medicare): | Not available | Not available | 2012 US costs IMRT: $27,564 per treatment Non-robotic SBRT: $10,109 per treatment Robotic SBRT: $19,275 per treatment |
| **Breast cancer** | | | | | | |
| Smith et al., 2011²⁸ | | Physician (Medicare) | Outpatient treatment (Medicare) | Not available | Not available | Mean total costs in 2005 US dollars Non-IMRT: $7,179 per treatment IMRT: $15,230 per treatment |
| Greenup et al., 2012⁸ | 2011 Medicare CPT codes | Not available | 2011 Medicare CPT codes | Not available | 2011 Medicare CPT codes | 2011 US dollars APBI, C-RT, WBRT: $5,342 per treatment C-RT: $9,122 per treatment WBRT: $13,358 per treatment |
| Reference and disease site | Professional fees | Equipment | Treatment and planning | Facility and institutional | Other* | RT cost details |
|---------------------------|-------------------|-----------|------------------------|--------------------------|--------|-----------------|
| **Breast cancer** | | | | | | |
| Lanni et al., 2013¹⁹ | HOPPS 2011 Medicare and Physician Fee Schedule reimbursement rates for professional components | Not available | HOPPS 2011 Medicare and Physician Fee Schedule reimbursement rates for technical components | Not available | Medicare reimbursement | Expected 2011 Medicare reimbursement |
| | | | | | | Whole-breast: |
| | | | | | | $11,725 per treatment |
| | | | | | | Whole-breast IMRT: |
| | | | | | | $20,637 per treatment |
| | | | | | | Whole-breast RT-B: |
| | | | | | | $13,829 per treatment |
| | | | | | | Whole-breast RT-B IMRT: |
| | | | | | | $22,130 per treatment |
| | | | | | | CDN 3D-CRT: |
| | | | | | | $7,826 per treatment |
| | | | | | | CDN IMRT: |
| | | | | | | $13,656 per treatment |
| | | | | | | APBI 3D-CRT: |
| | | | | | | $6,578 per treatment |
| | | | | | | APBI IMRT: |
| | | | | | | $10,547 per treatment |
| | | | | | | APBI-IC single: |
| | | | | | | $12,602 per treatment |
| | | | | | | APBI-IC multiple: |
| | | | | | | $13,506 per treatment |
| Shah et al., 2013²³ | Physics consult and professional reimbursements (Medicare) | Not available | For all RT modalities (Medicare): Simulation, Planning, Treatment, Dosing | Not available | Medicare: Treatment, Devices, Port films, CT radiation guidance | 2011 US costs |
| | | | | | | WBI IMRT: |
| | | | | | | $20,637 per treatment |
| | | | | | | WBI 3D-CRT: |
| | | | | | | $11,726 per treatment |
| | | | | | | APBI IMRT: |
| | | | | | | $10,547 per treatment |
| | | | | | | APBI 3D-CRT: |
| | | | | | | $6,578 per treatment |
| | | | | | | APBI single: |
| | | | | | | $12,602 per treatment |
| | | | | | | APBI multi: |
| | | | | | | $16,438 per treatment |
| | | | | | | APBI interstitial: |
| | | | | | | $11,766 per treatment |
| Reference and disease site | Professional fees | Equipment | Treatment and planning | Facility and institutional | Other* | RT cost details |
|---------------------------|------------------|-----------|------------------------|---------------------------|--------|----------------|
| **Breast cancer** | | | | | | |
| Sen et al., 2014²² | Physician (Medicare) | Durable medical equipment claims (Medicare) | Treatment (Medicare) | Inpatient plus outpatient facility (Medicare) | Home health, hospice (Medicare) | 2012 US costs |
| | | | | | | EBRT: $15,396 per treatment |
| | | | | | | IMRT: $23,605 per treatment |
| | | | | | | Brachytherapy: $23,628 per treatment |
| Shah et al., 2014²⁶ | Professional (Medicare) | Not available | Assumed treatment^b (Medicare) | Facility (Medicare) | Not available | Assume 2010–2012 US costs |
| | | | | | | IORT: $3,094 per treatment |
| | | | | | | Next 6 costs are referenced from Shah et al.,²⁵ |
| | | | | | | WBI 3D-CRT: $11,726 per treatment |
| | | | | | | APBI IMRT: $10,547 per treatment |
| | | | | | | APBI 3D-CRT: $6,578 per treatment |
| | | | | | | APBI single: $12,602 per treatment |
| | | | | | | APBI multi: $16,438 per treatment |
| | | | | | | APBI interstitial: $11,766 per treatment |

Non-small-cell lung cancer	Medicare reimbursement	Not available	Medicare reimbursement	Not available	Medicare reimbursement	2010 US dollars	
Lanni et al., 2011²⁰	Consultation	Planning	Simulation	Treatment	Port films	Devices	Based on average number of fractions
		3D-CRT (35 fractions): $55,705	IMRT (35 fractions): $146,570	SBRT (3 fractions): $48,783			
Reference and disease site	Professional fees	Equipment	Treatment and planning	Facility and institutional	Other*	RT cost details	
---------------------------	-------------------	-----------	------------------------	--------------------------	--------	-----------------	
Non-small-cell lung cancer							
Lanni *et al.*, 2011¹² (continued)			Treatment costs for CRT, VART, MART, HRT-L, and HRT-H: Statistics Netherlands				
Ramaekers *et al.*, 2013¹⁹	Not available	Not available	Treatment costs for CRT, VART, MART, HRT-L, and HRT-H: Statistics Netherlands				
Shah *et al.*, 2013²¹	Physician planning and management, physics planning (Medicare physician fees)	Not available	SBRT (Medicare outpatient payments): Simulation Planning Treatment				
Mitera *et al.*, 2014²⁰⁷	Physician billing codes from Ontario Schedule of Benefits for Physician Services, Direct labour costs determined using Ontario standardized staffing model for radiotherapy (1 radiation oncologist, 1 nurse, 1 physicist, 7 radiation therapists)	2010 provincial costs CT scanner Planning system	Assumed treatment⁹ OCCI hospitalization cost Manufacturer Carbon fibre lung board 2010 provincial costs Abdominal compression board CRT and SBRT (2010 provincial costs): LINAC plus multileaf collimator				
TABLE II Continued

Reference and disease site	Professional fees	Equipment	Treatment and planning	Facility and institutional	Othera	RT cost details
Head-and-neck cancer						
Kohler et al., 201314	2012 Medicare reimbursement payments	Not available	2012 Medicare reimbursement payments	Not available	2012 Medicare reimbursement payments	2012 US dollars
	Nurse, MD		IMRT:			IMRT: $20,606 per treatment
			Simulation, Planning, Treatment, 3D-CRT, Simulation, Planning, Treatment			3D-CRT: $11,336 per treatment
			Port film, Casting-tape head, Multileaf collimator			
			IMRT:			
			Nurse, MD			
			Port film, Casting-tape head, Multileaf collimator			
			IMRT:			
			Nurse, MD			
			Port film, Casting-tape head, Multileaf collimator			
			IMRT:			
			Nurse, MD			
			Port film, Casting-tape head, Multileaf collimator			
			IMRT:			
			Nurse, MD			
			Port film, Casting-tape head, Multileaf collimator			
			IMRT:			
			Nurse, MD			
			Port film, Casting-tape head, Multileaf collimator			
			IMRT:			
			Nurse, MD			
			Port film, Casting-tape head, Multileaf collimator			
			IMRT:			
			Nurse, MD			
			Port film, Casting-tape head, Multileaf collimator			
			IMRT:			
			Nurse, MD			
			Port film, Casting-tape head, Multileaf collimator			
			IMRT:			
			Nurse, MD			
			Port film, Casting-tape head, Multileaf collimator			
			IMRT:			
			Nurse, MD			
			Port film, Casting-tape head, Multileaf collimator			
			IMRT:			
			Nurse, MD			
			Port film, Casting-tape head, Multileaf collimator			
			IMRT:			
			Nurse, MD			
			Port film, Casting-tape head, Multileaf collimator			
			IMRT:			
			Nurse, MD			
			Port film, Casting-tape head, Multileaf collimator			
			IMRT:			
			Nurse, MD			
			Port film, Casting-tape head, Multileaf collimator			
			IMRT:			
			Nurse, MD			
			Port film, Casting-tape head, Multileaf collimator			
			IMRT:			
			Nurse, MD			
			Port film, Casting-tape head, Multileaf collimator			
			IMRT:			
			Nurse, MD			
			Port film, Casting-tape head, Multileaf collimator			
			IMRT:			
			Nurse, MD			
			Port film, Casting-tape head, Multileaf collimator			
			IMRT:			
			Nurse, MD			
			Port film, Casting-tape head, Multileaf collimator			
			IMRT:			
			Nurse, MD			
			Port film, Casting-tape head, Multileaf collimator			
			IMRT:			
			Nurse, MD			
			Port film, Casting-tape head, Multileaf collimator			
			IMRT:			
			Nurse, MD			
			Port film, Casting-tape head, Multileaf collimator			
			IMRT:			
			Nurse, MD			
			Port film, Casting-tape head, Multileaf collimator			

Cervical cancer						
Lesnok et al., 201313	Medicare CPT codes maintained by AMA	Not available	Medicare CPT codes maintained by AMA	Not available	Not available	2009 US dollars
	Provider costs		Radiation planning and delivery of treatment			BOX RT: Planning—$564.69 ($282 to $847)
Reference and disease site	Professional fees	Equipment	Treatment and planning	Facility and institutional	Other	RT cost details
Cervical cancer						
Lesnok et al., 2013²¹ (continued)						

Reference and disease site	Professional fees	Equipment	Treatment and planning	Facility and institutional	Other	RT cost details
Kim et al., 2015¹³	CPT codes for 2013 Medicare reimbursement accounted for professional fees	Not available	CPT codes for 2013 Medicare reimbursement accounted for technical (hospital)	Not available	Not available	2013 US dollars
						IG brachytherapy:
						$21,374 or $22,847
						per 5 fractions
						(CT or MRI plan,
						respectively)
						2D brachytherapy:
						$17,177 per 5 fractions

Reference and disease site	Professional fees	Equipment	Treatment and planning	Facility and institutional	Other	RT cost details
Others						
Furlan et al., 2012¹⁶ (neoplastic metastatic epidural spinal cord compression)	OHIP	Not available	Assumed treatment^b from OCCI	OCCI	Not available	2010 US dollars
						Surgery + RT:
						$13,995 per treatment
						RT only:
						$2,440 per treatment

Reference and disease site	Professional fees	Equipment	Treatment and planning	Facility and institutional	Other	RT cost details
Hess et al., 2012¹⁰ (bone metastases secondary to breast or prostate cancer)	Medical physicist (claims-linked EMR CPT codes)	Not available	Claims-linked EMR CPT codes	Not available	Claims-linked EMR CPT codes	2008–2009 US dollars
						Medicare reimbursement
						Breast cancer:
						$7457
						Prostate cancer:
						$7553 per REOC
TABLE II
Continued

Reference and disease site	Professional fees	Equipment	Treatment and planning	Facility and institutional	Other\(^a\)	RT cost details
Others						
Yong et al., 2012\(^{15}\) (oropharyngeal cancer)	Personnel: radiation oncologist, radiation therapist, physicist and nurse (activity-based costing via expert opinion)	Equipment: iCCO Capital Planning Dept., PMH, CVH;	IMRT and 3D-CRT (based on CVH):	Assumed centre with 3 linear accelerators, performing 1260 cases per year	PMH and CVH	2009 Canadian dollars
		Capital cost	CT simulation		$16,085 per treatment	IMRT:
		Specialized construction cost	Dosimetry		3D-CRT: $13,638 per treatment	
		Maintenance and operating	Planning			
			Treatment preparation and delivery			
			Physics quality assurance			
Hodges et al., 2014\(^{11}\) (squamous cell cancer of the anus)	Local Coverage Determination of 2014 Medicare (CPT codes)	Not available	Local Coverage Determination of 2014 Medicare (CPT codes)	Not available	Local Coverage Determination of 2014 Medicare (CPT codes)	2014 US dollars
			3D-CRT and IMRT:		IMRT: $17,671 per treatment	3D-CRT:
			Simulation		3D-CRT: $11,835 per treatment	
			Planning			
			Treatment			
			Procedure			
Kim et al., 2015\(^{12}\) (painful vertebral bone metastases)	CPT codes for 2014 Medicare reimbursement Billing accounted for professional (physician fees)	Not available	EBRT and SBRT:	Not available	CPT codes for 2014 Medicare reimbursement Billing accounted for technical (hospital) EBRT and SBRT:	2014 US dollars
			Planning		SBRT: $9000 per fraction	
			Simulation		EBRT: $1087 per fraction	
			Treatment			
a Refers to overhead costs, administrative costs, and so on.						
b Study lacked sufficient detail to determine what constituted the cost of radiation treatment; the assumption was therefore that authors costed for treatment and planning (that being one of the main objectives of the paper).						

IMRT = intensity-modulated RT; 3D-CRT = 3-dimensional conformational RT; EBRT = external-beam RT; SBRT = stereotactic body RT; OHIP = Ontario Health Insurance Plan; OCCI = Ontario Case Costing Initiative; CPT = Current Procedural Terminology; APBI = external-beam partial-breast irradiation; C-RT = Canadian RT fractionation; WBRT = whole-breast RT; EMR = electronic medical record; RREC = radiation episode of care; LDR = low-dose-rate; HDR = high-dose-rate; CCO = Cancer Care Ontario; PMH = Princess Margaret Hospital; CVH = Credit Valley Hospital; ASA = American Standards Association; HOPPS = Hospital Outpatient Prospective Payment System; RT-B = RT with boost; CDN = Canadian fractionation schedule; IC = intracavitary; AMA = American Medical Association; BOX RT = 4-field box RT; CRT = conventionally fractionated RT; VAT = very accelerated RT; MRT = moderately accelerated RT; HRT-I = hypofractionated RT identical (dose); HRT-H = hypofractionated RT higher (dose); WBI = whole-breast irradiation; CT = computed tomography; IORT = intraoperative RT; IGBT=image-guided; MRI = magnetic resonance imaging.
To our knowledge, the present study is the first to review RT costing components and sources across all cancer types. It shows that most costing was based on inputs into hypothetical models from pre-existing original costing studies. Original data would allow for a more accurate representation of cost outcomes based on the cohort of interest and the cancer type, which might otherwise be subject to unreliable statistics when model inputs are used. Such inputs might differ based on institution, geography, and adopted care or clinical pathways, and thus original patient-level data would provide the most unbiased costing results.

In addition, although some societal costing was found, most studies were conducted from the health system perspective. The most consistent variables used in the costing analyses were the costs associated with treatment and planning, followed by professional or personnel and other fees. Costing studies rarely considered the costs of equipment and facility or institutional fees. Such omissions caused the final cost of RT treatment to appear inconsistent across studies, with large variability in costs being observed within and between RT modalities. The cost drivers therefore included the costs of the various personnel required during the course of RT and the actual costs of the delivery and planning of RT.

Notably, RT often requires the delivery of services by a variety of personnel (the physician, radiation therapist, medical oncologist, nurse, etc.) that were more often reflected in the Canadian than in the Dutch and U.S. studies. In addition, although all studies included treatment and planning costs, many did not identify the components that fell within the treatment and planning phase of RT; the reader is therefore unable to identify what the costs truly encompass. Both of the foregoing costing components are cost drivers in the overall cost of RT and thus should be considered for inclusion in future RT costing studies.

All in all, the inconsistencies identified here can lead to the drawing of incorrect and inappropriate conclusions about the cost of RT when the largest variability in costs can be attributed to the differences in RT components between studies. Our study’s Figure 2 provides evidence of the wide variability in costs between studies, which might become more comparable if RT costing components were to be more inclusive, complete, and consistent from study to study.
We recommend that \textit{rt} costing studies aim to be as inclusive as possible in their costing methods. At a minimum, components should include detailed treatment costs, capital costs, operational costs (that is, equipment and overhead), detailed personnel costs, institutional or facility costs, and other costs (administration, etc.). To promote comparability between studies and an understanding of the cost drivers of \textit{rt}, costing studies should be as transparent and comprehensive as possible.

Our study uncovered vast differences in \textit{rt} costing components across studies, which draws attention to the fact that \textit{rt} costing studies have room to improve and to be more inclusive in their costing components and methods. The limitations discussed and the variation in costing components between studies creates difficulty in comparing, contrasting, and understanding the true costs associated with \textit{rt}. Even within countries, the heterogeneity between studies using the same health care perspective does not allow for easy interpretation and application, oftentimes involving underestimations and overestimations in costs. Future research requires a more comprehensive costing analysis that encompasses as many elements of \textit{rt} costing as possible for thorough inclusion and standardization. Such inclusivity will allow for efficient comparisons and informed evidence-based public health changes. More comprehensive costing is important for producing the good inputs required for policy decision-making and economic analyses.

CONCLUSIONS

The literature review presented here demonstrates that \textit{rt} costing is diverse and complex between studies and especially between countries, which results in differing costing units and wide ranges in \textit{rt} costs. The summarized findings provide insight into the costing frameworks and methods used by such studies and the accuracy and usefulness of those methods of \textit{rt} costing. Based on the perspective used, the data available, the components used, and the aims of the study, \textit{rt} can be costed in a variety of ways. Such variation makes understanding the true cost of \textit{rt} at a per-patient or per-visit level quite difficult. Future research has to focus on using patient-level data and including as many of the cost drivers of \textit{rt} as possible to arrive at a true cost. Given the increasing cost of health care delivery, it is necessary to understand the current financial burden and to pinpoint areas that require improvement to prevent negative effects on health care delivery and to support good management of the health care system.

ACKNOWLEDGMENTS

This study was supported by the Institute for Clinical Evaluative Sciences (ICES), which is funded by an annual grant from the Ontario Ministry of Health and Long-Term Care (MOHLTC). The opinions, results and conclusions reported in this paper are those of the authors and are independent from the funding sources. No endorsement by ICES or the MOHLTC is intended or should be inferred. This publication was also supported by the Ontario Institute for Cancer Research through funding provided by the Government of Ontario and by ICES.

The authors thank Peggy Kee for administrative support and Drs. Lisa Barbera and Andrew Loblaw for their clinical expertise.

CONFLICT OF INTEREST DISCLOSURES

We have read and understood \textit{Current Oncology}'s policy on disclosing conflicts of interest, and we declare that we have none.

AUTHOR AFFILIATIONS

1. Institute for Clinical Evaluative Sciences, 2. Health Outcomes and Pharmacoconomics (HOPE) Research Centre, Sunnybrook Research Institute, 3. Cancer Care Ontario, 4. University of Toronto, and 5. Sunnybrook Research Institute, Toronto, ON.

REFERENCES

1. Stewart BW, Wild CP, eds. \textit{World Cancer Report} 2014. Lyon, France: International Agency for Research on Cancer; 2014.
2. Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 2005;104:1129–37. [Erratum in: Cancer 2006;107:660]
3. American Cancer Society (ACS). \textit{The Science Behind Radiation Therapy}. Atlanta, GA: ACS; 2014. [Available online at: http://www.cancer.org/acs/groups/public/documents/webcontent/003019-pd-f.pdf; cited 10 October 2015]
4. United States, Department of Health and Human Services, National Institutes of Health, National Cancer Institute (NCI). Cancer Prevalence and Cost of Care Projections [Web resource]. Bethesda, MD: NCI; 2011. [Available at: http://costprojections.cancer.gov/; cited 13 October 2015]
5. Canadian Cancer Action Network and Canadian Cancer Society, Manitoba Division. \textit{Five-Year Action Plan to Address the Financial Hardship of Cancer in Canada: A Call for Action}. Toronto, ON: Canadian Cancer Action Network; 2010. [Available online at: http://www.cancer.ca/-/media/cancer.ca/MB/get%20involved/take%20action/financial%20hardship%20of%20cancer%20in%20Canada/financialhardshipofcancer-MB-EN.pdf; cited 13 October 2015]
6. Statistics Canada. Table 326-0020: Consumer Price Index, 2011 monthly (2002=100) [Web resource: at the Add/Remove data tab, set Geography to "All" and "Canada," Products and product groups to "Health and personal care," and Time frame to "Jan 2002" to "Dec 2013"]). Ottawa, ON: Statistics Canada; 2015. [Available at: http://www5.statcan.gc.ca/cansim/a26?id=3260020; cited 13 October 2015]
7. Eldelfrawy A, Katkooi D, Abramowitz M, Soloway MS, Manoharan M. Active surveillance vs. treatment for low-risk prostate cancer: a cost comparison. \textit{Urol Oncol} 2013;31:576–80.
8. Greenup RA, Camp MS, Taghian AG, et al. Cost comparison of radiation treatment options after lumpectomy for breast cancer. \textit{Ann Surg Oncol} 2012;19:3275–81.
9. Hayes JH, Ollendorf DA, Pearson SD, et al. Observation versus initial treatment for men with localized, low-risk prostate cancer: a cost-effectiveness analysis. \textit{Ann Intern Med} 2013;158:853–60.
10. Hodges JC, Lotan Y, Boike TP, Benton B, Barrier A, Timmerman RD. Cost-effectiveness analysis of stereotactic body radiation therapy versus intensity-modulated radiation therapy: an emerging initial radiation treatment option for organ-confined prostate cancer. \textit{J Oncol Pract} 2012;8(suppl):e31s–7s.
11. Hodges JC, Beg MS, Das P, Meyer J. Cost-effectiveness analysis of intensity-modulated radiation therapy versus 3-dimensional conformal radiation therapy for anal cancer. \textit{Int J Radiat Oncol Biol Phys} 2014;89:773–83.
12. Kim H, Rajagopalan MS, Beriwal S, Huq MS, Smith KJ. Cost-effectiveness analysis of single fraction of stereotactic body radiation therapy compared with single fraction of external beam radiation therapy for palliation of vertebral bone metastases. \textit{Int J Radiat Oncol Biol Phys} 2015;91:556–63.
13. Kim H, Rajagopalan MS, Beriwal S, Huq MS, Smith KJ. Cost-effectiveness analysis of 3D image-guided brachytherapy compared with 2D brachytherapy in the treatment of locally advanced cervical cancer. *Brachytherapy* 2015;14:29–36.

14. Kohler RE, Sheets NC, Wheeler SB, Nutting C, Hall E, Chera BS. Two-year and lifetime cost-effectiveness of intensity-modulated radiation therapy versus 3-dimensional conformal radiation therapy for head-and-neck cancer. *Int J Radiat Oncol Biol Phys* 2013;87:683–9.

15. Konski A, Sherman E, Krahn M, et al. Economic analysis of a phase II clinical trial evaluating the addition of total androgen suppression to radiation versus radiation alone for locally advanced prostate cancer (Radiation Therapy Oncology Group protocol 86-10). *Int J Radiat Oncol Biol Phys* 2005;63:788–94.

16. Konski A. Cost-effectiveness of intensity-modulated radiation therapy. *Expert Rev Pharmacoecon Outcomes Res* 2005;5:137–40.

17. Konski A, Watkins-Bruner D, Feigenberg S, et al. Using decision analysis to determine the cost-effectiveness of intensity-modulated radiation therapy in the treatment of intermediate-risk prostate cancer. *Int J Radiat Oncol Biol Phys* 2006;66:408–15.

18. Konski A, Speier W, Hanlon A, Beck JR, Pollack A. Is proton beam therapy cost effective in the treatment of adenocarcinoma of the prostate? *J Clin Oncol* 2007;25:3603–8.

19. Lanni T, Keisch M, Shah C, Wobb J, Kestin L, Vicini F. A cost comparison analysis of adjuvant radiation therapy techniques after breast-conserving surgery. *Breast* 2013;19:162–7.

20. Lanni TB Jr, Grills IS, Kestin LL, Robertson JM. Stereotactic radiotherapy reduces treatment cost while improving overall survival and local control over standard fractionated radiation therapy for medically inoperable non-small-cell lung cancer. *Am J Clin Oncol* 2011;34:494–8.

21. Lesnock JL, Farris C, Beriwal S, Krivak TC. Upfront treatment of locally advanced cervical cancer with intensity-modulated radiation therapy compared to four-field radiation therapy: a cost-effectiveness analysis. *Gynecol Oncol* 2013;129:574–9.

22. Sen S, Wang SY, Soulos PR, et al. Examining the cost-effectiveness of radiation therapy among older women with favorable-risk breast cancer. *J Natl Cancer Inst* 2014;106:dju008.

23. Shah A, Hahn SM, Stetson RL, Friedberg JS, Pechet TT, Sher DJ. Cost-effectiveness of stereotactic body radiation therapy versus surgical resection for stage I non–small cell lung cancer. *Cancer* 2013;119:3123–32.

24. Shah C, Lanni TB Jr, Ghilezan MI, et al. Brachytherapy provides comparable outcomes and improved cost-effectiveness in the treatment of low/intermediate prostate cancer. *Brachytherapy* 2012;11:441–5.

25. Shah C, Lanni TB, Saini H, et al. Cost-efficacy of acceleration partial-breast irradiation compared with whole-breast irradiation. *Breast Cancer Res Treat* 2013;138:127–35.

26. Shah C, Badiyan S, Khwaja S, et al. Evaluating radiotherapy options in breast cancer: does intraoperative radiotherapy represent the most cost- efficacious option? *Clin Breast Cancer* 2014;14:141–6.

27. Sher DJ, Parikh RB, Mays-Jackson S, Punglia RS. Cost-effectiveness analysis of sbrt versus imrt for low-risk prostate cancer. *Am J Clin Oncol* 2014;37:215–21.

28. Smith BD, Pan JW, Shih YC, et al. Adoption of intensity-modulated radiation therapy for breast cancer in the United States. *J Natl Cancer Inst* 2011;103:798–809.

29. YuJB, Soulouros PR, Herrin J, et al. Proton versus intensity-modulated radiotherapy for prostate cancer: patterns of care and early toxicity. *J Natl Cancer Inst* 2013;105:25–32.

30. Hess G, Barlev A, Chung K, Hill JW, Fonseca E. Cost of palliative radiation to the bone for patients with bone metastases secondary to breast or prostate cancer. *Radiat Oncol* 2012;7:168.

31. Perirotth DJ, Goldman DP, Garber AM. The potential impact of comparative effectiveness research on U.S. health care expenditures. *Demography* 2010;47(suppl):S73–90.

32. Perirotth DJ, Bhattacharya J, Goldman DP, Garber AM. An economic analysis of conservative management versus active treatment for men with localized prostate cancer. *J Natl Cancer Inst Monogr* 2012;2012:250–7.

33. Sheets NC, Wheeler SB, Kohler RE, Fried DV, Brown PM, Chera BS. Costs of care in a matched pair comparison of intensity-modulated radiation therapy (imrt) versus conventional radiation therapy (crt) for the treatment of head and neck cancer. *Am J Clin Oncol* 2014;37:539–44.

34. Yong JH, Beca J, McGowan T, Bremner KE, Warde P, Hoch JS. Cost-effectiveness of intensity-modulated radiotherapy in prostate cancer. *Clin Oncol (R Coll Radiol)* 2012;24:521–31.

35. Yong JH, Beca J, O’Sullivan B, et al. Cost-effectiveness of intensity-modulated radiotherapy in oropharyngeal cancer. *Clin Oncol (R Coll Radiol)* 2012;24:532–8.

36. Furlan JC, Chan KK, Sandoval GA, et al. The combined use of surgery and radiotherapy to treat patients with epidural cord compression due to metastatic disease: a cost–utility analysis. *Neuro Oncol* 2012;14:631–40.

37. Mitera G, Swaminathan A, Rudoler D, et al. Cost-effectiveness analysis comparing conventional versus stereotactic body radiotherapy for surgically ineligible stage I non–small-cell lung cancer. *J Oncol Pract* 2014;10:e130–6.

38. Ramaekers BL, Grutters JP, Pijs-Johannesma M, Lambin P, Joore MA, Langendijk JA. Protons in head-and-neck cancer: bridging the gap of evidence. *Int J Radiat Oncol Biol Phys* 2013;85:1282–8.

39. Ramaekers BL, Joore MA, Lueza B, et al. on behalf of the Mar-Lc collaborative group. Cost effectiveness of modified fractionation radiotherapy versus conventional radiotherapy for unresected non–small-cell lung cancer patients. *J Thorac Oncol* 2013;8:1295–307.

40. Paravati AJ, Boero II, Triplett DP, et al. Variation in the cost of radiation therapy among Medicare patients with cancer. *J Oncol Pract* 2015;11:403–9.

41. Amin NP, Sher DJ, Konski AA. Systematic review of the cost effectiveness of radiation therapy for prostate cancer from 2003 to 2013. *Appl Health Econ Health Policy* 2014;12:391–408.