Low-Complexity Non-Uniform Demand Multicast Network Coding Problems

Joseph C. Koo and John T. Gill, III

Abstract—The non-uniform demand network coding problem is posed as a single-source and multiple-sink network transmission problem where the sinks may have heterogeneous demands. In contrast with multicast problems, non-uniform demand problems are concerned with the amounts of data received by each sink, rather than the specifics of the received data. In this work, we enumerate non-uniform network demand scenarios under which network coding solutions can be found in polynomial time. This is accomplished by relating the demand problem with the graph coloring problem, and then applying results from the strong perfect graph theorem to identify coloring problems which can be solved in polynomial time. This characterization of efficiently-solvable non-uniform demand problems is an important step in understanding such problems, as it allows us to better understand situations under which the NP-complete problem might be tractable.

I. INTRODUCTION

Network coding has been shown to enable higher transmission rates across communication networks, when compared against routing. This is because network coding allows data flows toward different sinks to share the same links, and—through appropriate coding of symbols—have the sinks still be able to decode out these disparate flows. In the butterfly network example first proposed by Ahlswede et al. [1] (see Figure 1(a)), if the input data at node w are coded together, it is possible to multicast two streams of information b_1 and b_2 from the source s to both sinks t_1 and t_2 within a single time period. The benefits of allowing coding at nodes are evident; under routing, multiple time periods would be required to send both streams to both sinks. The authors show that in any network with a single source and multiple sinks, the information rate can achieve the minimum (over all sinks) of the maximum flow to the sink nodes. In subsequent work, Li et al. [2] prove that linear network codes are sufficient for multicast, and Jaggi et al. [3] give a polynomial-time algorithm for constructing such linear codes.

Following the quick successes of characterizing and developing algorithms for multicast network coding problems, there has been much work concerning the construction of network codes for more general scenarios—although this has proven to be much more difficult. Koetter and Médard [4] give an algebraic characterization for achievable linear network codes, but prove that checking for the existence of such codes requires running time which is not polynomially bounded. Then, Rasala Lehman and Lehman [5] prove that for most network coding scenarios, finding linear network codes to satisfy arbitrary source and demand requirements is NP-hard. Of relevance to the current work is the problem of constructing network codes to send data from a single source to multiple sinks with arbitrary demands (potentially with different demands by different sinks).

In this work, we study networks where the single source may send data to multiple sinks at unequal rates. The motivation for this can be seen in the extended butterfly network of Figure 1(b). Here, the traditional butterfly network is augmented with an additional path between the source s and sink t_2. Within a single time period, at most two streams can be transmitted to sink t_1, but it is possible to transmit more than two streams to sink t_2. If sink t_2 is constrained to only receive two streams, then available capacity is wasted.

The problem of sending unequal-rate data from a single source to multiple sinks has two flavors: the multiple multicast connections problem [6] and the non-uniform demand problem [7]. In the multiple multicast connections problem, the sinks are allowed to receive data at different rates, but the subset of information demanded by each particular sink—while arbitrary—is identified in advance. On the other hand, in the non-uniform demand problem, the amount of information a particular sink must be able to receive is specified in advance, but it does not matter which specific pieces of information are received. This is a scenario where the source has a large set of messages which it wishes to send to the sinks, and each particular sink wishes to receive a subset of the source’s messages; however, the requirement at each sink is only that the messages it receives is a subset of a particular size rather than a requirement of receiving some specific subset of messages. This problem can be understood as a relaxed version of the multiple multicast connections network coding problem, since if it is known that a sink is unable to receive a subset of size n, then any specific demand for a subset of size n can automatically be rejected as impossible. Conversely, if it is known that a sink is able to receive some subset of size n, then it may be possible to find...
a network coding solution with a specific demand for that sink which is of size \(n \). The non-uniform demand problem makes it possible to determine the maximum possible data rates that can be received by the sinks.

The non-uniform demand problem was originally investigated by Cassuto and Bruck [7]. For demand scenarios where all sinks require the same high rate except for two sinks demanding some lower rate, the authors prove that it is possible to satisfy these demands in all cases—and linear codes are sufficient. They also give limited conditions for the achievability of non-uniform demands when there are more than two lower demanded rate sinks along with any number of higher rate equal-rate sinks. In our work, we more specifically consider the case of non-uniform demands where each [possibly heterogeneous] sink demands a data rate of its own maximum-flow (i.e., maximum point-to-point rate from the source). From this seemingly more restrictive setting, however, we are able to describe a larger class of networks for which the non-uniform demand problem is solvable (and solvable in polynomial time), thus enabling non-uniform demand network coding to be more widely applicable.

Although the class of network demand scenarios for which we give polynomial-time solutions is not exhaustive, it may be difficult to enumerate the conditions more generally. This is because the non-uniform demand network coding problem is NP-hard [7]. We give an alternate proof of the NP-hardness of the non-uniform demand network coding problem (see Appendix), which proves this result for slightly different demand scenarios than those addressed in [7].

A. Related Work

A technique which we use is that of transmitting data along paths, or through flows. This approach has been widely used in the network coding literature, and has enabled many significant results. In Jaggi et al. [3], the polynomial-time algorithms for multicast problems rely on the concept of sending data down [perhaps overlapping] paths. In [8], Fragouli and Soljanin give a decomposition of networks into flows, in order to model data transmission in a network more simply. Using this decomposition and a graph coloring formulation, alphabet size bounds for any network code are then proven. Although the flow-based and path-based approaches are similar in many ways, the two techniques differ in that the flow-based approach creates a new flow every time a piece of data is transformed by coding, whereas the path-based approach keeps track of each piece of data as it is sent individually down a path, even if any transformations get applied to the data. We shall use a path-based approach.

We briefly mention some results regarding the multiple multicast connections problem, since achievable solutions for such problems are also achievable for the non-uniform demand problem with the same demanded rates. (Of course, the reverse is not always true.) Many of these results consider the case of two sinks. In [9], after enumeration of all possible scenarios, the authors conclude that in the case of two sinks with differing rates, linear coding is sufficient. The same conclusion is made in [10], although the authors use a different approach which considers a path-based enumeration. A characterization of the achievable data rate region using network coding is given for the two sink case. For more than two sinks, conditions under which solutions exist for the multiple connections problem have not been enumerated. Separately from the multiple multicast connections problem, the non-uniform demand problem itself has also been the subject of study. In [7], Cassuto and Bruck introduce the problem and give some results concerning the achievability of the individual max-flow rates to each sink. In our work, we address similar guarantees but for a wider class of network demands. The authors in [7] also prove that the non-uniform demand problem is NP-hard, using a reduction from a 3-CNF problem, although the demand problems for which their result holds have network coding solutions that do not fully utilize the available data rates (in our terminology, the solutions are not saturating). We supplement their proof by considering whether or not networks in which the network coding solutions use all possible paths are still difficult to solve. We take a similar approach by considering contamination amongst data; however, we do not allow intermediate decoding as they do. The non-uniform demand problem is also studied in [11], which considers the case where demands are allowed to be relaxed in the solution. For general networks, the authors give bounds on the fraction of max-flow rate which is achievable, and show networks for which the bounds are tight. We take a different approach and instead characterize specific network demand scenarios for which the max-flow rate can be achieved.

B. Outline of Paper

In this paper, we will investigate the case of non-uniform demand network coding in which each sink receives data at its individual point-to-point (i.e., max-flow min-cut) capacity rate. In Section II, we discuss useful notation. In Section III, we define our approach to the problem, and analyze some of its characteristics. Following that, in Section IV, we give an algorithm for determining if a non-uniform demand solution exists, and discuss some of its performance issues. Using this algorithm, we characterize in Section V a class of networks for which the non-uniform demand network coding problem can be solved in polynomial time. Of course, not all non-uniform demand network coding problems can be solved efficiently; in the Appendix, we give an alternate proof of the NP-completeness of the non-uniform demand problem which accounts for the demand scenarios we are considering.

II. NOTATION AND DEFINITIONS

We will consider a directed acyclic network graph \(G = (V, E) \). Each sink will be indexed as \(j \in \{1, 2, \ldots, t\} \), where \(t \) is the total number of sink nodes. (Recall that there is only a single source node \(s \).) Because the graph is acyclic, there exists a partial ordering of the nodes starting from the source \(s \). A partial ordering of the edges can be constructed based on the ordering of the nodes from which the edges originate; for edges \(e = (v, w) \) and \(e' = (v', w') \), we denote \(e \preceq e' \) if and only if \(v \preceq v' \) in the partial ordering of nodes.

For a particular sink \(j \), we define \(P_j \) as the set of paths associated with sink \(j \). These are unit-capacity edge-disjoint paths from the source \(s \) to sink \(j \) and can be determined from maximum-flow algorithms such as the Ford-Fulkerson augmenting path algorithm [12]. Paths \(p \in P_j \) are given as the elements of \(P_j = \{p_{j,1}, p_{j,2}, \ldots, p_{j,n_j}\} \), where \(n_j = |P_j| \) is the number of paths to sink \(j \). Call the set of all paths \(\mathcal{P} = \bigcup_{j=1}^{t} P_j \). In contrast to much of the literature on network coding for multicast, we will consider the maximum of the max-flows (instead of the minimum of the max-flows) and denote this quantity \(n \), so \(n = \max_j |P_j| = \max_j n_j \).
In order to keep track of data that overlaps onto paths with other sinks, we introduce the concepts of contamination and contaminating set. We say that contamination from path p_{jk} onto path $p_{j'k'}$ occurs when data transmitted on p_{jk} gets combined into the data which is supposed to be transmitted on $p_{j'k'}$. This can occur, for example, when data on paths p_{jk} and $p_{j'k'}$ are coded together in order to be transmitted across an edge where the two paths overlap. Then the contamination set of p_{jk} is the set of all paths which experience contamination due to data from p_{jk}. If we call $D_{jk}(e)$ as the set of paths which are contaminated by path p_{jk} downstream of edge e, then $D_{jk}(e)$ can be defined recursively as follows:

$$D_{jk}(e) = \bigcup_{p_{j'k'} \in p_{jk}} \left(p_{j'k'} \cup \bigcup_{e' > e} D_{j'k'}(e') \right),$$

where the union over $p_{j'k'}$ is over all paths $p_{j'k'}$ which overlap path p_{jk} at edge e (and $j' \neq j$). Then $D_{jk} = \bigcup_{e \in E} D_{jk}(e)$ gives the contamination set of p_{jk}. This definition accounts for a data stream on a path to contaminate onto paths that do not explicitly overlap, due to contamination being spread from path to overlapping path.

We also wish to keep track of the particular data streams sent to each of the sinks. A stream is defined as the identifier of the data that is being transmitted down a particular path—as opposed to the identifier of the path itself. We identify a particular stream with the index $i \in \{1, 2, \ldots, n\}$, which means that a path is only allowed to transmit a stream from the set $\{1, 2, \ldots, n\}$. Each stream represents one information unit, of which only one unique information units are allowed to be transmitted. This restriction is not prohibitive, since n is the maximum max-flow. Each sink receives a subset of the same n streams, so different sinks will likely receive many of the same streams. The number of distinct streams a particular sink receives is its data rate, since each unit-capacity edge-disjoint path can transmit at most only a single data stream.

We also define decodable and saturating solutions.

Definition 1: A decodable solution to a network coding problem is one in which every sink is able to decode all of the information which is intended to be sent to it. In the example of streams assigned to paths, a decodable solution is one in which every sink can recover all of the streams which are assigned on paths to that sink.

Definition 2: A saturating solution is an assignment $f : P \rightarrow \{1, 2, \ldots, n\}$ from paths $p_{jk} \in P$ to streams $\{1, 2, \ldots, n\}$, such that for each $j \in \{1, 2, \ldots, t\}$,

$$f(p_{jk}) \neq 0, \forall k \in \{1, 2, \ldots, n\}$$

and

$$f(p_{jk}) \neq f(p_{j'k'}), \forall k \neq k'.$$

That is, a saturating stream assignment is a stream assignment in which all paths to every sink are assigned some data stream; no path is left unassigned. Moreover, any streams assigned to different paths to the same sink must be distinct. Otherwise, if two paths carried the same stream, one of the paths is redundant and does not carry additional information. Thus, a saturating stream assignment is one in which each sink j achieves its maximum possible data rate of n_j.

We briefly mention the concept of intermediate decoding. Specifically, for the network codes we are considering, we do not allow intermediates nodes (i.e., nodes which are neither source nor sink) to decode data and retransmit only a part of the data on its outgoing links. In other words, intermediate nodes are not allowed to remove any contamination which it might receive on its incoming links, even if it possesses enough information to decode out the contamination. Although this condition may prevent certain network codes from being considered, it is still general enough that except for certain cases, we should be able to find the appropriate network coding solution if it exists.

Definition 3: The non-uniform demand problem is the following solvability problem (adapted from [7]): Given a directed acyclic network graph $G = (V, E)$ (where each edge has capacity 1), source s, sinks $j \in \{1, 2, \ldots, t\}$, and demand function $d : \{1, 2, \ldots, t\} \rightarrow \{1, 2, \ldots, n\}$ (where $d(j)$ is the demanded rate of sink j), is there a network coding solution such that for all j, sink j receives information at a rate $d(j)$?

III. THE NON-UNIFORM DEMAND STREAM ASSIGNMENT PROBLEM

The goal is to determine whether or not an assignment of data streams to paths can give a decodable network solution.

Definition 4: The non-uniform demand stream assignment problem is the following: Given a network graph $G = (V, E)$ and a decomposition into paths, is there an assignment of streams to paths, such that no intermediate decoding occurs, and the solution is both saturating and decodable?

We establish necessary and sufficient conditions for a network to have a saturating and decodable solution.

Theorem 1: Given a set of paths between the source and the sinks, and if no intermediate decoding is allowed, there exists a saturating and decodable solution if and only if all streams which contaminate onto paths to a particular sink have also been assigned to some other path to the same sink.

Proof: Necessity follows from the fact that if the solution is decodable, then each sink can separate out all streams and all contamination sent to it. For a particular sink, each path carries an assigned stream mixed with the contamination from along that path. Because no intermediate decoding is allowed, all contamination arrives at the sink, but arrives mixed in with the assigned streams on the respective paths. If there are n_j paths to the sink j and the solution is saturating, then there are n_j unique streams assigned on paths to the sink. Now, if a contaminant is not also assigned to some other path to that sink, then that means that there is data from at least $n_j + 1$ streams on inputs to the sink (the assigned n_j streams of data plus at least one more data stream from the contamination). However, because there are only n_j paths from the source to that sink, where each path supports a data rate of 1, that means that no more than n_j unique data streams can be received by the sink (or else the max-flow condition would be violated). Thus, any situation where more than n_j data streams (perhaps mixed) can be seen by the sink is a situation where fewer than n_j data streams can be decoded successfully by the sink, and the solution is either not decodable or not saturating.

For each sink, it is straightforward to show sufficiency of assigning the contamination onto a path to that sink as the primary stream on another of its paths, in order to guarantee decodability. If no intermediate decoding is allowed, all contamination arrives at the sink. If no other path has been assigned the same data stream, then there is no way to determine (or even have partial knowledge) of the data due to the contamination in order to either utilize or remove it. Thus, there must be an assigned stream on some other path to that sink which provides this information.
The concept of saturation is important, so that it is possible to state (using max-flow theorems) that contamination without a corresponding assigned stream can not be removed, as there will not be enough flow to support this additional data. Saturation is also useful because it enables us to determine whether or not the maximum data rate actually utilizes all paths, without repetitive data streams. In fact, if data is repeated (i.e., multiple paths to the same sink are assigned the same stream), then one of the multiple paths could be shut off with no harm to the data rate toward that sink, and possibly even increasing data rates across the entire network due to less contamination onto paths to other sinks.

IV. An Algorithm for Assigning Streams

We now give an algorithm for solving the non-uniform demand stream assignment problem. Again, we restrict ourselves to the case where intermediate decoding does not occur within the network; that is, even though nodes within the network may encode information, there is no preliminary decoding (and removal of streams) except at the sink nodes which are receiving information. Equivalently, the output of any node can only be more contaminated (but not less contaminated) than any of the inputs to that node. Admittedly, precluding the removal of streams within the network does limit the solution space. However, since the goal is to maximize the data rate to each sink, solutions which do remove streams must be able to compensate for the loss of data rate due to the removal of streams with some other benefit (e.g., less contamination further down the network).

Our goal is to be able to assign streams to paths—with guarantees that the contamination will be decodable—while maximizing the number of streams transmitted. We give a method which guarantees saturation and decodability, by utilizing a polynomial transformation to graph coloring. We first give the transformation of the network graph into a coloring graph in Algorithm 1, and then give the algorithm for finding the saturating and decodable solution in Algorithm 2.

The coloring graph G can be interpreted with respect to the solution found by Algorithm 2. The vertices v_{jk}, $k = 1, \ldots, n_j$, correspond to paths in the original network, and so are called regular vertices. The additional vertices w_{jk}, $k = 1, \ldots, n - n_j$, correspond to fictitious paths, indicating the streams which are not assigned to paths leading to sink j—hence the name fictitious vertices. The edges in E_{complete} form a complete subgraph among all n_j regular vertices associated with sink j, guaranteeing satisfaction. (In fact, the entire induced subgraph of V_j is a clique.) For E_{overlaps}, the edges $(v_{jk}, w_{j'k'})$ connect the vertices from sink j to the vertices of sink j' if there is some overlap on paths toward these two sinks; these edges force a relationship between the streams assigned on to one sink and streams assigned on paths to other sinks, providing decodability.

Because $n = \max_j n_j$, there must exist at least one clique of size n (associated with the induced subgraph of V_j, where $J^* = \arg\max_j n_j$). Thus, G can not be colored with fewer than n colors, so step 3 of Algorithm 2 is equivalent to coloring G with at most n colors. If the minimum coloring solution of G requires more than n colors, then the following lemma tells us that decodability has been violated.

Lemma 2: In the equivalent coloring graph constructed from Algorithm 1, if the chromatic number $\chi(G) > n$, then the original network is not decodable.

Algorithm 1 Transformation of network graph into coloring graph

Require: Original network graph $G = (V, E)$, decomposed into edge-disjoint paths $P_j = \{p_{jk} | k = 1, \ldots, n_j\}$ for each sink j

1: Create vertices $v_{jk} \in V$, for $k = 1, \ldots, n_j$, which are associated with paths $p_{jk} \in P_j$. For each j, introduce $n - n_j$ additional vertices $w_{jk} \in V$. (v_{jk} \text{ are regular vertices and } w_{jk} \text{ are fictitious vertices.}) Let $V_j = \{v_{jk} | 1 \leq k \leq n_j\} \cup \{w_{jk} | 1 \leq k \leq n - n_j\}$.

2: Call V_j the sink subgraph associated with sink j. Then $V = \bigcup_{j=1}^{n} V_j$.

3: For each vertex v_{jk}, connect vertices v_{jk} to vertices $w_{j'k'}$ for all $k' = 0, 1, \ldots, n - n_j$, if path p_{jk} contaminates onto some path to sink $j' \neq j$.

4: Let $E = E_{\text{complete}} \cup E_{\text{overlaps}}$.

5: return coloring graph $G = (V, E)$

Algorithm 2 Non-uniform demand stream assignment

Require: Directed acyclic network graph $G = (V, E)$, source s, and sinks $j \in \{1, 2, \ldots, t\}$

1: For each sink j, find a set of edge-disjoint paths from s to j. Call the set of these paths $P_j = \{p_{jk} | k = 1, \ldots, n_j\}$, where there are n_j such paths. Let $n = \max_j n_j$.

2: Using Algorithm 1, construct coloring graph G from $P = \bigcup_{j=1}^{n} P_j$.

3: Color G using exactly n colors. Let c_{jk} be the color of v_{jk} in G.

4: For each path $p_{jk} \in P$, assign stream c_{jk} to that path. (Each path $p_{jk} \in P$ in the network graph G is assigned the stream given by the color of its associated vertex v_{jk} in V in the coloring graph G.)

5: In the network graph, at each node where the inputs to the node are different streams, send as the output of the node a combination of the data from the input streams (e.g., linear combination, or some other combining method)—taking care that no input streams are nullified in the node output.

Proof: If $\chi(G) > n$ and every vertex is a member of at least one induced clique of size n, then there must exist two cliques of size n such that there is at least one edge connecting these two cliques. Moreover, because the coloring graph must be colored with more than n colors, some pair (j, j') of connected cliques (each clique associated with a different sink) must satisfy the following condition: If clique j does not have color c within it, then its fictitious vertices must be connected to a regular vertex in clique j' which has color c. In this case, sink j can not decode color c even though some path to j has contamination c from a path to j', and so decodability is violated.

Theorem 3: Algorithm 2 succeeds in coloring the equivalent coloring graph with exactly n colors if and only if the original network graph has a decodable and saturating solution with no intermediate decoding.

Proof: It is clear that $\chi(G) = n$ is necessary for the solution to be decodable and saturating. From Lemma 2, we know that if the network is decodable, then the equivalent coloring graph must have $\chi(G) \leq n$. Now consider sink j^*, where $j^* = \arg\max_j n_j$. If the network is saturating, then
sink \(j^* \) must be able to receive \(n = n_{\bar{P}} \) distinct streams. That is, the clique associated with sink \(j^* \) must be colored with at least \(n \) colors. This gives us \(\chi(G) \geq n \). Thus, \(\chi(G) = n \).

Next we prove sufficiency of \(\chi(G) = n \) for a decodable and saturating solution. For the coloring to be valid, if path \(p_{jk} \) contaminates onto any path \(p_{j'k} \) to sink \(j' \), then by construction of \(E_{\text{overlap}} \), none of the fictitious vertices \(\bar{w}_{j'k'} \) associated with sink \(j' \) may have the same color as vertex \(w_{jk} \) (call this color \(c_{jk} \)). Because \(\chi(G) = n \) and each sink subgraph is an induced clique of size \(n \), some regular vertex \(w_{j'k'} \) to sink \(j' \) must be colored \(c_{jk} \).

Equivalently, contamination due to path \(p_{jk} \) onto path \(p_{j'k} \) has been assigned to some path \(p_{j'k'} \) to sink \(j' \) (and this is true for all possible contaminations), so by Theorem 1 the solution is decodable. Moreover, if \(\chi(G) = n \), then by construction of \(E_{\text{complete}} \), all paths have assigned streams, and the assigned streams are distinct for different paths to the same sink. Thus, the solution is saturating.

Theorem 3 gives necessary and sufficient conditions for a saturating and decodable solution to exist. Moreover, the stream assignment algorithm tells us how to allocate streams in order to construct this solution.

Example 1 (Extended Butterfly Network): Figure 2 shows the result of Algorithm 2 on the extended butterfly network.

![Fig. 2: The path decomposition for the extended butterfly network is shown in Figure 2(a). The color of each path indicates the stream which should be assigned to that path. Figure 2(b) shows the equivalent coloring graph for the extended butterfly network. The graph can be colored with 3 colors, so it gives a saturating and decodable solution to the original network. The colors correspond to the streams which should be assigned to the paths.](image)

A. Shortcomings

Assuming the correct set of edge-disjoint paths are chosen in the first step of the algorithm, then if the solution exists it will be found. However, we do not address the proper selection of edge-disjoint paths, even though there may be multiple path decompositions, where some decompositions lead to sub-optimal assignments. For example, it is possible to construct a counterexample network with a given path decomposition, where switching a single edge for one path greatly increases allowed throughput.

The algorithm determines—for a given set of paths—whether or not \(n \) streams can be assigned, but to determine if some \(\bar{n} > n \) streams can be assigned, additional fictitious vertices need to be introduced. For each sink, an additional \(\bar{n} - n \) fictitious vertices must be introduced in order to get sink subgraphs of size \(\bar{n} \). The relationship between these larger graphs and the original coloring graph is unknown, and it is possible that no matter how large \(\bar{n} \) is chosen, it will be still be impossible to find a saturating and decodable assignment with \(\bar{n} \) streams. If one wishes to determine how many additional available streams will guarantee saturation and decodability, \(\bar{n} \) could be increased without bound while searching for a possible stream assignment.

In fact, it is possible to have networks where there does not exist a saturating solution which is also decodable, no matter how large the available stream set is. This can occur when there is too much overlap but not enough available paths to remove the contamination. For example, consider a two sink case, where \(n_1 = 1 \) and \(n_2 = 2 \). Suppose both paths of sink 2 overlap the path to sink 1 at some link[s]. No matter what the stream assignment (or how large the space of possible streams) for sink 1, it will never be able to decode out both contaminants if saturation for both sinks is required.

Thus, our algorithm only works for the restrictive case where no intermediate decoding is allowed, yet all paths to sinks must be saturating. Either loosening the saturation or the no intermediate decoding restrictions would be beneficial, but at the moment, the algorithm relies on both conditions.

Another issue to keep in mind is that because coloring is an NP-complete problem, there are no known polynomial time algorithms which will perform the coloring step (unless \(P = NP \)). Additionally, there are no good approximation algorithms known for the graph coloring problem (see [13] for algorithms which can color \(n \)-colorable graphs with number of colors logarithmic in the number of vertices of the graph, but with no guarantees based on the actual chromatic number \(\chi \)). Even if there were good approximation algorithms, an approximation algorithm might not be enough to answer the question of whether or not a saturating solution exists (i.e., whether or not \(\chi(G) = n \)). Since we require finding the chromatic number exactly. One might conjecture that because the coloring graph \(G \) is carefully constructed, it might have some special structure which would allow for a polynomial-time coloring algorithm. In the next section, we give some structural properties of the coloring graph which can lead to a polynomial-time coloring, but we also show a counterexample network where this particular structural analysis is not sufficient to prove polynomial-time solvability.

V. EFFICIENTLY-SOLVABLE NON-UNIFORM DEMAND PROBLEMS

The coloring step in the stream assignment problem is problematic, as the graph coloring problem is NP-complete and so in general no known polynomial-time algorithm can solve the problem. However, if we restrict our class of demand problems to only those for which the corresponding coloring graph is polynomial-time solvable, then such demand problems will also be polynomial-time solvable. Specifically, we consider the class of graphs known as Berge graphs, which are graphs characterized by the absence of both odd holes (induced cycles of odd length at least 5) and odd antiholes (complements of odd holes). Then by the strong perfect graph theorem [14], a Berge graph is also a perfect graph, so the chromatic number of a Berge graph is equal to the size of its maximum clique.

This fact is useful in finding solutions to the non-uniform demand problem because in our formulation, the maximum clique is easily found, so if the coloring graph is Berge, then the chromatic number is also readily determined. The main result of this section is that we can find the maximum clique for the coloring graph of Algorithm 2 in polynomial time.
and hence also its chromatic number if the coloring graph is Berge. We first prove some preliminary results.

Lemma 4: Any induced clique consisting of vertices from different sink subgraphs can only consist of vertices from at most two sink subgraphs. That is, it is impossible to induce a complete subgraph consisting of at least one vertex from each of \(V_j, V_{j'}, \) and \(V_{j''}\).

Proof: For vertices belonging to different sink subgraphs, i.e., \(v \in V_j\) and \(v' \in V_{j'}\) where \(j \neq j'\), either \(v\) is regular and \(v'\) is fictitious, or \(v\) is fictitious and \(v'\) is regular. Regular vertices are not connected to regular vertices, nor are fictitious vertices connected to fictitious vertices—unless they belong to the same sink subgraph. Any complete subgraph consisting of at least one vertex from each of \(V_j, V_{j'}, \) and \(V_{j''}\) must contain at least two vertices of the same type from different sink subgraph (e.g., two regular vertices and one fictitious vertex, where each vertex is from a different sink subgraph). However, such a scenario can not exist, as that implies that two vertices of the same type but from different sink subgraphs are connected.

The preceding lemma tells us that in order to find the maximum clique in the coloring graph, all we need to do is search for induced cliques pairwise between sink subgraphs. We can select sink subgraphs two at a time and determine the largest induced complete subgraph consisting only of vertices from these two sink subgraphs. This procedure requires solving \(\binom{n}{2}\) subproblems, where each subproblem can be performed in time which is polynomial in \(n\).

Lemma 5: For a pair of sink subgraphs \(V_j\) and \(V_{j'}\), finding the maximum induced complete subgraph of \(V_j \cup V_{j'}\) takes time polynomial in the sink subgraph size \(n\).

Proof: If sinks \(j\) and \(j'\) do not have any overlapping paths, then because \(V_j\) and \(V_{j'}\) are disjoint, the maximum induced complete subgraph of \(V_j \cup V_{j'}\) is \(V_j\) (or \(V_{j'}\), which has size \(n\)). Disjointness of \(V_j\) and \(V_{j'}\) can be checked by considering each vertex \(v_{jk} \in V_j\) and seeing if it has an edge to any vertex in \(V_{j'}\). This requires \(n\) steps.

If a path \(p_{jk}\) to sink \(j\) contaminates onto some path to sink \(j'\), then the regular vertex \(v_{jk}\) is connected to all of the fictitious vertices of \(V_{j'}\). Thus, the largest induced complete subgraph consisting of both regular vertices from \(V_j\) and fictitious vertices from \(V_{j'}\) has size \(m_{jj'} + (n - n_{jj'})\), where \(m_{jj'}\) is the number of regular vertices of \(V_j\) which are connected to the fictitious vertices of \(V_{j'}\). (Recall that \(n - n_{jj'}\) is the number of fictitious vertices of \(V_{j'}\).) Computing \(m_{jj'}\) takes \(O(n)\) time, as it merely requires counting up the number of regular vertices of \(V_j\) that are connected to the fictitious vertices of \(V_{j'}\). Equivalently, \(m_{jj'}\) can be computed by counting the number of paths to sink \(j'\) which contaminate onto some path to sink \(j'\). Of course, the largest induced complete subgraph of \(V_j \cup V_{j'}\) may instead consist of regular vertices from \(V_j\) and fictitious vertices from \(V_{j'}\); by a similar argument, finding such a subgraph also takes polynomial time. Then we can find the maximum induced complete subgraph of \(V_j \cup V_{j'}\), and the size of this induced subgraph is \(n + \max(0, m_{jj'} - n_{jj'}, m_{jj'} - n_j)\).

From this, it can be readily shown that finding the maximum clique in the coloring graph is polynomial-time. We can then conclude that it is possible to determine the existence of a saturating and decodable solution (again, disregarding intermediate decoding) in polynomial time.

Theorem 6: For a particular non-uniform demand scenario, if the associated coloring graph is a Berge graph, then it is a polynomial-time operation to determine whether or not there exists a saturating and decodable solution which does not require intermediate decoding. Moreover, if the solution exists, it can be found using the non-uniform demand stream assignment algorithm (Algorithm 2).

Proof: From Lemma 5, we know that finding the maximum induced clique between two sink subgraphs is a polynomial time operation. Thus, finding the maximum clique of the coloring graph takes polynomial time, as it consists of solving \(\binom{n}{2} = \frac{n(n-1)}{2}\) such subproblems. Because this coloring graph is a Berge graph, then its chromatic number can be found in polynomial time, since the chromatic number is equal to the maximum clique size. From Theorem 3, we can then determine if the original network graph has a saturating and decodable solution. Not only that, but if the coloring requires no more than \(n\) colors, then the coloring found from the stream assignment algorithm immediately gives the non-uniform demand solution.

The interpretation of Theorem 6 is that for coloring graphs which are Berge graphs, if we find that the maximum clique has size \(n\), then we can conclude that the coloring graph can be colored with \(n\) colors, and so the original non-uniform demand network coding problem has a saturating and decodable solution. If, however, the maximum clique has size greater than \(n\), then we can also conclude that no saturating and decodable solution exists—at least no solution which does not require intermediate decoding. This result is particularly promising, as we can then quickly enumerate a sufficient condition under which a saturating and decodable solution can be found in polynomial time—specifically, if the associated coloring graph is Berge.

One might ask if the step of determining whether or not a graph is Berge might be a difficult task, as any difficulties in doing so would outweigh any benefits gained by solving the problem efficiently. However, a polynomial-time algorithm for recognizing Berge graphs does exist [15]. Consequently, it is determined that the coloring graph is a Berge graph, then the stream assignment algorithm can be used to find the saturating and decodable solution to the non-uniform demand problem in polynomial time. Or, if it is determined that the coloring graph is not a Berge graph, then some other, perhaps superpolynomial time, algorithm will be needed to perform the coloring step.

However, non-uniform demand scenarios which lead to non-Berge coloring graphs do exist. We give an example.

Example 2 (Network with non-Berge coloring graph): Consider the network given in Figure 3. Its corresponding coloring graph has an odd hole of length 5, induced by the vertices \(v_{1,1}, v_{1,1}, v_{2,1}, v_{2,2}\), and \(v_{3,1}\), so it is not Berge. However, a valid coloring of size \(n = 3\) does exist.

VI. Conclusion

In this paper, we have considered the non-uniform demand network coding problem, where the sinks are allowed to receive data at unequal rates. We give an algorithm for finding network coding solutions which satisfy the decodability and saturation properties. Additionally, we show that for certain types of networks, i.e., those which can be transformed into equivalent Berge graphs, our algorithm can find the solution in polynomial time. Moreover, it will be difficult to do much better for the general case, as the non-uniform demand
the original network is assigned mutually-decodable streams, paths in the expanded network corresponding to paths in our algorithm, we can directly specify that the subset of information. The main contribution of our work is that using finds a solution, the actual construction of the network code likely be sufficient. We also mention that although our condi-
tions guarantee that a network code will exist if our algorithm finds a solution, the actual construction of the network code is not detailed. In the case of no intermediate decoding, linear codes will be sufficient. However, if intermediate decoding were to be allowed, then we must be more careful, as it has been shown that sometimes nonlinear codes are required to solve certain other network coding problems [16].

Our approach considers network coding scenarios which are scalar, where the same code is employed during every time period. Although this allows for a wide variety of codes and is also practically implementable, there are certain net-
work coding problems where vector solutions (i.e., solutions where the network code may be different at each time period) exist, but scalar solutions do not [17]. One avenue of inquiry would be the adaptation of our algorithms to find vector solutions in the cases where scalar solutions do not exist; this should be possible by augmenting our network graphs to also include a time dimension. However, characterizing the set of networks with polynomial-time-solvable vector solutions (but no scalar solutions) will require more work.

APPENDIX

We give an alternate proof of NP-completeness of the non-uniform demand network coding problem, via a polynomial reduction from a general graph coloring problem. Unlike [7], in which the network demand problems shown to be NP-hard do not have fully saturated demands, our proof considers sink demands in which saturation must occur. The coloring problem which we consider is the following: Given an undirected graph \(G = (V, E) \), is there a coloring using \(n \) [or fewer] colors? We first give the reduction, followed by a proof that the reduction leads to an equivalent problem.

Algorithm 3 A reduction from general graph coloring to non-uniform demand stream assignment

Require: Undirected graph \(G = (V, E) \) to be colored

1. For each edge \(e \in E \), construct a sink \(j \) in the network graph consisting of two paths \(p_{j,1} \) and \(p_{j,2} \). If two edges \(e_j = (v, w) \in E \) and \(e_i = (u, v) \in E \) share a vertex \(v \), then force the paths \(p_{j,1} \) and \(p_{i,1} \) to overlap at some link. Call the overlapping link in the network graph by \(v \). If the shared vertex is \(w \) such that \(e_j = (v, w) \in E \) and \(e_i = (v, w) \in E \), then force paths \(p_{j,2} \) and \(p_{i,2} \) to overlap at some link \(w \). Thus, vertices in the coloring graph determine the intersections of paths in the network graph—where the link of intersection occurs according to the vertex in the coloring graph.
2. Introduce another \(|V| \) sinks, with only a single path to each sink. Label these sinks 1, 2, \ldots, \(|V| \). For a particular sink \(v \), call the single path \(p_v \) and make path \(p_v \) intersect with all other paths which cross through link \(v \) in the network graph.
3. Introduce one additional sink, with \(n \) paths. These \(n \) paths do not intersect any paths defined in prior steps.
4. Solve the non-uniform demand stream assignment problem on the resulting network graph.

Step 1 of the above algorithm sets up most of the network graph. Overlapping between paths reflect the fact that a vertex can not be colored two different colors. The addition of \(|V| \) sinks in step 2 forces the stream assignment algorithm to assign the same color to all paths crossing through the same link \(v \); otherwise, in the sinks with two paths, it may be possible that the corresponding stream will be assigned to the path in the pair which does not overlap at the considered link. Furthermore, the single sink with \(n \) paths in step 3 guarantees that at least \(n \) different streams will be assigned.

Lemma 7: Performing non-uniform demand stream assignment on the network digraph \(G \) formed from Algorithm 3 is equivalent to coloring the original undirected graph \(G \).

Proof: First we show that if there exists a coloring solution for \(G \) using \(n \) colors, then there will also be a non-uniform demand stream assignment on the constructed

![Diagram](attachment:network-diagram.png)

Fig. 3: Figure 3(a) shows an example of a network whose coloring graph is not Berge. For each \(j \) and \(k \), path \(p_{j,k} \) is the path which passes through node \(v_{j,k} \) on its way to sink \(j \). Figure 3(b) shows the equivalent coloring graph for this path decomposition. The dotted lines indicate the induced subgraph of vertices \(v_{1,1}, v_{2,1}, v_{2,2}, \) and \(v_{3,1} \); the induced subgraph is an odd hole of length 5, so this coloring graph is not a Berge graph. It should be noted, however, that a coloring using \(n = 3 \) colors does exist for this graph, and is as shown.
network graph with \(n \) streams. To do so, start with a coloring solution. For a particular vertex \(v \) in the coloring graph, assign the stream corresponding to the color of vertex \(v \) to all paths which intersect at the associated link \(v \) in the network graph. Because no path has more than one link which has overlap, then there is no ambiguity about the stream which is assigned to that path. Because graph coloring guarantees that the vertices connected by an edge will be colored different colors, each sink from step 1 will receive two paths that have different stream assignments. Thus, the solution is saturating. Not only that, in the network graph, any intersecting paths only intersect at one link, so contamination is mitigated by assigning the same stream to all paths which intersect at the same edge. Thus, the solution to the graph coloring with \(n \) colors guarantees that the vertices connected by an edge are connected by streams which are the same as all the contaminations from that link. This takes at most \(O(n^2) \) time, where \(|E| \) is the number of links in the corresponding network graph (and \(|E| \) can be as small as \(4|E| + 3|V| + n \)).

Next, we show that the transformation from the coloring graph to the related network graph given in Algorithm 3 is polynomial. The network graph has \(|E'| + |V'| + 1 \) sinks (more precisely, it has \(2|E'| + |V'| + n \) paths), so the reduction is polynomial. Because any instance of graph coloring can be polynomially reduced to a non-uniform demand stream assignment problem, and solutions can be checked in polynomial time, the non-uniform demand stream assignment problem is NP-complete.

From the above arguments, we also conclude that non-uniform demand stream assignment can be solved in polynomial time when \(n = 2 \) (i.e., when the maximum data rate to any sink is upper bounded by 2). This is because graph coloring is polynomial time (i.e., by searching for bipartiteness in the graph) when only 2 colors are allowed [18].

Acknowledgements

The authors would like to thank Amin Saberi for insightful discussions, and William Wu and Caleb Lo for helpful comments which improved the readability of this paper. Part of this work was completed while J. Koo was supported by a National Defense Science and Engineering Graduate Fellowship.

References

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information flow,” *IEEE Trans. Inform. Theory*, vol. 46, no. 4, pp. 1204–1216, July 2000.

[2] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” *IEEE Trans. Inform. Theory*, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[3] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and L. G. M. Tolhuizen, “Polynomial time algorithms for multicast network code construction,” *IEEE Trans. Inform. Theory*, vol. 51, no. 6, pp. 1973–1982, June 2005.

[4] R. Koetter and M. Médard, “An algebraic approach to network coding,” *IEEE/ACM Trans. Networking*, vol. 11, no. 5, pp. 782–795, Oct. 2003.

[5] A. Rasala Lehman and E. Lehman, “Complexity classification of network information flow problems,” in *Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, New Orleans, LA, Jan. 11 – 14, 2004, pp. 142–150.

[6] D. Lun, M. Médard, T. Ho, and R. Koetter, “Network coding with a cost criterion,” in *Proceedings of the 2004 International Symposium on Information Theory and Its Applications*, Parma, Italy, Oct. 10 – 13, 2004, pp. 1232–1237.

[7] Y. Cassuto and J. Bruck, “Network coding for non-uniform demands,” in *Proceedings IEEE International Symposium on Information Theory*, Adelaide, Australia, Sept. 4 – 9, 2005, pp. 1720–1724.

[8] C. Fragouli and E. Soljanin, “Information flow decomposition for network coding,” *IEEE Trans. Inform. Theory*, vol. 52, no. 3, pp. 829–848, Mar. 2006.

[9] C. K. Ngai and R. W. Yeung, “Multisource network coding with two sinks,” in *Proceedings of the International Conference on Communications, Circuits and Systems (ICCCAS)*, vol. 1, Chengdu, June 27 – 29, 2004, pp. 34–37.

[10] A. Ramamoorthy and R. D. Wesel, “The single source two terminal network with network coding,” in *Proceedings of the 9th Canadian Workshop on Information Theory*, Montreal, June 2005.

[11] C. Chekuri, C. Fragouli, and E. Soljanin, “On achievable information rates in single-source non-uniform demand networks,” in *Proceedings IEEE International Symposium on Information Theory*, Seattle, July 9 – 14, 2006, pp. 773–777.

[12] L. R. Ford, Jr. and D. R. Fulkerson, “Maximal flow through a network,” *Canadian Journal of Mathematics*, vol. 8, pp. 399–404, 1956.

[13] D. Karger, R. Motwani, and M. Sudan, “Approximate graph coloring by semidefinite programming,” *Journal of the ACM*, vol. 45, no. 2, pp. 246–265, Mar. 1998.

[14] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, “The strong perfect graph theorem,” *Annals of Mathematics*, vol. 164, no. 1, pp. 51–229, 2006.

[15] M. Chudnovsky, G. Cornuéjols, X. Li, P. Seymour, and K. Vušković, “Recognizing Berge graphs,” *Combinatorica*, vol. 25, no. 2, pp. 143–186, Mar. 2005.

[16] R. Dougherty, C. Freiling, and K. Zeger, “Insufficiency of linear coding in network information flow,” *IEEE Trans. Inform. Theory*, vol. 51, no. 8, pp. 2745–2759, Aug. 2005.

[17] M. Médard, M. Effros, D. Karger, and T. Ho, “On coding for non-multicast networks,” in *Proceedings of the 41st Annual Allerton Conference on Communication, Control, and Computing*, Monticello, IL, Oct. 1 – 3, 2003, pp. 21–29.

[18] M. R. Garey and D. S. Johnson, *Computers and Intractability: A Guide to the Theory of NP-Completeness*. New York: W.H. Freeman, 1979.