Summary: In the chapter “Magic with a matrix” in [Hexaflexagons and other mathematical diversions. Chicago, IL: University of Chicago Press (1988)], M. Gardner describes a delightful “party trick” to fill the squares of a d-by-d chessboard with nonnegative integers such that the sum of the numbers covered by any placement of d nonthreatening rooks is a given number N. We consider such chessboards from a geometric perspective which gives rise to a family of lattice polytopes. The polyhedral structure of these Gardner polytopes explains the underlying trick and enables us to count such chessboards for given N in three different ways. We also observe a curious duality that relates Gardner polytopes to Birkhoff polytopes.

MSC:
05A05 Permutations, words, matrices
52B12 Special polytopes (linear programming, centrally symmetric, etc.)
52B20 Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry)
52B25 Combinatorial properties of polytopes and polyhedra (number of faces, shortest paths, etc.)

Keywords:
Gardner polytopes; Birkhoff polytopes.

Full Text: DOI arXiv

References:
[1] Barvinok, A., A Course in Convexity, 54, Graduate Studies in Mathematics (2002), Providence, RI: American Mathematical Society, Providence, RI - Zbl 1014.52001
[2] Beck, M.; Robins, S., Computing the Continuous Discretely, Undergraduate Texts in Mathematics (2015), New York, NY: Springer, New York, NY
[3] Beck, M.; Sanyal, R., Combinatorial Reciprocity Theorems, 195, Graduate Studies in Mathematics (2018), Providence, RI: American Mathematical Society, Providence, RI - Zbl 1411.05001
[4] Breuer, F., Ehrhart \((\#\#\#\#\#) \) -coefficients of polytopal complexes are non-negative integers, Electron. J. Combin., 19, 4 (2012) - Zbl 1270.52020
[5] Bruns, W.; Gubeladze, J., Polytopes, Rings, and K-Theory (2009), Dordrecht, The Netherlands: Springer, Dordrecht, The Netherlands
[6] Bump, D.; Choi, K.; Kurlberg, P.; Vaaler, J., A local Riemann hypothesis, I, Math. Z, 233, 1, 1-19 (2000) - Zbl 0991.11022 · doi:10.1007/PL00004786
[7] De Loera, J. A.; Rambau, J.; Santos, F., Triangulations, 25, Algorithms and Computation in Mathematics (2010), Berlin, Germany: Springer, Berlin, Germany
[8] Ehrhart, E., Sur les polyédres rationnels homothétiques à n dimensions, C. R. Acad. Sci. Paris, 254, 616-618 (1962) - Zbl 0190.27601
[9] Gardner, M., Hexaflexagons and Other Mathematical Diversions (1988), Chicago, IL: Univ. of Chicago Press, Chicago, IL
[10] Higashitani, A.; Kummer, M.; Michałek, M., Interlacing Ehrhart polynomials of reflexive polytopes, Sel. Math. (N.S.), 23, 4, 2977-2986 (2017) - Zbl 1377.26016 · doi:10.1007/s00029-017-0350-6
[11] Köppe, M.; Verdoolaege, S., Computing parametric rational generating functions with a primal Barvinok algorithm, Electron. J. Combin., 15, 1, 1-19 (2008) - Zbl 1180.52014
[12] Maclagan, D.; Sturmfels, B., Introduction to Tropical Geometry, 161, Graduate Studies in Mathematics (2015), Providence, RI: American Mathematical Society, Providence, RI - Zbl 1321.14048
[13] Matousek, J., Lectures on Discrete Geometry, 212, Graduate Texts in Mathematics (2002), New York, NY: Springer, New York, NY - Zbl 0999.52006
[14] Stanley, R. P., Two enumerative results on cycles of permutations, Eur. J. Combin., 32, 6, 937-943 (2011) - Zbl 1238.05015 ·
[15] Stanley, R. P., Enumerative Combinatorics, Volume 1, Cambridge Studies in Advanced Mathematics, 49 (2012), New York, NY: Cambridge Univ. Press, New York, NY

[16] Sullivant, S., Compressed polytopes and statistical disclosure limitation, Tohoku Math. J., 58, 3, 433-445 (2006) · Zbl 1121.52028 · doi:10.2748/tmj/1163775139

[17] Ziegler, G. M., Graduate Texts in Mathematics, 152, Lectures on Polytopes (1995), New York, NY: Springer, New York, NY · Zbl 0823.52002

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.