Harmonic lattice behavior of two-dimensional colloidal crystals

P. Keim, G. Maret, U. Herz and H.H. von Grünberg

Universität Konstanz, Fachbereich Physik, P.O.B. 5560, 78457 Konstanz, Germany
(Dated: March 22, 2022)

Using positional data from video-microscopy and applying the equipartition theorem for harmonic Hamiltonians, we determine the wave-vector-dependent normal mode spring constants of a two-dimensional colloidal model crystal and compare the measured band-structure to predictions of the harmonic lattice theory. We find good agreement for both the transversal and the longitudinal mode. For \(q \to 0\), the measured spring constants are consistent with the elastic moduli of the crystal.

PACS numbers: 61.66.-f, 63.20.Dj, 82.70.Dd

Colloidal crystals have a long tradition as condensed matter analogs of ordinary solids. They are studied, for example, to understand phenomena such as freezing and melting \(^1\). Unlike in ordinary solids having properties that are often difficult to connect to the underlying atomic interactions, the interparticle potentials in such colloidal crystals are in most cases precisely known and, more importantly, externally controllable. Moreover, the relevant time- and length scales in colloidal systems are comparatively easy to access experimentally. Both aspects suggest studies directly probing the connection between microscopic interaction-potentials and macroscopic crystal properties.

The property we here consider is the crystal’s elastic response to thermal excitations, specifically, the phonon dispersion relations. In this regard, colloidal crystals are rather special in that their phonons are almost always overdamped: the ratio between the wave-vector dependent frequency \(\omega(q) = \sqrt{\lambda(q)/m}\), characteristic of the harmonic forces with spring constants \(\lambda(q)\), and the friction factors \(\Lambda(q)\) (also \(q\)-dependent \(^2\)) for the modes of lattice motion through the host liquid, is typically of the order \(10^{-3}\) to \(10^{-4}\) in colloidal systems. Therefore, the time autocorrelation function of a phonon normal mode coordinate decays exponentially with a rate given by \(\lambda(q)/\Lambda(q)\). \(^3\) This decay rate can be, and has repeatedly been, measured by means of dynamical light scattering \(^4\), \(^5\), \(^6\), \(^7\), \(^8\) or inelastic light scattering \(^3\). Phonon dispersion relations have been determined in charge-stabilized \(^2\), \(^3\), \(^7\), \(^8\) and purely hard sphere colloidal crystals \(^7\), \(^8\), in the context of dusty plasma physics \(^8\), but also in more exotic systems such as crystals made of mm steel spheres \(^9\) or optically anisotropic spheres \(^4\).

Microscopic information about the spring constants and thus the particle interaction potentials can only be derived from these decay rates, i.e. from \(\lambda(q)/\Lambda(q)\), if one resorts to a model describing the complicated frictional forces, especially those of hydrodynamic origin. A direct access to \(\lambda(q)\), i.e. one free from any assumptions of a model, is not possible in this approach.

In this Letter we report on a video-microscopy study of two-dimensional (2D) colloidal crystals and show how to obtain direct access to the normal mode band-structure

\(\lambda(q)\) of the crystal, circumventing, in particular, the difficulties arising from the hydrodynamic interactions. The central idea is to avoid a dynamical measurement and to analyze instead spatial correlations between the particles which are then related to the \(\lambda(q)\), the eigenvalues of the dynamical matrix characterizing the elastic properties of the harmonic crystal. This becomes possible through use of digital video-microscopy \(^1\) providing us with the trajectories of all particles. The colloidal system we examine is well-studied and the interparticle potential precisely known \(^12\), \(^13\), \(^14\). This will be of advantage when establishing a quantitative link between the measured \(\lambda(q)\) and the theoretical band-structure based on the pair-potential.

The experimental setup is an improved version of the one described in \(^12\): Spherical colloids (diameter \(d = 4.5 \mu m\)) are confined by gravity to a water/air interface formed by a water drop suspended by surface tension in a top sealed cylindrical hole of a glass plate. The flatness of the interface can be controlled within +/- half a micron. The field of view has a size of \(835 \times 620 \mu m\) containing typically up to \(3 \times 10^3\) particles, whereas the

FIG. 1: Micrograph \((420 \times 310 \mu m)\) of a typical colloidal crystal investigated in the present work; the two-dimensional system consists of paramagnetic colloids confined at the air-water interface of a hanging water drop.
whole sample contains about 10^5 particles. The number of particles in the field of view is controlled by the curvature of the droplet via an active regulation with an accuracy of 1% and the biggest observed particle-density gradient is 0.7%. The variation of the inclination of the sample is in the range of $\alpha \approx 1 \mu$Rad so that the collective motion of the particles relative to the field of view is below 2 μm/h providing best equilibrium conditions for long time stability. The particles are superparamagnetic due to Fe$_3$O$_4$ doping. A magnetic field \vec{B} applied perpendicular to the air/water interface induces in each particle a magnetic moment $\vec{M} = \chi \vec{B}$ which leads to a repulsive dipole-dipole pair-interaction energy of $\beta v(\vec{r}) = \Gamma/(\sqrt{\pi \rho})^3$ with the dimensionless interaction strength given by $\Gamma = \beta(\mu_0/4\pi)(\chi B)^2/\delta r^{3/2}$ ($\beta = 1/kT$ the inverse temperature, χ the susceptibility). The interaction can be externally controlled by means of the magnetic field B. Γ was determined as in Ref. [12] and is the only parameter controlling the phase-behavior of the system. For $\Gamma > 60$ the sample is a hexagonal crystal [13] (see Fig. 11). The sample was tempered at high interaction strength up to $\Gamma = 250$ deep in the crystalline phase until a 2D-mono-crystal was observed. We here analyze three different crystals, from hard to soft ($\Gamma = 250, 175, 75$), and use for each system about 2000 statistically independent configurations with approximately 1300 particles, recorded at equal time intervals ($\Delta t = 2$ s) in a 440 x 440 μm frame using digital video-microscopy with subsequent image-processing on the computer. For each of N particles in a given configuration, we determine the displacement $\vec{u}(\vec{R})$ of the particle from its equilibrium position \vec{R}.

Using the theory of harmonic crystals [13], we now derive an equation guiding us from the measured displacement vectors $\vec{u}(\vec{R})$ to the eigenvalues of the dynamical matrix. Let $D_{\mu,\nu}(\vec{q})$ ($\mu, \nu \in \{x, y\}$) be the dynamical matrix [13], connected through a Fourier transformation to the matrix $D_{\mu,\nu}(\vec{R}, \vec{R}')$ which is essentially the matrix of the second derivatives of the pair-potential $v(\vec{r}) \sim \Gamma/\rho^3$. It is obvious that $D_{\mu,\nu}(\vec{q})$ depends linearly on the interaction strength parameter Γ; therefore we write $D_{\mu,\nu}(\vec{q}) = (kT/\alpha^2) \tilde{D}_{\mu,\nu}(\vec{q})$ and obtain the dimensionless dynamical matrix $\tilde{D}_{\mu,\nu}(\vec{q})$ which is independent of Γ (α is the lattice constant of a hexagonal lattice). From the measured $\vec{u}(\vec{R})$ we seek to determine the eigenvalues of $\tilde{D}_{\mu,\nu}(\vec{q})$ which we denote by $\lambda_{s,l}(\vec{q})$. Here the polarization subscript s stands for the longitudinal ($s = l$) and transversal ($s = t$) mode. The harmonic potential energy of the crystal can be written in the following form [15]

$$U = \frac{1}{2V} \sum_{\vec{q},\mu,\nu} u^*_{\mu}(\vec{q}) D_{\mu,\nu}(\vec{q}) u_{\nu}(\vec{q})$$ \hspace{1cm} (1)

with $V = N v_0 = N \sqrt{3} \alpha^2/2$ and $u_{\nu}(\vec{q})$ being the ν'th component of the Fourier transform of the displacement vectors $\vec{u}(\vec{R})$. The equipartition theorem for classical harmonic Hamiltonians states that on average every mode has an energy of $kT/2$. Thus

$$\frac{1}{V} (u^*_{\mu}(\vec{q}) D_{\mu,\nu}(\vec{q}) u_{\nu}(\vec{q})) = kT/2$$

and this leads us to

$$\frac{1}{V} (\langle u^*_{\mu}(\vec{q}) u_{\nu}(\vec{q}) \rangle) = kT D_{\mu,\nu}^{-1}(\vec{q})$$ \hspace{1cm} (2)

where in our case the average has to be taken over all measured configurations. Introducing with $p_s(\vec{q})$ ($s = t, l$) an abbreviation for the eigenvalues of the matrix $\Gamma (\langle u^*_{\mu}(\vec{q}) u_{\nu}(\vec{q}) \rangle)/(V \alpha^2)$, one arrives at

$$\frac{1}{p_s(\vec{q})} = \frac{\lambda_s(\vec{q}) \alpha^2}{kT \Gamma},$$ \hspace{1cm} (3)

($s = t, l$).

Static and slowly moving distortions of the lattice are the main source of error in our experiment. Sometimes observe long-range bending of lattice lines, a finite-size problem which in soft crystals can be partly overcome in giving the crystal enough time to equilibrate. This takes the more time the harder the crystal is. For our hardest crystal we have not managed to avoid a small, but clearly visible bending of lines. A second problem is related to the determination of each particle’s equilibrium position \vec{R}, without which the displacement vectors $\vec{u}(\vec{R})$ cannot be determined. A cooperative drift of all particles can be observed, a behavior typical of 2D crystals. An illustrative example pictures can be found in [17] and also in [18]: particles can depart significantly from their lattice sites, but keep a nearly constant distance from each other so that nearby trajectories are similar. However, when resorting to a local coordinate system the overall symmetry remains crystal-like, and the crystal melts in accordance with the Lindeman criterion in spite of the collective drift (measured in the global coordinate system, the root mean square displacement would diverge at long times, indicating the instability of the 2D crystal [18]). These observations have been confirmed experimentally [13]. To correct our data for drift, we first calculated coarse-grained trajectories by averaging over a sliding time window ΔT having a width of 25, 40 and 60 Δt for $\Gamma = 250, 175$ and 75, respectively. We then analyzed the short-time displacement of the particles with respect to these coarse-grained trajectories to obtain the true fluctuations of the underlying crystal. Our whole data evaluation procedure has been successfully tested by processing data obtained from Monte Carlo simulations, using the pair-potential and parameters of our experiment.

Fig. 2 shows $1/p_s(\vec{q})$ from eq. 3 as obtained from the measured set of displacement vectors for $\Gamma = 250, 175$ and 75, and compares it to the theoretical bandstructure (solid lines) of a harmonic crystal having a two-dimensional hexagonal lattice ($\alpha = 12.98 \mu$m).
latter is based on the second derivatives of the known pair-potential and results from diagonalizing the latter is based on the second derivatives of the known pair-potential and results from diagonalizing the theoretical band-structure calculated from standard harmonic crystal theory using the pair-potential $\beta v(r) = \Gamma / (\sqrt{r})^3$. The inset shows the first Brillouin zone of the hexagonal lattice and labels for high-symmetry points, defining the lines in the interior and on the surface of the first Brillouin zone along which the band-structure is plotted. The upper curve corresponds to the longitudinal, the lower one to the transversal mode.

It can be shown that $\lim_{q \to 0} d_{\parallel}(q) = kT/((K + \mu)a^2)$ and $\lim_{q \to 0} d_{\perp}(q) = kT/(\mu a^2)$ where K is the bulk modulus and μ the shear modulus. Curves (1) and (2) are $d_{\parallel}(q)\Gamma$ in the $\Gamma \to M$ (curve (1)) and the $\Gamma \to K$ (curve (2)) direction, (3) and (4) are $d_{\parallel}(q)\Gamma$ in the $\Gamma \to K$ (curve (3)) and the $\Gamma \to M$ (curve (4)) direction. Symbols, lines and the labels Γ, K, M for symmetry-points are all defined in Fig. 2. Arrows indicate the $T = 0$ prediction of the elastic moduli, see text.

$$q_\perp$$ from the left and the right, to find

$$d_i(q) = \frac{\nu_i}{V} \langle |q_i \hat{u}(q)|^2 \rangle = kT \sum_{\mu,\nu} q_{i,\mu} D_{\mu,\nu}^{-1}(q) q_{i,\nu}, \quad i = ||, \perp.$$

It can be shown that $\lim_{q \to 0} d_{\parallel}(q) = kT/((K + \mu)a^2)$ and $\lim_{q \to 0} d_{\perp}(q) = kT/(\mu a^2)$ where K and μ are the bulk and shear elastic moduli of continuum theory. Since $D_{\mu,\nu}(q)$ depends linearly on Γ, the quantity $\Gamma d_i(q) (i = ||, \perp)$ is independent of Γ. Fig. 3 shows $d_{\parallel}(q)\Gamma$ and $d_{\perp}(q)\Gamma$, evaluated with the experimental data for all three crystals ($\Gamma = 75, 175, 250$, symbols) and theoretically using the dynamical matrix $D_{\mu,\nu}(q)$ and the pair-potential (solid-lines). For the pair-potential $\sim \Gamma/r^3$ the elastic constants can be calculated to be $K a^2/kT = 3.461 \Gamma$ and $\mu = K/10$ in the limit $\Gamma \to \infty (T = 0)$ Arrows in Fig. 3 indicate the prediction of the $T = 0$ calculation. While the data on the longitudinal branch (curve (3) and (4)) show excellent agreement and correctly approach the $T = 0$ inverse bulk modulus, theoretical and experimental data on the transversal branch disagree at low q. This is clearly a finite size effect. Taking data from this very experiment, it has already been shown that appropriate finite size scaling leads to an almost perfect agreement with the $T = 0$-prediction of the elastic moduli. We should also remark that the location of the branching points of the $\Gamma \to K$ and $\Gamma \to M$ curves in Fig. 3 reveal that the assumption of isotropy is justified only if $qa > 1$ for the transversal and $qa > 3$ for the longitudinal modes.
This defines the limits for the continuum approach often chosen to describe this system.

In summary, we used video-microscopy data to determine the wave-vector dependent normal mode spring constants of a two-dimensional colloidal model crystal. We checked the continuum limit and compared the experimental data to the predictions of the classical theory of a harmonic crystal. Our data evaluation procedure can be seen as an illustration of the validity of the equipartition theorem which we used to derive the spring constants from the particles’ displacement vectors. The success of our undertaking was not clear from the beginning; if a crystal in 2D is not stable, how can one measure the normal mode spring constants? Here the ideas put forward in [13, 17] proved helpful, specifically the introduction of a local coordinate system. Analyzing particle distributions at equilibrium, we were allowed to completely ignore the lattice dynamics. In this context, it is worth remembering that Fig. 2 is not a phonon-dispersion relation in the classical sense as there are no phonons propagating with \(\omega_s(\vec{q}) = \sqrt{\lambda_s(\vec{q})/m} \). Our results suggest that it is more appropriate to think of a colloidal crystal as a bead-spring lattice immersed in a viscous fluid [20]. A normal vibration mode then transforms into a 'normal relaxation mode' [2, 20], and the motion of a particle is to be understood as superposition of these 'normal relaxation modes'. A time-dependent analysis of our data would allow to study the relaxation process of these normal modes. From the relaxation times and armed with the spring constants measured here, one could then proceed to evaluate the \(\vec{q} \)-dependent friction factors to study, for example, hydrodynamic forces. These avenues await further investigations. We finally remark that the statics and dynamics of overdamped phonons in two-dimensional colloidal crystals may also be seen as a contribution to our understanding of surface phonons [21].

Stimulating discussions with R. Klein and E. Trizac are gratefully acknowledged. We also acknowledge financial support from the Deutsche Forschungsgemeinschaft (European Graduate College 'Soft Condensed Matter' and Schwerpunktprogramm Ferrofluide, SPP 1104) and the European Community (Schwerpunktprogramm Ferrofluide, SPP 1104) for the Konstanz Graduate College 'Soft Condensed Matter' and support from the Deutsche Forschungsgemeinschaft (European Graduate College 'Soft Condensed Matter' and Schwerpunktprogramm Ferrofluide, SPP 1104).

[1] A.K. Sood, Solid State Phys. Adv. Res. Appl. 45, 1 (1991); A.K. Arora and B.V.R. Tata, Ordering and phase transitions in charged colloids (VCH, New York, 1995); H. Löwen, Phys. Rep.-Rev. Sec. Phys. Lett. 237, 76 (1994).
[2] A.J. Hurd, N.A. Clark, R.C. Mockler, and W.J. O'Sullivan, Phys. Rev. A 26, 2869 (1982); A.J. Hurd, N.A. Clark, R.C. Mockler, and W.J. O'Sullivan, J. Fluid Mech. 153, 401 (1985).
[3] J.M.A. Hofman, H.J.H. Clercx, and P.P.J.M. Schram, Physica A 268, 353 (1999).
[4] R. Piazza and V. Degiorgio, Phys. Rev. Lett. 67, 3868 (1991).
[5] J. Derksen and W. van de Water, Phys. Rev. A 45, 5660 (1992).
[6] M. Hoppenbrouwers and W. van de Water, Phys. Rev. Lett. 80, 3871 (1998).
[7] Z.D. Cheng, J.X. Zhu, W.B. Russel, and P.M. Chaikin, Phys. Rev. Lett. 85, 1460 (2000).
[8] R.S. Penciu, M. Kafesaki, G. Fytas, E.N. Economou, W. Steffen, A. Hollingsworth, and W.B. Russel, Europhys. Lett. 58, 699 (2002); R.S. Penciu, H. Kriegers, G. Petekidis, G. Fytas, and E.N. Economou, J. Chem. Phys. 118, 5224 (2003).
[9] P.P.J.M. Schram, Contrib. Plasma Phys. 33, 461 (1993); E.A. Allahyarov, I.I. Podloubny, P.P.J.M. Schram, and S.A. Trigger, Phys. Rev. E 55, 592 (1997); P.P.J.M. Schram and S.A. Trigger, Contrib. Plasma Phys. 41, 219 (2001).
[10] M.B. Hay, R.K. Workman, and S. Manne, Phys. Rev. E 67, 012401 (2003).
[11] C.A. Murray and D.G. Grier, Annu. Rev. Phys. Chem. 47, 421 (1996).
[12] K. Zahn, J.M.Mendez-Alcaraz and G. Maret, Phys. Rev. Lett. 79, 175 (1997); K. Zahn, R. Lenke, and G. Maret, Phys. Rev. Lett. 82, 2721 (1999); K. Zahn, G. Maret, C. Ruß, and H.H. von Grünberg, Phys. Rev. Lett. 91, 115502 (2003).
[13] K. Zahn and G. Maret, Phys. Rev. Lett. 85, 3656 (2000).
[14] K. Zahn, A. Wille, G. Maret, S. Sengupta, and P. Nielaba, Phys. Rev. Lett. 90, 155506 (2003).
[15] N.W. Ashcroft and N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976), chapter 22.
[16] P.M. Chaikin and T.C. Lubensky, Principles of condensed matter physics (Cambridge University Press, Cambridge, 1995), p. 223.
[17] X.H. Zheng and J.C. Earnshaw, Europhys. Lett. 41, 635 (1998).
[18] V.M. Bedanov and G.V. Gadiyak, Phys. Lett. A 190, 289 (1985).
[19] A. Wille, Ph.D. thesis, University of Konstanz, Konstanz, Germany, (2001).
[20] Y.N. Ohshima and I. Nishio, J. Chem. Phys. 114, 8649 (2001).
[21] W. Kress and F.W. de Wette, Surface Phonons (Springer-Verlag, Berlin, Heidelberg 1991).