Supporting Information

For

Synthesis of trifluoromethyl-containing isoindolinones from tertiary enamides via cascade radical addition and cyclization process

Hui Yu,* Mingdong Jiao, Xiaowei Fang, Pengfei Xuan

Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai, 200092, China

Email: yuhui@tongji.edu.cn

List of Contents

General Methods \hspace{1cm} S2
Analytical data for compounds 2a-s, 4a-i, 6a-b \hspace{1cm} S2-17
Copies of ¹H and ¹³C NMR spectra \hspace{1cm} S18-46
(A) General Methods

Commercially available reagents were used as received without further purification unless otherwise indicated. Reactions were magnetically stirred and monitored by thin layer chromatography (TLC) using Silica Gel 60 F254 plates and were visualized by fluorescence quenching at 254 nm. For chromatographic purifications, analytically pure solvents were used and the silica gel 300-400 mesh was used as the solid support. 1H NMR and 13C NMR chemical shifts were reported in δ units, parts per million (ppm) relative to the chemical shift of residual solvent. Reference peaks for chloroform in 1H NMR and 13C NMR spectra were set at 7.26 ppm and 77.0 ppm, respectively.

(B) Analytical data for the products

Typical experimental procedure for the synthesis of trifluoromethyl-containing isoindolinones 2 and 4

In a 25 mL sealed tube, a mixture of N-butyl-N-(prop-1-en-2-yl)benzamide 1a (43.4mg, 0.2 mmol), KHF$_2$ (12.4 mg, 1.0 equiv), TMSCF$_3$ (113.8 mg, 4 equiv), PhI(OAc)$_2$ (257.7mg, 4 equiv), EtOAc (2mL) was stirred at 80$^\circ$C under N$_2$ for 12h. The reaction mixture was quenched with saturate brine, dried over anhydrous Na$_2$SO$_4$, and evaporated in vacuum. The residue was purified by flash chromatography on silica gel by gradient elution (ethyl acetate in petroleum ether, 4:1) to obtain the corresponding product 2a.

2-butyl-3-methyl-3-(2, 2, 2-trifluoroethyl)isoindolin-1-one

Yellow liquid, 75 % yield; 1H NMR (400 MHz, CDCl$_3$) δ = 7.84 (d, J = 7.5 Hz, 1H), 7.56 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.4 Hz, 1H), 7.42 (d, J = 7.6 Hz, 1H), 3.67-3.69 (m, 1H), 3.21-3.07 (m, 1H), 2.76 (q, J = 10.1 Hz, 2H), 1.96-1.79 (m, 1H), 1.59 (d, J = 10.9 Hz, 4H), 1.43 (dd, J = 13.4, 8.8 Hz, 2H), 0.98 (t, J = 7.3 Hz, 3H).

13C NMR (101 MHz, CDCl$_3$) δ = 167.77, 147.62, 131.62, 131.35, 128.70, 124.23(q, J_{CF} = 278.4Hz), 123.72, 121.21, 61.87, 40.36 (q, J_{CF} = 27.3 Hz), 40.08, 31.18, 26.43, 20.71, 13.82.
19F NMR (377 MHz, CDCl$_3$) δ = -61.60 (s).

HRMS (ESI-TOF) m/z = 308.1233 [M + Na]$^+$, calcd for C$_{15}$H$_{18}$F$_3$NaO: 308.1238

2-butyl-3, 7-dimethyl-3-(2, 2, 2-trifluoroethyl)isoindolin-1-one

Yellow solid , 72 % yield ; 1H NMR (600 MHz, CDCl$_3$) δ = 7.40 (t, J = 7.6 Hz, 1H), 7.20 (t, J = 8.0 Hz, 2H), 3.64-3.66 (m, 1H), 3.10-3.12 (m, 1H), 2.81-2.67 (m, 5H), 1.91-1.80 (m, 1H), 1.63-1.56 (m, 1H), 1.55 (d, J = 6.7 Hz, 3H), 1.45-1.39 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H).

13C NMR (151 MHz, CDCl$_3$) δ 167.57, 147.20, 136.70, 129.97, 129.63, 127.26, 123.54 (q, $J_{CF} = 278.4$ Hz), 117.54, 59.90, 39.60 (q, $J_{CF} = 27.1$ Hz), 38.93, 30.18, 25.71, 19.75, 16.24, 12.79.

19F NMR (565 MHz, CDCl$_3$) δ = -61.60 (s).

HRMS (ESI-TOF) m/z =322.1377 [M + Na]$^+$, calcd for C$_{16}$H$_{20}$F$_3$NaO:322.1395

2-butyl-3, 6-dimethyl-3-(2, 2, 2-trifluoroethyl)isoindolin-1-one

Yellow liquid , 66 % yield ; 1H NMR (600 MHz, CDCl$_3$) δ = 7.64 (s, 1H), 7.36 (d, J = 7.7 Hz, 1H), 7.29 (d, J = 7.7 Hz, 1H), 3.72-3.61 (m, 1H), 3.20-3.08 (m, 1H), 2.73 (q, J = 10.1 Hz, 2H), 2.43 (d, J = 13.7 Hz, 3H), 1.90-1.79 (m, 1H), 1.65-1.53 (m, 4H), 1.46-1.38 (m, 2H), 0.97 (t, J = 7.2 Hz, 3H).

13C NMR (151 MHz, CDCl$_3$) δ 167.89, 144.87, 138.77, 132.53, 131.43, 124.56 (q, $J_{CF} = 278.4$ Hz), 123.92, 120.96, 61.68, 40.56 (q, $J_{CF} = 27.2$ Hz), 40.05, 31.17, 26.49, 21.32, 20.70, 13.83.

19F NMR (565 MHz, CDCl$_3$) δ = -61.59 (s).

HRMS (ESI-TOF) m/z =322.1389 [M + Na]$^+$, calcd for C$_{16}$H$_{20}$F$_3$NaO: 322.1395
2-butyl-3, 5-dimethyl-3-(2, 2, 2-trifluoroethyl)isoindolin-1-one

White solid, 73 % yield; 1H NMR (400 MHz, CDCl$_3$) δ = 7.71 (d, $J = 7.7$ Hz, 1H), 7.29-7.25 (m, 1H), 7.20 (s, 1H), 3.65-3.67 (m, 1H), 3.18-3.06 (m, 1H), 2.81-2.67 (m, 2H), 2.46 (s, 3H), 1.90-1.80 (m, 1H), 1.57 (d, $J = 13.3$ Hz, 4H), 1.46-1.38 (m, 2H), 0.97 (t, $J = 7.3$ Hz, 3H).

13C NMR (151 MHz, CDCl$_3$) δ = 167.85, 148.01, 142.23, 129.65, 128.79, 124.53 (q, $J_{CF} = 278.4$ Hz), 123.47, 121.63, 61.64, 40.55 (q, $J_{CF} = 27.3$ Hz), 40.02, 31.22, 26.49, 21.99, 20.70, 13.84.

19F NMR (377 MHz, CDCl$_3$) δ = -61.58 (s).

HRMS (ESI-TOF) m/z = 322.1389 [M + Na]$^+$, calcd for C$_{16}$H$_{20}$F$_3$NNaO: 322.1395

2-butyl-3, 5, 7-trimethyl-3-(2, 2, 2-trifluoroethyl)isoindolin-1-one

Yellow liquid, 68 % yield; 1H NMR (600 MHz, CDCl$_3$) δ = 7.50 (s, 1H), 7.12 (s, 1H), 3.61 (ddd, $J = 14.3$, 11.1, 5.3 Hz, 1H), 3.14-3.16 (m, 1H), 2.92-2.94 (m, 1H), 2.80-2.82 (m, 1H), 2.44 (s, 3H), 2.39 (s, 3H), 1.90-1.83 (m, 1H), 1.65-1.56 (m, 4H), 1.45-1.39 (m, 2H), 0.98 (t, $J = 7.4$ Hz, 3H).

13C NMR (151 MHz, CDCl$_3$) δ = 167.92, 141.48, 138.77, 135.09, 132.19, 131.61, 124.46 (q, $J_{CF} = 278.5$ Hz), 121.75, 62.33, 39.68, 38.03 (q, $J_{CF} = 27.1$ Hz), 31.06, 24.48, 21.05, 20.75, 18.67, 13.82.

19F NMR (565 MHz, CDCl$_3$) δ = -62.69 (s).

HRMS (ESI-TOF) m/z = 336.1546 [M + Na]$^+$, calcd for C$_{17}$H$_{22}$F$_3$NNaO: 336.1551

2-butyl-5-fluoro-3-methyl-3-(2, 2, 2-trifluoroethyl)isoindolin-1-one
Yellow solid, 67% yield; 1H NMR (600 MHz, CDCl$_3$) δ = 7.82 (dd, J = 8.3, 5.0 Hz, 1H), 7.17 (td, J = 8.8, 2.0 Hz, 1H), 7.10 (dd, J = 8.1, 1.8 Hz, 1H), 3.65-3.67 (m, 1H), 3.16-3.09 (m, 1H), 2.82-2.67 (m, 2H), 1.89-1.80 (m, 1H), 1.64-1.55 (m, 4H), 1.46-1.38 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H).

13C NMR (151 MHz, CDCl$_3$) δ = 166.68, 165.95, 164.28, 150.04, 125.76, 124.36 (q, J_{CF} = 278.3 Hz), 116.53, 108.88, 61.55, 40.47 (q, J_{CF} = 27.5 Hz), 40.18, 31.17, 26.39, 20.67, 13.81.

19F NMR (565 MHz, CDCl$_3$) δ = -61.65 (s), -106.97 (s).

HRMS (ESI-TOF) m/z = 326.1119 [M + Na]$^+$, calcd for C$_{15}$H$_{17}$F$_4$NNaO: 326.1144

2-butyl-5-chloro-3-methyl-3-(2, 2, 2-trifluoroethyl)isoindolin-1-one

White solid, 60% yield; 1H NMR (400 MHz, CDCl$_3$) δ = 7.77 (d, J = 8.1 Hz, 1H), 7.48-7.37 (m, 2H), 3.66-3.68 (m, 1H), 3.10-3.12 (n, 1H), 2.87-2.65 (m, 2H), 1.91-1.78 (m, 1H), 1.59 (d, J = 11.5 Hz, 4H), 1.48-1.35 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H).

13C NMR (151 MHz, CDCl$_3$) δ = 166.71, 149.21, 137.97, 129.82, 129.36, 125.03, δ 124.33 (q, J_{CF} = 278.2 Hz), 121.76, 61.65, 40.43 (q, J_{CF} = 27.4 Hz), 40.20, 31.09, 26.37, 20.68, 13.81.

19F NMR (377 MHz, CDCl$_3$) δ = -61.61 (s).

HRMS (ESI-TOF) m/z = 342.0877 [M + Na]$^+$, calcd for C$_{15}$H$_{17}$ClF$_3$NNaO: 342.0848

5-bromo-2-butyl-3-methyl-3-(2, 2, 2-trifluoroethyl)isoindolin-1-one
2-butyl-7-chloro-3-methyl-3-(2, 2, 2-trifluoroethyl)isoindolin-1-one

Yellow solid, 71% yield; 1H NMR (600 MHz, CDCl$_3$) δ = 7.70 (t, J = 6.7 Hz, 1H), 7.63-7.59 (m, 1H), 7.57 (s, 1H), 3.66-3.68 (m, 1H), 3.15-3.08 (m, 1H), 2.83-2.68 (m, 2H), 1.89-1.80 (m, 1H), 1.62-1.54 (m, 4H), 1.45-1.38 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H).

13C NMR (151 MHz, CDCl$_3$) δ = 166.77, 149.41, 132.20, 130.30, 126.24, 125.21, 124.70, 124.32 (q, J_{CF} = 278.4 Hz), 61.63, 40.41 (q, J_{CF} = 27.5 Hz), 40.18, 31.07, 26.37, 20.67, 13.81.

19F NMR (565 MHz, CDCl$_3$) δ = -61.62 (s).

HRMS (ESI-TOF) m/z = 386.0336 [M + Na]$^+$, calcd for C$_{15}$H$_{17}$BrF$_3$NNaO: 386.0343

2-butyl-5,7-dichloro-3-methyl-3-(2, 2, 2-trifluoroethyl)isoindolin-1-one

White solid, 70% yield; 1H NMR (600 MHz, CDCl$_3$) δ = 7.47 (t, J = 7.7 Hz, 1H), 7.40 (d, J = 7.9 Hz, 1H), 7.32 (d, J = 7.5 Hz, 1H), 3.73-3.61 (m, 1H), 3.21-3.05 (m, 1H), 2.88-2.68 (m, 2H), 1.92-1.81 (m, 1H), 1.64-1.54 (m, 4H), 1.46-1.38 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H).

13C NMR (151 MHz, CDCl$_3$) δ 165.36, 150.12, 132.30, 131.48, 130.38, 127.33, 124.36 (q, J_{CF} = 278.4 Hz), 119.79, 60.79, 40.47 (q, J_{CF} = 27.4 Hz), 40.21, 30.95, 26.64, 20.70, 13.77.

19F NMR (565 MHz, CDCl$_3$) δ = -61.58 (s).

HRMS (ESI-TOF) m/z = 342.0829 [M + Na]$^+$, calcd for C$_{15}$H$_{17}$ClF$_3$NNaO: 342.0848
Yellow solid, 36% yield; 1H NMR (600 MHz, CDCl$_3$) $\delta = 7.43$ (d, $J = 1.5$ Hz, 1H), 7.30 (d, $J = 1.5$ Hz, 1H), 3.64-3.66 (m, 1H), 3.08-3.10 (m, 1H), 2.81-2.68 (m, 2H), 1.90-1.82 (m, 1H), 1.58 (s, 1H), 1.56 (s, 3H), 1.40-1.42 (m, 2H), 0.97 (t, $J = 7.4$ Hz, 3H).

13C NMR (151 MHz, CDCl$_3$) δ 164.44, 151.20, 138.05, 132.43, 130.54, 126.04, 124.28 (q, $J_{CF} = 278.7$ Hz), 120.42, 60.73, 40.45 (q, $J_{CF} = 27.6$ Hz), 40.32, 30.92, 26.57, 26.09, 13.77.

19F NMR (565 MHz, CDCl$_3$) $\delta = -61.55$ (s).

HRMS (ESI-TOF) m/z = 376.0453 [M + Na]$^+$, calcd for C$_{15}$H$_{16}$Cl$_2$F$_3$NNaO: 376.0459

2-butyl-3-methyl-5-nitro-3-(2, 2, 2-trifluoroethyl)isoindolin-1-one

White solid, 67% yield; 1H NMR (600 MHz, CDCl$_3$) $\delta = 8.38$ (dd, $J = 8.3, 1.7$ Hz, 1H), 8.31 (d, $J = 1.0$ Hz, 1H), 8.00 (d, $J = 8.3$ Hz, 1H), 3.71-3.73 (m, 1H), 3.22-3.13 (m, 1H), 2.92-2.82 (m, 2H), 1.94-1.81 (m, 1H), 1.65 (d, $J = 13.3$ Hz, 3H), 1.63-1.57 (m, 1H), 1.49-1.39 (m, 2H), 0.99 (t, $J = 7.4$ Hz, 3H).

13C NMR (151 MHz, CDCl$_3$) δ 165.38, 150.20, 148.59, 136.68, 124.91, 124.57, 124.17 (q, $J_{CF} = 278.5$ Hz), 117.03, 62.10, 40.55, 40.27 (d, $J_{CF} = 27.6$ Hz), 30.90, 26.34, 20.66, 13.76.

19F NMR (565 MHz, CDCl$_3$) $\delta = -61.65$ (s).

2-butyl-3-methyl-3-(2, 2, 2-trifluoroethyl)-2,3-dihydro-1H-benzo[e]isoindol-1-one
Yellow liquid, 60 % yield; \(^{1}\)H NMR (600 MHz, CDCl\(_3\)) \(\delta = 9.25 (d, J = 8.4 \text{ Hz}, 1\text{H}), 8.03 (d, J = 8.4 \text{ Hz}, 1\text{H}), 7.92 (d, J = 8.2 \text{ Hz}, 1\text{H}), 7.67 (t, J = 8.0 \text{ Hz}, 1\text{H}), 7.58 (t, J = 7.9 \text{ Hz}, 1\text{H}), 7.48 (d, J = 8.4 \text{ Hz}, 1\text{H}), 3.74-3.76 (m, 1\text{H}), 3.20-3.22 (m, 1\text{H}), 2.84 (q, J = 10.1 \text{ Hz}, 2\text{H}), 1.94-1.90 (m, 1\text{H}), 1.69-1.64 (m, 1\text{H}), 1.62 (d, J = 9.8 \text{ Hz}, 3\text{H}), 1.49-1.42 (m, 2\text{H}), 1.00 (t, J = 7.4 \text{ Hz}, 3\text{H}).\

\(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta = 168.73, 147.72, 133.31, 132.54, 129.27, 128.14, 128.11, 126.81, 125.80 (q, J_{CF} = 278.4 \text{ Hz}), 125.25, 124.22, 118.20, 61.22, 40.17 (q, J_{CF} = 27.2 \text{ Hz}), 40.08, 31.25, 26.28, 20.80, 13.87.

\(^{19}\)F NMR (565 MHz, CDCl\(_3\)) \(\delta = -61.69 \text{ (s)}.\)

HRMS (ESI-TOF) m/z = 358.1392 \([M + Na]^+\), calcd for C\(_{19}\)H\(_{20}\)F\(_3\)NNaO: 358.1395

3-methyl-2-propyl-3-(2, 2, 2-trifluoroethyl)isoindolin-1-one

![Structural formula of 3-methyl-2-propyl-3-(2, 2, 2-trifluoroethyl)isoindolin-1-one](image)

White solid, 64 % yield; \(^{1}\)H NMR (600 MHz, CDCl\(_3\)) \(\delta = 7.84 (d, J = 7.5 \text{ Hz}, 1\text{H}), 7.56 (td, J = 7.5, 1.1 \text{ Hz}, 1\text{H}), 7.47 (td, J = 7.5, 0.9 \text{ Hz}, 1\text{H}), 7.42 (d, J = 7.6 \text{ Hz}, 1\text{H}), 3.64-3.66 (m, 1\text{H}), 3.09-3.11 (m, 1\text{H}), 2.82-2.70 (m, 2\text{H}), 1.94-1.85 (m, 1\text{H}), 1.71-1.63 (m, 1\text{H}), 1.58 (s, 3\text{H}), 1.00 (t, J = 7.4 \text{ Hz}, 3\text{H}).\)

\(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta = 167.76, 147.57, 131.61, 131.31, 128.68, 124.50 (q, J_{CF} = 278.4 \text{ Hz}), 123.70, 121.20, 41.91, 40.52 (q, J_{CF} = 27.3 \text{ Hz}), 26.45, 22.31, 11.81.

\(^{19}\)F NMR (565 MHz, CDCl\(_3\)) \(\delta = -61.64 \text{ (s)}.\)

HRMS (ESI-TOF) m/z = 294.1067 \([M + Na]^+\), calcd for C\(_{14}\)H\(_{16}\)F\(_3\)NNaO: 294.1082

2-hexyl-3-methyl-3-(2, 2, 2-trifluoroethyl)isoindolin-1-one

![Structural formula of 2-hexyl-3-methyl-3-(2, 2, 2-trifluoroethyl)isoindolin-1-one](image)
Yellow liquid, 55 % yield; 1H NMR (600 MHz, CDCl$_3$) δ = 7.84 (d, J = 7.5 Hz, 1H), 7.56 (t, J = 7.5 Hz, 1H), 7.47 (t, J = 7.8 Hz, 1H), 7.42 (d, J = 7.6 Hz, 1H), 3.66-3.68 (m, 1H), 3.12-3.14 (m, 1H), 2.83-2.69 (m, 2H), 1.94-1.82 (m, 1H), 1.67-1.54 (m, 4H), 1.39 (dd, J = 14.1, 7.9 Hz, 2H), 1.33 (d, J = 3.4 Hz, 4H), 0.90 (t, J = 7.0 Hz, 3H).

13C NMR (151 MHz, CDCl$_3$) δ = 167.71, 147.57, 131.59, 131.33, 128.67, 124.39 (q, J_{CF} = 277.8 Hz), 123.69, 121.18, 61.83, 40.51 (q, J_{CF} = 27.2 Hz), 40.30, 31.52, 29.00, 27.14, 26.45, 22.61, 14.05.

19F NMR (565 MHz, CDCl$_3$) δ = -61.62 (s).

HRMS (ESI-TOF) m/z =336.1537 [M + Na]$^+$, calcd for C$_{17}$H$_{22}$F$_3$NaO: 336.1551

2-cyclopropyl-3-methyl-3-(2, 2, 2-trifluoroethyl)isoindolin-1-one

White solid, 65 % yield; 1H NMR (600 MHz, CDCl$_3$) δ = 7.82 (d, J = 7.5 Hz, 1H), 7.57 (t, J = 7.5 Hz, 1H), 7.47 (t, J = 7.4 Hz, 1H), 7.41 (d, J = 7.7 Hz, 1H), 3.00 (dq, J = 15.7, 10.1 Hz, 1H), 2.79 (dq, J = 15.7, 10.0 Hz, 1H), 2.50-2.43 (m, 1H), 1.63 (s, 3H), 1.16-1.11 (m, 1H), 1.07-1.03 (m, 1H), 1.00-0.92 (m, 2H).

13C NMR (101 MHz, CDCl$_3$) δ = 168.90, 147.14, 131.83, 131.28, 128.68, 124.63 (q, J_{CF} = 278.4 Hz), 123.88, 121.35, 63.15, 40.52 (q, J_{CF} = 27.1 Hz), 26.90, 21.99, 5.07, 4.70.

19F NMR (565 MHz, CDCl$_3$) δ = -61.24 (s).

HRMS (ESI-TOF) m/z =292.0902 [M + Na]$^+$, calcd for C$_{14}$H$_{14}$F$_3$NaO: 292.0925

2-butyl-3-propyl-3-(2, 2, 2-trifluoroethyl)isoindolin-1-one

Yellow liquid, 57 % yield; 1H NMR (600 MHz, CDCl$_3$) δ = 7.83 (d, J = 7.4 Hz, 1H), 7.55 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.3 Hz, 1H), 7.35 (d, J = 7.5 Hz, 1H), 3.52-3.43 (m, 1H), 3.27-3.18 (m, 1H), 2.83-2.70
(m, 2H), 1.96-1.85 (m, 2H), 1.83-1.76 (m, 1H), 1.60-1.62 (m, 1H), 1.43-1.45 (m, 2H), 0.99 (t, $J = 7.2$ Hz, 3H), 0.94-0.86 (m, 1H), 0.76 (t, $J = 7.2$ Hz, 3H), 0.54 (dd, $J = 14.6$, 7.9 Hz, 1H).

13C NMR (151 MHz, CDCl$_3$) $\delta = 168.57$, 145.63, 132.26, 131.52, 128.57, 124.52 (q, $J_{CF} = 278.2$ Hz), 123.59, 121.25, 65.07, 40.47 (q, $J_{CF} = 27.2$ Hz), 40.16, 39.93, 30.71, 20.84, 15.48, 13.85, 13.57.

19F NMR (565 MHz, CDCl$_3$) $\delta = -60.85$ (s).

HRMS (ESI-TOF) m/z =336.1556 [M + Na]$^+$, calcd for C$_{17}$H$_{22}$F$_3$NaO: 336.1551

(2-butyl-3-oxo-1-(2, 2, 2-trifluoroethyl)isoindolin-1-yl)methyl benzoate

Yellow liquid, 42% yield; 1H NMR (600 MHz, CDCl$_3$) $\delta = 7.88$ (t, $J = 6.4$ Hz, 3H), 7.59 (dd, $J = 16.3$, 7.2 Hz, 2H), 7.55-7.48 (m, 2H), 7.45 (t, $J = 7.8$ Hz, 2H), 4.53 (s, 2H), 3.77-3.79 (m, 1H), 3.24-3.26 (m, 1H), 2.95-2.97 (m, 2H), 1.95-1.85 (m, 1H), 1.60-1.53 (m, 1H), 1.46-1.35 (m, 2H), 0.91 (t, $J = 7.4$ Hz, 3H).

13C NMR (101 MHz, CDCl$_3$) $\delta = 168.24$, 165.60, 143.35, 133.72, 132.08, 131.78, 129.51, 129.46, 128.80, 128.69, 124.51 (q, $J_{CF} = 278.8$Hz), 123.89, 121.94, 67.66, 63.86, 40.94, 36.17 (q, $J_{CF} = 24.2$ Hz), 31.01, 20.67, 13.72.

19F NMR (565 MHz, CDCl$_3$) $\delta = -60.71$ (s).

HRMS (ESI-TOF) m/z =428.1444 [M + Na]$^+$, calcd for C$_{22}$H$_{22}$F$_3$NaO$_3$: 428.1449

2'-butyl-2-(trifluoromethyl)spiro[cyclohexane-1,1'-isoindolin]-3'-one
Yellow liquid, 57 % yield; The major isomer: 1H NMR (600 MHz, CDCl$_3$) δ = 7.88 (dd, J = 6.0, 2.6 Hz, 1H), 7.73 (dd, J = 6.1, 2.0 Hz, 1H), 7.55-7.46 (m, 2H), 3.62-3.64 (m, 1H), 3.11-3.13 (m, 1H), 2.71-2.73 (m, 1H), 2.23-1.83 (m, 8H), 1.60-1.54 (m, 2H), 1.46-1.39 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H).

13C NMR (101 MHz, CDCl$_3$) δ = 167.65, 145.96, 132.28, 130.55, 128.46, 125.77 (q, J_{CF} = 281.9 Hz), 124.09, 123.82, 64.44, 45.48 (q, J_{CF} = 24.2 Hz), 40.12, 36.36, 31.14, 24.05, 22.83, 22.04, 20.80, 13.81.

19F NMR (565 MHz, CDCl$_3$) δ = -67.20 (s).

HRMS (ESI-TOF) m/z =348.1546 [M + Na]$^+$, calcd for C$_{18}$H$_{22}$F$_3$NNaO: 348.1551

(E)-N-butyl-N-(3, 3, 3-trifluoro-1-phenylprop-1-enyl)benzamide

1H NMR (600 MHz, CDCl$_3$) δ = 7.45 (d, J = 7.3 Hz, 2H), 7.39 (dd, J = 10.5, 4.2 Hz, 2H), 7.35 (d, J = 5.9 Hz, 4H), 7.28 (t, J = 7.6 Hz, 2H), 5.33 (q, J = 8.3 Hz, 1H), 3.66-3.54 (m, 2H), 1.64 (dd, J = 15.5, 7.5 Hz, 2H), 1.31 (dd, J = 15.1, 7.5 Hz, 2H), 0.90 (t, J = 7.4 Hz, 3H).

13C NMR (151 MHz, CDCl$_3$) δ = 171.45, 151.21 (q, J_{CF} = 6.0 Hz), 135.89, 133.76, 130.44, 130.31, 129.05, 129.04, 128.47, 128.20, 127.71, 113.75 (q, J_{CF} = 35.2 Hz), 48.24, 30.06, 20.11, 13.75.

HRMS (ESI-TOF) m/z =370.1384 [M + Na]$^+$, calcd for C$_{20}$H$_{20}$F$_3$NNaO: 370.1395

(E)-N-butyl-N-(3, 3, 3-trifluoroprop-1-enyl)benzamide

1H NMR (600 MHz, CDCl$_3$) δ = 7.95 (dd, J = 6.0 Hz, 2H), 7.39 (dd, J = 10.5, 4.2 Hz, 2H), 7.35 (d, J = 5.9 Hz, 4H), 7.28 (t, J = 7.6 Hz, 2H), 5.33 (q, J = 8.3 Hz, 1H), 3.66-3.54 (m, 2H), 1.64 (dd, J = 15.5, 7.5 Hz, 2H), 1.31 (dd, J = 15.1, 7.5 Hz, 2H), 0.90 (t, J = 7.4 Hz, 3H).

13C NMR (151 MHz, CDCl$_3$) δ = 171.45, 151.21 (q, J_{CF} = 6.0 Hz), 135.89, 133.76, 130.44, 130.31, 129.05, 129.04, 128.47, 128.20, 127.71, 113.75 (q, J_{CF} = 35.2 Hz), 48.24, 30.06, 20.11, 13.75.

19F NMR (565 MHz, CDCl$_3$) δ = -55.30 (s).

HRMS (ESI-TOF) m/z =370.1384 [M + Na]$^+$, calcd for C$_{20}$H$_{20}$F$_3$NNaO: 370.1395
Yellow liquid, 64% yield; 1H NMR (400 MHz, CDCl$_3$) δ = 7.56-7.43 (m, 5H), 7.39 (d, $J = 13.5$ Hz, 1H), 5.09 (dd, $J = 14.2$, 6.2 Hz, 1H), 3.82-3.69 (m, 2H), 1.72-1.61 (m, 2H), 1.40 (dd, $J = 15.0$, 7.4 Hz, 2H), 0.97 (t, $J = 7.3$ Hz, 3H).

13C NMR (101 MHz, CDCl$_3$) δ = 171.10, 136.86, 133.89, 131.21, 128.79, 128.01, 124.36 (q, $J_{CF} = 267.4$ Hz), 96.52 (d, $J_{CF} = 34.3$ Hz), 43.81, 28.46, 20.20, 13.76.

19F NMR (377 MHz, CDCl$_3$) δ = -59.97 (s).

HRMS (ESI-TOF) m/z = 294.1082 [M + Na]$^+$, calcd for C$_{14}$H$_{16}$F$_3$NNaO: 294.1082

(E)-N-propyl-N-(3,3,3-trifluoroprop-1-enyl)benzamide

Yellow liquid, 72% yield; 1H NMR (600 MHz, CDCl$_3$) δ = 7.52 (dd, $J = 10.8$, 4.2 Hz, 1H), 7.50-7.44 (m, 4H), 7.39 (d, $J = 7.5$ Hz, 1H), 5.08-5.10 (m, 1H), 3.76-3.69 (m, 2H), 1.74-1.67 (m, 2H), 0.98 (t, $J = 7.4$ Hz, 3H).

13C NMR (151 MHz, CDCl$_3$) δ = 171.12, 136.84, 133.86, 131.20, 128.78, 128.00, 124.33 (q, $J_{CF} = 267.4$ Hz), 96.54 (q, $J_{CF} = 34.7$ Hz), 45.49, 19.69, 11.29.

19F NMR (565 MHz, CDCl$_3$) δ = -60.03 (s).

HRMS (ESI-TOF) m/z = 280.0922 [M + Na]$^+$, calcd for C$_{13}$H$_{14}$F$_3$NNaO: 280.0925

(E)-N-cyclohexyl-N-(3,3,3-trifluoroprop-1-enyl)benzamide
Yellow liquid, 47% yield; 1H NMR (400 MHz, CDCl$_3$) δ = 7.55-7.40 (m, 5H), 7.10 (d, $J = 14.5$ Hz, 1H), 5.40 (m, 1H), 3.97 (m, 1H), 2.06 (m, 2H), 1.88 (d, $J = 13.3$ Hz, 2H), 1.81 (d, $J = 11.1$ Hz, 2H), 1.39-1.19 (m, 4H).

13C NMR (101 MHz, CDCl$_3$) δ = 171.92, 136.10, 135.09, 131.11, 128.71, 127.92, 124.40 (q, $J_{CF} = 267.8$ Hz), 99.48 (q, $J_{CF} = 34.3$ Hz), 57.66, 29.42, 26.19, 25.27.

19F NMR (377 MHz, CDCl$_3$) δ = -60.50 (s).

HRMS (ESI-TOF) m/z = 320.1221 [M + Na]$^+$, calcd for C$_{16}$H$_{18}$F$_3$NNaO: 320.1238

(E)-N-butyl-4-methoxy-N-(3, 3, 3-trifluoroprop-1-enyl)benzamide

Colorless liquid, 68% yield; 1H NMR (400 MHz, CDCl$_3$) δ = 7.44 (t, $J = 9.0$ Hz, 3H), 6.96 (d, $J = 8.7$ Hz, 2H), 5.06 (m, 1H), 3.87 (s, 3H), 3.80-3.71 (m, 2H), 1.64 (dd, $J = 14.5$, 7.0 Hz, 2H), 1.39 (m, 2H), 0.97 (t, $J = 7.3$ Hz, 3H).

13C NMR (101 MHz, CDCl$_3$) δ = 170.85, 162.02, 137.42, 130.45, 125.79, 124.50 (q, $J_{CF} = 267.3$ Hz), 114.04, 95.85 (q, $J_{CF} = 34.3$ Hz), 55.46, 43.99, 28.46, 20.23, 13.76.

19F NMR (377 MHz, CDCl$_3$) δ = -59.75 (s).

HRMS (ESI-TOF) m/z = 324.1155 [M + Na]$^+$, calcd for C$_{15}$H$_{18}$F$_3$NNaO$_2$: 324.1187

2-butyl-5-methyl-3-(2, 2, 2-trifluoroethyl)isoindolin-1-one

Yellow liquid, 33% yield; 1H NMR (600 MHz, CDCl$_3$) δ = 7.73 (d, $J = 8.3$ Hz, 1H), 7.30 (d, $J = 7.1$ Hz, 2H), 4.70 (dd, $J = 6.6$, 3.4 Hz, 1H), 4.07-4.09 (m, 1H), 3.11-3.13 (m, 1H), 2.78-2.68 (m, 1H), 2.54-2.56 (m, 1H), 2.47 (s, 3H), 1.64-1.57 (m, 2H), 1.35 (dd, $J = 15.0$, 7.5 Hz, 2H), 0.95 (t, $J = 7.4$ Hz, 3H).
1C NMR (151 MHz, CDCl$_3$) δ = 168.13, 144.37, 142.58, 129.81, 129.37, 125.74 (q, J_{CF} = 277.8 Hz), 123.60, 123.07, 53.42, 39.57, 36.66 (q, J_{CF} = 28.1 Hz), 30.09, 21.99, 20.07, 13.75.

19F NMR (565 MHz, CDCl$_3$) δ = -62.59 (s).

HRMS (ESI-TOF) m/z = 308.1241 [M + Na]$^+$, calcd for C$_{15}$H$_{18}$F$_3$NNaO: 308.1238

(E)-N-butyl-4-methyl-N-(3, 3, 3-trifluoroprop-1-enyl)benzamide

\[
\text{Me} \quad \text{\underline{N}} \quad \text{O} \quad \text{C} \quad \underline{\text{F}}_3
\]

Yellow liquid, 36% yield; 1H NMR (400 MHz, CDCl$_3$) δ = 7.41 (d, J = 13.9 Hz, 1H), 7.36 (d, J = 8.0 Hz, 2H), 7.26 (d, J = 7.9 Hz, 2H), 5.06-5.08 (m, 1H), 3.80-3.69 (m, 2H), 2.41 (s, 3H), 1.67-1.61 (m, 2H), 1.39 (dd, J = 15.1, 7.5 Hz, 2H), 0.97 (t, J = 7.3 Hz, 3H).

13C NMR (101 MHz, CDCl$_3$) δ = 171.21, 141.75, 137.17, 130.89, 129.38, 128.23, 124.44 (q, J_{CF} = 267.4 Hz), 96.09 (q, J_{CF} = 35.3 Hz), 43.81, 28.45, 21.51, 20.22, 13.76.

19F NMR (376 MHz, CDCl$_3$) δ = -59.84 (s).

HRMS (ESI-TOF) m/z = 308.1203 [M + Na]$^+$, calcd for C$_{15}$H$_{18}$F$_3$NNaO: 308.1238

2-butyl-7-methyl-3-(2, 2, 2-trifluoroethyl)isoindolin-1-one

\[
\text{Me} \quad \text{\underline{N}} \quad \text{O} \quad \text{C} \quad \underline{\text{F}}_3
\]

Yellow liquid, 70% yield; 1H NMR (600 MHz, CDCl$_3$) δ = 7.43 (t, J = 7.6 Hz, 1H), 7.32 (d, J = 7.6 Hz, 1H), 7.23 (d, J = 7.5 Hz, 1H), 4.69 (dd, J = 6.3, 3.5 Hz, 1H), 4.04-4.06 (m, 1H), 3.10-3.12 (m, 1H), 2.77-2.65 (m, 4H), 2.63-2.50 (m, 1H), 1.66-1.60 (m, 1H), 1.56-1.58 (m, 1H), 1.40-1.33 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H).

13C NMR (101 MHz, CDCl$_3$) δ = 168.83, 144.54, 137.85, 131.28, 130.81, 128.89, 125.70 (q, J_{CF} = 277.8 Hz), 119.89, 53.02, 39.54, 36.91 (q, J_{CF} = 28.1 Hz), 30.09, 20.14, 17.25, 13.73.
$^{19}\text{F NMR (565 MHz, CDCl}_3\text{) }\delta = -62.55 \text{ (s).}$

HRMS (ESI-TOF) m/z = 308.1218 [M + Na]$^+$, calcd for C$_{15}$H$_{18}$F$_3$NNaO: 308.1238

2-butyl-5-chloro-3-(2, 2, 2-trifluoroethyl)isoindolin-1-one

Yellow liquid, 63 % yield; $^1\text{H NMR (600 MHz, CDCl}_3\text{) }\delta = 7.78 \text{ (d, } J = 8.1 \text{ Hz, 1H), 7.52 (s, 1H), 7.49 (dd, } J = 8.1, 1.6 \text{ Hz, 1H), 4.73 (dd, } J = 6.9, 3.2 \text{ Hz, 1H), 4.07-4.09 (m, 1H), 3.17-3.08 (m, 1H), 2.76 (dqd, } J = 19.0, 11.2, 3.3 \text{ Hz, 1H), 2.63-2.52 (m, 1H), 1.66-1.61 (m, 1H), 1.61-1.56 (m, 1H), 1.35 (dd, } J = 15.0, 7.5 \text{ Hz, 2H), 0.95 (t, } J = 7.4 \text{ Hz, 3H).}$

$^{13}\text{C NMR (101 MHz, CDCl}_3\text{) }\delta = 166.95, 145.38, 138.26, 130.46, 129.52, 125.42 \text{ (d, } J_{CF} = 277.3 \text{ Hz), 125.05, 123.19, 53.37, 39.75, 36.27 \text{ (q, } J_{CF} = 28.4 \text{ Hz), 30.01, 20.04, 13.68.}$

$^{19}\text{F NMR (565 MHz, CDCl}_3\text{) }\delta = -62.51 \text{ (s).}$

HRMS (ESI-TOF) m/z = 328.0697 [M + Na]$^+$, calcd for C$_{14}$H$_{15}$ClF$_3$NNaO: 328.0692

5-bromo-2-butyl-3-(2, 2, 2-trifluoroethyl)isoindolin-1-one

Yellow liquid, 54 % yield; $^1\text{H NMR (600 MHz, CDCl}_3\text{) }\delta = 7.72 \text{ (d, } J = 8.0 \text{ Hz, 1H), 7.68 (s, 1H), 7.65 (dd, } J = 8.0, 1.5 \text{ Hz, 1H), 4.73 (dd, } J = 6.8, 3.2 \text{ Hz, 1H), 4.12-4.03 (m, 1H), 3.15-3.07 (m, 1H), 2.82-2.70 \text{ (m, 1H), 2.57-2.59 (m, 1H), 1.66-1.56 (m, 2H), 1.35 (dd, } J = 15.0, 7.5 \text{ Hz, 2H), 0.95 (t, } J = 7.4 \text{ Hz, 3H).}$

$^{13}\text{C NMR (151 MHz, CDCl}_3\text{) }\delta = 167.08, 145.57, 132.41, 130.88, 126.56, 126.14, 125.42 \text{ (q, } J_{CF} = 277.4 \text{ Hz), 125.27, 77.26, 77.05, 76.84, 53.29, 39.71, 36.21 \text{ (q, } J_{CF} = 28.4 \text{ Hz), 29.99, 20.04, 13.72.}$

$^{19}\text{F NMR (565 MHz, CDCl}_3\text{) }\delta = -62.51 \text{ (s).}$
HRMS (ESI-TOF) m/z = 372.0169 [M + Na]⁺, calcd for C₁₄H₁₅BrF₃NNaO: 372.0187

(E)-N-butyl-N-(3, 3, 3-trifluoroprop-1-enyl)furan-2-carboxamide

Yellow liquid, 60 % yield; ¹H NMR (400 MHz, CDCl₃) δ = 7.96 (d, J = 14.2 Hz, 1H), 7.60 (s, 1H), 7.16 (d, J = 3.3 Hz, 1H), 6.62-6.50 (m, 1H), 5.17-5.19 (m, 1H), 3.85-3.63 (m, 2H), 1.73-1.61 (m, 2H), 1.46-1.33 (m, 2H), 0.98 (t, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ = 159.17, 146.49, 145.57, 136.19, 124.54 (q, JCF = 268.7 Hz), 119.47, 111.96, 97.35 (q, JCF = 34.4 Hz), 44.38, 28.67, 20.16, 13.71.

¹⁹F NMR (377 MHz, CDCl₃) δ = -59.93 (s).

HRMS (ESI-TOF) m/z = 284.0877 [M + Na]⁺, calcd for C₁₂H₁₄F₃NNaO₂: 284.0874

(E)-N-butyl-N-(4,4,4-trifluorobut-2-en-2-yl)furan-2-carboxamide

Yellow liquid, 60 % yield; ¹H NMR (600 MHz, CDCl₃) δ = 7.44 (s, 1H), 7.05 (d, J = 3.5 Hz, 1H), 6.46 (dd, J = 3.4, 1.7 Hz, 1H), 5.40 (q, J = 7.9 Hz, 1H), 3.63-3.56 (m, 2H), 2.16 (s, 3H), 1.59 (dd, J = 15.5, 7.8 Hz, 2H), 1.38 (dd, J = 15.1, 7.5 Hz, 2H), 0.96 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ = 158.57, 149.51 (q, JCF = 6.0 Hz), 147.52, 144.26, 122.87 (q, JCF = 270.1 Hz), 117.05 (q, JCF = 34.7 Hz), 117.10, 111.60, 46.77, 29.87, 20.08, 18.24, 13.77.

¹⁹F NMR (565 MHz, CDCl₃) δ = -58.22 (s).

HRMS (ESI-TOF) m/z = 298.1055 [M + Na]⁺, calcd for C₁₃H₁₆F₃NNaO₂: 298.1031
(C) Spectra

2a. 1H NMR

2a. 13C NMR
2b. ^{1}H NMR

![1H NMR spectrum](image)

2b. ^{13}C NMR

![13C NMR spectrum](image)
2c. 1H NMR

![1H NMR spectrum](image)

2c. 13C NMR

![13C NMR spectrum](image)
2d. 1H NMR

![1H NMR spectrum](image1)

2d. 13C NMR

![13C NMR spectrum](image2)
2e. 1H NMR

![1H NMR spectrum]

2e. 13C NMR

![13C NMR spectrum]
2f. 1H NMR

![H NMR spectrum](image)

2f. 13C NMR

![13C NMR spectrum](image)
2g. 1H NMR

![1H NMR spectrum](image)

2g. 13C NMR

![13C NMR spectrum](image)
2h. 1H NMR

2h. 13C NMR
2i. 1H NMR

2i. 13C NMR
2j. 1H NMR

![1H NMR spectrum with chemical shifts and peaks labeled](image)

2j. 13C NMR

![13C NMR spectrum with chemical shifts and peaks labeled](image)
2k. 1H NMR

![H NMR spectrum](image)

2k. 13C NMR

![C NMR spectrum](image)
21. 1H NMR

21. 13C NMR
2m. 1H NMR

![1H NMR spectrum](image)

2m. 13C NMR

![13C NMR spectrum](image)
2n. 1H NMR

2n. 13C NMR
2o. 1H NMR

![H NMR spectrum](image1)

2o. 13C NMR

![C NMR spectrum](image2)
2p. 1H NMR

2p. 13C NMR
2q. 1H NMR

![H NMR spectrum]

2q. 13C NMR

![C NMR spectrum]
2r. 1H NMR

![1H NMR spectrum](image1)

2r. 13C NMR

![13C NMR spectrum](image2)
2s. 1H NMR

![1H NMR spectrum]

2s. 13C NMR

![13C NMR spectrum]
4a’. \(^1\)H NMR

4a’. \(^{13}\)C NMR
4b’. 1H NMR

4b’. 13C NMR
4c’. 1H NMR

4c’. 13C NMR
4d’. 1H NMR

![NMR Spectrum](image)

4d’. 13C NMR

![NMR Spectrum](image)
4e. 1H NMR

4e. 13C NMR
4e'. 1H NMR

[Chemical structure image]

4e'. 13C NMR

[Chemical structure image]
4f. 1H NMR

4f. 13C NMR
4g. 1H NMR

![H NMR Spectrum](attachment:image1.png)

4g. 13C NMR

![C NMR Spectrum](attachment:image2.png)
4h. 1H NMR

![1H NMR spectrum]

4h. 13C NMR

![13C NMR spectrum]
6a. 1H NMR

![H NMR spectrum](image)

6a. 13C NMR

![C NMR spectrum](image)
6b. 1H NMR

6b. 13C NMR