Research Article

On a Characterization of Convergence in Banach Spaces with a Schauder Basis

Marat V. Markin and Olivia B. Soghomonian

Department of Mathematics, California State University, 5245 N. Backer Avenue, M/S PB 108, Fresno, CA 93740-8001, USA

Correspondence should be addressed to Marat V. Markin; mmarkin@csufresno.edu

Received 4 June 2021; Accepted 26 July 2021; Published 30 September 2021

Academic Editor: Atilla Gil Nyi

Copyright © 2021 Marat V. Markin and Olivia B. Soghomonian. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We extend the well-known characterizations of convergence in the spaces \( l^p \) \((1 \leq p < \infty)\) of \( p \)-summable sequences and \( c_0 \) of vanishing sequences to a general characterization of convergence in a Banach space with a Schauder basis and obtain as instant corollaries characterizations of convergence in an infinite-dimensional separable Hilbert space and the space \( c \) of convergent sequences.

"The method in the present paper is abstract and is phrased in terms of Banach spaces, linear operators, and so on. This has the advantage of greater simplicity in proof and greater generality in applications."

Jacob T. Schwartz

1. Introduction

In normed vector spaces of sequences, termwise convergence, being a necessary condition for convergence of a sequence (of sequences), falls short of being characteristic (see, e.g., [1]). Thus, the natural question is as follows: what conditions are required to be, along with termwise convergence, necessary and sufficient for convergence of a sequence in such spaces?

It turns out that, in the Banach spaces \( l^p \) \((1 \leq p < \infty)\) of \( p \)-summable sequences with \( p \)-norm,

\[
x := (x_k)_{k \in \mathbb{N}} \rightarrow \|x\|_p = \left( \sum_{k=1}^{\infty} |x_k|^p \right)^{1/p},
\]

\((\mathbb{N} = \{1, 2, \ldots\}) \) is the set of natural numbers) and \( c_0 \) of vanishing sequences with \( \infty \)-norm,

\[
x := (x_k)_{k \in \mathbb{N}} \rightarrow \|x\|_\infty = \sup_{k \in \mathbb{N}} |x_k|,
\]

only one additional condition is needed. The following characterizations of convergence in the foregoing spaces are well known.

Proposition 1 (characterization of convergence in \( l^p \) \((1 \leq p < \infty)\)). In the (real or complex) space \( l^p \) \((1 \leq p < \infty)\),

\[
(x_k^{(n)})_{k \in \mathbb{N}} = x^{(n)} \rightarrow x := (x_k)_{k \in \mathbb{N}}, \quad n \rightarrow \infty,
\]

iff

\[1 \] \forall k \in \mathbb{N}: x_k^{(n)} \rightarrow x_k, \quad n \rightarrow \infty,

\[2 \] \forall \varepsilon > 0 \ \exists K \in \mathbb{N}: \forall n \in \mathbb{N}: \sum_{k=K+1}^{\infty} |x_k^{(n)}|^p < \varepsilon.

See, e.g., Proposition 2.16 in [2] and Proposition 2.17 in [1].

Remarks 1

(i) Condition (1) is termwise convergence. 
(ii) Condition (2) signifies the uniform convergence of the series,

\[
\sum_{k=1}^{\infty} |x_k^{(n)}|^p,
\]

to their respective sums over \( n \in \mathbb{N} \).
Proposition 2 (characterization of convergence in $c_0$). In the (real or complex) space $c_0$,
\[
\left( x^{(n)}_k \right)_{k \in \mathbb{N}} = x^{(n)} \rightarrow x = \left( x_k \right)_{k \in \mathbb{N}}, \quad n \rightarrow \infty, \tag{5}
\]
iff
\begin{enumerate}
  \item $(\forall k \in \mathbb{N}) \quad x_k^{(n)} \rightarrow x_k, \quad n \rightarrow \infty$,
  \item $(\forall \epsilon > 0 \exists K \in \mathbb{N} \forall n \in \mathbb{N}) \sup_{k \geq K+1} |x_k^{(n)}| < \epsilon.$
\end{enumerate}

Thus, we have the following combined characterization encompassing both $l_p \ (1 \leq p < \infty)$ and $c_0$.

Proposition 3 (combined characterization of convergence). In the (real or complex) space $X = l_p \ (1 \leq p < \infty)$ or $X = c_0$,
\[
\left( x^{(n)}_k \right)_{k \in \mathbb{N}} = x^{(n)} \rightarrow x = \left( x_k \right)_{k \in \mathbb{N}}, \quad n \rightarrow \infty, \tag{7}
\]
iff
\begin{enumerate}
  \item $(\forall k \in \mathbb{N}) \quad x_k^{(n)} \rightarrow x_k, \quad n \rightarrow \infty$,
  \item $(\forall \epsilon > 0 \exists K_0 \in \mathbb{N} \forall K \geq K_0 \forall n \in \mathbb{N}) \| x_K^{(n)} \| < \epsilon$,
\end{enumerate}
where $\| \cdot \|$ stands for $p$-norm $\| \cdot \|_p$, $1 \leq p < \infty$ or $c_0$-norm, respectively, and the mapping $R_K: X \rightarrow X, K \in \mathbb{N}$, $(X = l_p \ (1 \leq p < \infty)$ or $X = c_0)$ is defined as follows:
\[
x = \left( x_k \right)_{k \in \mathbb{N}} \rightarrow R_Kx := \left( 0, \ldots, 0, x_{K+1}, x_{K+2}, \ldots \right), \quad K \in \mathbb{N}. \tag{6}
\]

For an infinite-dimensional separable Hilbert space $(X, \langle \cdot, \cdot \rangle, \| \cdot \|)$ $(\langle \cdot, \cdot \rangle$ stands for inner product and $\| \cdot \|$ for inner product norm), an orthonormal basis $\{ e_n \}_{n \in \mathbb{N}}$ is a Schauder basis, and for an arbitrary $x \in X$,
\[
x = \sum_{k=1}^{\infty} c_k(x) e_k, \quad \text{with } c_k(x) = \langle x, e_k \rangle, \quad k \in \mathbb{N}, \tag{9}
\]
(see, e.g., [1–4]).

Definitions 1 (Schauder basis). A Schauder basis (also a countable basis) of a (real or complex) Banach space $(X, \| \cdot \|)$ is a countably infinite set $\{ e_n \}_{n \in \mathbb{N}}$ in $X$ such that
\[
\forall x \in X \exists \{ c_k(x) \}_{k \in \mathbb{N}} \in F^\mathbb{N}: \quad x = \sum_{k=1}^{\infty} c_k(x) e_k, \tag{8}
\]
($F = \mathbb{R}$ or $F = \mathbb{C}$) the series called the Schauder expansion of $x$ and the numbers $c_k(x) \in F, \ k \in \mathbb{N}$, the coordinates of $x$ relative to $\{ e_n \}_{n \in \mathbb{N}}$.

Remarks 2
\begin{enumerate}
  \item Condition (1) is termwise convergence.
  \item Condition (2) signifies the uniform convergence of the sequences $(x_k^{(n)})_{k \in \mathbb{N}}$ to 0 over $n \in \mathbb{N}$.
\end{enumerate}

In view of the fact that both $l_p \ (1 \leq p < \infty)$ and $c_0$ are Banach spaces with a Schauder basis, our goal to show that a two-condition characterization of convergence, similar to the foregoing combined characterization, holds for all such spaces appears to be amply motivated. We establish a general characterization of convergence in a Banach space with a Schauder basis and obtain as instant corollaries characterizations of convergence in an infinite-dimensional separable Hilbert space and the Banach space $c$ of convergent sequences.

2. Preliminaries

Here, we briefly outline certain preliminaries essential for our discourse.
\[ Y := \left\{ y = (c_k)_{k \in \mathbb{N}} \in F^\infty \bigg| \sum_{k=1}^{\infty} c_k e_k \text{ converges in } X \right\}, \tag{15} \]

with termwise linear operations and the norm,
\[ Y \ni y = (c_k)_{k \in \mathbb{N}} \mapsto \|y\|_Y := \sup_{n \in \mathbb{N}} \left\| \sum_{k=1}^{n} c_k e_k \right\|, \tag{16} \]

is a Banach space and the linear operator,
\[ Y \ni y = (c_k)_{k \in \mathbb{N}} \mapsto Ay := \sum_{k=1}^{\infty} c_k e_k \in X, \tag{17} \]

is subject to the inverse mapping theorem (see, e.g., [1–3]). The boundedness of the inverse operator \( A^{-1} : X \to Y \) implies boundedness, and hence, continuity, for the linear Schauder coordinate functionals,
\[ X \ni x = \sum_{k=1}^{\infty} c_k(x) e_k \to c_n(x) \in F, \quad n \in \mathbb{N}, \tag{18} \]

with
\[ \|c_n\| \leq 2\|A^{-1}\| \|e_n\|, \quad n \in \mathbb{N}, \tag{19} \]

(see, e.g., [1–3]) as well as for the linear operators:
\[ X \ni x = \sum_{k=1}^{\infty} c_k(x) e_k \to S_n x := \sum_{k=1}^{n} c_k(x) e_k, \quad R_n x := \sum_{k=n+1}^{\infty} c_k(x) e_k, \tag{20} \]

with
\[ I = S_n + R_n, \quad n \in \mathbb{N}, \tag{21} \]

(\( I \) is the identity operator on \( X \)) and
\[ \|S_n\| \leq \|A^{-1}\|, \|R_n\| \leq 2 \|A^{-1}\|, \quad n \in \mathbb{N}, \tag{22} \]

(see, e.g., [3]).

Remark 3. Here and henceforth, we use the notation \( \| \cdot \| \) for the operator norm.

### 3. General Characterization

The following statement appears to be a perfect illustration of the profound observation by Schwartz found in [7] and chosen as the epigraph.

**Theorem 1** (general characterization of convergence). Let \((X, \| \cdot \|)\) be a (real or complex) Banach space with a Schauder basis \( \{e_n\}_{n \in \mathbb{N}} \) and corresponding coordinate functionals \( c_n(\cdot), \quad n \in \mathbb{N} \).

For a sequence \((x_n)_{n \in \mathbb{N}}\) and a vector \( x \) in \( X \),
\[ x_n \to x, \quad n \to \infty, \quad (23) \]

iff
\[ (1) \quad \forall k \in \mathbb{N}: c_k(x_n) \to c_k(x), \quad n \to \infty, \quad (2) \quad \forall \varepsilon > 0 \exists K_0 \in \mathbb{N} \forall K \geq K_0 \forall n \in \mathbb{N}: \|R_K x_n\| < \varepsilon. \]

**Proof.** “Only if” part.

Suppose that, for a sequence \((x_n)_{n \in \mathbb{N}}\) and a vector \( x \) in \( X \),
\[ x_n \to x, \quad n \to \infty. \tag{24} \]

Then, by the continuity of the Schauder coordinate functionals \( c_n(\cdot), \quad n \in \mathbb{N} \), we infer that condition (1) holds.

Let \( \varepsilon > 0 \) be arbitrary. Then,
\[ \exists N \in \mathbb{N} \forall n \geq N: \|x_n - x\| < \frac{\varepsilon}{4\|A^{-1}\|}. \tag{25} \]

Since \( x \in X \),
\[ R_K x := \sum_{k=K+1}^{\infty} c_k(x) e_k \to 0, \quad K \to \infty, \tag{26} \]

and hence,
\[ \exists K_0 \in \mathbb{N} \forall K \geq K_0: \|R_K x\| < \frac{\varepsilon}{2}. \tag{27} \]

In view of (22), (25), and (27), we have
\[ \forall K \geq K_0, \forall n \geq N: \|R_K x_n\| = \|R_K x_n - R_K x + R_K x\| \leq \|R_K (x_n - x)\| + \|R_K x\| \leq \|R_K\|\|x_n - x\| + \|R_K x\| < 2\|A^{-1}\| \frac{\varepsilon}{4\|A^{-1}\|} + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} + \varepsilon. \tag{28} \]

Furthermore, since \( x_n \in X, \quad n = 1, \ldots, N - 1 \), we can regard \( K_0 \in \mathbb{N} \) in (27) to be large enough so that
\[ \forall K \geq K_0, \forall n = 1, \ldots, N - 1: \|R_K x_n\| = \left\| \sum_{k=K+1}^{\infty} c_k(x_n) e_k \right\| < \varepsilon. \tag{29} \]

Thus, condition (2) holds as well.

This completes the proof of the “only if” part.

“\( \text{If} \)” part. Suppose that, for a sequence \((x_n)_{n \in \mathbb{N}}\) and a vector \( x \) in \( X \), conditions (1) and (2) are met.

For an arbitrary \( \varepsilon > 0 \) and \( K_0 \in \mathbb{N} \), from condition (2), by condition (1),
\[ \exists N \in \mathbb{N} \forall n \geq N: \|S_{K_0} (x_n - x)\| \leq \sum_{k=1}^{K_0} |c_k(x_n) - c_k(x)| \|e_k\| < \frac{\varepsilon}{3}. \tag{30} \]

Since \( x \in X \), we can also regard that \( K_0 \in \mathbb{N} \) in condition (2) to be large enough so that
\[ \|R_{K_0} x\| < \frac{\varepsilon}{3}. \tag{31} \]
Then, in view of (21), (30), and (31) and by condition (2),
\[\forall \epsilon > 0: \|x_n - x\| = \|S_{K_n}(x_n - x) + R_{K_n}(x_n - x)\| \leq \|S_{K_n}(x_n - x)\| + \|R_{K_n}x_n\| + \|R_{K_n}x\| = \epsilon\]
Thus, the general characterization of convergence (Theorem 1), in view of the obvious circumstance that, for any sequence \(x := (x_k)_{k \in \mathbb{N}} \in c\), the sequence,
\[\|R_Kx\| = \sup_{K+1 \leq k} \|x_k^{(n)} - \lim_{m \to \infty} x_m^{(n)}\|, \quad K \in \mathbb{Z}_+\]
is decreasing, acquires the following form.

Corollary 2 (characterization of convergence in \(c\)). In the (real or complex) space \(c\),
\[\left\{x_k^{(n)}\right\}_{k \in \mathbb{N}} = x^{(n)} \to x := (x_k)_{k \in \mathbb{N}}, \quad n \to \infty\]
iff

\begin{align*}
(1) \lim_{m \to \infty} x_m^{(n)} &= \lim_{m \to \infty} x_m, \quad n \to \infty, \quad \text{and} \\
\forall K \in \mathbb{N}: x_{K}^{(n)} &= x_K, \quad n \to \infty,
\end{align*}

\begin{align*}
(2) \forall \varepsilon > 0 \exists K \in \mathbb{Z}, \forall n \in \mathbb{N}: \sup_{k \geq K+1} |x_k^{(n)} - \lim_{m \to \infty} x_m^{(n)}| < \varepsilon.
\end{align*}

Remarks 6

(i) Condition (1), beyond termwise convergence, includes convergence of the limits.

(ii) Condition (2) signifies the uniform convergence of the sequences \((x_k^{(n)})_{k \in \mathbb{N}}\) to their respective limits over \(n \in \mathbb{N}\).

(iii) The characterization of convergence in \(c_0\) (Proposition 2) is a mere restriction of the prior characterization to the subspace \(c_0\) of \(c\).

6. Concluding Remark

As is easily seen, the general characterization of convergence (Theorem 1) is consistent with the following characterization of compactness, which underlies the results of [8].

Theorem 2 (characterization of compactness, Theorem III.7.4 in [3]). In a (real or complex) Banach space \((X, \| \cdot \|)\) with a Schauder basis, a set \(C\) is precompact (a closed set \(C\) is compact) iff

\begin{align*}
(1) \ C \ &\text{is bounded,} \\
(2) \forall \varepsilon > 0 \exists K_0 \in \mathbb{N}, \forall K \geq K_0, \forall x \in C: \|R_K x\| < \varepsilon.
\end{align*}

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] M. V. Markin, Elementary Operator Theory, De Gruyter Graduate, Walter de Gruyter GmbH, Berlin, Germany, 2020.
[2] M. V. Markin, Elementary Functional Analysis, De Gruyter Graduate, Walter de Gruyter GmbH, Berlin, Germany, 2018.
[3] L. A. Lyusternik and V. I. Sobolev, A Short Course in Functional Analysis, Vyshaya Shkola, Moscow, Russia, 1982.
[4] I. Singer, Bases in Banach Spaces. I, Die Grundlehren der Mathematischen Wissenschaften, Band 154, Springer-Verlag, Berlin, Germany, 1970.
[5] P. Enflo, "A counterexample to the approximation problem in Banach spaces," Acta Mathematica, vol. 130, pp. 309–317, 1973.
[6] N. Dunford and J. T. Schwartz with the assistance of W.G. Bade and R.G. Bartle, Linear Operators. Part I: General Theory, Interscience Publishers, New York, NY, USA, 1958.
[7] I. Schwartz, "Perturbations of spectral operators, and applications. I. Bounded perturbations," Pacific Journal of Mathematics, vol. 4, no. 3, pp. 415–458, 1954.
[8] M. V. Markin, "On the strong continuity of functions defined on a compact set with values in a Banach space with a basis," Mathematics Today '90, no. 6, pp. 110–118, Vishcha Shkola, Kiev, Ukraine, 1990.