ON THE q-EXTENSIONS OF THE BERNOULLI AND EULER NUMBERS, RELATED IDENTITIES AND LERCH ZETA FUNCTION

TAEKYUN KIM, YOUNG-HEE KIM, AND KYUNG-WON HWANG

Abstract Recently, λ-Bernoulli and λ-Euler numbers are studied in [5, 10]. The purpose of this paper is to present a systematic study of some families of the q-extensions of the λ-Bernoulli and the λ-Euler numbers by using the bosonic p-adic q-integral and the fermionic p-adic q-integral. The investigation of these λ-q-Bernoulli and λ-q-Euler numbers leads to interesting identities related to these objects. The results of the present paper cover earlier results concerning q-Bernoulli and q-Euler numbers. By using derivative operator to the generating functions of λ-q-Bernoulli and λ-q-Euler numbers, we give the q-extensions of Lerch zeta function.

2000 Mathematics Subject Classification : 11S80, 11B68

Key words and phrases : λ-Bernoulli numbers, λ-Euler numbers, p-adic q-integral, Lerch zeta function

1. Introduction, Definitions and Notations

Throughout this paper, the symbols \mathbb{Z}_p, \mathbb{Q}_p, \mathbb{C} and \mathbb{C}_p denote the ring of p-adic rational integers, the field of p-adic rational numbers, the complex number field and the completion of algebraic closure of \mathbb{Q}_p, respectively. Let \mathbb{N} be the set of natural numbers.

The symbol q can be treated as a complex number, $q \in \mathbb{C}$, or as a p-adic number, $q \in \mathbb{C}_p$. If $q \in \mathbb{C}$, then we always assume that $|q| < 1$. If $q \in \mathbb{C}_p$, then we usually assume that $|1 - q|_p < 1$. Here $| \cdot |_p$ stands for the p-adic absolute value in \mathbb{C}_p with $|p|_p = \frac{1}{p}$. The q-basic natural numbers are defined by $[n]_q = 1 + q + q^2 + \cdots + q^{n-1}$ ($n \in \mathbb{N}$) and $[n]_{-q} = \frac{1 - (-q)^n}{1 + q}$. In this paper, we use the notation

$$[x]_q = \frac{1 - q^x}{1 - q} \quad \text{and} \quad [x]_{-q} = \frac{1 - (-q)^x}{1 + q},$$

see [1-19].

Hence $\lim_{q \to 1} [x]_q = x$ for any x with $|x|_p \leq 1$ in the present p-adic case.

For $x \in \mathbb{Z}_p$, we say that g is a uniformly differentiable function at a point $a \in \mathbb{Z}_p$, and write $g \in UD(\mathbb{Z}_p)$, the set of uniformly differentiable function, if the difference quotients

$$F_g(x, y) = \frac{g(y) - g(x)}{y - x}$$

have a limit $l = g'(a)$ as $(x, y) \to (a, a)$. For $f \in UD(\mathbb{Z}_p)$, the q-deformed bosonic p-adic integral is defined as

$$I_q(f) = \int_{\mathbb{Z}_p} f(x) d\mu_q(x) = \lim_{N \to \infty} \sum_{x=0}^{p^N-1} f(x) \frac{q^x}{[p^N]_q}, \text{ see [1-19]},$$

(1)
and the q-deformed fermionic p-adic integral is defined by

$$I_{-q}(f) = \int_{\mathbb{Z}_p} f(x) d\mu_{-q}(x) = \lim_{N \to \infty} \sum_{x=0}^{p^N-1} f(x) \frac{(-q)^x}{[p^N]_q},$$

(see [1-19]).

For $n \in \mathbb{N}$, let $f_n(x) = f(x+n)$. Then

$$q^n I_{-q}(f_n) = (-1)^n I_{-q}(f) + \sum_{l=0}^{n-1} (-1)^{n-1-l} q^l f(l).$$

(2)

The classical Bernoulli polynomials $B_n(x)$ and the Euler polynomials $E_n(x)$ are defined as

$$t - 1 = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!} \quad \text{and} \quad 2e^t - 1 = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!}.$$

(3)

The Bernoulli numbers B_n and the Euler numbers E_n are defined as $B_n = B_n(0)$ and $E_n = E_n(0)$, (see [1-19]).

From (1), we note that

$$q I_{-q}(f_1) = I_{-q}(f) + (q-1)f(0) + \frac{q-1}{\log q} f'(0),$$

(4)

for $f_1(x) = f(x+1)$. By (2), we see that $I_{1}(f_1) = I_{1}(f) + f'(0)$, (see [7]).

Let u be algebraic in \mathbb{C}_p (or \mathbb{C}). Then the Frobenius-Euler polynomials are defined as

$$\frac{1-u}{e^t - u} e^{xt} = \sum_{n=0}^{\infty} H_n(u, x) \frac{t^n}{n!},$$

(5)

(see [5]).

In case $x = 0$, $H_n(u, 0) = H_n(u)$, which are called the Frobenius Euler numbers.

Let C_{p^n} be the cyclic group consisting of all p^n-th roots of unity in \mathbb{C}_p for any $n \geq 0$ and T_p be the direct limit of C_{p^n} with respect to the natural morphisms, hence T_p is the union of all C_{p^n} with discrete topology.

For $\lambda \in T_p$ with $\lambda \neq 1$, if we use (4), then we have

$$\int_{\mathbb{Z}_p} e^{tx} \lambda^x d\mu_1(x) = \frac{t}{\lambda e^t - 1}.$$

(6)

From (5), the λ–Bernoulli numbers are defined as

$$\frac{t}{\lambda e^t - 1} = e^{B(\lambda)t} = \sum_{n=0}^{\infty} B_n(\lambda) \frac{t^n}{n!},$$

(7)

with the usual convention of replacing $B'(\lambda)$ by $B_1(\lambda)$. Thus, $B_k(\lambda)$ can be determined inductively by

$$\lambda(B(\lambda) + 1)^k - B_k(\lambda) = \begin{cases} 1, & \text{if } k = 1, \\ 0, & \text{if } k > 1, \end{cases}$$

(8)

(see [5]).

By the definition of the Frobenius-Euler numbers, we see that

$$\frac{t}{\lambda e^t - 1} = \sum_{m=0}^{\infty} \frac{1}{(m+1)!} \frac{(m+1)H_m(\lambda^{-1})}{\lambda - 1} t^{m+1},$$

(9)

(see [7]).
For $m \geq 1$ and $\lambda \neq 1$, we have

\begin{equation}
B_m(\lambda) = \int_{\mathbb{Z}_p} x^m \lambda^x d\mu_1(x) = \frac{m}{\lambda - 1} H_{m-1}(\lambda^{-1}), \quad \text{(see [5]).}
\end{equation}

We can also easily see that $\int_{\mathbb{Z}_p} \lambda^x d\mu_1(x) = 0$ and

$$e^x x = \lim_{m \to \infty} \sum_{\lambda \in \mathbb{C}_p} \frac{t^m \lambda^x}{\lambda e^t - 1} = \sum_{n=0}^{\infty} \lim_{m \to \infty} \sum_{\lambda \in \mathbb{C}_p} \int_{\mathbb{Z}_p} x^m \lambda^x d\mu_1(x) \lambda^x.$$

Consequently, we have

\begin{align*}
x^n &= B_n(1) + \sum_{\substack{\lambda \in \mathbb{Z}_p \setminus \{0\} \setminus \{1\} \setminus \{\lambda\}}} \frac{1}{\lambda - 1} H_{n-1}(\lambda^{-1}) \lambda^n \\
&= B_n(1) + \sum_{\lambda \in \mathbb{C}_p, \lambda \neq 1} \frac{B_n(\lambda)}{\lambda}.
\end{align*}

From (6) and (8), we note that $B_0(\lambda) = 0$, $B_1(\lambda) = \frac{1}{\lambda - 1}$, $B_2(\lambda) = -\frac{2\lambda}{(\lambda - 1)^2}$, \ldots.

The Genocchi numbers are defined by the generating function

\begin{equation}
\frac{2t}{e^t + 1} = \sum_{n=0}^{\infty} G_n \frac{t^n}{n!}.
\end{equation}

These numbers satisfy the relation $G_0 = 0$, $G_1 = 1$, $G_3 = 0 = G_5 = \cdots = G_{2k+1} = 0$, and the even coefficients are $G_n = 2(1 - 2^n)B_n$.

For $\lambda \in \mathbb{C}_p$ with $|\lambda| < 1$, by (2), we have

\begin{equation}
\int_{\mathbb{Z}_p} \lambda^x e^t d\mu_{-1}(x) = \frac{2}{\lambda e^t + 1}.
\end{equation}

By (11), we define the λ-Euler numbers as follows:

\begin{equation}
\frac{2}{\lambda e^t + 1} = \sum_{n=0}^{\infty} \frac{E_n(\lambda)}{n!} t^n, \quad \text{(see [7, 9, 10]).}
\end{equation}

Note that $E_n(\lambda) = \frac{2}{\lambda + 1} H_n(-\lambda^{-1})$.

From (12), we can easily derive

\begin{equation}
\int_{\mathbb{Z}_p} x^n \lambda^x d\mu_{-1}(x) = E_n(\lambda) = \frac{2}{\lambda + 1} H_n(-\lambda^{-1}).
\end{equation}

The λ-Genocchi numbers are also defined as

\begin{equation}
t \int_{\mathbb{Z}_p} x^n \lambda^x d\mu_{-1}(x) = \frac{2t}{\lambda e^t + 1} = \sum_{n=0}^{\infty} \frac{G_n(x) t^n}{n!}.
\end{equation}

Thus, we have $G_0(\lambda) = 0$, $G_1(\lambda) = \frac{2}{\lambda + 1}$, \ldots, $E_n(\lambda) = \frac{G_{n+1}(\lambda)}{n+1}$.

In this paper, we study the q-extension of λ-Bernoulli number and λ-Euler numbers related to Lerch zeta function. The purpose of this paper is to present a systematic study of some families of the q-extension of the λ-Bernoulli and λ-Euler numbers by using the bosonic p-adic q-integral and the fermionic p-adic q-integral.
The investigation of these λ-q-Bernoulli and λ-q-Euler numbers leads to interesting identities related to these objects. The results of the present paper cover earlier results concerning q-Bernoulli and q-Euler numbers. By using derivative operator to the generating functions of λ-q-Bernoulli and λ-q-Euler numbers, we can give the q-extension of Lerch zeta function.

2. q-extension of λ-Bernoulli numbers and polynomials

For $\lambda \in T_p$, let us consider the q-extension of λ-Bernoulli numbers as follows.

\[\beta_{k,q}(\lambda) = \int_{Z_p} \lambda^x [x]_q^k d\mu_q(x). \]

From (14), we note that

\[
\beta_{k,q}(\lambda) = \lim_{N \to \infty} \frac{1}{[p^N]_q} \sum_{x=0}^{p^N-1} \lambda^x [x]_q^k q^x
\]

\[
= \lim_{N \to \infty} \frac{1}{[p^N]_q} \sum_{x=0}^{p^N-1} (\lambda q)^x \left(\sum_{l=0}^{k} \binom{k}{l} \frac{(-1)^l q^lx}{1 - q^l+1} \right) \frac{1}{(1 - q)^k}
\]

\[
= \frac{1 - q}{(1 - q)^k} \sum_{l=0}^{k} \binom{k}{l} \frac{(-1)^l \frac{1 - (\lambda q^{l+1})^N}{1 - \lambda q^{l+1}}}{l + 1}
\]

Therefore, we obtain the following theorem.

Theorem 1. For $k \in \mathbb{N} \cup \{0\}$ and $\lambda \in T_p$, we have

\[
\beta_{k,q}(\lambda) = \frac{1}{(1 - q)^{k-1}} \sum_{l=0}^{k} \binom{k}{l} (-1)^l \frac{l + 1}{1 - \lambda q^{l+1}}.
\]

Let $F(t, \lambda : q)$ be the generating functions of $\beta_{n,q}(\lambda)$ with

\[
F(t, \lambda : q) = \sum_{n=0}^{\infty} \beta_{n,q}(\lambda) \frac{t^n}{n!}.
\]
Then we have

\[
F(t, \lambda : q) = \sum_{n=0}^{\infty} \beta_{n,q}(\lambda) \frac{t^n}{n!} = \int_{\mathbb{R}} \lambda^x e^{tx} d\mu_q(x)
\]

(15)

\[
= \sum_{n=0}^{\infty} \int_{\mathbb{R}} \lambda^x [x]_q^n d\mu_q(x) \frac{t^n}{n!}
\]

\[
= \sum_{k=0}^{\infty} \frac{1}{(1-q)^{k-1}} \sum_{l=0}^{k} \frac{k!}{l!(k-l)!} (-1)^l (l+1) \sum_{m=0}^{\infty} \lambda^m q^{(l+1)m} \frac{t^k}{k!}
\]

(16)

\[
= \sum_{k=0}^{\infty} \frac{1}{(1-q)^{k-1}} \sum_{m=0}^{\infty} q^m \lambda^m \sum_{l=0}^{k} \frac{k!}{l!(k-l)!} (-1)^l q^m \frac{t^k}{k!}
\]

(17)

Since \(l \binom{k}{l} = k \binom{k-1}{l-1} \), the first term of the last equation in (15) equals

\[
\sum_{m=0}^{\infty} q^m \lambda^m \sum_{k=0}^{\infty} \frac{1}{(1-q)^{k-1}} \sum_{l=0}^{k} \frac{k!}{l!(k-l)!} (-1)^l q^m \frac{t^k}{k!}
\]

(16)

\[
= - \sum_{m=0}^{\infty} q^m \lambda^m \sum_{k=0}^{\infty} \frac{1}{(1-q)^{k-1}} \sum_{l=0}^{k-1} \frac{k!}{l!(k-l)!} (-1)^l q^m \frac{t^k}{k!}
\]

The second term of the last equation in (15) equals

\[
\sum_{k=0}^{\infty} \frac{1}{(1-q)^{k-1}} \sum_{m=0}^{\infty} q^m \lambda^m (1-q)^m \frac{t^k}{k!}
\]

(17)

\[
= (1-q) \sum_{m=0}^{\infty} q^m \lambda^m \sum_{k=0}^{\infty} \frac{1}{q^k} \frac{t^k}{k!} = (1-q) \sum_{m=0}^{\infty} q^m \lambda^m [m]_q t.
\]

From (15), (16) and (17), we obtain the following proposition.

Proposition 2. Let \(F(t, \lambda : q) = \sum_{n=0}^{\infty} \beta_{n,q}(\lambda) \frac{t^n}{n!} \). Then we have

\[
F(t, \lambda : q) = -t \sum_{m=0}^{\infty} q^m \lambda^m [m]_q t + (1-q) \sum_{m=0}^{\infty} q^m \lambda^m [m]_q t.
\]
Since $q^{2m} = q^{m}\{m\}_q(q - 1) + 1$, it follows that

$$\beta_{k,q}(\lambda) = \frac{d^k F_q(t, \lambda : q)}{(dt)^k}_{t=0}$$

$$= -k \sum_{m=0}^{\infty} q^{2m} \lambda^m [m]_q^{k-1} + (1 - q) \sum_{m=0}^{\infty} q^{m} \lambda^m [m]_q^{k}$$

$$= -k(q - 1) \sum_{m=0}^{\infty} q^{m} \lambda^m [m]_q^{k} - k \sum_{m=0}^{\infty} q^{m} \lambda^m [m]_q^{k-1} + (1 - q) \sum_{m=0}^{\infty} q^{m} \lambda^m [m]_q^{k}$$

$$= (1-q)(k+1) \sum_{m=0}^{\infty} q^{m} \lambda^m [m]_q^{k} - k \sum_{m=0}^{\infty} q^{m} \lambda^m [m]_q^{k-1}.$$

Therefore, we obtain the following theorem.

Theorem 3. For $k \in \mathbb{N} \cup \{0\}$ and $\lambda \in T_p$, we have

$$\beta_{k,q}(\lambda) = (1-q)(k+1) \sum_{m=0}^{\infty} q^{m} \lambda^m [m]_q^{k} - k \sum_{m=0}^{\infty} q^{m} \lambda^m [m]_q^{k-1}.$$

Now we consider another q-extension of λ-Bernoulli numbers as follows.

\begin{equation}
B_{n,q}(\lambda) = \int_{\mathbb{Z}_p} q^{-x} \lambda^x [x]_q^n \, d\mu_q(x).
\end{equation}

From (18), we can derive

$$B_{n,q}(\lambda) = \int_{\mathbb{Z}_p} q^{-x} \lambda^x [x]_q^n \, d\mu_q(x)$$

$$= \frac{1}{(1-q)^n} \sum_{l=0}^{n} \left(\begin{array}{c} n \\ l \end{array} \right) \int_{\mathbb{Z}_p} q^{-x} (-1)^l \lambda^l q^{lx} \, d\mu_q(x)$$

$$= \frac{1}{(1-q)^{n-1}} \sum_{l=0}^{n} \left(\begin{array}{c} n \\ l \end{array} \right) (-1)^l \frac{l}{1-\lambda q}.$$

Thus, we obtain the following theorem.

Theorem 4. For $n \in \mathbb{N} \cup \{0\}$ and $\lambda \in T_p$, we have

$$B_{n,q}(\lambda) = \frac{1}{(1-q)^{n-1}} \sum_{l=0}^{n} \left(\begin{array}{c} n \\ l \end{array} \right) (-1)^l \frac{l}{1-\lambda q}.$$

Let $F^*(t, \lambda : q)$ be the generating functions of $B_{n,q}(\lambda)$ with

$$F^*(t, \lambda : q) = \sum_{n=0}^{\infty} B_{n,q}(\lambda) \frac{t^n}{n!}.$$
Then we have
\[
F^*(t, \lambda : q) = \sum_{n=0}^{\infty} B_{n,q}(\lambda) \frac{t^n}{n!} = \int_{\mathbb{Z}_p} q^{-x} \lambda^x e^{x|x|^{-1}} d\mu_q(x)
\]
\[
= \sum_{n=0}^{\infty} \{ \int_{\mathbb{Z}_p} q^{-x} \lambda^x [x]^n d\mu_q(x) \} \frac{t^n}{n!}
\]
\[
= \sum_{n=0}^{\infty} \{ \frac{1}{(1-q)^{n-1}} \sum_{l=0}^{n} \binom{n}{l} (-1)^l \frac{l}{1-\lambda q^{-1}} \} \frac{t^n}{n!}
\]
\[
= \sum_{n=0}^{\infty} \{ \frac{1}{(1-q)^{n-1}} \sum_{l=0}^{n} \binom{n}{l} (-1)^l \sum_{m=0}^{\infty} \lambda^m q^m \} \frac{t^n}{n!}
\]
\[
= \sum_{m=0}^{\infty} \lambda^m \left(\sum_{n=1}^{\infty} \frac{n}{(1-q)^{n-1}} \sum_{l=1}^{n} \binom{n-1}{l-1} (-1)^l q^m \right) \frac{t^n}{n!}
\]
\[
= -\sum_{m=0}^{\infty} \lambda^m q^m \sum_{n=1}^{\infty} \frac{n}{(1-q)^{n-1}} (1-q^m)^{n-1} \frac{t^n}{n!}
\]
\[
= -\sum_{m=0}^{\infty} \lambda^m q^m \sum_{n=0}^{\infty} \frac{(1-q^m)^n t^{n+1}}{(1-q)^n} \frac{t^n}{n!}
\]
\[
= -t \sum_{m=0}^{\infty} \lambda^m q^m e^{[m]_q t}.
\]

Therefore we obtain the following lemma.

Lemma 5. Let \(F^*(t, \lambda : q) = \sum_{n=0}^{\infty} B_{n,q}(\lambda) \frac{t^n}{n!} \). Then we have
\[
F^*(t, \lambda : q) = -t \sum_{m=0}^{\infty} \lambda^m q^m e^{[m]_q t}.
\]

We also have
\[
B_{k,q}(\lambda) = \frac{d^k F_q(t, \lambda : q)}{(dt)^k} \bigg|_{t=0} = -k \sum_{m=0}^{\infty} q^m \lambda^m [m]_q^{k-1}.
\]

Therefore we obtain the following theorem.

Theorem 6. For \(k \in \mathbb{N} \cup \{0\} \) and \(\lambda \in T_p \), we have
\[
B_{k,q}(\lambda) = -k \sum_{m=0}^{\infty} q^m \lambda^m [m]_q^{k-1}.
\]

3. q-extension of \(\lambda \)-Euler numbers and polynomials

In this section, we assume that \(p \) is an odd prime number and \(\lambda \in \mathbb{C}_p \) with \(|1-\lambda|_p < 1 \). By using the fermionic \(p \)-adic \(q \)-integral on \(\mathbb{Z}_p \), we consider the \(q \)-extensions of \(\lambda \)-Euler numbers as follows.

For \(n \in \mathbb{N} \cup \{0\} \), we define the \(q \)-extension of \(\lambda \)-Euler numbers as
\[
E_{n,q}(\lambda) = \int_{\mathbb{Z}_p} q^{-x} \lambda^x [x]^n d\mu_{-q}(x).
\]
From (19), we note that
\[
E_{n,q}(\lambda) = \int_{\mathbb{Z}} q^{-x} \lambda^x [x]^n_q d\mu_{-q}(x)
\]
\[
= \lim_{N \to \infty} \frac{1 + q}{1 + q^N} \sum_{x=0}^{2^{N-1}} (-1)^x [x]^n_q \lambda^x
\]
\[
= \frac{2}{2} \left(\frac{1}{1 - q} \right)^n \sum_{l=0}^{n} \frac{n}{l} (-1)^l \lim_{N \to \infty} \frac{1 + q^N \lambda^N}{1 + q^N}
\]
\[
= \frac{2}{2} \left(\frac{1}{1 - q} \right)^n \sum_{l=0}^{n} \frac{n}{l} (-1)^l \frac{2}{1 + q^N}
\]
\[
= \frac{2}{2} \left(\frac{1}{1 - q} \right)^n \sum_{l=0}^{n} \frac{n}{l} (-1)^l \frac{1}{1 + q^N}
\]

Therefore we obtain the following theorem.

Theorem 7. For \(n \in \mathbb{N} \cup \{0\} \), we have
\[
E_{n,q}(\lambda) = \frac{2}{2} \left(\frac{1}{1 - q} \right)^n \sum_{l=0}^{n} \frac{n}{l} (-1)^l \frac{1}{1 + q^N}
\]

Let \(g(t, \lambda : q) \) be the generating function of \(E_{n,q}(\lambda) \) with
\[
g(t, \lambda : q) = \sum_{n=0}^{\infty} E_{n,q}(\lambda) \frac{t^n}{n!}
\]

Then we have
\[
g(t, \lambda : q) = \sum_{n=0}^{\infty} E_{n,q}(\lambda) \frac{t^n}{n!} = \int_{\mathbb{Z}} q^{-x} \lambda^x e^{[x]_q t} d\mu_{-q}(x)
\]
\[
= \sum_{n=0}^{\infty} \{ \int_{\mathbb{Z}} q^{-x} \lambda^x [x]^n_q d\mu_{-q}(x) \} \frac{t^n}{n!}
\]
\[
= [2q] \sum_{n=0}^{\infty} \frac{1}{(1 - q)^n} \sum_{l=0}^{n} \frac{n}{l} (-1)^l \left(\frac{1}{1 + \lambda q^l} \right) \frac{t^n}{n!}
\]
\[
= [2q] \sum_{n=0}^{\infty} \frac{(-1)^n \lambda^m}{(1 - q)^n} \sum_{l=0}^{n} \frac{n}{l} (-1)^l \left(\sum_{m=0}^{\infty} (-1)^m \lambda^m q^{lm} \right) \frac{t^n}{n!}
\]
\[
= [2q] \sum_{n=0}^{\infty} \frac{(-1)^n \lambda^m}{(1 - q)^n} \sum_{l=0}^{n} \frac{n}{l} (-1)^l \left(\sum_{m=0}^{\infty} (-1)^m \lambda^m q^{lm} \right) \frac{t^n}{n!}
\]
\[
= [2q] \sum_{m=0}^{\infty} \frac{(-1)^m \lambda^m}{(1 - q)^n} \sum_{n=0}^{\infty} \frac{n}{l} \frac{t^n}{n!}
\]
\[
= [2q] \sum_{m=0}^{\infty} (-1)^m \lambda^m e^{[m]_q t}
\]

Thus, we have the following lemma.
Lemma 8. Let \(g(t, \lambda : q) = \sum_{n=0}^{\infty} E_{n,q}(\lambda) \frac{t^n}{n!} \). Then we have

\begin{equation}
 g(t, \lambda : q) = [2]_q \sum_{m=0}^{\infty} (-1)^m \lambda^m e^{[m]_q t}.
\end{equation}

By (20), we can also consider the \(\lambda \)-\(q \)-Genocchi numbers as follows.

\begin{equation}
 t \int_{\mathbb{Z}_p} q^{-x} x^n e^{[x]_q t} d\mu_q(x) = [2]_q t \sum_{m=0}^{\infty} (-1)^m \lambda^m e^{[m]_q t} = \sum_{n=0}^{\infty} G_{n,q}(\lambda) \frac{t^n}{n!}.
\end{equation}

From (21), we note that \(G_{0,q}(\lambda) = 0 \) and

\begin{equation}
 \int_{\mathbb{Z}_p} q^{-x} \lambda^x [x]_q^m d\mu_q(x) = \frac{G_{n+1,q}(\lambda)}{n+1}.
\end{equation}

Thus, we see that

\begin{equation}
 E_{n,q}(\lambda) = \int_{\mathbb{Z}_p} q^{-x} \lambda^x [x]_q^n d\mu_q(x) = \frac{G_{n+1,q}(\lambda)}{n+1}.
\end{equation}

Hence

\begin{equation}
 G_{n,q}(\lambda) = [2]_q \frac{n}{1-q^{n-1}} \sum_{l=0}^{n-1} \binom{n-1}{l} (-1)^l \frac{1}{1+q^l \lambda},
\end{equation}

where \(n = 1, 2, 3, \cdots \). Indeed,

\begin{align*}
 G_{1,q}(\lambda) &= \frac{[2]_q}{1+\lambda}, \\
 G_{2,q}(\lambda) &= \frac{2[2]_q}{1-q} \sum_{l=0}^{1} \binom{1}{l} (-1)^l \frac{1}{1+q^l \lambda} = \frac{2[2]_q}{1-q} \left(\frac{2}{1+\lambda} - \frac{2}{1+q\lambda} \right) \\
 &= -2[2]_q \frac{\lambda}{(1+\lambda)(1+q\lambda)}.
\end{align*}

Now, we consider the \(q \)-extension of \(\lambda \)-Euler polynomials as follows.

\begin{equation}
 E_{n,q}(\lambda, x) = \int_{\mathbb{Z}_p} q^{-y} x^n e^{[x+y]_q t} d\mu_q(y).
\end{equation}

From (22), we can easily derive

\begin{equation}
 E_{n,q}(\lambda, x) = \frac{[2]_q}{(1-q)^n} \sum_{l=0}^{n \binom{n}{l} (-1)^l q^l x \frac{1}{1+q^l \lambda}.
\end{equation}

Let \(g(x, \lambda : q) = \sum_{n=0}^{\infty} E_{n,q}(\lambda, x) \frac{t^n}{n!} \). Then we have

\begin{align*}
 g(x, \lambda : q) &= \sum_{n=0}^{\infty} E_{n,q}(\lambda, x) \frac{t^n}{n!} = \int_{\mathbb{Z}_p} q^{-y} x^n e^{[x+y]_q t} d\mu_q(y) \\
 &= \sum_{n=0}^{\infty} \frac{[2]_q}{(1-q)^n} \sum_{l=0}^{n \binom{n}{l} (-1)^l q^l x \left(\sum_{m=0}^{\infty} (-1)^m q^m \lambda^m \right) \frac{t^n}{n!} \\
 &= [2]_q \sum_{m=0}^{\infty} (-1)^m \lambda^m e^{[m]_q t}.
\end{align*}
It follows that
\[E_{n,q}(\lambda, x) = \frac{d^n(g(x, \lambda; g))}{(dt)^n} \bigg|_{t=0} = [2]_q \sum_{m=0}^{\infty} (-1)^m \lambda^m [m + x]_q^n. \]

Then we obtain the following theorem.

Theorem 9. For \(n \in \mathbb{N} \cup \{0\} \), we have
\[E_{n,q}(\lambda, x) = [2]_q \sum_{m=0}^{\infty} (-1)^m \lambda^m [m + x]_q^n. \]

By the same method, we consider the \(\lambda \)-q-Genocchi polynomials as follows.
\[
(23) \quad t \int_{\mathbb{Z}_p} q^{-x} \lambda^x e^{[x+y]q^t} d\mu_q(x) = [2]_q t \sum_{m=0}^{\infty} (-1)^m \lambda^m [m + x]_q^n.
\]

By (23), we see
\[
E_{n,q}(\lambda, x) = \frac{1}{n!} \sum_{n=0}^{\infty} G_{n,q}(\lambda, x) \frac{t^n}{n!}.
\]

It is easy to see that
\[
qI_q(f_1) + I_q(f) = [2]_q f(0),
\]
where \(f_1(x) = f(x + 1) \). Thus, we have
\[
q \int_{\mathbb{Z}_p} q^{-y-1} \lambda^y [x+1+y]_q^n d\mu_q(y) + \int_{\mathbb{Z}_p} q^{-y} \lambda^y [x+y]_q^n d\mu_q(y) = [2]_q [x]_q^n.
\]

Therefore, we obtain the following theorem.

Theorem 10. For \(n \in \mathbb{N} \cup \{0\} \), we have
\[\lambda E_{n,q}(\lambda, x + 1) + E_{n,q}(\lambda, x) = [2]_q [x]_q^n. \]

By Theorem 10 and (24), we have the following result.
Corollary 11. For \(n \in \mathbb{N} \cup \{0\} \), we have
\[
\lambda G_{n,q}(\lambda, x + 1) + G_{n,q}(\lambda, x) = [2]_q^n[x]_{q}^{n-1}.
\]

It is easy to see that
\[
\frac{\partial}{\partial x} \left[x+y \right]_q^n = n[x+y]_{q}^{n-1} \frac{\log q}{q-1}x+y
\]
\[
= n \log q [x+y]_{q}^{n-1} + \frac{\log q}{q-1} n[x+y]_{q}^{n-1}.
\]

From (22), we note that
\[
\frac{\partial}{\partial x} E_{n,q}(\lambda, x) = \frac{\partial}{\partial x} \int_{\mathbb{Z}_p} q^{-y} \lambda^y [x+y]_{q}^n d\mu_{-q}(y).
\]

The right side of (26) equals
\[
n \log q \int_{\mathbb{Z}_p} q^{-y} \lambda^y [x+y]_{q}^n d\mu_{-q}(y) + \frac{\log q}{q-1} \int_{\mathbb{Z}_p} q^{-y} \lambda^y [x+y]_{q}^n d\mu_{-q}(y)
\]
\[
= n \log q E_{n,q}(\lambda, x) + \frac{\log q}{q-1} nE_{n-1,q}(\lambda, x).
\]

Therefore, we obtain the following lemma.

Lemma 12. For \(n \in \mathbb{N} \), we have
\[
\frac{\partial}{\partial x} E_{n,q}(\lambda, x) = n \log q E_{n,q}(\lambda, x) + \frac{\log q}{q-1} nE_{n-1,q}(\lambda, x).
\]

Remark 1. Note that
\[
\frac{\partial}{\partial x} G_{n,q}(\lambda, x) = nE_{n-1,q}(\lambda, x)
\]
\[
= \frac{n}{(1-q)^{n-1}} \sum_{l=0}^{n-1} \binom{n-1}{l} (-1)^l q^l \frac{1}{1+q^l}.
\]

Remark 2. Note that
\[
E_{n,q}(\lambda, dx) = \int_{\mathbb{Z}_p} q^{-y} \lambda^y [dx+y]_{q}^n d\mu_{-q}(y)
\]
\[
= [d]_q^n \frac{[2]_q}{[2]_q^d} \sum_{a=0}^{n-1} (-1)^a \lambda^a \int_{\mathbb{Z}_p} [x+a+\frac{a}{d}] \lambda^d q^{-d} dy d\mu_{-q^a}(y)
\]
\[
= [d]_q^n \frac{[2]_q}{[2]_q^d} \sum_{a=0}^{n-1} (-1)^a \lambda^a E_{n,q^a}(\lambda^d, x+\frac{a}{d}),
\]

for \(d \in \mathbb{N} \) with \(d \equiv 1 \pmod{2} \).

For \(n \in \mathbb{N} \), it is known that
\[
q^n I_{-q}(f_n) = (-1)^n I_{-q}(f) + \sum_{l=0}^{n-1} (-1)^{n-1-l} q^l f(l), \quad \text{see [7]},
\]

where \(f_n(x) = f(x+n) \). By (27), we obtain the following lemma.
Lemma 13. For \(n \in \mathbb{N} \), we have
\[
q^n I_{-q}(f_n) + (-1)^{n-1} I_{-q}(f) = [2]^q \sum_{l=0}^{n-1} (-1)^{n-1-l} q^l f(l).
\]

For \(n \equiv 1 \pmod{2} \), we also have
\[
q^n I_{-q}(f_n) + I_{-q}(f) = [2]^q \sum_{l=0}^{n-1} (-1)^l q^l f(l).
\]

If we take \(f(x) = \lambda^x q^{-x} [x]^m \) with \(m \in \mathbb{N} \cup \{0\} \), then we see that
\[
q^n \int_{\mathbb{Z}_p} q^{-x-n} \lambda^x [x+n]_q^m d\mu_{-q}(x) + \int_{\mathbb{Z}_p} q^{-x} \lambda^x [x]_q^m d\mu_{-q}(x) = [2]^q \sum_{l=0}^{n-1} (-1)^l \lambda^l [l]_q^m.
\]

Thus we have
\[
E_{m,q}(\lambda, n) + E_{m,q}(\lambda) = [2]^q \sum_{l=0}^{n-1} (-1)^l \lambda^l [l]_q^m.
\]

For \(m \equiv 1 \pmod{2} \), we note that
\[
E_{n,q}(\lambda, dx) = \frac{[2]^q}{[2]^m} \sum_{a=0}^{m-1} (-1)^a \lambda^a E_{n,q}^{m}(\lambda^m, \frac{a}{m})
\]
\[
= \frac{[2]^q}{[2]^m} \sum_{a=0}^{m-1} (-1)^a \lambda^a E_{E_{1,q}^{m}}(\lambda^m) \sum_{l=0}^{n-1} (-1)^a \lambda^a q^a [a]_q^{n-l}.
\]

Remark 3. Note that
\[
\frac{G_{m+1,q}(\lambda, n)}{m+1} + \frac{G_{m+1,q}(\lambda)}{m+1} = [2]^q \sum_{l=0}^{n-1} (-1)^l \lambda^l [l]_q^m.
\]

Now we can also consider the following DC type \(\lambda-q \)-Euler numbers and polynomials. For \(\lambda \in \mathbb{C}_p \) with \(|1-\lambda|_p < 1 \), we define the DC type \(\lambda-q \)-Euler numbers as
\[
E_{n,q}^*(\lambda) = \int_{\mathbb{Z}_p^n} \lambda^x [x]_q^m d\mu_{-q}(x)
\]
\[
= \frac{[2]^q}{(1-q)^n} \sum_{l=0}^{n} \left(\begin{array}{c} n \\ l \end{array} \right) (-1)^l \frac{1}{1 + q^{l+1} \lambda}
\]
\[
= [2]^q \sum_{m=0}^{\infty} (-1)^m \lambda^m q^m [m]_q^n.
\]

Let \(g^*(t, \lambda : q) = \sum_{n=0}^{\infty} E_{n,q}^*(\lambda) \frac{t^n}{n!} \). Then we see that
\[
g^*(t, \lambda : q) = \int_{\mathbb{Z}_p^n} \lambda^x [x]_q^m d\mu_{-q}(x) = [2]^q \sum_{m=0}^{\infty} (-1)^m \lambda^m q^m e^{[m]_q}.
\]
The DC type λ-q-Euler polynomials are also defined as

$$E^*_n(\lambda, x) = \int_{\mathbb{Z}} \lambda^y[x + y]^n d\mu_q(y).$$

Thus we can give the generating function of the DC type λ-q-Euler polynomials as follows.

$$\sum_{n=0}^{\infty} E^*_n(\lambda, x) \frac{t^n}{n!} = \int_{\mathbb{Z}} \lambda^y e^{(x+y)t} d\mu_q(y) = \sum_{m=0}^{\infty} (-1)^m \lambda^m q^m [m + x]^n.$$

4. Further Remarks and Observation for the q-extension Lerch zeta function

In this section, we assume that $q \in \mathbb{C}$ with $|q| < 1$. It is well-known that Lerch type zeta function is defined as

$$\zeta(x, s, a) = \sum_{n=0}^{\infty} \frac{x^n}{(n + a)^s},$$

where $a \in \mathbb{C}$ with $a \not= 0, -1, -2, \ldots$, and $s \in \mathbb{C}$ when $|x| < 1$, $Re(S) > 1$ when $|x| = 1$, and Hurwitz zeta function is defined as

$$\zeta(s, a) = \sum_{n=0}^{\infty} \frac{1}{(n + a)^s},$$

where $Re(S) > 1$ and $a \not= 0, -1, -2, \ldots$. The Lerch zeta function is known that

$$\zeta(s, \eta) = \sum_{n=0}^{\infty} \frac{e^{2\pi in}}{n^s} = e^{2\pi in} \zeta(e^{2\pi in}, 1),$$

where $\eta \in \mathbb{R}$ and $Re(S) > 1$.

Now we consider the first kind of the q-extension of Lerch type zeta function as follows.

$$\zeta_q(\lambda, s) = (1 - q)^{s - 1} \sum_{m=1}^{\infty} \frac{q^m \lambda^m}{[m]_q^s} + \sum_{m=1}^{\infty} \frac{q^m \lambda^m}{[m]_q^s},$$

where $q \in \mathbb{C}$ with $|q| < 1$, and $\lambda \in \mathbb{C}$ with $\lambda = e^{2\pi i f}$ ($f \in \mathbb{N}$).

By Theorem 3, we see that

$$\frac{-\beta_{k, q}(\lambda)}{k} = (q - 1) \frac{k + 1}{k} \sum_{m=1}^{\infty} q^m \lambda^m [n]_q^k + \sum_{m=1}^{\infty} q^m \lambda^m [m]_q^{k-1},$$

for $k \in \mathbb{N}$.

By (28) and (29), we obtain the following theorem.
Theorem 14. For $k \in \mathbb{N}$, we have
\[
\zeta_q(\lambda, 1-k) = -\frac{\beta_{k,q}(\lambda)}{k}.
\]

Now, we define the second of the q-extension of Lerch zeta function as follows. For $s \in \mathbb{C}$ and $\lambda = e^{2\pi i/f}$ ($f \in \mathbb{N}$), define
\[
\zeta^*_q(\lambda, s) = \sum_{m=1}^{\infty} q^{m} \lambda^m \left[\frac{m}{s}\right]_q.
\]

By Theorem 6, we easily see that
\[
-\frac{\beta_{k,q}(\lambda)}{k} = \sum_{m=1}^{\infty} q^{m} \lambda^m [m]_q^{k-1}.
\]

By (30) and (31), we obtain the following theorem.

Theorem 15. For $k \in \mathbb{N}$, we have
\[
\zeta^*_q(\lambda, 1-k) = -\frac{\beta_{k,q}(\lambda)}{k}.
\]

Remark 4. The extension of Hurwitz’s type q-Euler zeta function is defined as
\[
\zeta_{q,E}(\lambda, s) = [2]_q \sum_{m=0}^{\infty} \frac{(-1)^m \lambda^m}{[m+x]_q^s},
\]
where $s \in \mathbb{C}$, $\lambda \in \mathbb{C}$ with $\lambda = e^{2\pi i/f}$ ($f \in \mathbb{N}$). Then we have
\[
\zeta_q(\lambda, 1-k) = E_{k,q}(\lambda, x), \quad (k \in \mathbb{N}).
\]

References

[1] I. N. Cangul, H. Ozden, Y. Simsek, Generating functions of the (h, q) extension of twisted Euler polynomials and numbers, Acta Math. Hungar. **120** (2008), no. 3, 281–299.

[2] M. Cenkci, Y. Kurt, Congruences for generalized q-Bernoulli polynomials, J. Inequal. Appl. 2008, Art. ID 270713, 19 pp.

[3] M. Cenkci, Y. Simsek, V. Kurt, Further remarks on multiple p-adic q-L-function of two variables, Adv. Stud. Contemp. Math. (Kyungshang) **14** (2007), no. 1, 49–68.

[4] M. Cenkci, Y. Simsek, V. Kurt, Multiple two-variable p-adic q-L-function and its behavior at $s = 0$, Russian Journal of Mathematical Physics **15** (2008) no. 4, 447-459.

[5] T. Kim, An analogue of Bernoulli numbers and their congruences, Rep. Fac. Sci. Engrg. Saga Univ. Math. **22** (1994), no. 2, 21–26.

[6] T. Kim, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory **76** (1999), no. 2, 320–329.

[7] T. Kim, q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys. **14** (2007), no. 1, 15–27.

[8] T. Kim, q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients, Russ. J. Math. Phys. **15** (2008), no. 1, 51–57.

[9] T. Kim, On the multiple q-Genocchi and Euler numbers, Russian Journal of Mathematical Physics **15** (2008) no.4, 481-486.

[10] T. Kim, S.-H. Rim, Y. Simsek, D. Kim, On the analogs of Bernoulli and Euler numbers, related identities and zeta and L-functions, J. Korean Math. Soc. **45** (2008), no. 2, 435–453.

[11] Y.-H. Kim, W. Kim, and L.-C. Jang, On the q-extension of Apostol-Euler numbers and polynomials, Abstract and Applied Analysis (2008) http://www.hindawi.com/journals/aas/aip.296159.html
12. H. Ozden, Y. Simsek, A new extension of q-Euler numbers and polynomials related to their interpolation functions, Appl. Math. Lett. 21 (2008), no. 9, 934–939.
13. H. Ozden, Y. Simsek, Interpolation function of the \((h,q)\)-extension of twisted Euler numbers, Comput. Math. Appl. 56 (2008), no. 4, 898–908.
14. H. Ozden, I. N. Cangul, Y. Simsek, Multivariate interpolation functions of higher-order q-Euler numbers and their applications, Abstr. Appl. Anal. 2008, Art. ID 390857, 16 pp.
15. K. H. Park, Y.-H. Kim, On some arithmetical properties of the Genocchi numbers and polynomials, Advances in Difference Equations (2008)
16. Y. Simsek, q-analogue of twisted l-series and q-twisted Euler numbers, J. Number Theory 110 (2005), no. 2, 267–278.
17. Y. Simsek, On p-adic twisted q-L-functions related to generalized twisted Bernoulli numbers, Russ. J. Math. Phys. 13 (2006), no. 3, 340–348.
18. Y. Simsek, Twisted \((h,q)\)-Bernoulli numbers and polynomials related to twisted \((h,q)\)-zeta function and L-function, J. Math. Anal. Appl. 324 (2006), no. 2, 790–804.
19. Y. Simsek, Generating functions of the twisted Bernoulli numbers and polynomials associated with their interpolation functions, Adv. Stud. Contemp. Math. (Kyungshang) 16 (2008), no. 2, 251–278.

Taekyun Kim. Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea, E-mail address: tdkim@ku.ac.kr

Young-Hee Kim. Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea, E-mail address: yhkim@ku.ac.kr

Kyung-Won Hwang. Department of General education, Kookmin University, 861-1 Seongbukgu Seoul 136-702, Republic of Korea, E-mail address: khwang@kookmin.ac.kr