Retrospective Cohort Study

LIV-4: A novel model for predicting transplant-free survival in critically ill cirrhotics

Christina C Lindenmeyer, Gianina Flocco, Vedha Sanghi, Rocio Lopez, Ahyoung J Kim, Fadi Niyazi, Neal A Mehta, Aanchal Kapoor, William D Carey, Eduardo Mireles-Cabodevila, Carlos Romero-Marrero

Abstract

BACKGROUND

Critically ill patients with cirrhosis, particularly those with acute decompensation, have higher mortality rates in the intensive care unit (ICU) than patients without chronic liver disease. Prognostication of short-term mortality is important in order to identify patients at highest risk of death. None of the currently available prognostic models have been widely accepted for use in cirrhotic patients in the ICU, perhaps due to complexity of calculation, or lack of universal variables readily available for these patients. We believe a survival model meeting these requirements can be developed, to guide therapeutic decision-making and contribute to cost-effective healthcare resource utilization.

AIM

To identify markers that best identify likelihood of survival and to determine the performance of existing survival models.

METHODS

Consecutive cirrhotic patients admitted to a United States quaternary care center ICU between 2008-2014 were included and comprised the training cohort. Demographic data and clinical laboratory test collected on admission to ICU were analyzed. Area under the curve receiver operator characteristics (AUROC) analysis was performed to assess the value of various scores in predicting in-
INTRODUCTION

Patients with cirrhosis, particularly those with acute decompensation necessitating intensive care unit (ICU) admission, are at elevated risk for short-term mortality[5,6]. Acute-on-chronic liver failure, as defined by sequential organ failure in patients with cirrhosis, portends a poorer prognosis, with 28-day mortality approaching 80% in patients with 3 or more organ failures[1-7]. The most recent data from the nationwide inpatient sample in the United States estimates that more than 26,000 patients with cirrhosis are admitted to ICUs annually, of which less than half (about 47%) survive hospitalization[8]. Critical care for patients with cirrhosis is estimated to cost upwards of United States $3 billion annually, with each admission totaling on average United States $116,200[8]. Survival analysis tools aid in the early identification of critically ill hospital mortality. A new predictive model, the LIV-4 score, was developed using logistic regression analysis and validated in a cohort of patients admitted to the same institution between 2015-2017.

RESULTS

Of 436 patients, 119 (27.3%) died in the hospital. In multivariate analysis, a combination of the natural logarithm of the bilirubin, prothrombin time, white blood cell count, and mean arterial pressure was found to most accurately predict in-hospital mortality. Derived from the regression coefficients of the independent variables, a novel model to predict inpatient mortality was developed (the LIV-4 score) and performed with an AUROC of 0.86, compared to the Model for End-Stage Liver Disease, Chronic Liver Failure-Sequential Organ Failure Assessment, and Royal Free Hospital Score, which performed with AUROCs of 0.81, 0.80, and 0.77, respectively. Patients in the internal validation cohort were substantially sicker, as evidenced by higher Model for End-Stage Liver Disease, Model for End-Stage Liver Disease-Sodium, Acute Physiology and Chronic Health Evaluation III, SOFA and LIV-4 scores. Despite these differences, the LIV-4 score remained significantly higher in subjects who expired during the hospital stay and exhibited good prognostic values in the validation cohort with an AUROC of 0.80.

CONCLUSION

LIV-4, a validated model for predicting mortality in cirrhotic patients on admission to the ICU, performs better than alternative liver and ICU-specific survival scores.

Key words: Risk stratification; Resource allocation; Intensive care unit; Acute-on-chronic liver failure; Modeling; Mortality

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Critically ill patients with cirrhosis have higher mortality rates in the intensive care unit (ICU) than patients without chronic liver disease. None of the currently available prognostic models have been widely accepted for use in cirrhotic patients in the ICU, perhaps due to complexity of calculation. We believe survival modeling can guide therapeutic decision-making and contribute to cost-effective healthcare resource utilization. We describe the development of a novel model to predict in-hospital mortality in critically ill patients with cirrhosis. Our validated model for predicting mortality on admission to the ICU performs better than previously published liver and ICU-specific scores.
patients, which, when applied as part of therapeutic decision-making, can help guide goals of critical care discussions with patients and their families, and may contribute to cost-effective healthcare resource utilization.

To this end, the Acute Physiology and Chronic Health Evaluation (APACHE) methodology and the Simplified Acute Physiology Score (APS) are widely applied to estimate the risk of inpatient mortality based on values collected from within the first 24 hours of critical care admission. Similarly, the Sequential (or Sepsis-Related) Organ Failure Assessment (SOFA) is commonly used to describe, compare, and track a patient’s clinical course in the ICU. On the other hand, liver-specific scores, such as the Child-Pugh Score, Model for End-Stage Liver Disease (MELD), MELD-Sodium (MELD-Na) and Chronic Liver Failure-SOFA (CLIF-SOFA) are broadly applied in patients with liver disease to predict 90-day mortality, allocate donor organs for liver transplantation, and to define hepatic decompensation as well as acute-on-chronic liver failure. Critical care scoring systems that include the assessment of organ dysfunction have generally performed as well, or better, in patients with cirrhosis than these liver-specific models for short-term mortality. However, none of these prognostic models have been widely accepted for use in clinical practice, perhaps due to complexity of calculation, or lack of universal variables readily available for cirrhotic patients in the ICU. We aimed to identify markers that best identify likelihood of transplant-free survival in critically ill patients with cirrhosis and to determine the performance of existing survival models.

MATERIALS AND METHODS

Study aims

The aims of this study are to: (1) Identify clinical and laboratory markers universally available at the time of ICU admission that best identify the likelihood of survival; and (2) To compare this model to existing survival models.

Study design

Patients over the age of 18 with a diagnosis of cirrhosis admitted between 2008-2014 to an ICU at a major quaternary referral and liver transplantation center in the United States comprised the training cohort. Patients from the APACHE IVb database (a prospective database of consecutive patients admitted to the ICU) were identified retrospectively by searching the database for the APACHE chronic health items: (1) hepatic failure and (2) cirrhosis. The diagnosis of cirrhosis was subsequently confirmed either (1) radiographically, based on imaging evidence of cirrhosis or portal hypertension; (2) histologically by liver biopsy, if performed, and/or (3) by evidence of hepatic decompensation, including hepatic encephalopathy, variceal bleeding, or ascites. Patients with acute liver failure, history of liver transplantation, or who underwent liver transplantation during the contemporaneous hospital admission were excluded from the analysis.

Patient population

Demographic patient data consisting of age, gender, co-morbidities, etiology of chronic liver disease, and vital signs on admission to ICU were recorded from the electronic medical record. Clinical laboratory tests collected on admission to ICU included platelet count, prothrombin time (PT), International normalized ratio, lactate, arterial blood gas, pH, partial arterial pressure of carbon dioxide and oxygen, inspired oxygen concentration (FiO₂), oxygen/FiO₂, alveolar-arterial partial pressure oxygen gradient (A-a gradient), hematocrit, white blood cell count (WBC), potassium, blood urea nitrogen, albumin, sodium (Na), creatinine, bilirubin, bicarbonate, and glucose. Additional clinical parameters, including 24-hour urine output, need for mechanical ventilation, need for dialysis, variceal hemorrhage, Glasgow coma scale, vasopressor dose, and degree of ascites and encephalopathy were recorded. This information was used to grade the severity of liver disease and prognosticate ICU mortality based on the calculation of previously validated liver-specific and ICU prognostic scores, including the MELD, MELD-Na, Child-Pugh, SOFA, CLIF-SOFA, Royal Free Hospital (RFH), APS and APACHE III scores. Subjects were followed from admission to hospital discharge or death.

The internal validation cohort was comprised of prospectively enrolled patients over the age of 18 with a diagnosis of cirrhosis admitted to the same institution as the training cohort between 2015-2017 and were subject to identical exclusion criteria. All patients that met the inclusion criteria were included in the analysis; no formal sample size calculations were done. The Institutional Review Board of the Cleveland Clinic Foundation reviewed and approved this study. On behalf of all authors, the
corresponding author states that there is no conflict of interest.

Statistical analysis

A univariate and then multivariate analysis was performed to assess factors associated with in-hospital mortality. Data are presented as mean ± standard deviation, median (25th, 75th percentiles) or n (%). Analysis of variance or the non-parametric Kruskal-Wallis tests were used for continuous or ordinal variables and Pearson’s chi-square tests were used for categorical factors. In addition, Spearman correlations coefficients were used to assess correlation between length of stay and the different scores.

Receiver Operating Characteristics (ROC) analysis was performed to assess the value of various scores in predicting in-hospital mortality; areas under the ROC curves (AUROC) and corresponding 95% confidence intervals are presented.

A predictive model was developed using logistic regression analysis. An automated stepwise variable selection method performed on 1000 bootstrap samples was used to choose the final model. All variables known at time of ICU admission were considered for inclusion. Variables with inclusion rates of at least 50% were further assessed and the most parsimonious model with highest AUROC is reported. Variable transformations were assessed to account for any possible non-linearity. Observations with missing values were not included when building models.

After choosing the final model, the method described by Harrell[29] was used to compute the validation metric with over-fitting bias correction through bootstrap resampling. A thousand bootstrap samples (B = 1000) were drawn from the original data set and a new model with the same model settings was built on each bootstrap resample. Prediction on patients that were not chosen in the resample was calculated. An optimism factor was calculated over the 1000 new models and the bias-corrected validation metric was obtained by subtracting this optimism value from the AUROC directly measured from the original model. In addition, the Hosmer-Lemeshow goodness-of-fit χ^2 test and calibration plots were used to assess calibration of the models. DeLong’s method was used to compare predictive ability of LIV-4 to that of the various scores by comparing AUROCs[30]. A univariable analysis was performed to assess differences between the training and validation cohorts. SAS (version 9.4, The SAS Institute, Cary, NC, United States) was used for all analyses and a $P < 0.05$ was considered statistically significant. The statistical review was performed by a biomedical statistician.

RESULTS

Training cohort

Patient characteristics: Training Cohort. In total, 436 patients cirrhotic patients, aged 57 ± 10.6 years, 65.4% males, mostly with alcohol-related liver disease - (45.2%), Hepatitis C Virus - (33.7%) and Non-alcoholic steatohepatitis - (22%) related cirrhosis were included in the training cohort (Table 1). The majority of patients presented with severely decompensated liver disease, evidenced by the presence of moderate/severe encephalopathy (47.5%), moderate/severe ascites (44.3%), or variceal bleeding (25.7%) on admission, with median MELD score of 23.3 and Child-Pugh Score of 10.2 (C). 119 patients (27.3%) died in the hospital. The median ICU length of stay was 2.6 (25th, 75th percentiles: 1.4, 5.2) d and the median hospital length of stay was 8.7 (4.7, 16.8) d.

Factors associated with in-hospital mortality

Table 1 summarizes univariable comparisons of subjects who died and those who were discharged alive. There was no significant difference in patient age, gender, ethnicity, etiology of liver disease or co-morbidities between survivors and non-survivors. Survivors had lower MELD (20.3 vs 31.1) and Non-alcoholic steatohepatitis (22%) related cirrhosis were included in the training cohort (Table 1). The majority of patients presented with severely decompensated liver disease, evidenced by the presence of moderate/severe encephalopathy (47.5%), moderate/severe ascites (44.3%), or variceal bleeding (25.7%) on admission, with median MELD score of 23.3 and Child-Pugh Score of 10.2 (C). 119 patients (27.3%) died in the hospital. The median ICU length of stay was 2.6 (25th, 75th percentiles: 1.4, 5.2) d and the median hospital length of stay was 8.7 (4.7, 16.8) d.
Table 1 Training cohort: Patient characteristics and univariate analysis of factors associated with In-hospital mortality

Factor	Total (n = 436)	Discharged alive (n = 317)	In-hospital death (n = 119)	P value			
	n	Summary	n	Summary	n	Summary	
Age (yr)	436	57.0 ± 10.6	317	57.5 ± 10.3	119	55.5 ± 11.3	< 0.081¹
Gender	436	317	119				< 0.62²
Female	151 (34.6)	112 (35.3)	39 (32.8)				
Male	285 (65.4)	205 (64.7)	80 (67.2)				
Ethnicity	420	308	112				< 0.41³
White/Caucasian	340 (81.0)	254 (82.5)	86 (76.8)				
Black/African/Haitian	60 (14.3)	41 (13.3)	19 (17.0)				
Other	20 (4.8)	13 (4.2)	7 (6.3)				
Any previous ICU stay during same admission	436	13 (3.0)	317	6 (1.9)	119	7 (5.9)	< 0.029¹
Comorbidities							
Diabetes	436	129 (29.6)	100 (31.5)	119	29 (24.4)	< 0.14⁴	
COPD	436	61 (14.0)	49 (15.5)	119	12 (10.1)	< 0.15⁵	
Severe COPD	436	12 (2.8)	10 (3.2)	119	2 (1.7)	< 0.40⁶	
Solid tumor with metastasis	436	3 (0.69)	1 (0.32)	119	2 (1.7)	< 0.18⁷	
Immune suppression	436	21 (4.8)	16 (5.0)	119	5 (4.2)	< 0.71³	
Mechanical ventilation	436	170 (39.0)	111 (35.0)	119	59 (49.6)	< 0.005¹	
Dialysis > 2 times in 7 d	436	35 (8.0)	20 (6.3)	119	15 (12.6)	< 0.031¹	
Liver disease etiology							
AIAT	436	9 (2.1)	8 (2.5)	119	1 (0.84)	< 0.27⁹	
AIH	436	17 (3.9)	11 (3.5)	119	6 (5.0)	< 0.45⁵	
ALD	436	197 (45.2)	138 (43.5)	119	59 (49.6)	< 0.26⁷	
Cryptogenic	436	25 (5.7)	21 (6.6)	119	4 (3.4)	< 0.19³	
HCV	436	147 (33.7)	102 (32.2)	119	45 (37.8)	< 0.27⁷	
HBV	436	9 (2.1)	5 (1.6)	119	4 (3.4)	< 0.24⁷	
NASH	436	96 (22.0)	75 (23.7)	119	21 (17.6)	< 0.18³	
PBC	436	6 (1.4)	5 (1.6)	119	1 (0.84)	< 0.99¹	
PSC	436	2 (0.46)	2 (0.63)	119	0 (0.0)	< 0.99¹	
24-hour urine output (cc)	400	1005.2 (454.8, 1589.8)	295	1090.0 (633.3, 1726.6)	105	563.8 (105.6, 1210.9)	< 0.001¹
Variceal bleed	436	112 (25.7)	86 (27.1)	119	26 (21.8)	< 0.26³	
Vasopressors on day of admission	436	317	119	< 0.001²			
0	208 (47.7)	170 (53.6)	38 (31.9)				
1	175 (40.1)	126 (39.7)	49 (41.2)				
≥ 2	53 (12.2)	21 (6.63)	32 (26.9)				
Encephalopathy	436	317	119				< 0.43³
None	106 (24.3)	81 (25.6)	25 (21.0)				
Mild	123 (28.2)	88 (27.8)	35 (29.4)				
Moderate/severe	207 (47.5)	148 (46.7)	59 (49.6)				
Ascites	436	317	119				< 0.085¹
None	114 (26.1)	86 (27.1)	28 (23.5)				
Mild	129 (29.6)	100 (31.5)	29 (24.4)				
Moderate/severe	193 (44.3)	131 (41.3)	62 (52.1)				
Labs and vitals							
Platelets (k/μL)	436	81.0 (56.5, 117.5)	317	83.0 (60.0, 117.0)	119	73.0 (49.0, 119.0)	< 0.21²
Prothrombin time (sec)	436	16.8 (14.2, 20.7)	317	15.6 (13.7, 18.0)	119	21.4 (18.3, 27.8)	< 0.001²
INR	436	1.5 (1.3, 1.9)	1.4 (1.2, 1.6)	119	2.0 (1.7, 2.6)	< 0.003¹	
Lactate (mmol/L)	341	2.3 (1.6, 3.4)	2.1 (1.4, 2.7)	111	3.0 (2.1, 5.4)	< 0.001²	
MAP (mmHg)	436	65.0 (56.0, 106.0)	317	68.0 (60.0, 109.0)	119	58.0 (50.0, 68.0)	< 0.001²
ABG-PH	263	7.4 ± 0.10	170	7.4 ± 0.08	93	7.3 ± 0.12	< 0.001¹
ABG-PaCO₂ (mmHg)	263	31.0 (27.0, 38.0)	170	31.0 (26.0, 37.0)	93	33.0 (27.0, 40.0)	< 0.098²
ABG-PaO₂ (mmHg)	263	104.0 (80.0, 139.0)	170	113.0 (85.0, 147.0)	93	94.0 (76.0, 132.0)	< 0.019²
ABG-Fio₂ (%) 263 40.0 (27.0, 55.0) 170 40.0 (25.0, 50.0) 93 44.0 (30.0, 70.0) < 0.008
PaO₂/Fio₂ ratio 263 309.5 (195.0, 390.5) 170 337.5 (226.0, 426.7) 93 252.5 (143.0, 347.4) < 0.001
PaO₂ (mmHg) 263 240.2 (151.0, 346.2) 171 231.5 (143.3, 324.0) 93 264.0 (168.4, 471.6) < 0.008
A-a gradient (mmHg) 263 119.8 (47.4, 233.9) 171 100.2 (38.6, 204.3) 93 166.7 (79.5, 319.6) < 0.001
Temperature (°C) 436 36.5 (36.2, 36.8) 317 36.5 (36.3, 36.8) 119 36.3 (35.4, 36.6) < 0.001
GCS 436 13.0 (8.0, 14.0) 317 13.0 (9.0, 15.0) 119 11.0 (7.0, 14.0) < 0.001
Respiratory rate (rpm) 436 33.0 (26.0, 40.0) 317 33.0 (25.0, 39.0) 119 36.0 (27.0, 43.0) < 0.052
Heart rate (bpm) 436 92.8 ± 28.1 317 91.8 ± 25.7 119 95.5 ± 33.6 < 0.21
Hematocrit (%) 436 26.6 ± 5.9 317 27.1 ± 5.7 119 25.3 ± 6.2 < 0.005
WBC (k/μL) 436 7.5 (5.0, 11.4) 317 6.6 (4.6, 9.8) 119 10.7 (6.6, 17.7) < 0.001
Potassium (mmol/L) 436 4.0 (3.6, 4.8) 317 3.9 (3.5, 4.6) 119 4.4 (3.8, 5.1) < 0.001
BUN (mg/dL) 436 35.0 (21.0, 55.5) 317 32.0 (20.0, 51.0) 119 46.0 (28.0, 66.0) < 0.001
Albumin (g/dL) 436 2.7 (2.2, 3.1) 317 2.7 (2.3, 3.1) 119 2.7 (2.2, 3.3) < 0.57
Sodium (mmol/L) 436 136.6 ± 6.8 317 136.6 ± 6.6 119 136.4 ± 7.3 < 0.81
Creatinine (mg/dL) 436 1.6 (0.89, 2.8) 317 1.4 (0.80, 2.4) 119 2.2 (1.4, 3.5) < 0.001
Bilirubin (mg/dL) 435 4.2 (2.0, 10.4) 316 3.3 (1.7, 6.2) 119 11.7 (5.6, 23.9) < 0.001
Bicarbonate (mEq/L) 434 19.3 ± 5.4 310 19.9 ± 4.9 114 17.7 ± 6.3 < 0.001
Glucose (mg/dL) 430 152.6 ± 90.3 314 153.9 ± 94.0 116 149.1 ± 79.8 < 0.63

Scores

MELD score 435 23.2 ± 9.8 316 20.3 ± 8.3 119 31.1 ± 8.9 < 0.001
MELD-Na score 435 24.8 ± 9.2 316 22.1 ± 8.1 119 32.0 ± 8.1 < 0.001
Child-Pugh score 435 10.8 ± 2.1 316 10.3 ± 2.1 119 11.9 ± 1.8 < 0.001
SOFA score 263 10.2 ± 3.5 170 9.0 ± 2.9 93 12.4 ± 3.4 < 0.001
CLIF-SOFA score 262 11.2 ± 3.5 169 9.9 ± 3.0 93 13.5 ± 3.2 < 0.001
RFH score 259 0.05 (0.77, 1.1) 167 -0.30 (-0.99, 0.59) 92 0.96 (0.08, 2.1) < 0.001
APS 435 65.6 ± 28.4 317 58.0 ± 22.1 118 86.2 ± 32.8 < 0.001
APACHE III score 435 85.1 ± 28.3 317 77.7 ± 23.1 118 105.0 ± 31.5 < 0.001

Values presented as Mean ± SD, Median (P25, P75) or n (column %). P values:
1ANOVA.
2Kruskal-Wallis test.
3Pearson’s r² test.
4Fisher’s Exact test. ICU: Intensive care unit; COPD: Chronic obstructive pulmonary disease; AIAT: Alpha 1 anti-trypsin deficiency; AIHE: Autoimmune hepatitis; ALD: Alcoholic liver disease; HCV: Hepatitis C virus; HBV: Hepatitis B virus; NASH: Non-alcoholic steatohepatitis; PBC: Primary biliary cholangitis; PSC: Primary sclerosing cholangitis; INR: International normalized ratio; MAP: Mean arterial pressure; ABG: Arterial blood gas; PaCO₂: Partial arterial pressure of carbon dioxide; PaO₂: Oxygen; Fio₂: Inspired oxygen concentration; A-a gradient: Alveolar arterial partial pressure oxygen gradient; FiO₂/PaO₂: Oxygenation index; GCS: Glasgow coma scale; rpm: Respirations per minute; bpm: Beats per minute; WBC: White blood cell count; BUN: Blood urea nitrogen; MELD: Model for end-stage liver disease; Na: Sodium; CPS: Child-Pugh score; SOFA: Sequential (or sepsis-related) organ failure assessment; CLIF-SOFA: Chronic liver failure-sequential organ failure assessment; RFH: Royal free hospital; APS: Acute physiology score; APACHE: Acute physiology and chronic health evaluation.

In multivariate analysis, a combination of the natural logarithm (ln) of the bilirubin, PT, WBC, and MAP was found to most accurately predict in-hospital mortality. Based on the regression coefficients of the independent variables (Table 2), a novel model to predict inpatient mortality was established. The final proposed model was defined as:

\[z = 1.19330 + [0.6137 \times \ln (\text{bilirubin})] - (47.203/\text{PT}) + (0.0715 \times \text{WBC}) - (0.0198 \times \text{MAP}) \]

The value is subsequently converted into a risk score to calculate probability of mortality utilizing the formula: LIV-4 = Probability of death (%) = \[ez/\{1 + (ez)\} \times 100 \]. Percentage values range from 0 to 100.

The Hosmer-Lemeshow goodness-of-fit X² test was 5.4 (P = 0.72) and the AUROC for this model was 0.86 (95%CI: 0.82-0.90). Using bootstrap resampling, internal validation of the model was undertaken and produced an AUROC of 0.85. Based on Youden’s index[1][1] and using a cutoff of 26.5, the new score performed with a sensitivity of 81.2%, specificity of 76%, Positive Predictive Value of 58.2%, and Negative Predictive Value of 92.2%. Alternatively, a cutoff of 45.8 yields a sensitivity of 61.3% and specificity of 90.3%.

Comparison of prognostic models

Several scores demonstrated excellent accuracy for prediction of in-hospital mortality. The CLIF-SOFA and MELD scores, both liver-specific models, performed the best in the cohort with AUROCs of 0.81. The RFH score performed with an AUROC of 0.77. By comparison, ICU-specific scores, including the SOFA, APS and APACHE III
Table 2: Training cohort: Factors associated with in-hospital mortality: multivariate logistic regression with variable transformations

Factor	Estimate (95% CI)	OR (95% CI)	P value
Ln (Bilirubin)	0.61 (0.34, 0.89)	1.8 (1.4, 2.4)	< 0.001
1/PT	-47.2 (-67.3, -27.1)	0.09 (0.03, 0.26)	< 0.001
WBC	0.07 (0.03, 0.11)	1.07 (1.03, 1.1)	< 0.001
MAP	-0.02 (-0.03, -0.01)	0.91 (0.86, 0.96)	< 0.001

1OR corresponds to 0.05 increment in 1/PT.
2OR corresponds to 5-unit increment in MAP.
Ln: Natural logarithm; OR: Odds ratio; CI: Confidence interval; PT: Prothrombin time; WBC: White blood cell count; MAP: Mean arterial pressure.

performed with AUROCs of 0.79, 0.76, and 0.76, respectively. The liver intensive care unit variable-4 score (the LIV-4 score) performed higher than all other models, with an AUROC of 0.86. Figure 1 displays AUROCs of the top-performing scores. DeLong et al.[30]s method was employed to compare the predictive ability of the new model to that of the other scores. The LIV-4 score performed significantly better than the MELD, MELD-Na, Child-Pugh Score, RFH and APACHE III scores (Table 3).

Validation cohort

Table 4 presents a comparison of the training and validation cohort characteristics. A total of 336 cirrhotic patients were admitted between 2015-2017, of whom 107 (31.8%) died. Patients in the internal validation cohort were substantially sicker, as evidenced by higher MELD, MELD-Na, APACHE III, SOFA and LIV-4 scores. Despite differences between the cohorts, the LIV-4 score remained significantly higher in subjects who expired during the hospital stay (Figure 2) and exhibited good prognostic values in the validation cohort with an AUROC of 0.80 (Figure 3). There was no statistically significant difference between the LIV-4 score's AUROC from the training cohort and the validation cohort (P = 0.11). In the validation cohort, the SOFA score performed with an AUROC of 0.78, the APACHE III with an AUROC of 0.74, the MELD score with an AUROC of 0.80, the MELD-Na with an AUROC of 0.79, the CLIF-SOFA with an AUROC of 0.83, and the RFH with an AUROC of 0.64. The LIV-4 model performed with a significantly higher AUROC than the RFH [AUROC: 0.64 (0.56, 0.72)], and was non-inferior to other ICU- and liver-specific scores (Table 5). Using a cutoff of 26.5, LIV-4 continued to perform with a high negative predictive value of 89.1 (84.6, 93.6) (Table 6).

DISCUSSION

Our new model, the LIV-4 score, is calculated based on objective variables typically available at the time of ICU admission in patients with liver disease: The MAP, WBC, bilirubin, and PT. This combination of variables reflects hepatic and extra-hepatic (circulatory and immune) dysfunction, which are validated risk factors for mortality in patients with cirrhosis[32-34]. This score performed better in our training cohort as a predictor for short-term mortality than other ICU- and liver-specific models, including the SOFA, CLIF-SOFA, and RFH scores, with excellent discriminative ability and calibration. In our validation cohort, it performed better than the RFH and was non-inferior to all others. In addition, the LIV-4 provides a survival probability score. This survival probability calculation may be useful for critical care, hepatology and surgical specialists when addressing goals and expectations of critical care with patients and their families. The APACHE methodology, APS, and SOFA were developed to assess the clinical course and predict survival of all-comers admitted to the ICU[9-11]. Liver-specific scores, such as the Child-Pugh Score, MELD, MELD-Na and CLIF-SOFA are used to grade severity of liver disease, predict 90-day mortality, allocate organs for transplantation, and define acute-on-chronic liver failure[1,12-15]. Liver-specific scores have been extrapolated for use as predictive models for mortality in the ICU, but have not performed better than ICU-specific scores[17-25]. In our study, the MELD and the CLIF-SOFA scores (both liver-specific scores and both with AUROCs of 0.81), performed better than ICU-specific scores, including the SOFA, APACHE III, and APS scores (AUROCs of 0.79, 0.76, 0.76, respectively). We postulate that the differences in our observations relate to critical care trends over time, with associated improved survival and lower event-deaths in more recent years. Our model was formulated in a more contemporary cohort than previous models and was
subsequently prospectively validated, with objective variables that more accurately reflect current critical care challenges in the approach to the cirrhotic patient—most notably circulatory/adrenocortical dysfunction and infection/inflammation[32-35]. Variable mortality trends with time were also observed in the development of the updated RFH score[19]. Our mortality rates of 27.3% between 2008-2014 and 31.8% between 2015-2017 are similar to that of a comparable cohort from the Royal Free Hospital (2009-2012; 35.4%)[19], as well as the cohort of patients described in the development of the CLIF-SOFA score (2011; 29.7% in patients with acute-on-chronic liver failure)[1].

The RFH score is a liver-specific ICU score that has been previously externally validated in several centers in Scotland[26]. Our study is the first in the United States to validate the updated RFH score, which performed in our cohort with an AUROC of 0.77. However, we found that the RFH score was limited in its generalizability as lactate and A-a gradient were not universally available on admission in our cohort. Lactate has been shown to be an independent predictor of mortality in cirrhotic patients[18,19,26,27,36,37] and in patients with acute liver failure[38] admitted to the ICU. However, lactate clearance has also been shown to be impaired by liver and extra-hepatic organ dysfunction, as evidenced by decreased clearance with increasing L-SOFA score[39], which suggests that lactate levels may not be reliable in cirrhotic patients. Similarly, arterial blood gas analysis and calculation of the A-a gradient is more likely to be collected in patients with respiratory failure necessitating mechanical ventilation, and is not universally available in patients admitted to the ICU as the precise FiO₂ is often unknown. Finally, variceal hemorrhage as a reason for admission to the ICU was not an independent predictor of in-hospital mortality in our cohort. For these reasons, in an effort to create a widely applicable score for all cirrhotic patients admitted to the ICU, we did not include lactate, arterial blood gas analysis, or variceal hemorrhage in our new prognostic model. The LIV-4 performs with better discrimination and calibration in all patients with cirrhosis admitted to our ICU, independent of variceal hemorrhage, presence/grade of encephalopathy, and presence/degree of ascites.

In terms of limitations, patients were identified from the prospectively developed ICU APACHE IVb database and data was collected retrospectively. It is possible that all consecutive patients with cirrhosis were not captured with our retrospective methodology as a consequence of coding error, or if cirrhosis was not recognized as a pre-existing chronic health condition on admission to ICU. While internal prospective validation at our center suggests that the LIV-4 score will be widely applicable, we advocate for external, prospective analyses to be undertaken across diverse ICU settings in an effort to validate the clinical applicability of the score. Finally, it is
Table 3 Training cohort: Predictive abilities of critical care and liver-specific scores compared to the LIV-4 score

Score compared to LIV-4	P value
MELD	0.009
MELD-Na	0.002
Child-Pugh Score	< 0.001
SOFA	0.061
CLIF-SOFA	0.091
RFH	0.04
APS	0.001
APACHE III	0.002

MELD: Model for end-stage liver disease; Na: Sodium; SOFA: Sequential (or Sepsis-Related) organ failure assessment; CLIF-SOFA: Chronic liver failure-sequential organ failure assessment; RFH: Royal free hospital; APS: Simplified acute physiology score; APACHE: Acute physiology and chronic health evaluation.

important to recognize that, much as the APACHE scoring system has evolved to reflect progressive trends in the practice of critical care medicine, temporal study for re-calibration of LIV-4 will be necessary.

Patients with cirrhosis admitted to the ICU present unique clinical challenges for the clinician, and are best managed by a multidisciplinary team, comprised of specialists in both critical care and hepatology[8]. Prognostication of short-term survival is important in order to identify patients at highest risk for mortality in terms of allocation of resources, studies and interventions. We report the development and prospective validation of a new prognostic model for the prediction of inpatient transplant-free survival in a contemporary cohort of cirrhotic patients admitted to the ICU. This tool can be easily accessed online at http://riskcalc.org:3838/LIV-4/. If external validation is undertaken, the LIV-4 score could become a standard clinical tool in the ICU and maybe used as a means of stratifying critically ill patients with cirrhosis in clinical and translational research studies.
Table 4 Validation cohort characteristics

Factor	Training cohort (n = 436)	Validation cohort A (n = 336)	P value		
	n	Statistics	n	Statistics	
Gender					< 0.030
Female	436	151 (34.6)	336	142 (42.3)	
Male	285 (65.4)	194 (57.7)			
Serum bilirubin	435	4.2 (2.0, 10.4)	336	5.0 (2.0, 15.3)	< 0.26
PT	436	16.8 (14.2, 20.7)	336	18.0 (14.8, 23.5)	< 0.003
WBC	436	7.5 (5.0, 11.4)	336	8.3 (5.0, 14.0)	< 0.040
MAP	436	65.0 (56.0, 106.0)	336	64.0 (56.0, 75.0)	< 0.26
Non-liver specific scores					
APACHE III	435	83.0 (65.0, 102.0)	333	88.0 (70.0, 109.0)	< 0.006
SOFA	263	10.0 (8.0, 12.0)	186	11.0 (8.0, 14.0)	< 0.003
Liver specific scores					
MELD	435	22.0 (16.0, 30.0)	336	25.0 (17.0, 33.0)	< 0.004
MELD-Na	435	24.0 (18.0, 31.0)	336	27.0 (20.0, 34.0)	< 0.006
CLIF-SOFA	262	11.0 (9.0, 13.0)	336	11.0 (9.0, 13.0)	< 0.53
RFH	259	0.05 (-0.77, 1.1)	184	0.83 (-0.18, 2.1)	< 0.001
LIV-4	435	16.8 (5.7, 43.6)	336	23.0 (7.1, 57.7)	< 0.007
Admission outcomes					
ICU LOS (d)	436	2.6 (1.4, 5.2)	336	3.7 (2.0, 7.6)	< 0.001
Hospital LOS (d)	436	8.7 (4.7, 16.8)	336	11.7 (5.7, 22.0)	< 0.002
Hospital discharge status	436	336	336		
Discharged alive	317 (72.7)	229 (68.2)			
In-hospital death	119 (27.3)	107 (31.8)			

1Kruskal-Wallis test.
2Pearson’s χ² test. PT: Prothrombin time; WBC: White blood cell count; MAP: Mean Arterial Pressure; APACHE: Acute physiology and chronic health evaluation; SOFA: Sequential (or Sepsis-related) organ failure assessment; MELD: Model for end-stage liver disease; Na: Sodium; CLIF-SOFA: Chronic liver failure-sequential organ failure assessment; RFH: Royal Free Hospital; LOS: Length of stay.

Table 5 Validation cohort: Comparison of the various scores and LIV-4

Score comparison	Validation cohort P value
MELD vs LIV-4	< 0.75
MELD-Na vs LIV-4	< 0.47
SOFA vs LIV-4	< 0.94
CLIF-SOFA vs LIV-4	< 0.27
RFH vs LIV-4	< 0.001
APACHE III vs LIV-4	< 0.074

Areas under the ROC curves were compared using De-Long’s method. MELD: Model for end-stage liver disease; Na: Sodium; SOFA: Sequential (or Sepsis-related) organ failure assessment; CLIF-SOFA: Chronic liver failure-sequential organ failure assessment; RFH: Royal Free Hospital; APACHE: Acute physiology and chronic health evaluation; ROC: Receiver operator characteristics.

Table 6 Validity measures for LIV-4

Cohort	Measure	LIV-4 ≥ 26.5	LIV-4 ≥ 45.8
Validation Cohort	Sensitivity	81.3 (73.9, 88.7)	61.7 (52.5, 70.9)
	Specificity	71.2 (65.3, 77.0)	83.4 (78.6, 88.2)
	PPV	56.9 (49.0, 64.7)	63.5 (54.2, 72.7)
	NPV	89.1 (84.6, 93.6)	82.3 (77.4, 87.2)

Values presented as estimate (95%CI). PPV: Positive predictive value; NPV: Negative predictive value; CI: Confidence Interval.
ARTICLE HIGHLIGHTS

Research background
Critically ill patients with cirrhosis have higher mortality rates in the intensive care unit (ICU) than patients without chronic liver disease. Prognostication of short-term mortality is important in order to identify patients at highest risk of death. None of the currently available prognostic models have been widely accepted for use in cirrhotic patients in the ICU, perhaps due to complexity of calculation, or lack of universal variables readily available for these patients.

Research motivation
We believe a simple and widely applicable survival model can be developed, to guide therapeutic decision-making and contribute to cost-effective healthcare resource utilization.

Research objectives

To identify clinical and laboratory markers universally available at the time of ICU admission that best identify the likelihood of transplant-free survival in critically ill patients with cirrhosis.

Research methods

A new predictive model (the LIV-4 score) was developed retrospectively using logistic regression analysis from a large cohort of critically ill patients with cirrhosis admitted to a quaternary care liver transplant center ICU and was prospectively validated in a cohort of patients admitted to the same institution.

Research results

Our validated model for predicting mortality in cirrhotic patients on admission to the ICU performs better than previously published liver and ICU-specific scores.

Research conclusions

LIV-4 could become a standard clinical tool for patients with advanced liver disease in the ICU and could be used as a means of stratifying critically ill cirrhotic patients in clinical research studies.

Research perspectives

Survival modeling is an important tool for therapeutic decision-making as well as for research study design. The LIV-4 score was designed and validated prospectively in a single-center cohort. External, prospective validation is needed to determine widespread applicability and utility of the model.

REFERENCES

1. Moreau R, Jalan R, Gines P, Pavesi M, Angeli P, Cordoba J, Durand F, Gustot T, Saliba F, Domenicali M, Gerbes A, Wendon J, Alessandria C, Laleman W, Zeuzem S, Trebicka J, Bernardi M, Arroyo V. CANONIC Study Investigators of the EASL–CLIF Consortium. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. *Gastroenterology* 2013; 144: 1426-1437, 1437.e1-1437.e9 [PMID: 23474284 DOI: 10.1053/j.gastro.2013.02.042]

2. O’Brien AJ, Welch CA, Singer M, Harrison DA. Prevalence and outcome of cirrhosis patients admitted to UK intensive care: a comparison against dialysis-dependent chronic renal failure patients. *Intensive Care Med* 2012; 38: 991-1000 [PMID: 22456768 DOI: 10.1007/s00134-012-2523-2]

3. Nadim MK, Durand F, Kellum JA, Levitsky J, O’Leary JG, Karvellas CJ, Bajaj JS, Davenport A, Jalan R, Angeli P, Caldwell SH, Fernández J, Francoz C, Garcia-Tsao G, Ginès P, Ison MG, Kramer DJ, Mehta RL, Moreau R, Mulligan D, Olson JC, Pomfret EA, Senzolo M, Steinman RH, Subramanian RM, Vincent JL, Genyk YS. Management of the critically ill patient with cirrhosis: A multidisciplinary perspective. *J Hepatol* 2016; 64: 717-735 [PMID: 26519602 DOI: 10.1016/j.jhep.2015.10.019]

4. Arroyo V, Moreau R, Jalan R, Ginès P; EASL-CLIF Consortium. Acute-on-chronic liver failure: A new syndrome that will re-classify cirrhosis. *J Hepatol* 2015; 62: S131-S143 [PMID: 25920082 DOI: 10.1016/j.jhep.2014.11.045]

5. Arroyo V, Moreau R, Kamath PS, Jalan R, Ginès P, Nevens F, Fernández J, To U, García-Tsao G, Schnabl B. Acute-on-chronic liver failure in cirrhosis. *Nat Rev Dis Primers* 2016; 2: 16041 [PMID: 27277335 DOI: 10.1038/nrdp.2016.41]

6. Jalan R, Saliba F, Pavesi M, Amoros A, Moreau R, Ginès P, Levesque E, Durand F, Angeli P, Caraceni P, Hopf C, Alessandria C, Rodriguez E, Soita-Mulilo P, Laleman W, Trebicka J, Zeuzem S, Gustot T, Mookerjee R, Elkrief L, Soriano G, Cordoba J, Morando F, Gerbes A, Agarwal B, Samuel D, Bernardi M, Arroyo V; CANONIC study investigators of the EASL-CLIF Consortium. Development and validation of a prognostic score to predict mortality in patients with acute-on-chronic liver failure. *J Hepatol* 2014; 61: 1038-1047 [PMID: 24950482 DOI: 10.1016/j.jhep.2014.06.012]

7. Jalan R, Gines P, Olson JC, Mookerjee RP, Moreau R, Garcia-Tsao G, Arroyo V, Kamath PS. Acute-on-chronic liver failure. *J Hepatol* 2012; 57: 1336-1348 [PMID: 22750750 DOI: 10.1016/j.jhep.2012.06.026]

8. Olson JC, Wendon JA, Kramer DJ, Arroyo V, Jalan R, Garcia-Tsao G, Kamath PS. Intensive care of the patient with cirrhosis. *Hepatology* 2011; 54: 1864-1872 [PMID: 21894777 DOI: 10.1002/hep.24622]

9. Vincent JL, de Mendonça A, Cantraine F, Moreno R, Takala J, Suter PM, Sprung CL, Colardyn F, Vincent JL, Carayon P. The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. *Crit Care Med* 1990; 18: 191-195 [PMID: 2150726 DOI: 10.1097/00003246-199010000-00037]

10. Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG, Sirio CA, Murphy DJ, Loerting T, Damiano A. The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. *Crit Care Med* 1991; 19: 1052-1077 [PMID: 1883704 DOI: 10.1097/00003246-199111000-00056]

11. Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. *JAMA* 1993; 270: 2597-2603 [PMID: 8254858 DOI: 10.1001/jama.1993.03480100087002]

12. Pugh RN, Murray-Lyon IM, Dawson JL, Pietrini MC, Williams R. Transection of the oesophagus for bleeding oesophageal varices. *Br J Surg* 1973; 60: 646-649 [PMID: 4541913 DOI: 10.1002/bjs.1800600817]

13. Wiessler R, Edwards F, Freeman R, Harper A, Kim R, Kamath P, Kremers W, Lake J, Howard T, Merion RM, Wolfe RA, Krom R; United Network for Organ Sharing Liver Disease Severity Score Committee.
Predicting survival in critically ill cirrhotics

Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology 2003; 124: 91-96 [PMID: 12512033 DOI: 10.1053/gast.2003.50016]

Kamath PS, Kim WR; Advanced Liver Disease Study Group. The model for end-stage liver disease (MELD). Hepatology 2007; 45: 797-805 [PMID: 17326206 DOI: 10.1002/hep.21561]

Kim WR, Biggins SW, Kremers WK, Wiensier RH, Kamath PS, Benson JT, Edwards E, Therneau TM. Hypotension and mortality among patients on the liver-transplant waiting list. N Engl J Med 2008; 359: 1018-1026 [PMID: 18768945 DOI: 10.1056/NEJMoai801209]

Leise MD, Kim WR, Kremers WK, Larson JJ, Benson JT, Therneau TM. A revised model for end-stage liver disease optimizes prediction of mortality among patients awaiting liver transplantation. Gastroenterology 2011; 140: 1952-1960 [PMID: 21343348 DOI: 10.1053/j.gastro.2011.02.017]

Chen YC, Tian YC, Liu NJ, Ho YP, Yang C, Chu YY, Chen PC, Fang JT, Hsu CW, Yang CW, Tsai MH. Prospective cohort study comparing sequential organ failure assessment and acute physiology, age, chronic health evaluation III scoring systems for hospital mortality prediction in critically ill cirrhotic patients. Int J Clin Pract 2006; 60: 160-166 [PMID: 16451287 DOI: 10.1111/j.1479-1641.2005.00515.x]

Cholongitas E, Senzolo M, Patch D, Kwong K, Nikolopoulos V, Leandro G, Shaw S, Burroughs AK. Risk factors, sequential organ failure assessment and model for end-stage liver disease scores for predicting short term mortality in cirrhotic patients admitted to intensive care unit. Aliment Pharmacol Ther 2006; 23: 883-893 [PMID: 16573793 DOI: 10.1111/j.1365-2036.2006.02842.x]

Theocharidou E, Pieri G, Mohammad AO, Cheung M, Cholongitas E, Agarwal B, Burroughs AK. The Royal Free Hospital score: a calibrated prognostic model for patients with cirrhosis admitted to intensive care unit. Comparison with current models and CLIF-SOFA score. Am J Gastroenterol 2014; 109: 554-562 [PMID: 24497255 DOI: 10.1038/ajg.2013.466]

Filoux B, Chagneau-Derode C, Ragot S, Voulouhy J, Beauchant M, Silvain C, Robert R. Short-term and long-term vital outcomes of cirrhotic patients admitted to an intensive care unit. Eur J Gastroenterol Hepatol 2010; 22: 1474-1480 [PMID: 21389797 DOI: 10.1097/MEG.0b013e32834059c6]

Juneja D, Gopal PB, Kapoor D, Raya R, Sathyannarayanan M, Malhotra P. Outcome of patients with liver cirrhosis admitted to a specialty liver intensive care unit in India. J Crit Care 2009; 24: 387-393 [PMID: 19327335 DOI: 10.1016/j.jcrc.2008.12.011]

Singh N, Gayowski T, Wagener MM, Marino IR. Outcome of patients with cirrhosis requiring intensive care unit support: prospective assessment of predictors of mortality. J Gastroenterol Hepatol 1998; 33: 73-79 [PMID: 9497225 DOI: 10.1078/0053-5004.00047]

Tsai MH, Peng YS, Lien JM, Weng HH, Ho YP, Yang C, Chu YY, Chen YC, Fang JT, Chiu CT, Chen PC. Multiple organ system failure in critically ill cirrhotic patients. A comparison of two multiple organ dysfunction/failure scoring systems. Digestion 2004; 69: 190-200 [PMID: 15178929 DOI: 10.1159/000078789]

Wehler M, Kokoska J, Reulbach U, Hahn EG, Strauss R. Short-term prognosis in critically ill patients with cirrhosis assessed by prognostic scoring systems. Hepatology 2001; 34: 255-261 [PMID: 11481609 DOI: 10.1053/hep.2001.26522]

Zimmerman JE, Wagner DP, Benefit MG, Becker RB, Sun X, Knaus WA. Intensive care unit admissions with cirrhosis: risk-stratifying patient groups and predicting individual survival. Hepatology 1996; 23: 1393-1401 [PMID: 8675136 DOI: 10.1002/hep.510230615]

Campbell J, McPeake J, Shaw M, Paxty A, Forrest E, Soulsby C, Emerson P, Thomson SJ, Rahman TM, Quasim T, Kinsella J. Validation and analysis of prognostic scoring systems for critically ill patients with cirrhosis admitted to ICU. Crit Care 2015; 19: 364 [PMID: 26462911 DOI: 10.1186/s13054-015-1070-y]

Zauner C, Schneeweis B, Schneider B, Madl C, Klos H, Kranz A, Ratheiser K, Kramer L, Lenz K. Short-term prognosis in critically ill patients with liver cirrhosis: an evaluation of a new scoring system. Eur J Gastroenterol Hepatol 2000; 12: 517-522 [PMID: 10833094 DOI: 10.1034/j.1571-3199.2000.00007.x]

Fang JT, Tsai MH, Tian YC, Jenq CC, Lin CY, Chen YC, Lien JM, Chen PC, Yang CW. Outcome predictors and new score of critically ill cirrhotic patients with acute renal failure. Nephrol Dial Transplant 2008; 23: 1961-1969 [PMID: 18174949 DOI: 10.1093/ndt/gfm491]

Harrell FE, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of medical tests. JAMA 1982; 247: 2543-2546 [PMID: 7069920 DOI: 10.1001/jama.1982.03320430074030]

DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988; 44: 837-845 [PMID: 3203132 DOI: 10.2307/2531595]

Youden WJ. Index for rating diagnostic tests. Cancer 1950; 3: 32-35 [PMID: 15405670 DOI: 10.1002/1097-0142(1950)3:1<32:aid-cncr2820050106.3.0.co;2-3]

Bajaj JS, O'Leary JG, Reddy KR, Wong F, Biggins SW, Patton H, Fallon MB, Garcia-Tsao G, Maliaikali B, Malik R, Subramanian RM, Thacker LR, Kamath PS; North American Consortium For The Study Of End-Stage Liver Disease (NACSELD). Survival in infection-related acute-on-chronic liver failure is defined by extrahepatic organ failures. Hepatology 2014; 60: 250-256 [PMID: 24677131 DOI: 10.1002/hep.27077]

Bajaj JS, O'Leary JG, Reddy KR, Wong F, Olson JC, Subramanian RM, Brown G, Noble NA, Thacker LR, Kamath PS; NACSELD. Second infections independently increase mortality in hospitalized patients with cirrhosis: the North American consortium for the study of end-stage liver disease (NACSELD) experience. Hepatology 2012; 56: 2328-2335 [PMID: 22806618 DOI: 10.1002/hep.25947]

Clária J, Stauber RE, Coenraad MJ, Moreau R, Jalan R, Pavesi M, Amorós Á, Titoes E, Alcaraz-Quiles J, Oetli K, Morales-Ruíz M, Angeli P, Domenicali M, Alessandria C, Giebbers A, Wendon J, Neves F, Trelibick J, Laleman W, Saliba F, Welzel TM, Albillès A, Gustot T, Benter D, Durand F, Ginès P, Bernardi M, Arroyo V; CANONIC Study Investigators of the EASL-CLIF Consortium and the European Foundation for the Study of Chronic Liver Failure (EF-CLIF). Systemic inflammation in decompensated cirrhosis: Characterization and role in acute-on-chronic liver failure. Hepatology 2016; 64: 1249-1264 [PMID: 27483394 DOI: 10.1002/hep.27840]

Fernández J, Escorral A, Zabalza M, Felipe V, Navasa M, Mas A, Lacy AM, Ginès P, Arroyo V. Adrenal insufficiency in patients with cirrhosis and septic shock: Effect of treatment with hydrocortisone on survival. Hepatology 2006; 44: 1288-1295 [PMID: 17058239 DOI: 10.1002/hep.21352]

Tas A, Akbal E, Beyazit Y, Kokac E. Serum lactate level predict mortality in elderly patients with cirrhosis. Wien Klin Wochenschr 2012; 124: 520-525 [PMID: 22810566 DOI: 10.1007/s00508-012-0208-z]

Funk GC, Doheer D, Kneidinger N, Lindner G, Holzinger U, Schneeweis B. Acid-base disturbances in
critically ill patients with cirrhosis. Liver Int 2007; 27: 901-909 [PMID: 17696928 DOI: 10.1111/j.1478-3231.2007.01510.x]

38 Cholangitas E, O’Beirne J, Betrossian A, Senzolo M, Shaw S, Patch D, Burroughs AK. Prognostic impact of lactate in acute liver failure. Liver Transpl 2008; 14: 121-2; author reply 123 [PMID: 18161767 DOI: 10.1002/lt.21383]

39 Sterling SA, Puskarich MA, Jones AE. The effect of liver disease on lactate normalization in severe sepsis and septic shock: a cohort study. Clin Exp Emerg Med 2015; 2: 197-202 [PMID: 27752398 DOI: 10.15441/ceem.15.025]
