Central Hepatectomy Using the Hilar Approach for Removal of Tumors in the Paracaval Portion of the Caudate Lobe

Harufumi Maki1, Yoshihiro Sakamoto2, Hiroji Shinkawa3, Yusuke Kazami1, Junichi Arita1, Nobuhisa Akamatsu1, Junichi Kaneko3, Norihiro Kokudo4 and Kiyoshi Hasegawa1

Corresponding author:
Kiyoshi Hasegawa, MD
7-3-1 Hongo, Bunkyo-ku, Tokyo
Japan 113-8655
Tel: +81-3-3815-5411
Fax: +81-3-5854-3989
E-mail: kihase-tky@umin.ac.jp

ABSTRACT

Safe hepatectomy for the paracaval portion of the caudate lobe is technically demanding. We propose central hepatectomy using the hilar approach for resection of the paracaval portion. The right liver with the caudate lobe was totally mobilized from the inferior vena cava. Central hepatectomy with or without middle hepatic vein (MHV) resection was performed by dividing the right anterior and left medial sections vertically toward the inferior vena cava. The bilateral Glissonian pedicles were widely exposed (hilar approach), and the liver parenchyma including the paracaval portion of the liver was removed with a good surgical view. This procedure was performed in four patients with hepatocellular carcinoma, one patient with intrahepatic cholangiocarcinoma, and one patient with colorectal liver metastasis. Combined resection of the MHV was performed in four patients, and removal of the tumor thrombus in the bile duct was performed in one patient. The median operation time was 439 minutes, and the median blood loss was 800 ml. The resected liver parenchyma was 12.0% (range, 4.7%–39.5%) of the total liver volume. No patients developed postoperative liver failure. Central hepatectomy using the hilar approach is a safe, parenchyma-preserving surgical procedure for removal of tumors located in the paracaval portion.

Key words: central hepatectomy, hilar approach, caudate lobe, paracaval tumor, parenchyma-preserving hepatectomy

INTRODUCTION

The caudate lobe is located deep within the liver and surrounded by the three major hepatic veins, the inferior vena cava (IVC), and the hepatic hilum (1,2). The caudate lobe of the liver consists of three portions: the Spiegel lobe, the caudate process, and the paracaval portion (3,4). Among the three portions of the caudate lobe, resection of tumors in the paracaval portion is most challenging. Resection of hepatocellular carcinoma (HCC) in the paracaval portion is reportedly associated with a longer operation time, larger blood loss
volume, and smaller surgical margins than resection in other sites within the caudate lobe (5). Resection of the paracaval portion can be performed in combination with other resection techniques such as extended hemihepatectomy (6) or posterior sectionectomy in patients with enough functional reserve (7). However, isolated caudate lobectomy using a high dorsal approach (8) or anterior transhepatic approach (9) is required in patients with impaired liver function reserve, and the liver parenchyma should be preserved as much as possible to prevent postoperative liver failure. Although the high dorsal approach is ultimately an isolated caudate lobectomy procedure, it is technically demanding because of the strictly limited surgical field. The transhepatic approach is also a parenchyma-preserving alternative, but removal of tumors invading the middle hepatic vein (MHV) is difficult, and some ischemic or congested areas remain.

Therefore, we propose central hepatectomy using the hilar approach as a useful and safe alternative for removal of tumors located in the paracaval portion of the liver with a good surgical field.

CASE REPORTS

Central hepatectomy using the hilar approach was performed in six patients: four with HCCs in segment 1 [one of these patients had HCC with a bile duct tumor thrombus (BDTT) via the anterior bile duct (Patient #2)], one patient with intrahepatic cholangiocarcinoma, and one patient with multiple colorectal liver metastases in segments 4, 5, and 8 and the paracaval portion. The patients' characteristics are shown on table 1. We calculated the future liver remnant from the preoperative computed tomography images using three-dimensional simulation software (Synapse Vincent; Fujifilm, Tokyo, Japan) (10). The surgical indication was determined based on our resection criteria as represented by the indocyanine green retention rate at 15 min (11).

SURGICAL PROCEDURE

An inverted L-shaped skin incision was used to perform the laparotomy. In Patient #3, a thoracotomy was added at the ninth intercostal space because a sufficient surgical field was not obtained. The location of the tumor was confirmed by intraoperative ultrasonography. First, the right liver with the caudate lobe was totally mobilized from the IVC by ligating and dividing the short hepatic veins. The right hepatic vein (RHV) was taped as a landmark during liver transection. The IVC was also taped to control bleeding during resection of the liver parenchyma, if necessary. Second, liver transection lines were designed to remove the central part of the liver, including the paracaval portion. The left-side line was designed along the falciform ligament in case of combined resection of the MHV or Spiegel lobe. In contrast, the left-side line might course along the MHV if required according to the tumor location (fig. 1 a–d). To determine the right-side line, indigocarmine solution with indocyanine green was injected into the portal branch of the right anterior section or the ventral branch of segment 8, and the stained area was marked with electrocautery (12,13) (fig. 2 a,b). To determine the right-sided border of the liver, a hilar incision was performed after the ties were cut, and the liver was transected along that line. The liver was removed in fragments. If necessary, additional maneuvers were performed to achieve the desired surgical margin.

No.	Age	Diagnosis	Tumor size (cm)	ICG-R15 (%)	Procedure of central hepatectomy	Op time (min)	Blood loss (mL)	Transfusion	*Resected liver volume (mL) / (TLV)	Morbidity	Hospital stay (days)	Outcome
1	80's	HCC	2.5	9.9	S4+S8vent+PC+SP with MHV resection	442	110	no	220 (25.7%)	None	14	No recurrence, alive (4y4m)
2	60's	HCC	22.8	7.6	Partial S8+S7vent+SP with T-tube drainage	420	1100	no	63 (6.8%)	Bile leakage	33	No recurrence, alive (3y1m)
3	70's	HCC	17	17	S4+S8vent+PC with MHV resection	715	3380	no	67 (4.7%)	Abdomen	19	Liver recurrence, alive (1y1m)
4	80's	HCC	15.8	7.2	S8vent+PC	343	1115	yes	39 (5.2%)	Pulmonary effusion	13	No recurrence, alive (1y11m)
5	60's	ICC	7.0	15.7	S4/S5/6+SP with MHV resection	435	500	no	359 (39.5%)	Abdominal abscess	25	Liver recurrence, alive (1y5m)
6	30's	CRLM	9.5	9.5	Partial S4/S5/6+PC with MHV resection	477	450	no	143 (17.2%)	None	14	Pelvis, liver recurrence, alive (3y0m)

F, female; M, male; HCC, hepatocellular carcinoma; BDTT, bile duct tumor thrombus; ICC, intrahepatic cholangiocarcinoma; CRLM, colorectal liver metastasis; ICG-R15, indocyanine green retention rate at 15 min; vent, ventral area; PC, paracaval portion; SP, Spiegel lobe; MHV, middle hepatic vein; CP, caudate processs; TLV, total non-cancerous liver volume; LN, lymph node

*Resected liver volume = ‘Resected volume of the specimen’ – ‘Tumor volume calculated by CT volumetry’
Central Hepatectomy Using the Hilar Approach for Removal of Tumors in the Paracaval Portion of the Caudate Lobe

Surgery, Gastroenterology and Oncology, 24 (4), 2019

paracaval portion, the paracaval branch was punctured when possible (fig. 2c,d). Third, liver transection was started on the right side, dividing the portal branches associated with right anterior section or dividing the right anterior fissure, exposing the wall of the RHV. Liver transection was performed using the clamp–crush technique under the Pringle maneuver. The left hand of the operator was placed behind the right liver and in front of the IVC, pushing up and controlling the venous backflow from the RHV. The parenchyma belonging to the paracaval portion was easily divided with guidance provided by the left hand between the right liver and IVC or using the landmark of the taped RHV (fig. 3a,b). The caudate branches originating from the hilar plate were meticulously ligated and divided, allowing dissection of the caudate lobe off the hilar plate (fig. 4a,b). During these maneuvers, the bilateral Glissonian pedicles were taped and the hilar plate was widely exposed (hilar approach). Next, the left side of the liver was transected by dividing the portal pedicles supplying the left medial section (segment 4) toward the root of the MHV. Arantius’ ligament was divided, but removal of the Spiegel lobe was required in selected cases. Finally, the MHV was divided and the central liver with the caudate lobe was extracted. The stump of the MHV was sutured continuously. The cut surfaces after central hepatectomy and the resected specimen are shown in fig. 5.

RESULTS

The surgical outcomes of all six patients (three men, three women) are summarized in table 1. The patients’ median age was 71 years (range, 34–83 years). The median tumor size was 2.8 cm. The median indocyanine green retention rate at 15 min was 12.8%. Combined resection with the MHV was performed in four patients, and the MHV was preserved in two patients. The median operation time was 439 min, and the median blood loss volume was 800 mL. The median occlusion time during the Pringle maneuver was 118 min (range, 60–143 min). The median resected volume
was 12.0% (range, 4.7%–39.5%) of the total liver. No patients developed postoperative liver failure.

DISCUSSIONS

We modified the isolated caudate lobectomy procedure using an anterior approach and described central hepatectomy using the hilar approach,
Central Hepatectomy Using the Hilar Approach for Removal of Tumors in the Paracaval Portion of the Caudate Lobe

especially for removal of tumors located in the paracaval portion of the liver with preservation of the greatest amount of liver parenchyma possible. This technique has two main differences from the anterior approach: all or part of the anterior section and left medial section are sacrificed in a square shape, and the MHV is divided if necessary to obtain a good surgical field, especially behind the MHV.

Central hepatectomy using the hilar approach can maintain a good balance between establishment of a favorable surgical field and preservation of the remnant liver function. Longitudinal and straight transection lines can ensure technical ease and a good surgical field. Additionally, our case series included one patient (Patient #3) whose tumor was >10 cm in size and another patient (Patient #2) who underwent bile duct-preserving surgery for HCC with BDTT (14). By taping the bilateral Glissonian pedicles, the tumor was safely detached from the right Glissonian pedicle and the BDTT was removed from the right hepatic duct. Shindoh et al. (15) reported a similar technique for central hepatectomy. They resected the central segments systematically (S8+S5 ventral area and S4), which required removal of 30% of the liver parenchyma. In contrast, the resected liver volume in our study was only 12% of the total liver volume, which could be indicated in patients with worse functional liver reserve. The transection line to the hepatic hilum can thus be chosen according to the patient’s liver function (fig. 1, table 1).
The first key to this approach is complete mobilization of the caudate lobe from the IVC and insertion of the left hand behind the right liver during transection of the right anterior section. This provides the surgeon with a good surgical view and makes it easy to control the venous bleeding from the hepatic veins by lifting the left hand. If the adhesions are too severe to mobilize the caudate lobe because of repeated liver resections, transelective enucleation may be a feasible option (16). The second key is to approach the hilar plate. That is, the bilateral Glissonian pedicles are taped and the hilar plate is widely exposed. The portal pedicles branching from the hilar plate can then be confidently ligated and divided. The perihilar Glissonian approach, also called “the taping game,” is another effective method to achieve taping of the hilar plate (17). This approach was originally proposed by Takasaki et al. (18) and can enable taping of the hilar plate before liver transection (19). However, this Glissonian approach is not recommended when the paracaval tumor is suspected to invade the hepatic hilum or be accompanied by a tumor thrombus, as in Patient #2 of the present series.

The paracaval portion reaches the diaphragmatic surface in almost half of patients based on anatomical studies using casts (1,2,20) and three-dimensional computed tomography scans (21). Therefore, it would be reasonable to open the diaphragmatic surface of the right liver to completely remove the paracaval portion. Higaki et al. (7) reported the feasibility of combined resection of the paracaval portion together with segment 8, especially when the tumor is located beyond the caval portion. In the present study, the dorsal part of the segment 8 was preserved in 5 of 6 patients (83%). Surgeons can approach the paracaval portion even if they do not completely remove segment 8. Mesohepatectomy is another option for removal of tumors located at both the central bifurcations (22-24). However, these previous mesohepatectomy procedures were rarely intended to remove tumors in the paracaval portion (25). Another possible procedure for paracaval tumors is the “liver tunnel” method (26,27), by which the tumor is hollowed through the liver parenchyma overlaying the paracaval portion. However, the surgical field becomes deep and restricted by the surrounding liver parenchyma overlaying the hepatic hilum. Tani et al. (28) reported resections of deeply located tumors in combination with adjacent segments, such as segment 6, 7, or 8, to preserve the liver parenchyma. This approach is very effective when the tumor does not invade the major hepatic veins or hepatic hilum. Our central hepatectomy technique using the hilar approach is widely applicable among patients with centrally located tumors, even those that invade the MHV or hepatic hilum, and even in patients with poor functional reserve when a good surgical field is established by opening the central area of the liver using the pivot of the hepatic hilum.

Another issue regarding this procedure is the right-sided transection line of the paracaval portion. The right-sided boundary of the paracaval portion is not easy to confirm (29). However, three-dimensional imaging software recently revealed that a small branch from the RHV can be a landmark for the right-sided transection line in about half of patients (21).

CONCLUSIONS

Central hepatectomy using the hilar approach is a safe surgical procedure for paracaval tumors. Even for tumors that require MHV resection or tumor thrombectomy, our procedure can provide an adequately wide surgical view.

Conflict of Interest

The authors declare no conflict of interest.

Sources of Financial Support

There is no financial support on this study.

Informed Consent

Informed consent was obtained from all participants to be included in the study.

REFERENCES

1. Healey JE Jr, Schroy PC. Anatomy of the biliary ducts within the human liver; analysis of the prevailing pattern of branchings and the major variations of the biliary ducts. AMA Arch Surg 1953; 66(5):599-616.
2. Couinaud C, Delmas A, Patel J. Le Foie: Etudes Anatomiques et Chirurgicales. Paris: Masson & Cie; 1957.
3. Kumon M. Anatomy of the caudate lobe with special reference to portal venous and biliary branches using corrosion liver casts and clinical application. Liver Cancer 2017;6(2):161-70.
4. Sakamoto Y, Nara S, Hata S, Yamamoto Y, Esaki M, Shimada K, et al. Prognosis of patients undergoing heptectomy for solitary hepatocellular carcinoma originating in the caudate lobe. Surgery 2011;150(5):699-67.
5. Hawkins WG, DeMatteo RP, Cohen MS, Jarnagin WR, Fong Y, D’Angelica M, et al. Caudate hepatectomy for cancer: a single institution experience with 150 patients. J Am Coll Surg 2005; 200(3):345-52.
7. Higaki T, Takayama T, Midorikawa Y. Ventral approach for resecting hepatocellular carcinoma in the caval portion of the caudate lobe. Surgery 2018;163(6):1245-9.
8. Takayama T, Tanaka T, Higaki T, Katou K, Teshima Y, Makucuchi M. High dorsal resection of the liver. J Coll Surg 1994;179(1):72-5.
9. Yamamoto J, Kosuge T, Shimada K, Yamasaki S, Takayama T, Makucuchi M. Anterior transhepatic approach for isolated resection of the caudate lobe of the liver. World J Surg 1999;23(1):97-101.
10. Mise Y, Hasegawa K, Satou S, Shindoh J, Miki K, Akamatsu N, et al. How has virtual hepatectomy changed the practice of liver surgery? Experience of 1194 virtual hepatectomy before liver resection and living donor liver transplantation. Ann Surg 2017;268(1):127-33.
11. Imamura H, Seyama Y, Kokudo N, Maema A, Sugawara Y, Sano K, et al. One thousand fifty-six hepatectomies without mortality in 8 years. Arch Surg 2003;138(11):1198-206; discussion 1206.
12. Makucuchi M, Hasegawa H, Yamasaki S. Ultrasonically guided sub-segmentectomy. Surg Gynecol Obstet 1985;161(4):346-50.
13. Inoue Y, Arita J, Sakamoto T, Ono Y, Takahashi M, Takahashi Y, et al. Anatomical liver resections guided by 3-dimensional parenchymal staining using fusion indocyanine green fluorescence imaging. Ann Surg 2015;262(1):105-11.
14. Yamamoto S, Hasegawa K, Inoue Y, Shindoh J, Aoki T, Sakamoto Y, et al. Bile duct preserving surgery for hepatocellular carcinoma with bile duct tumor thrombus. Ann Surg 2015;261(3):e123-5.
15. Shindoh J, Nishioka Y, Hashimoto M. Bilateral anatomic resection of the ventral parts of the paramedian sectors of the liver with total caudate lobectomy for deeply/centrally located liver tumors: a new technique maximizing both oncological and surgical safety. J Hepatobiliary Pancreat Sci 2017;24(12):E10-6.
16. Ishizawa T, Hasegawa K, Ikeda M, Aoki T, Sano K, Imamura H, et al. Transhepatic approach for a small paracaval tumor in repeat resection. Dig Surg 2007;24(6):409-12.
17. Figueroa R, Laurenzi A, Laurent A, Cherqui D. Perihilar Glissonian approach for anatomical parenchymal sparing liver resections: technical aspects: the taping game. Ann Surg 2018;267(3):537-43.
18. Takasaki K, Kobayashi S, Tanaka S, Saito A, Yamamoto M, Hanyu F. Highly anatomically systematized hepatic resection with Glissonian sheath code transection at the hepatic hilus. Int Surg 1990;75(2):73-7.
19. Yamamoto M, Takasaki K, Ohtsubo T, Katsuragawa H, Fukuda C, Katagiri S. Effectiveness of systematized hepatectomy with Glisson’s pedicle transection at the hepatic hilus for small nodular hepatocellular carcinoma: retrospective analysis. Surgery 2001;130(3):443-8.
20. Kwon D, Murakami G, Hata F, Wang HJ, Chung MS, Hirata K. Location of the ventral margin of the paracaval portion of the caudate lobe of the human liver with special reference to the configuration of hepatic portal vein branches. Clin Anat 2002;15(8):387-401.
21. Malek H, Sakamoto Y, Kusaguchi Y, Akamatsu N, Kaneko J, Arito J, et al. Anatomical boundary between the caudate lobe of the liver and adjacent segments based on three-dimensional analysis for precise resections. J Gastrointest Surg 2018;22(10):1709-14.
22. McBride CM, Wallace S. Cancer of the right lobe of the liver: a variety of operative procedures. Arch Surg 1972;105(2):289-96.
23. Hasegawa H, Makucuchi M, Yamasaki S, Gunvén P. Central bisegmentectomy of the liver: experience in 16 patients. World J Surg 1989;13(6):786-90.
24. Mehrabi A, Mood ZA, Roshanai N, Fonouni H, Müller SA, Schmied BM, et al. Mesohepatectomy as an option for the treatment of central liver tumors. J Am Coll Surg 2008;207(4):499-509.
25. Ishii H, Ogino S, Ikemoto K, Toma A, Nakamura K, Itoh T, et al. Mesohepatectomy with total caudate lobectomy of the liver for hepatocellular carcinoma. World J Surg Oncol 2013;11:82.
26. Torzilli G, Palmasino A, Procopio F, Cimino M, Botea F, Donadon M, et al. A new systematic small for size resection for liver tumors invading the middle hepatic vein at its caval confluence: mini-mesohepatectomy. Ann Surg 2010;251(1):33-9.
27. Torzilli G, Cimino M, Procopio F, Costa G, Donadon M, Del Fabbro D, et al. Conservative hepatectomy for tumors involving the middle hepatic vein and segment 1: the liver tunnel. Ann Surg Oncol 2014;21(8):2699.
28. Tani K, Ishizawa T, Sakamoto Y, Hasegawa K, Kokudo N. Surgical approach to “right hepatic core”: deepest region surrounded by major portal pedicles and right hepatic vein. Dig Surg 2018;35(4):350-8.
29. Kitagawa S, Murakami G, Hata F, Hirata K. Configuration of the right portion of the caudate lobe with special reference to identification of its right margin. Clin Anat 2000;13(5):321-40.