Synthesis and antibacterial activity evaluation of novel rhodanine based amide derivatives

Mehrasa Tarahomi1, Robabeh Baharfar* and Mojtaba Mohseni2

1Department of Chemistry, University of Mazandaran, Babolsar, Iran
2Department of Microbiology, Faculty of Sciences, University of Mazandaran, Babolsar, Iran

Abstract

A novel series of rhodanine based amide derivatives have been prepared through multi-component reaction of rhodanine-N-acetic acid with aromatic aldehydes and alkyl isocyanides in the presence of aniline. The products were isolated in 85-95% yields by easy workup procedure. The synthesized compounds have also been evaluated for their antibacterial effects against four pathogenic bacteria, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis. On the basis of the obtained results, some compounds showed moderate growth inhibitory effect against all tested bacteria.

Introduction

A major dispute of modern chemistry is the plan of new chemical reaction successions that supply novel compounds in high yields. Multicomponent reactions (MCRs) [1] have become precious tools for the synthesis of highly functionalized organic molecules and pharmacologically important heterocyclic compounds because of their convergence, simplicity and synthetic efficiency, atom economy, and other suitable characteristics from the point of view of green chemistry [2]. MCRs are quicker and cheaper than conventional reactions, since they are performed by mixing compounds together in one pot, without separating any intermediate. Isocyanide-based MCRs (IMCRs) are especially important, because they are more diverse and flexible than other MCRs [3,4]. Amides are an incredibly vital group of organic compounds with a variety of functions. Some derivatives of amides reveal biological properties such as vermifuge [5], antihistamine [6], fungicide and antibacterial [7,8]. The conventional approach for the synthesis of amides is the reaction of carboxylic acids with amines at high temperature. Because of carboxylic acid’s low activity, several synthesis of amides is the reaction of carboxylic acids with amines at high temperature. Because of carboxylic acid’s low activity, several procedures for their activation have been reported in the literature [9]. Negative aspects of these procedures consist of modest yields, by-products, costly coupling reagents and difficulty in removal of surplus reagents. Consequently, the growth of a new and uncomplicated synthetic procedure for the preparation of amides has become an interesting challenge.

On the other hand, rhodanine (2-thioxothiazolidin-4-one) as a privileged scaffold is found in a variety of biologically active compounds especially with antiviral [10], antibacterial [11], antifungal [12], antitubercular [13], anticancer [14], anticonvulsant [15], and hypnotic activities [16]. Therefore, following our interest in isocyanide-based reactions and our studies towards the development of new directions for the synthesis of novel organic compounds with biological activities [17-19], we herein report the multi-component reaction of aromatic aldehydes 1 with aniline 2, rhodanine-N-acetic acid 3 and isocyanides 4 in THF as a suitable procedure affording rhodanine-based amides 5 in good yields (Figure 1). The synthesized amides were also screened for their antibacterial activity by the disc diffusion method.

Figure 1. Multi-component reaction of rhodanine-N-acetic acid with aromatic aldehydes and alkyl isocyanides in the presence of aniline

Experimental

General information

All chemicals and reagents were purchased from Merck (Darmstadt, Germany) or Aldrich (Missouri, United States), and used without purification. Melting points were measured on an Electrothermal 9100 (Staffordshire, United Kingdom) apparatus. 1H and 13C NMR spectra were recorded on a Bruker DRX-400 AVANCE (Massachusetts, United States) spectrometer at 400.13 and 100.61 MHz, respectively. Chemical shifts are given in parts per million (δ) relative to internal tetramethylsilane standard and coupling constants (J) are reported in hertz (Hz). IR spectra were recorded on a Bruker Tensor 27 (Massachusetts, United States) spectrometer. Mass spectra were determined on a Finnigan-Matt 8430 (Waltham, United States) mass spectrometer operating at an ionization potential of 70 eV. Elemental analyses were carried on a Perkin-Elmer 2400II CHNS/O Elemental Analyzer (Massachusetts, United States).

General procedure for the synthesis of compounds (5a-5j)

A mixture of aromatic aldehydes 1 (1 mmol), aniline 2 (0.1 mL, 1 mmol), rhodanine-N-acetic acid 3 (0.2 g, 1 mmol) and alkyl isocyanides

*Correspondence to: Robabeh Baharfar, Department of Microbiology, Faculty of Sciences, University of Mazandaran, Babolsar, Iran, E-mail: baharfar@umz.ac.ir

Key words: rhodanine, alkyl isocyanides, aniline, multi-component reaction, antibacterial activity

Received: June 21, 2019; Accepted: July 08, 2019; Published: July 10, 2019
from the standardized cultures of the test organisms then spread as uniformly as possible throughout the entire media. Sterile paper discs (6 mm diameter, Padtan, Iran) were impregnated with 20 µL of the compound solution then allowed to dry. The impregnated disc was introduced on the upper layer of the seeded agar plate and incubated at 37°C for 24 hours. The antibacterial activities of the synthesized compounds were compared with known antibiotic gentamicin (10 µg/disc) and chloramphenicol (30 µg/disc) as positive control and DMSO (20 µL/disc) as negative control. Antibacterial activity was evaluated by measuring the diameter of inhibition zone (mm) on the surface of plates and the results were reported as Mean ± SD after three repeats.

Results and discussion

The desired product 5a, confirmed by NMR and Mass spectra, was obtained in 90% yield (Figure 1) [22]. To illustrate the role of aniline, the reaction was checked in the absence of aniline. Interestingly, this reaction miscarried under reflux conditions, even after 24 h, and starting materials were recovered. Additionally, the three-component reaction of benzilidenerhodanine-N-acetic acid (1.0 mmol), benzaldehyde (1.0 mmol) and tert-butyl isocyanide (1.0 mmol) without aniline showed no progress in boiling THF even after long reaction time. Obviously, these results prove that aniline is a vital component for this reaction.

Afterward the effect of solvent on this reaction was screened. The 4 (1 mmol) in 5.0 mL THF was stirred at 25 °C for the definite time period. After completion of the reaction, checked by TLC, the solvent was removed under reduced pressure to provide desired product. The structures of products 5a-j were determined on the basis of their elemental analysis, 1H and 13C NMR, IR and mass spectra.

General procedure for evaluation of antibacterial activity

The in vitro biocidal screening, antibacterial activities of the synthesized 2-(5-arylidene-4-oxo-2-thioxothiazolidin-3-yl)-N-alkylacetamide derivatives 5a-j was assayed using Kirby–Bauer disc diffusion method where a filter disc was impregnated with the compounds and placed on the surface of inoculated agar plates [20]. The synthesized compounds were dissolved into DMSO to achieve 20 mg mL⁻¹ solution then filter sterilized using a 0.22 m Ministart (Sartorius).

The antibacterial activity of the compounds was investigated against four bacterial species. Test organisms included *Escherichia coli* PTCC 1330, *Pseudomonas aeruginosa* PTCC 1074, *Staphylococcus aureus* ATCC 35923 and *Bacillus subtilis* PTCC 102 [21]. Late exponential phase of the bacteria was prepared by inoculating 1% (v/v) of the cultures into the fresh Muller-Hinton broth (Merck) and incubating on an orbital shaker at 37°C and 100 rpm overnight. Before using the cultures, they were standardized with a final cell density of approximately 10⁸ cfu mL⁻¹. Muller-Hinton agar (Merck) were prepared and inoculated

Entry	Solvent	Temp/°C	Time/h	Yield/%b
1	THF	25	13	90
2	1,4-Dioxane	25	46	25
3	CH₃Cl₂	25	40	20
4	EtOH	25	48	5
5	H₂O	25	48	5
6	THF	70	13	91c

*bReaction conditions: benzaldehyde (1 mmol), aniline (1 mmol), rhodanine-N-acetic acid (1 mmol), tert-butylisocyanide (1 mmol); *cYields refer to isolated products; *benzaldehyde (2 mmol)

![Figure 2. Proposed mechanism for the synthesis of rhodanine-based amides 5](image-url)
R¹	R²	Product	M.p. (°C)	Time (h)	Yield (%)
1	H	tert-Butyl	225-227	13	90
2	4-NO₂	tert-Butyl	250-252	12	95
3	4-CN	Cyclohexyl	240-242	12	95
4	2-Cl	tert-Butyl	215-218	12.5	90
5	4-Cl	tert-Butyl	249-251	12.5	95
6	2-Br	tert-Butyl	230-232	12	90
7	H	Cyclohexyl	247-250	13	90
8	2-MeO	tert-Butyl	262-264	14	85
9	4-MeO	Cyclohexyl	250-252	14	85
10	2-furyl	tert-Butyl	205-208	12	90

Table 2. Synthesis of rhodanine-based amides 5

aReaction and conditions: aldehydes (1 mmol), aniline (1 mmol), rhodanine-N-acetic acid (1 mmol), isocyanides (1mmol), THF (5 mL), room temperature, stirring; b Yields refer to isolated products.
The antibacterial activity of synthesized compounds 5a-5j was evaluated against gram positive (S. aureus and B. subtilis) and gram negative bacteria (E. coli and P. aeruginosa) by the disc diffusion method; the results are illustrated in table 3. In addition, the finding towards inhibition of microorganisms was compared with that of positive controls, gentamicin and chloramphenicol, and DMSO as a negative control. As presented in the table 3, compounds 5a, 5e, 5f and 5j exhibited moderate growth inhibitory effect against all tested bacteria, whereas compound 5i showed no activity. Compounds 5b, 5c and 5h displayed good activity against Gram positive bacteria while these compounds remained inactive against two Gram-negative bacteria. Moreover, compound 5d showed good activity against all bacteria except B. subtilis. In general, the antibacterial activities of these compounds tended to be more potent against Gram-positive species than Gram-negative bacteria, which can be related to the variation in their cell wall structure.

Conclusions

In summary, we have reported an efficient approach for the synthesis of rhodanine-based amides via multi-component reaction of aromatic aldehydes, rhodanine-N-acetic acid and alkyl isocyanides in the presence of aniline in THF at ambient temperature. The advantages of the present procedure include good functional group tolerance, high yields of products, simple operation, and absence of any tedious workup or purification. On the basis of the obtained results from antibacterial test, compounds 5a, 5c, 5f and 5j showed moderate growth inhibitory effect against all tested bacteria. Among compounds, 5b exhibited the most antibacterial activity against S. aureus.

Acknowledgements

We gratefully acknowledge financial support from the Research Council of Mazandaran University.

Supplementary data

Electronic Supplementary Material associated with this article can be found in the online version of this paper.

References

1. Baharifar R, Azimi R, Asdollahpour Z (2018) Efficient microwave-assisted diastereoselective synthesis of indole-based 4, 5-dihydropyrazines via a one-pot, three-component reaction in water. Environmental chemistry letters 2018: 1-6.
2. Cioc RC, Ruijter E, Orru RV (2014) Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chemistry. 16: 2958-2975.
3. Akbarzadeh R, Amanpour T, Khavasi HR, Bazgir A (2014) Atom-economical isocyanide-based multicomponent synthesis of 2, 5-disubstituted imidazoles, spirobenzothiazolizocromans and 1, 5-benzothiazepines. Tetrahedron 70: 169-175.
4. Giustanino M, Pelliccia S, Novellino E, Anton GC (2018) Non-hydrolytic chemoselective cleavage of Ugi tertiary amides: A mild access to N-substituted α-amino acid amides. Tetrahedron letters 59: 1196-1199.
5. Kaur G, Vadeekel A, Harjai K, Singh V (2015) Synthesis of α-acetylamino-amidobis (indolyl) methane heterocycles by sequential one pot condensation-Ugi/Passerini reactions and their antimicrobial evaluation. Tetrahedron letters 56: 4443-4450.
6. Battaglia S, Boldrini E, Da Settimo F, Donzio G, La Motta C, et al. (1999) Indole amide derivatives: synthesis, structure-activity relationships and molecular modelling studies of a new series of histamine H1-receptor antagonists. European journal of medicinal chemistry 34: 93-105.

Table 3. Antibacterial activity of the compounds 5a-5j using Kirby-Bauer technique (zone of growth inhibition, mm)

Compound	E. coli/mm	P. aeruginosa/mm	S. aureus/mm	B. subtilis/mm
5a	8.5 ± 0.7	8.5 ± 0.7	12.5 ± 0.7	10.5 ± 0.7
5b	NE	NE	NE	NE
5c	10.5 ± 0.7	10.0 ± 1.4	15.5 ± 0.7	10.5 ± 0.7
5d	11.5 ± 0.7	11.0 ± 0.0	10.5 ± 0.7	12.5 ± 0.7
5e	10.0 ± 1.4	9.0 ± 1.4	14.5 ± 0.7	15.0 ± 1.4
5f	10.0 ± 1.4	9.5 ± 0.7	12.5 ± 0.7	NE
5g	11.5 ± 0.7	11.0 ± 0.0	10.5 ± 0.7	12.5 ± 0.7
5h	NE	NE	NE	NE
5i	9.5 ± 0.7	9.5 ± 0.7	12.5 ± 0.7	14.5 ± 0.7
5j	10.5 ± 0.7	10.0 ± 1.4	15.5 ± 0.7	10.5 ± 0.7

*Concentration of compounds 5a-5j: 20 mg mL⁻¹; **No effect.
1. Greger H, Zechnner G, Hofer O, Hadacek F, Wurz G (1993) Sulphur-containing amides from Glycosmis species with different antifungal activity. *Phytochemistry* 34: 175-179.
2. Beck B, Hess S, Dömling A (2010) One-pot synthesis and biological evaluation of aspergillamides and analogues. *Bioorganic & medicinal chemistry letters* 10: 1701-1715.
3. Al-Zoubi RM, Marion O, Hall DG (2008) Direct and waste-free amidations and cycloadditions by organocatalytic activation of carboxylic acids at room temperature. *Angewandte Chemie International Edition* 47: 2876-2879.
4. Talele TT, Arora P, Kulkami SS, Patel MR, Singh S, et al. (2010) Structure-based virtual screening, synthesis and SAR of novel inhibitors of hepatitis C virus NS5B polymerase. *Bioorganic & medicinal chemistry* 18: 4630-4638.
5. Miao J, Zheng C-J, Sun L-P, Song M-X, Xu L-L, Piao H-R (2013) Synthesis and potential antibacterial activity of new rhodanine-3-acetic acid derivatives. *Medicinal Chemistry Research* 22: 4125-4132.
6. Chaubah K, Sharma M, Singh P, Kumar V, Shukla PK, et al. (2012) Discovery of a new class of dithiocarbamates and rhodanine scaffolds as potent antifungal agents: synthesis, biology and molecular docking. *MedChemComun* 3: 1104-1110.
7. Babaoglu K, Page MA, Jones VC, McNeil MR, Dong C, et al. (2003) Novel inhibitors of an emerging target in *Mycobacterium tuberculosis*: substituted thiazolidinones as inhibitors of dTDP-rhamnose synthesis. *Bioorganic & medicinal chemistry letters* 13: 3227-3230.
8. Min G, Lee S-K, Kim H-N, Han Y-M, Lee R-H, et al. (2013) Rhodanine-based PRL-3 inhibitors blocked the migration and invasion of metastatic cancer cells. *Bioorganic & medicinal chemistry letters* (13): 3769-3774.
9. Dwivedi C, Gupta T, Parmar SS (1972) Substituted thiazolidones as anticonvulsants. *Journal of medicinal chemistry* 15: 553-554.
10. Shafi N, Khooobi M, Amini M, Saktetman A, Nadri H, et al. (2015) Synthesis and biological evaluation of 5-benzylidenehydantoin-3-acetic acid derivatives as AChE and 15-LOX inhibitors. *Journal of enzyme inhibition and medicinal chemistry* 30: 389-395.
11. Baharfar R, Shariati N (2014) Solvent-free Synthesis of Novel Benzothiazole-substituted 4-Thiazolidinones Using Nano Silica-bonded 5-n-Propyl-octahydro-pyrimidin [1, 2-a] azepinium Chloride as Catalyst. *Australian Journal of Chemistry* 67: 1646-1655.
12. Baharfar R, Asghari S, Rassi S, Mohseni M (2015) Synthesis and evaluation of novel isatin and 5-isatinylidenehydantoin-based furan derivatives as antibacterial agents. *Research on Chemical Intermediates* 41: 6975-6984.
13. Baharfar R, Azimi R, Barzegar S, Mohseni M (2015) Efficient Synthesis of Rhodanine-Based Amides via Passerini Reaction using Tetramethylguanidined-Functionalized Silica Nanoparticles as Reusable Catalyst. *Journal of the Brazilian Chemical Society* 26: 1396-1404.
14. Malaquin S, Jida M, Gesquiere J-C, Deprez-Poulain R, Deprez B, et al. (2010) Ugi reaction for the synthesis of 4-aminopiperidine-4-carboxylic acid derivatives. Application to the synthesis of carfentanil and remifentanil. *Tetrahedron Letters* 51: 2983-2985.
15. Shaahani A, Soleimani E, Rezayan AH (2007) A novel approach for the synthesis of aryl amides. *Tetrahedron letters* 48: 6137-6141.

Copyright: ©2019 Tarahomi M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.