FURTHER RIGID TRIPLES OF CLASSES IN G_2

MATTHEW CONDER AND ALASTAIR LITTERICK

Abstract. We establish the existence of two rigid triples of conjugacy classes in the algebraic group G_2 in characteristic 5, extending results of the second author with Liebeck and Marion. As a corollary, the finite groups $G_2(5^n)$ are not $(2, 4, 5)$-generated; this reproves a case of a conjecture of Marion.

1. Introduction

Let G be a connected simple algebraic group over an algebraically closed field K, and let C_1, \ldots, C_s be conjugacy classes of G. Following [16], we say the s-tuple $C = (C_1, \ldots, C_s)$ is rigid in G if the set

$$C_0 \overset{\text{def}}{=} \{(x_1, \ldots, x_s) \in C_1 \times \ldots \times C_s : x_1x_2 \ldots x_s = 1\}$$

is non-empty and forms a single orbit under the action of G by simultaneous conjugation.

Some well-known examples of rigid tuples of classes in simple algebraic groups are the Belyi triples and Thompson tuples, defined in [18]. Other rigid triples are known, see for instance [2, 3, 5, 9, 17]. Rigid tuples of classes are interesting in the context of the inverse Galois problem [12], and also arise naturally in the theory of ordinary differential equations [7].

Recall that a group is (a, b, c)-generated if it is generated by elements x, y and z, of respective orders a, b and c, such that $xyz = 1$. The group is then called an (a, b, c)-group, and the triple (x, y, z) is called an (a, b, c)-triple of the group. The theory of (a, b, c)-generation of finite groups has close connections to rigidity, for instance it is a basic observation that given a rigid tuple C of classes of G, all subgroups $\langle x_1, \ldots, x_s \rangle$ for $(x_1, \ldots, x_s) \in C_0$ are conjugate in G, so that there is at most one $r > 0$ such that the finite subgroup $G(5^r)$ is generated by elements in such an s-tuple.

Let $K = \bar{\mathbb{F}}_5$ be the algebraic closure of the field of five elements. In [8] it is shown that the simple algebraic group $G = G_2(K)$ has a rigid triple of conjugacy classes of elements of orders 2, 5 and 5, and any triple of elements (x_1, x_2, x_3) in the corresponding set C_0 generates a copy of A_5. This is then used to show that none of the groups $G_2(5^n)$, $SL_3(5^n)$ or $SU_3(5^n)$ is a $(2, 5, 5)$-group.

Here we produce two further rigid triples of classes in $G = G_2(K)$, closely related to the triple above. Recall from [1] that G has a unique class of involutions, with representative t, say, and $C_G(t) = A_1 \bar{A}_1$ is a central product of two subgroups $SL_2(K)$, where A_1 (resp. \bar{A}_1) is generated by a long (resp. short) root subgroup of G. There also exist two classes of elements of order 4, with representatives s_1 and s_2, such that $C_G(s_1) = A_1 T'$ and $C_G(s_2) = \bar{A}_1 T''$, where T' and T'' are 1-dimensional tori. Finally, recall from [8] that G has three classes of unipotent elements of order 5: the long and short root elements, and the class labelled $G_2(a_1)$,
with representative \(u = x_\beta(1)x_{3\alpha+\beta}(1) \), where \(\alpha \) (resp. \(\beta \)) is the short (resp. long) simple root of \(G \). From [11] Table 22.1.5, the centraliser \(C_G(u) = U_4.\text{Sym}_3 \), where \(U_4 \) is a 4-dimensional connected unipotent group.

Theorem 1.

(i) The triples of classes \(C = (t^G, s^G_t, u^G) \) and \(D = (t^G, s^G_2, u^G) \) are rigid in \(G = G_2(K) \).

(ii) Every triple of elements in \(C_0 \) or \(D_0 \) generates a subgroup isomorphic to the symmetric group \(\text{Sym}_5 \).

(iii) None of the groups \(G_2(5^n) \) are a \((2, 4, 5)\)-group for any \(n \). Neither are the groups \(\text{SL}_3(5^n) \) or \(\text{SU}_3(5^n) \).

Remarks.

(1) Each subgroup \(\text{Sym}_5 \) in part (ii) here contains a subgroup \(\text{Alt}_5 \) arising from [9] Theorem 1(ii)].

(2) Keeping track of details in the proof in [9] shows that \(G_2(K) \) has a unique class of subgroups \(\text{Alt}_5 \). These subgroups have centraliser \(\text{Sym}_3 \), and by Lang’s theorem these split into three classes in \(G_2(5^r) \), with centraliser orders 6, 3 and 2. Similarly, if \(S \) and \(S' \) are representatives of the two subgroup classes in part (ii) here, then \(C_G(S) \cong \text{Sym}_5 \), while \(C_G(S') \) is cyclic of order 2. It follows that the class of \(S \) (resp. \(S' \)) splits into 3 (resp. 2) classes of subgroups in \(G_2(5^r) \), with centralisers of order 6, 3, 2 (resp. 2 and 2).

(3) A conjecture of Marion [14] states that, for a simple algebraic group \(G \) in characteristic \(p \), if \(\delta_i \) denotes the dimension of the variety of elements of \(G \) of order \(i \) and if \(\delta_a + \delta_b + \delta_c = 2 \dim(G) \), then at most finitely many of the finite groups \(G(p^r) \) are \((a, b, c)\)-groups. For \(G = G_2 \), this criterion holds precisely when \((a, b, c) = (2, 4, 5) \) or \((2, 5, 5) \). Hence part (iii), together with [9] Theorem 1(iii)], verifies the conjecture for \(G = G_2 \) in characteristic 5. An alternative proof of this fact is given in [6] Proposition 3.7(i)], where it is shown that every \((2, 4, 5)\)-subgroup and \((2, 5, 5)\)-subgroup of \(G_2(K) \) is reducible on the natural 7-dimensional module, by considering the dimensions of \(\text{SL}_7(K) \)-conjugacy classes of elements in the relevant \((a, b, c)\)-triples.

2. **Proof of the Theorem**

We proceed in the manner of [9]. Let \(G = G_2(K) \) and \(t, u, s_1, s_2 \in G \) as above. If \(\sigma \) is a Frobenius morphism of \(G \) induced from the field map \(x \mapsto x^5 \) of \(K \), then

\[
G = \bigcup_{n=1}^{\infty} G_\sigma^n = \bigcup_{n=1}^{\infty} G_2(5^n).
\]

The element \(u = x_\beta(1)x_{3\alpha+\beta}(1) \) is a regular unipotent element in a subgroup \(A_2 = \text{SL}_3(K) \) of \(G \) generated by long root groups, and therefore lies in a subgroup \(\Omega_3(5) \cong \text{Alt}_5 \) of \(G \), which we denote by \(A \). Now, let \(S = N_{A_2}(A) = \text{SO}_4(5) \cong \text{Sym}_5 \). Following the proof given in [9] we find that \(N_G(A) = S \times C_G(A) \) and \(C_G(A) = \langle z, \tau \rangle \cong \text{Sym}_3 \), where \(\langle z \rangle \) is the centre of \(A_2 \) and \(\tau \) is an outer involution in \(N_G(A_2) = A_2.2 \). Note that \(C_{A_2}(\tau) = SO_3(K) \), so \(\tau \in C_G(S) \).

Let \(v \) be an involution in \(S \setminus A \), so that \(S = \langle A, v \rangle \), and define \(S' = \langle A, v\tau \rangle \), so that \(S' \cong \text{Sym}_5 \) also. Then \(C_G(S), C_G(S') \leq C_G(A) = \langle z, \tau \rangle \) and therefore

(1) \(C_G(S) = \langle z, \tau \rangle \),

(2) \(C_G(S') = \langle \tau \rangle \).

In particular \(S \) and \(S' \) are not conjugate in \(G \).
Next consider the set of $(2, 4, 5)$-triples of Sym_5. It is straightforward to show that there are exactly 120 such triples, and that Sym_5 acts transitively on these by simultaneous conjugation.

Now let $C = \langle C^G, s^G_1, u^G \rangle$ and $D = \langle C \cap G_2(q)^3, D(q) = D \cap G_2(q)^3 \rangle$. We now show that $|C(q)| = |D(q)| = |G_2(q)|$. For this we require the character table of $G_2(q)$, given in [1] and available in the CHEVIE [4] computational package. Since $C_G(u)/C_G(u)^5 = S_3$, an application of Lang’s theorem [13, Theorem 21.11] shows that $u^G \cap G_2(q)$ splits into three classes, with representatives denoted in [11] by u_3, u_4 and u_5, and respective centraliser orders $6q^4, 3q^4$ and $2q^4$. For $x, y, z \in G_2(q)$ let a_{xyz} be the corresponding class algebra constant. Calculations with the character table show that

$$a_{tsu_{ij}} = \begin{cases} q^4 & \text{if } i = 1, j \in \{3, 4, 5\} \text{ or } i = 2, j = 4, \\ 3q^4 & \text{if } i = 2, j = 3, \\ 0 & \text{if } i = 2, j = 5. \end{cases}$$

and it follows that

$$|C(q)| = \sum_{j=4}^5 |u_j^{G_2(q)}| a_{tsu_{ij}} = |G_2(q)| \left(\frac{q^4}{6q^4} + \frac{q^4}{3q^4} + \frac{q^4}{2q^4} \right) = |G_2(q)|,$$

$$|D(q)| = \sum_{j=4}^5 |u_j^{G_2(q)}| a_{tsu_{ij}} = |G_2(q)| \left(\frac{3q^4}{6q^4} + \frac{q^4}{2q^4} \right) = |G_2(q)|.$$

Now let E denote (resp. E') denote the set of triples $(x_1, x_2, x_3) \in C_0 \cup D_0$ which generate a conjugate of S (resp. a conjugate of S'). Then G is transitive on both E and E', since if $(x_1, x_2, x_3) = (y_1, y_2, y_3)^g$ are each isomorphic to Sym_5, then (x^g_1, x^g_2, x^g_3) and (y_1, y_2, y_3) are $(2, 4, 5)$-triples in a fixed copy of Sym_5, hence conjugate in Sym_5 by the observation above. Moreover both E and E' are non-empty, since S and S' each contain $(2, 4, 5)$-triples and a unique conjugacy class of unipotent elements, whose elements are conjugate to an element of A and therefore are conjugate to u. By [1] and [2] the stabiliser of a point in E is isomorphic to Sym_3, and the stabiliser of a point in E' is cyclic of order 2. Hence applying Lang’s theorem shows that $E(q) = E \cap G_2(q)^3$ splits into three $G_2(q)$-orbits, of orders $|G_2(q)/r|$ for $r = 2, 3, 6$, and similarly $E'(q) = E' \cap G_2(q)^3$ splits into two orbits, each of order $|G_2(q)|/2$. Therefore

$$|E(q)| + |E'(q)| = |G_2(q)| \left(\frac{1}{6} + \frac{1}{3} + \frac{1}{2} + \frac{1}{2} \right) = |C(q)| + |D(q)|$$

and it follows that $C(q) \cup D(q) = E(q) \cup E'(q)$ for each q. Therefore

$$C \cup D = \bigcup_{n=1}^{\infty} C(5^n) \cup D(5^n) = \bigcup_{n=1}^{\infty} E(5^n) \cup E'(5^n) = E \cup E'$$

Hence G has exactly two orbits on $C \cup D$. A triple in C cannot lie in the same orbit as a triple in D since the corresponding elements of order 4 are not G-conjugate, and it follows that the two G-orbits are C and D.

This proves parts (i) and (ii) of the Theorem. For part (iii), suppose that $G_2(5^n)$, $SL_3(5^n)$ or $SU_3(5^n)$ is a $(2, 4, 5)$-group, with corresponding set of generators x_1, x_2, x_3. Since $L(G_2) \downarrow A_2$ is a direct sum of $L(A_2)$ and two 3-dimensional irreducible A_2-modules (cf. [10 Table 8.5]), it follows that $C_{L(G_2)}(x_1, x_2, x_3) = 0$. An application of a result of Scott [15] to the module $L(G)$, as in the proof of [16, Corollary 3.2], then yields

$$\dim(x_1^{G}) + \dim(x_2^{G}) + \dim(x_3^{G}) \geq 2 \dim(G) = 28,$$

implying $(x_1^{G}, x_2^{G}, x_3^{G}) = C$ or D, which contradicts part (ii) of the Theorem. \qed
References

1. Bomshik Chang and Rimhak Ree, *The characters of $G_2(q)$*, Symposia Mathematica, Vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972), Academic Press, London, 1974, pp. 395–413. MR 0364419 (51 #673)

2. Michael Dettweiler and Stefan Reiter, *On rigid tuples in linear groups of odd dimension*, J. Algebra 222 (1999), no. 2, 550–560. MR 1734290 (2000m:12007)

3. W. Feit and P. Wong, *Rational rigidity of $G_2(p)$ for any prime $p > 5$*, Proceedings of the Rutgers group theory year, 1983–1984 (New Brunswick, N.J., 1983–1984), Cambridge Univ. Press, Cambridge, 1985, pp. 323–326. MR 817266 (87e:12006)

4. Meinolf Geck, Gerhard Hiss, Frank Lübeck, and Götz Pfeiffer, *CHEVIE—a system for computing and processing generic character tables*, Appl. Algebra Engrg. Comm. Comput. 7 (1996), no. 3, 175–210. MR 1486215 (99m:20017)

5. Robert Guralnick and Gunter Malle, *Rational rigidity for $E_8(p)$*, Compos. Math. 150 (2014), no. 10, 1679–1702. MR 3269463

6. Sebastian Jambor, Alastair Litterick, and Claude Marion, *On finite simple images of triangle groups*, To appear in Israel Journal of Mathematics.

7. Nicholas M. Katz, *Rigid local systems*, Annals of Mathematics Studies, vol. 139, Princeton University Press, Princeton, NJ, 1996. MR 1366651 (97e:14027)

8. R. Lawther, *Jordan block sizes of unipotent elements in exceptional algebraic groups*, Comm. Algebra 23 (1995), no. 11, 4125–4156. MR 1351124

9. Martin W. Liebeck, Alastair J. Litterick, and Claude Marion, *A rigid triple of conjugacy classes in G_2*, J. Group Theory 14 (2011), no. 1, 31–35. MR 2764920 (2011m:20115)

10. Martin W. Liebeck and Gary M. Seitz, *Reductive subgroups of exceptional algebraic groups*, Mem. Amer. Math. Soc. 121 (1996), no. 580, vi+111. MR 1329942 (96i:20059)

11. Gunter Malle, *Unipotent and nilpotent classes in simple algebraic groups and Lie algebras*, Mathematical Surveys and Monographs, vol. 180, American Mathematical Society, Providence, RI, 2012. MR 2883501

12. Gunter Malle and B. Heinrich Matzat, *Inverse Galois theory*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1999. MR 1711577 (2000e:12004)

13. Gunter Malle and Donna Testerman, *Linear algebraic groups and finite groups of Lie type*, Cambridge Studies in Advanced Mathematics, vol. 133, Cambridge University Press, Cambridge, 2011. MR 2850737 (2012j:20058)

14. Claude Marion, *On triangle generation of finite groups of Lie type*, J. Group Theory 13 (2010), no. 5, 619–648. MR 2720195 (2011i:20031)

15. Leonard L. Scott, *Matrices and cohomology*, Ann. of Math. (2) 105 (1977), no. 3, 473–492. MR 0447434 (56 #5746)

16. Karl Strambach and Helmut Völklein, *On linearly rigid tuples*, J. Reine Angew. Math. 510 (1999), 57–62. MR 1696090 (2000e:20075)

17. J. G. Thompson, *Rational rigidity of $G_2(5)$*, Proceedings of the Rutgers group theory year, 1983–1984 (New Brunswick, N.J., 1983–1984), Cambridge Univ. Press, Cambridge, 1985, pp. 321–322. MR 817265 (87e:12006a)

18. Helmut Völklein, *Rigid generators of classical groups*, Math. Ann. 311 (1998), no. 3, 421–438. MR 1637911 (99g:12005)

M.J. Conder, Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WB, United Kingdom

E-mail address: mjc271@cam.ac.uk

A.J. Litterick, Fakultät für Mathematik, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany and Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany

E-mail address: ajlitterick@gmail.com