Abstract

In clinical research, the lack of events of interest often necessitates imbalanced learning. One approach to resolve this obstacle is data integration or sharing, but due to privacy concerns neither is practical. Therefore, there is an increasing demand for a platform on which an analysis can be performed in a federated environment while maintaining privacy. However, it is quite challenging to develop a federated learning algorithm that can address both privacy-preserving and class imbalanced issues. In this study, we introduce a federated generative model learning platform for generating samples in a data-distributed environment while preserving privacy. We specifically propose approximate Bayesian computation-based Gaussians Mixture Model called ‘Federated ABC-GMM’, which can oversample data in a minor class by estimating the posterior distribution of model parameters across institutions in a privacy-preserving manner. PhysioNet2012, a dataset for prediction of mortality of patients in an Intensive Care Unit (ICU), was used to verify the performance of the proposed method. Experimental results show that our method boosts classification performance in terms of F1 score up to nearly an ideal situation. It is believed that the proposed method can be a novel alternative to solving class imbalance problems.

Keywords: federated learning; privacy; imbalanced learning; approximate Bayesian computation; Gaussian Mixture Model

1. Introduction

In the era of data abundance, the development of powerful machine learning algorithms has been contributing to richer analyses on many fields, thereby creating value conducive to humankind at an explosive rate [1]. This has created an impact on various areas including a clinical field, where supporting decision making of clinicians and discovering useful knowledge is now viable thanks to data and analytics [2, 3]. Especially, electronic health records (EHRs) has established in the clinical field, and their frequency of the usage has also been increasing [4]. EHRs are organized collection of data on patient’s health information in a digital format. EHRs cover most of events that may occur in a clinical process; medication history, prescriptions, diagnostic reports, lab tests, and images such as CT and X-ray, and vital sign are included [5]. The advent of EHRs, has enabled high quality care for patients based on data analysis, and thus medical practices, which previously relied heavily on the knowledge of physicians or clinical experts, have been slanted toward an evidence-based approach, mining values from data [6].

However, still many challenges exist in the clinical field, which make data analysis difficult. Examples include data privacy issues such as leakage from malicious attacks [7], distributed data across multiple institutions (i.e. hospitals) [8] for some reasons, e.g. patient’s hospital movement, and imbalanced data arising from the lack of events [9, 10]. These aforementioned problems are frequently encountered in clinical data analysis, and a few studies have been actively conducted with the focus on each of them [11-14].

Most of the data generated and collected in hospitals often contain patient’s personal information. Therefore, de-identification is essential for the use of data. Nonetheless, when non-identified data is shared between different sources, a risk of privacy leakage still exists [16]. For these reasons, most hospitals are reluctant to share data with each other. However, it is inevitable to pool horizontally distributed data when it is required to do an analysis on rare events or cases like predicting occurrence of rare diseases. In fact, an aggregation of the horizontally distributed data in one place can be realized after going through formalities
like receiving an approval of institutional review board, and data usage agreement. However, this process is time-consuming and not robust to privacy attack, albeit de-identification [15]. Therefore, federated learning frameworks are being offered as a promising solution to do analysis on distributed data, not explicitly sharing or transferring data to other places [17].

Federated learning frameworks are mainly divided into two categories for vertically and horizontally distributed data. The former one is a case where samples are overlapped, but in different feature spaces. The latter one is sample-based federated learning, of which participants have data with the same feature space (Yang et al., 2019); this study is based on this setting. One typical method for a specific predictive model’s learning in such an environment is to exchange the encrypted gradient update at the central server (CS) [18]. For more rigorous federated learning, techniques such as differential privacy [19, 54] and homomorphic encryption [20, 46] can be applied.

It is considered as an imbalanced dataset if heterogeneity exists in the distributions between classes. A problem of learning data mining algorithms on an imbalanced dataset is defined as imbalanced learning (He and Garcia, 2009), and this problematic situation comes from various settings. In clinical data analysis, there are often class imbalanced issues due to the data from less frequent or rarely collected classes (e.g. rare diseases such as Crohn’s disease), which can lead to poor classification performance. Many approaches have been being suggested to resolve the issue: sampling methods (oversampling [22-24]/undersampling [25-26]), cost-sensitive method [27], kernel-based methods [28], and a combination of these [29,30]. Among these, the One typical way of resolving this problem is to use oversampling techniques (i.e. synthesizing minor samples). Oversampling based on adjacent sample distance (SMOTE [22], ADASYN [23]), or fitting a generative model such as a Gaussian Mixture Model (GMM) [31], Generative Adversarial Networks (GAN) [32] on the distribution of the minor samples for generating new plausible samples are often alleviating the imbalanced issue [33]. The generative model is then utilized to complement lack of data in a minor class. Those augmentation methods sometimes remedy a classifier to have better generalization power of discriminating different distributions of heterogeneous classes [34, 35].

This study proposes a novel federated learning framework that facilitates the Bayesian estimation of posterior distribution of a set of parameters of a generative model (particularly GMM in this study) to alleviate problems of imbalanced and horizontally distributed data. Such a process can be done by indirectly reflecting information of data in separate locations while protecting privacy information, not sharing data. The proposed method will be applied and validated on real data.

2. Preliminaries

2.1. Approximate Bayesian Computation (ABC)

ABC is one of the representative methods of likelihood-free inference and a Bayesian parameter estimation method utilized in the situation where the likelihood of the model is intractable or even not defined [36]. This estimation method only requires a parametrized generative model so that data simulation is feasible when a set of parameters is given [37].

2.1.1. ABC Rejection Sampling

One of the simplest ABC parameter estimation methods is ABC rejection sampling [38].

Algorithm ABC Rejection Sampling

Input
- \(x \) : observed data,
- \(S(\cdot) \) : appropriate summary statistic,
- \(p(\theta) \) : prior distribution(s) of parameter(s) \(\theta \),
- \(\epsilon \) : discrepancy measure,
- \(L \) : maximum number of accepted parameters.

Output
- \(p_x(\theta|S(x)) \) : a posterior distribution of the (set of) parameter(s) \(\theta \)

\[
\begin{align*}
\text{params} &= 0 \\
\text{while} \ (#\text{params} < L) & \text{ do} \\
&\text{Simulate (set of) parameter(s) } \theta^* \\
&\text{from the prior distribution } \theta^* \sim p(\theta) \\
&\text{Generate data } x^* \sim p(x|\theta^*) \\
&\text{Compute } S(x^*) \\
&\text{if } ||S(x^*) - S(x)|| < \epsilon \text{ then} \\
&\text{Store } \theta^* \\
&\text{#params} += 1 \\
\end{align*}
\]

Generated samples are from
\[
p_x(\theta|S(x)) \propto \int_x p(x|\theta^*) p(\theta^*) I_{X_{\epsilon x}}(x^*) \, dx^*
\]

where
\[
X_{\epsilon x}(x^*) = \{ x^* \in X \mid ||S(x^*) - S(x)|| < \epsilon \}.
\]

2.1.2. Summary Statistics
Definition) When $S(\cdot)$ is a summary statistic for model parameter θ, it is guaranteed that the approximated posterior distribution is equivalent to the posterior distribution estimated from the original data [37].

$$p_\pi(\theta|x) = p_\pi(\theta|x)$$

This trait emphasizes the importance of choosing the appropriate summary statistic of the data.

2.1.3. Discrepancy Metric

The discrepancy metric $||\cdot||$ is usually Euclidean distance when the summary statistic yields sufficiently small dimension, however, for high-dimensional data, using the Euclidean cannot guarantee to give a good result. Instead, using different discrepancy(distance) metrics such as Interquartile range, Kullback-Leibler (KL) divergence [39], or aggregating different distance measures [37] can be an alternative so that the effect of one distorted measure be mitigated by others works well.

2.1.4. Threshold

Finally, selection of the appropriate threshold value ϵ is essential to make ABC rejection sampling converge in distribution:

$$\lim_{\epsilon \to 0} p_\pi(\theta|x) = p(\theta|x), \lim_{\epsilon \to 0} p_\pi(\theta|x) = p(\theta)$$

For an arbitrarily large threshold, the algorithm learns nothing from the data, whereas a tiny threshold may require almost infinite computation time [37].

In summary, ABC enables to estimate the the posterior distribution for a parameter without defining an explicit likelihood, and the posterior distribution obtained by ABC is for the set of parameter values whose simulated data most closely match the observed data.

2.2. GMM

A GMM, is a parametrized probabilistic function for estimating an unknown arbitrary probability density, assuming that all data points are from the finite mixture of Gaussian distributions. In other words, the unknown density function can be represented as the weighted sum of Gaussian components.

Suppose we have an input matrix $X \in \mathbb{R}^{N \times D}$, which row and column correspond to a sample vector x_i, $i = 1, \ldots, N$ and a feature vector x_p, $p = 1, \ldots, D$, respectively, and the input data are from the mixture of K Gaussian distributions. A GMM typically consists of three parameters, $\theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$; π_k is the responsibility value that indicates the probability that the input data belong to the k-th latent cluster; the latent cluster can be modeled by a latent random variable z, of which distribution is parameterized by π. The input data assigned in any latent cluster k follow the normal distribution with mean μ_k (centered value of each latent cluster) and covariance Σ_k (modeling the variance and co-variance of data in a specific latent cluster). Then, the density of input data through the GMM is estimated as:

$$p(x) = \sum_{z} p(z)p(x|z) = \sum_{k=1}^K \pi_k N(x|\mu_k, \Sigma_k)$$

where

$$p(z) = \prod_{k=1}^K \pi_k z_k, p(x|z) = \prod_{k=1}^K N(x|\mu_k, \Sigma_k)^{z_k}$$

$$z_k \in \{0, 1\}, \sum_{k} z_k = 1, 0 \leq \pi_k \leq 1, \sum_{k} \pi_k = 1, \quad p(z_k = 1) = \pi_k.$$

All parameters can be estimated by the expectation maximization (EM) algorithm [40]. However, in Bayesian estimation, it is necessary to define the suitable prior distribution of each parameter [41].

For $\pi = \{\pi_k | \pi_k \in \mathbb{R}, k = 1, \ldots, K\}$, a proper prior distribution is known as a Dirichlet distribution, where $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_K)$. When K is determined, the prior distribution of π, regards K as the number of categories; $\pi \sim \text{Dir}(\pi|\alpha)$.

Next, for $\mu = \{\mu_k | \mu_k \in \mathbb{R}^{D \times 1}, k = 1, \ldots, K\}$, $\Sigma = \{\Sigma_k | \Sigma_k \in \mathbb{R}^{D \times D}, k = 1, \ldots, K\}$ their prior distributions are intertwined, so-called Normal-Inverse-Wishart distribution. At first, a covariance matrix Σ_k is sampled from Inverse-Wishart prior distribution, parametrized by a scale matrix $\Psi \in \mathbb{R}^{D \times D}$ which should be positive definite, and a degree of freedom, $v > D - 1$, $\Sigma_k \sim \mathcal{W}^{-1}(\Sigma_k|v, \Psi)$.

Then, using the sampled covariance matrix Σ, the prior distribution of μ, a multivariate-normal distribution, becomes available: with another parameter, a location vector $m \in \mathbb{R}^D$, and a positive real number κ: $\mu \sim \mathcal{N}\left(\mu|m, \frac{1}{\kappa} \Sigma\right)$.

In summary, the prior distribution of each parameter is as follows:

$$\pi \sim \text{Dir}(\pi|\alpha)$$

$$(\mu, \Sigma) \sim \text{NIW}(\mu, \Sigma|v, \Psi, m, \kappa)$$
\[
\mathcal{N} \left(\mu | m, \frac{1}{\kappa} \Sigma \right) W^{-1}(v, \Psi).
\]

The graphical expression of Bayesian GMM is shown in Figure 1.

![Graphical Model of Bayesian GMM](image)

In this research, the posterior distribution of each parameter is estimated under the ABC framework.

3. Methods

3.1. Autoencoder (AE) as a Summary Statistic Generator

An AE [42] is one type of neural network learned in an unsupervised manner by minimizing the reconstruction error in rebuilding the encoded output into the original input. A basic AE is composed of two symmetric sub-networks: an encoder network and a decoder network. The former is to shrink the input vector into a lower dimensional vector, and the latter is to reconstruct the original input from compressed vector. The AE is mainly used to derive latent representations by reducing the dimensions of the input feature space while removing noise inherent in the data. The objective function of AE is usually provided as:

\[
\text{minimize} \| x - x' \|^2_2
\]

, where the reconstructed input is

\[
x' = h_{\text{dec}}(W_{\text{dec}}(h_{\text{enc}}(W_{\text{enc}}x + b_{\text{enc}})) + b_{\text{dec}}),
\]

and \(h(\cdot) \), \(W, b \) denote an element-wise activation function, a weight matrix, a bias vector of encoder and decoder, respectively.

In this research, the AE is utilized as a summary statistic generator for ABC parameter estimation. Since a deeper neural network architecture is advantageous (Goodfellow et al., 2016), more than a single layer is used to assemble the encoder and decoder networks. While achieving its original purpose, the AE at the same time optimizes compressed representations to be well-classified by logistic regression. By inserting a bypath to encoded output nodes and adding a new objective function, the modified AE called ADENCA (Auto-encoding DEense Network for Classification Aid) is able to generate a low dimensional vector that can be well-separated by a linear model (Figure 2).

The objective function of ADENCA can be defined as:

\[
\begin{aligned}
&\text{minimize } \alpha \sum_{i=1}^{N} \| x_i - x_i' \|^2_2 \\
&- \frac{\beta}{N} \sum_{i=1}^{N} \left(y_i \ln \sigma(W_{clf}^T x_i^{enc}) + (1 - y_i) \ln \left(1 - \sigma(W_{clf}^T x_i^{enc}) \right) \right)
\end{aligned}
\]

, where \(\alpha \) and \(\beta \) are arbitrary small positive numbers for adjusting the contribution of each loss function and \(\sigma(\cdot) \) is a sigmoid function; \(x_i \), \(x_i' \), and \(x_i^{enc} \) represent the \(i \)-th original vector, reconstructed vector, and latent vector respectively, and the corresponding \(y_i \in \{0, 1\} \) indicates one of true labels.

The hyperbolic tangent function is used in the layer right before nodes generating latent representations to make data from different sites compressed and laid on the similar range, [-1, 1]. The identity function (a linear activation function) and the sigmoid activation function are used on output nodes for reconstruction and on an output node for classification, each. For other nodes in hidden layers, the Scaled-exponential Linear Unit, SeLU [44], is used as the activation function. For optimizing the objective function, Adam [45] update rule is adopted.

It should be noted that the latent representations generated from the ADENCA cannot be recovered to their original input if each site does not disclose their trained decoder networks i.e. weights to the public, thereby data can be preserved.
3.2. Bayesian Inference of GMM in a distributed environment using ABC (Federated ABC-GMM)

The proposed framework is illustrated in Figure 3. First, the CS estimates the posterior distributions of parameters of GMM by exchanging information with local sites. The main assumption of the framework is that all participants in the framework have data of equivalent features, i.e. horizontally distributed data. Besides, each site is reluctant to share their local data even if the data is perturbed via the ADENCA. Therefore, the only information transmitted from local sites to the CS is the discrepancy calculated in each local site. The discrepancy between generated data and local data is measured with appropriate metrics; the dimensions of generated data are equal to the dimensions of latent vectors in each site. In this study, the following combination of Euclidean distance and KL divergence is used as a similarity metric:

\[
sim(X_{\text{enc}}^{(i)}, X_{\text{gen}}^{(i)}) = \sum_{j=1}^{n_i} \left\| X_{\text{enc}}^{(i),j} - X_{\text{gen}}^{(i),j} \right\|^2 + D_{\text{KL}}(X_{\text{enc}}^{(i)} \parallel X_{\text{gen}}^{(i)})
\]

where

\[
D_{\text{KL}}(X_{\text{enc}}^{(i)} \parallel X_{\text{gen}}^{(i)}) = \sum P(X_{\text{enc}}^{(i)}) \log \frac{P(X_{\text{enc}}^{(i)})}{P(X_{\text{gen}}^{(i)})}
\]

for \(S \) local sites, \(X_{\text{enc}}^{\text{total}}, X_{\text{gen}}^{\text{total}} \in \mathbb{R}^{N \times d \times 1} \) are aggregated tensors having \(n_i \) numbers of encoded/generated tensors \(X_{\text{enc}}^{(i)}, X_{\text{gen}}^{(i)} \in \mathbb{R}^{n_i \times d \times 1} \), \(\sum n_i = N \). Each of \(X_{\text{enc}}^{(i)}, X_{\text{gen}}^{(i)} \) is a \(d \) dimensional vector.

Based on the pre-set threshold value, a sampled parameter candidate from each prior distribution is determined to be accepted or rejected at the CS. After several iterations, the accepted set of parameters becomes close to its true posterior distribution.

Once the inference to the posterior distributions is completed, plausible perturbed samples in the minor class can be generated at the CS, and then such samples, transmitted from the CS, can boost the classification accuracy for the imbalanced data at the local site. In summary, the framework with the appropriate similarity measure enables to train model containing global information without observing any
local data in raw. The inference process of FEDERATED ABC-GMM is developed on the Engine for Likelihood Free Inference (ELFI) [47] framework.

Algorithm FEDERATED ABC-GMM

Input

\[\mathbf{X}_{train} \in \mathbb{R}^{N \times D \times k} : \text{training data at site } i, \]
\[\mathbf{y}^{(i)} \in \mathbb{R}^{N \times 1} : \text{corresponding label at site } i, \]
\[\text{moAE}^{(i)}() : \text{Modified AE at site } i \]

(returns encoder network \(\text{Enc}^{(i)}() \), used to generate latent representations),

\#epochs : number of epochs to train the ADENCA

\(\text{sim}() : \text{discrepancy metric defined in 4.2} \)

\(\text{Dir}(\pi | \alpha) : \text{prior of } \pi \)

\(\text{NIW}(\mu, \Sigma | v, \Psi, m, k) : \text{prior of } \mu, \Sigma, L \) : maximum number of accepted parameters, \(S \) : number of sites, \(d \) : latent dimension.

Output

\(p_i(\Theta | \text{Enc}(\mathbf{X}_{train}^{total_i})) : \text{posterior distributions of the set of parameters } \Theta = \{ \pi, \mu, \Sigma \}. \)

1. **for** \(i \) in \(S \)** **do**
 2. **for** \(_ \) in **#epochs** **do**
 3. \(\text{Train} \) \(\text{moAE}^{(i)}(\mathbf{X}_{train}^{(i)}, \mathbf{X}_{train'}^{(i)}, \mathbf{y}^{(i)}. \)
 4. \(\text{Generate latent representations} \)
 5. \(\mathbf{X}_{enc}^{(i)} = \text{Enc}^{(i)}(\mathbf{X}_{train}^{(i)}) \in \mathbb{R}^{N \times D \times k}. \)
 6. **end**
 7. **#epochs = 0**
 8. **while** (\#params < \(L \)) **do**
 9. **(At CS)**
 10. \(\text{Simulate set of parameters} \)
 11. \(\Theta^* = \{ \pi^*, \mu^*, \Sigma^* \} \text{ from each prior} \)
 12. \(\pi^* \sim \text{Dir}(\pi | \alpha), \)
 13. \((\mu^*, \Sigma^*) \sim \text{NIW}(\mu, \Sigma | v, \Psi, m, k). \)
 14. \(\text{Generate data} \mathbf{X}_{gen} \sim \rho(\mathbf{X}|\Theta^*). \)
 15. \(\text{Split} \mathbf{X}_{gen} \text{ according to } n_i, \)
 16. \(\mathbf{X}_{gen}^{(i)} \in \mathbb{R}^{N \times D \times k}. \)
 17. \(\text{Send} \mathbf{X}_{gen}^{(i)} \text{ to each site } i. \)
 18. **(At each local site)**
 19. \(\text{Calculate} \phi^{(i)} = \text{sim}(\mathbf{X}_{enc}^{(i)}, \mathbf{X}_{gen}^{(i)}). \)
 20. \(\text{Send a value } \phi^{(i)} \text{ to the CS.} \)
 21. **(At CS)**
 22. \(\text{Receive and collect the value } \phi^{(i)}. \)
 23. **Set** \(\bar{\phi} = \frac{1}{S} \sum_{i=1}^{S} \phi^{(i)} \)
 24. **if** \(\bar{\phi} < \epsilon \) **then**
 25. \(\text{Store } \Theta^* = \{ \pi^*, \mu^*, \Sigma^* \}. \)
 26. **#params += 1**
 27. **end**

4. Experiments and Results

4.1. Simulation of Horizontally Distributed Data

We used PhysioNet2012 to simulate horizontally distributed data environment. PhysioNet2012 is a dataset of the PhysioNet Computing in Cardiology Challenge 2012, which aimed to predict mortality in an intensive care unit [48]. Among 4,000 samples in a training set, 310 samples satisfying two assumptions are selected (i.e. \(N = 310 \)): (1) imbalanced data, (2) data which can be classified well when all data is available at one place, but not when only partial data is provided.

88 out of 189 features were finally used (i.e. \(D = 88 \)), features with Pearson’s R correlation coefficient >0.8 were removed. Three independent sites (i.e. \(S = 3 \)) were simulated by splitting data into three without duplication. The partitioned dataset of each site was again divided into training and test sets in a stratified manner to keep class ratio.

Site 1	Site 2	Site 3	
Training data	51	46	62
Training data	9	8	10
Ratio (Major:Minor)	5.67:1	5.75:1	6.20:1

Before training an ADENCA at each site, we need to do standardization on each training data first for faster convergence (Ioffe and Szegedy, 2015) of Adam optimizer. Using the calculated mean and covariance of the training data, test data was also standardized as follows.

\[\mathbf{x}_{train,j} = \frac{\mathbf{x}_{train,j} - \mu_{train,j}}{\sigma_{train,j}} \]
\[\mathbf{x}_{test,j} = \frac{\mathbf{x}_{test,j} - \mu_{train,j}}{\sigma_{train,j}} \]

\(j = 1, ..., D. \)

The summary statistic of each training data can be obtained from each trained encoder network. Table 2 shows details of the AE structure used in this study.

The encoding dimensions \(d \) (i.e. dimensions of a latent vector) can be determined as an arbitrary number satisfying \(d \ll D \). In this experiment, \(d \) was set to be 24. Finally, for learning a GMM at the CS, the number of components should be pre-determined, and we set the floor of 90% of minor samples as the latent cluster number, i.e. \(K = \text{floor}(0.90 \times 13) = 24 \).
51 samples, e.g. based on the proposed method was
contain global information. Then, oversampled data
both local site (i.e. local classifier)
training set (i.e. local classifier). We evaluated the performance of the global classifier
non-global classifiers. Then, we compared this with the performance of two local classifiers at each site: once from the original local training set (denoted as ‘Site i Raw’) and one from the augmented training set (‘Site i OS’); the augmented training set includes both original local data of the minor class and oversampled data generated from the local GMM fit with the local data of the minor class.

Finally, FEDERATED ABC-GMM is learned on the minority class training data of each site, and then samples the scarce data; such samples are expected to contain global information. Then, the performance of the proposed method was measured (denoted as ‘Site i ABC’).

4.2. Experimental Results

To validate the proposed framework, several tests were done on test datasets of each local site. Since logistic regression is embedded in the training process of local AEs, its classification accuracy can be directly used as a validation criterion in the experiment. Among several classification performance measures, the F1 score is the most reasonable measure for this class imbalanced problem. Therefore, all results are based on the cut-off value that maximizes the F1 score for the training set.

As one of the main assumptions is that the classifier learned on the global training dataset (i.e. global classifier) outperforms the classifier learned on the local training dataset (i.e. local classifier). We evaluated the performance of the global classifier (denoted by ‘Global Site i’) on test datasets from each local site; this result is deemed to be the upper bound of non-global classifiers. Therefore, all results are based on the cut-off value that maximizes the F1 score for the training set.

All oversampling methods in the experiment are forced to increase samples of the minor class to the same number as the major class. Results are shown in Table 3.

5. Discussion

We demonstrated the feasibility of Distributed ABC-GMM; in terms of F1 score, our proposed framework outperforms local classifiers’ and even approaches the global classifier. However, there are still several limitations in this study.

The experiments were conducted on a single machine (with different processes) to serve as a proof-of-concept. In practice, it is required to deploy the algorithm in multiple machines.

There is an intrinsic limitation of the ABC estimation method, since it only depends on indirect information that a discrepancy measure yields [37], which causes the gap between our method and the global classifier. To overcome this drawback, a sequential Monte-Carlo ABC (SMC-ABC), which is an efficient and accurate sampling strategy with the high convergence speed [50], can be an alternative to improve the ABC estimation part. Moreover, there has to be a complementary approach to help a GMM generate samples guaranteed since there is no guarantee that all samples generated by the GMM will always help to enhance the performance of the local classifier. Therefore, we can think of re-filtering plausible and helpful samples, e.g. based on the nearest-neighbor approach [51], to ensure a certain level of performance.
Table 3. Classification results on each local site

	Global Site 1	Site 1 Raw	Site 1 OS	Site 1 ABC	Global Site 2	Site 2 Raw	Site 2 OS	Site 2 ABC	Global Site 3	Site 3 Raw	Site 3 OS	Site 3 ABC
Accuracy	0.8250	0.7750	0.8000	0.6250	0.8056	0.8333	0.8333	0.7778	0.8125	0.8333	0.8333	0.7917
Sensitivity	0.5000	0.1667	0.1667	0.8333	0.6000	0.4000	0.4000	0.6000	0.5000	0.1667	0.1667	0.5000
Specificity	0.8824	0.8824	0.9118	0.5882	0.8387	0.9032	0.9032	0.8065	0.8571	0.9286	0.9286	0.8333
Precision	0.4286*	0.2000	0.2500	0.2632	0.3750	0.4000*	0.4000*	0.3333	0.333*	0.2500	0.2500	0.3000
Recall	0.5000*	0.1667	0.1667	0.8333	0.6000*	0.4000	0.4000	0.6000	0.5000*	0.1667	0.1667	0.5000
F1	0.4615*	0.1818	0.2000	0.4000	0.4615*	0.4000	0.4000	0.4286	0.4000*	0.2000	0.2000	0.3750
Threshold	0.3743	0.8453	0.9473	0.4311	0.3743	0.8391	0.9356	0.5051	0.3743	0.8877	0.9374	0.5041

The proposed method is cost-expensive since it relies mainly on a sampling approach [52]. Therefore, more efficient sampling methods such as the aforementioned SMC-ABC, and Hamiltonian ABC [53] can be considered in future work.

As in typical Bayesian estimation methods, appropriate prior distributions should be provided for successful likelihood-free inference of parameters. In the case of GMM, well-defined priors are provided in the literature, but this is not always the case. In addition, it is almost impossible to use ABC in non-parametric models with too many parameters such as an artificial neural network, because ABC is mostly applicable to parametric generative models.

Nevertheless, it is still attractive that absorbing information with no data shared between organizations is possible under the ABC framework. Combining other federated learning frameworks with the method proposed in this research in a complementary manner would promote secure and efficient data analysis on a distributed clinical dataset.

6. Conclusion

As big and high-quality data and the advanced predictive analysis are available, the need for high-level machine learning algorithms under intricate conditions, such as data distributed environments and obligation of privacy-preserving in data, is gradually increasing. Privacy-preserving federated learning has established itself as a clear alternative to the problematic setting, and is expected to exert great influence, especially in the clinical field. This study proposed the privacy-preserving federated Bayesian learning framework called FEDERATED ABC-GMM to increase classification accuracy of imbalanced data based on oversampling. The framework utilizes ABC to learn a federated GMM, which is able to oversample data in a minor class. The ABC method also enhances privacy protection by handling perturbed data, while federating information from inaccessible area through similarity metric. In the process of learning the federated GMM, only summary statistics are transmitted to the CS and these are the latent representations obtained from the special-purpose AE, ADENCA, which is also proposed in this study to avoid privacy leakage by encoding raw data into lower dimensional representation while aiding a better classification. Experiments conducted on real clinical dataset show that the proposed methods are applicable in practices with data-distributed environment.

Acknowledgement

The work of S. Hahn and J. Lee was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIT) under Grant 2018R1C1B5086611.

References

1. Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future—big data, machine learning, and clinical medicine. The New England journal of medicine, 375(13), 1216.
2. Cosgriff, C. V., Celi, L. A., & Sauer, C. M. (2018). Boosting clinical decision-making: machine learning for intensive care unit discharge.
3. Beam, A. L., & Kohane, I. S. (2018). Big data and machine learning in health care. Jama, 319(13), 1317-1318.
4. Rose, S. (2018). Machine learning for prediction in electronic health data. JAMA network open, 1(4), e181404-e181404.
5. Yadav, P., Steinbach, M., Kumar, V., & Simon, G. (2018). Mining electronic health records (EHRs): a survey. ACM Computing Surveys (CSUR), 50(6), 85.
6. Agrawal, R., Delen, D., & Benjamin, D. (2019). Clinical Intervention Research with EHR: A Big Data Analytics Approach.
7. Abouelmehdi, K., Beni-Hessane, A., & Khaloufi, H. (2018). Big healthcare data: preserving security and privacy. Journal of Big Data, 5(1), 1.

8. Rosales, R. E., & Rao, R. B. (2010). Guest Editorial: Special Issue on impacting patient care by mining medical data. Data mining and knowledge discovery, 20(3), 325-327.

9. Wu, J., Roy, J., & Stewart, W. F. (2010). Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches. Medical care, S106-S113.

10. Manogaran, G., Chilamkurti, N., & Hsu, C. H. (2018). Emerging trends, issues, and challenges in Internet of Medical Things and wireless networks. Personal and Ubiquitous Computing, 22(S-6), 879-882.

11. Liu, X., Lu, R., Ma, J., Chen, L., & Qin, B. (2015). Privacy-preserving patient-centric clinical decision support system on naive Bayesian classification. IEEE journal of biomedical and health informatics, 20(2), 655-668.

12. Gutierrez, O., Saavedra, J. J., Zurbaran, M., Salazar, A., & Wightman, P. M. (2018, October). User-Centered Differential Privacy Mechanisms for Electronic Medical Records. In 2018 International Carnahan Conference on Security Technology (ICCST) (pp. 1-5). IEEE.

13. Raisaro, J. L., Troncoso-Pastoriza, J., Misbach, M., Sousa, J. S., Pradervand, S., Missiaglia, E., ... & Hubaux, J. P. (2018). Medco: Enabling secure and privacy-preserving exploration of distributed clinical and genomic data. IEEE/ACM transactions on computational biology and bioinformatics.

14. Huang, L., Shea, A. L., Qian, H., Masurkar, A., Deng, H., & Liu, D. (2019). Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records. Journal of Biomedical Informatics, 103291.

15. El Emam, K., & Dankar, F. (2012). U.S. Patent No. 8,316,054. Washington, DC: U.S. Patent and Trademark Office.

16. Culnane, C., Rubinstein, B. I., & Teague, V. (2017). Health data in an open world. arXiv preprint arXiv:1712.05627.

17. Hartmann, F. (2018). Federated Learning.

18. Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2), 12.

19. Dwork, C. (2011). Differential privacy. Encyclopedia of Cryptography and Security, 338-340.

20. Takabi, H., Hesamifard, E., & Ghasemi, M. (2016, December). Privacy preserving multi-party machine learning with homomorphic encryption. In 29th Annual Conference on Neural Information Processing Systems (NIPS).

21. He, H., & Garcia, E. A. (2008). Learning from imbalanced data. IEEE Transactions on Knowledge & Data Engineering, (9), 1263-1284.

22. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357.

23. He, H., Bai, Y., Garcia, E. A., & Li, S. (2008, June). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) (pp. 1322-1328). IEEE.

24. Lunardon, N., Menardi, G., & Torelli, N. (2014). ROSE: A Package for Binary Imbalanced Learning. R journal, 6(1).

25. Anand, A., Pugalenthi, G., Fogel, G. B., & Suganthan, P. N. (2010). An approach for classification of highly imbalanced data using weighting and undersampling. Amino acids, 39(5), 1385-1391.

26. Yen, S. J., & Lee, Y. S. (2009). Cluster-based under-sampling approaches for imbalanced data distributions. Expert Systems with Applications, 36(3), 5718-5727.

27. Liu, X. Y., & Zhou, Z. H. (2006, December). The influence of class imbalance on cost-sensitive learning: An empirical study. In Sixth International Conference on Data Mining (ICDM'06) (pp. 970-974). IEEE.

28. Hong, X., Chen, S., & Harris, C. J. (2007). A kernel-based two-class classifier for imbalanced data sets. IEEE Transactions on neural networks, 18(1), 28-41.

29. Mathew, J., Luo, M., Pang, C. K., & Chan, H. L. (2015, November). Kernel-based SMOTE for SVM classification of imbalanced datasets. In IEEI 2015-41st Annual Conference of the IEEE Industrial Electronics Society (pp. 001127-001132). IEEE.

30. Wang, S., Li, Z., Chao, W., & Cao, Q. (2012, June). Applying adaptive over-sampling technique based on data density and cost-sensitive SVM to imbalanced learning. In The 2012 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.
31. Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. Wiley, New York, 81, 269-296.

32. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672-2680).

33. Douzas, G., & Bacao, F. (2018). Effective data generation for imbalanced learning using conditional generative adversarial networks. Expert Systems with applications, 91, 464-471.

34. Liu, A., Ghosh, J., & Martin, C. E. (2007, June). Generative Oversampling for Mining Imbalanced Datasets. In DMIN (pp. 66-72).

35. Yin, H. L., & Leong, T. Y. (2010). A model driven approach to imbalanced data sampling in medical decision making. In MedInfo (pp. 856-860).

36. Marin, J. M., Pudlo, P., Robert, C. P., & Ryder, R. J. (2012). Approximate Bayesian computational methods. Statistics and Computing, 22(6), 1167-1180.

37. Turner, B. M., & Van Zandt, T. (2012). A tutorial on approximate Bayesian computation. Journal of Mathematical Psychology, 56(2), 69-85.

38. Pritchard, J. K., Seielstad, M. T., Perez-Lezaun, A., & Feldman, M. W. (1999). Population growth of human Y chromosomes: a study of Y chromosome microsatellites. Molecular biology and evolution, 16(12), 1791-1798.

39. Jiang, B. (2018, March). Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy. In International Conference on Artificial Intelligence and Statistics (pp. 1711-1721).

40. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1-22.

41. Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

42. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by error propagation (No. ICS-8506). California Univ San Diego La Jolla Inst for Cognitive Science.

43. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

44. Klambauer, G., Unterthiner, T., Mayr, A., & Hochreiter, S. (2017). Self-normalizing neural networks. In Advances in neural information processing systems (pp. 971-980).

45. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

46. Lee, J., Sun, J., Wang, F., Wang, S., Jun, C. H., & Jiang, X. (2018). Privacy-preserving patient similarity learning in a federated environment: development and analysis. JMIR medical informatics, 6(2), e20.

47. Lintusaari, J., Vuollekoski, H., Kangasrääsiö, A., Skytén, K., Järvenpää, M., Marttinen, P., ... & Kaski, S. (2018). Elfi: Engine for likelihood-free inference. The Journal of Machine Learning Research, 19(1), 643-649.

48. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank, PhysioToolkit, a and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals (2003). Circulation. 101(23):e215-e220.

49. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

50. Sisson, S. A., Fan, Y., & Tanaka, M. M. (2007). Sequential monte carlo without likelihoods. Proceedings of the National Academy of Sciences, 104(6), 1760-1765.

51. Zhang, T., & Yang, X. (2018). G-SMOTE: A GMM-based synthetic minority oversampling technique for imbalanced learning. arXiv preprint arXiv:1810.10363.

52. Karabatos, G., & Leisen, F. (2018). An approximate likelihood perspective on ABC methods. Statistics Surveys, 12, 66-104.

53. Meeds, E., Leenderts, R., & Welling, M. (2015). Hamiltonian abc. arXiv preprint arXiv:1503.01916.

54. Kim, M., Lee, J., Ohno-Machado, L., & Jiang, X. (2019). Secure and Differentially Private Logistic Regression for Horizontally Distributed Data. IEEE Transactions on Information Forensics and Security, 15, 695-710.