REVERSED DICKSON POLYNOMIALS OF THE FOURTH KIND
OVER FINITE FIELDS

KAIMIN CHENGA, B, SHAOFANG HONGA, * AND XIAOER QINC
AMATHEMATICAL COLLEGE, SICHUAN UNIVERSITY, CHENGDU 610064, P.R. CHINA
BDEPARTMENT OF MATHEMATICS, SICHUAN UNIVERSITY JINJIANG COLLEGE,
PENGSHAN 620860, P.R. CHINA
CSCHOOL OF MATHEMATICS AND STATISTICS, YANGTZE NORMAL UNIVERSITY,
CHONGQING 408100, P.R. CHINA

Abstract. In this paper, we obtain several results on the permutational behavior of
the reversed Dickson polynomial $D_{n,3}(1, x)$ of the fourth kind over the finite field \mathbb{F}_q.
Particularly, we present the explicit evaluation of the first moment $\sum_{a \in \mathbb{F}_q} D_{n,3}(1, a)$.

1. Introduction

Let \mathbb{F}_q be the finite field of characteristic p with q elements. Associated to any integer
$n \geq 0$ and a parameter $a \in \mathbb{F}_q$, the n-th Dickson polynomials of the first kind and of the
second kind, denoted by $D_n(x, a)$ and $E_n(x, a)$, are defined for $n \geq 1$ by

$D_n(x, a) := \sum_{i=0}^{\left[\frac{n}{2}\right]} \frac{n}{n-i} \binom{n-i}{i} (-a)^i x^{n-2i}$

and

$E_n(x, a) := \sum_{i=0}^{\left[\frac{n}{2}\right]} \binom{n-i}{i} (-a)^i x^{n-2i}$,

respectively, and $D_0(x, a) := 2, E_0(x, a) := 1$, where $\left[\frac{n}{2}\right]$ means the largest integer no
more than $\frac{n}{2}$. In 2012, Wang and Yucas \cite{WangYucas} further defined the n-th Dickson polynomial
of the $(k+1)$-th kind $D_{n,k}(x, a) \in \mathbb{F}_q[x]$ for $n \geq 1$ by

$D_{n,k}(x, a) := \sum_{i=0}^{\left[\frac{n}{2}\right]} \frac{n-k}{n-i} \binom{n-i}{i} (-a)^i x^{n-2i}$

and $D_{0,k}(x, a) := 2 - k$.

Hou, Mullen, Sellers and Yucas \cite{HouMullenSellersYucas} introduced the definition of the reversed Dickson
polynomial of the first kind, denoted by $D_n(a, x)$, as follows

Date: January 8, 2018.

2000 Mathematics Subject Classification. Primary 11T06, 11T55, 11C08.

Key words and phrases. Permutation polynomial, Reversed Dickson polynomial of the fourth kind,
Finite field, Generating function.

*Hong is the corresponding author and was supported partially by National Science Foundation of
China Grant # 11371260. Cheng was supported partially by the General Project of Department of
Education of Sichuan Province # 15ZB0434. Qin was supported partially by Science and Technology
Research Projects of Chongqing Education Committee Grant # KJ15012004.

Emails: ckm20@126.com, cheng.km@stu.scu.edu.cn (K. Cheng); sfhong@scu.edu.cn, s-f.hong@tom.com,
hongsf02@yahoo.com (S. Hong); qincn328@sina.com (X. Qin).
of the fourth kind which is defined by Dickson polynomial

\[D_n(a, x) := \sum_{i=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{n}{n-i} \binom{n-i}{i} (-x)^i a^{n-2i} \]

if \(n \geq 1 \) and \(D_0(a, x) = 2 \). To extend the definition of reversed Dickson polynomials, Wang and Yucas [6] defined the \(n \)-th reversed Dickson polynomial of \((k + 1)\)-th kind \(D_{n,k}(a, x) \) ∈ \(\mathbb{F}_q[x] \), which is defined for \(n \geq 1 \) by

\[D_{n,k}(a, x) := \sum_{i=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{n - ki}{n-i} \binom{n-i}{i} (-x)^i a^{n-2i} \]

and \(D_{0,k}(a, x) = 2 - k \).

It is well known that \(D_n(x, 0) \) is a permutation polynomial of \(\mathbb{F}_q \) if and only if \(\gcd(n, q-1) = 1 \), and if \(a \neq 0 \), then \(D_n(x, a) \) induces a permutation of \(\mathbb{F}_q \) if and only if \(\gcd(n, q^2 - 1) = 1 \). Besides, there are lots of published results on permutational properties of Dickson polynomial \(E_n(x, a) \) of the second kind (see, for example, [1]). In [6], Wang and Yucas investigated the permutational properties of Dickson polynomial \(D_{n,2}(x, 1) \) of the third kind. They got some necessary conditions for \(D_{n,2}(x, 1) \) to be a permutation polynomial of \(\mathbb{F}_q \).

Hou, Mullen, Sellers and Yucas [4] considered the permutational behavior of reversed Dickson polynomial \(D_n(a, x) \) of the first kind. Actually, they showed that \(D_n(a, x) \) is closely related to almost perfect nonlinear functions, and obtained some families of permutation polynomials from the revered Dickson polynomials of the first kind. In [3], Hou and Ly found several necessary conditions for the revered Dickson Polynomials \(D_n(1, x) \) of the first kind to be a permutation polynomial. Recently, Hong, Qin and Zhao [2] studied the revered Dickson polynomial \(E_n(a, x) \) of the second kind that is defined for \(n \geq 1 \) by

\[E_n(a, x) := \sum_{i=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \binom{n-i}{i} (-x)^i a^{n-2i} \]

and \(E_0(a, x) = 1 \). In fact, they gave some necessary conditions for the revered Dickson polynomial \(E_n(1, x) \) of the second kind to be a permutation polynomial of \(\mathbb{F}_q \). Regarding the revered Dickson polynomial \(D_{n,2}(a, x) \) of the third kind, from its definition one can derive that

\[D_{n,2}(a, x) = E_{n-1}(a, x) \quad (1.1) \]

for each \(x \in \mathbb{F}_q \). Using [13], we can deduce immediately from [2] the similar results on the permutational behavior of the reversed Dickson polynomial \(D_{n,2}(a, x) \) of the third kind. Actually, for the results in [2], we need just to replace \(E_n(1, x) \) by \(D_{n,2}(1, x) \) and replace all other \(n \) by \(n-1 \), then we can obtain the corresponding results on the reversed Dickson polynomial \(D_{n,2}(a, x) \) ∈ \(\mathbb{F}_q[x] \) of the third kind. We here do not list these results.

In this paper, our main goal is to investigate the revered Dickson polynomial \(D_{n,3}(a, x) \) of the fourth kind which is defined by

\[D_{n,3}(a, x) := \sum_{i=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{n-3i}{n-i} \binom{n-i}{i} (-x)^i a^{n-2i} \quad (1.2) \]

if \(n \geq 1 \) and \(D_{0,3}(a, x) := -1 \). For \(a \neq 0 \), we write \(x = y(a - y) \) with an indeterminate \(y \neq \frac{a}{2} \). Then \(D_{n,3}(a, x) \) can be rewritten as
\[D_{n,3}(a, x) = \frac{(2a - y)y^n - (y + a)(a - y)^n}{2y - a}. \]

(1.3)

We have

\[D_{n,3}(a, x^2) = \frac{(3n - 1)a^n}{2^n}. \]

(1.4)

In fact, (1.3) and (1.4) follows from Theorem 2.2 (i) and Theorem 2.4 (i) below. It is easy to see that \(D_{n,3}(a, x^2) = E_n(a, x) \) if \(\text{char}(\mathbb{F}_q) = 2 \), and \(D_{n,3}(a, x) = D_n(a, x) \) if \(\text{char}(\mathbb{F}_q) = 3 \). Thus we always assume \(p = \text{char}(\mathbb{F}_q) > 3 \) in what follows.

The paper is organized as follows. First in section 2, we study the properties of the reversed Dickson polynomial \(D_{n,3}(a, x) \) of the fourth kind. Subsequently, in Section 3, we prove a necessary condition for the reversed Dickson polynomial \(D_{n,3}(1, x) \) of the fourth kind to be a permutation polynomial of \(\mathbb{F}_q \) and then introduce an auxiliary polynomial to present a characterization for \(D_{n,3}(1, x) \) to be a permutation of \(\mathbb{F}_q \).

From the Hermite criterion \([5] \) one knows that a function \(f : \mathbb{F}_q \rightarrow \mathbb{F}_q \) is a permutation polynomial of \(\mathbb{F}_q \) if and only if the \(i \)-th moment

\[\sum_{a \in \mathbb{F}_q} f(a)^i = \begin{cases} 0, & \text{if } 0 \leq i \leq q - 2, \\ -1, & \text{if } i = q - 1. \end{cases} \]

Thus to understand well the permutational behavior of the reversed Dickson polynomial \(D_{n,3}(1, x) \) of the fourth kind, we would like to know if the \(i \)-th moment \(\sum_{a \in \mathbb{F}_q} D_{n,3}(1, a)^i \) is computable. We are able to treat with this sum when \(i = 1 \). The final section is devoted to the computation of the first moment \(\sum_{a \in \mathbb{F}_q} D_{n,3}(1, a) \).

2. Revered Dickson polynomials of the fourth kind

In this section, we study the properties of the reversed Dickson polynomials \(D_{n,3}(a, x) \) of the fourth kind. Clearly, if \(a = 0 \), then

\[D_{n,3}(0, x) = \begin{cases} 0, & \text{if } n \text{ is odd}, \\ (-1)^{\frac{n}{2} + 1}x^{\frac{n}{2}}, & \text{if } n \text{ is even}. \end{cases} \]

Therefore, \(D_{n,3}(0, x) \) is a PP (permutation polynomial) of \(\mathbb{F}_q \) if and only if \(n \) is an even integer with \(\gcd\left(\frac{n}{2}, q - 1\right) = 1 \). In what follows, we always let \(a \in \mathbb{F}_q^* \). First, we give a basic fact as follows.

Lemma 2.1. \[\text{Let } f(x) \in \mathbb{F}_q[x]. \text{ Then } f(x) \text{ is a PP of } \mathbb{F}_q \text{ if and only if } cf(dx) \text{ is a PP of } \mathbb{F}_q \text{ for any given } c, d \in \mathbb{F}_q^*. \]

Then we can deduce the following result.

Theorem 2.2. Let \(a, b \in \mathbb{F}_q^* \). Then the following are true.

(i). One has \(D_{n,3}(a, x) = \frac{a^n}{b^n} D_{n,3}(b, \frac{x}{a^2}). \)

(ii). We have that \(D_{n,3}(a, x) \) is a PP of \(\mathbb{F}_q \) if and only if \(D_{n,3}(1, x) \) is a PP of \(\mathbb{F}_q \).

Proof. (i). By the definition of \(D_{n,3}(a, x) \), we have
\[
\frac{a^n}{b^n} D_{n,3}(b, \frac{b^2}{a^2} x)
\]
\[
= \frac{a^n}{b^n} \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \frac{n-3i}{n-i} \binom{n-i}{i} (-1)^i b^{n-2i} \frac{b^{2i}}{a^{2i}} x^i
\]
\[
= \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \frac{n-3i}{n-i} \binom{n-i}{i} (-1)^i a^{n-2i} x^i
\]
\[
= D_{n,3}(a, x)
\]
as required. Part (i) is proved.

(ii). Taking \(b = 1 \) in part (i), we have
\[
D_{n,3}(a, x) = a^n D_{n,3}(1, x).
\]

It then follows from Lemma 2.1 that \(D_{n,3}(a, x) \) is a PP of \(\mathbb{F}_q \) if and only if \(D_{n,3}(1, x) \) is a PP of \(\mathbb{F}_q \). This completes the proof of part (ii). So Theorem 2.2 is proved.

Theorem 2.2 tells us that to study the permutational behavior of \(D_{n,3}(a, x) \) over \(\mathbb{F}_q \), one only needs to consider that of \(D_{n,3}(1, x) \). In the following, we supply several basic properties on the revered Dickson polynomial \(D_{n,3}(1, x) \) of the fourth kind. The following result is given in [2] and [4] without proof. For the completeness, we here present a proof.

Lemma 2.3. [2] [4] Let \(n \geq 0 \) be an integer. Then we have \(D_n(1, x(1-x)) = x^n + (1-x)^n \) and \(E_n(1, x(1-x)) = \frac{x^{n+1} - (1-x)^{n+1}}{2x-1} \).

Proof. Since \(D_0(1, x(1-x)) = 2 \), the first formula is true for the case \(n = 0 \). Let now \(n \geq 1 \) be an integer. Then
\[
D_n(1, x(1-x)) = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \frac{n}{n-i} \binom{n-i}{i} (x+1-x)^{n-2i} (-x(1-x))^i.
\]
It then follows from Waring’s formula (see, for instance, Theorem 1.76 of [5]) that for any integer \(n \geq 1 \), we have
\[
D_n(1, x(1-x)) = x^n + (1-x)^n.
\]
as desired. The first formula is proved.

Since \(E_0(1, x(1-x)) = E_1(1, x(1-x)) = 1 \), the second formula holds when \(n = 0 \) and 1. Now let \(n \geq 2 \) be an integer. Then we have
$E_n(1, x(1-x))$

$= \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \frac{n-i}{n-i} \binom{n-i}{i} (-x(1-x))^i$

$= \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \frac{n}{n-i} \binom{n-i}{i} (-x(1-x))^i + x(1-x) \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} \frac{i}{n-i} \binom{n-i}{i} (-x(1-x))^{i-1}$

$= \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \frac{n}{n-i} \binom{n-i}{i} (-x(1-x))^i + x \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} \binom{n-1-i}{i-1} (-x(1-x))^{i-1}$

$= D_n(1, x(1-x)) + x E_{n-2}(1, x(1-x)).$

It follows that

$E_n(1, x(1-x))$

$= \sum_{i=0}^{\lfloor \frac{n-1}{2} \rfloor} x^i (1-x)^i D_{n-2i}(1, x(1-x)) + x^{\lfloor \frac{n}{2} \rfloor} (1-x)^{\lfloor \frac{n}{2} \rfloor} E_{n-2}^{\lfloor \frac{n}{2} \rfloor}(1, x(1-x)).$ (2.2)

From (2.1) and (2.2) one can deduce that if $n \geq 1$ is odd, then we have

$E_n(1, x(1-x))$

$= \sum_{i=0}^{\lfloor \frac{n-3}{2} \rfloor} x^i (1-x)^i D_{n-2i}(1, x(1-x)) + y^{\lfloor \frac{n-1}{2} \rfloor} (1-x)^{\lfloor \frac{n-1}{2} \rfloor} E_1(1, x(1-x))$

$= \sum_{i=0}^{\lfloor \frac{n-3}{2} \rfloor} x^i (1-x)^i (x^{n-2i} + (1-x)^{n-2i}) + x^{\lfloor \frac{n-1}{2} \rfloor} (1-x)^{\lfloor \frac{n-1}{2} \rfloor} (x + 1 - x)$

$= \sum_{i=0}^{\lfloor n-1 \rfloor} (x^{n-i}(1-x)^i + x^i(1-x)^{n-i})$

$= \sum_{i=0}^{n} x^{n-i}(1-x)^i$

$= \frac{x^{n+1} - (1-x)^{n+1}}{2x - 1},$

and if $n \geq 0$ is even, then one has
as expected. So the second formula is proved.

This concludes the proof of Lemma 2.3. \qed

\textbf{Theorem 2.4.} Each of the following is true.

(i) For any integer \(n \geq 0 \), we have \(D_{n,3}(1, \frac{1}{4}) = \frac{3n-1}{2^n} \) and \(D_{n,3}(1, x(1-x)) = (2-x)x^{n-2}(x+1)(1-x)^n \) if \(x \neq \frac{1}{2} \).

(ii) If \(n_1 \) and \(n_2 \) are positive integers such that \(n_1 \equiv n_2 \pmod{q^2-1} \), then one has \(D_{n_1,3}(1, x_0) = D_{n_2,3}(1, x_0) \) for any \(x_0 \in \mathbb{F}_q \setminus \{ \frac{1}{4} \} \).

\textit{Proof.} (i). First of all, it is easy to see that \(D_{0,3}(1, \frac{1}{4}) = -1 = \frac{3\cdot0-1}{2^0} \) and \(D_{1,3}(1, \frac{1}{4}) = 1 = \frac{3\cdot1-1}{2^1} \). the first identity is true for the cases that \(n = 0 \) and \(1 \). Now let \(n \geq 2 \). Then one has

\[
D_{n,3}(1, \frac{1}{4}) = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \frac{n-3i}{n-i} \binom{n-i}{i} \left(-\frac{1}{4} \right)^i \\
= \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \frac{n-2i}{n-i} \binom{n-i}{i} \left(-\frac{1}{4} \right)^i + \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \frac{-i}{n-i} \binom{n-i}{i} \left(-\frac{1}{4} \right)^i \\
= D_{n,2}(1, \frac{1}{4}) + \frac{1}{4} \sum_{i=0}^{n-2} \binom{n-2-i}{i} \left(-\frac{1}{4} \right)^i \\
= D_{n,2}(1, \frac{1}{4}) + \frac{1}{4} E_{n-2}(1, \frac{1}{4}).
\]

But (1.1) gives us that \(D_{n,2}(1, \frac{1}{4}) = E_{n-1}(1, \frac{1}{4}) \). Hence Theorem 2.2 of [2] implies that

\[
D_{n,3}(1, \frac{1}{4}) = E_{n-1}(1, \frac{1}{4}) + \frac{1}{4} E_{n-2}(1, \frac{1}{4}) \\
= \frac{n}{2^{n-1}} + \frac{1}{4} \cdot \frac{n-1}{2^{n-2}} \\
= \frac{3n-1}{2^n}
\]

as desired. So the first identity is proved.
Now we turn our attention to the second identity. Let \(x \neq \frac{1}{2} \). Then by the definition of the \(n \)-th reversed Dickson polynomial of the fourth kind, one has

\[
D_{n,3}(1, x(1 - x)) = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \frac{n - 3i}{n - i} \binom{n - i}{i} (-x(1 - x))^i
\]

\[
= \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \frac{3(n - i) - 2n}{n - i} \binom{n - i}{i} (-x(1 - x))^i
\]

\[
= 3 \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n - i}{i} (-x(1 - x))^i - 2 \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \frac{n - i}{n - i} \binom{n - i}{i} (-x(1 - x))^i
\]

\[
= 3E_n(1, x(1 - x)) - 2D_n(1, x(1 - x)). \tag{2.3}
\]

But Lemma 2.3 gives us that

\[
D_n(1, x(1 - x)) = x^n + (1 - x)^n
\]

and

\[
E_n(1, x(1 - x)) = \sum_{i=0}^{n} x^{n-i}(1 - x)^i = \frac{x^{n+1} - (1 - x)^{n+1}}{2x - 1}. \tag{2.4}
\]

Thus it follows from (2.3) to (2.5) that

\[
D_{n,3}(1, x) = D_{n,3}(1, y(1 - y))
\]

\[
= 3E_n(1, y(1 - y)) - 2D_n(1, y(1 - y))
\]

\[
= \frac{3y^{n+1} - 3(1 - y)^{n+1}}{2y - 1} - 2(y^n + (1 - y)^n)
\]

\[
= \frac{(2 - y)2y^n - (y + 1)(1 - y)^n}{2y - 1}
\]

as required. So the second identity holds. Part (i) is proved.

(ii). For each \(x_0 \in F_q \setminus \{ \frac{1}{2} \} \), one can choose an element \(y_0 \in F_{q^2} \setminus \{ \frac{1}{2} \} \) such that \(x_0 = y_0(1 - y_0) \). Since \(n_1 \equiv n_2 \pmod{q^2 - 1} \), one has \(y_0^{n_1} = y_0^{n_2} \) and \((1 - y_0)^{n_1} = (1 - y_0)^{n_2} \). It then follows from part (i) that

\[
D_{n_1,3}(1, x_0) = D_{n_1,3}(1, y_0(1 - y_0))
\]

\[
= \frac{(2 - y_0)y_0^{n_1} - (y_0 + 1)(1 - y_0)^{n_2}}{2y_0 - 1}
\]

\[
= \frac{(2 - y_0)y_0^{n_2} - (y_0 + 1)(1 - y_0)^{n_2}}{2y_0 - 1}
\]

\[
= D_{n_2,3}(1, x_0)
\]

as desired. This ends the proof of Theorem 2.4. \(\Box \)

Evidently, by Theorem 2.2 (i) and Theorem 2.4 (i) one can derive that (1.3) and (1.4) are true.

Proposition 2.5. Let \(n \geq 2 \) be an integer. Then the recursion

\[
D_{n,3}(1, x) = D_{n-1,3}(1, x) - xD_{n-2,3}(1, x)
\]

holds for any \(x \in F_q \).
Proof. We consider the following two cases.

Case 1. $x \neq \frac{1}{4}$. For this case, one may let $x = y(1 - y)$ with $y \in \mathbb{F}_{q^2} \setminus \{\frac{1}{2}\}$. Then by Theorem 2.4 (i), we have

\[
D_{n-1,3}(1, x) - xD_{n-2,3}(1, x) = D_{n-1,3}(1, y(1 - y)) - y(1 - y)D_{n-2,3}(1, y(1 - y)) = (2 - y)y^{n-1} - (y + 1)(1 - y)^{n-1} - y(1 - y) \frac{(2 - y)y^{n-2} - (y + 1)(1 - y)^{n-2}}{2y - 1} = \frac{(2 - y)y^n - (y + 1)(1 - y)^n}{2y - 1} = D_{n,3}(1, x)
\]

as required.

Case 2. $x = \frac{1}{4}$. Then by Theorem 2.4 (i), we have

\[
D_{n-1,3}\left(1, \frac{1}{4}\right) - \frac{1}{4}D_{n-2,3}\left(1, \frac{1}{4}\right) = \frac{3n - 4}{2^{n-1}} - \frac{13n - 7}{4 \cdot 2^{n-2}} = \frac{3n - 1}{2^n} = D_{n,3}\left(1, \frac{1}{4}\right).
\]

This concludes the proof of Proposition 2.5.

By Proposition 2.5, we can obtain the generating function of the reverend Dickson polynomial $D_{n,3}(1, x)$ of the fourth kind as follows.

Proposition 2.6. The generating function of $D_{n,3}(1, x)$ is given by

\[
\sum_{n=0}^{\infty} D_{n,3}(1, x)t^n = \frac{2t - 1}{1 - t + xt^2}.
\]

Proof. By the recursion presented in Proposition 2.5, we have

\[
(1 - t + xt^2) \sum_{n=0}^{\infty} D_{n,3}(1, x)t^n = \sum_{n=0}^{\infty} D_{n,3}(1, x)t^n - \sum_{n=0}^{\infty} D_{n,3}(1, x)t^{n+1} + x\sum_{n=0}^{\infty} D_{n,3}(1, x)t^{n+2} = 2t - 1 + \sum_{n=0}^{\infty} (D_{n+2,3}(1, x) - D_{n+1,3}(1, x) + xD_{n,3}(1, x))t^{n+2} = 2t - 1.
\]

Thus the desired result follows immediately.

Now we can use Theorem 2.4 to present an explicit formula for $D_{n,3}(1, x)$ when n is a power of the characteristic p. Then we show that $D_{n,3}(1, x)$ is not a PP of \mathbb{F}_q in this case.
Proposition 2.7. Let $p = \text{char}(\mathbb{F}_q) > 3$ and k be a positive integer. Then
\[
2^p D_{p^k,3}(1, x) + 1 = 3(1 - 4x)^{k - \frac{1}{2}}.
\]

Proof. Putting $x = y(1 - y)$ in Theorem 2.4 (i) gives us that
\[
D_{p^k,3}(1, x) = D_{p^k,3}(1, y(1 - y))
\]
\[
= \frac{(2 - y)y^{p^k} - (y + 1)(1 - y)^{p^k}}{2y - 1}
\]
\[
= \frac{3 - u(u + 1)^{p^k} - 3 + u(1 - u)^{p^k}}{u}
\]
\[
= \frac{1}{2^{p^k + 1}u} \left((3 - u)(u + 1)^{p^k} - (u + 3)(1 - u)^{p^k} \right)
\]
\[
= \frac{1}{2^{p^k}}(3u^{p^k - 1} - 1),
\]
where $u = 2y - 1$. So we obtain that
\[
2^p D_{p^k,3}(1, x)
\]
\[
= 3(u^2)^{k - \frac{1}{2}} - 1
\]
\[
= 3((2y - 1)^2)^{k - \frac{1}{2}} - 1,
\]
which infers that
\[
2^p D_{p^k,3}(1, x) + 1 = 3(1 - 4x)^{k - \frac{1}{2}}
\]
as desired. So Proposition 2.7 is proved. \hfill \Box

It is well known that every linear polynomial over \mathbb{F}_q is a PP of \mathbb{F}_q and that the monomial x^a is a PP of \mathbb{F}_q if and only if $\gcd(a, q - 1) = 1$. Then by Proposition 2.7, we have the following result.

Corollary 2.8. Let $p > 3$ be a prime and $q = p^e$. Let e and k be positive integers with $k \leq e$. Then $D_{p^k,3}(1, x)$ is not a PP of \mathbb{F}_q.

Proof. By Proposition 2.7, we know that $D_{p^k,3}(1, x)$ is a PP of \mathbb{F}_q if and only if
\[
(1 - 4x)^{k - \frac{1}{2}}
\]
is a PP of \mathbb{F}_q which is equivalent to
\[
\gcd \left(\frac{p^k - 1}{2}, q - 1 \right) = 1.
\]
The latter one is impossible since $\frac{p^k - 1}{2} | \gcd \left(\frac{p^k - 1}{2}, q - 1 \right)$ implies that
\[
\gcd \left(\frac{p^k - 1}{2}, q - 1 \right) \geq \frac{p^k - 1}{2} > 1.
\]
Thus $D_{p^k,3}(1, x)$ is not a PP of \mathbb{F}_q. \hfill \Box

Lemma 2.9. \[4\] Let $x \in \mathbb{F}_{q^2}$. Then $x(1 - x) \in \mathbb{F}_q$ if and only if $x^q = x$ or $x^q = 1 - x$.

Let V be defined by
\[
V := \{ x \in \mathbb{F}_{q^2} : x^q = 1 - x \}.
\]
Clearly, $\mathbb{F}_q \cap V = \{ \frac{1}{2} \}$. Then we obtain a characterization for $D_{n,3}(1, x)$ to be a PP of \mathbb{F}_q as follows.
Theorem 2.10. Let $q = p^e$ with $p > 3$ being a prime and e being a positive integer. Let
$$f : y \mapsto \frac{(2 - y)y^n - (y + 1)(1 - y)^n}{2y - 1}$$
be a mapping on $(\mathbb{F}_q \cup V) \setminus \{\frac{1}{2}\}$. Then $D_{n,3}(1, x)$ is a PP of \mathbb{F}_q if and only if f is 2-to-1 and $f(y) \neq \frac{3n - 1}{2n}$ for any $y \in (\mathbb{F}_q \cup V) \setminus \{\frac{1}{2}\}$.

Proof. First, we show the sufficiency part. Let f be 2-to-1 and $f(y) \neq \frac{3n - 1}{2n}$ for any $y \in (\mathbb{F}_q \cup V) \setminus \{\frac{1}{2}\}$. Let $D_{n,3}(1, x_1) = D_{n,3}(1, x_2)$ for $x_1, x_2 \in \mathbb{F}_q$. To show that $D_{n,3}(1, x)$ is a PP of \mathbb{F}_q, it suffices to show that $x_1 = x_2$ that will be done in what follows.

First of all, one can find $y_1, y_2 \in \mathbb{F}_q^2$ satisfying $x_1 = y_1(1 - y_1)$ and $x_2 = y_2(1 - y_2)$. By Lemma 2.9, we know that $y_1, y_2 \in \mathbb{F}_q \cup V$. We divide the proof into the following two cases.

Case 1. At least one of x_1 and x_2 is equal to $\frac{1}{2}$. Without loss of any generality, we may let $x_1 = \frac{1}{2}$. So by Theorem 2.4 (i), one derives that
$$D_{n,3}(1, x_2) = D_{n,3}(1, x_1) = D_{n,3}\left(1, \frac{1}{4}\right) = \frac{3n - 1}{2n}, \quad (2.6)$$

We claim that $x_2 = \frac{1}{4}$. Assume that $x_2 \neq \frac{1}{4}$. Then $y_2 \neq \frac{1}{2}$. Since $f(y) \neq \frac{3n - 1}{2n}$ for any $y \in (\mathbb{F}_q \cup V) \setminus \{\frac{1}{2}\}$, by Theorem 2.4 (i), we get that
$$D_{n,3}(1, x_2) = \frac{(2 - y_2)y_2^n - (y_2 + 1)(1 - y_2)^n}{2y_2 - 1} = f(y_2) \neq \frac{3n - 1}{2n},$$
which contradicts to (2.6). Hence the claim is true, and so we have $x_1 = x_2$ as required.

Case 2. Both of x_1 and x_2 are not equal to $\frac{1}{2}$. Then $y_1 \neq \frac{1}{2}$ and $y_2 \neq \frac{1}{2}$. Since $D_{n,3}(1, x_1) = D_{n,3}(1, x_2)$, by Theorem 2.4 (i), one has
$$\frac{(2 - y_2)y_1^n - (y_1 + 1)(1 - y_1)^n}{2y_1 - 1} = \frac{(2 - y_2)y_2^n - (y_2 + 1)(1 - y_2)^n}{2y_2 - 1},$$
which is equivalent to $f(y_1) = f(y_2)$. However, f is a 2-to-1 mapping on $(\mathbb{F}_q \cup V) \setminus \{\frac{1}{2}\}$, and $f(y_2) = f(1 - y_2)$ by the definition of f. It then follows that $y_1 = y_2$ or $y_1 = 1 - y_2$. Thus $x_1 = x_2$ as desired. Hence the sufficiency part is proved.

Now we prove the necessity part. Let $D_{n,3}(1, x)$ be a PP of \mathbb{F}_q. Choose two elements $y_1, y_2 \in (\mathbb{F}_q \cup V) \setminus \{\frac{1}{2}\}$ such that $f(y_1) = f(y_2)$, that is,
$$\frac{(2 - y_1)y_1^n - (y_1 + 1)(1 - y_1)^n}{2y_1 - 1} = \frac{(2 - y_2)y_2^n - (y_2 + 1)(1 - y_2)^n}{2y_2 - 1}, \quad (2.7)$$
Since $y_1, y_2 \in (\mathbb{F}_q \cup V) \setminus \{\frac{1}{2}\}$, it follows from Lemma 2.9 that $y_1(1 - y_1) \in \mathbb{F}_q$ and $y_2(1 - y_2) \in \mathbb{F}_q$. So by Theorem 2.4 (i), (2.7) implies that
$$D_{n,3}(1, y_0(1 - y_0)) = D_{n,3}(1, y(1 - y)).$$
Thus $y_1(1 - y_1) = y_2(1 - y_2)$ since $D_{n,3}(1, x)$ is a PP of \mathbb{F}_q, which infers that $y_1 = y_2$ or $y_1 = 1 - y_2$. Since $y_2 \neq \frac{1}{2}$, one has $y_2 \neq 1 - y_2$. Therefore f is a 2-to-1 mapping on $(\mathbb{F}_q \cup V) \setminus \{\frac{1}{2}\}$.

Now take $y' \in (\mathbb{F}_q \cup V) \setminus \{\frac{1}{2}\}$. Then from Lemma 2.9 it follows that $y'(1 - y') \in \mathbb{F}_q$ and
$$y'(1 - y') \neq \frac{1}{2}\left(1 - \frac{1}{2}\right).$$
Notice that $D_{n,3}(1, x)$ is a PP of \mathbb{F}_q. Hence one has
$$D_{n,3}(1, y'(1 - y')) \neq D_{n,3}\left(1, \frac{1}{2}\left(1 - \frac{1}{2}\right)\right).$$
But Theorem 2.4 (i) tells us that

\[D_{n,3}\left(1, \frac{1}{2}\left(1 - \frac{1}{2}\right)\right) = \frac{3n - 1}{2^n}. \]

Then by Theorem 2.4 (i) and noting that \(y' \neq \frac{1}{2} \), we have

\[\frac{(2 - y')y^n - (y' + 1)(1 - y')^n}{2y' - 1} \neq \frac{3n - 1}{2^n}, \]

which infers that \(f(y') \neq \frac{3n-1}{2^n} \) for any \(y' \in (\mathbb{F}_q \cup V) \setminus \{\frac{1}{2}\} \). So the necessity part is proved.

The proof of Theorem 2.10 is complete. \(\square \)

3. A NECESSARY CONDITION FOR \(D_{n,3}(1, x) \) TO BE PERMUTATIONAL AND AN AUXILIARY POLYNOMIAL

In this section, we study some necessary conditions on \(n \) for \(D_{n,3}(1, x) \) to be a PP of \(\mathbb{F}_q \). It is easy to check that

\[D_{n,3}(1, 0) = 1, D_{0,3}(1, 1) = -1, D_{1,3}(1, 1) = 1, D_{0,3}(1, -2) = -1, D_{1,3}(1, -2) = 1. \]

Then by Proposition 2.5, we have the following recursion relations

\[
\begin{cases}
D_{0,3}(1, 1) = -1, \\
D_{1,3}(1, 1) = 1, \\
D_{n+2,3}(1, 1) = D_{n+1,3}(1, 1) - D_{n,3}(1, 1),
\end{cases}
\]

and

\[
\begin{cases}
D_{0,3}(1, -2) = -1, \\
D_{1,3}(1, -2) = 1, \\
D_{n+2,3}(1, -2) = D_{n+1,3}(1, -2) + 2D_{n,3}(1, -2).
\end{cases}
\]

From these recursive formulas, one can easily show that the sequences

\[\{D_{n,3}(1, 1)|n \in \mathbb{N}\} \text{ and } \{D_{n,3}(1, -2)|n \in \mathbb{N}\} \]

are periodic with the smallest periods 6 and 2, respectively. In fact, one has

\[D_{n,3}(1, 1) = \begin{cases}
1, & \text{if } n \equiv 1, 3 \pmod{6}, \\
-1, & \text{if } n \equiv 0, 4 \pmod{6}, \\
2, & \text{if } n \equiv 2 \pmod{6}, \\
-2, & \text{if } n \equiv 5 \pmod{6}
\end{cases} \]

and

\[D_{n,3}(1, -2) = \begin{cases}
1, & \text{if } n \equiv 1 \pmod{2}, \\
-1, & \text{if } n \equiv 0 \pmod{2},
\end{cases} \]

Theorem 3.1. Assume that \(D_{n,3}(1, x) \) is a PP of \(\mathbb{F}_q \) with \(q = p^e \) and \(p > 3 \). Then \(n \equiv 2 \pmod{6} \).

Proof. Let \(D_{n,3}(1, x) \) be a PP of \(\mathbb{F}_q \). Then \(D_{n,3}(1, 0), D_{n,3}(1, 1) \) and \(D_{n,3}(1, -2) \) are distinct. Since \(D_{n,3}(1, 0) = 1 \), one has \(D_{n,3}(1, 1) \neq 1 \) and \(D_{n,3}(1, -2) \neq 1 \). Then the above results tells us that \(n \not\equiv 1, 3, 5 \pmod{6} \). Further, we have \(D_{n,3}(1, -2) = -1 \) which means that \(n \) must be even, and so \(D_{n,3}(1, 1) \neq -2 \). But \(D_{n,3}(1, 1) \neq D_{n,3}(1, -2) \). So \(D_{n,3}(1, 1) \neq -1 \). Hence \(D_{n,3}(1, 1) = 2 \). Finally, the desired result \(n \equiv 2 \pmod{6} \) follows immediately. \(\square \)
Evidently, Corollary 2.8 can be easily deduced from Theorem 3.1. Furthermore, by Theorem 3.1, we know that $D_{n,3}(1, x)$ is not a PP of \mathbb{F}_q if n is odd.

In what follows, we investigate $D_{n,3}(1, x)$ with n being an even number. We define the following auxiliary polynomial $f_n(x) \in \mathbb{Z}[x]$ by

$$f_n(x) := -x^n + \sum_{j=0}^{\frac{n}{2}-1} \frac{3n-8j-1}{n+1} (n+1) x^j.$$

Then we have the following relation between $D_{n,3}(1, x)$ and $f_n(x)$.

Theorem 3.2. Let $p > 3$ be a prime and $n \geq 0$ be an even integer. Then

(i). One has

$$D_{n,3}(1, x) = \frac{1}{2^n} f_n(1 - 4x).$$

(ii). We have that $D_{n,3}(1, x)$ is a PP of \mathbb{F}_q if and only if $f_n(x)$ is a PP of \mathbb{F}_q.

Proof. (i). First, let $x \in \mathbb{F}_q \setminus \{\frac{1}{4}\}$. Then there exists $y \in \mathbb{F}_q \setminus \{\frac{1}{2}\}$ such that $x = y(1 - y)$. Let $u = 2y - 1$. Since for any integer j with $0 \leq j \leq \frac{n}{2} - 1$, one has

$$3\left(\binom{n}{2j+1} - \binom{n}{2j}\right) = \frac{3n-8j-1}{n+1} (n+1) \left(\binom{n}{2j+1} - \binom{n}{2j}\right),$$

it then follows from Theorem 2.4 (i) that

$$D_{n,3}(1, x) = D_{n,3}(1, y(1 - y))$$

$$= \frac{(2-y)y^n -(y+1)(1-y)^n}{2y-1}$$

$$= \frac{3-u\left(\frac{u+1}{2}\right)^n - 3+u\left(\frac{1-u}{2}\right)^n}{u}$$

$$= \frac{1}{2^{n+1}u} ((3-u)(u+1)^n -(u+3)(1-u)^n)$$

$$= \frac{1}{2^n} (-u^n + \sum_{j=0}^{\frac{n}{2}-1} (3\left(\binom{n}{2j+1} - \binom{n}{2j}\right) u^{2j})$$

$$= \frac{1}{2^n} f_n(u^2)$$

$$= \frac{1}{2^n} f_n(1 - 4y(1 - y))$$

$$= \frac{1}{2^n} f_n(1 - 4x)$$

as desired. So (3.1) holds in this case.

Consequently, we let $x = \frac{1}{4}$. Then by Theorem 2.4 (i), we have

$$D_{n,3}\left(1, \frac{1}{4}\right) = \frac{3n-1}{2^n}.$$

On the other hand, we can easily check that $f_n(0) = 3n - 1$. Therefore

$$D_{n,3}\left(1, \frac{1}{4}\right) = \frac{1}{2^n} f_n(0) = \frac{1}{2^n} f_n\left(1 - 4 \times \frac{1}{4}\right)$$

as one desires. So (3.1) is proved.

(ii). Notice that $\frac{1}{2^n} \in \mathbb{F}_q$ and $1 - 4x$ is linear. So $D_{n,3}(1, x)$ is a PP of \mathbb{F}_q if and only if $f_n(x)$ is a PP of \mathbb{F}_q. This ends the proof of Theorem 3.2. □
Moreover, by Theorem 2.4 (ii), it follows that for any x with $\equiv (\frac{2}{t})$, one has

$$D_{n,3}(1, x^q) = D_{n,3}(1, x)$$

when $n_1 \equiv n_2 \pmod{q^2 - 1}$. Thus if $x \neq \frac{2}{t}$, one has

$$\sum_{n=0}^{\infty} D_{n,3}(1, x)t^n = 1 + \sum_{n=1}^{q^2-1} \sum_{\ell=0}^{\infty} D_{n+\ell(q^2-1),3}(1, x)t^{n+\ell(q^2-1)}$$

$$= 1 + \sum_{n=1}^{\infty} D_{n,3}(1, x) \sum_{\ell=0}^{q^2-1} t^{n+\ell(q^2-1)}$$

$$= 1 + \frac{1}{1 - tq^{q-1}} \sum_{n=1}^{q^2-1} D_{n,3}(1, x)t^n. \tag{4.2}$$

Then (4.1) together with (4.2) gives that for any $x \neq \frac{2}{t}$, we have

$$\sum_{n=1}^{q^2-1} D_{n,3}(1, x)t^n \tag{4.3}$$

$$= \left(\sum_{n=0}^{\infty} D_{n,3}(1, x)t^n - 1 \right)(1 - tq^{q-1})$$

$$= \left(\frac{2t - 1}{1 - t} - 1 \right)(1 - tq^{q-1}) + \frac{(1 - tq^{q-1})(2t - 1)}{1 - t} \sum_{k=1}^{q-1} \frac{t^{q-1-k} t^{2k}}{(t - 1)q^{q-1} - t^{2q-1}x^k} (\mod x^q - x)$$

$$= \frac{(3t - 2)(1 - tq^{q-1})}{1 - t} + h(t) \sum_{k=1}^{q-1} (t - 1)^{q-1-k} t^{2k} x^k, \tag{4.4}$$

where

$$h(t) := \frac{(tq^{q-1} - 1)(2t - 1)}{(t - 1)q - (t - 1)t^{2q-1}}.$$
Lemma 4.1. Let \(u_0, u_1, \ldots, u_{q-1} \) be the list of all elements of \(\mathbb{F}_q \). Then

\[
\sum_{i=0}^{q-1} u_i = \begin{cases}
0, & \text{if } 0 \leq k \leq q-2, \\
-1, & \text{if } k = q-1.
\end{cases}
\]

Now by Theorem 2.4 (i), Lemma 4.1 and (4.4), we derive that

\[
\sum_{n=1}^{q^2-1} \sum_{a \in \mathbb{F}_q} D_{n,3}(1, a) t^n
= \sum_{n=1}^{q^2-1} D_{n,3}(1, a) t^n + \sum_{n=1}^{q^2-1} \sum_{a \in \mathbb{F}_q \setminus \left\{ \frac{1}{4} \right\}} D_{n,3}(1, a) t^n
= \sum_{n=1}^{q^2-1} \frac{3n-1}{2n} t^n + \sum_{a \in \mathbb{F}_q \setminus \left\{ \frac{1}{4} \right\}} \frac{(3t-2)(1-t^{q^2-1})}{1-t} + h(t) \sum_{k=1}^{q-1} (t-1)^{q-1-k} t^{2k} \sum_{a \in \mathbb{F}_q \setminus \left\{ \frac{1}{4} \right\}} a^k
= \sum_{n=1}^{q^2-1} \frac{3n-1}{2n} t^n + (q-1) \frac{(3t-2)(1-t^{q^2-1})}{1-t} + h(t) \sum_{k=1}^{q-1} (t-1)^{q-1-k} t^{2k} \sum_{a \in \mathbb{F}_q} a^k
= \sum_{n=1}^{q^2-1} \frac{3n-1}{2n} t^n - \frac{(3t-2)(1-t^{q^2-1})}{1-t} - h(t) t^{2(q-1)} - h(t) \sum_{k=1}^{q-1} (t-1)^{q-1-k} t^{2k} \left(\frac{1}{4} \right)^k.
\]

(4.5)

Since \((t-1)^q = t^q - 1 \) and \(q \) is odd, one has

\[
h(t) = \frac{(t^q - 1)(2t-1)}{(t-1)^q - (t-1)t^{2(q-1)}}
= \frac{(t^q - 1)(2t-1)}{(1-t^q)(t^q - t^{q-1} - 1)}
= \frac{(t^q - t)(2t-1)}{(t-t^q)(t^q - t^{q-1} - 1)}
= \frac{(t^q - t)^2 + t^q - t - 2t - 1}{t^q - t^{q-1} - 1}
= \frac{(-1 - (t-t^q)^{q-1})(2t-1)}{t^q - t^{q-1} - 1}
= \frac{(2t-1) \sum_{i=0}^{q^2-q} b_i t^i}{t^q - t^{q-1} - 1}.
\]

(4.6)

where

\[
\sum_{i=0}^{q^2-q} b_i t^i := -1 - (t-t^q)^{q-1}.
\]

Then by the binomial theorem applied to \((t-t^q)^{q-1} \), we can derive the following expression for the coefficient \(b_i \).
Proposition 4.2. For each integer i with $0 \leq i \leq q^2 - q$, write $i = \alpha + \beta q$ with α and β being integers such that $0 \leq \alpha, \beta \leq q - 1$. Then

$$b_i = \begin{cases} (-1)^{\beta+1} \left(\frac{q-1}{q}\right), & \text{if } \alpha + \beta = q - 1, \\ -1, & \text{if } \alpha = \beta = 0, \\ 0, & \text{otherwise}. \end{cases}$$

For convenience, let

$$a_n := \sum_{a \in \mathbb{F}_q} D_{n,3}(1,a).$$

Then by (4.5) and (4.6), we arrive at

$$\sum_{n=1}^{q^2-1} \left(a_n - \frac{3n-1}{2^n} \right) t^n = - \frac{(3t-2)(1-t^{q^2-1})}{1-t} - \frac{(2t-1) \sum_{i=1}^{q^2-q} b_i t^i}{t^q - t^{q-1} - 1} \left(t^{2(q-1)} + \sum_{k=1}^{q-1} (t-1)^{q-1-k} t^{2k} \left(\frac{1}{4} \right)^k \right) t^i,$$

which implies that

$$(t^q - t^{q-1} - 1) \sum_{n=1}^{q^2-1} \left(a_n - \frac{3n-1}{2^n} \right) t^n = - (t^q - t^{q-1} - 1)(3t-2) \sum_{i=0}^{q^2-2} t^i - (2t-1) \left(t^{2(q-1)} + \sum_{k=1}^{q-1} (t-1)^{q-1-k} t^{2k} \left(\frac{1}{4} \right)^k \right) \sum_{i=0}^{q^2-q} b_i t^i.$$ (4.8)

Let

$$\sum_{i=1}^{q^2+q-1} c_i t^i$$

denote the right-hand side of (4.9) and let

$$d_n := a_n - \frac{3n-1}{2^n}$$

for each integer n with $1 \leq n \leq q^2 - 1$. Then (4.9) can be reduced to

$$(t^q - t^{q-1} - 1) \sum_{n=1}^{q^2-1} d_n t^n = \sum_{i=1}^{q^2+q-1} c_i t^i.$$ (4.10)

Then by comparing the coefficient of t^i with $1 \leq i \leq q^2+q-1$ of the both sides in (4.10), we derive the following relations:

$$\begin{cases} c_j = -d_j, & \text{if } 1 \leq j \leq q - 1, \\ c_q = -d_1 - d_q, \\ c_{q+j} = d_j - d_{j+1} - d_{q+j}, & \text{if } 1 \leq j \leq q^2 - q - 1, \\ c_{q^2+j} = d_{q^2-j} - d_{q^2+q+j+1}, & \text{if } 0 \leq j \leq q - 2, \\ c_{q^2+q-1} = d_{q^2-1}. \end{cases}$$
from which we can deduce that
\[
\begin{aligned}
 d_j &= -c_j, & \text{if } 1 \leq j \leq q - 1, \\
 d_q &= c_1 - c_q, \\
 d_{(\ell-1)q+j} &= d_{(\ell-1)q+j-1} - c_{\ell q + j}, & \text{if } 1 \leq \ell \leq q - 2 \text{ and } 1 \leq j \leq q - 1, \\
 d_{\ell q} &= d_{(\ell-1)q} - d_{(\ell-1)q+1} - c_{\ell q}, & \text{if } 2 \leq \ell \leq q - 2, \\
 d_{q^2 - q + j} &= \sum_{i=j}^{q-1} c_{q^2 + i}, & \text{if } 0 \leq j \leq q - 1.
\end{aligned}
\] (4.11)

Finally, (4.11) together with the following identity
\[
\sum_{a \in F_q} D_{n,3}(1, a) = d_n + \frac{3n - 1}{2n}
\]
shows that the last main result of this paper is true:

Theorem 4.3. Let c_i be the coefficient of t^i in the right-hand side of (4.9) with i being an integer such that $1 \leq i \leq q^2 + q - 1$. Then we have
\[
\sum_{a \in F_q} D_{j,3}(1, a) = -c_j + \frac{3j - 1}{2^j} \quad \text{if } 1 \leq j \leq q - 1,
\]
\[
\sum_{a \in F_q} D_{q,3}(1, a) = c_1 - c_q - \frac{1}{2},
\]
\[
\sum_{a \in F_q} D_{\ell q,3}(1, a) = \sum_{a \in F_q} D_{(\ell-1)q,3}(1, a) - \sum_{a \in F_q} D_{(\ell-1)q+1,3}(1, a) - c_{\ell q + j} + \frac{3}{2^{\ell+j}} \quad \text{if } 1 \leq \ell \leq q - 2 \text{ and } 1 \leq j \leq q - 1,
\]
\[
\sum_{a \in F_q} D_{q,3}(1, a) = \sum_{a \in F_q} D_{(\ell-1)q,3}(1, a) - \sum_{a \in F_q} D_{(\ell-1)q+1,3}(1, a) - c_{\ell q} + \frac{3}{2^\ell} \quad \text{if } 2 \leq \ell \leq q - 2
\]
and
\[
\sum_{a \in F_q} D_{q^2 - q + j,3}(1, a) = \sum_{i=j}^{q-1} c_{q^2 + i} + \frac{3j - 1}{2^j} \quad \text{if } 0 \leq j \leq q - 1.
\]

References

[1] S.D. Cohen, Dickson polynomials of the second kind that are permutations, Canad. J. Math. 46 (1994), 225-238.

[2] S. Hong, X. Qin and W. Zhao, Necessary conditions for reversed Dickson polynomials of the second kind to be permutational, Finite Fields Appl. 37 (2016), 54-71.

[3] X. Hou and T. Ly, Necessary conditions for reversed Dickson polynomials to be permutational, Finite Fields Appl. 16 (2010), 436-448.

[4] X. Hou, G.L. Mullen, J.A. Sellers and J.L. Yucas, Reversed Dickson polynomials over finite fields, Finite Fields Appl. 15 (2009), 748-773.

[5] R. Lidl and H. Niederreiter, Finite Fields, second ed., Encyclopedia of Mathematics and its Applications, vol.20, Cambridge University Press, Cambridge, 1997.

[6] Q. Wang and J.L. Yucas, Dickson polynomials over finite fields, Finite Fields Appl. 18 (2012), 814-831.