DIFFERENTIABILITY PROPERTIES FOR BOUNDARY CONTROL OF FLUID-STRUCTURE INTERACTIONS OF LINEAR ELASTICITY WITH NAVIER-STOKES EQUATIONS WITH MIXED-BOUNDARY CONDITIONS IN A CHANNEL

MICHAEL HINTERMÜLLER AND AXEL KRÖNER

Abstract. In this paper we consider a fluid-structure interaction problem given by the steady Navier Stokes equations coupled with linear elasticity taken from [Lasiecka, Szulc, and Zochowski, Nonl. Anal.: Real World Appl., 44, 2018]. An elastic body surrounded by a liquid in a rectangular domain is deformed by the flow which can be controlled by the Dirichlet boundary condition at the inlet. On the walls along the channel homogeneous Dirichlet boundary conditions and on the outflow boundary do-nothing conditions are prescribed. We recall existence results for the nonlinear system from that reference and analyze the control to state mapping generalizing the results of [Wollner and Wick, J. Math. Fluid Mech., 21, 2019] to the setting of the nonlinear Navier-Stokes equation for the fluid and the situation of mixed boundary conditions in a domain with corners.

Contents

1. Introduction 2
2. The domain 4
2.1. The flow map and some transformation rules 5
2.2. Transformation of integrals 7
2.3. Transformation of the Navier-Stokes equation 7
3. Existence of solutions for the considered systems 8
3.1. The Navier-Stokes system 8
3.2. The elasticity system and the traction force 9
3.3. The fluid-structure interaction system 10
4. The linearized equations 10
4.1. Linearized state equation: Coefficients equal to one 11
4.2. The linearized state equation 12
4.3. Lower regularity 13
4.4. Higher regularity 14
4.5. Limit behaviour 19
5. Differentiability 21
Appendix A. Transformation of the Navier-Stokes equation 25
Appendix B. Transformation of the linearized Navier-Stokes equation 27
Appendix C. Some properties 28
References 28
1. Introduction

The paper deals with fluid-structure interaction (FSI) problems given by a fluid flow around an elastic body in a rectangular channel with fixed walls in two space dimensions. The elastic body deforms under the flow and is modelled by linear elasticity, for the fluid we consider the steady Navier-Stokes equation with Dirichlet condition at the inlet, no-slip condition on the wall, and do-nothing condition on the outlet. The configuration is taken from Lasiecka, Szulc, and Zochowski [LSZ18] who analyze existence of solutions to this FSI problem and existence of an optimal inflow profile, considered as a boundary control, which minimizes the drag at the interface of the elastic body and the fluid. Let \(g \) denote the Dirichlet inflow boundary values and \((u, w, p) \) be the solution of the FSI problem after transforming the variables for the fluid to a reference domain, that means \(u \) solves the elasticity equation, \((w, p) \) is the solution of the Navier-Stokes equation and both equations are coupled via the traction force at the interface and via coefficients in the Navier-Stokes equation. We show that the control to state map of the FSI problem

\[
B_r(G_{3/2}) \to X^p, \quad g \mapsto (u, w, p)
\]

with ball \(B_r(G_{3/2}) \) around zero with radius \(r > 0 \) in the space \(G_{3/2} \) defined in (2.23) and \(X^p, p > 2 \), defined in (3.15) is continuously Fréchet differentiable for sufficiently small \(r \). The differentiability is a crucial property to derive first-order optimality conditions which are usually the starting point for characterizing optimal controls and numerical schemes to solve type of optimal control problems. While the formal derivation of these optimality conditions for similar settings has been considered, see below, we leave the rigorous derivation of optimality conditions for this specific case for future work. Difficulties in the analysis to derive Fréchet differentiability arise from the fact that (i) we consider the nonlinear Navier-Stokes equation, (ii) the problem is formulated in a polygonal domain, (iii) we have mixed Dirichlet-Neumann boundary conditions, and (iv) the analysis is considered in a higher regularity setting. Differentiability of FSI problems with respect to data has been considered for the Stokes equation with Dirichlet boundary conditions in smooth domains coupled with linear elasticity in Wick and Wollner [WW19]. There the differentiability is obtained by the implicit function theorem which we apply also here following their ideas. Therefore, the linearized Navier-Stokes operator needs to be an isomorphism in suitable spaces; hence, main parts of the paper deal with the derivation of regularity results for this equation. We proceed in three steps following the procedure in [LSZ18]: (i) Derivation of a lower regularity result for the velocity pressure pair in \(W^{1,2} \times L^2 \) based on Lax-Milgram arguments, (ii) derivation of a higher regularity result in \(W^{2,2} \times W^{1,2} \) which uses estimates from [LSZ18] which relies on results from the Agmon, Douglis, and Nirenberg [ADN59] theory on elliptic systems, (iii) higher \(p \)-integrability, namely \(W^{2,p} \times W^{1,p} \) on compact subsets using commutator analysis. For the analysis of linear elasticity we rely on classical theory.

We give an overview about related literature. On FSI problems: Galdi and Kyed [GK09] analyze existence of steady FSI problems in smooth domains. Wick and Wollner [WW19] derived as mentioned the differentiability of steady FSI problems with respect to the problem data in smooth domains. For an introduction to evolutionary FSI problems we refer to Kaltenbacher et al. [KKL*18]; moreover, see, e.g., Gunzburger et al. [DGHL03, DGHL04], Grandmont and Maday [GM00], and Ignatova, Kukavica, Lasiecka, and Tuffaha [KLT17].
On optimal control and FSI: In [LSZ18] boundary control of a FSI problem with stationary Navier-Stokes equation is considered. The authors show existence of a unique solution of the underlying equation under a smallness condition as well as of an optimal control. This paper extends Grandmot [Gra02] in the sense that the problem is considered in a domain with corners and with mixed boundary conditions are allowed. In the later reference an elastic body surrounds the fluid and an additional volume constraint is imposed while in the former paper the elastic body is surrounded by the fluid, furthermore, a radial unbounded cost is considered. Rigorously derived first order optimality conditions have been, to the best knowledge of the authors, not been stated yet for the problem under consideration. Numerics including formally derived optimality conditions are considered, e.g., in Richter and Wick [RW13] where optimal control and parameter estimation for stationary FSI problems are considered.

For control of evolutionary FSI problems see, e.g. Feiler, Meidner, and Vexler [FMV16] who consider linear FSI systems with coupled linear Stokes equation and wave equation and derive optimality conditions and Moubachir and Zolesio [MZ06] who derive for an optimal control problem for nonlinear time-dependent FSI problem necessary optimality conditions formally. Existence of optimal control for the problem of minimizing flow turbulence in the case of a nonlinear fluid-structure interaction models is considered in Bociu et al. [BCMT15].

Finally, we remark that differentiability properties of shape optimization problems for fluid-structure interaction has been considered in Haubner, Ulbrich, and Ulbrich [HUU20].

Notation: Throughout the paper we use the usual notation for Lebesgue and Sobolev spaces. For spaces of type $W^{s,p}(\Omega)^2$ ($W^{s,p}(\Omega)^{2 \times 2}$ resp.) we often omit the dimension. We define the symbolic expression

\begin{equation}
(w \cdot \nabla)w := (w_i \partial_i w_1, w_i \partial_i w_2)
\end{equation}

for $w \in W^{1,2}(\Omega)^2$ using Leibniz summation convention, and we write $\text{div } w := \partial_1 w_1 + \partial_2 w_2$. We denote $\nabla \cdot \sigma := \left(\sum_{j=1}^{2} \partial \sigma_{ij} / \partial x_j \right)_{1 \leq i \leq 2}$ for $\sigma \in W^{1,2}(\Omega)^{2 \times 2}$. For matrices B_1 and B_2 in $\mathbb{R}^{2 \times 2}$ we denote the Frobenius product by $A \cdot B := \sum_{i,j=1}^{2} A_{ij} B_{ij}$. Sometimes we write 0 for the zero map. The dependence of a function f on another function g is indicated by $f[g]$ while the dependence on the spatial variable x by $f(x) = f[g](x)$. We use the following notation for the Jacobian of the flow map Φ as a function of u

\begin{equation}
\nabla \Phi := \nabla \Phi[u] := D\Phi^\top[u] := \begin{pmatrix} \partial_1 \Phi_1 & \partial_1 \Phi_2 \\ \partial_2 \Phi_1 & \partial_2 \Phi_2 \end{pmatrix} [u]
\end{equation}

and for the cofactor matrix and determinant of the Jacobian

\begin{equation}
K := K[u] := K(D\Phi[u]) := \det(D\Phi[u])D\Phi[u]^{-\top} =: \text{cof}(D\Phi[u]),
\end{equation}

\begin{equation}
J := J[u] := J(D\Phi[u]) := \det(D\Phi[u]).
\end{equation}

Moreover, we set

\begin{equation}
A := A[u] := J[u]^{-1}K[u]K[u]^\top.
\end{equation}

Further, we use the notation

\begin{equation}
\partial A[u], n w := (A[u] \nabla w) \cdot n_x
\end{equation}
with outer normal n_x to Ω_2. With
\begin{equation}
\mathcal{c}[u](v, w, z) := ((v \cdot K[u] \nabla)w, z)_{L^2(\Omega)}
\end{equation}
we simplify the notation for the case u equal zero to $c(\cdot, \cdot, \cdot) := c[0](\cdot, \cdot, \cdot)$. We set for matrix $K \in \mathbb{R}^{2 \times 2}$
\begin{equation}
\text{div}_{K^\top} w := (K \nabla)^\top w.
\end{equation}
For functions f and e and operators D we write for the commutator $[f, D]e := fDe + D(fe)$. The space of linear bounded mappings from Banach space X_1 to Banach space X_2 we denote by $L(X_1, X_2)$.

The ball of radius $r > 0$ around zero in a Banach space W we denote by $B_r(W)$. Finally, $c > 0$ denotes a generic constant and $c_\varepsilon > 0$ a constant depending on $\varepsilon > 0$.

The Euclidean norm in \mathbb{R}^d is denoted by $\| \cdot \|$.

Structure of the paper: In Section 2 we introduce the physical setting as well as the flow map and transformation rules between the physical and reference domain, in Section 3 we introduce the Navier-Stokes system, the elasticity system, and the fluid-structure interaction system and prove existence of solutions, in Section 4 we show existence and a priori estimates for the linearized system in higher Sobolev norms, and in Section 5 we show the differentiability of the control to state mapping for the FSI system. In the appendix we recall the transformation of the Navier-Stokes equation and its linearization to the reference domain.

2. The domain

We recall the problem setting from Lasiecka et al. \cite{LSZ18}. Let $D \subset \mathbb{R}^n$, $n = 2, 3$, be a bounded domain with piecewise regular boundary ∂D and straight corners as shown in Figure 1. Further, let Ω_1 and Ω_2 be subsets of D with Ω_2 being a doughnut-like domain with boundary $\partial \Omega_1 := \Gamma_{\text{int}} \cup \Gamma_1$. The exterior boundary of Ω_2 is denoted by $\Gamma_{\text{ext}} := \Gamma_{\text{in}} \cup \Gamma_{\text{wall}} \cup \Gamma_{\text{out}}$. In Ω_1 we consider a problem of linear elasticity for an elastic body with u denoting the displacement field. In the exterior subdomain Ω_2 we consider a Navier-Stokes problem for the motion of a fluid with velocity field denoted by \tilde{v}.

We consider a parallel fluid flow in the channel D containing the elastic body in Ω_1 which deforms due to the influence of surface forces by the fluid. The original boundary $\Gamma_{\text{int}} = \Gamma_{\text{int}}[0]$ of Ω_1 transforms itself into $\Gamma_{\text{int}}[u]$ with elastic displacement u on Γ_{int}, more precisely
\begin{equation}
\Gamma_{\text{int}}[u] : \Gamma_{\text{int}} \rightarrow D, \ x \mapsto x + u(x).
\end{equation}
Table 1. Variables in physical and transformed domain.

Domains	Variables	
Original domain	Ω_1, Ω_2	
Physical domain	$\Omega_1[u]$, $\Omega_2[u]$	(\tilde{w}, \tilde{p})
Reference domain	Ω_1, Ω_2	(w, p)

This leads to a new domain $\Omega_2[u]$ with boundaries Γ_{in}, Γ_{out}, Γ_{wall}, and $\Gamma_{\text{int}}[u]$. Variables in the physical domain are denoted with a tilde, cf. Table 1. The outer normal to Ω_2 is denoted by n_x and the one to $\Omega_2[u]$ by n_y. The outer normal to Ω_1 is denoted by n_1.

2.1. The flow map and some transformation rules.

In this section we introduce the flow map and study the transformation between the physical and reference domain. At first, we recall some standard operators. The trace operator (cf. [EG04, Thm. B.54])

\[\gamma: W^{2,p}(\Omega_1) \to W^{2-1/p,p}(\Gamma_{\text{int}}), \quad 2 \leq p < \infty, \]

is surjective and satisfies for $u \in W^{2,p}(\Omega_1)$

\[\|\gamma u\|_{W^{2-1/p,p}(\Gamma_{\text{int}})} \leq c \|u\|_{W^{2,p}(\Omega_1)}, \]

The corresponding trace operator for any open subset $\omega \subset \Gamma_{\text{in}} \cup \Gamma_{\text{wall}}$ we denote by γ_ω.

Proposition 2.1 (Dirichlet harmonic extension). For $2 \leq p < \infty$ the harmonic extension

\[D: W^{2-1/p,p}(\Gamma_{\text{int}}) \to W^{2,p}(\Omega_2), \quad \eta_i \mapsto Du_i =: \phi_i[\eta_i], \quad i = 1, 2 \]

is well-posed and satisfies the estimate

\[\|\phi_i\|_{W^{s,p}(\Omega_2[\eta_i])} \leq C \|\gamma_{\Gamma_{\text{int}}} \eta\|_{W^{s-1/p,p}(\Gamma_{\text{int}})}, \quad \text{for } i = 1, 2. \]

Proof. We refer, e.g., to Casas, Mateos, and Raymond [CMR09, Lem. A.2].

In the following we set $\phi[\eta] := (\phi_1[\eta_1], \phi_2[\eta_2])^T$ for ϕ_i defined in (2.4).

Throughout the paper let the integrability exponent $p > 2$.

Definition 2.2 (Flow map). For $u \in W^{2,p}(\Omega_1)$, and ϕ defined in (2.5) the flow map is given by

\[\Phi: W^{2,p}(\Omega_1) \to W^{2,p}(\Omega_2[u]), \quad \Phi[u] := \text{id} + \phi(\gamma_{\Gamma_{\text{int}}} u). \]

Here, $\Phi[u](x)$ lifts the boundary trace $u|_{\Gamma_{\text{int}}} = \gamma_{\Gamma_{\text{int}}} u \in W^{1-1/p,p}(\Gamma_{\text{int}})$ from the interface Γ_{int} into $\Omega_2[u] = \Phi(\Omega_2)$, in particular we have $\Omega_2 = \Omega_2[0] = \Phi^{-1}(\Omega_2[u])$.

We define $U^p := W^{2,p}(\Omega_1)$.

From Grandmont [Gra02] we recall the following properties stated there for a three dimensional spatial setting.
Lemma 2.3. (i) The mapping $K : W^{2,p}(\Omega_1) \to W^{1,p}(\Omega_2)$

\begin{equation}
K[u] := \text{cof}(\nabla \Phi[u])
\end{equation}

is of class C^∞ with cofactor defined in (1.4).

(ii) The mapping $G : W^{2,p}(\Omega_1) \to W^{1,p}(\Omega_2)$

\begin{equation}
G[u] := \nabla \Phi[u]
\end{equation}

is of class C^∞. There exists a $r_1 > 0$ such that for all $u \in B_{r_1}(U^p)$ we have

\begin{equation}
G[u] = \nabla \Phi(u) = \nabla \Phi(Lu) = \nabla \Phi(L^2 u) = \cdots = \nabla \Phi(L^{r_1} u)
\end{equation}

is an invertible matrix in $W^{1,p}(\Omega_2)$. Moreover, we have

(iia) $\Phi(u) = \id + D(\gamma_{\Gamma_{\text{int}}}(u))$ is injective on Ω_{Γ},

(ii.b) $\Phi(u) : \Omega_2 \to \Phi[u](\Omega_2)$ is a C^1-diffeomorphism.

(iii) The mapping $A : B_{r_1}(U^p) \to W^{1,p}(\Omega_2)$, with

\begin{equation}
A[u] := (\nabla(\Phi(u)))^{-1} \text{cof}((\nabla(\Phi(u)))^{-1})
\end{equation}

is of class C^∞.

Moreover, A satisfies a condition of uniform ellipticity over $B_{r_1}(U^p)$, i.e. there exists a constant $\beta > 0$ such that

\begin{equation}
A(u)(x) \geq \beta \Id, \quad \text{for all } u \in B_{r_1}(U^p), \quad \text{and all } x \in \Omega_2.
\end{equation}

Proof. (i) The mapping $K[u]$ belongs to $W^{1,p}(\Omega_2)$ since $W^{1,p}(\Omega_2)$ is an algebra for $p > 2$ (see Lemma C.1 with $p = q$). As a composition of C^∞ mappings it is smooth.

(ii) For the first statement we apply the same arguments as in (i). For the second, we use that

\begin{equation}
\Phi(u) = \id + D(\gamma_{\Gamma_{\text{int}}}(u)) \in W^{2,p}(\Omega_2), \quad \forall u \in W^{2,p}(\Omega_1).
\end{equation}

Choosing r_1 such that

\begin{equation}
\|u\|_{W^{2,p}(\Omega_2)} \leq r_1 \quad \text{implies} \quad \|\nabla(D(\gamma_{\Gamma_{\text{int}}}(u)))\|_{W^{1,p}(\Omega_2)} < \frac{1}{c},
\end{equation}

where c is the constant in Lemma C.1, then $\id + \nabla(D(\gamma_{\Gamma_{\text{int}}}(b)))$ in an invertible matrix in $W^{1,p}(\Omega_2)$ and we get the result.

For the proof of (ii.a) and (ii.b) we refer to Grandmont [Gra02, Lem. 2].

(iii) We recall the ideas from [Gra02, Lem. 3]. Let $b \in B_p$. That $A[u] \in W^{1,p}(\Omega_2)$ follows from point (ii). As for the regularity of A, it is sufficient to show that the mapping:

\begin{equation}
W^{1,p}(\Omega_2) \to W^{1,p}(\Omega_2), \quad T \mapsto T^{-1}
\end{equation}

is infinitely differentiable at any invertible matrix of $W^{1,p}(\Omega_2)$. This can be proven by standard arguments, see [Car67, Chap. 1]. The condition of uniform ellipticity of A over $B_{r_1}(U^p)$ derives from continuity and compactness arguments ($W^{1,p}(\Omega_2)$ is compactly embedded in $C(\Omega_2)$).

For the estimate for the derivative we use the boundedness of A on the bounded set $B_{r_1}(U^p)$. \qed
Lemma 2.4. Let the following relations hold:

\begin{align}
\pi(x) &:= \hat{\pi}(y), \quad y = \Phi(x)
\end{align}

which is well-defined by Lemma 2.3 (ii). Moreover, we denote the determinant of the gradient of the flow map by

\begin{align}
J(\cdot) &:= \det(D\Phi(\cdot)).
\end{align}

As a direct consequence we have \(A[u] = J[u]^{-1}K[u]^T K[u]\).

Lemma 2.4. Let \(u \in B_{\rho}(U^p)\) and \(\Phi\) be defined by Proposition 2.7. Then, the following relations hold:

(i) Volume elements transform as

\begin{align}
\int_{\Omega_2[u]} 1dy = \int_{\Omega_2} J(x)dx,
\end{align}

(ii) Boundary elements transform with \(J_G[u] := \|K[u]n_x\|\) as

\begin{align}
\int_{\Gamma_{out}[u]} 1ds_y = \int_{\Gamma_{out}[\Phi]} J_G[u]ds_x.
\end{align}

(iii) The gradient transforms as

\begin{align}
\nabla \hat{f}(y) = D\Phi^T \nabla f(x) \quad \text{iff} \quad \nabla = \frac{1}{J}K
\end{align}

(iv) For the outer normal \(n_y\) to \(\Omega_2[u]\) and \(n_x\) to \(\Omega_2\) we have

\begin{align}
n_y = \frac{D\Phi^{-T}n_x}{\|D\Phi^{-1}n_x\|} = \frac{Kn_x}{\|Kn_x\|}
\end{align}

\begin{align}
\int_{\Gamma_{out}[\Phi]} \hat{p}(y)n_yds_y = \int_{\Gamma_{out}[\Phi]} p(x) \frac{\text{cof}(\nabla \phi[u])n_x}{\|\text{cof}(\nabla \phi[u])n_x\|} \frac{\|\text{cof}(\nabla \phi[u])n_x\| n_x ds_x.
\end{align}

Proof. We refer to [LSZ18, Appendix A.1].

2.3. Transformation of the Navier-Stokes equation. We consider the Navier-Stokes system in \(\mathbb{R}^2\) with viscosity \(\nu > 0\). We define

\begin{align}
\mathcal{G}_\mu := \{g \in W^{n,2}(\Gamma_{in}) : g|_{\partial\Gamma_{in}} = 0\}, \quad \text{for } \mu \in \left\{\frac{1}{2}, \frac{3}{2}\right\}.
\end{align}

Let \(\vec{w} = (\vec{w}_1, \vec{w}_2)^T\) the fluid velocity and \(\hat{p}\) the pressure in the physical domain \(\Omega_2[u] = \Phi[u](\Omega_1)\) satisfying

\begin{align}
\begin{cases}
-\nu \Delta x \vec{w}_1 + \vec{w}^T \nabla \vec{w}_1 + (\nabla \hat{p})_1 = 0 & \text{in } \Omega_2[u], \\
-\nu \Delta x \vec{w}_2 + \vec{w}^T \nabla \vec{w}_2 + (\nabla \hat{p})_2 = 0 & \text{in } \Omega_2[u], \\
\nabla^T \vec{w} = 0 & \text{in } \Omega_2[u], \\
w = g & \text{on } \Gamma_{in}, \\
\hat{w} = 0 & \text{on } \Gamma_{wall} \cup \Gamma_{int}[u], \\
-\nu D\hat{w} \cdot n_y + \hat{p} \cdot n_y = 0 & \text{on } \Gamma_{out}
\end{cases}
\end{align}

and given data \(g \in \mathcal{G}_{1/2}\). Let \(\Gamma_{bd} := \Gamma_{in} \cup \Gamma_{wall} \cup \Gamma_{out}\), and we have by (2.5) \(\Phi = \text{id}_x\) on \(\Gamma_{bd}\) such that for trial functions \(\hat{\psi}_1\) and \(\hat{\psi}_2\) vanishing on \(\Gamma_{bd}\) also the transformed
ψ_1 and ψ_2 vanish on Γ_{bd}. The transformed strong form of the Navier-Stokes system in Ω_2 is given by (cf. [LSZ18, Appendix A.1]), see also Appendix A,
\begin{equation}
\begin{aligned}
-\nu \nabla (A[u] \nabla w) + w(K[u] \nabla) + K[u] \nabla p = 0 & \quad \text{in } \Omega_2, \\
(K[u] \nabla)^\top w = 0 & \quad \text{in } \Omega_2, \\
w = g & \quad \text{on } \Gamma_{in}, \\
w = 0 & \quad \text{on } \Gamma_{wall} \cup \Gamma_{int}, \\
-\nu (A[u] \nabla w) \cdot n_x + pK[u] \cdot n_x = 0 & \quad \text{on } \Gamma_{out}.
\end{aligned}
\end{equation} (2.25)
Since Φ = id on Γ_{ext} we have K n_x = n_x on Γ_{out}.

3. Existence of solutions for the considered systems

In this section we consider the nonlinear Navier-Stokes system, the linear elasticity system, as well as the fluid-structure interaction model.

3.1. The Navier-Stokes system. For m = 0, 1, 2 we introduce
\begin{equation}
\tilde{W}^{m,p}(\Omega_2) := \{ v \in W^{m,2}(\Omega_2) : v \in W^{m,p}(\hat{\Omega}_2) \text{ for } \hat{\Omega}_2 \subset \Omega_2 \text{ compact} \},
\end{equation} (3.1)
and further the spaces,
\begin{equation}
W^p := \tilde{W}^{2,p}(\Omega_2) \times \tilde{W}^{1,p}(\Omega_2), \quad W := W^{2,2}(\Omega_2) \times W^{1,2}(\Omega_2).
\end{equation} (3.2)
For a given compact subset \hat{\Omega}_2 \subset \Omega_2 we write
\begin{equation}
W^p_{\hat{\Omega}_2} := W^{2,p}(\hat{\Omega}_2) \cap W^{2,2}(\Omega_2), \quad W^p_{\hat{\Omega}_2} := W^{1,p}(\hat{\Omega}_2) \cap W^{1,2}(\Omega_2);
\end{equation} (3.3)
note the different meaning of p here as upper and lower index.

Theorem 3.1. One can choose r > 0, r_1 > 0, and r_2 > 0 such that for all g ∈ B_{r_1}(g_{3/2}) and w ∈ B_{r_1}(W^p) there exists a unique solution (w, p) in B_{r_2}(W^p) of (2.25). Moreover, for any compact subset \hat{\Omega}_2 ⊂ \Omega_2 the solution (w, p) ∈ B_{r_2}(W^p_{\hat{\Omega}_2}) depends continuously on g.

Proof. We follow closely ideas from [LSZ18]. We consider the fixed point equation
\begin{equation}
\mathcal{N}_g : B_{r_1}(W^p_{\hat{\Omega}_2}) \to B_{r_1}(W^p_{\hat{\Omega}_2}), \quad (w, p) = \mathcal{N}_g(\tilde{w}, \tilde{p}),
\end{equation} (3.4)
where \mathcal{N}_g maps for given g ∈ B_{r_1}(G_{3/2}) the point (\tilde{w}, \tilde{p}) to the solution (w, p) of
\begin{equation}
\begin{aligned}
-\nu \nabla (\nabla w) + \nabla p = -\nu \nabla (\nabla (-A[u] + id)\tilde{w}) - (\tilde{w}(K[u] - id)\nabla)\tilde{w} - (K[u] - id)\nabla \tilde{p} & \quad \text{in } \Omega_2, \\
\text{div } w = -((K[u] - id)\nabla)^\top \tilde{w} & \quad \text{in } \Omega_2, \\
w = g & \quad \text{on } \Gamma_{in}, \\
w = 0 & \quad \text{on } \Gamma_{wall} \cup \Gamma_{int}, \\
-\nu \partial_n w + p \cdot n_x = \nu(\partial_{A[u]} w - \partial_n)\tilde{w} - \tilde{p}(K[u] - id) \cdot n_x & \quad \text{on } \Gamma_{out}.
\end{aligned}
\end{equation} (3.5)
Existence follows by Banach’s fixed point theorem, see [LSZ18, (68),(85)], using smallness of the data g.

The continuous dependence on the data follows by the contraction property of \mathcal{N}_g and the continuous dependence of the iterates on g. \qed
Hypothesis 3.2. For given $r_2 > 0$ let $r > 0$ and $r_1 > 0$ be sufficiently small such that for all $g \in B_r(G_{3/2})$ and $u \in B_{r_1}(U^p)$ the Navier-Stokes equation (2.25) has a unique solution (w, p) in $B_{r_2}(W^p)$.

3.2. The elasticity system and the traction force. We set $B := \{ \zeta \in W^{2,p}(\Omega_1) : \zeta|_{\Gamma_1} = 0 \}$ and define the Neumann harmonic extension

\begin{equation}
N : W^{1-1/p,p}(\Gamma_{\text{int}}) \to B, \quad v \mapsto u = Nv,
\end{equation}

with u be the solution of

\begin{equation}
\begin{cases}
-\text{div} \sigma[u] = 0 & \text{in } \Omega_1, \\
\sigma[u] = A\varepsilon[u] & \text{on } \Omega_1, \\
u = 0 & \text{on } \Gamma_1, \\
\sigma[u] \cdot n_1 = v \cdot n_1 & \text{on } \Gamma_{\text{int}},
\end{cases}
\end{equation}

with outer normal n_1 to Ω_1 strain tensor $\varepsilon(u) := \frac{1}{2}(\nabla u + \nabla u^\top)$, Piola Kirchhoff stress tensor components $\sigma = \sigma_{ij}$, $i, j = 1, 2, 3$, and the elasticity tensor $A = a_{ijkl}$, $i, j, k, l = 1, 2, c_0 > 0$ with

\begin{align}
(3.8) \quad & a_{ijkl} \xi_{ik} \xi_{lj} \geq c_0 \| \xi \|^2, \quad \forall \xi_{ij}, \quad \xi_{ij} = \xi_{ji}, \quad \text{(positive definiteness)}, \\
(3.9) \quad & a_{ijkl} = a_{klij} = a_{ijkl}, \quad a_{ijkl} \in L^\infty(\Omega_1) \quad \text{(symmetry)},
\end{align}

vector n_1 is the unit outward normal along Γ_{int} pointing from Ω_1 to Ω_2. We call u the displacement field and will also consider the system with inhomogeneous right hand side

\begin{equation}
\begin{cases}
-\text{div} \sigma[u] = f_1 & \text{in } \Omega_1, \\
\sigma[u] = A\varepsilon[u] & \text{on } \Omega_1, \\
u = 0 & \text{on } \Gamma_1, \\
\sigma[u] \cdot n_1 = v \cdot n_1 & \text{on } \Gamma_{\text{int}},
\end{cases}
\end{equation}

\begin{theorem}
(i) For $f_1 \in L^p(\Omega_1)$ and $v \in W^{1-1/p,p}(\Gamma_{\text{int}})$ system (3.7) has a unique solution $u \in W^{2,p}(\Omega_1)$, i.e. the Neumann harmonic extension is well-defined and we have

\begin{equation}
\| Nv \|_{W^{2,p}(\Omega_1)} \leq c \left(\| v \|_{W^{1-1/p,p}(\Gamma_{\text{out}})} + \| f_1 \|_{L^p(\Omega_1)} \right).
\end{equation}

(ii) Moreover,

\begin{equation}
S : L^p(\Omega_1) \times W^{1-1/p,p}(\Gamma_{\text{int}}) \to W^{2,p}(\Omega), \quad (f_1, v) \mapsto u
\end{equation}

is continuously differentiable.

\end{theorem}

\begin{proof}
(i) We refer to Ciarlet [Cia88, Thm. 6.3-6 and p. 298], note that Γ_{int} has positive distance to $\Gamma_{\text{wall}} \cup \Gamma_{\text{out}} \cup \Gamma_{\text{in}}$.

(ii) Follows from the linearity of the mapping.
\end{proof}

Next, we define the traction force on the interface Γ_{int}.

\begin{definition}[Traction map] Let $u \in W^{2,p}(\Omega_1)$. The traction force is given by

\begin{equation}
t : W^{2,p}(\Omega_1) \times W^{1,2}(\Omega_2) \to W^{1/2,2}(\Gamma_{\text{int}}),
\end{equation}

\begin{equation}
(u, p) \mapsto t[u, p] := p[u]K[u] \cdot n_x \text{ on } \Gamma_{\text{int}}
\end{equation}

with $p[u]$ the pressure in the solution of the Navier-Stokes equation (2.25) and $K[u]$ given by (1.4).

\end{definition}
Since \(p \in W^{1,p}(\Omega_2) \) for compact subsets \(\hat{\Omega}_2 \subset \Omega_2 \) and \(K[u] \) in \(W^{1,p}(\Omega_2) \) with \(p > 2 \), we have \(pK[u] \in W^{1,p}(\hat{\Omega}_2) \) and so \((pK[u])|_{\Gamma_{\text{int}}} \in W^{1/2,2}(\Gamma_{\text{int}}) \). Note that on the interface \(\Gamma_{\text{int}} \) we have \(w = 0 \).

3.3. The fluid-structure interaction system.

For \(g \in B_r(\mathcal{G}_{3/2}) \) and \(f_1 = 0 \) we can state the fluid-structure interaction model given as

\[
\begin{aligned}
\text{(2.25)} & \\
\text{together with} & \\
u = \mathcal{N}(u,p) \text{ in } \Omega_1 \\
\text{with } N \text{ and } t \text{ defined in (3.6) and (3.13)}.
\end{aligned}
\]

For \(\hat{\Omega}_2 \subset \Omega_2 \) compact we introduce for \(2 < p < \infty \) the spaces

\[
X^p := U^p \times W^p_{\hat{\Omega}_2}, \quad X_2^p := U^p \times W, \quad X^p := X_1^p \cap X_2^p.
\]

Theorem 3.5. For any \(\hat{r} > 0 \) there exist an \(r > 0 \) such that for \(g \in B_r(\mathcal{G}_{3/2}) \) problem (3.14) has a unique solution \((u, w, p) \in B_{\hat{r}}(X^p)\) which depends continuously on the data.

Proof. We refer to [LSZ18, Thm. 3.2]. The proof uses a fixed-point argument based on estimates which we already cited in the proof of Theorem 3.1.

\[
\square
\]

4. The linearized equations

In this section we analyze the linearized Navier-Stokes equation in the domain \(\Omega_2 \) and derive regularity results for its solution using techniques from [LSZ18] which are applied there for the Navier-Stokes equation.

We introduce the spaces

\[
\mathcal{H} := \{ w \in W^{1,2}(\Omega_2)^2 : w = 0 \text{ on } \Gamma_{\text{in}} \cup \Gamma_{\text{int}} \cup \Gamma_{\text{wall}} \}
\]

and recall the property that for \(p > 2 \) we have \(W^{1,p}(\Omega_2) \subset L^q(\Omega_2) \), \(1 \leq q \leq \infty \). Moreover, for \(u \in U^p \) and \((v, w, y) \in \Pi_{i=1}^3 W^{1,2}(\Omega_2)^2 \) we define

\[
c[u](v, w, y) := ((v \cdot K[u]) \nabla w, y)_{L^2(\Omega_2)}. \]

Lemma 4.1. Let \(u \in U^p \) and \((v, w, y) \in \Pi_{i=1}^3 W^{1,2}(\Omega_2)^2 \), then (4.2) can be estimated as

\[
|c[u](v, w, y)| \leq c(u) \|v\|_{W^{1,2}(\Omega_2)^2} \|w\|_{L^4(\Omega_2)^2} \|y\|_{L^4(\Omega_2)^2}.
\]

Proof. By Sobolev’s embedding we have \(\partial_j v_i \in L^2(\Omega_2) \) and the functions \(w_j \) and \(y_i \) belong to \(L^4(\Omega_2) \) and hence,

\[
\int_{\Omega_2} |w_j \partial_j w_i z_i| \, dx \leq \int_{\Omega_2} |\partial_j v_i|^2 \, dx \int_{\Omega_2} |w_j|^4 \, dx \int_{\Omega_2} |z_i|^4 \, dx
\]

and we conclude.

\[
\square
\]

In the following we write \(c(v, w, y) \) for \(c[0](v, w, y) \) with 0 denoting the zero map.
4.1. Linearized state equation: Coefficients equal to one. Let
\[
\begin{cases}
 -\nu \Delta w + (\hat{w} \nabla)w + (z_w \nabla)\hat{w} + \nabla z_p = f & \text{in } \Omega_2, \\
 -(\nabla y) \cdot z_w = f_2 & \text{in } \Omega_2, \\
 z_w = \delta g & \text{on } \Gamma_{\text{in}}, \\
 z_w = 0 & \text{on } \Gamma_{\text{wall}} \cup \Gamma_{\text{int}}, \\
 -\nu \partial_n z_w + z_p \cdot n_x = f_3 & \text{on } \Gamma_{\text{out}}.
\end{cases}
\]

(4.6)

Let \(F : W^{1,2}(\Omega_2) \to \mathbb{R} \) be given by
\[
F(v) := \int_{\Omega} (f + f_2) \cdot v \, dx + \int_{\Gamma_{\text{out}}} f_3 \cdot v \, dy, \quad v \in W^{1,2}(\Omega_2),
\]
and for \(\hat{w} \in \mathcal{H} \) we define \(b_{\hat{w}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R} \), by
\[
b_{\hat{w}}(w, v) := \nu \int_{\Omega} \nabla w \cdot \nabla v \, dx + c(\hat{w}, w, v) + c(w, \hat{w}, v).
\]

To address the linearized terms a smallness condition on the velocity \(\hat{w} \) is made, see also de los Reyes and Yousept [dlRY09].

Lemma 4.2. For \(r_2 > 0 \) sufficiently small we have
\[
b_{\hat{w}}(v, v) \geq c \|v\|^2_{W^{1,2}(\Omega_2)} \text{ for all } v \in W^{1,2}(\Omega_2);
\]
moreover, the bilinear form \(b_{\hat{w}}(\cdot, \cdot) \) is continuous.

Proof. By Lemma 4.1 there exists an \(\varepsilon > 0 \) such that
\[
\nu (\nabla v, \nabla v) + c(v, \hat{w}, w) + c(\hat{w}, v, v)
\geq \|\nabla v\|^2_{L^2(\Omega_2)} - \varepsilon \|v\|^2_{L^2(\Omega_2)} - \varepsilon \|\nabla v\|_{L^2(\Omega_2)} \|v\|_{L^2(\Omega_2)}
\geq \frac{\nu}{2} \|v\|^2_{W^{1,2}(\Omega_2)}.
\]

The continuity follows again from Lemma 4.1 and Sobolev’s embedding. \(\square \)

The weak formulation for (4.6) is given as follows: Find \(z_w \in \mathcal{H} \) solution of
\[
\begin{cases}
b_{\hat{w}}(z_w, v) - \int_{\Omega_2} z_p \nabla v \, dx = F(v) & \text{for all } v \in \mathcal{H}, \\
\text{div } z_w = f_2 & \text{in } \Omega_2, \\
\end{cases}
\]

(4.11)

Theorem 4.3. For \(\|\hat{w}\|_{W^{1,2}(\Omega_2)} \) sufficiently small system (4.6) (resp. (4.11)) has a unique solution \((z_w, z_p) \in W^{1,2}(\Omega_2) \times L^2(\Omega_2)\) with
\[
\|z_w\|_{W^{1,2}(\Omega_2)} + \|z_p\|_{L^2(\Omega_2)} \leq c \|f\|_{W^{-1,2}(\Omega_2)} + c \|f_2\|_{L^2(\Omega_2)}
+ c \|f_3\|_{W^{-1/2,2}(\Gamma_{\text{out}})} + c \|\delta g\|_{W^{1/2,2}(\Gamma_{\text{in}})}.
\]

Note, that this lower regularity existence and the estimate follows by classical Lax-Milgram arguments, see [LSZ18, Step 1] and also [MR10, Theorem 11.1.2], together with Lemma 4.2.
Hypothesis 4.4. Let \(r_2 > 0 \) be sufficiently small such that for \(\hat{w} \in B_{r_2}(\tilde{W}^{2,p}(\Omega_2)) \) equation (4.6) has a unique solution \((z_w, \dot{z}_p) \in W^{1,2}(\Omega_2) \times L^2(\Omega_2)\).

Note, that here we consider a higher norm than necessary with respect to Theorem 4.3. This is due to the fact that later we will also estimate higher norms of \(\hat{w} \).

4.2. The linearized state equation. Let \((\hat{w}, \hat{p})\) be given solution of the Navier-Stokes equation (2.25). We consider the in this point linearized equation with inhomogeneous right hand sides chosen as in (4.5) given by
\[
\begin{cases}
-\nu \Delta (A[u]z_w) + \hat{w}(K[u]\nabla)z_w + z_w(K[u]\nabla)\hat{w} + K[u]\nabla z_p = f & \text{in } \Omega_2, \\
(K[u]\nabla)\nabla z_w = f_2 & \text{in } \Omega_2, \\
z_w = \delta g & \text{on } \Gamma_{\text{in}}, \\
z_w = 0 & \text{on } \Gamma_{\text{wall}} \cup \Gamma_{\text{int}}, \\
-\nu \partial A[u]n z_w + z_p K[u] \cdot n_x = f_3 & \text{on } \Gamma_{\text{out}}.
\end{cases}
\]

We follow the approach from [LSZ18] where the nonlinear Navier-Stokes equation is analyzed and ideas from Grandmont [Gra02]. We recall a technical result which follows by a Taylor argument.

Lemma 4.5. For \(r_u \) and \(r_w \) positive and \(\bar{u} \in B_{r_u}(U^p) \) and \(\bar{w} \in B_{r_w}(X^p) \) and some \(s \geq 1 \) the following estimates hold:
\[
\begin{align*}
(i) & \quad \|A(\bar{u}) - \text{id}\|_{L^\infty(\Omega_2)} \leq cr_u^s, \\
(ii) & \quad \|A(\bar{u}) - \text{id}\|_{W^{1,p}(\Omega_2)} \leq cr_u^s, \\
(iii) & \quad \|K(\bar{u})\|_{L^\infty(\Omega_2)} \leq c(1 + r_u^s), \\
(iv) & \quad \|K(\bar{u}) - \text{id}\|_{L^\infty(\Omega_2)} \leq cr_u^s,
\end{align*}
\]

as well as
\[
\|\nabla ((A(\bar{u}) - \text{id})\nabla)\bar{w}\|_{L^q(\Omega_2)} \leq cr_u^s \|\bar{w}\|_{W^{2,q}(\Omega_2)}
\]
for some \(s \geq 1 \) and \(q \geq 2 \).

Proof. See [LSZ18, Lem. 4.1].

We follow ideas in [LSZ18, Prop. 4.2, Lem. 4.3, Lem 4.4, and Lem. 4.5] developed there for the Navier-Stokes equation to analyze the linearized equation in (4.13). We start with a preliminary consideration which is later used in (4.29).

Lemma 4.6. For \(v \in W^{1,p}(\Omega_2) \) and \(s \in L^2(\Gamma_{\text{out}}) \) we have
\[
\|vs\|_{W^{-1/2,2}(\Gamma_{\text{out}})} \leq \|v\|_{L^\infty(\Omega_2)} \|s\|_{W^{-1/2,2}(\Gamma_{\text{out}})}.
\]

Proof. Since \(W^{1,p} \subset C(\overline{\Omega}) \) continuous the product of the trace of \(v \) on \(\Gamma_{\text{out}} \) with \(s \) is in \(L^2(\Gamma_{\text{out}}) \subset W^{-1/2,2}(\Gamma_{\text{out}}) \) and we have
\[
\|vs\|_{W^{-1/2,2}(\Gamma_{\text{out}})} = \sup_{\|\eta\|_{W^{1/2,2}(\Gamma_{\text{out}})} = 1} ([v|s| |\eta|]_{L^2(\Gamma_{\text{out}})})
\leq \|v\|_{L^\infty(\Gamma_{\text{out}})} \|s\|_{W^{-1/2,2}(\Gamma_{\text{out}})}.
\]

Again using that \(v \) is continuous up to the boundary we conclude.

For given \(u \in B_{r_1}(U^p) \) we define a map
\[
T = T_u: W^p \to W^p, \quad (\dot{z}_w, \dot{z}_p) \mapsto (z_w, z_p)
\]
by rewriting (4.13) as
\[
\begin{align*}
-\nu \nabla (\nabla z_w) + (\dot{w} \nabla) z_w + (z_w \nabla) \dot{w} + \nabla z_p &= -\nu \nabla (\nabla (-A[u] + \text{id}) \bar{z}_w) \\
&= -\nu \nabla (\nabla (K[u] - \text{id}) \bar{z}_w) \\
&= -(K[u] - \text{id}) \nabla \bar{z}_p + f \\
\text{div} z_w &= -((K[u] - \text{id}) \nabla) \bar{z}_w + f_2 \\
\bar{z}_w &= \delta g \\
\bar{z}_w &= 0 \\
-\nu \partial_n z_w + z_p \cdot n_x &= \nu \partial A[u] - \text{id}, n \bar{z}_w - \bar{z}_p (K[u] - \text{id}) \cdot n_x + f_3 \\
&\text{on } \Gamma_{\text{in}}, \\
&\text{on } \Gamma_{\text{wall}} \cup \Gamma_{\text{int}}, \\
&\text{in } \Omega_2,
\end{align*}
\]
this will allow to define a sequence \((z_{w,n}, \bar{z}_{p,n})\) for certain \((\bar{z}_w, \bar{z}_p) \in W^p\) which we further analyze in Section 4.5 to obtain existence of a solution for (4.13).

Lemma 4.7. Let \(r_u\) and \(r_w\) positive. For \(u \in B_{r_u}(U^p)\) and \(v \in B_{r_w}(W^{1,p}(\Omega_2))\) we have
\[
\|v(K(u) \nabla) z_w\|_{L^p(\Omega_2)} \leq c(1 + r_u^s) r_w \|z_w\|_{W^{1,p}(\Omega_2)}.
\]
Proof. We have
\[
\|v(K(u) \nabla) z_w\|_{L^p(\Omega_2)} \leq \|K(u)\|_{L^\infty(\Omega_2)} \|v\|_{L^\infty(\Omega_2)} \|\nabla z_w\|_{L^p(\Omega_2)} \\
\leq (1 + r_u^s) r_w \|z_w\|_{W^{1,p}(\Omega_2)}
\]
and conclude with Lemma 4.5. \(\square\)

4.3. Lower regularity
We have the following a priori \(W^{1,2} \times L^2\)-estimate without having to take into account the special situation of mixed boundary conditions.

Lemma 4.8. Let Hypothesis 4.4 be satisfied. For the solution \((z_w, \bar{z}_p)\) of (4.17) we have the estimate
\[
\begin{align*}
\|z_w\|_{W^{1,2}(\Omega_2)} + \|\bar{z}_p\|_{L^2(\Omega_2)} &\leq c \|f\|_{L^2(\Omega_2)} + c \|f_2\|_{L^2(\Omega_2)} + c \|g\|_{W^{1,2}(\Gamma_{\text{in}})} \\
&\quad + c \|f_3\|_{W^{-1/2,2}(\Omega_2)} + c r_u^s \|\bar{z}_w\|_{W^{2,2}(\Omega_2)} \\
&\quad + c r_u^s \|\bar{z}_p\|_{W^{1,2}(\Omega_2)}
\end{align*}
\]
with constant \(c\) depending on \(r_2\) and \(s \geq 1\) and \(p > 2\).

Proof. By Theorem 4.3 we have existence of a unique solution and the following lower regularity result for the solution \((z_w, \bar{z}_p)\) given by
\[
\begin{align*}
\|z_w\|_{W^{1,2}(\Omega_2)} + \|\bar{z}_p\|_{L^2(\Omega_2)} &\leq c \left(\|f\|_{L^2(\Omega_2)} + \|f_2\|_{W^{1,2}(\Omega_2)} + \|g\|_{W^{1,2}(\Gamma_{\text{in}})} \\
&\quad + \|f_3\|_{W^{-1/2,2}(\Omega_2)} + \|F(u, \bar{z}_w, \bar{z}_p)\|_{L^2(\Omega_2)} + \|F_2(\bar{z}_w, u)\|_{L^2(\Omega_2)} \\
&\quad + \|\partial A[u] - \text{id}, n \bar{z}_w\|_{W^{-1/2,2}(\Gamma_{\text{out}})} + \|\bar{z}_p (K[u] - \text{id})\|_{W^{-1/2,2}(\Gamma_{\text{out}})} \right),
\end{align*}
\]
where
\[
\begin{align*}
F(u, \bar{z}_w, \bar{z}_p) &:= -\nu \nabla ((-A[u] + \text{id}) \nabla \bar{z}_w) \\
&\quad - \bar{z}_w (K[u] - \text{id}) \nabla \dot{w} - \bar{z}_w (K[u] - \text{id}) \nabla \bar{z}_w - (K[u] - \text{id}) \nabla \bar{z}_p, \\
F_2(u, \bar{z}_w) &:= \text{div} (\text{id} - K[u]) \bar{z}_w = ((\text{id} - K[u]) \nabla) \cdot \bar{z}_w.
\end{align*}
\]
We estimate each term separately. Differently to [LSZ18] we have to estimate the linearized convection term
\begin{equation}
\left\| \bar{z}_u - (K[u] - \id) \nabla \bar{w} \right\|_{L^2(\Omega_2)} \leq c \|K[u] - \id\|_{L^\infty(\Omega_2)} \|\bar{z}_u\|_{L^\infty(\Omega_2)} \|\nabla \bar{w}\|_{L^2(\Omega_2)} \leq cr_{K}^4 r_2 \|\bar{z}_u\|_{L^\infty(\Omega_2)}
\end{equation}
and accordingly,
\begin{equation}
\left\| \bar{w}(K[u] - \id) \nabla \bar{z}_w \right\|_{L^2(\Omega_2)} \leq c r_{K}^4 \|\bar{z}_w\|_{W^{1,2}(\Omega_2)} \|\bar{w}\|_{L^\infty(\Omega_2)}.
\end{equation}
The other terms are treated in the same way, for simplicity we recall here the main steps. For some \(s \geq 1\) using Lemma 4.5, we have for the diffusion term
\begin{equation}
\left\| \nu \nabla ((A[u] - \id) \nabla z_w) \right\|_{L^2(\Omega_2)} \leq c r_{A}^s \|z_w\|_{W^{1,2}(\Omega_2)}.
\end{equation}
Again by [LSZ18, Lem. 4.1] we obtain for the term involving the pressure
\begin{equation}
\left\| \partial A u - \id \right\|_{L^2(\Omega_2)} \leq \left\| A[u] - \id \right\|_{L^\infty(\Omega_2)} \left\| \partial_n \bar{z}_w \right\|_{L^2(\Omega_2)} \leq cr_{A}^s \|\bar{z}_w\|_{L^\infty(\Omega_2)}
\end{equation}
and for the boundary terms
\begin{equation}
\left\| \partial A u - \id \right\|_{W^{1/2,2}(\Gamma_{\text{out}})} \leq \left\| A[u] - \id \right\|_{W^{1/2,2}(\Gamma_{\text{out}})} \leq cr_{A}^s \|\bar{z}_w\|_{W^{1/2,2}(\Gamma_{\text{out}})}.
\end{equation}
using for the latter estimate the Neumann trace estimate; note, that we estimate the trace in a higher norm than necessary here. Moreover, with estimate (4.14)
\begin{equation}
\left\| \bar{z}_p(K[u] - \id) \right\|_{W^{-1/2,2}(\Gamma_{\text{out}})} \leq c r_{K}^s \|K[u] - \id\|_{L^\infty(\Omega_2)} \|\bar{z}_p\|_{W^{-1/2,2}(\Gamma_{\text{out}})} \leq cr_{K}^s \|\bar{z}_p\|_{W^{-1/2,2}(\Gamma_{\text{out}})}.
\end{equation}
Consequently, with (4.25)–(4.28) we obtain the result. \(\square \)

4.4. Higher regularity. For \(F \in L^2(\Omega_2), F_2 \in W^{1,2}(\Omega_2), \delta g \in \mathcal{G}_{3,2}, \) and \(F_3 \in W^{1/2,2}(\Gamma_{\text{out}}) \) we consider
\begin{equation}
\begin{aligned}
-\Delta v + \nabla q &= F, \quad \text{in } \Omega_2, \\
\text{div } v &= F_2, \quad \text{in } \Omega_2, \\
\nu &= g, \quad \text{in } \Gamma_{\text{in}} \cup \Gamma_{\text{wall}}, \\
-\partial_n v + g \cdot n_x &= F_3, \quad \text{in } \Gamma_{\text{out}}.
\end{aligned}
\end{equation}
Let \(\kappa \in C^\infty(\Omega) \) localize \(v \) away from the external boundary \(\partial \Omega_2 \) and set \(\Omega_\kappa := \text{supp}(\kappa) \). Here, we rely on estimates provided in Lasiecka et al. [LSZ18, equation (44)] given by
\begin{equation}
\left\| (1 - \kappa) v \right\|_{W^{2,2}(\Omega_2)} + \left\| (1 - \kappa) q \right\|_{W^{1,2}(\Omega_2)} \leq c \| (1 - \kappa) F \|_{L^2(\Omega_2)} + \left\| (1 - \kappa) F_2 \right\|_{W^{1/2,2}(\Omega_2)} + \left\| g \right\|_{W^{3/2,2}(\Gamma_{\text{in}})} + \left\| F_3 \right\|_{W^{1/2,2}(\Gamma_{\text{out}})}.
\end{equation}
Remark 4.9. The authors in [LSZ18] refer here to the notion of ellipticity for systems introduced in Agmon, Douglis, and Nirenberg [ADN59], see also Maz’ya and Rossmann [MR10, Sec. 1.1.3], and Bouchev and Gunzburger [BG09, Appendix D]. Following Beneš and Kučera [BK16, Appendix] the regularity is established at first locally for boundary points on the Dirichlet boundary part, the Neumann boundary
part, and then for the two corners where the different types of boundary conditions meet (the less standard result), see [LSZ18, Appendix A.3]. With cut-off functions the solutions are localized and the estimates are derived using [BG09, Thm. D.1]. Using the compactness of \(\Omega \) global regularity is achieved.

We define

\[S' := \tilde{W}^{0,p'}(\Omega_2) \cap L^2(\Omega_2) \times \tilde{W}^{1,p'}(\Omega_2) \times G_{3/2} \times W^{1/2,2}(\Gamma_{out}), \quad p' \geq 2, \]

and assume

\[(f, f_2, g, f_3) \in S'. \]

We introduce

\[z_{w,a} := \kappa z_w, \quad z_{w,b} := (1 - \kappa) z_w, \]

\[z_{p,a} := \kappa z_p, \quad z_{p,b} := (1 - \kappa) z_p \]

implying \(z_w = z_{w,a} + z_{w,b} \) and \(z_p = z_{p,a} + z_{p,b} \) and write the solution \((\tilde{z}_w, \tilde{z}_p) \) of (4.17) as the sum of \((z_{w,a}, z_{p,a}) \) and \((z_{w,b}, z_{p,b}) \) being solutions of the following two systems localized in the interior and close to the boundary:

\[
\begin{align*}
-\nu \nabla (\nabla z_{w,a}) + \nabla z_{p,a} &= -\nu \nabla ((-A[\tilde{u}] + id) \nabla \tilde{z}_{w,a}) + \nu [\nabla ((-A[u] + id) \nabla), \kappa] \tilde{z}_w \\
&\quad - \kappa (\tilde{z}_w (K[\tilde{u}] \nabla) \tilde{w} - \kappa \tilde{w} (K[\tilde{u}] \nabla) \tilde{z}_w \\
&\quad - \kappa (K[\tilde{u}] - id) \nabla \tilde{z}_p - [\kappa, \nu \nabla^2] \tilde{z}_w + [\kappa, \nabla] \tilde{z}_p + \kappa f, \\
\text{div } z_{w,a} &= \text{div}_{id-K[\tilde{u}]} \tilde{z}_{w,a} + [\kappa, \text{div}] z_w, \\
&\quad + [\text{div}_{id-K[\tilde{u}]}, \kappa] \tilde{z}_w + \kappa f_2, \\
\tilde{z}_{w,a} &= 0 \text{ on } \partial \Omega_2,
\end{align*}
\]

and

\[
\begin{align*}
-\nu \nabla (\nabla z_{w,b}) + \nabla z_{p,b} &= - (1 - \kappa) (\nu \nabla ((-A[\tilde{u}] + id) \nabla \tilde{z}_w) \\
&\quad - \tilde{z}_w (K[\tilde{u}] \nabla) \tilde{w} - \tilde{w} (K[\tilde{u}] \nabla) \tilde{z}_w \\
&\quad - (K[\tilde{u}] - id) \nabla \tilde{z}_p + [1 - \kappa, \nu \nabla^2] \tilde{z}_w \\
&\quad - [1 - \kappa, \nabla] \tilde{z}_p + f, \\
\text{div } z_{w,b} &= (1 - \kappa) (\text{div}_{id-K[\tilde{u}]}) \tilde{z}_w + [1 - \kappa, \text{div}] z_w + f_2, \\
\tilde{z}_{w,b} &= (1 - \kappa) \delta g = g \text{ on } \Gamma_{in}, \\
\tilde{z}_{w,b} &= 0 \text{ on } \Gamma_{wall} \cup \Gamma_{int}, \\
-\nu \partial_n z_{w,b} + z_{p,b} \cdot n_x &= - \partial_{A[\tilde{u}]-id,n} \tilde{z}_w + \tilde{z}_p (K[\tilde{u}] - id) \cdot n_x = f_3 \text{ on } \Gamma_{out}.
\end{align*}
\]

Lemma 4.10. Let Hypothesis 4.4 be satisfied. For every \(\varepsilon > 0 \) we have for \(p' = 2 \), and \(s \geq 1 \) that

\[
\begin{align*}
\| \tilde{z}_{w,b} \|_{W^{2,1}(\Omega_2)} + \| \tilde{z}_{p,b} \|_{W^{1,1}(\Omega_2)} + c \| (f, f_2, g, f_3) \|_{G_{3/2} + c \| \tilde{z}_{w,b} \|_{W^{2,1}(\Omega_2)} + c \| \tilde{z}_{p,b} \|_{L^2(\Omega_2)} \\
&\quad + c \| \tilde{z}_p \|_{L^2(\Omega_2)} + c \| \tilde{z}_w \|_{L^2(\Omega_2)} \\
\end{align*}
\]

(4.37)

Proof. In the following we omit the first term in the estimate on the right hand side, since its derivation follows easily. By (4.31) we have for the solution of equation
\begin{equation}
(4.36) \| (1 - \kappa) z_w \|_{W^{2,2}(\Omega_2)} + \| (1 - \kappa) z_p \|_{W^{1,2}(\Omega_2)} \leq c \| F^b \|_{L^2(\Omega_2)} + \| F^b \|_{W^{1,2}(\Omega_2)} + \| F^2 \|_{W^{1/2,2}(\Gamma_{out})} + \| F^3 \|_{W^{1/2,2}(\Gamma_{out})},
\end{equation}

where

\[F^b := (1 - \kappa) \left(\nu \nabla((-A[\bar{u}] + \text{id}) \nabla \bar{z}_w) + \hat{w}((-K[\bar{u}] \nabla \bar{z}_w) \right. \]

\[+ \bar{z}_w((-K[\bar{u}] \nabla) \hat{w} - (K[\bar{u}] - \text{id}) \nabla \hat{z}_p) \]

\begin{equation}
(4.38) \quad + \| [1 - \kappa, \nu \nabla^2] z_w - [1 - \kappa, \nabla] z_p =: \sum_{i=1}^{6} I_i,
\end{equation}

\[F^2 := (1 - \kappa) (\text{div}_{\text{id} - K^\top[\bar{u}]} \bar{z}_w) + [1 - \kappa, \text{div}] w =: I_7 + I_8, \]

\[F^3 := \hat{z}_p(K[\bar{u}] - \text{id}) \cdot n_z, \]

\[F^4 := \partial A[a] - \text{id}, n \bar{w}. \]

Note, that in the following we consider general \(L^q, q \geq 1 \), and not only \(L^2 \) estimates to include also estimates needed for the subsequential lemma in which instead of \(\bar{z}_w, \hat{z}_p \) in \(W \) the pair \((z_w, z_{w,a}) \) in \(W^p \) will be considered implying that below higher regularity has to be assumed for terms involving \(\| z_w \|_{W^{2,2}(\Omega_2)} \). We have with \(q \geq 2 \) for the linearized convection term using Sobolev embedding \(W^{2,2}(\Omega_2) \subset W^{1,q}(\Omega_2) \)

\begin{equation}
(4.40) \quad \| I_2 + I_3 \|_{L^q(\Omega_2)} \leq \| K[u] \|_{W^{1,q}(\Omega_2)} \| \hat{w} \|_{L^\infty(\Omega_2)} \| \bar{z}_w \|_{W^{2,2}(\Omega_2)} + \| K[u] \|_{W^{1,q}(\Omega_2)} \| \bar{z}_w \|_{L^\infty(\Omega_2)} \| \hat{w} \|_{W^{2,2}(\Omega_2)} \leq c_{r_2} (\| \bar{z}_w \|_{W^{2,2}(\Omega_2)} + \| \bar{z}_w \|_{L^\infty(\Omega_2)}).
\end{equation}

Moreover, following \cite{LSZ18}, with Hölder’s inequality with suitable \(q_1 \geq 1 \) and \(q_2 \geq 1 \) satisfying \(1/q = 1/q_1 + 1/q_2 \) and Lemma 4.7

\begin{equation}
(4.41) \quad \| I_1 \|_{L^q(\Omega_2)} \leq c \| A[\bar{u}] - \text{id} \|_{L^\infty(\Omega_2)} \| \bar{z}_w \|_{W^{2,q}(\Omega_2)} + c \| A[\bar{u}] - \text{id} \|_{W^{1,q_1}(\Omega_2)} \| \bar{z}_w \|_{W^{1,q_2}(\Omega_2)} \quad \leq c_{r_1} \| \bar{z}_w \|_{W^{2,q}(\Omega_2)};
\end{equation}

for the later estimate we used that for \(q_2 = \frac{q q_1}{q_1 - q} \) the inclusion \(W^{2,q}(\Omega_2) \subset W^{1,q_1}(\Omega_2) \) is continuous. Using that the appearing commutator lose one order of differentiability we get

\begin{equation}
(4.42) \quad \| I_5 + I_6 \|_{L^q(\Omega_2)} \leq c (\| z_w \|_{W^{1,q}(\Omega_2)} + \| z_p \|_{L^q(\Omega_2)})
\end{equation}

which can be further estimated in the case \(q = 2 \) by (4.20). Further, we have for \(q = 2 \) that

\begin{equation}
(4.43) \quad \| I_4 \|_{L^2(\Omega_2)} \leq \| K[\bar{u}] - \text{id} \|_{L^\infty(\Omega_2)} \| \nabla z_p \|_{L^2(\Omega_2)} \leq c_{r_1} \| \nabla z_p \|_{L^2(\Omega_2)}.
\end{equation}

Note, that the boundary terms are not relevant for the system in the variables \((z_{w,a}, z_{p,a})\) considered in the subsequential lemma, so we consider here only the case
Now, using that the composition for (4.47) \(\nabla \circ \mathcal{D} \circ \gamma_{\Gamma_{\text{out}}} : W^{2,q}(\Omega_1) \rightarrow W^{1,q}(\Omega_2), \quad u \mapsto \nabla \phi(u) \)
defines a continuous inclusion we have together with Lemma 4.5 that (4.46)
\[\| K[u] - \text{id} \|_{W^{1,q}(\Omega_2)} \leq c \| u \|_{W^{2,q}(\Omega_2)} \]
and we can conclude (4.47)
\[\| F_3^1 \|_{W^{1/2,2}(\Gamma_{\text{out}})} \leq c \| z_p \|_{W^{1,2}(\Omega_2)} \left(\| K[u] - \text{id} \|_{L^\infty(\Omega_2)} + \| K[u] - \text{id} \|_{W^{1,q}(\Omega_2)} \right) \]
\[\leq c \| z_p \|_{W^{1,2}(\Omega_2)}. \]
Next, we have as in (4.28) the estimate (4.48)
\[\| F_3^2 \|_{W^{1/2,2}(\Gamma_{\text{out}})} \leq c \| z_{w,b} \|_{W^{2,2}(\Omega_2)}. \]
For \(q \geq 2 \) we have using Appendix C and (4.46) that (4.49)
\[\| I_7 \|_{W^{1,q}(\Omega_2)} \leq c \| \tilde{\omega} \|_{W^{2,q}(\Omega_1)} + \| \tilde{\omega}_{w,b} \|_{W^{2,q}(\Omega_2)} \]
\[\leq c \| \tilde{\omega}_{w,b} \|_{W^{2,q}(\Omega_2)} \].
Moreover, we have (4.50)
\[\| I_6 \|_{W^{1,2}(\Omega_2)} \leq \| (1 - \kappa, \text{div} w) \|_{W^{1,2}(\Omega_2)} \leq c \| w \|_{W^{1,2}(\Omega_2)} \]
using that \((1 - \kappa, \text{div} w) = \nabla (1 - \kappa) \cdot w \). The norm on the right hand side can be further estimated using again (4.20).

Now, setting \(q = 2 \) we conclude. \(\square \)

4.4.1. Interior estimates. For references on \(L^p \)-estimates for the Stokes equation we refer to Amrouche and Rejaiba [AR14], Hieber and Saal [HS18], Solonnikov [So10].
We recall an interior estimate for the Stokes equation, note that in this case there arises no difficulty from mixed boundary conditions. We set
\[F^a := -\nu \nabla ((-A[\tilde{u}] + \text{id}) \nabla \tilde{z}_{w,a}) - \nu (\nabla ((-A[\tilde{u}] + \text{id}) \nabla), \kappa) \tilde{z}_w \]
\[- \kappa \left(\tilde{z}_w ((K[\tilde{u}]) \nabla) \tilde{w} + \tilde{w} ((K[\tilde{u}]) \nabla) \tilde{z}_w + (K[\tilde{u}] - \text{id}) \nabla \tilde{z}_p \right) \]
\[+ [\kappa, \nu \nabla^2] z_w + [\kappa, \nabla] z_p + f, \]
\[F^a := \text{div} \{ \text{id} - K[\tilde{u}] \} \tilde{z}_{w,a} + [\kappa, \text{div}] z_w + [\text{div} \{ \text{id} - K[\tilde{u}] \}, \kappa] z_w + \kappa f_2. \]

Lemma 4.11. Choosing \(p' > 2 \) we have (4.52)
\[\| \kappa z_w \|_{W^{2,p}(\Omega_2)} + \| \kappa z_p \|_{W^{1,p}(\Omega_2)} \leq c \| F_a \|_{L^p(\Omega_2)} + \| D_a \|_{W^{1,p}(\Omega_2)}. \]

Proof. For a proof see [MR09, Thm 11.3.4]; we use the fact that \(\kappa w \in W^{1,2}_0(\Omega_2). \) \(\square \)
Lemma 4.12. Let Hypothesis 4.4 be satisfied. Then, we have for solution \((z_\omega, z_p)\) of (4.35) for \(\varepsilon > 0\)
\[
\begin{align*}
\|z_\omega, a\|_{W^2, p(\Omega_2)} + \|z_p, a\|_{W^1, p(\Omega_2)} &\leq c \|(\kappa f, \kappa f_2)\|_{L^p(\Omega_\kappa) \times W^1, p(\Omega_\kappa)} \\
&\quad + c \|(f, f_2, g, f_3)\|_{S^2} + cr \|z_\omega, a\|_{W^2, p(\Omega_2)} + cr \|z_\omega\|_{W^2, p(\Omega_2)} \\
&\quad + cr \|z_p, a\|_{W^1, p(\Omega_2)} + \|\bar{z}_p\|_{W^1, p(\Omega_2)} + c \left(\|z_\omega\|_{W^2, p(\Omega_2)} + \|z_p\|_{W^1, p(\Omega_2)}\right) \\
&\quad + c \varepsilon \left(\|z_\omega\|_{W^1, a(\Omega_2)} + \|z_p\|_{L^2(\Omega_2)}\right).
\end{align*}
\]

Proof. (i) We start with (4.52). Recalling ideas from [LSZ18], to estimate the norm \(\|\kappa[K[u] - id] \nabla z_p\|_{L^p(\Omega_2)}\) we cannot use an estimate as (4.43) in a higher \(L^p\)-norm, since we have no \(W^{1,p}(\Omega_2)\) regularity of the pressure up to the boundary. Hence, we use the property of the commutator that
\[
\kappa(K[u] - id) \nabla z_p = (K[u] - id) \nabla z_p, a + (K[u] - id) \nabla \kappa z_p
\]
and that the commutator looses one derivative
\[
[\nabla, \kappa] z_p = \nabla (\kappa z_p) - \kappa \nabla z_p = (\nabla \kappa) z_p + \kappa \nabla z_p - \nabla \kappa z_p = z_p \nabla \kappa
\]
implying that
\[
\|\kappa(K[u] - id) \nabla z_p\|_{L^p(\Omega_2)} \leq c \|K[u] - id\|_{L^\infty(\Omega_2)} \|z_p, a\|_{W^1, p(\Omega_2)} \\
+ c(\kappa) \|K[u] - id\|_{L^\infty(\Omega_2)} \|z_p\|_{L^p(\Omega_2)} \\
\leq c \|K[u] - id\|_{L^\infty(\Omega_2)} \|z_p, a\|_{W^1, p(\Omega_2)} \\
+ c \|K[u] - id\|_{L^\infty(\Omega_2)} \|z_p\|_{L^1(\Omega_2)}.
\]

using the continuous embedding \(W^{1,2}(\Omega_2) \subset L^p(\Omega_2), p < \infty\). This term can then be estimated as in (4.43).

(ii) Using estimates from the proof of Lemma 4.10, estimates for the commutator, and the consideration from (i) we obtain
\[
\begin{align*}
\|F\|_{L^p(\Omega_2)} &\leq cr \|z_\omega, a\|_{W^2, p(\Omega_2)} + cr \|\bar{z}_w\|_{W^2, p(\Omega_2)} \\
&\quad + cr \|z_p, a\|_{W^1, p(\Omega_2)} + \|\bar{z}_p\|_{W^1, p(\Omega_2)} \\
&\quad + c \|z_\omega\|_{W^1, p(\Omega_2)} + c \|z_p\|_{L^p(\Omega_2)} + c \|\kappa f\|_{L^p(\Omega_\kappa)}, \\
\|F^2\|_{L^p(\Omega_2)} &\leq cr \|z_\omega, a\|_{W^2, p(\Omega_2)} + c \|z_p\|_{L^p(\Omega_2)} + c \|\bar{z}_w\|_{L^p(\Omega_2)} + c \|\kappa f_2\|_{W^1, p(\Omega_\kappa)}.
\end{align*}
\]
For the terms \(\|z_\omega\|_{W^1, p(\Omega_2)} + c \|z_p\|_{L^p(\Omega_2)}\) we cannot apply (4.20) directly for \(p > 2\). Using Ehrling’s lemma we have for \(\varepsilon > 0\)
\[
\|z_\omega\|_{W^1, p(\Omega_2)} \leq \varepsilon \|z_\omega\|_{W^2, 2(\Omega_2)} + c \varepsilon \|z_\omega\|_{W^1, 2(\Omega_2)}
\]
which yields
\[
\begin{align*}
\|z_\omega\|_{W^1, p(\Omega_2)} + c \|z_p\|_{L^p(\Omega_2)} &\leq \varepsilon (\|z_\omega\|_{W^2, 2(\Omega_2)} + \|z_p\|_{W^1, 2(\Omega_2)}) \\
&\quad + c \varepsilon (\|z_\omega\|_{W^1, 2(\Omega_2)} + \|p\|_{L^2(\Omega_2)}).
\end{align*}
\]
which allows to sublimate the higher order terms and gives, with \(\varepsilon\) arbitrarily small, the result. \(\square\)
4.5. **Limit behaviour.** The map (4.16) defines an iteration scheme generating a sequence of iterates
\[(z_{w,n}, z_{p,n}) = (z_{w,a}, z_{p,a}) + (z_{w,b}, z_{p,b}) \in W^p \]
We will verify that it converges for \(n \to \infty \) towards the unique solution \((z_w, z_p) \in W^p \) of (4.17). For a \(\eta \in]0,1[\) we will estimate
\[
\begin{align*}
\|z_{w,n+1} - z_{w,n}\|_{W^p_{\Omega_2}} + \|z_{p,n+1} - z_{p,n}\|_{W^p_{\Omega_2}} & \leq \eta \left(\|z_{w,n} - z_{w,n-1}\|_{W^p_{\Omega_2}} + \|z_{p,n} - z_{p,n-1}\|_{W^p_{\Omega_2}} \right)
\end{align*}
\]
(4.61)
for an arbitrary compact subset \(\tilde{\Omega}_2 \subset \Omega_2 \). Then, there exists \((\tilde{z}_w, \tilde{z}_p) \in W^p_{\Omega_2} \) and sequence \(((z_{w,n}, z_{p,n}))_{n\in\mathbb{N}} \in W^p_{\Omega_2} \) such that
\[
\begin{align*}
z_{w,n} & \to \tilde{z}_w \text{ in } W^p_{w,\tilde{\Omega}_2} \text{ as } n \to +\infty, \\
z_{p,n} & \to \tilde{z}_p \text{ in } W^p_{w,\tilde{\Omega}_2} \text{ as } n \to +\infty.
\end{align*}
\]
(4.62)
with \((\tilde{z}_w, \tilde{z}_p)\) the unique solution of (4.17). This idea is taken from Grandmont [Gra02].

Next, we show the strategy in detail.

4.5.1. **The linearized state equation: Contraction property.** Let \(Y_1 := (z_{i,w}^1, z_{i,p}^1), Y_2 = (z_{i,w}^2, z_{i,p}^2), \) and \(\tilde{Y}_i := (\tilde{z}_w^i, \tilde{z}_p^i), i = 1, 2, \) with
\[
Y_1 = T\tilde{Y}_1, \quad Y_2 = T\tilde{Y}_2.
\]
(4.63)
Our aim is to show that
\[
\|Y_1 - Y_2\|_{W^p_{\Omega_2}} = \|T(\tilde{Y}_1 - \tilde{Y}_2)\|_{W^p_{\tilde{\Omega}_2}} \leq \eta \|Y_1 - \tilde{Y}_2\|_{W^p_{\Omega_2}}
\]
(4.64)
where \(\eta < 1 \) uniform in \(\tilde{\Omega}_2 \). From the definition of the map \(T \) we write
\[
\begin{align*}
-\nu\nabla(\nabla z_{i,w}^i) + \nabla z_{i,p}^i & = -\nu\nabla((-A[u] + \text{id})\nabla z_{i,w}^i) \\
& - \tilde{w}((K[u])\nabla z_{i,w}^i - z_{i,w}^i((K[u])\nabla)) + (K[u] - \text{id})\nabla z_{i,p}^i + f =: D(\tilde{Y}_i) \quad \text{in } \Omega_2 \\
div z_{i,w}^i = div_{\text{id} - \kappa^i(u)} z_{i,w}^i + f_2 =: B(\tilde{Y}_i) \quad \text{in } \Omega_2 \\
z_{i,w}^i & = g \quad \text{on } \Gamma_{\text{in}} \\
-\nu\partial_n z_{i,w}^i + z_{i,p}^i n & = -\partial_A[u] - \text{id} \partial_n z_{i,w}^i + z_{i,p}^i(K[u] - \text{id}) \cdot n + f_3 \quad \text{on } \Gamma_{\text{out}}
\end{align*}
\]
(4.65)
for \(i = 1, 2 \). Denoting \(\tilde{Y} := \tilde{Y}_1 - \tilde{Y}_2 \) we obtain the equation for
\[
Y := Y_1 - Y_2 =: (Z_w, Z_p)
\]
(4.66)
in terms of \(\tilde{Y}_1 \in B_\varepsilon(W^p) \):
\[
\begin{align*}
-\nu\nabla(\nabla Z_w) + \nabla Z_p & = D(\tilde{Y}_1) - D(\tilde{Y}_2) \quad \text{in } \Omega_2, \\
div Z_w & = B(\tilde{Y}_1) - B(\tilde{Y}_2) = div_{\text{id} - \kappa^i(u)} Z_w \quad \text{in } \Omega_2, \\
Z_w & = 0 \quad \text{on } \Gamma_{\text{int}} \cup \Gamma_{\text{in}}, \\
-\nu\partial_n Z_w + Z_p n & = -\partial_A[u] - \text{id} \partial_n Z_w + Z_p(K[u] - \text{id}) \cdot n \quad \text{on } \Gamma_{\text{out}},
\end{align*}
\]
(4.67)
Lemma 4.13. Let Hypothesis 4.4 be satisfied. For the solution of (4.67) we have
\begin{equation}
\|Z_w\|_{W^{2,2}(\Omega)} + \|Z_p\|_{W^{1,2}(\Omega)} \leq c(r_1^2 + r_1 + r_2)(\|\bar{Z}_w\|_{W^{2,2}(\Omega)} + \|\bar{Z}_p\|_{W^{1,2}(\Omega)})
\end{equation}
where $\bar{Z}_w := \bar{z}_w^1 - \bar{z}_w^2$ and $\bar{Z}_p := \bar{z}_p^1 - \bar{z}_p^2$.

Proof. We proceed similarly as in Lemma 4.10 using also Theorem 4.8; we estimate
\begin{equation}
\|D(Y_1) - D(Y_2)\|_{L^2(\Omega_2)} = \|\nu \nabla ((-A[u] + \text{id}) \nabla Z_w)\|_{L^2(\Omega_2)}
+ \|\bar{w}((-K[u]) \nabla) Z_w - Z_w(K[u] \nabla) \bar{w}\|_{L^2(\Omega_2)}
+ \|\nabla Z_p\|_{L^2(\Omega_2)}
\leq c(r_1 + r_1^* + r_2)(\|\bar{Z}_w\|_{W^{2,2}(\Omega)} + \|\bar{Z}_p\|_{W^{2,2}(\Omega_2)}).
\end{equation}

For the term $B(Y_i)$ we have by (4.46) that with $1/p_1 + 1/p_2 = 1/2$, $p_1 > n$,
\begin{equation}
B(Y_1) - B(Y_2) \|_{W^{1,2}(\Omega_2)} = \|\nu \nabla ((-A[u] + \text{id}) \nabla Z_w)\|_{W^{1,2}(\Omega_2)}
\leq \|\text{id} - K[u]\|_{W^{1,2}(\Omega_2)} \|Z_w\|_{W^{2,2}(\Omega_2)} + \|\text{id} - K[u]\|_{L^\infty(\Omega)} \|\bar{Z}_w\|_{W^{2,2}(\Omega_2)}
\leq c r_1^* \|\bar{Z}_w\|_{W^{2,2}(\Omega_2)}
\end{equation}
and on the boundary Γ_{out}
\begin{equation}
-\nu \partial_n Z_w + Z_p \cdot n_x = -\partial_A[u] \cdot \text{id} \cdot Z_w + \bar{Z}_p K[u] \cdot n_x - \bar{Z}_p \cdot n_x.
\end{equation}
From Lemma 4.10 it follows that
\begin{equation}
\|Z_w\|_{W^{2,2}(\Omega_2)} + \|Z_p\|_{W^{1,2}(\Omega_2)} \leq c \|D(Y_1) - D(Y_2)\|_{L^2(\Omega_2)}
+ c \|B(Y_1) - B(Y_2)\|_{W^{1,2}(\Omega_2)} + c \|\text{id} - K[u]\|_{W^{1,2}(\Omega_2)} \|Z_w\|_{W^{2,2}(\Omega_2)}
+ c \|\bar{Z}_w\|_{W^{2,2}(\Omega_2)} + c \|\bar{Z}_p\|_{W^{1,2}(\Omega_2)} \|\bar{Z}_w\|_{W^{2,2}(\Omega_2)}.
\end{equation}

Using estimates (4.28) and (4.29) for the boundary terms we conclude.

Lemma 4.14. Let Hypothesis 4.4 be satisfied and additionally, $r_1 > 0$ and $r_2 > 0$ be sufficiently small. Then, the map T defined by (4.16) satisfies for some $0 < \eta < 1$
\begin{equation}
\|T(Y_1 - Y_2)\|_{W^P_{\Omega_2}} < \eta \|Y_1 - Y_2\|_{W^P_{\Omega_2}}
\end{equation}
for $\Omega_2 \subset \Omega_2$ compact.

Proof. As a consequence of the previous lemma it remains to prove the contraction property with respect to higher p-integrability on compact subsets.

We recall the function κ. We remark that the commutator has for sufficiently smooth v the property that
\begin{equation}
[k, D_x]v = -D_x(\kappa v) + \kappa D_x v, \quad [k, D_x^2]v = -D_x^2(\kappa v) + \kappa D_x^2 v.
\end{equation}
Hence, we have
\begin{equation}
-\nu \nabla (\nabla Z_{w,a}) + \nabla Z_{p,a} = \kappa(D(Y_1) - D(Y_2)) + [k, \nu D_x^2]Z_w
+ [k, \nu \nabla]Z_p \quad \text{in } \Omega_2,
\end{equation}
\begin{equation}
\text{div } Z_{w,a} = \kappa(B(Y_1) - B(Y_2)) + [\kappa, \text{div}]Z_w \quad \text{in } \Omega_2
\end{equation}
\begin{equation}
Z_{w,a} = 0 \quad \text{on } \Gamma_{in} \cup \Gamma_{in} \cup \Gamma_{out}.
\end{equation}
with $Z_{w,a} := z_{w,a}^1 - z_{w,a}^2$ and $Z_{p,a} := z_{p,a}^1 - z_{p,a}^2$. Since the commutators lose one order of derivative we can derive higher Lebesgue integrability, i.e. for $(w,p) \in W^{2,2}(\Omega_2) \times W^{1,2}(\Omega_2)$

\[
\begin{align*}
\|\kappa, D^2 w\|_{L^p(\Omega_2)} &\leq C \|w\|_{W^{1,p}(\Omega_2)} \leq c \|w\|_{W^{2,2}(\Omega_2)}, \\
\|\kappa, \text{div}w\|_{W^{1,p}(\Omega_2)} &\leq C \|w\|_{W^{1,p}(\Omega_2)} \leq c \|w\|_{W^{2,2}(\Omega_2)}, \\
\|\kappa, \nabla p\|_{L^p(\Omega_2)} &\leq C \|p\|_{W^{1,2}(\Omega_2)}.
\end{align*}
\]

(4.76)

Similar as in the proof of Lemma 4.12 we estimate $\|\kappa(B(\tilde{Y}_1) - B(\tilde{Y}_2))\|_{W^{1,p}(\Omega_2)}$ and $\|\kappa(D(\tilde{Y}_1) - D(\tilde{Y}_2))\|_{W^{1,p}(\Omega_2)}$. Here we use the same trick as in that proof to obtain higher p-integrability, namely we switched around the order of κ and the differential operators in the term with coefficient $A[u]$ as well as in the divergence term and introduce a commutator as correction term.

Applying further the estimate of Lemma 4.13 to the terms (4.76) we obtain finally

\[
\|Z_{w,a}\|_{W^{2,p}(\Omega_2)} + \|Z_{p,a}\|_{W^{1,p}(\Omega_2)} \leq c(r_1 + r_1^* + r_2) \|\tilde{Y}\|_{W^{p}_{\Omega_2^n}}.
\]

(4.77)

Thus, for $r_1 > 0$ and $r_2 > 0$ sufficiently small we obtain the result.

\[\square\]

Theorem 4.15. Let Hypothesis 4.4 be satisfied and additionally $r_1 > 0$ and $r_2 > 0$ sufficiently small. For data satisfying the regularity assumption in (4.33), $\tilde{w} \in B_{r_2}(\tilde{W}^{2,p}(\Omega_2))$, and $u \in B_{r_1}(U^p)$ the linearized equation (4.13) has a unique solution $(z_{w}, z_{p}) \in W^p$. Moreover, the solution is bounded by the data, we have

\[
\|(z_{w}, z_{p})\|_{W^{p}_{\Omega_2^n}} \leq c \|f\|_{L^p(\tilde{\Omega}_2^{n}) \cap L^2(\Omega_2)} + c \|f_2\|_{W^{1,p}(\tilde{\Omega}_2^{n}) \cap W^{1,2}(\Omega_2)} + c \|\delta g\|_{W^{3/2,2}(\Gamma_{in})} + c \|f_3\|_{W^{1,2}(\Gamma_{in})}
\]

(4.78)

for compact subsets $\tilde{\Omega}_2 \subset \Omega_2$.

Proof. The existence follows by the procedure described at the beginning of Section 4.5 and the contraction property given in Lemma 4.14. The estimate follows from the boundedness of the operator T shown in Lemma 4.10 and 4.12 and sublimating the with powers of r_i weighted terms by the left hand side. \[\square\]

Hypothesis 4.16. Let $r_1 > 0$ and $r_2 > 0$ be sufficiently small, such that for $\tilde{w} \in \tilde{W}^{2,p}(\Omega_2)$ and $u \in B_{r_1}(U^p)$ the linearized equation (4.13) has a unique solution in W^p satisfying estimate (4.78).

5. Differentiability

In this section we show the main result, the differentiability of the mapping which maps the inflow profile g to the velocity-pressure-deformation triple (u,w,p) of the fluid-structure interaction system. We follow in parts ideas from [WW19] where linear elasticity is coupled with the Stokes equation with Dirichlet boundary conditions in a smooth domain. In a first step we consider the differentiability of the data-to-solution map g to (w,p) for the Navier-Stokes system and in particular of the traction operator τ.
We introduce two systems, which will appear to be the linearized systems with respect to inflow data \(g \) and with respect to perturbation \(u \), namely

\[
\begin{aligned}
-\nu \nabla (A[u] \nabla \delta w_g) + \delta w_g (K[u] \nabla \hat{w}) &+ \delta \hat{w}(K[u] \nabla) \delta w_g \\
+ K[u] \nabla \delta p_g = 0 & \quad \text{in } \Omega_2, \\
\text{div}_{K[u]} \delta w_g = 0 & \quad \text{in } \Omega_2, \\
\delta w_g = \delta g & \quad \text{on } \Gamma_{\text{in}}, \\
\delta w_g = 0 & \quad \text{on } \Gamma_{\text{wall}} \cup \Gamma_{\text{int}}, \\
-\nu \partial_{A[u],n} \delta w_g + \delta p_g K[u] \cdot n_x = 0 & \quad \text{on } \Gamma_{\text{out}}
\end{aligned}
\]

and

\[
\begin{aligned}
-\nu \nabla (A[\hat{u}] \nabla \delta w_u) &+ \delta w_u K[\hat{u}] \nabla \hat{w} \\
&= -\hat{w} K'[\hat{u}] \nabla \hat{w} + \gamma \nu \nabla (A' \delta u \nabla \hat{w}) \\
\text{div}_{K'[\hat{u}]} \delta w_u = \text{div}_{K' [\hat{u}]} \delta \hat{w} & \quad \text{in } \Omega_2, \\
w = 0 & \quad \text{on } \Gamma_{\text{in}}, \\
w = 0 & \quad \text{on } \Gamma_{\text{wall}} \cup \Gamma_{\text{int}}, \\
-\nu \partial_{A[\hat{u}],n} \delta w_u + \delta p \hat{u} K[\hat{u}] \cdot n_x &\quad \nu \partial_{A'[\hat{u}],n} \delta u, w - p K'[\hat{u}] \delta u \cdot n_x \\
&= 0 & \quad \text{on } \Gamma_{\text{out}}.
\end{aligned}
\]

For given \((\hat{u}, \hat{g}) \in B_{r_1}(U^p) \times B_{r_2}(G_{3/2})\) we write the Navier-Stokes equation (3.5) as

\[
e : X^p \times G_{3/2} \to S' \quad \text{e}(u, w, p, g) = 0,
\]

with

\[
e(u, w, p, g) := \begin{pmatrix}
-\nu \nabla (A[u] \nabla w) + w(K[u] \nabla) w + K[u] \nabla p \\
\quad (K[u] \nabla)^\top w \\
\quad w|_{\Gamma_{\text{in}}} - g \\
\quad -\nu (A[u] \nabla w) \cdot n_x + p K[u] \cdot n_x
\end{pmatrix}.
\]

Lemma 5.1. The function \(e \) defined in (5.3)-(5.4) is continuously differentiable.

Proof. The statement follows by the regularity of the appearing functions and the smoothness of \(A \) and \(K \), see Lemma 2.3. \(\Box \)

To apply the implicit function theorem we show that the derivative of \(e \) with respect to \((w, p)\) defines an isomorphism in a solution \((\hat{u}, \hat{w}, \hat{p}, \hat{g})\) of (5.3).

Let \(\hat{u} \in W^{2,p}(\Omega_1) \) and \((\hat{w}, \hat{p}) \in W^p \) the corresponding solution of the Navier-Stokes equation (2.25). Moreover, let \((F, F_2, g, F_3) \in S'\). Recalling Hypothesis 3.2 and 4.4, we consider the solution \((z_w, z_p) \in W^p\) of

\[
D_{(w, p)} e(\hat{u}, \hat{w}, \hat{p}, \hat{g})(z_w, z_p) = (F, F^2, g, F^3)^\top.
\]

By Theorem 4.15 the solution is well-defined and we have

\[
\|\hat{z}_w, \hat{z}_p\|_{W^{2,p}(\Omega_2) \times W^{1,p}(\Omega_2)} \leq c \|F\|_{L^p(\Omega_2) \times L^2(\Omega_2)} + c \|F_2\|_{W^{1,2}(\Omega_2)} + c \|g\|_{W^{3/2,2}(\Gamma_{\text{int}})} + c \|F_3\|_{W^{1/2,2}(\Gamma_{\text{int}})}\]
\]

Lemma 5.2. Let Hypothesis 3.2 and 4.16 hold and \(\Omega_2 \subset \Omega_2 \) compact.

(i) The mapping \(N : B_{r_1}(U^p) \times B_{r_2}(G_{3/2}) \to W^p_{\Omega_2} \) with \((u, g) \mapsto (w[u, g], p[u, g])\) is continuously differentiable.
(ib) Let \(u \in B_r(U^p) \) be fixed. The derivative \((\delta w_g, \delta p_g)\) of \n\(B_r(G_{3/2}) \rightarrow W^p_{\Omega_2}, \quad g \mapsto (w[g], p[g]) \) is given by (5.1).

(ii) The mapping \n\[\mathcal{F} : B_r(U^p) \times B_r(G_{3/2}) \rightarrow W^{1-1/p,p}((\Omega_{int}), \quad (u, g) \mapsto t(u, p) = p[u]K[u] \cdot n_x \]

is continuously differentiable.

Proof. (ia) To show continuous differentiability of \((w[\cdot], p[\cdot])\), we employ the implicit function theorem. We note that

$$\begin{aligned}
\frac{\partial}{\partial g} \left(\nabla(A[u]\nabla w) + \delta w(K[u]\nabla)\hat{w} + \hat{w}(K[u]\nabla)\delta w + K[u]\nabla \delta p \right) \\
\frac{\partial}{\partial p} \left(\nabla(A[u]\nabla w) \cdot n_x + pK[u] \cdot n_x \right)
\end{aligned}$$

We observe that \(D_{(w,p)}(u, w, p, g) : W^p_{\Omega_2} \rightarrow S^{p'} \) is an isomorphism by Theorem 4.15 and estimate given there, cf. (5.6).

(ii) With \(D_g(e(u, w, p, g)) \) given by

$$\begin{pmatrix}
0, & 0, & \delta g, & 0
\end{pmatrix}^T$$

the derivative \((\delta w_g, \delta p_g)\) with respect to \(g \) is given as the solution of

$$D_{(w,p)}e(u, w, p, g)(\delta w_g, \delta p_g) = -D_g(e(u, w, p, g))$$

or equivalently by (5.1). A solution exists by Theorem 4.15 and is bounded by the data, the result follows.

(ic) Analogously, the partial derivative \(D_u e(u, w, p, g) \) is given by

$$\begin{aligned}
-\nu \nabla(A'[u]\delta u \nabla w) + w(K'[u]\delta u \nabla)\hat{\omega} + K'[u]\delta u \nabla \hat{\rho} \\
K'[u]\delta u \nabla \hat{\rho}^T w
\end{aligned}$$

and (5.2) can be written as

$$\begin{aligned}
D_{(w,p)}e(u, w, p, g)(\delta w_u, \delta p_u) = -D_u e(u, w, p, g)
\end{aligned}$$

or equivalently by (5.2). Since

$$\begin{aligned}
-\nu \nabla(A'[\hat{\omega}]\delta u \nabla \hat{\omega}) + \hat{\omega}K'[\hat{\omega}]\delta u \nabla \hat{\rho} + K'[\hat{\omega}]\delta u \nabla \hat{\rho} \\
-\nu(A'[u]\delta u \nabla w) \cdot n_x + pK'[u] \cdot n_x \in W^{1-1/p,2}((\Omega_{int})
\end{aligned}$$

for \(p > 2 \), the right hand side in (5.15) has the suitable regularity and we conclude again with Theorem 4.15.
(ii) Follows directly from (ia). Note, that here we use that in the interior we have higher p-integrability and that Γ_{int} is bounded away from Γ_{ext}. \hfill \Box

Lemma 5.3. Let Hypothesis 3.2 and 4.16 be satisfied. For $g \in B_r(\mathcal{G}_{3/2})$ and $u \in B_{r_1}(U^p)$ and \mathcal{F} given in (5.9) we have for any $\varepsilon > 0$

\begin{equation}
(5.17) \quad \left\| \frac{d}{du} \mathcal{F}(u,g) \right\|_{L^p} \leq \varepsilon,
\end{equation}

with $L^p := L(W^{2,p}(\Omega_1), W^{1-1/p,p}(\Gamma_{\text{int}}))$ provided that r and r_1 are sufficiently small.

Proof. We write

\begin{equation}
(5.18) \quad \mathcal{F}(u,g) = \tau(u, \mathcal{N}(g,u)).
\end{equation}

By Lemma 5.2 and applying the chain rule, we get for any direction $\delta u \in W^{2,p}(\Omega_1)$ that

\begin{equation}
(5.19) \quad \frac{d}{du} \mathcal{F}(u,g) \delta u = \frac{d}{du} \tau(u, \mathcal{N}(g,u)) \delta u.
\end{equation}

By Theorem 3.1 we can choose for $\delta > 0$ the radii $r > 0$ and $r_1 > 0$ sufficiently small such that $p \in B_3(W^p)$. Using the smoothness of the outer normal on the interface taking into account that Γ_{int} is bounded away from Γ_{ext} and recalling that $p > n$ we have

\begin{equation}
(5.20) \quad \left\| \frac{d}{du} \mathcal{F}(u,g) \delta u \right\|_{W^{1-1/p,p}(\Gamma_{\text{int}})} \leq \| z_{p,a} K[u] \|_{W^{1,p}(\hat{\Omega}_2)} + \| p_a[u] K'[u] \delta u \|_{W^{1,p}(\hat{\Omega}_2)}
\end{equation}

\begin{equation}
\quad \leq \| z_{p,a} \|_{W^{1,p}(\hat{\Omega}_2)} \| K[u] \|_{W^{1,p}(\hat{\Omega}_2)}
\end{equation}

\begin{equation}
\quad + \| p_a \|_{W^{1,p}(\hat{\Omega}_2)} \| K'[u] \delta u \|_{W^{1,p}(\hat{\Omega}_2)}
\end{equation}

with $\hat{\Omega}_2 \subset \Omega_2$ a compact subset containing Ω_2. Note, that in (5.20) we use higher p-integrability of p_a whose support is bounded away from the boundary. Now, using the estimate in Theorem 4.15 applied to (5.2), we have for any $\gamma > 0$ and data sufficiently small that

\begin{equation}
(5.21) \quad \left\| \frac{d}{du} \mathcal{F}(u,g) \delta u \right\|_{W^{1-1/p,p}(\Gamma_{\text{int}})} \leq \gamma \| \delta u \|_{W^{2,p}(\hat{\Omega}_2)} \leq c \gamma \| \delta u \|_{W^{2-1/p,p}(\Gamma_{\text{int}})}
\end{equation}

\begin{equation}
\quad \leq c \gamma \| \delta u \|_{W^{2,p}(\Omega_1)}
\end{equation}

which shows the assertion. \hfill \Box

We state the main differentiability result on the mapping of the data to the solution of the fluid-structure interaction problem.

Theorem 5.4. Let $r > 0$ be sufficiently small. Then, the mapping

\begin{equation}
(5.22) \quad \Pi: B_r(\mathcal{G}_{3/2}) \to X^p, \quad g \mapsto (u[g], w[g], p[g])
\end{equation}

with $(u[g], w[g], p[g])$ solution of (3.14) is continuously differentiable.

Remark 5.5. Here, it is not necessary to assume Hypothesis 3.2, 4.4, or 4.16 explicitly, since by Theorem 3.5 the existence of a solution of the FSI problem is in ball of radius \tilde{r} which we can choose arbitrary small if $r > 0$ is chosen accordingly sufficiently small. This guarantees implicitly the existence of a solution to the Navier-Stokes equation making Hypothesis 3.2 redundant as well as a sufficiently
small bound on the velocity of the Navier-Stokes equation and the solution of the

elastiscity system making Hypothesis 4.16 and so also Hypothesis 4.4 redundant.

Proof of Theorem 5.4 We follow ideas from [WW19]. Existence of a solution of the

fluid-structure interaction problem follows by Theorem 3.5. We have \((u, w, p) = \Pi(g)\) and

\[
(5.23) \quad u = S \left(f_1, \mathcal{F}(\mathcal{D}(\gamma_{\text{int}} u), g) \right)
\]

with \(S\) defined in Theorem 3.3 and \(\mathcal{F}\) given in (5.9). Since \((w, p)\) depends continu-

cously differentiable on \((u, g)\) by Lemma 5.2, it is sufficient to show differentiability

of the mapping \(g \mapsto u\) given by the above fix point relation (5.23). We apply the

implicit function theorem. We note that

\[
(5.24) \quad D_2S \left(f_1, \mathcal{F}(\mathcal{D}(\gamma_{\text{int}} u), g) \right) : W^{1-1/p,p}(\Omega_2) \rightarrow W^{2,p}(\Omega_2)
\]

corresponds to the solution operator for the elasticity problem (3.7), see Theorem 3.3

and is hence, bounded. For

\[
(5.25) \quad D_u\mathcal{F}(\mathcal{D}(\gamma_{\text{int}} u), g)(\delta u) : W^{2,p}(\Omega_1) \rightarrow W^{1-1/p,p}(\Gamma_{\text{int}})
\]

we use that by Lemma 5.3 the norm \(\|D_u\mathcal{F}\|_{L^p}\) can be made arbitrarily small choos-

ing \(r\) sufficiently small and taking the continuous dependence of the solution of the

FSI problem on the data into account, see Theorem 3.5. Thus, \(\text{id} - D_2S \circ D_u\mathcal{F}\) is in-

vertible. By the implicit function theorem we obtain the continous differentiability

of the mapping \(\Pi\).

Appendix A. Transformation of the Navier-Stokes equation

Following [LSZ18] we state the strong and weak formulation of the Navier-Stokes
equation in the physical and reference domain. We have for the velocity \((\tilde{w}_1, \tilde{w}_2)\) and pressure \(\tilde{p}\) in the physical domain \(\Omega_2[u]\)

\[
\begin{align*}
-\nu \Delta_x \tilde{w}_1 + \tilde{w}_1^\top \nabla \tilde{w}_1 + (\nabla \tilde{p})_1 &= 0 \quad \text{in } \Omega_2[u], \\
-\nu \Delta_x \tilde{w}_2 + \tilde{w}_2^\top \nabla \tilde{w}_2 + (\nabla \tilde{p})_2 &= 0 \quad \text{in } \Omega_2[u], \\
\text{div } \tilde{w} &= 0 \quad \text{in } \Omega_2[u], \\
\tilde{w} &= \delta g \quad \text{on } \Gamma_{\text{in}}, \\
\tilde{w} &= 0 \quad \text{on } \Gamma_{\text{wall}} \cup \Gamma_{\text{int}}, \\
-\nu D\tilde{w} \cdot n_y + \tilde{p} \cdot n_y &= 0 \quad \text{on } \Gamma_{\text{out}}.
\end{align*}
\]

(A.1)

Transforming to a weak form by multiplying with a test function, integration over

\(\Omega_2[u]\), and apply integration by parts we obtain

\[
\begin{align*}
-\nu \int_{\Gamma_{\text{out}}} \tilde{\psi}_1 \nabla \tilde{w}_1 n_y ds_y + \nu \int_{\Omega_2[u]} (\nabla \tilde{\psi}_1)^\top (\nabla \tilde{w}_1) dy \\
+ \int_{\Omega_2[u]} \tilde{\psi}_1 (\tilde{w}_1^\top \nabla) \tilde{w}_1 dy + \int_{\Gamma_{\text{out}}} \tilde{\psi}_1 \tilde{p}(n_y)_1 ds_y \\
- \int_{\Omega_2[u]} \frac{\partial}{\partial y} \tilde{\psi}_1 dy &=: I_1 + I_2 + I_3 + I_4 + I_5 = 0.
\end{align*}
\]

(A.2)
We have by (2.19), (2.20), and (2.21) on the do-nothing outflow boundary part

\[
I_1 := - \nu \int_{\Gamma_{\text{out}}} \tilde{\psi}_1 \nabla \tilde{w}_1 n_y ds_y
\]

\[
= - \nu \int_{\Gamma_{\text{out}}} \psi_1 (G[u]^{-1} \nabla w_1)^T \frac{K[u]n_x}{\|K[u]n_x\|} \|K[u]n_x\| dx
\]

\[
= - \nu \int_{\Gamma_{\text{out}}} \psi_1 (\nabla w_1)^T \left(K^{-1} K \right) n_x dx
\]

\[
= - \nu \int_{\Gamma_{\text{out}}} \psi_1 (\nabla w_1)^T A n_x dx.
\]

For the diffusion term we have using (2.20)

\[
I_2 := \nu \int_{\Omega_2[u]} (\nabla \tilde{\psi}_1)^T (\nabla \tilde{w}_1) dy
\]

\[
= \nu \int_{\Omega_2} (\frac{1}{J} K \nabla \psi_1)^T (\frac{1}{J} K \nabla w_1) J dJ
\]

\[
= \nu \int_{\Omega_2} (\nabla \psi_1)^T A(\nabla w_1) dx
\]

\[
= \nu \int_{\Omega_2} \psi_1(n_x A \nabla w_1) dx - \nu \int_{\Omega_2} \psi_1 \nabla^T (A \nabla w_1) dx.
\]

The convection term transforms using (2.20) as follows

\[
I_3 := \int_{\Omega_2[u]} \tilde{\psi}_1 (w^T \nabla) \tilde{w}_1 dy = \int_{\Omega_2} \psi_1 w^T (\frac{1}{J} K \nabla w_1) J dJ = \int_{\Omega_2} \psi_1 w^T K \nabla w_1 dx.
\]

For the boundary pressure term we have by (2.19) and (2.21)

\[
I_4 := \int_{\Gamma_{\text{out}}} \tilde{\psi}_1 \tilde{p}(n_y) ds_y
\]

\[
= \int_{\Gamma_{\text{out}}} \psi_1 \left(p \frac{K_n_x}{\|K_n_x\|} \right) \|K_n_x\| dx
\]

\[
= \int_{\Gamma_{\text{out}}} \psi_1 p(K_n_x) dx.
\]

Finally, for the volume pressure term we have

\[
I_5 := - \int_{\Omega_2[u]} \tilde{p} (\nabla \tilde{\psi}_1) dy
\]

\[
= - \int_{\Omega_2} \psi_1 p(K_n_x) dx
\]

\[
= - \int_{\Gamma_{\text{out}}} \psi_1 p(K_n_x) ds_x + \int_{\Omega_2} \psi_1 \div (Kp) dx,
\]

where

\[
\div (Kp) := \partial_{x_1}(k_{11}p) + \partial_{x_2}(k_{12}p).
\]
Summarizing we obtain the weak formulation

\begin{equation}
-\nu \int_{\Gamma_{\text{out}}} \psi_1 (\nabla w_1)^T A n_x ds_x + \nu \int_{\Omega_2} (\nabla \psi_1)^T A (\nabla w_1) dx \\
+ \int_{\Omega_2} \psi_1 w^T K \nabla w_1 dx + \int_{\Gamma_{\text{out}}} \psi_1 p (K n_x)_1 ds_x + \int_{\Omega_2} \psi_1 \nabla x (K p)_1 dx = 0
\end{equation}

(A.9)

\begin{equation}
\nu \int_{\Omega_2} (\nabla \psi_1)^T A (\nabla w_1) dx + \int_{\Omega_2} \psi_1 w^T K \nabla w_1 dx \\
+ \int_{\Omega_2} \psi_1 \nabla x (K p)_1 dx = \int_{\Gamma_{\text{out}}} f_3 \nu ds + \int_{\Omega_2} f \nu dx
\end{equation}

(A.10)

and equivalently in strong form

\begin{equation}
\begin{cases}
-\nu \nabla (A[u] \nabla w) + w (K[u] \nabla) w + K[u] \nabla p = 0 & \text{in } \Omega_2, \\
\text{div}_{K^T(u)} w = 0 & \text{in } \Omega_2, \\
w = \delta g & \text{on } \Gamma_{\text{in}}, \\
w = 0 & \text{on } \Gamma_{\text{wall}} \cup \Gamma_{\text{int}}, \\
-\nu \partial_{A[u],n} w + p K[u] \cdot n_x = 0 & \text{on } \Gamma_{\text{out}}.
\end{cases}
\end{equation}

\begin{equation}
(A.11)
\end{equation}

APPENDIX B. TRANSFORMATION OF THE LINEARIZED NAVIER-STOKES EQUATION

For the velocity \(\hat{w}_1, \hat{w}_2 \) and pressure \(\hat{p} \) in the physical domain \(\Omega_2[u] \) we have

\begin{align}
-\nu \Delta_x \hat{z}_{w_1} + \hat{w}^T \nabla \hat{z}_{w_1} + \hat{z}_{w}^T \nabla \hat{w}_1 + (\nabla \hat{z}_p)_1 &= 0 & \text{in } \Omega_2[u], \\
-\nu \Delta_x \hat{z}_{w_2} + \hat{w}^T \nabla \hat{z}_{w_2} + \hat{z}_{w}^T \nabla \hat{w}_2 + (\nabla \hat{z}_p)_2 &= 0 & \text{in } \Omega_2[u], \\
\text{div } \hat{z}_w &= 0 & \text{in } \Omega_2[u], \\
\hat{z}_w &= \delta g & \text{on } \Gamma_{\text{in}}, \\
\hat{z}_w &= 0 & \text{on } \Gamma_{\text{wall}} \cup \Gamma_{\text{int}}, \\
-\nu \partial_{n} \hat{z}_w + \hat{z}_p \cdot n_y &= 0 & \text{on } \Gamma_{\text{out}}.
\end{align}

(B.1)

All linear terms are transformed as for the Navier-Stokes equation. The first term of the linearized convection term transforms using (2.20) as follows

\begin{equation}
\int_{\Omega_2[u]} \psi_1 (\hat{w}^T \nabla) z_{\partial_1} dy = \int_{\Omega_2} \psi_1 w^T \frac{1}{J} K \nabla z_{w_1} J dx = \int_{\Omega_2} \psi_1 w^T K \nabla z_{w_1} dx
\end{equation}

(B.2)

and the second one accordingly. That means we have for the transformed equation in strong form

\begin{equation}
\begin{cases}
-\nu \nabla (A[u] \nabla z_w) + z_w (K[u] \nabla) \hat{w} + \hat{w} (K[u] \nabla) z_w + K[u] \nabla z_p = 0 & \text{in } \Omega_2, \\
\text{div}_{K[u]} z_w = 0 & \text{in } \Omega_2, \\
z_w = 0 & \text{on } \Gamma_{\text{in}}, \\
z_w = \delta g & \text{on } \Gamma_{\text{wall}} \cup \Gamma_{\text{int}}, \\
-\nu \partial_{A[u],n} z_w + z_p K[u] \cdot n_x = 0 & \text{on } \Gamma_{\text{out}}.
\end{cases}
\end{equation}

(B.3)
Appendix C. Some properties

Lemma C.1 (Algebra property). Let $\Omega \subset \mathbb{R}^2$ be open and bounded. Furthermore, let p and q be real with $2 < p < \infty$, $p \geq q \geq 1$. Then, for $v \in W^{1,p}(\Omega)$ and $u \in W^{1,q}(\Omega)$, the product wu belongs to $W^{1,q}(\Omega)$, and we have
\begin{equation}
\|wu\|_{W^{1,q}(\Omega)} \leq \Omega \|u\|_{W^{1,p}(\Omega)} \|v\|_{W^{1,q}(\Omega)}.
\end{equation}

Proof. Immediate.

With the embedding of Sobolev in Hölder spaces we have for $p > 2$
\begin{equation}
W^{2,p}(\Omega) \subset C^{1,\beta}(\bar{\Omega}) \subset C^{0,1}(\bar{\Omega}) \text{ for some } \beta > 0
\end{equation}
and so [Alt16, p. 338 and p. 325]
\begin{equation}
\|v\|_{W^{1,\infty}(\Omega)} = \|v\|_{C^{0,1}(\bar{\Omega})} \leq c \|v\|_{W^{2,p}(\Omega)} \text{ for } v \in W^{2,p}(\Omega).
\end{equation}

For $w \in W^{1,2}(\Omega)^2$ and recalling $K[u]$ we have the following calculus rules:
\begin{equation}
div(K[u]) = 0 \text{ (Piola’s identity),}
\end{equation}
\begin{equation}
div_{id-K[u]}w = ((id - K[u])\nabla)w = div w - K[u]^\top \cdot \nabla w = (id - K[u]^\top) \cdot \nabla w.
\end{equation}

References

[ADN59] S. Agmon, A. Douglis, and L. Nirenberg. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl. Math., 12:623–727, 1959.

[Alt16] H.W. Alt. Linear Functional Analysis: An Application-Oriented Introduction. Springer, 2016.

[AR14] C. Amrouche and A. Rejaiba. P-theory for Stokes and Navier-Stokes equations with Navier boundary condition. J. Differential Equations, 256(4):1515–1547, 2014.

[BCMT15] L. Bociu, L. Castle, K. Martin, and D. Toundykov. Optimal control in a free boundary fluid-elasticity interaction. Discrete Contin. Dyn. Syst., (Dynamical systems, differential equations and applications. 10th AIMS Conference. Suppl.) 122–131, 2015.

[BG09] P.B. Bochev and M.D. Gunzburger. Least-squares finite element methods. Springer, New York, 2009.

[BK16] M. Beneš and P. Kučera. Solutions to the Navier-Stokes equations with mixed boundary conditions in two-dimensional bounded domains. Math. Nachr., 289(2-3):194–212, 2016.

[Car67] H. Cartan. Calcul différentiel. Hermann, Paris, 1967.

[Cia88] P.G. Ciarlet. Mathematical elasticity. Vol. I, volume 20 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, 1988. Three-dimensional elasticity.

[CMR09] Eduardo Casas, Mariano Mateos, and Jean-Pierre Raymond. Penalization of Dirichlet optimal control problems. ESAIM Control Optim. Calc. Var., 15(4):782–809, 2009.

[DGLH03] Q. Du, M. D. Gunzburger, L. S. Hou, and J. Lee. Analysis of a linear fluid-structure interaction problem. Discrete Contin. Dyn. Syst., 9(3):633–650, 2003.

[DGLH04] Q. Du, M. D. Gunzburger, L. S. Hou, and J. Lee. Semidiscrete finite element approximations of a linear fluid-structure interaction problem. SIAM J. Numer. Anal., 42(1):1–29, 2004.

[dRY09] J.C. de los Reyes and I. Yousept. Regularized state-constrained boundary optimal control of the Navier-Stokes equations. J. Math. Anal. Appl., 356(1):257–279, 2009.

[EG04] A. Ern and J.-L. Guermond. Theory and practice of finite elements, volume 159 of Applied Mathematical Sciences. Springer-Verlag, New York, 2004.

[FMV16] L. Failer, D. Meidner, and B. Vexler. Optimal control of a linear unsteady fluid-structure interaction problem. J. Optim. Theory Appl., 170(1):1–27, 2016.

[GM00] C. Grandmont and Y. Maday. Existence for an unsteady fluid-structure interaction problem. M2AN Math. Model. Numer. Anal., 34(3):609–636, 2000.
Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany

Email address: michael.hintermueller@wias-berlin.de

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany

Email address: axel.kroener@wias-berlin.de

[Gr02] C. Grandmont. Existence for a three-dimensional steady state fluid-structure interaction problem. *J. Math. Fluid Mech.*, 4(1):76–94, 2002.

[HS18] M. Hieber and J. Saal. The Stokes equation in the L^p-setting: well-posedness and regularity properties. In *Handbook of mathematical analysis in mechanics of viscous fluids*, pages 117–206. Springer, Cham, 2018.

[HUU20] J. Haubner, M. Ulbrich, and S. Ulbrich. Analysis of shape optimization problems for unsteady fluid-structure interaction. *Inverse Problems*, 36(3):034001, Feb 2020.

[IKL+17] M. Ignatova, I. Kukavica, I. Lasiecka, and A. Tuffaha. Small data global existence for a fluid-structure model. *Nonlinearity*, 30(2):848–898, 2017.

[KKL+18] B. Kaltenbacher, I. Kukavica, I. Lasiecka, R. Triggiani, A. Tuffaha, and J.T. Webster. *Mathematical theory of evolutionary fluid-flow structure interactions*, volume 48 of *Oberwolfach Seminars*. Birkhäuser/Springer, Cham, 2018. Lecture notes from Oberwolfach seminars, November 20–26, 2016.

[LSZ18] I. Lasiecka, K. Szulc, and A. Zochowski. Boundary control of small solutions to fluid-structure interactions arising in coupling of elasticity with Navier-Stokes equation under mixed boundary conditions. *Nonlinear Anal. Real World Appl.*, 44:54–85, 2018.

[MR09] V. Maz’ya and J. Rossmann. Mixed boundary value problems for the stationary Navier-Stokes system in polyhedral domains. *Arch. Ration. Mech. Anal.*, 194(2):669–712, 2009.

[MR10] V. Maz’ya and J. Rossmann. *Elliptic equations in polyhedral domains.*, volume 162. Providence, RI: American Mathematical Society (AMS), 2010.

[MZ06] M. Moubachir and J.-P. Zolésio. *Moving shape analysis and control*, volume 277 of *Pure and Applied Mathematics (Boca Raton)*. Chapman & Hall/CRC, Boca Raton, FL, 2006. Applications to fluid structure interactions.

[RW13] T. Richter and T. Wick. Optimal control and parameter estimation for stationary fluid-structure interaction problems. *SIAM J. Sci. Comput.*, 35(5):B1085–B1104, 2013.

[Sol01] V. A. Solonnikov. L_p-estimates for solutions to the initial boundary-value problem for the generalized Stokes system in a bounded domain. volume 105, pages 2448–2484. 2001. Function theory and partial differential equations.

[WW19] T. Wick and W. Wollner. On the differentiability of fluid-structure interaction problems with respect to the problem data. *J. Math. Fluid Mech.*, 21(3):Art. 34, 21, 2019.