Influence of Management Practices on Yield and Economics of Compact Cotton Grown under HDPS in Irrigated Ecosystem

Mohan Chavan*, Satyanarayana Rao, B. K. Desai and B. G. Koppalkar

Department of Agronomy, Agricultural College, UAS, Raichur-584104 (Karnataka State), India

*Corresponding author

A B S T R A C T

A field experiment was conducted at Department of Agronomy, Agricultural College, UAS, Raichur during Kharif season of 2016-17 and 2017-8 to know the effect of planting geometry, fertilizer levels along with growth retardant spray on seed cotton yield and economics of cotton grown under HDPS in irrigated condition. The experiment was laid out in split plot design consisting of three levels of planting geometries viz., S₁: 60 cm x 10 cm (1,66,666 plants ha⁻¹), S₂: 75 cm x 10 cm (1,33,333 plants ha⁻¹) and S₃: 90 cm x 10 cm (1,11,111 plants ha⁻¹) in main plots and six levels of management practices viz., M₁: 60:30:30 N:P₂O₅:K₂O kg ha⁻¹, M₂: 80:40:40 N:P₂O₅:K₂O kg ha⁻¹, M₃: 100:50:50 N:P₂O₅:K₂O kg ha⁻¹, M₄: M₁ + mepiquat chloride @ 250 ppm sprayed at 60 DAS, M₅: M₂ + mepiquat chloride @ 250 ppm sprayed at 60 DAS and M₆: M₃ + mepiquat chloride @ 250 ppm sprayed at 60 DAS in sub plots. The result revealed that the closer row spacing of 60 cm x 10 cm produced significantly higher seed cotton yield (2875 kg ha⁻¹) over other planting geometries and significantly lower seed cotton yield (2388 kg ha⁻¹) was recorded under wider row spacing of 90 cm x 10. Among different fertilizer levels, application of 100:50:50 N:P₂O₅:K₂O kg ha⁻¹ + mepiquat chloride @ 250 ppm sprayed at 60 DAS recorded significantly higher seed cotton yield (2915 kg ha⁻¹) and lower was recorded with the application of 60:30:30 N:P₂O₅:K₂O kg ha⁻¹ (2392 kg ha⁻¹). In case of economics, row spacing of 60 cm x 10 cm and 75 cm x 10 cm recorded significantly higher net returns (₹ 78,121 ha⁻¹ and ₹ 71,857 ha⁻¹, respectively) and BC ratio (2.57 and 2.48, respectively). Among fertilizer levels, application of 100:50:50 N:P₂O₅:K₂O kg ha⁻¹ + mepiquat chloride @ 250 ppm sprayed at 60 DAS recorded higher net returns (₹ 79,870 ha⁻¹) and BC ratio (2.60) while significantly lower was observed with the application of 60:30:30 N:P₂O₅:K₂O kg ha⁻¹ (₹ 58,986 and 2.25, respectively).

Keywords
Management Practices, Yield and Economics, Cotton HDPS, Ecosystem

Introduction

Cotton (Gossypium hirsutum L.) possesses a position of major fibre and cash crop, which plays a vital role to sustain economy of our country. It is an important cash crop of North Eastern Dry Zone of Karnataka. In Karnataka it is grown on area of 5.07 lakh hectares with a production of 18 lakh bales and productivity of 604 kg per hectare (Anon., 2017).
Among the various factors responsible for low yield of cotton in the country, low plant population and use of low potential varieties are of primary importance. Various techniques like maintaining suitable plant density, use of optimum fertilizer dose, growth retardants are being used to overcome these constraints in cotton production. Under this context, the concept of HDPS in cotton that is ideally suited for both rain fed and irrigated ecosystems has the potential of improving yield by increasing plant population by 3 to 4 folds over recommended plant population per hectare. Compact cotton produces excessive vegetative growth under the condition of higher fertility status of soil and irrigation resulting in mutual shading and shedding of reproductive parts, thereby reducing yield. This has led to the interest in the use of plant growth retardants as it prevents excessive vegetative growth.

Keeping these points in view, field investigation under irrigated condition was carried out to know the suitable planting geometry, optimum fertilizer level and growth retardant spray to get a sustained higher yield under HDPS system.

Materials and Methods

Field experiment entitled “Influence of management practices on yield and economics of compact cotton grown under HDPS in irrigated ecosystem” was conducted at Agricultural College, UAS, Raichur during 2016-17 and 2017-18 on medium black soil, neutral in nature with low available nitrogen, medium phosphorus, rich in potassium. The climatic condition during experimental period was favorable and regular irrigation was provided to crop during both the years at later part of crop growth stages i.e., from 60 DAS to till first picking.

The experiment was laid out in split plot design with three planting geometries viz., S$_1$: 60 cm x 10 cm (1,66,666 plants ha$^{-1}$), 75 cm x 10 cm (1,33,333 plants ha$^{-1}$) and S$_3$: 90 cm x 10 cm (1,11,111. Plants ha$^{-1}$) as main plot treatments and six fertilizer levels with growth retardant spray viz., M$_1$: 60:30:30 N:P$_2$O$_5$:K$_2$O kg ha$^{-1}$, M$_2$: 80:40:40 N:P$_2$O$_5$:K$_2$O kg ha$^{-1}$, M$_3$: 100:50:50 N:P$_2$O$_5$:K$_2$O kg ha$^{-1}$, M$_4$: M$_1$+ mepiquat chloride @ 250 ppm sprayed at 60 DAS, M$_5$: M$_2$ + mepiquat chloride @ 250 ppm sprayed at 60 DAS and M$_6$: M$_3$ + mepiquat chloride @ 250 ppm sprayed at 60 DAS as sub plot treatments with three replications.

Results and Discussion

Planting geometries

Among the different planting geometries, significantly higher seed cotton yield (2875 kg ha$^{-1}$ on pooled basis) was recorded with a closer row spacing of 60 cm x 10 cm. Seed cotton yield was decreased significantly with further increase in row spacing and recorded lowest with the wider spacing of 90 cm x 10 cm (2388 kg ha$^{-1}$ on pooled basis). This significant increase in the seed cotton yield was mainly due to the higher plant population per unit area even though the yield attributes were lower compared to the yield attributes recorded under wider row spacing and due to the fact that increase in plants per unit area could compensated for the decrease in yield components per plant under narrow row spacing. Similar results were also reported by Tuppad (2015) and Udikeri (2017).

Fertilizer levels with growth retardant spray

Significant difference in seed cotton yield was noticed with different fertilizer levels with growth retardant spray. Application of higher fertilizer dose of 100:50:50 N:P$_2$O$_5$:K$_2$O kg ha$^{-1}$ + mepiquat chloride @ 250 ppm sprayed at 60 DAS recorded significantly higher seed cotton yield (2915 kg ha$^{-1}$ on pooled basis).
while significantly lower seed cotton yield (2392 kg ha⁻¹ on pooled basis) was observed with the application of lower fertilizer dose of 60:30:30 N:P₂O₅:K₂O kg ha⁻¹. It could be attributed to the significant difference in number of bolls per plant and seed cotton yield per plant. Similar result was also reported by Ikbal et al. (2007), Tuppad (2015) and Malakannavar (2017).

Interaction effect

Different treatment combinations influenced significantly on seed cotton yield. Combination of closer row spacing of 60 cm x 10 cm along with the application of higher fertilizer dose of 100:50:50 N:P₂O₅:K₂O kg ha⁻¹ + mepiquat chloride @ 250 ppm sprayed at 60 DAS recorded significantly higher seed cotton yield (3178 kg ha⁻¹ on pooled basis) and it was found on par with the combination of closer row spacing of 60 cm x 10 cm along with the application of medium fertilizer dose of 80:40:40 N:P₂O₅:K₂O kg ha⁻¹ + mepiquat chloride @ 250 ppm sprayed at 60 DAS (3103 kg ha⁻¹ on pooled basis). Whereas, significantly lower seed cotton yield was observed with the combination of wider row spacing of 90 cm x 10 cm along with the application of lower fertilizer dose of 60:30:30 N:P₂O₅:K₂O kg ha⁻¹ (2170 kg ha⁻¹ on pooled basis). These results are in close conformity with the finding of Yasari and Vahed (2012), Malakannavar (2017) and Udikeri (2017).

Economics

Among different planting geometries, significantly higher gross returns, net returns and BC ratio was recorded with the closer row spacing of 60 cm x 10 cm (Rs. 1,27,895 ha⁻¹, Rs. 78,121 ha⁻¹ and 2.57, respectively on pooled basis) and economic returns were decreased with increase in row spacings and recorded significantly lower gross returns, net returns and BC ratio with the wider row spacing of 90 cm x 10 cm (Rs. 1,06,212 ha⁻¹, Rs. 58,653 ha⁻¹ and 2.23, respectively on pooled basis). Among the different fertilizer levels with mepiquat chloride spray, application of higher fertilizer dose of 100:50:50 N:P₂O₅:K₂O kg ha⁻¹ + mepiquat chloride @ 250 ppm sprayed at 60 DAS recorded significantly higher gross returns, net returns and BC ratio (Rs. 1,29,666 ha⁻¹, Rs. 79,870 ha⁻¹ and 2.60, respectively on pooled basis). Whereas, significantly lower economic values were recorded with the application of lower fertilizer dose of 60:30:30 N:P₂O₅:K₂O kg ha⁻¹ (Rs. 1,06,371 ha⁻¹, Rs. 58,986 ha⁻¹ and 2.25, respectively on pooled basis). The difference in economic values may be attributed to difference in seed cotton yield.

Interaction effect also influenced significantly on economic values of cotton grown under HDPS. A treatment combination of closer row spacing of 60 cm x 10 cm along with the application of higher fertilizer dose of 100:50:50 N:P₂O₅:K₂O kg ha⁻¹ + mepiquat chloride @ 250 ppm sprayed at 60 DAS recorded significantly higher gross returns, net returns and BC ratio (Rs. 1,41,372 ha⁻¹, Rs. 90,396 ha⁻¹ and 2.78, respectively on pooled basis) and it was remained at par with the combination of closer row spacing of 60 cm x 10 cm along with the application of medium fertilizer dose of 80:40:40 N:P₂O₅:K₂O kg ha⁻¹ + mepiquat chloride @ 250 ppm sprayed at 60 DAS (Rs. 1,33,995 ha⁻¹, Rs. 84,068 ha⁻¹ and 2.69, respectively on pooled basis). Whereas, significantly lower economic values were recorded with the combination of wider row spacing of 90 cm x 10 cm along with the application of lower fertilizer dose of 60:30:30 N:P₂O₅:K₂O kg ha⁻¹ (Rs. 96,516 ha⁻¹, Rs. 50,165 ha⁻¹ and 2.09, respectively on pooled basis). Similar results were also reported by Malakannavar (2017) and Udikeri (2017).
Table 1: Yield attributing characters and yield of compact cotton genotype as influenced by management practices under high density planting system.

Treatments	Number of bolls/plant	Seed cotton yield/plant (g)	Seed cotton yield (kg ha⁻¹)						
	2016-17	2017-18	Pooled	2016-17	2017-18	Pooled	2016-17	2017-18	Pooled
Main plots (S)									
S₁	9.91	8.24	9.08	26.71	24.53	25.62	3003	2748	2875
S₂	11.28	9.98	10.63	28.87	26.34	27.60	2836	2574	2705
S₃	13.49	11.99	12.74	31.71	28.95	30.33	2511	2266	2388
S.Em⁺	0.12	0.21	0.16	0.38	0.37	0.36	32.35	29.97	23.96
Sub plots (M)									
M₁	10.18	8.53	9.36	25.06	22.88	23.97	2513	2271	2392
M₂	10.91	9.56	10.23	28.06	25.63	26.85	2715	2471	2593
M₃	11.44	10.22	10.83	29.88	27.19	28.53	2846	2586	2716
M₄	11.29	9.67	10.48	27.41	25.10	26.25	2675	2409	2542
M₅	12.44	10.82	11.63	31.03	28.52	29.78	2904	2656	2780
M₆	13.09	11.62	12.36	33.13	30.32	31.73	3049	2782	2915
S.Em⁺	0.28	0.33	0.26	0.61	0.64	0.59	54.82	47.10	37.31
Interactions (S x M)									
S₁M₁	8.73	7.20	7.97	23.24	21.24	22.24	2695	2434	2569
S₁M₂	9.33	7.87	8.60	26.04	23.81	24.93	2927	2679	2803
S₁M₃	9.73	8.20	8.97	27.07	24.79	25.93	3075	2922	2948
S₁M₄	9.73	7.87	8.80	25.30	23.22	24.26	2879	2605	2742
S₁M₅	10.80	8.93	9.87	28.62	26.44	27.53	3135	2890	3013
S₁M₆	11.13	9.40	10.27	29.96	27.67	28.82	3307	3050	3178
S₂M₁	9.93	8.33	9.13	24.81	22.59	23.70	2559	2312	2436
S₂M₂	10.67	9.33	10.00	27.79	25.32	26.55	2765	2515	2640
S₂M₃	11.13	10.07	10.60	29.84	27.04	28.44	2900	2630	2765
S₂M₄	11.00	9.60	10.30	27.10	24.74	25.92	2724	2453	2588
S₂M₅	12.13	11.00	11.57	30.62	28.16	29.39	2963	2703	2833
S₂M₆	12.80	11.53	12.17	33.04	30.19	31.62	3107	2829	2968
S₃M₁	11.87	10.07	10.97	27.13	24.80	25.96	2283	2057	2170
S₃M₂	12.73	11.47	12.10	30.36	27.78	29.07	2452	2220	2336
S₃M₃	13.47	12.40	12.93	32.72	29.72	31.22	2562	2306	2434
S₃M₄	13.13	11.53	12.33	29.81	27.33	28.57	2421	2169	2295
S₃M₅	14.40	12.53	13.47	33.86	30.96	32.41	2612	2375	2494
S₃M₆	15.33	13.93	14.63	36.40	33.11	34.75	2733	2460	2600
S.Em⁺	0.49	0.57	0.44	1.06	1.11	1.02	94.95	81.59	64.62
Table 2: Economics of compact cotton genotype as influenced by management practices under high density planting system

Treatments	Gross returns (Rs. ha⁻¹)	Net returns (Rs. ha⁻¹)	B C Ratio											
	2016-17	2017-18	Pooled	2016-17	2017-18	Pooled	2016-17	2017-18	Pooled					
Main plots (S)														
S₁	132130ᵃ	123660ᵇ	127895ᵃ	83408ᵃ	72834ᵇ	78121ᵃ	2.71ᵃ	2.43ᵇ	2.57ᵃ					
S₂	124799ᵇ	115813ᵇ	120306ᵇ	77403ᵇ	66311ᵇ	71857ᵇ	2.63ᵃ	2.34ᵇ	2.48ᵇ					
S₃	110472ᶜ	101953ᶜ	106212ᶜ	63966ᶜ	53341ᶜ	58653ᶜ	2.37ᵇ	2.10ᵇ	2.23ᵇ					
S.Em⁺	1423	1349	1065	1423	1349	1065	0.03	0.02	0.02					
Sub plots (M)														
M₁	110557ᵃ	102185ᵉ	106371ᵈ	64224ᵈ	53747ᵈ	58986ᵈ	2.38ᵈ	2.11ᵈ	2.25ᵈ					
M₂	119445ᵈ	111919ᵈ	115318ᶜ	72045ᶜ	61685ᶜ	66865ᵈ	2.52ᵈ	2.24ᵈ	2.38ᵇ					
M₃	125204ᵇ	116370ᵇ	120787ᵇ	76756ᵇ	65817ᵇ	71287ᵇ	2.58ᵇ	2.30ᵇ	2.44ᵇ					
M₄	117680ᵈ	108410ᵈ	113045ᶜ	71052ᶜ	59677ᵈ	65365ᵈ	2.52ᵈ	2.22ᵈ	2.37ᵇ					
M₅	127756ᵇ	119520ᵃ	123638ᵇ	80061ᵇ	69720ᵇ	74891ᵇ	2.68ᵇ	2.40ᵇ	2.54ᵇ					
M₆	134156ᶜ	125175ᵃ	129666ᵃ	8541ᵃ	74327ᵃ	79780ᵇ	2.75ᵇ	2.46ᵇ	2.60ᵇ					
S.Em⁺	2412	2120	1658	2412	2120	1658	0.05	0.05	0.03					
Interactions (S x M)														
S₁M₁	118595ᶠ	109950ᵈ	114272ᵈ	71082ᶜ	60332ᵈ	65707ᶠ	2.50ᶠ	2.22ᵈ	2.36ᶜᵇ					
S₁M₂	128788ᵇᵈ	120510ᵇᵈ	124649ᶠ	80208ᵇ	69825ᵇ	75017ᵇ	2.65ᵇ	2.38ᵉ	2.51ᵇᶜ					
S₁M₃	135285ᵇ	126975ᵃᶜ	131130ᵈ	85657ᵈ	7524ᵃ	80450ᵇ	2.73ᵈ	2.45ᵈ	2.59ᵇᵈ					
S₁M₄	126661ᵇᵈ	117240ᵉ	121951ᵈ	78853ᵇ	67327ᵇ	73090ᵉ	2.65ᵉ	2.35ᵇ	2.50ᵉᶜ					
S₁M₅	137940ᵇ	130050ᵃᵇ	133995ᵃᵇ	89065ᵇ	79070ᵃᵇ	84068ᵃᵇ	2.82ᵇ	2.55ᵃᵇ	2.69ᵃᵇ					
S₁M₆	145508ᵃ	137235ᵃ	141372ᵃ	9558ᵃ	85207ᵃ	90396ᵃ	2.91ᵃ	2.64ᵃ	2.78ᵃ					
S₂M₁	112611ᵉ	104040ᶠ	108325	h	66423ᶠ	55747ᶠ	61085ᵍ	2.44ᵍ	2.15ʰ	2.30ᶠ				
S₂M₂	121645ᵉ	113160ᵈ	117403ᶜ	74390ᶜ	63800ᶜ	69095ᵈ	2.57ᵈ	2.29ᵍ	2.43ᵈ					
S₂M₃	127585ᵇᵈ	118365ᵇ	122975ᵉ	79282ᵇ	67957ᵇ	73620ᵉ	2.64ᵉ	2.35ᵇ	2.49ᶜᶠ					
S₂M₄	119841ᵇ	110370ᵈ	115106ᵇ	73358ᵇ	61782ᵈ	67570ᵇ	2.58ᵇ	2.27ᵍ	2.42ᵈ					
S₂M₅	130387ᶜ	121635ᵇᵈ	12601¹	82837ᵉ	71908ᵇᵈ	77408ᵇᵈ	2.74ᶜ	2.45ᵈ	2.66ᵃᵈ					
S₂M₆	136723ᵇ	127305ᵃᶜ	132014ᵇ	88125ᵃ	7660ᵃ	82363ᵃ	2.81ᵃ	2.51ᵃᶜ	2.66ᵃᶜ					
S₃M₁	100467ᶠ	92565¹	9651⁶	5516¹	4516²	50165ᵇ	2.22ᶠ	1.95ᵇ	2.09ᵃ					
S₃M₂	107903ᵉ	99908³	103901⁹	61538	h	51430³	56484⁹	2.33⁹	2.06³	2.19ᵇ				
S₃M₃	112743ᵉ	103770⁻	108256	h	65330ḡ	54253ḡ	59791ḡ	2.38ḡ	2.10gorm	2.24ₑ⁻				
S₃M₄	106539ᵉ	97620	h	102079⁹	60946	h	4992³	55434	h	2.34	h	2.05	h	2.19ᵇ
S₃M₅	114943ᵉ	106875ᵉ	110909⁹	68283⁻	5811⁹⁺	63196⁹⁺	2.46⁺	2.19ᵈ	2.33ₑ⁻					
S₃M₆	120237ᶜ	110985ᵈ	115611⁹̥	72529ᵈ	61712ᵈ	66851ᵉ	2.52⁻	2.23ᵈ	2.37ₑ⁻					
S.Em⁺	4178	3671	2871	4178	3671	2871	0.08	0.08	0.06					
References

Anonymous, 2017, State-wise / year-wise area, production and yield of cotton in India. Cotton Advisory Board meeting dated 12.12.2017.

Iqbal, M. Hayat, K. and Islam, N., 2007, Cotton response to mepiquat chloride and nitrogen under ultra narrow plant spacing. *Asian J. Plant Sci.*, 6(1): 87-92.

Malakannavar, S., 2017, Effect of macronutrients and manipulation of morphframe on growth and yield of Bt cotton, *M. Sc. (Agri) Thesis*, Uni. Agric. Sci., Raichur (India).

Tuppad, G. B., 2015, Response of compact cotton genotypes to graded levels of fertilizers under varied planting density and defoliators. *Ph. D. (Agri) Thesis*, Univ. Agric. Sci., Dharwad (India).

Udikeri M, 2017, Production potential of compact cotton genotypes to fertilizer levels and growth retardants under high density planting system. *Ph. D. (Agri) Thesis*, Univ. Agric. Sci., Dharwad (India).

Yasari, E. and Vahedi, A., 2012, Impact of urea as nitrogen source and pix as growth regulator on cotton. International Journal of Biology, 4(3):140-147.

How to cite this article:

Mohan Chavan, Satyanarayana Rao, B. K. Desai and Koppalkar, B. G. 2020. Influence of Management Practices on Yield and Economics of Compact Cotton Grown under HDPS in Irrigated Ecosystem. *Int.J.Curr.Microbiol.App.Sci.* 9(02): 235-240.
doi: https://doi.org/10.20546/ijcmas.2020.902.030