1. Introduction

Consecutive dysregulation of lipoprotein metabolism is the greatest contributor to the development and progression of atherosclerosis, which leads to coronary artery disease (CAD). Abnormal elevation of plasma low-density lipoprotein (LDL) and triglyceride (TG)-rich lipoproteins as well as the dysfunction of anti-atherogenic high-density lipoprotein (HDL) are both recognized as essential components of the pathogenesis of atherosclerosis and are classified as dyslipidemia. This review describes the arc of development of antisense oligonucleotides for the treatment of dyslipidemia. Chemically-armed antisense candidates can act on various kinds of transcripts, including mRNA and miRNA, via several different endogenous antisense mechanisms, and have exhibited potent systemic anti-dyslipidemic effects. Here, we present specific cutting-edge technologies that have recently been brought into antisense strategies, and describe how they have improved the potency of antisense drugs in regard to pharmacokinetics and pharmacodynamics. In addition, we discuss perspectives for the use of armed antisense oligonucleotides as new clinical options for dyslipidemia, in the light of outcomes of recent clinical trials and safety concerns indicated by several clinical and preclinical studies.

Key words: Antisense drug, Chemical modification, Lipid lowering drug, Molecular targeting, Dyslipidemia

Address for correspondence: Tsuyoshi Yamamoto, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 561-0884, Japan
E-mail: t-yam@phs.osaka-u.ac.jp
Received: April 26, 2016
Accepted for publication: May 11, 2016

Without this genetic background\(^4\)\(^5\)\(^6\). For patients with familial hypercholesterolemia (FH), the necessity of earlier identification of their disease and lifelong intense LDL cholesterol management is greater than in hypercholesterolemic patients without this genetic background. FH is an autosomal dominant-type genetic disorder caused by specific gene mutations relevant to LDL metabolism. FH shows severe hyper-LDL cholesterolemia and premature CAD. Although the stronger class of statins has largely helped to attenuate severe blood LDL cholesterol, statins are not always effective and may not provide sufficient LDL reduction particularly for homozygous FH (HoFH) patients and severe heterozygous FH patients (HeFH). Therefore, alternative or additional drugs are required for these patients.

There is extensive evidence that elevated TG and low HDL cholesterol levels are both independent risk factors for CAD\(^7\). In addition, an extremely high blood TG level increases the risk of pancreatitis. Furthermore, current lipid-lowering drug interventions do not achieve sufficient efficacy in patients with severe hypertriglyceridemia accompanied by low HDL cholesterolemia having such diseases as familial combined hyperlipidemia (FCHL), familial chylomicronemia syndrome (FCS) and familial partial lipodystrophy (FPL).

Recently developed chemically-armed antisense oligonucleotides (AONs) are potent enough to provide a therapeutic option even for patients with severe inherited dyslipidemia. In fact, numerous molecular
targets responsible for severe dyslipidemia have been identified and some AONs targeting these molecules have shown great therapeutic potential against dyslipidemia in animal model studies. In addition, some ongoing clinical trials are evaluating AONs in patients with severe inherited dyslipidemia and interim reports on the lipid-controlling effects of AONs have just been published (Table 1). In this review, we provide general and extensive detailed information on recent advances in antisense drug development platforms as well as individual clinical candidates for the treatment of dyslipidemia.

2. Chemical Modifications for AONs

AONs are synthetic short single-stranded nucleic acid oligomers (typically 5-25 nucleotides-long) designed to form hybrids with target transcripts that have complementary sequences. The recognition of target RNAs by AONs is highly accurate and binding is tight due to their specific Watson-Crick-type base-pairing interaction. It was only recently that therapeutic AONs exhibited perceptible systemic activity without delivery vehicles and achieved excellent outcomes in clinical trials when furnished with chemically-armed nucleic acid building blocks. The key to success in improvement of the in vivo potency of AONs was the introduction of chemical modifications into the AON structure that makes AONs more stable in a biological context and give them higher binding affinity to target RNAs. There are three motifs comprising the AON architecture: phosphate backbone, ribose and nucleobase (Fig. 1)\(^8\), all of which are potentially chemically modifiable, and numerous chemical modifications have been introduced into the motifs over the past four decades.

The first innovation was phosphorothioate internucleotide modification technology, which drastically avoids unintended nuclease digestion of AONs under biological conditions and improves their pharmacokinetics\(^9\). Ionis Pharmaceuticals, a leading company developing antisense drugs, produced the first FDA-approved clinical antisense drug, Vitravene®, based on this technology in 1998. The second generation of AONs was also developed by Ionis Pharmaceuticals, achieved by introducing an affinity-enhancing modification into a nucleic acid building block called MOE (2’-O-methoxyethyl RNA)\(^10\). They demonstrated that the complementary characteristics of MOE on a ribose moiety and phosphorothioate backbone modification further strengthened the potency of AONs, enabling systemic application. The second generation technology eventually led to the development of Kynamro\(^\text{®}\), a FDA-approved anti-apolipoprotein B (ApoB) AON for homozygous FH, in 2013 (discussed below).

Our group first succeeded in developing a novel ribose modification, 2’,4’-bridged nucleic acid (2’,4’-
RNase H-mediated Mechanism

It is known that AONs can control gene expression by multiple intrinsic mechanisms, such as promoting the degradation of transcripts, modifying RNA processing, and perturbing RNA-protein interaction patterns. Hybridization-mediated destabilization of transcripts promoted by “RNase H” is one of the best-studied mechanisms of action of AONs. Kynamro® and most of the current clinical candidates for dyslipidemia come under this mechanistic class. RNase H is a ubiquitously expressed endoribonuclease that preferentially binds to the DNA-RNA hetero-duplex over RNA-RNA and DNA-DNA homo-duplexes. After an AON binds to the target RNA, RNase H selectively hydrolyzes the RNA strand of the AON-RNA duplex, and RNase H1 is more likely to be responsible for this mechanism than RNase H2. The AON is expected to be recycled after the target RNA is cleaved by RNase H1 for the next catalytic reaction. As RNase H1 is found in both the nucleus and cytoplasm, both organelles are potential sites of action of an AON that utilizes the RNase H1 mechanism. Putative molecular targets for an AON are therefore regarded as not only cytosolic mature mRNA, but also pre-mRNA and non-coding RNAs typically in the nucleus. We recently demonstrated that an AON designed to bind to part of an exon region undergoes cleavage of both mature mRNA and its pre-mRNA. In addition, these pre-mRNA and mature mRNA fragments, which are produced by RNase H1 in the nucleus, are rapidly processed by a nucleus exoribonuclease XRN2. A similar mechanistic study by others found that mature mRNA fragments formed by RNase H are further processed by cytoplasmic exoribonuclease XRN2.

Fig. 2. RNase H mediated functional mechanism of ASO and degradative pathway of cleavage products.
modified nucleic acids, such as MOE, 2',4'-BNA/LNA and their analogues, with fully phosphorothioate backbone modifications23, 32, 33. This strategy is now widely appreciated, as seen in many of the clinical candidates that support the RNase H1 mechanism (Fig. 3). Later, we will discuss several candidates for dyslipidemia that are currently being tested in clinical trials.

3.2. MicroRNA-targeting Antisense Drugs

More than 5,000 human microRNAs (miRNAs) have so far been identified and most mRNAs have been shown to have miRNA target sites on their

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{gapmer_structure.png}
\caption{Gapmer structure and some sugar-modified nucleotide analogs with phosphorothioate backbone.}
\end{figure}
3’-untranslated (UTR) region, indicating that mRNA translation is under the strict spatiotemporal control of miRNAs. Therefore, dysregulation of the biogenesis and function of individual or families of miRNAs causes many types of human diseases, including cardiovascular and metabolic diseases.

miRNA is an endogenous, short (typically ~22 nucleotides-long) non-coding RNA that works as a guide for RNA silencing machinery to the 3’-UTR of the target mRNA. Most miRNAs are generated from much longer hairpin transcripts by the function of RNase III-like protein machineries, Drosha and Dicer. Argonaute family proteins (AGO) are then responsible for the further maturation of miRNAs in cytoplasm and behave as a core scaffold for miRNA-induced RNA silencing complex (miRISC). Each miRNA has a “seed” sequence (~7 RNA stretch) on its own 5′ flank to recognize a set of target mRNAs possessing seed-match regions and form full-match Watson-Crick base-pairs, triggering miRNA-induced RNA silencing. The major miRNA-induced RNA silencing mechanisms include the removal of the 3’-polyA tail and 5’-cap structure of mRNAs, followed by translation repression and mRNA decay. Despite the ability of miRNAs to elicit direct endonucleolytic cleavage of the target mRNAs, animal systems rarely utilize this mechanism.

There are several strategies to suppress or supply miRNA activity. In this context, utilizing synthetic oligonucleotides that block target mRNA binding to parent mRNAs or that guide AGO machineries to mRNAs through a reliable Watson-Crick interaction can be powerful strategies to perturb miRNA function even in vivo. The former strategy, termed “antimiR”, is one that represses miRNA activity, while the latter, termed “miRNA mimic”, is used in miRNA replacement therapy. In general, chemical modification is more favorable to antimiR AON than miR mimic because a chemically over-armed miR mimic is more likely to fail to be an inherent substrate for AGO and related factors comprising miRISC while the antagonizing of the presented seed region of miRNA by antimiR is a process relatively free from precise recognition by enzymes.

3.3. Pharmacokinetics of Chemically Modified AONs

The recently demonstrated strong systemic antagonism of AONs without any encapsulation is primarily due to their preferable pharmacokinetics achieved by chemical modification. Phosphorothioate chemistry has made the largest contribution to the improvement of the pharmacokinetics of oligonucleotides that were previously rapidly degraded and showed almost no pharmacological effects in biological systems. Phosphorothioate modification provides AONs with high-protein binding ability and a nuclease resistant property, which helps them to be distributed to the target organs, tissues, and cells as intact as possible. Once AONs reach their target sites, high affinity modification plays a critical role in potency. Significant reduction in systemic activity generally happens if even one of two modifications is lacking.

The preferred route of administration of chemically-armed AONs for systemic application is parenteral injection, including intravenous and subcutaneous injection. After injection, AONs are rapidly transferred to the systemic circulation (~minutes) and are mostly eliminated from blood to peripheral tissues in a few hours. AONs typically show broad biodistribution and the organs with the highest concentrations are likely to be the liver and kidney. In these organs, AONs have long half-lives and prolonged knockdown activity (2–4 weeks). These aspects have driven researchers to develop AONs primarily for the treatment of liver-related disorders. Interestingly, however, Hung et al. recently showed that chemically-armed AONs can target mRNAs that are expressed not only in the liver and kidney but in, literally, any organs, tissues or cells except for part of the brain, which would prompt broader therapeutic application of AONs. However, the molecular background of the cellular internalization process of AONs largely remains to be elucidated.

4. Development of Clinical AONs for Dyslipidemia

Regarding AONs for dyslipidemia, three are currently under clinical testing in humans and one, Kynamro®, has been approved by the US Food and Drug Administration (FDA). The molecular targets of these AONs are apolipoprotein C-III (ApoCIII) mRNA, lipoprotein (a) or Lp(a) mRNA and angiopoietin like-3 protein (ANGPTL3) mRNA, all of which are expressed mainly in the liver and for which selective inhibitors using other strategies have not been previously developed. All of these candidate AONs were originally discovered and developed by Ionis Pharmaceuticals and basically have MOE modification in combination with phosphorothioate backbone modification. The AONs, IONIS-APO(a)-LRX and IONIS-ANGPTL3-LRx, both contain liver-targeting (Ligand-conjugated Antisense Technology, LICA) technology to achieve much lower and less frequent dosing of the AON.

In this section, we will consider recent progress that has been made in clinical trials on these AONs. We will also mention some interesting pre-clinical and
experimental phase trial reports, including one by us.

4.1. Apolipoprotein B-100; Kynamro® (Mipomersen)

Gene defects in Apolipoprotein B-100 (ApoB-100) were found in patients presenting FH-like symptoms, but having normal LDL receptor (LDLR) activity. Loss-of-function mutations in ApoB-100 may cause reduction in affinity between LDL and LDLR protein, resulting in a lower elimination rate of LDL from the blood and an elevation of plasma LDL-cholesterol51. On the other hand, mutations that reduce the production of ApoB-100 are responsible for reduced plasma ApoB-100 levels and LDL-cholesterol concentrations52. These observations have fueled the development of ApoB-targeting AONs53-55).

Kynamro® injection contains an AON inhibitor of ApoB-100 mRNA and is the first FDA-approved systemic AON for homozygous FH (HoFH). Having the generic name mipomersen, it has shown excellent systemic AON for homozygous FH (HoFH). Having the generic name mipomersen, it has shown excellent LDL-cholesterol reduction potential in HoFH patients in a number of clinical trials. Raal et al. have reported the results of a phase 3 study undertaken in seven different countries, in which 51 HoFH patients who were already taking the maximum dose of lipid-lowering drugs were enrolled and randomly assigned to subcutaneous injection of mipomersen at a dose of 200 mg/week or placebo for 26 weeks. This study demonstrated the significant LDL-cholesterol lowering effect of mipomersen (−24.7%) over placebo (−3.3%), though the rate of adverse events observed, which included injection-site reaction, flu-like symptoms, increase in transaminases and steatosis, could not be ignored56).

Santos et al. recently reported the interim results of an on-going long-term efficacy and safety study on mipomersen57. It enrolled FH patients who had been receiving lipid-lowering drugs and changes in efficacy and safety parameters during treatment with 200 mg/week of mipomersen had been continuously monitored for 104 weeks. The mean changes in LDL-cholesterol concentration from baseline were consistently large, between −27 and −28%, from week 26 to 104. Although an increase in liver transaminases and hepatic steatosis associated with the administration of mipomersen were also observed in this study, as in the case of other phase 3 trials, these adverse effects did not progress or increase in frequency over an extended period of time. These findings are important not only to the broader application of mipomersen, but also provide a useful guide for the development of next generation AON drugs. However, it should be noted that 55% of the enrolled patients dropped out in the middle of the trial due to the severe adverse events such as injection-site reaction, influenza-like symptoms and liver problems. We should also note that it is unknown whether or not mipomersen reduces the risk of CAD.

4.2. Apolipoprotein (a)

Apolipoprotein (a) (Apo(a)), which is bound to ApoB-100 via a disulfide bond, leads to the formation of Lipoprotein (a) (Lp(a)), a cholesterol-rich LDL-like particle. Elevated Lp(a) has been recognized to be one of the risk factors of CAD and stroke58, 59). The physiological action of Lp(a) further supports its atherogenic effect. Lp(a) potentially exerts atherogenic effects on vascular surfaces because its composition is similar to that of LDL. Lp(a) is also known to carry oxidized phospholipids, which are pro-inflammatory agents60).

In addition, due to the structural similarity between Apo(a) and plasminogen, Apo(a) can act as an intrinsic antagonist and inhibit activation of plasminogen and fibrinolysis61). Lowering Lp(a) levels by apheresis was shown to be effective in preventing cardiac events62).

Ionis Pharmaceuticals has developed LICA-unconjugated IONIS-APO(a)-Ls, and LICA-conjugated IONIS-APO(a)-Ls, both of which possess a MOE-based chemical modification as well as a phosphorothioate modification and target Apo(a) mRNA. Phase 2 and Phase 1/2a trials on IONIS-APO(a)Ls and LICA-conjugated IONIS-APO(a)-Ls, respectively, are currently on-going in subjects with elevated Lp(a). Although safety and efficacy information have not yet officially been published, the company recently reported outstanding interim results for both trials as well as a pre-clinical study on a LICA-unconjugated AON in transgenic mouse models63). (http://www. ionispharma.com/pipeline/). It is noteworthy that Ionis Pharmaceuticals achieved a mean reduction of 92% in Lp(a) in a Phase1/2a study evaluating LICA-conjugated IONIS-APO(a)-Ls. Overall results indicated that the potency of IONIS-APO(a)-Ls was 30 times stronger than LICA-unconjugated IONIS-APO(a)Ls. They also reported that none of the 159 subjects receiving the injection showed injection-site reactions or flu-like symptoms.

4.3. PCSK9

Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) was identified as the third gene of FH in 200364, 65). A number of genetic and intervention studies have found a positive correlation between plasma PCSK9 protein levels and LDL-cholesterol concentrations66). PCSK9 is expressed as a zymogen mainly in the liver, intestine and kidney and secreted as a 63-kDa processed mature form of PCSK9. The
secreted PCSK9 is thought to be directly involved in LDLR maintenance where circulating PCSK9 binds to LDLR using an extracellular epidermal growth factor-like repeat A (EGFA) domain of LDLR and stimulates internalization of LDLR within lysosomes to diminish elimination of plasma lipoproteins in the liver. Since PCSK9 is secreted in the blood, priority has been given to the development of monoclonal antibody-based antagonists, some of which have so far shown great cholesterol-lowering effects in human subjects65, 68. On the other hand, Graham \textit{et al.} demonstrated a positive effect of a MOE AON-targeting PCSK9 mRNA in high fat-fed mice69. However, possibly due to the insufficient binding affinity of the MOE modification targeting PCSK9 mRNA, quite a high dose (100 mg/kg/week) was required to achieve an adequate reduction in PCSK9.

Teams from Santaris Pharma (currently Roche group) have improved the potency of anti-PCSK9 AONs by utilizing a 2’,4’-BNA/LNA modification, a higher-affinity modification70, 71. A 2’,4’-BNA/LNA-modified AON achieved an 85% reduction in liver PCSK9 mRNA and serum PCSK9 protein and a 50% reduction in serum LDL-cholesterol concentration in monkeys in their 4-week study (20 mg/kg on day 0 and subsequently 5 mg/kg/week as maintenance dose). These results were the impetus for the clinical development of the 2’,4’-BNA/LNA-based AON and a Phase 1 study in healthy volunteers was commenced in May 2011, though it was terminated in October 2011 due to an insufficient therapeutic window for chronic use72.

Our group has been developing an anti-PCSK9 AON possessing two different high-affinity modifications, 2’,4’-BNA/LNA and 2’,4’-BNANC, with phosphorothioate chemistry73. We demonstrated that 20 mg/kg/week of 2’,4’-BNA/LNA-AON for 6 weeks achieved a greater than 30% reduction in serum LDL-cholesterol and a slight increase in liver transaminases. However, a 2’,4’-BNANC-based AON did not have this effect on liver transaminases but did show an earlier LDL-cholesterol lowering action. Based on these results, we are moving forward on a pre-clinical study for evaluating candidates.

4.4. Apolipoprotein C\textit{III} (ApoC\textit{III})

Hypertriglyceridemia is recognized as a major independent risk factor for CVD74, 75, and severe hypertriglyceridemia is associated with fatal pancreatitis76, 77. A number of clinical research and pre-clinical studies with genetically-engineered animal models have shown that elevated ApoC\textit{III} is associated with high plasma TG levels78-83. ApoC\textit{III} is a glycoprotein synthesized mainly in liver and secreted in blood as a component of TG-rich lipoproteins, such as chylomicron and VLDL, and their remnants, as well as HDL particles82, 83. ApoC\textit{III} primarily attenuates lipolysis of TG-rich lipoproteins by inhibiting lipoprotein lipase (LPL) activity on capillaries84. It is also known to delay clearance of TG-rich lipoproteins and their remnants by undermining interaction of apolipoprotein B or E on lipoproteins with LDL receptors (LDLR)85, 86. ApoC\textit{III} may also play a role in the activity of hepatic lipase87 and assembly and secretion of TG-rich lipoproteins88. Therefore, ApoC\textit{III} plays a key role directly and indirectly in the pathogenesis of atherosclerosis and could be a potential therapeutic target for hypertriglyceridemia89-91.

Ionis Pharmaceuticals is a leading company in the development of anti-ApoC\textit{III} AONs. While the number of published studies showing clinical outcomes has been limited, an early phase study in healthy volunteers demonstrated a potent dose-dependent reduction in plasma ApoC\textit{III} protein levels and TG concentrations92. Gudet \textit{et al.} reported that the Ionis investigational drug volanesorsen showed efficacy in three patients with Familial Chylomicronemia Syndrome (FCS). Before initiating dosing, patients had TG concentrations ranging from 1406 to 2083 mg/dL and 13 weeks of dosing achieved a 56-86% reduction in TG reduction as well as a 71-90% reduction in ApoC\textit{III} protein in blood, resulting in plasma TG concentrations of less than 500 mg/dL in all patients93. In a Phase II trial conducted by Ionis Pharmaceuticals in patients with type 2 diabetes, in addition to a 69% reduction in TG, a 1.22% reduction in Hba1c was achieved (http://isispharm.com/). These results led to two Phase III trials. In 2014, the Phase III APPROACH trial for evaluation of volanesorsen was started in patients with PCS. This trial is a randomized double-blind, placebo-controlled, 12 month study in approximately 50 PCS patients with TG levels of 750 mg/dL or above. Volanesorsen was given weekly at a dose of 300 mg/week and the primary endpoint is the percent reduction in fasting TG levels after three months of dosing. In 2015, the BROADEN trial started enrolling patients with familial partial lipodystrophy. Additional clinical efficacy data and safety information for volanesorsen will hopefully be reported soon.

We have demonstrated a strong antagonistic effect for an anti-ApoC\textit{III} AON having 2’,4’-BNA/LNA or a 2’,4’-BNA\textit{AM} chemistry series94, 95. A 2’,4’-BNA/LNA-modified AON reduced hepatic ApoC\textit{III} mRNA by 80% after multiple doses over 16 days. Serum total TG reduction of 87% was recorded on day 16 and lipoprotein profiling revealed that this reduction was derived mainly from reduction in the
4.5. ANGPTL3

Numerous genetic analyses have shown that genetic defects in or at close proximity to angiotensin-like 3protein (ANGPTL3)-encoding loci are associated with high plasma lipid concentrations and subjects with elevated plasma ANGPTL3 are likely to exhibit plasma TG elevation accompanied by high LDL cholesterol concentrations96-99). It has been suggested that a primary molecular mechanism by which ANGPTL3 influences elevation of plasma TG is inhibition of lipoprotein lipase activity (LPL)100). Biochemical studies indicate that ANGPTL3 inhibits LPL activity not only by antagonizing the lipolytic activity of LPL, but also by stimulating removal of LPL from the cell surface, typically mediated by FURIN and PCSK6101).

Ionis Pharmaceuticals originally developed the LICA-unconjugated AON IONIS-ANGPTL3Rx and reported a Phase 1 study on it in 2015. In this study, IONIS-ANGPTL3Rx achieved significant reductions in ANGPTL3, TG and LDL cholesterol with mean reductions of 84%, 49% and 28%, respectively. These results prompted them to develop a LICA-conjugated version of a MOE-based AON with phosphorothioate chemistry, IONIS-ANGPTL3-LRx, and in December 2015, Phase 1/2 studies evaluating IONIS-ANGPTL3-LRx in subjects with elevated TGs and hypercholesterolemia started. The publication of their results should further support the potential utility of this drug.

4.6. miR-33a/b

To the best of our knowledge, miRNA-targeting AONs for the treatment of dyslipidemia are still under pre-clinical development; however, some studies have indicated the great potential of anti-miR in modification of dyslipidemic states102-109). In this regard, recent results for inhibition of miR-33a/b using anti-miRs having different types of modifications (2'-F RNA/MOE109) or LNA (67) with phosphorothioate backbone modification) have consistently indicated a positive effect on plasma HDL-cholesterol levels. miRNA-33a/b are both intronic miRNAs encoded in the same genetic loci with sterol response element binding proteins 2/1 (SREBP 2/1), respectively, and co-transcribed with them. There are miR-33a/b target genes relevant to cholesterol efflux, including ATP-binding cassette transporters (ABCA1 and ABCG1), and also those involved in fatty acid homeostasis and insulin signaling110, 111).

Najafi et al. administered unencapsulated LNA-modified anti-miR-33a to western diet-fed mice through the tail vein at a dosage of 20 mg/kg/injection for 3 consecutive days. Mice were sacrificed 48 hours after the last injection and serum was analyzed. Moderate but significant increases in plasma HDL cholesterol and hepatic ABCA1 mRNA were observed with no indication of drug-induced toxicity107). Aiming to see if these observations of the therapeutic potential of an anti-miR-33 strategy in mice could be extrapolated to humans, Rayner et al., demonstrated further proof of concept of the anti-miR-33 therapy in African green monkeys with a 2'-F RNA/MOE-modified anti-miR-33a/b AON106, 109). Animals were subjected to multiple subcutaneous injections of anti-miR-33a/b at a dose of 5 mg/kg/injection over twelve weeks. Consistent with the murine study, an increase in hepatic ABCA1 expression and a sustained increase in plasma HDL-cholesterol concentration were observed in the monkeys. Moreover, the authors found specifically, that in this non-human primate model, miR-33a/b inhibition significantly reduced plasma very-low-density-lipoprotein (VLDL) levels as a result of an increase in the expression of genes related to fatty acid oxidation (CROT, CPT1A, HADHB and PRAKK1) and a reduction in fatty acid synthesis genes (SREBF1, FASN, ACLY and ACACA).

Regarding the effectiveness of anti-miR-33 therapy against atherosclerosis progression, Marquart et al. showed that LNA-based anti-miR-33 had no effect in 1.25% of cholesterol containing western diet-fed Ldlr−/− mice, while Rotllan et al. showed that 2'-F RNA/MOE-modified anti-miR-33 had a positive effect on atherosclerosis progression in less cholesterol-loaded western diet-fed Ldlr−/− mice112, 113). Although these results seem to be incompatible, the results of a number of previous statin studies indicate that experimental settings, for example the type of animal model or pharmaceutical modifiers used, greatly affect the study outcome114, 115) and therefore, experiments need to be carefully planned and conducted to obtain efficacy data for antimiR-33 therapy that can be extrapolated to humans.

5. Understanding Mechanisms of Cellular Uptake and Intracellular Disposition of AONs for Further Improvement of Potency

As mentioned earlier, there is only a small amount of knowledge as to why naked AONs can be taken up by cells in vivo10). Although there have been
studies on the molecules of putative endocytotic pathways that AONs would take, a major shortcoming that has delayed the elucidation of a mechanism for their uptake is, that to a large extent, the activity of AONs in cultured cells does not reflect their potency in vivo. In this context, Stein et al. recently developed a method called “gymnosis”, in which high concentrations of AONs (typically >10 µM) are slowly taken up by cultured cells without the use of transfection agents. This method has been shown to maintain consistency between the in vitro and in vivo activity of AONs, indicating a common physiological mechanism between in vitro and in vivo systems.

Our group independently developed a novel in vitro system called CEM in which AONs are rapidly taken up by various cell lines simply by adding a 9 mM CaCl2-containing culture medium. With it, an excellent positive correlation has been demonstrated between AON activity in a cell culture and mice. CEM has enabled us to conduct more accurate cell-based high-throughput screening of clinical candidates and facilitated the further elucidation of the cellular uptake mechanisms of chemically-modified AONs.

An active targeting strategy involving attachment of small molecular ligands to chemically-armed AONs has been gaining attention. A highly important strategy in dyslipidemia therapy is to use trivalent N-acetylgalactosamine (GalNAc)-tethered AONs. GalNAc is a carbohydrate ligand for asialoglycoprotein receptors (ASGPR), which are abundant on the surface of hepatocytes. Mouse studies have revealed that AONs to which these ligands are attached are 5- to 10-fold more potent than unconjugated congeners. In our own research, we recently developed a simplified version of the GalNAc structure and demonstrated that its very high in vivo activity was maintained. Greater flexibility in synthesis led us to observe that conjugation of pentameric GalNAc provided better in vivo potency than the conventional trivalent GalNAc. As mentioned above, Ionis Pharmaceuticals is a leading company in the clinical application of ligand-conjugated AONs and has started achieving outstanding clinical outcomes.

6. Safety Concerns

A key lesson that has been learned from the results of a number of past clinical trials and pre-clinical experiments evaluating chemically-modified AONs is that toxicity rates in human subjects are relatively high. Hepatic and renal toxicity are the most common adverse events observed in animal and human trials. However, such toxicity never appeared in cultured cell systems and therefore, the mechanism of onset is still unclear. Extensive efforts have been recently devoted to predicting and understanding these accompanying toxicities, with some recent studies suggesting that hepatotoxicity can be ascribed to hybridization-dependent off-target toxicity, while others have suggested it can be attributed to hybridization independent toxicity. Thus, the observations so far seem to be controversial, and multiple pathways may be involved in AON toxicity. However, some studies have found that slight structural modification of AONs can potentially reduce their hepatotoxicity. Considering these findings together, to overcome the potential safety issues accompanying AON drugs, we should focus more on having better in vitro assay systems that predict in vivo toxicity as well as a better understanding of toxicity mechanisms, in addition to developing better alternative chemical modifications for AONs.

7. Conclusion

The advantage of using an antisense strategy as a novel therapeutic modality for the treatment of dyslipidemia is that it is supported by a number of technologies enabling in vivo application of AONs as well as rapid and systematic identification of etiological molecules, which include next-generation high-throughput DNA sequencing technology. Theoretically, because primary sequences of transcripts of etiological or disease-related molecules are the only information required for the generation of AON-based antagonists, once superior platform technologies for AON modification are in place, they could produce a number of clinical AON inhibitors. In fact, many researchers who first identified new etiological molecules have already used antisense inhibitors for their first knock-down experiments in vitro and in vivo. In the near future, AONs may provide a good therapeutic option for dyslipidemia patients.

8. COI

Tsuyoshi Yamamoto: T.Y. has received a Grant for Research on Atherosclerosis Update from the Japan Heart Foundation & Astellas/Pfizer. Mariko Harada-Shiba: Grants from Kaneka Medix Corp. and Astellas Pharma. Honoraria from Sanofi Co., Kowa Co., Amgen Astellas BioPharma Co., Astellas Pharma, Pfizer Co., AstraZeneca Co., MSD Co., Bayer Co, Kyowa Hakko Kirin Co. and Boehringer Ingelheim Co.
25) Wu H, Lima WF, Zhang H, Fan A, Sun H, Crooke ST: Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J Biol Chem, 2004; 279: 17181-17189

26) Yamamoto T, Fujii N, Yasuhara H, Wada S, Wada F, Shigesada N, Harada-Shiba M, Obika S: Evaluation of multiple-turnover capability of locked nucleic acid antisense oligonucleotides in cell-free RNase H-mediated antisense reaction and in mice. Nucleic Acid Ther, 2014; 24: 283-290

27) Pedersen L, Hagedorn PH, Lindholm MW, Lindow M: A Kinetic Model Explains Why Shorter and Less Affine Enzyme-recruiting Oligonucleotides Can Be More Potent. Mol Ther Nucleic Acids, 2014; 3: e149

28) Lima WF, De Hoyos CL, Liang XH, Crooke ST: RNA cleavage products generated by antisense oligonucleotides and siRNAs are processed by the RNA surveillance machinery. Nucleic Acids Res, 2016; 44: 3351-3363

29) Castanotto D, Lin M, Kowollik C, Wang L, Ren XQ, Soifer HS, Koch T, Hansen BR, Oerum H, Armstrong B, Wang Z, Bauer P, Rossi J, Stein CA: A cytoplasmic pathway for gampet antisense oligonucleotide-mediated gene silencing in mammalian cells. Nucleic Acids Res, 2015; 43: 9350-9361

30) Liang XH, Shen W, Sun H, Prakash TP, Crooke ST: TCP1 complex proteins interact with phosphorothioate oligonucleotides and can co-localize in oligonucleotide-induced nuclear bodies in mammalian cells. Nucleic Acids Res, 2014; 42: 7819-7832

31) Hori S, Yamamoto T, Obika S: XRN2 is required for the degradation of target RNAs by RNase H1-dependent antisense oligonucleotides. Biochem Biophys Res Commun, 2015; 464: 506-511

32) Kurreck J, Wyszko E, Gillen C, Erdmann VA: Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res, 2002; 30: 1911-1918

33) Frieden M, Christensen SM, Mikkelsen ND, Rosenbohm C, Thue CA, Westergaard M, Hansen HF, Orum H, Koch T: Expanding the design horizon of antisense oligonucleotides with alpha-L-LNA. Nucleic Acids Res, 2003; 31: 6365-6372

34) Lodin E, Loher P, Telonis AG, Quann K, Clark P, Jing Y, Hatzimichael E, Kirino Y, Honda S, Lally M, Ramratan B, Comstock CE, Knudsen KE, Gomella L, Spaeth GL, Hark L, Katz LJ, Witkiewicz A, Rostami A, Jimenez SA, Hollingsworth MA, Yeh JJ, Shaw CA, McKenzie SE, Bray P, Nelson PT, Zupo S, Van Roosbroeck K, Keating MJ, Calin GA, Yeo C, Jimbo M, Cozzitorto J, Brody JR, Delgrosso K, Mattick JS, Fortina P, Rigoutsos I: Analysis of 13 cell types reveals evidence for the expression of numerous novel primates- and tissue-specific microRNAs. Proc Natl Acad Sci U S A, 2015; 112: E1106-1115

35) Friedman RC, Farh KK, Burge CB, Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 2009; 19: 92-105

36) Flowers E, Aouizerat BE: MicroRNA associated with dyslipidemia and coronary disease in humans. Physiol Genomics, 2013; 45: 1199-1205

37) Flowers E, Froelicher ES, Aouizerat BE: MicroRNA regulation of lipid metabolism. Metabolism, 2013; 62: 12-20

38) Horigo T, Baba O, Kuwabara Y, Yokode M, Kita T, Kimura T, Ono K: MicroRNAs and Lipoprotein Metabolism. J Atheroscler Thromb, 2014; 21: 17-22

39) Krol J, Loedige I, Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet, 2010; 11: 597-610

40) Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell, 2009; 136: 215-233

41) Hunzinger E, Izaurralde E: Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet, 2011; 12: 99-110

42) Stenvang J, Petri A, Lindow M, Obad S, Kauppinen S: Inhibition of microRNA function by antimiR oligonucleotides. Silence, 2012; 3: 1

43) Yu RZ, Kim TW, Hong A, Watanabe TA, Gaus HJ, Geary RS: Cross-species pharmacokinetic comparison from mouse to man of a second-generation antisense oligonucleotide, ISIS 301012, targeting human apolipoprotein B-100. Drug Metab Dispos: the biological fate of chemicals, 2007; 35: 460-468

44) White PJ, Anastasopoulos P, Pouton CW, Boyd BJ: Overcoming biological barriers to in vivo efficacy of antisense oligonucleotides. Expert Rev Mol Med, 2009; 11: e10

45) Lendvai G, Velikyan I, Estrada S, Eriksen B, Langstrom B, Bergstrom M: Biodistribution of 68Ga-labeled RNA/DNA mimixer antisense oligonucleotides for rat chromogranin-A. Oligonucleotides, 2008; 18: 33-49

46) Geary RS, Leedes JM, Fitchett J, Burckin T, Truong L, Spanhour C, Creek M, Levin AA: Pharmacokinetics and metabolism in mice of a phosphorothioate oligonucleotide antisense inhibitor of C-raf-1 kinase expression. Drug Metab Dispos: the biological fate of chemicals, 1997; 25: 1272-1281

47) Geary RS, Khatesenko O, Bunker K, Crooke R, Moore M, Burckin T, Truong L, Sasmor H, Levin AA: Absolute bioavailability of 2′-O-(2-methoxyethyl)-modified antisense oligonucleotides following intraduodenal instillation in rats. J Pharmacol Exp Ther, 2001; 296: 898-904

48) Geary RS, Watanabe TA, Truong L, Freier S, Lesnik EA, Sioufi NB, Sasmor H, Manoharan M, Levin AA: Pharmacokinetic properties of 2′-O-(2-methoxyethyl)-modified oligonucleotide analogs in rats. J Pharmacol Exp Ther, 2001; 296: 890-897

49) Hong G, Xiao X, Peralta R, Bhattacharjee G, Murray S, Norris D, Guo S, Monia BP: Characterization of target mRNA reduction through in situ RNA hybridization in multiple organ systems following systemic antisense treatment in animals. Nucleic Acid Ther, 2013; 23: 369-378

50) Geary RS, Norris D, Yu R, Bennett CF: Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev, 2015; 87: 46-51

51) Rader DJ, Cohen J, Hobbs HH: Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. J Clin Invest, 2003; 111: 1795-1803

52) Schonfeld G: Familial hypobetalipoproteinemia: a review. J Lipid Res, 2003; 44: 878-883

53) Crooke RM, Graham MJ, Lemonidis KM, Whipple CP,
Merki E, Graham MJ, Mullick AE, Miller ER, Crooke RM, Pitas RE, Witztum JL, Tsimikas S: Antisense oligonucleotide lowers LDL cholesterol in hyperlipidemic mice without causing hepatic steatosis. J Lipid Res, 2005; 46: 872-884

Merki E, Graham MJ, Mullick AE, Miller ER, Crooke RM, Pitas RE, Witztum JL, Tsimikas S: Antisense oligonucleotide directs human apolipoprotein B-100 reduces lipoprotein(a) levels and oxidized phospholipids on human apolipoprotein B-100 particles in lipoprotein(a) transgenic mice. Circulation, 2008; 118: 743-753

Straaup EM, Fisker N, Hedtjarn M, Lindholm MW, Rosenbohm C, Aarup V, Hansen HF, Orum H, Hansen JB, Koch T: Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates. Nucleic Acids Res, 2010; 38: 7100-7111

Raal FJ, Santos RD, Blom DJ, Marais AD, Charng MJ, Cromwell WC, Lachmann RH, Gaudet D, Tan JL, Chasan-Taber S, Tribble DL, Flaim JD, Crooke ST: Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolemia: a randomised, double-blind, placebo-controlled trial. Lancet, 2010; 375: 998-1006

Tsimikas S, Hall JL: Lipoprotein(a) as a potential causal genetic risk factor of cardiovascular disease: a rationale for increased efforts to understand its pathophysiology and develop targeted therapies. J Am Col Cardiol, 2012; 60: 716-721

Wiesner P, Tafelmeier M, Chittka D, Choi SH, Zhang L, Byun YS, Almazan F, Yang X, Iqbal N, Chowdhury P, Maisel A, Witztum JL, Handel TM, Tsimikas S, Miller ER, Fu W, Mullick AE, Lee R, Willeit P, Crooke RM, Witztum JL, Tsimikas S: Antisense oligonucleotide lowers plasma levels of apolipoprotein (a) and lipoprotein (a) in transgenic mice. J Am Col Cardiol, 2011; 57: 1611-1621

Abifadel M, Varret M, Rabes JP, Allard D, Ouguerram K, Devillers M, Cruaud C, Benjannet S, Wickham L, Erlich D, Derre A, Villeger L, Farnier M, Beucler I, Bruckert E, Chambaz J, Chanu B, Lecerf JM, Luc G, Moulin P, Weissenbach J, Prat A, Krempf M, Junier C, Seidah NG, Boileau C: Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet, 2003; 34: 154-156

Li S, Li JJ: PCSK9: A key factor modulating atherosclerosis. J Atheroscler Thromb, 2015; 22: 221-230

Lambert G, Charlton F, Rye KA, Piper DE: Molecular basis of PCSK9 function. Atherosclerosis, 2009; 203: 1-7

Sullivan D, Olsson AG, Scott R, Kim JB, Xue A, Gbeks V, Wasserman SM, Stein EA: Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: the GAUSS randomized trial. Jama, 2012; 308: 2497-2506

Stein EA, Mellis S, Yancopoulos GD, Stahl N, Smith WB, Lisbon E, Gutierrez M, Webb C, Wu R, Du Y, Kranz T, Gasparino E, Swergold GD: Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N Engl J Med, 2012; 366: 1108-1118

Graham MJ, Lemonidis KM, Whipple CP, Subramaniam A, Monia BP, Crooke ST, Crooke RM: Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice. J Lipid Res, 2007; 48: 763-767

Gupta N, Fisker N, Asselin MC, Lindholm M, Rosenbohm C, Orum H, Elmen J, Seidah NG, Straaup EM: A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One, 2010; 5: e10682

Lindholm MW, Elmen J, Fisker N, Hansen HF, Persson R, Moller MR, Rosenbohm C, Orum H, Straarup EM, Koch T: PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates. Mol Ther, 2012; 20: 376-381

Krieg AM: Targeting LDL Cholesterol With LNA. Mol Ther Nucleic Acids, 2012; 1: e6

Yamamoto T, Harada-Shiba M, Nakatani M, Wada S, Yasuhara H, Narukawa K, Sasaki K, Shibata MA, Torigoe H, Yamaoka T, Imanishi T, Obika S: Cholesterol-lowering Action of BNA-based Antisense Oligonucleotides Targeting PCSK9 in Atherogenic Diet-induced Hypercholesterolemic Mice. Mol Ther Nucleic Acids, 2012; 1: e22

Miller M, Stone NJ, Ballantyne C, Bittner V, Criqui MH, Ginsberg HN, Goldberg AC, Howard WJ, Jacobson MS, Kris-Etherton PM, Lennie TA, Levi M, Mazzon T, Pennathur S, American Heart Association Clinical Lipidology T, Prevention Committee of the Council on Nutrition PA, Metabolism, Council on Arteriosclerosis T, Vascular B, Council on Cardiovascular N, Council on the Kidney in Cardiovascular D: Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation, 2011; 123:
Aulchenko YS, Thorleifsson G, Feitosa MF, Chambers J, Orho-Melander M, Melander O, Johnson T, Li X, Guo X, Li M, Shin Cho Y, Jin Go M, Jin Kim Y, Lee JY, Park T, Kim K, Sim X, Twic-Hee Ong R, Croteau-Chonka DC, Lange LA, Smith JD, Song K, Hua Zhao J, Yuan X, Luan J, Lamina C, Ziegler A, Zhang W, Zee KY, Wright AF, Witteman JC, Wilson JF, Willemse G, Wichmann HE, Whitfield JB, Waterworth DM, Wareham NJ, Waeber G, Vollenweider P, Voigt BF, Vitart V, Uitterlinden AG, Uda M, Tuomilehto J, Thompson JR, Tanaka T, Surakka I, Stringham HM, Spector TD, Soranzo N, Smit JH, Sinisalo J, Silander K, Sijbrands EJ, Scuteri A, Scott J, Schlessinger D, Sanna S, Salomaa V, Saharinen J, Sabatti C, Ruokonen A, Rudan I, Rose LM, Roberts R, Rieder M, Psaty BM, Pframstaller PP, Pichler I, Perola M, Penninx BW, Pedersen NL, Pattaro C, Parker AN, Pare G, Oostra BA, O’Donnell CJ, Nieminen MS, Nickerson DA, Montgomery GW, Meitingen T, McPherson R, McCarthy MI, McCarrle W, Masson D, Martin NG, Marroni F, Mangino M, Magnusson PK, Lucas G, Luben R, Loos RJ, Lokki ML, Lettre G, Langenberg C, Lauher Lj, Lakatta EG, Laaksonen R, Kylvik K, Kroonenberg F, Konig IR, Khaw KT, Kaprio J, Kaplan LM, Johansson A, Jarvelin MR, Janssens AC, Ingelsson E, Igl W, Kees Hovingh G, Hottenga JJ, Hofman A, Hicks AA, Hengstenberg C, Heid IM, Hayward C, Havulinna AS, Hastie ND, Harris TB, Haritunians T, Hall AS, Gyllensten U, Guiducci C, Groop LC, Gonzalez E, Gieger C, Freimer NB, Ferrucci L, Erdmann J, Elliott P, Ejebe KG, Doring A, Dominiczak AF, Demissie S, Deloukas P, de Geus EJ, de Faire U, Crawford G, Collins FS, Chen YD, Caulfield MJ, Campbell H, Burtt NP, Bonnycastle LL, Boomsma DI, Boekholdt SM, Bergman RN, Barroso I, Bandinelli S, Ballantyne CM, Assimes TL, Quertermous T, Altshuler D, Seielstad M, Wong TY, Tai ES, Feranil AB, Kuzawa CW, Adair LS, Taylor HA, Jr., Borbeeck IB, Gabriel SB, Wilson JG, Holm C, Thorstensdottir U, Gudnason V, Krauss RM, Mohlke KL, Ordovas JM, Munroe PB, Kooper JS, Tall AR, Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, Naar AM: MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science, 2010; 328: 1566-1569

110) Davalos A, Goedecke L, Smibert P, Ramirez CM, Warrier NP, Andreo U, Cirera-Salinas D, Rayner K, Suresh U, Pastor-Pareja JC, Esplugues E, Fisher EA, Penavalo LO, Moore KJ, Suarez Y, Fernandez-Hernando C: Fisher EA, Moore KJ: Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature, 2011; 478: 404-407

111) Davalos A, Goedecke L, Smibert P, Ramirez CM, Warrier NP, Andreo U, Cirera-Salinas D, Rayner K, Suresh U, Pastor-Pareja JC, Esplugues E, Fisher EA, Penavalo LO, Moore KJ, Suarez Y, Lai EC, Fernandez-Hernando C: miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A, 2011; 108: 9232-9237

112) Davalos A, Goedecke L, Smibert P, Ramirez CM, Warrier NP, Andreo U, Cirera-Salinas D, Rayner K, Suresh U, Pastor-Pareja JC, Esplugues E, Fisher EA, Penavalo LO, Moore KJ, Suarez Y, Lai EC, Fernandez-Hernando C: Anti-miR-33 therapy does not alter the progression of atherosclerosis in low-density lipoprotein receptor-deficient mice. Arterioscl Throm Vasc, 2013; 33: 455-458

113) Rodlwan N, Ramirez CM, Aryal B, Esau CC, Fernandez-Hernando C: Therapeutic silencing of microRNA-33 inhibits the progression of atherosclerosis in Ldlr−/− mice—brief report. Arterioscl Throm Vasc, 2013; 33: 1973-1977
114) Zadelaar S, Kleemann R, Verschuren L, de Vries-Van der Weij J, van der Hoorn J, Princen HM, Kooistra T: Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler Throm Vas, 2007; 27: 1706-1721

115) Krause BR, Princen HM: Lack of predictability of classical animal models for hypolipidemic activity: a good time for mice? Atherosclerosis, 1998; 140: 15-24

116) Koller E, Vincent TM, Chappell A, De S, Manoharan M, Bennett CF: Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes. Nucleic Acids Res, 2011; 39: 4795-4807

117) Wagenaar TR, Tolstykh T, Shi C, Jiang L, Zhang J, Li Z, Yu Q, Qu H, Sun F, Cao H, Pollard J, Dai S, Gao Q, Zhang B, Ailt H, Cinduchauo M, Hoffmann D, Light M, Jensen K, Hopke J, Newcombe R, Garcia-Echeverria C, Winter C, Zabludoff S, Wiederschain D: Identification of the endosomal sorting complex required for transport-I (ESCRT-I) as an important modulator of anti-miR uptake by cancer cells. Nucleic Acids Res, 2015; 43: 1204-1215

118) Stein CA, Hansen JB, Lai J, Wu S, Voskresenskiy A, Hog A, Worm J, Hedtjarn T, Souleimanian N, Miller P, Soifer HS, Castanotto D, Benimetskaya L, Orum H, Hog A, Worm J, Hedtjarn M, Souleimanian N, Miller P, Soifer HS, Castanotto D, Benimetskaya L, Orum H, Koch T: Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents. Nucleic Acids Res, 2010; 38: e3

119) Hori S, Yamamoto T, Waki R, Wada S, Wada F, Noda M, Obika S: Ca2+ enrichment in culture medium potentiates effect of oligonucleotides. Nucleic Acids Res, 2015; 43: e128

120) Nishina K, Piao W, Yoshihata-Takaka K, Sujino Y, Nishina T, Yamamoto T, Nitta K, Yoshioka K, Kuwahara H, Yasuha H, Baba T, Ono F, Miyata K, Miyake K, Seth PP, Low A, Yoshida M, Bennett CF, Kataoka K, Mizusawa H, Obika S, Yokota T: DNA/RNA heteroduplex oligonucleotide for highly efficient gene silencing. Nat Commun, 2015; 6: 7969

121) Wada S, Yasuha H, Wada F, Sawamura M, Waki R, Yamamoto T, Harada-Shiba M, Obika S: Evaluation of the effects of chemically different linkers on hepatic accumulations, cell tropism and gene silencing ability of cholesterol-conjugated antisense oligonucleotides. J Controll Release, 2016; 226: 57-65

122) Nakagawa O, Ming X, Huang L, Juliano RL: Targeted intracellular delivery of antisense oligonucleotides via conjugation with small-molecule ligands. J Am Chem Soc, 2010; 132: 8848-8849

123) Ostergaard ME, Yu J, Kinberger GA, Wan WB, Migawa MT, Vazquez G, Schmidt K, Gaus HJ, Murray HM, Low A, Swayze EE, Prakash TP, Seth PP: Efficient Synthesis and Biological Evaluation of 5′-GalNAc Conjugated Antisense Oligonucleotides. Bioconjug Chem, 2015; 26: 1451-1455

124) Prakash TP, Brad Wan W, Low A, Yu J, Chappell AE, Gaus H, Kinberger GA, Ostergaard ME, Migawa MT, Swayze EE, Seth PP: Solid-phase synthesis of 5′-trian- tengenary N-acetylglucosamine conjugated antisense oligonucleotides using phosphoramidite chemistry. Bioorg Med Chem Lett, 2015; 25: 4127-4130

125) Prakash TP, Graham MJ, Yu J, Carty R, Low A, Chappell A, Schmidt K, Zhao C, Aghajan M, Murray HF, Riney S, Booten SL, Murray SF, Gaus H, Crosby J, Lima WF, Guo S, Monia BP, Swayze EE, Seth PP: Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res, 2014; 42: 8796-8807

126) Yamamoto T, Sawamura M, Wada F, Harada-Shiba M, Obika S: Serial incorporation of a monovalent GalNAc phosphoramidite unit into hepatocyte-targeting antisense oligonucleotides. Bioorg Med Chem, 2016; 24: 26-32

127) Swayze EE, Siwkowski AM, Wancewicz EV, Migawa MT, Wyrzykiewicz TK, Hung G, Monia BP, Bennett CF: Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res, 2007; 35: 687-700

128) Hagedorn PH, Yakimov V, Ottosen S, Kammler S, Nielsen NF, Hog AM, Hedtjarn M, Meldgaard M, Moller MR, Orum H, Koch T, Lindow M: Hepatotoxic potential of therapeutic oligonucleotides can be predicted from their sequence and modification pattern. Nucleic Acid Ther, 2013; 23: 302-310

129) van Poelgeest EP, Swart RM, Betjes MG, Moerland M, Weening JJ, Tessier Y, Hodges MR, Levin AA, Burggraaf J: Acute kidney injury during therapy with an antisense oligonucleotide directed against PCSK9. Am J Kidney Dis, 2013; 62: 796-800

130) Kamola P, Kitson JD, Turner G, Maratou K, Eriksson S, Panjwani A, Warnock LC, Douillard Guilloux GA, Moores K, Koppe EL, Whixted WE, Wilson PA, Gooderham NJ, Gant TW, Clark KL, Hughes SA, Edbrooke MR, Parry JD: In silico and in vitro evaluation of exonic and intronic off-target effects forms a critical element of therapeutic ASO gampmer optimization. Nucleic Acids Res, 2015; 43: 8638-8650

131) Burel SA, Hart CE, Cauntay P, Hsiao J, Machemer T, Katz M, Watt A, Bui HH, Younis H, Sabripour M, Freier SM, Hung G, Dan A, Prakash TP, Seth PP, Swayze EE, Bennett CF, Crooke ST, Henry SP: Hepatotoxicity of high affinity gampmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts. Nucleic Acids Res, 2016; 44: 2093-2109

132) Kakiuchi-Kiyota S, Koza- Taylor PH, Mantena SR, Nelms LF, Enayetallah AE, Hollingshead BD, Burdick AD, Reed LA, Warneke JA, Whiteley LO, Ryan AM, Mathialagan N: Comparison of hepatic transcription profiles of locked ribonucleic acid antisense oligonucleotides: evidence of distinct pathways contributing to non-target mediated toxicity in mice. Toxicol Sci, 2014; 158: 234-248

133) Seth PP, Jazayeri A, Yu J, Allerson CR, Bhat B, Swayze EE: Structure Activity Relationships of alpha-L-LNA Modified Phosphorothioate Gampner Antisense Oligonucleotides in Animals. Mol Ther Nucleic Acids, 2012; 1: e47