2D Materials

PAPER

Orbitally-resolved ferromagnetism of monolayer CrI₃

I V Kashin¹, V V Mazurenko¹, M I Katsnelson²,3 and A N Rudenko¹,4,5

¹ Theoretical Physics and Applied Mathematics Department, Ural Federal University, 620002 Ekaterinburg, Russia
² Institute for Molecules and Materials, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, Netherlands
³ School of Physics and Technology, Wuhan University, Wuhan 430072, People’s Republic of China

E-mail: I.V.Kashin@urfu.ru and a.rudenko@science.ru.nl

Keywords: CrI₃, two-dimensional materials, exchange interactions, electric field effects, density functional theory, magnetic-force theorem, trichalcogenides

Abstract

Few-layer CrI₃ is the most known example among two-dimensional (2D) ferromagnets, which have attracted growing interest in recent years. Despite considerable efforts and progress in understanding the properties of 2D magnets both from theory and experiment, the mechanism behind the formation of in-plane magnetic ordering in chromium halides is still under debate. Here, we propose a microscopic orbitally-resolved description of ferromagnetism in monolayer CrI₃. Starting from first-principles calculations, we construct a low-energy model for the isotropic Heisenberg exchange interactions. We find that there are two competing contributions to the long-range magnetic ordering in CrI₃: (i) Antiferromagnetic Anderson’s superexchange between half-filled t₂g orbitals of Cr atoms; and (ii) Ferromagnetic exchange governed by the Kugel–Khomskii mechanism, involving the transitions between half-filled t₂g and empty e_g orbitals. Using numerical calculations, we estimate the exchange interactions in momentum-space, which allows us to restore the spin-wave spectrum, as well as estimate the Curie temperature. Contrary to the nearest-neighbor effective models, our calculations suggest the presence of sharp resonances in the spin-wave spectrum at 5–7 meV, depending on the vertical bias voltage. Our estimation of the Curie temperature in monolayer CrI₃ yields 55–65 K, which is in good agreement with experimental data.

1. **Introduction**

Recent discovery of ferromagnetism in two-dimensional (2D) materials has triggered enormous interest to these materials from the research community [1–6]. Apart from being fundamentally interesting object in the context of the Mermin–Wagner theorem, which forbids magnetic ordering in 2D at any nonzero temperature for the case of isotropic Heisenberg or easy-plane-anisotropic magnets [7], 2D magnets are especially promising for applications, such as spintronics, quantum computing and energy-efficient electronics [8–11].

A few-layer chromium triiodide (CrI₃) is the most studied representative among 2D ferromagnets with the Curie temperature in the range 45–61 K, depending on the layer thickness [1]. It was first synthesized by mechanical exfoliation of bulk CrI₃ crystal, and identified as an Ising ferromagnet with out-of-plane spin orientation [1]. Being strongly sensitive to external electric field, few-layer CrI₃ became the subject of numerous experimental studies [1, 12–15], particularly aimed to electrical control and manipulation of magnetic states [2–4]. It was found that the magnetism of few-layer CrI₃ is essentially layer-dependent: monolayer and trilayer CrI₃ demonstrate ferromagnetic (FM) ordering in its ground state, whereas bilayer turns out to be antiferromagnetic (AFM) [2, 3, 14, 15]. This behavior opens up the possibility to realize an electrical switching of magnetic ordering in bilayer CrI₃ [2, 4]. As it has been shown in [12], the stacking order and interlayer exchange interactions in CrI₃ are intimately connected, leading to stacking-dependent magneto-Raman signatures [16]. Despite the similarities between monolayer and trilayer CrI₃, the latter appears to be closer to the bulk crystal [1]. This makes ultra-thin films with thickness of one or two atoms the most interesting objects for further studies.

On the theory side, a large number of studies was devoted to a microscopic analysis of magnetism in 2D CrI₃ and its analogues [17–24]. Most of them were based on first-principles calculations (density functional theory and beyond) with direct mapping on the Heisenberg model. Being a standard approach in
material science, such method allows one to describe the macroscopic quantities (e.g. the Curie temperature) with reasonable accuracy [25–27]. On the other hand, this method is limited with respect to the orbital-resolved physics, and does not provide insights into the origin of exchange interactions. In [17], an important role of the Coulomb interactions in 2D magnets was revealed using the combination of first-principles calculations with classical Monte Carlo simulations. An essential contribution of the ligand states in the formation of ferromagnetism in CrI3 was emphasized in [28]. Particularly, the authors showed that the Goodenough–Kanamori–Anderson rule for 90° Cr—I–Cr bond cannot serve as an explanation for short-range ferromagnetic order due to the competing character of exchange interactions. Being also applicable to the monolayer case, this finding suggests an orbital-resolved analysis to be necessary to understand the mechanism behind the magnetic ordering in CrI3. An attempt to provide an orbital-resolved picture was first made in [29] in the context of interlayer interactions in bilayer CrI3, However, a systematic orbital theory of the intralayer ferromagnetic ordering in CrI3 was not formulated up to now.

In this paper, we propose a microscopic, orbitally-resolved picture of ferromagnetism in CrI3. Starting from first-principles electronic structure calculations, we construct a microscopic model allowing us to determine orbitally-resolved exchange interactions by utilizing the magnetic force theorem. We find two competing contributions to the magnetic interactions in CrI3 originating from the AFM and FM coupling between symmetry-equivalent (t2g − t2g) and inequivalent (e_g − e_g) orbitals, respectively (see figure 1 for a schematic illustration). Although the first contribution, which is the well-known Anderson’s superexchange, is typical to many magnetic materials, the second contribution is less common and can be understood in terms of the Kugel–Khomskii picture. In this picture, the ferromagnetic interaction arises from indirect transitions between the half-filled (t2g) and unoccupied (e_g) orbitals modulated by the intratomic Hund’s rule coupling. We also qualitatively determine the role of external electric field and substrate screening in the formation of magnetic ordering in monolayer CrI3.

2. Method

Our computational approach is based on first-principles electronic structure calculations within the density functional theory (DFT) [30]. We start from the projected augmented wave (PAW) method [31, 32] as implemented in Vienna ab initio simulation package (VASP) [33, 34]. To describe the exchange-correlation effects, we use the generalized gradient approximation (GGA) [35] augmented by the Hubbard-U corrections (GGA+U method [36, 37]), where U is treated as a free parameter. An energy cutoff of 250 eV was used for the plane wave basis. The convergence threshold during the self-consistent solution of the Kohn–Sham equations was set to 10−10 eV Å. A (8 × 8) k-point mesh was used to sample the Brillouin zone. To avoid spurious interactions between the cells, a vacuum slab of 20 Å was added in the direction normal to the 2D plane. The atomic structure and lattice parameters were fully relaxed preserving the lattice symmetry (D_{3d} point group) until the residual forces were less than 0.001 eV Å−1. The resulting lattice parameter is found to be a = 4.03 Å, while the layer thickness (separation between topmost and lowermost iodine atoms) is d = 3.03 Å.

As a next step, we construct an extended tight-binding model by mapping the resulting DFT wave functions onto the Wannier functions [38]. To this end, we use the wannier90 package [39]. The tight-binding model was constructed in the canonical basis of cubic harmonics, corresponding to chromium 3d, and iodine 5s and 5p orbitals. The tight-binding Hamiltonian considered in our study has the following form:

\[\hat{H} = \sum_{\alpha \beta, \sigma} \epsilon^{\alpha \beta}_{\sigma} \hat{c}^{\dagger}_{\alpha \sigma} \hat{c}_{\beta \sigma} + \frac{V}{d} \sum_{\alpha, \sigma} \hat{z}_z \hat{n}_{\alpha \sigma}, \]

where \(\epsilon^{\alpha \beta}_{\sigma} \) is the creation (annihilation) operator of an electron with spin \(\sigma \) at orbital \(\alpha (\beta) \), and \(\epsilon^{\alpha \beta}_{\sigma} \) is the spin-resolved matrix of hopping integrals. The second term in equation (1) describes the effect of external static electric field [40, 41], where \(\hat{z}_z \) is the z-component of the position operator associated with orbital \(\alpha \), \(\hat{n}_{\alpha \sigma} = \hat{c}^{\dagger}_{\alpha \sigma} \hat{c}_{\alpha \sigma} \) is the particle number operator, \(V \) is the vertical bias potential, and \(d \) is an effective 2D layer thickness. It should be noted that equation (1) describes the electric field effect only qualitatively. In our study, we consider two cases only: \(V = 0 \) and \(V = 1 \) eV. The latter corresponds to an unscreened vertical electric field of \(E_z = V/d \approx 0.33 \text{ eV Å}^{-1} \).

In order to calculate the magnetic interactions in CrI3, we use the Green’s functions formalism allowing us to apply the magnetic-force theorem [42]. Within this scheme, the Heisenberg exchange interactions are expressed via infinitesimal spin rotations \(\hat{J}_y = \frac{\partial^2 E}{\partial \phi_i \partial \phi_j} \) as:

\[\hat{J}_y = \frac{1}{8\pi} \text{Im} \int_{-\infty}^{\infty} \text{Tr}_L \left[\sum_{\sigma} \Delta_x G^\sigma_{ij} \Delta_y G^{\sigma + \sigma}_{ij} \right] d\omega, \]

where \(G^\sigma_{ij} = \sum_k (\omega - H^\sigma_{ij})^{-1} e^{i k \cdot \mathbf{R}_{ij}} \) is the spin-polarized intersite Green’s function, taken as an integral over the Brillouin zone, with \(H^\sigma_{ij} \) being the Hamiltonian matrix (equation (1)), \(\mathbf{T}_L \) is the translation vector, connecting atoms \(i \) and \(j \), and \(\mathbf{k} \) is the reciprocal lattice vector. \(\Delta_x \) is the intraatomic exchange splitting of the Cr(3d) shell, \(\text{Tr}_L \) denotes the trace over the orbital (L) indices, and \(E_F \) is the Fermi energy. Hereinafter positive/negative \(\hat{J}_y \) corresponds to FM/AFM ordering, respectively.
The exchange interactions defined above represent a reliable starting point for the analysis within the isotropic Heisenberg model: $H = - \sum_{ij} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$, where $\mathbf{S}_i = S_i/\mathbf{S}_0$. However, the advantage of the approach presented is that it allows one to decompose J_{ij} into the individual orbital contributions. To perform this decomposition, we define the exchange splitting matrix in the orbital space, and perform its diagonalization, $\Delta^{m,m'} = U^{m,k} \cdot \Delta_{k,k}^{\sigma} \cdot (U_{k}^{k'})^*$, where $\Delta_{k,k}^{\sigma}$ is the on-site matrix, which is diagonal in the orbital space and the matrix U is a unitary transformation matrix which defines the basis where Δ is diagonal. The exchange interaction between the kth orbital at site i and the k'th orbital at site j is then given by [43–45]

$$J_{ij}^{k,k'} = \frac{1}{8\pi} \lim_{q \to 0} \int \frac{d\omega}{2\pi} \text{Tr} \left\{ \sum_{\sigma} \Delta_{k\sigma}^{ij} \cdot \bar{G}_{\sigma\sigma}^{k,k'} \cdot \bar{G}_{\sigma\sigma}^{k,k'} \right\} \omega,$$

where $\bar{G}_{\sigma\sigma}^{k,k'} = \sum_{mn} U_{k}^{m,k} \cdot G_{\sigma\sigma}^{m,m'} \cdot (U_{m'}^{k'})^*$. To perform an accurate evaluation of the exchange interactions by means of equations (2) and (3), we use a (400 × 400) k-point mesh for calculating the Brillouin zone integrals, which was checked to be sufficient to reach numerical convergence.

The Curie temperature is estimated in our study at the level of the random-phase approximation (RPA), which is also known as the Tyablikov’s approximation [46], and spherical model [47]. This approach provides a reasonable description of the long-wavelength spin fluctuations, which is the crucial factor suppressing the ordering temperature in 2D [48]. In case of multiple magnetic sublattices, the critical temperature of magnetic ordering can be determined from the following system of equations [49, 50]:

$$T_C = \frac{2}{3} \frac{S_a (S_a + 1)}{(S_0^a)} \left\{ \frac{1}{\Omega} \int d\mathbf{q} \left[N^{-1}(\mathbf{q}) \right]_{ab} \right\}^{-1},$$

where \mathbf{q} is the magnon wave vector, S_a is the total spin at sublattice a, $\langle \hat{S}_z^a \rangle$ is the averaged sublattice magnetization projected on the z-axis for sublattice a, Ω is the volume of the Brillouin zone, and $N^{-1}(\mathbf{q})$ is a matrix given by:

$$N_{ab}(\mathbf{q}) = \delta_{ab} \left(\Lambda + \sum_{p} J_{ap}(\mathbf{0}) \langle \hat{S}_z^p \rangle - \langle \hat{S}_z^a \rangle J_{ab}(\mathbf{q}) \right),$$

where Λ is the magnetic anisotropy energy (MAE) and $J_{ab}(\mathbf{q})$ is the Fourier component of the normalized exchange parameter $J_{ij} = J_{ij}/(S_i S_j)$. The spectrum of spin-wave excitations $\epsilon(\mathbf{q})$ can be obtained by solving the secular equation $\det[N(\mathbf{q}) - \epsilon(\mathbf{q}) I] = 0$ with I being the unity matrix. In the case of a hexagonal magnetic lattice with nearest-neighbor exchange interactions, this approach leads to a dependence in the form $T_C \sim 1/\ln(\Lambda/\epsilon)$ [51]. We note that a more accurate estimate of the Curie temperature for 2D magnets can be done within the self-consistent spin-wave theory with fluctuation corrections [48]. Within the accuracy of the main logarithm $[\ln(1/\Lambda)]$ and for spins $S > 1/2$, the results are close to the approach used here.

3. Results and discussion

Monolayer CrI₃ is a hexagonal crystal with two sublattices forming a honeycomb structure of Cr atoms. Each Cr atom is located in the octahedral environment of six I atoms (see figure 2). In order to investigate its electronic and magnetic properties, we start from first-principles calculations within the GGA+U approach. In figure 3, we show the spin-resolved band structure with relative contribution of Cr 3d shell, indicated by color. Apart from different values of a band gap for majority and minority spin channels, it is seen that the distribution of Cr 3d states is essentially different for spin up and spin down channels. While minority Cr d states are empty and well separated from the p states of iodine, the majority d states are partially occupied and hybridized strongly with the iodine p states. This suggests a nontrivial role of the ligand states in the formation of magnetic properties of CrI₃.

Figure 4 shows the density of electronic states projected onto different orbitals. According to the crystal symmetry, the d-shell of Cr atoms splits into two inequivalent sets of orbitals: three t_{2g} and two e_g. From figure 4 one can see that the e_g
orbitals are either filled or empty, whereas t_{2g} orbitals are half-filled, making monolayer CrI$_3$ almost an ideal realization of a system with spin $S = \frac{3}{2}$. The splitting between the majority and minority t_{2g} orbitals is governed by the Coulomb interaction U, whereas the position of e_g states are almost unaffected by this parameter.

As it immediately follows from the band structure, the total magnetization in CrI$_3$ is 3 μ_B per Cr atom. In order to distinguish between the contributions of t_{2g} and e_g orbitals to the magnetic moment, we consider the difference between the occupation matrices for spin up and spin down electrons [52],

$$M_k = \frac{1}{\pi} \text{Im} \int_{-\infty}^{\infty} [G^T_k(\omega) - G^\ominus_k(\omega)] \, d\omega,$$

where $G^T_k \equiv [G^T_{kk}]_{ii}$ is the local Green’s function for orbital k. The resulting values are given in table 1, from which one can identify t_{2g} as the orbitals with the largest spin polarization. A slight deviation of the total magnetic moment (3.12 μ_B) from the expected value can be attributed to the presence of a non-negligible Cr(3d)−I(5s5p) hybridization, resulting in a compensating iodine magnetization with −0.04 μ_B per atom. We note that the magnetic moment appears to be almost independent of the Coulomb parameter U. Although the spin density undergoes a redistribution in the presence of U, the occupation matrices are weakly affected.

The calculated interatomic exchange interactions in CrI$_3$ monolayer are presented in figure 5. One can see a significant influence of the Coulomb interaction.
The typical t_{2g} and e_g orbitals in CrI$_3$. The values are obtained from the integration of the density of states (figure 4) over occupied states.

Orbital	Spin up	Spin down	Magnetic moment (μ_B)
t_{2g}	2.984	0.265	2.719
e_g	1.042	0.642	0.400

Figure 4. Partial density of states of Cr 3d shell obtained from low-energy models without local Coulomb interaction at Cr atoms and with $U = 3$ eV.

Here, the first term describes conventional superexchange interaction between the occupied orbitals of Cr atoms mediated by the sp states of iodine ligands. The second term has a more complicated nature and originates from the virtual transitions between the occupied and unoccupied orbitals on two different atoms, which also involves the intraatomic exchange J_{H} (Hund’s rule coupling). Schematic representation of the Kugel–Khomskii interaction mechanism is shown in figure 7. In equation (7), t_{1u}^{eg} and t_{1u}^{eg} are effective hoppings between different orbital states of the nearest-neighbor Cr atoms, and Δ is the crystal-field splitting between corresponding occupied and empty orbitals. All the parameters could in principle be estimated from non-spin-polarized DFT calculations. The Kugel–Khomskii model was successfully applied to reveal the microscopic origin of magnetic interactions and provide its quantitative description in a large variety of systems, including strongly frustrated transition metal oxides [43]. However, in the case of CrI$_3$ monolayer spin polarization induces strong changes in the hybridization between d states of chromium and sp states of iodine (see figure 3 for spin up). This results in a significant variation of the hopping integrals, and prevents us from using equation (7) for a quantitative analysis of the Green’s function results.

On a qualitative level, equation (7) describes the decay of $t_{2g} - t_{2g}$ exchange interactions for increasing U, in agreement with the results shown in figure 6.
On the other hand, nearly constant behavior of the $t_{2g} - t_{2g}$ coupling for $U > 1$ eV can be explained within the Kugel–Khomskii model, if one assumes $U \gg \Delta$. In this case, for not too small Δ (a direct estimation from figure 4 yields $\Delta \approx 2$ eV), the first term in equation (7) is not dominant, ensuring an FM state of the system. We emphasize the detailed balance of the two interactions and a crucial role of the Coulomb interaction in determining the ground magnetic state in CrI$_3$. In the situation with $U \gg \Delta$, the second term in equation (7) would be suppressed, resulting in a net AFM state. We also point to a decisive role of the Hund’s rule coupling J_H in the formation of CrI$_3$ ferromagnetism. J_H is weakly affected by the dielectric screening [57], and is primarily determined by the degree of orbital localization. It is, therefore, not expected that the FM exchange interactions in CrI$_3$ can be further enhanced in the presence of a dielectric environment. We admit, however, that for a deeper microscopic understanding of exchange interactions in this system, more sophisticated many-body approaches may need be involved. Such methods include, for example, dynamical mean field theory and its extensions, allowing for a more accurate and systematic treatment of the electron correlation effects.

3.1. Simulation of electric field

Motivated by the ability to control materials’ properties by means of the gate voltage in experiments, we examine the influence of external static electric field on monolayer CrI$_3$. To this end, we induce an additional energy gap of 1 eV between the orbitals of I atoms that geometrically reside above and below the Cr atoms, with the corresponding Hamiltonian given by equation (1). At the level of the band structure, the application of the bias voltage results in a slight ($\lesssim 5\%$) narrowing of the band gap. Despite the fact that the net magnetic moment remains almost unchanged, the exchange interactions acquire additional AFM contribution, which is almost independent of the U values (see figure 5). In figure 8, we show an orbitally decomposed difference $J_H^{V=1} - J_H^{V=0}$ as a function of U, demonstrating overall trend toward destabilization of the FM state in the presence of vertical bias. However, the effect of the two interaction channels is opposite: unlike the $t_{2g} - t_{2g}$ interaction, the $t_{2g} - e_g$ interaction tends to stabilize the FM state. As we well show below, slight modification of exchange interactions in the presence of vertical bias results in the appearance of new excitations in the spin-wave spectrum.

3.2. Curie temperature estimation

Magnetocrystalline anisotropy is known to be the main factor stabilizing long-range magnetic order in two dimensions. In turn, magnetic anisotropy in CrI$_3$ originates from the strong spin–orbit coupling...
arising due to heavy iodine atoms [25], and can be further stimulated by strain [58]. Magnetic anisotropy ensures a gap in the spin-wave spectrum, resulting in a finite Curie temperature, as it immediately follows from equations (5) and (4). To estimate the Curie temperature in CrI3, we consider two magnetic sublattices and solve the system of equations given by equation (4). For the FM ground state, the system has only one solution with \(\langle s_1^z \rangle = \langle s_2^z \rangle \).

As a next step we calculate \(T_C \) as a function of MAE for \(U = 0 \) and \(U = 3 \) eV, with the results presented in figure 9. As expected, for MAE \(\to 0 \) we have \(T_C \to 0 \) in accordance with the Mermin–Wagner theorem [7], while for MAE \(>0.1 \) meV one can see a linear growth of \(T_C \). The value of MAE can be estimated from first-principles calculations, which predict MAE \(\approx 0.65 \) meV [25], shown in figure 9 by a vertical line. The presence of an on-site Coulomb interaction leads to an enhancement of \(T_C \), as it is expected from the suppression of the AFM \(t_{2g} - t_{2g} \) interacting channel. Using realistic values for MAE, we obtain \(T_C = 55 \) K for \(U = 0 \) eV and \(63 \) K for \(U = 3 \) eV, which is in reasonable agreement with the experimental extrapolation to the monolayer limit (45 K) [1]. This allows us to conclude that introducing additional screening of the Coulomb interaction in CrI3 monolayer (e.g. by metallic substrates) is not favorable in terms of magnetic ordering. It is worth noting that the Curie temperature is found to be almost insensitive to the applied vertical bias: for non-zero \(U \) the difference between \(V = 0 \) eV and \(V = 1 \) eV does not exceed 1% for any considered MAE. This observation is consistent with the results of previous theoretical studies [19]. Nevertheless, we do not exclude further \(T_C \) stimulation by tuning the balance between \(t_{2g} - t_{2g} \) and \(t_{2g} - e_g \) interaction channels through the crystal field modification induced by
strain [58], charge doping [59], or by formation of heterostructures [60].

Finally, it is instructive to restore the spin-wave dispersion spectra at zero temperature, and compare it with the effective first nearest-neighbor models proposed earlier. In figure 10, we show the corresponding spectra $\epsilon(q)$ obtained from the calculated exchange interactions for $U = 3\ eV$ and MAE 0.65 meV with and without the vertical bias, and using the model from [25] with $J^*_1 = 2.25\ meV$. One can see a qualitative difference between the two spectra: the spectrum calculated in our work exhibits narrow bands in the region 5–7 meV depending on the applied bias voltage, which give rise to sharp peaks in the corresponding energy region. The difference between the two spectra points to an important role of exchange interactions at distances beyond the nearest-neighbor, included in our model. We also note that the application of vertical electric field modifies the curvature of the spin-wave spectrum near the Γ point, i.e. the spin stiffness, being one of the basic characteristics of low-energy magnetic excitations [61, 62]. Assuming quadratic form of the spin-wave spectrum at $q \to 0$: $\epsilon(q) \approx \Delta + Dq^2$, the spin stiffness constant can be estimated as $D^V_{q=0} = 17\ meV \cdot \AA^2$ and $D^V_{q=1} = 26\ meV \cdot \AA^2$, which is in reasonable agreement with previous assessments [63]. One can see that although there is almost no effect of bias voltage on T_C, the spin stiffness constant can be increased significantly in the presence of vertical electric field. In our case, for $V = 1\ eV$ it is nearly 50% higher. We note, however, that our model does not include the dependence of MAE on the electric field, as well as it does not take into account the field-induced inversion symmetry breaking, which is to be accompanied by the Dzyaloshinskii–Moriya interaction [64]. These effects lie beyond the scope of our present work, but can be considered in future studies. Our findings suggest a complex character of magnetic excitations in CrI$_3$, which deserve further attention from both experimental and theoretical perspectives.

Figure 8. The effect of the vertical bias on the Cr–Cr exchange interactions in CrI$_3$, presented as the field-contribution to the exchange $J^V_{ij} = J_{ij} - J_{ij}^0$. Circles and squares denote $t_{2g} - t_{2g}$ and $t_{2g} - e_g$ channels, respectively.

Figure 9. The Curie temperature in CrI$_3$ as a function of MAE calculated within RPA for $U = 0\ eV$ and $U = 3\ eV$. Blue vertical line denotes MAE = 0.65 meV obtained from first-principles calculations in the presence of spin–orbit coupling [25].
4. Conclusion

We have performed a systematic theoretical study of magnetic properties of monolayer CrI$_3$, material with vast prospects for technological applications in the domain of spintronics. Starting from first-principles DFT calculations within the GGA+U approach, we constructed a low-energy microscopic model for the electronic structure. This model allowed us to estimate orbital-resolved exchange interactions in CrI$_3$ using the advantage of the magnetic force theorem.

Orbital decomposition of isotropic exchange interactions revealed an essentially competing character of $t_{2g}^{-}t_{2g}$ and $t_{2g}^{-}e_g$ interacting channels. To explain the interaction origin, we made use of the Kugel–Khomskii formalism, which assumes two distinct contributions to the exchange coupling: (i) AFM, governed by the conventional superexchange mechanism involving occupied t_{2g} orbitals, and (ii) FM, arising from the interaction between occupied t_{2g} and unoccupied e_g orbitals, mediated by the intraatomic Hund’s rule coupling.

We also found that the Coulomb interaction is an important factor stabilizing long-range magnetic ordering in CrI$_3$. In the presence of additional dielectric screening, the $t_{2g}^{-}t_{2g}$ FM interacting channel becomes suppressed, leading to a considerable reduction of the Curie temperature. Our estimation within the RPA scheme gives $T_C \approx 63$ K, which is in reasonable agreement with experimental observations. Additionally, we examined the effect of electric field applied normal to the plane of CrI$_3$, although it is found that the electric field tends to destabilize short-range FM ordering, T_C remains virtually unaffected.

The calculated exchange interactions allowed us to find interesting details of the spin-wave spectrum. Contrary to the effective nearest-neighbor exchange models, our calculations predict the appearance of intensive spin excitations at energies 5–7 meV, depending on the applied bias voltage. Apart from that, we showed that the spin stiffness constant can be effectively controlled by the external electric field. Summarizing, our findings shed light on the mechanisms behind the magnetic ordering in CrI$_3$, and can motivate further theoretical and experimental studies of magnetic properties of this material and its analogues.

Acknowledgments

This work was supported by the Russian Science Foundation Grant No. 17-72-20041.

ORCID iDs

IV Kashin https://orcid.org/0000-0001-9526-8779
MI Katsnelson https://orcid.org/0000-0001-5165-7553
AN Rudenko https://orcid.org/0000-0003-4313-3690

References

[1] Huang B et al 2017 Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit Nature 546 270
[2] Jiang S, Li L, Wang Z, Mak K F and Shan J 2018 Controlling magnetism in 2D CrI$_3$ by electrostatic doping Nat. Nanotechnol. 13 549
[3] Huang B et al 2018 Electrical control of 2D magnetism in bilayer CrI$_3$ Nat. Nanotechnol. 13 544
[4] Jiang S, Shan J and Mak K F 2018 Electric-field switching of two-dimensional van der Waals magnets Nat. Mater. 17 406
[5] Ghazaryan D et al 2018 Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr$_3$, Nat. Electron. 1 344
[6] Mak K F, Shan J and Ralph D C 2019 Probing and controlling magnetic states in 2D layered magnetic materials Nat. Rev. Phys. 1 636
[7] Mermin N D and Wagner H 1966 Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models Phys. Rev. Lett. 17 1133
[8] Burch K S, Mandrus D and Park J-G 2018 Magnetism in two-dimensional van der Waals materials Nature 563 47
[9] Gong C and Zhang X 2019 Two-dimensional magnetic crystals and emergent heterostructure devices Science 363 6428
[10] Cortie D L, Causer G L, Rule K C, Fritzsche H, Kreizpaintner W and Kloes F 2019 Two-dimensional magnetic: forgotten history and recent progress towards spintronic applications Adv. Funct. Mater. 1901414
[11] Gibertini M, Koperski M, Morpurgo A F and Novoselov K S 2019 Magnetic 2D materials and heterostructures Nat. Nanotechnol. 14 408
[12] Klein D R et al 2019 Enhancement of interlayer exchange in an ultrathin two-dimensional magnet Nat. Phys. 15 1255
[13] Sun Z et al 2019 Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3 Nature 572 497
[14] Klein D R et al 2018 Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling Science 360 1218
[15] Wang Z, Gutiérrez–Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoğlu A, Giannini E and Morpurgo A F 2018 Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3 Nat. Commun. 9 23516
[16] McCrea Y et al 2019 Distinct magneto–raman signatures of spin-flip phase transitions in CrI3 (arXiv:1910.01237)
[17] Torelli D, Thygesen K S and Olsen T 2019 High throughput computational screening for 2D ferromagnetic materials: the critical role of anisotropy and local correlations 2D Mater. 6 040508
[18] Olsen T 2017 Assessing the performance of the random phase approximation for exchange and superexchange coupling constants in magnetic materials Phys. Rev. B 96 235133
[19] Ghosh S, Stojić N and Bingelgi N 2019 Structural and magnetic response of CrI3 monolayer to electric field Physica B 570 166
[20] Wu Z, Yu J and Yuan S 2019 Strain-tunable magnetic and electronic properties of monolayer CrI3 Phys. Chem. Chem. Phys. 21 7750
[21] Morell E S, León A, Miwa R H and Vargas P 2019 Control of magnetism in bilayer CrI3, by an external electric field 2D Mater. 6 025020
[22] Farooq M U and Hong J 2019 Switchable valley splitting by external electric field effect in graphene/CrI3 heterostructures NPJ 2D Mater. Appl. 3 3
[23] Wu M, Li Z, Cao T and Louie S G 2019 Physical origin of giant excitonic and magneto–optical responses in two-dimensional ferromagnetic insulators Nat. Commun. 10 2371
[24] Olsen T 2019 Theory and simulations of critical temperatures in CrI3- and other 2D materials: easy-axis magnetic order and easy-plane Kosterlitz–Thouless transitions MRS Commun. 9 1142
[25] Lado J L and Fernández-Rossier J 2017 On the origin of magnetic anisotropy in two-dimensional CrI3 2D Mater. 4 035002
[26] Cardoso C, Soriano D, García–Martínez N A and Fernández–Rossier J 2018 Van der Waals spin valves Phys. Rev. Lett. 121 067001
[27] Torelli D and Olsen T 2018 Calculating critical temperatures for ferromagnetic order in two-dimensional materials 2D Mater. 6 015028
[28] Beshes O, Nikolaev S, Meskini N and Solovyev I 2019 Microscopic origin of ferromagnetism in trihalides CrI3 and CrI4, Phys. Rev. B 99 104432
[29] Jang S W, Jeong M Y, Yoon H, Rye E and Han M J 2019 Microscopic understanding of magnetic interactions in bilayer CrI3 Phys. Rev. Mater. 3 031001
[30] Kohn W and Sham L J 1965 Self-consistent equations including exchange and correlation effects Phys. Rev. 140 A1133
[31] Blöchl P E 1994 Projector augmented-wave method Phys. Rev. B 50 17953
[32] Kresse G and Joubert D 1999 From ultrasoft pseudopotentials to the projector augmented-wave method Phys. Rev. B 59 1758
[33] Kresse G and Furthmüller J 1996 Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set Comput. Mat. Sci. 6 13
[34] Kresse G and Furthmüller J 1996 Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys. Rev. B 54 11169
[35] Perdew J P, Burke K and Ernzerhof M 1996 Generalized gradient approximation made simple Phys. Rev. Lett. 77 3865
[36] Anisimov V I, Aryasetiawan F and Lichtenstein A I 1997 First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method J. Phys.: Condens. Matter 9 7767
[37] Dudačev S L, Bottom G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Electron-energy–loss spectra and the structural stability of nickel oxide: an LSDA+U study Phys. Rev. B 57 1305
[38] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Maximally-localized Wannier functions: theory and applications Rev. Mod. Phys. 84 1419
[39] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Wannier90: a tool for obtaining maximally-localised Wannier functions Comput. Phys. Commun. 178 685
[40] Prisichchenko D A, Mazurenko V G, Katsnelson M I and Rudenko A N 2018 Gate-tunable infrared plasmons in electron-doped single-layer antimony Phys. Rev. B 98 201401
[41] Lugovskoi V A, Katsnelson M I and Rudenko A N 2019 Electron–phonon properties, structural stability, and superconductivity of doped antimonene Phys. Rev. B 99 064513
[42] Lichtenstein A I, Katsnelson M I, Antropov V P and Gubanov V A 1987 Local spin density functional approach to the theory of exchange interactions in ferromagnets and alloys J. Magn. Magn. Mater. 67 65
[43] Mazurenko V V, Mila F and Anisimov V I 2006 Electronic structure and exchange interactions of Na2V3O7, CrI3, Phys. Rev. B 73 014418
[44] Mazurenko V V, Krashnin Y O, Jin F, De Raedt H A, Lichtenstein A I and Katsnelson M I 2014 First-principles modeling of magnetic excitations in Mn12 Phys. Rev. B 89 214422
[45] Krashnin Y O, Cardias R, Sizova A, Di Marco I, Katsnelson M I, Lichtenstein A I, Nordström L, Klaustau A B and Eriksson O 2016 Microscopic origin of Heisenberg and non-Heisenberg exchange interactions in ferromagnetic bcc Fe Phys. Rev. Lett. 116 217202
[46] Tylabikov SV 1967 Methods in Quantum Theory of Magnetism (New York: Springer)
[47] White R M 1983 Quantum Theory of Magnetism (New York: Springer)
[48] Ikhhin O, Gubanov V A and Katanin A A and Katsnelson M I 1999 Self-consistent spin–wave theory of layered Heisenberg magnets Phys. Rev. B 60 1082
[49] Rusz J, Turek I and Diviš M 2005 Random-phase approximation for critical temperatures of collinear magnets with multiple sublattices: GaX compounds (x = Mg, Rh, Ni, Pd) Phys. Rev. B 71 174408
[50] Hortamani M, Sandratskii L, Kratzer P, Mertig I and Scheffler M 2008 Exchange interactions and critical temperature of bulk and thin films of MnSe: a density functional theory study Phys. Rev. B 78 104402
[51] Modarresi M, Mogulkoc A, Mogulkoc Y and Rudenko A 2019 Lateral spin valve based on the two-dimensional CrN/P/CrN heterostructure Phys. Rev. Appl. 11 064015
[52] Rudenko A N, Keil F J, Katsnelson M I and Lichtenstein A I 2013 Exchange interactions and frustrated magnetism in single-side hydrogenated and fluorinated graphene Phys. Rev. Lett. 118 087405
[53] Liu J, Sun Q, Kawazo Y and Jena P 2016 Exfoliating biocompatible ferromagnetic cr–trihalide monolayers Phys. Chem. Chem. Phys. 18 8777–84
[54] Zhang W-B, Qu Q, Zhu P and Lam C-H 2015 Robust intrinsic magnetic anisotropy and alloys Sov. Phys. Usp. 58 2531
[55] Khomskii D I 2014 Magnetic 2D materials and heterostructures (Cambridge: Cambridge University Press)
[57] Rudenko A N, Keil F J, Katsnelson M I and Lichtenstein A I 2012 Adsorption of cobalt on graphene: electron correlation effects from a quantum chemical perspective Phys. Rev. B 86 075422
[58] Webster L and Yan J-A 2018 Strain-tunable magnetic anisotropy in monolayer CrCl₃, CrBr₃, and CrI₃ Phys. Rev. B 98 144411
[59] Baidya S, Yu J and Kim C H 2018 Tunable magnetic topological insulating phases in monolayer CrI₃ Phys. Rev. B 98 155148
[60] Chen S, Huang C, Sun H, Ding J, Jena P and Kan E 2019 Boosting the Curie temperature of two-dimensional semiconducting CrI₃ monolayer through van der Waals heterostructures J. Phys. Chem. C 123 17987
[61] Loong C K, Carpenter J M, Lynn J W, Robinson R A and Mook H A 1984 Neutron scattering study of the magnetic excitations in ferromagnetic iron at high energy transfers J. Appl. Phys. 55 1895
[62] Kashin I V, Andreev S N and Mazurenko V V 2018 First-principles study of isotropic exchange interactions and spin stiffness in FeGe J. Magn. Magn. Mater. 467 58
[63] Chen L, Chung J-H, Gao B, Chen T, Stone M B, Kolesnikov A I, Huang Q and Dai P 2018 Topological spin excitations in honeycomb ferromagnet CrI₃ Phys. Rev. X 8 041028
[64] Liu J, Shi M, Lu J and Anantram M P 2018 Analysis of electrical-field-dependent Dzyaloshinskii–Moriya interaction and magnetocrystalline anisotropy in a two-dimensional ferromagnetic monolayer Phys. Rev. B 97 054416