INTRODUCTION

Thymoquinone (TQ) is the major active principle of Nigella sativa L. seed. This seed is commonly named as “Al-Habbah Al-Sawda” in Arabic and “black seed” in English language [1]. Black seed is a commonly used herbal medicine for many ailments in Arab countries, Middle Asia, and the Indian Subcontinent [2].

TQ is known to have many pharmacological activities, to include antitumor, anti-inflammatory, antiasthmatic, antidiabetic, antihypertensive, and hypolipidemic, and antimicrobial effects [2-4]. The antimicrobial activity of TQ and various extracts of N. sativa has been reported against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli, and Listeria monocytogenes [5-8].

Microorganisms are becoming resistant to many antibiotics. Therefore, there is need to find new remedies against pathogenic microbes [9]. Black seed extracts were found to be effective against some resistant microorganisms, such as S. aureus and P. aeruginosa [9,10].
Anaerobic bacteria can cause serious infections, particularly in immunocompromised individuals, for example, elderly, diabetics, and those suffering from HIV infection and using anticancer chemotherapy, immune suppressant drugs, or broad spectrum antibiotics. Anaerobes have been reported to cause aspiration pneumonia, lung abscess, and emphysema [11-13]. Moreover, they have been shown to cause brain abscess and bacterial meningitis [14-16]. They are generally resistant to many antibacterial drugs and are known to develop biofilm around them [17]. Metronidazole is considered as a drug of choice for the treatment of anaerobic infections but can cause agranulocytosis [18].

Because of the scarcity of studies for the activity of black seed or its active components against anaerobic bacteria, the present study has been designed to investigate the activity of TQ, in vitro, against anaerobic human pathogenic strains, including Clostridium difficile, Clostridium perfringens, Bacteroides fragilis, and Bacteroides thetaiotaomicron by standard antimicrobial assay and compare it with that of metronidazole.

METHODS

Microorganisms

Standard, ATCC, strains of C. difficile, C. perfringens, B. fragilis, and B. thetaiotaomicron were purchased from Danat Alajiyal for Medical and Scientific Equipment (Saudi Arabia). These strains were initially grown on special Brucella agar base (with hemin and vitamin K), supplemented with 5% laked or defibrinated sheep blood in Petri plates and identified by conventional methods.

Chemicals

The materials for the culture media used in the study were purchased from Micromaster and Himedia (Saudi Arabia), TQ from Sigma-Aldrich (Saudi Arabia) and anaerobic jar, anaerobic gas pack and indicator from Becton Dickinson (Saudi Arabia). Metronidazole IV fluid (Flagyl from Pfizer, USA) was obtained from the Pharmacy Department of Prince Abdulaziz Bin Mosad Hospital, Arar, Saudi Arabia.

Stock Solutions and Serial Dilutions

Stock solution of TQ 64 mg/ml was prepared in DMSO and water. From the stock solution, serial dilutions of TQ 32, 16, 8, 4, 2, 1, 0.5, and 0.25 mg/ml were prepared in 5 ml sterile test tubes. Then, 100 µl from each diluted concentration of TQ was added to 20 ml of molten Brucella agar base (with hemin and vitamin K), supplemented with 5% defibrinated sheep blood, giving final concentrations of TQ 160-1.25 µg/ml (160, 80, 40, 20, 10, 5, 2.5, and 1.25 µg/ml) in the Petri plates (three plates for each concentration level).

Stock solution of metronidazole (Flagyl) contained 500 mg of metronidazole in 100 ml of water (5 mg/ml), which was serially diluted down to 0.035 mg/ml (5, 2.5, 1.25, 0.625, 0.31, 0.15, 0.07, and 0.035 mg/ml) in 5 ml sterile test tubes. Then, 100 µl from each diluted concentration of metronidazole was added to 20 ml of molten Brucella agar base (with hemin and vitamin K), supplemented with 5% defibrinated sheep blood, giving final concentrations of metronidazole 25-0.195 µg/ml (25, 12.5, 6.25, 3.125, 1.56, 0.78, 0.39, and 0.195 µg/ml) in the Petri plates (three plates for each concentration level).

The ranges of serial dilutions of TQ and metronidazole in Brucella agar given above were chosen from the results of the pilot study. According to the Clinical and Laboratory Standards Institute (CLSI) guidelines for the Brucella agar method, metronidazole ≤8 µg/ml is considered as sensitive, 16 µg/ml as intermediate, and ≥32 µg/ml as resistant.

Minimum Inhibitory Concentration (MIC) Value Determination Assay

The MICs of TQ and metronidazole against the tested strains were determined by the standard method recommended by the CLSI. In each Petri plate (Either containing TQ 160-1.25 µg/ml, or metronidazole, 25-0.195 µg/ml), the standard inoculum of (1 µl) of 0.5 MacFarland (10⁴ CFU) was spot inoculated. Three Petri plates containing 20 ml Brucella agar (with supplements) without TQ or metronidazole were also inoculated with the standard inoculum of each test strain as controls. All plates were incubated anaerobically for 42-48 h and the bacterial growth was observed.

RESULTS

The results of the antibacterial activity of various concentrations of TQ are depicted in Table 1 and Figures 1-4, which reveal that C. difficile was the most sensitive among the anaerobes tested, with intermediate sensitivity to TQ 10 and 20 µg/ml and completely sensitive to TQ 40 µg/ml, giving an MIC of 40 µg/ml. Whereas, C. perfringens, B. fragilis and B. thetaiotaomicron were relatively less sensitive to TQ, with MICs of 160 µg/ml.

The results of the antibacterial activity of various concentrations of metronidazole are given in Table 2, which reveal that C. difficile was again the most sensitive to metronidazole (MIC 0.78 µg/ml), followed by B. fragilis and B. thetaiotaomicron (MICs 3.12 µg/ml), while C. perfringens was least sensitive (MIC 6.25 µg/ml).

Table 1: Antibacterial activity of thymoquinone against anaerobic human pathogenic strains

Reference strains	Thymoquinone (µg/ml)						
	160	80	40	10	5	2.5	1.25
C. perfringens ATCC 13124	S	I	R	R	R	R	R
C. difficile ATCC 700057	S	S	S	I	R	R	R
B. fragilis ATCC 25285	S	R	R	R	R	R	R
B. thetaiotaomicron ATCC 29741	S	R	R	R	R	R	R

C. perfringens: Clostridium perfringens, C. difficile: Clostridium difficile, B. fragilis: Bacteroides fragilis, B. thetaiotaomicron: Bacteroides thetaiotaomicron, S: Sensitive, I: Intermediate sensitivity, R: Resistant
A summary of the results of estimated MICs for TQ and metronidazole against test anaerobes is given in Table 3. TQ showed significant antibacterial activity against anaerobic bacteria used in the study, particularly against *C. difficile*, although much weaker than metronidazole.

DISCUSSION

Anaerobic bacteria are normal commensals and reside in human skin and mucous membranes, thus may cause endogenous infections, such as diarrhea, aspiration pneumonia, lung abscess, brain abscess, and meningitis [11-16]. Metronidazole is very effective and commonly used for the treatment of anaerobic infections but unfortunately is relatively more toxic and can cause serious adverse effects, including agranulocytosis [18]. Besides metronidazole, other effective antibiotics against anaerobic bacteria are the carbapenems (imipenem and meropenem), chloramphenicol, the combinations of penicillin and beta-lactamase inhibitor (ampicillin plus sulbactam, ticarcillin plus clavulanate, and piperacillin plus tazobactam), tigecycline, and clindamycin [19]. Unfortunately, like other bacteria, anaerobes are gradually becoming more resistant to antibiotics. The most frequently isolated antibiotic-resistant anaerobe is *B. fragilis*, but the *Clostridium* species and other anaerobes are also becoming increasingly resistant [20]. In the present study, also, MICs of both TQ and metronidazole against *B. fargilis* were relatively higher than against *C. difficile*.

Because of the limited published work for the antibacterial activity of TQ against anaerobic human pathogens, we could not find similar studies to compare our results. However, there was one study reported in the literature regarding the effect of TQ on foodborne anaerobic bacteria and the results of our study were not much different from that (MIC of TQ against *Clostridium* species was from 5 to 10 µg/ml in the former study while, in our study, it was from 10 to 40 µg/ml for *C. difficile* [21].

The activity of TQ against anaerobic human pathogens is much less than metronidazole. However, derivatives of TQ could be prepared and tested for their activity against...
Randhawa, et al.: Thymoquinone killed anaerobic pathogenic bacteria

The study also supports the use of black seed in the treatment of diarrhea in folk medicine.

ACKNOWLEDGMENTS

The authors would like to acknowledge the approval and the support of this research study by the grant No. 1-13-1436-5 from the Deanship of the Scientific Research in Northern Border University, Arar, Saudi Arabia.

REFERENCES

1. El-Kadi A, Kandil O. Effect of Nigella sativa (the black seed) on immunity, proceeding of the 4th international conference on Islamic medicine, Kuwait: Bull Islamic Med 1986;4:344-8.
2. Randhawa MA, Al-Ghamdi MS. A review of the pharmacotherapeutic effects of Nigella sativa. Pak J Med Res 2002;41:77-83.
3. Padhye S, Banerjee S, Ahmad A, Mohammad R, Sarkar FH. From here to eternity - The secret of Pharaohs: Therapeutic potential of black cumin seeds and beyond. Cancer Ther 2008;6:495-510.
4. Ahmad A, Husain A, Mueeb M, Khan SA, Najmi AK, Siddique NA, et al. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac J Trop Biomed 2013;3:337-52.
5. Topozada HH, Mazloum HA, el-Dakakhny M. The antibacterial properties of the Nigella sativa I. Seeds. Active principle with some clinical applications. J Egypt Med Assoc 1985;48:187-202.
6. El-Fatatry HM. Isolation and structure assignment of an antimicrobial principle from the volatile oil of Nigella sativa L. Seeds. Pharmazie 1975;30:109-11.
7. Hanafy MS, Hateren ME. Studies on the antimicrobial activity of Nigella sativa seed (black cumin). J Ethnopharmacol 1991;34:275-8.
8. Mahmoud HM. Inhibitory action of black cumin (Nigella sativa) against Listeria monocytogenes. J Ethnopharmacol 1993;38:123-34.
9. Masroor N, Nakhshehdeh H. Antibacterial and antifungal effects of Nigella sativa extracts against S. aureus, P. aeruginosa and C. albicans. Pak J Med Sci 2005;21:47-52.
10. Salman MT, Khan RA, Shukla I. Antimicrobial activity of Nigella sativa oil against multidrug resistant bacteria from clinical specimens. Nat Prod Radiance 2008;7:10-4.
11. Brook I. Anaerobic infections in children. Adv Exp Med Biol 2011;697:117-52.
12. Bartlett JG. Anaerobic bacterial infection of the lung. Anaerobe 2012;18:235-9.
13. Bartlett JG. How important are anaerobic bacteria in aspiration pneumonia: When should they be treated and what is optimal therapy. Infect Dis Clin North Am 2013;27:149-55.
14. Lakshmi V, Umabala P, Anuradha K, Padmaja K, Padmasree C, Rajesh A, et al. Microbiological spectrum of brain abscess at a tertiary care hospital in South India: 24-year data and review. Patholog Res Int 2011;2011:683139.
15. Matamala JM, Núñez C, Ogrodnik R, Cartier L. Bifrontal cerebritis and brain abscess caused by Sreptococcus anginosus and brain abscess caused by Streptococcus anginosus group: Report of one case. Rev Med Chi 2013;141:109-13.
16. Tsai WC, Chen SF, Chang WN, Lu CH, Chuang YC, Tsai NW, et al. Clinical characteristics, pathogens implicated and therapeutic outcomes of mixed infection in adult bacterial meningitis. Kaohsiung J Med Sci 2012;28:531-7.
17. Donelli G, Vuotto C, Cardines R, Mastrantonio P. Biofilm-growing intestinal anaerobic bacteria. FEMS Immunol Med Microbiol 2012;65:319-25.
18. Martin C, Ruperti A, Saux P, Brioche MI, Gouin F. Drug-induced agranulocytosis. Discussion of the responsibility of metronidazole. Ann Fr Anesth Reanim 1986;4:521-3.
19. Brook I. Treatment of anaerobic infection. Expert Rev Anti Infect Ther 2007;5:991-1006.
20. Hecht DW. Prevalence of antibiotic resistance in anaerobic bacteria and fungi. Ann Intern Med 1982;96:111-6.
21. Cetin-Karaca H, Newman MC. Antimicrobial efficacy of natural phenolic compounds against gram positive foodborne pathogens. J Food Res 2015;4:14-27.
22. Banerjee S, Azmi AS, Padhye S, Singh MW, Baruah JB, Philip PA, et al. Structure-activity studies on therapeutic potential of thymoquinone analogs in pancreatic cancer. Pharm Res 2010;27:1146-58.

23. Cohen SH, Gerding DN, Johnson S, Kelly CP, Loo VG, McDonald LC, et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect Control Hosp Epidemiol 2010;31:431-58.

© EJManager. This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, noncommercial use, distribution and reproduction in any medium, provided the work is properly cited.

Source of Support: Nil, Conflict of Interest: None declared.