Minireview

Fruit and vegetables and cancer risk

TJ Key*1

1Cancer Epidemiology Unit, Nuffield Department of Clinical Medicine, Oxford University, Richard Doll Building, Roosevelt Drive, Oxford OX3 7LF, UK

The possibility that fruit and vegetables may help to reduce the risk of cancer has been studied for over 30 years, but no protective effects have been firmly established. For cancers of the upper gastrointestinal tract, epidemiological studies have generally observed that people with a relatively high intake of fruit and vegetables have a moderately reduced risk, but these observations must be interpreted cautiously because of potential confounding by smoking and alcohol. For lung cancer, recent large prospective analyses with detailed adjustment for smoking have not shown a convincing association between fruit and vegetable intake and reduced risk. For other common cancers, including colorectal, breast and prostate cancer, epidemiological studies suggest little or no association between total fruit and vegetable consumption and risk. It is still possible that there are benefits to be identified: there could be benefits in populations with low average intakes of fruit and vegetables, such that those eating moderate amounts have a lower cancer risk than those eating very low amounts, and there could also be effects of particular nutrients in certain fruits and vegetables, as fruit and vegetables have very varied composition. Nutritional principles indicate that healthy diets should include at least moderate amounts of fruit and vegetables, but the available data suggest that general increases in fruit and vegetable intake would not have much effect on cancer rates, at least in well-nourished populations. Current advice in relation to diet and cancer should include the recommendation to consume adequate amounts of fruit and vegetables, but should put most emphasis on the well-established adverse effects of obesity and high alcohol intakes.

Published online 30 November 2010

© 2011 Cancer Research UK

Keywords: fruit; vegetables; colorectal cancer; lung cancer; breast cancer

Interest in the possibility that fruit and vegetables might help to reduce the risk for various types of cancer dates back to at least 1975, when the results from a small prospective study suggested that, even after allowing for the effect of smoking, people with a low intake of vitamin A from foods such as carrots and milk were at increased risk for lung cancer (Bjelke, 1975). Around the same time, investigations of differences in cancer rates and diet between countries suggested that various dietary factors, including plant foods, might have important effects on cancer risk (Armstrong and Doll, 1975). Epidemiological research on fruit and vegetables and cancer then increased rapidly, and by 1992, a review of 156 studies concluded that 'for most cancer sites, persons with low fruit and vegetable intake experience about twice the risk of cancer compared to those with a high intake, even after control for potentially confounding factors' (Block et al., 1992). Furthermore, consideration of the potential biological effects of various constituents of fruits and vegetables suggested plausible mechanisms for protective effects, such as by reducing oxidative damage of DNA or increasing the activity of enzymes able to detoxify carcinogens (Steinmetz and Potter, 1991). This view was consolidated by an expert panel report published in 1997, which stated that there was 'convincing' evidence that high intakes of fruit and/or vegetables decrease the risk for cancers of the mouth and pharynx, oesophagus, stomach, colorectum and lung (World Cancer Research Fund/American Institute for Cancer Research, 1997). However, within another 10 years, an updated report coordinated by the same organisation downgraded these previous conclusions from 'convincing' to either 'probable' or 'limited-suggestive' (World Cancer Research Fund/American Institute for Cancer Research, 2007). The principal reason for this change in judgement was that the newer results from large prospective studies did not confirm the earlier results, which had come mostly from case–control studies.

This overview summarises the epidemiological evidence on the associations of total fruit and vegetable consumption with the risk for major cancer sites (gastrointestinal tract, lung, breast, prostate and overall cancer risk), concentrating on the results from large prospective studies or pooled analyses. The difficulties in investigating this topic and possibilities for further research are then discussed.

ASSOCIATIONS OF FRUIT AND VEGETABLE INTAKE WITH RISK OF MAJOR CANCER SITES

Cancers of the oral cavity and pharynx

Cancers of the oral cavity and pharynx are caused mostly by tobacco and alcohol (IARC, 1990). The association of fruit and vegetables with risk has been investigated in several case–control studies, which have observed an ~50% reduction in the risk of these cancers in people with high intakes of fruit and vegetables (IARC, 2003). Few prospective studies of these cancers have been published, but these have generally observed substantial reductions in risk; in a study in the United States of cancers of the oral...
cavity, pharynx and larynx, Freedman et al (2008a) reported that, compared with people who consumed ~1.5 portions of fruit and vegetables each day, people with intakes of ~5.8 portions per day had a relative risk of 0.71 (95% CI 0.55–0.92), and in a study in Europe of squamous cell cancers of the oral cavity, pharynx, larynx (and oesophagus), Boeing et al (2006) reported that people with a high intake of fruit and vegetables (~7.7 portions per day) had a relative risk of 0.60 (95% CI 0.37–0.99) compared with those with a relatively low intake (~2.5 portions per day). Thus, the observational data are consistent with the hypothesis that relatively high intakes of fruit and vegetables reduce the risk for these cancers, but this interpretation is based on a rather small number of cases (787 cases in Freedman et al, 2008a; 352 cases in Boeing et al, 2006). Furthermore, tobacco and alcohol cause large increases in the risk for these cancers and are usually associated with low intakes of fruit and vegetables (Serdule et al, 1996); therefore, although the statistical analyses of epidemiological studies adjust as carefully as possible for smoking and alcohol, it is possible that the observed associations with fruit and vegetables are really due to tobacco and alcohol – so-called ‘residual confounding’.

Oesophageal cancer

There are two main types of oesophageal cancer: squamous cell carcinoma and adenocarcinoma. Smoking is a causal factor for both types, alcohol is an important risk factor for squamous cell carcinoma and obesity and gastro-oesophageal reflux are important risk factors for adenocarcinoma (Stewart and Kleihues, 2003). The possible role of fruit and vegetables has been investigated in several case–control studies, which on average have observed that people with relatively high intakes of fruit and vegetables have a 40–50% lower risk of total oesophageal cancer than people with low intakes of fruit and vegetables (IARC, 2003). The few prospective data available suggest that fruit and vegetables are inversely associated with the risk for squamous cell carcinoma, but not with the risk for adenocarcinoma (Freedman et al, 2007; Yamaji et al, 2008). Therefore, the data are consistent with the hypothesis that adequate intakes of fruit and vegetables reduce the risk for squamous cell carcinoma of the oesophagus, but it is still possible that the association seen is due to residual confounding by smoking and alcohol.

Stomach cancer

The risk of stomach cancer is increased by chronic infection with Helicobacter pylori, and there is substantial evidence that risk is increased by high intakes of salt-preserved foods and salt (WHO, 2003). There is a longstanding hypothesis that risk may be reduced by adequate intakes of fruit and vegetables, perhaps due to their content of antioxidant nutrients such as vitamin C. Data from case–control studies support this hypothesis (IARC, 2003), but the results from prospective studies have mostly shown weak or null associations (IARC, 2003; World Cancer Research Fund/American Institute for Cancer Research, 2007; White et al, 2008b). Overall, therefore, the evidence does not suggest that fruit and vegetables reduce the risk of stomach cancer, at least in relatively well-nourished populations.

Colorectal cancer

Diet is thought to have a major role in the aetiology of colorectal cancer, but the relevant components of diet are still not well understood. The incidence of this cancer is generally high in populations with high intakes of meat and low intakes of staple plant foods (Armstrong and Doll, 1975), and it has long been suggested that dietary fibre might reduce risk (Burkitt, 1971). Fruit and vegetables are rich in dietary fibre and, although there are other important sources such as unrefined cereals, it might be expected that if dietary fibre reduces the risk of colorectal cancer, then a reduction in risk would be observed in association with high intakes of fruit and vegetables. However, although one large prospective study of dietary fibre and colorectal cancer risk has found an inverse association with risk (1721 cases, Bingham et al, 2005), the results of other large prospective studies have been less clear (8081 cases, Park et al, 2005; 2110 cases, Nomura et al, 2007; 2974 cases, Schatzkin et al, 2007), and large prospective studies have suggested that high intakes of fruit and vegetables have at the most a small inverse association with the risk for colorectal cancer (Table 1). In the Women’s Health Initiative randomised trial, the intervention was a low-fat eating pattern aimed at reducing dietary fat intake and increasing consumption of vegetables, fruits and grains; there was an average increase in fruit and vegetable intake of 1.1 servings per day, and the dietary intervention did not cause any significant change in the incidence of colorectal cancer after 8 years (Beresford et al, 2006). Overall, the data do not show a clear association between fruit and vegetables and the risk for colorectal cancer, although they are compatible with a small reduction in risk.

Lung cancer

Heavy smoking increases the risk of lung cancer by ~50-fold, and smoking causes over 80% of lung cancers in Western countries (IARC, 1990; Peto et al, 2000). Many observational studies have found that lung cancer patients report a somewhat lower intake of fruits and vegetables than controls, but the effect of smoking is so large, compared with the small association with diet, that residual confounding by smoking is likely, and recent large prospective analyses with detailed adjustment for smoking have not shown a convincing association between fruit and vegetable intake and the risk for lung cancer (Table 1).

Breast cancer

Much of the epidemiology of breast cancer can be explained by reproductive and hormonal factors; in relation to diet, the only factors definitely related to breast cancer risk are obesity in postmenopausal women and alcohol (Key et al, 2003). Several large prospective studies have investigated whether high intakes of fruit and vegetables might be associated with a reduced risk of breast cancer, but overall the results are close to null (Table 1 and Michels et al, 2007). In the Women’s Health Initiative randomised trial, an increase in fruit and vegetable intake of 1.1 servings per day (combined with an increase in grain intake and a reduction in fat intake) did not cause a significant change in the incidence of breast cancer after 8 years (Prentice et al, 2006). It seems unlikely that high intakes of fruit and vegetables in general have a significant protective effect, but it is still possible that specific vegetables rich in isoflavones, especially soybeans, might have a protective effect by reducing the oestrogenic stimulation of the breast cells (Michels et al, 2007).

Prostate cancer

The aetiology of prostate cancer is not well understood. Risk is increased in men with relatively high plasma concentrations of insulin-like growth factor-I, and levels of this growth factor can be affected by diet, but more research on this pathway is needed (Roddam et al, 2008). In relation to fruit and vegetables, recent large prospective studies suggest that there is little or no association between total fruit and vegetable intake and prostate cancer risk (Kirsh et al, 2007). There has been much interest in the possibility that fruits and vegetables, such as tomatoes, which are rich in the carotenoid lycopene might reduce the risk for prostate cancer, but overall the data do not support this hypothesis.

© 2011 Cancer Research UK

British Journal of Cancer (2011) 104(1), 6–11
Several large randomised trials have tested the hypothesis that supplements of \(\beta \)-carotene or other dietary antioxidants could prevent cancer. Apart from a possible beneficial effect of \(\beta \)-carotene combined with vitamin E and selenium in a poorly nourished population in China, no benefits have been found at any cancer site, and high-dose supplements of \(\beta \)-carotene may increase the risk of lung cancer in smokers (Bjelakovic et al., 2008; Druesne-Pecollo et al., 2010).

DISCUSSION

Table 2 summarises the observed associations of fruit and vegetable intake with the risk of common cancers. In the early 1990s, there was a widespread belief that an increase in fruit and vegetable consumption would produce important reductions in cancer rates; it now appears that this view was unduly optimistic, and it is useful to consider why research on this topic has been difficult to interpret and how to plan future research to clarify this area.

Bias, confounding and measurement error in observational studies

Most of the early studies on fruit and vegetables and cancer risk were case-control studies. These studies can be affected by bias: the cases have been diagnosed with cancer and their report of ‘usual diet’ may be affected by their illness or treatment, and the controls are intended to be a random sample of the whole population under study, but typically the response rate among potential controls is well below 100% and those who respond are relatively ‘health conscious’. These two biases could explain the higher reported intake of fruit and vegetables among controls than cases in many case-control studies, and therefore more attention should be given to the results of prospective studies, in which comparisons within the study are not affected by these biases.

Table 1 Results from large prospective studies on fruit and vegetables and risk of colorectal cancer, lung cancer, breast cancer and all cancers

Cancer site and study	Reference	Number of cancers	RR (95% CI) for high fruit consumption	RR (95% CI) for high vegetable consumption	RR (95% CI) for high fruit and vegetable consumption
Colorectal cancer					
EPIC	van Duijnhoven et al (2009)	2819	0.88 (0.76–1.01)	0.92 (0.79–1.06)	0.86 (0.75–1.00)
NIH-AARP	Park et al (2007)	2048 Men	1.06 (0.91–1.23)	0.82 (0.71–0.94)	0.91 (0.78–1.05)
Pooling Project (colon only)	Koushik et al (2007)	924 Women	1.09 (0.88–1.36)	1.12 (0.90–1.38)	1.08 (0.86–1.35)
		5838	0.93 (0.85–1.02)	0.94 (0.86–1.02)	0.91 (0.82–1.01)
Lung cancer					
EPIC	Buchner et al (2010)	1830	0.80 (0.66–0.96)	0.96 (0.79–1.17)	—
NIH-AARP	Wright et al (2008)	3834 Men	0.91 (0.82–1.02)	0.93 (0.83–1.03)	0.93 (0.83–1.04)
Pooling Project	Smith-Warner et al (2003)	2201 Women	0.97 (0.84–1.11)	1.05 (0.92–1.21)	0.98 (0.85–1.13)
		3206	0.77 (0.67–0.87)	0.88 (0.78–1.00)	0.79 (0.69–0.90)
Breast cancer					
EPIC	van Gils et al (2005)	3659	1.09 (0.94–1.25)	0.98 (0.84–1.14)	—
Pooling Project	Smith-Warner et al (2001)	7377	0.93 (0.86–1.00)	0.96 (0.89–1.04)	0.93 (0.86–1.00)
All cancers					
EPIC	Boffetta et al (2010)	30 604	0.94 (0.90–0.98)	0.93 (0.89–0.97)	0.89 (0.85–0.93)
Japan Public Health Center-Based Prospective Study	Takachi et al (2008)	3230	1.02 (0.90–1.14)	0.94 (0.84–1.05)	0.96 (0.85–1.07)
NIH-AARP Diet and Health Study	George et al (2009)	235 071 Men	0.98 (0.95–1.02)	0.94 (0.91–0.97)	—
Nurses’ Health Study and Health Professionals’ Follow-up Study	Hung et al (2004)	15 792 Women	0.99 (0.94–1.05)	1.04 (0.98–1.09)	—

Abbreviations: EPIC = European Prospective Investigation into Cancer and Nutrition; NIH-AARP = National Institutes of Health-American Association of Retired Persons Diet and Health Study; Pooling Project = Pooling Project of Prospective Studies of Diet and Cancer, a pooled analysis of primary data from 14 (colon cancer) and 8 (lung cancer, breast cancer) prospective studies in North America and Europe, respectively; RR (95% CI) = relative risk (95% confidence interval) of cancer for individuals in the highest category of consumption compared with those in the lowest category.
Associated with smoking (Boffetta et al., 2010); it may be that fruit and vegetables ameliorate the adverse effects of smoking, but it is also possible that these results are due to confounding.

In the recent large prospective studies, there has been little evidence that isoflavones from soya beans might be protective effect against cancer, and likely that some of the associations observed for particular cancer sites are simply due to confounding, particularly by smoking. This conclusion implies that, at least in relatively well-nourished westernised populations, a general increase in total fruit and vegetable intake will not have a large impact on cancer rates. This overall conclusion does not imply that there are no beneficial effects to discover, but future progress will depend on better understanding of the mechanisms by which cancer develops.

Questionnaires provide only moderately accurate estimates of food intake. Much of the measurement error is random, and the resulting misclassification of individuals tends to attenuate the size of any true associations of food intake with disease risk. The combination of confounding and measurement error makes it difficult to interpret the results of large studies when these show a small, but statistically significant, association of fruit and vegetables with cancer risk. Small associations might be explained by residual confounding, but on the other hand, if small observed associations are due to a real protective effect, then the true effect may be substantially larger and thus of greater public health importance.

Topics for further research

It is unlikely that fruit and vegetables have a ‘broad spectrum’ protective effect against cancer, and likely that some types of fruit and vegetables would be expected to be much more strongly associated with risk than others, and such associations might be missed in examinations of cancer risk in relation to total fruit and vegetable consumption. The best chance of identifying any true protective effects of fruit and vegetables may depend on better understanding of the aetiology of specific cancers. Much of the previous research on fruit and vegetables and cancer has been conducted without a good understanding of potential mechanisms. For example, many studies have focused on the hypothesis that carotenoids such as β-carotene might reduce cancer risk due to antioxidant effects, but the role of oxidation and antioxidants in the aetiology of cancer is not clear (Halliwell, 2007). There are, however, some cancers for which we now know quite a lot about the mechanism. For example, it is known that high levels of circulating oestrogens are associated with an increased risk of breast cancer in postmenopausal women; therefore, the possibility that isoflavones from soya beans might be

Table 2 Summary: fruit and vegetables and risk of common cancers

Cancer site	Current evidence for association with fruit and vegetables	Comments
Gastrointestinal tract	Consistent inverse association	Not clear if causal – might be due to residual confounding by other factors such as tobacco and alcohol
Stomach	Generally little or no association	—
Colorectum	Inconsistent, weak, inverse association	Could be due to protective effect of dietary fibre
Lung	Inconsistent, weak, inverse association	Could be due to residual confounding by smoking
Breast	Little or no association	—
Prostate	Little or no association	—

Table 3 Associations of fruit and vegetable intake with smoking and alcohol intake

Fruit and vegetable intake	Men	Women		
	Current smokers (%)	Alcohol intake ≥ 15 g per day (%)	Current smokers (%)	Alcohol intake ≥ 15 g per day (%)
Fruit	21.8 38.3 26.6 17.2	4.1 16.7 7.8 5.3	16.9 32.1 20.6 12.6	6.2 22.7 10.3 9.4
Vegetables	16.9 32.1 20.6 12.6	6.2 22.7 10.3 9.4	16.9 32.1 20.6 12.6	6.2 22.7 10.3 9.4

Data for 288,109 men and 195,229 women in the National Institutes of Health-American Association of Retired Persons Diet and Health Study, adapted from George et al. (2009).
protective is plausible if these chemicals can reduce the oestrogenic effect of endogenous hormones (Key et al, 2003). To test this hypothesis, studies need to have reliable estimates of long-term exposure to isoflavones, and to be large enough to detect moderate effects; the anti-oestrogen tamoxifen reduces breast cancer risk by ~40% (Cuzick et al, 2003), and it is probably unrealistic to expect dietary isoflavones to have such a large effect.

CONCLUSIONS

General nutritional principles indicate that healthy diets should include at least moderate amounts of fruit and vegetables, sufficient to prevent deficiencies of any nutrients, especially micronutrients such as vitamin C, which are mostly supplied by fruits and vegetables. However, the available data suggest that general increases in fruit and vegetable intake would not have much effect on cancer rates, at least in relatively well-nourished populations. Future research may be productive if it can be focused on biological pathways known to be relevant in the development of specific types of cancer, and can reliably assess long-term intakes of relevant fruits and vegetables. Currently, advice in relation to diet and cancer should include the recommendation to consume adequate amounts of fruit and vegetables, but should put more emphasis on the well-established adverse effects of obesity and high alcohol intakes on cancer risk.

ACKNOWLEDGEMENTS

The author is funded by Cancer Research UK.

REFERENCES

Armstrong B, Doll R (1975) Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices. Int J Cancer 15(4): 617 – 631

Beresford SA, Johnson KC, Ritenbaugh C, Lasser NL, Snetselaar LG, Block G, Patterson B, Subar A (1992) Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr Cancer 18(1): 1 – 29

Boehm DG, Patterson B, Subar A (1992) Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr Cancer 18(1): 1 – 29

Büchner FL, Bueno-de-Mesquita HB, Lissoughes J, Hcmeniey LA, Ros MM, Overvad K, Hansen L, Tjonnland A, Raaschou-Nielsen O, Clavel-Chapelon F, Bponour-Ruault MC, Touillaud M, Kaaks R, Rohrmann S, Boeing H, Nothlings U, Trichopoulou A, Zydis D, Dils V, Palli D, Sieri S, Vineis P, Tumino R, Panico S, Peeters PH, van Gilis CH, Lund E, Gram IT, Braaten T, Martinson C, Agudo A, Arriola L, Ardanaz E, Navarro C, Rodriguez L, Manjer J, Wirffelt E, Hallmans G, Rasmussen T, Key TJ, Roddam AW, Bingham S, Khaw KT, Slimani N, Bofetta P, Byrnes G, Norat T, Michaud D, Riboli E (2010) Fruits and vegetables consumption and the risk of histological subtypes of lung cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). Cancer Causes Control 21(3): 357 – 371

Bukitt DP (1971) Epidemiology of cancer of the colon and rectum. Cancer 28(1): 3 – 13

Cuzick J, Powles T, Veronesi U, Forbes J, Edwards R, Ashley S, Boyle P (2003) Overview of the main outcomes in breast-cancer prevention trials. Lancet 361(9354): 296 – 300

Dreusne-Pecollo N, Latina-Martel P, Norat T, Barrandon E, Bertrais S, Galan P, Herberg S (2010) Beta-carotene supplementation and cancer protection: a systematic review and metaanalysis of randomized controlled trials. Int J Cancer 127(2): 172 – 184

Freedman ND, Park Y, Subar AF, Hollenbeck AR, Leitzmann MF, Schatzkin A, Abnet CC (2007) Fruit and vegetable intake and esophageal cancer in a large prospective cohort study. Int J Cancer 121(12): 2753 – 2760

Freedman ND, Park Y, Subar AF, Hollenbeck AR, Leitzmann MF, Schatzkin A, Abnet CC (2008a) Fruit and vegetable intake and head and neck cancer risk in a large United States prospective cohort study. Int J Cancer 122(10): 2330 – 2336

Freedman ND, Subar AF, Hollenbeck AR, Leitzmann MF, Schatzkin A, Abnet CC (2008b) Fruit and vegetable intake and gastric cancer risk in a large United States prospective cohort study. Cancer Causes Control 19(5): 459 – 467

George SM, Park Y, Leitzmann MF, Freedman ND, Dowling EC, Reedy J, Schatzkin A, Hollenbeck A, Subar AF (2009) Fruit and vegetable intake and risk of cancer: a prospective cohort study. Am J Clin Nutr 89(1): 347 – 353

Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401(1): 1 – 11

Hung HC, Joshupola KJ, Jiang R, Hu FB, Hunter D, Smith-Warner SA, Colditz GA, Rosner B, Spiegelman D, Willett WC (2004) Fruit and vegetable intake and risk of major chronic disease. J Natl Cancer Inst 96(21): 1577 – 1584

Hwang YW, Kim SY, Jee SH, Kim YN, Nam CM (2009) Soy food consumption and risk of prostate cancer: a meta-analysis of observational studies. Nutr Cancer 61(5): 598 – 606

International Agency for Research on Cancer (1999) Cancer: Causes, Occurrence and Control. IARC: Lyon

International Agency for Research on Cancer (2003) IARC Handbooks of Cancer Prevention. Volume 8. Fruit and Vegetables. IARC Press: Lyon

Kavanaugh C, Trumbo PR, Ellwood KC (2007) The U.S. Food and Drug Administration’s evidence-based review for qualified health claims: tomatoes, lycopene, and cancer. J Natl Cancer Inst 99(14): 1074 – 1085

British Journal of Cancer (2011) 104(1), 6 – 11 © 2011 Cancer Research UK
Key TJ, Allen NE, Spencer EA, Travis RC (2003) Nutrition and breast cancer. Breast 12(6): 412–416
Kirsh VA, Peters U, Mayne ST, Subar AF, Chatterjee N, Johnson CC, Hayes RB, Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (2007) Prospective study of fruit and vegetable intake and risk of prostate cancer. J Natl Cancer Inst 99(15): 1200–1209
Koushik A, Hunter DJ, Spiegelman D, Beeson WL, van den Brandt PA, Buring JE, Calle EE, Cho E, Fraser GE, Freemden JL, Fuchs CS, Giovannucci EL, Goldbohm RA, Harnack L, Jacobs Jr DR, Kato I, Krogh V, Larsson SC, Leitzmann MF, Marshall JR, McCullough ML, Miller AB, Pietinen P, Rohan TE, Schatzkin A, Sieri S, Virtanen MJ, Wolk A, Zeleniuch-Jacquotte A, Zhang SM, Smith-Warner SA (2007) Fruits, vegetables, and colon cancer risk in a pooled analysis of 14 cohort studies. J Natl Cancer Inst 99(19): 1471–1483
Michels KB, Mohlalaie AP, Roset-Bahmanyar E, Beehler GP, Moysich KB (2007) Diet and breast cancer: a review of the prospective observational studies. Cancer 109(12 Suppl): 2712–2749
Nomura AM, Hankin JH, Henderson BE, Wilkens LR, Murphy SP, Pike MC, Le Marchand L, Stram DO, Monroe KR, Kolonel LN (2007) Dietary fiber and colorectal cancer risk: the multiethnic cohort study. Cancer Causes Control 18(7): 753–764
Park Y, Hunter DJ, Spiegelman D, Bergkvist L, Berrino F, van den Brandt PA, Buring JE, Colditz GA, Freedman ND, Albanes D, Hollenbeck A, Johnson KC, Kotchen JM, LaCroix AZ, Lee CH, Lip Pike WC, Rohan TE, Schatzkin A, Willett WC, Wolk A, Zeleniuch-Jacquotte A, Zhang SM, Smith-Warner SA (2005) Dietary fiber intake and risk of colorectal cancer: a pooled analysis of prospective cohort studies. JAMA 294(22): 2849–2857
Park Y, Subar AF, Kipnis V, Thompson FE, Mouch T, Hollenbeck A, Leitzmann MF, Schatzkin A (2007) Fruit and vegetable intake and risk of colorectal cancer in the NIH-AARP diet and health study. Am J Epidemiol 166(2): 170–180
Peto R, Darby S, Deo H, Silcocks P, Whitley E, Doll R (2000) Smoking, smoking cessation, and lung cancer in the UK since 1950: combination of national statistics with two case-control studies. BMJ 321(7257): 323–329
Prentice RL, Caan B, Chlebowski RT, Patterson R, Kuller LH, Ockene JK, Margolis KL, Limacher MC, Manson JE, Parker LM, Paskett E, Phillips L, Robbins J, Rossouw JE, Sarto GE, Schipper MJ, Stefanick ML, Thomson CA, Van Horn L, Vitonis MZ, Wactawski-Wende J, Wallace RB, Wassertheil-Smoller S, Whitlock E, Yano K, Adams-Campbell L, Anderson GL, Assaf AR, Beresford SA, Black HR, Brunner RL, Bryzsko RG, Ford L, Gass M, Hays J, Heber D, Heiss G, Hendrix SL, Hsia J, Hubbell FA, Jackson RD, Johnson KC, Kotchen JM, LaCroix AZ, Langer RD, Lasser NL, Henderson MM (2006) Low-fat dietary pattern and risk of invasive breast cancer: the Women’s Health Initiative Randomized Controlled Dietary Modification Trial. JAMA 295(6): 629–642
Roddam AW, Allen NE, Appleby P, Key TJ, Ferrucci L, Carter H, Metter EJ, Chen C, Weiss NS, Fitzpatrick A, Hsing AW, Lacey Jr JV, Helszloamer K, Rinaldi S, Riboli E, Kaaks R, Janssen JA, Wildhagen MF, Schroder FH, Platz EA, Pollak M, Giovannucci E, Schafer C, Quenness JD, Schmitz H, Venn G, English DR, Giles GP, Stattin P, Hallmans G, Johansson M, Chan JM, Gann P, Oliver SE, Holly JM, Donovan J, Meyer F, Bairati I, Galan P (2008) Insulin-like growth factors, their binding proteins, and prostate cancer risk: analysis of individual patient data from 12 prospective studies. Ann Intern Med 149(7): 461–471
Schatzkin A, Mouch T, Park Y, Subar AF, Kipnis V, Hollenbeck A, Leitzmann MF, Thompson FE (2007) Dietary fiber and whole-grain consumption in relation to colorectal cancer in the NIH-AARP Diet and Health Study. Am J Clin Nutr 85(5): 1353–1360
Serduka MK, Byers T, Mokdad AH, Simes E, Mendele JM, Coates RJ (1996) The association between fruit and vegetable intake and chronic disease risk factors. Epidemiology 7(2): 161–165
Smith-Warner SA, Spiegelman D, Yauw SS, Adami HO, Beeson WL, van den Brandt PA, Folsom AR, Fraser GE, Freemden JL, Goldbohm RA, Graham S, Miller AB, Potter JD, Rohan TE, Speizer FE, Toniolo P, Willett WC, Wolk A, Zeleniuch-Jacquotte A, Hunter DJ (2001) Intake of fruits and vegetables and risk of breast cancer: a pooled analysis of cohort studies. JAMA 285(6): 769–776
Smith-Warner SA, Spiegelman D, Yauw SS, Alvanines D, Beeson WL, van den Brandt PA, Feskanich D, Folsom AR, Fraser GE, Freemden JL, Giovannucci E, Goldbohm RA, Graham S, Kushi LH, Miller AB, Pietinen P, Rohan TE, Speizer FE, Willett WC, Hunter DJ (2003) Fruits, vegetables and lung cancer: a pooled analysis of cohort studies. Int J Cancer 107(6): 1001–1011
Steinmetz KA, Potter JD (1991) Vegetables, fruit, and cancer. II. Mechanisms. Cancer Causes Control 2(6): 427–442
Steward BW, Kleihues P (eds) (2003) World Cancer Report. IARC Press: Lyon
Takachi R, Inoue M, Ishihara J, Kurahashi N, Iwasaki M, Sasazuki S, Iso H, Tsunobo Y, Tsuchane S, Iphc Study Group (2008) Fruit and vegetable intake and risk of total cancer and cardiovascular disease: Japan Public Health Center-Based Prospective Study. Am J Epidemiol 167(1): 59–70
van Duijnoven HJ, Bueno-Dereguita HB, Ferrari P, Jenab M, Boshuizen HC, Ros MM, Casagrande C, Tjonneland A, Olsen A, Overvad K, Thorlaurus-Ussing O, Clavel-Chapelon F, Pouton-Ruault MC, Morsis S, Kaaks R, Linseisen J, Bocken J, Nothlings U, Trichopoulou A, Trichopoulou D, Misirli G, Hallman S, Sano Panico S, Tumino R, Vines P, Peeters PH, van Gils CH, Ocké MC, Lund E, Engeset D, Skeie G, Suarez LR, Gonzalez CA, Sánchez MJ, Dronnorsoro M, Navarro C, Barricarte A, Berglund G, Manjer J, Hallmans G, Palmqvist R, Bingham SA, Khaw KT, Key TJ, Allen NE, Boifetta P, Slimani N, Rinaldi S, Gallo V, Norat T, Riboli E (2009) Fruit, vegetables, and colorectal cancer risk: the European Prospective Investigation into Nutrition and Cancer. Am J Clin Nutr 89(5): 1441–1452
van Gils CH, Peeters PH, Bueno-Dereguita HB, Boshuin HC, Lahmann PH, Clavel-Chapelon F, Thiebaut A, Kesse K, Sieri D, Panico S, Vines P, Gonzalez CA, Ardanaz E, Sanchez MJ, Amiano P, Navarro C, Quirós JR, Key TJ, Allen N, Khaw KT, Bingham SA, Psaltooupolo T, Kolvla M, Trichopoulou A, Nagel G, Linseisen J, Boening H, Bjorglind G, Wirthé L, Hallmans G, Lenner P, Overvad K, Tjonnland A, Olsen A, Lund E, Engeset D, Alaker E, Norat T, Kaaks R, Slimani N, Riboli E (2005) Consumption of vegetables and fruits and risk of breast cancer. JAMA 293(2): 183–193
Wright ME, Park Y, Subar AF, Freedman ND, Alvanines D, Hollenbeck A, Leitzmann MF, Schatzkin A (2008) Intakes of fruit, vegetables, and specific botanical groups in relation to lung cancer risk in the NIH-AARP Diet and Health Study. Am J Epidemiol 168(9): 1024–1034
World Cancer Research Fund/American Institute for Cancer Research (1997) Food, Nutrition, Physical Activity and the Prevention of Cancer: A Global Perspective. AIRC: Washington, DC
World Cancer Research Fund/American Institute for Cancer Research (2007) Food, Nutrition and the Prevention of Cancer: A Global Perspective. AIRC: Washington, DC
World Health Organization (2003) WHO Technical Report Series 916. Diet, Nutrition and the Prevention of Chronic Diseases. WHO: Geneva
Yamaji T, Inoue M, Sasazuki S, Iwasaki M, Kurahashi N, Shimazu T, Tsugane S, Japan Public Health Center-based Prospective Study Group (2008) Fruit and vegetable consumption and squamous cell carcinoma of the esophagus in Japan: the JPHC study. Int J Cancer 123(8): 1935–1940