A FATOU-BIEBERBACH DOMAIN IN \mathbb{C}^2 WHICH IS NOT RUNGE

ERLEND FORNÆSS WOLD

Abstract. Since a paper by J.P. Rosay and W. Rudin from 1988 there has been an open question whether all Fatou-Bieberbach domains are Runge. We give an example of a Fatou-Bieberbach domain Ω in \mathbb{C}^2 which is not Runge. The domain Ω provides (yet) a negative answer to a problem of Bremermann.

1. Introduction

We give a negative answer to the problem, initially posed by J.P. Rosay and W. Rudin in [6] and later in [4], as to whether all Fatou-Bieberbach domains are Runge:

Theorem 1. There is a Fatou-Bieberbach domain Ω in $\mathbb{C}^* \times \mathbb{C}$ which is Runge in $\mathbb{C}^* \times \mathbb{C}$ but not in \mathbb{C}^2.

A Fatou-Bieberbach domain is a proper subdomain of \mathbb{C}^n which is biholomorphic to \mathbb{C}^n, and a domain $\Omega \subset \mathbb{C}^n$ is said to be Runge (in \mathbb{C}^n) if any holomorphic function $f \in O(\Omega)$ can be approximated uniformly on compacts in Ω by polynomials.

It should be noted that although the domain Ω is not Runge it still has the property that the intersection of Ω with any complex line L is simply connected: Let V be a connected component of $\Omega \cap L$, let $\Gamma \subset V$ be a simple closed curve, and let D denote the disk in L bounded by Γ. Since Γ is null-homotopic in Ω we have that D is contained in $\mathbb{C}^* \times \mathbb{C}$ and so the claim follows from the fact that Ω is Runge in $\mathbb{C}^* \times \mathbb{C}$. Intersecting Ω with a suitable bounded subset of \mathbb{C}^2 this gives a negative answer to the problem of Bremermann: "Suppose that D is a Stein domain in \mathbb{C}^n such that for every complex line l in \mathbb{C}^n, $l \setminus D$ is connected. Is it true that D is Runge in \mathbb{C}^n?". Negative answers to this problem have also recently been given in [1] and [5]. One can in fact show, using an argument as above together with the argument principle, that if R is a smoothly bounded planar domain and if $\varphi(R)$ is a holomorphic embedding of R into \mathbb{C}^2 with $\varphi(\partial R) \subset \Omega$, then $\varphi(R) \subset \Omega$.

The idea of the proof is the following: Observe first that if Ω is a Fatou-Bieberbach domain in \mathbb{C}^2 which is Runge, then Ω has the property that if $Y \subset \Omega$ is compact then
its polynomially convex hull
\[\hat{Y} := \{(z, w) \in \mathbb{C}^2; |P(z, w)| \leq \|P\|_Y \forall P \in \mathcal{P}(\mathbb{C}^2)\} \]
is contained in \(\Omega \). To prove the theorem we will construct a domain \(\Omega \) such that \(\hat{Y} \setminus \Omega \neq \emptyset \) for a certain compact set \(Y \). For a compact subset \(Y \subset \mathbb{C}^* \times \mathbb{C} \) let \(\hat{Y}_* \) denote the set
\[\hat{Y}_* := \{(z, w) \in \mathbb{C}^2; |P(z, w)| \leq \|P\|_Y \forall P \in \mathcal{O}(\mathbb{C}^* \times \mathbb{C})\}. \]

We say that the set \(Y \) is holomorphically convex if \(\hat{Y}_* = Y \). We will first construct (a construction by Stolzenberg) a holomorphically convex compact set \(Y \subset \mathbb{C}^* \times \mathbb{C} \) having the property that \(\hat{Y} \cap (\{0\} \times \mathbb{C}) \neq \emptyset \). \(Y \) is the disjoint union of two disks is \(\mathbb{C}^* \times \mathbb{C} \). We will then use the fact that \(\mathbb{C}^* \times \mathbb{C} \) has the density property to construct a Fatou-Bieberbach domain \(\Omega \subset \mathbb{C}^* \times \mathbb{C} \) such that \(Y \subset \Omega \). The domain \(\Omega \) cannot be Runge.

A few words about the density property and approximation by automorphisms. As defined in [9], a complex manifold \(M \) is said to have the density property if every holomorphic vector field on \(M \) can be approximated locally uniformly by Lie combinations of complete vector fields on \(M \). It was proved in [9] that \(\mathbb{C}^* \times \mathbb{C} \) has the density property. In Andersén-Lempert theory the density property corresponds to the fact that in \(\mathbb{C}^n \) every entire vector field can be approximated by sums of complete vector fields. This has been studied also in [10].

Using the density property of \(\mathbb{C}^* \times \mathbb{C} \) one gets as in [4] (by copying their arguments): Let \(\Omega \) be an open set in \(\mathbb{C}^* \times \mathbb{C} \). For every \(t \in [0, 1] \), let \(\varphi_t \) be a biholomorphic map from \(\Omega \) into \(\mathbb{C}^* \times \mathbb{C} \), of class \(C^2 \) in \((t, z) \in [0, 1] \times \Omega \). Assume that \(\varphi_0 = Id \), and assume that each domain \(\Omega_t = \varphi_t(\Omega) \) is Runge in \(\mathbb{C}^* \times \mathbb{C} \). Then for every \(t \in [0, 1] \) the map \(\varphi_t \) can be approximated on \(\Omega \) by holomorphic automorphisms of \(\mathbb{C}^* \times \mathbb{C} \). In the proof of Theorem 1 we will construct such an isotopy.

We will let \(\pi \) denote the projection onto the first coordinate in \(\mathbb{C}^* \times \mathbb{C} \) and in \(\mathbb{C}^2 \), and we will let \(B_\varepsilon(p) \) denote the open ball of radius \(\varepsilon \) centered at a point \(p \).

2. CONSTRUCTION OF THE SET \(Y \)

We start by defining a certain rationally convex subset \(Y \) of \(\mathbb{C}^2 \). The set will be a union of two disjoint polynomially convex disks in \(\mathbb{C}^* \times \mathbb{C} \), but the polynomial hull of the union will contain the origin. This construction is taken from [8], page 392-396, and is due to Stolzenberg [7].

Let \(\Omega_1 \) and \(\Omega_2 \) be simply connected domains in \(\mathbb{C} \), as in Fig.1. below, with smooth boundary, such that if \(I_+ = [1, \sqrt{3}], I_- = [-\sqrt{3}, -1], \) then \(I_+ \subset \partial \Omega_1, I_- \subset \partial \Omega_2 \). Require that \(\partial \Omega_1 \) and \(\partial \Omega_2 \) meet only twice, that \(I_- \subset \Omega_1, I_+ \subset \Omega_2 \), and, finally, that \(\partial \Omega_1 \cup \partial \Omega_2 \) be the union of the boundary of the unbounded component of \(\mathbb{C} \setminus (\partial \Omega_1 \cup \partial \Omega_2) \), together with the boundary of the component of this set that contains the origin. Let the intersections of the boundaries be the points \(i \) and \(-i \).
We define

\[V_1 = \{(z, w) \in \mathbb{C}^2; z^2 - w \text{ is real and lies in } [0, 1]\}, \]

\[V_2 = \{(z, w) \in \mathbb{C}^2; w \text{ is real and lies in } [1, 2]\}, \]

\[X_1 = \{(z, w) \in V_1; z \in \partial \Omega_2\}, \]

\[X_2 = \{(z, w) \in V_2; z \in \partial \Omega_1\}, \]

Note that \(X_1 \) and \(X_2 \) are totally real annuli, that they are disjoint, and that the origin is contained in the polynomial hull of \(X_1 \). Next we want to remove pieces from \(X_1 \) and \(X_2 \) to create two disks.

Define

\[\tilde{V}_1 = V_1 \cap \pi^{-1}(I_+), \]

\[\tilde{V}_2 = V_2 \cap \pi^{-1}(I_-), \]
\[Y_1 = X_1 \setminus V_2, \]
\[Y_2 = X_2 \setminus V_1. \]

The set \(Y \) will be defined as \(Y = Y_1 \cup Y_2 \). Note that
\[(*) \hat{V}_1 \subset \hat{X}_1, \hat{V}_2 \subset \hat{X}_2. \]

Let us describe what \(Y_1 \) and \(Y_2 \) looks like over \(I_- \) and \(I_+ \) respectively. By the equations we see that these sets are contained in \(\mathbb{R}^2 \). Let \((x, y)\) denote the real parts of \((z, w)\).

Over \(I_- \) we have that \(Y_1 \) is the union of the two sets defined by

\[(a)\]
\[2 \leq y \leq x^2 \text{ if } -\sqrt{3} \leq x \leq -\sqrt{2}, \]
\[(b) \]
\[x^2 - 1 \leq y \leq 1 \text{ if } -\sqrt{2} \leq x \leq -1. \]

Over \(I_+ \) we have that \(Y_2 \) is the union of the sets defined by

\[(c)\]
\[x^2 \leq y \leq 2 \text{ if } 1 \leq x \leq \sqrt{2}, \]
\[(d) \]
\[1 \leq y \leq x^2 - 1 \text{ if } \sqrt{2} \leq x \leq \sqrt{3}. \]

From these equations we see that \(Y_1 \) and \(Y_2 \) are disks.

We have that
\[(**) \hat{Y} \text{ contains the origin} \]

because of the following: We already noted that the origin is contained in \(\hat{X}_1 \), so the claim follows from \((*)\) and the following simpler version of Lemma 29.31, [8], page 392: Let \(X_1 \) and \(X_2 \) be disjoint compact sets in \(\mathbb{C}^N \), and let \(S_1 \) and \(S_2 \) be relatively open subsets of \(X_1 \) and \(X_2 \) respectively such that \(S_1 \subset \hat{X}_2, S_2 \subset \hat{X}_1 \). Then \(\hat{X}_1 \cup \hat{X}_2 = (X_1 \setminus S_1) \cup (X_2 \setminus S_2) \). The reason for this, which was pointed out by the referee, is simply that neither \(S_1 \) nor \(S_2 \) can contain peak points for the algebra generated by the polynomials on \(X_1 \cup X_2 \).

3. Proof of Theorem [11]

It is proved in [8] that the set \(Y \) is rationally convex, and that the sets \(Y_j \) are polynomially convex separately. For our construction we need to know that \(Y \) is holomorphically convex, so we prove the following:

3.1. Lemma. We have that \(Y \) is holomorphically convex in \(\mathbb{C}^* \times \mathbb{C} \).

Proof. For \(j = 1, 2 \), let \(Y^+_j \) and \(Y^-_j \) denote the sets \(Y_j \cap \{ \text{Re}(z) \geq 0 \} \) and \(Y_j \cap \{ \text{Re}(z) \leq 0 \} \) respectively. Let \(Y^+ = Y^+_1 \cup Y^+_2 \) and \(Y^- = Y^-_1 \cup Y^-_2 \).

Observe first that \(Y^+ \) and \(Y^- \) are polynomially convex separately: Assume to get a contradiction that \(\hat{Y}^- \) contains nontrivial points. In that case there exists a graph \(G(f) \) of a bounded holomorphic function defined on the topological disk \(U \) bounded by
π(\(Y^−\)), such that \(G(f) \subset \hat{Y}^−\), and such that \((z, f(z)) \in \hat{Y}^−\) for a.a. (in terms of radial limits if we regard \(U\) as a proper disk) \(z \in π(Y^−)\) (Theorem 20.2. in [2], page 172, holds by the discussion on page 171 even though the fibers over \(±i\) are not convex). Then for continuity reasons \(G(f)\) would have to contain nontrivial points of \(\hat{Y}^−\) in the fibers \(\{±i\} \times \mathbb{C}\) - but as this clearly cannot be the case, we have our contradiction. The case of \(Y^+\) is similar.

Next assume to get a contradiction that there is a point \((z_0, w_0) \in \hat{Y}^* \setminus Y\) with \(\text{Re}(z_0) < 0\). The function \(f(z)\) defined to be \((z + i)(z - i)\) on \(π(Y^−) \cup \{z_0\}\) and zero on \(π(Y^+)\) can be uniformly approximated on \(π(Y) \cup \{z_0\}\) by polynomials in \(z\) and \(\frac{1}{z}\), and so any representing Jensen measure (see [8] Chapter 2) for the functional \(g \mapsto g(z_0, w_0)\) would have to be supported on \(Y^−\). But then the point \((z_0, w_0)\) would have to be in the hull of \(Y^−\) which is a contradiction. The corresponding conclusion holds for \(\text{Re}(z_0) > 0\).

Finally, Rossi’s local maximum principle excludes the possibility of there being nontrivial points in the hull contained in \(\{±i\} \times \mathbb{C}\). □

3.2. Lemma. Let \(p = (z_0, w_0) \in \mathbb{C}^* \times \mathbb{C}\) and let \(ε > 0\). Then there exists an automorphism \(ψ\) of \(\mathbb{C}^* \times \mathbb{C}\) such that \(ψ(Y) \subset B_ε(p)\).

Proof. We need to argue that there exists an isotopy as described in the introduction, and we content ourselves by demonstrating that there exist isotopies mapping \(Y_1\) and \(Y_2\) into separate arbitrarily small balls - the rest is trivial. Let \(q_j \in Y_j\) be a point for \(j = 1, 2\), and let \(δ > 0\). Since \(Y_j\) is a smooth disk there clearly exists a smooth map \(f^j : [0, 1] \times Y_j \to Y_j\) such that for each fixed \(t\) the map \(f^j_t : Y_j \to Y_j\) is a smooth diffeomorphism, such that \(f^j_0\) is the identity, and such that \(f^j_1(Y_j) \subset B_δ(q_j)\). Since \(Y_j\) is totally real there exists, by [3] Corollary 3.2, for each \(ε > 0\) a real analytic map \(Φ^j : [0, 1] \times \mathbb{C}^2 \to \mathbb{C}^2\) such that \(Φ^j_t \in \text{Aut}_{\text{hol}}(\mathbb{C}^2)\) for each \(t\), \(Φ^j_0\) is the identity, and \(\|f^j - Φ^j_t\|_{[0,1] \times Y_j} < ε\). For small enough \(ε\) we restrict \(Φ^j\) to a sufficiently small Runge neighborhood of \(Y_j\).

□

Proof of Theorem 1: Let \(G\) be an automorphism of \(\mathbb{C}^* \times \mathbb{C}\) with an attracting fixed point \(p \in \mathbb{C}^* \times \mathbb{C}\). It is well known that the basin of attraction of the point \(p\) is a Fatou-Bieberbach domain. This domain is clearly contained in \(\mathbb{C}^* \times \mathbb{C}\). Denote this domain by \(Ω(G)\). Let \(ε\) be a positive real number such that \(B_ε(p) \subset Ω(G)\). By Lemma 3.2 there is an automorphism \(ψ\) of \(\mathbb{C}^* \times \mathbb{C}\) such that \(ψ(\hat{Y}) \subset B_ε(p)\). Then \(Y \subset ψ^{-1}(Ω(G))\). The set \(ψ^{-1}(Ω(G))\) is biholomorphic to \(\mathbb{C}^2\), and from (**) in Section 2 we have that \(\hat{Y}\) contains the origin. On the other hand it is clear that \(Ω(G)\) is Runge in \(\mathbb{C}^* \times \mathbb{C}\), and so \(ψ^{-1}(Ω(G))\) is Runge in \(\mathbb{C}^* \times \mathbb{C}\).

□

Acknowledgements. The author would like to thank the referee for comments; in particular for suggesting a simplified proof of Lemma 3.1.
REFERENCES

1. M. Abe: Polynomial Convexity and Strong Disk Property. *J. Math. Anal. Appl.*, **321** (2006), 32–36.
2. H. Alexander, J. Wermer: Several Complex Variables and Banach Algebras, 3rd ed., *Springer-Verlag New York, Inc.* (1998).
3. F. Forstnerič: Approximation by automorphisms on smooth sumbanifolds of \mathbb{C}^n. *Math. Ann.* **300** (1994), 719–738.
4. F. Forstnerič, J.P. Rosay: Approximation of Biholomorphic Mappings by Automorphisms of \mathbb{C}^n. *Invent. Math.* **112** (1993), 112–123.
5. C. Joiţa: On a Problem of Bremermann Concerning Runge Domains. *Math. Ann.* **337**, (2007), 395–400.
6. J.P. Rosay, W. Rudin: Holomorphic maps from \mathbb{C}^n to \mathbb{C}^n. *Trans. Amer. Math. Soc.* **310** (1988), 47–86.
7. G. Stolzenberg: On the analytic part of a Runge hull. *Math. Ann.* **164** (1966), 286–290.
8. E.L. Stout: The Theory of Uniform Algebras. *Bogden and Quigly, Inc.* (1971).
9. D. Varolin: The Density Property for Complex Manifolds and Geometric Structures. *J. Geom. Anal.* **11** (2001), 135–160.
10. D. Varolin: The Density Property for Complex Manifolds and Geometric Structures II. *Internat. J. Math.* **11** (2000), 837–847.

Matematisk Institutt, Universitetet i Oslo, Postboks 1053 Blindern, NO-0316 Oslo, Norway

E-mail address: erlendfw@math.uio.no