Comparative Head Space GC/MS Studies of Different Flavored Moâssel in the Egyptian Market (I)

Marwa M Ismail, Ashraf N E Hamed*, Mostafa A Foad, Mohamed S Kamel

Pharmacognosy Department, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt

Received: 26th Nov, 17; Revised 9th Jan, 17, Accepted: 12th Feb, 18; Available Online: 25th Mar, 18

ABSTRACT
The current study aimed to compare three different types of Egyptian flavored tobacco (Moâssel) used in Hookah smoking. The samples (Apple, Creamy Strawberry and Mix Grapes) were obtained from Al Dandash company (a famous Tobacco company in Egypt). They were analyzed by Head Space GC/MS. There were great differences among the investigated samples. The identified compounds of the Apple sample showed 34 constituents, which represented (93.13%) of the total compounds. The major one was anethole (30.43%). While, the Creamy Strawberry specimen exhibited 27 recognized compounds, which represented (59.61%) of the sample. The chief constituent was acetic acid (15.83%). Finally, the last sample showed 25 identified constituents, which represented (93.16%) of the total compounds and the main compound was 1,2-propanediol (32.74%) of the constituents.

Keywords: Head Space, GC/MS, Egyptian Flavored Moâssel, Al Dandash Company.

INTRODUCTION
Tobacco smoking is an addictive and lethal habit. Moreover, it harms others through passive inhalation of both adults and children to exhaled and side stream smoke\(^1,2\). While, smoking in pregnancy impairs fetal development and growth, in some cases reach to the point of fetal death\(^3\). Moreover, it causes fires generally reduce economic productivity and social engagement\(^4\). One of tobacco smoking types is Hookah (syn.: water pipe, shisha or bubble bubble), which is an old form of non-cigarette tobacco smoking that has been commonly practiced in the middle Eastern region contains over 4800 different chemicals out of which 69 are carcinogens and several others are tumor promoters\(^5,6,7\). Another study demonstrated that humectants such as glycerol and propylene glycol have added to tobacco products to facilitate processing of the cured tobacco leaf, retain moisture and increase half shelf life\(^8,9\). Furthermore, Cooperation Center for Scientific Research Relative to Tobacco (CORESTA) made experiments focused on the quantitative analysis of these humectants in tobacco and tobacco products\(^10\). Also, CORESTA recommended another method to determine nicotine in tobacco and tobacco products by GC/MS\(^10\). All these data provoked us to make Head space GC/MS analyses on different types of flavored Moâssel used in the Egyptian Hookah.

MATERIALS AND METHODS
Materials
Egyptian flavored Moâssel samples viz., Apple (AFM), Creamy Strawberry (CSFM) and Mix Grapes (MixGFM) were collected from the Egyptian market (June 2016).

These specimens were prepared in Al Dandash Company, Egypt.

Methods
Shimadzu GC/MS with Head Space system provided by FID (Flame Ionization Detector), connected to the Mass Spectrometer Model: QP2010Ultra. Total GLC chromatograms and mass spectra were recorded in the electron impact ionization mode at 70 eV, using ACQ Mode of scan from 35 to 500 m/z in 0.3 s. The used column was 0.25 mm in internal diameter, 30 m length, packed with Rtx-MS and 0.25 μm film thickness. The injected volume was 1.0 μl, using helium as carrier gas at flow rate 40 ml/min. The analyses were carried out at a programmed temperature; the initial temperature was 40 °C (Kept for 2 min), then increased at a rate 30-50 °C to the final temperature 210 °C (kept for 5 min). Injector and detector had the same temperature 230 °C. The total run time was 45 min and split ratio 1:50.

RESULTS
Head Space GC/MS analyses
Identifications of compounds were carried out by direct comparison of retention time and fragmentation patterns with those of reference compounds analyzed under the same conditions\(^11,12\) and quantitation was based on peak area integration.

Apple Flavored Moâssel (AFM)
Head Space GC/MS analysis of AFM showed 49 compounds. The unidentified compounds represented 06.87% (15 compounds) and identified compounds represented 93.13% (34 compounds). The major one was anethole (30.43%).

*Author for Correspondence: ashrafnag@mu.edu.eg
Table 1: Identified compounds of AFM from Head Space GC/MS.

No.	Name	RT¹	RRT²	Base peak	Relative Area %	M. Weight	M. Formula
1	Acetone	0.13	0.086	43	00.27	58	C₃H₆O
2	2,3-Butanedione	0.23	0.105	43	00.22	86	C₃H₈O
3	Acetic acid	0.17	0.107	44	00.28	60	C₂H₄O
4	3-Methyl-1-butanol (Fusel oil)	0.31	0.188	55	00.98	88	C₅H₁₂O
5	1,2-Propanediol	0.13	0.198	45	01.37	76	C₄H₁₀O
6	Dimethyl acetic acid	0.31	0.225	43	00.78	88	C₅H₁₂O
7	Butanoic acid	0.23	0.254	60	00.21	88	C₄H₁₀O
8	Furfural	0.30	0.304	96	00.65	96	C₅H₁₀O
9	Ethyl-1-butanol	0.23	0.316	43	00.23	102	C₅H₁₂O
10	Ethyl-2-methyl butanoate	0.22	0.327	57	01.64	130	C₅H₁₂O
11	E-3-hexen-1-ol	0.25	0.331	41	00.19	100	C₅H₁₂O
12	Z-3-hexen-1-ol	0.23	0.337	41	05.19	100	C₅H₁₂O
13	n-Hexyl formate	0.22	0.358	56	11.43	130	C₅H₁₂O
14	3-Methylbutyl acetate (syn.: Isoamyl acetate or Isopentyl acetate)	0.21	0.366	43	00.41	130	C₆H₁₂O
15	2-Methylbutyl acetate	0.21	0.370	43	00.24	130	C₆H₁₂O
16	Camphene	0.40	0.475	93	00.18	136	C₁₀H₁₆
17	Benzaldehyde	0.29	0.494	77	00.53	106	C₆H₁₂O
18	Isoamyl propionate	0.25	0.509	57	00.20	144	C₆H₁₂O
19	Hexanoic acid	0.30	0.533	60	00.75	116	C₆H₁₂O
20	Glycerol	0.31	0.542	61	00.21	92	C₆H₁₂O
21	Z-3-Hexenyl acetate	0.24	0.568	43	01.17	142	C₅H₁₂O
22	n-Hexyl acetate	0.20	0.578	43	05.45	144	C₅H₁₂O
23	Benzyl alcohol (syn.: Phenylmethanol or Benzenemethanol)	0.23	0.616	79	09.82	108	C₆H₁₂O
24	Benzyl acetate	0.60	0.811	108	00.73	150	C₇H₁₄O
25	Menthol	0.27	0.830	71	04.36	156	C₁₀H₂₀
26	Hexyl butanoate (syn.: Hexyl butyrate)	0.27	0.854	43	00.44	172	C₁₀H₂₀
27	Anisaldehyde (syn.: 4-Methoxybenzaldehyde)	0.23	0.951	135	00.93	136	C₆H₁₂O
28	Anethole	0.22	1.000	148	30.43	148	C₁₀H₁₈O
29	Benzyl butanoate	0.21	1.077	91	00.19	178	C₁₁H₂₀O
30	Nicotine	0.21	1.083	84	00.19	162	C₁₀H₁₈N₂
31	Hexyl hexanoate	0.22	1.128	43	00.22	200	C₁₂H₂₀O
32	Vanillin	0.23	1.139	151	00.99	152	C₇H₁₄O₃
33	Ethylvanillin (syn.: Vanilul or 3-Ethoxy-4-hydroxy benzaldehyde)	0.24	1.230	137	06.75	166	C₁₆H₁₈O₃
34	Dihydro methyl jasmonate	0.29	1.466	83	05.80	226	C₁₃H₂₂O₃

Unidentified compounds 06.87%

Identified compounds 93.13%

Type of Compound	Percentage
Oxygenated	92.76%
Nitrogenous	00.19%
Hydrocarbons	00.18%

¹RT: Retention Time. ²RRT: Relative Retention Time.

Creamy Strawberry Flavored Moâssel (CSFM)
The identified compounds are classified into three different classes viz., 92.76% oxygenated, 00.19% nitrogenous and 00.18% hydrocarbons compounds as shown in Figure 1 and enumerated in Table 1.

Head Space GC/MS analysis of CSFM exhibited 37 compounds. The unidentified compounds represented 40.39% (10 compounds) and identified compounds represented 59.61% (27 compounds). The major one was acetic acid (15.83%). The identified compounds are classified into three diverse classes viz., 57.44% oxygenated, 00.90% nitrogenous and 01.27% hydrocarbons compounds as demonstrated in Figure 2 and listed in Table 2.

Mix Grapes Flavored Moâssel (MixGFM)
Figure 1: Total GC chromatogram of AFM.

Table 2: Identified compounds of CSFM from Head Space GC/MS.

No.	Name	RT*	RRT**	Base peak	Relative Area %	M. Weight	M. Formula
1	Acetic acid	2.26	43	15.83			D2
2	Butanoic acid	5.10	60	01.49			D2
3	Furfural	6.15	96	00.94			D2
4	Ethyl-2-methyl butanoate	6.61	57	01.97			D2
5	Ethyl isovalerate	6.71	88	00.46			D2
6	Z-3-hexen-1-ol	6.81	41	00.79			O
7	Camphene	9.59	77	00.61			C
8	Benzaldehyde	9.99	93	00.50			O
9	Glycerol	10.48	43	00.94			D2
10	Hexanoic acid	10.71	60	01.85			D2
11	Limonene	12.16	68	00.39			O
12	Benzyl alcohol (syn.: Phenylmethanol or	12.40	79	03.54			C
	Benzenemethanol)						
13	Benzyl acetate	16.40	108	01.58			D2
14	Ethyl maltol (syn.: 2-Ethylpyromeconic acid)	17.52	140	02.70			O3
15	Benzyl butanoate	21.78	91	00.43			D2
16	Nicotine	21.86	84	00.90			D2
17	Z-Methylcinamate	22.84	131	00.71			D2
18	Vanillin	23.30	151	00.68			O3
19	α-Ionone	24.00	121	00.96			O
20	Ethylvanillin (syn.: Vanilal or 3-Ethoxy-4-hydroxy benzaldehyde)	24.80	137	04.70			O3
21	γ-Decalactone	25.06	85	02.35			O2
22	β-Ionone	25.56	177	01.22			O2
23	δ-Decalactone	25.80	99	00.89			O2
24	γ-Undecalactone	27.70	85	00.92			O2
25	α-Amylcninnaldehyde (syn.: Z- Jasminaldehyde)	29.50	129	10.21			O
26	Dihydro methyl jasmonate	29.61	83	01.67			O3
27	Neophytadiene	33.55	68	00.38			O2

Unidentified compounds 40.39%	Oxygenated compounds 57.44%
Identified compounds 59.61%	Nitrogenous compounds 00.90%
	Hydrocarbons compounds 01.27%

*RT: Retention Time. **RRT: Relative Retention Time.
Head Space GC/MS analysis MixGFM displayed 34 compounds. The unidentified compounds represented 06.84% (9 compounds) and recognized compounds represented 93.16% (25 compounds). The major one was 1,2-propanediol (32.74%). The identified compounds are classified into three various classes viz., 92.51% oxygenated, 00.37% nitrogenous and 00.28% hydrocarbons compounds as shown in Figure 3 and recorded in Table 3.

DISCUSSION

The present study investigated three different Egyptian flavored Moâssels viz., Apple, Creamy Strawberry and Mix Grapes by Head Space GC/MS analyses. The samples showed very high percentage of oxygenated compounds and traces of (nitrogenous & hydrocarbons) constituents. Therefore, they have strong flavored odors. The three samples had six common compounds viz., acetic acid, butanoic acid, furfural, Z-3-hexen-1-ol, benzyl alcohol and nicotine. Furthermore, AFM and CSFM had also ten common compounds viz., ethyl-2-methyl butanoate, camphene, benzaldehyde, hexanoic acid, glycerol, benzyl acetate, benzyl butanoate, vanillin, ethylvanillin and Dihydro methyl jasmonate. But, AFM and MixGFM had another common compound; 1,2-propanediol. Finally, CSFM and MixGFM had also three common
compounds viz., ethyl maltol, α-ionone and neophytadiene. From these data, there are relatively differences between the three studied samples specially between (AFM & MixGFM) and (CSFM & MixGFM). While, AFM and CSFM samples are the most similar. The AFM exhibited that anethole was the main compound (30.43%). It is an organic compound, which was widely used as a flavouring agent, showing a reduction in vitro and in vivo leucocytes migration induced by formyl-methionyl-leucyl-phenylalanne (FMLP), leukotriene B4 (LTB4) and carrageenan11. In addition to, it suppressed cell survival and induced apoptosis in human breast cancer cell independent on estrogen receptor status12. Furthermore, it demonstrated an inhibitory effect in non-immune acute inflammation13. However, it was associated with a slight increase in liver cancer in rats14. Moreover, it was a slightly toxic and irritant substance in large quantities15. While, the CSFM showed that acetic acid (15.83%) was the chief identified constituent. It has many synonyms as ethanoic acid or methane carboxyl acid or ethylic acid or methane carboxylic acid15. It is used in pharmaceutical, plastics and chemical industries. During controlled exposure to vapours of acetic acid, it caused a mild nasal irritation at 10 ppm9. It demonstrated an anticancer activity since the 1800s20. Moreover, it possessed a broad antibacterial spectrum against Streptococi, Staphylococci, Pseudomonas, Enterococci and others21,22. Also, it can treated skin infections caused by Pseudomonas resistant to ideal antibiotics23. Furthermore, it can be also used to treat obesity-linked type 2 diabetic Otsuka Long-Evans Tokushima Fatty rats24. Finally, the third one MixGFM displayed that 1,2-propanediol (32.74%) was the major secondary metabolite. The undiluted 1,2-propanediol was minimally

Table 3: Identified compounds of MixGFM from Head Space GC/MS.

No.	Name	RT*	RRT**	Base peak	Relative Area %	M. Weight	M. Formula
1	5,6-Epoxy-β-ionone	0.147	0.359	40	26.82	208	C13H20O2
2	2-Propanol (syn.: Isopropanol)	0.173	0.423	45	02.41	60	CH3O
3	Acetic acid	0.162	0.528	43	01.55	60	C2H4O2
4	1-Hydroxy-2-propanone (syn.: Acetol)	0.279	0.682	43	00.27	74	C3H6O2
5	2,4-Dimethyl-1,3-dioxolane	0.073	0.751	43	00.21	102	C6H10O2
6	1,2-Propanediol	0.094	1.000	45	02.41	76	C2H6O2
7	Butanoic acid	0.185	1.267	60	01.85	88	C4H8O2
8	Ethyl butanoate	0.305	1.296	71	01.98	116	C5H10O2
9	Furfural	0.146	1.501	96	00.77	96	C4H8O2
10	Z-3-Hexen-1-ol	0.806	1.663	41	01.50	100	C5H10O2
11	Propylene glycol 1-acetate (syn.: 1-Acetoxy-2-propanol or 2-Hydroxypropylacetate)	0.750	1.834	43	00.28	118	C10H18O3
12	Benzyl alcohol (syn.: Phenyldimethanol or Benzenemethanol)	12.41	3.034	79	04.33	108	C8H10O
13	Butanoic acid anhydride	13.44	3.286	71	00.40	158	C8H14O3
14	Heptanoic acid	13.78	3.369	60	00.33	130	C8H14O3
15	Ethyl acetacetate (syn.: Ethyl 3-oxobutanoate)	14.38	3.516	43	00.23	130	C8H14O3
16	3-Hydroxy-2,3-dihydromaltol (syn.: 2,3-Dihyro-3,5-dihydroxy-6-methyl 4H pyran-4-one)	15.80	3.863	43	00.32	144	C9H14O4
17	Z-3-Hexenyl butyrate	17.10	4.181	67	00.63	170	C10H18O2
18	Ethyl maltol (syn.: 2-Ethylpyroconeic)	17.53	4.286	140	00.29	140	C9H18O3
19	Phenyl-3-methylbutanoate	21.78	5.325	91	00.52	178	C11H16O2
20	Nicotine	21.80	5.330	84	00.37	162	C10H14N2
21	3-Allyl-2-methoxyphenol	22.14	5.413	164	02.19	164	C11H14O2
22	Z-Jasnone	23.28	5.692	79	01.82	164	C11H14O2
23	E-β-Damascone	23.70	5.795	177	07.46	192	C3H8O2
24	α-Ionone	24.03	5.875	121	03.61	192	C10H18O2
25	Neophytadiene	33.55	8.203	68	00.28	278	C20H34O

Unidentified compounds 06.84%
Identified compounds 93.16%

Oxygenated compounds 92.51%
Nitrogenous compounds 00.37%
Hydrocarbons compounds 00.28%

*RT: Retention Time. **RRT: Relative Retention Time
irritating to the eye and producing slight transient conjunctivitis. The eye recovered after the exposure removed25. Its concentration increased the hazard of respiratory and immune ailments in children including asthma, hay fever, eczema and allergies from 50% to 180%26,27.

CONCLUSION
By comparing three different samples of Moâssel (Apple, Creamy Strawberry and Mix Grapes) from one of the most popular company in Egypt (Al Dandash Company), showed pronounced difference in the identified constituents. Therefore, it is possible for researchers to predict the physiological effects for these samples.

CONFLICT OF INTEREST
We declare that no conflict of interest.

REFERENCES
1. www.rcplondon.on.ac.uk/sites/default/files/documents/passive-smoking-and-children-pdf (Accessed 25 February 2016) Royal College of Physicians, Passive smoking and children. A report by Tobacco advisory group of the Royal College of Physicians. London (Retrieved 05.07.2017).
2. https://cdn.shopify.com/s/files/1/0924/4392/files/going-smok-free.pdf (Accessed 25 February 2016) Royal Collage of Physicians. Going smoke-free: The medical case for clear air in home, at work and in public places. A report on passive smoking by the Tobacco Advisory group of the Royal Collage Physicians. London: RCP, 2005.
3. https://shop.rcplondon.ac.uk/products/smoking-and-the-young?variant=6638106117, Royal College of Physicians. Smoking and the young, London: RCP, 1992.
4. Nash R, Featherstone H, Cough up balancing Tobacco income and costs in society, London, 2010.
5. Dar-Odeh NS, Abu-Hammad OA. Narghile smoking and its adverse health consequences: a literature review, British Dental Journal 2009;206(11):571-573.
6. Sajid KM, Chaouach K, Mahmood R. Hookah Smoking and Cancer: Carcino-embryonic antigen (CEA) levels in exclusive/ever hookah smokers, Harm Reduction Journal 2008;5(19):1-14.
7. Hoffmann D, Hoffmann I, El-Bayoumy K. The Less Harmful Cigarette: a controversial issue. a tribute to Ernst L. Wynder, Chemical Research in Toxicology 2001;14(7):767-790.
8. Heck JD, Gaworski CL, Rajendran N, Morrissey RL. Toxicological evaluation of humectants added to cigarette tobacco: 13-week smoke inhalation study of glycerine and propylene glycol in fischer 344 rats, Inhalation Toxicology 2002;14(11):1135-1152.
9. Klus H, Scherer G, Müller L. Influence of Additives on Cigarette Related Health Risks, Beiträge zur Tabakforschung International/Contribution to Tobacco Research 2012;25(3):412-493.
10. Rainey CL, Shifflett JR, Goodpaster JV, Beazbeh DZ. Quantitative Analysis of Humectants in Tobacco Products Using Gas Chromatography (GC) with Simultaneous Mass Spectrometry (MSD) and Flame Ionization Detection (FID). Beiträge zur Tabakforschung International/Contribution to Tobacco Research 2013;25(6):576-585.
11. National Institute of Standards and Technology (NIST); http://webbook.nist.gov/ (Retrieved 15.09.2016).
12. Adams RP. Identification of essential oil components by Gas Chromatography/Mass Spectrometry. Edn. 4th, Illinois, USA, Allured books, 1989.
13. Estevão-silva CF, Kummer R, Fachini-Queiroz FC, Grespan R, Nogueira de Melo GA, Baroni S, Cuman RK, Bersani-Amado CA. Anethole and eugenol reduce in vitro and in vivo leukocyte migration induced by fMLP, LTB4, and carrageenan, Journal of Natural Medicine 2014;68(3):567-575.
14. Chen CH, deGraffenried LA. Anthole suppressed cell survival and induced apoptosis in human breast cancer cells independent of estrogen receptor status, Phytomedicine 2012;19(8-9):763-767.
15. Domiciano TP, Dalallo MM, Silva EL, Ritter AM, Estevão-Silva CF, Ramos FS, Caparroz-Assel SM, Cuman RK, Bersani-Amado CA. Inhibitory effect of anethole in nonimmune acute inflammation, Al Naunyn-Schmiedberg’s Archives of Pharmacology 2013;386(4):331-338.
16. Newberne PM, Carlton WW, Brown WR. Histopathological evaluation of proferative liver lesions in rats fed trans anethole in chronic studies, Food and Chemical Toxicology Journal 1989;27(1):21-26.
17. https://en.m.wikipedia.org/wiki/anethol, Safety data for anethole. Physical & Theoretical Chemistry Laboratory Salty, Oxford University (Retrieved 10.03.2017).
18. https://pubchem.ncbi.nlm.nih.gov/compound/acetic-acid#section=Top, (Retrieved 15.08.2017).
19. Ernstgård L, Iregren A, Sjögren B, Johanson G. Acute effects of exposure to vapours of acetic acid in humans, Toxicology Letters 2006;165(1):22-30.
20. Barclay J. Injection of Acetic Acid in Cancer, British Medical Journal 1866;2(305):512.
21. Madhusudhan VL. Efficacy of 1% acetic acid in the treatment of chronic wounds infected with *Pseudomonas aeruginosa*: prospective randomised controlled clinical trial, International Wound Journal 2015;13:1129-1136.
22. Ryssel H, Kloeters O, Germann G, Schäfer T, Wiedemann G, Oehlbauer M. The antimicrobial effect of acetic acid-An alternative to common local antiseptics?, Burns 2009;35(5):695-700.
23. Nagoba BS, Selkar SP, Wadher BJ, Gandhi RC. Acetic acid treatment of pseudomonal wound infections-a review, Journal of Infection and Public Health 2013;6(6):410-415.
24. Yamashita H. Biological Function of Acetic Acid-Improvement in Obesity and Glucose Tolerance by
Acetic Acid in Type 2 Diabetic Rats, Critical Reviews in Food Science and Nutrition 2016;29(56)Suppl 1:S171-175.

25. Robertson OH, Loosli CG, Puck TT, Wise H, Lemon HM, Lester W. Tests for the chronic toxicity of propylexe glycol and triethylene glycol on monkeys and rats by vapor inhalation and oral administration, The Journal of Pharmacology and Experimental Therapeutics 1947;91(1):52-76.

26. Choi H, Schmidbauer N, Sundell J, Hasseigren M, Spengler J, Bornehag CG. Common Household Chemicals and the Allergy Risks in Pre-School Age Children, PloS ONE 2010;5(10):e13423.

27. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0013423#pone.0013423-Chalubinski1, Chemical Compounds Emitted from Common Household Pants and Cleaners Increase Risks of Asthma and Allergies in Children, 2010, (Retrieved 22.07.2017).