Mutually Equidistant Spheres that Intersect

STEVEN R. FINCH

January 23, 2013

ABSTRACT. The setting for this brief paper is \mathbb{R}^3. Distance between two spheres is understood as distance δ between spherical centers. For instance, a Reuleaux tetrahedron T is the intersection of four unit balls satisfying $\delta = 1$ pairwise. Volume and surface area of T are already well-known; our humble contribution is to calculate the mean width of T.

Two earlier papers [1, 2] were devoted to convex hulls involving disks. We will here discuss intersections of balls. It is natural to compute volume and surface area of such intersections. A third quantity, mean width, is “a new measure on three-dimensional solids that enjoys equal rights with volume and surface area” [3]. While results for VL and AR have appeared many times in the past, some of our expressions for MW may be new.

1. Dihedron (Symmetric Lens)

Consider, for simplicity, two unit spheres in \mathbb{R}^3 that pass through each other’s centers. The region enclosed by both spheres is called a spherical dihedron, using language of [4, 5, 6, 7]. It is more commonly called a symmetric lens. Starting with spheres

$$\left(x - \frac{1}{2} \right)^2 + y^2 + z^2 = 1, \quad \left(x + \frac{1}{2} \right)^2 + y^2 + z^2 = 1$$

and defining

$$f(x, y) = \sqrt{1 - \left(x + \frac{1}{2} \right)^2 - y^2}, \quad a(x) = \sqrt{1 - \left(x + \frac{1}{2} \right)^2}$$

we obtain

$$VL = 8 \int_0^{1/2} a(x) \int_0 f(x, y) dy dx = \frac{5\pi}{12},$$

$$AR = 8 \int_0^{1/2} a(x) \int_0 \sqrt{1 + f_x^2 + f_y^2} dy dx = 2\pi.$$

\footnote{Copyright © 2013 by Steven R. Finch. All rights reserved.}
Interiors of both faces have mean curvature 1. The (unique) edge is a circle with radius \(f(0,0) = \sqrt{3}/2 \), hence it has circumference \(\sqrt{3}\pi \). The dihedral angle at the edge is \(\pi/3 \). By the “indirect approach” in [1], we have

\[
MW = \frac{1}{2\pi} AR + \frac{1}{4\pi} \frac{\pi}{3} \sqrt{3}\pi = 1 + \frac{\pi}{4\sqrt{3}}.
\]

An obvious generalization allows \(0 < \delta < 2 \), where distance \(\delta \) between spherical centers was taken to be 1 above. Substantial work [8, 9, 10, 11, 12, 13, 14, 15, 16, 17] has been performed on intersections of arbitrary collections of spheres in \(\mathbb{R}^3 \). We merely quote an extended volume result [18] for two unit spheres:

\[
VL = \frac{4\pi}{3} \left(1 - \frac{3}{4} \delta + \frac{1}{16} \delta^3 \right).
\]

A symmetric lens is the union of two spherical caps. A different parametrization makes use of the angular radius \(\varphi \) of either cap (also called the angle of aperture or colatitude angle of the cap). From \(\delta = 2\cos(\varphi) \), it follows that [19]

\[
VL = \frac{2\pi}{3} \left(2 - 3\cos(\varphi) + \cos(\varphi)^3 \right),
\]

\[
AR = 4\pi \left(1 - \cos(\varphi) \right),
\]

\[
MW = 2 - 2\cos(\varphi) + \left(\frac{\pi}{2} - \varphi \right) \sin(\varphi).
\]

An unfortunate ambiguity appears in Figure 5f of [19]: the line segment is intended to be normal to the rightmost spherical cap (not tangent to the leftmost spherical cap). Thus the indicated angle \(\alpha \) is indeed equal to \(\varphi \) (and not equal to the contact angle \(\pi/2 - \varphi \)). Confusion occurs because \(\alpha \) is chosen close to \(\pi/4 \) in Figure 5f; the center picture in Figure 3 of [20] helps to clarify matters.

We mention another error in the literature. The mean width in [21], although defined to be \(2 \cdot MW \) (often encountered), gives results inconsistent with [19]. See [22] for another treatment of overlapping spheres.

Higher \(n \)-dimensional results for both \(VL \) and \(AR \) can be inferred from [23, 24, 25, 26] that involve the Gauss hypergeometric function:

\[
VL = \frac{\pi^{n/2}}{\Gamma(1 + n/2)} \left[1 - \frac{2\Gamma(1 + n/2)}{\sqrt{\pi}\Gamma((n + 1)/2)} \, _2F_1 \left(\frac{1}{2}, \frac{1 - n}{2}, \frac{3}{2}, \cos(\varphi)^2 \right) \cos(\varphi) \right],
\]

\[
AR = \frac{2\pi^{n/2}}{\Gamma(n/2)} \left[1 - \frac{2\Gamma(n/2)}{\sqrt{\pi}\Gamma((n - 1)/2)} \, _2F_1 \left(\frac{1}{2}, \frac{3 - n}{2}, \frac{3}{2}, \cos(\varphi)^2 \right) \cos(\varphi) \right].
\]

We have not attempted to find an analogous formula for \(MW \). Older alternative expressions for \(VL \) and \(AR \) are found by unraveling the quermassintegrals \(W_0 \) and \(k W_1 \) in [20] (formula 69). New and old results agree. Also, \((2\Gamma(1 + k/2)/\pi^{k/2})W_{k-1} \) coincides with \(MW \) when \(k = 3 \). This is as far as our analysis has gone.
2. Trihedron

Consider now three unit spheres in \mathbb{R}^3 that pass through each other’s centers. The region enclosed by all spheres is called a spherical trihedron, using language of [4, 5, 6, 7]. Starting with spheres

$$
\left(x - \frac{1}{\sqrt{3}} \right)^2 + y^2 + z^2 = 1,
$$

$$
\left(x + \frac{1}{2\sqrt{3}} \right)^2 + \left(y - \frac{1}{2} \right)^2 + z^2 = 1,
$$

$$
\left(x + \frac{1}{2\sqrt{3}} \right)^2 + \left(y + \frac{1}{2} \right)^2 + z^2 = 1
$$

and defining

$$
f(x, y) = \sqrt{1 - \left(x - \frac{1}{\sqrt{3}} \right)^2 - y^2}, \quad a(y) = \frac{1}{\sqrt{3}} - \sqrt{1 - y^2}, \quad c(y) = -\frac{1}{\sqrt{3}}y
$$

we obtain

$$
VL = 12 \int_0^{1/2} \int_{a(y)}^{c(y)} f(x, y) \, dx \, dy = \frac{1}{12} \left[2\sqrt{2} + 24\pi - 57 \text{arcsec}(3) \right],
$$

$$
AR = 12 \int_0^{1/2} \int_{a(y)}^{c(y)} \sqrt{1 + f_x^2 + f_y^2} \, dx \, dy = 6 \left[\pi - 2 \text{arcsec}(3) \right].
$$

Each of the three edges is a circular arc with radius $\sqrt{3}/2$. Focus on the arc that lies entirely in the xz-plane. From

$$
\left(x + \frac{1}{2\sqrt{3}} \right)^2 + z^2 = 1 - \frac{1}{4} = \left(\frac{\sqrt{3}}{2} \right)^2
$$

we deduce that the circle center is $(-1/(2\sqrt{3}), 0, 0)$ and hence the subtended angle is

$$
2 \arccos \left(\frac{1/(2\sqrt{3})}{\sqrt{3}/2} \right) = 2 \text{arcsec}(3)
$$

by symmetry. As before, we have

$$
MW = \frac{1}{2\pi} AR + \frac{3}{4\pi} \left(2 \text{arcsec}(3) \right) \sqrt{3} = \frac{12\pi - (24 - \sqrt{3}) \pi \text{arcsec}(3)}{4\pi}
$$

$$
= 1.182061751038757...
$$

Incidently, the vertex-to-vertex distance λ here is $2\sqrt{2}/3$ and $VL/\lambda^3 = 0.154...$, consistent with Figure 1 in [7]. See [18] for extended volume results.
3. Tetrahedron
Consider finally four unit spheres in \mathbb{R}^3 that pass through each other’s centers. The region enclosed by all spheres is called a spherical tetrahedron or Reuleaux tetrahedron. Our analysis of this solid is complicated due to a narrow sliver in the half-space $z < 0$. Starting with spheres

$$\left(x - \frac{1}{\sqrt{3}}\right)^2 + y^2 + z^2 = 1, \quad \left(x + \frac{1}{2\sqrt{3}}\right)^2 + \left(y - \frac{1}{2}\right)^2 + z^2 = 1,$$

$$\left(x + \frac{1}{2\sqrt{3}}\right)^2 + \left(y + \frac{1}{2}\right)^2 + z^2 = 1, \quad x^2 + y^2 + \left(z - \frac{2}{\sqrt{3}}\right)^2 = 1$$

and defining

$$f(x, y) = \sqrt{1 - \left(x - \frac{1}{\sqrt{3}}\right)^2 - y^2}, \quad g(x, y) = \sqrt{\frac{2}{3} - \sqrt{1 - x^2 - y^2}},$$

$$a(y) = \frac{1}{\sqrt{3}} - \sqrt{1 - y^2}, \quad b(y) = \frac{1}{\sqrt{6}} \left(\frac{1}{\sqrt{2}} - \sqrt{3 - 4y^2}\right), \quad c(y) = -\frac{1}{\sqrt{3}}y$$

we obtain [27, 28]

$$VL = 12 \int_0^{1/2} b(y) \int_0^{1/2} c(y) f(x, y) dx dy + 6 \int_0^{1/2} c(y) f(x, y) dx dy \left[f(x, y) - g(x, y)\right] dx dy$$

$$= \frac{1}{12} \left[3\sqrt{2} + 32\pi - 81 \text{arcsec}(3)\right],$$

$$AR = 12 \int_0^{1/2} b(y) \int_0^{1/2} c(y) \sqrt{1 + f_x^2 + f_y^2} dx dy + 6 \int_0^{1/2} c(y) \left(\sqrt{1 + f_x^2 + f_y^2 + \sqrt{1 + g_x^2 + g_y^2}}\right) dx dy$$

$$= 2 \left[4\pi - 9 \text{arcsec}(3)\right].$$

Each of the six edges is a circular arc with radius $\sqrt{3}/2$. Focus again on the arc that lies entirely in the xz-plane. Previously it started at $(0, 0, \sqrt{2}/3)$ and ended at $(0, 0, -\sqrt{2}/3)$; now it ends at $(1/\sqrt{3}, 0, 0)$ where the arc meets the bottom face. Hence the subtended angle is half its previous value. We consequently have

$$MW = \frac{1}{2\pi} AR + \frac{6\pi}{4\pi \text{arcsec}(3)} \sqrt{3} = \frac{16\pi - (36 - \sqrt{3}\pi) \text{arcsec}(3)}{4\pi}$$

$$= 1.006582094946935...$$
which falls between the minimum width 1 and the maximum width $\sqrt{3} - 1/\sqrt{2} = 1.0249...$, as expected [29].

Incidently, the vertex-to-vertex distance λ here is 1 and $VL/\lambda^3 = 0.422...$, consistent with Figure 1 in [7]. See [18] for extended volume results.

The **Meissner tetrahedron**, obtained by rounding off three edges of the Reuleaux tetrahedron to force a constant width, possesses measures [29, 30, 31, 32]

$$VL' = \frac{1}{12} \left[8 - 3\sqrt{3}\text{arcsec}(3) \right] \pi < VL,$$

$$AR' = \frac{1}{2} \left[4 - \sqrt{3}\text{arcsec}(3) \right] \pi < AR$$

and, of course, $MW' = 1 < MW$.

4. Miscellanea

The symmetric lens arises as a solution of certain geometric optimization problems [33, 34, 35]. We report on three other such “important” solids here. In the same papers, the **right circular cylinder with hemispherical ends** is featured. Assuming the radius is 1 and the cylinder length is ℓ, we easily have [36]

$$VL = \left(\ell + \frac{4}{3} \right) \pi,$$

$$AR = 2 (\ell + 2) \pi,$$

$$MW = \frac{1}{2} (\ell + 4).$$

The measures of a hemisphere, as an aside, are given in standard tables [37, 38] (although not spherical caps in general).

The **symmetric segment** or **spherical slice** appears in [39, 40, 41, 42]. This solid is obtained by removing two diametrically-opposed spherical caps from the unit ball, each of angular radius φ. Clearly [19]

$$VL = \frac{2\pi}{3} \left(2 + \sin(\varphi)^2 \right) \cos(\varphi),$$

$$AR = 2\pi \left(2 \cos(\varphi) + \sin(\varphi)^2 \right),$$

$$MW = 2 \cos(\varphi) + \varphi \sin(\varphi).$$

Figure 5e of [19] is unambiguous (unlike Figure 5f, as discussed earlier). We are, however, unable to find agreement with the quermassintegrals in [20] (formula 68) when $k = 3$.
The cap body of a ball appears in the same papers, as well as in [43, 44, 45, 46, 47, 48]. This solid is the convex hull of the unit ball with a line segment passing symmetrically through its center. Another name for this is 1-tangential body. With an interpretation of \(\varphi \) identical to above, we find that [19]

\[
VL = \frac{2\pi}{3} \frac{1 + \cos(\varphi)^2}{\cos(\varphi)},
\]

\[
AR = 2\pi \frac{1 + \cos(\varphi)^2}{\cos(\varphi)},
\]

\[
MW = \frac{1 + \cos(\varphi)^2}{\cos(\varphi)}.
\]

Figure 5g of [19] is unambiguous. Again, we are unable to find agreement with the quermassintegrals in [20] (formula 70) when \(k = 3 \).

A less important example (evidently) might be called the “ring body of a ball”. This solid is the convex hull of the unit ball with a circle suspended symmetrically above its equator. Its measures are given in [19] – see Figure 5h – but since it does not appear elsewhere in the literature, we omit further discussion.

In closing, here is an unanswered question. The region enclosed by the six spheres:

\[
\left(x - \frac{1}{\sqrt{2}} \right)^2 + y^2 + z^2 = 1, \quad \left(x + \frac{1}{\sqrt{2}} \right)^2 + y^2 + z^2 = 1,
\]

\[
x^2 + \left(y - \frac{1}{\sqrt{2}} \right)^2 + z^2 = 1, \quad x^2 + \left(y + \frac{1}{\sqrt{2}} \right)^2 + z^2 = 1,
\]

\[
x^2 + y^2 + \left(z - \frac{1}{\sqrt{2}} \right)^2 = 1, \quad x^2 + y^2 + \left(z + \frac{1}{\sqrt{2}} \right)^2 = 1
\]

is called a spherical hexahedron (cube). What are exact expressions for \(VL, AR \) and \(MW \)? The dihedral angle at any edge is \(\pi/3 \). While the spheres are not mutually equidistant, we can still define \(\lambda \) to be the adjacent vertex-to-vertex distance, which here is \(2/\sqrt{3} \). Numerical work gives \(VL/\lambda^3 = 1.508.. \), consistent with Figure 1 in [7]. A similar question can be asked about the spherical dodecahedron, for which \(VL/\lambda^3 \) was given in [7] to be approximately 7.86.

5. Acknowledgements

Wouter Meeussen’s package ConvexHull3D.m was helpful to me in preparing this paper [49]. He kindly extended the software functionality at my request. I would be grateful for assistance in expanding my bibliography: surely I have missed more than a few documents on measures of intersections of balls!
Mutually Equidistant Spheres that Intersect

REFERENCES

[1] S. R. Finch, Convex hull of two orthogonal disks, http://arxiv.org/abs/1211.4514

[2] S. R. Finch, Oblique circular cones and cylinders, http://arxiv.org/abs/1212.5946

[3] G.-C. Rota, Mathematical snapshots, unpublished note (1997), http://www-groups.dcs.st-and.ac.uk/~history/Extras/rota.pdf

[4] M. E. Glicksman, Analysis of 3-D network structures, Philosophical Magazine 85 (2005) 3–31.

[5] M. E. Glicksman, P. R. Rios and D. J. Lewis, Regular N-hedra: A topological approach for analyzing three-dimensional textured polycrystals, Acta Materialia 55 (2007) 4167–4180.

[6] M. E. Glicksman, P. R. Rios and D. J. Lewis, Mean width and caliper characteristics of network polyhedra, Philosophical Magazine 89 (2009) 389–403.

[7] M. E. Glicksman, P. R. Rios and D. J. Lewis, Linear measures for polyhedral networks, Internat. J. Materials Res. 100 (2009) 536-542.

[8] H. L. Weissberg and S. Prager, Viscous flow through porous media. II. Approximate three-point correlation function, Physics of Fluids 5 (1962) 1390–1392.

[9] J. S. Rowlinson, The triplet distribution function in a fluid of hard spheres, Molecular Physics 6 (1963) 517–524.

[10] M. J. D. Powell, The volume internal to three intersecting hard spheres, Molecular Physics 7 (1964) 591–592.

[11] F. H. Ree, R. N. Keeler, and S. L. McCarthy, Radial distribution function of hard spheres, J. Chem. Physics 44 (1966) 3407–3425.

[12] R. Lustig, Surface and volume of three, four, six and twelve hard fused spheres, Molecular Physics 55 (1985) 305–317.

[13] R. Lustig, Geometry of four hard fused spheres in an arbitrary spatial configuration, Molecular Physics 59 (1986) 195–207.

[14] K. D. Gibson and H. A. Scheraga, Volume of the intersection of three spheres of unequal size: A simplified formula, J. Physical Chem. 91 (1987) 4121-4122; addenda 91 (1987) 6326.
[15] K. D. Gibson and H. A. Scheraga, Surface area of the intersection of three spheres with unequal radii: A simplified analytical formula, Molecular Physics 64 (1988) 641–644.

[16] L. R. Dodd and D. N. Theodorou, Analytical treatment of the volume and surface area of molecules formed by an arbitrary collection of unequal spheres intersected by planes, Molecular Physics 72 (1991) 1313–1345.

[17] L. S. Chkhartishvili, Volume of the domain of intersection of three spheres (in Russian), Mat. Zametki 69 (2001) 466–476; Engl. transl. in Math. Notes 69 (2001) 421–428; MR1846843 (2002d:52004).

[18] A. Helte, Fourth-order bounds on the effective conductivity for a system of fully penetrable spheres, Proc. Royal Soc. London A 445 (1994) 247–256.

[19] H. Hadwiger, Altes und Neues über konvexe Körper, Birkhäuser Verlag, 1955, pp 35–37; MR0073220 (17,401e).

[20] H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, 1957, pp. 215–221; MR0102775 (21 #1561).

[21] S. R. Wilson, C. M. Hefferan, S. F. Li, J. Lind, R. M. Suter and A. D. Rollett, Microstructural characterization and evolution in 3D, Challenges in Materials Science and Possibilities in 3D and 4D Characterization Techniques, Proc. 31st Risø Internat. Symp. on Materials Science, ed. N. Hansen, D. Juul Jensen, S. F. Nielsen, H. F. Poulsen, and B. Ralph, Risø National Laboratory for Sustainable Energy, Technical University of Denmark, 2010, pp. 201–217; http://mimp.mems.cmu.edu/publications/.

[22] M. Oettel, H. Hansen-Goos, P. Bryk and R. Roth, Depletion interaction of two spheres - Full density functional theory vs. morphometric results, Europhysics Letters 85 (2009) 36003.

[23] Wikipedia contributors, Spherical cap, Wikipedia, The Free Encyclopedia, 22 July 2009, http://en.wikipedia.org/wiki/Spherical_cap.

[24] S. Li, Concise formulas for the area and volume of a hyperspherical cap, Asian J. Math. Stat. 4 (2011) 66–70; MR2813331.

[25] J. S. Brauchart, D. P. Hardin and E. B. Saff, The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere, Recent Advances in Orthogonal Polynomials, Special Functions, and their Applications, Proc. 11th Internat. Symp. (OPSFA’11), Leganés, ed. J. Arvesú and
G. López Lagomasino, Amer. Math. Soc., 2012, pp. 31–61; MR2964138; http://arxiv.org/abs/1202.4037

[26] G. D. Anderson, M. K. Vamanamurthy and M. K. Vuorinen, Conformal Invariants, Inequalities, and Quasiconformal Maps, John Wiley & Sons, 1997, pp. 38–41, 163–164; MR1462077 (98h:30033).

[27] B. Harbourne, Volume and surface area of the spherical tetrahedron (AKA Reuleaux tetrahedron) by geometrical methods, http://www.math.unl.edu/~bharbourne1/ST/sphericaltetrahedron.html.

[28] E. W. Weisstein, Reuleaux tetrahedron, MathWorld - A Wolfram Web Resource, http://mathworld.wolfram.com/ReuleauxTetrahedron.html.

[29] B. Kawohl and C. Weber, Meissner’s mysterious bodies, Math. Intelligencer 33 (2011) 94–101; MR2844102 (2012j:52006).

[30] T. Bayen, T. Lachand-Robert and É. Oudet, Analytic parametrization of three-dimensional bodies of constant width, Arch. Ration. Mech. Anal. 186 (2007) 225–249; MR2342202 (2008f:52005).

[31] E. M. Harrell, Calculations for convex bodies. Example: the rotated Reuleaux triangle, unpublished note (2001).

[32] G. D. Chakerian and H. Groemer, Convex bodies of constant width, Convexity and its Applications, ed. P. M. Gruber and J. M. Wills, Birkhäuser, Basel, 1983, pp. 49–96; MR0731106 (85f:52001).

[33] J. Favard, Sur quelques problèmes de couvercles, Colloque de Géométrie Différentielle, Louvain, Georges Thone, Masson & Cie, 1951, pp. 37–49; MR0050296 (14,309d).

[34] H. Hadwiger, Elementare Ermittlung extremaler Rotationskörper, Revista Mat. Hisp.-Amer. 9 (1949) 59–70; MR0035040 (11,680g).

[35] H. Hadwiger, Neue Ungleichungen für konvexe Rotationskörper, Math. Annalen 122 (1950) 175–180; MR0039290 (12,526c).

[36] K. M. Jansons and C. G. Phillips, On the application of geometric probability theory to polymer networks and suspensions. I, J. Colloid and Interface Science 137 (1990) 75–93.

[37] D. Stoyan, W. S. Kendall and J. Mecke, Stochastic Geometry and its Applications, Wiley, 1987, pp. 11–19; MR0895588 (88j:60034a).
[38] L. A. Santaló, *Integral Geometry and Geometric Probability*, Addison-Wesley, 1976, pp. 226–230; MR0433364 (55 #6340).

[39] H. Hadwiger, P. Glur and H. Bieri, Die symmetrische Kugelzone als extremaler Rotationskörper, *Experienta* 4 (1948) 304–305; MR0026348 (10,141d).

[40] H. Bieiri, Mitteilung zum Problem eines konvexen Extremalkörpers, *Arch. Math. (Basel)* 1 (1949) 462–463; MR0031279 (11,127c).

[41] H. Hadwiger, Beweis einer Extremaleigenschaft der symmetrischen Kugelzone, *Portugaliae Math.* 7 (1948) 73–85; MR0028597 (10,471a).

[42] M. A. Hernández Cifre, G. Salinas and S. Segura Gomis, Two optimization problems for convex bodies in the n-dimensional space, *Beiträge Algebra Geom.* 45 (2004) 549–555; MR2093025 (2005e:52008).

[43] G. Bol, Beweis einer Vermutung von H. Minkowski, *Abhandlungen aus dem Mathematischen Seminar der Hansischen Universität* 15 (1943) 37–56; MR0015824 (7,474f).

[44] J. R. Sangwine-Yager, The missing boundary of the Blaschke diagram, *Amer. Math. Monthly* 96 (1989) 233–237; MR0991869 (90a:52024).

[45] J. R. Sangwine-Yager, Stability for a cap body inequality, *Geom. Dedicata* 38 (1991) 347–355; MR1112672 (92j:52012).

[46] V. A. Zalgaller, A family of extremal spindle-shaped bodies (in Russian), *Algebra i Analiz* 5 (1993) 200–214; Engl. transl. in *St. Petersburg Math. J.* 5 (1994) 177–188; MR1220496 (94f:52009).

[47] S. Campi, Three-dimensional Bonnesen type inequalities, *Le Matematiche (Catania)* 60 (2005) 425–431; MR2257044 (2007g:52008).

[48] S. Campi and P. Gronchi, A Favard-type problem for 3d convex bodies, *Bull. Lond. Math. Soc.* 40 (2008) 604–612; MR2441132 (2009h:52021).

[49] W. Meeussen, Various Mathematica files, http://users.telenet.be/Wouter.Meeussen/

[50] S. R. Finch, Various preprints about mean width and intrinsic volumes, http://www.people.fas.harvard.edu/~sfinch/csolve/
Steven R. Finch
Dept. of Statistics
Harvard University
Cambridge, MA, USA
stevenfinch@harvard.edu