Research Article

Optimal Weak Type Estimates for the P-ADIC Hardy Type Operators on Higher-Dimensional Product Spaces

Junchao Wei

Department of Basic Education, Xian Traffic Engineering University, Xian 710300, China

Correspondence should be addressed to Junchao Wei; dongshao_6@163.com

Received 9 May 2022; Accepted 8 August 2022; Published 27 September 2022

Academic Editor: Tuncer Acar

Copyright © 2022 Junchao Wei. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we introduce the fractional p-adic Hardy operators and its conjugate operators and obtain its optimal weak type estimates on the p-adic Lebesgue product spaces.

1. Introduction

In recent years, p-adic analysis has been widely used in quantum mechanics, the probability theory, and the dynamical systems [1, 2]. Meanwhile, there is an increasing attention in pseudo-differential equations, wavelet theory, and harmonic analysis (see [3–8]).

For a prime number p, let \(\mathbb{Q}_p \) be the field of p-adic numbers, a nonzero rational number \(x \) is represented as \(x = p^m y \), where \(y \) is an integer and the integers \(m, n \) are not divisible by \(p \). Then, the norm is defined as \(|x|_p = p^{-m} \), and it is easy to see that the norm satisfies the following properties:

1. \(|x|_p \geq 0, \forall x \in \mathbb{Q}_p, |x|_p = 0 \Leftrightarrow x = 0 \)
2. \(|x y|_p = |x|_p |y|_p, \forall x, y \in \mathbb{Q}_p \)
3. \(|x + y|_p \leq \max\{ |x|_p, |y|_p \}, \forall x, y \in \mathbb{Q}_p, \) in the case when \(|x|_p \neq |y|_p \), we have \(|x + y|_p = \max\{ |x|_p, |y|_p \} \)

It is well known that \(\mathbb{Q}_p \) is a typical model of non-Archimedean local fields. From the standard p-adic analysis, any \(x \in \mathbb{Q}_p \setminus \{0\} \) can be uniquely represented as a canonical form

\[
x = p^r \sum_{k=0}^{\infty} a_k p^k,
\]

where \(a_k, y \in \mathbb{Z}, a_0 \neq 0 \leq a_k < p \), note that the series (1) converges with respect to the norm \(|x|_p \) because one has \(|p^i a_k p^k|_p = p^{r-k} \). The space \(\mathbb{Q}_p^n \) consists of elements \(x = (x_1, x_2, \ldots, x_n) \), where \(x_i \in \mathbb{Q}_p, \) \(i = 1, 2, \ldots, n \). The norm in this space is

\[
|x|_p = \max_{1 \leq i \leq n} \{ |x_i|_p \}, \quad x \in \mathbb{Q}_p^n.
\]

The symbols \(B_x(a) \) and \(S_x(a) \) represent, respectively, the ball and the sphere with center at \(a \in \mathbb{Q}_p^n \) and radius \(p^i \), defined by

\[
B_x(a) = \{ x \in \mathbb{Q}_p^n : |x - a|_p \leq p^i \}, \quad S_x(a) = \{ x \in \mathbb{Q}_p^n : |x - a|_p = p^i \}.
\]

It is clear that \(S_y(a) = B_y(a)/B_{y-1}(a) \), and we set \(B_y(0) = B_y \) and \(S_y(0) = S_y \).

As \(\mathbb{Q}_p^n \) is a locally compact commutative group with respect to addition, there exists a Harr measure \(dx \) on \(\mathbb{Q}_p^n \), which is unique up to a positive constant factor and is translation invariant, that is, \(d(x + a) = dx \). We normalize the measure \(dx \) such that

\[
\int_{B_0(0)} dx = |B_0(0)|_H = 1,
\]

where \(|B|_H \) denotes the Harr measure of a measure subset \(B \) of \(\mathbb{Q}_p^n \). By simple calculation, we can obtain that

\[
|B_y(a)|_H = p^{in}, \quad |S_y(a)|_H = p^i(1 - p^{-n}).
\]

The classical Hardy operator
defines the fractional p-adic Hardy operator on higher-dimensional product spaces as follows:

$$H \mathcal{H} f (x) := \frac{1}{x} \int_0^x f (t) \, dt, \quad x > 0$$ \quad (6)

was introduced by Hardy in [9], and a celebrated integral inequality states that

$$\| \mathcal{H} f \|_{L^q (\mathbb{R}^n)} \leq \frac{q}{q - 1} \| f \|_{L^p (\mathbb{R}^n)}, \quad 1 < q < \infty.$$ \quad (7)

The fractional Hardy operator and its adjoint are defined and studied in [19–26]. Faris in [10] and Christ and Grafakos in [11] proposed an extension of (1) and its adjoint to the n-dimensional Euclidean spaces \(\mathbb{R}^n \) of which the equivalent forms are

$$H f (x) = \frac{1}{|x|} \int_{|y| \leq |x|} f (y) \, dy, \quad H^* f (x) = \frac{1}{|x|} \int_{|y| \geq |x|} f (y) \, dy,$$ \quad (8)

$$H^p_{\beta} f (x) = \frac{1}{|x|^{\frac{n-\beta}{p}}} \int_{|y| \leq |x|} f (y) \, dy, \quad H^{p,*}_{\beta} f (x) = \frac{1}{|x|^{\frac{n-\beta}{p}}} \int_{|y| \geq |x|} f (y) \, dy,$$ \quad (9)

when \(\beta = 0 \), the fractional p-adic Hardy and adjoint Hardy operator reduces to p-adic Hardy and adjoint Hardy operator. Some other papers showing the boundedness of p-adic Hardy-type operators are included [19–26].

In 2020, Li et al. [27] introduced the definition of the fractional Hardy operator on higher-dimensional product spaces as follows:

$$H_{\beta_1, \ldots, \beta_m} f (x) := \left(\prod_{i=1}^m \frac{1}{|B (0, |x_i|)|^{1-\beta_i/m_i}} \right) \int_{|y_1| < |x_1|} \cdots \int_{|y_m| < |x_m|} f (y_1, \ldots, y_m) \, dy_1 \cdots dy_m,$$ \quad (10)

where \(f \) be a nonnegative integrable function on \(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \times \cdots \times \mathbb{R}^{n_m}, \quad x_i \in \mathbb{R}^{n_i}, \quad m \in \mathbb{N}, 0 \leq \beta_i < n_i, \quad i = 1, \ldots, m, \quad x = (x_1, x_2, \ldots, x_m) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \times \cdots \times \mathbb{R}^{n_m}, \) with \(\prod_{i=1}^m |x_i| \neq 0 \). Furthermore, the corresponding operator norm on the weak Lebesgue product spaces was obtained.

Next, we will introduce the definition of the fractional Hardy operator on higher-dimensional p-adic product spaces and obtain sharp weak bounds.

$$H^p_{\beta_1, \ldots, \beta_m} f (x) := \frac{1}{|Q_p^{n_1} \times \cdots \times Q_p^{n_m}|^{1-\beta_i/n_i}} \int_{|y_1| < |x_1|} \cdots \int_{|y_m| < |x_m|} f (y_1, \ldots, y_m) \, dy_1 \cdots dy_m,$$ \quad (11)

where \(x = (x_1, x_2, \ldots, x_m) \in Q_p^{n_1} \times Q_p^{n_2} \times \cdots \times Q_p^{n_m} \) with \(\prod_{i=1}^m |x_i|_{p_i} \neq 0 \). It was also shown that the constant factor \(q! (q - 1) \) is optimal, knowing its importance in analysis.

Faris in [10] and Christ and Grafakos in [11] proposed an extension of (1) and its adjoint to the \(n \)-dimensional Euclidean spaces \(\mathbb{R}^n \) of which the equivalent forms are

$$H f (x) = \frac{1}{|x|} \int_{|y| \leq |x|} f (y) \, dy, \quad H^* f (x) = \frac{1}{|x|} \int_{|y| \geq |x|} f (y) \, dy,$$ \quad (8)

$$H^p_{\beta} f (x) = \frac{1}{|x|^{\frac{n-\beta}{p}}} \int_{|y| \leq |x|} f (y) \, dy, \quad H^{p,*}_{\beta} f (x) = \frac{1}{|x|^{\frac{n-\beta}{p}}} \int_{|y| \geq |x|} f (y) \, dy,$$ \quad (9)

when \(\beta = 0 \), the fractional p-adic Hardy and adjoint Hardy operator reduces to p-adic Hardy and adjoint Hardy operator. Some other papers showing the boundedness of p-adic Hardy-type operators are included [19–26].

In 2020, Li et al. [27] introduced the definition of the fractional Hardy operator on higher-dimensional product spaces as follows:

$$H_{\beta_1, \ldots, \beta_m} f (x) := \left(\prod_{i=1}^m \frac{1}{|B (0, |x_i|)|^{1-\beta_i/m_i}} \right) \int_{|y_1| < |x_1|} \cdots \int_{|y_m| < |x_m|} f (y_1, \ldots, y_m) \, dy_1 \cdots dy_m,$$ \quad (10)

Definition 1. Let \(m, n_i \in \mathbb{N}, x_i \in Q_p^{n_i}, 0 \leq \beta_i < n_i, \ i = 1, \ldots, m, \) and \(f \) be a nonnegative integrable function on \(Q_p^{n_1} \times Q_p^{n_2} \times \cdots \times Q_p^{n_m} \). Define the fractional p-adic Hardy operator on higher-dimensional product spaces by

$$H^p_{\beta_1, \ldots, \beta_m} f (x) := \frac{1}{|Q_p^{n_1} \times \cdots \times Q_p^{n_m}|^{1-\beta_i/n_i}} \int_{|y_1| < |x_1|} \cdots \int_{|y_m| < |x_m|} f (y_1, \ldots, y_m) \, dy_1 \cdots dy_m,$$ \quad (11)

where \(x = (x_1, x_2, \ldots, x_m) \in Q_p^{n_1} \times Q_p^{n_2} \times \cdots \times Q_p^{n_m} \) with \(\prod_{i=1}^m |x_i|_{p_i} \neq 0 \). In 2020, Wang et al. [28] gave the definition of fractional conjugate Hardy operator on higher-dimensional product spaces as follows:
where \(f \) be a nonnegative integrable function on \(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \times \cdots \times \mathbb{R}^{n_m} \), \(x_i \in \mathbb{R}^{n_i}, \ m \in \mathbb{N}, \ n \leq \beta < n_i, \ i = 1, \ldots, m, \) with \(\prod_{i=1}^{m} |x_i| \neq 0 \), and they also got the corresponding operator norm on the weak Lebesgue product spaces.

Next, we will give a higher-dimensional version of the fractional p-adic conjugate Hardy operator and obtain sharp weak bounds.

\[
H_{p_1, \ldots, p_m}^* f(x) = \int_{|y_1| > |x_1|} \cdots \int_{|y_m| > |x_m|} \left(\prod_{i=1}^{m} \frac{f(y_1, \ldots, y_m)}{|B(0, |y_i|)|^{1/p_i/m}} \right) dy_1 \cdots dy_m,
\]

\(\beta_1, \ldots, \beta_m \) are positive numbers.

2. Sharp Weak Bounds for Fractional Hardy Operators

This section considers the problem of obtaining optimal weak bounds for \(H_{p_1, \ldots, p_m}^* \) and our results as follows.

Theorem 1. Set \(0 < \beta < n_i \), let \(Q = (n_1/(n_1 - \beta_1), \ldots, n_m/(n_m - \beta_m)) \), \(i = 1, \ldots, m \). If \(f \in L^1(Q_p^n \times Q_p^{n_2} \times \cdots \times Q_p^{n_m}) \), then we have

\[
\left\| H_{p_1, \ldots, p_m}^* f \right\|_{wL^1(Q_p^n \times Q_p^{n_2} \times \cdots \times Q_p^{n_m})} \leq \left\| f \right\|_{L^1(Q_p^n \times Q_p^{n_2} \times \cdots \times Q_p^{n_m})}.
\]

Furthermore,

\[
H_{p_1, \ldots, p_m}^* f \rightarrow_{L^1(Q_p^n)} = 1.
\]

To obtain the desired result, we need the following lemma.

Lemma 1. Suppose that \(0 \leq \beta < n_i \), if \(f \in L^1(Q_p^n) \), then for any \(\lambda > 0 \),

\[
\left\| H_{p_1} f \right\|_{L^1, x_1 < (\lambda |x_1|)^{1/n}} \leq \left\| f \right\|_{L^1(Q_p^n)}.
\]

Moreover,

\[
\left\| H_{p_1} f \right\|_{L^1, x_1 < (\lambda |x_1|)^{1/n}} \leq \left\| f \right\|_{L^1(Q_p^n)}^\lambda.
\]

Definition 2. Let \(m \in \mathbb{N}, n_i \in \mathbb{N}, x_i \in Q_p^n, \ 0 \leq \beta_i < n_i, i = 1, \ldots, m, \) and \(f \) be a nonnegative integrable function on \(Q_p^n \times Q_p^{n_2} \times \cdots \times Q_p^{n_m} \). Define the fractional p-adic conjugate Hardy operator on higher-dimensional product spaces by
On the other hand, we let \(f_0(x) = \chi_{\{|x| \leq 1\}}(x) \), then
\[
\|f_0\|_{L^1(Q^c_\rho)} = \int_{Q^c_\rho} \chi_{\{|x| \leq 1\}}(x) \, dx = 1. \tag{22}
\]
Also,
\[
|H^p_\beta f_0(x)| = \frac{1}{|x|^p} \int_{|y| \leq |x|} f_0(y) \, dy
= \frac{1}{|x|^p} \int_{|y| \leq |x|} \chi_{\{|x| \leq 1\}} \, dy
= \frac{1}{|x|^p} \left\{ \begin{aligned}
&|x|^p, \quad |x| \leq 1, \\
&|x|^{p-n}, \quad |x| > 1.
\end{aligned} \right. \tag{23}
\]
\[
\left\|H^p_\beta f_0\right\|_{L^n(\mathbb{R}^n)} = \sup_{0 < \lambda < \infty} \lambda \left(\int_{Q^c_\rho} \chi_{\{|x| \leq 1/\lambda^{1/(p-n)}\}}(x) \, dx \right)^{n/(n-p)} \nonumber
= \sup_{0 < \lambda < \infty} \lambda \left(\int_{1/\lambda^{1/(p-n)}}^{\infty} \right) = \sup_{0 < \lambda < \infty} \left(\lambda^{p/(n-p)} \int_{\lambda}^{\infty} \right) \nonumber
= (1 - p^{-n})^{(n-p)/n} \sup_{0 < \lambda < 1} \left(\frac{1}{1 - p^{-n}} \right) \nonumber
= (1 - p^{-n})^{(n-p)/n} \sup_{0 < \lambda < 1} \left(\frac{\lambda^{n(1/(p-n))}}{1 - p^{-n}} \right) \nonumber
= \|f_0\|_{L^1(Q^c_\rho)}. \tag{27}
\]
Thus, as above, we get
\[
\left\|H^p_\beta\right\|_{L^1(Q^c_\rho)} \rightarrow L^{n-p,n}(Q^c_\rho) = 1. \tag{28}
\]
Now let us prove Theorem 1.

Proof. Without loss of generality, we consider only the situation when \(m = 2 \), and then, the case \(m \geq 3 \) is just a repetition of the case \(m = 2 \). For \(m = 2 \), the operator \(H^p_\beta \) can be written as...
\[
\left(H^p_{\beta_1, \beta_2} f \right)(x_1, x_2) = \frac{1}{|B(0, |x_1|_p)|_{H}} \int_{y_1 < |x_1|_p} f(y_1, y_2) \, dy_2
\] (29)

When \(f \in L^1(Q^0_p \times Q^0_p) \), we get
\[
\frac{1}{|B(0, |x_2|_p)|_{H}} \int_{y_1 < |x_2|_p} f(y_1, y_2) \, dy_2 \in L^1(Q^0_p), \quad \text{for all } x_2 \in Q^0_p.
\] (30)

Using Fubini theorem, we obtain that
\[
\left\| \left(H^p_{\beta_1, \beta_2} f \right)(\cdot, x_2) \right\|_{L^{n-\beta_1/m_1}(Q^0_p)} = \sup_{\lambda_1 > 0} \left\{ \lambda_1 \left| \left\{ x_1 : \left(H^p_{\beta_1, \beta_2} f \right)(x_1, x_2) > \lambda_1 \right\} \right| \right\}^{n_2-\beta_2/m_2}
\] (31)

\[
\leq 1 \left\| \frac{1}{|B(0, |x_2|_p)|_{H}} \int_{y_1 < |x_2|_p} f(y_1, y_2) \, dy_2 \right\|_{L^1(Q^0_p)}.
\]

Obviously, \(\int_{Q^0_p} f(y_1, y_2) \, dy_1 \in L^1(Q^0_p) \), if \(f \in L^1(Q^0_p \times Q^0_p) \). Then, applying the lemma again, we get
\[
\left\| \frac{1}{|B(0, |x_2|_p)|_{H}} \int_{y_1 < |x_2|_p} \left(\int_{Q^0_p} |f(y_1, y_2)| \, dy_2 \right) \, dy_1 \right\|_{L^{n-\beta_1/m_1}(Q^0_p)}
\]

\[
= \sup_{\lambda_2 > 0} \left\{ \lambda_2 \left| \left\{ x_2 : \frac{1}{|B(0, |x_2|_p)|_{H}} \int_{y_1 < |x_2|_p} \left(\int_{Q^0_p} |f(y_1, y_2)| \, dy_2 \right) \, dy_1 > \lambda_2 \right\} \right| \right\}^{n_2-\beta_2/m_2}
\] (33)

Combining (31)–(33), we get
\[
\left\| H^p_{\beta_1, \beta_2} f \right\|_{L^1(Q^0_p \times Q^0_p)} \leq 1 \cdot \left\| f \right\|_{L^1(Q^0_p \times Q^0_p)}.
\] (34)

Conversely, to prove that the constant 1 is optimal, we took
\[f_0(x) = \chi_{\{x \in Q_p^n : |x|_p \leq 1\}}(x). \] (35)

And choosing \(F(x_1, x_2) = f_0(x_1)f_0(x_2) \), where \(x_1 \in Q_p^n, x_2 \in Q_p^n \), we get from the definition of \(H^p_{\beta_1, \beta_2} \) that

\[
H^p_{\beta_1, \beta_2} F(x_1, x_2) = \left(\prod_{i=1}^{2} \left(\frac{1}{B_0, |x_i|_p} \right)^{1 - \beta_i/\beta_i} \right) \int_{|x_1|_p < |x_1|_p} \int_{|x_1|_p < |x_1|_p} f_0(y_1)f_0(y_2) \, dy_1 \, dy_2
\]

\[
= H^p_{\beta_1} f_0(x_1) H^p_{\beta_2} f_0(x_2).
\] (36)

Also,

\[
\left| H^p_{\beta_1} f_0(x_1) \right| = \frac{1}{B(0, |x_1|_p)^{1 - \beta_i/\beta_i}} \int_{|x_1|_p < |x_1|_p} f_0(y_1) \, dy
\]

\[
= \frac{1}{|x_1|_p^{\beta_i - \beta_i}} \int_{|x_1|_p < 1} \int_{|x_1|_p \geq 1} \, dy,
\]

\[
= \left\{ \begin{array}{ll}
|x_1|_p^{\beta_i} & |x_1|_p < 1, \\
|x_1|_p^{\beta_i - \beta} & |x_1|_p \geq 1.
\end{array} \right.
\] (37)

We now that let \(L = H^p_{\beta_1} f_0(x_2) \), for \(0 < \lambda_1 < L \), then combining both the cases, we get

\[
\left| \left\{ x_1 \in Q_p^n : H^p_{\beta_1, \beta_2} F(x_1, x_2) > \lambda_1 \right\} \right|
\]

\[
= \left| \left\{ x_1 \in Q_p^n : \lambda_1^{1/\beta} L > \lambda_1 \right\} + \left\{ x_1 \in Q_p^n : |x_1|_p \geq 1 : |x_1|_p^{\beta_i - \beta} L > \lambda_1 \right\} \right|
\]

\[
= \left| \left\{ x_1 \in Q_p^n : \left(\frac{\lambda_1}{L} \right)^{1/\beta} < |x_1|_p < 1 \right\} + \left\{ x_1 \in Q_p^n : 1 \leq |x_1|_p < \left(\frac{L}{\lambda_1} \right)^{1/\beta} \right\} \right|
\]

\[
= \left| \left\{ x_1 \in Q_p^n : \lambda_1^{1/\beta} |x_1|_p < \left(\frac{L}{\lambda_1} \right)^{1/\beta} \right\} \right|.
\] (38)
Therefore, we have

\[
\| H^p_{\beta_1,\beta_2} F(x_1, x_2) \|_{L^p} = \frac{n_1}{n_1 - \beta_1} \cdot \sup_{0 < \lambda_1 < 1} \left(\lambda_1 \int_{Q_0^n} \chi_{(L/\lambda_1)^{(n_1, \beta_1)}}(x_1) \, dx_1 \right)^{n_1 - \beta_1/n_1}
\]

\[
= \left(1 - p^{-n_1} \right)^{(n_1 - \beta_1)/n_1} \sup_{0 < \lambda_1 < 1} \left(\lambda_1 \sum_{j = -\log_p(n_1, \beta_1) + 1}^{\log_p(n_1, \beta_1)} p^j \right)^{n_1 - \beta_1/n_1}
\]

\[
= 1 - L.
\]

For \(0 < \lambda_2 < 1\), we also divide \(x_2\) into two cases \(|x_2|_p < 1\) and \(|x_2|_p \geq 1\). As above, we get

\[
\sup_{0 < \lambda_2 < 1} \left\| x_2 \in Q_0^n : |H^p_{\beta_1, \beta_2} f_0(x_2) > \lambda_2 \right\|_{L^p} = 1 \times 1.
\]

(40)

Since \(\|F\|_{L^1(Q_0^n, Q_0^n)} = 1 \times 1\), by combining (37) with (38),

\[
\| H^p_{\beta_1, \beta_2} F \|_{L^1(Q_0^n, Q_0^n)} = 1 \cdot \| F \|_{L^1(Q_0^n, Q_0^n)}.
\]

(41)

This completes the proof. \(\square\)

3. Sharp Weak Bounds for Fractional Conjugate Hardy Operators

Likewise, this section contains the results having sharp weak bounds for fractional p-adic conjugate Hardy operators, and our results are as follows.

Theorem 2. Set \(0 < \beta_1 < \beta_2\) let \(Q = \frac{n_1}{(n_1 - \beta_1)} \times \cdots \times \frac{n_m}{(n_m - \beta_m)}\), \(i = 1, \ldots, m\). If \(f \in L^1(Q_0^n, Q_0^n, \ldots, Q_0^n)\), then we have

\[
\left\| H^p_{\beta_1, \beta_2} f \right\|_{L^1(Q_0^n, Q_0^n, \ldots, Q_0^n)} \leq 1 \cdot \| f \|_{L^1(Q_0^n, Q_0^n, \ldots, Q_0^n)}.
\]

(42)

Furthermore,

\[
\left\| H^p_{\beta_1, \beta_2} f \right\|_{L^1(Q_0^n, Q_0^n, \ldots, Q_0^n)} \leq 1. \]

(43)

In order to prove our theorem, we need the following lemma.

Lemma 2. Suppose that \(0 \leq \beta < n\), if \(f \in L^1(Q_0^n)\), then for any \(\lambda > 0\,

\[
\left\| H^p_{\beta, \beta} f \right\|_{L^1(Q_0^n, Q_0^n)} \leq 1 \cdot \| f \|_{L^1(Q_0^n)}.
\]

(44)

Moreover,

\[
\left\| H^p_{\beta, \beta} f \right\|_{L^1(Q_0^n, Q_0^n)} \leq 1. \]

(45)

The proof of this result is almost the same as Lemma 1; here, we omit the proof details. Next, we give the proof of Theorem 2.
Proof. Without loss of generality, we only discuss the case $m = 2$, and then, the case $m \geq 3$ is just a repetition of the case $m = 2$. When $m = 2$, the operator $H^{p,\ast}_{p,0,2}$ can be written as

\[
(H^{p,\ast}_{p,0,2} f)(x_1, x_2) = \int_{|y_1| > |x_1|} \int_{|y_2| > |x_2|} \frac{f(y_1, y_2)}{B(0, |y_1|)^{1-\beta_1/m_1}} |y_1|^1/H \, dy_1 \, dy_2.
\]

Using Lemma 2 and Fubini theorem, it implies that

\[
\left\|H^{p,\ast}_{p,0,2} f \right\|_{L^{p/n_2}(Q_p^n)} = \sup_{\lambda_2 \geq 0} \left\{ x_2 \in Q_p^n \right\} \left\{ \int_{|y_1| > |x_1|} \int_{|y_2| > |x_2|} f(y_1, y_2) \, dy_1 \, dy_2 \right\}.
\]

We conclude that

\[
\left\|H^{p,\ast}_{p,0,2} f \right\|_{L^{p/n_2}(Q_p^n)} = \left\| \mathcal{F} f \right\|_{L^{p/n_2}(Q_p^n)}
\]

Consequently, combining (45) and (46), we get

\[
\left\|H^{p,\ast}_{p,0,2} f \right\|_{L^{p/n_2}(Q_p^n \times Q_p^n)} \leq 1 \cdot \left\| \mathcal{F} f \right\|_{L^{p/n_2}(Q_p^n \times Q_p^n)}.
\]

On the other hand, for any $0 < \epsilon < 1$, we took

\[
f_{\epsilon}(x) = \begin{cases} \frac{|x|^{p-\epsilon(n-1)}}{p} & |x|_p \geq 1, \\ 0 & |x|_p < 1. \end{cases}
\]

Let $F(x_1, x_2) = f_{\epsilon_1}(x_1)f_{\epsilon_2}(x_2)$, where $x_1 \in Q_p^n$, $x_2 \in Q_p^n$, then

\[
\begin{align*}
\|F\|_{L^1(Q_p^n \times Q_p^n)} &= \int_{Q_p^n \times Q_p^n} f_{\epsilon_1}(x_1)f_{\epsilon_2}(x_2) \, dx_1 \, dx_2 \\
&= \int_{Q_p^n \times Q_p^n} f_{\epsilon_1}(x_1)f_{\epsilon_2}(x_2) \, dx_1 \, dx_2
\end{align*}
\]
Set \(C_{e_i} = (1 - p^{-n_i})/p^{((\beta + n_i)\epsilon_i - \beta)} - 1 \) and \(M = (C_{e_i} H_{p_i}^{\beta} f_2(x_2)/\lambda_1)^{1/((\beta + n_i)\epsilon_i - \beta)} \), we obtain that

\[
\left| \{ x_1 \in Q_{p_i}^n : |H_{p_i}^{\beta} f(\lambda_1, x_1, x_2)| > \lambda_1 \} \right|
= \left| \{ |x_1| p < 1 : C_{e_i} H_{p_i}^{\beta} f_2(x_2) > \lambda_1 \} \right| + \left| \{ |x_1| p \geq 1 : C_{e_i} |x_1|^{\beta - (\beta + n_i)\epsilon_i} H_{p_i}^{\beta} f_2(x_2) > \lambda_1 \} \right|
\]

\[
= \left| \{ x_1 \in Q_{p_i}^n : |x_1|^{(\beta + n_i)\epsilon_i - \beta} < C_{e_i} H_{p_i}^{\beta} f_2(x_2) / \lambda_1 \} \right|.
\]

Notice that when \(\lambda_i > C_{e_i}, \{ x_i \in Q_{p_i}^n : |H_{p_i}^{\beta} f(x_2)| > \lambda_i \} = \emptyset \), if \(\epsilon_i \) is small enough, \(C_{e_i} \) tends to zero; therefore, when \(\epsilon_i \) is small enough, we get

\[
I_0 := \sup_{0 < \lambda_i < H_{p_i}^{\beta} f_2(x_2)} \lambda_i \left| \{ x_1 \in Q_{p_i}^n : |H_{p_i}^{\beta} f_2(x_2)| > \lambda_i \} \right|^{n_i/((n_i - \beta))}
= \sup_{0 < \lambda_i < H_{p_i}^{\beta} f_2(x_2)} \lambda_i \left(\int |x_1|^{(\beta + n_i)\epsilon_i - \beta} < C_{e_i} H_{p_i}^{\beta} f_2(x_2) / \lambda_i \right) \, dx_1
= \sup_{0 < \lambda_i < H_{p_i}^{\beta} f_2(x_2)} \lambda_i \left(\sum_{j=-\infty}^{\log_{p_i} n_i} \int \, dx_1 \right)
= (1 - p^{-n_i})^{n_i/((n_i - \beta))} \sup_{0 < \lambda_i < H_{p_i}^{\beta} f_2(x_2)} \lambda_i \left(\sum_{j=-\infty}^{\log_{p_i} n_i} \right)
= \sup_{0 < \lambda_i < H_{p_i}^{\beta} f_2(x_2)} \lambda_i (M^{n_i})^{n_i/((n_i - \beta))}
\]

\[
= \sup_{0 < \lambda_i < H_{p_i}^{\beta} f_2(x_2)} \lambda_i \left(C_{e_i} H_{p_i}^{\beta} f_2(x_2) / \lambda_1 \right)^{1/((\beta + n_i)\epsilon_i - \beta))} \right)^{n_i/((n_i - \beta))}
= C_{e_i} H_{p_i}^{\beta} f_2(x_2)^{1/((n_i - \beta)) ((\beta + n_i)\epsilon_i - \beta))}
\]

\[
\times \sup_{0 < \lambda_i < \min\left\{ H_{p_i}^{\beta} f_2(x_2) / \lambda_1 \right\}} \lambda_i^{1/((n_i - \beta)) ((\beta + n_i)\epsilon_i - \beta))}
= C_{e_i} H_{p_i}^{\beta} f_2(x_2)^{1/((n_i - \beta)) ((\beta + n_i)\epsilon_i - \beta))}
\]

Using the same method for \(x_2 \), we obtain that
\[
\sup_{\lambda_2 > \lambda_2} \sup_{\lambda_2 > \lambda_2} \left\{ x_2 \in \Omega_\beta^2 \mid I_\beta \geq \lambda_2 \right\}^{\beta/2} \bigg(\frac{p-\beta}{p-\beta} \bigg)^{\epsilon_1-\lambda_2} \| f \|_L^p \bigg(\Omega_\beta^2 \bigg)
\]

\[
= C_{\epsilon_2} \left(\sup_{\lambda_2 > \lambda_2} \left\{ x_2 \in \Omega_\beta^2 \mid I_\beta \geq \lambda_2 \right\}^{\beta/2} \bigg(\frac{p-\beta}{p-\beta} \bigg)^{\epsilon_1-\lambda_2} \| f \|_L^p \bigg(\Omega_\beta^2 \bigg) \right)
\]

\[
\times \sup_{\lambda_2 > \lambda_2} \left\{ x_2 \in \Omega_\beta^2 \mid I_\beta \geq \lambda_2 \right\}^{\beta/2} \bigg(\frac{p-\beta}{p-\beta} \bigg)^{\epsilon_1-\lambda_2} \| f \|_L^p \bigg(\Omega_\beta^2 \bigg)
\]

\[
= C_{\epsilon_2} \left(\sup_{\lambda_2 > \lambda_2} \left\{ x_2 \in \Omega_\beta^2 \mid I_\beta \geq \lambda_2 \right\}^{\beta/2} \bigg(\frac{p-\beta}{p-\beta} \bigg)^{\epsilon_1-\lambda_2} \| f \|_L^p \bigg(\Omega_\beta^2 \bigg) \right)
\]

\[
\times \left(\sup_{\lambda_2 > \lambda_2} \left\{ x_2 \in \Omega_\beta^2 \mid I_\beta \geq \lambda_2 \right\}^{\beta/2} \bigg(\frac{p-\beta}{p-\beta} \bigg)^{\epsilon_1-\lambda_2} \| f \|_L^p \bigg(\Omega_\beta^2 \bigg) \right)
\]

(55)

Let \(\epsilon_1 \rightarrow 0^+ \) and \(\epsilon_2 \rightarrow 0^+ \), it implies that

\[
\left\| H_{p_1, p_2}^{\Delta_n} \right\|_{L^p \rightarrow L^p} \left(\Omega_\beta^2 \times \Omega_\beta^2 \right) \geq 1 \cdot \left\| F \right\|_L^p \left(\Omega_\beta^2 \times \Omega_\beta^2 \right).
\]

(56)

This finishes the proof of Theorem 2. \(\square \)

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Natural Science Foundation of Shaanxi Province (No. 2022JM-053) and the Scientific Research Project of Xi’an Traffic Engineering Institute (No. 2021KY-29).

References

[1] V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, *p-Adic Analysis and Mathematical Physics*, World Scientific, Singapore, 1994.

[2] V. S. Vladimirov and I. V. Volovich, "p-adic quantum mechanics," *Communications in Mathematical Physics*, vol. 123, pp. 659–676, 1989.

[3] N. M. Chuong, P. G. Ciarlet, P. Lax, D. Mumford, and D. H. Phong, *Advances in Deterministic and Stochastic Analysis*, World Scientific, Singapore, 2004.

[4] N. M. Chuong, Yu. V. Egorov, A. Khrennikov, Y. Meyer, and D. Mumford, *Harmonic, Wavelet and p-Adic Analysis*, World Scientific, Singapore, 2007.

[5] M. Taibleson, *Fourier Analysis on Local Fields*, Princeton University Press, Princeton, NY, USA, 1975.

[6] Y. C. Rim, "Carleson measures and the BMO space on the p-adic vector space," *Mathematische Zeitschrift*, vol. 282, pp. 1470–1477, 2009.

[7] Q. Y. Wu and Z. W. Fu, "Sharp estimates of m-linear p-adic hardy and hardy-littlewood-pólya operators," *Journal of Applied Mathematics*, vol. 2011, pp. 137–150, Article ID 472176, 2011.

[8] Z. W. Fu, Q. Y. Wu, and S. Z. Lu, "Sharp estimates of p-adic hardy and hardy-littlewood-pólya operators," *Acta Mathematica Sinica*, vol. 29, pp. 137–150, 2012.

[9] G. H. Hardy, "Note on a theorem of hilbert," *Mathematische Zeitschrift*, vol. 6, no. 3–4, pp. 314–317, 1920.

[10] W. G. Faris, "Weak Lebesgue spaces and quantum mechanical binding," *Duke Mathematical Journal*, vol. 43, no. 2, pp. 365–373, 1976.

[11] M. Christ and L. Grafakos, "Best constants for two non-convolution inequalities," *Proceedings of the American Mathematical Society*, vol. 123, no. 6, pp. 1687–1693, 1995.

[12] G. A. Bliss, "An integral inequality," *Journal of the London Mathematical Society*, vol. s1-5, no. 1, pp. 40–46, 1930.

[13] K. P. Ho, "Hardys inequality on hardy morrey spaces," *Georgian Mathematical Journal*, vol. 26, no. 3, pp. 405–413, 2019.

[14] L. E. Persson and S. Samko, "A note on the best constants in some hardy inequalities," *Journal of Mathematical Inequalities*, vol. 9, no. 2, pp. 437–447, 2015.

[15] Z. W. Fu, L. Grafakos, S. Z. Lu, and F. Y. Zhao, "Sharp bounds for m-linear hardy and Hilbert operators," *Journal of Mathematics*, vol. 38, pp. 225–244, 2012.

[16] G. Gao and F. Y. Zhao, "Sharp weak bounds for Hausdorff operators," *Analysis Mathematica*, vol. 41, no. 3, pp. 163–173, 2015.

[17] G. Gao, X. Hu, and C. Zhang, "Sharp weak estimates for hardy-type operators," *Annals of Functional Analysis*, vol. 7, no. 3, pp. 421–433, 2016.

[18] H. Yu and J. Li, "Sharp weak bounds for n-dimensional fractional hardy operators," *Frontiers of Mathematics in China*, vol. 13, no. 2, pp. 449–457, 2018.
[19] Q. Y. Wu, “Boundedness for commutators of fractional p-adic Hardy operators,” *Journal of Inequalities and Applications*, vol. 12, 2012.

[20] Q. Y. Wu and Z. W. Fu, “Weighted p-adic Hardy operators and their commutators on p-adic central Morrey spaces,” *Bulletin of the Malaysian Mathematical Sciences Society*, vol. 40, no. 2, pp. 635–654, 2017.

[21] S. A. Hussain and N. Sarfraz, “Dr. Jyotsna Murthy: a life well lived,” *Indian Journal of Plastic Surgery: Official Publication of the Association of Plastic Surgeons of India*, vol. 53, no. 1, pp. 12–14, 2020.

[22] R. H. Liu and J. Zhou, “Sharp estimates for the p-adic Hardy type operator on higher-dimensional product spaces,” *Journal of Inequalities and Applications*, vol. 13, 2017.

[23] R. H. Liu and J. Zhou, “Weighted multilinear p-adic Hardy operators and commutators,” *Open Mathematics*, vol. 15, no. 1, pp. 1623–1634, 2017.

[24] Q. Y. Wu, L. Mi, and Z. W. Fu, “Boundedness of p-adic Hardy operators and their commutators on p-adic central Morrey and BMO spaces,” *Journal of Function Spaces and Applications*, vol. 2013, Article ID 359193, 10 pages, 2013.

[25] C. Keskin, I. Ekincioglu, and V. S. Guliyev, “Characterizations of hardy spaces associated with laplace–bessel operators,” *Analysis and Mathematical Physics*, vol. 9, no. 4, pp. 2281–2310, 2019.

[26] C. Keskin and I. Ekincioglu, “Some inequalities for homogeneous Bn-potential type integrals on H^p Hardy spaces,” *Hacettepe Journal of Mathematics and Statistics*, vol. 49, pp. 1667–1675, 2020.

[27] X. Li, M. Q. Wei, and D. Y. Yan, “Sharp bounds for fractional Hardy operator on higher-dimensional product spaces,” *Journal of Chinese Academy of Sciences*, vol. 37, p. 5, 2020.

[28] Z. Q. Wang, M. Q. Wei, Q. J. He, and D. Y. Yan, “Sharp bounds for fractional conjugate Hardy operator on higher-dimensional product spaces,” *Journal of Function Spaces and Applications*, vol. 2020, Article ID 5064156, 8 pages, 2020.