Radiative/EW penguin decays at Belle

Nanae Taniguchi (for the Belle Collaboration)
KEK-IPNS, Institute of Nuclear and Particle Studies, High Energy Accelerator Research Organization

Abstract. We present recent results for radiative and electroweak penguin decays of \(B \)-meson at Belle. Measurements of differential branching fraction, isospin asymmetry, \(K^* \) polarization, and forward-backward asymmetry as functions of \(q^2 \) for \(B \to K^{(*)}l\bar{l} \) decays are reported. For the results of the radiative process, we report measurements of branching fractions for inclusive \(B \to X_s\gamma \) and the exclusive \(B \to K\eta'\gamma \) modes.

1. Introduction
\(b \to s \) transition is the Flavor changing neutral currents (FCNC) which are forbidden at the tree level in the Standard Model. However, loop-induced FCNC (called penguin decays) are possible. New particles in the loops can give effects at the same order as Standard Model contributions. The process is a sensitive probe to new physics.

2. Analysis techniques
\(B \)-factory provide large clear sample of \(\Upsilon(4S) \) decays \(B\bar{B} \) pairs. The main background source comes from continuum events \((e^+e^- \to q\bar{q}(\gamma), q = u,d,s,c) \). To suppress the continuum background, we use a selection criteria making use of the difference of the event topology between \(B \) decays and continuum events. In the inclusive analysis, these continuum backgrounds are subtracted using the off-resonance data sample taken slightly below the \(\Upsilon(4S) \) resonance. In the exclusive measurements, one can require the kinematic constraints on the beam-energy constrained mass \(M_{bc} = \sqrt{E_{\text{beam}}^* - p_B^*} \) and \(\Delta E = E_B^* - E_{\text{beam}}^* \), using the beam energy \(E_{\text{beam}}^* \) and momentum \(p_B^* \) of \(B \) candidate in the center-of-mass system (c.m.s).

3. \(B \to K^{(*)}l\bar{l} \)
The decay \(b \to sl\) is induced through penguin or box diagrams at lower order\[1\]. There are many observable such as branching fraction, isospin asymmetry and forward-backward asymmetry where new physics can contribute. These observable can be interpreted in term of Wilson coefficients. Three Wilson coefficients, \(C_7,9,10 \) contribute. The \(B(B \to X_s\gamma) \) can constraint to \(|C_7| \). The \(b \to sl\) is sensitive to sign of \(C_7 \).

We have measured \(b \to sl\) exclusively \((B \to K^{(*)}l\bar{l}) \) on 657M \(B\bar{B} \) pairs \[2\]. 10 final state \((K^+\pi^-, K_s\pi^+, K^+\pi^0, K^+ \) and \(K_S \) are reconstructed for \(K^{(*)} \) and combined with electron and muon pairs. \(B \) meson is exclusively reconstructed with \(M_{bc} \) and \(\Delta E \). Main backgrounds are continuum event and semi-leptonic \(B \) decays. The continuum background is suppressed using information of event topology and the semi-leptonic \(B \) decays are suppressed using information of missing mass and lepton vertex separation. Dominant peaking background from \(B \to J/\psi(\to ll)X \) and \(\psi(2S)(\to ll)X \) decays are rejected in the \(q^2 \)(invariant mass of dilepton).
We obtain \(\mathcal{B}(B \to K^*\ell\ell) = (10.8 \pm 1.0 \pm 0.9) \times 10^{-7} \) and \(\mathcal{B}(B \to K\ell\ell) = (4.8^{+0.5}_{-0.4} \pm 0.9) \times 10^{-7} \) by fitting to \(M_{bc} \) (and \(M_{K\pi} \) for \(K^*\ell\ell \)). Fig. 1 shows the distributions of \(M_{K\pi} (M_{bc}) \) with fit results superimposed for the event in the \(M_{bc} (M_{K\pi}) \) signal region.

Figure 1. Distributions of \(M_{K\pi} (M_{bc}) \) with fit results superimposed for the events in the \(M_{bc} (M_{K\pi}) \) signal region. The solid curves, solid peak, dashed curves, and dotted curves represent the combined fit result, fitted signal, combinatorial background, and \(J/\psi(\psi')X \) background, respectively.

We divide \(q^2 \) into 6 bins and extract the signal and combinatorial background yield in each bin. The \(K^* \) longitudinal polarization fractions \((F_L) \) and the forward-backward asymmetry \((A_{FB}) \) are extracted from fits in the signal region to \(\cos\theta_{K^*} \) and \(\cos\theta_{B\ell} \), respectively, where \(\theta_{K^*} \) is the angle between the kaon direction and the direction opposite the \(B \) meson in the \(K^* \) rest frame, and \(\theta_{B\ell} \) is the angle between the \(\ell^+ (\ell^-) \) and the opposite of the \(B (\bar{B}) \) direction in the dilepton rest frame. The differential branching fraction, \(F_L \), and \(A_{FB} \) as functions of \(q^2 \) for \(K^*\ell^+\ell^- \) and \(K\ell^+\ell^- \) modes are shown in Fig. 2, Fig. 3, and Fig. 4, respectively. The differential branching fraction and \(F_L \) are consistent with the Standard Model predictions. The \(A_{FB}(q^2) \) spectrum, although consistent with previous measurements \([5]\), tends to be shifted toward the positive side from the SM expectation. A much larger data is needed for more precise measurement.

Isospin asymmetry \((A_I) \) is shown in Fig. 5. In the Standard Model, \(A_I \) is expected to be small. Babar found a large negative asymmetry in the low \(q^2 \) region \([4]\), however no significant asymmetry is found in Belle data.
A_{FB} as a function of q^2. The solid (dashed) curve shows the SM ($C_7 = -C_7^{SM}$) prediction.

Figure 4. Fit results for A_{FB} as a function of q^2. The solid (dashed) curve shows the SM ($C_7 = -C_7^{SM}$) prediction.

A_{I} as a function of q^2 for $K^+\ell^+\ell^-$ (red) and $K\ell^+\ell^-$ (blue) modes.

Figure 5. A_{I} as a function of q^2 for $K^+\ell^+\ell^-$ (red) and $K\ell^+\ell^-$ (blue) modes.

$b \to s\gamma$

The decay $b \to s\gamma$ is induced through penguin diagrams. The high energy real photon is an excellent experimental signature of the fully inclusive measurement.

4.1. Inclusive $B \to X_s\gamma$

The $B(B \to X_s\gamma)$ have been measured in fully inclusive method [6]. We collect all high-energy photons, vetoing those originating from π^0 and η decays two photons, in calorimeter. The continuum background is suppressed using event topology information and reminder is subtracted. We estimate the contribution from continuum event using off-resonance data. The events from B decays are estimated using MC sample which calibrated with control data sample. Fig. 6 show the extracted photon energy spectrum. We obtain $B(B \to X_s\gamma) = (3.31 \pm 0.19 \pm 0.37 \pm 0.01) \times 10^{-4}$, $\langle E_{\gamma} \rangle = 2.281 \pm 0.032 \pm 0.053 \pm 0.002$ GeV, $\langle E_{\gamma}^2 \rangle - \langle E_{\gamma} \rangle^2 = 0.0396 \pm 0.0156 \pm 0.0214 \pm 0.0012$ GeV2 for $E_{\gamma}^{c.m.s} > 1.7$ GeV. These results are the most precise measurements to date.

Figure 6. The extracted photon energy spectrum of $B \to X_{s,d}\gamma$. The two error bars show the statistical and total errors.

Figure 7. The comparison of experimental results and theoretical predictions. $B(B \to X_{s}\gamma)$ is scaled for $E_{\gamma}^{c.m.s} > 1.6$ GeV.

Fig. 7 is the comparison of experimental results and theoretical predictions for the branching fraction. The experimental results are in agreement with the theoretical predictions [7].
4.2. **Exclusive \(B \to K\eta'\gamma \)**

We find evidence for \(B^+ \to K^+\eta'\gamma \) decays at the 3.3\(\sigma \) level with a partial branching fraction of \((3.2^{+1.2}_{-1.1} \pm 0.3) \times 10^{-6}\). This measurement is restricted to the region of combined \(K\eta' \) invariant mass less than 3.4 GeV/\(c^2 \). A 90\% C.L upper limit of \(6.3 \times 10^{-6} \) is obtained for the decay \(B^0 \to K_S^0\eta'\gamma \) in the same \(K\eta' \) invariant mass region. Fig. 8 shows the distributions of \(M_{bc} \) and \(\Delta E \) with projections from 2D fit results.

![Figure 8](image)

Figure 8. Projections from the 2D fit to data. The \(K\eta'\gamma \) function is shown in dashed red, continuum in dotted black, \(b \to c \) in dash-dotted green, \(b \to u.d.s \) in solid magenta, and the combined function in solid blue.

5. **Summary**

We have improved measurements of differential branching fraction, isospin asymmetry, \(K^* \) polarization, and forward-backward asymmetry as functions of \(q^2 \) for \(B \to K^{(*)}ll \) decays and branching fractions for inclusive \(B \to Xsl\gamma \) and the exclusive \(B \to K\eta'\gamma \) modes. There is no evidence so far for new physics. We need much more data sample to improve the sensitivity. Super \(B \)-factory will provide one order of magnitude mode luminosity.

[1] G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996).
[2] The Belle Collaboration: I. Adachi, *et al.*, arXiv:hep-ex/0810.0335v1 (2008).
[3] A. Ali, E. Lunghi, C. Greub and G. Hiller, Phys. Rev. D 66, 034002 (2002).
[4] The Babar Collaboration: B. Aubert, *et al.*, arXiv:hep-ex/0807.4119 (2008).
[5] A. Ishikawa *et al.* (Belle Collaboration), Phys. Rev. Lett. 96, 251801 (2006); B. Aubert *et al.* (BaBar Collaboration), arXiv:hep-ex/0804.4412v1 (2008).
[6] The Belle Collaboration: I. Adachi, *et al.*, arXiv:hep-ex/0804.1580v1 (2008).
[7] M. Misiak *et al.*, Phys. Rev. Lett. 98, 022002 (2007). For other NNLO calculations, see e.g., T. Becher, M. Neubert, Phys. Rev. Lett. 98, 022003 (2007), J.R. Andersen, E. Gardi, JHEP 0701:029 (2007).