A 20-kb lineage-specific genomic region tames virulence in pathogenic amphidiploid *Verticillium longisporum*

Rebekka Harting | Jessica Starke | Harald Kusch | Stefanie Pöggeler | Isabel Maurus | Rabea Schlüter | Manuel Landesfeind | Ingo Bulla | Minou Nowrousian | Ronnie de Jonge | Gertrud Stahlhut | Katharina J. Hoff | Kathrin P. Aßhauer | Andrea Thürmer | Mario Stanke | Rolf Daniel | Burkhard Morgenstern | Bart P. H. J. Thomma | James W. Kronstad | Susanna A. Braus-Stromeyer | Gerhard H. Braus

1Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
2Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
3Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
4Department of Bioinformatics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
5Institute for Mathematics and Computer Science, University of Greifswald, Greifswald, Germany
6Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, Bochum, Germany
7Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
8Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
9Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
10Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
11Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada

Abstract

Amphidiploid fungal *Verticillium longisporum* strains VI43 and VI32 colonize the plant host *Brassica napus* but differ in their ability to cause disease symptoms. These strains represent two *V. longisporum* lineages derived from different hybridization events of haploid parental *Verticillium* strains. VI32 and VI43 carry same-sex mating-type genes derived from both parental lineages. VI32 and VI43 similarly colonize and penetrate plant roots, but asymptomatic VI32 proliferation in planta is lower than virulent VI43. The highly conserved VI43 and VI32 genomes include less than 1% unique genes, and the karyotypes of 15 or 16 chromosomes display changed genetic synteny due to substantial genomic reshuffling. A 20 kb VI43 lineage-specific (LS) region apparently originating from the *Verticillium dahliae*-related ancestor is specific for symptomatic
Plant–fungus interactions are dynamic and require ongoing adaptations of both partners to changing conditions in a coevolutionary process. Fungal success requires a balanced equilibrium with the host’s immune system, which limits propagation of the invading fungus and restricts plant damage. Analyses of fungal genomes revealed diverse adaptation mechanisms to new ecological niches and different hosts by changes or additions of genetic information (Seidl & Thomma, 2014).

One mechanism representing evolution-driven genome extension in fungi is genome hybridization. Yeast hybrids have often lost complete or large parts of chromosomes, whereas other genomic regions became homozygous (Morales & Dujon, 2012). Ribosomal and mitochondrial DNA become homogenized and mostly derive from one of the two hybridized species (Morales & Dujon, 2012). Retention of duplicated genes presumably depends on the complexity of the genetic interactions between paralogs. A low degree of entanglement favours diversification of the two genes, which then fulfil different functions and persist (Kuzmin et al., 2020). The evolution of filamentous fungal allopolyploids by hybridization contributes to the phenotype diversity of human pathogens such as Aspergillus lactus (Steenwyk et al., 2020) and plant pathogens such as Zymoseptoria pseudotritici (Stukenbrock et al., 2012) or Verticillium longisporum (Inderbitzin, Davis, et al., 2011).

Ascomycetous fungi of the genus Verticillium are worldwide distributed vascular plant pathogens. Allodiploid V. longisporum is the only known interspecific hybrid of its genus, with V. dahliae and V. alfaeae (formerly V. albo-atrum) as its closest relatives (Clewes et al., 2008; Inderbitzin et al., 2013). At least three separate hybridization events between two distinct haploid parental lineages resulted in this species (Inderbitzin, Davis, et al., 2011; Figure 1a). All known V. longisporum lineages evolved from the ancestor A1 (not yet isolated), which hybridized with one of three different partners designated D1 to D3. The D2 and D3 strains are classified as V. dahliae, whereas D1 represents another not yet identified ancestor. V. longisporum lineages A1/D1 and A1/D3 were isolated in Europe, Japan, and the USA, whereas A1/D2 was exclusively found in the USA (Depoter, Rodriguez-Moreno, et al., 2017; Tran et al., 2013; Zeise & von Tiedemann, 2002). The three hybrids display differences in pathogenicity and are mainly virulent on Brassicaceae (Eynck et al., 2007; Novakazi et al., 2015; Zeise & von Tiedemann, 2002). Lineage A1/D1 is the most pathogenic, whereas lineage A1/D3 is the least able to cause disease on rapeseed.

In contrast to the narrow host range of V. longisporum, the relative haploid V. dahliae is the main causative agent of Verticillium wilt in about 400 different hosts and generates severe yield losses in important crops (EFSA Panel on Plant Health, 2014). Single V. dahliae isolates show altered aggressiveness on different hosts and can colonize plants asymptomatically (Gibriel et al., 2019; Pegg & Brady, 2002; Resende et al., 1994; Zeise & von Tiedemann, 2002). V. dahliae isolates rarely infect Brassicaceae and, when found, remain in lower parts of symptomless plants (Eynck et al., 2007; Zhou et al., 2006). Currently, lucerne is the only known host of V. alfaeae (Inderbitzin, Bostock, et al., 2011). Hybridizations between genetically distinct parental species gave rise to Verticillium spp. with altered host range and virulence (Inderbitzin, Davis, et al., 2011).

Interspecific hybrids can emerge from sexual mating or by vegetative hyphal fusions. Genes required for sexual mating are present in the genomes of Verticillium spp., but sexual reproduction has not yet been observed (Milgroom et al., 2014; Short et al., 2014). For sexual compatibility, opposite idiomorphs of the MAT locus, the major regulators of sexual recombination in ascomycetes, are required (Debuchy & Turgeon, 2006; Metzenberg & Glass, 1990; Turgeon & Yoder, 2000). Most V. longisporum genomes harbour copies of the MAT1-1 idiomorph, with MAT1-1-1 and MAT1-1-3 encoding an α-box transcription factor and an HMG domain protein (Depoter, Seidl, et al., 2017; Inderbitzin, Bostock, et al., 2011). In contrast, 99% of analysed V. dahliae isolates harbour the MAT1-2 gene (Short et al., 2014). The unequal distribution of the MAT idiomorphs and the absence of a sexual cycle suggest that sexual reproduction between the two parental species of V. longisporum is unlikely. Extensive sequence changes in the MAT loci and separation of genetic clusters in population structure analysis also suggest that sexual reproduction in V. longisporum is unlikely (Depoter, Seidl, et al., 2017). Another hybridization mechanism is reproduction by hyphal anastomosis followed by nuclear fusion, resulting in duplication of the genome.
So far, interspecific vegetative hyphal fusions of haploid Verticillium spp. have only been observed for auxotrophic mutants under selection (Hastie, 1973, 1989).

The adaptive evolution of fungal pathogens results in two-speed genomes with a conserved core and a more flexible pan-genome encoding genes required for infection (Dong et al., 2015), such as effectors supporting host colonization by immune response suppression or manipulation of the host’s cell physiology as virulence factors (Faino et al., 2016; Gibriel et al., 2019; de Jonge et al., 2013; Kombrink et al., 2017; Selin et al., 2016; Stergiopoulos & de Wit, 2009). The organization of the pan-genome can have different forms. Some fungi carry entire lineage-specific (LS) chromosomes with pathogenicity-related genes (Galazka & Freitag, 2014). Another nature of karyotype variation was observed in Verticillium spp., which display differences in length of chromosomes with rearranged sequence synteny (Faino et al., 2016; de Jonge et al., 2013; Shi-Kunne et al., 2018). A correlation between these chromosomal synteny interruptions, an enrichment of repetitive sequences, and the occurrence of LS regions, which are specific for single isolates or subgroups of strains or species, was observed in V. dahliae (de Jonge et al., 2013). Repetitive sequences contribute to centromere diversity and evolution in Verticillium (Seid et al., 2020) and the relative number of genes for niche adaptation is enriched in LS regions compared to the core genome (Gibriel et al., 2019; de Jonge et al., 2013). A correlation of repeat-rich genomic regions and genes for niche adaptations was also observed in other plant pathogens, such as Leptosphaeria maculans (Rouxel et al., 2011).
Some V. dahliae LS regions were acquired through horizontal gene transfer from Fusarium oxysporum (Chen et al., 2018), from plants (de Jonge et al., 2012), or by transposon-mediated processes (Faino et al., 2016; Klosterman et al., 2011). LS regions show higher coding and noncoding sequence conservation compared to the core genome, possibly caused by differences in chromatin organization rather than by horizontal gene transfer (Depopeter et al., 2019).

We compared the genomes of the virulent Vl43 (A1/D1) and the asymptomatic Vl32 (A1/D3) V. longisporum strains, which were both isolated from rapeseed in the same area in northern Germany (Zeise & von Tiedemann, 2002). It was evaluated whether the original hybridizations were the result of sexual mating or vegetative hyphal fusions. The contributions of the parental strains to the genetic setup of both hybrids were analysed. Intriguingly, deletion of an LS region, which was only present in pathogenic Vl43, did not reduce disease symptom induction, but instead increased the virulence of the pathogenic strain. This unexpected result supports that the corresponding genes, encoding presumed transcription factors, provide functions to reduce disease symptoms and restrict damage in the host plant.

2 | RESULTS

2.1 | Symptomatic and asymptomatic V. longisporum isolates Vl43 and Vl32 exhibit similar root colonization behaviour

V. longisporum Vl43 and Vl32 were isolated from rapeseed fields in the same area in Germany. Vl43 can be highly virulent, whereas plants infected with Vl32 did not show significant differences compared to water controls (Zeise & von Tiedemann, 2002). Each amphidiploid strain derived from a different hybridization event of haploid parental strains (Figure 1a). The infection and colonization phenotypes of both strains were compared (Figure 1). Fungal colonization of plant roots represents the first contact followed by root surface colonization (Figure 1b). Both strains formed hyphae growing along the interface of two plant cells. Thickening of hyphae suggested formation of thick hyphal cables covered Vl32 and Vl19 colonies, but were rarely observed for A1/D1 strains. Scanning electron microscopy resolved these cables as bundles of single hyphae.

Overall, the ex planta phenotypes of isolates from symptomatic and asymptomatic V. longisporum lineages were similar with the exception that asymptomatic strains provide the potential for hyphal cable formation under specific conditions. Root surface colonization behaviour of Vl43 and Vl32 is similar, but further plant colonization is different and results in distinct pathogenic consequences for the host upon infection with Vl43.

2.2 | Vl32 and Vl43 carry same-sex mating-type genes derived from both parental lineages and form vegetative hyphal fusions

Whole-genome sequencing of V. longisporum Vl43 and Vl32 was performed to dissect the genetic basis for the different infection phenotypes. The hybrid V. longisporum genome is expected to contain twice the amount of DNA (c.66 Mb) compared to haploid Verticillium species (V. dahliae: c.36 Mb, Faino et al., 2015; V. alfafae: c.30 Mb, Klosterman et al., 2011) and two copies for the majority of genomic loci (Clewes et al., 2008; Inderbitzin, Davis, et al., 2011; Tran et al., 2013). Previous V. longisporum sequencing data (VL1, VL2, VL20, VL82) suggested a genome size of c.70 Mb (Depopeter, Seidl, et al., 2017; Fogelqvist et al., 2018).

A high similarity between loci from the parental genomes makes the assembly of loci within their correct genomic environment challenging. Highly similar regions lead to fragmented assemblies, especially with short sequence reads. First Vl43 genome assemblies based on a combination of 454 and paired-read Illumina/Solexa data (Nowrousian et al., 2010) resulted in a total size of the expected c.70 Mb, but a high degree of fragmentation. Three libraries of long jumping distance (LJD) reads were sequenced to improve the assembly continuity (Table S1). Velvet assembly of the combined data (Zerbino & Birney, 2008) resulted in c.75 Mb with an N50 of 1,750 kb, but still a high number of assembly gaps, indicating great improvement of long-range continuity but internal regions of high similarity could not be resolved. A similar strategy based on 454 paired-end and LJD reads was used for the Vl32 genome assembly, resulting in c.69 Mb. While having a smaller N50 than the Vl43 assembly due to the use of only one LJD library, there are many fewer internal gaps, indicating fewer problems with highly
similar regions. Additionally, a draft genome assembly of pathogenic A1/D1 strain Vi145c was generated based on one Illumina/Solexa paired-end library (Tables S2 and S3).

The sexual pathway genes of VI32 and VI43 genomes were compared to address the hybridization origins between the two Verticillium lineages. Key functions include genes for potential receptors, pheromones, and mating-type. Two pheromone classes are involved in the sexual reproduction of filamentous ascomycetes: the Saccharomyces cerevisiae Pre-Pro-alpha factor-like peptide pheromone precursors and pheromones similar to yeast Mfa lipopeptide pheromone (Coppin et al., 2005; Kim & Borkovich, 2006; Mayrhofer et al., 2006; Pöggeler, 2011). The VI43 genome includes two alleles encoding lipopeptide receptors (PRE1-1, PRE1-2) and peptide receptors (PRE2-1, PRE2-2), and two alleles encoding Ppg1-like peptide pheromone precursors (PPG1-1, PPG1-2, Figure S3a, sequences in Methods S1). The Verticillium lipopeptide pheromone differs from typical Ppg2 precursors in Sordariaceae. Verticillium Pgg2 resembles the hybrid-type pheromone precursors identified in the order Hypocreales (Schmoll et al., 2010), as it has the Pgg2-typical C-terminal CaaX motif, but it contains five repeats of a dodecapeptide sequence usually found in Ppg1 precursors (Figure S3b). Pgg2-like precursors of Verticillium lack a signal sequence and are, presumably, secreted by nonclassical STE6-mediated secretion (Figure S3c).

Typical mating-type (MAT) loci of heterothallic mating partners among filamentous ascomycetes consist of dissimilar MAT1-1 and MAT1-2 idiomorphs (Turgeon & Yoder, 2000). MAT1-1 invariably contains the MAT1-1-1 gene encoding an α-box domain protein. The MAT1-2 locus carries MAT1-2-1 encoding a protein with an HMG DNA-binding domain (Debuchy et al., 2010). Both mating-type loci can include additional genes: most Sordariomycetes MAT1-1-2 loci encode a protein with a PPF (proline/proline/phenylalanine) domain, or MAT1-1-3 encodes another HMG domain DNA-binding protein. Genomes of self-fertile (homothallic) filamentous ascomycetes contain either linked or unlinked genes indicative of both mating-types (Debuchy & Turgeon, 2006; Pöggeler, 2001).

V. longisorpor isolates VI43, VI32, and VI145c each contain two MAT1-1 alleles (Inderbitzin, Davis, et al., 2011). BLAST searches failed to detect MAT1-2 homologs. The VI43 genome assembly was not sufficiently complete to determine whether the arrangement of the mating-type genes of the V. longisorpor MAT1-1 idiomorphs is similar to the MAT1-1 idiomorphs of V. dahliae (D-type) or V. alfaiae (A-type) because the mating-type idiomorph flanking gene SLA2 was distributed on different scaffolds. PCR experiments using VI43 DNA as template and the VI32 assembly revealed that both mating-type loci are flanked by SLA2 and APN2. The idiomorph sequences encode the mating-type genes MAT1-1-1 and MAT1-1-3 in a tail-to-tail orientation (Figure 2a, Table S4, and Sequences in Methods S1). VI32 and VI43 Mat1-1-1 and Mat1-1-3 proteins display high amino acid sequence identity when compared among the A- or D-types, but a reduced level of amino acid sequence identity when compared between the A- and D-type loci of the same strain. Mat1-1-1 and Mat1-1-3 proteins are more similar to V. dahliae than to V. alfaiae proteins. Mating-type proteins of the VI32 MAT1-D locus are 100% identical to V. dahliae Mat1-1-1 and Mat1-1-3 (Tables S5 and S6, and Figure 2b). The main sequence differences between A and D loci are in the intergenic region of MAT1-1-3 and APN2 genes. The MAT1-D locus contains a short 295 bp sequence with high sequence similarity to hypothetical open reading frames (ORFs) located in the MAT-flanking regions of V. dahliae (VDAG_06529) and V. alfaiae (VDBG_03574), which is not localized adjacent to the mating-type genes in V. dahliae or V. alfaiae. This might reflect the genomic situation of the yet unidentified parental strain A1. The finding that both mating alleles in VI43 and VI32 belong to the same idiomorph suggests that VI43 and VI32 are presumably not derived from a mating event or, if hybridization is the result of mating, a homogenization of the initial loci must have happened.

Scanning electron microscopy explored the possibility of same-sex hybridization events. Individual hyphae of V. longisorpor can be interconnected by anastomoses (Figure 2c). This was frequently observed within the hyphal cables of asymptomatic (VI32, VI19), but rarely in pathogenic (VI43, VI145c) isolates, most often in close contact with the agar surface. It is yet unclear whether same-sex hybridization was the origin of V. longisorpor because anastomoses could only be observed for hybrid and not for haploid putative parental strains.

2.3 | The two V. longisorpor genomes display minimal gene variations but different numbers of massively rearranged chromosomes

The two parental origins of VI32 and VI43 hybrid genomes were visualized by plotting the relative identity between either of the two V. longisorpor isolates against V. dahliae long DNA contigs (Figure 3a). Both plots display two similarity peaks: one close to 100% identity, resembling the D1/D3 component, the other 94% identity of A1 origin. Plotting of V. alfaiae against V. dahliae sequences visualizes that V. dahliae is approximately as related to V. alfaiae as to A1. As control, the plotting of two V. dahliae strains, VdLs.17 (Klosterman et al., 2011) and VdJR2 (de Jonge et al., 2012; Faino et al., 2015; Fradin et al., 2009), resulted in almost 100% identity.

V. longisorpor gene gain or loss after hybridization was addressed by comparing predicted ORFs against the scaffolds of relative Verticillium spp. using a BLAST-based clustering approach. The number of genes unique to each V. longisorpor genome was below 1% (Figure 3b). Analysis of the putative V. longisorpor strain-specific genes demonstrated that the respective regions are very short (1 to 11 genes).

V. dahliae and V. alfaiae genomes consist of seven or eight chromosomes, as shown by restriction fragment length polymorphism
and optical mapping (Faino et al., 2015; Klosterman et al., 2011; Pantou & Typas, 2005). Optical mapping of both genomes revealed that the VI32 genome is distributed among 16 chromosomes, which fits with the genome duplication (Figure 4a). In contrast, the VI43 genome consists of only 15 chromosomes, one less than in VI32. Comparing chromosome sizes between VI43 and VI32 we concluded that the difference is not only an additional chromosome for VI32, but a difference in length for all chromosomes.

Analysis of syntenic regions between VI43, VI32, and VdLs.17 showed a much larger overlap between VI32 and the V. dahliae isolate

FIGURE 2 *Verticillium longisporum* VI32 and VI43 harbour same-sex mating-type genes originating from both parental lineages. (a) Comparison of *V. longisporum* VI32 and VI43 MAT1-1 and *V. dahliae* (Vd)/*V. alfalfae* (Va) mating-type loci with flanking regions. Lines: intergenic regions; purple arrows: MAT1-1-specific regions; brown arrows: MAT1-2-specific regions; vertical line: border of the idiomorph sequence. Sequences from Va MAT1-1 and Vd MAT1-2 loci from Ensembl Fungi (Kersey et al., 2018) and Vd MAT1-1 (AB505215.1) were used. (b) Phylogenetic tree of MAT1-1, MAT1-3, and a conserved 295-bp region of VDAG_06529 homologs. Consensus trees based on nucleotide sequences were calculated with PHYLIP program NEIGHBOR. Percentages based on 1,000 replications of the neighbour-joining procedure are shown. (c) Scanning electron micrographs of hyphal fusion sites (HS) from *V. longisporum* strains of lineage A1/D1 (VI43, VI145c) or A1/D3 (VI32, VI19) cultivated on malt extract agar for 3 days are shown (scale bar: 2 μm)
(a) $V. \text{dahliae}$ vs. VI43

(b) Number of genes specific for

	VI43	VI32	$V. \text{dahliae}$	$V. \text{alfalfa}$	versus
VI43	(21,176a)				
VI32	(19,313a)				
$V. \text{dahliae}$	(10,535b)				
$V. \text{alfalfa}$	(10,221b)				
					VI43
149					VI32
49					VI145c
					VI43 + VI145c
					VI43 + VI145c + VI32
455					$V. \text{dahliae}$
863					$V. \text{alfalfa}$
FIGURE 3 *Verticillium longisporum* strains are two-parent hybrids. (a) In Vl43 and Vl32 genomes, two identity groups are bimodally resembled in the distribution of relative identity (%id) of long genomic contig (>1,000 kb) alignments. Contigs of Vl43, Vl32, VaMs.102, and VdJR2 were compared to the VdLs.17 genome using Exonerate software (Slater & Birney, 2005). (b) Strain-specific genes in *Verticillium* genomes. Numbers given in the top row represent the total amount of predicted open reading frames (ORFs). VdLs.17 and VaMs.102 were used as *V. dahliae* and *V. alfalfae* reference genomes, respectively (Ensembl Fungi; Kersey et al., 2018). Total numbers of predicted ORFs per genome according to Augustus prediction² and Klosterman et al. (2011)³ are given.

(14 Mb) than between Vl43 and VdLs.17 (<1 Mb) (Figure 4b). Vl32 and Vl43 shared approximately 26 Mb syntenic regions, whereas only approximately 1 Mb are in synteny between all strains. Collinear blocks of the 15 Vl43 and the 16 Vl32 chromosomes were visualized (Figure 4c). The high number of lines connecting the syntenic blocks of the respective chromosomes indicates massive syntenic rearrangements. These can correlate to repetitive sequences (Depotter et al., 2016; Faino et al., 2016; Möller & Stukenbrock, 2017; Seidl & Thomma, 2017). In addition, 10% and 12% of the Vl32 and Vl43 genomes consist of repeats compared to 4% of *V. dahliae* (Table S7). The de novo analysis found repetitive sequences of *V. alfalfae* and *V. dahliae* do not give much more repeat masking than with the general RepeatMasker libraries. In contrast, in the *V. longisporum* strains, de novo analysis found repeats mask a much higher percentage of the genome. Similar to the ascomycete *Pyronema confluens* (Traeger et al., 2013), this indicates a more recent expansion of *V. longisporum* repetitive sequences (Figure S4).

Our comparisons suggest minimal gene gain or loss in the hybrid genomes compared to *V. dahliae* and *V. alfalfae*. The plant colonizer Vl32 has 16 chromosomes, whereas the symptom inducer Vl43 has only 15. *V. longisporum* genomes are massively rearranged and enriched with repetitive sequences.

2.4 | A 20 kb genomic region absent in asymptomatic *V. longisporum* Vl32 reduces disease symptom induction in *Brassica napus* by virulent Vl43

Comparison of asymptomatic *V. longisporum* Vl32 to pathogenic Vl43 revealed few specific genes within the two amphidiploid genomes. Genomic rearrangements and evolution of LS regions correlate in haploid *Verticillium* spp. (Chen et al., 2018; de Jonge et al., 2013; Gibriel et al., 2019; Klosterman et al., 2011). Four LS regions (LS1−4) of about 300 kb in the genome of *V. dahliae* VdLs.17 (Faino et al., 2016) share no synteny to the *V. alfalfae* VaMs.102 genome (Klosterman et al., 2011). These four VdLs.17 LS regions with enriched repetitive sequences might increase genetic flexibility for *V. dahliae* to adapt to different host niches. A bioinformatic search for VdLs.17 orthologs present in the Vl43 genome was performed to identify candidates important for this *V. longisporum* pathotype. Small LS1, LS3, and LS4 subregions were conserved in synteny in pathogenic A1/D1 *V. longisporum* isolates Vl43 and Vl145c, as well as in haploid *V. dahliae* JR2 (Figure 5a). This synteny was disrupted in the asymptomatic A1/D3 isolate Vl32. The small Vl43LS20kb subregion of approximately 20 kb was present in Vl43, but absent from the Vl32 genome and also from the genome of haploid *V. alfalfae* VaMs.102. The absence of this region in Vl32 was verified by PCR analyses targeting seven genes (LS region gene = LSG1−LSG7, Figure 5b, Table S8) predicted for the Vl43LS20kb region (gene annotations according to *V. dahliae* JR2 in Ensembl Fungi; Faino et al., 2015; de Jonge et al., 2012; Kersey et al., 2018). LSG3 and LSG6 code for potential transcription factors. All LSGs are present in single copy in *V. longisporum* Vl43 or Vl145c. Instead, two copies for LSG1, one not yet annotated (in the Vl43LS20kb homologous region between VDAG_JR2_Chr2g10300a and VDAG_JR2Chr2g10310a) and a second copy on chromosome 5 (VDAG_JR2Chr5g10950a) are present in the haploid *V. dahliae* JR2 genome.

Vl43 deletion strains were examined to determine whether the pathogen-specific Vl43LS20kb region encodes pathogenicity factors. The Vl43LS20kb region was divided into two subregions (LSI: c.11.5 kb with LSG1−LSG5; LSI: c.8.5 kb with LSG6−LSG7). LSI, LSI, or the total LS region were deleted in Vl43 (Figures 5a and 5S.a, b). Vl43ΔLSI, Vl43ΔLSI, and Vl43ΔLSI, and Vl43ΔLSI spots inoculated onto different media with or without stress-inducing agents appeared like the wild type ex planta (Figures 5c and 5S.c). In rapeseed infection experiments, the Vl43ΔLSI, Vl43ΔLSI, and Vl43ΔLSI strains induced more severe disease symptoms after 35 days compared to plants inoculated with wild-type Vl43 spores (Figure 5d, e). Also, 27% of the plants inoculated with the wild-type Vl43 died from fungal infection, whereas there were 70% dead plants for Vl43ΔLSI, 83% for Vl43ΔLSI, and 89% for Vl43ΔLSI. The small amount of surviving plants at the end of the experiment did not allow a quantification of fungal DNA.

The Vl43LS20kb region is in the same syntenic arrangement in the pathogenic A1/D1 *V. longisporum* isolate Vl145c and in *V. dahliae* JR2. The Vl43LS20kb homologous region in *V. dahliae* JR2 was deleted (Figure 5S.a, b). The ex planta phenotypes of *V. dahliae* JR2ΔLS spot inoculated onto different media revealed that the LS region is dispensable for vegetative growth of *V. dahliae*, as found for *V. longisporum* Vl43 (Figure 5S.c). Tomato plants were inoculated with conidiospores from two independent *V. dahliae* JR2ΔLS transformants. Severity of disease symptoms was unaltered for both wild-type- and JR2ΔLS-treated plants after 21 days (Figure 5S.d,e). Hypocotyl cross-sections of *V. dahliae* JR2ΔLS-infected plants showed wild-type-like discolouration, indicating no alterations in plant defence responses. The potential of *V. dahliae* JR2ΔLS to induce disease symptoms in rapeseed was tested and revealed wild-type-like absence of disease symptoms in treated plants (Figure S7).

In summary, the Vl43LS20kb region of pathogenic *V. longisporum* Vl43 fulfils an unexpected function, which differs to the corresponding *V. dahliae* JR2 region. In contrast to the prediction that Vl43LS20kb, which is absent in the asymptomatic isolate Vl32, contributes to virulence, this region even tames the pathogenic features of Vl43 and reduces disease symptom severity induced in rapeseed.

This suggests a trade-off strategy in the interaction between a fungus and its host plant, resulting in evolutionary advantages.

3 | DISCUSSION

Verticillium longisporum VI43 and VI32 are two representatives of interspecies lineages deriving from distinct hybridizations (Inderbitzin, Davis, et al., 2011). VI43 of lineage A1/D1 causes severe symptoms in rape-seed plants, whereas VI32 of the A1/D3 lineage colonizes plants asymptotically (Depotter, Rodriguez-Moreno, et al., 2017; Zeise & von Tiedemann, 2002). VI43 is also able to cause symptoms in *Arabidopsis thaliana* (Reusche et al., 2012). Both strains colonize roots similarly, but fungal biomass reisolated from infected tissue is higher for VI43 than for VI32. Successful root penetration is performed by both, but they differ in subsequent steps of host plant colonization.
resulting in higher amounts of fungal Vl43 DNA in hypocotyls of infected plants. This is similar in nonpathogenic compared to pathogenic *F. oxysporum* (Validov et al., 2011). *Verticillium* spp. colonize the host plant’s vascular system, which is nutrient-poor and imbalanced in amino acids (Singh et al., 2010). *V. longisporum* recognizes this environment and responds with a highly specific secretion pattern, including pathogenicity-related effectors (Leonard et al., 2020).

The genomes of *V. longisporum* Vl43 and Vl32 with different pathotypes revealed high gene level conservation, but different chromosome numbers and sizes combined with increases in repetitive sequences. Vl32 and Vl43 carry genes for potential pheromones and their receptors as well as two MAT1-1 same-sex mating-type genes derived from both parental strains, but no MAT1-2. One of these parental alleles contains an additional complete ORF of unknown
FIGURE 5 The VI43LS20kb region of *Verticillium longisporum* VI43 reduces severity of *Brassica napus* disease symptoms. (a) Arrangement of the 20 kb lineage-specific (LS) region and adjacent regions in pathogenic (red) and asymptomatic (green) *V. longisporum* strains compared to *V. dahliae* VdLs.17 LS regions LSI (dark grey), 3 (light grey), and 4 (white). Parts of VdLs.17 LSI located on chromosome 3 as well as parts of LS3 and LS4 regions located on chromosome 4 are in synteny in the genomes of VI43, VI145c, and VdJR2, but disrupted in the VI32 genome at indicated breakpoints. The 20 kb LS region is absent from the VI32 genome. The VI43LS20kb region was subdivided into LSI and LSIIL. VI43 deletion strains lack LSI, LSIIL, or the total 20 kb LS region. (b) Absence of the VI43LS20kb region in the VI32 genome was verified. Seven genes (LSG1–LSG7) were amplified from DNA of VI43, but not of VI32. Histone H2A served as positive control (+). (c) Ex planta phenotypes of VI43ΔLSI, VI43ΔLSII, VI43ΔLS strains on simulated xylem fluid medium (SKM; bottom view) and Czapek Dox medium (CDM) with sucrose or galactose (top view) for 14 days at 25 °C show no significant alterations compared to VI43. (d) and (e) *V. longisporum* VI43ΔLSI, VI43ΔLSII, and VI43ΔLS induce more severe disease symptoms in *B. napus* compared to wild-type VI43 and asymptomatic VI32 35 days postinoculation by root dipping into respective spore solutions or water (Mock). (d) The diagram displays the number of plants with indicated symptoms relative to the total number of plants (n) from three experiments with two independent VI43ΔLSI, VI43ΔLSII transformants and one VI43ΔLS transformant. (e) Representative overview pictures of plants from a single experiment.
networks. The VL43LS20kb region identified in the pathogenic VL43 strain encodes two potential transcription factors. Both proteins are candidates for the regulation of virulence-associated genes. Transcriptional control of virulence-related genes has been observed during analysis of related fungal species with different pathotypes. Transcriptome analyses of V. dahliae isolates with different potential to induce disease symptoms in cotton revealed decreased transcript levels of genes for virulence-connected proteins. Potential transcription factors for pathogenicity-related gene control were enriched in the less virulent strain (Jin et al., 2019). V. dahliae Vta2, Vta3, Som1, and Sge1 transcription factors control pathogenicity and development (Bui et al., 2019; Santhanam & Thomma, 2013; Tran et al., 2014). Transcription factors with negative impact on virulence include the pH-dependent regulator PacC of F. oxysporum for repression of low pH-expressed genes. PacC mutants are more virulent on tomato plants (Caracuel et al., 2003). Alternaria brassicicola Amr1 represses hydrolytic enzyme transcription (Cho et al., 2012). In other plant pathogens Amr1 regulates melanin biosynthesis, which is not necessarily linked to virulence in V. dahliae (Harting et al., 2020; Wang et al., 2018).

To our knowledge, this is the first study describing an LS region that decreases the virulence of a pathogenic Verticillium isolate. The asymptomatic isolate VL32 lacks this region. Besides the addition or loss of genes coding for pathogenicity factors, regions required for pathogenicity attenuation contribute to the formation of different pathotypes. These regions and the encoded functions may help closely related strains to control the degree of damage in a specific host and in a defined environmental context.

4 | EXPERIMENTAL PROCEDURES

Strains, primers, and plasmids are listed in Tables S10–S12. Cultivation conditions, strain constructions, plant experiments, and phylogenetic analyses are described in Methods S1. Fungal transformants were verified by Southern hybridization (Bui et al., 2019).

4.1 | DNA preparation and sequencing strategy

Fungal genomic DNA for Southern hybridization and whole-genome sequencing was isolated from mycelium grown in potato dextrose broth (Carl Roth) for 1 week at 25 °C. Mycelium was harvested with Miracloth (Calbiochem Merck), rinsed, tissue-dried, ground in liquid nitrogen, and genomic DNA was isolated (Kolar et al., 1988). A single-stranded DNA shotgun library (ssDNA library) was generated from approximately 5 µg genomic DNA. DNA was fragmented by nebulization for 30 s at 1 bar. Further steps were done according to the Roche protocol. Sequencing was done using the Genome Sequencer FLX system (Roche Applied Science). Illumina sequencing was performed by GATC Services (Eurofins Genomics) using the Genome Analyzer SN365–Hi-Seq2000 with the TruSeq SBS v. 5 kit (Illumina). Sequenced libraries were processed using a sequence length cut-off of 30 bp for paired sequences as well as for shotgun sequences. The input data for the assemblies can be found in Table S1.

4.2 | Assembly and k-mer frequency analysis

Before assembly, 454 and Illumina raw data were trimmed with custom-made Perl scripts as described (Nowrousian et al., 2012; Teichert et al., 2012). Details on assembly generation can be found in Methods S1. k-mer frequencies were analysed as described previously (Potato Genome Sequencing Consortium, 2011; Traeger et al., 2013) (Table S9 and Figure S8). Illumina/Solexa read pairs from paired-end libraries after trimming were used for the analysis.

4.3 | Genome annotation

Structures of VL43 and VL32 protein-coding genes were annotated with AUGUSTUS (Stanke et al., 2008), which was trained for V. longisporum. Learned parameters and evidence from the repeat masked genomes, homolog proteins, RNA-Seq, and EST data, and peptide sequences were used for gene prediction in the two genome assemblies (see Methods S1). In VL43 and VL32 genome assemblies 21,176 and 19,313 protein-coding genes were found, respectively. The median number of coding exons per gene was three for both genomes. The number of strain-specific genes was determined by a BLAST-based clustering approach using the predicted ORFs of V. longisporum VL32 and VL43, V. dahliae Vdls.17, and V. alfalfae VaMs.102 (Ensembl Fungi, http://fungi.ensembl.org/; Kersey et al., 2018).

4.4 | Repeat content analyses

Transposable elements and other repeats were analysed with RepeatMasker (A.F.A. Smit, R. Hubley, P. Green; RepeatMasker Open; www.repeatmasker.org) based on the RepbaseUpdate library (Jurka et al., 2005) and a library of de novo-identified repeat consensus sequences that was generated by RepeatModeler (A.F.A. Smit, R. Hubley; RepeatModeler Open; www.repeatmasker.org). Details can be found in Methods S1.

4.5 | Whole-genome comparison and visualization of collinear blocks

Optical maps of VL32 and VL43 were generated and visualized by OpGen using the Mapsolver software (OpGen).

4.6 | Sequence analyses

As reference genomes the following sequences in the Ensembl Fungi genome database (Kersey et al., 2018) were used: V. dahliae Vdls.17
Höfer, and Alexandra Nagel for support. J.S. and I.M. were supported by DFG grant BR1502-15-1 and the BMBF. Funding was provided by the Natural Sciences and Engineering Research Council of Canada. Pflanzenzucht for annotation support, Andreas von Tiedemann, Derek Barbara, and Christian Timpner for genomic DNA, Luigi Faino for PacBio for excellent technical assistance, Clara Hoppenau, Kai Nesemann, Riccardo Baroncelli for BioFung project. M.N. was supported by DFG grant NO407/5-1 and thanks Ulrich Kück and Christopher Grefen for support at Ruhr-Universität Bochum. Open-access funding enabled and organized by ProjektDEAL.

4.7 | Presence/absence verification of LS regions and analyses of MAT loci

The LS region and the Vl43 MAT locus were amplified by PCR from genomic DNA. For details see Methods S1.

4.8 | Light and electron microscopy

A binocular microscope (Olympus) with cellSens dimension software (v. 1.4; Olympus) was used for light microscopy of colonies, hyphae, and stem tissue. For details on electron microscopy see Methods S1.

ACKNOWLEDGEMENTS

The authors thank Nicole Scheiter, Anne Reinhard, and Stefan Bock for excellent technical assistance, Clara Hoppenau, Kai Nesemann, and Christian Timpner for genomic DNA, Luigi Faino for PacBio annotation support, Andreas von Tiedemann, Derek Barbara, and Riccardo Baroncelli for V. longisporum strains, the Norddeutsche Pflanzenzucht for B. napus seeds, and Miriam Leonard, Annalena Höfer, and Alexandra Nagel for support. J.S. and I.M. were supported by IRTG 2172 PROTECT and CREATE (co-directed by J.W.K.) from the Natural Sciences and Engineering Research Council of Canada. Funding was provided by DFG grant BR1502-15-1 and the BMBF BioFung project. M.N. was supported by DFG grant NO407/5-1 and thanks Ulrich Kück and Christopher Grefen for support at Ruhr-Universität Bochum. Open-access funding enabled and organized by ProjektDEAL.

DATA AVAILABILITY STATEMENT

The genome data are deposited under the BioProject accession numbers PRJNA643983, PRJNA643984, and PRJNA643985. Many predicted transcripts did not pass the filters of NCBI during genome submission. Thus, the number of originally predicted transcripts (used for this study) and the number of submitted transcripts differs. We therefore provide genomes and the full set of predicted transcripts at http://bioinf.uni-greifswald.de/bioinf/katharina/verticillium_full_data

REFERENCES

Almagro Armenteros, J.J., Sanderby, C.K., Sanderby, S.K., Nielsen, H. & Winther, O. (2017) DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics, 33, 3387–3395.

Bui, T.-T., Harting, R., Braus-Stromeyer, S.A., Tran, V.-T., Leonard, M., Höfer, A. et al. (2019) Verticillium dahliae transcription factors Som1 and Vta3 control microsclerotia formation and sequential steps of plant root penetration and colonisation to induce disease. New Phytologist, 221, 2138–2159.

Caracuel, Z., Roncero, M.I.G., Espeso, E.A., González-Verdejo, C.I., García-Maceira, F.I. & Di Pietro, A. (2003) The pH signalling transcription factor PaCc controls virulence in the plant pathosan Fusarium oxysporum. Molecular Microbiology, 48, 765–779.

Casadevall, A. & Pirofski, L.-A. (2014) Microbiology: Ditch the term pathogen. Nature, 516, 165–166.

Casadevall, A. & Pirofski, L.-A. (2018) What is a host? Attributes of individual susceptibility. Infection and Immunity, 86, 1–12.

Chen, J.-Y., Liu, C., Gui, Y.-J., Si, K.-W., Zhang, D.-D., Wang, J. et al. (2018) Comparative genomics reveals cotton-specific virulence factors in flexible genomic regions in Verticillium dahliae and evidence of horizontal gene transfer from Fusarium. New Phytologist, 217, 756–770.

Cho, Y., Srivastava, A., Ohm, R.A., Lawrence, C.B., Wang, K.-H., Grigoriev, I.V. et al. (2012) Transcription factor Amr1 induces melanin biosynthesis and suppresses virulence in Alternaria brassicicola. PLoS Pathogens, 8, 1002974.

Clewes, E., Edwards, S.G. & Barbara, D.J. (2008) Direct molecular evidence supports long-spored microsclerotial isolates of Verticillium from crucifers being interspecific hybrids. Plant Pathology, 57, 1047–1057.

Coghlan, A., Eichler, E., Oliver, S., Paterson, A. & Stein, L. (2006) Chromosome evolution in eukaryotes: A multi-kingdom perspective. Trends in Genetics, 21, 673–682.

Cook, D.E., Kramer, M., Torres, D.E., Seidl, M.F. & Thomma, B.P.H.J. (2020) A unique chromatin profile defines adaptive genomic regions in a fungal plant pathogen. elife, 9, e62208.

Coppin, E., de Renty, C. & Debuchy, R. (2005) The function of the coding sequences for the putative pheromone precursors in Podospora armenia is restricted to fertilization. Eukaryotic Cell, 4, 407–420.

Debuchy, R., Berteaux-Lecellier, V. & Silar, P. (2010) Mating systems and sexual morphogenesis in Ascomycetes. In: Borkovich, K. & Ebbole, D. (Eds.) Cellular and molecular biology of filamentous fungi. Washington, DC: American Society of Microbiology, pp. 501–535.

Debuchy, R. & Turgeon, B.G. (2006) Mating-type structure, evolution, and function in Euascomycetes. In: Kües, U. & Fischer, R. (Eds.) Growth, differentiation and sexuality. Berlin/Heidelberg: Springer-Verlag, pp. 293–323.

Depoter, J.R.L., Rodriguez-Moreno, L., Thomma, B.P.H.J. & Wood, T. (2017) The emerging British Verticillium longisporum population consists of aggressive Brassica pathogens. Phytopathology, 107, 1399–1405.

Depoter, J.R.L., Seidl, M.F., van den Berg, G.C.M., Thomma, B.P.H.J. & Wood, T.A. (2017) A distinct and genetically diverse lineage of the hybrid fungal pathogen Verticillium longisporum population causes stem striping in British oilseed rape. Environmental Microbiology, 19, 3997–4009.

Depoter, J.R.L., Seidl, M.F., Wood, T.A. & Thomma, B.P.H.J. (2016) Interspecific hybridization impacts host range and pathogenicity of filamentous microbes. Current Opinion in Microbiology, 32, 7–13.

Depoter, J.R.L., Shi-Kunne, X., Missonnier, H., Liu, T., Faino, L., van den Berg, G.C.M. et al. (2019) Dynamic virulence-related regions of the plant pathogenic fungus Verticillium dahliae display enhanced sequence conservation. Molecular Ecology, 28, 3482–3495.

Dong, S., Raffaele, S. & Kamoun, S. (2015) The two-speed genomes of filamentous pathogens: Waltz with plants. Current Opinion in Genetics & Development, 35, 57–65.

(Klosterman et al., 2011) and JR2 (de Jonge et al., 2012), V. alfae VaMs.102 (Klosterman et al., 2011).

Conserved domains were predicted with the InterPro webpage (http://www.ebi.ac.uk/interpro;/ Mitchell et al., 2019). Protein localization was analysed using DeepLoc 1.0 (http://www.cbs.dtu.dk/services/DeepLoc/; Almagro Armenteros et al., 2017). Nuclear localization sites were predicted by cNLS- Mapper (http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi; Kosugi et al., 2009).

HARTING ET AL.
HARTING ET AL.

EFSA Panel on Plant Health, (PLH) (2014) Scientific opinion on the pest categorisation of Verticillium dahliae Kleb. EFSA Journal, 12, 3928.

Eynck, C., Koopmann, B., Grünewald-Stoeker, G., Karlovsky, P. & von Tiedemann, A. (2007) Differential interactions of Verticillium longisporum and V. dahliae with Brassica napus detected with molecular and histological techniques. European Journal of Plant Pathology, 118, 259–274.

Faino, L., Seidl, M.F., Datema, E., van den Berg, G.C.M., Janssen, A., Wittenberg, A.H.J. et al. (2015) Single-molecule real-time sequencing combined with optical mapping yields completely finished fungal genome. mBio, 6, e00936–15.

Faino, L., Seidl, M.F., Shi-Kunne, X., Pauper, M., van den Berg, G.C.M., Wittenberg, A.H.J. et al. (2016) Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen. Genome Research, 26, 1091–1100.

Fogelqvist, J., Tzelepis, G., Bejai, S., Ilbäck, J., Schwelm, A. & Dixielius, C. (2018) Analysis of the hybrid genomes of two field isolates of the soil-borne fungal species Verticillium longisporum. BMC Genomics, 19, 14.

Fradin, E.F., Zhang, Z., Juarez Ayala, J.C., Castroverde, C.D.M., Nazar, R.N., Robb, J. et al. (2009) Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiology, 150, 320–332.

Galaska, J.M. & Freitag, M. (2014) Variability of chromosome structure in pathogenic fungi - of “ends and odds”. Current Opinion in Microbiology, 20, 19–26.

Gibriel, H.A.Y., Li, J., Zhu, L., Seidl, M.F. & Thomma, B.P.H.J. (2019) Verticillium dahliae stains that infect the same host plant display 2 highly divergent effector catalogs. bioRxiv, https://doi.org/10.1101/528729 [preprint].

Harting, R., Höfer, A., Tran, V.-T., Weinhold, L.-M., Barghahn, S., Schlüter, R. et al. (2020) The Vt1 transcriptional regulator is required for microsclerotia melanization in Verticillium dahliae. Fungal Biology, 124, 490–500.

Hartmann, F.E., Sánchez-Vallet, A., McDonald, B.A. & Croll, D. (2017) A fungal wheat pathogen evolved host specialization by extensive chromosomal rearrangements. The ISME Journal, 11, 1189–1204.

Hastie, A.C. (1973) Hybridization of Verticillium albo-atrum and Verticillium dahliae. Transactions of the British Mycological Society, 60, 511–523.

Hastie, A.C. (1989) The analysis of Verticillium strain relationship. In: Tjamos, E.C. & Beckman, C.H. (Eds) Vascular wilt diseases of plants. Vol. 28. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 315–323.

Inderbitzin, P., Bostock, R.M., Davis, R.M., Usami, T., Platt, H.W. & Subbarao, K.V. (2011) Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species. PLoS One, 6, e28341.

Inderbitzin, P., Davis, R.M., Bostock, R.M. & Subbarao, K.V. (2011) The ascomycete Verticillium longisporum is a hybrid and a plant pathogen with an expanded host range. PLoS One, 6, e18260.

Inderbitzin, P., Davis, R.M., Bostock, R.M. & Subbarao, K.V. (2013) Identification and differentiation of Verticillium species and V. longisporum lineages by simplex and multiplex PCR assays. PLoS One, 8, e65990.

Jin, L., Chen, D., Liao, S., Zhang, Y., Yu, F., Wan, P. et al. (2019) Transcriptome analysis reveals downregulation of virulence-associated genes expression in a low virulence Verticillium dahliae strain. Archives of Microbiology, 201, 927–941.

de Jonge, R., Bolton, M.D., Kombrink, A., van den Berg, G.C.M., Yadeta, K.A. & Thomma, B.P.H.J. (2013) Extensive chromosomal reshuffling drives evolution of virulence in an assexual pathogen. Genome Research, 23, 1271–1282.

de Jonge, R., Peter van Esse, H., Maruthachalam, K., Bolton, M.D., Santhanam, P., Saber, M.K. et al. (2012) Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 109, 5110–5115.

Jurka, J., Kapitonov, V., Pavlicek, A., Klonowski, P., Kohany, O. & Walichiewicz, J. (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research, 110, 462–467.

Karapapa, V.K., Bainbridge, B.W. & Heale, J.B. (1997) Morphological and molecular characterization of Verticillium longisporum comb. nov., pathogenic to oilseed rape. Mycological Research, 101, 1281–1294.

Kersey, P.J., Allen, J.E., Allott, A., Barba, M., Boddu, S., Bolt, B.J. et al. (2018) Ensembl genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Research, 46, D802–D808.

Kim, H. & Borkovich, K.A. (2004) LysM effectors are essential for male fertility and sufficient to direct chemotropically polarized growth of trichogyne during mating in Neurospora crassa. Eukaryotic Cell, 5, 544–554.

Klosterman, S.J., Subbarao, K.V., Kang, S., Veronese, P., Gold, S.E., Thomma, B.P.H.J. et al. (2011) Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathogens, 7, e1002137.

Kolar, M., Punt, P.J., van den Hondel, C.A.M.J.J. & Schwab, H. (1988) Transformation of Penicillium chrysogenum using dominant selection markers and expression of an Escherichia coli lacZ fusion gene. Gene, 62, 127–134.

Kombrik, A., Rovenich, H., Shi-Kunne, X., Rojas-Padilla, E., van den Berg, G.C.M., Domazakis, E. et al. (2017) Verticillium dahliae LysM effectors differentially contribute to virulence on plant hosts. Molecular Plant Pathology, 18, 596–608.

Kosugi, S., Hasebe, M., Tomita, M. & Yanagawa, H. (2009) Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proceedings of the National Academy of Sciences of the United States of America, 106, 10171–10176.

Kuzmin, E., VanderSluis, B., Nguyen Ba, A.N., Wang, W., Koch, E.N., Usaj, M. et al. (2020) Exploring whole-genome duplicate gene retention with complex genetic interaction analysis. Science, 368, eaaz5667.

Leonard, M., Kühn, A., Harting, R., Maurus, I., Nagel, A., Starke, J. et al. (2020) Verticillium longisporum elicits media-dependent secretome responses with capacity to distinguish between plant-related environments. Frontiers in Microbiology, 11, 1876.

Mayrhofer, S., Weber, J.M. & Pöggeler, S. (2006) Pheromones and pheromone receptors are required for proper sexual development in the homothallic ascomycete Sordaria macrospora. Genetics, 172, 1521–1533.

Metzenberg, R.L. & Glass, N.L. (1990) Mating type and mating strategies in Neurospora. BioEssays, 12, 53–59.

Milgroom, M.G., Jiménez-Gasco, M.D.M., Olives García, C., Drott, M.T. & Jiménez-Díaz, R.M. (2014) Recombination between clonal lineages differing in virulence and pathogenicity. PLoS Genetics, 6, e1001740.

Mitchell, A.L., Attwood, T.K., Babbitt, P.C., Blum, M., Bork, P., Bridge, A. et al. (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Research, 47, D351–D360.

Möller, M. & Stukenbrock, E.H. (2017) Evolution and genome architecture in fungal plant pathogens. Nature Reviews Microbiology, 15, 756–771.

Morales, L. & Dujon, B. (2012) Evolutionary role of interspecies hybridization and genetic exchanges in yeasts. Microbiology and Molecular Biology Reviews, 76, 721–739.

Novakazi, F., Inderbitzin, P., Sandoya, G., Hayes, R.J., von Tiedemann, A. & Subbarao, K.V. (2015) The three lineages of the diploid hybrid Verticillium longisporum differ in virulence and pathogenicity. Phytopathology, 105, 662–673.

Nowroussian, M., Stajich, J.E., Chu, M., Engh, I., Espagne, E., Hallday, K. et al. (2010) De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis. PLoS Genetics, 6, e1000891.
Nowrouesian, M., Teichert, I., Masloff, S. & Kück, U. (2012) Whole-genome sequencing of Sordaria macrospora mutants identifies developmental genes. G3, Genes, Genomes, Genetics. 2, 261–270.

Pantou, M.P. & Typas, M.A. (2005) Electrophoretic karyotype and gene mapping of the vascular wilt fungus Verticillium dahliae. FEMS Microbiology Letters, 245, 213–220.

Pegg, G.F. & Brady, B.L. (2002) Verticillium wilts. Wallingford, UK: CABI Publishing.

Plissonneau, C., Hartmann, F. & Croll, D. (2018) Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome. BMC Biology, 16, 5.

Pöggeler, S. (2001) Mating-type genes for classical strain improvements. Selin, C., de Kievit, T.R., Belmonte, M.F. & Fernando, W.G.D. (2016) Molecular Microbiology, 36, 335–345.

Resende, M.L.V., Flood, J. & Cooper, R.M. (1994) Host specialization of Verticillium dahliae, with emphasis on isolates from cacao (Theobroma cacao). Plant Pathology, 43, 104–111.

Reusche, M., Thole, K., Janz, D., Truskina, J., Rindfleisch, S., Drübert, C. et al. (2012) Verticillium infection triggers VASCULAR-RELATED NAC DOMAIN7-dependent de novo xylem formation and enhances drought tolerance in Arabidopsis. The Plant Cell, 24, 3823–3837.

Rouxel, T., Grandaubert, J., Hane, J.K., Hoede, C., van de Wouw, A.P., Couloux, A. et al. (2011) Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeated-induced point mutations. Nature Communications, 2, 202.

Santhanam, P. & Thomma, B.P.H.J. (2013) Verticillium dahliae Sge1 differentially regulates expression of candidate effector genes. Molecular Plant-Microbe Interactions, 26, 249–256.

Schmoll, M., Seibel, C., Tisch, D., Dorrer, M. & Kubicek, C.P. (2010) A novel class of peptide pheromone precursors in ascomycetous fungi. Molecular Microbiology, 77, 1483–1501.

Seidl, M.F., Kramer, H.M., Cook, D.E., Fiorin, G.L., van den Berg, G.C.M., Faino, L. et al. (2020) Repetitive elements contribute to the diversity and evolution of centromeres in the fungal genus Verticillium. mBio, 11, e01714-20.

Seidl, M.F. & Thomma, B.P.H.J. (2014) Sex or no sex: evolutionary adaptation occurs regardless. BioEssays, 36, 335–345.

Seidl, M.F. & Thomma, B.P.H.J. (2017) Transposable elements direct the coevolution between plants and microbes. Trends in Genetics, 33, 842–851.

Selin, C., de Kievit, T.R., Belmonte, M.F. & Fernando, W.G.D. (2016) Elucidating the role of effectors in plant-fungal interactions: Progress and challenges. Frontiers in Microbiology, 7, 600.

Sharma, R., Mishra, B., Runge, F. & Thines, M. (2014) Gene loss rather than gene gain is associated with a host jump from monocots to dicots in the smut fungus Melanospichum pennsylvanicum. Genome Biology and Evolution, 6, 2034–2049.

Shi-Kunne, X., Faino, L., van den Berg, G.C.M., Thomma, B.P.H.J. & Seidl, M.F. (2018) Evolution within the fungal genus Verticillium is characterized by chromosomal rearrangement and gene loss. Environmental Microbiology, 20, 1362–1373.

Short, D.P.G., Gurung, S., Hu, X., Inderbitzin, P. & Subbarao, K.V. (2014) Maintenance of sex-related genes and the co-occurrence of both mating types in Verticillium dahliae. PLoS One, 9, e111215.

Singh, S., Braus-Stromeyer, S.A., Timpner, C., Tran, V.T., Lohaus, G., Reusche, M. et al. (2010) Silencing of Vla20 forchorismatic synthase revealed that the phytopathogen Verticillium longisporum induces the cross-pathway control in the xylem. Applied Microbiology and Biotechnology, 85, 1961-1976.

Slater, G.S.C. & Birney, E. (2005) Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics, 6, 31.

Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. (2008) Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics, 24, 637–644.

Steenwyk, J.L., Lind, A.L., Ries, L.N.A., dos Reis, T.F., Silva, L.P., Almeida, F. et al. (2010) Pathogenic alldiploid hybrids of Aspergillus fungi. Current Biology, 30, 2495–2507.

Stergiopoulos, I. & de Wit, P.J.G.M. (2009) Fungal effector proteins. Annual Review of Phytopathology, 47, 233–263.

Stukkenbrok, E.H., Christiansen, F.B., Hansen, T.T., Duthie, J.Y. & Schierup, M.H. (2012) Fusion of two divergent fungal individuals led to the recent emergence of a unique widespread pathogen species. Proceedings of the National Academy of Sciences of the United States of America, 109, 10954–10959.

Tang, Y.-C. & Amon, A. (2013) Gene copy-number alterations: a cost-benefit analysis. Cell, 152, 394–405.

Teichert, I., Wolff, G., Kück, U. & Nowrouesian, M. (2012) Combining laser microdissection and RNA-seq to chart the transcriptional landscape of fungal development. BMC Genomics, 13, 511.

Traeger, S., Altegoer, F., Freitag, M., Gableton, D., Kempen, F., Kumar, A. et al. (2013) The genome and development-dependent transcriptomes of Pyronema confluens: a window into fungal evolution. PLoS Genetics, 9, e1003820.

Tran, V.-T., Braus-Stromeyer, S.A., Kusch, H., Reusche, M., Kaeve, A., Kühn, A. et al. (2014) Verticillium transcription activator of adhesion Vtx2 suppresses microsclerotia formation and is required for systemic infection of plant roots. New Phytologist, 202, 565–581.

Tran, V.-T., Braus-Stromeyer, S.A., Timpner, C. & Braus, G.H. (2013) Molecular discrimination to diagnose pathogen and aphantogen species of the hybrid Verticillium longisporum on the oilseed crop Brassica napus. Applied Microbiology and Biotechnology, 97, 4467–4483.

Turgeon, B.G. & Yoder, O.C. (2000) Proposed nomenclature for mating type genes of filamentous ascomycetes. Fungal Genetics and Biology, 31, 1–5.

Validov, S.Z., Kamiloa, F.D. & Lugtenberg, B.J.J. (2011) Monitoring of pathogenic and non-pathogenic Fusarium oxysporum strains during tomato plant infection. Microbial Biotechnology, 4, 82–88.

Wang, Y., Hu, X., Fang, Y., Ancheta, A., Goldman, P.H., Hernandez, G. et al. (2018) Transcription factor VdCmr1 is required for pigment production, protection from UV irradiation, and regulates expression of melanin biosynthetic genes in Verticillium dahliae. Microbiology, 164, 685–696.

Zeise, K. & von Tiedemann, A. (2002) Host specialization among vegetative compatibility groups of Verticillium dahliae in relation to Verticillium longisporum. Journal of Phytopathology, 150, 112–119.

Zerboni, D.R. & Birney, E. (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Research, 18, 821–829.

Zhou, L., Hu, Q., Johansson, A. & Dixelius, C. (2006) Verticillium longisporum and V. dahliae: infection and disease in Brassica napus. Plant Pathology, 55, 137–144.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the Supporting Information section.

How to cite this article: Harting R, Starke J, Kusch H, et al. A 20-kb lineage-specific genomic region tames virulence in pathogenic amphidiploid Verticillium longisporum. Mol Plant Pathol. 2021;00:1–15. https://doi.org/10.1111/mpp.13071