Changing look: from Compton–thick to Compton–thin, or the re–birth of fossil AGN

Giorgio Matt1, Matteo Guainazzi2 and Roberto Maiolino1,3

1Dipartimento di Fisica, Università degli Studi “Roma Tre”, Via della Vasca Navale 84, I–00146 Roma, Italy
2XMM Science Operation Center, RSSD–ESA, VILSPA, Apartado 50727, E–28080 Madrid, Spain
3INAF–Osservatorio Astrofisico di Arcetri, Largo Fermi 5, 50125 Firenze, Italy

20 March 2022

ABSTRACT
We discuss the properties of a small sample of Seyfert 2 galaxies whose X–ray spectrum changed appearance on time scales of years, becoming reflection–dominated from Compton–thin, or viceversa. A reflection–dominated spectrum is usually taken as evidence of Compton–thick absorption, but we instead argue that such a spectrum is due to a temporary switching–off of the nuclear radiation. The observations discussed here may help explaining mismatches between optical and X–ray classifications, and provide new strong and direct evidence of the presence of more than one cold circum–nuclear region in Seyfert 2 galaxies.

Key words: galaxies: active – X-rays: galaxies

1 INTRODUCTION
It is well known (see e.g. Matt 2002 for a review, and references therein) that most AGN are ‘obscured’ in X–rays. Their observed spectrum depends on the (hydrogen equivalent) column density, N_H, of the absorber. If the column density exceeds the value, $\sigma_T^{-1}=1.5\times10^{-24}$ cm$^{-2}$, for which the Compton scattering optical depth becomes equal to 1, the sources are called ‘Compton–thick’. If the column density is smaller than σ_T^{-1} but still in excess of the Galactic one, the source is called ‘Compton–thin’. Assuming the simple geometry depicted in Fig. 1 (in which the absorbing matter is assumed to form a geometrically thick torus, according to the popular Unification models, see Antonucci 1993), the expected spectrum is shown in Fig. 2. In the Compton–thin case, the nuclear spectrum (assumed for simplicity to be a power law with photon spectral index 2) can be directly observed above a few keV, and a fluorescent iron line (with EW~10 eV for $N_H=10^{22}$ cm$^{-2}$ and ~100 eV for $N_H=10^{23}$ cm$^{-2}$, see Fig. 3), is produced. In the moderately Compton–thick case ($N_H=4\times10^{24}$ cm$^{-2}$) the spectrum below 10 keV is dominated by the reflection continuum (plus a prominent iron line with EW~1 keV; Ghisellini et al. 1994; Krolik et al. 1994; Matt et al. 1996) produced by the visible part of the inner wall of the torus itself (see Fig. 1), while the nuclear radiation can be directly visible in transmission at higher energies. This is, for instance, the case of two out of the three closest AGN, the Circinus Galaxy (Matt et al. 1999) and NGC 4945 (Iwasawa et al. 1993; Guainazzi et al. 2000). For column densities exceeding $N_H=10^{25}$ cm$^{-2}$, no nuclear radiation is transmitted, and only the reflection component is visible (see for instance NGC 1068, Matt et al. 1997). It is worth noting that reflection from highly ionized matter can also be present (cf. Matt et al. 2000), and that the ionization state of the “cold” reflector may include also mildly ionized components (Bianchi et al. 2001). However, for simplicity we will discuss cold reflectors only.

Also the spectrum reflected by the torus depends on its column density. The iron line EW (calculated with respect to both the reflection continuum and the total one), is shown in Fig. 3 for a torus seen face–on as a function of the N_H in the equatorial plane. In Fig. 4 the reflection spectrum is shown. For Compton–thick material, the spectrum is well–known (e.g. George & Fabian 1991; Matt et al. 1991) while for Compton–thin matter it is very different in shape and, overall, less prominent. (Both figures are based on Monte Carlo simulations; see Ghisellini et al. 1994 for details on the simulation code.)

A reflection–dominated spectrum is usually assumed as evidence of Compton–thick absorption, especially when using instruments working up to ~10 keV, and therefore unable to detect the primary emission through moderately thick absorbers. However, such a spectrum may occur not only when the nucleus is absorbed, but also when its emission decreases down to invisibility (in this case we will speak of a ‘switched–off’ source), provided of course that the reflecting material is distant enough from the nucleus to act as an ‘echo’ for a while. The classical example of a switched–off source is NGC 4051, observed by BeppoSAX during a
Figure 1. Sketch of the geometry adopted for the calculations presented in Figs. 2–4. The opening angle of the torus is 30°.

Figure 2. The X–ray spectrum of an obscured AGN is shown, for different column densities of the absorber. The absorbing matter is assumed to form a geometrically thick torus, according to Unification models.

Figure 3. For the same geometry and illuminating spectrum as in Fig. 4, the EW of the iron line against the pure reflection component (upper data) and against the total continuum (lower data). The torus is assumed to be face–on.

Figure 4. The reflection spectrum from the torus for different column densities: 2×10^{22} cm$^{-2}$ (dashed line), 2×10^{23} cm$^{-2}$ (dotted–dashed line), 2×10^{24} cm$^{-2}$ (dotted line), 2×10^{25} cm$^{-2}$ (solid line). The illuminating spectrum is a power law with photon index 2 and exponential cut–off at 100 keV. The torus is assumed to be face–on.
prolonged low state (Uttley et al. 1999) and found to be reflection-dominated (Guainazzi et al. 1998), i.e. with a very prominent iron line and the hard (and curved) continuum spectrum typical of a Compton-thick reflection component. NGC 4051 is a well-known Seyfert 1 galaxy but, based on the BeppoSAX spectrum alone, it would have been classified as a Compton-thick absorbed source. The explanation in terms of a decrease of the nuclear flux instead of a temporary Compton-thick absorption is further confirmed by recent Chandra observations (Fruscione et al. 2002), which showed a residual short-term and low amplitude variability during another low state of the source; clearly, in this case the nuclear flux was much fainter then usual, but not completely disappeared as during the BeppoSAX observation. We note, incidentally, that a temporary switching-off of the nucleus may explain at least some of the type 1 sources with a large hardness ratio discovered in X-ray surveys, see e.g. Fiore et al. (2001) and Della Ceca et al. (2001).

Recently, the same kind of variability was discovered in a few Seyfert 2 galaxies, which changed from reflection-dominated (and therefore candidate Compton-thick absorbed sources) to Compton-thin, or vice versa. The clearest cases so far are UGC 4203 (Guainazzi et al. 2002), NGC 6300 (Guainazzi 2002), NGC 1365 (Risaliti et al. 2000) and NGC 2992 (Gilli et al. 2000). For at least some of these sources, a change in the column density of the absorber, rather than a switching-off of the source, cannot be completely ruled out, and indeed Risaliti et al. (2002) claimed that variations in the absorbing column density are common in Seyfert 2 galaxies. However, the changing absorbers in the Risaliti et al. (2002) sample are all Compton-thin, and in most cases the variations are too small to rule out the possibility that they are an artifact due to comparing spectra obtained with different instruments. Moreover, this solution is clearly untenable for NGC 2992 (Gilli et al. 2000; see Sec. 2.4), which has been well monitored over the years, showing a gradual change of the nuclear flux and a constant absorber. We find difficult to imagine a situation in which a Compton-thick absorber on the pc-scale (as suggested by the lack of variability of the reflection components) and with a large covering factor (to allow for the rather large reflection components) can vary so dramatically on time-scales of years. Therefore, in the following we will assume that the observed variations are due to the switching-off of the nucleus. After reviewing the current observation status of this field (Sect. 2), we will discuss some possible implications (Sect. 3).

2 SEYFERT 2 GALAXIES WHICH CHANGED LOOK

2.1 UGC 4203

UGC 4203 (a.k.a. Mkn 1210) has been recently observed by XMM-Newton (Guainazzi et al. 2002), unveiling a X-ray bright nucleus, absorbed by \(N_H \approx 2 \times 10^{23} \) cm\(^{-2}\). However, in an ASCA observation performed about five and half years earlier (Awaki et al. 2000), the prominent iron line (\(EW \approx 1 \) keV) and the factor of 5 lower 2–10 keV flux indicated a reflection-dominated spectrum (Fig. 5), with the nuclear emission too faint to be visible.

The limited bandpass of ASCA, along with the low flux of the source, does not permit to distinguish between different column densities of the reflecting matter, provided that it exceeds about \(10^{23} \) cm\(^{-2}\) (see Fig. 4). It is therefore possible that in this case the absorbing and reflecting materials are one and the same.

2.2 NGC 6300

NGC 6300, discovered serendipitously by Ginga (Awaki et al. 1991), was observed in a Compton-thick reflection-dominated state by RXTE on February 1997 (Leighly et al. 1999). Two and half years later a remarkably strong Seyfert nucleus (2–10 keV flux \(\sim 1.3 \times 10^{-11} \) erg cm\(^{-2}\) s\(^{-1}\)) seen through a column density with \(N_H \approx 2 \times 10^{23} \) cm\(^{-2}\) (Fig. 5), was discovered in a BeppoSAX observation. An XMM-Newton observation performed early in 2001 caught the source still in the high flux, Compton-thin state (Maddox et al. 2002).

As the RXTE bandpass extends up to 20 keV, for this source it is possible to distinguish between Compton-thin and Compton-thick reflection (Fig. 4). The detection in the PCA highest energy band is too strong to be explained as pure reflection by matter with \(N_H \approx 2 \times 10^{23} \) cm\(^{-2}\). In this case, therefore, the (thick) reflector must be different from the (thin) absorber.

2.3 NGC 1365

A BeppoSAX observation on August 1997 detected in this source a bright Seyfert nucleus, seen through a Compton-thin (\(N_H \approx 4 \times 10^{23} \) cm\(^{-2}\); Risaliti et al. 2000) absorber. On the contrary, an ASCA observation, performed three years earlier, detected a very flat X-ray continuum (\(\Gamma \approx 0.8 \)) and a 2.1 keV Kα iron line, both indicating a reflection-dominated state (Fig. 5). Due to the limited bandwidth of ASCA, and similarly to UGC 4203, the possibility that the reflector is simply the inner wall of the absorber cannot be ruled out.

2.4 NGC 2992

The brightest and best studied source in our little sample is NGC 2992, a Seyfert 1.9 galaxy with an X-ray absorbing column density \(N_H \sim 9 \times 10^{21} \) cm\(^{-2}\). The X-ray flux of NGC 2992 steadily declined since 1978, when it was observed by HEAO-1 (Mushotzky 1982) at a (unabsorbed) flux level of about \(8 \times 10^{-11} \) erg cm\(^{-2}\) s\(^{-1}\), until 1994, when it was observed by ASCA (Weaver et al. 1996) at a flux level more than one order of magnitude fainter. Then the source underwent a rapid recovery: in 1997 it was observed by BeppoSAX at a flux level somewhat higher than in 1994, while in 1998 it fully recovered its 1978 brightness (Gilli et al. 2000; see Fig. 5).

In this case the comparison between the Compton-thin and the ASCA almost reflection-dominated states clearly rules out the possibility that the reflector is the inner wall of the absorber. The 4-10 to 2-4 keV flux ratio during the ASCA observation is 0.35±0.02 (corresponding to \(\Gamma \approx 1.15 \)), which is largely inconsistent with the theoretical value expected from a reflection dominated spectrum by a column density \(\sim 10^{22} \) cm\(^{-2}\) (0.53). It is worth noting that in both
BeppoSAX observations the power law spectral index was typical for AGN ($\Gamma \approx 1.7$), again indicating that the flux recovery is likely to be associated with the re-emergence of the AGN nuclear emission. In summary, for this source there is no doubt that the absorbing and reflecting regions do not have the same column density and likely belong to different gaseous structures.

3 DISCUSSION

We have presented evidence of the switching–off of the nucleus in a few Seyfert 2 galaxies based on their changed looks (from Compton–thin to reflection–dominated or viceversa) when observed a few years apart. The evidence cannot be considered conclusive yet, and further investigations, both on the same objects and in search of new objects with a similar behaviour, are needed. In the meantime, let us briefly discuss a few interesting consequences of the proposed scenario.

3.1 How many reflection–dominated sources are not genuine Compton–thick absorbed?

This is a question that involves, of course, both Seyfert 1s and Seyfert 2s. It is basically impossible to estimate the fraction of these transitions in obscured AGN, due to the lack of a complete and unbiased sample of homogeneously defined Seyfert 2 galaxies with sufficient X–ray temporal and spectroscopic coverage. A XMM–Newton program is ongoing to address this question on the complete sample of Compton–thick AGN defined in Risaliti et al. (1999).

3.1.1 Implications for the optical/X-ray classification mismatch

The existence of a population of Seyfert 1 galaxies with significant X–ray absorption (Maiolino et al. 2001; Fiore et al. 2001; Della Ceca et al. 2001) has been recently recognized. For most of these sources evidence for absorption comes from the flatness of the X–ray spectrum as derived from a hardness ratio analysis, rather than from a direct measurement of the column density, because they are often too faint to allow for a proper spectral analysis. As the X–ray and optical observations are usually not simultaneous, it is possible that this mismatch is, as least for a fraction of these sources, due to a temporary switching–off of the nuclear radiation. Other explanations are still possible (e.g. ionization of the X–ray absorbing medium, low gas-to-dust ratio in the AGN nuclear environment, dust sublimation). However, if the explanation is indeed in terms of variability, with the sources caught in different states by the X–ray and optical observations, one would expect to find also sources which were switched–off when observed in the optical and switched–on when observed in X–rays, namely X–ray unobscured AGN with a type 2 optical spectrum. Objects of this kind have indeed been recently discovered in sparse samples of nearby Seyfert galaxies, as reported by Pappa et al. (2001) and Panessa et al. (2002).

3.1.2 Implications for the cosmic X–ray background

Another possible implication concerns the modeling of the X–ray Background (XRB). Popular synthesis models of the XRB (e.g. Comastri et al. 1995) require a significant fraction of moderately Compton–thick sources, in which the nuclear radiation can be directly observed at energies of tens of keV. If many of the reflection–dominated sources will be proven to be simply switched–off AGN, there may be in principle the need for a revision of the XRB synthesis models. As, however, the covering factor of the reflecting matter is by all evidence pretty large (e.g. Matt et al. 2000), it is unlikely that the possible lack of intermediate Compton–thick sources will result to be a serious problem.

3.2 How many cold circumnuclear regions?

A question that instead directly follows from the observations of Seyfert 2s which change look, is that of the presence of more than one cold circumnuclear regions.

For at least two out of four sources in our sample, at least two (one thin the other thick) circumnuclear regions are definitely required. (If they actually correspond to two physically and geometrically distinct regions or simply to inhomogeneities in one and the same absorber, it is difficult to say with certainty. However, there is evidence that the Compton–thin absorbers are usually located at much larger distances than the Compton–thick ones, see below). For the other two, this is possible as well, but the limited bandwidth of the observations when the sources were reflection–dominated does not permit to rule out Compton–thin reflection. It is worth noting that in another Compton–thin AGN, NGC 5506, the presence of a Compton–thick reflector can be derived from direct spectral analysis (Matt et al. 2001). Moreover, other Compton–thick AGN in which the soft X–ray spectrum is further absorbed by Compton-thin matter with $N_H \sim 10^{21–22}$ cm$^{-2}$, are known. The Compton–thin absorber may be associated with the host galaxy disk (e.g. Tololo 0109-389; Matt et al. 2003) or with dusty regions of enhanced stellar formation (e.g. the IR ultraluminous galaxy NGC6240; Iwasawa & Comastri 1998; Vignati et al. 1999).

Several authors have already suggested the presence of more than one cold circumnuclear region in AGN. Maiolino & Rieke (1995), Matt (2000) and Weaver (2001) all proposed the presence of both a Compton–thick and a Compton–thin absorber. While all these authors agree that the Compton–thick absorber should be compact (i.e. the ‘real’ torus) on the base of several direct and indirect evidence in nearby sources (i.e. direct imaging in the Circinus Galaxy, Sambun et al. 2001; photoionization models of the reflection spectrum in Circinus and NGC 1068; Bianchi et al. 2001, and dynamical mass considerations in the same two sources, Risaliti et al. 1999), there are several possibilities for the Compton–thin absorber: the Galactic disc (Maiolino & Rieke 1995); dust lanes (Malkan et al. 1998; Matt 2000); starburst clouds (Weaver 2002). It is well possible that different Compton–thin absorbers are present in different sources, or even that more than one are simultaneously present in the same source.
Changing look: from Compton–thick to Compton–thin

Figure 5. Upper-left panel: The ASCA and XMM–Newton best-fit models for UGC 4203 (Guainazzi et al. 2002). Upper-right panel: The BeppoSAX and RXTE best-fit models for NGC 6300 (after Leighly et al. 1999 and Guainazzi 2002). Lower-left panel: ASCA and BeppoSAX best-fit models for NGC 1365 (after Iyomoto et al. 1997 and Risaliti et al. 2000, respectively). Note that, in agreement with these papers, the line feature is represented as a single broad Gaussian profile at $E = 6.57$ keV (ASCA) or as the blending of two narrow features (BeppoSAX) at energies $E = 6.257 \pm 0.09$ keV and 6.95 keV, respectively. Lower-right panel: ASCA (1994) and BeppoSAX (1997, 1998) best fit models of NGC 2992 (after Waever et al. 1996 and Gilli et al. 2000). See text for mode details on each source.

ACKNOWLEDGMENTS

GM and RM acknowledges ASI and MIUR (under grant COFIN-00-02-36) for financial support.

REFERENCES

Antonucci R., 1993, ARA&A 31, 473
Awaki H., Ph.D. thesis, University of Nagoya
Awaki H., Ueno S., Taniguchi Y., Weaver K.A., 2000, ApJ 542, 175
Bianchi S., Matt G., Iwasawa K., 2001, MNRAS, 322, 669
Comastri A., Setti G., Zamorani G., Hasinger G., 1995, A&A, 196, 1
Della Ceca R., Braita V., Cagnoni L., Maccacaro T., 2001, in X-ray Astronomy (ed N.E. White, G. Malaguti & G.G.C. Palumbo), AIP, p. 602
Fiore F., et al., 2001, MNRAS, 327, 771
Fruscione A., Uttley P., McHardy I., 2002, to appear in “Active Galactic Nuclei: from Central Engine to Host Galaxy” (eds: S. Collin, F. Combes and I. Shlosman)
George I.M., Fabian A.C., 1991, MNRAS, 249, 352
Ghisellini G., Haardt F., Matt G., 1994, MNRAS, 267, 743
Gilli R., et al., 2000, A&A 355, 485
Guainazzi M., et al., 1998, MNRAS 301, L1
Guainazzi M., Matt G., Brandt W.N., Antonelli L.A., Barr P., Bassani L., 2000, A&A, 356, 463
Guainazzi M., 2002, MNRAS, 329, L13
Guainazzi M., Matt G., Fiore F., Perola G.C., 2002, A&A, 388, 787
Iwasawa K., et al., 1993, ApJ, 413, L15

© 0000 RAS, MNRAS 000, 000-000
Iwasawa K., Comastri A., 1998, MNRAS, 297, 1219
Krolik J.H., Madau P., Zicky P.T., 1994, ApJ, 420, L5
Leighly K.M., et al., 1999, ApJ, 522, 209
Maddox L.A., Leighly K.M., Nava A., Matsumoto C., Grupe D., 2002, AAS Meeting 201, 48.21
Maiolino R., Rieke G.H., 1995, ApJ, 454, 95
Maiolino R., et al., 2001, A&A, 365, 28
Malkan M.A., Gorijn V., Tam R., 1998, ApJS, 117, 25
Matt G., Perola G.C., Piro L., 1991, A&A, 247, 25
Matt G., Brandt W.N., Fabian A.C., 1996, MNRAS, 280, 823
Matt G., et al., 1997, A&A, 325, L13
Matt G., et al., 1999, A&A, 341, L39
Matt G., 2000, A&A, 355, L13
Matt G., et al., 2000, MNRAS, 318, 173
Matt G., et al., 2001, A&A, 377, L31
Matt G., 2002, Phil. Trans. Royal Society A, 360, 2045
Matt G., Bianchi S., Guainazzi M., Brandt W.N., Fabian A.C., Iwasawa K., Perola G.C., 2003, A&A, 399, 519
Mushotzky R.F., 1982, ApJ, 256, 92
Pappa A., Georgantopoulos I., Stewart G.C., Zezas A.L., 2001, MNRAS, 326, 99
Pannessa F., Bassani L., 2002, A&A, 394, 435
Risaliti G., Maiolino R., Salvati M., 1999, ApJ, 522, 157
Risaliti G., Maiolino R., Bassani L., 2000, A&A 356, 33
Risaliti G., Elvis M., Nicastro F., 2002, ApJ, 571, 234
Sambruna R., et al., 2001, ApJ, 546, L9
Uttley P., McHardy I., Papadakis I.E., Guainazzi M., Fruscione A., 1999, MNRAS 307, L6
Vignati P., et al., A&A, 349, L57
Weaver K.A., et al., 1996, ApJ, 458, 160
Weaver K.A., 2001, in The central kpc of starbursts and AGN: the La Palma connection (eds. J.H. Knapen, J.E. Beckman, I. Shlosman and T.J. Mahoney), ASP Conference Series, Vol. 249, 389