Small GTP-Binding Proteins in Parietal Cells: Candidate Modulators of Parietal Cell Membrane Dynamics

JAMES R. GOLDENRING, M.D., Ph.D., LAURA H. TANG, M.D., Ph.D., AND IRVIN M. MODLIN, M.D., Ph.D.

Gastrointestinal Surgical Research Unit, Department of Surgery, Yale University School of Medicine, and the West Haven Department of Veterans Affairs Medical Center, New Haven, Connecticut

Received July 13, 1992

The stimulated fusion of intracellular H/K-ATPase-containing tubulovesicles with a target canalicular membrane surface is central to the process of acid secretion. A super-family of small GTP-binding proteins (smGTPBPs) has been implicated in many aspects of intracellular dynamics and vesicle membrane trafficking. We have investigated the presence of smGTPBPs in isolated rabbit parietal cells. Parietal cells possess a number of smGTPBP species with molecular masses of 18-28 kDa. One 23 kDa smGTPBP has been localized to tubulovesicles and identified immunochemically as rab2. Rab2 redistributes during stimulation in concert with the movement of the H/K-ATPase. The results demonstrate that specific smGTPBPs are associated with the parietal cell secretory apparatus. Small GTP-binding proteins are important candidate regulators of parietal secretory membrane dynamics.

The stimulation of parietal cell secretion is unique among cells because of the massive reversible recruitment of membrane prior to and during the initiation and maintenance of the secretory process [1-3]. The H/K-ATPase ultimately responsible for the secretion of acid is sequestered within the intracellular tubulovesicles of the resting parietal cell. Upon stimulation, the tubulovesicles fuse with the target canalicular membrane, establishing a greatly expanded secretory canalicular surface through which acid may be pumped into the lumen (Fig. 1). In man and rabbit, this fusion event also releases intrinsic factor, which is packaged within the tubulovesicles. It is therefore apparent that the critical physiological events in parietal cell stimulation-secretion coupling revolve around the recruitment of tubulovesicular membrane into and out of the canalicular target surface. The prominent movement of large amounts of membrane into and out of a secretory surface suggests that critical processing signals must be acting at the level of vesicle targeting. Coordinated mechanisms must exist to provide both the organized vectorial fusion of proton pump-containing vesicles into a secretory canalicular surface, as well as the concerted and directed retrieval of membrane from the canalculus.

Parietal cell secretion can be elicited through at least three separate but apparently interrelated pathways involving histaminergic, cholinergic, and gastrinergic stimuli [4]. In the case of stimulation of the H2-histamine receptor, an increase in intracellular cAMP has been correlated with the onset of secretion [5-7]. Histamine activates type I cAMP-dependent protein kinase [8] and can stimulate the phosphor-
Stimulation of the parietal cell involves fusion of intracellular tubulovesicles with a target canalicular membrane to form an expanded secretory canaliculus. Stimulation of the parietal cell involves fusion of intracellular tubulovesicles with a target canalicular membrane to form an expanded secretory canaliculus.

While both histamine- and carbachol-stimulated phosphoproteins have been identified, no common points of phosphorylation have been recognized, and no specific links with the mediation of secretion have been identified for any of the phosphoproteins. The role of gastrin as a direct stimulant of acid secretion is controversial. Although gastrin can elicit an increase in intracellular Ca\(^{2+}\) in both canine and rabbit parietal cells [14,18], especially in rabbit, it is a poor secretagogue in isolated cell systems [14]. While the three secretagogue systems appear to differ in their initial signal-transduction mechanisms, they all induce the morphological changes that are required for delivery of the proton pump to the gastric lumen [3]. It is therefore reasonable to expect that all stimulatory mechanisms must lead to the initiation of the morphological rearrangement necessary for parietal cell secretion.

SMALL GTP-BINDING PROTEINS

Recent investigations over the past several years have revealed the existence of a growing super-family of proteins, all related to the transforming virus product ras protein [19]. This protein family, variously referred to as small GTP-binding proteins, low molecular mass (weight) GTP-binding proteins, small G proteins, or low molecular mass GTPases, represents a diverse group of critical cellular regulatory proteins. These small GTP-binding proteins (smGTPBPs) are unrelated to the...
classical membrane-associated signal-transducing GTP-binding proteins, such as G_α and G_β. Since the smGTPBP proteins are GTPases, the regulation of GTPase activity and GTP/GDP exchange is critical for the function of these proteins. Rather than possessing a prominent intrinsic GTPase activity like the classical G proteins, however, the function of the smGTPBP proteins appears to be regulated through the modulation of both GTPase and GTP/GDP exchange properties [20]. Regulation of the extremely slow intrinsic GTPase activity of smGTPBP proteins is accomplished through interaction with both GTPase activator proteins (GAPs) [21] as well as with GTP dissociation-stimulating (GDS) proteins [22] (Fig. 2). The GAP proteins, by stimulating GTPase activity, cause “inactivation” of the smGTPBP, while the GDS proteins, by stimulating the exchange of GDP for GTP, cause “reactivation” of the smGTPBP proteins. In addition, recent work indicates that smGTPBP proteins are also associated with GDP dissociation inhibitor (GDI) proteins [23]. Thus, at least four critical points of regulation exist, either directly on the smGTPBP proteins or indirectly through the modification of GAP, GDS, or GDI proteins.

All of the smGTPBP proteins also have a similar basic structural composition. The proteins contain three major domain areas: (1) an “effector” domain where GAP proteins are thought to bind, (2) a highly conserved GTP-binding site, and (3) a hypervariable C terminus which usually contains two terminal cysteine sites for isoprenylation which appear to dictate the specific functions and localization of the individual proteins.

The most detailed examination of smGTPBP proteins has been made in yeast cells of *S. cerevisiae* and *S. pombe*. In these studies, two major smGTPBP proteins, SEC4 and YPT1, which possess approximately 40 percent homology with ras protein, were isolated. The YPT1 protein has been associated with microtubular organization in yeast cells and appears to be a key regulator of the cell cycle [24]. SEC4 was originally characterized as one of the 25 genes required for vesicular secretion in yeast [25]. SEC4 appears to function in regulation of the late stages of vesicular secretion from yeast cells [25].

In mammalian cells, a number of smGTPBP proteins have been identified with varying amounts of homology with both YPT1 and the ras oncoproteins (35–75 percent homology) [19]. The mammalian members of this super-family of related proteins can be roughly divided into four sub-families characterized by their homologies with (1) ras, (2) rho, (3) YPT1/SEC4 (rab1), and (4) raf. The members of the ras-related group, including K-ras, N-ras, rap, and ral, are all involved in regulation of cell division and differentiation. The rho-related group, including rac and G25K, appears to be involved in regulation of cytoskeletal structure. Rho, especially, appears to be
involved in the anchoring of actin filaments to the membrane [26]. The rab family of smGTPBPs was originally discovered through homologies with YPT1 and SEC4, and rab proteins appear to be involved in all aspects of membrane vesicle sorting [27-29]. Finally, the ran protein represents a fourth class of smGTPBP, which is involved in mitotic division and is localized to the nucleus [30]. In contrast to the members of the other three families, ran does not possess the C-terminal cysteine residues that are sites for isoprenylation and membrane insertion.

While these smGTPBPs are structurally related, in the few systems where they have been studied carefully (notably MDCK cells), specific GTP-binding proteins are localized to specific intracellular compartments [31,32]. In particular, the rab family of smGTPBPs has been implicated in the regulation of vesicular transport [19,27]. The family of rab-related proteins appears to be extremely diverse, now encompassing at least 20 separate species. Investigations over the past four years indicate that much of the dynamic regulation of vesicle targeting along both the exocytic and the endocytic pathways in a number of cell systems may be mediated by members of the rab family. The rab3A protein localizes in brain exclusively to small synaptic vesicles [33] and is also present on adrenal chromaffin granules [34,35]. In the adrenal system, rab3 appears to redistribute off granules into the cytoplasm upon stimulation of secretion [35]. In MDCK cells, rab1 and rab2 are associated with the exocytic pathway, whereas rab5 and rab7 are associated with the endocytic system [32]. While all of these investigations suggest that rab proteins within particular cells are associated with discrete compartments, no consistent information exists on common functions across cell systems. Indeed, data exist [20] to suggest that the exact localization of particular members of the gene family might vary from cell to cell, depending on the requirements of the cell machinery involved. Under this hypothesis, particular smGTPBPs, through their regulated GTPase activities, may act as "molecular switches" at appropriate points in individual cell systems. Thus, particular smGTPBPs, as putative signal-transducing modulators, might perform quite different functions in different cell systems.

SMALL GTP-BINDING PROTEINS IN PARIETAL CELLS

In light of the central importance of membrane sorting and regulated movement in the parietal cell, we sought to investigate the distribution and identity of parietal cell smGTPBPs. Many, but not all, of the smGTPBPs renature sufficiently after separation on SDS-PAGE and electrophoretic transfer so as to allow detection on overlays with α-[32P]-GTP. The classical membrane signal-transducing GTP-binding proteins (such as Gα and Gβ) as well as, notably among smGTPBPs, the rho protein, fail to renature on blots. Parietal cells demonstrated a number of 18 kDa to 27 kDa smGTPBPs on blot which differed in their distribution among various membrane fractions [36]. In particular, a 23 kDa protein was a prominent binding species in the 50,000 g light microsomal membranes. In order to assess whether any of the smGTPBP species were involved in the stimulated membrane movement, we studied GTP-binding in subfractions prepared from parietal cells incubated with either 100 μM cimetidine (resting) or 100 μM histamine and 10 μM forskolin (maximally stimulated). Upon stimulation, labeling of the 23 kDa GTP-binding species decreased in 50,000 g membranes while increasing in 4,000 g membranes. A similar stimulated redistribution of the H/K-ATPase was also seen, suggesting that the 23 kDa protein might be associated with tubulovesicles [36]. To determine whether the
23 kDa smGTPBP was associated with tubulovesicles, purified preparations of H/K-ATPase-containing tubulovesicles were obtained from isolated rabbit parietal cells and gastric glands. These preparations demonstrated partitioning of the 23 kDa smGTPBP into tubulovesicle membrane fractions. In contrast, the botulinum C3 exotoxin substrate, the rho protein, was completely excluded from the tubulovesicle fractions, although it was present in all other membrane and cytosolic fractions. The 23 kDa smGTPBP separated on two-dimensional gels into one major and two minor species [36]. All three of these species were partitioned into the tubulovesicle fraction with the greatest enrichment seen for the major species (Fig. 3).

Considering the importance of a tubulovesicle-associated smGTPBP, we next considered the possible identity of the 23 kDa species with a number of known smGTPBPs, using monoclonal and polyclonal antisera against rab1, rab2, rab3A, rab4, rab6, and k-ras [37]. A polyclonal antisera raised against recombinant human rab2 showed specific labeling with the major isoelectric component of the 23 kDa smGTPBP (Fig. 3). The two minor species were not labeled with any of the antisera tested. The immunoreactivity for rab2 exactly paralleled that for H/K-ATPase in parietal cell subfractions prepared during the process of isolation of enriched tubulovesicle membranes (Fig. 4). Co-segregation of rab2 immunoreactivity within H/K-ATPase suggested a tight relationship between the localization of rab2 and H/K-ATPase. We therefore studied the localization of rab2 immunoreactivity in subfractions from resting and stimulated parietal cells. Rab2 immunoreactivity in resting cells was predominantly located in the 50,000 g (P3) membranes, as would be expected for its localization in tubulovesicles (Fig. 5). Fractions from stimulated cells demonstrated a decrease in immunoreactivity in the 50,000 g membranes, however, with a concomitant increase in immunoreactivity in the heavier 4,000 g (P1) membranes. These data were similar to the redistribution of H/K-ATPase seen with stimulation [36]. Significantly, no rab2 immunoreactivity was observed in the soluble fraction in either resting or stimulated cells. These data suggest that rab2 redistributes to the canalicular membrane in concert with the fusion of tubulovesicles. These results contrast with those observed for rab3A, which appears to cycle on and off the membrane of neuronal synaptic vesicles during neurotransmitter release [38].

More recently, we have successfully cloned and sequenced rab2 from rabbit
The deduced amino acid sequence differs from the human at only a single conserved site. In addition, Northern blot analysis demonstrates a tenfold higher level of expression for rab2 mRNA in isolated parietal cells compared to mRNA from isolated chief cells. All these results indicate that rab2 may be an important candidate regulator for tubulovesicle sorting in the parietal cell.

Previous investigations in MDCK cells have assigned rab2 to the intermediate endoplasmic reticular-Golgi membrane compartment [32]. Nevertheless, other studies have localized the protein to neuronal growth cones [39], so that a generalized...
function for the protein has not been determined. Indeed, since the actual target effectors for smGTPBP s have not been determined, it is possible that rab2, as well as other smGTPBP s, may act as multi-functional regulators of membrane and cytoskeletal processing. In the parietal cell, one could anticipate a range of regulatory roles including (1) sorting of H/K-ATPase to an apically directed pathway, (2) stimulated movement of tubulovesicles toward fusion with the secretory canaliculus, or (3) coordinated retrieval of membrane back into tubulovesicles at the cessation of the secretagogue stimulus.

FUTURE IMPLICATIONS

It is important to note that rab2 is not the only smGTPBP associated with the tubulovesicles. Enriched tubulovesicle preparations also demonstrate a prominent 25 kDa GTP-binding species [36]. Indeed, we have recently successfully cloned a number of smGTPBP species from parietal cells, including rab1, rab10, rab11, rab14, rhoA, and the nuclear ran protein as well as one previously unidentified, rab-like protein. Rab11, in particular, appears also to be localized to tubulovesicles. Isolation and characterization of the more precise localization and function of these smGTPBP s in the parietal cell may yield critical information into the fine regulation of membrane processing into and out of the secretory canaliculus of the parietal cell.

ACKNOWLEDGEMENTS

This work was supported by grants to IMM from NIDDKD (DK 38063) and a Veterans Administration Merit Award and to JRG from an NIH FIRST Award (DK43405) and a Veterans Administration Merit Award. JRG is the recipient of an AGA/Abbott Industry Scholar Award. LHT is the recipient of a Brown-Coxe Postdoctoral Fellowship and a Charles Ohse Research Award.

REFERENCES

1. Berglindh T, Dibona DR, Ito S, Sachs G: Probes of parietal cell function. Am J Physiol 238:G165–G176, 1980
2. Helander HF, Sundell GW: Ultrastructure of inhibited parietal cells in the rat. Gastroenterology 87:1064–1071, 1984
3. Forte TM, Machen TE, Forte JG: Ultrastructural changes in oxyntic cells associated with secretory function: A membrane recycling hypothesis. Gastroenterology 73:941–955, 1977
4. Soll AH, Grossman MI: Cellular mechanisms in acid secretion. Ann Rev Med 29:495–507, 1978
5. Soll AH, Wollin A: Histamine and cyclic AMP in isolated canine parietal cells. Am J Physiol 237:E444–E450, 1979
6. Adrian TE, Goldenring JR, Oddsdottir M, Zdon MJ, Zucker KA, Lewis JJ, Modlin IM: A micro-method for the assay of cellular secretory physiology: Application to rabbit parietal cells. Analytical Biochem 182:346–352, 1989
7. Chew CS, Hersey SJ, Sachs G, Berglindh T: Adenylate cyclase stimulation by histamine is coupled to acid secretion. Am J Physiol 238:G312–G320, 1980
8. Chew CS: Parietal cell protein kinases: Selective activation of the Type I cAMP-dependent protein kinase by histamine. J Biol Chem 260:7540–7550, 1985
9. Oddsdottir M, Goldenring JR, Adrian TE, Zdon MJ, Zucker KA, Modlin IM: Identification and characterization of a cytosolic 30 kDa histamine stimulated phosphoprotein in parietal cell cytosol. Biochim Biophys Res Commun 154:489–496, 1988
10. Chew CS, Brown MR: Histamine increases phosphorylation of 27- and 40-kDa parietal cell proteins. Am J Physiol 253:G823–G829, 1987
11. Urushidani T, Hanzel DK, Forte JG: Protein phosphorylation associated with stimulation of rabbit gastric glands. Biochim Biophys Acta 930:209–219, 1987
12. Urushidani T, Hanzel DK, Forte JG: Characterization of an 80-kDa phosphoprotein involved in parietal cell stimulation. Am J Physiol 256:G1070–G1081, 1989
13. Malinowska DH, Sachs G, Cuppoletti J: Gastric H⁺ secretion: Histamine (cAMP-mediated) activation of protein phosphorylation. Biochim Biophys Acta 972:95–109, 1988

14. Chew CS, Brown MR: Release of intracellular Ca²⁺ and elevation of inositol triphosphate by secretagogues in parietal and chief cells isolated from rabbit gastric mucosa. Biochim Biophys Acta 888:116–125, 1986

15. Neglescu PA, Machen TE: Intracellular Ca regulation during secretagogue stimulation of the parietal cell. Am J Physiol 254:C130–C140, 1988

16. Brown MR, Chew CS: Carbachol-induced protein phosphorylation in parietal cells: Regulation by [Ca²⁺]i. Am J Physiol 257:G99–G110, 1989

17. Tsunoda Y, Funasaka M, Modlin IM, Hidaka H, Fox LM, Goldenring JR: An inhibitor of calcium/calmodulin-dependent protein kinase II, KN-62, inhibits cholinergic-stimulated parietal cell secretion. Am J Physiol 262:G118–G122, 1992

18. Tsunoda Y: Gastrin induces intracellular Ca²⁺ release and acid secretion regulation by the microtubular-microfilamentous system. Biochim Biophys Acta 855:186–188, 1986

19. Balch W: Small-GTP-binding proteins in vesicular transport. Trends Biochem Sci 15:473–477, 1990

20. Bourne H: Do GTPases direct membrane traffic in secretion? Cell 53:669–671, 1991

21. Kikuchi A, Sasaki T, Araki S, Hata Y, Takai Y: Purification and characterization from bovine brain cytosol of two GTPase-activating proteins specific for smg p21, a GTP-binding protein having the same effector domain as c-ras p21. J Biol Chem 264:9133–9136, 1989

22. Yamamoto T, Kaibuchi A, Ueda T, Ohga N, Takai Y: Purification and characterization of a GTP-binding protein with a molecular weight of 20,000 in bovine brain membranes. J Biol Chem 265:16626–16634, 1990

23. Matsui Y, Kikuchi A, Araki S, Hata Y, Kondo J, Ternashi Y, Takai Y: Molecular cloning and characterization of a novel type of regulatory protein (GDI) for smg ps5A, a ras p21-like GTP-binding protein. Mol Cell Biol 10:4116–4122, 1990

24. Schmitt HD, Wagner P, Pfaff E, Gallwitz D: The ras-related YPT1 gene product in yeast: A GTP-binding protein that might be involved in microtubule organization. Cell 47:401–412, 1986

25. Salmon A, Novick PJ: A ras-like protein is required for a post-golgi event in yeast secretion. Cell 49:527–538, 1987

26. Paterson HF, Self AJ, Garrett MD, Just I, Akories H, Hall A: Microinjection of recombinant p21rho induces rapid changes in cell morphology. J Cell Biol 111:1001–1007, 1990

27. Goud B, McCaffrey M: Small GTP-binding proteins and their role in transport. Curr Opin Cell Biol 3:626–633, 1991

28. Touchot N, Chardin P, Tavitian A: Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: Molecular cloning of YPT1-related cDNAs from a rat library. Proc Natl Acad Sci USA 84:8210–8214, 1987

29. Zahraoui A, Touchot N, Chardin P, Tavitian A: The human rab genes encode a family of GTP-binding proteins related to yeast YPT1 and SEC4 products involved in secretion. J Biol Chem 264:12394–12401, 1989

30. Bischoff FR, Ponsting H: Catalysis of guanine nucleotide exchange on ras by the mitotic regulator RCC1. Nature 354:80–82, 1991

31. Chavrier P, Vingron M, Sander C, Simons K, Zerial M: Molecular cloning of YPT1/SEC4-related cDNAs from an epithelial cell line. Mol Cell Biol 10:6578–6585, 1990

32. Chavrier P, Parton RG, Hauri HP, Simons K, Zerial M: Localization of low molecular weight GTP-binding protein in exocytotic and endocytotic compartments. Cell 62:317–329, 1990

33. Mollard GFV, Mignery GA, Baumert M, Perin MS, Hanson TJ, Burger PM, Jahn R, Sudhof TC: rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. Proc Natl Acad Sci USA 87:1988–1992, 1990

34. Mizoguchi A, Kim S, Ueda K, Takai Y: Tissue distribution of smg25A, a ras p21-like GTP binding protein, studied by use of a specific monoclonal antibody. Biochem Biophys Res Commun 162:1438–1445, 1989

35. Darchen F, Zahraoui A, Hammel F, Monteils MP, Tavitian A, Scherman D: Association of GTP-binding protein Rab3A with bovine adrenal chromaffin granules. Proc Natl Acad Sci USA 87:5692–5696, 1990

36. Basson MD, Goldenring JR, Tang LH, Lewis JJ, Padfield P, Jamieson JD, Modlin IM: Redistribution of 23 kDa tubulovesicle-associated GTP-binding proteins during parietal cell stimulation. Biochem J 279:43–48, 1991
37. Tang LH, Stoch SA, Modlin IM, Goldenring JR: Identification of rab2 as a tubulovesicle-membrane associated protein in rabbit gastric parietal cells. Biochem J 285:715–719, 1992
38. Fischer von Mollard G, Sudhof TC, Jahn R: A small GTP-binding protein dissociates from synaptic vesicles during exocytosis. Nature 349:79–80, 1991
39. Ayala J, Touchot N, Zahraoui A, Tavitian A, Prochiantz A: The product of rab2, a small GTP binding protein, increases neuronal adhesion and neurite growth in vitro. Neuron 4:797–805, 1990