Construction of genomic marker sets based on the chloroplast genome of a green alga, Ulva pertusa (syn. Ulva australis), leads to simple detection of Ulva species

Chisa Mitsuhashi, Hiroshi Teramura and Hiroaki Shimada*
Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan

(Received 16 October 2019, accepted 9 December 2019; J-STAGE Advance published date: 18 April 2020)

In closed sea areas such as Tokyo Bay, a phenomenon known as a green tide often occurs, in which large amounts of Ulva seaweed grow abnormally and form mats along the coast. This is currently a serious environmental problem. Green tides are generated by the explosive growth of multiple types of Ulva algae. However, many Ulva species show similar characteristics to each other and are indistinguishable by appearance, making it difficult to identify the Ulva algae in green tides. In this study, we determined the entire nucleotide sequence of the chloroplast genome of Ulva pertusa (syn. Ulva australis) and identified two large inversions of gene order, suggesting the occurrence of genome inversions. We also detected structural polymorphisms among Ulva chloroplast genomes. Ulva pertusa was classified in a different clade from that containing U. lactuca and U. ohnoi, suggesting that U. pertusa is evolutionarily divergent from these species. Based on this knowledge, we constructed a genetic diagnosis system for Ulva algae. Using this approach, we established a simple method that can determine the species of Ulva algae by PCR using specific molecular markers, through which representative Ulva species such as U. lactuca, U. ohnoi and U. pertusa were easily distinguished.

Key words: chloroplast genome, complete nucleotide sequence, genotyping marker, polymorphic DNA, species identification

INTRODUCTION

The genus Ulva (Ulvophyceae, Chlorophyta), consisting of common green macroalgae that often form algal beds, is found in intertidal zones in bays. Many kinds of Ulva species are important primary producers that support the ecosystem in bay areas (Zertuche-González et al., 2009). Although most algal species in the genus Ulva exhibit a simple multicellular organization, their morphological and cytological properties are highly divergent. Ulva presents flat lettuce-like blades with two cell layers, while Enteromorpha produces monostromatic tubular thalli. Therefore, these algae were formerly classified as different genera because of differences in their morphological characteristics. However, they are currently considered to belong to the same genus based on their genetic proximity, such as the similarity of their nuclear-encoded internal transcribed spacer (ITS) sequences (Tan et al., 1999; Hayden et al., 2003; Shimada et al., 2003; Kraft et al., 2010; Guidone et al., 2013). Ulva shows phenotypic plasticity, which includes the typical morphology formed with the aid of specific bacteria (Lovlie, 1969; Coates et al., 2015; Wichard et al., 2015). Therefore, Ulva is an interesting taxon for the investigation of evolution from unicellular organisms to multicellular organisms and of embryology leading to morphological diversity. However, it is also difficult to determine the species of these algae based on their morphological characteristics because their morphological plasticity varies due to environmental factors and symbiotic bacteria.

Recently, the nucleotide sequences of the ITSs, the rbcL gene and the cox genes have been analyzed in Ulva species. These genetic analyses have revealed that some of these algae previously considered to be different species are the same species: U. armoricana and U. scandinavica have been renamed as U. rigida (Malta et al., 1999; Kawai et al., 2007), U. fasciata and U. lactuca are also identical
(Hughey et al., 2019), and U. pertusa, a common Ulva species in Japan, is the same as U. australis in Australia (Couceiro et al., 2011; Hanyuda and Kawai, 2018).

Although green alga species show similar morphological characteristics, there is a great divergence in their genome structures. Nucleotide diversity is generally high in the chloroplast genomes of green alga species compared with that in their nuclear genes (Leliaert et al., 2012). This situation indicates that the identities of individual species can be efficiently determined based on the diversity of their chloroplast genome sequences. Therefore, a large number of chloroplast genomes have been analyzed. These nucleotide sequences exhibit considerably different sizes, as exemplified by U. linza (86,726 bp), U. lactuca (96,005 bp), U. ohnoi (103,313 bp) and U. mutabilis (119,866 bp) (accession numbers KX058323, KT882614, AP018696 and MK069584, respectively).

In this study, we report the entire nucleotide sequence of the U. pertusa chloroplast genome and its structural differences from other previously reported chloroplast genomes. Based on these data, we constructed simple molecular markers that allowed the discrimination of Ulva species living in Tokyo Bay such as U. pertusa, U. lactuca and U. ohnoi, whose characteristics are highly similar.

MATERIALS AND METHODS

Algae and culture conditions Unialgal cultures of U. pertusa (=U. australis) and other green alga species were obtained from the stock center of the Kobe University Macro-Algal Culture Collection (KU–MACC); these cultures included U. pertusa (=U. australis) (KU-1658), U. ohnoi (KU-1529, KU-1525), U. lactuca (KU-1539, KU-1540), U. fenestrata (KU-1603), U. intestinalis (KU-1534), U. compressa (KU-1634) and U. flexuosa (KU-1526, KU-1532). They were cultured at 18 °C under a 16–8 h light–dark cycle in sea water (filtered, UV-sterilized and autoclaved) containing 0.5% KW21 salt (Daichi Seimo, Kumamoto, Japan) in a culture flask with gentle shaking.

Preparation of DNA from algal samples, PCR, and DNA sequence analysis Chloroplast DNA was prepared using a Chloroplast Isolation Kit (Sigma-Aldrich, St. Louis, MO, USA) and purified with the QuickExtract DNA extraction kit (Lucigen, Middleton, WI, USA). Genomic DNA was also prepared using the REDExtract-N-Amp TM Plant PRC Kit (Merck, Darmstadt, Germany). PCR was performed using KOD Fx Neo DNA polymerase (Toyobo, Osaka, Japan). The reaction cycles were set with an initial denaturation at 94 °C for 2 min, followed by 35 cycles of denaturation at 98 °C for 10 s, annealing at 50–60 °C for 30 s, extension at 68 °C for 30 s kb⁻¹, and a final extension at 68 °C for 7 min. Primers for PCR amplification of fragments of the U. pertusa chloroplast genome were designed based on the chloroplast genome of U. lactuca (acc. no. KT882614). Primers used for PCR amplification are listed in Supplementary Table S1. The PCR products were purified using the Wizard SV Gel and PCR Clean-Up System (Promega, Madison, WI, USA). Sequencing reactions were performed using a Sanger sequencing platform, the ABI 3730 XL automated sequencer (Applied Biosystems, Foster City, CA, USA). The nucleotide sequence of the chloroplast genome was determined using the PCR-amplified fragments via the direct sequencing method based on Sanger sequencing.

Annotation and mapping of chloroplast genes The primary approach for the identification of putative genes was reciprocal BLAST analysis. tRNA genes were submitted to tRNAscan-SE 2.0 (http://lowelab.ucsc.edu/tRNAscan-SE/) using the default model (Lowe and Chan, 2016). Thereafter, the chloroplast genes were annotated by GeSeq (https://chlorobox.mpimp-golm.mpg.de/geseq.html) (Tillich et al., 2017). The circular genome map was drawn using OGDRAW v1.3.1 (https://chlorobox.mpimp-golm.mpg.de/OGDraw.html) (Greiner et al., 2019). The resulting annotated sequence has been deposited at the DDBJ under accession number LC507117.

Phylogenetic tree analysis Sequence datasets for Ulva species were obtained from the GenBank database. They were aligned using MAFFT (Katoh et al., 2005), and then edited using trimAI (Capella-Gutiérrez et al., 2009). A maximum likelihood (ML) phylogenetic tree was constructed using Molecular Evolutionary Genetics Analysis (MEGA) X10.1 (Kumar et al., 2018). The ML tree was constructed with 1,000 bootstrap replicates obtained based on the General Time Reversible model (Felsenstein, 1985; Nei and Kumar, 2000).

RESULTS

Structural characteristics of the U. pertusa chloroplast genome The entire nucleotide sequence of the U. pertusa chloroplast genome was determined. This genome is a circular DNA molecule consisting of 102,899 bp (Fig. 1), which is similar to the reported sizes for U. ohnoi (103,313 bp), U. flexuosa (89,414 bp), U. lactuca (96,005 bp) and other Ulva species (Cai et al., 2017; Wang et al., 2017; Suzuki et al., 2018).

The U. pertusa chloroplast genome was predicted to contain 104 genes, including 74 predicted protein-coding genes, 3 ribosomal RNA genes and 27 tRNA genes, similar to other chloroplast genomes (Table 1). No inverted repeat (IR) sequences were found in the U. pertusa chloroplast genome. The numbers of introns were different between genes in the chloroplast genomes (Supplementary Table S2). Some genes lacked introns; no introns
Genetic diversity of *Ulva* chloroplast genomes

Fig. 1. Map of the chloroplast genome of *U. pertusa*. Genes shown inside the circle are transcribed clockwise, and those drawn outside the circle are transcribed counterclockwise. Functionally annotated genes are shown as colored boxes. The list of genes in the chloroplast genome is provided in Supplementary Table S2.

Table 1. Number of genes in the chloroplast genomes of *Ulva* species

Genome size (bp)	rRNA	tRNA	Transcription and translation	Photosynthesis	Others	Ycf	ORF	
U. pertusa	102,899	3	27	25	27	14	5	3
U. mutabilis	119,866	3	27	25	27	14	5	1
U. ohnoi	103,313	3	28	25	27	14	5	7
U. lactuca	96,005	3	28	25	27	14	5	6
U. linza	86,726	3	28	25	27	14	5	0
U. flexuosa	89,414	3	28	25	27	14	5	0
U. prolifera	93,066	3	28	25	27	14	5	1

Genes in the chloroplast genomes are listed. These genes were classified into rRNA genes (shown by “rRNA”), tRNA genes (“tRNA”), genes for transcription and translation (“Transcription and translation”), genes for photosynthesis (“Photosynthesis”), genes involved in other functions (“Others”), Ycf genes (“Ycf”) and other ORFs (“ORF”).
were found in the *psbD* or *atpB* genes, which include introns in *U. ohnoi* and *U. lactuca*.

The *U. pertusa* chloroplast genome contained a set of tRNA genes, each of which corresponded to an individual residue among 20 amino acids (Table 2). Different numbers of tRNA genes were predicted to exist in the chloroplast genomes of *U. pertusa* and *U. mutabilis* in comparison with other *Ulva* species. In the *U. pertusa* and *U. mutabilis* chloroplast genomes, no *trnF*(AAA) was predicted to exist. Only *trnF*(GAA) was found in these genomes for tRNA-Phe, whereas both *trnF*(AAA) and *trnF*(GAA) occur in many *Ulva* species, such as *U. ohnoi* and *U. lactuca* (Table 2). A nucleotide sequence that showed partial similarity to *trnF*(AAA) was found in the region between *psbN* and *trnM*(CAU) of the *U. pertusa* chloroplast genome, where the *trnF*(AAA) gene is located in the *U. lactuca* and other chloroplast genomes (Fig. 2).

Comparison with other chloroplast genomes *Ulva pertusa* exhibits a phenotype of lettuce-like morphology similar to the morphology of *U. ohnoi* and *U. lactuca*. However, evolutionary studies on these algae have suggested that *U. pertusa* is closely related to *U. flexuosa* and *U. linza*, and this species has been classified into a clade separate from that containing *U. ohnoi* and *U. lactuca* (Kraft et al., 2010; Ichihara et al., 2015; Matsumoto and Shimada, 2015). Using the complete chloroplast genome sequences, we generated a phylogenetic tree of *Ulva* species, including *U. pertusa*. Our results also indicate that *U. pertusa* is evolutionarily distant from *U. ohnoi* and *U. lactuca* and relatively close to *U. mutabilis*, *U. flexuosa*, *U. prolifera* and *U. linza* (Fig. 3).

The structure of the *U. pertusa* chloroplast genome showed a major difference from those of the representative chloroplast genomes. The order of genes was inverted in the 25-kb region lying between the *psbB* and *rpl19* genes of the *U. pertusa* chloroplast genome (Fig. 4). In addition, the 3-kb region containing *psbD* and *psbC* was inverted in *U. pertusa* and *U. mutabilis* (Fig. 4). These characteristics suggest that rearrangement events have occurred in the *U. pertusa* and *U. mutabilis* chloroplast genomes.

Construction of genotyping markers allowing the detection of polymorphic DNAs in chloroplast genomes The nucleotide sequences of individual genes were highly conserved, but large differences were found at many points in the chloroplast genomes, such as in introns and intergenic regions. Using the unique nucleotide sequences in the *U. pertusa* chloroplast genomes, we attempted to design appropriate genotyping markers and applied them to establish a simple method for the identification of individual *Ulva* species.

We designed four genotyping markers that corresponded to sequences located near the *psbD*, *atpA* and *atpB* genes and in the region between the *rbcL* and *chl1* genes (Table 3). Using these markers, we set genotyping markers that could detect genetic polymorphisms among the *Ulva* species. The PCR-amplified fragments detected apparent polymorphisms due to different fragment sizes depending on the individual *Ulva* species (Fig. 5). These results suggest that these markers can be used for the differentiation of *U. pertusa* from other *Ulva* species.

Next, we set out to distinguish individual *Ulva* species using these markers. Polymorphic DNA fragments specific to each *Ulva* species, namely *U. ohnoi*, *U. fenestrata*, *U. lactuca*, *U. flexuosa*, *U. compressa*, *U. intestinalis* and *U. pertusa*, were detected. In this analysis, markers A to D generated a unique set of sizes of the amplified fragments for each of these species (Fig. 6A–D). The same

Table 2. tRNA genes in *Ulva* species chloroplast genomes

Gene	*U. pertusa*	*U. ohnoi*	*U. lactuca*	*U. linza*	*U. flexuosa*	*U. prolifera*
trnA(UGC)	1		1		1	1
trnC(GCA)	1		1	1	1	1
trnD(GUC)	1		1		1	1
trnE(UUC)	1		1		1	1
trnF(GAA)	1	0	1		1	1
trnF(GUC)	1		1		1	1
trnG(GCC)	1		1		1	1
trnG(UCC)	1		1		1	1
trnH(GUG)	1		1		1	1
trnI(GAU)	2		2		1	1
trnK(UUU)	1		1		1	1
trnL(UAA)	1		1		1	1
trnL(UAG)	1		1		1	1
trnM(CAU)	2		2		1	1
trnM(CAU)	1		1		1	1
trnN(GUU)	1		1		1	1
trnP(UGG)	1		1		1	1
trnQ(UUG)	1		1		1	1
trnR(ACG)	1		1		1	1
trnR(UCU)	1		1		1	1
trnS(GCU)	1		1		1	1
trnS(UGA)	1		1		1	1
trnT(UGU)	1		1		1	1
trnV(UAC)	1		1		1	1
trnW(CCA)	1		1		1	1
trnY(GUA)	1		1		1	1

The numbers of copies of each tRNA gene are listed.
Genetic diversity of *Ulva* chloroplast genomes

Analysis conducted on *U. ohnoi*, *U. lactuca* and *U. flexuosa* showed the same results, indicating the reproducibility of our genetic diagnosis. The nucleotide sequence of the *U. mutabilis* chloroplast genome has been reported (acc. no. MK069584). Based on these sequence data, we estimated what the sizes of the amplified fragments of the *U.*
mutabilis chloroplast genome would be when they were amplified using the primers A to D, and predicted them to be 1.5 kb, 1.4 kb, 1.8 kb and 6.5 kb, respectively. Due to the differences in the amplified fragment patterns specific to each individual species, the species were clearly distinguished from each other (Fig. 6E).

DISCUSSION

We determined the entire nucleotide sequence of the *U. pertusa* chloroplast genome. The structural characteristics of this genome were similar to those of other algal chloroplast genomes (Fig. 1). The size of the chloroplast genome of *U. pertusa* (102,899 bp) was similar to those of other *Ulva* species, such as *U. ohnoi* (103,313 bp), *U. flexuosa* (89,414 bp) and *U. lactuca* (96,005 bp). In higher plant chloroplast genomes, IR sequences have been reported (Shinozaki et al., 1986; Hiratsuka et al., 1989). However, no IR sequences were found in the *U. pertusa* chloroplast genome, although they are found in *U. pertusa* and *U. lactuca* (1989). However, no IR sequences were found in the *U. pertusa* chloroplast genome, although they are found in

![Fig. 4](image_url)

Fig. 4. Schematic representation of the order of genes in the chloroplast genomes of *Ulva* species. Regions containing predicted sequence inversions are shown. A gene above the line is transcribed in the clockwise direction, as in Fig. 1, and a gene below the line is transcribed in the counterclockwise direction. Arrows indicate the orientation of the gene order in the chloroplast genomes. Detailed maps of the genes are shown in Supplementary Fig. S1.

![Fig. 5](image_url)

Fig. 5. Evaluation of the genotyping markers. PCR-amplified fragments obtained using primers for the specific genotyping markers are shown. Panels A to D display fragments amplified from the genomic DNA of *U. ohnoi*, *U. lactuca* and *U. pertusa* using specific primers A to D, respectively, which are listed in Table 3. Molecular sizes are shown on the right of each panel.

Primer set	Sequences
A	Forward 5'-GGTGCCTGTATTAATGGGAGAGG
	Reverse 5'-GACCAATGTCGAACATAAACC
B	Forward 5'-TACCTCTCTTGGTTATAGCTTTCATAC
	Reverse 5'-CAGGCTGTGAATAGCTTAAACG
C	Forward 5'-CGACGTAATGAGTGACTGG
	Reverse 5'-CATAAAGAAGTGAAGCAGC
D	Forward 5'-TCAATGCGGACAGATGGAACG
	Reverse 5'-CCGTTGTATAACCGTGGG

PCR primers used for genotyping markers are listed. Markers A to D are the sets of primers (forward and reverse). The sites of the A, C and D primers are located upstream and downstream of the *atpA*, *psbD* and *atpB* genes. The marker B primers correspond to sequences in the 5’ regions of the *rbsL* and *chlI* genes.

![Table 3](image_url)

Table 3. Primer list of the genotyping markers
the genotyping markers. The sizes of the amplified fragments obtained when the genetic diagnosis is performed on each right. Panel E summarizes the results of amplification using Center for Inland Seas. Molecular sizes are shown on the and cultured lines maintained at the Kobe University Research U. intestinalis (KU-1526), 8: U. flexuosa (KU-1603), 7: U. fenestrata U. pertusa (KU-1658), 6: U. flexuosa U. lactuca (KU-1529), 3: U. ohnoi (KU-1539), 4: U. ohnoi (KU-1540), 5: U. mutabilis prepared from green algae: 1: U. mutabilis (acc. no. MK069584). These are independently isolated U. compressa U. mutabilis exhibits the “AAA” sequence that could correspond to the anticodon sequence of trnF(AAA). However, this trinucleotide lay in an A-rich region, but a secondary structure of the trnF(AAA) in the position corresponding to trnF(AAA) in the other Ulva chloroplast genomes (Fig. 2). In this region, there was an “AAA” sequence which the 25-kb region underwent inversion in the genome. These findings suggest that they were more similar to U. flexuosa, U. linza and U. prolifera, which had been classified in the genus Enteromorpha, than to U. ohnoi and U. lactuca (Fig. 3). This result represents a DNA-based classification of Ulva species that differs from the previous classification based on morphological characteristics.

Large genome inversions were found in the approximately 25-kb region between the psbB and rpl19 genes, and in the 3-kb region containing the psbD and psbC genes of the U. pertusa chloroplast genome (Fig. 4). The inversion of the 25-kb region was only found in the U. pertusa chloroplast genome. The inversion of the 3-kb region was detected in the chloroplast genomes of U. pertusa and U. mutabilis (Fig. 4). These findings suggest that two genome inversion events occurred sequentially; the 3-kb region was inverted in the ancestral chloroplast genome before U. pertusa and U. mutabilis diverged, after which the 25-kb region underwent inversion in the U. pertusa genome.

Ulva algae often form green tides in closed seas such as Tokyo Bay (Yabe et al., 2009). Various organisms, including alien species of seaweed, have been introduced into broad sea areas through transport in media such as ballast water. These species subsequently often show abnormal increases and become a major problem along
coasts due to the formation of green tides (Verlaque et al., 2002; Aguilar-Rosas et al., 2008).

Under such circumstances, it is desirable to monitor the growth of the species before the formation of a green tide. In Tokyo Bay, three major Ulva species are commonly present: U. pertusa, U. ohnoi and U. lactuca. However, these algae show very similar morphologies that can be altered in a plastic manner by environmental conditions, and it is very difficult to distinguish them from each other (Bryhni, 1974; Spoerner et al., 2012). In this study, we developed novel genotyping markers based on differences in the nucleotide sequences of the chloroplast genomes of these species. Since the PCR-amplified fragments obtained using these markers showed polymorphisms, we suggest that these markers can lead to the establishment of a simple method for identifying individual Ulva species (Figs. 5 and 6). We anticipate that our genotyping marker system will be applied in various scenarios. This system enables precise determination of species that show similar morphologies. Even if morphological changes occur due to the growing environment, the algae can be identified. This makes it easy to establish which Ulva species are growing in Tokyo Bay, and also helps to quickly identify alien species that have entered the bay.

We thank H. Kawai and S. Akita at Kobe University for providing algal species and corresponding DNA samples, and Y. Miyama and T. Yoshimitsu at Chiba Prefectural Fisheries Research Center for providing purified sea water.

REFERENCES

Aguilar-Rosas, R., Aguilar-Rosas, L. E., and Shimada, S. (2008) First record of Ulva pertusa Kjellman (Ulvales, Chlorophyta) in the Pacific coast of Mexico. Algae 23, 201–207.

Bryhni, E. (1974) Genetic control of morphogenesis in the multicellular alga Ulva mutabilis: Defect in cell wall production. Dev. Biol. 37, 237–279.

Cai, C., Wang, L., Zhou, L., He, P., and Jiao, B. (2017) Complete chloroplast genome of green tide algae Ulva flexuosa (Ulvophyceae, Chlorophyta) with comparative analysis. PLoS One 12, e0184196.

Capella-Gutiérrez, S., Silla-Martínez, J. M., and Gabaldón, T. (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973.

Coates, J. C., Umm-E-Aiman, and Charrrier, B. (2015) Understanding “green” multicellularity: do seaweeds hold the key? Front. Plant Sci. 5, 737.

Couceiro, L., Cremades, J., and Barreiro, R. (2011) Evidence for multiple introductions of the Pacific green alga Ulva australis Areschoug (Ulvales, Chlorophyta) to the Iberian Peninsula. Bot. Mar. 54, 391–402.

Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.

Greiner, S., Lehwark, P., and Bock, R. (2019) OrganelarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organelar genomes. Nucleic Acids Res. 47, W59–W64.

Guidone, M., Thornber, C., Wysor, B., and O’Kelly, C. J. (2013) Molecular and morphological diversity of Narragansett Bay (RI, USA) Ulva (Ulvales, Chlorophyta) populations. J. Phycol. 49, 979–995.

Hanyuda, T., and Kawai, H. (2018) Genetic examination of the type specimen of Ulva australis suggests that it was introduced to Australia. Phycol. Res. 66, 238–241.

Hayden, H. S., Blomster, J., Maggs, C. A., Silva, P. C., Stanhope, M. J., and Waaland, J. R. (2003) Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. Eur. J. Phycol. 38, 277–294.

Hiratsuka, J., Shimada, H., Whittier, R., Ishibashi, T., Sakamoto, M., Mori, M., Kondo, C., Honji, Y., Sun, C.-R., Meng, B. Y., et al. (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. Gen. Genet. 217, 185–194.

Hughes, J. R., Maggs, C. A., Mineur, F., Jarvis, C., Miller, K. A., Shabaka, S. H., and Gabrielson, P. W. (2019) Genetic analysis of the Linnaean Ulva lactuca (Ulvales, Chlorophyta) holotype and related type specimens reveals name misapplications, unexpected origins, and new synonyms. J. Phycol. 55, 503–508.

Ichihara, K., Suzuki, R., Yamazaki, T., Ota, S., Mogi, Y., Kagami, Y., Kuwano, K., and Kawano, S. (2015) Ulva partita sp. nov., a novel Enteromorpha-like Ulva species from Japanese coastal areas. Cytologia 80, 261–270.

Katoh, K., Kuma, K., Toh, H., and Miyata, T. (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33, 511–518.

Kawai, H., Shimada, S., Hanyuda, T., Suzuki, T., and Gamagori City Office (2007) Species diversity and seasonal changes of Ulva species (Ulvales, Ulvophyceae) in Mikawa Bay, Japan, deduced from ITS2 rDNA region sequences. Algae 22, 221–228.

Kraft, L. G. K., Kraft, G. T., and Waller, R. F. (2010) Investigations into southern Australian Ulva (Ulvophyceae, Chlorophyta) taxonomy and molecular phylogeny indicate both cosmopolitanism and endemic cryptic species. J. Phycol. 46, 1257–1277.

Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549.

Leloir, L. F., Smith, D. R., Moreau, H., Herron, M. D., Verbruggen, H., Delwiche, C. F., and de Clerck, O. (2012) Phylogeny and molecular evolution of the green algae. Crit. Rev. Plant Sci. 31, 1–46.

Lovlie, A. (1969) Cell size, nucleic acids, and synthetic efficiency in the wild type and growth mutant of the multicellular alga Ulva mutabilis Fourn. Dev. Biol. 20, 349–367.

Lowere, T. M., and Chan, P. P. (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 44, W54–W57.

Malta, E.-J., Drisma, S. G. A., and Kamermans, P. (1999) Free-floating Ulva in the southwest Netherlands: species or morphotypes? A morphological, molecular and ecological comparison. Eur. J. Phycol. 34, 443–454.

Matsumoto, K., and Shimada, S. (2015) Systematics of green algae resembling Ulva conglobata, with a description of Ulva adhaerens sp. nov. (Ulvales, Ulvophyceae). Eur. J. Phycol. 50, 100–111.

Niel, M., and Kumar, S. (2000) Molecular Evolution and Phylogenetics. Oxford University Press, New York.

Shimada, S., Hiraoka, M., Nabata, S., Iima, M., and Masuda,
Genetic diversity of *Ulva* chloroplast genomes

M. (2003) Molecular phylogenetic analyses of the Japanese *Ulva* and *Enteromorpha* (Ulvales, Ulvophyceae), with special reference to the free-floating *Ulva*. Phycol. Res. 51, 99–108.

Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Obokata, J., Yamaguchi-Shinozaki, K., et al. (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5, 2043–2049.

Spoerner, M., Wichard, T., Bachhuber, T., Stratmann, J., and Oertel, W. (2012) Growth and thallus morphogenesis of *Ulva mutabilis* (Chlorophyta) depends on a combination of two bacterial species excreting regulatory factors. J. Phycol. 48, 1433–1447.

Suzuki, S., Yamaguchi, H., Hiraoka, M., and Kawachi, M. (2018) Mitochondrial and chloroplast genome sequences of *Ulva ohnoi*, a green-tide-forming macroalga in the southern coastal regions of Japan. Mitochondrial DNA B Resour. 3, 765–767.

Tan, I. H., Blomster, J., Hansen, G., Leskine, E., Maggs, C. A., Mann, D. G., Sluiman, H. J., and Stanhope, M. J. (1999) Molecular phylogenetic evidence for a reversible morphogenetic switch controlling the gross morphology of two common genera of green seaweeds, *Ulva* and *Enteromorpha*. Mol. Biol. Evol. 16, 1011–1018.

Tillich, M., Lehwark, P., Pellizzer, T., Ulbricht-Jones, E. S., Fischer, A., Bock, K., and Greiner, S. (2017) GeSeq – versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 45, W6–W11.

Verlaque, M., Belsher, T., and Deslous-Paoli, J. M. (2002) Morphology and reproduction of Asiatic *Ulva pertusa* (Ulvales, Chlorophyta) in Thau Lagoon (France, Mediterranean Sea). Cryptogam. Algol. 23, 301–310.

Wang, L., Cai, C., Zhou, L., He, P., and Jiao, B. (2017) The chloroplast genome sequence of *Ulva linza*. Conserv. Genet. Resour. 9, 463–466.

Wichard, T., Charrier, B., Mineur, F., Bothwell, J. H., De Clerck, O., and Coates, J. C. (2015) The green seaweed *Ulva*: a model system to study morphogenesis. Front. Plant Sci. 6, 72.

Yabe, T., Ishii, Y., Amano, Y., Koga, T., Hayashi, S., Nohara, S., and Tatsumoto, H. (2009) Green tide formed by free-floating *Ulva* spp. at Yatsu tidal flat, Japan. Limnology 10, 239–245.

Zertuche-González, J. A., Camacho-Ibar, V. F., Pacheco-Ruíz, I., Cabello-Pasini, A., Galindo-Bect, L. A., Guzmán-Calderón, J. M., Macias-Carranza, V., and Espinoza-Avalos, J. (2009) The role of *Ulva* spp. as a temporary nutrient sink in a coastal lagoon with oyster cultivation and upwelling influence. J. Appl. Phycol. 21, 729–736.
Supplementary Fig. S1 (1). Comparison of the gene orders in the chloroplast genome of *Ulva* species.

U. prolifera (93,066 bp)

U. linza (86,726 bp)
Supplementary Fig. S1 (2). Comparison of the gene orders in the chloroplast genome of *Ulv*na species
Supplementary Fig. S1 (3). Comparison of the gene orders in the chloroplast genome of *Ulva* species.

U. mutabilis (119,866 bp)

U. ohnoi (103,313 bp)
Supplementary Fig. S1 (4). Comparison of the gene orders in the chloroplast genome of *Ulva* species
Supplementary Table S1. Primers for PCR amplification of the fragments of the *U. pertusa* chloroplast genome

No. (location)	Forward sequence (5' to 3')	No. (location)	Reverse sequence (5' to 3')
1 (214)	AGCCGAAACTCTACCATTG	1 (rev:432)	TAATGAGCCGAGCTGGATTC
2 (3197)	GAGGAGGTGAATAAAAAACAATC	2 (rev:3318)	GACGGCTCTTTTTAATGGTGAAG
3 (9292)	CAGGGCCTGAATAAGTTAAACG	3 (rev:11001)	TACCTTCTGTTAAAGCTTTTCCATAC
4 (11796)	GCACCCCTTATGCTTTTGCGTTT	4 (rev:15305)	CGTCTATCAGATTATGAACAT
5 (18405)	TGGTTATATTCTGATGAATTTACCCTATG	5 (rev:18621)	TTGTTTGAGTTTTTTCCATTTTGGCCA
6 (22671)	TTAGGGGTCTCCTTCTCTATG	6 (rev:23070)	TCTCTCTAAAGCCCAACTTCCAT
7 (26816)	AGTATACAAATCGTCTAATAAAAGTT	7 (rev:28304)	CCTCAAAGCTTACAAAAAGC
8 (28370)	CTTATTTGCTCTAGTCAAGATATG	8 (rev:29749)	GCGTTGTATTCTCTGTTTCC
9 (38997)	AGTATATGGAAGATATACCTACAGC	9 (rev:39042)	GAAGCATTCTTGCCTATC
10 (40261)	TGCCGAAACAACTAAGG	10 (rev:40328)	CATCGACCTACCTTGGCAT
11 (41679)	TAAATACGCACCCGCAGCG	11 (rev:41700)	GTGCCAGATCCTAAGGACT
12 (44970)	CAGCTCAAGTTATTCTAATACATA	12 (rev:45134)	AGTGGTAAATAGCTGGACATC
13 (47515)	GCTAGGAGGGATTTGAAC	13 (rev:47550)	GACCTAGAGCACACCGGTAC
14 (49936)	TAATTTCTGGAAGAAAAATC	14 (rev:50211)	GAACAGGGGAATCGGAA
15 (51266)	GTTGAATCTCAAGGTTGCTGT	15 (rev:56583)	ATCGGCCAGGAACACTCAA
16 (56469)	TGCAGATTGCTGGTATGCC	16 (rev:61768)	TTAATGCGAGGAAATTGGAAGC
17 (60016)	CCGTTGTATAACACGCTG	17 (rev:61946)	CAAATTATGCGGCTGTAGTG
18 (61725)	CGTGGTCTCTACAGGTTACTG	18 (rev:73163)	GTAGCTACAGGCTCAAGGATG
19 (68029)	TGCTCATAATGTTGTGCAC	19 (rev:74127)	TGCTTCTATGAGCAGACAT
20 (73484)	GTTCATTCTGTGTTTCGT	20 (rev:79681)	ATGTCTTGTGTTTGCTG
21 (78478)	GTTCTCTGTAGTCCTGCTGC	21 (rev:80057)	ACACCACGTCTAAACACGTC
22 (79648)	GCTATTGCTATGTTGCTGT	22 (rev:81010)	GCTTCTTCTGGAAGACGACC
23 (81468)	CGACGTAATGGGATGACTGTG	23 (rev:82216)	CATAAAGAAGTGAAGCCAAAC
24 (82164)	CAGCAACCTTCTGTGAACC	24 (rev:83708)	CCAAATACAGGTGATGGAAC
25 (84403)	CGCCGAGATGTCACTAGTTCC	25 (rev:84529)	AACCGGAACTTCTACGTG
26 (88156)	GTCTTCTCTGTTCAAGGCG	26 (rev:88323)	TAAGACCTAAACGTTTACTCCA
27 (93732)	GAAACCTTGAACGTCTGTCC	27 (rev:94974)	TGGAAATGCTTATAGGCCC
28 (96245)	AAACCGTCCGTAATATAAAAACA	28 (rev:96414)	CGTATTGTTATGTGCTAAGTCC
29 (102719)	CGAAAGAATTAAAAACTTCAAAGC	29 (rev:102799)	GCCATCACAAACGGTTGGA

Primers were designed based on the chloroplast genome sequence of *U. lactuca* (acc. no. KT882614). Locations of 5' ends of the primers correspond to the position of the complete nucleotide sequence of *U. pertusa* (this study).
Type	Location	Gene name
tRNA	complement(174..245)	trnK-UUU
tRNA	367..448	trnY-GUA
tRNA	677..748	trnC-GCA
tRNA	complement(2558..2630)	trnE-UUC
tRNA	7635..7708	trnMf-CAU
CDS	6436..6639	ORF7
tRNA	complement(7769..7840)	trnQ-UUG
CDS	complement(7949..9373)	rbcL
CDS	complement(9464..9580)	rpl32
CDS	10626..11687	chll
CDS	11766..11891	psaJ
tRNA	complement(14840..14912)	trnW-CCA
CDS	15176..15523	rpl20
CDS	15532..15795	rps18
CDS	15812..16426	rps4
CDS	16451..16852	rps9
CDS	16969..17355	rpl12
tRNA	complement(17807..17879)	trnV-UAC
CDS	17991..23321	rpoB
CDS	23465..28810	rpoC1
CDS	28893..37052	rpoC2
rRNA	37238..38714	rrs
tRNA	38767..38840	trnl-GAU
tRNA	38868..38940	trnA-UGC
rRNA	38983..40892,41660..42615	rrl*
CDS	41154..41618	ORF6
rRNA	42645..42765	rrn5
CDS	43007..45265	psaA
CDS	45583..45828	psaC
CDS	45893..46288	ycf20
CDS	46373..47506	ccsA
tRNA	complement(47512..47585)	trnl-GAU
tRNA	47513..47585	trnR-ACG
CDS	47666..50083	ycf1
tRNA	50161..50231	trnG-GCC
CDS	50348..51409	psbA
CDS	55462..56988	psbB
CDS	57069..57164	psbT
CDS	57271..57501	psbH
tRNA	57567..57651	trnM-CAU
CDS	complement(57784..57918)	psbN
CDS	complement(57959..58069)	psal
CDS	complement(58193..58297)	psbl
CDS/CDS complement	Gene	
---------------------	------------	
complement(58425..58928)	ycf3	
complement(59006..59476)	rps7	
complement(59515..59886)	rps12	
59974..60057	trnL-UAA	
complement(60123..60518)	atpE	
complement(60567..62018)	atpB	
62464..62757	rpl23	
62855..63694	rpl2	
63766..64044	rps19	
64124..64819	rps3	
64868..65272	rpl16	
65293..65661	rpl14	
65729..66271	rpl5	
66302..66697	rps8	
67314..67496	infA	
67543..67656	rpl36	
67676..68071	rps11	
68147..69727	rpoA	
69831..69899,72135..72713	petB*	
70488..71891	ORF3	
72796..73278	petD	
73430..73504	trnF-GAA	
73597..74193	clpP	
74262..75200	accD	
75246..75788	ycf4	
75849..76748	cemA	
complement(76831..76904)	trnP-UGG	
complement(76996..77088)	psaM	
complement(77169..77273)	ycf12	
complement(77394..77525)	psbK	
complement(77631..77759)	psbJ	
complement(77855..77971)	psbL	
complement(78068..78196)	psbF	
complement(78248..78499)	psbE	
78711..78781	trnG-UCC	
78927..79229	rps14	
79345..80568	tufA	
80581..80856	rpl19	
80958..81030	trnT-UGU	
81424..82482	psbD	
82628..83851	psbC	
84365..84438	trnM-CAU	
84493..84566	trnD-GUC	
84940..85989,87109..88266	psbB*	
88323..88430	psbM	
tRNA	88504..88575	trnH-GUG
---------	--------------	----------
tRNA	88649..88735	trnS-UGA
tRNA	89114..89194	trnL-UAG
CDS complement(89310..90326,91495..91986)	atpA*	
CDS complement(92110..92655)	atpF	
CDS complement(92771..93019)	atpH	
CDS complement(93113..93841)	atpI	
CDS complement(93895..94599)	rps2	
tRNA	94857..94928	trnR-UCU
tRNA	94974..95063	trnS-GCU
tRNA	95159..95230	trnN-GUU
CDS complement(95250..95363)	petG	
CDS complement(95474..95569)	petL	
CDS complement(95680..96564)	petA	
CDS complement(96768..102605)	ftsH	
CDS complement(102711..102899)	psbZ	

Genes containing introns are indicated by asterisks.