Emodin Attenuates Acetaminophen-Induced Hepatotoxicity via the cGAS-STING Pathway

Pan Shen¹, Liang Han¹, Guang Chen¹, Zhe Cheng¹ and Qiong Liu¹,²

INTRODUCTION

Acetaminophen (N-acetyl-p-aminophenol, APAP) is an acetanilide analgesic and antipyretic drug used worldwide that is primarily used against cold- or...
influenza-induced headache and fever [1, 2]. Although APAP is considered highly safe at recommended doses, its intentional or unintentional overdose causes severe nephrotoxicity and hepatotoxicity, which lead to life-threatening acute kidney injury and liver failure [3, 4]. More than 200 million people use APAP annually, and APAP-induced acute hepatic failure results in 200 deaths. However, treatment for APAP poisoning is primarily limited to N-acetyl-L-cysteine (NAC), which is a non-specific antidote that restores endogenous glutathione (GSH) [5]. Therefore, it is of great significance to examine the possible molecular mechanism of APAP-induced liver damage for clinical applications and the development of potential therapeutic drugs against APAP toxicity.

The inflammatory response and oxidative stress are the main mechanisms of APAP-induced liver failure [6, 7]. UDP-glucuronicidase (UGT) and sulfotransferase (SULT) enzymes in the liver metabolize most ingested APAP into non-toxic compounds that are subsequently excreted in the urine and bile [8]. The CYP450 enzyme metabolizes the remaining APAP into a toxic intermediate metabolite, N-acetyl-p-benzo-quinoneimine (NAPQI), which may lead to the depletion of GSH and the generation of a protein adduct in the liver [9]. The depletion of GSH and NAPQI adducts causes mitochondrial dysfunction and massive reactive oxygen species (ROS) secretion from injured hepatocytes, which lead to hepatocellular apoptosis [10, 11]. Intercellular contents released from these damaged cells, called damage-associated molecular patterns (DAMPs), stimulate non-parenchymal cells to produce and release inflammatory mediators and chemokines [12]. These chemokines recruit a variety of immune and inflammatory cells, such as monocytes and neutrophils, into the liver and promote inflammatory responses via the activation of innate immune signal transduction pathways, which results in the necrosis and apoptosis of liver cells [13]. The recognition of DAMPs is essential for defense and triggers signaling cascades that lead to the production of pro-inflammatory cytokines and type I interferons (IFN-α and IFN-β) [14]. Therefore, the blockade of oxidative stress and inhibition of inflammation are important targets for protecting hepatocytes from APAP hepatotoxicity.

The activation of endogenous substances induces inflammation in APAP-induced liver damage. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway plays a role in the activation of the innate immune response. cGAS is a cytosolic sensor of DNA and activates STING, which leads to the phosphorylation of transcription factors, including interferon regulatory factor (IRF)3 and nuclear factor (NF)-κB, and the activation of the transcription of innate immunity-related genes, including type I IFN [15, 16]. cGAS-STING signaling was also implicated in several pathogenic processes, such as alcohol intoxication, autoimmune diseases, and kidney injury [17, 18]. The activation of the cGAS-STING signaling pathway promotes cell apoptosis, inflammation, and oxidation [19, 20], and it likely plays a key role in hepatic injury. Little is known about the role of cGAS-STING signaling in liver injury, and it is valuable to examine the mechanisms to develop treatments. The present study used an APAP-induced liver damage model to study the pathogenic role of cGAS-STING-dependent inflammation in liver damage.

Rheum palmatum L. (RP, Dahuang in Chinese) is one of the most popular plant products in traditional Chinese medicine (TCM). RP-composed formulas have been widely used for the treatment of hematemeses, constipation, enteritis, liver injury, and menorrhagia for many years in China [21, 22]. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) (Fig. 1) is a natural anthraquinone derivative, and it is the main active component of RP [23, 24]. Emodin has various biological activities, such as hepatoprotective, anticancer, antibacterial, neuroprotective, antidiabetic, anti-inflammatory, and antioxidant effects [25, 26]. Bhadaura et al. reported that emodin reversed APAP-induced toxicity similarly to silymarin in a rat model [27]. Emodin inhibited the death of HepG2 cells in vitro, attenuated the degeneration of anti-apoptotic proteins, and improved mitochondrial membrane potential [24]. Emodin also promoted the phosphorylation of Yes-associated protein 1 (YAP1), which is the main downstream target of Hippo that mediates oxidative stress. Many studies reported these natural entities and potential benefits to human health. Preliminary results indicated that emodin possessed several biological activities. However, systemic investigations to examine the protective effect on hepatic disorders in vivo are lacking. More studies are needed to determine the precise roles of emodin in hepatic injury and provide more evidence for the clinical application of relevant products.

The present study investigated the protective effects of emodin on APAP-induced liver injury: evaluated its anti-inflammatory, antioxidative stress, and anti-apoptosis effects; and examined the role of the cGAS-STING pathway in the beneficial effects of emodin.

MATERIALS AND METHODS

Reagents and Chemicals

Emodin (purity > 98%) and APAP (purity > 98%) were obtained from Yuanye Biotech Co., Ltd. (Shanghai, China). Alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB), alkaline phosphatase (ALP), GSH, malondialdehyde (MDA), and superoxide dismutase (SOD) assay kits were purchased from Jiancheng Bioengineering Institute (Nanjing, China). Enzyme-linked immunosorbent assay (ELISA) kits for detecting tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10, IFN-α, and IL-1β were purchased from Bioswamp Biotech Co., Ltd. (Wuhan, China). A transferase-mediated nucleotide nick-end labeling (TUNEL) kit was purchased from Beyotime Biotech Co., Ltd. (Shanghai, China). Primary antibodies against nuclear factor erythroid 2-related factor 2 (Nrf2, no. 12721, 1:1000), heme oxygenase-1 (HO-1, no. 86806, 1:1000), NLRP3 (no. 15101, 1:1000), caspase 1 (no. 24232, 1:1000), IL-1β, Bcl-2 (no. 3498, 1:1000), Bcl-2-associated X protein (Bax) (no. 2772, 1:1000), phosphor (P)-TBK1 (no. 5483, 1:1000), P-IRF3 (no. 29047, 1:1000), cGAS, STING (no. 31659, 1:1000), and GAPDH (no. 5174, 1:1000) were purchased from Cell Signaling Technology (Danvers, MA, USA). Primary antibodies against CYP2E1 (no. 19937–1-AP 1: 2000) and NAD(P)H quinone dehydrogenase 1 (NQO1, no. 67240–1-lg, 1: 2000) were purchased from Proteintech Biotech Co., Ltd. (Wuhan, China).

Animal Experiments

Thirty-two male (6–8 weeks) C57BL/6 mice weighing 17–23 g were supplied by Weitonglihua Biotechnology Co., Ltd. (Hangzhou, China) and kept in the Experimental Animal Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology. All animals were fed in the rearing room with a temperature of 22 ± 3 °C, a relative humidity of 55 ± 5%, and a day-night cycle of 12 h. After 7 days of adaptive feeding, the 32 mice were randomly distributed into 4 groups of 8 mice each: a healthy control group (control), APAP group (APAP), emodin low-dose group (Emo-L), and emodin high-dose group (Emo-H). Mice in the Emo-L and Emo-H groups were orally administered emodin for 5 consecutive days (15 and 30 mg/kg/day, respectively). Emodin was dissolved in 40% polyethylene glycol (PEG). The control and APAP groups received the same volume of vehicle. Two hours after the last emodin administration, APAP was intraperitoneally injected at a concentration of 300 mg/kg body weight to induce acute hepatic injury. APAP was dissolved in saline. The control group received the same volume of vehicle. Twenty-four hours later, all of the mice were euthanized with an overdose of 1% sodium pentobarbital, and specimens were collected immediately. The Committee of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology approved all animal procedures and experiments.

Fig. 1 Chemical structure of emodin.
Tissue Collection

Serum samples were obtained from peripheral blood via centrifugation at 3000 rpm for 10 min at 4 °C. Half of the liver samples from the left lobe were separated and collected. All of these samples were stored at −80 °C. The remaining liver samples from the left lobe were fixed in 4% paraformaldehyde and embedded in paraffin. All samples were processed on ice as soon as possible to prevent protein degradation.

Hepatic Histological Analysis

Sections of fixed hepatic samples embedded in paraffin were used for routine hematoxylin and eosin (H&E) staining. Sections were observed and photographed using optical microscopy (Olympus, Japan). Injury grades of hepatic samples were evaluated using Suzuki’s score based on the H&E staining results [28].

Biochemical Assays

Serum levels of ALT, AST, ALP and ALB, SOD, MDA, and GSH in liver tissues were tested using biochemical kits.

ELISA Analysis

The levels of IL-1β, TNF-α, IL-6, and IL-10 in hepatic tissues and the serum levels of IFN-α were detected using ELISA kits following the protocol provided by the manufacturer.

Protein Extraction and Western Blot Analysis

Total proteins were extracted from hepatic tissues using RIPA buffer. The concentration of total proteins was quantified using the bicinchoninic acid assay. Total proteins were subjected to 10–12% SDS-PAGE electrophoresis, and the proteins were transferred to PVDF membranes (Sigma, MA, USA). PVDF membranes were blocked with 5% non-fat milk for 1.5 h at room temperature. The membranes were incubated with primary antibodies overnight at 4 °C. PVDFs were incubated with the corresponding secondary antibodies. Grayscale values of bands were analyzed using ImageJ software.

TUNEL Staining Analysis

TUNEL staining was used to detect the apoptosis rate of hepatocytes. Six-micron sections of hepatic tissue were deparaffinized and rehydrated. The sections were treated with proteinase K for 15 min, followed by incubation with TdT at 37 °C for 2 h. The results of TUNEL staining were observed and photographed using optical microscopy. Hepatic TUNEL-positive cell numbers were assessed using Image Picture Pro software.

Statistical Analysis

All experimental data in this study were obtained from at least 3 independent experiments and are shown as the means ± standard deviations (SDs). One-way ANOVA was performed to compare between-group differences. A p ≤ 0.05 was considered statistically significant.

RESULTS

Emodin Alleviated APAP-Induced Liver Injury

Figure 2A shows widespread inflammatory infiltration in hepatic tissue, severe hepatocyte ballooning degeneration, and extensive hepatocyte necrosis in the APAP group, which were not present in the control group. As shown in Fig. 2B, Suzuki’s score in the APAP group was increased compared to the control group (p < 0.01). The APAP group showed higher levels of serum ALT, AST, and ALP and lower levels of ALB than the control group (p < 0.01) (Fig. 2C–F). These differences indicated that the APAP-induced liver injury model was successfully established in mice.

Compared to the APAP group, serum levels of ALB, ALT, and ALP were decreased, and the levels of ALB were upregulated in the Emo-H group (p < 0.05) (Fig. 2C–F). Suzuki’s scores indicated that the administration of high-dose Emo significantly alleviated the hepatic injury (p < 0.05) (Fig. 2B).
Emodin Inhibited APAP-Induced Oxidative Stress in Liver Tissues

Hepatic damage is associated with the upregulation of oxidative stress. Our results showed that the levels of SOD and GSH in the APAP group were downregulated, and the levels of MDA were upregulated compared to those in the control group (Fig. 3A–C) \((p < 0.01)\). However, the levels of SOD and GSH were increased, and MDA levels were decreased in the Emo-H group, which indicated that emodin inhibited oxidative stress in APAP-mediated liver injury. Previous studies indicated that the transcription factor Nrf2 and its downstream proteins HO-1 and NQO1 exerted antioxidant properties in cells. Therefore, we detected the levels of Nrf2, HO-1, and NQO1 in hepatic tissues. Nrf2, HO-1, and NQO1 were downregulated in the APAP group (Fig. 3D and E) \((p < 0.01)\), which indicated that these proteins failed to fulfill their protective roles in APAP-mediated hepatic injury. However, the expression levels of Nrf2, HO-1, and NQO1 were partially recovered after high-dose Emo intervention \((p < 0.05)\). We also detected the hepatic levels of CYP2E1, which is responsible for the metabolism of APAP to the toxicant NAPQI. The results showed a significant increase in the levels of CYP2E1 in the APAP group compared to the control group, and Emo-H treatment suppressed this increase (Fig. 3D and E) \((p < 0.05)\).

Fig. 3 The protective effects of emodin on APAP-induced oxidative stress in mice. Hepatic contents of SOD A, MDA B, and GSH C \((n = 8)\). D, E Hepatic protein expression of CYP2E1, Nrf2, HO-1, and NQO1 was measured using Western blotting \((n = 3)\). All values are presented as the mean \pm SD. \#\# \(p < 0.01\) vs. the control group; * \(p < 0.05\) vs. the APAP group.
Emodin Suppressed APAP-Induced Hepatic Inflammation

To determine whether emodin inhibited inflammation in APAP-induced hepatic damage, the levels of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, and an anti-inflammatory cytokine (IL-10) in hepatic tissues were examined. Levels of the pro-inflammatory factors IL-1β, TNF-α, and IL-6 were upregulated in the APAP group (Fig. 4A–C) \(p < 0.01 \), and the level of the anti-inflammatory factor IL-10 (Fig. 4D) \(p < 0.01 \) was downregulated, which indicated that APAP induced robust inflammation in the liver. Notably, the pro-inflammatory factors IL-1β, IL-6, and TNF-α were lower and the anti-inflammatory factor IL-10 was higher in the Emo-H group than in the APAP group \(p < 0.05 \). We also detected the expression of NLRP3 inflammasome-associated proteins, including NLRP3, caspase1, and pro-IL-1β. Figure 4E and F show a significant increase in NLRP3 protein levels in the APAP group compared to the control group \(p < 0.01 \).

In contrast, emodin treatment significantly reduced NLRP3 protein levels (Fig. 4E and F) \(p < 0.05 \).

Emodin Mediated APAP-Induced Hepatocellular Apoptosis

Apoptosis is a programmed cell death process that occurs when cells confront harsh environments or suffer severe destruction. Hepatocytes undergo strict oxidative stress and inflammation during APAP-induced hepatic injury, which may lead to hepatocellular apoptosis. TUNEL staining is an effective method to label fragmented DNA that emerges from cellular apoptosis. Figure 5A and B show that there was more fragmented DNA in the APAP group than in the control group and Emo-H group \(p < 0.01 \).

The levels of Bax in the APAP group were upregulated \(p < 0.01 \) and reduced in the Emo-H group \(p < 0.05 \). The levels of the anti-apoptotic protein Bcl-2 exhibited opposite trends with Bax in the APAP group and Emo-H group \(p < 0.05, p < 0.01 \). These results

Fig. 4 Emodin attenuated APAP-induced hepatic inflammation in mice. Hepatic levels of IL-1β A, TNF-α B, IL-6 C, and IL-10 D were detected using ELISA kits \(n = 8 \). E, F Hepatic protein expression of NLRP3, caspase1, and pro-IL-1β was measured using Western blotting \(n = 3 \). All values are presented as the mean ± SD. **\(p < 0.01 \) vs. the control group; *\(p < 0.05 \) vs. the APAP group.
showed that APAP-induced hepatic injury also caused severe hepatocellular apoptosis, similar to other acute hepatic injuries, and emodin alleviated apoptosis by rectifying the oxidative stress and inflammation.

Emodin Attenuated the Activity of the cGAS-STING Signaling Pathway

Compared to the control group, the expression of cGAS-STING signaling pathway-related proteins, including P-TBK1, P-IRF3, cGAS, and STING, was significantly increased in the APAP group (p < 0.01) (Fig. 6A and B). The expression of IFN-α in serum was also significantly increased in the APAP group (p < 0.01) (Fig. 6C). These results suggested that the cGAS-STING signaling pathway was activated in the model mice. The expression of these proteins was significantly reduced (p < 0.05) in the Emo-H group, which indicated that emodin inhibited the APAP-induced hepatocellular injury via the regulation of cGAS-STING signaling pathway activity.

Fig. 5 Emodin alleviated APAP-induced hepatocellular apoptosis. A TUNEL staining of liver tissues (×200). B Quantification of hepatic TUNEL-positive cell numbers. (n=3). C, D Hepatic protein expression of Bax and Bcl2 was measured using Western blotting (n=3). All values are presented as the mean ± SD. **p < 0.01** vs. the control group; *p < 0.05 vs. the APAP group.
DISCUSSION

APAP is one of the most widely used analgesic and antipyretic drugs worldwide [29]. However, overdoses of APAP may cause liver injury and death [30, 31]. The accumulation of NAPQI, one of the intermediate metabolites of APAP in the liver, induces liver injury by promoting oxidative stress and inflammation in hepatic tissues, which ultimately trigger hepatocellular apoptosis [30, 32, 33]. The present study showed abnormal pathological alterations; an increased Suzuki’s score; upregulated expression of AST, ALT, and ALP; and downregulated ALB levels in the APAP group of mice, which indicated successful establishment of the acute hepatic injury model.

Emodin is the major component and one of the quality control indexes of the traditional Chinese herb RP [34–36]. Emodin has biological activities and beneficial effects, such as hepatoprotective, anti-inflammatory, antibacterial, antiviral, and neuroprotective effects [26, 37].

Fig. 6 Emodin inhibited the cGAS-STING signal pathway. A, B Hepatic protein expression of P-TBK1, P-IRF3, cGAS, and STING was measured using Western blotting (n=3). All values are presented as the mean ± SD. ## p < 0.01 vs. the control group; *p < 0.05 vs. the APAP group.
which are associated with mitochondrial DNA (mtDNA)
[55, 56]. Immune cells in the liver are activated by DAMPs,
partially because of the lower levels of NQO1 in the liver
inflammatory mediator in APAP-induced hepatic damage,
activated by oxidative stress [53, 54]. NLRP3 is a potential
NLRP3 is an important pro-inflammatory factor that is
causes the activation of the Nrf2 antioxidant pathway and the
inhibition of NLRP3 by downregulating the cGAS-STING
signaling pathway.

Oxidative stress is a landmark event of APAP-
duced acute hepatic injury [40]. Routine doses of APAP
in experimental rodent models primarily induced glucuro-
nidation and sulfation, and the non-toxic metabolites were
excreted in bile and urine [41, 42]. However, cytochrome
P450 (CYP) oxidizes excessive APAP to NAPQI, which
binds with GSH to inhibit toxic responses [43, 44]. The
accumulation of NAPQI results in the depletion of GSH
in the liver, which leads to a decrease in antioxidant
enzyme activities and the massive production of ROS
[45]. ROS directly causes cytoplasmic vacuolation, hepat-
ocyte apoptosis, and liver failure [46]. SOD, MDA, and
GSH are commonly used indexes to measure the levels of
intracellular oxidative stress. SOD and GSH are involved
in antioxidant processes, and the levels of MDA represent
the extent of oxidative injury [47, 48]. The levels of SOD
and GSH were significantly increased with emodin treat-
ment in our study, and the concentration of MDA was
reduced. Antioxidant enzymes, such as HO-1 and NQO1,
and the transcription factor Nrf2 are closely related to
oxidative-stress-associated cellular damage. The loss of
Nrf2 in mice caused severe hepatic injury in a chloro-
genic acid–induced acute liver injury model [49]. Nrf2
translocates to the nucleus under ROS stimulation and
binds to antioxidant response elements (AREs), which
leads to the transcription of antioxidant enzymes, including
NQO1 and HO-1 [50, 51]. Our results showed that
emodin downregulated CYP2E1 expression and upregu-
lated Nrf2, HO-1, and NQO1 expression. These results
suggest that emodin alleviates Nrf2-dependent oxidative
stress.

Oxidative stress in APAP-induced hepatic injury
causes the activation of inflammatory-related signaling
pathways, which further aggravates liver injury [52].
NLRP3 is an important pro-inflammatory factor that is
activated by oxidative stress [53, 54]. NLRP3 is a potential
inflammatory mediator in APAP-induced hepatic damage,
partially because of the lower levels of NQO1 in the liver
[55, 56]. Immune cells in the liver are activated by DAMPs,
which are associated with mitochondrial DNA (mtDNA),
fragmented nuclear DNA, and other proteins that are
released from injured cells and may also be involved in
hepatic inflammation [40, 57]. Inflammation in an APAP-
duced damage model is amplified by IL-1β, IL-6, and
TNF-α, which are produced by Kupffer cells and hepatic
dendritic cells [12]. IL-10 is an anti-inflammatory cytokine
that suppresses acute hepatic injury [58]. IL-10-deficient
mice show more severe hepatic damage [59]. APAP ini-
tiated the activation of the NLRP3 inflammasome in the
present study, and treatment with emodin inhibited this
activation. These results indicated that emodin inhibited
inflammatory responses via the suppression of the NLRP3
 inflammasome.

APAP-induced liver damage causes hepatocyte death
via necrosis and apoptosis [60]. Bax and Bcl-2 regulate
the progression of apoptosis [61]. Excessive APAP adducts
promote hepatocellular apoptosis [62]. We found that
emodin alleviated APAP-induced hepatocyte necrosis and
apoptosis and decreased the Bax/Bcl-2 ratio. These results
indicated that emodin inhibited APAP-induced hepatic
 injury via the regulation of apoptosis.

cGAS is a sensor of DNA that is activated by viral
DNA and aberrant intracellular DNA [63]. cGAS recog-
nizes DNA via electrostatic action and hydrogen-bonding
interactions [64] and catalyzes the synthesis of cyclic
guanosine monophosphate–adenosine monophosphate
(cGAMP) from adenosine triphosphate (ATP) and
guanosine triphosphate (GTP) after DNA recognition
[65]. STING is found on the outer mitochondrial mem-
brane and endoplasmic reticulum in the form of a dimer
in an inactivated state [66]. The STING dimer binds with
the cGAMP catalyzed by cGAS and subsequently trans-
lates to vesicles around the perinuclear region from
the endoplasmic reticulum by the Golgi body [67]. TANK-
binding kinase 1 (TBK1) in vesicles phosphorylates and
activates STING [16]. Phosphorylated STING phospho-
rylates the transcription factor IRF3 [16], which is one of
the most important downstream transcription factors
of the cGAS-STING signaling pathway, and it is closely
related to inflammation and apoptosis [68]. Phosphorylated
IRF3 enters the nucleus and promotes the transcription
of IFN-α [16]. STING is also activated by the second
messenger cyclic guanosine monophosphate (cGMP) and
cyclic adenosine monophosphate (cAMP) [69].

Notably, the cGAS-STING signaling pathway also
participates in multiple types of acute and chronic hepatic
 injury, including radiation-induced liver injury [70], non-
alcoholic fatty liver disease, high-fat diet-associated hepatic
 injury [71], and hepatitis B virus (HBV) infection-associated
liver injury [72]. However, STING is primarily expressed in hepatic non-parenchymal cells, such as intrahepatic macrophages, instead of hepatic parenchymal cells, which results in hepatocellular resistance to HBV infection [72]. STING plays a vital role in APAP-induced hepatic injury in which necrotic hepatocellular cells release generous amounts of mtDNA and fragmented nuclear DNA into the intracellular space, and this DNA may amplify the hepatic injury via DAMPs [73]. The cGAS-STING signaling pathway is associated with the innate immune response and DNA recognition. Araujo et al. found that activation of the cGAS-STING signaling pathway played an important role in APAP-induced hepatic injury [74]. The levels of cGAS and STING were upregulated in hepatic parenchymal cells, and the levels of STING were consistently increased in hepatic non-parenchymal cells. Simultaneously, massive mtDNA accumulated in the extracellular space, which was one of the causes of cGAS-STING signaling pathway activation in hepatocytes. The activated cGAS-STING signaling pathway in hepatic parenchymal cells promotes the inflammation, apoptosis, and necrosis of hepatic tissues [74]. Hepatic non-parenchymal cells with an activated cGAS-STING signaling pathway secrete IFN-α, which also aggravates liver damage. Therefore, the inhibition of the cGAS-STING signaling pathway is a potential therapeutic method for APAP-induced hepatic injury. Our study showed that emodin inhibited the expression of cGAS, STING, P-IRF3, and P-TBK1 in liver tissues. These results suggest that the protective effect of emodin on APAP-induced liver damage is associated with the inhibition of the cGAS-STING signaling pathway. Compared to existing studies, our study provides new evidence of the protective effects of emodin in APAP-induced hepatic injury and a basis for the development of new drugs from natural products. The cGAS-STING signaling pathway provides new perspectives and directions for the study of hepatic injury mechanisms and may play a key role in liver injury. Our results further clarify the mechanisms of APAP-induced injury to promote the development of new targeted drugs and prevent serious complications. There are some shortcomings in this study, including the lack of a comparison of different dosing durations and evaluations of possible side effects of emodin. Our experiments also lack further and deeper mechanistic investigation, including the silencing and overexpression of cGAS-STING signaling using in vivo and in vitro studies. We will perform more studies in this field to obtain a higher level of evidence for clinical application.

CONCLUSION

The results of the present study showed that the administration of emodin attenuated APAP-induced liver injury primarily by alleviating hepatic pathological damage, apoptosis, and oxidative stress and inhibiting the inflammatory response. We also found that emodin suppressed the cGAS-STING signaling pathway in APAP-induced inflammatory responses and apoptosis. This study provides further evidence for the application of emodin and RP. Building on prior research, it is reasonable to suggest emodin as a potential candidate for the prevention and treatment of APAP.

ACKNOWLEDGEMENTS

The graphic abstract was created by www.BioRender.com.

AUTHOR CONTRIBUTION

Conceptualization, Qiong Liu; methodology, Pan Shen; validation, Zhe Cheng; investigation, Pan Shen; data curation, Pan Shen; writing—original draft preparation, Pan Shen; writing—review and editing, Qiong Liu, Liang Han, Guang Chen; visualization, Pan Shen; supervision, Qiong Liu.

FUNDING

This research was supported by the National Natural Science Foundation of China (No. 81903965).

DATA AVAILABILITY

The data used to support the findings of this study are included in the paper.

Declarations

Ethics Approval and Consent to Participate All experimental procedures were approved and carried out in accordance with Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Care Committee guidelines.

Consent for Publication Not applicable.

Competing Interests The authors declare no competing interests.
REFERENCES

1. Im, Y.J., J.Y. Jeon, E.Y. Kim, Y. Kim, D.J. Oh, J.S. Yoo, D.H. Shin, S.W. Chae, and M.G. Kim. 2015. An assessment of the pharmacokinetics of a sustained-release formulation of a tramadol/acetaminophen combination in healthy subjects. Clinical Therapeutics 37: 376–389. https://doi.org/10.1016/j.clinthera.2014.12.007.

2. Msolli, M.A., A. Sekma, M. Toumia, K. Bel Haj Ali, M.H. Khalil, M.H. Grissa, W. Bouida, K. Beltai’f, A. Zorgati, M. Methamem, et al. 2020. Acetaminophen Nonsteroidal Anti-inflammatory Drugs or Combination of Both Analgesics in Acute Posttrauma Pain: A Randomized Controlled Trial. Academic Emergency Medicine 28 (2): 155–163. https://doi.org/10.1111/acem.14169.

3. Hua, H., X. Ge, M. Wu, C. Zhu, L. Chen, G. Yang, Y. Zhang, S. Huang, A. Zhang, and Z. Jia. 2018. Rotenone Protects Against Acetaminophen-Induced Kidney Injury by Attenuating Oxidative Stress and Inflammation. Kidney & Blood Pressure Research 43: 1297–1309. https://doi.org/10.1159/000492589.

4. Bunchorntavakul, C., and K.R. Reddy. 2018. Acetaminophen (APAP or N-Acetyl-p-Aminophenol) and Acute Liver Failure. Clinics in liver disease 2018 (22): 325–346. https://doi.org/10.1016/j.clind.2018.01.007.

5. Aihuraliyi, T.N., and A.L. Jones. 2009. Prolonged N-acetylcysteine therapy in late acetaminophen poisoning associated with acute liver failure—a need to be more cautious? Critical Care 13: 144. https://doi.org/10.1186/cc7800.

6. Woolbright, B.L., and H. Jaeschke. 2017. Role of the inflammasome in acetaminophen-induced liver injury and acute liver failure. Journal of Hepatology 66: 836–848. https://doi.org/10.1016/j.jhep.2016.11.017.

7. Jaeschke, H., and M.R. McGill. 2015. Cytochrome P450-derived versus mitochondrial oxidant stress in acetaminophen hepatotoxicity. Toxicology Letters 235: 216–217. https://doi.org/10.1016/j.toxlet.2015.04.002.

8. Jiang, Z., X. Guo, K. Zhang, G. Sekaran, B. Cao, Q. Zhao, S. Zhang, G.M. Kirby, and X. Zhang. 2019. The Essential Oils and Eucalyptol From Artemisia vulgaris L Prevent Acetaminophen-Induced Liver Injury by Activating Nrf2-Keap1 and Enhancing APAP Clearance Through Non-Toxic Metabolic Pathway. Frontiers in Pharmacology 10: 782. https://doi.org/10.3389/fphar.2019.00782.

9. Connolly, M.K., D. Ayo, A. Malhotra, M. Hackman, A.S. Bedrosian, J. Ibrahim, N.E. Cieza-Rubio, A.H. Nguyen, J.R. Henning, M. Dorvil Castro, et al. 2011. Dendritic cell depletion exacerbates acetaminophen hepatotoxicity. Hepatology 54: 959–968. https://doi.org/10.1002/hep.24429.

10. Du, K., A. Ramachandran, and H. Jaeschke. 2016. Oxidative stress during acetaminophen hepatotoxicity: Sources pathophysiological role and therapeutic potential. Redox Biology 10: 148–156. https://doi.org/10.1016/j.redox.2016.10.001.

11. Yan, M., Y. Huo, S. Yin, and H. Hu. 2018. Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biology 17: 274–283. https://doi.org/10.1016/j.redox.2018.04.019.

12. Krenkel, O., J.C. Mossanen, and F. Tacke. 2014. Immune mechanisms in acetaminophen-induced acute liver failure. Hepatobiliary Surgery and Nutrition 3: 331–343. https://doi.org/10.3978/j.issn.2304-3881.2014.11.01.

13. Sandu, Y.A., M.F. Hamed, and A.R. El-Sheakh. 2020. Hepatoprotective effect of alllicin against acetaminophen-induced liver injury: Role of inflammasome pathway apoptosis and liver regeneration. Journal of Biochemical and Molecular Toxicology 34: e22470. https://doi.org/10.1002/jbt.22470.

14. Takeuchi, O., and S. Akira. 2010. Pattern recognition receptors and inflammation. Cell 140: 805–820. https://doi.org/10.1016/j.cell.2010.01.022.

15. Mukai, K., H. Konno, T. Akiba, T. Uemura, S. Waguri, T. Kobayashi, G.N. Barber, H. Arai, and T. Taguchi. 2016. Activation of STING requires palmitoylation at the Golgi. Nature Communications 7: 11932. https://doi.org/10.1038/ncomms11932.

16. Tanaka, Y., and Z.J. Chen. 2012. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Science Signaling 5: ra20. https://doi.org/10.1126/scisignal.2005251.

17. Petreska, J., A. Iracheta-Vellve, T. Csak, A. Satishchandran, K. Kody, E.A. Kuri-Jones, K.A. Fitzgerald, and G. Szabo. 2013. STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease. Proceedings of the National Academy of Sciences of the United States of America 110: 16544–16549. https://doi.org/10.1073/pnas.1308331110.

18. Maekawa, H., T. Inoue, H. Ouchi, T.M. Jao, R. Inoue, H. Nishi, R. Fujii, F. Ishidate, T. Tanaka, Y. Tanaka, et al. 2019. Mitochondrial Damage Causes Inflammation via cGAS-STING Signaling in Acute Kidney Injury. Cell Reports 29: 1261–1273. https://doi.org/10.1016/j.celrep.2019.09.050.

19. Bai, J., C. Cervantes, S. He, J. He, G.R. Plasko, J. Wen, Z. Li, D. Yin, C. Zhang, M. Liu, et al. 2020. Mitochondrial stress-activated cGAS-STING pathway inhibits thermogenic program and contributes to overnutrition-induced obesity in mice. Communications Biology 3: 257. https://doi.org/10.1038/s42003-020-0986-1.

20. Bai, J., and F. Liu. 2019. The cGAS-cGAMP-STING Pathway: A Molecular Link Between Immunity and Metabolism. Diabetes 68: 1099–1108. https://doi.org/10.2337/db18-0052.

21. Tan, Z.B., H.J. Fan, Y.T. Wu, L.P. Xie, Y.M. Bi, H.L. Xu, H.M. Chen, J. Li, B. Liu, and Y.C. Zhou. 2019. Rheum palmatum extract exerts anti-hepatocellular carcinoma effects by inhibiting signal transducer and activator of transcription 3 signaling. Journal of Ethnopharmacology 232: 62–72. https://doi.org/10.1016/j.jep.2018.12.019.

22. Ma, L., Z. Shen, H. Hu, H. Zhou, L. Yu, H. Jiang, and S. Zeng. 2021. Effects of rhein and Rheum palmatum L extract on the pharmacokinetics and tissue distribution of aristolochic acid I and its demethylated metabolite in rats. Journal of Ethnopharmacology 267: 113537. https://doi.org/10.1016/j.jep.2019.113537.

23. Wang, J.B., H.P. Zhao, Y.L. Zhao, C. Jin, D.J. Liu, W.J. Kong, F. Fang, L. Zhang, H.J. Wang, and X.H. Xiao. 2011. Hepatotoxicity or hepatoprotection: Pattern recognition for the paradoxical effect of the Chinese herb Rheum palmatum L in treating rat liver injury. PLoS ONE 6: e24498. https://doi.org/10.1371/journal.pone.0024498.

24. Lee, E.H., S.Y. Baek, J.Y. Park, and Y.W. Kim. 2020. Emodin in Rheum undulatum inhibits oxidative stress in the liver via AMPK with HippoYap signaling pathway. Pharmaceutical Biology 58: 333–341. https://doi.org/10.1080/13880209.2020.1750658.

25. Dong, X., J. Fu, X. Yin, S. Cao, X. Li, L. Lin, and J. Ni. 2016. Emodin: A Review of its Pharmacology Toxicity and Pharmacokinetics. Phytotherapy Research 30: 1207–1218. https://doi.org/10.1002/ptr.5631.

26. Hu, N., J. Liu, X. Xue, and Y. Li. The effect of emodin on liver disease -- comprehensive advances in molecular mechanisms. European Journal of Pharmacology 882: 173269. https://doi.org/10.1016/j.ejphar.2020.173269.
86

Shen, Han, Chen, Cheng and Liu

27. Bhadauria, M. 2010. Dose-dependent hepatoprotective effect of emodin against acetaminophen-induced acute damage in rats. Experimental and Toxicologic Pathology 62: 627–635. https://doi.org/10.1016/j.etp.2009.08.006.

28. Suzuki, S., L.H. Toledo-Pereyra, F.J. Rodriguez, and D. Cejalvo. 1993. Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury: Modulating effects of FK506 and cyclosporine. Transplantation 55: 1265–1272. https://doi.org/10.1097/00007890-199306000-00011.

29. Esh, C.J., A.R. Mauger, R.A. Palfreeman, H. Al-Janubi, and L. McGill, M.R., M.R. Sharpe, C.D. Williams, M. Taha, S.C. Curry, and H. Jaeschke. 2017. Acetaminophen (Paracetamol): Use beyond Pain Management and Dose Variability. Frontiers in Physiology 8: 1092. https://doi.org/10.3389/fphys.2017.01092.

30. Yoon, E., A. Babar, M. Choudhary, M. Kutner, and N. Pyrsopoulos. 2016. Acetaminophen-Induced Hepatotoxicity: A Comprehensive Update. Journal of Clinical and Translational Hepatology 4: 131–142. https://doi.org/10.14218/jch.2015.00052.

31. Nadler, A., and D.M. Fein. 2018. Acetaminophen Poisoning. Pediatrics in Review 39: 316–318. https://doi.org/10.1542/pir.2017-0093.

32. Chun, L.J., M.J. Tong, R.W. Busuttil, and J.R. Hiatt. 2009. Acetaminophen hepatotoxicity and acute liver failure. Journal of Clinical Gastroenterology 43: 342–349. https://doi.org/10.1097/MCG.0b013e31818a3584.

33. Kon, K., K. Ikejima, K. Okumura, T. Aoyama, K. Arai, Y. Takei, J.J. Lemasters, and N. Sato. 2007. Role of apoptosis in acetaminophen hepatotoxicity. Journal of Gastroenterology and Hepatology 22 (Suppl 1): S49–S52. https://doi.org/10.1111/j.1440-1746.2007.04962.x.

34. Jin, J., H. Xue, X. Sun, B. Zan, Y. Li, T. Wang, R. Shi, and Y. Ma. 2019. Simultaneous determination of multiple compounds of Da-Huang-Xiao-Shi decoction in rat plasma by LC-MS/MS and its application in a pharmacokinetic study. Journal of Pharmaceutical and Biomedical Analysis 174: 8–18. https://doi.org/10.1016/j.jpba.2019.05.050.

35. Bai, J., J. Wu, R. Tang, C. Sun, J. Ji, Z. Yin, G. Ma, and W. Yang. 2020. Emodin a natural anthraquinone suppresses liver cancer in vitro and in vivo by regulating VEGF(2) and miR-34a. Investigational New Drugs 38: 229–245. https://doi.org/10.1007/s10637-019-00777-5.

36. Du, C., L. Shi, M. Wang, P. Mao, J. Wang, Y. Wei, J. Hou, and M. Wang. 2019. Emodin attenuates Alzheimer’s disease by activating the protein kinase C signaling pathway. Cellular and Molecular Biology 65: 32–37.

37. Monisha, B.A., N. Kumar, and A.B. Tiku. 2016. Emodin and Its Role in Chronic Diseases. Advances in Experimental Medicine and Biology 928: 47–73. https://doi.org/10.1007/978-3-319-41334-1_3.

38. Dang, S.S., X.L. Jia, P. Song, Y.A. Cheng, X. Zhang, M.Z. Sun, and E.Q. Liu. 2009. Inhibitory effect of emodin and Astragalus polysaccharide on the replication of HBV. World Journal of Gastroenterology 15: 5660–5673. https://doi.org/10.3748/wjg.15.5660.

39. Jessick, V.J., M. A.N. Pearson, D.J. Torrey, M.D. Ashley, S. Thompson, and R. Meller. 2013. Investigating the role of the actin regulating complex ARP2/3 in rapid ischemic tolerance induced neuro-protection. International Journal of Physiology Pathophysiology and Pharmacology 5: 216–227.

40. McGill, M.R., M.R. Sharpe, C.D. Williams, M. Taha, S.C. Curry, and H. Jaeschke. 2012. The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. The Journal of Clinical Investigation 122: 1574–1583. https://doi.org/10.1172/jci59755.

41. Nelson, S.D. 1990. Molecular mechanisms of the hepatotoxicity caused by acetaminophen. Seminars in Liver Disease 10: 267–278. https://doi.org/10.1055/s-2008-1040482.

42. Yoshioka, H., Y. Ichimaru, S. Fukaya, A. Nagatsu, and T. Nonogaki. 2018. Potentiating effect of acetaminophen and carbon tetrachloride-induced hepatotoxicity is mediated by activation of receptor interaction protein in mice. Toxicology Mechanisms and Methods 28: 615–621. https://doi.org/10.1080/15376516.2018.1485804.

43. Jaeschke, H., A. Ramachandran, X. Chao, and W.X. Ding. 2019. Emerging and established modes of cell death during acetaminophen-induced liver injury. Archives of Toxicology 93: 3491–3502. https://doi.org/10.1007/s00204-019-02597-1.

44. Guo, H., J. Sun, D. Li, Y. Hu, X. Yu, H. Hua, X. Jing, F. Chen, Z. Jia, and J. Xu. 2019. Shikonin attenuates acetaminophen-induced acute liver injury via inhibition of oxidative stress and inflammation. Biomedicine & Pharmacotherapy 112: 10874. https://doi.org/10.1016/j.biopharm.2019.108704.

45. Lee, K.K., N. Imaizumi, S.R. Chamberland, N.N. Alder, and U.A. Boelsterli. 2015. Targeting mitochondria with methylene blue protects mice against acetaminophen-induced liver injury. Hepatology 61: 326–336. https://doi.org/10.1002/hep.27385.

46. Clemens, M.M., S. Kennedy-McGill, U. Apte, L.P. James, B.N. Finck, and M.R. McGill. 2019. The inhibitor of glycerol 3-phosphate acyltransferase FSG67 blunts liver regeneration after acetaminophen overdose by altering GSK3β and Wnt/β-catenin signaling. Food and Chemical Toxicology 125: 279–288. https://doi.org/10.1016/j.fct.2019.01.014.

47. Marrocco, I., F. Altieri, and L. Peluso. 2017. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxidative Medicine and Cellular Longevity 2017: 6501046. https://doi.org/10.1155/2017/6501046.

48. Porto, H.K.P., M.D. Grando, L.N.Z. Ramalho, M.C. Valadares, L.M. Bendhack, A.C. Batista, and M.L. Rocha. 2019. Exposure to acetaminophen impairs vasodilation increases oxidative stress and changes arterial morphology of rats. Archives of Toxicology 93: 1955–1964. https://doi.org/10.1007/s00204-019-02463-0.

49. Shi, A., H. Shi, Y. Wang, X. Liu, Y. Cheng, H. Li, H. Zhao, S. Wang, and L. Dong. 2018. Activation of Nrf2 pathway and inhibition of NLRP3 inflammasome activation contribute to the protective effect of chlorogenic acid on acute liver injury. International Immunopharmacology 54: 125–130. https://doi.org/10.1016/j.intimp.2017.11.007.

50. He, F., X. Ru, and T. Wen. 2020. Nrf2 a Transcription Factor for Stress Response and Beyond. International Journal of Molecular Sciences 21 (13): 4777. https://doi.org/10.3390/ijms21134777.

51. Lee, S., and L. Hu. 2020. Nrf2 activation through the inhibition of Keap1-Nrf2 protein-protein interaction. Medicinal Chemistry Research 29: 846–867. https://doi.org/10.1007/s00044-020-02539-y.

52. Yang, S., G. Kuang, R. Jiang, S. Wu, T. Zeng, X. Wang, F. Xu, L. Xiong, X. Gong, and J. Wan. 2019. Geniposide protected hepatocytes from acetaminophen hepatotoxicity by down-regulating CYP2E1 expression and inhibiting TLR4/NF-kB signaling pathway. International Immunopharmacology 74: 105625. https://doi.org/10.1016/j.intimp.2019.05.010.

53. Abais, J.M., M. Xia, Y. Zhang, K.M. Boini, and P.L. Li. 2015. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxidants & Redox Signaling 22: 1111–1129. https://doi.org/10.1089/ars.2014.5994.
Emodin Attenuates Acetaminophen-Induced Hepatotoxicity via the cGAS-STING Pathway

54. Li, S., Q. Lin, X. Shao, S. Mou, L. Gu, L. Wang, Z. Zhang, J. Shen, Y. Zhou, C. Qi, et al. 2019. NLRP3 inflammasome inhibition attenuates cisplatin-induced renal fibrosis by decreasing oxidative stress and inflammation. *Experimental Cell Research* 383: 111488. https://doi.org/10.1016/j.yexcr.2019.07.001.

55. Shan, S., Z. Shen, C. Zhang, R. Kou, K. Xie, and F. Song. 2019. Mitophagy protects against acetaminophen-induced acute liver injury in mice through inhibiting NLRP3 inflammasome activation. *Biochemical Pharmacology* 169: 113643. https://doi.org/10.1016/j.bcp.2019.113643.

56. Liu, X., X. Zhang, Y. Ding, W. Zhou, L. Tao, P. Lu, Y. Wang, and R. Hu. 2017. Nuclear Factor E2-Related Factor-2 Negatively Regulates NLRP3 Inflammasome Activity by Inhibiting Reactive Oxygen Species-Induced NLRP3 Priming. *Antioxidants & Redox Signaling* 26: 28–43. https://doi.org/10.1089/ars.2015.6615.

57. Roh, J.S., and D.H. Sohn. 2018. Damage-Associated Molecular Patterns in Inflammatory Diseases. *Immune Network* 18: e27. https://doi.org/10.4110/in.2018.18.e27.

58. Dinant, S., R.L. Veteläinen, S. Floquin, A.K. van Vliet, and T.M. van Gulik. 2007. IL-10 attenuates hepatic IR injury and promotes hepatocyte proliferation. *The Journal Of Surgical Research* 141: 176–182. https://doi.org/10.1016/j.jss.2006.09.018.

59. Thompson, K., J. Maltby, J. Fallowfield, M. McAulay, H. Millward-Sadler, and N. Sheron. 1998. Interleukin-10 expression and function in experimental murine liver inflammation and fibrosis. *Hepatology* 28: 1597–1606. https://doi.org/10.1002/hep.510280620.

60. Ramachandrana, A., and H. Jaeschke. 2019. Acetaminophen Hepatotoxicity. *Seminars In Liver Disease* 39: 221–234. https://doi.org/10.1055/s-0039-1679919.

61. Alhusaini, A.M., L.M. Faddah, I.H. Hasan, S.J. Jarallah, S.H. Alghamdi, N.M. Alhadab, A. Badr, N. Elorabi, E. Zakaria, and A. Al-Anazi. 2019. Vitamin C and Turmeric Attenuate Bax and Bcl-2 Proteins' Expressions and DNA Damage in Lead Acetate-Induced Liver Injury. *Dose-Response* 17: 1559325819885782. https://doi.org/10.1177/1559325819885782.

62. Volpe, C.M.O., P.H. Villar-Delfino, P.M.F. Dos Anjos, and J.A. Nogueira-Machado. 2018. Cellular death reactive oxygen species (ROS) and diabetic complications. *Cell Death & Disease* 9: 119. https://doi.org/10.1038/s41419-017-0135-z.

63. Gao, D., J. Wu, Y.T. Wu, F. Du, C. Aroh, N. Yan, L. Sun, and Z.J. Chen. 2013. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. *Science* 341: 903–906. https://doi.org/10.1126/science.1240933.

64. Civril, F., T. Deimling, C.C. de Oliveira Mann, A. Ablasser, M. Moldt, G. Witte, V. Hormung, and K.P. Hopfner. 2013. Structural mechanism of cytosolic DNA sensing by cGAS. *Nature* 498: 332–337. https://doi.org/10.1038/nature12305.

65. Cai, X., Y.H. Chiu, and Z.J. Chen. 2014. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. *Molecular Cell* 54: 289–296. https://doi.org/10.1016/j.molcel.2014.03.040.

66. Kwon, J., and S.F. Bakhoun. 2020. The Cytosolic DNA-Sensing cGAS-STING Pathway in Cancer. *Cancer Discovery* 10: 26–39. https://doi.org/10.1158/2159-8290.CD-19-0761.

67. Ishikawa, H., Z. Ma, and G.N. Barber. 2009. STING regulates intracellular DNA-mediated type I interferon-dependent innate immunity. *Nature* 461: 788–792. https://doi.org/10.1038/nature08476.

68. Qiao, J.T., C. Cui, L. Qing, L.S. Wang, T.Y. He, F. Yan, F.Q. Liu, Y.H. Shen, X.G. Hou, and L. Chen. 2018. Activation of the STING-IRF3 pathway promotes hepatocyte inflammation apoptosis and induces metabolic disorders in nonalcoholic fatty liver disease. *Metabolism* 81: 13–24. https://doi.org/10.1016/j.metabol.2017.09.010.

69. Burdette, D.L., K.M. Monroe, K. Sotelo-Troha, J.S. Iwig, B. Eckert, M. Hyodo, Y. Hayakawa, and R.E. Vance. 2011. STING is a direct innate immune sensor of cyclic di-GMP. *Nature* 478: 515–518. https://doi.org/10.1038/nature10429.

70. Du, S., G. Chen, B. Yuan, Y. Hu, P. Yang, Y. Chen, Q. Zhao, J. Zhou, J. Fan, and Z. Zeng. 2020. DNA sensing and associated type I interferon signaling contributes to progression of radiation-induced liver injury. *Cellular & Molecular Immunology*. https://doi.org/10.1038/s41423-020-0395-x.

71. Luo, X., H. Li, L. Ma, J. Zhou, X. Guo, S.L. Woo, Y. Pei, L.R. Knight, M. Deveau, Y. Chen, et al. 2018. Expression of STING Is Increased in Liver Tissues From Patients With NAFLD and Promotes Macrophage-Mediated Hepatic Inflammation and Fibrosis in Mice. *Gastroenterology* 155: 1971–1984. https://doi.org/10.1053/j.gastro.2018.09.010.

72. Thomsen, M.K., R. Nandakumar, D. Stadler, A. Malo, R.M. Valls, F. Wang, L.S. Reinert, F. Dagnaes-Hansen, A.K. Hollensen, J.G. Mikkelson, et al. 2016. Lack of immunological DNA sensing in hepatocytes facilitates hepatitis B virus infection. *Hepatology* 64: 746–759. https://doi.org/10.1002/hep.26865.

73. He, Y., D. Feng, M. Li, Y. Gao, T. Ramirez, H. Cao, S.J. Kim, Y. Yang, Y. Cai, C. Ju, et al. 2017. Hepatic mitochondrial DNA/Toll-like receptor 9/MicroRNA-223 forms a negative feedback loop to limit neutrophil overactivation and acetaminophen hepatotoxicity in mice. *Hepatology* 66: 220–234. https://doi.org/10.1002/hep.29153.

74. Araujo, A.M., M.M. Antunes, M.S. Mattos, A.B. Diniz, D.M. Alvarenga, B.N. Nakagaki, E. Carvalho, V.A.S. Lacerda, J.G. Carvalho-Gontijo, J. Goulart, et al. 2018. Liver Immune Cells Release Type I Interferon Due to DNA Sensing and Amplify Liver Injury from Acetaminophen Overdose. *Cells* 7 (8): 88. https://doi.org/10.3390/cells7080088.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.