INTRODUCTION

During a visit to the Folklore and Natural History Museum in Jeju Special Self-governing Province, the authors found in its arthropod collection dried specimens of *Cycloes granulosa* De Haan, 1837, which were originally collected by a fisherman at Port Hallim. As the Korean calappoid crab has been reported for six species of two genera (four species of *Calappa* Weber, 1795 and two species of *Mursia* Desmarest, 1823), it is the first species of the genus *Cycloes* De Haan, 1837.

The majoid genus *Pugettia* Dana, 1851 has been recorded for five species from Korean waters (Kim and Kim, 1997; Lee, 2007; Lee et al., 2014): *P. incisa* (De Haan, 1839), *P. intermedia* Sakai, 1938, *P. minor* Ortmann, 1893, *P. pellucens* Rathbun, 1932, and *P. quadridens* (De Haan, 1839). Recently, some specimens collected from the East Sea are identified as *P. vulgaris* Ohtsuchi, Kawamura, and Takeda, 2014. Therefore, the present paper describes and illustrates these two species with photographs.

Specimens were examined under a Leica EZ40 microscope (Leica Microsystems, Wetzlar, Germany) and digital photographs of crabs taken using an Olympus E-30 camera (Olympus, Tokyo, Japan). The following abbreviations are used in the present study: CL (carapace length) from the tip of rostrum to the posterior dorsal margin of the carapace, CW (carapace width) across the widest point of the carapace excluding branchial spine, and in majoid crab PCL (postrostral carapace length) carapace length excluding rostrum. Measurements were made by using digital vernier caliper (CD-15APX, Mitutojo, Kawasaki, Japan) to 0.1 mm. The brachyuran classification follows that of Ng et al. (2008). All the specimens are deposited at the corresponding author’s collection of Silla University, Busan.

SYSTEMATIC ACCOUNTS

Superfamily Calappoidea De Haan, 1833
Family Calappidae De Haan, 1833
1*Genus *Cycloes* De Haan, 1837

26*Cycloes granulosa* De Haan, 1837 (Figs. 1A–D, 2)
Cycloës granulosa De Haan, 1837: 71, Pl. 19, fig. 3, Pl. E.
Fig. 1. *Cycloes granulosa* De Haan, 1837 (A–D): A, Female (CL 31.2 mm, CW 29.5 mm), dorsal view; B, Female (CL 36.6 mm, CW 35.9 mm), dorsal view; C, Ventral view; D, Frontal view. *Pugettia vulgaris* Ohtsuchi, Kawamura, and Takeda, 2014 (E, F), male (CL 22.1 mm, CW 14.2 mm): E, Dorsal view; F, Ventral view.
Cycloes granulosa: Sakai, 1976: 139, Pl. 43, fig. 3; Miyake, 1983: 199; Dai and Yang, 1991: 108, fig. 54, Pl. 12(3); Yamaguchi and Baba, 1993: 313, fig. 97; Galil and Clark, 1996: 194, figs. 9B, 10A–C, 11A, B; Minemizu, 2000: 195; Takeda and Manuel-Santos, 2006: 100, fig. 7E.

Cryptosoma granulosum: Lucas, 1844: 438; Miers, 1886: 293; Sakai, 1936: 49, Pl. 7, fig. 2; Takeda, 1982: 109, fig. 319.

Material examined. 2♂♀ dried, Korea: Jeju Special Self-Governing Province, Hallim-eup, Jeju-si, Hallim Port, 28 Oct 2007, coll. Yang KC.

Description. Carapace (Figs. 1A, B, 2A) convex, longitudinally ovate, slightly longer than broad. Dorsal surface densely granulate, with longitudinal rows of low tubercles anteriorly; regions indistinct except furrows bordering cardiac region. Front narrow (Fig. 1A, B, D), with 2 triangular teeth. Anterolateral margin (Figs. 1A, B, 2A) granulate; lateral spine minute, indistinct; posterolateral margin sharply convergent, minutely granulate.

Eye (Fig. 1A, B, D) filling orbit; eyestalk short, smooth, cornea large; orbital margins with long plumose setae; supraorbital margin swollen medially.

Chelipeds (Figs. 1, 2B–D) massive, densely granulate, subequal in size. Merus (Fig. 1A, B, D) with lanceolate tooth distally. Upper margin of carpus (Figs. 1A, B, D, 2D) with 3 teeth increasing in size distally. Palm (Figs. 1A, B, D, 2B, C) crested on upper margin, cut into 9 teeth; outer surface densely granulate, with larger granules below crest; lower margin with 2 parallel rows of acute tubercles, bearing keel-like lobe proximally. Movable finger (Figs. 1C, D, 2B, C) granulose on outer surface, with acute tubercles on upper margin; right one with proximal molariform tooth fitting into shallow depression.

Ambulatory legs (Fig. 1A–C) smooth, laterally compressed; dactyli long, styliiform.

Abdomen of female (Fig. 1C) with 6 segments; segment 2 with bifissured, medially concave crest. Telson (Fig. 1C) triangular, slightly longer than abdominal segment 6.

Habitat. The crab was found on the sandy bottom at 5~100 m in depths (Minemizu, 2000).

Distribution. Singapore, Vietnam, Taiwan, China, Japan, Philippines, and now Korea.

Remarks. These crabs are the first species of the genus *Cycloes* in Korea and collected by a local fisherman. Two species, *Cycloes granulosa* De Haan, 1837 and *Cycloes marisrubri* Galil and Clark, 1996, of the genus *Cycloes* are reported in the world. *Cycloes granulosa* is distinguished from *C. marisrubri* by having a granulate carapace with rows of low tubercles and in chelipeds each carpus with three teeth on upper margin and each palm without knob-like tubercles on outer surface. In Korean waters this species is similar to the species of *Mursia* (*M. armata* De Haan, 1837 and *M. trispinosa* Parisi, 1914) by having a denticulate crest on each propodus of the chelipeds, a proximal tooth fitting into a depression in a dactylus of the larger cheliped, and long styliform dactyli of the ambulatory legs. However, it can be characterized as having a minute lateral spine on margin of the carapace (vs. a well developed spine in the two species of *Mursia*). Although, our specimens dried, they have yellow with reddish brown spots on whole body, inner surface of the cheliped with orange markings, and ambulatory legs with orange stripes.

Korean name: 1*잔털뿔물맞이게*(신칭)
Eye (Figs. 1E, F, 3B) non-retractile, orbit incomplete.

Basal antennal article (Fig. 3B) with distal spine on outer lateral margin; antennal peduncle consisting of 2 articles; ultimate article shorter than penultimate article, proximal end as broad as distal end.

Pterigostomial region (Fig. 3B) with 4 small tubercles.

Third maxilliped (Fig. 3C): Ischium subrectangular, about 1.2 times longer than broad, inner margin with setae and spinules, antero-inner margin produced; merus with setae on margins; dactylus setose. Outer margin of exopod with setae and spinules.

Chelipeds (Figs. 1E, F, 3A, D, E) equal in size. Merus prismatic; upper crest distinct, with 2 small teeth proximally and larger tooth subdistally; lower surface with 3 small tubercles; inner and outer margins without tubercle. Carpus sharply crested on inner and outer margins, upper surface with shorter crest including 2–3 tubercles. Palm crested on upper surface.

Ambulatory legs (Figs. 2, 3A, F, G) with short dense setae, scattering of longer setae; each merus with distal tooth; each carpus with 2 ridges on upper surface; each dactylus with 2 rows of spinules on posterior margin.

Abdomen of male (Fig. 3H) with 6 segments.

Gonopod 1 (Fig. 3I, J) relatively stout; distal part triangular; lateral lobe broad, triangular; 2 medial lobes slender; dorsal lobe (Fig. 3J) approximately 1.5 times longer than ventral lobe.

Habitat. These crabs were found in a scallop farm.

Distribution. Japan and now Korea.

Remarks. These specimens agree well with those of *P. vulgaris* described by Ohtsuchi et al. (2014) based on the following characteristics: 1) the carapace is covered with setae

Fig. 2. *Cycloes granulosa* De Haan, 1837, female (CL 36.6 mm, CW 35.9 mm). A, Dorsal view of left part of carapace; B, Chela of right cheliped; C, Chela of left cheliped; D, Carpus of left cheliped, outer view. Scale bars: A–C = 10 mm, D = 5 mm.
Fig. 3. *Pugettia vulgaris* Ohtsuchi, Kawamura, and Takeda, 2014, male (CL 22.1 mm, CW 14.2 mm). A, Dorsal view; B, Right anterior carapace, ventral view; C, Right third maxilliped, ventral view; D, Right cheliped, inner view; E, Merus of right cheliped, ventral view; F, Right ambulatory leg 1, outer view; G, Merus and carpus of right ambulatory leg 1, upper view; H, Abdomen; I, Left gonopod 1, ventral view; J, Distal part of left gonopod 1, upper view. Scale bars: A, B = 5 mm, C, I = 1 mm, D–H = 2.5 mm, J = 0.5 mm.
and has no tubercles, 2) the relative length of the rostral spines against the PCL is 0.29–0.31, 3) the hepatic spine is subequal to or slightly larger than the postorbital spine, 4), the merus of the cheliped has 3 teeth on the upper crest, 5) the carpus of the cheliped has 3 crests, and 6) the dorsal lobe of the gonopod is 1.5 times longer than the ventral lobe. However, *P. pellucens* figured by Lee (2007: fig. 10A, as *P. quadridens pellucens*) and Lee et al. (2014: fig. 4B) is significantly differs from that of Ohtsuchi et al. (2014) and similar to *P. vulgaris* because 1) the ratio of length of rostral spine to PCL is not 0.40–0.50, 2) the rostral spines are not widely divergent in the distal half, and 3) the hepatic spine is not much larger than the postorbital spine. Therefore, it is necessary to re-examine their specimens.

Including the present study, six species of the genus *Pugettia* are reported from Korea. Their identification keys are following:

Key to species of the genus *Pugettia* from Korea

Eye with incomplete orbit. Basal antennal article short, truncate. Carapace subtriangular or pear-shaped, rostrum with 2 slender spines, preorbital and postorbital spines distinct, hepatic and branchial margins produced with spine. Chelipeds prismatic in meri. All abdominal segments distinct, hepatic and branchial margins produced with spine. With 2 slender spines, preorbital and postorbital spines distinctly truncate. Carapace subtriangular or pear­shaped, rostrum

1. Postorbital spine and hepatic lobe fused as wing-shaped plate ... *Pugettia incisor*
 - Postorbital spine and hepatic lobe not fused as wing-shaped plate ... 2
2. Cardiac region of carapace with prominent spine
 - Cardiac region of carapace without prominent spine 3
3. Postorbital spine much smaller than hepatic spine 4
 - Postorbital spine subequal to hepatic spine 5
4. Carapace subtriangular *Pugettia quadridens*
 - Carapace elongated pear-shaped *Pugettia pellucens*
5. Carapace regions well defined *Pugettia intermedia*
 - Carapace regions not defined *Pugettia vulgaris*

ACKNOWLEDGMENTS

This research was supported by the project on survey of indigenous biological resources of Korea (NIBR No. 2014-02-001).

REFERENCES

Alcock A, Anderson ARS, 1894. Natural history notes from H.M. Indian Marine Survey Steamer *Investigator*, Ser. II, No. 17.

List of the shore and shallow-water Brachyura collected during the season 1893–1894. Journal of the Asiatic Society of Bengal, 63:197-209.

Borradaile LA, 1903. VI. The sand crabs (Oxystomata). In: Fauna and geography of the Maldives and Laccadive Archipelagoes. Being the account of the work carried on and of the collections made by an expedition during the years 1890–1900 (Ed., Gardner JS). Cambridge University Press, Cambridge, pp. 434-439.

Dai A, Yang S, 1991. Crabs of the China Seas. China Ocean Press, Beijing, pp. 1-608.

Dana JD, 1851. Conspectus Crustaceorum quae in Orbis Terrarum Circumnavigatone, Carolo Wilkes e Classe Republicae Foederae duce, lexit et descripsit. Pars VI. American Journal of Sciences & Arts, 11:268-274. http://dx.doi.org/10.5962/bhl.title.53615

De Haan W, 1833–1849. Crustacea. In: Fauna Japonica sive Descriptio Animalium, quae in Itinere per Japoniam, Jussu et Auspicis Superiorum, qui Summun in India Batava Imperium Tenent, Suscepto, Annis 1832–1830 Collegiat, Notis, Observationibus et Adumbrationibus Illustravit (Ed., von Siebold PF). Lugduni Batavorum, Amsterdam, pp. 1-243.

Galil BS, Clark PF, 1996. A revision of *Cryptosoma* Brullé, 1837 and *Cycloes* de Haan, 1837 (Crustacea: Brachyura: Calappidae). Zoological Journal of the Linnean Society, 117:175-204. http://dx.doi.org/10.1111/j.1096-3642.1996.tb02155.x

Kim W, Kim HS, 1997. Order Decapoda. In: List of animals in Korea (excluding Insects) (Ed., Korean Society Systematic Zoology). Academy Publishing Co., Seoul, pp. 212-223.

Lee SK, 2007. A taxonomic study on the family Epialtidae (Crustacea: Decapoda: Majoidea) of Korea. MS thesis, Seoul National University, Seoul, Korea, pp. 1-72.

Lee SK, Park TS, Kim D, Kim W, 2014. New record of majoid crab, *Pugettia intermedia* (Crustacea: Decapoda: Majoidea) from Korea. Animal Systematics, Evolution and Diversity, 30:44-48. http://dx.doi.org/10.5635/ASED.2014.30.1.044

Lucas H, 1844. Cryptosome. In: Dictionnaire universel d’Histoire Naturelle résumant et complétant tous les faits présentés par les Encyclopédies, les anciens Dictionnaires, les ouvrages complets de Buffon, et les meilleurs Traités spéciaux sur les diverses branches des sciences naturelles: - Donnant la description des êtres et des divers phénomènes de la nature, l’étymologie et la définition des noms scientifiques, les principales applications des corps organiques et inorganiques, à l’agriculture à la médecine, aux arts industrials, etc.: ouvrage utile aux Médecins, aux Pharmaciens, aux Agriculteurs, aux Industriels, et généralement à tous les hommes désireux de s’initier aux merveilles de la nature (Ed., d’Orbigny C). Renard, Martinet et Cie, Paris, pp. 1-752.

MacLeay WS, 1838. On the Brachyurous Decapod Crustacea brought from the Cape by Dr. Smith. In: Illustrations of the Annulosa of South Africa; being a portion of the objects of natural history chiefly collected during an expedition into
the interior of South Africa, under the direction of Dr. Andrew Smith, in the years 1834, 1835, and 1836; fitted out by The Cape of Good Hope Association for Exploring Central Africa (Ed., Smith A). London, pp. 53-71.

Miers EJ, 1886. Report on the Brachyura collected by H.M.S. Challenger during the years 1873-1876. In: Report on the Scientific Results of the exploring Voyage of H.M.S. Challenger during the years 1873-1876, under the command of Captain George S. Nares, R.N., F.R.S. and the Late Captain Frank Tourle Thomson, R.N., Zoology (Eds., Thompson CW, Murray J), Vol. 17. Neill and Company, Edinburgh, pp. 1-362.

Minemizu R, 2000. Marine decapods and stomatopod crustaceans mainly from Japan. Buninchi Sogo Publishing Co., Tokyo, pp. 1-344.

Miyake S, 1983. Japanese Crustacean Decapods and Stomatopods in color. Vol. II. Brachyura (Crabs). Hoikusha, Osaka, pp. 1-277.

Ng PKL, Guinot D, Davie PJF, 2008. Systema Brachyurorum: Part 1. An annotated checklist of extant brachyuran crabs of the world. Raffles Bulletin of Zoology, 17:1-286.

Ohtsuchi N, Kawamura T, Takeda M, 2014. Redescription of a poorly known epialtid crab Pugettia pellucens Rathbun, 1932 (Crustacea: Decapoda: Brachyura: Majoidea) and description of a new species from Sagami Bay, Japan. Zootaxa, 3765:557-570. http://dx.doi.org/10.11646/zootaxa.3765.6.4

Ortmann AE, 1893. Die Decapoden-Krebs des Strassburger Museums, mit besonderer Berücksichtung der von Herrn Dr. Döderlein bei Japan und bei den Liu-Kiu-Inseln gesammelten und z.Z. im Strassburger Museum aufbewahrten Formen. Theil VI. Abtheilung: Brachyura (Brachyura genuina Boas), 1. Unterabtheilung: Majoidea und Cancroidea, 1. Section Portuninae. Zoologische Jahrbücher, Abtheilung für Systematik, Geographie und Biologie der Thiere, 7:23-88.

Parisi B, 1914. I Decapodi giapponesi del Museo di Milano. I. Oxyystomata. Atti della Societa italiana di Scienze naturali e del Museo civico di Storia naturale, Milano, 53:280-312.

Rathbun MJ, 1932. Preliminary descriptions of new species of Japanese crabs. Proceedings of the Biological Society of Washington, 45:29-38.

Sakai T, 1936. Crabs of Japan: 66 plates in life colours with descriptions. Sanseido, Tokyo, pp. 1-239.

Sakai T, 1938. Studies on the crabs of Japan. III. Brachygnatha, Oxyrhyncha. Yokendo Co., Tokyo, pp. 193-364.

Sakai T, 1976. Crabs of Japan and the adjacent seas. Kodansha Ltd., Tokyo, Vol. 1, pp. 1-773, Vol. 2, pp. 1-16, Vol. 3, 1-461.

Samouelle G, 1819. The entomologist’s useful compendium, or an introduction to the knowledge of British insects. Thomas Boys, London, pp. 1-496. http://dx.doi.org/10.5962/bhl.title.5527

Takeda M, 1982. Keys to the Japanese and foreign crustaceans fully illustrated in colors. Hokuryukan, Tokyo, pp. 1-285.

Takeda M, Manuel-Santos MR, 2006. Crabs from Balicasag Island, Bohol, the Philippines: Dromiidae, Dynomenidae, Homolidae, Raninidae, Dorippidae, and Calappidae. Memoires of the National Science Museum, Tokyo, 44:83-104.

Yamaguchi T, Baba K, 1993. Crustacean specimens collected in Japan by Ph. F. Von Siebold and H. Burger and held by the Nationaal Natuurhistorisch Museum in Leiden and other Museums. In: Ph. von Siebold and Natural History of Japan Crustacea (Ed., Yamaguchi T). The Carcinological Society of Japan, Tokyo, pp. 145-539.

Received December 19, 2014
Revised July 2, 2015
Accepted July 3, 2015