Measurement of CP asymmetry in the $D^0 \rightarrow K_S^0 K^0_S$ decay at Belle

A. Abdesselam, 92 I. Adachi, 20,16 K. Adamczyk, 66 H. Aihara, 100 S. Al Said, 92,42 K. Arinstein, 5,70 Y. Arita, 59 D. M. Asner, 73 T. Aso, 105 H. Atmacan, 55 V. Aulchenko, 5,70 T. Aushev, 58 R. Ayad, 92 T. Aziz, 93 V. Babu, 93 I. Badhrees, 92,41 S. Bahinipati, 26 A. M. Bakich, 91 A. Bala, 74 Y. Ban, 75 V. Bansal, 73 E. Barberio, 54 M. Barrett, 19 W. Bartel, 10 A. Bay, 47 I. Bedny, 5,70 P. Behera, 28 M. Belhorm, 9 K. Belous, 32 M. Berger, 89 D. Besson, 57 V. Bhardwaj, 25 B. Bhuyan, 27 J. Biswal, 36 T. Bloomfield, 54 S. Blyth, 64 A. Bobrov, 5,70 A. Bondar, 5,70 G. Bonvicini, 108 C. Bookwalter, 73 C. Boulahouache, 92 A. Bozek, 66 M. Bračko, 52,36 F. Breibech, 31 J. Brodzicka, 66 T. E. Browder, 19 E. Waheed, 54 D. Čerkenkov, 6 M.-C. Chang, 12 P. Chang, 65 Y. Chao, 65 V. Chekelian, 53 A. Chen, 63 K.-F. Chen, 55 P. Chen, 65 B. G. Cheon, 18 K. Chilikin, 48,57 R. Chistov, 38,57 K. Cho, 43 V. Chobanova, 53 S.-K. Choi, 17 Y. Choi, 90 D. Cinabro, 108 J. Crnkovic, 24 J. Dalseno, 53,94 M. Danilov, 57,48 N. Dash, 26 S. Di Carlo, 108 J. Dingfelder, 4 Z. Dojel, 9 D. Dossett, 54 Z. Drásal, 6 A. Drutskoy, 48,57 S. Dubey, 19 D. Dutta, 93 K. Dutta, 27 S. Eidelman, 5,70 D. Epifanov, 100 S. Esen, 9 H. Farhat, 108 J. E. Fast, 73 M. Feindt, 38 T. Ferber, 19 A. Frey, 15 O. Frost, 10 B. G. Fulsom, 73 V. Gaur, 93 N. Gabyshiev, 5,70 S. Ganguly, 108 A. Garmash, 5,70 D. Getzko, 13 R. Gillard, 108 F. Giordano, 24 R. Glattauer, 31 Y. M. Goh, 18 P. Goldenzweig, 38 B. Golob, 49,36 D. Greenwald, 95 M. Grosse Perdekamp, 24,81 J. Grygier, 38 O. Grzymkowska, 66 H. Guo, 83 J. Haba, 20,16 P. Hamer, 15 Y. L. Han, 30 K. Hara, 20 T. Hara, 20,16 Y. Hasegawa, 85 J. Hasenbusch, 4 K. Hayasaka, 68 H. Hayashii, 62 X. H. He, 75 M. Heck, 38 M. T. Hedges, 19 D. Heffernan, 72 M. Heider, 38 A. Heller, 38 T. Higuchi, 39 S. Himori, 98 S. Hirose, 59 T. Horiguchi, 98 Y. Hoshi, 97 K. Hoshina, 103 W.-S. Hou, 65 Y. B. Hsiung, 65 C.-L. Hsu, 54 M. Huschle, 38 H. J. Hyun, 46 Y. Igarashi, 20 T. Iijima, 60,59 M. Imamura, 59 K. Imai, 59 G. Inguglia, 10 A. Ishikawa, 98 K. Itagaki, 98 R. Itoh, 20,16 M. Iwabuchi, 110 M. Iwasaki, 100 Y. Iwasaki, 20 S. Iwata, 102 W. W. Jacobs, 29 I. Jaegle, 11 H. B. Jeon, 46 Y. Jin, 100 D. Joffe, 40 M. Jones, 19 K. K. Joo, 8 T. Julius, 54 H. Kakuno, 102 A. B. Kaliyar, 28 J. H. Kang, 110 K. H. Kang, 46 P. Kapusta, 66 S. U. Kataoka, 61 E. Kato, 98 Y. Kato, 59 P. Katrenko, 58,48 H. Kawai, 7 T. Kawasaki, 68 T. Keck, 38 H. Kichimi, 20 C. Kiesling, 53 B. H. Kim, 84 D. Y. Kim, 87 H. J. Kim, 46 H.-J. Kim, 110 J. B. Kim, 44 J. H. Kim, 43 K. T. Kim, 44 M. J. Kim, 46 S. H. Kim, 18 S. K. Kim, 84 Y. J. Kim, 43 K. Kinoshita, 9 C. Kleinwort, 10 J. Klucar, 36 B. R. Ko, 44 N. Kobayashi, 101 S. Koblitz, 53 P. Kodyš, 6 Y. Koga, 59 S. Korpar, 52,36 D. Kotchetkov, 19 R. T. Kouzes, 73 P. Križan, 49,36 P. Krokovny, 5,70 B. Kronenbitter, 38 T. Kühr, 50 R. Kulcsár, 40 R. Kumar, 77 T. Kumita, 102 E. Kurihara, 7 Y. Kuroki, 72 A. Kuzmin, 5,70 P. Kvasnička, 6 Y.-J. Kwon, 110 Y.-T. Lai, 65 J. S. Lange, 13 D. H. Lee, 44 I. S. Lee, 18 S.-H. Lee, 44 M. Leitgab, 24,81 R. Leitner, 6 D. Levit, 95 P. Lewis, 19 C. H. Li, 54 H. Li, 29 J. Li, 84 L. Li, 83 X. Li, 84 Y. Li, 107 L. Li Giori, 53 J. Libby, 28 A. Limosani, 54 C. Liu, 83 Y. Liu, 9 Z. Q. Liu, 30 D. Liventsev, 107,20 A. Loos, 88 R. Louvot, 47
M. Lubej,36 P. Lukin,5,70 T. Luo,76 J. MacNaughton,20 M. Masuda,99 T. Matsuda,56 D. Matvienko,5,70 A. Matyja,66 S. McOnie,91 Y. Mikami,98 K. Miyabayashi,62 Y. Miyachi,109 H. Miyake,20,16 H. Miyata,68 Y. Miyazaki,59 R. Mizuk,48,57,58 G. B. Mohanty,93 S. Mohanty,93,106 D. Mohapatra,73 A. Moll,53,94 H. K. Moon,44 T. Mori,59 T. Morii,39 H.-G. Moser,53 T. Müller,38 N. Muramatsu,78 R. Mussa,34 T. Nagamine,98 Y. Nagasaka,22 Y. Nakahama,100 I. Nakamura,20,16 K. R. Nakamura,20 E. Nakano,71 H. Nakano 98 T. Nakano,79 M. Nakao,20,16 H. Nakayama,20,16 H. Nakazawa,63 T. Nanut,20,16 Y. Ushiroda,20,16 T. Nagamine,98 Y. Nagasaka,22 Y. Nakahama,100 I. Nakamura,20,16 K. R. Nakamura,20 E. Nakano,71 H. Nakano 98 T. Nakano,79 M. Nakao,20,16 H. Nakayama,20,16 H. Nakazawa,63 T. Nanut,36 K. J. Nath,27 Z. Natkaniec,66 M. Nayak,108,20 E. Nedelkovska,53 K. Negishi,98 K. Neichi,97 C. Ng,100 C. Niebuhr,16 M. Niiyama,45 N. K. Nisar,93,1 S. Nishida,20,16 K. Nishimura,19 O. Nitoh,103 T. Nozaki,20 A. Ogawa,81 S. Ogawa,96 T. Ohshima,59 S. Okuno,37 S. L. Olsen,84 Y. Ono,98 Y. Onuki,100 W. Ostrowicz,66 C. Oswald,4 H. Ozaki,20,16 P. Pakhlova,48,57 G. Pakhlova,48,58 B. Pal,9 H. Palka,66 E. Panzenböck,15,62 C.-S. Park,110 C. W. Park,90 H. Park,46 K. S. Park,90 S. Paul,95 L. S. Peak,91 T. K. Pedlar,51 T. Peng,83 L. Pesántez,4 R. Pestotnik,36 M. Peters,19 M. Petrić,36 L. E. Piilonen,107 A. Piukert,5,70 K. Prasanth,48 M. Prim,38 K. Prothmann,53,94 C. Pulvermacher,20 M. V. Purohit,88 J. Rauch,95 B. Reisert,53 E. Ribežič,36 M. Ritter,50 J. Rorie,19 A. Rostomyan,10 M. Rozanska,66 S. Rumel,50 S. Ryu,84 H. Sahoo,19 T. Saito,98 K. Sakai,20 Y. Sakai,20,16 S. Sandilya,9 D. Santel,9 L. Santelj,20 T. Samuki,98 J. Sasaki,100 N. Saso,45 Y. Sato,59 V. Savinov,76 T. Schlüter,50 O. Schneider,47 G. Schnell,2,23 P. Schönmeier,98 M. Schram,73 C. Schwanda,31 A. J. Schwartz,9 B. Schwenker,15 R. Seidl,81 Y. Seino,68 D. Semmler,13 K. Senyo,109 O. Seon,59 I. S. Seong,19 M. E. Sevior,54 L. Shang,30 M. Shapkin,32 V. Shebalin,5,70 C. P. Shen,3 T.-A. Shibata,101 H. Shibuya,96 N. Shimizu,100 S. Shinomiya,72 J.-G. Shiu,65 B. Shwartz,5,70 A. Sibidanov,91 F. Simon,53,94 J. B. Singh,74 R. Sinha,33 P. Smerkol,36 Y.-S. Sohn,110 A. Sokolov,32 Y. Soloviev,10 E. Solovieva,48,58 S. Stanić,69 M. Starić,36 M. Steder,10 J. F. Strube,73 J. Stypula,66 S. Sugihara,100 A. Sugiyama,82 M. Sumihama,14 K. Sumisawa,20,16 T. Sumiyoshi,102 K. Suzuki,59 K. Suzuki,89 S. Suzuki,82 S. Y. Suzuki,20 Z. Suzuki,98 H. Takeichi,59 M. Takizawa,86,21,80 U. Tamponi,34,104 M. Tanaka,20,16 S. Tanaka,20,16 K. Tanida,35 N. Taniguchi,20 G. N. Taylor,54 F. Tenchini,54 Y. Teramoto,71 I. Tikhomirov,57 K. Trabelsi,20,16 V. Trusov,38 Y. F. Tse,54 T. Tsuboyama,20,16 M. Uchida,101 T. Uchida,20 S. Uehara,20,16 K. Ueno,65 T. Uglov,48,58 Y. Unno,18 S. Uno,20,16 S. Uozumi,46 P. Urquijo,54 Y. Ushiroda,20,16 Y. Usos,5,70 S. E. Vahsen,19 C. Van Hulse,2 P. Vanhoefer,53 G. Varner,19 K. E. Varvell,91 K. Vervink,47 A. Vinokurova,5,70 V. Vorobyev,5,70 A. Vossen,29 M. N. Wagner,13 E. Waheed,54 C. H. Wang,64 J. Wang,75 M.-Z. Wang,65 P. Wang,30 X. L. Wang,73,20 M. Watanabe,68 Y. Watanabe,37 R. Wedd,54 S. Wehe,10 E. White,9 E. Widmann,89 J. Wieczynski,66 K. M. Williams,107 E. Won,44 B. D. Yabsley,91 S. Yamada,20 H. Yamamoto,98 J. Yamaoka,73 Y. Yamashita,67 M. Yamauchi,20,16 S. Yashchenko,10 H. Ye,10 J. Yelton,11 Y. Yook,110 C. Z. Yuan,30 Y. Yusa,68 C. C. Zhang,30 L. M. Zhang,83 Z. P. Zhang,83 L. Zhao,83 V. Zhilich,5,70 V. Zhukova,57 V. Zhulianov,5,70 M. Ziegler,38 T. Zivko,36 A. Zupanc,49,36 N. Zwahlen,47 and O. Zyukova,5,70

(The Belle Collaboration)

1Aligarh Muslim University, Aligarh 202002
2University of the Basque Country UPV/EHU, 48080 Bilbao
3 Beihang University, Beijing 100191
4 University of Bonn, 53115 Bonn
5 Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
6 Faculty of Mathematics and Physics, Charles University, 121 16 Prague
7 Chiba University, Chiba 263-8522
8 Chonnam National University, Kwangju 660-701
9 University of Cincinnati, Cincinnati, Ohio 45221
10 Deutsches Elektronen–Synchrotron, 22607 Hamburg
11 University of Florida, Gainesville, Florida 32611
12 Department of Physics, Fu Jen Catholic University, Taipei 24205
13 Justus-Liebig-Universität Gießen, 35392 Gießen
14 Gifu University, Gifu 501-1193
15 II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen
16 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
17 Gyeongsang National University, Chinju 660-701
18 Hanyang University, Seoul 133-791
19 University of Hawaii, Honolulu, Hawaii 96822
20 High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
21 J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
22 Hiroshima Institute of Technology, Hiroshima 731-5193
23 IKERBASQUE, Basque Foundation for Science, 48013 Bilbao
24 University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
25 Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306
26 Indian Institute of Technology Bhuvaneshwar, Satya Nagar 751007
27 Indian Institute of Technology Guwahati, Assam 781039
28 Indian Institute of Technology Madras, Chennai 600036
29 Indiana University, Bloomington, Indiana 47408
30 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
31 Institute of High Energy Physics, Vienna 1050
32 Institute for High Energy Physics, Protvino 142281
33 Institute of Mathematical Sciences, Chennai 600113
34 INFN - Sezione di Torino, 10125 Torino
35 Advanced Science Research Center, Japan Atomic Energy Agency, Naka 319-1195
36 J. Stefan Institute, 1000 Ljubljana
37 Kanagawa University, Yokohama 221-8686
38 Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
39 Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583
40 Kennesaw State University, Kennesaw, Georgia 30144
41 King Abdulaziz City for Science and Technology, Riyadh 11442
42 Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589
43 Korea Institute of Science and Technology Information, Daejeon 305-806
44 Korea University, Seoul 136-713
45 Kyoto University, Kyoto 606-8502
46 Kyungpook National University, Daegu 702-701
47 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015
48 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991
49 Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana
50 Ludwig Maximilians University, 80539 Munich
51 Luther College, Decorah, Iowa 52101
52 University of Maribor, 2000 Maribor
53 Max-Planck-Institut für Physik, 80805 München
54 School of Physics, University of Melbourne, Victoria 3010
55 Middle East Technical University, 06531 Ankara
56 University of Miyazaki, Miyazaki 889-2192
57 Moscow Physical Engineering Institute, Moscow 115409
58 Moscow Institute of Physics and Technology, Moscow Region 141700
59 Graduate School of Science, Nagoya University, Nagoya 464-8602
60 Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602
61 Nara University of Education, Nara 630-8528
62 Nara Women’s University, Nara 630-8506
63 National Central University, Chung-li 32054
64 National United University, Miaoli 36003
65 Department of Physics, National Taiwan University, Taipei 10617
66 H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342
67 Nippon Dental University, Niigata 951-8580
68 Niigata University, Niigata 950-2181
69 University of Nova Gorica, 5000 Nova Gorica
70 Novosibirsk State University, Novosibirsk 630090
71 Osaka City University, Osaka 558-8585
72 Osaka University, Osaka 565-0871
73 Pacific Northwest National Laboratory, Richland, Washington 99352
74 Panjab University, Chandigarh 160014
75 Peking University, Beijing 100871
76 University of Pittsburgh, Pittsburgh, Pennsylvania 15260
77 Punjab Agricultural University, Ludhiana 141004
78 Research Center for Electron Photon Science, Tohoku University, Sendai 980-8578
79 Research Center for Nuclear Physics, Osaka University, Osaka 567-0047
80 Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198
81 RIKEN BNL Research Center, Upton, New York 11973
82 Saga University, Saga 840-8502
83 University of Science and Technology of China, Hefei 230026
84 Seoul National University, Seoul 151-742
85 Shinshu University, Nagano 390-8621
86 Showa Pharmaceutical University, Tokyo 194-8543
87 Soongsil University, Seoul 156-743
88 University of South Carolina, Columbia, South Carolina 29208
Abstract

We report a measurement of the time-integrated CP asymmetry in the neutral charm meson decay $D^0 \to K^0_SK^0_S$ using 921 fb$^{-1}$ data collected at the $\Upsilon(4S)$ and $\Upsilon(5S)$ resonances with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. The observed asymmetry is

$$A_{CP}(D^0 \to K^0_SK^0_S) = (-0.02 \pm 1.53 \pm 0.17)\%,$$

where the first uncertainty is statistical and the second systematic. This latter uncertainty is dominated by the error of the normalisation channel. The result is consistent with Standard Model expectations and improves the uncertainty with respect to previous measurement of this quantity by more than a factor of three.
Charge-parity violation (CPV) in charmed meson decays has not yet been observed and is predicted to be small $[\mathcal{O}(10^{-3})]$ in the Standard Model (SM). Hence, evidence of CPV in charm decays reported by LHCb [1] in $D^0 \to h^-h^+$ decays, where $h = K, \pi$, took many by surprise and generated a renewed interest in this field as an observation of large CPV in charm decays could hint at New Physics (NP). The difference between the CP asymmetries in $D \to K^+K^-$ and $\pi^+\pi^-$ decays, ΔA_{CP}, was measured to be $(-0.82 \pm 0.21 \pm 0.11)\%$. Recently, LHCb updated their ΔA_{CP} result [2] and the combined ΔA_{CP} value [3] is consistent with no CPV at 6.5% CL. Though there is no current evidence of nonzero asymmetry, CPV in charm decays is investigated in other channels. Singly Cabibbo-suppressed (SCS) decays are of special interest as the possibility of interference with NP amplitudes could lead to larger CPV than predicted by SM. The $D^0 \to K^0_SK^0_S$ decay is one such channel [4]. The most recent SM-based analysis obtained a 95% confidence level upper limit of 1.1% for direct CP violation in this decay [5]. The search for CP asymmetry in $D^0 \to K^0_SK^0_S$ has been performed first by the CLEO Collaboration [6] using a data sample of 13.7 fb$^{-1}$ of e^+e^- collisions at the $\Upsilon(4S)$ with a measured CP asymmetry of $(-23 \pm 19)\%$. Recently, LHCb measured a time-integrated CP asymmetry in $D^0 \to K^0_SK^0_S$ of $(-2.9 \pm 5.2 \pm 2.2)\%$, where the first uncertainty is statistical and the second systematic [7]. The LHCb result is consistent with no CPV, in agreement with SM expectations. The Belle Collaboration has amassed a huge number of e^+e^- collisions at the $\Upsilon(4S)$ and $\Upsilon(5S)$ resonances, and hence, can significantly improve the measurement.

The analysis is based on a data sample that corresponds to an integrated luminosity of 921 fb$^{-1}$ collected with the Belle detector [8] at the KEKB asymmetric-energy e^+e^- collider operating at the $\Upsilon(4S)$ resonance, $\Upsilon(4S)$ off-resonance, and $\Upsilon(5S)$ resonance with integrated luminosities 711.0 fb$^{-1}$, 89.4 fb$^{-1}$, and 121.4 fb$^{-1}$, respectively [9]. The Belle detector is a large-solid-angle spectrometer, which includes a silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter (ECL) comprised of CsI(Tl) crystals located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux return located outside the coil is instrumented to detect K^0_S mesons and identify muons.

In this paper, we measure the time-integrated CP asymmetry (A_{CP}) of the neutral charm meson decays $D^0 \to K^0_SK^0_S$. The D^0 mesons are required to originate from the decay $D^{*+} \to D^0\pi^+$ in order to provide a tag of the D flavor as well as to suppress combinatorial background. Assuming the total decay width to be same for particles and antiparticles, the time-integrated asymmetry is:

$$A_{CP} = \frac{\Gamma(D^0 \to K^0_SK^0_S) - \Gamma(\bar{D}^0 \to K^0_S\bar{K}^0_S)}{\Gamma(D^0 \to K^0_SK^0_S) + \Gamma(\bar{D}^0 \to K^0_S\bar{K}^0_S)},$$

(1)

where Γ represents the partial decay width. Here, the A_{CP} term has the following contributions:

$$A_{CP} = A^d_{CP} + A^m_{CP} + A^i_{CP},$$

(2)

where, A^d_{CP} is the direct-CPV contribution or CPV in decay that is decay-mode dependent, A^m_{CP} is the CPV in mixing of $D-\bar{D}$, and A^i_{CP} is the CPV due to interference between decays with and without mixing. Although the last term depends on the phase difference between mixing and decay, it generally depends on the decay mode. However, the decay phase in D
decays is always close to zero and A_{CP} is almost universal. The asymmetry in the decay width is

$$A_{\Gamma} = \frac{\tau(D^0 \to K_S^0 \pi^0) - \tau(D^0 \to K_S^0 \bar{\pi}^0)}{\tau(D^0 \to K_S^0 \pi^0) + \tau(D^0 \to K_S^0 \bar{\pi}^0)} = -(A_{CP}^m + A_{CP}^i)$$

(3)

The world average for A_{Γ} [10], ($-0.056 \pm 0.040)\%$, is consistent with zero [3]. In the SM, indirect CPV ($A_{CP}^m + A_{CP}^i$) is expected to be very small, of the order of 10^{-3}, and is universal for CP eigenstates. Direct CPV is predicted to be small as well. It is expected to be negligible in Cabibbo-favored modes but, in SCS modes, it might plausibly be $O(10^{-3})$, and could be even larger for the $D^0 \to K_S^0 K_S^0$ mode, as mentioned in Ref. [3].

The extracted raw asymmetry

$$A_{raw} = \frac{N(D^0) - N(\bar{D}^0)}{N(D^0) + N(\bar{D}^0)}$$

(4)

is given by $A_{raw} = A_{CP} + A_{FB} + A_{\pi}$. Here, A_{FB} is the forward-backward production asymmetry, and A_{π} is the asymmetry due to different detection efficiencies for positively and negatively charged pions. Both can be eliminated through a relative measurement of A_{CP}, if the charged final-state particles are identical. The chosen normalization mode is $D^0 \to K_S^0 \pi^0$. We correct for a non-vanishing asymmetry originating from the different strong interaction of K^0 and \bar{K}^0 mesons with nucleons of the detector material, A^K, estimated to be -0.11% in Ref. [11], and assign a residual systematic uncertainty of 0.01%. This effect is cancelled in $D^0 \to K_S^0 K_S^0$ decay since D^0 decays to $K^0 \bar{K}^0$. The CP asymmetry of the signal mode can then be expressed as

$$A_{CP}(D^0 \to K_S^0 K_S^0) = A_{raw}(D^0 \to K_S^0 \bar{K}^0) - A_{raw}(D^0 \to K_S^0 \pi^0) + A_{CP}(D^0 \to K_S^0 \pi^0) + A^K,$$

(5)

where $A_{CP}(D^0 \to K_S^0 \pi^0)$ is the world average of CP asymmetry of the normalization mode: $A_{CP}(D^0 \to K_S^0 \pi^0) = (-0.20 \pm 0.17)\%$ [12].

The analysis procedure is developed using Monte Carlo (MC) simulation based on EVTGEN [13] and GEANT3 [14] and includes final-state radiation (FSR) effects simulated by PHOTOS [12]. The selection criteria are optimized using a figure of merit, defined as $N_{sig} / \sqrt{N_{sig} + N_{bkg}}$, where N_{sig} (N_{bkg}) represents the number of signal (background) events in a defined signal region. We use a large signal MC sample, about a few hundred times more in size than expected in data. To estimate N_{sig}, we use $B(D^0 \to K_S^0 K_S^0) = 1.8 \times 10^{-4}$ [12]. The MC sample used to estimate the background corresponds to a luminosity of six times that of data. The background is scaled by the ratio of the number of events in data and MC in the ΔM sideband, $0.148 \text{ GeV}/c^2 < \Delta M < 0.160 \text{ GeV}/c^2$, where ΔM is the mass difference between the reconstructed D^* and D.

We require a slow pion (π_s) candidate to originate from near the interaction point (IP) by restricting its impact parameters along and perpendicular to the z axis to be less than 3 cm and 1 cm, respectively. The z axis is defined as the direction opposite the e^+ beam. We require that the ratio of the particle identification (PID) likelihood, $L_{\pi}/(L_{\pi} + L_K)$, be greater than 0.4. Here, L_{π} (L_K) is the likelihood of a track being a pion (kaon) and is calculated using specific ionization from the CDC, time-of-flight information from the TOF, and the number of photoelectrons in the ACC. With the above PID requirement, the pion identification efficiency is above 95% with a kaon misidentification probability below 5%.

K_S^0 mesons are reconstructed from pairs of oppositely charged tracks, treated as pions, using an algorithm based on neural network (NN) [10]. The NN uses the following information: the K_S^0 momentum in the laboratory frame; the distance along the z axis between the
two track helices at their closest approach; the flight length in the $x - y$ plane; the angle between the K^0_S momentum and the vector joining the K^0_S decay vertex to the IP; the angle between the pion momentum and the laboratory-frame direction in the K^0_S rest frame; the distance-of-closest-approach in the $x - y$ plane between the IP and each pion helix; and the pion hit information in the SVD and CDC. We also require that the reconstructed invariant mass be within 15 MeV/c^2 (about four times the resolution) of the nominal K^0_S mass. We reconstruct neutral pion candidates from pairs of electromagnetic showers in the ECL that are not matched to any charged track. Showers in the barrel (end-cap) region of the ECL must exceed 60 (100) MeV to be considered as a π^0-daughter candidate. The invariant mass of the π^0 candidate must lie within 25 MeV/c^2 (about four times the resolution) of the known π^0 mass. The π^0 momentum is required to be greater than 640 MeV/c.

To reconstruct the D^0 candidates, we combine two reconstructed K^0_S (one reconstructed K^0_S and one π^0 for the normalization mode) and retain the candidates having an invariant mass in the range $1.847 \text{ GeV}/c^2 < M < 1.882 \text{ GeV}/c^2$ ($1.758 \text{ GeV}/c^2 < M < 1.930 \text{ GeV}/c^2$). Finally, π_s is combined with the D^0 to form a D^* candidate, with a requirement on the resulting ΔM to lie in the range $[0.14, 0.16] \text{ GeV}/c^2$. We require that the D^{*+} candidate have a momentum greater than 2.2 GeV/c in the centre-of-mass frame. This requirement significantly reduces the combinatorial background.

After applying all the selection criteria, the fraction of events with multiple D^* candidates is 8.6%. The D^0 candidate is selected from the list of candidates as the one having the smallest $\sum \chi^2_{K^0_S}$, where $\chi^2_{K^0_S}$ is associated with the K^0_S vertex-constraint fit. In case this D^0 candidate is common to more than one D^* candidate, the candidate having the charged slow pion with the smallest transverse impact parameter is selected. The best candidate selection is found to select correctly the true candidate with an efficiency of 98%.

The MC-simulated events are used to investigate the sources of background for $D^0 \rightarrow K^0_S K^0_S$ decays. The physics backgrounds, which are peaking in the ΔM distribution as the signal, are identified as specific physics process with their final state, are estimated directly from data using the K^0_S mass sideband, 0.470 GeV/$c^2 < M_{\pi\pi} < 0.516 \text{ GeV}/c^2$ and $0.516 \text{ GeV}/c^2 < M_{\pi\pi} < 0.526 \text{ GeV}/c^2$.

The ΔM distributions for $D^0 \rightarrow K^0_S \pi^0$ and $D^0 \rightarrow K^0_S K^0_S$ are shown in Fig. 1. We describe the signal shapes by the sum of two symmetric and one asymmetric Gaussian functions with a common mean. Most of the shape parameters are fixed from MC, except for the mean and a width-calibration factor reflecting the possible MC-data difference. The peaking-background component has the same shape as the signal and its yield is fixed to the estimation described above. The background shapes are modeled with a threshold function: $f(x) = (x - m_\pi)^a \exp[-b(x - m_\pi)]$, where m_π is the nominal charged pion mass and a and b are shape parameters. The signal yield for $D^0 \rightarrow K^0_S K^0_S$ is 5399 ± 87 events and for $D^0 \rightarrow K^0_S \pi^0$ is 531807 ± 796 events. A simultaneous fit of the ΔM for D^{*+} and D^{*-} is used (Fig. 2) to estimate the asymmetry. The signal and background shape parameters are common for both the particle and antiparticle. Both asymmetries in signal and background are allowed to vary in the fit. The A_{raw} for the peaking component in $D^0 \rightarrow K^0_S K^0_S$ case (mostly due to $D \rightarrow K^0_S \pi^+ \pi^-$) is fixed from the value obtained in data for the $D^0 \rightarrow K^0_S \pi^0$ signal. The effect due to possible CP asymmetry in the $K^0_S \pi^+ \pi^-$ and $K^0_S \pi^0$ is accounted for as a systematic uncertainty. The A_{raw} observed in data for $D^0 \rightarrow K^0_S K^0_S$ and $D^0 \rightarrow K^0_S \pi^0$ is $(+0.45 \pm 1.53)\%$ and $(+0.16 \pm 0.14)\%$, respectively. This gives the time-integrated CP-violating asymmetry.
FIG. 1: Distributions of the mass difference ΔM for the $K_S^0\pi^0$ (top) and $K_S^0K_S^0$ (bottom) final states. Points with error bars are the data, the solid curves show the results of the fit, the dashed (blue) curves are the non-peaking background predictions and the dashed (cyan) curves are the peaking background.

A_{CP}, with only statistical error in the $D^0 \rightarrow K_S^0K_S^0$ decay of

$$A_{CP} = (-0.02 \pm 1.53)\%$$

using a data sample of 921 fb$^{-1}$ integrated luminosity.

The systematic uncertainties are summarized in Table II. We identify four sources of systematic uncertainty. The first is due to the uncertainties of the signal shapes: a systematic uncertainty is ascribed for each parameter determined and fixed from MC. We also vary the model by including an additional fudge factor that is allowed to vary. The peaking background yield is determined and fixed from the K_S^0 mass sideband. The fit procedure is repeated with its yield varied by its statistical uncertainty. We correct for a non-vanishing asymmetry originating from the different strong interaction of K^0 and \bar{K}^0 mesons with
nucleons of the detector material, estimated to be -0.11% \cite{11}, and assign an additional systematic uncertainty of 0.01%. For the raw asymmetry, it is fixed from the $K_S^0\pi^0$ measurement. The dominant systematic uncertainty comes from the uncertainty on the A_{CP} measurement of the normalization channel, $K_S^0\pi^0$. Finally, we add these individual contributions in quadrature to obtain the total systematic uncertainty for the time-integrated CP-violating asymmetry A_{CP} in the $D^0 \rightarrow K_S^0 K_S^0$ decay of $\pm 0.17\%$.

Source	Systematic uncertainty, in %
Signal shape	± 0.01
Peaking background	± 0.01
K^0/\bar{K}^0 material effects	± 0.01
A_{CP} measurement of $K_S^0\pi^0$	± 0.17
Total	± 0.17

TABLE I: Summary of various sources of systematic uncertainties in $A_{CP}(D^0 \rightarrow K_S^0 K_S^0)$.

FIG. 2: Distributions of the mass difference ΔM for the $K_S^0\pi^0$ (top) and $K_S^0 K_S^0$ (bottom). Left (right) plots are for the D^{*+} (D^{*-}) sample. Points with error bars are the data; the curves are explained in the caption of Fig. 1.
In summary, we have measured the time-integrated CP-violating asymmetry A_{CP} in the $D^0 \rightarrow K^0_S K^0_S$ decay of

$$A_{CP} = (-0.02 \pm 1.53 \pm 0.17)\%$$

using a data sample of 921 fb$^{-1}$ integrated luminosity. The dominant systematic uncertainty arises from the A_{CP} error of the normalisation channel. The result is consistent with the Standard Model expectation and is a significant improvement compared to the previous measurements of CLEO [4] and LHCb [5], already probing the region of interest for NP.

We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, the National Institute of Informatics, and the PNNL/EMSL computing group for valuable computing and SINET4 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council; Austrian Science Fund under Grant No. P 22742-N16 and P 26794-N20; the National Natural Science Foundation of China under Contracts No. 10575109, No. 10775142, No. 10875115, No. 11175187, No. 11475187 and No. 11575017; the Chinese Academy of Science Center for Excellence in Particle Physics; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LG14034; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; the WCU program of the Ministry of Education, National Research Foundation (NRF) of Korea Grants No. 2011-0029457, No. 2012-0008143, No. 2012R1A1A2008330, No. 2013R1A1A3007772, No. 2014R1A2A2A01005286, No. 2014R1A2A2A01002734, No. 2015R1A2A2A01003280, No. 2015H1A2A103349; the Basic Research Lab program under NRF Grant No. KRF-2011-0020333, Center for Korean J-PARC Users, No. NRF-2013K1A3A7A06056592; the Brain Korea 21-Plus program and Radiation Science Research Institute; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Education and Science of the Russian Federation and the Russian Foundation for Basic Research; the Slovenian Research Agency; Ikerbasque, Basque Foundation for Science and the Euskal Herriko Unibertsitatea (UPV/EHU) under program UFI 11/55 (Spain); the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the U.S. Department of Energy and the National Science Foundation. This work is supported by a Grant-in-Aid from MEXT for Science Research in a Priority Area (“New Development of Flavor Physics”) and from JSPS for Creative Scientific Research (“Evolution of Tau-lepton Physics”).

[1] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 108 (2012) 111602, arXiv:1112.0938.
[2] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 116 (2016) 191601, arXiv:1602.03160.
[3] Y. Amhis et al., “Averages of b-hadron, c-hadron, and tau-lepton properties as of summer 2014”, arXiv:1412.7515 and online update at http://www.slac.stanford.edu/xorg/hfag.
[4] G. Hiller et al., Phys. Rev. D 87 (2013) 014024, arXiv:1211.3734.
[5] U. Nierste and A. Schacht, Phys. Rev. D 92 (2015) 054036, arXiv:1508.00074.
[6] G. Bonvicini et al. (CLEO collaboration), Phys. Rev. D 63 (2001) 071101(R), arXiv:hep-ex/0012054.
[7] R. Aaij et al. (LHCb collaboration), JHEP 10 (2015) 055, arXiv:1508.06087.
[8] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479 117 (2002); also see detector section in J. Brodzicka et al., Prog. Theor. Exp. Phys. 04D001 (2012).
[9] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res., Sect. A 499 1 (2003), and other papers included in this Volume; T. Abe et al., Prog. Theor. Exp. Phys. 03A001 (2013) and following articles up to 03A011.
[10] Y. Grossman, A. L. Kagan and Y. Nir, Phys. Rev. D 75 (2007) 036008.
[11] B. R. Ko, E. Won, B. Golob, and P. Pakhlov, Phys. Rev. D 84 (2011) 111501.
[12] K. A. Olive et al. (Particle Data Group), Chin. Phys. C 38 (2014) 090001.
[13] D.J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462 152 (2001).
[14] R. Brun et al., GEANT3.21, CERN Report DD/EE/84-1 (1984).
[15] E. Barberio and Z. Was, Comput. Phys. Commun. 79, 291 (1994).
[16] L. Santelj et al. (Belle Collaboration), JHEP10 (2014) 165, arXiv:1408.5991 [hep-ex].
[17] Z. Natkaniec et al. (Belle SVD2 Group), Nucl. Instrum. Methods Phys. Res., Sect. A 560 1 (2006).