Control of wastewater N2O emissions by balancing the microbial communities using a fuzzy-logic approach

Boiocchi, Riccardo; Gernaey, Krist V.; Sin, Gürkan

Published in:
IFAC-PapersOnLine

Link to article, DOI:
10.1016/j.ifacol.2016.07.359

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Boiocchi, R., Gernaey, K., & Sin, G. (2016). Control of wastewater N2O emissions by balancing the microbial communities using a fuzzy-logic approach. In IFAC-PapersOnLine (Vol. 49, pp. 1157-1162). Elsevier Science. (IFAC Proceedings Volumes (IFAC-PapersOnline)). DOI: 10.1016/j.ifacol.2016.07.359
Control of wastewater N₂O emissions by balancing the microbial communities using a fuzzy-logic approach

Riccardo Boiocchi*, Krist V. Gernaey*, Gürkan Sin*

*Dept. of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, 2800 Denmark (Tel: +4545252806; e-mails: ricca@kt.dtu.dk, kvg@kt.dtu.dk, gsi@kt.dtu.dk).

Abstract: In this work, a fuzzy-logic controller for minimization of the nitrous oxide emission from wastewater treatment plants is developed and tested in a simulation environment. The controller is designed in order to maintain a balance between production and consumption of nitrite by AOB and NOB microorganisms respectively. Thus, accumulation of nitrite is prevented and AOB denitrification, the main N₂O producer, is drastically slowed down. The controller is designed to adjust the oxygen supply according to a measured parameter which typically indicates the ratio of the activity of NOB over AOB. The controller is tested on a benchmark simulation model describing the production of N₂O during both AOB denitrification and HB denitrification. Comparisons between simulation results of open-loop and closed-loop have revealed the potential of the controller to significantly reduce the amount of N₂O emitted (approximately 35%). On the other side, this reduction of N₂O was accompanied by an increase in the aeration costs. Moreover, a plant performance evaluation under dynamic disturbances shows that the effluent quality is compromised due to higher requirements of organic carbon by denitrifying heterotrophs. The controller can therefore be considered effective for the reduction of N₂O production by AOB but would need to be coupled with a secondary control strategy ensuring a complete oxidation of the nitrogen oxides by heterotrophs to have a good effluent quality.

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: fuzzy-logic, benchmark, nitrous oxide emission, autotrophic denitrification, nitrogen, wastewater treatment plants (WWTPs).

1. INTRODUCTION

Nitrous oxide (N₂O) is well-known as an ozone-depleting substance and a harmful greenhouse gas with a global warming potential 300 times higher than carbon dioxide. Measurement campaigns at wastewater treatment plants (WWTPs) have revealed that a considerable amount of N₂O can be emitted [1,2]. Developing control strategies aiming at reducing its emissions becomes therefore of interest. During the biological WWT processes, N₂O is found to be produced by two different microbial groups: ammonia-oxidizing bacteria (AOB) and heterotrophic bacteria (HB) [3]. In particular, AOB have shown their capability in using the produced NO₂⁻ instead of O₂ as electron acceptor for the oxidation of NH₄⁺. The reduction of NO₂⁻ carries N₂O as end product. Another possible pathway is the incomplete hydroxylamine oxidation by AOB. Intermediate compounds accumulated during this process can lead to N₂O. With regard to the role of HB, N₂O is produced as intermediate compound during the reduction of nitrogen oxides like NO⁺³ and/or NO₂⁻ into N₂. If the reduction of N₂O into N₂ is slower than the reduction of those N oxides into N₂O, an accumulation of N₂O can occur. The minimization of N₂O emissions can therefore be achieved by slowing down both the AOB-mediated N₂O-production processes and the net HB-mediated N₂O production. Furthermore, operational costs have to be taken into account in order to evaluate the economic feasibility of the control implementation.

For the development of a control strategy applied to biological wastewater processes, a fuzzy-logic approach can be the most suitable to be adopted. As a matter of fact, given their interactive nature and their high non-linearity, biological wastewater treatments can be more suitably controlled by fuzzy-logic controllers than by linear controllers like the Proportional Integrative Derivative (PID) ones [4]. Furthermore, fuzzy-logic controllers (FLCs) present the additional possibility of incorporating expert knowledge about the processes to be controlled [5]. FLCs are also not affected by the capability of a mathematical model in describing realistically the processes to be controlled, since their design is independent from the model used. Furthermore, adopting a fuzzy-logic approach easily allows including the fuzziness associated with the control objectives, typically related to the WWT processes [6]. For these reasons, a FLC aiming at minimizing the N₂O emissions by balancing the activity of the different microbial groups is developed in the present work. In particular, MATLAB/Simulink is used as computer environment for the development of the fuzzy-logic control strategy. The model employed for testing its performance is the Benchmark Simulation Model N°2 for Nitrous oxide (BSM2N), developed by Boiocchi et al. [7]. On this platform, dynamic simulations will be performed in order to evaluate the
2. MATERIALS AND METHODS

2.1 The Benchmark Simulation Model no2 for Nitrous oxide

As mentioned in the introduction, the model on which the performance of the controller is tested is the Benchmark Simulation Model N°2 for Nitrous oxide (BSM2N), developed by Boiocchi et al. [7]. The model is an extension of the Benchmark Simulation Model N°2 (BSM2) by Jeppsson et al. [8]. It describes the physical and biochemical mainstream and side-stream processes occurring in a typical pre-denitrification WWTP. The virtual configuration of the BSM2N is presented in Figure 1. As can be seen, the biological mainstream unit consists of two well-mixed anoxic tanks (ANOX1 and ANOX2) followed by three aerated tanks (AER1, AER2 and AER3). The biological processes occurring in these reactors are described by an upgraded version of the Activated Sludge Model N°1 (ASM1) by Henze et al. [9], namely the Activated Sludge Model for Greenhouse gases N°1 (ASMG1) by Guo and Vanrolleghem [10]. The state variables of the ASMG1 are: oxygen (SO2); readily-biodegradable and slowly-biodegradable carbon (SS and Xs); ammonium, nitrite, nitrate, dinitrogen, nitric and nitrous oxide nitrogen (Snh4, Sn2o, Sn2o3, Sn2, SNo and Sn2o2); soluble and particulate inerts (S and Xs); soluble and particulate organic nitrogen (snd and Xnd); alkalinity (Salk); heterotrophic, ammonia-oxidizing and nitrite-oxidizing bacteria (xhb, xao and xnob). The processes included in the ASMG1 are: aerobic growth of xhb; hydrolysis of xs; hydrolysis of xno; ammonification of xno; aerobic growth of xao; aerobic growth of xnob; anoxic growth of xhb on sn3o3, sn2o3, sn; sn2o5; anoxic growth of xao on sn2o3 and on sn2o2; decay of xhb, xao and xnob. As can be noted, N2O is modelled to be produced according to two pathways: during HB denitrification and during nitrite reduction (via nitric oxide) by AOB. On the other hand, the production of N2O as a consequence of incomplete hydroxylamine (NH2OH) oxidation by AOB is not included in the model. There is however a significant amount of full-scale experiences suggesting AOB denitrification instead of the incomplete NH2OH oxidation as the main contributor of N2O [1,11–15]. Furthermore, a recently-developed model including the incomplete NH2OH reveals that the amount of N2O possibly produced during this process would be rather low compared to the amount of N2O produced during AOB and HB denitrification [16].
produced NO$_2^-$ by the coexisting microbial group, namely NOB. Enhancing the NOB activity by means of oxygen supply increase would contextually minimize the amount of N$_2$O produced by HB [18]. Thus the control of R$_{NatAmm}$ can result beneficial for the reduction of the N$_2$O produced by both AOB and HB. For these reasons, monitoring the NOB activity over the one of AOB has been identified as a potential strategy for the minimization of the production of N$_2$O. The variable identified to be controlled at this purpose is the ratio between the nitrate produced by NOB and the ammonium consumed by AOB (R$_{NatAmm}$) in the aerobic zone, expressed in Eqn. (1).

\[
R_{NatAmm} = \frac{[(NO_3^-)_{IN} - (NO_3^-)_{OUT}]}{[(NH_4^+)_{IN} - (NH_4^+)_{OUT}]} \tag{1}
\]

A value of R$_{NatAmm}$ around 1 theoretically indicates that all the nitrate produced by AOB is subsequently consumed by NOB. If R$_{NatAmm}$ is lower than 1, not all the AOB-produced NO$_2^-$ is consumed by NOB. Thus NO$_2^-$ starts accumulating in the system, which would in turn enhance AOB denitrification. This is a typical situation resulting from low oxygen availability. On the other side, values of the parameter significantly higher than 1 represent oxygen inhibition of heterotrophic denitrification, where an accumulation of HB-produced NO$_2^-$ occurs. A too high oxygen supply would in part directly inhibit the HB-produced NO$_2^-$ reduction and consume a larger amount of organic carbon needed by HB. In this scenario, the oxygen supply needs to be turned down to avoid that the accumulated NO$_2^-$ to be reduced into N$_2$O.

In virtue of these considerations, the control strategy use measurements from the influent and effluent of the aerobic zone of NH$_4^+$ and NO$_2^-$ for the calculation of R$_{NatAmm}$, namely the controlled variable. The oxygen mass transfer coefficient (k$_L$a) is used as a manipulated variable since changes in the oxygen availability forms the only available actuator that is able to induce the due shift on NOB activity. The fuzzy-logic controller is implemented in the mainstream aerobic zone as depicted in Figure 2. As can be seen, the controller will use R$_{NatAmm}$ as direct input variable and will deduce a scaled deviation of the oxygen mass transfer coefficient (Δk$_L$a) as output variable. The latter will have a value between -1 and +1. Δk$_L$a is then multiplied by a scaling factor (SF$_{kL}$a) in order to obtain its physical dimension. The deviations of k$_L$a are integrated in time and then added up to their respective nominal values.

2.4 Control tuning

The membership functions for the input and output variables are defined as represented in Figure 3 while Table 1 shows the linguistic rules to enable deducing, on the basis of the values of R$_{NatAmm}$, the variation of the k$_L$a to be actuated on the three aerobic tanks. R$_{NatAmm}$ is considered to be “GOOD” when it is comprised within 0.99 and 1.2. The reason for allowing a value of R$_{NatAmm}$ slightly higher than 1 is due to the fact that a fraction of the incoming organic nitrogen, after being hydrolysed and ammonified, is usually oxidized into NO$_3^-$ and then NO$_2^-$. An amount of NO$_2^-$ higher than the NH$_4^+$ (i.e. R$_{NatAmm}$>1) consumed would therefore result. When R$_{NatAmm}$ is in this range, no changes of k$_L$a are designed to be actuated. On the contrary, the maximal positive change of k$_L$a (i.e. Δk$_L$a=+1) is decided to occur when R$_{NatAmm}$ is equal or below 0.95, a scenario which would indicate that NOB need more oxygen for the conversion of NO$_3^-$ into NO$_2^-$. When R$_{NatAmm}$ is equal or higher than 1.4, inhibition of heterotrophic denitrification is considered to occur. In this case, the maximal negative change of k$_L$a (i.e. Δk$_L$a=−1) is defined to be inferred by the control system.

![Figure 2: Block diagram for the implementation of the controller in the mainstream activated sludge unit.](image)

![Figure 3: Membership functions for: (a) R$_{NatAmm}$, and (b) Δk$_L$a.](image)
Table 1: linguistic rules.

IF	THEN	
R_{NatAmm}	Δk_{La}	
1	LOW	POSITIVE
2	GOOD	ZERO
3	HIGH	NEGATIVE

A value for the $k_{La,NOM}$ equal to 120 d$^{-1}$ is assigned for the first two aerobic reactors (AER1 and AER2) and a value of 60 d$^{-1}$ was used for last tank (AER3), as prescribed by Jeppsson et al. [8]. 240 d$^{-1}$, namely the difference between the saturation limit of k_{La} (i.e., 360 d$^{-1}$) and the nominal value in the first two tanks (120 d$^{-1}$) is used as value for the scaling factor.

3. RESULTS

Simulations of the BSM2N open-loop and closed-loop are performed with the aim of addressing the changes due to the implementation of the novel control strategy. In particular, the BSM2N was simulated with a 609-day long dynamic influent by Jeppsson et al. [8], whose design details can be found in Gernaey et al. [19]. The dynamics and the steady-state of the influent Total Kjeldahl Nitrogen (TKN) load for the last month are depicted in Figure 4.

![Figure 4: Dynamics and steady-state of influent TKN.](image)

Corresponding to the same period of time, Figure 5 shows the dynamic results for both open-loop and closed-loop configurations of: (a) N$_2$O emission factor, calculated as percentage of N$_2$O emitted per unit of TKN in the influent, (b) R$_{NatAmm}$, (c) oxygen mass transfer coefficient of the first aerobic tank (AER1), and (d) the oxygen-to-nitrogen loading ratio (RO), calculated according to Eqn. (2) as the ratio between the oxygen supplied into the three aerobic tanks and the TKN in the influent of the first anoxic tank. The present quantity indicates the typical aeration regime of the plant.

$$ RO = \frac{\sum_{i=1}^{3} V_i \cdot k_{La} a_i \cdot (S_{0,SAT} - S_{0,i})}{(S_{NH4,IN} + S_{ND,NJ,IN} + X_{ND,IN}) \cdot Q_{IN}} $$ (2)

![Figure 5: Last-month dynamics for: (a) N$_2$O emission factor, (b) R$_{NatAmm}$, (c) kLa of AER1, and (d) oxygen-to-nitrogen loading ratio.](image)

Next, following the BSM2 protocol for the benchmarking of control strategies, from both the open-loop and closed-loop
simulation results of the last 52 weeks, which allows a comparison more unbiased with regard to plant initial conditions and nominal value of $k_1\alpha$, the following average values are found:

- N$_2$O emission factors (N$_2$O$_{em}$),
- total nitrogen removal efficiency (η_{TN}),
- R_{NatAmm},
- NO$_2^-$ and NO$_3^-$ effluent loads,
- Effluent limit violations in percentages of operating time for ammonium and total nitrogen (V_{NH4} and V_{TN}, respectively),
- Effluent Quality Index (EQI), calculated according to Jeppsson et al. [8] by taking into account the amount of the different pollutants in the effluent. The higher EQI is, the worst the effluent quality is,
- the average aeration energy (AAE), proportional to the oxygen mass transfer coefficients.

An overall evaluation of the impact of the controller implementation on the plant performance can thus be achieved. Table 2 summarizes the results.

| Table 2: Open-loop and closed-loop plant performance evaluation. |
|---|---|---|
| N_2O_{em} | units | OPEN LOOP | CLOSED LOOP |
| [% g N$_2$O-N$_{EM}$·g$^{-1}$ TKN-N$_{IN}$] | 0.4 | 0.26 |
| R_{NatAmm} | [g NO$_3^-$·N·g$^{-1}$ NH$_4^+$·N] | 0.94 | 1.15 |
| RO | [g DO$_{INAS}$·g$^{-1}$ TKN$_{INAS}$] | 4.7 | 5.3 |
| (NO$_2^-$)$_{eff}$ | [kg NO$_2^-$·N·d$^{-1}$] | 2.3 | 0.36 |
| (NO$_3^-$)$_{eff}$ | [kg NO$_3^-$·N·d$^{-1}$] | 167.6 | 269.1 |
| η_{TN} | [% g TN$_{REM}$·g$^{-1}$ TN$_{IN}$] | 70.8 | 60.7 |
| V_{NH4} | [% of operating time] | 7.9 | 2.1 |
| V_{TN} | [% of operating time] | 2.2 | 12.8 |
| EQI | [kg poll.units.d$^{-1}$] | 5386.8 | 5650.3 |
| AAE | [kWh.d$^{-1}$] | 4026.7 | 5242 |

As can be noted, the controller is able to reduce the average N$_2$O emitted by 35% by keeping the controlled variable, namely R_{NatAmm}, at a higher value. Thus NOB activity is enhanced and, consequently, a higher consumption of NO$_2^-$ results, leading to lower NO$_3^-$ load in the effluent. However, due to the higher NOB activity, the load of NO$_3^-$ in the effluent is drastically increased, which explains in turn the reduced TN removal efficiency (from 70.8% to 60.7%). The effluent quality index is therefore increased accordingly. Also the percentage of operating time in which TN violations (V_{TN}) are recorded is higher for the closed-loop configuration, although the percentage of operating time in which NH$_4^+$ violations (V_{NH4}) occur is reduced due to the higher AOB resulting from the higher aeration. Since the controller has enhanced the NOB activity by increasing the amount of oxygen supplied, the average aeration costs have increased by approximately 30% compared to the open-loop case.

4. DISCUSSION

The results presented have shown the capability of the controller in reducing significantly the average amount of N$_2$O emitted by speeding up the NOB activity, which prevents the AOB-produced NO$_2^-$ from being reduced to N$_2$O and . The results suggest that reduction in the total N$_2$O emitted, which can be considered satisfactory, can be improved by further enhancing NOB activity. On the other hand, enhancing the NOB activity meant also to decrease the effluent quality. As a matter of fact, when the AOB-produced NO$_2^-$ was not subsequently oxidized into NO$_3^-$, heterotrophic denitrification worked more on NO$_2^-$ and a lower amount of organic carbon was therefore needed compared to the case when the heterotrophic denitrification works on NO$_3^-$. Thus a more complete conversion of influent nitrogen in nitrogen gas and, consequently, a better effluent quality resulted in the open-loop.

It can therefore be concluded that the present fuzzy-logic controller, despite its effectiveness in minimizing N$_2$O emissions, is not sufficient alone in order to meet contextually the effluent nitrogen requirement. Hence, results suggest that a strategy controlling the TN removal efficiency is applied to the system as well in order to avoid compromising the effluent quality. With regard to this, one possible solution could be to add biodegradable organic carbon on top of the first anoxic tank (ANOX1) according to the amount of nitrogen oxides to be reduced. In alternative, the anoxic hydraulic retention time could be increased by manipulating the internal recycle flow rate.

5. CONCLUSIONS AND FUTURE PERSPECTIVES

A novel control strategy aiming at reducing the total amount of N$_2$O emitted from domestic wastewater treatment plants has been developed in this work. The control strategy is based on reducing nitrite accumulation, which would trigger the production of N$_2$O by both AOB and by HB. This is achieved by controlling in the aerobic zone the ratio between NOB-produced nitrate and AOB-consumed ammonium (R_{NatAmm}) at its optimal value, which was identified to be around 1. The oxygen mass transfer coefficient, directly proportional to the oxygen supply, was chosen as manipulated variable. The controller was built up in the simulation environment Simulink and then tested in the newly-developed Benchmark Simulation Model N°2 for Nitrous oxide (BSM2N). The closed-loop simulation results were benchmarked against the open-loop results. The comparison revealed that the controller was able to effectively reduce the N$_2$O emissions by 35% by enhancing the NOB activity. At the same time effluent quality decreased drastically. It is therefore suggested that the present controller should be coupled with another controller for the
achievement of a complete heterotrophic denitrification of nitrogen oxides either by regulating the amount of organic carbon externally added on top of the anoxic zone or by decreasing the internal recycle flow rate. Lastly, given the fact that the model does not include the N$_2$O-production pathway related to incomplete oxidation of hydroxylamine, the controller can be stated to be adequate only for the reduction of N$_2$O production during AOB and HB denitrification, which however can be considered the predominant N$_2$O contributors. Further evidences for the model description of the missing pathway need to be achieved.

Acknowledgements
The research was funded through the Research Project LaGas (12-132633).

References

[1] M.R.J. Daelman, E.M. van Voorthuizen, U.G.J.M. van Dongen, E.I.P. Volcke, M.C.M. van Loosdrecht, Seasonal and diurnal variability of N2O emissions from a full-scale municipal wastewater treatment plant, Sci. Total Environ. 536 (2015) 1–11.

[2] J. Foley, D. de Haas, Z. Yuan, P. Lant, Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants., Water Res. 44 (2010) 831–44.

[3] Y. Law, L. Ye, Y. Pan, Z. Yuan, Nitrous oxide emissions from wastewater treatment processes., Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367 (2012) 1265–77.

[4] T. Aoi, Y. Okaniwa, K. Hagiwara, K. Motomura, E. Iwaihara, M. Imai, et al., A direct ammonium control system using fuzzy inference in a high-load biological denitrification process treating collected human excreta, Water Sci. Technol. 26 (1992) 1325–1334.

[5] R. Boiocchi, M. Mauricio-Iglesias, A.K. Vangsgaard, K.V. Gernaey, G. Sin, Aeration control by monitoring the microbiological activity using fuzzy logic diagnosis and control. Application to a complete autotrophic nitrogen removal reactor, J. Process Control. 30 (2015) 22–33.

[6] R.M. Tong, M.B. Beck, A. Latten, Fuzzy Control of the Activated Sludge Wastewater Treatment Process, Automatica. 16 (1980) 695–701.

[7] R. Boiocchi, K. V Gernaey, G. Sin, Extending the benchmark simulation model no2 with processes for nitrous oxide production and side-stream nitrogen removal, in: 12th Int. Symp. Process Syst. Eng. 25th Eur. Symp. Comput. Aided Process Eng., Elsevier, 2015: pp. 2477–2482.

[8] U. Jepsson, M.-N. Pons, I. Nopens, J. Alex, J.B. Copp, K. V Gernaey, et al., Benchmark simulation model no 2: general protocol and exploratory case studies., Water Sci. Technol. 56 (2007) 67–78.

[9] M. Henze, C.P.L.G. Jr, W. Gujer, G.V.R. Marais, T. Matsuo, A general model for single-sludge wastewater treatment systems., Water Res. 21 (1987) 505–515.

[10] L. Guo, P.A. Vanrolleghem, Calibration and validation of an activated sludge model for greenhouse gases no. 1 (ASMG1): prediction of temperature-dependent N2O emission dynamics., Bioprocess Biosyst. Eng. 37 (2014) 151–163.

[11] G. Tallec, J. Garnier, G. Billen, M. Gousailles, Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants: Effect of oxygenation level, Water Res. 40 (2006) 2972–2980.

[12] A. Aboobakar, E. Cartmell, T. Stephenson, M. Jones, P. Vale, G. Dotro, Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant, Water Res. 47 (2013) 524–534.

[13] V. Rassamee, C. Sattayatwe, K. Pagilla, K. Chandran, Effect of oxic and anoxic conditions on nitrous oxide emissions from nitrification and denitrification processes, Biotechnol. Bioeng. 108 (2011) 2036–2045.

[14] K.E. Mampaey, B. Beuckels, M.J. Kampschreur, R. Kleerebezem, M.C.M. van Loosdrecht, E.I.P. Volcke, Modelling nitrous and nitric oxide emissions by autotrophic ammonia-oxidizing bacteria, Environ. Technol. 34 (2013) 1555–1566.

[15] M.J. Kampschreur, N.C.G. Tan, R. Kleerebezem, C. Piccioreau, M.S.M. Jetten, M.C.M. Van Loosdrecht, Effect of dynamic process conditions on nitrogen oxides emission from a nitrifying culture, Environ. Sci. Technol. 42 (2008) 429–435.

[16] M. Pocquet, Z. Wu, I. Queinnec, M. Spérandio, A two pathway model for N2O emissions by ammonium oxidizing bacteria supported by the NO/N2O variation., Water Res. 88 (2015) 948–959.

[17] H.M.S. Lababidi, C.G.J. Baker, Fuzzy Modeling, in: Handb. Food Bioprocess Model. Tech., 2006: pp. 451–498.

[18] C. Glass, J. Silverstein, J. Oh, Inhibition of denitrification in activated sludge by nitrite, Water Environ. Res. 69 (2014) 1086–1093.

[19] K. V. Gernaey, X. Flores-Alsina, C. Rosen, L. Benedetti, U. Jepsson, Dynamic influent pollutant disturbance scenario generation using a phenomenological modelling approach, Environ. Model. Softw. 26 (2011) 1255–1267.