Research Paper

Predictive Value of UGT1A1*28 Polymorphism In Irinotecan-based Chemotherapy

Xing-Han Liu1*, Jun Lu2*, Wei Duan3, Zhi-Ming Dai4, Meng Wang1, Shuai Lin1, Peng-Tao Yang1, Tian Tian1, Kang Liu1, Yu-Yao Zhu1, Yi Zheng1, Qian-Wen Sheng1 and Zhi-Jun Dai1

1. Department of Oncology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; 2. Clinical Research Center, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; 3. School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia; 4. Department of Anesthesia, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China.

* co-first authors

Corresponding author: Zhi-Jun Dai, Department of Oncology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China (E-Mail: dzj0911@126.com).

© Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

Received: 2016.08.15; Accepted: 2016.12.22; Published: 2017.02.25

Abstract

The UGT1A1*28 polymorphism was suggested to be significantly connected with irinotecan-induced toxicity and response to chemotherapy. However, the results of previous studies are controversial. Hence we carried out a meta-analysis to investigate the effect of UGT1A1*28 polymorphism on severe diarrhea, neutropenia, and response of patients who had undergone irinotecan-based chemotherapy. The PubMed, Web of Science, Wanfang, and CNKI databases were searched for clinical trials assessing the association of UGT1A1*28 polymorphism with severe diarrhea, neutropenia, and response to irinotecan-based chemotherapy. The combined odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the relationship under a fixed- or random-effects model. Fifty-eight studies including 6087 patients with cancer were included. Our results showed that patients carrying the TA6/7 and TA7/7 genotypes had a greater prevalence of diarrhea and neutropenia than those with the TA6/6 genotype (TA6/7+TA7/7 vs. TA6/6: diarrhea, OR = 2.18, 95%CI = 1.68-2.83; neutropenia, OR = 2.15, 95%CI = 1.71-2.70), particularly patients with metastatic colorectal cancer. Stratified analysis showed that Asians with the TA6/7 and TA7/7 genotypes were more likely to have diarrhea and neutropenia, and Caucasians with the TA6/7 and TA7/7 genotypes were more likely to have neutropenia than other groups. However, patients with the TA6/7+TA7/7 genotypes showed a higher response than patients with TA6/6 genotype (OR = 1.20, 95%CI = 1.07–1.34), particularly Caucasians (OR = 1.23, 95%CI = 1.06–1.42) and patients with metastatic colorectal cancer (OR = 1.24, 95%CI = 1.05–1.48). Our data showed that the UGT1A1*28 polymorphism had a significant relationship with toxicity and response to irinotecan-based chemotherapy. This polymorphism may be useful as a monitoring index for cancer patients receiving irinotecan-based chemotherapy.

Key words: UGT1A1*28, diarrhea, neutropenia, response.

Introduction

According to the estimation, there are probably 1,658,370 people suffer from cancer and 589,430 people die of cancer in the United States in 2015[1]. In China, the corresponding data were 4,292,000 and 2,814,000 in 2015, respectively, which means cancer is an urgent problem to be solved [2]. Several methods such as surgery, radiotherapy, and chemotherapy are widely applied for the clinical treatment of cancer. Irinotecan-based chemotherapy is one of the most used chemotherapies for patients with advanced gastric cancer, ovarian cancer, metastatic colorectal cancer, and other cancers [3-5]. Irinotecan, a
Camptothecin derivative, is mainly transported into liver by solute carriers and metabolized into metabolite, SN-38, by a carboxylesterase [6]. In turn, SN-38 is glucuronidated by uridine diphosphate (UDP)-glucuronosyltransferases (UGTs) to an inactive form, SN-38G. Lower glucuronidation rates lead to higher SN-38 concentrations, resulting in irinotecan-induced severe toxicity [7]. Diarrhea and neutropenia are the most common side effects of irinotecan-based chemotherapy, limiting its application [8]. Recent studies have confirmed that UDP UGT1A1 play a vital role in the process of glucuronidation [9, 10].

The UGT1A1*28 polymorphism contains an extra TA repeat in the 5′-promoter region, whose mutant genotype is A(TA)6TAA (TA6/6) and has a wide genotype of A(TA)7TAA (TA7/7) and has a TA7/7 genotype is related to a lower glucuronidation ratio. Previous studies investigated the relationship of UGT1A1*28 with neutropenia and diarrhea and have shown conflicting results. TA6/6 was reported to be a main predictive factor for diarrhea in a study of 56 advanced colorectal carcinoma (CRC) [12]. In contrast, some studies found that patients with the TA6/7 or TA7/7 genotypes are more inclined to suffer severe neutropenia and diarrhea [13-16]. However, no correlation was defined between the UGT1A1*28 polymorphism and neutropenia according to data from Hirata et al.[17] and Ferraldeschi et al.[18].

To clarify the predictive value of the UGT1A1*28 polymorphism in patients receiving irinotecan-based chemotherapy, we conducted this study to investigate the impact of the UGT1A1*28 polymorphism on tumor response and the common toxicities, diarrhea and neutropenia.

Materials and methods

Publication Search

Studies were selected by retrieving the Web of Science, PubMed, CNKI, and WanFang databases, up to June 2016. Similar keywords were used in different databases: “UGT1A1*28” and “diarrhea,” “UGT1A1*28” and “neutropenia,” “UGT1A1*28” and “response,” “UGT1A1*28” and “irinotecan,” “UGT1A1*28” and “CPT-11,” and related terms. No language restrictions were applied. All qualified studies were searched and a cross search was also used to identify the remaining relevant studies. When overlapping data exist in different reports, the most complete article was included. Disagreements between two authors will be settled by discussion and consensus.

Selection Criteria

Studies were included if they fulfilled the following criteria: (a) clinical trials; (b) evaluated the association of the UGT1A1*28 polymorphism with irinotecan-induced toxicities and chemotherapeutic effect; and (c) contained key information about the number of patients who have severe diarrhea, neutropenia and response to chemotherapy or not. Duplicate studies, review articles, letters, non-original studies, or case reports were excluded.

Data Extraction

Detailed information of included studies had been extracted and recorded in a standardized table by two reviewers. The following information was recorded: first author’s surname, year of publication, ethnicity, cancer subtype, methods of mutation detection, number of patients with and without response, severe diarrhea and neutropenia, genotypes were extracted. If these data were not reported, items were marked “NR” (not reported).

Data Synthesis

This meta-analysis was conducted according to the PRISMA guidelines [19]. We used the Newcastle-Ottawa-Scale (NOS) to assess the qualities of including studies and calculated the combined odd ratios (ORs) and 95% confidence intervals (CIs) to evaluate the strength of relationship between the UGT1A1*28 polymorphism and irinotecan-induced diarrhea or neutropenia under the four models (TA6/7 vs. TA6/6, TA7/7 vs. TA6/6, TA6/7+TA7/7 vs. TA6/6, and TA7/7 vs. TA6/6+TA6/7) [20]. The association between tumor response and the UGT1A1*28 polymorphism was calculated only in the dominant model (TA6/7+TA7/7 vs. TA6/6). Pooled ORs were tested by the Z test, and a P value <0.05 was considered significant. Chi-square test and Q test were used to examine the heterogeneity among the studies. We also performed stratified analysis depending on tumor types (advanced gastric cancer, metastatic non-small cell lung cancer, metastatic colorectal cancer, or others), ethnicity (Asian, Caucasian or mixed people) and study design (retrospective or prospective study). Publication bias were determined by Egger’s and Begg’s tests [21, 22]. Specific methods are described in our pervious study [23]. A trim and fill method of adjusting for publication bias was carried out when the P value of Egger’s test was less than 0.05 [24]. Trial sequential analysis (TSA) was conducted to calculate the required sample size to get a robust conclusion [20]. When P values of two-sided comparisons were less than 0.05, we considered the difference was significant. We performed all the statistical
calculations by STATA 12.0 (StataCorp LP, College Station, TX, USA).

Results

Characteristics of the Studies Included

As shown in Figure 1, we performed the primary literature retrieval using the PubMed, Web of Science, Wanfang, and CNKI databases by the end of June 2016. First, 307 articles were included and 119 articles were excluded after searching for duplicates. Second, we read the titles and abstracts and excluded 78 articles because they were letters, case reports, reviews or reporting about other polymorphisms. Finally, after reading the full-text of all articles, 53 articles were excluded due to lacking of useful data or evaluation about other toxicities and 58 studies from 57 articles including 6087 patients with cancer were found to meet the inclusion criteria.

Among these studies, 16 studies investigated the associations in Caucasians [11-15, 18, 25-35], 40 in Asians [3, 9, 16, 17, 36-62], and two in mixed population or not reported [63, 64]. All studies were retrospective or prospective studies, including 29 metastatic colorectal cancer (mCRC) studies, five metastatic non-small cell lung cancer (mNSCLC), three advanced gastric cancer (GC) studies, two SCLC studies, and two advanced esophageal cancer studies and others. Table 1 summarized the basic information of the included studies.

Meta-Analysis of UGT1A1*28 Polymorphism and Severe Diarrhea

There were 44 studies of 4868 patients to evaluate the relationships between the UGT1A1*28 polymorphism and irinotecan-induced severe diarrhea. As shown in Table 2 and Figure 2, we found the UGT1A1*28 polymorphism was significantly related to severe diarrhea risk under all comparisons (TA 6/7 vs. TA6/6: OR = 1.56, 95%CI = 1.25-1.96; TA7/7 vs. TA6/6: OR = 3.97, 95%CI = 1.88-8.38; TA7/7 vs. TA6/7+TA6/6: OR = 3.64, 95%CI = 2.01-6.58), regardless of the study design. By performing the subgroup analysis, we confirmed the relationship in the Asian group (TA6/7 vs. TA6/6: OR = 1.85, 95%CI = 1.37-2.50, \(P < 0.001 \); TA7/7 vs. TA6/6: OR = 8.98, 95% CI = 5.21-15.47, \(P < 0.001 \); TA6/7+TA7/7 vs. TA6/6: OR = 2.74, 95%CI = 2.21-3.40, \(P < 0.001 \); TA7/7 vs. TA6/6+TA6/7: OR = 8.64, 95%CI = 4.14-18.04, \(P < 0.001 \) and in Caucasians (TA7/7 vs. TA6/6+TA6/7: OR = 1.62, 95%CI = 1.03-2.53). Stratified analysis according to cancer type was also carried out in this study. Individuals with mCRC carrying the TA7/7 or TA6/7 genotypes had a higher risk of getting diarrhea after irinotecan-based chemotherapy compared with the TA6/6 genotype (TA6/7 vs. TA6/6: OR = 1.60, 95%CI = 1.11-2.31, \(P = 0.011 \); TA7/7 vs. TA6/6: OR = 3.53, 95%CI = 1.54-8.09, \(P = 0.003 \). The same risk was also seen in SCLC patients (TA6/7+TA7/7 vs. TA6/6: OR = 3.95, 95%CI = 1.42-11.01, \(P = 0.009 \); TA7/7 vs. TA6/6+TA6/7: OR = 19.90, 95%CI = 2.57-154.1, \(P = 0.004 \)).

Meta-Analysis of UGT1A1*28 Polymorphism and Severe Neutropenia

The relationships of the UGT1A1*28 polymorphism with irinotecan-induced severe neutropenia risk were investigated in 49 studies of 5232 patients. The UGT1A1*28 polymorphism was significantly related to an increased severe neutropenia incidence (Table 3 and Figure 3, TA 6/7 vs. TA6/6: OR = 1.71, 95%CI = 1.41-2.08; TA7/7 vs. TA6/6: OR = 5.34, 95%CI = 3.05-9.33; TA 7/7 vs. TA6/7+TA6/6: OR = 4.12, 95%CI = 2.36-7.20). Caucasians and Asians with at least one TA7 allele had a higher risk of neutropenia (Caucasians: TA6/7 or TA7/7 vs. TA6/6: OR = 1.84 and 5.67; Asians: TA6/7 or TA7/7 vs. TA6/6: OR = 1.56 and 4.77). In the analysis stratified by cancer type and study design, an association was also found in retrospective and prospective designs, with mCRC patients having the TA7/7 and TA6/7 genotypes (TA7/7 or TA6/7 vs. TA6/6: OR = 4.12, 95%CI = 2.36-7.20). Caucasians and Asians with at least one TA7 allele had a higher risk of neutropenia (Caucasians: TA6/7 or TA7/7 vs. TA6/6: OR = 1.84 and 5.67; Asians: TA6/7 or TA7/7 vs. TA6/6: OR = 1.56 and 4.77). In the analysis stratified by cancer type and study design, an association was also found in retrospective and prospective designs, with mCRC patients having the TA7/7 and TA6/7 genotypes (TA6/7 or TA7/7 vs. TA6/6: OR = 4.12, 95%CI = 2.36-7.20). Caucasians and Asians with at least one TA7 allele had a higher risk of neutropenia (Caucasians: TA6/7 or TA7/7 vs. TA6/6: OR = 1.84 and 5.67; Asians: TA6/7 or TA7/7 vs. TA6/6: OR = 1.56 and 4.77). In the analysis stratified by cancer type and study design, an association was also found in retrospective and prospective designs, with mCRC patients having the TA7/7 and TA6/7 genotypes (TA6/7 or TA7/7 vs. TA6/6: OR = 4.12, 95%CI = 2.36-7.20).
Study	Year	Study design	Race	Cancer	Mutation detection methods	Regimen	IRI dose (mg/m²)/schedule	Populatio n source	No. of patients	Age	ECOG	NOS	
Yan⁴	2016	Asian	mixed tumors	PCR-Sanger sequence	FOLFOXI, IRI + CDDP, IRI + BEV	125, 150 or 180 mg/m²	S	157	33	NR	8		
Xu⁴	2016	Asian	mCRC	Direct Sequencing SPR	FOLFOXI, IRI + CDDP	150 mg/m², every 2 or 3 weeks	S	183	NR	0-1	9		
Gai⁵	2016	Asian	mCRC	Advanced GC	FOLFOXI, IFL	180 mg/m², every 2 or 3 weeks	S	384	NR	0-2	8		
Wang⁵	2016	Asian	mCRC	SPR	FOLFOXI, IFL + CDDP	80 or 125 mg/m²	S	40	54	2-8	8		
Li⁶	2016	P	Asian	SPR	FOLFOXI, mCapeIRI, IRI	NR	M	160	50	2-8	9		
Yang⁷	2015	Asian	pancreatic or biliary tract cancer	Direct Sequencing PRS	FOLFOXI, IRI alone	180 mg/m², biweekly	S	48	56.2	0-1	7		
Peng⁸	2015	P	Asian	Sequencing	FOLFOXI; dFOLFOXI	180 mg/m², biweekly	S	208	59.8	0-3	7		
Wu⁹	2015	P	Asian	Sequencing	FOLFOXI; dFOLFOXI	180 mg/m², every 3weeks	S	42	55	0-2	7		
Xu⁴	2015	NR	Asian	advanced OC	PYRS	60 mg/m² IRIs (d1, 8) every 3 weeks	S	89	48	NR	7		
Xion⁹	2015	R	Asian	SCLC	PYRS	60 mg/m² IRIs (d1, 8,15), every 4 weeks; 85 mg/m² (d1, 8), every 3 weeks	S	67	NR	0-2	8		
Shi¹⁰	2015	P	Asian	Direct Sequencing PYRS	FOLFOXI, IRI + CDDP	65 mg/m² (d1, 8)	M	30	59	0-2	8		
Atasilp¹¹	2015	R	Asian	mCRC	FOLFOXI, FOLFOXI + CET, FOLFOXI + BEV, mFOLFOXI, IRI alone, IRI + CET/CAP	180 mg/m², biweekly; 100 mg/m²	S	44	6	0-2	7		
Cherr¹²	2015	P	Asian	mNSCLC	Sequencing	100 mg/m², every 3 weeks	S	86	63	0-2	8		
Wang¹³	2015	P	Asian	mCRC	Sequencing	NR	S	111	NR	0-1	7		
Li¹⁴	2014	R	Asian	mCRC	Sequential	180 mg/m², every 2 or 3 weeks	S	167	50	0-2	8		
Hirata¹⁵	2014	P	Asian	mCRC	PRYS	150 mg/m², biweekly	M	34	62	0-2	7		
Zhao¹⁶	2014	P	Asian	mCRC	Direct Sequencing	60 mg/m² (d1, 8,15), every 3 weeks	S	34	49	0-2	8		
Song¹⁷	2014	P	Asian	Advanced OC	PRYS	60 mg/m² (d1, 8), every 3 weeks	S	89	48	NR	8		
Zhang¹⁸	2014	P	Asian	mCRC	PRYS	180 mg/m², biweekly; 200 mg/m², every 3 weeks	S	102	55	NR	8		
Xu¹⁹	2014	P	Asian	mCRC	Direct Sequencing	180 mg/m², biweekly	S	94	35.8	0-1	8		
Zhou²⁰	2014	P	Asian	mCRC	NR	180 mg/m², every 3 weeks	S	67	62.7	0-2	8		
Zhou²¹	2014	P	Asian	mCRC	IRIs + 5FU/ TMZ/CAP	180 mg/m²	S	82	59	NR	8		
Hirasawa²²	2013	R	Asian	mCRC	SPY	180 mg/m²	S	94	38.5	0-1	8		
Gao²³	2013	R	Asian	mCRC	Sanger Sequencing	60 or 100 mg/m² (d1, 8, 15), every 4 weeks	S	53	48	NR	7		
Gao²³	2013	R	Asian	Advanced GC	Sanger Sequencing	180 mg/m²	S	276	55	NR	7		
Gao²³	2013	R	Asian	Advanced esophageal cancer	Sanger Sequencing	180 mg/m²	S	42	53	NR	7		
Gao²³	2013	R	Asian	Advanced esophageal cancer	Sanger Sequencing	180 mg/m²	S	91	54	NR	7		
Qin²⁴	2013	R	Asian	Advanced gastrointestinal carcinoma	dFOLFOXI, IRI + CDDP, IRI + 5-FU	NR	S	183	NR	0-1	7		
Wang²⁵	2012	NR	Asian	mCRC	Direct Sequencing	FOLFOXI, IRI + LEU	S	130	52	0-2	7		
Zhang²⁶	2012	P	Asian	mCRC	Direct Sequencing	FOLFOXI, IRI + LEU	S	56	55.5	NR	8		
Laman²⁷	2012	R	Caucasian	mCRC	Fluorescent DNA length fragment analysis Sequencing	FOLFOXI, FOLFOXI + CDDP, FOLFOXI + BEV, IRI + CET	180 mg/m², biweekly	S	101	67	0-2	7	
Wang²⁸	2012	P	Asian	mCRC	Direct Sequencing	FOLFOXI, IRI + LEU	S	130	52	0-2	7		
Shulman²⁹	2011	R	Caucasian	mCRC	Direct Sequencing	FOLFOXI, IRI + LEU	S	214	63.1	NR	8		
Okuyama³⁰	2011	P	Asian	mCRC	Direct Sequencing	FOLFOXI, IRI + LEU	S	39	64	0-2	7		
Nakamura³¹	2011	P	Asian	mNSCLC	Direct Sequencing	FOLFOXI, IRI + LEU	S	77	59	0-1	8		
Park³²	2011	P	Asian	mGC	Sequencing	S-1-IRI+OXA	S	44	54	0-2	7		
Mcleod³³	2010	P	Caucasian	mCRC	Sequencing	150 mg/m², every 3 weeks	M	212	61	0-2	8		
Ji³⁴	2010	R	Asian	mCRC	Sequencing	150 mg/m², every 3 weeks	S	64	NR	0-2	7		

http://www.jcancer.org
Figure 2. Forest plot of diarrhea risk related to UGT1A1*28 polymorphism under the homozygous model.
Table 2. Meta-analysis Results for diarrhea.

Compared genotype	Group	No. of studies	No. of participants	OR (95%CI)	P	Test for heterogeneity
TA6/7 vs. TA6/6	All	28	3435	1.56	<0.001	0.175
	mCRC	16	2563	1.60	0.011	0.034
	SCLC	3	131	2.40	0.144	0.208
	mNSCLC	3	235	0.92	0.879	0.883
	Asian	18	2270	1.85	<0.001	0.334
	Caucasian	9	1118	1.28	0.117	0.136
	Retrospective	13	2123	1.70	0.020	0.032
	Prospective	12	1090	1.69	0.010	0.495
TA7/7 vs. TA6/6	All	17	2610	3.07	<0.001	0.007
	mCRC	14	1172	3.53	0.003	0.004
	Asian	10	1805	8.98	<0.001	0.152
	Caucasian	7	805	1.09	0.807	0.259
	Retrospective	9	1737	4.84	0.017	<0.001
	Prospective	7	743	2.86	0.009	0.555
TA6/7+7/7 vs. TA6/6	All	44	4868	2.18	<0.001	0.003
	SCLC	3	131	3.95	0.009	0.115
	mNSCLC	4	321	1.24	0.582	0.560
	Advanced OC	2	178	7.09	<0.001	1.00
	mCRC	25	3477	1.96	<0.001	0.005
	Asian	32	3607	2.74	<0.001	0.132
	Caucasian	11	1214	1.39	0.202	0.038
	Retrospective	16	2359	2.17	0.001	0.001
	Prospective	24	2198	2.12	<0.001	0.263
TA7/7 vs. TA6/7+TA6/6	All	24	3175	3.64	<0.001	<0.001
	SCLC	2	64	19.90	0.004	0.852
	mCRC	17	2656	3.16	0.001	<0.001
	Asian	13	1917	8.64	<0.001	0.092
	Caucasian	10	1211	1.62	0.035	0.188
	Retrospective	11	2003	2.06	0.006	0.168
	Prospective	11	995	2.92	<0.001	0.219

mCRC, metastatic colorectal cancer; mNSCLC, metastatic non-small-cell lung cancer.

Meta-Analysis of UGT1A1*28 Polymorphism and Response

Eighteen studies with 2042 patients were assessed to determine the association of the UGT1A1*28 polymorphism with tumor response to irinotecan-based chemotherapy (Table 4 and Figure 4). A partial or complete remission was grouped as a response, while stable tumor or progression was considered no response. A response occurred in patients with at least one mutation allele but not in patients with the wide genotype (TA6/7+TA7/7 vs. TA6/6: OR = 1.20, 95%CI = 1.07–1.34, P = 0.016). The association was significant in Caucasians (OR = 1.23, 95%CI = 1.06–1.42, P = 0.006), retrospective study designs (OR = 1.54, 95%CI = 1.06–2.23, P = 0.022), and mCRC patients (OR = 1.24, 95%CI = 1.05–1.48, P = 0.014).
Heterogeneity Analysis

There was high heterogeneity among studies evaluating severe diarrhea under the homozygous and recessive comparisons (TA7/7 vs. TA6/6: \(P = 0.007, I^2 = 51.7\% \); TA7/7 vs. TA6/6+TA6/7: \(P < 0.001, I^2 = 57.6\% \)). We performed meta-regression to explore the sources of heterogeneity. The data indicated that ethnicity and year of publication accounted for 76\% and 26\% of heterogeneity under the homozygous model and 54\% and 41\% under the recessive model, respectively (data not shown). There was high heterogeneity among studies of neutropenia under recessive comparison (\(P < 0.001, I^2 = 60.7\% \)). The meta-regression results only revealed that the number of patients represented 25\% of the heterogeneity and no other factors were found (data not shown).

Table 3. Meta-analysis Results for neutropenia.

Compared genotype	Group	No. of studies	No. of participants	OR (95\%CI)	\(P \)	Test for heterogeneity	
TA6/7 vs. TA6/6	All	32	3948	1.71 (1.41-2.08)	<0.001	0.104	24.8%
	mCRC	19	2801	1.76 (1.40-2.23)	<0.001	0.434	1.8%
	mNSCLC	2	188	1.35 (0.55-3.34)	0.518	0.920	0.0%
	Asian	21	2547	1.56 (1.07-2.27)	0.020	0.011	46.0%
	Caucasian	10	1342	1.86 (1.34-2.60)	<0.001	0.991	0.0%
	Retrospective	14	1468	1.90 (1.43-2.53)	<0.001	0.201	23.3%
	Prospective	15	1448	1.53 (1.15-2.05)	0.004	0.882	0.0%
TA7/7 vs. TA6/6	All	27	3575	5.34 (3.05-9.33)	<0.001	0.003	48.7%
	mCRC	19	2801	5.07 (2.56-10.02)	<0.001	0.001	59.3%
	Asian	15	2154	4.77 (1.71-13.22)	0.003	0.001	62.6%
	Caucasian	11	1362	5.39 (3.43-8.47)	<0.001	0.342	10.7%
	Retrospective	12	1914	5.61 (3.58-8.82)	<0.001	<0.001	69.3%
	Prospective	14	1531	5.81 (3.57-9.47)	<0.001	0.291	14.8%
TA6/7+7/7 vs. TA6/6	All	49	5232	2.15 (1.71-2.70)	<0.001	0.003	39.5%
	mCRC	26	3473	2.47 (1.86-3.27)	<0.001	0.013	42.1%
	Advanced esophageal cancer	2	133	1.20 (0.48-3.05)	0.697	0.691	0.0%
	Advanced GC	4	192	1.40 (0.64-3.06)	0.402	0.759	0.0%
	mNSCLC	4	351	1.79 (0.97-3.33)	0.064	0.432	0.0%
	Asian	35	3715	2.11 (1.54-2.89)	<0.001	<0.001	55.9%
	Caucasian	13	1458	2.29 (1.69-3.08)	<0.001	0.392	0.0%
	Retrospective	18	2318	2.52 (1.64-3.88)	<0.001	<0.001	59.3%
	Prospective	29	2739	1.90 (1.53-2.35)	<0.001	0.530	0.0%
TA7/7 vs. TA6/6+6/7	All	28	3668	4.12 (2.36-7.20)	<0.001	<0.001	60.7%
	mCRC	20	2894	3.70 (1.88-7.30)	<0.001	<0.001	69.4%
	Asian	15	2154	4.16 (1.44-11.99)	0.008	<0.001	68.9%
	Caucasian	12	1455	3.39 (1.92-5.98)	<0.001	0.057	42.7%
	Retrospective	12	1914	3.59 (1.05-12.28)	0.042	<0.001	76.4%
	Prospective	15	1624	4.10 (2.36-7.12)	<0.001	0.088	35.1%

mCRC, metastatic colorectal cancer; GC, gastric cancer; mNSCLC, metastatic non-small-cell lung cancer.

Table 4. Meta-analysis Results for response.

Group	No. of studies	No. of participants	OR (95\%CI)	\(P \)	Test for heterogeneity	
All	18	2024	1.20 (1.07-1.34)	0.016	0.082	33.6%
mCRC	12	1691	1.24 (1.05-1.48)	0.014	0.060	42.2%
SCLC	2	64	0.87 (0.57-1.33)	0.514	0.458	0.0%
mNSCLC	3	202	1.08 (0.71-1.63)	0.726	0.127	51.5%
Asian	12	2270	1.08 (0.82-1.42)	0.168	0.019	51.7%
Caucasian	5	1118	1.23 (1.06-1.42)	0.006	0.669	0.0%
Retrospective	4	538	1.54 (1.06-2.23)	0.022	0.060	59.5%
Prospective	12	1292	1.07 (0.93-1.22)	0.343	0.511	0.0%

mCRC, metastatic colorectal cancer; mNSCLC, metastatic non-small-cell lung cancer.
Figure 3. Forest plot of neutropenia risk related to UGT1A1*28 polymorphism under the homozygous model.

Figure 4. Forest plot of response related to UGT1A1*28 polymorphism under the homozygous model.
Table 5. P values for Begg’s funnel plot and Egger’s test for diarrhea and neutropenia.

	Begg	Egger
Diarrhea		
TA6/7 vs. TA6/6	0.635	0.244
TA7/7 vs. TA6/6	0.365	0.166
TA6/7+TA7/7 vs. TA6/6	0.927	0.282
TA7/7 vs. TA6/6+TA6/7	0.215	0.697
Neutropenia		
TA6/7 vs. TA6/6	0.284	0.088
TA7/7 vs. TA6/6	0.755	0.999
TA6/7+TA7/7 vs. TA6/6	0.044	0.027
TA7/7 vs. TA6/6+TA6/7	0.782	0.617

Publication Bias

To detect publication bias in studies that evaluated diarrhea and neutropenia, we performed the Begg and Egger tests (Table 5). As shown in Table 5, publication bias was found only among the studies of neutropenia under the dominant model ($P = 0.027$). Next, a trim and fill method was applied and the results (OR = 1.80, 95%CI = 1.37–2.36, $P<0.001$) showed no statistical difference compared from the results described above (OR = 2.15, 95%CI = 1.71–2.70, $P<0.001$). There was also no publication bias in studies evaluating response ($P = 0.082$). Thus, publication bias did not appear to affect our results.

Sensitivity Analysis

Statistical analysis was conducted as described previously [23]. As shown in Figure 5, 6, and 7, the results were not affected by omitting individual studies in this meta-analysis, indicating that our results are reliable.

Trial Sequential analysis

We used the dominant model as an example to perform the TSA, which included eighteen trials with 2024 patients. The results showed the required information size was 1078, which meant our sample size was enough to get a robust conclusion about the UGT1A1*28 polymorphism and chemotherapy response (Figure 8). The required sample sizes for determining the associations between UGT1A1 and diarrhea and neutropenia under the dominant model were 763 and 1162, respectively (data were not shown).
Figure 6. Sensitivity analysis of the studies about neutropenia under the homozygous model.

Figure 7. Sensitivity analysis of the studies about response under the dominant model.
Discussion

A couple of meta-analyses have investigated the relationships between the UGT1A1*28 polymorphism and irinotecan-induced toxicity, severe diarrhea, and neutropenia. A study by Chen et al. in 2014 included six articles and found no statistically significant association between the UGT1A1*28 polymorphism and neutropenia in Asians (OR = 1.67, 95%CI = 0.94–2.97) [65]. Liu et al.[66] conducted a meta-analysis of 16 articles and found that mCRC patients carrying the TA7/7 genotype had a higher risk of neutropenia and diarrhea in Caucasians. In contrast to previous studies, we evaluated 58 articles including 6087 cancer patients and performed stratified analyses based on ethnicity, study design, and cancer type. Statistical difference between the UGT1A1*28 polymorphism and diarrhea was confirmed in Asian patients and mCRC patients under the five models. Individuals with at least mutation allele had a 1.71- and 5.34-fold greater risk of neutropenia than individuals carrying the wide genotype. Mutated genotypes of the UGT1A1*28 polymorphism may lower the glucuronidation rates of SN-38 and lead to greater susceptibility to severe toxicities [25, 36].

Patients evaluated in this study, particularly mCRC patients with the TA6/7 and TA7/7 genotypes, may have severe diarrhea and neutropenia after irinotecan-induced chemotherapy. However, the UGT1A1*28 TA6/6 and TA7/7 genotypes may show an increased treatment response according to our results. In contrast to our results, Xu et al.[67] observed different clinical responses in Ugyur patients with different UGT1A1*28 polymorphism genotypes, but not in the Han population. Although the reduction of irinotecan was greater in patients with the TA7/7 or TA6/7 genotypes than the TA6/6 genotype, no difference in overall or progression-free survival between the two group patients were found by Dias et al.[68]. These results indicate that if the patients with mutant genotypes could tolerate the
toxicities, irinotecan-based chemotherapy is a good choice for treatment. Additional studies of the treatment response should be carried out.

Previous meta-analyses included few than 20 studies and only focused on toxicities or chemotherapy response. In comparison with these studies, we included more research (58 studies) and investigated the associations of UGT1A1*28 polymorphism with toxicities and chemotherapy effect. We also got a novel conclusion that patients with a higher risk of chemotherapy toxicities have a tendency to better response to chemotherapy. However, there were some limitations to our study. First, the number of studies of SCLC, mNSCLC, advanced GC, solid tumors, and other cancers were limited, and thus, larger sample sizes for a single tumor are needed to validate our results. Second, high heterogeneity existed among studies related to severe toxicities and chemotherapy response. In comparison with these previous meta-analyses, there were some limitations to our study. Although the number of patients could explain 25% of the heterogeneity, other influencing factors were not identified. Third, the studies we included selected different irinotecan doses in the chemotherapies, which may lead to some bias.

Conclusions

In conclusion, we detected a significant relationship between the UGT1A1*28 polymorphism and irinotecan-induced toxicity and response to irinotecan-based chemotherapy. This polymorphism may be useful as a detective index for cancer patients receiving irinotecan-based chemotherapy.

Acknowledgements

This study was supported by National Natural Science Foundation, China (No. 81471670; 81274136); China Postdoctoral Science Foundation (No. 2014M560791; 2015T81037); Science and Technology Plan of Innovation Project, Shaxian Province, People’s Republic of China (No 2015KJCL03-06) and the Fundamental Research Funds for the Central Universities, China (No. 2014qngz-04).

Competing Interests

The authors have declared that no competing interest exists.

References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA: a cancer journal for clinicians. 2016; 66: 7-30.
2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China. 2015. CA: a cancer journal for clinicians. 2016; 66: 115-32.
3. Xu Q, Ding YY, Song LX, Xu JF. Correlation of UGT1A1 and ERCC1 gene polymorphisms with the outcome of combined irinotecan plus cisplatin treatment in recurrent ovarian cancer. Genetics and molecular research : GMR. 2015; 14: 7241-7.
4. Li J, Yu Q, Fu S, Xu M, Zhang T, Xie C, et al. A novel genetic score model of UGT1A1 and TGFβ pathway as predictor of severe irinotecan-related diarrhea in metastatic colorectal cancer patients. Journal of cancer research and clinical oncology. 2016; 142: 1621-8.
5. Wang W, Huang J, Tao Y, Lu Y, Yang L, Wu D, et al. Phase II and UGT1A1 Polymorphism Study of Two irinotecan Dosages Combined with Cisplatin as First-Line Therapy for Advanced Gastric Cancer. Chemotherapy. 2016; 61: 197-203.
6. Fujita K, Sparreboom A. Pharmacogenetics of irinotecan disposition and toxicity: a review. Current clinical pharmacology. 2010; 5: 239-47.
7. Gappa E, Lestini TM, Mick R, Ramizer J, Vokes EE, Rataf M. Metabolic fate of irinotecan in human: correlation of glucuronidation with diarrhea. Cancer research. 1994; 54: 3725-5.
8. Yan L, Wang XF, Wei LM, Nie YL, Liu YJ, Zhang LR. Effects of UGT1A16, UGT1A1*28, and ABCB1-3435C>T polymorphisms on irinotecan induced toxicity in Chinese cancer patients. International journal of clinical pharmacology and therapeutics. 2016; 54: 193-9.
9. Xiao Z, Xu S, Zou M, Shen Y, Wang SJ, et al. The relationship between UGT1A1 gene polymorphism and irinotecan effect on extensive-stage small-cell lung cancer. OncoTargets and therapy. 2015; 8: 3357-83.
10. Ataioli C, Chamarriñgo P, Sirachainain E, Reungwettawat T, Chanmanphon M, Pranggphet A, et al. Correlation of UGT1A1*28 and (*6) polymorphisms with irinotecan-induced neutropenia in Thai colorectal cancer patients. Drug metabolism and pharmacokinetics. 2016; 31: 90-4.
11. Toffoli G, Cecchin E, Corona G, Russo A, Buonadonna A, D’Andrea M, et al. The role of UGT1A1*28 polymorphism in the pharmacodynamics and pharmacokinetics of irinotecan in patients with metastatic colorectal cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2006; 24: 3001-8.
12. Massacesi C, Terrazzano S, Marcucci F, Rocchi MB, Lippe P, Bionni R, et al. Urinary diphenyl phosphate glucuronosyltransferase 1A1 promoter polymorphism predicts the risk of gastrointestinal toxicity and fatigue induced by irinotecan-based chemotherapy. Cancer. 2006; 106: 1007-16.
13. de Jong FA, Kieffer DF, Mathijssen RH, Creemers GJ, de Bruij F, van Schaik RJ, et al. Prophylaxis of irinotecan-induced diarrhea with neomycin and potential role for UGT1A1*28 genotype screening: a double-blind, randomized, placebo-controlled study. The oncologist. 2006; 11: 944-54.
14. Cote JF, Kirzin S, Kramar A, Moisnier JF, Diebold MD, Soubrayen L, et al. UGT1A1*28 polymorphism can predict hematologic toxicity in patients treated with irinotecan. Clinical cancer research : an official journal of the American Association for Cancer Research. 2007; 13: 3269-75.
15. Kweekel DM, Gelderblom H, Van der Straaten T, Antonini NF, Punt CJ, Guchelaar HJ. UGT1A1*28 genotype and irinotecan dosage in patients with metastatic colorectal cancer: a Dutch Colorectal Cancer Group study. British journal of cancer. 2008; 99: 275-82.
16. Liu CY, Chen PM, Chou TJ, Liu JH, Lin JK, Lin TC, et al. UGT1A1*28 polymorphism predicts irinotecan-induced severe toxicities without affecting treatment outcome and survival in patients with metastatic colorectal carcinoma. Cancer. 2008; 112: 1932-40.
17. Hirata K, Nagata N, Kato T, Okuyama Y, Andoh H, Takahashi K, et al. Prospective phase II trial of second-line FOLFIrx in patients with advanced colorectal cancer including analysis of UGT1A1 polymorphisms: FLIGHT 2 study. Anticancer research. 2014; 34: 195-201.
18. Ferraleschi R, Minchell LJ, Roberts SA, Tobi S, Hadfield KD, Blackhall FH, et al. UGT1A1*28 genotype predicts gastrointestinal toxicity in patients treated with intermediate-dose irinotecan. Pharmacogenomics. 2009; 10: 733-9.
19. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Journal of clinical epidemiology. 2009; 62: 1006-12.
20. Yang XL, Xie S, Jiang YY, Shi C, Cai ZG, Chen SX. Association between CYP1A1 Ile462Val Polymorphism and Oral Squamous Cell Carcinoma Susceptibility: Evidence from 13 Investigations. Journal of Cancer. 2015; 6: 302-9.
21. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Bmj. 1997; 315: 629-34.
22. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994; 50: 1088-101.
Previously Untreated Patients with Colorectal Cancer. Archives of drug information. 2008; 1: 97-106.

29. Roult E, Charasson V, Petiau A, Boisdron-Celle M, Delord JP, Fonck M, et al. Pharmacogenomic and pharmacogenetic determinants of the activity and toxicity of irinotecan in metastatic colorectal cancer patients. British journal of cancer. 2008; 99: 1239-45.

30. Ruzzo A, Graziano F, Loupakis F, Santini D, Catalano V, Bissoni R, et al. Phase II randomized trial of irinotecan combined with first-line FOLFIrI chemotherapy. The pharmacogenomics journal. 2008; 8: 278-88.

31. Martinez-Balbrea E, Abad A, Martinez-Cardusz A, Gines A, Valladares M, Minguillén M, et al. UGT1A1 and TYMS gene variants predict toxicity and response of colorectal cancer patients treated with first-line irinotecan and fluouracil conbination therapy. British journal of cancer. 2010; 103: 581-9.

32. McLeod HL, Sargent DJ, Marsh S, Green EM, King CR, Fuchs CS, et al. Pharmacogenomic predictors of adverse events and response to chemotherapy in metastatic colorectal cancer: results from North American Gastrointestinal Intergroup Trial N9741. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2010; 28: 3227-33.

33. Shulman K, Cohen I, Barnett-Grosser G, Kuten A, Gruber SB, Lebkovickis F, et al. Clinical implications of UGT1A1*28 testing in colorectal cancer patients. Cancer. 2011; 117: 5156-62.

34. Lamas MJ, Duran G, Balboa E, Bernardes B, Candamo S, Vidal Y, et al. The value of genetic polymorphisms to predict toxicity in metastatic colorectal patients with irinotecan-based regimens. Cancer chemotherapy and pharmacology. 2012; 69: 1591-9.

35. Wang W, Chen Y, Feng F, Zhao L, Hu B, Lin X, et al. The association between UGT1A1*28 gene polymorphism and irinotecan-based chemotherapy in metastatic colorectal cancer. 2015; 2015: acute and severe experience Second Exchange Summit Forum. 2015; 1-1.

36. Han JY, Lim HS, Shin ES, Yoo YK, Park YH, Lee JE, et al. Comprehensive analysis of UGT1A1 polymorphisms predict for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2006; 24: 2237-44.

37. Jada SR, Lim R, Wang CI, Shu X, Lee SC, Zhou Q, et al. Role of UGT1A1*, UGT1A1*28 and ARCC2*423C>A polymorphisms in irinotecan-induced neutropenia in Asian cancer patients. Cancer science. 2007; 98: 1461-7.

38. Wang Y, Xu J, Shen L, Xu N, Wang J, JY, et al. Polymorphisms of UGT1A1 gene and irinotecan toxicity in chinese colorectal cancer patients. Clin J Oncol. 2008; 29: 936-43.

39. Han JY, Lim HS, Park YH, Lee SY, Lee JS. Integrated pharmacogenetic prediction of irinotecan pharmacokinetics and toxicity in patients with advanced non-small cell lung cancer. Lung cancer (Amsterdam, Netherlands). 2009; 63: 115-20.

40. Onoue M, Terada T, Kobayashi M, Katsura T, Matsumoto S, Yanagihara K, et al. UGT1A1*28 polymorphism is most predictive of severe neutropenia induced by irinotecan in Japanese cancer patients. International journal of clinical oncology. 2009; 14: 136-42.

41. Ji C, He Y, Hu B, Wang G, Yao Y, Chen J, et al. The association between UGT1A1*28 polymorphism with the efficacy of irinotecan chemotherapy on advanced colorectal cancer and its adverse reaction. Oncology. 2010; 30: 870-4.

42. Moriya K, Hyakusoku H, Oka M, Kinosita K, Matsuda M, et al. Randomized Phase II trial of irinotecan with paclitaxel or gemcitabine for non-small-cell lung cancer: association of UGT1A1*28 and UGT1A1*27 with irinotecan-induced neutropenia. Cancer chemotherapy and pharmacology. 2012; 69: 1461-7.

43. Okuyama H, Hazama S, Nozawa H, Kobayashi M, Takashiki K, Fujikawa K, et al. Prospective Phase II study of FOLFIrI for mCRC in Japan, including the analysis of UGT1A1*28/6 polymorphisms. Japanese journal of clinical oncology. 2011; 41: 477-82.

44. Park SR, Kong SY, Rhee J, Park YL, Ryu KW, Lee JH, et al. Phase II study of a triple regimen of S-1 combined with irinotecan and oxaplatin in patients with metastatic gastric cancer: clinical and pharmacogenetic results. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. 2011; 22: 890-6.

45. Wang Y, Shen L, Xu N, Wang JW, Jiao SC, Liu ZY, et al. UGT1A1 predicts outcome in colorectal cancer treated with irinotecan and fluorouracil. World journal of gastroenterology. 2012; 18: 6635-44.

46. Zhang X, Wang C, Huang M, Fu X, Lu B, Deng Y, et al. Relationship between UGT1A1 gene polymorphisms and toxicity/efficacy of irinotecan-based chemotherapy in metastatic colorectal cancer. Chinese Journal of Pathophysiology. 2012; 20: 823-8.

47. Wang Y, Ge F, Lin L, Hao G, Shen L, Xu N, et al. Correlation between UGT1A1 gene polymorphisms and toxicity and efficacy in patients with metastatic colorectal cancer treated with irinotecan based chemotherapy. Chinese Clinical Oncology. 2012; 11: 961-6.

48. Gao J, Zhou J, Li Y, Lu M, Li B, Shen L. UGT1A1*6/28 polymorphisms and irinotecan-induced severe toxicity in Chinese gastric or esophageal cancer patients. Medical oncology (Northwood, London, England). 2013; 30: 604.

49. Gao J, Zhou J, Li Y, Feng Z, Li Y, Wang X, et al. Associations between UGT1A1*6/28 polymorphisms and irinotecan-induced severe toxicity in Chinese gastric or esophageal cancer patients. Medical oncology (Northwood, London, England). 2013; 30: 630.