An overview of methods of fine and ultrafine particle collection for physicochemical characterisation and toxicity assessments

Prashant Kumar, Gopinath Kalaiarasan, Alexandra E. Porter, Alessandra Pinna, Michał M. Kłosowski, Philip Demokritou, Kian Fan Chung, Chris Pain, D.K. Arvind, Rossella Arcucci, Ian M. Adcock, Claire Dilliway

PII: S0048-9697(20)37084-4
DOI: https://doi.org/10.1016/j.scitotenv.2020.143553
Reference: STOTEN 143553
To appear in: Science of the Total Environment

Received date: 1 August 2020
Revised date: 8 October 2020
Accepted date: 2 November 2020

Please cite this article as: P. Kumar, G. Kalaiarasan, A.E. Porter, et al., An overview of methods of fine and ultrafine particle collection for physicochemical characterisation and toxicity assessments, Science of the Total Environment (2020), https://doi.org/10.1016/j.scitotenv.2020.143553

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier.
An overview of methods of fine and ultrafine particle collection for
physicochemical characterisation and toxicity assessments

Prashant Kumara,b,*, Gopinath Kalaiarasana, Alexandra E Porterc, Alessandra Pinnac, Michał M. Kłosowskic, Philip Demokritoud, Kian Fan Chungd, Chris Painf, D K Arvindg, Rossella Arcuccih,
Ian M Adcockd, Claire Dilliwayf

aGlobal Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom

bDepartment of Civil, Structural & Environmental Engineering, Trinity College Dublin, Dublin, Ireland

*Corresponding author. Address as above. E-mail addresses: P.Kumar@surrey.ac.uk, Prashant.Kumar@cantab.net
Abstract

Particulate matter (PM) is a crucial health risk factor for respiratory and cardiovascular diseases. The smaller size fractions, ≤2.5μm (PM$_{2.5}$; fine particles) and ≤0.1μm (PM$_{0.1}$; ultrafine particles), show the highest bioactivity but acquiring sufficient mass for *in vitro* and *in vivo* toxicological studies is challenging. We review the suitability of available instrumentation to collect the PM mass required for these assessments. Five different microenvironments representing the diverse exposure conditions in urban environments are considered in order to establish the typical PM concentrations present. The highest concentrations of PM$_{2.5}$ and PM$_{0.1}$ were found near traffic (i.e. roadsides and traffic intersections), followed by indoor environments, parks and behind roadside vegetation. We identify key factors to consider when selecting sampling instrumentation. These include PM concentration on-site (low concentrations increase sampling...
time), nature of sampling sites (e.g. indoors; noise and space will be an issue), equipment handling and power supply. Physicochemical characterisation requires micro- to milli-gram quantities of PM and it may increase according to the processing methods (e.g. digestion or sonication). Toxicological assessments of PM involve numerous mechanisms (e.g. inflammatory processes and oxidative stress) requiring significant amounts of PM to obtain accurate results. Optimising air sampling techniques are therefore important for the appropriate collection medium/filter which have innate physical properties and the potential to interact with samples. An evaluation of methods and instrumentation used for airborne virus collection concludes that samplers operating cyclone sampling techniques (using centrifugal forces) are effective in collecting airborne viruses. We highlight that predictive modelling can help to identify pollution hotspots in an urban environment for the efficient collection of PM mass. This review provides guidance to prepare and plan efficient sampling campaigns to collect sufficient PM mass for various purposes in a reasonable timeframe.

Keywords: Particulate matter; Ultrafine particles; Mass collection; Physicochemical characteristics; Toxicological assessments; Artificial intelligence.

1. **Introduction**

Particulate matter (PM) is of great concern due to its association with a variety of health impacts, such as respiratory and cardiovascular diseases (Dockery and Pope 1994; Kappos et al. 2004; Heal et al. 2012). Numerous studies have demonstrated the association of airborne PM mass and respiratory admission in hospitals (Bell et al., 2014; Tecer et al., 2008). Other works have shown a strong association between the chemical composition and biological response, such as the influence of transition metals such as iron and manganese and their potential to cause oxidative stress by producing reactive oxygen species (Yuan et al. 2019; Charrier and Anastasio 2015; Ghio and Devlin 2001; Huang et al., 2003; Schlesinger et al., 2006). PM with an
aerodynamic diameter of $\leq 10\mu m$ (PM_{10}) can be inhaled by humans and deposited into the respiratory tract. Fine particles $\leq 2.5\mu m$ ($PM_{2.5}$) - a subset of PM_{10} - show a much higher fraction of deposition in the alveoli (ICRP, 1994). Another subset, ultrafine particles (≤ 100 nm in diameter, also referred to as UFP or $PM_{0.1}$), contribute negligibly to the particle mass but significantly to particle number concentrations (PNC) and are thus measured by their counts (Kumar et al. 2010, 2014). UFPs are so small in their size that they can penetrate deep into the lungs and translocate to the other parts of the body (HEI 2013). It is hypothesised that UFPs may have a greater potential for adverse health impacts compared with larger-sized particles (Kumar et al. 2014; WHO, 2013). Current ambient air quality regulations do not cover UFPs. They are also identified as one of the main contributing factors, after the fine PM fractions, responsible for adverse health effects observed at typical outdoor levels (Stone et al., 2017). UFPs, including the organic material attached to them, can cause acute respiratory and cardiovascular effects (Ahmed et al. 2019; Li et al. 2016), due to their large surface area, ability to generate reactive oxygen species (ROS), surface reactivity and their chemical composition of semi-volatile organic compounds. These effects induce potential cytotoxicity and inflammation in cells and need to be studied for their epidemiological effects on respiratory cells. Apart from UFPs, their larger counterparts such as $PM_{2.5}$ can also elicit varied biological responses, such as inflammatory responses causing COPD (chronic obstructive pulmonary disease) and other pulmonary infections. Furthermore, UFPs cause reactive oxidative stress on cells, effects on sensory receptors and neurons, and various other biological responses (Kreyling et al., 2006; Kodvanti and Watkinson 2005; Gavet et al., 2005). Generally, PM toxicity refers to the absorption and distribution of chemical components of particles, causing adverse health effects throughout the body other than carcinogenicity and mutagenicity (Bennett and Brown, 2005). Table 1 illustrates the varied biological responses that are reported in various review articles and a detailed summary of relevant in vitro and in vivo studies are provided in Supplementary Information (SI).
Section S1. Studies reveal that the toxicological effects of the collected particles vary. The factors contributing to these varied effects are particle size distribution, particle shape and their specific chemical constituents and composition within the mixture (Mirowsky et al. 2013, Yuan et al., 2019; Lippmann and Chen 2009, Ahmed et al., 2019; Min et al., 2011; Mattei et al., 2010, Ling and van Eeden, 2009). The studies reviewed in Table 1 suggest that PM cytotoxicity or genotoxicity depend on the heterogeneous chemical composition of PM and the toxicological outcomes are highly variable, which could be attributed to different source environments and emission sources (Gualtieri et al. 2011; Camatini et al. 2011).

Hence, there is an increasing interest in investigating the toxicity of these particles using *in vitro* cellular studies. Such a cellular analysis requires the collection of sufficient particle mass, which is challenging, especially for UFPs with negligible mass (Kumar et al., 2013). Hence, the focus of this review is on PM$_{2.5}$ and UFPs and the methods of collecting their mass in quantities that are sufficient for their physicochemical characterisation and testing *in vitro* cellular studies.

In order to assess the physico-chemical properties of PM for toxicological and epidemiological studies, various sampling methods have been developed. Generally, the collection of PM with a sufficient quantity for *in vivo* and *in vitro* toxicological studies can be impacted by various factors, including meteorological conditions, particle collection approaches and substrates used, to mention a few. There are numerous reviews on PM effects on cytotoxicity, mutagenicity, respiratory and other pulmonary disorders (Section S1); however, dedicated reviews of methods for collecting PM, especially fine and ultrafine particle sizes, for these toxicology studies, are few.

The review of past publications (Table 1) indicates a gap in PM collection strategies in a consolidated manner. This review aims to fill this gap by focusing on the methods used in PM collection for toxicological studies by exploring the various existing collection methods in indoor
and outdoor environments. The main challenge is to recommend an efficient way - by reviewing the samplers and typical concentrations in different urban microenvironments - to collect enough mass of PM$_{2.5}$ and UFP particles for physico-chemical characterisation and toxicological assessments. Thus, the objective of this review is to: (i) provide a detailed quantification of particle concentrations in different microenvironments, (ii) review existing methods of particle collection and instrumentation, (iii) provide an effective way to collect sufficient amounts of particles, and (iv) make recommendations for PM collection methodologies for assaying toxicity.

2. Scope and outline

This article is based on the published scientific literature on PM collection methods used for physicochemical characterisation and toxicity assessments and related instrumentation for PM concentrations and mass collection on filters. The scope of this review is limited to stationary measurements of PM$_{2.5}$ and UFPs, methods of monitoring their concentrations and mass, as well as associated physicochemical and toxicity analyses. We also include a review of the collection of airborne viruses given the ongoing SARS-CoV-2 pandemic. Other microorganisms such as bacteria’s and pathogens are beyond the scope of the current paper. Also, mobile and personal sampling (particularly equipment used to evaluate occupational health hazards) and real-time monitoring for PM or associated human health effects are beyond the scope of this review.

We carried out a systematic literature search to include the most suitable scientific papers related to PM$_{2.5}$ and UFPs, urban microenvironments, toxicological studies, physicochemical characterisation, human exposure to PM, predictive modelling and certain other related keywords. The scientific databases such as Web of Science, Scopus, Science Direct, PubMed and Google Scholar were searched in different keyword combinations such as PNCs, mass concentrations of PM, high volume samplers, fine particulate samplers, gravimetric
measurements, cell culture of PM, microenvironments, toxicity, cell models for PM exposure, ROS, oxidative stress, cytotoxicity, genotoxicity, gene expressions, lung epithelial cells, COPD, respiratory disorders, inflammatory responses, pulmonary fibrosis and A549 cells. The search procedure was repeated several times using Google and the relevant keywords. In all scientific databases, the search term combinations were modified depending on the success rate and precision of the outcome. This search resulted in over 1800 papers. The abstracts, experimental methodologies and conclusions of these collected papers were studied and approximately ten percent (~170) of them were found to be suitable for discussion in this review. The discussed articles also include relevant concepts and additional articles that have underpinned our previous research. The literature relating to PM$_{2.5}$ and UFP toxicological and physicochemical assessments is voluminous and increasing rapidly. Hence, we considered English language articles published in peer-reviewed journals and reliable reports.

We start the review by providing a detailed synthesis of the typical concentrations in different micro-environments for the PM$_{2.5}$ and ultrafine particle (UFPs) sizes (Section 3). The available particle collection methods and the instrumentation used for the toxicological studies of PM for both the particle sizes are discussed (Section 4), in addition to the need for the physicochemical characterisation (Section 5), considerations for PM$_{2.5}$ and PM$_{0.1}$ mass collection for in vitro toxicity studies (Section 5), and the ways to optimise the particle collection (Section 7). The article concludes with a final section summarising these results with concluding remarks, highlighting knowledge gaps and drawing future recommendations for obtaining sufficient amounts of PM for toxicity studies (Section 8).

3. Typical concentrations in different microenvironments

The stationary microenvironments, such as indoor, roadsides with/without green infrastructure, traffic intersections and parks broadly represent areas where urban populations spend most of their time. In general, the exposure levels in any microenvironment are indicated
by the levels of PM mass concentrations for fine or coarse particles (e.g., Buonanno et al., 2011; Klepeis 2006; Kumar et al., 2018) and particle number or surface area concentrations for UFPs (Franck et al., 2011; Giechaskiel et al., 2009; Knibbs et al., 2011). The concentration levels discussed in the review are obtained from published studies that have adopted filter, optical or sensor-based sampling approaches for estimating the concentration of PM$_{2.5}$ and UFPs in different urban microenvironments. Although the instruments discussed in Table S1 might employ different approaches to estimate concentration values, our focus here is mainly to understand the typical concentrations in these urban microenvironments and the instruments using varied measuring mechanisms are discussed in Section 4.2. Concentration levels in each microenvironment depend on factors such as the types of activities (resuspension of dust, traffic density and vehicle idling activities in the outdoors (Pant and Harrison, 2013); cooking (Morawska et al., 2013) and emissions from printers (Voliotis et al., 2017) or other related activities in the indoors of homes and offices, site morphologies; Fujita et al., 2014) that could vary at different geographical locations. For instance, the pollution levels in countries such as China and India are different to those in the UK, Europe or USA, due to factors such as the type and usage of vehicles, road planning, traffic levels, fuel type and emission standards. Hence, we review the PM concentration levels in different countries and discuss the characteristics of different microenvironments in them. It allows us to understand the differences in mass and particle number concentrations of particles in fine and ultrafine particles and obtain typical average concentrations to aid the estimation of sufficient particle mass collection by an appropriate sampler in a reasonable time frame and enabling physicochemical and toxicity assessments.

The indoor microenvironment is of great importance since most of the population spend around 80% to 90% (Li et al., 2017; Delgado-Saborit et al., 2011; Leech et al., 2002) of their time indoors, such as in homes, offices, and automotive cabins. The factors such as built environment,
ventilation, insulation and other indoor activities (Massey et al., 2016; Habil et al., 2015; Tan et al., 2013; Wayne and Roberts, 1998) affect the level of personal exposure in an indoor microenvironment. Hence, we consider indoor microenvironment as part of this review. Furthermore, microenvironments close to traffic emissions, such as traffic intersections and roadside areas are often covered, since these microenvironments are exposed to elevated levels of PM$_{2.5}$ and UFPs (O’zkaynak et al., 2008; Fujita et al., 2007). The PM concentrations in traffic-related microenvironments were found to be higher, due to the contribution from the exhaust (tailpipe) and non-exhaust (e.g., tyre and brake wear, re-suspension of dust) emissions of vehicles; (Pant and Harrison, 2013; Kumar et al., 2013). The Non-exhaust emissions mainly generate coarse particles (PM$_{2.5-10}$) as opposed to the exhaust emissions which contribute largely to fine particles (PM$_{2.5}$) (Kam et al., 2012; Thorpe et al., 2007). Conversely, emissions arising from the tailpipe of on-road vehicles are the major contributors to UFP emissions in cities (Zhu et al., 2002; Fujitani et al., 2012; Kerminen et al., 2007; Wang et al., 2008; Weijers et al., 2004).

Parks have also been considered since urban vegetation reduces PM concentrations (Paoletti et al., 2011; Brack, 2002; Tiwari and Kumar, 2020), increases lung function (Sinharay et al. 2018) and benefits mental health and wellbeing during any physical activity (Kumar et al., 2019). This microenvironment is important for various community and physical activities such as running, walking and exercise (Cohen et al., 2007; Rung et al., 2005; Ulrich et al., 1991) and people of all ages spend considerable amounts of time in parks with the confidence of less air pollution (Lin et al., 2014). A recent review published on selecting appropriate green infrastructure (GI) to mitigate air pollution (Barwise and Kumar, 2020) suggests a predominant role of GIs in reducing roadside exposure to pollution. The magnitude of air pollution reduction is demonstrated by field investigations and computer simulations using airflow models (Tiwari and Kumar 2020; Tiwari et al., 2019). Hence, PM concentration levels, size distribution and chemical composition in these microenvironments are of growing interest. We consider the roadside microenvironments
adjacent to GI in this review since these potentially mitigate the impacts of air pollution exposure (Kumar et al., 2019; Abhijith and Kumar 2019; Abhijith et al., 2017; Ottosen and Kumar, 2020).

3.1 Fine particles

Table S1 shows a summary of PM$_{2.5}$ concentrations measured in various studies in different microenvironments. The indoor environment represents different atmospheres, such as homes, office spaces, schools, local shops, malls and food courts (Tan et al., 2020; Kelly and Fussell 2019). In general, the source of indoor particulates is associated with anthropogenic activities, intended usage of the space, type of activity being carried out and their air-exchange rate by natural or mechanical ventilation via HVAC systems. Among these, indoor PM concentrations are governed primarily by factors such as cooking activities (especially involving charcoal) (Lim et al., 2012), smoking (Gurung et al., 2016; Lai et al., 2004), office laser printers (Tang et al., 2012), resuspension of particles following human use of the space (Nazaroff, 2004) and poor ventilation conditions (Matic et al., 2017; Chatzidiakou et al., 2015). The levels of PM concentration might increase or decrease according to the intensity of these activities. A detailed literature review suggests that indoor concentrations are mostly measured using cascade impactors and, in some studies, personal monitors, continuous monitoring devices such as Harvard compact cascade impactor, Sioutas personal samplers, GRIMM and any kind of wireless sensor system (Table S1) and passive sampling technique (Canha et al., 2014). The average level of indoor PM$_{2.5}$ concentrations, based on the studies summarised in Table S1, were found to be 18.1±6.9 μg m$^{-3}$ (Table S1). Contrarily, the concentrations of PM at traffic-related microenvironments, such as roadside and traffic intersections, depends on the density and the type of vehicles, time of sampling (i.e., peak versus off-peak hours) (Piotrowicz and Polednik, 2019), vehicle idling times and traffic signals (Wang et al., 2008). The major contributors of PM from traffic-related microenvironments are primarily from passenger cars (Iijima et al., 2007), heavy-duty vehicles (HDVs), light-duty vehicles (LDVs) (Robert et al., 2007a, 2007b) and buses
(Rivas et al., 2017). These traffic-related concentrations are measured by a range of instruments such as high-volume samplers (Cui et al., 2016; Lawrence et al., 2013), fine particle samplers (Jain et al., 2020) or mini volume samplers (Tobler et al., 2020). Based on the studies summarised in Table S1, their concentration levels can be 27.5±19.8 μg m⁻³ and 33.1±5.3 μg m⁻³ for roadside and traffic intersections, respectively (Figure 1). Furthermore, park microenvironments located at a moderate distance from the urban activities are also impacted from local sources such as vehicular combustion, resuspension and various other cooking activities in an urban area (Harrison et al., 2001) and they were found to possess PM concentration levels of 16±4 μg m⁻³ (Figure 1). These park microenvironments were found to be using dichotomous sequential samplers, TEOM based samplers and PM₂.₅ cyclone samplers (Table S1). Finally, the GI (foliated tree line and roadside hedges) microenvironments, which are an emerging architecture to reduce air pollution, involved continuous monitoring devices, such as GRIMM aerosol mass spectrometers, Dust Trak monitors and other continuous monitoring devices (Table S1). These GIs were found to reduce air pollutant exposure by up to 63% and respiratory deposited dose by 36% (Alijith and Kumar 2019; Al-dabbous and Kumar, 2014). Based on the studies summarised in Table S1, typical PM₂.₅ concentrations around the GIs microenvironments were found to range from 18±17 μg m⁻³ (Figure 1). In general, the PM₂.₅ concentrations are measured primarily by using PM samplers which are equipped with a filtering medium, which serves both for gravimetric and other related chemical analysis. Also, the aforementioned concentration values are average values and they may vary according to various factors with respect to different microenvironments. However, this detailed collection of average concentrations build an understanding of the PM₂.₅ levels in the respective microenvironments to select the appropriate sampler (discussed in Section 4) and provide guidance for how long is needed to collect PM for toxicological studies (Section 7).

3.2 Ultrafine particles
UFPs originate mainly from combustion activities (Costabile et al., 2019; Kumar et al., 2010; Morawska et al., 2013; Settimo et al., 2020) and are measured by PNC due to their negligible mass compared with larger diameter particles (Heal et al., 2012; Kumar et al., 2014; Slezakova et al., 2019). Table S2 presents a review of UFP concentrations in the different microenvironments. The factors affecting the typical concentrations are nearly identical for UFPs in most microenvironments (Section 3). The indoor concentration of UFPs have been measured using instruments such as the condensation particle counters (CPCs; particle size range 0.006-3 µm). Based on the studies summarised in Table S2, their concentrations were found to be 1.6±1.4 ×10⁴ cm⁻³ (Figure 1). The traffic-related emissions for roadside and traffic intersections use scanning mobility particle sizers (SMPS; 0.005-3 µm) and condensation particle counters (CPCs; 0.006-3 µm) for UFPs measurements (Table S2) with concentration levels of 2.4±0.9 ×10⁴ cm⁻³ and 2.6±0.7 ×10⁴ cm⁻³ (Figure 1) for sites in and around London (Table S2). Finally, the park microenvironments were found to possess concentration levels of 6.8±1.3 ×10³ cm⁻³ (Figure 1) which are measured mostly by using instruments such as SMPS (Table S2). The concentration levels prevailing in the roadside microenvironments with GIs use fast mobility particle sizer (FMPS;), differential mobility spectrometers (DMS; 0.005-2.5 µm), GRIMM (0.25-32 µm) and PTrak model instruments (0.02-1 µm) (Table S2) for UFP measurements and their mean concentrations levels are 1.1±0.5 ×10⁴ cm⁻³ (behind hedges) (Figure 1). The UFP measurements were mostly carried out using instruments such as the SMPS in these different microenvironments. Toxicological study assays require reasonable quantities of particle mass (i.e., in milligrams; Section 6), which is remarkably lower for UFPs compared with PM₂.⁵. Thus the sampling time using air sampling equipment has to be planned appropriately, as discussed in the next section.

4. Methods of particle mass sampling
The PM collection strategies can vary according to the type of microenvironments. For instance, high volume samplers with heavier pumps are challenging to use indoors (due to the unsuitability of the pump noise in an office space or home environment). Similarly, the use of mini-volume samplers with lower pump capacities can have disadvantages in traffic-related or polluted outdoor environments due to the higher PM concentrations, potentially requiring more frequent filtering medium changes. Hence, the following section discusses the available methods and instrumentation for the collection of PM$_{2.5}$ and UFPs mass.

4.1 Fine particles

The mass of PM$_{2.5}$ particles for physicochemical and toxicity assessments is usually collected by three different types of air samplers, as summarised as in Table 2. They fall under the following categories: (i) high volume samplers, which mostly have a single impactor corresponding to the particle size of interest (e.g., PM$_{2.5}$ samplers, fine particulate samplers, and chemical speciation samplers); (ii) mini-volume samplers (with two impactors of particle sizes PM$_{10}$ and PM$_{2.5}$); and (iii) Cascade impactors, which have multiple impactors to cover varied particle sizes (e.g., Harvard compact cascade impactors, HCCI). These samplers, in general, collect the PM$_{2.5}$ particles in quartz (Islam et al., 2019a; Hong et al., 2017) and PTFE filters (Jan et al., 2020), whereas the HCCI use a polyurethane foam (PUF) impaction substrates and Teflon filters which can be subjected to chemical characterisation (Demokritou et al., 2004).

There are challenges in using impaction-based approaches for size-fractionated PM sampling. Conventional impaction-based samplers use impaction substrates coated with oil and other adhesives to minimise particle bouncing. However, it is not possible to use such PM samplers to collect mg-level PM for toxicological studies due to the minimal loading capacity of hard impaction substrates (Lee et al., 2005). Demokritou et al. 2002 developed a series of impaction-based samplers using a “dry” porous substrate (PUF) which enables the collection of huge quantities of particles with no particle bounce. Such PUF-based impaction samplers have varied
flow rates from 5 to 1000 LPM (Chang et al., 2013; Sarnat et al., 2003; Demokritou et al., 2002). Another challenge associated with impaction-based PM samplers is the efficient extraction from filters of particles for toxicological studies without altering their physico-chemical properties. Pal et al. (2015) developed a method which enables the extraction of PM from substrates without any such alteration.

Among these different types of samplers, high volume samplers are the most commonly used samplers in PM$_{2.5}$ collection for toxicological studies (Table 2). These are categorised as high-volume samplers due to their high flow rates, ranging from 16.7 LPM to 30 LPM that is usually denoted as 16.7 to 30 LPM, respectively (Jan et al., 2020; Deng et al., 2013; Fuentes-mattei et al., 2010; Oh et al., 2011; Billet et al., 2007; Deng et al., 2006; Dagher et al., 2005; Demokritou et al., 2004; Hsiao et al., 2000). These samplers are highly efficient in collecting large quantities of particles in a short period of time with similar power requirements as domestic appliances. The high volume samplers do not employ multiple stages of impactors, as cascade impactors do, rather, they possess a single impactor with the particle size of interest (PM$_{2.5}$ impactor) which retains particles of \leq2.5μm diameter on a filter holder equipped with either Teflon or quartz filters (Islam et al., 2019a). These types of impactors are generally used in outdoor environments, usually for collecting particles from traffic-related (such as roadside, traffic intersections) microenvironments (Table 2). Certain other toxicological studies have used the cascade impactor methodology, especially the HCCI with four impactor stages corresponding to the PM$_{10}$, PM$_{2.5}$, PM$_{1.0}$, and PM$_{0.1}$. This impactor can fractionate by size and collect large amounts of particles since this sampler uses the inert PUF substrates (without adhesions) in each stage with a backup filter (Teflon) at the end (Bello et al., 2009). These types of samplers can collect both PM$_{2.5}$ and PM$_{0.1}$ (UFPs) effectively (Pal et al., 2015). Additionally, these samplers can be used both in indoor and outdoor environments due to their dry vacuum pump which generates less noise, while sampling a high-volume of air (900 LPM). Apart from the high-volume samplers and
cascade impactors, certain studies use mini volume or low volume samplers with a flow rate of 5 LPM. These types of samplers are used in sites with very high concentrations of particles, where a study needs to collect particles continuously for a limited period (for months’ time) during any form of traditional activity such as a winter heating period (Niu et al., 2017). Also, these mini volume samplers are well suited for an indoor environment, since they produce less noise in an office space and the sampling can be carried out without creating undue disruption to the office environment. However, due to the low flow rate, they tend to increase the sampling duration excessively.

Hence, for the collection of PM$_{2.5}$ particles, the selection of samplers plays a key role in managing the PM collection duration, with due consideration given to noise levels and concentration levels. For instance, a high volume sampler will be disruptive to use in an indoor environment to reduce the sampling time, whereas a mini volume sampler is ineffective in an outdoor environment with lower concentration levels. Thus, an informed selection of sampler is required, which satisfies criteria such as lower noise when used indoors and high particle collection efficiency with an adequate flow rate to collect the required amount of particles for physico-chemical and toxicological studies.

4.2 Ultrafine particles

Toxicological studies assaying UFPs could require a large amount of particle mass, usually up to milligram (mg) quantities (Demokritou et al., 2002). In general, UFPs for chemical characterisation and toxicological studies are collected using cascade impactors, with varied flow rates (Table 3). The samplers involving the collection of UFPs generally operate at a flow rate of 9 to 30 LPM (Gao and Sang 2019; Weggeberg et al., 2019). However, there are high volume impactors such as high volume five stages plus back-up cascade impactor (HVFCI) (Badran et al., 2020) with a flow rate of 1100 LPM and the high-volume impactor sampler (HVIS) with a flow rate of 400 LPM (Sotty et al., 2019). These high volume impactors come with varied stages
and predominantly use filter sizes of 8”x10”, (Badran et al., 2020; Borgie et al., 2016; Sotty et al., 2019). However, these impactors do not use collection substrates at each stage, instead, they use filters in the first stage to retain particles with a higher diameter and a backup filter at the last stage which collect particles of UFP sizes. The filters used may also vary, for instance, Teflon (PTFE) and quartz fibre filters (Badran et al., 2020) and on polycarbonate filters (PUFs; Sotty et al., 2019) and are used for toxicology studies whereas glass-fibre filters are also used for physicochemical characterisation (Borgie et al., 2016). The HCCI plays a prime role in UFP collection for toxicological studies since this sampler, unlike the high-volume samplers, collects particles at all the impaction stages (Setyawati et al., 2020; Pennanen et al., 2007; Demokritou et al., 2002). Apart from the PUFs, the sampler is equipped with a final back up filter (which is usually Teflon) for collecting the particles ≤0.1µm diameter. The HCCI is most suitable to collect particles in all microenvironments due to its high flow rate (30 LPM)), easy installation, more compact design and comparatively low noise levels due to the dry vacuum pump. In addition, impactors such as Micro-Orifice Uniform Deposit Impactors (MOUDI; MSP corporation), are used extensively to collect PM mass for toxicological studies of UFPs (Table 3). These impactors generate a sampling flow rate of 10 to 30 LPM (Wang et al., 2013) and they use both Teflon and Quartz filters according to the focus of their studies on PM (either physicochemical characterisation or toxicological studies) (Shirmohammadi et al., 2016). Further, electrical low-pressure impactors (ELPI+) are being used to analyse the UFP size distribution and to measure/collect the mass of UFPs. ELPI+ makes real-time measurements of the particles in the 0.006–10 µm size range. It possesses a unipolar corona charger and a cascade impactor, in which the particles are classified into 14 size range fractions (Kuuluvainen et al., 2016; Järvinen et al., 2014). The ELPI+ also uses a vacuum pump and conducts particle sampling at a flow rate of 10 LPM. This is a high-resolution instrument which records data in the frequency of 1Hz. The ELPI+ has two collection substrate types, they are (i) aluminium foils
(used for gravimetric measurements) and (ii) polycarbonate filters (used for chemical analysis) (Dekati User Manual., 2012). Furthermore, personal samplers such as Sioutas cascade impactors (SCI) are used for collecting bulk mass of particles in five cut-sizes: 2.5 μm, 1.0 μm, 0.5 μm and 0.25 μm (Das et al., 2020). These impactors are generally used for collecting particles to conduct personal and occupational exposure and associated toxicological assessments (Das et al., 2020; Ramdhan et al., 2020). The above discussion suggests that the UFPs were sampled extensively using the cascade impactors mechanisms and the MOUDI impactors for many toxicological studies. However, the MOUDI impactor possesses a limited holding capacity when collecting particles in mg or gr levels. Certain cascade impactors, such as Berner low-pressure impactor (BLPI) and nano-BLPI with flow rates 24.8 LPM and 17.2 LPM, are usually unsuitable for collecting particles <0.32μm. This is due to differences in impactor design (such as volumetric flow, vapour pressure etc), particle bounce and evaporation (Fonseca et al., 2016). However, the HCCI demonstrated effective collection of UFP particles in both indoor and outdoor microenvironments (Setyawati et al., 2020; Demokritou et al., 2004). Thus, the HCCI can be favoured for collection of UFPs for use in toxicological studies. The ELPI+, on the other hand, provides high-resolution particle size distributions. However, the UFP mass collection by ELPI+ has not been reported extensively in the literature. Thus, an effective sampling design can be made by considering the concentration levels in the targeted microenvironment and an estimate of the equipment’s ability to collect sufficient quantities of PM within a reasonable time duration.

4.3 Quality assurance

The quality assurance of the instruments used and the samples collected (PTFE and Quartz filters are most often used for collection of PM$_{2.5}$ and UFPs) should be examined to ensure the credibility of the sample collected. In the case of PTFE and Quartz filter samples, filters should be weighed using standard reference methods (US-EPA, 2017) before and after
use for sampling. Field blanks can also be processed as a base reference with an acceptance range of ±30 μg (US-EPA, 2017), in addition, travelling blanks and laboratory blanks should be taken to evaluate any contamination of the filters during the study. Filters should be transported using petri dishes inside a cool box to prevent loss of volatile substances (Lagler et al., 2011). At the same time, the samplers should undergo a leak test and be verified for their volumetric flow rate in the field using traceable flow meters, before starting each study. Additionally, the temperature and pressure sensors should be checked to ensure that they remain within their variation limits (mostly ±1K, ±10 hPa) (Lagler et al., 2011). The sampler inlets should be cleaned before any campaign and extra cleaning is required when the sampling is on the kerbside. Furthermore, quality assurance methods, such as equivalence tests (US-EPA 2017; Lagler et al., 2011) can be performed by comparing the reference method samplers with candidate methods to ensure the credibility and acceptance of the sampler results during each study.

5. **Physio-chemical characterisation of fine and ultrafine particulate matter**

Physicochemical characterisation of PM is essential since the elemental composition, ionic composition and organic matter content will play a vital role in influencing the toxicological responses. In addition, the PM composition and hence bio reactivity will vary according to the type of the microenvironment they are collected from.

Although initial measurements of weight, number, concentration and size distribution of particles are carried out during sample collection (Sections 4.1 and 4.2), the measurements are often insufficient to characterise the full complexity of PM that is a mixture of various organic and inorganic compounds, which contribute different ways to the overall toxicity (Park et al., 2018). The constituents exhibit a wide range of sizes, morphologies and chemistries (bulk and surface), which are averaged with bulk methods.
To fully characterise these complex environments, a combination of complementary experimental techniques are needed. The concentration of ions, elements, and carbonaceous species (typically organic and elemental OC and EC, respectively) in PM are measured using ion chromatography (IC), graphite furnace atomic absorption spectroscopy (GF-AAS), inductively coupled plasma spectroscopy methods (ICP-OES/MS) and an OC-EC carbon analyzer, the thermal-optical transmittance (TOT) or thermal/optical reflectance (TOR), respectively (Liang et al., 2016; Qi et al., 2018). Together with TOT and TOR, thermogravimetric analysis (TGA) can be used to investigate the PM’s oxidation and volatility characteristics. During TGA, samples are analyzed for changes in mass as a function of temperature, and this analysis can be performed under an inert and/or oxidizing atmosphere (Klingshirn et al., 2019). The thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) method has also been developed for the analysis of the organic fraction of PM$_{2.5}$ (Ding et al., 2009). The elemental composition of PM can also be examined via X-ray fluorescence (XRF) (Hamdan et al., 2018) and the identification of the crystalline phases by X-ray diffraction (XRD) (Satsangi and Yadav 2014). These two methods are often used on fractionated samples to measure the size-dependent variations in PM.

Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy compositional analysis (EDXS) can provide spatially resolved information about the morphology, diameter and diameter distribution, agglomeration state, elemental composition and crystallinity (via electron diffraction) of PM. The advantages of these techniques are that spatially resolved images and chemical maps can be acquired at the length scale of individual particles to measure variability in the chemistry and size distribution between particles and within individual particles in the PM mixture (Liati et al., 2016). Electron energy loss spectroscopy in the transmission electron microscope can also be used to map the valence of metals within PM to predict their oxidative potential.
5.1.1 Destructive versus non-destructive

Several techniques used to characterise the physical and chemical characteristics of PM require an amount of material for testing that can be difficult to collect practically. The minimal amount of material required and the information generated by a given method is often set by the physical principles of the instrumentation (e.g. the diffraction limit) or engineering constraints such as the detector sensitivity. Some methods are intrinsically destructive, e.g. ICP-MS and TGA and other theoretically non-destructive methods may cause some mass loss due to the sample preparation required or limit further applications, e.g. samples for TEM must be mounted on grids. Therefore, the order in which the PM is characterised must start with the non-destructive methods first before proceeding with destructive techniques such as ICP-MS for bulk analysis of trace metal content. In Table 4, a subset of commonly used characterisation techniques and required PM amounts are listed.

5.1.2 Selection of characterisation techniques

The techniques selected for analysis depend on the mass of PM collected and the composition and mass of each component of PM within the mixture. For example, the low detection limit of techniques such as ICP-MS, TOR and TD-GC/MS analysis makes it feasible to characterise very small amounts of trace metals or gases in PM. It is, however, difficult to estimate the total mass needed for each technique, as PM contains a mixture of elements. In practice, 1 cm2 punch-outs of a filter could be used for these analyses. However, these methods are destructive and provide information averaged from the whole sample. On the other hand, XRF offers the benefits of being both highly sensitive and non-destructive (Klockenkämper and Bohlen 1996) but does not have the sensitivity or detection limits of ICP-MS. Other non-destructive bulk methods, such as XRD can require milligrams of PM for analysis although techniques such as microXRD can overcome these stringent requirements. (Sturges and Harrison, 1989). Finally, methods such as thermal gravimetric analysis (TGA) for measuring the
pyrolysis properties of PM and their gaseous decomposition products, e.g. to give information about the % of organic and metals in a sample, are both destructive and require high amounts of PM (Lapuerta et al., 2007). In contrast to the methods described above, electron microscopy needs very small mass, has high spatial and energy resolutions for chemical analysis and mapping and provides information at the length scale of the individual particles within the mixture (Liati et al., 2016). However, the sampling volumes are very small, so these methods need to be correlated with bulk techniques to ensure that the collected data are representative of the whole sample collected.

5.1.3 Analysis of PM on, and extracted from, the filter to more accurately understand the cellular response

Some techniques such as SEM, Raman spectroscopy and XRF (Satsangi and Yadav 2014; Hamdan et al. 2018) can characterise PM directly on the collection filters, so the PM is in its near-native state. Other on-filter methods include SEM-EDX, XRF, micro-XRD, which are used to image the size distribution, chemistry and phase of the particles. However, in practice, the filter will also influence the PM, principally by altering its aggregation state, so that it is no longer truly representative of ambient PM. The use of impactors for PM collection could also change the morphology of the PM during the high-speed collision processes. Many techniques, e.g. ICP-MS requires that the PM is removed from the collection filter, often using sonication, and is suspended in a liquid such as methanol mounted on a substrate such as a TEM grid. Extraction by sonication into organic solvents will change the properties of the PM, i.e. the original size distribution of the sampled PM and its chemistry. Extraction into aqueous solvents could also dissolve some of the inorganic fraction due to ion redistribution. Other issues with particle extraction include contamination from the filters, i.e. generation of broken PTFE fibres during sonication, preferential extraction of certain components of the PM (depending on the extraction medium is used), and contamination from glassware used for the extractions which
will also alter the outcomes of cell viability assays. When the particles are transferred to cell culture media, they also need to be freeze-dried by lyophilization, and transferred into cell culture media which can also change the chemistry and aggregation state of the particles, so the PM must also be characterised in this media (Theodorou et al., 2013).

Depending on the separation method, filter type used and the properties of collected material, recovered amounts of PM can vary significantly. Some constituents might be lost or retained within the filter during separation. Gravimetric analysis of total PM$_{2.5}$ mass has shown that extractions are around 80% efficient. However, specific PM constituents like metals and organics have much lower extraction efficiencies (on average, 47±22% and 25±14%, respectively) (Roper et al. 2015). There is no perfect method for PM extraction, and available techniques need to be adjusted for the optimal extraction of constituents of interest.

These artefacts generated during the extraction of PM from filters make it challenging to relate the toxicological outcomes of cell culture experiments to the health effects of exposure to aerosolised PM direct from the air. Another issue is that collection/extraction-induced aggregation of the PM will change sedimentation and diffusion of the PM in the cell culture media as they settle on the cells and also cellular uptake which will alter the dose of PM delivered extracellularly and to the inside of the cells affecting their bioreactivity (Hinderliter et al., 2010). Electrostatic filters have also been used to collect PM, but these also induce aggregation, and there is evidence that these filters produce ozone as a by-product due to corona discharge (Rim et al., 2013), which is damaging to cellular health (Wiegman et al., 2014). In practice, it is not possible to fully overcome these issues to yield PM which are fully representative of ambient PM, but by fully characterising the PM at each stage of collection/extraction into the in vitro system, more accurate relationships can be drawn between PM properties and the cellular response.
6. **In vitro toxicity of PM$_{2.5}$ and PM$_{0.1}$: Considerations for particle collection**

Numerous factors influence the mass of PM required for toxicological assays. These include the number of toxicological endpoints assays, number of cell donors (for primary cells) and cell repeats required to produce statistically significant results (which can range typically from $n=3$ to $n=6$). PM cytotoxicity and genotoxicity are correlated with PM concentration and exposure time. These studies must be carried out at increasing doses of the PM from 50 to 100 μg/mL up to 5 mg/mL and different time points (e.g. from 3 hours up to 7 days), to measure the dose and time-dependent responses of the cells to the PM (Xu et al., 2020; Jing et al., 2019). Thus, toxicological studies can require substantial amounts of mass (up to 10 mg) to assay the effects of the PM on cellular health, including assays of oxidative stress, inflammation, cell death and mitochondrial activity. Another issue, discussed in the previous section (section 5), is that the PM has to be extracted off the filters and dispersed into solvents such as methanol, which could alter their physico-chemistry. Although alternative solvent-free methods, such as electrostatic collectors can be used to overcome this issue (Ning et al. 2008; Sillanpää et al. 2008). The identification of cellular modifications caused by PM is essential to understand its harmful effects and related respiratory and cardiovascular diseases. In this section, we describe and list the assays and techniques used to evaluate the toxicity of PM$_{2.5}$ and PM$_{0.1}$ to illustrate how the selection of toxicological endpoints being assayed determine the mass of PM needed.

Table 5 describes the different techniques that have been used to assess the cellular toxicity of PM$_{2.5}$ and PM$_{0.1}$ and mechanisms of cytotoxicity. Different assays can measure a number of endpoints including nuclear damage with DNA breaks, chromatin de-condensation, and organelle damage such as lysosome, endoplasmic reticulum and mitochondrial damage, leading cell to apoptosis and death. The ability of PM to generate reactive oxygen species (ROS) can be estimated using Dithiothreitol (DTT) chemical assay (OP_DTT) and Electron Spin Resonance Spectrometry (OP_ESR). Genotoxicity and nuclear damage caused by PM can be measured
using the Ames test and the Single Cell Gel Electrophoresis (SCGE) COMET assay (Park et al., 2018). In-depth mechanistic studies of which cell signalling pathways are affected by exposure to PM can be assayed using techniques such as polymerase chain reaction (PCR). Light histology, confocal and electron microscopies visually distinguish features of cellular damage, such as membrane blebbing and nuclear fragmentation. Confocal microscopy can be used to screen for mechanisms of cell damage such as oxidative stress and reactive oxygen species (ROS) generation inside fixed or live cells following exposure to PM. For example, fluorescent dyes such as Annexin-V-FITC and propidium iodide indicate cell death by apoptosis or necrosis (Simões et al., 2017) and cellular probes CellROX are activated in the presence of ROS to assess the formation of free radicals and Mitosox, to assess mitochondrial ROS. High-resolution chemical electron microscopy and super-resolution microscopy techniques can also identify which PM sizes and chemistries are internalised, the location and chemistry of the PM$_{2.5}$ and PM$_{0.1}$ inside the cells and subcellular effects after exposure to PM. These complementary approaches improve understanding of the mechanisms, time-scales of PM-mediated potential toxicity and could identify which PM sizes and chemistries are most damaging.

7 Optimisation in particle collection

The knowledge of the average concentrations of the particles in the different microenvironments (Section 4) can enable the researchers to plan the sampling duration to collect the required amount of particle mass (Section 5) and their subsequent toxicological assessments (Section 6). These studies involving particle mass collection for toxicity and physico-chemical characterisation assessments demonstrate that the particles collection rate highly depends on the instrument’s flow rate, site morphologies and the prevailing atmospheric conditions. The following section discusses, firstly, the necessary ways to collect the particles effectively. Secondly, it provides specific recommendations to increase the likelihood of obtaining the required quantities of particles.
7.1 Fine particles

The toxicological studies of PM$_{2.5}$ discussed in the previous sections reveal that these studies require particles in mg quantities. In general, the PM$_{2.5}$ particles were collected mainly using instruments with a medium volume flow rate of 16.7 LPM (Table 2). However, some studies use instruments with a high volume flow rate ranging from 100 to 400 LPM (Table 2). The average concentrations extracted from the previous literature can be combined with the instrument flow rate to plan the field campaign.

Furthermore, the maximum sample mass which can be collected on a single filter paper (be it PTFE or glass fibre or quartz or polycarbonate) should also be calculated; this data can work as a guide in changing the filter paper effectively, especially for continuous outdoor measurements. However, preliminary monitoring on the particle mass concentration has to be carried out (using optical instruments) as this helps in planning the duration to change the collecting medium (filter paper) which is highly dependent on the concentration in respective microenvironments.

The toxicological assessments are carried out in different doses such as 5, 10, 20, 50, 100 and 200 μgmL$^{-1}$ (Islam et al., 2019b), for estimating the exposure to different compounds and also for multiple experiments. These dosage proportions may vary according to the interest of the researcher and their objectives. However, commonly the dosage levels start from 1 to 5 μgmL$^{-1}$ and extend up to 200 to 300 μgmL$^{-1}$. Hence, as noted above, there is a need to obtain particle mass in mg quantities for these assessments. Therefore, by considering the dosage levels mentioned in a wide variety of literature, it is evident that an average of 1000 μg (or 1 mg) of particle mass is at least required for conducting a toxicological study. The time required for collecting the mentioned 1000 μg for each microenvironment has been calculated using the typical concentrations obtained (Figure 2) from various sources and have been tabulated in Table 4.
The schematic representation of the time taken by various samplers (Figure 3) demonstrates that the samplers with a high flow rate ranging from 400 to 1050 LPM require the least time to collect the targeted PM$_{2.5}$ particle mass. In contrast, the fine particulate sampler (16.6 LPM) and Harvard impactors (30 LPM) require longer to collect the targeted mass. This is because the samplers with higher flow rate possess a larger pump capacity resulting in reduced sampling duration. However, these samplers with larger pump capacity are not suited for all types of microenvironments. For instance, samplers with larger pumps are usually not suitable for an indoor environment due to factors such as increased noise levels (noise pollution) creating an unpleasant ambience, vibrations on the floor, potential deterioration of air quality (if oil pumps are used), usage of space, and difficulty in transportation, etc. However, these factors need not be considered when high volume samplers are used in a roadside or traffic intersections microenvironment (generally outdoors). The fine particulate samplers and Harvard impactors possessing a lower flow rate compared with high volume samplers are much better suited for indoor conditions, especially the Harvard impactors since these impactors were mounted on a tripod and possess a higher pump capacity with less noise compared to fine particulate samplers. Also, the Harvard impactors collect a significant amount of particle mass when used outdoors (traffic intersections or roadside). However, the high-volume samplers will collect more mass, compared to these samplers.

7.2 Ultrafine particles

The mass concentrations of UFPs are significantly low when compared with PM$_{2.5}$. However, the mass of UFPs is collected using methodologies similar to PM$_{2.5}$ mass collection. The UFPs are generally collected using impaction sampling techniques coupled with high volume samplers ranging from 400 to 1100 LPM. However, samplers with flow rates ranging from 9 to 70 LPM are used, but mostly in indoor environments. The sampling time will generally be higher for UFPs due to their lower concentration, and high-volume samplers are usually
preferred to reduce the sampling duration while collecting the required amount of particle mass. In general, the toxicological assessments require samples of large quantities (in mg), for multiple experimental investigations to study their exposure efficiently. Similarly, the physico-chemical characterisation of UFPs requires an average of at least 100 μg of particle mass for estimating elements, ions and carbon content present. Therefore, it can be said that an average of at least 1000 μg and 100 μg of particle mass will be required to conduct toxicological and physicochemical assessments, respectively. This particle mass quantity might increase or decrease according to the research requirements and study objectives.

The particle mass collection can be optimised by first calculating the sampling time required to collect the required particle mass. This can be calculated by conducting preliminary measurements using handheld optical instruments showing the mass concentrations of the UFPs. These mass concentrations can be used in calculating the sampling time for each of the commonly used samplers (Table 4). The obtained sampling time (Table 6) will provide an insight into the sampling duration for collecting the required mass of particles.

The schematic representation (Figure 3) of the sampling time required by each sampler shows that SCI with a low flow rate of 9 LPM (Das et al., 2020; Ramdhani et al., 2020) requires a significantly longer sampling time than the HVFCI with its high flow rate of 1100 LPM (Badran et al., 2020). Both of these instruments employ a similar sampling technique but have a significant difference in air flow rate. The SCI is personal sampling equipment while the HVFCI is high-volume equipment, and they have their own merits and demerits in operation and handling. Likewise, the Harvard impactor with a flow rate of 30 LPM exhibits higher collection efficiency on PTFE filters and can efficiently collect the mass of UFPs. Hence, a sampler should be selected with a considerable flow rate as well as being suitable for all types of microenvironments for obtaining the particle mass in a shorter duration of time.
7.3 Particle mass collection with viruses

Microorganisms such as bacteria, fungi and viruses associated with atmospheric PM are referred to as bioaerosols (Chen et al., 2020), and they are transported in the air by means of dust or droplet transmission (Rahmani et al., 2020; Pan et al., 2019; Patterson et al., 2017). These bioaerosols can originate from human activities such as coughing or sneezing (Asadi et al., 2020; Dhand and Li, 2020; Jones et al., 2020; Lotfi et al., 2020), singing (Gregson et al., 2020; Hamner et al., 2020), talking or breathing (Asadi et al., 2019; Yan et al., 2018) or by specific mechanical processes (Sopeyin et al., 2020; Schünemann et al., 2020; Verreau et al., 2008). Airborne transmission of infectious bioaerosols comprising viruses, bacteria or fungi (De Sousa et al., 2020) can increase appreciably in enclosed environments that have a high density of people and limited ventilation (Kumar and Morawska, 2019). The airborne respiratory pathogen can pose serious health risks when transported through air from one place to another (Pan et al., 2019; Tang, 2009) such as in hospitals from patients exhaling infectious airborne pathogens (Chow and Mermel 2017) or in restaurants (Kim and Lee, 2020; Li et al., 2020). The infection and spread of these airborne pathogens will be rapid in spaces with enclosed settings (combined with crowd) such as refugee camps, homeless shelters, slums and prisons. For example, WHO reported that the spread and infection of M. tuberculosis was found to be significantly higher in these similar settings (WHO 2009). The recent coronavirus pandemic (or SARS-CoV-2 virus) is a severe concern. The infection risk of such outbreaks can be partly controlled by measures such as increased hand hygiene, indoor ventilation and disinfecting surfaces and ‘cleansing’ indoor air (Rahmani et al., 2020; Morawska et al., 2020). Coronaviruses are a group of related RNA viruses with large genomes which came to notice as causative agents of severe acute respiratory syndrome (SARS) in 2003. These respiratory viruses can be spread through respiratory droplets as seen with flu viruses (Drosten et al., 2003). Unlike other microorganisms such as bacteria, viruses cannot be collected on a general sampling media, since they have DNA or RNA genomes.
encased in a fatty liquid membrane and require a host cell in order to reproduce and cause infection (Asadi et al., 2019). The sampling of airborne viruses in a suitable sampling media still poses a challenge for effective sampling. Hence, in the subsequent text, we review the current methods available for sampling viruses, especially SARS-CoV-2 (given the importance of the ongoing pandemic) and to recommend an appropriate sampler to be utilized for effective collection of viruses.

Airborne PM and airborne viruses are collected by similar methodologies. However, the fundamental difference in particle collection for airborne viruses is the collection medium. It has been demonstrated that airborne viruses can be collected efficiently in a liquid collection medium such as agars (which can be used for culturing the airborne viruses), mineral oil (used in liquid impingers) and centrifugal tubes (by suspending a suitable liquid medium) (Pan et al., 2019). These types of collection medium (liquid and agar) are used for sampling airborne viruses, due to efficient and easy recovery of the samples, and for processing the aliquots of collected samples for virus detection and isolation. Whereas the virus extraction from the filtration process using respective filters (when used in a similar way as used in airborne PM sampling) will dehydrate viruses (Verreault et al. 2008) and deteriorate their infectivity.

The sample handling is also found to be different for airborne PM and pathogens (viruses, bacteria, fungi and other microbes). The PM samples collected in filters need to be desiccated, whereas the samples containing viruses should not be desiccated, since the samples might dehydrate and cause inactivation of the viruses (Lindsey et al., 2010; Fabian et al., 2009). Additionally, the samples collected for airborne viruses should be taken for further analysis (such as polymerase chain reaction (PCR) for the detection or any other analytical methods) in a short duration of time, compared to PM samples which can be stored for a longer period.
The airborne viruses are sampled using similar kinds of sampling techniques that are used for airborne PMs, but with some modifications on certain factors such as collection medium, flow rates and sampling duration. The different types of sampling techniques used for collecting airborne viruses (Figure S1) fall under the following categories, such as (i) Solid impactors (cyclone samplers); (ii) Liquid impingers (All Gas Impingers, AGIs, and AGI-like samplers); (iii) Filters; (iv) Electrostatic precipitators; (v) Water-based condensation samplers; and (vi) Other samplers (Pan et al., 2019; Verreault et al., 2008).

Among these sampling techniques, impactors, filters, impingers and cyclone samplers, aid in collecting airborne viruses effectively (Haig et al., 2016; Reponen et al., 2011). The impactor sampling technique uses Andersen samplers, which work on the principle of inertial impaction and traps particles of specific cut off diameter from 0.65 to 7 µm (Tseng and Li, 2006), with air passing through the six stages of impactor at a flow rate of 28.3 LPM on to a petri dish consisting of liquid agar medium (White et al., 2020). The slit samplers draw particles through narrow holes or slits onto a petri dish which holds a culture medium (Booth et al., 2005). In the case of sampling by liquid impactors, all-glass impinger (AGI) samplers are used, where the sampler draws the air stream inside the liquid collection medium through diffusion (Hermann et al., 2006).

The filter sampling mechanisms are used widely when the particle sizes of airborne viruses are <500 nm. Filters used include PTFE, gelatin, glass fibre filters and cellulose filters. However, the filtering processes cause structural damage to the virus and might dehydrate the virus significantly (Verreault et al., 2008). Among these filters, gelatin is highly efficient in collecting airborne viruses without affecting the viability of viruses significantly (Zhao et al., 2014). However, gelatin filters are relative humidity (RH) dependent; they desiccate the viruses when used in low RH and get dissolved when used in high RH conditions (Verreault et al., 2008).
Cyclone sampling techniques have been used in Coriolis μ air sampler (Bertin instruments) and NIOSH BC 251 bioaerosol samplers. These samplers exert centrifugal forces on particles, causing them to deviate from the airflow and get impacted on the collection wall and so these samplers are not highly efficient, especially for particles with 100 nm (most free virus particles fall under this particle size) (Cooper and Ally 2010). However, improvements have been made to these conventional cyclone samplers to increase their efficiency. For instance, a sampler developed by the National Institute for Occupational Safety and Health (NIOSH) possesses a multi-stage cyclone operation, whereby the liquid medium discharges and collects the particles against the cyclone walls (Kenny et al., 2017; Alonso et al., 2015). Likewise, the Coriolis μ air sampler provides efficient particle collection in a short duration of time (10 mins although the airborne viruses obtained depends on their concentration in air) due to its high flow rate (from 100 to 300 LPM) and the airborne viruses are collected directly onto a collection medium such as Dulbecco’s minimal essential medium (DMEM), which is particularly suitable for genetic analyses such as PCR, since the collected samples can directly be introduced with nucleic acid extraction kits (which is the preliminary step in PCR analysis). Currently, this type of sampler is being used by Centres for Disease Control and Prevention (CDC) of Shenzhen and Guangzhou, China as well as in Europe to collect coronavirus SARS-CoV-2 and evaluate the risk of aerosol contamination in hot spots of the cities (Zhou et al., 2020). On the other hand, bio-samplers such as the MD8 airscan sampling device have been used for sampling viruses such as the MERS-coronavirus (MERS-CoV) inside hospitals (Kim et al., 2016). These samplers work on a filtration principle; by drawing air through gelatin filters of diameter 80 mm and 3 μm pore diameter. The virus collection efficiency is found to be higher for RNA viruses (Zhao et al., 2014). However, these samplers use gelatin filters which, as described earlier, are highly RH dependent; when exposed to higher HR it dissolves the sample but dessicates the sample when exposed to lower RH (Verreault et al., 2008). Thus, at higher RH, the gelatin dissolves the
sample and at lower RH it desiccates the sample. Further information on a wide array of biosamplers for the sampling and detection of viruses, especially coronaviruses, can be found elsewhere (Rahmani et al., 2020, Pan et al., 2019; Verreault et al., 2008). Among all the mentioned sampling techniques, it is found that the airborne viruses collected through cyclone separators and impactor type of sampling techniques are viable in collecting particles for virus detection with an efficiency of 39% for Coriolis μ air sampler (in a short duration of time, such as 10 min) (Zhou et al., 2020), 67% for NIOSH BC251 samplers (Chia et al., 2020), 20% in high-resolution slit samplers (Booth et al., 2005) and 40% detection in Andersen cascade impactors (Table 6). Hence, it is evident that the cyclone separator sampling technique is found to be highly efficient for collected airborne viruses. For instance, the recent pandemic SARS-CoV-2 airborne viruses (1-4 µm) have been detected with a higher efficiency (Chia et al., 2020) using cyclone sampling techniques incorporated in Coriolis μ air sampler and NIOSH BC 251 bioaerosol samplers. Therefore, the samplers using cyclone (using centrifugal forces) sampling mechanisms (Coriolis μ air sampler and NIOSH BC 251 bioaerosol sampler) can be used for effective virus detection and recovery for genetic analyses such as PCR.

Airborne virus collection largely depends on the efficiency of viral recovery compared to airborne PM collection, where the capture efficiency is found to be vital (Verreault et al., 2008). Other factors include RH, temperature, light, irradiation, suspension medium and collection medium (Pan et al., 2019). Additionally, virus morphology, virus type and characteristics such as a hydrophilic or hydrophobic nature should also be considered when carrying out sampling for airborne viruses (Tseng and Li 2005). Among these, RH is the most common factor which is studied for biological collection efficiency, since it plays a significant part in virus collection. For instance, non-lipid enveloped viruses become unstable below 70% RH, whereas lipid enveloped viruses become unstable above 70% (Tellier 2006).
Similarly, in samplers using filtration, RH plays an important role, since the desiccation poses a problem for viruses collected on filters (Lindsley et al., 2010; Fabian et al., 2009). Hence, RH should be maintained at an optimum rate of around 30-70% (Verreault et al., 2008). In addition, temperature and the choice of collection medium are important factors which should be considered for the successful collection of effective airborne viruses. These will affect the efficiency of the biological collection of airborne viruses during the sampling process. The virus’s infectivity and detection are highly dependent on RH, and viruses such as SARS-CoV, human coronavirus 229E (predecessors of the latest SARS-CoV-2) remains infectious in a moderate RH (around 30-70%) environment (Warnes et al., 2015; Casanova et al., 2010, Verreault et al., 2008).

Airborne pathogen (especially viruses) collection are found to be efficient when a liquid medium is used with a high flow rate of air (ranging from 100 to 300 LPM). A collection medium using filters is unfeasible because of filter desiccation (in case of PTFE, polycarbonate and glass fibre filters) whereby the microorganisms get dehydrated during this process and cause a greater loss in recovering the viruses. Gelatin filters are, however, efficient in collecting these viruses provided the measurements are taken in an RH controlled (which is mostly indoors) environment. The impaction and impinger sampling technique is found to be less efficient compared to the cyclone sampling technique (using centrifugal forces), where the airborne particles are collected on the sides of the centrifugal tube with the collection medium inside. These types of samplers operate at a high flow rate and the collection medium used in most of these samplers can be readily used for further gene analysis processes such as PCR for virus detection. Hence, the samplers with cyclone sampling techniques (Coriolis μ air sampler and NIOSH BC 251 samplers) using centrifugal forces are effective in collecting airborne viruses in any kind of environment (both indoors and outdoors).
7.4 **Optimisation of particle mass sampling via modelling**

The strategy of particle mass sampling can be optimised by predicting the air pollution concentrations by predictive models, which can enable to identify the pollution hotspots (places with increased pollution levels). These hotspots can be used as suitable sampling locations since there is a higher probability to obtain large amounts of particles in a significant time frame. These predictive models use different forms of mathematical modelling techniques such as artificial neural networks (ANN) (Maleki et al., 2019), adaptive-network fuzzy inference systems (ANFIS) (Prasad et al., 2016), statistical models (Lei et al., 2019), and Data Assimilation (DA) techniques (Arcucci et al. 2019a, Arcucci et al. 2017).

The statistical models are limited to utilize the standard classification or existing regression models (Zhu et al., 2018) and possess difficulties in modelling complex non-linear relationships (Prasad et al., 2016). On the other hand, self-learning modelling techniques such as ANN (Kurt and Oktay 2010; Nagendra and Khare 2005) and ANFIS (Prasad et al., 2016) are found to increase accuracy in forecasting compared to statistical models. Apart from these techniques, there exist several new modelling techniques being invented by the machine learning communities to refine the modelling to focus specifically on a defined problem. These ML techniques, when coupled with DA, are found to increase the accuracy and sensitivity of the model outcomes (Arcucci et al. 2017). For example, if incompressible Navier-Stokes equations are being used to describe a turbulent flow of particles, where the concentration of the particle mass is seen as a passive scalar (Song et al., 2018). These techniques will implement mutual information methods which measure the effect of selected data or selected placement on a posterior uncertainty of a Gaussian Process. The output simulations of ML techniques (coupled with DA) can be used to train Artificial Intelligence (AI) technologies, which in turn will increase the accuracy of the wind flow patterns and determine the emission strategies in the respective microenvironments. It will facilitate the model to predict the pollution levels precisely.
and identify the potential hotspots, thus exhibiting the optimal locations for effective particle collection. Hence, when ML trains a function, the optimal locations of pollution levels can be computed with minimised effort, which can subsequently allow identifying the areas of high pollution level (Arcucci et al. 2019b). The effectiveness of these techniques has been mathematically proven and tested for some test cases (e.g., outdoor measurements of CO₂). For instance, Dur et al. (2020) developed a modified version of the algorithm from Krause et al. (2008) and Arcucci et al. (2019b) using a Computational Fluid Dynamic (CFD) simulation of outdoor air pollution propagation in a vast domain in London, UK (Song et al. 2018). The number of nodes (which defines the sampling area) in the mesh used in this case is 767,559. The domain has been decomposed into 32 subdomains with an average of 24,000 starting locations per subdomain. Two optimal locations are identified to be the potential locations for optimal sensor placement at this site (Dur et al., 2020). Thus, a similar strategy could be applied for PM mass sampler placements.

In terms of accuracy computed as a mean squared error with respect to a control variable, this approach shows a reduction of the error which goes from 8.90×10⁻¹ for locations randomly chosen to 3.35×10⁻² for the optimal locations. A similar approach has been implemented in Tajnafoi et al. (2020) where an ML model is trained using data from a CFD simulation of air pollution in a room within the Clarence Centre building located in Elephant and Castle in London, UK. The simulated training dataset consists of 10,000 grid points, which represent potential instrument locations distributed in a 3D space. The number of selected locations, in this case, is 7. In terms of accuracy, this approach showed a reduction of the error, which goes from 1.70×10⁻¹ for the seven random locations to 5.00×10⁻⁴ for the optimal locations. The accuracy of a modelling technique is vital since it provides an estimation of the misfit between the measures collected from the selected location and the estimates provided by a forecasting model. Reductions of the errors are mandatory for effective prediction.
In the last decade, these methods have been accepted as powerful tools in forecasting the outcomes. However, these DA methods quantify certain uncertainties, and these can be custom-developed to minimize the discrepancy between numerical results and observations, where forecast and observations are assumed as the sources of information having errors that will be described by error covariance matrices (Arcucci et al., 2019a). A Variational DA (VarDA) model by Arcucci et al. (2019a) demonstrated that this model could reduce the error in the forecasting model and adapted to decrease the error at simulating the location of the sensor and the rest of the domain. Hence, the DA models used for the sensor placement can be adapted to estimate the hotspots for particle mass collection by customising the data assimilations to reduce the errors in estimating those hotspots. In the case of particle mass collection, the number of placement could be reduced to a few locations. These technologies provide a list of the coordinates of the best locations in decreasing order with respect to the impact they have in terms of mutual information. In case the possible location is only one, the best location to consider is the first in the list provided by the technologies. At the moment, these approaches have not been used for selecting optimal sites for mass collections. However, these technologies are general and can be used if a predictive model can be implemented to simulate the particle mass dispersion.

The modelling techniques and overall approach described above have not been used for the purpose of an effective mass collection yet. This is primarily due to the lack of access to model results that require specific expertise, resources and knowledge base. However, it can be a novel approach for selecting effective locations to collect particle mass on filters when relevant information is available.

9. **Summary, Conclusions and Future Work**

This article focused on the methodologies involved in PM$_{2.5}$ and UFP mass collection to study their physicochemical characterisation and toxicological effects. We provided a critical
analysis of on (i) the typical concentrations of PM$_{2.5}$ and UFP mass in different urban microenvironments; (ii) the different types of samplers and which sampler will serve as a viable option depending on the microenvironment; (iii) the average sampling time for PM$_{2.5}$ and UFP particle mass in each microenvironment according to the sampler and typical concentrations; (iv) physico-chemical characterisation techniques for PM$_{2.5}$ and UFPs (both destructive and non-destructive) and the types of analytical techniques and instruments used; (v) various toxicological analysis methods of PM$_{2.5}$ and UFPs and the instruments used; (vi) particle mass collection optimization for PM$_{2.5}$ and UFPs; (vii) airborne virus sampling and evaluating the efficient sampling technique with efficient recovery of pathogens; and (viii) role of predictive modelling to identify the hotspots for efficient particle collection in a reduced sampling duration.

The key conclusions drawn from this study are as follows:

- Over the last two decades, it has become increasingly necessary to perform toxicological assessments of PM$_{2.5}$ and UFP particles. Airborne PM exposure to these two size fractions has been demonstrated to significantly correlate with the occurrence of adverse cellular effects, cardiovascular and chronic respiratory diseases. The toxicity of PM is generally higher in small size fractions (such as PM$_{2.5}$ and UFPs), and a strong association exists between the physico-chemical characterisation and their toxicity effects. These studies require a relatively large amount of particle mass to analyse these biological mechanisms, and it is often difficult to obtain the targeted particle mass in a reasonable period. Limited studies have discussed the particle mass (which is an important aspect) collection effectively by selecting an appropriate type of instrument according to the characteristics of each microenvironment in urban areas; this review provided viable suggestions to use the appropriate type of instrument for the respective microenvironments.
● We reviewed the typical concentrations in five different urban microenvironments (roadside; traffic intersections; indoors; parks; roadside behind GIs). As expected, the mass concentrations near to traffic-related activities such as roadsides and traffic intersections were found to be higher compared than those indoors where elevated mass concentrations were observed at study sites with poor ventilation and cooking activities. The park and roadside sites behind GI showed a lower mass concentration, due to the presence of urban vegetation and roadside GI. These typical concentrations served as a viable input in calculating the sampling time required by each instrument for obtaining the targeted particle mass.

● The sampling instrument and its volumetric flow rate play an essential part in the sampling duration for collecting the targeted mass of particles for the analysis. The volumetric flow rate on these samplers can range from 16 to 1100 LPM for both PM$_{2.5}$ and UFP, and these samplers largely use either impactor or cyclone sampling techniques. The particles collected in indoor environments generally use impaction sampling techniques (with flow rates 16 to 30 LPM) in a medium volumetric flow rate for collecting particles effectively without causing any increased noise levels or unpleasant conditions during sampling (in indoor environments). The impaction sampling technique, coupled with high volume suction pumps ranging from 400 to 1100 LPM, can be deployed in most of the outdoor microenvironments. Certain samplers, such as Harvard impactors, can be used for both indoor and outdoor environments since they have a significant flow rate and can collect particles in both fine and ultrafine size range. These types of samplers are as efficient as high-volume samplers and easy to operate and handle compared to high volume samplers.

● Though there are many methods available for physicochemical examination of PM, their use can be restricted by numerous factors. In particular, the amount of PM collected may
limit viable options. When only limited amounts of PM are available, the experimental workflows to characterise the PM needs to be carefully planned. The PM samples need to be cycled through non-destructive experiments before attempting destructive approaches. On-filter experiments might be favoured over experiments requiring PM extraction. In general, if more mass of PM can be collected, more comprehensive and accurate analysis can be performed.

- Different mechanisms such as inflammatory processes, oxidative stress and genotoxicity are involved in PM cytotoxicity. Fine and UFPs exhibit significant toxicological effects due to their particle diameter, which aids their entry into the airways and bloodstream and causing cellular effects. The cellular toxicity of PMs and their subsequent damaging effects in different organs is attributed to the type of cell line, culture conditions, and the particle size, composition and concentration. In short, higher the PM concentration and exposure time lead to highest toxicity, and it strictly depends on the absorbed toxic pollutants. The oxidative stress seems to be generated mostly by the metal fraction while the genotoxicity by the organic fraction. Higher levels of PM and different cell lines are used in cell toxicity studies compared to a real-life situation. Methodological differences hamper direct comparison of results between different studies. The PM$_{0.1}$ toxicity grade is correlated not only with the relative mass, as for bigger PM, but also with particle number and surface area. Due to the higher capacity to absorb organic pollutants, PM$_{0.1}$ result in more toxic effects compared to PM$_{2.5}$, due to their small size and ability to produce damaging effects in the lung and the brain. More studies about its neurotoxicity and correlation with neurodegenerative diseases are needed. The identification of cellular modification caused by PM is essential to understand its harmful effects and correlated diseases. Bioassay and imaging techniques are essential tools employed to understand the cytotoxicity mechanism of PM.
• Toxicological assessments are carried out in different doses. Hence, they require an average of 1000 µg of particle mass in both the size fractions. Similarly, it is possible to say that the physico-chemical characterisation needs an average of 100 µg of particle mass (for elements, ions and carbon analysis). PM$_{2.5}$ mass was largely collected by six different types of samplers and the UFP mass by seven different samplers. The samplers with higher volumetric flow rates (1100 LPM) require very short duration compared to samplers with low volumetric flow rates (9 LPM). However, the high volume samplers cannot be used in all the urban microenvironments, due to difficulties in handling and operation. The Harvard impactors are easy to handle, equipped with a quieter pump and have a higher collection efficiency, demonstrating that it is a viable option to collect PM particles effectively.

• With respect to airborne pathogens, in particular viruses, collection conducted using samplers with cyclone (centrifugal forces) sampling techniques, has been proven to be effective. The samplers with cyclone sampling techniques use centrifugal forces, which cause a cyclone, by collecting the particles on the surface of the collection vessel in a medium such as DMEM. Thus, the cyclone sampling technique (Coriolis µ air samplers and NIOSH BC 251 samplers) with a suitable medium is viable for virus collection.

• Predictive modelling approaches using AI can be used in identifying locations for effective measurements of the particle mass. In particular, data assimilation and machine learning techniques can help to identify the potential hotspots for effective particle mass collection. The effectiveness of these technologies has been mathematically proven and tested for some test cases (e.g. measurements of CO$_2$). These technologies have not been used for effective mass collection yet. However, there is potential for these technologies to aid particle mass collection.
This review identified the different PM collection methodologies and recommended appropriate sampling strategies for various microenvironments for effective particle collection. These microenvironments will not possess similar characteristics since some will have higher concentration due to proximity to emission sources as opposed to others with very low concentrations. The morphology of certain environments facilitates the use of samplers with high flow rate and certain indoor microenvironments do not favour using these types of instruments; hence a low flow rate instrument is used, and the sampling duration extends significantly, not to mention the particle mass collection will also be affected. Also, monitoring stations, sporadic unattended measurements are not feasible in all the microenvironments due to vandalism or any other local difficulties. Hence, there is a need for a sampler with high flow rate (as high volume samplers) as well as portable (as low volume samplers), with easy handling and good collection efficiency, which will facilitate the user to utilise in all kinds of microenvironments. Usage of these kinds of appropriate samplers supports in conducting a more comprehensive and accurate analysis of physico-chemical characterisation and toxicological effects of PM. Prior to conducting any sampling activity the morphology of sampling environments and their prevailing average ambient concentration can be studied by pilot investigations using handheld monitors. The duration for collecting the targeted particle mass can be calculated using these pilot investigations, which in turn will help in finding the appropriate sampler to complete the sampling in a significant time frame. Future investigations should focus on using predictive modelling techniques such as data assimilation and machine learning, whose effectiveness has been proved mathematically and can be used for identifying the potential hotspots for effective particle mass collection.

9. Acknowledgements
This work has been supported by the EPSRC funded project, Health assessment across biological length scales for personal pollution exposure and its mitigation (INHALE; Grant No. EP/T003189/1).

10. Author credits

Prashant Kumar: Conceptualization, Funding acquisition, Methodology, Project administration, Resources, Supervision, Visualization, Writing - Original Draft, Writing - review and editing; **Gopinath Kalaiarasan:** Data curation, Formal Analysis, Writing - original draft, Investigation, Validation, Writing - review and editing; **Alexandra E Porter:** Investigation, Writing - Original Draft, Writing - review and editing; **Alessandra Pinna:** Investigation, Writing - Original Draft, Writing - review and editing; **Michał M. Kłosowski:** Investigation, Writing - Original Draft, Writing - review and editing; **Philip Demokritou:** Writing - review and editing; **Kian Fan Chung:** Writing - review and editing; **Chris Pain:** Writing - review and editing; **D K Arvind:** Writing - review and editing; **Rossella Arcucci:** Writing - Original Draft, Writing - review and editing; **Claire Dilliway:** Writing - review and editing. **Ian M Adcock:** Writing - review and editing.

11. Reference

Abhijith, K.V., Kumar, P., 2019. Field investigations for evaluating green infrastructure effects on air quality in open-road conditions. *Atmos. Environ.* 201, 132–47.

Abhijith, K. V., Kumar, P., Gallagher, J., McNabola, A., Baldauf, R., Pilla, F., Broderick, B., Di Sabatino, S., Pulvirenti, B., 2017. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments – A review. *Atmos. Environ.* 162, 71–86.

Adams, H.S., Nieuwenhuijsen, M.J., Colvile, R.N., 2001. Determinants of fine particles (PM$_{2.5}$) personal exposure levels in transport microenvironments, London, UK. *Atmos. Environ.* 35,
Adewale, M. T., Beddows, D.C.S., Shi, Z., Harrison, R. M. 2014. Mass and number size distributions of particulate matter components: Comparison of an industrial site and an urban background site. *Sci. Tot. Environ.* 475, 29–38.

Ahmed, C. M., Sabbir, C. M., Ahmed, S., Yang, J., Chen, J.Y., Jiang, H., Cullen, C., Karavalakis, G., Lin,Y.H. 2020. Toxicological responses in human airway epithelial cells (BEAS-2B) exposed to particulate matter emissions from gasoline fuels with varying aromatic and ethanol levels. *Sci. Tot. Environ.* 706, 1-9.

Al-dabbous, A.N., Kumar, P., 2014. The influence of roadside vegetation barriers on airborne nanoparticles and pedestrian exposure under varying wind conditions. *Atmos. Environ.* 90, 113–124.

Alonso, C., Raynor, P.C., Davies, P.R., Torremorell, M., 2015. Concentration, size distribution, and infectivity of airborne particles carrying swine viruses. *PLoS One.* 10, 1–12.

Amatullah, H., North, M.L., Akhtar, U.S., Rastogi, N., Urch, B., Silverman, F.S., Chow, C.W., Evans, G.J., Scott, J.A., 2012. Comparative cardiopulmonary effects of size-fractionated airborne particulate matter. *Inhal. Toxicol.* 24, 161–171.

Arcucci, R., Mottet, L., Pan, C., Guo, Y. K., 2019 (a). Optimal reduced space for variational data assimilation. *J. Comput. Phys.* 379, 51-69

Arcucci, R., D’Amore, L., Pistoia, J., Toumi, R., & Murli, A. 2017. On the variational data assimilation problem solving and sensitivity analysis. *J. Comput. Phys.* 335, 311-326.

Arcucci, R., McIlwraith, D., Guo, Y. K. 2019 (b). Scalable weak constraint gaussian processes. *ICCS. Springer, Cham.* pp. 111-125.

Asadi, S., Bouvier, N., Wexler, A.S., Ristenpart, W.D., 2020. The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles? *Aerosol Sci. Technol.* 54, 635–638.
Asadi, S., Wexler, A.S., Cappa, C.D., Barreda, S., Bouvier, N.M., Ristenpart, W.D., 2019. Aerosol emission and superemission during human speech increase with voice loudness. Sci. Rep. 9, 1–10

Badran, G., Ledoux, F., Verdin, A., Abbas, I., Roumie, M., Genevray, P., Landkocz, Y., Lo Guidice, J.-M., Garçon, G., Courcot, D., 2020. Toxicity of fine and quasi-ultrafine particles: Focus on the effects of organic extractable and non-extractable matter fractions. Chemosphere 243, 125440.

Barwise, Y., Kumar, P., 2020. Designing vegetation barriers for urban air pollution abatement: A practical review for appropriate plant species selection. npj Clim. Atmos. Sci. 3, 12.

Bello, D., Wardle, B.L., Yamamoto, N., Guzman De Valoria, R., Garcia, E.J., Hart, A.J., Ahn, K., Ellenbecker, M.J., Hallock, M., 2009. Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. J. Nanoparticle Res. 11, 231–249.

Bell, M.L., Ebisu, K., Leaderer, P.P., Gent, J.F., Lee, H.J., Koutrakis, P., Wang, Y., Dominici, F., Peng, R.D., 2014. Associations of PM2.5 constituents and sources with hospital admissions: Analysis of four counties in connecticut and Massachusetts (USA) for persons ≥ 65 years of age. Environ. Health Perspect. 122, 138–144.

Bennett WD, Brown JS, 2005. Particulate Dosimetry in the Respiratory Tract. In: Foster, Costa, editors. Air Pollutants and the Respiratory Tract. NY: Marcel Dekker, Inc. NY.

Bedimo-Rung, A.L., Mowen, A.J., Cohen, D.A., 2005. “The significance of parks to physical activity and public health”. Am. J. Prev. Med. 28, 159–68.

Billet, S., Garc, G., Dagher, Z., Verdin, A., Cazier, F., Courcot, D., Aboukais, A., Shirali, P., 2007. Ambient particulate matter (PM2.5): Physicochemical characterisation and metabolic activation of the organic fraction in the human lung. Environ. Res. 105, 212–223.
Booth T.F., Kournikakis B., Bastien N., Ho J., Kobasa D., Stadnyk L., 2005. Detection of airborne severe acute respiratory syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units, *J. Infect. Dis.* 191 (2005), 1472-1477

Borgie, M., Ledoux, F., Dagher, Z., Verdin, A., Cazier, F., Courcot, L., Shirali, P., Greige-Gerges, H., Courcot, D., 2016. Chemical characteristics of PM$_{2.5-0.3}$ and PM$_{0.3}$ and consequence of a dust storm episode at an urban site in Lebanon. *Atmos. Res.* 180, 274–286.

Borgie, M., Ledoux, F., Verdin, A., Cazier, F., Greige, H., Shirali, P., Courcot, D., Dagher, Z., 2015. Genotoxic and epigenotoxic effects of fine particulate matter from rural and urban sites in Lebanon on human bronchial epithelial cells. *Environ. Res.* 136, 352–362.

Brack, C. L. 2002. Pollution mitigation and carbon sequestration by an urban forest. *Environ. Pollut.* 116 Suppl 1, S195–200.

Breysse, P.N., Diette, G.B., Matsui, E.C., Butz, A.M., Hansel, N.N., Mccormack, M.C., 2010. State of the art indoor air pollution and asthma in children. *Proc. Am. Thorac. Soc.* 7, 102–106.

Buonanno, G., Giovinco, G., Morawska, L., Stabile, L., 2011. Tracheobronchial and alveolar dose of submicrometer particles for different population age groups in Italy. *Atmos. Environ.* 45, 6216–6224.

Camatini, M.C., Longhi, E., Gualtieri, M., 2011. Effects on the cell cycle progression induced by PM$_{2.5}$. *Toxicol. Lett.* 205, Page S160 562.

Campbell, A., Daher, N., Solaimani, P., Mendoza, K., Sioutas, C., 2014. Human brain derived cells respond in a type-specific manner after exposure to urban particulate matter (PM). *Toxicol. Vitr.* 28, 1290–1295.
Casanova, M. L., Jeon, S., Rutala, A. W., Weber, J. D., Sobsey, D. M. 2010. Effects of air temperature and relative humidity on Coronavirus survival on surfaces. *Appl. Environ. Microbiol.* 76, 2712-2717.

Chang, C., Demokritou, P., Shafer, M., Christiani, D., 2013. Physicochemical and toxicological characteristics of welding fume derived particles generated from real time welding processes. *Environ. Sci. Process. Impacts.* 15, 214–224.

Charrier, J.G., Anastasio, C., 2015. Rates of hydroxyl radical production from transition metals and quinones in a surrogate lung fluid. *Environ. Sci. Technol.* 49, 9317–9325.

Chatzidiakou, E., Mumovic, D., Summerfield, A.J., Altamirano, H.M. 2015. Indoor air quality in London schools. Part 1: “performance in use.” *Intell. Build. Int.* 7, 101–129.

Chen, S., Li, D., Wu, X., Chen, L., Zhang, B., Tan, Y., Yu, D., Niu, Y., Duan, H., Li, Q., Chen, R., Aschner, M., Zheng, Y., Chen, W., 2020. Application of cell-based biological bioassays for health risk assessment of PM$_{2.5}$ exposure in three megacities, China. *Environ. Int.* 139, 105703.

Chen, Shen, Li, D., Zhang, H., Yu, D., Chen, R., Zhang, B., Tan, Y., Niu, Yong, Duan, H., Mai, B., Chen, Shejun, Yu, J., Duan, T., Chen, L., Xing, X., Li, Q., Xiao, Y., Dong, G., Niu, Y., Aschner, M., Zhang, R., Zheng, Y., Chen, W., 2019. The development of a cell-based model for the assessment of carcinogenic potential upon long-term PM$_{2.5}$ exposure. *Environ. Int.* 131, 104943.

Chen, S., Theodorou, I.G., Goode, A.E., Gow, A., Schwander, S., Zhang, J., Chung, K.F., Tetley, T.D., Shaffer, M.S., Ryan, M.P., Porter, A.E., 2013. High-resolution analytical electron microscopy reveals cell culture media-induced changes to the chemistry of silver nanowires. *Environ. Sci. Technol.* 47, 13813–13821.

Chia, P.Y., Coleman, K.K., Tan, Y.K., Ong, S.W.X., Gum, M., Lau, S.K., Lim, X.F., Lim, A.S., Sutjipto, S., Lee, P.H., Son, T.T., Young, B.E., Milton, D.K., Gray, G.C., Schuster, S.,
Barkham, T., De, P.P., Vasoo, S., Chan, M., Ang, B.S.P., Tan, B.H., Leo, Y.S., Ng, O.T., Wong, M.S.Y., Marimuthu, K., Lye, D.C., Lim, P.L., Lee, C.C., Ling, L.M., Lee, L., Lee, T.H., Wong, C.S., Sadarangani, S., Lin, R.J., Ng, D.H.L., Sadasiv, M., Yeo, T.W., Choy, C.Y., Tan, G.S.E., Dimatatac, F., Santos, I.F., Go, C.J., Chan, Y.K., Tay, J.Y., Tan, J.Y.L., Pandit, N., Ho, B.C.H., Mendis, S., Chen, Y.Y.C., Abdad, M.Y., Moses, D., 2020. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat. Commun. 11, 1–7.

Chow, E.J., Mermel, L.A., 2017. Hospital-Acquired Respiratory Viral Infections: Incidence, Morbidity, and Mortality in Pediatric and Adult Patients. Open Forum Infect. Dis. 4, 1–6.

Corsini, E., Vecchi, R., Marabini, L., Fermo, P., Benaglia, S., Bernardoni, V., Caruso, D., Corbella, L., Dell'Acqua, M., Galli, C., Loiati, G., Ozgen, S., Papale, A., Signorini, S., Tardivo, R., Valli, G., Marinovich, M., 2017. The chemical composition of ultrafine particles and associated biological effects at an alpine town impacted by wood burning. Sci. Total Environ. 587–588, 223–231.

Costabile, F., Gualtieri, M., Cinepapi, S., Tranfo, G., Consales, C., Grollino, M.G., Paci, E., Petralia, E., Pigini, D., Simonetti, G., 2019. Evidence of association between aerosol properties and in-vitro cellular oxidative response to PM1, oxidative potential of PM2.5, a biomarker of RNA oxidation, and its dependency on combustion sources. Atmos. Environ. 213, 444–455.

Choi, W., Ranasinghe, D., DeShazo, J.R., Kim, J.-J., Paulson, S.E., 2018. Where to locate transit stops: Cross-intersection profiles of ultrafine particles and implications for pedestrian exposure. Environ. Pollut. 233, 235–245.

Chow, J.C., Watson, J.G., Pritchett, L.C., Pierson, W.R., Frazier, C.A., Purcell, R.G., 1993. The DRI thermal/optical reflectance carbon analysis system: description, evaluation and...
applications in US air quality studies. *Atmos. Environ. A, Gen. Top.* 27, 1185–1201.

Chow, J. C., Yu, J. Z., Watson, J.G., Hang Ho, S. S., Bohannan, T. L., Hays, M. D., Fung, K. K. 2007. “The application of thermal methods for determining chemical composition of carbonaceous aerosols: A review.” *J. Environ. Sci. Heal. A.* 42 (11): 1521–41.

Cohen, Deborah A., McKenzie, T. L., Sehgal, A., Williamson, S., Golinelli, D., Lurie, N. 2007. Contribution of public parks to physical activity. *Am. J. Public Health.* 97, 509–14.

Cooper, C. David, and F. C. Alley. 2010. Air Pollution Control: A Design Approach, Fourth Edition. Waveland Press.

Creatchman, M. 1999. Elemental analysis of airborne particles. *CRC Press. ISBN 9789056996277*

Cui, M., Chen, Y., Tian, C., Zhang, F., Yan, C., Zheng, M., 2016. Chemical composition of PM$_{2.5}$ from two tunnels with different vehicular fleet characteristics. *Sci. Total Environ.* 550, 123–132.

Dagher, Z., Garçon, G., Gosset, P., Ledoux, F., Surpateanu, G., Courcot, D., Aboukais, A., Puskaric, E., Shirali, P., 2005. Pro-inflammatory effects of Dunkerque city air pollution particulate matter 2.5 in human epithelial lung cells (L132) in culture. *J. Appl. Toxicol.* 25, 166–175.

Das, A., Kumar, A., Pabio, G., Vivekanandan, P., 2020. Insights on the biological role of ultrafine particles of size PM$_{<0.25}$: A prospective study from New Delhi, *Environ. Pollut.* https://doi.org/10.1016/j.envpol.2020.115638

Dekati Ltd., 2011. ELPI+ USER MANUAL Ver. 1.12. Dekati Ltd.

Delgado-Saborit J.M., Stark C., Harrison R.M., 2011. Carcinogenic potential, levels and sources of polycyclic aromatic hydrocarbon mixtures in indoor and outdoor environments and their implications for air quality standards, *Environ. Int.* 37, 2, 383-392.

de Kok, T.M.C.M., Driess, H.A.L., Hogervorst, J.G.F., Briedé, J.J., 2006. Toxicological
assessment of ambient and traffic-related particulate matter: A review of recent studies.

Mutat. Res. - Rev. Mut. Res. 613, 103–122.

Demokritou, P., Lee, S.J., Ferguson, S.T., Koutrakis, P., 2004. A compact multistage (cascade) impactor for the characterisation of atmospheric aerosols. *J. Aerosol Sci.* 35, 281–299.

Demokritou, P., Gupta, T., Koutrakis, P., 2002. A High Volume Apparatus for the Condensational growth of ultrafine particles for inhalation toxicological studies. *Aerosol Sci. Technol.* 36, 1061–1072.

Deng, W.J., Louie, P.K.K., Liu, W.K., Bi, X.H., Fu, J.M., Wong, M.H., 2006. Atmospheric levels and cytotoxicity of PAHs and heavy metals in TSP and PM$_{2.5}$ at an electronic waste recycling site in southeast China. *Atmos. Environ.* 40, 6945–6955.

Deng, X., Zhang, F., Rui, W., Long, F., Wang, L., Feng, Z., Chen, D., Ding, W. 2013. Toxicology in Vitro PM$_{2.5}$-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. *Toxicol. Vitr.* 27, 1762–1770.

Dhand, R., Li, J., 2020. Coughs and Sneezes: Their Role in Transmission of Respiratory Viral Infections, including SARS-CoV-2. *Am. J. Respir. Crit. Care Med.* 202, 651–659.

Ding, L. C., Ke, Fu., Wang, D.K.W., Dann, T., Austin, C.C. 2009. A new direct thermal desorption-GC/MS method: Organic speciation of ambient particulate matter collected in Golden, BC. *Atmos. Environ.* 43, 4894–4902.

Dockery, D. W., and C. A. Pope 3rd. 1994. “Acute respiratory effects of particulate air pollution.” *Annu. Rev. Public Health.* 15, 107–32.

Drosten, C., Günther, S., Preiser, W., Van der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Panning, M., Kolesnikova, L., Fouchier, R.A.M., Berger, A., Burguière, A.M., Cinatl, J., Eickmann, M., Escriou, N., Grywna, K., Kramme, S., Manuguerra, J.C., Müller, S., Rickerts, V., Stürmer, M., Vieth, S., Klenk, H.D., Osterhaus, A.D.M.E., Schmitz, H., Doerr, H.W., 2003. Identification of a novel coronavirus in patients with severe acute respiratory
syndrome. *N. Engl. J. Med.* 348, 1967–1976.

Dur, T. H., Arcucci, R., Mottet, L., Solana, M. M., Pain, C., Guo, Y. K. 2020. Weak constraint gaussian processes for optimal sensor placement. *J. Comput. Sci.* 42, 101-110.

Fabian, P., McDevitt, J.J., Houseman, E.A., Milton, D.K., 2009. Airborne influenza virus detection with four aerosol samplers using molecular and infectivity assays: considerations for a new infectious virus aerosol sampler. *Indoor Air.* 19, 433–441.

Felgueiras, F., Mourão, Z., Morais, C., Santos, H., Gabriel, M.F., de Oliveira Fernandes, E., 2020. Comprehensive assessment of the indoor air quality in a chlorinated Olympic-size swimming pool. *Environ. Int.* 136, 105401.

Fonseca, A.S., Talbot, N., Schwarz, J., Ondráček, J., Ždímal, V., 2016. Intercomparison of four different cascade impactors for fine and ultrafine particle sampling in two European locations. *Atmos. Chem. Phys. Discuss.* 1–27.

Fotakis, G., Timbrell, J.A., 2006. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. *Toxicol. Lett.* 160, 171–177.

Franck, U., Odeh, S., Wiedensohler, A., Wehner, B., Herbarth, O., 2011. The effect of particle size on cardiovascular disorders - The smaller the worse. *Sci. Total Environ.* 409, 4217–4221.

Fresnel Cachon, B., Firmin, S., Verdin, A., Ayi-Fanou, L., Billet, S., Cazier, F., Martin, P. J., Aissi, F., Courcot, D., Sanni, A., Shirali, P. 2014. Proinflammatory effects and oxidative stress within human bronchial epithelial cells exposed to atmospheric particulate matter (PM$_{2.5}$ and PM$_{>2.5}$) collected from Cotonou, Benin. *Environ. Pollut.* 185, 340-351.

Fuentes-mattei, E., Rivera, E., Gioda, A., Sanchez-rivera, D., Roman-velazquez, F.R., Jimenez-vellez, B.D., 2010. Use of human bronchial epithelial cells (BEAS-2B) to study immunological markers resulting from exposure to PM$_{2.5}$ organic extract from Puerto Rico.
Fujita, E. M., Campbell, D. E., Arnott, W. P., Johnson, T., Ollison, W. 2014. “Concentrations of mobile source air pollutants in urban microenvironments.” J. Air Waste Manage. 64, 743–58.

Fujita, E. M., Campbell, D.E., Arnott, W. P., Chow, J. C., Zielinska, B. 2007. “Evaluations of the chemical mass balance method for determining contributions of gasoline and diesel exhaust to ambient carbonaceous aerosols.” J. Air Waste Manage. 57, 721–40.

Fujitani, Y., Kumar, P., Tamura, K., Fushimi, A., Hasegawa, S., Takahashi, K., Tanabe, K., Kobayashi, S., Hirano, S., 2012. Seasonal differences of the atmospheric particle size distribution in a metropolitan area in Japan. Sci. Total Environ. 437, 339–347.

Gani, S., Bhandari, S., Patel, K., Seraj, S., Soni, P., Arab, Z., Habib, G., Hildebrandt Ruiz, L., Apte, J.S., 2020. Particle number concentrations and size distribution in a polluted megacity: The Delhi Aerosol Supersite study. Atmos. Chem. Phys. 20, 8533–8549.

Gao, R., Sang, N., 2019. Quasi-ultrafine particles promote cell metastasis via HMGB1-mediated cancer cell adhesion. Environ. Pollut. 256, 113390.

Gavett, S.H., Haykal-Coates, N., Copeland, L.B., Heinrich, J., Gilmour, M.I., 2003. Metal composition of ambient PM2.5 influences severity of allergic airways disease in mice. Environ. Health Perspect. 111, 1471–1477.

Ghio, A.J., Devlin, R.B., 2001. Inflammatory lung injury after bronchial instillation of air pollution particles. Am. J. Respir. Crit. Care Med. 164, 704–708.

Giechaskiel, B., Alföldy, B., Drossinos, Y., 2009. A metric for health effects studies of diesel exhaust particles. J. Aerosol Sci. 40, 639–651.

Gregson, F.K.A., Watson, N.A., Orton, C.M., Haddrell, A.E., Mccarthy, L.P., Finnie, T.J.R., Gent, N., Donaldson, G.C., Shah, P.L., 2020. Comparing the Respirable Aerosol Concentrations and Particle Size Distributions Generated by Singing , Speaking and
Breathing. ChemRxiv. 2, 1–27.

Gualtieri, M., Øvrevik, J., Mollerup, S., Asare, N., Longhin, E., Dahlman, H., Camatini, M., Holme, J. A. 2011. “Mutation research / Fundamental and molecular mechanisms of mutagenesis airborne urban particles (Milan Winter-PM$_{2.5}$) cause mitotic arrest and cell death : effects on DNA, Mitochondria, AhR binding and spindle organization.” Mutat. Res-Fund. Mol. M. 713, 18–31.

Guestrin, C., Krause, A., Singh, A. P. 2005. Near-optimal sensor placements in Gaussian processes. In Proceedings of the 22nd ICML. 265-27.

Gugamsetty, B., Wei, H., Liu, C., Awasthi, A., Hsu, S., Tsai, C., Roam, G., Wu, Y., Chen, C., 2012. Source characterisation and apportionment of PM$_{10}$, PM$_{2.5}$ and PM$_{0.1}$ by using positive matrix factorization. Aerosol Air Qual. Res. 12, 476–491.

Gurung, G., Bradley, J., Delgado-Saborit, J.M., 2016. Effects of shisha smoking on carbon monoxide and PM$_{2.5}$ concentrations in the indoor and outdoor microenvironment of shisha premises. Sci. Total Environ. 548-549, 340–346.

Habil, M., Massey, D.D., Taneja, A., 2015. Exposure from particle and ionic contamination to children in schools of India. Atmos. Pollut. Res. 6, 719–725.

Haig, C.W., Mackay, W.G., Walker, J.T., Williams, C., 2016. Bioaerosol sampling: Sampling mechanisms, bioefficiency and field studies. J. Hosp. Infect. 93, 242–255.

Hamdan, N.M., Alawadhi, H., Jisrawi, N., Shameer, M., 2018. Size-resolved analysis of fine and ultrafine fractions of indoor particulate matter using energy dispersive X-ray fluorescence and electron microscopy.” X-Ray Spectrom. 47, 72–78.

Hamner, L., Dubbel, P., Capron, I., Ross, A., Jordan, A., Lee, J., Lynn, J., Ball, A., 2020. High SARS-CoV-2 Attack Rate Following Exposure at a Choir Practice. Morb. Mortal. Wkly. Rep. High. 69, 606–610.

Harrison, R.M., Yin, J., Mark, D., Stedman, J., Appleby, R.S., Booker, J., Moorcroft, S., 2001.
Studies of the coarse particle (2.5-10 μm) component in UK urban atmospheres. *Atmos. Environ.* 35, 3667–3679.

Harrison, R.M., Thornton, C.A., Lawrence, R.G., Mark, D., Kinnersley, R.P., Ayres, J.G., 2002. Personal exposure monitoring of particulate matter, nitrogen dioxide, and carbon monoxide, including susceptible groups. *Occup. Environ. Med.* 59, 671–679.

Harrison, R.M., Jones, A.M., Lawrence, R.G., 2004. Major component composition of PM$_{10}$ and PM$_{2.5}$ from roadside and urban background sites. *Atmos. Environ.* 38, 4531–4538.

Hays, M.D., Cho, S., Baldauf, R., Schauer, J.J., Shafer, M., 2011. Particle size distributions of metal and non-metal elements in an urban near-highway environment. *Atmos. Environ.* 45, 925–934.

Heal, M.R., Hibbs, L.R., Agius, R.M., Beverland, I.J., 2005. Total and water-soluble trace metal content of urban background PM$_{10}$, PM$_{2.5}$ and black smoke in Edinburgh, UK. *Atmos. Environ.* 39, 1417–1430.

Heal, M. R., Kumar, P., Harrison, R.M. 2012. “Particles, air quality, policy and health.” *Chem. Soc. Rev.* 41, 6606–30.

HEI Review Panel on Ultrafine Particles. 2013. Understanding the health effects of ambient ultrafine particles. HEI perspectives 3. *HEI, Boston, MA.*

Hermann, J.R., Hoff, C.J., Yoon, K.J., Burkhardt, A.C., Evans, R.B., Zimmerman, J.J., 2006. Optimization of a sampling system for recovery and detection of airborne porcine reproductive and respiratory syndrome virus and swine influenza virus. *Appl. Environ. Microbiol.* 72, 4811–4818.

Hinderliter, P.M., Minard, K.R., Orr, G., Chrisler, W.B., Thrall, B.D., Pounds, J.G., Teeguarden, J.G., 2010. ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. *Part. Fibre Toxicol.* 7, 36.

Holmes, N.S., Morawska, L., Mengersen, K., Jayaratne, E.R., 2005. Spatial distribution of
submicrometre particles and CO in an urban microscale environment. *Atmos. Environ.* 39, 3977–3988.

Hong, B., Qin, H., Lin, B., 2018. Prediction of wind environment and indoor/outdoor relationships for PM$_{2.5}$ in different building–tree grouping patterns. *Atmos. (Basel)*. 9, 39.

Hong, Z., Hong, Y., Zhang, H., Chen, J., Xu, L., Deng, J., Du, W., Zhang, Y., Xiao, H., 2017. Pollution characteristics and source apportionment of PM$_{2.5}$-bound n-alkanes in the Yangtze river delta, China. *Aerosol Air Qual. Res.* 17, 1985–1998.

Hsiao, W.L.W., Mo, Z., Fang, M., Shi, X., Wang, F., 2000. Cytotoxicity of PM$_{2.5}$ and PM$_{2.5-10}$ ambient air pollutants assessed by the MTT and the Comet assays. *Mutat. Res.* 471, 45–55.

Huang, Y.C.T., Ghio, A.J., Stonehuerner, J., McGee, L., Carter, J.D., Grambow, S.C., Devlin, R.B., 2003. The role of soluble components in ambient fine particles-induced changes in human lungs and blood. *Inhal. Toxicol.* 15, 327–342.

Iakovides, M., Stephanou, E.G., Apostolaki, M., Hadjicharalambous, M., 2019. Study of the occurrence of airborne polycyclic aromatic hydrocarbons associated with respirable particles in two coastal cities at eastern Mediterranean: Levels, source apportionment, and potential risk for human health. *Atmos. Environ.* 213, 170–184.

ICRP. 1994. Human respiratory tract model for radiological protection. *Ann ICRP.* 24, 1-482.

Iijima, A., Sato, K., Yano, K., Tago, H., Kato, M., Kimura, H., Furuta, N., 2007. Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter. *Atmos. Environ.* 41, 4908–4919.

Islam, N., Dihingia, A., Khare, P., Saikia, B.K., 2019a. Atmospheric particulate matters in an Indian urban area: Health implications from potentially hazardous elements, cytotoxicity, and genotoxicity studies. *J. Hazard. Mater.* 384, 121472.

Islam, N., Dihingia, A., Manna, P., Das, T., Kalita, J., Dekaboruah, H.P., Saikia, B.K., 2019b. Environmental and toxicological assessment of nanodiamond-like materials derived from
carbonaceous aerosols. *Sci. Total Environ.* 679, 209–220.

Jan, R., Roy, R., Bhor, R., Pai, K., Satsangi, P.G., 2020. Toxicological screening of airborne particulate matter in the atmosphere of Pune: Reactive oxygen species and cellular toxicity. *Environ. Pollut.* 261, 1-11.

Järvinen, A., Aitomaa, M., Rostedt, A., Keskinen, J., 2014. Calibration of the new electrical low pressure impactor (ELPI +). *J. Aerosol Sci.* 69, 150–159.

Jain, S., Sharma, S.K., Vijayan, N., Mandal, T.K., 2020. Seasonal characteristics of aerosols (PM2.5 and PM10) and their source apportionment using PMF: A four-year study over Delhi, India. *Environ. Pollut.* 262, 114337.

Jing, W., Liu, Q., Wang, M., Zhang, X., Chen, J., Sun, G., Wang, L., 2019. A method for particulate matter 2.5 (PM$_{2.5}$) biotoxicity assay using luminescent bacterium. *Ecotoxicol. Environ. Saf.* 170, 796-803.

Jones, N.C., Thornton, C.A., Mark, D., Harrison, R.M., 2000. Indoor/outdoor relationships of particulate matter in domestic homes with roadside, urban and rural locations. *Atmos. Environ.* 34, 2603–2612.

Jones, N.R., Qureshi, Z.U., Temple, R.J., Larwood, J.P.J., Greenhalgh, T., Bourouiba, L., 2020. Two metres or one: what is the evidence for physical distancing in covid-19? *BMJ.* 370, m3223.

Kam, W., Liacos, J.W., Schauer, J.J., Delfino, R.J., Sioutas, C., 2012. Size-segregated composition of particulate matter (PM) in major roadways and surface streets. *Atmos. Environ.* 55, 90–97.

Kappos, A.D., Bruckmann, P., Eikmann, T., Englert, N., Heinrich, U., Höppe, P., Koch, E., Krause, G.H.M., Kreyling, W.G., Rauchfuss, K., Rombout, P., Schulz-Klempt, V., Thiel, W.R., Wichmann, H.E., 2004. Health effects of particles in ambient air. *Int. J. Hyg. Environ. Health.* 207, 399–407.
Kelly, F.J., Fussell, J.C., 2019. Improving indoor air quality, health and performance within environments where people live, travel, learn and work. *Atmos. Environ.* 200, 90–109.

Kelly, F.J., Fussell, J.C., 2012. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. *Atmos. Environ.* 60, 504–526.

Kellnerová, E., Kellner, J., Navrátil, J., Paulus, F., 2018. Monitoring of indoor ultrafine particulate matter at the fire rescue brigade workplaces. *Energy Procedia.* 153, 315–319.

Kenny, L.C., Thorpe, A., Stacey, P., 2017. A collection of experimental data for aerosol monitoring cyclones. *Aerosol Sci. Technol.* 51, 1190–1200.

Kerminen, V.-M., Pakkanen, T.A., Mäkelä, T., Hillamo, R.E., Sillanpää, M., Rönkkö, T., Virtanen, A., Keskinen, J., Pirjola, L., Hussein, T., Hämeri, K., 2007. Development of particle number size distribution near a major road in Helsinki during an episodic inversion situation. *Atmos. Environ.* 41, 1759–1767.

Kim, J., Lee, J.C., 2020. Effects of COVID-19 on preferences for private dining facilities in restaurants. *J. Hosp. Tour. Manag.* 45, 67–70.

Kim, S.H., Chang, S.Y., Sung, M., Park, J.H., Kim, H. Bin, Lee, H., Choi, J.P., Choi, W.S., Min, J.Y., 2016. Extensive Viable Middle East Respiratory Syndrome (MERS) Coronavirus Contamination in Air and Surrounding Environment in MERS Isolation Wards. *Clin. Infect. Dis.* 63, 365–369.

Kingham, S., Briggs, D., Elliott, P., Fischer, P., Lebret, E., 2000. Spatial variations in the concentrations of traffic-related pollutants in indoor and outdoor air in. *Atmos. Environ.* 34, 905–916.

Klepeis, N., 2006. Modeling Human Exposure to Air Pollution. *Expo. Anal.* 445–470.

Klingshirn, C.D., West, Z.J., DeWitt, M.J., Higgins, A., Graham, J., Corporan, E., 2019. Quantification of elemental and total carbon in combustion particulate matter using thermal-oxidative analysis. *J. Air Waste Manag. Assoc.* 69, 1003–1013.
Klockenkämper, R., von Bohlen, A. 1996. Elemental analysis of environmental samples by total reflection X-Ray fluorescence: A review. X-Ray Spectrom. 25, 156–62.

Knibbs, L.D., Cole-Hunter, T., Morawska, L., 2011. A review of commuter exposure to ultrafine particles and its health effects. Atmos. Environ. 45, 2611–2622.

Kodavanti, U.P., Schladweiler, M.C., Ledbetter, A.D., McGee, J.K., Walsh, L., Gilmour, P.S., Highfill, J.W., Davies, D., Pinkerton, K.E., Richards, J.H., Crissman, K., Andrews, D., Costa, D.L., 2005. Consistent pulmonary and systemic responses from inhalation of fine concentrated ambient particles: Roles of rat strains used and physicochemical properties. Environ. Health Perspect. 113, 1561–1568.

Krause, A., Singh, A., Guestrin, C., 2008. Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical Studies. J. Mach. Learn. Res. 9, 235–284.

Kreyling, W.G., Semmler-Behnke, M., Möller, W., 2006. Ultrafine particle - Lung interactions: Does size matter? J. Aerosol Med. Depos. Clear. Eff. Lung. 19, 74–83.

Kumar, P., Morawska, L., 2019. Could lighting airborne transmission be the next line of defence against COVID-19 spread. City Environ. Interact. 4, 100033.

Kumar, P., Druckman, A., Gulliver, J., Gatersleben, B., Allison, S., Eisenman, T.S., Hoang, U., Hama, S., Tiwari, A., Sharma, A., Abhijith, K.V., Adlakha, D., McNabola, A., Astell-Burt, T., Feng, X., Skeldon, A.C., de Lusignan, S., Morawska, L., 2019. The nexus between air pollution, green infrastructure and human health. Environ. Int. 133, 105181.

Kumar, P., Patton, A.P., Durant, J.L., Frey, H.C. 2018. A review of factors impacting exposure to PM$_{2.5}$, ultrafine particles and black carbon in asian transport microenvironments. Atmos. Environ. 187, 301–16.

Kumar, P., Morawska, L., Birmili, W., Paasonen, P., Hu, M., Kulmala, M., Harrison, R.M., Norford, L., Britter, R. 2014. Ultrafine particles in cities. Environ. Int. 66, 1–10.
Kumar, P., Robins, A., Vardoulakis, S., Britter, R. 2010. A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls. *Atmos. Environ.* 44, 5035–5052.

Kurt, A., Oktay, A.B., 2010. Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks. *Expert Syst. Appl.* 37, 7986–7992.

Kuuluvainen, H., Rönkkö, T., Järvinen, A., Saari, S., Karjalainen, P., Lähde, T., Pirjola, L., Niemi, J. V., Hillamo, R., Keskinen, J. 2016. Lung deposited surface area size distributions of particulate matter in different urban areas. *Atmos. Environ.* 136, 105–113.

Lai, H.K., Kendall, M., Ferrier, H., Lindup, I., Alm, S., He, O., Nieuwenhuijsen, M.J. 2004. Personal exposures and microenvironment concentrations of PM$_{2.5}$, VOC, NO$_2$ and CO in Oxford, UK. *Atmos. Environ.* 38, 6399–6410.

Lagler, F., Belis, C., Borowiak, A., 2011. A Quality Assurance and Control Program for PM$_{2.5}$ and PM$_{10}$ measurements in European Air Quality Monitoring Networks. https://doi.org/10.2788/31647.

Lapuerta, M., Ballesteros, R., Rodríguez-Fernández, J. 2007. Thermogravimetric analysis of diesel particulate matter. *Meas. Sci. Technol.* 18, 650–658.

Lawrence, S., Sokhi, R., Prindra, K., Mao, H., Prain, H.D., Bull, I.D., 2013. Source apportionment of traffic emissions of particulate matter using tunnel measurements. *Atmos. Environ.* 77, 548–557.

LEECH, J., NELSON, W., BURNETT, R. 2002. It's about time: A comparison of Canadian and American time–activity patterns. *J Expo Sci Environ Epidemiol.* 12, 427–432 (2002).

Lee, S.J., Demokritou, P., Koutrakis, P. 2005. Performance evaluation of commonly used impaction substrates under various loading conditions. *J Aerosol Sci.* 36, 881–895.

Lei, M.T., Monjardino, J., Mendes, L., Gonçalves, D., Ferreira, F., 2019. Macao air quality forecast using statistical methods. *Air Qual. Atmos.Hlth.* 12, 1049–1057.
Leni, Z., Künzi, L., Geiser, M., 2020. Air pollution causing oxidative stress. *Curr. Opin. Toxicol.* 20-21, 1-8.

Li, N., Georas, S., Alexis, N., Fritz, P., Xia, T., Williams, M.A., 2016. Task force report A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): Why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. *J. Allergy Clin. Immunol.* 138, 386–396.

Li, N., Xia, T., Nel, A.E., 2008. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. *Free Radic. Biol. Med.* 44, 1689–1699.

Li, Y., Qian, H., Hang, J., Chen, X., Hong, L., Liang, P., Li, J., Xiao, S., Wei, J., Liu, L., Kang, M., 2020. Evidence for probable aerosol transmission of SARS-CoV-2 in a poorly ventilated restaurant, *medRxiv*, 1–19.

Li, Z., Wen, Q., Zhang, R., 2017. Sources, health effects and control strategies of indoor fine particulate matter (PM$_{2.5}$): A review. *Sci. Total Environ.* 586, 610–622.

Liang, C.S., Duan, F.K., He, F.B., Ma, Y.L., 2016. Review on recent progress in observations, source identifications and countermeasures of PM$_{2.5}$. *Environ. Int.* 86, 150–70.

Liati, A., Schreiber, D., Dimopoulos Eggenschwiler, P., Arroyo Rojas Dasilva, Y., Spiteri, A.C. 2016. Electron microscopic characterisation of soot particulate matter emitted by modern direct injection gasoline engines. *Combust. Flame*. 166, 307–315.

Lim, S., Kim, J., Kim, T., Lee, K., Yang, W., Jun, S., Yu, S. 2012. Personal exposures to PM$_{2.5}$ and their relationships with microenvironmental concentrations. *Atmos. Environ.* 47, 407–412.

Lin, B.B., Fuller, R.A., Bush, R., Gaston, K.J., Shanahan, D.F. 2014. Opportunity or orientation? Who uses urban parks and why. *PLoS One.* 9, 1-7.
Lindsley, W.G., Blachere, F.M., Thewlis, R.E., Vishnu, A., Davis, K.A., Cao, G., Palmer, J.E., Clark, K.E., Fisher, M.A., Khakoo, R., Beezhold, D.H., 2010. Measurements of airborne influenza virus in aerosol particles from human coughs. *PLoS One*. 5, e15100.

Ling, S.H., van Eeden, S.F., 2009. Particulate matter air pollution exposure: role in the development and exacerbation of chronic obstructive pulmonary disease. *Int. J. Chron. Obstruct. Pulmon. Dis.* 4, 233–243.

Lippmann, M., Chen, L.C. 2009. Health effects of concentrated ambient air particulate matter (CAPs) and its components. *Crit. Rev. Toxicol.* 39, 865–913.

Liu, J.Y., Hsiao, T.C., Lee, K.Y., Chuang, H.C., Cheng, T.J., Chuang, K.J., 2018. Association of ultrafine particles with cardiopulmonary health among adult subjects in the urban areas of northern Taiwan. *Sci. Total Environ.* 627, 211–215.

Liu, X., Meng, Z. 2005. Effects of airborne fine particulate matter on antioxidant capacity and lipid peroxidation in multiple organs of rats. *Inhal. Toxicol.* 17, 467–473.

Loxham, M., Nieuwenhuijsen, M.J. 2019. Health effects of particulate matter air pollution in underground railway systems—a critical review of the evidence. *Part. Fibre Toxicol.* 16, 1–24.

Lotfi, M., Hamblin, M.R., Rezaei, N., 2020. COVID-19: Transmission, prevention, and potential therapeutic opportunities. *Clin. Chim. Acta*. 508, 254–266.

Maleki, H., Sorooshian, A., Goudarzi, G., Baboli, Z., Birgani, Y.T., Rahmati, M., 2019. Air pollution prediction by using an artificial neural network model. *Clean Technol. Environ. Policy* 21, 1341–1352.

Marabini, L., Ozgen, S., Turacchi, S., Aminti, S., Arnaboldi, F., Lonati, G., Fermo, P., Corbella, L., Valli, G., Bernardoni, V., Dell’Acqua, M., Vecchi, R., Becagli, S., Caruso, D., Corrado, L.G., Marinovich, M., 2017. Ultrafine particles (UFPs) from domestic wood stoves: genotoxicity in human lung carcinoma A549 cells. *Mutat. Res. - Genet. Toxicol. Environ.*
Mutagen. 820, 39–46.
Massey, D.D., Habil, M., Taneja, A. 2016. Particles in different indoor microenvironments-its implications on occupants. Build. Environ. 106, 237–244.
Matic, B., Rakic, U., Jovanovic, V., Dejanovic, S., Djonovic, N. 2017. Key factors determining indoor air PM$_{10}$ concentrations in naturally ventilated primary schools in Belgrade, Serbia. Zdr Varst. 56, 227–235.
McCreanor, J., Cullinan, P., Nieuwenhuijsen, M.J., Stewart-Evans, J., Malliarou, E., Jarup, L., Harrington, R., Svartengren, M., Han, I.K., Ohman-Strickland, P., Chung, K.F., Zhang, J. 2007. Respiratory effects of exposure to diesel traffic in persons with asthma. N. Engl. J. Med. 357, 2348–2358.
Methner, M., Hodson, L., Geraci, C. 2010. Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials — Part A. J. Occup. Environ. Hyg. 7, 127–132.
Min, S., Ryong, H., Joo, Y., Yeun, S., Hyuck, K., 2011. Organic extracts of urban air pollution particulate matter (PM$_{2.5}$)-induced genotoxicity and oxidative stress in human lung bronchial epithelial cells (BEAS-2B cells). Mutat. Res. - Genet. Toxicol. Environ. Mutagen. 723, 142–151.
Mirowsky, J., Hickey, C., Horton, L., Blaustein, M., Galdanes, K., Peltier, R.E., Chillrud, S., Chen, L.C., Ross, J., Nadas, A., Lippmann, M., Gordon, T., 2013. The effect of particle size, location and season on the toxicity of urban and rural particulate matter. Inhal. Toxicol. 25, 747–757.
Mohammed, M.O.A., Song, W.W., Ma, W.L., Li, W.L., Li, Y.F., Khan, A.U., Ibrahim, M.A.E.M., Maarouf, O.A., Ahmed, A.A., Ambuchi, J.J. 2016. Potential toxicological and cardiopulmonary effects of PM$_{2.5}$ exposure and related mortality: Findings of recent studies published during 2003-2013. Biomed. Environ. Sci. 29, 66–79.
Møller, P., Danielsen, P.H., Karottki, D.G., Jantzen, K., Roursgaard, M., Klingberg, H., Jensen, D.M., Christophersen, D.V., Hemmingsen, J.G., Cao, Y., Loft, S. 2014. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. *Mutat. Res. - Rev. Mut. Res.* 762, 133–166.

Morawska, L., Tang, J.W., Bahnfleth, W., Bluyssen, P.M., Boerstra, A., Buonanno, G., Cao, J., Dancer, S., Floto, A., Franchimon, F., Haworth, C., Hogeling, J., Isaxon, C., Jimenez, J.L., Kurnitski, J., Li, Y., Loomans, M., Marks, G., Marr, L.C., Mazzarella, L., Melikov, A.K., Miller, S., Milton, D.K., Nazaroff, W., Nielsen, P. V., Noakes, C., Peccia, J., Querol, X., Sekhar, C., Seppänen, O., Tanabe, S. ichi, Tellier, R., Tham, K.W., Wargocki, P., Wierzbicka, A., Yao, M., 2020. How can airborne transmission of COVID-19 indoors be minimised? *Environ. Int.* 142.

Morawska, L., Afshari, A., Bae, G.N., Buonanno, G., Chao, C.Y.H., Hänninen, O., Hofmann, W., Isaxon, C., Jayaratne, E.R., Parkin, P., Salthammer, T., Waring, M., Wierzbicka, A., 2013. Indoor aerosols: From personal exposure to risk assessment. *Indoor Air.* 23, 462–487.

Mukhopadhyay, P., Rajesh, M., Hasko, G., Hawkins, B.J., Madesh, M., Pacher, P., 2007. Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy. *Nat. Protoc.* 2, 2295-2301.

Nagendra, S.M.S., Khare, M., 2005. Modelling urban air quality using artificial neural networks. *Clean Technol. Environ. Policy.* 7, 116–126.

Nazaroff, W.W., 2004. Indoor particle dynamics. *Indoor Air, Suppl.* 14, 175–183.

Nemmar, A., Holme, J.A., Rosas, I., Schwarze, P.E., Alfaro-Moreno, E., 2013. Recent advances in particulate matter and nanoparticle toxicology: A review of the in vivo and in vitro studies. *Biomed Res. Int.* 2013, 279 - 371.

Ning, Z., Sillanpaa, M., Pakbin, P., Sioutas, C., 2008. Field evaluation of a new particle concentrator- electrostatic precipitator system for measuring chemical and toxicological
properties of particulate matter. *Part Fibre Toxicol.* 5, 15.

Niu, X., Sai, S., Ho, H., Ho, K.F., Huang, Y., Sun, J., Wang, Q., Zhou, Y., Zhao, Z., Cao, J., 2017. Atmospheric levels and cytotoxicity of polycyclic aromatic hydrocarbons and oxygenated-PAHs in PM$_{2.5}$ in the Beijing-Tianjin. *Environ. Pollut.* 231, 1075–1084.

Nuno Rufino de Sousa, Shen, L., Silcott, D., Call, C.J., Antonio Gigliotti Rothfuchs, 2020. Operative and technical modifications to the Coriolis® µ air sampler that improve sample recovery and biosafety during microbiological air sampling. *bioRxiv.* 21, 1–9.

Oh S.M., Kim H.R, Park Y.J., Lee S. Y., Chung K.H., 2011. Organic extracts of urban air pollution particulate matter (PM2.5)-induced genotoxicity and oxidative stress in human lung bronchial epithelial cells (BEAS-2B cells). *Mutat Res Genet Toxicol Environ Mutagen,* 723, 2, 142-151.

Ott, W.R., Roberts, J.W. 1998. Everyday exposure to toxic pollutants. *Sci. Am.* 278, 86–91.

Ottosen, T.B. and Kumar, P., 2020. The influence of the vegetation cycle on the mitigation of air pollution by a deciduous roadside hedge. *Sustain Cities Soc.* 53, 101919.

Ozkaynak, H., Palma, T., Touma, J.S., Thurman, J. 2008. Modeling population exposures to outdoor sources of hazardous air pollutants. *J. Expo. Sci. Environ. Epidemiol.* 18, 45–58.

Pacitto, A., Stabile, L., Moreno, T., Kumar, P., Wierzbicka, A., Morawska, L., Buonanno, G., 2018. The influence of lifestyle on airborne particle surface area doses received by different Western populations. *Environ. Pollut.* 232, 113–122.

Pal, A.K., Watson, C.Y., Pirela, S. V., Singh, D., Chalbot, M.C.G., Kavouras, I., Demokritou, P., 2015. Linking exposures of particles released from nano-enabled products to toxicology: An integrated methodology for particle sampling, extraction, dispersion, and dosing. *Toxicol. Sci.* 146, 321–333.

Pan, M., Lednicky, J.A., Wu, C.-Y., 2019. Collection, particle sizing and detection of airborne viruses. *J. Appl. Microbiol.* 127, 1596–1611.
Pant, P., Harrison, R.M., 2013. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 77, 78–97.

Paoletti, E., Bardelli, T., Giovannini, G., Pecchioli, L. 2011. Air quality impact of an urban park over time. Procedia Environ. Sci. 4, 10–16.

Park, M., Joo, H. S., Lee, K., Jang, M., Kim, S. D., Kim, I., Borlaza, L. J.S., Lim, Heungbin., Shin, H., Chung, K. H., Choi, Y. H., Park, S. G., Bae, M.S., Lee, J., Song, H., Park, K. 2018. Differential toxicities of fine particulate matters from various sources. Sci. Rep. 8, 1-11.

Peixoto, M.S., de Oliveira Galvão, M.F., Batistuzzo de Medeiros, S.R. 2017. Cell death pathways of particulate matter toxicity. Chemosphere. 188, 32–48.

Patterson, B., Morrow, C., Singh, V., Moosa, A., Gorda, M., Woodward, J., Mizrahi, V., Bryden, W., Call, C., Patel, S., Warner, D., Wood, R., 2017. Detection of bacilli in bio-aerosols Mycobacterium tuberculosis from untreated TB patients [version 1; referees: awaiting peer review]. Gates Open Research. 1–17.

Pennanen, A.S., Sillanpää, M., Hiltunen, R., Quass, U., John, A.C., Branis, M., Hůnová, I., Meliefste, K., Janssen, N.A.H., Koskentalo, T., Castaño-Vinyals, G., Bouso, L., Chalbot, M.C., Kavouras, I.G., Salonen, R.O., 2007. Performance of a high-volume cascade impactor in six European urban environments: Mass measurement and chemical characterization of size-segregated particulate samples. Sci. Total Environ. 374, 297–310.

Pervez, S., Dubey, N., Watson, J.G., Chow, J., Pervez, Y., Others, 2016. Impact of different household fuel use on source apportionment results of house-indoor RPM in Central India. Aerosol. Air. Qual. Res, 12, 49–60.

Piotrowicz, A., Polednik, B. 2019. Exposure to aerosols particles on an urban road. J. Ecol. Eng. 20, 27–34.

Prasad, K., Gorai, A.K., Goyal, P., 2016. Development of ANFIS models for air quality...
forecasting and input optimization for reducing the computational cost and time. *Atmos. Environ.* 128, 246–262.

Prudnikov, E. D., Barnes, R. M. 1998. Estimation of detection limits in inductively coupled plasma mass spectrometry. *Fresen. J. Anal. Chem.* 362, 465–68.

Putaud, J., Dingenen, R. V., Alastuey, A., Bauer, H., Birmili, W., Cyrys, J., Flentje, H., Fuzzi, S., Gehrig, R., Hansson, H.C., Harrison, R.M., Herrmann, H., Hitzenberger, R., Hüglin, C., Jones, A.M., Kasper-giebl, A., Kiss, G., Kousa, A., Kuhlbusch, T.A.J., Löschau, G., Maenhaut, W., Tursic, J., Viana, M., Wiedensohler, A., Paci, F. 2010. European aerosol phenomenology - 3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. *Atmos. Environ.* 44, 1308–1320.

Qi, M., Jiang, L., Liu, Y., Xiong, Q., Sun, C., Li, X., Zeng, W., Yang, X. 2018. Analysis of the Characteristics and Sources of Carbonaceous Aerosols in PM$_{2.5}$ in the Beijing, Tianjin, and Langfang Region, China. *Int. J. Environ. Res. Public Health.* 15, 1-14.

Rahmani, A.R., Leili, M., Azarian, G., Poormohammadi, A., 2020. Sampling and detection of corona viruses in air: A mini review. *Sci. Total Environ.* 740, 140207.

Ramdhan, D.H., Kurniasari, F., Tejamaya, M., Fitri, A., Indriani, A., Kusumawardhani, A., Santoso, M., 2020. Increase of Cardiometabolic Biomarkers Among Vehicle Inspectors Exposed to PM$_{0.25}$ and Compositions. *Saf. Health Work.* 0–4.

Ren, F., Ji, C., Huang, Y., Aniagu, S., Jiang, Y., Chen, T., 2020. AHR-mediated ROS production contributes to the cardiac developmental toxicity of PM$_{2.5}$ in zebrafish embryos. *Sci. Total Environ.* 719, 135097.

Reponen, T., Willeke, K., Grinshpun, S., Nevalainen, A., 2011. Biological Particle Sampling. *Aerosol Meas. Princ. Tech. Appl. Third Ed.* 549–570.

Rieger, A.M., Nelson, K.L., Konowalchuk, J.D., Barreda, D.R. 2011. Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. *J. Vis.Exp.* 24, 1-
Rim, D., Poppendieck, D., Wallace, L., Persily, A., 2013. Effectiveness of an In-Duct Electrostatic Precipitator in Nanoparticle Removal with Consideration of Ozone Emissions, in: Proceedings of ASHRAE IAQ 2013. 1–10.

Rivas, I., Viana, M., Moreno, T., Pandolfi, M., Amato, F., Reche, C., Bouso, L., Àlvarez-Pedrerol, M., Alastuey, A., Sunyer, J., Querol, X., 2014. Child exposure to indoor and outdoor air pollutants in schools in Barcelona, Spain. Environ. Int. 69, 200–212.

Rivas, I., Kumar, P., Hagen-zanker, A., 2017. Exposure to air pollutants during commuting in London: Are there inequalities among different socio-economic groups? Environ. Int. 101, 143–157.

REVIHAAP. 2013. Review of evidence on health aspects of air pollution – REVIHAAP project: final technical report.

Robert, M.A., Kleeman, M.J., Jakober, C.A., 2007a. Size and composition distributions of particulate matter emissions: Part 2 - Heavy-duty diesel vehicles. J. Air Waste Manag. Assoc. 57, 1429–1438.

Robert, M.A., VanBergen, S., Kleeman, M.J., Jakober, C.A., 2007b. Size and composition distributions of particulate matter emissions: Part 1 - Light-duty gasoline vehicles. J. Air Waste Manag. Assoc. 57, 1414–1428.

Roper, C., Chubb, L.G., Cambal, L., Tunno, B., 2015. Characterisation of ambient and extracted PM$_{2.5}$ collected on filters for toxicology applications. Inhal. Toxicol. 27, 673–81.

Rundell, K.W., Hoffman, J.R., Caviston, R., Bulbulian, R., Hollenbach, A.M. 2007. Inhalation of ultrafine and fine particulate matter disrupts systemic vascular function. Inhal. Toxicol.19, 33–40.

Sarnat, J.A., Demokritou, P., Koutrakis, P., 2003. Measurement of fine, coarse and ultrafine particles. Ann. Ist. Super. Sanita 39, 351–355.
Satsangi, P. G., Yadav, S. 2014. Characterisation of PM$_{2.5}$ by X-ray diffraction and scanning electron microscopy–energy dispersive spectrometer: its relation with different pollution sources. Int. J. Environ. Sci. Technol. 11, 217–232.

Schünemann, H.J., Khabsa, J., Solo, K., Khamis, A.M., Brignardello-Petersen, R., El-Harakeh, A., Darzi, A., Hajizadeh, A., Bognanni, A., Bak, A., Izcovich, A., Cuello-Garcia, C.A., Chen, C., Borowiack, E., Chamseddine, F., Schünemann, F., Morgano, G.P., Mutis-Schünemann, G.E.U., Chen, G., Zhao, H., Neumann, I., Brozek, J., Schmidt, J., Hneiny, L., Harrison, L., Reinap, M., Junek, M., Santesso, N., El-Khoury, R., Thomas, R., Nieuwlaat, R., Stalteri, R., Yaacoub, S., Lotfi, T., Baldeh, T., Piggott, T., Zhang, Y., Saad, Z., Rochwerg, B., Perri, D., Fan, E., Stehling, F., Akl, E.B., Loeb, M., Garner, P., Aston, S., Alhazzani, W., Szczeklik, W., Chu, D.K., Akl, E.A. 2020. Ventilation Techniques and Risk for Transmission of Coronavirus Disease, Including COVID-19: A Living Systematic Review of Multiple Streams of Evidence. Ann. Intern. Med. 173, 204–216.

Schlesinger, R.B., Kunzli, N., Hidy, G.M., Gotschi, T., Jerrett, M., 2006. The health relevance of ambient particulate matter characteristics: Coherence of toxicological and epidemiological inferences. Inhal. Toxicol. 18, 95–125.

Settimo, G., Soggiu, M.E., Inglessis, M., Manigrasso, M., Avino, P., 2020. Submicron and Ultrafine Particles in Downtown Rome: How the Different Euro Engines Have Influenced Their Behavior for Two Decades. Atmosphere (Basel). 11, 894.

Setyawati, M.I., Singh, D., Krishnan, S.P.R., Huang, X., Wang, M., Jia, S., Goh, B.H.R., Ho, C.G., Yusoff, R., Kathawala, M.H., Poh, T.Y., Ali, N.A.T.B.M., Chotirmall, S.H., Aitken, R.J., Riediker, M., Christiani, D.C., Fang, M., Bello, D., Demokritou, P., Ng, K.W., 2020. Occupational Inhalation Exposures to Nanoparticles at Six Singapore Printing Centers. Environ. Sci. Technol. 54, 2389–2400.

Shakya, K.M., Rupakheti, M., Shahi, A., Maskey, R., Pradhan, B., Panday, A., Puppala, S.P.,
Lawrence, M., Peltier, R.E., 2017. Near-road sampling of PM 2.5, BC, and fine-particle chemical components in Kathmandu Valley, Nepal. Atmos. Chem. Phys. 17, 6503–6516.

Shirmohammadi, F., Sina Hasheminassab, D.W., Schauer, J.J., Shafer, M.M., Delfino, R.J., Sioutas, C. 2016. The relative importance of tailpipe and non-tailpipe emissions on the oxidative potential of ambient particles in Los Angeles, CA. Faraday Discuss. July, 361–380.

Sillanpää, M., Geller, M.D., Phuleria, H.C., Sioutas, C., 2008. High collection efficiency electrostatic precipitator for in vitro cell exposure to concentrated ambient particulate matter (PM). J. Aerosol Sci. 39, 335–347.

Sinharay, R., Gong, J., Barratt, B., Ohman-Strickland, P., Ernst, S., Kelly, F.J., Zhang, J. J., Collins, P., Cullinan, P., Chung, K.F. 2018. Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: a randomised, crossover study. Lancet. 391, 339–349.

Slezakova, K., Peixoto, C., Camara Pereira, M. do, Morais, S., 2019. (Ultra) Fine particle concentrations and exposure in different indoor and outdoor microenvironments during physical exercising. J. Toxicol. Environ. Heal. - Part A Curr. Issues 82, 591–602.

Song, Y., Zhang, Y., Li, K., Chen, W., Chung, C.K.A., Cai, Z., 2020. The cellular effects of PM2.5 collected in Chinese Taiyuan and Guangzhou and their associations with polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs and hydroxy-PAHs. Ecotoxicol. Environ. Saf. 191.

Song, J., Fan, S., Lin, W., Mottet, L., Woodward, H., Davies Wykes, M., Arcucci, R., Xiao, D., Debay, J.E., ApSimon, H., Aristodemou, E., Birch, D., Carpentieri, M., Fang, F., Herzog, M., Hunt, G.R., Jones, R.L., Pain, C., Pavlidis, D., Robins, A.G., Short, C.A., Linden, P.F. 2018. Natural ventilation in cities: the implications of fluid mechanics. Build. Res. Inf. 46,
809–828.

Sopeyin, A., Hornsey, E., Okwor, T., Alimi, Y., Raji, T., Mohammed, A., Moges, H., Onwuekwe, E.V.C., Minja, F.J., Gon, G., Ogbuagu, O., Ogunsoya, F., Paintsil, E., 2020. Transmission risk of respiratory viruses in natural and mechanical ventilation environments: implications for SARS-CoV-2 transmission in Africa. BMJ Glob. Heal. 5, e003522.

Sotty, J., Garççon, G., Denayer, F.O., Alleman, L.Y., Saleh, Y., Perdrix, E., Riffault, V., Dubot, P., Lo-Guidice, J.M., Canivet, L., 2019. Toxicological effects of ambient fine (PM2.5-0.18) and ultrafine (PM0.18) particles in healthy and diseased 2D organo-typic mucociliary-phenotype models. Environ. Res. 176, 108538.

Srimuruganandam, B., Shiva Nagendra, S.M., 2011. Chemical characterisation of PM$_{10}$ and PM$_{2.5}$ mass concentrations emitted by heterogeneous traffic. Sci. Total Environ. 409, 3144 - 3157.

Stanek, L.W., Sacks, J.D., Dutton, S.T., Dubois, J.J.B. 2011. Attributing health effects to apportioned components and sources of particulate matter: An evaluation of collective results. Atmos. Environ. 45, 5655 - 5663.

Stone, V., Miller, M.R., Clift, M.J.D., Elder, A., Mills, N.L., Möller, P., Schins, R.P.F., Vogel, U., Kreyling, W.G., Jenzer, K.A., Kuhlbusch, T.A.J., Schwarze, P.E., Hoet, P., Pietroistri, A., de Vizcaya-Ruiz, A., Baeza-Squiban, A., Teixeira, J.P., Tran, C.L., Cassee, F.R., 2017. Nanomaterials versus ambient ultrafine particles: An opportunity to exchange toxicology knowledge. Environ. Health Perspect. 125, 1–17.

Strober, W., 2015. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. Nov 2;111:A3.B.1-A3.B.3.

Sturges, W.T., Harrison, R.M., 1989. Semi-quantitative X-ray diffraction analysis of size fractionated atmospheric particles. Atmos. Environ. 23, 1083–1098.

Tajnafoi, G., Arcucci, R., Mottet, L., Vouriot, C., Molina-Solana, M., Pain, C., Guo, Y.
(2020, under review), Variational gaussian process for optimal sensor placement. J. Appl. Math.

Sun, B., Shi, Y., Li, Y., Jiang, J., Liang, S., Duan, J., Sun, Z., 2020. Short-term PM2.5 exposure induces sustained pulmonary fibrosis development during post-exposure period in rats. J. Hazard. Mater. 385, 121566.

Tan, C.C.L., Finney, K.N., Chen, Q., Russell, N. V., Sharifi, V.N., Swithenbank, J., 2013. Experimental investigation of indoor air pollutants in residential buildings. Indoor Built Environ. 22, 471–489.

Tan, Y.Q., Rashid, S.K.A., Pan, W.C., Chen, Y.C., Yu, L.F., Seow, W.J., 2020. Association between microenvironment air quality and cardiovascular health outcomes. Sci. Total Environ. 716, 137027.

Tang, T., Hurraß, J., Gminski, R., Mersch-Sundermann, V., 2012. Fine and ultrafine particles emitted from laser printers as indoor air contaminants in German offices. Environ. Sci. Pollut. Res. 19, 3840–3849.

Tang, J.W., 2009. The effect of environmental parameters on the survival of airborne infectious agents. J. R. Soc. Interface 6.

Tavera Busso, I., Mateos, A.C., González Peroni, A., Graziani, N.S., Carreras, H.A., 2020. Hepatic alterations associated with fine particulate matter exposure. Toxicol. Res. 36, 139–148.

Tecer L. H., Alagha O., Karaca F., Tuncel G., Eldes N., 2008 Particulate Matter (PM$_{2.5}$, PM$_{10.2.5}$, and PM$_{10}$) and Children's Hospital Admissions for Asthma and Respiratory Diseases: A Bidirectional Case-Crossover Study. J. Toxicol. Environ. Part A, 71:8, 512-520.

Tellier R, 2006. Review of aerosol transmission of influenza A virus. Emerg Infect Dis 12(11):1657–1662.

Tiwari, A., Kumar, P., 2020. Integrated dispersion-deposition modelling for air pollutant
reduction via green infrastructure at an urban scale. *Sci. Total Environ.* 723, 138078.

Tiwari, A., Kumar, P., Baldauf, R., Max Zhang, K., Pilla, F., Di Sabatino, S., Brattich, E., Pulvirenti, B., 2019. Considerations for evaluating green infrastructure impacts in microscale and macroscale air pollution dispersion models. *Sci. Total Environ.* 672, 410–426.

Thorpe, A.J., Harrison, R.M., Boulter, P.G., McCrae, I.S., 2007. Estimation of particle resuspension source strength on a major London Road. *Atmos. Environ.* 41, 8007–8020.

Tobler, A., Bhattu, D., Canonaco, F., Lalchandani, V., Shukla, A., Thamban, N.M., Mishra, S., Srivastava, A.K., Bisht, D.S., Tiwari, S., Singh, S., Mocnik, G., Baltensperger, U., Tripathi, S.N., Slowik, J.G., Prévôt, A.S.H., 2020. Chemical characterization of PM$_{2.5}$ and source apportionment of organic aerosol in New Delhi, India. *Sci. Total Environ.* 745, 1–12.

Tong, Z., Whitlow, T.H., Macrae, P.F., Landers, A.J. 2015. Quantifying the effect of vegetation on near-road air quality using brief campaigns. *Environ. Pollut.* 201, 141–149.

Tseng, C.C., Li, C.S., 2006. Ozone for inactivation of aerosolized bacteriophages. *Aerosol Sci. Technol.* 40, 683–689. Ulrich, R.S., Simons, R.F., Losito, B.D., Fiorito, E., Miles, M.A., Zelson, M. 1991. Stress recovery during exposure to natural and urban environments. *J. Environ. Psychol.* 11, 201–230.

US-EPA, 2017. Quality Assurance Handbook for Air Pollution Measurement Systems.

Van Meerloo, J., Kaspers, G.J., Cloos, J., 2011. Cell sensitivity assays: the MTT assay. *Methods Mol. Biol.* 731, 237 - 245.

Verreault, D., Moineau, S., Duchaine, C., 2008. Methods for Sampling of Airborne Viruses. *Microbiol. Mol. Biol. Rev.* 72, 413–444.

Voliotis, A., Karali, I., Kouras, A., Samara, C., 2017. Fine and ultrafine particle doses in the respiratory tract from digital printing operations. *Environ. Sci. Pollut. Res.* 24, 3027–3037.

Wang, D., Kam, W., Cheung, K., Pakbin, P., Sioutas, C., 2013. Development of a two-stage
virtual impactor system for high concentration enrichment of ultrafine, PM$_{2.5}$, and coarse particulate matter. *Aerosol Sci. Technol.* 47, 231–238.

Wang, Y., Zhu, Y., Salinas, R., Ramirez, D., Karnae, S., John, K., Wang, Y., Zhu, Y., Salinas, R., Ramirez, D., Wang, Y., Zhu, Y., Salinas, R., Ramirez, D., Karnae, S., John, K. 2008. Roadside measurements of ultrafine particles at a busy urban intersection roadside measurements of ultrafine particles at a busy urban intersection. *J. Air Waste Manag. Assoc.* 58, 1449–1457.

Warnes, S. L., Little, Z. R., Keevil, C. W. 2015. Human coronaviruses 229E remains infectious on common touch surface materials. *mBio.* 6, 1697-15.

Wayne, O.R., Roberts, J.W., 1998. Everyday Exposure to Toxic Pollutants. *Sci. Am.* 85–91.

WHO, 2013. Review of evidence on health aspects of air pollution – REVIHAAP. Weggeberg, H., Benden, T.F., Steinnes, E., Flaten, T.F. 2019. Element analysis and bioaccessibility assessment of ultrafine airborne particulate matter (PM$_{0.1}$) using simulated lung fluid extraction (artificial lysosomal fluid and gamble’s solution). *Environ. Chem. Ecotoxicol.* 1, 26–35.

Weijers, E.P., Khlystov, A.Y., Kos, G.P.A., Erisman, J.W., 2004. Variability of particulate matter concentrations along roads and motorways determined by a moving measurement unit. *Atmos. Environ.* 38, 2993–3002.

Weitekamp, C.A., Kerr, L.B., Dishaw, L., Nichols, J., Lein, M., Stewart, M.J. 2020. A systematic review of the health effects associated with the inhalation of particle-filtered and whole diesel exhaust. *Inhal. Toxicol.* 32, 1–13.

White, J.K., Nielsen, J.L., Madsen, A.M., 2020. Potential respiratory deposition and species composition of airborne culturable, viable, and non-viable fungi during occupancy in a pig farm. *Atmosphere (Basel).* 11.

WHO, 2009. WHO Policy on TB Infection Control in Health-Care Facilities, Congregate
Settings and Households. Infect. Control.

Wiegman, C.H., Li, F., Clarke, C.J., Jazrawi, E., Kirkham, P., Barnes, P.J., Adcock, I.M., Chung, K.F., 2014, A comprehensive analysis of oxidative stress in the ozone-induced lung inflammation mouse model, *CLINICAL SCIENCE*. 126, 425-440

World Health Organization. Regional Office for Europe. 2003. Role of human exposure assessment in air quality management: report on the joint workshop of the World Health Organization, the Joint Research Centre and the European Concerted Action "Urban Air, Indoor Environment and Human Exposure" Bonn, Germany 14-15 October 2002. Copenhagen: WHO Regional Office for Europe.

Wei, T., Tang, M., 2018. Biological effects of airborne fine particulate matter (PM$_{2.5}$) exposure on pulmonary immune system. *Environ. Toxico. Pharmacol*. 60, 195–201.

Wheeler, A.J., Williams, I., Beaumont, R.A., Hamilton, R.S. 2000. Characterisation of Particulate Matter Sampled During a Study of children’s personal exposure to airborne particulate matter in a UK urban environment. *Environ. Monit. Assess*. 65, 69–77.

Wu, W., Jin, Y., Carlsten, C., 2019. Inflammatory health effects of indoor and outdoor particulate matter. *J. Allergy Clin. Immunol*. 141, 833–844.

Xu, J., Wang, A., Schmidt, M., Adams, M., Hatzopoulou, M., 2020. A gradient boost approach for predicting near-road ultrafine particle concentrations using detailed traffic characterisation. *Environ. Pollut*. 265, 114777.

Xu, X., Zhang, J., Yang, X., Zhang, Y., Chen, Z. 2020. The role and potential pathogenic mechanism of particulate matter in childhood asthma: A review and perspective. *J. Immunol. Res*. 2, 1-8.

Yang, Y., Ruan, Z., Wang, X., Yang, Y., Mason, T.G., Lin, H., Tian, L., 2019. Short-term and long-term exposures to fine particulate matter constituents and health: A systematic review and meta-analysis. *Environ. Pollut*. 247, 874–882.
Yan, J., Grantham, M., Pantelic, J., De Mesquita, P.J.B., Albert, B., Liu, F., Ehrman, S., Milton, D.K., 2018. Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community. *Proc. Natl. Acad. Sci. U.S.A.* 115, 1081–1086.

Ye, G., Ding, D., Gao, H., Chi, Y., Chen, J., Wu, Z., Lin, Y., Dong, S., 2019. Comprehensive metabolic responses of HepG2 cells to fine particulate matter exposure: Insights from an untargeted metabolomics. *Sci. Total Environ.* 691, 874–884.

Yin, J., Harrison, R.M., 2008. Pragmatic mass closure study for PM$_{1.0}$, PM$_{2.5}$ and PM$_{10}$ at roadside, urban background and rural sites. *Atmos. Environ.* 42, 980–988.

Yuan, Y., Wu, Y., Ge, X., Nie, D., Wang, M., Zhou, H., Chen, M., 2019. In vitro toxicity evaluation of heavy metals in urban air particulate matter on human lung epithelial cells. *Sci. Total Environ.* 678, 301–308.

Zauli Sajani, S., Ricciardelli, I., Trentini, A., Basso, D., Maccone, C., Castellazzi, S., Lauriola, P., Poluzzi, V., Harrison, R.M., 2015. Spatial and indoor/outdoor gradients in urban concentrations of ultrafine particles and PM$_{2.5}$ mass and chemical components. *Atmos. Environ.* 103, 307–320.

Zhang, K., Nie, D., Chen, M., Wu, Y., Ge, X., Hu, J., Ge, P., Li, W., Huang, B., Yuan, Y., Li, Z., Ma, X. 2019. Chemical characterisation of two seasonal PM$_{2.5}$ samples in Nanjing and its toxicological properties in three human cell lines. *Environments*. 6, 42.

Zhao, Y., Aarnink, A.J.A., Wang, W., Fabri, T., Groot Koerkamp, P.W.G., de Jong, M.C.M., 2014. Airborne virus sampling: Efficiencies of samplers and their detection limits for infectious bursal disease virus (IBDV). *Ann. Agric. Environ. Med.* 21, 464–471.

Zhou, Y., Shao, Y., Yuan, Y., Liu, J., Zou, X., Bai, P., Zhan, M., Zhang, P., Vlaanderen, J., Vermeulen, R., Downward, G.S., 2020. Personal black carbon and ultrafine particles exposures among high school students in urban China. *Environ. Pollut.* 265, 114825.

Zhou, A.J., Otter, J.A., Price, J.R., Cimpeanu, C., Garcia, M., Kinross, J., Boshier, P.R., Mason,
S., Bolt, F., Alison, H., Barclay, W.S., 2020. Investigating SARS-CoV-2 surface and air contamination in an acute healthcare setting during the peak of the COVID-19 pandemic in London. medRxiv. 1–24.

Zhu, Y., Hinds, W.C., Kim, S., Shen, S., Sioutas, C., 2002. Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmos. Environ. 36, 4323–4335.

Zhu, D., Cai, C., Yang, T., Zhou, X., 2018. A machine learning approach for air quality prediction: Model regularization and optimization. Big Data Cogn. Comput. 2, 5.
Figure 1. Typical mean particle mass concentrations of (a) PM$_{2.5}$ and (b) UFPs at different microenvironments in an urban area. Error bars represent the standard deviation from Table S1 for (a) PM$_{2.5}$, showing a higher deviation in indoor ($n = 9$) concentrations, followed by roadside ($n = 11$), traffic intersections ($n = 10$), roadside with GI ($n = 4$) and parks ($n = 5$). (b) UFPs from Table S2, showing a higher deviation in traffic intersections ($n = 7$), followed by roadside ($n = 8$) indoor ($n = 9$), parks ($n = 9$) and roadside behind GI ($n = 5$).
Figure 2. Schematic representation of the various samplers (x-axis in all the figures) used widely to obtain (a) time required for collecting PM$_{2.5}$ particle mass per minute (y-axis). (b) to obtain 1000 μg of PM$_{2.5}$ particle mass for conducting toxicological studies and the time required for collecting them (y-axis). (c) to obtain 100 μg of PM$_{2.5}$ particle mass for conducting physicochemical studies and the time required for collecting them (y-axis). The values in the y-axis are calculated using the typical concentration in each microenvironment. The x-axis represents the various samplers used (from top) HVCI (high volume cascade impactor, 700 LPM), HVIS (high volume impactor sampler, 400 LPM), MVAS (medium volume air sampler, 100 LPM), FPS (fine particulate sampler, 16.6 LPM), HVAS (High volume air sampler, 1050 LPM), HCCI (Harvard compact cascade impactors, 30LPM).
Figure 3. Schematic representation of the various samplers (y-axis in all the figures) used widely to obtain (a) time required for collecting UFP particle mass per minute (y-axis); (b) to obtain 1000 µg of UFP particle mass for conducting toxicological studies and the time required for collecting them (y-axis). (c) to obtain 100 µg of UFP particle mass for conducting physicochemical studies and the time required for collecting them (y-axis). The values in the y-axis are calculated using the typical concentration in each microenvironment. The x-axis represents the various samplers used for particle mass collection (from top) HVUPS (high volume ultrafine particle sampler, 400 LPM), HVCI (high volume cascade impactor, 700 LPM), DGI (Dekati gravimetric impactor, 70 LPM), HVIS (high volume impactor sampler, 400 LPM), MOUDI (micro-orifice uniform deposit impactor, 30 LPM), HVFCI (high volume five stages plus backup cascade impactor, 1100LPM), SCI (sioutas cascade impactor, 9 LPM).
List of Tables

Table 1. Summary of existing reviews on the physicochemical and toxicological studies on fine and ultrafine particles.

Study focus and topic areas covered	Author (year)
Toxicological effects of PM$_{2.5}$ to understand the molecular pathways generating oxidative stress in particles and their transmission to the target organs.	Leni et al. (2020)
Summarised the association of PM with pediatric asthma and reviewed their fundamental molecular mechanisms.	Xu et al. (2020)
Toxicological studies of PM obtained from whole diesel exhaust and particle filtered exhaust involving animal and human exposure studies.	Weitekamp et al. (2020)
The physico-chemical composition, exposure (*in vivo*) and toxicological (*in vitro*) studies on PM from underground railway emissions of PM and its effects on human health.	Loxham and Nieuwenhuijsen (2019)
Summarized the time series and cohort study on PM$_{2.5}$ on their effects of cardiovascular and chronic respiratory effects and other health endpoints.	Yang et al. (2019)
Summarised the *in vivo*/*vitro* studies on the immunotoxic effects of PM$_{2.5}$ exposure to pulmonary cellular effectors.	Wei and Tang (2018)
Inflammatory health effects from various types of PM sources and different environments and their pathogenesis of diseases.	Wu et al. (2018)
Collected data for studies on the divergent responses to PM exposure and the effects on different types of cell deaths and their assessment in PM-exposed models (*in vivo*).	Peixoto et al. (2017)
Toxicological studies of PM$_{2.5}$ (*both in vitro and in vivo*) and its biological response in humans.	Mohammed et al. (2016)
Toxicological effects of PM comparing reactive oxygen species (ROS) production, inflammation and oxidatively damaged DNA in different experimental systems.	Møller et al. (2014)
Methods to evaluate the various toxicological effects of PM on the respiratory, cardiovascular, and nervous systems using *in vivo* and *in vitro* experimental models.	Nemmar et al. (2013)
Toxicological effects of PM from various sources, especially their components and bioreactivity of PM from traffic emissions.	Kelly and Fussell (2012)
Studies relating to different PM sources and their effects on human health.	Stanek et al. (2011)
Studies on ambient PM and the effects of PM on oxidative stress, activation of antioxidant defences, inflammation and toxicity.	Li et al. (2008)
Studies linking the *in vitro* toxicological effects and mechanisms of PM from traffic emissions, focusing on PM size fractions < PM$_{10}$.	de Kok et al. (2006)
Table 2. Summary of the type of instruments used for collecting PM$_{2.5}$ for cell/lung toxicity analysis.

Sampler type (purpose)	Nominal flow rate	Author (year)
Harvard impactors (Toxicological studies on structural and functional effects on the liver of mice exposed to PM$_{2.5}$)	30 LPM	Busso et al. (2020)
High-volume air samplers (Thermo Fisher Scientific, Waltham, MA, USA). (PM$_{2.5}$ exposure on cytotoxicity, oxidative stress, genotoxicity and inflammatory responses)	1050 LPM	Chen et al. (2020)
Fine particulate sampler (APM-550, Envirotech) (Cytotoxicity and genotoxicity assessments)	16.6 LPM	Islam et al. (2020)
Fine particulate sampler (Model: APM 550) (Cytotoxicity and reactive oxygen species (ROS) assessments)	16.6 LPM	Jan et al. (2020)
High-volume air samplers (Thermo Fisher Scientific, Waltham, MA, USA). (PM$_{2.5}$ varied dosages (ranging from 0 to 100 μg/mL) on human bronchial epithelial (HBE) cells expressing CYP1A1 (HBE-1A1))	1050 LPM	Chen et al. (2019)
Medium-volume air sampler (AMAE Co., Ltd, Shenzhen, China). (Effects of region- and season-dependent differences of PM$_{2.5}$ on cytotoxicity)	100 LPM	Song et al. (2020)
High-volume sampler (TH1000H, Wuhan Tianhong Intelligence Instrumentation Facility, China). (Metabolic responses of HepG2 cells to PM$_{2.5}$ exposure)	16.6 LPM	Ye et al. (2019)
Tianhong TH-150C PM$_{2.5}$ sampler (Cardiac developmental toxicity assessments of PM$_{2.5}$ exposure due to excessive ROS)	100 LPM	Ren et al. (2019)
High volume sampler (TH-1000CII, Wuhan Tianhong, China). (Short-term exposure of PM$_{2.5}$ developing pulmonary fibrosis)	1050 LPM	Sun et al. (2020)
High-volume impactor sampler	400 LPM	Sotty et al. (2019)
(HVIS). (Inflammatory responses of human bronchial epithelial (DHBE) to PM$_{2.5}$ exposure)

High-volume cascade impactor (Staplex TFIA-2)	700 LPM	Borgie et al. (2015)
Table 3. Summary of the type of instruments used for collecting UFP for *in vitro* and *in vivo* analysis of lung toxicity.

Sampler type (purpose)	Nominal flow rate (diameter range)	Author (year)
Portable current air sampler (AP BUCK LP-12) with Sioutas cascade impactor. (Physicochemical characterisation, lung cancer cell adhesion and metastasis)	9 LPM (0.25μm - 2.5 μm)	Gao and Sang (2019)
High volume five stages plus back-up cascade impactor (model 235, 68 m³/h, Tisch, USA) (Toxicity effects of chemical determinants on cells)	1100 LPM (0.3μm - 2.5 μm)	Badran et.al. (2020)
Cascade impactors (Moudi model 100-S4 Specials from MSP/Copley Scientific) (Chemical characterisation, source estimations and bioaccessibility investigations)	30 LPM (0.18 μm - 18 μm)	Weggeberg et.al. (2019)
High-volume impactor sampler (HVIS). (Inflammatory responses of human bronchial epithelial (DHBE) to PM$_{2.5}$ exposure)	400 LPM (0.18 μm - 2.5 μm)	Sotty et al. (2019)
Micro-orifice uniform deposit impactor (MOUDI™; MSP Inc., Minneapolis, MN, USA). (Cardiopulmonary health response with a 6.3% increase in systolic blood pressure and diastolic blood pressure)	30 LPM (0.056 μm - 18 μm)	Liu et al. (2018)
Dekati gravimetric impactor (DGI, DGI-1570, Dekati Ltd.). (Quasi-UFPs emitted from pure ULSD for cytotoxicity and gene expression studies)	70 LPM (0.2 μm - 2.5 μm)	Zhang et al. (2018)
MOUDIs (Model 110, MSP Corp., MN, USA). (UFPs exposure on oxidative stress, cytotoxicity and genotoxicity were investigated in A549 cells).	30 LPM (0.056 μm - 18 μm)	Corsini et al. (2017)
MOUDIs (Model 110, MSP Corp., MN, USA). (genotoxic evaluation was performed on A549 cells (human lung carcinoma cells))	30 LPM (0.056 μm - 18 μm)	Laura et al. (2017)
High volume cascade impactor (Staplex TFIA-2). (Toxicological studies on BEAS-2B cells for varied durations),	700 LPM (0.3μm - 5 μm)	Borgie et al. (2015)
---	---	---
High-volume ultrafine particle (HVUP) sampler. (UFP exposure studies on Reactive Oxygen Species (ROS) formation).	400 LPM (0.18 μm - 2.5 μm)	Campbell et al. (2014)
Table 4. Estimated PM mass requirements for selected experimental techniques.

Technique	Destructive (Yes/No)	PM	Approximate Detection limit	Approximate PM mass for single replicate
ICP-MS (elements)	Y	processed	1 ngmL⁻¹ (Prudnikov and Barnes 1998)	<100 μg
IC (ions)	Y	processed	>50 ngmL⁻¹ (Creatchman 1999)	< 100 μg
TOR (carbon analysis)	Y	On filter	1 μg carbon/cm²² (Chow et al. 1993)	10 μg/cm²²Chow et al., (1993)
TGA (volatile fractions)	Y	On filter, processed	N/A	>2.3 mg Lapuerta et al., (2007)
TD-GC/MS (VOCs)	Y	Processed	50 ng (Chow et al. 2007)	> 1 μg Chow et al.,(2007)
XRF (elements)	N	On filter, processed	<10 ng mL⁻¹ (Klockenkämper and Bohlen 1996)	100 μg Klockenkämper and Bohlen(1996)
XRD (minerals)	N	On filter, processed	>40 μg (Sturges and Harrison 1989)	>2mg Sturges and Harrison (1989)
SEM (imaging)	N	On filter, processed	N/A – on principle individual particles can be examined	
TEM (imaging)	N	Processed	N/A – individual particles can be examined	

Note: ICP-MS (Inductively coupled plasma mass spectrometry); IC (Ion chromatography); TOR (Thermal/optical reflectance); TGA (Thermogravimetric analyzer); TD-GC/MS (Thermal desorber combined with gas chromatography coupled to mass spectrometry); XRF (X-ray fluorescence); XRD (X-ray powder diffraction); SEM (Scanning electron microscope); TEM (Transmission electron microscope).
Table 5. Time required to collect the required amount of PM$_{2.5}$ particles for toxicity and physicochemical assessments using the different types of air samplers utilized in the previous studies.

Type of microenvironment (concentration; µgm$^{-3}$)	Instrument (Flow rate in LPM)	Mass (μgmin$^{-1}$)	Time for physicochemical assessment (hrs)	Time for toxicity assessment (hrs)
Roadside (28±20)	Harvard impactors. (30 LPM)	0.7	2.5	25.5
	High-Volume air samplers	22.9	0.07	0.8
	(Thermo Fisher Scientific,			
	Waltham, MA, USA). (1050 LPM)			
	Fine particulate sampler	0.4	4.7	46
	(APM-550, Envirotech). (16.6 LPM)			
	Medium-volume air sampler	2.2	0.8	7.7
	(AMAE Co., Ltd, Shenzhen, China). (100 LPM)			
	High-volume impactor Sampler	8.7	0.2	2
	(HVIS). (700 LPM)			
	High volume cascade	15.3	0.1	1.1
	impactor (Staplex TFIA-2)			
	(700 LPM)			
Parks (16±4)	Harvard impactors. (30 LPM)	0.5	3.7	36.7
	High-Volume air samplers	15.9	0.1	1.0
	(Thermo Fisher Scientific,			
	Waltham, MA, USA). (1050 LPM)			
	Fine particulate sampler	0.3	6.6	66.4
	(APM-550, Envirotech). (16.6 LPM)			
	Value 1	Value 2	Value 3	
--------------------------------	---------	---------	---------	
Indoors (18±7)	0.5	3.1	30.7	
High-Volume air samplers				
(Thermo Fisher Scientific,	19.0	0.1	0.9	
Waltham, MA, USA). (1050				
LPM)				
Fine particulate sampler	0.3	5.5	55.4	
(APM-550, Envirotech). (16.6				
LPM)				
Medium-volume air sampler	1.8	0.9	9.2	
(AMAE Co., Ltd, Shenzhen,				
China). (100 LPM)				
High-volume impactor Sampler	7.2	0.2	2.3	
(HVIS). (400 LPM)				
High volume cascade impactor	12.7	0.1	1.3	
(Staplex TFIA-2). (700 LPM)				
Traffic Intersections (33±5)	0.5	3.3	33.1	
High-Volume air samplers	17.6	0.1	0.9	
(Thermo Fisher Scientific,				
Waltham, MA, USA). (1050				
LPM)				
Fine particulate sampler	0.3	5.9	59.7	
(APM-550, Envirotech). (16.6				
LPM)				
Medium-volume air sampler	1.7	0.9	9.9	
(AMAE Co., Ltd, Shenzhen,				
China). (100 LPM)				
High-volume impactor Sampler	6.7	0.3	2.4	
(HVIS). (400 LPM)				
Instrument Type	Flow Rate	μg/min	Required μg	
---	-----------	--------	-------------	
High volume cascade impactor (Staplex TFIA-2)	700 LPM	11.7	1.4	
Harvard impactors (30 LPM)	0.2	0.1	69.8	
High-Volume air samplers (1050 LPM)	8.3	0.2	2	
Fine particulate sampler (16.6 LPM)	0.1	12.6	126.1	
Medium-volume air sampler (100 LPM)	0.8	2.1	20.9	
High-volume impactor Sampler (HVIS) (400 LPM)	3.1	0.5	5.2	
High volume cascade impactor (Staplex TFIA-2)	700 LPM	5.6	3.0	

a The typical concentration values from different microenvironments and their respective;
b instrument flow rates used to calculate the required;
c μg of samples collected min⁻¹, 100 μg and 1000 μg for *d* physicochemical and *e* toxicological assessments are obtained from Table S1.
Table 5. Summary of common techniques/assays used to evaluate the cytotoxicity of PM$_{2.5}$ and PM$_{0.1}$.

Technique	Cell assessment	References
Light, electron or confocal microscopy	Morphological characteristics	Mukhopadhyay et al. (2007)
Trypan blue	Apoptosis	Strober et al. (2015); Fotakis et al. (2006);
	Necrosis	Van Meerloo et al. (2011); Rieger et al. (2011)
MTT/XTT assay	Morphological characteristics such as cell membrane damage	
	General toxicity	
LDH assay		
Annexin-V-FITC propidium iodide		
OP$_{DTT}$ chemical assay		
OP$_{ESR}$ spectrometry	ROS	Park et al. (2018)
DCFDA assay		
Ames test	Genotoxicity	
SCGE Comet assay		

Note: MTT = 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; XTT = 2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide; LDH = Lactate dehydrogenase; FITC = fluorescein isothiocyanate; OP$_{DTT}$ = Oxidative potential Dithiothreitol; OP$_{ESR}$ = Oxidative potential Electron Spin Resonance; DCFDA = 2',7'-dichlorofluorescein diacetate; SCGE = Single Cell Gel Electrophoresis.
Table 6. The time required to collect the required amount of UFP particles for toxicity and physicochemical assessments using the different types of air samplers utilised in the previous studies.

Type of microenvironment (concentration; μgm⁻³)	Instrument (Flow rate in LPM)	Mass (μgmin⁻¹) (c) = (b x (60/1000) x a/(60))	Time for physicochemical assessment (hrs) (100 μg of mass needed) (d) = 100/(a x b x (60/1000))	Time for toxicity assessment (hrs) (1000 μg of mass needed) (e) = 1000/(a x b x (60/1000))
Roadside (3.2 ± 2.2)	Sioutas cascade impactor (9 LPM)	0.1	57.5	578.7
	High volume five stages plus back-up cascade impactor (Tisch, USA) (1100 LPM)	3.6	0.5	4.7
	Micro-orifice uniform deposit impactor (MOUDI; MSP Inc., Minneapolis, MN, USA) (30 LPM)	0.1	17.4	173.6
	High-volume impactor sampler (HVIS) (400 LPM)	1.3	1.3	13.0
	Dekati gravimetric impactor (DGI, DGI-1570, Dekati Ltd.) (70 LPM)	0.2	7.4	74.4
	High volume cascade impactor (Staplex TFIA-2) (700 LPM)	2.2	0.7	7.4
Description	Value 1	Value 2	Value 3	
--	---------	---------	---------	
High-volume ultrafine particle sampler (HVUP) (400 LPM)	1.3	1.3	13.0	
Parks (1.6 ± 0.9) Sioutas cascade impactor (9 LPM)	0.1	115.7	1157.4	
High volume five stages plus back-up cascade impactor (Tisch, USA) (1100LPM)	1.8	0.9	9.5	
Micro-orifice uniform deposit impactor (MOUD; MSP Inc., Minneapolis, MN, USIA) (30 LPM)	0.1	34.7	347.2	
High-volume impactor sampler (HVIS) (400 LPM)	0.6	2.6	26.0	
Dekati gravimetric impactor (DGI, DGI-1570, Dekati Ltd.) (70 LPM)	0.1	14.9	148.8	
High volume cascade impactor (Staplex TFIA-2)	1.1	1.5	14.9	
High-volume ultrafine particle sampler (HVUP) (400 LPM)	0.6	2.6	26.0	
Indoors (4.1 ± 3.5) Sioutas cascade impactor (9 LPM)	0.1	45.2	451.7	
Sampler Description	M	N	S	
---	---	---	---	
High volume five stages plus back-up cascade impactor (Tisch, USA) (1100 LPM)	4.6	0.4	3.7	
Micro-orifice uniform deposit impactor (MOUDI; MSP Inc., Minneapolis, MN, USA) (30 LPM)	0.1	13.5	135.5	
High-volume impactor sampler (HVIS) (400 LPM)	1.6	1.0	10.1	
Dekati gravimetric impactor (DGI, DGI-1570, Dekati Ltd.) (70 LPM)	0.3	5.8	58.0	
High volume cascade impactor (Staplex TFLA-2)	2.9	0.6	5.8	
High-volume ultrafine particle (HVUP) sampler (400 LPM)	1.6	1.0	10.2	
Traffic Intersections (5.6 ± 4.1)	0.1	33.0	330.7	
High volume five stages plus back-up cascade impactor (Tisch, USA) (1100 LPM)	6.3	0.3	2.7	
Instrument Description	Efficiency at 0.2	Efficiency at 0.7	Efficiency at 7.4	
---	-------------------	-------------------	------------------	
Micro-orifice uniform deposit impactor (MOUDI; MSP Inc., Minneapolis, MN, USA) (30 LPM)	0.2	9.9	99.2	
High-volume impactor sampler (HVIS) (400 LPM)	0.2	0.7	7.4	
Dekati gravimetric impactor (DGI, DGI-1570, Dekati Ltd.) (70 LPM)	0.4	4.2	42.5	
High volume cascade impactor (Staplex TFIA-2)	3.9	0.4	4.2	
High-volume ultrafine particle (HVUP) sampler (400 LPM)	0.2	0.7	7.4	
Green infrastructure roadside (behind vegetation) (1.0 ± 0.4)	Sioutas cascade impactor (9 LPM)	0.1	185.2	1851.8
High volume five stages plus back-up cascade impactor (Tisch, USA) (1100 LPM)	1.1	1.5	15.1	
Micro-orifice uniform deposit impactor (MOUDI; MSP Inc., Minneapolis, MN, USA) (30 LPM)	0.1	55.5	555.5	
Instrument Description	Volume	Mass	Density	
---	--------	------	---------	
High-volume impactor sampler (HVIS) (400 LPM)	0.4	4.1	41.6	
Dekati gravimetric impactor (DGI, DGI-1570, Dekati Ltd.) (70 LPM)	0.1	23.8	238.1	
High volume cascade impactor (Staplex TFIA-2)	0.7	2.4	23.8	
High-volume ultrafine particle sampler (HVUP) (400 LPM)	0.4	4.2	41.6	
Table 7. List of samplers used for collecting airborne pathogens (viruses, bacteria and fungi) and their detection limit by previous studies.

Type of sampler used	Type of airborne virus	Collection medium	Detection technique	Reference
Coriolis µ air sampler	SARS-CoV-2 (COVID-19)	5 mL conical vials with collection medium (DMEM)	PCR Positive Culture negative	Zhou et al. (2020)
NIOSH BC 251 bioaerosol samplers (3.5 LPM)	SARS-CoV-2 (COVID-19)	Centrifugal tubes and 0.3 µm PTFE Filters	PCR Positive Culture negative	Chia et al. (2020)
High-resolution slit sampler system (30 LPM)	SARS coronavirus	Liquid layer with viral culture medium	PCR Positive Culture negative	Booth et al. (2005)
Andersen cascade impactors (28.3 LPM)	Swine viruses	Culture medium (Agar)	PCR Positive	Alonso et al. (2015)

Note: The presence of SARS-CoV-2 in the air is possibly highest in the first week of illness (Chia et al., 2020). Hence, it is suggested to collect particles, for example, in a hospital environment near patients during the first week of illness.
Conflict of Interest.

The authors declare no conflict of interest.
Graphical abstract
Highlights

- PM mass collection for toxicological studies in various microenvironments are reviewed.
- Lower amounts of PM mass limits the workflows for toxicity assessments.
- Portable samplers with high flow rates are suitable for both indoor and outdoor measurement.
- Cyclone sampling effectively collects viruses in all environments.
- Predictive modelling aids in identifying hotspots for particle mass collection.