Table S1. Pearson correlation matrix of heavy metal(loid)s of the SPM in Zhujiang River.

	V	Cr	Mn	Ni	Cu	Zn	As	Cd	Pb
V	1	0.741**							
Cr	0.345	0.719**	1						
Mn	0.513*	0.841**	0.694**	1					
Ni	0.342	0.679**	0.492*	0.697**	1				
Cu	-0.154	-0.182	0.089	-0.031	-0.160	1			
Zn	-0.013	-0.306	-0.310	-0.552**	-0.263	0.060	1		
As	-0.159	-0.282	-0.182	-0.457*	-0.136	0.037	0.780**	1	
Cd	0.430	0.783**	0.696**	0.692**	0.546	-0.079	-0.153	-0.138	1

Note: *, Correlation is significant at the 0.05 level (2-tailed); **, Correlation is remarkably at the 0.01 level (2-tailed).

Table S2. Hazard index (HI) calculated results for each site, and reference dose for heavy metal(loid)s in Zhujiang River.

Site	V	Cr	Mn	Ni	Cu	Zn	As	Cd	Pb
M1	3.0E-01	2.9E-01	3.6E-02	6.8E-03	3.3E-03	2.5E-04	3.1E+00	4.0E-02	8.7E-03
M2	1.8E-01	2.8E-01	5.4E-02	4.3E-03	4.4E-03	2.5E-04	3.1E+00	4.1E-02	7.5E-03
M3	2.7E-01	3.3E-01	5.8E-02	5.4E-03	4.2E-03	4.1E-04	3.0E+00	4.7E-02	1.2E-02
M4	1.9E-01	2.2E-01	8.4E-02	5.0E-03	3.7E-03	4.2E-04	3.4E+00	3.0E-02	8.3E-03
M5	2.2E-01	2.9E-01	8.7E-02	5.8E-03	4.2E-03	2.4E-04	3.3E+00	4.1E-02	1.0E-02
M6	3.9E-02	4.0E-02	9.6E-03	1.5E-03	8.2E-04	9.5E-05	2.3E+00	4.1E-02	1.0E-02
M7	1.0E-01	2.4E-01	9.3E-02	4.7E-03	2.8E-03	5.5E-04	4.1E+00	7.4E-02	1.2E-02

...
Site	V	Cr	Mn	Ni	Cu	Zn	As	Cd	Pb
M13	2.2E-01	2.2E-01	5.3E-02	3.6E-03	1.6E-03	2.3E-04	2.1E+00	3.5E-02	5.5E-03
M14	1.7E-01	2.1E-01	4.2E-02	3.6E-03	1.7E-03	4.7E-04	2.3E+00	2.7E-02	3.6E-03
M15	2.0E-01	2.1E-01	5.2E-02	4.0E-03	1.6E-03	2.8E-04	2.8E+00	2.9E-02	4.6E-03
M16	1.7E-01	2.2E-01	6.6E-02	3.7E-03	2.2E-03	3.6E-04	3.0E+00	5.2E-02	8.9E-03
M17	1.8E-01	1.9E-01	5.8E-02	2.9E-03	1.7E-03	2.0E-04	2.6E+00	3.3E-02	1.3E-03
M18	2.4E-01	2.0E-01	4.0E-02	3.2E-03	1.5E-03	1.9E-04	2.8E+00	1.8E-02	6.6E-03
B1	2.1E-01	8.9E-02	8.6E-03	—	1.4E-03	1.6E-04	6.6E+00	7.6E-02	—
B2	2.9E-01	3.2E-01	6.6E-02	5.4E-03	4.4E-03	2.0E-04	7.0E-01	1.9E-02	6.3E-03
B3	1.4E-01	1.3E-01	3.8E-02	3.6E-03	2.2E-03	1.3E-04	1.2E+00	3.4E-02	—
B4	1.1E-01	6.1E-02	3.2E-02	2.1E-03	3.9E-04	1.0E-03	4.6E+00	3.0E-02	—
Min	1.3E-02	3.0E-02	7.1E-03	1.1E-03	6.1E-04	7.0E-05	7.0E-01	1.8E-02	1.3E-03
Max	3.3E-01	3.2E-01	6.9E-02	5.4E-03	4.4E-03	1.0E-03	6.6E+00	7.6E-02	8.9E-03
AM	1.8E-01	1.8E-01	4.6E-02	3.4E-03	2.0E-03	2.7E-04	2.4E+00	3.3E-02	6.2E-03
RfD	7.0E-05	6.0E-05	1.8E-03	1.0E-03	1.9E-03	6.0E-02	1.2E-04	1.0E-05	5.3E-04

Note: Units in mg kg⁻¹ day⁻¹ for RfD; Min, minimum; Max, Maximum; AM, arithmetical mean; RfD, reference dose [1,2]. "—" means HI value is not calculated due to the metal contents in the corresponding SPM sample are below detectable limit.

References

1. Wu, T.; Bi, X.; Li, Z.; Sun, G.; Feng, X.; Shang, L.; Zhang, H.; He, T.; Chen, J. Contaminations, Sources, and Health Risks of Trace Metal(loid)s in Street Dust of a Small City Impacted by Artisanal Zn Smelting Activities. International Journal of Environmental Research and Public Health 2017, 14, 961, doi:10.3390/ijerph14090961.

2. Wan, D.J.; Zhan, C.L.; Yang, G.L.; Liu, X.Q.; Yang, J.S. Preliminary Assessment of Health Risks of Potentially Toxic Elements in Settled Dust over Beijing Urban Area. International Journal of Environmental Research and Public Health 2016, 13, doi:10.3390/ijerph13050491.