Re-assessing gallium-67 as a therapeutic radionuclide

Abbreviated title: Gallium-67 as a therapeutic radionuclide

Muhamad F. bin Othman¹, Nabil R. Mitry², Valerie J. Lewington², Philip J. Blower¹, Samantha Y.A. Terry¹∗

¹King’s College London, Department of Imaging Chemistry and Biology, St. Thomas’ Hospital, London, SE1 7EH, UK ²Guy’s & St Thomas’ NHS Foundation Trust, Nuclear Medicine Department, London, SE1 9RT, UK.

* Correspondence to: Dr Samantha YA Terry, King’s College London, Department of Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, 4th floor Lambeth Wing, St Thomas’ Hospital, London, SE1 7EH.

samantha.terry@kcl.ac.uk; +44(0)2071887188 ext.56328

Key words: Gallium-67, radionuclide therapy, Auger electrons, clonogenic assay
Abstract

Introduction. Despite its desirable half-life and low energy Auger electrons that travel further than for other radionuclides, 67Ga has been neglected as a therapeutic radionuclide. Here, 67Ga is compared with Auger electron emitter 111In as a potential therapeutic radionuclide.

Methods. Plasmid pBR322 studies allowed direct comparison between 67Ga and 111In (1 MBq) in causing DNA damage, including the effect of chelators (EDTA and DTPA) and the effects of a free radical scavenger (DMSO). The cytotoxicity of internalised (by means of delivery in the form of oxine complexes) and non-internalised 67Ga and 111In was measured in DU145 prostate cancer cells after a one-hour incubation using cell viability (trypan blue) and clonogenic studies. MDA-MB-231 and HCC1954 cells were also used.

Results. Plasmid DNA damage was caused by 67Ga and was comparable to that caused by 111In; it was reduced in the presence of EDTA, DTPA and DMSO. The A_{50} values (internalised activity of oxine complexes per cell required to kill 50% of cells) as determined by trypan blue staining was 1.0 Bq/cell for both 67Ga and 111In; the A_{50} values determined by clonogenic assay were 0.7 Bq/cell and 0.3 Bq/cell for 111In and 67Ga respectively. At the concentrations required to achieve these uptake levels, non-internalised 67Ga and 111In caused no cellular toxicity. Qualitatively similar results were found for MDA-MB-231 and HCC1954 cells.

Conclusion. 67Ga causes as much damage as 111In to plasmid DNA in solution and shows similar toxicity as 111In at equivalent internalised activity per cell. 67Ga therefore deserves further evaluation for radionuclide therapy.

Advances in Knowledge and Implications for Patient Care. The data presented here is at the basic level of science. If future in vivo and clinical studies are successful, 67Ga could become a useful radionuclide with little healthy tissue toxicity in the arsenal of weapons for treating cancer.
1. Introduction

Radiopharmaceutical therapies, such as 131I-MIBG, anti-CD20 antibodies (labelled with 90Y or 131I), and 177Lu-Octreotate, have become standard in the clinic. These beta particle-emitting treatments, however, are generally not curative and can cause toxicity to healthy tissue due to the long range (up to 1 cm for 90Y) by high beta energies. Radioisotopes emitting Auger electrons with a much shorter range (<1 \(\mu m\)) are now being considered for targeted radionuclide therapy and could become useful tools in targeting micrometastases that play a detrimental role in tumour recurrence.

Gamma camera imaging with 67Ga has been used regularly in the clinic since the 1980s to image lymphoma where it was useful in disease staging, monitoring disease progression and relapse, and predicting therapy response [1]. In Hodgkin's disease, the detection sensitivity is 70 to 83% [2]. In non-Hodgkin's lymphoma the detection sensitivity depends on cell differentiation status; less differentiated cells show higher avidity for gallium [1]. Other gallium-avid cancers include lung cancer, melanoma and multiple myeloma [1, 2]. In these applications 67Ga is administered as 67Ga-citrate and 67Ga uptake by cells is believed to be transferrin-mediated [3], although there is also evidence for transferrin-independent mechanisms [4-6].

A feature of 67Ga is that besides its gamma emissions for scintigraphy and SPECT imaging, it also emits Auger electrons [7] and thus has potential as a therapeutic radionuclide. As such it could form part of a “theranostic pair” with the generator-produced positron emitter 68Ga.

Despite producing fewer Auger electrons per decay (average of 4.7) than fellow Auger electron emitter 111In (14.7), the average total Auger electron energy released per decay of 67Ga (6.3 keV) is similar to that of 111In (6.8 keV) [8]. In fact, among Auger electron emitters, 67Ga produces amongst the most energetic (7 to 9 KeV) and longest ranging (up to 2.4 \(\mu m\) in water) Auger electrons [7]. This may reduce the need for the radionuclide to be localised in specific subcellular compartments in order to be effective.
67Ga has been explored previously, to a limited extent, as a radionuclide for therapeutic applications [9-13]. In vitro results were promising and showed that treatment with 67Ga diminished clonogenic capacity in human U937 lymphoma cells [9] and in myeloid leukemic blasts from acute myeloid leukemia patients [10]. A feasibility study in eight patients with relapsed acute leukemia was less successful due to the low cell uptake of 67Ga-citrate [11], which might have arisen in part from using higher citrate concentrations in the clinical preparations than used in the in vitro work. Others have explored the therapeutic potential of 67Ga in lymphoma when coupled to anti-CD74 antibodies [12, 14] or anti-LL1 antibodies [13]. Michel et al. showed that 67Ga was two to three times more potent than 111In when coupled to anti-CD74 antibodies on the basis of equivalent total disintegrations in the medium per viable cell [12]. Low specific activities and lack of purpose-designed gallium chelators and conjugates at that time, however, led to a lack of further enquiry in this field.

In recent years the development of peptides and proteins labelled with 68Ga, arising from the growing popularity of the 68Ga generator for positron emission tomography applications, has led to a new generation of effective bifunctional chelators for gallium [15-25]. For example, the trishydroxypyridinone chelator allows radiolabelling of molecular targeting agents with gallium using fast and simple one-step procedures [15, 20]. The resulting enhanced versatility and range of potentially useful targeting agents now presents an opportunity to reconsider 67Ga as a targeted therapeutic radionuclide.

Here a comparison is made between 67Ga and the well-characterised and clinically evaluated radionuclide 111In, which has been successfully tested preclinically as a therapeutic radionuclide attached to cell surface or intracellular targets [26-28]. 67Ga and 111In have similar half-lives (78 and 67 hours, respectively) and both produce gamma rays. We used the cell-free pBR322 plasmid assay to directly compare DNA damage induced by the radionuclides without complications due to cellular and subcellular barriers, DNA repair mechanisms and other cellular responses. For the first time, the levels of activity per cell
required to achieve significant cytotoxic effects was calculated from viability and clonogenic assays using radiolabelled lipophilic complexes in three prostate and breast cancer cell lines, selected for their possible future use in in vivo models for radionuclide therapy of circulating tumour cells and micrometastases using Auger electron emitters.

2. Materials and methods

2.1 Radionuclide preparation

111In-chloride (111InCl$_3$) (Mallinckrodt, Netherlands) was supplied at 111 MBq in 0.3 mL 0.05 M HCl. 67Ga-citrate (6.46 mM citrate, Mallinckrodt, Netherlands) was converted to 67Ga-chloride (67GaCl$_3$) [29]. Briefly, 67Ga-citrate (82-160 MBq in 2.2 mL) was diluted to 5 mL with dH$_2$O and passed through a Silica Light SEP-PAK column (Waters, US) at 1 mL/min. After washing with 5 mL dH$_2$O, trapped 67Ga was eluted with 0.1 M HCl (Sigma, UK) and collected in 0.5 mL fractions. Fractions with the highest activity concentration 67Ga-chloride (200-800 MBq/mL, fractions 6 or 7) were used.

2.2 Cell-free DNA damage by 111In and 67Ga

125 ng pBR322 (10 μL supplied in 10 mM Tris-HCl (pH 8.0) with 1 mM ethylenediaminetetraacetic acid (EDTA), Sigma) was mixed with 1 MBq 111In-chloride, 67Ga-chloride or 67Ga-citrate and incubated up to 72 hours at 4°C (final EDTA concentration 0.1 mM). The final volume was 100 μL in Dulbecco’s phosphate-buffered saline pH 7.4 (PBS; Thermo Fisher, UK).

Plasmids were co-incubated with 14 mM dimethylsulfoxide (DMSO), excess EDTA (5 mM) or diethylenetriamine pentaacetic acid (DTPA; 5 mM). Controls included untreated plasmid (no radionuclide), external irradiation (where radionuclides in a 50 mL tube were physically separated from plasmid in 1.5 mL microcentrifuge tube inside the 50 mL tube), and
equivalent amounts of non-radioactive gallium- (0.69 pmol) and indium-chloride (0.58 pmol) at molar concentrations equivalent to 1 MBq radionuclide.

After treatment, 12.5 ng plasmid on a 0.8% agarose gel, run at 100V for 25 minutes, was visualised with Gel Red™ (Biotium, USA) by UV transilluminator (Gel Doc-it, BioRad, UK).

2.3 Analysis of gel electrophoresis images

Images were analysed by densitometry of each plasmid band (Figures 1-2, S1-3; supercoiled, circular and linear; Image J 1.48, NIH, USA). Background was measured and subtracted from band intensity. The fraction of supercoiled plasmid (undamaged) of total plasmid represents undamaged plasmid.

2.4 111In- and 67Ga-oxinate complex synthesis

Lipophilic complexes were prepared from 67Ga citrate as described previously [30]. 67Ga citrate (Mallinckrodt Medical Inc, Netherlands; 20-50 MBq, 0.1-1 mL) was added to 50 µg oxine (8-hydroxyquinoline; dissolved in ethanol at 1 mg/mL; Sigma). The solution was extracted into dichloromethane (Sigma, USA) and this fraction separated and evaporated to dryness and reconstituted in 2% ethanol in saline.

Tropolone (2-hydroxy-2,4,6-cycloheptatriene-1-one) (Sigma) was dissolved in ethanol (1 mg/mL). MPO (2-mercaptopyridine-N-oxide) (Sigma) was dissolved in distilled water at 1 mg/mL. 67Ga citrate (Mallinckrodt Medical Inc, Netherlands) was added at 20-50 MBq (0.1-1 mL) to the ligand solution (50 µg tropolone and 500 µg MPO). The resulting solutions were extracted into dichloromethane (Sigma, USA) and measured for labelling yield following drying.

Up to 75 MBq 111In-chloride (0.1 - 0.2 mL), adjusted to pH 6 with acetate buffer, was added to oxine (1mg/mL in 2% ethanol) and vortexed for 5 minutes. 111In-oxine complex was extracted into chloroform, evaporated and reconstituted in 2% ethanol in saline [31].
Radiochemical yield of radiometal complexes was measured in a dose calibrator.

2.5 Cell culture

Human prostate cancer cells DU145, courtesy of Dr. Florian Kampmeier [32], and breast cancer cells HCC1954, were grown in RPMI-1640 at 37 °C in a humidified atmosphere with 5% CO₂. Human breast cancer cells MDA-MB-231 were grown in Dulbecco's Modified Eagle Medium (DMEM; with high glucose 4.5 g/L; PAA, Austria). Media were supplemented with L-glutamine (1.5 mM; PAA Laboratories, Austria), 10% fetal bovine serum (Invitrogen) and penicillin (50 I.U./mL)/streptomycin (50 µg/mL) (Invitrogen). Prior to use, cells were trypsinised and washed twice with PBS.

2.6 Cellular uptake and retention of radionuclide oxine complexes

Cells (10⁶) in suspension were incubated with 0.1 MBq ⁶⁷Ga- or ¹¹¹In-oxine in 1 mL PBS for 1 hour at 37 °C and 5% CO₂ then pelleted and washed twice with PBS. Cell-bound (pellet) and free (supernatant) activity was measured by gamma counter.

For cellular retention studies, cells were treated and washed as above and plated in a 6-well plate for three days. At different times, medium was collected, cells washed, and the amount of cell-bound versus free activity measured. The percentage of cell-bound activity retained within the cell at time points after 1 hour (set at 100%) was measured.

2.7 Viability assay

Cells (2.5 x 10⁵) were incubated with ⁶⁷Ga- (2-25 MBq/mL) or ¹¹¹In-oxine (0.5-30 MBq/mL) in medium (250 µL total) at 37 °C for 1 hour. Oxine and ethanol concentrations were 7 µM and 1%, respectively. Controls included ⁶⁷Ga-citrate and ¹¹¹In-chloride (no significant uptake in cells) and decayed oxine complexes at levels equivalent to complete decay of 20 MBq/mL samples.
Following incubation, cells were centrifuged, washed and seeded in medium in 6-well plates for 3 days at 37°C in 5% CO₂. Cells were then washed, trypsinised and counted for viability by trypan blue exclusion.

2.8 Clonogenic survival

Cells were treated as in the viability assay, but after treatment and washing, 800-2500 cells were seeded in 6-well plates at 37 °C in 5% CO₂ for 10-14 days. Medium was replaced every 3 days. Colonies (>50 cells) were fixed, stained with methanol/1% crystal violet (Sigma, 1:1) and counted. The results were plotted as the surviving percentage relative to untreated values, with the latter set at 100%.

2.9 Statistical analysis

For plasmid studies, data were analysed by 2-way ANOVA. Student and paired t-tests were used to compare preparations at any one particular time point or the results from the oxine studies, respectively. Statistical analyses were carried out with GraphPad Prism 5 (version 5.04, GraphPad Software Inc, USA).

3. Results

3.1 Cell free plasmid DNA damage by ¹¹¹In and ⁶⁷Ga

Incubation of pBR322 supercoiled DNA with ¹¹¹In and ⁶⁷Ga (0.1-1MBq) led to single and double DNA strand breaks, i.e. conversion of supercoiled plasmid to either relaxed or linear plasmid, respectively. Plasmid integrity (i.e. the fraction of plasmid remaining in the supercoiled form) decreased as radioactivity increased; Figure 1A; Figure S1). As this activity produced significant damage without assay saturation, it was deemed suitable for comparative studies. DNA damage was detected as early as 4 hours post incubation (Figures 1B-C) and after 24 hours of incubation, the supercoiled DNA fractions were reduced to 0.001
± 0.002 and 0.06 ± 0.01 for 67Ga and 111In respectively (p=0.002 compared to untreated). In contrast, untreated controls (0.76 to 0.90) and non-radioactive In-chloride (5.8 nM; 0.89 ± 0.002) or Ga-chloride (6.9 nM; 0.86 ± 0.04) controls produced little DNA damage.

Plasmid DNA was partially protected against 111In-induced damage, and less so from 67Ga, by co-incubation with DMSO (Figures 1 and S2). At 24 hours, DMSO co-incubation led to supercoiled fractions of 0.47 ± 0.13 and 0.20 ± 0.04, for 1 MBq 111In and 67Ga, respectively.

External irradiation (i.e. radionuclide separated from the plasmid by the walls of a plastic tube; so that only gamma photons were incident upon the plasmid-containing solution) produced relatively little DNA damage for 67Ga (p>0.05 at 48 hours compared to untreated controls). External 111In produced significantly more DNA damage than untreated controls (p<0.05 at 48 hours), but significantly less than internal 111In-chloride with and without DMSO (p<0.001 and p<0.001 at 48 hours, respectively).

The addition of chelating agents EDTA, DTPA and citrate provided partial protection of DNA against damage by both radionuclides (Figures 2, S3). At 72 hours, 67Ga-chloride plus EDTA or DTPA (5 mM) gave a supercoiled fraction of 0.18 ± 0.05 or 0.51 ± 0.03, respectively, compared to 0.02 ± 0.02 for 67Ga-chloride only (Figure 2B). Similarly, 67Ga-citrate produced less DNA damage (supercoiled fraction: 0.72 ± 0.02) than 67Ga-chloride. Incubation with 111In-chloride plus additional EDTA or DTPA led to supercoiled fractions of 0.27 ± 0.08 or 0.62 ± 0.05, respectively, compared to 0.02 ± 0.02 for 111In-chloride alone (Figure 2A).

3.2 Radionuclide oxine synthesis

Radionlabelling yields for 67Ga-oxine, -tropolone, and -MPO were 92%, 80%, and 25%, respectively, and 98% for 111In-oxine.

3.3 Binding and retention of radionuclide oxine complexes
Ga-oxine gave the highest cell binding (Figure S4); all subsequent studies were carried out with the oxine complex. In DU145 cells, a one-hour incubation with 111In-oxine or 67Ga-oxine allowed radionuclide binding at $60.6 \pm 8.8\%$ or $7.5 \pm 1.3\%$, respectively (Figure 3A). This decreased with time with only $31.2 \pm 1.4\%$ and $38.8\% \pm 0.7\%$ of the initially-bound 111In and 67Ga, respectively, retained 72 hours after a one-hour incubation period (Figure 3B). Similar results were found in cell lines MDA-MB-231 and HCC1954 (Figures S5, S6). The different cell labelling efficiencies of 111In-oxine and 67Ga-oxine raise the issue of whether to discuss cellular toxicity in relation to the radioactivity to which the cells are exposed in total (i.e. the radioactivity added to the culture) or the radioactivity that is accumulated in the cells (referred to as “cell-bound” activity henceforth). Both are discussed together in the following paragraphs.

3.4 Viability assay

A_{50} is defined as the cell-bound activity causing 50% reduction in viability relative to untreated cells (100%). Three days after an initial one-hour incubation period with 67Ga-oxine, the A_{50} was approximately 1 Bq/cell (Table 1, Figure 4A). Cell-bound 67Ga activity required to reduce viability to $17.4 \pm 6.6\%$ was approximately 1.5 Bq/cell; this required incubation with 15 MBq/mL 67Ga-oxine (Figure 4B). At this concentration, 67Ga-citrate, which was not taken up significantly in cells, caused only 53% loss in viability (Figure 4B). A similar loss in viability occurred in the control sample incubated with decayed 67Ga-oxine.

Qualitatively similar results were obtained with 111In; the A_{50} was approximately 1 Bq/cell. However, even at cell-bound activities up to 19 Bq/cell, viability did not drop below 20%. As for 67Ga, the controls showed a significant level of toxicity caused by decayed 111In-oxine similar to that caused by 111In-chloride, which did not bind significantly to cells. Interestingly, 67Ga-oxine-induced toxicity at 15 MBq/mL was the same as that caused by the same concentration of 111In-oxine, despite this concentration of 111In-oxine yielding almost 10-fold
higher activity per cell. Non-cell bound 111In-chloride caused toxicity (viability around 50%). A similar level of toxicity resulted from the purely chemical effect of decayed 111In-oxine. Qualitatively similar results for both 67Ga and 111In were found in cell lines MDA-MB-231 and HCC1954 (Figures S7 and S8 and Table S1).

3.5 Clonogenic survival assay

A one-hour incubation period with 67Ga-oxine (15 MBq/mL) with cellular uptake as little as 1.1 Bq/cell was enough to diminish clonogenic survival to 4.4% ± 3.1% compared to untreated controls (Figure 5A). Replacing 67Ga-oxine with 67Ga-citrate at this same concentration, with minimal cellular uptake, caused no significant loss in clonogenicity compared to untreated controls (Figure 5B). Qualitatively similar results were obtained for 111In demonstrating that neither radionuclide affected clonogenicity significantly unless bound to the cell (Figure 5B). Fully decayed radioactive 67Ga-oxine and 111In-oxine added to the incubation medium led to a significant decrease in relative clonogenic survival (to 74 ± 17% and 69 ± 20% for decayed 67Ga-oxine and 111In-oxine, respectively, see Figure 5B) compared to untreated controls. However this chemical toxicity was much less than the toxicity of their non-decayed counterparts, indicating that the radioactivity was by far the major contributor to the observed toxic effect. Qualitatively similar results were found in cell lines MDA-MB-231 and HCC1954 (Figures S9 and S10 and Table S2).

4. Discussion

The plasmid data presented here suggest the involvement of different mechanisms of DNA damage. These include ionisation and formation of free radicals along the tracks of Auger electrons, local ionisation events caused directly by the residual ion after Auger electron emission (short range effects), free radicals diffusing significant distances from the Auger
electron track and residual ion, and minor ionisation and free radicals caused by gamma photons (long range effects).

DNA damage produced by ^{67}Ga was significantly reduced by chelation with EDTA, DTPA or citrate and incubation with hydroxyl radical scavenger DMSO. The protective effect of chelating the radionuclides with EDTA, DTPA or citrate, on DNA may be a distance effect; assuming unchelated positively-charged In$^{3+}$ and Ga$^{3+}$ bind directly to negatively charged DNA, as has previously been shown for ^{111}In [33]. Complexing ^{67}Ga with EDTA, forming a negatively charged 1:1 6-coordinate complex, would completely envelope the ^{67}Ga atom, preventing metal coordination by plasmid DNA [34]. However, ^{111}In forming a 1:1 complex with EDTA would leave some possibility for DNA to coordinate directly to the radiometal which would remain coordinatively unsaturated because of its larger ionic radius [35]. DTPA offers more protection then EDTA against DNA damage by ^{111}In (Figure 2); this may be because being octadentate it more completely fills the coordination sphere of indium than EDTA does [36]. The degree of protection (EDTA<DTPA<citrate$_2$) is also in line with the negative charge of the resulting complex: (1-, 2-, 5-).

Free radical scavengers such as DMSO are unlikely to protect against the short-range effects. Previous studies with free radical scavengers have focused on ^{125}I, where DMSO reduced strand breakage by 40% if ^{125}I was not bound to DNA. When bound to DNA, damage induced by ^{125}I was not protected by DMSO [37]. Also, non-plasmid-bound $^{99m}\text{TcO}_4^-$ caused several fold lower induction of single strand breakage in the presence DMSO [38, 39].

Overall, direct incubation of radionuclides with plasmid DNA in a cell-free system is useful to understand DNA damage by radionuclide emissions and decay only. However, in these experiments radionuclides can directly bind DNA, thus overestimating the potential damage compared to the cellular environment, where direct binding to DNA is less likely.

Results obtained in cell studies showed that ^{111}In and ^{67}Ga induced high clonogenic toxicity only if incorporated into the cell; external radionuclides and other variables had little effect.
Nonetheless decayed radionuclides, producing amongst other compounds zinc and cadmium, did influence both viability and clonogenicity. External irradiation via gamma emissions produced more DNA damage for 111In-chloride than 67Ga-chloride due perhaps to higher gamma ray exposure rate constants. Surprisingly, cell viability was decreased for non-internalised 111In (60.9 ± 8.4%) and 67Ga (47.2 ± 8.4%) compared to untreated cells, while clonogenic toxicity was not. This highlights that they measure different aspects of cytotoxicity and are complementary rather than alternative methods.

The clonogenic toxicity of incorporated radioactivity is similar for the two radionuclides and for all three cell lines, with an A_{v0} of approximately 1 Bq/cell. This similarity should be interpreted cautiously, since the cellular toxicity of Auger electron emitters is likely to be highly dependent on the intracellular distribution of the radionuclides, which we have not determined and which may not be the same for the two radionuclides. Nevertheless this figure may be a useful guide to how much radioactivity must be incorporated into cancer cells in vivo for effective targeted radionuclide therapy (tRT) and could be used to assess feasibility of clinical tRT.

It should be noted that 67Ga-oxine is not a very effective method of incorporating 67Ga into cells. Results were, however, consistent with previous trends, including radionlabeling yields for oxine with 67Ga [30] and cell labelling numbers of 111In-oxine [31] and 67Ga-oxine [40]. Efficient cell labelling with 111In is probably due to 111In-oxine diffusing into the cell cytoplasm and dissociating whereupon 111In binds intracellular macromolecules and is trapped within the cell [31]. In leukocytes, 111In-oxine also partly localises to the nucleus [41]. If 67Ga-oxine forms a more stable complex [40], the radionuclide may diffuse in but become trapped less readily due to slower dissociation. In order to achieve comparable cellular uptake (Bq/cell), the radioactive concentration of 67Ga-oxine was increased compared to 111In-oxine.
Future studies should focus on targeted approaches as well as in vivo therapeutic studies comparing 67Ga with 111In as well as beta emitters such as 177Lu. Interestingly, the higher energy Auger electrons emitted by 67Ga compared to other Auger electron-emitting radionuclides may provide an advantage by relaxing the requirement for 67Ga to be localised in specific sub-cellular compartments (in particular the nucleus) in order to be effective as a therapeutic. The critical observation that 67Ga (and similarly 111In) has to be cell bound to be effective suggests that future targeting studies can focus on the feasibility in vivo of achieving target uptake of around 1 Bq per cancer cell required for effective cell killing.

5. Conclusion

67Ga damages plasmid DNA in a manner that may be dependent on distance to the DNA, which in turn may be affected by the chemical form of the radionuclide. Neither 67Ga nor 111In showed substantial toxicity unless incorporated into the cells. The threshold cellular uptake of 67Ga to achieve substantial cell kill is of the order of 1 Bq per cell. 67Ga deserves further evaluation for radionuclide therapy, especially in the context of a theranostic pairing with 68Ga.
References

[1] Bartold SP, Donohoe KJ, Fletcher JW, Haynie TP, Henkin RE, Silberstein EB, et al. Procedure guideline for gallium scintigraphy in the evaluation of malignant disease. J Nucl Med 1997;38:990-994.

[2] Biersack HJ, Freeman LM. Clinical Nuclear Medicine: Springer Berlin Heidelberg, 2008.

[3] Motohashi H. The relationship between Ga-67 uptake and transferrin receptors in cultured cells. Kanagawa Shigaku 1990;24:618-629.

[4] Luttropp CA, Jackson JA, Jones BJ, Sohn MH, Lynch RE, Morton KA. Uptake of gallium-67 in transfected cells and tumors absent or enriched in the transferrin receptor. J Nucl Med 1998;39:1405-1411.

[5] Weiner RE. The mechanism of ⁶⁷Ga localization in malignant disease. Nucl Med Biol 1996;23:745-751.

[6] Weiner RE, Avis I, Neumann RD, Mulshine JL. Transferrin dependence of Ga(NO₃)₃ inhibition of growth in human-derived small cell lung cancer cells. J Cell Biochem Suppl 1996;24:276-287.

[7] Howell RW. Radiation spectra for Auger - electron emitting radionuclides: Report No. 2 of AAPM Nuclear Medicine Task Group No. 6. Med Phys 1992;19:1371-1383.

[8] Buchegger F, Perillo-Adamer F, Dupertuis YM, Delaloye AB. Auger radiation targeted into DNA: a therapy perspective. Eur J Nucl Med Mol Imaging 2006;33:1352-1363.

[9] Jonkhoff AR, Huijgens PC, Versteegh RT, van Dieren EB, Ossenkoppele GJ, Martens HJ, et al. Gallium-67 radiotoxicity in human U937 lymphoma cells. Br J Cancer 1993;67:693-700.
[10] Jonkhoff AR, Huijgens PC, Versteegh RT, van Lingen A, Ossenkoppele GJ, Drager AM, et al. Radiotoxicity of 67-gallium on myeloid leukemic blasts. Leuk Res 1995;19:169-174.

[11] Jonkhoff AR, Plaizier MA, Ossenkoppele GJ, Teule GJ, Huijgens PC. High-dose gallium-67 therapy in patients with relapsed acute leukaemia: a feasibility study. Br J Cancer 1995;72:1541-1546.

[12] Michel RB, Brechbiel MW, Mattes MJ. A comparison of 4 radionuclides conjugated to antibodies for single-cell kill. J Nucl Med 2003;44:632-640.

[13] Ochakovskaya R, Osorio L, Goldenberg DM, Mattes MJ. Therapy of disseminated B-cell lymphoma xenografts in severe combined immunodeficient mice with an anti-CD74 antibody conjugated with (111)indium, (67)gallium, or (90)yttrium. Clin Cancer Res 2001;7:1505-1510.

[14] Govindan SV, Goldenberg DM, Elsamra SE, Griffiths GL, Ong GL, Brechbiel MW, et al. Radionuclides linked to a CD74 antibody as therapeutic agents for B-cell lymphoma: comparison of Auger electron emitters with beta-particle emitters. J Nucl Med 2000;41:2089-2097.

[15] Berry DJ, Ma Y, Ballinger JR, Tavare R, Koers A, Sunassee K, et al. Efficient bifunctional gallium-68 chelators for positron emission tomography: tris(hydroxypyridinone) ligands. Chem Commun (Camb) 2011;47:7068-7070.

[16] Boros E, Ferreira CL, Yapp DT, Gill RK, Price EW, Adam MJ, et al. RGD conjugates of the H2dedpa scaffold: synthesis, labeling and imaging with 68Ga. Nucl Med Biol 2012;39:785-794.

[17] Eisenwiener KP, Prata MI, Buschmann I, Zhang HW, Santos AC, Wenger S, et al. NODAGATOC, a new chelator-coupled somatostatin analogue labeled with [67/68Ga] and [111In] for SPECT, PET, and targeted therapeutic applications of
somatostatin receptor (hsst2) expressing tumors. Bioconjug Chem 2002;13:530-541.

[18] Ferreira CL, Lamsa E, Woods M, Duan Y, Fernando P, Bensimon C, et al. Evaluation of bifunctional chelates for the development of gallium-based radiopharmaceuticals. Bioconjug Chem 2010;21:531-536.

[19] Knetsch PA, Zhai C, Rangger C, Blatzer M, Haas H, Kaeopookum P, et al. [(68)Ga]FSC-(RGD)$_3$ a trimeric RGD peptide for imaging alpha$_3$ beta$_3$ integrin expression based on a novel siderophore derived chelating scaffold-synthesis and evaluation. Nucl Med Biol 2015;42:115-122.

[20] Ma MT, Cullinane C, Imberti C, Baguna Torres J, Terry SY, Roselt P, et al. New tris(hydroxypyridinone) bifunctional chelators containing isothiocyanate groups provide a versatile platform for rapid one-step labeling and PET imaging with (68)Ga(3+). Bioconjug Chem 2016;27:309-318.

[21] Notni J, Pohle K, Wester HJ. Comparative gallium-68 labeling of TRAP-, NOTA-, and DOTA-peptides: practical consequences for the future of gallium-68-PET. Eur J Nucl Med Mol Imaging Res 2012;2:28.

[22] Oxboel J, Brandt-Larsen M, Schjoeth-Eskesen C, Myschetzky R, El-Ali HH, Madsen J, et al. Comparison of two new angiogenesis PET tracers 68Ga-NODAGA-E[c(RGDyK)]$_2$ and $^{(64)}$Cu-NODAGA-E[c(RGDyK)]$_2$; in vivo imaging studies in human xenograft tumors. Nucl Med Biol 2014;41:259-267.

[23] Ramogida CF, Cawthray JF, Boros E, Ferreira CL, Patrick BO, Adam MJ, et al. H2CHXdedpa and H4CHXoctapa-chiral acyclic chelating ligands for (67/68)Ga and (111)In radiopharmaceuticals. Inorg Chem 2015;54:2017-2031.
[24] Simecek J, Notni J, Kapp TG, Kessler H, Wester HJ. Benefits of NOPO as chelator in gallium-68 peptides, exemplified by preclinical characterization of (68)Ga-NOPO-c(RGDfK). Mol Pharm 2014;11:1687-1695.

[25] Waldron BP, Parker D, Burchardt C, Yufit DS, Zimny M, Roesch F. Structure and stability of hexadentate complexes of ligands based on AAZTA for efficient PET labelling with gallium-68. Chem Commun (Camb) 2013;49:579-581.

[26] Cornelissen B, Waller A, Target C, Kersemans V, Smart S, Vallis KA. 111In-BnDTPA-F3: an Auger electron-emitting radiotherapeutic agent that targets nucleolin. Eur J Nucl Med Mol Imaging Res 2012;2:9.

[27] Cornelissen B, Darbar S, Kersemans V, Allen D, Falzone N, Barbeau J, et al. Amplification of DNA damage by a gammaH2AX-targeted radiopharmaceutical. Nucl Med Biol 2012;39:1142-1151.

[28] Reilly RM, Kiarash R, Cameron RG, Porlier N, Sandhu J, Hill RP, et al. 111In-labeled EGF is selectively radiotoxic to human breast cancer cells overexpressing EGFR. J Nucl Med 2000;41:429-438.

[29] Ščasnár V, van Lier J. The use of SEP-PAK SI cartridges for the preparation of gallium chloride from the citrate solution. Eur J Nucl Med Mol Imaging 1993;20:273-273.

[30] Ballinger JR, Boxen I. Gallium-67-labelled red blood cells as a blood-pool marker for dual-isotope imaging. Int J Rad Appl Instrum B 1992;19:79-81.

[31] Thakur ML, Segal AW, Louis L, Welch MJ, Hopkins J, Peters TJ. Indium-111-labeled cellular blood components: mechanism of labeling and intracellular location in human neutrophils. J Nucl Med 1977;18:1022-1026.

[32] Kampmeier F, Williams J, Maher J, Mullen G, Blower P. Design and preclinical evaluation of a 99mTc-labelled diabody of mAb J591 for SPECT imaging
of prostate-specific membrane antigen (PSMA). Eur J Nucl Med Mol Imaging Res 2014;4:13.

[33] Terry SY, Vallis KA. Relationship between chromatin structure and sensitivity to molecularly targeted auger electron radiation therapy. Int J Radiat Oncol Biol Phys 2012;83:1298-1305.

[34] Jung W-S, Chung YK, Shin DM, Kim S-D. Crystal- and solution-structure characteristics of ethylenediaminetetraacetato aluminate(III) and gallate(III). Bull Chem Soc Jpn 2002;75:1263-1267.

[35] Ilyukhin AB, Malyarik MA, Petrosyants SP, Davidovich RL, Samsonova IN. Coordination numbers seven and eight in the complexes of triwalent indium with diethylene triamine pentaacetic acid and crystal structures of Na₂[InHdtpa] · (ClO₄) · 378H₂O, C(NH₂)₃[InHdtpa] · 2H₂O, (CH₃)₄N[InHdtpa] · 3H₂O and (NH₂)₂[Indtpa] · 2H₂O. ZH NEORG KHIM 1995;40:1125-1136.

[36] Maecke HR, Riesen A, Ritter W. The molecular structure of indium-DTPA. J Nucl Med 1989;30:1235-1239.

[37] Balagurumoorthy P, Chen K, Adelstein SJ, Kassis AI. Auger electron-induced double-strand breaks depend on DNA topology. Rad Res 2008;170:70-82.

[38] Kotzerke J, Punzet R, Runge R, Ferl S, Oehme L, Wunderlich G, et al. ⁹⁹mTc-labeled HYNIC-DAPI causes plasmid DNA damage with high efficiency. PLoS One 2014;9:e104653.

[39] Runge R, Oehme L, Kotzerke J, Freudenberg R. The effect of dimethyl sulfoxide on the induction of DNA strand breaks in plasmid DNA and colony formation of PC 13 mammalian cells by alpha-, beta-, and Auger electron emitters ²²³Ra, ¹⁸⁸Re, and ⁹⁹mTc. Eur J Nucl Med Mol Imaging Res 2016;6
[40] Yano Y, Budinger TF, Ebbe SN, Mathis CA, Singh M, Brennan KM, et al. Gallium-68 lipophilic complexes for labeling platelets. J Nucl Med 1985;26:1429-1437.

[41] Puncher MR, Blower PJ. Frozen section microautoradiography in the study of radionuclide targeting: application to indium-111-oxine-labeled leukocytes. J Nucl Med 1995;36:499-505.
Acknowledgments

MF bin Othman was funded by the Malaysian Ministry of Education. Research was supported by the Wellcome Trust/EPSRC Centre of Excellence in Medical Engineering (MEC), the NIHR Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, and the KCL and UCL Comprehensive Cancer Imaging Centre funded by CRUK and EPSRC in association with the MRC and DoH (England).
Tables

TABLE 1. Cell-bound activity per cell (Bq/cell) required for a 50% (A_{50}) and 90% (A_{10}) reduction in viability and clonogenicity in DU145 cells compared to untreated cells (determined by interpolation of data in Figures 4A and 5A). No A_{10} value exists for 111In-oxine (viability assay), as loss of membrane integrity was not achieved in more than 75% of cells.

	A_{50} (Bq/cell)	A_{10} (Bq/cell)		
	67Ga-oxine	111In-oxine	67Ga-oxine	111In-oxine
Viability	1.0	1.0	1.5	N/A
(Trypan blue)				
Clonogenic	0.3	0.7	1.0	0.9
Figures

FIGURE 1.

A

B

C

- Untreated
- 111In Chloride
- 111In Chloride + DMSO
- 111In (External)
- In Chloride

- Untreated
- 67Ga Chloride
- 67Ga Chloride + DMSO
- 67Ga (External)
- Ga Chloride
FIGURE 2.

A

B
FIGURE 3.

A

B

% Cell-bound radioactivity

Time (hours)

111In Oxine
67Ga Oxine
FIGURE 4.
FIGURE 5.

A

B
Figure Legends

FIGURE 1. A: Representative image of pBR322 on an agarose gel following treatment with a radionuclide. Here, pBR322 was incubated with 1 MBq ^{111}In-chloride (^{111}In-Cl$_3$) or as external radiation (^{111}In (external)) for 72 hours in the presence or absence of DMSO or cold indium chloride (InCl$_3$). B and C: Fraction of supercoiled (undamaged) plasmid, as measured from gels such as A. Plasmids were incubated with either ^{111}InCl$_3$ (B) or ^{67}GaCl$_3$ (C). Data points are average ± standard deviation (SD; n=2-3). Relaxed bands represent single strand breaks; linear bands are double strand breaks.

FIGURE 2. Effect of chelators on plasmid damage treated with 1 MBq ^{111}In-chloride (A) or ^{67}Ga-chloride (B). The amount of supercoiled DNA (undamaged) was measured from gels where plasmid was incubated with the radionuclide in the presence or absence of chelators EDTA, DTPA and citrate for up to 72 hours. Datapoints are average ± SD (n=2-3).

FIGURE 3. Cell binding (A) and retention (B) of 0.1 MBq ^{111}In-oxine and ^{67}Ga-oxine in 10^6 DU145 cells following an initial one-hour incubation. 100% in panel B refers to the maximum bound radioactivity at one hour (A). Data are average ± SD (n=3/group).

FIGURE 4. Viability of DU145 cells treated with ^{111}In-oxine or ^{67}Ga-oxine at 72 hours. A: Viability with increasing cell-bound activities (Bq) per cell. B: Controls for radionuclide oxine treatment: untreated cells, non-cell-bound radioactivity and decayed oxine complexes, standardised at 15 MBq/mL, inducing cellular uptake of 9.09 ± 1.33 Bq/cell for ^{111}In-oxine and 1.12 ± 0.20 Bq/cell for ^{67}Ga-oxine groups. Data are average ± SD (n=3/group).

FIGURE 5. Clonogenic assay of DU145 cells treated with ^{111}In-oxine or ^{67}Ga-oxine. A: Clonogenicity with increasing cell-bound activities (Bq) per cell. B: Controls for radionuclide
oxine treatment: untreated cells, non-cell-bound radioactivity and decayed oxine complexes, standardised to treatment at 15 MBq/mL, achieving uptake of 9.09 ± 1.33 Bq/cell for 111In-oxine and 1.12 ± 0.20 Bq/cell for 67Ga-oxine groups. Data are average ± SD (n=3/group). Clonogenicity for 111In-oxine at 0.28 ± 0.48% is not visible on the graph.
APPENDIX

Figure S1. Imaging (A) and quantification (B) of plasmid damage assessment following incubation with 0.1, 0.5 and 1 MBq of 111In-chloride incubation at 4 and 24 hours. Supercoiled DNA refers to undamaged plasmid. Data are average ± standard deviation (n=3/group).
Figure S2. Images of plasmid following treatment with 1 MBq 67Ga-chloride (A) or 111In-chloride (B) at 4, 24, 48 and 72 hours of incubation in the presence or absence of DMSO. Controls include untreated plasmid, external irradiation with 67Ga- or 111In-chloride and non-radioactive Ga- or In-chloride and In-Cl.

A

	Untreated	67Ga-Cl	67Ga-Cl + DMSO	67Ga (external)	Ga-Cl
4h					
24h					
48h					
72h					

B

	Untreated	111In-Cl	111In-Cl + DMSO	111In (external)	In-Cl
4h					
24h					
48h					
72h					
Figure S3. Images of plasmid following treatment with 1 MBq ^{67}Ga-chloride (A) or ^{111}In-chloride (B) at 6, 24, 48 and 72 hours of incubation in the presence or absence of chelators EDTA (5 mM), DTPA (5 mM) or citrate (0.9-1.7 mM).

A

6h

24h

48h

72h

B

6h

24h

48h

72h
Figure S4. Cell binding study with 67Ga-labeled lipophilic complexes, namely oxine, tropolone and MPO, after a one-hour incubation at 37°C in 5% CO$_2$ incubator in MDA-MB-231 cells (1 x 10^6 cells/mL in 1 mL Dulbecco’s PBS). Cells were pelleted and the supernatant (free activity) and pellets (bound) were separately measured for radioactivity using a gamma counter (Wallac, Germany). Data are average ± standard deviation (n=2/group).
Figure S5. Cell binding of 0.1 MBq 111In-oxine and 67Ga-oxine in 1×10^6 MDA-MB-231 or HCC1954 cells in 1 mL following an initial one-hour incubation. Data are average ± standard deviation (n=3/group).
Figure S6. Retention of 0.1 MBq ^{111}In-oxine and ^{67}Ga-oxine in 1×10^6 MDA-MB-231 (A) or HCC1954 (B) cells in 1 mL following an initial one-hour incubation. Data are average ± standard deviation (n=3/group).
Figure S7. Viability trypan blue assay of MDA-MB-231 cells (in 1 mL) following treatment with 111In-oxine or 67Ga-oxine (20 MBq/mL). Viability was measured at 72 hours after incubation of cells with the radionuclides. A: Viability with increasing activities (Bq) per cell.

B: Controls for radionuclide oxine treatment including untreated cells, non-internalised radioactivity and decayed oxine complexes. Data are average ± standard deviation (n=3/group).

A

- 111In Oxine
- 67Ga Oxine

B

- 111In Oxine
- 67Ga Oxine
Figure S8. Viability trypan blue assay of HCC1954 cells (in 1 mL) following treatment with ^{111}In-oxine or ^{67}Ga-oxine (20 MBq/mL). Viability was measured at 72 hours after incubation of cells with the radionuclides. **A:** Viability with increasing activities (Bq) per cell. **B:** Controls for radionuclide oxine treatment including untreated cells, non-internalised radioactivity and decayed oxine complexes. Data are average ± standard deviation (n=3/group).

![Graph A](image1)

![Graph B](image2)
Figure S9. Clonogenic assay of MDA-MB-231 cells (in 1 mL) following treatment with 111In-oxine or 67Ga-oxine (20 MBq/mL). **A:** Clonogenicity i.e. surviving fraction with increasing activities (Bq) per cell. **B:** Controls for radionuclide oxine treatment including untreated cells, non-internalised radioactivity and decayed oxine complexes. Data are average ± standard deviation (n=3/group).
Figure S10. Clonogenic assay of HCC1954 cells (in 1 mL) following treatment with 111In-oxine or 67Ga-oxine (20 MBq/mL). A: Clonogenicity i.e. surviving fraction with increasing activities (Bq) per cell. B: Controls for radionuclide oxine treatment including untreated cells, non-internalised radioactivity and decayed oxine complexes. Data are average ± standard deviation (n=3/group).

A

B
Table S1. Activity per cell (Bq/cell) required for a 50% and 90% reduction in viability in MDA-MB-231 and HCC1954 cells.

Cells	A_{50} (Bq/cell)	A_{10} (Bq/cell)		
	67Ga	111In	67Ga	111In
MDA-MB-231	1	0.5	2	-
HCC1954	0.5	2.5	1	-

Table S2. Activity per cell (Bq/cell) required for a 50% and 90% reduction in clonogenicity in MDA-MB-231 and HCC1954 cells.

Cells	A_{50} (Bq/cell)	A_{10} (Bq/cell)		
	67Ga	111In	67Ga	111In
MDA-MB-231	0.25	0.15	1.55	0.875
HCC1954	0.1	0.6	0.5	0.8