Review

The role of spices in nutrition and health: a review of three popular spices used in Southern Nigeria

Henrietta Aritetsoma Ogbunugafor*, Chidozie Godwin Ugochukwu* and Ada Evelyn Kyrian-Ogbonna**

*Department of Applied Biochemistry, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria and **Department of Applied Microbiology and Brewery, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Nigeria

Corresponding to: Henrietta A. Ogbunugafor, Department of Applied Biochemistry, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria. E-mail: ha.ogbunugafor@unizik.edu.ng

Received 28 January 2017; Revised 28 March 2017; Editorial decision 23 May 2017

Abstract

OBJECTIVES: Spices are increasingly finding other useful roles in healthcare aside their primary use as organoleptic enhancers in culinary. Several herbs and spices are currently being investigated for their potential health benefits, hence the explosion in scientific literature in the fields of nutraceuticals and functional foods. The rise in interest on medicinal properties of herbs and spices is consequent on the failing efficacy and toxicity associated with conventional drugs and their inaccessibility to poor rural dwellers. This work reviews three piquant spices; Piper guineense, Aframomum melegueta, and Tetrapleura tetraptera common in the culinary of the Southern part of Nigeria, and it aims at concisely highlighting the researches that have been done on the nutritional quality, phytochemistry, and medicinal properties of these spices.

MATERIALS AND METHOD: A large body of peer-reviewed articles, most of them indexed in PubMed, were consulted for the purpose of the present review.

CONCLUSION: The overarching conclusion from the reviewed publications is the validation of most of the ethnomedical uses of these spices. The authors hope that this concise presentation on these spices will guide subsequent research in this field.

Key words: Piper guineense; Aframomum melegueta; Tetrapleura tetraptera; spices; nutraceuticals.

Introduction

Herbs and spices are plant-derived seasonings used for culinary purposes. The terms ‘herbs’ and ‘spices’ are often used interchangeably, but they have specific definitions in botany. Herbs store flavor component in their leaves, whereas spices store theirs in seeds, bark, and root. A spice may be the bud (clove), bark (cinnamon), root (ginger), aromatic seed (cumin), and flower stigma (saffron) of a plant. In addition to making food taste good, culinary spices have been used as food preservatives and for their health-enhancing properties for centuries (Kaefer and Milner, 2011). Moreover, for people of the world, spices stimulate appetite and create visual appeals to food (Opara and Chohan, 2014).

The use of spices in culinary predates recorded history and is said to have been an integral part of local dishes in South Asia and the Middle East as far back as 2000 BCE (Tapsell et al., 2006). The legendary Christopher Columbus’ explorations in 1492 were in search of herbs and spices (Kaefer and Milner, 2011). In Mesopotamia, the cradle of civilization where agriculture began, there is evidence that humans were using thyme for their health properties as early as 5000 BC and were growing garlic as early as 3000 BC (Singletary, 2016). Spices are often gathered from plants when they have stopped flowering.

Spices are functional foods, these are foods that can be demonstrated to have a beneficial effect on certain target functions in the body beyond basic nutritional requirements (Lobo et al., 2010).
Spices occur in a variety of flavor, color, and aroma contributing a wide range of nutrients to foods (Mann, 2011). They enhance and complement flavor in foods with no detrimental effect on the organoleptic quality of the food (Kaefer and Milner, 2011).

Herbs and spices elaborate secondary metabolites that form part of the plants’ chemical defense. They make food taste good but may not be delicious themselves, and many of them possess marked pharmacological and medicinal properties (Newman and Cragg, 2012). Their constituents function as defense chemicals to repel insects, snails, and other animals, and to kill microbes especially parasitic fungi (Adyemii, 2011). They sometimes contain allelochemicals, used by certain plants (such as Thymbra vulgaris) to inhibit the growth of other plant species around them (Linhart et al., 2015). The importance of spices is underscored by the fact that they are still found in 40% of drugs prescribed till date (Mann, 2011).

Spices and herbs are revered for their potential health attributes. They are reported to have positive effects in the treatment of numerous diseases, especially chronic ones such as cancer, diabetes, and cardiovascular diseases (Kaefer and Milner, 2011). That nutrition and health are intricately linked is a well-established fact, and the ability of nutrition (in this case, nutrients from spices) to reduce the risk of diseases has engaged the attention of researchers and nutritionist alike in recent decades. Numerous epidemiological, preclinical, and clinical studies providing insights into the mode of action of this relationship has been carried out (Kochhar, 2008; Krishnaswamy, 2008; Iyer et al., 2009).

The rise in demand for cheaper and safer therapeutics due to high cost and apprehension around the side effects of conventional drugs is stimulating interest in the use of phytomedicine for treatment, and management of diseases (Sigh, 2007; Dolui and Segupta, 2012).

The Nigerian culinary holds a wide and colorful array of spices which makes the country an important center for spices and herbs. In Nigeria, spices are not only used in culinary but also as galenicals in folk medicine for their putative health benefits. In times past, spices were used primarily for their organoleptic and preservative properties; however, recent studies on their medicinal and nutritional properties have opened new vistas in the fields of nutraceuticals and functional foods. A number of these studies have come up with exciting results; for example, antioxidants from spices, such as curcumin (turmeric), eugenol (clove), and capsaicin (red pepper), were experimentally shown to control oxidative stress in cells due to their antioxidant properties and their capacity to block the production of oxygen radicals in aerobic metabolism and interfering with signal transduction pathways (Rubio et al., 2013; Srivivasan, 2014). Polyphenols from ginger (Zingiber officinale) and turmeric (Curcuma longa L.) have also been shown to display radical scavenging properties (Scalbert and Williamson, 2000).

This work aims to review previous works done on the nutritional and health benefits of three selected spices—Piper guineense, Afromomum melegueta, Tetrapleura tetraptera—commonly used in Southern Nigerian culinary with the view to give a summary of what the prospects are for these spices, especially as regards their potential in formulating nutraceuticals used in chronic disease intervention.

Piper guineense Schum and Thonn (Piperaceae)

Description

Piper guineense Schum and Thonn (Piperaceae) is commonly known as African black pepper, ‘uziza’ in Igbo South East, and ‘iyere’ in Yoruba south Western Nigeria. The plant is also known as Ashanti pepper, Benin pepper, Guinea pepper, and false cubeb in other parts of Africa. There are over 700 species of this plant which grows in tropical and sub-tropical Africa (Besong et al., 2016). They have prolate spheroid seeds, native to Central and Western Africa, are semi-cultivated in Nigeria (Klin-Kabari, 2011). The plant is used for culinary, medicinal, cosmetics, and insecticidal purposes (Martins, 2013; Anyawu and Nwosu, 2014).

Folkloric and ethnomedical uses

P. guineense parts are widely used in South East Nigeria for its nutritional and medicinal properties (Ekanem et al., 2010). The plant is used as a spice for its pungent and flavorful characteristic for soup preparation for post-parturient women (Chiwendu et al., 2016). In the South Eastern parts of Nigeria, the seeds are prescribed for women after childbirth to enhance uterine contraction enabling expulsion of the placenta and other remains from the womb (Ekanem et al., 2010). It is also used locally in treating rheumatic pains, as an anti-asthmatic agent (Sofofora, 1982) and also in weight control (Mba, 1994). The oil distillate from the seeds is used in perfumery and for making soap. The leaves are used to regulate menstrual cycle and as an ingredient in remedies for female infertility (Iwu, 2014). The root and fruits are incorporated in remedy for sexually transmitted diseases, especially gonorrhea and syphilis (Iwu, 2014).

Phytochemicals

The different parts of the plant have been characterized and its constituents determined. Phytochemicals are bioactive compounds found in plants. They are not vitamins or minerals but are constituents in the plant that work with other nutrients and dietary fibers to prevent and protect against diseases (Okoye and Ebeledike, 2013). Chiwendu et al., (2016) in their quantitative analysis indicated (%) that seeds of *P. guineense* had alkaloids—0.86, saponins—1.87, tannins—1.19, flavonoids—0.72, and polyphenols—0.66. They reported a substantial amount of HCN (an anti-nutrient) 8.87%. Its essential oil had 10% myristicin, elemecin, safrols, and dilapol. It had a large amount of β-caryophyllene which is being investigated as an anti-inflammatory agent.

They also screened the leaf extract and detected the presence of alkaloids, flavonoids, tannins, saponins, terpenes, resins, and phenols. The presence of alkaloids in both the leaves and seed extracts show that the plant possesses medicinal properties. Alkaloids are made up of heterocyclic nitrogen that has been shown to exhibit antimalarial, antihypertensive, antiarrhythmic, and anticancer properties (Heikens et al., 1995). Alkaloids have also been reported to act as CNS stimulant and powerful analgesics (Ashok and Upadhiya, 2012).

Saponins have been reported to have antimalarial effect (Besong et al., 2016). The quantity of saponins (1.88%) detected in the leaves of this plant supports its antimalarial activity.

Other chemicals found in *P. guineense* are cardiac glycosides which are known to be important in the management of cardiovascular diseases. Flavonoids have been reported to possess antioxidant, anti-inflammatory, antitumor, antiallergic, and antiplatelet activity (Pal and Verma, 2013). The essential oils—dillapioil, piperine (5%–8%), elemicin, myristicin (10%), and safrole—show bactericidal and antimicrobial activity on some microorganisms (Klin-Kabari et al., 2011). The chemical—piperine—which gives *Piper* plant family their ‘heat’ is about 5% to 10% of the content. The plant has an appreciable amount of β-caryophyllene which is undergoing investigation as an anti-inflammatory candidate (Issac, 2012).

Nutritional profile

The nutritional evaluation of *P. guineense* has been carried out in many studies (Udusoro and Ekanem, 2013; Nwakwo et al., 2014;
Okonkwo and Ogu, 2014; Besong et al., 2016). The proximate analysis indicates that the plant has crude protein, carbohydrates, fat, vitamins, and minerals (Nwakwo et al., 2014). The essential oil content of the plant is appreciable, and is between 0.1% and 5%, which is significantly lower than the oil from another spice Xylopia aethiopica—16.30% (Ezekwesili et al., 2010). The low peroxide, acid value, and free fatty acid content of this plant oil point to lower susceptibility to rancidity (Ogbunugafor et al., 2011). The macromineral mineral content of spices is generally low (Omotayo et al., 2013). However, the calcium content of P. guineense is high, quite comparable to the herb O. basilium which indicates that the plant when consumed could support the building of bones and teeth (Omotayo et al., 2013). P. guineense contains vitamin A, C, and E and traces of vitamin B1, B2, and B3. The presence of vitamin E points to the antioxidant capacity of the plant (Ogbunugafor et al., 2011). The appreciable amount of vitamin C indicates that it supports the formation of healthy gums, teeth, and for the healing process.

Biological Activities

Effect on reproductive system

The effect on uterine physiology

The effect of P. guineense leaf extract on uterine contraction, similar to estrogen, in vivo has been reported by Udoh et al. (1999). Its traditional use after childbirth in soup preparation to enhance uterine expulsion of placenta and other remains from the womb was corroborated by this study. Udoh et al. (2012) also reported the cholinergic activity of the leaf extract on uterine muscle. They also submitted that its uterotonic action could be attributed to the alkaloid content. Their result also showed that the leaf extract induced uterine weight increase in immature female rats (Udoh et al., 1999).

The effect on reproductive functions in rats

Mbongue et al. (2005) investigated the effect of dry fruits of P. guineense on the reproductive functions of adult male rats. In their study, the administration of the aqueous extract of fruits of the plant at two doses (122.5 and 245 mg kg⁻¹) for a duration of 8 and 55 days had a positive impact on the male reproductive functions by stimulating the secretions of the testes, epididymis, and seminal vesicles. However, there was a significant decrease in α-glucosidase and fructose levels both of which play important...
role in the motility of spermatozoa; and thus, the reduction (20%) in fecundity observed. The effect of water and ethanol extracts of dried fruits of a close relative Piper nigrum on the fertility potential in male albino rats had a positive impact on androgenic hormone level and fertility potential in animals (Sutyarso and Kanedi, 2016)

Effect on conception in mice
The effect of the ethanol seed extract on conception in mice as reported by Ekanem et al., (2010) indicated that there was no occurrence of conception in the female mice after a 21-day administration (at various concentrations 10, 20, 30, and 40 mg kg⁻¹ BW) despite confrating the male and female rats. HPLC analysis indicated the presence of three alkaloids amines—piperamine, αβ-dihydrowasnine, and isobutyl-(EE)-2,4-decadienamide. The study suggests that the extract contains substances which interfere with conception in mice.

Effect on smooth muscle
Udoh et al. (1996) evaluated the effect of leaf and seed extracts on smooth muscle. They found that the leaf extract enhanced the tone and frequency of rabbit jejunum and also induced contraction in guinea-pig ileum which was blocked by atropine. Furthermore, seed extract relaxed rabbit jejunum, whereas seed and leaf extract had a stimulant effect on rat uterus muscle.

Antioxidant property
Antioxidants are enzymes or non-enzyme molecules that help to defend cells from the deleterious effects of reactive oxygen species (ROS) such as superoxide and hydroxyl radicals and peroxides that typically destroy biomembranes (Jayachitra and Krithiga, 2010; Onoja et al., 2014). Overproduction of ROS in disease conditions—such as diabetes, Alzheimer’s disease, cancer, neurodegenerative diseases, exposure to bacterial or viral toxins, and radiations—generally exacerbate pathological state and often require medical interventions that stimulate the production of antioxidant molecules and/or positively modulate antioxidant enzymes. Several plant secondary metabolites have been shown to exert antioxidant activities through various mechanisms (Khalaf et al., 2008; Patel et al., 2010).

Antioxidant, hepatoprotective, and hematological effects
Uhegbu et al. (2015) studied the effect of aqueous seed extract at 10 and 20 mg kg⁻¹ in rat liver. It was observed that the extract significantly decreased the liver enzymes ALT and ALP in the rat. They suggested that the seed extract might possess hepatoprotective ability. There was also a significant decrease in antioxidant enzyme—catalase and glutathione peroxidase—which points to the fact that they were being used up. This suggests that the extract may also offer protection against oxidative stress. There was an increase in red and white blood cells which might be due the nature and quantity of the protein content of P. guineense. The increase in WBC gives an index of immune function. The plant seeds are rich in phytoneutrients, vitamins, and minerals which enhance synthesis of red and white blood cells (Okigbo and Igwe, 2007). Etim et al. (2013) also reported significant antioxidant activity of P. guineense due to its free radical scavenging potential.

Antimicrobial activity
The antimicrobial and antifungal activity was studied by Anyawu and Nwosu (2014). The effect of the ethanol and aqueous extracts of the leaves of the plant against the bacteria—S. aureus, E. coli, P. aeruginosa, B. subtilis; and the fungi—C. albicans and S. cerevisiae—using agar well diffusion method indicated that the ethanol extract showed the greatest antimicrobial sensitivity. The antimicrobial and antifungal activities were also investigated and validated by Ekanem and Obiekezie (2000). The antimicrobial activity against Streptococcus faecalis of cold and hot macerated aqueous, and ethanol extracts of P. guineense was also reported by Okigbo and Igwe (2007).

Effect on resistant strain of E. coli
Omonigbehin et al. (2013) investigated the susceptibility of enterohemorrhagic E. coli strain (O157:H7) isolates to conventional drugs and the extract of Piper guineense using agar diffusion method. They found that at MIC (200 mg ml⁻¹) and MBC (400 mg ml⁻¹), 63.64% of the isolates were resistant to the conventional antibiotics, whereas the P. guineense extract exhibited inhibition against all the isolates (100%).

Anti-parasitic activity
The in vivo antiplasmodial effect of the crude ethanol extract of P. guineense against rodent malaria parasite P. berghei was investigated by Kabiru et al. (2016), and they reported a reduction in parasitemia in a dose-dependent pattern. They also reported the analgesic effect which was dose-dependent but was not as effective as aspirin, the positive control drug.

Molluscidal activity
The molluscidal effect of the crude ethanol and hot-water fruit extract of P. guineense against Biomphalaria pfeifferi, the snail intermediate host of Schistocoma mansoni, which causes intestinal schistosomiasis, have been reported. The crude ethanol and hot-water extracts showed a significant toxic effect on the organism and significant decrease in oviposition rate (Ukwandu et al., 2011).
Cancer is increasingly becoming an important health concern in Africa (Kuete et al., 2011; 2014) as a result of adoption of lifestyles resulting from economic developments such as smoking, inactivity, and unhealthy diet (WHO, 2008). Incidentally too, the skewed attention paid to communicable diseases as against non-communicable ones in developing countries has, insidiously, further confounded the cancer blight in Africa (Cancer in Africa, 2012).

Anticancer properties
The anticancer activity of dichloromethane leaf extract of *P. guineense* against human myeloid leukemia (HL-60) cell line with an IC$_{50}$ of 3.60 µg ml$^{-1}$ was reported by Iweala et al. (2015). Investigation of the hexane extract of the leaves and seeds showed varying toxicity against human myeloid leukemia (HL-60), human hepatocellular carcinoma (SMMC-7721), human lung carcinoma (A-549), human breast adenocarcinoma (MFC-7), and colon cancer (SW-480) (Iweala et al., 2015).

Table 1. Overview of the phytochemistry and biological activity of *P. guineense*.

Author(s)	Plant part	Phytochemistry	Biological activity	
Chiwendu et al. (2016)	Seeds	Alkaloids—0.86, saponins—1.87, tannins—1.19, flavonoids—0.72, polyphenols—0.66, and HCN—8.87%		
Klin-Kabari et al., (2011)	Essential oil from seed	Dillaprol, piperine (5–8%), elemicine, myristicine (10%), and safrole	Contraceptive effect in female rats	
Issac (2012)	Seeds	β-caryophyllene, piperamine, ω-dihydrowasnine, and isobutyl-(EE)-2,4-decadienamide		
Ekanem et al. (2010)	Ethanol extract		Contraceptive effect in female rats	
Udoh et al., (1999)	Aqueous leaf extract		Uterotonic activity in female rats	
Mbongue et al. (2005)	Aqueous extract of seeds		Reduced fecundity in male rats	
Uhegbu et al. (2015); Etim et al. (2013)	Aqueous extract of seeds		Reported antioxidant activities in rats	
Anyawu and Nwosu (2014)	Ethanol/aqueous extract of leaves		Bactericidal and fungicidal properties	
Omonigbehin et al. (2013)	Ethanol extract of seed		Inhibited resistant strain of *E. coli* at MIC (200 mg ml$^{-1}$) and MBC (400 mg ml$^{-1}$)	Reduced *P. berghei* load in rat models
Kabiru et al. (2016)				
Iweala et al. (2015)	Dichloromethane leaf extract		Active against human myeloid leukaemia (HL— 60) cell line with an IC$_{50}$ of 3.60 µg ml$^{-1}$	Prevented insect attack on *P. guineense*—treated *A. viridis* seedling
Olawuyi et al. (2013)	Aqueous seed extract			
Table 2. Overview of the phytochemistry and biological activity of A. melegueta.

Author(s)	Plant part	Phytochemistry	Nutritional profile	Biological activity
Echo et al. (2012)	Ethanolic seed	(mg 100 g⁻¹) Alkaloids—2.17 ± 0.29, flavonoids—2.03 ± 0.07, phenols—35.40 ± 0.76, cardiac glycosides—58.67 ± 1.1		Antioxidant properties Anticancer Anti-diabetic/hypoglycemic properties Hepatic/toxicological properties
Alaje et al. (2014)	Aqueous seed	Alkaloids—0.30 ± 0.20, flavonoids—6.10 ± 0.10, phenols—0.09 ± 0.10, tannins—0.41 ± 0.11, saponins—1.23 ± 0.30	Proximate content (%): Moisture—13.66 ± 0.18, crude protein—7.20 ± 0.05, fat—2.60 ± 0.31, crude fibre—5.54 ± 0.13, ash—2.50 ± 0.08, carbohydrate—31.50 ± 0.0	
Dike and Ahamefula (2012)	Aqueous seed	(mg/100g) Alkaloids—2.79, flavonoids—8.95, tannins—0.435, saponin—0.52	Proximate content (%): moisture—5.62, crude protein—8.75, fat—1.00, crude fibre—7.04, ash—8.00, carbohydrate—70.59	
Owokotomo et al. (2013)	Essential oil of seeds and leaves	GC-MS analysis indicated presence of β-caryophyllene (32.50) and α-caryophyllene (48.78) as major constituents: myrtanyl acetate (29.06) and iso-limonene (19.47) were abundant in leaves		
Onoja et al. (2014)	Methanolic seed		25–400 µg ml⁻¹ produced concentration-dependent decrease in DPPH oxidation strength in a photometric assay	
Umukoro and Ashorobi (2008)	Aqueous seed		Reduced RBC lysis and MDA production in rats challenged with oxidative stress	
Dibwe et al. (2015)	Chloroform extract of root		Killed pancreatic cancer cells (PANC-1) in vitro; arctigenin and buplerol were implicated to be the bioactive agent	
Kuete et al. (2011)			Killed pancreatic cancer (MiaPaca-2) and leukemia (CCRF-CEM) cell lines	
Weight control property

Mba (1994) reported the weight control potential of leaves of *Piper guineense* in rats.

Insecticidal activity

Olawuyi et al. (2013) investigated the insect pest control activity of aqueous extract of the seed of *P. guineense*. The extract was applied at varying concentration once weekly for 4 weeks, to germinating seeds of *Amaranthus viridis*. It was observed that the *P. guineense*-treated plants were not attacked by insect pest, whereas the untreated control plants were attacked. The authors summarized that seeds could control pest of *A. viridis* during cultivation.

Animal production

The health concerns due to side effects associated with the use of antibiotics to improve animal production have created the need for safer means of achieving the same goal (Danoghue, 2003). These side effects have led to the ban on the use of antibiotic in livestock production globally (Nweze and Nwakwagu, 2010). These reasons have generated interest in herbs and spices as supplements in animal rations (Odoemelam et al., 2013). The consequence is that up to one-third of the world’s swine and chicken rations in Europe now use herbs and spices mixtures to accelerate growth and maintain health (Odoemelam et al., 2013).

Bioremediation ability

Oil pollution and environmental degradation due to crude oil prospecting activities of the Niger Delta region of Nigeria have warranted the massive cleanup exercise of the area at a huge cost to the government. Therefore, cheaper and alternative ways using plants—phytoremediation—is a desirable option. Phytoremediation effect of *Piper guineense* on the levels of polycyclic aromatic hydrocarbons (PAHs) on artificial crude oil polluted germinating *T. occidentalis*

Table 2. Continued

Author(s)	Plant part	Phytochemistry	Nutritional profile	Biological activity			
				Antioxidant properties	Anticancer	Anti-diabetic/ hypoglycemic properties	Hepatic/ toxicological properties
Adefegha *et al.* (2016)	Seed oil			Inhibited α-amylase and α-glucosidase activities *in vitro* with EC_{50} values of 139 µl ml^{-1} and 91 µl ml^{-1}, respectively			
					Report improved insulin release and β-cells of pancreas in STZ-induced T2D rats exposed to 150–300 mg/kg extract		
Mohammed *et al.* (2015)	Methanol extract			Decreased blood glucose level in alloxan-induced diabetic rats in dose-dependent manner			
Mojekwu *et al.* (2011);	Seed aqueous			Reversed CCL_{4} induced hepatic damage			
Adesokan *et al.* (2011)				Reversed ALT, TG, and AST elevation induced by alcohol			
El-Halawany *et al.* (2014)	Methanol and			Elevation of liver enzymes—AST, ALT, and alkaline phosphatase in rats at 450–1500 mg kg^{-1} BW			
	chloroform extracts						
Nwozo and Oyinloye (2011)	Aqueous seed						
	extract						
Ilic *et al.* (2010)	Ethanol seed						
	extract						

Ogbunugafor et al., 2017.
Author(s)	Plant part	Phytochemistry	Nutritional profile	Biological activity
Ebana et al. (2016)	Aqueous and ethanol extracts of T. tetraptera fruits	Contained alkaloids, glycoside, saponins, flavonoids, polyphenol, phlobatannins, anthraquinones, and hydroxymethyl anthraquinones		Anti-inflammatory
Achi (2006)	Ethanol extract of pods	IR and NMR analysis revealed tannins and cinnamic acids		Anti-diabetic/hypo-glycaemic activity
Ekwenye and Okorie (2010)	Extract of pods	Quantitative analysis indicated (%): alkaloids 0.54, saponins 1.2, tannin 0.3, flavonoid 0.8, phenol 0.42%		Antimicrobial activities
Adesina (2016)	Dry fruits	(mg 100 g⁻¹) polyphenol (38.05–2907.15), flavonoid (10.30–410.75), saponin (60.80–953.40), tannin (135.50–1097.50), and phytate (1021.00–5170.00)		
Udourioh and Etokudoh (2014)	Essential oil of seed	GC-MS analysis indicated oil to be rich in: acetic acid (34.59%), 2-hydroxy-3-butanone (18.25%), butanoic acid (8.35%), 2-methyl butanoic acid (7.58%), 2-methyl butanol (7.45%), butanol (4.30%), 2-methyl butenoic acid (3.65%), and nerol (3.25%)		
Okwu (2003)	Seeds	Crude protein (7.44–17.5%) crude lipid (4.98–20.24%), and crude fiber (17–20.24%)		
Abil and Elegalam (2007)	Dried fruit	Ca, P, K, Mg, Zn, and Fe, with Zn (10.59 mg 100 g⁻¹) and Fe (12.02 mg 100 g⁻¹) being most abundant		
Ojewole and Adejumobi (2004); Adesina et al. (2016)	Aqueous extract of the fruit	Anti-inflammatory activity in rays attributed to the hentriacontane content		
Adesina et al. (2016)	Aqueous extract of fruit	Reduced blood glucose level in STZ-induced diabetic rats		
was evaluated using gas chromatography (GC); Etim et al. (2014) showed that the plant could be good for phytoremediation of phenanthrene, chrysene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3)pyrene because they were found in significantly lower quantity in plants grown in vessels bioremediated with P. guineense and A. indica, and the combination of both.

Aframomum melegueta K. Schum

Description

Aframomum melegueta K. Schum belongs to the ginger family (Zingiberaceae) and is colloquially called grains of paradise or alligator pepper (Nwaehujor et al., 2014). It is variously known locally as ose oji in Igbo, ataare in Yoruba, and cittáá in Hausa of Nigeria (Odugbemi, 2008). The plant is a perennial deciduous herb native to the tropics and grows mainly on the swampy habitats of the West African coast, characterized by a leafy stem that may be up to 1.5 m high. It produces trumpet-shaped, purple-colored flowers which develop into 5 to 7 long pods with each containing as many as 300 reddish-brown seeds (Dalziel, 1937).

Folkloric and ethnomedical uses

The seed of A. melegueta is used in different African cultures as a spice, medicine, or for other preternatural roles. In folk medicine, the seeds are employed as a local remedy for stomach ache, snakebite, diarrhea, cardiovascular diseases, diabetes, and inflammation (Ilic et al., 2010). In the Igbo culture of Eastern Nigeria, alligator pepper is chewed alongside kola nut where the hot spicy taste of the former attenuates the astringent taste of the latter. The seeds are also used in preparing yam pottage for new mothers to enhance appetite and reduce the risk of puerperal infections in most parts of Southern Nigeria (Dike and Ahamefula, 2012).

Phytochemistry

The seeds of A. melegueta have been variously reported to be particularly rich in carbohydrates, crude fibre, and bulk minerals (Dike and Ahamefula, 2012; Echo et al., 2012; Alaje et al., 2014), indicating it to be of good nutritional quality, and hence justifying its incorporation into diet. NMR and GC-MS analyses of the chloroform extract of the seeds and essential oils from various plant parts, respectively (Owokotomo et al., 2013; El-Halawany et al., 2014), show the plant to be rich in secondary metabolites such as modified gingerols, paradols, shogaols, and diarylheptanoids. These metabolites account for some of peppery taste of the seeds (Ajaiyeoba and Ekundayo, 1999).

Biological Activities

Antioxidant properties

Onoja et al. (2014) showed A. melegueta to exhibit significant antioxidant activity when screened in vivo and in vitro. The extract (25–400 µg ml⁻¹) produced concentration-dependent decrease in 2,2-diphenyl-1-picrylhydrazine (DPPH) oxidation strength in a photometric assay. In the in vivo study, 400 mg kg⁻¹ BW of the methanolic extract significantly boosted serum catalase and superoxide dismutase activities in rat. In another study (Umukoro and Ashorobi, 2008), testing its...
antioxidant and membrane stabilizing effect on rat RBCs exposed to phenylhydrazine, the aqueous seed extract of A. melegueta, was able to reduce lysis and production of malondialdehyde (MDA) in the sampled RBC in a dose-dependent manner; further suggesting its strong antioxidant capacity. Malondialdehyde is an efficient marker for oxidative stress as it is produced by oxidation of polyunsaturated fatty acids (PUFAs) by ROS (Benoist d’Asy, 2016).

Work on the essential oils obtained via hydrodistillation has also shown good antioxidant characteristics. In one study (Adefegha, et al., 2016), it was shown that A. melegueta seeds had the ability to inhibit the production of MDA induced by sodium nitroprusside (SNP) and Fe2+ in rat pancreas and heart tissues at EC50 of 131.76 and 111.23 µM ml−1, respectively.

Cancer
Several species of Afromomum (arundinaceum, melegueta, polyanthum) harvested from the West African sub-region have been demonstrated to show some form of antineoplastic property (Kuete et al., 2011, 2014). For A. melegueta, work by Dbwe et al. (2015) on the plants harvested from the Democratic Republic of Congo (DRC) found that chloroform extract of A. melegueta root killed pancreatic cancer cell lines (PANC-1) preferentially in a nutrient-deprived medium. The antineoplastic property was attributed to two compounds—arctigenin and buplerol—fractionated from the root extract with IC50 of 0.5 and 8.4 µg ml−1, respectively.

Also, work by Kuete et al. (2011) on the methanol extract of A. melegueta showed the seeds to possess significant inhibitory activities (IC50 value above 10 µg ml−1) on human pancreatic cancer (MiaPaca-2) and leukemia (CCRF-CEM) cell lines, and significant activity of the crude extract on multidrug-resistant variant (CEM/ADR5000) of leukemia cells (IC50: 7.08 µg ml−1).

The research done on the chemotherapeutic potential of A. melegueta are yet few but are generally promising.

Anti-diabetic/hypoglycemic properties
The incidence of diabetes continues to rise in Africa, especially in urban areas where diet has become increasingly unwholesome (Kengne et al., 2003).

The use of A. melegueta in folk medicine for treating diabetes has a long and widespread history in West Africa (Ogbera and Ekpebegh, 2014). There has been a modest scientific effort to validate the folkloric use of this plant in treating diabetes with promising findings.

In a study by Adefegha et al. (2016), the oil from A. melegueta was shown to inhibit α-amylase and α-glucosidase activities in vitro with EC50 values of 139 and 91 µl ml−1, respectively. In yet another research effort (Mohammed et al., 2015), the ethanolic extract of A. melegueta seeds exhibited significant ability to inhibit α-amylase (EC50 0.62 mg/ml) and α-glucosidase (EC50 0.06 mg/ml) in Wistar rats. A finer resolution of the extract, employing the ethylacetate fraction on streptozotocin-induced type 2 diabetic rats, showed a reversal of diabetes symptoms when treated with 150–300 mg kg−1 BW of the extract. Remarkably, the extract led to pronounced amelioration of pancreatic β-cell dysfunction by reversing pathological changes in islets and β-cells (HOMA-β), while also increasing serum insulin levels.

Several other studies further reinforce the antidiabetic activity of A. melegueta. Mojekwu et al. (2011) reported that the aqueous extract (50–200 mg kg−1) of the seeds reduced blood glucose levels in alloxan-induced diabetic rats in a dose-dependent manner; with the upper concentration (200 mg kg−1) depressing sugar levels from 115.66 to 48 mg dl−1 within a 14-day window period.

In another study on the hypoglycemic potential (Adesokan et al., 2016), the aqueous extract of the seed significantly reduced the blood glucose levels in alloxan-induced diabetic rats from 243 to 138 mg dl−1 with repeated daily oral administration of 200 mg kg−1 BW of the extract.

Although these reports are clearly indicative of an antidiabetic or hypoglycemic potential, there is still need to understand the mechanism of action of the plant especially how it induces reversal of pancreatic lesion, and hence increasing insulin production in otherwise hypoinsulimemic animal models.

Hepatic/toxicological properties
A major hindrance to the development of ethnomedicine in Africa is the poor toxicological profiling of plant materials used as nutraceuticals. However, recent research effort on African plants of medical importance is gradually improving knowledge gaps. El-Halawany et al. (2014) reported a significant reversal of CCL4-induced hepatic damage by the methanol and chloroform extracts of A. melegueta seeds. In their study, ALT levels were decreased from chronically high levels induced by CCl4 intoxication, whereas the level of reduced glutathione was increased from a depressed level induced by the aforementioned intoxicant.

In a related study (Nwozo and Oyinloye, 2011), hepatic aberration—as noted by increase in ALT, AST, and triglyceride (TG) levels—induced by chronic exposure to alcohol (4.8 g kg−1 BW) was attenuated by oral administration of A. melegueta seed extract to Wistar rats.

These results, however, contradict findings of related researches. Nwaehujor et al. (2014) observed perturbation of liver marker enzymes (alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP)) in Sprague-Dawley rats exposed to a sublethal dose (300 mg kg−1 BW) of methanol extract of A. melegueta seed administered orally for 21 days. ALT level was markedly elevated (55.8 µl−1 as against the control value of 32.2 µl−1) after 21 days.

In another effort (Ilic et al., 2010), a 28-day subchronic toxicity study in male and female Sprague-Dawley rats conducted using ethanolic extract of the seeds of A. melegueta resulted in dose-related increase in liver enzymes in the experimental rats dosed with 450 and 1500 mg kg−1 BW. There was a corresponding increase in alkaline phosphatase with no signs of steatosis or cirrhosis. Clearly, a pattern emerges from the works considered in this review. The extracts of A. melegueta seeds seem to be harmless (even beneficial to the liver) at low concentrations (<200 mg kg−1 BW) but may induced toxicity at concentrations above 300 mg kg−1 BW, in rats.

Other miscellaneous pharmacological properties
Anti-inflammatory properties
The seeds of A. melegueta has been reported to possess anti-inflammatory properties by inhibiting cyclooxygenase 2 (COX-2), an enzyme involved in generating pro-inflammatory prostaglandins, in rat paw edema model by 49% at concentration of 1000 mg kg−1 BW. 6-Paradol, one of the several gingerols obtained by bioactivity-guided fractionation using methanol, was implicated as the active anti-inflammatory ingredient (Ilic et al., 2014).
Aphrodisiac properties
Administration of 115 mg kg⁻¹ of *A. melegueta* daily for 8 days led to an increase in the penile erection index (PEI), frequency of genital grooming and genital sniffing, and an increase in mounting frequency by 54% as reported by Kamchouing *et al.* (2002), in male Wistar rats.

Antidiarrhoeal
Pharmacological evaluation of the effects of intraperitoneal injection of aqueous seed extract of *A. melegueta* on diarrhoea, intestinal fluid secretion, and gastrointestinal transit time induced by castor oil in rodents revealed that extract (50–200 mg kg⁻¹) produced a significant inhibition of castor oil-induced diarrhoea in rats with mechanistic studies suggesting its antidiarrhoeal activity stems from its ability to inhibit prostaglandin formation (Umukoro and Ashorobi, 2005).

Neuronal activity
Aframomum melegueta extract has been shown to moderately inhibit acetylcholinesterase activity with an IC₅₀ of 373.33 µg ml⁻¹ (Adrefega and Oboh, 2012).

Tetrapleura tetraptera Schumach and Thonn Taub (Mimosaceae)

Description
Tetrapleura tetraptera Schumach and Thonn Taub (Mimosaceae), Yoruba name aridan, osbogisha in Igbo is a single-stemmed deciduous plant that grows on the fringe of the West and Central African rainforest zone. The fruit has four winged pods and appears green when tender but glabrous, dark-purple-brown when mature and ripened (Uyom *et al.*, 2013; Adesina *et al.*, 2016). The fruit consists of a fleshy pulp with small, brownish-black seeds and possesses a characteristically pungent aromatic odor, which contributes to its insect-repellent property (Adetunji, 2007). Two of the fruit’s wings are woody, whereas the other two are filled with soft, oily, and aromatic sugary pulp. The seeds, which rattle in the pods, are small, black, hard, flat, about 8-mm long, embedded in the body of the pod, which does not split open.

Folkloric and ethnomedical uses
Orwa *et al.* (2009) noted that every part of the plant has found use in one industry or the other. The fruit pulp is rich in sugars and may be used in flavouring food; the fairly hard heartwood and white sapwood are used in timber, its tannin is used as a dye and in medicine, extracts of the leaves, bark, roots, and kernel has been exploited as medicines. Also, the fruit and flowers are used as perfumes (Ngassoum *et al.*, 2001; Adetunji, 2007).

Phytochemical screening
Ebana *et al.* (2016) examined the phytochemical content of aqueous and ethanol extracts of *T. tetraptera* fruits and reported that they contained alkaloids, glycoside, saponins, flavonoids, reducing compounds, polyphenol, phlobatannins, anthraquinones, and hydroxy-methyl anthraquinones but lacked saponins and tannins. Glycosides, reducing compounds, and polyphenol are the most abundant of phytochemicals in the ethanol extract according to the study. Similarly, the pods extracted with cold water and ethanol were screened for the presence of alkaloids, glycosides, tannins, saponins, and anthraquinones (Achi, 2006). Using spectroscopic methods including IR and NMR, their analysis of the ethanol extracts afforded active compounds which were characterized as tannins, cinnamic acids, and carbohydrates.

Quantitative analysis by Ekwenye and Okorie (2010) indicated that alkaloids and saponins were present in the pod at 0.54% and 1.28%, respectively, and reported other phytochemical contents as tannin 0.36%, flavonoid 0.84%, and phenol 0.42%. Adesina (2016) gave a summary of the quantities of the phytochemical constituents of the fruits (mg/100 g dry weight of fruit) as follows: total polyphenol (38.05–2907.15), flavonoid (10.30–410.75), saponin (60.80–953.40), tannin (133.50–1097.50), and phytate (1021.00–5170.00).

Essential oil
Udourioh and Etokudoh (2014) analyzed the essential oil and fatty acids composition of the dry fruits of *T. tetraptera* using GC/MS and characterized 44 compounds representing 98.5% of the oil. The oil was dominated by acetic acid (34.59%), 2-hydroxy-3-butane (18.25%), butanoic acid (8.35%), 2-methyl butanoic acid (7.58%), 2-methyl butanol (7.45%), butanol (4.30%), 2-methyl butenoic acid (3.65%), and Nerol (3.25%).

The fatty acid content had palmitic acid as the highest (49.44%), and stearic acid as the least (3.20%), while the short chain fatty acids; omega-6 and omega-3 constituting 27% and omega-9 (20%), respectively. Bouba *et al.* (2016) also noted that it is one of the spices that contain large amounts of the essential (ω-3) fatty acids.

Nutritional profile
Proximate analysis of the plant indicates that it has crude protein, fiber, lipid, and carbohydrates. It has appreciable quantity of crude protein (7.44%–17.5%), crude lipid (4.98%–20.24%), and crude fiber (17%–20.24%); Okwu, 2003. After investigating the mineral content of the dried fruit, Abil and Elegalam (2007) noted that the fruits of *T. tetraptera* contained Ca, P, K, Mg, Zn, and Fe with Zn (10.59 mg 100 g⁻¹) and Fe (12.02 mg 100 g⁻¹) being appreciably higher than the other bulk elements. There was a discrepancy in ash content, however, as reported by Abil and Elegalam (2007) and Udourioh and Etokudoh (2014). While the former reported 9%, the latter reported 3.4% ash content.

Biological activities
The extracts and some of the isolated compounds showed sedative, hypotensive, mollusccidal, CNS depressant, anti-inflammatory, antimicrobial, wound-healing, contraceptive, analgesic, hypoglycemic, antioxidant, hypolipidemic, antimalarial, muscle-relaxant, anticonvulsant, hypothermic, and anxiolytic effects in experimental animals (Adesina, 2016).

Anti-inflammatory activity
Ojewole and Adewunmi (2004) reported that the aqueous extract of the fruit showed anti-inflammatory activity in egg albumin-induced pallet edema in rats. The anti-inflammatory activity of *T. tetraptera* is linked to the hentriacontane compound it contains (Adesina *et al.*, 2016).

Antidiabetic/hypoglycaemic activity
Adesina *et al.* (2016) investigated the effect of the aqueous extract of the plant on streptozotocin (STZ)-induced diabetes mellitus in rats. They found that the extract significantly decreased blood glucose
level in the animals. Atawodi et al. (2014) reported that the methano
colic extract of T. tetraptera leaves exhibited a significant percentage
change (30.15%) in fasting blood sugar when compared to diabetic
rat (0.59%) between a 7-day period. The extract also ameliorated the
complications associated with diabetes in the rats such as oxi-
dative stress and disorders in lipid metabolism. Komlaga (2004)
reported the biphasic effect of the ethanolic extract of the fruit in
rats at administered doses of between 1000 and 4000 mg kg⁻¹ which
exhibited a significant glucose lowering effect than the standard
drug, glibenclamide.

Analgesic and anticonvulsant properties
T. tetraptera fruit’s aqueous extract produced dose-dependent,
algesic effects against thermally and chemically induced pain in
mice. Compared to the standard anticonvulsant agents (phenobar-
bitone and diazepam), the aqueous fruit extract delayed the onset
of, and antagonized pentylentetrazazole (PTZ)-induced seizures. The
aqueous extract of the fruit profoundly antagonized picrotoxin
(PCT)-induced seizures, but only partially and weakly antagonized
bicuculline (BCL)-induced seizures (Ojewole, 2005).

Antimicrobial activities
Several authors, e.g. Achi (2006), Ekwenye and Okorie (2010),
Aboaba 2011, and Oguoma et al. (2015), have substantiated the
antibacterial activity of the fruit of T. tetraptera and found it effective
against common human pathogens viz Salmonella typhi, Bacillus sub-
tilis, P. aeruginosa Escherichia coli, Shigella spp., and Staphylococcus
aureus. Minimum inhibitory concentrations of the extract ranged
from 250 µg/ml for E. coli to 500 µg/ml for B. subtilis.

Oguoma et al. (2015), however, observed reduced activity on
Shigella spp. making the organism resistant to the extract.

The extract has activity against these fungi pathogens; A. niger and
P. notatum (Igwe and Abaküke, 2016). The authors observed
an increase in the antimicrobial activity as extract concentration
increased, suggesting that the extract could be useful in preventing
the growth of pathogens in food. The ethanolic extract of the fruit
exhibited better antibacterial activity than the aqueous extract and
so was more potent against the test organisms. The hentriacontane
content may be responsible for these actions as it exhibited anti-
tubercular property according to Takahashi et al. (1995). However,
there is a dearth of report on the antiviral activity of the plant.

Antimalarial activity
The extract of the fruit was investigated for antimalosomal activity
alongside different extracts from 10 other West African plants tradi-
tionally used against malaria in Ghana (Köhler, 2002). The extracts
were tested against both the chloroquine-sensitive strain and the
chloroquine-resistant clone of Plasmodium falciparum. The etha-
nolic fruit extract was also evaluated for its antimalosomal activity
in vivo by Okokon et al. (2007). The study reported that the extract
exhibited significant blood schizonticidal activity with a considera-
ble mean survival time when compared with a standard antimalarial
drug, chloroquine. It was noted that the extract from the fruit pos-
sessed significant antimalosomal activity. This could be the reason
why the plant has found importance locally in the management of
malaria and other feverish conditions.

Molluscicidal activity
All parts of the plant possess molluscicidal activity and the activ-
ity has been linked to the presence of saponins (Adesina et al.,
2016). Various works (Adesina et al., 1980; Schaeflberger and
Hostettmann, 1983; Maillard, 1989) including toxicological evaluation
confirmed the potential of this plant for the control of snails
(mollusks) and by extension control of schistosomiasis.

Conclusion
Critical evaluation of the literature on the nutritional and medical properties of the spices considered (Piper guineense, Aframomum
melegueta, and Tetrapleura tetraptera) inarguably show that they have tremendous health potential. Work on the chemotherapeutic
potentials of the plants is worthy of note, especially considering the
increased resistance by cancerous cells and pathogenic microbes
to conventional drugs. The three spices also displayed remarkable
hypoglycemic potential through lowering blood glucose in experi-
mental rats. As diabetes morbidity and mortality is on the rise in
sub-Saharan Africa (Azvedo and Alla, 2008), these spices may
play a role in formulating the next-generation antidiabetics.

Although these spices show promises in disease therapy, a caveat
must be noted; eulogizing their therapeutic potential may be yet pre-
mature. For various physiological reasons, experiments in human
close relatives (rats or apes) do not often exhibit similar outcomes
in man, with sometimes bewildering health results. As most of these
results were extrapolated from animals, it is thus important to see,
firsthand, the effect on humans. This will definitely warrant further
controlled clinical trials using human subjects.

Another hurdle often encountered in nutraceutical research is the
issue of ‘therapeutic dosage’. As most spices are conventionally con-
sumed in small (milligram quantities at most) as culinary additives for
its organoleptic attributes. It is often a challenge to quantify the effect-
ive dose of these spices. Another issue is how to determine the mode
of action deriving some of these therapeutic benefits from the plants at
these sub-therapeutic doses. Although, the advent of high-throughput
screening/isolation techniques have helped in isolating active ingre-
dients that are essential to therapeutic function from herbs; yet, even
this approach is fraught with challenges, as it is increasingly becom-
ing clear to researchers that plant phytochemicals tend to exert bet-
ter biological function when they act in synergistic manner with each
other. The recent development of microbial resistance to artemisinin,
the active ingredient in Artemisia annua is a ghoulish reminder of how
isolating supposedly active ingredient could backfire.

Overall, the health promise of the three spices reviewed remains
significant, and the experimental results surveyed are in support of
the majority of the ethnomedical/folkloric uses of these spices.

Acknowledgment
We thank the Bioresources Development Group (BCG), Nigeria, for support
to attend a symposium on African plants of nutritional and medical impor-
tance. It was the insight from the conference that formed the framework for
this review.

Conflict of interest statement. None declared.

References
Abil, T. A., Elegalam, A. (2007). Investigation into the chemical composition
of the dry fruit of Tetrapeura tetraperta (Ubukirinu). Journal of Food
Technology 5: 228–232.
Aboaba, O. O., Ezeh, A. R., Anabuiku, C. L. (2011). Antimicrobial activities of
some Nigerian spices on some pathogens. Agriculture and Biology Journal
of North America 2: 1187–1193.
Benoist d’Azy, C., Pereira, B., Chiambaretta, F., Dutheil, F. (2016). Oxidative
Atawodi, S. E., Yakubu, O. E., Liman, M. L., Iliemene, D. U. (2014). Effect
Ashok, P. K., Upadhyaya, K. (2012). Tannins are astringent.
Anyawu, C. U., Nwosu, G. C. (2014). Assessment of the antimicrobial activ-
Ajaiyeoba, E. O., Ekundayo, O. (1999). Essential oil constituents of
Aggarwal, B. B., Van Kuiken, M. E., Iyer, L. H., Harikumar, K. B., Sung, B. (2009). In vitro antioxidant and nitric oxide scavenging activities of Piper guineense. Global Journal of Research in Medical Plants and Indigenous Medicine 2: 485–494.
Einm, O. E., Chinaka, N. S., Dueu, R. U. (2014). Effect of Piper guineense and Azadirachta indica on some polycyclic aromatic hydrocarbons (PAH) levels of germinating Telfaria occidentalis (ugu). International Journal of Environmental Bioremediation and Biodegradation 2: 151–159.
Ezekwesili, C. N., Nwodo, F. C., Ench, F. U., Ogbugnagho, H. A. (2010). Investigation of the chemical composition and biological activity of Xylopia aethiopica. Dunal (Annonaceae). African Journal of Biotechnology 9: 7352–7356.
Heikens, H., Fliers, E., Endert, E., Ackernmanns, M., van Montfrans, G. (1995) Lipoxygenase-induced hypertension—a new understanding of an old disease. Journal of Medical Chemistry 5: 230–234.
Igw, O. U., Akabuikel, H. C. (2016). Free radical scavenging activity, phytochemistry and antimicrobial properties of Tetrapleura tetraptera seeds. International Research Journal of Chemistry and Chemical Sciences 3: 1037–042.
Ilic, N. M., Dey, M., Pouluer, A. A., Logendra, S., Kuhn, P. E., Rashin, I. (2014). Anti-inflammatory activity of grains of paradise (Aframomum melegueta Schum) extract. Journal of Agricultural and Food Chemistry 62: 10452–10457. doi:10.1021/jf5026086
Ilic, N., Schmidt, B. M., Poulev, A., Raskin, I. (2010). Toxicological evaluation of Astragalus membranaceus (Bunge) Schum. Indian Journal of Cancer Research 127: 10–17. doi:10.1016/j.ijcr.2009.10.031
Issac, Y. A. (2012). Characterization and HPLC quantification of piperine in various parts of Piper guineense. Department of Pharmaceutical Chemistry, Kwarie Ukuwa University of Science and Thechnology, Kumasi, Ghana.
Iwala, E. F. J., Liu, F. F., Cheng, R. R., Li, Y., Ononhinmin, C. A., Zhand, Y. J. (2015) Anticancer and free radical scavenging activity of some Nigerian food plants in vitro. International Journal of Cancer Research 11: 41–51.
Iwu, M. M. (2014). Handbook of African medicinal plants. Francis & Taylor Group, Boca Raton, FL, pp. 279–333.
Iyer, A., Panchal, S., Poudyal, H., Brown, L. (2009). Potential health benefits of Indian spices in the symptoms of the metabolic syndrome: a review. Indian Journal of Biochemistry and Biophysics 46: 467–481.
Jayachitra, A., Kirthiga, N. (2010). Study on antioxidant property in selected medicinal plant extract. International Journal of Medicinal and Aromatic Plants 2: 495–500.
Sutyarso, M., Kanedi, M. (2016). Effect of fruit extracts of Black pepper on the
Srinivasan, K. (2014). Antioxidant potential of spices and their active constitu-
Sofowora, A. (1982).
Singletary, K. (2016). Thyme: history, applications, and overview of potential
Scalbert, A., Williamson, G. (2000). Dietary intake and bioavailability of poly-
Rubió, L., Motilva, M. J., Romero, M. P. (2013). Recent advances in biologi-
Pal, D., Verma, P. (2013). Flavonoids: a powerful and abundant source of anti-
Patel, V. R., Patel, P. R., Kajal, S. S. (2010). Antioxidant activity of some
Rubió, L., Motilva, M. J., Romero, M. P. (2013). Recent advances in biologi-
Opara, E. I., Chohan, M. (2014). Culinary herbs and spices: their bioactive proper-
Omotayo, O. A., Adepoju, O., Thomas, K., Oluremi, O. (2013). Evaluation of micronutrient potentials of seven commonly consumed indigenous spices from Nigeria. American Journal of Food and Nutrition 3: 122–126.
Onoja, S. O., Omeh, Y. N., Ezejia, M. I., Chukwu, M. N. (2014). Evaluation of the in vitro and in vivo antioxidant potentials of Aframomum melegueta methanolic seed extract. Journal of Tropical Medicine 15: 93–104.
Opara, E. I., Chohan, M. (2014). Culinary herbs and spices: their bioactive properties, the contribution of polyphenols and the challenges in deducing their true health benefits. International Journal of Molecular Sciences 15: 19183–19202.
Orwa, C., Mutua, A., Kindt, R, Jamnadass, R., Anthony, S. (2009). Agroforest Tree Database: a tree reference and selection guide version. World Agroforestry Center, Kenya.
Owokotomo, I. A., Ekundayo, O., Oguntuase, B. J. (2013). Chemical constituents of the leaf, stem, root and seed essential oils of Aframomum melegueta (K. Schum) from South West Nigeria. International Research Journal of Pure and Applied Chemistry 4: 395–401.
Pal, D., Verma, P. (2013). Flavonoids: a powerful and abundant source of antioxidants. International Journal of Pharmacy and Pharmaceutical Science 5: 97–106
Patel, V. R., Patel, P. R., Kajal, S. S. (2010). Antioxidant activity of some selected medicinal plants in western region India. Advances in Biological Research 4: 23–26.
Rubíó, L., Motilva, M. J., Romero, M. P. (2013). Recent advances in biologically active compounds in herbs and spices: a review of the most effective antioxidant and anti-inflammatory active principles. Critical Reviews in Food Science and Nutrition 53: 943–953.
Scalbert, A., Williamson, G. (2000). Dietary intake and bioavailability of polyphenols. The Journal of Nutrition 130: 20735–20855.
Schaufelberger, D., Hostettmann, K. (1983). On the molluscicidal activity of tannin containing plants. Planta Medica 48: 105–107.
Sigh, S. (2007). From exotic spice to modern drug? Cellular communication. Carcinogenesis 16: 471–476.
Tapsell, L. C., et al. (2006). Health benefits of herbs and spices: the past, the present, the future. The Medical Journal of Australia, 185: S4–S24.
Udoh, F. V. (1999). Uterine muscle reactivity to repeated administration and phytochemistry of the leaf and seed extracts of Piper guineense. Phytotherapy Research: PTR 13: 55–58.
Udoh, F. V., Akpan, J. O., Afunra, N. (1996). Effect of leaf and seed of Piper guineense on some smooth muscle activity in rat, Guinea-pig, and rabbit. Phytotherapy Research 10: 596–599.
Udoh, F. V., Ekanem, A. P., Eyo, V. O. (2012). Pharmacodynamic effect of methanol extract of Piper guineense leaf on uterine physiology. Pharmacologia 3: 200–203.
Udourioh, G. A., Etokudoh, M. E. (2014) Essential oils and fatty acids composition of dry fruits of Tetrapleura tetraptera. Journal of Applied Science and Environmental Management 18: 419–424.
Uhegbu, F. O., Imo, C., Ugbogu, A. E. (2015). Effect of aqueous extract of Piper guineense seeds on some liver enzymes, antioxidant enzymes and some hematological parameters in Albino rats. International Journal of Plant Science 4: 167–171.
Ukwandu, N. C., Odaibo, A. B., Okorie, T. G., Nmorsi, O. P. (2011). Molluscicidal effect of Piper guineense. African Journal of Traditional, Complimentary, and Alternative Medicines: AJTCAM 8: 447–451.
Umukoro, S., Ashorobi, R. B. (2005). Effect of Aframomum melegueta seed extract on castor oil-induced diarrhea. Pharmaceutical Biology 43: 330–333.
Umukoro, S., Ashorobi, R. B. (2008). Further pharmacological studies on aqueous seed extract of Aframomum melegueta in rats. Journal of Ethnopharmacology 115: 489–493.
Uyom, E. A., Ita, E. E., Nwofia, G. E. (2013) Evaluation of the chemical composition of Tetrapleura tetraptera (Schum and Thonn.) Taub. accessions from River State Nigeria. International Journal of Medicinal and Aromatic Plant 3: 386–394.
Veresham, C. (2012). Natural products derived from plants as source of drugs. Journal of Advanced Pharmaceutical Technology and Research 3:200–210.
World Health Organization. (2008). World Cancer Report 2008. International Agency for Research on Cancer, Lyon, France.