TRACTABILITY OF MULTI-PARAMETRIC EULER AND WIENER INTEGRATED PROCESSES

Mikhail Lifshits
Anargyros Papageorgiou
Henryk Woźniakowski

Abstract: We study average case approximation of Euler and Wiener integrated processes of \(d \) variables which are almost surely \(r_k \)-times continuously differentiable with respect to the \(k \)-th variable and \(0 \leq r_k \leq r_{k+1} \). Let \(n(\varepsilon, d) \) denote the minimal number of continuous linear functionals which is needed to find an algorithm that uses \(n \) such functionals and whose average case error improves the average case error of the zero algorithm by a factor \(\varepsilon \). Strong polynomial tractability means that there are nonnegative numbers \(C \) and \(p \) such that

\[
 n(\varepsilon, d) \leq C\varepsilon^{-p} \quad \text{for all } d \in \mathbb{N} = \{1, 2, \ldots\}, \text{ and } \varepsilon \in (0, 1).
\]

We prove that the Wiener process is much more difficult to approximate than the Euler process. Namely, strong polynomial tractability holds for the Euler case iff

\[
 \liminf_{k \to \infty} \frac{r_k}{\ln k} > \frac{1}{2\ln 3},
\]

whereas it holds for the Wiener case iff

\[
 \liminf_{k \to \infty} \frac{r_k}{k^s} > 0 \quad \text{for some } s > \frac{1}{2}.
\]

Other types of tractability are also studied.

2000 AMS Mathematics Subject Classification: Primary: 65Y20; Secondary: 41A25, 41A63, 60G15, 60G60.

Keywords and phrases: Tractability, Wiener process, Euler process, integrated processes, linear approximation.