Laser technologies in the formation of harmonic lenses microreliefs

V A Danilov¹

¹Russian Academy of Sciences, Scientific and Technological Center of Unique Instrumentation, Butlerova str. 15, Moscow, Russia, 117342

e-mail: viktordanilov@bk.ru

Abstract. Briefly describes the technology of forming high microreliefs in the context of the scientific path of a senior researcher at the Institute of Image Processing Systems of the Russian Academy of Sciences Candidate of Technical Sciences Oleg Yuryevich Moiseyev - a unique specialist in the technology of diffraction computer optics, recording optical micro- and nanorelief.

1. Introduction

With the advent of optical quantum generators, the technologists received a powerful tool to perform the unique technological processes of local energy deposition with the power levels sufficient for both thermal treatment and local deposition on photosensitive compositions. Typically, the radiation cross section of lasers is quite large in size, around several millimeters, but in a focused state it is possible to form the details smaller than a micrometer in size. Despite the fact that traditional optics can solve a wide range of tasks, it becomes obvious that in some cases refractive lenses begin to come short of diffractive optics.

The works of I.N. Sisakyan and V.A. Soifer et al. in the first half of the 1980s provided the main geometric-optical solutions of the focusing problem for different focal regions and created various focusing diffractive optical elements (DOE) [1-3]. A key problem in making the diffractive optical elements is to achieve high energy efficiency together with the required intensity distribution in the operating area. In particular, the lack of diffraction efficiency hinders the use of focusators in laser machining systems. It should be noted that almost all the works on theoretical evaluation of efficiency of optical elements are based on the assumption of a perfect or almost perfect accuracy of microrelief production. In reality, there certainly occur technological manufacturing errors both in terms of the dimensions of DOE zones and in the height of microstructures, which is especially characteristic of wide-aperture power focusators. The above works consider the theoretical issues of the construction of diffraction elements, but not the technological preparation of production. For example, the production of DOE using traditional materials and traditional methods does not allow to reach the potential of diffractive optics: it is impossible to achieve continuous or almost continuous reliefs needed for the construction of optical elements without the excessive costs. The development of production technologies of DOE with a continuous microrelief is inextricably associated with the name of the...
senior scientific researcher at the Institute of Image Processing Systems of the Russian Academy of Sciences, Candidate of Technical Sciences Oleg Y. Moiseev (January 6, 1959 - July 29, 2016) [4].

2. Continuous DOE production technologies

Starting from the beginning of his scientific career, O.Y. Moiseev had been dealing with the methods of DOE microrelief formation using photoresists and photopolymer compositions. It was quite easy to borrow the technologies of a binary microrelief formation from microelectronics, but the formation of multilevel microreliefs required the development of fundamentally new technological operations. O.Y. Moiseev developed a unique method for forming a diffraction microrelief based on layer-by-layer photoresist buildup [5-6]. This method allows to form a multilevel (up to 16 levels) microrelief for reflecting focusators designed to concentrate the emission of CO$_2$ lasers (wavelength of 10.6 μm) (Fig. 1) without the etching operations.

![Figure 1. Photo of a focusator [6].](image)

In 1996, O.Y. Moiseev used this method to make the focusators into a ring [7-8], which still function in the pedestal plant [9] at the Prokhorov General Physics Institute of the Russian Academy of Sciences and allow to grow unique crystalline fibers [10-11].

O.Y. Moiseev also studied the limitations of the method of dark growth of a microrelief in liquid photopolymerizable compositions [12]. The method of dark growth allowed to obtain “high” microreliefs of long-focus harmonic lenses. The methods developed by O.Y. Moiseev in his Candidate's dissertation allowed him to create and patent a number of optical devices and technological methods [13-22].

O.Y. Moiseev created several interesting works on the development, research and optimization of a semi-automatic plant for the formation of microreliefs at the ends of halide IR waveguides [23-31] (Fig. 2).

![Figure 2. 3D reconstruction of microrelief shape at the end of a halide IR waveguide [26].](image)

The opening of a laser recording station at the center of collective use of equipment of the Samara University and the Institute of Image Processing Systems of the Russian Academy of Sciences in 2004 became a new stage for O.Y. Moiseev in the development of technologies for the formation of...
multilevel microreliefs [32-35]. Due to the use of direct laser photomask recording technology O.Y. Moiseev succeeded in creating and studying many new diffractive elements [36-50] (Fig. 3).

Starting from 2008, O.Y. Moiseev had been developing a fundamentally new single-stage technology for the manufacturing of diffractive optical elements based on the oxidation of thin films of chromium, copper and molybdenum in a focused laser beam [51-62]. As a result, the methods appeared that allow to form a microrelief in one stage on the basis of making the structures of a given height from chromium oxide or molybdenum (Fig. 4).

Starting from 2015, O.Y. Moiseev had been developing the technology allowing to obtain high-quality microrelief of harmonic lenses of a visible range [63]. In terms of reproduction accuracy of “high” microrelief (braking the corners, verticality of walls, etc.), the results achieved by O.Y. Moiseev exceed significantly the results obtained previously by way of dark growth of liquid photopolymerizable compositions [12] or the results obtained on machines with computerized numerical control [64]. This opened up fundamentally new opportunities for the application of harmonic lenses in ultralight computer vision systems [65-66].

![Figure 3. The central part of the axicon with a period of 8 microns.](image-url)

![Figure 4. 3D reconstruction of microrelief surface (a) and profilogram of an axicon (b) manufactured by oxidation of a chromium film.](image-url)

![Figure 5. The shape of microturbine surface obtained with scanning electron microscope Supra [67].](image-url)

Despite the sudden death of O.Y. Moiseev, the scientific publications on the technologies developed by him are still being published. For example, the technology of manufacturing of
microturbines using the method of direct laser recording over a thick layer of photoresist (Fig. 5) was described in [67].

Thus, the technologies developed by O.Y. Moiseev have found application in micromechanics.

3. Conclusion
The long evolution of the methods of forming multilevel microreliefs, which had started at the end of the last century, led to the creation of sophisticated and practically important technologies for imaging systems and more. Laser techniques of high multilevel microreliefs production developed by O.Y. Moiseev confer the possibility to make a qualitative breakthrough in the development of the significant branches of science like technical vision systems, micromechanics, and fiber-optic communications in the nearest future.

4. References
[1] Golub M A, Karpeev S V, Prokhorov A M, Sisakyan I N and Soifer V A 1981 Focusing coherent radiation in a given region of space with the help of computer generated holograms Technical Physics Letters 7(10) 618-623
[2] Golub M A, Degtyareva V P, Klimov A N, Popov V V, Prokhorov A M, Sisakyan E V, Sisakyan I N and Soifer V A 1982 Machine synthesis of focusing elements for CO2-laser Technical Physics Letters 8(13) 449-451
[3] Golub M A, Sisakian I N and Soifer V A 1991 Infra-red radiation focusators Optics and Lasers in Engineering 15(5) 297-309 DOI: 10.1016/0143-8166(91)90017-N
[4] Sokolov V O 2017 The maker of harmonic lens microreliefs Procedia Engineering 201 177-183
[5] Volkov A V, Kazanskiy N L, Moiseev O Y and Soifer V A 1996 A Method for the diffractive microrelief forming using the layered photoresist growth Computer Optics 16 12-14
[6] Volkov A V, Kazanskiy N L, Moiseev O J and Soifer V A 1998 A Method for the diffractive microrelief formation using the layered photoresist growth Optics and Lasers in Engineering 29(4-5) 281-288 DOI: 10.1016/s0143-8166(97)00116-4
[7] Golub M A, Kazanskii N L, Sisakyan I N, Soifer V A and Kharitonov S I 1987 Diffraction calculation for an optical element which focuses into a ring Optoelectronics, Instrumentation and Data Processing 6 7-14
[8] Kazanskiy N L, Uspleniev G V and Volkov A V 2000 Fabricating and testing diffractive optical elements focusing into a ring and into a twin-spot Proceedings of SPIE 4316 193-199 DOI: 10.1117/12.407678
[9] Bufetova G A, Kashin V V, Nikolaev D A, Rusanov S Y, Seregin V F, Tsvetkov V B, Shcherbakov I A and Yakovlev A A 2006 Neodymium-doped graded-index single-crystal fibre lasers Quantum Electronics 36(7) 616-619
[10] Iskhakova L D, Kashin V V, Lavrishchev S V, Rusanov S Y, Seregin V F and Tsvetkov V B 2016 Facet appearance on the lateral face of sapphire single-crystal fibers during LHPG growth Crystals 6(9) DOI: 10.3390/cryst6090101
[11] Bufetova G A, Rusanov S Ya, Seregin V F, Pyrkov Yu N, Kamynin V A and Tsvetkov V B 2016 Temperature distribution across the growth zone of sapphire (Al2O3) and yttrium-aluminum garnet (YAG) single crystal fibers Journal of Crystal Growth 433 54-58 DOI: 10.1016/j.jcrysgro.2015.06.010
[12] Volkov A V, Volotovsky S G, Granchak V M, Kazanskiy N L, Moiseev O Yu, Soifer V A, Soloviev V S and Yavenkova D M 1995 Experimental study of mass transfer in liquid photopolymerizing compositions Zhurnal Tekhnicheskoi Fiziki 65(9) 181-185
[13] Volkov A V, Kazanskiy N L, Moiseev O Y and Kharitonov S I 1995 Diffractive optical elements in night vision devices Research and development and dual purpose high technologies (Samara: GPSO “Impulse”) 1 129-130
[14] Volkov A V, Kazanskiy N L, Moiseev O Y, Soifer V A 1994 A method of forming a pattern of lighting devices of vehicles Russian Federation Patent for Invention № 2094256 dated 11.08.1994
[15] Volkov A V, Kazanskiy N L, Moiseev O Y and Soifer V A 1997 A spectroscopic device for visible and infrared light Russian Federation Patent for Invention № 2148849 dated 18.07.1997
[16] Volkov A V, Kazanskiy N L and Moiseev O Y 1999 Study of processes of photoresist deposition and etching to improve the accuracy of the wide DOE microlrelief formation Computer Optics 19 143-146
[17] Volkov A V, Kotlyar V V, Moiseev O V, Rybakov O E, Skidanov R V, Soifer V A and Khonina S N 2000 Binary Diffraction Optical Element Focusing a Gaussian Beam to a Longitudinal Segment Optics and Spectroscopy (English translation of Optika i Spektroskopiya) 89(2) 318-323 DOI: 10 1134/1 1307454
[18] Volkov A V, Kazanskiy N L and Moiseev O Y 2001 Preparation of a substrate surface for DOE fabrication using a layered photoresist growth method Computer Optics 21 113-116
[19] Volkov A V, Kazanskiy N L and Moiseev O Y 2002 Synthesis of a microlrelief using chalcogenide vitreous semiconductors Computer Optics 24 74-77
[20] Volkov A V, Kazanskiy N L, Moiseev O Y and Soifer V A 2001 A method for the manufacture of diffractive optical elements in diamond and diamond-like films Russian Federation Patent for Invention No 2197006 dated 27.03.2001
[21] Volkov A V, Kazanskiy N L, Moiseev O Y, Soifer V A and Kharitonov S I 2002 A directional radiation device Russian Federation Patent for an Invention No 2213985 dated 05.04.2002
[22] Volkov A V, Kazanskiy N L and Moiseev O Y 2002 A method for the manufacture of diffractive optical elements Russian Federation Patent for an invention No 2231812 dated 21.05.2002
[23] Borodin S A, Volkov A V, Kazanskiy N L, Pavelyev V S, Karpeev S V, Palagushkin A N, Prokopenko S A, Sergeev A P and Arlamenkov A N 2005 Numerical and experimental study of DOE-aided nondispersive multi-mode beams Computer Optics 27 41-44
[24] Borodin S A, Volkov A V, Kazanskiy N L, Pavelyev V S, Karpeev S V, Moiseev O Y, Yakunenkov D M, Runkov Y A and Golovashkin D L 2005 Fabrication and characterization of a front-end diffraction microlrelief in a halogenide IR waveguide Computer Optics 27 45-49
[25] Volkov A V, Golovashkin D L, Eropolov V A, Kazanskiy N L, Karpeev S V, Moiseev O Y, Pavelyev V S, Artyushenko V G and Kashin V V 2006 Analysis of fabrication errors when synthesizing front-end diffraction gratings in a halogenide IR waveguide Proceedings of the Samara Scientific Center of the Russian Academy of Sciences 8(4) 1211-1217
[26] Volkov A V, Golovashkin D L, Eropolov V A, Kazanskiy N L, Karpeev S V, Moiseev O Y, Pavelyev V S, Artyushenko V G and Kashin V V 2007 Studying Fabrication Errors of the Diffraction Grating on the End Face of a Silver-Halide Fiber Optical Memory & Neural Networks (Information Optics) 16(4) 263-268
[27] Orekhova Y A, Moiseev O Y and Golovashkin D L 2008 Choice of geometrical parameters of a halide antireflective grating profile considering the application of the etching technology VESTNIK of Samara University Aerospace and Mechanical Engineering 2(15) 112-116
[28] Moiseev O Y 2008 Semiautomatic plant for microlrelief formation on the ends of IR halogenide waveguides Computer Optics 32(1) 62-63
[29] Volodkin B O, Golovashkin D L, Moiseev O Y, Orekhova Y A and Pavelyev V S 2008 Simulation of radiation propagation through an antireflective grating formed by stamping to the end face of a halide IR waveguide Computer Optics 32(2) 191-194
[30] Pavelyev V S, Moiseev O Yu, Volkov A V, Eropolov V A, Dmitriev S V, Karpeev S V, Artyushenko V G and Kashin V V 2008 Realization and investigation of diffractive microlrelief on the end face of silver-halide waveguide Proceedings of SPIE 6994 69940Q
[31] Golovashkin D L, Moiseev O Y, Yegorova E A and Yunusheva G A 2009 Choosing the geometry of a halogenide antireflection grating profile based on etching technique capabilities Optical Memory & Neural Networks (Information Optics) 18(4) 268-270
[32] Poleshchuk A G, Churin E P, Kononkevich V P, Korolkov V P, Kharissov A V, Cherkashin V P, Kiryanov V P, Kiryanov A A, Kokarev S G and Verhoglyad A 1999 Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure Applied Optics 38(8) 1295-1301
[33] Kazanskiy N L 2012 Research & education center of diffractive optics Proceedings of SPIE 8410 84100R DOI: 10.1117/12.923233

[34] Verkhoglyad A G, Zavyalova M A, Kastorsky L B, Kachkin A E, Kokarev S A, Korolkov V P, Moiseev O Y, Poleshchuk A G and Shimansky R V 2015 Circular laser recording system for the production of DOEs on spherical surfaces Interexpo Geo Siberia 5(2) 62-68

[35] Kazanskiy N L, Skidanov R V 2019 Technological line for creation and research of diffractive optical elements Proc. SPIE 11146 111460W DOI: 10.1117/12.2527274

[36] Kotlyar V V, Kovalev A A, Skidanov R V, Moiseev O Yu and Soifer V A 2007 Diffraction of a finite-radius plane wave and a Gaussian beam by a helical axicon and a spiral phase plate Journal of the Optical Society of America A: Optics, Image Science, and Vision 24(7) 1955-1964

[37] Kotlyar V V, Kovalev A A, Skidanov R V, Khonina S N, Moiseev O Yu and Soifer V A 2007 Simple optical vortices formed by spiral phase plate Journal of Optical Technology 74(10) 686-693

[38] Khonina S N, Skidanov R V and Moiseev O Y 2009 Airy laser beams generation by binary-coded diffractive optical elements for microparticles manipulation Computer Optics 33(2) 138-146

[39] Kotlyar V V, Khonina S N, Volkov A V, Moiseev O Y, Kostyuk G F and Yakunenko D M 2010 High-aperture binary bi-axicon for far IR light: fabrication and experimental testing using linearly polarized incident light VESTNIK of Samara University Aerospace and Mechanical Engineering 4(24) 215-223

[40] Khonina S N, Skidanov R V, Kachalov D G, Pavelyev V S and Moiseev O Y 2010 Investigation of the formation of the axial segment with an optimized binary DOE Computer Optics 34(3) 350-359

[41] Kotlyar V V, Stafeev S S, Skidanov R V, Nalimov A G, Moiseev O Y and Poletaev S D 2010 Light spot diameter in the near zone of binary diffractive microaxicon Computer Optics 34(1) 24-34

[42] Kachalov D G, Pavelyev V S, Khonina S N, Skidanov R V and Moiseev O Yu 2010 Stochastic optimization of radial DOE forming intensity distribution along an axial focal zone Proceedings of SPIE 7717 77170E

[43] Volostnikov V G, Kotova S P, Moiseev O Yu, Volkov A V, Vorontsov E N and Yakunenko D M 2010 Light fields of complex polarization structure Conference Proceedings - 5th International Conference on Advanced Optoelectronics and Lasers 5634258 74-75

[44] Karpeev S V, Khonina S N, Kazanskiy N L and Moiseev O Y 2011 Forming inhomogeneously polarized higher-order laser beams on the basis of circulary polarised beams Computer Optics 35(2) 224-230

[45] Kachalov D G, Pavelyev V S, Khonina S N, Skidanov R V and Moiseev O Y 2011 Application of the direct search in solving a problem of forming longitudinal distribution of intensity Journal of Modern Optics 58(1) 69-76

[46] Nesterenko D V, Poletayev S D, Moiseev O Y, Yakunenko D M, Volkov A V and Skidanov R V 2011 Creating curvilinear diffraction gratings for ultraviolet range Izvestia of Samara Scientific Center of the Russian Academy of Sciences 13(4-1) 66-71

[47] Karpeev S V, Khonina S N, Moiseev O Y, Alferov S V and Volkov A V 2012 Polarization converter for generating high order laser beams using a binary diffractive optical element Journal of Samara State Technical University, Ser Physical and Mathematical Sciences 29(4) 162-170

[48] Khonina S N, Alferov S V, Karpeev S V and Moiseev O Y 2013 Study of polarization sensitivity of near-field microscope using a binary phase plate Computer Optics 37(3) 326-331

[49] Alferov S V, Karpeev S V, Khonina S N and Moiseev O Y 2014 Experimental study of focusing of inhomogeneously polarized beams generated using sector polarizing plates Computer Optics 38(1) 57-64

[50] Khonina S N, Degtyarev S A, Porf'irev A P, Moiseev O Y, Poletaev S D, Larkin A S and Savelyev-Trofimov A B 2015 Study of Focusing into Closely Spaced Spots Via Illuminating a
Diffractive Optical Element by a Short-Pulse Laser Beam *Computer Optics* **39**(2) 187-196 DOI: 10.18287/0134-2452-2015-39-2-187-196

[51] Volkov A V, Volodkin B O, Dmitriev S V, Eropolov V A, Moiseev O Y and Pavelyev V S 2007 Thin copper film as a mask layer in plasma etching of quartz *Computer Optics* **31**(4) 53-54

[52] Volkov A V, Pavelyev V S, Moiseev O Yu, Eropolov V A, Volodkin B O and Tukmakov K N 2009 Thin Copper Film for Plasma Etching of Quartz *Optical Memory & Neural Networks (Information Optics)* **18**(1) 40-43

[53] Agafonov A N, Moiseev O Y and Korlyukov A A 2010 Analysis of dependence of local thermochemical oxidation technology resolution from photosensitive chrome film structure parameters Korlyukov *Computer Optics* **34**(1) 101-108

[54] Volkov A V, Moiseev O Y and Poletaev S D 2013 Precision laser recording on a molybdenum films for diffractive microrelief formation *Computer Optics* **37**(2) 220-225

[55] Alferov S V, Karpeev S V, Khonina S N, Tukmakov K N, Moiseev O Yu, Shulyapov S A, Ivanov K A and Savel'ev-Trofimov A B 2014 On the possibility of controlling laser ablation by tightly focused femtosecond radiation *Quantum Electronics* **44**(11) 1061-1065

[56] Volkov A V, Moiseev O Y, Poletaev S D and Chistyakov I V 2014 Application of thin molybdenum films in contact masks for manufacturing the micro-relief of diffractive optical elements *Computer Optics* **38**(4) 757-762

[57] Volkov A V, Kazanskiy N L, Moiseev O Y and Poletaev S D 2015 Thermal oxidative degradation of molybdenum films under laser ablation *Technical Physics* **60**(2) 265-269 DOI: 10.1134/S1063784215020255

[58] Kazanskiy N L, Moiseev O Yu and Poletaev S D 2016 Microprofile formation by thermal oxidation of molybdenum films *Technical Physics Letters* **42**(2) 164-166 DOI: 10.1134/S1063785016020085

[59] Volkov A V, Kazanskiy N L, Moiseev O Y, Paranin V D, Poletaev S D and Chistyakov I V 2016 Specific features of the laser irradiation of thin molybdenum films *Technical Physics* **61**(4) 579-583 DOI: 10.1134/S1063784216040241

[60] Juneja S, Sudhakar S, Khonina S N, Skidanov R V, Porfirev A P, Moissev O Y, Kazanskiy N L and Kumar S 2016 Nanocrystalline silicon thin films and grating structures for solar cells *Proceedings of SPIE* **9807** 98070F

[61] Volkov A V, Kazanskiy N L, Moiseev O Y and Poletaev S D 2013 A method for the manufacture of amplitude diffractive optical elements and masks for making phase structures *Russian Federation Patent for Invention № 2556313* dated 14.06.2013

[62] Ganchevskaya S V, Kazanskiy N L, Moiseev O Y and Poletaev S D 2014 A method for the manufacture of diffractive optical elements *Russian Federation Patent for Invention № 2601391* dated 28.11.2014

[63] Skidanov R V, Moiseev O Yu and Ganchevskaya S V 2016 Additive process for fabrication of phased optical diffraction elements *Journal of Optical Technology* **83**(1) 23-25 DOI: 10.1364/JOT.83.000023

[64] Abul'khanov S R, Kazanskii N L, Doskolovich L L and Kazakova O Y 2011 Manufacture of diffractive optical elements by cutting on numerically controlled machine tools *Russian Engineering Research* **31**(12) 1268-1272

[65] Blank V A, Skidanov R V 2018 Hyperspectrometer based on a harmonic lens with diffraction grating *Journal of Physics: Conference Series* **1096**(1) 012003

[66] Nikonorov A V, Petrov M V, Bibikov S A, Yakimov P Y, Kutikova V V, Yuzifovich Y V, Morozov A A, Skidanov R V and Kazanskiy N L 2018 Ultralightweight Remote Sensing with Harmonic Lenses and Convolutional Neural Networks *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing* **11**(9) 3338-3348 DOI: 10.1109/JSTARS.2018.2856538

[67] Skidanov R V, Moiseev O Y and Ganchevskaya S V 2018 Microturbines formed with the aid of direct laser recording on photoresist *Technical Physics* **63**(6) 862-865