This article can be cited before page numbers have been issued, to do this please use: A. Humayun, Y. Luo, A. Elumalai and D. Mills, Mater. Adv., 2020, DOI: 10.1039/D0MA00134A.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Differential Antimicrobial and Cellular Response of Electrolytically Metalized Halloysite Nanotubes Having Different Amounts of Surface Metallization

Ahmed Humayun¹, Yangyang Luo¹, Anusha Elumalai¹,², David K. Mills*¹,²

¹ Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA, 71272 USA

² School of Biological Sciences, Louisiana Tech University, Ruston, LA, 71272 USA

*Correspondence:
David K. Mills
School of Biological Sciences and the Center for Biomedical Engineering and Rehabilitation Science
Louisiana Tech University
Carson Taylor Hall, Room 128
Ruston, LA 71272
USA, Tel +1-318-257-2640
Fax +1-318-257-4574
Email: dkmills@latech.edu
Abstract

We demonstrate an electrolytic method to metalize the outer surface of halloysite nanotubes (HNTs). Different metal HNTs (mHNTs) combinations (copper, silver, zinc) were produced with metal content in the 5-30 wt.% range. mHNTs were characterized using a Scanning Electron Microscope (SEM), energy-dispersive spectroscopy (EDS), X-ray fluorescence (XRF), Fourier-transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD). Different amounts of surface/lumen metal content of a system can confer differing antimicrobial/cellular response; hence, it is essential to assess the antimicrobial/cellular response as a function of metal content. Cellular response after exposure to mHNTs was studied in Staphylococcus aureus and pre-osteoblasts, respectively. Coated mHNTs could easily be identified using the characterization methods, and contrasting bacterial and cellular responses were obtained, which we propose was due to the extent of metallization. These findings demonstrate the potential of this method for creating metal-coated HNT and suggest they have potential as an implant coating solution.

Keywords – antimicrobial coatings; halloysite nanotubes; electrodeposition; metal nanoparticles
1. Introduction

Due to increased incidences of microbial infections and rising microbial resistance to antibiotics, innovative antimicrobial agents are the need of the present age. Due to the high occurrence of microbial infections and the increasing resistance of bacteria to antibiotics, innovative antimicrobial agents are now required. Metal nanoparticles (NPs) exhibit significant antimicrobial activity by themselves as well as a synergistic activity when combined with other antimicrobial agents, however, their utility is restricted due to their inherent instability leading to agglomeration and thus a reduction in potency, furthermore, at high concentrations their cytotoxic effects outstrip the antimicrobial potential.

Metals NPs and oxides inhibit bacterial growth by inducing oxidative stress and the production of reactive oxygen species. Metal NPs, including silver, zinc, and copper NPs are used commercially due to low cost, abundance, and relatively less toxicity; however, owing to extremely high surface energy, they agglomerate into larger particles, thereby diminishing the desired effects. This situation can be resolved by using surfactant materials such as polyvinylpyrrolidone, polyethylene glycol, and sodium citrate, however, this has proven to be a temporary band-aid fix at best due to associated high costs, intricate pre and post-processing steps and possible eco-toxicity. HNTs can be a viable solution to this problem as they can adsorb metal NPs, thus reduce their agglomeration and potentiate a more sustained metal NPs release in a system by desorption, and therefore increase the likelihood of achieving more pragmatic utilities and results. Previous investigations confirm that metal NPs, when adsorbed on HNTs, retain their antimicrobial properties.

Halloysite nanotubes (HNTs), are a dioctahedral 1:1 nano clay made of rolled-up layers of aluminosilicate sheets, it is 500-1000nm long, 50nm diameter with 15-50nm lumen, it occurs
throughout the world and is biocompatible, further, it is of significant interest due its high adsorption capacity, unique surfaces, and lumen charge polarity chemistry, non-toxic nature, wide distribution, and low cost. It has been incorporated in corrosion-resistant coatings and fire-retardant materials. Due to its charged hollow lumen it is used as a container for various chemicals including drugs, dyes, and metals, in recent years it has generated interest as an adsorbent surface for various antimicrobial, catalytic, and heavy metal remediation, as a filler for structural modification in bone cements, dental fillings, and polymers.

The deposition of metal NPs on HNTs is a straightforward process because of their inherent adsorbent ability, which can be further enhanced using chemical modifications. In this study, we employed a modified electrolytic method for metalizing HNTs based on a process previously described by Mills et al. We used several electrolytic parameters to regulate the behavior of metal nanoparticles in the electrolytic system in order to influence metal NPs density, interacting, with the HNTs. NP adsorption onto the HNT surface would also be directly affected. As different amounts of metal content in a structure can confer contrasting antimicrobial/cellular responses, it is also essential to assess the antimicrobial and cellular response as a function of metal content.

In this study, we demonstrate an electrolytic synthesis of reduced metal species, their subsequent adsorption on HNTs' outer surface, and study its contrasting antimicrobial and cellular response in *Staphylococcus aureus* and preosteoblast cell, respectively as a function of the nature and quantity of metal deposition on HNTs external surface. Different mHNTs (m = silver, copper, or zinc) were synthesized electrolytically having metal content within 5-30 wt.%
range at two different voltages 5 and 20V respectively and characterized using SEM, energy-dispersive spectroscopy (EDS), X-ray fluorescence (XRF), Fourier-transform infrared spectroscopy (FTIR), UV-Visible spectroscopy, and X-ray powder diffraction (XRD).
2. Materials and Methods

2.1 Materials

Staphylococcus aureus (*S. aureus*) ATCC® 6538™ 50 CFU, AgNO₃, CuSO₄, ZnSO₄.7H₂O (99.9% pure), HNTs, ethanol, acetone, propanol, methanol, live-dead kit, Mueller Hinton broth, and agar were purchased from Sigma-Aldrich (St. Louis, MO). Resazurin dye was obtained from Cayman Chemicals (Ann Arbor, MI), DC power source (VWR Accupower 500 electrophoresis power supply), platinum mesh electrodes, plastic Petri dishes, and ammeter (TekPower TP9605BT) were purchased from Amazon.com LLC (Seattle, WA). Resazurin dye from Cayman Chemicals (Ann Arbor, MI), Live/Dead® viability/cytotoxicity kit and cryomedium from Thermo Fisher Scientific (Waltham, MA).

2.2 Electrolytic metallization of HNTs

mHNTs were prepared using a modified protocol based on an electrolytic metallization procedure previously described by Mills et al.¹. Briefly, an electrolysis setup was assembled consisting of two platinized titanium mesh held parallel at 2in distance and connected to a DC power source (VWR Accupower 500) (Figure 1). Ultrasonicated 100mL aqueous solution of metal salts (2.5mM) and 50mg HNT were dispersed in a glass beaker, and voltages of 5 and 20V respectively were maintained at 80°C with polarity reversal every 5min intervals² with constant magnetic stirring to reduce electrophoretic buildup at the working electrode and thus increase reduced species density in the solution. Then, the supernatant was decanted three times and the solution was centrifuged at 5000rpm for 5min with water to separate out mHNTs from un-adsorbed metal particles and dried at 30°C.
2.3 Characterization

Hitachi S-4800 field-emission SEM (Tokyo, Japan) was used to examine the surface morphology of the coated HNTs and to visually confirm the presence of the metal coating appearing as clusters on the otherwise smooth HNT outer surface. SEM-EDS were carried out...
with an EDAX energy dispersive X-ray analyzer linked to the HITACHI S-4800 SEM to evaluate the elemental composition and weight percentage (wt.%) deposition on the AgHNTs. EDS was operated at a working distance of 15 mm and an acceleration voltage of 15kV; EDS spectra were analyzed using the EDAX Genesis software.

X-ray crystal diffraction analysis was recorded on a Bruker D8 Venture diffractometer (Bruker, Karlsruhe, Germany) with Cu Kα1 radiation (λ = 1.5418 Å). The scan speed and step size used were 2s and 0.02° respectively, the diffraction patterns were recorded on a Philips PW 1710 X-ray powder diffractometer over 2θ within 3° to 85°.

The samples were analyzed using a Thermo/ARLQuant’X energy dispersive X-ray fluorescence spectrometer. The X-ray tube was operated at 30 kV for 60 live seconds, using a 0.05 mm (thick) Cu primary beam filter in an air path for silver metal detection. The XRF spectra were studied using Wintrace 7.1™ software (Thermo Fisher Scientific, Waltham, MA).

The infrared spectrum was recorded at a resolution of 4s⁻¹ with 16 scans using a Thermo Scientific NICOLET™ IR100 FT-IR Spectrometer (Thermo Fisher Scientific; Waltham, MA). Thermo Scientific OMNIC™ software was used to study the stretching bands.

UV spectra of the silver nanoparticles were recorded using the NanoDrop-2000c spectrophotometer (Thermo Fisher Scientific, Waltham, MA) set at a 250-600nm scan range. Microplate absorbances were analyzed using Biotek 800TS microplate reader (Winooski, VT) set at 630nm absorbance.

Antibacterial activity

S. aureus was used in this study; it was maintained in tryptic soy agar. For testing, the bacterial strain was cultured in nutrient broth and plated on Muller-Hinton agar plates at 37°C.
overnight after which a single colony was picked up using a sterile toothpick and suspended in saline solution and diluted to 0.5 McFarland standard (1.5 x 10^8 CFU/ml), 20µL of which was spread over Muller-Hinton agar plates on which the test materials were placed and incubated for 18hr at 37°C and the obtained zones of inhibition were analyzed using ImageJ software.

mHNTs discs for antimicrobial assay were prepared. Here, 6mm discs were punched from Whatman # three filter paper, and 1mg of mHNTs in 2mL ethanol was gradually infused using an automatic pipette, the discs were dried in an incubator at 37°C and plated on Mueller-Hinton agar plates spread plated with 20µL of 0.5 McFarland S.aureus and incubated at 37°C overnight in an incubator.

A resazurin assay was used for qualitative minimum inhibitory concentration determination, where, 0.25mg of mHNTs were serially diluted in 100µL of Mueller Hinton broth and inoculated with 10µL of 1x10^5 cfu/ml of S. aureus gram-positive bacteria and incubated in wells of a 96 well plate at 30°C for 6hr after which 20µL of 0.0015wt/v% resazurin aqueous solution was added to each well. Live bacteria cells reduce the blue non-fluorescent resazurin to pink fluorescent resorufin, thus providing a direct analysis of the bacterial metabolic activity.

Cell culture

Cell viability response after exposure to mHNTs was studied using pre-osteoblast cells (MC3T3), which were obtained from the American Type Culture Collection (ATCC). Cryovial was thawed and allowed to equilibrate in a water bath with 37°C, then cells were cultured in T25 flasks in complete alpha-MEM containing 10% FBS and 1% penicillin (complete medium) and incubated at 37°C under humidified 5% CO₂ and 95% air incubator. Cells through passage four
and then frozen down and maintained in a liquid nitrogen Dewar until used. A trypsin-EDTA (0.25% trypsin, 1 mM EDTA) was used to detach cells from the culture flasks.

For each experiment (n=3), passage four pre-osteoblasts were thawed and resuspended in complete medium, prepared as described above, and used when they achieved sub-confluency. Cytotoxicity tests and cell proliferation tests were performed by pre-seeding cells in 48-well plates at a concentration of 1×10^5 cells/well and cultured for 24 hours. Cells were then rinsed with HBSS and incubated in complete medium with mHNTs at 20ug/mL for a 24hr duration. Pre-osteoblast cultures without exposure to mHNT were used as control.

Live/Dead cytotoxicity tests

Pre-osteoblast cells were cultured and tested with mHNT as described above. Cell viability was assessed using a LIVE/DEAD® Viability/Cytotoxicity Kit (ThermoFisher) containing polyanionic dye calcein, which is retained within living cells and produces an intense uniform green fluorescence (excitation/emission ~495 nm/~515 nm) and EthD-1, which enters cells with damaged membranes and produces a bright red fluorescence in dead cells (ex/em ~495 nm/~635 nm).

For viability studies, the staining solution was prepared by mixing 5 µL of 4 mM Calcein AM Solution and 20 µL of 2 mM EthD-III Solution to 10 mL of DPBS. Cell culture plates were washed twice with HBSS, and then 50 µL of staining solution was added to each well plate. These substrates were then incubated at room temperature for 30 min. Each cytotoxicity experiment was repeated three times. Images were captured using an Olympus BX51 fluorescence microscope (Olympus Corporation, Tokyo, Japan) equipped with an Olympus DP11 digital
camera system. ImageJ was used for counting fluorescent cells from thresholded 8bit images at a cell size limit of 50-200 pixel².

Cell proliferation studies

Cell proliferation was assessed using MTS colorimetric assay, which is based on the reduction of MTS tetrazolium compound to a colored formazan product soluble in culture media. 40 µL of MTS reagent was added to each well and incubated at 37°C for 2 hours. 200 µL of supernatant of each well were transferred to 96-well plates and read absorbance values at 490nm, background absorbance was subtracted from the medium wells containing the medium as a control.

Statistical analysis

Statistical analysis was performed using Microsoft Excel Analysis ToolPak plugin and Origin 9.6. Linear regression was used to construct and correlate standard curves. All experiments were done in triplicate, and one-way analysis of variance (ANOVA) with p < 0.05 as the significance level was utilized for statistical analysis. Statistically significant data was reported (p < 0.05), and all the results were reported as mean ± standard deviation (p < 0.05, n=3) unless otherwise specified.
3. Results and discussion

mHNTs with varying metal content were synthesized by application of 5 and 20V, which could easily be distinguished by visual analysis of the obtained samples, which turned darker with an increasing metal content as shown in Figure 2.

Figure 2. The natural white color of the HNTs was altered to darker colors depending on the type of metal used and quantity adsorbed, which can be attributed to the adsorption of darker color metal NPs on HNTs exterior surface.
SEM-EDS analysis revealed a positive correlation between applied voltage and metal content (wt.%) in mHNTs, which can be observed in terms of increased surface deposition on an otherwise smooth HNT, which increased with the applied voltage, brief patches of HNT surface were visible at 5V however at 20V the surface of mHNT was covered with irregular patches (Figure 3).

These findings were confirmed using XRF, where an increasing amount of metal content was observed as a function of voltage increment (Figure 4). A similar trend was observed in the XRD spectra, where increasing respective metal peak intensities were observed with increased metal content. In general, higher applied voltage samples displayed stronger corresponding metal and subdued halloysite peaks, respectively, whereas low voltage samples exhibited the

Figure 3. (a) Photograph of HNT powder and its traditional white color; (b) TEM of HNTs; SEM micrographs (c-h); (c, d) AgHNTs 5 and 20V, (e, f) CuHNTs 5 and 20V, and (g, h) Zn HNTs 5 and 20V respectively.
contrary, i.e., stronger halloysite and weaker metal peaks respectively (Figure 5a-c). In another study constructed Ag-ZnO-HNTs, where different amounts of ZnO metallization was achieved by using varying amounts of zinc precursor salts for reduction and similar gradation in the XRD, were obtained6, similar results were obtained when HNTs were mixed with varying amounts of titanium dioxide7.
Figure 4. XRF quantitative analysis of Ag, Cu, and ZnHNTs, respectively. Adsorbed metal content in mHNTs increased with applied voltage (5 and 20V). (error bar indicates standard deviation p < 0.05)

FTIR analysis of HNTs showed the inner and outer layer Al-OH stretching at 3690 and 3620cm⁻¹, in-plane Si-O-Si stretching at 1000cm⁻¹ and 1091cm⁻¹ and, symmetric Si-O-Si stretching at 748cm⁻¹ (Figure 5d). Amperage was recorded, and higher currents were detected for higher voltages (Figure 6), which can be explained as being due to a higher ionization of
metal salt electrolytes leading to increased ionic density in the solution resulting in an increased population of metal nanoparticles interacting with HNTs surface leading to corresponding increased metal wt.% in mHNTs with increased applied voltage. Previous studies have shown a reduction in the mean particle size of silver with an increase in current density.\(^8,9\)

A similar trend was observed with UV analysis, an increase in NPs concentration for silver, copper, and zinc NPs, respectively, with an increasing voltage at 420, 228, and 360 nm, respectively (Figure 7). Nanoparticles due to a collective oscillation of the conduction electrons exhibit absorption of visible electromagnetic waves, this is referred to as the surface plasmon resonance effect, this phenomenon is of particular interest because it enables the possibility of metal NPs detection and size analysis using UV-vis spectroscopy.\(^10\)

Previous studies have shown that silver NPs size can be controlled electrochemically\(^8\), and antimicrobial action is strongly size dependent\(^11\), and a strong correlation between silver NPs and UV-visible absorbance exists.\(^12\) Similarly, Zn NPs have been reported to display a strong absorption peak at 360nm.\(^13–15\) Similarly, Cu NPs can also be detected and are size quantifiable using UV-Vis spectroscopy.\(^16\)
Figure 5. XRD spectra of AgHNTs (a), CuHNTs (b), and ZnHNTs (c). (d) FTIR pattern of as received HNTs displaying the characteristic FTIR pattern.
mHNTs were evaluated for antimicrobial effect on S. aureus using the resazurin dye assay, a positive correlation was observed between observed minimum inhibitory concentration (MIC, at least 3 out of a total of 4 wells are dark blue in appearance, n=4) and metal content of mHNTs. MICs for AgHNTs (0.25 and 0.125mg/mL respectively), CuHNTs (none and 0.25mg/mL respectively), and ZnHNTs (0.125 and 0.25mg/mL respectively) at 5 and 20V respectively were observed (Figure 8).

Figure 6. Current (mA) Vs. time (min) for mHNTs samples in aqueous electrolytic setup, the amount of current flow recorded as a function of the conductivity of the individual metal salts, solvents, and applied voltage.

A disc diffusion assay was performed using agar plating (Figure 9) mHNTs 20V had greater average zones of inhibitions than mHNTs at 5V due to their higher metal content (Figure 10).
Figure 7. UV-Vis spectra of mHNTs (m=Ag, Zn, or Cu, respectively). Peaks were observed for Ag, Cu, and Zn at 420, 228, and 360 nm respectively.
Figure 8. Determination of MIC for mHNTs against S. aureus using resazurin assay. Purple well corresponds to dead, whereas partially purple/pink, and pink wells correspond to live bacteria, (n=4).
Figure 9. Disc diffusion assay of (a) HNTs, (b) AgHNTs, (c) CuHNTs, (d) ZnHNTs, (5V -top, 20V-bottom).

Figure 10. Inhibition zones from the disc diffusion assay. AgHNTs 20V exhibited significant greater inhibition zone compared to all other groups. Higher metal content mHNTs exhibited greater inhibition zones: AgHNTs 20V > AgHNTs 5V; CuHNTs 20V > CuHNTs 5V; ZnHNTs 20V > ZnHNTs 5V (error bar indicates standard deviation; n=3, p=<0.05).

To assess for any potential cytotoxicity issues, pre-osteoblasts were co-cultured with free metal particles and cell viability significantly decreased in the presence of AgNO₃ (Figure 11 and Figure 13). Ag NPs have been reported to be cytotoxic and genotoxic, size-dependent toxicity
has also been reported.18 One study also reported that Ag NPs damage the eukaryotic DNA by affecting the ATP content19. In the process of electrolytic metallization on HNTs, higher metal accumulation was observed in the 20-voltage treatment with reduced silver content at 5 volts (Figure 3). Therefore, AgHNTs (20V) contain more Ag NPs than AgHNTs (5V). Due to the cytotoxicity of Ag NPs, an increased amount of AgNPs results in decreased cell viability (Figure 12, AgHNTs (20V) vs. AgHNTs (5V)). CuHNTs and ZnHNTs exhibited insignificant contrast for both voltages in terms of cell viability; however, displayed there was a significant difference in cellular proliferation tests.

In contrast, Zn and Cu NPs have been demonstrated in several studies to be cell supportive. One study reported that low concentration exposure of copper NPs led to increased cellular proliferation in rat cerebral endothelial cells, whereas toxicity was observed at higher concentrations.20 Another study reported the angiogenesis promoting the ability of copper NPs21. ZnO NPs have remarkably been shown to have exhibited selective cytotoxicity to cancer cells and none towards normal cells22; another study reported minimal cytotoxicity to human T cells at levels toxic to prokaryotes23. A similar trend was observed in our cell proliferation studies (Figure 14).

The results of these studies are consistent with our hypothesis, the nature and the quantity of a specific metal deposited on the HNT surface has an influence over the antimicrobial response and cytotoxicity of mHNTs.
Figure 11. Live/Dead assay; pre-osteoblast cells were cultured in the presence of metal salts (a, e) Untreated cell control, (b, f) AgNO₃, (c, g) CuSO₄, (d, f) ZnSO₄ salts. Live cells (green), dead cells (red).
Figure 12. Live/Dead assay. Pre-osteoblast cells were cultured in the presence of mHNTs (a, d, g, j) AgHNTs 5 and 20V, (b, e, h, k) CuHNTs 5 and 20V, (c, f, i, l) ZnHNTs 5 and 20V respectively. Live cells (green) and dead cells (red).
Figure 13. Cell viability assay for mHNTs. AgNO3 was found to be most toxic to cellular viability, and the toxicity reduced when adsorbed to HNTs. (error bar indicates standard deviation, n=3, **** p<0.0001).
Figure 14. Cell proliferation assay for mHNTs, a similar trend in cell viability was observed. CuHNTs and ZnHNTs displayed increased cellular proliferation while AgHNTs displayed reduced cell proliferation with increased metal concentration adsorbed on HNTs (error bar indicates standard deviation, n=3, **** p<0.0001; *** p<0.001)

Conclusion

Several methods exist for metalizing HNTs; however, they are limited in scope as the extent of HNT metallization cannot be controlled, which, as demonstrated above, is a vital parameter in surface metallization. We demonstrated the electrolytic synthesis of metal-coated HNTs (mHNTs) with varying degrees of surface metallization that displayed contrasting antimicrobial and cellular response from *Staphylococcus aureus* and pre-osteoblasts, respectively. Metalizing the HNT’s exterior surface and the quantity of metal decoration as a function of the applied voltage was achieved. We anticipate that future developments leading to the deposition of more than two metals will open up potentially novel biomedical applications when combined with halloysite’s proven ability to release a range of drugs over a sustained period.

Acknowledgments: Mr. Davis Bailey and Dr. Sven Eklund for training. Funding for this study was provided by a grant (to Dr. Mills) from the Louisiana Biomedical Research Network (through an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number P20 GM103424-17 and Center for Dental, Oral & Craniofacial Tissue & Organ Regeneration (C-DOCTOR) with the support of NIH NIDCR (U24DE026914) The authors also wish to acknowledge the support of the College of Applied and Natural Sciences (Louisiana Tech University) Matching Grant Program (DKM) and the China Scholarship Council (YL).
Author Contributions: The authors all contributed to the writing of the manuscript. A.H., Y.L., and A.E. conducted the experiments under the direction of D.K.M. All authors reviewed and analyzed the data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. D. Mills and C. Boyer, Patent US 9,981,074B1, 2018.
2. R. A. Khaydarov, R. Khaydarov, O. Gapurova, Y. Estrin and T. Scheper, *J. Nanoparticle Res.*, 2009, **11**, 1193–1200.
3. J. Kramer and A. Kirshbaum, *Appl. Environ. Microbiol.*, 1961, **9**, 334–336.
4. M. Elshikh, S. Ahmed, S. Funston, P. Dunlop, M. McGaw, R. Marchant and I. M. Banat, *Biotechnol. Lett.*, 2016, **38**, 1015–1019.
5. C. A. Schneider, W. S. Rasband and K. W. Eliceiri, *Nat. Methods*, 2012, **9**, 671.
6. Z. Shu, Y. Zhang, Q. Yang and H. Yang, *Nanoscale Res. Lett.*, 2017, **12**, 135.
7. A. Rapsomanikis, D. Papoulis, D. Panagiotaras, E. Kaplani and E. Stathatos, *Glob. NEST J.*, 2014, **16**, 485–498.
8. L. Rodriguez-Sanchez, M. C. Blanco and M. A. Lopez-Quintela, *J. Phys. Chem. B*, 2000, **104**, 9683–9688.
9. L.-P. Jiang, A.-N. Wang, Y. Zhao, J.-R. Zhang and J.-J. Zhu, *Inorg. Chem. Commun.*, 2004, **7**, 506–509.
10. S. Link and M. A. El-Sayed, *Annu. Rev. Phys. Chem.*, 2003, **54**, 331–366.
11. G. A. Martinez-Castanon, N. Nino-Martinez, F. Martinez-Gutierrez, J. R. Martinez-Mendoza and F. Ruiz, *J. Nanoparticle Res.*, 2008, **10**, 1343–1348.
12. R. Desai, V. Mankad, S. K. Gupta and P. K. Jha, *Nanosci. Nanotechnol. Lett.*, 2012, **4**, 30–34.
13. A. Yadav, V. Prasad, A. A. Kathe, S. Raj, D. Yadav, C. Sundaramoorthy and N. Vigneshwaran, *Bull. Mater. Sci.*, 2006, **29**, 641–645.
14. M. M. AbdElhady, *Int. J. Carbohydr. Chem.*, 2012, 840591.
15. A. K. Zak, R. Razali, W. H. A. Majid and M. Darroudi, *Int. J. Nanomedicine*, 2011, **6**, 1399.
16. G. Angajala, P. Pavan and R. Subashini, *RSC Adv.*, 2014, **4**, 51459–51470.
17. P. V AshaRani, G. Low Kah Mun, M. P. Hande and S. Valiyaveettil, *ACS Nano*, 2008, **3**, 279–290.
18. M. V. D. Z. Park, A. M. Neigh, J. P. Vermeulen, L. J. J. de la Fonteyne, H. W. Verharen, J. J. Briede, H. van Loveren and W. H. de Jong, *Biomaterials*, 2011, **32**, 9810–9817.
19. L.-Y. Wong, J. Recht and B. C. Laurent, *J. Mol. Histol.*, 2006, **37**, 261–269.
20. W. J. Trickler, S. M. Lantz, A. M. Schrand, B. L. Robinson, G. D. Newport, J. J. Schlager, M. G. Paule, W. Slikker, A. S. Biris and S. M. Hussain, *Nanomedicine*, 2012, **7**, 835–846.
21. N. Mroczek-Sosnowska, E. Sawosz, K. Vadalasetty, M. Łukasiewicz, J. Niemiec, M. Wierzbicki, M. Kutwin, S. Jaworski and A. Chwalibog, *Int. J. Mol. Sci.*, 2015, **16**, 4838–4849.
22. L. Taccola, V. Raffa, C. Riggio, O. Vittorio, M. C. Iorio, R. Vanacore, A. Pietrabissa and
A. Cuschieri, *Int. J. Nanomedicine*, 2011, 6, 1129.

K. M. Reddy, K. Feris, J. Bell, D. G. Wingett, C. Hanley and A. Punnoose, *Appl. Phys. Lett.*, 2007, 90, 213902.