Effect of Folic Acid Supplementation on Cardiovascular Outcomes: A Systematic Review and Meta-Analysis

Yu-Hao Zhou1*, Jian-Yuan Tang2*, Mei-Jing Wu1, Jian Lu1, Xin Wei3, Ying-Yi Qin1, Chao Wang1, Jin-Fang Xu1, Jia He1*

1 Department of Health Statistics, Second Military Medical University, Shanghai, China; 2 Office of Compliance and Development, Center for Drug Evaluation, SFDA, Beijing, China; 3 Shanghai Jiao Tong University School of Medicine, Shanghai, China

Abstract

Background: Folic acid is widely used to lower homocysteine concentrations and prevent adverse cardiovascular outcomes. However, the effect of folic acid on cardiovascular events is not clear at the present time. We carried out a comprehensive systematic review and meta-analysis to assess the effects of folic acid supplementation on cardiovascular outcomes.

Methodology and Principal Findings: We systematically searched Medline, Embase, the Cochrane Central Register of Controlled Trials, reference lists of articles, and proceedings of major meetings for relevant literature. We included randomized placebo-controlled trials that reported on the effects of folic acid on cardiovascular events compared to placebo. Of 1594 identified studies, we included 16 trials reporting data on 44841 patients. These studies reported 8238 major cardiovascular events, 2001 strokes, 2917 myocardial infarctions, and 6314 deaths. Folic acid supplementation as compared to placebo had no effect on major cardiovascular events (RR, 0.98; 95% CI, 0.93–1.04), stroke (RR, 0.89; 95% CI, 0.78–1.01), myocardial infarction (RR, 1.00; 95% CI, 0.93–1.07), or deaths from any cause (RR, 1.00; 95% CI, 0.96–1.05). Moreover, folic acid as compared to placebo also had no effect on the following secondary outcomes: risk of revascularization (RR, 1.05; 95% CI, 0.95–1.16), acute coronary syndrome (RR, 1.06; 95% CI, 0.97–1.15), cancer (RR, 1.08; 95% CI, 0.98–1.21), vascular death (RR, 0.94; 95% CI, 0.88–1.02), or non-vascular death (RR, 1.06; 95% CI, 0.97–1.15).

Conclusion/Significance: Folic acid supplementation does not effect on the incidence of major cardiovascular events, stroke, myocardial infarction or all cause mortality.

Introduction

Cardiovascular disease is the leading cause of premature morbidity and mortality worldwide for both men and women [1,2]. Over the past few decades, many studies have shown a strong correlation between hyperhomocysteinemia and vascular disease [3–6], and identified elevated homocysteine levels as a risk factor for coronary artery disease, stroke, and deep vein thrombosis. Therefore, it has been suggested that raised concentrations of homocysteine in the blood should be lowered as a therapeutic approach to prevent cardiovascular disease [7,8]. However, reduction of the concentrations of homocysteine in the blood has not consistently been shown to be beneficial [9–11].

Currently, folic acid and B vitamins are used for achieving target homocysteine levels, and are clearly effective at reducing concentrations of plasma homocysteine. However, their effects on vascular events remain unclear [12]. Additionally, several large-scale randomized controlled trials have shown that reducing the extent of homocysteinemia with folic acid does not improve cardiovascular outcomes. When combined with B vitamins, folic acid may actually accelerate the risk of cardiovascular disease, and this has further restricted its application in clinical prevention [13].

Recently, additional large-scale randomized controlled trials of folic acid therapy combined with other B vitamins have been completed [11,14,15]. A number of these trials indicated that combination therapy had some beneficial effect on cardiovascular events, whereas others showed that it had limited effects, and some even found that it could induce drug-related adverse reactions. This led to uncertainty over the presence and magnitude of any protective cardiovascular effects of folic acid and difficulties in interpretation of the results. For a better understanding of the effect of folic acid on homocysteine and cardiovascular outcomes, data from these recent trials need to be re-evaluated and combined with the data in former literature on folic acid. Therefore, we carried out a systematic review and meta-analysis of pooled data from randomized controlled trials to assess the possible effect of folic acid supplementation on major cardiovascular events.
Methods

Data sources, search strategy, and selection criteria

Randomized, double-blind, placebo-controlled, and trials of folic acid therapy in English-language literature were eligible for inclusion in our meta-analysis, regardless of publication status (published, unpublished, in press, and in progress), and the effects on homocysteine levels and cardiovascular outcomes were examined. Relevant trials were identified with the following procedure:

1. **Electronic searches.** We searched the electronic databases Medline, EmBase, and the Cochrane Central Register of Controlled Trials for articles to a time limit of Nov. 20, 2010, using “folic acid”, “folate”, “cardiovascular disease”, “coronary disease”, “coronary thrombosis”, “ischemic heart disease”, “stroke”, “coronary stenosis”, “coronary restenosis”, and “randomized controlled trial” as the search terms. All reference lists from reports on non-randomized controlled trials were searched manually for additional eligible studies.

2. **Other sources.** We contacted authors to obtain any possible additional published or unpublished data, and searched the proceedings of annual meetings in the Cochrane Cardiovascular Disease Group Specialized Register. In addition, we searched for ongoing randomized controlled trials, which had been registered as completed but not yet published, in the metaRegister of Controlled Trials. Medical subject headings and methods, patient population, and intervention were used to identify relevant trials. This review was conducted and reported according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) Statement issued in 2009 (Checklist S1) [16].

The literature search was undertaken independently by 2 authors (Chao Wang and Ying-Yi. Qin) with a standardized approach, and any disagreement between these 2 authors was settled by a third author (Yu-Hao. Zhou) until a consensus was reached. All completed randomized controlled trials assessing the effects of folic acid therapy compared with the effects of a placebo, and reporting at least 1 outcome of major cardiovascular events were included as eligible trials. Randomized controlled trials to be included in the analysis were limited to those with at least 100 patients and at least 6 months follow-up, to ensure that only high-quality studies were incorporated.

Data collection and quality assessment

Two investigators (Chun-Fang. Wu and Mei-Jing. Wu) independently extracted and collected data using a standardized data-extraction protocol. Any discrepancy was settled by group discussion, after which the primary authors (Yu-Hao. Zhou and Jia He) made the final decision. The data collected included baseline patient characteristics (number of patients, age, sex, pre-existing disease, interventions, total plasma homocysteine, and duration of follow-up). The outcomes investigated included major cardiovascular events, stroke, myocardial infarction, total mortality, and possible drug-correlated adverse reactions. We measured the quality of the trials included in this study with the Jadad score [17], on the basis of randomization, concealment of treatment allocation, blinding, completeness of follow-up, and use of intention-to-treat analysis.

Statistical analysis

We assessed the overall effect of folic acid supplementation on all data from the included trials. The outcomes were reported using relative risks (RR) with 95% confidence intervals (CIs) to estimate the effect of folic acid on major cardiovascular events, stroke, myocardial infarction, total mortality, and possible drug-correlated adverse reactions. After this, a subgroup analysis was carried out based on the number of patients, duration of folic acid supplementation, mean age, baseline total plasma homocysteine, pre-existing disease, and Jadad score. The statistical estimates of effect were derived using a random-effects model with Mantel–Haenszel statistics. Heterogeneity of treatment effects between studies was investigated visually by scatter plot analysis and statistically by the heterogeneity statistic. A statistic of 0%–40% indicates unimportant heterogeneity, 40%–60% indicates moderate heterogeneity, 60%–90% indicates substantial heterogeneity, and 90%–100% indicates considerable heterogeneity [18]. P values were calculated by *x*² tests. All the reported P values are two-sided and value of P less than 0.05 was regarded as statistically significant for all included studies. All analyses were calculated using STATA (version 10.0).

Results

We identified 1594 potentially relevant trials from our initial electronic search, and excluded 1528 trials after a preliminary review. The remaining 66 studies were retrieved for detailed assessment, and 16 randomized controlled trials met the inclusion criteria (Figure 1 and Protocol S1 [16]), which consisted of data of 44841 individual patients. Table 1 summarized the baseline characteristics of the participants and the design of the studies included. The trials included in this study compared folic acid supplementation (with or without B vitamins) with placebo. The follow-up for patients ranged from 8.3 to 87.6 months, with a mean of 43.2 months. The population of the trials ranged from 114 to 12064 individuals, with a mean of 2803. We restricted the inclusion criteria to randomized placebo-controlled trials with at least 100 patients and a minimum of 6 months follow-up to ensure that high-quality literature was included in our research, and to ensure a reliable conclusion. One trial had a Jadad score of 5, 6 trials had a score of 4, 7 trials had a score of 3, and the remaining 2 trials had a score of 2.

Data for the effect of folic acid on major cardiovascular events were available from 12 trials, including 38015 individuals with 8238 cardiovascular events. Figure 2 shows the effect of folic acid (with or without B vitamins) on major cardiovascular events as compared to placebo. The pooled RR showed a 2% reduction in cardiovascular event rates, and with no evidence showed that folic acid therapy protected against cardiovascular event risk (RR, 0.98; 95%CI, 0.93–1.04). Although there was some evidence of heterogeneity across the studies included, a sensitivity analysis indicated that the results were not affected by sequential exclusion of any particular trial from all pooled analysis.

Data for the effect of folic acid on stroke were available from 12 trials, including 42960 participants with 2001 events of stroke. Overall, folic acid therapy reduced the risk of stroke by 11%, but was not associated with a statistically significant decrease in the risk of stroke (fatal or nonfatal) events (RR, 0.89; 95% CI, 0.78–1.01, with unimportant heterogeneity, Figure 3).

Data for the effect of folic acid on myocardial infarction were available from 11 trials, including 39923 patients and 2917 events of myocardial infarction. No effect of folic acid therapy on the risk of myocardial infarction events was observed (RR, 1.00; 95% CI, 0.93–1.07, without evidence of heterogeneity of effect, Figure 4).

Fourteen trials including 44340 patients and 6314 total events of mortality were recorded, with 10 trials providing separate data for vascular death and 8 studies providing separate data for nonvascular death. There was no evidence to show that folic acid therapy could reduce the risk of mortality, whether total mortality,
vascular death, or non-vascular death (Figure 5). According to a sensitivity analysis, we excluded the SEARCH Collaborative Group study [11]. This trial specifically included individuals with pre-existing myocardial infarction, which may have contributed to a high mortality rate. After this, we could conclude that folic acid therapy was associated with a reduction in the risk of vascular death, which was decreased by 11% (RR, 0.89; 95% CI, 0.81–0.98, Figure 5).

Ten of the trials included 38068 patients with 2939 revascularization events. There was no evidence to show that folic acid therapy protected against revascularization, although heterogeneity was observed in the magnitude of the effect across the trials included (RR, 1.05; 95% CI, 0.95–1.16, Figure 5). However, after sequential exclusion of each trial from all pooled analysis, the results were not affected by exclusion of any specific trial.

The risk of coronary syndrome was reported in 5 trials, including 19050 individuals and 3148 events of coronary syndrome. No evidence indicated that folic acid therapy protected against coronary syndrome risk (RR, 1.06; 95% CI, 0.97–1.15, without evidence of heterogeneity of effect, Figure 5).

Six trials reported data for the incidence of cancer, including 26544 patients and 2472 events of cancer. Reduction in the risk of cancer with folic acid therapy was not statistically significant (RR, 1.08; 95% CI, 0.98–1.21, with unimportant heterogeneity, Figure 5).

Of the 16 trials included in our meta-analysis, only 2 provided data about dialysis and amputation, and included 2294 participants, 725 dialysis events, and 116 amputation events. The pooled analysis showed no significant differences between folic acid therapy and placebo therapy for dialysis or amputation (Figure 5).

Subgroup analyses were carried out for major cardiovascular events, stroke, and myocardial infarction. We noted that folic acid therapy was associated with a reduction in the risk of major cardiovascular events, when trials with less than 36 months follow-up period were included. Furthermore, compared with placebo, folic acid therapy showed a clear effect on stroke events when the mean age of the patients was less than 60 years. However, no other significant differences were identified between the effect of folic acid therapy and placebo, based on additional subset factors (Figure 6).

Discussion

This large quantitative review included 44841 individuals in 16 trials with a broad range of baseline characteristics. The results of our meta-analysis suggest that folic acid therapy does not effect on the incidence of major cardiovascular events, stroke, myocardial infarction, all cause mortality or other cardiovascular-related outcomes.
The relationship between homocysteine levels and cardiovascular disease was described initially by observational studies, which may overestimate the effect of this relationship. Two meta-analyses of epidemiologic studies [4,31] suggested that reduced homocysteine levels could lower the risk of coronary heart disease, stroke, and cardiovascular disease. However, Bazzano et al [32] concluded that folic acid therapy did not significantly contribute to cardiovascular disease, stroke, or myocardial infarction. Therefore, we carried out a systematic review and meta-analysis to explain the possible effect of folic acid on major cardiovascular events, and possible drug-correlated adverse reactions. This study was based on randomized controlled trials and explored any possible correlation between folic acid supplementation and the outcomes of any cardiovascular-related disease.

Table 1. Design and patient characteristics for trials included in the systematic review and meta-analysis.

Source	No. of patients	Mean age, y	Sex (male)	Pre-existent diseases	Intervention	Total homocysteine (μmol/L)	Duration of follow-up (months)	Jadad score
Andrew A.H [14] (2010)	238	60.4	178 (74.79%)	Diabetic nephropathy	2.5 mg folic acid	15.55	36	5
VITATOPS Study (15) (2010)	8164	62.6	5218 (63.91%)	Stroke	2 mg folic acid	14.3	40.8	4
Howard N.H [18] (2009)	506	61.4	309 (61.07%)	tHcy ≥8.5 μmol/L	5 mg folic acid	9.6	37.2	3
Marta E [19] (2008)	2319	61.7	1840 (79.34%)	CHD	0.8 mg folic acid	14.4	38	4
Christine M.A [20] (2008)	5442	62.8	0 (0%)	CHD	2.5 mg folic acid	NR	87.6	3
Jamison R.L [10] (2007)	2056	65.8	2023 (98.39%)	ACKD or ESRD	40 mg folic acid	22.4	38.4	3
Areuza V.A.V [21] (2007)	186	48.5	110 (59.14%)	ESKD	10 mg folic acid, 3 times a week	24.7	24	3
Bonaa K.H [22] (2006)	2815	63.0	2085 (74.07%)	CHD	0.8 mg folic acid	13.1	42	4
HOPE-2 Study [23] (2006)	5522	68.9	398 (71.77%)	CHD	2.5 mg folic acid	12.2	60	4
ASFAST Study [24] (2006)	315	56.0	213 (67.62%)	CRF	15 mg folic acid	27.0	43.2	3
The Swiss Heart Study [25] (2002)	553	62.5	445 (80.47%)	Coronary stenosis	1 mg folic acid	NR	12	3
Mark S.D [26] (1995)	3318	54.0	1461 (44.03%)	CHD	0.8 mg folic acid	NR	72	2
Liem A [27] (2005)	593	65.2	462 (77.91%)	CHD	0.5 mg folic acid	12.1	42	2
SEARCH Collaborative Group [11] (2010)	12064	NR	10012 (82.99%)	MI	2 mg folic acid	13.5	80.4	4
Marco R [28] (2006)	114	64.4	63 (55.26%)	Hemodialysis	5 mg folic acid	31.7	29	4
Lange H [29] (2004)	636	61.3	490 (77.04%)	Coronary stenting	1 mg folic acid	12.6	8.3	3

The relationship between homocysteine levels and cardiovascular disease was described initially by observational studies, which may overestimate the effect of this relationship. Two meta-analyses of epidemiologic studies [4,31] suggested that reduced homocysteine levels could lower the risk of coronary heart disease, stroke, and cardiovascular disease. However, Bazzano et al [32] concluded that folic acid therapy did not significantly contribute to cardiovascular disease, stroke, or myocardial infarction. Therefore, we carried out a systematic review and meta-analysis to explain the possible effect of folic acid on major cardiovascular events, and possible drug-correlated adverse reactions. This study was based on randomized controlled trials and explored any possible correlation between folic acid supplementation and the outcomes of any cardiovascular-related disease.
Our main findings are in contrast with the findings of previous epidemiologic research [4,31], and also support the conclusion made by Bazzano et al [32] that folic acid had no significant benefit or adverse effect on the risk of major cardiovascular events, stroke, myocardial infarction, or any other related disease.

![Figure 3. Effects of folic acid supplementation on the risk of stroke.](doi:10.1371/journal.pone.0025142.g003)

No significant differences in the relative risk of cardiovascular disease were reported across a wide background of cardiovascular risk in these trials. In our meta-analysis, participants with a history of cardiovascular disease or stroke [11,13,20,21,23,24,28], end-stage renal disease [10,22,29], chronic renal failure [25], diabetic

![Figure 4. Effects of folic acid supplementation on the risk of myocardial infarction.](doi:10.1371/journal.pone.0025142.g004)
nephropathy [14], coronary stenting [26,30], esophageal dysplasia [27], and hyperhomocysteinemia [19] were included. However, an unimportant heterogeneity was reported for the included trials. Another important factor that may have affected the results is the plasma homocysteine levels. Subgroup analysis (Figure 6), based on baseline plasma homocysteine levels, was used to explore any possible variations. The reason for the absence of an effect of folic acid could be that the extent of the reduction in homocysteine was not reported in many trials, thus we were unable to assess the correlation between the level of reduction in homocysteine and cardiovascular outcomes.

There were no significant differences between folic acid supplementation and placebo in the relative risk for major cardiovascular events, myocardial infarction, or stroke. The reason for this could be that although elevated homocysteine levels impair vascular function, the impact of homocysteine on vascular outcomes is not primarily related to the pathogenesis of coronary artery disease [33,34], which is largely attributable to plaque formation and rupture. Furthermore, high doses of B6 vitamins may adversely affect vascular remodeling and myocardial repair, and may therefore play an important role in increasing the rates of complications and death among patients with cardiovas-

Studies included	Relative risk (95% CI)	I²	p for heterogeneity	
Major Cardiovascular Events	14-16,18-23,26-28	0.98 (0.93, 1.04)	31.8%	0.136
Stroke	14,15,17-19,21-23,25-28	0.89 (0.78, 1.01)	31.6%	0.073
Myocardial Infarction	14,15,17-19,21,22,24,27-29	1.00 (0.93, 1.07)	0.0%	0.928
Death From Any Cause	14-19,21,22,24-29	1.00 (0.96, 1.05)	0.0%	0.951
Vascular Death	15,18,20,22-28	0.94 (0.88, 1.02)	2.4%	0.127
Vascular Death	Excluding SEARCH Collaborative Group’s study	0.89 (0.81, 0.98)	0.0%	0.014
Non–vascular Death	15,20,22,24-28	1.06 (0.97, 1.15)	0.0%	0.181
Revascularisation	14,15,17,18,21-24,27,29	1.05 (0.95, 1.16)	40.0%	0.339
Coronary Syndrom	18,23,26,27,29	1.06 (0.97, 1.15)	10.4%	0.204
Cancer	16,17,21,22,25,27	1.08 (0.98, 1.21)	26.7%	0.135
Dialysis	14,19	1.06 (0.94, 1.20)	0.0%	0.306
Amputation	14,19	1.14 (0.80, 1.62)	0.0%	0.476

Figure 5. Summary of the relative risks of all outcomes assessed.
doi:10.1371/journal.pone.0025142.g005
Major Cardiovascular Events

Number of trials	Relative risk (95% CI)	p value
Patients number		
>1000	1.00 (0.95, 1.04)	0.827
<1000	0.87 (0.68, 1.11)	0.259
Follow-up		
>36 month	0.99 (0.95, 1.04)	0.752
<36 month	0.70 (0.51, 0.98)	0.035
Mean age		
>=60	0.98 (0.91, 1.05)	0.496
<60	0.82 (0.61, 1.11)	0.204
Mean baseline homocysteine concentration		
>14 umol/L	0.93 (0.82, 1.05)	0.265
<14 umol/L	1.01 (0.96, 1.06)	0.653
Jadad score:		
4 or 5	0.98 (0.90, 1.08)	0.744
<4	0.99 (0.92, 1.06)	0.702
Pre-existing vascular disease		
Yes	0.99 (0.94, 1.05)	0.784
No	0.92 (0.72, 1.17)	0.495

Stroke

Number of trials	Relative risk (95% CI)	p value
Patients number		
>1000	0.92 (0.83, 1.02)	0.096
<1000	0.70 (0.27, 1.77)	0.448
Follow-up		
>36 month	0.89 (0.79, 1.01)	0.080
<36 month	0.16 (0.01, 3.31)	0.237
mean age		
>=60	0.90 (0.78, 1.03)	0.113
<60	0.57 (0.37, 0.89)	0.013
Mean baseline homocysteine concentration		
>14 umol/L	0.84 (0.63, 1.11)	0.224
<14 umol/L	0.89 (0.74, 1.07)	0.217
Jadad score:		
4 or 5	0.91 (0.79, 1.04)	0.162
<4	0.80 (0.58, 1.11)	0.162
Pre-existing cardiovascular disease		
Yes	0.93 (0.84, 1.03)	0.149
No	0.72 (0.44, 1.20)	0.207

Myocardial Infarction

Number of trials	Relative risk (95% CI)	p value
Patients number		
>1000	1.00 (0.93, 1.07)	0.960
<1000	0.91 (0.44, 1.88)	0.795
Follow-up		
>36 month	1.00 (0.93, 1.07)	0.985
<36 month	0.65 (0.31, 1.35)	0.251
Mean age		
>=60	0.99 (0.91, 1.08)	0.880
<60	none	
Mean baseline homocysteine concentration		
>14 umol/L	1.00 (0.82, 1.21)	0.995
<14 umol/L	1.01 (0.93, 1.10)	0.754
Jadad score:		
4 or 5	1.03 (0.95, 1.11)	0.519
<4	0.85 (0.72, 1.02)	0.083
Pre-existing cardiovascular disease		
Yes	1.01 (0.94, 1.09)	0.719
No	0.92 (0.53, 1.60)	0.769
Folic Acid on Cardiovascular Outcomes

Figure 6. Subgroup analysis for the effect of folic acid supplementation on major cardiovascular events, stroke, and myocardial infarction.
doi:10.1371/journal.pone.0025142.g006

The findings of this study suggested that folic acid supplementation had no significant effects on major cardiovascular events, stroke, myocardial infarction or all cause mortality. Furthermore, high-doses folic acid supplementation may increase the risk of cancer cell growth [36] and impair renal function [35]. Therefore, in future research, it is important to focus on healthy individuals for primary prevention of cardiovascular disease, and to combine other homocysteine-lowering drugs to provide an optimal therapy that minimizes adverse effects in patients with hyperhomocysteinemia. We suggest that the ongoing trials be improved in the following ways: (i) The adverse effects in clinical trials should be recorded and reported normatively, so that the side-effects of any treatment can be evaluated in future trials. ii) The role of treatment duration and dosage should be investigated in more detail to explore optimal dose and duration of treatment.

Supporting Information
Checklist S1 PRISMA Checklist. (DOC)
Protocol S1 PRISMA Flowchart. (DOC)

Author Contributions
Conceived and designed the experiments: JH Y-HZ. Performed the experiments: Y-HZ J-YT XW CW M-JW J-FX. Analyzed the data: Y-HZ Y-YQ J-FX. Contributed reagents/materials/analysis tools: JH Y-HZ. Wrote the paper: JH Y-HZ. Contributed to the electronic search and hand-search of the literature: M-JW J-YT.

References
[1] Homocysteine Studies Collaboration (2002) Homocysteine and risk of ischemic heart disease and stroke. JAMA 288: 2015–2022.
[2] Williams GR, Jiang JG, Maisch DB, Samaa GP (1999) Incidence and occurrence of total (first-ever and recurrent) stroke. Stroke 30: 2523–8.
[3] Vollenst SE, Reifus H, Tverdal A, Nygard O, Nordrehaug JE, et al. (2001) Plasma total homocysteine and cardiovascular and noncardiovascular mortality: the Hordaland Homocysteine Study. Am J Clin Nutr 74: 130–136.
[4] Boulay CJ, Beresford SA, Omena GS, Motulsky AG (1995) A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. JAMA 274: 1049–1057.
[5] Homocysteine Studies Collaboration (2002) Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 288: 2015–2022.
[6] Wang XB, Qin XH, Demirtas H, Li J, Mao G, et al. (2007) Efficacy of folic acid supplementation in stroke prevention: a meta-analysis. Lancet 369: 1876–82.
[7] Toolt JF, Malmov MR, Chambless LE, Spence JD, Pettigrew LC, et al. (2004) Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction and death: The Vitamin Intervention for Stroke Prevention (VISP) Randomized Controlled Trial. JAMA 291: 565–575.
14. Andrew AH, Eliasziw M, Catrann DC, Churchill DN, Oliver MJ, et al. (2010) Effect of B-Vitamin Therapy on Progression of Diabetic Nephropathy: A Randomized Controlled Trial. JAMA 16: 1603–1609.

15. The VITATOPS Trial Study Group (2010) B vitamins in patients with recent transient ischemic attack or stroke in the VITAMIN TO Prevent Stroke (VITATOPS) trial: a randomised, double-blind, parallel, placebo-controlled trial. Lancet 9: 85–65.

16. Moher D, Liberati A, Tetzlaff J, Altman DG, Grp P (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Plos Medicine 6.

17. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, et al. (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17: 1–12.

18. Deeks JJ, Higgins JPT, Altman DG (2008) Analyzing data and undertaking meta-analyses. In: Higgins J, Green S, eds. Cochrane Handbook for Systematic Reviews of Interventions 5.0.1. Oxford, UK: The Cochrane Collaboration: chap 9.

19. Marta E, Osvind B, Ueland PM, Nordrehaug JE, Nåsen DW, et al. (2008) Mortality and Cardiovascular Events in Patients Treated With Homocysteine-Lowering B Vitamins After Coronary Angiography: A Randomized Controlled Trial. JAMA 7: 795–804.

20. Christine MA, Nancy RC, Gaziano JM, Zaharris E, MacFadyen J, et al. (2008) Effect of Folic Acid and B Vitamins on Risk of Cardiovascular Events and Total Mortality Among Women at High Risk for Cardiovascular Disease: A Randomized Trial. JAMA 17: 2027–2036.

21. Bønaa KH, Njølstad I, Ueland PM, Schirmer H, Tverdal A, et al. (2006) Cancer Studies Collaboration (2002) Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 296: 2726–2731.

22. Bazzano LA, Reynolds K, Holder KN, He J (2006) Effect of folic acid supplementation on risk of cardiovascular diseases: a meta-analysis of randomized controlled trials. JAMA 296: 2720–2726.

23. Bønaa KH, Njølstad I, Ueland PM, Schirmer H, Tverdal A, et al. (2006) Cancer and Cardiovascular Events in Patients Treated With Homocysteine-Lowering B Vitamins After Coronary Angiography: A Randomized Controlled Trial. JAMA 7: 795–804.

24. Ebbing M, Bønaa KH, Nygard O, Arnesen E, Ueland PM, et al. (2009) Cancer and Cardiovascular Events in Patients Treated With Homocysteine-Lowering B Vitamins After Coronary Angiography: A Randomized Controlled Trial. JAMA 7: 795–804.

25. Eikelboom JW, Lonn E, Genest JJ, Hankey G, Yusuf S (1999) Homocysteine and cardiovascular disease: a critical review of the epidemiologic evidence. Ann Intern Med 131: 363–375.

26. Zhang SM, Cook NR, Christine MA, Gaziano JM, Buring JE, et al. (2008) Homocysteine-Lowering Therapy With Folic Acid, Vitamin B12, and Vitamin B6 on Clinical Outcome After Percutaneous Coronary Intervention: The Swiss Heart Study: A Randomized Controlled Trial. JAMA 8: 973–979.

27. Mark SD, Wang W, Fraumeni JF, Li JY, Taylor PR, et al. (1996) Lowered Risks of Hypertension and Cerebrovascular Disease after Vitamin/Mineral Supplementation: the Linsky Nutrition Intervention. Am J Epidemiol 143: 658–64.

28. Liem A, Reynierse-Buitenwerf GH, Zwinderman AH, Jukema JW, van Veldenhuizen DJ (2005) Secondary prevention with folic acid: results of the Goes extension study. Heart 91: 1213–14.

29. Marco R, Serbelloni P, Milani S, Ferrario G (2008) Homocysteine-Lowering Vitamin B Treatment Decreases Cardiovascular Events in Hemodialysis Patients. Blood Purif 24: 379–386.

30. Lang H, Suryapranata H, Giuseppe DL, Bomeret C, Dille J, et al. (2004) Folate Therapy and In-Stent Restenosis after Coronary Stenting. N Engl J Med 350: 2673–81.

31. Homocysteine Studies Collaboration (2002) Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 288: 2015–2022.

32. Spence JD (2007) Homocysteine-lowering therapy: a role in stroke prevention? Lancet Neurol 9: 830–838.

33. Bazzano LA, Reynolds K, Holder KN, He J (2006) Effect of folic acid supplementation on risk of cardiovascular diseases: a meta-analysis of randomized controlled trials. JAMA 296: 2720–2726.

34. Smith AD, Kins YI, Refsum H (2008) Is folic acid good for everyone? Am J Clin Nutr 87: 517–533.

35. Ebbing M, Bønaa KH, Nygard O, Arnesen E, Ueland PM, et al. (2009) Cancer incidence and mortality after treatment with folic acid and vitamin B12. JAMA 302: 2119–2126.

36. Mason JB, Dickstein A, Jacques PF, Haggarty P, Selhub J, et al. (2007) A temporal association between folic acid fortification and an increase in colorectal cancer rates may be illuminating important biological principles: a hypothesis. Cancer Epidemiol Biomarkers Prev 16: 1325–1329.

37. Zhang SM, Cook NR, Christine MA, Gaziano JM, Buring JE, et al. (2008) Effect of combined folic acid, vitamin B6, and vitamin B12 on cancer risk in women: a randomized trial. JAMA 300: 2012–2021.

38. Schwyzer G, Roffi M, Hamm Y, Riccardo P, Hess OM (2002) Effect of Homocysteine-Lowering Therapy With Folic Acid, Vitamin B12, and Vitamin B6 on Clinical Outcome After Percutaneous Coronary Intervention: The Swiss Heart Study: A Randomized Controlled Trial. JAMA 8: 973–979.