ORIGINAL RESEARCH ARTICLE

Living alone and cardiovascular disease outcomes

Sumeet Gandhi,1 Shaun G Goodman,1 Nicola Greenlaw,2 Ian Ford,2 Paula McSkimming,2 Roberto Ferrari,3 Yangsoo Jang,4 Marco Antonio Alcocer-Gamba,5 Kim Fox,6 Jean-Claude Tardif,7 Michal Tendera,8 Paul Dorian,1 Gabriel Steg,6,9 Jacob Allan Udell10

ABSTRACT

Objective To evaluate cardiovascular (CV) outcomes in patients with coronary artery disease (CAD) living alone compared with those living with others.

Methods The prospective observational Longitudinal Registry of patients with stable coronary artery disease (CLARIFY) included outpatients with stable CAD. CLARIFY enrolled participants in 45 countries from November 2009 to July 2010, with 5 years of follow-up. Living arrangement was documented at baseline. The primary outcome was a composite of major adverse cardiovascular events (MACEs) defined as CV death, myocardial infarction (MI) and stroke.

Results Among 32367 patients, 3648 patients were living alone (11.3%). After multivariate adjustment, there were no residual differences in MACE among patients living alone compared with those living with others (HR 1.04, 95% CI 0.92 to 1.18, p=0.52); however, there was significant heterogeneity in the exposure effect by sex (Pinteraction=0.01). Specifically, men living alone were at higher risk for MACE (HR 1.17, 95% CI 1.02 to 1.36, p=0.047) as opposed to women living alone (HR 0.82, 95% CI 0.65 to 1.04, p=0.1), predominantly driven by a heterogeneous effect by sex on MI (Pinteraction=0.006). There was no effect modification for MACE by age group (Pinteraction=0.3), although potential varying effects by age for MI (Pinteraction=0.046) and stroke (Pinteraction=0.05).

Conclusions Living alone was not associated with an independent increase in MACE, although significant sex-based differences were apparent. Men living alone may have a worse prognosis from CV disease than women; further analyses are needed to elucidate the mechanisms underlying this difference.

Trial registration number ISRCTN43070564.

INTRODUCTION

Social isolation refers to the lack of contact an individual has with society, with living alone frequently used as a surrogate. Living alone may lead to poor outcomes in patients with coronary artery disease (CAD) through a complex interaction between increased neurohumoral stress with accelerated atherosclerosis, less adherence to guideline recommended therapy and secondary prevention targets, increased anxiety and depression leading to more psychological distress, poor coping mechanisms/self-care and less access to healthcare services. Previous analyses have sought to gain insight into the risk of living alone in patients with established cardiovascular disease (CVD). The effect of living alone has been variable due to the significant heterogeneity among the populations studied, with subgroup analysis showing potential effect modification by age and sex, and potential lower risk among women and elderly patients living alone.

Patients with CAD are diverse with differences in ethnicity, socioeconomic status, location and psychosocial factors that may play a role in the risk of recurrent cardiovascular (CV) events. The prospective observational Longitudinal Registry of patients with stable coronary artery disease (CLARIFY) was initiated to improve knowledge about patients with stable CAD from a broad geographic perspective. As individuals with stable CAD live longer with advanced comorbidities, there is an important public health implication to determine if living status is independently associated with poor health outcomes. The objective of this analysis was to determine, in a stable CAD population, if living alone is associated with increased CV risk. Given previous research, effect modification by sex and age group were further explored in this post hoc analysis.

METHODS

Study design and patient selection

The CLARIFY study cohort included outpatients with stable CAD with 5 years of follow-up; the study methods and design were previously published. Patients eligible for enrolment were those with stable CAD diagnosed by at least one of the following: (1) documented myocardial infarction (MI) (>3 months ago); (2) coronary stenosis >50% on coronary angiography; (3) chest pain with myocardial ischaemia determined by stress ECG, stress echocardiography or myocardial imaging; or (4) history of revascularisation by coronary artery bypass graft (CABG) surgery or percutaneous coronary intervention (PCI) (performed >3 months ago). Patients hospitalised for CVD within the previous 3 months (including for revascularisation), patients for whom revascularisation was planned and patients with conditions expected to hamper participation of 3-year follow-up were excluded from participating in the study. A total of 32703 subjects were enrolled in 45 countries from November 2009 to July 2010 (see online supplementary table I).

Data collection

The investigators completed standardised electronic case report forms at baseline and yearly
Coronary artery disease

at each visit for up to 5 years. Living arrangement status was documented as either ‘living alone’ or ‘not living alone’ at baseline. Further information collected at baseline included demographics; medical history and CV risk factors; current symptoms; physical examination; laboratory values (eg, fasting blood glucose, haemoglobin A1c, cholesterol and triglycerides); and current chronic drugs regimen (ie, those taken regularly by the patient for ≥7 days before entry in the registry). Data were recorded if an ECG was available for whether the patient was in sinus rhythm, atrial fibrillation/atrial flutter, paced rhythm or left bundle branch block. The remaining patients may not have had ECG data available or may be in another rhythm then above. Investigators reported number of vessels with disease and number of coronary territories with significant stenosis (>50%) independent of whether the patient had a recent angiogram (within 12 months). These data were investigator reported independent of the most recent available angiogram results and may not be mutually exclusive.

For patients missing the yearly in-person visit, telephone contact with the patient, a designated relative or contact or their physician was attempted. To ensure data quality, onsite-monitoring visits of 100% of the data in 5% of centres were selected at random, regular telephone contact with investigators to reduce missing data and loss to follow-up, and centralised verification of the electronic case report forms for completeness, consistency and accuracy were undertaken.

Outcomes

At each annual follow-up visit, clinical outcomes occurring during the primary 12 months were recorded. The primary outcome of this analysis was major adverse cardiovascular events (MACE), which included CV death, non-fatal or fatal MI and non-fatal or fatal stroke. Secondary outcomes were all-cause death, CV death, MI, stroke, unstable angina and major bleeding (defined as leading to hospitalisation or transfusion). CV death was defined as fatal MI or stroke, other CV death or death due to unknown cause; any MI or stroke followed by death in the subsequent 28 days was considered fatal. Events were accepted as reported by patients and physicians, without central adjudication; however, all events were source verified during audits.

The study was performed in accordance with the principles of the Declaration of Helsinki. Approval was also obtained in all participating countries, in accordance with local regulations before recruitment of the first participant. All patients gave written informed consent to participate, in accordance with national and local guidelines. There was no patient/public involvement in this research study. CLARIFY is registered in the ISRCTN registry of clinical trials.

Statistical analysis

All CLARIFY data were collected and analysed at an independent academic statistics centre at the Robertson Centre for Biostatistics, University of Glasgow, UK, which was responsible for managing the database, performing all analyses and data storage. Baseline variables are summarised as means and SDs or medians and IQRs for continuous data, depending on the distribution of the data, and as counts and percentages for categorical data. In this post hoc analysis, differences between patients living alone and those living with others were compared using χ² tests or Fisher’s exact test for categorical variables as appropriate, and two sample t-tests or Wilcoxon-Mann-Whitney tests for continuous variables, depending on the distribution of the data. A Cox proportional hazards model was used to assess the risk associated with living alone and time to first CV outcomes. Crude and multivariable adjusted HRs and corresponding 95% CIs were calculated after adjustment for age, sex and geographic region, as well as baseline history of smoking, diabetes, peripheral arterial disease, MI, PCI, CABG, asthma/chronic obstructive pulmonary disease and congestive heart failure (CHF). Additional clinical characteristics were also adjusted for, including baseline systolic blood pressure, diastolic blood pressure, left ventricular ejection fraction and number of vessels with coronary artery stenoses. Heterogeneity was assessed with interaction testing between living status and sex, age group (<65 years, 65–74 years and ≥75 years) and history of prior MI at baseline for primary and secondary endpoints after multivariable adjustment. All p values for the Cox proportional hazards models were obtained using the Wald test.

RESULTS

A total of 32367 patients were eligible for inclusion in the analysis with 3648 patients documented as living alone (11.3%) and 28728 (88.8%) patients living with others. Tables 1 and 2 include baseline characteristics, study inclusion, medical history, CV risk factors and symptom profile. The mean age for patients living alone was 67 (±10.66) years. Patients living alone were older, more likely to be female, predominantly white, less likely to be employed full time and more likely to be retired than those living with others. More patients living alone were current smokers, had a history of atrial fibrillation, prior HF hospitalisation, history of peripheral arterial disease and yet had less diabetes. Table 3 describes CV therapies. There was a high use of guideline recommended pharmacological therapy in both groups; there was a lower number of patients living alone taking thienopyridines, beta-blockers and statins.

In unadjusted models, patients living alone had a higher risk of the primary endpoint of MACE (10.3% vs 8.5%, HR 1.24, 95% CI 1.11 to 1.38, p<0.001), all-cause death (9.8% vs 7.6%, HR 1.31, 95% CI 1.17 to 1.47, p<0.001), CV death (6.5% vs 4.8%, HR 1.37, 95% CI 1.20 to 1.58, p<0.001) and stroke (2.7% vs 2.0%, HR 1.35, 95% CI 1.17 to 1.58, p<0.001). There was no difference in rates of MI, unstable angina, major bleeding or hospitalisation for CHF (table 4). After adjustment for age and sex, there remained statistically significant differences in the all-cause and CV death outcomes; following additional multivariate adjustment, there were no residual differences in outcomes in patients living alone compared with those living with others (table 4).

Nevertheless, there was significant heterogeneity identified in the exposure effect by sex (Pinteraction<0.01) (figure 1). Specifically, men living alone were at higher risk for MACE (HR 1.17, 95% CI 1.02 to 1.36, p=0.047) as opposed to women living alone (HR 0.82, 95% CI 0.65 to 1.04, p=0.099). This difference was primarily driven by effect modification by sex for MI (Pinteraction=0.006) with no difference in CV death (Pinteraction=0.073) and stroke (Pinteraction=0.99). Women living alone in comparison with women living with others showed a significantly lower adjusted risk of MI (2.2% vs 3.2%, HR 0.54, 95% CI 0.35 to 0.84, p=0.007) that was not apparent in men (4.0% vs 3.2%, HR 1.17, 95% CI 0.92 to 1.49, p=0.19).

The effect of living alone for MACE was consistent across age groups (<65 years, 65–74 years and ≥75 years, Pinteraction=0.33). There were potential varying effects of living alone by age group for MI (Pinteraction=0.046) and stroke (Pinteraction=0.05) (figure 2). Specifically, the risk of MI tended to be lowest among older patients (≥75 years) living alone in comparison with older
Table 1 Baseline characteristics by living arrangement status

	Living alone (n=3648)	Not living alone (n=28 728)	P value
Age (years), mean (SD)	67.2 (10.7)	63.8 (10.4)	<0.001
Males (%)	2254 (61.8)	22 857 (79.6)	<0.001
Body mass index (kg), median (25th, 75th quartiles),	27 (25, 31)	27 (25, 30)	0.032
Waist circumference (cm), median (25th, 75th quartiles)	96 (88, 105)	97 (89, 105)	0.01
Ethnicity, n (%)(25th, 75th quartiles)			
White	2644 (72.5)	18 304 (63.8)	<0.001
South Asian	130 (3.6)	2285 (8.0)	
Chinese	167 (4.6)	2573 (9.0)	
Japanese/Korean	142 (3.9)	893 (3.1)	
Hispanic	110 (3.0)	1458 (5.1)	
Black/African	44 (1.2)	294 (1.0)	
Unknown	411 (11.3)	2921 (10.2)	
Employment status, n (%)			
Employed full-time	605 (16.6)	7291 (25.4)	<0.001
Employed part-time	227 (6.2)	2022 (7.0)	
Unable to work	146 (4.0)	1119 (3.9)	
Unemployed	143 (3.9)	1689 (5.9)	
Retired	2415 (66.2)	15505 (54.0)	
Other	112 (3.1)	1101 (3.8)	
Education level, n (%)			
Primary school (or less)	1011 (27.7)	7561 (26.3)	<0.001
Secondary school	1785 (49.0)	13 251 (46.1)	
College/university	852 (23.4)	7913 (27.6)	
Medical history, n (%)			
Myocardial infarction	2150 (59.0)	17 251 (60.0)	0.20
PCI	2051 (56.2)	16 906 (58.9)	0.003
CABG	907 (24.9)	6722 (23.4)	0.049
Hospitalisation for CHF	218 (6.0)	1294 (4.5)	<0.001
Internal cardiac defibrillator	65 (1.8)	342 (1.2)	0.003
Pacemaker	124 (3.4)	653 (2.3)	<0.001
Aortic abdominal aneurysm	70 (1.9)	424 (1.5)	0.040
Carotid disease	350 (9.6)	2107 (7.3)	<0.001
Peripheral arterial disease	425 (11.7)	2777 (9.7)	<0.001
Transient ischaemic attack	137 (3.8)	856 (3.0)	0.010
Stroke	166 (4.6)	1135 (4.0)	0.082
Atrial fibration/flutter	324 (8.9)	1960 (6.8)	<0.001
Family history of premature CAD	1120 (30.7)	8096 (28.2)	0.001
Treated hypertension	2638 (72.3)	20 351 (70.9)	0.066
Diabetes	977 (26.8)	8415 (29.3)	0.002
Dyslipidaemia	2773 (76.0)	21 485 (74.8)	0.109
Asthma/COPD	363 (10.0)	2031 (7.1)	<0.001
Smoking status, n (%)			<0.001
Current	536 (14.7)	3501 (12.2)	
Former	1505 (41.3)	13 468 (46.9)	
Never	1607 (44.0)	11 759 (40.9)	
Alcohol intake (number of drinks per week), n (%)			
0	1741 (47.7)	13 684 (47.6)	0.032
>0 and <20	1745 (47.8)	14 025 (48.8)	
20–40	144 (4.0)	921 (3.2)	
>40	18 (0.5)	93 (0.3)	
Stimulant drinks consumed, n (%)			
Coffee	1789 (49.1)	13 551 (47.2)	<0.001
Tea	1200 (32.9)	8781 (29.6)	
Neither	658 (18.0)	6380 (22.2)	

Continued

Table 1 Continued

Daily intake of stimulant drinks (cup/day), median (25th, 75th quartiles)	Living alone (n=3648)	Not living alone (n=28 728)	P value
No physical activity weekly	639 (17.5)	4584 (16.0)	0.023
Light physical activity most weeks	1850 (50.7)	14 782 (51.5)	
At least 20 min vigorous physical activity once or twice a week	567 (15.6)	4860 (16.9)	
At least 20 min vigorous physical activity at least three times a week	591 (16.2)	4495 (15.7)	

CABG, coronary artery bypass graft surgery; CAD, coronary artery disease; CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; PCI, percutaneous coronary intervention.

DISCUSSION

CLARIFY is the largest international registry to describe the association of living alone with CV outcomes in a contemporary population of patients with stable CAD. Despite an indication that people living alone had a higher incidence of several outcomes in unadjusted analyses including the primary endpoint of MACE, the results of the adjusted analysis revealed no independent risk of MACE in patients living alone. A novel aspect to our analysis is that we did observe potential sex-based heterogeneity for the effects of living alone. Specifically, women living alone had a trend towards lower risk of MI compared with women or men living with others. Older patients living alone demonstrated a trend towards a lower risk of MI and stroke, while the trends reversed for younger patients living alone.

Recent studies have described the association of living alone with adverse events in patients with CVD. The Coronary Revascularization Demonstrating Outcome Study in Kyoto Acute Myocardial Infarction registry included patients with acute coronary syndrome (ACS) who underwent PCI; at 5-year follow-up, patients living alone did not have an increased risk of death or CV events but an increased risk of HF admission. Their study did not show heterogeneity in patients ≥75 years. In patients post-ACS from Japan, The Osaka Acute Coronary Insufficiency Study registry showed patients living alone had overall increased MACE, with female patients living alone showing a trend towards increased risk. The Reduction of Atherothrombosis for Continued Health (REACH) registry was a large, prospective, observational registry with >40 000 patients with high vascular risk and established CVD. Their results showed that living alone was associated with an increased risk of 4-year mortality and CV death in patients with established CVD; there was heterogeneity in risk of events according to age with lower risk in elderly patients >80 years old. In contrast to REACH, our analysis did not show a difference in all-cause and CV death according to living situation, potentially due to several reasons. Compared patients living with others (3.3% vs 4.2%, HR 0.67, 95% CI 0.43 to 1.04, p=0.077), intermediate risk among middle-aged (65–74 years) patients (2.9% vs 3.4%, HR 0.83, 95%CI 0.57 to 1.21, p=0.33) and highest among younger (<65 years) patients in the cohort (3.9% vs 2.9%, HR 1.31, 95%CI 0.96 to 1.78, p=0.088). Similar findings were observed for stroke (figure 2). The effect of living alone was consistent in patients with and without prior MI (Pinteraction=0.44).
Table 2 Baseline cardiovascular characteristics by living arrangement status

Living alone (n=3648)	Not living alone (n=28 728)	P value	
Any angina, n (%)	840 (23.0)	6328 (22.0)	0.17
Angina and CCS	2807 (77.0)	22 399 (78.0)	0.13
No angina	263 (7.2)	1788 (6.2)	
Angina CCS class I	417 (11.4)	3396 (11.8)	
Angina CCS class II	150 (4.1)	1075 (3.7)	
Angina CCS class IV	10 (0.3)	68 (0.2)	
CHF symptoms including NYHA class (%)	0.89		
No CHF	3098 (84.9)	24 375 (84.9)	
CHF NYHA class II	456 (12.5)	3642 (12.7)	
CHF NYHA class III	94 (2.6)	709 (2.5)	
Heart rate (palpation), mean	68.3 (10.6)	68.2 (10.6)	0.79
SBP (mm Hg), mean	132.2 (17.2)	130.9 (16.6)	<0.001
DBP (mm Hg), mean	76.9 (10.1)	77.3 (10.0)	0.020
Left ventricular ejection fraction (%), mean	56.5 (11.3)	56.0 (11.0)	0.032
Number of vessels with disease, n (%)*	0.005		
0	139 (4.6)	864 (3.5)	
1	1279 (41.9)	10 053 (40.9)	
2 or more	1634 (53.5)	13 649 (55.6)	
Coronary territories with stenosis >=50%, n (%)*	0.33		
Left main	335 (9.2)	2500 (8.7)	
Left anterior descending	2075 (56.9)	16 827 (56.8)	0.051
Circumflex artery	1208 (33.1)	10 468 (36.5)	<0.001
Right coronary artery	1520 (41.7)	12 590 (43.8)	0.013
Bypass graft	299 (8.2)	2300 (8.0)	
No significant stenosis	146 (4.0)	906 (2.2)	0.007
Coronary angiography not performed (within 12 months)	586 (16.1)	4138 (14.4)	0.007
ECG rhythm, n (%)†	2462 (91.3)	20 499 (95.2)	<0.001
Sinus rhythm	121 (4.6)	702 (3.3)	
Atrial fibrillation/flutter	62 (2.3)	332 (1.5)	
Paced rhythm	158 (6.0)	1025 (4.8)	0.0063
LBBB	67 (1.2)	68 (1.8)	0.018
HbA1C (%), mean (SD)	87 (74, 100)	88 (76, 102)	<0.001
Creatinine (mmol/L), median (25th, 75th quartiles)	13.9 (12.9, 14.9)	14.1 (13.0, 15.0)	<0.001
Haemoglobin (g/dl), median (25th, 75th quartiles)	5.6 (5.0, 6.5)	5.7 (5.1, 6.7)	<0.001
Fastigting blood glucose (mmol/L), median (25th, 75th quartiles)	4.4 (3.7, 5.1)	4.3 (3.7, 5.0)	0.002
Total cholesterol (mmol/L), median (25th, 75th quartiles)	1.2 (1.0, 1.5)	1.1 (1.0, 1.4)	<0.001
HDL (mmol/L), median (25th, 75th quartiles)	2.37 (1.89, 2.94)	2.37 (1.90, 2.94)	0.68
Lp(a) (mg/dL), median (25th, 75th quartiles)	1.39 (1.00, 1.88)	1.40 (1.02, 1.93)	0.15

*Investigators reported number of vessels with disease and number of coronary territories with significant stenosis (>=50%) independent of whether the patient had a recent angiogram (within 12 months). These data were investigator reported independent of the most recent available angiogram results and may not be mutually exclusive.
†Data were recorded if an ECG was available for whether the patient was in sinus rhythm, atrial fibrillation/flutter, paced rhythm or LBBB. The remaining patients may not have had ECG data available or may be in another rhythm then above.
CCS, Canadian Cardiovascular Society; CHE, congestive heart failure; DBP, diastolic blood pressure; HbA1C, haemoglobin A1C; HDL, high-density lipoprotein; LBBB, left bundle branch block; LDL, low-density lipoprotein; NYHA, New York Heart Association; SBP, systolic blood pressure.

Table 3 Medications and reimbursement status at baseline by living arrangement status

Medication, n (%)	Living alone (n=3648)	Not living alone (n=28 728)	P value
Aspirin	3154 (86.5)	25 257 (87.9)	0.011
Thienopyridine	825 (22.9)	7944 (27.7)	<0.001
Other antiplatelets	291 (8.0)	2695 (9.4)	0.006
Oral anticoagulants	3644 (99.9)	28 721 (99.9)	<0.001
Beta-blockers	2652 (72.7)	21 718 (75.6)	<0.001
Ibrutinib	516 (14.2)	4167 (14.5)	0.56
Ibrutinib	516 (14.2)	4167 (14.5)	0.56
Ibrutinib	516 (14.2)	4167 (14.5)	0.56
Ibrutinib	516 (14.2)	4167 (14.5)	0.56
Ibrutinib	516 (14.2)	4167 (14.5)	0.56
Ibrutinib	516 (14.2)	4167 (14.5)	0.56

*Investigators reported number of vessels with disease and number of coronary territories with significant stenosis (>=50%) independent of whether the patient had a recent angiogram (within 12 months). These data were investigator reported independent of the most recent available angiogram results and may not be mutually exclusive.
†Data were recorded if an ECG was available for whether the patient was in sinus rhythm, atrial fibrillation/flutter, paced rhythm or LBBB. The remaining patients may not have had ECG data available or may be in another rhythm then above.
CCS, Canadian Cardiovascular Society; CHE, congestive heart failure; DBP, diastolic blood pressure; HbA1C, haemoglobin A1C; HDL, high-density lipoprotein; LBBB, left bundle branch block; LDL, low-density lipoprotein; NYHA, New York Heart Association; SBP, systolic blood pressure.

ARb; angiotensin II receptor blocker; HRT, hormone replacement therapy.

with REACH, patients included in the CLARIFY registry were younger, had less conventional risk factors and prior history of vascular disease and represented a lower risk population evident by the lower event rates for death and CV outcomes. Patients in the CLARIFY registry also were on more guideline-recommended secondary preventative therapy.

The potential sex-specific differences in CV outcomes according to living situation supports previous literature exploring this association (table 5).3 7 14–20

There are several mechanisms that may account for the discrepancy in CV events seen between men and women living alone. Historically, women manage the household and assume a nurturing role and may develop superior self-care skills than their male counterparts. Women socialise differently than men and may form stronger social networks outside of their cohabitation, relying less on spousal support compared with men.3 11 Men living alone who were previously cohabitating with women may not have developed adequate independent coping mechanisms and social supports. This may lead to poor outreach and less attendance to physician appointments or cardiac rehabilitation and seeking out medical attention when necessary.3 11 Previous studies have shown heterogeneity between men and women in regards to stressful live events and...
Table 4 Comparison of 5-year cardiovascular event rates by living arrangement status

Outcome	5-year event rate (%)	Time to first event HR (95% CI)
	Living alone (n=3648)	Not living alone (n=28 728) Unadjusted Adjusted (age and sex) Adjusted*
MACE	10.3	8.5
	1.24 (1.11 to 1.38)	1.11 (0.99 to 1.24); p=0.07 1.04 (0.92 to 1.18); p=0.52
All-cause death	9.8	7.6
	1.31 (1.17 to 1.47)	1.13 (1.01 to 1.26); p=0.04 1.08 (0.95 to 1.23); p=0.25
CV death	6.5	4.8
	1.37 (1.20 to 1.58)	1.18 (1.02 to 1.35); p=0.02 1.12 (0.95 to 1.32); p=0.17
MI	3.5	3.4
	1.04 (0.86 to 1.25)	1.01 (0.84 to 1.22); p=0.93 0.97 (0.78 to 1.19); p=0.76
Stroke	2.7	2.0
	1.35 (1.09 to 1.67)	1.15 (0.93 to 1.43); p=0.20 1.00 (0.77 to 1.30); p=0.99
Unstable angina	10.8	11.0
	0.99 (0.89 to 1.10)	0.97 (0.87 to 1.08); p=0.55 0.99 (0.88 to 1.12); p=0.91
Major bleeding	1.4	1.4
	1.01 (0.75 to 1.35)	0.90 (0.67 to 1.21); p=0.48 0.91 (0.66 to 1.24); p=0.55
Hospitalisation for CHF	5.6	5.2
	1.10 (0.95 to 1.28)	1.02 (0.87 to 1.28); p=0.83 1.07 (0.89 to 1.27); p=0.48

*Multivariate analysis adjusted for age, sex, geographical region, smoking status, diabetes, peripheral arterial disease, MI, percutaneous coronary intervention, coronary artery bypass graft surgery, asthma/chronic obstructive pulmonary disease, CHF, systolic blood pressure, diastolic blood pressure, left ventricular ejection fraction and number of vessels with coronary artery stenosis. MACE reported as a composite of CV death, MI or stroke.

CHF, congestive heart failure; CV, cardiovascular; MACE, major adverse cardiovascular events; MI, myocardial infarction.

The difference in CV risk factors between women living alone and women living with others has not been clearly defined; women living alone may have an increased risk of developing diabetes, are more likely to smoke and less likely to have hypertension.10–25 In the current era, women are more financially and socially independent than previous generations, with technology enhancing accessibility and communication. It may be that living status in women may not be as strong a reflection of social isolation compared with males. These suggestions are speculative as previous studies have failed to show this sex-based interaction identified in the CLARIFY registry. Further studies are warranted to assess factors that may contribute to the difference in CV risk in men and women living alone such as location of residence (urban or rural), social supports, social networks, local healthcare resources, as well as institutionalisation, marital status and progression of CV risk factors, which may guide novel interventions to reduce recurrent CV events in men living alone.

Figure 1 Forest plot: event rates, adjusted HRs and multivariate interaction by sex according to living arrangement status 5-year event rate and HRs for the primary endpoint of MACE and secondary endpoints (all-cause death, CV death, MI and stroke) stratified by sex according to living arrangement status. Adjusted HRs associated with living alone compared with living with others (reference). The multivariate analysis was adjusted for age, sex, geographical region, smoking status, diabetes, peripheral arterial disease, MI, percutaneous coronary intervention, coronary artery bypass graft surgery, asthma/chronic obstructive pulmonary disease, congestive heart failure, systolic blood pressure, diastolic blood pressure, left ventricular ejection fraction and number of vessels with coronary artery stenosis. CV, cardiovascular; MACE, major adverse cardiovascular event; MI, myocardial infarction.
Similar to findings from the REACH registry, we observed trends towards a lower risk of recurrent MI and stroke among elderly patients (≥75 years) living alone, while younger patients (<65 years) living alone had increased risk. Patients <65 years may have relatively complex social interactions with increased stress, anxiety and depression resulting in poor health behaviour with adverse haemodynamic effects that may lead to the progression of CVD. Elderly patients ≥75 years living alone may reflect those who have less comorbid conditions and are able to live independently and do not require assisted living or nursing home level of care. Discharge planning in elderly patients is multifaceted with a focus on mobility, home safety and methods to improve medication adherence with early and close outpatient follow-up. Lower CV events in elderly patients living alone may also represent the success of postdischarge initiatives in this patient population. Our analysis suggests that there is not an association between elderly women living alone and increased risk for CV events. Women living alone may have coping mechanisms that we were not able to identify in our analysis that may have accounted for this difference. As CV specialists caring for patients with established CAD, it is important to consider psychosocial factors such as living status, which may increase CV risk. Physicians should counsel patients to report symptoms immediately without delay to medical attention and identify those that may benefit from further psychosocial intervention. Future
Table 5: Studies with sex-specific differences in cardiovascular outcomes according to living arrangement in patients with cardiovascular disease

Study	Study period/location	Patients included	Outcomes
Case et al††	1983–1986, USA and Canada. Randomised control trial (The Multicenter Diltiazem Postinfarction Trial).	Age 25–75 years, admitted to hospital with acute myocardial infarction.	Women living alone had risk for recurrent cardiac events (HR 2.34, 95% CI 1.17 to 4.66) as compared with men living alone (HR 1.24, 95% CI 0.75 to 2.03).
Ghosh-Swaby et al†§	2011–2013, Canada Retrospective cohort analysis of COAPT (Canadian Observational Antiplatelet Study)	Patients admitted to hospital with myocardial infarction who underwent percutaneous coronary intervention	The risk of MACE after 15 months was similar among married patients living together (12.7%) compared to patients who were never married (13.9%, p=0.79) and patients separated/divorced/widowed (14.3%, p=0.23)
Kilpi et al‡	1987–2007, Finland. Population-based study.	Men and women living in a private household, previous coronary heart disease.	Men living alone had increased risk of long-term mortality compared with married men (OR 1.50, 95% CI 1.29 to 1.75, p=0.001).
Kitamura et al‡‡	2002–2010, Japan. Prospective multicentre observational study.	Postmyocardial infarction.	Men living alone were associated with a higher risk of recurrent myocardial infarction (HR 1.71, 95% CI 1.11 to 2.64). Women living alone had higher risk of stroke (HR 4.21, 95% CI 1.65 to 10.79).
Lammintausta et al††	1993–2002, Finland. Population based registry.	Previous myocardial infarction.	Men and women living alone had higher case fatality rate. Men living alone received thrombolysis less often than men living with one or more people.
O’Shea et al§	1995–1997, Germany and USA. Global Use of Strategies to Open occluded coronary arteries-III trial.	Patients with acute myocardial infarction.	After adjustment, living alone was not an independent risk factor for cardiovascular outcomes with no heterogeneity identified according to gender.
Schmaltz et al§	1998–1999, Canada. Retrospective study.	Primary discharge diagnosis of acute myocardial infarction.	Men living alone had increased risk of death (HR 2.0, 95% CI 1.1 to 3.7) but not in women (HR 1.2, 95% CI 0.7 to 2.2).
Udell et al†	2003–2004, 44 countries. Prospective study.	Prior coronary, cerebrovascular, or peripheral artery disease, and participants without established atherothrombosis but at least three CV risk factors (diabetes mellitus, microalbuminuria, ankle-brachial index <0.9, asymptomatic carotid stenosis of at least 70%, carotid intima media thickness, hypertension, dyslipidemia, current smoking or age 65 years or older for men or 70 years or older for women).	Living alone was associated with higher all-cause mortality (HR 1.24, p=0.04) and CV death (HR 1.29, p=0.04); however, no heterogeneity identified according to sex.

CV, cardiovascular.
studies can explore the role of interventional social support, such as cardiac rehabilitation, which may improve outcomes in these subgroups. To date, there is little trial data to show providing multidisciplinary social support improves outcomes following a cardiac event, but several years have passed and new methods of connectivity now exist that may improve effects.

There are several limitations to our analysis. The case report form identified patients living alone at baseline, which we used as a marker of social isolation. Specific details were not provided about living status including living conditions (type of residence) and proximity of social supports and resources, which may have further differentiated this heterogeneous population. In addition, we were not able to account or adjust for unidentified confounders such as stress, depression and socioeconomic status. Unfortunately, this information is not available, and although we tried to adjust for various patient characteristics, we acknowledge that there remains a potential for residual confounding. Physicians investigators completed the electronic case report form at baseline and yearly entering the patient information. It is unclear if the physician investigator contacted the patient directly or via relatives. Furthermore, study endpoints were determined by the site investigators without central adjudication. A previous study in young patients with MI demonstrated those with lower social support were more likely to live alone but also had poorer mental health status, quality of life scores and more depression. Further exploration between living status and mental health outcomes may give insight into this complex interaction. Patients excluded from the CLARIFY registry included those with serious non-CVD or conditions interfering with life expectancy (ie, cancer and drug abuse) or severe CVD such as advanced heart failure and were less likely to live alone; the impact this may have had on the analysis is speculative. Our case report form did not identify marital status, which may have given further insight into the heterogeneity of the risk of living alone in women and different age groups. For elderly patients, we were not able to use any other markers of functional status, which may have given further insight into CV risk. Living status was recorded only at baseline, and we were not able to describe how long each patient was living alone or account for the need for change in living status throughout the follow-up period. The case report form only identified clinical endpoints as described; we were not able to account for other markers of healthcare consumption such as hospitalisation or increased utilisation of local health services.

CONCLUSION
Living alone in patients with stable CAD was not associated with an independent increase in MACE, although age and sex-based differences were apparent. Elderly patients and women living alone may have potentially lower CV risk. Future large studies in patients with established CAD should further evaluate key components of social isolation using validated in-depth tools/scoring systems. This will better inform us of higher risk components of social deprivation that will help guide potential psychosocial interventions.

Author affiliations
1Tereence Donnelly Heart Centre, St Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
2Robertson Centre for Biostatistics, University of Glasgow, Glasgow, United Kingdom
3Department of Cardiology and LT1A Centre, University Hospital of Ferrara and Maria Cecilia Hospital, Cotignola, Italy
4Severance Cardiovascular Hospital, Yonsei College of Medicine, Seoul, South Korea
5Jafe de Cardiologia Intervencionista, Universidad Autonoma de Queretaro, Queretaro, Mexico
6Institute of Cardiovascular Medicine and Science, Royal Brompton Hospital, National Heart and Lung Institute, Imperial College, London, United Kingdom
7Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
8Medical University of Silesia, School of Medicine in Katowice, Katowice, Poland
9French Alliance for Cardiovascular Trials, An F-CRIN network, Universite Paris-Didero, AP-HP and INSERM U1148, Paris, France
10Peter Munk Cardiac Centre and Women’s College Hospital, University of Toronto, Toronto, Ontario, Canada

Acknowledgements The authors gratefully acknowledge the contributions of the TheroprosClive observational LongitudinAl Registry of patients with stable coronary artery disease (CLARIFY) patients, investigators, research coordinators and committee members.

Contributors IF had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. SG wrote the first draft of the manuscript. Study conception or design: SG, SGG, GS and JAU. Acquisition, analysis or interpretation of data: all authors. Critical revision of the manuscript for important intellectual content: all authors. Statistical analysis: IF; NG and PM. Administrative, technical and material support: SGG, NG and GS. Study supervision: SGG and GS. All authors have approved the final article.

Funding The CLARIFY registry is supported by Servier. The sponsor assisted with the set-up, data collection and management of the study in each country.

Competing interests All authors have completed the ICMJE uniform disclosure form at www.icmje.org/doi_as_coi_exclusive.pdf and declare: JAU reported consultancy fees from consulting; Johnson & Johnson, Merck, Novartis, Sanofi Pasteur; Novartis (steering committee). PD reports grants and personal fees from Servier, outside the submitted work. SGG reports grants from Servier during the conduct of the study; personal fees from Servier Canada, outside the submitted work. RG reports grants from Amgen, outside the submitted work. IF reports grants from Servier during the conduct of the study; personal fees from Boehringer-Ingelheim, Novartis, Merck Serono and Idtech; he is a stockholder in Medical Trials Analysis. IF reports grants and personal fees from Servier during the conduct of the study; grants and personal fees from Amsden, outside the submitted work. KMf reports personal fees and non-financial support from Servier during the conduct of the study, from Broadview Ventures; personal fees from AstraZeneca, TaurX, CelAegis, outside the submitted work; non-financial support from Amgen, Director of Vascular Trials LtdDinimal and stockholder of Armgo and CellAegis. NG reports grants from Servier during the conduct of the study. PMS reports grants from Servier during the conduct of the study. PGS reports grants from Merck, Sanofi, Servier; personal fees from Amgen, AstraZeneca, Bayer, Boehringer-Ingelheim, BristolMyersSquibb, CSL-Behring, Daiichi-Sankyo, Janssen, Lilly, Merck, Novartis, Pfizer, Regeneron, Sanofi, Servier, The Medicines Company, outside the submitted work. JCT reports personal fees from Servier, during the conduct of the study. grants from Amgen, AstraZeneca, DaICor, Eli Lilly, Esperion, Ionis, Merck, Pfizer, Sanofi, Servier; personal fees from DaICor, Pfizer, Sanofi, Servier, holds minor equity interest in DaICor, outside the submitted work; a patent Pharmacogenomics-Guided
Therapy with CETP inhibitor pending. MT reports personal fees from Servier during the conduct of the study; personal fees from Bayer, Celyad, KOWA, Janssen-Cliaq, PERFUSE Study Group; grants from Polish National Center for Research and Development, outside the submitted work.

Patient consent for publication Not required.

Ethics approval The study was approved by the National Research Ethics Service, Isle of Wight, Portsmouth and Southeast Hampshire Research Ethics Committee, UK.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

REFERENCES

1. Rozanski A, Blumenthal JA, Kaplan J. Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. *Circulation* 1999;99:2192–217.
2. Clark AM, DesMeules M, Luo W, et al. Socioeconomic status and cardiovascular disease: risks and implications for care. *Nat Rev Cardiol* 2009;6:712–22.
3. Blumenthal JA, Sherwood A, Smith PJ, et al. Enhancing Cardiac Rehabilitation With Stress Management Training: A Randomized, Clinical Efficacy Trial. *Circulation* 2016;133:1341–50.
4. Holt-Lunstad J, Smith TB, Layton JB. Social relationships and mortality risk: a meta-analytic review. *PloS Med* 2010;7:e1000316.
5. Udell JA, Steg PG, Scirica BM, et al. Living alone and cardiovascular risk in outpatients at risk of or with atherothrombosis. *Arch Intern Med* 2012;172:1086–95.
6. Nakatsuma K, Shimoi H, Watanabe H, et al. Comparison of long-term mortality after acute myocardial infarction treated by percutaneous coronary intervention in patients living alone versus not living alone at the time of hospitalization. *Am J Cardiol* 2014;114:522–7.
7. Schmaltz HN, Southern D, Ghali WA, et al. Living alone, patient sex and mortality after acute myocardial infarction. *J Gen Intern Med* 2007;22:572–8.
8. Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. *Lancet* 2004;364:937–52.
9. Gandhi S, Dorian P, Greenlaw N, et al. Characteristics and evidence-based management of stable coronary artery disease patients in Canada compared with the rest of the world: insights from the clariFY registry. *Can J Cardiol* 2014;30:132–7.
10. Steg PG. Heart rate management in coronary artery disease: the clariFY registry. *European Heart Journal Supplements* 2009;11;(suppl D):D13–18.
11. Steg PG, Ferrari R, Ford I, et al. Heart rate and use of beta-blockers in stable outpatients with coronary artery disease. *PLoS One* 2012;7:e36284.
12. Steg PG, Greenlaw N, Tardif JC, et al. Women and men with stable coronary artery disease have similar clinical outcomes: insights from the international prospective clariFY registry. *Eur Heart J* 2012;33:2831–40.
13. Kitamura T, Sakata Y, Nakatani D, et al. Living alone and risk of cardiovascular events following discharge after acute myocardial infarction in Japan. *J Cardiol* 2013;62:257–62.
14. Kilpi F, Kontinen H, Silventoinen K, et al. Living arrangements as determinants of myocardial infarction incidence and survival: A prospective register study of over 300,000 Finnish men and women. *Soc Sci Med* 2015;133:93–100.
15. Redfors P, Isaksson D, Lappas G, et al. Living alone predicts mortality in patients with ischemic stroke before 70 years of age: a long-term prospective follow-up study, *BMC Neurol* 2016;16:80.
16. Lammintausta A, Airaksinen JK, Immonen-Riihä P, et al. Prognosis of acute coronary events is worse in patients living alone: the FINAMI myocardial infarction register. *Eur J Prev Cardiol* 2014;21:989–96.
17. Case RB, Moss AJ, Case N, et al. Living alone after myocardial infarction. Impact on prognosis. *JAMA* 1992;267:515–9.
18. O’Shea JC, Wilcox RG, Skene AM, et al. Comparison of outcomes of patients with myocardial infarction when living alone versus those not living alone. *Am J Cardiol* 2002;90:1374–7.
19. Ghosh-Swaby OR, Tan M, Bagai A, et al. Marital status and outcomes after myocardial infarction: Observations from the Canadian Observational Antiplatelet study (COAPT). *Clin Cardiol* 2018;41:285–92.
20. Kandler U, Meisinger C, Baumert J, et al. Living alone is a risk factor for mortality in men but not women from the general population: a prospective cohort study, *BMC Public Health* 2007;7:335.
21. Stanuie M, Brozattiene J, Bunevicius R. Effects of social support and stressful life events on health-related quality of life in coronary artery disease patients. *J Cardiovasc Nurs* 2013;28:83–9.
22. Liefeldt J, Nebrand C, Samsoe G, et al. Women living alone have an increased risk to develop diabetes, which is explained mainly by lifestyle factors. *Diabetes Care* 2005;28:2531–6.
23. Norekvål TM, Fridlund B, Moons P, et al. Sense of coherence–a determinant of quality of life over time in older female acute myocardial infarction survivors. *J Clin Nurs* 2010;19(5-6):820–31.
24. Buchholz EM, Strait KM, Dreyer RP, et al. Effect of low perceived social support on health outcomes in young patients with acute myocardial infarction: results from the VIRGO (Variation in Recovery: Role of Gender on Outcomes of Young AMI Patients) study. *J Am Heart Assoc* 2014;3:e001252.