Covering functors without groups

José A. de la Peña and María Julia Redondo *

Abstract

Coverings in the representation theory of algebras were introduced for the Auslander-Reiten quiver of a representation finite algebra in [15] and later for finite dimensional algebras in [2, 7, 11]. The best understood class of covering functors is that of Galois covering functors $F : A \to B$ determined by the action of a group of automorphisms of A. In this work we introduce the balanced covering functors which include the Galois class and for which classical Galois covering-type results still hold. For instance, if $F : A \to B$ is a balanced covering functor, where A and B are linear categories over an algebraically closed field, and B is tame, then A is tame.

Introduction and notation

Let k be a field and A be a finite dimensional (associative with 1) k-algebra. One of the main goals of the representation theory of algebras is the description of the category of finite dimensional left modules $A\text{mod}$. For that purpose it is important to determine the representation type of A. The finite representation type (that is, when A accepts only finitely many indecomposable objects in $A\text{mod}$, up to isomorphism) is well understood. In that context, an important tool is the construction of Galois coverings $F : \hat{A} \to A$ of A since \hat{A} is a locally representation-finite category if and only if A is representation-finite [7, 12]. For a tame algebra A and a Galois covering $F : \hat{A} \to A$, the category \hat{A} is also tame, but the converse does not hold [9, 14].

Coverings were introduced in [15] for the Auslander-Reiten quiver of a representation-finite algebra. For algebras of the form $A = kQ/I$, where Q is a quiver and I an admissible ideal of the path algebra kQ, the notion of covering was introduced in [2, 7, 11]. Following [2], a functor $F : A \to B$, between two locally bounded k-categories A and B, is a covering functor if the following conditions are satisfied:

*The research for this paper was initiated during a visit of the second named author to UNAM, México.
(a) F is a k-linear functor which is onto on objects;

(b) the induced morphisms

$$\bigoplus_{Fb = j} A(a, b') \to B(Fa, j) \quad \text{and} \quad \bigoplus_{Fa = i} A(a', b) \to B(i, Fb)$$

are bijective for all i, j in B and a, b in A.

We denote by $(\nu f^*_a)_{\nu} \mapsto f$ and $(\mu f_a')_{\mu} \mapsto f$ the corresponding bijections. We shall consider $F_\lambda: A_{\text{mod}} \to B_{\text{mod}}$ the left adjoint to the pull-up functor $F^*: B_{\text{mod}} \to A_{\text{mod}}$, $M \mapsto MF$, where C_{mod} denotes the category of left modules over the k-category C, consisting of covariant k-linear functors.

The best understood examples of covering functors are the Galois covering functors $A \to B$ given by the action of a group of automorphisms G of A acting freely on objects and where $F: A \to B = A/G$ is the quotient defined by the action. See [2, 5, 7, 11, 12] for results on Galois coverings. Examples of coverings which are not of Galois type will be exhibited in Section 1.

In this work we introduce balanced coverings as those coverings $F: A \to B$ where $b f^*_a = b f_a$ for every $f \in B(Fa, Fb)$. Among many other examples, Galois coverings are balanced, see Section 2. We shall prove the following:

THEOREM 0.1 Let $F: A \to B$ be a balanced covering. Then every finitely generated A-module X is a direct summand of $F F_\lambda X$.

In fact, according to the notation in [1], we show that a balanced covering functor is a cleaving functor, see Section 3. This is essential for extending Galois covering-type results to more general situations. For instance we show the following result.

THEOREM 0.2 Assume that k is an algebraically closed field and let $F: A \to B$ be a covering functor. Then the following hold:

(a) If F is induced from a map $f: (Q, I) \to (Q', I')$ of quivers with relations, where $A = kQ/I$ and $B = kQ'/I'$, then B is locally representation-finite if and only if so is A;

(b) If F is balanced and B is tame, then A is tame.

More precise statements are shown in Section 4. For a discussion on the representation type of algebras we refer to [11, 13, 9, 6, 14].
1 Coverings: examples and basic properties

1.1 The pull-up and push-down functors

Following [2, 7], consider a locally bounded k-category A, that is, A has a (possibly infinite) set of non-isomorphic objects A_0 such that

(a) $A(a, b)$ is a k-vector space and the composition corresponds to linear maps $A(a, b) \otimes_k A(b, c) \to A(a, c)$ for every a, b, c objects in A_0;

(b) $A(a, a)$ is a local ring for every a in A_0;

(c) $\sum_b A(a, b)$ and $\sum_b A(b, a)$ are finite dimensional for every a in A_0.

For a locally bounded k-category A, we denote by A_{Mod} (resp. Mod_A) the category of covariant (resp. contravariant) functors $A \to \text{Mod}_k$; by A_{mod} (resp. mod_A) we denote the full subcategory of locally finite-dimensional functors $A \to \text{mod}_k$ of the category A_{Mod} (resp. Mod_A). In case A_0 is finite, A can be identified with the finite-dimensional k-algebra $\bigoplus_{a,b \in A_0} A(a, b)$; in this case the category A_{Mod} (resp. A_{mod}) is equivalent to the category of left A-modules (resp. finitely generated left A-modules).

According to [6], in case k is algebraically closed, there exist a quiver Q and an ideal I of the path category kQ, such that A is equivalent to the quotient kQ/I. Then any module $M \in A_{\text{Mod}}$ can be identified with a representation of the quiver with relations (Q, I). Usually our examples will be presented by means of quivers with relations.

Let $F: A \to B$ be a k-linear functor between two locally bounded k-categories. The pull-up functor $F^*: B_{\text{Mod}} \to A_{\text{Mod}}, M \mapsto MF$ admits a left adjoint $F_\lambda: A_{\text{Mod}} \to B_{\text{Mod}}$, called the push-down functor, which is uniquely defined (up to isomorphism) by the following requirements:

(i) $F_\lambda A(a, -) = B(Fa, -)$;

(ii) F_λ commutes with direct limits.

In particular, F_λ preserves projective modules. Denote by $F_\rho: A_{\text{Mod}} \to B_{\text{Mod}}$ the right adjoint to F_λ.

For covering functors $F: A \to B$ we get an explicit description of F_λ and F_ρ as follows:

Lemma 1.1 [2]. Let $F: A \to B$ be a covering functor. Then
(a) For any $X \in A_{\text{mod}}$ and $f \in B(i, j)$,

$$F_\lambda X(f) = (X(b^*f_a)): \bigoplus_{F_a=i} X(a) \to \bigoplus_{F_b=j} X(b), \text{ with } \sum F(b^*f_a) = f.$$

In particular, $F_\lambda(a,-): F_\lambda A(a,-) \to B(Fa,-)$ is the natural isomorphism given by $(b^*f_a)_b \mapsto f$.

(b) For any $X \in A_{\text{mod}}$ and $f \in B(i, j)$

$$F_\rho X(f) = (X(f^*a)_b): \prod_{F_a=i} X(a) \to \prod_{F_b=j} X(b), \text{ with } \sum F(f^*a)_b = f.$$

In particular, $F_\rho D(-, b): F_\rho DA(-, b) \to DB(-, Fb)$ is the natural isomorphism induced by $(f^*a)_a \mapsto f$.

\[\square\]

1.2 The order of a covering

The following lemma allows us to introduce the notion of order of a covering.

Lemma 1.2 Let $F: A \to B$ be a covering functor. Assume that B is connected and a fiber $F^{-1}(i)$ is finite, for some $i \in B_0$. Then the fibers have constant cardinality.

Proof. Let $i \in B_0$ and $0 \neq f \in B(i, j)$. For $a \in F^{-1}(i)$, $\sum_{F_b=j} \dim_k A(a, b) = \dim_k B(i, j)$. Hence $|F^{-1}(i)| \dim_k B(i, j) = \sum_{F_a=i} \sum_{F_b=j} \dim_k A(a, b) = \sum_{F_b=j} \sum_{F_a=i} \dim_k A(a, b) = |F^{-1}(j)| \dim_k B(i, j)$ and $|F^{-1}(i)| = |F^{-1}(j)|$. Since B is connected, the claim follows. \[\square\]

In case $F: A \to B$ is a covering functor with B connected and A_0 is finite, we define the **order** of F as $\text{ord}(F) = |F^{-1}(i)|$ for any $i \in B_0$. Thus $\text{ord}(F)|B_0| = |A_0|$.

We recall from the Introduction that a covering functor $F: A \to B$ is **balanced** if $b^*f_a = b^*f_a$ for every couple of objects a, b in A.

Lemma 1.3 Let $F: A \to B$ be a balanced covering functor, then $F_\lambda = F_\rho$ as functors $A_{\text{mod}} \to B_{\text{mod}}$. \[\square\]
1.3 Examples

(a) Let \(A \) be a locally bounded \(k \)-category and let \(G \) be a group of \(k \)-linear automorphisms acting freely on \(A \) (that is, for \(a \in A_0 \) and \(g \in G \) if \(ga = a \), then \(g = 1 \)). The quotient category \(A/G \) has as objects the \(G \)-orbits in the objects of \(A \); a morphism \(f : i \to j \) in \(A/G \) is a family \(f : (a, b) \in \prod_{a,b} A(a, b) \), where \(a \) (resp. \(b \)) ranges in \(i \) (resp. \(j \)) and \(g \cdot b = g \cdot f \cdot a \) for all \(g \in G \). The canonical projection \(F : A \to A/G \) is called a Galois covering defined by the action of \(G \).

A particular situation is illustrated by the following algebras (given as quivers with relations):

\[
A: \begin{array}{ccc}
\bullet & \rho_0 & \bullet \\
\gamma_0 & \gamma_1 & \bullet \\
\sigma_0 & \sigma_1 & \bullet
\end{array}
\begin{array}{c}
\begin{cases}
\rho_1 \rho_0 = \nu_1 \gamma_0 \\
\sigma_1 \sigma_0 = \gamma_1 \nu_0 \\
\rho_1 \nu_0 = \nu_1 \sigma_0 \\
\sigma_1 \gamma_0 = \gamma_1 \rho_0
\end{cases}
\end{array}
\begin{array}{c}
\begin{cases}
\alpha_1 \alpha_0 = \beta_1 \beta_0 \\
\beta_1 \alpha_0 = \alpha_1 \beta_0
\end{cases}
\end{array}
B: \begin{array}{ccc}
\bullet & \alpha_0 & \bullet \\
\beta_0 & \alpha_1 & \bullet \\
\beta_1 & \beta_2 & \bullet
\end{array}
\begin{array}{c}
\begin{cases}
\alpha_1 \alpha_0 = \beta_1 \beta_0 \\
\beta_1 \alpha_0 = \alpha_1 \beta_0
\end{cases}
\end{array}
\]

The algebra \(A \) is tame, but \(B \) is wild when \(\text{char } k = 2 \] [1]. The cyclic group \(C_2 \) acts freely on \(A \) and \(A/C_2 \) is isomorphic to \(B \).

(b) Consider the algebras given by quivers with relations and the functor \(F \) as follows:

\[
\begin{array}{c}
a_2 \quad a_1 \\
\beta_2 \quad \beta_1
\end{array}
\begin{array}{c}
b_2 \quad b_1 \\
\rho_2 \quad \rho_1
\end{array}
\begin{array}{c}
\alpha_2 \quad \alpha_1 \\
\beta_2 \quad \beta_1
\end{array}
\xrightarrow{F}
\begin{array}{c}
a \quad b \\
\alpha \quad \beta
\end{array}
\]
both algebras with \(\text{rad }^2 = 0 \) and \(F\alpha_1 = \alpha, F\alpha_2 = \alpha + \beta, F\beta_1 = \beta, F\rho_1 = \rho, i = 1, 2 \). It is a simple exercise to check that \(F \) is a balanced covering, but obviously it is not of Galois type.

(c) Consider the functor

\[
A: \begin{array}{ccc}
a_1 & a_2 \\
\beta_1 & \alpha_1 \\
\beta_2 & \alpha_2
\end{array}
\xrightarrow{F} B: \begin{array}{cc}
a & b \\
\alpha & \beta
\end{array}
\]
where \(F\alpha_i = \alpha_i, i = 1, 2, \) \(F\beta_1 = \beta, F\beta_2 = \alpha + \beta. \) Since \(F(\beta_2 - \alpha_2) = \beta \) and \(F(\beta_1) = \beta, \) then \(b_2\beta_2 = -\alpha_2 \) and \(b_2\beta_2 = 0. \) Hence \(F \) is a non-balanced covering functor.

For the two dimensional indecomposable \(A \)-module \(X \) given by \(X(a_2) = k, X(b_2) = k, X(\alpha_2) = id \) and zero otherwise, it follows that \(F\lambda X \) is indecomposable and hence \(X \) is not a direct summand of \(F\lambda X. \)

(d) As a further example, consider the infinite category \(A \) and the balanced covering functor defined in the obvious way:

\[
\begin{array}{c}
\alpha_1 \\
\beta_1 \\
\circ \\
\beta_2 \\
\circ \\
\vdots \\
\end{array} \quad \xrightarrow{F} \quad \begin{array}{c}
\beta \\
\alpha \\
\end{array}
\]

where both categories \(A \) and \(B \) have \(\text{rad}^2 = 0. \)

1.4 Coverings of schurian categories

We say that a locally bounded \(k \)-category \(B \) is schurian if for every \(i, j \in B_0, \) \(\dim_k B(i, j) \leq 1. \)

Lemma 1.4 Let \(F: A \to B \) be a covering functor and assume that \(B \) is schurian, then \(F \) is balanced.

Proof. Let \(0 \neq f \in B(i, j) \) and \(Fa = i, Fb = j. \) Since \(B \) is schurian, there is a unique \(0 \neq \nu f_a^* \in A(a, b') \) with \(Fb' = j \) and a unique \(0 \neq \nu f_a' \in A(a', b) \) with \(Fa' = i \) satisfying \(Fb'f_a^* = f = Fb'f_a'. \) In case \(b = b' \), then \(a = a' \) and \(b f_a^* = \nu f_a. \) Else \(b \neq b' \) and \(b f_a^* = 0. \) In this situation \(a \neq a' \) and \(b f_a^* = 0. \) \(\Box \)

Proposition 1.5 Let \(F: A \to B \) be a covering functor with finite order and \(B \) schurian. Then for every \(M \in B_{\text{mod}}, F\lambda F\lambda M \cong M^{\text{ord}(F)}. \)

Proof. For any \(0 \neq f \in B(i, j) \) we get

\[
\begin{array}{c}
\nu f_a^* \\
(M(Fb f_a^*)) \\
\downarrow \quad \downarrow \\
\nu f_a' \\
(M(f)) \\
\end{array} \quad \xrightarrow{F\lambda F\lambda M(i)} \quad \xrightarrow{M^{\text{ord}(F)(i)}} \quad \xrightarrow{(M(f), \ldots, M(f))} \quad \xrightarrow{\text{diag}(M(f), \ldots, M(f))} \quad \xrightarrow{F\lambda F\lambda M(j)} \quad \xrightarrow{M^{\text{ord}(F)(j)}}
\]

Since for each \(a \) there is a unique \(b \) with \(b f_a^* \neq 0 \) such that \(Fb f_a^* = f, \) then the square commutes. \(\Box \)

Remark: If \(B \) is not schurian the result may not hold as shown in \([9, (3.1)]\) for a Galois covering \(F: B \to C \) with \(B \) as in Example (1.3a).
1.5 Coverings induced from a map of quivers

Let \(q: Q' \to Q \) be a covering map of quivers, that is, \(q \) is an onto morphism of oriented graphs inducing bijections \(i^+ \to q(i)^+ \) and \(i^- \to q(i)^- \) for every vertex \(i \) in \(Q' \), where \(x^+ \) (resp. \(x^- \)) denotes those arrows \(x \to y \) (resp. \(y \to x \)). For the concept of covering and equitable partitions in graphs, see [10].

Assume that \(Q \) is a finite quiver. Let \(I \) be an admissible ideal of the path algebra \(kQ \), that is, \(J^n \subset I \subset J^2 \) for \(J \) the ideal of \(kQ \) generated by the arrows of \(Q \). We say that \(I \) is admissible with respect to \(q \) if there is an ideal \(I' \) of the path category \(kQ' \) such that the induced map \(kq: kQ \to kQ' \) restricts to isomorphisms \(\bigoplus_{q(a)=i} kQ'(a, b) \to I(i, j) \) for \(q(b) = j \) and \(\bigoplus_{q(b)=j} kQ'(a, b) \to I(i, j) \) for \(q(a) = i \).

Observe that most examples in (1.3) (not Example (c)) are built according to the following proposition:

Proposition 1.6 Let \(q: Q' \to Q \) be a covering map of quivers, \(I \) an admissible ideal of \(kQ \) and \(I' \) an admissible ideal of \(kQ' \) making \(I \) admissible with respect to \(q \) as in the above definition. Then the induced functor \(F: kQ'/I' \to kQ/I \) is a balanced covering functor.

Proof. Since \(q \) is a covering of quivers, it has the unique lifting property of paths. Hence for any pair of vertices \(i \) in \(Q \) and \(a \) in \(Q' \) with \(q(a) = i \), we have that

\[
\begin{array}{ccc}
\bigoplus_{q(b)=j} kQ'(a, b) & \xrightarrow{kq} & kQ(i, j) \\
\downarrow & & \downarrow \\
\bigoplus_{F(b)=j} kQ'/I'(a, b) & \xrightarrow{F} & kQ/I(i, j)
\end{array}
\]

is a commutative diagram with \(F \) an isomorphism. This shows that \(F \) is a covering functor.

For any arrow \(i \xrightarrow{\alpha} j \) in \(Q \) and \(q(a) = i \), there is a unique \(b \) in \(Q' \) and an arrow \(a \xrightarrow{\alpha'} b \) with \(q(\alpha') = \alpha \). Hence the class \(\epsilon f^*_{\alpha} \) of \(\alpha' \) in \(kQ'/I'(a, b) \) satisfies that \(F(\epsilon f^*_{\alpha}) \) is the class \(f = \bar{\alpha} \) of \(\alpha \) in \(kQ/I(i, j) \). By symmetry, \(\epsilon f^*_{\alpha} = \bar{\rho} f_{\alpha} \). For arbitrary \(f \in kQ/I(i, j) \), \(f \) is the linear combination \(\sum \lambda_i f_i \), where \(f_i \) is the product of classes of arrows in \(Q \). Observe that for arrows \(i \xrightarrow{\alpha} j \xrightarrow{\beta} m \) we have \(c(\bar{\beta}\bar{\alpha})^* = (c\bar{\beta}^*)(\bar{\alpha}a^*) = (c\bar{\beta}^*)(\bar{\alpha}a^*) \). It follows that \(F \) is balanced. \(\square \)

In the above situation we shall say that the functor \(F \) is induced from a map \(q: (Q', I') \to (Q, I) \) of quivers with relations.
2 On Galois coverings

2.1 Galois coverings are balanced

Proposition 2.1 Let $F: A \to B$ be a Galois covering, then F is balanced.

Proof. Assume F is determined by the action of a group G of automorphisms of A, acting freely on the objects A_0. Let a, b in A with $Fa = i$, $Fb = j$ and $(\nu f^*_a)_\nu \in \bigoplus_{F\nu = j} A(a, b)$ with $\sum_{F\nu = j} F(\nu f^*_a) = f$.

For each object b' with $Fb' = j$, there is a unique $g_{b'} \in G$ with $g_{b'}(b') = b$. Then $(g_{b'}(\nu f^*_a))_{\nu} \in \bigoplus_{\nu} A(g_{b'}(a), b) = \bigoplus_{F\alpha' = i} A(a', b)$ with $\sum_{\nu} F(g_{b'}(\nu f^*_a)) = \sum_{\nu} F(\nu f^*_a) = f$. Hence $g_{b'}(\nu f^*_a) = b f_{g_{b'}(a)}$ for every $Fb' = j$. In particular, for $g_b = 1$ we get $b f^*_a = b f_a$.

□

2.2 The smash-product

We say that a k-category B is G-graded with respect to the group G if for each pair of objects i, j there is a vector space decomposition $B(i, j) = \bigoplus_{g \in G} B^g(i, j)$ such that the composition induces linear maps

$$B^g(i, j) \otimes B^h(j, m) \to B^{gh}(i, m).$$

Then the smash product $B \# G$ is the k-category with objects $B_0 \times G$, and for pairs $(i, g), (j, h) \in B_0 \times G$, the set of morphisms is

$$(B \# G)((i, g), (j, h)) = B^{g^{-1}h}(i, j)$$

with compositions induced in natural way.

In [4] it was shown that $B \# G$ accepts a free action of G such that

$$(B \# G)/G \xrightarrow{\sim} B.$$

Moreover, if $B = A/G$ is a quotient, then B is a G-graded k-category and

$$(A/G) \# G \xrightarrow{\sim} A.$$

Proposition 2.2 Let $F: A \to B$ be a covering functor and assume that B is a G-graded k-category. Then
(i) Assume A accepts a G-grading compatible with F, that is, $F^g(a, b) \subseteq B^g(Fa, Fb)$, for every pair $a, b \in A_0$ and $g \in G$. Then there is a covering functor $F \# G: A \rightarrow B \# G$ completing a commutative square

\[A \# G \xrightarrow{F\#G} B \# G \]

\[A \rightarrow F \rightarrow B \]

where the vertical functors are the natural quotients. Moreover F is balanced if and only if $F \# G$ is balanced.

(ii) In case B is a schurian algebra, then A accepts a G-grading compatible with F.

Proof. (i): For each $a, b \in A_0$, consider the decomposition $A(a, b) = \bigoplus_{g \in G} A^g(a, b)$ and $B(Fa, Fb) = \bigoplus_{g \in G} B^g(Fa, Fb)$. Since these decompositions are compatible with F, then $A^g(a, b) = F^{-1}(B^g(Fa, Fb))$, for every $g \in G$.

For $\alpha \in (A \# G)((a, g), (b, h)) = A^{g^{-1}h}(a, b) = F^{-1}(B^{g^{-1}h}(Fa, Fb))$, we have

\[(F \# G)(\alpha) = F\alpha \in B^{g^{-1}h}(Fa, Fb) = (B \# G)((Fa, g), (Fb, h)). \]

(ii): Assume B is schurian and take $a, b \in A_0$ and $g \in G$. Either $B^g(Fa, Fb) = B(Fa, Fb) \neq 0$, if $A(a, b) \neq 0$ or $B^g(Fa, Fb) = 0$, correspondingly we set $A^g(a, b) = A(a, b)$ or $A^g(a, b) = 0$. Observe that the composition induces linear maps $A^g(a, b) \otimes A^h(b, c) \rightarrow A^{gh}(a, c)$, hence A accepts a G-grading compatible with F. \qed

Remark: In the situation above, the fact that A and $B \# G$ are connected categories does not guaranty that $A \# G$ is connected. For instance, if $B = A/G$, then $A \# G = A \times G$.

The following result is a generalization of Proposition 2.2(ii).

Proposition 2.3 Let $F: A \rightarrow B$ be a (balanced) covering functor induced from a map of quivers with relations. Let $F': B' \rightarrow B$ be a Galois covering functor induced from a map of quivers with relations defined by the action of a group G. Assume moreover that B' is schurian. Then A accepts a G-grading compatible with F making the following diagram commutative

\[A \# G \xrightarrow{F\#G} B' \]

\[A \rightarrow F \rightarrow B \]

\[F' \]
Proof. Let $A = k\Delta/J$, $B = kQ/I$ and $B' = kQ'/I'$ be the corresponding presentations as quivers with relations, F induced from the map $\delta: \Delta \to Q$, while F' induced from the map $q: Q' \to Q$. For each vertex a in Δ fix a vertex a' in Q' such that $F'a' = Fa$.

Consider an arrow $a \xrightarrow{\alpha} b$ in Δ and π the corresponding element of A. We claim that there exists an element $g_{\alpha} \in G$ such that $F(\pi) \in B^{g_{\alpha}}(Fa, Fb)$. Indeed, we get $F(\pi) = \overline{\beta} = F'(\overline{\beta'})$ for arrows $Fa \xrightarrow{\beta} Fb$ and $a' \xrightarrow{\beta'} g_{\alpha}b'$ for a unique $g_{\alpha} \in G$. Therefore $F(\pi) \in B^{g_{\alpha}}(Fa, Fb)$. We shall define $A^{g_{\alpha}}(a, b)$ as containing the space $k\alpha$.

For this purpose, consider $g \in G$ and any vertices a, b in Δ, then $A^{g}(a, b)$ is the space generated by the classes u of the paths $u: a \to b$ such that $F(u) \in B^{g}(Fa, Fb)$. Since the classes of the arrows in Δ generate A, then $A(a, b) = \bigoplus_{g \in G} A^{g}(a, b)$. We shall prove that there are linear maps

$$A^{g}(a, b) \otimes A^{h}(b, c) \to A^{gh}(a, c).$$

Indeed, if $\overline{u} \in A^{g}(a, b)$ and $\overline{v} \in A^{h}(b, c)$ for paths $u: a \to b$ and $v: b \to c$ in Δ, let $F(\overline{u}) = F'(\overline{u'})$ and $F(\overline{v}) = F'(\overline{v'})$ for paths $u': a' \to gb'$ and $v': b' \to hc'$ in Q'. Since B' is schurian then the class of the lifting of $F(\overline{uv})$ to B' is $(gv'\alpha')u'$. Therefore $F(\pi)F(\overline{u}) = F'(\overline{(gv')u'}) \in B^{gh}(Fa, Fb)$.

By definition, the G-grading of A is compatible with F. We get the commutativity of the diagram from Proposition 2.2. \hfill \Box

2.3 Universal Galois covering

Let $B = kQ/I$ be a finite dimensional k-algebra. According to [11] there is a k-category $\tilde{B} = k\tilde{Q}/\tilde{I}$ and a Galois covering functor $\tilde{F}: \tilde{B} \to B$ defined by the action of the fundamental group $\pi_1(Q, I)$ which is universal among all the Galois coverings of B, that is, for any Galois covering $F: A \to B$ there is a covering functor $F': \tilde{B} \to A$ such that $\tilde{F} = FF'$. In fact, the following more general result is implicitly shown in [11]:

Proposition 2.4 [11]. The universal Galois covering $\tilde{F}: \tilde{B} \to B$ is universal among all (balanced) covering functors $F: A \to B$ induced from a map $q: (Q', I') \to (Q, I)$ of quivers with relations, where $A = kQ'/I'$. \hfill \Box
3 Cleaving functors

3.1 Balanced coverings are cleaving functors

Consider the k-linear functor $F: A \to B$ and the natural transformation $F(a, b): A(a, b) \to B(Fa, Fb)$ in two variables. The following is the main observation of this work.

Theorem 3.1 Assume $F: A \to B$ is a balanced covering, then the natural transformation $F(a, b): A(a, b) \to B(Fa, Fb)$ admits a retraction $E(a, b): B(Fa, Fb) \to A(a, b)$ of functors in two variables a, b such that $E(a, b)F(a, b) = 1_{A(a, b)}$ for all $a, b \in A_0$.

Proof. Set $E(a, b): B(Fa, Fb) \to A(a, b), f \mapsto \ast f_a$ which is a well defined map. For any $\alpha \in A(a, a'), \beta \in A(b, b')$, we shall prove the commutativity of the diagrams:

$$
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
B(Fa, Fb) \xrightarrow{E(a, b)} A(a, b) \\
\downarrow \quad A(a, b)
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
B(Fa, Fb) \xrightarrow{E(a', b)} A(a', b)
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
B(Fa, Fb) \xrightarrow{E(a, b)} A(a, b)
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}

$$

For the sake of clarity, let us denote by \circ the composition of maps. Indeed, let $f \in B(Fa, Fb)$ and calculate $\sum_{a' = Fa} F(\beta \circ \ast f_{a'}) = F\beta \circ f$, hence

$$
A(a, \beta) \circ E(a, b)(f) = \beta \circ \ast f_a = \ast(F\beta \circ f)_a = E(a, b') \circ B(Fa, F\beta)(f),
$$

and the first square commutes. Moreover, let $h \in B(Fa', Fb)$ and calculate $\sum_{b' = Fb} F(\gamma \circ \ast f_{b'}) = h \circ F\alpha$ and therefore $\ast(h \circ F\alpha)_a = \ast(h \circ F\alpha)$. Using that F is balanced we get that $E(a, b) \circ B(Fa, Fb)(h) = \ast(h \circ F\alpha)_a = \ast(h \circ F\alpha) = A(\alpha, b) \circ E(a', b')(h)$. \hfill \Box

Given a k-linear functor $F: A \to B$ the composition $F_\ast F_\lambda: A_{\text{Mod}} \to A_{\text{Mod}}$ is connected to the identity 1 of A_{Mod} by a canonical transformation $\varphi: F_\ast F_\lambda \to 1$ determined by $F_\ast F_\lambda A(a, -)(b) = \bigoplus_{Fb' = Fb} A(a, b') \to A(a, b), (f_{b'}) \mapsto f_b$, see [1, page 234]. Following [1], F is a cleaving functor if the canonical transformation φ admits a natural section $\varepsilon: 1 \to F_\ast F_\lambda$ such that $\varphi(X)\varepsilon(X) = 1_X$ for each $X \in A_{\text{Mod}}$. The following statement, essentially from [1], yields Theorem 0.1 in the Introduction.

Corollary 3.2 Let $F: A \to B$ be a balanced covering, then F is a cleaving functor.
Proof. Observe that $F \circ F$ is exact, preserves direct sums and projectives (the last property holds since $F \circ B(i, -) = \oplus_{F a = i} A(a, -)$). Hence to define $\varepsilon : 1 \rightarrow F \circ F$ it is enough to define $\varepsilon(A(a, -)) : A(a, -) \rightarrow F \circ F A(a, -)$ with the desired properties. For $b \in A_0$, consider $\varepsilon_b : A(a, b) \rightarrow \bigoplus_{F a' = F b} A(a, b') = F \circ F A(a, -)(b)$ the canonical inclusion. For $h \in A(b, c)$ we shall prove the commutativity of the following diagram:

\[
\begin{array}{ccc}
A(a, b) & \xrightarrow{\varepsilon_b} & \bigoplus_{F a' = F b} A(a, b') \\
A(a, c) & \xrightarrow{\varepsilon_c} & \bigoplus_{F a' = F c} A(a, c')
\end{array}
\]

Let $f \in A(a, b)$, since F is balanced $A(\cdot, c F h_b) \circ \varepsilon_b(f) = \varepsilon_c F h_b \circ f = \varepsilon_b \circ A(a, h) f)$, since $c F h_b = h$ if $c' = c$ and it is 0 otherwise. This is what we wanted to show. \[\square\]

4 On the representation type of categories

4.1 Representation-finite case

Recall that a k-category A is said to be locally representation-finite if for each object a of A there are only finitely many indecomposable A-modules X, up to isomorphism, such that $X(a) \neq 0$. For a cleaving functor $F : A \rightarrow B$ it was observed in \cite{1} that in case B is of locally representation-finite then so is A. In particular this holds when F is a Galois covering by \cite{7}. We shall generalize this result for covering functors.

Part (a) of Theorem 0.2 in the Introduction is the following:

THEOREM 4.1 Assume that k is algebraically closed and let $F : A \rightarrow B$ be a covering induced from a map of quivers with relations. Then B is locally representation-finite if and only if so is A. Moreover in this case the functor $F \circ A_{\text{mod}} \rightarrow B_{\text{mod}}$ preserves indecomposable modules and Auslander-Reiten sequences.

Proof. Let $F : A \rightarrow B$ be induced from $q : (Q', I') \rightarrow (Q, I)$ where $A = kQ'/I'$ and $B = kQ/I$. Let $\tilde{B} = k\tilde{Q}/\tilde{I}$ be the universal cover of B and $\tilde{F} : \tilde{B} \rightarrow B$ the universal covering functor. By Proposition 2.4 there is a covering functor $F' : \tilde{B} \rightarrow A$ such that $\tilde{F} = F F'$.

(1) Assume that B is a connected locally representation-finite category. Since F is induced by a map of quivers with relations, then Proposition 1.6 implies that F is balanced. Hence Corollary 3.2 implies that F is a cleaving functor. By \cite{1} (3.1), A is locally representation-finite; for the sake of completeness, recall the simple argument: each indecomposable A-module $X \in A_{\text{mod}}$ is a direct summand of
\[F_{\lambda}X = \bigoplus_{i=1}^{n} F_{\lambda}N_{i}^{n_i} \] for a finite family \(N_1, \ldots, N_n \) of representatives of the isoclasses of the indecomposable \(B \)-modules with \(N(i) \neq 0 \) for some \(i = F(a) \) with \(X(a) \neq 0 \).

(2) Assume that \(A \) is a locally representation-finite category. First we show that \(B \) is representation-finite. Indeed, by case (1), since \(F' : \tilde{B} \to A \) is a covering induced by a map of a quiver with relations, then \(\tilde{B} \) is locally representation-finite. By [12], \(\tilde{B} \) is representation-finite. In particular, [2] implies that \(\tilde{F}_\lambda \) preserves indecomposable modules, hence \(F_\lambda \) and \(F'_\lambda \) also preserve indecomposable modules.

Let \(X \) be an indecomposable \(A \)-module. We shall prove that \(X \) is isomorphic to \(F'_\lambda N \) for some indecomposable \(\tilde{B} \)-module \(N \). Since indecomposable projective \(A \)-modules are of the form \(A(a,-) = F'_\lambda \tilde{B}(x,-) \) for some \(x \) in \(\tilde{B} \), using the connectedness of \(\Gamma_A \), we may assume that there is an irreducible morphism \(Y \overset{f}{\to} X \) such that \(Y = F'_\lambda N \) for some indecomposable \(\tilde{B} \)-module \(N \). If \(N \) is injective, say \(N = D\tilde{B}(-,j) \), there is a surjective irreducible map \((h_i) : N \to \oplus_i N_i \) such that all \(N_i \) are indecomposable modules and \(0 \to S_j \to N \overset{(h_i)}\to \oplus_i N_i \to 0 \) is an exact sequence. Then \(Y = DA(-,F'j) \) and the exact sequence

\[0 \to S_{F'j} \to Y \overset{(F'_\lambda(h_i))}\to \oplus_i F'_\lambda(N_i) \to 0 \]

yields the irreducible maps starting at \(Y \) (ending at the indecomposable modules \(F'_\lambda(N_i) \)). Therefore \(X = F'_\lambda(N_r) \) for some \(r \), as desired. Next, assume that \(N \) is not injective and consider the Auslander-Reiten sequence \(\xi : 0 \to N \overset{g}{\to} N' \overset{g'}{\to} N'' \to 0 \) in \(\tilde{B} \text{-mod} \). We shall prove that the push-down \(F'_\lambda \xi : 0 \to F'_\lambda N \overset{F'_\lambda g}{\to} F'_\lambda N' \overset{F'_\lambda g'}{\to} F'_\lambda N'' \to 0 \) is an Auslander-Reiten sequence in \(A \text{-mod} \). This implies that there exists a direct summand \(\tilde{N} \) of \(N' \) such that \(X \overset{\sim}{\to} F'_\lambda \tilde{N} \) which completes the proof of the claim.

To verify that \(F'_\lambda \xi \) is an Auslander-Reiten sequence, let \(h : F'_\lambda \tilde{N} \to Z \) be non-split mono in \(A \text{-mod} \). Consider \(\text{Hom}_A(F'_\lambda N, Z) \overset{\sim}{\to} \text{Hom}_A(N, F'_\lambda Z) \), \(h \mapsto h' \) which is not a split mono (otherwise, then \(\text{Hom}_A(F'_\lambda Z, N) \overset{\sim}{\to} \text{Hom}_A(Z, F'_\lambda N) \), \(\nu \mapsto \nu' \) with \(\nu h' = 1_{F'_\lambda Z} \). By Lemma [13], \(F'_\lambda = F'_\rho \) and \(F'_\rho h = F'_\rho Z \). Then there is a lifting \(\bar{h} : N' \to F'_\lambda Z \) with \(\bar{h} g = h' \). Hence \(\text{Hom}_B(N', F'_\lambda Z) \overset{\sim}{\to} \text{Hom}_A(F'_\lambda N', Z) \), \(\bar{h} \mapsto \bar{h}' \) with \(\bar{h}' F'_\lambda g = h \).

We show that \(F_\lambda \) preserves Auslander-Reiten sequences. Let \(X \) be an indecomposable \(A \)-module of the form \(X = F'_\lambda N \) for an indecomposable \(\tilde{B} \)-module \(N \). Then \(F_\lambda X = F_\lambda F'_\lambda N = \tilde{F}_\lambda N \). Since by [12], \(\tilde{F}_\lambda \) preserves indecomposable modules, then \(F_\lambda X \) is indecomposable. Finally, as above, we conclude that \(F_\lambda \) preserves Auslander-Reiten sequences.\[\square \]
4.2 Tame representation case

Let k be an algebraically closed field. We recall that A is said to be of tame representation type if for each dimension $d \in \mathbb{N}$ and each object $a \in A_0$, there are finitely many $A - k[t]$-bimodules M_1, \ldots, M_s which satisfy:

(a) M_i is finitely generated free as right $k[t]$-module $i = 1, \ldots, s$;
(b) each indecomposable $X \in A\text{mod}$ with $X(a) \neq 0$ and $\dim_k X = d$ is isomorphic to some module of the form $M_i \otimes_{k[t]} (k[t]/(t - \lambda))$ for some $i \in \{1, \ldots, s\}$ and $\lambda \in k$.

In fact, it is shown in [13] that A is tame if (a) and (b) are substituted by the weaker conditions:

(a') M_i is finitely generated as right $k[t]$-module $i = 1, \ldots, s$;
(b') each indecomposable $X \in A\text{mod}$ with $X(a) \neq 0$ and $\dim_k X = d$ is a direct summand of a module of the form $M_i \otimes_{k[t]} (k[t]/(t - \lambda))$ for some $i \in \{1, \ldots, s\}$ and $\lambda \in k$.

The following statement covers claim (b) of Theorem 0.2 in the Introduction.

THEOREM 4.2 Let $F: A \to B$ be a balanced covering functor. If B is tame, then A is tame.

Proof. Let $a \in A_0$ and $d \in \mathbb{N}$. Let M_1, \ldots, M_s be the $B - k[t]$-bimodules satisfying (a) and (b): each indecomposable $M \in B\text{mod}$ with $M(Fa) \neq 0$ and $\dim_k M \leq d$ is isomorphic to some $M_i \otimes_{k[t]} (k[t]/(t - \lambda))$ for some $i \in \{1, \ldots, s\}$ and $\lambda \in k$.

By Corollary 3.2 each indecomposable $X \in A\text{mod}$ with $X(a) \neq 0$ and $\dim_k X = d$ is a direct summand of some $F_* (M_i \otimes_{k[t]} (k[t]/(t - \lambda)))$, which is isomorphic to $F_* M_i \otimes_{k[t]} (k[t]/(t-\lambda))$, for some $i \in \{1, \ldots, s\}$ and $\lambda \in k$. Hence A satisfies conditions (a') and (b'). □

References

[1] R. Bautista, P. Gabriel, A.V. Roiter and L. Salmerón. Representation-finite algebras and multiplicative bases. Invent. Math. 81 (1984) 217–285.

[2] K. Bongartz and P. Gabriel. Covering spaces in Representation Theory. Invent. Math. 65 No. 3 (1982) 331–378.

[3] K. Bongartz. Indecomposables are standard. Commentarii Math. Helvetici 60 (1985) 400-410.

[4] C. Cibils and E. Marcos. Skew categories. Galois coverings and smash product of a category over a ring. Proc. Amer. Math. Soc. 134 (2006) 39-50.
[5] P. Dowbor and A. Skowroński. *Galois coverings of representation infinite algebras.* Comment. Math. Helvetici 62 (1987) 311–337.

[6] P. Gabriel. *Auslander-Reiten sequences and representation-finite algebras.* Proc. ICRA II (Ottawa 1979). In Representation of Algebras, Springer LNM 831 (1980) 1–71.

[7] P. Gabriel. *The universal cover of a representation-finite algebra.* Proc. Puebla (1980), Representation Theory I, Springer Lect. Notes Math. 903 (1981) 68–105.

[8] P. Gabriel and J. A. de la Peña. *Quotients of representation-finite algebras.* Communications in Algebra 15 (1987) 279-307.

[9] Ch. Geiss and J. A. de la Peña. *An interesting family of algebras.* Arch. Math. 60 (1993) 25–35.

[10] C. D. Godsil. *Algebraic Combinatorics.* Chapman and Hall Mathematics (1993).

[11] R. Martínez-Villa and J. A. de la Peña. *The universal cover of a quiver with relations.* J. Pure and Applied Algebra 30 No. 3 (1983) 277–292.

[12] R. Martínez-Villa and J. A. de la Peña. *Automorphisms of representation-finite algebras.* Invent. Math. 72 (1983) 359–362.

[13] J.A. de la Peña. *Functors preserving tameness.* Fundamenta Math. 137 (1991) 177–185.

[14] J. A. de la Peña. *On the dimension of the module-varieties of tame and wild algebras.* Communications in Algebra 19 (6), (1991) 1795-1807.

[15] Ch. Riedtmann. *Algebren, Darstellungsköcher, Überlagerungen und zurück.* Comment. Math. Helv. 55 (1980) 199–224.

José A. de la Peña; Instituto de Matemáticas, UNAM. Cd. Universitaria, México 04510 D.F.

E-mail address: jap@matem.unam.mx

María Julia Redondo; Instituto de Matemática, Universidad Nacional del Sur. Av. Alem 1253, (8000) Bahía Blanca, Argentina.

E-mail address: mredondo@criba.edu.ar