STATUS AND ROLE OF MEDICINAL AND AROMATIC PLANTS (MAPs) IN NEPALESE LIVELIHOOD

Vivek Thapa Chhetri1,2,3,4, Susmita Shrestha2, Sapana Thapa3, Sachin Timilsina4
1,2,3,4Tribhuvan University, Institute of Forestry, Pokhara Campus, Pokhara 33700, Nepal
*Corresponding author: thapavivek777@gmail.com

Abstract

Medicinal and aromatic plants (MAPs), a principal sub-component of Non-Timber Forest Products (NTFPs), are undoubtedly an important source of revenue and rural employment. This review paper explores the current ecological and prioritized status of MAPs by the Government and the practical significance of MAPs in bodily health, lucrative employment to the Nepalese population, and revenue opportunities to the government based on 72 published articles from 1995 to 2021. The Department of Plant Resources (DPR) reported that the number of medicinal plant species has increased from 701 in 2007 to 819 in 2016 with 285 endemic plant species from 43 families, and 238 chemically tested MAPs species for medicinal significance. MAPs are highly prevalent within the 1000-2500m elevation gradient in Nepal. GoN has categorized 30 species for economic development, 12 species for cultivation and research, 12 species for protection, and 237 species for collecting royalties. Around 100 Nepalese NTFPs/MAPs are traded, but only 20 species accounts for 80% of the total trade in terms of volume and value. Nepal ranks 42nd with a value of $7.4 million and 62nd with a value of $3.3 million in exports of MAPs and essential oils, respectively, in 2017. About 80% of the Nepalese population relies on traditional medicine for basic health needs. The NTFPs/MAPs Business Promotion Strategy specifies 20 species for product promotion across Nepal. As current data are still lacking on different uses of MAPs in Nepalese society, this comprehensive review will facilitate herbal specialists, policymakers, scientific researchers, botanists, and various key stakeholders to assure better research and increase the export of MAPs that directly improve the socio-economic status of the Nepalese people.

Keywords: COVID-19; Essential oils; Export; Livelihood; Medicinal Plants

DOI: http://dx.doi.org/10.3126/ije.v10i1.38405

Copyright ©2021 IJE
This work is licensed under a CC BY-NC which permits use, distribution and reproduction in any medium provided the original work is properly cited and is not for commercial purposes

Introduction

Medicinal plants are those with therapeutic potential that have been proven successful in one's well-being (World Bank, 2018). Aromatic plants are those that contain or exude volatile compounds such as essential oils. Medicinal and aromatic plants are among the reliable sources of survival and economic opportunity that provide cash income to rural populations (Pérez and Byron, 1999; Olsen and Larsen, 2003; Shackleton and Shackleton, 2004). MAPs are promising raw materials in the pharmaceutical, nutraceutical, and cosmeceutical industries (Marriott, 2000; Pieroni et al., 2004; Barnes and Prasain, 2005).

Medicinal plants are important components of the pharmacopoeia of allopathic treatments, whereas around 28,187 species have been identified in herbal medicine (Wills, 2017). Between 1940 and 2014, 49 percent of biomolecules approved by the United States Food and Drug Administration were natural or derived products (Newman and Cragg, 2016). Approximately 25% of allopathic drugs are currently made from plant-related substances and compounds extracted from plants (Rao et al., 2004). Approximately 15% of plant species have been researched phytochemically, and only 6% have been tested for their pharmacological potency (Seidel, 2020). Thus, there are still many plant-derived chemicals whose medicinal prospects need to be explored (Atanasov et al., 2015; Beutler, 2009; Thomford et al., 2018).

The country ranked 25th in global biodiversity richness and 11th among Asian countries (Ministry of Forests and Environment, 2018b). Nepal's unique topography and varying climates have resulted in floral species count of 11,971, accounting for 3.2% of the world's total flora (MoFSC, 2014). According to the Medicinal and Aromatic Plants Database of Nepal (MAPDON), there are approximately 1,624 medicinal plant species in Nepal, with approximately 100 species traded annually (SAWTEE, 2015). The Department of Plant Resources (DPR) has reported that the number of medicinal plant species has increased from 701 (DPR, 2007) to 819 (DPR, 2016). Till now, 238 MAPs species have been chemically tested for their medicinal properties (Government of Nepal, 2004). Nepal has 285 endemic plant species from 43 families, which have global biological significance (Rajbhandari and Dhungana, 2011). MAPs are more prevalent in forests and grasslands of hilly and mountainous terrain above 2,000m in Nepal (EPI, 2017).

About 85% of MAPs are harvested from the wild, especially in the Far-West and Mid-West of Nepal (GIZ, 2017). Far west Nepal alone accounts for about one-third of Nepal's entire trade volume (Kunwar et al., 2015).
where only one district, Jajarkot contributes US$13,209.4 from MAPs to the national economy (Lamichhane et al., 2021). About 143-161 NTFP species, including MAPs, are collected for commercial purposes (Bhattarai and Ghimire, 2006; Subedi, 2006). However, 60 MAPs species are classified as endangered (Shrestha and Joshi, 1996; Bhattarai et al., 2002). Approximately 50-60% of MAPs harvest goes unrecorded, as they are either consumed in households or sold on local marketplaces without any official procedures (KC, 2014). Around 100 Nepalese NWFPs are traded, but only 20 species account for 80% of the total trade in terms of volume and value (KC, 2014). According to NTFPs studies presented at a seminar on Herbs, Herbal Products, and Spices held in 2005, the forestry sector contributes approximately 15% to the Nepalese GDP, while NTFPs comprise about 5% of GDP (CECI, 2006). As buyers are becoming more interested in organic and natural goods, the market for MAPs continues to grow around the world (Acharya, 2014).

MAPs are among 19 sectors having a high potential for trade promotion listed by the Nepal Trade Integration Strategy (NTIS) (NTIS, 2010). MAPs can be harvested in a short period than timber, which gives them a competitive advantage in the forest as compared to timber (Paudel and Acharya, 2018; Lawrence, 2003). Nepal's NTFP sector has been the subject of much debate and little action. The Master Plan for Forestry Sector (1989-2010) included MAPs as a priority initiative. Despite MAPs being one of the government's priority sectors under the Tenth five-year plan (2002-2007), sufficient attention has not been given to its cultivation (Bhattarai and Ghimire, 2006). The study aimed to present a comprehensive overview of the current ecological and prioritized status of MAPs by GoN to develop and commercialize them, and the general trend of MAPs export from Nepal.

Methodology

This paper is based on a thorough analysis of online national and international publications, project papers, websites, booklets, government policy documents, and available published materials. Google Scholar, ResearchGate, Scopus, and PubMed were the primary databases used for acquiring the literature including the keyword ‘MAPs’, ‘NTFPs’ ‘Role’, ‘Livelihood’, ‘COVID-19’, ‘Export’, and ‘Nepal’. Seventy-two articles were identified, which was in agreement with our inclusion and exclusion criteria. The literatures sorted were systematically reviewed multiple times, and information about the status of MAPs and their role in Nepalese livelihood were gathered, compiled, and arranged in a logical sequence. The complete process is explained in figure 1 which is based on the PRISMA flow chart.
Results and Discussion

MAPs distribution in Nepal

In Nepal, MAPs can be found at elevations ranging from 100 to 5,500 m above sea level (Bhattarai and Ghimire, 2006). The total MAPs species richness (Herbs, Shrubs, Climbers, and Trees) is found between the elevation gradient of 1000-2500 m. The MAPs of trees and climbers are found to be optimal at 1000 m; shrubs at 2000 m; and herbaceous at 2500 m (Bhattarai and Ghimire, 2006). MAPs species are distributed in different regions of Nepal (Figure 2). West and Eastern regions have the least MAPs at 2% and 3% respectively while East-center west has the highest at 67%, followed by East-center at 12%.
Tropical and sub-tropical regions have the highest proportion of MAPs, followed by temperate, sub-alpine, and alpine zones. Sub-alpine and alpine medicinal plants are treasured both for their medicinal value and export potential. Medicinal plants and herbs provide sufficient income to fulfill the basic needs of poor and marginalized populations in these areas, as well as revenues to the government. Table 1 shows the distribution of MAPs in Physiographic Zones.

Table 1: Distribution of the Medicinal and Aromatic Plants (MAPs) in Physiographic Zones

Region	% available	MAPs
Alpine region above 4000 m	7	Ophiocordyceps Sinensis (Yarshagumba), Neopicrorhiza scrophulariflora (Kutki), Nardostachys grandiflora (Jatamansi)
Sub-alpine region 3000-4000 m	18	Dactylorhiza hatagirea (Panchaule), Taxus wallichina (Lauth Salla), Rheum austral (Padamchal), Swertia chirayita (Chiraito), Podophyllum (Laghuapatra), Paris polyphylla (Satuwa),
Temperate region 2000-3000 m	36	Swertia chirayita (Chiraito), Aconitum heterophyloides (Nirmasi), Digitalis purpurea (Tilpushpi), Berberis asiatica (Chutro), Valeriana jatamansii (Sugandhawal)
Sub-tropical region 1000-2000 m 54

Gaultheria fragrantissima (Wintergreen), Zanthoxylum armatum (Timur), Sapindus mukorossi (Ritha), Asparagus racemosus (Kurilo), Cinnamomum tamala (Tejpat), Elaeocarpus sphaericus (Rudraksha), Tinospora sinensis (Gurjo)

Tropical region below 1000 m 49

Terminalia chebula (Harro), Aegle marmelos (Bel), Terminalia belerica (Barro), Diospyros melanoxylon (Tendu), Azadirachta indica (Neem), Haldina cardifolia (Haldu), Rauwolfia serpentine (Sarpagandha), Phyllanthus emblica (Amala)

Source: (Malla and Shakya, 1995; Subedi, 2006)

Figure 3 shows the relationship between elevation and species diversity/commercial value. As altitude increases, the diversity of MAPs species declines. On the contrary, the commercial value of MAPs species increases with altitude. Despite having low plant diversity, the commercial values of the NTFPs found in Nepal's mountains (highlands) are the highest. For example, the price of Kurilo (Asparagus racemosus) and Sarpagandha (Rauwolfia serpentina) in the Terai regions is less than NRs. 500 per kilogram, whereas the price of Yarsagumba (Ophiocordyceps sinensis), Wild Morel (Mochella esculenta), Jatamansi (Nardostachys grandiflora), Panchaule (Dactylorhiza hatagirea), etc. are many times higher than lowland species (KC, 2014).

Figure 3: General trend of species diversity and commercial importance of NTFPs along the altitudinal gradient in Nepal [Source: (KC, 2014)]
The Government of Nepal (GoN) has established forest policy in 2015 to retain MAPs from exploitation in their natural habitat, as well as to encourage private sectors to domesticate and cultivate MAPs. The goal is to transfer the cultivable MAPs into private land. It has identified (Table 2) 3 major MAPs species of Terai, 16 species of mid-hills, and 11 species of Mountain region that can boost the country's economy.

Table 2: List of MAPs species identified for economic development

S.N.	Scientific name of the species	Local name of species	Distributional range (m)	Major parts used	Main uses
1	Aconitum heterophyllum	Atis	2400-4100	Rhizome, Roots	Medicine
2	Aconitum spicatum	Bisjara	3300-4300	Flower, Leaves	Medicine, scented oil
3	Acorus calamus	Bojho	200-2300	Roots	Medicine
4	Asparagus racemosus	Kurilo	150-2100	Roots, New shoots	Medicine, food
5	Azadirachta indica	Neem	100-900	Whole plant	Medicine
6	Bergenia ciliate	Pakhanbed	1600-3600	Rhizome	Medicine
7	Cinnamomum glaucescens	Suganda kokila	200-2500	Fruit	Medicine, scented oil
8	Cinnomumum tamala	Tejpat	450-2100	Bark, Leaves	Medicine, spice
9	Dactylorhiza hatagirea	Panchaunle	2800-4000	Rhizome	Medicine
10	Dioscorea deloidea	Bhyakur	450-3100	Fruit, Roots	Food
11	Gaultheria fragrantissima	Dhashingre	1200-2700	Leaves	Scented oil
12	Juglans regia	Okhar	1200-3000	Fruit, Bark	Medicine, food
13	Lichen sps.	Jhau	2500-3400	Whole plant	Medicine
14	Morchella esculenta	Guchi chyau	2000-3500	Whole fungus	Food
15	Nardostachys grandiflora	Jatamansi	3600-5000	Rhizome	Medicine, scented oil
16	Neocirorhiza scrophulariflora	Kutki	3600-4000	Rhizome	Medicine
17	Ophiocordyceps sinensis	Yarsagumba	4200-5000	Whole fungus, larvae	Medicine
18	Phyllanthus emblica	Amala	150-1400	Fruit	Medicine
19	Piper longum	Pipla	200-800	Fruit	Spice
20	Podophylla hexandrum	Laghupatra	2400-4000	Roots, Rhizome	Medicine
21	Rauwolfia serpentina	Sarpagandha	100-1200	Root	Medicine
22	Rheum austral	Padamchal	3000-4200	Stem	Medicine
23	Rubia majith	Majitho	1200-2100	Stem, Root	Coloring
24	Sapindus mukorssi	Ritha	1000-1400	Fruit, Seed, Bark	Detergent
25	Swertia chirayita	Chiraito	1500-3000	Whole plant	Medicine
26	Tagetes minuta	Jangali Sayapatri	1200-2500	Whole plant	Scented oil
The GoN has prioritized 12 different MAPs species for cultivation and research (DoF, 2015). Tejpat, Rittha, Timur, Chiraito, and Kurilo are the most important domesticated medicinal species exported from Nepal. Similarly, cultivation of essential oil-producing plants such as Mentha, Chamomile, etc., has begun in Nepal's lower regions. There are still additional plants with enormous earning potential. Some of these species include *Asparagus racemosus* (low altitude), *Cinnamomum glaucescens* (low-mid altitude), and *Dactylorhiza hatagirea* (high altitude) (Table 3).

Table 3: Price of NTFP/Medicinal and Aromatic Plants for cultivation and research

S.N.	Scientific name of the species	Local name of the species	Price and Current policy arrangement according to Forest Regulation, 2051
1	*Asparagus racemosus*	Kurilo	Rs 5/kg
2	*Cinnamomum glaucescens*	Sugandha kokila	Rs 7/kg (Banned without processing)
3	*Dactylorhiza hatagirea*	Panchaunle	Rs 1000/kg (Banned without permission for collection, trade)
4	*Nardostachys grandiflora*	Jatamansi	Rs 20/kg (No trade without processing)
5	*Neopicrorhiza scrophulariflora*	Kutki	Rs 15/kg (Protected species, banned for collection)
6	*Piper longum*	Pipla	Rs 10/kg
7	*Rauvolfia serpentine*	Sarpagandha	Rs 20/kg (dry root)
8	*Swertia chirayita*	Chiraito	Rs 15/kg
9	*Taxus wallichina*	Lauth Salla	Rs 25/kg
10	*Tinospora sinensis*	Gurjo	Rs 2/kg (Collected from wild)
11	*Valeriana jatamansi*	Sugandhawal	Rs 15/kg
12	*Zanthoxylum armatum*	Timur	Rs 8/kg

Source: (DoF, 2015)

The GoN has amended the Forest Act 1993 in 2009 and categorized the Non-Timber Forest Products (NTFPs) into eight different categories. The GoN has identified 237 NTFPs under eight categories especially for collecting royalty (Figure 4). The highest number of NTFPs falls under the fruit and seeds category at 27% followed by the other category. The least number of NTFPs are represented by gums, resins, and lac at 3%.
Several wild plant species in Nepal have suffered because of overharvesting and habitat destruction. The GoN has also imposed restrictions on the export of 12 NTFPs species under Section 77 of the Forest Act 2019 specifies two provisions (i) Species banned for collection, use, sale, distribution, transportation, and export (ii) Species banned for export outside the country without processing. According to the Nepal Gazette of December 31, 2001, three species (Panchaule, Okhar bokra, and Kutki) have been banned for collection, use, sale and distribution, movement, and export. Similarly, the nine species (Jatamasi, Sarpagandha, Sugandha kokila, Sugandhavala, Jhyau, Talispatra, Lauth Salla, Silajeet, and Yarshagumba) can be processed in the country for export.

Additionally, Nepal is a member of The World Conservation Union (IUCN) and Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) since 1974 and 1975 respectively. The following species have been given various IUCN and CITES status.

Table 4: MAPs species protected in Nepal

S. N.	Scientific Name	Common Name	Local Name	IUCN Red List Status	CITES Appendix Status
A.	Species banned for collection, use, sale, distribution, transportation, and export	Dactylorhiza hatagirea	Salep	Panchaunle	II
	Juglans regia	Walnut	Okhar		
	Neopicrorhiza scrophulariflora	Picrorhiza	Kutki	VU	II
B.	Species banned for export outside the country without processing				
Appendix II includes species not necessarily threatened with extinction, but in which trade must be controlled to avoid utilization incompatible with their survival.

Nepal Herbs and Herbal Products Association (NEHHPA) has prepared the identification manual of 69 commercial MAPs along with pictures. The table below provides detailed information on the distribution, harvesting period, traded parts, and traditional usage of 69 commercial medicinal and aromatic plants (Table 5). Among documented commercial species, the mid-hills have more identified commercial species, whereas the mountain region has the fewest. Ranunculaceae, Combretaceae, Rutaceae, Umbelliferae, Compositae, Berberidaceae, Ericaceae, Orchidaceae, Lauraceae, Liliaceae, Leguminosae and Valerianaceae are the common families of MAPs species found in different regions of Nepal. Fruits, leaves, roots, rhizome as well as the whole plant are used commonly for different purposes such as essential oil, coloring, flavoring, and treatment of diseases mostly like anemia, asthma, diabetes, common cold, and stomach related disease.

Table 5: List of some commercial MAPs of Nepal

S.N.	Local name of species	Botanical name of species	Family	Distribution (m)	Harvesting time	Parts used	Traditional Uses
1	Amala	Phyllanthus emblica	Phyllanthaceae	150-1600	Sept-Nov	Fruit	Food Preservative, Digestion, Anemia
2	Ashuro	Justicia adhatoda	Acanthaceae	600-1600	Jul-Oct	Leaves, Flower	Expectorant, Asthma, Bronchitis
3	Aswagandha	Withania somnifera	Solanaceae	Tropical	Sept-Oct	Root	Treatment of Impotency, gout, fever
4	Atis	Delphinium hirtumayi	Ranunculaceae	2000-4000	Oct-Dec	Tuber	Cough and colds
5	Bajradanti	Potentilla fulgens	Rosaceae	1800-3500	Oct-Dec	Root	Toothpaste, stomach pain
6	Barro	Terminalia bellirica	Combretaceae	3000-1100	Dec-Mar	Fruit, Seed	Digestion, Gum bleeding, Bronchitis
7	Bel	Aegle marmelos	Rutaceae	Up to 1100	Aug-Sept	Fruit	Juice, Stomach troubles, diabetes
8	Bojho	Acorus calamus	Araceae	500-2300	Sept-Feb	Rhizome	Food preservative, cough, and cold, toothache

Source: (DoF, 2018); VU=vulnerable, ED= endangered.
No.	Name	Scientific Name	Family	Parts Used	Season	Uses	
9	Bhojpatra Bokra	Betula utilis	Betulaceae	Bark	Aug-Nov	Incense, Common cold, Jaundice, Diuretic, Anthelmintic	
10	Bhutkesh	Selinum walluchianum	Umbelliferae	Root	Oct-Nov	Stomach ache, gastric, fever	
11	Bish, Nilo Bish	Aconitum ferox	Ranunculaceae	Rhizome	Oct-Nov	Anti-poisonous	
12	Bishfej	Polypodium vulgare	Polypodiaceae	Modified rhizome	Sept-Oct	Backaches, Stomach troubles	
13	Chamomile Flower	Matricaria chamomilla	Compositae	Flower	March onwards	Essential oil, soaps, cosmetics, tea	
14	Chiraito, Tite	Swertia chirayita	Gentianaceae	Whole plant	Nov-Dec	Anthelmintic, expectorant, antiperiodic, hypoglycemic, laxative	
15	Chiuri	Diplodonema butyracea	Sapotaceae	Fruit, Seed, and Ghee	Jul-Aug	Soap oil, candles, and ghee	
16	Chutto	Berberis asiatica	Berberidaceae	Bark, root	Oct-Dec	Yellow dye, Inflammation of the eye	
17	Dalechuk	Hippophae salicifolia	Elaeagnaceae	Fruit	Sept-Nov	Skin wrinkling, swelling, antibiotics	
18	Dhasingre, Patpate	Gaultheria fragrantissima	Ericaceae	Leaves	October	Food flavoring, relieving pain	
19	Dhayero	Woodfordia fruticosa	Lythraceae	Dried flower	Apr-May	Red dye, Digestion, Nose bleeding	
20	Dhapi	Juniperus indica	Cupressaceae	Leaf, Fruit, and upper part of the petiole	Jul-Aug	Appetite cure, Stomach ache, Piles, Ashma	
21	Gandol, Kaladana	Brachycorythis obcordata	Orchidaceae	Pseudo bulb, Rhizome	Sept-Nov	Expectorant, astringent, energy tonic	
22	Ghodtapre	Centella asiatica	Umbelliferae	Whole plant	Throughout year	Epilepsy, Neural disease, purification of blood, and fever	
23	Githha, Vyakur	Dioscorea bulbifera	Dioscoreaceae	Tuber	Dec-Feb	Source of Diosgenin	
24	Guchi Chyau	Morchella conica	Morchellaceae	Whole part above the ground	May-Jul	Vegetable and tonic	
25	Gurjo, Guduchi	Tinospora sinensis	Menispermacaeae	Stem or petiole	Feb-Apr	Asthma, Cough, Fever, Diabetes, Acidity, skin and urine related disease, leprosy	
26	Harro	Terminalia chebula	Combretaceae	Fruit and seed	Dec-Mar	Leather, garment, dye, and Ayurvedic medicine industries	
27	Jangali sayapatri	Tagetes minuta	Asteraceae	Whole plant	Oct-Nov	Flavoring beverage, medicinal tea, and condiment	
28	Jatamansi	Nardostachys grandiflora	Valerianaceae	Rhizome	Oct-Nov	Stimulant heart and respiratory system, gastric, anemia, urine related disease	
29	Jethimandu	Glycyrrhiza glabra	Leguminosae	Root	Oct-Nov	Common cold, sore throat, vomiting, acidity, gout, joint pain	
30	Jhayau	Parmelia nepalensis	Parmeliaceae	Whole plant	Throughout year	Food poisoning, disturbance in menstrual cycle	
Page	Name	Scientific Name	Family	Altitude Range (m)	Season	Part Used	Uses
------	------	----------------	--------	-------------------	--------	----------	------
31	Jimbu	Allium hypsistum	Amaryllidaceae	2500-4000	Oct-Nov	Whole plant	Spice, altitude sickness
32	Kachur	Curcuma zedoaria	Zingiberaceae	Up to 1000	Nov-Dec	Rhizome	Essential oil, common cold, and stomach related disease
33	Kakarsingi	Pistacia chinensis	Anacardiaceae	300-1500	Nov-Dec	Bark of dry fruit	Dysentery, Asthma, against bites of snake and scorpion and killing worms
34	Kakoil, Ban Lasun	Fritillaria cirrhosa	Liliaceae	3000-4500	Sept-Oct	Bulb	Asthma, Bronchitis, and Tuberculosis
35	Kalo Musli	Curculigo orchioides	Hypoxidaceae	600-1800	Sept-Oct	Root and Rhizome	Vomiting, Piles, Jaundice, Asthma, Dysentery, Gonorrhea
36	Kaulo	Persea odoratissima	Lauraceae	1000-2100	Sept-Nov	Bark of the main stem	Manufacturing Incense
37	Kutki	Neopicrohriza	Scrophulariaceae	3600-4800	Nov-Dec	Rhizome and Root	Gastric, Worms, Bile related ailments, Expectorant, Fever and tonic to the heart
38	Laghupatra	Podophyllum hexandrum	Berberidaceae	2400-4500	Oct-Nov	Rhizome and Root	Liver wounds, cancer
39	Lalgedi, Ratogedi	Abrus precatorius	Leguminosae	Upto 1000	Sept-Oct	Seed	Energetic, sex stimulant, purifying blood, cough, curing eye disease
40	Lotu	Taxus wallichiana	Taxaceae	2300-3400	Feb-Apr	Leaves	Breast and ovary cancer
41	Majitho	Rubia manjith	Rubiaceae	1200-2700	Oct-Nov	Root and Stem	Heart attack, Ulcer, skin related disease, an antidote to cobra and scorpion bite
42	Nagbeli	Lycopodium clavatum	Lycopodiaceae	1200-3500	Oct-Nov	Dust of Lycopodium (Spores)	Diuretic, Asthma, gout, lungs, and kidney-related disease
43	Neem	Azadirachta indica	Meliaceae	100-900	monsoon	Whole plant	Ideal fertilizer for organic culture
44	Nimans, Nirbishi, Nilobish	Delphinium demudatum	Ranunculaceae	2700-4200	Oct-Nov	Root	Heat production, gastric, acidity, fever, ulcer, and cough
45	Okhar	Juglans regia	Juglandaceae	1200-3000	Nov-Dec	Fruit and Bark of stem	Dye, Detergent, Medicine
46	Padamchel	Rheum austral	Polygonaceae	3200-4200	Nov-May	Rhizome, Petiole of leaf, Leaves	Diarrhea, Gout, and Epilepsy
47	Pakhunved, Pasanved, Dhunephul	Bergenia ciliata	Saxifragaceae	1600-3200	Oct-Nov	Underground stem	Cancer, Dysentery, fever, and kidney disease
48	Panchaulie, Hatajadi	Dactylorhiza hatagirea	Orchidaceae	2800-4000		Rhizome	Expectorant, astringent, demulcent
49	Pipla	Piper longum	Piperaceae	200-1300	Nov-Jan	Fruit	Condiments, hair tonic, malarial fever, anti-poisonous for snake and wild lizard bites
50	Ritha	Sapindus mukorossi	Sapindaceae	600-1400	Nov onwards	Fruit and seed	Natural soap, medicine for cough, anemia, and epilepsy
51	Radhakshya	Elaeocarpus sphericus	Elaeocarpaceae	600-1500	Dec-Feb	Seed	Digestion, whooping cough, controlling pressure, heart, and mental related disease
52	Saldhup	Shorea robusta	Dipterocarpaceae	150-1200	Oct-Nov	Resin	Diarrhea, urine burns, burn or toothache
No.	Name	Scientific Name	Family	Price Range	Harvest Season	Part Used	Uses
-----	----------------	--------------------------------------	---------------	-------------	----------------	-------------------------------	--
53	Salla Simta	Tsuga dumosa	Pinaceae	2300-3300	Nov-Dec	Cone	Raw material for handicrafts
54	Sarpagandha, Chandmaruwa	Rauvolfia serpentine	Apocynaceae	100-800	Nov-Mar	Root	Veins related disease, sleeplessness, and controlling pressure
55	Satavari, Kurilo	Asparagus racemosus	Liliaceae	300-2200	Oct-Dec	Root	Energetic and sex stimulant
56	Satuwa	Paris polyphylla	Liliaceae	1900-3100	Oct-Nov	Rhizome	Kill worms and as tincture iodine in cuts or wounds, alternative for diosgenin
57	Seto Musli	Chlorophyllum borivilianum	Asparagaceae	300-1400	Jan-Mar	Rhizome	Diarrhea, Dysentery, Jaundice and Asthma
58	Sikkai	Acacia rugata	Fabaceae	400-800	Mar-May	Pods and Seeds	Stimulant and tonic, insecticides
59	Siltimur	Lindera neesiana	Lauraceae	1500-2700	Jul-Sept	Fruit	Spice, medicine for gastric and stomach ache
60	Simal ko ful	Bombax ceiba	Bombacaceae	Up to 1200	May-Jul	Cotton like fibrous stuff	Pillows, cushions, quilts, medicine for Dysentery and stomach related disease
61	Somlata	Ephedra gerardiana	Ephedraceae	2400-4200	Nov-Dec	Branches	Sinusitis, Asthma, Epilepsy, Diuretic, and Allergy, decrease blood pressure
62	Sugandh kokila	Cinnamomum glaucescens	Lauraceae	1000-2500	Oct-Nov	Fruit	Essential oil, stick incense, medicine for cold, worms in stomach, and toothache
63	Sugandhwal, Samayo	Valeriana jatamansi	Valerianaceae	1500-3600	Nov-Dec	Rhizome	Relief from pain, heal the wound, stimulant, sleepiness, anemia, gastric, digestive and killing germs
64	Sunpati	Rhododendron anthopogon	Ericaceae	3300-5100	Oct-Nov	Leaves and young petiole	Respiratory disease like common cold, Asthma, bronchitis
65	Tejpat, Dalchini	Cinnamomum tamala	Lauraceae	450-2000	Oct-Dec	Leaves and Bark	Spice, flavoring, and medicine for digestion, stomachache, dysentery
66	Timur	Zanthoxylum armatatum	Rutaceae	1000-2500	Oct-Dec	Fruit	Headache, toothache, as spice and pesticide
67	Tukiful	Taraxacum officinale	Compositae	1000-4000	Aug-Nov	Root	Potherb, medicine for diuretic, stomachache, and liver-related disease
68	Tulsi	Ocimum sanctum	Lamiaceae	400-1800	Oct-Nov	Leaves	Common cold, cough, Toothache and Ear pain, purify blood, digestion, decrease blood sugar level
69	Yarsagumba	Ophiocordyceps sinensis	Hypocreaceae	4200-5000	Whole plant		Energetic, sex stimulant, strengthen memory power, medicine for kidney, heart, and blood-related disease

Source: Modified from (Gurung and Pyakurel, 2017)
Role of MAPs in Nepalese Livelihood

Traditional medicine in Nepal

A variety of medicinal plants are used to maintain physical, mental, and spiritual health, and to treat specific ailments (Garg et al., 2021). It is believed that Nepali Vaidhyas used Ayurvedic knowledge as early as 879 (IUCN, 2004). Ayurveda is a Hindu holistic healing system that continues to be the key source of medical knowledge and expertise in many South Asian nations, including Nepal (IUCN, 2000). Nepalese have been using herbalism in the Himalayas for centuries, with positive results and a persuasive story (World Bank, 2018). Ayurveda, Traditional Chinese Medicine, Unani, and Tibetan Amchi are some of the traditional systems of medicine that Nepalese practice over a long period (Shengji, 2001). WHO estimated that 80% of the global population relies on herbal medicines for their basic health security (WHO, 2002). Traditional plant-based medicines are used by 70% of India's population (Gadgil, 1998), 80% of Pakistan's population (Ahmad and Ghafoor, 2000), and 80% of Nepal's population (Kunwar et al., 2006). It is estimated that almost 17% of the population lives in cities and has access to modern medicine, while the rest of the population still relies on traditional medicine for their basic healthcare requirements in Nepal (Ambu et al., 2020; Adhikari et al., 2019). In the hilly regions of Nepal, about 215 types of plants are used to cure 139 different types of diseases (Miya et al., 2020).

Globally, approximately 50,000 to 70,000 plant species are used as a traditional and modern medicines (Pyakurel and Baniya, 2011). In the absence of any proven medicines/vaccines for COVID-19 cure, possible antiviral and immune booster herbal medicines, extracts, and formulations may be useful in lowering the global mortality rate associated with COVID-19 (Ak et al., 2020). In the current situation, local people are using medicinal herbs as a treatment option for COVID-19 to boost immunity against viral attacks, as there is no specific treatment for COVID-19. The medicinal herbs such as *Tinospora cordifolia* (Gurjo), *Glycyrrhiza glabra* (Jestimadhu), *Swertia chirayita* (Chiraito), *Ocinum sanctum* (Tulsi), *Zingiber officinale* (Aduwa), *Curcuma longa* (Haledo/Besar), *Allium sativum* (Lasun), *Withania somnifera* (Ashwagandha), *Moringa oleifera* (Sheetal Chini), *Zanthoxylum armatum* (Timur), *Cinnamomum zeylanicum* (Dalchini) and *Phyllanthus emblica* (Amala) are used in Nepal for boosting immunity and treatment purposes (Gyawali et al., 2020).

Socio-economic Benefits

MAPs are a key source of government revenue, contributing substantially to rural livelihoods. MAPs and essential oils rank among Nepal's top export commodities. They are important in terms of employment generation and revenue generation, especially in the poorest regions of Nepal (Kalauni and Joshi, 2018).
Cultivating medicinal plants not only offers a means of livelihood to farmers with limited external inputs but also strengthens the economy (Rajak and Singh, 2017). Growing recognition of natural herbal products, which are non-narcotic, have no side effects, and are easily and affordably accessible to the poor has prompted an increase in demand for medicinal plants in both developed and developing countries (Manoharachary and Nagaraju, 2017). The export and trade of medicinal plants and NTFPs affect the local, national and international economy. People in the hilly region of western Nepal mostly collect MAPs for their livelihood upliftment compared to other regions. Thus, MAPs and essential oils, if developed well, can contribute immensely to the raising of the living standard and socioeconomic status of this region (Sharma and Shrestha, 2011).

The Agro Enterprise Centre (AEC- FNCCI) and the Nepal Herbs and Herbal Products Association (NEHHPA) collaborated to launch the NTFPs/MAPs Business Promotion Strategy. The Strategy's long-term vision is to promote NTFPs/MAPs as a national priority sector for Nepal's economic development, which will be supported by lobbying for a favorable policy environment, encouraging private sector investment in identified areas, and diversifying both national and international markets with the highest level of value addition and processing within the country.

The Strategy specifies 20 species for product promotion across Nepal and envisions collaborative efforts of the business sector, government agencies, and development partners, as well as the active participation of local communities/farmers/collectors in the process (Table 6).

Table 6: Products for promotion Identified by the Strategy

S.N.	Bio-geographic regions	Political boundaries-Zones/Districts	Species selected/recommended
1.	Far and mid-western hilly and high regions	Seti: Achham, Bajhang, Bajura, Doti Bheri: Dailekh, Jajarkot, Surkhet Mahakali: Baitadi, Dadeldhura, Darchula	Yarshagumba, Rittha, Lichens
2.	Western mid-hills (Rapti and Lumbini)	Rapti: Pyuthan, Rolpa, Rukum, Salyan Lumbini: Arghakhanchi, Gulmi, Palpa	Chiuri, Rittha, Lichens, Sugandhawal, Sugandha kokila, Timur
3.	Kamali region	Dolpa, Humla, Jumla, Kalikot, Mugu	Jatamansi, Kutki, Yarshagumba
4.	Western Terai and lowlands	Dang, Banke, Bardiya, Kailali, and Kanchanpur	Bael, Chamomile, Mentha, Sarpagandha
5.	Trans Himalayan region	Manang, Mustang	Dhupi, Jatamansi, Seabuckthorn
6. Western mid hilly regions (Kali-Gandaki corridor) & Kali-Gandaki corridor: Baglung, Myagdi, Parbat, Kaski, Lamjung, Syangja, Tanahu & Allo, Satuwa, Lokta, Lichens, Dalchini

7. Mid-Terai and lowlands & Chitwan, Parsa, Kapilbastu, Nawalparasi, Rupandehi & Chamonile, Kurilo, Mentha, Lemongrass

8. Western highlands & Gorkha, Dhading, Sindupalchowk, Rasuwa and Dolakha & Dhupi, Lokta, Jatamansi

9. Central mid-hills & Hilly districts of Narayani, Janakpur, and Bagnati zone: Bhaktapur, Kathmandu, Dhading, Lalitpur, Kavrepalanchowk, Rasuwa, Nuwakot, Sindhuli, Makanwanpur, Ramechhap & Lichens, Satuwa, Dhasingre

10. Eastern mid-hills & Dhankuta, Bhojpur, Panchthar, Terhathum, Ilam, Okhaldunga, Khotang, Udayapur & Lichens, Chiraito

11. Eastern Himalayas & Sankhuwasabha, Solukhumbu and Taplejung & Chiraito, Dhupi, Kutki

12. Eastern Terai & Morang, Jhapa, Sunsari, Dolakha, Dhanusa, Sarlahi, Saptari, Mahottari, Bara, Siraha and Rautahat & Mentha, Pipla, Lemongrass

Source: (AEC/NEHHPA, 2012)

The socio-economic benefits pertain mainly to (i) employment generation and (ii) revenue generation

Employment Generation

Karnali Zone has been designated as a "Pocket of Excellence" by the GoN for the development of non-timber forest products (NTFPs), especially high-valued medicinal plants (Poudel, 2015). It is particularly crucial in the Himalayan region, where many rural dwellers depend on MAPs for subsistence (Pyakurel and Baniya, 2011). The FNCCI-AEC/NEHHPA (2012) study found that 10-100% of households in high-altitude areas of Nepal are interested in commercial MAP collections. According to NEHHPA, around 50% of local communities are involved in the collection and trade of MAPs or NTFPs. As many as 300,000 families are interested in MAPs collection in 58 districts of Nepal. Another 100,000 families are ready to join the community if suitable conditions are established (SAWTEE, 2015). Women account for more than 50% of those involved in the collection, cleaning, and grading of MAPs (MoCS, 2010). According to a study conducted by the Environmental Resources Institute (ERI), Nepal's forestry sector employs full-time jobs to 1,658,099 people per annum (SAWTEE, 2015). According to Kunwar et al. (2013), janjati and dalit groups received the highest percentage of income from NTFPs in the far-western region. Several studies have shown that MAPs also have a major impact on the local economy (Edward, 1996; Subedi, 1997; Bhattarai, 1997).
Revenue Generation

The following graph demonstrates the export trend of MAPs from 2012-2017. MAPs export value over two decades (1992-2012) increased continuously (MSFP, 2014) and our study shows the increase of export value over 3 fiscal years (2012-2015) but recent two fiscal years (2015/16 and 2016/17) indicates that export value of MAPs is in decreasing trend (Fig 5).

![Graph showing export trend of MAPs from 2012-2017](image)

Fig. 5: Export trend of MAPs from 2012-2017

Source: (TEPC, 2017)

According to a WHO study, herbal market demand nearly doubled in Asia during the late 1990s, and the total foreign trade in medicinal plants and their products was US$ 60 billion in 2010 and is projected to cross US$ 5 trillion by 2050 (WHO, 2002). The use of herbal medicine is increasing exponentially worldwide, especially in Asia in the last three decades (Kumar et al., 2014; Huang et al., 2020). Nepal, along with India and China, has been recognized as a major reservoir for the supply of MAPs in Asia (Pyakurel and Oli, 2013). The increase in export value over the last ten years (2005 to 2014) in Nepal suggests increased global demand for MAPs (Ghimire et al., 2016).

Around 90% of MAPs are exported to India in raw form. In 2017, Nepal ranked 42nd among MAPs exporters with a value of $7.4 million. The most exported crude herbs from Nepal are Majitho, Padamchal, Pakhanved, Rittha, Rudrakshya, Kurilo, Satuwa, Tejpat, Yarshagumba, Timur, Chiraito, Jatamansi, Kaulo, and Kutki. Nepal exports 76% of its MAPs production to India and 2.5-3.5% to Vietnam, France, and China (TEPC, 2018). Only about 10% of the total quantity of MAPs obtained is used to manufacture medicinal products or essential oils in factories and small manufacturing units of Nepal (Tiwari et al., 2004). In 2017, Nepal ranked
62nd for essential oil exports with $3.3 million. The most exported essential oils from Nepal are Juniper oil, lemongrass oil, Mint oil, Wintergreen (Dhasingre) oil, Palmarosa oil, Timur oil, Abies oil, Anthopogon (laliguras) oil, Chamomile oil, Citronella oil, French basil oil, and Jatamansi oil. Nepali essential oil is primarily exported to the United States (34%), followed by Europe (37%), and then Asia (24%) (TEPC, 2018).

Limitations of the study
This review briefly describes the role of MAPs in Nepalese livelihood. Due to the lack of recent studies and databases about MAPs, relevant past data are used in this article.

Conclusion
Although Nepal does not have a significant part of global MAPs markets till now, MAPs have been recognized as one of the Himalayan region's prospective high-value resources with huge economic growth potential. Despite having immense potential to introduce a variety of herbal products, the country still lags far behind in the proper utilization of the available resources. The trade policies tailored to the specific regions of Nepal need to be formulated to produce a conducive environment for MAPs marketing. The promotion and domestication of MAPs, proper harvesting techniques, and employment generation through cultivation are crucial in ensuring food safety, alleviating poverty, and upliftment of livelihood. Research and development of medicinal plants should be carried emphasizing improved equipment, modern technology, standardization, and quality assurance of herbal products to generate high revenue. A clear understanding of the access to herbal plants, conservation of natural resources, sustainable exploitation, protection of indigenous knowledge, and information sharing needs to be at the policy level. We recommend public, private, and government-linked sectors contribute to infrastructure development through competitive "field-to-market" incentives and funding.

Conflicts of interest: The authors declare no conflict of interest.

Author contribution statements
All the authors were involved in concept development, defining intellectual content, and literature research. V.T. Chhetri, S. Shrestha, and S. Thapa reviewed the literature and prepared a draft manuscript. S. Timilsina edited and reviewed the manuscript for finalization. The published version of the manuscript has been read and approved by all authors. V.T. Chhetri, as a corresponding author, is the guarantor for this article.
Acknowledgement: We would like to acknowledge Asst. Prof. Mr. Deepak Gautam for reviewing and giving his valuable inputs for the improvement of the article. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

Acharya, K.R., 2014. Value chain development. International Journal of Operations and Production Management, 16(10), 23–36. https://doi.org/10.1108/01443579610130673

Adhikari, B., Marasini, B.P., Rayamajhee, B., Bhattarai, B.R., Lamichhane, G., Khadayat, K., Adhikari, A., Khanal, S. and Parajuli, N., 2021. Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID-19: A review. Phytotherapy Research, 35(3), 1298–1312. https://doi.org/10.1002/ptr.6893

Ahmad, Z. and Ghafoor, A., 2002. Resource Base and Conservation Strategies of MAPs in Pakistan. In: Sharing Local and National Experience in Conservation of Medicinal and Aromatic Plants in South Asia Edited by: Bhattarai N., Karki M., HMGN, IDRC and MAPPA, 105-109.

Ak, S., Jp, C., Khan, R., Dhand, C. and Verma S., 2020. Role of Medicinal Plants of Traditional Use in Recuperating Devastating Role of Medicinal Plants of Traditional Use in Recuperating Devastating COVID-19 Situation. Medicinal and Aromatic Plants, 9(5), 1–16. https://doi.org/10.35248/2167-0412.20.9.359.Copyright

Ambu, G., Chaudhary, R.P., Mariotti, M. and Cornara, L., 2020. Traditional Uses of Medicinal Plants by Ethnic People in the Kavrepalanchok District, Central Nepal. Plants, 9(6), 759. http://dx.doi.org/10.3390/plants9060759

Atanasov, A.G., Waltenberger, B., Pferschy-Wenzig, E.M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schweiger, S., Heiss, E.H., Rollinger, J.M., Schuster, D., Breuss, J. M., Bochkov, V., Mihovilovic, M.D., Kopp, B., Bauer, R., Dirsch, V.M. and Stuppner, H., 2015. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 33(8), 1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001

Barnes, S. and Prasain, J., 2005. Current progress in the use of traditional medicines and nutraceuticals. Current opinion in plant biology, 8(3), 324–328. https://doi.org/10.1016/j.pbi.2005.03.010

Beutler, J.A., 2009. Natural products as a foundation for drug discovery. Current Protocols in Pharmacology, SUPPL. 46, 1–21. https://doi.org/10.1002/0471141755.pb0911s46
Bhattarai, K.R. and Ghimire, M., 2006. Commercially important medicinal and aromatic plants of Nepal and their distribution pattern and conservation measure along the elevation gradient of the Himalayas. Banko Janakari, 16(1), 3–13. https://doi.org/10.3126/banko.v16i1.357

Bhattarai, N.K., Tandon, V. and Ved, D.K., 2002. Highlights and outcomes of the Conservation Assessment and Management Planning (CAMP) Workshop, Pokhara, Nepal. In: Sharing local and national experiences in Conservation of Medicinal and aromatic plants in South Asia (Edited by Bhattarai, N.K. and Karki, M.). IDRC South Asia Regional Office, New Delhi, India, 46-53.

Bhattarai, N., 1997. Biodiversity-People Interface in Nepal, Medicinal Plants for Forest Conservation and Health Care. Rome: FAO and UN.

CECI, 2006. Synthesis of seminar presentation and discussions. First national trade show and seminar on Herbs, Herbal Products and Spices, 12-14 November 2005. Published by CECI in March 2006.

DoF, 2018. Hamro Ban. Annual Report of Department of Forest, Government of Nepal, Ministry of Forests and Soil Conservation (MoFSC), Kathmandu. Available online: https://www.dofsc.gov.np/public/uploads/files/1593881065Hamro%20ban%20Report-20751.pdf.

DPR, 2007. Medicinal plants of Nepal (revised), Adhikari, M.K., Shakya. D.M., Kayastha, M., Baral, S.R. and Subedi, M.N. (eds). Department of Plant Resources, Thapathali, Kathmandu, Nepal.

DPR, 2016. Medicinal Plants of Nepal (Revised),Department of Plant Resources (DPR),Thapathali, Kathmandu, Nepal.

DPR, 2009. Prioritized NTFPs for Economic Development of Nepal. Ministry of Forests and Soil Conservation, Department of Plant Resources, Thapathali, Kathmandu.

Edward, D., 1996. Non-Timber Forest Products from Nepal: Aspect of the trade in medicinal and aromatic plants. FORESC monograph, Ministry of Forests and Soil Conservation, 1-96.

EPI, 2017. Political Economy Analysis of MAPs Sector in Nepal. Mimeo, Kathmandu: Economic Policy Incubator - Nepal.

FNCCI-AEC/NEHHPA, 2012. NTFPs/MAPs Business Promotion Strategy (2012-2016) - From Private Sector Perspective. Kathmandu: FNCCI.

Gadgil, M. and Seshagiri Rao, P.R., 1998. Nurturing Biodiversity: An Indian Agenda. Center for Environment Education, Ahmadabad, India.

Garg, A.K., Faheem, M. and Singh, S., 2021. Role of Medicinal Plant in Human Health Disease. Asian Journal of Plant Science and Research, 11(1), 19–21.
Ghimire, S.K., Awasthi, B., Rana, S., Rana, H.K., Bhattarai, R. and Pyakurel, D., 2016. Export of medicinal and aromatic plant materials from Nepal. Botanica Orientalis: Journal of Plant Science, 10, 24–32. https://doi.org/10.3126/botor.v10i0.21020

GIZ, 2017. MAPs and Essential Oils from Nepal: Market Analysis And Market Entry Strategies in Five Selected Markets. Bonn: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH.

GoN, 2004. Herbs and NTFPs Development Policy. Government of Nepal, Ministry of Forest and Soil Conservation, Kathmandu, Nepal. Available online: https://www.mofe.gov.np/downloadfile/11_NTFPPolicy_1526466471.pdf [Accessed on 29 December 2020].

Gurung, K. and Pyakurel, D., 2017. Identification Manual of Commercial Medicinal and Aromatic Plants of Nepal. Nepal Herbs and Herbal Products Association (NEHHPA). Teku, Kathmandu, Nepal. http://www.nepalherbs.org.np/assets/downloads/171115021205NTFPBook_english.pdf

Gyawali, R., Paudel, P.N., Basyal, D., Setzer, W.N., Lamichhane, S., Paudel, M.K., Gyawali, S. and Khanal, P., 2020. A Review on Ayurvedic Medicinal Herbs as Remedial Perspective for COVID-19. Journal of Karnali Academy of Health Sciences, 3(Special Issue). https://doi.org/10.3126/jkahs.v3i0.29116

Huang, J., Tao, G., Liu, J., Cai, J., Huang, Z. and Chen, J.X., 2020. Current Prevention of COVID-19: Natural Products and Herbal Medicine. Frontiers in Pharmacology, 11, 1–18. https://doi.org/10.3389/fphar.2020.588508

IUCN, 2000. National Register of Medicinal and Aromatic Plants. IUCN-The World Conservation Union, Kathmandu, Nepal.

IUCN, 2004. National Register of Medicinal and Aromatic Plants (Revised and updated). In IUCN-The World Conservation Union, Kathmandu, Nepal (Vol. 13, p. 202).

Kalauni, D. and Joshi, A., 2018. Status of Medicinal and Aromatic Plant (MAPs) and Socio-Economic Influence in Nepalese Livelihood-A Review Research. Acta Scientific Agriculture, 2(9), 123–130.

KC, R., 2014. Prominent Non-Wood Forest Products of Terai and Siwalik Regions in Nepal Prominent Non-Wood Forest Products of Terai and Siwalik Regions in Nepal (Issue November). Sustainable Management and Development of NWFPs in Terai and Siwalik Regions of Nepal.

Kumar, V., Banu, RF., Begum, S., Kumar, M.S. and Mangilal T., 2015. Evaluation of antimicrobial activity of ethanolic extract of Dactylocteniumaegyptium. International Journal of Pharmacological Research, 5(12), 338-344.
Kunwar, R.M., Mahat, L., Acharya, R.P. and Bussmann, R.W., 2013. Medicinal plants, traditional medicine, markets and management in far-west Nepal. Journal of Ethnobiology and Ethnomedicine, 9(1), 1–10. https://doi.org/10.1186/1746-4269-9-24

Kunwar, R.M., Nepal, B.K., Kshhetri, H.B., Rai, S.K. and Bussmann, R.W., 2006. Ethnomedicine in Himalaya: A case study from Dolpa, Humla, Jumla and Mustang districts of Nepal. Journal of Ethnobiology and Ethnomedicine, 2(27), 1–6. https://doi.org/10.1186/1746-4269-2-27

Lamichhane, R., Gautam, D., Miya, M.S, Chhetri, H.B. and Timilsina, S., 2021. Role of Non-Timber Forest Products in National Economy: A Case of Jajarkot District, Nepal. Grassroots Journal of Natural Resources, 4(1), 94-105. https://doi.org/10.33002/nr2581.6853.040107

Lawrence, A., 2003. No forest without timber? International Forestry Review, 5(2), 87–96. https://doi.org/10.1505/IFOR.5.2.87.17411

Malla, S.B. and Shakya, P.R., 1995. Medicinal Plants. In: Mapuria, T.C and Kumar, R. (eds.), Nepal Nature's Paradise, New Edition 1999. Gwalior, India: M. Devi Publisher, 261-297.

Manoharachary, C. and Nagaraju, D., 2017. Medicinal plants for human health and welfare. Annals of Phytomedicine, 5(1), 24–34. www.ukaazpublications.com

Marriott, B.M., 2000. Functional foods: An ecologic perspective. American Journal of Clinical Nutrition, 71(6), 1728S–1734S. https://doi.org/10.1093/ajcn/71.6.1728s

Miya, M.S., Timilsina, S. and Chhetri, A., 2020. Ethnomedicinal uses of plants by major ethnic groups of Hilly Districts in Nepal: A review. Journal of Medicinal Botany, 4, 24-37. doi: 10.25081/jmb.2020.v4.6389

MoCS, 2010. Nepal Trade Integration Strategy. Kathmandu: Government of Nepal.

MoFE, 2018. Nepal’s Sixth National Report to the Convention on Biological Diversity. Ministry of Forest and Environment, Nepal. Available online: https://www.mofe.gov.np/downloadfile/6th%20NR_Bio_Diver_1576649610.pdf.

MoFSC, 2012. Non-Timber Forest Product Resource Inventory Guideline. Ministry of Forests and Soil Conservation (MoFSC), Department of Forest, Kathmandu. Available online: https://dofsc.gov.np//public/uploads/files/1593847620NTFP%20Guidline_Last%20Final_SGOP_Le aout_new.pdf.

MoFSC, 2014. Nepal Biodiversity Strategy and Action Plan 2014- 2020. Government of Nepal, Ministry of Forest and Soil Conservation.
MSFP, 2014. Private Sector Involvement and Investment in Nepal’s Forestry: Status, Prospects and Ways Forward. March, 170. https://ansab.org.np/storage/product/private-sector-involvement-and-investment-in-nepals-forestry-20141022034611-1579165165.pdf

Newman, D.J. and Cragg, G.M., 2016. Natural Products as Sources of New Drugs from 1981 to 2014. Journal of Natural Products, 79(3), 629–661. https://doi.org/10.1021/acs.jnatprod.5b01055

NTIS, 2010. Nepal Trade Integration Strategy. Nepal Trade and Export Promotion Center, Kathmandu, Nepal.

Olsen, C.S. and Larsen, H.O., 2003. Alpine medicinal plant trade and Himalayan mountain livelihood strategies. The Geographical Journal, 169(3), 243–254. https://doi.org/10.1111/1475-4959.00088

Paudel, G. and Acharya, R., 2018. Higher estimation, lower harvesting: case of NTFPs from Dhaulagiri region, Nepal. Banko Janakari, 28(2), 45–51. https://doi.org/10.3126/banko.v28i2.24187

Pérez, M.R. and Byron, N., 1999. A methodology to analyze divergent case studies of non-timber forest products and their development potential. Forest Science, 45(1), 1–14. https://doi.org/10.1093/forestscience/45.1.1

Pieroni, A., Quave, C.L., Villanelli, M.L., Mangino, P., Sabbatini, G., Santini, L., Boccetti, T., Profili, M., Ciccioli, T., Rampa, L.G., Antonini, G., Girolamini, C., Cecchi, M. and Tomasi, M., 2004. Ethnopharmacognostic survey on the natural ingredients used in folk cosmetics, cosmeceuticals and remedies for healing skin diseases in the inland Marches, Central-Eastern Italy. Journal of Ethnopharmacology, 91(2–3), 331–344. https://doi.org/10.1016/j.jep.2004.01.015

Poudel, K.L., 2015. Trade Potentility and Ecological Analysis of NTFPs in Himalayan Kingdom of Nepal. Himalayan College of Agricultural Sciences and Technology (HICAST).

Pyakurel, D. and Oli, B.R., 2013. Market Study of Tradeable and Economically Important Medicinal and Aromatic Plants of Eastern Nepal (Using Value Chain Approach). Department of Plant Resource and BARDAN, Kathmandu, Nepal.

Rajak, A. and Singh, R., 2017. Contribution of Medicinal Plants in Economic Growth. World Journal of Pharmacy and Pharmaceutical Sciences, 6(11), 367–372. https://doi.org/10.20959/wjpps201711-10370

Rajbhandari, K. and Dhungana, S.K., 2011. Endemic flowering plants of Nepal Part III. Department of Plant Resources, Kathmandu, Nepal.

Rao, M.R., Palada, M.C. and Becker, B.N., 2004. Medicinal and aromatic plants in agro-forestry systems. Agroforestry Systems, 61, 107-122.
SAWTEE, 2015. Realising the Export Potential of MAPs and Essential Oils. i: www.giz.de/nepal / www.nepaltrade.org

Seidel, V., 2020. Plant-derived chemicals: A source of inspiration for new drugs. Plants, 9(11), 1–3. https://doi.org/10.3390/plants9111562

Shackleton, C. and Shackleton, S., 2004. The importance of non-timber forest products in rural livelihood security and as safety nets: A review of evidence from South Africa. South African Journal of Science, 100(11), 658–664.

Sharma, P. and Shrestha, N., 2011. Promoting Exports Of Medicinal And Aromatic Plants (MAPs) And Essential Oils From Nepal. South Asia Watch on Trade, Economics and Environment (SAWTEE), 1–41.

Shengji, P., 2001. Ethnobotanical approaches of traditional medicine studies: some experience from Asia. Pharmaceutical Botany, 39(sup1), 74-79. https://doi.org/10.1076/phbi.39.s1.74.0005

Shrestha, P.M. and Dhillion, S.S., 2003. Medicinal plant diversity and use in the highlands of Dolakha district, Nepal. Journal of ethnopharmacology, 86(1), 81–96. https://doi.org/10.1016/S0378-8741(03)00051-5

Shrestha, T.B. and Joshi, R.M., 1996. Rare, Endemic and Endangered plants of Nepal, 244p.

Subedi, B.P., 2006. Linking Plant-Based Enterprises and Local Communities to Biodiversity Conservation in Nepal Himalaya. Adroit Publishers, New Delhi, India. 244p.

Subedi, B., 1997. Utilization of Non-Timber Forest Products: Issue and strategies for environmental conservation and economic development. Kathmandu: Asia Network for Sustainable Agriculture and Bio resources.

TEPC, 2017. A Glimpse of Nepal’s Foreign Trade. Government of Nepal Ministry of Commerce. Trade & Export Promotion Centre, October 2017.

TEPC, 2018. Trade and Export Promotion. Australian Journal of Public Administration, 49(3), 343–348. https://doi.org/10.1111/j.1467-8500.1990.tb01977.x

Thomford, N.E., Senthebane, D.A., Rowe, A., Munro, D., Seele, P., Maroyi, A. and Dzobo, K., 2018. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. International Journal of Molecular Sciences, 19(6), 1578. https://doi.org/10.3390/ijms19061578

Tiwari, N.N., Poudel, R.C. and Uprety, Y., 2004. Study on Domestic Market of Medicinal and Aromatic Plants (MAPs) in Kathmandu Valley. Kathmandu and Winrock International. https://doi.org/10.13140/RG.2.1.5166.0243
WHO, 2002. Programme on Traditional Medicine. WHO Traditional Medicine Strategy 2002–2005. World Health Organization Geneva.

World Bank, 2018. Strategic Segmentation Analysis - Nepal Medicinal and Aromatic Plants. Pharmaceutisch Weekblad, 1–61.

Willis, K.J., 2017. State of the World’s Plants 2017. Report. Royal Botanic Gardens, Kew.https://stateoftheworldplants.org/2017/report/SOTWP_2017.pdf