Biaxial strain tuned thermoelectric properties in monolayer PtSe$_2$

San-Dong Guo and Lun Zhang

Department of Physics, School of Sciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China

Strain engineering is a very effective method to tune electronic, optical, topological and thermoelectric properties of materials. In this work, we systematically study biaxial strain dependence of electronic structures and thermoelectric properties (both electron and phonon parts) of monolayer PtSe$_2$ with generalized gradient approximation (GGA) plus spin-orbit coupling (SOC) for electron part and GGA for phonon part. Calculated results show that compressive or tensile strain can induce conduction band minimum (CBM) or valence band maximum (VBM) transition, which produces important effects on Seebeck coefficient. It is found that compressive or tensile strain can induce significantly enhanced n- or p-type Seebeck coefficient at the critical strain of CBM or VBM transition, which can be explained by strain-induced band convergence. Another essential strain effect is that tensile strain can produce significantly reduced lattice thermal conductivity, and the room temperature lattice thermal conductivity at the strain of -4.02% can decrease by about 60% compared to unstrained one, which is very favorable for high ZT. To estimate efficiency of thermoelectric conversion, the figure of merit ZT can be obtained by empirical scattering time τ. Calculated ZT values show that strain indeed is a very effective strategy to achieve enhanced thermoelectric properties, especially for p-type doping. Tuning thermoelectric properties with strain also can be applied to other semiconducting transition-metal dichalcogenide monolayers MX$_2$ (M=Zr, Hf, Mo, W and Pt; X=S, Se and Te).

I. INTRODUCTION

Thermoelectric materials have enormous potential to solve energy issues, since they can realize direct hot-electricity conversion without moving parts by using the Seebeck effect and Peltier effect. As is well known, the dimensionless figure of merit $ZT = S^2\sigma T/\kappa_e + \kappa_L$, can measure the efficiency of thermoelectric conversion, in which S is the Seebeck coefficient, σ is electrical conductivity, T is absolute temperature, κ_e and κ_L are the electronic and lattice thermal conductivities, respectively. Bismuth-tellurium systems, lead chalcogenides and silicon-germanium alloys are the most efficient for practical application of thermoelectric devices. According to the expression of ZT, high power factor ($S^2\sigma$) and low thermal conductivity ($\kappa = \kappa_e + \kappa_L$) can give rise to excellent efficiency of thermoelectric conversion, but often it is to enhance one, while adversely to affect another. Many recent advances in improving efficiency of thermoelectric conversion are focused on low-dimensional materials due to simultaneously increasing power factor and decreasing thermal conductivity, such as Bi$_2$Te$_3$ nanowire, monolayer phosphorene and silicene.

Due to the presence of intrinsic band gap, semiconducting two-dimensional (2D) transition-metal dichalcogenide monolayers have more potential application in nanoelectronics and nanophotonics in comparison with the first 2D gapless Graphene. The MoS$_2$ of them is hot spot of present research both experimentally and theoretically, which has been applied in field effect transistors, photovoltaics and photocatalysis. Recently, the thermoelectric properties of transition-metal dichalcogenide monolayers have attracted much attention. Thermoelectric performance of MX$_2$ (M=Mo, W; X=S, Se) monolayers have been investigated using ab-initio method and ballistic transport model, and at room temperature, a maximum ZT of monolayer MoS$_2$ is obtained as 0.5. Experimentally, a value of S as 30 mV/K has been reported for monolayer MoS$_2$, which is favorable for potential thermoelectric applications. Thermoelectric response of monolayer MoSe$_2$ and WSe$_2$ also have been studied by first-principles calculations and semiclassical Boltzmann transport theory.

Recently, we investigated spin-orbit and strain effect on power factor in monolayer MoS$_2$, and further systematically studied SOC effect on power factor in semiconducting transition-metal dichalcogenide monolayers MX$_2$ (M=Zr, Hf, Mo, W and Pt; X=S, Se and Te). Among all cation groups, PtX$_2$ (X=S, Se and Te) show the highest Seebeck coefficient, leading to best power factor, which indicates an great potential to attain excellent thermoelectric applications. The monolayer PtSe$_2$ of them has been epitaxially grown by direct selenization.
of Pt with high-quality single-crystal, which has potential applications in valleytronics\cite{25}. Moreover, the local Rashba spin polarization and spin-layer locking in centrosymmetric monolayer PtSe\textsubscript{2} have been observed by using spin- and angle-resolved photoemission spectroscopy, which has potential applications in electrically tunable spintronics\cite{26}. The first-principles calculations show that the band gaps of monolayer PtSe\textsubscript{2} can be tuned over a wide range by strain engineering\cite{27}, but SOC is neglected, which has important effects on electronic structures of monolayer PtSe\textsubscript{2}.

Here, the biaxial strain dependence of electronic structures and thermoelectric properties of monolayer PtSe\textsubscript{2} are studied. The electron part is calculated using GGA+SOC, and it is very crucial to include SOC for attaining reliable power factors\cite{23,24}. Calculated results show that the energy band gap first increases, and then decreases with increasing lattice constants, while the spin-orbit splitting at Γ point monotonically decreases. Compressive strain can induce CBM transition, while tensile strain can lead to VBM transition. The n- or p-type Seebeck coefficient can be significantly improved at the boundary of CBM or VBM transition, which can be understood by strain-induced accidental degeneracies. It is found that tensile strain can induce reduced lattice thermal conductivity. Finally, the ZT values are attained, which shows strain indeed can achieve enhanced thermoelectric properties.

The rest of the paper is organized as follows. In the next section, we shall describe computational details. In the third section, we shall present strain dependence of the electronic structures and thermoelectric properties of monolayer PtSe\textsubscript{2}. Finally, we shall give our discussions and conclusion in the fourth section.

II. COMPUTATIONAL DETAIL

The strain dependence of electronic structures of monolayer PtSe\textsubscript{2} is performed using a full-potential linearized augmented-plane-waves method within the density functional theory (DFT)\cite{28}, as implemented in the WIEN2k package\cite{29}. We employ the popular GGA\cite{30} for the exchange-correlation potential to do our elec-
the related energy band structures, or other theoretical value of 36 unit, where e of doping level (N) with GGA. The SOC was included self-consistently with a force standard of 2 mRy/a.u. are optimized using GGA. The internal position parameters value) or holes (positive value) per unit cell.

Transport part calculations. The internal position parameters with a force standard of 2 mRy/a.u. are optimized using GGA. The SOC was included self-consistently due to containing heavy elements, which produces important influences on power factor. To attain reliable results, we use 6000 k-points in the first Brillouin zone for the self-consistent calculation, make harmonic expansion up to $k_{max} = 10$ in each of the atomic spheres, and set $R_{mt} * k_{max} = 8$. The self-consistent calculations are considered to be converged when the integration of the absolute charge-density difference between the input and output electron density is less than 0.0001$|e|$ per formula unit, where e is the electron charge. Transport calculations, such as Seebeck coefficient, electrical conductivity and electronic thermal conductivity, are performed through solving Boltzmann transport equations within the constant scattering time approximation (CSTA) as implemented in BoltzTrap, and reliable results have been obtained for several materials. The accurate transport coefficients need dense k-point meshes, and we use $190 \times 190 \times 1$ k-point meshes in the first Brillouin zone for the energy band calculation. The lattice thermal conductivities are calculated within the linearized phonon Boltzmann equation, which can be achieved by using PhononBoltzmann equation, which can be achieved by using Phonon3py+VASP codes. For the third-order force constants, $3 \times 3 \times 1$ supercells are built, and reciprocal spaces of the supercells are sampled by $8 \times 8 \times 1$ meshes. To compute lattice thermal conductivities, the reciprocal spaces of the primitive cells are sampled using the $20 \times 20 \times 1$ meshes.

III. MAIN CALCULATED RESULTS AND ANALYSIS

The single-layer PtSe$_2$ contains three atomic sublayers with Pt layer sandwiched between two Se layers, and the schematic crystal structure is shown in Figure 1, which is different from crystal structure of MoS$_2$ due to different stacking of top and bottom Se or S sublayers. The unit cell of monolayer PtSe$_2$ contains one Pt and two Se atoms, which is constructed with the vacuum region of more than 15 Å to avoid spurious interaction between neighboring layers, and the optimized lattice constant is $a=3.73$ Å using GGA, which is very close to the experimental value of 3.70 Å25 or other theoretical value of 3.75 Å27,43. The SOC has very important effects on electronic structures and thermoelectric properties, so SOC is included in all calculations of electronic part except lattice part. The energy band structures with the optimized lattice constant $a=3.73$ Å is plotted in Figure 2, and calculated results show that PtSe$_2$ is an indirect gap semiconductor with a band gap of 1.18 eV. The VBM is located at Γ point, while the CBM appears between Γ and M points. The first three valence bands near the Γ point are dominated by the Se-p character states, and the fourth valence band is mostly contributed by the Pt-d states. Due to both inversion and time-reversal symmetries of PtSe$_2$, all the bands are doubly degenerate.

Both theoretically and experimentally, strain influence on the electronic structures and power factor of monolayer MoS$_2$ has been widely studied. Here, we investigate biaxial strain effects on the electronic structures and thermoelectric properties of monolayer PtSe$_2$. The $\varepsilon = (a_0 - a)/a_0$ is defined to simulate biaxial strain, and a_0 is the optimized value of 3.73 Å using GGA. $\varepsilon > 0$ means compressive strain, and $\varepsilon < 0$ implies tensile strain. Biaxial strain dependence of energy band gap and spin-orbit splitting value at Γ point in the valence bands around the Fermi level using GGA+SOC are plotted in Figure 3, and the related energy band structures...
with six considered \(a \) values are also shown in Figure 2. As the \(a \) increases, the energy band gap first increases, and then decreases, which is similar to strain dependence of monolayer MoS\(_2\). The compressive strain leads to the transition of CBM from one point of \(\Gamma\)-\(M\) line to one point of \(\Gamma\)-\(\Gamma\) line, while the VBM changes from \(\Gamma\) point to one point of \(K\)-\(\Gamma\) line by applied tensile strain. The corresponding strain of CBM or VBM transition is very small, which is about 2.68%. These strain effects on electronic structures produce very important influences on power factor of monolayer PtSe\(_2\). As \(a \) increases, the spin-orbit splitting at \(\Gamma\) point monotonically decreases, and the change is about 0.15 eV with \(a \) varying from 3.63 \(\text{Å} \) to 3.88 \(\text{Å} \). The spin-orbit splitting trend of monolayer PtSe\(_2\) is opposite to one of MoS\(_2\) with increasing \(a \), and the spin-orbit splitting has stronger dependence on strain than one of MoS\(_2\).

We perform transport coefficients calculations, such as Seebeck coefficient \(S \) and electrical conductivity with respect to scattering time \(\kappa_e/\tau \) as a function of doping level and lattice thermal conductivity \(\kappa_L \) as a function of temperature with \(a \) changing from 3.63 \(\text{Å} \) to 3.88 \(\text{Å} \).

FIG. 5. (Color online) The electronic thermal conductivity with respect to scattering time \(\kappa_e/\tau \) as a function of doping level and lattice thermal conductivity \(\kappa_L \) as a function of temperature with \(a \) changing from 3.63 \(\text{Å} \) to 3.88 \(\text{Å} \).
with $a=3.88\,\text{Å}$ are the largest among the considered a. To attain figure of merit ZT, the scattering time τ is unknown. Calculating scattering time τ is challenging from the first-principle calculations due to the complexity of various carrier scattering mechanisms. To attain possible ZT values, the scattering time τ is assumed to be $1 \times 10^{-13}\,\text{s}$, $1 \times 10^{-14}\,\text{s}$ and $1 \times 10^{-15}\,\text{s}$. In Ref.21, the scattering time of monolayer MoS$_2$ is fitted as $2.29 \sim 5.17 \times 10^{-14}\,\text{s}$ to calculate ZT. For WSe$_2$, the scattering time is found to be $1.6 \times 10^{-13}\,\text{s}$ or $1.4 \times 10^{-15}\,\text{s}$22. Therefore, our assumed scattering time should be reasonable. At 600 K and 900 K, the ZT as a function of doping level

FIG. 6. (Color online) For both n-type (Top) and p-type (Bottom), the power factor with respect to scattering time $S^2\sigma/\tau$ and electronic thermal conductivity with respect to scattering time κ_e/τ as a function of temperature with a changing from 3.63 Å to 3.88 Å using GGA+SOC, and the doping concentration is $2.012 \times 10^{13}\,\text{cm}^{-2}$ (about 0.025 electrons or holes per unit cell).

FIG. 7. (Color online) At 600 K (Top) and 900 K (Bottom), the ZT as a function of doping level with a changing from 3.63 Å to 3.88 Å, and the scattering time τ is $1 \times 10^{-13}\,\text{s}$ (Left), $1 \times 10^{-14}\,\text{s}$ (Middle) and $1 \times 10^{-15}\,\text{s}$ (Right).
with a changing from 3.63 Å to 3.88 Å are plotted in Figure 7. The similar strain dependence between 600 K and 900 K is observed except for relative sizes of ZT. It is found that the ZT decreases with decreasing τ, which is because the larger τ produces larger power factor. In p-type doping, tensile strain can observably improve the ZT for all three τ. For n-type, tensile strain can also enhance the ZT with $\tau=1 \times 10^{-14}$ s and $\tau=1 \times 10^{-15}$ s. However, compressive strain can slightly improve ZT with $\tau=1 \times 10^{-13}$ s. The peak ZT is about 0.65, 0.25 and 0.04 with decreasing τ at 600 K, and 0.80, 0.45 and 0.1 at 900 K. Calculated results show that tensile strain may be an effective method to attain higher ZT, which can achieve higher thermoelectric conversion efficiency.

IV. DISCUSSIONS AND CONCLUSION

The semiconducting transition-metal dichalcogenide monolayers may be potential thermoelectric materials. However, huge works focused on thermoelectric properties of monolayer MoS$_2$. In Ref. 24, we systematically investigated electronic transport properties of semiconducting transition-metal dichalcogenide monolayers MX$_2$ (M=Zr, Hf, Mo, W and Pt; X=S, Se and Te), including SOC. Among all cation groups, Pt cation group exhibits best power factor due to the highest Seebeck coefficient, assuming scattering time to be fixed. Here, recent synthetic PtSe$_2$ is investigated, whose room temperature lattice thermal conductivity (16.97 Wm$^{-1}$K$^{-1}$) is lower than one (26.2 Wm$^{-1}$K$^{-1}$) of monolayer MoS$_2$ with the similar calculation method. So, monolayer PtSe$_2$ may possess better thermoelectric properties than monolayer MoS$_2$. The high lattice thermal conductivity is a major disadvantage to obtain higher ZT. However, the lattice thermal conductivity can be reduced by phonon engineering, such as isotope doping50, nanoporous structure51 or strain52. The typical example is graphene, whose lattice thermal conductivity can be reduced largely by phonon engineering, producing a very high ZT of 353. The pressure-reduced lattice thermal conductivity also can be found in Mg$_2$Sn52. Here, tensile strain can induce remarkably reduced lattice thermal conductivity, from 16.97 Wm$^{-1}$K$^{-1}$ to 6.88 Wm$^{-1}$K$^{-1}$ at 300 K with a changing from 3.73 Å to a=3.88 Å, and the corresponding ε is about -4.02%, which should be easily achieved in experiment by piezoelectric stretching and exploiting the thermal expansion mismatch54,55.

The electronic structures of semiconducting transition-metal dichalcogenide monolayers is quite sensitive to strain, which provides a strategy to tune their thermoelectric properties by band engineering. Strain or pressure is a conventional way to induce novel phenomenon, such as pressure-induced high-Tc superconductivity56,57 and strain-induced topological insulator58. The symmetry-driven degeneracy, low-dimensional electronic structures and accidental degeneracies are three usual mechanisms to induce high Seebeck coefficient suitable for high power factor. Here, strain-induced accidental degeneracies, namely band convergence, can be used to explain strain-enhanced Seebeck coefficient. For optimized lattice constants a=3.73 Å, monolayer PtSe$_2$ has some valence band extrema (VBE) and conduction band extrema (CBE) around the Fermi level, which provides a platform to achieve band convergence by strain. When compressive strain gradually increases, the CBE along K-Γ and Γ-M approach each other, and the energy difference changes from 0.140 eV to 0.009 eV with a being 3.73 Å to 3.63 Å. The conduction band convergence produces large n-type Seebeck coefficient, giving rise to high n-type power factor. When tensile strain gradually increases, the VBE along K-Γ and VBM are more close, and the energy difference varies from 0.184 eV to 0.062 eV with a changing from 3.73 Å to 3.78 Å. The valence band convergence induces large p-type Seebeck coefficient. As the a continues to increase, the extrema at Γ point disappears, and another extrema along Γ-M appears, which induces significantly enhanced p-type electrical conductivity. The largest p-type power factor achieves at a=3.88 Å. Calculated results show that the large Seebeck coefficient can be induced by both compressive and tensile strain at the critical strain of CBM or VBM transition. Similar pressure or strain induced band convergence, leading to large Seebeck coefficient, also can be found in Mg$_2$Sn52 at the critical pressure of energy band gap or monolayer MoS$_2$ at the critical strain of direct-indirect gap transition21. The n-type doping related results indicates that a large power factor will not certainly produce a high ZT, while a moderate power factor combined with a suitable thermal conductivity may eventually lead to a high ZT.

In fact, band convergence can be observed in unstrained PtS$_2$ and PtTe$_2$, and the energy band structures of monolayer PtS$_2$ and PtTe$_2$ with unstrained lattice constants 3.57 Å and 4.02 Å using GGA+SOC are plotted in Figure 8. For PtS$_2$, valence band convergence can be observed, and the similar results for PtSe$_2$ can be achieved by tensile strain. For PtTe$_2$, conduction band convergence can be seen, which can be attained for...
It is very clear to see that PtS$_2$ (PtTe$_2$) has the largest p-type (n-type) Seebeck coefficient, which is consistent with corresponding band convergence. It is resultant that PtS$_2$ (PtTe$_2$) has the highest p-type (n-type) power factor.

In summary, we systematically study strain dependence of thermoelectric properties of monolayer PtSe$_2$, including both electron and phonon transport, using GGA+SOC, based mainly on the reliable first-principle calculations. It is found that both compressive and tensile strain can induce improved Seebeck coefficient at the critical strain of CBM or VBM transition, which is favorable for power factor. Calculated results also show that tensile strain can lead to significantly reduced lattice thermal conductivity, which is beneficial to ZT. By using hypothetical scattering time τ, ZT can be obtained, which shows that strain indeed can induce enhanced efficiency of thermoelectric conversion due to improved ZT value. So, strain is a very effective method to achieve enhanced thermoelectric properties for monolayer PtSe$_2$, which provides great opportunities for efficient thermoelectricity. The strategy of strain-tuned thermoelectric properties also can be used in other semiconducting transition-metal dichalcogenide monolayers, like PtS$_2$ and PtTe$_2$ with high power factor.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (Grant No. 11404391). We are grateful to the Advanced Analysis and Computation Center of CUMT for the award of CPU hours to accomplish this work.

1. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen and G. J. Snyder, Nature 473, 66 (2011).
2. A. D. LaLonde, Y. Pei, H. Wang and G. J. Snyder, Mater. Today 14, 526 (2011).
3. W. S. Liu, Q. Y. Zhang, Y. C. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D. Z. Wang, G. Chen and Z. F. Ren, Adv. Energy Mater. 1, 577 (2011).
4. Y. Z. Pei, X. Y. Shi, A. Lalonde et al. Nature 473, 66 (2011).
5. M. Zebbarjadi, et al. Nano Lett. 11, 2225 (2011).
6. M. S. Dresselhaus et al. Adv. Mater. 19, 1043 (2007).
7. G. Zhang, B. Kirk, L. A. Jauregui, H. Yang, X. Xu, Y. P. Chen and Y. Wu, Nano Lett. 12, 56 (2012).
8. R. Fei, A. Faghaninia, R. Soklaski, J. A. Yan, C. Lo and L. Yang, Nano Lett. 14, 6393 (2014).
9. K. Yang, S. Cahangirov, A. Cantarero, A. Rubio and R. D’Agosta, Phys. Rev. B 89, 125403 (2014).
10. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).
11. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli and F. Wang, Nano Lett. 10, 1271 (2010).
12. S. Lebegue and O. Eriksson, Phys. Rev. B 79, 115409 (2009).
13. C. Ataca, H. Sahin, E. Akturk and S. Ciraci, J. Phys. Chem. C 115, 3934 (2011).
14. S. Ghatak, A. N. Pal and A. Ghosh, Ac. Nano 5, 7707 (2011).
15. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, Nature Nanotechnology 6, 147 (2011).
16. X. Zong et al. J. Am. Chem. Soc. 130, 7176 (2008).
17. W. Huang, H. X. Da and G. C. Liang, J. Appl. Phys. 113, 104304 (2013).
18. J. Wu et al. Nano Lett. 14, 2730 (2014).
19. X. Wei et al. Appl. Phys. Lett. 105, 103902 (2014).
20. W. Li, J. Carrete and N. Mingo, Appl. Phys. Lett. 103, 253103 (2013).
21. Z. Jin et al. Sci. Rep. 5, 18342 (2015).
22. S. Kumar and U. Schwingenschlögl, Chem. Mater. 27, 1278 (2015).
23. S. D. Guo, Comp. Mater. Sci. 123, 8 (2016).
