Perspective

A neuron’s ambrosia: non-autonomous unfolded protein response of the endoplasmic reticulum promotes lifespan

Stefan Homentcovschi, Ryo Higuchi-Sanabria

The ability to protect cellular components in the face of deleterious conditions, such as exposure to chemical poisons, damaging radiation, or excessive heat, is crucial to organismal viability. Several compartmentalized stress response pathways have evolved to mitigate damage and increase cellular fitness in such environments, including the unfolded protein response of the endoplasmic reticulum (UPR\(\text{ER}\)). The UPR\(\text{ER}\) serves a critical protective role by promoting proteome integrity and lipid homeostasis while preventing the accumulation of damaged proteins and protein aggregates. The ability to mount an effective UPR\(\text{ER}\) is a key determinant of organismal lifespan and stress resistance, however, as with other stress responses, it has been shown to decline markedly during the aging process. This leaves the proteomes of aged animals susceptible to dysregulation and dysfunction, which in turn further contributes to an accelerated aging process, development of age-associated pathology, and proteotoxicity (Higuchi-Sanabria et al., 2018).

Multicellular organisms are faced with the additional challenge of coordinating effective stress responses across multiple tissues and cell types. Cell-nonautonomous communication of UPR\(\text{ER}\) has been well documented in the nematode Caenorhabditis elegans, in which activation of the UPR\(\text{ER}\) specifically in neurons has been shown to increase ER stress tolerance and lifespan by inducing UPR\(\text{ER}\) activation in the periphery. More specifically, pan-neuronal overexpression of a gene encoding one of the UPR\(\text{ER}\) transcription factors, spliced xbp-1 (xbp-1s), triggers the release of small clear vesicles from the signaling neurons. Presumably the released neurotransmitters and/or biogenic amines trigger intestinal xbp-1 splicing by the endoribonuclease IRE-1 and subsequent activation of UPR\(\text{ER}\) through a cell-nonautonomous mechanism. In these animals (referred to as neuronal xbp-1s animals), the age-related decline in UPR\(\text{ER}\) activation is abrogated and robust neuronal and intestinal transcription of UPR\(\text{ER}\) targets continues even in aged animals (Taylor and Dillin, 2013).

Two distinct and independent arms of UPR\(\text{ER}\) have been identified to contribute to the lifespan extension and stress resistance that are experienced by neuronal xbp-1s animals: a protein homeostasis and lipid homeostasis arm (Daniele et al., 2020). The activation of genes encoding UPR-specific chaperones supplement ER-resident chaperones to provide additional protein folding machinery in times of mild to moderate unfolded protein stress. Neuronal xbp-1s directly induces the expression of these chaperones in peripheral tissues and maintains their expression throughout age, resulting in increased stress resistance and lifespan (Taylor and Dillin, 2013). Traditionally, UPR\(\text{ER}\) targets also include components important for ER-associated degradation and ER-specific autophagy, but whether these processes are also activated downstream of cues from neuronal xbp-1s overexpression is yet to be determined. However, a recent study has found that there is in fact an increase in the transcription of lysosomal genes, which results in increased lysosomal abundance and lysosomal acidity (Imanikia et al., 2019b). Surprisingly, the beneficial effects of the lysosomal expansion are independent of autophagy, and rather promote protein homeostasis through increased clearance of damaged and aggregation-prone proteins from the cell. Furthermore, knockdown of the lysosomal lysine and arginine transporter, laat-1, results in decreased lifespan and a significant increase in sensitivity to ER stress, also independent of general autophagy (Higuchi-Sanabria et al., 2020a). These studies shape lysosome-ER communication and interactions as pivotal in organismal homeostasis and uncover an intriguing regulatory link between two seemingly opposing metabolic hubs of the cell.

Beyond protein homeostasis, neuronal xbp-1s promotes the activation of a metabolic arm of UPR\(\text{ER}\), which results in upregulation of lysosomal lipases, desaturases, and lipophagy, processes which together contribute to the significant reduction in total body fat seen in these animals. This lipid depletion involves conversion of stearic acid into oleic acid by the upregulated intestinal A9 desaturase FAT-6, which has been demonstrated to increase longevity in C. elegans (Imanikia et al., 2019a). These processes are coincident with ER expansion and remodeling, and hyperactivation of a lipophagy machinery, which are also necessary and sufficient to promote the beneficial effects of UPR\(\text{ER}\) activation (Daniele et al., 2020). Interestingly, the former study showed that changes in lipid homeostasis are sufficient to improve protein quality control. Specifically, oleic acid supplementation was sufficient to decrease toxicity associated with ectopic polQ expression (Imanikia et al., 2019a). However, lipophagy-mediated effects had little to no change in sensitivity to protein misfolding stress, suggesting the coordination of the protein and lipid homeostatic arms of UPR\(\text{ER}\) are complex and likely highly specific to which processes are activated (Daniele et al., 2020).

A similar paradigm of cell-nonautonomous communication is seen in mammalian systems, where UPR\(\text{ER}\) induction in hypothalamic pro-opio-melanocortin (POMC) neurons of mice induces metabolic changes in the periphery (Figure 1A). Specifically, elevated levels of Xbp1 in mouse POMC neurons induce Xbp1 splicing by IRE1 and UPR\(\text{ER}\) activation in the liver, which ultimately results in improved glucose levels, increased metabolic rate, and protection against obesity and diabetes. These effects are dependent on increased cellular sensitivity to leptin and insulin, which results from UPR\(\text{ER}\)-mediated protection of the POMC neuronal proteome (Williams et al., 2014). Furthermore, POMC neurons have been shown to promote Xbp1 splicing in the liver during sensory food perception, which proactively maintains organosomal homeostasis by priming the liver for digestion of incoming nutrients. This suggests that cell-nonautonomous UPR\(\text{ER}\) activation has important implications for organosomal homeostasis in vivo, and is not merely some artificial system activated by exogenous genetic manipulations (Brandt et al., 2018). Indeed, the direct conservation of these signaling mechanisms across phyla suggests that they are of critical importance to organismal fitness, and that an improved understanding of their mechanistic subtleties and cellular consequences may have significant implications on the study of ER-related pathologies and aging.

To this end, Higuchi-Sanabria et al. (2020a) performed a neurotransmitter screen in C. elegans in an effort to identify neuronal subtypes involved in cell-nonautonomous communication of UPR\(\text{ER}\) to the periphery. This study identified two neuronal populations as being critical in the neuron-to-periphery communication of ER stress: serotonergic and dopaminergic neurons. Perhaps most intriguingly, this work showed that not only can the protein homeostatic and metabolic roles of UPR\(\text{ER}\) be separated, but unique neuronal circuits exist to elicit these divergent responses. Specifically, overexpression of xbp-1s in serotoninergic neurons was sufficient to drive chaperone induction in the periphery to promote increased resistance to protein misfolding stress. However, serotonergic xbp-1s failed to promote the lipid depletion found in previous studies of neuronal xbp-1s signaling. Instead, dopaminergic xbp-1s was found to be sufficient to drive lipophagy-mediated lipid depletion, yet failed to drive protein homeostasis. Thus serotonergic and dopaminergic neurons, although both driving cell-nonautonomous activation of UPR\(\text{ER}\) through xbp-1s in the periphery, ultimately initiate two distinct transcriptional programs, the coordinated efforts of which provide the beneficial effects on organismal lifespan and stress resistance conferred by pan-neuronal xbp-1s overexpression (Figure 1B) (Higuchi-Sanabria et al., 2020a).

Yet to be determined is how serotonergic and dopaminergic signaling of stress fits into the broader context of C. elegans neurobiology. Although serotonin and dopamine are required for the cell-nonautonomous communication of UPR\(\text{ER}\) seen in this model, it is unclear whether their endogenous communication is dependent on the release of other neurotransmitters. Indeed, other neuronal cell types have been implicated in peripheral communication of UPR\(\text{ER}\) in C. elegans. Expression of xbp-1s in RIM and RIC neurons, which are involved in tyramine communication, has been shown to induce intestinal UPR\(\text{ER}\) activation and altered feeding behavior (Özney et al., 2020). Additionally, glial
cells have also been implicated in intestinal induction of UPR\(^{36}\): xbp-1s overexpression in a subset of four astrocyte-like glial cells increases lifespan and organismal resistance to ER stress (Frakes et al., 2020), showing evidence that neuronal cells are not the only cells important for driving non-autonomous UPR\(^{36}\). Therefore, it is critical to further characterize and map the complex neuronal circuits and cellular mechanisms involved in cell-nonautonomous UPR\(^{36}\) transmission. Do neurons or glia directly and independently relay a signal to the periphery, or is there a concerted and coordinated effort? Which neural subtypes are actually important for sensing ER stress? In addition, the neuronal subtypes involved in mediating lysosomal changes in the periphery have yet to be identified. Are serotonergic, dopaminergic, or tyraminergic neurons involved or are there still unidentified neuronal subpopulations critical for initiating a lysosomal response?

Beyond mapping the neuronal circuitry involved in initiating the transmission of stress, further work is necessary to identify how exactly peripheral cells receive and respond to these cues. While tyraminergic receptors have been identified directly in the intestine (Ozbey et al., 2020), whether serotonin or dopamine cues are received directly by peripheral tissue or relayed through an additional cell-type is unclear. Serotonin: 5-HT; Serotonin; DA: dopamine; mTOR: mammalian target of rapamycin; OE: overexpression; POMC: pro-opio-melanocortin; UPR\(^{36}\): unfolded protein response of the endoplasmic reticulum.

Figure 1 | Cell-nonautonomous UPR\(^{36}\) signaling mechanisms in mice and C. elegans.

(A) Exogenous overexpression of Xbp1s in mouse POMC neurons or sensory food perception activate mTOR and initiate Xbp1 splicing by IRE1 in the liver, which results in an increased metabolic rate and a decreased incidence of obesity, which is mediated through improved sensitivity to leptin and insulin signaling. (B) Serotonergic and dopaminergic signaling in C. elegans drive intestinal xbp-1 splicing by IRE-1 and upregulation of UPR\(^{36}\) transcriptional targets, yet induce distinct mechanisms which increase organismal lifespan and stress resistance independently of one another. Serotonergic neurons trigger chaperone induction, which increases protein refolding within the ER; dopaminergic neurons induce lipid depletion, which globally decreases lipid levels within the cell and drives conversion of triacylglycerides to monounsaturated fatty acids. Tyramine has also been implicated in peripheral communication of stress, although its specific effects on intestinal tissue remain unclear. S-HT: Serotonin; DA: dopamine; mTOR: mammalian target of rapamycin; OE: overexpression; POMC: pro-opio-melanocortin; UPR\(^{36}\): unfolded protein response of the endoplasmic reticulum.

References

Brandt C, Nolte H, Henschke S, Engstrom Ruud L, Awazawa M, Morgan DA, Gabel R, Sorengren HG, Hess ME, Günther S, Langer T, Rahoumou K, Fenselau H, Kruger M, Brüning JC (2018) Food perception primes hepatic ER homeostasis via endoplasmic-reticulum-dependent control of mTOR activation. Cell 175:1321-1335.

Danielle JR, Higuchi-Sanabria R, Durieux J, Monshiehesh S, Ramachandran V, Tronnes SU, Kelet N, Sanchez M, Metcalf MG, Garcia G, Frankino PA, Bereste C, Zeng M, Esping DJ, Joe L, Dillon A (2020) UPR promotes lipophagy independent of chaperones to extend life span. Sci Adv 6:eaaax1441.

Frakes AE, Metcalf MG, Tronnes SU, Bar-Ziv R, Durieux J, Gilda HK, Kandahani N, Monshiehesh S, Dillon A (2020) Four glial cells regulate ER stress resistance and longevity via neuronal signaling in C. elegans. Science 367:431-440.

Higuchi-Sanabria R, Durieux J, Kelet N, Higomtehshc S, de Lange F, Rogers M, Monshiehesh S, Garcia G, Alforda S, Daniellle JR, Ramachandran V, Sahay A, Tronnes SU, Joe L, Dillon A (2020a) Divergent neuronal or non-autonomous UPR signaling through serotonergic and dopaminergic neurons. Cell Rep 33:108489.

Higuchi-Sanabria R, Frankino PA, Paul JN, Tronnes SU, Dillon A (2018) A futile battle? Protein quality control and the stress of aging. Dev Cell 44:139-163.

Higuchi-Sanabria R, Shen K, Kelet N, Frankino PA, Durieux J, Bar-Ziv R, Sing CN, Garcia EI, Higomtehshc S, Sanchez M, Wu R, Tronnes SU, Joe L, Webster B, Alphon Liberty L, Moshiehesh S, Gallarda S, Pender C, Pan LA, Zoncu R, et al. (2020b) Lysosomal recycling of amino acids affects ER quality control. Sci Adv 6:eaaax8305.

Imanikia S, Özbey NP, Krueger C, Casanueva MO, Taylor RC (2019a) Neuronal XBP-1 activates intestinal lysosomes to improve proteostasis in C. elegans. Curr Biol 29:2322-2332.

Imanikia S, Sheng M, Castro C, Griffin JL, Taylor RC (2019b) XBP-1 remodels lipid metabolism to extend longevity. Cell Rep 28:583-589.

Özbey NP, Imanikia S, Krueger C, Hardege J, Morich J, Sheng MD, Harfe BR, Casanueva MO, Taylor RC (2020) Tyramine acts downstream of neuronal XBP-1s to coordinate inter-tissue UPR activation and behavior in C. elegans. Dev Cell 55:754-770.

Taylor RC, Dillon A (2013) XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 153:1435-1447.

Williams KW, Liu T, Kong K, Fukuda M, Deng Y, Berglund ED, Deng Z, Gao Y, Liu T, Sohn JN, Jia L, Fujikawa T, Kohn D, Scott MM, Lee S, Lee C, Sun K, Chang Y, Scherer PE, et al. (2014) Xbp1s in POMC neurons controls ER stress with energy balance and glucose homeostasis. Cell Metab 20:471-482.

We greatly appreciate the funding support provided by the National Institute of Aging through grant 1K99AG065200-01A1 to RHS.