New therapeutic options for respiratory tract infections

Matteo Bassetti, Elda Righi, and Alessia Carnelutti

Purpose of review
The progressive increase of respiratory tract infections caused by multidrug-resistant organisms (MDROs) has been associated with delays in the prescription of an adequate antibiotic treatment and increased mortality, representing a major concern in both community and hospital settings. When infections because of methicillin-resistant Staphylococcus aureus (MRSA) are suspected, vancomycin still represents the first choice, although its efficacy has been recently questioned in favor of new drugs, reported to provide better clinical outcomes. Moreover, few therapeutic options are currently available for the treatment of severe infections caused by Multidrug-resistant (MDR) Gram-negative pathogens, which are frequently resistant to all the available β-lactams, including carbapenems. We have reviewed the therapeutic options for the treatment of respiratory tract infections that have recently become available with promising implications for clinical practice, including ceftaroline, ceftrRobipro, tedizolid, telavancin, delafloxacin, eravacycline, and new β-lactams/β-lactamase inhibitors.

Recent findings
A number of new antimicrobials with activity against MDROs have been recently approved for the treatment of respiratory tract infections, and other agents are under investigation. Recent developments, with a specific focus on the possible advantages of new drugs for the management of respiratory tract infections caused by MDROs in everyday clinical practice are discussed.

Summary
Newly approved and investigational drugs for the treatment of respiratory tract infections are expected to offer many advantages for the management of patients with suspected or confirmed infections caused by MDROs. Most promising features among new compounds include the broad spectrum of activity against both MRSA and MDR Gram-negative bacteria, a limited risk of antimicrobial resistance, the availability of oral formulations, and a promising safety profile.

Keywords
methicillin-resistant Staphylococcus aureus, multidrug resistance, new antimicrobials, respiratory tract infections

INTRODUCTION
The progressive increase of respiratory tract infections caused by multidrug-resistant organisms (MDROs) represents a major concern, particularly among critically ill patients in whom 60% of the cases of pneumonia are caused by MDROs [1]. Infections because of MDROs in the community are common among patients presenting specific risk factors (i.e., recent antimicrobial use or hospitalization, admission from a nursing home or long-term care facilities, use of prosthetic devices) [2,3]. In clinical practice, the isolation of MDROs frequently leads to delays in the prescription of an adequate antimicrobial treatment, with significant increases in the length of stay, crude and attributable mortality, and healthcare costs [1,4]. Methicillin-resistant Staphylococcus aureus (MRSA) is the most frequently isolated MDRO both in the community and in hospital settings [5,6], and is responsible for up to 20–30% of cases of hospital-acquired pneumonia (HAP), even if a wide variability is present among different areas [7,8]. Although vancomycin can still be considered the first-line treatment for...
MRSA pneumonia, its efficacy has been recently questioned because of a limited intrapulmonary penetration [9], a suboptimal clinical response for strains showing minimum inhibitory concentration (MIC) greater than 1 mg/l [10], and the need for therapeutic drug monitoring in order to achieve adequate plasma concentrations [11]. Linezolid, the first member of the oxazolidinone family, was found to be superior than vancomycin for the treatment of hospital-acquired MRSA pneumonia in a recent phase IV, randomized, controlled trial [12]. Multidrug-resistant (MDR) Gram-negative bacteria, mainly represented by *Pseudomonas aeruginosa*, *Acinetobacter baumannii*, and *Enterobacteriaceae*, also represent a frequent cause of pneumonia, particularly in the nosocomial setting [2,13]. In recent years, the overuse of broad-spectrum antimicrobials, such as piperacillin/tazobactam and carbapenems, resulted in a vicious circle of further increase in antimicrobial resistance; as a result, pathogens carrying carbapenemases are nowadays commonly encountered in clinical practice. Because of the paucity of new antimicrobials, combination therapies including old drugs such as colistin, fosfomycin, and aminoglycosides have been widely used against carbapenemase-producing Gram-negative bacteria, but the results were not satisfactory [14].

Here we review the characteristics of the new therapeutic options for the treatment of respiratory tract infections caused by MDR pathogens, with a specific focus on the potential role of these drugs in everyday clinical practice. Specifically, ceftaroline, ceftobiprole, tedizolid, telavancin, delafloxacin, eravacycline, and new \(\beta\)-lactams/\(\beta\)-lactamase inhibitors were included in the review. Table 1 summarizes the drug spectrum of activity, indications, and current developmental stage for the use in respiratory tract infections. Table 2 reports the expected advantages and disadvantages associated with antimicrobial use.

CEPHALOSPORINS: CEFTAROLINE AND CEFTOBIROLE

Ceftaroline and ceftobiprole belong to the new fifth-generation cephalosporin group and are characterized by a unique activity against MRSA, because of the high binding affinity for the penicillin-binding protein (PBP)-2a [15]. Both ceftaroline and ceftobiprole provide an attractive broad spectrum, showing bactericidal activity against Gram-positive (including MRSA with reduced susceptibility to vancomycin and penicillin-resistant *Streptococcus pneumoniae*) and Gram-negative bacteria, with the exception of extended-spectrum \(\beta\)-lactamase (ESBL)-producing and carbapenemase-producing *Enterobacteriaceae* [16–18]. Ceftobiprole is also active against *Enterococcus faecalis* (but not *Enterococcus faecium*) and exerts an activity against *P. aeruginosa* superior to that of cefepime [18].

Ceftaroline has been approved by the U.S. Food and Drug Administration (FDA) and European Medical Agency (EMA) for the treatment of acute bacterial skin and soft tissue infections (ABSSSIs) and community-acquired pneumonia (CAP). The efficacy of ceftaroline for the treatment of CAP has been evaluated in two double-blinded, randomized, noninferiority trials (FOCUS 1 and FOCUS 2), comparing ceftaroline (600 mg every 12 h) with ceftriaxone (1 g every 24 h) [19,20]. Ceftaroline provided clinical cure rates in up to 80% of cases and was well tolerated, with mild adverse events mainly represented by diarrhea, headache, and insomnia [21]. A recent analysis of data coming from the FOCUS trials showed that ceftaroline was associated with a shorter time for clinical response compared with ceftixime [22]. Recent findings suggest that in patients with normal renal function, the administration of higher doses of ceftaroline (600 mg every 8 h) may provide better clinical outcomes in MRSA infections [23].

Ceftobiprole medocaril has been investigated for the treatment of both CAP requiring...
hospitalization and HAP [including ventilator-associated pneumonia (VAP)] [24,25*]. Ceftobiprole (500 mg every 8 h, intravenously) was found as effective as the comparator both in CAP (ceftriaxone with or without linezolid) and in HAP (ceftazidime and linezolid), providing cure rates of 86.6% and 59.6%, respectively. Further investigation, however, is needed before recommending the use of ceftobiprole in VAP, as reported cure rates were only 23.1% in this subset of patients [24,25*]. Ceftobiprole is currently approved for clinical use in Europe.

Drug	Spectrum of activity	Route of administration	Dose	Current clinical indications	Development phase for the use in respiratory tract infections
Ceftaroline	Gram positives (no enterococci) and Gram negatives (no ESBL and P. aeruginosa)	IV	600 mg every 12 h	ABSSSIs, CAP	Approved by FDA and EMA
Ceftobiprole	Gram positives (including E. faecalis) and Gram negatives (including P. aeruginosa; no ESBL)	IV	500 mg every 8 h	CAP, HAP	Approved in Europe
Telavancin	Gram positives, including MRSA and S. pneumoniae	IV	10 mg/kg every 24 h	HAP	Approved by FDA and EMA
Cefazidime/avibactam	Similar to cefazidime, with an extended activity against class A (including KPCs), class B (Amp-C cephalosporinase) and some class D (OXA-48) \(\beta\)-lactamase-producing pathogens	IV	2.5 g every 8 h	cIAIs, cUTIs	Phase III (in progress)
Ceftrazolin/ tazobactam	Similar to cefazidime, with enhanced activity against P. aeruginosa; inhibits the majority of ESBL-producing pathogens	IV	1.5 g every 8 h	cIAIs, cUTIs	Phase III (in progress)
Tedizolid	Gram-positive pathogens (including MRSA and VRE)	IV and oral	200 mg every 24 h	ABSSSIs	Phase I
Delafloxacin	Gram positives (including MRSA, streptococci and enterococci) and Gram negatives (including fluoroquinolone-susceptible P. aeruginosa)	IV and oral	–	–	Phase II
Eravacycline	Gram positives (including MRSA) and Gram negatives (including ESBL and carbapenemase-producing Enterobacteriaceae and A. baumannii; not effective against P. aeruginosa)	IV	–	–	Phase I

Table 1. Characteristics of new therapeutic options for respiratory tract infections

ABSSSIs, acute bacterial skin and soft tissue infections; CAP, community-acquired pneumonia; cIAI, complicated intra-abdominal infection; cUTI, complicated urinary tract infection; EMA, European Medical Agency; ESBL, extended-spectrum \(\beta\)-lactamases; FDA, Food and Drug Administration; HAP, hospital-acquired pneumonia; IV, intravenous; MRSA, methicillin-resistant Staphylococcus aureus; VRE, vancomycin-resistant strain.
LIPOGLYCOPEPTIDES: TELAVANCIN

Telavancin, together with oritavancin and dalbavancin, belongs to the class of new lipoglycopeptides, exerting a rapid, concentration-dependent, bactericidal activity against a broad-spectrum of Gram-positive pathogens, including MRSA and S. pneumoniae [26,27]. The drug is characterized by the presence of a lipophilic side chain which attaches to the bacterial membrane showing increased affinity compared with old glycopeptides. Telavancin displays two different mechanisms of action: inhibition of bacterial wall synthesis (transglycosylation and transpeptidation) and disruption of bacterial membrane function [28]. Telavancin achieves good levels into the epithelial lining fluid (ELF) in healthy volunteers, supporting the role of this molecule for the treatment of respiratory tract infections [29]. The noninferiority of telavancin (10 mg/kg every 24 h) versus vancomycin (1 g every 12 h) for the treatment of HAP has been demonstrated in two phase III, randomized, double-blinded studies [assessment of telavancin for treatment of hospital-acquired pneumonia (ATTAIN)] [30]. A pooled analysis of data coming from SSSIs and HAP studies on telavancin, however, showed a higher risk of nephrotoxicity and serious adverse events among telavancin-treated patients compared to vancomycin [31]. Overall, an increased mortality was reported in patients with HAP and moderate-to-severe renal impairment treated with telavancin compared to vancomycin [32]. Further data from the ATTAIN studies demonstrated that, in the subset of patients without severe renal impairment or preexisting acute renal failure, clinical and safety outcomes were similar in the telavancin and vancomycin treatment groups [33*].

Telavancin is currently approved for the treatment of adult patients with HAP (including VAP) only when the infection is known or believed to be caused by MRSA and other alternative treatments are not suitable. Moreover, it is strongly suggested to restrict the use of telavancin only to patients with normal renal function [34].

Table 2. Expected advantages and disadvantages of new antimicrobials for respiratory tract infections

Drug	Pros	Cons
Ceftaroline	Broad-spectrum activity, including MRSA Good tolerability profile	Only intravenous
Ceftobiprole	Broad-spectrum activity, including MRSA and P. aeruginosa Good tolerability profile	Only intravenous
Telavancin	High ELF penetration	Potential nephrotoxicity Spectrum limited to Gram-positives Only intravenous
Ceftazidime/avibactam	Broad-spectrum activity against MDR Gram negatives Good tolerability profile	Potential resistance development Only intravenous
Ceftolozane/tazobactam	Broad-spectrum activity (including ESBL-producing Enterobacteriaceae) High efficacy against P. aeruginosa	Only intravenous
Tedizolid	Oral formulation, potentially allowing treatment of outpatients/early oral shift and discharge Once-daily administration High ELF penetration Low drug interactions Low myelotoxicity	Bacteriostatic Spectrum limited to Gram positives
Delafloxacin	Oral formulation available Broad-spectrum activity Low risk of resistance selection	Dose-dependent diarrhea
Eravacycline	Broad-spectrum activity including MRSA, VRE, and ESBL-producing and carbapenemase-producing Enterobacteriaceae and A. baumanii	No activity against P. aeruginosa

ELF, epithelial lining fluid; ESBL, extended-spectrum β-lactamases; MDR, multidrug resistant; MRSA, meticillin-resistant Staphylococcus aureus; VRE, vancomycin-resistant strain.
β-LACTAMS/β-LACTAMASE INHIBITOR COMBINATIONS: CEFTAZIDIME/AVIBACTAM AND CEFTOLOZANE/TAZOBACTAM

Ceftazidime/avibactam combination has been recently approved by the U.S. FDA for the treatment of complicated intra-abdominal infections (in combination with metronidazole) and complicated urinary tract infections including pyelonephritis, when no alternative treatment is available. Avibactam is a new-generation β-lactamase inhibitor characterized by high affinity against class A (including KPC), class C, and some class D β-lactamases, but not against metallo-β-lactamase enzymes [35*]. Thus, avibactam extends the antibacterial activity of ceftazidime toward most ceftazidime-resistant Gram-negative pathogens, including ESBL, carbapenemase-producing *Klebsiella pneumoniae* (KPC), and AmpC-producing strains through the inhibition of avibactam-sensitive β-lactamases [36*37]. Moreover, ceftazidime/avibactam has shown some *in vivo* activity also against New Delhi metallo-β-lactamase-producing *Enterobacteriaceae* [38]. Phase I studies demonstrated that ceftazidime/avibactam is usually well tolerated, and no QT prolongation have been observed, even at supratherapeutic plasma concentrations [39–41]. A potential threat is represented by the risk of resistance development in *Enterobacteriaceae* and *P. aeruginosa* [42,43]. Nevertheless, because of its attractive bactericidal broad-spectrum activity, linear pharmacokinetics with high lung penetration, and low risk of serious adverse events, ceftazidime/avibactam represents a promising option for the treatment of pneumonia caused by MDR Gram-negative pathogens, especially when carbapenem resistance is suspected. However, few studies have assessed the efficacy of ceftazidime/avibactam in this setting so far. In-vitro data demonstrated that ceftazidime/avibactam MICs toward ESBL are not affected by the presence of pulmonary surfactant [44]. Moreover, in a murine model of *P. aeruginosa* pneumonia ceftazidime/avibactam achieved significant concentrations in lungs producing reductions above 1 log10 CFU for MICs at least 32 μg/ml [45]. A phase III study assessing the efficacy, safety, and tolerability of ceftazidime/avibactam compared with meropenem for the treatment of HAP (including VAP) is expected to be completed in February 2016.

Ceftolozane/tazobactam is the association of a new antipseudomonal cephalosporin with tazobactam, a well-established β-lactamase inhibitor that inhibits most class A and some class C β-lactamases. The most impressive characteristic of ceftolozane is the intrinsic potent antipseudomonal activity, because of a modified side chain conferring a greater affinity for all essential PBPs. Furthermore, ceftolozane is not affected by changes in porin permeability and upregulation of efflux pumps, typical *P. aeruginosa* antimicrobial resistance mechanisms [46]. In a recent study by Farrell et al. [47*], ceftolozane/tazobactam was found to be active against ceftazidime, meropenem, and piperacillin/tazobactam-nonsusceptible *P. aeruginosa* isolates, including MDR pathogens. However, as well as other cephalosporins, ceftolozane is susceptible to enzymatic degradation by ESBL and carbapenemases; the association with tazobactam broadens the spectrum of activity of ceftolozane to the majority of ESBL-producing *Enterobacteriaceae* [48]. Ceftolozane/tazobactam is currently approved in the United States for the treatment of complicated urinary tract infections and complicated intra-abdominal infections at the dose of 1.5 g every 8 h.

In a phase I trial on healthy volunteers, ceftolozane tazobactam displayed a good penetration into the ELF after parenteral administration, suggesting a potential role for the treatment of lung infections [49]. However, pharmacokinetic/pharmacodynamic (PK/PD) studies suggest that an increased dosage (3 g every 8 h) might be necessary for the treatment of pneumonia in patients with normal renal function in order to achieve a more than 90% probability of target attainment [50*]. A phase III trial to assess the safety and efficacy of ceftolozane/tazobactam (3 g every 8 h) compared with meropenem (1 g every 8 h) for the treatment of VAP sustained by *P. aeruginosa* is expected to be completed in 2018 [51].

OXAZOLIDINONES: TEDIZOLID

Tedizolid (formerly known as TR700) is a new oxazolidinone approved by the U.S. FDA in July 2014 and by the EMA in January 2015 for the treatment of acute bacterial SSTI. The role of tedizolid for the treatment of MRSA respiratory tract infections is only investigational so far, but it might represent an interesting option because of many advantages over linezolid, including: lower risk of myelotoxicity [52,53]; lower risk of drug–drug interactions with selective serotonin reuptake inhibitors (SSRIs) and other compounds with serotonergic activity, and adrenergic agents, because of a weak and reversible *in vitro* inhibition of the monoamine oxidase pathway [54]; high bioavailability (>80%), with *in vivo* half-life value approximately twofold greater compared with linezolide, allowing once daily administration [55]; higher ELF penetration [56]. A recent study found that tedizolid exhibits a twofold to fourfold higher *in vitro* activity compared with linezolid against a variety of Gram-positive...
NEW FLUOROQUINOLONES: DELAFOXACIN

Delafloxacin is an investigational fluoroquinolone antibiotic showing a potent anti-MRSA activity and a reduced probability for the selection of resistant mutants in vitro, because of its unique dual mechanism of DNA target inhibition (DNA gyrase and topoisomerase IV) [61]. Moreover, it is effective against a broad spectrum of Gram-positive (including penicillin-sensitive, penicillin-resistant, and levofloxacin-resistant Staphylococcus pneumoniae, Streptococcus pyogenes and Enterococci) and Gram-negative pathogens (Escherichia coli, Klebsiella spp., Haemophilus influenzae, Moraxella catharralis, and quinolone-susceptible P. aeruginosa) [62,63]. Only two studies assessing the potential role of delafloxacin for the treatment of respiratory tract infections are available so far. In a double-blinded, randomized, phase-II study, 309 outpatients affected by CAP have been treated with once-daily oral administration of delafloxacin at different dosages (100, 200, and 400 mg) for 7 days. Clinical and bacteriological cure rates were 87 and 88%, respectively, both in the 200 and 400 mg groups, and slightly lower in the 100 mg group (80 and 79%, respectively), but the difference was not statistically significant. Pathogen eradication rates were higher than 90% for H. influenzae, H. parainfluenzae and atypicals, and achieved 100% for S. aureus and S. pneumoniae [64]. The second study investigated the safety and efficacy of delafloxacin in patients with acute bacterial exacerbation of chronic bronchitis. Four different regimens were tested (100, 200, 400, and 500 mg, given orally every 24 h); clinical response was similar in the four treatment groups, with clinical and microbiological cure rates higher than 70% [65]. In both studies delafloxacin was generally well tolerated, and diarrhea, headache, and nausea were the most commonly reported adverse events; diarrhea occurred more frequently in patients treated with high-dose delafloxacin (200 and 400 mg) compared with lower doses (100 mg) [64,65]. Data coming from studies on the use of delafloxacin for the treatment of SSSIs demonstrate that delafloxacin at the dose of 300 mg every 12 h is well tolerated. In healthy volunteers doses up to 900 mg were found to be well-tolerated, without any effect on QTc prolongation [66,67].

Because of the broad spectrum of activity, including the pathogens most commonly involved in CAP and in HAP, the availability of an oral formulation, the reduced probability for resistance selection and the good tolerability profile, delafloxacin could represent a promising option for the treatment of respiratory tract infections.

NEW TETRACYCLINES: ERAVACYCLINE

Eravacycline is a novel fluorocycline that is not subjected to the mechanisms that are responsible for tetracycline resistance, such as efflux pumps and ribosomal protection proteins [68]. The most attractive characteristic of eravacycline is the broad-spectrum activity, including both Gram-positive and Gram-negative resistant pathogens. Eravacycline exerts a potent activity against staphylococci (including MRSA), enterococci [both E. faecalis and E. faecium, including vancomycin-resistant strains (VRE)] and streptococci (including penicillin-resistant and macrolide-resistant S. pneumoniae) [69]. Moreover, eravacycline is active against a wide spectrum of MDR Gram-negative pathogens, including Enterobacteriaceae expressing resistance genes from different classes of ESBL and carbapenemases [69] and A. baumannii, with a fourfold higher activity compared with tigecycline [70*]. Similar to tigecycline, eravacycline is not effective against P. aeruginosa [69]. One of the most attractive features of eravacycline is the availability of both oral and intravenous formulations, thus representing a possible option for early oral shift and sequential therapy also in patients with infections sustained by MDR Gram-negative bacteria [71].

A recent phase I study conducted on 20 healthy volunteers evaluated the pulmonary distribution of...
eravacycline given at the dose of 1 mg/kg intravenously every 12 h, for a total of seven doses over 4 days. Eravacycline was found to achieve concentrations sixfold and 50-fold higher in ELF and in alveolar macrophages than in plasma, respectively, supporting a potential role of the drug for the treatment of respiratory infections. Moreover, the drug was well tolerated and nausea, vomiting, infusion-related irritation, and headache were the most frequent adverse events [72]. No studies assessed eravacycline efficacy for the treatment of respiratory infections in humans so far, but promising results come from murine models. In a recent study by Grossman et al. [73], eravacycline was found to be as effective as linezolid and more effective than vancomycin in MRSA mouse lung infection models; moreover, eravacycline was more effective than linezolid in lung infections due to tetracycline-resistant S. pneumoniae. In one randomized clinical trial, however, eravacycline failed the noninferiority criterion in the treatment of UTI, suggesting that more data on oral formulation efficacy and bioavailability are necessary [74].

These data, together with the broad spectrum of activity and the availability of an oral formulation, make eravacycline an attractive option for the treatment of respiratory tract infections, particularly when ESBL-producing Enterobacteriaceae or A. baumannii are involved.

CONCLUSION

New approved and investigational agents for the treatment of respiratory tract infections represent promising options to preserve and enhance our antibiotic armamentarium. The most attractive characteristic of new drugs is the broad-spectrum activity against MDRs, particularly Gram-negatives, which still represent a major challenge in clinical practice because of the lack of new therapeutic options. However, studies assessing the efficacy of these agents in real-life are needed, particularly regarding the potential opportunity for a monotherapy in patients with infections sustained by MDR Gram-negative pathogens. The cost-efficacy of new agents with anti-MRSA activity needs to be evaluated and compared with older agents, in order to optimize the use of healthcare resources and patients’ outcomes.

Acknowledgements

None.

Financial support and sponsorship

None.
Theophyline options for respiratory tract infections

20. Low DE, File TM Jr, Eckberg PB, et al. FOCUS 2 investigators. FOCUS 2: a randomized, double-blinded, multicentre, phase III trial of the efficacy and safety of ceftolozane/tazobactam. J Antimicrob Chemother 2011; 66 (Suppl 3):i53–i59.

21. Rank DR, Friedland HD, Laudano JB. Integrated safety summary of FOCUS 1 and FOCUS 2 trials: Phase III randomized, double-blind studies evaluating ceftolozane/tazobactam for the treatment of patients with community-acquired pneumonia. J Antimicrob Chemother 2011; 66 (Suppl 3):i53–i59.

22. Lodise TP, Anzueto AR, Weber DJ, et al. Assessment of time to clinical response, a proxy for discharge readiness, among hospitalized patients with community-acquired pneumonia. Clin Drug Investig 2015; 35:307–317.

23. Canat A, Jala A, Rodríguez-Gascón A. Pharmacokinetic/pharmacodynamic analysis to evaluate ceftolozane/tazobactam dosing regimens for the treatment of community-acquired bacterial pneumonia and complicated skin and skin structure infections in patients with normal and impaired renal function. Int J Antimicrob Agents 2015; 45:399–405.

PK/PD analysis supporting the use of high-dose ceftolozane in patients with suspected or confirmed MRSA infections.

24. Nicholson SC, Welte T, File TM Jr, et al. A randomized, double-blind trial comparing ceftobiprole medocaril with ceftazidime with or without linezolid for the treatment of patients with community-acquired pneumonia requiring hospitalization. Antimicrob Agents Chemother 2010; 54:2936–2944.

25. Awad SS, Rodríguez AH, Chuang YC, et al. A phase 3 randomized double-blind comparison of ceftobiprole medocaril versus ceftazidime plus linezolid for the treatment of hospital-acquired pneumonia. Clin Infect Dis 2014; 59:51–61.

Efficacy and safety of ceftobiprole medocaril compared with ceftazidime plus linezolid for the treatment of HAP.

26. Smith JR, Barber KE, Hallesi J, et al. Telavancin demonstrates activity against methicillin-resistant Staphylococcus aureus isolates with reduced susceptibility to telavancin, daptomycin, and linezolid, and one- and two-compartment pharmacokinetic/pharmacodynamic models. Antimicrob Agents Chemother 2015; 59:5529–5534.

27. Pfaller MA, Mendes RE, Sader HS, Jones RN. Telavancin activity against Gram-positive bacteria isolated from respiratory tract specimens of patients with nosocomial pneumonia. J Antimicrob Chemother 2010; 65:2396–2404.

28. Zhanel GG, Calic D, Schweizer F, et al. New lipoglycopeptide: a comparative review of dalbavancin, oritavancin and telavancin. Drugs 2010; 70:859–866; Erratum in: Drugs 2011; 71:526.

29. Lodise TP Jr, Gottfried M, Barriere S, Druzano GL. Telavancin penetration into human epithelial lining fluid determined by population pharmacokinetic modeling and Monte Carlo simulation. Antimicrob Agents Chemother 2008; 52:2300–2304.

30. Rubinstein E, Lalani T, Corey GR, et al., ATTAIN Study Group. Telavancin versus vancomycin for hospital-acquired pneumonia due to gram-positive pathogens. Clin Infect Dis 2011; 52:31–40.

31. Polyzos KA, Mavros MN, Vardakas KZ, et al. Efficacy and safety of telavancin in clinical trials: a systematic review and meta-analysis. PLoS One 2012; 7:e14780.

32. Barriere SL. The ATTAIN trials: efficacy and safety of telavancin compared with dalbavancin, oritavancin, and teicoplanin in the treatment of nosocomial pneumonia. J Antimicrob Chemother 2010; 65:2396–2404.

33. Torres A, Rubinstein E, Corey GR, et al. Analysis of Phase 3 telavancin trials: evaluating outcomes data excluding patients with severe renal impairment and acute renal failure. J Antimicrob Chemother 2014; 69:1119–1216.

34. Masterton R, Comaglia G, Courvalin P, et al. The clinical positioning of telavancin in Europe. Int J Antimicrob Agents 2015; 45:213–220.

35. Vasoo S, Cunningham SA, Cole NC, et al. In vitro activities of ceftazidime-aavibactam, aztreonam-aavibactam, and a panel of older and contemporary antipseudomonal agents. Antimicrob Agents Chemother 2012; 56:4713–4717.

36. Choo S, Im W, Bartizal K. Activity of telavancin phosphate (TR-701) in murine models of infection with penicillin-resistant and penicillin-sensible Streptococcus pneumoniae. Antimicrob Agents Chemother 2012; 56:4713–4717.

37. Remjy JM, Tow-Keogh CA, McConnell TS, et al. Activity of delafloxacin against methicillin-resistant Staphylococcus aureus across: resistance selection and characterization. J Antimicrob Chemother 2012; 67:2814–2820.

40. Tomimaga N, Edeki T, Li J, et al. Phase I study assessing the safety, tolerability, and pharmacokinetics of avibactam and ceftazidime-avibactam in healthy Japanese volunteers. J Infect Chemother 2015; 21:581–588.

41. Mendjan H, Rangaraju M, Tang Y, et al. Multiple ascendencying doses of avibactam alone and in combination with ceftazidime in healthy male volunteers: results of two randomized, placebo-controlled studies. Clin Drug Invest 2015; 35:307–317.

42. Winkler ML, Papp-Walace KM, Hujer AM, et al. Unexpected challenges in treating multidrug-resistant Gram-negative bacteria: resistance to ceftazidime-avibactam in isolated archives of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2015; 59:1020–1029.

43. Dallow J, Otterson LG, Hubbard MD, et al. Microbiological interaction studies between ceftazidime-avibactam and pulmonary surfactant and between ceftazidime-avibactam and antibacterial agents of other classes. Int J Antimicrob Agents 2014; 44:552–556.

44. Housman ST, Crandon JL, Nichols WW, Nicolaup DP. Efficacies of ceftazi-dime-avibactam and ceftazidime against Pseudomonas aeruginosa in a murine lung infection model. Antimicrob Agents Chemother 2014; 58:1365–1371.

45. Takada S, Nakai T, Wakai Y, et al. In vitro and in vivo activities of a new cephalosporin, FR264205, against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2007; 51:826–830.

46. Farrell DJ, Sader HS, Flamm RK, Jones RN. Ceftolozane/tazobactam activity tested against Gram-negative bacterial isolates from hospitalized patients with pneumonia in US and European medical centres (2012). Int J Antimicrob Agents 2014; 43:533–539.

In vitro activity of ceftolozane/tazobactam against Enterobacteriaceae and P. aeruginosa.

47. Sader HS, Farrell DJ, Castanheira M, et al. Antimicrobial activity of ceftolozane/tazobactam tested against bacterial isolates from hospitalised patients with pneumonia in US and European medical centres (2011–12). J Antimicrob Chemother 2014; 69:2713–2722.

48. Chandorkar G, Huntington JA, Gotfried MH, et al. Intrapulmonary penetration of ceftolozane/tazobactam and piperacillin/tazobactam in healthy adult subjects. J Antimicrob Chemother 2012; 67:2463–2469.

49. Xiao AJ, Miller BW, Huntington JA, Nicolaup DP. Ceftolozane/tazobactam pharmacokinetic/pharmacodynamic derived dose justification for phase 3 studies in patients with nosocomial pneumonia. J Clin Pharmacol 2016; 56:56–66.

PK/PD analysis supporting the use of high-dose ceftolozane/tazobactam for the treatment of pneumonia.

50. A prospective, randomized, double-blind, multicenter, phase 3 study to assess the safety and efficacy of intravenous ceftolozane/tazobactam compared with meropenem in adult patients with ventilated nosocomial pneumonia https://clinicaltrials.gov/ct2/show/NCT02070757.

51. Lodise TP, Fang E, Minassian SL, Prokocimer PG. Platelet profile in patients with acute bacterial skin and skin structure infections receiving todzolid or linezolid: findinds from the phase 3 ESTABLISH clinical trials. Antimicrob Agents Chemother 2014; 58:7198–7204.

52. Shorr AF, Lodise TP, Corey GR, et al. Analysis of the phase 3 ESTABLISH trials of tedizolid versus linezolid in acute bacterial skin and skin structure infections. Antimicrob Agents Chemother 2015; 59:866–871.

53. Shiw KN, Barbachyn MR, et al. Ceftaroline fosamil for the treatment of patients with community-acquired pneumonia and nosocomial pneumonia data excluding patients with severe renal impairment and acute renal failure. J Antimicrob Chemother 2012; 65:47-57.

54. Farrel DJ, File TM Jr, Drusano GL. Use of pharmacokinetic/pharmacodynamic systems for antibacterial therapy options for respiratory tract infections.
62. Almer LS, Hoffrage JB, Keller EL, et al. In vitro and bactericidal activities of ABT-492, a novel fluoroquinolone, against Gram-positive and Gram-negative organisms. Antimicrob Agents Chemother 2004; 48:2771–2777.

63. Gunderson SM, Hayes RA, Quinn JP, Danziger LH. In vitro pharmacodynamic activities of ABT-492, a novel quinolone, compared to those of levofloxacin against Staphylococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. Antimicrob Agents Chemother 2004; 48:203–208.

64. Longcor J, Hopkins S, Wickler M, Laurence L. A phase 2 study of the safety and efficacy of oral delafloxacin (DLX) in community-acquired pneumonia (CAP). Presented at ID Week 2012; San Diego, California, USA. https://idsa.confex.com/idsa/.../Paper37764.html. [Accessed 12 January 2016]

65. Longcor J, Hopkins S, Wickler M, Laurence L. A phase 2 safety and efficacy study of oral delafloxacin (DLX) in subjects with acute bacterial exacerbation of chronic bronchitis (ABECB). Presented at ID Week 2012; San Diego, California, USA. https://idsa.confex.com/idsa/.../Paper37662.html. [Accessed 12 January 2016]

66. O’Riordan W, Mehra P, Manos P, et al. A randomized phase 2 study comparing two doses of delafloxacin with tigecycline in adults with complicated skin and skin-structure infections. Int J Infect Dis 2015; 30:67–73.

67. Liwir JS, Benedict MS, Thorn MD, et al. A thorough QT study to evaluate the effects of therapeutic and supratherapeutic doses of delafloxacin on cardiac repolarization. Antimicrob Agents Chemother 2015; 59:3469–3473.

68. Clark RB, Hunt DK, He M, et al. Fluorocyclines. 2. Optimization of the C-9 side-chain for antibacterial activity and oral efficacy. J Med Chem 2012; 55:606–622.

69. Sutcliffe JA, O’Brien W, Fyle C, Grossman TH. Antibacterial activity of eravacycline (TP-434), a novel fluorocycline, against hospital and community pathogens. Antimicrob Agents Chemother 2013; 57:5548–5558.

70. Abdallah M, Olafsoye O, Cortes C, et al. Activity of eravacycline against Enterobacteriaceae and Acinetobacter baumannii, including multidrug-resistant isolates, from New York City. Antimicrob Agents Chemother 2015; 59:1802–1805.

In vitro activity of eravacycline against Enterobacteriaceae and A. baumannii.

71. Bassetti M, Righi E. Eravacycline for the treatment of intra-abdominal infections. Expert Opin Investig Drugs 2014; 23:1575–1584.

72. Connors KP, Houseman ST, Pope JS, et al. Phase I, open-label, safety and pharmacokinetic study to assess bronchopulmonary disposition of intravenous eravacycline in healthy men and women. Antimicrob Agents Chemother 2014; 58:2113–2118. Phase I study supporting the potential role of eravacycline for the treatment of respiratory tract infections.

73. Grossman TH, Murphy TM, Slee AM, et al. Eravacycline (TP-434) is efficacious in animal models of infection. Antimicrob Agents Chemother 2015; 59:2567–2571.

74. Tetraphase announces top-line results from ignite2 phase 3 clinical trial of eravacycline in cUTI. https://ir.tphase.com/releasedetail.cfm?ReleaseID=930613. [Accessed 12 January 2016]