INFLUENCE OF TOXOPLASMA GONDII INFECTION ON SYMPTOMS AND SIGNS OF PREMENSTRUAL SYNDROME: A CROSS-SECTIONAL STUDY

Cosme Alvarado-Esquivel1,*, Luis Francisco Sánchez-Anguiano2, Jesús Hernández-Tinoco2, Alma Rosa Pérez-Álamos3, Yazmin del Rosario Rico-Almochantaf1, Sergio Estrada-Martínez2, Raquel Vaquera-Enriquez3, Arturo Díaz-Herrera4, Agar Ramos-Navarre4, Ada Agustina Sandoval-Carrillo2, José Manuel Salas-Pacheco2, Sandra Margarita Cerrillo-Soto4, Elizabeth Irasema Antuna-Salcido2, Oliver Liesenfeld5,**, Carlos Alberto Guido-Arreola1

1Faculty of Medicine and Nutrition, Juárez University of Durango State, Avenida Universidad S/N, 34000 Durango, Dgo, Mexico
2Institute for Scientific Research “Dr. Roberto Rivera Damm”, Juárez University of Durango State. Avenida Universidad S/N, 3400 Durango, Durango, Mexico
3Health Center No. 2 “Dr. Carlos Santamaría”, Servicios de Salud de Durango, Durango, Mexico, Talpa S/N, 34170 Durango, Mexico
4Clínica de Medicina Familiar, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Predio Canoas S/N, 34079 Durango, Mexico
5Institute for Microbiology and Hygiene, Campus Benjamin Franklin, Charité Medical School, Hindenburgdamm 27, D-12203 Berlin, Germany

Received: September 10, 2016; Accepted: October 12, 2016

Infection with Toxoplasma gondii in brain may cause some symptoms that resemble those in women with premenstrual syndrome. To determine the association of T. gondii infection with symptoms and signs of premenstrual syndrome, we examined 489 women aged 30–40 years old. Sera of participants were analyzed for the presence of anti-Toxoplasma IgG and IgM antibodies using enzyme-linked immunoassays (EIA) and T. gondii DNA by polymerase chain reaction (PCR).

Anti-T. gondii IgG antibodies were found in 38 (7.8%) of the women studied. Anti-T. gondii IgM antibodies were found in 13 (34.2%) of the 38 IgG seropositive women. Logistic regression showed two variables associated with seropositivity to T. gondii: presence of diarrhea (odds ratio [OR] = 6.10; 95% confidence interval [CI]: 1.37–27.85; P = 0.01) and weight gain (OR = 2.89; 95% CI: 1.37–6.07; P = 0.005), and two variables associated with high (>150 IU/ml) levels of IgG against T. gondii: presence of diarrhea (OR = 7.40; 95% CI: 1.79–30.46; P = 0.006) and abdominal inflammation (OR = 3.38; 95% CI: 1.13–10.10; P = 0.02). Positivity to EIA IgG and PCR was positively associated with obesity and negatively associated with joint pain by bivariate analysis.

Our study for the first time reveals a potential association of T. gondii infection with clinical manifestations of premenstrual syndrome.

Keywords: Toxoplasma gondii, seroprevalence, premenstrual syndrome, cross-sectional study

Introduction

It is estimated that about one third of humanity is infected with the protozoan parasite Toxoplasma gondii [1, 2]. Infection with T. gondii is zoonotic, and it is most frequently acquired by the ingestion of raw or undercooked meat of T. gondii-infected animals containing tissue cysts, or ingestion of food or water contaminated with T. gondii oocysts shed by cats [3, 4]. Other routes of T. gondii infection are vertical [5], organ transplantation [6], and blood transfusion [7]. Most infections with T. gondii are asymptomatic [3]. However, some infected individuals develop clinical manifestations of the disease called toxoplasmosis [5]. Individuals suffering from toxoplasmosis may have involvement of lymph nodes, eyes, or central nervous system [3, 8]. A life-threatening toxoplasmosis...
may occur in immunocompromised patients [9]. Infection with *T. gondii* has been linked to psychiatric illnesses, i.e., schizophrenia [10, 11], obsessive–compulsive disorder [10], intermittent explosive disorder [12], depression [13], and generalized anxiety disorder [14]. A number of general symptoms of toxoplasmosis have been described including headache [15, 16], pain and weakness of muscles [16–18], fatigue [16, 19, 20], difficulty concentrating [19], and confusion [13].

Premenstrual syndrome is characterized by recurrent affective, physical, and behavioral symptoms that develop during the luteal menstrual cycle and disappear within a few days of menstruation [21, 22]. A severe form of this syndrome is called premenstrual dysphoric disorder [22, 23]. Clinical manifestations of premenstrual syndrome include fatigue, impaired concentration [24, 25], confusion [24], headache [26], and depression [27]. These clinical features are also observed in toxoplasmosis. It is possible that infection with *T. gondii* in brain might cause or influence some symptoms in women during the premenstrual period. In a recent study, infection with *T. gondii* was associated with out of control feeling or overwhelmed in women suffering from premenstrual dysphoric disorder [28]. However, it is unknown whether *T. gondii* infection might influence symptoms in premenstrual syndrome. Symptoms of premenstrual syndrome might be not only hormonal but also nervous in nature. Infection with *T. gondii* in brain might be linked to clinical manifestations in premenstrual syndrome as occurred in menopause [29]. Since the link of *T. gondii* infection and clinical manifestations of premenstrual syndrome has not been investigated in the past, we investigated the association of *T. gondii* infection with clinical characteristics of premenstrual syndrome in women in the northern Mexican city of Durango.

Materials and methods

Study design and study population

We performed a cross-sectional study of 489 women who attended general consultations in two public primary healthcare centers: Centro de Salud #2 of the Secretary of Health (*n* = 327) and Clinic of Family Medicine of the Institute of Security and Social Services of State Workers (*n* = 162) in Durango City, Mexico. All women were examined from February to April 2016. Inclusion criteria for enrollment were women aged 30–40 years old who accepted to participate in the study. Socioeconomic status and occupation of the women were not restrictive criteria for enrollment. Pregnancy was an exclusion criterion. Mean age in women studied was 35.27 ± 3.47.

Clinical characteristics of women

We used a face-to-face questionnaire to record the symptoms and signs of premenstrual syndrome in the women studied. Clinical data studied were presence of irregular periods, severity of menstruation, suffering from mental illness, vaginal infections, thyroid disease, obesity, arterial hypertension, sleep problems, fatigue, memory lapses, difficulty concentrating, confusion, judgment problems, mood changes, low self-esteem, depression, guilty feeling, increase of fears, panic attacks, anxiety, tension, nervousness, irritability, aggressiveness, lack of interest in daily activities, lack of interest in social relations, out of control feeling or overwhelmed, reduced tolerance to noises and lights, dizziness, headache, migraine, allergy, breast pain, bouts of rapid heartbeat, decrease in muscle power, joint pain, low back pain, muscle tension, clumsiness, tingling extremities, electric shock sensation, bruises, painful periods, edema in ankles, hands or feet, decreased libido, increased libido, dyspareunia, abdominal bloating, gas, abdominal pain, constipation, diarrhea, nausea, abdominal inflammation, appetite disturbance, desire to eat certain food or eat a lot, weight gain, presence of acne, presence of herpes labialis, and respiratory problems.

Detection of anti-*T. gondii* antibodies

We obtained a serum sample from each woman. Sera were frozen at −20 °C until analyzed. Anti-*T. gondii* IgG antibodies were detected in sera with the commercially available enzyme immunoassay (EIA) kit “Toxoplasma IgG” (International Immuno-Diagnostics, Foster City, CA, USA). Anti-*T. gondii* IgG antibody levels were expressed as International Units (IU)/ml, and a cut off of ≥ 8 IU/ml was used for seropositivity. Sera with anti-*T. gondii* IgG antibodies were further analyzed for anti-*T. gondii* IgM antibodies by the commercially available EIA “Toxoplasma IgM” kit (Diagnostic Automation Inc., Calabasas, CA, USA). All assays were performed according to the manufacturer’s instructions.

DNA extraction and *T. gondii* polymerase chain reaction

Women with positive EIA for *T. gondii* IgG antibodies were further examined to detect *T. gondii* DNA by nested polymerase chain reaction (PCR). Extraction of DNA was performed from whole blood according to a protocol described by Iranpour and Esmailizadeh (http://www. protocol-online.org/prot/Protocols/Rapid-Extraction-of-High-Quality-DNA-from-Whole-Blood-Stored-at-4-C-for-Long-Period-4175.html). We used a PCR protocol and two pairs of primer directed against the B1 gene of *T. gondii* as described elsewhere [30]. This protocol was previously tested and showed high specificity and sensitivity: 0.01 to 0.02 fg of the target DNA in the presence of 1 μg of contaminating negative human DNA was detected by PCR [31]. PCR products were electrophoresed with agarose gels, stained with ethidium bromide, and visualized by ultraviolet transillumination.
Statistical analysis

Analysis of results was performed by using the following software: SPSS 15.0 (SPSS Inc. Chicago, Illinois), Microsoft Excel, and Epi Info 7. For calculation of the sample size, we used: a) a reference seroprevalence of 6.1% [32] as the expected frequency for the factor under study, b) 200,000 as the population size from which the sample was selected, c) a 2.2% of confidence limits, and d) a 95% confidence level. The result of the sample size calculation was 454 subjects. We assessed the association of *T. gondii* seropositivity and the clinical characteristics of women with the Pearson’s chi-squared test or the two-tailed Fisher’s exact test (when values were small). We included in the multivariate analysis only variables with a *P* value ≤0.10 obtained in the bivariate analysis. Odds ratio (OR) and 95% confidence interval (CI) were calculated by multivariate analysis using logistic regression with the Enter method. Statistical significance was set at a *P* value <0.05.

Ethical aspects

This study was approved by the Ethics Committee of the General Hospital of the Secretary of Health in Durango City, Mexico. Participation was voluntary, and the purpose and procedures of this study were explained to all participants. Furthermore, a written informed consent was obtained from each participant.

Results

Anti-*T. gondii* IgG antibodies were found in 38 (7.8%) of the 489 women studied. Of the 38 anti-*T. gondii* IgG positive women, 22 (57.9%) had IgG levels >150 IU/ml, 1 (2.6%) between 100 and 150 IU/ml, and 15 (39.5%) between 8 and 99 IU/ml. Anti-*T. gondii* IgM antibodies were found in 13 (34.2%) of the 38 IgG seropositive women. DNA of *T. gondii* was detected in six (15.8%) of the 38 women with IgG antibodies against *T. gondii*.

Seropositive women showed from four to 41 (mean: 15.1 ± 8.5) signs or symptoms of premenstrual syndrome. Seronegative women (*n* = 451) had from one to 45 (mean: 16.7 ± 9.1) signs or symptoms of premenstrual syndrome. Mean number of signs or symptoms in seropositive women was similar to that found in seronegative women (*P* = 0.28).

Bivariate analysis of clinical characteristics of premenstrual syndrome and IgG seropositivity to *T. gondii* showed ten variables with a *P* value less than 0.10: confusion, allergy, low back pain, tingling extremities, electric shock sensation, increased libido, abdominal bloating, gas, diarrhea, and weight gain. Other clinical characteristics of premenstrual syndrome showed *P* values equal to or higher than 0.10 by bivariate analysis. Table 1 shows results of bivariate analysis of a selection of clinical data of premenstrual syndrome and IgG seropositivity to *T. gondii*. Further analysis by logistic regression of variables with *P* value less than 0.10 obtained by bivariate analysis

Table 1. Results of bivariate analysis of a selection of premenstrual clinical characteristics of women and IgG seropositivity to *T. gondii*
Characteristic

Obesity
Yes
No
Arterial hypertension
Yes
No
Confusion
Yes
No
Irritability
Yes
No
Reduced tolerance to noises and lights
Yes
No
Dizziness
Yes
No
Table 1. (cont’d)

Characteristic	Women tested	Prevalence of *T. gondii* infection	*P* value	
	No.	No.	%	
Headache				
Yes	278	23	8.3	0.63
No	211	15	7.1	
Migraine				
Yes	124	7	5.6	0.30
No	365	31	8.5	
Allergy				
Yes	118	5	4.2	0.10
No	371	33	8.9	
Breast pain				
Yes	234	15	6.4	0.28
No	255	23	9.0	
Bouts of rapid heart beat				
Yes	115	5	4.3	0.11
No	373	33	8.8	
Decrease in muscle power				
Yes	176	10	5.7	0.19
No	313	28	8.9	
Joint pain				
Yes	217	13	6.0	0.23
No	270	24	8.9	
Low back pain				
Yes	308	18	5.8	0.03
No	181	20	11	
Tingling extremities				
Yes	200	10	5.0	0.05
No	289	28	9.7	
Electric shock sensation				
Yes	131	5	3.8	0.04
No	358	33	9.2	
Edema in ankles, hands, or feet				
Yes	111	7	6.3	0.49
No	375	31	8.3	
Decreased libido				
Yes	151	9	6.0	0.30
No	334	29	8.7	
Increased libido				
Yes	34	0	0.0	0.09
No	449	38	8.5	
Abdominal bloating				
Yes	108	6	5.6	0.00
No	381	32	8.4	
Gas				
Yes	30	5	16.7	0.07
No	459	33	7.2	

European Journal of Microbiology and Immunology
showed that only two variables were associated with seropositivity to *T. gondii*: presence of diarrhea (OR = 6.10; 95% CI: 1.37–27.85; *P* = 0.01) and weight gain (OR = 2.89; 95% CI: 1.37–6.07; *P* = 0.005) (Table 2).

Bivariate analysis of clinical characteristics of premenstrual syndrome and high (>150 IU/ml) IgG levels to *T. gondii* showed only six variables with a *P* value less than 0.10: low self-esteem, irritability, low back pain, tingling extremities, diarrhea, and abdominal inflammation. Further analysis by logistic regression of these variables with *P* values less than 0.10 obtained by bivariate analysis showed that two variables were associated with high levels of IgG against *T. gondii*: presence of diarrhea (OR = 7.40; 95% CI: 1.79–30.46; *P* = 0.006) and abdominal inflammation (OR = 3.38; 95% CI: 1.13–10.10; *P* = 0.02) (Table 3).

With respect to the association of premenstrual clinical manifestations and seropositivity of both IgG and IgM anti-*T. gondii*, bivariate analysis showed no significant associations, and only the variables tingling extremities and diarrhea showed borderline (*P* = 0.05) associations.

Table 1. (cont'd)

Characteristic	Women tested	Prevalence of *T. gondii* infection	*P* value	
	No.	No.	%	
Constipation				
Yes	123	6	4.9	0.16
No	366	32	8.7	
Diarrhea				
Yes	14	3	21.4	0.08
No	475	35	7.4	
Abdominal inflammation				
Yes	48	6	12.5	0.24
No	441	32	7.3	
Weight gain				
Yes	219	23	10.5	0.03
No	267	14	5.2	

Table 2. Multivariate analysis of selected premenstrual clinical characteristics of women and their association with *T. gondii* infection

Characteristic	Odds ratio	95% confidence interval	*P* value
Confusion	0.38	0.11–1.34	0.13
Allergy	0.50	0.18–1.38	0.18
Low back pain	0.48	0.23–1.02	0.05
Tingling extremities	0.78	0.33–1.86	0.58
Electric shock sensation	0.52	0.17–1.58	0.25
Abdominal bloating	0.89	0.33–2.34	0.81
Gas	2.60	0.79–8.57	0.11
Diarrhea	6.10	1.37–27.85	0.01
Weight gain	2.89	1.37–6.07	0.005

Table 3. Multivariate analysis of selected premenstrual characteristics and their association with high (>150 IU/ml) levels of IgG to *T. gondii*

Characteristic	Odds ratio	95% confidence interval	*P* value
Low self-esteem	0.58	0.19–1.74	0.33
Irritability	0.67	0.24–1.86	0.44
Low back pain	0.53	0.20–1.36	0.18
Tingling extremities	0.62	0.21–1.81	0.38
Diarrhea	7.40	1.79–30.46	0.006
Abdominal inflammation	3.38	1.13–10.10	0.02
To avoid bias and due to a small number of cases with IgM seropositivity, no further regression analysis with these variables was performed.

Concerning the results of the positivity to both IgG antibodies against *T. gondii* and DNA of *T. gondii* by PCR, women with obesity showed a significantly (*P* = 0.03) higher prevalence of *T. gondii* (5/192: 2.6%) than women without obesity (1/297: 0.3%) whereas women with joint pain showed a significantly (*P* = 0.03) lower prevalence of *T. gondii* (0/217) than women without joint pain (6/270: 2.2%).

Discussion

Premenstrual syndrome has a number of signs and symptoms also observed in toxoplasmosis. Therefore, we hypothesized that *T. gondii* infection may have an influence on clinical manifestations of premenstrual syndrome. As far as we know, the association between *T. gondii* infection and signs and symptoms of premenstrual syndrome has not been assessed yet. Therefore, this study aimed to determine whether infection with *T. gondii* was associated with clinical characteristics of premenstrual syndrome in women at reproductive age. We found that women seropositive for *T. gondii* had a similar mean number of signs or symptoms of premenstrual syndrome than seronegative women. Results suggest that infection with *T. gondii* does not influence on the number of clinical manifestations of premenstrual syndrome in general. However, logistic regression showed in particular that infection with *T. gondii* is associated with specific clinical characteristics of premenstrual syndrome. Thus, results suggest that *T. gondii* infection may influence qualitatively on clinical manifestations of premenstrual syndrome. Remarkably, both IgG seropositivity to *T. gondii* and high levels of IgG against *T. gondii* were associated with the presence of diarrhea. It is not clear why infection with *T. gondii* was associated with diarrhea during the premenstrual period.

Diarrhea is a well-known clinical sign included within the physical features of premenstrual syndrome [33]. In a Chinese study about prevalence of premenstrual syndrome in women at reproductive age, researchers found diarrhea as the fourth most frequent clinical characteristic in premenstrual syndrome just after irritation, depression, and anxiety [33]. In addition, in a prevalence study about the menstrual cycle and its effect on inflammatory bowel disease and irritable bowel syndrome, Kane et al. found that women with Crohn’s disease were more likely to report increased gastrointestinal symptoms during menstruation, being diarrhea the clinical feature reported most often [34]. In a recent study, Zhang et al. reported that Chinese women suffering from both diarrhea-predominant irritable bowel syndrome and premenstrual syndrome had more severe bowel symptoms [35]. On the other hand, infection with *T. gondii* may lead to diarrhea in humans and animals [36]. Presence of diarrhea in *T. gondii* infected individuals has been unusually reported. However, the link between infection with *T. gondii* and diarrhea in humans has been scanty studied. A case of gastric toxoplasmosis with diarrhea in a man with acquired immunodeficiency syndrome was reported [37]. Similarly, a case of toxoplasmic colitis with diarrhea where microorganisms were identified in the colonic mucosa and confirmed by immunohistochemistry was reported [38]. In animals, severe or fatal toxoplasmosis cases with diarrhea have been reported in cats [39, 40] and a valley quail [41]. It is unclear how frequent diarrhea occurs in immunocompromised and immunocompetent subjects. We may hypothesize that *T. gondii* may affect intestines of women during the premenstrual period perhaps under a hormonal influence leading to diarrhea. It is also possible that *T. gondii* causes diarrhea by affecting enteric neurons. Experiments in rats have shown that infection with *T. gondii* causes changes in myenteric neurons of the jejunum, i.e., atrophy of myenteric neurons along with increased weight gain in rats at 30 days of infection, or hypertrophy of myenteric neurons along with normal weight gain in rats at 90 days after infection [36]. Interestingly, IgG seropositivity to *T. gondii* was associated with weight gain. It is not clear why women who have gained weight had a higher seroprevalence of *T. gondii* infection that those without weight gain. Experimental infections of *T. gondii* have showed weight gain in rats after 30 days of infection [36]. In humans, *T. gondii* infection has been associated with weight gain in pregnant women [42]. In addition, both *T. gondii* seroprevalence and high IgG anti-*T. gondii* antibody levels have been associated with obesity [43]. In fact, results of the positivity to both IgG antibodies against *T. gondii* and DNA of *T. gondii* in this study showed that women with obesity had a significantly higher prevalence of *T. gondii* than women without obesity. On the other hand, women with joint pain showed a significantly lower prevalence of *T. gondii* than women without joint pain. This finding suggests that *T. gondii* was not an important factor for joint pain in the women studied.

Logistic regression analysis also showed that high levels of IgG against *T. gondii* were associated with abdominal inflammation. *T. gondii* may cause inflammation in organs and tissues in the abdomen, as observed in experimental infections in mice [44]. Therefore, the presence of this clinical feature may suggest an active immune reaction against *T. gondii* in abdomen.

Limitations of our study included small sample size of the women studied and a low prevalence of IgG, IgM, and PCR positivity. However, strengths of our study include that women were studied from two health centers of Durango City and that we used detection of DNA of *T. gondii* to increase the evidence of *T. gondii* exposure.

Conclusions

The present study for the first time points towards an association of *T. gondii* infection with clinical manifestations of premenstrual syndrome, i.e., physical symptoms. Re-
sults warrant further research of the role of *T. gondii* on clinical manifestations of premenstrual syndrome.

Competing interests

The authors declare that no competing interests exist.

Funding source

This study was financially supported by Secretary of Public Education, Mexico (Grant No. DSA/103.5/14/11311).

References

1. Dubey JP, Lindsay DS, Speer CA: Structures of *Toxoplasma gondii* tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin Microbiol Rev 11, 267–299 (1998)

2. Hill D, Dubey JP: *Toxoplasma gondii*: transmission, diagnosis and prevention. Clin Microbiol Infect 8, 634–640 (2002)

3. Montoya JG, Liesenfeld O: Toxoplasmosis. Lancet 363, 1965–1976 (2004)

4. Schlüter D, Däubener W, Scharens G, Groß U, Pleyer U, Lüder C: Animals are key to human toxoplasmosis. Int J Med Microbiol 304, 917–929 (2014)

5. Moncada PA, Montoya JG: Toxoplasmosis in the fetus and newborn: an update on prevalence, diagnosis and treatment. Expert Rev Anti Infect Ther 10, 815–828 (2012)

6. Saadatnia G, Golkar M: A review on human toxoplasmosis. Scand J Infect Dis 45, 357–361 (2013)

7. Foroutan-Rad M, Majidiani H, Dalvand S, Daryani A, Kooei W, Sakhi J, Hedayati-Rad F, Ahmadpour E: Toxoplasmosis in blood donors: a systematic review and meta-analysis. Transfus Med Rev S0887-7963, 30021–30023 (2016)

8. Harker KS, Ueno N, Lodoen MB: *Toxoplasma gondii* dissemination: a parasite’s journey through the infected host. Parasite Immunol 37, 141–149 (2015)

9. Machala L, Kodym P, Malý M, Geleneky M, Beran O, Jiřich D: Toxoplasmosis in immunocompromised patients. Epidemiol Mikrobiol Imunol 64, 59–65 (2015)

10. Fond G, Capdevielle D, Macgregor A, Attal J, Larue A, Britiner M, Ducasses D, Boulenger JP: *Toxoplasma gondii*: a potential role in the genetics of psychiatric disorders. Encephale 39, 38–43 (2013)

11. Alvarado-Esquivel C, Urbina-Alvarez JD, Estrada-Martinez S, Torres-Castroena A, Molotla-de-León G, Liesenfeld O, Dubey JP: *Toxoplasma gondii* infection and schizophrenia: a case control study in a low *Toxoplasma* seroprevalence Mexican population. Parasitol Int 60, 151–155 (2011)

12. Coccaro EF, Lee R, Groer MW, Can A, Coussons-Read M, Postolache TT: *Toxoplasma gondii* infection: relationship with aggression in psychiatric subjects. J Clin Psychiatry 77, 334–341 (2016)

13. Duffy AR, Beckie TM, Brenner LA, Beckstead JW, Seyfang A, Postolache TT, Groer MW: Relationship between *Toxoplasma gondii* and mood disturbance in women veterans. Mil Med 180, 621–625 (2015)

14. Markowitz AA, Simanek AM, Yolken RH, Galea S, Koenen KC, Chen S, Aiello AE: *Toxoplasma gondii* and anxiety disorders in a community-based sample. Brain Behav Immun 43, 192–197 (2015)

15. Prandota J: Recurrent headache as the main symptom of acquired cerebral toxoplasmosis in nonhuman immunodeficiency virus-infected subjects with no lymphadenopathy: the parasite may be responsible for the neurogenic inflammation postulated as a cause of different types of headaches. Am J Ther 14, 63–105 (2007)

16. Silva CS, Neves Ede S, Benchimol EI, Moraes DR: Postnatal acquired toxoplasmosis patients in an infectious diseases reference center. Braz J Infect Dis 12, 438–441 (2008)

17. Cuomo G, D’Abrosca V, Rizzo V, Nardiello S, La Montagna G, Gaeta GB, Valentini G: Severe polymyositis due to *Toxoplasma gondii* in an adult immunocompetent patient: a case report and review of the literature. Infection 41, 859–862 (2013)

18. Kawakami Y, Hayashi J, Fuijsaki T, Tani Y, Kashiwagi S, Yamaga S: A case of toxoplasmosis with dermatomyositis. Kansenshogaku Zasshi 69, 1312–1315 (1995)

19. Wong WK, Upton A, Thomas MG: Neuropsychiatric symptoms are common in immunocompetent adult patients with *Toxoplasma gondii* acute lymphadenitis. Scand J Infect Dis 45, 357–361 (2013)

20. Studenicová C, Ondriska F, Holková R: Seroprevalence of *Toxoplasma gondii* among pregnant women in Slovakia. Epidemiol Mikrobiol Imunol 57, 8–13 (2008)

21. Ryu A, Kim TH: Premenstrual syndrome: a mini review. Maturitas 82, 436–440 (2015)

22. Alpa P, Rodriguez C: Premenstrual syndrome and dysphoric premenstrual syndrome. Vertex 25, 370–376 (2014)

23. Maharaj S, Trevino K: A Comprehensive review of treatment options for premenstrual syndrome and premenstrual dysphoric disorder. J Psychiatr Pract 21, 334–350 (2015)

24. El-Lithy A, El-Mazny A, Sabbour A, El-Deeb A: Effect of aerobic exercise on premenstrual symptoms, haematological and hormonal parameters in young women. J Obstet Gynaecol 35, 389–392 (2015)

25. Takeda I, Imoto Y, Nagasawa H, Muroya M, Shinya M: Premenstrual syndrome and premenstrual dysphoric disorder in Japanese collegiate athletes. J Pediatr Adolesc Gyneocol 28, 215–218 (2015)

26. Bridou M, Aguerre C: Premenstrual symptomatology, somatization and physical anhedonia. Encephale 39, 432–438 (2013)

27. Yamada K: Premenstrual Dysphoric Disorder (PMDD). Seishin Shinkeigaku Zasshi 107, 292–298 (2015)

28. Alvarado-Esquivel C, Sanchez-Anguiano LF, Hernandez-Tinoco J, Perez-Alamos AR, Rico-Almochantaf Ydel R, Estrada-Martinez S, Vaquera-Enriquez R, Diaz-Herrera A, Ramos-Nevaraz A, Sandoval-Carrillo AA, Salas-Pacheco JM, Cerrillo-Soto SM, Antuna-Salcido EI, Liesenfeld O, Guido-Arreola CA: *Toxoplasma gondii* infection and premenstrual dysphoric disorder: a cross-sectional study. J Clin Med Res 8, 730–736 (2016)

29. Alvarado-Esquivel C, Sanchez-Anguiano LF, Hernandez-Tinoco J, Calzada-Torres EA, Estrada-Martinez S, Perez-Alamos AR, Vaquera-Enriquez R, Diaz-Herrera A, Segura-Moreno R, de Lourdes Guerrero-Carbajal M, Renteria-Lopez MG, Garcia IB, Rábago-Sánchez E, Liesenfeld O: Influence of *Toxoplasma gondii* infection on symptoms and signs of menopause. Eur J Microbiol Immunol (Bp) 6, 49–55 (2016)
30. Roth A, Roth B, Höffken G, Steuber S, Khalifa KI, Janitschke K: Application of the polymerase chain reaction in the diagnosis of pulmonary toxoplasmosis in immunocompromised patients. Eur J Clin Microbiol Infect Dis 11, 1177–1181 (1992)

31. Khalifa K el-S, Roth A, Roth B, Arasteh KN, Janitschke K: Value of PCR for evaluating occurrence of parasitemia in immunocompromised patients with cerebral and extracerebral toxoplasmosis. J Clin Microbiol 32, 2813–2819 (1994)

32. Alvarado-Esquivel C, Estrada-Martinez S, Pizarro-Villalobos H, Arce-Quinones M, Liesenfeld O, Dubey JP: Seroepidemiology of Toxoplasma gondii infection in general population in a northern Mexican city. J Parasitol 97, 40–43 (2011)

33. Zhao G, Wang L, Qu C: Prevalence of premenstrual syndrome in reproductive women and its influential factors. Zhonghua Fu Chan Ke Za Zhi 33, 222–224 (1998)

34. Kane SV, Sable K, Hanauer SB: The menstrual cycle and its effect on inflammatory bowel disease and irritable bowel syndrome: a prevalence study. Am J Gastroenterol 93, 1867–1872 (1998)

35. Zhang Y, Bo P, Li X: Increased incidence of bowel and psychological symptoms in Chinese female D-IBS patients with premenstrual syndrome. Gastroenterol Nurs 37, 351–359 (2014)

36. Hermès-Uliana C, Pereira-Severi LS, Luérdes RB, Franco CL, da Silva AV, Araújo EJ, Sant’Ana De M: Chronic infection with Toxoplasma gondii causes myenteric neuroplasticity of the jejunum in rats. Auton Neurosci 160, 3–8 (2011)

37. Ganji M, Tan A, Maitar M, Weldon-Linne CM, Weisenberg E, Rhone DP: Gastric toxoplasmosis in a patient with acquired immunodeficiency syndrome. A case report and review of the literature. Arch Pathol Lab Med 127, 732–734 (2003)

38. Yang M, Perez E: Disseminated toxoplasmosis as a cause of diarrhea. South Med J 88, 860–861 (1995)

39. Spycher A, Geigy C, Howard J, Posthaus H, Gendron K, Gottstein B, Debache K, Herrmann DC, Scharies G, Frey CF: Isolation and genotyping of Toxoplasma gondii causing fatal systemic toxoplasmosis in an immunocompetent 10-year-old cat. J Vet Diagn Invest 23, 104–108 (2011)

40. Dubey JP, Prowell M: Ante-mortem diagnosis, diarrhea, oocyst shedding, treatment, isolation, and genetic typing of Toxoplasma gondii associated with clinical toxoplasmosis in a naturally infected cat. J Parasitol 99, 158–160 (2013)

41. Casagrande RA, Pena HF, Cabral AD, Rolim VM, de Oliveira LG, Boabaid FM, Wouters AT, Wouters F, Cruz CE, Driemeier D: Fatal systemic toxoplasmosis in Valley quail (Calipepla californica). Int J Parasitol Parasites Wildl 4, 264–267 (2015)

42. Kaňková S, Sulc J, Flegr J: Increased pregnancy weight gain in women with latent toxoplasmosis and RhD-positivity protection against this effect. Parasitology 137, 1773–1779 (2010)

43. Reeves GM, Mazaheri S, Snitker S, Langenberg P, Giegling I, Hartmann AM, Konte B, Friedl M, Okusaga O, Groer MW, Manghe H, Weghuber D, Allison BD, Rujescu D, Postolache TT: A positive association between T. gondii seropositivity and obesity. Front Public Health 1, 73 (2013)

44. Huang B, Huang S, Chen Y, Zheng H, Shen J, Lun ZR, Wang Y, Kasper LH, Lu F: Mast cells modulate acute toxoplasmosis in murine models. PLoS One 8, e77327 (2013)