Note on the semi-continuity of the algebraic dimension.

Daniel Barlet*

07/10/16

Abstract. In this short Note we show that the direct image sheaf $R^1\pi_*(\mathcal{O}_X)$ associated to an analytic family of compact complex manifolds $\pi : \mathcal{X} \to S$ parametrized by a reduced complex space S is a locally free (coherent) sheaf of \mathcal{O}_S–modules. This result allows to improve a semi-continuity type result for the algebraic dimension of compact complex manifolds in an analytic family given in [B.15].

AMS Classification 2010. 32G05-32A20-32J10.

Key words. Analytic family of compact complex manifolds. Algebraic dimension.

Contents

1 Introduction 2
2 The result 2
3 Application 6
4 References 7

*Institut Elie Cartan, Géométrie, Université de Lorraine, CNRS UMR 7502 and Institut Universitaire de France.
1 Introduction

It is well known that for a compact complex manifold X of the Fujiki-Varouchas class C (recall that Varouches [V.89] shows that this is simply the class of compact complex manifolds which admit a Kähler modification) the number

$$h^{0,1}(X) := \dim \mathbb{C} H^1(X, \mathcal{O}_X)$$

is a topological invariant (half of the first Betti number), so it is constant in an analytic deformation inside the class C. In this short Note we prove that this number is invariant in any analytic deformation for any compact complex manifold. As an application, this allows us to improve a semi-continuity type result for the algebraic dimension of compact complex manifolds in an analytic family given in [B.15]. See the theorem 3.0.7 and its corollaries in section 3.

2 The result

Theorem 2.0.1 Let $\pi : X \to S$ be a holomorphic family of compact complex connected manifolds of dimension n parametrized by an irreducible complex space S. Then the coherent sheaf $R^1\pi_*(\mathcal{O}_X)$ on S is a locally free sheaf.

The proof will use several lemmata.

Lemma 2.0.2 Let X be a compact normal connected complex space of dimension n and let L be a holomorphic line bundle on X. Then if L and L^* have a non trivial holomorphic section, the line bundle L is holomorphically trivial.

Proof. Let σ and τ the non trivial holomorphic sections of L and L^*. Then the function $x \mapsto <\sigma(x), \tau(x)>$ is holomorphic and not identically zero. So it is a non zero constant function and we see that σ and τ cannot vanish. Now the map $L \to X \times \mathbb{C}$ given by $\xi \mapsto (\pi(\xi), \xi/\sigma(\pi(\xi)))$ is holomorphic and linear on fibres with inverse the holomorphic map given by $(x, \lambda) \mapsto \lambda.\sigma(x)$. So L is trivial. \blacksquare

We shall use this lemma in order to get the fact that if a holomorphic line bundle on a compact complex connected manifold is not holomorphically trivial, then L or L^* has no non trivial holomorphic section.

Proposition 2.0.3 Let M be a reduced complex space and $(X_s)_{s \in S}$ an analytic family of compact n-cycles in M parametrized by a closed irreducible complex subset S of $\mathcal{C}_n(M)$ the space of compact n-cycles in M. Assume that each cycle in this family is reduced, normal and connected. Let \mathcal{L} be a holomorphic line bundle on M. Then the subset Σ of points in S such that the restriction $\mathcal{L}|_{X_s}$ is not holomorphically trivial is an open subset in S. 2
Let \(f : \mathcal{L} \to M \) be the projection. Then the direct image of compact \(n \)-cycles \(f_* : \mathcal{C}_n(\mathcal{L}) \to \mathcal{C}_n(M) \) is a holomorphic map (see [B-M 1] chapter IV). We can restrict this map to the subset \(Z \subset \mathcal{C}_n(\mathcal{L}) \) defined by the condition that the cycles are connected and that the direct image by \(f \) of a cycle \(C \) in \(Z \) is a cycle \(X_s \) for some \(s \in S \). These two conditions are analytic and closed thanks to the theorem IV 7.2.1 of [B-M 1] and to the assumption that \(S \) is a closed analytic subset in \(\mathcal{C}_n(M) \).

Remark that, as we assume that \(X_s \) is normal and connected, a compact connected \(n \)-cycle \(C \) in \(\mathcal{L} \) with direct image \(X_s \) by the projection \(f \) is a section of the line bundle \(\mathcal{L}|_{X_s} \).

Note that we have a closed embedding \(j : S \to Z \) which associates to \(s \in S \) the reduced \(n \)-cycle in \(Z \) equal to the zero section of the line bundle \(\mathcal{L}|_{X_s} \).

Now if the line bundle \(\mathcal{L}|_{X_s} \) has a non trivial holomorphic section the cycle \(j(s) \) can move in \(Z \cap f_*^{-1}(j(s)) \) by homotheties in an analytic 1-dimensional family containing \(j(s) \). So we have

\[
\dim_{j(s)}(Z \cap f_*^{-1}(j(s))) \geq 1.
\]

But the subset \(W \) of points \(w \) in \(Z \) such the inequality \(\dim_{w}[Z \cap f_*^{-1}(f_*(w))] \geq 1 \) is a closed analytic subset in \(Z \). So the subset \(\Sigma_0 := j^{-1}(W) \) is a closed analytic subset in \(S \). Then the complement of \(\Sigma_0 \) is an open set in \(S \). So if \(L|_{X_0} \) has no non trivial holomorphic section, for \(s \) in this open set, \(L|_{X_s} \) is not holomorphically trivial. If \(L^* \) has no non trivial holomorphic section we obtain in the same way an open set around 0 such that, for any \(s \) in it, \(L|_{X_s} \) is not holomorphically trivial. The case when \(L \) and \(L^* \) have both a non trivial holomorphic section is excluded by the lemma 2.0.2.

Lemma 2.0.4 Let \(\pi : \mathcal{X} \to \Delta \) a proper holomorphic submersion of a complex manifold \(\mathcal{X} \) onto an open disc \(\Delta \) with center 0 in \(\mathbb{C} \), with \(n \)-dimensional connected fibres. Let \(L \) be a line bundle on \(\mathcal{X} \) and assume that \(L \) is holomorphically trivial on each \(X_s, \forall s \in \Delta \). Then \(L \) is trivial on \(\mathcal{X} \).

Proof. Consider the following data : an open disc \(\Delta_1 \) in \(\Delta \), an open set \(\mathcal{U} \) in \(\pi^{-1}(\Delta_1) \), a holomorphic trivialization \(t : L|_{\mathcal{U}} \to \mathcal{U} \times \mathbb{C} \) and a holomorphic section \(\gamma : \Delta_1 \to \mathcal{U} \) of \(\pi \). Of course, choosing first a local trivialization of \(L \) on an open set in \(\mathcal{X} \) we can find such data with any point in \(\Delta \) as the center of the (small) disc \(\Delta_1 \). Let \(Z \subset \mathcal{C}_n(L) \) the analytic subset of connected compact \(n \)-cycles \(C \) in \(L \) such the direct image cycle \(f_* (C) \) of \(C \) by the projection \(f : L \to \mathcal{X} \) is one of the fibres of \(\pi \).

So we have a holomorphic map \(g : Z \to \Delta \) defined by \(f_*(C) = X_{g(C)} \). Denote now by \(Z_1 \) the subset in \(Z \) of cycles \(C \in g^{-1}(\Delta_1) \) such that the cycle \(L_*(C \cap f^{-1}(\mathcal{U})) \) contains the point \((\gamma(g(C)), 1) \in \mathcal{U} \times \mathbb{C} \). We want to prove the following assertions:

1) The subset \(Z_1 \) is a closed analytic subset of the open set \(g^{-1}(\Delta_1) \subset Z \).

2) The projection on \(L|_{\pi^{-1}(\Delta_1)} \) of the graph \(\Gamma_1 \subset Z_1 \times L|_{\pi^{-1}(\Delta_1)} \) of the analytic family of compact \(n \)-cycles in \(L \) parametrized by \(Z_1 \) is a closed embedding of a
complex sub-manifold in \(L_{\pi^{-1}(\Delta_1)} \) which is disjoint of the zero section and gives a holomorphic section of \(L_{|\pi^{-1}(\Delta_1)} \).

As a consequence, we shall obtain that \(L_{\pi^{-1}(\Delta_1)} \) is trivial on \(\pi^{-1}(\Delta_1) \). And, as this is true for any given point \(s_1 \) in \(\Delta \) and a small enough open disc \(\Delta_1 \) with center \(s_1 \), the conclusion will follow because \(H^1(\Delta, \mathcal{O}_\Delta) = \{1\} \).

Let us prove the assertion 1). As the condition for \(C \in g^{-1}(\Delta_1) \) to be in \(Z_1 \) is given by the fact that the point \((C, (\gamma(g(C)), 1))\) is in the image of the graph \(\Gamma_1 \cap (Z_1 \times L_\mu) \) by the proper embedding \(\text{id}_{Z_1} \times t \), this is clearly a closed analytic condition as \(g, \gamma \) and \(t \) are holomorphic.

To prove the assertion 2), remark first that each \(C \in Z_1 \) is the image of a holomorphic section of \(L_{|\pi^{-1}(\Delta_1)} \) which does not vanishes at the point \(\gamma(g(C)) \). As \(L_{|\pi^{-1}(\Delta_1)} \) is trivial, this section never vanishes on \(X_{g(C)} \). Remark also that \(g \) is injective in \(Z_1 \) because if \(g(C) = g(C') := s \) then \(C \) and \(C' \) in \(Z_1 \) are the images of two holomorphic sections of the trivial line bundle \(L_{|X_\ast} \) and take the same value at the point \(\gamma(s) \). So \(C = C' \) and \(g : Z_1 \rightarrow \Delta_1 \) is an isomorphism. So the analytic family of compact cycle \((C)_{C \in Z_1} \) gives exactly one holomorphic never vanishing section of \(L_{|X_\ast} \) for each \(s \in \Delta_1 \). This is enough to prove our second assertion as the graph of this analytic family is a closed analytic subset in \(L_{\pi^{-1}(\Delta_1)} \) disjoint from the zero section and which is one to one on \(\pi^{-1}(\Delta_1) \) by the projection of \(L \) on \(\mathcal{X} \).

Lemma 2.0.5 Let \(\pi : \mathcal{X} \rightarrow \Delta \) a proper holomorphic submersion of a complex manifold \(\mathcal{X} \) onto an open disc \(\Delta \) with center 0 in \(\mathbb{C} \), with \(n \)-dimensional connected fibres. Consider the injection of sheaves on \(\Delta \)

\[
j : R^1\pi_*\mathcal{O}_\Delta \rightarrow R^1\pi_*\mathcal{O}_\mathcal{X}.
\]

The following properties are equivalent:

1) Any section \(\sigma \) with support \(\{0\} \) of the sheaf \(R^1\pi_*\mathcal{O}_\mathcal{X} \) vanishes.

2) Any section \(\sigma \) of the sheaf \(R^1\pi_*\mathcal{O}_\mathcal{X} \) such its restriction to \(\Delta^* \) is in the image of the map \(j : H^0(\Delta^*, R^1\pi_*\mathcal{O}_\mathcal{X}) \rightarrow H^0(\Delta^*, R^1\pi_*\mathcal{O}_\mathcal{X}) \) is also in the image of the map \(j : H^0(\Delta, R^1\pi_*\mathcal{O}_\Delta) \rightarrow H^0(\Delta, R^1\pi_*\mathcal{O}_\mathcal{X}) \).

3) Any topologically trivial line bundle on \(\mathcal{X} \) which induces on \(X_0 \) a line bundle which is holomorphically trivial on each \(\mathcal{X}_s \) for any \(s \neq 0 \) near-by enough 0 induces a line bundle which is holomorphically trivial on \(X_0 \).

Proof. 1) \(\Rightarrow \) 2). Take any section \(\sigma \) of the sheaf \(R^1\pi_*\mathcal{O}_\mathcal{X} \) such its restriction to \(\Delta^* \) is in the image of \(j : H^0(\Delta^*, R^1\pi_*\mathcal{O}_\mathcal{X}) \rightarrow H^0(\Delta^*, R^1\pi_*\mathcal{O}_\mathcal{X}) \). As \(R^1\pi_*\mathcal{O}_\mathcal{X} \) is a constant sheaf on \(\Delta \) we have \(H^0(\Delta^*, R^1\pi_*\mathcal{O}_\mathcal{X}) = H^0(\Delta, R^1\pi_*\mathcal{O}_\Delta) \). So there exists
\(\tau \in H^0(\Delta, R^1\pi_*\mathcal{Z}) \) such that \(\sigma - j(\tau) \) vanishes on \(\Delta^* \). Then by 1) we have \(\sigma = j(\tau) \).

2) \(\Rightarrow \) 3). As \(\Delta \) is Stein and contractible and we know that for each \(i \geq 0 \) the sheaves \(R^i\pi_*\mathcal{O}_\mathcal{X} \) are coherent and the sheaves \(R^i\pi_*\mathcal{Z} \) are constant sheaves, the Leray spectral sequence gives natural isomorphisms \(H^i(\mathcal{X}, \mathcal{O}_\mathcal{X}) \cong H^0(\Delta, R^i\pi_*\mathcal{O}_\mathcal{X}) \) and \(H^i(\mathcal{X}, \mathcal{Z}) \cong H^0(\Delta, R^i\pi_*\mathcal{Z}) \) for each \(i \geq 0 \). Then we have:

\[
\text{Coker} j := H^0(\Delta, R^1\pi_*\mathcal{O}_\mathcal{X}) / j(H^0(\Delta, R^1\pi_*\mathcal{Z})) \cong H^1(\mathcal{X}, \mathcal{O}_\mathcal{X}) / H^1(\mathcal{X}, \mathcal{Z})
\]

which classifies the holomorphic line bundles on \(\mathcal{X} \) which are topologically trivial, up to isomorphism. So the isomorphism class of a given topologically trivial line bundle \(L \) is defined by the image in \(\text{Coker} j \) of some \(\sigma \in H^0(\Delta, R^1\pi_*\mathcal{O}_\mathcal{X}) \).

Now take a line bundle \(L \) on \(\mathcal{X} \) which is topologically trivial. Assume that \(L \) is holomorphically trivial on each \(X_s \) for \(s \in \Delta^* \). So, thanks to the lemma 2.0.4, this implies that the section \(\sigma \) corresponding to the isomorphism class of \(L \) is such that \(\sigma|_{\Delta^*} \) is in \(j(H^0(\Delta^*, R^1\pi_*\mathcal{Z})) \). So by 2) we obtain that \(\sigma \) gives 0 in \(\text{Coker} j \) and then the line bundle \(L \) is holomorphically trivial. So the restriction to \(X_0 \) is holomorphically trivial and 3) is proved.

3) \(\Rightarrow \) 1). If \(\sigma \in H^0(\Delta, R^1\pi_*\mathcal{O}_\mathcal{X}) \) vanishes on \(\Delta^* \) this implies that the corresponding line bundle on \(\mathcal{X} \) is trivial on each \(X_s, \forall s \in \Delta^* \). If \(L_{X_0} \) is also trivial, then the lemma 2.0.4 implies that \(L \) is trivial on \(\mathcal{X} \). So there exists some \(\tau \in H^0(\Delta, R^1\pi_*\mathcal{Z}) \) such that \(\sigma = j(\tau) \). But as \(j \) is injective and as \(R^1\pi_*\mathcal{Z} \) is a constant sheaf, we have \(\tau = 0 \) and then \(\sigma = 0 \). So if \(\sigma \neq 0 \) the restriction \(L|_{X_0} \) cannot be holomorphically trivial and then 3) gives a contradiction.

\[\boxed{\text{Corollary 2.0.6} \quad \text{Let} \ \pi : \mathcal{X} \to \Delta \ \text{a proper holomorphic submersion of a complex manifold} \ \mathcal{X} \ \text{onto an open disc} \ \Delta \ \text{with center} \ 0 \ \text{in} \ \mathbb{C}, \ \text{with} \ n-\text{dimensional connected fibres. Then the coherent sheaf} \ R^1\pi_*\mathcal{O}_\mathcal{X} \ \text{is locally free.}}\]

Proof. It is enough to prove that the coherent sheaf \(R^1\pi_*\mathcal{O}_\mathcal{X} \) has no torsion so that the property 1) in the previous lemma is satisfied. But he property 3) of the previous lemma is given by the proposition 2.0.3.

Proof of the Theorem 2.0.1. It is enough to prove that this sheaf is \(S-\text{flat} \). But the classical “curve test” for flatness is clearly satisfied thanks to the corollary 2.0.6.

\(^1\)A geometric way to get this is to consider the linear space associated to this coherent sheaf: then on any curve it has constant rank by corollary 2.0.6 so it is a vector bundle and the sheaf is locally free.
3 Application

As an immediate consequence of the theorem 2.0.1 we can suppress the hypothesis on the continuity of the $h^{0,1}(s)$ in the theorem 1.0.3 of [B.15] and obtain the following semi-continuity result for the algebraic dimension.

Theorem 3.0.7 Let $\pi : X \to S$ be a holomorphic family of compact complex connected manifolds of dimension n parametrized by an irreducible complex space S. Assume that there exists a dense Zariski open set S' in S such that for each s in S' the manifold X_s satisfies the $\partial \bar{\partial}$–lemma\(^2\) and such that there exists a (smooth) relative sG-form for the family $\pi|_{S'} : X|_{S'} \to S'$.

Then if $a := \inf_{s \in S'} [a(X_s)]$ we have $a(X_s) \geq a$ for each $s \in S$. ■

Remark. A simpler statement (see remark 3 following the theorem 1.0.3 in [B.15]) which is a special case of the previous one, is obtained by assuming that the restriction of π to $\pi^{-1}(S')$ is a weakly kähler morphism in the sense of F. Campana (see for instance [C.81]); this implies the $\partial \bar{\partial}$–lemma assumption and the existence of a smooth relative sG-form for the restriction of π over S'. □

As it is not so easy to show that a proper map is weakly Kähler (and we need less : each fibre in S' has a sG-form and satisfies the $\partial \bar{\partial}$–lemma is enough) let me recall the following results from [B.15]

Lemma 3.0.8 Let $\pi : X \to S$ be a proper holomorphic family of compact connected complex manifolds of dimension n parametrized by an irreducible complex space S. Assume that for a point $s_0 \in S$, the manifold $X_{s_0} := \pi^{-1}(s_0)$ has a sG-form ω_0. Then we can find a small open neighbourhood S' of s_0 in S and a relative sG-form ω on $\pi^{-1}(S')$ inducing ω_0 on X_{s_0}.

Theorem 3.0.9 Let $\pi : X \to S$ be a holomorphic family of compact complex connected manifolds of dimension n parametrized by an irreducible complex space S. Let s_0 in S such that the manifold X_{s_0} admits a (smooth) sG-form. Then there exists an open neighbourhood S_0 of s_0, a countable union Σ of closed irreducible analytic subsets in S_0 with no interior point and a non negative integer a such that

(i) For any $s \in S_0$ we have $a(X_s) \geq a$.

(ii) For any $s \in S_0 \setminus \Sigma$ we have $a(X_s) = a$.

Then the following corollaries are immediate from the theorem 3.0.7 and 3.0.9

\(^2\)See for instance [Va.86].
Corollary 3.0.10 Let $\pi : \mathcal{X} \to S$ be a holomorphic family of compact complex connected manifolds of dimension n parametrized by an irreducible complex space S. Assume that there exists a dense Zariski open set S' in S such that for each s in S' the manifold X_s is Kähler. Then if $a := \inf_{s \in S'} [a(X_s)]$ we have $a(X_s) \geq a$ for each $s \in S$.

Corollary 3.0.11 Let $\pi : \mathcal{X} \to S$ be a holomorphic family of compact complex connected manifolds of dimension n parametrized by an irreducible complex space S. Assume that there exists a dense Zariski open set S' in S such that for each s in S' the manifold X_s is projective. Then for each $s \in S$ the manifold X_s is Moishezon.

We conclude by noticing that there exists an analytic family of smooth complex compact surfaces of the class VII (not Kähler) parametrized by a disc Δ such that the central fibre has algebraic dimension 0 and all other fibres have algebraic dimension 1. See [F-P.09].

This shows that in our theorem 3.0.7 some Kähler type assumption on the general fibre X_s cannot be avoided in order that the “general” algebraic dimension gives a lower bound for the algebraic dimensions of all fibres.

4 References

- [B.15] Barlet, D. *Two semi-continuity results for the Algebraic Dimension of Compact Complex Manifolds* J. Math. Sci. Univ. Tokyo 22 (2015), pp.1-16.
- [B-M 1] Barlet, D. et Magnússon, J. *Cycles analytiques complexes I, Théorèmes de préparation des cycles*, Cours Spécialisés 22, Société Mathématique de France, Paris 2014.
- [C.81] Campana, F. *Réduction algébrique d’un morphisme faiblement Kählérien propre et applications*, Math. Ann. 256 (1981), no. 2, pp.157-189.
- [F-P.09] Fujiki, A. and Pontecorvo, M. *Non-upper continuity of algebraic dimension for families of compact complex manifolds* arXiv: 0903.4232v2 [math. AG] .
- [V.86] Varouchas, J. *Propriétés cohomologiques d’une classe de variétés analytiques complexes compactes*, Séminaire d’analyse P. Lelong-P. Dolbeault-H. Skoda, 1983/1984, pp.233-243, Lecture Notes in Math., 1198, Springer, Berlin, 1986.
- [Va.89] Varouchas, J. *Kähler spaces and proper open morphisms*, Math. Ann. 283 (1989), no. 1, pp.13-52.