Chemical kinetic isotope fractionation of mercury during abiotic methylation of Hg(II) by methylcobalamin in aqueous chloride media

María Jiménez-Moreno, Vincent Perrot, Vladimir Epov, Mathilde Monperrus, David Amouroux

To cite this version:

María Jiménez-Moreno, Vincent Perrot, Vladimir Epov, Mathilde Monperrus, David Amouroux. Chemical kinetic isotope fractionation of mercury during abiotic methylation of Hg(II) by methylcobalamin in aqueous chloride media. Chemical Geology, Elsevier, 2013, 336, pp.26-36. 10.1016/j.chemgeo.2012.08.029 . hal-01982216

HAL Id: hal-01982216
https://hal.archives-ouvertes.fr/hal-01982216
Submitted on 26 Aug 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Chemical kinetic isotope fractionation of mercury during abiotic methylation of Hg(II) by methylcobalamin in aqueous chloride media

María Jiménez-Moreno a,b,⁎, Vincent Perrot a,⁎⁎, Vladimir N. Epova a, Mathilde Monperrusa, David Amouroux a

a Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l’Environnement et les Matériaux, CNRS-UPPA-UMR-5254, Hélioparc, 2 Avenue du Président Pierre Angot, F-64053 Pau, France
b Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III s/n, E-45071 Toledo, Spain

Mercury (Hg) is assumed to be predominantly methylated by microorganisms in the environment. However, the mechanisms and extent of abiotic methylation are poorly appreciated. The understanding of the mechanisms leading to abiotic methylation and demethylation in the aquatic environment is of special concern since methylmercury (MeHg) biomagnifies in the food web. Bioaccumulating organisms have also been found to preserve specific Hg isotopic signatures that provide direct insight into aquatic Hg transformations. In this study we investigated the influence of chloride on the magnitude of Hg isotope fractionation during abiotic methylation of inorganic Hg (Hg(II)) using methylcobalamin as methyl donor compound. Coupling of gas chromatography with multi-collector inductively coupled plasma mass spectrometry has allowed to determine simultaneously isotopic ratios of inorganic and methyl-Hg species. Kinetic experiments demonstrated that the presence of chloride not only slowed the chemical alkylation of Hg(II) by methylcobalamin, but also decreased the extent of the methylation, which it is especially significant under visible light conditions due to the enhancement of MeHg photodecomposition. Abiotic methylation of Hg(II) by methylcobalamin in the presence of chloride caused significant Hg mass-dependent isotope fractionation (MDF) for both Hg(II) substrate (Δ202Hg(II) from −0.74‰ to 2.48‰) and produced MeHg (Δ202MeHg from −1.44‰ to 0.38‰) both under dark and visible light conditions. The value of this MDF under such saline conditions was higher than that previously reported (Δ202MeHg from −0.73‰ to 0.09‰) in the absence of chlo-ride and appeared mainly related to inorganic Hg speciation in solution, which is predominantly mercuric chloro-complexes (i.e. HgCl₂−). Different isotopic signatures were observed for the different Hg species at the same time of reaction for either dark or visible light (450–650 nm wavelengths) conditions. However, no significant mass-independent fractionation (MIF) was induced under any conditions within the analytical uncertainties (−0.17±0.31 ‰ for 202Hg; 0.17±0.28‰), suggesting that photo-induced demethylation does not always involve MIF. These results also suggest that methylation by methylcobalamin can be an experimental model to study Hg isotope fractionation extent during elementary reaction of methyl transfer in biotic systems.

1. Introduction

Methylmercury (MeHg) is the most hazardous compound among mercury (Hg) species due to its ability to bioaccumulate in aquatic biota, reaching higher levels than recommended values in top predators of both marine and freshwater environments. The net production of MeHg in aquatic ecosystems is closely dependent on the environmental conditions, such as presence of methylating microorganisms, temperature, pH, organic matter, redox conditions, or salinity, which influence the equilibrium between methylation and demethylation pathways (Ullrich et al., 2001). Understanding bioaccumulation of MeHg in aquatic food chains requires differentiation between biotic and abiotic pathways that lead to its production and degradation. Microorganisms such as sulphate-reducing or iron-reducing bacteria are known to be widely involved both in the methylation of inorganic Hg (Hg(II)) and demethylation of MeHg (Compeau and Bartha, 1984; Compeau and Bartha, 1985) in aquatic ecosystems. On the other hand, chemical abiotic methylation, including methylation by compounds released to the environment by biotic processes, is supposed to be a relevant process which can occur in the water column with the presence of methyl donor compounds such as methylcobalamin,
methyl iodide or methyltin compounds (Thayer, 1989; Celo et al.,
2006). In this context, methylcobalamin (MeCo), a naturally occur-
rning coenzyme of vitamin B12, plays an important role in the environ-
ment since it can be considered as one of the main potential methyl
donors. It is responsible for the biological methylation of mercury
leading to highly toxic compounds such as MeHg (Schneider and
Stroinski, 1987; Thayer, 1989; Choi and Bartha, 1993).

Though Hg methylation by MeCo in the natural environment is
usually a result of enzymatic or chemical transfer of a methyl carban-
ion to Hg(II) species in either aquated, ionic or complexed forms
(Craig and Moreton, 1985), further studies have demonstrated that
MeCo is also capable of transferring a methyl carbanion to the mercur-
ic ion in absence of enzymes in aqueous abiotic systems (Bertilsson
and Neujahr, 1971; De Simone et al., 1973; Celo et al., 2006; Chen et
al., 2007). The transfer of the methyl group requires its activation
which can be carried out by the metal ion itself or by a system of
two metal ions (Wood and Fanchiang, 1979). Nevertheless, the key
step in the process of methylation seems to be the cleavage of the
Co—C bond which can be broken under different conditions to give a
carbanion (CH₃⁻), a radical (CH₃) or a carbonium ion (CH₃⁺)
(Ridley et al., 1977; Craig and Morton, 1978; Schneider and
Stroinski, 1987). Based on both structural and kinetic studies, differ-
ent mechanisms such as electrophilic or nucleophilic attacks, free
radical attack, oxidative cleavage or the so-called redox switch mech-
anism have been proposed for the methyl transfer from MeCo to
metal ions (Wood and Fanchiang, 1979; Schneider and Stroinski,
1987). Thus, the transmethylation reactions involving MeCo as methyl-
ylating agent can proceed by different mechanisms depending on the
chemical properties of the metal compound. In the case of the chemi-
ical methylation of Hg, the heterolysis of the Co—C bond is likely
to occur during electrophilic attack by mercuric ion producing
MeHg and aquocobalamin as the reaction products (Bertilsson
and Neujahr, 1971; De Simone et al., 1973).

Over the last decade advances in Hg stable isotope geochemistry
have demonstrated meaningful variations in natural Hg isotope com-
position and highlighted the potential for tracing sources and quanti-
fying Hg transformations (Bergquist and Blum, 2007). Significant
variations in stable isotope ratios of Hg in natural samples has been
reported in several studies (Bergquist and Blum, 2007; Biswas et al.,
2008; Jackson et al., 2008; Smith et al., 2008; Perrot et al., 2010).
Whereas most migration pathways and chemical transformations of
Hg compounds in the environment only displayed mass-dependent
fractionation of Hg isotopes (Kritee et al., 2007; Zheng et al., 2007;
Kritee et al., 2008; Foucher et al., 2009; Kritee et al., 2009;
Rodriguez-Gonzalez et al., 2009; Yang and Sturgeon, 2009), other bio-
geochemical processes can lead to both mass-dependent fractiona-
tion (MDF) of Hg isotopes and mass-independent fractionation
(MIF) of the odd-mass isotopes (Bergquist and Blum, 2007; Jackson
et al., 2008; Estrade et al., 2009b). Hence, new insights on isotopic
data offer valuable information on the physicochemical mechanisms
that distribute Hg species. However, the ability to meaningfully inter-
pret and use Hg isotope data hinges upon precise determination of
isotope ratios in representative samples and quantification of the
magnitude of variations in isotopic ratios during individual biotic and
abiotic transformations (Kritee et al., 2009). Recent develop-
ments in multi-collector inductively coupled plasma mass spectrom-
etry (MC-ICP-MS) have brought a new dimension to this field
(Albarède et al., 2004; Foucher and Hintelmann, 2006). Additionally,
the coupling of gas chromatography with MC-ICP-MS has enabled to
determine simultaneously isotopic ratios of the different Hg species
as reported in previous studies (Krupp and Donard, 2005; Epov et al.,
2008; Rodriguez-Gonzalez et al., 2009; Epov et al., 2010).

This work was aimed at assessing the extent of isotope frac-
tionation of Hg species during abiotic methylation of Hg(II) by
MeCo under seawater chloride concentration (0.5 M). Not only Hg
speciation but also the magnitude and rate of methylation and
demethylation reactions were evaluated. Photodecomposition of
MeHg, for which the rate seems to be dependent on the binding li-
gands (Zhang and Hsu-Kim, 2010), is supposed to enhance not only
MDF but also MIF (Bergquist and Blum, 2007; Malinovsky et al.,
2010). The visible light effect at wavelength of 450–650 nm on the in-
cubations of Hg(II) with MeCo in chloride medium was also assessed.
We also estimate MeCo as a good candidate to investigate the ele-
mentary methylation reaction taking place in biota through the carban-
ion transfer mechanism, similarly to other biogenic methylation
agents.

2. Materials and methods

2.1. Reagents and standards

Stock solutions of Hg(II) and MeHg were prepared by diluting a standard reference material NIST SRM-3133 (Hg standard solution of
10,000 mg L⁻¹) or by dissolving methylmercury chloride (Strem
Chemicals, USA) in methanol (Sigma Aldrich, France), respectively.
Working standard solutions were prepared daily by appropriate dilu-
tion of the stock solutions in 1% HCl and were stored at 4 °C until use.
Stock solution of ¹⁹⁹HgCl₂ was prepared by dissolving ¹⁹⁹HgO (Oak
Ridge National Laboratory, USA) in HCl (12 mol L⁻¹). ²⁰¹HgMeHg was
synthesized from methylcobalamin and ²⁰¹HgCl₁ obtained from Oak
Ridge National Laboratory (USA) according to the procedure de-
scribed elsewhere (Rodriguez Martin-Doimeadios et al., 2002). Hg
species were derivatized using sodium tetraethyl- or tetrapropyl-
borate solutions prepared daily by dissolving NaBEt₄ or NaBPr₄
(Merseburger Spezialchemikalien, Germany) in deionized water.

All the reagents (MeCo, acetic acid, sodium acetate, sodium chlo-
ride) used for the incubation experiments were ultrapure quality con-
trolled for Hg concentration whereas organic solvents were HPLC
grade. Trace metal grade acids (HNO₃ and HCl) from Fisher Scientifi-
c (Illkirch, France) were used for the preparation of all the samples,
standards and blanks. All solutions were prepared using ultrapure
water (18 MΩ cm, Millipore).

2.2. Experimental design

The abiotic methylation experiments were performed in 35 mL
headspace Pyrex glass vials covered by PTFE/silicone septa (Supelco)
and sealed with aluminium cap to prevent any evasion of Hg species.
The vials were precleaned with 10% HNO₃ and 10% HCl solutions and
finally rinsed with ultrapure water. The incubations in the dark were
conducted by covering the vial with aluminium foil whereas the pho-
tochemical incubations were carried out irradiating the samples with
visible light (at 50 cm of 123.5 μW cm⁻² as total irradiance and 450–650
nm wavelength fluorescent tube). An experimental set-up of the
experiments is presented in Fig. S-1. The optimal experimental condi-
tions of pH, temperature and initial concentration and ratios of
reagents were previously established in preliminary tests (see Sup-
lementary Material for more information).

Solution of Hg(II) (prepared by diluting SRM NIST-3133 reference
Hg standard solution) with initial concentration of 3.5 mg L⁻¹ was
incubated during 48 h with MeCo, which was added in a large excess
(MeCo/Hg(II) molar ratio of 10). The incubation was performed at
room temperature (~20 °C) and pH 4.0 controlled by 0.1 M acetate
buffer. In chloride experiments, the salinity of the medium was ad-
dusted close to marine conditions (~0.5 M of chloride) by adding so-
land chloride. Kinetic experiments were conducted for over 48 h so that
the aliquots of 4 μL (for Hg species quantification analysis) and
120 μL (for measurement of isotopic ratios) were subsampled at dif-
fent incubation times (0, 0.15, 1, 2, 4, 8, 24 and 48 h). Sampling of
 aliquots was carried out with cleaned gas-tight syringes. The exper-
imental vial initially contained 35 mL of reacting solution so that the
reaction started with zero headspace. After each sampling step, the
volume of solution slightly decreased and gas phase concurrently increased. Thus, gas phase was also sampled after 4 h of reaction and analyzed for Hg concentration of eventual volatile Hg species generated. Nevertheless, the found total Hg(0) concentrations regarding Hg(0) present in both gas phase and reaction medium were lower than 10% of total Hg in any case.

2.3. Analytical procedures

2.3.1. Quantification of Hg species

At the end of the incubation, Hg species were analyzed in the abiotic methylation experiments at different conditions (i.e. absence or presence of chloride and/or incubation in dark or visible light conditions). Thus, the aliquots of 4 μL sampled from the reaction medium were immediately added to 5 mL of 0.1 M acetate buffer (pH = 3.9) and extracted into 4 mL of iso-octane (2,2,4-trimethylpentane) after derivatization with 500 μL of 2% NaBPr a. The organic phase was finally analyzed by gas chromatography (GC Trace, ThermoFisher) coupled with inductively coupled plasma mass spectrometry (ICPMS X2 series, ThermoFisher) (Rodriguez Martin-Doimeadios et al., 2002; Monperrus et al., 2004). In order to control accuracy of external calibration and inter-species transformations during analytical procedures, some samples were spiked with 199Hg(II) and 202MeHg before the derivatization step following an isotopic dilution technique described in a previous work (Monperrus et al., 2005). In some cases (~20%), Hg species mass balance was only slightly higher than 70%. These low recoveries have been attributed to the error in the volume of derivatized sample (4 μL), adsorption of Hg(II) complexes on the vials, and/or possible degassing of eventual Hg0 generated by reduction of Hg(II) through the septum.

2.3.2. Determination of species-specific Hg isotope fractionation

Simultaneous determination of Hg species isotopic ratios in the same sample was performed by coupling of gas chromatography (GC Focus, ThermoFisher) and multicollector ICP-MS (Nu Plasma HR, Nu Instrument). Device configuration, parameters and data treatment method for these simultaneous measurements of multiple species-specific isotopic ratios of Hg were described in detail in previous publications (Epov et al., 2008, 2010) and also in the Supplementary Material (Table ST-1, Figs. S-2 and S-3).

Sampling derivatization prior to injection into GC-MC-ICPMS followed the same protocol used for Hg species quantification but hexane was used as organic solvent. The volume of the derivatized sample was higher than for quantification (120 μL) in order to have a transient signal suitable for precise and accurate isotopic ratios measurements (highest peak intensity from 0.5 to 5 V). NIST SRM-997 thallium was introduced simultaneously by nebulization to express results as delta notation (i.e. δHg(II) or δMeHg) instead of the δHg(II)/Hg species notation.

Deviation from the MDF line for the odd 199Hg and 201Hg isotopes is expressed using capital delta notation (Δ), as suggested by Blum and Bergquist (2007), according to the following equations:

$$\Delta^{199}\text{Hg} = \delta^{199}\text{Hg} - \delta^{202}\text{Hg} \times 0.252$$

$$\Delta^{201}\text{Hg} = \delta^{201}\text{Hg} - \delta^{202}\text{Hg} \times 0.752$$

Uncertainties for delta values were calculated using the interval of two standard deviations (2SD typical errors) for each sample measured in triplicate. Accuracy and precision of the method for the three weeks session analysis were given by measurements of secondary standards with different isotopic composition, i.e. RL24H (δ202Hg = 2.85 ± 0.37%, 2SD, n = 13) and F65A (δ202Hg = −3.62 ± 0.28%, 2SD, n = 17). The measured values were in the range of previously reported isotopic compositions (Estrade et al., 2009a; Epov et al., 2010). Additionally, in order to interpret carefully the experimental data set, measurements of isotope 199Hg were not taken into account in the following discussion because of accidental cross-contamination occurred for several samples (about 20% of the dataset) by isotopically-enriched standard of 199Hg(II), which was used for species quantification by ID-GC-ICPMS. Hence, determination of possible MIF of Hg isotopes during our experiments were carried out only by the measurement of isotope 201Hg expressed in the following section, tables and figures, as δ201Hg values since the isotope 201Hg was free of contamination.

As mentioned above, some Hg0 generation, even low, cannot be avoided, and that may fractionate Hg isotopes, leading to the enrichment of the remaining Hg(II) by heavier isotopes (Zheng and Hintelmann, 2010). Nevertheless, we observed only a global isotopic mass-balance (in δ, %) lower than zero in few samples (~20%, see Table ST-2) which can be explained by adsorption of Hg(II) onto the vials favouring lighter isotope to remain in solution.

2.4. Complexation models and rate constants calculation

The software Visual MINTEQ (version 3.0, http://www2.lwr.kth.se) was used to calculate the aqueous speciation of Hg(II) and MeHg in the acetate buffer used for the abiotic methylation reactions (Table ST-3). The effect of chloride on Hg speciation was also computed for initial conditions and for the maximum yield of MeHg formation. The parameters used to calculate Hg speciation were pH, ionic strength, temperature, and concentrations of Hg species and ligands. The MINTEQ database derived from NIST database 46 (Smith et al., 2003) was modified by the addition of stability constants for some selected combinations of the Hg species and ligands. With regards to complexation between MeCo and Hg species, the nearest molecular model to mimic MeCo binding was found to be the binding of Hg species with acetamide. The MeCo structure presents six terminal acetamide groups so as to acetamide was the chosen model for the calculations of Hg(II) speciation. However, as there were no available stability constants for complexes formed between MeHg and acetamide, the MeHg complexation was modeled using the binding of MeHg with glycinate. Glycinate appears to be the closest group whose stability constants for MeHg complexes have been previously reported (Alderighi et al., 2003; Gans et al., 2008), though glycinate is not really present in the MeCo structure. Stability constants for the complexes of Hg(II) and MeHg with ligand considered for our study are listed in Table ST-4 (Supplementary Material).

The methylation and demethylation rate constants (k_m and k_d) were calculated modeling the experimental data using Origin Pro 8.0 software (Origin Lab Corporation, Northampton, USA). For the experiments performed in the presence of chloride, Hg species
transformations were considered as pseudo first order reversible reactions for Hg(II) so that the MeHg net formation could be written as follows:

\[
d\text{MeHg}/dt = k_m[Hg(II)] - k_d[\text{MeHg}] \tag{5}
\]

Assuming that both Hg(II) and MeHg represent total concentrations of the Hg species and that initial total MeHg concentration was negligible, the former equation can be integrated obtaining the concentration of MeHg as a function of time:

\[
[\text{MeHg}]/[Hg(II)]_0 = (k_m/k_m + k_d)(1 - e^{-(k_m+k_d)t}) \tag{6}
\]

Therefore, the kinetic rate constants can be calculated using a reversible reaction kinetic model by applying a non-linear fitting model (Box Lucas 1) as previously reported elsewhere (Rodríguez-Martin-Doimeadios et al., 2004).

For the experiments without chloride addition, different kinetics models based on first-order reactions were used to calculate both methylation and demethylation rate constants for the incubations performed in either dark or light conditions as described in previous works (Jimenez-Moreno et al., 2010; Perrot et al., 2011).

3. Results and discussion

3.1. Abiotic methylation and demethylation of Hg in aqueous chloride medium

3.1.1. Effect of chloride on Hg speciation and complexation

3.1.1.1. Inorganic mercury. Apart from dissolved organic matter (DOM) which controls the speciation of Hg(II) in most aquatic environments, inorganic ligands such as hydroxide, chloride and sulfide play an important role in controlling the speciation of Hg in some aquatic systems. In the absence of DOM, chloride or any other ligands, it would be expected that the speciation of Hg(II) was controlled by free mercuric ion or mercury hydroxides. However, as our abiotic methylation experiments were performed in acetate buffer (pH = 4.0), two mercury acetate complexes, Hg(CH₃COO)₂⁻ and Hg(CH₃COO)₃⁺, were the dominant species in the reaction medium without any chloride addition. In the presence of chloride ion, Hg(II) tends to form HgCl⁺, HgCl₂⁻, HgCl²⁻ and HgCl³⁻ species. At a relatively high concentration of chloride (~0.5 M), the speciation of Hg(II) in the initial conditions (Table S-3) was represented by three chloride complexes with HgCl₂⁻ being the most abundant (78.7%) followed by HgCl³⁻ (17.9%) and HgCl⁴⁻ (3.0%). Small contributions of some mercury acetate complexes were also found with 0.4% of Hg(CH₃COO)₂⁻ and 0.004% of Hg(CH₃COO)₃⁻. This species distribution would be consistent with the literature stating that, in absence of colloidal complexes, Hg(II) predominantly exists as HgCl⁴⁻ with the literature stating that, in absence of colloidal complexes, 0.004% of Hg(CH₃COO)₃⁻ was negligible, the former equation can be integrated obtaining the concentration of MeHg as a function of time:

3.1.2. Effect of chloride on methylation reactions rate under dark conditions

Unlike studies suggesting that MeCo appears to be unreactive towards chloride complexes of Hg(II) in moderately or highly saline environments (Celó et al., 2006), our experiments showed that inorganic Hg(II) can be methylated by MeCo in the presence of chloride (Fig. 1a) which is consistent with other previous works (Chen et al., 2007; Musante et al., 2008). However, the increase in chloride concentration slowed considerably the methylation of Hg(II) by MeCo reaching the maximum methylation yield (~82%) after 24 h of incubation. Methylation in a high chloride concentration medium (0.5 M) is about 25-fold slower than in solution without sodium chloride where methylation was complete and almost instantaneous (Table 1). These results seem to be directly related to the different Hg(II) speciation presented in either chloride (where Hg-chloride were performed at pH = 4.0, it could be expected that the methylmercury chloride complex would be the predominant species (67.9%) in the chloride experiments, as it was predicted by the speciation simulations performed with MINTEQ. A significant fraction of MeHg (more than 30%) was potentially complexed with MeCo, which is in a large excess in the reaction medium, probably by means of the coordination of acetamides via the terminal amines to the MeHg cation. But only a small contribution of MeHg acetate complex (0.03%) was predicted. It has been demonstrated that the addition of chloride is changing not only the aqueous-phase chemical speciation of Hg(II) but also the MeHg species distribution. For example, MeHg is almost totally (99.9%) in the form of its complex with MeCo in the medium without chloride whereas it becomes to be mostly in the form of CH₃HgCl in presence of chloride.

It is also important to note that the Hg(II) species differences in the presence of chloride did not inhibit the chemical alkylation of Hg(II) by MeCo. This observation can be related to the fact that the ability of Hg complexes to become methylated by MeCo is simply related to stability constants but it is dependent on the MeCo acid–base chemistry (Musante, 2008). The mechanism of the methyl group transfer as a carbanion from MeCo to mercuric ion is associated with the transition between the active (“base-on”) and inactive (“base-off”) forms of the MeCo. This corresponds to the transition from the six to the five coordination number of the cobalt, which is coordinated with benzimidazole group that is thought to occur in the range of pH between 1.5 and 4.8 (Craig and Morton, 1978; Chen et al., 2007; Musante et al., 2008). In addition, since acetic acid has been found to be responsible for Hg(II) abiotic methylation under certain conditions (Gardfeldt et al., 2003; Malinovsky and Vanhaecke, 2011), a control experiment was carried out (Hg(II) incubated at pH 4.0 with 0.1 M acetic acid and 0.5 M NaCl without MeCo) and it did not show any detectable production of MeHg after 48 h. The methyl group of acetic acid is unlikely to be involved in the abiotic methylation of Hg in our conditions, which is in agreement with the observation of Malinovsky and Vanhaecke (2011), where only trace amounts of MeHg were produced in presence of excess acetic acid although their experimental conditions were slightly different (i.e. presence of OH⁻ radicals). Thus, methylation pathway and species-specific isotope ratios in our experimental conditions are related to the reactivity with MeCo. Complementary UV–vis spectra of the reaction medium revealed that no structural changes of MeCo were induced by the addition of chloride since it has the same pattern as the spectra without chloride. However, remarkable differences in the UV-visible spectra profile was observed for the MeCo in presence of other complexing agents such as cysteine (Fig. S-4). The last can be related to the conversion of MeCo to an inactive form that causes a total inhibition of abiotic methylation process under these conditions. No changes of MeCo solution red color were observed in presence of either acetate or chloride when Hg(II) was added. It is agreed with previous studies on MeCo chemistry (Chu and Gruenwedel, 1977).
alkylation of Hg involves not only the cleavage of a CH₃—Co bond but also the displacement of a ligand-Hg(II) bond by the methyl group. Therefore, it can be assumed that the bond strengths of the ligands complexing Hg(II) are the main determinants of the rates of methylation since the reaction mechanism is similar to the organic nucleophilic substitution but centred on Hg rather than on carbon (Craig and Moreton, 1985). Abiotic methylation reaction appears to be promoted via mercury acetate complexes as previously suggested by other authors (Craig and Moreton, 1985; Gardfeldt et al., 2003), and limited when the reactant is a chloro complex due to its inhibitory effect (Compeau and Bartha, 1983) probably because of higher stability of the Hg—Cl bond.

Another important consideration is that the presence of chloride substantially promoted the process of Hg demethylation. Without chloride demethylation of MeHg is negligible during the incubation period, while the abiotic demethylation of MeHg ($k_d = 0.079 ± 0.077$) significantly evolves after 24 h of incubation in presence of chloride (Table 1 and Fig. 1a). Both methylation and demethylation reactions are competitive processes, however, methylation seemed to be the kinetic predominant process since its rate constant is about 3-fold higher than the demethylation one. This observation agrees with previous works suggesting that both Hg abiotic and biotic demethylation is more effective in marine ecosystems than in freshwater ones (Compeau and Bartha, 1984; Hamasaki et al., 1995).

3.1.3. Effect of visible light on demethylation reaction

Photolytic decomposition can be considered one of the most significant MeHg decomposition mechanisms (Hammerschmidt and Fitzgerald, 2006; Lehnherr and St Louis, 2009; Hammerschmidt and Fitzgerald, 2010). In our experiments performed at high chloride concentrations, visible light emission had a remarkable influence on MeHg demethylation rate since demethylation rate constant was about 9-fold higher than that for dark conditions (Table 1). However, no significant inhibition/activation was observed regarding the net rate of methylation since the kinetic constant in visible light conditions ($0.216 ± 0.021 \text{ h}^{-1}$) was comparable to that in dark conditions ($0.255 ± 0.048 \text{ h}^{-1}$). Thus, visible light emission had no significant effects on the methylation process but had a considerable influence on the extent of the reaction promoting demethylation. The net methylation yield decreased more than 3-fold, to reach a maximum yield of about 25% after 24 h of incubation as shown in Fig. 1b. Methylation appeared to be the predominant reaction under dark, whereas demethylation was the predominant process under visible light emission as evidenced by the kinetic rate constants exhibiting values more than 3-fold higher for demethylation reaction (Table 1). Therefore, the decrease of the magnitude of methylation in chloride medium.

![Fig. 1. Formation and degradation of Hg species during 48 h incubation of Hg(II) with MeCo in 0.5 M chloride medium. Concentrations (mg L⁻¹) of Hg(II) and MeHg are represented as a function of time under (a) dark and (b) visible light conditions. Error bars (SD) are related to the long term reproducibility of four experiments within six months.](image)

Table 1

Percentages of Hg species as a function of time and kinetic rate constants (R^2 notation (h⁻¹)) for different abiotic methylation incubations in chloride medium in comparison with experiments in absence of sodium chloride. Experiments carried out without NaCl showed formation of significant amounts of dimethylmercury between 2 and 48 h, as it has already been observed in a previous work (Filipelli and Baldi, 1993). Uncertainties in percentages of Hg species (expressed as standard deviation of the mean) represent the long term reproducibility of four experiments within six months. Uncertainties of rate constants are obtained from the standard deviation of the typical parameters of the Box Lucas models used for the non-linear fitting of experimental data with Origin.

Time (h)	MeHg (With NaCl)	Hg(II) (With NaCl)	MeHg (Without NaCl)	Hg(II) (Without NaCl)	MeHg (With NaCl)	Hg(II) (With NaCl)	MeHg (Without NaCl)	Hg(II) (Without NaCl)
0.15	1 ± 1	94 ± 7	75 ± 8	5.9 ± 4.2	1 ± 1	91 ± 7	64 ± 32	14 ± 19
1	27 ± 10	71 ± 27	91 ± 21	0.8 ± 0.9	15 ± 3	74 ± 11	82 ± 15	1.2 ± 0.4
2	43 ± 17	56 ± 27	85 ± 12	0.7 ± 0.9	19 ± 3	70 ± 10	89 ± 22	1.2 ± 0.5
4	50 ± 5	22 ± 11	76 ± 14	0.7 ± 1.0	23 ± 5	64 ± 8	75 ± 10	1.1 ± 0.7
8	65 ± 10	9 ± 5	67 ± 11	0.6 ± 1.0	23 ± 2	50 ± 6	84 ± 13	0.8 ± 0.1
24	82 ± 11	2 ± 1	65 ± 15	2.0 ± 1.3	25 ± 1	46 ± 17	79 ± 8	1.1 ± 0.9
48	66 ± 23	2 ± 2	65 ± 7	2.0 ± 1.8	19 ± 1	55 ± 38	67 ± 24	2.3 ± 2.2
$k_{methylation}$	0.255 ± 0.048	0.246 ± 1.202			0.216 ± 0.021	0.673 ± 0.866		
$k_{demethylation}$	0.079 ± 0.077	-			0.083 ± 0.088	0.006 ± 0.0002		
R^2	0.9673	0.9525			0.9929	0.9903		
promoted by the visible light emission can be directly related to the enhancement of the photo-activated degradation of MeHg.

Previous studies reported that photolytic degradation of MeHg is induced by the ultraviolet (UV) spectrum of sunlight (Lehnherr and St Louis, 2009; Zhang and Hsu-Kim, 2010). MeHg photo degradation by UV radiation is supposed to involve radical intermediates such as hydroxyl radicals which have been proposed as the reactive intermediates responsible for photodegradation (Chen et al., 2003; Malinovsky & Vanhaecke, 2011). However, our findings suggest that photochemical decomposition of MeHg can be also enhanced by visible light emission. It can be expected that the degradation rate of MeHg was slower than in samples exposed to the full solar spectrum as indicated by Lehnherr and St Louis (2009) since the total emission flux density of our visible light source of 1.23 W m⁻² (Fig. S-4) was significantly lower and consequently less energetic than the maximum visible solar radiation flux density estimated at about 500 W m⁻² assuming that about 40% of total solar radiation correspond to visible light region. Nevertheless, in natural aquatic systems the thickness of the water column as well as particulate and dissolved matter would significantly decrease the solar radiation intensity even at low depth, making visible light energy available for photochemical demethylation probably lower than 500 W m⁻². It should be noted that hydroxyl radicals could not be involved in the photodegradation of MeHg observed in our abiotic methylation experiments since formation of hydroxyl radicals from photolysis is not possible with visible light wavelengths (Dorfman and Adams, 1973). This observation suggests that different mechanisms may be responsible for abiotic photo-induced demethylation pathways, which is consistent with previous studies stating that not only hydroxyl radicals can induce MeHg degradation in surface waters (Zhang and Hsu-Kim, 2010). Furthermore, the MeHg photodecomposition appeared to be also dependent on the type of MeHg–ligand binding presented in water (Zhang and Hsu-Kim, 2010). Thus, the complexes formed between the MeHg and the MeCo, that are estimated to occur in high content (>30%) in the reaction medium, are likely to be responsible for the activation of MeHg demethylation by the visible light radiation since MeCo chromophores are the only constituents in solution capable to absorb the incident visible radiation, especially in the wavelength range 450–650 nm.

It seems that Hg(II) reduction identified in sea and freshwaters can also be photochemically mediated (Whalin et al., 2007). It has been suggested that halides, such as chlorides or bromides, may also enhance Hg(II) reduction (Malinovsky & Vanhaecke, 2011). However, our results are in agreement with those recently reported by Gardfeldt et al. (2003). Moreover, the presence of chloride as revealed by the mass balances for a closed system in our experiments. No accurate determination of Hg₆ concentrations was possible because of the large variations observed due to the absence of equilibrium between both redox processes and the fugacity of gaseous Hg.

Table 2

time(h)	Hg(II)	δ⁰²⁰²MeHg	δ⁰²⁰²Hg(II)	δ⁰²⁰¹MeHg	δ⁰²⁰¹Hg(II)	δ⁰²⁰⁰MeHg	δ⁰²⁰⁰Hg(II)	δ¹³⁴²¹Hg(II)	δ²³²¹Hg(II)	δ²³²⁰Hg(II)
Dark conditions	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.15	0.95	-0.01	0.01	-0.12	0.17	-0.01	0.29	0.09	0.15	-0.00
1	0.71	-0.01	0.27	0.10	1.79	0.21	1.30	0.10	0.87	0.13
2	0.56	0.15	0.47	0.12	1.46	0.12	1.09	0.27	0.75	0.21
4	0.22	0.11	0.50	0.05	2.48	0.29	1.77	0.09	1.15	0.15
8	0.09	0.05	0.65	0.10	0.88	0.18	0.49	0.17	0.47	0.69
24	0.02	0.01	0.86	0.11	-0.38	0.25	0.30	0.11	0.18	0.17
48	0.02	0.02	0.66	0.23	-0.20	0.37	0.26	0.21	0.07	0.27

Visible light conditions	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.15	0.91	0.01	0.01	-0.74	0.18	-0.63	0.14	-0.34	0.16	-0.00
1	0.71	0.02	0.15	0.03	1.23	0.59	0.95	0.48	0.61	0.31
2	0.64	0.07	0.19	0.03	2.15	0.65	1.61	0.54	1.11	0.35
4	0.58	0.06	0.23	0.05	2.10	0.31	1.40	0.26	1.02	0.18
8	0.50	0.06	0.23	0.02	0.52	0.28	0.71	0.30	0.47	0.29
24	0.46	0.17	0.25	0.00	0.87	0.23	0.73	0.19	0.48	0.19
48	0.55	0.38	0.19	0.00	0.66	0.35	0.45	0.32	0.36	0.20

3.2. Hg isotope fractionation during abiotic methylation in saline medium

3.2.1. Mass-dependent fractionation

Significant mass-dependent isotope fractionation of both Hg species (i.e. Hg(II) and MeHg) was observed during the period of 48 h of Hg(II) incubation with MeCo in 0.5 M NaCl aqueous medium, at both dark and visible light conditions. According to δ²⁰²⁰²Hg values, no significant MIF of Hg was induced under these conditions (Table 2 and Fig. 2). The initial reactant Hg(II) at t₀ had δ²⁰²⁰²Hg(II) = 0.00 ± 0.15‰. The produced MeHg was preferentially enriched in the lighter isotopes (δ²⁰²⁰²MeHg from −1.44 ± 0.38‰ to 0.38 ± 0.25‰) whereas the remaining Hg(II) was preferentially enriched in the heavier isotopes (δ²⁰²⁰²Hg(II) from −0.74 ± 0.18‰ to 2.48 ± 0.18‰). However, as the evolution of the Hg species fraction during the 48 h of experiment discussed above was different under dark and visible light conditions, we observed significant different isotopic signatures of Hg species for these conditions at the same sampling time.

3.2.1.1. Dark conditions

As displayed in Table 1, after 48 h initial Hg(II) has been almost entirely converted to MeHg. Hence, assuming a closed system with no Hg loss from the incubation vial, MeHg at 48 h should have the same isotopic signature as Hg(II) at t₀. Experimental data (Table 2) confirmed this since MeHg at 48 h (δ²⁰²⁰²MeHg = −0.20 ± 0.37‰) has the same isotopic composition as initial δ²⁰²⁰²Hg(II) within the analytical uncertainties. Note that after 24 h of incubation almost all Hg(II) has been converted to MeHg (only 2% of Hg(II) remained) with δ²⁰²⁰²MeHg (0.38 ± 0.25‰) being close to δ²⁰²⁰²Hg(II) initial value within the analytical uncertainties. On the other hand, between 1 h and 2 h of incubation (Hg(II) > 50%), the produced MeHg has significantly negative δ²⁰²⁰²Hg values (from −1.37 ± 0.14 to −1.11 ± 0.15‰). Similarly to a recent study (Malinovsky and Vanhaecke, 2011), we did not observe MIF of Hg species during methylation of Hg(II) with MeCo under dark conditions. However, higher magnitude of MDF for both Hg(II) and MeHg (δ²⁰²⁰²MeHg from −0.12% to 2.48% and δ²⁰²⁰²Hg from −1.37% to −0.20%) was observed in comparison with values reported by Malinovsky and Vanhaecke (2011) (δ²⁰²⁰²Hg(II) from 0.05% to 0.98% and δ²⁰²⁰²MeHg from −0.73% to −0.29%). It could be explained by higher methylation yields promoted by our experimental conditions (pH, MeCo/Hg(II) ratio and presence of sodium chloride). Influence of the chloride medium and the methylation yield on the isotope fractionation of Hg will be discussed below (Section 3.2.2).
3.2.1.2 Visible light conditions. $\delta^{202}\text{Hg}$ values of produced MeHg under visible light conditions remain significantly negative after 1 h of experiment (from $-1.07\pm0.07\%$ to $-1.44\pm0.38\%$), as well as the remaining Hg(II) had positive $\delta^{202}\text{Hg}$ between $0.66\pm0.35\%$ and $2.15\pm0.60\%$. The net methylation during the 48 h experiment under visible light conditions was significantly lower than under dark conditions, leading to a maximum of $25\pm1\%$ MeHg which was due to more effective demethylation (see Sections 3.1.2 and 3.1.3). Thus, interpretation of the isotopic ratios under these conditions is likely to be dependent on the different demethylation extent when comparing with dark conditions. The quantity of produced MeHg versus the quantity of degraded MeHg under visible light conditions would give rapid equilibrium between the isotope ratios of both Hg species. That is not the case under dark conditions where the production of MeHg is not followed by significant demethylation yields and it is almost full after 48 h of experiment.

3.2.2 Mass-independent fractionation

Several studies inferred Hg isotope fractionation for both abiotic (Bergquist and Blum, 2007; Malinovsky et al., 2010; Malinovsky and Vanhaecke, 2011) and biotic demethylation pathways (Kritee et al., 2009), and the MIF was reported in all previous studies on Hg abiotic photodemethylation. In this study, despite significant uncertainties ($-0.17\pm0.31<\Delta^{201}\text{Hg}<-0.17\pm0.28\%$), we did not discover significant MIF. Several parameters can be responsible for MIF caused by magnetic isotope effect (Buchachenko et al., 2007; Epov, 2011b): (i) involvement of radical pairs; (ii) presence/absence of light; (iii) the arrangement of the ligands around the metal ion; (iv) the nature (strength) of the ligands surrounding the metal ion. Radical pairs are not involved in the described reactions, thus this mechanism will not produce MIF. For the mechanism involving ligands, the following explanation can be given to the MIF absence in our experimental conditions: during the reaction of Hg(II) chloride complexes, the ground electron state of the reagent (HgCl₂, HgCl₃⁻, HgCl₀ as main calculated species in the experimental conditions) and the product (CH₃HgCl, CH₃CONHCH₃Hg) is the singlet one. The MIF can take place if the intermediate products can change their state from the singlet to triplet one. It is possible in the presence of light for HgCl₂ (easier) and HgCl₃⁻ species and is much more difficult for HgCl₀²⁻ species (Epov, 2011a). As tetrachloro-Hg species does not have free 6sp⁰ orbital where electron can move from 5d-orbitals due to light excitation and hyperfine coupling between magnetic nucleus and electrons, thus only MDF will be produced (see Supplementary Material for detailed mechanisms). Because the complexation model predicted about 80% of HgCl₀²⁻ under our experimental conditions (see paragraph 3.1.1.), no significant MIF is expected. Similar explanation can be given for the demethylation of CH₃HgCl or CH₃CONHCH₃Hg because of the high concentration of ligands in our experimental media, and that main Hg species may coordinate by these ligands through the free Hg sp-orbital. Hence, Hg in MeHg species would undergo electron spin evolution from singlet to triplet during demethylation but just participate in the chemical reaction.

3.2.3 Implications for Hg isotope mass-dependent fractionation

3.2.3.1 Influence of simultaneous methylation and demethylation. Isotope fractionation of iron in aqueous media has been shown to be dependent on the Fe–Cl complexes (Hill et al., 2009; Hill et al., 2010), underlying the assumption that ligands present in aqueous environment are potentially important drivers of elements isotope fractionation. As it was shown in a preliminary work (Perrot et al., 2011), extent of Hg isotope MDF during Hg(II) methylation by MeCo in 0.1 M acetic acid (pH=4.0) in the dark was higher in the presence of chloride (0.5 M). Experiments carried out under visible light conditions showed the same pattern, with higher extent of MDF for 0.5 M chloride medium (Table ST-3). Hence, our results demonstrate that abiotic methylation of Hg by MeCo, both under dark or visible light, leads to higher MDF extent of Hg species under saline conditions. The presence of chloride (0.5 M) also induces larger Hg isotope fractionation when comparing with hydroxyl radicals, photochemical methylation, or presence of others potential methyldonors molecules such as monomethyltin, dimethylsulfosulfoxide or acetic acid (Malinovsky and Vanhaecke, 2011). Both kinetic effect of methylation and demethylation reactions and equilibrium isotope effect of the strong
Hg–chlooro complexes can be involved in the fractionation extent observed, but precision of the results does not allow to discriminate between these two processes (Young et al., 2002).

Under both dark and visible light conditions, we observed a shift in the evolution of the isotopic composition of Hg(II) as a function of time (Fig. 3). δ^{202}Hg(II) is increasing during 4 h of incubation under dark conditions (up to 2.48 ± 0.18‰) (Fig. 3a) and during 2 h under visible light conditions (2.15 ± 0.65‰) (Fig. 3b), whereas after 8 h δ^{202}Hg(II) is significantly lower (0.88 ± 0.25‰ and 0.92 ± 0.28‰, respectively). According to the kinetic constants and the fractions of Hg species, the magnitude of both methylation and demethylation pathways are responsible for this shift of isotopic composition. During first 4 h under dark conditions, methylation is the main process affecting Hg isotope fractionation, while demethylation starts to be significant after this time. On the other hand, after 2 h of incubation the demethylation rate constant under visible light conditions was 9-fold higher than under dark conditions. Thus, the demethylation process becomes more significant. Since demethylation reaction generates kinetic MDF of Hg isotopes towards the enrichment of the formed Hg(II) in lighter isotopes (Malinovsky et al., 2010), the overall δ^{202}Hg(II) starts to decrease when demethylation begins to be significant. Under dark conditions, MeHg concentrations is still increasing during first 24 h period (Fig. 1a), exhibiting that methylation remains the dominant process till this time. This observation leads up to the hypothesis that either methylation or demethylation was the dominant reaction in our closed system and influenced substantially the reported MDF.

3.2.3.2. Kinetic fractionation factors for methylation and demethylation.

In order to evaluate the potential differences of fractionation magnitude between methylation and demethylation, we calculated chemical kinetic isotope fractionation factors ($\alpha_{202/198}$), which are commonly used for the determination of the magnitude discrimination between two isotopes of an element during transformation pathway (Young et al., 2002; Scott et al., 2004; Elsner et al., 2005). The calculation was made to compare the values with previously reported $\alpha_{202/198}$ in experimental studies of specific Hg transformations pathways such as methylation and demethylation (Kritee et al., 2009; Rodriguez-Gonzalez et al., 2009; Malinovsky and Vanhaecke, 2011), (photo)reduction (Bergquist and Blum, 2007; Kritee et al., 2007; Kritee et al., 2008; Zheng and Hintelmann, 2009) or evaporation (Estrade et al., 2009b). According to the theory, as our experiments were carried out in a closed system, the fractionation factors at equilibrium can be calculated using the following equation:

$$
1000 \times \ln \left(\frac{\alpha_{202/198} \text{(react–prod)}}{\alpha_{202/198}} \right) = \delta^{202}\text{Hg}_{\text{react}} - \delta^{202}\text{Hg}_{\text{prod}}
$$

where $\delta^{202}\text{Hg}_{\text{react}}$ is the isotopic composition of the reactant, $\delta^{202}\text{Hg}_{\text{prod}}$ is the isotopic composition of the product, and $\alpha_{202/198}$ (react–prod) is the fractionation factor between the reactant and the product for a given reaction. Nevertheless, the use of this model implies that the right part of Eq. (7) is constant, which is not the case for our study. On the other hand, estimation of kinetic fractionation factors via Rayleigh distillation equation is supposed to be done for irreversible and unidirectional reaction (Scott et al., 2004; Hoeß, 2009) (i.e. methylation or demethylation). Since our study was conducted in a closed system and we demonstrated that both methylation and demethylation occurred during the experiment, the theoretical calculation of kinetic fractionation factors of the methylation and demethylation reactions is consequently difficult to resolve. We propose here that a double Rayleigh system may be employed, where possible chemical equilibrium fractionation is avoided and only kinetic fractionation factors for methylation (α_{m}) and demethylation (α_{d}) are estimated. If we assume that α_{m} and α_{d} are constant within the time-course of the experiment, then the observed isotopic composition of both Hg(II) and MeHg at a given time will be dependent on their respective concentrations. Thus, Hg species isotopic composition is greatly influenced by the rate of the simultaneous methylation and demethylation, as shown by the following equation that describes Hg(II) isotopic composition at time t:

$$
\delta^{202}\text{Hg(II)}_t = \left(\delta^{202}\text{Hg(II)}_t - \alpha_{d} \times [\text{Hg(II)}_t] - \alpha_{m} \times [\text{MeHg}_t] \right) + \left([\text{MeHg}]_t - k_{\text{f}} \times [\text{Hg(II)}_t] - \alpha_{d} \times [\text{MeHg}_t] \right) \times dt
$$

where $\delta^{202}\text{Hg(II)}$ and $\delta^{202}\text{MeHg}$ at t0 is 0 (NIST3133).

According to the relative uncertainties on the rate constants (k_{m} and k_{d}), Fig. 3a and 3b show how the double Rayleigh distillation model, giving evolution of Hg species isotopic composition as a function of time, is dependent on these rate constants. Fixed alpha values

Fig. 3. Experimentally measured and theoretically modeled δ^{202}Hg versus time for both Hg(II) and MeHg during simultaneous methylation and demethylation under (a) dark and (b) visible light conditions. Modeled lines agree with a double Rayleigh distillation system (one for each reaction). Solid lines represent the evolution of Hg(II) and MeHg when mean of rate constants (k_m and k_d) are used to build up the model. Dashed lines represent the evolution of species δ^{202}Hg when lower (− SD) or higher (+ SD) values of k_m and k_d are used to build up the model. Constant fractionation factors are defined: (a) $\alpha_m = 1.0040$ and $\alpha_d = 1.0040$; (b) $\alpha_m = 1.0090$ and $\alpha_d = 1.0070$.
(α\textsubscript{Hg} and α\textsubscript{Hg} equal to 1.0400 and 1.0040 under dark conditions, 1.0090 and 1.0070 under visible light conditions) have been chosen to display this phenomena. Under both conditions, our experimental data fit reasonably well with the double Rayleigh model, although it can be easily seen that a little change on k values affects dramatically the evolution of Hg(II) and MeHg isotopic compositions. An important finding is that, according to the model and our experimental data, fractionation factors of both methylation and demethylation reactions are significantly higher under visible light conditions than in the dark. Also, methylation and demethylation seem to have comparable fractionation factors in the dark, while under visible light conditions methylation have higher fractionation factor than demethylation.

We conclude that, although our experimental conditions may not represent natural conditions, competitive transformations in aquatic environments (such as methylation/demethylation and/or oxidation/reduction) and their associated reaction rates will greatly affect Hg isotope composition. Thus, local water chemistry and Hg species concentrations would both contribute to generate specific Hg stable isotope fractionation. Additionally, equilibrium exchange isotope effect in aquatic media (i.e. Hg–chloro species equilibration in solution for this study) may also contribute to Hg isotope fractionation (Wiederhold et al., 2010; Jiskra et al., 2012).

4. Conclusions

4.1. Importance of chloride and visible light for both yield and isotope fractionation of methylation and demethylation pathways

The presence of chloride levels (0.5 M) equivalent to seawater content has been already demonstrated to influence the methylation of Hg by methylating organisms such as sulphate reducing bacteria (Compeau and Bartha, 1984; Compeau and Bartha, 1987), as Hg-cloride complexes, similar to Hg–sulfide complexes, control the bioavailability and uptake of Hg by bacteria (Benoit et al., 1999; Ulrich et al., 2001). The role of chloride for abiotic methylation of Hg by MeCo has also been previously reported (Celó et al., 2006; Chen et al., 2007; Musante, 2008), despite of the fact that authors disagree with the ability of MeCo to methylate Hg at higher chloride levels. On the other hand, previous studies suggested that MeHg binding ligands (organic compounds) had significant influence on both rate (Zhang and Hsu-Kim, 2010) and Hg isotope fractionation (Bergquist and Blum, 2007) during photodemethylation.

We demonstrated that, though the presence of high chloride level reduces the yield of net Hg abiotic methylation by MeCo (because of higher demethylation extent), this pathway should not be neglected in a global budget of MeHg production/degradation in aquatic ecosystems, particularly in marine environments. At the same time, Hg clorocomplexes have a strong influence on the isotope fractionation of Hg due to methylation of Hg(II) by MeCo. This increases the magnitude of the MDF which may be due to the substantial contribution of the activation energy of Hg–chloro complexes to chemical kinetic isotope fractionation. Furthermore, the visible light emission had a significant influence on demethylation reaction enhancing MeHg demethylation rate and Hg isotope fractionation. Such photocatalyzed demethylation can be associated with the activation of MeHg–methylcobalamin complexes by visible light. We then report for the first time, within the uncertainties inherent to the analysis, that photo-induced demethylation does not necessarily involve MIF of odd Hg isotopes.

4.2. Abiotic methylation of Hg by MeCo as a model to predict isotope fractionation by biogenic methylation

For the abiotic methylation reaction by MeCo under dark conditions, we obtained a fractionation factor (about 1.0040) in the same order of magnitude as those previously reported for the Hg methylation induced by two different sulphate-reducing bacteria strains in the dark under fermentative (1.0026±0.0004) or sulphate-reducing conditions (1.0031±0.0011) (Rodriguez-Gonzalez et al., 2009; Perrot et al., in preparation). From this observation, we suggest that the reaction step involving a methyl transfer in both biotic and abiotic methylation may produce similar extent of Hg isotope fractionation. On the other hand, recent works on biotic Hg demethylation and re-duction inferred lower fractionation factors (Kritee et al., 2007; Kritee et al., 2008; Kritee et al., 2009). Nevertheless, the observed Hg isotope fractionation during transformation mediated by microorganisms may involve several and complex pathways (Kritee et al., 2009). Even if additional experimental studies are obviously required to better constrain such chemical and biochemical influences on Hg isotopic composition, our results suggest that the abiotic methylation by MeCo is a simple chemical approach to evaluate the role of the methylation reaction in the environment.

Acknowledgements

M. Jiménez-Moreno acknowledges the Castilla-La Mancha Government and the European Social Fund for her Postdoctoral Fellowship. V. Perrot acknowledges “Ministère de l’enseignement supérieur et de la recherche” for his Doctoral Fellowship (Ecole Doctorale ED211). The authors would like to thank Sylvain Berail for technical assistance and Jean Carignan and Nicolas Estrade for providing secondary standards of F65A and RI24H from CRPG laboratory, CNRS UPR-2300 (Nancy). We are grateful for the relevant comments of J.E. Sonke and anonymous reviewers and editors that helped improve the discussion of the results. This work was supported by French National Research Agency (ANR) in the framework of the program “Contaminants, Environnement et Santé” and IDEA project (ANR-08-CES-013). This paper is dedicated to the memory of our colleague, Dr. V.N. Epov (CNRS, LCABIE-IPREM, Pau, France).

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.chemgeo.2012.08.029.

References

Albarède, F., et al., 2004. Precise and accurate isotopic measurements using multiple-collector ICPMS. Geochimica et Cosmochimica Acta 68 (12), 2725–2744.
Alderighi, L., Gans, P., Midollini, S., Vacca, A., 2003. Correlation chemistry of mercury/mercury fragments in aqueous solution: a thermodynamic investigation. Inorganica Chimica Acta 356, 8–18.
Benoit, J.M., Gilmour, C.C., Mason, R.P., Heyes, A., 1999. Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environmental Science & Technology 33 (6), 951–957.
Bergquist, B.A., Blum, J.D., 2007. Mass-dependant and -independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science 318, 417–420.
Bergquist, B.A., Blum, J.D., 2009. The odds and evens of mercury isotopes: applications of mass-dependent and mass-independent isotope fractionation. Elements 5, 353–357.
Bertilsson, L., Neujahr, H.Y., 1971. Methylolation of mercury compounds by methylcobalamin. Biochemistry 10 (14), 2805–2808.
Biswas, A., Blum, J.D., Bergquist, B.A., Keefer, X., Gie, Z., 2008. Natural mercury isotope variation in coal deposits and organic soils. Environmental Science & Technology 42 (22), 8303–8309.
Blum, J.D., Bergquist, B.A., 2007. Reporting of variations in the natural isotopic composition of mercury by methylcobalamin. Analytical and Bioanalytical Chemistry 388, 353–359.
Buchachenko, A.L., et al., 2007. Magnetic isotope effect for mercury nuclei in photolysis of bis(p-trifluoromethyl)benzylmercury. Physical Chemistry 413 (1), 39–41.
Celó, V., Lean, D.R.S., Scott, S.L., 2006. Abiotic methylation of mercury in the aquatic environment. Science of the Total Environment 368, 126–137.
Chen, J., Peikenkoen, S.O., Lin, C.-J., 2003. Degradation of monomethylmercury chloride by hydroxyl radicals in simulated natural waters. Water Research 37, 2496–2504.
Chen, B., Wang, T., Yin, Y., He, B., Jiang, G., 2007. Methylolation of inorganic mercury by methylcobalamin in aquatic systems. Applied Organometallic Chemistry 21, 462–467.
Choi, S.C., Bartha, R., 1993. Cobalamin-mediated mercury methylation by Desulfovibrio desulfuricans LS. Applied and Environmental Microbiology 59 (1), 290–295.
Yang, L., Sturgeon, R.E., 2009. Isotopic fractionation of mercury induced by reduction and ethylation. Analytical and Bioanalytical Chemistry 393 (1), 377–385.

Young, E.D., Galy, A., Nagashara, H., 2002. Kinetic and equilibrium mass-dependant isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochimica et Cosmochimica Acta 66 (6), 1095–1104.

Zhang, T., Hsu-Kim, H., 2010. Photolytic degradation of methylmercury enhanced by binding to natural organic ligands. Nature Geoscience 3, 473–476.

Zheng, W., Hintelmann, H., 2009. Mercury isotope fractionation during photoreduction in natural water is controlled by its Hg/DOC ratio. Geochimica et Cosmochimica Acta 73, 6704–6715.

Zheng, W., Foucher, D., Hintelmann, H., 2007. Mercury isotope fractionation during volatilization of Hg(0) from solution into the gas phase. Journal of Analytical Atomic Spectrometry 22, 1097–1104.