Smoking during Pregnancy: A Risk Factor for Stunting and Anemia in Infancy

Isabel Bove1,2*, Cristina Campoy2,3, Ricardo Uauy4,5 and Teresa Miranda6

1Uruguay Catholic University, Uruguay
2Department of Paediatrics, University of Granada, Spain
3Centre of Excellence for Paediatric Research Euristikos, Euristikos, Spain
4Nutrition and Food Technology Institute, University of Chile, Chile
5Department of Nutrition and Public Health Intervention Research, London School of Hygiene and Tropical Medicine, UK
6Department of Biostatistics Granada University, Spain

Correspondence author: Isabel Bove, Uruguay Catholic University, Manuel Pagola 3290 Apto 1002, Uruguay, Tel:+ 598 99163254; E-mail: isabelbove.uru@gmail.com

Received date: April 15, 2014; Accepted date: July 7, 2014; Published date: July 14, 2014

Abstract

Background: The co-occurrence of smoking, stunting, anaemia and poverty represent multiple biological and psychosocial risks that increase unjust and unfair inequalities since early infancy. Smoking during pregnancy not only increases risk of intrauterine growth retardation (IUGR) and perinatal birth, also impacts negatively on growth and child development.

Study design and subjects: Study population came from a cross-sectional, national, representative survey conducted in Uruguay (2011) involving 2,994 infants <24 months to study stunting and overweight and a sample of 756 infants 6-24 months to investigate anaemia. Birth weight, birth length and gestational age were taken from health records. Measurements of current weight, length and head circumference were collected by appropriately trained nutritionists following WHO anthropometry recommendations. Binary logistic regression was carried out to estimate the probability of stunting and anaemia in offspring of mother who continuing smoking during pregnancy controlled for intrauterine growth retardation (IUGR) and for maternal and social variables.

Major findings: Smoking remains prevalent in younger and less educated women in Uruguay; 23.2% of women smoke and 12.6% smoke while pregnant. Stunting prevalence was almost double (16.8% vs 10.4% P<0.001) and anaemia prevalence was higher: 47.1% compared 29.7% among non-smokers (P=0.002). The results indicate that intrauterine smoke exposure increased chance of intrauterine growth retardation OR:3.0(1.7-5.2); stunting OR:1.5(1.1-2.1) and anaemia OR:1.9(1.1-3.0).

Conclusions: Our results highlight the association between smoking exposure in utero with stunting and anaemia particularly in infants living in a poverty cornerstone in promoting healthy child growth and development.

Keywords: Smoking; Stunting; Anaemia

Introduction

Every major advance in public health has involved the reduction or elimination of risk factors. Tobacco is emerging as a key risk for healthy growth and psychosocial development especially in children from transitional countries where 12–15% of all women continue to smoke during pregnancy [1,2].

Smoking during pregnancy has profound and negative effects on mothers and their children. Each cigarette smoking during pregnancy reduces flow from the uterus to the placenta compromising the delivery of oxygen and nutrients to the foetus. Tobacco not only increases risk of intrauterine growth retardation (IUGR) and preterm birth [3-8], also impacts negatively on growth and child development [2,4,12-17].

Smoking during pregnancy increases risk of stunting in infancy and affects children’s performance producing hyperactivity, depression, hyper-aggressive, antisocial and oppositional behaviour [7,9-10]. These effects are exacerbated by iron deficiency and it has been demonstrated that maternal smoking increases anaemia in both pregnant women and their offspring [2,7,11,18]. The co-occurrence of smoking, stunting, anaemia and poverty represent multiple biological and psychosocial risks that increase unjust and unfair inequalities since early infancy [19].

Uruguay, as well as most countries has adopted anti-smoking measures and, although tobacco use is decreasing, it is remains elevated among young, poorer and less educated women. For the present study, we hypothesized that active maternal smoking during pregnancy is a risk factor for stunting and anaemia in offspring less than 24 months.

Subjects and Methods

Data are drawn from a cross-sectional, national, representative survey conducted in Uruguay in 2011 by Ministry of Public Health, Ministry of Social Development, RUANDI and UNICEF. The sample size was determined considering four clusters: Montevideo, Interior,
Public and Private Services. Sample design was polyetapic and stratified by age of child and proportional to each cluster. To investigate stunting and overweight, we selected a sample of 2,994 infants <24 months. We study anaemia in a sample of 756 infants aged from 6 to 24 months also representative of the four clusters. Survey result has been published by UNICEF(20).

Birth weight, birth length and gestational age were taken from health records. We considered low birth weight birthweight (LBW) <2500 g; preterm <37 weeks of gestation and Intrauterine growth retardation (IUGR) when a newborn was born ≥ 37 weeks and had a birth weight <2500 g. Measurements of current weight, length and head circumference were collected by appropriately trained nutritionists following World Health Organization (WHO) recommendations. Children weights were measured with scales with a precision of 0.1 kg. Horizontal length was measured with infantometer with accuracy to 0.1 cm. Head circumferences were measured with plastic inextensible tapes to the nearest 0.1cm. We computed Z-scores: height-for-age by sex (HAZ), Z-scores weight-for-age by sex (WAZ) and body mass index-for-age by sex (BAZ) using MGRS Child Growth Standards (21). Measurements were excluded from the analyses as outliers if HAZ <-6 or >6, WAZ <-5 or > 5 and BAZ <-5 or >5 z-scores; 1.2 % of all measurements were considered outliers and thus were excluded from the analysis. Infants were defined as stunted if their HAZ were more than two standard deviation (SD) units below the median of WHO international reference population.

To assess anaemia, blood haemoglobin levels were measured using the portable Hemo Cue system. The system uses a drop of blood from a finger prick, which is inserted into a portable instrument to obtain a digital reading on haemoglobin concentration. According haemoglobin level and cut point proposed by WHO, were considered non-anæmic (≥ 11.0 g/dl), mildly anaemic (10.0–10.9 g/dl), moderately anaemic (7.0–9.9 g/dl) and severely anaemic (<7.0 g/dl).

The survey also collected detailed information about household and maternal characteristics. Maternal height and weight were measured while the mother stood without shoes and without heavy clothing. Body mass index (BMI) was calculated (kg/m²). We considered overweight as BMI>18.5 and obesity BMI>30. Weight gain during pregnancy was assessed considering self-reported weight. We considered first decile ≤ 6 kg as low weight gained during pregnancy.

We asked the mother whether she smoked during her pregnancy, the number of cigarettes daily she smoked and if she remembered episodes of illness during pregnancy. Since the effect of smoking during pregnancy on stunting and anaemia in infancy may be mediated by intrauterine growth retardation (IUGR) and confounded by other a priori established variables, we controlled such factors.

Statistical Method

Descriptive statistics [mean, standard deviation (SD) were calculated for each independent numeric variable. We applied Kolmogorov-Smirnov test to assess normality. Differences between means were tested using Student’s t test. We applied Chi square test to analyse the association between categorical variables. Minimum statistical significance level was P<0.05. Binary logistic regression was carried out to estimate the probability of being stunted or anaemia in offspring of mother who continuing smoking during pregnancy controlling for IUGR and other relevant factors. The association of each explanatory variable was expressed as adjusted odds ratios (OR) with upper and lower 95% confidence. Data processing and statistical analysis were conducted using SPSS version 15.0.

Ethical Consideration

The survey was approved by the ethics committee of the Public Health Ministry. Informed consent was obtained from mothers before the survey was conducted. We obtained length, weight, and blood haemoglobin measurements in the children and informed mothers on test results. Anaemic children were treated based on current paediatric practices in Uruguay.

Results

Smoking during pregnancy was reported by 12.6% of the total; smokers were younger, had lower household income, 2 years less education as well as more children than non-smoking women. Women’s weight and BMI were lower, but stature was similar in both groups (Table 1).

Mean ± SD	Yes (N=376)	No (N=2605)	P
Mothers			
Age (years)	26.1 ± 6.4	27.2 ± 6.7	0.004
Education (years)	7.7 ± 2.3	9.5 ± 3.3	<0.001
Number children	2.8 ± 5.3	2.2 ± 4.9	0.05
Household income	$8,000	$10,000	-
Stature (meters)	1.60 ± 0.07	1.60 ± 0.07	0.136
Weight (kg)	59.2 ± 11.4	64.6 ± 13.3	<0.001
Body Mass Index (kg/m2)	22.9 ± 3.9	24.9 ± 4.8	<0.001
Infants			
Pregnancy duration (weeks)	38.6 ± 3.6	38.5 ± 2.5	0.806
Weights birth (grams)	3059 ± 548	3239 ± 558	<0.001
Length at birth (cm)	47.9 ± 2.8	48.6 ± 2.9	<0.001
Age (months)	9.1 ± 6.6	9.6 ± 6.5	0.124
Length (cm)	67.4 ± 10.4	68.9 ± 10.2	<0.001
Length-for-age (Z-score)	-0.78 ± 1.27	-0.50 ± 1.3	<0.001
Weight (Kg)	8.6 ± 2.6	9.1 ± 2.6	0.006
Head circumference (cm)	46.9 ± 5.1	47.0 ± 3.8	0.902
Head circumference (Z-score)	0.44 ± 1.0	0.69 ± 1.1	0.04
Haemoglobin (g/dl)	10.9 ± 1.1	11.4 ± 1.0	0.004

Table 1: Characteristic of mothers and infants according smoking habit during pregnancy

Duration of gestation was 38.5 ± 2.7 weeks and did not differ by smoking habit. However birth weight of newborns exposed in utero to smoke, was ~200 g less and length was ~1 cm shorter; ponderal index was also lower (Table 1). Prevalence of low birth weight (14.7% 7.9%, P<0.001) and percentage of intrauterine growth retardation was...
almost double (7.4% vs 3.0% respectively, P<0.001) (Table 2). Newborns whose mothers smoked tripled their chance of having intrauterine growth retardation after adjusting for maternal short stature, episodes of illness and low weight gained during pregnancy (Table 3).

Table 2: Underweight and Obesity of the mothers and low birth weight, intrauterine growth retardation, stunting, anaemia and overweight among offspring according maternal smoking during pregnancy; f Mother’s underweight BMI <18.5; ¶ Obesity BMI >30; Low birth weight < 2500 g; § Intrauterine growth retardation: born small (<2500 g) at term (> 37 weeks of gestation); ʚ Stunting Height-for-age Z-score <-2SD (WHO Child Growth Standards); ♀ Moderate anaemia Haemoglobin 7.0-9.9 g/dl; ∫ Severe anaemia Haemoglobin <7.0 g/dl; ⌘ Overweight Body mass index-for-age Z-score > 2SD (WHO Child Growth Standards).

Offspring’s age of both groups was similar but length was 1.5 cm shorter (P<0.001). Length-for-age Z-score (P<.001) and head circumference-for-age Z-score (P= .04) were also lower (Table 1). Stunting prevalence was almost double (16.8% vs 10.4%) (P<0.001) and we could observe after controlling by intrauterine growth retardation and maternal variables that smoking exposure in utero infants increased probabilities of stunting OR:1.5 (1.1-2.1) (Table 3).

Haemoglobin level (10.9 ± 1.1 g/dl) was significantly lower among infants from 6 to 24 months of age exposure smoking in utero (non-exposed 11.4 ± 1.0 g/dl, P=0.004). Anaemia prevalence was higher: 47.1% compared 29.7% among non-smokers (P=0.002). Use of tobacco during pregnancy doubled the likelihood of anaemia in the offspring OR: 1.9 (1.1-3.0).

Household poverty represented a risk factor of both anaemia OR: 1.9 (1.3-2.8) and stunting OR: 1.5(1.1-2.0).
In agreement with previous studies newborns infants were 200 grams lighter and almost 1 cm shorter in length [3]. Smoking during pregnancy was close associated with foetal growth, tripling IUGR risk [2,4].

Our results also highlight the association between smoking exposure in utero with stunting and anaemia particularly in infants living in a poverty context [11,13]. Anaemia continues being the most common nutritional disorder in Uruguay affecting approximately 28% to 34% of infant from 6 to 23 months [20]. Smoking exposure in utero infants duplicated the chance of anaemia as well as stunting. Anaemia is associated with diminished mental, motor, and behavioural disturbances and stunting also affects cognitive, education and work capacity [23]. Nicotine augments this effect because it impacts on brain development compromising even further psico-social development [2,6,24-25]. Nicotine is the major psychoactive chemical identified and due to its low molecular weight and high lipid solubility, nicotine rapidly peruses through the human placenta resulting in 15% higher nicotine concentration in the foetal circulation than in the maternal circulation [34].

In light of the evidence we consider it is necessary to act before pregnancy and focus prevention and cessation programs targeting adolescence, a period of heightened susceptibility to nicotine addiction [26,27]. However, when it is not possible to stop smoking during pregnancy, we must consider the need to balance risks from not breastfeeding versus the risk of maternal smoking during breastfeeding [28]. Breastfeeding is the best feeding practice to ameliorate the impact of intrauterine tobacco exposure [12,16,29,30,31]. Smoking women constitute a group at risk of abandoning breastfeeding [32,33] so we should develop specific policies to promote, protect and support breastfeeding in women with a high rate of tobacco use [30].

Conclusion

Risk of foetal growth retardation, stunting and anaemia are significantly related to smoking during pregnancy. Consequently efforts to prevent smoking should be a cornerstone in promoting healthy child growth and development.

References

1. Einerson A, Riordan S (2009) Smoking in pregnancy and lactation: a review of risks and cessation strategies. Eur J Clin Pharmacol 65: 325-330.
2. Rogers JM (2009) Tobacco and pregnancy. Reprod Toxicol 28: 152-160.
3. Ino T (2010) Maternal smoking during pregnancy and offspring obesity: meta-analysis. Pediatr Int 52: 94-99.
4. Kawakita A, Sato K, Makino H et al. (2008) Nicotine acts on growth plate chondrocytes to delay skeletal growth through the α7 neuronal nicotinic acetylcholine receptor. PLoS ONE; 3:e3945.
5. Beyerlein A, Rückinger S, Toschke AM, Schaffrath Rosario A, von Kries R (2011) Prevention of iron deficiency in infants and toddlers. Am Fam Physician 66: 1217-1224.
6. DiFranza JR, Aligne CA, Weitzman M (2004) Prenatal and postnatal environmental tobacco smoke exposure and children's health. Pediatrics 113: 1007-1015.
7. Oken E, Levitan EB, Gillman MW (2008) Maternal smoking during pregnancy and child overweight: systematic review and meta-analysis. Int J Obes (Lond) 32: 201-210.
8. Dwyer JB, Broide RS, Leslie FM (2008) Nicotine and brain development. Birth Defects Res C Embryo Today 84: 30-44.
9. Pauly JR, Slotkin TA (2008) Maternal tobacco smoking, nicotine replacement and neurobehavioural development. Acta Paediatr 97: 1331-1337.
10. Rao R, Georgieff MK (2007) Iron in fetal and neonatal nutrition. Semin Fetal Neonatal Med 12: 54-63.
11. Mishra V, Retherford RD (2007) Does biofuel smoke contribute to anaemia and stunting in early childhood? Int J Epidemiol 36: 117-129.
12. Harvey NC, Poole JR, Javid MK, Dennison EM, Robinson S, et al. (2007) Parental determinants of neonatal body composition. J Clin Endocrinol Metab 92: 523-526.
13. Godfrey K, Walker-Bone K, Robinson S, Taylor P, Shore S, et al. (2001) Neonatal bone mass: influence of parental birthweight, maternal smoking, body composition, and activity during pregnancy. J Bone Miner Res 16: 1694-1703.
14. Lozoff B, Beard J, Connor J, Barbara F, Georgieff M, et al. (2006) Long-lasting neural and behavioural effects of iron deficiency in infancy. Nutr Rev 64: S34-43.
15. Adair LS, Guillek DK (1997) Age-specific determinants of stunting in Filipino children. J Nutr 127: 314-320.
16. Jones G (2011) Early life nutrition and bone development in children. Nestle Nutr Workshop Ser Pediatr Program 68: 227-233.
17. Kyu HH, Georgiades K, Boyle MH (2009) Maternal smoking, biofuel smoke exposure and child height-for-age in seven developing countries. Int J Epidemiol 38: 1342-1350.
18. Dewey KG, Begum K (2011) Long-term consequences of stunting in early life. Matern Child Nutr 7 Suppl 3: 5-18.
19. Engle PL, Fernald LC, Alderman H, Behrman J, O’Gara C, et al. (2011) Strategies for reducing inequalities and improving developmental outcomes for young children in low-income and middle-income countries. Lancet 378: 1339-1353.
20. Bove & Cerruti F (2011) Encuesta nacional sobre estado nutricional, prácticas de alimentación y anemia, Montevideo MSP, MIDES, RUANDI y UNICEF.
21. World Health Organisation (2006) WHO child growth standards: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age. Geneva.
22. Carmines EL, Rajendran N (2008) Evidence for carbon monoxide as the major factor contributing to lower fetal weights in rats exposed to cigarette smoke. Toxicol Sci 102: 383-391.
23. Uauy R, Kain J, Mericq V, Rojas J, Corvalán C (2008) Nutrition, child growth, and chronic disease prevention. Ann Med 40: 11-20.
24. Kiechl-Kohlendorfer U1, Ralser E, Pupp Peglow U, Reiter G, Griesmaier E, et al. (2010) Smoking in pregnancy: a risk factor for adverse neurodevelopmental outcome in preterm infants? Acta Paediatr 99: 1016-1019.
25. Mortensen E, Michaelsen K, Sanders S, Reinisch JM (2005) A dose-response relationship between maternal smoking during late pregnancy and adult intelligence in male offspring. Paediatr Perinat Epidemiol 19: 4–11.
26. Bruin JE, Gerstein HC, Holloway AC (2010) Long-term consequences of fetal and neonatal nicotine exposure: a critical review. Toxicol Sci 116: 364-374.
27. Oncken CA, Dietz PM, Tong VT, Belizán JM, Tolosa JE, et al. (2010) Prenatal tobacco prevention and cessation interventions for women in low- and middle-income countries. Acta Obstet Gynecol Scand 89: 442-453.
28. Monasta L, Batty GD, Cattaneo A, Lutje V, Ronfani L, et al. (2010) Early-life determinants of overweight and obesity: a review of systematic reviews. Obes Rev 11: 695-708.
29. Kazal LA Jr (2002) Prevention of iron deficiency in infants and toddlers. Am Fam Physician 66: 1217-1224.
30. Dorea JG (2007) Maternal smoking and infant feeding; breastfeeding is better and safer. Matern Child Health J 11: 287-291.
31. Nafstad P, Jaakkola JJ, Hagen JA, Botten G, Kongerud J (1996) Breastfeeding, maternal smoking and lower respiratory tract infections. Eur Respir J 9: 2623-2629.

32. Amir LH (2001) Maternal smoking and reduced duration of breastfeeding: a review of possible mechanisms. Early Hum Dev 64: 45-67.

33. Horta BL, Kramer MS, Platt RW (2001) Maternal smoking and the risk of early weaning: a meta-analysis. Am J Public Health 91: 304-307.

34. Machaalani R, Ghazavi E, Hinton T, Waters KA, Hennessy A (2014) Cigarette smoking during pregnancy regulates the expression of specific nicotinic acetylcholine receptor (nAChR) subunits in the human placenta. Toxicol Appl Pharmacol. 276: 204-212.