PROJECTIVELY GENERATED d-ABELIAN CATEGORIES ARE d-CLUSTER TILTING

SONDRE KVAMME

Abstract. Building on work of Jasso, we prove that any projectively generated d-abelian category is equivalent to a d-cluster tilting subcategory of an abelian category with enough projectives. This supports the claim that d-abelian categories are good axiomatizations of d-cluster tilting subcategories.

Contents
1. Introduction 1
2. Preliminaries 2
3. Proof of Theorem 1.3 4
References 5

1. Introduction

The concept of d-cluster tilting subcategories was introduced by Iyama in [I1], and further developed in [I2], [I3]. It is the natural framework for doing higher Auslander-Reiten theory. A d-cluster tilting subcategory \mathcal{M} is a contravariantly finite, covariantly finite, and generating-cogenerating subcategory of an abelian category \mathcal{A} satisfying

$$\mathcal{M} = \{ X \in \mathcal{A} \mid \forall i \in \{1, 2, \cdots, d-1\} \ Ext^i_{\mathcal{A}}(X, \mathcal{M}) = 0 \} \quad (1.1)$$

$$\{ X \in \mathcal{A} \mid \forall i \in \{1, 2, \cdots, d-1\} \ Ext^i_{\mathcal{A}}(\mathcal{M}, X) = 0 \} \quad (1.2)$$

Examples of such categories are given in [H1], [H2], [I0]. A problem with this definition is that it is not clear which properties of \mathcal{M} are independent of the embedding into \mathcal{A}. To fix this, Jasso introduced in [J] the concept of a d-abelian category (see Definition 2.3), which is an axiomatization of d-cluster tilting subcategories. He shows that any d-cluster tilting subcategory is d-abelian. Furthermore, he also shows [J Theorem 3.20] that if \mathcal{M} is a small

Date: April 18, 2018.
2010 Mathematics Subject Classification. 18E99.
Key words and phrases. Abelian category; homological algebra; cluster-tilting.

The author thanks Jan Schröer and Gustavo Jasso for comments on a previous version of this paper. The work was made possible by funding provided by the Bonn International Graduate School in Mathematics.
projectively generated d-abelian category with category of projective objects denoted by \mathcal{P}, such that there exists an exact duality $D: \text{mod} \mathcal{P} \to \text{mod} \mathcal{P}^{\text{op}}$, then the image of the fully faithful functor

$$F: \mathcal{M} \to \text{mod} \mathcal{P} \quad F(X) = \mathcal{M}(-, X)|_{\mathcal{P}}$$

is d-cluster tilting in $\text{mod} \mathcal{P}$. Here $\text{mod} \mathcal{P}$ is the category of finitely presented contravariant functors from \mathcal{P} to $\text{Mod} \mathbb{Z}$. In this note we show that the second assumption is unnecessary.

Theorem 1.3. Let \mathcal{M} be a small projectively generated d-abelian category, let \mathcal{P} be the set of projective objects of \mathcal{M}, and let $F: \mathcal{M} \to \text{mod} \mathcal{P}$ be the functor defined by $F(X) := \mathcal{M}(-, X)|_{\mathcal{P}}$. Then the essential image $FM := \{M \in \text{mod} \mathcal{P} \mid \exists X \in \mathcal{M} \text{ such that } F(X) \cong M\}$ is d-cluster tilting in $\text{mod} \mathcal{P}$.

We emphasize that almost all of the work towards proving this theorem has been done in [J]. In fact, by Lemma 2.6 the only thing which remains is to show that FM is cogenerating and contravariantly finite, and the proof of these properties are straightforward.

2. Preliminaries

We recall the definition of d-exact sequences and d-abelian categories.

Definition 2.1 ([J, Definition 2.2]). Let \mathcal{M} be an additive category and $f^0: X^0 \to X^1$ a morphism in \mathcal{M}. A d-cokernel of f^0 is a sequence of maps

$$(f^1, \ldots, f^d): X^1 \xrightarrow{f^1} X^2 \xrightarrow{f^2} \cdots \xrightarrow{f^{d-1}} X^d \xrightarrow{f^d} X^{d+1}$$

such that the sequence

$$0 \to \mathcal{M}(X^{d+1}, Z) \xrightarrow{- \circ f^d} \mathcal{M}(X^d, Z) \xrightarrow{- \circ f^{d-1}} \cdots$$

$$\cdots \xrightarrow{- \circ f^1} \mathcal{M}(X^1, Z) \xrightarrow{- \circ f^0} \mathcal{M}(X^0, Z)$$

is exact for all $Z \in \mathcal{M}$. Dually, a d-kernel of a morphism $g^d: Y^d \to Y^{d+1}$ is a sequence of maps

$$(g^0, \ldots, g^{-d-1}): Y^0 \xrightarrow{g^0} Y^1 \xrightarrow{g^1} \cdots \xrightarrow{g^{-d-2}} Y^{d-1} \xrightarrow{g^{-d-1}} Y^d$$

such that the sequence

$$0 \to \mathcal{M}(Z, Y^0) \xrightarrow{g^0 \circ -} \mathcal{M}(Z, Y^1) \xrightarrow{g^1 \circ -} \cdots$$

$$\cdots \xrightarrow{g^{-d-1} \circ -} \mathcal{M}(Z, Y^{d-1}) \xrightarrow{g^{-d} \circ -} \mathcal{M}(Z, Y^{d+1})$$

is exact for all $Z \in \mathcal{M}$.

Definition 2.2 ([J, Definition 2.4]). Let \(\mathcal{M} \) be an additive category. A \(d \)-exact sequence is a sequence of maps

\[
X^0 \xrightarrow{f^0} X^1 \xrightarrow{f^1} \cdots \xrightarrow{f^d} X^{d+1}
\]

such that \((f^0, \ldots, f^{d-1})\) is a \(d \)-kernel of \(f^d \), and \((f^1, \ldots, f^d)\) is a \(d \)-cokernel of \(f^0 \).

Recall that \(\mathcal{M} \) is idempotent complete if for any idempotent \(e: X \to X \) in \(\mathcal{M} \) there exists morphisms \(\pi: X \to Y \) and \(i: Y \to X \) such that \(i \circ \pi = e \) and \(\pi \circ i = 1_Y \).

Definition 2.3 ([J, Definition 3.1]). A \(d \)-abelian category is an additive category \(\mathcal{M} \) satisfying the following axioms:

(A0) \(\mathcal{M} \) is idempotent complete.

(A1) Every morphism in \(\mathcal{M} \) has a \(d \)-kernel and a \(d \)-cokernel

(A2) Let \(f^0: X^0 \to X^1 \) be a monomorphism and \((f^1, \ldots, f^d)\) a \(d \)-cokernel of \(f^0 \). Then the sequence

\[
X^0 \xrightarrow{f^0} X^1 \xrightarrow{f^1} X^2 \xrightarrow{f^2} \cdots \xrightarrow{f^{d-1}} X^d \xrightarrow{f^d} X^{d+1}
\]

is \(d \)-exact.

(A2^op) Let \(g^d: Y^d \to Y^{d+1} \) be an epimorphism and \((g^0, \ldots, g^{d-1})\) a \(d \)-kernel of \(g^d \). Then the sequence

\[
Y^0 \xrightarrow{g^0} Y^1 \xrightarrow{g^1} \cdots \xrightarrow{g^{d-2}} Y^{d-1} \xrightarrow{g^{d-1}} Y^d \xrightarrow{g^d} Y^{d+1}
\]

is \(d \)-exact.

Recall that \(P \in \mathcal{M} \) is projective if for every epimorphism \(f: X \to Y \) in \(\mathcal{M} \) the sequence \(\mathcal{M}(P, X) \xrightarrow{f^0} \mathcal{M}(P, Y) \to 0 \) is exact. The following results holds for projective objects in \(d \)-abelian categories.

Theorem 2.4 ([J, Theorem 3.12]). Let \(\mathcal{M} \) be a \(d \)-abelian category, let \(P \) be a projective object in \(\mathcal{M} \), let \(f^0: X^0 \to X^1 \) be a morphism in \(\mathcal{M} \), and let \((f^1, \ldots, f^d)\) a \(d \)-cokernel of \(f^0 \). Then the sequence

\[
\mathcal{M}(P, X^0) \xrightarrow{f^0} \mathcal{M}(P, X^1) \xrightarrow{f^1} \mathcal{M}(P, X^2) \xrightarrow{f^2} \cdots \xrightarrow{f^{d-1}} \mathcal{M}(P, X^d) \xrightarrow{f^d} \mathcal{M}(P, X^{d+1}) \to 0
\]

is exact.

Definition 2.5 ([J, Definition 3.19]). Let \(\mathcal{M} \) be a \(d \)-abelian category. We say that \(\mathcal{M} \) is projectively generated if for every objects \(X \in \mathcal{M} \) there exists a projective object \(P \in \mathcal{M} \) and an epimorphism \(f: P \to X \).

Let \(\mathcal{M} \) be a projectively generated \(d \)-abelian category, let \(\mathcal{P} \) be the category of projective objects of \(\mathcal{M} \), and let \(F: \mathcal{M} \to \text{mod} \mathcal{P} \) be the functor
Theorem 2.4 tells us that if \((f^1, \cdots, f^d)\) is a \(d\)-cokernel of \(f^0\), then the sequence

\[
F(X^0) \xrightarrow{F(f^0)} F(X^1) \xrightarrow{F(f^1)} F(X^2) \xrightarrow{F(f^2)} \cdots \xrightarrow{F(f^d)} F(X^{d+1}) \rightarrow 0
\]
is exact in \(\mod \mathcal{P}\).

Parts of the proof that a projectively generated \(d\)-abelian category is \(d\)-cluster tilting in \(\mod \mathcal{P}\) follows from the following lemma. Note that there is a typo in [J]; in the lemma they write that \(F\mathcal{M}\) is contravariantly finite, but in the proof they show that it is covariantly finite.

Lemma 2.6 ([J, Lemma 3.22]). Let \(\mathcal{M}\) be a small projectively generated \(d\)-abelian category, let \(\mathcal{P}\) the category of projective objects of \(\mathcal{M}\), and let \(F: \mathcal{M} \rightarrow \mod \mathcal{P}\) be the functor defined by \(F(X) = \mathcal{M}(-, X)|_\mathcal{P}\). Also, let \(F\mathcal{M} := \{M \in \mod \mathcal{P} \mid \exists X \in \mathcal{M} \text{ such that } F(X) \cong M\}\) be the essential image of \(F\). Then the following holds:

(i) \(\mod \mathcal{P}\) is abelian;
(ii) \(F\) is fully faithful;
(iii) For all \(k \in \{1, \cdots, d-1\}\) we have \(\text{Ext}^k_{\mod \mathcal{P}}(F\mathcal{M}, F\mathcal{M}) = 0\);
(iv) We have \(F\mathcal{M} = \{M \in \mod \mathcal{P} \mid \forall i \in \{1, 2, \cdots, d-1\} \text{ Ext}^i_{\mod \mathcal{P}}(M, F\mathcal{M}) = 0\}\);
(v) We have \(F\mathcal{M} = \{M \in \mod \mathcal{P} \mid \forall i \in \{1, 2, \cdots, d-1\} \text{ Ext}^i_{\mod \mathcal{P}}(F\mathcal{M}, M) = 0\}\);
(vi) \(F\mathcal{M}\) is covariantly finite in \(\mod \mathcal{P}\).

Since \(F\mathcal{M}\) is obviously generating, it only remains to show that \(F\mathcal{M}\) is cogenerating and contravariantly finite.

3. Proof of Theorem 1.3

Throughout this section we fix an integer \(d \geq 2\), a projectively generated \(d\)-abelian category \(\mathcal{M}\), and we let \(\mathcal{P}\) denote the category of projective objects in \(\mathcal{M}\).

Lemma 3.1. \(F\mathcal{M}\) is cogenerating in \(\mod \mathcal{P}\).

Proof. Let \(G \in \mod \mathcal{P}\) be arbitrary. Since \(G\) is finitely presented, we can find projective objects \(P^0, P^1 \in \mathcal{M}\) and a morphism \(\phi: F(P^0) \rightarrow F(P^1)\) such that \(\text{Cok} \phi \cong G\). Since \(F\) is full, there exists a morphism \(f^0: P^0 \rightarrow P^1\) in \(\mathcal{M}\) such that \(F(f^0) = \phi\). Let

\[
(f^1, \cdots, f^d): P^1 \xrightarrow{f^1} X^2 \xrightarrow{f^2} \cdots \xrightarrow{f^{d-1}} X^d \xrightarrow{f^d} X^{d+1}
\]
be a \(d\)-cokernel of \(f^0\). By Theorem 2.4 we know that the sequence

\[
F(P^0) \xrightarrow{F(f^0)} F(P^1) \xrightarrow{F(f^1)} F(X^2) \xrightarrow{F(f^2)} \cdots \xrightarrow{F(f^d)} F(X^{d+1}) \rightarrow 0
\]
is exact. In particular, we have a monomorphism
\[G \cong \mathrm{Cok}(F(f^0)) \to F(X^2) \]
This shows that \(F_M \) is cogenerating. \(\square \)

Lemma 3.2. \(F_M \) is contravariantly finite in \(\text{mod}\; \mathcal{P} \).

Proof. Let \(G \in \text{mod}\; \mathcal{P} \) be arbitrary. By Lemma 3.1 there exist objects \(X^d, X^{d+1} \in \mathcal{M} \) and an exact sequence
\[0 \to G \xrightarrow{i} F(X^d) \xrightarrow{\phi} F(X^{d+1}) \]
where \(\phi = F(f^d) \) since \(F \) is full. Let
\[(f^0, \ldots, f^{d-1}) : X^0 \xrightarrow{f^0} X^1 \xrightarrow{f^1} \cdots \xrightarrow{f^{d-2}} X^{d-1} \xrightarrow{f^{d-1}} X^d \]
be a \(d \)-kernel of \(f^d \). Since \(F(f^d) \circ F(f^{d-1}) = 0 \), we get an induced morphism \(F(X^{d-1}) \xrightarrow{i} G \). We claim that \(p \) is a right \(F_M \)-approximation of \(G \). Let \(X \in \mathcal{M} \) and let \(F(X) \xrightarrow{\psi} G \) be an arbitrary morphism in \(\text{mod}\; \mathcal{P} \). Since \(F \) is full, the composition \(F(X) \xrightarrow{\psi} G \xrightarrow{i} F(X^d) \) is of the form \(F(f) \) for some morphism \(f : X \to X^d \). Since \(f^d \circ f = 0 \) and
\[\mathcal{M}(X, X^{d-1}) \xrightarrow{f^{d-1}} \mathcal{M}(X, X^d) \xrightarrow{f^d} \mathcal{M}(X, X^{d+1}) \]
is exact, it follows that \(f = f^{d-1} \circ g \) for some morphism \(g : X \to X^{d-1} \). Applying \(F \) gives
\[i \circ p \circ F(g) = F(f^{d-1}) \circ F(g) = F(f) = i \circ \psi \]
and since \(i \) is a monomorphism, we get that \(p \circ F(g) = \psi \). This shows that \(p \) is a right \(F_M \)-approximation, and since \(G \) was arbitrary it follows that \(F_M \) is contravariantly finite. \(\square \)

Remark 3.3. Let \(\mathcal{M} \) be an injectively cogenerated \(d \)-abelian category, and let \(\mathcal{I} \) be the category of injective objects in \(\mathcal{M} \). Furthermore, let \(G : \mathcal{M} \to (\mathcal{I} \text{mod})^{\text{op}} \) be the functor given by \(G(X) := \mathcal{M}(X, -)_{\mathcal{I}} \). Here \(\mathcal{I} \text{mod} \) denotes the category of finitely presented covariant functors from \(\mathcal{I} \) to \(\text{mod}\; \mathbb{Z} \). The dual of Theorem 1.3 tells us that \(G \) is a fully faithful functor, \((\mathcal{I} \text{mod})^{\text{op}} \) is an abelian category, and the essential image
\[G\mathcal{M} := \{ M \in (\mathcal{I} \text{mod})^{\text{op}} \mid \exists X \in \mathcal{M} \text{ such that } G(X) \cong M \} \]
is \(d \)-cluster tilting in \((\mathcal{I} \text{mod})^{\text{op}} \).

References

[H1] M. Herschend, O. Iyama n-representation finite algebras and twisted fractionally Calabi-Yau algebras, Bull. London Math. Soc. 43 (2011), 449-466.

[H2] M. Herschend, O. Iyama Selfinjective quivers with potential and 2-representation-finite algebras, Compositio Math. 147 (2011), 1885-1920.

[I1] O. Iyama Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories. Adv. Math., 210(1):22-50, Mar. 2007

[I2] O. Iyama Auslander Correspondence. Adv. Math., 210(1):51-82, Mar. 2007.
[E] O. Iyama *Cluster tilting for higher Auslander algebras*, Adv. Math. 226(1):1-61, Jan. 2011.

[IJ] O. Iyama, G. Jasso *Auslander correspondence for dualizing R-varieties*, Preprint (2016), 18pp., [arXiv:1602.00127v2](https://arxiv.org/abs/1602.00127v2)

[IO] O. Iyama, S. Oppermann *n-representation-finite algebras and n-APR tilting*, Trans. Amer. Math. Soc. 363 (2011), 6575-6614.

[J] G. Jasso *n-Abelian and n-exact categories*. Math. Z. (2016): 1-57

[W] C. H. Weibel, *An introduction to homological algebra*, Cambridge Studies in Adv. Math., Vol 38, Cambridge University Press, 1994

Mathematisches Institut, Universität Bonn, Germany

E-mail address: sondre@math.uni-bonn.de