Contribution to the moss flora of northern Sikkim, India

Himani Yadav 1, Anshul Dhyani 2 & Prem Lal Uniyal 3

1, 2, 3 Department of Botany, University of Delhi, South Moti Bagh, Delhi 110007, India.

1 himani382@gmail.com, 2 anshuld42@gmail.com, 3 uniyalpl@rediffmail.com (corresponding author)

Abstract: Study of species composition and community structure is an essential requirement for maintaining the ecosystem functions, conservation, and sustainable use. Bryophytes are integral components of biodiversity and resilient during perturbation. The present investigation was, therefore, a survey in North Sikkim district (India) to study the diversity and distribution of mosses resulting in a total of 113 species in 74 genera and 28 families as new records to the study area. Of these, 14 species are considered rare based on their frequency of occurrence. The family Meteoriaceae which consists of mainly epiphytic taxa is found to be dominant and widely spread in the study area followed by Pottiaceae, Leucobryaceae, and Dicranaceae families. Sixteen species are found to be remarkable in contributing major biomass to the forest floors and as epiphytes. Five species are recorded to be endemic to this area. Most of the epiphytic species are found to be abundant in the area, indicating the good health of ecosystem. The data would be useful in the planning of conservation and management of biodiversity.

Keywords: Biodiversity, Bryophyta, ecosystem, endemicity, Hylocomium himalayanum, Meteoriaceae, northeastern India.
INTRODUCTION

Ecosystem functioning and stability is dependent on the richness of biodiversity (Noble & Dirzo 1997). Forest composition, species richness, diversity pattern, and spatial or temporal distribution are important ecological attributes significantly correlated with prevailing environmental as well as anthropogenic variables (Gairrola et al. 2014). Bryophytes are abundant in some ecosystems and play an important role in providing resilience to environmental changes (Muscolo et al. 2014). Understanding species diversity and distribution patterns is crucial for evaluating the roles of plant groups in the ecosystem at a micro-level. Regular surveys for species occurrence are required for developing models for biodiversity management and ecological restoration. Variations in species composition cover at spatial and temporal scales reflect the heterogeneity of the environmental conditions (Whitmore 1984), which is the basis for the complexity and diversity of any ecosystem. Climatic conditions and developmental activities have led to an unusual loss of biodiversity and ecosystem services (Dierick & Holscher 2009).

Bryophytes also play an important role in nutrient cycling, water retention, succession, and providing microhabitat for many plants and animals. Despite their small size, they comprise major components of biomass and photosynthetic production. The gap dynamics in the forest is influenced by the bryophyte diversity and micro-communities (Levin 1992; Kimmerer & Young 1996). Bryophyte diversity also adds to the aesthetic value and integrity of the environment. They are considered as bioindicators of air and water quality and can be used in developing an “Index of Atmospheric Purity” (IAP) (Larsen 2007). In recent years, bryophytes have been widely used for bioremediation and pollution monitoring as well as in molecular biology studies. The factors controlling the distribution of species and population dynamic of bryophytes is unfortunately poorly understood. Such studies can provide a model for the management of biodiversity.

Sikkim is situated within the Himalaya Biodiversity Hotspot and is rich in-affluent flora and fauna diversity (Rahman 2012). It harbours tremendous biodiversity, though it just covers 0.2% of the geographical area of India. Currently, many species are subjected to various threats, including the biological, natural, and anthropogenic activities, which limit the regeneration of species. These concerns should be addressed with strategic methods.

Pradhan & Badola (2008) reported the use of *Sphagnum squarrosum* (peat moss) in dressing and bandaging cuts and wounds and as an important resource for fuel in the Dzongu Valley of Sikkim. Singh & Singh (2013) studied the liverworts of a part of Sikkim. Gangulee (1969–80) described the mosses of a few areas in Sikkim. The area of northern Sikkim is unexplored in terms of bryodiversity assessment and is home to many endemic and monotypic taxa. We wanted to check the influence of moss diversity on the community composition of the area. The present study is, therefore, planned to document the mosses of the North Sikkim district.

Area of Study

Sikkim State (27°31′58.699″N & 88°30′43.985″E) is located on the northeastern side of India bordered by Bhutan, Tibet, and Nepal. It has an altitudinal range varying from 300–4,000 m, representing tropical, temperate, sub-tropical, and alpine regions, and a small portion of cold desert. Approximately 80% of its geographical area is under forest cover (Sikkim Biodiversity Action Plan 2012). Present surveys were made in the North Sikkim District, especially in Lachung-Yumthang Valley and Lachen-Thangu Valley (Figure 1).

Lachung and Yumthang (27°49′33.3336″N & 88°41′44.9916″E) is a mountain valley situated at an altitude of 2,900 m. The valley is filled with temperate vegetation, especially Rhododendrons and conifers, and is rich in myriad waterfalls and streams which maintain the moisture in the valley. The Lachen and Thangu (27°43′59.99″N & 88°32′59.99″E and 27°53′31.94″N & 88°32′11.33″E) valley is situated at an altitude of 2,750 m, consisting of Rhododendrons, conifers, and alpine vegetation.

MATERIALS AND METHODS

During March 2013, mosses were collected from various areas of the North Sikkim District, particularly the Lachung-Yumthang and Lachen-Thangu Vallyes. The moss patches were peeled off with a knife and collected in small polythene bags. To keep the sample pure, each population was kept separate. The moss samples were air-dried and some related data such as date of collection, locality, and habitat along with the substratum type were marked on the packets. Voucher specimens are deposited in the herbarium of Department of Botany, University of Delhi (DUH), Delhi (India). For identification of the samples, the dried materials were soaked in water for a few minutes. Morphologically, different specimens...
were separated on the basis of microscopic observations. Different parts of each sample were observed under the microscope and identified with the help of various Floras (Gangulee 1969–1980; Chopra 1975; Flora of North America Editorial Committee 2007; Flora of China 2008; Koponen & Sun 2017).

RESULTS AND DISCUSSION

The study is based on the species diversity of mosses recorded during the survey undertaken in various sites of North Sikkim District. The present study reveals 113 species of mosses belonging to 74 genera and 28 families (Table 1).

Most frequently encountered species in the study area were Brachythecium kamounense, Rhynchostegiella humillima, Ptychostomum capillare, Bryum cellulare, Campylopus richardii, Dicranum scoparium, Entodon nepalensis, Hylocomium himalayanum, Hypnum sikkimense, Barbella pendula, Floribundaria sparsa, Trachypodopsis serrulata, Pogonatum microstomum, Barbula angustifolia, Hyophila rosea, and Thuidium sparsifolium. Few investigated sites act as refugia for native bryophyte species. These sites provide specific microhabitat and should be protected from any disturbance. Some of the photographs of mosses are presented in Image 1 and Image 2. Present study...
Table 1. List of recorded species of mosses, with their habitat and growth form. Families are arranged according to Shaw et al. (2009).

Taxa	Growth form and habitat	
Polytrichaceae		
1	Atrichum obtusulum (Müll. Hal.) A. Jaeger ++	Tall Turf, shaded soil
2	Atrichum subserratum (Harv. & Hook. f.) Mitt.	Tall Turf, shaded soil
3	Pokonatum fusatum Mitt.	Tall Turf, shaded soil
4	Pokonatum microstomum (R. Br. ex Schwäg.) Brid.	Tall Turf, shaded soil
5	Pokonatum neesi (Müll. Hal.) Dozy	Tall Turf, shaded soil
6	Pokonatum urinigerum (Hedw.) P. Beauv.	Tall Turf, shaded soil
7	Polytrichastrum formosum (Hedw.) G.L. Sm. +	Tall Turf, shaded soil
Fissidentaceae		
8	Fissidens geppii M. Fleisch.	Tall Turf, shaded soil
9	Fissidens grandifrons Brid.	Tall Turf, shaded soil
Bruchiaceae		
10	Trematodon conformis Mitt.	Tall Turf, shaded soil
Rhabdoweisiaceae		
11	Oncophorus verrucosus (Hedw.) Brid. +	Tall Turf, shaded soil
12	Oncophorus wahlenbergii Brid. +	Tall Turf, shaded soil
13	Oreoepisaxia laxifolia (Hook. f.) Kindb.	Tall Turf, shaded soil
14	Symbathecis reinwardtii (Dozy & Molk.) Mitt.	Tall Turf, shaded soil
15	Symbathecis vaginata (Hook. ex Harv.) Wijk & Margad.	Tall Turf, shaded soil
Dicranaceae		
16	Ctenostoma stenocephalum Bruch & Schimp.	Tall Turf, shaded soil
17	Cynodontium polycastrum (Hedw.) Schimp. +	Tall Turf, shaded soil
18	Dicranoloma subflexifolium (Müll. Hal.) Paris	Tall Turf, shaded soil
19	Dicranum assimilicium Dixon	Tall Turf, shaded soil
20	Dicranum crispifolium Müll. Hall.	Tall Turf, shaded soil
21	Dicranum himalayananum Mitt.	Tall Turf, shaded soil
22	Dicranum scoparium Hedw. ++	Tall Turf, shaded soil
23	Ditrichium flexicaule (Schwäg.) Hampe	Tall Turf, shaded soil
24	Ditrichium tortipes (Mitt.) Kuntze	Tall Turf, shaded soil
Leucobryaceae		
25	Campylium ericoides (Griff.) A. Jaeger	Tall Turf, shaded soil
26	Campylium fragilis (Brid.) Bruch & Schimp. ++	Tall Turf, shaded soil
27	Campylium milleri Renaud & Cardot	Tall Turf, shaded soil
28	Campylium richardi Brid. ++	Tall Turf, shaded soil
29	Campylium savannarum (Müll. Hal.) Mitt.	Tall Turf, shaded soil
30	Campylium zollingerianus (Müll. Hal.) Bosch & Sande Lac.	Tall Turf, shaded soil
31	Dicranodontium asperum (Mitt.) Broth.	Tall Turf, shaded soil
32	Dicranodontium didiclyeum (Mitt.) A. Jaeger	Tall Turf, shaded soil
33	Ochrybryum kurzianum Hampe +	Tall Turf, shaded soil

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 October 2022 | 14(10): 22008–22015
Taxa	Growth form and habitat	
66	Thuidium sparsifolium (Mitt.) A. Jaeger	Weft, shaded rocks
67	Brachythecium kamoumense (Harv.) A. Jaeger	Mat, exposed rocks
68	Brachythecium longicuspisatum (Mitt.) A. Jaeger	Mat, exposed rocks
69	Brynza decurans (Mitt.) Dixon ++	Mat, shaded rocks
70	Homalotheicum nilgherense (Mont.) H. Rob.	Mat, tree bark
71	Oxypyrhynchium vagans (A. Jaeger) Ignatov & Huttunen ++	Mat, wet rocks
72	Rhynchostegiella diversicatfolia (Renaud & Cardot) Broth.	Mat, wet rocks
73	Rhynchostegiella humilima (Mitt.) Broth. ++	Mat, wet rocks
74	Rhynchostegiella menadensis (Sande Lac.) E.B. Bartram	Mat, wet rocks
75	Aerobryidium filamentosum (Hook.) M. Fleisch.	Pendent, tree branches
76	Barbella convolvens (Mitt.) Broth.	Pendent, tree branches
77	Barbella pendula (Sull.) M. Fleisch. ++	Pendent, tree branches
78	Barbella spiculata (Mitt.) Broth.	Pendent, tree branches
79	Chrysocladium flabellum (Mitt.) M. Fleisch.	Mat, tree branches
80	Diaphanodon blandus (Harv.) Renaud & Cardot	Mat, tree bark
81	Floribundaria sparsa (Mitt.) Broth.	Pendent, tree branches
82	Meteorium polytrichum Dozy & Molk. ++	Pendent, tree branches
83	Pseudospiridentopsis horrida (Mitt. ex Cardot) M. Fleisch.	Mat, tree bark
84	Trachypodopsis auriculata (Mitt.) M. Fleisch.	Pendent, tree bark
85	Trachypodopsis serratula (P. Beauv.) M. Fleisch. ++	Pendent, tree branches
86	Trachypodopsis himantephylla (Müll. Hal. ex Renaud & Cardot) M. Fleisch.	Creeping and Pendent, tree trunk and branches
87	Trachypus bicolor Reinw. & Hornsch.	Creeping, tree trunk and branches
88	Levierella neckeroides (Griff.) O'Shea & Matcham	Mat, fallen logs
89	Ectropothecium drosbatum (Reinw. & Hornsch.) A. Jaeger	Mat, shaded forest floor
90	Hypnum macrogyrum Besch. ++	Mat, shaded soil and rocks
91	Hypnum sikkimense Ando	Mat, shaded soil
92	Hylocomium himalayum (Mitt.) A. Jaeger ++	Feather, forest floor
93	Macrothamnium leptohymenioides Neg.	Weft, forest floor
94	Meteoriella soluta (Mitt.) S. Okamura	Pendent, tree branches
95	Rhytidiadelphus rugosus (Ehrh. ex Hedw.) Kindb.	Mat, forest floor
96	Chaetomitiopsis glaucaecarpa (Reinw. ex Schwägr.) M. Fleisch.	Mat, tree
97	Plagiothecium neckeroides Schimp.	Mat, tree base
98	Plagiothecium nemorale (Mitt.) A. Jaeger	Mat, tree base
99	Entodon luteontenis Renaud & Cardot	Turf, exposed rocks
100	Entodon nepalensis Mizush. ++	Mat, fallen logs
101	Brotherella pallida (Renaud & Cardot) M. Fleisch.	Mat, wet rocks
102	Pylaisiadelpha capillacea (Griff.) B.C. Tan & Y. Jia	Mat, forest floor
103	Taxithelium nepalense (Schwägr.) Broth.	Mat, rocks
104	Meiotheium jagorii (Müll. Hal.) Broth.	Mat, fallen wood
105	Sematophyllum humile (Mitt.) Broth.	Mat, tree branches
106	Sematophyllum phoenicium (Müll. Hal.) M. Fleisch.	Mat, tree bark
107	Symphysodontella subulata Broth.	Mat, wet rocks
108	Dicranum orientale (Mitt.) H. Akly & Tsubota +	Mat, wet rocks
109	Macrocoma tenuis (Müll. Hal.) Vitt	Turf, tree branches
110	Thamnolyllum macrocarpus (Brid.) Gangulee	Feather, wet rocks
111	Zygodon brevisetus Wilson ex Mitt. +	Turf, tree branches
112	Myriopteris acutifolia (Griff.) O'Shea & Matcham	Mat, wood pieces
113	Myriopteris acutifolia Mitt.	Tail, tree trunk

++—Rare | ++—Widely distributed.
highlights the relationship between variability of habitat and the species diversity, which can be used as a model. These species are recorded from more than five distant locations of the study area found on variety of substrata. Seventeen species are of frequent occurrence which appear to be highly tolerant and possess adaptability and high regeneration potential. Epiphytic species were found in abundance and their occurrence in large number indicate congenial environment provided by associated vegetation. Species richness in the communities was found to be considerably higher. The family Meteoriaceae was found to be the most prevalent with the highest diversity and species richness in the study area, with 13 species, followed by Pottiaceae with 10 species, and Leucobryaceae and Dicranaceae with nine species each. Meteoriaceae was found on tree bark and hanging from tree branches. Members of these families are ecologically important as they retain large amounts of water. The wide occurrence of these families is due to their habitat adaptation and favourable environmental conditions. Diverse tree and shrub species play a major role in the wide occurrence of epiphytic mosses.

A few species such as Hygrohypnum choprae, Oxyrrhynchium vagans, Climacium americanum, Ochrohypnum kurzianum, Chaetomitriopsis glaucocarpa, Myurium rufescens, Dixonia orientalis, Polytrichastrum formosum, Oncophorus virens, and Oncophorus wahlenbergii are found only in very few locations (only one or two samples) and considered to be rare and highly specific to the habitats in the study area. Acrocarpous mosses are generally considered as more drought tolerant than pleurocarpous taxa. Most of the taxa are found growing on exposed sites with hard substrata like stones and rocks. Bryum cellulare and Hyophila rosea are observed to be common invader of every type of substrate such as rocks, cement floor, bricks, mortar, small rocks, and boulders. They are presumed to be highly tolerant to drought, disturbance, pollution etc. They have a high reproductive potential and found with capsules as well as gemmae. However, many of the taxa are found in sterile conditions which indicate their reproduction by vegetative means only.
Growing on calcium and magnesium rich substrata, Brachymenium longicolle, Fissidens geppii, F. grandifrons, Gymnostomum calcareum, Hydrogonium arcuatum, and H. pseudoehrenbergii can occupy exposed surfaces of rocks and boulders with no trace of vegetation. Members of Thuidiaceae are widely found and observed under shady conditions, specifically on the thick litter. Turf growth form is considered as dominant in the study area and their distribution can be correlated with local climate. Some green algae are also found to be associated with moss colonies of the collected taxa.

The taxa reported as new from the Sikkim region are: Barbella spiculata, Campylopus milleri, Fissidens geppii, and Mielichhoferia assamica. Earlier, they were recorded to be restricted to nearby regions such as Meghalaya and Darjeeling only. Extended distribution of Barbella spiculata (Mitt.) Broth., Campylopus milleri, Fissidens geppii, Mielichhoferia assamica, and Zygodon brevisetus were also recorded in the area. These species were earlier reported to be endemic to nearby areas of Darjeeling and Meghalaya also.

Most preferred colonization substrates were found to be exposed rocks where the representation was nearly 51% of the recorded taxa. This can be explained by the fact that in the favorable environment the rocky habitat was free of competition and thus available for mosses. Living tree trunks were the second most used substrate occupied by 32% of the recorded taxa. However, the
biomass of the mosses on the living trees was found more usually. The tree trunk species followed by decaying trunks are reported as the suitable substrates for bryophytes in tropical forests (Richards 1984).

The study area seems to harbour many new and unique taxa of mosses. Epiphytic species play an important role in protecting the host species by providing continuous moisture and retaining nutrients. Mosses are highly sensitive to the alteration of habitat by recreational activities, which may alter the distribution pattern of the sensitive species of their own kind and cause a decrease in their population size, which consequently may alter the species composition of the associated invertebrate fauna. Also, there is a need to explore and identify the moss species of the concerned contrasting sites to prepare a database. A comprehensive report of the species composition and their role in the functions of the ecosystem and, subsequently, for the conservation of these species together with their habitats is also required. Sikkim is typified by its richness, high diversity, and endemic species of plants (Singh et al. 2008; Singh & Pusalkar 2020). The high richness of species marks the area as a gene bank for many plant species.

Plant species composition is considered as a marker of ecosystem health and the existence of various ecological factors influences species diversity (Sefidkon et al. 2005). The present study area shows diverse topographic features and microhabitats, which has a great potential for prospering with a rich biodiversity. The use of such natural diversity can be related to the interaction among the species. Most of the habitats of the sites were covered during the present study, and species composition was variable in different aspects.

REFERENCES

Chopra, R.S. (1975). Taxonomy of Indian mosses (an introduction). Botanical Monograph [New Delhi] i-xi; 631 pp.

Dierick, D. & D. Hoelscher (2009). Species-specific tree water use characteristics in reforestation stands in the Philippines. Agricultural and Forest Meteorology 149(8): 1317–1326.

Flora of North America Editorial Committee (Ed.) (2007). Flora of North America, North of Mexico. Bryophyta. Oxford University Press, Pt. 1 (27), 713 pp.

Gairola, S., R.S. Rawal, N.P. Todaria & A. Bhatt (2014). Population structure and regeneration patterns of tree species in climate-sensitive subalpine forests of Indian western Himalaya. Journal of Forestry Research 25(2): 343–349.

Gangulee, H.C. (1969–1980). Mosses of Eastern India and Adjacent Regions. Fascicle I. 1969, Fascicle II. 1971, Fascicle III. 1972, Fascicle IV. 1974, Fascicle V. 1975, Fascicle VI. 1977, Fascicle VII. 1978 and Fascicle VIII. 1980. Eastend Printers, Calcutta, India.

Kimmerer, R.W. & C.C. Young (1996). Effect of gap size and regeneration niche on species coexistence in bryophyte communities. Bulletin of the Torrey Botanical Club 123(1): 16–24.

Koponen, T. & Y. Sun (2017). Preliminary study on phylogenetic position and delimitation of the ciliate arthrodontous genera of the moss family Mniaceae. Journal of Bryology 39(1): 23–38.

Larsen, R.S., J.N.B. Bell, P.W. James, P.J. Chimonides, F.J. Rumsey, A. Tremper & O.W. Purvis (2007). Lichen and bryophyte distribution on oak in London in relation to air pollution and bark acidity. Environmental Pollution 146(2): 332–340.

Levin, S.A. (1992). The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology 73(6): 1943–1967.

Muscolo, A., S. Bagnato, M. Sidari & R. Mercurio (2014). A review of the roles of forest canopy gaps. Journal of Forestry Research 25(4): 725–736.

Noble, I.R. & R. Dirzo (1997). Forests as human-dominated, ecosystems. Science 277(5325): 522–525.

Pradhan, B.K. & H.K. Badola (2008). Ethnomedicinal plant use by Lepcha tribe of Dzongu valley, bordering Khandchendzonga Biosphere Reserve, in North Sikkim, India. Ethnobiology. Ethnomedicine 4: 22.

Rahman, H., R. Karuppillayyan, P.C. Senapati, S.V. Ngachan & A. Kumar (2012). An analysis of past three-decade weather phenomenon in the mid-hills of Sikkim and strategies for mitigating possible impact of climate change on agriculture. Climate Change in Sikkim: Patterns, Impacts and Initiatives, 1–18 pp.

Richards, P.W. (1984). The ecology of tropical forest bryophytes, pp. 1233–1270 In: Schuster, R.M. (ed.). New Manual of Bryology. Hattori Botanical Laboratory, Nichinan.

Sefidkon, F., R. Kalvandi, M. Atri & M.M. Barazandeh (2005). Essential oil variability of Thymus eriocalyx (Roninger) Jalas. Flavour and Fragrance Journal 20(5): 521–524. https://doi.org/10.1002/ffj.1442

Goffinet, B., W.R. Buck & A.J. Shaw (2009). Morphology, anatomy, and classification of the Bryophyta. Bryophyta Biology, 2nd Edition. Cambridge University Press, Cambridge.

Sikkim Biodiversity Action Plan (2012). Sikkim Biodiversity Conservation and Forest Management Project, FEWMD, Government of Sikkim, CONCEPT, India.

Singh, D. & D.K. Singh (2013). Some new and noteworthy records of family Lejeuneaceae (Marchantiophyta) from Sikkim, India. Nelumbo 55: 153–165.

Singh, D.K. & D. Singh & M. Dew (2008). A catalogue of the Hepaticae and Anthocerotae of Sikkim, pp. 93–135. In: Mohamed, H., B.B. Baki, A. Nasruilhaq-Boyce & P.K.Y. Lee (eds.). Bryology in the New Millennium. University of Malaya, Kuala Lumpur.

Singh, D.K. & P.K. Pusalkar (2020). Floristic Diversity of the Indian Himalaya. In: Dar, G. & A. Khuroo (eds). Biodiversity of the Himalaya: Jammu and Kashmir State. Topics in Biodiversity and Conservation. Springer, Singapore, 1097 pp.

Whitmore, T.C. (1984). A vegetation map of Malesia at scale 1: 5 million. Journal of Biogeography 11: 461–471.
The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

October 2022 | Vol. 14 | No. 10 | Pages: 21903–22038

Date of Publication: 26 October 2022 (Online & Print)

DOI: 10.11609/jott.2022.14.10.21903-22038

Communications

The killing of Fishing Cat *Prionailurus viverrinus* (Bennett, 1833) (Mammalia: Carnivora: Felidae) in Hakaluki Haor, Bangladesh – Meherun Niger Sultana, Ai Suzuki, Shinya Numata, M. Abdul Aziz & Anwar Palash, Pp. 21903–21917

Feeding ecology of the endangered Himalayan Gray Langur *Semnopithecus ajax* in Chamba, Himachal Pradesh, India – Rupali Thakur, Kranti Yardi & P. Vishal Ahuja, Pp. 21918–21927

Kleptoparasitic interaction between Snow Leopard *Panthera uncia* and Red Fox *Vulpes vulpes* suggested by circumstantial evidence in Pin Valley National Park, India – Vipin, Tirupathi Rao Golla, Vinita Sharma, Bheemavarapu Kesav Kumar & Ajay Gaur, Pp. 21928–21935

A comparison of the breeding biology of White-throated Kingfisher *Halcyon smyrnensis* Linnaeus, 1758 in plains and hilly areas of Bangladesh – Habibon Naher, Noor Jahan Sarker & Shawkat Imam Khan, Pp. 21936–21945

An updated checklist of reptiles from Dampa Tiger Reserve, Mizoram, India, with sixteen new distribution records – Malsawmdawngliana, Bitupan Boruah, Naitik G. Patel, Samuel Lalronunga, Isaac Zosangliana, K. Lalmangaiha & Abhijit Das, Pp. 21946–21960

First report of marine sponge *Chelonaplysilla delicata* (Demospongiae: Darwinellidae) from the Andaman Sea/Indian Ocean with baseline information of epifauna on a mesophotic shipwreck – Rocktim Ramen Das, Titus Immanuel, Raj Kiran Lakra, Karan Baath & Ganesh Thiruchitrambalam, Pp. 21961–21967

Intertidal Ophiuroidea from the Saurashtra coastline, Gujarat, India – Hitisha Baroliya, Bhavna Solanki & Rahul Kundu, Pp. 21968–21975

Environmental factors affecting water mites (Acari: Hydrachnidia) assemblage in streams, Mangde Chhu basin, central Bhutan – Mer Man Gurung, Cheten Dorji, Dhan B. Gurung & Harry Smit, Pp. 21976–21991

An overview of genus *Pteris* L. in northeastern India and new report of *Pteris amoena* Blume from Arunachal Pradesh, India – Ashish K. Soni, Vineet K. Rawat, Abhinav Kumar & A. Benniamin, Pp. 21992–22000

Nectar robbing by bees on the flowers of Volkameria inermis (Lamiaceae) in Coringa Wildlife Sanctuary, Andhra Pradesh, India – P. Suvarna Raju, A.J. Solomon Raju, C. Venkateswara Reddy & G. Nagaraju, Pp. 22001–22007

Contribution to the moss flora of northern Sikkim, India – Himani Yadav, Anshul Dhyani & Prem Lal Uniyal, Pp. 22008–22015

Short Communications

Firefly survey: adopting citizen science approach to record the status of flashing beetles – Nidhi Rana, Rajesh Rayal & V.P. Uniyal, Pp. 22016–22020

First report of *Gymnopilus ochraceus* Høil. 1998 (Agaricomycetes: Hymenogastraceae) from India and determination of bioactive components – Anjali Rajendra Patil & Sushant Ishwar Bornak, Pp. 22021–22025

Notes

A coastal population of Honey Badger *Mellivora capensis* at Chilika Lagoon in the Indian east coast – Tiasa Adhya & Partha Dey, Pp. 22026–22028

New distribution record of Black Softshell Turtle *Nilssonia nigricans* (Anderson, 1875) from Manas National Park, Assam, India – Gayatri Dutta, Ivy Farheen Hussain, Pranab Jyoti Nath & M. Firoz Ahmed, Pp. 22029–22031

First report of melanism in Indian Flapshell Turtle *Lissemys punctata* (Bonnaterre, 1789) from a turtle trading market of West Bengal, India – Ardhendu Das Mahapatra, Anweshan Patra & Sudipta Kumar Ghoria, Pp. 22032–22035

The Fawcett’s Pierrot *Niphanda asiatis* (Insecta: Lepidoptera: Lycaenidae) in Bandarban: an addition to the butterfly fauna of Bangladesh – Akash Mojumdar & Rajib Dey, Pp. 22036–22038

Publisher & Host

Threatened Taxa