UNIFORM UPPER BOUND
FOR A STABLE MEASURE OF A SMALL BALL

Michał RYZNAR and Tomasz ŻAK
Institute of Mathematics
University of Technology
Wybrzeże Wyspiańskiego 27
50-370 Wrocław,
Poland

submitted April 28, 1998; revised September 16, 1998

AMS 1991 Subject classification: 60B11, 60E07.
Keywords and phrases: Stable Measure, Small Ball.

Abstract
The authors of [1] stated the following conjecture: Let μ be a symmetric α-stable measure on a separable Banach space and B a centered ball such that $\mu(B) \leq b$. Then there exists a constant $R(b)$, depending only on b, such that $\mu(tB) \leq R(b)t\mu(B)$ for all $0 < t < 1$. We prove that the above inequality holds but the constant R must depend also on α.

Recently, the authors of [1] proved the following (Theorem 6.4 in [1]): Let μ be a symmetric α-stable measure, $0 < \alpha \leq 2$, on a separable Banach space, fix $b < 1$, and let B denote a centered ball such that $\mu(B) \leq b$. Then there exists a constant $R(b) = \frac{3}{b\sqrt{1-b}}$, depending only on b, such that for all $0 \leq t \leq 1$

$$\mu(tB) \leq R(b)t^{\alpha/2}\mu(B).$$

(1)

Of course, for small values of t, the quantity $t^{\alpha/2}$ is much larger than t. The authors of [1] stated in their Conjecture 7.4 that (1) is true for all symmetric α-stable measures with t instead of $t^{\alpha/2}$ and some $R(b)$ depending only on b.

In our earlier paper [3], we also gave an estimate of a stable measure of a small ball. Namely, we proved the following.

Let μ be a symmetric α-stable measure, $0 < \alpha \leq 2$, on a separable Banach space, put $B = \{x : \|x\| \leq 1\}$, let $0 < r < \alpha$ and suppose that μ is so normalized that $\int \|x\|^r \mu(dx) = 1$. Then there exists a constant $K = K(\alpha, r)$ such that for all $0 \leq t \leq 1$

$$\mu(tB) \leq K(\alpha, r)t.$$

(2)

75
Some estimates of $K(\alpha, r)$ were also given in [3], we recall one of them in the final Remark.

Some normalization of μ is needed, as we will show in the sequel (see Example), in the paper [3] we chose the normalizing condition $\int \|x\|^r \mu(dx) = 1$. But proving the inequality (2), we also obtained the inequality

$$\mu(tB) \leq K(\alpha, r)[1 - \mu(B)]^{-1/r} t.$$ \hspace{1cm} (3)

In this note we will show that using (3) we can prove an estimate that is very close to the above-mentioned conjecture, however, the constant $R(b)$ must depend also on α.

The following is a generalization of (1).

Theorem 1 Let μ be a symmetric α-stable measure, $0 < \alpha \leq 2$, on a separable Banach space F. Then for every closed, symmetric, convex set $B \subset F$ and for each $b < 1$ there exists $R(\alpha, b)$ such that for all $0 \leq t \leq 1$

$$\mu(tB) \leq R(\alpha, b) t \mu(B), \text{ if } \mu(B) \leq b.$$ \hspace{1cm} (4)

First we show that the constant R must depend on α.

Example. Suppose that there exists positive function $R(b)$ that fulfills (4), does not depend on α and is bounded on every closed subinterval of $(0, 1)$ Let X_α be an α-stable random variable with the characteristic function $e^{-|t|^\alpha}$. It is known (see e.g. [4]) that

$$|X_\alpha|^\alpha \overset{d}{\to} \frac{1}{W}, \text{ as } \alpha \to 0+,$$ \hspace{1cm} (5)

where W is a random variable having the exponential distribution with mean 1. Consider one-dimensional ball $B = [-1, 1]$. From (5) we infer that

$$b_\alpha = P(X_\alpha \in B) = P(-1 \leq X_\alpha \leq 1) = P(|X_\alpha|^\alpha \leq 1) \to_{\alpha \to 0} P\left(\frac{1}{W} \leq 1\right) = \frac{1}{e}.$$

Denote by μ the distribution of X_α. It is easy to compute the value of the density of μ at zero:

$$p_\alpha(0) = \frac{1}{\pi} \int_0^\infty e^{-t^\alpha} dt = \frac{1}{\pi} \Gamma\left(\frac{1}{\alpha}\right).$$

Now

$$\lim_{\alpha \to 0} \lim_{t \to 0^+} \frac{1}{t} \mu(tB) = \lim_{\alpha \to 0} \lim_{t \to 0^+} \frac{1}{t} \int_0^t p(x) dx = \lim_{\alpha \to 0} p_\alpha(0) = \lim_{\alpha \to 0} \frac{1}{\pi} \Gamma\left(\frac{1}{\alpha}\right) = \infty,$$

and

$$\lim_{\alpha \to 0} R(b_\alpha) b_\alpha = R\left(\frac{1}{e}\right) \frac{1}{e},$$

contradicting the inequality (4).
This implies that $R(b)$ must also depend on α.

The proof of the theorem is almost the same as the proof of (1) in the paper [1], the difference is that instead of Kanter inequality we use our estimate (3). For the sake of completeness we repeat this proof.

We start with two lemmas.

Lemma 1. Let μ be a symmetric α-stable measure, $0 < \alpha \leq 2$, on a separable Banach space F. Fix $0 < r < \alpha$. Then there exists a constant $K(\alpha, r) \geq 2$ such that for every convex, symmetric, closed set $B \subset F$, every $y \in F$ and all $t \in [0, 1]$ there holds

$$\mu(tB + y) \leq K(\alpha, r) R t \mu(2B + y),$$

where $R = (\mu(B))^{-1} (1 - \mu(B))^{-1/r}$.

Proof. It is well-known that symmetric stable measures are conditionally Gaussian [2], hence they satisfy the Anderson property.

Case 1. If $y \in B$ then $B \subset 2B + y$ so that $\mu(B) \leq \mu(2B + y)$, hence by the Anderson property and (3)

$$\mu(tB + y) \leq \frac{K(\alpha, r)}{(1 - \mu(B))^{1/r}} t \leq \frac{K(\alpha, r) \mu(B)}{\mu(B)(1 - \mu(B))^{1/r}} t \mu(2B + y).$$

Case 2. If $y \notin B$ then take $r = [t^{-1} - 2^{-1}]$. Then for $k = 0, 1, ..., r$ the balls $\{y + kB\}$ are disjoint and contained in $y + 2B$, where $y_k = (1 - 2kt\|y\|^{-1})y$. By the Anderson property $\mu(y_k + tB) \geq \mu(y + tB)$ for $k = 0, 1, ..., r$. Therefore

$$\mu(tB + y) \leq (r + 1)^{-1} \mu(2B + y) \leq \frac{2t}{2 - t} \mu(2B + y) \leq \frac{K(\alpha, r)}{(1 - \mu(B))^{1/r}} \mu(2B + y) t,$$

because we assumed that $K(\alpha, r) > 2$ and $2 - t \geq 1 > (1 - \mu(B))^{1/r}$.

Lemma 2. With the same assumptions as in Lemma 1, we have for all $0 \leq \kappa \leq t \leq 1$

$$\mu(\kappa tB) \leq R' t \mu(\kappa B),$$

where $R' = \frac{2K(\alpha, r)}{\mu(B/2)(1 - \mu(B/2))^{1/r}}$.

Proof. For $0 \leq t \leq 1$ define a measure μ_t by the formula $\mu_t(C) = \mu(tC) = P(X/t \in C)$, where X is a symmetric α-stable random variable with the distribution μ. Then μ_t is also α-stable and we have the following equality:

$$\mu * \mu_s(C) = P(X + X'/s \in C) = P((1 + s^{-\alpha})^{1/\alpha} X \in C) = \mu_t(C),$$

where $t = (1 + s^{-\alpha})^{-1/\alpha}$ and X' is an independent copy of X. Now by Lemma 1

$$\mu(\kappa(tB)) = \mu(t(\kappa B)) = P(X/t \in \kappa B) = \mu * \mu_s(\kappa B) = \int_F \mu \left(\frac{2\kappa B}{2} + y \right) \mu_s(dy).$$
\[\leq \frac{K(\alpha, r)2\kappa}{\mu(B/2)(1 - \mu(B/2))^{1/r}} \mu_t(B) = \frac{2K(\alpha, r)}{\mu(B/2)(1 - \mu(B/2))^{1/r}} \kappa \mu(tB). \]

Proof of the Theorem. Fix \(B \) with \(\mu(B) \leq b \) and take \(s \geq 1 \) such that \(\mu(sB) = b \). Now, in Lemma 2, put \(\kappa = t \) and \(t = 1/2s \). Then

\[
\mu(tB) = \mu(t \cdot \frac{1}{2s} \cdot (2sB)) \leq t \frac{K(\alpha, r)^2}{\mu(sB)(1 - \mu(sB))^{1/r}} \mu \left(\frac{1}{2s} \cdot 2sB \right) \leq \frac{K(\alpha, r)^2}{\mu(sB)(1 - \mu(sB))^{1/r}} \kappa \mu(B) = R(b)K(\alpha, r) \mu(B),
\]

where \(R(b) = 2b^{-1}(1 - b)^{-1/r} \). Taking different values of \(r \in (0, \alpha) \) we get different values of \(K(\alpha, r) \). If, for simplicity, we take \(r = \alpha/2 \) we get \(R(\alpha, b) = K(\alpha, \alpha/2) 2^{\alpha/2} \left(\frac{1 - \Phi(x)}{\alpha} \right)^{1/\alpha} \). This ends the proof of the theorem.

Remark. Let us recall some estimates of \(K(\alpha, r) \) which were given in the paper [3]. If we take \(r = \alpha/2 \) then

\[K(\alpha, \frac{\alpha}{2}) = \frac{1}{2^{1/\alpha} \sqrt{\pi}} \Gamma^2 \left(\frac{\alpha}{4} + \frac{1}{2} \right) \Gamma(1 + \frac{2}{\alpha}) \inf_{x > 0} \frac{1}{x^{2/\alpha}(1 - \Phi(x))}, \]

where \(\Phi \) is the distribution function of a standard normal variable. For different values of \(r \) other estimates are possible, it could be interesting to find the least value of \(K(\alpha, r) \). Of course, if we consider \(\alpha \geq \varepsilon > 0 \) then we can find

\[R(b) = \sup_{\varepsilon \leq \alpha \leq 2} R(\alpha, b) < \infty \]

and then for all \(0 \leq t \leq 1 \) and \(\alpha \geq \varepsilon \)

\[\mu(tB) \leq R(b) t \mu(B), \quad \text{if} \quad \mu(B) \leq b. \]

References

[1] P. Hitczenko, S. Kwapien, W.N. Li, G. Schechtman, T. Schlumprecht and J. Zinn: Hypercontractivity and comparison of moments of iterated maxima and minima of independent random variables, *Electronic J. of Probab.* 3 (1998), 1–26.

[2] R. LePage, M. Woodroofe and J. Zinn: Convergence to a stable distribution via order statistics, *Ann. Probab.* 9/4 (1981), 624–632. MR82k:60049

[3] M. Lewandowski, M. Ryznar and T. Zak: Stable measure of a small ball, *Proc. Amer. Math. Soc.* 115/2 (1992), 489–494. MR92i:60004

[4] N. Cressie: A note on the behaviour of the stable distribution for small index alpha, *Z. Wahrscheinlichkeitstheorie verw. Gebiete*, 33 (1975), 61–64. MR52:1825