A member of Forkhead transcription factor FKHRL1 is a downstream effector of STI571-induced cell cycle arrest in BCR-ABL expressing cells

Norio Komatsu¹, Tomoko Watanabe¹, Mie Uchida¹, Masaki Mori¹, Keita Kirito¹, Satoru Kikuchi¹, Qifa Liu¹*, Tetsuzo Tauchi², Keisuke Miyazawa², Hitoshi Endo³, Tadashi Nagai¹, Keiya Ozawa¹

¹ Division of Hematology, Department of Medicine, Jichi Medical School, Tochigi, Japan;
² First Department of Internal Medicine, Tokyo Medical University, Tokyo, Japan
Present address: Department of Hematology, Nanfang Hospital, Guangzhou city, Guangdong 510515, China
³ Department of Biochemistry, Jichi Medical School, Tochigi, Japan;

Running title: FKHRL1 and CML

Subject Category: signal transduction

Total Text Word Count: Manuscript-6351; Summary-281

Address correspondence to: Norio Komatsu, M.D., Ph.D.
Division of Hematology, Department of Medicine, Jichi Medical School
Minamikawachi-machi, Kawachi-gun, Tochigi-ken 329-0498, Japan
TEL: + 81-285-58-7353, FAX: + 81-285-44-5258
E-mail: nkomatsu@jichi.ac.jp
SUMMARY

A member of the Forkhead transcription factor family, FKHRL1, lies downstream of the phosphatidylinositol 3-kinase-Akt activation pathway in cytokine signaling. Since the PI3K-Akt activation pathway is required for BCR-ABL-mediated transformation and survival signaling in chronic myelogenous leukemia (CML), in this study we examined the involvement of FKHRL1 in the BCR-ABL-mediated signaling pathway. FKHRL1 was constitutively phosphorylated in BCR-ABL-expressing cell lines KCL22 and KU812, and its phosphorylation was inhibited by treatment with STI571, a specific inhibitor of BCR-ABL tyrosine kinase. Concomitantly, STI571 induced cell cycle arrest at the G0/G1 phase, accompanied by upregulation of a cyclin-dependent kinase inhibitor p27/Kip1 in KCL22 cells. In addition, FKHRL1 was constitutively phosphorylated in the TF-1/bcr-abl cell line ectopically expressing BCR-ABL but not in the parent TF-1 cell line. These findings strongly suggested that FKHRL1 is located downstream of the BCR-ABL signaling pathway as an “inactive” phosphorylated form. Considering several lines of evidence that phosphorylated FKHRL1 has lost transcriptional activity and that p27/Kip1 expression is positively regulated by dephosphorylated “active” FKHRL1, BCR-ABL may down-regulate p27/Kip1 expression via the loss of FKHRL1 function as a transcription factor. To demonstrate this hypothesis, we generated a tamoxifen-inducible “active FKHRL1” FKHRL1-TM (a triple mutant of FKHRL1, in which all three Akt phosphorylation sites have been mutated): estrogen receptor system in the KCL22 cell line. The addition of tamoxifen inhibited the cell growth in a dose-dependent manner, indicating that overexpression of FKHRL1 in the nucleus antagonized deregulated proliferation of CML cells. Collectively, our results suggested that FKHRL1 regulates the expression of...
p27/Kip1 as a downstream molecule of BCR-ABL signaling in CML cells.

BCR-ABL-induced loss of FKHRL1 function may be involved in oncogenic transformation of CML partially via the down-regulation of p27/Kip1 proteins.
INTRODUCTION

The bcr-abl fusion gene originates from a reciprocal translocation between the longarms of chromosomes 9 and 22, resulting in the formation of the Philadelphia (Ph) chromosome (1). The resultant bcr-abl fusion gene encodes the chimeric BCR-ABL proteins of p230, p210, and p185 (230, 210, and 185 kDa). These fusion proteins have constitutively active tyrosine kinase activity and are implicated in the pathogenesis of chronic myelogenous leukemia (CML) and Ph-positive acute lymphoblastic leukemia (2). BCR-ABL exerts diverse actions on hematopoietic cells; transformation, protection of apoptosis, cell cycle progression, and altered cell migration and adhesion to the extracellular matrix (3-10). The expression of BCR-ABL activates multiple signaling cascades, including the JAK/STAT, Ras and phosphatidylinositol 3-kinase (PI3K) pathways (11). Among these, it was demonstrated that the activation of PI3K and the downstream Akt signaling pathways are required for not only BCR-ABL-mediated transformation but also cell survival of CML cells (12).

Recently, it was demonstrated that members of human Forkhead transcription factors FKHRL1, AFX and FKHR are directly phosphorylated by activated Akt (13-17). We also reported that FKHRL1 is directly phosphorylated by activated Akt as one of the downstream molecules of the PI3K/Akt activation pathway in erythropoietin and thrombopoietin signalings (18, 19). More than one hundred Forkhead family transcription factors have been identified in diverse species ranging from yeasts to humans (20). These transcription factors are related to embryogenesis, differentiation and tumorigenesis. Interestingly, the three Forkhead transcription factors, FKHRL1, AFX and FKHR are human homologs of DAF-16, which is involved in lifespan extension.
of Caenorhabditis elegans (C. elegans) (21, 22). The genes encoding these three molecules were originally identified in breakpoints of which chromosome translocations are recognized in human tumors (23-25).

FKHRL1 has three potential Akt phosphorylation sites (RXRXXS/T); T32 (RPRSCT32), S253 (RRRAVSS253), and S315 (RSRTNSS315) (26). When cells are stimulated with serum or growth factors, FKHRL1 is phosphorylated by activated Akt and is exported from the nucleus to the cytoplasm, resulting in the inhibition of target gene transcription (13-17). In contrast, when cells are deprived of serum or growth factors, FKHRL1 becomes a dephosphorylated form, translocates into the nucleus and activates the transcription of target genes. Thus, the transcriptional activity of FKHRL1 is negatively regulated via Akt-induced phosphorylation. Therefore, FKHRL1-TM, which is replaced at three amino acids, Thr32, Ser253, and Ser315 with alanine, is predicted to be an active form as a transcription factor (13). Medema et al. and we found that FKHRL1-TM induced cell cycle arrest at the G0/G1 phase in a variety of cell lines (19, 27). Furthermore, Dijkers et al. reported that “active” FKHRL1 up-regulates the expression of cyclin-dependent kinase inhibitor p27/Kip1 at the transcriptional level, resulting in blockage of cell cycle progression (28). These findings strongly suggested that FKHRL1 controls cell cycling via regulating the p27/Kip1 expression. Taken together with several lines of evidence that BCR-ABL suppressed p27/Kip1 expression via the PI3k/Akt activation pathway (29-31), FKHRL1 may lie downstream of the BCR-ABL signaling pathway as a phosphorylated “inactive” form, leading to the down-regulation of p27/Kip1 expression. To address this notion, we examined the phosphorylation of FKHRL1 in a CML-derived cell line. To further elucidate the pathological role of FKHRL1 in CML, we
generated a tamoxifen-inducible FKHRL1-TM: estrogen receptor (ER) system in a CML-derived cell line. We show here that FKHRL1 lies downstream of the BCR-ABL signaling pathway, and that this molecule has a negative effect on deregulated cell growth caused by BCR-ABL fusion protein. Loss of function of FKHRL1 may be involved in the oncogenic transformation of CML cells.
EXPERIMENTAL PROCEDURES

Reagents and antibodies--Fetal calf serum (FCS) and 4-hydroxytamoxifen (4-OHT) were purchased from Sigma (St. Louis, MO). Polyclonal antibody against BCR was purchased from Santa Cruz Biotechnology Inc. (Santa Cruz, CA). Antibodies against phospho-FKHRL1 (Thr32) and phospho-c-Abl (Tyr245) were purchased from Cell Signaling Technology Inc. (Beverly, MA). Antibody against native FKHRL1 was purchased from Upstate Biotechnology, Inc. (Lake Placid, N.Y.). An antibody against p27/Kip1 was purchased from BD Biosciences (San Jose, CA). The 2-phenylamino-pyrimidine derivative STI571 (molecular weight 590 d) was developed and kindly provided by Novartis (Basel, Switzerland). The stock solutions of this compound were prepared at 1 mM with DMSO and stored at -20°C. pcDNA3 containing human FKHRL1-TM-ER cDNA was kindly provided by Pual Coffer from the University Medical Center (Heidelberglaan, The Netherlands). To prepare the dominant negative form of FKHRL1 (FKHRL1-DN), we restricted pcDNA3.1 containing human FKHRL1-TM cDNA with Bst1107 and ECORV restriction enzymes, and deleted the transactivation domain. Anti-Bim antibody was a gift from Toshiya Inaba (Hiroshima, Japan).

Cell culture of CML-derived cell lines and generation of transfectants--KCL22, KU812 cell lines and TF-1/bcr-abl cell lines were maintained in liquid culture with IMDM containing 10% FCS (32-34). TF-1 cells were maintained in liquid culture with IMDM containing 10% FCS with GM-CSF (1 ng/mL). KCL22 cells were transfected with mammalian expression vector (pcDNA3; Invitrogen, Carlsbad, CA) containing human FKHRL1-TM-ER (27) or FKHRL1-DN cDNA by the lipofectin method according to the manufacturer's instructions (Promega, Madison, WI). We selected 3 independent clones.
resistant to neomycin (1.0 mg/mL).

Colorimetric MTT assay for cell proliferation--Cell growth was examined by a
colorimetric assay according to Mosmann with some modifications (35). Briefly, cells
were incubated at a density of 1x10^4/100·L in 96-well plates in IMDM containing 10%
FCS. After 72 hours of culture at 37°C, 20 μL of sterilized 5 mg/mL
3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide (MTT; Sigma) was added to
each well. Following 2 hours incubation at 37°C, 100 μL of 10% sodium dodecyl sulfate
(SDS) was added to each well to dissolve the dark-blue crystal product. The optical
density (OD) was measured at a wavelength of 595 nm using a microplate reader (model
3550; Bio Rad, Richmond, CA).

Preparation of cell lysates and Western blotting--The cells were washed and
suspended in lysis buffer containing 20 mM Tris (pH 7.4), 150 mM NaCl, 1% NP-40, 5
mM EDTA, 1 mM PMSF, 1.7 ng/mL aprotinin, 50 μg/mL leupeptin, 2 mM sodium
orthovanadate, and 20 mM sodium fluoride. After 20 minutes of incubation on ice,
insoluble materials were removed by centrifugation at 15,000 g for 20 minutes. The
supernatants were boiled for 5 minutes in SDS-PAGE sample buffer, resolved by
SDS-PAGE and electroblotted onto a PVDF membrane (Bio Rad). The blots were
blocked with 5% skim milk in Tris-buffered saline (TBS) for 1 hour at RT, then incubated
with the appropriate concentration of primary antibody overnight at 4°C or for 1-2 hours at
RT. After washing with TBS containing Tween 20 (1:2,000), the blots were probed with
a 1:10,000 dilution of anti-rabbit or anti-mouse horseradish peroxidase-conjugated
second antibodies for 90 minutes at RT. After a second washing, the blots were
incubated with an enhanced chemiluminescence substrate (ECL Western blot detection
system; Amersham Pharmacia Biotech, Buckinghamshire, England) and exposed to Hyperfilm ECL (Amersham Pharmacia Biotech) to visualize the immunoreactive bands. The blots were stripped with 62.5 mM Tris-HCl, pH 6.8, 2% SDS, and 100 mM 2-ME at 50°C for 30 minutes, washed, blocked, and reprobed.

Cell-Cycle Analysis--Cell-cycle analysis was performed by staining DNA with propidium iodide in preparation for flow cytometry with the FACScan/CellFIT system (Becton-Dickinson, San Jose, CA).

Luciferase assay--Oligonucleotides containing an array of seven insulin response elements (IREs) {three IRSA (CAAAAACAA) and four IRSB (TTATTTTG)} were cloned into the KpnI-HindIII site of pGL3 basic vector to generate pGL3-7xIREs. The pGL3-7xIREs and pECE vector containing FKHRL1-TM cDNA with or without pCDNA3.1 containing FKHRL1-DN cDNA were introduced into 293 cells by lipofection with the internal control plasmid pRL-TKLUC (Promega, Madison, WI). After transfection, the cells were cultured for 36 hours and then harvested for dual luciferase assay according to the manual (Promega). In some experiments, a luciferase reporter containing the p27/Kip1 promoter was used.
RESULTS

STI571 blocks cell-cycle progression at G0/G1 phase in KCL22 cells--In the following experiments, we mainly used the KCL22 cell line. This cell line was established from the bone marrow cells of a patient with blastic crisis of BCR-ABL-positive CML (32). Therefore, KCL22 would be a good model of CML cells for elucidating the biological function of FKHRL1. We initially examined whether or not STI571 inhibits the proliferation of KCL22 cells. KCL22 cells were exposed to various concentrations of STI571 (0.03-3 µM) for 3 days. MTT reduction assay revealed that STI571 inhibited the proliferation of KCL22 cells in a dose-dependent manner (Figure 1A). To clarify the mechanism by which STI517 inhibited the cell growth of KCL22 cells, we examined the effect of STI571 on cell cycling of the KCL22 cells. 1 µM STI571 induced the G0/G1 arrest in KCL22 cells in a time-dependent manner. The G0/G1 ratio began to increase at 9 hours and reached a plateau at 24 hours upon STI571 treatment, inversely to S and G2/M populations (Figure1B). The ratio of apoptotic cells did not increase during the observation periods up to 72 hours (data not shown). As shown in Figure 1C, a CDK inhibitor, p27/Kip1 protein was detected after 3 hours exposure to STI571 and the expression level was gradually increased up to 48 hours.

STI571 inhibits phosphorylation of FKHRL1 proteins in a time- and dose-dependent manner in KCL22 cells--We performed Western blotting with anti-phospho-c-Abl (Tyr245) or anti-phospho-FKHRL1 (Thr32) antibody in KCL22 cells. FKHRL1 and BCR-ABL fusion protein were constitutively phosphorylated in this cell line (Figure 2A, lane 1). Next, we examined whether or not STI571 inhibits the phosphorylation of these two proteins. KCL22 cells were exposed to STI571 (1 µM) for the indicated periods of up to
8 hours and then harvested. The phosphorylation of BCR-ABL fusion protein began to diminish after 1-hour exposure to STI571 (Figure 2A). Moreover, KCL22 cells were exposed to increasing concentrations of STI571 (0.05-5 µM) for 6 hours. The phosphorylation of BCR-ABL significantly diminished at 1 µM and completely disappeared at 5 µM of STI571 (Figure 2B). Consistent with the kinetics of BCR-ABL phosphorylation, STI571 inhibited the phosphorylation of FKHRL1 in a dose- and time-dependent manner (Figures 2A and 2B). However, STI571 did not affect the expression level of BCR-ABL and FKHRL1 proteins (Figures 2A and 2B).

_FKHRL1 is commonly phosphorylated in BCR-ABL-positive cell lines—_To exclude the possibility that phosphorylation of FKHRL1 is limited to KCL22, we examined the phosphorylation of FKHRL1 in another Bcr-Abl-positive cell line, KU812. BCR-ABL was constitutively phosphorylated and its phosphorylation was inhibited by STI571 in this cell line (Figure 3A). Concomitantly, the constitutive phosphorylation of FKHRL1 was inhibited by STI571 treatment. Collectively, these results suggested that FKHRL1 lies downstream of BCR-ABL signaling. To confirm this hypothesis, we used the TF-1/bcr-abl cell line ectopically expressing BCR-ABL (34). BCR-ABL was constitutively phosphorylated in TF-1/bcr-abl but not in the parent TF-1 cells (Figure 3B, lanes 1 and 2) and its phosphorylation was inhibited after treatment with 1 µM STI571 (Figure 3B, lane 3), indicating that 1 µM STI571 indeed inhibited the BCR-ABL activity in TF-1/bcr-abl cells. As expected, constitutive phosphorylation of FKHRL1 was observed in TF-1/bcr-abl but not in the parental TF-1 cells (Figure 3B, lanes 1 and 2) and its constitutive phosphorylation was inhibited after STI571 treatment (Figure 3B, lane 3). These results strongly supported our hypothesis that FKHRL1 lies downstream of BCR-ABL signaling.
p27/Kip1 protein was down-regulated in TF-1/bcr-abl cells, compared to that in TF-1 cells (Figure 3B, lanes 1 and 2). In addition, STI571 induced inhibition of the BCR-ABL activity, accompanied by up-regulation of p27/Kip1 protein in TF-1/bcr-abl cells (Figure 3B, lanes 2 and 3). These results strongly suggested that p27/Kip1 lies downstream of BCR-ABL signaling, as reported previously by other groups (29-31).

PI3K activity is involved in BCR-ABL-dependent phosphorylation of FKHRL1—We examined whether PI3K activity is involved in BCR-ABL-dependent phosphorylation of FKHRL1 using a specific PI3K inhibitor LY294002. As shown in Figure 3C, 20 µM of LY294002 completely suppressed the phosphorylation of FKHRL1, indicating that the phosphorylation of FKHLR1 is dependent on PI3K activity in BCR-ABL signaling.

Active FKHRL1 (FKHRL1-TM-ER) inhibits the proliferation of KCL22 cells—Considering that FKHRL1 is constitutively phosphorylated in BCR-ABL expressing cells, FKHRL1 may be in an “inactive-state” in CML, leading to oncogenic transformation. To clarify this hypothesis, we generated transfectants expressing FKHRL1-TM-ER which became the active form after the addition of 4-OHT. We selected three independent positive clones highly expressing ectopic FKHRL1-TM-ER (Figure 4A). The transfectant cells or the parent KCL22 cells were treated with STI571 (1 µM) or 4-OHT (0.5 µM) for the indicated periods and then harvested for MTT incorporation assay or cell cycle analysis. As shown in Figure 4B, STI571 inhibited the proliferation of the transfectant cells to the same degree as the parent KCL22 cells. These results suggested that the transfectant cells have still retained the sensitivity to STI571 to the same degree as the parent KCL22 cells. Induced activation of FKHRL1-TM by 4-OHT treatment led to the suppression of MTT incorporation into the cells, whereas 4-OHT treatment had no effect on MTT incorporation.
incorporation into the parental control cells (Figure 4C). These results suggest that
FKHRL1-TM-ER is actually functional in our system. As shown in Figure 4D, the
percentage of cells in the G0/G1 phase was significantly elevated 24 hours after 4-OHT
treatment, suggesting that FKHRL1-TM-ER induced cell cycle arrest at the G0/G1 phase. Concomitantly, the expression level of p27/Kip1 protein was significantly elevated after 24
hours exposure to 4-OHT (Figure 4E).

As shown in Figure 4D, the ratio of subG1 population representing apoptosis was
increased after 4-OHT treatment in these three clones, especially in clones 10-9 and 24-3. To elucidate the mechanism by which the transfectant cells underwent rapid apoptosis
after the addition of 4-OHT, we focused our attention on the expression of Bim, a member
of the BH3-only subfamily of cell death activators, because it was recently reported that
Bim is transcriptionally regulated by FKHRL1 (36). As shown in Figure 4E, the
expressions of BimEL, BimL and BimS proteins were slightly up-regulated 24 and 48
hours after the addition of 4-OHT. A high dose of STI571 up to 20 µM induced cell cycle
arrest at the G0/G1 phase but not apoptosis during the observation periods up to 72
hours (Figure 5A). However, up-regulation of Bim proteins was observed in the
presence of STI571 in the range of 1-20 µM (Figure 5B).

A dominant-negative FKHRL1 (FKHRL1-DN) enhances the sensitivity of KCL22 cells
to STI571--To further elucidate the functional role of FKHRL1 in STI571-induced cell cycle
arrest of KCL22 cells, we generated transfectants expressing FKHRL1-DN but lacking the
transactivation domain. Initially, we examined whether FKHRL1-DN functions as a
dominant-negative inhibitor. For this purpose, we used a pGL3-7xIREs construct
containing seven consecutive FKHRL1 binding sites and introduced this construct into
293 cells with FKHRL1-TM cDNA, then assayed the luciferase activity. As illustrated in Fig. 6A, FKHRL1-TM induced promoter activity, which was completely inhibited by FKHRL1-DN. These results indicate that FKHRL1-DN functions as a dominant negative inhibitor on the transactivation activity of FKHRL1-TM. Based on this result, we transfected KCL22 cells with pcDNA3.1 containing FKHRL1-DN and selected three independent positive clones expressing FKHRL1-DN protein (Figure 6B). Cell cycle analysis demonstrated that STI571 treatment significantly enhanced the ratio of subG1 population in the transfectants expressing FKHRL1-DN but not vector alone (Figure 6C). The ratio of subG1 population was increased in proportion to the expression level of FKHRL1-DN protein (Figures 6A and 6C). Consistent with this finding, cell viability of the transfectants was much lower than that of the parent cells (Figure 6D). This suggested that the inhibition of endogenous FKHRL1 by FKHRL1-DN enhanced sensitivity to STI571 in KCL22 cells.
In this study, we demonstrated that FKHRL1 is located downstream to the BCR-ABL signaling pathway as an “inactive” phosphorylated form and functions as an effector when FKHRL1 is converted to the dephosphorylated form by STI571 treatment in BCR-ABL expressing cells. We found that FKHRL1 is constitutively phosphorylated in KCL22, KU812 and TF-1/bcr-abl cells, and that STI571 induces down-regulation of the BCR-ABL tyrosine kinase activity, dephosphorylation of FKHRL1 and cell cycle arrest at the G0/G1 phase in KCL22 cells. This was accompanied by up-regulation of p27/Kip1 expression. Moreover, 4-OHT-inducible FKHRL1-TM induced the cell cycle arrest and induced up-regulation of p27/Kip1 proteins in the KCL22-derived transfectant cells. Taken together, our results suggested that STI571 inhibited the cell growth of BCR-ABL-expressing cells, at least in part via dephosphorylated FKHRL1-mediated up-regulation of p27/Kip1 proteins. Therefore, constitutive phosphorylation of FKHRL1 induced by BCR-ABL fusion protein may be an important mechanism in BCR-ABL-mediated cell cycle signaling (29-31).

STI571 (1 µM) inhibited the proliferation of cells but did not induce apoptosis in KCL22 cells during the observation periods up to 72 hours. Taken together with the previous reports that 1 µM of STI571 was sufficient to induce cell death in BCR-ABL transformed cell lines and primary leukemia cells from CML patient samples in chronic phase, KCL22 cells appear to be less sensitive to STI571. This may be explained by several lines of evidence that KCL22 was established from a patient with CML blastic crisis, and that survival pathways other than BCR-ABL tyrosine kinase possibly operate in the blastic crisis cells. However, since phosphorylated FKHRL1 was detected in TF-1/bcr-abl but not the parental TF-1 cells, we concluded that FKHRL1 lies downstream
of BCR-ABL tyrosine kinase.

The ectopic expression of active FKHRL1 did not induce cell cycle arrest as robustly as ST571. In fact, in clones 10-9 and 24-4, the changes in the ratio of G0/G1 population was about 10%, while treatment with STI571 routinely elicited 20-40% changes. Therefore, besides FKHRL1, other cell cycle-associated molecules such as FKHR and AFX may be also involved in STI571-induced cell cycle arrest, because these Forkhead family members commonly induce p27/Kip1 (27, 37).

p27/Kip1 is generally regulated at the post-translational level via a proteasome-dependent degradation pathway (38-40). Consistent with this, it was previously shown that BCR-ABL fusion inhibited the p27/Kip1 expression through the PI3K-Akt pathway and its down-regulation mainly occurred through a proteasome-dependent degradation pathway (31). However, recently, it was reported that FKHRL1 elevated the p27/Kip1 promoter activity in Ba/F3 cells expressing a 4-OHT-inducible FKHRL1-TM-ER construct, suggesting that the transcriptional activity of FKHRL1 directly induced the p27/Kip1 gene expression (28). Thus, the mechanism of how FKHRL1 regulates p27/Kip1 expression was still controversial. To address this unresolved problem, we examined the mechanism by which FKHRL1 regulates the p27/Kip1 expression in KCL22 cells. In this study, we found that both STI571 treatment and ectopic expression of FKHRL1-TM induced the up-regulation of p27/Kip1 expression at the protein level but not at the mRNA level (Figures 1D, 4E and data not shown). In addition, a luciferase assay revealed that 4-OHT treatment did not enhance the promoter activity of the p27/Kip1 gene in the KCL22 transfectants having 4-OHT-inducible FKHRL1-TM (data not shown). Although we cannot completely exclude the possibility
that the discrepancy among these results was dependent on the different cell lines used, our results suggested that the regulation of p27/Kip1 expression by FKHRL1 does not occur at the transcriptional level, at least in KCL22-derived transfectant cells. If so, FKHRL1 may indirectly upregulate the p27/Kip1 expression via an unidentified target molecule of FKHRL1. Therefore, it would be of interest to identify the target molecules of FKHRL1. Previously, it was reported that the Von-Hippel-Lindau (VHL) tumor suppressor molecule controls cell cycle progression by regulation of p27/Kip1 at both the mRNA and protein levels (41). However, our preliminary data showed that 4-OHT did not induce VHL proteins in the KCL22 transfectants expressing FKHRL1-TM-ER (data not shown). Therefore, it is unlikely that VHL is a target molecule for FKHRL1.

Bim is a member of the BH3-only subfamily that inhibits the function of anti-apoptotic Bcl-2 family members by binding to them, resulting in inhibition of release of cytochrome c from the mitochondria to the cytosol (42). Recently, Shinjyo et al. reported that Bim lies downstream of cytokine signaling and its down-regulation is a prerequisite for the survival of hematopoietic cells (43). In addition, Kuribara et al. reported that BCR-ABL induced deregulated hematopoiesis via the down-regulation of Bim expression in CML (44). These findings suggested that Bim expression is critical for the regulation of hematopoiesis and its deregulated expression may contribute to leukemogenesis such as CML. In this study, we found that 4-OHT induced apoptosis, accompanied by up-regulation of Bim proteins (BimEL, BimL and BimS) in BCR-ABL-positive KCL22 cells ectopically expressing FKHRL1-TM-ER. However, even a high dosage of STI571 (20 µM) did not induce apoptosis, irrespective of the up-regulation of Bim proteins (Figure 5B). These results suggested that the expression of Bim proteins is required but not sufficient
for the induction of apoptosis, at least in KCL22 cells. This notion is supported by the evidence that STI571 induced G0/G1 arrest and up-regulation of p27/Kip1 and Bim proteins but not apoptosis in clone 24-4 (Figures 4D and 4E).

It is noteworthy that although a dominant-negative form of FKHRL1 (FKHRL1-DN), though not completely, did significantly block the STI571-induced cell cycle arrest at the G0/G1 phase, this mutant drastically enhanced STI571-induced apoptosis in KCL22 cells. These results strongly suggest that “active” FKHRL1 could protect the KCL22 cells from apoptosis via the induction of cell cycle arrest at the G0/G1 phase. Considering the several lines of evidence that the C. elegans DAF2 pathway regulates a state of diapause called dauer which is an arrested juvenile form triggered by food limitation, high temperature and crowding, and that the DAF16 is the main target of the DAF2 pathway, it would not be surprising that “active” FKHRL1 protects cells from apoptosis via cell cycle arrest at the G0/G1 phase in the presence of STI571. If so, FKHRL1 may play an important role in the acquisition of “dormancy” in leukemia cells after exposure to anti-leukemic agents.

However, it should be stressed that 4-OHT-induced expression of FKHRL1-TM-ER also induced apoptosis in KCL22 cells. Previously, we established a tetracycline-inducible system in a human TPO-dependent cell line UT-7/TPO and showed that induced expression of FKHRL1-TM lacking ER led to cell cycle arrest at G0/G1 phase but not to apoptosis in this cell line (19). Although we cannot exclude the possibility that this discrepancy was due to the different cell lines used in the experiments, over-expression of FKHRL1-TM-ER fusion protein may in part act as a dominant-negative inhibitor of Akt activity. This notion can be supported by several lines of evidence that
overexpressed FKHRL1 binds to Akt (46), and that overexpression of FKHR mutant replacing Ser256 with alanine strongly suppressed the phosphorylation of the endogenous PKB substrates FKHRL1 and GSK3α. Alternatively, over-expression of FKHRL1-TM may deprive endogenous FKHRL1 of co-factors prerequisite for the transcription activity and, as a result, FKHRL1-TM might function as a dominant-negative inhibitor against anti-apoptotic effect of endogenous FKHRL1, although this concept is speculative at present. Thus, as proposed by Woods and Rena (47), caution may be needed when considering any results of over-expression experiments with FKHRL1-TM. Very recently, Kops, et al. reported that glucose deprivation-induced apoptosis is significantly blocked by a PI3K inhibitor LY294002 in a human colon carcinoma cell line (48). However, our preliminary experiments revealed that LY294002 up to 20 μM did not prevent 4-OHT-induced apoptosis in the KCL22 transfectant expressing FKHRL1-TM-ER. Therefore, it is unlikely that constitutive activation of PI3K activity by BCR-ABL tyrosine kinase enhanced 4-OHT-induced apoptosis in the FKHRL1-TM-ER expressing cells.

The data presented here demonstrate that FKHRL1 is important in the oncogenic transformation of CML. PTEN acts as a tumor suppressor, at least in part, by antagonizing PI3K-Akt signaling (49). Recently, it was reported that Forkhead transcription factors including FKHRL1 are critical effectors of PTEN-mediated tumor suppression (37), suggesting that FKHRL1 also functions as a tumor suppressor. Taken together with our results that FKHRL1 lies downstream of BCR-ABL signaling as an “inactive” phosphorylated form, and that FKHRL1-TM suppressed the cell growth of CML-derived cell line KCL22, “active” FKHRL1 may be a potent anti-proliferative molecule against BCR-ABL-induced tumorigenesis. In addition, our finding that FKHRL1-DN
caused apoptosis in STI571-treated KCL22 cells suggests that FKHRL1 represents an attractive target for therapeutic manipulation in CML.
ACKNOWLEDGMENTS

We thank Paul Coffer (University Medical Center Utrecht, The Netherlands) for FKHRL1-TM-ER cDNA and Toshiya Inaba (Hiroshima, Japan) for anti-Bim antibody. We also thank Novartis Pharmaceuticals (Basel, Switzerland) for the generous gift of STI571. This work was supported by Grants-in-Aid for Cancer Research and Scientific Research from the Ministry of Education, Science and Culture of Japan and by grants from the Yamanouchi Foundation for Research on Metabolic Disorders and the Mochida Memorial Foundation.
REFERENCES

1. McLaughlin, J., Chianese, E., and Witte, O.N. (1987) *Proc. Natl. Acad. Sci. U. S. A.* **84**, 6558-6562

2. Lugo, T.G., Pendergast, A.M., Muller, A.J., and Witte, O.N. (1990) *Science* **247**, 1079-1082

3. Tauchi, T., and Broxmeyer, H.E. (1995) *Int. J. Hematol.* **61**, 105-112

4. Daley, G.Q., and Baltimore, D. (1988) *Proc. Natl. Acad. Sci. U.S.A.* **85**, 9312-9316

5. Bedi, A., Barber, J.P., Bedi, G.C., el-Deiry, W.S., Sidransky, D., Vala, M.S., Akhtar, A.J., Hilton, J., and Jones, R.J. (1995) *Blood* **86**, 1148-1158

6. Bedi, A., Zehnbauer, B.A., Barber, J.P., Sharkis, S.J., and Jones, R.J. (1994) *Blood* **83**, 2038-2044

7. Jonuleit, T., van .der. Kuip, H., Miething, C., Michels, H., Hallek, M., Duyster, J., and Aulitzky, W.E. (2000) *Blood* **96**, 1933-1939

8. Cortez, D., Reuther, G., and Pendergast, A.M. (1997) *Oncogene* **15**, 2333-2342

9. Bazzoni, G., Carlesso, N., Griffin, J.D., and Hemler, M.E. (1996) *J. Clin. Invest.* **98**, 521-528

10. Salgia, R., Li, J.L., Ewaniuk, D.S., Pear, W., Pisick, E., Burky, S.A., Ernst, T., Sattler, M., Chen, L.B., and Griffin, J.D. (1997) *J. Clin. Invest.* **100**, 46-57

11. Sattler, M., and Salgia ,R. (1997) *Cytokine Growth Factor Rev.* **8**, 63-79

12. Skorski,T., Bellacosa, A., and Nieborowska-Skorska, M. (1997) *EMBO J.* **16**, 6151-6161

13. Brunet, A., Bonni, A., Zigmond, M.J., Lin, M.Z., Juo, P., Hu, L.S., Anderson, M.J., Arden, K.C., Blenis, J., and Greenberg, M.E. (1999) *Cell* **96**, 857-868
14. Tang, E.D., Nunez, G., Barr, FG., and Guan, K.L. (1999) J. Biol. Chem. **274**, 16741-16746

15. Rena, G., Guo, S., Cichy, S.C., Unterman, T.G., and Cohen, P. (1999) J. Biol. Chem. **274**, 17179-17183

16. Kops, G.J., de. Ruiter, N.D., De. Vries-Smits, A.M., Powell, D.R., Bos, J.L., and Burgering, B.M. (1999) Nature **398**, 630-634

17. Biggs, W.H. 3rd., Meisenhelder, J., Hunter, T., Cavenee, W.K., and Arden, K.C. (1999) Proc. Natl. Acad. Sci. U. S. A. **96**, 7421-7426

18. Kashii, Y., Uchida, M., Kirito, K., Tanaka, M., Nishijima, K., Toshima, M., Ando, T., Koizumi, K., Endoh, T., Sawada, K., Momi, M., Miura, Y., Ozawa, K., and Komatsu, N. (2000) Blood **96**, 941-949

19. Tanaka, M., Kirito, K., Kashii, Y., Uchida, M., Toshima, M., Endoh, T., Sawada, K., Ozawa, K., and Komatsu, N. (2001) J. Biol. Chem. **276**, 15082-15089

20. Kaufmann, E., and Knochel, W. (1996) Mech. Dev. **57**, 3-20

21. Lin, K., Dorman, JB., Rodan, A., and Kenyon, C. (1997) Science **278**, 1319-1322

22. Ogg, S., Paradis, S., and Gottlieb, S. (1997) Nature **389**, 994-999

23. Galili, N., Davis, R.J., and Fredericks, W.J. (1993) Nat. Genet. **5**, 230-235

24. Hillion, J., Le. Coniat, M., Jonveaux, P., Berger, R., and Bernard, O.A. (1997) Blood **90**, 3714-3719

25. Borkhardt, A., Repp, R., Haas, O.A., Leis, T., Harbott, J., Kreuder, J., Hammermann, J., Henn, T., and Lampert, F. (1997) Oncogene **14**, 195-202

26. Alessi, D.R., Caudwell, FB., Andjelkovic, M., Hemmings, B.A., and Cohen, P. (1996) FEBS Lett. **399**, 333-338
27. Medema, R.H., Kops, G.J., Bos, J.L., and Burgering, B.M. (2000) Nature 404, 782-787
28. Dijkers, P.F., Medema, R.H., Pals, C., Banerji, L., Thomas, N.S., Lam, E.W., Burgering, B.M., Raaijmakers, J.A., Lammers, J.W., Koenderman, L., and Coffer, P.J. (2000) Mol. Cell. Biol. 20, 9138-9148
29. Jonuleit, T., van der Kuip, H., Miething, C., Michels, H., Hallek, M., Duyster, J., and Aulitzky, W.E. (2000) Blood 96, 1933-1999
30. Parada, Y., Banerji, L., Glassford, J., Lea, N.C., Collado, M., Rivas, C., Lewis, J.L., Gordon, M.Y., Thomas, N.S., and Lam, E.W. (2001) J. Biol. Chem. 276, 23572-23580
31. Gesbert, F., Sellers, WR., Signoretti, S., Loda, M., and Griffin, J.D. (2000) J. Biol. Chem. 275, 39223-39230
32. Kubonishi, I., and Miyoshi, I. (1983) Int. J. Cell Cloning 1, 105-117
33. Kishi, K. (1985) Leuk. Res. 9, 381-390
34. Nakajima, A., Tauchi, T., and Ohyashiki, K. (2001) Leukemia 15, 989-990
35. Mosmann, T. (1983) J. Immunol. Meth. 65, 55-63
36. Pagano, M., Tam, S.W., Theodoras, A.M., Beer-Romero, P., Del. Sal, G., Chau, V., Yew, P.R., Draetta, G.F., and Rolfe, M. (2000) Curr. Biol. 10, 1201-1204
37. Nakamura, N., Ramaswamy, S., Vazquez, F., Signoretti, S., Loda, M., and Sellers, W.R. (2000) Mol. Cell Biol. 20, 8969-8982
38. Pagano M, Tam SW, Theodoras AM, et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. (1995) Science 269, 682-685
39. Hengst, L., and Reed, S.I. (1996) Science 271, 1861-1864
40. Shirane, M., Harumiya, Y., Ishida, N., Hirai, A., Miyamoto, C., Hatakeyama, S., Nakayama, K., and Kitagawa, M. (1999) *J. Biol. Chem.* **274**, 13886-13893

41. Kim, M., Katayose, Y., Li, Q., Rakkar, A.N., Li, Z., Hwang, S.G., Katayose, D., Trepel, J., Cowan, K.H., and Seth, P. (1998) *Biochem. Biophys. Res. Commun.* **253**, 672-627

42. Strasser, A., Puthalakath, H., Bouillet, P., Huang, D. C., O’Connor, L., O’Reilly, L. A., Cullen, L., Cory, S., and Adams, J. M. (2000) *Ann. N. Y. Acad. Sci.* **917**, 541-548

43. Shinjyo, T., Kuribara, R., Inukai, T., Hosoi, H., Kinoshita, T., Miyajima, A., Houghton, P. J., Look, A.T., Ozawa, K., and Inaba, T. (2001) *Mol. Cell. Biol.* **21**, 854-864

44. Kuribara, R., Honda, H., Shinjyo, T., Inukai, T., Sugita, K., Nakazawa, S., Hirai, H., and Ozawa, K. (2000) *Blood* **96**, 347a

45. Zheng, W.H., Kar, S., and Quirion, R. (2000) *J. Biol. Chem.* **275**, 39152-39158

46. Rena, G., Prescott, A.R., Guo, S., Cohen, P., and Unterman, T.G. (2001) *Biochem. J.* **354**, 605-612

47. Woods, Y.L., and Rena G. (2002) *Biochem. Soc. Trans.* **30**, 391-397

48. Kops, G.J., Dansen, T.B., Polderman, P.E., Saarloos, I., Wirtz, K.W., Cofer, P.J., Huang, T.T., Bos, J.L., Medema, R.H., and Burgering, B.M. (2002) *Nature* **419**, 316-21.

49. Stambolic, V., Suzuki, A., de. La. Pompa, J.L., Brothers, G.M., Mirtsos, C., Sasaki, T., Ruland, J., Penninger, J.M., Siderovski, D.P., and Mak, T.W. (1998) *Cell* **95**, 1-20
FIGURE LEGENDS

Figure 1. STI571 blocks cell-cycle progression at the G0/G1 phase in KCL22 cells.
(A) Effect of STI571 on proliferation of KCL22 cells. KCL22 cells were plated at a density of 10,000 cells/well in IMDM supplemented with 5% FCS and cultured with various concentrations of STI571 (0.01-10 µM). MTT reduction assay was performed after 3 days of culture. The values represent the mean +/- SD from triplicate cultures and are expressed as a percentage of untreated KCL22 cells. (B) Effect of STI571 on cell cycle. KCL22 cells were treated with STI571 (1 µM), sequentially cultured for the periods indicated and harvested for cell cycle analysis. (C) Up-regulation of p27/Kip1 protein after STI571 treatment. KCL22 cells were treated with STI571 (1 µM), sequentially cultured for the periods indicated and harvested for Western blotting analysis.

Figure 2. STI571 inhibits phosphorylation of FKHRL1 proteins in a time- and dose-dependent manner in KCL22 cells.
The cells were then stimulated with increasing concentrations of STI571 (0.05-5 µM) for 6 hours (A), or with STI571 (1 µM) for the periods indicated (B). After solubilization, cell extracts were resolved by 7.5% SDS-PAGE and immunoblotted with the antibodies directed against phopho-Thr32. The blot was reprobed with anti-FKHRL1 antibody to confirm equal loading of protein. Anti-phosphoFKHRL1 antibody recognizes two bands; the upper band (*) is the phosphorylated form, the lower band (**) is non-specific.

Figure 3. FKHRL1 is commonly phosphorylated in BCR-ABL-positive cell lines.
(A) Constitutive phosphorylation of FKHLR1 in KU812 cells. KU812 cells were stimulated with STI571 (1 µM) for 6 hours. After solubilization, cell extracts were
resolved by 7.5% SDS-PAGE and immunoblotted with the antibodies directed against phospho-FKHRL1 (Thr32) Antibody. The blot was reprobed with anti-FKHRL1 antibody to confirm equal loading of protein. (B) BCR-ABL-induced phosphorylation of FKHRL1. GM-CSF-deprived TF-1 cells or TF-1/bcr-abl cells were treated with STI571 (1 µM) for 6 hours. After solubilization, cell extracts were resolved by 7.5% or 15 %SDS-PAGE and immunoblotted with the antibodies directed against phopho-abl, phospho-FKHRL1 (Thr32) or p27/Kip1. The blot was reprobed with anti-BCR or FKHRL1 antibody to confirm equal loading of protein. (C) BCR-ABL-PI3K-dependent phosphorylation of FKHRL1. TF-1/bcr-abl cells were treated with LY294002 (20 µM and 100 µM) for 1 hour. After solubilization, cell extracts were resolved by 7.5% SDS-PAGE and immunoblotted with the antibody directed against phospho-FKHRL1 (Thr32) or p27/Kip1. The blot was reprobed with FKHRL1 antibody to confirm equal loading of protein.

Figure 4. **Active FKHRL1 (FKHRL1-TM-ER) inhibits the proliferation of KCL22 cells via up-regulation of p27/Kip1.**

(A) Generation of transfectants expressing FKHRL1-TM-ER. After solubilization, cell extracts were resolved by 7.5% SDS-PAGE and immunoblotted with the antibodies directed against anti-FKHRL1 antibody. (B) Effect of STI571 on the proliferation of transfectants. The cells were plated at a density of 10,000 cells/well in IMDM supplemented with 10% FCS and cultured with various concentrations of STI571 (0.1-10 µM). MTT reduction assay was performed after 3 days of culture. The values represent the mean +/- SD from triplicate cultures and are expressed as a percentage of untreated transfectant cells. The parental KCL22 cells were used as a control. (C) Effect of 4-OHT on proliferation of transfectants. The cells were plated at a density of
10,000 cells/well in IMDM supplemented with 10% FCS and cultured with various concentrations of 4-OHT (0.01-1 µM). MTT reduction assay was performed after 3 days of culture. The values represent the mean +/- SD from triplicate cultures and are expressed as a percentage of untreated transfectant cells. The parental KCL22 cells were used as a control. (D) Effect of FKHRL-1-TM on cell cycle. The transfectant cells and the parent cells were treated with STI571 (1 µM) or 4-OHT (0.5 µM), sequentially cultured for the periods indicated and harvested for cell cycle analysis. (E) Induction of p27/Kip1 or Bim protein after STI571 and 4-OHT treatment. The parent KCL22 and the transfectant cells were treated with STI571 (1 µM) or 4-OHT (0.5 µM), sequentially cultured for the periods indicated and harvested for Western blotting analysis with antibody against p27/Kip1 or Bim protein. The blot was reprobed with β-actin antibody to confirm equal loading of protein.

Figure 5. High dose of STI571 induces cell cycle arrest at the G0/G1 phase and up-regulation of Bim protein but not apoptosis in KCL22 cells.

KCL22 cells were cultured with various concentrations of STI571 (1-20 µM) for 48 hours and then harvested for cell cycle analysis or Western blotting analysis. (A) Effect of high dose of STI571 on cell cycle. (B) Effect of high dose of STI571 on the expression of p27/Kip1 and Bim proteins. Western blotting analysis was performed with antibody against p27/Kip1 or Bim protein. The blot was reprobed with β-actin antibody to confirm equal loading of protein.

Figure 6. A dominant-negative FKHRL1 (FKHRL1-DN) enhanced sensitivity to STI571 in KCL22 cells.

(A) A dominant-negative FKHRL1 suppresses the transcription activity of FKHRL1. Two
hundred ninety three cells were co-transfected with pGL3-7xIREs vector and pcDNA3.1 or pcDNA3.1-FKHRL1-WT with or without pcDNA3.1-FKHRL1-DN expression vector. PRL-TK vector was used as an internal control. After a 36-hour incubation, the cells were harvested for dual luciferase assay. The results are expressed in terms of the increased induction of luciferase activity from pcDNA3.1 vector alone. The values represent the mean +/- SD from triplicate experiments. White column; minus pcDNA3.1-FKHRL1-DN, black column; plus pcDNA3.1-FKHRL1-DN. (B) Expression of FKHRL1-DN proteins in the transfectants. After solubilization, cell extracts were resolved by 7.5% SDS-PAGE and immunoblotted with antibodies directed against anti-FKHRL1 antibody. (C) Effect of FKHRL-1-DN on cell cycle. The transfectant cells and parent cells were treated with STI571 (1 µM), sequentially cultured for the periods indicated and harvested for cell cycle analysis. (D) Cell viability of transfectants and the parent KCL22 cells after STI571 treatment. Cells were treated with increasing concentrations of STI571 (0.01-1 µM) for 4 days and then the cell viability was assessed by trypan dye exclusion (n=4).
Figure 1

A

B

N. Komatsu et al

C

Figure 1
Figure 2

A

STI571	0	1	2	4	6	8	hr
pBCR-ABL							
BCR-ABL							
**							
pFKHRL1							
FKHRL1							

B

STI571	0	0.05	0.1	0.5	1	5	µM
pBCR-ABL							
BCR-ABL							
**							
pFKHRL1							
FKHRL1							
N. Komatsu et al

Figure 4

11/12/2002 JBC
Figure 4
N. Komatsu et al

Figure 4
Figure.4
Figure 5
Figure 6

A

Relative Luciferase activity (fold induction)

Vector
DN

Control
FKHRL1-TM

11/12/2002 JBC
B

	parent	vector	transfectants
			14
			15
			16

FKHR1-TM-DN

β-actin

Figure 6
C

STI571

vector

clone14

clone15

clone16

11.1% 16.8% 20.8%
24.6% 48.5% 66.9%
18.7% 44.7% 47.3%
11.6% 31.0% 33.9%

0hr 24hrs 48hrs

Figure.6
D

![Graph showing cell viability (%) against STI571 (μM)]

- **vector**
- **clone 14**
- **clone 15**
- **clone 16**

Figure 6

11/12/2002 JBC
A member of Forkhead transcription factor FKHRL1 is a downstream effector of STI571-induced cell cycle arrest in BCR-ABL expressing cells
Norio Komatsu, Tomoko Watanabe, Mie Uchida, Masaki Mori, Keita Kirito, Satoru Kikuchi, Qifa Liu, Tetsuzo Tauchi, Keisuke Miyazawa, Hitoshi Endo, Tadashi Nagai and Keiya Ozawa

J. Biol. Chem. published online November 26, 2002

Access the most updated version of this article at doi: 10.1074/jbc.M211562200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts