A frontal-vagal network theory for Major Depressive Disorder: Implications for optimizing neuromodulation techniques

Tabitha A. Iseger a, b, 1, Nienke E.R. van Bueren a, 1, J. Leon Kenemans a, Richard Gevirtz d, Martijn Arns a, b, c,*

a Department of Experimental Psychology, Utrecht University, Utrecht, the Netherlands
b Research Institute Brainclinics, Nijmegen, the Netherlands
c NeuroCare Group, Nijmegen, the Netherlands
d CSPP®Alliant International University, San Diego, USA

ARTICLE INFO

Article history:
Received 13 May 2019
Received in revised form 30 September 2019
Accepted 8 October 2019
Available online 10 October 2019

Keywords:
Major depressive disorder
Heart rate
Heart rate variability
Target engagement
Neuromodulation
Dorsolateral prefrontal cortex
Subgenual anterior cingulate cortex
Vagus nerve
Neuro-cardiac-guided TMS

ABSTRACT

Major Depressive Disorder (MDD) is a psychiatric disorder characterized by high comorbidity with cardiovascular disease. Furthermore, a combination of high heart rate (HR) and low heart rate variability (HRV) has been frequently reported in depressed patients. The present review proposes a frontal-vagal (brain-heart) network that overlaps with functional nodes of the depression network. Moreover, we summarize neuromodulation studies that have targeted key nodes in this depression network, with subsequent impact on heart rate (HR) or heart-rate-variability (HRV), such as the dorsolateral prefrontal cortex (DLPFC), subgenual anterior cingulate cortex (sgACC), and the vagus nerve (VN). Based on the interplay of this frontal-vagal network, we emphasize the importance of including HR and HRV measurements in human depression studies, in particular those that conduct neuromodulation, in order to obtain a better understanding of the pathways that are affected, and we explore the possibilities of using this frontal-vagal interplay as a method for target engagement in neuromodulation treatments. This frontal-vagal network theory opens-up the possibility for individualizing neuromodulation treatments such as rTMS. A recent development called Neuro-Cardiac-Guided TMS (NCG-TMS), was developed based on this theory, and an individual-participant meta-analysis is presented. Four studies provide consistent and replicable support for NCG-TMS as a target engagement method, with consistent HR deceleration during frontal TMS and HR acceleration during motor strip TMS.

Introduction

Major Depressive Disorder (MDD) is a chronic, heterogeneous psychiatric psychiatric disorder characterized by high comorbidity with cardiovascular disease. Furthermore, a combination of high heart rate (HR) and low heart rate variability (HRV) has been frequently reported in depressed patients. The present review proposes a frontal-vagal (brain-heart) network that overlaps with functional nodes of the depression network. Moreover, we summarize neuromodulation studies that have targeted key nodes in this depression network, with subsequent impact on heart rate (HR) or heart-rate-variability (HRV), such as the dorsolateral prefrontal cortex (DLPFC), subgenual anterior cingulate cortex (sgACC), and the vagus nerve (VN). Based on the interplay of this frontal-vagal network, we emphasize the importance of including HR and HRV measurements in human depression studies, in particular those that conduct neuromodulation, in order to obtain a better understanding of the pathways that are affected, and we explore the possibilities of using this frontal-vagal interplay as a method for target engagement in neuromodulation treatments. This frontal-vagal network theory opens-up the possibility for individualizing neuromodulation treatments such as rTMS. A recent development called Neuro-Cardiac-Guided TMS (NCG-TMS), was developed based on this theory, and an individual-participant meta-analysis is presented. Four studies provide consistent and replicable support for NCG-TMS as a target engagement method, with consistent HR deceleration during frontal TMS and HR acceleration during motor strip TMS.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
variability (HRV) [15–17], which has been reported to be normalized after neuromodulation treatment, but not after treatment with SSRIs [18,19]. The goal of this narrative review is to outline the brain-heart network or frontal-vagal network and the overlap with the depression network, as identified with neuromodulation treatment. As an extension to this narrative review, a commentary is provided how to use the heart-brain link to identify potential targets for future neuromodulation interventions and to refine target selection in neuromodulation treatments, as well as an individual participant meta-analysis demonstrating the consistency of this effect.

An anatomical framework of the brain-heart connection

In Fig. 1 below a summary can be found outlining the neuro-anatomical framework of the brain-heart connection. A more elaborate review on all these specific components can be found in the supplementary material.

Major Depressive Disorder (MDD) and the autonomic nervous system

Previous research indicates comorbidity between cardiovascular disease and MDD which is a pertinent public health concern due to the fact that both diseases are leading causes of disability [20–22]. Several studies have shown that depression increases risk for cardiovascular illness from two to fivefold. Moreover, autonomic regulation is already disturbed in depressed patients without heart disease, manifested in an overall higher HR, and lower HRV in circulation after neuromodulation treatment, but not after treatment with DBS, have proven to be successful and effective in different neuromodulation techniques, such as VNS, TMS, and potentially DBS, have proven to be successful and effective in treating depression in patients, and also have subsequent effects on cardiac measures such as HR and HRV, possibly (1) increasing attributed to the level of estrogen [39]. It appears that depressed men have lower HRV levels compared to nondepressed men. Yet, depressed women show higher HRV levels compared to nondepressed women, although this finding from one study had a small sample size [40]. Still, in another small sized study, the same trend was found in healthy subjects when investigating HRV and daily sadness [41], so this assertion is not settled yet. However, depressed women seem to have higher HRV levels than depressed men [42] and this might explain the higher mortality rates for men [43]. Other studies have found reduced vagal activity (higher LF/HF ratios) and higher HR in depressed patients compared to healthy controls, when controlling for gender in a small sample [44]. HRV seems to fluctuate during winter/summer [31] and a peak of patients with heart failure also occurs in winter [45]. Contrary, increased vagal tone has been found in patients with seasonal affective disorder (SAD) during winter, however, the symptomology of this disorder (weight gain, increased appetite, hypersomnia) is different to that from depression (weight loss, decreased appetite, insomnia) [46]. Interestingly, season of birth seems to influence HR later in life [47] and being born in winter seems to be cardioprotective [48]. In line with this, there is a higher risk for depression when being born in spring, and this is lower in winter [45,49]. Exercise tends to increase HRV [36], and lower HRV in several studies suggest that exercise has a preventive action on depression and may serve as treatment option [51]. Thus, HR and HRV is associated with many factors that are dysregulated in depression as well, further suggestive of a link between the depression network and the heart-brain axis.

A biofeedback technique called Heart Rate Variability Biofeedback (HRV-BF) has been shown to have anti-depressive effects, either by itself or when combined with evidence based behavioral treatments. During HRV-BF, patients are assessed to find a breathing frequency that produces the maximum effect on the vagal pacing of the heart (called respiratory sinus arrhythmia). A recent review on the effects of HRV-BF and emotion regulation, concludes that HR oscillations can enhance emotion by entraining brain rhythms in ways that enhance regulatory brain networks [52]. An open-label study where 11 depressed patients practiced HRV-BF as the sole treatment, indicated that by session 4, patients with mild depression showed improvements in sleep, hygiene, fatigue, and concentration. In addition, after receiving HRV-BF, there was a decrease in depression severity and an increase in HRV, after 10 sessions [53]. The effects of HRV-BF in MDD patients were also compared to a control group, and to healthy subjects: After two weeks of treatment HRV increased for the HRV-BF group, but not in a control group, and to healthy subjects: After two weeks of treatment HRV increased for the HRV-BF group, but not in the active control group (relaxed rest) or in healthy subjects receiving biofeedback. Furthermore, at follow-up, mood was improved in depressed patients [54]. Other studies have shown reductions in depressive symptoms in various patient groups [55,56].

The mechanisms behind HRV-BF may parallel the pathways implicated in VN stimulation (VNS). By using Heart Beat Evoked Potentials (HEP), researchers discovered that perception of visceral phenomena such as HR may be mediated by vagal afferent pathways [57]. MacKinnon et al. showed that the HEP (n=250) responded to paced breathing at the optimal or resonance frequency used in HRV-BF [58]. 5 training sessions in HRV-BF vs. EMG relaxation, greatly increased the signal to the brain from the heart, further reinforcing this finding [59].

Thus, MDD, HR and HRV are linked to each other. Interestingly, different neuromodulation techniques, such as VNS, TMS, and potentially DBS, have proven to be successful and effective in treating depression in patients, and also have subsequent effects on cardiac measures such as HR and HRV, possibly (1) increasing...
Cardiac effects of neuromodulation on MDD treatment targets

Vagus nerve

In the treatment of severely treatment-resistant depression, the VN has been considered a target for treatment, using Vagus Nerve stimulation (VNS). The VN is the most direct (parasympathetic) connection to the heart, thus during VNS HR consistently decreases [13,60], with a maximum effect approximately within 5 s from onset of stimulation. VNS is an invasive technique that stimulates the left branch of the VN through electrical current [61,62], although new noninvasive techniques to target the VN are emerging, such as transcutaneous VNS (tVNS) [63], that also increased HRV [64]. VNS in MDD patients has been shown to produce increases in time-domain HRV measured by RMSSD (Root Mean Square of the Successive Differences) [65]. Animal research indicates that VNS can affect widespread brain regions, such as the orbital cortex, lateral frontal cortex, anterior rhinal sulcus and amygdala [66], and influence cardiac responses [67].

VMPC

The VMPC includes both the rostral anterior cingulate cortex (rACC) and the sgACC, which are subdivisions of the ACC. The sgACC has been implicated in depression and autonomic nervous system activity. This area is observed to be hyperactive in depressed adults and adolescents compared to healthy individuals, observed with positron emission tomography (PET) scans and with functional magnetic resonance imaging (fMRI) [6,11]. The antidepressant response after deep brain stimulation (DBS) in the sgACC is mediated by the direct down regulation of this area [6]. DBS is an invasive neuromodulatory technique that uses electrodes that need to be placed in different subcortical nuclei through surgery. Compared to healthy subjects, depressed patients show an altered emotional state shifting, due to abnormal sgACC activity, which subsequently leads to altered vagal control [68]. There have not been many studies investigating the direct effect of deep brain stimulation on the VMPC in relation to HR, although it was demonstrated in monkeys that electrical stimulation in the pregenual ACC was associated with cardiac slowing [69]. Furthermore, bradycardia was observed after electrical stimulation of the rostral cingular region in monkeys [70]. Stronger stimulation also produced increased slowing of the HR. The inhibitory effect on the heart was accentuated and prolonged in monkeys that have received eserine, indicating vagal activity, since eserine prevents the break-down of acetylcholine [70]. Also in rabbits, electrical stimulation of the medial frontal cortex led to bradycardia [71].

The studies on deep brain stimulation and HR effects in human subjects are limited and use often different targets: the PAG, subthalamic nucleus (STN), globus pallidum and hypothalamus, all showing an increase in HR [72]. Only recently, it was shown in 7 MDD patients that deep brain stimulation of the subgenual cingulate (SCC) white matter (which corresponds to the sgACC) was associated with larger HR acceleration than sham stimulation, in cases where an intraoperative behavior response was observed, but only after left hemispheric stimulation. Thus, this study indicates that with DBS, HR accelerates rather than decelerates after SCC stimulation. This may be explained by the finding that across all 7 patients, there was a significant relationship between the estimated structural connectivity of the left SCC VTA to the midcingulate cortex and the change in HR: the greater the structural connectivity, the more the HR increased [73]. Furthermore, it was suggested that the SCC has greater connectivity to the dorsal anterior cingulate which is thought to be linked to the sympathetic system [74,75], subsequently causing HR accelerations. Another important consideration is the true focality of DBS in these studies, since the electrical stimulation intensity in MDD DBS studies is often higher relative to Parkinson DBS studies, and more diffuse as demonstrated by electrical field modelling [76]. The latter SCC DBS study applied stimulation at 6 mA [73], while for example in the rabbit study HR decelerations were observed at 40 μA [71], and 0.5–1 mA in monkeys [69]. Therefore, more human studies with adequate stimulation parameters are needed to confirm the sgACC to be the relay station in this frontal-vagal network.

DLPFC

rTMS is a non-invasive neuromodulation antidepressant treatment which has been shown to be able to influence HR, when aimed at the DLPFC [14]. The efficacy of rTMS in the treatment of MDD has been well established in recent years, especially for non-responders to conventional treatments. Currently, remission rates to rTMS are around 37% [77], and higher when combined with psychotherapy 56% [78]. As rTMS is limited to cortical surfaces, it is hypothesized that rTMS mediated clinical antidepressant effect via trans-synaptic activation of deeper regions, such as the sgACC. The sgACC could carry the signal further to deeper brain structures and subsequently have an impact on HR via the VN. Fox et al. (2012) demonstrated a negative correlation between BOLD activity in the sgACC and the DLPFC which was hypothesized to be associated to the antidepressant mechanism of rTMS [12], the higher the anticorrelation, the better the treatment response. In addition, DBS of the sgACC which suppresses activity, results in an up regulation of the activity in the DLPFC [6]. It is suggested that DLPFC-rTMS exerts its clinical effect via functional connectivity to the sgACC, the more negative the correlation between the two areas was, the better a patient responded to rTMS [12]. In summary, irrespective of the direction and causality, there is an intricate interplay between the sgACC and DLPFC, and this interplay mediates antidepressant response to rTMS.

The DLPFC has been frequently selected as a target area in non-invasive neuromodulation research such as rTMS and tDCS due to the accessibility of this node in the depression network. For both rTMS and tDCS, several studies have investigated the effects on HR (for a complete overview see Ref. [14]). In short, it was found that both tDCS and TMS reduced HR, but the cardiac effects of TMS were stronger relative to tDCS [14]. Furthermore, prefrontal stimulation was more effective in reducing HR relative to Motor Cortex stimulation. The DLPFC is usually targeted either on the right side with low (1 Hz) or on the left side with high frequency (10–20 Hz) stimulation. A study conducted in healthy subjects found reduced HR after rTMS over both the left and right DLPFC and decreased arterial pressure after left DLPFC-rTMS [79]. A study by Udupa et al. (2007) compared the effects of 2 weeks of rTMS with 4 weeks of SSRIs on HRV in antidepressant naïve MDD patients. This study did not implement a sham rTMS intervention in order to control for placebo effects, but measured HRV before and after each treatment. No difference was found on treatment outcome (all interventions were equally effective) and reduced sympathovagal balance was found in both groups. An interaction effect with treatment type was found for SDNN, RMSSD, LF and LF/HF ratio, which indicated a greater reduction in sympathovagal balance in the rTMS group. However, no significant correlation between clinical improvement and autonomic function parameters was found [80]. Another study, using intermittent theta burst stimulation (iTBS) in 15 MDD patients, showed that within the first minute of stimulation on the DLPFC a HR deceleration was observed that was significantly larger.
Fig. 1. Visual overview of sympathetic and parasympathetic brain-heart connections. Anatomical and functional connections between the brain, spinal cord and the heart for the sympathetic pathway (accelerator nerve, indicated in green) and the parasympathetic pathway (vagus nerve, indicated in blue).

AMB: nucleus ambiguus; AMY: basolateral amygdala and the central nucleus of the amygdala (CeA); CVLM: caudal ventrolateral medullary neurons; dACC: dorsal anterior cingulate cortex; DLPFC: dorsolateral prefrontal cortex; DVMN: dorsal vagal motor nuclei; Hyp: hypothalamus (lateral and paraventricular); IML: intermediolateral cell column of the spinal cord; INS: insula; LC: locus coeruleus; BF: basal forebrain; NTS: nucleus of the solitary tract; OFC: orbitofrontal cortex; PAG: periaqueductal gray; PBN: parabrachial nuclei; PFC: prefrontal cortex; PG: nucleus paragigantocellularis; rACC: rostral anterior cingulate cortex; RVLM: rostral ventrolateral medulla; VPFC: ventromedial prefrontal cortex; VN: vagus nerve.

Mapping the Frontal-Vagal Pathway
than during sham stimulation, thereby highlighting the acute effects on HR. More importantly, this study showed a relationship between HR deceleration in the first 30 s (difference between sham and active) with HRSD reduction, indicating that the larger the HR deceleration, the better treatment outcome [96].

These studies suggest that prefrontal TMS is capable of transsynaptically decreasing HR, influencing HRV and possibly normalizing parasympathetic functioning in MDD. However, despite the promising clinical results of targeting the DLPFC, one outstanding problem involves identification of an individualized stimulation location [81,82].

Target engagement

In all, because of the overlap of the hubs in the depression network (DLPFC, sgACC, VN) with the heart-brain axis, stimulation of these hubs consequently leads to HR decelerations. This interaction might offer possibilities for improving localization of the stimulation target. As reviewed in the supplementary material, the effect of the VN on the heart is rapid; stimulation of the VN usually results in an immediate response of the heart, typically occurring within the cardiac cycle in which the stimulation occurred, with a peak in HR deceleration within 5 s (in pigs) [13]. The return to a normal HR is very quick after the activity of the VN is reduced [83,84], indicating that it could be verified within a few seconds whether coil or electrode positioning is optimal, taking the time for the signal to travel from the target location to the VN into account. This may be used for choosing an individual optimal target for, for example, TMS. In a proof-of-concept study, TMS was aimed to locate the DLPFC according to HR deceleration [85]. HR data of 10 subjects was collected, while stimulating with 5 s trains of 10 Hz TMS on various prefrontal locations (F4, FC4 and C4, F3, FC3 and C3) according to the 10–20 system. In this study, respiration was “filtered out” by converting the ECG to RR intervals and taking only the troughs of this signal (see Fig. 2). The rationale for this was that the troughs represent the highest HR and could thus show a deceleration more clearly. In line with the hypothesis, it was found that on the group level, the locations that led best to the largest HR decelerations were F3 and F4, and these are conventionally used as rTMS targets (also referred to as the Beam-F3 method). However, individually, some subjects expressed larger HR decelerations at FC3 or FC4, indicating individual variation. On the other hand, no subject expressed the largest HR decelerations at C3 or C4 [85].

This method of Neuro-Cardiac-Guided TMS (NCG-TMS) has now been replicated in both a healthy control sample (n = 30) and an MDD patient sample (n = 33), where stimulation led only to HR decelerations at the F3/F4 and FC3/FC4 sites in both cohorts (healthy controls: F3-C3: ES = 0.463, FC3-C3: ES = 0.487). Up to 6 additional locations were tested, expressing only opposite patterns on the group level [94; unpublished data]. Another independent replication was conducted in a sample of 20 healthy subjects [95; unpublished data].

Individual participant data meta-analysis

In order to objectively test and extend this NCG-TMS approach, an individual participant data meta-analysis was conducted. Here we aimed to 1) increase the power and, 2) to asses laterality differences. Four cohorts were included: the individual data from the original pilot study [85] and the 3 replication cohorts [94,95; unpublished data]. This resulted in a total of 99 NCG measurements from 89 subjects (since subjects from the pilot study were tested with both the left-sided and right-sided NCG-TMS), resulting in 41 NCG measurements obtained at the left hemisphere and 58 from the right hemisphere. However, the C3 or C4 location was not included in every cohort (not in the MDD cohort), leaving a total of 66 measurements in only healthy controls (41 on the left and 25 on the right hemisphere) for F3/4-C3/4 and FC3/4-C3-4 comparisons. Earlier calculations for sample size (GPower 3.1.9.2) indicated that at least 22 subjects per hemisphere group were required to replicate the results from the pilot study for both hemispheres [94; unpublished data], indicating adequate power. It was hypothesized that heart rate deceleration following stimulation at F3/4 would be statistically different from C3/4, as indicated by the single studies, and that there would be no effect of hemisphere. Since all studies were conducted in the same manner, we pooled the data as if one mega-trial, as a one-stage analysis [86]. Repeated measures ANOVA was conducted with location as within-subjects factor and hemisphere as between-subjects factor. To control for differences in dataset, post-hoc analyses with dataset added as between-subjects factor was conducted. All data were investigated for normality. See Fig. 3 for results. No differences between left and right-sided stimulation were found on the amount of HR deceleration (F(1) = 0.837, p = 0.364), nor an interaction of hemisphere with stimulation location (F(1.715) = 0.640, p = .506). A main effect of location was found.

Fig. 2. Example of the NCG-TMS method. This figure shows an example of the NCG-TMS method, in which heart rate is recorded during stimulation on different cortical locations, with TMS. Here, 3 locations are being stimulated (respectively FC4, C4 and F4; gray blocks on the x-axis), with 10Hz TMS, lasting 5 s per location. Plotted on the y-axis are the intervals between two consecutive t-peaks, as recorded by ECG. During stimulation on F4, lengthening of the RR intervals is observed, showing heart rate deceleration.

[Image of the NCG-TMS method is included here.]
in that neuromodulation aimed at the DLPFC and the VN, directly modulation treatments aimed at these nodes. It has been shown several key nodes in depression, highlighted by various neurotive treatments for depression as well, such as meditation, remains unclear what the effect of stimulation at the sgACC is.

General discussion

We outlined a frontal-vagal brain-heart network that involves direct autonomic connections to the heart for both the SNS and the General discussion showing that the different therapies each exert their effect on different levels of the same network. This could imply that showing the antidepressant effects of SNRIs was accompanied due to a significant difference between F3/4 and C3/4 (t(65) = 3.515, p = 0.001, Cohens D = 0.56) and FC3/4 and C3/4 (t(65) = 2.916, p = 0.005, Cohens D = -0.47). No differences were found between F3/4 and FC3/4 (t(65) = 1.774, p = 0.081). Post-hoc analysis with dataset as between-subjects factor indicated no differences between datasets (F(2) = 0.932, p = 0.399).

As mentioned, multiple animal studies are available demonstrating HR decelerations after stimulation of the ventral regions of the ACC. However, there is no substantial evidence on the effect of DBS on HR in human subjects, since only a few studies investigated HR changes while stimulating the SCC/sgACC, albeit with relatively low stimulation intensities, relative to non-human studies [69,71,76]. It also remains unclear how the findings from Fox et al. [12], that showed an association between high DLPFC-sgACC anticorrelation and better treatment outcome, relate to the DBS findings, given that the DLPFC is associated with HR decreases. One difference is that the Fox 'method' makes use of a group sgACC seed region, while with DBS electrode placement is performed individually according to structural MRI’s, and subjective impressions of the participant and there might be some discrepancy between these two locations. This may explain why HR decelerations were found with TMS but not DBS, although both methods are similarly associated with MDD symptom improvement.

This review emphasized the opportunities of using HR and HRV metrics as a reliable marker of targeting the frontal-vagal depresion network such as Neuro-Cardiac-Guided TMS, where the target is localized using HR. This method has been successfully replicated in 4 different samples, thereby the proof-of-concept has been validated. However, thus far only preliminary evidence for an association between the amount of HR-deceleration after a session of iTBS and a better clinical response has been reported [96], therefore the relation to treatment outcome still needs to be assessed more thoroughly. Furthermore, the individual participant data meta-analysis indicated no differences between stimulation of the left or right hemisphere, although earlier studies suggest greater right prefrontal influence over vagal mediated cardiac output. Still, it was also found that both prefrontal cortices are linked to parasympathetic (vagal) activity [93], which is also supported by the individual participant data meta-analysis. It has to be noted that gender differences have not yet been investigated for NCG-TMS application. As mentioned earlier, gender differences have been found for MDD, and HRV [36,42], indicating it is not unlikely that men and women respond differently to NCG-TMS, which would be a topic of interest for future research.
Since the VN is involved in all parasympathetic functions, stimulation of the DLPFC, sgACC or VN might also impact pupil dilation and gastrointestinal function. Thus, these might also be dysregulated in depression, and may also serve as markers of targeting the depression network, but, the adequacy and utility of these have yet to be established. Furthermore, the focus of this review was on MDD, but could be translated to other psychiatric disorders that impact the autonomic nervous system as well.

Conclusion

To summarize, autonomic functioning, such as HR and HRV, could serve as potential target engagement mechanism for optimizing and individualizing neuromodulation treatments in depression. Based on this, we emphasize the importance of including HR and HRV measurements during human depression studies, in particular those that conduct neuromodulation, to investigate to a better extent the acute effects of neuromodulation on autonomic functioning, and to establish the efficacy of ECG metrics in target engagement of the frontal-vagal network.

Funding source

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declaration of competing interest

MA is unpaid director and owner of Research Institute Brain-clinics, a minority shareholder in neuroCare Group (Munchen, Germany), and a co-inventor on 4 patent applications (A61B5/0402; US2007/0299323, A1; WO2010/139361 A1) but does not receive any royalties related to these patents; Research Institute Brain-clinics received funding from Brain Resource (Sydney, Australia), neuroCare Group (Munchen, Germany) and Urgotech, and equipment support from Brainsway, Deymed, neuroConn and Magventure, however data analyses and writing of this manuscript were unconstrained. TI and MA are coinventors on a patent covering the Neuro-Cardiac-Guided TMS method (owned by neuroCare Group), but receive no proceeds or royalties. NERVB, JLK and RV have nothing to disclose.

Acknowledgements

We would like to acknowledge Manreena Kaur for providing us with the individual NCG-TMS data.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.brs.2019.10.006.

References

[1] Kessler RC, Bromet EJ. The epidemiology of depression across cultures. Annu Rev Public Health 2013;34:119–38.
[2] Anderson IM, Ferrier IN, Baldwin RC, Cowen PJ, Howard L, Lewis G, et al. Evidence-based guidelines for treating depressive disorders with antidepressants: a revision of the 2000 British Association for Psychopharmacology guidelines. J Psychopharmacol 2008;22:343–96.
[3] Donse L, Sack AT, Fitzgerald PB, Arns M. Sleep disturbances in obsessive-compulsive disorder: association with non-response to repetitive transcranial magnetic stimulation (rTMS). J Anxiety Disord 2017;49:31–9.
[4] Brunoni AR, Moffa AH, Sampaio-Júnior B, Galvez V, Loo CK. Treatment-emergent mania/hypomania during antidepressant treatment with transcranial direct current stimulation (tDCS): a systematic review and meta-analysis. Brain Stimul 2017;10:260–2.
[5] Brunoni AR, Chaimani A, Moffa AH, Razza LB, Gattaz WF, Daskalakis ZJ, Carvalho AF. Repetitive transcranial magnetic stimulation for the acute treatment of major depressive episodes: a systematic review with network meta-analysis. JAMA Psychiatry 2017;74:143–52.
[6] Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. Deep brain stimulation for treatment-resistant depression. Neuron 2005;45:67–80.
[7] Schlaepfer TE, Bewernick BH, Kayser S, Madler B, Coenen VA. Rapid effects of deep brain stimulation for treatment-resistant major depression. Biol Psychiatry 2013.
[8] Dooven JA, Geraci J, Salomons TV, Dunlop K, Wheeler S, McAndrews MP, et al. Anhedonia and reward-circuit connectivity distinguish nonresponders from responders to dorsomedial prefrontal repetitive transcranial magnetic stimulation in major depression. Biol Psychiatry 2014;76:176–85.
[9] Dooven JA, Daskalakis ZJ. New targets for rTMS in depression: a review of convergent evidence. Brain Stimul 2013;6:231–40.
[10] Rush AJ, George MS, Sackheim HA, Marangell LB, Husain MM, Miller C, et al. Vagus nerve stimulation (VNS) for treatment-resistant depressions: a multi-center study. Biol Psychiatry 2000;47:276–86.
[11] Liston C, Chen AC, Zebley BD, Drysdale AT, Gordon R, Leuchter B, et al. Default mode network mechanisms of transcranial magnetic stimulation in depression. Biol Psychiatry 2014;76:171–8.
[12] Fox MD, Buckner RL, White MP, Greicius MD, Pascual-Leone A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol Psychiatry 2012;72:595–603.
[13] Buschman HP, Storm CJ, Duncker DJ, Verduou PD, van der AA HE, van der Kemp P. Heart rate control via vagus nerve stimulation. Neuromodulation: Technol Neural Interface 2006;9:214–20.
[14] Makovac E, Thayer JF, Ottaviani C. A meta-analysis of non-invasive brain stimulation and autonomic functioning: implications for brain-heart pathways to cardiovascular disease. Neurosci Biobehav Rev 2016.
[15] Licht CM, de Geus EJC, Zitman FG, Hoogendijk WJG, van Dyck R. Penninx BWJH, Association between major depressive disorder and heart rate variability in The Netherlands Study of Depression and Anxiety (NEDSA). Arch Gen Psychiatry 2008;65:1339–67.
[16] Koening J, Kemp AH, Beauchaine TP, Thayer JF, Kaess M. Depression and resting state heart rate variability in children and adolescents: a systematic review and meta-analysis. Clin Psychol Rev 2016;46:135–50.
[17] Castaldo R, Melillo P, Bracale U, Caserta M, Triassi M, Pecchia L. Acute mental stress assessment via short term HRV analysis in healthy adults: a systematic review with meta-analysis. Biomed Signal Process Control 2015;18:370–7.
[18] Udupa K, Thirthalli J, Sathyaprabha TN, Kishore KR, Raju TR, Gangadhar BN. Differential actions of antidepressant treatments on cardiac autonomic alterations in depression: a prospective comparison. Asian J Psychiatr 2011;4:100–103.
[19] Kemp AH, Quintana DS, Gray MA, Felshingham KL, Brown K, Gatt JM. Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis. Biol Psychiatry 2010;67:1087–74.
[20] Glassman AH. Depression and cardiovascular comorbidity. Dialogues Clin Neurosci 2007;9:9–17.
[21] Penninx BW, Beekman AT, Horng A, Deeg DJ, Schoevers RA, van Eijk JT, van Tilburg W. Depression and cardiac mortality: results from a community-based longitudinal study. Arch Gen Psychiatry 2001;58:221–7.
[22] Musselman DL, Evans DL, Nemeroff CB. The relationship of depression to cardiovascular disease: epidemiology, biology, and treatment. Arch Gen Psychiatry 1998;55:580–92.
[23] Ehrethal JC, Herrmann-Lingen C, Fey M, Schaeuchung H. Altered cardiovascular adaptability in depressed patients without heart disease. World J Biol Psychiatry 2010;11:586–93.
[24] Udupa K, Sathyaprabha TN, Thirthalli J, Kishore KR, Lavekar GS, Raju TR, Gangadhar BN. Alteration of cardiac autonomic functions in patients with major depression: a study using heart rate variability measures. J Affect Disord 2007;100:137–41.
[25] Stein PK, Carney RM, Freedland KE, Skala JA, Jaffe AS, Kleiger RE, Rottman JN. Severe depression is associated with markedly reduced heart rate variability in patients with stable coronary heart disease. J Psychosom Res 2000;48:493–500.
[26] Park G, Thayer JF. From the heart to the mind: cardiac vagal tone modulates top-down and bottom-up visual perception and attention to emotional stimuli. Front Psychol 2014;5:278.
[27] Thayer JF, Lane RD. A model of neuromodulatory integration in emotion regulation and dysregulation. J Affect Disord 2000;61:201–16.
[28] Thayer JF, Als T, Fredrikson M, Sollers JJ, Wager TD. A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev 2012;36:947–56.
[29] Gross JJ. Antecedent- and response-focused emotion regulation: divergent functions with meta-analysis. J Affect Disord 2007;100:137–41.
[30] Rajendra Acharya U, Paul Joseph K, Kannathal N, Lim CM, Suri JS. Heart rate variability: a review. Med Biol Eng Comput 2015;53:371–83.
[31] Kristal-Boneh E, Froom P, Harari G, Malik M, Ribak J. Summer-winter differences in heart rate variability. J Affect Disord 2000;61:201–16.
Huang W-L, Hwang B-T, Lai C-T, Li J-Y, Kuo TBJ, Yang CCH. Is heart rate variability a reliable biomarker for depression and heart disease? Findings from the Heart and Soul Study. Psychosom Med 2007;69:735–9.

Bowers KE, Holzer MA. Differential association of cognitive and somatic depressive symptoms with heart rate variability in patients with stable coronary heart disease: findings from the Heart and Soul Study. Psychosom Med 2017:152:70–44.

Luo M, Xu Q, Li S, Zhao J, Zhao Y, Jiao Y, Rong P. Transcutaneous vagus nerve stimulation for primary insomnia: a double-blind, placebo-controlled, randomized trial. Zhongguo Zhen Jiu 2017;37:269–73.

DeMeersman RE, Steink P. Vagal modulation and aging. Biol Psychol 2007;74:275–92.

Iseger TA, Vollebregt MA, Krepel N, Arns M. Heart rate variability related to depression: a replication study. Psychophysiology 2015;52:1682–93.

Mather M, Thayer J. How heart rate variability affects emotion regulation, mood, and depressive symptoms: gender differences. Biol Psychiatry 2013;73:446–52.

Zucker TL, Samuelson KW, Muench F, Greenberg MA, Gevirtz RN. The effects of respiratory sinus arrhythmia biofeedback on heart rate variability and heart rate: relations to age and gender over nine decades. J Am Coll Cardiol 1998;31:593–601.

Ito CC, Kuo TBJ, Yang CCH. Effects of estrogen on gender-related autonomic function. Arch Phys Med Rehabil 1991;72:167–75.

Patron E, Messerotti Benvenuti S, Favretto G, Valfré T. Vagus nerve stimulation therapy summary: experience in a large naturalistic study. Brain Stimul 2018;11:337–45.

Ojeda D, Le Rolle V, Romero-Ugalde HM, Gallet C, Bonnet J-L, Henry C, et al. Sensitivity analysis of vagus nerve stimulation parameters on acute cardiovascular responses: nonmonotonic, inotropic and dromotropic effects. PLoS One 2016;11:e0163734.

Liu CC, Kuo TBJ, Yang CCH. A pilot study of transcutaneous vagus nerve stimulation for sleep disturbance in insomnia. Zhongguo Zhen Jiu 2017;37:269–73.

Browning KN, Verheijden S, Boeckxstaens GE. The vagus nerve in appetite and intestinal inflammation. Gastroenterology 2017;153:165–76.

Bogdahn U, Degner T, Mai S, Padberg F, Kornhuber J, Mueck-Weymann M. Cardiac effects of vagus nerve stimulation in patients with major depression. Pharmacopsychiatry 2010;43:7–11.

Buchanan SL, Valentine J, Powell DA. Autonomic responses are elicited by electrical stimulation of the medial but not lateral frontal cortex in rabbits. J Brain Res 1985;323:1682–5.

Rossi S, Santaronecchi E, Valenza G, Ulivelli M. The heart side of brain neuro-modulation. Philos Trans A Math Phys Eng Sci 2016;374.

Eisenberg TA, Smith KW, Kuehl KS, Croxen MA, Gross RE, Hamans S, Mayberg HS. Autonomic arousal elicited by subcallosal cingulate stimulation is explained by white matter connectivity. Brain Stimul: Basic Transl Clin Res Neuroumodulation 2019;0.

Dua S, Maclean PD. Localization for penile erection in medial frontal lobe. Am J Physiol 1964;207:1425–34.

Smith WK. The functional significance of the rostral cingulate cortex as revealed by its responses to electrical excitation. J Neurophysiol 1940;12:385–92.

Bueno B, Goya M, Bustos M, Maccarin P, Ferreres J, Petrowski K, Mueck-Weymann M. A pilot study of transcranial direct current stimulation (tDCS) on heart rate variability in depressed patients. J Clin Neurosci 2017;42:51–5.

Bowers KE, Holzer MA. Workstudies GE. The vagus nerve in appetite regulation, mood, and intestinal inflammation. Gastroenterology 2017:152:70–44.

Disanto G, Morahan JM, Lacey MV, DeLuca GC, Giovannoni G, Ebers GC, et al. The inﬂuence of birth season on mortality in the United States. Am J Epidemiol 2016;183:294–402.

Jenkins J, Shajahan PM, Lappin JM, Ebmeier KP. Right and left prefrontal cortex: different roles in major depressive disorder. Brain Stimul 2015;8:196–204.

Eisenberg TA, Padberg F, Kornhuber J, Mueck-Weymann M. Cardiac effects of vagus nerve stimulation in patients with major depression. Pharmacopsychiatry 2010;43:7–11.

Iseger TA, Vollebregt MA, Krepel N, Arns M. Heart rate variability related to depression: a replication study. Psychophysiology 2015;52:1682–93.

Mather M, Thayer J. How heart rate variability affects emotion regulation, mood, and depressive symptoms: gender differences. Biol Psychiatry 1998;44:304–6.

Verheijden S, Boeckxstaens. The vagus nerve in appetite and intestinal inflammation. Gastroenterology 2017;153:165–76.

Liu CC, Kuo TBJ, Yang CCH. Effects of estrogen on gender-related autonomic function. Arch Phys Med Rehabil 1991;72:167–75.

Ito CC, Kuo TBJ, Yang CCH. A pilot study of transcutaneous vagus nerve stimulation for sleep disturbance in insomnia. Zhongguo Zhen Jiu 2017;37:269–73.

Dua S, Maclean PD. Localization for penile erection in medial frontal lobe. Am J Physiol 1964;207:1425–34.

Smith WK. The functional significance of the rostral cingulate cortex as revealed by its responses to electrical excitation. J Neurophysiol 1940;12:385–92.

Bueno B, Goya M, Bustos M, Maccarin P, Ferreres J, Petrowski K, Mueck-Weymann M. A pilot study of transcranial direct current stimulation (tDCS) on heart rate variability in depressed patients. J Clin Neurosci 2017;42:51–5.

Bowers KE, Holzer MA. Workstudies GE. The vagus nerve in appetite regulation, mood, and intestinal inflammation. Gastroenterology 2017:152:70–44.
[90] Balogh S, Fitzpatrick DF, Hendricks SE, Paige SR. Increases in heart rate variability with successful treatment in patients with major depressive disorder. Psychopharmacol Bull 1993;29:201–6.

[91] Chambers AS, Allen JRB. Vagal tone as an indicator of treatment response in major depression. Psychophysiology 2002;39:861–4.

[92] Brunoni AR, Kemp AH, Dantas EM, Goulart AC, Nunes MA, Boggio PS, et al. Heart rate variability is a trait marker of major depressive disorder: evidence from the sertraline vs. electric current therapy to treat depression clinical study. Int J Neuropsychopharmacol 2013;16:1937–49.

[93] Ter Horst GJ. Central autonomic control of the heart, angina, and pathogenic mechanisms of post-myocardial infarction depression. Eur J Morphol 1999;37:257–66.

Articles under review and in revision

[94] T.A. Iseger, F. Padberg, J.L. Kenemans, H. van Dijk & M. Arns. Neuro-cardiac-guided TMS: a validation study (under review at NeuroImage).

[95] Manreena Kaur (personal communication).

[96] T.A. Iseger, M. Arns, J. Downar, D.M. Blumberger, Z.J. Daskalakis, & F. Vilarodriguez (2019). Cardiovascular differences between sham and active iTBS related to treatment response in MDD. Brain Stimulation. doi:10.1016/j.brns.2019.09.016.