On the distance in some bipartite graphs $L_{k,n}$

Marcin Lazarz
Department of Logic and Methodology of Sciences
Wrocław University, Poland
lazarzmarcin@poczta.onet.pl

Abstract

The paper presents some bipartite graph $L_{k,n}$, so called (k,n)-level graph, that arise by taking k-th and $(n-k)$-th levels of n-dimensional Boolean algebra. Two results are established: (1) precise description of a distance (a shortest path) between arbitrary vertices and (2) solution of the problem how many vertices may be reached in i steps starting from some initial point.

Keywords: bipartite graph, path, distance, level of Boolean algebra.

1. Preliminaries. For the standard notions such as simple graph, connected graph, path and so see for example [1]. Let us consider a finite and connected simple graph $G = (V,E)$. For arbitrary vertices u and v, let $||uv||$ denote the distance from u to v (the length of a shortest path from u to v), and assume that $||uv|| = 0$ iff $u = v$.

Definition 1 A map $d: V \times V \rightarrow \mathbb{N}$ is called a metric in G, iff for any vertices u, v, w hold the following conditions:

\[
\begin{align*}
 d(u,v) &= 0 \iff u = v, \quad (1) \\
 d(u,v) &= d(v,u), \quad (2) \\
 d(u,v) + d(v,w) &\geq d(u,w). \quad (3)
\end{align*}
\]

Then a couple (G,d) is called a metric graph.

Lemma 1 Let (G,d) be a metric graph, and moreover:

\[
 d(u,v) = 1 \iff uv \in E,
\]

for any $u,v \in V$. Then $d(u,v) \leq ||uv||$.

Proof goes by induction on $n = ||uv||$.

(1) For $n = 0$ or $n = 1$ the thesis follows from (1) and (2), respectively.

(2) For $n > 1$ assume induction hypothesis:

\[
\forall u,v \in V (||uv|| < n \Rightarrow d(u,v) \leq ||uv||).
\]
(3) Fix \(u, v \in V \) such that \(\|uv\| = n \) and take arbitrary path from \(u \) to \(v \): \[
 u = x_0 \to x_1 \to \ldots \to x_{n-1} \to x_n = v.
\]

Since \(n > 1 \), there is some intermediate vertex \(x_i \) (i.e. \(0 < i < n \)), so \(\|ux_i\| + \|x_i v\| = \|uv\| \), because there is no shorter path from \(u \) to \(v \). Applying the induction hypothesis and (3) we compute:

\[
d(u, v) \leq d(u, x_i) + d(x_i, v) \leq \|ux_i\| + \|x_i v\| = \|uv\|.
\]

Remark 1 Condition (4) is important.

Proof. Consider a graph \(G = ([1, 2, 3], \{12, 13, 23\}) \) and a map \(d \) such that: \(d(1, 2) = d(1, 3) = d(2, 3) = 2 \). It easy to verify that \((G, d) \) is a metric graph.

2. **The distance in a graph** \(L_{k,n} \). Let us consider a finite set \(X = \{1, \ldots, n\} \) and fix a natural \(k \) such that \(k < n - k \). Let \([X]^k \) stands for the sets of all \(k \)-element subsets of \(X \), and similarly \([X]^{n-k} \) stands for the \((n-k)\)-element subsets of \(X \). Let us define a bipartite graph \(L_{k,n} = (V, E) \) in the following way:

\[
 V = [X]^k \cup [X]^{n-k}, \quad E = \{AB : A \in [X]^k \land B \in [X]^{n-k} \land A \subseteq B\}.
\]

This graph can be regarded as built-up from two levels of \(n \)-dimensional Boolean algebra, namely the \(k \)-th and \((n-k)\)-th levels. Hence one can call it a \((k, n)\)-level graph.

Theorem 1 If \(A, B \in V \) and \(|A \cap B| = i \), then:

1. \(\|AB\| \leq 2 \left[\frac{k+i}{n-2k} \right] + 1 \), if \(|A| \neq |B| \),
2. \(\|AB\| \leq 2 \left[\frac{|A|-i}{n-2k} \right] \), if \(|A| = |B| \).

Proof. For short, put \(t = n - 2k \). Moreover, \([a, b] \) denotes the set \(\{x \in \mathbb{N} : a \leq x \leq b\} \).

Add (11). Without loss of the generality assume that \(A \in [X]^k \), \(B \in [X]^{n-k} \), and moreover:

\[
 A = [1,i] \cup [i + 1, k], \quad B = [1,i] \cup [k + 1, n - i].
\]

Define a sequence of sets \(C_{0}^{i}, C_{1}^{i}, \ldots, C_{j}^{i}, C_{j+1}^{i}, C_{j+1}^{i+1}, \ldots, C_{s-1}^{i}, C_{s}^{i}, C_{s+1}^{i} \), in the following way:

\[
 C_{0}^{i} = [1,i] \cup [i + 1 + 0t, k + 0t],
 C_{1}^{i} = [1,i] \cup [i + 1 + 0t, k + 1t],
 \vdots
 C_{j}^{i} = [1,i] \cup [i + 1 + jt, k + jt],
 C_{j+1}^{i} = [1,i] \cup [i + 1 + jt, k + (j + 1)t],
 \vdots
 C_{s}^{i} = [1,i] \cup [i + 1 + st, k + st],
\]

where \(s \) is the smallest natural such that \(C_{s}^{i} \subseteq B \), i.e. \(s \) satisfies inequalities:

\[
 k + 1 \leq i + 1 + st, \quad i + 1 + (s-1)t < k + 1,
\]
hence we achieve a path from A of the length 2 so $C_t = A, C_s \subseteq B$. Henceforth we just constructed a path in G:

$$C_0 \rightarrow C_1 \rightarrow C_1 \rightarrow \ldots \rightarrow C_s \rightarrow B,$$

of the length $2 \left\lceil \frac{n-k-1}{t} \right\rceil + 1$, which ends the proof of (1).

Ad (2). Assume that $A, B \in [X]^{n-k}$ and

$$A = [1, i] \cup [i + 1, n - k], \quad B = [1, i] \cup [n - k + 1, 2n - 2k - i],$$

and simultaneously $2n - 2k - i \leq n$ i.e. $t \leq i$. Just like before we define sets $C_0^s, C_1^s, \ldots, C_{s-2}^s, C_{s-1}^s, C_s^s$ such that:

$$C_0^s = [1, i] \cup [i + 1 + 0t, n - k + 0t],$$

$$C_1^s = [1, i] \cup [i + 1 + 1t, n - k + 0t],$$

$$\vdots$$

$$C_j^s = [1, i] \cup [i + 1 + jt, n - k + jt],$$

$$C_{j+1}^s = [1, i] \cup [i + 1 + (j + 1)t, n - k + jt],$$

$$\vdots$$

$$C_{s-1}^s = [1, i] \cup [i + 1 + st, n - k + (s - 1)t],$$

where s is the smallest natural such that $C_{s-1}^s \subseteq B$, i.e. s satisfies inequalities:

$$n - k + 1 \leq i + 1 + st, \quad i + 1+ (s-1)t < n-k+1,$$

so $s = \left\lceil \frac{n-k-1}{t} \right\rceil$. Then we have: $C_j^s \in [X]^{n-k}$, $C_{j+1}^s \in [X]^k$, $C_j^s \supseteq C_{j+1}^s \subseteq C_{j+1}^s$ and $C_0^s = A, C_{s-1}^s \subseteq B$. Finally, exists a path in G from A to B of the length $2 \left\lceil \frac{n-k-1}{t} \right\rceil = 2 \left\lceil \frac{|A|-i}{t} \right\rceil$:

$$C_0^s \rightarrow C_0^s \rightarrow C_1^s \rightarrow \ldots \rightarrow C_{s-1}^s \rightarrow \ldots$$

Ad (2). Assume that $A, B \in [X]^{k}$ and

$$A = [1, i] \cup [i + 1, k], \quad B = [1, i] \cup [k + 1, 2k - i].$$

We will reduce this case to (1). Consider two possibilities: first, if $k - i \geq t$ then putting $C = [1, i+t] \cup [k+1, 2k-i]$, we get $C \subseteq [X]^{n-k}$ and $B \subseteq C$, and moreover $|A \cap C| = i + t$. By part (1) we have a path from A to C of the length $2 \left\lceil \frac{k-i+t}{t} \right\rceil + 1$. Observe also that:

$$2 \left\lceil \frac{k - (i + t)}{t} \right\rceil + 1 = 2 \left\lceil \frac{k - i}{t} - 1 \right\rceil + 1 = 2 \frac{k-i}{t} - 1;$$

hence we achieve a path from A to B of the length $2 \left\lceil \frac{k-i}{t} \right\rceil$ which ends the proof. The second possibility $k - i < t$ is trivial, because then we obtain $|A \cup B| < n - k$ so the path from A to B is of the length $2 = 2 \cdot 1 = 2 \left\lceil \frac{k-i}{t} \right\rceil$.

The above proof give an algorithm of constructing a path from arbitrary vertex A to arbitrary B. Let us define the function d for $A, B \in V$ (just like before $|A \cap B| = i$):

$$d(A, B) = \begin{cases} 2 \left\lceil \frac{k-i}{n-2k} \right\rceil + 1, & \text{if } |A| \neq |B| \\ 2 \left\lceil \frac{|A|-i}{n-2k} \right\rceil, & \text{if } |A| = |B| \end{cases}.$$
Lemma 2 The map \(d \) is a metric and satisfies (4).

Proof. It is easy to see that \(d \) fulfils conditions (1), (2) and (4). The proof of (3) is also simple but quite arduous (eight cases). Assume abbreviations \(|(A \cap B) \setminus C| = p, |(B \cap C) \setminus A| = q, |(A \cap C) \setminus B| = r, |A \cap B \cap C| = x, \) and moreover \(|A \cap B| = i, |B \cap C| = j, |A \cap C| = l|.

(1) Consider the the case when \(A, B, C \in [X]^k \). To prove \(d(A, B) + d(B, C) \geq d(A, C) \) it is sufficient to show that:

\[
\frac{k - i}{n - 2k} + \frac{k - j}{n - 2k} \geq \frac{k - l}{n - 2k}.
\]

However it is clear that the above inequality is equal to:

\[
k + q \geq p + x + r,
\]

which is obviously true.

(2) If \(A, C \in [X]^{n-k}, B \in [X]^k \), it is sufficient to show that:

\[
\frac{k - i}{n - 2k} + \frac{k - j}{n - 2k} + 1 \geq \frac{n - k - l}{n - 2k},
\]

which is also equivalent to (5).

(3) Next six cases we easy check in similar way.

The main result of this section is

Corollary 1 \(d(A, B) = \|AB\| \), for any \(A, B \in V \).

Proof. Inequality \(\leq \) follows forom lemmas 1 and 2, inequality \(\geq \) is obvious, since number \(d(A, B) \) is length of concrete path from \(A \) to \(B \).

3. The number of vertices reachable in \(i \) steps. The set \(P = \{1, \ldots, k\} \) is called an initial vertex of a graph \(L_{k,n} \). Our aim is to find a pattern of the function \(f \) that describe a cardinality of the set of vertices, that we reach in consecutive steps, starting from the initial vertex.

To illustrate the problem let us consider the graph \(L_{2,5} \). For simplify notation, vertex \(\{a, b\} \) will be denoted \(ab \) and similarly \(abc \) stands for the vertex \(\{a, b, c\} \).

The initial vertex is the only one that is reached in 0 steps, so \(\Gamma(0) = \{12\} \). In one step we reach three vertices: 123, 124, 125, so we write \(\Delta(0) = \{123, 124, 125\} \). In two steps we reach six vertices: \(\Gamma(1) = \{13, 14, 15, 23, 24, 25\} \) and so on. So the function that we are looking for, in the case of graph \(L_{2,5} \) is: \(f(0) = 1, f(1) = 3, f(2) = 6, f(3) = 6, f(4) = 3, f(5) = 1 \) (see figure below).
We assume that the Newton’s symbol $\binom{n}{k}$ have a sense for any integers n and k:

$$\binom{n}{k} = \begin{cases} \frac{n!}{k!(n-k)!}, & \text{if } k \geq 0 \land k \leq n \\ 0, & \text{if } k < 0 \lor k > n \end{cases}$$

Fix n and k such that $k < n - k$ and assume $t = n - 2k$, $s = \left\lceil \frac{t}{2} \right\rceil$. For $i = 0, \ldots, s$ put:

$$\Gamma(i) = \{A \in [X]^k : d(P, A) = 2i\},$$
$$\Delta(i) = \{B \in [X]^{n-k} : d(P, B) = 2i + 1\}.$$

The set $\Gamma(i)$ is just a set of vertices that may be reached from P, in precisely $2i$ steps. Similarly, $\Delta(i)$ is a set of vertices that may be reached from P, in precisely $2i + 1$ steps. By Corollary 1 it easy follows that:

$$\Gamma(i) \cap \Gamma(j) = \emptyset, \quad \Delta(i) \cap \Delta(j) = \emptyset, \quad \text{for } i \neq j,$$

and

$$[X]^k = \bigcup_{i=0}^{s} \Gamma(i), \quad [X]^{n-k} = \bigcup_{i=0}^{s} \Delta(i).$$

Let us compute the cardinality of $\Gamma(i)$; first observe that:

$$d(P, A) = 2i \iff 2 \left\lceil \frac{k - \mid P \cap A \mid}{t} \right\rceil = 2i \iff \left\lceil \frac{\mid P \setminus A \mid}{t} \right\rceil = i \iff$$

$$i - 1 < \frac{\mid P \setminus A \mid}{t} \leq i \iff (i - 1)t < \mid P \setminus A \mid \leq it \iff \bigvee_{j=1}^{t} \mid P \setminus A \mid = (i - 1)t + j,$$

so:

$$\Gamma(i) = \bigcup_{j=1}^{t} \{A \in [X]^k : \mid P \setminus A \mid = (i - 1)t + j\}.$$

The set $\Gamma(i)$ has been presented as a union of disjoint sets. It is also clear that:

$$\mid \{A \in [X]^k : \mid P \setminus A \mid = l\} \mid = \binom{k}{k-l} \binom{n-k}{l},$$

so we achieve:

$$\gamma(i) = \mid \Gamma(i) \mid = \sum_{j=1}^{t} \binom{k}{k - ((i - 1)t + j)} \binom{n-k}{(i - 1)t + j}.$$

Now let us compute the cardinality of $\Delta(i)$. Similarly like previously we show that:

$$\Delta(i) = \bigcup_{j=1}^{t} \{B \in [X]^{n-k} : \mid P \setminus B \mid = (i - 1)t + j\},$$

and since

$$\mid \{B \in [X]^{n-k} : \mid P \setminus B \mid = l\} \mid = \binom{k}{k-l} \binom{n-k}{t+l},$$

we obtain:

$$\delta(i) = \mid \Delta(i) \mid = \sum_{j=1}^{t} \binom{k}{k - ((i - 1)t + j)} \binom{n-k}{it + j}.$$

The main result of this section is
Corollary 2 The function f that gives the cardinality of the set of all vertices that is reached in precisely $x \in \{0, 1, \ldots, 2 \left\lceil \frac{k}{t} \right\rceil + 1\}$ steps is

$$f(x) = \begin{cases}
\gamma(i), & \text{if } x = 2i \\
\delta(i), & \text{if } x = 2i + 1
\end{cases}.$$

From the above calculation we obtain also a pure combinatorial corollary:

Corollary 3 For n and k such that $2k < n$ hold:

1. \[\binom{n}{k} = \sum_{i=0}^{\left\lfloor \frac{k}{t} \right\rfloor} \sum_{j=1}^{n-2k} \left(k \right. \left. \begin{array}{c} k \\ i(n-2k) + j \end{array} \right) \left. \begin{array}{c} n-k \\ (i-1)(n-2k) + j \end{array} \right) \]

2. \[\binom{n}{k} = \sum_{i=0}^{\left\lfloor \frac{k}{t} \right\rfloor} \sum_{j=1}^{n-2k} \left(k \right. \left. \begin{array}{c} k \\ i(n-2k) + j \end{array} \right) \left. \begin{array}{c} n-k \\ (i-1)(n-2k) + j \end{array} \right) \]

References

[1] R. Diestel, Graph Theory, Springer-Verlag New York 2000.