ABSTRACT

In this paper we extend the theory of option pricing to take into account and explain the empirical evidence for asset prices such as non-Gaussian returns, long-range dependence, volatility clustering, non-Gaussian copula dependence, as well as theoretical issues such as asymmetric information and the presence of limited arbitrage opportunities.

Keywords: Theory of Asset Pricing, Informed traders, Arbitrage opportunities, Non-Gaussian Financial Markets

I. Introduction
The theory of option pricing (TOP), developed in the seminal works of Black and Scholes (1973) and Merton (1973), provides the theory of finance with the fundamentals to understand, model, estimate and apply the processes by which financial assets are priced. Several works provide a comprehensive exposition of TOP such as Cochrane (2001), Dudley (2001), Skiadas (2009), Campbell (2000, Çelik Ş. (2012), and Munk (2013). Although it is impossible to overlook TOP’s enormous influence on the theory of finance and its applications, there are some limitations of the original formulation of TOP coming from some restrictive premises of the theory that are inconsistent with the findings of empirical studies on asset pricing processes. Those phenomena are:

- **Phenomenon 1.** (Empirical evidence). Long-range dependence in asset price time series, volatility clustering of asset returns, skewness of the distribution of asset returns, heavy tails of the distribution of asset returns, multivariate tail dependencies in the vector of asset returns;
- **Phenomenon 2.** Market participants often deal with asymmetric information;
- **Phenomenon 3.** Prices are often predictable;
- **Phenomenon 4.** Markets exhibit limited arbitrage opportunities;
- **Phenomena 5.** Markets exhibit chaotic behavior (often referred to as irrational).

Our paper attempts to extend the boundaries of TOP to address those issues and is organized as follows. Section 2 introduces the T)P for informed traders. Section 3 introduces the TAP in the presence of limited arbitrage.

2. TOP FOR INFORMED TRADERS

There is a vast amount of literature on asset pricing with asymmetric information and arbitrage opportunities, most notably the models proposed by both Kyle (1985) and Back (1992). Both models assume a market with a continuous-time risky asset and asymmetric information. In the Kyle model there are three financial agents: the market maker, an insider trader (who knows a payoff which will be revealed at a pre-specified future time), and an uninformed (noisy) trader. The market maker has to define a pricing rule in such a way that an equilibrium exists between the traders. Back (1993) extended the model to continuous time. A second line of research concerns studies of markets with asymmetric information based on an enlargement of the

1 See Rachev and Mittnik (2000), Schoutens (2003), Cont and Takov (2004), Rachev et al. (2011). and the references therein.
2 See Brunnermeier (2001) and Kelly and Ljungqvist (2008).
3 See Campbell and Yogo (2005), Boucher (2006), Ang and Bekaert (2007), and Caporin et al. (2013)
4 See Lo (1991), Campbell, et al.(1997), Andersson(1998), Diebold (2001). Nielsen (2010), Johansen (2011), and Caporale and Gil-Alana (2014).
5 The earliest known evidence for this saying appeared in a column by Gary Shilling in Forbes magazine in February 1993 (http://quoteinvestigator.com/2011/08/09/remain-solvent/).
6 See Hsieh (1990), Trippi (1995), Banerjee S. (2013), Jovanovic and Schinckus (2013), Rubinstein (2001), Shiller (2003), Daniel and Titman (1999), Pedersen (2015), Harford and Alexander (2013), Bloxham (2016), and Farmer (2014).
filtration and the change of the probability measure, the study by Aase et al. (2010) being one example. Our work is of a different nature. We derive option pricing formulas when traders could have additional information about future asset prices. The trader’s information is multifaceted and any general definition will be restrictive in view of the trader’s particular trading activities. We derive the analog of the Black-Scholes formula for informed traders, and construct and estimate an implied information surface based on our option pricing formula.

2.1. Option Pricing Formula for a Trader with Prior Information on the Stock-Price Direction

In this section we introduce the notion of an informed trader (designated as $\kappa_{t, \tau} \in \mathbb{R}$) in order to extend the Cox-Ingersoll-Ross (CRR) binomial pricing model (Cox et al., 1979) for informed (resp. misinformed) traders $\kappa_{t, \tau} > 0$ (resp. $\kappa_{t, \tau} < 0$). As will be seen, the CRR-model is a particular case of our model when the trader has no additional information (i.e., $\tau = 0$).

κ_t’s information manifests in a superior trading performance of κ_t with $\tau > 0$ over an uninformed κ_0-trader. Indeed, there is no way to have a unique “ideal” definition of “information level” τ. The information level will depend on the nature of trading activities that $\kappa_t, \tau > 0$ is involved in. We start our analysis recalling the CRR binomial model: at t the stock price is $x = S_t$ and the price in the next discrete period of time is given by

$$S_{t+\Delta t} = \begin{cases} S_{t+\Delta t; \text{up}} := xu_{\Delta t} = xe^{\sigma \sqrt{\Delta t}} & \text{w. p. } p_{\Delta t} = \frac{1}{2} + \frac{\mu - \frac{\sigma^2}{2}}{2\sigma} \sqrt{\Delta t} \\ S_{t+\Delta t; \text{down}} := xd_{\Delta t} = xe^{-\sigma \sqrt{\Delta t}} & \text{w. p. } 1 - p_{\Delta t} \end{cases} \quad (1)$$

A European contingent claim ECC pays $f_{t+\Delta t} = f_{t+\Delta t; \text{up}}$ (resp. $f_{t+\Delta t; \text{down}}$) with probability $p_{\Delta t}$ (resp. $1 - p_{\Delta t}$). Trader κ_t ($\tau > 0$) takes a short position in the EEC. Suppose at t, κ_t ($\tau > 0$) knows the price direction at $t + \Delta t$ with probability $p_t \in (0,1)$. Because the natural probability $p_{\Delta t}$ is now assumed fixed (cannot be conveniently chosen), we need the following extension of the CRR-model \(^8\) and the Jarrow-Rudd model \(^9\). To this end, we have the following lemma due to Kim et al. (2016) (referred to hereafter as KSRF). The corresponding tree’s weak convergence (denoted as “\Rightarrow^w”), shown in KSRF, is based on Proposition 3 in Davydov and Rotar (2008).

Lemma 1. Let the stock-price process dynamics on natural world \mathbb{P} is given by geometric Brownian motion (GBM)

$$S_{t;\mathbb{P}}(\mu, \sigma) = e^{(\mu - \frac{1}{2}\sigma^2)t + \sigma B(t)}, t \geq 0 \quad (2)$$

\(^8\) In CRR-model $p_{\Delta t}$ is determined in (1.1), its estimation is based on estimates of μ and σ^2, while in our approach, we suggest that $p_{\Delta t}$ is estimated separately from the μ and σ^2, using the time series of signs of Δt – returns. This makes our model more flexible in the discrete binomial setting. As far as the limiting continuous price process is concerned, our and the CRR-model indeed coincide, see Lemma 1 next.

\(^9\) In the model of Jarrow and Rudd (1983) the risk-neutral probability $q_{\Delta t}$ is chosen to be $\frac{1}{2}$, in our model $q_{\Delta t} := p_{\Delta t} - e^{-\sqrt{\Delta t} \nu \sqrt{\Delta t}} \in (1 - p_{\Delta t})$. Indeed, as $\Delta t \downarrow 0$, our and Jarrow-Rudd model converge to the same risk neutral GBM, see Lemma (1) next.
and on the risk-neutral world \(\mathbb{Q} \) is given by

\[
S_{t;\mathbb{Q}} = S_{t;\mathbb{P}}^{(r, \sigma)} = e^{\left(\frac{r - \frac{1}{2} \sigma^2}{\alpha} t + \sigma \mathbb{B}^q(t)\right)}, t \geq 0
\]

(3)

where \(\mathbb{B}^q \) is Brownian motion on \(\mathbb{Q} \) and an arithmetic Brownian motion (ABM) on \(\mathbb{P} \), \(\mathbb{B}^q(t) = B(t) + \theta t \) and \(\theta = \frac{r - \sigma}{\sigma} \) is the market price of risk. Fix \(p \in (0,1) \). Then the binomial tree approximating \(S_{t;\mathbb{P}}, t \in [0, T] \) (in the sense of "\(\Rightarrow \)\) with given probability for upward stock movement \(p_{\Delta t} \) is given by

\[
S_{(k+1)\Delta t;\mathbb{P}} := S_{k\Delta t;\mathbb{P}} \begin{cases}
1 + \mu \Delta t + \sqrt{\frac{1-p_{\Delta t}}{p_{\Delta t}}} \sigma \sqrt{\Delta t} & \text{w. p. } p_{\Delta t}, \\
1 + \mu \Delta t - \sqrt{\frac{p_{\Delta t}}{1-p_{\Delta t}}} \sigma \sqrt{\Delta t} & \text{w. p. } 1-p_{\Delta t}
\end{cases}
\]

(4)

\[k := 0, \ldots, n-1, n\Delta t = T. \text{The corresponding risk-neutral tree approximating } S_{t;\mathbb{Q}} \text{ is given by}
\]

\[
S_{(k+1)\Delta t;\mathbb{Q}} := S_{k\Delta t;\mathbb{Q}} \begin{cases}
1 + \mu \Delta t + \sqrt{\frac{1-p_{\Delta t}}{p_{\Delta t}}} \sigma \sqrt{\Delta t} & \text{w. p. } q_{\Delta t}, \\
1 + \mu \Delta t - \sqrt{\frac{p_{\Delta t}}{1-p_{\Delta t}}} \sigma \sqrt{\Delta t} & \text{w. p. } 1-q_{\Delta t}
\end{cases}
\]

(5)

where \(q_{\Delta t} := p_{\Delta t} - \sqrt{p_{\Delta t}(1-p_{\Delta t})} \) is the risk-neutral probability for an upward stock movement.

Suppose at each instant \(t \) (\(t = k\Delta t, k = 0, \ldots, N - 1 \)), \(N\Delta t = T \), \(\mathbb{R} \) makes an independent informed prediction that the stock will be “up” at \(t + \Delta t \) with probability \(p_{t,t} \) for correct prediction. Because we assume that the probability \(p_{t,t} = p_t \) is constant, we are dealing with a Bernoulli sequence of trader’s guesses about the stock direction. If at \(t \), \(\mathbb{R} \) believes that the stock will be “up” at \(t + \Delta t \), that is \(u_{\Delta t} = x \left(1 + \mu \Delta t + \sqrt{\frac{1-p_{\Delta t}}{p_{\Delta t}}} \sigma \sqrt{\Delta t}\right) \), \(x = S_t \), (resp. "down", that is, \(d_{\Delta t} = x \left(1 + \mu \Delta t - \sqrt{\frac{p_{\Delta t}}{1-p_{\Delta t}}} \sigma \sqrt{\Delta t}\right) \)) at \(t + \Delta t \), the informed trader enters a long-forward\(^\text{10}\) (resp. short-forward) contract with an un-informed \(\mathbb{R}_0 - \text{trader} \)\(^\text{11}\).

\(^\text{10}\) The forward price is \(xe^{r \Delta t} = x(1 + r \Delta t) \) with the contract’s maturity \(\Delta t \).

\(^\text{11}\) Applying the tree model from Lemma 1, \(\mathbb{R}'s \) payoff (at time \(t + \Delta t \)) is

\[
P_{t+\Delta t}(\mathbb{R}) = x \begin{cases}
u_{\Delta t} - e^{r \Delta t} & \text{w. p. } p_{\Delta t} p_{t,t} \\
e^{r \Delta t} - \nu_{\Delta t} & \text{w. p. } (1-p_{t,t})p_{\Delta t} \\
e^{r \Delta t} - d_{\Delta t} & \text{w. p. } p_{t,t}(1-p_{\Delta t}) \\
d_{\Delta t} - e^{r \Delta t} & \text{w. p. } (1-p_{t,t})(1-p_{\Delta t})
\end{cases}
\]

Suppose \(\mathbb{R} \) takes a short position in a European option contract with payoff \(f_{u,\Delta t} \) (resp. \(f_{d,\Delta t} \)) when the stock-price is up (resp. down), at maturity \(t + \Delta t \). To hedge the risk of the informed trader’s position \(\mathbb{R} \) takes (i) \(\Delta^{(t)} \) — position in the underlying stock to hedge the “up” and “down” risk; (ii) \(\Delta_{eu}(\text{resp. } \Delta_{ed}) \) — position in arbitrage shares to hedge the “information” risk, when \(\mathbb{R} \) believes that the stock will be “up” (resp. “down”). Equating all outcomes of
We now formulate the first version of the Black-Scholes formula for an informed trader \(\kappa_t, \tau \in \mathbb{R}^\tau \) with some knowledge of stock direction (we treat the case of \(\kappa_t, \tau < 0 \), as dealing with uninformed trader

Proposition 1. Suppose the trader \(\kappa_t, \tau \in \mathbb{R} \) has information about the instantaneous stock-price direction leading to a specific for \(\kappa_t \)-risk-neutral dynamics given by \(dS_t^{(\kappa_t)} = (r - C_t)S_t^{(\kappa_t)}dt + \sigma S_t^{(\kappa_t)}dB(t) \). Then the \(\kappa_t \)'s value of the trader's short position in a European call contract with maturity price \(C^{(\kappa_t)} \left(S_t^{(\kappa_t)}, T \right) = \max \left(0, S_t^{(\kappa_t)} - K \right) \) is given by

\[
C^{(\kappa_t)} \left(S_t^{(\kappa_t)}, t \right) = e^{-r(t-T)}S_t^{(\kappa_t)}N(d_1) - Ke^{-r(t-T)}N(d_2)
\]

where \(I^{(\kappa_t)} = C_t, \tau \in \mathbb{R}, C_t \geq 0 \) if \(d_1 = \frac{\ln(S_t^{(\kappa_t)} / K) + \left(r - \frac{1}{2}\sigma^2 \right)(T-t)}{\sigma \sqrt{T-t}} \) and \(d_2 = d_1 - \sigma \sqrt{T-t} \).

2.2. Option Pricing Formula for a Trader with Information On The Mean Stock-Return

Using the same setting as in Section 1.1, suppose the true price dynamics is given by \(S_t^{(\mu, \sigma)} \) by (2). However, here the stock is actually traded with market perceived dynamics \(S_t^{(\nu, \sigma)} = e^{(\nu - \frac{1}{2}\sigma^2)\tau + \sigma B(t)} \), \(t \geq 0 \), for some \(\nu > r > 0 \). Suppose at each instant \(t = k\tau, \ k = 0, \ldots, N - 1 \), \(\kappa_t \) knows whether the true mean return \(\mu \) is above or below the market value of \(\nu \) with success probability \(p_{\nu, \tau} = p_{\nu}^{12} \).

In the next lemma we fix the mean drift and determine the corresponding trees approximating (2) and (3).

the riskless portfolio and applying Lemma 1 leads to

\[
\Delta_{cd} = -\Delta_{cd} \Delta^{(\nu)} = \Delta^{(\nu)} + + \Delta_{cd} (2 q_{\Delta t} - 1), \ \Delta^{(\nu)} = \frac{f_{\Delta t^{\nu} - f_{\Delta t^{\nu}}}}{u_{\Delta t^{\nu} - d_{\Delta t^{\nu}}}}.
\]

Setting \(\Delta_{cd} = -\frac{q^{(\kappa_t)}_{\Delta t}}{\sqrt{\Delta t}} \) and discounting the instantaneous riskless portfolio delivers the option value at

\[
t: f_t = e^{r\Delta t} \left(q^{(\kappa_t)}_{\Delta t} f_{\Delta t} + (1 - q^{(\kappa_t)}_{\Delta t})f_{\Delta t} \right).
\]

The discount factor \(q^{(\kappa_t)} \) has two equivalent forms:

\[
q^{(\kappa_t)} := q_{\Delta t} - 2C_t \frac{1}{\sigma} \sqrt{\Delta t} q_{\Delta t} (1 - q_{\Delta t}) = \frac{1}{2} + \frac{r - C_t \frac{1}{2}}{2\sigma} \sqrt{\Delta t},
\]

where \(C_t \geq 0 \) is the coefficient for \(\kappa_t \)'s information level (\(\tau < 0 \) designates the level of misinformation). Now, \(q^{(\kappa_t)} \) converges to 1 (resp. to 0) when the natural probability \(p_{\Delta t} \) converges to 1 (resp. 0). This resolves the discontinuity problem in option pricing (see KSRF). Furthermore, the continuous dynamics of the \(\kappa_t \)'s risk-neutral price process is given by GBM

\[
dS_t^{(\kappa_t)} = (r - C_t \tau)S_t^{(\kappa_t)}dt + \sigma S_t^{(\kappa_t)}dB(t), \ \text{where} \ C_t \tau \in \mathbb{R}
\]

is designating the level of \(\kappa_t \)'s "clairvoyance". Also assuming that \(\Delta_{cd} \) follows its own binomial tree independent of that for \(S_t^{(\kappa_t)} \) will lead to a subordinated-in-the-mean pricing model for \(S_t^{(\kappa_t)} \).

\[12\] For simplicity of exposition, we assume that \(p_{\nu} = 1 \). In the general case \(p_{\nu} \in [0, 1] \) a more complex tree, similar to the one to be discussed in Section 3, should be used.
Lemma 2. Let (2) hold and $\nu > r > 0$ is fixed. Then the binomial tree

$$S_{(k+1)\Delta t; P} := S_{k\Delta t; P} \left\{ \begin{array}{ll} 1 + \nu\Delta t + \sigma\sqrt{\Delta t} & \text{w.p. } p_{\nu\Delta t} = \frac{1}{2} + \frac{\nu - r}{2\sigma}\sqrt{\Delta t}, \\ 1 + \nu\Delta t - \sigma\sqrt{\Delta t} & \text{w.p. } 1 - p_{\nu\Delta t} \end{array} \right.$$

$k := 0, \ldots, n - 1, n\Delta t = T$ is approximating $S_{t; P}, t \in [0, T]$ in \Rightarrow-sense. The corresponding risk-neutral tree approximating $S_{t; Q}$ is given by

$$S_{(k+1)\Delta t; Q} := S_{k\Delta t; Q} \left\{ \begin{array}{ll} 1 + \nu\Delta t + \sigma\sqrt{\Delta t} & \text{w.p. } q_{\nu\Delta t}, \\ 1 + \nu\Delta t - \sigma\sqrt{\Delta t} & \text{w.p. } 1 - q_{\nu\Delta t} \end{array} \right.$$

where $q_{\nu\Delta t} = \frac{1}{2} + \frac{r - \nu}{2\sigma}\sqrt{\Delta t}$ is the risk-neutral probability for upward stock movement.\(^{13}\)

If \mathcal{N}_t believes that $\mu > \nu$ (resp. $\mu < \nu$), then the informed investor enters a long-forward (resp. short-forward) contract with an uninformed \mathcal{N}_0-trader. Suppose \mathcal{N}_t takes a short position in a European option contract with payoff $f_{\nu\Delta t}$ (resp. $f_{\mu\Delta t}$) when the stock-price is up (resp. down) at maturity $t + \Delta t$.\(^{14}\)

Proposition 2. Suppose trader $\mathcal{N}_t, t \in R$ has information about the stock-price mean return leading to a specific for \mathcal{N}_t-risk neutral dynamics given by $dS_t^{(\mathcal{N}_t)} = \left(r - J_t^{(\mathcal{N}_t)} \right) S_t^{(\mathcal{N}_t)} dt + \sigma S_t^{(\mathcal{N}_t)} dB(t)$. Then the \mathcal{N}_t’s value of the trader’s short position in an European call contract with maturity price $C_t^{(\mathcal{N}_t)} \left(S_T^{(\mathcal{N}_t)}, T \right) = \max \left(0, S_T^{(\mathcal{N}_t)} - K \right)$ is given by

\(^{13}\) Lemma 2 could be viewed as a “discrete version of the Girsanov’s formula” meaning that we have binomial approximations for $S_t^{(\mu, \sigma)} = e^{\left(\mu - \frac{1}{2} \sigma^2 \right) t + \sigma B(t)}, t \geq 0$ and $S_t^{(\nu, \sigma)} = S_t^{(r, \sigma)}$ the first one on the natural world

$$S_{(k+1)\Delta t; P} := S_{k\Delta t; P} \left\{ \begin{array}{ll} 1 + \mu\Delta t + \sigma\sqrt{\Delta t} & \text{w.p. } p = \frac{1}{2}, \\ 1 + \mu\Delta t - \sigma\sqrt{\Delta t} & \text{w.p. } 1 - p \end{array} \right.$$

and the second one on the risk-neutral world,

$$S_{(k+1)\Delta t; Q} := S_{k\Delta t; Q} \left\{ \begin{array}{ll} 1 + \nu\Delta t + \sigma\sqrt{\Delta t} & \text{w.p. } q = \frac{1}{2} + \frac{\nu - \mu}{2\sigma}\sqrt{\Delta t}, \\ 1 + \nu\Delta t - \sigma\sqrt{\Delta t} & \text{w.p. } 1 - q \end{array} \right.$$

\(^{14}\) From Lemma it follows that the value of the option contract at t is $f_t = e^{-rt} \left[q_t^{(\mathcal{N}_t)} f_{\nu\Delta t} + (1 - q_t^{(\mathcal{N}_t)}) f_{\mu\Delta t} \right]$, where $q_t^{(\mathcal{N}_t)} = q_{\nu\Delta t} - 2C_t^{(\mathcal{N}_t)} \sqrt{\Delta t} q_{\nu\Delta t} (1 - q_{\nu\Delta t}) = \frac{1}{2} + \frac{1 + \frac{r - J_t^{(\mathcal{N}_t)}}{2\sigma}}{2\sigma} \sqrt{\Delta t}$ and $J_t^{(\mathcal{N}_t)} = \left(\frac{1}{2} \right) (C_t \nu - \sigma^2)$. Now the continuous dynamics of the \mathcal{N}_t’s risk-neutral price process is given by the GBM $dS_t^{(\mathcal{N}_t)} = \left(r - J_t^{(\mathcal{N}_t)} \right) S_t^{(\mathcal{N}_t)} dt + \sigma S_t^{(\mathcal{N}_t)} dB(t)$, where the yield $J_t^{(\mathcal{N}_t)}$ now depends on the market perceived mean stock-price return (ν) and volatility (σ).
\begin{align}
C^{(N_{\tau})}(S_{t}^{(N_{\tau})}, t) &= e^{-J_{v}^{(N_{\tau})}(T-t)S_{t}^{(N_{\tau})}N(d_{1}) - K e^{-r(T-t)N(d_{2})}} \tag{7}

\text{where } J_{v}^{(N_{\tau})} &= \left(\frac{1}{\sigma^2}\right) C_{t} \tau v - \sigma^2, \quad C_{t} \geq 0
\quad d_{1} = \frac{\ln\left(\frac{S_{t}^{(N_{\tau})}}{K}\right) + \left(\tau J_{v}^{(N_{\tau})} + \frac{\sigma^2}{2}\right)(T-t)}{\sigma \sqrt{T-t}} \quad \text{and } d_{2} = d_{1} - \sigma \sqrt{T-t}.
\end{align}

\section*{2.3. Option Pricing Formula For a Trader With Information On The Stock-Return Mean and Volatility}

We use the same setting as in Section 2.2 but now we assume that \(\mathcal{N}_{\tau} \) knows that the true stock-price dynamics is given by \(S_{t;\mathcal{P}}^{(\mu, \sigma)} \) in (2) with Sharpe ratio \(\theta = \frac{\mu - r}{\sigma} \). The stock is, however, traded with market perceived dynamics \(S_{t;\mathcal{P}}^{(Y, \sigma)} = e^{(\gamma - \frac{1}{2}\sigma^2)t + \sigma \mathcal{B}(t)}, t \geq 0 \) and market perceived Sharpe ratio \(\phi = \frac{\gamma - r}{\sigma} \). To explain the arbitrage strategy \(\mathcal{N}_{\tau} (\tau > 0) \) will employ, we need the following analog of Lemmas 1 and 2, the proof based on the techniques developed in KSRF.

\textit{Lemma 3.} Let (2) hold. Fix the mean return \(\gamma > r > 0 \) and the volatility level \(\sigma > 0 \). Then the trinomial tree approximating \(S_{t;\mathcal{P}}, t \in [0, T] \) in the sense of \(\Rightarrow_{\mathcal{W}} \) is given by

\begin{equation}
\frac{S_{k+1}\Delta t;\mathcal{P}}{S_{k}\Delta t;\mathcal{P}} = 1 + \gamma \Delta t + \begin{cases}
\frac{q\sqrt{\Delta t}}{w. p.} \frac{\sigma^2}{2q^2} + (\theta - \phi)\sqrt{\Delta t} \\
0 \quad \text{w. p.} 1 - \frac{\sigma^2}{q^2} \\
-\frac{q\sqrt{\Delta t}}{w. p.} \frac{\sigma^2}{2q^2} - (\theta - \phi)\sqrt{\Delta t}
\end{cases}
\tag{8}
\end{equation}

The corresponding risk-neutral tree approximating \(S_{t;\mathcal{Q}} \) is given by15

15 Lemma 3 could be viewed as a discrete extension of Girsanov’s formula when the volatility has been changed together with the mean drift. Indeed, we have trinomial approximations for \(S_{t;\mathcal{P}} = S_{t;\mathcal{P}}^{(\mu, \sigma)} \) and \(S_{t;\mathcal{Q}} = S_{t;\mathcal{Q}}^{(r, \sigma)} \)

\begin{align*}
S_{t;\mathcal{P}} &= S_{t;\mathcal{P}}^{(\mu, \sigma)} = e^{(\mu - \frac{1}{2}\sigma^2)t + \sigma \mathcal{B}(t)}, t \geq 0. \text{ Namely, } \frac{S_{k+1}\Delta t;\mathcal{P}}{S_{k}\Delta t;\mathcal{P}} = 1 + \mu \Delta t + \begin{cases}
\frac{\sigma\sqrt{\Delta t}}{w. p.} \frac{1}{2} \\
0 \quad \text{w. p.} 0 \\
-\frac{\sigma\sqrt{\Delta t}}{w. p.} \frac{1}{2}
\end{cases}
\text{ and } S_{k+1}\Delta t;\mathcal{Q} = 1 + \begin{cases}
\frac{q\sqrt{\Delta t}}{w. p.} \frac{\sigma^2}{2q^2} + \frac{\mu - \gamma}{\sigma} \sqrt{\Delta t} \\
0 \quad \text{w. p.} 1 - \frac{\sigma^2}{q^2} \\
-\frac{q\sqrt{\Delta t}}{w. p.} \frac{\sigma^2}{2q^2} - \frac{\mu - \gamma}{\sigma} \sqrt{\Delta t}
\end{cases}
\end{align*}
\[
\frac{S_{(k+1)\Delta t}}{S_{k\Delta t}} \equiv 1 + \gamma \Delta t + \begin{cases}
q \sqrt{\Delta t} \ w.p. \ p \ \frac{\sigma^2}{2q^2} - \phi \sqrt{\Delta t} \\
0 \ w.p. \ 1 - \frac{\sigma^2}{q^2} \\
- q \sqrt{\Delta t} \ w.p. \ p \ \frac{\sigma^2}{2q^2} + \phi \sqrt{\Delta t}
\end{cases} \quad (9)
\]

Suppose \(\mathcal{K}_t \) knows the market direction with probability 1 but the trader is permitted to use only limited amount of arbitrage trades (proportional to the trader’s information parameter \(\tau \)) per one short position in the option contract. \(\mathcal{K}_t \) is also aware that \(\gamma > r \). At time \(t \), \(\mathcal{K}_t \) enters long (resp. short) forward contract with maturity \(t + \Delta t \) when the trader knows that the stock will be “up” or “middle” (resp. ”down”).\(^{16}\)

\(^{16}\) The payoff from this arbitrage strategy with \(S_{k\Delta t} = x \) is

\[
P_{t+\Delta t}(\mathcal{K}_t, \text{arb}) = x \begin{cases}
(y - r) \Delta t + q \sqrt{\Delta t} \ w.p. \left(\frac{\sigma^2}{2q^2} + \frac{1}{\rho} (\mu - \gamma) \sqrt{\Delta t} \right) \\
(y - r) \Delta t \ w.p. \left(1 - \frac{\sigma^2}{q^2} \right) \\
(r - \gamma) \Delta t + q \sqrt{\Delta t} \ w.p. \left(\frac{\sigma^2}{2q^2} - \frac{1}{\rho} (\mu - \gamma) \sqrt{\Delta t} \right)
\end{cases}
\]

Suppose \(\mathcal{K}_t \) takes a short position in a European option contract with payoff \(f_{u,\Delta t} \) (resp.\(f_{d,\Delta t} \)) when the stock-price is up (resp. “down” or “middle”) at maturity \(t + \Delta t \). Because \(\mathcal{K}_t \) knows the stock direction, the payoff is given by \(P_{t+\Delta t}(\mathcal{K}_t, \text{arb, portfolio}) = \)

\[
x \Delta^{(t)}(1 + \gamma \Delta t + q \sqrt{\Delta t}) + xU^{(t,u)} - f_{u,\Delta t} \ w.p. \left(\frac{\sigma^2}{2q^2} + \frac{1}{\rho} (r - \gamma) \sqrt{\Delta t} \right) \\
x \Delta^{(t)}(1 + \gamma \Delta t) + xM^{(t,u)} - f_{m,\Delta t} \ w.p. \left(1 - \frac{\sigma^2}{q^2} \right) \\
\Delta^{(t)}(1 + \gamma \Delta t - q \sqrt{\Delta t}) + xD^{(t,u)} - f_{d,\Delta t} \ w.p. \left(\frac{\sigma^2}{2q^2} - \frac{1}{\rho} (r - \gamma) \sqrt{\Delta t} \right)
\]

To construct a riskless portfolio \(\mathcal{K}_t \) chooses: (i) delta position \(\Delta^{(t)} = \frac{f_{u,\Delta t} - f_{d,\Delta t}}{2q \sqrt{\Delta t}} \) in the stock; (ii) arbitrage position \(U^{(t,u)} \) when the trader knows that the stock will be in “up” position,

\[
U^{(t,u)} = \phi \left\{ \left(\frac{1}{2q} - \frac{\nu(t)^2 \sigma^2}{2q \phi q^2} - \frac{1}{2q} \right) + \left(-2 \frac{\mu - D_1 - \gamma}{\phi 2q \nu(t)} \right) \sqrt{\Delta t} \right\} f_{u,\Delta t} + \left\{ \left(\frac{1}{2q} - \frac{\nu(t)^2 \sigma^2}{2q \phi q^2} - \frac{1}{2q} \right) + \left(2 \frac{\mu - D_1 - \gamma}{\phi 2q \nu(t)} \right) \sqrt{\Delta t} \right\} f_{d,\Delta t} - \left\{ \left(\frac{-2}{\phi 2q \nu(t)} \left(1 - \frac{\nu(t)^2 \sigma^2}{\nu(t)} \right) - \frac{\phi}{\phi} \sqrt{\Delta t} + \frac{2}{2q} \right) f_{m,\Delta t} \right\}
\]

(iii) arbitrage position \(D^{(t,u)} \) when the trader knows that the stock will be in “down” position,
Proposition 3. Suppose the trader \mathfrak{R}_τ, $\tau \in R$ has information about the stock-price mean return and volatility leading to a specific for \mathfrak{R}_τ-risk-neutral dynamics given by $S_{t;\mathbb{Q}}(\tau) = S_{t;\mathbb{Q}}^{(r,\sigma(\tau))}(\tau) = e^{(r-D_t\tau-\frac{1}{2}V(\tau)^2\sigma^2)t+V(\tau)\sigma B(t)}, t \geq 0$. Then the value of \mathfrak{R}_τ's short position in a European call contract with maturity price $C^{(\mathfrak{R}_\tau)}(S_T^{(\mathfrak{R}_\tau)}, T) = \max(0, S_T^{(\mathfrak{R}_\tau)} - K)$ is given by

$$C^{(\mathfrak{R}_\tau)}\left(S_t^{(\mathfrak{R}_\tau)}, t\right) = e^{-r^{(\mathfrak{R}_\tau)}(T-t)}S_t^{(\mathfrak{R}_\tau)}N(d_1) - Ke^{-r(T-t)}N(d_2)$$

(10)

where $K^{(\mathfrak{R}_\tau)} = D_t\tau, \tau \in R, D_{\tau} > 0$, $d_1 = \frac{\ln\left(\frac{S_t^{(\mathfrak{R}_\tau)}}{K}\right) + (r-K^{(\mathfrak{R}_\tau)} + \frac{1}{2}V(\tau)^2)(T-t)}{\sigma V(\tau)\sqrt{T-t}}$ and $d_2 = d_1 - \sigma V(\tau)\sqrt{T-t}, t \in [0, T]$. $V(\tau) = A_\tau \exp(-B_\tau \tau), A_\tau \geq 0, B_\tau \geq 0$.

2.4. Option Pricing Formula for a Trader with Information on the True Discount Factor

We use a setting similar to that in Section 2.3. Estimating the implied risk-neutral tree with proprietary methodology, or using other information, \mathfrak{R}_τ knows that the true discount factor is $D^{(\tau)} = \exp(-r\tau)$, and thus the true risk-neutral price dynamics given by $S_{t;\mathbb{Q}}^{(r,\sigma)}$ in (3). \mathfrak{R}_τ is also aware that the market perceived discount factor is $D^{(R)} = \exp(-R\tau)$; that is, the market perceived risk-neutral dynamics is $S_{t;\mathbb{Q}}^{(R,\sigma)} = e^{\left(R-\frac{1}{2}\sigma^2\right)t+\sigma B(t)}, t \geq 0$. While the trader knows the true discount factor rate, \mathfrak{R}_τ can only borrow and lend at rate R. The next lemma follows directly from Lemma 2.

$$D^{(\tau,\omega)} = \phi \left\{ \left(\frac{1}{2}\sigma - \frac{V(\tau)^2\sigma^2}{2\phi V(\tau)}\right) - \frac{1}{2}\sigma \phi \right\} f_{u,\Delta t} +$$

$$\left\{ \left(\frac{1}{2}\sigma - \frac{V(\tau)^2\sigma^2}{2\phi V(\tau)}\right) - \frac{1}{2}\sigma \phi \right\} f_{d,\Delta t} -$$

(iv) arbitrate position $M^{(\tau,\omega)}$ when the knows that the stock will be in “middle” position

$$M^{(\tau,\omega)} = \left\{ \left(\frac{1}{2}\sigma - \frac{V(\tau)^2\sigma^2}{2\phi V(\tau)}\right) - \frac{1}{2}\sigma \phi \right\} f_{u,\Delta t} +$$

$$\left\{ \left(\frac{1}{2}\sigma - \frac{V(\tau)^2\sigma^2}{2\phi V(\tau)}\right) - \frac{1}{2}\sigma \phi \right\} f_{d,\Delta t} -$$

where (iii) $K^{(R)} := D_\tau \tau, \tau \in R, D_\tau > 0$ is the dividend rate. \mathfrak{R}_τ enjoys due to clairvoyance, and (iv) $V(\tau) = A_\tau \exp(-B_\tau \tau), A_\tau \geq 0, B_\tau \geq 0$ is the parameter of informed volatility due to \mathfrak{R}_τ’s knowledge about the true Sharpe ratio $\theta = \frac{\mu - \tau}{\sigma}$. Then \mathfrak{R}_τ obtains informed risk-neutral stock dynamics $S_{t;\mathbb{Q}}^{(r,\sigma^2)}(\tau) = e^{\left(r-D_\tau \tau-\frac{1}{2}V(\tau)^2\sigma^2\right)t+V(\tau)\sigma B(t)}, t \geq 0$.

Page | 8
Lemma 4. Let (2) and (3) hold and \(R > 0 \) is fixed. Then the binomial tree

\[
S_{(k+1)\Delta t;\overline{P}} := S_{k\Delta t;\overline{P}} \begin{cases}
1 + \lambda \Delta t + \sigma \sqrt{\Delta t} & \text{w.p. } p_{R,\Delta t} = \frac{1}{2} + \frac{\mu - \lambda}{2\sigma} \sqrt{\Delta t}, \\
1 + \lambda \Delta t - \sigma \sqrt{\Delta t} & \text{w.p. } 1 - p_{R,\Delta t}, \quad \lambda := r - R + \frac{\sigma^2}{2}.
\end{cases}
\]

\(k = 0, \ldots, n-1 \), \(n \Delta t = T \) is approximating \(S_{t;\overline{P}}, t \in [0, T] \) in \(\Rightarrow^w \)-sense. The corresponding risk-neutral tree approximating \(S_{t;\overline{Q}} \) in the sense of \(\Rightarrow^w \) is given by

\[
S_{(k+1)\Delta t;\overline{Q}} := S_{k\Delta t;\overline{Q}} \begin{cases}
1 + \lambda \Delta t + \sigma \sqrt{\Delta t} & \text{w.p. } q_{v,\Delta t}, \\
1 + \lambda \Delta t - \sigma \sqrt{\Delta t} & \text{w.p. } 1 - q_{v,\Delta t}
\end{cases}
\]

where \(q_{v,\Delta t} = \frac{1}{2} + \frac{R - \frac{\sigma^2}{2}}{2\sigma} \sqrt{\Delta t} \) is the risk-neutral probability for upward stock movement.

According to Lemma 4 \(\mathbb{X}_t \) can enter forward contract initiated at \(t \), with arbitrage opportunity and forward price \(\mathbb{F}_{t;\overline{M}} = x(1 + R \Delta t), x = S_{t;\overline{P}} \), and terminal time \(t + \Delta t \). The arbitrage-trade payoff (under \(\mathbb{Q} \)) of the long forward contract is \(S_{(k+1)\Delta t;\overline{Q}} - \mathbb{F}_{t;\overline{M}} \) with a present value of \(x(R - R) \Delta t \). Per one short position in the option contract, \(\mathbb{X}_t \) is permitted to use only a limited amount of arbitrage trades (proportional to the trader’s information parameter \(\tau \)). \(\mathbb{X}_t \) takes a short position in a European option contract with payoff \(f_{u,\Delta t} \) (resp. \(f_{d,\Delta t} \)) when the stock price is “up” (resp. “down”) at maturity \(t + \Delta t \). The trader also takes an arbitrage-long forward contract (resp. arb-short forward) with payoff \(x(R - R) \Delta t \) (resp. \(x(R - r) \Delta t \)) when \(R < r \) (resp. \(R \geq r \)).

Proposition 4. Suppose the trader \(\mathbb{X}_t, \tau \in \mathbb{R} \) has information about the true discount factor

\[\text{Page 9}\]
implying that the \mathfrak{X}_t's specific risk-neutral dynamics is given by $dS_t^{(\mathfrak{X}_t)} = R^{(t)}S_t^{(\mathfrak{X}_t)}dt + \sigma S_t^{(\mathfrak{X}_t)}dB(t)$. Then the value of \mathfrak{X}_t's short position in a European call contract with maturity price $C^{(\mathfrak{X}_t)}(S_T^{(\mathfrak{X}_t)}, T) = \max\{0, S_T^{(\mathfrak{X}_t)} - K\}$ is given by
\[
C^{(\mathfrak{X}_t)}(S_t^{(\mathfrak{X}_t)}, t) = e^{-C^{(t)}T-t}S_t^{(\mathfrak{X}_t)}N(d_1) - K e^{-R^{(t)}(T-t)}N(d_2),
\]
where $R^{(t)} := R + C^{(t)}, \tau \in R, C_t \geq 0$, $d_1 = \frac{\ln(S_t^{(\mathfrak{X}_t)} / K) + (R - \frac{\sigma^2}{2})T}{\sigma \sqrt{T-t}}$, and $d_2 = d_1 - \sigma \sqrt{T-t}$.

2.5 Option Pricing in the Mean-Variance Framework

Suppose the short-position-option-holder, \mathfrak{X}_t, is facing a hedge-turnover constraint (per one share traded) of $HT_{\Delta t} = \varphi^2 n, \varphi > 0, \ n = \frac{T}{\Delta t}, T$ is the option maturity time. \mathfrak{X} would like to keep $HT_{\Delta t}$ limited to a bound of $HT_{\Delta t} \leq B^2$ for some fixed constant $B > 0$. Thus, $\Delta t = \frac{T}{n} = \frac{T \varphi^2}{HT_{\Delta t}} \geq \frac{T \varphi^2}{B^2}$.

Because of the limitation to hedge in continuous time, \mathfrak{X} opts to optimize the mean-variance tradeoff of the hedged portfolio at $t + \Delta t, t = 0, \Delta t, ..., (n - 1)\Delta t$: $P^{(t+\Delta t)} = \{\Delta^{(\Delta t)}u_{\Delta t} = \Delta^{(\Delta t)}u_{\Delta t}| 1 + \gamma \Delta t + \frac{\Delta^{(\Delta t)}}{\sqrt{\Delta t}} \sigma \Delta t - f_{u_{\Delta t}}, w.p. p_{\Delta t}
\Delta^{(\Delta t)}d_{\Delta t} = \Delta^{(\Delta t)}d_{\Delta t}| 1 + \gamma \Delta t - \frac{\Delta^{(\Delta t)}}{\sqrt{\Delta t}} \sigma \Delta t - f_{d_{\Delta t}}, w.p. 1 - p_{\Delta t}\}

Here, $y = x(1 + HT_{\Delta t}^2)$, where $x = S_t$, and the derivative-price dynamics are given by the tree $f_{(k+1)\Delta t} = \{f_{u_{\Delta t}} = f_{u_{\Delta t}}, w.p. p_{\Delta t}
\Delta^{(\Delta t)}u_{\Delta t} = \Delta^{(\Delta t)}u_{\Delta t}| 1 + \gamma \Delta t + \frac{\Delta^{(\Delta t)}}{\sqrt{\Delta t}} \sigma \Delta t - f_{u_{\Delta t}}, w.p. p_{\Delta t}\}.
\Delta^{(\Delta t)}d_{\Delta t} = \Delta^{(\Delta t)}d_{\Delta t}| 1 + \gamma \Delta t - \frac{\Delta^{(\Delta t)}}{\sqrt{\Delta t}} \sigma \Delta t - f_{d_{\Delta t}}, w.p. 1 - p_{\Delta t}\}.

\mathfrak{X}'s goal is to maximize the objective function $E_t P^{(t+\Delta t)}$ given that $\var_{t} P^{(t+\Delta t)} \leq \varepsilon_{t}^2$, where $\varepsilon_{t} \equiv \lambda(f_{u_{\Delta t}} - f_{d_{\Delta t}})\Delta t\sqrt{1 - p_{\Delta t}}$ with $\lambda = \lambda_0 + \varphi B, \lambda_0 > 0$. Because
\[
\var_{t} P^{(t+\Delta t)} = \var_{t} (1 - p_{\Delta t})\left(\Delta^{(\Delta t)}y - \frac{1}{\sqrt{\Delta t}} \var_{t} \Delta t - f_{u_{\Delta t}} - f_{d_{\Delta t}}\right)^2 \leq \varepsilon_{t}^2, \text{ the optimal delta position is } \Delta^{(\Delta t)}y = \frac{e^{\gamma \Delta t}}{\sigma \sqrt{\Delta t}} + \frac{f_{u_{\Delta t}} - f_{d_{\Delta t}}}{\sigma \sqrt{\Delta t}}\sqrt{\Delta t} - \frac{f_{u_{\Delta t}} - f_{d_{\Delta t}}}{\sigma \sqrt{\Delta t}}\Delta t\right)^2.
\]
and thus the optimal conditional portfolio mean is given by $E_t P^{(t+\Delta t)} = \{e^{\gamma \Delta t} \var_{t} \Delta t + \frac{\Delta^{(\Delta t)}u_{\Delta t}}{\sigma \sqrt{\Delta t}}\var_{t} \Delta t - \frac{1}{\sigma \sqrt{\Delta t}} \var_{t} \Delta t, w.p. q_{\Delta t}\}$. This leads to the option price at the nodes of the tree of the form $f_t = e^{-\frac{\Delta^{(\Delta t)}}{\sqrt{\Delta t}}} (Q^{(\Delta t)}f_{u_{\Delta t}} + (1 - Q^{(\Delta t)})f_{d_{\Delta t}})$ where the “risk-adjusted-probabilities” are $Q^{(\Delta t)} = p_{\Delta t} - \theta(1 + \lambda)\sqrt{\Delta t}$ and $1 - Q^{(\Delta t)}$. This allows us to value the option on the “risk-adjusted tree” $S_{(k+1)\Delta t} = S_{k\Delta t}\{1 + \gamma \Delta t + \frac{\Delta^{(\Delta t)}}{\sqrt{\Delta t}} \var_{t} \Delta t, w.p. Q^{(\Delta t)}\}
\Delta t = \frac{T \varphi^2}{B^2}$. Next, to have the limit of the pricing tree as $\Delta \downarrow 0$, we should have either either $\varphi = 0$, or $B = \infty$. In both cases, $\lambda = \lambda_0$.

Page | 10
\[S_t = S_t^0 e^{(r - (\gamma - r) \lambda_0 + \frac{\sigma^2}{2})t + \sigma B(t)}, \quad t \geq 0 \] (12)

That is, we can view the option contract as written against the stock with dividend rate \((\gamma - r)\lambda_0\). For a call option with strike \(K\) and maturity \(T\), the risk-adjusted dynamics (12) imply

\[C(S_t, t) = e^{-(\gamma - r)\lambda_0 (T - t)} S_t N(d_1) - Ke^{-r(T - t)} N(d_2), \]

where

\[d_1 = \left[\frac{\ln(S_t/K) + (r - (\gamma - r) \lambda_0 + \frac{\sigma^2}{2})(T - t)}{\sigma \sqrt{T - t}} \right] \]
\[d_2 = d_1 - \sigma \sqrt{T - t} \]

and \(N\) is the cumulative standard normal distribution function.

3. MARKETS WITH LIMITED ARBITRAGE OPPORTUNITIES DRIVEN BY LOG-ROSENBLATT-HERMITE TYPE PROCESSES

Grossman and Stiglitz (1980) argued that it is practically impossible to take advantage of all the arbitrage opportunities at every instant of time when information is costly, since there must be some benefit to the informed investor to release this information to uninformed investors at no charge. Deriving an optimal investment policy of a risk-averse investor in a market with arbitrage opportunities, Liu and Longstaff (2004) find that it is often optimal to underinvest in the arbitrage by taking a smaller position than collateral constraints allow. The possibility of discrepancies leading to arbitrage may arise in real markets (e.g., see Dwyer et al., 1996) so it is desirable to study trading strategies which produce arbitrage opportunities (see Salopke, 1998). There are no guarantees, however, that in the real world there will be convergence of frictionless equilibrium price model values to their observed prices. Since observed markets seem to possess memory\(^{19}\), fractional Brownian motion\(^{20}\) and Rosenblatt processes\(^{21}\) may be useful for modeling observed prices as opposed to frictionless equilibrium prices\(^{22}\). The goal of this section is to show that empirical evidence confirms the validity of pricing model exhibiting long-range dependence and limited arbitrage opportunities.

3.1. The Binary Tree Model and Limited Arbitrage

In this section we shall extend the KSRF binomial tree price model to a binary pricing model which will be more suited as a starting point in developing binary models with long–range

\(^{19}\) See, for example, Lo (1991), Campbell, et al. (1997), Andersson (1998). Diebold (2001) Nielsen (2010), Johansen (2011), and Caporale, Gil-Alana (2014)

\(^{20}\) See Bayraktar et al. (2004), Rostek (2009) and the references there in

\(^{21}\) See Taqqu (1975) Rosenblatt (1985), and Taqqu (2011)

\(^{22}\) See Goldenberg (1986). Soros (1994, Chapter 1, Part 3) argues: “Returning to economic theory, it can be argued that it is the participants’ bias that renders the equilibrium position unattainable. The target toward which the adjustment process leads incorporates a bias, and the bias may shift in the process. When that happens, the process aims not at an equilibrium but at a moving target. To put matters into perspective, we may classify events into two categories: humdrum, everyday events that are correctly anticipated by the participants and do not provoke a change in their perceptions, and unique, historical events that affect the participants’ bias and lead to further changes. The first kind of event is susceptible to equilibrium analysis, the second is not: it can be understood only as part of a historical process.”
dependence. Starting with a binary tree model with fixed frequency of stock movements, we assume that the trader, designated as \mathcal{D}, seeking access to limited arbitrage opportunities can explore arbitrage trading activities. \mathcal{D} has collected intraday high-frequency stock data $S_{t,\text{obs}}$, $t > 0$ in different frequency $\Delta t > 0$, $\forall \Delta t = \mathcal{T}$, where \mathcal{T} is the sample window and $\forall t$ is the sample size. Let T be \mathcal{D}'s investing horizon and $\mathcal{T} = N \Delta t$. The data \mathcal{D} has collected allows the trader to have estimates $\hat{\mu}, \hat{\sigma}, \hat{p}_t = \hat{g} + \hat{v} \sqrt{\Delta t}$, for the parameters of the following discrete binary price-process dynamics:

$$S_{(k+1)\Delta t} = S_{k\Delta t} \left(1 + \mu \Delta t + \left(\frac{1-p_{\Delta t}}{p_{\Delta t}}\right) \frac{\xi_{k+1,\mathcal{N}}}{2} \sigma \sqrt{\Delta t} \xi_{k+1,\mathcal{N}}\right)$$ \hspace{1cm} (13)

The parameters of the binary tree model (13) are (i) $\mu \in \mathbb{R} – $ stock instantaneous mean return, and; (ii) $\sigma > 0 – $ stock volatility; (iii) $p_{\Delta t} = g + v \sqrt{\Delta t}$, stock probability for non-negative return in Δt, for some fixed $g \in (0,1), v \in \mathbb{R}$, and $\Delta t > 0$ is sufficiently small for $p_{\Delta t} \in (0,1)$; (iv) for every $N = 2, ..., N, \left\{\xi_{k,\mathcal{N}}, k = 1,2, ...\right\}$ is a sequence of iid random signs $\mathbb{P}(\xi_{k,\mathcal{N}} = 1) = 1 - \mathbb{P}(\xi_{k,\mathcal{N}} = -1) = p_{\Delta t}$. Then for every fixed set of parameters $(\mu, \sigma, g, v) \in \mathbb{R} \times (0, \infty) \times (0,1) \times \mathbb{R}$, the discrete price process generated by (2.1) converges in \Rightarrow^μ to the GBM23

$$S_t = S_t^{(\mu,\sigma^2)} = S_0 \exp\left((\mu - \frac{1}{2}\sigma^2)t + \sigma B(t)\right), t > 0.$$ \hspace{1cm} (14)

We assume that price processes (13) and (14) are defined on the natural world, designated by a stochastic basis $(\Omega, (\mathcal{F}_t, t \in [0, T]), \mathbb{P})$. The generated risk-neutral binary price process defined on the equivalent stochastic basis $(\Omega, (\mathcal{F}_t, t \in [0, T]), \mathbb{Q})$ is given by 24

$$S_{(k+1)\Delta t} = S_{k\Delta t} \left(1 + \mu \Delta t + \left(\frac{1-p_{\Delta t}}{p_{\Delta t}}\right) \frac{\xi_{k+1,\mathcal{N}}}{2} \sigma \sqrt{\Delta t} \eta_{k+1,\mathcal{N}}\right)$$ \hspace{1cm} (15)

where for every $N = 2, ..., N, \left\{\eta_{k,\mathcal{N}}, k = 1,2, ...\right\}$ is a sequence of independent and identically distributed (iid) random signs $\mathbb{Q}(\eta_{k,\mathcal{N}} = 1) = 1 - \mathbb{Q}(\eta_{k,\mathcal{N}} = -1) = q_{\Delta t}$ where

$$q_{\Delta t} = p_{\Delta t} - \sqrt{p_{\Delta t}(1-p_{\Delta t})} \theta \sqrt{\Delta t}, \theta = \frac{\mu - r}{\sigma}.$$ \hspace{1cm} (16)

The $\mathbb{C}[0,1] – $ random broken line generated by the tree (15) converges to the risk-neutral GBM:

$$S_t = S_t^{(r,\sigma^2)} = S_0 \exp\left((r - \frac{1}{2}\sigma^2)t + \sigma B(t)\right), t > 0.$$ \hspace{1cm} (17)

3.2. The Binary Tree Model with Random Frequency of Stock Movements

23 See Lemma 1 in Kim et al (2016a), where the corresponding weak convergence in $\mathbb{C}[0,1]$ is shown as well. See also Davidov and Rotar (2008).

24 The proof is almost identical to that in Lemma 1, Kim et al (2016).
Consider in the tree (13) subordinated time steps $\Delta^{(k+1)} := \tau^{(k+1)} - \tau^{(k)}$, $\tau^{(k)} := \tau(k\Delta t)$, where \(\tau(t) \) is a non-decreasing Le\'vy process (a Le\'vy- subordinator\(^{25}\)) with \(\tau(0) = 0 \) on stochastic basis \((\Omega, (\mathcal{F}_t, t \in [0, T]), \mathbb{P}) \), and is independent of the sequence \(\{\xi_{k,n}, k = 0,1, \ldots\} \). Consider the subordinated tree model

$$ S_{\tau^{(k+1)}} = S_{\tau^{(k)}} \left(1 + r\Delta t + \rho\Delta^{(k+1)} + \left(1-p_{\Delta t} \right)^{-\frac{1}{2}} \sigma \sqrt{\Delta^{(k+1)} \xi_{k+1,n}} \right) \quad (18) $$

Then the corresponding discrete price process weakly converges in \(D[0,1] \) to

$$ S_t = S_0 e^{rt+\rho \tau(t)+\sigma \mathcal{B}(\tau(t))}, t > 0 \quad (19) $$

where \(\mathcal{B}(t) \) is a Brownian motion on \((\Omega, (\mathcal{F}_t, t \in [0, T]), \mathbb{P}) \) and is independent of \(\{\tau(t), t \geq 0\} \). Furthermore, the martingale measure \(\mathbb{Q} \) is defined by the Radon-Nikodym derivative \(\Psi(t) = \exp \left\{ \psi \mathcal{B}(t) - \frac{1}{2} \psi^2 t \right\}, t \geq 0 \), where \(\psi = -\frac{\rho + \sigma^2}{\sigma} \) is the market price for risk, see Hurst et al. (1999). Consider a European call option with exercise price \(K \) and time to maturity \(T \). Let \(K^{(r,T,t)} = Ke^{-r(T-t)} \) be the discounted exercise price. Then the option value \(C_t \) at \(t \in [0,T] \) is given by

$$ C_t = S_t F^{(+)} \left(\log \left(\frac{S_t}{K^{(r,T,t)}} \right) \right) - K^{(r,T,t)} F^{(+)} \left(\log \left(\frac{S_t}{K^{(r,T,t)}} \right) \right), \quad (20) $$

where \(F^{(+)}(x) = \int_0^\infty F_{\mathcal{N}(0,1)} \left(\frac{x+y}{\sqrt{y}} \right) dF_{\mathcal{N}(0,1)}(y) \), \(F_{\mathcal{N}(0,1)} \) is the standard normal distribution function and \(F_{\mathcal{N}(0,1)}^{(+)} \) is the distribution function of \(Y_t^{(T)} = \sigma^2 (T - \tau(t)) \).

In particular, if for \(\alpha \in (1,2) \),

$$ Y_t^{(T)} = C^{(T-t)}_{\alpha} V_{\alpha} \quad (21) $$

where \(C^{(T-t)}_{\alpha} = 2 \sigma^2 \cos \left(\frac{\pi \alpha}{4} \right)^2 (T-t) \) and \(V_{\alpha} \sim \mathcal{S}_{\alpha}(1,1,0) \) is a standard \(\frac{\alpha}{2} \)-stable subordinator (see Samorodnitsky and Taqqu, (1994), that is, an \(\frac{\alpha}{2} \)-stable random variable with unit skewness and scale parameters.\(^{28}\) Then (8) is the value of a European call when the pricing process is driven by \(\alpha \)-stable process (see Hurst et al., 1999).

\(^{25}\) See Rachev et al. (2011), Bianchi(2010), and Kim et al.(2010).

\(^{26}\) Note that because the parameter \(\rho \) is strictly positive, and the distribution of \(\tau(1) \) can be quite general, the discrete and continuous models , (3.16) and (3.17) are flexible enough to be used as models for the price process on the natural world \((\Omega, (\mathcal{F}_t, t \in [0, T]), \mathbb{P}) \). The models are general enough to compensate for the choice of the mean instantaneous deterministic drift to be equal to the risk free rate \(r \).

\(^{27}\) The omitted proof is similar to the one in Karandikar and Rachev (1999)

\(^{28}\) \(\tau(t), t \geq 0 \) is a Le\'vy – stable subordinator, if it is a Le\'vy-process (that is a process with independent and stationary increments, starting at 0) and having an unit increment given by \(C^{(1)}_{\alpha} \).
3.3 The Binary Tree Model with Limited Arbitrage

Suppose at each instant \(k \Delta t \), \(k = 0, 1, \ldots, \) the stock direction at \((k + 1) \Delta t \). Knowing that the price will be “up” (resp. “down”)\(^{29}\) at \((k + 1) \Delta t\), \(\mathfrak{A}\) enters a long-forward (resp. short-forward) contract with an uninformed trader.\(^{30}\) Applying the tree model, \(\mathfrak{A}'s \) payoff at time \(t + \Delta t \) is

\[
P_{+\Delta t}(X_t) = x \begin{cases}
 u_{\Delta t} - e^{\Delta \rho \Delta t} = \rho \Delta (k+1) + \sqrt{\frac{1-p_{\Delta t}}{p_{\Delta t}}} \sigma \sqrt{\Delta (k+1)} & \text{w.p. } p_{\Delta t} \\
 d_{\Delta t} - e^{\Delta \rho \Delta t} = \rho \Delta (k+1) - \sqrt{\frac{p_{\Delta t}}{1-p_{\Delta t}}} \sigma \sqrt{\Delta (k+1)} & \text{w.p. } 1-p_{\Delta t}
\end{cases}
\]

Suppose \(\mathfrak{A} \) takes a short position in a European option contract with payoff \(f_{u_{\Delta t}}^{(t+\Delta t)} \) (resp. \(f_{d_{\Delta t}}^{(t+\Delta t)} \)) when the stock-price is up (resp. down), at maturity \(t + \Delta t \).\(^{31}\) Consider the arbitrage process

\[
S_{\tau (t+k+1)}^{(a)} = S_{\tau (k)}^{(a)} \left(1 + r \Delta t + \rho \Delta (k+1) + \frac{k_{k+1,N}}{p_{\Delta t}} \sigma \sqrt{\Delta (k+1)} \right),
\]

where \(k_{k,N} \) are iid random signs with \(\mathbb{P}(k_{k,N} = 1) = 1 - \mathbb{P}(k_{k,N} = -1) = q^{(a)} \). Then the conditional mean is given by \(\mathbb{E}_{\tau (k)}^{(Q)} \frac{S_{\tau (k)}^{(a)}}{S_{\tau (k)}^{(a)}} = 1 + \Delta t + 2p_{\Delta t} \Delta (k+1), \) while \(\text{Var}_{\tau (k)}^{(Q)} \frac{S_{\tau (k)}^{(a)}}{S_{\tau (k)}^{(a)}} = 0; \)

\(^{29}\) That is, \(u_{\Delta t} = x \left(1 + r \Delta t + \rho \Delta (k+1) + \frac{k_{k+1,N}}{p_{\Delta t}} \sigma \sqrt{\Delta (k+1)} \right), \) \(x = S_{\tau (k)}^{(a)}, \) (resp. \(d_{\Delta t} = x \left(1 + r \Delta t + \rho \Delta (k+1) - \frac{k_{k+1,N}}{1-p_{\Delta t}} \sigma \sqrt{\Delta (k+1)} \right). \)

\(^{30}\) The forward price is \(xe^{\Delta \rho \Delta t} = x(1 + r \Delta t) \) with the contract’s maturity \(\Delta t. \)

\(^{31}\) \(\mathfrak{A} \) uses \(\Delta^{(a)} \) arbitrage-forward contracts to hedge the stock the “up” and “down” risk, as it costs the trader nothing to enter those forward contracts. \(\mathfrak{A}'s \) arbitrage portfolio \(t + \Delta t \), \(\mathfrak{A} \) —position at \(t + \Delta t \) in the arbitrage portfolio is

\[
P(\mathfrak{A}; t + \Delta t) = \begin{cases}
 \Delta^{(a)}(u_{\Delta t} - e^{\Delta \rho \Delta t}) - f_{u_{\Delta t}}^{(t+\Delta t)} & \text{w.p. } p_{\Delta t} \\
 \Delta^{(a)}(e^{\Delta \rho \Delta t} - d_{\Delta t}) - f_{d_{\Delta t}}^{(t+\Delta t)} & \text{w.p. } 1-p_{\Delta t}
\end{cases}
\]

Equating both outcomes leads to \(\Delta^{(a)} = \)

\[
\frac{f_{u_{\Delta t}}^{(t+\Delta t)} - f_{d_{\Delta t}}^{(t+\Delta t)}}{2p_{\Delta t} \Delta (k+1) + \frac{1}{\sqrt{p_{\Delta t}(1-p_{\Delta t})}} \sigma \Delta (k+1)}. \]

The riskless portfolio’s value is \(\Delta^{(a)}(u_{\Delta t} - e^{\Delta \rho \Delta t}) - f_{u_{\Delta t}}^{(t+\Delta t)} \), and thus for the derivative value at \(t = k \Delta t \) we obtain \(f_{t}^{(a)} = e^{-\Delta \rho \Delta t}(q^{(a)}f_{u_{\Delta t}}^{(t+\Delta t)} + (1-q^{(a)})f_{d_{\Delta t}}^{(t+\Delta t)}) \), where the \(q^{(a)} \) —arbitrage-probability is

\[
q^{(a)} = \frac{1}{2} + \frac{p_{\Delta t}^{-\frac{1}{2}}}{1 + \frac{2p_{\Delta t}^{-\frac{1}{2}}}{\sigma \Delta (k+1)^{\frac{1}{2}}}}.
\]
that is, \[
\frac{S^{(k+1)}_{(t+\Delta t)} - S^{(k)}_{(t)}}{S^{(k)}_{(t)}} - 1 = r\Delta t + 2\rho p\Delta t^{(k+1)}, \]
k = 1, 2, \ldots \text{ is a sequence of random arbitrage returns.}

In the case of a \(\frac{\alpha}{2}\)-stable subordinator (see (2.9)), \(\Delta^{(k+1)}\) is distributed as \(\Delta^{(k+1)} = C^{(\Delta t)}_{\alpha}\).

Thus, if the log-returns in random frequency of \(C^{(\Delta t)}_{\alpha}\) behaves like \(r\Delta t + 2\rho p\Delta t C^{(\Delta t)}_{\alpha}\) with very high probability, that is
\[
\log\left(\frac{S^{(k)}_{(t+\Delta t)}}{S^{(k)}_{(t)}}\right) \sim \log\left(\frac{1}{S^{(k)}_{(t)}} S^{(k)}_{(t+\Delta t)}\right) \sim r\Delta t + 2\rho p\Delta t C^{(\Delta t)}_{\alpha} \quad \text{(with probability close to 1)} \quad (23)
\]
then (23) could be a potential evidence of market exhibiting arbitrage opportunities.

References

Aase, K.K. Bjuland, T., Øksendal B. (2010) Strategic insider trading equilibrium: A filter theory approach Eprint, Dept. of Mathematics, University of Oslo 14 (2010).

Abry P. and Pipiras V (2006) Wavelet-based synthesis of the Rosenblatt process. Signal Processing, 86(9), p. 2326 - 2339.

Alòs E. and Nualart D. (2003) Stochastic integration with respect to the fractional Brownian motion. Stochastics and Stochastic Reports 75, p. 129-152.

Alòs, E., Mazet O., and Nualart D. (2001) Stochastic calculus with respect to Gaussian processes. Annals of Probability 29, p. 766-801.

Andersson, M.K., (1998) On Testing and Forecasting in Fractionally Integrated Time Series Models. Ph.D. Thesis Stockholm School of Economics . Stockholm

Ang A., Bekaert G. (2007) Stock return predictability: Is it there?, Rev. Financial Studies, 20(3), p651-707

Back K(1992) Insider trading in continuous time Review of Financial Studies, 5 p.387–409.

Back K (1993) Asymmetric information and options, The Review of Financial Studies, 6 (1993), p.435–472.

Back, K., Baruch S. (2004) Information in securities markets: Kyle meets Glosten and Milgrom, Econometrika 72, p 433–465.

Back, K., Cao, C.H., Willard G.A. (2000) Imperfect competition among informed traders, The Journal of Finance 55 p.2117–2155.

Back K., Pedersen H. (1998) Long-lived information and intraday patterns, Journal of Financial Markets 1, p. 385–402.

Ball C.A. and Roma A. (1994): Stochastic volatility option pricing. Journal of Financial and Quantitative Analysis 29, 589-607.
Banerjee S. (2013) Chaor and complexity theory of management;Nonlinear dynamics , Business Science reference, IGI Global

Bannör K.F.and SchererM. (2013) A BNS-type stochastic volatility model with two-sided jumps with applications to FX options pricing. Wilmott, 2013 p.58–69

Barndorff-Nielsen O. (2001) Superposition of Ornstein-Uhlenbeck type processes. Theory Probab. Appl., 45 p.175–194

Barndorff-Nielsen O., Basse-O’Connor A.A. (2011) Quasi Ornstein-Uhlenbeck process, Bernoulli , 17(3), 916-941

Barndorff-Nielsen O. Shephard N. (2001) Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics (with discussion). J. R. Stat. Soc. B Statist. Methodol., 63 p.167–241, 2001.

Barndorff-Nielsen O., Stelzer R. (2011) Multivariate supOU processes. Ann. Appl. Probab., 21 (1) p.140–182

Barndorff-Nielsen O., Stelzer R (2013). The multivariate supOU stochastic volatility model. Math. Finance, 2, p:275–296

Barles, G., Soner, H-M (1998) Option pricing with transaction costs and a non-linear Black-Scholes Equation, Finance and Stochastics, 2, p. 369-397

Baruch S. (2002) Insider trading and risk aversion, Journal of Financial Markets 5 (2002), p.451 – 464.

Boucher C. (2006) Stock prices–inflation puzzle and the predictability of stock market returns, Economics Letters, 90 (2), p. 205–212

Bayraktar E., Horst U., Sinlar R. (2006) A limit theorem for financial markets with inert investors, Mathematics of Operations Research, 31(4), p. 789-810

Belmont, CA. ,Young, L.C., 1936. An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67, 251–282

Beran, J (1994) Statistics for long-memory processes, Chapman & Hall, New York

Bender, C. (2003a) Integration with respect to Fractional Brownian Motion and Related Market Models. University of Konstanz, Department of Math- ematics and Statistics: Ph. D. thesis.

Bender, C. (2003b) An S-Transform approach to integration with respect to a fractional Brownian motion, Bernoulli 9(6), p. 955–983.

Bender, C. (2003c) An Itô Formula for Generalized Functionals of a Fractional Brownian Motion with arbitrary Hurst parameter, Stoch Proc Appl 104, p. 81–106.

Bender, C., Elliott, R.J. (2004) Arbitrage in a Discrete Version of the Wick- Fractional Black-Scholes Market. Math Oper Res 29, p. 935–945.

Bender, C., Sottinen, T., Valkeila, E. (2006) Arbitrage with fractional Brownian motion?, Theory of Stochastic Processes 12(28).

Benth, F.E. (2003) On arbitrage-free pricing of weather derivatives based on fractional Brownian motion, Appl Math Finance 10(4), p. 303–324.

Biagini, F., Guasoni, P. , Pratelli, M. (2000) Mean-variance hedging for stochastic volatility models, Mathematical Finance, 10, 109-123
Biagini F. and B. Oksendal B. (2003) Minimal variance hedging for fractional Brownian motion. Methods Appl. Anal. 10 (3), p. 347-362.

Biay, B., Glosten, L., Spatt C. (2005) Market microstructure: A survey of microfoundations, empirical results, and policy implications Journal of Financial Markets 8 , p.217–264.

Bingham,N.H.(1971) Limit theorems for occupation times of Markov processes. Z. Wahrscheinlichkeitstheor. Verwandte Geb.17,1-22.

Bjork, T., Hult, H. (2005) A note on Wick products and the fractional Black- Scholes model, Finance and Stochastics 9(2), p. 197–209.

Black, F., Scholes, M. (1973) The Pricing of Options and Corporate Liabilities, J Polit Econ 81, p. 637–654.

Bloxham E. (2016) How market pundity causes irrational behavior, Fortune, January 13, 2016, http://fortune.com/2016/01/13/market-punditry-irrational-behavior/

Brennan, M.J. (1979) The Pricing of Contingent Claims in Discrete Time Models, J Finance 24(1), p. 53–68.

Brunnermeier M.K. (2001) Asset Pricing under Asymmetric Information: Bubbles, crashes, Technical Analysis and Herding. Oxford University Press,(2001) Oxford

Caldentey, R, Stacchetti, E. (2010) Insider trading with a random deadline, Econometrica 78 (2010), pp.245–283.

Campbell J.Y. (2000) Asset Pricing at the Millennium, The Journal of Finance, 55(4), p.1515-1567

Campbell, J.Y., Lo, A.W., MacKinlay, A.C. (1997) . The Econometrics of Financial Markets. Princeton University Press, Princeton,

Campbell, J.Y., Yogo, M. (2005) Efficient tests of stock return predictability, Journal of Financial Economics , 81(1), p.27-60

Caporale M.G., Gil-Alana L.A. (2014) Fractional Integration and cointegration in US time series data, Empirical Economics, 47(4), p.1389-1410

Caporin M. Ranaldo A., Santucci de Magistris P. (2013) On the predictability of stock prices: A case for high and low prices Journal of Banking and Finance, 37 (12) p. 5132–5146

Carr P., Madan D.B. (1999) Option valuation using the Fast Fourier Transform. J. Comput. Finance, 2 p. 61–73

Carmona P., Coutin L., Montseny G. (2003): Stochastic integration with respect to the fractional Brownian motion. Ann. Institut Henri Poincaré 39 (1), p. 27-68.

Çelik Ş. (2012) Theoretical and Empirical Review of Asset Pricing Models: A Structural Synthesis International Journal of Economics and Financial Issues 2(2) p. 141-178

Chen Z., Xu L., Zhu D. (2015) Generalized continuous time random walks and Hermite processes, Statistics and Probability Letters, 99, p44-53
Cheridito, P. (2001a) Regularizing fractional Brownian motion with a view towards stock price modelling, Eidgenöss Technische Hochschule Zürich, Swiss Federal Institute of Technology: Ph. D. Thesis.

Cheridito, P. (2001b) Mixed fractional Brownian motion, Bernoulli 7, p. 913–934.

Cheridito, P. (2003) Arbitrage in fractional Brownian motion models, Finance Stochast(7), p. 533–553

Cho K-H. (2003) Continuous auctions and insider trading: uniqueness and risk aversion Finance and Stochastics, 7, p.47–71

Cochrane, J.H. (2001), Asset Pricing, Princeton University Press, Princeton and Oxford.

Collin-Dufresne P., Fos V. (2015) Do prices reveal the presence of informed trading? The Journal of Finance 70 (2015), pp.1555-1582.

Comte F. and Renault E. (1998): Long-memory in continuous-time stochastic volatility models. Mathematical Finance 8, p. 291-323.

Comte, F., Coutin L. and Renault E. (2003): Affine fractional stochastic volatility models with application to option pricing. Preprint.

Cont R. (2001) Empirical properties of asset returns: stylized facts and statistical issues. Quant. Finance, 1 p.223–236.

Cont R. (2006): Long range dependence in financial markets. Preprint, available online http://www.cmap.polytechnique.fr/~rama/papers/FE05.pdf

Cont, R., Tankov, P. (2004) Financial Modelling with Jump Processes. Chap man and Hall, CRC Press

Coviello R. and Russo F. (2006) Modeling financial assets without semimartingales. Preprint.

Cox, J., Ross, S., Rubinstein, M. (1979) Options pricing: A simplified approach, J Financ Econ 7, p. 229–263

Cox, J., Rubinstein, M. (1985) Options markets. Prentice Hall, New York.

Cutland, N.J., Kopp, P.E., Willinger, W., (1995). Stock price returns and the Joseph effect: A fractional version of the Black-Scholes model. Progr. Probab. 36, p. 327–351.

Daniel K and Titman S. (1999) Market efficiency in an irrational world, Financial Analysis Journal, 55(6), 28-40

Dattoli G., Srivastava, H.M., Zhukovsky K., (2005) Orthogonality properties of the Hermite and related polynomials, Journal of Computational and Applied Mathematics, 182, 165-172

Dasgupta, A. (1998) Fractional Brownian motion: its properties and applications to stochastic integration. University of North Carolina, Ph. D. Thesis.

Dasgupta, A., Kallianpur, G. (2000) Arbitrage opportunities for a class of Gladyshev processes, Appl Math Opt 41, p. 377–385

Davydov Yu. Rotar V. (2008) On a non-classical invariance principle, Statistics & Probability Letters 78(4), 2031-2038

Delbaen, F., Schachermayer, W. (1994) A General Version of the Fundamental Theorem of Asset Pricing, Math Ann 300, p. 463–520.

Derman, E., Kani, I. (1994) Riding on a smile, Risk, 7(2), p. 32–39.

Diebold F.X, Inoue A. (2001) Long memory and regime switching. J Econ 105 p.131–159
Dobrushin R. L. and P. Major P. (1979) Non-central limit theorems for non-linear functionals of Gaussian fields. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 50, p. 27-52.

Di Masi, G.B., Kabanov, Yu.M., Runggaldier W.J. (1993) Mean-variance hedging of options on stocks with Markov volatilities, Theory Probab. Appl. 39, 172-182

Dudley, R.M., (1973). Sample functions of the Gaussian process. Annal. Probab. 1, p. 66–103.

Dudley, R.M., Norvaisa, R., (1997). Product integrals and p-variation, preprint.

Duffie D. (2001) Dynamic Asset Pricing Theory , Princeton University Press, Princeton. Oxford

Duffie, D., Richardson, H.L. (1991) Mean-variance hedging in continuous time, Ann. Appl. Probab. 1,1-15

Duncan, T.E., Hu, Y., Pasik-Duncan, B. (2000) Stochastic Calculus for Fractional Brownian Motion, SIAM J Control Optim 38(2), p. 582–612.

Dupire, B. (1994) Pricing with a smile, Risk, 7(1), p. 18–20

Dwyer, G.P., Locke, P., Yu, W., (1996). Index arbitrage and nonlinear dynamics between the S&P 500 futures and cash. Rev. Financial Stud. 9, p. 301–332.

Dzhaparidze K., van Zuijlen M.C.A. (1996) Introduction to option pricing in securities markets I: Binary models, CWI Quarterly, 9(4), p 319 – 355

Eaton M.L. (2007) Multivariate Statistics: A Vector Space approach, IMS Lecture Notes Monogr. Ser. Vol 53

Eberlein,E. , Glau.K., Papapantoleon. (2010) A. Analysis of Fourier transform valuation formulas and applications. Appl. Math. Fin., 17 , p.211–240

Elliott, R.J., Van Der Hoek, J. (2003): A General Fractional White Noise Theory and Applications to Finance, Math Financ 13(2), p. 301–330.

Fama, E.F. (1965) The behavior of stock market prices, J Bus 38, p. 34–105.

Farmer R. (2014) Rational Agents: Irrational Markets, Economist’s View, January 19,2014, http://economistsview.typepad.com/economistsview/2014/01/rational-agents-irrational-markets.html

Fernández-Martínez M., Sánchez-Granero M.A. Trinidad Segovia, J.E., Román-Sánchez I.M. (2014) An accurate algorithm to calculate Hurst exponent of self-similar processes, Physics Letters A 378, 2355-2362

Fulger D., Scalas E., and Germain G. (2008), Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation, Physical Review E 77(2), 021122 p.1-7

Genton M.G., Ronchetti E. (2001) Robust Indirect Inference, Technical Report No 2001.01, Department of Econometrics, University of Geneva

Goldenberg, D.H., (1986). Sample path properties of future prices. J. Future Markets 6,p. 127–140.

Gripenberg, G., Norros, I. (1996) On the prediction of Fractional Brownian Motion, J Appl Probab 33, p. 400–410.

Grossman, S., Stiglitz, J., (1980) . On the impossibility of informationally efficient market. Amer. Economic Rev. 70, p.393–408.

Grunbichler, A., Callahan, (1994). Stock index futures arbitrage in Germany: The behaviour of DAX index and futures prices. Rev. Futures Markets 13, p. 661–686.
Guasoni, P. (2006) No arbitrage under transaction cost, with fractional Brownian motion and beyond, Mathematical Finance 16(3), p. 569–582.

Hall P., Jing B.-Y., Lahiri S.N. (1998) On the sample window method for long-range dependent data, Statistica Sinica, 8, 1189-1204

Harrison, J.M., Pliska, S., (1981) Martingales and stochastic integrals in the theory of continuous trading. Stochastic Process. Appl. 11,p. 215–260.

Harrison, J.M., Pittladdo, R., Schaefer, S.M., (1984). Continuous price processes in frictionless markets have infinite variation. J. Business 57, p. 353–365

Harford T., Alexander R. (2013), Are markets ’efficient” or irrational? BBC News, October 19 2013, http://www.bbc.com/news/magazine

Haug E.G., Taleb N.N. (2009) Option Traders Use (very) Sophisticated Heuristics, Never the Black–Scholes–Merton Formula, Journal of Economic Behavior and Organization, 77(2), p.97-106

Heston S.L. (1993): A closed-form solution for options with stochastic volatility withe applications to bond and currency options. The Review of Financial Studies 6, 327-343.

Holden, C.W., (1995) Index arbitrage as cross-sectional market making. J. Futures Markets 15, 423–455.

Holden, H., Øksendal, B., Ubete, J., Zhang, T. (1996) Stochastic Partial Differential Equations. A modeling, white Noise Functional Approach. Birkhäuser, Boston.

Hsieh, D. (1990) Chaos and Non-linear Dynamics: Application to Financial Markets, Journal of Finance, 46, p. 1839-1878.

Hu Y. Z. and Meyer P.A. (1988) Sur les intégrales multiples de Stratonovich. Séminaire de Probabilités XXII, Lecture Notes in Mathematics, p. 72-81.

Hu Y. Z. and B. Øksendal B. (2003): Optimal consumption and portfolio in a Black-Scholes market driven by fractional Brownian motion. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6(4), p. 519–536.

Hu, Y., Øksendal, B. (2003) Fractional White Noise Calculus and Applications to Finance, Infin Dimens Anal Qu 6(1), p. 1–32.

Hubalek, F., Kallsen, J., Krawczyk L. (2006) Variance –optimal hedging with stationary independent increments, Ann. Appl. Probab. 16,853-885

Huber P.J. (1964) Robust estimation of a location parameter. Ann.Math. Statistics, 35(1), p.73-101

Huber P.J. (1981) Robust Statistics, Wiley

Hull J.C. and White A. (1987): The pricing of options on assets with stochastic volatilities. Journal of Finance 42, p. 281-300.

Huillet, T. (1999) Fractional Lévy motions and related processes, J Phys A - Math Gen, 32, p. 7225–7248.

Hurst S.R., Platen E., Rachev S.T. (1999) Option pricing for a logstable asset price model, Mathematical and Computer Modelling, 29, p. 105-119

Itô, K. (1951): Multiple Wiener Integrals, J Mathematical Society of Japan 3, p. 157–169.

Davydov , Yu. V. Rotar V. (2008) On a non-classical invariance principle. Stat.Probab.Letters, 78(2008),pp. 2031-2038.

Page | 20
Jarrow, R. and Rudd, A. Option Pricing. Homewood, IL (1983) Dow Jones-Irwin Publishing.

Johansen S (2011) An extension of cointegration to fractional autoregressive processes, CREATES Research Papers 2011-06. School of Economics and Management, University of Aarhus Diebold FX, Inoue A (2001) Long memory and regime switching. J Econ 105:131–159

Jovanovic F. and Schinckus C. (2013). Econopysics: A new challenge for financial economics, Journal of the History of Economic Thought, 35 (3), p 319-352

Kabanov Yu.M., Safarian, M.M. (1997) Om Leland’s strategy of option pricing with transaction costs, Finance and Stochastic . 1,239-250,

Kahane, J.P., (1985) Some random series of functions. In Cambridge Studies in Advanced Mathematics, vol. 5, 2nd ed. Cambridge University Press, Cambridge, UK.

Karandikar R.L., Rachev S.T. (1995) A generalized binomial model and option pricing formulae for subordinated stock-price process, Probability and Mathematical Statistics, 15, p. 427-447

Kawada, T., Kôno, N. (1973) On the variation of Gaussian Processes. In Proc. 2nd Japan-USSR Symp. on Probability Theory, Lecture Notes in Mathematics, vol. 330, 176–192.

Kelly B., Ljungqvist A. Testing Asymmetric-Information Asset Pricing Models Review of Financial Studies 25(5), p.1366-1413

Kim, Y.-S., Stoyanov, S.V., Rachev, S.T. . Fabozzi F.J. (2016) Multi-Purpose Binomial Model: Fitting all Moments to the Underlying Geometric Brownian Motion and Solving the Option Discontinuity Puzzle, To appear in Economics letters

Kolokoltsov V.N.. (2009) Generalized continuous-time random walks, subordinated by hitting times, and fractional dynamics, Thoery of Probab.Appl. 53(4), p.594-609

Kopp, P.E. (1996). Fractional Brownian Motion and Arbitrage, preprint. Lyons, T., 1994.

Kotulski M. (1995) Asymptotic distributions of continuous-time random walks: A probabilistic approach, Journal of Statistical Physics, 81(3), p 777-792

Kyle, A.S. (1985) Continuous auctions and insider trading. Econometrica 53 , p. 1315–1335.

Lahiri S.N.(1993) On the moving block bootstrap under long range dependence, Statistics and Probability Letters 18,p.405-413

Lahiri S.N. (2003) Resampling Methods for Dependent Data, Springer Series in Statistics, Springer

Lassere, G. (2002) Partial asymmetric information and equilibrium in a continuous time model No 2002-34, Working Papers from Centre de Recherche en Economie et Statistique

Lassere, G. (2004) Asymmetric information and imperfect competition in a continuous time multivariate security model, Finance and Stochastics, 8, p.285–309.

Leland, H. (1985) Option pricing and replication with transaction costs, Journal of Finance, 40, 1283-1301.

Leland, H. (1985) Option pricing and replication with transaction costs, Journal of Finance, 40, 1283-1301.

Le’pinette E.(2012) Modified Leland’s strategy for constant transaction costs, Mathematical finance , 22, 741-752
Liu J., Longstaff F.A. (2004) Losing money on arbitrage: optimal dynamic portfolio choice in markets with arbitrage opportunities, Review of Financial Studies, 17(3) p.611-641

Lo A.W. (1991) Long memory in stock market prices. Econometrica, 59, p. 1279-1313. [2]

Lo, A.W., MacKinley, A.C. (1988) Stock market prices do not follow random walks: Evidence from a simple specification test, Rev Financial Studies 1, p. 41–66.

Ma Y., Genton M.G. (2000) Highly robust estimation of the autocovariance function, Journal of Time Series Analysis, 21(6), p.663-684

Madan D.B, Carr P.P., Chang E.C. (1998) The Variance Gamma process and option pricing, European Financial Review, 2, p.79-105

Mandelbrot (1963) The variation of certain speculative prices. Journal of Business, XXXVI, p. 392-417

Mandelbrot, B.B. (1997) Fractals and scaling in finance, discontinuity, concentration, risk, Springer, Berlin

Mandelbrot, B.B., van Ness, J.W. (1968) Fractional Brownian Motions, Fractional Noises and Applications, SIAM Rev 10(4), p. 422–437.

Meerschaert M.M., Scheffler, H-P. (2004) Limit theorems for continuous time random walks with infinite mean waiting times, J. Appl. Probab. 41, 623-638

Meerschaert M.M., Scheffler, H-P. (2008) Triangular array limits for continuous time random walks, Stochastic Processes and Their Applications, 118(9), p.1606-1633

Meerschaert M.M., Scheffler, H-P. (2010) Erratum to “Triangular array limits for continuous time random walks” [Stochastic Processes and Their Applications, 118(9) (2008) 1606-1633], Stochastic Processes and Their Applications, 120(12), p.2520-2521

Meerschaert M.M. Straka P. (2013) Inverse stable subordinators, Math.Model Nat Phenom,8(2), p.1-16

Merton, R. (1973) Theory of Rational Option Pricing, Bell J Econ Management Science 4, p. 141–183.

Mikosch, T., Norvaisa, R., 1997. Stochastic integral equations without probability, preprint.

Mills T. (Editor), Patterson K. (Editor) (2011) Palgrave Handbook of Econometrics: Volume 2: Applied Econometrics Paperback, Palgrave Macmillan

Montroll, E.W., Weiss,G.H. (1965) Random walks on lattices,II, Jornal of Mathematical Physics, 6(2)p.167-181

Moosa, I.A., Al-Loughani, N.E., 1995. The effectiveness of arbitrage and speculation in the crude oil futures markets. J. Futures Markets 15, 167–186.

Muhle-Karbe J., Pfaffel O. Stelzer R. (2012) Option Pricing in Multivariate Stochastic Volatility Models of OU Type SIAM J.Financial Math., 3, p. 66–94

Natanson, I.P., 1995. Theory of Functions of a Real Variable, vol. 2 (L.F. Boron, E. Hewitt, Trans.). Frederick Ungar Publishing Co, New York.

Necula, C. (2002) Option Pricing in a Fractional Brownian Motion Environment. Preprint, Academy of Economic Studies, Bucharest

Nelson, D., Ramaswamy, K. (1990) Simple binomial processes as diffusion approximations in financial models, Review Financial Studies 3(3), p. 393–430

Nicolato E. Venardos E. Option pricing in stochastic volatility models of the OrnsteinUhlenbeck type. Math. Finance, 13 p.445–466.
Nielsen M.O (2010) Nonparametric cointegration analysis of fractional systems with unknown integration orders. J Econ 155 p.1701–1787

Nieminem A. (2004) Fractional Brownian motion and Martingale differences. Statistics and Probability Letters, 70, p. 1-10.

Norros, I (1995) On the use of the fractional Brownian motion in the theory of connectionless networks , IEEE, J.Sel. Ar. Commun. 13, p. 953-962

Norros, I., ValkeilaE., Virtamo J. (1999) An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motion, Bernoulli 5(4), p.571-587

Norvaisa, R., (1997). Chain rule and p-variation, preprint. Norvaisa, R., 1997b. Modeling of stock price changes, preprint.

Nourdin I. and Tudor C.A. (2006) Some linear fractional stochastic equations. Stochastics 78 (2), 51-65.

Nualart D. (1995) Malliavin Calculus and Related Topics. Springer.

Nualart D. (2003): Stochastic calculus with respect to the fractional Brownian motion and applications. Contemporary Mathematics 336, 3-39.

Norros, I., Valkeila, E., Virtamo, J. (1999) An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motion, Bernoulli 5, p. 571–587.

Øksendal, B. (1996) An Introduction to Malliavin Calculus with Applications to Economics, Lecture Notes, Norwegian School of Economics and Business Administration.

Øksendal, B. (2006) Fractional Brownian Motion in Finance, in: Jensen(ed.): Stochastic Economic Dynamics. Cambridge University Press.

Pasquariello P. (2014) Financial market dislocations, Review of Financial Studies, 27(6), 1868-1914

Pedersen L. (2015) Are markets efficient or irrational? Actually, a bit of both, Institutional Investor, May 22, in “Unconventional Wisdom”

Péne F., Saussol B., Zweimüller R. (2013) Recurrence rates and hitting-time distributions for random walks on the line, Ann.Probab., 41(2), p.619-535

Phillips P.C.B. (2007) Regression with slowly varying regressors and nonlinear trends, Econometric Theory, 23, p. 557-614

Pipiras V. (2004) Wavelet type expansion of the Rosenblatt process. The Journal of Fourier Analysis and Applications, 10(6), p. 599-634.

Poularikas A. D. (1999). Hermite polynomials, in The Handbook of Formulas and Tables for Signal Processing, Ed. Alexander D. Poularikas Boca Raton: CRC Press LLC, Chapter 22

Protter P. (2004) Stochastic Integration and Differential Equations, volume 21 of Stochastic Modelling and Applied Probability. Springer-Verlag, New York, 2nd edition.

Puuronen J., Hyvärinen A., (2011) Hermite Polynomials and Measures of Non-gaussianity ,in T. Honkela et al. (Eds.): ICANN 2011, Part II, LNCS 6792, Springer-Verlag Berlin Heidelberg, p. 205-211

Rachev S.T., Kim Y.-S., Bianchi M.L., Fabozzi F.J. (2011) Financial Models with Levy Processes and Volatility Clustering, Wiley

Rachev S.T., Mittnik S. (2000) Stable Paretian Models in Finance, Wiley
Raible. S. (2000) L’evy Processes in Finance: Theory, Numerics and Empirical Facts. Dissertation, Mathematische
Fakult’at, Albert-Ludwigs-Universit’at Freiburg i. Br., Freiburg, Germany

Renault E. and Touzi N. (1996): Option hedging and implicit volatilities in stochastic volatility models.
Mathematical Finance 6, 279-302.

Rogers, L.C.G. (1997) Arbitrage with fractional Brownian motion, Mathematical Finance 7(1), 95–
105.

Romo J.M. (2011) Fitting the skew with an analytical local volatility function, International Review of Applied
Financial Issues and Economics 3, p.721-736

Rostek S. (2009) Option Pricing in Fractional Brownian Markets, Lecture Notes in Economics and mathematical
Systems 622, Springer

Rosenblatt M. (1985) Stationary Sequences and Random Fields, Birkhäuser

Rostek, S., Schöbel, R. (2006) Risk preference based option pricing in a fractional Brownian market, Tübingen
Diskussionsbeitrag 299.

Rousseeuw P.L., and Croux C. (1992) Explicit scale estimators with high breakdown point. L_1 Statistical Analysis
and Related Methods, p. 77-92

Rousseeuw P.L., and Croux C. (1993) Alternatives to the median absolute deviation. J.Am. Stat. Assoc. 88, 1273-
1283

Sato K. (1999) L’evy Processes and Infinitely Divisible Distributions, volume 68 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Schoutens W. (2003) Lévy Processes in Finance: Pricing Financial Derivatives, Wiley

Shiller R.J. (2003) From efficient markets theory to behavioral finance, Journal of Economic Perspectives, 17(1),83-
104

Skiadas C. (2009) Asset Pricing Theory, Princeton University Press, Princeton Oxford

Soros G. (1994) The Alchemy of Finance: Reading the Mind of the Market, Wiley

Rozanov, Y.A.(1967) Stationary Random Processes, Holden Day, San Francisco

Rubinstein M. (2001) Rational Markets: Yes or No? The Affirmative Case Financial Analysts Journal , 57(3), 15-
29

Russo F. and Vallois P. (1993) Forward backward and symmetric stochastic integration. Prob. Theory
Rel. Fields, 97, p. 403–421.

Russo F. and Vallois P. (2000) Stochastic calculus with respect to a finite quadratic variation process.
Stochastics and Stochastics Reports, 70, p. 1-40.

Saichev A.I. and Zaslavsky G.M. (1997) Fractional kinetic equations: solutions and applications, Cahos
7,p 753-764

Salopek D. M. (1998) Tolerance to Arbitrage. Stochastic Proc. Applic., 76(2), p. 217- 230.

Samorodnitsky G., Taqqu M.S. (1994) Stable Non-Gaussian Random Processes: Stochastic Models with Infinite
Variance, Chapman & Hall, New York

Schöbel R., Zhu J. (1999): Stochastic volatility with an Ornstein Uhlenbeck process: an extension. European
Finance Review 3, p.23-46

Page | 24
Schoutens W. (2003) Lévy Processes in Finance: Pricing Financial Derivatives, Wiley

Schweizer M. (2010) Mean-variance hedging, in: R.Cont (ed.) Encyclopedia of quantitative finance, Wiley, 1177-1182

Scott L.O. (1987) Option pricing when the variance changes randomly: theory, estimation and application. Journal of Financial and Quantitative Analysis 22, p. 419-438.

Sethi, S.P., Lehoczky, J.P. (1981) A Comparison of the Itô and Stratonovich Formulations of Problems in Finance, J Econ Dyn Control 3, p. 343–356.

Shiryaev, A.N. (1999) Essentials of stochastic finance: facts, models, theory. World Scientific

Sole J.L. and Utzet F.(1990) Stratonovich integral and trace. Stochastics and Stochastics Reports, 29 (2), p. 203-220.

Sottinen, T. (2001) Fractional Brownian Motion, Random Walks and Binary Market Models, Finance and Stochastics 5(3), p. 343–355

Sottinen, T., Valkeila, E. (2003) On arbitrage and replication in the fractional Black-Scholes pricing model, Statistics and Decisions 21, p. 93–107.

Stein E.M., Stein J.C. (1991) Stock price distributions with stochastic volatility: An analytic approach. The Review of Financial Studies 4, p. 727-752.

Stratonovich, R.L. (1966) A new representation for stochastic integrals and equations, SIAM J Control 4, p. 362–371.

Taqqu M. (1975) Weak convergence to the fractional Brownian motion and to the Rosenblatt process. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 31, p. 287-302.

Taqqu M. (1979) Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 50, p. 53-83.

Taqqu M.S. (2011) The Rosenblatt process, in Selected Works of Murray Rosenblatt, R.A. Davis et al. (edt) Selected Works in Probability and Statistics, Springer Science + Business Media

Torres S. Tudor C.A (2009) Donsker Type Theorem for the Rosenblatt Process and a Binary Market Model, Stochastic Analysis and Applications27(3), p. 555-573

Trippi, R. R. (1995) Chaos and Nonlinear Dynamics in the Financial Markets. USA: Irwin Professional Publishing.

Tudor C.A. (2008) Analysis of the Rosenblatt process. ESAIM: Probability and Statistics, EDP Sciences, 2008, 12, pp.230-257.

Watanabe M. (2008) Price volatility and investor behavior in an overlapping generations model with information asymmetry, The Journal of Finance 63 p. 229–272.

Willinger, W., Taqqu, M.S., Teverovsky, V. (1999) Stock market prices and long-range dependence, Finance and Stochastics 3, p. 1–13

Wylomanska A. (2012) Arithmetic Brownian motion subordinated by tempered stable and inverse tempered stable processes, Physica A: Statistical Mechanics and Its Applications, 391(22), 5685-5696

Wu C.F. (1981) Asymptotic theory of nonlinear least squares estimation. Annals of Statistics 9, p. 501-513
Xiu D. (2014) Hermite polynomial based expansion of European option prices, Journal of Econometrics, 179,p.158-177

Yu J. (2004) Empirical characteristic function estimation and its applications, Econometric Reviews, 23(2),P.93-123

Zahle, M. (1998) Integration with respect to Fractal Functions and Stochastic Calculus I, Probab Theory and Related Fields 111, p. 333–374

Zhong Y. (2009) Local time analysis of additive Lévy processes with different Lévy exponents, Acta Mathematica Scientia, 29(5),p.1155-1164