In silico analysis of Pinus L. chloroplast DNA to microsatellites regions

Análise in silico das regiões microssatélites de DNA cloroplastidial de Pinus L.

Michele Moro¹, Fernanda Bortolanza Pereira¹*, Jaire Alves Ferreira Filho¹, Matheus Perek², Fabiana Schmidt Bandeira Peres¹, Gabriel de Assis Furquim⁴ and Evandro Vagner Tambarussi³

Abstract

The Pinus genus covers a wide variety of widely cultivated species due to adaptability, high growth and wood quality. Molecular markers have been used for many genetic analyses, and among them, the microsatellite markers (SSR) have several applications and can be found in chloroplast genome (cpDNA) as well as in nuclear genomes (ntDNA). The chloroplast microsatellites markers (cpSSR) can be used for gene flow analysis, identification of hybrids, clones, paternity tests, genetic diversity studies, phylogenetic analysis, among others. The work aimed to characterize the cpSSRs of Pinus species with cpDNA sequenced and deposited in NCBI (National Center for Biotechnology Information). In the twenty species of Pinus spp. studied, 1,542 cpSSRs were identified, with 86,45% of mononucleotide type, and the less frequent the penta- (1.10%) and hexanucleotide (1.04%) types. Predominated cpSSRs in non-coding regions (intergenic). The results indicate presence of a wide range of cpSSR for Pinus spp., which can subsidize breeding programs of interesting species.

Keywords: cpSSR; cpDNA; genetical improvement; forest improvement

Resumo

O gênero Pinus compreende uma ampla variedade de espécies cultivadas devido à adaptabilidade, elevado crescimento e qualidade de madeira. Marcadores moleculares têm sido usados para diversas análises genéticas, e entre eles, os marcadores microssatélites (SSR) apresentam várias aplicações e podem ser encontrados no genoma cloroplastidial (cpDNA) bem como no genoma nuclear (ntDNA). Os marcadores microssatélites cloroplastidiais (cpSSR) podem ser usados para análises de fluxo gênico, identificação de híbridos, clones, testes de paternidade, estudos de diversidade genética, análises filogenéticas, entre outros. O trabalho objetivou caracterizar os cpSSRs de espécies de Pinus com cpDNA sequenciado e depositado no NCBI (National Center for Biotechnology Information). Nas vinte espécies de Pinus estudadas, foram identificados 1.542 cpSSRs, com 86,45% do tipo mononucleotídeo, e em menor frequência dos tipos penta- (1,10%) e hexanucleotídeo (1,04%). Os cpSSRs predominaram em regiões não codificantes (intergênicas). Os resultados indicam presença de uma ampla gama de cpSSRs para Pinus spp., que podem subsidiar programas de melhoramento das espécies de interesse.

Palavras-chave: cpSSR; cpDNA; melhoramento genético; melhoramento florestal

INTRODUCTION

Pinus spp. is one of the 11 genera in Pinaceae Family and comprises 111 species. It is a Gymnosperm’s group that belongs to Pinophyta Division, also called coniferous. The conifers cover various woody plant species, among the world most robust and ancient (GERNANDT et al., 2011), with origin center in North Hemisphere (PRICE et al., 2000). The Pinus species are ecologically and economically important due to the high productivity, broad adaptation to climate adversities and multiple uses as lumber, resins, fibers, woody chips, cellulose, among others (MACEDO et al., 2015; MISSIO et al., 2015; SEBENN et al., 1994; SHIMIZU, 2008; VITALE; MIRANDA et al., 2010).

1. Faculty of Agronomic Sciences. Universidade Estadual Paulista “Júlio de Mesquita Filho” – Unesp. Botucatu / SP, Brazil.
2. Center for Molecular Biology and Genetic Engineering. Universidade Estadual de Campinas – Unicamp. Campinas / SP, Brazil.
3. Forestry Department, Universidade Estadual do Centro Oeste – Unicentro. Irati / PR, Brasil.
4. Forestry Department. Universidade Federal de São Carlos -UFSCar. Sorocaba / SP, Brazil.

* Corresponding author: fbp.engflorestal@gmail.com

Sci. For., Piracicaba, v. 47, n. 123, p. 545-551, set. 2019
DOI: doi.org/10.18671/scifor.v47n123.16

545
Molecular data base are important tools for genetic studies due to easily and fast access as well as availability of genomes to scientific community (MACHADO, 2012). Nowadays, the National Center for Biotechnology Information (NCBI) has the biggest public database available, counting on with 127 million sequences, approximately, which makes viable many researches in silico (MACHADO, 2012; MELOTTO-PASSARIN et al., 2011; TAMBARUSSI et al., 2009). Many plastid genomes are available at public database GenBank, which facilitates the development and selection of cpDNA molecular markers to genetic studies and forest breeding program.

The number of available in DNA database as GenBank is in constantly expansion especially due to sequencing methodologies development. More than 800 complete chloroplast genomes of terrestrial plants were deposited until December 2016 in NCBI (BARRET et al., 2016; ZENG et al., 2014). The most representative families with complete cpDNA available are Chrysobalanaceae, followed to Myrtaceae, Arecaceae and Pinaceae (personal communication).

Molecular markers make viable to characterization of large number of genotypes with relatively fast and simple procedures (BERED et al., 1997), and have been used to various genetic analysis, as hybrid and clone identification, gene flow studies (FERREIRA; GRATTAPAGLIA, 1998), determination of strategies for the conservation of endangered populations (BUCCI et al., 1997), population genetics studies, paternity tests, forensic science, demographic process, germplasm characterization (KURT et al., 2012; OLIVEIRA et al., 2006; SANTOS et al., 2011), among others.

The chloroplast microsatellite markers (cpSSRs) are found in chloroplast genomes and can be applied in breeding programs (ANDRADE et al., 2018; MCKINNON et al., 2010; TAMBARUSSI et al., 2009) and to vegetal systematics to infer about phylogenetic relations in different taxa (DREW et al., 2014; MELOTTO-PASSARIN et al., 2011; RAJENDRAKUMAR et al., 2007; TAMBARUSSI et al., 2009; ZHANG et al., 2016). The abundance of these repetitive regions is highly variable among taxa, which is useful for distinguishing individuals (OLIVEIRA et al., 2006). However, the identification of these regions demands on knowledge of genome sequences (MORRIS, 2016).

Thus, with the present research we aimed to characterize all chloroplast DNA of Pinus species available in NCBI database and determine which and how many cpSSR regions exist and how they are distributed throughout the cpDNA in this gender.

**MATERIAL AND METHODS**

We selected all the cpDNA complete sequences of Pinus species available in NCBI database. Only the Pinus longaeva D. K. Bailey (NC_011157) did not present available sequence.

All the 20 cpDNAs were processed with FastPCR 6.5.40 software (KALENDAR et al., 2009), to identify the cpSSR regions. The repetitive sequences observed in the genomes were classified as cpSSR when presented motif repetition $\geq 8$ to mononucleotides, $\geq 6$ to dinucleotides and $\geq 3$ to tri-, tetra-, penta- and hexanucleotides. We still classified the cpSSR according its presence in coding (genic) or non-coding (intergenic) regions. The types of cpSSR were considered according to Oliveira et al. (2006).

**RESULTS AND DISCUSSION**

The Pinus spp. cpDNAs presented different sizes, varying between 115,576 bp for P. strobus to 121,530 bp for P. taeda (Table 1).

The size range observed in cpDNAs of closer species can be attributed to variations in intergenic regions length, that can be associated to species evolution process (XIAO-MING et al., 2017). In terrestrial plants, the cpDNA varies between $\approx 120,000$ and $\approx 160,000$ bp (PALMER, 1995). For Gymnosperm, the size of cpDNA the chloroplast genome is significantly lower than for Angiosperm (XIAO-MING et al., 2017) and, for Eucalyptus spp. and another superior genus, cpDNAs with around 160,000 bp are commonly observed (EGUILUZ et al., 2017; LI et al., 2017; PAIVA et al., 2011; SAINA et al., 2018; STEANE et al., 2005).
Regarding the cpSSR regions identified, the majority were classified as mononucleotides. In 31 Eucalyptus species the total number of cpSSRs varied between 71 for Eucalyptus melliodora A. Cunn and 135 for Eucalyptus aromaphloia L.D.Pryor J.H.Willis, superior than we observed to Pinus spp. but with predominance of mononucleotides too (ANDRADE et al., 2018). George et al. (2015) also observed a wide range of SSRs in many superior species, featured for 270 cpSSRs for P. koraiensis and 693 cpSSRs for Welwitschia mirabilis Hook. F., with predominance of mononucleotide type.

We found 1,542 cpSSRs in the 20 studied Pinus species, 56.15% of them in non-coding regions (Table 2). The most part of cpSSRs were classified as mononucleotides microsatellites (1,333), but we also found 53 dinucleotides, 61 tri-, 62 tetra-, 17 penta- and 16 hexanucleotides repeats. The total number of cpSSR observed for each species varies between 66 fo P. contorta and 84 for P. strobus and P. lambertiana.

We found the majority of cpSSRs in non-coding regions, which was observed to other botanical families, with in silico analysis, as Brassicaceae (GANDHI et al., 2010) and Myrtaceae (ANDRADE et al., 2018). According to Hancock (1995), in general, the microsatellite markers are found in non-coding regions of genome, due to the neutrality of evolutive process in these regions, which favoured the accumulation of tandem repetitive regions, as well as due to the slippage in DNA replication, which occurs specially in short motifs riches of adenine and thymine. Other researches with species of Poaceae, Fabaceae (SASKI et al., 2005) and Solanaceae (DANIELL et al., 2006) corroborates with what we found on the present research.

Usually, in Pinus species the dinucleotides repetitions are much more abundant than tri- or tetranaucleotides (SMITH et al., 1994), which we did not observed, once the total cpSSRs among these types were similar, with 4.02% of tetra-, 3.96% of tri- and 3.44% of dinucleotides repeats. In cereal species, the trinucleotides SSR are more frequent (54-78%), followed by dinucleotides (17.1-40.4%) and tetranaucleotides repeats (3-6%) (VARSHNEY et al., 2012). Andrade et al. (2018) found only 0.48% of di- and 3.57% of trinucleotides repeats for species of Eucalyptus genera.

### Table 1. Accession number of Pinus spp. with available cpDNA from GenBank.

| Species                        | Plastome size (pb) | Accession number |
|--------------------------------|-------------------|-----------------|
| Pinus armandii Franch.         | 117.265           | NC_029847       |
| Pinus bungeana Zucc. ex Endl.  | 117.861           | NC_028421       |
| Pinus contorta Douglas ex Loudon| 120.438           | NC_011153       |
| Pinus gerardiana Wall. ex D.Don | 117.618           | NC_011154       |
| Pinus greggii Engelm. ex Parl.  | 120.501           | NC_035947       |
| Pinus jalisca Perez de la Rosa  | 120.715           | NC_035948       |
| Pinus koraiensis Siebold & Zucc. | 117.190        | NC_004677       |
| Pinus kremfii Lecomte           | 116.989           | NC_011155       |
| Pinus lambertiana Douglas      | 117.239           | NC_011156       |
| Pinus massoniana Lamb.         | 119.739           | NC_021439       |
| Pinus monophylla Torr. & Frem. | 116.479           | NC_011158       |
| Pinus nelsonii Shaw            | 116.834           | NC_011159       |
| Pinus oocarpa Schiede ex Schltdl.| 120.596         | NC_036949       |
| Pinus sibirica Du Tour         | 116.635           | NC_028552       |
| Pinus strobus L.               | 115.576           | NC_026302       |
| Pinus sylvestris L.            | 119.758           | NC_035069       |
| Pinus tabuliformis Carriere    | 119.646           | NC_028531       |
| Pinus taiwanensis Hayata       | 119.741           | NC_027415       |
| Pinus thunbergii Parl.         | 119.707           | NC_001631       |
| Pinus taeda L.                 | 121.530           | NC_021440       |
### Table 2. Total and frequency (%) of genic and intergenic cpSSRs based on motif size, for each species.

**Tabela 2.** Número total e frequência (%) de cpSSRs gênicos e intergênicos baseado no tamanho da sequência de repetição, para cada espécie.

| Species        | Mono | Genic | Intergenic |
|----------------|------|-------|------------|------|-------|------------|------|-------|------------|------|-------|------------|------|-------|------------|------|-------|------------|------|-------|------------|------|-------|------------|------|-------|------------|------|-------|------------|------|-------|------------|------|-------|------------|------|-------|------------|------|-------|------------|
| P. armandii    | 42.6 (29) | 57.3 (39) | 0 (0) | 100 (4) | 0 (0) | 0 (0) | 25 (1) | 75 (3) | 0 (0) | 100 (1) | 100 (1) | 0 (0) | 78 |
| P. bungeana    | 52.8 (38) | 47.2 (34) | 100 (2) | 0 (0) | 66.7 (2) | 33.3 (1) | 0 (0) | 100 (1) | 100 (2) | 0 (0) | 0 (0) | 80 |
| P. contorta    | 63.2 (36) | 36.8 (21) | 100 (3) | 0 (0) | 100 (2) | 0 (0) | 66.7 (2) | 33.3 (1) | 0 (0) | 0 (0) | 0 (0) | 100 (1) | 66 |
| P. gerardiana  | 58.8 (40) | 41.2 (28) | 66.7 (2) | 100 (1) | 0 (0) | 0 (0) | 100 (2) | 100 (1) | 0 (0) | 0 (0) | 0 (0) | 75 |
| P. greggi      | 56.7 (38) | 43.3 (29) | 100 (2) | 0 (0) | 100 (2) | 25 (1) | 75 (3) | 0 (0) | 100 (1) | 100 (1) | 0 (0) | 76 |
| P. jaliscana    | 64.8 (46) | 35.2 (25) | 100 (2) | 0 (0) | 100 (3) | 0 (0) | 66.7 (2) | 33.3 (1) | 0 (0) | 0 (0) | 0 (0) | 100 (1) | 70 |
| P. koraiensis   | 33.8 (22) | 66.1 (43) | 66.7 (2) | 100 (2) | 33.3 (1) | 66.7 (2) | 0 (0) | 100 (3) | 100 (2) | 0 (0) | 0 (0) | 100 (1) | 77 |
| P. krempfii     | 59.4 (41) | 40.6 (28) | 100 (3) | 0 (0) | 50 (2) | 50 (2) | 66.7 (2) | 33.3 (1) | 100 (2) | 0 (0) | 0 (0) | 100 (1) | 78 |
| P. lambertiana  | 58.3 (42) | 41.7 (30) | 75 (3) | 25 (1) | 50 (1) | 50 (1) | 100 (2) | 0 (0) | 100 (3) | 100 (2) | 0 (0) | 0 (0) | 100 (1) | 84 |
| P. massoniana   | 60.6 (37) | 39.3 (24) | 100 (1) | 0 (0) | 0 (0) | 100 (2) | 0 (0) | 100 (4) | 100 (1) | 0 (0) | 0 (0) | 100 (1) | 69 |
| P. monophylla   | 57.6 (38) | 42.4 (28) | 100 (3) | 0 (0) | 50 (2) | 50 (2) | 66.7 (2) | 33.3 (1) | 0 (0) | 0 (0) | 50 (1) | 50 (1) | 78 |
| P. nelsonii     | 54.5 (30) | 45.4 (25) | 100 (4) | 0 (0) | 40 (2) | 60 (3) | 50 (1) | 50 (1) | 0 (0) | 0 (0) | 0 (0) | 100 (1) | 67 |
| P. occarpa      | 57.6 (38) | 42.4 (28) | 100 (2) | 0 (0) | 50 (4) | 50 (4) | 66.7 (2) | 33.3 (1) | 100 (1) | 0 (0) | 0 (0) | 100 (1) | 79 |
| P. sibirica     | 54.3 (38) | 45.7 (32) | 75 (3) | 25 (1) | 50 (2) | 50 (2) | 66.7 (2) | 33.3 (1) | 100 (1) | 0 (0) | 0 (0) | 100 (1) | 83 |
| P. strobos      | 54.9 (39) | 45.1 (32) | 50 (2) | 50 (2) | 50 (2) | 50 (2) | 50 (1) | 50 (1) | 100 (2) | 0 (0) | 100 (1) | 0 (0) | 84 |
| P. sylvestris   | 62.3 (43) | 37.7 (26) | 100 (3) | 0 (0) | 100 (1) | 0 (0) | 33.3 (1) | 66.7 (2) | 0 (0) | 0 (0) | 0 (0) | 76 |
| P. tabuliformis | 58.5 (38) | 41.5 (27) | 100 (2) | 0 (0) | 60 (4) | 40 (1) | 60 (3) | 40 (2) | 50 (1) | 50 (1) | 0 (0) | 0 (0) | 79 |
| P. taeda       | 59.4 (38) | 40.6 (26) | 100 (1) | 0 (0) | 33.3 (2) | 66.7 (1) | 33.3 (1) | 66.7 (2) | 0 (0) | 0 (0) | 0 (0) | 100 (1) | 72 |
| P. taiwanensis  | 54.4 (37) | 45.6 (31) | 100 (1) | 0 (0) | 0 (0) | 0 (0) | 50 (3) | 50 (3) | 0 (0) | 0 (0) | 0 (0) | 100 (1) | 76 |
| P. thunbergii   | 44.9 (31) | 55.1 (38) | 100 (2) | 0 (0) | 100 (5) | 50 (2) | 50 (2) | 0 (0) | 0 (0) | 0 (0) | 100 (1) | 0 (0) | 81 |
| **Total per region and type** | 55.44(739) | 44.56(594) | 81.13(43) | 18.87(10) | 55.74(34) | 44.26(2) | 46.77(29) | 53.23(33) | 88.23(15) | 11.77(2) | 37.5(6) | 62.5(10) | 1542 |
| **Total**       | 86.45(1333) | 3.44(53) | 3.96(61) | 4.02(62) | 1.10(17) | 1.04(16) |
CONCLUSION

The species with the most part of identified cpSSRs were *P. strobus* and *P. lambertiana*, and the species with the minor part were *P. contorta*.

A wide range of cpSSRs were identifies in the studied species, with predominance of mononucleotide microsatellites in non-coding regions.

REFERENCES

ANDRADE, M. C.; PEREK, M.; PEREIRA, F. B.; MORO, M.; TAMBARUSSI, E. V. Quantity, organization, and distribution of chloroplast microsatellites in all species of *Eucalyptus* with available plastome sequence. *Crop Breeding and Applied Biotechnology*, v. 18, p. 97-102, 2018.

BARRETT, C. F.; BAKER, W. J.; COMER, J. R.; CONRAN, J. G.; LAHM EYER, S. C.; LEEBENS-MACK, J. H.; LI, J.; LIM, G.S.; MAYFIELD-JONES, D.R.; PEREZ, L.; MEDINA, J.; Pires, J. C.; SANTOS, C.; WM STEVENSON, D.; ZOMLEFER, W. B.; DAVIS, J.I Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots. *New Phytologist*, v. 209, n. 2, p. 855-870, 2016.

BERED, F.; NETO, J. F. B.; CARVALHO, F. Marcadores moleculares e sua aplicação no melhoramento genético de plantas. *Ciência Rural*, v. 27, p. 513-520, 1997.

BUCI, G.; VENDRAMIN, G. G.; LElli, L.; VICARIO, F. Assessing the genetic divergence of *Pinus leucodermis* Ant. endangered populations: use of molecular markers for conservation purposes. *Theoretical and Applied Genetics*, v. 95, n. 7, p. 1138-1146, 1997.

DANIELL, H.; LEE, S. B.; GREVICH, J.; SASKI, C. Complete chloroplast genome sequences of *Solanum bulbocastanum*, *Solanum lycopersicum* and comparative analyses with other Solanaceae genomes. *Theoretical and Applied Genetics*, v. 11, p. 1503-1518, 2006.

DREW, B. T.; RUHFEL, B. R.; SMITH, S. A.; MOORE, M. J.; BRIGGS, B.G.; GIZENDANNER, M. A.; SOLITIS, P. S.; SOLITIS, D. E. Another look at the root of the angiosperms reveals a familiar tale. *Systematic Biology*, v. 63, n. 3, p. 368-382, 2014.

EGUILUIZ, M.; YUYAMA, P. M.; GUZMAN, F.; RODRIGUES, N.F.; MARGIS, R. Complete sequence and comparative analysis of the chloroplast genome of *Plinia trunciflora*. *Genetics and Molecular Biology*, v. 40, n. 4, p. 871-876, 2017.

FERREIRA, M. E.; GRATTAPAGLIA, D. *Introdução ao uso de marcadores moleculares em análise genética*. Brasilia: Embrapa-Cenargen, 1998, 220 p.

GANDHI, S. G.; AWASTHI, P.; BEDI Y. S. Analysis of SSR dynamics in chloroplast genomes of Brassicaceae family. *Bioinformation*, v. 5, p. 16-20, 2010.

GEORGE, B.; BHATT, B. S.; AWASTHI, M.; GEORGE, B.; SINGH, A. K. Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants. *Currents Genetics*, v. 61, n. 4, p. 665-677, 2015.

GERNANDT, D. S.; WILLYARD, A.; SYRING, J. V. The Conifers (Pinophyta). In: PLOMION, C.; BOUSQUET, J. (ed.). *Genetics, Genomics and Breeding of Conifers*. New Hampshire: Science lpublishers, 2011, p. 1-39.

HANCOCK, J. Simple sequences and the expanding genome. *Bioessays*, v. 18, n. 5, p. 421-425, 1996.

LI, Z.; LONG, H.; ZHANG, L.; LIU, Z.; CAO, H.; SHI, M.; TAN, X. The complete chloroplast genome sequence of tung tree (*Vernicia fordii*): organization and phylogenetic relationships with other angiosperms. *Nature Scientific Reports*, v. 7, 1869, 2017.

KALENDAR, R.; LEE, D.; SCHULMAN, A.H. Software FastPCR: a PCR primer and probe design and repeat sequence searching software with additional tools for the manipulation and analysis of DNA and protein. 2008. *Genes, genomes and genomics*, v. 3, n. 1, p. 1-14, 2009.

KURT, Y.; GONZÁLEZ-MARTÍNEZ, S.C.; ALÍA, R.; ISIK, K. Genetic differentiation in *Pinus brutia* Ten. using molecular markers and quantitative traits: the role of altitude. *Annals of Forest Science*, v. 60, n. 3, p. 345-351, 2012.
Macedo, H. R.; Freitas, M. I. M.; Boas, O. V.; Sebenn, A. M. Variabilidade genética em progênies de Pinus caribea var. honduensis aos 21 anos de idade. Revista do Instituto Florestal, v. 27, n. 1, p. 31-39, 2015.

Machado, O. L. Análise in silico de filogenéticas de plantas baseadas no gene GA20ox. 23 p. 2012. Dissertação (Mestrado em Ciências Biológicas) - Universidade Federal do Pampa, São Gabriel, 2012.

Mckinnon, G. E.; Smith, J. J.; Pots, B. M. Recurrent nuclear DNA introgression accompanies chloroplast DNA exchange between two eucalypt species. Molecular Ecology, v. 19, n. 7, p. 1367-1380, 2010.

Melotto-Passarin, D. M.; Tambaruissi, E. V.; Dressano, K.; Martin, V. F.; Carrer, H. Characterization of chloroplast DNA microsatellites from Saccharum spp and related species. Genetics and Molecular Research, v. 10, n. 3, p. 2024-2033, 2011.

Missio, A. L.; Cadernartori, P. H. G.; Mattos, B. D.; Weiler, M.; Gatto, D. A. Propriedades mecânicas da madeira resinada de Pinus elliottii. Ciência Rural, v. 45, n. 8, p. 1432-1438, 2015.

Morris, A. B.; Scalfe, C.; Burleyson, A.; Johnson, L. T.; Trostel, K. Development and characterization of microsatellite primers in the federally endangered Astragalus bibullatus (Fabaceae). Applications in Plant Sciences, v. 4, n. 4, apps.1500126, 2016.

Oliveira, E. J.; Pádua, J. G.; Zucchi, M. I.; Vencovsky, R.; Vieira, M. L. C. Origin, evolution and genome distribution of microsatellites. Genetics & Molecular Biology, v. 29, n. 2, p. 294-307, 2006.

Paiva, J. A. P.; Prat, E.; Vautrin, S.; Santos, M. D.; San-Clemente, H.; Brommonschenkel, S.; Fonseca, P. G. S.; Grattaaglia, D.; Song, X.; Ammiraju, J. S. S.; Kudma, D.; Wing, R. A.; Freitas, A. T.; Berges, H.; Grima-Pettenati, J. Advancing Eucalyptus genomics: identification and sequencing of lignin biosynthesis genes from deep-coverage BAC libraries. Genomics, v. 12, n. 137, 2011.

Palmer, J. D. Comparative organization of chloroplast genomes. Annual Reviews of Genetic, v. 19, p. 325-354, 1985.

Price, R. A.; Liston, A.; Straiss, S. H. Phylogeny and systematics of Pinus. In: Richardson, D. M. (ed.). Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press, 2000. p. 29-42.

Rajendrakumar, P.; Biswaç, A. K.; Balachandran, S. M.; Srinivasarao, K.; Sundaram, R. M. Simple sequence repeats in organelar genomes of rice: frequency and distribution in genic and intergenic regions. Bioinformatics, v. 23, p. 1-4, 2007.

Sainia, J. K.; Li, Z.; Gichira, A. W.; Liao, Y. The complete chloroplast genome sequence of tree of heaven (Ailanthus altissima (Mill.) (Sapindales: Simaroubaceae), an important pantropical tree. International Journal of Molecular Sciences, v. 19, n. 929, 2018.

Santos, A. M.; Dall’Agnoi, M.; Janke, A.; Bortolini, F.; Huber, K. G. C. Análise da diversidade genética de cornichão com o uso de marcadores microsatélites. Revista Brasileira de Zootecnia, v. 40, p. 1188-1194, 2011.

Saski, C.; Lee, S. B.; Daniell, H.; Wood, T. C. Complete chloroplast genome sequence of Glycine max and comparative analyses with other legume genomes. Plant Molecular Biology, v. 59, p. 309–322, 2005.

Sebenn, A. M.; Piros, C. L. S.; Storck, L.; Filho, C. A.; Rosa, P. R. F. Variação genética em progênies de meios-irmãos de Pinus caribaea Mor. var. bahamensis Bar.et Gol. na região de Bebedouro, SP. Revista do Instituto Florestal, v. 6, p. 63-73, 1994.

Shimizu, J. Y. Pinus na silvicultura brasileira. Colombo: Embrapa Florestas, 2008, 223 p.

Smith, D. N.; Devéy, M. E. Occurrence and inheritance of microsatellites in Pinus radiata. Genome, v. 37, n. 6, p. 977-983, 1994.

Steane, D. A. Complete nucleotide sequence of the chloroplast genome from the Tasmanian Blue Gum, Eucalyptus globulus (Myrtaceae). DNA Research, v. 12, p. 215-220, 2005.

Tambaruissi, E. V.; Melotto-Passarin, D. M.; Dressano, K.; Guidetti-Gonzalez, S.; Brigati, J. B.; Jesus, F. A.; Barbosa, A. L.; CARRER, H. In silico analysis of Simple Sequence Repeats from chloroplast genomes of Solanaceae species. Crop Breeding and Applied Biotechnology, v. 9, p. 342-352, 2009.
VARSHNEY, R. K.; THIEL, T.; STEIN, N.; LANGRIDGE, P.; GRANER, A. *In silico* analysis on frequency and distribution of microsatellites in ESTs of some cereal species. *Cellular And Molecular Biology Letters*, v. 7, n. 2, p. 537-546, 2002.

VITALE, V.; MIRANDA, G. M. Análise comparativa da viabilidade econômica de plantios de *Pinus taeda* e *Eucalyptus dunnii* na região centro-sul do Paraná. *Floresta*, v. 40, n. 3, p. 469-479, 2010.

XIAO-MING, Z.; JUNRIO, W.; SHA, L.; HONGBO, P.; LAN, Q.; JING, L.; YAN, S.; WEIHUA, Q.; LIFANG, Z.; YUNLIAN, C.; QINGWEN, Y. Inferring the evolutionary mechanism of the chloroplast genome size by comparing whole-chloroplast genome sequences in seed plants. *Nature Scientific Reports*, v. 7, 1555, 2017.

ZENG, L. P.; ZHANG, Q.; SUN, R. R.; KONG, H. Z.; ZHANG, N.; MA, H. Resolution of deep Angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times. *Nature Communications*, v. 5, 4956, 2014.

ZHANG, Y. J.; DU, L. W.; LIU, A.; CHEN, J. J.; WU, L.; HU, W. M.; WEIMING, H. U.; ZHANG, W.; KYUNGHEE, K.; SANG-CHOON, L.; YANG, T. J.; WANG, Y. The complete chloroplast genome sequences of five *Epimedium* species: lights into phylogenetic and taxonomic analyses. *Frontiers in Plant Science*, v. 7, 306, 2016.