On a conjecture of Ashbaugh and Benguria about lower eigenvalues of the Neumann laplacian

Changyu Xia¹ · Qiaoling Wang²

Received: 5 October 2021 / Revised: 28 November 2021 / Accepted: 29 November 2021 / Published online: 1 February 2022

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
In this paper, we prove an isoperimetric inequality for lower order eigenvalues of the free membrane problem on bounded domains in a Euclidean space or a hyperbolic space which strengthens the well-known Szegö–Weinberger inequality and supports a celebrated conjecture of Ashbaugh–Benguria.

Mathematics Subject Classification 35P15 · 49Gxx · 35J05 · 33A40

1 Introduction

Let (M, g) be complete Riemannian manifold of dimension $n, n \geq 2$. We denote by Δ the Laplace operator on M. For bounded domain Ω with smooth boundary in M we consider the free membrane problem

\[
\begin{align*}
\Delta f &= -\mu f \quad \text{in } \Omega, \\
\frac{\partial f}{\partial \nu} &= 0 \quad \text{on } \partial \Omega.
\end{align*}
\]

(1.1)

Here $\frac{\partial}{\partial \nu}$ denotes the outward unit normal derivative on $\partial \Omega$. It is well known that the problem (1.1) has discrete spectrum consisting in a sequence

$\mu_0 = 0 < \mu_1 \leq \mu_2 \leq \cdots \rightarrow +\infty.$
In the two dimensional case, G. Szego [11] proved via conformal mapping techniques that if \(\Omega \subset \mathbb{R}^2 \) is simply connected, then
\[
\mu_1(\Omega) A(\Omega) \leq (\mu_1 A)|_{\text{disk}} = \pi p_{1,1}^2
\]
(1.2)
where \(A \) denotes the area. Later, using more general methods, Weinberger [12] showed that (1.2) and its \(n \)-dimensional analogue,
\[
\mu_1(\Omega) \leq \left(\frac{\omega_n}{|\Omega|} \right)^{2/n} p_{n/2,1}^2,
\]
(1.3)
hold for arbitrary domains in \(\mathbb{R}^2 \) and \(\mathbb{R}^n \), respectively. Here \(J_v \) is the Bessel function of the first kind of order \(v \), \(p_{v,k} \) is the \(k \)th positive zero of the derivative of \(x^{1-v}J_v(x) \) and \(|\Omega| \) denotes the volume of \(\Omega \). Szegö and Weinberger also noticed that Szegö’s proof of (1.2) for simply connected domains in \(\mathbb{R}^2 \) extends to prove the bound
\[
\frac{1}{\mu_1} + \frac{1}{\mu_2} \geq \frac{2A}{\pi p_{1,1}^2},
\]
(1.4)
for such domains. The bounds of Szegö and Weinberger are isoperimetric with equality if and only if \(\Omega \) is a disk (\(n \)-dimensional ball in the case of Weinberger’s result (1.3)). A quantitative improvement of (1.2) was made by Brasco and Pratelli in [5] who showed that for any bounded domain with smooth boundary \(\Omega \subset \mathbb{R}^n \) we have
\[
\omega_n^{2/n} p_{n/2,1}^2 - \mu_1(\Omega)|\Omega|^{2/n} \geq c(n)A(\Omega)^2.
\]
(1.5)
Here, \(c(n) \) is positive constant depending only on \(n \) and \(A(\Omega) \) is the so called Fraenkel asymmetry, defined by
\[
\mathcal{A}(\Omega) = \inf \left\{ \frac{|\Omega \Delta B|}{|\Omega|} : B \text{ ball in } \mathbb{R}^n \text{ such that } |B| = |\Omega| \right\}.
\]
Nadirashvilli obtained in [9] a quantitative improvement of (1.4) which states that there exists a constant \(C > 0 \) such that for every \(\Omega \subset \mathbb{R}^2 \) smooth simply connected bounded open set it holds
\[
\frac{1}{|\Omega|} \left(\frac{1}{\mu_1(\Omega)} + \frac{1}{\mu_2(\Omega)} \right) - \frac{1}{|B|} \left(\frac{1}{\mu_1(B)} + \frac{1}{\mu_2(B)} \right) \geq \frac{1}{C} \mathcal{A}(\Omega)^2,
\]
(1.6)
where \(B \) is any disk in \(\mathbb{R}^2 \). On the other hand, Ashbaugh and Benguria [2] showed that
\[
\frac{1}{\mu_1(\Omega)} + \cdots + \frac{1}{\mu_n(\Omega)} \geq \frac{n}{n+2} \left(\frac{|\Omega|}{\omega_n} \right)^{2/n}
\]
(1.7)
holds for any $\Omega \subset \mathbb{R}^n$. Some generalizations to (1.7) have been obtained e.g., in [8,13].

In [2], Ashbaugh and Benguria also proposed the following important

Conjecture I ([2]). For any bounded domain Ω with smooth boundary in \mathbb{R}^n, we have

$$\frac{1}{\mu_1(\Omega)} + \frac{1}{\mu_2(\Omega)} + \cdots + \frac{1}{\mu_n(\Omega)} \geq \frac{n (|\Omega|/\omega_n)^{2/n}}{p_{n/2,1}^2}$$

(1.8)

with equality holding if and only if Ω is a ball in \mathbb{R}^n.

Ashbaugh [1] and Henrot [7] mentioned this conjecture again.

The Szegö-Weinberger inequality (1.3) has been generalized to bounded domains in a hyperbolic space by Ashbaugh-Benguria [3] and Xu [14] independently. In his book, Chavel [6] mentioned that one can use Weinberger’s method to prove this result. In [3], Ashbaugh-Benguria also proved the Szegö-Weinberger inequality for bounded domains in a hemisphere. One can also consider similar estimates for lower order eigenvalues of the Neumann Laplacian for bounded domains in a hyperbolic space or a hemisphere.

Conjecture II. Let M be an n-dimensional complete simply connected Riemannian manifold of constant sectional curvature $\kappa \in \{-1, 1\}$ and Ω be a bounded domain in M which is contained in a hemisphere in the case that $\kappa = 1$. Let B_Ω be a geodesic ball in M such that $|\Omega| = |B_\Omega|$ and denote by $\mu_1(B_\Omega)$ the first nonzero eigenvalue of the Neumann Laplacian of B_Ω. Then the first n non-zero eigenvalues of the Neumann Laplacian of Ω satisfy

$$\frac{1}{\mu_1(\Omega)} + \frac{1}{\mu_2(\Omega)} + \cdots + \frac{1}{\mu_n(\Omega)} \geq \frac{n}{\mu_1(B_\Omega)}$$

(1.9)

with equality holding if and only if Ω is isometric to B_Ω.

In this paper, we prove an isoperimetric inequality for the sums of the reciprocals of the first $(n-1)$ non-zero eigenvalues of the Neumann Laplacian on bounded domains in \mathbb{R}^n or a hyperbolic space which supports the above conjectures.

Theorem 1.1 Let Ω be a bounded domain with smooth boundary in \mathbb{R}^n. Then

$$\frac{1}{\mu_1(\Omega)} + \cdots + \frac{1}{\mu_{n-1}(\Omega)} \geq \frac{(n-1)(|\Omega|/\omega_n)^{2/n}}{p_{n/2,1}^2}$$

(1.10)

with equality holding if and only if Ω is a ball in \mathbb{R}^n.

Theorem 1.2 Let \mathbb{H}^n be an n-dimensional hyperbolic space of curvature -1 and Ω be a bounded domain in \mathbb{H}^n. Let B_Ω be a geodesic ball in \mathbb{H}^n such that $|\Omega| = |B_\Omega|$. Then we have

$$\frac{1}{\mu_1(\Omega)} + \cdots + \frac{1}{\mu_{n-1}(\Omega)} \geq \frac{n-1}{\mu_1(B_\Omega)}$$

(1.11)

with equality holding if and only if Ω is isometric to B_Ω.

\(\square\) Springer
2 A proof of Theorem 1.1.

In this section, we shall prove the following result which implies Theorem 1.1.

Theorem 2.1 Let Ω be a bounded domain with smooth boundary in \mathbb{R}^n. There exists a positive constant $d(n)$ depending only on n such that the first $(n-1)$ nonzero Neumann eigenvalues of the Laplacian of Ω satisfy the inequality

$$\omega_n^{2/n} p_{n/2,1}^2 - \frac{(n-1)|\Omega|^{2/n}}{\mu_1 + \ldots + \frac{1}{\mu_{n-1}}} \geq d(n) A(\Omega)^2,$$

with equality holding if and only if Ω is an n-ball.

Remark One can easily see that (2.1) strengthens (1.5).

Before proving Theorem 2.1, we recall some known facts we need (Cf. [6,7,10]). Let $\{u_j\}_{j=0}^{\infty}$ be an orthonormal set of eigenfunctions of the problem (1.1), that is,

$$\begin{cases}
\Delta u_i = -\mu_i u_i & \text{in } \Omega, \\
\frac{\partial u_i}{\partial \nu} |_{\partial \Omega} = 0, \\
\int_{\Omega} u_i u_j dv_g = \delta_{ij}.
\end{cases}$$

(2.2)

where dv_g denotes the volume element of the metric g. For each $i = 1, 2, \ldots$, the variational characterization of $\mu_i(\Omega)$ is given by

$$\mu_i(\Omega) = \inf_{u \in H^1(\Omega) \setminus \{0\}} \left\{ \frac{\int_{\Omega} |\nabla u|^2 dv_g}{\int_{\Omega} u^2 dv_g} : \int_{\Omega} uu_j dv_g = 0, j = 0, \ldots, i-1 \right\}.$$

(2.3)

Let B_r be a ball of radius r centered at the origin in \mathbb{R}^n. It is known that $\mu_1(B_r)$ has multiplicity n, that is, $\mu_1(B_r) = \cdots = \mu_n(B_r)$. This value can be explicitly computed together with its corresponding eigenfunctions. A basis for the eigenspace corresponding to $\mu_1(B_r)$ consists of

$$\xi_i(x) = |x|^{1-\frac{n}{2}} J_{n/2} \left(\frac{p_{n/2,1}|x|}{r} \right) \frac{x_i}{|x|}, \quad i = 1, \ldots, n.$$

(2.4)

The radial part of ξ_i

$$g(|x|) = |x|^{1-\frac{n}{2}} J_{n/2} \left(\frac{p_{n/2,1}|x|}{r} \right),$$

(2.5)

satisfies the differential equation of Bessel type

$$\begin{cases}
g''(t) + \frac{n-1}{t} g'(t) + \left(\mu_1(B_r) - \frac{n-1}{t^2} \right) g(t) = 0, \\
g(0) = 0, \quad g'(r) = 0.
\end{cases}$$

(2.6)
We can compute

$$\mu_1(B_r) = \frac{\int_{B_r} \left(g'(|x|)^2 + (n - 1) \frac{g(|x|)^2}{|x|^2} \right) dx}{\int_{B_r} g(|x|)^2 dx}$$

$$= \left(\frac{p_n/2,1}{r} \right)^2. \tag{2.7}$$

Proof of Theorem 2.1. Let

$$r = \left(\frac{|\Omega|}{\omega_n} \right)^{1/n} \tag{2.8}$$

and define $G : [0, +\infty) \to \mathbb{R}$ by

$$G(t) = \begin{cases}
 g(t), & t \leq r, \\
 g(r), & t > r.
\end{cases} \tag{2.9}$$

We need to choose suitable trial functions ϕ_i for each of the eigenfunctions u_i and insure that these are orthogonal to the preceding eigenfunctions u_0, \ldots, u_{i-1}. For the n trial functions $\phi_1, \phi_2, \ldots, \phi_n$, we choose:

$$\phi_i = G(|x|) \frac{x_i}{|x|}, \quad \text{for } i = 1, \ldots, n, \tag{2.10}$$

but before we can use these we need to make adjustments so that

$$\phi_i \perp \text{span}\{u_0, \ldots, u_{i-1}\} \tag{2.11}$$

in $L^2(\Omega)$. In order to do this, let us fix an orthonormal basis $\{e_i\}_{i=1}^n$ of \mathbb{R}^n. From the well-know arguments of Weinberger in [12] by using the Brouwer fixed point theorem, we know that it is always possible to choose the origin of \mathbb{R}^n so that

$$\int_{\Omega} \langle x, e_i \rangle G(|x|) \frac{G(|x|)}{|x|} dx = 0, \quad i = 1, \ldots, n, \tag{2.12}$$

that is, $\langle x, e_i \rangle G(|x|) \frac{G(|x|)}{|x|} \perp u_0$ (which is actually just the constant function $1/\sqrt{|\Omega|})$. Here dx and \langle , \rangle denote the standard Lebesgue measure and the inner product of \mathbb{R}^n, respectively. Now we show that there exists a new orthonormal basis $\{e'_i\}_{i=1}^n$ of \mathbb{R}^n such that

$$\langle x, e'_i \rangle G(|x|) \frac{G(|x|)}{|x|} \perp u_j, \tag{2.13}$$
for \(j = 1, \ldots, i - 1 \) and \(i = 2, \ldots, n \). To see this, we define an \(n \times n \) matrix \(Q = (q_{ij}) \) by

\[
q_{ij} = \int_\Omega (x, e_i) \frac{G(|x|)}{|x|} u_j(x) \, dx, \quad i, j = 1, 2, \ldots, n.
\] (2.14)

Using the orthogonalization of Gram and Schmidt (QR-factorization theorem), we know that there exist an upper triangle matrix \(T = (T_{ij}) \) and an orthogonal matrix \(U = (a_{ij}) \) such that \(T = UQ \), i.e.,

\[
T_{ij} = \sum_{k=1}^{n} a_{ik} q_{kj} = \int_\Omega \sum_{k=1}^{n} a_{ik} (x, e_k) \frac{G(|x|)}{|x|} u_j(x) \, dx = 0, \quad 1 \leq j < i \leq n.
\]

Letting \(e'_i = \sum_{k=1}^{n} a_{ik} e_k, \ i = 1, \ldots, n \); we arrive at (2.13). Let us denote by \(x_1, x_2, \ldots, x_n \) the coordinate functions with respect to the base \(\{e'_i\}_{i=1}^{n} \), that is, \(x_i = (x, e'_i), \ x \in \mathbb{R}^n \). From (2.12) and (2.13), we have

\[
\int_\Omega \phi_i u_j \, dx = \int_\Omega G(|x|) \frac{x_i}{|x|} u_j(x) \, dx = 0, \quad i = 1, \ldots, n, \ j = 0, \ldots, i - 1(2.15)
\]

It then follows from the variational characterization (2.3) that

\[
\mu_i \int_\Omega \phi_i^2 \, dx \leq \int_\Omega |\nabla \phi_i|^2 \, dx, \quad i = 1, \ldots, n.
\] (2.16)

Substituting

\[
|\nabla \phi_i|^2 = G'(|x|)^2 \frac{x_i^2}{|x|^2} + \frac{G(|x|)^2}{|x|^2} \left(1 - \frac{x_i^2}{|x|^2} \right)
\]

\[
= \frac{G(|x|)^2}{|x|^2} + \left(G'(|x|)^2 - \frac{G(|x|)^2}{|x|^2} \right) \frac{x_i^2}{|x|^2}
\] (2.17)

into (2.16) and dividing by \(\mu_i \), one gets for \(i = 1, \ldots, n \) that

\[
\int_\Omega \phi_i^2 \, dx \leq \frac{1}{\mu_i} \int_\Omega \frac{G(|x|)^2}{|x|^2} \, dx + \frac{1}{\mu_i} \int_\Omega \left(G'(|x|)^2 - \frac{G(|x|)^2}{|x|^2} \right) \frac{x_i^2}{|x|^2} \, dx. \quad (2.18)
\]

Summing over \(i \), we get

\[
\int_\Omega G(|x|)^2 \, dx \leq \sum_{i=1}^{n} \frac{1}{\mu_i} \int_\Omega \frac{G(|x|)^2}{|x|^2} \, dx
\]

\[
+ \sum_{i=1}^{n} \frac{1}{\mu_i} \int_\Omega \left(G'(|x|)^2 - \frac{G(|x|)^2}{|x|^2} \right) \frac{x_i^2}{|x|^2} \, dx. \quad (2.19)
\]
Lemma 2.2 We have $g'|_{(0,r)} > 0, g|_{(0,r)} > 0$ and $g'(t) - \frac{g(t)}{t} \leq 0, \forall t \in (0, r]$.

Proof of Lemma 2.2. The Bessel function of the first kind $J_v(t)$ is given by

$$J_v(t) = \sum_{k=0}^{+\infty} \frac{(-1)^k \left(\frac{t}{2}\right)^{2k+v}}{k!\Gamma(k + v + 1)}. \quad (2.22)$$

which, combining with (2.5), gives

$$g(t) = \left(\frac{p_{n/2,1}}{2r}\right)^{\frac{3}{2}} \frac{1}{2} \sum_{k=0}^{+\infty} \frac{(-1)^k \left(\frac{p_{n/2,1}}{2r}\right)^{2k}}{k!\Gamma(k + \frac{3}{2} + 1)}. \quad (2.23)$$

Thus, $g(0) = 0, g'(0) > 0$. Since r is the first positive zero of g', we have $g|_{(0,r)} > 0$ and $g'|_{(0,r)} > 0$. Observe that

$$\lim_{t \to 0} \left(g'(t) - \frac{g(t)}{t} \right) = 0, \quad g'(r) - \frac{g(r)}{r} < 0. \quad (2.24)$$
Let us assume by contradiction that there exists a \(t_0 \in (0, r) \) such that
\[
g'(t_0) - \frac{g(t_0)}{t_0} > 0. \tag{2.25}
\]

In this case, we know from (2.24) that the function \(g'(t) - \frac{g(t)}{t} \) attains its maximum at some \(t_1 \in (0, r) \) and so we have
\[
g''(t_1) = \frac{t_1g'(t_1) - g(t_1)}{t_1^2} = 0. \tag{2.26}
\]

From (2.6), we have
\[
g''(t_1) + \frac{n-1}{t_1} g'(t_1) + \left(\mu_1(B_r) - \frac{n-1}{t_1^2} \right) g(t_1) = 0. \tag{2.27}
\]

Eliminating \(g''(t_1) \) from (2.26) and (2.27), we get
\[
\frac{n}{t_1} \left(g'(t_1) - \frac{g(t_1)}{t_1} \right) = -\mu_1(B_r) g(t_1) < 0. \tag{2.28}
\]

This is a contradiction and completes the proof of Lemma 2.1. \(\square \)

From Lemma 2.1 and the definition of \(G \), we know that
\[
G'(|x|)^2 - \frac{G(|x|^2)}{|x|^2} \leq 0 \quad \text{on} \quad \Omega. \tag{2.29}
\]

Hence
\[
\sum_{i=1}^{n-1} \int_{\Omega} \left(\frac{1}{\mu_i} - \frac{1}{\mu_n} \right) \left(G'(|x|)^2 - \frac{G(|x|^2)}{|x|^2} \right) \frac{x_i^2}{|x|^2} dx \leq 0. \tag{2.30}
\]

Combining (2.19), (2.21) and (2.30), one gets
\[
\int_{\Omega} G(|x|)^2 dx \leq \frac{1}{\mu_n} \int_{\Omega} \left(G'(|x|)^2 - \frac{G(|x|^2)}{|x|^2} \right) dx \\
+ \sum_{i=1}^{n} \frac{1}{\mu_i} \int_{\Omega} \frac{G(|x|^2)}{|x|^2} dx \\
= \frac{1}{\mu_n} \int_{\Omega} G'(|x|)^2 + \sum_{i=1}^{n-1} \frac{1}{\mu_i} \int_{\Omega} \frac{G(|x|)^2}{|x|^2} dx \\
\leq \frac{1}{n-1} \sum_{i=1}^{n-1} \frac{1}{\mu_i} \int_{\Omega} \left(G'(|x|)^2 + (n-1) \frac{G(|x|^2)}{|x|^2} \right) dx, \tag{2.31}
\]
On a conjecture of Ashbaugh and Benguria... 871

that is,

\[
\frac{n-1}{\sum_{i=1}^{n-1} \frac{1}{\mu_i}} \int_{\Omega} G(|x|) dx \leq \int_{\Omega} \left(G(|x|)^2 + (n-1) \frac{G(|x|)^2}{|x|^2} \right) dx. \quad (2.32)
\]

Using the fact that \(G(t) \) is increasing, one gets

\[
\int_{\Omega} G(|x|)^2 dx = \int_{\Omega \cap B_r} G(|x|)^2 dx + \int_{\Omega \setminus B_r} G(|x|)^2 dx \geq \int_{\Omega \cap B_r} G(|x|)^2 dx + g(r)^2 |\Omega \setminus B_r| = \int_{\Omega \cap B_r} g(|x|)^2 dx + \int_{B_r \setminus \Omega} g(|x|)^2 dx \geq \int_{\Omega \cap B_r} g(|x|)^2 dx + \int_{B_r \setminus \Omega} g(|x|)^2 dx = \int_{B_r} g(|x|)^2 dx, \quad (2.33)
\]

which, combining with (2.32), gives

\[
\frac{n-1}{\sum_{i=1}^{n-1} \frac{1}{\mu_i}} \int_{B_r} g(|x|)^2 dx \leq \int_{\Omega} \left(G(|x|)^2 + (n-1) \frac{G(|x|)^2}{|x|^2} \right) dx. \quad (2.34)
\]

We know from (2.7) that

\[
\left(\frac{p_{n/2,1}}{r} \right)^2 \int_{B_r} g(|x|)^2 dx = \int_{B_r} \left(g'(|x|)^2 + (n-1) \frac{g(|x|)^2}{|x|^2} \right) dx = \int_{B_r} \left(G'(|x|)^2 + (n-1) \frac{G(|x|)^2}{|x|^2} \right) dx. \quad (2.35)
\]

Consequently, we have

\[
\left(\left(\frac{p_{n/2,1}}{r} \right)^2 - \frac{n-1}{\sum_{i=1}^{n-1} \frac{1}{\mu_i}} \right) \int_{B_r} g(|x|)^2 dx \geq \int_{B_r} \left(G'(|x|)^2 + (n-1) \frac{G(|x|)^2}{|x|^2} \right) dx - \int_{\Omega} \left(G'(|x|)^2 + (n-1) \frac{G(|x|)^2}{|x|^2} \right) dx. \quad (2.36)
\]

We have

\[
\frac{d}{dt} \left[G'(t)^2 + (n-1) \frac{G(t)^2}{t^2} \right] = 2G'(t)G''(t) + 2(n-1)(tG(t)G'(t) - G(t)^2)/t^3.
\]
For \(t > r \) this is negative since \(G \) is constant there. For \(t \leq r \) we use the differential equation (2.6) to obtain

\[
\frac{d}{dt} \left[G'(t)^2 + (n - 1) \frac{G(t)^2}{t^2} \right] = -2\mu_1(B_r)GG' - (n - 1)(tG' - G)^2/t^3 < 0.
\]

Thus the function \(G'(t)^2 + (n - 1) \frac{G(t)^2}{t^2} \) is decreasing for \(t > 0 \).

Lemma 2.3 ([5]) Let \(f : \mathbb{R}_+ \to \mathbb{R}_+ \) be a decreasing function. Then we have

\[
\int_{B_r} f(|x|)dx - \int_{\Omega} f(|x|)dx \geq n\omega_n \int_{\rho_1}^{\rho_2} |f(t) - f(r)|t^{n-1}dt. \tag{2.37}
\]

Here

\[
\rho_1 = \left(\frac{|\Omega \cap B_r|}{\omega_n} \right)^{\frac{1}{n}} \quad \text{and} \quad \rho_2 = \left(\frac{|\Omega| + |\Omega \setminus B_r|}{\omega_n} \right)^{\frac{1}{n}}. \tag{2.38}
\]

Taking \(f(t) = G'(t)^2 + (n - 1) \frac{G(t)^2}{t^2} \) in Lemma 2.3, we obtain

\[
\int_{B_r} \left(G'(|x|)^2 + (n - 1) \frac{G(|x|)^2}{|x|^2} \right)dx - \int_{\Omega} \left(G'(|x|)^2 + (n - 1) \frac{G(|x|^2)}{|x|^2} \right)dx
\]

\[
\geq n\omega_n \int_{r}^{\rho_2} |f(t) - f(r)|t^{n-1}dt
\]

\[
= n\omega_n \int_{r}^{\rho_2} (f(r) - f(t))t^{n-1}dt. \tag{2.39}
\]

Observe that

\[
(f(r) - f(t))t^{n-1} = (n - 1)g(r)^2 \left(\frac{1}{r^2} - \frac{1}{t^2} \right) t^{n-1}, \quad \text{for } \rho_2 \geq t \geq r. \tag{2.40}
\]

Therefore,

\[
\int_{r}^{\rho_2} (f(r) - f(t))t^{n-1}dt = g(r)^2 \cdot \begin{cases}
\frac{n-1}{n^2} (\rho_2^n - r^n) - \frac{n-1}{n^2} (\rho_2^{n-2} - r^{n-2}) , & \text{if } n > 2, \\
\frac{1}{2\pi^2} (\rho_2^2 - r^2) - \ln \frac{\rho_2}{r} , & \text{if } n = 2.
\end{cases} \tag{2.41}
\]
By using the definition of ρ_2 we have when $n > 2$,

$$
\rho_2^{n-2} - r^{n-2} = r^{n-2} \left[\left(1 + \frac{|\Omega \setminus B_r|}{|\Omega|} \right)^{\frac{n-2}{n}} - 1 \right]
$$

(2.42)

$$
\leq r^{n-2} \left(\frac{n-2}{n} \frac{|\Omega \setminus B_r|}{|\Omega|} - \frac{(n-2)2^{-\frac{2}{n}} - 1}{n^2} \left(\frac{|\Omega \setminus B_r|}{|\Omega|} \right)^2 \right),
$$

thanks to the elementary inequality

$$(1 + t)^\delta \leq 1 + \delta t + \frac{\delta(\delta - 1)}{2} \cdot 2^{\delta - 2} t^2, \forall \delta \in (0, 1), \forall t \in [0, 1],$$

and when $n = 2$,

$$
\ln \frac{\rho_2}{r} = \frac{1}{2} \ln \left(1 + \frac{|\Omega \setminus B_r|}{|\Omega|} \right)
$$

$$
\leq \frac{1}{2} \left(\frac{|\Omega \setminus B_r|}{|\Omega|} - \frac{1}{4} \left(\frac{|\Omega \setminus B_r|}{|\Omega|} \right)^2 \right),
$$

(2.43)

thanks to the elementary inequality

$$
\ln(1 + t) \leq t - \frac{t^2}{4}, \forall t \in [0, 1].
$$

Since $|B_r| = |\Omega|$, we have $|\Omega \Delta B_r| = 2|\Omega \setminus B_r|$ and so

$$
\frac{|\Omega \setminus B_r|}{|\Omega|} \geq \frac{1}{2} A(\Omega).
$$

It then follows by substituting (2.42) and (2.43) into (2.41) that

$$
\int_r^{\rho_2} (f(r) - f(t)) t^{n-1} dt
$$

$$
\geq g(r)^2 \left(\frac{|\Omega \setminus B_r|}{|\Omega|} \right)^2 \cdot \begin{cases}
 r^{n-2} \cdot \frac{(n-1)2^{-\frac{2}{n}} - 1}{n^2}, & \text{if } n > 2, \\
 \frac{1}{8}, & \text{if } n = 2.
\end{cases}
$$

$$
\geq \frac{1}{4} g(r)^2 A(\Omega)^2 \cdot \begin{cases}
 r^{n-2} \cdot \frac{(n-1)2^{-\frac{2}{n}} - 1}{n^2}, & \text{if } n > 2, \\
 \frac{1}{8}, & \text{if } n = 2.
\end{cases}
$$

(2.44)
Thus, concerning the right hand side of (2.36), one gets from (2.39) and (2.44) that
\[
\int_{B_r} \left(G'(\|x\|)^2 + (n - 1) \frac{G(\|x\|)^2}{\|x\|^2} \right) dx - \int_{\Omega} \left(G'(\|x\|)^2 + (n - 1) \frac{G(\|x\|)^2}{\|x\|^2} \right) dx \\
\geq \frac{\omega_n}{4} g(r)^2 A(\Omega)^2 \cdot \left\{ \begin{array}{ll}
r^{n-2} \cdot \left(\frac{n-1}{n} \right)^{-\frac{3}{n}} & \text{if } n > 2, \\
\frac{1}{4} & \text{if } n = 2,
\end{array} \right.
\]
\[
= \omega_n \frac{J_{n/2}(p_{n/2,1})^2 A(\Omega)^2}{4} \cdot \left\{ \begin{array}{ll}
\frac{(n-1)^2}{n} & \text{if } n > 2, \\
\frac{1}{4} & \text{if } n = 2,
\end{array} \right.
\]
\[
\equiv \alpha(n) A(\Omega)^2. \tag{2.45}
\]

Concerning the left hand side of (2.36), we have
\[
\left(\frac{p_{n/2,1}}{r} \right)^2 - \frac{n-1}{\sum_{i=1}^{n-1} \frac{1}{\mu_i}} \int_{B_r} g(\|x\|)^2 dx \\
= \left(\frac{p_{n/2,1}}{r} \right)^2 - \frac{n-1}{\sum_{i=1}^{n-1} \frac{1}{\mu_i}} r^2 \int_{\{|y| \leq 1\}} |y|^{2-n} J_{n/2}(p_{n/2,1}|y|)^2 dy \\
= \left(\frac{p_{n/2,1}^2}{r^2} \right)^{2/n} - \frac{(n-1)|\Omega|^{2/n}}{\sum_{i=1}^{n-1} \frac{1}{\mu_i}} \beta(n), \tag{2.46}
\]
where
\[
\beta(n) = \omega_n^{-2/n} \int_{\{|y| \leq 1\}} |y|^{2-n} J_{n/2}(p_{n/2,1}|y|)^2 dy.
\]

Combining (2.36), (2.45) and (2.46), we obtain
\[
p_{n/2,1}^2 \omega_n^{2/n} - \frac{(n-1)|\Omega|^{2/n}}{\sum_{i=1}^{n-1} \frac{1}{\mu_i}} \geq \alpha(n) \beta(n)^{-1} A(\Omega)^2 \equiv d(n) A(\Omega)^2. \tag{2.47}
\]

Moreover, we can see that equality holds in (2.47) only when Ω is a ball. This completes
the proof of Theorem 2.1.

3 A proof of Theorem 1.2

In this section, we shall prove Theorem 1.2. Firstly, we list some important facts we
need. About each point $p \in \mathbb{H}^n$ there exists a coordinate system $(t, \xi) \in [0, +\infty) \times \mathbb{S}^{n-1}$
relative to which the Riemannian metric reads as
\[
d s^2 = dt^2 + \sinh^2 t d\sigma^2, \tag{3.1}
\]
where $d\sigma^2$ is the canonical metric on the $(n - 1)$-dimensional unit sphere \mathbb{S}^{n-1}.
Lemma 3.1 (Cf. [6,14]). Let $B(p, r)$ be a geodesic ball of radius r with center p in \mathbb{H}^n. Then the eigenfunction corresponding to the first nonzero eigenvalue $\mu_1(B(p, r))$ of the Neumann problem on $B(p, r)$ must be

$$h(t, \xi) = f(t)\omega(\xi), \quad \xi \in S^{n-1},$$

where $\omega(\xi)$ is an eigenfunction corresponding to the first nonzero eigenvalue of S^{n-1}, f satisfies

$$\begin{cases} f'' + (n - 1) \coth t + \left(\mu_1(B(p, r)) - \frac{n-1}{\sinh^2 t} \right) f = 0, \\ f(0) = f'(r) = 0, \quad f'|_{[0,r)} \neq 0, \end{cases}$$

and

$$\mu_1(B(p, r)) = \frac{\int_{B(p,r)} (f'(t)^2 + (n - 1)\frac{(f(t))^2}{\sinh^2 t}) dv}{\int_{B(p,r)} f(t)^2 dv}.$$

Proof of Theorem 1.2. Assume that the radius of B_Ω is r. Let f be as in Lemma 3.1. Noticing $f(t) \neq 0$ when $0 < t \leq r$, we may assume that $f(t) > 0$ for $0 < t \leq r$ and so f is nondecreasing on $[0, r]$. Let $\{e_i\}_{i=1}^n$ be an orthonormal basis of \mathbb{R}^n and set $\omega_i(\xi) = \langle e_i, \xi \rangle, \quad \xi \in S^{n-1} \subset \mathbb{R}^n$. Define

$$F(t) = \begin{cases} f(t), & t \leq r, \\ f(r), & t > r. \end{cases}$$

Let us take a point $p \in \mathbb{H}^n$ such that in the above coordinate system at p we have

$$\int_{\Omega} F(t)\omega_i(\xi)d\nu = 0, \quad i = 1, \ldots, n.$$

Here, $d\nu$ is the volume element of \mathbb{H}^n. By using the same arguments as in the proof of Theorem 2.1, we can assume further that

$$\int_{\Omega} F(t)\omega_i(\xi)u_j d\nu = 0,$$

for $i = 2, 3, \ldots, n$ and $j = 1, \ldots, i - 1$. Here $\{u_i\}_{i=0}^{+\infty}$ is an orthonormal set of eigenfunctions corresponding to the eigenvalues $\{\mu_i(\Omega)\}_{i=0}^{+\infty}$. Hence, we conclude from the Rayleigh-Ritz variational characterization (2.3) that

$$\mu_i(\Omega) \int_{\Omega} F(t)^2 \omega_i^2(\xi)d\nu \leq \int_{\Omega} |\nabla(F(t)\omega_i(\xi))|^2 d\nu$$

$$= \int_{\Omega} \left(|F'(t)|^2 \omega_i^2(\xi) + F^2(t)|\tilde{\nabla}\omega_i(\xi)|^2 \sinh^{-2} t \right) d\nu, \quad i = 1, \ldots, n.$$
where $\nabla \omega$ denotes the gradient operator of S^{n-1}. Thus

$$\int_\Omega F(t)^2 \omega_i^2(\xi) d\nu \leq \frac{1}{\mu_i(\Omega)} \int_\Omega |F'(t)|^2 \omega_i^2(\xi) d\nu + \frac{1}{\mu_i(\Omega)} \int_\Omega F^2(t) |\nabla \omega_i(\xi)|^2 \sinh^{-2} t d\nu. \quad (3.9)$$

Observing $F'(t) = 0, t \geq r$, one gets

$$\int_\Omega |F'(t)|^2 \omega_i^2(\xi) d\nu = \int_{\Omega \cap B(p,r)} |F'(t)|^2 \omega_i^2(\xi) d\nu$$

$$\leq \int_{B(p,r)} |F'(t)|^2 \omega_i^2(\xi) d\nu$$

$$= \int_0^r \int_{S^{n-1}} |F'(t)|^2 \omega_i^2(\xi) \sinh^{n-1} t dA dt$$

$$= \frac{1}{n} \int_0^r \int_{S^{n-1}} |F'(t)|^2 \sinh^{n-1} t dA dt$$

$$= \frac{1}{n} \int_{B(p,r)} |F'(t)|^2 d\nu, \quad (3.10)$$

where dA denotes the area element of S^{n-1}. Since

$$|\nabla \omega_i(\xi)| \leq 1, \quad \sum_{i=1}^n |\nabla \omega_i(\xi)|^2 = n - 1, \quad (3.11)$$

we have

$$\sum_{i=1}^n \frac{1}{\mu_i(\Omega)} |\nabla \omega_i(\xi)|^2$$

$$= \sum_{i=1}^{n-1} \frac{1}{\mu_i(\Omega)} |\nabla \omega_i(\xi)|^2 + \frac{1}{\mu_n(\Omega)} \sum_{i=1}^{n-1} \left(1 - |\nabla \omega_i(\xi)|^2\right)$$

$$\leq \sum_{i=1}^{n-1} \frac{1}{\mu_i(\Omega)} |\nabla \omega_i(\xi)|^2 + \sum_{i=1}^{n-1} \frac{1}{\mu_i(\Omega)} \left(1 - |\nabla \omega_i(\xi)|^2\right)$$

$$= \sum_{i=1}^{n-1} \frac{1}{\mu_i(\Omega)}. \quad (3.12)$$
Summing on \(i \) from 1 to \(n \) in (3.9) and using (3.10) and (3.12), we get
\[
\int_{\Omega} F(t)^2 \, dv
\leq \sum_{i=1}^{n} \frac{1}{n \mu_i(\Omega)} \int_{B(p,r)} |F(t)|^2 \, dv + \sum_{i=1}^{n-1} \frac{1}{\mu_i(\Omega)} \int_{\Omega} F^2(t) \sinh^{-2} t \, dv.
\] (3.13)

We need the following lemma.

Lemma 3.2 The function \(h(t) = \frac{F(t)}{\sinh t} \) is decreasing.

Proof of Lemma 3.2. Observe that
\[
\lim_{t \to 0} h(t) = f'(0).
\]

Let us show that
\[
\gamma(t) \equiv f'(t) - \coth t f(t) \leq 0, \quad t \in (0, r].
\] (3.14)

Since
\[
\lim_{t \to 0} \gamma(t) = 0, \quad \gamma(r) = - \coth rf(r) < 0,
\] (3.15)

if \(\gamma(t_0) > 0 \) for some \(t_0 \in (0, r) \), then \(\gamma \) attains its maximum at some \(t_1 \in (0, r) \) and so
\[
0 = \gamma'(t_1) = f''(t_1) + \frac{f(t_1)}{\sinh^2 t_1} - \coth t_1 f'(t_1).
\] (3.16)

We have from (3.3) that
\[
f''(t_1) + (n - 1) \coth t_1 f'(t_1) + \mu_1(B(r)) f(t_1) - \frac{n - 1}{\sinh^2 t_1} f(t_1) = 0.
\] (3.17)

Hence
\[
f'(t_1) - \frac{f(t_1)}{\cosh t_1 \sinh t_1} = - \frac{\mu_1(B(r)) f(t_1) \sinh t_1}{n \cosh t_1} < 0,
\] (3.18)

which contradicts to
\[
f'(t_1) - \coth t_1 f(t_1) > 0.
\] (3.19)

Thus (3.14) holds. Consequently \(h'(t) \leq 0, \quad \forall t \in (0, r] \) and \(h \) is decreasing. The proof of Lemma 3.2 is completed. \(\square \)
Now we go on the proof of Theorem 1.2. Since F is increasing and $F(t)/\sinh t$ is decreasing, we can use the same arguments as in the proof of (2.33) to conclude that

$$\int_{\Omega} F(t)^2 dv \geq \int_{B(p,r)} f(t)^2 dv$$ \hspace{1cm} (3.20)

and

$$\int_{\Omega} \frac{F(t)^2}{\sinh^2 t} dv \leq \int_{B(p,r)} \frac{f(t)^2}{\sinh^2 t} dv.$$ \hspace{1cm} (3.21)

Substituting (3.20) and (3.21) into (3.13), one gets

$$\frac{1}{n-1} \sum_{i=1}^{n-1} \frac{1}{\mu_i(\Omega)} \geq \frac{\int_{B(p,r)} f(t)^2 dv}{\int_{B(p,r)} \left(f'(t)^2 + (n-1) \frac{f(t)^2}{\sinh^2 t} \right) dv}$$

$$= \frac{1}{\mu_1(B(p,r))}$$ \hspace{1cm} (3.22)

and equality holds if and only if $\Omega = B(p,r)$. This completes the proof of Theorem 1.2.

Acknowledgements The authors would like to thank the referee for the careful reading of the manuscript and the encouragements.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

1. Ashbaugh, M. S.: Open problems on eigenvalues of the Laplacian. Analytic and Geometric Inequalities and Applications. pp. 13–28 (1999)
2. Ashbaugh, M.S., Benguria, R.D.: Universal bounds for the low eigenvalues of Neumann Laplacians in N dimensions. SIAM J. Math. Anal. 24, 557–570 (1993)
3. Ashbaugh, M.S., Benguria, R.D.: Sharp upper bound to the first nonzero Neumann eigenvalue for bounded domains in spaces of constant curvature. J. Lond. Math. Soc. 52, 402–416 (1995)
4. Brasco, L., De Philippis, G.: Spectral inequalities in quantitative form. Shape optimization and spectral theory, pp. 201–281, De Gruyter Open, Warsaw (2017)
5. Brasco, L., Pratelli, A.: Sharp stability of some spectral inequalities. Geom. Funct. Anal. 22, 107–135 (2012)
6. Chavel, I.: Eigenvalues in Riemannian Geometry. Academic, New York (1984)
7. Henrot, A.: Extremum problems for eigenvalues of elliptic operators, Birkhäuser Verlag, Basel, 202 pp. (2006). ISBN 978-3-76437705-2
8. Hile, G.N., Xu, Z.: Inequalities for sums of the reciprocals of eigenvalues. J. Math. Anal. Appl. 180, 412–430 (1993)
9. Nadirashvili, N.: Conformal maps and isoperimetric inequalities for eigenvalues of the Neumann problem. Proceedings of the Ashkelon Workshop on Complex Function Theory (1996), 197–201, Israel Math. Conf. Proc. 11, Bar-Ilan Univ., Ramat Gan (1997)

10. Schoen, R., Yau, R., S. T.: Lectures on Differential Geometry. International Press, Cambridge, MA (2004)

11. Szegö, G.: Inequalities for certain eigenvalues of a membrane of given area. J. Rational Mech. Anal. 3, 343–356 (1954)

12. Weinberger, H.F.: An isoperimetric inequality for the \(n \)-dimensional free membrane problem. J. Rational Mech. Anal. 5, 633–636 (1956)

13. Xia, C.: A universal bound for the low eigenvalues of Neumann Laplacians on compact domains in a Hadamard manifold. Monatsh. Math. 128, 165–171 (1999)

14. Xu, Y.: The first nonzero eigenvalue of Neumann problem on Riemannian manifolds. J. Geom. Anal. 5, 151–165 (1995)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.