CLINICAL ARTICLE

Anterior Selective Lumbar Fusion Saving More Distal Fusion Segments Compared with Posterior Approach in the Treatment of Adolescent Idiopathic Scoliosis with Lenke Type 5: A Cohort Study with More Than 8-Year Follow-up

Zhi-wei Wang, MD, PhD1,2,3, Yuan-qing Shen, Msc1, Yan Wu, MD, PhD1,2,3, Jun Li, MD, PhD1,2,3, Zhen Liu, MD, PhD4, Jian-kun Xu, MD, PhD5, Qi-xin Chen, MD, PhD1,2,3, Wei-shan Chen, MD, PhD1,2,3, Lin-wei Chen, MD, PhD1,2,3, Ning Zhang, MD, PhD1,2,3, Fang-cai Li, MD, PhD1,2,3

1Department of Orthopaedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine and 3 Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 2 Orthopaedics Research Institute of Zhejiang University, Hangzhou City, 4 Spine Surgery, Drum Tower Hospital, Nanjing University Medical School, Nanjing and 5 Department of Orthopaedics, the First Affiliated Hospital, Shantou University Medical College, Shantou, China

Objective: To investigate whether anterior selective fusion (ASF) could save more distal fusion segments compared with posterior approach in the treatment of Lenke type 5 adolescent idiopathic scoliosis with long term follow-up.

Methods: A retrospective cohort study. From 2008 to 2011, 22 AIS girls with Lenke type 5 who underwent ASF or posterior selective fusion (PSF) with more than 8-year follow-up, were extracted from the database. 13 girls in the ASF group had an average age of 14.3 ± 1.3 years and Risser sign of 3.3 ± 1.1; 9 PSF girls had an average age of 16.2 ± 3.6 years and Risser sign of 3.8 ± 1.5. The radiographic outcome was compared between groups preoperatively, 6-month postoperatively, 8-year postoperatively and at last follow-up (>8 years).

Results: The average follow-up duration was 8.7 ± 0.4 (ASF) and 8.8 ± 0.5 (PSF) years, respectively. There was no significant difference at baseline in age, Risser sign and preoperative curve pattern in the coronal and sagittal plane between the groups (P > 0.05). The ASF group had significantly shorter fusion segments (5.1 ± 0.6 vs. 7.0 ± 1.3) and decreased upper instrumented vertebra (UIV) (T14 ± 0.8 vs. T10 ± 0.8) than the PSF (P < 0.05); while no significant difference was found in the lower instrumented vertebra (LIV) and distal reserved segments (P > 0.05), which suggested that ASF could shorten the fusion segments by lowering UIV. The distal compensatory curve in the ASF group (9.0° ± 3.9°) was significantly larger than in the PSF group (3.3° ± 2.4°, P = 0.003), despite of no significant difference in the incidence of coronal imbalance (P > 0.05), indicating that both two approaches could obtain satisfactory correction in the coronal plane. In the sagittal plane, PSF patients had significantly larger lumbar lordosis (LL, 59.1° ± 10.5°), thoracic kyphosis (TK, 37.2° ± 13.3°) and proximal junctional angle (PJA, 13.3° ± 6.1°) at the last follow-up than the ASF (LL: 43.4° ± 9.4°; TK: 20.7° ± 8.4°; PJA: 4.7° ± 3.4°; P < 0.05), but without significant difference in proximal junctional kyphosis (PJK) and sagittal vertical axis (SVA) (P > 0.05). After controlling for age, Risser sign, and radiographic parameters related to the primary curve pattern, shorter fusion segments and more distal

Address for correspondence Fang-cai Li, MD, PhD, Orthopaedics Department, Second Affiliated Hospital, School of Medicine, Zhejiang University, No.88, Jiefang Road, Hangzhou, China 310000 Tel: +86-571-56055934; Fax: +86-571-56055934; Email: 2505004@zju.edu.cn
Grant Sources: This work was supported by National Natural Science Foundation of China (Grant No. 81702220) and Medical and Health Research Project of Zhejiang Province (Grant No. 2021423642).
Disclosure: The authors declare no conflict of interest. All authors contributed significantly and met the authorship criteria according to the latest guidelines of the International Committee of Medical Journal Editors. All authors agree to the final submitted manuscript.
Received 1 February 2021; accepted 26 May 2021

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
reserved segments still remained significant in the ASF group with greater Risser sign (P < 0.05). No major intra- or post-operative complications occurred.

Conclusions: Both ASF and PSF could obtain satisfactory coronal and sagittal correction for Lenke 5 AIS; compared with PSF, ASF could shorten the fusion segments by lowering UIV, and save more distal fusion segments only in patients with greater skeletal maturity.

Key words: Adolescent idiopathic scoliosis; Anterior; Approach; Posterior; Selective fusion

Methods and Materials

General Information
A retrospective cohort study, from January 2008 to December 2011, found 121 AIS patients with Lenke type 5 who had undergone selective lumbar fusion and were extracted from our database. Inclusion and exclusion criteria: (i) AIS girls with Lenke type 5; (ii) primary TL/L curve more than 40°; (iii) without pelvic deformity, previous spinal fracture, or other diseases which might affect the spinal balance; (iv) one-stage ASF surgery using a single rod with structural cages or PSF surgery with pedicle screw instrumentation; (v) minimum of 8 years of follow-up; and (vi) without incomplete radiographic data. According to the inclusion and exclusion criteria, 22 cases were extracted from our database. 13 girls in the ASF group had an average age of 14.3 ± 1.3 years and Risser sign of 3.3 ± 1.1, and the average TL/L curve magnitude was 42.5° ± 3.0°; and nine girls in the PSF group had an average age of 16.2 ± 3.6 years and Risser sign of 3.8 ± 1.5, and the average TL/L curve magnitude was 46.4° ± 7.8° (Table 1). The average follow-up duration was 8.7 ± 0.4 and 8.8 ± 0.5 years, respectively. All the informed consents were received from their parents. The present study was approved by the hospital ethics committee.

Surgical Methods

ASF
ASF was performed through an anterior thoracolumbing approach in the right decubitus position under general anesthesia. The Hall fusion selection principle was applied for the selection of fusion levels. After exposure of the vertebral region to be fused, thorough discectomies within this region would be performed. A titanium mesh cage (Medtronic, Sofamor, Daneck) with bone graft was placed into every prepared intervertebral space. A pre-contoured rod was connected with screws placed in the instrumented region. A derotation maneuver and inter-segmental compression were then performed to achieve a normal TL/L alignment (Fig. 1).

PSF
PSF was performed in the prone position under general anesthesia. The fusion levels were chosen according to the Lenke criteria. The surgical techniques involved pedicle screw instrumentation and Ponte osteotomy, rod manipulation, direct apex vertebra derotation technique, with local bone grafts from the spinous process and iliac bone. The
speciﬁc screw-rod instrumentation systems used were the CDH Legacy system (Medtronic, Sofamor, Danek) (Fig. 2).

Radiographic Measurements
The comparisons of radiographic parameters were made between the groups preoperatively, 6-month postoperatively, 8-year postoperatively and at last follow-up (>8 years) with standing full-spine anteroposterior radiographs.

Coronal parameters: thoracic and TL/L curve magnitude, apex rotation (Nash-Moe method), flexibility, fusion segments, upper instrumented vertebra (UIV), lower instrumented vertebra (LIV), distal compensatory curve magnitude, trunk translation, UIV distal segments number, LIV upper end vertebrae (LIVDA), and LIV disc angle (LIVDA) were included.

If the LIV distal compensatory curve was more than 5° and accompanied with UIVDA greater than 5° during the follow-up, it was regarded as an adding-on phenomenon which was indicated the coronal imbalance.

Sagittal parameters: TK (T4-12), LL (T12-S1), sacral slope (SS), sagittal vertical axis (SVA), thoracolumbar junction angle (TLJ) (T10-L2), and proximal junctional angle (PJA) which was the angle between the lower endplate of UIV and the upper endplate of the second vertebral body above it.

TABLE 1 Comparisons of the radiographic parameters related to the curve pattern and surgical fusion between the ASF and PSF group

Parameters	ASF group (n = 13)	PSF group (n = 9)	P value
LEV of thoracic curve a	5 ± 1.2 (T5 ± 1.2)	5 ± 1.6 (T5 ± 1.6)	0.431
LEV of TL/L curve a	11 ± 0.9 (T11 ± 0.9)	11 ± 0.4 (T11 ± 0.4)	0.324
LEV of TL/L curve a	15 ± 0.6 (L3 ± 0.6)	15 ± 0.3 (L3 ± 0.3)	0.845
Thoracic curve segments number a	6.2 ± 1.0	6.9 ± 1.5	0.262
TL/L curve segments number a	5.6 ± 0.7	5.3 ± 0.5	0.393
Apex rotation of thoracic curve a	1.0 ± 0.4	0.8 ± 0.4	0.211
Apex rotation of TL/L curve a	2.8 ± 0.4	3.1 ± 0.3	0.357
Thoracic curve flexibility a	0.605 ± 0.260	0.563 ± 0.312	0.492
TL/L curve flexibility a	0.600 ± 0.190	0.608 ± 0.188	0.926
UIV a	11 ± 0.8 (T11 ± 0.8)	10 ± 0.8 (T10 ± 0.8)	0.003
LIV a	15 ± 0.4 (L3 ± 0.4)	16 ± 1.1 (L4 ± 1.1)	0.209
Fusion segments number a	5.1 ± 0.6	7.0 ± 1.3	0.002
Distal reserved segments number a	2.9 ± 0.4	2.2 ± 1.1	0.209

ASF, anterior selective fusion; LEV, lower end vertebrae; LIV, lower instrumented vertebrae; PSF, posterior selective fusion; TL/L, thoracolumbar/lumbar; UEV, upper end vertebrae; UIV, upper instrumented vertebrae. * means the comparisons between the two groups using independent t test; a means the comparisons between the two groups using Mann–Whitney U test.
If the postoperative PJA was greater than 10° and increased by more than 10° comparing with the preoperative PJA, it would be considered as proximal junctional kyphosis (PJK)24,25 which was indicated in the sagittal imbalance. All imaging data were measured three times by the same surgeon with Surgimap 2.2.15 software (Nemaris, New York, NY, USA), and the average value of these three measurements was taken.

Statistical Analysis
The data were expressed as mean ± standard deviation (SD). For data that was normally or approximately normally distributed, a two-tailed student t-test was used to study the difference between groups. For skewed data or those with unconfirmed normality, the Mann–Whitney test was used for group comparison. Chi-square test (χ^2) was used to compare the incidence between the ASF and PSF groups. Multi-linear regression analysis was used to compare the difference in the fusion segments and distal reserved segments (dependent variables) between ASF and PSF groups (Group\textsubscript{ASF}/\textsubscript{PSF}, independent variable) with controlling age, Risser sign, and TL/L curve parameters (independent variable). In the regression model, the ASF group was assigned a value of “0” and the PSF group was “1.” All the statistical analysis was performed with SPSS 17.0 software (SPSS, Chicago, IL, USA). In all tests, $P < 0.05$ was considered statistically significant.

Results
Comparisons at Baseline
There was no significant difference at baseline in age, Risser sign, and follow-up duration between the ASF and PSF groups ($P > 0.05$). The radiographic parameters related to the curve pattern had no significant difference in the curve magnitude, apex rotation, flexibility, upper end vertebra (UEV) and lower end vertebra (LEV) of the thoracic and TL/L curves between the two groups ($P > 0.05$, Tables 1 and 2). The ASF group showed significantly shorter fusion segments (5.1 ± 0.6) and decreased UIV (T11 ± 0.8) than the PSF (fusion segments: 7.0 ± 1.3; UIV: T10 ± 0.8; $P < 0.05$), but no significant difference was found in LIV and distal reserved segments number between groups ($P > 0.05$, Table 2), suggesting that the anterior approach was able to shorten the fusion segments by lowering UIV.

Comparisons of the Coronal and Sagittal Profile
The average correction rates of TL/L curve were 87.4% ± 10.1% and 85.6% ± 5.8% in the ASF and PSF groups, and the spontaneous correction rates of the thoracic curve were 54.4% ± 16.9% and 68.8% ± 24.0%, respectively; while, they had no significant difference between the two groups ($P > 0.05$). LIVDA (ASF: 6.1° ± 3.3° vs PSF: 2.5° ± 1.9°) and distal compensatory curve (ASF: 9.0° ± 3.9° vs PSF: 3.3° ± 2.4°) at the last follow-up in the ASF group were significantly greater than in the PSF group ($P < 0.05$), but the occurrence of adding-on phenomenon had no significant difference between the two groups ($P > 0.05$, Table 2). Meanwhile, UIVDA and trunk translation at the last follow-up had no significant difference between the two groups ($P > 0.05$).

In the sagittal plane, LL and TK in the ASF group had no significant difference from preoperatively to the last follow-up ($P > 0.05$); however, in the PSF group, both LL and TK became greater significantly from preoperatively (LL: 53.4° ± 13.5°; TK: 24.1° ± 12.1°) to the last follow-up (LL: 59.1° ± 10.5°; TK: 37.2° ± 13.3°; $P < 0.05$). The preoperative LL and TK had no significant difference between the
TABLE 2 Comparisons of the coronal and sagittal radiographic parameters between the two groups

Parameters	ASF group (n = 13)	PSF group (n = 9)	P value
TL/L curve magnitude (°)			
Preoperation	42.5 ± 3.0	46.4 ± 7.8	0.182
6-month postoperation	5.4 ± 4.4	6.8 ± 3.1	0.400
Correction rate	0.874 ± 0.101	0.856 ± 0.058	0.623
Last follow-up	7.1 ± 6.4	6.9 ± 5.2	0.966
Correction loss rate at the last follow-up	0.057 ± 0.077	0.016 ± 0.035	0.156
Thoracic curve magnitude (°)			
Preoperation	23.9 ± 5.5	23.8 ± 6.7	0.956
6-month postoperation	11.2 ± 4.9	7.6 ± 6.3	0.152
Correction rate	0.544 ± 0.169	0.688 ± 0.240	0.112
Last follow-up	14.5 ± 8.0	9.1 ± 5.7	0.104
Correction loss rate at the last follow-up	0.192 ± 0.302	0.164 ± 0.243	0.820
UIVDA (°)			
Preoperation	1.6 ± 1.7	2.1 ± 2.0	0.606
6-month postoperation	1.1 ± 1.0	2.6 ± 1.9	0.025
Last follow-up	2.7 ± 2.0	2.2 ± 1.8	0.634
LVDA (°)			
Preoperation	2.9 ± 1.7	4.4 ± 3.3	0.134
6-month postoperation	3.2 ± 2.0	2.4 ± 1.8	0.387
Last follow-up	6.1 ± 3.3	2.5 ± 1.9	0.012
Distal compensatory curve (°)			
Preoperation	4.2 ± 2.9	4.6 ± 3.9	0.565
6-month postoperation	5.0 ± 2.5	3.0 ± 1.9	0.088
Last follow-up	9.0 ± 3.9	3.3 ± 2.4	0.003
Adding-on (n, %)	3/13, 23%	0/9, 0%	0.240
Trunk translation (mm)			
Preoperation	18.2 ± 10.0	17.2 ± 9.7	0.830
6-month postoperation	28.2 ± 21.4	22.2 ± 10.7	0.252
Last follow-up	11.2 ± 10.0	12.4 ± 7.7	0.748
**Coronal spinal imbalance (n, %)*	3/13, 23%	0/9, 0%	0.240
SS (°)			
Preoperation	32.9 ± 10.0	37.6 ± 7.7	0.250
6-month postoperation	28.9 ± 9.7	33.7 ± 7.4	0.229
Last follow-up	30.4 ± 8.3	37.2 ± 7.7	0.070
LL (°)			
Preoperation	44.8 ± 11.7	53.4 ± 13.5	0.125
6-month postoperation	35.8 ± 9.8	53.2 ± 12.4	0.001
Last follow-up	43.4 ± 9.4	59.1 ± 10.5	0.002
TK (°)			
Preoperation	20.7 ± 10.5	24.1 ± 12.1	0.487
6-month postoperation	18.2 ± 10.7	29.1 ± 10.7	0.029
Last follow-up	20.7 ± 8.4	37.2 ± 13.3	0.002
TLJ (°)			
Preoperation	10.1 ± 6.6	9.1 ± 7.2	0.739
6-month postoperation	7.2 ± 4.4	6.2 ± 4.9	0.598
Last follow-up	11.2 ± 7.8	9.5 ± 6.4	0.594
PJA (°)			
Preoperation	4.1 ± 3.0	6.2 ± 5.0	0.128
6-month postoperation	4.3 ± 3.0	8.3 ± 7.6	0.081
Last follow-up	4.7 ± 3.4	13.3 ± 6.1	0.001
**PJK (n, %)*	0/13, 0%	2/9, 22.2%	0.156
SVA (mm)			
Preoperation	13.9 ± 13.6	24.6 ± 22.4	0.117
6-month postoperation	22.4 ± 16.4	27.4 ± 15.9	0.481
Last follow-up	19.2 ± 11.7	16.9 ± 16.1	0.697
Sagittal spinal imbalance (n, %)*	0/13, 0%	1/9, 11.1%	0.409

ASF, anterior selective fusion; LVDA, lower instrumented vertebrae disc angle; LL, lumbar lordosis; PJA, proximal junctional angle; PJK, proximal junctional kyphosis; PSF, posterior selective fusion; SS, sacral slope; SVA, sagittal vertical axis; TK, thoracic kyphosis; TLJ, thoracolumbar junction kyphosis; TL/L, thoracolumbar/lumbar; UIVDA, upper instrumented vertebrae disc angle.; * means the comparisons between the two groups using independent t test; # means the comparisons between the two groups using Chi-squared test.
Additionally, the PSF group (13.3°) while, in the ASF group, there was no significant difference between SS, TLJ, and SVA between the two groups (P > 0.05). However, the occurrence of PJK had no significant difference in trunk translation between the two groups, it was demonstrated that ASF and PSF had no significant difference in the correction for Lenke 5 AIS in the coronal plane.

Intra- and Postoperative Complications

There was no infection, vascular injury and nerve complications in both groups. In the ASF group, 3 cases occurred adding-on phenomenon and there were no PJK nor other sagittal imbalance; meanwhile, in the PSF group, two cases of PJK and one case of sagittal imbalance occurred. No revision surgery occurred in both groups.

Discussion

Correction Outcome Between the ASF and PSF Groups

Several studies were investigated the correction outcome of different surgical approaches in Lenke 5 AIS. It was widely accepted that both ASF and PSF could achieve satisfactory correction for TL/L and thoracic curves. Generally, the correction rate of TL/L curve was 54.4%–83.2%, and the spontaneous correction rate of the thoracic curve was 37%–48.5%. In the present study, the correction rates of the TL/L curves were 87.4% ± 10.1% and 85.6% ± 5.8% in the ASF and PSF groups; and the spontaneous correction rates of the thoracic curves were 54.4% ± 16.9% and 68.8% ± 24.0%, respectively, which was in accordance with the previous studies. Combined with no significant difference in trunk translation between the two groups, it was demonstrated that ASF and PSF had no significant difference in the correction for Lenke 5 AIS in the coronal plane.

ASF Saving More Distal Fusion Segments Than PSF

It was reported that the anterior approach could reduce fusion segments compared with the posterior. Luo et al. conducted a meta-analysis on the clinical and radiographic outcome of different surgical approaches for the treatment of Lenke 5 AIS. A total of 308 cases were included. The results showed that ASF was able to have shorter fusion segments and save more than one segment compared with PSF. In another meta-analysis with 35 studies included, the outcome of the selective fusion for AIS with primary TL/L curve was compared, showing that ASF had shorter fusion segments than PSF, consistent with the previous study. Li et al. also compared the radiographic outcome between 22 ASF and 24 PSF AIS patients with primary TL/L curve, finding no significant difference in the correction rate of the TL/L curve; nevertheless, ASF patients had significantly shorter fusion segments (5.09) than the PSF (6.13). In the present study, the ASF patients showed significantly shorter fusion segments (5.1 ± 0.6) than the PSF (7.0 ± 1.3), demonstrating that ASF could save one or two motion segments. Combined with the decreased UIV, it was concluded that the anterior approach could shorten the fusion segments by lowering UIV.

Enter Method

Enter method is one of the methods used in the multiple linear regression. With enter method, all independent variables are entered into the equation in one step, also called “forced entry”. Besides ENTER, several other methods are available to build models, controlling how variables are included into a model. The main goal of this methods is to determine the best subset of variables explaining a dependent variable. In the regression model, fusion segments and distal reserved segments were taken as dependent factor, and group (ASF/PSF), age, Risser sign, TL/L curve magnitude, apex rotation and flexibility were taken as independent factors; in the group (ASF/PSF), ASF was regarded as 0, and PSF as 1. ASF, anterior selective fusion; PSF, posterior selective fusion; TL/L, thoracolumbar/lumbar.

TABLE 3 Comparisons of the fusion segments and between the two groups in Lenke 5 AIS patients with multiple linear regressions

Parameters	Group (ASF/PSF)	Age	Risser sign	TL/L curve magnitude	TL/L curve apex rotation	TL/L curve flexibility	P value	Adjusted R²
Fusion segments number	B	1.695	0.192	−0.317	0.074	−0.659	0.001	0.655
	P	0.001	0.139	0.195	0.124	0.298	0.465	
Distal reserved segments number	B	−0.628	−0.109	0.383	−0.055	0.125	0.333	0.002
	P	0.034	0.175	0.020	0.076	0.748	0.674	
that PSF patients could obtain greater TK and LL in the sagittal plane. In the present study, the PSF group showed significantly greater LL at the last follow-up than the ASF, suggesting that PSF obtained greater correction for the sagittal alignment in Lenke 5 AIS, consistent with previous literature. Meanwhile, SVA was significantly improved in both groups from preoperative to postoperative, despite no significant difference at the last follow-up between the two groups, indicating that the surgical approaches made no significant difference in SVA.

Moreover, after controlling for age, Risser sign, and magnitude, rotation and flexibility of the TL/L curve, smaller fusion segments and more distal reserved segments still remained significant in the ASF group (Table 3), demonstrating that ASF could save more distal segments than PSF. However, limited by the less distal reserved segments (ASF: 2.9 ± 0.4 vs PSF: 2.2 ± 1.1), ASF could only save more distal fusion segments in patients with more skeletal maturity.

Complications

Furthermore, no complications such as screw and rod rupture, pseudarthrosis, or revision occurred in the present study. Li et al. compared the effects of selective lumbar fusion between the anterior and posterior approach in Lenke 5 AIS, finding that the PSF patients had significantly higher incidence of PJK (5/37) than the ASF (1/40). In the present study, ASF patients showed greater distal compensatory curve than the PSF, but the incidence of the adding-on phenomenon or trunk imbalance had no significant difference between the two groups. In the sagittal plane, the PSF group had significantly larger PJA at the last follow-up than the ASF, but no significant difference was found in the incidence of PJK, which might be due to the limited sample size. It demonstrated that ASF had a relatively higher trunk imbalance in the coronal plane, whereas PSF showed a higher risk of PJA in the sagittal plane.

Limitations

The strength of the present study was the long-term follow-up, which allowed for the observation of the restoration of the coronal and sagittal balance after ASF and PSF. However, several influencing factors would affect the outcome of correction of spinal deformity, including surgical approach, fusion segments, intraoperative surgical manipulation, fusion methods, internal fixation systems, and so on. Therefore, the limited sample size in the present study might affect the outcome, and a further study with larger sample size would be needed in future. Moreover, the present study was limited by its retrospective nature and lacking SRS-22 outcomes, so the quality of life also needs to be further assessed.

To sum up, both ASF and PSF were effective and could obtain satisfactory coronal and sagittal correction for Lenke 5 AIS. Compared with PSF, ASF could shorten the fusion segments by lowering UIV, but only save distal fusion segments in patients with greater Risser sign due to the limited distal reserved segments. Moreover, ASF had a relatively higher risk of curve progression at the distal segments in the coronal plane, while PSF showed a better correction effect on the sagittal profile despite a higher risk of PJA progression.

References

1. Lenke LG, Betz RR, Harms J, et al. Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodasis. J Bone Joint Surg Am, 2001, 83: 1169–1181.
2. Schulte TL, Lijnenqvist U, Hierholzer E, et al. Spontaneous correction and deotation of secondary curves after selective anterior fusion of idiopathic scoliosis. Spine (Phila Pa 1976), 2006, 31: 315–321.
3. Lowe TG, Peters JD. Anterior spinal fusion with Zielke instrumentation for idiopathic scoliosis. A frontal and sagittal curve analysis in 36 patients. Spine (Phila Pa 1976), 1993, 18: 423–426.
4. Watkins RGT, Hussain N, Freeman BJ, Grevitt MP, Webb JK. Anterior instrumentation for thoracolumbar adolescent idiopathic scoliosis: do structural interbody grafts preserve sagittal alignment better than morselized rib autografts? Spine (Phila Pa 1976), 2006, 31: 2337–2342.
5. Suk SI, Kim WJ, Lee SM, Kim JH, Chung ER. Thoracic pedicle screw fixation in spinal deformities: are they really safe? Spine (Phila Pa 1976), 2001, 26: 2049–2057.
6. Suk SI, Lee SM, Chung ER, Kim JH, Kim WJ, Sohn HM. Determination of distal fusion level with segmental pedicle screw fixation in single thoracic idiopathic scoliosis. Spine (Phila Pa 1976), 2003, 28: 484–491.
7. Wang Y, Fei Q, Qiu G, et al. Anterior spinal fusion for thoracic posterior fusion for moderate lumbar/thoracolumbar adolescent idiopathic scoliosis: a prospective study. Spine (Phila Pa 1976), 2008, 33: C1621–C1624.
8. Dong Y, Weng X, Zhao H, Zhang J, Shen J, Qiu G. Lenke SC curves in adolescent idiopathic scoliosis: anterior vs posterior selective fusion. Neurosurgery, 2016, 78: 324–331.
9. Luo M, Wang W, Shen M, Xia L. Anterior versus posterior approach in Lenke SC adolescent idiopathic scoliosis: a meta-analysis of fusion segments and radiological outcomes. J Orthop Surg Res, 2016, 11: 77.
10. Li M, Ni J, Fang X, et al. Comparison of selective anterior versus posterior screw instrumentation in LenkeSC adolescent idiopathic scoliosis. Spine (Phila Pa 1976), 2009, 34: 1162–1166.
11. Hee HT, Yu ZR, Wong HK. Comparison of segmental pedicle screw instrumentation versus anterior instrumentation in adolescent idiopathic thoracolumbar and lumbar scoliosis. Spine (Phila Pa 1976), 2007, 32: 1533–1542.
12. Lin Y, Chen W, Chen A, Li F, Xiong W. Anterior versus posterior selective fusion in treating adolescent idiopathic scoliosis: a systematic review and meta-analysis of radiologic parameters. World Neurosurg, 2018, 111: e830–e844.
13. Trobisch PD, Ducoffe AR, Lonner BS, Erizzo TJ. Choosing fusion levels in adolescent idiopathic scoliosis. J Am Acad Orthop Surg, 2013, 21: 519–528.
14. Bernstein RM, Hall JE. Solid rod short segment anterior fusion in thoracolumbar scoliosis. J Pediatr Orthop B, 1998, 7: 124–131.
15. Lenke LG, Edwards CC II, Bridwell KH. The Lenke classification of adolescent idiopathic scoliosis: how it organizes curve patterns as a template to perform selective fusions of the spine. Spine (Phila Pa 1976), 2003, 28: S199–S207.
16. Yin G, Qiu Y, Sun X, Wang B, Zhu F. The in-

...distal reserved segments. Moreover, ASF had a relatively higher risk of curve progression at the distal segments in the coronal plane, while PSF showed a better correction effect on the sagittal profile despite a higher risk of PJA progression.
23. Yan P, Bao H, Qiu Y, et al. Mismatch between proximal rod contouring and proximal junctional angle: a predisposed risk factor for proximal junctional kyphosis in degenerative scoliosis. Spine (Phila Pa 1976), 2017, 42: E280–E287.

24. Giattes RC, Bridwell KH, Lenke LG, Kim YJ, Rinella A, Edwards C 2nd. Proximal junctional kyphosis in adult spinal deformity following long instrumented posterior spinal fusion: incidence, outcomes, and risk factor analysis. Spine (Phila Pa 1976), 2005, 30: 1643–1649.

25. Park SJ, Lee CS, Chung SS, Lee JY, Kang SS, Park SH. Different risk factors of proximal junctional kyphosis and proximal Junctional failure following long instrumented fusion to the sacrum for adult spinal deformity: survivorship analysis of 160 patients. Neurosurgery, 2017, 80: 279–286.

26. Zhang Y, Lin G, Wang S, et al. Higher flexibility and better immediate spontaneous correction may not gain better results for nonstructural thoracic curve in Lenke 5C AIS patients: risk factors for its correction loss. Spine (Phila Pa 1976), 2016, 41: 1731–1739.

27. Tao F, Wang Z, Li M, et al. A comparison of anterior and posterior instrumentation for restoring and retaining sagittal balance in patients with idiopathic adolescent scoliosis. J Spinal Disord Tech, 2012, 25: 303–308.

28. Rhee JM, Bridwell KH, Won DS, Lenke LG, Chotigavanichaya C, Hanson DS. Sagittal plane analysis of adolescent idiopathic scoliosis: the effect of anterior versus posterior instrumentation. Spine (Phila Pa 1976), 2002, 27: 2350–2356.