Differential drought tolerance in tree populations from contrasting elevations

Fei Ma1,†, Ting Ting Xu2,†, Ming Fei Ji3 and Chang Ming Zhao3*

1 New Technology Application, Research and Development Center, Ningxia University, Yinchuan 750021, PR China
2 School of Life Science, Ningxia University, Yinchuan 750021, PR China
3 State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China

Received: 3 March 2014; Accepted: 23 October 2014; Published: 10 November 2014

Associate Editor: Tim J. Brodribb

Citation: Ma F, Xu TT, Ji MF, Zhao CM. 2014. Differential drought tolerance in tree populations from contrasting elevations. AoB PLANTS 6: plu069; doi:10.1093/aobpla/plu069

Abstract. To predict the ecological consequences of climate change for a widely distributed tree species, it is essential to develop a deep understanding of the ecophysiological responses of populations from contrasting climates to varied soil water availabilities. In the present study, we focused on Pinus tabuliformis, one of the most economically and ecologically important tree species in China. In a greenhouse experiment, we exposed trees from high-elevation (HP) and low-elevation (LP) populations to low (80 % of field capacity, FC), mild (60 % FC), moderate (40 % FC) and severe (20 % FC) water stresses. Leaf gas exchange, biomass production and allocation, as well as water-use efficiency, were measured during the experiment. Increasing soil water stress clearly decreased the relative growth rate (RGR), total dry mass (TDM), light-saturated photosynthetic rate (A_{sat}), stomatal conductance (g_s), total water use (TWU) and whole-plant water-use efficiency (WUE WP). In contrast, intrinsic water-use efficiency (WUE i) and carbon isotope composition ($\delta^{13}C$) both increased significantly with increasing soil water stress for both populations. Only in the LP did the root/shoot ratio (R/S ratio) significantly increase when the water stress increased. A strong positive correlation between A_{sat} and g_s coupled with a reduced intercellular CO2 concentration (C_i) probably suggested that stomatal limitations were the main cause of the decreased A_{sat}. However, all the measured variables from the HP were affected less by drought compared with those of the LP, and most aspects of the HP were canalized against drought stress, which was reflected by the relatively higher RGR, TDM and WUE WP. Overall, the results suggest that the two populations responded differentially to drought stress with the HP showing higher drought tolerance than the LP, which was reflected by its faster seedling growth rate and more efficient water use under drought conditions.

Keywords: Carbon isotope composition; drought tolerance; growth; leaf gas exchange; Pinus tabuliformis; water-use efficiency.

Introduction

Water availability is a crucial factor that limits the growth, development and distribution of all plants (Chaves et al. 2003; Ordoñez et al. 2009; Wu et al. 2010), and its importance will only become more pronounced in the future due to human-caused climate change resulting in more frequent and severe drought events (IPCC 2007). Therefore, to predict the ecological consequences...
of climate change on the widely distributed tree species, detailed knowledge on their ability to cope with varied water availability is needed within and among populations.

Low water availability (drought) affects the performance of plants by affecting their morphological, physiological and biochemical, as well as transcriptomic and proteomic processes (Anyia and Herzog 2004; González-Rodriguez et al. 2005; Dias et al. 2007; Foito et al. 2009; Gao et al. 2009; Ma et al. 2010; Tomlinson et al. 2012). A gradual depletion of the soil water leads to the stomatal level, WUE can be defined as the ratio of the net photosynthesis rate (Jones 1992; Körner 1998; Zhao et al. 2005). In the present study, two populations of P. tabuliformis from contrasting elevations were selected and subjected to a gradient of soil water contents, due to the species having occurred over a wide range of elevations from 100 to 2800 m above sea level (Chen et al. 2008). Relative to populations growing at lower elevations, tree populations from higher elevations generally exhibit reduced growth, smaller and thicker leaves, higher leaf nutrient content per unit area, higher fine root production and higher allocation of biomass to roots (Oleksyn et al. 1998; Körner 1999; Zhao et al. 2008; Bresson et al. 2011; Petit et al. 2011). The differentiation in these physiological and morphological traits has been thought to be an adaptation to enhance photosynthesis and water-use efficiency while increasing the resistance to the limited water availability (Oleksyn et al. 1998; Körner 1999; Bresson et al. 2011). Therefore, we expected that the two populations would show differential responses to varied soil water availabilities, with the population from the high elevation (HP) having a higher drought tolerance than the low-elevation population (LP), which would result in a higher growth rate, biomass production and water-use efficiency under limited water conditions.

Methods

Plant material and experimental design

Seeds of P. tabuliformis for use in the present study were collected from two locations: Xiahe (35° 33.85′ E, 102° 13.60′ N, 2810 m Alt.; HP) and Zhengning (35° 31.18′ E, 108° 29.51′ N, 1444 m Alt.; LP). The corresponding mean annual rainfall values in the two areas are 516 and 623 mm, while the mean annual temperatures (MATs) are 3.6 and 9.6 °C, respectively. These seeds were germinated and grown indoors for 1 year in a tree nursery, and 112 seedlings of each population with no statistical differences in height and size were transferred to Yuzhong, Gansu Province (35° 56.61′ N; 104° 09.07′ E; 1750 m Alt.), and immediately replanted into 6-L plastic pots (28 pots, four seedlings per pot) filled with the same weight of a homogeneous mixture (peat and perlite, 1 : 1 by volume). An additional 12 pots were prepared in the same way but without seedlings and these were used to determine the evaporation of water from the soil. The soil surface in all the pots was covered with a small quantity (c. 2 cm) of perlite to minimize evaporation. The maximum field capacity (FC) for watering...
the pots was determined gravimetrically according to Shou et al. (2004) with some modifications. All pots were periodically watered to FC for 2 months after repotting to allow the seedlings to become established. The seedlings were grown for the rest of the study in a canopied and naturally lit glasshouse, the roof of which was closed at night and on rainy days, but opened during any day it was not raining. The sides of the glasshouse were always open for aeration during the whole experiment, so that the temperature inside the glasshouse was closely linked to the outside ambient temperature.

For each population, 20 pots were selected and divided into four lots of five pots each (low, mild, moderate and severe water stress treatments). The remaining pots were used to determine the initial biomass. Water stress treatments were achieved by watering to 80 % of maximum FC, 60 % FC, 40 % FC and 20 % FC. All water stress treatments were realized by watering to 80 % of maximum FC, 60 % FC, 40 % FC and 20 % FC. All water stress treatments reached the target FC in 7 days from the beginning of the experiment. Soil water content was maintained by weighing the pots every 2 days, recording the weight immediately. The soil water contents before and after watering were maintained at 54–60, 45–50, 34–40 and 22–25 % for the treatments, respectively. The experiment lasted for 134 days from July to November, and during the whole experiment no fertilizer was added at any point and no plants died.

Leaf gas exchange
On 3 sunny days (15 August, 15 September and 15 October) during the experiment, the light-saturated photosynthetic rate (A_{sat}), stomatal conductance (g_s) and intercellular CO2 concentration (C_i) were measured on sun-adapted needles using an LI-COR 6400 infrared gas-analyzer (IRGA, LI-COR, Lincoln, NE, USA). The light level was maintained at 1500 μmol m$^{-2}$ s$^{-1}$ using an LI-6400-02B LED light source (10 % blue light) and the external CO2 concentration was maintained at 370 μmol mol$^{-1}$ using a CO2 injector (LI-6400-01). The ambient and internal temperatures and vapour pressure deficits were 31.03 ± 1.18 °C, 3.18 ± 0.53 kPa and 31.50 ± 0.11 °C, 3.35 ± 0.20 kPa on 15 August; 27.00 ± 1.08 °C, 2.52 ± 0.17 kPa and 27.67 ± 0.35 °C, 2.83 ± 0.32 kPa on 15 September and 21.30 ± 0.83 °C, 2.20 ± 0.17 kPa and 21.89 ± 0.22 °C, 2.31 ± 0.14 kPa on 15 October, respectively. At least four replicates for each treatment per population were measured and measurements of two individual seedlings in one pot were considered as one replicate. Needles were marked and cut after the last measurement for area determination using an LI-COR-3000A planimeter (LI-COR, Lincoln, NE, USA). The WUE$_i$ was defined as the ratio of A_{sat} to g_s.

The mean values of A_{sat}, g_s, C_i and WUE$_i$, measured on 3 days are presented in this paper.

Growth and water use
Due to possible within pot effects, such as competition for resources, each pot was considered to be a single replicate with the four seedlings’ measurements being combined for determining the growth and water use. To estimate the biomass production during the experiment, three pots (12 seedlings) from each population at the beginning of the experiment (t$_1$) and four pots (16 seedlings) at the end of the experiment (t$_2$) were harvested. From each pot, the four seedlings were bulked together and divided into three parts: leaves, stems and roots. The three biomass parts were dried for 48 h at 80 °C in an oven, weighted and then the weights were divided by four to determine per plant values from the per pot values. The relative growth rate (RGR) was calculated using the following formula: $RGR = (\ln W_2 - \ln W_1)/(t_2 - t_1)$, where W_1 and W_2 are the dry weights per plant at Day t$_1$ and Day t$_2$. The root/shoot (R/S) ratio was also calculated. The WUE at the whole-plant level was calculated as WUE_{wp} per plant = $(W_L - W_i)/T$, where T is the total transpired water use per plant (TWU) between t$_1$ and t$_2$.

Carbon isotope composition
The oven-dried needle samples were finely ground with a Tissuelyzer (Retsch, Haan, Germany), and the carbon isotope composition of the needles ($\delta^{13}C$) was determined by combusting the samples in an elemental analyser EA1108 (Carlo Erba, Milano, Italy) coupled to a Finnigan Delta Plus isotope mass spectrometer (Thermo Finnigan MAT GmbH, Bremen, Germany) at the Key Laboratory of Western China’s Environmental Systems (Ministry of Education), Lanzhou University. The carbon isotope composition was calculated relative to the Pee Dee Belemnite (PDB) standard as the ratio (%): $\delta^{13}C = [(R_{\text{sample}}/R_{\text{standard}}) - 1] \times 1000$, where R_{sample} and R_{standard} are the ratios of $^{13}C/^{12}C$ in the sample and the standard, respectively.

Statistical analyses
The variables including LDM, SDM, RDM, TDM, RGR, R/S ratio, TWU, WUE$_{wp}$ and $\delta^{13}C$ were analysed using the general linear model (Proc GLM) to test the effect of the populations, water treatments and their interactions. Leaf gas exchange parameters, including A_{sat}, g_s, C_i and WUE$_i$, were analysed by the GLM with the measurement time as a covariate. When the differences were significant, a multiple comparison of means (post-hoc Tukey’s honestly significant difference test) was carried out. Before the statistical tests were performed using the
SPSS software package (SPSS, Inc., Chicago, IL, USA), the homogeneity of the data was determined.

Results

Plant growth, biomass production and allocation

As the available soil water decreased, the dry mass of leaves (LDM), stems (SDM) and roots (RDM) decreased in both populations, which leads to a decrease in total dry mass (TDM); RGR was also reduced (Table 1, Fig. 1). Compared with the seedlings exposed to the low water stress, the severe water stress resulted in a significant decrease in the TDM by 38 and 82 % and the RGR by 26 and 71 % for the HP and LP, respectively (Table 1, Fig. 1). The values of the RGR and TDM were higher in the HP than those in the LP across mild, moderate and severe stress treatments (Table 1, Fig. 1). The dry mass allocation differed significantly between the populations and treatments for these variables were also highly significant (Table 2).

Leaf gas exchange

An increased water stress resulted in a significantly reduced A_{sat}, g_s and C_i in both populations (Fig. 2, Table 2). However, the reductions in A_{sat}, g_s and C_i followed different patterns for the different populations investigated. Much of the decline of A_{sat}, g_s and C_i occurred under severe water stress in the HP, but for the LP the declines were more gradual (Fig. 2). Severe water stress decreased the A_{sat} by 27 and 39 %, g_s by 36 and 52 % and C_i by 22 and 27 % for the HP and LP, respectively. The greater decreases in g_s compared with A_{sat} led to a 15 and 22 % increase in the WUE for the HP and the LP, respectively (Fig. 2). The effects of the populations, treatments and their interactions were also significant on those variables (Table 2). In addition, for both populations, there were strong positive correlations for the A_{sat} and g_s variables (Fig. 3).

Water-use traits

TWU and WUEwp both decreased significantly with decreasing soil water content (Table 1). From the low to
moderate stress, a decline in WUEWP was observed in both populations. Severe water stress saw a further decrease in the LP but an increase in the HP. However, the HP exhibited a higher WUEWP than the LP in all the water level treatments and significant differences were observed in the low and severe stress treatments (Table 1). The $\delta^{13}C$ gradually increased as the water stress increased in the LP, while only the severe water stress induced an increase in $\delta^{13}C$ for the HP (Fig. 4).

The interactions between the populations and treatments for these three variables were also highly significant (Table 2).

Discussion

Water availability as a growth-limiting factor was demonstrated in the present study, as it caused significant reductions in RGR, TDM, LDM, SDM and RDM in both populations (Table 1, Fig. 1). Comparatively, the HP showed a higher RGR and TDM from the mild to severe water stress treatments than the LP, and the differences were highly significant (Table 1, Fig. 1). These results support the previously published work that various growth responses within and between species were due to drought stress (Bacelar et al. 2007; Bruschi 2010; Ma et al. 2010). Research has also revealed that plants with higher drought tolerance exhibit less growth inhibition and had relatively higher growth and biomass production than drought-sensitive ones (Loggini et al. 1999; Türkan et al. 2005). Therefore, these results suggested a higher capacity for the HP than for the LP to sustain growth and production under water-limited conditions.

Drought affects plant growth by influencing the leaf gas exchange rates (Zhang and Marshall 1994; Bacelar et al. 2007; Ma et al. 2010; Sapeta et al. 2013). A reduction in g_s and g_m as well as metabolic impairment are considered to be the main causes of the depression of photosynthesis in the face of drought stress (Flexas et al. 2008). Accordingly, g_s and A_{sat} of the two populations significantly decreased after exposure to drought stress, and A_{sat} was strongly positively correlated with g_s (Fig. 2).
From this it was possible to surmise that stomatal closure caused by drought stress resulted in the A_{sat} being reduced under drought conditions (Fig. 3), and the C_i in both populations being reduced at the same time supports this conclusion (Michelozzi et al. 2011). However, compared with the gradual decrease of g_s and A_{sat} in the LP, only severe water stress induced significant reductions in those two parameters in the HP. Even under extreme water stress conditions, the HP had higher g_s and A_{sat} values than the LP (Fig. 2). These results indicated that the leaf gas exchange in the two populations responded differently to the drought conditions, and that the apparent ability of the HP to maintain higher photosynthetic rates may allow it to grow more rapidly under water-limited conditions. This conclusion is supported by the above results that the HP exhibited a higher growth rate and biomass production than the LP under water-limited conditions (Table 1, Fig. 1).

The WUE$_i$ and δ^{13}C significantly increased in both populations with decreasing water availability, and the WUE$_i$ was positively correlated with δ^{13}C (Fig. 3), which was similar to the results of previous studies (Farquhar et al. 1989; Jones 1993; Zhang and Marshall 1994). The WUE$_i$ and δ^{13}C of the LP gradually increased from the low to severe water stresses, whereas these two parameters for the HP only showed significant increases under severe stress treatment (Table 2). The higher WUE$_i$ and δ^{13}C values in the LP than in the HP under mild, moderate and
severe water stress treatments were mainly due to the relatively small changes of \(A_{\text{sat}}\) and \(g_s\) in the HP under drought conditions (Table 2). These findings support the hypothesis that populations will be less plastic if they come from an environment that is dry (Volis et al. 2002; Heschel et al. 2004). Aranda et al. (2010) also reported lower plasticity to environmental changes in the HP than in the LP.

With respect to the WUE at the whole-plant level, the WUE\(_{\text{wp}}\) showed an opposite trend to the WUE, and \(\delta^{13}\text{C}\), with both populations recording a significant drop between the low and moderate stress treatments, and a further significant drop between the moderate and severe stress treatments for the LP (Table 1). These findings confirmed previous observations by Tomás et al. (2014) and Flexas et al. (2010) that there are large discrepancies when scaling-up WUE measurements from the leaf to the whole-plant level. Several structural and physiological processes, such as canopy structure, transpiration by plant organs other than leaves, respiration by leaf during the night and by stem and root during the whole day, will lead to a decrease in the WUE\(_{\text{wp}}\); but not influence the leaf-level estimates. However, the HP showed a significantly higher WUE\(_{\text{wp}}\) than the LP in all water treatments (Table 1), which indicates a higher potential to survive water-limited conditions by efficient water use (Jones 1992).

It is widely accepted that a reduced water supply will result in an increased partitioning of biomass in favour of root growth (Fernández and Reynolds 2000; Khurana and Singh 2004; Nagakura et al. 2004), but not all studies have found this (Oso´rio et al. 1998; Tomlinson et al. 2012). Curiously, in the current study, an increase in the R/S ratio was evident in the LP, whereas in the HP there was no detectable change, which indicates that a loss of plasticity for this character might have been an advantage for existence at higher elevations (Sobrado and Turner 1986; Aranda et al. 2010).

Conclusions
This study indicated that increasing water stress had a significant effect on leaf gas exchange, biomass production

Figure 3. Relationships between light-saturated photosynthetic rate (\(A_{\text{sat}}\)) and stomatal conductance (\(g_s\)) as well as between WUE, and carbon isotope composition (\(\delta^{13}\text{C}\)) in the two populations of *Pinus tabuliformis* from a HP (filled circles) and a LP (empty circles) across water treatments. The coefficient of determination (\(R^2\)) and significance are shown for each regression.

Figure 4. Carbon isotope composition (\(\delta^{13}\text{C}\)) in the two populations of *Pinus tabuliformis* from a HP (black bars) and a LP (white bars) under various soil water conditions (80 % of maximal FC, 60 % FC, 40 % FC and 20 % FC). Each point represents mean ± SE. The letters indicate statistical differences (\(P < 0.05\)) for the water treatments, populations and the interactions between them.
and allocation, carbon isotope composition and water-use efficiency in both HP and LP. However, the two populations differed significantly in their responses to drought stress: the HP appeared to be less affected by water stress than the LP as far as the examined variables were concerned, as well as the exhibited TDM, RGR and WUE in the stress treatments. The results supported the hypothesis that there would be different drought tolerance levels in the two populations with the HP having a greater tolerance.

Sources of Funding
This study was supported by grants from the National Natural Science Foundation of China (Nos 31260166, 31170571 and 31360185).

Contributions by the Authors
The research design and preparation of the manuscript are credited to F.M. T.T.X. contributed to data collection and analysis. M.F.J. mainly contributed to the seedling cultivation. C.M.Z. contributed to conception of the study and suggestions for writing the manuscript.

Conflicts of Interest Statement
None declared.

Acknowledgements
The authors are grateful to anonymous reviewers for their valuable comments on the manuscript.

Literature Cited
Anyia AO, Herzog H. 2004. Water-use efficiency, leaf area and leaf gas exchange of cowpeas under mid-season drought. European Journal of Agronomy 20:327 – 339.

Aranda I, Alia R, Ortega U, Dantas ÂK, Majada J. 2010. Intra-specific variability in biomass partitioning and carbon isotopic discrimination under moderate drought stress in seedlings from four Pinus pinaster populations. Tree Genetics and Genomes 6: 169 – 178.

Ares A, Fownes JH, Sun W. 2000. Genetic differentiation of intrinsic water-use efficiency in the Hawaiian native Acacia koa. International Journal of Plant Science 161:909 – 915.

Bacelar EA, Moutinho-Pereira JM, Gonçalves BC, Ferreira HF, Correia CM. 2007. Changes in growth, gas exchange, xylem hydraulic properties and water use efficiency of three olive cultivars under contrasting water availability regimes. Environmental and Experimental Botany 60:183 – 192.

Bresson CC, Vitasse Y, Kremer A, Delzon S. 2011. To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech? Tree Physiology 31: 1164 – 1174.

Brodribb T, Hill RS. 1998. The photosynthetic drought physiology of a diverse group of southern hemisphere conifer species is correlated with minimum seasonal rainfall. Functional Ecology 12:465 – 471.

Brusch P. 2010. Geographical variation in morphology of Quercus petraea (Matt.) Liebl. as related to drought stress. Plant Biosystems 144:258 – 307.

Chaves MM, Maroco JP, Pereira JS. 2003. Understanding plant responses to drought—from genes to the whole plant. Functional Plant Biology 30:239 – 264.

Chaves MM, Flexas J, Pinheiro C. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany 103:551 – 560.

Chen KM, Abbott RJ, Milne RJ, Tian XM, Liu JQ. 2008. Phylogeography of Pinus tabulaeformis Carr. (Pinaceae), a dominant species of coniferous forest in northern China. Molecular Ecology 17: 4276 – 4288.

Dias PC, Araujo WL, Moraes GABK, Barros RS, DaMattta FM. 2007. Morphological and physiological responses of two coffee progenies to soil water availability. Journal of Plant Physiology 164:1639 – 1647.

Erice G, Louahila S, Irigoyen JJ, Sanchez-Diaz M, Avice JC. 2010. Biomass partitioning, morphology and water status of four alfalfa genotypes submitted to progressive drought and subsequent recovery. Journal of Plant Physiology 167:114 – 120.

Farquhar GD, Hubick KT, Condon AG. 1989. Carbon isotope discrimination and water-use efficiency. In: Rundel PW, Ehleringer JR, Nagy KA, eds. Stable isotopes in ecological research. New York: Springer, 21 – 46.

Fernández RJ, Reynolds JF. 2000. Potential growth and drought tolerance of eight desert grasses: lack of trade-off? Oecologia 123: 90 – 98.

Fleck I, Peña-Rojas K, Aranda X. 2010. Mesophyll conductance to CO₂ and leaf morphological characteristics under drought stress during Quercus ilex L. resprouting. Annals of Forest Science 67:308.

Flexas J, Ribas-Carbo M, Díaz-Espejo A, Galmés J, Medrano H. 2008. Mesophyll conductance to CO₂: current knowledge and future prospects. Plant, Cell and Environment 31:602 – 631.

Flexas J, Galmés J, Gallé A, Gullas J, Pou A, Ribas-Carbo M, Tomás M, Medrano H. 2010. Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Australian Journal of Grape and Wine Research 16: 106 – 121.

Foito A, Byrne SL, Shepherd T, Steward D, Barth S. 2009. Transcriptual and metabolic profiles of Lolium perenne L. genotypes in response to a PEG-induced water stress. Plant Biotechnology Journal 7:719 – 732.

Franco AC, Duarte HM, Gessler A, de Mattos EA, Nahm M, Rennenberg H, Ribeiro K, Scarnano F, Lutte U. 2005. In situ measurements of carbon and nitrogen distribution and composition, photochemical efficiency and stable isotope ratios in Araucaria angustifolia. Trees 19:422 – 430.

Galmés J, Conesa MA, Ochagavia JM, Perdomo JA, Francis DM, Ribas-Carbó M, Savé R, Flexas J, Medrano H, Cifre J. 2011. Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum. Plant, Cell and Environment 34:245 – 260.

Gao DH, Gao Q, Xu HY, Ma F, Zhao CM, Liu JQ. 2009. Physiological responses to gradual drought stress in the diploid hybrid Pinus densata and its two parental species. Trees 213:717 – 728.

González-Rodríguez AM, Martín-Olivera A, Morales D, Jiménez MS. 2005. Physiological responses of tagasaste to a progressive...
drought in its native environment on the Canary Islands. Environmental and Experimental Botany **53**:195–204.

Heschel MS, Sultan SE, Glover S, Sloan D. 2004. Population differentiation and plastic responses to drought stress in the generalist Polygonum persicaria. Israel Journal of Plant Sciences **165**: 817–824.

IPCC. 2007. Climate change, fourth assessment report. London: Cambridge University Press.

Jones HG. 1992. Plants and microclimate. UK: Cambridge University Press.

Jones HG. 1999. Drought tolerance and water-use efficiency. In: Smith JAC, Griffiths H, eds. *Water deficits: plant responses from cell to community*. UK: Scientific Publishers, 93–203.

Khurana E, Singh JS. 2004. Germination and seedling growth of five species from tropical dry forest in relation to water stress: impact of seed size. *Journal of Tropical Ecology* **20**:385–396.

Körner C. 1999. *Alpine plant life*. Berlin: Springer.

Kozlowski TT, Pallardy SG. 1997. *Tree Physiology*. New York: Academic Press, 411.

Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F. 1999. Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. *Plant Physiology* **119**:1091–1100.

Ma F, Zhao CM, Milne R, Ji MF, Chen LT, Liu JQ. 2010. Enhanced drought-tolerance in the homoploid hybrid species *Pinus densata*: implication for its habitat divergence from two progenitors. *New Phytologist* **185**:204–216.

Michelozzi M, Loreto F, Calamassi R. 2011. Drought responses in Aleppo pine seedlings from two wild provenances with different climatic features. *Photosynthetica* **49**:564–572.

Nagakura J, Shigenaga H, Akama A, Takahashi M. 2004. Growth and transpiration of Japanese cedar (Cryptomeria japonica) and Hinoki cypress (*Chamaecyparis obtusa*) seedlings in response to soil water content. *Tree Physiology* **24**:1203–1208.

Oleksyn J, Madzynski J, Tjoelker MG, Zytkowiak R, Reich PB, Karolewski P. 1998. Growth and physiology of *Picea abies* populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. *Functional Ecology* **12**:573–590.

Ordoñez JC, Bodogom PM, Witte JM, Wright IJ, Reich PB, Aerts R. 2009. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. *Global Ecology and Biogeography* **18**:137–149.

Osório J, Osório MLL, Chaves MM, Pereira JS. 1998. Water deficits are more important in delaying growth than in changing patterns of carbon allocation in *Eucalyptus globulus*. *Tree Physiology* **18**: 363–373.

Petit G, Anfodillo T, Carraro V, Grani F, Carrer M. 2011. Hydraulic constraints limit height growth in trees at high altitude. *New Phytologist* **189**:241–252.

Sapeta H, Costa JM, Lourenço T, Maroco J, van der Linde P, Oliveira MM. 2013. Drought stress response in *Jatropha curcas*: growth and physiology. *Environmental and Experimental Botany* **85**:76–84.

Seibt U, Rajabi A, Griffiths H, Berry JA. 2008. Carbon isotopes and water use efficiency: sense and sensitivity. *Oecologia* **155**:441–454.

Shou HX, Bordallo P, Wang K. 2004. Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. *Journal of Experimental Botany* **55**:1013–1019.

Sobrado MA, Turner NC. 1986. Photosynthesis, dry matter accumulation and distribution in the wild sunflower *Helianthus petiolaris* and the cultivated sunflower *Helianthus annuus* as influenced by water deficits. *Oecologia* **69**:181–187.

Tomás M, Medranoa H, Escolanoa JM, Martorella S, Poua A, Ribas-Carbóa M, Flexas J. 2014. Variability of water use efficiency in grapevines. *Environmental and Experimental Botany* **103**:148–157.

Tomlinson KW, Sterck FJ, Bongers F, da Silva DA, Barbosa ERM, Ward D, Bakker FT, van Kaauwen M, Prins HHT, de Bie S, van Langevelde F. 2012. Biomass partitioning and root morphology of savanna trees across a water gradient. *Journal of Ecology* **100**:1113–1121.

Tüürkan I, Bor M, Ozdemir F, Koca H. 2005. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant *P. acutifolius* Gray and drought-sensitive *P. vulgaris* L. subjected to polyethylene glycol mediated water stress. *Plant Science* **168**:223–231.

Volls S, Mendlinger S, Ward D. 2002. Differentiation in populations of *Hordeum spontaneum* Koch along a gradient of environmental productivity and predictability: plasticity in response to water and nutrient stress. *Biological Journal of the Linnean Society* **75**:301–312.

Warren CR, Aranda I, Cano FJ. 2011. Responses to water stress of gas exchange and metabolites in *Eucalyptus* and *Acacia* spp. *Plant, Cell and Environment* **34**:1609–1629.

Wu CA, Lowry DB, Nutter LI, Willis JH. 2009. Natural variation for drought-response traits in *Alnus crispa* and the cultivated sunflower *Helianthus annuus*: implication for its habitat divergence from two progenitors. *New Phytologist* **189**:241–252.