Asymptotic behavior of the CMV matrix coefficients for the OPUC with a varying weight.

M.Poplavskyi
Mathematical Division, B.Verkin Institute for Low Temperature Physics
National Academy of Sciences of Ukraine
47 Lenin Ave., Kharkiv 61103, Ukraine
E-mail: poplavskiymihail@rambler.ru

Abstract
We present an asymptotic analysis of the Verblunsky coefficients for the polynomials orthogonal on the unit circle with the varying weight \(e^{-nV(\cos x)} \), assuming that the potential \(V \) has four bounded derivatives on \([-1, 1]\) and the equilibrium measure has a one interval support. We obtain the asymptotics as a solution of the system of ”string” equations.

Mathematics Subject Classification 2000: 15A52, 15A57.
Key words: polynomials orthogonal on the unit circle, unitary matrix models, Verblunsky coefficients, CMV matrices.

1 Introduction
In this paper we consider a systems of polynomials orthogonal on the unit circle (OPUC) with a varying weight. The system can be obtained from \(\{e^{ik\lambda}\}_{k=0}^{\infty} \) if we use the Gram-Shmidt procedure in \(L^{(n)} := L_2\left([-\pi, \pi], e^{-nV(\cos \lambda)}\right) \) with the inner product

\[
\langle f, g \rangle_n = \int_{-\pi}^{\pi} f(x) \overline{g(x)} e^{-nV(\cos x)} dx.
\]

Then for any \(n \) we get the system of trigonometric polynomials

\[
P^{(n)}_k(\lambda) = \sum_{l=0}^{k} c^{(n)}_{k,l} e^{il\lambda},
\]

which are orthonormal in \(L^{(n)} \). It is well known (see, e.g., [17]) that the orthonormal system \(\{P^{(n)}_k(\lambda)\}_{k=0}^{\infty} \) is not complete in \(L^{(n)} \). To construct the complete system one
should include also polynomials with respect to $e^{-i\lambda}$. Hence following [3] we consider reverse polynomials

$$Q_k^{(n)}(\lambda) = e^{ik\lambda}P_k^{(n)}(-\lambda) = \sum_{l=0}^{k} c_{k,l}^{(n)} e^{i(k-l)\lambda},$$

and define the set of functions $\{\chi_k^{(n)}(\lambda)\}_{k=0}^{\infty}$

$$\chi_{2k}^{(n)}(\lambda) = e^{-ik\lambda}Q_{2k}^{(n)}(\lambda),
\chi_{2k+1}^{(n)}(\lambda) = e^{-ik\lambda}P_{2k+1}^{(n)}(\lambda).$$

(1.1)

It is easy to check (see, e.g [3]) that the system $\{\chi_k^{(n)}(\lambda)\}_{k=0}^{\infty}$ is an orthonormal basis in $L^{(n)}$. Moreover, it was proven in [3] that the functions $\chi_k^{(n)}$ satisfy the five term recurrent relations

$$e^{i\lambda}\chi_{2k-1}^{(n)}(\lambda) = -\alpha_{2k-1}^{(n)}\chi_{2k-2}^{(n)}(\lambda) - \rho_{2k-1}^{(n)}\chi_{2k-1}^{(n)}(\lambda),
\chi_{2k}^{(n)}(\lambda) = \rho_{2k}^{(n)}\chi_{2k-2}^{(n)}(\lambda) + \alpha_{2k}^{(n)}\chi_{2k}^{(n)}(\lambda),
\chi_{2k+1}^{(n)}(\lambda) = -\alpha_{2k+1}^{(n)}\chi_{2k}^{(n)}(\lambda) + \rho_{2k+1}^{(n)}\chi_{2k+1}^{(n)}(\lambda),$$

(1.2)

where $\alpha_{k}^{(n)} = c_{k,0}^{(n)}/c_{k,k}^{(n)}$ and $\rho_{k}^{(n)} = c_{k-1,k-1}^{(n)}/c_{k,k}^{(n)}$ are called the Verblunsky coefficients of the system $\{\chi_k^{(n)}(\lambda)\}_{k=0}^{\infty}$. They satisfy the relations

$$(\rho_{k}^{(n)})^2 + (\alpha_{k}^{(n)})^2 = 1.$$

Hence the matrix of the operator C of multiplication on $e^{i\lambda}$ in the basis $\{\chi_k^{(n)}(\lambda)\}_{k=0}^{\infty}$ has the form (see [3])

$$C^{(n)} = \begin{pmatrix}
-\alpha_{1}^{(n)} & \rho_{1}^{(n)} & 0 & 0 & 0 & 0 & \cdots \\
-\rho_{1}^{(n)}\alpha_{2}^{(n)} & -\alpha_{1}^{(n)}\alpha_{2}^{(n)} & -\rho_{2}^{(n)}\alpha_{3}^{(n)} & \rho_{2}^{(n)}\rho_{3}^{(n)} & 0 & 0 & \cdots \\
\rho_{1}^{(n)}\rho_{2}^{(n)} & \alpha_{1}^{(n)}\rho_{2}^{(n)} & -\alpha_{2}^{(n)}\alpha_{3}^{(n)} & \alpha_{2}^{(n)}\rho_{3}^{(n)} & 0 & 0 & \cdots \\
0 & 0 & -\rho_{3}^{(n)}\alpha_{4}^{(n)} & -\alpha_{3}^{(n)}\alpha_{4}^{(n)} & -\rho_{4}^{(n)}\alpha_{5}^{(n)} & \rho_{4}^{(n)}\rho_{5}^{(n)} & \cdots \\
0 & 0 & \rho_{3}^{(n)}\rho_{4}^{(n)} & \alpha_{3}^{(n)}\rho_{4}^{(n)} & -\alpha_{4}^{(n)}\alpha_{5}^{(n)} & \alpha_{4}^{(n)}\rho_{5}^{(n)} & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\end{pmatrix}.$$

(1.4)

The main goal of the paper is to find the first two terms of the asymptotic expansion of $\alpha_{n+k}^{(n)}$ for $k = o(n), n \to \infty$. The asymptotics of polynomials orthogonal with varying weight plays an important role in many problems of modern mathematics, e.g. approximation theory, combinatorics, theory of random matrices etc. The polynomials orthogonal with varying weight on the real line are now well studied, due to the remarkable paper [4], where it was shown that for real analytic $V(\lambda)$ satisfying also some growth conditions as
$|\lambda| \to \infty$, the asymptotic of polynomials $P_{n+k}^{(n)}(\lambda)$ ($k = o(n)$, $n \to \infty$) orthogonal on the real line (OPRL) with the weight $e^{-nV(\lambda)}$, is expressed via θ-function, which can be constructed in terms of the so-called equilibrium measure $\mu(d\lambda) = \rho(\lambda)d\lambda$, which is obtained as a solution of a classical problem of the potential theory with the potential V. These results were generalized on the case of V possessing only few derivatives in the work [10]. The complete asymptotic expansion of the Jacobi matrix coefficients in the case of real analytic V and one or two interval equilibrium density ρ was constructed in [1]. These results were used to prove universality of local bulk and edge regimes of the hermitian matrix models with the potential V (see also [14], [13], [8]). The case of OPUC, with varying weight till now is not understood so well as the case of classical OP. It is believed that similarly to the real line case the asymptotic is closely connected with the behavior of the corresponding equilibrium measure, which is the minimizer of the functional

$$E[m] = \int_{-\pi}^{\pi} V(\cos \lambda)m(d\lambda) - \int_{-\pi}^{\pi} \log |e^{i\lambda} - e^{iu}| m(d\lambda)m(d\mu),$$

in the class of unit measures on the interval $[-\pi, \pi]$ (see [16] for existence and properties of the solution). It is well known, in particular, that for smooth V' the equilibrium measure has a density ρ which is uniquely defined by the condition that the function

$$u(\lambda) = V(\cos \lambda) - 2 \int_{\sigma} \log |e^{i\lambda} - e^{iu}| \rho(\mu)d\mu,$$

(1.5)

takes it minimum value if $\lambda \in \sigma = \text{supp } \rho$. From this condition in the case of differentiable V one can obtain the following integral equation for the equilibrium density ρ

$$(V(\cos \lambda))' = v.p. \int_{-\pi}^{\pi} \cot \frac{\lambda - \mu}{2} \rho(\mu)d\mu, \text{ for } \lambda \in \sigma.$$

(1.6)

The asymptotics of OPUC with varying weight was constructed in [9] for the case when the support σ of ρ is the whole circle. It was proven that in this case $P_{n+k}^{(n)}(\lambda) \sim C_{V}e^{in\lambda}$ and $\alpha_{n+k}^{(n)} = \sigma(1)$. In the present paper we find the first two terms of the asymptotic expansion of $\alpha_{n+k}^{(n)}$ in the case of one-interval support σ of the equilibrium density ρ. Our main conditions are

Condition C1. The support σ of the equilibrium measure is a single subinterval of the interval $[-\pi, \pi]$, i.e.

$$\sigma = [-\theta, \theta], \text{ with } \theta < \pi.$$

(1.7)

Condition C2. The equilibrium density ρ has no zeros in $(-\theta, \theta)$ and

$$\rho(\lambda) \sim C|\lambda \mp \theta|^{1/2}, \text{ for } \lambda \to \pm \theta,$$

(1.8)

and the function $u(\lambda)$ of (1.5) attains its minimum if and only if λ belongs to σ.

Condition C3. $V(\cos \lambda)$ possesses 4 bounded derivatives on $\sigma_\varepsilon = [-\theta - \varepsilon, \theta + \varepsilon]$.

Remark 1.1 In fact there is one more possibility to have one-interval σ. Another case is a some left symmetric arc of the circle, i.e. $[\pi - \theta, \pi + \theta]$. In this case we replace $V(\cos x)$ in (1.14) by $V(\cos(\pi - x))$. This replacement will rotate all eigenvalues on the angle π and we have the support from the condition C1.
The following simple representation of ρ plays an important role in our asymptotic analysis.

Proposition 1.2 Under conditions C1-C3

$$\rho (\lambda) = \frac{1}{4\pi^2} \chi (\lambda) P (\lambda) 1_{\sigma}, \quad (1.9)$$

where

$$\chi (\lambda) = \sqrt{\cos \lambda - \cos \theta}, \quad P (\lambda) = \int_{-\theta}^{\theta} \frac{(V (\cos \mu))' - (V (\cos \lambda))'}{\sin (\mu - \lambda)/2} \frac{d\mu}{\chi (\mu)}. \quad (1.10)$$

The proof is very simple but for the reader's convenience we give it in the beginning of Section 3. It is evident that conditions C1-C3 imply that $P (\lambda)$ does not have roots on interval $[-\theta, \theta]$.

Remark 1.3 If the support of the equilibrium measure is the whole interval $[-\pi, \pi]$, then equation (1.11) can be solved using the Gilbert operator.

$$\rho (\mu) = \frac{1}{2\pi} + \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \frac{\lambda - \mu}{\cot \lambda/2} \left((V (\cos \lambda))' - (V (\cos \mu))' \right) d\lambda. \quad (1.11)$$

The main result of the paper is the following theorem:

Theorem 1.4 Consider the system of orthogonal polynomials and the Verblunsky coefficients defined in (1.2) and (1.3). Let potential V satisfy conditions C1 - C3 above. Then there exists $\varepsilon_1 > 0$ such that for any $|m| < \varepsilon_1 n$

$$\alpha_{n+m}^{(n)} = (-1)^{n+m} s \cos\left(\frac{\theta}{2} + x_{n+m}^{(n)}\right), \quad (1.12)$$

where $s = 1$ or $s = -1$ and

$$x_{n+m} = \frac{2\pi \sqrt{2}}{P (\theta) \sin \theta} \frac{m}{n} + \frac{O \left(\log^{11} n \left(n^{-4/3} + \frac{m^2}{n^2} \right) \right)}{n},$$

with P defined in (1.10).

The proof of Theorem 1.4 is based on the relation, which is an analog of the string equation for OP on the real line.

Proposition 1.5 Let $\chi_k^{(n)}$ be the orthogonal functions defined in (1.1). Then for any k

$$\int_{-\pi}^{\pi} \sin \lambda V' (\cos \lambda) \chi_k^{(n)} (e^{i\lambda}) \chi_{k-1}^{(n)} (e^{i\lambda}) e^{-n V (\cos \lambda)} d\lambda = i (-1)^{k-1} \frac{k \alpha_k^{(n)}}{n \beta_k^{(n)}}. \quad (1.13)$$

The result was obtained in [5], but in some different form, therefore we give its proof in Section 3. We use (1.13) as a system of nonlinear equations for $\alpha_k^{(n)}$ and solve it by the perturbation theory method. To construct a zero order solution of the system (1.13),
following the method of [1] and [13] we use the link of the OPUC with the unitary matrix models, which eigenvalue distribution has the form

\[p_n (\lambda_1, \ldots, \lambda_n) = \frac{1}{Z_n} \prod_{1 \leq j < k \leq n} |e^{i\lambda_j} - e^{i\lambda_k}|^2 \exp \left\{ -n \sum_{j=1}^{n} V(\cos \lambda_j) \right\}. \]

(1.14)

It is known (see [11]) that all marginal densities of (1.14) can be expressed using the orthogonal functions

\[\psi^{(n)}_k (\lambda) = P^{(n)}_k (\lambda) e^{-n V(\cos \lambda)/2}. \]

(1.15)

and their reproducing kernel

\[K_{k,n} (\lambda, \mu) = \sum_{l=0}^{k-1} \psi^{(n)}_l (\lambda) \psi^{(n)}_l (\mu). \]

(1.16)

These ensembles first appeared in physics, but later their relation to the pure mathematical problems was discovered (see, e.g. [2]).

The paper is organized as follows. In Section 2 we prove the main Theorem 1.4 using some technical results. We will prove these results in Section 3.

2 Proof of basic results

The method of the proof is a version of the one used in [13]. An important part of the proof is a zero order approximation for the Verblunsky coefficients \(\alpha^{(n)}_{n+k} \).

Theorem 2.1 Under conditions of Theorem (1.4) we have

\[\alpha^{(n)}_{n+k} = (-1)^{n+k} s \cos \frac{\theta}{2} + O \left(n^{-1/4} \log^{1/2} n + \left(\frac{|k|}{n} \right)^{1/2} \right). \]

(2.1)

Proof of Theorem 2.1. The main idea of the proof is to derive an equation with a functional parameter \(\phi \) for functions \(\psi^{(n)}_k \) of (1.15) from the determinant formulas. Then, choosing appropriate parameter \(\phi \), we obtain the equation for the Verblunsky coefficients. Define a new eigenvalue distribution

\[p_{k,n} (\lambda_1, \ldots, \lambda_k) = Q^{-1}_{k,n} \prod_{1 \leq j < m \leq k} |e^{i\lambda_j} - e^{i\lambda_m}|^2 \exp \left\{ -n \sum_{l=1}^{k} V(\cos \lambda_l) \right\}, \]

(2.2)

which differs from (1.14) by the number of variables (\(k \) instead of \(n \)). Let

\[\tilde{\rho}_{k,n} (\lambda) = \int p_{k,n} (\lambda, \lambda_2, \ldots, \lambda_k) d\lambda_2 \ldots d\lambda_k, \]

\[\tilde{\rho}_{k,n} (\lambda, \mu) = \int p_{k,n} (\lambda, \mu, \lambda_3, \ldots, \lambda_k) d\lambda_3 \ldots d\lambda_k, \]

be the first and the second marginal densities of (2.2). By the standard argument (see [11]) we have

\[\tilde{\rho}_{k,n} (\lambda) = k^{-1} K_{k,n} (\lambda, \lambda), \]

\[\tilde{\rho}_{k,n} (\lambda, \mu) = \frac{1}{k(k-1)} \left[K_{k,n} (\lambda, \lambda) K_{k,n} (\mu, \mu) - |K_{k,n} (\lambda, \mu)|^2 \right]. \]

(2.4)
where $K_{k,n}$ defined in (1.10). We will use also the notation
\[\rho_{k,n}(\lambda) \equiv \frac{1}{n} K_{k,n}(\lambda, \lambda) = \frac{k}{n} \rho_{k,n}(\lambda). \] (2.5)

Let ϕ be any 2π-periodic twice differentiable function. Then integrating by parts and using that $\frac{d}{d\lambda} |e^{i\lambda} - e^{i\mu}|^2 = \cot \frac{\lambda - \mu}{2} |e^{i\lambda} - e^{i\mu}|^2$, we get
\[
\int_{-\pi}^{\pi} (V(\cos \lambda))' \tilde{\rho}_{k+n,n}(\lambda) \phi(\lambda) d\lambda = n^{-1} \int_{-\pi}^{\pi} \tilde{\rho}_{k+n,n}(\lambda) \phi'(\lambda) d\lambda \\
+ \frac{n + k - 1}{n} \int_{-\pi}^{\pi} \tilde{\rho}_{k+n,n}(\lambda, \mu) \frac{\phi(\lambda) - \phi(\mu)}{\tan(\lambda - \mu)/2} d\lambda d\mu.
\]

Combining the above relation with the symmetry property $\tilde{\rho}_{k+n,n}(\lambda, \mu) = \tilde{\rho}_{k+n,n}(\mu, \lambda)$, we obtain
\[
\int_{-\pi}^{\pi} (V(\cos \lambda))' \tilde{\rho}_{k+n,n}(\lambda) \phi(\lambda) d\lambda = n^{-1} \int_{-\pi}^{\pi} \tilde{\rho}_{k+n,n}(\lambda) \phi'(\lambda) d\lambda \\
+ \frac{n + k - 1}{2n} \int_{-\pi}^{\pi} \tilde{\rho}_{k+n,n}(\lambda, \mu) \frac{\phi(\lambda) - \phi(\mu)}{\tan(\lambda - \mu)/2} d\lambda d\mu.
\]

Using (2.4), (2.5) and the equality
\[
\int_{-\pi}^{\pi} |K_{k+n,n}(\lambda, \mu)|^2 d\mu = K_{k+n,n}(\lambda, \lambda),
\]
we obtain from the above
\[
\int_{-\pi}^{\pi} \frac{\phi(\lambda) - \phi(\mu)}{2 \tan(\lambda - \mu)/2} \rho_{k+n,n}(\lambda) \rho_{k+n,n}(\mu) d\lambda d\mu \\
- \int_{-\pi}^{\pi} (V(\cos \lambda))' \rho_{k+n,n}(\lambda) \phi(\lambda) d\lambda + \delta_{k,n}[\phi] = 0, \tag{2.6}
\]
where
\[
\delta_{k,n}[\phi] := \frac{1}{2n^2} \int_{-\pi}^{\pi} \left[\phi'(\lambda) + \phi'(\lambda) - \frac{\phi(\lambda) - \phi(\mu)}{\tan(\lambda - \mu)/2} \right] |K_{k+n,n}(\lambda, \mu)|^2 d\lambda d\mu. \tag{2.7}
\]

We replace in (2.6) k by $k - 1$, subtract the new relation from (2.6), and multiply the result by n. Then we have
\[
\int_{-\pi}^{\pi} \frac{\phi(\lambda) - \phi(\mu)}{\tan(\lambda - \mu)/2} \rho_{k+n}(\mu) \left| \psi_{k+n}(\lambda) \right|^2 d\lambda d\mu - \int_{-\pi}^{\pi} (V(\cos \lambda))' \phi(\lambda) \left| \psi_{k+n}(\lambda) \right|^2 d\lambda \\
+ \delta_{k,n}^{(1)}[\phi] + \delta_{k,n}^{(2)}[\phi] = 0, \tag{2.8}
\]
where
\[
\delta_{k,n}^{(1)}[\phi] := \frac{1}{n} \int_{-\pi}^{\pi} \left[\phi'(\lambda) + \phi'(\mu) - \frac{\phi(\lambda) - \phi(\mu)}{\tan(\lambda - \mu)/2} \right] \\
\cdot \Re \{K_{k+n-1,n}(\lambda, \mu) \psi_{k+n}(\lambda) \psi_{k+n}(\mu) \} d\lambda d\mu,
\]
\[
\delta_{k,n}^{(2)} (\phi) := \int_{-\pi}^{\pi} \frac{\phi (\lambda) - \phi (\mu)}{\tan (\lambda - \mu) / 2} (\rho_{n+k-1,n} (\mu) - \rho (\mu)) \left| \psi_{k+n}^{(n)} (\lambda) \right|^2 d\lambda d\mu
\]
\[
+ \frac{1}{n} \int \phi' (\lambda) \left| \psi_{k+n}^{(n)} (\lambda) \right|^2 d\lambda.
\]

To estimate \(\delta_{k,n}^{(1)} [\phi]\) we note that
\[
\left| \phi' (\lambda) + \phi' (\mu) - \frac{\phi (\lambda) - \phi (\mu)}{\tan (\lambda - \mu) / 2} \right| \leq C \left| e^{i\lambda - e^{i\mu}} \right| (\|\phi'\|_\infty + \|\phi''\|_\infty).
\]

and use also the bound (see e.g. [15])
\[
\int |K_{k+n-1,n} (\lambda, \mu)|^2 |e^{i\lambda} - e^{i\mu}|^2 d\lambda d\mu \leq C.
\]

Combining it with the Schwartz inequality, we have
\[
\left| \delta_{k,n}^{(1)} [\phi] \right| \leq \frac{C}{n} (\|\phi'\|_\infty + \|\phi''\|_\infty) \left(\int |K_{k+n-1,n} (\lambda, \mu)|^2 |e^{i\lambda} - e^{i\mu}|^2 d\lambda d\mu \right)^{1/2}
\]
\[
\cdot \int \left| \psi_{k+n}^{(n)} (\lambda) \psi_{k+n}^{(n)} (\mu) \right|^2 d\lambda d\mu \leq \frac{C}{n} (\|\phi'\|_\infty + \|\phi''\|_\infty). \tag{2.9}
\]

For \(\delta_{k,n}^{(2)} [\phi]\) we use the following result of [7]. Let \(\rho_n := p_1^{(n)}\) be the first marginal density of (1.14). Then \(\rho_n\) converges weakly to the equilibrium density \(\rho\) and for any \(\phi \in H^1 (-\pi, \pi)\)
\[
\left| \int \phi (\lambda) \rho_n (\lambda) d\lambda - \int \phi (\lambda) \rho (\lambda) d\lambda \right| \leq C \|\phi\|_2^{1/2} \|\phi'\|_2^{1/2} n^{-1/2} \ln^{1/2} n, \tag{2.10}
\]

where \(\|\cdot\|_2\) denotes \(L_2\) norm on \([-\pi, \pi]\). Since the function \(\frac{\phi (\lambda) - \phi (\mu)}{\tan (\lambda - \mu) / 2}\) has a bounded derivative with respect to \(\mu\), we obtain
\[
\left| \delta_{k,n}^{(2)} [\phi] \right| \leq \left| \delta_{k,n}^{(1)} [\phi] \right| + \frac{|k|}{n} \|\phi'\|_\infty
\]
\[
\leq C \left(\|\phi'\|_\infty^{1/2} \|\phi''\|_\infty^{1/2} n^{-1/2} \ln^{1/2} n + \frac{|k|}{n} \|\phi'\|_\infty \right). \tag{2.11}
\]

We split integral in (2.8) into two parts. Using (1.6) for \(\lambda \in \sigma\), we obtain
\[
v.p. \int_{\sigma} d\lambda \int_{\sigma} d\mu \rho (\mu) \cot \frac{\lambda - \mu}{2} \rho (\mu) \left| \psi_{k+n}^{(n)} (\lambda) \right|^2
\]
\[
- \int_{\sigma^c} d\lambda \left| \psi_{k+n}^{(n)} (\lambda) \right|^2 \left(\int_{\sigma} d\mu \rho (\mu) \frac{\phi (\lambda) - \phi (\mu)}{\tan (\lambda - \mu) / 2} - \phi (\lambda) (V (\cos \lambda))' \right)
\]
\[
= \delta_{k,n}^{(1)} [\phi] + \delta_{k,n}^{(2)} [\phi]. \tag{2.12}
\]

Equation (1.6) is valid only for \(\lambda \in \sigma\). Below we need to extend this relation on some neighborhood of \(\sigma\). Using (1.2), we obtain the following representation.
Lemma 2.2 Under the conditions of Theorem 1.4, for \(\varepsilon \) defined in C3 and \(\lambda \in \sigma_{\varepsilon} = [-\theta - \varepsilon, \theta + \varepsilon] \), \(V \) can be represented in the form

\[
(V (\cos \lambda))' - \frac{1}{4\pi^2} \int_{-\theta}^{\theta} \cot \frac{\lambda - \mu}{2} P(\mu) \chi(\mu) \, d\mu = \frac{\text{sign} \lambda}{2\pi} (P(\lambda) \chi(\lambda) + O(\chi^2(\lambda))) 1_{\sigma_{\varepsilon} \setminus \sigma}. \tag{2.13}
\]

For \(\lambda \in \sigma_{\varepsilon}^c \) we use the exponential bounds for the functions \(\psi_k^{(n)} \). These bounds can be proved analogously to the corresponding result of [14].

Proposition 2.3 Let potential \(V \) satisfy conditions C1-C3. Then there exist constants \(C, C_1 > 0 \) and \(\varepsilon_1 > 0 \) such that for any integer \(k \) satisfying inequality \(|k| < \varepsilon_1 n \) we have

\[
\int_{\sigma_{\varepsilon, n, k}} \left| \psi_{k+n}^{(n)} (\lambda) \right|^2 \, d\lambda \leq e^{-Cn^{1/2} \log n}, \quad \varepsilon_{n, k} = C_1 (n^{-1/2} \log n + |k| / n). \tag{2.14}
\]

Combining (2.13), (2.12), (2.9), (2.11) with (2.14), we obtain finally the integral equation

\[
v.p. \int_{\sigma_{\varepsilon, n, k}} d\lambda \int_{-\theta}^{\theta} d\mu \phi(\mu) \cot \frac{\lambda - \mu}{2} \rho(\mu) \left| \psi_{k+n}^{(n)} (\lambda) \right|^2 + \frac{1}{2\pi} \int_{\sigma_{\varepsilon, n, k} \setminus \sigma} \text{sign} \lambda \phi(\lambda) P(\lambda) \chi(\lambda) \left| \psi_{k+n}^{(n)} (\lambda) \right|^2 \, d\lambda = (\|\phi\|_\infty + \|\phi'\|_\infty + \|\phi''\|_\infty) O(\varepsilon_{n, k}) \tag{2.15}
\]

with \(\varepsilon_{n, k} \) of (2.14).

Remark 2.4 If the support of the equilibrium measure is the whole interval \([-\pi, \pi]\), then we can obtain in a similar way the integral equation for the equilibrium density

\[
v.p. \int_{-\pi}^{\pi} \phi(\mu) \cot \frac{\lambda - \mu}{2} \rho(\mu) \left| \psi_{k+n}^{(n)} (\lambda) \right|^2 \, d\lambda d\mu = (\|\phi'\|_\infty + \|\phi''\|_\infty) O\left(n^{-1/2} \log n + \frac{|k|}{n}\right). \tag{2.16}
\]

It is easy to see that \(P(\lambda) \) of (1.10) is a twice differentiable strictly positive function on the interval \([-\theta, \theta]\). Taking in (2.15)

\[
\phi(\mu) = P^{-1}(\mu) \cos \frac{\mu}{2} \cot \frac{z - \mu}{2},
\]

we obtain

\[
\int_{\sigma_{\varepsilon, n}} \left| \psi_{k+n}^{(n)} (\lambda) \right|^2 f(z, \lambda, \theta) \, d\lambda + 2\pi \int_{\sigma_{\varepsilon, n} \setminus \sigma} \text{sign} \lambda \cot \frac{z - \lambda}{2} \cos \frac{\lambda}{2} \chi(\lambda) \left| \psi_{k+n}^{(n)} (\lambda) \right|^2 \, d\lambda = O(\varepsilon_{n, k} |\text{dist}(z, \sigma)|^{-3}), \tag{2.17}
\]

where

\[
f(z, \lambda, \theta) = v.p. \int_{-\theta}^{\theta} \cot \frac{\lambda - \mu}{2} \cos \frac{z - \mu}{2} \chi(\mu) \cos \frac{\mu}{2} d\mu. \tag{2.18}
\]
Computing \(f(z, \lambda, \theta) \) we obtain

\[
f(z, \lambda, \theta) = v.p. \int_{-\theta}^{\theta} \frac{\sin \mu + \sin \lambda}{\cos \mu - \cos \lambda} \frac{\sin \mu + \sin z}{\cos \mu - \cos z} \chi(\mu) \cos \frac{\mu}{2} d\mu =
\]

\[
= v.p. \int_{-\theta}^{\theta} \frac{\sin^2 \mu + \sin \lambda \sin z}{(\cos \mu - \cos \lambda)(\cos \mu - \cos z)} \chi(\mu) \cos \frac{\mu}{2} d\mu =
\]

\[
= v.p. \int_{-\theta}^{\theta} \left[-1 + \cot \frac{z - \lambda}{2} \left(\frac{\sin \lambda}{\cos \mu - \cos \lambda} - \frac{\sin z}{\cos \mu - \cos z} \right) \right] \chi(\mu) \cos \frac{\mu}{2} d\mu =
\]

\[
= I_1 + \cot \frac{z - \lambda}{2} (\sin \lambda I_2(\lambda) - \sin z I_2(z)),
\]

where

\[
I_1 = - \int_{-\theta}^{\theta} \chi(\mu) \cos \frac{\mu}{2} d\mu = -\pi \sqrt{1 - \frac{\sin^2 \theta}{2}},
\]

\[
I_2(z) = v.p. \int_{-\theta}^{\theta} \frac{\chi(\mu)}{\cos \mu - \cos z} \cos \frac{\mu}{2} d\mu.
\]

To compute \(I_2(z) \) we use well known relations (see [12])

\[
S_{q_a}(z) := \frac{1}{\pi v.p.} \int_{-a}^{a} \frac{dt}{(z-t) \sqrt{a^2 - t^2}} = \begin{cases} 1/2 \sqrt{z^2 - a^2}, & \text{for } z \notin [-a, a], \\ 0, & z \in (-a, a), \end{cases} \quad (2.19)
\]

where \(1/2 \sqrt{z^2 - a^2} \) is defined by the asymptotic \(\sim 1/z, z \to \infty \). Then we have for \(z \neq \pm \theta \)

\[
I_2(z) = \sqrt{2} \int_{-1}^{1} \frac{\sqrt{1 - t^2} dt}{\sin^2 (z/2) / \sin^2 (\theta/2) - t^2} = \sqrt{2} \pi \left(1 - \frac{\sqrt{\sin^2 z/2 - \sin^2 \theta/2}}{\sin z/2} \right) - 1_{\sigma}.
\]

Now, using the above results, we obtain from [2.15]

\[
\int_{\sigma \varepsilon_{n,k}} \left| \psi^{(n)}_{k+n} (\lambda) \right|^2 \left[-\sin^2 \frac{\theta}{2} + \cot \frac{z - \lambda}{2} (\sin \lambda - \sin z) \right] d\lambda
\]

\[
+ \int_{\sigma \varepsilon_{n,k}} \left| \psi^{(n)}_{k+n} (\lambda) \right|^2 \sin z \frac{\sqrt{\sin^2 z/2 - \sin^2 \theta/2}}{\sin z/2} \cot \frac{\lambda - z}{2} d\lambda = O \left(\varepsilon_{n,k} |\text{dist}(z, \sigma)|^{-3} \right).
\]

Denote \(R^{(n)} \) the analog of the resolvent for the matrix \(C^{(n)} \):

\[
R^{(n)} = i \frac{C^{(n)} + e^{iz}}{C^{(n)} - e^{iz}}.
\]

Then by the spectral theorem

\[
R^{(n)}_{n+k,n+k}(z) = \int \left| \psi^{(n)}_{k+n} (\lambda) \right|^2 \cot \frac{\lambda - z}{2} d\lambda,
\]

\[
C^{(n)}_{n+k,n+k} + \cos z = \int \left| \psi^{(n)}_{k+n} (\lambda) \right|^2 \cot \frac{\lambda - z}{2} (\sin \lambda - \sin z) d\lambda.
\]

The above relations combined with [2.14] allow us to derive from [2.20] that

\[
R^{(n)}_{n+k,n+k}(z) = \frac{C^{(n)}_{n+k,n+k} + \cos z + \sin^2 \theta/2 + O \left(\varepsilon_{n,k} |\text{dist}(z, \sigma)|^{-3} \right)}{2 \cos (z/2) \sqrt{\sin^2 z/2 - \sin^2 \theta/2}}.
\]
Integrating the product $e^{iz} R_{n+k,n+k}^{(n)} (z)$ over the contour $\mathcal{L}_\delta = \{ z \mid \text{dist} (z, \sigma) = \delta \}$ for some δ we obtain from (2.22)
\[
\oint_{\mathcal{L}_\delta} e^{iz} R_{n+k,n+k}^{(n)} (z) \, dz = \oint_{\mathcal{L}_\delta} e^{iz} \frac{C_{n+k,n+k}^{(n)} + \cos z + \sin^2 \theta/2}{2 \cos (z/2) \sqrt{\sin^2 z/2 - \sin^2 \theta/2}} \, dz + O (\varepsilon_{n,k} \delta^{-7/2}).
\] (2.23)

The Cauchy theorem and the spectral theorem yields
\[
\oint_{\mathcal{L}_\delta} e^{iz} R_{n+k,n+k} \, dz = -4i\pi C_{n+k,n+k}^{(n)}.
\] (2.24)

Since the integrated function in the r.h.s. of (2.23) is analytic outside σ the integral does not depend on δ, therefore we can compute this integral with $\delta \to 0$.
\[
I \left(C_{n+k,n+k}^{(n)} \right) := \lim_{\delta \to 0} \oint_{\mathcal{L}_\delta} e^{iz} \frac{C_{n+k,n+k}^{(n)} + \cos z + \sin^2 \theta/2}{2 \cos (z/2) \sqrt{\sin^2 z/2 - \sin^2 \theta/2}} \, dz
\]
\[
= -i \int_{-\theta}^{\theta} \cos \mu \frac{C_{n+k,n+k}^{(n)} + \cos \mu + \sin^2 \theta/2}{\cos (\mu/2) \sqrt{\sin^2 \mu/2 - \sin^2 \theta/2}} \, d\mu.
\]
Then, using the change of the variable $\sin \mu/2 = t$ with (2.19) we get
\[
I \left(C_{n+k,n+k}^{(n)} \right) = -4i\pi C_{n+k,n+k}^{(n)} - \frac{2i\pi \cos \theta/2}{\cos \theta/2} \left(C_{n+k,n+k}^{(n)} - \cos^2 \theta/2 \right).
\] (2.25)

Combining (2.17), (2.24) and (2.25), we have
\[
C_{n+k,n+k}^{(n)} = \cos^2 \frac{\theta}{2} + O (\varepsilon_{n,k}).
\] (2.26)

Then in view of (2.22) we obtain for the "resolvent"
\[
R_{n+k,n+k}^{(n)} (z) = \frac{1 + \cos z + O \left(\varepsilon_{n,k} \left| \text{dist} (z, \sigma) \right|^{-3} \right)}{2 \cos z/2 \sqrt{\sin^2 z/2 - \sin^2 \theta/2}}.
\] (2.27)

Similarly, integrating the product $e^{2iz} R_{n+k,n+k}^{(n)} (z)$ over the contour \mathcal{L}_δ and taking $\delta \to 0$, we get
\[
-4i\pi \left(C_{n+k,n+k}^{(n)} \right)^2 = -i \int_{-\theta}^{\theta} \frac{2 \cos \mu/2 \cos 2\mu}{\sqrt{\sin^2 \theta/2 - \sin^2 \mu/2}} \, d\mu + O (\varepsilon_{n,k})
\]
\[
= -4i\pi \left(3 \sin^4 \frac{\theta}{2} - 4 \sin^2 \frac{\theta}{2} + 1 + O (\varepsilon_{n,k}) \right).
\] (2.28)

From (1.4) we have
\[
(C_{m,m}^{(n)})^2 = C_{m,m-1}^{(n)} C_{m-1,m}^{(n)} + C_{m,m}^{(n)} C_{m,m}^{(n)} + C_{m,m+1}^{(n)} C_{m+1,m}^{(n)}
\]
\[
= C_{m,m}^{(n)} C_{m-1,m-1}^{(n)} + C_{m,m}^{(n)} C_{m,m}^{(n)} + C_{m,m}^{(n)} C_{m+1,m+1}^{(n)} - \alpha_{m-1,m+1}^{(n)} \alpha_{m,m}^{(n)} - \alpha_{m,m}^{(n)} \alpha_{m+1,m+1}^{(n)}.
\] (2.29)

Taking into account (2.26) and (2.28), we obtain from (2.29)
\[
\left\{ \begin{aligned}
\alpha_{n+k-1,n+k+1}^{(n)} + \alpha_{n+k,n+k+2}^{(n)} &= 2 \cos^2 \frac{\theta}{2} + O (\varepsilon_{n,k})
\alpha_{n+k-1,n+k}^{(n)} &= - \cos^2 \frac{\theta}{2} + O (\varepsilon_{n,k})
\end{aligned} \right.
\] (2.30)
To solve the system we multiply the first equation in (2.30) by \(\alpha_n^{(n)} \alpha_{n+k+1}^{(n)} \). By the definition of the Verblunsky coefficients \(|\alpha_j^{(n)}| \leq 1 \), hence using the second equation of (2.30) we obtain
\[
\left(\alpha_{n+k+1}^{(n)} \right)^2 + \left(\alpha_{n+k}^{(n)} \right)^2 = 2 \cos^2 \frac{\theta}{2} + O(\varepsilon_{n,k}).
\]
Finally, combining the above relations, we obtain (2.1).

\[\blacksquare\]

Remark 2.5 If the support of the equilibrium measure is the whole circle we can use function \(\phi(\mu) = \cot \frac{z - \mu}{2} \rho^{-1}(\mu) \) in (2.16) and obtain similarly to (2.26)
\[
C_{n+k,n+k}^{(n)} = O\left(n^{-1/2} \log n + \frac{|k|}{n} \right).
\]

Proof of Theorem 1.4 Let
\[
\alpha_{n+m}^{(n)} = (-1)^{n+m} s \cos \left(\frac{\theta}{2} + x_{n+m}^{(n)} \right), \quad \rho_{n+m}^{(n)} = \sin \left(\frac{\theta}{2} + x_{n+m}^{(n)} \right),
\]
where \(s = \pm 1 \) and \(x_{n+m} \in [-\pi, \pi] \). We have already a priori approximate (2.1)
\[
x_{n+m}^{(n)} = O\left(n^{-1/4} \log^{1/2} n + \frac{|m|^{1/2}}{n} \right).
\]

In this part of the paper we use the string equation for unitary matrix models (1.13). We consider these equations as a system of nonlinear equations for \(x_{n+m}^{(n)} \). Denote
\[
M^{(n)} = \frac{C^{(n)} + C^{(n)*}}{2}, \quad L^{(n)} = \frac{C^{(n)} - C^{(n)*}}{2}.
\]
Equation (1.13) can be rewritten as
\[
\left\{ L^{(n)} V' \left(M^{(n)} \right) \right\}_{n+k,n+k-1} = (-1)^{n+k} \frac{n+k}{n} \alpha_{n+k}^{(n)} \rho_{n+k}^{(n)}.
\]
To simplify notations we set
\[
\widetilde{M}_{j,k} = M_{n+j,n+k}^{(n)}, \quad \widetilde{L}_{j,k} = L_{n+j,n+k}^{(n)}, \quad \widetilde{\alpha}_k = \alpha_{n+k}^{(n)}, \quad \widetilde{x}_k = x_{n+k}^{(n)},
\]
and define \(M^* \) as a double-infinite matrix with entries
\[
M^*_{j,k} = \delta_{j,k} a + \frac{1}{2} (\delta_{j-2,k} + \delta_{j,k-2}) c.
\]
and define \(M^* \) as a double-infinite matrix with entries
\[
M^*_{j,k} = \delta_{j,k} a + \frac{1}{2} (\delta_{j-2,k} + \delta_{j,k-2}) c.
\]
and define \(M^* \) as a double-infinite matrix with entries
\[
M^*_{j,k} = \delta_{j,k} a + \frac{1}{2} (\delta_{j-2,k} + \delta_{j,k-2}) c.
\]
and define \(M^* \) as a double-infinite matrix with entries
\[
M^*_{j,k} = \delta_{j,k} a + \frac{1}{2} (\delta_{j-2,k} + \delta_{j,k-2}) c.
\]
and define \(M^* \) as a double-infinite matrix with entries
\[
M^*_{j,k} = \delta_{j,k} a + \frac{1}{2} (\delta_{j-2,k} + \delta_{j,k-2}) c.
\]
and define \(M^* \) as a double-infinite matrix with entries
\[
M^*_{j,k} = \delta_{j,k} a + \frac{1}{2} (\delta_{j-2,k} + \delta_{j,k-2}) c.
\]
and define \(M^* \) as a double-infinite matrix with entries
\[
M^*_{j,k} = \delta_{j,k} a + \frac{1}{2} (\delta_{j-2,k} + \delta_{j,k-2}) c.
\]
and define \(M^* \) as a double-infinite matrix with entries
\[
M^*_{j,k} = \delta_{j,k} a + \frac{1}{2} (\delta_{j-2,k} + \delta_{j,k-2}) c.
\]
From now we consider matrix \(\widetilde{M} \) as a double-infinite one and redefine it for \(j, k < -n \) equal to \(M^* \). It is convenient for us to extend the function \(V' \) from \([-1, 1]\) to \(\mathbb{R} \) in such a way to obtain the function from \(L_2(\mathbb{R}) \) with the third derivative bounded in \(L_2(\mathbb{R}) \). Denoting \(\widetilde{V}' \) the Fourier transform of the extension we have for \(x \in [0, 2\pi] \)

\[
V'(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{V}'(\xi) e^{ix\xi} d\xi.
\]

(2.40)

Using (2.40), \(V'(M^{(n)}) \) can be represented

\[
V'(\widetilde{M})_{i,j} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{V}'(\xi) \left\{ e^{i\xi M} \right\}_{i,j} d\xi.
\]

(2.41)

Applying the Duhamel formula twice to matrices \(\widetilde{M} \) and \(M^* \), we obtain

\[
e^{i\xi \widetilde{M}} = e^{i\xi M^*} + i\xi \int_0^1 e^{i\xi \delta M} (\delta M) e^{i\xi \delta M^*(1-t)} dt
\]

\[
- \xi^2 \int_0^1 dt \int_0^{1-t} s e^{i\xi \delta M} (\delta M) e^{i\xi \delta M^*(1-t-s)} ds,
\]

for \(\delta M = \widetilde{M} - M^* \).

(2.42)

Denote for \(d = 0, \pm 1, \pm 2 \)

\[
\hat{f}(\xi) = \left\{ e^{i\xi \delta M} \right\}_{k+d, k-1}, \quad \hat{f}^0(\xi) = \left\{ e^{i\xi \delta M^*} \right\}_{k+d, k-1},
\]

\[
\hat{f}^1(\xi) = \left\{ i\xi \int_0^1 e^{i\xi \delta M} (\delta M) e^{i\xi \delta M^*(1-t)} dt \right\}_{k+d, k-1}, \quad \hat{r}(\xi; d) = \hat{f}(\xi) - \hat{f}^0(\xi) - \hat{f}^1(\xi).
\]

(2.43)

Now we find the first two terms in (2.42).

\[
\hat{f}^0(\xi) = \left\{ e^{i\xi \delta M^*} \right\}_{k+d, k-1} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i\xi(a+c\cos 2\phi)} e^{i(k+d)\phi} e^{-i(k-1)\phi} d\phi
\]

\[
= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i\xi(a+c\cos 2\phi)} \cos (d + 1) \phi d\phi.
\]

(2.44)

Let \(v_k \) be the coefficients of the Fourier series for the function \(V'(a + c \cos 2\phi) \), i.e.,

\[
v_k = \frac{1}{\pi (1 + \delta_{k,0})} \int_{-\pi}^{\pi} V'(a + c \cos 2\phi) \cos k\phi d\phi.
\]

(2.45)

Note that \(v_{2l+1} = 0 \), for any integer \(l \). By the spectral theorem we obtain

\[
\left\{ \widetilde{L}V'(M^*) \right\}_{k-1} = \sum_{d=0, \pm 1, \pm 2} \widetilde{L}_{k+d, k-1} \frac{1}{2\pi} \int_{-\pi}^{\pi} V'(a + c \cos 2\phi) \cos (d + 1) \phi d\phi
\]

\[
= \frac{\widetilde{L}_{k,k+1}}{c} + (\widetilde{L}_{k,k+1} + \widetilde{L}_{k,k-1}) v_0,
\]

(2.46)

where we have used the relation

Proposition 2.6 Under conditions C1-C3 for \(v_k \) defined in (2.45)

\[
v_2 = 2v_0 + \frac{2}{c}.
\]
For the second term in (2.42) we have

\[
\hat{f}^1(\xi) = i\xi \sum_{l=-\infty}^{\infty} \sum_{d_1=-2}^{2} \int_0^1 \left\{ e^{it\xi M^*} \right\} \delta M_{k+l,k+l+d_1} \left\{ e^{i(1-t)\xi M^*} \right\} dt,
\]
and by the spectral theorem and (2.39) we have

\[
\hat{f}^1(\xi) = \sum_{l=-\infty}^{\infty} \sum_{d_1=-2}^{2} \delta M_{k+l,k+l+d_1} e^{i[(l-d)\phi+(l+d_1+1)\psi]} e^{i(\alpha u+\beta v)} \cos 2u - \cos 2v.
\]

(2.47)

Hence, integrating (2.47) with \(\hat{V}'\) we obtain the second term in (2.35) in the form

\[
\frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{V}'(\xi) \hat{f}^1(\xi) d\xi = \sum_{l=-\infty}^{\infty} \sum_{d_1=-2}^{2} \delta M_{k+l,k+l+d_1} B_{l-d,l+d_1+1},
\]

(2.48)

where

\[
B_{\alpha,\beta} = \frac{1}{4\pi^2 c} \int_{-\pi}^{\pi} du \int_{-\pi}^{\pi} dv V'(a + c \cos 2u) - V'(a + c \cos 2v) e^{i(\alpha u + \beta v)}.
\]

(2.49)

Below we need some properties of these coefficients.

Proposition 2.7 For any function \(V\) satisfying condition \(C3\) coefficient \(B_{\alpha,\beta}\) depends only on \(|\alpha| + |\beta|\), i.e. \(B_{\alpha,\beta} = B_{|\alpha|+|\beta|}\), equals to zero when \(\alpha\) or \(\beta\) is odd and for any positive \(\gamma\)

\[
B_{2\gamma} = \frac{1}{c} \sum_{j=-\gamma \in 2N+1} v_{2j} = O(\gamma^{-5/2}).
\]

(2.50)

Since \(\delta M_{k,l}\) are bounded, the proposition yields that the series in the r.h.s of (2.48) is convergent. Using (2.35), (2.46), and (2.48), we obtain the equation valid for any \(k\)

\[
\tilde{L}_{k,k+1}^{(n)} + \left(\tilde{L}_{k,k+1} + \tilde{L}_{k,k-1} \right) v_0 + \sum_{d,d_1=-2}^{2} \sum_{l=-\infty}^{\infty} \tilde{L}_{k,k+d} B_{l-d,l+d_1+1} \delta M_{k+l,k+l+d_1} + r_k^{(n)}
\]

(2.51)

for

\[
r_k^{(n)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{V}'(\xi) \sum_{d=-2}^{2} \hat{r}(\xi; d) d\xi.
\]

Set

\[
S_k = \sum_{j=-10}^{10} \tilde{x}_{k+j}^2.
\]
Then \(\widetilde{L}_{k,j} \) and \(\delta M_{k,j} \) can be written up to the errors \(O(S_k) \) as

\[
\begin{align*}
\delta M_{k,k-2} &= -\frac{b}{2} (\bar{x}_{k-1} + \bar{x}_k), & \widetilde{L}_{k,k-2} &= (-1)^{n+k} \left(\frac{c}{2} + \frac{b}{2} (\bar{x}_{k-1} + \bar{x}_k) \right), \\
\delta M_{k,k-1} &= (-1)^{n+k-1} s \frac{c}{2} (\bar{x}_{k-1} - \bar{x}_{k+1}), & \widetilde{L}_{k,k-1} &= -sb - sa \bar{x}_k + s \frac{c}{2} (\bar{x}_{k-1} + \bar{x}_{k+1}) \\
\delta M_{k,k} &= b (\bar{x}_k + \bar{x}_{k+1}), & \widetilde{L}_{k,k} &= 0 \\
\delta M_{k,k+1} &= (-1)^{n+k} s \frac{c}{2} (\bar{x}_k - \bar{x}_{k+2}), & \widetilde{L}_{k,k+1} &= sb + sa \bar{x}_{k+1} - s \frac{c}{2} (\bar{x}_k + \bar{x}_{k+2}) \\
\delta M_{k,k+2} &= -\frac{b}{2} (\bar{x}_{k+1} + \bar{x}_{k+2}), & \widetilde{L}_{k,k+2} &= (-1)^{n+k+1} \left(\frac{c}{2} + \frac{b}{2} (\bar{x}_{k+1} + \bar{x}_{k+2}) \right).
\end{align*}
\]

Replacing \(\widetilde{L}_{i,j} \) and \(\delta M_{i,j} \) by their first order approximations and reminders we get a system of equations with respect to \(\bar{x}_j \).

Lemma 2.8 Under conditions C1-C3 equations (2.51) for \(\{\bar{x}_k\}_{|k| \leq \varepsilon_1 n} \) have the form

\[
\sum_i A_{k-l} \bar{x}_l = \frac{b}{c n} k + R_k,
\]

and the Toplitz matrix \(A \) has the symbol

\[
\delta (\phi) = \sum A_i e^{il\phi} = \frac{\sqrt{1-c \cos^2 (\phi/2)}}{\pi \sqrt{2}} \left[-2 \arcsin \left(\sin \frac{\theta}{2} \cos \frac{\phi}{2} \right) \right].
\]

Reminder \(R_k \) satisfies the bound

\[
R_k \leq C \left(\frac{k^2}{n^2} + S_k + \sum S_{k+2l} |l|^{-5/2} \right) + r_k^{(n)},
\]

where

\[
\left| r_k^{(n)} \right|^2 \leq C \int_0^\infty e^{-y} y^5 \| r_{k,y} \|_2^2 dy,
\]

\[
r_{k,y} (x) = \min \left\{ y^{-1} \sum_{s=-\infty}^{\infty} |R_{2s,0}^s|^2 S_{k+2s}, \quad \text{dist}^{-1} (z, [-1, 1]) + y^{-1} \text{dist} R_{0,0} \right\},
\]

where \(\| \cdot \|_2 \) means the \(L_2 (\mathbb{R}) \) norm, and \(R^* (z) = (M^* - z I)^{-1} \), \(z = -x + iy \).

Equations (2.53) are true only for \(|k| \leq \varepsilon_1 n \). But we extend them to all \(k \in \mathbb{Z} \) redefining (2.53) by the identities. All bounds for the reminders will be valid because the reminder for \(k \sim n \) is of order 1.

Now we start from the bound (2.1) and using the perturbation theory method obtain (1.12) in a few steps. Suppose we have proved the bound

\[
\bar{x}_m = O \left(\log^{3/2} n \left(n^{-\alpha} + |m/n|^{\gamma} \right) \right).
\]

Note that on the first step we have it with \(\alpha = 1/4, \beta = 1/2, \gamma = 1/2 \). This bound yields that

\[
S_{k+2s} \leq \log^{2\beta} n \left(n^{-2\alpha} + n^{-2\gamma} + \min \left\{ |k/n|^{2\gamma} + |s/n|^{2\gamma}, 1 \right\} \right).
\]

14
To estimate the reminder R_k we must estimate $r_{k,y}(x)$ first. For this aim we need some properties of R^*. From the spectral theorem we have

$$R^*_{j,l} = G_{j-l} := \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i(j-l)\phi}}{a - z + c \cos 2\phi} \, d\phi.$$ \hfill (2.59)

Using this representation we will estimate the sums in the r.h.s of (2.56).

Proposition 2.9 Let G_i be defined in (2.59). Then for any integer p

$$\int_{-\infty}^{\infty} \left(\sum_{s=0}^{\infty} |G_{2s}(-x + iy)|^2 s^p \right)^2 \, dx \leq C_p \max \left\{ 1, \log 1/y \right\} \frac{\log 1/y}{y^{2p+2}}. \quad (2.60)$$

To estimate $r_k^{(n)}$ we use the second bound from the r.h.s of (2.56) for small y and the first bound for sufficiently big y. Combining (2.56) with (2.58) we get

$$r_{k,y}(x) \leq \frac{C_{\alpha,\beta,\gamma} \log 2^2}{y} \cdot \left\{ \begin{array}{ll}
\sum_{s=0}^{\infty} |G_{2s}(-x + iy)|^2 \left(n^{-2\alpha} + n^{-2\gamma} + \min \left\{ |k/n|^{2\gamma}, 1 \right\} + |s/n|^{2\gamma} \right), & y \geq n^{-\delta} \\
\exists G_0, & y \leq n^{-\delta},
\end{array} \right.$$

where δ we will choose on every step. Integrating the square of the last equation over x and using (3.21) and (2.60), we obtain

$$\|r_{k,y}(x)\|_2^2 \leq \frac{C'_{\alpha,\beta,\gamma} \log 2^{3+1}}{y^4} \cdot \left\{ \begin{array}{ll}
(n^{-4\alpha} + n^{-4\gamma} + \min \left\{ |k/n|^{4\gamma}, 1 \right\} + (ny)^{-4\gamma}), & y \geq n^{-\delta} \\
y^2 \log 1/y, & y \leq n^{-\delta}
\end{array} \right.$$

The last bound and (2.56) imply

$$\left| r_k^{(n)} \right|^2 \leq \frac{C_{\alpha,\beta,\gamma,\delta} \log 2^{3+2} n \left(n^{-4\delta} + n^{-4\alpha} + n^{-4\gamma} + \min \left\{ |k/n|^{4\gamma}, 1 \right\} + n^{-4\gamma+\delta(4\gamma-2)} \right). \quad (2.61)$$

Now we estimate R_k. The term $\sum_l S_{k+2l} l^{-5/2}$ can be estimate using (2.58).

$$\sum_l S_{k+2l} l^{-5/2} = \sum_{l \leq n} + \sum_{l \geq n} \leq C'_{\alpha,\beta,\gamma,\delta} \log 2^{3} n \left(n^{-2\alpha} + n^{-2\gamma} + \min \left\{ |k/n|^{2\gamma}, 1 \right\} + n^{-3/2} \right).$$

Combining the above relations finally we can estimate the reminder R_k:

$$R_k = O \left(k^2/n^2 + n^{-3/2} + \log 2^{3+1} n \left(n^{-2\delta} + n^{-2\alpha} + \min \left\{ |k/n|^{2\gamma}, 1 \right\} + n^{-2\gamma+\delta(2\gamma-1)} \right) \right).$$

To find \tilde{x}_j we find the inverse matrix of $\{A_{k-l}\}_{k,l=-\infty}^{\infty}$. By the spectral theorem

$$(A^{-1})_{k,l} = (A^{-1})_{k-l} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(k-l)\phi} \delta(\phi) \, d\phi.$$
From the conditions C1-C2 $P(\lambda) > C > 0$ on the interval $[-\theta, \theta]$, therefore the solution of the (2.53) can be found as

$$\bar{x}_k = \frac{b}{c} \sum_m \left(\frac{m + k}{n} + R_{m+k} \right) (A^{-1})_m = \frac{2\pi \sqrt{2}}{P(\theta) \sin \theta} k + \sum_m R_{m+k} (A^{-1})_m \quad (2.62)$$

Since $P(\lambda)$ is a twice differentiable function we have $\sum_m |A^{-1}_m|^2 m^4 \leq C$. Therefore

$$\left| \sum_m R_{m+k} A^{-1}_m \right| / \log^{2\beta+1} n$$

$$= O \left(\sum_m |A^{-1}_m|^2 \left(n^{-2\delta} + n^{-2\alpha} + n^{-3/2} + n^{-2\gamma+\delta(2\gamma-1)} + \min \left\{ \frac{k^2}{n^2}, 1 \right\} + \min \left\{ \frac{2\gamma}{n^2}, 1 \right\} \right) \right)$$

$$+ O \left(\sum_{|m| \leq n} |A^{-1}_m|^2 \right) + O \left(\sum_{|m| \geq n} |A^{-1}_m| \right)$$

$$= O \left(n^{-2\delta} + n^{-2\alpha} + n^{-3/2} + n^{-2\gamma+\delta(2\gamma-1)} + \min \left\{ \frac{k^2}{n^2}, 1 \right\} + \min \left\{ \frac{2\gamma}{n^2}, 1 \right\} \right),$$

where we use

$$\sum_{|m| \leq n} |A^{-1}_m|^2 n \geq \sum_{|m| \leq n} |A^{-1}_m|^2 m^2 \cdot \frac{2\gamma}{n^2} m^{-2} \leq C n^{-3/2}.$$

Using the last inequality for \bar{x} with $\alpha = 1/4$, $\beta = 1/2$, $\gamma = 1/2$, $\delta = 1/4$ we obtain the bound (2.57) with $\alpha = 1/2$, $\beta = 2$, $\gamma = 1$. Taking $\delta = 1/2$ we have $\alpha = 1$, $\beta = 5$, $\gamma = 2$ and finally with $\delta = 2/3$ we get $\alpha = 4/3$, $\beta = 11$, $\gamma = 2$.

$$\bar{x}_k = \frac{2\pi \sqrt{2}}{P(\theta) \sin \theta} k + O \left(\log^{11} n \left(n^{-4/3} + \frac{k^2}{n^2} \right) \right).$$

3 Auxiliary results.

Proof of Proposition 1.2. To prove (1.9) we denote

$$D_\theta = \{ z : |z| = 1, \arg z \in [-\theta, \theta] \}.$$

Consider two functions defined on D_θ

$$F(e^{i\lambda}) = \frac{i - (V(\cos \lambda))'}{2\pi i}, \quad G(e^{i\lambda}) = \rho(\lambda).$$

From (1.6) we obtain

$$F(\xi) = \frac{1}{\pi i} v.p. \int_\mathfrak{L} \frac{G(\zeta)}{\zeta - \xi} d\zeta,$$

where \mathfrak{L} is D_θ with the direction from $\zeta_0 = e^{-i\theta}$ to $\overline{\zeta_0}$. Then by the standard method (see [12]) we get

$$G(z) = \frac{X(z)}{2\pi i} v.p. \int_{\mathfrak{L}} \frac{F(\zeta)}{\zeta - z} X'(\zeta). \quad (3.1)$$
where
\[X(z) = \sqrt{(z - \zeta_0)(z - \overline{\zeta_0})}, \quad (3.2) \]

It is easy to see that \(X^+(e^{i\lambda}) = \sqrt{2}e^{i\lambda/2} \chi(\lambda) \). Using the identity (2.19) we obtain that\(v.p.\int_\zeta (\zeta - \zeta_1)X^+(\zeta) = 0. \) From the last relation and (3) we obtain (1.9).

Proof of Lemma 2.2. Consider the function
\[
F(\lambda) = \frac{1}{4\pi^2} \int_{-\theta}^{\theta} \csc \frac{\lambda - \mu}{2} \frac{P(\mu) (\cos \mu - \cos \theta) - P(\lambda) (\cos \lambda - \cos \theta) \cos \mu/2 \cos \lambda/2}{\sqrt{\cos \mu - \cos \theta}} d\mu. \quad (3.3)
\]

We prove first that \(F \) coincides with \(V' \) on \(\sigma \). For this aim we compute the integral
\[
I(\lambda) = v.p.\int_{-\theta}^{\theta} \csc \frac{\lambda - \mu}{2} \mu \csc \frac{\mu(\mu/2)}{2} d\mu = v.p.\int_{-\theta}^{\theta} \sin \lambda \frac{\cos(\mu/2) d\mu}{\sin \mu - \sin \lambda} = 2\pi \frac{\cos (\lambda/2) \sin \lambda}{\sqrt{\cos \theta - \cos \lambda}} 1_{[-\theta, \theta]^c},
\]

where we have used (2.19). This relation and (1.6) imply that \(F(\lambda) = (V(\cos \lambda))' \) for \(\lambda \in \sigma \). Since \(P \) is a twice differentiable function, we obtain that \(F \) is a differentiable function. Then
\[
F(\lambda) - V'(\lambda)|_{\lambda=\theta-0} = 0 \Rightarrow F'(\lambda) - V''(\lambda)|_{\lambda=\theta-0} = 0 \Rightarrow F'(\theta) = V''(\theta)
\]

The function \(F - V' \) is a differentiable on \(\sigma_{\varepsilon} \) and equals 0 with its first derivative on \(\sigma \). Hence we have \(F(\lambda) - (V(\cos \lambda))' = O(|\cos \lambda - \cos \theta|) \) for \(\lambda \in \sigma_{\varepsilon} \setminus \sigma \).

Proof of Proposition 1.5. From the identity
\[
\int_{-\pi}^{\pi} \left(\chi_k^{(n)}(e^{i\lambda}) \overline{\chi_k^{(n)}(e^{i\lambda})} \right) e^{-nV(\cos \lambda)} d\lambda = 0,
\]

and orthogonality \(\left\langle \frac{d}{d\lambda} \chi_k^{(n)}(e^{i\lambda}), \chi_k^{(n)}(e^{i\lambda}) \right\rangle = 0 \) we get
\[
\int_{0}^{2\pi} \sin \lambda V'(\cos \lambda) \chi_k^{(n)}(e^{i\lambda}) \overline{\chi_k^{(n)}(e^{i\lambda})} e^{-nV(\cos \lambda)} d\lambda = -\frac{1}{n} \left\langle \frac{d}{d\lambda} \chi_k^{(n)}(e^{i\lambda}), \overline{\chi_k^{(n)}(e^{i\lambda})} \right\rangle. \quad (3.4)
\]

To compute the r.h.s of (3.4) we use the definition of orthogonal polynomials (1.11) and some properties of polynomials \(P_k^{(n)} \) and \(Q_k^{(n)} \). We assume that \(k \) is odd. For even \(k \) the proof is similar. From the definition of \(\chi_k^{(n)} \) we obtain
\[
I_{k,n} := \left\langle \frac{d}{d\lambda} \chi_{2k+1}^{(n)}(e^{i\lambda}), \chi_{2k}^{(n)}(e^{i\lambda}) \right\rangle = \left\langle \frac{d}{d\lambda} \left(e^{-ik\lambda} P_{2k+1}^{(n)}(e^{i\lambda}) \right), e^{-ik\lambda} Q_{2k}^{(n)}(e^{i\lambda}) \right\rangle = -ik \left\langle e^{-ik\lambda} P_{2k+1}^{(n)}(e^{i\lambda}), e^{-ik\lambda} Q_{2k}^{(n)}(e^{i\lambda}) \right\rangle + \left\langle \frac{d}{d\lambda} P_{2k+1}^{(n)}(e^{i\lambda}), Q_{2k}^{(n)}(e^{i\lambda}) \right\rangle.
\]
From the definition of $P_k^{(n)}$ we have
\[P_k^{(n)}(\lambda) \perp e^{in\lambda}, m = 0, \ldots, k - 1; \quad Q_k^{(n)}(\lambda) \perp e^{in\lambda}, m = 1, \ldots, k. \] (3.5)

Therefore the first term in the above relation is zero. Hence
\[I_{k,n} = i (2k + 1) c_{2k+1,2k+1}^{(n)} \left< e^{i(2k+1)\lambda}, Q_k^{(n)}(e^{i\lambda}) \right>. \]

Now using (3.5) one more time and equality $\| P_k^{(n)} \| = 1$ we obtain
\[I_{k,n} = i (2k + 1) c_{2k+1,2k+1}^{(n)} \left< P_k^{(n)}(e^{i\lambda}) - c_{2k+1,0}^{(n)} Q_k^{(n)}(e^{i\lambda}), Q_k^{(n)}(e^{i\lambda}) \right> = -i (2k + 1) c_{2k+1,0}^{(n)} \left< P_k^{(n)}(e^{i\lambda}), e^{i(2k\lambda)} \right> = -i (2k + 1) \frac{c_{2k+1,0}^{(n)}}{c_{2k,2k}^{(n)}} = -i (2k + 1) \frac{\alpha_{2k+1}^{(n)}}{\rho_{2k+1}^{(n)}} \] (3.6)

Relations (3.4) and (3.6) give us (1.13).

Proof of Proposition 2.6. We prove the proposition, using (1.6). Consider the difference $v_2 - 2v_0$ and its integral representation.
\[v_2 - 2v_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} V'(a + c \cos 2\phi) (\cos 2\phi - 1) d\phi. \]

Changing the variables with $\sin \frac{\lambda}{2} = \sin \frac{\theta}{2} \sin \phi$, we get
\[v_2 - 2v_0 = \frac{1}{\pi c^{\frac{3}{2}}} \int_{\sigma} \left(\cos \lambda \sin \frac{\lambda}{2} \sin \frac{\theta}{2} \right) d\lambda. \]

And finally, using (1.6), we obtain
\[v_2 - 2v_0 = \frac{1}{c\pi} \int_{\sigma} d\mu \rho(\mu) v.p. \int_{\sigma} \cot \frac{\lambda - \mu}{2} \frac{\sin \lambda/2 d\lambda}{\sqrt{\sin^2 \theta/2 - \sin^2 \lambda/2}} = \frac{2}{c} \int_{\sigma} \rho(\mu) d\mu = \frac{2}{c}. \]

Proof of Proposition 2.7. We prove first (2.50) for $V'(a + c \cos 2u) = \cos 2ku$ with $k \geq 0$. B is symmetric over changing $\alpha \rightarrow -\alpha, \beta \rightarrow -\beta, \alpha \leftrightarrow \beta$. Hence, we can assume $\beta \geq \alpha \geq 0$. For odd α or β we will have 0, because of the ratio under the integral in the (2.49) does not change after the shift $u \rightarrow \pi + u$ and $v \rightarrow \pi + v$. Therefore we change $\alpha \rightarrow 2\alpha$ and $\beta \rightarrow 2\beta$. And finally, changing $2u \rightarrow u$ and $2v \rightarrow v$ in (2.49), we obtain
\[B_{2\alpha,2\beta}^{(k)} := \frac{1}{4\pi^2 c} \int_{-\pi}^{\pi} du \int_{-\pi}^{\pi} dv \frac{\cos ku - \cos(kv)}{\cos u - \cos v} \cos \alpha u \cos \beta v. \]
To compute this integral we use two evident relations

\[\int_{-\pi}^{\pi} \frac{\sin lu}{\sin u} du = 2\pi \text{sign } l \cdot \begin{cases} 1, & l \text{ is odd,} \\ 0, & l \text{ is even.} \end{cases} \]

(3.7)

\[\int_{-\pi}^{\pi} \frac{\cos lu - \cos lv}{\cos u - \cos v} dv = 2\pi \frac{\sin lu}{\sin u}. \]

(3.8)

Now to apply (3.7) and (3.8) we transform integral for \(B_{2\alpha,2\beta}^{(k)} \) as follows

\[
B_{2\alpha,2\beta}^{(k)} = \frac{1}{4\pi^2c} \int_{-\pi}^{\pi} du \int_{-\pi}^{\pi} dv \frac{\cos ku - \cos kv}{\cos u - \cos v} \frac{\cos \alpha u - \cos \alpha v}{\cos \alpha u - \cos \alpha v} cos \beta v \\
+ \frac{1}{4\pi^2c} \int_{-\pi}^{\pi} du \int_{-\pi}^{\pi} dv \frac{\cos ku - \cos kv}{\cos u - \cos v} \cos \alpha v \cos \beta v.
\]

We write the first integral as a sum of two parts: one with \(\cos ku \) and the other with \(\cos kv \). Then in the second part we integrate over \(u \) using (3.8). In the second integral above we similarly integrate over \(u \) and use (3.8). Then we obtain

\[
B_{2\alpha,2\beta}^{(k)} = \frac{1}{4\pi^2c} \int_{-\pi}^{\pi} du \int_{-\pi}^{\pi} dv \frac{\cos ku}{\cos u - \cos v} \frac{\cos \alpha u}{\cos u - \cos v} \cos \beta v \\
+ \frac{1}{2\pi c} \int_{-\pi}^{\pi} dv \frac{\sin kv}{\sin v} \frac{\sin \alpha v}{\sin v} \cos \alpha v \cos \beta v.
\]

Note that the function \(f_u (v) := \frac{\cos \alpha u - \cos \alpha v}{\cos u - \cos v} \) can be represented as a trigonometric polynomial of \(v \) with degree not bigger than \(\alpha - 1 \), therefore the first integral in the above relation is equal to 0 if \(\beta \geq \alpha \). And finally we have

\[
B_{2\alpha,2\beta}^{(k)} = \frac{1}{4\pi c} \int_{-\pi}^{\pi} \sin (k - \alpha - \beta) v + \sin (k - \alpha + \beta) v dv \\
= \begin{cases} c^{-1}, & k - \alpha - \beta \in 2\mathbb{N} + 1 \\ 0, & otherwise \end{cases}.
\]

(3.9)

Now using (3.9) and the Fourier expansion \(V'(a + c \cos 2\phi) = \sum_{k=0}^{\infty} v_{2k} \cos 2k\phi \), we obtain the first equality in (2.50). To estimate \(B_{2\alpha,2\beta}^{(k)} \) we use the Schwarz inequality

\[
\left| \sum_{k-\alpha-\beta \in 2\mathbb{N}+1} v_{2k} \right| \leq \sqrt{\sum_{k>2\alpha+2\beta} v_{2k}^2 k^6} \sqrt{\sum_{k>2\alpha+2\beta} \frac{1}{k^6}} = \mathcal{O} \left((\alpha + \beta)^{-5/2}\right).
\]
Proof of the Lemma 2.8 Using (2.52) in (2.51) we obtain
\[
\frac{b}{c} + \frac{a}{c} x_{k+1} - \frac{1}{2} (x_k + x_{k+2}) + v_0 \left(\frac{c}{2} x_{k-1} + \frac{1 + a}{2} (-x_k + x_{k+1}) - \frac{c}{2} x_{k+2} \right) \\
+ \sum_{l=-\infty}^{\infty} \left[\frac{c^2}{4} (B_{|u+2|} - B_{|u-2|}) (x_{k+2l-1} - x_{k+2l+1}) \\
+ \frac{c^2}{4} (B_{|u+4|} - B_{|u-4|}) (x_{k+2l+2} - x_{k+2l}) \\
- \frac{b^2}{2} (B_{|u+4|} - B_{|u-4|}) (x_{k+2l-2} + x_{k+2l-1}) \\
- \frac{b^2}{2} (B_{|u+4|} - B_{|u-4|}) (x_{k+2l} + x_{k+2l+1}) \\
+ b^2 (B_{|u|} - B_{|u-2|}) (x_{k+2l-1} + x_{k+2l}) \right] = \frac{b}{c} \left(1 + \frac{k}{n} \right) - \frac{1}{c} x_k + R_k, \tag{3.10}
\]
where \(R_k \) accumulates the errors of (2.51) and (2.52). It is easy to see that
\[
|R_k| \leq C \left(\frac{k^2}{n^2} + S_k + \sum_{l=-\infty}^{\infty} (S_k + S_{k+2l}) \left(|B_{|u-4|}| + \ldots + |B_{|u+4|}| \right) \right) + r_k^{(n)}.
\]
Recollecting terms with \(x_j \) we obtain the system (3.10) in the form (2.53). Definitions (2.53), (2.54) and system (3.10) imply
\[
\delta (\phi) = A_0 + 2 \sum_{l=1}^{\infty} A_l \cos (l\phi) \\
= -av_0 + \frac{1 - (1 + a) v_0}{2} + cv_0 \cos \phi + v_2 \left(\frac{c}{4} - \frac{c}{2} \cos 2\phi + 2a \cos \phi + 2a \right) \\
+ \sum_{l=1} v_{4l} \left(\frac{c}{2} (\cos (2l+1) \phi - \cos (2l-1) \phi) - 2a \cos 2l\phi - 2a - 4a \left(\sum_{k=1}^{2l-1} \cos k\phi \right) \right) \\
+ \sum_{l=2} v_{4l-2} \left(\frac{c}{2} (\cos (2l-2) \phi - \cos (2l) \phi) + 2a \cos (2l-1) \phi + 2a + 4a \left(\sum_{k=1}^{2l-2} \cos k\phi \right) \right) \\
= \left(c \sin \phi + 2a \cot \frac{\phi}{2} \right) \sum_{l=1}^{\infty} (-1)^{l-1} \sin l\phi v_{2l} - \frac{c}{4} v_2 + v_0 \left(-a - \frac{1 + a}{2} + c \cos \phi \right) + \frac{1}{2} \\
= -2 \left(a + c \sin^2 \frac{\phi}{2} \right) \left(\sum_{l=1}^{\infty} v_{2l} (-1)^l \frac{\sin l\phi}{\sin \phi} 2 \cos^2 \frac{\phi}{2} + v_0 \right). \tag{3.11}
\]
On the other hand, from the definition (1.10) we have
\[
P \left(2 \arcsin \left(\sin \frac{\theta}{2} \sin \frac{v}{2} \right) \right) = 2\pi \sqrt{2 \left(1 - c \sin^2 \frac{v}{2} \right)} \left(1 - \cos v \sum_{l=1}^{\infty} v_{2l} \frac{\sin l\phi}{\sin \phi} - v_0 \right).
\tag{3.12}
\]
The equality can be obtained from (1.10) by the change of variables \(\sin \frac{\lambda}{2} = \sin \frac{\theta}{2} \sin \frac{u}{2} \) and \(\sin \frac{\mu}{2} = \sin \frac{\theta}{2} \sin \frac{v}{2} \)

\[
P(\mu) = \int_{-\theta}^{\theta} \frac{V'(\lambda) - V'(\mu)}{\sin \frac{\lambda - \mu}{2} \sqrt{\cos \lambda - \cos \theta}} d\lambda
\]

\[
= \sqrt{2} \int_{-\pi}^{\pi} \frac{\sin \frac{v}{2} \cos \mu / 2 V'(a + c \cos v) - \sin \frac{u}{2} \cos \lambda / 2 V'(a + c \cos u)}{\cos \lambda / 2} du
\]

\[
= \sqrt{2} \int_{-\pi}^{\pi} \frac{\cos \mu / 2 (\sin^2 \frac{v}{2} V'(a + c \cos v) - \sin^2 \frac{u}{2} V'(a + c \cos u))}{\sin^2 \frac{u}{2} - \sin^2 \frac{v}{2}} du
\]

\[
= \sqrt{2} \cos \frac{\mu}{2} \left((1 - \cos v) \int_{-\pi}^{\pi} \frac{V'(a + c \cos u) - V'(a + c \cos v)}{\cos u - \cos v} du - 2\pi v_0. \right) \quad (3.13)
\]

Now, using the definition of \(v_{2f} \) and equality

\[
\int_{-\pi}^{\pi} \cos lu - \cos lv du = 2\pi \frac{\sin lv}{\sin v},
\]

we obtain (3.12). Therefore,

\[
\delta(\phi) = \sqrt{1 - c \cos^2 \frac{\phi}{2}} P \left(-2 \arcsin \left(\sin \frac{\theta}{2} \cos \frac{\phi}{2} \right) \right). \quad (3.14)
\]

To estimate the reminder we will use the inequality

\[
\left| \int_{-\infty}^{\infty} f(x) g(x) dx \right| \leq \sqrt{\frac{1}{2\pi \Gamma(2s)}} \int_0^{\infty} e^{-y y^{2s-1}} \| f \ast P_y \|_2^2 dy \sqrt{\int_{-\infty}^{\infty} |\widehat{g}(\xi)|^2 (2 |\xi| + 1)^{2s} d\xi},
\]

where \(P_y(t) = \frac{y}{\pi (y^2 + t^2)} \), \(g(x) \) any \(s \)-times differentiable function with \(g^{(s)} \in L_2 \) and \(f \in L_2 \). The inequality was proposed in [6]. It can be obtained from the Schwartz inequality

\[
\left| \int_{-\infty}^{\infty} f(x) g(x) dx \right| = \left| \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{f}(\xi) \overline{\widehat{g}(\xi)} d\xi \right|
\]

\[
\leq \frac{1}{2\pi} \left(\int_{-\infty}^{\infty} |\widehat{f}(\xi)|^2 (2 |\xi| + 1)^{-2s} d\xi \right)^{1/2} \left(\int_{-\infty}^{\infty} |\widehat{g}(\xi)|^2 (2 |\xi| + 1)^{2s} d\xi \right)^{1/2},
\]

and exact computation of the Fourier transform of \(P_y \)

\[
\widehat{P}_y(\xi) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{y^2 + x^2} e^{-it\xi} dt = \text{sign}(y) e^{-|y||\xi|},
\]

Now, using that

\[
\| f \ast P_y \|_2^2 = \frac{1}{2\pi} \left\| \widehat{f} \widehat{P}_y \right\|_2^2,
\]

and the definition of \(\Gamma \)-function we obtain

\[
\int_{0}^{\infty} e^{-y y^{2s-1}} \left| \widehat{P}_y(\xi) \right|^2 dy = \frac{1}{\Gamma(2s)} \int_{0}^{\infty} e^{-y(2|\xi|+1)^{2s}} dy = (2 |\xi| + 1)^{-2s}.
\]
Finally, combining the above relations, we get (3.15). We use this inequality for \(\hat{\mathcal{V}}^i \) and \(\hat{r} \left(\xi ; d \right) \) with \(s = 3 \).

\[
\left| \frac{1}{2\pi} \int \hat{\mathcal{V}}^i (\xi) \hat{r} (\xi ; d) \, d\xi \right|^2 \leq C_V \int_0^\infty e^{-y^5} \| r (d) \ast P_y \|_2^2 \, dy
\]

\[
= C_V \int_0^\infty e^{-y^5} \| \left(f - f^0 - f^1 \right) \ast P_y \|_2^2 \, dy.
\]

On the other hand, for any self-adjoint linear operator \(A \) and any linear \(B \) we have

\[
\frac{1}{2\pi} \int e^{ix} \hat{P}_y (\xi) e^{iA\xi} \, d\xi = \frac{1}{\pi} \Im G_A (-x + iy),
\]

\[
\frac{1}{2\pi} \int e^{ix} \hat{P}_y (\xi) e^{iA\xi} B e^{i\xi (1-t)} \, d\xi = \frac{1}{\pi} \Im G_A (-x + iy) B G_A (-x + iy),
\]

where \(G_A (z) = (A - z)^{-1} \). Hence from (2.43) and (3.16) we have

\[
(f \ast P_y) (x) = \frac{1}{\pi} \Im R_{k+d,k-1} (-x + iy),
\]

\[
(f^0 \ast P_y) (x) = \frac{1}{\pi} \Im R^*_{k+d,k-1} (-x + iy),
\]

\[
(f^1 \ast P_y) (x) = \frac{1}{\pi} \Im \left\{ R^* (-x + iy) \, \delta M R^* (-x + iy) \right\}_{k+d,k-1}.
\]

Using the resolvent identity, (3.17), (3.18), and (3.19), we obtain

\[
(r \ast P_y) (x) = (f \ast P_y) (x) - (f^0 \ast P_y) (x) - (f^1 \ast P_y) (x)
\]

\[
= \Im \left\{ R^* (-x + iy) \, \delta M R^* (-x + iy) \right\}_{k+d,k-1}. \tag{3.20}
\]

Now we are ready to estimate \(r (d) \ast P_y \).

\[
|r (d) \ast P_y| \leq \| (R^* (-x + iy) \, \delta M R^* (-x + iy) \, \delta M R^* (-x + iy) \, e_{k-1} , e_{k+d}) \|
\]

\[
\leq \| R \| \sqrt{(R^* (-x + iy) \, \delta M^2 R^* (-x - iy))_{k+d,k+d}} \cdot \sqrt{(R^* (-x - iy) \, \delta M^2 R^* (-x + iy))_{k-1,k-1}}. \tag{3.21}
\]

Both roots can be estimated using the definition of \(\delta M \) and (2.59). Finally we obtain

\[
|r (d) \ast P_y| \leq \| R \| \sum_{s=-\infty}^{\infty} |G_{2s}|^2 S_{k+2s} \tag{3.22}
\]

For sufficiently small \(y \) we will use another bound

\[
|r (d) \ast P_y| \leq \| (f \ast P_y) (x) \| + \| (f^0 \ast P_y) (x) \| + \| (f^1 \ast P_y) (x) \|
\]

\[
\leq C \left(\| R \| + \| R^* \| + \| \delta M \| \left(\left\{ R^* (z) \, R^* (z) \right\}_{k+d,k+d} + \left\{ R^* (z) \, R^* (z) \right\}_{k-1,k-1} \right) \right)
\]

\[
\leq C \left(\| R \| + \| R^* \| + \sum_{d=-2}^{d=2} \left\{ R^* (z) \, R^* (z) \right\}_{k+d,k+d} \right). \tag{3.23}
\]
Proof of the Proposition 2.9 It is easy to see that we can prove this proposition for even p. For odd p it follows from the Schwartz inequality. The definition (2.59) implies

$$\frac{1}{a - z + c \cos 2\phi} = \sum_{s} G_{2s} e^{-2is\phi}.$$

Hence

$$\sum_{s} |G_{2s}|^2 s^{2p} = \sum_{s} G_{2s} s^{2p} \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{-2is\phi}}{a - z + c \cos 2\phi} d\phi$$

$$= \left(-\frac{1}{4} \right)^{p} \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{\partial^{2p}}{\partial \phi^{2p}} a - z + c \cos 2\phi \right) \frac{1}{a - z + c \cos 2\phi} d\phi$$

$$= C_{p} \int_{-\pi}^{\pi} \left| \frac{\partial^{p}}{\partial \phi^{p}} a - z + c \cos 2\phi \right|^2 d\phi \leq C_{p}' y^{-2p} \int_{-\pi}^{\pi} \left| a - z + c \cos 2\phi \right|^2 d\phi$$

$$= C_{p}' y^{-2p-1} \mathcal{S}G_{0}.$$

From the residue theorem we obtain

$$G_{0} = \frac{2\zeta}{c (\zeta^2 - 1)}, \text{ where } \zeta^2 + 2 \frac{a - z}{c} \zeta + 1 = 0 \text{ and } |\zeta| < 1.$$

Therefore,

$$|G_{0}| = \frac{1}{\sqrt{|z - 1| |z - \cos \theta|}}.$$

Finally, combining all above bounds, we obtain

$$\int_{-\infty}^{\infty} \left(\sum_{s} |G_{2s}|^2 s^{2p} \right)^2 dx \leq C_{p}'' y^{-4p-2} \int_{-\infty}^{\infty} \frac{dx}{|z - 1| |z - \cos \theta|}$$

$$\leq C_{p}' y^{-4p-2} \max \{ \log 1/y, 1 \}. \quad (3.24)$$

Acknowledgement. The author is grateful to Prof. M.Shcherbina for the problem statement and fruitful discussions. The author was partially supported by the Akhiezer fund.

References

[1] Albeverio S., Pastur L. and Shcherbina M., On the 1/n expansion for some unitary invariant ensembles of random matrices - Commun.Math.Phys., 224 (2001), p.271-305.

[2] Baik J., Deift P., Johansson K., On the distribution of the length of the longest increasing subsequence of random permutations, - J. Amer. Math. Soc., 12 1999, p.1119-1178.

[3] Cantero M.J., Moral L., Velásquez L., Five-diagonal matrices and zeros of polynomials orthogonal on the unit circle - Linear Algebra and its Applications, v. 362, 2003, p. 29-56.
[4] Deift P., Kriecherbauer T., McLaughlin K. T.-K., Venakides S., Zhou X., Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory - Comm. Pure Appl. Math., 52 (1999) p.1335–1425.

[5] Hisakado M., Unitary Matrix Models and Painleve III,- Mod.Phys.Lett., A11 (1996), p. 3001-3010.

[6] Johansson K., On fluctuations of eigenvalues of random Hermitian matrices - Duke Math. J., 91, 1998, p. 151-204.

[7] Kolyandr A., On eigenvalue distribution of invariant ensembles of random matrices - Dop. Ukr. Ac. Sci.:mathematics, 7 (1997), p.14-20.

[8] Levin E., Lubinsky D., Universality limits in the bulk for varying measures - Advances in mathematics, vol. 219, 3, 2008, p. 743-779.

[9] McLaughlin K. T.-R., Miller P. D., The $\bar{\Omega}$ steepest descent method and the asymptotic behavior of polynomials orthogonal on the unit circle with fixed and exponentially varying nonanalytic weights. - IMRP Int. Math. Res. Pap. 2006, p. 1–77.

[10] McLaughlin K. T.-R., Miller P. D., The $\bar{\Omega}$ steepest descent method for orthogonal polynomials on the real line with varying weights. Intern. Math. Res. Notices, 2008, p. 1-66, 2008.

[11] Mehta M.L., Random Matrices. - Academic Press, New York, 1991.

[12] Muskhelishvili N.I., Singular Integral Equations - P.Noordhoff., Groningen 1953.

[13] Pastur L., Shcherbina M., On the edge universality of the local eigenvalue statistics of matrix models - Journal of Mathematical Physics, Analysis, Geometry: v. 10, No 3, 2003, p. 335-365.

[14] Pastur L., Shcherbina M., Bulk Universality and related properties of Hermitian matrix model - J.Stat.Phys., 130 (2007), p.205-250.

[15] Poplavskyi M., Bulk Universality for Unitary Matrix Models - Journal of Mathematical Physics, Analysis, Geometry: v. 5, No 3 2009, p. 245-274.

[16] Saff E. B., Totik V., Logarithmic potentials with external fields,Appendix B by Thomas Bloom - Grundlehren der Mathematischen Wissenschaften 316 Springer-Verlag, Berlin, 1997.

[17] Simon B. Orthogonal polynomials on the unit circle. Part 1: Classical theory and Part 2: Spectral theory,-AMS, (Providence, 2005).