Autism risk assessment in siblings of affected children using sex-specific genetic scores.

Jérôme Carayol, Gerard Schellenberg, Beth Dombroski, Emmanuelle Genin, Francis Rousseau, Geraldine Dawson

To cite this version:
Jérôme Carayol, Gerard Schellenberg, Beth Dombroski, Emmanuelle Genin, Francis Rousseau, et al.. Autism risk assessment in siblings of affected children using sex-specific genetic scores.. Molecular Autism, BioMed Central, 2011, 2 (1), pp.17. <10.1186/2040-2392-2-17>. <inserm-00641296>
Autism risk assessment in siblings of affected children using sex-specific genetic scores

Jerome Carayol¹*, Gerard D Schellenberg², Beth Dombroski², Emmanuelle Genin³, Francis Rousseau¹ and Geraldine Dawson⁴

Abstract

Background: The inheritance pattern in most cases of autism is complex. The risk of autism is increased in siblings of children with autism and previous studies have indicated that the level of risk can be further identified by the accumulation of multiple susceptibility single nucleotide polymorphisms (SNPs) allowing for the identification of a higher-risk subgroup among siblings. As a result of the sex difference in the prevalence of autism, we explored the potential for identifying sex-specific autism susceptibility SNPs in siblings of children with autism and the ability to develop a sex-specific risk assessment genetic scoring system.

Methods: SNPs were chosen from genes known to be associated with autism. These markers were evaluated using an exploratory sample of 480 families from the Autism Genetic Resource Exchange (AGRE) repository. A reproducibility index (RI) was proposed and calculated in all children with autism and in males and females separately. Differing genetic scoring models were then constructed to develop a sex-specific genetic score model designed to identify individuals with a higher risk of autism. The ability of the genetic scores to identify high-risk children was then evaluated and replicated in an independent sample of 351 affected and 90 unaffected siblings from families with at least 1 child with autism.

Results: We identified three risk SNPs that had a high RI in males, two SNPs with a high RI in females, and three SNPs with a high RI in both sexes. Using these results, genetic scoring models for males and females were developed which demonstrated a significant association with autism (\(P = 2.2 \times 10^{-6}\) and \(1.9 \times 10^{-5}\), respectively).

Conclusions: Our results demonstrate that individual susceptibility associated SNPs for autism may have important differential sex effects. We also show that a sex-specific risk score based on the presence of multiple susceptibility associated SNPs allow for the identification of subgroups of siblings of children with autism who have a significantly higher risk of autism.

Keywords: Autism, risk assessment, common variants, genetic score, sex effects

Background

Autistic disorder is the most severe form of a group of autism spectrum disorders (ASDs) characterized by impairments in social interaction, deficits in verbal and non-verbal communication, restricted interests, and repetitive behaviors [1]. With a prevalence of 1 in 110 children, ASDs are among the most common forms of severe developmental disability [2]. The average recurrence risk of autism in siblings of affected children is approximately 10% [3]. This rate is much higher than the prevalence rate for ASDs in the general population, but lower than would be expected for a highly penetrant mutation in a mendelian disorder [4].

The inheritance pattern of autism in most families is complex and not compatible with simple Mendelian inheritance [5,6]. There is significant interest in the early identification of infants at higher risk for autism because studies have shown that early intervention leads to significantly improved long-term outcome for the whole family [7,8]. Several common variants localized in biological and positional (that is, under known linkage peaks) candidate genes have been associated with autism and some have been replicated in independent studies [9]. Further
support for these associations comes from genes for which, in addition to autism-associated common variants, rare mutations and/or copy number variations (CNVs) have been shown to contribute to the disease, and/or for which gene-disrupted mice exhibited autism-like traits. These genes include CNTNAP2 [10-13], RELN [14-19] and GABRB3 [20-23].

When taken individually, the risk of autism associated with variants remains modest, but Carayol et al. [24] recently showed that the accumulation of multiple risk alleles markedly increases the risk of autism in siblings of children who have been diagnosed with autism. They proposed a genetic score (GS) that, compared with studying polymorphisms individually, improves the identification of subgroups of individuals at greater risk of autism [24]. In the case of autism, tools for genetic risk assessment are highly desirable to complement available behavioral assessments.

Another important characteristic of autism is the sex difference with a 4.5:1 male to female ratio [2]. Second, intellectual disability, a key clinical dimension associated with outcome, is more frequent in females than males [25]. Third, the risk of epilepsy is 18 times higher in females than males [26]. This sex difference may partly be explained by sex-specific risk alleles or genes with different expression or activity based on sex [27,28].

In the present study we propose to improve the genetic risk score model developed by Carayol et al. [24] by adding additional SNPs filtered for their relative importance using internal validation process and by also developing separate sex-specific genetic risk scores for males and females using a first sample of families with children with autism (exploratory sample). Their ability to better identify siblings of children with autism who are at high risk of autism was then evaluated and replicated in an independent second sample of autism families (replication sample).

Methods

The study design involved two independent family samples. The first sample (the ‘exploratory’ sample) consisted of 480 families from the Autism Genetic Resource Exchange (AGRE; http://www.agre.org) repository with at least 1 sibling diagnosed with a ‘strict’ definition of autism according to the Autism Diagnostic Interview Revisited (ADI-R) and no unaffected siblings. A total of 844 affected siblings including 664 males and 179 females met the diagnostic criteria for ‘strict’ autism. Minimizing phenotypic heterogeneity can lead to an improvement of the study power [29]. Shao et al. [30] demonstrated that the use of homogeneous phenotype increases the power of linkage studies in autism. Linkage signals have been observed in studies in which the samples were stratified according to specific phenotypes such as the sex [28,31,32], delayed onset of phrase speech [30,33,34], and severe obsessive-compulsive behaviors [35]. Two genome-wide association studies using overlapping samples of children with autism identified two different common variants in CNTNAP2, a gene located in the 7q34-7q36 region linked to language disability in autism [36]; one SNP has been associated with autism through the use of the quantitative trait ‘age at first word’ [10] and the other using a qualitative strict autism diagnosis [11]. Similarly, a recent genome-wide association study (GWAS) [37] reported the largest association with autism in MACROD2 using the strict autism diagnosis. Therefore, as in Shao et al. [30], we studied individuals with a strict autism rather than the heterogeneous broad autism spectrum disorder phenotype. The second sample (the ‘replication’ sample) included 187 families consisting of the 2 parents, at least 1 child with autism and 1 unaffected sibling from a sample collection at the University of Pennsylvania. This replication sample led to 351 children with autism (291 males and 60 females) with the same strict definition of the disease and 90 unaffected children (39 males and 51 females). Ethnicity was self-reported by parents as Caucasian, Asian, Hispanic or Latino, Black or African American, Native Hawaiian or other Pacific Islander, or of mixed ethnicity. Caucasians represented the major ethnicity, with more than two-thirds of families in each sample.

Ten autism susceptibility genes were selected for this study. Four of them (PITX1, EN2, SLC25A12 and ATP2B2) have been previously demonstrated to have a predictive ability and were used in a genetic score-based model [24]. Genes shown to be statistically associated with autism in at least one study using AGRE collection, even at the nominal level, and for which additional data support their implication in autism, were also included. Six genes fulfilled the statistical association condition, four of which were replicated in one or more independent study: HOXA1 [38,39], GRIK2 [40-42], ITGB3 [43-46] and CNTNAP2 [10,11]; one gene, MARK1, was found to be significantly overexpressed in brain tissue from individuals with autism compared to unaffected individuals [47] and the last gene, JARID2 was chosen since one SNP, rs7766973, displays the strongest association with autism \(P = 6.8 \times 10^{-7} \) [48] among the three GWAS performed on AGRE family data [37,42,48]. Table 1 lists the genes selected for the study and the associated SNPs with their deleterious alleles and corresponding frequencies.

All parents and children from the exploratory sample were genotyped for these ten markers. Only SNPs that were selected for further investigation were genotyped in the replication sample. Genotyping was performed using TaqMan allele discrimination assays (Applied Biosystems, Foster City, CA, USA). Genotyping was performed in 384-well plates with 5 ng genomic DNA, 0.075 μl of 20 × SNP
Thus, the reproducibility of the genetic score is conditioned by the reproducibility of the deleterious allele for each SNP included in the model. Markers that are more reproducible carry stronger and more stable information. The reproducibility of the SNPs was analyzed using the bootstrap resampling process and a reproducibility index (RI) was estimated similarly to Ma [49] as follows: (1) generation of a ‘pseudosample’ consisting of 480 families by randomly sampling the 480 families of the exploratory population with replacement; (2) estimation of the genetic relative risk associated with the deleterious allele of each SNP as defined in Table 1; (3) repetition 1,000 times of steps 1 and 2; (4) estimation for each SNP of the RIs indicating the proportion of ‘pseudosamples’ in which the deleterious allele maintains a risk greater than 1.00 in males, in females or in both males and females.

Table 1 Risk allele frequency (defined as the allele associated with autism)

Gene	SNP	Risk allele	Exploratory sample	Replication sample
	Frequency	HWEa	Frequency	HWEb
MARK1	rs12410279	A	0.85	0.83
SLC25A12	rs2292813	C	0.90	1.00
ATP2B2	rs2278556	A	0.40	0.68
PITX1	rs6872664	C	0.89	1.00
GRIK2	rs2235076	G	0.98	1.00
HOXA1	rs10951154	T	0.86	0.02
CNTNAP2	rs7794745	T	0.40	0.73
EN2	rs1861972	A	0.73	0.68
JTB3	rs5918	T	0.87	1.00
JARID2	rs7766973	C	0.60	0.22

*Hardy-Weinberg Equilibrium (HWE) P value estimated with the exact test [65].
NE, not estimated since not genotyped in the replication sample.
SNP, single nucleotide polymorphism.

A high RI indicates that the effect of a deleterious allele of a given SNP is maintained across the bootstrap pseudosamples and that this SNP is a good candidate for the reproducibility of the genetic score. A stringent RI = 0.80 in children with autism was set to select best SNPs. Then, the RI in males and females with autism was checked separately to discard SNPs that lack of stability in a particular sex. Since all variants have been associated with autism using AGRE family data, this internal validation process prevents from an optimistic evaluation of their association, that is, an overestimation of the effect of risk alleles, and a potential deterioration of this effect in an independent sample. The sex genetic scores (GS) was then constructed as follows:

\[
GS_{\text{sex}} = W_{\text{all}} \cdot RS_{\text{all}} + W_{\text{sex}} \cdot RS_{\text{sex}}
\]

where sex = (male, female); RS_{\text{all}} and RS_{\text{sex}} are the risk scores built as the sum of deleterious alleles from genes with a high RI in males only (RS_{\text{male}}), in females only (RS_{\text{female}}) or in both sexes (RS_{\text{all}}); and W_{\text{all}}, W_{\text{male}} and W_{\text{female}} are the integer values of the corresponding genetic relative risks (GRR) associated with the corresponding risk scores (RS_{\text{all}}, RS_{\text{male}} and RS_{\text{female}} respectively). These weights were calculated following Lin et al. [50] who showed that a weighted genetic score
provided more predictive value than an unweighted genetic score.

Because the exploratory sample did not include unaffected children, all genetic relative risks were estimated as described in Carayol et al. [24] using the case-pseudocontrol approach proposed by Cordell and Clayton [51] and implemented in the DGCgenetics R package (http://www.gene.cimr.cam.ac.uk/clayton/software/). Sensitivity and specificity values of the GSs were estimated in the exploratory and the replication samples as in Carayol et al. [24]. Areas under the receiver operating curves (AUCs) were estimated in the exploratory sample and tested against the AUC = 0.5 null hypothesis to validate the discriminative power of the GSs. However, AUCs do not provide an informative tool of the clinical utility of the genetic score (here, the high-risk classification of siblings of children with autism). Cutoff values were chosen to define a high-risk group in the exploratory sample and the odds ratios were estimated. These high-risk thresholds (one for male and one for female) were selected considering a false positive rate lower than 20% (that is, specificity higher than 80%). External validation of the clinical utility of the high-risk GS group was then conducted in the replication sample. Eight markers reached the stringent 80% RI threshold. SNPs rs2292813 and a 4:1 male to female sex ratio [2].

Table 2 Reproducibility indexes (RIs) in children with autism, in males and in females

Gene	SNP	RI in children with autism	RI in male children with autism	RI in female children with autism
MARK1	rs12410279	0.93	0.468	1.00
SLC25A12	rs2292813	0.52	0.757	0.52
ATP2B2	rs2278556	0.99	0.997	0.59
PITX1	rs6872664	0.97	0.983	0.30
GRIK2	rs2235076	0.36	0.277	0.59
HOXA1	rs10951154	0.93	0.958	0.20
CNTNAP2	rs7794745	1.000	1.000	0.89
EN2	rs1861972	0.97	0.880	0.94
ITGB3	rs5918	0.98	0.646	1.00
JARDS	rs7766973	0.98	0.951	0.88

RIs that reached the 80% threshold are in bold.

SNP, single nucleotide polymorphism.
females, a genetic score threshold of 12 was associated with a similar specificity of 0.86 (95% CI 0.80 to 0.92) but a higher sensitivity of 0.37 (95% CI 0.29 to 0.44) and a PPV of 0.09. These two GS values were chosen as thresholds to define the group of children with a high risk of autism. AUCs were estimated to be 0.59 and 0.66 in males and females, respectively. They are both significantly different from the 0.5 null hypothesis \((P = 2 \times 10^{-8} \text{ and } 1.5 \times 10^{-7})\) indicating a predictive ability of the GSs.

In the replication sample (Table 4), sensitivity and specificity associated with the high-risk group GS threshold \((\text{GS}_{\text{male}} = 9)\) were slightly higher in males (but not significantly different as it can be seen from the overlapping 95% CIs) with a 0.26 (95% CI 0.18 to 0.35) sensitivity and 0.87 (95% CI 0.76 to 0.98) specificity. The PPV reached 0.28 for a 0.16 sibling recurrence risk. Differences were observed in females for the sensitivity with an estimated 0.28 (95% CI 0.12 to 0.44) instead of 0.37 and the specificity with a 0.76 specificity (95% CI 0.64 to 0.89) instead of 0.86 but the differences were not significant (overlapping confidence intervals). In females, variances for sensitivity and specificity values were larger in the replication sample than in the exploratory sample because of the smaller number of females in the replication sample. As a consequence, the PPV (estimated to 5%) was very small and close to the 4% sibling recurrence risk.

Extending the analysis to a broader definition of autism and including or excluding the index cases as was performed with the replication study did not change the characteristics of the genetic score or the associated significance levels.

Discussion

Our results demonstrate that the sex difference in autism may have an important influence on the genetic score characteristics, and therefore, on the risk assessment. Taking sex and reproducibility of the SNPs into account led to two GSs with different characteristics that allowed the identification of a subgroup of siblings of children with autism with a high risk of autism in males. The genetic score model with four genes [24] was also tested on this large sample of families and its association was clearly lower \((P = 7 \times 10^{-4} \text{ in males and females as a whole})\) compared to those of the sex-specific GSs \((P = 2.2 \times 10^{-6} \text{ and } 1.9 \times 10^{-5} \text{ for males and females, respectively})\). The risk for males with a high GS to develop autism was 28%, almost three times higher than the reported 10% sibling recurrence risk. In females, the 10% recurrence risk seems overestimated and we estimate this value to 4% considering a 4.5:1 male to female sex ratio.

The GS model has been developed through the use of affected children and the pseudocontrol approach [52,53]. This was confirmed by analyzing unaffected siblings of children with autism. The pseudocontrols approach has been validated for the estimation of diagnostic accuracy using only affected children compared to full population-based data [54]. We cannot exclude an
over-representation of deleterious alleles in unaffected siblings compared to pseudocontrols, which are genetically the opposite of affected children, nor the effect of population controls that may lower the risk ratio between affected and unaffected siblings and consequently affect the discriminative ability of the GS models. This does not seem to occur for males since the high-risk class replicates its predictive accuracy but would need further investigation for females.

Reproducibility of effects is of major interest to enter in a predictive model since it conditions the reproducibility of the predictive model outside the study sample, which is of primary importance to validate such a model. According to the replication of the performance of the risk assessment model in males in an independent sample and the ability to find support for female specific variants despite the relatively small number of samples, the proposed approach can be used for developing stable and reproducible models. SLC25A12 associated and replicated in different studies [55-58] did not reach the reproducibility thresholds, whereas JARID2 that reached a suggestive significant threshold in a unique GWAS [48] seems of more interest. Some markers were reproducible (high RI) in a specific sex only but did not show any statistically significant interaction with sex nor were reported as being sex specific in the literature. The SNP rs7794745 located within CNTNAP2 has a high RI in both sexes whereas a previous association with autism has been reported preferentially in males [10,11]. Due to the low number of females analyzed, these studies lack power to observe any association in females [11]. Another SNP, rs5918 located within ITGB3, has been shown to be associated with autism in both sexes but with different risk effect [46], which could explain the difference of reproducibility observed in males and females. The stability is not necessarily linked to the sex specificity of the SNP or to the strength of previous association results. This may be explained in part by a study of Jakobsdotir et al. [59] which showed that a highly significant association of genes with a disease does not guarantee an effective discrimination between cases and controls.

Several limits of the study may be identified. The moderate number of females with autism in the replication sample as a consequence of the significant sex ratio in autism led to a lack of power for the replication of the high-risk group characteristics. Sibling recurrence risk of males and females were not estimated or reported from real data but calculated assuming a sibling recurrence risk of 10% [3] and the widely observed 4.5:1 male to female sex ratio. Reported PPVs are intuitive estimates that quantify the increase in the risk for an individual (a sibling of a child with autism) who has a genetic score that falls in the high-risk class. Accurate PPVs could be estimated by using observed and reported data. The selection of the genes and the SNPs included in the genetic scores could be discussed. The methodology used to select the common variants and the internal validation approach performed in this study strongly support the implication of these SNPs in autism as well as their discriminative ability. The addition of other SNPs from the same genetic region would have led to a much more complicated model because of the linkage disequilibrium (LD) between these SNPs as well as the haplotypes resulting from the different combination of alleles. Finally, other approaches may be used to select genes to enter in a genetic score. Genes may be selected using statistically significant results from GWAS [60,61] or a complementary approach as in convergent functional genomics (CFG) autism [62,63], when none or few association results reach significance as it is frequently the case in complex disease and particularly in autism.

The recent paper of Lu and Cantor [64] together with the present results highlights the importance of the sex in genetic study of autism. They showed that using sex as a risk factor in GWAS of multiplex autism families increased the power of the study and identified one new gene implicated in calcium channel defect. Stone et al. [28] also suggested that sex is an important factor in the genetics of autism and could be used to decrease heterogeneity in genetic study.

Conclusions

The results of this study confirm previous results [24] that predictive models are of major interest in autism and may help to identify siblings of children with autism at high risk of disease. The choice of genes to enter in the model must be made with caution since association and replication of a particular SNP in different studies are not sufficient justification to enter a SNP in a genetic score and sex is an important factor that needs to be included in autism risk evaluation.

Acknowledgements

We gratefully acknowledge the resources provided by the AGRE Consortium and the participating AGRE families. AGRE is a program of Autism Speaks, and is supported in part by grant 1U24MH081810 from the National Institute of Mental Health to Clara M Lajonchere (PI). The University of Pennsylvania sample collection was funded by UW Autism Center for Excellence grant # 5-P50-HD055782 and a grant from Autism Speaks. We thank Dr Thomas Rio Frio and Dr Brett S Abrahams for their helpful critical review of the manuscript. IntegraGen sponsored the design and statistical analysis of the AGRE sample analysis, and funded writing assistance in the form of preparation of the manuscript, references, tables, formatting to journal style, and administrative support. The corresponding author had full access to the data in the study and final responsibility for interpretation of the data, and made the decision to submit for publication.

Author details

1 IntegraGen SA, Evry, France. 2 Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 3 INSERM U946, Variabilité Génétique et Maladies Humaines, Fondation Jean Dausset-CEPH, Université Paris Diderot, Paris, France. 4 Autism Speaks and the
Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Authors’ contributions JC, FR and GDS conceived and designed the experiments. FR, BD and GDS performed the experiments. JC analyzed the data and drafted the manuscript. EG validated the statistical method. JC, FR and GDS contributed reagents, materials and/or analysis tools. GD and GS contributed to the collection of the University of Pennsylvania sample. All coauthors assisted with writing of the manuscript. All authors read and approved the final manuscript.

Competing interests JC and FR are currently salaried employees of IntegraGen SA and have stock options and patent applications with IntegraGen. GDS, BD and GD declare that they have no competing interests. EG is a consultant for IntegraGen SA.

Received: 7 April 2011 Accepted: 21 October 2011

Published: 21 October 2011

References
1. Johnson CP, Myers SM: Identification and evaluation of children with autism spectrum disorders. Pediatrics 2007, 120:1183-1215.
2. Rice CE: Prevalence of autism spectrum disorders - Autism and Developmental Disabilities Monitoring Network, United States, 2006. MMWR Surveill Summ 2008, 57:1-30.
3. Constantin JN, Zhang Y, Frazier T, Abbacchi AM, Law P: Sibling recurrence and the genetic epidemiology of autism. Am J Psychiatry 2010, 167:1349-1356.
4. Muhle R, Tretiakova SV, Rapin I: The genetics of autism. Pediatrics 2004, 113:e472-e488.
5. Jonde LB, Hassedt SJ, Ritvo ER, Mason-Brothers A, Freeman BJ, Pingree C, Jorde LB, Hasstedt SJ, Ritvo ER, Mason-Brothers A, Freeman BJ, Pingree C, Johnson CP, Myers SM: Identification and evaluation of children with autism spectrum disorders. Pediatrics 2007, 120:1183-1215.
6. Autism Genome Project Consortium, Szatmari P, Paterson AD, Roak BJ, Louvi A, Gupta AR, Abelson JF, Morgan TM, Roak BJ, Louvi A, Gupta AR, Abelson JF, Morgan TM, Bailey AJ, Monaco AP, International Molecular Genetic Study of Autism Consortium (IMGSAC): Evidence for sex limited and parent of origin effects on autism risk. Am J Hum Genet 2010, 88:1-20.
7. Buxbaum JD, Silverman JM, Smith CJ, Greenberg DA, Kiflarski M, Reichert J, Cook EH Jr, Yang Y, Song CY, Vitale R: Association between a GABRB3 gene deficiency and autism spectrum disorders. Behav Brain Res 2008, 197:207-220.
8. Samaco RC, Hogart A, LaSalle JM: Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Mol Hum Mol Genet 2005, 14:483-492.
9. Carayol J, Schellenberg GD, Toires T, Hager J, Ziegler A, Dawson G: Assessing the impact of a combined analysis of four common low-risk genetic variants on autism risk. Mol Autism 2010, 1:4.
10. Hill, H: Statement of the manuscript. All coauthors assisted with writing of the manuscript. All authors read and approved the final manuscript.
Ashley-Koch A, Gilbert JR, DeLong RG, Cuccaro ML, Pericak-Vance MA: Genomic screen and follow-up analysis for autistic disorder. Am J Med Genet 2002, 114:99-105.

35. Buxbaum JD, Silverman J, Keddache M, Smith CJ, Hollander E, Ramoz N, Reichert JG: Linkage analysis for autism in a subset families with obsessive-compulsive behaviors: evidence for an autism susceptibility gene on chromosome 1 and further support for susceptibility genes on chromosomes 6 and 19. Mol Psychiatry 2004, 9:144-150.

36. Alarcon M, Cantor RM, Liu J, Gilliam TC, Geschwind DH: Evidence for a quantitative language trait locus on chromosome 7q in multiplex autism families. Am J Hum Genet 2002, 70:70-71.

37. Arneby R, Klein L, Pinto D, Regan R, Conroy J, Magalhães TR, Correia C, Abrahams BS, Sykes N, Pagnamenta AT, Almeida J, Bacchelli E, Bailey AJ, Baird G, Battaglia A, Berney T, Bolshakov N, Bölte S, Bolton PF, Bourgeron T, Brennan S, Brian J, Caron AR, Casallo G, Casey J, Chu SH, Cochrane L, Corisello C, Crawford EL, Cossutta A et al: A genome-wide scan for common alleles affecting risk for autism. Hum Mol Genet 2010, 19:4072-4082.

38. Concato M, Stodgel CJ, Hyman SL, OBara M, Milleti R, Bravaccio C, Trillo S, Montecchi F, Schneider C, Melmed R, Elia M, Crawford L, Spence SJ, Muscarella L, Guarneri V, d’Agruma I, Quattrone A, Zanello L, Rab jovitz DB, Pascucci T, Puglisi-Allega S, Reichelt KL, Rodler PM, Persico AM: Association between the HOXA1 A218G polymorphism and increased head circumference in patients with autism. Biol Psychiatry 2004, 55:413-419.

39. Ingram JL, Stodgel CJ, Hyman SL, Figlewicz DA, Weikamp LR, Rodler PM: Discovery of allelic variants of HOXA1 and HOXB1: genetic susceptibility to autism spectrum disorders. Teratology 2000, 62:393-405.

40. Dutta S, Das S, GuhaThakurta S, Sen B, Sinha S, Chattarjee A, Ghosh S, Ahmed S, Usha R: Glutamate receptor 6 gene (GLUR6 or GRIK2) polymorphisms in the Indian population: a genetic association study on autism spectrum disorder. Cell Mol Neurobiol 2007, 27:1035-1047.

41. Kim SA, Kim JH, Park M, Cho IH, Hoo YJ: Family-based association study between GRIK2 polymorphisms and autism spectrum disorders in the Korean trios. Neurosci Res 2007, 58:332-335.

42. Wang K, Zhang H, Ma D, Bucan M, Glessner JT, Abrahams BS, Salyakina D, Kim SA, Kim JH, Park M, Cho IH, Yoo HJ: Autism risk assessment in siblings of autistic probands. Cytogenet Genome Res 2000, 90:528-533.

43. Coutinho AM, Souza I, Martins M, Correia M, Morgadinho T, Bento C, Marques C, Atalde A, Miguel TS, Moore JH, Oliveira G, Vicente AM: Evidence for epistasis between SLC6A4 and ITGB3 in autistic behavior and the determination of plateaulet serotonin levels. Hum Genet 2007, 121:243-256.

44. Ma DQ, Rabionet R, Konidari I, Jaworski J, Cukier HN, Wright HH, Napolioni V, Lombardi F, Sacco R, Curatolo P, Manzi B, Alessandrelli R, Coutinho AM, Sousa I, Martins M, Correia C, Morgadinho T, Bento C, Estes A, Korvatska O, Piven J, Sonnenblick LI, Alvarez Retuerto AI, Herman EI, Imielinski M, Bradfield JP, Sleiman PM, Kim CE, Hou C, Frackelton E, Bauer D, Heubach JF, Sandrink J, Tyblova M, Letkova P, Steering committee of the BEEFIT study; Steering committee of the BEYOND study; Steering committee of the LITf study; Steering committee of the CCRI study, Havdeva E, Pohl C, Horakova D, Aschenho A, Halfer DA, Karlson EW: Integration of genetic risk factors into a clinical algorithm for multiple sclerosis susceptibility: a weighted genetic risk score. Lancet Neurol 2009, 8:1111-1119.

45. Cordell HJ, Clayton DG: A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes. Am J Hum Genet 2002, 70:124-141.

46. Cordell HJ: Properties of case/pseudocount analysis for genetic association studies: Effects of recombination, ascertainment, and multiple affected offspring. Genet Epidemiol 2004, 26:186-205.

47. Cordell HJ, Barratt BJ, Clayton DG: Case/pseudocount analysis in genetic association studies: A unified framework for detection of genotype and haplotype associations, gene-gene and gene-environment interactions, and parent-of-origin effects. Genet Epidemiol 2004, 26:167-185.

48. Carayol J, Tores F, Konig R, Hager J, Ziegler A: Evaluating diagnostic accuracy of genetic profiles in affected offspring families. Stat Med 2010, 29:2359-2368.

49. Lepagnot-Bestel AM, Maussion G, Boda B, Cardona A, Iwayama Y, Delezoide AL, Moalic JM, Muller D, Dean B, Yoshikawa T, Gorwood P, Buxbaum JD, Ramoz N, Simonneau M: SLC25A12 expression is associated with neurite outgrowth and is upregulated in the prefrontal cortex of autistic subjects. Mol Psychiatry 2008, 13:385-397.

50. Ramoz N, Reichert JG, Silverman JM, Bespalova IN, Davis KL, Buxbaum JD: Linkage and association of the mitochondrial asparagine/glutamate carrier SLC25A12 gene with autism. Am J Psychiatry 2004, 161:662-669.

51. Segurado R, Conroy J, Mealey E, Fitzgerald M, Gill M, Gallagher L: Confirmation of association between autism and the mitochondrial asparagine/glutamate carrier SLC25A12 gene on chromosome 2p31. Am J Psychiatry 2005, 162:2182-2184.

52. Silverman JM, Buxbaum JD, Ramoz N, Schneider J, Reichenberg A, Hollander E, Angelo G, Smith CJ, Krysz LA: Autism-related traits and rituals associated with a mitochondrial asparagine/glutamate carrier SLC25A12 polymorphism. Am J Med Genet B Neuropsychiatr Genet 2008, 147:408-410.

53. Jakobsdottr J, Gorin MB, Conley PY, Ferrell RE: Weeks DE: Interpretation of genetic association studies: markers with replicated highly significant odds ratios may be poor classifiers. PLoS Genet 2009, 5:e1000537.

54. De Jager PL, Chibnik LB, Cui J, Reischl J, Lehr S, Simon KC, Aubin C, Silverman JM, Buxbaum JD, Ramoz N, Schneider J, Reichenberg A, Hollander E, Angelo G, Smith CJ, Krysz LA: Autism-related traits and rituals associated with a mitochondrial asparagine/glutamate carrier SLC25A12 polymorphism. Am J Med Genet B Neuropsychiatr Genet 2008, 147:408-410.