Migratory Locust Habitat Analysis With PB-AHP Model Using Time-Series Satellite Images

YUN GENG1,2, LONGLONG ZHAO3, YINGYING DONG1, WENJIANG HUANG1, YUE SHI4, YU REN1,2, AND BINYUAN REN5

1Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
2College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
3Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
4Department of Computing and Mathematics, Manchester Metropolitan University, Manchester M1 5GD, U.K.
5National Agricultural Technology Extension and Service Center, Beijing 100125, China

Corresponding author: Wenjiang Huang (huangwj@aircas.ac.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFE0122400, in part by the National Natural Science Foundation of China under Grant 41801338, in part by the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant XDA19080304, in part by the Youth Innovation Promotion Association CAS under Grant 2017085, and in part by the Beijing Nova Program of Science and Technology under Grant Z191100001119089.

ABSTRACT The outbreak of Oriental Migratory Locust (Locusta migratoria manilensis) causes devastating disasters to agriculture. With the impact of climate changes and human activities, the distribution of locust habitat (locust habitat is the environment in which locusts live and survive) in China is constantly changing. Monitoring and extracting locust habitat are of great significance for guiding large-scale agricultural production. The occurrence of the locust is closely related to their habitat. Therefore, a comprehensive analysis of habitat factors that affect locust survival is carried out to monitor locust habitat distribution. Besides, the landscape structure also affects distribution. This study explored a model for analyzing multi-temporal Landsat and MODIS images, which combined multiple habitat factors and landscape structure to analyze locust habitat. The locust habitat near North Dagang Reservoir in Tianjin is the research object. First, the habitat factors that affect locust oviposition and growth were analyzed, and vegetation coverage, land cover class, soil moisture, soil salinity, and land surface temperature were selected as five habitat factors. The weights of five habitat factors were evaluated according to the Analytic Hierarchy Process (AHP) model. Then, considering the impact of landscape structure on locust habitat, a moving-window was used to correlate locust habitat factors at pixel scale with locust habitat at patch scale. Finally, the distribution map of the locust habitat at patch scale was generated. The Analytic Hierarchy Process (AHP) was used to compare and test the results. Our research shows that the Patch based - Analytic Hierarchy Process (PB-AHP) can monitor locust habitat. The overall accuracy reached 88%, which is 10% higher than the result based on the Analytic Hierarchy Process (AHP). These results show that the Patch based - Analytic Hierarchy Process (PB-AHP) model has strong robustness and generalization ability in identifying locust habitat and can provide scientific guidance for locust monitoring and control.

INDEX TERMS Locust habitat, landscape, patch based - analytic hierarchy process (PB-AHP), remote sensing.

I. INTRODUCTION

The Oriental Migratory Locust (Locusta migratoria manilensis) is a destructive agricultural pest in China [1], [2]. Locust is a major threat to crops such as wheat, maize, rice, and has caused massive economic damage [3], [4]. The outbreak of locust plague could have a significant and negative impact on food security, ecological security, and social stability [5]. In China, the total acreage impacted by locust changed little from 2003 to 2018, at around 667 thousand hectares. In recent years, China has made remarkable gains in controlling locust plague. However, with additional impacts from global warming, drought, environmental changes, and human activities, new locust habitat has been created that does not have adequate monitoring by plant protection departments, which means that sudden locust plagues in the unexpected
Locust density was highest in areas with dried reeds, while the distribution in the southern part of the Aral Sea and found that applied MODIS and Landsat TM images to map locust distribution with vegetation coverage. Bolkart et al. [26] applied MODIS and Landsat TM images to map locust distribution in the southern part of the Aral Sea and found that locust density was highest in areas with dried reeds, while low or almost no locusts were found in shrub and cropland areas. The above studies revealed certain relationships between habitat factors and locust habitat monitoring, but most of them are based on the monitoring of a single habitat factor. Low et al. [27] extracted the inter-annual Enhanced vegetation index (EVI) curve based on images from multi-temporal MODIS data to differentiate land cover classes and consequently drew potential locust habitat.

Besides, some scholars have also comprehensively considered the impact of multiple factors to analyze locust habitat. Huang et al. [28] built a model to monitor locust population density by considering the impact of surface temperature, soil moisture, Leaf area index (LAI), and other habitat factors. Shi et al. [29] integrated MODIS and Landsat remote sensing images to extract land cover classes, vegetation coverage, and land surface temperature (LST) to obtain the distribution of locust areas near the North Dagang Reservoir in Tianjin.

On the other hand, the spatial distribution of locust habitat is patchy, and changes in landscape structure can impact geographic patches [29]. This means that the landscape structure of the ecosystem in which locusts live continuously affects the suitability of their habitat [30], [31]. The interaction of all these factors and how to transit from pixel scale to patch scale in this geographic area may affect locust habitat suitability. Monitoring changes in landscape structure through remote sensing data can be extremely useful when trying to extract locust habitat accurately [32], [33]. However, most existing models do not consider the impact of landscape structure on locust habitat. Thus, evaluating the feasibility of using remote sensing data coupled with multiple habitat factors at patch scale to monitor locust habitat is necessary.

In this study, the Patch based - analytic hierarchy process (PB-AHP) model was used to extract landscape structure considering multiple factors, and a locust habitat suitability analysis was completed by analyzing the suitable degree and weight of different habitat factors at patch scale in Tianjin, China. Landsat TM/OLI and MODIS data were used in this study. Specifically, the goals of this article were to: (1) analyze the impacts of multiple habitat factors and landscape structure on the locust habitat, (2) propose a model named PB-AHP to quantify both landscape and multiple habitat factors on locust habitat, and (3) evaluate the performance of the new model. By utilizing remote sensing images to monitor locust habitat, environmentally safe locust prevention and control methods can be developed to guide more effective precision agricultural research and management practices.

II. MATERIALS AND METHODS
A. STUDY AREA
The study area is located in the Binhai New District in southeast Tianjin, China (Fig.1). This study selected an area of 822.23 km², which contained the North Dagang Reservoir, Lier Bay, and Duliujian River. This area lies in a northern hemisphere with a monsoon climate of medium latitudes and has four distinctive seasons. The average annual rainfall is

166814
Y. Geng et al.: Migratory Locust Habitat Analysis With PB-AHP Model Using Time-Series Satellite Images

350–620 mm, of which 80% is concentrated from May to September. The annual mean temperature is 12-15°C in this area. Bog and fluvo-aquic soils are the most distributed soil types. Enough water resources provide a suitable environment for the local wetland vegetation, which includes reeds such as *Phragmites communis* Trin., *Typha orientalis* Presl., and *Lythrum salicaria* L., with some weeds scattered around, such as *Eleocharis crus-galli* (L.)Beauv., *Imperata cylindrica* (L.)Beauv., *Cynodon dactylon* (L.)Pars., *Cyperus rotundus* (L.), *Polygonum amphibium* L., and *Artemisia* spp. The main crops grown locally include maize, cotton, barley, and sorghum. Locust growth and propagation are helped by less human intervention near wetlands and suitable habitat, which can lead to severe plague in the study area [34].

B. DATA SOURCE

1) **SATELLITE DATA**

The remote sensing data used in this article are MODIS and Landsat images. Cloud-free Landsat images or few cloud Landsat images (path:122, row:33) were chosen, including TM and OLI images from 2000-2015. Before locust habitat factors were extracted, Landsat images were calibrated using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes module (FLAASH, a module in ENVI 5.3 image processing software) to eliminate the influence of atmospheric and light factors on the objects’ reflectance. This module enhanced the image brightness to facilitate information extraction. All parameters for the input FLAASH module are set according to the metafile of the image. Using MODIS(h27v05) products (MOD11A2) from April to May in 2000-2015 to indicate the LST of the study area.

2) **STATISTICS ON PLAGUES OF LOCUST**

Historical observations of locust occurrence data provided by TPPS from 2000 to 2018, contained the locust occurrence area and locust control area, and locust density in some years. Considering that these data are exclusive, TPPS did not provide specific investigation location or ID numbers.

3) **LAND COVER CLASS AND DATA**

Considering the special ecological environment and locust preferred host selection, four land cover classes were defined: reed and weed, pure reed, cropland, water, and others [29]. “Reed and weed” was defined as weeds and other grasses (rarely) which grew in moist or semi-dry soil, with vegetation coverage ranges between 20% and 70%. These conditions provide a suitable condition for locust reproduction and development. Vegetation coverage of 20-50% is the most suitable for promoting spawning and nymph growth, and 50-70% is ideal for locust migration. “Pure reed” was defined as pure reed vegetation with vegetation coverage of 40-100%. This environment provided plenty of food for locust growth. Low-density areas of 40-50% coverage provide a suitable environment for spawning and nymph growth of locust, while 50-80% coverage denoting high-density areas are ideal for locust migration. “Cropland” was defined as crops with 10-60% vegetation coverage, mainly composed of cotton, barley, corn, peanut, sorghum, a small count of weed and reed. Agriculture and other human activities in the region are frequent make it impossible to provide a suitable environment for locust reproduction and spawning. But this field can provide a destination for migration. “Other” includes bare soil where salt accumulation on the surface and artificial area [29].

Quantitative analysis of locust host species requires a reference land cover dataset. In order to collect these reference data, this study used the national historical land use survey at a 30m spatial resolution (http://www.resdc.cn/) to preliminarily mark the reference pixels in Landsat data. Since historical survey data are not available annually, this study only collected data for the year 2000,2005, and 2010, and evaluated the land cover classification for these three years based on this data.

C. ANALYTICAL METHODS

1) **SELECTION AND EXTRACTION OF HABITAT FACTORS**

Based on the analysis of the relationship between locust populations and habitat factors in the study area, five factors...
related to the suitability of locust habitat were determined, including vegetation coverage, land cover class, soil moisture, soil salinity, and LST.

Multi-temporal Landsat data were used to get vegetation coverage, soil moisture, and soil salinity. The mean vegetation coverage of three phases in the locust critical growth period from May to June was selected as a final variable. The mean soil moisture and soil salinity of three phases from April to May during the locust oviposition period was used as a final variable. By calculating the mean value of MODIS(MOD11A2) from April to May, LST was obtained.

\[
NDVI = \frac{B_{nir} - B_r}{B_{nir} + B_r}
\]

(1)

where \(NDVI\) represents vegetation coverage, \(B_{nir}\) and \(B_r\) are the reflectance in the near-infrared band and red band, respectively.

\[
TVDI = \frac{T_s - T_{S\text{min}}}{T_{S\text{max}} - T_{S\text{min}}}
\]

\[
T_s = a \cdot NDVI + b, \quad T_{S\text{min}} = c \cdot NDVI + d
\]

(2)

where \(TVDI\) is the temperature vegetation dryness index to represent soil moisture, \(a, b, c, d\) are the coefficients of the dry, wet edge fitting equation, respectively.

\[
SI = \sqrt{B_g \cdot B_r}
\]

(4)

where \(SI\) is soil salinity index to represent soil salinity, \(B_g\) and \(B_r\) are the reflectance in the green band and red band.

Before habitat suitability analysis, these data need to be converted into a raster map of corresponding habitat factors. In this study, the spatial analysis tool is used to standardize raster data into numerical data, and each factor is quantified with a score of 0-1. The standardized equation is as follows:

\[
x = \frac{S - S_{\text{min}}}{S_{\text{max}} - S_{\text{min}}}
\]

(5)

among them, \(S_{\text{min}}\) represents the minimum value of each index in the study area, \(S_{\text{max}}\) represents the maximum value of each index in the study area.

2) LAND COVER MAPPING

The land cover class map was obtained from Landsat data using a random forest classifier based on seasonal characteristics (SCRF) [27]. Random forest is a classifier that uses multiple trees to train and predict samples. This implementation produces a large number of individual decision trees that are randomly selected from input and training data using bagging or bootstrap [36]. An EVI time series based on Landsat images was used as seasonal features of different land cover classes. Because Landsat data is affected by the atmosphere, solar illumination angle, observation angle, and other factors, EVI decreases irregularly. This irregularity affects the accuracy of the time inversion of seasonal characteristics, resulting in the inability to correctly reflect land cover changes [36]. To address this, the Savitzky-Golay (S-G) filtering method was used to reconstruct the EVI time series [37]:

\[
Y^*_j = \sum_{i=-m}^{m} C_i Y_{j+i}
\]

(6)

where \(Y^*_j\) is the synthetic sequence data, \(Y_{j+i}\) is the original sequence data, \(C_i\) is the filtering coefficient \((2m + 1)\), and \(m\) is half the width of the smoothing window.

Land cover classification accuracy is assessed using a confusion matrix including user, producer, and overall accuracy. The confusion matrix is a comparison array used to indicate the number of pixels classified into a certain category and the number of ground survey pixels. Generally, the columns in the array represent reference data, and the rows represent category data obtained from remote sensing data classification. Overall accuracy is equal to the sum of correctly classified pixels divided by the total number of pixels. Producer accuracy refers to the correct classification percentage of all test samples in a feature category. User accuracy refers to the percentage of each category marked after classification to the exact category in ground survey pixels [38].

The land cover dataset described in section II.B.3 is the training sample and the verification sample of SCRF in this study, the ratio is 7:3. MATLAB 2017a is used to process the SCRF algorithm.

3) LOCUST HABITAT SUITABILITY ANALYSIS BASED ON AHP MODEL

a: FACTOR SUITABILITY AT PIXEL LEVEL

Vegetation coverage is the main variable affecting locust habitat. Generally speaking, if the vegetation coverage is too high, the sun will be blocked, and the temperature near the ground will be low, restricting locust feeding and movement and negatively impacting spawning. On the contrary, if the vegetation coverage is too low and the near-ground temperature is relatively high, locust activity increases but is not conducive to overall survival because of insufficient feeding materials and the lack of ideal shelter.

Low-lying and flat wetlands with reed and weede provide an ideal place and food source for locust oviposition and growth [39], [40]. The water resources provide suitable conditions for locust eggs hatching and nymph growth. Pure reed, which has high vegetation coverage, could provide an ideal environment for locust migration [41]. To better link, the types of land cover with locust habitat, the suitability of each land cover class (Table 2) was classified according to the influence of different classes on locust growth. Reed and weede represented the best shelters, followed by water, pure reed, cropland, and other (water affects the suitability of locust habitat in the landscape structure, but water is not locust habitat. The suitability degree of water here is used only for its influence at patch level).

If the soil moisture is high and the soil temperature is low, the development of locust eggs will inevitably be adversely affected. When soil salinity is too high, it is not conducive
AHP method is as follows: the test. If the result was less than 0.1, the ranking was considered to pass. Conducting factor importance analysis involves the choice of its window size. Window size has a significant influence on locust habitat. Too large window size might lead to limited space, which results in failure to form a continuous environment for locusts. Too small window size might lead to the scatter of locust growth resource, which is not conducive to locust gathering.

The Analytic hierarchy process (AHP) model was used to determine the weight of each habitat factor, which reflects the influence of each factor on locust survival and occurrence. The output of AHP is a set of rankings that can be used to support decision making for many alternatives based on multiple decision factors for each alternative [41]. The model combines each habitat factor [42]. This process consisted of five steps, which included: (1) defining and determining the factors (see in II.C1); (2) conducting factor importance analysis; based on Landsat data, this study extracted all habitat factors, analyzed the correlation between each habitat factor and the locust area provided by TPPS from 2000-2015, and used the correlation index as the initial importance of each habitat factor; (3) determining the local priority: using the binary comparison method, the priority was calculated before and after the locust area provided by TPPS from 2000-2015, and the suitability at pixel level was defined as:

$$H_{SI_1}(x, y) = \sum_{t=1}^{n} W_t M_t(x, y)$$ \hspace{1cm} (7)

where $H_{SI_1}(x, y)$ is the overall score of habitat suitability at pixel scale; W_t is the weight of each factor (Table 3), $M_t(x, y)$ is the suitability at pixel scale of the tth factor, n is the number of factors.

The locust habitat suitability was divided into four categories: Poor locust habitat (POLH), General locust habitat (GELH), Good locust habitat (GOLH) and Optimum locust habitat (OPLH). The H_{SI} of every category is shown in Table 4.

4) LOCUST HABITAT SUITABILITY ANALYSIS BASED ON PB-AHP MODEL

The Patch based - analytic hierarchy process (PB-AHP) model was combined with patch scale modeling to realize more practical monitoring of patchy target objects. To better quantify patch size, we used a moving-window approach which associated the suitability at patch level with the suitability at the pixel level. In order to consider the comprehensive impact of landscape structure on locust habitat, additional information from neighboring pixels in the same window was introduced. The setting of the moving-window involves the choice of its window size. Window size has a significant influence on locust habitat. Too small window size might lead to limited space, which results in failure to form a continuous environment for locusts. Too large window size might lead to the scatter of locust growth resource, which is not conducive to locust gathering. This study used Ecognition Developer software to analyze the level of information of the original image objects and the proximity information between the objects. Based on this information, the original image object size was obtained, and combined with land cover classification to determine the size of the patchy habitat target object of locusts.

The suitability at patch level was defined as:

$$M_{s,p}(x_{c+1}/2, y_{c+1}/2) = \frac{\sum_{t=1}^{c} \sum_{k=1}^{c} W_p M_t(x_j, y_k)}{\sum_{p=1}^{c} \sum_{t=1}^{c} W_p}$$ \hspace{1cm} (8)

where, $M_{s,p}(x_{c+1}/2, y_{c+1}/2)$ is the suitability degree of each factor at the patch scale; $s = 1, 2, \ldots, 5, M_{1,p}, M_{2,p}$ and $M_{5,p}$ represents the suitability of five factors at patch level, respectively; x and y are the numbers of rows and columns in the study area; c is the number of rows and columns of the window, in this study, the optimal size was determined to be 5; $M_t(x_j, y_k)$ is suitability at pixel level, and W_p is the influence of neighboring pixel in the same patch on the central pixel, which could quantify the impact on the landscape.

The weight of spatial distance is expressed by the reciprocal of the spatial distance between surrounding pixels (x_j, y_k).
and the central pixel \((x_{c+1}/2, y_{c+1}/2)\). The specific formula is:

\[
W_p(x_j, y_k) = \frac{1}{\sqrt{(x_{c+1}/2 - x_j)^2 + (y_{c+1}/2 - y_k)^2}}
\]

(9)

which measures the spatial distance between the calculated pixel and surrounding pixels. Closer pixels normally have higher spatial similarity; therefore, closer pixels should be given a higher weight.

The habitat suitability index of locusts based on the PB-AHP model is as follows:

\[
HSI_2(x, y) = \sum_{t=1}^{n} W_t M_y,p(x_{c+1}/2, y_{c+1}/2)
\]

(10)

where \(HSI_2(x,y)\) is the overall score of habitat suitability at patch scale; \(W_t\) is the weight of each factor (Table 3); \(M_y,p(x_{c+1}/2, y_{c+1}/2)\) is the suitability at patch scale of the \(t\)th factor; \(n\) is the number of habitat factors.

The grading index is shown in Table 4.

III. RESULTS AND DISCUSSION

A. LAND COVER CLASSIFICATION

The annual EVI curve (Fig.3) reflects the difference in reflectivity between different classes of surface coverage. Although all vegetation classes followed similar seasonal trends, the amplitudes of the curves during the development period showed a significant difference. The average EVI from April to November was calculated, and the EVI curves were used as the SCRF input database to generate land cover data. The land cover classifications confusion matrix can be seen in Table 5, as well as the overall accuracies of three years (2000, 2005 and 2010) are 93%, 89%, and 93%. Most of the confounding classes were a mixture of reed and weed and pure reed. The SCRF has high precision and can be used to realize land cover classification. Combined with the existing land cover verification dataset and locust habitat suitability dataset, this article drew the land cover classifications in the year 2000, 2005, 2010, 2002, 2006, and 2013. As can be seen from the result, the largest land cover class was cropland, which was mainly distributed in the southwest. The conversion of a land cover mostly occurs between pure reed and mixture of reed and weed, which were observed mostly along major reservoir and rivers (including North Dagang Reservoir, Duliujian River, and Lier Bay). These two classes are also important to cover classes for locust breeding.

The land cover classification result showed that the SCRF was an accurate land cover classifier and can also confirm results from previous research [43]–[45]. Confirming the accuracy of land cover is a crucial step needed to assess ecosystem services such as locust habitat suitability.

B. HABITAT SUITABILITY OF LOCUST

Taking vegetation coverage, land cover class soil moisture, soil salinity and LST as data input, combined with the moving window to establish PB-AHP model to analyze the importance of multiple habitat factors and landscape structure. The traditional AHP model was used to compare and verify the approach. The results revealed that PB-AHP model had higher overall accuracy than AHP model. PB-AHP model had
TABLE 5. Confusion matrix and accuracy of land cover classifications produced by Scrf in 2000, 2005 and 2010.

Years	Reed and weed	Pure Reed	Cropland	Water	UA(%)	OA(%)	Kappa
2000	1258	167	0	12	88	93	0.90
	126	507	0	0	78		
2005	1588	182	3	0	89	89	0.88
	130	982	5	128	78		
2010	437	150	7	0	73	93	0.89
	145	431	0	0	70		

FIGURE 4. Land cover class maps of 2000, 2003, 2005, 2006, 2010 and 2013.

an overall accuracy of 85%, 83% and 88% in the year 2002, 2006 and 2013, respectively. (Table 6).

Fig.5 shows the locust habitat extracted based on the AHP model(left) and PB - AHP model (right). The accuracies of both models were more than 70%, and the results have the same trend, meaning that both models could effectively be used for locust habitat suitability analysis. However, the existence of locust habitat is associative, and locust habitat is affected by the surrounding environment. By introducing quantitative analysis of geographical patches, we were able to give full consideration to the influence of surrounding landscape structure. Therefore, the consistency and integrity of patch-based monitoring results were more comprehensive than pixel-based monitoring results. Accuracy verification results had similar findings. The accuracy based on the PB-AHP model was 88%, which is 10% higher than the results from AHP model. This article provides a quantitative analysis of these two models from three landscape metrics (including mean patch size, patch density, and connectivity, Table 7).

Based on the analysis of the area of the study area and the density of locusts obtained from TPPS, the minimum patch size of the locust habitat is 2 km². It can be seen from the mean patch area that the locust habitat patch size analyzed by the PB-AHP model is larger than the size obtained based on
TABLE 6. Accuracy verification of habitat suitability analysis results based on AHP and PB-AHP models.

Years	AHP	PB-AHP											
	Optimum	Good	General	Poor	UA(%)	OA(%)	Optimum	Good	General	Poor	UA(%)	OA(%)	
2002	Optimum	7	3	0	0	70	75	8	2	0	0	80	85
	Good	2	7	1	0	70	73	1	9	0	0	90	
	General	0	1	7	2	70	85	0	0	8	2	90	
	Poor	0	0	2	8	85	85	0	0	1	9	90	
	PA(%)	78	64	70	80	89	82	89	82	89	82		
2006	Optimum	7	3	0	0	70	75	8	2	0	0	80	83
	Good	1	7	2	0	70	73	0	9	1	0	90	
	General	0	1	8	2	80	75	0	0	9	0	90	
	Poor	0	0	1	9	90	75	0	0	1	9	90	
	PA(%)	88	64	73	90	100	75	82	90				
2013	Optimum	8	1	1	0	80	78	9	1	0	0	90	88
	Good	0	7	3	0	70	78	0	8	2	0	80	
	General	0	1	7	2	70	80	0	0	8	2	80	
	Poor	0	0	2	8	80	80	0	0	2	8	80	
	PA(%)	100	78	54	80	100	89	67	80				

FIGURE 5. Locust habitat map in 2002, 2006 and 2013 using AHP(left) and PB-AHP(right) models.

the AHP model, and the mean patch size of four locust habitat classes is greater than 2 km², which is consistent with the minimum patch size of locust habitat. The connectivity of the locust habitat analyzed by PB-AHP model is also higher. It is believed that the locust habitat obtained by PB-AHP model is less fragmented. This situation is more realistic and the analysis result is more credible.

Landsat and MODIS data can provide enough data to support the assessment of ecosystems [5], [46]–[49]. Several scholars have studied locust habitat using satellite data. In our research, continuous Landsat and MODIS data ensured successful monitoring of locust habitat factors, thus providing data support for locust habitat suitability analysis. The habitat factors used in locust habitat analysis were determined by comprehensively considering the incubation period and occurrence and development period, combining both host and habitat information. This model was able to evaluate the hatching habitat suitability and reflect vegetation growth and spatial distribution. At the same time, the input values (initial importance) of AHP model were obtained based on
correlation analysis between locust area from TPPS data and different habitat factors from 2000 to 2015, which is independent of expert evaluation and improved the objectivity of this method.

Besides, locust habitat occurs in discontinuous patches from the scale of landscapes. These patterns of habitat development depend on the landscape structure. Our research constructed moving windows by analyzing the patch size of the original image to carry out quantitatively analyze the landscape structure so that to map the locust habitat at patch scale and realize the contribution evaluation of landscape structure to habitat suitability classification. Results from this study can effectively restrain the “salt and pepper” phenomena by considering the impact of landscape structure on locust habitat and showing the results from combined and related habitat factors. Results from this analysis revealed the relationship between landscape structure and locust habitat and proved that the addition of landscape structure to the model made positive contributions to accurately classifying locust habitat.

The purpose of our research is to improve the accuracy of the locust spatial distribution model by combining landscape structure and coupling multiple habitat factors to meet the current needs of precision agriculture. At the same time, the suitability of each habitat factor was analyzed, and the influence on the landscape structure of the locust ecosystem was considered more comprehensively. In general, this locust habitat suitability analysis model based on satellite data combined with multi-factors and landscape structure performed well, with an accuracy rate of 88%, and was able to generalize automatic locust habitat suitability for years without training data.

The area around North Dagang Reservoir is known to be a locust habitat. Monitoring locust habitat and discussing the landscape pattern and habitat factors that alter it could provide vital support to help agriculture and plant protection in planning and controlling damages from the locust population. Locust habitat maps obtained from satellite data can accurately select the locust control area. Even more importantly, these detailed habitat maps would help redistribute prevention and control treatments more economically and equitably within the study area, reducing waste associated with unoptimized management. These results can also provide a basis for ecological locust control, which helps reduce water pollution and damage to the environment [50]–[52]. While ecological control technology cannot kill locust directly, it uses an ecological transformation to reduce the breeding area, decrease food sources, and control the occurrence area and density. Another aspect is that this multi-year analysis and derived occurrence frequencies of OPLH and GOLH provide the possibility for long-term planning and centralized control measures. At the same time, we can isolate OPLH and GOLH such as North Dagang Reservoir, Duliujian River, and Lier Bay to prevent locust proliferation from ever occurring.

IV. CONCLUSION

Our research validates the potential of earth observation methods to analyze locust habitat in Tianjin. PB–AHP model used in this study analyzed the habitat selection during locust hatching and development, and selected five significant habitat factors, including vegetation coverage, land cover class, soil moisture, soil salinity, and land surface temperature. The inversion result of each factor from 2000 to 2015 was obtained by using the time series from Landsat and MODIS image data. The AHP model was used to obtain the weights of influence for different habitat factors, and the degree of patch scale suitability was obtained through quantitative analysis of landscape structure, allowing the distribution map of locust

Years	AHP Mean patch size/km²	AHP Patch density	AHP CONNECT	PB-AHP Mean patch size	PB-AHP Patch density	PB-AHP CONNECT
2002	Optimum 3.45	25.13	0.26	21.80	12.97	0.34
	Good 2.73			9.85		
	General 2.59			3.57		
	Poor 8.76			8.78		
2006	Optimum 2.32	36.67	0.20	18.25	13.72	0.31
	Good 1.06			9.28		
	General 3.43			5.57		
	Poor 7.14			7.15		
2013	Optimum 0.34	39.05	0.21	2.38	17.16	0.26
	Good 0.77			8.57		
	General 5.04			8.88		
	Poor 3.67			3.68		
habitats in the study area to be drawn. The overall accuracy of the model was 88%, which performed 10% better than the traditional AHP model. This study not only confirms the importance of vegetation, soil, and climate for monitoring the locust habitat but also noted the contribution of landscape structure. In addition, this model does not simply determine locust and non-locust areas but quantifies the habitat suitability. This model is strongly generalizable and has significant real-time capabilities for incorporating newly acquired data.

Future work will be a more in-depth study of the relationship between landscape structure, locust habitat, and locust occurrence mechanism. It is necessary to analyze the changes in locust habitat caused by changes in landscape structure and combine with actual control requirements to improve the level of locust monitoring and early warning and establish scientific research results on locust monitoring and early warning to bridge industrial pest control.

REFERENCES

[1] A. Latchininsky, G. Sword, M. Sergeev, M. M. Cigliano, and M. Lecoq, “Locusts and grasshoppers: Behavior, ecology, and biogeography,” Psych. A J. Entomol., vol. 2011, pp. 1–4, Apr. 2011, doi: 10.1155/2011/578327.

[2] E. L. Zhu, The Management of the Oriental Migratory Locust in China, (In Chinese). Beijing: China China Agriculture Press, 1999, pp. 45–60.

[3] L. Zhang, M. Lecoq, A. Latchininsky, and D. Hunter, “Locust and grasshopper management,” Annu. Rev. Entomol., vol. 64, no. 1, pp. 15–34, Jan. 2019.

[4] J. A. Lockwood, A. T. Showler, and A. V. Latchininsky, “Can we make locust and grasshopper management sustainable?” J. Orthoptera Res., vol. 10, no. 2, pp. 315–329, Dec. 2001.

[5] J. Ma, X. Han, A. Hashibagan, C. Wang, Y. Zhang, J. Tang, Z. Xie, and T. Deveson, “Monitoring east Asian migratory locust plagues using remote sensing data and field investigations,” Int. J. Remote Sens., vol. 26, no. 3, pp. 629–634, Feb. 2005.

[6] L. C. Stige, K.-S. Chan, Z. Zhang, D. Frank, and N. C. Stenseth, “Thousand-year-long Chinese time series reveals climatic forcing of decadal locust dynamics,” Proc. Natl. Acad. Sci. USA, vol. 104, no. 41, pp. 16188–16193, Oct. 2007, doi: 10.1073/pnas.0706813104.

[7] R. L. Wang, Q. Li, C. H. Feng, and C. P. Shi, “Predicting potential ecological distribution of Locusta migratoria tibetensis in China using MaxEnt ecological niche modeling,” Acta Ecologica Sinica, vol. 37, no. 24, pp. 8556–8566, 2017.

[8] Q. B. Yang, C. W. Liu, C. Huang, J. Q. Zhu, Z. Z. Zhang, J. S. Zhu, and F. Z. Xie, “Occurring analysis on high-density spot of Locusta migratoria and suggestions on its monitoring and controlling in China in 2017,” (In Chinese), China Plant Protection, vol. 38, no. 3, pp. 37–39, 2018.

[9] Z. H. Bian, G. Zhang, W. R. Sarsby, and T. Meggyes, “Classification of ecological degradation and ecological rehabilitation in China,” in The Exploitation of Natural Resources and the Consequences. London, U.K.: Inst of Civil Engineers Pub., 2001, pp. 535–540.

[10] Z. Zhang and D. Li, “A possible relationship between outbreaks of the oriental migratory locust (Locusta Migratoria Manilensis Meyen) in China and the el Niño episodes,” Ecol. Res., vol. 14, no. 3, pp. 267–270, Sep. 1999, doi: 10.1046/j.1440-1703.1999.0114303.x.

[11] T. Wu, S. X. Ni, Y. M. Li, J. J. Jian, and J. Chen, “Research on the monitoring oriental migratory locust based on remote sensing retrieval of vegetation information,” Geography Geo-Inf. Sci., vol. 22, no. 2, pp. 25–29, 2006.

[12] L. Loosvelt, J. Peters, H. Skriver, H. Lievens, F. M. B. Van Coillie, B. De Baets, and N. E. C. Verhoest, “Random forests as a tool for estimating uncertainty at pixel-level in SAR image classification,” Int. J. Appl. Earth Obs. Geoinf., vol. 19, pp. 173–184, Oct. 2012.

[13] F. Löw, P. Knöfel, and C. Conrad, “Analysis of uncertainty in multi-temporal object-based classification,” ISPRS J. Photogramm. Remote Sens., vol. 105, pp. 91–106, Jul. 2015.

[14] J. H. McBeath and J. McBeath, “Plant diseases, pests and food security,” in Environmental change and Food Security in China. Heidelberg, Germany: Springer Netherlands, 2010, pp. 118–124.

[15] S. I. J. Holzhauer, K. Wolff, and K. Berther, “Modeling spatiotemporal dynamics of outbreaking species: Influence of environment and migration in a locust,” Ecology, vol. 96, no. 3, pp. 737–748, Mar. 2015.

[16] I. Badenhausen, J. Poulson, A. Guentert, T. Cornulier, and V. Bregnatogol, “Spatial autocorrelation in farmland grasshopper assemblages (Orthoptera: Acrididae) in Western France,” Environ. Entomol., vol. 41, no. 5, pp. 1050–1061, Oct. 2012.

[17] Y. Geng et al.: Migratory Locust Habitat Analysis With PB-AHP Model Using Time-Series Satellite Images
[35] S. Lahssini, H. Lahlaoui, H. M. Alouati, E. A. Hlal, M. Bagaram, and Q. Ponette, “Predicting cork oak suitability in Maamora forest using random forest algorithm,” *J. Geog. Inf. Syst.*, vol. 7, no. 2, pp. 202–210, 2015, doi: 10.4243/jgis.2015.7.2017.

[36] P. O. Gislason, J. A. Benediktsson, and J. R. Sveinsson, “Random forests for land cover classification,” *Pattern Recognit. Lett.*, vol. 27, no. 4, pp. 294–300, Mar. 2006.

[37] J. Chen, P. Jönsson, M. Tamura, Z. Gu, B. Matsushita, and L. Eklundh, “A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter,” *Remote Sens. Environ.*, vol. 91, nos. 3–4, pp. 332–344, 2004, doi: 10.1016/j.rse.2004.03.014.

[38] G. M. Foody, “Status of land cover classification accuracy assessment,” *Remote Sens. Environ.*, vol. 80, no. 1, pp. 185–201, Apr. 2002.

[39] R. Sivanpillai, A. Latchininsky, K. Driese, and V. Kambulin, “Mapping locust habitats in river Ili delta, Kazakhstan, using Landsat imagery,” *Agricult. Ecosyst. Environ.*, vol. 117, nos. 2–3, pp. 128–134, Nov. 2006.

[40] H. Eriksson and D. Isaksson, “Short-term assessment of dung beetle response to carbosulfan treatment against desert locust in Sudan,” *J. Appl. Entomol.*, vol. 133, no. 8, pp. 584–595, Sep. 2009.

[41] D. F. Ludwig and T. J. Iannuzzi, “Habitat equivalency in urban estuaries: An analytical hierarchy process for planning ecological restoration,” *Urban Ecosyst.*, vol. 9, no. 4, pp. 265–290, Nov. 2006.

[42] Z. Dong, Z. Wang, D. Liu, L. Li, C. Ren, X. Tang, M. Jia, and C. Liu, “Assessment of habitat suitability for waterbirds in the West Songnen plain, China, using remote sensing and GIS,” *Ecol. Eng.*, vol. 55, pp. 94–100, Jun. 2013.

[43] L. Sun and K. Schulz, “The improvement of land cover classification by thermal remote sensing,” *Remote Sens.*, vol. 7, no. 7, pp. 8368–8390, Jun. 2015.

[44] Y. Zha, J. Gao, S. Ni, and N. Shen, “Temporal filtering of successive MODIS data in monitoring a locust outbreak,” *Int. J. Remote Sens.*, vol. 26, no. 24, pp. 5665–5674, Dec. 2005.

[45] R. Sivanpillai and A. V. Latchininsky, “Can late summer Landsat data be used for locating Asian migratory locust, locustamigratoriamigratoria, oviposition sites in the Amudarya river delta, Uzbekistan?” *Entomologia Experimentalis et Applicata*, vol. 128, no. 2, pp. 346–353, Aug. 2008.

[47] Q. H. Meng, J. Chen, S. J. Sheng, and J. Q. Liu, “Oriental migratory locust habitat classification based on multi-temporal remote sensing data,” *Remote Sens. Technol. Appl.*, vol. 28, no. 1, pp. 116–121, 2013.

[49] P. Navrati and H. Wilps, “Object-based locust habitat mapping using high-resolution multispectral satellite data in the Southern Aral Sea Basin,” *J. Appl. Remote Sens.*, vol. 7, no. 1, pp. 75–97, 2013.

[50] J. W. Everts and L. Ba, “Environmental effects of locust control: State of the art and perspectives,” in *New Strategies in Locust Control*, Basel, Switzerland: Birkhäuser, 1997, pp. 331–336.

[51] K. L. Maute, K. French, and C. M. Bull, “Current insecticide treatments used in locust control have less of a short-term impact on Australian aridzone reptile communities than does temporal variation,” *Wildlife Res.*, vol. 42, no. 1, pp. 50–59, 2015.

[52] C. Adriaansen, J. D. Woodman, and E. Deveson, “The Australian plague locust: Risk and response,” in *Biological and Environmental Hazards, Risks, and Disasters*. Dutch, The Netherlands: Elsevier, 2016, pp. 67–86.

YUN GENG received the B.E. degree in computer science and technology from Beijing Forest University, Beijing, China, in 2017. She is currently pursuing the Ph.D. degree with the Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing. Her current research interests include migratory locust monitoring and forecasting, remote sensing, and geographic information systems.

LONGLONG ZHAO received the Ph.D. degree from the School of Earth Science and Resources, China University of Geosciences, Beijing, China, in 2017. She has worked as a Postdoctoral Researcher with the Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, from 2017 to 2019. She is currently an Assistant Researcher with the Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. Her current research interests include crop pests and diseases monitoring by remote sensing and geographic information systems.

YINGYING DONG received the B.S. degree in information and computation science from Shandong Normal University, Shandong, China, in 2006. The M.S. degree in mathematics of computation from Capital Normal University, Beijing, China, in 2009, and the Ph.D. degree in agricultural remote sensing and information technology from Zhejiang University, Zhejiang, China, in 2013. Her research interest includes research and application in vegetation remote sensing.

WENJIANG HUANG received the Ph.D. degree in cartography and GIS from Beijing Normal University, Beijing, China, in 2005. He is currently a Professor with the Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing. His research interest includes quantitative remote sensing research and application in vegetation.

YUE SHI received the Ph.D. degree from the Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China, in 2019. He is currently a Postdoctoral Researcher with the Department of Computing and Mathematics, Manchester Metropolitan University, Manchester, U.K. His research interests include crop pest and disease monitoring and forecasting, remote sensing, and geographic information systems.

YU REN received the B.S. degree in application and technology of remote sensing and the M.S. degree in geology from the Chengdu University of Technology, China, in 2015 and 2018, respectively. She is currently pursing the Ph.D. degree in cartography and geographic information systems with the Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China. Her current research interests include crop nitrogen stress and disease monitoring, and quantitative remote sensing of vegetation.

BINYUAN REN received the M.S. degree from Nanjing Agricultural University, Nanjing, China, in 2014. His current research interests include crop pests and disease monitoring and forecasting and crop pests and disease control technique extension.