Phase 1 double-blind randomized safety trial of the Janus kinase inhibitor tofacitinib in systemic lupus erythematosus

Sarfaraz A. Hasni1✉, Sarthak Gupta1,2, Michael Davis1, Elaine Poncio1, Yenealem Temesgen-Oyelakin1, Philip M. Carlucci1,2, Xinghao Wang2, Mohammad Naqi1, Martin P. Playford3, Rishi R. Goel2, Xiaobai Li4, Ann J. Biehl5, Isabel Ochoa-Navas1, Zerai Manna1, Yinghui Shi6, Donald Thomas7, Jinguo Chen8, Angélique Biancotto8, Richard Apps8, Foo Cheung8, Yuri Kotliarov8, Ashley L. Babyak8, Huizhi Zhou8, Rongye Shi8, Katie Stagliano8, Wanxia Li Tsai6, Laura Vian6, Nathalia Gazaniga6, Valentina Giudice9, Shajia Lu6, Stephen R. Brooks10, Meggan MacKay11, Peter Gregersen11, Nehal N. Mehta3, Alan T. Remaley12, Betty Diamond11, John J. O’Shea13, Massimo Gadina6 & Mariana J. Kaplan2

Increased risk of premature cardiovascular disease (CVD) is well recognized in systemic lupus erythematosus (SLE). Aberrant type I-Interferon (IFN)-neutrophil interactions contribute to this enhanced CVD risk. In lupus animal models, the Janus kinase (JAK) inhibitor tofacitinib improves clinical features, immune dysregulation and vascular dysfunction. We conducted a randomized, double-blind, placebo-controlled clinical trial of tofacitinib in SLE subjects (ClinicalTrials.gov NCT02535689). In this study, 30 subjects are randomized to tofacitinib (5 mg twice daily) or placebo in 2:1 block. The primary outcome of this study is safety and tolerability of tofacitinib. We also show that tofacitinib improves cardiometabolic and immunologic parameters associated with the premature atherosclerosis in SLE. Tofacitinib improves high-density lipoprotein cholesterol levels (p = 0.0006, CI 95%: 4.12, 13.32) and particle number (p = 0.0008, CI 95%: 1.58, 5.33); lecithin: cholesterol acyltransferase concentration (p = 0.024, CI 95%: 1.1, –26.5), cholesterol efflux capacity (p = 0.08, CI 95%: –0.01, 0.24), improvements in arterial stiffness and endothelium-dependent vasorelaxation and decrease in type I IFN gene signature, low-density granulocytes and circulating NETs. Some of these improvements are more robust in subjects with STAT4 risk allele.

https://doi.org/10.1038/s41467-021-23361-z

A full list of author affiliations appears at the end of the paper.
The pathogenesis of systemic lupus erythematosus (SLE) involves dysregulation of multiple innate and adaptive immune pathways. The role of the innate immune system, specifically type I interferons, low-density neutrophils, and neutrophil extracellular traps (NETs), is now recognized as a potential fundamental player in SLE pathogenesis and its associated vascular damage. The risk of cardiovascular disease (CVD) and premature atherosclerosis is significantly increased in SLE, particularly in young women. Efforts to modulate SLE vasculopathy, atherosclerosis development, and progression have been unsuccessful.

The immune dysregulation characteristic of SLE has been proposed to play prominent roles in driving premature atherosclerosis. Specifically, the type I Interferon (IFN) pathway and a distinct subset of neutrophils called low-density granulocytes (LDGs) that display enhanced ability to form neutrophil extracellular traps (NETs) have been directly implicated in vascular damage, atherosclerotic plaque formation, and CVD progression.

The Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway is a fundamental signaling cascade used by cells to respond to a wide variety of cytokines and growth factors. Many inflammatory cytokines implicated in SLE pathogenesis, including type I and II interferons (IFNs), signal through a JAK-STAT pathway. JAK inhibitors (jakinibs) have displayed efficacy in various murine models of lupus. Clinical trials using the janikibs showed clinical efficacy in arthritis in patients with mild-to-moderate SLE or venous thromboembolic events were recorded. There were no clinical or statistically significant changes observed in the tofacitinib group compared to baseline measurements and to the placebo group in other laboratory safety parameters (Table 3). As compared to placebo in the tofacitinib group, the hemoglobin difference in change score was −0.33 (95% CI −0.33, −0.08) at day 56, −0.20 (95% CI, −0.81, 0.40) at day 84; white blood cell count difference in change score was −0.63 (95% CI −0.63, −1.46) at day 56, −0.52 (95% CI, −1.35, 0.30) at day 84; absolute neutrophil count difference in change score was −0.58 (95% CI −0.58, −1.35) at day 56, −0.21 (95% CI, −0.85, 0.43) at day 84; platelet count difference in change score was −15.36 (95% CI −15.36, −35.79) at day 56, 5.3 (95% CI, −12.33, 22.93) at day 84; serum AST difference in change score was 0.71 (95% CI, 0.71, −5.14) at day 56, −13.8 (95% CI, −34.91, 7.31) at day 84; and serum ALT difference in change score was 1.58 (95% CI, 1.58, −4.55) at day 56, −2.15 (95% CI, −8.86, 4.56) at day 84 (Table 3). None of these differences were statistically significant. None of the patients in either group met the disease flare criteria during the trial, and there were no new BILAG 2004 A or B scores. The baseline mean SLEDAI 2 K score in the tofacitinib group was 5.1 ± 2.2 mean ± standard deviation, compared to 5.5 ± 3.7 in the placebo group; the difference in change scores (tofacitinib vs. placebo) was 0.04 (95% CI, −1.04, 1.11) at day 56 and −0.72 (95% CI, −1.98, 0.53) at day 84. The baseline mean BILAG 2004 score in the tofacitinib group was 7.6 ± 4.6 mean ± standard deviation, compared to 9.3 ± 4.3 in the placebo group; the difference in change scores (tofacitinib vs. placebo) was 1.56 (95% CI, −1.86, 4.98) at day 56 and −2.04 (95% CI, −4.96, 0.89) at day 84. The baseline mean PGA score in the tofacitinib group was 0.8 ± 0.8 (mean ± standard deviation), compared to 1.2 ± 0.9 in the placebo group; the difference in change scores (tofacitinib vs. placebo) was 0.18 (95% CI, −0.28, 0.64) at day 56 and 0.23 (95% CI, −0.30, 0.76) at day 84. None of these differences were statistically significant. The SLE serological disease activity (complement C3 and C4 levels) and the patient-reported outcomes (SF-36) were similar at baseline visit and did not have a significant difference in change scores at day 56 or day 84 (Table 4). There was a numerical increase in anti-ds-DNA antibody titers in both groups during the study, but these increases were not statistically significant. This study was not powered to assess clinical efficacy.

Despite randomization, there were some differences between the tofacitinib and the placebo group at the baseline visit. The subjects on placebo reported a statistically significant higher degree of fatigue, as measured by MD-Fatigue scale at baseline, and a significant improvement in fatigue during the study. The subjects on placebo had higher baseline DAS-28-ESR and lower baseline anti-ds-DNA levels as compared to the tofacitinib group, but these were not statistically significant differences (Table 4). The safety and disease activity data of subjects on tofacitinib and placebo stratified based on presence or absence of STAT4 risk allele revealed non-statistically significant differences in some variables between groups (except for as noted elsewhere); the
clinical relevance of these differences is uncertain and needs to be further explored in a larger sample (Supplementary Tables 1 and 2).

Table 1 Baseline demographic, clinical, and vascular characteristics of SLE subjects enrolled in the trial based on their STAT4 risk allele status.

	Tofacitinib (n = 10)	Placebo (n = 5)	Total N = 30	P value at baseline			
Age (years)	Mean ± SD	Mean ± SD	Mean ± SD				
Race/ethnicity	African American	44 ± 16.9	35.6 ± 15.9	44.4 ± 7.2	45.9 ± 15.2	0.16	
	Asian	53.8 ± 13.9	0 (0%)	4 (80%)	13 (43.3%)	0.002**	
	Caucasian	0 (0%)	0 (0%)	1 (20%)	2 (6.7%)		
	Hispanic	2 (20%)	0 (0%)	0 (0%)	2 (6.7%)		
	Gender, N (%)	7 (70%)	5 (100%)	16.2 ± 9.68	13.1 ± 11.1	0.65	
	African American	8 (80%)	5 (100%)	26 (86.7%)	0.70		
	Asian	9 (90%)	4 (80%)	14 (46.7%)			
	Caucasian	2 (20%)	1 (20%)	4 (13.3%)			
	Disease duration, mean ± SD	10.8 ± 16.1	15.6 ± 11.42	9.8 ± 12.44	16.2 ± 9.68	13.1 ± 11.1	0.65
	HCQ, N (%)	5.2 ± 2.7	5.6 ± 4.34	5.4 ± 3.44	5.2 ± 2.7	0.97	
	Prednisone, N (%)	4.9 ± 1.79	5.4 ± 4.34	6.7 ± 2.9	5.7 ± 3.0	0.73	
	Prednisone dose, mean ± SD	6.0 (60%)	2 (40%)	3 (60%)	14 (46.7%)	0.52	
	Anti-dsDNA antibody, N (%)	5.0 ± 2.7	7.5 ± 3.5	6.67 ± 2.9	5.7 ± 3.0	0.73	
	ACA IgG, N (%)	9.0 (90%)	10 (100%)	5 (100%)	29 (96.67%)	0.56	
	ACA IgM, N (%)	7.37 ± 1.08	6.9 ± 1.62	7.1 ± 1.02	7.54 ± 1.36	0.22	
	Lupus anticoagulant, N (%)	7.46 ± 1.61	7.22 ± 2.15	6.98 ± 0.7	7.32 ± 2.00	0.98	
	Ln RHI, mean ± SD	4.3 ± 0.35	0.83 ± 0.13	0.88 ± 0.28	0.65 ± 0.32	0.026*	
	History of lupus nephritis, N (%)	1.0 (10%)	2 (40%)	1 (20%)	23 (77.4%)	0.56	
		2 (20%)	3 (30%)	1 (20%)	6 (20%)	0.22	
			3 (30%)	1 (20%)	6 (20%)	0.60	

SLEDAI 2K: Systemic Lupus Erythematosus Disease Activity Index 2000, HCQ: hydroxychloroquine, RT-CAVI: right carotid aneurysm vascular index, PWV: pulse wave velocity, Ln RHI: Log Reactive Hyperemia Index, Anti-ds-DNA: anti-double-stranded DNA antibody, ACA IgG: anticyclic citrullinated peptide antibody IgG, ACA IgM: anticyclic citrullinated antibody IgM.

*p < 0.05, **p < 0.01

The baseline variables were compared using the mean values using analysis of variance (ANOVA) for continuous variables and Chi-square test for categorical variables.

Two-tailed tests were used where appropriate.

No adjustments were made for multiple comparisons.

Tofacitinib modulated the type I IFN gene signature and pSTAT levels. To assess target engagement in subjects receiving tofacitinib, we measured phosphorylation of STAT1, STAT3, and STAT5. Tofacitinib use led to significant inhibition of pSTAT1 in CD4+ T cells at days 14 and 56 of the trial (P = 0.023; Fig. 1a). There was also a trend observed towards nonsignificant inhibition of pSTAT1 in subjects on a placebo that is of unknown significance and without any known plausible biological explanation. In contrast, pSTAT3, pSTAT5, and pSTAT1 levels were not significantly different in CD8+ T cells, CD20+ B cells or CD14+ monocytes between tofacitinib or placebo-treated patients (Fig. 1b and Supplementary Fig. 2a, b). Assessment of these parameters one month after drug discontinuation showed that the effects on pSTAT1 did not persist after drug was stopped.

We next assessed gene expression between groups at baseline, days 56 and 84 by whole blood RNA-seq. In total, 90 genes were found to be twofold different (22 up and 68 down) by ANOVA comparison between tofacitinib and placebo treatment on day 56. Of the 68 genes that were significantly downregulated in the tofacitinib group at day 56, 19 were Interferon-Stimulated Genes (ISG). By day 84, the levels of most of these 19 ISGs had returned to pretreatment levels, but a few genes were still significantly downregulated (Fig. 1c and Supplementary Fig. 3). Nanostring was used to verify the impact of tofacitinib on the IFN signature (Fig. 1c). The IFN response gene score was not significantly different at baseline between subjects on tofacitinib and placebo. At day 56, the subjects on tofacitinib had a significant reduction in levels of ISGs in comparison to placebo (P = 0.01), which remained significant at the day 84 visit (P = 0.02) (Supplementary Fig. 4)\(^8\).

Tofacitinib modulated dysregulated neutrophil responses. The JAK/STAT pathway and cognate cytokines are crucial in neutrophil biology\(^9\). We examined the impact of tofacitinib on LDGs (a distinct subset of proinflammatory neutrophils elevated in SLE) and their ability to synthesize NETs. We found that there was a significant reduction in the percentage of LDGs in SLE subjects on tofacitinib compared to placebo at day 56 (P = 0.048) and the decrease was sustained at day 84 (P = 0.014; Fig. 2a), whereas total neutrophils did not significantly decrease during active treatment (Fig. 2b and Table 4). There was also a concomitant increase in LDGs in the placebo group which partially explains this statistically significant difference. While the role of NETs in promoting inflammation and vascular damage in SLE has been previously described in vitro and in vivo, the effect of the STAT4 risk allele in NET formation is unknown\(^7\). We found that the STAT4 risk allele-negative subjects (Fig. 2b and Supplementary Fig. 3).
Table 2 Adverse event frequency and severity.

Body system preferred term severity	Tofacitinib adverse events = 43	Placebo adverse events = 28	Total adverse events = 71	P value
Any event	32 (74.4%)	23 (82.1%)	55 (77.5%)	0.09
Mild	11 (25.6%)	3 (10.7%)	14 (19.7%)	
Moderate	0 (0%)	2 (7.1%)	2 (2.8%)	
Cardiac disorders				
Mild	1 (2.3%)	0 (0%)	1 (1.4%)	
Moderate	0 (0.0%)	0 (0.0%)	0 (0.0%)	
Eye disorders				1.00
Mild	1 (2.3%)	3 (10.7%)	4 (5.6%)	
Moderate	0 (0.0%)	1 (3.6%)	1 (1.4%)	
Gastrointestinal disorders				1.00
Mild	4 (9.3%)	4 (14.3%)	8 (11.3%)	
Moderate	2 (4.6%)	1 (3.6%)	3 (4.2%)	
General disorders				NA
Mild	2 (4.6%)	1 (3.6%)	3 (4.2%)	
Moderate	0 (0.0%)	0 (0.0%)	0 (0.0%)	
Severe	0 (0.0%)	0 (0.0%)	0 (0.0%)	
Gastrointestinal disorders				
Mild	16 (37.2%)	4 (14.3%)	20 (28.2%)	0.55
Moderate	5 (11.6%)	0 (0.0%)	5 (7.0%)	
Severe	0 (0.0%)	0 (0.0%)	0 (0.0%)	
Investigations				1.00
Mild	2 (4.7%)	2 (7.1%)	4 (5.6%)	
Moderate	1 (2.3%)	0 (0%)	1 (1.4%)	
Severe	0 (0.0%)	1 (3.6%)	1 (1.4%)	
Metabolism disorders				NA
Mild	0 (0%)	0 (0.0%)	0 (0.0%)	
Moderate	1 (2.3%)	0 (0.0%)	1 (1.4%)	
Musculoskeletal disorders				NA
Mild	1 (2.3%)	2 (7.1%)	3 (4.2%)	
Moderate	0 (0%)	0 (0.0%)	0 (0.0%)	
Severe	0 (0.0%)	0 (0.0%)	0 (0.0%)	
Nervous system disorders				0.42
Mild	4 (9.3%)	7 (25.0%)	11 (15.5%)	
Moderate	1 (2.3%)	0 (0.0%)	1 (1.4%)	
Severe	0 (0%)	0 (0.0%)	0 (0.0%)	
Renal and urinary disorders				NA
Mild	1 (2.3%)	0 (0.0%)	1 (1.4%)	
Moderate	0 (0%)	0 (0.0%)	0 (0.0%)	
Vascular disorders				NA
Mild	0 (0%)	0 (0.0%)	0 (0.0%)	

Note: No adjustments were made for multiple comparisons. Fisher’s exact test was used to calculate the P values and compare the incidents of the adverse events between tofacitinib and placebo. Two-tailed tests were used where appropriate.

Improvements in cardiometabolic parameters and vascular function

Since tofacitinib improved type 1 IFN signaling and neutrophil abnormalities associated with premature CVD, we determined if tofacitinib treatment affected plasma lipoprotein levels and function. There was a significant increase in HDL-C in all subjects in the tofacitinib group at the completion of the on-study drug phase (day 56) compared to baseline (P = 0.006) regardless of their STAT4 risk allele status (Fig. 3a and Supplementary Fig. 5b). Low-density lipoprotein levels and triglycerides were not affected (Supplemental Fig. 5a–d). Tofacitinib also significantly increased levels of large HDL particles, whereas other lipoprotein subfractions did not show significant changes (Table 4). At day 56, a significant increase in Lecithin–Cholesterol acyltransferase (LCAT) concentration was detected in SLE subjects on tofacitinib that were STAT4 risk allele-positive (P = 0.024, 95% CI: 1.1–26.5) compared to the STAT4 risk allele-positive group on placebo or in subjects negative for this risk allele on tofacitinib (P = 0.04, 95% CI: −18.2, 10.2) (Fig. 3b). In addition, at day 56, there was a significantly increased increase in cholesterol efflux capacity in SLE subjects treated with tofacitinib (P = 0.002, 95% CI: 0.04–0.16) and a nonsignificant trend when compared to placebo (P = 0.08, 95% CI: −0.01, 0.24) (Supplementary Fig. 5e). This effect was not dependent on the subject’s STAT4 risk allele status. No statistically significant differences in insulin resistance, as measured by HOMA-IR, were detected between placebo and tofacitinib-treated groups (P = 0.51, 95% CI: −0.93, 0.48) (Table 3). Compared to the tofacitinib group, the placebo group had lower cholesterol and triglyceride values at the baseline, but these differences were not statistically significant and remained essentially unchanged throughout the study (Table 3).

Enhanced arterial stiffness and impairments in endothelium-dependent vasorelaxation have been described in association with vasculopathy and subclinical atherosclerosis in SLE20,21. Consistent with previous studies, the baseline values for various measures of arterial stiffness and impairments in endothelial dysfunction in SLE subjects were higher than the reference values for age-matched controls (Table 1)22,23. Patients in the tofacitinib...
Table 3 Longitudinal follow-up of laboratory values during the trial.

Outcome variable	Tofacitinib (n = 20)	Placebo (n = 10)	P value baseline	P value D56, difference in change scores (95% CI)	P value D84, difference in change scores (95% CI)	
	Day 1 mean ± SD	Day 56 mean ± SD	Day 84 mean ± SD	Day 1 mean ± SD	Day 56 mean ± SD	Day 84 mean ± SD
WBC, K/mcl	5.3 ± 1.6	5.2 ± 1.7	4.8 ± 1.5	4.8 ± 1.1	5.3 ± 1.6	4.9 ± 1.1
Absolute neutrophil counts, K/µL	3 ± 1.3	2.9 ± 1.3	2.7 ± 1.1	2.7 ± 0.9	3.2 ± 1.3	2.8 ± 0.7
Hemoglobin, g/dL	12.8 ± 1.2	12.6 ± 1.2	12.4 ± 1.4	12.9 ± 1.5	13 ± 19	12.8 ± 2
Platelet, K/mcL	224.2 ± 75.2	221.6 ± 68.4	231.5 ± 77.2	234 ± 57.7	223.9 ± 67.1	231.7 ± 54.2
ESR, mm/h	4.6 ± 7.7	2.3 ± 3.2	3.2 ± 3.4	2.7 ± 4	3.3 ± 5.1	4.8 ± 2
CRP, mg/L	106.6 ± 26.1	100.4 ± 20.6	107.4 ± 24.1	108.8 ± 28.6	106.8 ± 29.7	108.5 ± 32.2
Anti dsDNA IJ/mL**	98 ± 817	127.4 ± 85.9	157.2 ± 115.7	55.0 ± 21.7	613 ± 21.6	99.7 ± 70.4
AST, u/L	20.6 ± 5.3	22.4 ± 6.6	21.5 ± 5.6	21.7 ± 4.5	22.2 ± 9.2	35.1 ± 45.7
ALT, u/L	17.7 ± 4	20.1 ± 11.5	19.6 ± 10.6	19.7 ± 8.6	20.3 ± 14.3	23.1 ± 13
Cholesterol, mg/dL	170.5 ± 31.3	184.9 ± 45.3	170.6 ± 33.7	148.4 ± 23.2	147.2 ± 26.1	149.6 ± 31.6
Triglycerides, mg/dL*	108.7 ± 46.6	115.8 ± 107.7	107 ± 65.7	79.8 ± 29.9	84.5 ± 43.3	90.7 ± 44.2
HDL, mg/dL	56.5 ± 17.5	64.2 ± 18.8	56.5 ± 19.7	52.2 ± 16.4	51.4 ± 15.6	51.5 ± 19.3
LDL, mg/dL	92.9 ± 2.34	94.2 ± 31.6	92.8 ± 27.8	80.2 ± 23.4	79.2 ± 25.2	80.2 ± 24.2
LDL particle number, mg/ml/L	32.1 ± 65.6	34.7 ± 61.6	31.2 ± 64	28.9 ± 56	28.4 ± 56	28.1 ± 7
LDL size, nm	9.4 ± 0.5	9.6 ± 0.6	9.5 ± 0.5	9.4 ± 0.6	9.5 ± 0.5	9.5 ± 0.5
VLDL particle number, mg/ml/L	1024.8 ± 396.9	1055.5 ± 556.5	1053.3 ± 433	898.4 ± 268.8	869 ± 309.7	931.1 ± 372.9
VLDL size, nm*	4.3 ± 0.2	5.0 ± 0.4	4.4 ± 0.3	4.7 ± 0.6	4.7 ± 0.4	4.6 ± 0.8
Glucose, mmol/L	4.9 ± 0.7	5.2 ± 1.1	5.1 ± 0.7	4.9 ± 0.4	4.9 ± 0.6	5 ± 1.1
Insulin, pmol/L	98.7 ± 4.2	88.3 ± 35.9	96.4 ± 38.7	143.1 ± 95.1	131.3 ± 104	204.3 ± 246.2
HOMA2 IR	1.8 ± 0.8	1.6 ± 0.7	1.8 ± 0.7	2.6 ± 1.7	2.4 ± 1.9	3.6 ± 4.2

**WBC white blood cell, ANC absolute neutrophil count, ESR erythrocyte sedimentation rate, CRP C-reactive protein, C3 complement component 3, C4 complement component 4, anti-dsDNA anti-double-stranded DNA antibody, AST aspartate aminotransferase, ALT alanine aminotransferase, HDL high-density lipoprotein, LDL low-density lipoprotein, VLDL very-low-density lipoprotein, mmol/L micromoles per liter, nm nanometer, pmol/L picomole per liter, HOMA2 IR Homeostatic Model Assessment Index for Insulin Resistance.

Baseline P values were calculated using the two-sample t-tests. P-values and the 95% confidence intervals for treatment group difference in change score from baseline to day 56 were calculated using either (1) linear mixed-effects models if there were multiple assessment time points between baseline and day 56 or (2) analysis of covariance models (ANCOVA) if the measures were collected only at baseline and day 56 during the treatment phase. For day 84, ANCOVA was used to compare the change scores between treatment groups. The STA4 allele status and the baseline values were included as covariates in the linear mixed-effects models and ANCOVA.

P-values were calculated for the log-transformed data in order to meet the model normality assumptions. The estimates and the 95% confidence bounds were exponentiated back.

**Data are based on 5/20 subjects in the tofacitinib group and 3/10 subjects in the placebo group who had positive anti-dsDNA results. Wilcoxon ranked-sum test was used to calculate the P values.

No adjustments were made for multiple comparisons.
Table 4 Disease activity and patient-reported outcome measures.

Outcome variable	Placebo (n = 10)	Tofacitinib (n = 20)	Difference in change (tofacitinib vs. placebo)			
	mean ± SD	mean ± SD	mean ± SD			
	p value	p value	p value			
		difference (95% CI)	difference (95% CI)			
SF-36 total	113.3 ± 9.5	110.3 ± 9.6	111.9 ± 9.3	0.46	0.91, 0.20 (−3.69, 3.29)	0.31, 2.92 (−2.84, 8.69)
MD-Fatigue average	1.9 ± 2.2	1.6 ± 1.7	2.1 ± 2.2	0.001	0.016, 3.29 (−104.3)	4.9 ± 2.8 (−102.6, 112.0)
SLEDAI-2K	4.2 ± 2.3	5.1 ± 2.2	3.9 ± 1.9	0.68	0.016, 1.16 (−104.3)	4.9 ± 2.8 (−102.6, 112.0)
PGA	0.8 ± 0.9	0.8 ± 0.9	0.9 ± 0.7	0.21	0.43, 0.18 (−104.3)	0.31, 2.92 (−2.84, 8.69)
DAS-28-ESR	2.5 ± 1.2	2.7 ± 1.3	2.5 ± 0.9	0.44	0.82, 0.18 (−104.3)	0.31, 2.92 (−2.84, 8.69)
CLASI total activity***	1.9 ± 1.7	2.6 ± 1.9	2.1 ± 1.8	0.29	0.54, 0.18 (−104.3)	0.31, 2.92 (−2.84, 8.69)
CLASI total damage***	0.9 ± 2.2	1.1 ± 2.2	1.1 ± 2.2	0.25	0.54, 0.18 (−104.3)	0.31, 2.92 (−2.84, 8.69)
BILAG 2004	7.5 ± 4.6	7.6 ± 4.6	6.2 ± 4.8	0.32	0.36, 1.56 (−104.3)	4.9 ± 2.8 (−102.6, 112.0)

*To calculate the 95% confidence interval (CI) in change from baseline (tofacitinib vs. placebo), the linear mixed-effects models were used to include all the other time points between baseline and day 56.

†To calculate the 95% CI in change from baseline (tofacitinib vs. placebo), the analysis of covariance (ANCOVA) test was used to analyze data on day 84 only.

***Due to the violation of the normality assumption, the Wilcoxon ranked-sum test was used to assess the baseline data and to compare the change scores for day 56 and day 84 separately. The 95% confidence intervals were not provided.

Discussion

In this study, short-term use of tofacitinib in subjects with mild-to-moderate SLE was overall safe, well-tolerated, with no unexpected AEs, thromboembolic events or opportunistic infections. Our exploratory analyses showed that tofacitinib led to significant positive modulation of cardiometaolic and immunologic parameters previously linked to increased coronary atherosclerotic plaque, vascular inflammation, and abnormalities in blood vessel function in lupus and in the general population.24,25 Premature atherosclerosis and vasculopathy leading to CV events significantly contribute to enhanced morbidity and mortality in SLE, a phenomenon not explained by traditional CV risk factors.24

The observation that jakinibs may have a possible role in modulating SLE vasculopathy and potentially mitigating CV risk could have important implications in this patient population.

Previous work from our group and others has implicated a pathophysiologic alliance between type I IFNs, LDGs, and enhanced NET formation as a mechanism that promotes premature atherosclerosis and vasculopathy in SLE. Tofacitinib significantly decreased the type I IFN gene signature in circulating immune cells and selectively modulated the numbers of circulating LDGs, but not total neutrophils, in association with significant decreases in levels of circulating NETs. The mechanism by which tofacitinib led to decreases in LDGs remains to be further characterized and may be related to inhibition of cytokine-specific effects on these cells in the bone marrow or tissues, perhaps promoting their death through apoptosis. Of interest, we found that individuals carrying the STAT4 risk allele had higher levels of circulating NETs, suggesting that certain polymorphisms associated with an enhanced risk for autoimmunity may promote the enhanced NET formation, a phenomenon recently reported for other autoimmunity risk SNPs.26,31

While the effect on type I IFN was expected, it remains unclear why LDGs were preferentially targeted by tofacitinib and why the response to the drug concerning NET inhibition was enhanced in the presence of the STAT4 risk allele. One scenario is that since type I IFNs activate STAT4, subjects bearing the STAT4 risk allele have increased priming of neutrophils resulting in increased NET formation. Our current data are consistent with this view and it appears that tofacitinib may have preferentially blocked this priming in subjects with the risk allele. While tofacitinib affected type I IFN responses and markers of neutrophil dysregulation, the effects observed on other immune cell types or clinical activity in subjects with mild-to-moderate SLE were not significant. The exact role of type I IFN in the pathogenesis of SLE...
is still being defined and abrogating this pathway may not lead to decreases in disease manifestations, as evidence from recent clinical trials using interferon receptor blocker Anifrolumab and the plasmacytoid dendritic cells specific receptor antibody BIIB05933,34. Future studies on the effects of tofacitinib in larger patient groups, stratified by genetic risk and greater active disease, will be needed to assess alteration of both innate and adaptive immune parameters, and clinical disease activity.

SLE HDL has been described to be small particle size and with decreased cholesterol efflux capacity and LCAT activity driven at least in part by oxidation through enhanced NET formation7,35–37. Herein, we show that short-term use of tofacitinib in SLE led to significant improvements in the levels, size, and function of HDL. Importantly, tofacitinib led to improvements in arterial compliance and endothelial function, with the reversal of SLE-associated accelerated vascular aging. The improvement in aortic compliance as measured by PWV persisted during the washout phase possibly due to modulatory effects of tofacitinib on endothelial cells38. Even though these changes did not reach statistical significance (probably due to the small sample size) yet the extent of change in a short duration is impressive and requires further exploring. The mechanism of this finding of short-term tofacitinib exposure leading to improvements in arterial compliance and endothelial function remains speculative. Higher prevalence of the STAT4 risk allele has been associated with cardiovascular risk in SLE patients and atherosclerosis animal models16,39. In this study, HDL function (as measured by LCAT activity), arterial stiffness, and endothelium-dependent vasorelaxation improved in individuals on tofacitinib that were positive for STAT4 risk allele.

Future clinical trials will need to establish whether the positive effects on vascular function by jakinibs are disease-specific or are generalizable to other autoimmune disorders and, perhaps, even the general population. Indeed, addressing CV risk in a non-autoimmune disease population by using anti-inflammatory medications (canakinumab) has been reported to be successful25.

There was a nonsignificant trend toward lower absolute neutrophil counts in subjects on tofacitinib. As expected, there were
Fig. 2 Circulating LDGs and NETs are modulated by tofacitinib. a Results represent changes in percentage of circulating LDGs: Subjects treated with tofacitinib vs. placebo. Significant decrease in LDGs in tofacitinib group P = 0.048 at day 56 and P = 0.014 at day 84 using unpaired t test. b Changes in absolute neutrophil counts. c Circulating NET levels at baseline: Individuals positive for STAT4 risk allele (each subject represented by closed circles) have enhanced circulating NET levels (assessed by human neutrophil elastase (HNE)-dsDNA complexes) then subjects who are STAT4 risk allele negative (each subject represented by open circles) P = 0.02 using unpaired t test. d Changes in circulating NET levels during the study: Patients who are STAT4 risk allele positive and receive tofacitinib display significant decrease in circulating NET complexes P = 0.037 using unpaired t test. Source data are provided as a Source Data file. All data represent mean ± SEM, *P < 0.05, and are based on tofacitinib n = 20, placebo n = 10. Unpaired two-tailed, t test were used for all results. No adjustments were made for multiple comparisons.

Fig. 3 Tofacitinib modulates HDL levels and function in SLE. a Percent change in serum HDL-C at day 56 compared to day 1 based on STAT4 risk allele status (each circle and square represent individual subject): Results represent *P = 0.037 for the difference between STAT4 risk allele-positive subjects on tofacitinib vs placebo and **P = 0.002 STAT4 risk allele-negative subjects on tofacitinib vs placebo. Unpaired t test was used. b Percent change in Lecithin-cholesterol acyltransferase (LCAT) concentration at day 56 compared to day 1 based on STAT4 risk allele status (each circle and square represent individual subject): Results represent *P = 0.033 for the difference between STAT4 risk allele-positive subjects on tofacitinib vs placebo and **P = 0.044 for the difference between STAT4 risk allele-positive subjects on tofacitinib vs STAT4 risk allele-negative subjects on tofacitinib. Kruskal-Wallis test (unpaired, nonparametric) was used. Source data are provided as a Source Data file. All results represent mean ± SEM, *P < 0.05 **P < 0.01, and are based on tofacitinib n = 20, placebo n = 10. Two-tailed tests were used where appropriate. No adjustments were made for multiple comparisons.

Methods

Study design and subjects. The study was approved by the National Institutes of Health (NIH) IRB (ClinicalTrials.gov NCT02535689). The study design and conduct complied with all relevant regulations regarding the use of human study participants and was conducted in accordance with the criteria set by the Declaration of Helsinki as authorized by the NIH Office of Human Subject Research. After written informed consent and determination of eligibility, subjects were randomized to tofacitinib (5 mg twice daily) or placebo in a 2:1 block. Thirty adult SLE subjects that met American College of Rheumatology (ACR) Revised Criteria for the Classification of SLE and had mild-to-severe disease activity (Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI 2 K) score between 2 and 14) were enrolled in an outpatient clinical research setting. In each group, half of the subjects were homozygous or heterozygous for the STAT4 risk allele. Subjects took tofacitinib or placebo for 8 weeks and were followed for 4 additional weeks afterward (Supplementary Fig. 1). Eligible subjects were on stable doses of antimalarials (for 12 weeks prior to the screening visit) and/or oral glucocorticoids (for 4 weeks prior to the screening visit) (prednisone or equivalent <20 mg/day) but no immunosuppressants were allowed. The SLE disease activity was determined using SLEDAI 2 K, BILAG 2004. Disease Activity Score 28-Erythrocyte Sedimentation Rate (DAS-28-ESR), Physician Global Assessment (PGA) (Likert scale 0–3), and patient-reported outcomes (SF-36, Multidimensional Assessment of Fatigue questionnaire)41–46. The rates of adverse events (AEs, as defined by the National Cancer Institute (NCI), Common Terminology Criteria for Adverse Events (CTCAE), Version 4.0) were recorded weekly. The primary outcome of the study was defined as comparing rates of adverse events and rates of SLE disease flares between the tofacitinib group and the placebo group. The SLE disease flare was defined as an increase in SLEDAI 2 K score of ≥3 or an increase in PGA > 1. The secondary outcomes included assessment of clinical response, effects on quality of life measures, and several exploratory mechanistic studies to evaluate the effect of the drug on immune dysregulation and cardiometabolic signatures associated with the development of premature cardiovascular disease (the original protocol, final protocol, and summary of changes are provided as part of the Supplementary files).

Immunologic and hematologic parameters. Each subject had STAT4 risk allele genotyping prior to screening visit using commercially available TaqMan® Single Nucleotide Polymorphism Genotyping. Detailed reagents and methods for PBMC isolation, stimulation, and the fluorescent barcoding method used for the staining and multiplexed phosphor analysis are described in Supplementary Methods and elsewhere47. Pathway analysis and gene annotation were completed using Topogene (topogene.cchmc.org). Results were confirmed using NanoString.
using published methods and the macrophage cell line J774.51. Human serum covariates. In addition, paired was used including baseline, treatment, and the day 56 during the treatment period, the analysis of covariance (ANOVA) models effects. An unstructured variance-covariance matrix was used to account for the (NMR). High-density lipoprotein (HDL) cholesterol ef were measured using an automated Nuclear Magnetic Resonance Spectroscopy Center Central Laboratories. Lipoprotein particle concentration and diameters the longitudinal data on continuous safety parameters and clinical outcomes. The randomized subjects were included in the analysis. The adverse events were performed at the NIH Clinical Center Central Laboratories. Lipoprotein particle concentration and diameters were measured using an automated Nuclear Magnetic Resonance Spectroscopy (NMR). High-density lipoprotein (HDL) cholesterol efflux capacity was measured using published methods and the macrophage cell line 1774.51. Human serum lecithin–cholesterol acyltransferase (LCAT) concentration was quantified by ELISA (BioVendor; Ashville, NC). Noninvasive vascular function studies included the cardioankle vascular index (CAVI), peripheral arterial tonometry (PAT); reactive hyperemia index (RHI), and pulse wave velocity (PWV).52 Details are provided in the Supplementary Methods.

Measuresments of cardiovascular risk factors and vascular function. The homeostasis model assessment of insulin resistance (HOMA-IR) index = fasting glucose (mmol/l) × fasting insulin (μU/ml)/22.5 was used to estimate insulin resistance.56 Overnight fasting lipid profiles were performed at the NIH Clinical Center Central Laboratories. Lipoprotein particle concentration and diameters were measured using an automated Nuclear Magnetic Resonance Spectroscopy (NMR). High-density lipoprotein (HDL) cholesterol efflux capacity was measured using published methods and the macrophage cell line 1774.51. Human serum lecithin–cholesterol acyltransferase (LCAT) concentration was quantified by ELISA (BioVendor; Ashville, NC). Noninvasive vascular function studies included the cardioankle vascular index (CAVI), peripheral arterial tonometry (PAT); reactive hyperemia index (RHI), and pulse wave velocity (PWV).52 Details are provided in the Supplementary Methods.

Statistical analysis. The sample size chosen was based on what is commonly being used in similar studies and consistent with our experiences in early phase safety studies.25,53 No formal power calculations were performed. Data from all randomized subjects were included in the analysis. The adverse events were summarized with frequency counts and percentages for each treatment group. To evaluate the treatment effect on the change from baseline to the end of the treatment period (day 56), a linear mixed-effects model approach was utilized to fit the longitudinal data on continuous safety parameters and clinical outcomes. The model included the baseline value, the STAT4 risk allele status, the treatment group, the categorical time point, and the treatment by time interaction as fixed effects. An unstructured variance-covariance matrix was used to account for the correlations among repeated measures. For variables assessed only at baseline and day 56 during the treatment period, the analysis of covariance (ANCOVA) models was used including baseline, treatment, and the STAT4 risk allele status as the covariates. In addition, paired t test, Mann–Whitney U, or ANOVA were used for comparison where appropriate based on normality of distribution. Two-tailed tests were used where appropriate. No adjustments were made for multiple comparisons.

RNA sequencing analysis. Gene expression values were calculated with Partek Genomics Suite 6.6, which was also used for the principal components analysis (PCA) and one-way ANOVA. The ANOVA was performed on log2 transformed RPKM with a 0.1 offset.

NanoString data analysis. Assessment of the quality of the runs was done (Supplementary Methods). Data were combined, normalized, and analyzed in Microsoft Excel (Microsoft Corporation; Redmond, WA). JMP version 14 was used for further statistical analysis and plotting (SAS Corporation; Cary, NC). Synthetic DNA oligonucleotides of each of the 37 ISGs and 4 housekeeping genes were used as a calibration standard to check run and reagent lot consistency.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

RNA-Seq results have been deposited in the Gene Expression Omnibus (GEO) database; Geo Series Entry GSE139940. The study protocol and statistical analysis plan are submitted as part of the Supplementary File. In addition, the source data for fluorescent cell barcoding is provided as a separate file and can be accessed as referenced. The RNA-Seq and fluorescent cell barcoding data are available without any material transfer and sharing agreement. Any other data are available after executing material transfer and sharing agreement as applicable under laws of the US Government. Please contact Sarfaraz A. Hasni, hasnis@mai.nih.gov for any data-sharing requests. Source data are provided with this paper.

Received: 3 April 2020; Accepted: 22 April 2021;
Published online: 07 June 2021

References

1. Tsokos, G. C. Systemic lupus erythematosus. *N. Engl. J. Med.* 365, 2110–2121 (2011).
2. Weidenbusch, M., Kulkarni, O. P. & Anders, H. J. The innate immune system of human systemic lupus erythematosus. *Clin. Sci. 131*, 625–34, (2017).
3. Manzi, S. et al. Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: comparison with the Framingham Study. *Am. J. Epidemiol. 145*, 408–415 (1997).
4. Giannouli, M. & Mavragani, C. P. Cardiovascular disease in systemic lupus erythematosus: a comprehensive update. *J. Autoimmun. 82*, 1–12 (2017).
5. Sánchez, P., Toro-Trujillo, E., Muñoz-Velandia, O. M., García, A. A. & Fernández-Ávila, D. G. Therapeutic Impact of Statins on the Lipid Profile and Cardiovascular Risk in Patients With Systemic Lupus Erythematosus: Systematic Review of the Literature and a Meta-analysis. *Reumatol Clin. 15*, e86-e91 2019.
6. Liu, Y. & Kaplan, M. J. Cardiovascular disease in systemic lupus erythematosus: an update. *Curr. Opin. Rheumatol.* 30, 441–448 (2018).
7. Carlucc, P. M. et al. Neutrophil subsets and their gene signature associate with vascular inflammation and coronary atherosclerosis in lupus. *JCI Insight 3*, e9276 (2018).
8. Goel, R. R. & Kaplan, M. J. Deadliest catch: neutrophil extracellular traps in autoimmunity. *Curr. Opin. Rheumatol.* 2, 64–70 (2019).
9. O’Shea, J. J., Holland, S. M. & Staudt, L. M. JAKs and STATs in immunity, immunodeficiency, and cancer. *N. Engl. J. Med.* 368, 161–170 (2013).
10. Dean, G. S., Tyrrell-Price, J., Crawley, E. & Isenberg, D. A. Cytokines and pathogenic and therapeutic relevance of JAK/STAT signaling in systemic lupus erythematosus: integration of distinct inflammatory pathways and the prospect of their inhibition with an oral agent. *Cells 8*, 898 (2019).

![Fig. 4 Tofacitinib improves arterial stiffness and endothelial dysfunction in association with STAT4 risk allele status.](image-url)
12. Furumoto, Y. et al. Tofacitinib ameliorates murine lupus and its associated vascular dysfunction. *Arthritis Rheumatol.* 69, 148–160 (2017).

13. You, H. et al. Successful treatment of arthritis and rash with tofacitinib in systemic lupus erythematosus: the experience from a single centre. *Ann. Rheum. Dis.* 78, 1441–1443 (2019).

14. Wallace, D. J. et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. *Lancet* 392, 222–31 (2018).

15. L. J. E. A. S. et al. Specificity of the STAT4 genetic association for severe disease manifestations of systemic lupus erythematosus. *PLoS Genet.* 4, e1000884 (2008).

16. Svenningsen, E. A. et al. A STAT4 risk allele is associated with ischaemic cerebrovascular events and anti-phospholipid antibodies in systemic lupus erythematosus. *Ann. Rheum. Dis.* 69, 834–840 (2010).

17. Kairiki, S. N. et al. Cutting edge: autoimmune disease risk variant of STAT4 confers increased sensitivity to IFN-alpha in lupus patients in vivo. *J. Immunol.* 182, 34–38 (2009).

18. Furie, R. et al. Anifrolumab, an anti-interferon-alpha receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus. *Arthritis Rheumatol.* 69, 576–86 (2017).

19. Futoski, K., Fodor, S. & Mocas, A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. *Int. Immunopharmacol.* 17, 638–650 (2013).

20. Taraborelli, M. et al. Endothelial dysfunction in early systemic lupus erythematosus patients and controls without previous cardiovascular events. *Arthritis Care Res.* 70, 1277–1283 (2018).

21. N. A. R. S. et al. Proliferation and peripheral arterial disease in patients with systemic lupus erythematosus. *Rheumatol. Int.* 37, 293–298 (2017).

22. Wohlfahrt, P. et al. Reference values of cardio-ankle vascular index in a large population. *J. Hypertens.* 35, 2238–244 (2017).

23. Mendoza-Pinto, C. et al. Endothelial dysfunction and arterial stiffness in patients with systemic lupus erythematosus: a systematic review and meta-analysis. *Cerebrovasc. Brain Metab. Rev.* 297, 55–63 (2023).

24. Bruce, I. N. ‘Not only...but also’: factors that contribute to accelerated atherosclerosis and premature coronary heart disease in systemic lupus erythematosus. *Rheumatology* 44, 1492–1502 (2005).

25. Redker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. *N. Engl. J. Med.* 377, 1119–31 (2017).

26. Knight, J. S. et al. Pseudoliparginine deminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. *Circulation Research* 114, 947–956 (2014).

27. Knight, J. S. et al. Pseudoliparginine deminase inhibition is immunomodulatory and vasculoprotective in murine lupus. *J. Clin. Investig.* 123, 2981–2993 (2013).

28. Thacker, S. G. et al. Type I interferons modulate vascular function, repair, thrombosis, and plaque progression in murine models of lupus and atherosclerosis. *Arthritis Rheum.* 64, 2975–2985 (2012).

29. Carmona-Rivera, C., Zhao, W., Yalavarthi, S. & Kaplan, M. J. Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2. *Ann. Rheum. Dis.* 74, 114–1124 (2015).

30. Chang, H. H., Dwivedi, N., Nicholas, A. P. & Ho, I. C. The W620 W620 cell/T follicular helper cell axis and promotes atherogenesis in insulin-resistant mice. *Arthritis Rheum.* 70, 2975–2985 (2012).

31. Odqvist, L. et al. Genetic variations in A20 DUB domain provide a genetic link to arterial stiffness and plaque regression in murine models of lupus and cutaneous lupus erythematosus. *Arthritis Rheum.* 67, 167–169 (2015).

32. Villaverde, V. et al. Activity indices in rheumatoid arthritis. *J. Rheumatol.* 27, 2576–2581 (2000).

33. Tai, W. L. et al. High throughput pSTAT signaling profiling by fluorescent cell barcoding and computational analysis. *J. Immunol. Methods* 477, 112667 (2020).

34. Denny, M. F. et al. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. *J. Immunol.* 184, 3284–3297 (2010).

35. P. N. A. M. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. *Nat. Med.* 22, 146–153 (2016).

36. Matthews, D. R. et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. *Diabetologia* 28, 412–419 (1985).

37. Mehta, N. N. et al. Neutrophil extracellular protein particles and cholesterol efflux capacity in patients with psoriasis. *Atherosclerosis* 224, 218–221 (2012).

38. Musa, S. et al. Safety and tolerability of omalizumab: a randomized clinical trial of humanized anti-IgE monoclonal antibody in systemic lupus erythematosus. *Arthritis Rheumatol.* 71, 1135–1140 (2019).

39. Hartmann, S. et al. A clinical population pharmacokinetic/pharmacodynamic model for BIIB059, a monoclonal antibody for the treatment of systemic and cutaneous lupus erythematosus. *J. Pharmacokinet. Pharmacodyn.* 45, 255–266 (2020).

40. Tai, W. L. et al. High throughput pSTAT signaling profiling by fluorescent cell barcoding and computational analysis. *J. Immunol. Methods* 477, 112667 (2020).

Acknowledgements

This research was supported by the Intramural Research Program of the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health. Pfizer Inc. provided study drug and placebo for this trial. The trial was funded by the Intramural Research Program, NIAMS/NIH. The drug and placebo were provided by Pfizer Inc. through an investigational new drug grant. The role of Pfizer was limited to providing study drug and placebo, they had no role in design or conduct of the study, reporting of results, or manuscript preparation.

Author contributions

S.A.H.: study concept, design, protocol development, conduct, analyses, and manuscript draft. S.G.: study design, protocol development, conduct, analyses, and manuscript review. M.D.: study conduct and manuscript review. E.P.: study conduct and manuscript review. Y.T.O.: study conduct and manuscript review. P.M.C.: performed experimental studies and manuscript review. X.W.: performed experimental studies and manuscript review. M. Y.T.O.: study conduct and manuscript review. P.M.C.: performed experimental studies and manuscript review. S.G.: study design, protocol development, conduct, analyses, and manuscript review. M.G.: study conduct, analyses, and manuscript review. M.M.: study design and manuscript review. P.G.: study design, analyses, and manuscript review. Y.K.: performed experimental studies and manuscript review. A.L.B.: performed experimental studies and manuscript review. H.Z.: performed experimental studies and manuscript review. R.R.G.: performed experimental studies and manuscript review. X.W.: performed experimental studies and manuscript review. Y.K.: performed experimental studies and manuscript review. A.L.B.: performed experimental studies and manuscript review. H.Z.: performed experimental studies and manuscript review. R.R.G.: performed experimental studies and manuscript review. X.W.: performed experimental studies and manuscript review. M. Y.T.O.: study conduct and manuscript review.

This research was supported by the Intramural Research Program of the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health. Pfizer Inc. provided study drug and placebo for this trial. The trial was funded by the Intramural Research Program, NIAMS/NIH. The drug and placebo were provided by Pfizer Inc. through an investigational new drug grant. The role of Pfizer was limited to providing study drug and placebo, they had no role in design or conduct of the study, reporting of results, or manuscript preparation.

Author contributions

S.A.H.: study concept, design, protocol development, conduct, analyses, and manuscript draft. S.G.: study design, protocol development, conduct, analyses, and manuscript review. M.D.: study conduct and manuscript review. E.P.: study conduct and manuscript review. Y.T.O.: study conduct and manuscript review. P.M.C.: performed experimental studies and manuscript review. X.W.: performed experimental studies and manuscript review. M. N.: performed experimental studies, results analyses, and manuscript review. M.P.P.: performed experimental studies and manuscript review. R.R.G.: performed experimental studies and manuscript review. X.L.: performed statistical analyses. A.J.B.: study conduct and manuscript review. I.O.N.: study conduct. Z.M.: data management and manuscript review. Y.S.: study conduct. D.T.: study conduct and manuscript review. I.C.: performed experimental studies. A.B.: performed experimental studies and manuscript review. R.A.: performed experimental studies and manuscript review. F.C.: performed experimental studies and manuscript review. Y.K.: performed experimental studies and manuscript review. A.L.R.: performed experimental studies and manuscript review. H.Z.: performed experimental studies and manuscript review. R.S.: performed experimental studies and manuscript review. K.S.: performed experimental studies and manuscript review. W. L.T.: performed experimental studies. L.V.: performed experimental studies. N.G.: performed experimental studies. V.G.: performed experimental studies. S.L.: performed experimental studies, analyses, and manuscript review. S.R.B.: performed experimental studies, analyses, and manuscript review. M.M.: study design and manuscript review. P.G.: study design, performed experimental studies, and manuscript review. N.N.M.: performed experimental studies, analyses, and manuscript review. R.D.: study conduct, design, and manuscript review. I.O.J.: study concept, design, and manuscript review. M.G.: study conduct, analyses, and manuscript review. M.I.K.: study concept, design, conduct, analyses, draft, and manuscript review.
Funding
Open Access funding provided by the National Institutes of Health (NIH).

Competing interests
The NIH and J.J.O.S. have a patent related to JAK inhibitors and receive royalties. The NIH and J.J.O.S. have had a collaborative agreement and development award (CRADA) with Pfizer that pertains to JAK inhibition and tofacitinib. The NIH and J.J.O.S. have an ongoing CRADA for new JAK inhibitors. The remaining authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-23361-z.

Correspondence and requests for materials should be addressed to S.A.H.

Peer review information Nature Communications thanks Amit Saxena, Simon Skene and the other anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2021, corrected publication 2021