Ultraslow water-mediated transmembrane interactions regulate the activation of A$_{2A}$ adenosine receptor

Yoonji Lee,1 Songmi Kim,2 Sun Choi,1† and Changbong Hyeon2†

1National Leading Research Laboratory (NLRL) of Molecular Modeling and Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
2Korea Institute for Advanced Study, Seoul 02455, Republic of Korea

(Dated: August 5, 2016)

Water molecules inside G-protein coupled receptor have recently been spotlighted in a series of crystal structures. To decipher the dynamics and functional roles of internal waters in GPCR activity, we studied A$_{2A}$ adenosine receptor using µsec-molecular dynamics simulations. Our study finds that the amount of water flux across the transmembrane (TM) domain varies depending on the receptor state, and that the water molecules of the TM channel in the active state flow three times slower than those in the inactive state. Depending on the location in solvent-protein interface as well as the receptor state, the average residence time of water in each residue varies from $O(10^3)$ psec to $O(10^5)$ nsec. Especially, water molecules, exhibiting ultraslow relaxation ($O(10^5)$ nsec) in the active state, are found around the microswitch residues that are considered activity hotspots for GPCR function. A continuous allosteric network spanning the TM domain, arising from water-mediated contacts, is unique in the active state, underscoring the importance of slow waters in the GPCR activation.

INTRODUCTION

The activation of GPCRs is associated with a conformational change of the receptor modulated by an agonist binding. As suggested by the X-ray crystal structure of β$_2$-adrenergic receptor, the outward tilting of TM5 and TM6 helices that accompanies a helix rotation of the cytoplasmic part of TM5-ICL3-TM6 is one of the key structural changes that facilitate G-protein recruitment $^{[1,2]}$. More microscopically, orchestrated dynamics among a common set of highly conserved fingerprint residues, dubbed as microswitches, of the class A GPCR family is critical for the regulation of GPCR activity $^{[1,2]}$. These microswitches, including three ubiquitous sequence motifs, DRY, CWxP, and NPxxY (where ‘x’ denotes any amino acid residue), adopt distinct rotameric configurations in their side chains, which are sensitive to the type of a cognate ligand bound to the orthosteric site $^{[3]}$. In the agonist-bound state, the dynamic correlations among microswitches allow the receptor to adopt and maintain the active conformation, which facilitate accommodation of G-protein $^{[4]}$.

Besides the allosteric network defined by the interresidue contacts $^{[6,7]}$, water molecules can also contribute to the formation of the intra-receptor signaling network. Given that GPCRs are the key therapeutic targets that sense and process external stimuli with an exquisite precision, it is critical to understand the roles played by water as well as the residue dynamics in GPCR activation. As is well appreciated by many studies, water is essential for structure, dynamics, and function of biomolecules $^{[8-10]}$. Water molecules that form hydration shell on protein surfaces $^{[8,11,13]}$ or a lipid-mediated effect of water via hydrophobic matching to the protein surface $^{[14]}$ have long been studied. Especially, possible functional roles of internal water molecules found inside TM domain in GPCR activation have recently been discussed $^{[15-19]}$. Recently, MD simulations studies have analyzed water in various type of GPCRs, including A$_{2A}$AR $^{[15,19-22]}$, β$_2$-adrenergic receptor $^{[23]}$, rhodopsin $^{[17,19,21,25]}$, dopaminergic receptor $^{[26]}$, and µ-opioid receptor $^{[19]}$; yet the foci of these studies were mostly on mapping the locations of internal waters and metal ions inside TM domain, or on the local dynamics of water specific to the ligand binding cleft in the process of ligand-receptor recognition $^{[22]}$. Dynamical properties of internal water over the entire architecture of GPCR have not fully been discussed. While X-ray crystal structures provide a glimpse of ordered water molecules interacting with the interior of GPCRs $^{[10,15,24,26]}$, these structural waters are not completely static but have finite lifetimes. Furthermore, the roles of mobile water with a relatively faster relaxation kinetics remain unknown. Thus, it is timely to examine the dynamics of water in GPCR and ask the functional roles of water in conjunction with the local dynamics of amino acid residues.

Here, we explored water dynamics in A$_{2A}$AR by conducting µsec all-atom MD simulations. In order to assess the role of water dynamics in GPCR function, we strategically evaluated various quantities. We first calculated the water capacity in the TM region, and mapped the probability density of water for
each receptor state. Explicit calculation of water flux through the TM region has revealed that the water flux in the agonist (UK432097)-bound active form is three times smaller than that in the apo or antagonist (ZM241385)-bound form. Water streams are divided into multiple pathways, some of which form one-dimensional “water wire” [29,31]. The receptor surfaces, mapped with the water relaxation time, indicate that the water dynamics is heterogeneous in space. Waters in the extra- and intra-cellular domains move fast (≲1 nsec). Especially in the agonist-bound form, waters trapped around the microswitches display ultra-slow relaxation (≳100 nsec), coating the polar and charged surface of the TM channel. Our study finally shows that water-mediated inter-residue interaction network, formed along microswitches in TM7, reinforces and extends the range of allosteric interface in the active state, aiding robust activation of GPCRs.

MATERIALS AND METHODS

Preparation of the receptor structures complexed with ligands. The X-ray crystal structures of A2A AR bound with an agonist or antagonist were modeled based on the structures from the Protein Data Bank (PDB) [32,33]. We used the X-ray crystal structures with PDB entries of 3QAK [32] for agonist-bound and 3EML [33] for antagonist-bound model, and used UK432097 and ZM241385 for agonist and antagonist ligands, respectively. Since some of the loop regions are not resolved in the crystal structures, we performed homology modeling using the MODELLER program implemented in Discovery Studio v.3.1 to prepare the full-length A2A AR models including all the loop regions. The X-ray crystal structures with PDB entries of 2YDV [3] and 3PWH [34] were used to model the loop regions missing in 3QAK and 3EML, and the conserved disulfide bridges connecting the loops, i.e., C71-C159, C74-C146, C77-C166, and C259-C262, were retained. These models were optimized by simulated annealing and selected based on the DOPE score. The final structures were obtained by energy-minimization using the Conjugate Gradient method and the Generalized Born with simple Switching (GBSW) implicit solvent model.

Although an antagonist-bound engineered crystal structure of A2A AR complexed with apocytochrome b562 RIL replacing intracellular loop 3 (ICL3) (PDB entry: 4E1Y [27]), whose structure was fully determined with no missing region including extracellular (EC) and intracellular (IC) loops, became available after we started this research, the extent of structural overlap between the crystal structure and our modeled structure is as high as \(\alpha \)-RMSD = 0.407 Å. Furthermore, as the memory of initial configuration, especially the initial configuration of “flexible” loops, would be erased after some time (at most a few tens of nsec), and an “identical force field” is used for simulation, the conclusion of this study would not be altered even when a more precise and accurate structure is used as a starting conformation for the simulation run. For the apo form, we used the protein structure, minimized after removing the antagonist ligand from the original structure (3EML) as a starting conformation of our MD simulations.

Molecular dynamics simulations. To construct the explicit membrane system, the transmembrane region of A2A AR was predicted based on the Orientations of Proteins in Membranes (OPM) database and the hydrophobicity of the protein. Using SOLVATE 1.0 (http://www.mpibpc.mpg.de/home/grubmueller/solvate), we first solvated the receptor structure with TIP3P water molecules and removed the water molecules outside the receptor in the TM region. Then, the 1-Palmitoyl-2-oleoylphosphatidylcholine (POPC) lipid bilayer (\(88 \times 91 \, \text{Å}^2 \)) was placed around the TM region of A2A AR. After aligning the initially solvated receptor structure and the bilayer system, we removed the lipid and water molecules overlapping within the distance of 0.5 Å from the receptor structure. The prepared system was solvated with the water box, covering all the previous output molecules, and neutralized with \(\text{K}^+ / \text{Cl}^- \) ions to make 150 mM salt concentration. Our system contains 68,799 (apo, 13,549 water + 173 lipid), 70,052 (antagonist-bound, 13,551 water + 182 lipid), and 69,449 (agonist-bound, 13,552 water + 177 lipid) atoms in \(85 \times 88 \times 99 \, \text{Å}^3 \) periodic box.

MD simulations were performed using NAMD package v.2.8 [35] with CHARMM22/CMAP force field [36]. The topology and parameter files for the ligands were generated by SwissParam web server which provide topologies and parameters for ligand, based on Merck Molecular Force Field (MMFF), compatible with the CHARMM force field [37]. The simulations were then conducted with the following steps: (i) energy-minimization for 2,000 steps using conjugate gradient method in the order of membrane, water molecules, protein structure, and the whole system; (ii) gradual heating from 0 K to 300 K using a 0.01 K interval at each step; (iii) 50 nsec pre-equilibration with NVT ensemble before the production runs; and (iv) 1.2 μsec production runs with NPT ensemble (\(T = 300 \, \text{K}, \, P = 1 \, \text{atm} \)). Pressure was maintained at \(P = 1 \, \text{atm} \) using the Nosé-Hoover Langevin piston
molecule at time t formed between an atom in the receptor and a water

While the protein RMSD gets to its steady state, the area per lipid (APL) for POPC is defined as

$$A_{PL} = \frac{2 \cdot \sigma_{st}^2}{N \cdot (N-1)} \sum_{s=1}^{N-1} \sum_{t=s+1}^{N} \frac{\sigma_{st}(\nu)}{\sigma_{st}}$$

with $s, t \neq \nu$. σ_{st} is the number of paths with the shortest distance linking the nodes s and t, and $\sigma_{st}(\nu)$ is the number of minimal paths linking the nodes s and t via the node ν.

To build a network (graph), the residue-residue contact was defined (i) for water-free contact using the threshold distance of 4 Å between any two heavy atoms of two residues, and (ii) for water-mediated contacts between two residues if a water oxygen is shared within 3.5 Å by any two heavy atoms of two residues or if the two residues are within 4 Å threshold distance as in (i).

To quantify the importance of the ν-th residue in mediating signal transmission, we calculated two distinct betweenness centralities; (i) $C_{BW}^0(\nu)$ for water-free and (ii) $C_{BW}^W(\nu)$ for water-mediated inter-residue network of GPCR. $C_{BW}^0(\nu)$ and $C_{BW}^W(\nu)$ calculated for each snapshot of molecular structure were averaged over the ensemble of structures obtained along the MD trajectories. To calculate $C_{BW}^W(\nu)$, we employed Brandes algorithm, which substantially reduces the computational cost of Eq. 2.
FIG. 1: Water molecules in the TM region. (A) The number of waters occupying the TM regions as a function of time in the apo (black), agonist-bound (red), and antagonist-bound (blue) forms. On the left depicted is a snapshot of water permeating through the TM region. (B) Probability density map of water \(\rho(r) \) at each 3D grid point \(r \) \((0 \leq \rho(r) \Delta r \leq 1 \) with the grid cell volume of \(\Delta r = \Delta x \Delta y \Delta z = 1 \text{ Å} \times 1 \text{ Å} \times 1 \text{ Å} \) calculated for the apo, agonist-bound, and antagonist-bound states based on the final 200 nsec of simulation. Two dimensional slices of \(\rho(r) \) were calculated using VolMap plugin in VMD.

RESULTS

Water capacity in the TM region. Our simulations show that it takes more than 200 – 300 nsec for water molecules to fill the empty TM channel and to reach the steady state (Figure 1A, see also Figure S1 for the time evolutions of the receptor RMSD, area per POPC lipid, and membrane thickness). In the steady state, on average 121±20, 69±18, and 63±16 water molecules are found in the interior (between the phosphate atoms of upper and lower leaflets) of the apo, agonist-bound active, and antagonist-bound inactive states, respectively (Figure 1A). As depicted in the probability density map of water (Figure 1B), the apo form, due to the water-filled ligand binding cleft, contains twice the volume of the water compared with the other ligand-bound states. In the ligand-bound states, a large volume of water has to be discharged from the vestibule. The expanded G-protein binding cleft is also seen in the agonist-bound active state (Figure 1B, middle). A water cluster, whose functional role will be further discussed in the Discussion, is identified in the midst of TM domain (see the white arrow in Figure 1B, middle).

Water flux through the TM pore. Although the average number of water in the TM channel remains constant in the steady state (Figure 1A, \(t \geq 400 \) ns), this does not imply that water is static inside the channel. The number of waters in and out of the channel are balanced in the steady state. In order to compare the water flux between the different receptor states, we traced the coordinate of every water molecule along the axis (Z-axis) perpendicular to the lipid bilayer plane and counted the number of water molecules that traverse through the channel from EC to IC or from IC to EC domain (Figure 2). In the early stage of simulations, non-steady state fluxes are observed in the apo and antagonist-bound forms. Thus, we excluded the first 400 nsec from the analysis. For \(t > 400 \) ns, the water fluxes in the two directions satisfy \(j_{EC \rightarrow IC} = j_{IC \rightarrow EC} \) in all the receptor states. Overall, the water flux of the antagonist-bound state is three fold greater \((j_{antago} \sim 30 \mu \text{sec}^{-1}) \) than that of the agonist-bound state \((j_{ago} \sim 10 \mu \text{sec}^{-1}) \). The water flux of the apo state lies in between \((j_{apo} \sim 20 \mu \text{sec}^{-1}) \). In fact, the lowest water flux in the agonist-bound form has its molecular origin. Below we will map each receptor state by probing the relaxation kinetics of water around each residue, which will help elucidate the role of water in receptor activation as well as the molecular origin of differential water fluxes.

Relaxation kinetics of water. We mapped the water dynamics on the receptor surfaces by computing time correlation functions of water from each residue \((C(t), \text{see Materials and Methods}) \) (Figure 2A-B). Water in the vicinity of the IC or EC loops, exposed to the
FIG. 3: **Relaxation kinetics of water mapped on A2AAR structure.** (A) Location of the microswitches. (B) Time correlation functions of water from six key residues are fitted to multi-exponential functions (see SI). (C) Average relaxation time of water from various regions (TM, ECL, and ICL) in the apo (black), agonist-bound (red), and antagonist-bound (blue) forms. The extracellular view of the TM helices is shown on the left. TM1, TM2, and TM7, which have much longer relaxation time in the agonist-bound form, are marked in red. (D-F) Water relaxation time (τ) from each residue in (D) the apo, (E) agonist-bound, and (F) antagonist-bound forms. The TM regions are shaded in gray, and the positions of microswitches are marked with cyan dots. The receptor structures are colored based on the τ values.

bulk, is expected to have a shorter lifetime. In the TM region, in contrast, dynamics of water is much slower (Figure 3C), displaying a broad spectrum of relaxation times depending on (i) the receptor state and (ii) their locations (Figure 3D-F). The average lifetimes of water are 14.5 nsec, 26.3 nsec, and 7.1 nsec for the apo, agonist, and antagonist-bound states, respectively. The water molecules, hydrating the TM1, TM6, and TM7 helices in the agonist-bound form, reside longer than 100 nsec especially around the microswitches (marked with the cyan circles at the top of Figure 3D-F). This long residence time of water in the interior of TM domain ($\gtrsim O(100)$ nsec) is noteworthy, given that a typical water lifetime on biomolecular surface probed by spin-label measurement is $\sim O(100)$ psec [53, 54].

Similar conclusions as the above analysis calculating relaxation times were drawn by calculating the Fano factor involving water number fluctuation around each residue (see SI text and Figure S2).

DISCUSSION

Detailed look into water flux across the TM domain. In order to glean the molecular origin of receptor state-dependent water flux, we first visualize the geometry of water channel. The radius of water channel, calculated using the program HOLE [55] (see Figure 4A), reveals that the geometrical bottleneck ($r \approx 0$) in the midst of TM domain ($Z \approx 0$) (Figure 4A, see the black arrow) is formed around W246$^{6.48}$.
FIG. 4: Water occupation map of the TM channel. (A) The channel formed across the TM domain of each receptor state using the 250 snapshots from 1000 − 1200 nsec for the apo form, and from 600 − 800 nsec for the agonist-bound and antagonist-bound forms, at which the highest water flux is observed. The channel surfaces, calculated using the program HOLE [55], are colored to visualize the channel radius (red ($r < 1.15 \text{ Å}$), green ($r = 1.15 \sim 2.30 \text{ Å}$), and blue ($r > 2.3 \text{ Å}$)). Channel radii ($r$) along the Z-axis are shown on the right with different color for each frame. (B) Water occupancy maps along the axis perpendicular to the bilayer, calculated for the simulations of the apo (top), agonist-(middle), and antagonist-bound forms (bottom). The positions of two hydrophobic layers (HL1 and HL2) are marked with red arrows. The position of the lipid headgroup is in cyan lines on the map. A magnified view of water occupation map for 600 $\lesssim t \lesssim$ 800 nsec is provided. On the right, the apo structure is displayed with the key microswitches.

and Y288$_{7,53}$ in the agonist-bound active form. This is compatible with our finding that the water flux is substantially reduced in the agonist-bound form (Figure 2). W246$_{6,48}$, a key microswitch that senses an agonist and relays its signal to other microswitches [6, 56], is located deep inside the orthosteric binding vestibule, regulates the entry of water from the EC domain; whereas Y288$_{7,53}$ is located at the lower part of TM channel, regulating the entry of water from the IC domain.

Although the geometry of channel in each receptor state provides a glimpse of pipeline across the TM region, the actual water flux through the channel is not fully explained by the radii of the channel alone. For example, the apo state, overall, has greater radii along the channel and does not have a particularly more restrictive geometrical bottleneck than those in the antagonist-bound state (Figure 4A); yet the flux is smaller than the one observed in the antagonist-bound state. Depending on the extent of hydropho-
FIG. 5: **Configuration of ionic-lock and Y288 associated with water flux gating.** (A) Time traces probing the dynamics of three major structural motifs, i.e., ionic-lock (DRY motif), W246 of CWxP, and Y288 of NPxxY. From the top shown are the distances between R102 and E228, and the dihedral angles of W246 and Y288 for the apo (black), agonist-bound (red), and antagonist-bound (blue) forms. The histograms on the right are drawn using data with $t > 400$ ns. (B) The configurations of R102, E228, and Y288 in the inactive and active states. The ionic lock (R102-E228) in the inactive form is disrupted in the active form, allowing R102 to form a contact with Y288. The passage of water from the IC domain is blocked by this change in the active form. The helix 7 is illustrated with the transparent band in purple.

bicility or electrostatic nature of residues comprising each region of the channel surface, stochastic wetting-dewetting transition can occur along the channel. Furthermore, a stable water cluster in the channel, not exchanging water molecules with the surroundings, would impede the water dynamics through the channel. Explicit calculations of water occupancy along the Z-axis visualize how water molecules actually fill the TM channel at time t (Figure 4B). As expected, in the apo state (Figure 4B, top) the EC region ($Z > 0 \AA$) is always filled with a high density of water since the empty ligand binding pocket is accessible from the bulk; however, IC region ($-20 < Z < -10 \AA$) remains “dry”, indicating that the entry of water through the IC region is blocked. This dry zone corresponds to the second hydrophobic layer (HL2) around NPxxY motif above Y288, illustrated by Yuan et al. In the agonist-bound form, another water-free layer is observed right above the HL2 ($-10 < Z < -5 \AA$) (Figure 4B, middle). This is the region below which the water cluster is formed. On the other hand, the first hydrophobic layer (HL1) corresponding to another dry zone between the orthosteric and the allostERIC sites ($Z \approx 0 \AA$) is observed in the inactive state. Notably, despite the HL1, the water occupancy map of the antagonist-bound form (Figure 4B, bottom) finds multiple instances ($t = 600 - 800$ ns) that both HL1 and HL2 are filled with water bridging across the entire TM region. This accounts for the greater water flux in the inactive state.

The location of the hydrophobic layer and the receptor state-dependent water flux are affected by the alignment of polar residues along the channel. The TM domain is mostly composed of non-polar hydrophobic residues, but there are polar/charged amino acids buried inside the TM domain as well. The streams of water molecules are found along an “Y” shaped array of these polar and charged residues that bridge through the TM domain (Figure S3). This array of polar/charged residues corresponds to the buried ionizable networks in GPCRs which have recently been underscored. Our study reveals that these networks shape the passages of water molecules through the TM domain. A misalignment of polar residues in the agonist-bound state is led to dehydration of the IC zone around $-20 < Z < -10 \AA$, which gives rise to the HL2 (Figure S3 left). The rotameric state of Y288 sidechain in the antagonist-bound form enables a single file of water molecules constituting a water wire to flow across the HL2 (Figure S3 right, SI Movie M3. See also Figure S4). The formation of the Y-shaped bridge
made of polar residues including the NPxxY motif is the molecular origin underlying the "hydrophobic gating" \[60, 61\] that regulates the water flux through the IC region of A\textsubscript{2A}AR.

Microscopic origin of receptor state-dependent water flux. To further glean the microscopic underpinnings of the receptor state-dependent water flux (Figure 3), configurations of microswitches at three key locations in the TM domain are probed (Figure 5): (i) The ionic lock (R102L50, E228L50) (Figure 5A, top panel), the hallmark of the inactive state of GPCRs, is intact in the antagonist-bound form, maintaining the inter-residue distance \(d^{R102-E228} \approx 2.5\ \text{Å}\). In the apo form, the ionic-lock repeatedly disrupts and rebinds, suggestive of the receptor’s basal activity \[62\]. In the agonist-bound form, the ionic lock is completely disrupted; (ii) The distance between R102L50 and Y288L48 depends on the receptor state (Figure 5A, the second panel from the top), and importantly Y288L48 gates the entry of water from the IC region. In the active form, R102L50 released from the influence of E228L50 can interact with and stabilize the side chain orientation of Y288L48, resulting in blocking the passage of water stream as well as misaligning the bridge made of NPxxY motif (see Supporting Movie M2, Figure 5B, Figure S3); (iii) The side chain of W246L48 residue gates the entry of water from the EC domain. In the active form, W246L48 blocks the water passage from the EC region, but it allows water to flow more freely in the inactive form. In the apo form, the rotamer angle of W246L48 undergoes sharp transitions (\(\chi_2^{W246}\) in Figure 5A, black trace) multiple times during the simulation (500 \(\leq t \leq 1000\) ns), displaying correlations with the ionic-lock (\(d^{R102-E228}\) in Figure 5A, black line) and with the increased level of water flux (notice the sudden increase of the flux at \(t \approx 500\) nsec from EC to IC (black trace in solid line in Figure 2)). For example, when the ionic-lock was stabilized at \(\approx 1000\) nsec in the apo form (Figure 5A, top panel, black trace), the rotameric angle of W246L48 also displayed a sharp change from \(-90^\circ\) to \(+90^\circ\) (cyan arrow in the \(\chi_2^{W246}\) plot of Figure 5A). This is the moment when \(j_{\text{IC} \rightarrow \text{EC}}\) in the apo form has increased (\(t > 1000\) nsec in Figure 2).

The movies (SI Movies M1, M2, and M3) from simulations of the water dynamics across TM region provide nice visualizations of receptor state-dependent water flux, which is recapitulated in the cartoons in Figure 6. In the apo form, the water molecules freely navigate the wide volume of the empty ligand binding cleft in the EC domain, but a further penetration across the TM region is regulated by the narrow channel gated by W246L48. When the agonist or antagonist occupies the binding cleft, however, water flux is divided into the major (solid lines in Figure 6) and minor streams (dashed lines in Figure 6); the major stream is formed between TM1, 2, and 7, and the minor stream is formed between TM3, 5, and 6. In the agonist-bound form, the W246L48 blocks the minor stream and the water flow along the major stream is tightly regulated by the sev-
FIG. 7: Allosteric interface extended by water-mediated interactions. (A) Betweenness centralities calculated with (C_B^w) and without (C_B^o) water-mediated interaction for each receptor state. Water-free contact between two residues is defined if any heavy atom in one residue is within 4 Å from other residue; water-mediated contact between two residues is defined if a water oxygen is shared by two residues within 3.5 Å. (B) $\Delta C_B (\equiv C_B^w - C_B^o)$ for each state. Large values of ΔC_B are identified around TM7 helix in the agonist-bound active state (red arrow). (C) Regions with $C_B^w > 0.07$ (corresponding to the top 10% of C_B values, blue mesh, and blue arrows in (A)) and $\Delta C_B > 0.03$ (magenta surface in (C) and a magenta arrow in (B)) are demarcated on the structure of active state. The microswitch residues are depicted in sphere representation.

eral other microswitch residues (N241.50, D522.50, N2867.45, S2817.46, and N2847.49), which creates the stable water cluster. In case of the antagonist-bound form, no water cluster is observed; W2466.48 gate is open and lets water molecules flow in and out of the TM channel. The water flux from the IC region is regulated by the side chain configuration of Y2887.53. In the active state whose ionic-lock is disrupted, R1023.50 interacts with Y2887.53, which in turn blocks the passage of water flux in the IC domain.

Allosteric interface reinforced by water-mediated interactions. In order to underscore the contribution of water-mediated contacts between TM residues to the receptor’s allosteric signaling and function we conducted a graph theoretical analysis on the ensemble of GPCR structures. As shown by our previous study [7] the microswitches of GPCRs in general are identified by graph theoretical analysis using betweenness centrality to be the key sites for intra-molecular orthosteric (allosteric) signal transmission (see Methods). Allosteric interface can be visualized by highlighting those allosteric hotspots [7]. While waters inside channel are generally dynamic, some water molecules, especially around microswitches in the active state, display slow
relaxation kinetics and even can be trapped for an extended amount of time \((\tau > O(10^2) \text{ ns})\) (see SI text, Figure S5 and Figure S6). As long as water dynamics is sufficiently slow, stable water-mediated contacts can be made between two residues that are not in direct contact. Defining a water-mediated contact when two residues share a water oxygen within 3.5 Å from any heavy atom in each residue, we constructed a water-mediated residue interaction network for a given structure. Using an ensemble of structure obtained from simulations, we calculated an average betweenness centrality \((C_B(\nu))\) at the \(\nu\)-th residue (see SI text, Figure 7A). At present, there are many ways to consider the protein allostery; some of them consider thermodynamic aspect of protein allostery \([63, 64]\) and others focus more on identification of allosteric hotspot of a given structure \([65, 67]\). The graph theoretical method \([7]\) can also be employed to identify an allosteric hotspot of a given network structure, and in this method a residue with high \(C_B\) value corresponds to a site important for allosteric signal transmission \([7]\).

In the agonist-bound active state, the \(C_B(\nu)\) values calculated with \((C_B^A(\nu))\) and without \((C_B^W(\nu))\) water-mediated contacts (see Figure S7) show clear differences \((\Delta C_B(\nu))\) along the microswitches in TM7 (Figure 7B, C), which is in accord with our findings that a number of slow water molecules stably coordinating with microswitches along the water channels are present in the active state. Highlighted in Figure 7C with magenta surface is the allosteric interface in the active state reinforced by water-mediated interactions \((\Delta C_B(\nu) > 0.03)\). The interface mainly formed from along the TM7 helix, reaches R102\(^{3.50}\) in the TM3 helix via Y288\(^{7.53}\) and A231\(^{6.33}\), spanning the whole TM domain. We surmise that this wide-spread interface across the TM domain enables a robust long-range “signal transmission” (compare the map of agonist-bound active state with those for apo and antagonist-bound inactive states in Figure 7C). Notably, recent calculation of energy transport in homodimeric hemoglobin also underscores the importance of interface water cluster, substantiating our proposal of ultra-slow water mediated allosteric signaling \([71]\).

CONCLUSION

Systematic analyses of GPCR structures reveal the network of inter-TM contacts mediated by microswitches \([28]\). Network analysis also put forward that these microswitches act as the hub of the intra-receptor signaling network of \(A_2A\)AR \([7]\), and analyses of MD simulation trajectories confirmed that dynamics of microswitches occurs in concert \([9]\). Here, we extended our analysis to the dynamics of water molecules traversing through the TM channel and investigated their role in allosteric (orthosteric) signaling.

As is well appreciated, water, an essential component of living systems, provides driving force for self-assemblies of biomolecules and enhances their conformational fluctuations \([11, 12, 13, 14]\). Without water, biomolecules cannot function \([10]\). Guided by the array of polar residues, water permeates inside the mostly dry and hydrophobic pore of GPCRs. In the antagonist-bound inactive state, this array of polar residues is connected continuously from the EC to IC domain. In accord with Yuan et al. \([15, 21]\), our simulations confirm the presence of the two hydrophobic layers, HL1 and HL2; however, these hydrophobic layers are not static, but highly dynamic. Our study also confirms the Yuan et al.’s finding \([21]\) that the water flux along the TM channel is regulated by the rotameric states of several microswitches (Figure 6). Among them, two key microswitches, W246\(^{7}\) and Y288\(^{7.53}\) act together to form an “AND-gate” controlling the water flow.

There are also other MD simulation studies on GPCRs (e.g. rhodopsin \([19]\) which propose that a continuous stream of internal water is important for GPCR activation. By counting the number of water molecules inside TM domain, Leoatts et al. \([19]\) showed that upon an elongation of retinal an influx of water increases inside the TM domain rhodopsin. They found that the increase of hydration level was significant in the complex-counterion simulation of rhodopsin, but not in the dark-state. Their simulation results on water hydration in the dark-state of rhodopsin differ from \(A_2A\)AR in the inactive state in that only 20 – 30 water molecules are allowed inside the TM domain during the 1.6 \(\mu\)sec simulation time \([19]\). However, the hydration level in the complex-counterion form is consistent with our study on the active form of \(A_2A\)AR in terms of the number of water molecules that fills the TM channel. In our study, both active and inactive states of \(A_2A\)AR could accommodate approximately an equivalent amount of water molecules, 60 – 100, at steady state (Figure 1A), but the water flux in the inactive form was found greater than that in the inactive form by three times (Figure 2). Here, it is crucial to distinguish “the flux of water across TM domain” (Figure 2) from “the number of water inside TM domain” (Figure 1). As described in Results, the water flux across TM domain was calculated by tracing the individual water molecule and counting the number of waters that enter and exit from one side of the membrane to the other. It is not merely...
the increase of TM water with time. While the number of water molecule inside the dark-state of rhodopsin is smaller than that in the inactive state of A$_2$AR, the water flux in the dark-state of rhodopsin could also be large. Our study puts more emphasis on the dynamic aspect of water molecules across TM domain in the steady state, which leads us to further ask the questions of which residues are hydrated by slow water and how those slow waters contribute to the water-contact mediated allosteric network.

Our explicit calculations of water fluxes indicate that the continuous water stream can be formed in all three states (i.e., $j \neq 0$ in Figure 2), but with differing degrees. Thus, we want to argue that what is more relevant for GPCR activation is the water-mediated contacts among the key allosteric residues than the existence of continuous water stream. It is easier to make a water-mediated contact if a water molecule is slower. In the agonist-bound active state, water molecules inside the TM channel are almost stagnant, displaying minimal flux (Figure 2); they can stably hydrate the microswitches mainly along the TM7 helix. We show that water-mediated residue network extends from extracellular domain to the intracellular part of TM6 helix via TM3 helix (Figure 6 and Figure 7).

The waters around TM microswitches, some of which constitute the water cluster, stabilize the relative orientation and distance between TM helices by bridging them together (Figure 7 and Figure S7). Our study highlights the interactions of internal water with microswitches, which contribute to extending and reinforcing the allosteric interface of GPCRs (Figure 7). Our study puts forward that these interactions are especially critical for the functional fidelity of the GPCR activity.

Acknowledgments

This work was supported by the grant from the National Leading Research Laboratory (NLRL) program (2011-0028885) funded by the Ministry of Science, ICT & Future Planning and the National Research Foundation of Korea (to S.C.), and by the R-P Grant 2015 funded by Ewha Womans University (to S.C. and Y.L.). We thank KIAS and KISTI Supercomputing Center for providing computing resources.

* sunchoi@ewha.ac.kr
† hyeoncb@kias.re.kr

1. Rosenbaum, D., S. Rasmussen, and B. Koblika, 2009. The structure and function of G-protein-coupled receptors. *Nature* 459:356–363.
2. Rasmussen, S., B. DeVree, Y. Zou, A. Kruse, K. Chung, T. Koblika, F. Thian, P. Chae, E. Pardon, D. Calinski, J. Mathiesen, S. Shah, J. Lyons, M. Cafrey, S. Gellman, J. Steyaert, G. Skinoitis, W. Weis, R. Sunahara, and B. Koblika, 2011. Crystal structure of the β_2 adrenergic receptor-Gs protein complex. *Nature* 477:549–555.
3. Lebon, G., T. Warne, P. Edwards, K. Bennett, C. Langmead, A. Leslie, and C. Tate, 2011. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. *Nature* 474:521–525.
4. Nygaard, R., T. Frimurer, B. Holst, M. Rosenkilde, and T. Schwartz, 2009. Ligand binding and microswitches in 7TM receptor structures. *Trends Pharmacol. Sci.* 30:249–259.
5. Katritch, V., V. Cherezov, and R. C. Stevens, 2013. Structure-function of the G protein-coupled receptor superfamily. *Annu. Rev. Pharmacol. Toxicol.* 53:531–556.
6. Lee, Y., S. Choi, and C. Hyeon, 2015. Communication over the network of binary switches regulates the activation of A2A adenosine receptor. *PLoS Comp. Biol.* 11:e1004044.
7. Lee, Y., S. Choi, and C. Hyeon, 2014. Mapping the intramolecular signal transduction of G-protein-coupled receptors. *Proteins: Struct. Func. Bioinfo.* 82:727–743.
8. Tarek, M., and D. J. Tobias, 2000. The Dynamics of Protein Hydration Water: A Quantitative Comparison of Molecular Dynamics Simulations and Neutron-scattering Experiments. *Biophys. J.* 79:3244–3257.
9. Ball, P., 2008. Water as an active constituent in cell biology. *Chem. Rev.* 108:74–108.
10. Frauenfelder, H., G. Chen, J. Berendzen, P. W. Fenimore, H. Jansson, B. H. McMahon, I. R. Stroe, J. Swenson, and R. D. Young, 2009. A unified model of protein dynamics. *Proc. Natl. Acad. Sci. U. S. A.* 106:5129–5134.
11. Tsai, A. M., D. A. Neumann, and L. N. Bell, 2000. Molecular Dynamics of Solid-State Lysozyme as Affected by Glycerol and Water: A Neutron Scattering Study. *Biophys. J.* 79:2728–2732.
12. Pal, S. K., J. Peon, and A. H. Zewail, 2002. Biological water at the protein surface: dynamical solvation probed directly with femtosecond resolution. *Proc. Natl. Acad. Sci. U. S. A.* 99:1763–1768.
13. Jungwirth, P., 2015. Biological Water or Rather Water in Biology? *J. Phys. Chem. Lett.* 6:2449–2450.
14. Mallikarjunaiah, K., A. Leftin, J. J. Kinnum, M. J. Justice, A. L. Rogozaea, H. I. Petracea, and M. F. Brown, 2011. Solid-state 2 H NMR shows equivalence of dehydration and osmotic pressures in lipid membrane deformation. *Biophys. J.* 100:98–107.
15. Yuan, S., S. Filipcek, K. Palczewski, and H. Vogel, 2014. Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway. *Nat. Commun.* 5:4733.
[16] Yuan, S., H. Vogel, and S. Filipek, 2013. The Role of Water and Sodium Ions in the Activation of the μ-Opioid Receptor. Angew. Chemie International Ed. 52:10112–10115.

[17] Sun, X., H. Ågren, and Y. Tu, 2014. Functional Water Molecules in Rhodopsin Activation. J. Phys. Chem. B 118:10863–10873.

[18] Burg, J. S., J. R. Ingram, A. Venkatakrishnan, K. M. Jude, A. Dukkipati, E. N. Feinberg, A. Angelini, D. Waghray, R. O. Dror, H. L. Ploegh, and K. C. Garcia, 2015. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor. Science 347:1113–1117.

[19] Leioatts, N., B. Mertz, K. Martínez-Mayorga, T. D. Sun, X., H. Ågren, and Y. Tu, 2014. Functional Water and Sodium Ions in the Activation of the A2A Adenosine Receptor. Biophys. J. 102:2114–2120.

[20] Yuan, S., Z. Hu, S. Filipek, and H. Vogel, 2015. W246 Opens a Gate for a Continuous Intrinsic Water Pathway during Activation of the Adenosine A2A Receptor. Angewandte Chemie 127:566–569.

[21] Sabbadin, D., A. Ciancetta, and S. Moro, 2014. Perturbation of Fluid Properties of Water Molecules during G Protein-Coupled Receptor–Ligand Recognition: The Human A2A Adenosine Receptor as a Key Study. J. Chem. Inf. Model. 54:2846–2855.

[22] Bai, Q., H. Pérez-Sánchez, Y. Zhang, Y. Shao, D. Shi, H. Liu, and X. Yao, 2014. Ligand induced change of β2 adrenergic receptor from active to inactive conformation and its implication for the closed/open state of the water channel: insight from molecular dynamics simulation, free energy calculation and Markov state model analysis. Phys. Chem. Chem. Phys. 16:15874–15885.

[23] Grossfield, A., M. C. Pitman, S. E. Feller, O. Soubias, and K. Gawrisch, 2008. Internal hydration increases temperature. J. Chem. Theory Comput. 4:1587–1594.

[24] Thirumalai, D., F. Sanz, M. Pastor, and G. De Fabritiis, 2011. Dynamical Transition and Heterogeneous Hydration Dynamics in RNA. J. Phys. Chem. B 115:7702–7715.

[25] Selent, J., F. Sanz, M. Pastor, and G. De Fabritiis, 2010. Induced Effects of Sodium Ions on Dopaminergic G-Protein Coupled Receptors. PLoS Comp. Biol. 6:e1000884.

[26] Liu, W., E. Chun, A. Thompson, P. Chubukov, F. Xu, V. Katritch, G. Han, C. Roth, L. Heitman, A. Lázerman, V. Cherezov, and R. Stevens, 2012. Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:232–236.

[27] Venkatakrishnan, A., X. Deupi, G. Lebon, C. G. Tate, G. F. Schertler, and M. M. Babu, 2013. Molecular signatures of G-protein-coupled receptors. Nature 494:185–194.

[28] Raghavender, U. S., S. Aravinda, N. Shamala, R. Rai, and P. Balaram, 2009. Characterization of water wires inside hydrophobic tubular peptide structures. J. Am. Chem. Soc. 131:15130–15132.

[29] Yuan, S., H. Vogel, and S. Filipek, 2013. The Role of Water and Sodium Ions in the Activation of the μ-Opioid Receptor. Angew. Chemie International Ed. 52:10112–10115.

[30] Reddy, G., J. E. Straub, and D. Thirumalai, 2010. Dry amyloid fibril assembly in a yeast prion peptide is mediated by long-lived structures containing water wires. Proc. Natl. Acad. Sci. U. S. A. 107:21459–21464.

[31] Thirumalai, D., G. Reddy, and J. E. Straub, 2011. Role of water in protein aggregation and amyloid polymorphism. Acc. Chem. Res. 45:83–92.

[32] Xu, F., H. Wu, V. Katritch, G. Han, K. Jacobson, Z. Gao, V. Cherezov, and R. Stevens, 2011. Structure of an agonist-bound human A2A adenosine receptor. Science 332:322.

[33] Zoete, V., M. A. Cuendet, A. Grosdidier, and O. Michielin, 2011. SwissParam: a fast force field generation tool for small organic molecules. J. Comput. Chem. 32:2359–2368.

[34] Kučerka, N., M.-P. Nieh, and J. Katsaras, 2011. Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochimica et Biophysica Acta (BBA)-Biomembranes 1808:2761–2771.

[35] Tsai, H.-H. G., J.-B. Lee, J.-M. Huang, and R. Juwita, 2014. Strategic combinations of aromatic-based peptides for integrin antagonists. PLoS Comp. Biol. 10:1–9.

[36] Freeman, L., 1979. Centrality in social networks conceptual clarification. Social networks 1:215–239.

[37] Albert, R., H. Jeong, and A. Barabási, 2000. Error and attack tolerance of complex networks. Nature 460:378–382.

[38] Newman, M., 2005. A measure of betweenness centrality based on random walks. Social networks 27:39–54.

[39] Greene, L., and V. Higman, 2003. Uncovering network motifs in a Key Study. J. Comp. Chem. 24:7702–7715.
work systems within protein structures. J. Mol. Biol. 334:781–791.

[47] Amitai, G., A. Shemesh, E. Sitbon, M. Shklar, D. Netanely, I. Venger, and S. Pietrokovski, 2004. Network analysis of protein structures identifies functional residues. J. Mol. Biol. 344:1135–1146.

[48] Del Sol, A., H. Fujihashi, D. Amoros, and R. Nussinov, 2006. Residues crucial for maintaining short paths in network communication mediate signaling in proteins. Mol. Sys. Biol. 2:2006.0019.

[49] Bagler, G., and S. Sinha, 2007. Assortative mixing in Protein Contact Networks and protein folding kinetics. Bioinformatics 23:1760–1767.

[50] Vendruscolo, M., N. Dokholyan, E. Paci, and M. Karplus, 2002. Small-world view of the amino acids that play a key role in protein folding. Phys. Rev. E. 65:061910.

[51] Dokholyan, N., L. Li, F. Ding, and E. Shakhnovich, 2002. Topological determinants of protein folding. Proc. Natl. Acad. Sci. U. S. A. 99:8637.

[52] Brandes, U., 2001. A faster algorithm for betweenness centrality. J. Math. Soc. 25:163–177.

[53] Franck, J. M., M. Sokolovski, N. Kessler, E. Matalon, M. Gordon-Grossman, S.-i. Han, D. Goldfarb, and A. Horovitz, 2014. Probing water density and dynamics in the chaperonin GroEL cavity. J. Am. Chem. Soc. 136:9396–9403.

[54] Franck, J. M., Y. Ding, K. Stone, P. Z. Qin, and S. Han, 2015. Anomalously rapid hydration water diffusion dynamics near DNA surfaces. J. Am. Chem. Soc. 137:12013–12023.

[55] Smart, O. S., J. G. Neduvelil, X. Wang, B. Wallace, and M. S. Sansom, 1996. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14:354–360.

[56] Li, J., A. L. Jonsson, T. Beuming, J. C. Shelley, and G. A. Voth, 2013. Ligand-dependent activation and deactivation of the human adenosine A2A receptor. J. Am. Chem. Soc. 135:8749–8759.

[57] Aryal, P., F. Abd-Wahab, G. Bucci, M. S. Sansom, and S. J. Tucker, 2014. A hydrophobic barrier deep within the inner pore of the TWIK-1 K2P potassium channel. Nature communications 5:4377.

[58] Anishkin, A., and S. Sukharev, 2004. Water dynamics and dewetting transitions in the small mechanosensitive channel MscS. Biophys. J. 86:2883–2895.

[59] Isom, D. G., and H. G. Dohlman, 2015. Buried ionizable networks are an ancient hallmark of G protein-coupled receptor activation. Proc. Natl. Acad. Sci. U. S. A. 112:5702–5707.

[60] Aryal, P., M. S. Sansom, and S. J. Tucker, 2015. Hydrophobic gating in ion channels. J. Mol. Biol. 427:121–130.

[61] Powell, M. R., L. Cleary, M. Davenport, K. J. Shea, and Z. S. Siwy, 2011. Electric-field-induced wetting and dewetting in single hydrophobic nanopores. Nature Nanotechnology 6:798–802.

[62] Kobilka, B. K., and X. Deupi, 2007. Conformational complexity of G-protein-coupled receptors. Trends Pharmaco. Sci. 28:397–406.

[63] J. H. V., J. O. Wrabl, and H. N. Motlagh, 2012. Structural and Energetic Basis of Allostery. Annu. Rev. Biophys. 41:585–609.

[64] Motlagh, H. N., J. O. Wrabl, J. Li, and V. J. Hilser, 2014. The ensemble nature of allostery. Nature 508:331–339.

[65] Lockless, S. W., and R. Ranganathan, 1999. Evolutionarily Conserved Pathways of Energetic Connectivity in Protein Families. Science 286:295–299.

[66] Halabi, N., O. Rivoire, S. Leibler, and R. Ranganathan, 2009. Protein sectors: evolutionary units of three-dimensional structure. Cell 138:774–786.

[67] Zheng, W., B. R. Brooks, S. Doniach, and D. Thirumalai, 2005. Network of Dynamically Important Residues in the Open/Closed Transition in Polymeric Is Strongly Conserved. Structure 13:565–577.

[68] Ribeiro, A. A., and V. Ortiz, 2014. Determination of signaling pathways in proteins through network theory: importance of the topology. J. Chem. Theor. Comp. 10:1762–1769.

[69] Feher, V. A., J. D. Durrant, A. T. Van Wart, and R. E. Amaro, 2014. Computational approaches to mapping allosteric pathways. Curr. Opin. Struct. Biol. 25:98–103.

[70] Di Paola, L., and A. Giuliani, 2015. Protein contact network topology: a natural language for allostery. Curr. Opin. Struct. Biol. 31:43–48.

[71] Leitner, D. M., 2016. Water-Mediated Energy Dynamics in a Homodimeric Hemoglobin. J. Phys. Chem. B 120:4019–4027.

[72] Yoon, J., D. Thirumalai, and C. Hyeon, 2013. Urea-induced denaturation of preQ1-riboswitch. J. Am. Chem. Soc. 135:12112–12121.

[73] Réat, V., R. Dunn, M. Ferrand, J. L. Finney, R. M. Daniel, and J. C. Smith, 2000. Solvent dependence of dynamic transitions in protein solutions. Proc. Natl. Acad. Sci. U. S. A. 97:9961–9966.

[74] Fitter, J., R. Lechner, G. Buldt, and N. Dencher. 1996. Internal molecular motions of bacteriorhodopsin: hydration-induced flexibility studied by quasielastic incoherent neutron scattering using oriented purple membranes. Proc. Natl. Acad. Sci. U. S. A. 93:7600–7605.

[75] Li, T., A. A. Hassanali, Y.-T. Kao, D. Zhong, and S. J. Singer, 2007. Hydration dynamics and time scales of coupled water-protein fluctuations. J. Am. Chem. Soc. 129:3376–3382.

[76] Wood, K., M. Plazanet, F. Gabel, B. Kessler, D. Oesterhelt, D. Tobias, G. Zaccai, and M. Weik, 2007. Coupling of protein and hydration-water dynamics in biological membranes. Proc. Natl. Acad. Sci. U. S. A. 104:18049–18054.

[77] Fogarty, A. C., and D. Laage, 2014. Water dynamics in protein hydration shells: the molecular origins of the dynamical perturbation. J. Phys. Chem. B. 118:7715–7729.
SUPPORTING INFORMATION

Details of multiexponential fit of the autocorrelation function of water in Fig. 3. $C(t)$ of water around the residues given in Fig. 3B are fitted to tri-exponential function as follows: $C_{N24}^{\text{apo}}(t) = 0.656e^{-t/1.883\text{ ns}} + 0.047e^{-t/9.453\text{ ns}} + 0.296e^{-t/9.464\text{ ns}}$; $C_{W129}^{\text{apo}}(t) = 0.331e^{-t/0.128\text{ ns}} + 0.349e^{-t/0.790\text{ ns}} + 0.320e^{-t/5.005\text{ ns}}$; $C_{N285}^{\text{apo}}(t) = 0.079e^{-t/0.016\text{ ns}} + 0.021e^{-t/44.108\text{ ns}} + 0.900e^{-t/499.908\text{ ns}}$; $C_{N285}^{\text{agon}}(t) = 0.108e^{-t/0.319\text{ ns}} + 0.438e^{-t/2.365\text{ ns}} + 0.454e^{-t/12.546\text{ ns}}$; $C_{P286}^{\text{apo}}(t) = 0.001e^{-t/0.001\text{ ns}} + 0.085e^{-t/0.182\text{ ns}} + 0.015e^{-t/15.547\text{ ns}}$; $C_{Y197}^{\text{apo}}(t) = 0.852e^{-t/0.199\text{ ns}} + 0.104e^{-t/1.082\text{ ns}} + 0.044e^{-t/4.677\text{ ns}}$, and the average relaxation time of water is obtained by using $\tau = \int_0^\infty C(t)dt$.

Number fluctuation of water molecules on the receptor surfaces. Water undergoes sharp transition from the bulk to interface. Heterogeneity of biomolecular surfaces and conformational dynamics give rise to a number of different classes of interfacial water. Temporal variation in the water number and its fluctuation on the receptor surfaces can provide glimpses of the water motion at the interfaces. Some regions of the receptor are persistently occupied by water molecules with small number fluctuation, and others with large fluctuation. To quantify the water fluctuation, we counted the number of water molecules as a function of time, $n(t)$, around each residue, and calculated their average ($\langle n \rangle$) and variance ($\langle (\delta n)^2 \rangle$) (Fig. S2). As expected, both $\langle n \rangle$ and $\langle (\delta n)^2 \rangle$ are larger around the loop regions (ICLs and ECLs) than near the TM helices (see Fig. S2). Taking the ratio between the two numbers, $\langle n \rangle$ and $\langle (\delta n)^2 \rangle$, i.e., $F = \langle (\delta n)^2 \rangle / \langle n \rangle$ (Fano factor), one can appraise the influence of the receptor surface on water number fluctuation (Fig. S2).

In calculation, we counted the number of water molecules (n) within 4 Å from any heavy atom of each amino acid residue. Using our 1.2 μsec simulations, we calculated the average number of water ($\langle n \rangle$), variance ($\langle (\delta n)^2 \rangle = \langle n^2 \rangle - \langle n \rangle^2$), and the ratio between the two, i.e., Fano factor $F = \langle (\delta n)^2 \rangle / \langle n \rangle$. Residues with suppressed water fluctuations ($F < 1$) are commonly found in the ICLs and ECLs of all the three receptor states, and especially in the central zone of TM domain of apo and agonist-bound forms. Notably, the region where the water cluster is detected (Fig. 1B, middle) is surrounded by the residues with $F < 1$ (Fig. S2B, black arrows in the bottom panel). Most of the residues with enhanced water fluctuations ($F > 2$) are found at the interface between the receptor and lipid bilayer, especially in TM1, 2, 5, and helix 8. The apo and agonist-bound forms have residues in the TM region with $F < 0.25$, suggestive of strong attractive interactions from TM residues, whereas the TM region of the antagonist-bound form (Fig. S2C) is devoid of such residues.

Internal waters trapped inside the receptor. Among the water molecules that show slow dynamics, some molecules are trapped inside the receptor and tightly bound to specific sites. Tracing the position of the entire water molecules along the trajectories, we systematically identified the trapped water molecules. We divided the full trajectory of 1.2 μs to six intervals (i.e., every 200 ns) and calculated the RMSD of each water oxygen relative to the position in the final snapshot of each interval. Since the average RMSD of trapped water is smaller than that of untrapped free water (≈ 66 Å), it is not difficult to identify the trapped water molecules.

The apo form has two such positions (P_1^{apo} and P_2^{apo} in Fig. S2A). In P_1^{apo}, a water molecule is trapped via tight H-bondings with W129 and S47 during the entire simulation time (1.2 μs) (Fig. S6A). In case of P_2^{apo}, maintaining the H-bonds with Y197, L95, and A99, three water molecules alternate to be trapped (see the three plateau regions in the graph plotting the distances between P_2^{apo} and three water molecules in Fig. S5A). That is, one water molecule in the site is displaced by another water (Supporting Movie M4). Among the residues interacting with the trapped waters, W129, Y197, and T279 are the microswitches.

In the agonist-bound form, trapped waters were observed in three positions (Fig. S5B): The water molecules bound in P_1^{agon} form the H-bonding interactions with N241, V282, and V286, connecting the TM1 and TM7 helices. In fact, P_1^{agon} site corresponds to the position where the water cluster with high density is identified in the water density map (Fig. 1B, middle); The water in P_2^{agon} interacts with C245, L249, and A273, mediating the interaction between the TM6 and TM7; Two water molecules are bound simultaneously to P_3^{agon}, maintaining the H-bonds with T279, N280, V283, and N284. In case of P_2^{agon} and P_3^{agon}, several water molecules compete to bind at the sites (Figs. S6B-C). Along with these trapped waters, the water cluster is observed in the pocket formed by TM1, TM2, TM3, and TM7, especially interacting with N241, D52, N280, and S281. These water molecules constitute an extended allosteric interface between TM helices, helping the receptor activation.

In the antagonist-bound form, trapped water molecules are observed in two sites (Fig. S5C). One (F_{antagon}) is near the DRY motif, which forms the ionic-
lock (i.e., salt-bridge between R102$^{3.50}$ and E228 observed in the inactive state). The water molecules in P_1^{antago} do not form a direct interaction with DRY motif but make a tight H-bonding network with T117 and R120. The residue R120 also makes the H-bonds with D101 and Y112. The other site P_2^{antago} is identified among the microswitch residues in TM1, TM2, and TM7. The water molecule in this site makes the H-bonds with N24$^{1.50}$, S281$^{7.46}$, and Y288$^{7.53}$, and in the antagonist-bound state, N24$^{1.50}$ interacts with D52$^{2.50}$ in TM2 via H-bonds.

In each receptor state, water molecules help extending interactions of the residues belonging to different TM helices, thus stabilizing the interhelical configurations of GPCRs.

Formation of water wires. A closer look at the movies of water dynamics through the TM domain (SI Movies M1, M2, and M3) reveals the presence of “water wires” in a few locations. Especially in the antagonist-bound inactive state, water molecules are aligned into one dimensional arrays and move in concert, stabilized by the successive H-bonds [29, 30]. Macro-dipole moment, $\vec{M} = \sum_{i=1}^{N} q_i \vec{r}_i$, where i denotes the index of atoms (oxygen or hydrogen) comprising water molecules and N is the total number of atoms, was calculated for the waters in the entire TM domain, and to demonstrate the presence of water wires quantitatively we calculated regional macrodipole moment, $\vec{M}_R = \sum_{i \in R, i=1}^{N_R} q_i \vec{r}_i$, where N_R is the number of atoms composing water molecules in the region $R = A$, B, or C specified in Figure S5. Excluding the early stage of simulation ($t < 400$ ns) when the water flux is not yet in the steady state, we find that $|\vec{M}| \approx 20$ Debye and occasionally reaches $|\vec{M}| > 55$ Debye (Figure S5). In the regions above and below W246$^{6.48}$, where water wires are clearly observed, the regional macrodipole moments are $|\vec{M}_A| \approx 9.9 \pm 2.6$, $|\vec{M}_B| \approx 9.8 \pm 2.8$, and $|\vec{M}_C| \approx 5.7 \pm 2.5$ Debye. It is noteworthy that the orientation of the regional macro-dipole moment of the water wire in the region A is opposite to those in B and C.

SUPPORTING MOVIES

Supporting Movie M1. Water dynamics in the apo form during the time interval $t = 1100 – 1150$ ns. All the water oxygens are shown with small spheres in different colors. The key micro-switch residues are depicted using the stick representation marked with their residue numbers.

Supporting Movie M2. Water dynamics in the agonist-bound form during the time interval $t = 700 – 750$ ns. The details of the representation are identical with Movie M1.

Supporting Movie M3. Water dynamics in the antagonist-bound form during the time interval $t = 700 – 750$ ns. The details of the representation are identical with Movie M1.

Supporting Movie M4. Dynamics of two water molecules in the apo form around the P_2^{apo} for the time interval $t = 821 – 835$ ns. The receptor structure is represented as white ribbon, and two water molecules that compete around P_2^{apo} are depicted using spheres in cyan and green.
FIG. S1: Protein RMSD and lipid characteristics during the simulations. (A) RMSD of the protein backbone structures for apo (black), agonist-bound (red), and antagonist-bound (blue) forms. (B) Area per POPC lipid and (C) membrane thickness of bilayers (average distance between phosphorus atoms of POPC lipid in the upper and lower leaflets).
FIG. S2: Number fluctuation of surface water molecules and their Fano factor. Average $\langle n \rangle$ and variance $\langle (\delta n)^2 \rangle$ of water number are calculated around each residue using cut-off distance $R_c = 4$ Å from any heavy atom in the (A) apo, (B) agonist-bound, and (C) antagonist-bound forms. The ratio between the average and variance, i.e., Fano factor, are displayed at the bottom graph. The TM regions are shaded in grey, and the positions of microswitch residues are marked with cyan dots. The receptor structures are colored in accord with the F value, and the bound ligands are shown in light-green sticks. The region associated with the water cluster, identified in Fig. 1B, is marked with the arrow.
FIG. S3: **Water pathways along the alignment of polar residues in the TM domain.** TM domain is made mostly of nonpolar residues (white ribbon). Polar residues, depicted together with their side-chain in yellow sticks, display a characteristic “Y” shaped alignment, which internal water molecules in sphere representation hydrate. The agonist and antagonist ligands are depicted in black spheres, and W246 and Y288 are shown in magenta and blue sticks, respectively. In the agonist-bound form, the water free zone, corresponding to HL2, is highlighted in the middle, whereas in the antagonist-bound form, the water molecules are bridged through the TM channel along the polar residues.
FIG. S4: **Water wires.** Macrodipole moment ($|\vec{M}|$) for the entire population of water in the TM region (blue), and regional macrodipole moments ($|\vec{M}_R|$ with $R = A, B,$ and C) calculated for the water in the regions $A, B,$ and C. The snapshots are taken for the water configuration in each region with the maximal regional macrodipole moments (marked with an arrow in each panel) for $t > 400$ ns.
FIG. S5: Trapped water molecules and their interactions with the receptor. (A) Trapped water molecules in the apo form. The receptor secondary structure is displayed in tube, and the trapped water molecules are depicted in spheres. The H-bonds are represented in black dashed lines, and the interacting residues are annotated. The distances of the three water molecules relative to the site P_{2}^{apo} are displayed on the right to show the water dynamics (see also Supporting movie M4). (B) Agonist-bound form. (C) Antagonist-bound form. The distances of water molecules from the trapping sites are shown in Fig. S6.
FIG. S6: Dynamics of water trapping is visualized using the distance of a water molecule relative to the site where the water is trapped. (A) Dynamics of a water trapped in P_1^{apo}. (B) Dynamics of three water molecules trapped in P_2^{ago}. (C) Dynamics of four water molecules trapped in P_3^{ago}.

FIG. S7: Analysis of allosteric interface using betweenness centrality. Betweenness centrality (C_B) were calculated for two residue interaction networks. (i) C_B^o, based on the network that takes into account the residue-residue interaction in direct contact (between any heavy atom in the residues within $R_c \leq 4 \text{ Å}$), and (ii) C_B^w, based on the network that takes into account the water-mediated residue-residue contact in which two residues either shares the same water molecule and satisfies residue-water oxygen distance cut-off value of 3.5 Å or are in direct contact within the distance of 4 Å. Allosteric interface using $C_B^o > 0.07$ and $C_B^w > 0.07$ are shown on the top for each receptor state.