Humanization of ImmuneDeficient Animals for the Modeling of Transplantation, Graft Versus Host Disease, and Regenerative Medicine

George Adigbi, MBBS, MRCSI(Eng),1 Séréne Ménoret, B.Eng,2 Amy R. Cross, PhD,1 Joanna Hester, PhD,1 Fadi Issa, FRCS(Plast), DPhil,1 and Ignacio Anegon, MD2

Abstract. The humanization of animals is a powerful tool for the exploration of human disease pathogenesis in biomedical research, as well as for the development of therapeutic interventions with enhanced translational potential. Humanized models enable us to overcome biologic differences that exist between humans and other species, while giving us a platform to study human processes in vivo. To become humanized, an immune-deficient recipient is engrafted with cells, tissues, or organoids. The mouse is the most well studied of these hosts, with a variety of immunodeficient strains available for various specific uses. More recently, efforts have turned to the humanization of other animal species such as the rat, which offers some technical and immunologic advantages over mice. These advances, together with ongoing developments in the incorporation of human transgenes and additional mutations in humanized mouse models, have expanded our opportunities to replicate aspects of human allotransplantation and to assist in the development of immunotherapies. In this review, the immune and tissue humanization of various species is presented with an emphasis on their potential for use as models for allotransplantation, graft versus host disease, and regenerative medicine.

(Transplantation XXX;XXX: 00–00).

INTRODUCTION

For decades, studies in immunology have benefited from the ability to experiment on small animal models. However, it is increasingly clear that the mechanistic gap between human and small animal immune responses is significant, leading to challenges in the translation of findings from animal to human that can, on occasion, have devastating results.1,2,3 Humanized laboratory animals have been developed to bridge this gap, and provide a powerful method for the preclinical assessment of human immune responses in the context of transplantation and regenerative medicine. The vast majority of these models are created using immunodeficient mice engrafted with human cells and tissues. Although humanized mice have been extremely useful in the study of many pathologies, the humanization of other species can also be advantageous. The size of other animals, such as rats, pigs, or nonhuman primates, facilitates more challenging surgical procedures, which would be difficult in mice. Additionally, the anatomy and physiology of larger species more closely resembles that of the human. Before the description of gene-specific nucleases (such as meganucleases, zinc finger nucleases [ZFNs], transcription activator-like effector nucleases [TALENs], and CRISPR/Cas9), targeted genome editing was largely restricted to mice, the only species in which robust embryonic stem (ES) cells were available.

Received 13 November 2019. Revision received 22 December 2019. Accepted 7 January 2020. 1 Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom. 2 Nantes Université, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France. This work was supported by generous funding from Biogenouest by Région Pays de la Loire, (BiSA program, TEFOR (Investissements d’Avenir French Government program, ANR-INSB-0014), LabCom SOURIRAT project (ANR-14-LAB5-0008), Labex IGO project (Investissements d’Avenir French Government program, ANR-11-LABX-0016-01), IHU-Cesti project (Investissements d’Avenir French Government program, ANR-10-IBHU-005, Nantes Métropole and Région Pays de la Loire), Fondation Progreffe, the ReSHAPE 825392 EU Horizon 2020, Kidney Research UK, the Academy of Medical Sciences, the Wellcome Trust, and the Clarendon Fund and the Restore Research Trust. F.I. is a Wellcome Trust CRCD Fellow, J.H. is a KRUK Senior Fellow, and A.R.C. is an Oxford-Celgene Fellow. The authors declare no conflicts of interest.

I.A. and F.I. planned and wrote the article. F.I. and J.H. performed the included experiments. G.A., S.M., A.R.C., and J.H. wrote and edited the article as well as performing bibliography searches. *G.A., S.M., and A.R.C. contributed equally. F.I. and I.A. are both senior and corresponding authors.

Correspondence: Fadi Issa, FRCS(Plast), DPhil, Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Level 6, John Radcliffe Hospital, Headington, Oxford, UK OX3 9DU. (fadi.issa@nds.ox.ac.uk); Ignacio Anegon, MD, Centre de Recherche en Transplantation et Immunologie, INSERM UMR 1064-CRTI, CHU de Nantes, 30 av. J. Monnet, 44093, Nantes, France. (Ignacio.anegon@univ-nantes.fr).

Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

ISSN: 0041-1337/20/XXXXXX-00
DOI: 10.1097/TP.0000000000003177
However, the recent evolution of gene-specific nucleases has allowed the generation of immunodeficient animals in all the above mentioned species. In this review, we aim to explore the qualities and benefits of the available immunodeficient animal models, their potential for reconstitution with human tissues, and how this is benefitting preclinical research in the field of transplantation.

MICE

Immunodeficient Mouse Models

Over the past 2 decades, mice have become the dominant rodent model in biomedical research. The prominence of mice owes largely to the development of methods for genetic manipulation, the subsequent establishment and characterization of murine strains—starting with the first knockout mouse in 1987—and the availability of a wide range of transgenic mice as well as antibodies targeting mouse antigens. Further technological advances targeting mouse gene expression have enabled the experimental reproduction of human allogeneic transplantation within in vivo models. For success, such models require: (1) host mice that are rendered genetically immunodeficient, (2) adoptive transfer and engraftment of human immune cells, and (3) transplantation of allogeneic human tissues.

The development of immunodeficient mouse models began following the description of the spontaneously arising severe combined immunodeficiency (scid) mutation in C.B-17 mice, which produced mice lacking effective adaptive immunity. The scid mutation affects the Prkdc gene which is critical for DNA repair during V(D)J recombination in T and B cell receptor generation. As a result, SCID mice are incapable of producing mature T and B cells. The experimental replication of this immunodeficiency was first achieved by knocking out the Rag2 gene, which simultaneously arrests V(D)J recombination and lymphocyte maturation. These immunodeficient models therefore permit hematopoietic reconstitution with adoptively transferred human peripheral mononuclear cells or stem cells, since effective adaptive antihuman responses can no longer be mounted. It later became clear that human cell reconstitution can be significantly enhanced by targeting mouse marrow stem cell repopulation potential, facilitating exogenous hematopoietic stem cell (HSC) engraftment in a manner not seen in Rag-mutant mice. In order to further improve human cell engraftment, later modifications aimed to prevent mouse macrophage-mediated phagocytosis of human hematopoietic cells, which results from impaired “don’t eat me” signaling via an incompatibility between human CD47 and murine SIRPα. Successful attempts to address this include the transfer of the NOD.Sirpa allele, a highly polymorphic variant of SIRPα with high affinity for human CD47, or the human Sirpa to other genetic backgrounds. A summary of all immunodeficient mouse models used for humanized studies is shown in Table 1.

Immune Humanization of Mice: Peripheral Blood Mononuclear Cell (PBMC)-based Models

PBMCs or leukocytes are the most commonly used cell product for humanization in transplant studies, providing a method that is both convenient and cost-effective. Human PBMC mice robustly reconstitute T cells, which have well-established roles in rejection and tolerance. The early identification of donor-specific memory and the rapid rejection of second-set allografts made adaptive immune cells, especially T cells, the traditional focus of study into pathways of transplant rejection. Indeed, in experimental models, T cells are both necessary and sufficient for the rejection of most allografts. Whereas recreation of these features is important, a caveat of PBMC-humanization is that reconstitution is heavily lymphoid-biased: over 90% of human cells are T cells and the majority express an activated or memory phenotype. The disproportionately large fraction of the human leukocyte repertoire (usually ~5%–20%) may misrepresent the global immunologic reaction to transplantation, potentially limiting the relatability of experimental findings to the true human alloresponse.

T cell receptor (TCR) recognition of human major histocompatibility complex (MHC) mismatches drives allograft rejection and human graft versus host disease (GVHD). Curiously, MHC molecules display an inherent cross-species immunogenicity. This is beneficial to xenogenic models of GVHD where human CD8+ and CD4+ T lymphocytes recognize mouse MHC class I and II, respectively, allowing the transferred lymphocytes to simulate systemic proinflammatory responses. Moreover, the precursor frequency of human lymphocytes responsive to mouse MHC (0.5% in CD4+ cells and 3% in CD8+ cells) is similar to the frequency of alloresponsive lymphocytes (3.9% of CD4+ cells and 2.5% of CD8+ T cells). Yet, xenogenic models of GVHD can also be confounded by...
the absence of indirect recognition, abundance of non-human antigens, and the differing distribution of mouse MHC. For example, mice do not constitutively express MHC class II in the vasculature, unlike humans; therefore, humanized GvHD models may underestimate CD4+ T cell allorecognition in vascular interactions. However, the development of GvHD is undesirable in many transplantation studies because it invariably leads to lethal xenogeneic GvHD, an expanding human leukocyte compartment that is not directed at the tissue in question, and a limited experimental window. One strategy to address this has been to produce NSG mice deficient in MHC class I and

Name	Strain	Phenotype	Reference
SCID	B6.CB17-Prkdc^{scid}/SzJ	T and B cell deficiency	5
NOD-scid	NOD.CB17-Prkdc^{scid}/J	T and B cell deficiency	10
NSG	NOD.Cg-Prkdc^{scid} Il2rg^{−/−}/JicTac	Phagocytic tolerance	15
NSG B2M, β2m KO NSG	NOD scid Il2rynull B2munl	T, B, and NK cell deficiency	24
NSG HLA-A2/HDD	NOD.Cg-Prkdc^{scid} Il2rg^{−/−} /JicTac	Human HLA-A2 expression	25
NSG HLA-DR	NOD/HLA-DR^{−/−} /JicTac	Human HLA-DR expression	26
NSG-SGM3	NOD.Cg-Prkdc^{scid} Il2rg^{−/−} /Cg-Tg(CMV-IL3,CSF2,KITLG)1Eav/MloySzJ	T, B, and NK cell deficiency	27
hIL-6 Tg NSG	NOD.Cg-Prkdc^{scid} Il2rg^{−/−} /Tg(BAC1/2-IL6)	Human IL-6 expression	28
NSGW41	NOD.Cg-KitW-41JPrkdc^{scid} Il2rg^{−/−}	Human IL-3, GM-CSF, and SCF expression	29
NSGWv/+	NOD.Cg-KitWv/+Prkdc^{scid} Il2rg^{−/−}	Human IL-3, GM-CSF & IL-3 expression	30
NSGWv	NOD.Cg-KitWv/Prkdc^{scid} Il2rg^{−/−}	Human IL-3, GM-CSF & IL-3 expression	31
NBSGW	NOD.Cg-KitW41JPrkdc^{scid} Il2rg^{−/−}	Human IL-3, GM-CSF & SCF expression	32
IL-15-NOG Tg	NOD.Cg-Prkdc^{scid} Il2rg^{−/−}/JicTac	Phagocytic tolerance	33
NOG-EXL	NOD.Cg-Prkdc^{scid} Il2rg^{−/−}/JicTac	Phagocytic tolerance, human IL-15 expression	34
NOG-IL2 Tg	NOD.Cg-Prkdc^{scid} Il2rg^{−/−}/JicTac	Phagocytic tolerance, human GM-CSF & IL-3 expression	35
DRAG	NOD.Cg-Rag^{−/−}/JicTac	Phagocytic tolerance, human IL-2 expression	36
NRG	NOD.Cg-Rag^{−/−}/JicTac	Phagocytic tolerance	37
SRG	NOD.Cg-Rag^{−/−}/JicTac	Phagocytic tolerance	38
SRG-W41	NOD.Cg-Rag^{−/−}/JicTac	Phagocytic tolerance, impaired HSC development	39
BALB scid	NOD.Cg-Rag^{−/−}/JicTac	Phagocytic tolerance, impaired HSC development	40
BRG hIL-3 hGM-CSF	NOD.Cg-Rag^{−/−}/JicTac	Human IL-3 & GM-CSF expression	41
BRGS	NOD.Cg-Rag^{−/−}/JicTac	Human M-CSF, IL-3, GM-CSF, SIRPα, and TPO expression	42
BRGFS	NOD.Cg-Rag^{−/−}/JicTac	NOD SIRPα expression	43
BRgWw	NOD.Cg-Rag^{−/−}/JicTac	Phagocytic tolerance, impaired HSC development	44
MISTRG	NOD.Cg-Rag^{−/−}/JicTac	Phagocytic tolerance, impaired HSC development	45
HUMAMICE	C57BL/6 HLA-A2^{−/−}/H2D^{−/−}/	No mouse MHC expression, human HLA expression	46
Nude mouse, athymic nudeFoxn1nu	NOD.SIRPα expression	T and NK cell deficiency	47

HSC, hematopoietic stem cell; MHC, major histocompatibility complex; NK, natural killer; NOD, nonobese diabetic; SCID, severe combined immunodeficiency.
II expression.\(^5\) Intraperitoneal injection of human PBMC in such mice results in the long-term engraftment of functional CD4\(^+\) and CD8\(^+\) T cells, which retain the capacity to reject mismatched human islets.\(^5\)

The additional incorporation of non-T cell components in experimental models is desirable for replicating a more complete immune system and human alloresponse. The importance of innate-mediated rejection is of increasing interest.\(^5\) In clinical studies, T cell depletion (e.g., with alemtuzumab) has been shown to be insufficient to prevent renal or intestinal allograft rejection. In these studies, rejection was instead associated with monocytic and eosinophilic inflammation, respectively.\(^5\) Experimental cardiac allotransplantation experiments in allogeneic mice result in leukocyte infiltration and proinflammatory cytokine production, highlighting the presence of innate responses that can develop to allografts in the absence of T cells.\(^5\) Moreover, an array of innate immune cells, such as dendritic cells,\(^5\) NK,\(^5\) and mast cells,\(^5\) have been shown to display immunoregulatory properties important for tolerance induction, and their reconstitution in inhumanized animals is therefore of interest. Another important consideration is that, as humanized mouse models currently used in transplantation research do not support reconstitution of functional human antigen presenting cells in the recipient host, in vivo assessment of immune alloactivity is limited to responses triggered by presentation of antigen via the direct pathway. Successful engraftment of functional professional human antigen presenting cells may therefore also ensure that all allorecognition pathways are integrated into the experimental model. To be able to incorporate the entire spectrum of innate and adaptive human immune responses into experimental models of transplantation, support for multilineage human hematopoietic cell reconstitution is key.

An important additional requirement of humanized animal models is engraftment or development of mature human B cells capable of effective antigen presentation and immunoglobulin production. We and others have demonstrated the ability of PBMC-humanized immunodeficient mice to engraft mature human B cells and produce human IgG and IgM (Figure 1A).\(^7,59\); however, the frequency of these antibody-producing cells is consistently low and highly variable. However, our experience is that immunodeficient mice humanized with UCB HSCs generate significant numbers of human B cells\(^60\) (Figure 1B). Despite this, analyses of human B and T cells generated within different HIS mice models have revealed these B cells to be developmentally blocked,\(^61\) with defective peripheral maturation and humoral responses.\(^16,62\) UBC-humanized mice produce low levels of human IgM and IgG that increases with the development of T lymphocytes; an effect that is enhanced by the introduction of autologous (CD34\(^+\) CD45\(^+\)) leukocytes (Figure 1C–E). Initially, this was thought to result from an inability of mouse B lymphocyte stimulator (BAFF) to signal human B cells, suggested by the observation that administration of recombinant human BAFF to NOD-Rag1\(^{null}\) Prf1\(^{null}\) mice humanized with PBMCs increased B cell engraftment and the ability to mount an antipneumococcal polysaccharide response.\(^53\) It has been reported that pre-B and immature B cells differ from mature B cells in not requiring BAFF for their survival.\(^54,56\) This is supported by a recent study in which expression of full-length human BAFF from cDNA in the endogenous mouse locus did not improve maturation of human B cells in HIS mice.\(^67\) An alternative strategy involves the induction of IL-6, which has previously been shown to increase IgG1 expression up to 400-fold.\(^68\) Knock-in of human IL-6 into HIS BRG mice increases levels of total and antigen-specific human IgG, with a concordant rise in memory and IgG\(^+\) human B cells, thymocytes, and peripheral T cells,\(^69\) the latter of which are essential for B cell maturation. Additional strategies being investigated include attempts to improve peripheral lymph node development in humanized mice, which among other benefits can increase CXCL-13 signaling.\(^70\) This has the potential to induce CD4\(^+\) cells to become follicular T helper cells during antigen stimulation.\(^71,72\) In turn providing stimulatory signals to B cells to mediate positive selection of high affinity B cells and differentiation of plasma cells in germinal centers.\(^71,73\) In transplantation research as in cancer, infection, and autoimmune immunity, recapitulation of the human B cell response to disease and treatment in humanized animal models will be key in enhancing the accuracy of empirical research outputs that can safely be translated into clinical studies.

Immune Humanization of Mice: Stem Cell-based Models

PBMCs are characterized by a low frequency of self-renewing pluripotent hematopoietic cells and a high proportion of mature lineage-committed cells. Multilineage reconstitution must, therefore, be achieved with the use of HSC-based products rather than PBMCs. Sources of HSCs include human umbilical cord blood,\(^20\) adult bone marrow, fetal liver,\(^24\) and granulocyte colony-stimulating factor-(G-CSF)-mobilized adult PBMCs.\(^75\)

NSG and BRG mice can support long-term multilineage hematopoietic reconstitution following human CD34\(^+\) HSC transplantation; however, studies have shown that the human T cells that develop are unable to recognize human HLA and mount human-restricted T cell responses because of selection on mouse MHC in the thymus.\(^39,76\) To overcome this obstacle, it is possible to implant human fetal liver and thymus tissue beneath the kidney capsules of SCID mice to produce “thymic organoids” capable of supporting human T cell development.\(^77\) To improve systemic reconstitution of T cells and other immune cell types while preserving this principle, the bone marrow-liver-thymus mouse model was created in the more supportive NSG strain, by transplanting human CD34\(^+\) cells intravenously and implanting human fetal thymus and liver tissue beneath the kidney capsule.\(^78,79\) Cells developing within this model show functional human-directed immune responses.\(^80,81\) To reduce the requirement for fetal tissue, a recent model instead utilized neonatal thymus, which has produced human cells capable of rejecting skin xenografts.\(^72\)

Limitations in HSC humanization include (1) the requirement for myeloablative preconditioning of host mice to create a bone marrow niche in which human HSCs can engraft and (2) the challenges that remain in reconstituting entire the spectrum of immune cells.\(^18,83\) To overcome these, microenvironmental alterations to favor human hematopoiesis have been described (Figure 2). Methods include (1) mutation of critical murine growth factor receptors, such as the c-kit receptor (NSGW41,
NSGWv/+, NSGWv, NBSGW, SRG-W41 and BRgWv mice),23,30 (2) inhibition of growth factor receptor function (eg, anti-c-kit receptor antibody), 84 (3) exogenous human cytokine administration (eg, BlyS for mature human B cell reconstitution64 and IL-7 analogues for T cell reconstitution76), and (4) knock-in of human cytokine genes, such as in SGM3,27 MISTRG,43 SRG-15,85 and hIL-6 Tg NSG 28 strains, which include knock-ins of IL-3, IL-15, GM-CSF, M-CSF, or IL-6 to support engraftment of the wider human hematopoietic repertoire, including innate cells and regulatory T cells (Tregs).27

Tissue Transplantation into Humanized Mice

Once the challenge of human immune reconstitution is overcome, the interactions of these immune cells with specific tissues can be assessed. While responses are simulated by tumor engraftment, alloresponses are simulated by engraftment of human cells or tissues; the most common models being those that engraft human skin,86 islets of Langerhans,85 or blood vessels.88 The most widely used model is that of human skin allotransplantation.89-93 Skin grafts benefit from tissue accessibility permitting continuous visible monitoring and from an established progression of rejection in skin architecture and leukocyte infiltration. Moreover, skin is easily obtained as discarded tissue, with a single donor being able to provide sufficient tissue for multiple mice, providing a useful internal control. For example, our experience has shown that we are able to transplant skin to up to 50 mice from a single human donor.48 Acute and chronic rejection of human solid-organ transplants, such as kidney, heart, or lungs, is characterized by vascular injury.94 Rejection of the interposed
artery segment in immune humanized mice is a highly relevant model, yet fails to represent the entire vascular tree. Capillaries of human origin are maintained in adult skin grafts on immunodeficient mice, while the graft is simultaneously permeated by mouse capillaries within the first 21 days posttransplantation (Figure 3A–C and Pober et al92). Immune humanization with PBMC selectively destroys human microvasculature, in a process that can be halted by the cotransfer of CD4+ Tregs (Figure 3A–E). The humanization of mice with both PBMC and Treg can enable the long-term maintenance of human microvasculature in these skin grafts up to at least 100 days (Figure 3D and E). Some studies use alternate sources of capillaries, such as synthetic microvessels derived from endothelial colony-forming cells in cord blood.95-97

Human organs and tissues demonstrate unique immune functions and immune compartments that would ideally be modeled in homogenous tissues in vivo. This is clearly impractical in rodents, whose small size has traditionally limited the pool of suitable human tissues. Yet studies have ingenuously overcome this obstacle by generating or transferring human muscle, cartilage, bone, liver, kidneys, and intestines. Tissues such as cartilage,98 muscle,99 and ossicles100,101 may be of value in understanding the immunogenicity of vascularized composite allografts. Human satellite cells obtained from skeletal muscles can integrate with NSG mouse muscle to successfully produce muscle fibers and self-renew in situ.99 Allogeneic human articular chondrocytes in an agarose scaffold could successfully produce a cartilage matrix in NSG mice reconstituted with CD34+ HSC, without signs of antidonor responses.98 Recent advances in tissue engineering have generated protocols for creating 3-dimensional complex organoids from HSC or primary cells. The human bone niche can be reproduced by the subcutaneous differentiation of mesenchymal stromal cells that produce vascularized ossicles, to which human HSCs successfully home and reside.100,101 These ossicles have normal bone marrow architecture, a diverse cell repertoire including osteoclasts and osteoblasts, and organized hematopoietic clusters around sinusoids.

Human intestinal organoids have been produced from pluripotent stem cells; true to form, these organoids develop crypt-villus structures and are populated by Paneth and goblet cells.102 After implantation into the mesentery, organoids grow a vascular pedicle and can be joined to the murine intestine by anastomosis.102 Engraftment of fetal intestine into the mesentery of SCID mice is also a successful approach generating human intestinal architecture and supporting an enteric nervous system.103 Reconstruction of the mouse biliary tree with human extrahepatic cholangiocyte organoids has been demonstrated. Human cholangiocyte organoids grown on scaffolds could be surgically applied to repair and replace the gall bladder wall and common bile ducts.104 Engraftment of mice with human livers has been achieved by implantation of fetal liver103 or by the repopulation of immunodeficient mouse livers with human hepatocytes or pluripotent stem cells.106 Immunodeficient mice are genetically modified to impair hepatic homeostasis, creating space in the hepatic niche and a regenerative stimulus. Urokinase-type plasminogen activator transgenic mice or fumarylacetoacetate hydrase (Fah) knockouts are common modifications for inducing toxicity in murine liver cells.107 The transfer of human
hepatocytes has variable engraftment rates, but repopulation of up to 95% has been reported alongside a conserved liver microstructure.108 The Fah−/−Rag2−/−Il2rg−/− (FRG) mice combined with the NOD strain has been used to engraft both an immune system and repopulate the liver with human hepatocytes, creating dual chimerism and permitting the study of human hepatocyte-immune interactions.109 As an alternative to models requiring endogenous liver damage, induced pluripotent stem cells (iPS) can produce liver organoids comparable with adult human tissue in gene expression, protein secretion, and drug metabolism.

After implantation into the livers of NSG mice, these organoids integrate with the native tissue and become vascularized within 4 weeks.110

Of interest in modeling renal conditions, complex kidney organoids can be generated from pluripotent stem cells. Kidney organoids successfully contain organized compartments dedicated to nephrons, collecting ducts, stroma, and an endothelial network.111 Human kidney organoids can be transplanted into NSG mice, where they join onto the murine vasculature and undergo glomerular and tubular epithelium maturation.112
Preclinical Models for Immunotherapies

Control of immune responses is a requirement following allotransplantation to ensure graft function and survival. Faithful models of human biology lend themselves to the study of pathogenesis as well as the development of novel therapeutics. In the last 10 years, humanized mouse models have been broadly applied in preclinical studies for the development of the next generation of immunotherapies including costimulation and cytokine modulation, adoptive regulatory cell transfers, chimeric antigen receptor T cells, and nanotechnology for targeted drug delivery.

Immune humanization produces robust models of GVHD. This platform has provided the basis for the efficacy of adoptive CD4+ and CD8+ Treg therapy, mesenchymal stem cell transfers, costimulatory blockade such as anti-CD28 or anti-CD3 monoclonal antibodies, blockade of chemokine receptors, and small molecule drugs for the inhibition of JAK1/2 signaling.

The advances in bioengineering human tissues and organs have the potential to enable studies of tissue-specific immune interactions with concurrent assessment of drug metabolism and off-target effects. However, the simultaneous engraftment of immune cells with adult allogeneic skin or vessels is currently the most prevalent model of tissue transplantation. Costimulatory and cytokine modulatory therapies have shown promise in these human tissue transplant models. Nanotechnology was recently applied to humanized models where arteries perfused with nanoparticles carrying silencing RNA could reduce endothelial-mediated arteriopathy.

Cell therapies rely on humanized models where differences in murine and human biology could have myriad effects on the fate of the transferred cell, different immune subsets, and the allogeneic tissue. The adoptive transfer of polyclonal CD4+ and CD8+ Tregs has been shown to prevent the rejection of human skin and vessel grafts; these studies have inspired clinical trials into adoptive Treg transfer. Treg transfer therapies have been shown in humanized models to be modulated by their migratory potential, antigen-specificity, and number. To this end, the development of Treg bestowed with chimeric antigen receptors specific for alloantigens have been implemented in skin graft models to reduce alloimmune injury. Importantly, a number of national medical regulatory agencies have now started to acknowledge data from humanized models in submissions for clinical trial approval.

RATS

Immune Deficient Rat Models and Immune Humanization

Rats provide several advantages to mice in experimental studies in transplantation. First, rats are up to 10 times larger than mice, providing an advantage for technically demanding surgical studies. Their size enables the precise implantation of human tumors into relatively small anatomical locations, such as the prostate or specific areas of the brain, as well as enabling the implantation of organoids in orthotopic locations. Size of rats could benefit grafts that require immediate vascularization, such as human fetal vascularized organs, skin, and vessels.

Second, there are no reports of shortened lifespan in rat strains used for generating immunodeficient models. This is unlike most NOD-derived immunodeficient mice, since they show reduced survival due to thymoma beginning at month 8, although survival may not be reduced for NSG mice. Third, rats share some immune characteristics with humans that mice do not. Although some of these are not relevant to immunodeficient models where rat T cells are absent, other characteristics remain pertinent such as macrophage expression of CD4 and/or CD8 or the expression of MHC class II on endothelial cells. A further advantage of immunodeficient rats is their potential to sustain a larger number of human cells, therefore allowing larger numbers of human immune cells to be procured from the spleen for functional or molecular studies (50–150 × 106 cells compared with 2–10 × 106 cells in mice).

For many years, the only immunodeficient rats were nude rats established from a spontaneous mutation in the Foxn1 gene (Table 2). Similar to nude mice, nude rats are only deficient in T cells, while B and NK cell compartments are normal. Furthermore, they have a leaky phenotype whereby older rats produce T cells that develop from a spontaneous rearrangement of their TCRs. Novel immunodeficient rat strains have been generated with mutations in key genes, including Rag1, Rag2, Il2rg, and Il7r. Rat and Rag2 KO rats have normal NK cell generation, and there are residual B and T cells in single Rag1, Rag2, or Il2rg mutants. The severity of immunodeficiency has been increased by combining mutations in the aforementioned genes and/or Prkdc.

Complication levels in most inbred mouse strains, including NOD-derived immunodeficient mice, are undetectable or very low. This led to the recent development of a complement-sufficient NSG strain. In contrast, rats have comparable levels comparable to humans, as previously shown for several strains, including Sprague-Dawley (SD) rats deficient for Rag-1 and Il2rg (SD-RG) and expressing hSIRPα (RRGS).

Rats selectively deficient for B cells and consequently immunoglobulin of all isotypes have been generated by deleting the Igβ6 gene (orthologue of the IgM human gene) using ZFNs or CRISPR/Cas9 technologies. Using ZFNs, rats have been generated that lack not only heavy chain immunoglobulins but also both kappa and lambda light chains. These animals were then subsequently humanized by transgenic expression of human immunoglobulin coding sequences allowing the production of fully human monoclonal antibodies of high affinity.

A limitation of humanized allo-GvHD models in immunodeficient mice is the need for total body irradiation to observe clear clinical GvHD, which is increasingly disparate to clinical practice. This irradiation is not required in an immunodeficient rat model in which allo-GvHD was studied. Additionally, Prkdc mutations to obtain a SCID phenotype in many mouse strains (like all NOD-derived immunodeficient strains such as NSG and NOG) increase toxicity due to irradiation in certain models, such as in cancer treatments, since PRKDC is an enzyme essential in DNA repair and its absence generates uncontrolled toxicity in the host tissues. Some but not all immunodeficient rats also carry a mutation in the Prkdc gene.
As in mice, the molecular incompatibility between rat SIRPα and human CD47 could lead to the elimination of certain types of human cells by macrophages. A recent publication described a rat strain combining mutations in Prkdc, Il2rg, and the expression of human SIRPα, which allowed better immune humanization compared with animals without human SIRPα. Immune humanization in these animals was performed using CD34+ cells from fetal liver alone or in combination with autologous fetal thymus but not with human PBMCs. Despite immune humanization, this report did not describe the use to explore any immune response (such as skin rejection or antihuman tumor responses). Animals from the RRG line, with Rag1 and Il2rg mutations, indefinitely accepted human skin, tumors, and even hepatocytes, but did not accept human PBMCs. However, RRG animals crossed with rats expressing human SIRPα (RRGS animals) or with macrophage depletion allowed immune humanization using human PBMC. These rats humanized with PBMCs could develop GvHD and reject tumor cells. Furthermore, the presence of normal complement levels in RRGS animals allowed the successful prevention of acute GvHD by using a new depleting antihuman T cell polyclonal antibody. Immune humanization of RRGS animals with cord blood hCD34+ cells allowed immune humanization (unpublished). Altogether, these studies indicate that as for mice, immune humanization is more difficult than tissue or tumor humanization and that inhibition of macrophage-mediated phagocytosis of human immune cells by CD47−SIRPα interactions is necessary.

TABLE 2.
Transplantation and regenerative medicine models using immunodeficient species other than mice

Species	Mutated genes	Immune phenotype	Transplantation model	References
Rat	Foxn1	T− (leaky) B+ NK+	Human kidney stem cells, MSCs, neural stem cells, smooth muscle progenitors, retinal cells, pancreatic progenitors, hepatocytes, osteoblasts, astrocytes, oligodendrocytes, stromal stem cells in rotator cuff, bone regeneration, dental follicular cells, cardiomyocytes, intestinal cells	130-165
	Rag1	T− (partially) B− (partially) NK+	Human hepatocytes	166-168
	Rag2	T− (partially) B− (partially) NK+	Human fetal kidneys	169-171
	Il2rg	T− (partially) B− (partially) NK+	Not described	172,173
	Prkdc	T− B− NK+	Human iPSC-derived neural precursors	174
	Il2rg and Prkdc	T− B− NK−	Human iPSC, tumor cells and hepatocytes	174
	Rag1, Rag2 and Il2rg	T− B− NK−	Human cancer cells	176
	Rag1 and Il2rg	T− B− NK−	Human skin, tumor and hepatocytes	177
	IgM	T+ B− NK+	Rat transplantation models	178,179
	IgM, Igκ, Igλθhulgs		Not described	180,181
	Prkdc, Il2rg, hSIRPa	T− B− NK− Mo inhibition	Immune humanization, human cancer cells, IPS	182
	Rag1, Il2rg, hSIRPa	T− B− NK− Mo inhibition	Immune humanization, human GvHD	128
Nonhuman primate	IL2RG	T− B− NK−	Not described	183
Pig	IL2RG	T− B− NK−	Not described	184-186
	RAG1 and 2	T− B− NK+	Not described	187
	RAG1	T− B− NK+	Not described	188
	RAG2	T− B− NK+	Human iPSC	189-191
	RAG2 and IL2RG	T− B− NK−	Not described	192
	ARTEMIS	T− B− NK+	Human skin	193,194
Zebra fish	Rag1	T− B− NK+	Human tumors	195
	Rag2	T− B− NK+	Not described	196
	Prkdc and Il2rg	T− B− NK−	Not described	197
	Prkdc and Il2rg	T− B− NK−	Human tumors	198
Rabbit	RAG1 and RAG2	T− B− NK+	Human tumors	199
	RAG1, RAG2 and IL2RG	T− B− NK−	Not described	200
	FOXN1, RAG1, RAG2, IL2RG	T− B− NK−	Not described	201
	IgH	T+ B− NK+	Not described	202
Syrian hamster	RAG1	T− B− NK+	Not described	203

GvHD, graft versus host disease; NK, natural killer.
Tissue Humanization of Rats

Nude Foxn1nu rats have been transplanted with a variety of human stem cells or organs in different models of transplantation and regenerative medicine, including models of intestinal transplantation,130 bronchus grafts,131 nephropathy,132 liver,133,134 cardiac infarct,135-137 bone and chondrocyte healing and regeneration,138-142 rotator cuff lesions,143,144 tendon lesions,145,146 brain or spinal trauma,147-155 urethral dysfunction,156,157 retinal degeneration,158-162 in vivo differentiation of ES cell-derived pancreatic beta cells,163 multiciliated airway cells for the generation of an artificial trachea,164 and periodontal tissues.165 (Table 2).

The most recently developed models of immunodeficient rats engraffed with solid human tissues are summarized in Table 2. A rat strain, deficient in Fah and Il2rg, is suitable for the engraftment of human hepatocytes that demonstrate a competitive proliferative advantage in comparison to the resident rat hepatocytes.171 Rag1-deficient rats transplanted with human hepatocytes have been able to partially reconstitute the liver.167 Il2rg and Prkdc mutated rats have been shown to successfully engraff human iPSCs, tumors, and hepatocytes.174 Rag2-deficient rats have also been transplanted with human fetal kidneys (17–18 weeks gestation) as a method to explore kidney organogenesis in vivo.208 Fetal kidneys increased their size through nephrogenesis and were functionally effective in prolonging the survival of nephrectomized recipients. This is a new animal model for the study of kidney ontogeny and preclinical toxicity of therapeutics agents. In a model of neonatal hypoxic brain injury, Prkdc-deficient rats transplanted with human neural precursor cells showed amelioration of lesions.209 It has also been demonstrated that rats from the RRG line bearing Rag1 and Il2rg mutations can indefinitely accept transplanted human skin and tumors.94

It is interesting to note that, in some models, immunodeficient rats seem to tolerate xenografts better than immunodeficient mice. This is the case for human pancreatic progenitors that matured faster in rats than mice.167 It is possible that accelerated maturation of beta cells was due to similar glucose levels in rats and humans during fasting or after glucose challenge, whereas mice showed high fasting glucose levels and dramatic glucose fluctuations peaking at higher levels after glucose challenge.163 Additionally, human tumors grew significantly faster and larger in SD-RG rats than in NGS mice and several fresh lung squamous tumors from patients (PDX model) were successfully implanted in this immunodeficient rat line.176 The use of immunodeficient rats for the generation of PDX tumors coupled with the humanization of immune responses will likely represent useful models for cancer research.

Rats do, however, have disadvantages when compared with mice. Their larger size implies higher breeding costs. There are also fewer established genetic modifications applicable in rats when compared with immunodeficient mice, such as expression of human cytokines and human MHC or elimination of dendritic cells. In the near future, the application of new genome editing nucleases, such as meganucleases,166 ZFNs,210 TALENs,211 and CRISPR/Cas9,212,213 will facilitate the development of rats with disease-specific mutations including with Cre-conditional mutations.214,215

IMMUNODEFICIENCY AND HUMANIZATION IN OTHER SPECIES

Pigs are an attractive species for the experimental implantation of human cells or tissues, due to their large size and physiological proximity to humans. Several lines of immunodeficient pigs carrying spontaneous or induced inactivation of RAG1, RAG2, ARTEMIS, or IL2RG alone or combined (RAG2 and IL2RG) have been described.216 However, in pigs that carry mutations of the IL2RG,168 Rag1,169 Rag2,169,170 and IL2RG192 genes, there are no descriptions of transplantation of human cells or tissues. In T-CD44NK- SCID pigs carrying spontaneous point mutations in the ARTEMIS gene, human cryopreserved deceased skin was accepted for at least 28 days.194 Since the successful in utero engraffment and differentiation of human CD34+ progenitors in immunocompromised pigs has been reported,172 it has been proposed that immunodeficient pigs could be used in this setting to generate large numbers of human cells.216 Human lymphocytes can recognize porcine MHC molecules and respond at similar levels to human allogenic MHC proteins.218,219 The homology between human and porcine MHC molecules means that antibodies against HLA class II antigens have a propensity to also bind swine leukocyte antigen class II antigens. In the context of future immune humanization of immunodeficient pigs, it is important to point out that porcine SIRPα binds to human CD47 and thus provides inhibition of pig macrophage phagocytosis of human leukocytes.220

Zebrafish offer the attractive characteristic of optical transparency and ease of breeding. Although immunodeficient zebrafish have been described, such as those deficient for Rag2,196 Rag1,195 or for both Prkdc and Il2rg,198 they have only been used for implanting human tumors and not for normal human tissue or cell transplantation. Human CD34+ HSCs have been transplanted into immunocompetent zebrafish where they home to the caudal niche and engage endothelial cells and undergo cell division.221

Rabbits have excellent fecundity and a convenient size for many experimental procedures, while remaining small enough for maintenance as a laboratory animal. Immunocompromised rabbits have been produced with deficiencies in RAG1 and RAG2200; RAG1, RAG2, and IL2RG200 FOXN1, RAG1, RAG2, and IL2RG,201 and IgH,202 but to date they have only been used for implantation of human tumor cells. Similarly, Syrian hamsters are small animal models used in several areas of research.222 Syrian hamsters deficient for RAG1 have been described but have not yet been humanized.203 Finally in nonhuman primates, immunocompromised marmosets mutated for IL2RG using ZFNs and TALENs have been described,183 but there have been no reports on immune humanization or transplantation of human tissues in these animals.

CONCLUSIONS

It is clear that the use of humanized animals is important in providing opportunities to understand the mechanisms of human immune responses to tissue transplants in vivo. These models provide an excellent path for the development and assessment of human-based immunotherapies in a human context. Regulatory agencies are starting to accept data from humanized models as indicative of
therapeutic efficacy of a human-specific agent. A number of newer models have been developed to provide a more complete picture of human immune responses or to allow surgical procedures that would otherwise be impossible in mice. For most studies, it is not necessarily the case that the most advanced model should be used, rather that a specific model should be selected that answers the experimental question at hand. It is also important to note the significant limitations that exist. First, none of the models described fully reproduce all elements of a functional human immune system in the peripheral blood, and also in tissues as for macrophages and innate lymphoid cells. Second, human immune responses result from a complex interaction of cells between the peripheral, tissue, and lymphoid systems. Many of these elements do not exist even in the most advanced models. Third, these models do not yet provide a complete substitute for pharmacokinetic studies in larger animal models. However, it is arguable that some safety elements related to the effects on human leukocytes (eg, a cytokine storm) would be observed in a fully humanized animal. Nevertheless, agents that are found to be unsuccessful in a humanized animal are unlikely to be successful after translation, providing a method for filtering out therapies that would fail in expensive and risky early clinical trials.

PERSPECTIVES

In cancer studies, the outcomes of therapeutic adoptive T cell transfers could be modeled in immune-humanized mice engrafted with patient tumor (PDX models) and the therapeutic cell transfer. Patient material could also be used in generating relevant and insightful humanized models for transplantation. An example is a recent study that engrafted mice with pericardiophrenic artery segments obtained from the donor and PBMC from the recipient. Interestingly, histological changes in the artery were associated with development of chronic lung allograft dysfunction in the patient, indicating the presence of alloreactive T cells at time of transplant. Such models could provide a method for developing customized patient-specific therapies.

The importance of the microbiota in immune education is recognized, but the role of the microbiome in tolerance and rejection is an ongoing subject of research. Allotransplantation and immunosuppression are associated with changes in gut microbiota population frequency and diversity. Allogenic animal models have shown the ability of commensal bacteria in the gut or on the skin to influence allograft survival. In NSG mice reconstituted by neonatal administration of human CD34+ cells, antibiotics modified skin allograft tolerance and the success of the immunotherapy teplizumab. The impact of microbiota on allograft survival and sensitivity to immunoinhibition is a problem for the reproducibility of animal work, wherein animals housed in different facilities vary significantly in their microbiome composition. Indeed, mice from different animal houses have different capacities to tolerate or reject orthotopic lung allografts and the same principle applies to the tolerance of xenografts in immune humanized animals. Methods do exist to partially engraft human microbiota into mature murine intestinal environments, but the mammalian microbiome is species-specific and symbiotic. Not all human intestinal flora is maintained in a mouse intestine after transfer, resulting in bacterial diversity that is not representative of the original donor.

Rats have some characteristics that make them attractive for humanization. Their larger size makes them well suited for orthotopic implantation of human organoids of different tissues differentiated from human iPS or ES cells. New and exciting models are emerging using interspecies chimeras to generate organs from a different species in an animal knockout for a tissue master gene. For these models, the rat is often used. Nevertheless, species chimerism decreases with time during the embryo development and this could be due to in embryo immune responses, including SIRPα-CD47 incompatibilities that could benefit from the use of SIRPα humanized rats. Additionally, a number of rat knockout models that reproduce human genetic diseases better than mice, such as in dystrophin rats or Aire-deficient rats, could be used in an immunodeficient-humanized setting.

In nonmouse immunodeficient models, the rat is the only species that has been immune humanized. Yet very little has yet been performed in terms of tissue transplantation outside of current mouse models. It is likely that immune humanized pigs will be developed in the future. Given the recent advances in genetic modification, the tools now exist to produce immunodeficient animals in a range of species. The demand for immunodeficient recipients will likely increase in the future for the implantation of cells derived from human iPS and ES cells, such as hepatocytes, pancreatic beta cells, and retinal cells. Recent years have seen an explosion in the production of genetically humanized transgenic mice to sustain specific and functional components of human cells and tissues, which may move across species. Regenerative medicine is directly contributing to the pool of human tissues and organs that can be incorporated into other species, having already produced kidney organoids, muscle, cartilage, bone, intestines, bladder walls, and liver. The next step will be to apply these models to the study of cell, tissue, and solid organ transplantation and rejection. For example, antibody-mediated rejection could be modeled in transgenic mice with functional B cell antibody responses combined with a vascular transplant, or tissue-specific immunogenicity could be assessed using kidney organoid implantation together with T cell engraftment. The next generation of immunotherapies, such as cellular therapies and immunosuppressant-loaded nanoparticles, will require human immunity and tissues to thoroughly assess their functionality, immunogenicity, and target specificity. The development of advanced humanized animals with greater likeness to functional multilineage human immune systems will therefore permit the study and replication of more complex responses in allotransplantation, GvHD, and regenerative medicine.

REFERENCES

1. Kenter MJ, Cohen AF. Establishing risk of human experimentation with drugs: lessons from TGN1412. Lancet. 2006;368:1387–1391.
2. Suntharalingam G, Perry MR, Ward S, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med. 2006;355:1018–1028.
3. Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J Immunol. 2004;172:2731–2738.
4. Thomas KR, Capecechi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 1987;51:503–512.

5. Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature. 1983;301:527–530.

6. Shinkai Y, Lam KP, Yamamoto T, et al. Rag-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell. 1992;68:855–867.

7. Mosier DE, Gulizia RJ, Baird SM, et al. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature. 1988;335:256–259.

8. Lapidot T, Pfurtsch M, Doeden M, et al. Cytokine stimulation of multi-lineage hematopoiesis from immature human cells engrafted in SCID mice. Science. 1992;255:1137–1141.

9. Wetsel RA, Fleischer DT, Haviland DL. Deficiency of the murine fifth complement component (C5). A 2-base pair gene deletion in a 5’-exon. J Biol Chem. 1990;265:2435–2440.

10. Serreze DV, Leiter EH. Defective activation of T suppressor cell function in nonobese diabetic mice. Potential relation to cytokine deficient mice. J Exp Med. 1992;175:801–807.

11. Ong GL, Mattes MJ. Mouse strains with typical mammalian levels of complement activity. J Immunol Methods. 1989;125:147–158.

12. Baxter AG, Cooke A. Complement lysis activity has no role in the pathogenesis of autoimmune diabetes in NOD mice. Diabetes. 1993;42:1574–1578.

13. Shultz LD, Schwartz DM, Christianson SW, et al. Multiple defects in human T and natural killer cell function in NOD/SCID mice. J Immunol. 1995;158:189–201.

14. Greiner DL, Shultz LD, Yates J, et al. Improved engraftment of human spleen cells in NOD/scid/scid mice as compared with C.B-17-scid/scid mice. Am J Pathol. 1995;146:888–902.

15. Ito M, Hiramatsu H, Kobayashi K, et al. NOD/SCID gamma©null mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 1999;94:175–182.

16. Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol. 2007;7:118–130.

17. Pearson T, Shultz LD, Miller D, et al. Non-obese diabetic-severe combined immunodeficiency intergenic NOD/scid mouse model of xenogeneic T-cell rejection in patients pretreated with thymoglobulin or alemtuzumab. J Autoimmune; 2013:121:1316–1325.

18. Wetsel RA, Fleischer DT, Haviland DL. Deficiency of the murine fifth complement component (C5). A 2-base pair gene deletion in a 5’-exon. J Biol Chem. 1990;265:2435–2440.

19. Serreze DV, Leiter EH. Defective activation of T suppressor cell function in nonobese diabetic mice. Potential relation to cytokine deficient mice. J Exp Med. 1992;175:801–807.

20. Koide Y, Kimura T, Tsuchiya N, et al. CR1 and CR3 receptors mediate intransplantation immunity and tolerance. Curr Opin Immunol. 2010;22:649–654.

21. Kirk AD, Hale DA, Mannon RB, et al. Results from a human renal allograft tolerance trial evaluating the humanized CD52-specific monoclonal antibody alemtuzumab (CAMPATH-1H). Transplantation. 2003;76:120–129.

22. Wu T, Bond G, Martin D, et al. Histopathologic characteristics of human intestine allograft acute rejection in patients pretreated with thymoglobulin or alemtuzumab. Am J Gastroenterol. 2006;101:1617–1624.

23. He, H. Stone JR, Perkins DL. Analysis of robust innate immune response after transplantation in the absence of adaptive immunity. Transplantation. 2002;73:853–861.

24. Morelli AE, Thomson AW. Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol. 2007;7:610–621.

25. Cui RM, NK cells: effector mechanisms in transplantation immunity and tolerance. Curr Opin Immunol. 2010;22:649–654.

26. de Vries VC, Noelle RJ. Mast cell mediators in tolerance. Curr Opin Immunol. 2010;22:643–648.

27. Mosier DE, Gulizia RJ, Baird SM, et al. Human immunodeficiency virus infection of human-PBL-SCID mice. Science. 1991;251:791–794.

28. Brehm MA, Shultz LD, Greiner DL. Humanized mouse models to study human diseases. Curr Opin Endocrinol Diabetes Obes. 2010;17:120–125.

29. Watanabe Y, Takahashi T, Okajima A, et al. Analysis of the functions of human B and T cells in humanized NOD/scid-gammac(null) (N OG) mice (nu-HSC NOG mice). Int Immunol. 2009;21:843–858.

30. Lang J, Ota T, Kelly M, et al. Receptor editing and genetic variability in human autoreactive B cells. J Exp Med. 2016;213:93–108.

31. Schmidt MR, Appel MC, Glassi LJ, et al. Human blys facilitates engraftment of human PB-L, derived B cells in immunodeficient mice. Proc Natl Acad Sci U S A. 2008;105:63192.

32. Mackay F, Schneider P. Cracking the BAFF code. Nat Rev Immunol. 2009;9:491–502.

33. Treml JF, Hye J, Stadanlick JE, et al. The blys family: toward a molecular understanding of B cell homeostasis. Cell Bioshim Physiol. 2009;53:1–16.

34. Mackay F, Schneider P. TACI, an extraordinary BAFF/APRIL receptor, with new unappreciated biochemical and biological properties. Cytokine Growth Factor Rev. 2008;19:263–276.

35. Lang J, Zhang B, Kelly M, et al. Replacing mouse BAFF with human BAFF does not improve B-cell maturation in humanized humanized mice. Blood Adv. 2017;1:279–2741.

36. Suematsu S, Matsuda T, Aozasa K, et al. Iggl plasma cytokine in humanized mouse. Proc Natl Acad Sci U S A. 1989;86:7547–7551.

37. Yu H, Borsotti C, Schickel JN, et al. A novel humanized mouse model with significant improvement of class-switched, antigen-specific antibody production. Blood. 2017;129:995–996.

38. Bar-Ephraïm YE, Mebius RE. Inflammatory lymphoid cells in secondary lymphoid organs. Immunol Rev. 2016;271:185–199.

39. Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunol. 2014;41:529–542.

40. Ueno H, Banchereau J, Nunez CG. Pathophysiology of T follicular helper cells in humans and mice. Nat Immunol. 2015;16:142–152.

41. Sage PT, Sharpe AH. T follicular regulatory cells. Immune Rev. 2016;271:246–259.

42. Cosgun KN, Rahmig S, Mende N, et al. Kit regulates HSC engraftment across the human-mouse species barrier. Cell Stem Cell. 2014;15:227–238.

43. Holoake TL, Nicolin FE, Eaves CJ. Functional differences between transplantable human hematopoietic stem cells from fetal liver, cord blood, and adult marrow. Exp Hematol. 1996;24:1418–1427.

44. Shultz LD, Lyons BL, Burzenski LM, et al. Human lymphoid and myeloid cell development in NOD/ltscid IL2R gamma null mice engrafted with mobilized human hematopoietic stem cells. J Immunol. 2005;174:8477–8489.
71. Issa F, Hester J, Milward K, et al. Homing of regulatory T cells to human
70. Ono R, Watanabe T, Kawakami E, et al. Co-activation of macrophages
69. Herndler-Brandstetter D, Shan L, Yao Y, et al. Humanized mouse
68. Rongvaux A, Willinger T, Martinek J, et al. Development and func-
67. Billerbeck E, Barry WT, Mu K, et al. Development of human CD4+foxp3+
64. Brown ME, Zhou Y, McIntosh BE, et al. A humanized mouse
62. Wege AK, Melkus MW, Denton PW, et al. Functional and pheno-
60. Melkus MW, Estes JD, Padgett-Thomas A, et al. Humanized mice
57. Traggiai E, Chicha L, Mazzucchelli L, et al. Development of a human
2010;16:809–813.
2012;7:e53331.
2019;41:584–596.
2003;25:167–180.
2018;12:293–307.
2018;18:293–307.
2019;4:123672.
2017;17:931–943.
2018;18:293–307.
2016;1:e85293.
2019;4:129739.
2019;14:4621783.
2015;61:103–114.
2014;32:364–372.
2018;24:260–266.
2017;8:2014.
2017;3:168ra9.
2013;5:168ra9.
2016;10:1175–1183.
2018;117:3076–3086.
2014;32:364–372.
2012;117:3076–3086.
2012;117:3076–3086.
2015;7:3067–3076.
2014;5:168ra9.
2017;2:89381.
2017;2:89381.
2018;18:293–307.
2019;6:707–716.
2016;10:809–813.
2013;5:168ra9.
2017;12:2169–2180.
2018;18:293–307.
2018;10:11681–11692.
2016;1:e85293.
2013;5:168ra9.
2013;6:707–716.
2012;117:3076–3086.
2015;7:3067–3076.
2014;5:168ra9.
2018;18:293–307.
2018;10:11681–11692.
2016;1:e85293.
2013;5:168ra9.
2013;7:3067–3076.
104. Betts BC, Bastian D, Iamsawat S, et al. Targeting JAK2 reduces GVHD and xenograft rejection through regulation of T cell differentiation. Proc Natl Acad Sci U S A. 2018;115:1582–1587.

105. de Leur K, Luk F, van den Bosch TPP, et al. The effects of an IL-21 receptor antagonist on the alloimmune response in a humanized mouse skin transplant model. Transplantation. 2019;103:2065–2074.

106. Cui J, Qin L, Zhang J, et al. Ex vivo pretreatment of human vessels with siRNA nanoparticles provides protein silencing in endothelial cells. Nat Commun. 2018;9:1811.

107. Issa F, Milward K, Goto R, et al. Transiently activated human regulatory T cells upregulate BCL-XL expression and acquire a functional advantage in vivo. Front Immunol. 2019;10:889.

108. Saggio P, All N, Garg G, et al. Human regulatory T cells with alloantigen specificity are more potent inhibitors of allogeneic skin graft damage than polyclonal regulatory T cells. Sci Transl Med. 2011;3:83ra42.

109. MacDonald KG, Hoeppli RE, Huang Q, et al. Alloantigen-specific regulatory T cells generated from endothelial progenitor cells. Stem Cell Reports. 2018;11:514–521.

110. Boroughs AC, Larson RC, Choi BD, et al. Chimeric antigen receptor mediated disruption of rag1 in the LEW/ztm rat. BMC Immunol. 2014;15:191–190.

111. Zechmis NH, Glage S, Wedelkind D, et al. Zinc-finger nuclease mediated disruption of rag1 in the LEW/ztm rat. BMC Immunol. 2012;13:60.

112. Noto FK, Adjan-Steffey V, Tong M, et al. Sprague dawley rag2-null rats created from engineered spermatogonial stem cells are immunodeficient and permissive to human xenografts. Mol Cancer Ther. 2018;17:2481–2489.

113. Liu Q, Zhou P, Fan C, et al. Biodistribution and residence time of adenovector serotype 5 in normal and immunodeficient mice and rats detected with bioluminescent imaging. Sci Rep. 2017;7:3597.

114. Kuik EW, Rasmussen S, Blokzijl F, et al. Generation and characterization models modulate human regulatory T cell function. JCI Insight. 2019;5:126194.

115. Ladhoff J, Fleischer B, Hara Y, et al. Immune privilege of endothelial cells differentiated from endothelial progenitor cells. Cardiovasc Res. 2010;88:121–129.

116. Ménoret S, Ouisse LH, Tesson L, et al. Generation of immunodeficient NSG mouse model supports studies of complement-sufficient NSG mouse model supports studies of complement-mediated antitumor activity in vivo. J Immunol Methods. 2017;446:47–53.

117. Ménoret S, Iscache AL, Tesson L, et al. Characterization of immunoglobulin heavy chain knock out rats. Eur J Immunol. 2010;40:2932–2941.

118. Panzer SE, Wilson NA, Verhoven BM, et al. Complete B cell deficiency reduces autoantibody inflammation and intragraft macrophages in a rat kidney transplant model. Transplantation. 2018;102:396–405.

119. Osborn MJ, Ma B, Avis S, et al. High-affinity igG antibodies develop naturally in Igk-knockout rats carrying germine human Igk/igk-glci. loci. The bearing the rat CH region. J Immunol. 2013;190:1481–1490.

120. Ouisse LH, Gauvreau-Rolland L, Devilder MC, et al. Antigen-specific single B cell sorting and expression-cloning from immunoglobulin humanized rats: a rapid and versatile method for the generation of high affinity and discriminative human monoclonal antibods. BMC Biotechnol. 2017;17:73.

121. Yang X, Zhao J, He J, et al. An immune system-modified rat model for human stem cell transplantation research. Stem Cell Reports. 2018;11:514–521.

122. Kuijk EW, Rasmussen S, Blokzijl F, et al. Generation of knockout rats for humanization and permissive to human xenografts. J Orthop Res. 2017;35:235–245.

123. Pettinato G, Ramathan R, Fisher RA, et al. Scalable differentiation of human islets in a microcarriolar cellulose-based 3D culture into hepatocyte-like cells through direct wt/t-catenin pathway inhibition. Sci Rep. 2016;6:32888.

124. Santeramo I, Herrera Perez Z, Ilarra A, et al. Human kidney-derived cells ameliorate acute kidney injury without engrafting into renal tissue. Stem Cells Transl Med. 2017;6:1373–1384.

125. Igarashi Y, Tateno C, Tanaka Y, et al. Engraftment of human hepatocytes in the livers of rats bearing bone marrow reconstructed with immunodeficient mouse bone marrow cells. Xenotransplantation. 2008;15:235–245.

126. Zhao X, Shen H, Xiao D, et al. Comparison of non-human primate versus human induced pluripotent stem cell-derived cardiomyocytes for treatment of myocardial infarction. Stem Cell Reports. 2018;10;422–435.

127. Xu X, Rentsch C, Soukup T, et al. Efficacy and safety of human mesenchymal stromal cells in treating critical-size bone defects in immunodeficient rats. Physiol Res. 2017;66:113–123.

128. Saito A, Ooki A, Nakamura T, et al. Targeted reversion of induced pluripotent stem cells from patients with human leucodcrine dysplasia improves bone regeneration in a rat calvarial bone defect model. Stem Cell Res Ther. 2018;9:12.

129. Mahmoud E, Kamei N, Shinizu R, et al. Therapeutic potential of multilineage-differentiating stress-enduring cells for osteochondral repair in a rat model. Stem Cells Int. 2017;2017:8154569.

130. Wang T, Ninkimgtenata P, Smith CA, et al. Enhanced chondrogenesis from human embryonic stem cells. Stem Cell Res. 2019;39:101497.

131. Takahashi K, Ogura N, Tomoki R, et al. Applicability of human dental progenitor cells in tendon regeneration via superparamagnetic iron oxide nanoparticles. Transplantation. 2017;6:664–669.

132. Harada Y, Mifune Y, Inui A, et al. Rotator cuff repair using cell sheets differentiated from endothelial progenitor cells. J Orthop Res. 2019;37:2737–2744.

133. Jung CJ, Ménoret S, Brusselle L, et al. Comparative analysis of piggybac, CRISPR/cas9 and TALEN mediated BAC transgenesis in the zygote for the generation of humanized Sinipa rats. Sci Rep. 2016;6:31455.

134. Zhao P, Schwartz DM, Zhou H, et al. Bioengineering of functional human induced pluripotent stem cell-derived intestinal grafts. Nat Commun. 2017;8:765.

135. Colston MJ, Fieldsteel AH, Dawson PJ. Growth and regression of hybridoma cell lines in athymic nude Jcl strain mice. J Immunol Methods. 1978;274:365–366.

136. Santeramo I, Herrera Perez Z, Ilarra A, et al. Human kidney-derived cells ameliorate acute kidney injury without engrafting into renal tissue. Stem Cells Transl Med. 2017;6:1373–1384.

137. Igarashi Y, Tateno C, Tanaka Y, et al. Engraftment of human hepatocytes in the livers of rats bearing bone marrow reconstructed with immunodeficient mouse bone marrow cells. Xenotransplantation. 2008;15:235–245.

138. Pettinato G, Ramathan R, Fisher RA, et al. Scalable differentiation of human islets in a microcarriolar cellulose-based 3D culture into hepatocyte-like cells through direct wt/t-catenin pathway inhibition. Sci Rep. 2016;6:32888.

139. Sougawa N, Miyagawa S, Fukushima S, et al. Laminin-511 supplement enhances stem cell localization with suppression in the decline of cardiac function in acute infarct rats. Transplantation. 2019;103:e119–e127.

140. Saucourt C, Vogt S, Merlin A, et al. Design and validation of an automated process for the expansion of peripheral blood-derived CD34+ cells for clinical use after myocardial infarction. Stem Cells Transl Med. 2019;8:822–832.

141. Mahmoud E, Kamei N, Shinizu R, et al. Therapeutic potential of multilineage-differentiating stress-enduring cells for osteochondral repair in a rat model. Stem Cells Int. 2017;2017:8154569.
152. Bohaciakova D, Hruska-Plochan M, Tsunemoto R, et al. A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors. Stem Cell Res Ther. 2019;10:93.

153. Beretta S, Cunningham KM, Haus DL, et al. Effects of human ES-derived neural progenitor cells on rat brain development and remodeling in a model of traumatic brain injury. Cell Transplant. 2017;26:1247–1261.

154. Lien TV, Buzis TZs, Mu P, Astrocytes migrate from human neural stem cell grafts and functionally integrate into the injured rat spinal cord. Exp Neurol. 2019;314:46–57.

155. Noni S, Khazaem M, Ahuja CS, et al. Human oligodendroglial neural progenitor cells delivered with chondroitinase ABC facilitate functional repair of chronic spinal cord injury. Stem Cell Reports. 2018;11:1433–1448.

156. Nagoshi N, Khazaem M, Ahlfors JE, et al. Human spinal oligodendroglial neural progenitor cells promote functional recovery after spinal cord injury by axonal remyelination and tissue sparing. Stem Cells Transl Med. 2018;7:806–818.

157. Munter JP, Beugels J, Munter S, et al. Standardized human bone marrow-derived MSCs infusion improves survival and recovery in a rat model of spinal cord injury. J Neurol Sci. 2019;402:16–29.

158. Haus DL, López-Velázquez L, Gold EM, et al. Transplantation of human neural stem cells restores cognition in an immunodeficient rodent model of traumatic brain injury. Exp Neurol. 2016;281:1–16.

159. Yokobori S, Sasaki K, Kanaya T, et al. Feasibility of human neural stem cell transplantation for the treatment of acute subdural hema- toma in a rat model. Neuropathol Appl Neurobiol. 2019;45:243–258.

160. Li Y, Green M, Wen Y, et al. Efficacy and safety of immune-magnetically sorted smooth muscle progenitor cells derived from human-induced pluripotent stem cells for restoring urethral sphincter function. Stem Cells Transl Med. 2017;6:1158–1167.

161. Nakajima N, Tamaki T, Hirata M, et al. Purified human skeletal muscle-derived stem cells enhance the repair and regeneration in the damaged and regenerating rat cranial nerve. Stem Cells Transl Med. 2019;8:3321–3329.

162. McNeilland BT, Lin B, Mathur A, et al. Transplanted hesc-derived retina organoid sheets differentiate, integrate, and improve visual function in retinal degenerate rats. Invest Ophthalmol Vis Sci. 2018;59:2586–2603.

163. Tu HY, Watanabe T, Shirai H, et al. Medium- to long-term survival and functional examination of human iPSC-derived retinas in rat and primate models of retinal degeneration. EB Medicine. 2019;59:562–567.

164. Seiler MJ, Aramant RB, Jones MK, et al. A new immunodeficient pig model of severe combined immunodeficiency pigs and mice engraft allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency. PLoS One. 2014;9:e113833.

165. Suzuki S, Iwamoto M, Saito Y, et al. Il2rg gene-targeted severe combined immunodeficient pigs and mice engraft allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency. PLoS One. 2014;11:e0173754.

166. Lee K, Kwon DN, Ezashi T, et al. Engraftment of human iPSCs and ES cells from ES precursors. Stem Cell Reports. 2017;12:e0173754.

167. Choi YJ, Kim E, Reza AMMT, et al. Recombination activating gene-1-deficient neonatal piglets: a model of T and B cell deficient severe combined immunodeficiency in pigs. Cell Transplant. 2017;26:1247–1261.

168. Suzuki M, Takahashi T, Katano I, et al. Induction of human humoral immune responses in a novel HLA-DR-expressing transgenic NOD/Shi-scid/cyrrull mouse. Int Immunol. 2012;24:243–252.

169. Rahman S, Kronstein-Wiedemann R, Fohrjub G, et al. Improved human erythropoietin secretion and platelet formation in humanized NSGWS1 mice. Stem Cell Reports. 2016;7:591–601.

170. McIntosh BE, Brown ME, Duffin BM, et al. Nonirradiated NOD.B6 SCID il2ry−/− kit(W41/W41) (NBSGW) mice support multilineage engraftment of human hematopoietic cells. Stem Cell Reports. 2015;4:171–180.

171. Katano I, Nishime C, Ito R, et al. Long-term maintenance of peripheral blood donor-derived human NK cells in a novel human IL-15- transgenic NOD mouse. Sci Rep. 2017;7:17230.

172. Ito R, Takahashi T, Katano I, et al. Establishment of a human allergy model using human IL-3–GM-CSF–transgenic NOD mice. J Immunol. 2013;191:2890–2899.

173. Katano I, Takahashi T, Ito R, et al. Predominant development of mature and functional human NK cells in a novel human IL-2-producing transgenic NOD mouse. J Immunol. 2015;194:3515–3525.

174. Danner R, Chaudhuri SN, Rosenberger J, et al. Expression of HLA class II molecules in humanized NOD.rag1Iko,IL2RGKCO mice is critical for development and function of human T and B cells. PLoS One. 2011;6:e19826.

175. Harris DT, Badowski M, Balamurugan A, et al. Long-term human immune system reconstitution in non-obese diabetic (NOD)-rag−/− syngeneic rat strain by fetal liver stem cells transplanted intravenously. Cell Stress Chaperones. 2017;22:9–17.

176. Miller PH, Rabu G, MacAlida M, et al. Analysis of parameters that affect human hematopoietic cell outputs in mutant c-kit-immunode- ficient mice. Exp Hematol. 2017;48:41–49.

177. Rich BS, Honeyman JN, Darcy DG, et al. Endogenous antibodies for tumor detection. Sci Rep. 2014;4:5088.

178. Kusminskiy T, Roux D, Takizawa H, et al. Human IL-3–GM-CSF–knock-in mice support alveolar macrophage development and human immune responses in the lung. Proc Natl Acad Sci U S A. 2011;108:2390–2395.

179. Li Y, Mention JJ, Court N, et al. A novel flt3-deficient HIS mouse model with selective enhancement of human DC development. Eur J Immunol. 2016;46:1291–1299.

180. Zeng Y, Liu B, Rubio MT, et al. Creation of an immunodeficient HLA-transgenic mouse (HUMAMICE) and functional validation of human inflammation after transfer of HLA-matched human cells. PLoS One. 2017;12:e0173754.

181. Panteleouris EM. Absence of thymus in a mouse mutant. Nature. 1968;217:370–371.

182. Samata B, Kikuchi T, Miyawaki Y, et al. X-linked severe combined immunodeficiency (X-SCID) rats for xeno-transplantation and behav- ioral evaluation: A new useful tool. Invest Ophthalmol Vis Sci. 2010;51:4698–4699.

183. Thomas BB, Zhu D, Lin TC, et al. A new immunodeficient retinal dystrophic rat model for transplantation studies using human-derived cells. Graefes Arch Clin Exp Ophthalmol. 2018;256:2113–2125.

184. Bruin JE, Asadi A, Fox JK, et al. Accelerated maturation of human stem cell-derived pancreatic progenitor cells into insulin-secreting cells in immunodeficient rats relative to mice. Stem Cell Reports. 2015;5:561–571.

185. Okuyama Y, Ohnishi H, Nakamura R, et al. Transplantation of multiciliated airway cells derived from human iPS cells using an artificial tracheal patch into rat trachea. J Tissue Eng Regen Med. 2019;13:1019–1030.

186. Kaku M, Kitami M, Rosales Rocabado JM, et al. Recruitment of bone marrow-derived cells to the periodontal ligament via the stro- mal cell-derived factor (SDF-1)/CXC chemokine receptor type 4 axis. Periodontol Res. 2017;52:690–694.

187. Chang NG, Gu J, Gu S, et al. Arterial flow regulator enables transplantation and growth of human fetal kidneys in rats. Am J Transplant. 2015;15:1692–1700.

188. Beldick SR, Hong J, Altamentova S, et al. Severely combined immunodeficient rats can be used to model a novel perinatal hypomorphic-inactivating (~) mutant and facilitate studies of engrafted human neural stem cells. PLoS One. 2013;8:e6028105.

189. Geurts AM, Cost GJ, Rémy S, et al. Generation of gene-specific mutated rats using zinc-finger nucleases. Methods Mol Biol. 2010;597:211–225.

190. Shultz LD, Saito Y, Najima Y, et al. Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2γ−/− gamma/null humanized mice. Proc Natl Acad Sci U S A. 2010;107:13022–13027.
198. Suzuki S, Iwamoto M, Hashimoto M, et al. Generation and characterization of RAG2 knockout pigs as animal model for severe combined immune deficiency. *Vet Immunol Immunopathol*. 2016;178:37–49.

199. Lei S, Ryu J, Wen K, et al. Increased and prolonged human norovirus infection in RAG2/IL2Rg-deficient gnotobiotic pigs with severe combined immune deficiency. *Sci Rep*. 2016;6:25222.

200. Waide EH, Dekkers JC, Ross JW, et al. Not all SCID pigs are created equally: two independent mutations in the Artemis gene cause SCID in pigs. *J Immunol*. 2015;195:3171–3179.

201. Singer AJ, Tuggle C, Ahrens A, et al. Survival of human cadaver skin on severe combined immune deficiency pigs: proof of concept. *Wound Repair Regen*. 2019;27:426–430.

202. Tokunaga Y, Shirouzu M, Sugahara R, et al. Comprehensive validation of T- and B-cell deficiency in rag1-null zebrafish: implication for the robust innate defense mechanisms of teleosts. *Sci Rep*. 2017;7:7536.

203. Tang Q, Abdelfattah NS, Blackburn JS, et al. Optimized cell transplantation using adult rag2 mutant zebrafish. *Nat Methods*. 2019;18:1821–1826.

204. Tong Q, Iyer S, Loboardi R, et al. Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA sequencing. *J Exp Med*. 2017;214:2875–2887.

205. Yan C, Brunson DC, Tang Q, et al. Visualizing engrailed human cancer and therapy responses in immunodeficient zebrafish. *Cell*. 2019;177:1903–1914.e14.

206. Song JH, Zhang J, Guo X, et al. Generation of RAG 1- and 2-deficient rabbits by embryonic microinjection ofTALENs. *Cell Res*. 2013;23:1059–1062.

207. Yang D, Xu J, Zhu T, et al. Efficient gene targeting in rabbits using RNA-guided cas9 nucleases. *J Mol Cell Biol*. 2014;6:97–99.

208. Song J, Yang D, Ruan J, et al. Production of immunodeficient rabbits by multiplex embryonic transfer and multiplex gene targeting. *Sci Rep*. 2017;7:12202.

209. Flisikowska T, Thorey IS, Offner S, et al. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. *PLoS One*. 2011;6:e21045.

210. Miao J, Ying B, Li R, et al. Characterization of an N-terminal noncore domain of RAG1 gene disrupted Syrian hamster model generated by CRISPR Cas9. *Viruses*. 2018;10:E243.

211. Tesson L, Ussel C, Ménoret S, et al. Knockout rats generated by CRISPR/Cas9 targeting of TALENs. *Nat Biotechnol*. 2011;29:695–696.

212. Ménoret S, De Cian A, Tesson L, et al. Homology-directed repair in rodent zygotes using cre-loxP-mediated lineage tracing. *FEBS J*. 2015;282:3262–3277.

213. Meek S, Mashimo T, Burdon T. From engineering to editing the rat genome. *Mamm Genome*. 2017;28:302–314.

214. Boettcher AN, Cunnick JE, Powell EJ, et al. Porcine signal regulatory protein alpha binds to human CD47 to inhibit phagocytosis: implications for human hematopoietic stem cell transplantation into severe combined immunodeficient pigs. *Xenotransplantation*. 2019;26:12466.

215. Hamilton N, Sabroe I, Renshaw SA. A method for transplantation of human hscs into zebrafish, to replace humanised murine transplantation models. *F1000Res*. 2018;7:394.

216. Hirasaki-Horimoto K, Nakajima N, Ichio Y, et al. Syrian hamster as an animal model for the study of human influenza virus infection. *J Virol*. 2018;92:e01693–e01700.

217. Alisjahbana A, Mohammad I, Gao Y, et al. Human macrophages and innate lymphoid cells: tissue-resident innate immunity in humanized mice. *Biochem Pharmacol*. 2019;113672. [Epub ahead of print]

218. Jespersen H, Lindberg MF, Doria M, et al. Clinical responses to adenovirus-directed T-cell therapy in a multipotent humanized immune-rodent zygote model. *Nat Commun*. 2017;8:707.

219. Siemeni T, Knöfel AK, Ius F, et al. Transplant arteriosclerosis in humanized mice reflects chronic lung allograft dysfunction and is controlled by regulatory T cells. *J Thorac Cardiovasc Surg*. 2019;157:2528–2537.

220. Sepulveda M, Prozollo I, Alegre ML. Impact of the microbiota on solid organ transplant rejection. *Curr Opin Organ Transplant*. 2019;24:679–686.

221. Xiao J, Peng Z, Liao Y, et al. Organ transplantation and gut microbiota: current reviews and future challenges. *Am J Transl Res*. 2018;10:3330–3344.

222. Lei YM, Chen L, Wang Y, et al. The composition of the microbiota modulates allograft rejection. *J Clin Invest*. 2016;126:2736–2744.

223. Lei YM, Sepulveda M, Chen L, et al. Skin-restricted commensal colonisation accelerates allograft rejection in an autologous immune-humanized mouse model. *Nat Commun*. 2017;8:707.

224. Wen J, Yang D, Li D, et al. Vendor-specific microbiome controls both acute and chronic murine lung allograft rejection by altering CD4+ and CD8+ populations. *Microbiome*. 2018;6:96.

225. Siemeni T, Knöfel AK, Ius F, et al. Transplant arteriosclerosis in humanized mice reflects chronic lung allograft dysfunction and is controlled by regulatory T cells. *J Thorac Cardiovasc Surg*. 2019;157:2528–2537.

226. McIntosh CM, Chen L, Shaiber A, et al. Gut microbes contribute to variation in solid organ transplant outcomes in mice. *Microbiome*. 2018;6:96.

227. Staley C, Kaiser T, Beura LK, et al. Stable engraftment of human microbiota into mice with a single oral gavage following antibiotic conditioning. *Microbiome*. 2017;5:87.

228. Prolzillo I, Alegre ML. Impact of the microbiota on solid organ transplant rejection. *Curr Opin Organ Transplant*. 2019;24:679–686.

229. Arrieta MC, Walter J, Finlay BB. Human microbiota-associated mice: a model with challenges. *Cell Host Microbe*. 2016;19:575–578.

230. Hirabayashi M, Goto T, Hachi S. Pluripotent stem cell-derived organogenesis in the rat model system. *Transgenic Res*. 2019;28:287–297.

231. Masaki H, Nakauchi H. Interspecies chimeras for human stem cell research. *Development*. 2017;144:2544–2547.

232. Larcher T, Laffoux A, Tesson L, et al. Characterization of dystrophin deficient rats: a new model for duchenne muscular dystrophy. *PLoS One*. 2014;9:e110371.

233. Ossart J, Moreau A, Autrusseau E, et al. Breakdown of immune tolerance in AIRE-deficient mice by CRISPR-Cas9 editing. *Nature*. 2016;532:252–256.

234. Wrzosek L, Ciocan D, Borentain P, et al. Transplantation of human cord blood cells in pigs after in utero transplantation. *Transplantation*. 2003;75:916–922.

235. Arrieta MC, Walter J, Finlay BB. Human microbiota-associated mice: a model with challenges. *Cell Host Microbe*. 2016;19:575–578.

236. Larcher T, Laffoux A, Tesson L, et al. Characterization of dystrophin deficient rats: a new model for duchenne muscular dystrophy. *PLoS One*. 2014;9:e110371.
AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

AQ1—For indexing purposes, please confirm that author names have been correctly identified as given names (blue) and surnames (red). Color in the byline will not appear on the final published version.

AQ2—Please note that duplicate references have been deleted and the references have been renumbered both in text and list for sequential ordering.

AQ3—Please confirm if the edits made to the sentence "Immunocompromised rabbits have..." are fine.

AQ4—Please provide department or division details for affiliation 2.