Damping Analysis of Some Inorganic Particles on Poly(butyl-methacrylate)

Saisai Zhou ¹, Chunhua Yang ¹, Jia Hu ¹, Xianru He ¹,* and Rui Zhang ²,*

¹ School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China; 201621000041@stu.swpu.edu.cn (S.Z.); 201721000028@stu.swpu.edu.cn (C.Y.); 201531053301@stu.swpu.edu.cn (J.H.)
² Institute für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18051 Rostock, Germany
* Correspondence: xrhe@swpu.edu.cn (X.H.); rui.zhang@uni-rosotck.de (R.Z.)

Received: 10 May 2018; Accepted: 9 June 2018; Published: 12 June 2018

Abstract: Viscoelastic polymers can be used as damping materials to control unexpected vibration and noise through energy dissipation. To investigate the effect of an inorganic filler on damping property, a series of inorganic particles, Ferriferous oxide(Fe₃O₄), Graphene/Fe₃O₄(GF), and Fe₃O₄ of demagnetization(α-Fe₂O₃) were incorporated into poly(butyl-methacrylate) (PBMA). The effects of the dispersion of particles, as well as the interaction between particles and the PBMA matrix on the damping property of composites, were systematically studied. Results revealed that the addition of three types of particles can effectively improve the damping properties and broaden the effective damping temperature range. Dispersion of α-Fe₂O₃ in the PBMA matrix is better than that of Fe₃O₄. As a result, the damping peak can be increased more. The interaction between GF and the PBMA matrix is stronger than that between Fe₃O₄ and the PBMA. The damping peak of the composites can be suppressed by GF, which is opposite to Fe₃O₄ and α-Fe₂O₃. In addition, glass transition temperature (T_g) of all composites in the study shifted to low temperatures.

Keywords: poly(butyl-methacrylate); inorganic particles; damping property; glass transition temperature

1. Introduction

With the development of modern technology, all kinds of mechanical equipment are developing high speed, high efficiency, and automation, but vibration and noise, which are produced during work, seriously damage the reliability and stability of the machine itself [1,2]. Passive or active damping are extremely effective ways for, mostly, vibration control [3,4]. Passive vibration control involves the modification of the stiffness and damping of a vibrating system. A straightforward and effective solution for vibration and noise control is the application of a viscoelastic material, such as polymers [5]. Because of its high damping characteristics around the glass temperature, viscoelastic polymer is usually used as a damping material to control noise and vibration, which has attracted considerable attention [6]. The loss tangent (tan δ), which is the ratio of E″ to E′ (tan δ = E″/E′), is used as an assessment of the ability to dissipate energy by elastomers. E′ and E″ represent the storage modulus and loss modulus, respectively [7]. High-performance viscoelastic damping materials should meet the requirement of tan δ > 0.3 over a broad damping temperature range of at least 60–80 °C [8].

Matrix polymers must be considered according to the application and environment in which the material is to be applied [9]. Polyacrylate materials are well known for their excellent damping properties for plenty of polar ester groups [10,11] and PBMA has an excellent adhesion property, with its macromolecular chain having many branched chains, which can effectively increase internal friction and improve damping properties. A great efforts have been devoted to broaden the effective damping temperature range of acrylic polymers, including co-polymers, interpenetrating polymer
networks (IPN), and blends [12–14]. One of the most important ways is blends consisting of adding filler with modifications.

Fe$_3$O$_4$ (ferriferrous oxide), in our previous study, was found to have a strong interaction with ethylene vinyl acetate (EVA), which has polar vinyl acetate (VA) segments [15,16]. Fe$_3$O$_4$, theoretically, should also have strong interactions with PBMA because of its polar carbanyl groups. So, after hybridization with Fe$_3$O$_4$, the particles will have interactions with PBMA, which can make a great contribution to mechanical loss [17]. However, it is easy for Fe$_3$O$_4$ particles to aggregate due to magnetism between particles [18,19]. Thus, the dispersion state of particles in the matrix and the interactions between particles and the matrix are very important for damping properties of composites. To improve the dispersion of Fe$_3$O$_4$ in the PBMA matrix, Fe$_3$O$_4$ particles of demagnetization were prepared in high temperatures [20,21]. Moreover, to study the effect of fillers–matrixes interactions on the damping properties of PBMA, Fe$_3$O$_4$ and graphene/Fe$_3$O$_4$ hybrid particles were incorporated into PBMA. These two particles have a distinguishable interaction with PBMA, since they have different interfaces. Graphene, with a two-dimensional layer, prevents Fe$_3$O$_4$, with three-dimensional sphere shape, from aggregating. Meanwhile, due to the magnetism of graphene [22], it is easier for Fe$_3$O$_4$ to load graphene as the core.

In this article, to study the effects of the dispersion of particles, as well as the interactions between particles and the PBMA matrix on damping property of composites, Fe$_3$O$_4$, Graphene/Fe$_3$O$_4$ (GF), and α-Fe$_2$O$_3$ are incorporated into PBMA. The elemental analysis, morphology, and specific surface area of graphene hybrid particles are analyzed by energy dispersive spectrometer (EDS), scanning electron microscopy (SEM), and specific surface area and pore size tester, respectively. The structures, particle size, and magnetization of Fe$_3$O$_4$ of demagnetization(α-Fe$_2$O$_3$) are characterized by X-ray diffraction (XRD), laser particle size analyzer, and vibrating sample magnetometer analysis (VSM). The dynamic mechanical analysis (DMA) and scanning electron microscopy (SEM) are used to characterize the damping materials. It is expected to find far-ranging applications as damping materials in vibration control.

2. Materials and Methods

PBMA ($M_w = 504631$, PDI = 8.186) was synthesized by free radical emulsion polymerization in our laboratory. Fe$_3$O$_4$ particles were synthesized by the procedure reported previously in Ref. [15]. Pristine graphene (number of layers, 1–10) was provided by Deyang Carbonene Co., Ltd (Deyang, China). Fe$_3$O$_4$ of demagnetization(α-Fe$_2$O$_3$) were obtained by heating Fe$_3$O$_4$ particles up to 500 °C (under air atmosphere). Sodium dodecyl benzene sulfonate, sodium persulfate, ferric trichloride, Ferrous sulfate, sodium hydroxide, and polyvinyl alcohol were all purchased from Chengdu Kelong Chemical Reagent Factory (Chengdu, China). The reagents were analytical grade.

2.1. Synthesis of Graphene/Fe$_3$O$_4$ Hybrid Particles

First, 0.2 g of pristine graphene was added into a NaOH (sodium hydroxide) aqueous solution (0.1 mol/L) and heated to 80 °C with vigorous stirring. Then FeCl$_3 \cdot 6H_2O$ and FeSO$_4 \cdot 7H_2O$ were dissolved in a PVA aqueous solution to prepare the mixed solution of iron ions with 2:1 molar ratio of Fe$^{3+}$ to Fe$^{2+}$, then 200 mL mixed solution of iron ions was dropped slowly into the NaOH aqueous solution with graphene through a constant pressure drop funnel at 80 °C in a water bath. The reaction continued for 40 min and the black precipitates were washed with alcohol and deionized water for at least five times, followed by freeze drying at 50 °C for 96 h.

2.2. Preparation of Samples of Poly(butyl-methacrylate)-Based Hybrid Material

Blends of PBMA with different particle contents were prepared via solution mixing at room temperature for 15 min. The basic formulation of the composites is listed in Table 1; the blends were compression molded to form sheets (20 mm long, 12 mm wide, and 3 mm thick) under a pressure of 10 MPa for 20 min at 160 °C.
Table 1. Formulations of poly (butyl-methacrylate) inorganic particles composites.

Material	Weight (g)
PBMA	19.9/19.8/19.6/19.0
Fe₃O₄	0.1/0.2/0.4/1.0
α-Fe₂O₃	0.1/0.2/0.4/1.0
GF	0.1/0.2/0.4/1.0

2.3. Characterization

X-ray diffraction (XRD, X Pert PRO MPD, Almelo, the Netherlands) was used to test the crystal structure of Fe₃O₄. The scanning range was from 5° to 70° and the scanning speed was 3.6°/min.

Particle sizes were characterized by Laser Particle Size Analyzer (Master sizer 2000, Malvern Instruments Ltd., Malvern, UK), ethanol was used as a dispersant, and the shade was 3.5%.

The specific surface areas were tested by a specific surface area and pore size tester (ST-MP-9, Quantachrome Instruments, Beijing, China). The test results were analyzed by the multipoint Brunauer-Emmet-Teller (BET) method. Before the test, samples were kept at 423 K in a vacuum environment for about 2 h.

VSM (BKT-4500Z, Quantum Design Ltd., San Diego, CA, USA) was carried out to measure the saturated magnetic strengths of particles, in open circuit mode at normal temperature.

The morphology of the poly(butyl-methacrylate)-based composite material was studied by scanning electron microscopy (SEM; ZEISS EV0 MA15, Carl Zeiss microscopy Co., Ltd., Jena, Germany). To prepare samples for SEM analysis, the composites were quenched in liquid nitrogen and cryogenically fractured.

Elemental analysis was carried out at Energy Dispersive Spectrometer (EDS; Elementar, Langenselbold, Germany) for determination of the Fe, O and C content.

Dynamic mechanical analysis (DMA) was carried out on Q800 (TA Instruments, New Castle, DE, USA) by using a dual cantilever clamp and a testing method of temperature ramp-frequency sweep with a frequency of 1 Hz. The samples were trimmed to dimensions of 20 mm long, 12 mm wide and 3 mm thick. The oscillation strain amplitude was set to be 15 mm.

3. Results and Discussion

3.1. Morphologies and EDS of Graphene/Fe₃O₄ Hybrid Particles

The morphology of the GF composite particle is shown in Figure 1a. As we can see, GF presents a near-spherical shape. Fe₃O₄ particles, as the core and most of the particle surface, are surrounded by graphene sheets. To further testify the structure of GF, the GF particle was analyzed by energy dispersive spectrometer. Figure 1b–d are the mapping images of iron, oxygen, and carbon elements, respectively. The above discussion indicates that Graphene and Fe₃O₄ particle was compounded when available.
Figure 1. (a) SEM images of Graphene /Fe\textsubscript{3}O\textsubscript{4}; (b–d) iron, oxygen, and carbon mapping images of Graphene/Fe\textsubscript{3}O\textsubscript{4}.

3.2. Demagnetization of Fe\textsubscript{3}O\textsubscript{4}

As reported in the literature, a high temperature is commonly used for demagnetization [21]. Demagnetization of Fe\textsubscript{3}O\textsubscript{4} (α-Fe\textsubscript{2}O\textsubscript{3}) was obtained by heating Fe\textsubscript{3}O\textsubscript{4} particles up to 500 °C (under air atmosphere) to improve the dispersion of Fe\textsubscript{3}O\textsubscript{4} in the PBMA matrix. The magnetic properties of Fe\textsubscript{3}O\textsubscript{4} and α-Fe\textsubscript{2}O\textsubscript{3} were studied by a vibrating sample magnetometer at room temperature. As shown in Figure 2, Fe\textsubscript{3}O\textsubscript{4} presents the highest magnetization and α-Fe\textsubscript{2}O\textsubscript{3} shows the lowest magnetization after heating at 500 °C.

Figure 2. Magnetic hysteresis loops of Fe\textsubscript{3}O\textsubscript{4} and α-Fe\textsubscript{2}O\textsubscript{3}.

As shown in Figure 3, the accordance between the peak positions of XRD patterns and ICDS cards of Fe\textsubscript{3}O\textsubscript{4} and α-Fe\textsubscript{2}O\textsubscript{3} particles were proved. And the XRD patterns are in coherence with ICDS cards of, pdf # 74-0748 (Fe\textsubscript{3}O\textsubscript{4}) and pdf # 79-0007 (α-Fe\textsubscript{2}O\textsubscript{3}). The results reveal that crystal form of Fe\textsubscript{3}O\textsubscript{4} with heating is changed, while its own chemical composition is in accord with that of α-Fe\textsubscript{2}O\textsubscript{3}.

Moreover, the values of particle size are listed in Table 2. The particle size of α-Fe\textsubscript{2}O\textsubscript{3} quite close to that of Fe\textsubscript{3}O\textsubscript{4}, which further indicates that the interaction between the two particles and matrix is similar.
Figure 3. XRD patterns of Fe$_3$O$_4$ and α-Fe$_2$O$_3$. Particles were indexed according to the standard of ICDS Cards, 74-0748 and 79-0007 for Fe$_3$O$_4$ and α-Fe$_2$O$_3$, respectively.

Table 2. Value of particle size.

Sample	d (0.5)
Fe$_3$O$_4$	2.202 µm
α-Fe$_2$O$_3$	2.110 µm

3.3. Morphology

The dispersion of the fillers was researched by SEM measurements on the brittle and snapped sample surface. As shown in Figure 4, in PBMA/Fe$_3$O$_4$ composites, the dispersion of Fe$_3$O$_4$ and their interfacial interactions with the PBMA matrix are critical for the damping properties of the composites. The dispersion of Fe$_3$O$_4$ in the PBMA matrix was homogeneous when 0.5% Fe$_3$O$_4$ was added. When the content of Fe$_3$O$_4$ was beyond 1%, the damping properties decreased slightly because of the aggregation of Fe$_3$O$_4$ (Figure 4c,d). α-Fe$_2$O$_3$ particles, after high temperature demagnetization, have good dispersibility in the PBMA matrix, as shown in Figure 4e. When the GF was added into the PBMA matrix, the dispersion of them was relatively homogeneous.

Figure 4. Cont.
3.4. Damping Property of PBMA/Fe$_3$O$_4$ and PBMA/α-Fe$_2$O$_3$

Dynamic mechanical analysis (DMA) is widely used to determine material damping properties as functions of temperature, frequency, and stress [23] and to investigate the effect of an increasing content of inorganic particles on the damping properties of PBMA/Fe$_3$O$_4$ and PBMA/α-Fe$_2$O$_3$. Results of the DMA tests are presented in the form of loss factor, tan δ, as functions of temperature. Curves of the variations of tan δ with the temperature of Fe$_3$O$_4$ and α-Fe$_2$O$_3$ composites are shown in Figures 5 and 6, respectively. The loss tangent (tan δ) is commonly called damping and is the evaluation measure of energy dissipation. The values of the maximum heights versus the loads of particles are shown by Figure 6. As is seen, Fe$_3$O$_4$ and α-Fe$_2$O$_3$ show similar influences on the maximum heights of tan δ.

![Figure 4](image-url)
Figure 4. SEM images of (a) PBMA/0.5% Fe$_3$O$_4$ composites; (b) PBMA/1% Fe$_3$O$_4$ composites; (c) PBMA/2% Fe$_3$O$_4$ composites; (d) PBMA/5% Fe$_3$O$_4$ composites; (e) PBMA/1% α-Fe$_2$O$_3$ composites; (f) PBMA/1% GF composites.

![Figure 5](image-url)
Figure 5. Temperature dependence spectra of tan δ of PBMA with different particles and different mass fraction at 1 Hz. (a) Fe$_3$O$_4$; (b) α-Fe$_2$O$_3$.
Figure 6. Effect of the content of inorganic particles on the peak height of PBMA blends.

For Fe₃O₄, the maximum heights increased at first and then decreased; the largest points of maximum heights were located when the mass fraction of Fe₃O₄ was 1%. When Fe₃O₄ were added to the composites, internal friction between Fe₃O₄ and polymer chains, as well as friction between Fe₃O₄ particles, increased the rate of the dissipating energy. The damping properties were improved. The damping properties decreased slightly when the content of Fe₃O₄ was beyond 1% due to the aggregation of Fe₃O₄ decreasing the internal friction of the composites. Table 3 shows that all PBMA/Fe₃O₄ blends have efficient damping (tan δ > 0.3) over a wide temperature range of more than 64 °C. Moreover, the peak area under the tan δ temperature curves is abbreviated as TA, which is a measure of the energy dissipation of a transition process [24]. The TA values of PBMA/Fe₃O₄ composites are also summarized in Table 3. Compared with blank PBMA, PBMA/Fe₃O₄ composites exhibit relatively high TA values.

Table 3. The damping properties of PBMA/Fe₃O₄ and PBMA/α-Fe₂O₃ blends.

Sample Code	Tan δ Max	Temperature Range of Tan δ > 0.3	TA (Tan δ > 1.0)		
PBMA/Fe₃O₄					
0%	1.46	T₁/°C 30.80	T₂/°C 98.00	T₃/°C 67.20	7.39
0.5%	1.56	59.66	100.83	73.96	10.59
1%	1.58	57.72	97.97	69.67	10.58
2%	1.55	59.06	97.02	68.59	9.21
5%	1.52	58.63	94.86	64.02	8.08
PBMA/α-Fe₂O₃	.				
0%	1.46	61.19	98.00	67.20	7.39
0.5%	1.55	55.3	98.34	75.55	10.59
1%	1.63	56.81	103.00	77.81	13.43
2%	1.62	59.05	102.51	74.68	12.71
5%	1.58	55.58	99.80	74.64	11.74

The glass transition temperature (Tₓ) of the composites, taken at the maximum value of the tan δ, is determined by the DMA [25,26]. As observed from Figure 5a, increasing the mass fraction of Fe₃O₄ shifted the curve peak to low temperatures, with the incorporation of 1% Fe₃O₄ into the PBMA matrix leading to the greatest decrease in Tₓ, referring to neat PBMA. This phenomenon can be interpreted as follows: With the inclusion of Fe₃O₄ into PBMA, the Fe₃O₄ particles interact with and shield carbanyl groups and, as a result, a lowered Tₓ was observed.

For α-Fe₂O₃, to improve the dispersion of Fe₃O₄ in the PBMA matrix in the present study, demagnetization of Fe₃O₄ (α-Fe₂O₃) was incorporated into the PBMA. The maximum tan δ of
PBMA/\(\alpha\)-Fe\(_2\)O\(_3\) increased and the temperature range with \(\tan \delta > 0.3\) became wider, as shown in Figure 5b and Table 3. The damping properties of the composites improved. Moreover, when the weight content of \(\alpha\)-Fe\(_2\)O\(_3\) was 1%, the \(\tan \delta\) reached 1.63, and the corresponding temperature range, with \(\tan \delta > 0.3\), was about 103 °C. The results show the demagnetization of Fe\(_3\)O\(_4\) (\(\alpha\)-Fe\(_2\)O\(_3\)) could increase the internal friction due to homogeneous dispersion of \(\alpha\)-Fe\(_2\)O\(_3\) in the PBMA matrix (Figure 4e). Moreover, \(T_g\) of the \(\alpha\)-Fe\(_2\)O\(_3\) composites shifts to low temperature as seen from Figure 5b and it is more obvious to shift to low temperature comparing to Fe\(_3\)O\(_4\) composites.

3.5. Damping Property of PBMA/GF

As shown in Figure 7, the loss tangent, \(\tan \delta\), of PBMA/GF composites increased compared with neat PBMA. However, Figure 7 and Table 4 demonstrated that the damping factor of PBMA/GF composites is lower than that of PBMA/Fe\(_3\)O\(_4\) composites, although, Fe\(_3\)O\(_4\) particles with a modified surface can better disperse in the PBMA matrix. These results are because the interfacial interaction in PBMA/GF hybrids is stronger than that in the PBMA/Fe\(_3\)O\(_4\) hybrids, as shown in Table 3. The adhering of Fe\(_3\)O\(_4\) to graphene, as shown in Figure 1, changes the interaction surfaces between particles and molecular chains that interact between Fe\(_3\)O\(_4\) and PBMA and become the interaction between graphene and PBMA. GF particles have a larger specific surface area, as shown in Figure 8, which enhances interaction between GF and PBMA, thus, resulting in lower internal friction.

It is interesting that the glass transition temperature of PBMA/GF composites also shifts to low temperatures. The results are attributed to Fe\(_3\)O\(_4\) adhering to graphene, which changes the interaction surfaces between particles and molecular chains as mentioned above. Moreover, graphene is a typical two-dimensional layered material. The layered structure is held together by van der Walls interactions, shown in Figure 1. An intercalation state or, even, exfoliation state of fillers is possibly formed due to the weak van der Walls interactions between adjacent layers. Furthermore, the layer of two-dimensional layered fillers could slip to some extent [27]. For example, Jiang et al. [28] prepared chlorinated butyl rubber/graphene oxide composites (CIIR/GO) and proposed a slippage of the lamellae to interpret the results that the \(T_g\) of CIIR/GO composites shifts towards low temperatures. The mechanism is also used to interpret our case in that the slippage of the lamellae could increase the mobility of PBMA chains so that the glass transition temperatures of PBMA/GF hybrids shift towards low temperatures.

![Figure 7. The temperature dependence of loss tangent (tan \(\delta\)) at 1 Hz for PBMA and PBMA/GF.](image-url)
Table 4. The damping properties of PBMA/GF.

Sample Code	Tan δ Max	Temperature Range of Tan δ > 0.3	TA (Tan δ > 1.0)			
PBMA/GF		T1/°C	T2/°C	ΔT/°C		
0.5%	1.52	56.88	30.13	95.68	65.55	8.11
1%	1.55	57.63	27.95	96.36	68.41	9.78
2%	1.54	55.95	27.08	94.68	67.60	9.27
5%	1.50	58.72	33.74	96.12	62.38	7.80

Figure 8. Brunauer-Emmet-Teller (BET) spectra of Fe$_3$O$_4$ and GF measured by a specific surface area and pore size tester. Fitting index, $R^2 = 0.99996$, 0.99973, respectively.

3.6. Surface Properties of Inorganic Particles

To study the effects of the interaction between particles and PBMA on the damping property of composites, the results of a specific surface area and pore size tester were analyzed by the BET method; then, the surface areas of particles measured by BET (S_{BET}) can be calculated by:

\[
\frac{P}{V(P_0 - P)} = \frac{1}{V_m} + \frac{C - 1}{V_m} \times \left(\frac{P}{P_0}\right)
\]

where:

- V_m → single layer adsorption volume
- V → all adsorption volume
- P → partial pressure of adsorption thing
- P_0 → saturated vapor pressure of adsorption thing
- C → BET constant
- A → Avogadro constant (6.023×10^{23}/mol)
- σ_m → the sectional area of an adsorption thing (for the adsorption of N$_2$, $\sigma_m = 16.2 \times 10^{-20}$ m2).

Thus, the $(P/P_0)/V \times (1 - P/P_0)$ vs. (P/P_0) should be linearity. The linear fitting was used and the results (BET spectra) are plotted in Figure 8. According to the slope and intercept of these fitting lines, we can obtain the value of V_m. In Figure 8, all dots can be linearly fitted in some degree ($R^2 > 0.9$). The values of the surface areas measured by BET (S_{BET}) are listed in Table 5. According to Table 5, the S_{BET} of GF is larger than that of Fe$_3$O$_4$, which may be caused by graphene, which has a larger specific surface. Moreover, to better understand the surface distribution of the materials, the spectra of nitrogen absorption and desorption for BET is shown in Figure 9.
Table 5. Values of S_{BET}.

Samples	S_{BET}
Fe$_3$O$_4$	6.808
GF	52.565

Figure 9. Spectra of nitrogen absorption and desorption trends for BET. (a) Fe$_3$O$_4$; (b) GF.

4. Conclusions

In this study, hybrid composites based on poly(butyl-methacrylate), Ferriferous oxide(Fe$_3$O$_4$), Graphene/Fe$_3$O$_4$(GF), and demagnetization of Fe$_3$O$_4$ (α-Fe$_2$O$_3$) were successfully prepared. The SEM and EDS results show that Graphene/Fe$_3$O$_4$ (GF) was synthesized and that α-Fe$_2$O$_3$ can be finely dispersed in the PBMA matrix. VSM results revealed that α-Fe$_2$O$_3$ showed the lowest magnetization after heating at 500 °C. The SEM results show that dispersion of α-Fe$_2$O$_3$ in the PBMA matrix is better than that of Fe$_3$O$_4$ and the BET results, exhibiting interfacial interactions between PBMA and GF, is stronger than that between PBMA and Fe$_3$O$_4$. The DMA results indicate that the damping properties of PBMA can be improved by filling Fe$_3$O$_4$, GF and α-Fe$_2$O$_3$. When the weight content of α-Fe$_2$O$_3$ was 1%, the PBMA/α-Fe$_2$O$_3$ had the best damping performance, with the tan δ reaching 1.63 and the corresponding temperature range, with tan δ > 0.3, being about 103 °C. Moreover, it is also worth mentioning that the T$_g$ of the composites shifted to low temperatures. This result needs to be further studied.

Author Contributions: S.Z., J.H. performed the experiments; S.Z. wrote the manuscript; C.Y. conceived and designed the experiments; X.H. contributed to the conception of the study; S.Z. contributed significantly to analysis and manuscript preparation; R.Z. helped perform the analysis with constructive discussions.

Funding: This research was funded by the Science & Technology Department of Sichuan province (No. 2015JY0052) and the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (No. X151516KCL32) of China.

Acknowledgments: The authors thank the Sichuan University for the supply of DMA used in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ahn, S.K.; Jeon, E.; Park, J.; Kim, H.; Kho, H. Investigation of damping in the polymer concrete sleeper for use in reduction of rolling noise from railway. *J. Acoust. Soc. Am.* **2014**, *136*, 2209–2210. [CrossRef]
2. Kishi, H.; Kuwata, M.; Matsuda, S.; Asami, T.; Murakami, A. Damping properties of thermoplasticelastomer interleaved carbon fiber-reinforced epoxy composites. *Compos. Sci. Technol.* **2003**, *2003*, 2517–2523.
3. Qin, C.L.; Cai, W.M.; Cai, J.; Tang, D.Y.; Zhang, J.S.; Qin, M. Damping properties and morphology of polyurethane/vinyl ester resin interpenetrating polymer network. *Mater. Chem. Phys.* **2004**, *85*, 402–409. [CrossRef]
25. Rahman, N.A.; Hassan, A.; Yahya, R.; Lafiaaraga, R.A.; Hornsby, P.R. Micro-structural, thermal, and mechanical properties of injection-molded glass fiber/nanoclay/polypropylene composites. J. Reinf. Plast. Compos. 2012, 31, 269–281. [CrossRef]
26. Zhang, R.; He, X.; Huang, G. Dynamics of Poly (butyl acrylate) and Poly (ethyl acrylate) with internal double bonds. *J. Polym. Res.* **2014**, *21*, 1–11. [CrossRef]

27. Cao, F.H.; Wang, J.C. Preparation and characterization of hyperbranched polymer modified montmorillonite/chlorinated butyl rubber damping composites. *J. Appl. Polym. Sci.* **2016**, *133*. [CrossRef]

28. Jiang, P.; Yang, C.; He, X.; Rodrigues, A.M.; Zhang, R. Viscoelastic changes in chlorinated butyl rubber modified with graphene oxide. *Iran. Polym. J.* **2017**, *26*, 861–870. [CrossRef]