On Maxwell electrodynamics in multi-dimensional spaces

Alexei M. Frolov

Department of Applied Mathematics,
University of Western Ontario, London, Ontario N6H 5B7, Canada

(Dated: September 9, 2022)

Abstract

The governing equations of Maxwell electrodynamics in multi-dimensional spaces are derived from the variational principle of least action which is applied to the action function of the electromagnetic field. The Hamiltonian approach for the electromagnetic field in multi-dimensional pseudo-Euclidean (flat) spaces has also been developed and investigated. Based on the two arising first-class constraints we have generalized to multi-dimensional spaces a number of different gauges known for the three-dimensional electromagnetic field. For multi-dimensional spaces of non-zero curvature the governing equations for the multi-dimensional electromagnetic field are written in manifestly covariant form. Multi-dimensional Einstein’s equations of metric gravity in the presence of electromagnetic field have been re-written in the true tensor form. Methods of scalar electrodynamics are applied to analyze Maxwell equations in the two- and one-dimensional spaces. This version is close to the final version published in: Universe 8, 20 (2022).

*E–mail address: alex1975frol@gmail.com
I. INTRODUCTION

The main goal of this communication is to develop the logically closed and non-contradictory version of electrodynamics in the multi-dimensional (or n-dimensional) space. Right now, such a development can be considered as a pure theoretical (or model) task, but originally, our plan was to include the multi-dimensional electromagnetic fields in our Hamiltonian analysis of the metric gravity \[1\]. Note that all Hamiltonian approaches which are based on the $\Gamma = \Gamma$ Lagrangian (see, e.g., \[1\] and earlier references therein) have been derived in the manifestly covariant form and can be applied to multi-dimensional (or n-dimensional, where $n(\geq 3)$ is an arbitrary integer) Riemannian spaces without any modification. On the other hand, our current Maxwell theory of electromagnetic field and corresponding Hamiltonian approach can be used only for three-dimensional (geometrical) spaces. This contradiction creates numerous problems for the development of any united theory of the coupled electromagnetic and gravitational fields. Also, it is hard to believe that in reality one can smoothly combine two theories that have different properties with respect to their extensions on multi-dimensional spaces.

After our investigations have begun it did not take long to understand that such a theory of the free electromagnetic fields in multi-dimensions simply does not exist even in the first-order approximation (in contrast with the metric gravity). There are quite a few reasons why similar generalization of the classical electrodynamics to multi-dimensional spaces has not been developed earlier. For instance, the explicit expression for the action integral and, therefore, for the Lagrangian of the electromagnetic field in multi-dimensions is unknown. However, if we do not know the Lagrangian of multi-dimensional electromagnetic filed, then it is impossible to construct any valuable Hamiltonian. There were a number of smaller problems which substantially complicated any direct generalization of Maxwell theory to n-dimensional spaces. One of them is the lack of a reliable and practically valuable definition of a curl-operator (or rot-operator) in multi-dimensional spaces, where $n \geq 4$. In general, it is tricky to develop multi-dimensional electrodynamics without such an operator. Finally, we have decided to investigate this problem and derive some useful results which are of great interest for the Hamiltonian formulation of the metric gravity combined with electromagnetic field(s) in multi-dimensional spaces.

First, let us briefly discuss the classical Maxwell equations known for the three-
dimensional electromagnetic fields. For the first time, the Maxwell equations were written by J.C. Maxwell in 1862 (published in 1865 [2] (see also [3] and [4])) for the intensities of electric \mathbf{E} and magnetic \mathbf{H} fields (or for the electric and magnetic field strengths):

$$
div \mathbf{E} = 4\pi \rho , \quad curl \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{H}}{\partial t} ,
$$

$$
div \mathbf{H} = 0 , \quad curl \mathbf{H} = \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} + \frac{4\pi}{c} \mathbf{j} ,
$$

where ρ and $\mathbf{j} = \rho \mathbf{v}$ are the electric charge density (scalar) and electric current density (vector), respectively. In this study the charge density and current are defined exactly as in § 29 from [5]. Later, it was noticed by Hertz and others that these four equations from Eq. (1) can be re-written in a simple form, if we can introduce the four-dimensional potential $\mathbf{A} = (\varphi, \mathbf{A})$, where φ is the scalar potential and \mathbf{A} is the vector potential of the electromagnetic field. Note that the scalar potential φ can equally be considered as 0-component (A_0) of the four-dimensional vector potential \mathbf{A} of the electromagnetic field.

The φ and \mathbf{A} potentials are simply related to the intensities of electric \mathbf{E} and magnetic \mathbf{H} fields: $\mathbf{H} = curl \mathbf{A}$ and $\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} - grad \varphi$. By using these relations between the potentials (φ, \mathbf{A}) and intensities (\mathbf{E}, \mathbf{H}) of electromagnetic field one finds that the second equation in the first line and first equation in the second line of Eq. (1) hold identically. The two remaining equations from Eq. (1) lead to the following non-homogeneous equations

$$
\frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} - \Delta \mathbf{A} + grad(div \mathbf{A} + \frac{1}{c} \frac{\partial \varphi}{\partial t}) = \frac{4\pi}{c} \mathbf{j}
$$

(2)

$$
- \Delta \varphi - \frac{1}{c} div \left(\frac{\partial \mathbf{A}}{\partial t} \right) = 4\pi \rho
$$

(3)

where $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ is the three-dimensional Laplace operator. By applying the ‘gauge condition’ $\frac{\partial \varphi}{\partial t} + div \mathbf{A} = 0$ for the four-dimensional potential, one reduces the two last equations to the form

$$
\frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} - \Delta \mathbf{A} = \frac{4\pi}{c} \rho \mathbf{v}
$$

(4)

$$
\frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2} - \Delta \varphi = 4\pi \rho
$$

(5)

where the operator $\frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \Delta$ is the four-dimensional Laplace operator in pseudo-Euclidean space, which is often called the d-Alembertian operator.

It is interesting that all equations mentioned above can be derived by varying the action functional S which is written for a system of particles and electromagnetic field(s) interacting
with these particles. In Gauss units the explicit form of this action function (or action, for short) \(S \) is

\[
S = S_p + S_{fp} + S_f = -\sum_k m_k c s_k - \sum_k \frac{e_k}{c} A_\alpha(k) dx^\alpha - \frac{1}{16\pi} \int F_{\alpha\beta} F^{\alpha\beta} d\Omega ,
\]

where the two sums are taken over particles, \(s = \sqrt{x_\mu x^\mu} = \sqrt{g_{\mu\nu} x^\mu x^\nu} \) is the interval, \(S_p \) is the action for the particles \((k = 1, 2, \ldots) \), \(S_{fp} \) is the action which describes interaction between particles and electromagnetic field, while \(S_f \) is the action for the electromagnetic field itself. The notation \(e_k \) stands for the electric charge of the \(k \)-th particle, while \(m_k \) means the mass of the same particle and \(A_\alpha \) is the covariant component of the four-dimensional vector potential \(\bar{A} \) of the electromagnetic field. This formula, Eq.(6), is written for the four-dimensional pseudo-Euclidean (flat) space-time. This fact drastically simplify analysis and derivation of the Maxwell and other equations in classical three-dimensional electrodynamics.

In this study we discuss a possibility to generalize the usual (or three-dimensional) Maxwell equations to the spaces of larger dimensions. In respect to this, below we shall consider \(n \)-dimensional, pure geometrical spaces and \((n+1) \)-dimensional space-time manifolds. Our main goal is to derive the correct form of multi-dimensional Maxwell equations and investigate their basic properties. In particular, we want to understand how many and what kind of changes can we expect in the multi-dimensional Hamiltonian of the free electromagnetic field and in a number of arising first-class constraints. A separate, but closely related problem is the gauge invariance of the free electromagnetic field. Another interesting problem is to investigate the explicit form of multi-dimensional Maxwell equations in the presence of multi-dimensional gravitational fields. A brief discussion of scalar electrodynamics can be found in Appendix A. All new results obtained in the course of our current analysis will be used later to develop the modern united theory of electromagnetic and gravitational fields.

II. SCALAR AND VECTOR POTENTIALS OF THE ELECTROMAGNETIC FIELD

Let us derive the closed system of Maxwell equations for the \(n \)-dimensional (geometrical) space, where \(n \geq 3 \). The time \(t \) is always considered as an independent scalar and special \((n+1) \)-st variable. This means that we are dealing with manifolds of variables defined in
(\(n + 1\))-dimensional space-time. First, we need to define the vector potential \(\vec{A}\) in this (\(n + 1\))-dimensional space-time. Based on experimental facts known for actual electromagnetic systems considered in one, two and three-dimensions, below we shall assume that interaction of a point particle with the electromagnetic field is determined by a single, scalar parameter \(e\), which is the electric charge of this particle. The parameter \(e\) can be positive, negative, or equal zero. The properties of the electromagnetic field are described by the (\(n + 1\))-dimensional vector potential \(\vec{A}\). The notation \(A_\mu\) (or \(\tilde{A}_\mu\)) stands for the covariant \(\mu\)-component of this (\(n + 1\))-dimensional vector potential \(\vec{A}\). In this study we also deal with \(n\)-dimensional space-like vector potential \(\mathbf{A}\). Co- and contravariant components of this vector are designated by Latin indexes, e.g., \(A_k\) and \(A^k\), where \(k = 1, 2, \ldots, n\). The same rule is applied to all vectors and tensors mentioned in this study: components of (\(n + 1\))-vectors are labelled by Greek indices (each of which varies between 0 and \(n\)), while spatial components of these \(n\)-dimensional vectors (each varies between 1 and \(n\)) are denoted by Latin indices. Generalization of this rule to the tensors of arbitrary ranks is straightforward and simple. Note also that in all formulas below the following 'summation rule' is applied: a repeated suffix (or index) in any formula means summations over all values of this suffix (or index).

In general, the vector potential \(\vec{A}\) can be written in the form \(\vec{A} = (\varphi, \mathbf{A})\), which includes the scalar potential \(\varphi(= A_0)\) and \(n\)-dimensional vector potential \(\mathbf{A} = (A_1, A_2, \ldots, A_n)\). For arbitrary scalar \(\Phi\) and vector \(\mathbf{V}\) functions in \(n\)-dimensional space we can determine the first-order differential operators: (a) gradient operator \(\nabla\) (or \(\text{grad}\)) and (b) divergence operator \(\text{div}\). They are defined as follows

\[
\nabla \Phi = \text{grad} \; \Phi = \left(\frac{\partial \Phi}{\partial x_1}, \frac{\partial \Phi}{\partial x_2}, \ldots, \frac{\partial \Phi}{\partial x_n} \right) \quad \text{and} \quad \text{div} \; \mathbf{V} = \frac{\partial V_1}{\partial x_1} + \frac{\partial V_2}{\partial x_2} + \ldots + \frac{\partial V_n}{\partial x_1}
\]

Analogous definitions of these two operators can easily be generalized and applied to the scalar and vector functions defined in (\(n + 1\))-dimensional space. By using these definitions we can discuss the gradient of the scalar potential \(\nabla \varphi(= \nabla A_0)\) (vector) and divergence of vector potential \(\text{div} \mathbf{A}\) (scalar) in the \(n\)-dimensional space.

The (\(n + 1\))-dimensional vector potential \(\vec{A} = (A_0, A_1, \ldots, A_n)\) allows us to define the truly antisymmetric (\(n + 1\)) \(\times\) (\(n + 1\)) electromagnetic field tensor \(F_{\alpha\beta}(= -F_{\beta\alpha})\) by using the relation

\[
F_{\alpha\beta} = \frac{\partial A_\beta}{\partial x^\alpha} - \frac{\partial A_\alpha}{\partial x^\beta} = -F_{\beta\alpha} \quad \text{and} \quad F^{\alpha\beta} = \frac{\partial A^\beta}{\partial x_\alpha} - \frac{\partial A^\alpha}{\partial x_\beta} = -F^{\beta\alpha},
\]

\(5\)
which formally coincides with the analogous definition of this tensor known in the four-dimensional space-time. For \((n+1)\)-dimensional space-time manifold this tensor has zero-diagonal matrix elements (or components), i.e., \(F_{\alpha\alpha} = 0\). Therefore, in \(n\)-dimensional space each of the antisymmetric \(F^{\alpha\beta}\) and \(F_{\alpha\beta}\) tensors have \(\frac{n(n-1)}{2}\) different and independent components. The double sum \(F_{\alpha\beta}F^{\alpha\beta}\) is the first (or main) invariant of the electromagnetic field defined in the \((n+1)\)-dimensional space. Now, let us write the following explicit formula for the action \(S\) for the system, which includes the particles and electromagnetic field itself. This action takes the following form (see, e.g., [5])

\[
S = S_p + S_{fp} + S_f = -\sum_k \int m_k ds - \sum_k \int \frac{e_k}{c} A_\alpha(k) dx^\alpha - a \int F_{\alpha\beta} F^{\alpha\beta} d\Omega ,
\]

(9)

where \(s = \sqrt{x_\mu x^\mu} = \sqrt{g_{\mu\nu} x^\mu x^\nu}\) is the interval, \(S_p\) is the action function for the particles, \(S_{fp}\) is the action function which describes interaction between particles and electromagnetic field and \(S_f\) is the action function for the electromagnetic field itself. In this equation the summation is performed over all particles (index \(k\)). The notation \(A_\alpha(k)\) that the \(\alpha\)-component of the vector potential must be determined at the point of location of \(k\)-th particle. Note that the formula, Eq.(9), is applicable in the flat pseudo-Euclidean and/or Euclidean spaces only. Its generalization to multi-dimensional Riemannian spaces (spaces of non-zero curvature) is considered below. At the next step we need to determine the constant \(a\) in Eq.(9). This can be achieved by considering the Coulomb’s law in multi-dimensions (see, the next Section).

In conclusion of this Section we want to emphasize the fact that our action function, which is chosen in the form of Eq.(9), allows one to derive the equations of motion for a system of electrically charged, point particles which move in the electromagnetic field. For instance, for one electrically charged particle by varying the coordinates of this particle (i.e., the \(x^\mu\) and \(x^\alpha\) variables) in the action function, Eq.(9), one finds the following equation of motion for one electrically charged, point particle which moves in the non-flat multi-dimensional space

\[
\frac{d^2 x^\alpha}{ds^2} + \Gamma^{\alpha}_{\beta\gamma} \frac{dx^\beta}{ds} \frac{dx^\gamma}{ds} - \frac{e}{c} F^{\alpha\beta} g_{\beta\gamma} \frac{dx^\gamma}{ds} = 0 , \quad \text{or} \quad \frac{d^2 x^\alpha}{ds^2} + \Gamma^{\alpha}_{\beta\gamma} \frac{dx^\beta}{ds} \frac{dx^\gamma}{ds} - \frac{e}{mc^2} F^\alpha_{\beta} \frac{dx^\beta}{ds} = 0 ,
\]

(10)

where \(\Gamma^{\alpha}_{\beta\gamma}\) are the Cristoffel symbols of the second kind \([6], [7]\) which equal zero identically in any flat space. It is clear that he last term in the action function \(S\) is not varied and we do not to know the exact numerical value of the constant \(a\) in Eq.(9). Also for the non-flat spaces in the last term we have to replace \(d\Omega \rightarrow \sqrt{-g} d\Omega\).
III. COULOMB’S LAW IN MULTI-DIMENSIONS

The explicit form of the Coulomb interaction between two point, electrically charged particles is of a crucial importance for our present purposes. In Gauss units, which are used almost everywhere in this study, the Coulomb’s law for three-dimensional space has a very simple form \(V(r_{21}) = \frac{q_1 q_2}{r_{21}} \), where \(V(r_{21}) \) is the Coulomb potential, \(q_1 \) and \(q_2 \) are the electric charges of the two point particles (1 and 2) and \(r_{21} \) is the interparticle distance which equals
\[
r = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2},
\]
where \((x_1, y_1, z_1)\) and \((x_2, y_2, z_2)\) are the Cartesian coordinates of the two interacting particles. Note that the Coulomb interaction potential does not contain the factor \(4\pi\). Furthermore, the Coulomb potential essentially coincides with the singular part of the Green’s function for the three-dimensional Laplace operator, i.e.,
\[
V(r_{21}) = q_1 q_2 G(r_1, r_2) = q_1 q_2 G(\|r_1 - r_2\|) = q_1 q_2 \nabla^2 \left(\frac{1}{|r_2 - r_1|} \right) = \nabla \left(\frac{r_1 - r_2}{|r_2 - r_1|^3} \right) = -4\pi \delta(r_2 - r_1).
\]
The last equation can also be re-written for the intensity of electric field \(E\), which is the negative gradient of the potential \(\varphi\). This equation takes the familiar form \(\text{div} E = -\nabla \left[\nabla \left(\frac{q_1 q_2}{r_{21}} \right) \right] = q_1 q_2 \nabla \left(\frac{r_{21}^n}{r_{21}} \right) = 4\pi \rho(r_{21}) \), where \(\rho(x)\) is a continuous charge density. The derived expression coincides with the well known differential form of Gauss’s law of electrostatic and one of the Maxwell equations. These two properties (or two criteria) of three-dimensional Coulomb potential will play a crucial role in our definition of the multi-dimensional Coulomb potential (see below).

Now, we need to define the Coulomb potential in multi-dimensional (or \(n\)-dimensional) space. It is a crucial moment for the Maxwell electrodynamics in multi-dimensional spaces which we try to develop in this study. Any mistake in such a definition will cost too much for our present purposes. In this sense, this Section was a most difficult part of our analysis and it was re-written quite a few times. Indeed, we cannot send someone even in the four-dimensional (geometrical) space to repeat the well known Coulomb and Cavendish experiments. Therefore, we need to find a way to make an analytical generalization of the Coulomb potential to multi-dimensional spaces. In respect to our first criterion formulated above the Coulomb potential in the \(n\)-dimensional space must coincide with the singular part of the Green’s function defined for the multi-dimensional (or \(n\)-dimensional) Laplace operator \(\Delta = \Delta_n = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \ldots + \frac{\partial^2}{\partial x_n^2} \). This leads [8] to the following general expression for the Coulomb potential in \(n\)-dimensional space:
\[
V(r) = b \frac{q_1 q_2}{r_{21}^{n-2}} = b \frac{q_1 q_2}{r_{21}^{n-2}},
\]
where \(b\) is some numerical factor, \(n \geq 3\) and the explicit expression for the interparticle distance \(r_{21} = r\)
takes the multi-dimensional form

\[r = \sqrt{[x_1^{(1)} - x_1^{(1)}]^2 + [x_2^{(2)} - x_1^{(2)}]^2 + \ldots + [x_n^{(n)} - x_1^{(n)}]^2} \]

Here \((x_1^{(1)}, x_2^{(2)}, \ldots, x_1^{(n)})\) and \((x_2^{(1)}, x_2^{(2)}, \ldots, x_2^{(n)})\) are the Cartesian coordinates of the two interacting particles in \(n\)-dimensional Euclidean space. The \(n\)-dimensional radius \(r = \sqrt{[x_1^{(1)}]^2 + [x_2^{(2)}]^2 + \ldots + [x_n^{(n)}]^2}\) is, in fact, the hyper-radius of this point particle. To derive the explicit formula for the Coulomb potential in \(n\)-dimensional space we have applied the method developed by A. Sokolov (see, e.g., [8], [9] and earlier references therein) which allows one to determine the Green’s functions for an arbitrary linear differential operator.

In order to determine the factor \(b(n)\) we apply the second criterion (see above) which states that the Gauss’s law must be written in the form \(\nabla E = f(n)q_1q_2\), where \(f(n)\) is a pure angular (or hyper-angular for \(n \geq 4\)) factor. From here one finds that \(b = \frac{1}{n-2}\) and the explicit formula for Coulomb’s law in \(n\)-dimensional space takes the final form

\[V(r) = \frac{q_1q_2}{(n-2)r_n^{n-2}} \]

Now, let us consider a slightly different problem. Suppose, we have to determine the static multi-dimensional Coulomb potential \(\varphi(r)\) and the corresponding intensity of electric field \(E\) which are generated by a point particle with the electric charge \(Q\). For this problem, we write the following formulas for the potential \(\varphi\) and for the field strength \(E\):

\[\varphi = \frac{Q}{(n-2)r_n^{n-2}} \quad \text{and} \quad E = -\nabla \varphi = \frac{Qn_r}{r^{n-1}}, \]

where \(n_r\) is the unit vector \(n_r = \frac{r}{r}\) which is directed from the electric charge \(Q\) to an observation point. To write the Gauss’s law in multi-dimensional space let us assume that a point electrical charge \(Q\) is located inside (and outside) of a closed \((n-1)\) dimensional hyper-surface. In this case \(r\) is the distance from the charge to a point on the hyper-surface, \(n\) is outwardly directed normal \(n = \frac{r}{r}\) to the surface at that point and \(da\) is the element of the surface area. Then for the normal component of \(E\) times the area element we can write

\[(E \cdot n)da = Q \frac{\cos \Theta}{r^{n-1}} \quad da = Q \frac{r^{n-1}d\Omega}{r^{n-1}} = Qd\Omega, \quad (11) \]

where \(d\Omega\) is the element of solid hyper-angle (in \(n\)-dimensional space) subtended by \(da\) at the position of the charge. It is important here that the \(E\) is directed along the line from the hyper-surface element to the charge \(Q\). This means that we have found no contradiction here between our two criteria and and Eq. (11), since the following hyper-angular integration over \(\Omega\) does produce only an additional pure hyper-angular factor \(f(n)\).

Now, by integrating the normal component of \(E\) over the whole hyper-surface, it is easy
to find that
\[\oint (\mathbf{E} \cdot \mathbf{n}) da = Q \oint d\Omega = Q \frac{n\pi \left(\frac{n}{2} \right)}{\Gamma \left(1 + \frac{n}{2} \right)} = f(n)Q , \tag{12} \]
where \(f(n) = \frac{n\pi \left(\frac{n}{2} \right)}{\Gamma \left(1 + \frac{n}{2} \right)} \) is the geometrical (or hyper-angular) factor. In this equation the symbol \(\Gamma(x) \) stands for the Euler’s gamma-function (or Euler’s integral of the second kind). It can be shown (see, e.g., [10]) that \(\Gamma(1 + x) = x\Gamma(x) \) and \(\Gamma \left(\frac{1}{2} \right) = \sqrt{\pi} \). The formula, Eq.(12), is true, if the charge \(Q \) lies inside of the \(n \)-dimensional hyper-surface. However, if this charge lies outside of this hyper-surface the expression in the right-hand side of Eq.(12) equals zero identically. Thus, we have reproduced the Gauss’s law in multi-dimensional spaces for a single point charge \(Q \). For a discrete set of point charges and for a continuous charge density \(\rho(r) \) the Gauss’s law becomes:
\[\oint (\mathbf{E} \cdot \mathbf{n}) da = \frac{n\pi \left(\frac{n}{2} \right)}{\Gamma \left(1 + \frac{n}{2} \right)} \sum_{k=1}^{K} Q_k = f(n) \sum_{k=1}^{K} Q_k \tag{13} \]
and
\[\oint (\mathbf{E} \cdot \mathbf{n}) da = \frac{n\pi \left(\frac{n}{2} \right)}{\Gamma \left(1 + \frac{n}{2} \right)} \int_{V} \rho(r) d^n r = f(n) \int_{V} \rho(r) d^n r \tag{14} \]
respectively. In Eq.(13) the sum is over only those charges inside of the hyper-surface \(S \), while in Eq.(14) the volume (or hyper-volume) enclosed by \(S \).

The differential form of these equations in \(n \)-dimensional Euclidean space is:
\[div \mathbf{E} = -div \left(\text{grad} \varphi \right) = -\Delta \varphi = \frac{n\pi \left(\frac{n}{2} \right)}{\Gamma \left(1 + \frac{n}{2} \right)} \rho(r) = f(n) \rho(r) , \tag{15} \]
where \(f(n) = \frac{n\pi \left(\frac{n}{2} \right)}{\Gamma \left(1 + \frac{n}{2} \right)} \) is the geometrical (or hyper-angular) factor which is the volume \(V_n \) of \(n \)-dimensional unit ball times the dimension \(n \) of geometrical space. In other words, the factor \(f(n) \) is the surface area \(S_n \) of \(n \)-dimensional unit ball, since the equality \(S_n = nV_n \) is always obeyed for the \(n \)-dimensional unit ball [11] and \(n \) is an integer positive number. The physical sense of this factor \(f(n) \) is simple: it is the total hyper-angle defined for a single point (central) particle located in the \(n \)-dimensional space. For the system of a few discrete charges one has to replace \(\rho(r) \to \sum_{k=1}^{K} Q_k \), etc.
The \(n \)-dimensional hyper-angular factor \(f(n) \) from Eq.\((\ref{12})\) plays a central role in our development of Maxwell electrodynamics in multi-dimensional spaces. In particular, the knowledge of this factor allows one to write the explicit formula for the action function (or action integral) of the electrically charged particles which move in the multi-dimensional (or \(n \)-dimensional) electromagnetic field. This problem is considered below.

IV. ACTION FUNCTION AND MAXWELL EQUATIONS IN MULTI-DIMENSIONAL FLAT SPACES

In this Section we consider the Maxwell’s equation in multi-dimensional flat spaces, e.g., in pseudo-Euclidean spaces. Results derived below will extensively be used in the following Sections of this study. First of all, by using the factor \(f(n) \) obtained in Eq.\((\ref{12})\) we can write the final expression for the action function \(S \) in Gauss units

\[
S = S_p + S_{fp} + S_f = -\sum_k m_k c ds - \frac{1}{c^2} \int A_\alpha j^\alpha dx^\alpha - \frac{1}{4cf(n)} \int F_{\alpha\beta} F^{\alpha\beta} d\Omega ,
\]

(16)

where \(\frac{1}{4} \) (or \(-\frac{1}{4} \)) is the Heaviside constant, \(c \) is the speed of light in vacuum, while \(j^\alpha \) is the electric current (or simply, current) in \((n + 1)\)-dimensional space. By varying all components of the \(\vec{A} \) vector in this action integral, Eq.\((\ref{16})\), we derive the second group of Maxwell’s equations, Eq.\((\ref{19})\), which contains, in the general case, the non-homogeneous differential equations. By omitting some obvious details we can write the complete set of Maxwell’s equations in the following tensor form

\[
\frac{\partial F_{\gamma\lambda}}{\partial x^\beta} + \frac{\partial F_{\lambda\beta}}{\partial x^\gamma} + \frac{\partial F_{\beta\gamma}}{\partial x^\lambda} = 0 \quad (17)
\]

and

\[
\frac{\partial F^{\alpha\beta}}{\partial x^\beta} = -\frac{n\pi}{c\Gamma\left(1 + \frac{n}{2}\right)} j^\alpha = -\frac{f(n)}{c} j^\alpha ,
\]

(18)

where \(j^\alpha \) is the \((n + 1)\)-dimensional current-vector (or current, for short) defined above. All equations from the both groups of these equations, Eqs.\((\ref{17})\) - \((\ref{19})\), are the first-order differential equations upon spatial coordinates and time \(t \) (or temporal coordinate). From Eq.\((\ref{17})\) one finds the following condition for the current

\[
\frac{\partial^2 F^{\alpha\beta}}{\partial x^\alpha \partial x^\beta} = -\frac{f(n)}{c} \frac{\partial j^\alpha}{\partial x^\alpha} = 0 \quad (19)
\]
This result is obvious, since application of any symmetric operator (upon $\alpha \leftrightarrow \beta$ permutation), e.g., the $\frac{\partial^2}{\partial \alpha \partial \beta}$ operator, to the truly antisymmetric $F^{\alpha\beta}$ tensor always gives zero. Thus, the equality $\frac{\partial^\alpha}{\partial \alpha^\nu} = 0$ derived here is a necessary condition for any actual electric current. Note also that this equation is written in the form of $(n + 1)$-dimensional divergence. In respect to the second Noether’s theorem this equation $\frac{\partial^\alpha}{\partial \alpha^\nu} = 0$ means some conservation law. It is easy to understand that this law describes conservation of the total electric charge.

A very close similarity between Maxwell equations derived for multi-dimensional spaces, where $n \geq 3$, and analogous Maxwell equations known in three-dimensional space is an obvious fact. However, in some cases this leads to fundamental mistakes and most of such mistakes are originated by Eq. (17). Note here that in $n-$dimensional geometrical space we have exactly n components of the intensity of electric field E and $\frac{n(n+1)}{2}$ intensities of magnetic field H. For $n = 3$ (and only in this case) we have equal numbers of components in the both E and H vectors. This leads to the well-known vector form of Maxwell electrodynamics. However, already for $n = 4$ the electric field has four components, while the magnetic field has six components. When n increases, then the total number of components of the magnetic field grow rapidly (quadratically) and significantly exceeds the analogous number of components of the electric field. This fact substantially complicates derivation of Maxwell equations written in terms of the intensities of electric and magnetic fields in multi-dimensional spaces. Plus, we have a certain problem with general definition of the curl (or rot) operator in such cases.

Another interesting result follows from the analysis of tensor equations, Eq. (17). If one of the indexes in this equation equal zero, then this group of equations gives us Faraday’s law in multi-dimensional space which describes the time-evolution of the magnetic field and it is written in the form of n equations. This is good, but what is about other $\frac{n(n-1)(n-2)}{6}$ equations which are also included in tensor equations Eq. (17)? After some transformations one finds that these additional equations are written in the form where three-dimensional divergences of some three-dimensional pure-magnetic vectors equal zero. By the pure magnetic vectors we mean vectors assembled from the space-like components of the field tensor F_{pq} (or F_{pq}) only (for flat spaces it is always possible). Based on ideas by Dirac [12] we can formulate this result in the following form: the magnetic field cannot have sources neither in our three-dimensional space, nor in any three-dimensional subspace of multi-dimensional spaces. This fundamental statement is directly and very closely related to the discrete nature of
electric charge. Furthermore, the correctness of Maxwell electrodynamics (in any space) is essentially based on this statement. By taking into account arguments from [13] we can re-formulate this our statement in the form:

The existence of magnetic monopoles in our three-dimensional space and, in general, in any three-dimensional subspace of multi-dimensional spaces, is strictly prohibited. Otherwise, the Maxwell electrodynamics will not be correct and must be replaced by a different approach.

To conclude this Section, let us present the explicit formula for the energy momentum tensor in multi-dimensional space. Definition of this tensor and all details of its calculations are well described in [5]. Therefore, here we can only present a few basic formulas, which will be used below in Section VI. The explicit formula for the non-symmetrized energy momentum tensor is

\[T^{\beta}_{\alpha} = \frac{1}{f(n)} \left(\frac{\partial A_\gamma}{\partial x_\alpha} F_{\gamma\beta} + \frac{1}{4} g^{\beta}_{\alpha\rho} F_{\gamma\rho} F^{\gamma\rho} \right), \quad (20) \]

where the factor \(f(n) \) is the hyper-angular (or geometrical) factor mentioned above. After symmetrization this tensor takes the form

\[T^{\beta}_{\alpha} = \frac{1}{f(n)} \left(F^{\beta}_{\alpha\gamma} F_{\gamma\beta} + \frac{1}{4} g^{\beta}_{\alpha\rho} F_{\gamma\rho} F^{\gamma\rho} \right), \quad (21) \]

where \(g^{\beta}_{\alpha} = \delta^\beta_{\alpha} \) is the substitution tensor [6]. The corresponding co- and contravariant tensors are:

\[T^{\alpha\beta} = \frac{1}{f(n)} \left(F^{\alpha\gamma} F^\gamma_{\beta} + \frac{1}{4} g^{\alpha\beta}_{\gamma\rho} F_{\gamma\rho} F^{\gamma\rho} \right) \quad \text{and} \quad T_{\alpha\beta} = \frac{1}{f(n)} \left(g^\alpha_{\gamma\beta} F_{\gamma\gamma} + \frac{1}{4} g^{\alpha\beta}_{\gamma\rho} F_{\gamma\rho} F^{\gamma\rho} \right), \quad (22) \]

where \(f(n) = \frac{n\pi^2}{\Gamma\left(1 + \frac{n}{2}\right)} \) is the geometrical (or hyper-angular) factor.

V. HAMILTONIAN OF THE ELECTROMAGNETIC FIELD IN MULTI-DIMENSIONAL FLAT SPACES

The second goal of this study is to develop the Hamiltonian formulation of the multi-dimensional electrodynamics. First, let us obtain the explicit formula for the Hamiltonian \(H \) of the free electromagnetic field in multi-dimensional flat spaces. By using the formula, Eq. (16), for the action integral we can write the Lagrangian \(L \) of the free electromagnetic field in multi-dimensional pseudo-Euclidean space (in Heaviside units)

\[L = -\frac{1}{4} \int F_{\alpha\beta} F^{\alpha\beta} \, d^n x = -\frac{1}{4} \int F^{\alpha\beta} F_{\alpha\beta} \, d^n x, \quad (23) \]
where \(F_{\mu\nu} = A_{\nu,\mu} - A_{\mu,\nu} \) is the electromagnetic field tensor which is antisymmetric \(F_{\mu\nu} = -F_{\nu\mu} \). From here one finds the following equality \(A_{\mu,\nu} = -F_{\mu\nu} + A_{\nu,\mu} = F_{\nu\mu} + A_{\nu,\mu} \). Variations of this Lagrangian are written in the following general form

\[
\delta L = -\frac{1}{2} \int F_{\alpha\beta} \delta F^{\alpha\beta} d^n x = -\frac{1}{2} \int F^{\alpha\beta} \delta F_{\alpha\beta} d^n x ,
\]

where \(d^n x = dx^1 dx^2 \ldots dx^n \) and the integration is over \(n \)-dimensional space. Note that all integrals considered in this Section are the spatial integrals which contain no integration over the temporal (or time) variable. Furthermore, in this Section we shall apply only the Heaviside units. The use of Gauss units complicates all formulas below, including the expressions for the momenta.

In order to develop the Hamiltonian approach for the electromagnetic field we need to consider all variations of the velocities for each component of the \((n+1)\)-dimensional vector potential \(\bar{A} \). In other words, below we deal with variations of the \(A_{\mu,0} \) derivatives only, where \(\mu = 0, 1, \ldots, n \). In other words, in our Hamiltonian formulation all components of the \((n+1)\)-dimensional vector potential \(\bar{A} \), i.e., \(A_0, A_1, \ldots, A_n \) components, are the generalized coordinates of our problem. For variations of the velocities \(A_{\mu,0} \) our formula, Eq. (24), for \(\delta L \) is written in the form

\[
\delta L = \int F^{\alpha 0} \delta A_{\alpha,0} d^n x = \int B^\alpha \delta A_{\alpha,0} d^n x ,
\]

where \(B^\alpha = F^{\alpha 0} \) are the contravariant components of the \((n+1)\)-dimensional vector momenta \(\bar{B} \). In fact, this equation must be considered as the explicit definition of momenta. However, from this definition and antisymmetry of the electromagnetic field tensor one finds \(B^0 = F^{00} = 0 \). This means that 0-component of momenta \(\bar{B} \) of the electromagnetic field, i.e., \(B^0 \), must be equal zero at all times. According to Dirac \[14\] all similar equations derived at this stage of the Hamiltonian procedure are the primary constraints. In our current case this constraint is better to write in the form of a weak identity \(B^0 \approx 0 \).

By using our momenta \(B^\alpha \) we can introduce the Hamiltonian of the free electromagnetic field in multi-dimensional pseudo-Euclidean (flat) space

\[
H = \int B^\alpha A_{\alpha,0} d^n x - L = \int \left(F^{q0} A_{q,0} + \frac{1}{4} F^{pq} F_{pq} + \frac{1}{4} F^{\rho0} F_{\rho0} + \frac{1}{4} F^{0p} F_{0p} \right) d^n x
= \int \left(F^{q0} A_{q,0} + \frac{1}{4} F^{pq} F_{pq} + \frac{1}{2} F^{\rho0} F_{\rho0} \right) d^n x = \int \mathcal{H} d^n x ,
\]

where \(\mathcal{H} \) is the Hamiltonian space-like density (scalar) which is

\[
\mathcal{H} = F^{q0} A_{q,0} + \frac{1}{4} F^{pq} F_{pq} + \frac{1}{2} F^{\rho0} F_{\rho0} \quad (27)
\]
For the $A_{q,0}$ derivative we substitute its equivalent expression $A_{q,0} = -F_{q0} + A_{0,q}$ (see above) and obtain

$$H = \int \left(\frac{1}{4} F_{pq} F_{pq} - \frac{1}{2} F_{p0} F_{p0} + F^{\mu \alpha} A_{\alpha,0 \mu} \right) d^n x = \int \left(\frac{1}{4} F_{pq} F_{pq} + \frac{1}{2} B^p B^p + B^q A_{0,q} \right) d^n x .$$ \hspace{1cm} (28)

In the last term of this Hamiltonian we can do a partial integration which actually leads to the following replacement

$$F_{q0} A_{0,q} \rightarrow -A_{0} \frac{\partial F_{q0}}{\partial x^q} = -A_{0} (B^q)_q = -A_{0} B^p_{,p} .$$

This reduces our Hamiltonian, Eq.(28), to the form

$$H = \int \left(\frac{1}{4} F_{pq} F_{pq} + \frac{1}{2} B^p B^p - A_{0} B^p_{,p} \right) d^n x .$$ \hspace{1cm} (29)

This is the Hamiltonian of the free electromagnetic field written in the closed analytical form. The corresponding Hamiltonian space-like density takes the form

$$\mathcal{H} = \frac{1}{4} F_{pq} F_{pq} + \frac{1}{2} B^p B^p - A_{0} B^p_{,p} .$$ \hspace{1cm} (30)

Note that by performing these transformations and deriving the Hamiltonian, Eq.(29), we have gained even more than we wanted at the beginning of our procedure. In fact, development of any Hamiltonian approach means that we have a simplectic structure which is defined by the Poisson brackets between basic dynamical (Hamiltonian) variables: $(n+1)$ coordinates A_{μ} and $(n+1)$ momenta B^μ. These Poisson brackets are defined as follows

$$[A_{\mu}(\bar{x}_1), B^\nu(\bar{x}_2)] = g_{\mu}^{\nu} \delta^{(n)}(\bar{x}_1 - \bar{x}_2) , \quad [A_{\mu}(\bar{x}_1), A_{\nu}(\bar{x}_2)] = 0 , \quad [B^\mu(\bar{x}_1), B^\nu(\bar{x}_2)] = 0 , \hspace{1cm} (31)$$

where $g_{\mu}^{\nu} = \delta^{(n)}_{\mu}$ is the Kronecker delta-function, while $\mu = 0, 1, \ldots, n$ and $\nu = 0, 1, \ldots, n$.

In general, the Poisson brackets are used as the main working tool in any Hamiltonian approach developed for a given physical system. Moreover, these brackets allow one to introduce a simplectic $(2n+2)$–dimensional phase space of the Hamiltonian variables $\{A_{\alpha}, B^\beta\}$ which are defined in each point \bar{x} of the $(n+1)$–dimensional space-time manifold. The original configuration space of this problem is the direct sum of the $(n+1)$–dimensional subspace of A_{μ}–coordinates and $(n+1)$–dimensional subspace of $A_{\mu,0}$–velocities. In turn, this allows one to consider and apply various canonical transformations of the Hamiltonian canonical variables. Furthermore, by using the Poisson brackets Eq.(31) we can complete our Hamiltonian approach for the classical electrodynamics and perform its quantization.

To illustrate this fact let us go back to the primary constraint $B^0 \approx 0$ mentioned above. This constraint must remain satisfied at all times. This means its time derivative $\frac{dB^0}{dt}$, which
in our Hamiltonian approach equals to the Poisson bracket \([B^0, H]\), must be zero at all times. This Poisson bracket is easily determined, since in the Hamiltonian, Eq. (29), there is only one term (the last term) which does not commute with the momentum (or primary constraint) \(B^0\)

\[
[B^0, \frac{1}{4} F^{pq} F_{pq} - \frac{1}{2} F^{\rho0} F_{\rho0} - A_0 B^0_q] = -[B^0, A_0] B^p_p = [A_0, B^0] B^p_p = B^p_p
\]

In other words, we have found another weak equality \(B^p_p \approx 0\) which must be obeyed at all times. According to Dirac [15] and [14] this condition is the secondary constraint of our Hamiltonian formulation of multi-dimensional Maxwell theory of radiation. The next Poisson bracket \([B^p_p, H]\) (or \([B^p_p, H]\)) equals zero identically, which indicates clearly that the chain of first-class constraints is closed and our Hamiltonian formulation does not lead to any tertiary and/or other constraints of higher order. Briefly, this means the complete closure (or Dirac closure) of the Hamiltonian procedure for the free electromagnetic field in multi-dimensional space.

A. Further transformations of the Hamiltonian

The first term in the Hamiltonian of the free electromagnetic field in multi-dimensional space, Eq. (29), includes a number of different terms, but it does not contain any of the canonical variables. It is hard to use such a Hamiltonian for analysis and solution of actual problems in classical and/or quantum quantum electrodynamics. Therefore, we have to transform this Hamiltonian to the form which explicitly contain canonical variables in each term. Then, our newly derived Hamiltonian \(H\) and/or the corresponding Hamiltonian density \(\mathcal{H}\) can be applied for solution of many actual problems. For convenience, below we shall deal with the Hamiltonian density \(\mathcal{H}\). Partial integration of the first term in the Hamiltonian, Eq. (29), leads to the following expression for the Hamiltonian density Eq. (30):

\[
\mathcal{H} = (F^{pq})_q A_p + \frac{1}{2} B^p B^p - A_0 B^p_p = \left(\frac{\partial^2 A_p}{\partial x_q \partial x^q} - \frac{\partial^2 A_q}{\partial x_p \partial x^p} \right) A_p + \frac{1}{2} B^p B^p - A_0 B^p_p , \quad (33)
\]

where \(p = 1, 2, \ldots, n\) and \(q = 1, 2, \ldots, n\). For this Hamiltonian density we can write the following system of canonical equations

\[
\frac{dA_p}{dt} = [A_p, \mathcal{H}] = \frac{1}{2} (2B^p) = B^p
\]

(34)
and
\[
\frac{dB^p}{dt} = [B^p, \mathcal{H}] = \left(\frac{\partial^2 A^p}{\partial x_q \partial x^q} - \frac{\partial^2 A^q}{\partial x_q \partial x^p} \right) = \frac{\partial^2 A_p}{\partial x_q \partial x^q} - \frac{\partial^2 A_q}{\partial x_q \partial x^p}.
\] (35)

Combining these two equations one finds
\[
\frac{d^2 A_p}{dt^2} = \frac{\partial^2 A_p}{\partial x_q \partial x^q} - \frac{\partial^2 A_q}{\partial x_q \partial x^p}.
\] (36)

Taking into account the gauge condition \(\frac{\partial A^q}{\partial x_q} = 0 \) (see below) we reduce the last equation to the form
\[
\frac{\partial^2 A_p}{\partial t^2} - \frac{\partial^2 A_p}{\partial x_q \partial x^q} = 0, \quad \text{or} \quad \frac{\partial^2 A}{\partial t^2} - \Delta A = 0,
\] (37)

which is the wave equations written in the \((n + 1)\)-dimensional space-time. The \(n\)-dimensional Laplace operator \(\Delta\) in this equation is
\[
\Delta = \frac{\partial^2}{\partial x_q \partial x^q} = g^{qr} \frac{\partial^2}{\partial x_q \partial x^r} = g_{qr} \frac{\partial^2}{\partial x_q \partial x^r}.
\] (38)

Thus, in our Hamiltonian approach the multi-dimensional wave equation for the free electromagnetic field is derived as a direct consequence of the canonical Hamilton equations obtained for this field. Such a derivation of the wave equation for a free electromagnetic field described here is, probably, the most direct, fast, and logically clear of all known (alternative) methods. In addition to this, we have rigorously derived the two additional conditions for the momenta of the free electromagnetic filed: \(B^0 \approx 0\) and \(B^p_0 \approx 0\). In our Hamiltonian formulation these two weak equations are called the primary and secondary constraints, respectively. It is easy to show that these two constraints are first-class \[14\]. In the four-dimensional case Dirac has suggested \[14\] that these two constraints are the generators (or generating functions) for infinitesimal contact transformations which do not change the actual physical state of the free electromagnetic field, i.e., they are two independent generators of internal symmetry. Twenty years later this statement has rigorously been proven by L. Castellani \[16\]. All these results are the great and obvious advantages of the Dirac’s (Hamiltonian) formulation of the Maxwell theory. Now, by using all first-class constraints, which have been derived during the Hamiltonian formulation, one can determine the true symmetry of any given physical field. For the free electromagnetic field such a symmetry group coincides with the Lorentz \(SO(3,1)\)-group. In general, by operating with the first-class constraints only it is impossible to restore the so-called hidden (or additional) symmetries of
the free electromagnetic field. For instance, for the free electromagnetic field considered in
three-dimensional space the complete group of point symmetry is the $SO(4, 2)$-group which
has fifteen generators $[17]$, while the Lorentz $SO(3, 1)$-group has only six generators. The
powerful method of Bessel-Hagen $[17]$ is based on applications of the second Noether’s the-
orems which is applied to the Lagrangian of the free electromagnetic field. In this short
paper we cannot discuss all details of this interesting problem.

B. First-class constraints and gauge invariance

In this Section we consider a different symmetry (or invariance) of Maxwell equations
which is directly and closely related to the primary and secondary first-class constraints. This
invariance is the well known gauge invariance (or symmetry) of the Maxwell equations. The
gauge invariance of three-dimensional Maxwell equations has been studied by many famous
authors, including Heitler $[18]$, Jackson $[19]$, $[20]$, Gelfand and Fomin $[21]$ and others (see,
e.g., $[22]$). Briefly, the gauge invariance means that we can impose some additional conditions
upon the physical fields, or some of their components, and these additional conditions do
not change solutions of the original problem (but they can change equations!). The gauge
conditions are often used to simplify the Hamiltonian equations of motion either by reducing
the total number of variable fields, or by vanishing some terms (or combinations of terms)
in these equations. Let us discuss the gauge invariance of the free electromagnetic field (or
'pure radiation field' $[18]$) by using the two first-class constraints which we have derived
above: $B^0 \approx 0$ and $B^p_p \approx 0$. By re-writing these two constraints in terms of the components
of the $(d + 1)$–dimensional vector potential $\vec{A} = (\varphi, \vec{A})$ and their temporal derivatives, one
finds

$$B^0 \approx 0 \Rightarrow \frac{\partial \varphi}{\partial t} = 0 \quad \text{and} \quad B^p_p \approx 0 \Rightarrow \frac{\partial}{\partial t} (\text{div} \vec{A}) = 0$$

(39)

where we used the traditional sign of actual equality ‘=’ instead of the weak equality ‘≈’,
which has been used above in the Dirac’s Hamiltonian approach. The two equalities in the
right-hand side of Eq.(39) lead us to the two following to the following equations: $\varphi = \varphi(\vec{r})$ and $\text{div} \vec{A} = C(\vec{r})$, where the scalars $\varphi(\vec{r})$ and $C(\vec{r})$ are the functions of n spatial
coordinates only, and they do not change with time, i.e., they are time-independent scalar
functions. It is clear that these two time-independent scalars are not related in any way
to the Hamiltonian formulation of the Maxwell theory of electromagnetic fields. Indeed, the Hamiltonian approaches describe only time-evolution of the Hamiltonian dynamical variables. For static problems there are other different methods. Therefore, without loss of generality, we can assume that these time-independent scalars $\varphi(\mathbf{r})$ and $C(\mathbf{r})$ equal zero identically at all times.

Based on these arguments we can write the four following equations for the field dynamical variables (or Hamiltonian variables):

$$
\varphi = 0 \ , \ \frac{\partial \varphi}{\partial t} = 0 \ , \ \text{div} \mathbf{A} = 0 \ \text{and} \ \frac{\partial}{\partial t} \left(\text{div} \mathbf{A} \right) = 0 \ ,
$$

which can be considered as the four independent 'basis vectors'. In general, the set of N_g gauge conditions ψ_i is represented as a linear combinations of the four basis vectors from Eq.(40):

$$
\psi_i = \alpha_i \varphi + \beta_i \frac{\partial \varphi}{\partial t} + \gamma_i \text{div} \mathbf{A} + \delta_i \frac{\partial}{\partial t} \left(\text{div} \mathbf{A} \right) = 0 \ ,
$$

where $i = 1, 2, 3, 4$, while $\alpha_i, \beta_i, \gamma_i$ and δ_i are some numerical constants. Let us discuss the principal question about the number N_g which is the number of sufficient (or essential) gauge equations. For the free electromagnetic field N_g equals two, since exactly this number of conditions has been found in the Hamiltonian formulation of electrodynamics developed by Dirac (see above). The two equations $\frac{\partial \varphi}{\partial t} = 0$ and $\frac{\partial}{\partial t} \left(\text{div} \mathbf{A} \right) = 0$ define the so-called Dirac gauge which is discussed above. Formally, for the Dirac gauge we can introduce the third gauge condition $\varphi = 0$ and completely exclude the pair of variables $(\varphi, \frac{\partial \varphi}{\partial t})$ from the list of our dynamical variables. However, this follows not from some general principle, but from the explicit form of the Dirac’s Hamiltonian density, Eq.(30), for the pure radiation field (see above), where the only term which includes the scalar potential φ is written as a product of φ (or A_0) and secondary constraint B_μ^ν. This term equals zero on shell of the first-class constraints.

An alternative choice of two gauge equations $\frac{\partial \varphi}{\partial t} = 0$ and $\text{div} \mathbf{A} = 0$ corresponds to the famous Coulomb gauge, which provides the best choice for many three-dimensional QED problems in atomic and molecular physics. In the Coulomb gauge the scalar potential $\varphi(=A_0)$ is always a static potential, while the $n-$dimensional vector potential \mathbf{A} is always transverse. The Coulomb gauge and other gauges discussed here are easily generalized for $n-$dimensional spaces. Another choice of the basic gauge equations defines the Lorentz
gauge. Formally, this gauge is defined by one (Fermi’s) equation \(\frac{\partial \varphi}{\partial t} + \text{div} \mathbf{A} = 0 \). In respect to the Dirac theory this set of gauge conditions is not complete and a second gauge equation can be added. For instance, one can chose the second condition in the form \(\frac{\partial \varphi}{\partial t} - \text{div} \mathbf{A} = 0 \), which is a relativistic invariant for the electromagnetic wave which propagates from the present to the past. A different choice of the second equation for the Lorentz gauge corresponds to the so-called Heitler’s gauge, which is based on the two equations \(\frac{\partial \varphi}{\partial t} + \text{div} \mathbf{A} = 0 \) and \(\frac{\partial}{\partial t} (\text{div} \mathbf{A}) = 0 \) for the free electromagnetic field [18]. The advantage of this useful gauge is obvious: if these equations hold at \(t = 0 \), then the equation \(\frac{\partial \varphi}{\partial t} + \text{div} \mathbf{A} = 0 \) is always satisfied. These simple examples of different gauges are mentioned here only to illustrate an ultimate power of Dirac’s approach which simplifies internal analysis of various gauges.

Let us discuss the general source of gauges which often arise in different field theories, e.g., in Maxwell theory of radiation, metric gravity, tetrad gravity, etc. Here we want to investigate this problem from the Hamiltonian point of view. First, let us assume that we have imposed all four conditions from Eq.(40) on our dynamical variables. What does it mean for these variables? The first two equations \(\varphi = 0 \) and \(\frac{\partial \varphi}{\partial t} = 0 \) mean that the variable \(\varphi \) and corresponding momentum \(B^0 \) (or velocity \(\frac{\partial \varphi}{\partial t} \)) are not dynamical (Lagrange) variables of our problem. In other words, we have to exclude these two variables before application of our Hamiltonian procedure. The same statement is true about the two equations \(\text{div} \mathbf{A} = 0 \) and \(\frac{\partial}{\partial t} (\text{div} \mathbf{A}) = 0 \), but \(\text{div} \mathbf{A} \) is not a regular dynamical variable of the original problem. In reality, the function \(\text{div} \mathbf{A} \) appears in the secondary constraint in the Dirac’s Hamiltonian formulation developed for the pure radiation filed. This function is a linear combination of the first-order derivatives of covariant components of the multi-dimensional vector potential \(\mathbf{A} \). The Hamiltonian canonical variables do not include any sum of the space-like derivatives of this potential. Therefore, it is not clear how we can exclude the scalar \(\text{div} \mathbf{A} \) and its time-derivative from the list of our canonical variables. However, the main obstacle on the way of exclusion the four variables, Eq.(40), follows from the fact that we have only two gauge equations (not four!). This means that we cannot correctly exclude all four variables and have to keep them in our procedure. These ‘extra’ variables survive our Hamiltonian procedure only in the form of additional equations for the Hamiltonian dynamical variables. In other words, the gauge conditions are the integral parts of any Hamiltonian approach developed for an arbitrary physical field. This is the general principle which explains why different field theories with the first-class constraints always have some number of non-trivial
gauge conditions (or equations).

However, this is not the end of the story. Let us look at the constraints in multi-dimensional electrodynamics from a different point of view. Consider the following two-parametric \((\alpha, \beta)\)-family of the Hamiltonian densities

\[
\mathcal{H}(\alpha, \beta) = \frac{1}{4} F^{pq} F_{pq} + \frac{1}{2} B^p B^p - A_0 B^p_\nu + \left(\alpha B^0 + \beta B^p_{\nu}\right)^2. \tag{42}
\]

where \(B^0\) and \(B^p_\nu\) are the functions of the canonical variables of the problem. At this moment we cannot assume that there are some restrictions on these two quantities. In other words, for now the \(B^0\) and \(B^p_\nu\) values are not the constraints yet.

In general, to operate with the two-parametric family of Hamiltonian densities \(\mathcal{H}(\alpha, \beta)\) in some constructive way we have to formulate the following variational principle: the actual (or true) Hamiltonian density coincides with the minimal Hamiltonian density \(\mathcal{H}(\alpha, \beta), \tag{42}\), in respect to possible variations of the two numerical parameters \(\alpha\) and \(\beta\). This principle immediately leads to the two following weak identities:

\[
\left(\alpha B^0 + \beta B^p_{\nu}\right) B^0 \approx 0 \quad \text{and} \quad \left(\alpha B^0 + \beta B^p_{\nu}\right) B^p_\nu \approx 0. \tag{43}
\]

One obvious solution of this system gives us the two Dirac’s constraints \(B^0 \approx 0\) and \(B^p_\nu \approx 0\) which have been derived above. In general, there are other solutions of the system Eq.(43), and one of them can be written in the form

\[
\alpha_1 B^0 + \beta_1 B^p \approx 0 \quad \text{and} \quad \alpha_2 B^0 + \beta_2 B^p \approx 0. \tag{44}
\]

where the coefficients \(\alpha_1, \beta_1, \alpha_2\) and \(\beta_2\) form a regular (i.e., invertible) \(2 \times 2\) matrix. The principle formulated above is called the optimal principle for the constrained motions, since in actual physical systems the motion along first-class constraints is optimal, or it can be considered as optimal.

VI. MULTI-DIMENSIONAL MAXWELL EQUATIONS IN NON-FLAT SPACES

The Maxwell equations can be written in the covariant form which is more appropriate in applications to the metric gravity (or general relativity) in multi-dimensional Riemannian spaces. In this and next Sections we deal with the multi-dimensional Riemannian spaces only. These spaces are not flat, and they are often called the spaces of non-zero curvature. Indeed,
the corresponding equations, Eq. (17) and (19), for the flat multi-dimensional spaces have already been written in the tensor (or covariant) form. Furthermore, the electromagnetic field tensor $F_{\alpha\beta}$, which has been defined by Eq. (8), is truly skew-symmetric in respect to permutations of its indexes, i.e., $F_{\alpha\beta} = -F_{\beta\alpha}$ and $F_{\alpha\beta} = -F_{\beta\alpha}$. These two facts simplify the process of derivation of the Maxwell equations in the covariant form. In fact, to derive the covariant form of Maxwell equations one needs to replace all usual derivatives written in Cartesian coordinates by the tensor derivatives. After such a replacement the first group of Maxwell equations in multi-dimensional Riemannian spaces takes the form

$$\nabla_{\beta} F_{\gamma\lambda} + \nabla_{\lambda} F_{\beta\gamma} + \nabla_{\gamma} F_{\lambda\beta} = 0 \quad \text{(or} \quad \nabla_{\beta} F_{\gamma\lambda} = \nabla_{\gamma} F_{\beta\lambda} - \nabla_{\lambda} F_{\beta\gamma} \text{)}, \quad (45)$$

where ∇_{β} is the tensor (or covariant) derivative, i.e.,

$$\nabla_{\beta} F_{\gamma\lambda} = \frac{\partial F_{\gamma\lambda}}{\partial x^{\beta}} - \Gamma^{\mu}_{\gamma\beta} F_{\mu\lambda} - \Gamma^{\mu}_{\lambda\beta} F_{\gamma\mu}, \quad (46)$$

where $\Gamma^{\gamma}_{\alpha\beta} = \frac{1}{2} \left(\frac{\partial g_{\alpha\beta}}{\partial x^{\gamma}} + \frac{\partial g_{\beta\gamma}}{\partial x^{\alpha}} - \frac{\partial g_{\alpha\gamma}}{\partial x^{\beta}} \right) = \Gamma^{\gamma}_{\beta\alpha}$ are the Cristoffel symbols of the second kind. It is interesting to note that the form of Eq. (45) does not depend explicitly upon the parameter n which defines the dimension of Riemann space. By performing a few simple transformations we can reduce the formula, Eq. (46), to the form which exactly coincides with Eq. (17). This has been noticed in many textbooks on three-dimensional electrodynamics (see, e.g., [5]).

The second group of Maxwell equations for multi-dimensional spaces of non-zero curvature is written in the form (in Gauss units)

$$\nabla_{\beta} F^{\alpha\beta} = \frac{1}{\sqrt{-g}} \left(\frac{\partial \sqrt{-g} F^{\alpha\beta}}{\partial x^{\beta}} \right) = -\frac{n\pi}{c\Gamma(1 + \frac{n}{2})} j^{\alpha} = -\frac{f(n)}{c} j^{\alpha}, \quad (47)$$

since the tensor $F^{\alpha\beta}$ is antisymmetric. In this equation g is the determinant of the fundamental tensor which is always negative in the metric gravity. By applying the operator ∇_{α} to the last formula one finds

$$\nabla_{\alpha} \nabla_{\beta} F^{\alpha\beta} = -\frac{f(n)}{c} \nabla_{\alpha} j^{\alpha} \implies -\frac{f(n)}{c} \nabla_{\beta} j^{\beta} = \nabla_{\beta} \nabla_{\alpha} F^{\beta\alpha} = -\nabla_{\beta} \nabla_{\alpha} F^{\alpha\beta}. \quad (48)$$

In other words, the expression in the left-hand side of this equation(s) can be re-written in the following form

$$\frac{1}{2} \left(\nabla_{\alpha} \nabla_{\beta} + \nabla_{\beta} \nabla_{\alpha} \right) F^{\alpha\beta}. \quad (49)$$
which equals zero identically, since here the truly symmetric tensor operator (upon \(\alpha \leftrightarrow \beta \) permutation) is applied to an antisymmetric tensor (upon the same permutations). Finally, one finds that \(\nabla_\alpha j^\alpha = 0 \), i.e., the conservation law for electric charge written in the \((n + 1)\)–dimensional Riemannian space.

In many books and textbooks on electrodynamics derivation of Maxwell equations in the manifestly covariant form is traditionally considered as the final step. Similar approach, however, ignores an additional group of governing equations which are obeyed for the electromagnetic field in the presence of actual gravitational field(s). These additional equations determine general properties, time-evolution and propagation of electromagnetic field(s) in the metric gravitational field(s). Explicit derivation of these additional governing equations for the electromagnetic field tensor is straightforward. Indeed, if the electromagnetic field tensor \(F_{\alpha\beta} \) is considered in the metric gravity, then the following equations must be obeyed

\[
\nabla_\lambda \nabla_\sigma F^\beta_{\alpha} - \nabla_\sigma \nabla_\lambda F^\beta_{\alpha} = F^\mu_{\alpha} R^\beta_{\mu\lambda\sigma} - F^\beta_{\mu} R^\mu_{\sigma\lambda\alpha} ,
\]

or in a slightly different form

\[
\nabla_\lambda \nabla_\sigma F_{\alpha\beta} - \nabla_\sigma \nabla_\lambda F_{\alpha\beta} = -F_{\mu\beta} R^\mu_{\sigma\lambda\alpha} - F_{\alpha\mu} R^\mu_{\sigma\lambda\beta} + F_{\mu\beta} R^\mu_{\sigma\lambda\alpha} ,
\]

where the notation \(R^\sigma_{\alpha\beta\gamma} = g^{\alpha\mu} R_{\alpha\beta\gamma\mu} \) is the Riemann-Cristoffel tensor of the fourth rank which is three times covariant and once contravariant (see, e.g., [6], [7]). In turn, the \(R_{\alpha\beta\gamma\sigma} \) is the Riemann curvature tensor (or Riemann-Cristoffel tensor)

\[
R_{\alpha\beta\gamma\sigma} = \frac{1}{2} \left[\frac{\partial^2 g_{\alpha\sigma}}{\partial x^\beta \partial x^\gamma} + \frac{\partial^2 g_{\beta\gamma}}{\partial x^\alpha \partial x^\sigma} - \frac{\partial^2 g_{\gamma\sigma}}{\partial x^\beta \partial x^\alpha} - \frac{\partial^2 g_{\alpha\beta}}{\partial x^\gamma \partial x^\sigma} \right] + \Gamma_{\rho,\alpha\sigma} \Gamma^\rho_{\beta\gamma} - \Gamma_{\rho,\beta\sigma} \Gamma^\rho_{\alpha\gamma} ,
\]

where \(\Gamma_{\gamma,\mu\nu} = \frac{1}{2} \left(\frac{\partial g_{\mu\nu}}{\partial x^\gamma} + \frac{\partial g_{\nu\gamma}}{\partial x^\mu} - \frac{\partial g_{\mu\nu}}{\partial x^\gamma} \right) \) are the Cristoffel symbols of the first kind. The Riemann-Cristoffel tensor defined in Eq.(52) is a covariant tensor of the fourth rank. Note that similar problems have been extensively studied since 1920’s in numerous papers and books on General Relativity (see, e.g., [23], [24] and references therein). As follows from these equations, Eqs.(50) - (51), propagation and other properties of the ‘free’ electromagnetic fields in multi-dimensional spaces of non-zero curvature (or in non-flat spaces) are always affected by the gravitational field(s). For relatively small gravitational field(s) Eqs.(50) - (51) can be considered as small perturbations to the Maxwell equations. However, in strong gravitational fields, where some of the \(\left| \frac{\partial g_{\alpha\beta}}{\partial x^\gamma} \right| \) derivatives are very large, the laws of propagation and other properties of the electromagnetic field(s) can significantly be changed.
by the gravity. Briefly, we can say say that in similar non-flat spaces the actual properties of electromagnetic field(s) cannot be described by the Maxwell equations only. Furthermore, in more complex ‘combined’ theories of gravity and radiation, e.g., in the well known Born-Infeld theory (see, e.g., \[25\]), the total fundamental tensor is represented as a function, e.g., as a sum, of the gravitational $g_{\alpha\beta}$ and electromagnetic $F_{\alpha\beta}$ tensors, the time-evolution and propagation of electromagnetic field(s) is described by the non-linear, well-coupled equations.

A. Multi-dimensional electromagnetic field in metric gravity

Now, we are ready to vary the sum of action integrals for the gravitational S_g and electromagnetic S_f fields, i.e., to vary the $\delta(S_g + S_f)$ action. The both fields are considered as free, i.e., there are no masses, no free electric charges and no electric currents in the area of our interest. Our goal in this Section is to derive (variationally) the governing Einstein equations (in multi-dimensions) in the presence of electromagnetic field. To achieve this goal we have to vary the gravitational field only, i.e., the components of the metric tensor $g_{\alpha\beta}$ (or $\tilde{g}_{\alpha\beta}$). The variation of the gravitational action S_g is written in the form (see, e.g., \[5\] and \[24\])

$$\delta S_g = - \frac{c}{f(n)K} \int (R_{\alpha\beta} - \frac{1}{2} g_{\alpha\beta} R) \delta g^{\alpha\beta} \sqrt{-g} d\Omega , \quad (53)$$

where $R_{\alpha\beta}$ is the Ricci tensor. In old books \[6\] they have used the the Einstein tensor which is $G_{\alpha\beta} = - R_{\alpha\beta}$. The explicit form of the Ricci tensor is

$$R_{\alpha\beta} = \frac{\partial \Gamma^\gamma_{\alpha\gamma}}{\partial x^\beta} - \frac{\partial \Gamma^\gamma_{\beta\gamma}}{\partial x^\alpha} + \Gamma^\gamma_{\alpha\beta} \Gamma^\lambda_{\gamma\lambda} - \Gamma^\lambda_{\alpha\gamma} \Gamma^\gamma_{\beta\lambda} , \quad \text{or} \quad R_{\alpha\beta} = g^{\mu\nu} R_{\mu\alpha\beta\nu} = g^{\mu\nu} R_{\nu\beta\alpha\mu} = R_{\beta\alpha} \quad (54)$$

and $R = g^{\alpha\beta} R_{\alpha\beta}$ is the scalar (or Gauss) curvature of space. Also in this equation the notation $K = \frac{k}{c^2} = 7.4259155 \cdot 10^{-29} \text{ cm} \cdot \text{sec}^{-1}$ denotes the universal (or n–independent) gravitational constant. Similar variation of the electromagnetic action S_f is

$$\delta S_f = \frac{2}{c} \int T_{\alpha\beta} \delta g^{\alpha\beta} \sqrt{-g} d\Omega = \frac{2}{cf(n)} \int \left(F_{\alpha\gamma} F^\gamma_{\beta} + \frac{1}{4} g_{\alpha\beta} F_{\gamma\rho} F^{\gamma\rho} \right) \delta g^{\alpha\beta} \sqrt{-g} d\Omega . \quad (55)$$

Therefore, for the variation of the sum of these two actions we can write

$$\delta(S_g + S_f) = \frac{c}{f(n)K} \int \left(-R_{\alpha\beta} + \frac{1}{2} g_{\alpha\beta} R + \frac{2f(n)K}{c^2} T_{\alpha\beta} \right) \delta g^{\alpha\beta} \sqrt{-g} d\Omega . \quad (56)$$

Since variations of the gravitational field are arbitrary, then from this equation one finds

$$R_{\alpha\beta} - \frac{1}{2} g_{\alpha\beta} R = \frac{2K}{c^2} \left(F_{\alpha\gamma} F^\gamma_{\beta} + \frac{1}{4} g_{\alpha\beta} F_{\gamma\rho} F^{\gamma\rho} \right) = \frac{2K}{c^2} \tilde{T}_{\alpha\beta} . \quad (57)$$
where $\tilde{T}_{\alpha\beta} = F_{\alpha\gamma}F^\gamma_{\beta} + \frac{1}{4}g_{\alpha\beta}F_{\gamma\rho}F^{\gamma\rho}$ is the reduced (or universal) energy-momentum tensor of the electromagnetic field which does not include the hyper-angular $f(n)$ factor. The last equation, Eq.(57), is the well known Einstein equation for the gravitational and electromagnetic field. This equation is a true tensor equation, since the both parts of this equation do not include the geometrical (or hyper-angular) factor $f(n)$. In other words, by looking at this equation one cannot say what is the actual dimension of our working space. For this reason Flanders \cite{11} and others have criticized the classical tensor analysis: “In classical tensor analysis, one never knows what is the range of applicability simply because one is never told what the space is.” However, for the purposes of this study this fact is an obvious advantage. Any of the true tensor equations, which appear in fundamental physics, cannot include factors which explicitly depend upon the dimension n (or $n + 1$) of the working Riemann space. Moreover, this is a simple criterion which can be used to separate the true (also universal, or absolute) tensor equations from similar tensor-like equations which can be correct only for some selected Riemannian spaces. As follows from arguments presented above the both Einstein equations of the metric gravity for the free gravitational field, when $\tilde{T}_{\alpha\beta} = 0$ in Eq.(57), and Einstein equations of metric gravity in the presence of electromagnetic field, Eq.(57), are the true tensor equations.

B. Radiation from a rapidly moving electric charge

As is well know (see, e.g., \cite{5} and \cite{19}) any electric charge, which accelerates in the electromagnetic field, always emits EM-radiation. Nowadays, this statement is repeated so often that a large number of students and researchers sincerely believe that EM-radiation can only be emitted in the presence of electromagnetic field. In general, this is not an absolute true and emission of EM-radiation is also possible in the presence of a strong (or rapidly varying) gravitational field. Below, we want to prove this statement and, for simplicity, here we restrict our analysis to the three-dimensional space only. However, all our formulas will be written in the explicitly covariant form. This means that all these formulas can be generalized to describe the actual situation in multi-dimensional spaces too. In general relativity the formula for the radiated four-momentum dP^μ is written in the form (see, e.g.,
\[dP_\kappa = -\frac{2e^2}{3c}g_{\alpha\mu}(\frac{d^2 x^\alpha}{ds^2})(\frac{d^2 x^\mu}{ds^2})dx^\kappa = -\frac{2e^2}{3c}g_{\alpha\mu}(\frac{du^\alpha}{ds})(\frac{du^\mu}{ds})u^\kappa ds , \]

where \(u^\beta = \frac{dx^\beta}{ds} \) is the corresponding ‘velocity’. Now, by taking the expression for the acceleration from, Eq. (10), one finds

\[dP_\kappa = -\frac{2e^2}{3c}g_{\alpha\mu}(\Gamma^\alpha_{\beta\gamma}u^\beta u^\gamma - \frac{e}{mc^2}F^\alpha_\beta u^\beta)(\Gamma^\mu_{\lambda\sigma}u^\lambda u^\sigma - \frac{e}{mc^2}F^\mu_\sigma u^\sigma)u^\kappa ds = -\frac{2e^2}{3c} \times \]

\[\left(g_{\alpha\mu}\Gamma^\alpha_{\beta\gamma}\Gamma^\mu_{\lambda\sigma}u^\beta u^\gamma u^\lambda u^\sigma u^\kappa - \frac{2e}{mc^2}g_{\alpha\mu}\Gamma^\alpha_{\beta\gamma}F^\mu_\sigma u^\beta u^\gamma u^\sigma u^\kappa + \frac{e^2}{m^2c^4}g_{\alpha\mu}F^\alpha_\beta F^\mu_\kappa u^\beta u^\sigma u^\kappa \right) \]

\[= T^\kappa_1 + T^\kappa_2 + T^\kappa_3 = -\frac{2e^2}{3c}\Gamma^\alpha_{\beta\gamma}\Gamma_{\alpha,\lambda\sigma}u^\beta u^\gamma u^\lambda u^\sigma u^\kappa + \frac{4e^2}{3mc^3}\Gamma^\alpha_{\beta\gamma}F_{\alpha\sigma}u^\beta u^\gamma u^\sigma u^\kappa \]

\[-\frac{2e^4}{3m^2c^5}F^\kappa_\beta F_{\alpha\sigma}u^\beta u^\sigma u^\kappa , \]

where the last term (vector) \(T^\kappa_3 = -\frac{2e^4}{3m^2c^5}F^\kappa_\beta F_{\alpha\sigma}u^\beta u^\sigma u^\kappa \). This term describes the emission of EM-radiation by a single electrical charge which is rapidly moving in some electromagnetic field. It was extensively discussed in numerous books on classical electrodynamics (see, e.g., [1] and [19]) and below we do not want to repeat these discussions. The first term in Eq. \((59) \)

\(T^\kappa_1 = -\frac{2e^2}{3c}\Gamma^\alpha_{\beta\gamma}\Gamma_{\alpha,\lambda\sigma}u^\beta u^\gamma u^\lambda u^\sigma u^\kappa \) is also a vector. This vector represents the emission of EM-radiation by a point electric charge which rapidly moves in the gravitational field. The second term (vector) in Eq. \((59) \) describes the interference between gravitational and electromagnetic emissions of the EM-field. The explicit formula for this term is \(T^\kappa_2 = \frac{4e^2}{3mc^3}\Gamma^\alpha_{\beta\gamma}F_{\alpha\sigma}u^\beta u^\gamma u^\sigma u^\kappa \).

There are a number of interesting observations which directly follow from the three formulas for the \(T^\kappa_1, T^\kappa_2 \) and \(T^\kappa_3 \) terms in Eq. \((59) \). First, let us note that the \(T^\kappa_1 \) term does not contain any particle mass. This means that one fast electron and/or one fast proton, which move with the equal velocities in a pure gravitational field, will always emit equal amount of radiation. This the main distinguishing feature of the gravitational emission of EM-radiation. Second, this term is a fifth-order power function of the velocities. Therefore, it is clear that overall contribution of this term will rapidly increase for relativistic particles which move with the velocities close to the speed of light in vacuum \(c \). It is also clear that usually in Eq. \((59) \) the third term \(T^\kappa_3 \) is substantially larger than two other terms. In other words, the gravitational emission of EM-radiation is hard to observe at ‘normal’ gravitational conditions. However, in strong gravitational fields, where the absolute values of Cristoffel symbols are very large (or the \(|\frac{\partial g_{\alpha\beta}}{\partial x^\gamma}| \) derivatives are very large) the situation can be different. The second condition is simple: the rapidly moving particle must be truly relativistic, i.e., it
must move with the velocity which is close to the speed of light $v \geq 0.9c$ in respect to the system where the rapidly changing gravitational field was originated. If these two conditions are obeyed, then one can see a relatively intense gravitational EM-radiation which is emitted by a single relativistic particle which has non-zero electric charge e.

VII. CONCLUSIONS

We have generalized the three-dimensional Maxwell theory of radiation to multi-dimensional flat and curved spaces. Some equations derived in three-dimensional Maxwell electrodynamics do not change their form in multi-dimensional space. In other equations we have to make a number of changes. In fact, all properties of the electromagnetic field are described by the $(n+1)$-dimensional vector potential $\vec{A} = (\phi, \vec{A})$, while interaction between any particle and electromagnetic field are described by one experimental parameter, which is the electric charge e of this particle. The governing Maxwell equations for the multi-dimensional electromagnetic field have been derived and written in the covariant (or tensor) form. These equations include the geometrical (or hyper-angular) factor $f(n) = \frac{\pi^{\frac{n}{2}}}{\Gamma\left(1 + \frac{n}{2}\right)}$, which explicitly depend upon the dimension of space n.

The Hamiltonian formulation of the Maxwell radiation field in multi-dimensional spaces is developed and investigated. We have found that the total number of first-class constraints in this Hamiltonian formulation equals two (one primary and one secondary constraints). This number exactly coincides with the number of first-class constraints in analogous Hamiltonian formulation developed earlier by Dirac [14] for the pure radiation field in three-dimensional space. In other words, the total number of first-class constraints in any Hamiltonian formulation developed for the free radiation field does not depend upon the dimension of space n. To understand how lucky we are with the Hamiltonian formulations of electrodynamics, let us note that in the $(n+1)$—dimensional metric gravity we always have $(n+1)$ primary and $(n+1)$ secondary first-class constraints. In addition to this, in many sets of canonical variables the explicit form of all arising secondary constraints are very cumbersome (see, e.g., [26] - [29]) and this substantially complicates all operations with these values. By using these primary and secondary first class constraints we have investigated the gauge conditions in multi-dimensional electrodynamics.

Also, in the last Section the Maxwell equations in multi-dimensional non-flat spaces are
written in the manifestly covariant form. It is shown that any gravitation field changes the actual properties, time-evolution and space-time propagation of electromagnetic field(s). For gravitation fields with large and very large connectivity coefficients $\Gamma^\alpha_{\beta\gamma}$ the ‘pure’ radiation field cannot be described by the Maxwell equations only. Additional equations for the antisymmetric tensor of the electromagnetic field $F_{\alpha\beta}$ (and $F_{\beta\alpha}$) has been derived in this study (see, Eqs.(50) and (51)). Analogous equation for the reduced energy-momentum tensor of electromagnetic field is now written in the true tensor form (see, Eq.(57)), which does not contain any $n-$dependent factor.

In conclusion, we wish to note that investigation of multi-dimensional Maxwell equations is not a pure academic problem. In fact, there are a number of advantages which one can gain by performing such an investigation. First, it does helps to clarify additional and interesting features of Maxwell’s equations in the usual three-dimensional space (or in four-dimensional space-time). By working only with the three-dimensional Maxwell equations in our everyday life we simply do not pay attention on some fundamental and amazing facts. Second, if we have a complete and correct formulation for Maxwell’s electrodynamics in multi-dimensional spaces, then it possible to develop the so-called unified theories of various fields, which include an electromagnetic field. In particular, the correct unified theory of the gravitational and electromagnetic fields in multi-dimensional spaces is of great interest in modern theoretical physics. Third, recently in experiments in high-energy physics it has been noted that at very high collision energies many results can be represented to very good numerical accuracy and with higher symmetry, if we introduce multi-dimensional spaces at the intermediate stages of calculations. This fact is not completely unexpected, but we need to understand the internal nature of such a phenomenon. If multi-dimensional spaces do play a significant role during such processes, then it can change a lot in modern physics and natural philosophy. Note that some of the problems mentioned in this study have been considered earlier (see, e.g., [30] - [33]).

Appendix A: Scalar electrodynamics

In this study our analysis of electrodynamics in multi-dimensional spaces was restricted to the spaces which have geometrical dimension $n \geq 3$. For the sake of completeness,
now we want to consider the one- and two-dimensional spaces. To investigate these small-dimensional cases we shall apply one effective method which is based on the so-called scalar electrodynamics. This ‘pre-Maxwell’ method was described and briefly discussed in [4].

Scalar electrodynamics can be introduced in three-dimensional space where one can compare the arising equations with the usual Maxwell equations. The foundation of scalar electrodynamics is the well known theorem from vector calculus (see, e.g., [6]) which stays that an arbitrary vector \mathbf{B} in three-dimensional space can be represented in the following two-gradient form

$$\mathbf{B} = \Psi_1 \nabla \Psi_2 + \nabla \Psi_3,$$

(A1)

where Ψ_1, Ψ_2 and Ψ_3 three arbitrary analytical functions of three spatial and one temporal coordinates. In general, each of these functions can be real, or complex. This formula can directly be applied to the vector potential of the electromagnetic field \mathbf{A}. The four-dimensional vector potential (φ, \mathbf{A}) and intensities of electric \mathbf{E} and magnetic \mathbf{H} field are also represented in terms of the four Ψ_1, Ψ_2, Ψ_3 and φ scalar functions. For two- and one-dimensional (geometrical) spaces the total number of such scalar functions equals three and two, respectively.

To derive the explicit expressions and obtain the governing equations of electrodynamics one needs to use the two following formulas which play a central role in scalar electrodynamics

$$\text{curl} \mathbf{A} = \nabla \Psi_1 \times \nabla \Psi_2 \quad \text{and} \quad \text{div} \mathbf{A} = \Psi_1 \Delta \Psi_2 + \nabla \Psi_1 \cdot \nabla \Psi_2 + \Delta \Psi_3$$

(A2)

As follows from Eq.(A2) in scalar electrodynamics there are a number of advantages to choose some of the Ψ_1, Ψ_2 and Ψ_3 functions (where it is possible) as harmonic functions for which $\Delta \Psi_k = 0$, where $k = 1, 2, 3$. Such a choice of functions reduces the total number of terms in Maxwell equations and gauge conditions. In turn, this simplify analysis and solutions of many problems in scalar electrodynamics. In fact, in three-dimensional spaces the scalar electrodynamics cannot compete with the traditional vector approach. The main reason is obvious, since the regular Maxwell equations are linear for all components of the electromagnetic field. However, some selected three-dimensional problems can be solved (completely and accurately), if we apply the method of scalar electrodynamics.

For two-dimensional spaces equation, Eq.(A1), take the form: $\mathbf{A} = \Psi_1 \nabla \Psi_2$, since in this case we can assume that $\Psi_3 = 0$. The equality $\mathbf{A} \cdot \text{curl} \mathbf{A} = 0$ is a necessary and sufficient
condition to represent the vector \mathbf{A} in such a form (it does obey in this case). This leads to the following equations:

$$\mathbf{H} = \text{curl} \mathbf{A} = \nabla \Psi_1 \times \nabla \Psi_2 \quad \text{and} \quad \text{div} \mathbf{A} = \Psi_1 \Delta \Psi_2 + \nabla \Psi_1 \cdot \nabla \Psi_2 \ . \quad (A3)$$

We also need the explicit expression for the $\text{curl} \mathbf{H}$

$$\text{curl} \mathbf{H} = \nabla \Psi_1 \Delta \Psi_2 - \nabla \Psi_2 \Delta \Psi_1 + (\nabla \Psi_1 \cdot \nabla) \Psi_2 - (\nabla \Psi_2 \cdot \nabla) \Psi_1 = \nabla \Psi_1 \Delta \Psi_2 - \nabla \Psi_2 \Delta \Psi_1$$

Also note that if Ψ_2 is chosen as a harmonic function, i.e., $\Delta \Psi_2 = 0$, and $\nabla \Psi_1 \perp \nabla \Psi_2$, then the gauge condition is obeyed automatically and solutions of a large number of problems known in two-dimensional electrodynamics simplifies significantly. In general, it can be shown that the both two-dimensional electrodynamics and two-dimensional electrostatics include a number of operations with the harmonic functions (see, e.g., [34] - [36]). In turn, this leads to numerous successful applications of conformal mapping methods to describe the two-dimensional electromagnetic waves and determine solutions of numerous problems in two-dimensional electrostatics.

In one dimensional case from equation, Eq.(A1), one finds $\mathbf{A} = \nabla \Psi_2 = \nabla \Psi$. Therefore, the curl of the vector potential equals zero identically. This means that there is no classical magnetic field in one-dimensional space. Moreover, any time-variations of the electric field cannot generate any magnetic field, i.e., we have no Faraday’s law in one-dimensional (geometrical) space. In other words, the one-dimensional electrodynamics does not exist. On the other hand, many one-dimensional electrostatic problems which include the potential and intensity of the electric field only, can still be formulated and solved correctly.

[1] A.M. Frolov, Physics of Atomic Nuclei (Yad. Fiz.), 84(5), 750 (2021).
[2] J.C. Maxwell, Phil. Trans. Royal Society of London, 155, 459 (1865).
[3] J.C. Maxwell, A Treatise on Electricity and Magnetism, in 2 vols. (Oxford University Press, Oxford, 1873).
[4] A.M. Frolov, On the 150th anniversary of Maxwell equations, Journal of Multidisciplinary Engineering Science and Technology (JMEST), 2, 361 (2015).
[5] L.D. Landau and E.M. Lifshitz, *The Classical Theory of Fields*, 4th ed. (Pergamon Press Ltd., London, 1975).

[6] N. E. Kochin, *Vector Calculus and the Principles of Tensor Calculus*, 9th ed. (USSR Acad. of Sciences Publishing, Moscow, 1965).

[7] P.K. Dashevskii, *Riemannian Geometry and Tensor Analysis*, 3rd ed. (Nauka, Moscow, 1967).

[8] A.A. Sokolov, *Introduction in Quantum Electrodynamics*, (Fizmatgiz, Moscow, 1958) [in Russian].

[9] A.A. Sokolov and I.M. Ternov, *Relativistic electron*, 2nd ed. (Nauka, Moscow), (1983), Chpts. 1 and 2 [in Russian].

[10] I.S. Gradstein and I.M. Ryzhik, *Tables of Integrals, Series and Products*, 6th revised ed. (Academic Press, New York, 2000).

[11] H. Flanders, *Differential Forms with Applications to the Physical Sciences*, (Dover Publications, Inc., Mineola, New York, 1989).

[12] P. A. M. Dirac, Physical Review 74, 817 (1948).

[13] E. Amaldi, *On the Dirac Magnetic Poles*, in: *Old and New Problems in Elementary Particles*, Ed. G. Puppi, (Academic Press, New York, 1968).

[14] P. A. M. Dirac, *Lectures on Quantum Mechanics*, (Belfer Graduate School of Sciences, Yeshiva University, New York, 1964).

[15] P. A. M. Dirac, Canadian Journal of Mathematics 2, 129 (1950).

[16] L. Castellani, Annals of Physics 143, 357 (1982).

[17] E. Bessel-Hagen, Mathematische Annalen 84, 258 (1921).

[18] W. Heitler, *The Quantum Theory of Radiation*, 3rd ed. (Oxford University Press, London, UK, 1954).

[19] J.D. Jackson, *Classical Electrodynamics*, 2nd. ed. (J. Wiley & Sons Inc., New York, 1975), Sect. 6.5

[20] J.D. Jackson, American Journal of Physics 70, 917 (2002).

[21] I. M. Gelfand and S. V. Fomin, *Calculus of Variations*, (Dover Publ., Inc., Mineola, New York, 1990), Chpt. 7.

[22] W. Engelhardt, Annals de la Fondation Louis de Broglie, 30, 157 (2005).

[23] R.C. Tolmen, *Relativity, Thermodynamics and Cosmology*, 3rd ed. (Oxford at the Clarendon Press, Oxford, UK, 1969), Chpt. VIII.
[24] M. Carmeli, *Classical Fields: General Relativity and Gauge Theory* (World Scientific Publ. Co., Singapore, 2002).

[25] J. Rafelski, W. Greiner and L.P. Fulcher, Nuovo Cimento **13 B**, 135 (1973).

[26] P. A. M. Dirac, Proceedings of the Royal Society **246**, 333 (1958).

[27] N. Kiriushcheva, S. V. Kuzmin, C. Racnkor, and S. R. Valluri, Physics Letters A **372**, 5101 (2008).

[28] A. M. Frolov, N. Kiriushcheva, and S. V. Kuzmin, Gravitation and Cosmology **17**, 314 (2011).

[29] A. M. Frolov, Canadian Journal of Physics **98**, 405 (2020).

[30] P. Lemos, G.M. Quinta and O.B. Zaslavskii, Phys. Rev. D **91**, 104027 (2015).

[31] P.V. Kratovich and Ju.V. Tchemarina, arXiv: 1805.02698 (2018).

[32] Z. Yousaf, K. Bamba and U. Ghafoor, Physical Review D **100**, 024062 (2019).

[33] D. Pugliese and J.A. Valiente Kroon, Relativity and Gravitation **45**, 1247 (2013).

[34] A.N. Tikhonov and A.A. Samarskii, *Equations of Mathematical Physics*, (Dover Publ., Inc., 1990), Chpt. IV.

[35] W.R. Smythe, *Static and Dynamic Electricity*, (McGraw-Hill, Inc., New York, 1950).

[36] L.D. Landau and E.M. Lifshitz, *Electrodynamics of Continuous Media*, 2nd revised ed. (Pergamon Press Ltd., London, 1984).