Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Clinical predictors of mortality of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection: A cohort study

Sarah H. Alfaraj, Jaffar A. Al-Tawfiq, Ayed Y. Assiri, Nojoom A. Alzahrani, Amal A. Alanazi, Ziad A. Memish

Abstract

Background: Since the emergence of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in 2012, the virus had caused a high case fatality rate. The clinical presentation of MERS varied from asymptomatic to severe bilateral pneumonia, depending on the case definition and surveillance strategies. There are few studies examining the mortality predictors in this disease. In this study, we examined clinical predictors of mortality of Middle East Respiratory Syndrome (MERS) infection.

Methods: This is a retrospective analysis of symptomatic admitted patients to a large tertiary MERS-CoV center in Saudi Arabia over the period from April 2014 to March 2018. Clinical and laboratory data were collected and analysis was done using a binary regression model.

Results: A total of 314 symptomatic MERS-CoV patients were included in the analysis, with a mean age of 48 (± 17.3) years. Of these cases, 78 (24.8%) died. The following parameters were associated with increased mortality, age, WBC, neutrophil count, serum albumin level, use of a continuous renal replacement therapy (CRRT) and corticosteroid use. The odd ratio for mortality was highest for CRRT and corticosteroid use (4.95 and 3.85, respectively). The use of interferon-ribavirin was not associated with mortality in this cohort.

Conclusion: Several factors contributed to increased mortality in this cohort of MERS-CoV patients. Of these factors, the use of corticosteroid and CRRT were the most significant. Further studies are needed to evaluate whether these factors were a mark of severe disease or actual contributors to higher mortality.

1. Introduction

The emergence of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in late 2012 caused a significant global public and clinical concern due to the disease high case fatality rate and the inability to distinguish cases of MERS-CoV from other severe respiratory tract infections caused by other pathogens [1-4]. One study found that monocytosis with normal WBC and lower C-reactive protein (CRP) are useful predictors of MERS-CoV infection [4]. The clinical presentation of MERS varied from asymptomatic to severe bilateral pneumonia, depending on the case definition and surveillance strategies [5-7]. The case fatality rate of MERS-CoV has changed over the last 6 years, depending on the outbreak and its timing, comprehensiveness of the surveillance program (to include mild and asymptomatic cases) and the country of the report from 28.6% to 63.6% [8]. A lower case fatality rates were reported from a MERS-CoV reference center in Riyadh, Saudi Arabia [9] and from the South Korea's outbreak [10,11]. When compared to severe respiratory infections caused by non-MERS-CoV, the case fatality rate was higher in MERS than non-MERS cases [1,9]. Six years into the MERS-CoV epidemic, there are few studies addressing the clinical predictors of mortality in MERS-CoV cases [11,12]. MERS-CoV had caused concern among travelers, however, MERS-CoV infection was reported infrequently among pilgrims performing Umrah [13,14]. There were reports of more than 20 travel-related MERS-CoV cases [13]. A single case of travel associated MERS-CoV infections caused the largest outbreak outside the Arabian Peninsula in South Korea [13,15-17]. In a systematic review of pilgrims, acquisition of MERS-CoV was very limited and systematic screening of...
Factors associated with mortality from binary logistic regression analysis with a backward stepwise approach.

Source	Adjusted Dev	Adjusted Mean	Odds Ratio	95% CI	Chi-Square	P-Value
Age (years)	8.356	8.355	1.0293	(1.0090, 1.0500)	8.36	0.004
WBCS X 10^9/L	3.298	3.2978	0.7515	(0.5432, 1.0396)	3.3	0.069
NEUT X 10^9/L	6.393	6.3929	1.5234	(1.0714, 2.1660)	6.39	0.011
Albumin 33 g/L	11.941	11.9406	0.9031	(0.8552, 0.9592)	11.94	0.001
Corticosteroid use	11.866	11.866	4.9475	(1.9660, 12.4507)	11.87	0.001

WBC = White Blood Cell count; NEUT = neutrophil count; CRRT = continuous renal replacement therapy.

4. Results

A total of 314 symptomatic MERS patients were included in the analysis, with a mean age of 48 (± 17.3) years. Of these cases, 78 (24.8%) died. Table 1 shows identified parameters to be associated with mortality. In binary logistic regression analysis with a backward stepwise approach the following parameters were associated with increased mortality: age, increased WBC, and neutrophil count, lower serum albumin level, use of CRRT and corticosteroid use. The odd ratio for mortality was highest for CRRT and corticosteroid use (4.95 and 3.85, respectively). The use of interferon-ribavirin was not associated with mortality in this cohort. The majority of patients received methyl-prednisone with variable doses and duration (see Table 2).

5. Discussion

In this study, we analyzed predictors of MERS survival among a cohort of patients admitted to a referral center for MERS-CoV therapy in the capital city of Riyadh, Saudi Arabia. In this study, we included only symptomatic cases in analysis as all asymptomatic cases recovered. The reason for this exclusion is that we attempted to investigate the factors contributing to mortality in symptomatic cases. In previous studies, mild or asymptomatic disease was observed in secondary cases, in young patients, and in previously healthy individuals [23]. It was described that as the percentage of asymptomatic patients increased to 29%, the case fatality rate decreased to 30% [7,12,23–26]. Of the 314 symptomatic MERS patients, 24.8% died. This rate is lower than the previously published range of 28.6%–63.6% [8–11]. Earlier studies showed high case fatality rate among symptomatic and critical ill patients [8–11].

In this study we found that there are few predictors of mortality in MERS-CoV patients. Increasing age was a predictor and this is in agreement with a previous study where age ≥ 65 years was associated with increased mortality with an OR of 4.39 [12]. However, in that study age was the only predictor of mortality. Older age may be associated with concurrent comorbidities and thus increasing case fatality rate. In one study, predictors of 30-day mortality included older age, non-healthcare workers, pre-existing illness, severity of illness, and hospital-acquired infections [27]. We found that corticosteroid was associated with increased mortality. In one study, patients who received corticosteroids had a higher 90-day crude mortality of 74.2% compared to 57.6% among the comparator group [28]. In that study, authors compared 151 MERS patients in the corticosteroid group derived from 14 different healthcare facilities and patients who received corticosteroid therapy had delayed clearance of viral RNA [28]. It is probably the practice to use corticosteroid for patients who were not showing clinical improvements and thus might be at a higher rate of mortality to begin with.

Baseline data showed that deceased patients had higher initial WBC of 9.5 ± 5.9 compared to 6.8 ± 3.8 (P = 0.0001) and had lower hemoglobin level of 11.3 ± 2.6 g/dl compared to those who survived (13.3 ± 2.5 g/dl) (P = 0.0001). In addition, deceased MERS cases had significantly associated variables. A P-value of less than 0.05 indicates statistical significance.
a lower albumin level of 28.29 ± 6 compared to survival group (35.1 ± 6.4) (P = 0.0001). Similarly, a previous study showed that low serum albumin was associated with severe MERS-CoV infection and may reflects nutritional status of the patients [29].

We found that CRRT was associated with higher rate of mortality among MERS patients. In a previous study, the application of CRRT was a risk factor for MERS-CoV-related mortality [30]. Another study among MERS patients. In a previous study, the application of CRRT was 0.9%; p = 0.003) [31]. However, one study showed that the ECMO showed that MERS patients were more likely to require ECMO (5.8% vs 0.9%; p = 0.003) [31]. However, one study showed that the ECMO group had lower in-hospital mortality (65 vs 100%, P = 0.02) [32]. Thus, it was suggested that ECMO therapy could be used as a rescue therapy for MERS-CoV patients who develop refractory hypoxia as the therapy needs a specialized center.

In conclusion, we do not yet know if all factors contributed to mortality or were simply markers of pre-mortal last interventions.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.tmaid.2019.03.004.

References

[1] Al-Tawfiq JA, Hinedi K, Ghanjour O, Khairolla H, Musleh S, Ujaili A, et al. Middle East Respiratory Syndrome Coronavirus (MERS-CoV): a case-controlestudy of hospitalised patients. Clin Infect Dis 2014;59:160–5. https://doi.org/10.1093/cid/ciu226.
[2] Mohd HA, Memish ZA, Alfaraj SH, McClint D, Altuwaijri T, Alnazi MS, et al. Predictors of MERS-CoV infection: a large case control study of patients presenting with ILI at a MERS-CoV referral hospital in Saudi Arabia. Trav Med Infect Dis 2016;14:464–70. https://doi.org/10.1016/j.tmaid.2016.09.008.
[3] Garbati MA, Fagbo SF, Fang VJ, Skakni L, Joseph M, Wani TA, et al. A comparative study of clinical presentation and risk factors for adverse outcome in patients hospitalised with acute respiratory disease due to MERS or coronavirus. PLoS One 2016;11:e0165979. https://doi.org/10.1371/journal.pone.0165979.
[4] Park GE, Kang C-I, Ko J-H, Cho SY, Ha YE, Kim Y-J, et al. Differential Cell count and CRP level in Blood as predictors for Middle East respiratory syndrome coronavirus infection in acute febrile patients during nosocomial outbreak. J Korean Med Sci 2017;32:151. https://doi.org/10.3346/jkms.2017.32.1.151.
[5] Al-Tawfiq JA, Memish ZA. Managing MERS-CoV in the healthcare setting. Hosp Prog 2015;94:158–63. https://doi.org/10.1098/rsbm.2015.1074629.
[6] Assiri A, McGeer A, Perl TM, Price CS, Al Rabeeah AA, Cummings DAT, et al. Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med 2015;373:407–16. https://doi.org/10.1056/NEJMoa1507472.
[7] Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, Al-Rabib FA, Al-Hajjar S, Al-Barrak A, et al. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis 2013;13:752–61. https://doi.org/10.1016/S1473-3099(13)70264-4.
[8] Nam H-S, Park JW, Ki M, Yeon M-Y, Kim J, Kim SW. High fatality rates and associated factors in two hospital outbreaks of MERS in Daejeon, the Republic of Korea. J Infect Dis 2013;369:407–16. https://doi.org/10.1056/NEJMoa1306742.
[9] Al-Tawfiq JA, Alfaraj SH, Altuwaijri TA, Memish ZA. A cohort-study of patients suspected for MERS-CoV in a referral hospital in Saudi Arabia. J Infect Dis 2017;254:38. https://doi.org/10.1093/infdis/jix714.
[10] Kim KH, Tandi TE, Choi JW, Moon JM, Kim MS. Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: epidemiology, characteristics and public health implications. J Hosp Infect 2017;95:207–11. https://doi.org/10.1016/j.jhin.2016.10.008.
[11] Choi WS, Kang CJ, Kim Y, Choi JP, Job JS, Shin HS, et al. Clinical presentation and outcomes of Middle East respiratory syndrome in the Republic of Korea. Infect Chemother 2016;48:118–26. https://doi.org/10.3947/ic.2016.48.2.118.
[12] Saad M, Omrani AS, Baig K, Bahlool A, Elzein F, Matin MA, et al. Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia. Int J Infect Dis 2014;29:301–6. https://doi.org/10.1016/j.ijid.2014.09.003.
[13] Sridhar S, Brouqui P, Padola P, Gautret P. Imported cases of Middle East respiratory syndrome: an update. Trav Med Infect Dis 2015;13:106–9. https://doi.org/10.1016/j.tmaid.2014.11.006.
[14] Al-Tawfiq JA, Zumal A, Memish ZA. Travel implications of emerging coronaviruses: SARS and MERS-CoV. Trav Med Infect Dis 2014;12:422–4. https://doi.org/10.1016/j.tmaid.2014.06.007.
[15] Kim Y, Lee S, Chu C, Choe S, Hong S, Shin Y. The characteristics of Middle eastern respiratory syndrome coronavirus transmission dynamics in South Korea. Osong Public Heal Res Perspect 2016;7:49–55. https://doi.org/10.1016/j.johpe.2016.01.001.
[16] Korea Centers for Disease Control and Prevention. Middle East respiratory syndrome coronavirus outbreak in the Republic of Korea. Osong Public Heal Res Perspect 2015;6:269–78. https://doi.org/10.1016/j.johpe.2015.08.006. 2015.
[17] Pavlo A, Tsaidras S, Malantsou HC. Middle East respiratory syndrome coronavirus (MERS-CoV): prevention in travelers. Trav Med Infect Dis 2014;12:602–4. https://doi.org/10.1016/j.tmaid.2014.10.006.
[18] Al-Tawfiq JA, Benkouiten S, Memish ZA, Memishc ZA. Systematic review of emerging respiratory viruses at the Hajj and possible confection with Streptococcus pneumoniae. Vaccine 2017;35:6–13. https://doi.org/10.1016/j.vaccine.2018.04.007.
[19] Al-Tawfiq JA, Gautret P. Asymptomatic Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection: extent and implications for infection control: a systematic review. Trav Med Infect Dis 2018. https://doi.org/10.1016/j.tmaid.2018.12.003.
[20] Al-Jaser FS, Nour RM, Youssef RM. Epidemiology and predictors of survival of MERS-CoV infections in Riyadh region, 2014–2015. J Infect Public Health 2018. https://doi.org/10.1016/j.jiph.2018.09.008.
[21] Corman VM, Müller MA, Contavel U, Timm J, Binger T, Meyer B, et al. Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections. Euro Surveill 2012;17:49.
[22] Al-Tawfiq JA, Rabaaan AA, Hinedi K. Influenza is more common than Middle East Respiratory Syndrome Coronavirus (MERS-CoV) among hospitalized adult Saudi patients. Trav Med Infect Dis 2017;20:56–60. https://doi.org/10.1016/j.tmaid.2017.10.004.
[23] Al-Tawfiq JA, Memish ZA. Drivers of MERS-CoV transmission: what do we know? Expert Rev Respir Med 2016;10:331–8. https://doi.org/10.1586/17476348.2016.1150794.
[24] Al-Tawfiq JA, Memish ZA. Middle East respiratory syndrome coronavirus: epidemiology and disease control measures. Infect Drug Resist 2014;7:281–7. https://doi.org/10.2147/IDR.S51283.
[25] Pettinati PM, Kaasik-Aanav K, Friaux A, Donachie A, Sudre B, Amato-Gauci AJ, et al. Taking stock of the first 153 mers coronavirus cases globally is the epidemic changing? Euro Surveill 2013;18.
[26] The WHO Mers-Cov Research Group. State of knowledge and data gaps of Middle East respiratory syndrome coronavirus (MERS-CoV) in humans. PLoS Curr 2015;5. https://doi.org/10.1371/currents.outbreaks.0b719e352e7478fa8d5a0137b1d78b. pic. ecoursoutbreaks. 0b719e352e7478fa8d5a0137b1d78b.