Reducing Computational Complexity of Quantum Correlations

Titas Chanda, Tamoghna Das, Debasis Sadhukhan, Anurit Kumar Pal, Aditi Sen(De), and Ujjwal Sen
Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad - 211019, India

We address the issue of reducing the resource required to compute information-theoretic quantum correlation measures like quantum discord and quantum work deficit in two qubits and higher dimensional systems. We provide a mathematical description of determining the quantum correlation measure using a restricted set of local measurements. We show that the computational error caused by the constraint over the complete set of local measurements reduces fast with an increase in the size of the restricted set. We perform quantitative analysis to investigate how the error scales with the system size, taking into account a set of plausible constructions of the constrained set. Carrying out a comparative study, we show that the resource required to optimize quantum work deficit is usually higher than that required for quantum discord. We also demonstrate that minimization of quantum discord and quantum work deficit is easier in the case of two-qubit mixed states of fixed ranks and with positive partial transpose in comparison to the corresponding states having non-positive partial transpose. For bound entangled states, we show that the error is significantly low when the measurements correspond to the spin observables along the three Cartesian coordinates.

I. INTRODUCTION

Entanglement [1] as a measure of quantum correlations existing between subsystems of a composite quantum system has been shown to be indispensable in performing several quantum information tasks [2, 3]. To deal with challenges such as decoherence due to system-environment interaction, entanglement distillation protocols [4] to purify highly entangled states from a collection of states with relatively low entanglement have also been invented. Parallelly, various counter-intuitive findings such as substantial non-classical efficiency of quantum states with vanishingly small entanglement, and locally indistinguishable orthogonal product states [5–7] have motivated the search for quantum correlations not belonging to the entanglement-separability paradigm. This has led to the possibility of introducing more fine-grained quantum correlation measures than entanglement, such as quantum discord (QD) [8], quantum work deficit (QWD) [9], and various ‘discord-like’ measures [10, 11], opening up a new direction of research in quantum information theory. Although establishing a link between the measures of quantum correlations belonging to the two different genres has also been tried [12], a decisive result is yet to be found in the case of mixed bipartite quantum states. Note, however, that all these measures reduce to von Neumann entropy of local density matrix for pure states. In recent years, the interplay between entanglement distillation and quantum correlations such as QD and QWD has been under focus [13]. However, proper understanding of the relation between such measures and distillable as well as bound entanglement [14–20] is yet to be achieved.

There has been a substantial amount of work in determining QD for various classes of bipartite as well as multipartite mixed quantum states [21–23]. A common observation that stands out from these works is the computational complexity of the task, due to the optimization over a complete set of local measurements involved in its definition [8]. For general quantum states, the optimization is often achieved via numerical techniques. It has recently been shown that the problem of computing quantum discord is NP-complete, thereby making the quantity computationally intractable [24]. The lack of a well-established analytic treatment to determine QD has also restricted the number of experiments in this topic [25]. Despite considerable efforts to analytically determine QD for general two-qubit states [21, 22], a closed form expression exists only for the Bell diagonal (BD) states [21].

A number of recent numerical studies have shown that for a large fraction of a very special class of two-qubit states, QD can always be calculated by performing the optimization over only a small subset of the complete set of local projection measurements [26, 27], thereby reducing the computational difficulty to a great extent. These states are constructed of the three diagonal correlators of the correlation matrix, and any one of the three magnetizations, which is similar for both the qubits. The subset, in the present case, consists of the projection measurements corresponding to the Pauli matrices, σ−, σ+, and σz. Curiously, the assumption that QD can be optimized over this subset for the entire class of such states results only in a small absolute error in the case of those states where the assumption is not valid [26, 27]. This property also allows one to determine closed form for QD for the entire class of such two-qubit states within the margin of small absolute error in calculation [26–28].

Optimization over such a small subset of the complete set of local projection measurements is logical in the situations where a constraint over the allowed local measurements is at work. The knowledge of such a subset may be important in quantum estimation theory [29], in relation to quantities that are non-linear functions of the quantum states, such as the QD, where estimation of the parameter values to determine the optimal projection measurement depends on the the number of measurements required to obtain the desired quantity within a manageable range of error. Also, the existence of such subsets has the potential to be operationally as well as energetically advantageous.
in experimental determination of the QD and similar measures for a given quantum state. However, the investigation of the existence of such special subsets of allowed local projectors in the computation of quantum correlations like QD and QWD, as of now, are confined only to special classes of quantum states in $\mathbb{C}^2 \otimes \mathbb{C}^2$ systems \cite{26, 27, 28}. A natural question that arises is whether such subsets of local projectors can exist for general bipartite quantum states. The possible scaling of the absolute error resulting from the limitation on the number of allowed local projectors in the subset is also an interesting issue.

In this paper, we investigate the issue of simplifying the optimization of quantum correlation measures like QD and QWD in the case of general two-qubit mixed states of different ranks with positive as well as non-positive partial transpose (NPPT) \cite{30} by using a restricted set of local projection measurements. We provide a mathematical description of the optimization of quantum correlation measures over a restricted set of allowed local projection measurements, and discuss the related statistics of computational error. Using a set of plausible definitions of the restricted set, we show that the absolute error, resulting due to the constraint over the set of projectors, dies out considerably fast. Using the scaling of the error with the size of the restricted subset, we demonstrate that even a small number of properly chosen projectors can form a restricted set leading to a very small absolute error, thereby making the computation of quantum correlation measures considerably easier. We also extend the study to the paradigmatic classes of BE states, where the computation of QD and QWD using a special restricted subset is discussed. The results indicate that the error resulting from the restricted measurement in the case of states with positive partial transpose (PPT) is less compared to the states with non-positive partial transpose (NPPT).

The paper is organized as follows. In Sec. II, we provide a mathematical description of the computation of quantum correlation measures by performing the optimization over a constrained set of local projection measurements, defining the corresponding absolute error in calculation. In Sec. III, we discuss a set of constructions of the subset in relation to the statistics of the error for general two-qubit mixed states in the state space. We also discuss a general two-qubit state in the parameter space, and show how symmetry of the state helps in defining the restricted subset. In Sec. IV, the results on the quantum correlations in BE states are presented. Sec. V contains the concluding remarks.

II. DEFINITIONS AND METHODOLOGY

In this section, after presenting an overview of the quantum correlation measures used in this paper, namely, QD and QWD, we introduce the main concepts of the paper, i.e., constrained QD as well as QWD by restricting the optimization over a small subset of the complete set of allowed local measurements. We also discuss the corresponding error generated due to the limitation in measurements.

A. Quantum discord

For a bipartite quantum state ρ_{AB}, the QD is defined as the minimum difference between two inequivalent definitions of the quantum mutual information. While one of them, given by $I(\rho_{AB}) = S(\rho_A) + S(\rho_B) - S(\rho_{AB})$, can be identified as the “total correlation” of the bipartite quantum system ρ_{AB} \cite{31}, the other definition takes the form $J_{\rightarrow}(\rho_{AB}) = S(\rho_B) - S(\rho_B|\rho_A)$, which can be argued as a measure of classical correlation \cite{8}. Here, ρ_A and ρ_B are local density matrices of the subsystems A and B, respectively, $S(\rho) = -\text{Tr}[\rho \log_2 \rho]$ is the von Neumann entropy of the quantum state ρ, and $S(\rho_B|\rho_A) = \sum_k p_k S(\rho_{AB}^k)$ is the quantum conditional entropy with

$$\rho_{AB}^k = (\Pi_k^A \otimes I_B) \rho_{AB} (\Pi_k^A \otimes I_B)/p_k, \quad (1)$$

and

$$p_k = \text{Tr}[(\Pi_k^A \otimes I_B) \rho_{AB}]. \quad (2)$$

The subscript ‘\rightarrow’ implies that the measurement, represented by a complete set of rank-1 projective operators, $\{\Pi_k^A\}$, is performed locally on the subsystem A, and I_B is the identity operator defined over the Hilbert space of the subsystem B. The QD is thus quantified as $D = \min\{I(\rho_{AB}) - J_{\rightarrow}(\rho_{AB})\}$, where the minimization is performed over the set \mathcal{S}_C, the class of all complete sets of rank-1 projective operators. One must note here the asymmetry embedded in the definition of the QD over the interchange of the two subsystems, A and B. Throughout this paper, we calculate QD by performing local measurement on the subsystem A.

B. Quantum work deficit

Along with the QD, we also consider the QWD \cite{9} of a quantum state, defined as the difference between the amount of extractable pure states under suitably restricted global and local operations. In the case of a bipartite state ρ_{AB}, the class of global operations, consisting of (i) unitary operations, and (ii) dephasing the bipartite state by a set of projectors, $\{\Pi_k\}$, defined on the Hilbert space \mathcal{H} of ρ_{AB}, is called “closed operations” (CO) under which the amount of extractable pure states from ρ_{AB} is given by $I_{\text{CO}} = \log_2 \dim(\mathcal{H}) - S(\rho_{AB})$. And, the class of operations consisting of (i) local unitary operations, (ii) dephasing by local measurement on the subsystem A, and (iii) communicating the dephased subsystem to the other party, B, over a noiseless quantum channel is the class of “closed local operations and classical communication” (CLOCC), under which the extractable amount of pure states is $I_{\text{CLOCC}} = \log_2 \dim(\mathcal{H}) - \min S(\rho'_{AB})$.
Here, $\rho'_{AB} = \sum_k p_k \rho^1_{AB}$ is the average quantum state after the projective measurement $\{\Pi_k^A\}$ has been performed on A, with ρ'_{AB} and p_k given by Eqs. (1) and (2), respectively. The minimization in I_{CLOCC} is achieved over S_C. The QWD, W, is given by the difference between the quantities $I_{\text{CO}}(\rho_{AB})$ and $I_{\text{CLOCC}}(\rho_{AB})$.

C. Constrained Quantum Correlations: Error in Estimation

We now introduce the physical quantity, which will help us to reduce the computational complexity involved in evaluation of QD and QWD. In particular, we consider the bipartite quantum correlations in the scenario where there are restrictions on the complete set of projectors defining the local measurement on one of the subsystems. Let us assume that constraints on the local measurement restrict the class of projection measurements to a subset $S_E (S_E \subseteq S_C)$, where there are n sets of projection measurements in S_E. Performing the optimization only over the set S_E, a “constrained” quantum correlation (CQC), Q_{c}, can be defined. We call the subset S_E as the “earmarked” set. Let the actual value of a given quantum correlation measure, Q, for a fixed bipartite state, ρ_{AB}, be Q_a. If the definition of Q involves a minimization, $\log_2 d \geq Q_c \geq Q_a$, while a maximization in the definition leads to $\log_2 d \geq Q_a \geq Q_c$, where d is the minimum of the dimensions among the two parties making up the bipartite state and where we have assumed that $\log_2 d$ is the maximum value of Q_a or Q_c. For example, one can define the constrained QD (CQD) as

$$D_c = \min_{S_E^d} I(\rho_{AB}) - J_{\text{max}}(\rho_{AB}),$$

while the constrained QWD (CQWD) is given by

$$W_c = \min_{S_E^c} S(\rho'_{AB}) - S(\rho_{AB}).$$

Note that in general, the earmarked sets for QD and QWD, represented by S_E^Q and S_E^W, respectively, may not be identical.

Evidently, the actual projector for which the quantum correlation is optimized may not belong to S_E. Therefore, restricting the optimization over the earmarked set gives rise to error in estimation of the value of Q for a fixed quantum state, ρ_{AB}. Let us denote the absolute error occurring due to the optimization over S_E, instead of S_C, for an arbitrary bipartite state ρ_{AB}, by ε, where

$$\varepsilon_n = |Q_c - Q_a|,$$

with $\log_2 d \geq \varepsilon_n \geq 0$. We call this error as the “voluntary” error (VE). One must note that the VE depends on the size of the earmarked set, n, as well as the distribution of the elements of S_E in the space of projection measurements. When $n \to \infty$, we may (but not necessarily) have $S_E \to S_C$, resulting in $Q_c \to Q_a$, whence VE vanishes. However, for a finite value of n, we denote the VE by ε_n.

Note that ε_n also depends on the actual form of the n projection measurements in S_E. If $\varepsilon = 0$ for a quantum state even when the optimization is performed over the set S_E, we call the quantum state an “exceptional” state.

III. TWO-QUBIT SYSTEMS

In the case of a $C^2_A \otimes C^2_B$ system where each of the subsystems consists of a single qubit only, the rank-1 projection measurements are of the form $\{\Pi_k^A = U|k\rangle\langle k|U^\dagger, \ |k\rangle = |0\rangle, |1\rangle\}$, where U, a local unitary operator in $SU(2)$, can be parametrized using two real parameters, θ and ϕ, as

$$U = \left(\begin{array}{cc} \cos \theta & \sin \theta e^{i\phi} \\ -\sin \theta e^{-i\phi} & \cos \theta \end{array} \right).$$

Here, $0 \leq \theta \leq \pi$, $0 \leq \phi < 2\pi$, and $\{|0\rangle, |1\rangle\}$ denotes the computational basis in \mathbb{C}^2. Note that θ and ϕ can be identified as the azimuthal and the polar angles, respectively, in the Bloch sphere representation of a qubit. Let us define a parameter transformation, $f_\theta = \cos \theta$, so that $-1 \leq f_\theta \leq 1$. Here and throughout this paper, whenever we need to perform an optimization over all rank-1 projection measurements on a qubit to evaluate a given quantum correlation, Q, we choose the parameters f_θ and ϕ uniformly in $[-1, 1]$ and $[0, 2\pi]$ respectively. An earmarked set, in the present case, is equivalent to a subset of the complete set of allowed values of f_θ and ϕ.

A. Mixed states with different ranks

First, we discuss the case of general two-qubit mixed states of different ranks. As described above, an optimal set of (f_θ, ϕ) values define the optimal projection measurement for the computation of the fixed quantum correlation measure, Q. Let us consider the probability, p_r, that the optimal values of the real parameters, f_θ and ϕ, for a fixed measure of quantum correlation, Q, of a randomly chosen two-qubit mixed state of rank r, lie in $(f_\theta, f_\theta + df_\theta)$, and $(\phi, \phi + d\phi)$, respectively. The fact that the real parameters, f_θ and ϕ, are independent of each other suggests that

$$p_r = P_r(f_\theta, \phi)df_\theta d\phi = P_r^1(f_\theta)df_\theta P_r^2(\phi)d\phi,$$

which allows one to investigate the two probability density functions (PDFs), $P_r^1(f_\theta)$, and $P_r^2(\phi)$, independently. Here, $P_r^1(f_\theta)df_\theta$ denotes the probability that irrespective of the optimal value of ϕ, the optimal value of f_θ lies between f_θ and $f_\theta + df_\theta$ for the fixed quantum correlation measure, Q, calculated for a two-qubit mixed quantum state of rank r. A similar definition holds for the probability $P_r^2(\phi)d\phi$ also.

In the case of two-qubit systems, an uniform distribution of the projection measurements in the measurement space corresponds to the uniform distribution of the
(f_\theta, \phi) points on the surface of the Bloch sphere. It is, therefore, reasonable to expect that the PDFs, P^1_r(f_\theta)d\theta and P^2_r(\phi)d\phi, correspond to uniform distributions over the allowed ranges of values of f_\theta and \phi. To verify this numerically, we consider QD and QWD as the chosen measures of quantum correlation. The corresponding P^1_r(f_\theta), and P^2_r(\phi) in the case of two-qubit mixed states having NPPT or having PPT for both QD and QWD are determined by generating 5 \times 10^5 states Haar uniformly for each value of r = 2, 3, and 4. We find that in the case of QD as well as QWD, both P^1_r(f_\theta), and P^2_r(\phi) are uniform distributions over the entire ranges of corresponding parameters, f_\theta and \phi, irrespective of the rank of the state as well as whether the state is NPPT or PPT. Note here that for two-qubit mixed states of rank-2, almost all states are NPPT while the PPT states form a set of measure zero \cite{32}, which can also be verified numerically. However, in the case of r = 3 and 4, non-zero volumes of PPT states are found. In \mathbb{C}^2 \otimes \mathbb{C}^2 systems, all NPPT states are entangled while PPT states form the set of separable states \cite{34}.

The fact that all the rank-1 projection measurements are equally probable makes the qualitative features of Q_\varepsilon depend only on the geometrical structure of the earmarked set, S_E, and not on the actual location of the elements of the set on the Bloch Sphere. In the following, we consider four distinct choices of the set S_E for both QD and QWD in the case of two-qubit mixed states with ranks r = 2, 3, 4, and discuss the corresponding scaling of the average VE.

Case 1: S_E with (f_\theta, \phi) distributed over a circle on the Bloch sphere

We start by constructing the earmarked set with projection measurements such that the corresponding VE resulting from the restricted optimization of Q_\varepsilon, for an arbitrary two-qubit mixed state of rank r is given by \varepsilon_n^r, n being the size of S_E, and where the corresponding n points on the circle are symmetrically placed. Let us also assume that the CQC calculated by constrained optimization over the set S_E with n \to \infty is given by Q_\varepsilon, and the corresponding VE, called the “asymptotic error”, is \varepsilon_\infty^r = |Q_\varepsilon - Q_\varepsilon_0|.

To investigate how fast \varepsilon_n^r reaches \varepsilon_\infty^r on average with increasing n, one must look into the variation of \varepsilon_n^r - \varepsilon_\infty^r against n for different values of r. Here, \varepsilon_n^r is the average value of the VE, \varepsilon_n, and is given by

\[
\varepsilon_n^r = \int_0^1 \varepsilon_n^r P_n^r(\varepsilon_n^r)d\varepsilon_n^r, \tag{8}
\]

with P_n^r(\varepsilon_n^r)d\varepsilon_n^r being the probability that for an arbitrary two-qubit mixed state with rank r, the VE lies between \varepsilon_n^r and \varepsilon_n^r + d\varepsilon_n^r when Q_\varepsilon is calculated over S_E of size n defined on the chosen plane. A similar definition holds for the average asymptotic VE, \varepsilon_\infty^r, and the PDF, P_\infty^r(\varepsilon_\infty^r), in the limit n \to \infty, where

\[
\varepsilon_\infty^r = \int_0^1 \varepsilon_\infty^r P_\infty^r(\varepsilon_\infty^r)d\varepsilon_\infty^r. \tag{9}
\]

We consider two different ways in which the plane is chosen. (a) We fix a value of f_\theta = f_\theta', such that the corresponding states on the Bloch sphere are given by |\xi_\phi=0,1\rangle = \cos \frac{\phi}{2} |0\rangle + \sin \frac{\phi}{2} |1\rangle, where \phi acts as the spanning parameter. (b) In the second option, we fix the value of \phi = \phi' while vary f_\theta with the corresponding states |\xi\rangle. We consider both the scenarios, and investigate the scaling of the corresponding average VEs for both QD and QWD for arbitrary two-qubit mixed states of different ranks.

(a) Fixed value of f_\theta: Unless otherwise stated, here and throughout this paper, we shall fix a plane by assigning a value to f_\theta. For the purpose of demonstration, we choose f_\theta = 0, fixing the (x, y) plane defined by the eigenbasis of the Pauli matrices \sigma^x and \sigma^y, where an arbitrary projection basis can be written as |\xi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + e^{i\phi}|1\rangle). The earmarked set of size n on the perimeter of the circle of intersection of the (x, y) plane and the Bloch sphere can be generated by a set of n projectors of the form U|k\rangle\langle k|U^\dagger, |k\rangle = |0\rangle, |1\rangle, obtained by using a fixed f_\theta = 0, and n equispaced divisions of the entire range of \phi. Here, the form of U is given in Eq. (6). The situation is depicted in Fig. 1(a). To determine the PDFs, P_n^r(\varepsilon_n^r) and P_\infty^r(\varepsilon_\infty^r), we Haar uniformly generate 5 \times 10^5 random two-qubit mixed states of rank r = 2, 3, and 4 each. The corresponding average VE, \varepsilon_n^r, and average asymptotic VE, \varepsilon_\infty^r, in the case of both QD and QWD are determined using Eqs. (8) and (9) respectively. For both the quantum correlation measures, the quantity \varepsilon_n^r - \varepsilon_\infty^r is found to have a power-law decay with the size, n, of the earmarked set, on the log-log scale for all values of r. One can determine the functional dependence of \varepsilon_n^r over n as

\[
\varepsilon_n^r = \varepsilon_\infty^r + \kappa n^{-\tau}, \tag{10}
\]
TABLE I. Values of the fitting constant, κ, scaling exponent, τ, and asymptotic error, ε_∞, in the case of NPPT as well as PPT two-qubit mixed states of rank $r = 3$ and 4. Here, QD and QWD are considered as quantum correlation measures, and the earmarked set is fixed on the circle defined by the intersection of a plane fixed by $f_0 = 0$, and the Bloch sphere. The corresponding power-law variations of $\varepsilon_n^{-2} - \varepsilon_\infty^{-2}$ with n are depicted in Fig. 3.

TABLE II. Values of the fitting constant, κ, scaling exponent, τ, and asymptotic error, ε_∞, in the case of NPPT as well as PPT two-qubit mixed states of rank $r = 3$ and 4. Here, QD and QWD are considered as quantum correlation measures, and the earmarked set is fixed on the circle defined by the intersection of a plane fixed by $f_0 = 0$, and the Bloch sphere. The corresponding power-law variations of $\varepsilon_n^{-2} - \varepsilon_\infty^{-2}$ with n are depicted in Fig. 3.

where the fitting constant, κ, and the scaling exponent, τ, are estimated from the numerical data. Fig. 2 shows the variations of $\varepsilon_n^{-2} - \varepsilon_\infty^{-2}$ with n for both QD and QWD in the case of rank-2 two-qubit states. The insets in Fig. 2 shows the corresponding variations of $\varepsilon_n^{-2} - \varepsilon_\infty^{-2}$ with increasing n in the log-log scale.

The variations of $\varepsilon_n^{-2} - \varepsilon_\infty^{-2}$ with n in the log-log scale using both QD and QWD with NPPT as well as PPT two-qubit mixed states of rank $r = 3$ and 4 are shown separately in Fig. 3. The corresponding exponents and fitting parameters are quoted in Table 1. Note that although the exponent, τ, in the case of QD and QWD has equal values up to the first decimal point for all the cases (for NPPT and PPT states with different ranks), the average asymptotic VE, ε_∞, is larger in the case of QWD in comparison to that for QD. This is reflected in the fact that the graph for QWD is above the graph for QD, as shown in Fig. 2 and 3. Note also that ε_n^{-2} is less in the case of PPT states than the NPPT states, when two-qubit states of a fixed rank are considered.

Note that in the above example, we have fixed the plane by fixing $f_0 = 0$, which corresponds to a great circle on the Bloch sphere. One can also fix a great circle on the Bloch sphere by fixing any value of ϕ in its allowed range of values. Earmarked sets defined over any such great circle on the Bloch sphere have similar scaling properties of the average VE as long as the points corresponding to the projection measurements belonging to the set S_ϕ are distributed uniformly over the circle. However, for different distribution, one can obtain different scaling exponents and fitting parameters. We shall shortly discuss one such example.

For $f_0 \neq 0$, smaller circles over the Bloch spheres are obtained. One can also investigate the scaling behaviour of the average VE in the case of earmarked sets having elements corresponding to points distributed over these smaller circles by using ϕ as the spanning parameter. However, different values for the scaling exponents and fitting parameters are obtained as $|f_0| \to 1$.

(b) Fixed value of ϕ: Next, we consider the scenario where the distribution of the (f_0, ϕ) points corresponding to the projection measurements constituting the set S_ϕ on the circle of our choice is different (i.e., non-uniform) than the previous example. This may happen due to restrictions imposed by apparatus during experiment, or other relevant physical constraints. As before, we choose the plane by fixing $\phi = 0$, thereby confining the earmarked set on the great circle representing the intersection of the (x, z) plane defined by the eigenbases of σ^x and σ^z, and the Bloch sphere. However, to demonstrate the effect of such non-uniformity over the scaling parameters, we consider the (f_0, ϕ) points corresponding to the n elements in S_ϕ by n equal divisions of the entire range of f_0. Note that the current choice of f_0 as the spanning parameter leads to a different (non-uniform) distribution of the points corresponding to the projection measurements in S_ϕ on the chosen circle.

Similar to the previous case of $f_0 = 0$, one can also study the scaling of average VE by defining ε_n^{-2} and ε_∞^{-2} corresponding to the present case. The variation of $\varepsilon_n^{-2} - \varepsilon_\infty^{-2}$ with n, as in the previous case, is given by Eq. (10), only with different values of fitting constant, scaling exponent,
FIG. 3. (Color online.) Variations of $\eta_n^r - \eta_{\infty}^r$ as a function of n for $r = 3$ and 4 in the case of NPPT and PPT two-qubit mixed states using QD and QWD. The numerical data is represented by points while the fitted curve is given by solid lines. The corresponding values of the fitting constant, κ, scaling exponent, τ, and asymptotic error, η_{∞}, are tabulated in Table II. Note that the average asymptotic VE is less in the case of PPT states compared to that of NPPT states remains unchanged even in the present scenario.

r	NPPT	PPT
3	$\kappa = 1.04 \times 10^{-1} \pm 5.60 \times 10^{-4}$	$\kappa = 7.68 \times 10^{-2} \pm 4.30 \times 10^{-4}$
	$\tau = 1.47 \pm 1.70 \times 10^{-3}$	$\tau = 1.48 \pm 1.80 \times 10^{-3}$
	$\eta_{\infty}^3 = 9.54 \times 10^{-2}$	$\eta_{\infty}^3 = 6.95 \times 10^{-2}$
4	$\kappa = 8.95 \times 10^{-2} \pm 9.6 \times 10^{-4}$	$\kappa = 6.23 \times 10^{-2} \pm 2.8 \times 10^{-4}$
	$\tau = 1.48 \pm 3.4 \times 10^{-3}$	$\tau = 1.48 \pm 1.4 \times 10^{-3}$
	$\eta_{\infty}^3 = 7.81 \times 10^{-2}$	$\eta_{\infty}^4 = 5.79 \times 10^{-2}$

TABLE II. Values of the fitting constant, κ, scaling exponent, τ, and asymptotic error, η_{∞}, in the case of NPPT as well as PPT two-qubit mixed states of rank $r = 3$ and 4. Here, quantum correlation is quantified by QD, and the earmarked set is fixed on the circle of intersection of a plane fixed by $\phi = 0$, and the Bloch sphere. The n points corresponding to the projection measurements in S_E are distributed over the circle by taking into account n equispaced division of the range $[-1, 1]$ of the spanning parameter f_θ.

and average asymptotic error. In the case of two-qubit mixed states of rank-2, the appropriate parameter values for QD are found to be $\kappa = 1.30 \times 10^{-1} \pm 1.08 \times 10^{-3}$, $\tau = 1.47 \pm 2.7 \times 10^{-3}$, with $\eta_{\infty}^r = 1.21 \times 10^{-1}$. In the case of states with $r = 3$ and 4, the values of κ, τ, and η_{∞} in the case of QD are tabulated in Table II. Note that the scaling exponents are different from those found in case of a fixed f_θ. However, the fact that the average asymptotic VE is less in the case of PPT states compared to that of NPPT states remains unchanged even in the present scenario.

One can carry out similar investigation taking QWD as the chosen measure of quantum correlation. As in the previous case where $f_\theta = 0$, here also the exponent in the case of QWD is found to be same with that for QD up to the first decimal place, although the average asymptotic error is higher.
Case 2: S_E with (f_θ, ϕ) on a collection of circles on the Bloch sphere

We now consider the situation where the projection measurements in the earmarked set are such that the corresponding (f_θ, ϕ) are not confined on the perimeter of a single fixed disc only, but are lying on the perimeters of a set of fixed discs (Fig. 1(b)). As discussed earlier, there are several ways in which a disc in the state space can be fixed. For the purpose of demonstration, we achieve this by fixing the value of f_θ. The size, n, of the set S_E, depends on two quantities: (i) the number, n_1, of divisions of the allowed range of ϕ on any one of the discs, and (ii) the number, n_2, of discs that are considered for constructing the earmarked set. Evidently, $n = n_1 n_2$. Note that the value of n_1 is assumed to be constant for every disc, although one may consider, in principle, a varying number, n_1', such that $n = \sum_{i=1}^{n_2} n_1'$.

We demonstrate the situation with an example where an arbitrary disc is fixed by $f_\theta = f_\theta'$, and a collection of additional discs positioned symmetrically with respect to the fixed disc is considered. The fact that the number n_2 includes the fixed disc itself implies that n_2 is always an odd number. In particular, the discs defining the set S_E can be marked with different values of f_θ, given by $f_\theta = f_\theta' + jh$, where $0 \leq j \leq (n_2-1)/2$, and $h = 2/(n_2-1)$. The set S_E, in the present case, approaches the complete set of rank-1 projectors, S_C, when both n_1 and n_2 tend to infinity. Similar to the previous case, one can study the variation of average VE with the increase in the size, n, of the set S_E. However, unlike the previous case, in the situation where $n \to \infty$ is consequent to (f_θ, ϕ) corresponding to the earmarked set being distributed over the entire Bloch sphere, the average asymptotic error, ε_{∞}, is 0 for all quantum correlation measures, since $Q_c \to Q_a$ in such cases.

Fixing n_1 to be a number for which the average VE calculated over an arbitrary disc in the set is considerably small, variation of the average VE, ε_n, with increasing n_2, where $n = n_1 n_2$, can be studied for QD and QWD. Here, the average is computed in a similar fashion as given in Eq. (8). However, $P_S^*(\varepsilon_n^r)$, in the present case, is obtained by performing optimization of the corresponding quantum correlation measure using the current definition of S_E. We fix $f_\theta = 0$, and observe that in the case of QD, the average VE decreases linearly with increasing n_2 for all values of n_1 (See Fig. 4). This implies that for a fixed n_1, the spanning of the surface of the Bloch sphere by the perimeters of the discs in the set starting from $f_\theta = 0$ occurs linearly with an increase in the value of n_2. Fig. 4 depicts the variation of the average VE, ε_n^r, as a function of n_2 for $n_1 = 10$, where the linear nature of the variation is clearly shown. Similar results hold in the case of QWD also.

Case 3: S_E with (f_θ, ϕ) on the surface of Bloch sphere

Let us now consider the situation where the bases in S_E are such that the corresponding (f_θ, ϕ) are uniformly scattered over the entire surface of the Bloch sphere so that only n_1 and n_2 equal divisions of the entire range of f_θ and ϕ, respectively, are allowed, leading to an earmarked set of size $n = n_1 n_2$. Similar to the previous case, $S_E \to S_C$, and $\varepsilon_{\infty} \to 0$ when both n_1 and n_2 approach infinity. The average error, ε_n^r, in the present case, is determined in a similar way as in Eq. (8) with the current description of S_E. From the variation of ε_n^r as a function of n_1 and n_2 in the case of QD and QWD for two-qubit mixed NPPT and PPT states of rank $r = 2, 3, 4$, we estimate the

Rank	NPPT	PPT
2	$n_1 = i$	$n_2 = 9$
3	$n_1 = 0$	$n_2 = 7$
4	$n_1 = 0$	$n_2 = 6$
5	$n_1 = 0$	$n_2 = 5$
6	$n_1 = 0$	$n_2 = 4$
7	$n_1 = 0$	$n_2 = 3$
8	$n_1 = 0$	$n_2 = 2$

TABLE III. Values of n_1 and n_2 that are sufficient to obtain a value of average VE of the order of 10^{-3} in the case of NPPT and PPT two-qubit mixed states of different ranks, r, for QD and QWD. The values correspond to the case where the earmarked set is confined on the surface of the Bloch sphere. The corresponding depiction is available in Fig. 5.
minimum number of divisions, n_1, and n_2, required in order to converge on a sufficiently low value of τ_n ($\sim 10^{-3}$) in each case. The corresponding values of n_1 and n_2 are given in Table III. It is observed that with an increase in the rank of the state, the required size of the earmarked set, n, in order to converge on a sufficiently low value of average VE, reduces for both QD and QWD. This feature is clearly depicted in Fig. 5 with a reduction in the area of the region marked as A. Note also that the required size is smaller in the case of PPT states when compared to the NPPT states of same rank for a fixed quantum correlation measure.

Case 4: Triad

As the fourth scenario, we consider a very special earmarked set, called the “triad”, where the set S_3 consists of only the projection measurements corresponding to the three Pauli operators. This is an extremely restricted earmarked set, and one must expect large average VE if Q_c is calculated for an arbitrary two-qubit state of rank r by performing the optimization over the triad. However, in Sec. III B, we shall show that there exists a large class of two-qubit “exceptional” states for which the triad is equivalent to S_3, with a vanishing VE.

Before concluding the discussion on general two-qubit mixed states with different ranks, r, we briefly report the
FIG. 7. (Color online.) The probability distribution landscape, $P(f_\theta, \phi)$, over the plane of (f_θ, ϕ), in the case of a two-qubit state ρ_{AB} of the form in Eq. (11) in the case of QD (a) and QWD (c). The regions 1–5 are marked on the maps of the distribution landscape in the case of QD (b) and QWD (d) so that the corresponding quantum correlation for majority of the states is optimized in the marked regions. The definition of the marked regions are given in Eq. (12). The different shades in the figure correspond to different values of $P(f_\theta, \phi)$.

statistics of the VE, ε_n^r, where the subscript $n = 3$ in the present case, denoting the size of the triad. We determine the probability, $P_3^r(\varepsilon_3^n) d\varepsilon_3^5$, that the value of Q_c, calculated for a randomly chosen two-qubit mixed state of rank r, has the VE between ε_3^n and $\varepsilon_3^n + d\varepsilon_3^5$. To do so, as in the previous cases, we Haar uniformly generate 5×10^5 NPPT as well as PPT states for each value of $r = 2, 3,$ and 4. Fig. 6 depicts the variations of normalized $P_3^r(\varepsilon_3^n)$ over the complete range $[0,1]$ of ε_3^n for NPPT and PPT states of different ranks in the case of both QD as well as QWD. It is noteworthy that the distributions are sharply peaked in the low-error regions, and for a fixed rank r, the probability of finding a PPT state with a very low value of ε_3^n is always higher than that for an NPPT state.

B. Two-qubit states in parameter space

A general two-qubit state, up to local unitary transformations [21], can be written in terms of nine real parameters as

$$\rho_{AB} = \frac{1}{4} [I_A \otimes I_B + \sum_{\alpha=x,y,z} c_{\alpha\alpha} \sigma_A^\alpha \otimes \sigma_B^\alpha + \sum_{\alpha=x,y,z} c_A^\alpha \sigma_A^\alpha \otimes I_B + \sum_{\beta=x,y,z} c_B^\beta I_A \otimes \sigma_B^\beta].$$ \hspace{1cm} (11)

Here, $c_{\alpha\alpha} = \langle \sigma^\alpha \otimes \sigma^\alpha \rangle$ are the “classical” correlators given by the diagonal elements of the correlation matrix ($|c_{\alpha\alpha}| \leq 1$), $c_A^\alpha = \langle \sigma_A^\alpha \otimes I_B \rangle$ and $c_B^\beta = \langle I_A \otimes \sigma_B^\beta \rangle$ are the single site quantities called magnetizations ($|c_A^\alpha|, |c_B^\beta| \leq 1$), given by the elements of the two local Bloch vectors, and I_A (I_B) is the identity operator on the Hilbert spaces of A (B).

The maximum rank of the two-qubit state given in Eq. (11) can be 4. The probability distribution $P(f_\theta, \phi)$, as
defined in Eq. (7), is obtained by generating 5×10^5 states of the form ρ_{AB} by choosing the diagonal correlators and magnetizations randomly from their allowed ranges. Here, we drop the subscript r for sake of simplicity. Fig. 7(a) (for QD) and (c) (for QWD) show the profiles of $P(f_0, \phi)$ which have three distinctly high populations around the set of values (i) $(f_0 = 0, \phi = 0, \pi)$, (ii) $(f_0 = 0, \phi = \frac{\pi}{2})$, and (iii) $(f_0 = 0, 0 \leq \phi \leq \pi)$, which correspond to the eigenbasis of σ^x, σ^y, and σ^z, respectively, on the Bloch sphere. Let us now consider small regions around those three high density peaks. They are conveniently marked with numbers 1–5 in Figs. 7(b) and (d), and are defined as

$$
\begin{align*}
1 & : -1 \leq f_0 \leq -0.9, 0 \leq \phi \leq \pi, \\
2 & : 0.9 \leq f_0 \leq 1, 0 \leq \phi \leq \pi, \\
3 & : f_0^2 + \phi^2 \leq \omega^2, 0 \leq \phi \leq \pi, \\
4 & : f_0^2 + (\phi - \pi)^2 \leq \omega^2, 0 \leq \phi \leq \pi, \\
5 & : f_0^2 + (\phi + \frac{\pi}{2})^2 \leq \omega^2, 0 \leq \phi \leq \pi,
\end{align*}
$$

where $\omega = 0.3$. In the case of QD, about 56.64% of the total number of sample states, given in Eq. 11, are optimized in the region marked in Fig. 7(b), while the percentage is approximately 42.2% in the case of QWD (Fig. 7(d)). Note that these are considerably high fractions, taking into account the fact that the area of the marked regions combined together is small compared to the entire area of the parameter space.

We also consider the optimization of QD and QWD in the case of the two-qubit state given in Eq. (11) by confining the earmarked set to a collection of projection measurements corresponding to a uniformly distributed set of points on the entire surface of the Bloch sphere. As discussed in Sec. IIIA, we divide the ranges of the parameters ϕ and f_0 by n_1 and n_2 equispaced intervals, and perform the minimization of QD and QWD over the set S_E of size $n = n_1 n_2$. We find that a significantly low value of average VE is achieved in the case of QD when $n_1 \geq 2$ and $n_2 \geq 4$. However, as observed in all the previous cases, the required size of the earmarked set, S_E, to obtain an average VE of same order as in QD, is larger ($n_1 \geq 4, n_2 \geq 8$) when QWD is taken as the measure of quantum correlation, as clearly visible in Fig. 8.

Special case: Mixed states with fixed magnetizations

We conclude the section by discussing a special case of the two-qubit state given in Eq. (11), where apart from the diagonal correlators, any one of the three magnetizations is non-zero while the other two magnetizations vanish. In particular, we consider a two-qubit state of the form

$$
\rho_m = \frac{1}{4} (I_A \otimes I_B + \sum_{\alpha=x,y,z} e^{i \alpha} \sigma^\alpha_A \otimes \sigma^\alpha_B + m^x_A \sigma^x_A \otimes I_B + m^y_B I_A \otimes \sigma^y_B + m^z_A \sigma^z_A \otimes I_B + m^z_B I_A \otimes \sigma^z_B),
$$

with $\beta = x, y, or z$. Here, $m^\beta = \text{tr}(\sigma^\beta \rho_i)$ ($\beta = x, y, z$) is the magnetization with ρ_i being the local density matrix of the qubit $i (i = A, B)$. The two-qubit X-state [33] of the form

$$
\rho^{X}_{AB} = \begin{pmatrix}
 a_1 & 0 & 0 & b_1 \\
 0 & a_2 & b_2 & 0 \\
 0 & b_2 & a_3 & 0 \\
 b_1 & 0 & 0 & a_4
\end{pmatrix},
$$

written in the computational basis $\{|00\rangle, |11\rangle, |01\rangle, |10\rangle\}$ is a special case of ρ_m with $\beta = z$. The matrix elements, $\{a_i : i = 1, \cdots, 4\}$ and $\{b_j : j = 1, 2\}$, are real and complex numbers, respectively, and can be considered as functions of the correlators $c_{\alpha \alpha} (\alpha = x, y, z)$, and the magnetizations, m^x_A and m^z_B.

For the purpose of demonstration, let us assume that the magnetization of ρ_m is along the x direction. Generating a large number (5×10^5) of such states by randomly choosing the correlators and the magnetizations within their allowed ranges of values, and performing extensive numerical analysis, we find that for about 99.97% of the states, it is enough to perform the optimization over the triad (S_E consists of the projection measurements corresponding to the three Pauli spin operators) to determine actual value of QD. This is due to the fact that these 99.97% of states are “exceptional”, i.e., the VE, $\varepsilon_3 = 0$ for all these states when the optimization is performed over S_E (as discussed in Sec. II C). Here, ε_3 is the VE where we drop the superscript r for simplicity. In the case of the remaining 0.03% of states, for which the optimal projection measurement does not belong to S_E. The VE, resulting from the optimization performed over S_E, is found to be $\varepsilon_3 \leq 2.9088 \times 10^{-5}$. Similar result has been reported in [26], although our numerical findings result in a different bound. As an example, we consider the
state ρ_m defined by $c^{xx} = (-1)^n \times 0.956861$, c^{yy} (or c^{zz}) = $(-1)^m \times 0.267575$, c^{zz} (or c^{yy}) = $(-1)^{n+m+1} \times 0.275867$, $m_1 = (-1)^p \times 0.94976$, and $m_2 = (-1)^p \times 0.907559$ with m, n, and p being integers, even or odd. There exists eight such states (corresponding to different values of m, n, and p) for which $\varepsilon_3 = 2.9088 \times 10^{-3}$. Amongst the set of exceptional states, the optimal projector is σ_A^x for about 27.4% states. For the rest of the set of exceptional states, QD of the half of them (i.e., 36.3% states) are optimized with projection measurement corresponding to σ_A^y while the rest are optimized for the projector Π_{opt} corresponding to σ_A^z.

Interestingly, all of the above results except one remains invariant with a change in the direction of magnetization. For example, a change in the direction of magnetization from x to z results in the optimization of 27.4% of the set of exceptional states for projection measurement corresponding to σ_A^z. This highlights an underlying symmetry of the state suggesting that the presence of magnetization (σ^a) diminishes the probability of optimization of QD for Π_{opt} corresponding to σ_A^a, $a = x, y, z$, provided the state ρ_m belongs to the set of exceptional states.

The numerical results for the state ρ_m depends strongly on the choice of quantum correlation measures. To demonstrate this, we compute QWD instead of QD for ρ_m. Our numerical analysis suggests that irrespective of the direction of magnetization, for about 95.51% of the two-qubit states of the form ρ_m, the QWD is optimized over the triad S_E, resulting $\varepsilon_3 = 0$. These states constitute the set of exceptional states in the case of QWD. For the rest 4.49% of states, the assumption that $\Pi_{opt}^A \in S_E$ results in a VE, $\varepsilon_3 = W_c - W_a \leq 1.0076 \times 10^{-2}$, where W_c is the CQWD, and W_a is the actual value of QWD. Note that the upper bound of the absolute error, in the case of the QWD, is much higher than that for QD of ρ_m. In contrast to the case of the QD, it is observed that for a state ρ_m with magnetization along y, the state ρ_m is always within the set of exceptional states, the QWD for $\geq 53\%$ of states – a larger percentage – is optimized for Π_{opt}^A corresponding to σ_A^z. The rest of the exceptional states, with respect to optimization of QWD, are equally distributed over the cases where Π_{opt}^A corresponds to σ_A^x and σ_A^y.

IV. RESTRICTED QUANTUM CORRELATIONS FOR BOUND ENTANGLED STATES

From the results discussed in the previous section, it comes as a common observation that the VE is less in the case of two-qubit PPT states when compared to the two-qubit NPPT states of fixed rank for a fixed measure of quantum correlation. A natural question arising out of the previous discussions is whether the result of low VE in the case of PPT states, which until now were all separable states, holds even when the state is entangled. Since PPT states, if entangled, are always BE, to answer this question, one has to look beyond $C^2 \otimes C^2$ systems and consider quantum states in higher dimensions where PPT bound entangled states exist. However, generating BE states in higher dimension is itself a non-trivial problem. Instead, we focus on a number of paradigmatic BE states in $C^2 \otimes C^4$ and $C^3 \otimes C^3$ systems and investigate the properties of the VE in a case-by-case basis.

It is also observed, from the results reported in the previous section, that the choice of the triad as the earmarked set yields good result in the context of low VE in the case of a large fraction of two-qubit states in the parameter space. Motivated by this observation, in the following calculations, we choose the triad constituted of projection measurements corresponding to the three spin-operators, $\{S^x, S^y, S^z\}$, in the respective physical system denoted by C^d, as the earmarked set, S_{E}. Here, $S^\beta = x, y, z$, are the spin operators for a spin $\frac{d-1}{2}$ particle (a system of di-
dimension \(d\). From now on, in the case of the triad as the earmarked set, we discard the subscript ‘3’, and denote the VE by \(\varepsilon\) for sake of simplicity. If the dimension is 2, the earmarked set is given by the triad constituted of the projection measurements corresponding to three Pauli matrices.

A. \(\mathbb{C}^2 \otimes \mathbb{C}^4\) system

The first PPT BE state that we consider is in a \(\mathbb{C}^2 \otimes \mathbb{C}^4\) system, and is given by \([14]\)

\[
\rho_b = \frac{1}{7b + 1} \begin{pmatrix}
 b & 0 & 0 & 0 & b & 0 & 0 \\
 0 & b & 0 & 0 & 0 & b & 0 \\
 0 & 0 & b & 0 & 0 & 0 & b \\
 0 & 0 & 0 & b & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & f_b & 0 & g_b \\
 b & 0 & 0 & 0 & 0 & b & 0 \\
 0 & b & 0 & 0 & 0 & b & 0 \\
 0 & 0 & b & 0 & 0 & 0 & b \\
 0 & 0 & 0 & 0 & f_b & 0 & g_b
\end{pmatrix},
\]

with

\[
f_b = \frac{1 + b}{2}, \quad g_b = \frac{\sqrt{1 - b^2}}{2},
\]

and \(0 \leq b \leq 1\). The state is BE for all allowed values of \(b\). We calculate QD and QWD of the state by performing measurement on the qubit. In Fig. 9(a), we plot the CQD, \(D_c\), and the actual QD, \(D_a\), as functions of the state parameter, \(b\). At \(b = 0.15\), QD shows a sudden change in its variation. The inset of Fig. 9(a) shows the variation of the relative error, \(\varepsilon\), with \(b\), exhibiting a discontinuous jump from zero to a non-zero value at \(b = 0.15\). Note that for \(b < 0.15\), \(\varepsilon = 0\), indicating \(\Pi^{opt}_a \in \mathcal{S}_E\), which, in this case, corresponds to \(\sigma^z\). For \(b \geq 0.15\), the maximum value of \(\varepsilon\), although non-zero, is of the order of \(10^{-3}\), and monotonically decreases to zero at \(b = 1\). Therefore, a restriction of the minimization of QD over the triad, in this region, is advantageous. For \(b \geq 0.15\), we observe that minimization in obtaining the value of \(D_c\) is achieved from the projection measurement corresponding to \(\sigma^z\).

The variations of QWD and CQWD, as functions of \(b\), are depicted in Fig. 9(b) with the inset demonstrating the corresponding variations of \(\varepsilon\). Similar to the case of QD, the optimal measurement observable is \(\sigma^z\) for \(b < 0.22\), and \(\sigma^x\) for \(b \geq 0.22\). However, the point at which the sudden change takes place (\(b = 0.22\)) is different from that for QD (\(b = 0.15\)). Note that the behaviors of both constrained as well as actual QWD as functions of \(b\) are similar to the behaviors of the respective varieties of QD, and the VE, in both cases, also show similar variations. The maximum value of \(\varepsilon\), in the case of QWD, is also of the order of \(10^{-3}\).

B. \(\mathbb{C}^3 \otimes \mathbb{C}^3\) systems

Case 1

As an example of a BE state in a \(\mathbb{C}^3 \otimes \mathbb{C}^3\) systems, we first consider the following state \([14]\):

\[
\rho_a = \frac{1}{8a + 1} \begin{pmatrix}
 a & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\
 0 & a & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & a & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & a & 0 & 0 & 0 & 0 & 0 \\
 a & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\
 0 & 0 & 0 & 0 & a & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & a & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & a & 0 & 0 \\
 a & 0 & 0 & 0 & a & 0 & 0 & 0 & f_a
\end{pmatrix},
\]
where $0 \leq a \leq 1$, and the functions $f'_a = f_{b=a}$ and $g'_a = g_{b=a}$, with f_b and g_b given by Eq. (16). Note that similar to the state, given in Eq. (15), the state is BE for the entire range of a. However, unlike the $C^2 \otimes C^4$ state discussed in Sec. IV A, the local measurement must be performed on a subsystem. We consider the set $\{|0\rangle, |1\rangle, |2\rangle\}$ as the computational basis for each subsystem of dimension $d = 3$. The triad, in this case, consists of the measurements corresponding to the observables S^x, S^y, and S^z, where S^β, $\beta = x, y, z$, are the spin operators for a spin-1 particle. Fig. 10(a) demonstrates the variations of QD and CQD as functions of a for the entire range $[0, 1]$. Note that the VE (shown in the inset) is non-zero for the entire range of a, attaining its maximum at $a = 0.23$. The optimization of D_c, is obtained for the measurement corresponding to the observable S^x when $a < 0.23$, while for $a \geq 0.23$, the optimal measurement observable is S^z. Similar results are obtained in the case of QWD and CQWD (Fig. 10(b)) where the maximum VE occurs at $a = 0.32$. In both the cases (QD and QWD), the maximum VE is of the order of $\sim 10^{-1}$, which is much higher compared to the same in previous examples.

An interesting observation comes from swapping the subsystem over which the local measurement is performed since the state ρ_a is asymmetric over an exchange of the subsystems A and B. If one optimizes QD of ρ_a over a complete set of local measurements performed on the party B instead of A, it is observed that the VE reduces drastically in comparison to the same obtained when measurement is performed over the party A. The variation of the corresponding D_c and D_a, along with VE against the state parameter a is given in Fig. 11. The VE attains a non-zero value (from the zero value) at $a = 0.6$, while a sudden change in the variation profile is observed at $a = 0.665$. This change is due to a transition of the optimal measurement observable from S^y to S^z at $a = 0.665$. Note that the maximum value of VE in the region $a \geq 0.6$ is $\sim 10^{-2}$, in contrast to the previous case.

Case 2

Let us take another example of a PPT BE state in $C^3 \otimes C^3$, given by [16]:

$$\varrho_{\alpha} = \frac{2}{7} |\psi\rangle\langle\psi| + \frac{\alpha}{7} \varrho_+ + \frac{5 - \alpha}{7} \varrho_-,$$

where $\varrho_+ = (|01\rangle|01\rangle + |12\rangle|12\rangle + |20\rangle|20\rangle)/3$, $\varrho_- = (|10\rangle|10\rangle + |21\rangle|21\rangle + |02\rangle|02\rangle)/3$, $|\psi\rangle = \frac{1}{\sqrt{3}} \sum_{i=0}^{2} |ii\rangle$, and $0 \leq \alpha \leq 5$. The state is separable for $2 \leq \alpha \leq 3$, BE for $3 < \alpha \leq 4$ and $1 < \alpha \leq 2$, while distillable for $4 < \alpha \leq 5$.
and 0 < \alpha \leq 1 \[16\]. Fig. 12(a) depicts the variation of QD and CQD as functions of the state parameter \alpha over its entire range. Note that the QD as well as the CQD remains constant over the range of \alpha in which entanglement is distillable, whereas both of them attains a minimum at \alpha = 2.5 in the separable region. In the BE region, 1 < \alpha \leq 2, the value of QD as well as CQD remains constant up to \alpha = 1.36, and then decreases for increasing \alpha in the region 1.36 \leq \alpha \leq 2. Besides, in the BE region, 3 < \alpha \leq 4, the value of QD as well as CQD increases with increasing \alpha up to \alpha = 3.64, and then becomes constant. The corresponding \varepsilon is plotted against \alpha in Fig. 12(b). Note that the maximum VE is committed in the separable region (of the order of \sim 10^{-2}), whereas it is smaller (of the order of \sim 10^{-3}) in the BE region. Clearly, the maximum VE is relatively higher in the present case in comparison to the \mathbb{C}^2 \otimes \mathbb{C}^4 BE state, \rho_b (Eq. (15)), but considerably lower when compared to the \mathbb{C}^3 \otimes \mathbb{C}^3 BE state, \rho_a (Eq. (17)). When QD is constant, the optimal measurement observable is \mathcal{S}_z while it changes to either \mathcal{S}^x or \mathcal{S}^y when value of QD increases or decreases. Note that in the latter case, choice of \mathcal{S}^x or \mathcal{S}^y as the optimal measurement observable are equivalent in the context of optimizing QD.

We conclude the discussion on the state \rho_a by pointing out that the QWD of the state coincides with the QD since \rho_a has maximally mixed marginals, i.e., the local density operator of each of the parties is proportional to identity in \mathbb{C}^3 [9].

V. CONCLUDING REMARKS

To summarize, we have addressed the question whether the computational complexity of information theoretic measures of quantum correlations such as quantum discord and quantum work deficit can be reduced by performing the optimization involved over a constrained subset of local projectors instead of the complete set. We have considered four plausible constructions of such a restricted set, and shown that the average absolute error, in the case of two-qubit mixed states with different ranks, dies down fast with the increase in the size of the set. Quantitative investigation of the reduction of error with the increase in the size of the restricted set has been performed with a comparative study between quantum discord and quantum work deficit, and the corresponding scaling exponents have been estimated. We have also considered a general two-qubit state up to local unitary transformation, and have shown that the computation of measures like quantum discord and quantum work deficit can be made considerably easier by carefully choosing the restricted set of projectors. We have also pointed out that insight about constructing the constrained set can be gathered from the probability distribution of the optimizing parameters. If a very special constrained set consisting of the projection measurements corresponding to only the three Pauli matrices is considered, we have demonstrated that the state space of a two-qubit system contains a large fraction of states for which exact minimizations of quantum discord and quantum work deficit are obtained only on this set, resulting vanishing error. Moreover, we have found that the absolute error in the value of quantum correlation calculated using the constrained set in the case of two-qubit PPT as well as PPT BE states is low compared to the NPPT states. The investigations show that these measures can be obtained with high accuracy even when restrictions in the optimizations involved in their definitions are employed, thereby reducing the computational difficulties in their evaluation. Although we have investigated only information theoretic measures, this study gives rise to a possibility to overcome challenges in the computation of other quantum correlation measures that involve optimization over some set.

[1] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).
[2] C. H. Bennett and S.J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992); C. H. Bennett, G. Brassard, C. Cr´epeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993); R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001); P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, Nature 434, 169 (2005); H. J. Briegel, D. Browne, W. Dür, R. Raussendorf, and M. van den Nest, Nat. Phys. 5, 19 (2009).
[3] J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73, 565 (2001); D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev. Mod. Phys. 75, 281 (2003); L. M. K. Vandersypen and I.L Chuang, Rev. Mod. Phys. 76, 1037 (2005); K. Singer, U. Poschinger, M. Murphy, P. Ivanov, F. Ziesel, T. Calarco, and F. Schmidt-Kaler, Rev. Mod. Phys. 82, 2609 (2010); H. Haffner, C. F. Roose, and R. Blatt, Phys. Rep. 469, 155 (2008); L.-M. Duan and C. Monroe, Rev. Mod. Phys. 82, 1209 (2010); J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, Rev. Mod. Phys. 84, 777 (2012).
[4] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Phys. Rev. Lett. 76, 722 (1996); M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. Lett. 78, 574 (1997); M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, Phys. Rev. A 57, R4075 (1998); W. Dür, J. I. Cirac, and R. Tarrach, Phys. Rev. Lett. 83, 3562 (1999); M. Horodecki and P. Horodecki, Phys. Rev. A 59, 4206 (1999); W. Dür and J. I. Cirac, Phys. Rev. A 61, 042314 (2000); W. Dür, J. I. Cirac, M. Lewenstein, and D. Bruß, Phys. Rev. A 61, 062313 (2000); G. Alber, A. Delgado, N. Gisin, and I. Jex, J. Phys. A. 34, 8821 (2001); J. Dehaene, M. Van den Nest, B. D. Moor, and F. V. Vestraete, Phys. Rev. A 67, 022310 (2003); W. Dür, H. Aschauer, and J. B. Briegel, Phys. Rev.
180402 (2012); U. Vogl, R. T. Glasser, Q. Glorieux, J. B. Clark, N. V. Corzo, and P. D. Lett, Phys. Rev. A 87, 010101(R) (2013); C. Benedetti, A. P. Shurupov, M. G. A. Paris, G. Brida, and M. Genovese, Phys. Rev. A 87, 052136 (2013).

[26] Y. Huang, Phys. Rev. A 88, 014302 (2013); M. Namkung, J. Chang, J. Shin, and Y. Kwon, arXiv: 1404.6329 [quant-ph] (2014).

[27] T. Chanda, A. K. Pal, A. Biswas, A. Sen(De), and U. Sen, arXiv:1409.2096 [quant-ph] (2014).

[28] F. F. Fanchini, T. Werlang, C. A. Brasil, L. G. E. Arruda, and A. O. Caldeira, Phys. Rev. A 81, 052107 (2010); B. Li, Z. -X. Wang, and S. -M. Fei, Phys. Rev. A 83, 022321 (2011).

[29] C. W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976); A.S. Holevo, Statistical Structure of Quantum Theory, Lect. Not. Phys. 61 (Springer, Berlin, 2001); C. W. Helstrom, Phys. Lett. A 25, 1012 (1967); H. P. Yuen, M. Lax, IEEE Trans. Inf. Th. 19, 740 (1973); C. W. Helstrom, R. S. Kennedy, IEEE Trans. Inf. Th. 20, 16 (1974); S. Braunstein and C. Caves, Phys. Rev. Lett. 72, 3439 (1994); S. Braunstein, C. Caves, and G. Milburn, Ann. Phys. 247, 135 (1996); M. G. A. Paris, Int. J. Quant. Inform. 07, 125 (2009), and the references therein.

[30] A. Peres, Phys. Rev. Lett. 77, 1413 (1996); M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A 223, 1 (1996).

[31] N. J. Cerf, C. Adami, Phys. Rev. Lett. 79, 5194 (1997); B. Groisman, S. Popescu, and A. Winter, Phys. Rev. A 72, 032317 (2005).

[32] A two-qubit rank-2 state can be written as \(\rho = p|\psi\rangle\langle\psi| + (1 - p)|\phi\rangle\langle\phi| \), where \(0 \leq p \leq 1 \), and \(|\psi\rangle \) and \(|\phi\rangle \) are mutually orthogonal. The state \(|\psi\rangle \), in Schmidt decomposed form, can be written as \(|\psi\rangle = \alpha|00\rangle + \beta|11\rangle \), where \(\alpha, \beta \) are real and \(\alpha^2 + \beta^2 = 1 \). The partial transposition, \(\rho^T \), of \(\rho \) will always have a negative eigenvalue given by \(\lambda = -|2p\alpha\beta - 1| \). The state is PPT only when \(\lambda = 0 \), which corresponds to a line in the state space of all rank-2 states. Therefore, the PPT states in the space of all rank-2 states form a set of measure zero.

[33] T. Eu and J. H. Eberly, Quant. Inform. Comput. 7, 459 (2007).

[34] K. Życzkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, Phys. Rev. A 58, 883 (1998), and references thereto.