FINAL STATE INTERACTIONS IN $B \to \pi\pi K$ and $B \to K\overline{K}K$ DECAYS

L. LEŚNIAK1, B. EL-BENNICH2, A. FURMAN3, R. KAMIŃSKI1, B. LOISEAU2

1 Division of Theoretical Physics, The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Kraków, Poland
Leonard.Lesniak@ifj.edu.pl

2Laboratoire de Physique Nucléaire et de Hautes Énergies (IN2P3-CNRS-Universités Paris 6 et 7), Groupe Théorie,
Université Pierre et Marie Curie, 4 Pl. Jussieu, F-75252 Paris, France

3 ul. Bronowicka 85/26, 30-091 Kraków, Poland

Analysis of charged and neutral B meson decays into $\pi^+\pi^-K$, K^+K^-K, and $K^0\overline{K}^0\overline{K}^0$ is performed using a unitary representation of the $\pi\pi$ and $K\overline{K}$ final state interactions. Comparison of the theoretical model with the experimental data of the Belle and BaBar Collaborations indicates that charming penguin contributions are necessary to describe the $B \to f_0(980)K$ and $B \to \rho(770)^0K$ decays.

Keywords: Decays of bottom mesons; meson-meson interactions

PACS numbers: 13.25.Hw, 13.75.Lb

1. Introduction

We report on some studies of three-body B meson decays into $\pi\pi K$ and $K\overline{K}K$ final states. In these reactions one can find an evidence of the direct CP violation similar to that recently discovered in two-body B^0 decays into π^+K^-. Loop-type weak decay diagrams known as penguin terms play an important role in these decays. In particular we study contributions of the charming penguin amplitudes responsible for long-distance effects present in the final state interactions. Strong interactions between pairs of pions and kaons in the final scalar-isoscalar state have been described in Ref. [1]. Here we extend this approach to the $\pi\pi$ interactions in P-wave. This enables us to obtain a unitarized description of the final state $\pi\pi$ interactions from threshold up to about 1.2 GeV. The opening of the $K\overline{K}$ threshold near 1 GeV is included in a natural way since both $\pi\pi$ and $K\overline{K}$ S-wave channels are coupled in our model.

2. Decay amplitudes

We take into account two components in the weak transition amplitudes governed by b-quark decays into $s\bar{u}u$, $s\bar{d}d$, and $s\bar{s}s$, where u, d and s denote up, down and
strange quarks, respectively. The first term consists of the amplitude derived in the factorization approximation with some QCD corrections and the second one is a long-distance amplitude with c-quark or with u-quark in loop. At the hadronic level the second amplitude with the c-quark in loop can be interpreted in terms of the intermediate $D_s^{(*)}D^{(*)}$ states which are frequently produced in B-meson decays (see Fig. 1).

\[D_s^{(*)}D^{(*)}\]

Fig. 1. Example of $D_s^{(*)}D^{(*)}$ contribution to B^- decays into $\pi\pi K^-$ and $K\overline{K}K^-$

The charming penguin contribution to the $B^-\rightarrow\pi\pi K^-$ decay amplitude with two pions in P-wave is parametrized by the following expression:

\[\langle (\pi^+\pi^-)_{P}K^- | H | B^- \rangle_{\text{penguin}} = 2 G_F m_\rho C_\rho \Gamma_{\rho\pi\pi}(m_{\pi\pi}) p_\pi p_K \cos \theta, \]

where G_F is the Fermi constant, m_ρ is the $\rho(770)$ mass, $\Gamma_{\rho\pi\pi}(m_{\pi\pi})$ is the $\rho\pi\pi$ vertex function of the $\pi\pi$ effective mass $m_{\pi\pi}$, p_π and p_K are the pion and kaon momenta in the ρ rest frame and θ is the angle between the direction of flight of the π^- and the direction of the $\pi^+\pi^-$ system in the B rest frame. The constant amplitude C_ρ reads:

\[C_\rho = f_K A_0^{B\rightarrow\rho}(m_K^2) \left(V_{ub} V_{us}^* P_u + V_{tb} V_{ts}^* P_t \right). \]

Here V’s are the Cabibbo–Kobayashi–Maskawa matrix elements, f_K is the kaon decay constant, $A_0^{B\rightarrow\rho}(m_K^2)$ is the $B\rightarrow\rho$ transition form factor and P_u and P_t are penguin P-wave complex parameters to be fitted to the experimental data.

Final state interactions in the isospin zero S-wave are treated using the unitary model of Ref. 2 in which the $\pi\pi$ and $K\overline{K}$ channels are coupled. In this approach the sum of the several Breit-Wigner terms, usually used in the experimental analyses of the Dalitz plot distributions, is replaced by a set of unitary coupled meson-meson amplitudes. These amplitudes are expressed in terms of phase shifts $\delta_{\pi\pi}$, δ_{KK} and inelasticity η known from other experiments 2. The P-wave pion-pion amplitude is well described by a Breit-Wigner term. No arbitrary phases nor relative intensity free parameters for the different resonances are needed. All the resonances appear in a natural way as poles of the meson-meson amplitudes. The scalar resonances $f_0(600)$ and $f_0(980)$ are examples of such poles of a single amplitude. The presence of the $f_0(980)$ is a dominant feature of the experimental $m_{\pi\pi}$ distribution.
3. Comparison with the experimental data

We perform a fit to the data of Belle\cite{3,4} and BaBar\cite{5} Collaborations. Both groups have measured differential $\pi\pi$ effective mass distributions, branching fractions, direct CP violating asymmetries in charged B decays and time-dependent CP violating asymmetry parameters in B^0 decays. Moreover, the Belle Collaboration has given helicity angle distributions in the $\rho(770)$ and $f_0(980)$ regions. We obtain a good agreement with the data using only the four complex penguin parameters:

$$S_u = (0.15 \pm 0.10) \exp[i(1.90 \pm 0.71)], \quad S_t = (0.020 \pm 0.002) \exp[-i(0.26 \pm 0.21)]$$

for the S-wave and

$$P_u = (1.09 \pm 0.21) \exp[-i(0.98 \pm 0.12)], \quad P_t = (0.065 \pm 0.002) \exp[-i(1.56 \pm 0.08)]$$

for the P-wave.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig2.png}
\caption{The $\pi^+\pi^-$ effective-mass distributions in $B^\pm \to \pi^+\pi^- K^\pm$ decays. The data points are taken from Ref. 4 and the solid lines represent the results of our model.}
\end{figure}

In Fig. 2 we show a comparison of our model with the $\pi^+\pi^-$ effective mass distributions measured by Belle for the $B^+ \to \pi\pi K^+$ and $B^- \to \pi\pi K^-$ decays. The large direct CP asymmetry of the order of 0.3, visible in the range of the $\rho(770)$ resonance, is well described by our model. The fit is performed in the $m_{\pi\pi}$ range between 0.60 GeV and 1.06 GeV where the two resonances $\rho(770)$ and $f_0(980)$ dominate the pion-pion mass spectrum. Existence of these resonances leads to interesting interference phenomena seen in Fig. 3 where helicity-angle distributions are plotted for the combined $B^\pm \to \pi\pi K^\pm$ decays. In the ρ range the general behaviour of the data follows the $\cos^2 \theta$ function, characteristic of a polarized ρ decay into $\pi^+\pi^-$. However, in the $f_0(980)$ range the angular dependence is not flat as one can expect for the decay of a S-wave resonance. It has an interference component proportional to $\cos \theta$ which originates from the presence of the ρ resonance tail under the $f_0(980)$ peak.
We have also performed calculations of different observables for the B decays into three kaons in which a $K\bar{K}$ pair is in relative S-wave. No extra free parameters have been used since all the parameters have been fixed in the fit to the $B \to \pi \pi K$ decays as described above. The averaged branching ratio for the $B^{\pm} \to K^{+}K^{-}K^{\pm}$ S-wave channels, integrated over the $K\bar{K}$ effective masses from the threshold up to 1.1 GeV, is equal to 1.7×10^{-6} and the corresponding value for the $B^{0} \to K^{+}K^{-}K^{0}$ is 0.9×10^{-6}. The direct CP asymmetry for the charged B decays is 0.07. The time-dependent asymmetry parameters for the neutral B decays are: $S = -0.80$ and $A = -0.13$.

Acknowledgments

This work has been performed in the framework of the IN2P3-Polish Laboratories Convention (project No. CSI-12). It has been also financed within an agreement between the CNRS (France) and the Polish Academy of Sciences (project No. 19481).

References

1. A. Furman, R. Kamiński, L. Leśniak and B. Loiseau, *Phys. Lett.* **B622**, 207 (2005).
2. R. Kamiński, L. Leśniak and B. Loiseau, *Phys. Lett.* **B413**, 130 (1997).
3. Belle Collaboration (A. Garmash et al.), *hep-ex/0512066*.
4. Belle Collaboration (K. Abe et al.), *hep-ex/0509001*.
5. BaBar Collaboration (B. Aubert et al.), *Phys. Rev.* **D72**, 072003 (2005).