Low liver conversion rate of \(\alpha \)-linolenic to docosahexaenoic acid in awake rats on a high-docosahexaenoate-containing diet

Miki Igarashi,1 Kaizong Ma, Lisa Chang, Jane M. Bell, Stanley I. Rapoport, and James C. DeMar, Jr.2

Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892

Abstract We quantified the rates of incorporation of \(\alpha \)-linolenic acid (\(\alpha \)-LNA; 18:3n-3) into "stable" lipids (triacylglycerol, phospholipid, cholesteryl ester) and the rate of conversion of \(\alpha \)-LNA to docosahexaenoic acid (DHA; 22:6n-3) in the liver of awake male rats on a high-DHA-containing diet after a 5-min intravenous infusion of \([1-\text{\^{14}C}}\text{]LNA}. At 5 min, 72.7% of liver radioactivity (excluding unesterified lipid) was stable lipid, with the remainder in the aqueous compartment. Using our measured specific activity of liver \(\alpha \)-LNA-CoA, we calculated incorporation rates of unesterified \(\alpha \)-LNA into liver triacylglycerol, phospholipid, and cholesteryl ester as 2,401, 749, and 39.6 nmol/s/g liver, phospholipid, and cholesteryl ester as 2,401, 749, and 39.6 nmol/s/g liver, respectively, corresponding to turnover rates of 3.2, 8.7, and 2.9%/min and half-lives of 8–24 min. A lower limit for the DHA synthesis rate from \(\alpha \)-\LNA equaled 15.8 nmol/s/g liver (0.5% of the net incorporation rate). Thus, in rats on a high-DHA-containing diet, rates of \(\beta \)-oxidation and esterification of \(\alpha \)-LNA into stable liver lipids are high, whereas its conversion to DHA is comparatively low and insufficient to supply significant DHA to the brain. High incorporation and turnover rates likely reflect a high secretion rate by liver of stable lipids and for steps of DHA synthesis. We thought it important to try to do so here.

A number of experimental procedures have been used to examine hepatic \(\alpha \)-LNA metabolism, including studying isolated hepatocytes (8), infusing the liver in situ (9), and injecting labeled \(\alpha \)-LNA intravenously in an animal and measuring its distribution in different liver compartments (10). None of these studies measured the specific activity of liver \(\alpha \)-LNA-CoA, the precursor pool for \(\alpha \)-LNA esterification into stable lipids and for steps of DHA synthesis. This prevented calculating exact incorporation and synthesis (1–3). Both \(\Delta \)5 and \(\Delta \)6 desaturases participate in this conversion, but the \(\Delta \)6 desaturase is considered to be rate-limiting (1, 4). Human and rat \(\Delta \)5 and \(\Delta \)6 desaturases are expressed abundantly in brain, liver, and heart (5, 6).

Controversy remains regarding the extent of DHA synthesis in brain from \(\alpha \)-LNA, compared with its delivery by blood to brain as DHA synthesized from \(\alpha \)-LNA in the liver. In immature rats, Scott and Bazan (7) concluded that the brain does not synthesize its own DHA to a significant extent but that DHA converted from \(\alpha \)-LNA in the liver can contribute to DHA via the blood stream. In adult rats fed a high-DHA-containing diet [2.3% (w/w) of total fat], we recently used an in vivo kinetic pulse-labeling model that confirmed a low synthesis rate of DHA from \(\alpha \)-LNA in brain (2), as proposed for immature rats (see above), and also showed that \(\alpha \)-LNA was largely \(\beta \)-oxidized or esterified unchanged into brain phospholipid. We did not examine the rate of DHA synthesis from \(\alpha \)-LNA in the liver of these rats, nor did we explore the kinetics of other pathways of liver \(\alpha \)-LNA metabolism. We thought it important to try to do so here.

Abbreviations: DHA, docosahexaenoic acid (22:6n-3); di-heptadecanoate phosphatidylcholine; EPA, eicosapentaenoic acid (20:5n-3); FAME, fatty acid methyl ester; LA, linoleic acid (18:2n-6); \(\alpha \)-LNA, \(\alpha \)-linolenic acid (18:3n-3).

1 To whom correspondence should be addressed.
2 Present address of J. C. DeMar, Jr.: Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20892.
thesis rates as well as turnover rates and half-lives of α-LNA in stable liver lipids.

In this study, we used controlled intravenous infusion of [1-14C]α-LNA in unanesthetized adult male rats to produce steady-state plasma and liver α-LNA-CoA specific activities, and measured the radioactive plasma exposure of the liver (input function) to calculate rate parameters as we did for the brain (2, 11, 12). We also microwaved the liver to stop enzymatic activity and to prevent ischemia-related changes in liver unesterified fatty acid and acyl-CoA concentrations, plasma input functions, and specific activities that we used the labeled and unlabeled plasma α-LNA concentrations, plasma input functions, and specific activities that we had measured in that brain study (2). An abstract of part of this work has been presented (20).

MATERIALS AND METHODS

Materials

[1-14C]α-LNA in 100% ethanol was purchased from Perkin-Elmer Life Sciences, NEN Life Science Products (Boston, MA). Its specific activity was 54 mCi/mmol and its purity was 98% (determined by HPLC and scintillation counting). Di-heptadecanoylphosphatidylcholine (di-17:0 PC), free heptadecanoylacid (17:0), heptadecanoyl-CoA (17:0-CoA), and acyl-CoA standards for HPLC, as well as TLC standards for cholesterol, triglycerides, and cholesteryl esters, were purchased from Sigma-Aldrich (St. Louis, MO). Standards for general fatty acid methyl esters (FAMEs) for GC and HPLC were from NuChek Prep (Elysian, MN). FAMEs for unique n-3 PUFAs (20:4n-3, 22:5n-3, 24:5n-3, and 24:6n-3) were from Larodan Fine Chemicals (Malmö, Sweden). 6-β-Toluidine-2-naphthalene sulfonyl acid was from Acros Organics (Fair Lawn, NJ). Liquid scintillation cocktail (Ready Safe™) was purchased from Beckman Coulter (Fullerton, CA). Solvents were HPLC-grade and were purchased from Fisher Scientific (Fair Lawn, NJ) or EMD Chemicals (Gibbstown, NJ). Other chemicals and reagents, unless noted otherwise, were purchased from Sigma-Aldrich or Fisher Scientific.

Animals

The protocol was approved by the Animal Care and Use Committee of the National Institute of Child Health and Human Development and followed the National Institutes of Health Guide for the Care and Use of Laboratory Animals (Publication 80–23). Adult (2 months old) Fischer-344 (CDF) male rats were purchased from Charles River Laboratories (Portage, MI) and were housed for 4 weeks before study in an animal facility with regulated temperature, humidity, and 12 h light/12 h dark cycle. They had free access to water and to rodent chow formulated NIH-31 which contains 4% (w/w) crude fat (Zeigler Bros., Gardners, PA). The fatty acid composition of this chow is described in a prior report (2). Saturated and monounsaturated fatty acids contributed 20.1% and 22.5%, respectively, to its total fatty acid content. The n-3 PUFAs α-LNA, eicosapentaenoic acid (EPA; 20:5n-3), and DHA contributed 5.1%, 2.0%, and 2.3%, respectively, whereas the n-6 PUFAs linoleic acid (LA; 18:2n-6) and arachidonic acid contributed 47.9% and 0.02%, respectively. The 9:1 ratio of LA to α-LNA is close to the recommended dietary balance, but the energy contribution of DHA (0.23% of energy consumed) and of EPA plus DHA (0.45% of energy) in the diet were high compared with the EPA plus DHA contributions in the average diet in the United States (<0.1%) as well as in the recommended diet (0.25%) (16–19).

Surgery

A rat weighing 300 ± 39 g (SD) was anesthetized with 1–3% halothane. Polyethylene catheters filled with heparinized saline (100 IU/ml) were surgically implanted into the right femoral artery and vein, after which the skin was closed and treated with 1% lidocaine for pain control, as described previously (2). The rat was loosely wrapped in a fast-setting plaster cast that was taped to a wooden block, then allowed to recover from anesthesia for 3–4 h. Body temperature was maintained at 36–38°C using a feedback-heating device. Surgery, which took ~20 min, was performed between 10:00 AM and noon. Animals were provided with food the night before surgery.

Tracer infusion

Each rat was infused via the femoral vein catheter with 500 μg/kg [1-14C]α-LNA (2). An aliquot of [1-14C]α-LNA in ethanol was dried under nitrogen gas, and the residue was dissolved in 5 mL HEPES buffer (pH 7.4) containing 50 mg/ml fatty acid-free BSA to a final volume of 1.3 mL. The mixture was sonicated at 40°C for 20 min and mixed by vortexing. A computer-controlled variable-speed pump (No. 22; Harvard Apparatus, South Natick, MA) was used to infuse the 1.3 mL solution at a rate of 0.225 (1 – e–1.95t) mL/min (t in min), which was designed to rapidly establish a steady-state plasma radioactivity (21). Arterial blood was collected in centrifuge tubes at 0, 0.25, 0.5, 0.75, 1.5, 3, 4, and 5 min after starting the infusion. At 5 min, the rat was euthanized by an overdose of sodium pentobarbital (100 mg/kg i.v.), and its head and torso were immediately subjected to high-energy focused beam microwave irradiation (5.5 kW, 3.4 s) (model S6F; Cober Electronics, Stamford, CT). Liver weight was recorded, and tissue samples that were confirmed visually to be browned or “cooked” were removed and stored at −80°C until assay. The arterial blood samples were centrifuged at 13,000 rpm for 5 min, and plasma was collected and frozen at −80°C.

Extraction and isolation of liver lipid

Total lipids from liver and plasma were extracted by the procedure of Folch, Lees, and Sloane Stanley (22). Total lipid extracts were separated into neutral lipid subclasses by TLC on silica gel 60 plates (EM Separation Technologies; Gibbstown, NJ), as described previously (3). The bands were scraped, and the silica gel was used directly to quantify radioactivity by scintillation counting and to prepare FAMEs (described below).

In addition to measuring unlabeled total phospholipid concentrations, an aliquot of total lipid extract was added to a tube and dried using a SpeedVac. To measure individual phospholipids, total lipid extracts were separated into phospholipid classes by TLC on silica gel 60 plates (23). The bands were scraped and added to the tube. The silica gel was used directly to analyze phospholipid concentrations. The phosphorous assay followed the method of Rouser, Fleischer, and Yamamoto (24). To quantify total and free cholesterol and triacylglycerol concentrations, lipid extracts were dried using a SpeedVac, and the residue was dissolved in isopropanol. Total cholesterol and free cholesterol
concentrations were determined with a commercial kit (BioVision Research Products, Mountain View, CA), as was the triacylglycerol concentration (Sigma-Aldrich).

FAME preparation

The FAMEs were used for the GC and HPLC analyses. Lipid and aqueous extracts were methylated with 1% H2SO4-methanol for 3 h at 70 °C (3, 25). Before methylation, an appropriate quantity of di-17:0 PC (for triacylglycerol, phospholipid, and cholesteryl ester) or of 17:0 fatty acid (for unesterified fatty acid) was added to the sample as an internal standard.

Quantification of radioactivity

Samples for measuring radioactivity were placed in scintillation vials and dissolved with liquid scintillation cocktail (Ready Safe™ plus 1% glacial acetic acid), and their radioactivity was determined using a liquid scintillation analyzer (2200CA, TRI-CARB®; Packard Instruments, Meriden, CT).

GC analysis

Fatty acid concentrations of liver lipids and plasma unesterified fatty acids were determined by GC. GC separation and analysis were performed as described (3), with fatty acid concentrations (nmol/g liver) calculated by proportional comparison of GC peak areas with the area of the 17:0 internal standard. The concentration of unesterified α-LNA in plasma also was determined this way as 41 ± 13 nmol/ml (2).

HPLC analysis

FAMEs from liver lipids were analyzed by HPLC by the method of Aveldano, VanRollins, and Horrocks (26) with modifications. The FAMEs were dissolved in acetonitrile, and the solution was fractionated by reverse-phase column HPLC using a pump (System GOLD 126; Beckman Coulter) outfitted with an ultraviolet light detector (UV/VIS-151; Gilson, Middleton, WI) and an online continuous scintillation counter β-RAM detector (β-RAM model 2; IN/US Systems). The reverse-phase column, Luna 5 μ C18 (2) (5 μM particle size, 4.6 × 250 mm), was from Phenomenex (Torrance, CA). Chromatography was performed using a linear gradient system of water and acetonitrile. The acetonitrile was held at 85% for 30 min, increased to 100% over 10 min, and held again at 100% for 20 min. The flow rate was 1.0 ml/min. The ultraviolet light detector was set at 205 nm.

Analysis of long-chain acyl-CoAs

Long-chain acyl-CoAs were extracted from microwaved liver using an affinity chromatography method with slight modifications (27). After 5 nmol of heptadecanoyl-CoA (17:0-CoA) was added as an internal standard to ~1 g of liver, the sample was homogenized in 25 mM KH2PO4 (Tissuemizer; Tekmar, Cincinnati, OH). The homogenate was adjusted with isopropanol and acetonitrile to isopropanol /25 mM KH2PO4/ acetonitrile (1:1:2, v/v/v), then sonicated using a probe sonicator (model W-225; Misonix, Farmingdale, NY). A small volume (~3% of total) of saturated (NH4)2SO4 solution was added to the homogenate to precipitate proteins, after which the sample was mixed vigorously for 5 min and centrifuged. The supernatant was washed with hexane (equal volume) to remove nonpolar lipids and then diluted with a 1.25-fold volume of 25 mM KH2PO4. Extracting nonpolar lipids with hexane was important, as it markedly improved HPLC separation of acyl-CoAs compared with samples that were not extracted (data not shown). The solution was passed three times through an oligonucleotide purification cartridge (ABI Masterpiece®, OPC®, Applied Biosystems, Foster City, CA), and then the cartridge was washed with 25 mM KH2PO4. Acyl-CoA species were eluted with a small volume of isopropanol-1 mM glacial acetic acid (75:25, v/v).

HPLC separation and analysis for acyl-CoA were performed as described (2). Under the HPLC system, 14:0-CoA, EPA-CoA, and α-LNA-CoA eluted as a single peak (2). This peak was collected and saponified with 2% (w/v) KOH/ethanol at 100 °C for 45 min and acidified with HCl, and then fatty acids were extracted with hexane. The unesterified fatty acids were converted to FAMEs and separated by HPLC to measure radioactivity. The concentrations of the FAMEs that came from the acyl-CoA species also were determined by GC. Thus, the concentrations of 14:0, EPA, and α-LNA in the original acyl-CoA peak were determined by proportional comparison of their GC peak areas with each other.

Calculations

The general pulse-labeling equations for determining the in vivo kinetics of a fatty acid in any organ, after the intravenous infusion of a radiolabeled fatty acid to produce a steady-state plasma radioactivity, have been described elsewhere (2, 11, 12, 21, 28). These equations were applied to a model for liver α-LNA metabolism (see Fig. 3 below). In this model, unesterified plasma α-LNA enters the liver unesterified α-LNA pool (not shown in Fig. 3 below), from where it is delivered to the α-LNA-CoA pool through the action of an acyl-CoA synthetase. From there, it can be converted to DHA-CoA by elongation and desaturation enzymes. Both α-LNA and DHA (as well as n-3 PUFA conversion intermediates) can be transacylated from their acyl-CoA forms into phospholipid, triacylglycerol, or cholesteryl ester (called “stable” lipids). The esterified fatty acids can be released from these stable lipids back to the unesterified liver fatty acid pool (data not shown) and then activated again to acyl-CoA by an acyl-CoA synthetase, or they can be secreted into blood while esterified within the stable lipids as packaged in VLDLs. A fatty acid in the liver acyl-CoA pool also can be transferred by carnitine Opalmitoyl transferase to mitochondria for β-oxidation (29). Aqueous radiolabeled β-oxidation fragments that are formed (predominantly acetyl-CoA) then can be recycled into cholesterol, saturated long-chain fatty acids, or any number of other products.

Incorporation coefficients $k^*_i(\alpha-LNA)$ (ml/s/g liver), representing the transfer of unesterified [1-13C]α-LNA from plasma into stable lipid i, were calculated as follows:

$$ k^*_i(\alpha-LNA) = \frac{C^*_{\text{liver},i}(\alpha-LNA)(T)}{\int_0^t C^*_{\text{plasma},i}(\alpha-LNA) \, dt} $$

(Eq. 1)

where $C^*_{\text{liver},i}(\alpha-LNA)(T)$ (nCi/g liver) is α-LNA radioactivity in i at time T (5 min) after starting tracer infusion, t is time after starting infusion, and $C^*_{\text{plasma},i}(\alpha-LNA)$ (nCi/ml plasma) is plasma radioactivity of unesterified α-LNA (2). The coefficient $k^*_i(\alpha-LNA-DHA)$ (ml/s/g liver), representing the synthesis of DHA from α-LNA and subsequent DHA incorporation into stable lipid i, was calculated as follows:

$$ k^*_i(\alpha-LNA-DHA) = \frac{C^*_{\text{liver},i}(DHA)(T)}{\int_0^t C^*_{\text{plasma},i}(\alpha-LNA) \, dt} $$

(Eq. 2)

where $C^*_{\text{liver},i}(DHA)$ (nCi/g liver) is DHA radioactivity in i at T (5 min).

The rate of incorporation of unlabeled unesterified α-LNA from plasma into liver lipid i, $J_{\text{liver},i}(\alpha-LNA)$, and the rate of DHA...
RESULTS

Concentrations of stable liver lipids

Table 1 presents the unlabeled concentrations of “stable” lipids in microwaved liver. The total phospholipid concentration is \(\sim 2.5 \) times the triacylglycerol concentration, which in turn is approximately twice the cholesterol concentration.

Lipid	Concentration (\(\mu \text{mol/g liver} \))
Triacylglycerol	12.4 ± 5.0
Cholesterol	5.8 ± 0.4
Cholesteryl ester	0.6 ± 0.4
Total phospholipid	29.7 ± 2.1
Phosphatidylcholine	16.4 ± 1.7
Phosphatidylethanolamine	6.6 ± 1.2
Phosphatidylserine	0.8 ± 0.3
Phosphatidylinositol	2.4 ± 0.9
Sphingomyelin	2.4 ± 1.4

Values represent means ± SD (n = 6).

Liver fatty acid composition

Table 2 presents concentrations of unlabeled unesterified fatty acids and of fatty acids esterified in stable liver lipids. \(\alpha \)-LNA concentrations in triacylglycerol, phospholipid, and cholesteryl ester were 457 ± 190, 52 ± 12, and 2.7 ± 1.9 \(\mu \text{mol/g liver} \), respectively, whereas corresponding \(\alpha \)-LNA concentrations in liver were much higher: 1,657 ± 716, 5,388 ± 947, and 20 ± 13 \(\mu \text{mol/g liver} \). EPA (20:5n-3) concentrations were 680 ± 141, 656 ± 169, and 15 ± 4 \(\mu \text{mol/g liver} \), respectively. DPA (22:5n-3) concentrations were 1,055 ± 367, 1,122 ± 143, and 3.4 ± 2.0 \(\mu \text{mol/g liver} \), respectively. The \(\sim 2 \)-fold concentration ratio of total fatty acids in phospholipid compared with triacylglycerol is consistent with the relative concentrations of these stable lipids in liver (Table 1) and with the fact that triacylglycerol contains three rather than two esterified long-chain fatty acids.

Distribution of radioactivity

Figures 1A, B and Table 3 provide values for radioactivity in the different liver compartments after 5 min of \([1\text{H}]\alpha\)-LNA infusion. Total lipid radioactivity was calculated when excluding unesterified fatty acid radioactivity, as we could not distinguish intravascular from parenchymal contributions. Total radioactivity equaled 3,300 ± 649 nCi/g liver, of which 2,423 ± 561 nCi/g liver (72.7\%) was in the lipoprotein fraction and the remainder, 877 ± 85 nCi/g liver (27.3\%), was in the aqueous fraction. Radioactivity in triacylglycerol, phospholipid, and cholesteryl ester equaled 1,737 ± 618, 532 ± 304, and 17.4 ± 6.4 nCi/g liver (53, 16, and 0.3\% of total liver radioactivity), respectively (Fig. 1B).

As illustrated in Table 3, radioactivity attributable to \([1\text{H}]\alpha\)-LNA in triacylglycerol, phospholipid, and cholesteryl ester equaled 1,263 ± 449, 472 ± 269, and 4.6 ± 0.9 nCi/g liver, compared with 3.9 ± 2.5, 1.6 ± 0.9, and 0.001 ± 0.001 nCi/g, respectively, for \([1\text{H}]\)DHA. Thus, the \(\alpha \)/DHA radioactivity ratio in triacylglycerol, phospholipid, and cholesteryl ester equaled 0.3, 0.3, and 0.02%, respectively.

Radiolabeled intermediates along the expected pathways of conversion of \([1\text{H}]\alpha\)-LNA to \([1\text{H}]\)DHA (1, 30) could be detected in HPLC chromatograms of total lipid, triacylglycerol, phospholipid, and cholesteryl ester (Fig. 2).
Of liver lipid radioactivity excluding radiolabeled unesterified fatty acids (2,423 nCi/g liver), radioactivity of the n-3 intermediates 18:4, 20:3, 20:4, 20:5, 22:5, 24:5, and 24:6 equaled 5.0, 2.6, 3.4, 9.5, 1.8, 1.8, and 0.2% (sum $= 24.3\%$), respectively, compared with 0.3% for 22:6 and 75.4% for α-LNA (18:3). Each of the radiolabeled intermediates was identified in triacylglycerol and phospholipid (Fig. 2). Radiolabels of 14:0, 16:0, 18:0, and 18:1, which would have come from radiolabeled carbon recycling, were not detected.

Liver acyl-CoA concentration and associated radioactivity

HPLC separation of aqueous liver acyl-CoA extract yielded unlabeled concentrations and radioactivities of individual acyl-CoA species in the aqueous liver compartment (Table 4). Concentrations of unlabeled α-LNA-CoA, EPA-CoA, and DHA-CoA equaled $1.2 \pm 1.1, 1.6 \pm 0.97,$ and 2.2 ± 0.8 nmol/g liver, respectively. Their respective radioactivities equaled $21.0 \pm 19.3, 5.0 \pm 3.4,$ and 8.5 ± 8.3 nCi/g liver, giving specific activities of 17.5, 3.1, and 3.9 nCi/nmol, respectively. The lower specific activities of EPA-CoA and DHA-CoA likely reflect the contributions of unlabeled unesterified plasma EPA and DHA to these respective pools and possibly the nonattainment of a steady state. Radiolabeling also was evident of 14:0-CoA, 16:0-CoA, 18:0-CoA, and 18:1-CoA, indicating recycling of radiolabeled carbon from $[1-^{14}C]\alpha$-LNA.

Distribution of liver radioactivity

Figure 3 summarizes the disposition of plasma-derived unesterified $[1-^{14}C]\alpha$-LNA and its metabolic products in liver after the 5 min tracer infusion. Of total liver radioactivity, 72.7% was in the lipid fraction and 27.3% was in the aqueous phase (Fig. 2). Of stable lipid radioactivity, 52.0% was in triacylglycerol, 15.9% was in phospholipid, 0.5% was in cholesteryl ester, and 0.5% was in other lipids (Fig. 1B). Of cholesteryl ester radioactivity (0.5%), the sterol body and acyl chain components contained 0.3% and 0.2%, respectively.

$[1-^{14}C]\alpha$-LNA, $[^{14}C]$DHA, and all of the $[^{14}C]$n-3 acyl intermediates involved in $[^{14}C]$DHA synthesis constituted 51.7, 0.2, and 16.7%, respectively, of net liver lipid radioactivity, whereas radiolabeled α-LNA-CoA, EPA-CoA, and DHA-CoA contributed 0.6, 0.2, and 0.3%, respectively.

![Fig. 1. Radioactivity distribution in whole liver (aqueous + total lipid fractions) (A) and liver neutral lipid classes (B) after a 5 min intravenous infusion of $[1-^{14}C]\alpha$-linolenic acid (α-LNA; 18:3n-3). TG, triacylglycerol; PL, phospholipid; Chol, cholesterol; DG, diacylglycerol; MG, monoacylglycerol; CE, cholesteryl ester. Values are means \pm SD ($n = 6$).]

![Table 2. Fatty acid composition of liver lipids](https://example.com/table2.jpg)
Radioactive saturated and monounsaturated fatty acids were not detected, although 2.2% of net radioactivity was in saturated and monounsaturated acyl-CoA species (14:0, 16:0, 18:0, and 18:1n-9).

α-LNA incorporation and turnover rates in liver lipids

We used equations 1–9 to calculate kinetic rate parameters of unlabeled α-LNA and DHA in liver using the relevant labeled and unlabeled concentrations. In this analysis, we used our individual published unesterified plasma α-LNA concentrations for these animals (mean = 41 ± 13 nmol/ml plasma) (equations 3, 4), individual values for integrated plasma α-LNA radioactivity over the 5 min infusion period (input function; mean = 571,870 ± 141,337 nCi/ml plasma/s) (equation 1), and individual values for plasma specific activity (mean = 66 ± 43 nCi/

TABLE 3. Radioactivity, incorporation coefficients, and incorporation rates of unesterified plasma α-LNA into different liver lipid components

Lipid	Radioactivity (nCi/g liver)	Incorporation Coefficients	Incorporation Rates (nmol/g × 10⁻⁶)
Total (aqueous + total lipids)	3,300 ± 649		
Total lipids	2,423 ± 561		
α-LNA	1,263 ± 449	22.5 ± 7.7	1,000 ± 622
DHA	3.9 ± 2.5	0.1 ± 0.04	5.5 ± 3.4
Triacylglycerol	1,737 ± 618		
α-LNA	472 ± 269	7.9 ± 2.2	312 ± 94
DHA	1.6 ± 0.9	0.03 ± 0.01	1.1 ± 0.3
Phospholipid	532 ± 304		
α-LNA	4.6 ± 0.9	0.1 ± 0.02	3.7 ± 1.9
DHA	0.001 ± 0.001	0.0001 ± 0.00002	0.004 ± 0.002

DHA, docosahexaenoic acid (22:6n-3); α-LNA, α-linolenic acid (18:3n-3). Values represent means ± SD (n = 6).

Radioactive saturated and monounsaturated fatty acids were not detected, although 2.2% of net radioactivity was in saturated and monounsaturated acyl-CoA species (14:0, 16:0, 18:0, and 18:1n-9).

α-LNA incorporation and turnover rates in liver lipids

We used equations 1–9 to calculate kinetic rate parameters of unlabeled α-LNA and DHA in liver using the relevant labeled and unlabeled concentrations. In this analysis, we used our individual published unesterified plasma α-LNA concentrations for these animals (mean = 41 ± 13 nmol/ml plasma) (equations 3, 4), individual values for integrated plasma α-LNA radioactivity over the 5 min infusion period (input function; mean = 571,870 ± 141,337 nCi/ml plasma/s) (equation 1), and individual values for plasma specific activity (mean = 66 ± 43 nCi/

Fig. 2. HPLC chromatograms of fatty acid methyl ester (FAME) standards (A), total lipid radioactivity (B), triacylglycerol radioactivity (C), and phospholipid radioactivity (D) prepared from liver lipid extracts of rats infused intravenously with [1-14C]α-LNA. Ultraviolet light absorbance was monitored at 205 nm for standards. Samples from six animals were pooled to generate each FAME profile.
Acyl-CoA concentrations and their corresponding radioactivities in rat liver after 5 min of [1-[14C]]α-LNA infusion

Acyl-CoA	Concentration	Radioactivity	Specific Activity
18:3-CoA	1.2 ± 1.1	21.0 ± 19.3	17.5
Eicosapentaenoic acid-CoA	1.6 ± 0.97	5.0 ± 3.4	3.1
DHA-CoA	2.2 ± 0.75	8.5 ± 8.3	3.9
14:0-CoA	0.96 ± 0.94	3.4 ± 2.4	3.5
16:0-CoA	15.1 ± 10.4	27.6 ± 4.6	1.7
18:0-CoA	3.1 ± 1.7	24.4 ± 16.1	0.9
18:1-CoA	3.1 ± 1.8	18.1 ± 12.9	0.9

Values represent means ± SD (n = 6).

nmol) (2). In that study, we also reported that plasma specific activity had reached a steady state by 0.5 min into the [1-[14C]]α-LNA infusion period and that plasma triacylglycerol, phospholipid, and cholesteryl ester contained traces (0.95, 0.52, and 0.076%, respectively) of total plasma radioactivity at 5 min, whereas the unesterified fatty acid fraction contained 97%. Additionally, ~96% of plasma radioactivity was unesterified [1-[14C]]α-LNA, whereas ≤0.2% was [14C]DHA. Radioactive plasma [14C]EPA was not detected.

The second and third data columns in Table 3 provide incorporation coefficients and incorporation rates of plasma-derived α-LNA entering liver triacylglycerol, phospholipid, and cholesteryl ester. Values for the specific activity had reached a steady state by 0.5 min into the 5 min study period compared with direct esterification of unchanged α-LNA.

After the 5 min [1-[14C]]α-LNA infusion, the mean dilution coefficient λα-LNA-CoA (equation 5) of liver α-LNA-CoA equaled 0.42 ± 0.28 (n = 6) (Table 5) and did not differ significantly (P > 0.05) from the value that we determined after 3 min of infusion, 0.28 ± 0.21 (n = 5). Thus, λα-LNA-CoA had reached a steady state by 5 min, a requirement for the exact application of our kinetic model (21, 28). Using 0.42 for λα-LNA-CoA, we calculated rates JFA,i(α-LNA) of incorporation of unlabeled α-LNA into stable liver lipids i from the α-LNA-CoA pool (equation 6) and corresponding turnover rates JFA,i(α-LNA) (equation 7) and half-lives (equation 8) of α-LNA in i (Table 5). For triacylglycerol, the stable lipid into which most [1-[14C]]α-LNA was incorporated, JFA,i(α-LNA) and half-life equaled 2,401 ± 1,365 nmol/s/g × 10⁻⁴, 3.20 ± 1.66%/min, and 21.7 min, respectively; for phospholipid, the respective values equaled 749 ± 207 nmol/s/g × 10⁻⁴, 8.7 ± 2.1%/min, and 8.0 min; for cholesteryl ester, the respective values equaled 9.61 ± 4.47 nmol/s/g × 10⁻⁴, 2.90 ± 1.63%/min, and 23.4 min. Thus, α-LNA half-lives in the three stable lipids ranged from 8 to 24 min.

Mean net JFA,i(α-LNA→DHA) calculated from mean net Jm,i(α-LNA→DHA) in Table 3 by equation 9 equaled (6.6 nmol/s/g × 10⁻⁴)/0.42 = 15.8 nmol/s/g × 10⁻⁴. This rate represents a lower limit for the rate of synthesis of DHA from α-LNA in the liver. It is only 0.5% of the total α-LNA incorporation rate into the three stable lipids, 3.164 nmol/s/g × 10⁻⁴ (Table 5).

DISCUSSION

In this study, we extended our general pulse-labeling infusion model (2, 11, 28, 31) to estimate, in unanesthetized rats, rates of unesterified α-LNA incorporation into stable liver lipids and corresponding turnover rates and half-lives, as well as a lower limit for the rate of α-LNA incorporation into the plasma of rats at 5 min after intravenous infusion of [1-[14C]]α-LNA. Percentages were calculated by dividing radioactivity in each compartment by the net liver (excluding unesterified fatty acid) radioactivity. The back arrow to blood represents secretion within VLDL. DHA, docosahexaenoic acid (22:6n-3).
conversion to DHA followed by incorporation of this DHA into the stable lipids. Our rats were adult males fed a diet abundant in DHA. Our ability to calculate rates and related kinetic parameters depended on our taking into account integrated plasma radioactivity (plasma input function) during the 5 min [1-14C]α-LNA infusion as well as \(\lambda_{α-LNA,CoA} \), the ratio of steady-state liver α-LNA-CoA specific activity to that of unesterified plasma α-LNA.

In vivo incorporation rates of unesterified plasma α-LNA have not been reported, as far as we know. Our calculated incorporation rate into liver phospholipid plus triacylglycerol, 1.312 nmol/s/g \(\times 10^{-4} \) (475.2 nmol/h/g) (Table 3), is equivalent to 3.684 nmol/h/mg protein [taking liver protein content as 12.9% wet weight (32)]. This in vivo rate is 75 times the rate of 50 nmol/h/mg reported for the human liver (37), is equivalent to 3,684 nmol/h/mg protein, making in vivo rather than in vitro measurements. When taking into account the steady-state value of 0.42 for the ratio \(\lambda_{α-LNA,CoA} \) of α-LNA from the α-LNA-CoA pool equaled 2,401, 749, and 9.6 nmol/s/g \(\times 10^{-4} \), respectively (sum = 3,160 nmol/s/g \(\times 10^{-4} \)).

\(J_{FIA,α,LA} \) may largely reflect the secretion into blood of α-LNA within stable lipids packaged in VLDLs (equation 6). VLDL secretion involves the translocation of apolipoprotein B across the endoplasmic reticular membrane, is facilitated by a microsomal triglyceride transfer protein, and is regulated by insulin (34). It is a slow process compared with our 5 min infusion study period, because radiolabeled VLDLs appear in plasma of unanesthetized rats only 15–20 min after the liver has been exposed to radiolabeled fatty acids through the oral route (35). The actual secretion rate might be measured in longer term in situ liver perfusion or feeding experiments or in vitro (35–38). In cultured hepatocytes, the fraction of triglyceride secreted ranges from 35% in the absence of insulin to 65% in the presence of insulin, with the remainder being recycled via biolysis (39, 40). VLDL secretion rates have been reported for the human liver (37).

The fact that 72.7% of net liver radioactivity after 5 min of [1-14C]α-LNA infusion was in stable lipids (of which 52.0% was in triacylglycerol and 15.9% was in phospholipid) agrees roughly with prior longer term studies. One study reported that 90% of net radioactivity was in liver lipids in rats only 15–20 min after the liver has been exposed to [1-14C]α-LNA (9). Another indicated that 92% of net radioactivity was in triacylglycerol at 22 h after intraperitoneal infusion of [1-14C]α-LNA and that 2.4% of triacylglycerol fatty acid radioactivity was labeled DHA (10). Thirty minutes after intravenously infusing 2 week old rats with [1-14C]α-LNA, ~95% of radioactivity was in stable liver lipids (36).

α-LNA is elongated and desaturated to 24:6n-3 by the following steps, 18:3→18:4→20:4→20:5→22:5→24:5→24:6, after which 24:6n-3 is shortened to DHA by one round of \(β \)-oxidation in peroxisomes (1, 30). Radiolabels of these synthesis intermediates were detected in liver (total 21.7% of net radioactivity). Radioactive 24:6n-3 was at a trace level compared with the other labeled intermediates (9- to 25-fold less) (Fig. 2). This may have been attributable to the high DHA content of the diet, as conversion of 22:5n-3, 24:5n-3, and 24:6n-3 to DHA was reduced in rat brain astrocytes cultured in a DHA-containing medium (41). An additional pathway of α-LNA metabolism has been reported, in which 20:3n-3, 22:1n-3, and 24:1n-3 intermediates are converted to 24:5n-3 and then to DHA in the usual manner (42), and we also detected radiolabeled 20:3n-3 in stable lipid (2.6% of net radioactivity) (Fig. 2). We did not detect esterified radiolabeled 14:0, 16:0, 18:0, or 18:1, which would have been derived from \(β \)-oxidation products of [1-14C]α-LNA, but we did detect radiolabeled 14:0-CoA, 16:0-CoA, 18:0-CoA, and 18:1-CoA (which contributed ~2.2% of its net liver radioactivity) (Table 4, Fig. 3).

Of net liver radioactivity (excluding unesterified labeled fatty acids), ≤0.5% was attributable to [14C]DHA (Fig. 3), of which 0.3% was [14C]DHA-CoA and 0.2% was [14C]DHA esterified in triacylglycerol, phospholipid, and cholesteryl ester. In contrast, 51.7% of liver radioactivity at 5 min was esterified [1-14C]α-LNA, and 0.6% was [1-14C]α-LNA-CoA. Only a small fraction of 5 min liver radioactivity was esterified DHA. We estimated a lower limit for the rate of brain DHA synthesis from α-LNA equaled 0.22 nmol/s/g \(\times 10^{-4} \), 1% of the reported rate of incorporation of plasma unesterified plasma DHA into brain phospholipids, 22 nmol/s/g \(\times 10^{-4} \) (3, 45, 46). Our cur-

Lipid	\(\lambda_{α-LNA,CoA} \) (%)	\(J_{FIA,α,LA} \) (nmol/s/g)	\(F_{IA,α,LA} \) (%)	Half-Life
Triacylglycerol	0.42 ± 0.28	2,401 ± 1,363	3.20 ± 1.66	21.7
Phospholipid	749 ± 207	8.70 ± 2.10	8.0	
Cholesteryl ester	9.61 ± 4.47	2.90 ± 1.63		
Total	3,160			

Values represent means ± SD (n = 6).

Table 5. Rates of incorporation of α-LNA from the liver α-LNA-CoA pool, and turnover and half-life, in stable liver lipids

Lipid	\(\lambda_{α-LNA,CoA} \) (%)	\(J_{FIA,α,LA} \) (nmol/s/g)	\(F_{IA,α,LA} \) (%)	Half-Life
Triacylglycerol	0.42 ± 0.28	2,401 ± 1,363	3.20 ± 1.66	21.7
Phospholipid	749 ± 207	8.70 ± 2.10	8.0	
Cholesteryl ester	9.61 ± 4.47	2.90 ± 1.63		
Total	3,160			

Values represent means ± SD (n = 6).
rent study showing that DHA synthesis from α-LNA in liver is \(\sim 15.8 \, \text{nmol/s/g} \times 10^{-4} \) indicates that DHA synthesis from α-LNA in the liver does not contribute to brain DHA in these rats, because 1% or less of the DHA secreted within VLDLs, once released by hydrolysis, would be expected to be taken up by brain (28, 31).

Approximately 30% of the plasma \([1^{-14}C]\)α-LNA that entered liver was converted to aqueous β-oxidation products (26.4%) and the cholesterol (3.8%) derived from such products. As some \(^{14}C\)CO\(_2\) may have been lost by respiration, the 30% is only an approximation of the oxidized fraction. In this regard, α-LNA is reported to be β-oxidized more rapidly than other C18 fatty acids and to be transported more rapidly than DHA by carnitine O-palmitoyl transferase into liver mitochondria (29, 47, 48). Plasma fatty acids can enter liver when unesterified by passive diffusion or facilitated transport (49, 50) or via hepatocyte lipoprotein receptors when esterified within VLDLs, once released by hydrolysis, would be expected to be transported more rapidly than DHA by carnitine O-palmitoyl transferase into liver mitochondria (29, 47, 48).

In our rats fed a diet containing 5.1% (w/w total fatty acids) α-LNA, α-LNA constituted 0.6% of net liver fatty acid (Table 2). In comparison, α-LNA equaled 0.2% of liver fatty acid in rats fed a diet containing 0.13% (w/w) α-LNA (63) and 0.31% in rats fed a diet containing 0.1% α-LNA (64). Clearly, the liver α-LNA concentration depends on dietary α-LNA. Additionally, the conversion of α-LNA to DHA depends on the dietary content of n-3 PUFAs (4, 65–68). One reason for this is that the transcription of genes for the Δ5 and Δ6 desaturases is influenced by n-3 PUFA levels (69). Additionally, the transcription factor sterol-regulatory element binding protein-1, which positively regulates the transcription of the Δ5 and Δ6 desaturase genes, is reduced in the liver of rats fed DHA (4–6).

Our diet had a high DHA content [2.3% (w/w) of total fatty acid] and a high energy contribution (0.23%) compared with the respective values for EPA plus DPA in the average human diet in the United States (<0.1% of energy) (16–19). Thus, it is possible that the high rate of α-LNA oxidation and its low rate of conversion to DHA in this study reflected disproportionately high dietary n-3 PUFA levels. We could test this possibility directly, using our kinetics model, by comparing our results with results from rats with no n-3 PUFAs or just α-LNA but no DHA in their diet. Additionally, we could determine α-LNA incorporation rates and half-lives and rates of β-oxidation in animals in which α-LNA conversion to DHA would be expected to be disturbed (models of type I diabetes, peroxisomal disorders, alcoholism) (52, 70, 71) as well as during fetal and postnatal development (7, 72, 73).

The α-LNA incorporation rate \(J_{FAA(\alpha-LNA)} \) into liver phospholipid equaled 749 ± 207 nmol/s/g \(\times 10^{-4} \) (Table 5), 52 times the published rate of 14.3 nmol/s/g \(\times 10^{-4} \) for α-LNA incorporation into brain phospholipid in the same animals (2). The higher rate for the liver is consistent with the fact the liver secretes incorporated α-LNA and DHA within VLDLs, whereas esterified n-3 PUFAs in brain are largely recycled and retained (3, 45). As expected from the high incorporation rate, half-lives of α-LNA equaled 21.7, 8, and 23.4 min, respectively, in triacylglycerol, phospholipid, and cholesteryl ester (Table 3). These are short compared with those in brain, in which α-LNA half-life in phospholipid equaled 78 min (2), and reflect the high-rates of lipoprotein secretion and α-LNA metabolism by the liver.

In summary, we have estimated for the first time exact rates of incorporation of α-LNA from the plasma and the liver precursor α-LNA-CoA pool into stable liver lipids, triacylglycerol, phospholipid, and cholesteryl ester, in unanesthetized rats fed a high-DHA-containing diet. High uptake, incorporation, and turnover rates of α-LNA are consistent with the role of the liver in secreting stable lipids packaged within VLDLs. We also have estimated a lower limit for the rate of conversion of α-LNA to DHA in the liver. This value is only 0.5% of the rate of esterification of α-LNA into stable lipids, again suggesting that liver synthesis of DHA does not provide significant DHA to the brain in rats with a high dietary DHA content.

This research was supported entirely by the intramural program of the National Institute on Aging.

REFERENCES

1. Sprecher, H. 2000. Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim. Biophys. Acta. 1486: 219–231.
2. DeMar, J. C., Jr., K. Ma, L. Chang, J. M. Bell, and S. I. Rapoport. 2005. α-Linolenic acid does not contribute appreciably to docosahexaenoic acid within brain phospholipids of adult rats fed a diet enriched in docosahexaenoic acid. J. Neurochem. 94: 1063–1076.
3. DeMar, J. C., Jr., K. Ma, J. M. Bell, and S. I. Rapoport. 2004. Half-lives of docosahexaenoic acid in rat brain phospholipids are prolonged by 15 weeks of nutritional deprivation of n-3 polysaturated fatty acids. J. Neurochem. 91: 1125–1137.
4. Nakamura, M. T., and T. Y. Nara. 2003. Essential fatty acid synthesis and its regulation in mammals. Prostaglandins Leukot. Essent. Fatty Acids. 68: 145–150.
5. Cho, H. P., M. Nakamura, and S. D. Clarke. 1999. Cloning, expression, and fatty acid regulation of the human delta-5 desaturase. *J. Biol. Chem.* 274: 37335–37339.

6. Cho, H. P., M. T. Nakamura, and S. D. Clarke. 1999. Cloning, expression, and nutritional regulation of the mammalian delta-6 desaturase. *J. Biol. Chem.* 274: 471–477.

7. Scott, B. L., and N. G. Bazan. 1989. Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. *Proc. Natl. Acad. Sci. USA.* 86: 2903–2907.

8. Jakobsson, A. J., Ericsson, and G. Daller. 1990. Metabolism of fatty acids and their incorporation into phospholipids of the mitochondria and endoplasmic reticulum in isolated hepatocytes determined by isolation of fluorescence derivatives. *Biochim. Biophys. Acta.* 1046: 277–287.

9. Bretillon, L., J. M. Chardigny, J. P. Noel, and J. L. Sebedio. 1998. Desaturation and chain elongation of [1-14C]mono-trans isomers of linoleic and alpha-linolenic acids in perfused rat liver. *J. Lipid Res.* 39: 2229–2236.

10. Sinclair, A. J., and M. A. Crawford. 1972. The incorporation of linoleic acid and docosahexaenoic acid into liver and brain lipids of developing rats. *FEBS Lett.* 26: 127–129.

11. Rapoport, S. I. 2005. In vivo approaches and rationale for quantifying kinetics and imaging brain lipid metabolic pathways. *Prostaglandins Other Lipid Mediat.* 77: 183–190.

12. Rapoport, S. I., M. C. Chang, and A. A. Spector. 2001. Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. *J. Lipid Res.* 42: 678–685.

13. Rabin, O., J. Deutsch, E. Grange, K. D. Pettigrew, M. C. J. Chang, S. I. Rapoport, and A. D. Purdon. 1997. Changes in cerebral acyl-CoA concentrations following ischemia-reperfusion in awake gerbils. *J. Neurochem.* 68: 2111–2116.

14. Rabin, O., M. C. Chang, E. Grange, J. Bell, S. I. Rapoport, J. Deutsch, and A. D. Purdon. 1998. Selective accumulation of arachidonic acid reincorporation into brain membrane phospholipid following transient ischemia in awake gerbil. *J. Neurochem.* 70: 325–334.

15. Bazinet, R. P., H. J. Lee, C. C. Felder, A. C. Porter, S. I. Rapoport, and T. A. Rosenberger. 2005. Rapid high-energy microwave fixation is required to determine the anandamide (N-arachidonylethanolamine) concentration of rat brain. *J. Neurochem.* 94: 597–601.

16. Bourre, J. M., G. Durand, G. Pascal, and A. Youyou. 1989. Brain cell and tissue recovery in rats made deficient in n-3 fatty acids by alteration of dietary fat. *J. Nutr.* 119: 15–22.

17. van Aerde, J. E., and M. T. Clandinin. 1993. Controversy in fatty acid balance. *Can. J. Physiol. Pharmacol.* 71: 707–712.

18. Kris-Etherton, P. M., D. S. Taylor, S. Yu-Poth, P. Huth, K. Moriarty, V. Fishell, R. L. Hargrove, G. Zhao, and T. D. Etherton. 2000. Polyunsaturated fatty acids in the food chain in the United States. *J. Am. Coll. Nutr.* 19(5 Suppl): 173–181.

19. Wijendra, V., and K. C. Hayes. 2004. Dietary n-3 and n-3 fatty acid balance and cardiovascular health. *Annu. Rev. Nutr.* 24: 507–515.

20. Igarashi, I., K. Ma, L. Chang, J. M. Bell, J. C. DeMar, and S. I. Rapoport. 2005. α-Linolenic acid is minimally converted to docosahexaenoic acid in brain and liver of adult rats fed a DHA-containing diet. (Abstract in the 35th Neuroscience Annual Meeting. Ann. N. Y. Acad. Sci. 982: 319–322.

21. Liang, J., and H. N. Ginsberg. 2001. Microsomal triglyceride transfer protein binding and lipid transfer activities are independent of each other, but both are required for secretion of apolipoprotein B lipoproteins from liver cells. *J. Biol. Chem.* 276: 28606–28612.

22. Purdon, D., T. Ara, and S. Rapoport. 1997. No evidence for direct incorporation of exogenous arachidonic acid into brain lipids of awake adult rat. *J. Lipid Res.* 38: 526–530.

23. Anderson, G. J., and W. E. Connor. 1988. Uptake of fatty acids by the developing rat brain. *Lipids.* 23: 286–290.

24. Pietzsch, J., U. Julius, C. Kirch, S. Fischer, and M. Hanefeld. 1999. Very low density lipoprotein overproduction is maximally expressed in early insulin resistant states. *Ann. N. Y. Acad. Sci.* 892: 319–322.

25. Mensekamp, A. M., R. M. Van Luyk, R. Havinga, B. Teusink, I. J. Waterman, C. J. Mann, B. M. Elzinga, H. J. Verkade, V. A. Zammit, L. M. Havekes, et al. 2004. The transport of triglycerides through the secretory pathway of hepatocytes is impaired in apolipoprotein E deficient mice. *J. Hepatol.* 40: 599–606.

26. Wiggins, D., and G. F. Gibbons. 1992. The lipolysis/esterification cycle of hepatic triacylglycerol. Its role in the secretion of very-low-density lipoprotein and its response to hormones and sphingolipid. *Biochem. J.* 284: 457–462.

27. Gibson, G. F., D. Wiggins, A. M. Brown, and A. M. Hebbachi. 2004. Synthesis and function of hepatic very-low-density lipoprotein. *Biochem. Soc. Trans.* 32: 59–64.

28. Willard, D. E., S. D. Harmon, T. L. Kaduce, M. Preuss, S. A. Moore, M. E. Robbins, and A. A. Spector. 2001. Docosahexaenoic acid synthesis from n-3 polyunsaturated fatty acids in differentiated rat brain astrocytes. *J. Lipid Res.* 42: 1568–1576.

29. Sauerwald, T. U., D. L. Hachey, C. L. Jensen, H. Chen, R. E. Anderson, and W. L. Murphy. 2002. Rapid synthesis and turnover of brain microsomal arachidonic acid recycling within brain phospholipids of awake adult rat. *J. Lipid Res.* 43: 59–68.

30. Contreras, M. A., R. S. Greiner, M. C. Chang, C. S. Myers, N. Salem, Jr., and S. I. Rapoport. 2001. Chronic nutritional deprivation of n-3 alpha-linolenic acid does not affect n-6 arachidonic acid recycling within brain phospholipids of awake adult rat. *J. Lipid Res.* 42: 1257–1265.

31. Rosenberger, T. A., J. Oki, A. D. Purdon, S. I. Rapoport, and E. Murphy. 2002. Rapid synthesis and turnover of brain microsomal ether phospholipids in the adult rat. *J. Lipid Res.* 43: 59–68.

32. Contreras, M. A., M. C. Chang, T. A. Rosenberger, R. S. Greiner, C. S. Myers, N. Salem, Jr., and S. I. Rapoport. 2001. Chronic nutritional deprivation of n-3 alpha-linolenic acid does not affect n-6 arachidonic acid recycling within brain phospholipids of awake adult rat. *J. Lipid Res.* 42: 2392–2400.

33. Contreras, M. A., C. M. Chang, T. A. Rosenberger, R. S. Greiner, C. S. Myers, N. Salem, Jr., and S. I. Rapoport. 2001. Chronic nutritional deprivation of n-3 alpha-linolenic acid does not affect n-6 arachidonic acid recycling within brain phospholipids of awake adult rat. *J. Lipid Res.* 42: 2392–2400.

34. Contreras, M. A., C. M. Chang, T. A. Rosenberger, R. S. Greiner, C. S. Myers, N. Salem, Jr., and S. I. Rapoport. 2001. Chronic nutritional deprivation of n-3 alpha-linolenic acid does not affect n-6 arachidonic acid recycling within brain phospholipids of awake adult rat. *J. Lipid Res.* 42: 2392–2400.

35. Gadino, V. C., S. Cordeau, and G. Gadino. 2003. Kinetic analysis of the selectivity of acylcarboxylase synthesis in rat mitochondria. *Lipids.* 38: 485–490.

36. Cunnane, S. C. 2001. New developments in alpha-linolenate me-
tabolism with emphasis on the importance of beta-oxidation and carbon recycling. *World Rev. Nutr. Diest.* **88**: 178–183.

49. Abumrad, N., C. Harmon, and A. Ibrahimi. 1998. Membrane transport of long-chain fatty acids: evidence for a facilitated process. *J. Lipid Res.* **39**: 2939–2948.

50. Demant, E. J., G. V. Richieri, and A. M. Kleinfeld. 2002. Stopped-flow kinetic analysis of long-chain fatty acid dissociation from bovine serum albumin. *Biochim. J.* **363**: 809–815.

51. Huettinger, M., J. R. Corbett, W. J. Schneider, J. T. Willerson, M. S. Brown, and J. L. Goldstein. 1984. Imaging of hepatic low density lipoprotein receptors by radionuclide scintiscanning in vivo. *Proc. Natl. Acad. Sci. USA.* **81**: 7599–7603.

52. Julius, U. 2003. Influence of plasma free fatty acids on lipoprotein synthesis and diabetic dyslipidemia. *Exp. Clin. Endocrinol. Diabetes.* **111**: 246–250.

53. Berk, P. D., and D. D. Stump. 1999. Mechanisms of cellular uptake of long chain free fatty acids. *Mol. Cell. Biochem.* **192**: 17–31.

54. Stahl, A. 2004. A current review of fatty acid transport proteins (SLC27). *Pflugers Arch.* **447**: 722–727.

55. Marldones, P., A. Pilon, M. Bouly, D. Duran, T. Nishimoto, H. Arai, K. F. Kozarsky, M. Altayo, J. F. Miquel, G. Luc, et al. 2003. Fibrates down-regulate hepatic scavenger receptor class B type I protein expression in mice. *J. Biol. Chem.* **278**: 7884–7890.

56. Brundert, M., A. Ewert, J. Heeren, B. Behrendt, R. Ramakrishnan, H. Greten, M. Merkel, and F. Rinninger. 2005. Scavenger receptor class B type I mediates the selective uptake of high-density lipoprotein-associated cholesteryl ester by the liver in mice. *Arterioscler. Thromb. Vasc. Biol.* **25**: 143–148.

57. Fungwe, T. V., L. M. Cagen, G. A. Cook, H. G. Wilcox, and M. Heimberg. 1993. Dietary cholesterol stimulates hepatic biosynthesis of triglyceride and reduces oxidation of fatty acids in the rat. *J. Lipid Res.* **34**: 933–941.

58. Shimada, Y., T. Morita, and K. Sugiyama. 2003. Dietary eritadenine and ethanolamine depress fatty acid desaturase activities by increasing liver microsomal phosphatidylethanolamine in rats. *J. Nutr.* **133**: 798–765.

59. Masuzawa, Y., M. R. Prasad, and W. E. Lands. 1987. Distribution of dietary trans-octadecenoate among acyl-CoA and other lipid fractions of rat liver and heart. *Biochim. Biophys. Acta.* **919**: 297–306.

60. Tardi, P. G., J. J. Mukherjee, and P. C. Choy. 1992. The quantitation of long-chain acyl-CoA in mammalian tissue. *Lipids.* **27**: 63–67.

61. Rosendal, J., and J. Knudsen. 1992. A fast and versatile method for extraction and quantitation of long-chain acyl-CoA esters from tissue: content of individual long-chain acyl-CoA esters in various tissues from fed rat. *Anal. Biochem.* **207**: 63–67.

62. Golovko, M. Y., and E. J. Murphy. 2004. An improved method for tissue long-chain acyl-CoA extraction and analysis. *J. Lipid Res.* **45**: 1777–1782.

63. Bourre, J. M., M. Francois, A. Youyou, O. Dumont, M. Piciotti, G. Pascal, and G. Durand. 1989. The effects of dietary alpha-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. *J. Nutr.* **119**: 1880–1892.

64. Sheaff, R. C., H. M. Su, L. A. Keswick, and J. T. Brenna. 1995. Conversion of alpha-linolenate to docosahexaenoate is not depressed by high dietary levels of linoleate in young rats: tracer evidence using high precision mass spectrometry. *J. Lipid Res.* **36**: 998–1008.

65. Price, P. T., C. M. Nelson, and S. D. Clarke. 2000. Omega-3 polyunsaturated fatty acid regulation of gene expression. *Curr. Opin. Lipidol.* **11**: 3–7.

66. Barcelo-Coblijn, G., E. Hogyes, K. Kitajka, L. G. Puskas, A. Zvara, L. Hackler, Jr., C. Nyakas, Z. Penke, and T. Farkas. 2003. Modification by docosahexaenoic acid of age-induced alterations in gene expression and molecular composition of rat brain phospholipids. *Proc. Natl. Acad. Sci. USA.* **100**: 11321–11326.

67. Clarke, S. D. 2004. The multi-dimensional regulation of gene expression by fatty acids: polyunsaturated fats as nutrient sensors. *Curr. Opin. Lipidol.* **15**: 13–18.

68. Gibson, R. A. 2004. Docosahexaenoic acid (DHA) accumulation is regulated by the polyunsaturated fat content of the diet: is it synthesis or is it incorporation? *Asia Pac. J. Clin. Nutr. (Suppl.)*: 78.

69. Hagey, T. A., and B. O. Christophersen. 1984. Effect of dietary fats on arachidonic acid and eicosapentaenoic acid biosynthesis and conversion to C22 fatty acids in isolated rat liver cells. *Biochim. Biophys. Acta.* **796**: 205–217.

70. Brenner, R. R. 2003. Hormonal modulation of delta6 and delta5 desaturases: case of diabetes. *Prostaglandins Leukot. Essent. Fatty Acids.* **68**: 151–162.

71. Martinez, M. 1990. Severe deficiency of docosahexaenoic acid in term and preterm baboon neonates. Formula feeding potentiates docosahexaenoic and arachidonic acid biosynthesis or is it incorporation? *Neurology.* **40**: 1929–1929.

72. Sarkadi-Nagy, E., V. Wijendran, G. Y. Dau, A. C. Chao, A. T. Hsieh, A. Turpeinen, P. Lawrence, P. W. Nathanielsz, and J. T. Brenna. 2004. Formula feeding potentiates docosahexaenoic and arachidonic acid biosynthesis in term and preterm baboon neonates. *J. Lipid Res.* **45**: 71–80.

73. Li, Z., M. L. Kaplan, and D. L. Hachey. 2000. Hepatic microsomal and peroxisomal docosahexaenoate biosynthesis during piglet development. *Lipids.* **35**: 1325–1333.