Discussion on operation flexibility of Zhonggui natural gas pipeline

Ying Song, Liang Feng*, and Wenchen Cao
PipeChina Southwest Pipeline Company, China

Abstract. Zhongwei station of West to east natural gas pipeline is connected to the north of Zhonggui line, and Guiyang station of China-Myanmar natural gas pipeline is connected to the south, which has important strategic significance in Southwest China. At present, the tie line mainly carries out gas transmission from Zhongwei to Guiyang. Only some pipeline sections and offload stations have reverse transmission function, while all compressor stations have no reverse transmission and pressurization function. In order to evaluate the flexibility of the operation of the Zhonggui line and give some suggestions for the preliminary reconstruction, this paper uses the SPS software to establish the pipeline model and simulate the specific working conditions, focusing on the two working conditions of the intermediate station injection forward transmission and the whole line reverse transmission. Through the simulation, we can get the following conclusions: 1. When the intermediate station injects forward gas transmission, which compressor station, gas transmission range and joint operation condition with China-Myanmar line need to be started for Zhonggui line; 2. When the whole tie line is reversed, it is necessary to change the location of the compressor station with the function of reverse transmission and pressurization. Through this study, we can give some reference and evaluation opinions on the lack of flexibility of the current tie line, and also give some reference opinions on the specific implementation of the improvement of the tie line operation flexibility in the future.

Keywords: Zhonggui natural gas pipeline; Operation; Flexibility; Judgment; SPS software.

1 Introduction

The total length of Zhonggui line is 1613km, with annual designed gas transmission capacity of 15 billion cubic meters. The line starts from Zhongwei City in Ningxia, passes through six provinces and cities in Ningxia, Gansu, Shaanxi, Sichuan, Chongqing and Guizhou, and ends at Guiyang City in Guizhou[1]. There are 6 compressor stations, 14 gas transmission stations and 73 valve chambers in the pipeline. The pipeline section has poor conditions, complicated terrain and many large drop [2].

* Corresponding author: fenglangtc@126.com

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
The operation of Zhongwei station as follows [3]: the air intake of Zhongwei station mainly includes the west section of west to east first line, west to east second line and west to east third line, with a total design gas transmission capacity of about 21 million cubic meters per day; The gas output of Zhongwei station mainly includes the east section of east to west first line, west to east second line and west to east third line, the Zhonggui line and the Zhongjing line of west to east second line, with a total design capacity of about 290 million m3/d. It can be seen from the data that the air intake of Zhongwei station is obviously insufficient, and once the reverse transmission of Zhonggui line occurs, the inflow and outflow of Zhongwei station will be basically balanced, so it is necessary to study the reverse transmission of Zhonggui line.

2 Analyze the problem

In view of the above problems, the model of Zhonggui line is established by SPS simulation software, and the simulation data are analyzed under different setting conditions.

2.1 Introduction of SPS software [4-5]

SPS simulation software can simulate single fluid, single-phase mixed fluid or batch fluid. SPS software obtains pipeline information from Inprep text file, including all information of physical components. SPS software can not only simulate the normal operation conditions of most pipelines, but also simulate and control the pipeline accident conditions, such as pipeline fracture, equipment failure, etc. SPS software can calculate the flow, pressure, density, temperature and other parameters along the pipeline, and output them in the form of graph or report.

The simulation function of SPS software can be realized in two forms: control sequence operation or interactive operation (boundary conditions can be changed during operation). The initial state can be zero flow state, stored steady state or user-defined steady state.

2.2 Basic parameters

1) Natural gas quality (Table 1)

Composition	C$_1$	C$_2$	C$_3$	iC$_4$	nC$_4$	iC$_5$	CO$_2$	N$_2$
Mol%	99.65	0.065	0.03	0.008	0.002	0.015	0.072	0.158

2) The standard state: pressure 1.01325 × 105Pa (absolute pressure), temperature 20 °C.
3) The absolute equivalent roughness of pipe inner wall is 10μm.

3 Solve the problem

The research is divided into two working conditions: one is to take Xiangguosigar storage as the gas source, close the upstream valve of the injection point, and send the injected gas to Guiyang station, and then operate in combination with China Myanmar line; Second, China Myanmar gas will be used as the gas source for reverse transmission.
3.1 Xiangguosi gas storage as the gas source[6]

The pressure range of Sichuan and Chongqing region injected into Zhonggui line is from 4.5MPa to 5Mpa[7], the injection point is the Nanbu station or Jiangjin station, and the maximum injection volume is 15 million m3 / d. There are two compressor stations in the Nanchong and Zunyi, and the pressure to Guiyang station is set at 6Mpa.

Under low throughput (from 3 million to 4 million m3 / D), the simulation results are shown in Table 2.

Table 2. The simulation results of pressure.

Throughput	The pressure of Nanbu station	The pressure of Zunyi station	The pressure of Guiyang station
300	4.5	4.501	4.083
400	4.5	4.484	3.998
300	5	5.01	4.559
400	5	4.975	4.484

It can be seen that Guiyang pressure is always less than the Nanbu pressure without pressurization, so pressurization is needed. Zunyi station is far away from the injection point, so it is not economical, so only Nanchong station pressurization is feasible.

The following analysis is only for Nanchong station compressor operation scheme:

3.1.1 When the injection pressure is 4.5MPa

When the injection volume is 8 million m3 / D, Nanchong station will start backflow (about 0.2 million m3 / D), as shown in Table 3. Considering the safe operation of the compressor, the compressor of Nanchong station can be started above 9 million m3 / d.

Table 3. Compressor operating conditions from Nanchong station at 9 million m3 / d.

station	Entrance pressure	Exit pressure	Number of compressor operation	power	speed	efficiency
Nanbu	4.5					
Nanhong	4.433	7	1	5166	9945	0.825
Guiyang	6.058					

When the injection volume is 12 million m3 / D, as shown in Table 4

Table 4. Compressor operating conditions from Nanchong station at 12 million m3 / d.

station	Entrance pressure	Exit pressure	Number of compressor operation	power	speed	efficiency
Nanbu	4.5	7.5	1	8716	11366	0.86
Nanhong	4.355					
Guiyang	6.011					

When the injection volume is more than 1200W×104m3 / D, the pressure ratio of a single compressor is too large to guarantee 6Mpa at Guiyang station. Therefore, when the injection pressure is 4.5MPa, the flow range required compressor operation in Nanchong is from 9 million m3 / D to 12 million m3 / d.

3.1.2 When the injection pressure is 5 MPa

When the injection volume is 7 million m3 / D, Nanchong station will start backflow (about 0.2 million m3 / D), as shown in Table 5. Considering the safe operation of the compressor, the compressor of Nanchong station can be started above 8 million m3 / d.
Table 5. Compressor operating conditions from Nanchong station at 7 million m³/d.

station	Entrance pressure	Exit pressure	Number of compressor operation	power	speed	efficiency
Nanbu	5					
Nanhong	4.953	6.9	1	334	8338	0.82
Guiyang	6.071					

When the injection volume is 15 million m³/D, as shown in Table 6:

Table 6. Compressor operating conditions from Nanchong station at 15 million m³/d.

station	Entrance pressure	Exit pressure	Number of compressor operation	power	speed	efficiency
Nanbu	5					
Nanhong	4.801	8	1	10147	11399	0.857
Guiyang	6.018					

Therefore, when the injection pressure is 5MPa, the flow range required compressor operation in Nanchong is from 8 million m³/d to 15 million m³/d.

3.1.3 China-Myanmar line and zhonggui line joint operation[8]

The gas volume from China-Myanmar line is 10 million m³/D, the pressure is 8 MPa. Zhonggui line injection flow is 10 million m³/d. Download 2.5 million m³/d in Nanning, 0.5 million m³/d in Lufeng, 1 million m³/d in Guigang, surplus in Guangzhou, and make sure the download pressure is no less than 5MPa, as shown in Table 7.

Table 7. The pipeline condition from China-Myanmar line.

station	volume	Entrance pressure	Exit pressure	Number of compressor operation	power	speed	efficiency
Ruili	+1000	7.218	8				
Baoshan	7.218	6.873					
Lufeng	-50	6.477					
Guiyang	+1000	6.54	7.7	1	4358	3585	0.787
Hechi	-100	7.2					
Guigang	-250	5.046					
Guangzhou	-1600	5.046					

The conclusions are as follows: 1. Considering the economy and reliability of the operation of the Zhonggui line, it is suggested that the injected gas should be between 9 million m³/D and 13 million m³/D, and Nanchong compressor station should be operated; 2. Guiyang compressor station should be operated when China-Myanmar line and zhonggui line joint operation.

3.2 China-Myanmar gas as gas source reversed

Guiyang station is the first station when reverse transmission, and set the exit pressure of Guiyang station is 9.8MPa. While the upper limit of the download pressure at Tongliang is 7.5MPa, and the guaranteed pressure at Zhongwei station is 6MPa. The download volume at Tongliang is 10 million m³/d, and the rest is transported to Zhongwei station.

According to the above conditions, the output range to Zhongwei station and the compressor station which need reform.

The simulation results show that the pressure of Tongliang station is less than 7.5MPa without pressurization at Guiyang-Tongliang section, and transportation capacity of this section should not be less than 27 million m³/d.
3.2.1 The download capacity of Tongliang station is 10 million m3/d, and that of Zhongwei station is 20 million m3/d, as shown in Table 8

Table 8. The download capacity of Tongliang and Zhongwei.

station	volume	Entrance pressure	Exit pressure	Number of compressor operation	power	speed	efficiency
Guiyang	+3000	9.8					
Tongliang	-1000	6.938					
Nanchong	6.48	9.8	2				0.822
Zhongwei	5.96						

3.2.2 The download capacity of Tongliang station is 10 million m3/d, and that of Zhongwei station is 30 million m3/d, as shown in Table 9

Table 9. The download capacity of Tongliang and Zhongwei.

station	volume	Entrance pressure	Exit pressure	Number of compressor operation	power	speed	efficiency
Guiyang	+4000	9.8					
Zunyi	7.673	9.8	2				0.86
Jiangjin	7.39	9.3	2				0.837
Tongliang	-1000	7.438					
Nanchong	6.437	9.5	2				0.863
Guangyuan	7.544	9.8	2				0.859
Tianshui	6.967	9.8	2				0.863
Zhongwei	-3000	6.26					

The conclusions are as follows: 1. In order to make Zhonggui line have the function of whole line reverse transmission, it is necessary to reform at Nanchong compressor station for reverse transmission of pressurization transformation; 2. If reform at the compressor stations of Zunyi, Jiangjin, Nanchong, Guangyuan and Tianshui, it can be guaranteed the reverse transmission capacity 30 million m3/d, which basically ensuring the balance of gas flow in and out of Zhongwei station.

4 Conclusion summary

1) Xiangguosi gas storage as the gas source, it is suggested that the injected gas should be between 9 million m3/D and 13 million m3/D, and Nanchong and Guiyang compressor station should be operated.

2) China-Myanmar gas as gas source reversed, in order to make Zhonggui line have the function of whole line reverse transmission, it is necessary to reform at Nanchong compressor station for reverse transmission of pressurization transformation. If reform at the compressor stations of Zunyi, Jiangjin, Nanchong, Guangyuan and Tianshui, it can be guaranteed the reverse transmission capacity 30 million m3/d, which basically ensuring the balance of gas flow in and out of Zhongwei station.

References

1. JIANG Wanquan, QUAN Taifeng, XU Ying. natural gas transport network forming to protect the pattern [J]. PetroChina news, 2013.10.29 (001): 14-18
2. WEN Xiaofeng, XU Chenchen, AN Yao, et al. Commissioning Technology of Zhongwei - Nanbu section in Zhong-Guigas pipeline project [J]. Pipeline Technology and Equipment, 2014.2: 14-18

3. Correspondent of "Gas&Heat". The Introduction of middle of the West-East gas pipeline project three lines [J], Gas and heat, 2012.8: 9

4. ZHENG Yunping, XIAO Jie, SUN Xiao, et al. Application and recognize SPS simulation software in gas pipeline [J]. Natural Gas Industry, 2013,33(11):104-109.

5. FENG Liang. The optimization and simulation on the operation of line-2 and line-3 of shaanxi-Beijing gas pipeline system [D]. China Petroleum University (Beijing), 2013:1-99.

6. HU Lianfeng, LI Qiao, LIU Dong, et al. Peak season underground gas storage injection and production scale design -In Sichuan and Chongqing gas fields with Temple underground gas storage project design as an example [J]. Gas industry, 2011, 31 (05): 96-98.

7. HUANG Yan, SHE Chaoyi, TANG Xiaohu. Research and Application of Gas drainage gas technology in Sichuan Basin [J]. Drilling Technology, 2008, 31 (5): 66-69, 72

8. TIAN Gong, Sino-Myanmar gas pipeline fully operational [J] gas industry, 2013.10: 11