Formulation of the normal forms of Turing-Hopf bifurcation in reaction-diffusion systems with time delay

Weihua Jiang, Qi An

Department of Mathematics, Harbin Institute of Technology, Harbin 150001, P.R.China

Junping Shi

Department of Mathematics, College of William and Mary, Williamsburg, Virginia, 23187-8795, USA

Abstract

The normal forms up to the third order for a Hopf-steady state bifurcation of a general system of partial functional differential equations (PFDEs) is derived based on the center manifold and normal form theory of PFDEs. This is a codimension-two degenerate bifurcation with the characteristic equation having a pair of simple purely imaginary roots and a simple zero root, and the corresponding eigenfunctions may be spatially inhomogeneous. The PFDEs are reduced to a three-dimensional system of ordinary differential equations and precise dynamics near bifurcation point can be revealed by two unfolding parameters. The normal forms are explicitly written as functions of the Fréchet derivatives up to the third orders and characteristic functions of the original PFDEs, and they are presented in a concise matrix notation, which greatly eases the applications to the original PFDEs and is convenient for computer implementation. This provides a user-friendly approach of showing the existence and stability of patterned stationary and time-periodic solutions with spatial heterogeneity when the parameters are near a Turing-Hopf bifurcation point, and it can also be applied to reaction-diffusion systems without delay and the retarded functional differential equations without diffusion.

Keywords: Reaction-diffusion equations with time-delay; Hopf-steady state bifurcation; Turing-Hopf bifurcation; Normal form
1 Introduction

In a dynamical mathematical model, the asymptotic behavior of the system often changes when some parameter moves across certain threshold values and such phenomenon is called a bifurcation. The method of the normal forms is a standard and effective tool to analyze and simplify bifurcation problems, see [12, 21, 60]. The main idea is to transform the differential equations to a topologically conjugate normal form near the singularity. For ordinary differential equations (ODEs), the methods of computing the normal forms have been developed in, for example, [5, 12, 13, 20, 21], and for functional differential equations (FDEs), similar methods have also been developed in, for example, [18, 19, 25]. In FDEs, due to the effect of time-delays, Hopf bifurcations occur more frequently which destabilize a stable equilibrium and produce temporal oscillatory patterns [25]. Often a center manifold reduction reduces a higher dimensional problem to a lower dimensional one, and the normal form can be computed on the center manifold [9, 26, 40, 57]. The method proposed in [18, 19] has been applied to the bifurcation problems in ODEs or FDEs, such as codimension-one Hopf bifurcation, and codimension-two Hopf-zero bifurcation and Bogdanov-Takens bifurcation etc., see [7, 28, 30, 43, 58, 59, 65, 70].

The methods of center manifolds and normal forms have also been extended to many partial differential equations (PDEs). For example, the existence of center manifolds or other invariant manifolds for semilinear parabolic equations have been proved in, for example, [2, 3, 14, 27]. For parabolic equations with time-delay or functional partial differential equations (FPDEs), the existence and smoothness of center manifolds have also been established in [15, 17, 34, 56, 63, 64]. In particular, the calculation of normal form on the centre manifold of FPDEs was provided in [15, 16]. These theories can be applied to reaction-diffusion systems (with or without time-delays) which appear in many applications from physics, chemistry and biology. For example, the existence of Hopf bifurcations and associated stability switches have been considered in many recent work [6, 10, 22, 24, 44, 53, 54, 66, 68, 69, 71]. More recently with the integrated semigroup theory, the center manifold and normal form theory for semilinear equations with non-dense domain have also been developed [35, 38].

An important application of normal form theory for PDEs and FPDEs is the formation and bifurcation of spatiotemporal patterns in reaction-diffusion systems (with delays) from various physical, chemical and biological models. In the pioneer work or Turing [55], it was shown that diffusion could destabilize an otherwise stable spatially homogeneous equilibrium of a reaction-diffusion system, which leads to the spontaneous formation of spatially inhomogeneous pattern. This phenomenon is often called the Turing instability or diffusion-driven instability, and associated Turing bifurcation could lead to spatially inhomogeneous steady states [32, 50, 62]. Such Turing
type pattern formation mechanisms have been verified in several recent chemical or biological studies \cite{31,33,42,48}.

In many reaction-diffusion models, temporal oscillation caused by Hopf bifurcation and spatial patterns from Turing mechanism can occur simultaneously to produce Turing-Hopf patterns which oscillate in both space and time \cite{4,39,41,45,46}. Mathematically the complex spatiotemporal Turing-Hopf patterns involves the interaction of the dynamical properties of two Fourier modes, and it can be analyzed through unfolding a codimension-two Turing-Hopf bifurcation, see \cite{49,51,52,61} and references therein. It is also a Hopf-zero bifurcation with the zero eigenvalue corresponding to a spatially inhomogeneous eigenfunction.

The aim of the present paper is to provide the computation of the normal form up to the third order at a known steady state solution for a reaction-diffusion system with time-delay. This normal form can be used to unfold the complex spatiotemporal dynamics near a Turing-Hopf bifurcation point with one of the unfolding parameter being the time-delay. We follow the framework of Faria \cite{15,17} to reduce the general PFDEs with perturbation parameters to a three-dimensional systems of ODEs up to third order, restricted on the local center manifold near a Hopf-steady state type of singularity, and the unfolding parameters can be expressed by those original perturbation parameters. Usually the third order normal form is sufficient for analyzing the bifurcation phenomena in most of the applications. The reduced three-dimensional ODE system can be further transformed to a two-dimensional amplitude system and the bifurcation analysis can be carried out following \cite{21} to provide precise dynamical behavior of the system using the two-dimensional unfolding parameters. Furthermore we give an explicit formula of the coefficients in the truncated normal form up to third order for the Hopf-steady state bifurcation of delayed reaction-diffusion equations with Neumann boundary condition, which includes the important application to the Turing-Hopf bifurcation.

Our approach in this paper has several new features compared to previous work. First our basic setup of PFDE systems follows the assumptions (H1)-(H4) in \cite{15} with slight changes to fit our situation, but we remove the more restrictive assumption (H5) which was used in \cite{15}. Hence our computation of normal forms can be applied to more general situations. Secondly the normal form formulas here are directly expressed by the Fréchet derivatives up to the third orders and characteristic functions of the original PFDEs, not the reduced ODEs. Hence one can apply our results directly to the original PFDEs without the reduction steps. Also our formulas of the normal form are presented in a concise matrix notation which also eases the applications. Thirdly we neglect the higher order (≥ 2) dependence of the perturbation parameters on the system, as in practical application, the influence of the small perturbation parameter on the dynamics of
the system is mainly linear. This again simplifies the normal form but still fulfills the need in most applications. Finally we remark that the normal form formulas developed in this paper for PFDEs are also applicable to the general reaction-diffusion equations without delay (PDEs) and the delay differential equations without diffusion (FDEs) with obvious adaption, and the unfolding parameters are not necessarily the time-delay or diffusion coefficients.

Because the coefficients of computed normal form can be explicitly expressed using the information from the original system, our algorithm enables us to draw conclusions on the impact of original system parameters on the dynamical behavior near the Turing-Hopf singularity. To illustrate our normal form computation and application algorithm, we apply our methods to the Turing-Hopf bifurcation in a diffusive Schnakenberg type chemical reaction system with gene expression time delay proposed in [47]. Turing and Hopf bifurcations for this system have been considered in [11,67], and Turing-Hopf bifurcation for the system in a different set of parameters was recently considered in [29].

The rest of the paper is organized as follows. In Section 2, the framework of the system of PFDEs at a Hopf-steady state singularity and the phase space decomposition are given, and the reduction of the original equations to a three-dimensional ODE system is introduced. The formulas of normal form up to third order are presented in Section 3 while the proof is postponed to Section 6. In Section 4, the precise formulas of the normal forms with the Neumann boundary condition and the spatial domain \(\Omega = (0,l\pi) \) are given. The application of abstract formulas to the example of diffusive Schnakenberg system with gene expression time delay is shown in Section 5, and some concluding remarks are given in Section 7.

2 Reduction based on phase space decomposition

In this section, we discuss the reduction and the normal forms for a system of PFDEs subject to homogeneous Neumann or Dirichlet boundary conditions at a Hopf-steady state singularity with original perturbation parameters following the methods in [18,19]. We will show that the system of PFDEs can be reduced to a three-dimensional system of ordinary differential equations defined on its center manifold.

Assume that \(\Omega \) is a bounded open subset of \(\mathbb{R}^n \) with smooth boundary, and \(X \) is a Hilbert space of complex-valued functions defined on \(\overline{\Omega} \) with inner product \(\langle \cdot, \cdot \rangle \). Denote by \(\mathbb{N}_B \) the set of
nonnegative integers or positive integers, depending on the boundary condition:
\[N_B = \begin{cases}
N \cup \{0\}, & \text{for homogeneous Neumann boundary conditions,} \\
N, & \text{for homogeneous Dirichlet boundary conditions.}
\end{cases} \]

Let \(\{\mu_k : k \in N_B\} \) be the set of eigenvalues of \(-\Delta\) on \(\Omega\) subject to homogeneous Neumann or Dirichlet boundary conditions, that is
\[\Delta \beta_k + \mu_k \beta_k = 0, \ x \in \Omega, \ \frac{\partial u}{\partial n} = 0 \text{ or } u = 0, \ x \in \partial \Omega. \]

Then we have
\[0 = \mu_0 < \mu_1 \leq \cdots \leq \mu_k \leq \cdots \to \infty, \text{ for Neumann boundary conditions, or} \]
\[0 < \mu_1 < \mu_2 \leq \cdots \leq \mu_k \leq \cdots \to \infty, \text{ for Dirichlet boundary conditions}, \]
and the corresponding eigenfunctions \(\{\beta_k : k \in N_B\} \) form an orthonormal basis of \(X\). Fixing \(m \in \mathbb{N}\) and \(r > 0\), define \(C = C([-r,0]; X^m) \ (r > 0)\) to be the Banach space of continuous maps from \([-r,0]\) to \(X^m\) with the sup norm. We consider an abstract PFDE with parameters in the phase space \(C\) defined as
\[\dot{u}(t) = D(\alpha)\Delta u(t) + L(\alpha)u_t + G(u_t, \alpha), \quad (2.1) \]
where \(u_t \in C\) is defined by \(u_t(\theta) = u(t + \theta)\) for \(-r \leq \theta \leq 0\), \(D(\alpha) = \text{diag}(d_1(\alpha), d_2(\alpha), \ldots, d_m(\alpha))\) with \(d_i(0) > 0\) for \(1 \leq i \leq m\); the domain of \(\Delta u(t)\) is defined by \(\text{dom}(\Delta) = Y^m \subseteq X^m\) where \(Y\) is defined as
\[Y = \left\{ u \in W^{2,2}(\Omega) : \frac{\partial u}{\partial n} = 0, \ x \in \partial \Omega \right\} \text{ for Neumann boundary conditions, or} \]
\[Y = \left\{ u \in W^{2,2}(\Omega) : u = 0, \ x \in \partial \Omega \right\} \text{ for Dirichlet boundary conditions}; \]

the parameter vector \(\alpha = (\alpha_1, \alpha_2)\) is in a neighborhood \(V \subset \mathbb{R}^2\) of \((0,0)\), \(L : V \to L(C, \mathbb{R}^m)\) (the set of linear mappings) is \(C^1\) smooth, \(G : C \times V \to \mathbb{R}^m\) is \(C^k\) smooth for \(k \geq 3\), \(G(0,0) = 0\), and the Jacobian matrix \(D_\varphi G(0,0) = 0\) with \(\varphi \in C\).

Let \(L_0 = L(0)\) and \(D_0 = D(0)\). Then the linearized equation about the zero equilibrium of \((2.1)\) can be written as
\[\dot{u}(t) = D_0 \Delta u(t) + L_0 u_t. \quad (2.2) \]

We impose the following hypotheses (similar to [15]):

\(\textbf{(H1)}\) \(D_0 \Delta\) generates a \(C_0\) semigroup \(\{T(t)\}_{t \geq 0}\) on \(X^m\) with \(|T(t)| \leq Me^{\omega t}\) for all \(t \geq 0\), where \(M \geq 1\), \(\omega \in \mathbb{R}\), and \(T(t)\) is a compact operator for each \(t > 0\);
(H2) \(L_0 \) can be extended to a bounded linear operator from \(BC \) to \(X^m \), where \(BC = \{ \psi \in C : \lim_{\theta \to 0} \psi(\theta) \text{ exists} \} \) with the sup norm.

(H3) the subspaces \(B_k = \{ \langle v(\cdot), \beta_k \rangle \beta_k : v \in C \} \subset C \ (k \in \mathbb{N}_B) \) satisfy \(L_0(B_k) \subseteq \text{span}\{ e_i \beta_k : 1 \leq i \leq m \} \), where \(\{ e_i : 1 \leq i \leq m \} \) is the canonical basis of \(\mathbb{R}^m \), and

\[
\langle v, \beta_k \rangle = (\langle v_1, \beta_k \rangle, \langle v_2, \beta_k \rangle, \ldots, \langle v_m, \beta_k \rangle)^T, \quad k \in \mathbb{N}_B, \quad \text{for} \ v = (v_1, v_2, \ldots, v_m)^T \in C.
\]

Let \(A \) be the infinitesimal generator associated with the semiflow of the linearized equation (2.2). It is known that \(A \) is given by

\[
(A \phi)(\theta) = \dot{\phi}(\theta), \quad \text{dom}(A) = \{ \phi \in C : \dot{\phi} \in C, \phi(0) \in \text{dom}(\Delta), \dot{\phi}(0) = D_0 \Delta \phi(0) + L_0 \phi \},
\]

and the spectrum \(\sigma(A) \) of \(A \) coincides with its point spectrum \(\sigma_P(A) \). Moreover \(\lambda \in \mathbb{C} \) is in \(\sigma_P(A) \) if and only if there exists \(\gamma \in \text{dom}(\Delta) \setminus \{0\} \) such that \(\gamma \) satisfies

\[
\Delta(\lambda) \gamma = 0, \quad \text{with} \quad \Delta(\lambda) = \lambda I - D_0 \Delta - L_0(e^\lambda I).
\]

By using the decomposition of \(X \) by \(\{ \beta_k \}_{k \in \mathbb{N}_B} \) and \(B_k \), the equation \(\Delta(\lambda) \gamma = 0 \), for some \(\gamma \in \text{dom}(\Delta) \setminus \{0\} \), is equivalent to a sequence of characteristic equations

\[
\det \Delta_k(\lambda) = 0, \quad \text{with} \quad \Delta_k(\lambda) = \lambda I - \mu_k D_0 - L_0(e^\lambda I), \quad k \in \mathbb{N}_B.
\]

Here \(L_0 : C \to \mathbb{C}^m \) where \(C \triangleq C([-r, 0]; \mathbb{C}^m) \). Then for any \(k \in \mathbb{N}_B \), on \(B_k \), the linear equation (2.2) is equivalent to a Functional Differential Equation (FDE) on \(\mathbb{C}^m \):

\[
\dot{z}(t) = -\mu_k D_0 z(t) + L_0 z(t),
\]

with characteristic equation (2.4), where \(z(t) = (u(t), \beta_k) \in C \). For any \(k \in \mathbb{N}_B \), we also denote by \(\eta_k \in BV([-r, 0], \mathbb{C}^m) \) to be the \(m \times m \) matrix-valued function of bounded variation defined on \([-r, 0]\) such that

\[
-\mu_k D_0 \psi(0) + L_0 \psi = \int_{-r}^{0} d\eta_k(\theta) \psi(\theta), \quad \psi \in C.
\]

The adjoint bilinear form on \(C^* \times C \), where \(C^* \triangleq C([0, r]; \mathbb{C}^{m*}) \), is defined by

\[
(\psi, \varphi)_k = \psi(0) \varphi(0) - \int_{-r}^{0} \int_{0}^{\theta} \psi(\xi - \theta) d\eta_k(\theta) \varphi(\xi) d\xi, \quad \psi \in C^*, \quad \varphi \in C.
\]

We make the following basic assumption on a Hopf-steady state bifurcation point:

(H4) There exists a neighborhood \(V \subset \mathbb{R}^2 \) of zero such that for \(\alpha := (\alpha_1, \alpha_2) \in V \), the characteristic equation (2.4) with \(k = k_1 \in \mathbb{N}_B \) has a simple real eigenvalue \(\gamma(\alpha) \) with \(\gamma(0) = 0, \ \frac{\partial \gamma}{\partial \alpha_2}(0) \neq 0 \), and (2.4) with \(k = k_2 \in \mathbb{N}_B \) has a pair of simple complex conjugate eigenvalues \(\nu(\alpha) \pm i \omega(\alpha) \) with \(\nu(0) = 0, \ \omega(0) = \omega_0 > 0, \ \frac{\partial \nu}{\partial \alpha_1}(0) \neq 0 \), all other eigenvalues of (2.3) have non-zero real part for \(\alpha \in V \).
Definition 2.1. We say that a \((k_1, k_2)\)-mode Hopf-steady state bifurcation occurs for (2.1) near the trivial equilibrium at \(\alpha = (0, 0)\) if assumptions \((H1)-(H4)\) are satisfied, or briefly, a Hopf-steady state bifurcation occurs. Moreover, if \(k_1 \neq 0\), we say that a \((k_1, k_2)\)-mode Turing-Hopf bifurcation occurs, or briefly, a Turing-Hopf bifurcation occurs.

Let \(\Lambda_1 = \{0\}, \Lambda_2 = \{\pm i\omega_0\}\), and \(\Lambda = \Lambda_1 \cup \Lambda_2\). Then the phase space \(C\) is decomposed by \(\Lambda_i\):

\[
C = P_i \oplus Q_i,
\]

where \(Q_i = \{\varphi \in C : (\psi, \varphi)_{k_i} = 0, \text{ for all } \psi \in P_i^*\}, i = 1, 2\). We choose the basis

\[
\Phi_1 = \phi_1, \Psi_1 = \psi_1, \Phi_2 = (\phi_2, \tilde{\phi}_2), \Psi_2 = \begin{pmatrix} \psi_2 \\ \tilde{\psi}_2 \end{pmatrix}
\]

in \(P_1, P^*_1, P_2, P^*_2\) respectively, such that \((\Psi_i, \Phi_i)_{k_i} = I, i = 1, 2, (I\text{ is the identity matrix})\), and

\[
\dot{\Phi}_i = \Phi_i B_i \quad \text{and} \quad \dot{\Psi}_i = B_i \Psi_i, \quad i = 1, 2, \quad \text{with} \quad B_1 = 0, \quad B_2 = \text{diag}(i\omega_0, -i\omega_0).
\]

We know from \([25]\) that

\[
\phi_1(\theta) \equiv \phi_1(0), \quad \phi_2(\theta) = \phi_2(0)e^{i\omega_0 \theta}, \quad \theta \in [-r, 0],
\]

\[
\psi_1(\theta) \equiv \psi_1(0), \quad \psi_2(s) = \psi_2(0)e^{-i\omega_0 s}, \quad s \in [0, r].
\]

Now we use the definitions above to decompose \(C\) by \(\Lambda\):

\[
C = \mathcal{P} \oplus Q, \quad \mathcal{P} = \text{Im}\pi, \quad Q = \text{Ker}\pi,
\]

where \(\dim\mathcal{P} = 3\) and \(\pi : C \to \mathcal{P}\) is the projection defined by

\[
\pi\phi = \sum_{i=1,2} \Phi_i(\Psi_i, (\phi(\cdot), \beta_{k_i}))_{k_i} \beta_{k_i}.
\]

We project the infinite-dimensional flow on \(C\) to the one on a finite-dimensional manifold \(\mathcal{P}\). Following the ideas in \([15]\), we consider the enlarged phase space \(BC\) introduced in \((H2)\). This space can be identified as \(C \times X^m\), with elements in the form \(\phi = \varphi + X_0 \psi\), where \(\varphi \in C, \psi \in \mathbb{R}^n\), and \(X_0\) is the \(m \times m\) matrix-valued function defined by \(X_0(\theta) = 0\) for \(\theta \in [-r, 0]\) and \(X_0(0) = I\).

In \(BC\), we consider an extension of the infinitesimal generator, still denoted by \(A\),

\[
A : C_0^1 \subset BC \to BC, \quad A\phi = \dot{\phi} + X_0[L_0\phi + D_0\Delta\phi(0) - \dot{\phi}(0)],
\]

defined on \(C_0^1 \triangleq \{\phi \in C : \dot{\phi} \in C, \phi(0) \in \text{dom}(\Delta)\}\), and \((\cdot, \cdot)_{k_i}\) can be continuously defined by the same expression \((2.7)\), \(i = 1, 2,\) on \(C^* \times BC\), where

\[
BC = \left\{\psi : [-r, 0] \to \mathbb{C}^m | \psi \text{ is continuous on } [-r, 0), \lim_{\theta \to 0^-} \psi(\theta) \text{ exists} \right\}.
\]
Thus it is easy to see that π, as defined in (2.10), is extended to a continuous projection (which we still denote by π) $\pi : BC \rightarrow P$. In particular, for $c \in X^m$ we have

$$\pi(X_0c) = \sum_{i=1,2} \Phi_i \Psi_i(0) \langle c, \beta_{ki} \rangle \beta_{ki}.$$

(2.12)

The projection π leads to the topological decomposition

$$BC = P \oplus \text{Ker } \pi,$$

(2.13)

with the property $Q \subsetneq \text{Ker } \pi$.

In the space BC, (2.1) becomes an abstract ODE

$$\frac{dv}{dt} = Av + X_0 F(v, \alpha),$$

(2.14)

where

$$F(v, \alpha) = (L_\alpha - L_0)v + (D(\alpha) - D(0))\Delta v(0) + G(v, \alpha),$$

(2.15)

for $v \in C$, $\alpha \in V$. We decompose $v \in C^1_0$ according to (2.13) by

$$v(t) = \phi_1 z_1(t) \beta_{k_1} + (\phi_2 z_2(t) + \phi_2 \tilde{z}_2(t)) \beta_{k_2} + y(t),$$

where $z_i(t) = (\psi_i, \langle v(t)(\cdot), \beta_{ki} \rangle)_{\beta_{ki}}$ ($i = 1, 2$), and $y(t) \in C^1_0 \cap \text{Ker } \pi = C^1_0 \cap Q \triangleq Q^1$.

Since π commutes with A in C^1_0, we see that in BC, the abstract ODE (2.14) is equivalent to a system of ODEs:

$$\dot{z}_1 = \psi_1(0) \langle F(\phi_1 z_1 \beta_{k_1} + (\phi_2 z_2 + \phi_2 \tilde{z}_2) \beta_{k_2} + y, \alpha), \beta_{k_1} \rangle,$$

$$\dot{z}_2 = i\omega_0 z_2 + \psi_2(0) \langle F(\phi_1 z_1 \beta_{k_1} + (\phi_2 z_2 + \phi_2 \tilde{z}_2) \beta_{k_2} + y, \alpha), \beta_{k_2} \rangle, \tag{2.16}$$

$$\dot{\tilde{z}}_2 = -i\omega_0 \tilde{z}_2 + \psi_2(0) \langle F(\phi_1 z_1 \beta_{k_1} + (\phi_2 z_2 + \phi_2 \tilde{z}_2) \beta_{k_2} + y, \alpha), \beta_{k_2} \rangle,$$

$$\frac{dy}{dt} = A_1 y + (I - \pi) X_0 F(\phi_1 z_1 \beta_{k_1} + (\phi_2 z_2 + \phi_2 \tilde{z}_2) \beta_{k_2} + y, \alpha),$$

for $z = (z_1, z_2, \tilde{z}_2) \in P \subset C^3$, $y \in Q^1 \subset \text{Ker } \pi$, where A_1 is the restriction of A as an operator from Q^1 to the Banach space $\text{Ker } \pi$: $A_1 : Q^1 \subset \text{Ker } \pi \rightarrow \text{Ker } \pi$, $A_1 \phi = A \phi$ for $\phi \in Q^1$.

3 The formulas of second and third terms in the normal forms

In this section, we present the formulas of the second order and third order terms of the normal form of (2.1), and the proofs will be postponed to Section 6.
First we neglect the dependence on the higher order \((\geq 2)\) terms of small parameters \(\alpha_1, \alpha_2\) in the third order terms of the normal forms of \((2.1)\). By doing the Taylor expansion formally for the operator \(L(\alpha)\) and diagonal matrix \(D(\alpha)\) at \(\alpha = 0\), we have
\[
L(\alpha)v = L(0)v + \frac{1}{2}L_1(\alpha)v + \cdots, \quad v \in \mathbb{C},
\]
\[
D(\alpha) = D(0) + \frac{1}{2}D_1(\alpha) + \cdots,
\]
where \(L_1: V \to L(\mathbb{C}, \mathbb{R}^m)\), and \(D_1: V \to \mathbb{R}^m \times \mathbb{R}^m\) are linear. As in [26], we write \(G\) in \((2.1)\) in the form of
\[
G(v, 0) = \frac{1}{2!}Q(v, v) + \frac{1}{3!}C(v, v, v) + O(|v|^4), \quad v \in \mathbb{C},
\]
where \(Q, C\) are symmetric multilinear forms. For simplicity, we also write \(Q(X, Y)\) as \(Q_{XY}\), \(Q_X Y\) or \(Q_Y X\), and \(C(X, Y, Z)\) as \(C_{XYZ}\).

The formulas of the third order normal form of \((2.1)\) are given in the following theorem, and the detailed proof of the theorem is provided in Section 6.

Theorem 3.1. Assume that \((\text{H1})-(\text{H4})\) are satisfied. Ignoring the effect of the perturbation parameters in high-order items \((\geq 3)\), then the normal forms of \((2.1)\) restricted on the center manifold up to the third order is
\[
\dot{z} = Bz + \frac{1}{2}g_2^1(z, 0, \alpha) + \frac{1}{3!}g_3^1(z, 0, \alpha) + \text{h.o.t.},
\]
or equivalently
\[
\begin{align*}
\dot{z}_1 &= a_1(\alpha)z_1 + a_{11}z_1^2 + a_{23}z_2\bar{z}_2 + +a_{111}z_1^3 + a_{123}z_1z_2\bar{z}_2 + \text{h.o.t.}, \\
\dot{z}_2 &= i\omega_0z_2 + b_2(\alpha)z_2 + b_{12}z_1z_2 + b_{112}z_1^2z_2 + b_{223}z_2^2\bar{z}_2 + \text{h.o.t.}, \\
\dot{\bar{z}}_2 &= -i\omega_0\bar{z}_2 + b_2(\alpha)\bar{z}_2 + b_{12}\bar{z}_1z_2 + b_{112}\bar{z}_1^2z_2 + b_{223}\bar{z}_2^2\bar{z}_2 + \text{h.o.t.},
\end{align*}
\]
Here \(a_{ij}, b_{ij}, a_{ijk}, b_{ijk}\) are given by
\[
a_{11} = \frac{1}{2}\psi(0)Q_{\phi_1\phi_1}(\beta_1^2, \beta_1k_1), \quad a_{23} = \psi(0)Q_{\phi_2\phi_2}(\beta_2^2, \beta_1k_1), \quad b_{12} = \psi(0)Q_{\phi_1\phi_2}(\beta_1k_1, \beta_2k_2, \beta_2k_2),
\]
\[
a_{111} = \frac{1}{6}\psi(0)C_{\phi_1\phi_1\phi_1}(\beta_1^3, \beta_1k_1) + \psi(0)Q_{\phi_1\phi_1h_{200}}(\beta_1k_1, \beta_1k_1) + \frac{1}{2i\omega_0}\psi(0)[-Q_{\phi_1\phi_2}\bar{\psi}_2(0) + Q_{\phi_2\phi_2}\bar{\psi}_2(0)]Q_{\phi_1\phi_1}(\beta_1k_1, \beta_2k_2, \beta_2k_1)(\beta_1^2, \beta_2k_1),
\]
\[
a_{123} = \psi(0)C_{\phi_1\phi_2\phi_2}(\beta_1k_1, \beta_2k_2, \beta_2k_1) + \frac{1}{i\omega_0}\psi(0)[-Q_{\phi_1\phi_2}\bar{\psi}_2(0) + Q_{\phi_2\phi_2}\bar{\psi}_2(0)]Q_{\phi_2\phi_2}(\beta_1, \beta_2k_2, \beta_2k_1)(\beta_1^2, \beta_2k_1)
\]
\[
+ \psi(0)(Q_{\phi_2h_{101}}\beta_1k_1, \beta_1k_1) + (Q_{\phi_2h_{101}}\beta_2k_2, \beta_1k_1) + (Q_{\phi_2h_{110}}\beta_2k_2, \beta_1k_1),
\]
which are given by (2.8), the linear parts L respectively, and h

Assume that Definition 3.3.

For the normal form up to the third order, we only need to calculate the eigenvectors which are given in (3.2).

Moreover we adopt the same coordinate transformation (23) and (25) in [28], then (3.4) can be reduced to the planar system (see [28])

$$
\dot{r} = r(\varepsilon_1(\alpha) + az + cr^2 + dz^2),
\dot{z} = \varepsilon_2(\alpha)z + br^2 - z^2 + cr^2z + fz^3,
$$

where

$$
\varepsilon_1(\alpha) = \text{Re}(b_2(\alpha)), \quad \varepsilon_2(\alpha) = a_1(\alpha), \quad a = -\frac{\text{Re}(b_{12})}{a_{11}}, \quad b = -\text{sign}(a_{11}a_{23}),
$$

$$
c = \frac{\text{Re}(b_{223})}{a_{11}a_{23}}, \quad d = \frac{\text{Re}(b_{112})}{a_{11}^2}, \quad e = \frac{a_{123}}{a_{11}a_{23}}, \quad f = \frac{a_{111}}{a_{11}^2}.
$$

For the reduced system [3.4], the bifurcation structure can be distinguished into the two main types: Hopf-transcritical type and Hopf-pitchfork type, which we will discuss separately below.

3.1 Hopf-transcritical type

Following [28], we have

Definition 3.3. Assume that (H1)-(H4) are satisfied, $a_{11} \neq 0$, $a_{23} \neq 0$, $\text{Re}(b_{12}) \neq 0$, and $a_{11} - \text{Re}(b_{12}) \neq 0$. Then we say that a Hopf-steady state bifurcation with Hopf-transcritical type occurs for (2.1) (or referred as a Hopf–transcritical bifurcation) at the trivial equilibrium when $\alpha = 0$.

Moreover we adopt the same coordinate transformation (23) and (25) in [28], then (3.4) can be reduced to the planar system (see [28])

$$
\dot{r} = r(\varepsilon_1(\alpha) + az + cr^2 + dz^2),
\dot{z} = \varepsilon_2(\alpha)z + br^2 - z^2 + cr^2z + fz^3,
$$

where

$$
\varepsilon_1(\alpha) = \text{Re}(b_2(\alpha)), \quad \varepsilon_2(\alpha) = a_1(\alpha), \quad a = -\frac{\text{Re}(b_{12})}{a_{11}}, \quad b = -\text{sign}(a_{11}a_{23}),
$$

$$
c = \frac{\text{Re}(b_{223})}{a_{11}a_{23}}, \quad d = \frac{\text{Re}(b_{112})}{a_{11}^2}, \quad e = \frac{a_{123}}{a_{11}a_{23}}, \quad f = \frac{a_{111}}{a_{11}^2}.
$$

respectively, and $h_{ijk} (i + j + k = 2, \ i, j, k \in \mathbb{N}_0)$ are determined by (6.32) and (6.34).

Remark 3.2. For the normal form up to the third order, we only need to calculate the eigenvectors which are given by (2.8), the linear parts $L(\alpha)$ and $D_1(\alpha)$ in (3.1), and the multilinear forms Q and C which are given in (3.2).
Now (3.8) has the same form as (36) in [28]. By [21] and [28], there are four different topological structure for (3.8) with the Hopf-transcritical bifurcation depending on the signs of a and b:

Case I : $b = 1, a > 0$; Case II : $b = 1, a < 0$;
Case III : $b = -1, a > 0$; Case IV : $b = -1, a < 0$.

The results in [28] can be directly applied to analyze the equation (3.8) and the dynamical properties for original system (2.1) can be revealed with the help of the analysis in [1, Section 4].

3.2 Hopf-pitchfork type

Following [21], we have

Definition 3.4. Assume that (H1)-(H4) are satisfied, $a_{11} = a_{23} = b_{12} = 0$, $a_{111} \neq 0$, $a_{123} \neq 0$, $\text{Re}(b_{112}) \neq 0$, $\text{Re}(b_{223}) \neq 0$, and $a_{111}\text{Re}(b_{223}) - a_{123}\text{Re}(b_{112}) \neq 0$. Then we say that a Hopf-steady state bifurcation with Hopf-pitchfork type occurs for (2.1) at the trivial equilibrium when $\alpha = 0$.

By using the same coordinate transformation in (23) of [28] and the coordinate transformation

$$r \to r, \sqrt{|\text{Re}(b_{223})|} z \to z, \text{sign}(\text{Re}(b_{223}))t \to t,$$

we obtain a planar system (see [21] and [59]):

$$\dot{r} = r(\varepsilon_1(\alpha) + r^2 + b_0 z^2),$$

$$\dot{z} = z(\varepsilon_2(\alpha) + c_0 r^2 + d_0 z^2),$$

where

$$\varepsilon_1(\alpha) = \text{Re}(b_2(\alpha))\text{sign}(\text{Re}(b_{223})), \quad \varepsilon_2(\alpha) = a_1(\alpha)\text{sign}(\text{Re}(b_{223})),$$

$$b_0 = \frac{\text{Re}(b_{112})}{|a_{111}|}\text{sign}(\text{Re}(b_{223})), \quad c_0 = \frac{a_{123}}{|\text{Re}(b_{223})|}\text{sign}(\text{Re}(b_{223})), \quad d_0 = \text{sign}(a_{111}\text{Re}(b_{223})).$$

For system (3.10), there are possibly four equilibrium points as follows:

$$E_1 = (0, 0), \quad \text{for all } \varepsilon_1, \varepsilon_2,$$

$$E_2 = (\sqrt{-\varepsilon_1}, 0), \quad \text{for } \varepsilon_1 < 0,$$

$$E_3^\pm = (0, \pm \sqrt{-\frac{\varepsilon_2}{d_0}}), \quad \text{for } \frac{\varepsilon_2}{d_0} < 0,$$

$$E_4^\pm = (\sqrt{\frac{b_0\varepsilon_2 - d_0\varepsilon_1}{d_0 - b_0c_0}}, \pm \sqrt{\frac{c_0\varepsilon_1 - \varepsilon_2}{d_0 - b_0c_0}}), \quad \text{for } \frac{b_0\varepsilon_2 - d_0\varepsilon_1}{d_0 - b_0c_0}, \frac{c_0\varepsilon_1 - \varepsilon_2}{d_0 - b_0c_0} > 0.$$

Based on [21, §7.5], by the different signs of $b_0, c_0, d_0, d_0 - b_0c_0$ in Table 1, Eq. (3.10) has twelve distinct types of unfoldings, which are twelve essentially distinct types of phase portraits and
Table 1: The twelve unfoldings of $\left(3.10\right)$ \cite{21}

Case	Ia	Ib	II	III	IVa	IVb	V	VIa	VIb	VIIa	VIIb	VIII
d_0	+1	+1	+1	+1	+1	−1	−1	−1	−1	−1	−1	−1
b_0	+	+	−	−	+	+	+	+	+	+	+	+
c_0	+	+	−	−	+	+	−	−	+	+	+	+
$d_0 - b_0 c_0$	+	−	+	+	+	−	−	+	+	−	−	−

bifurcation diagrams. The results in \cite{21} can be directly applied to analyze the equation $\left(3.10\right)$ and the dynamical properties for original system $\left(2.1\right)$ can be revealed with the help of the analysis in \cite{1} Section 4. For the convenience of application to the example in Section 5, we show the bifurcation diagram in parameters $(\varepsilon_1, \varepsilon_2)$ and phase portraits of Case III of Hopf-pitchfork type (see Table 1) in Figure 1.

![Figure 1: The bifurcation set (a) and the phase portraits (b) for Case III of Hopf-pitchfork type.](image)

In the next section, we will give the exact expressions of h_{ijk} in $\left(3.5\right)$, $\left(3.6\right)$ and $\left(3.7\right)$ under the Neumann boundary condition and $\Omega = (0, l\pi)$ for $l > 0$.

4 Explicit formulas for Neumann boundary conditions

In this section, we give more explicit formulas of coefficients h_{ijk} in $\left(3.5\right)$, $\left(3.6\right)$ and $\left(3.7\right)$ of the normal form $\left(3.4\right)$ restricted on the centre manifold in the case of spatial dimension $n = 1$ and $\Omega = (0, l\pi)$ for some $l > 0$, and we consider $\left(2.1\right)$ with Neumann boundary condition.

It is well known that the eigenvalue problem

$$\beta'' + \mu \beta = 0, \quad x \in (0, l\pi), \quad \beta'(0) = \beta'(l\pi) = 0,$$
has eigenvalues $\mu_n = n^2/l^2$ for $n \in \mathbb{N}_0$ with corresponding normalized eigenfunctions

$$\beta_0(x) = 1, \quad \beta_n(x) = \sqrt{2} \cos \frac{n}{l} x, \quad n \in \mathbb{N},$$

where $\langle \beta_m(x), \beta_n(x) \rangle = \frac{1}{\pi} \int_0^{\pi} \beta_m(x) \beta_n(x) dx = \delta_{mn}$. In what follows, we denote

$$h_q^k = \langle h_q, \beta_k \rangle, \quad q \in \mathbb{N}_0^3, |q| = 2, \quad k \in \mathbb{N}_0.$$

According to the different situations of k_1, k_2 in (H4), for the convenience of applications, we will give the exact formulas of $a_{11}, a_{23}, a_{111}, a_{123}, b_{12}, b_{112}, b_{223}$ in (3.4) for the following five cases.

Case (1) $k_1 = k_2 = 0$.

In this case,

$$\langle \beta^2_{k_1}, \beta_{k_1} \rangle = \langle \beta^2_{k_2}, \beta_{k_1} \rangle = \langle \beta_{k_1}, \beta_{k_2} \rangle = \langle \beta_{0}, \beta_{0} \rangle = 1,$$

$$\langle \beta^2_{k_1}, \beta_{k_2} \rangle = \langle \beta^2_{k_2}, \beta_{k_2} \rangle = \langle \beta_{k_1}, \beta_{k_1} \rangle = \langle \beta_{0}, \beta_{0} \rangle = 1,$$

$$\langle Q_{\phi h_{k_1}}, \beta_{k_1} \rangle = \langle Q_{\phi h_{k_2}}, \beta_{k_2} \rangle = \langle \beta_{0}, \beta_{0} \rangle = 1,$$

where $\theta \in [-r, 0]$ and the constant vectors E_q for $q \in \mathbb{N}_0^3$ with $|q| = 2$, satisfy the following conditions

$$[\int_{-r}^{0} d\eta_0(\theta)] E_{200} = \frac{1}{2} [-I + (I - \int_{-r}^{0} \theta d\eta_0(\theta)) \phi_1(0) \psi_1(0)] Q_{\phi_1 \phi_1},$$

$$[\int_{-r}^{0} d\eta_0(\theta)] E_{011} = [-I + (I - \int_{-r}^{0} \theta d\eta_0(\theta)) \phi_1(0) \psi_1(0)] Q_{\phi_2 \phi_2},$$

$$E_{020} = \frac{1}{\sqrt{2}} [2i\omega_0 I - \int_{-r}^{0} e^{i\omega_0 \theta} d\eta_0(\theta)]^{-1} Q_{\phi_2 \phi_2},$$

$$[i\omega_0 I - \int_{-r}^{0} e^{i\omega_0 \theta} d\eta_0(\theta)] E_{110} = [I - \phi_2(0) \psi_2(0) + \int_{-r}^{0} \theta d\eta_0(\theta) \phi_2(\theta) \psi_2(0)] Q_{\phi_1 \phi_2}.$$

Thus we have the following result.
Proposition 4.1. For $k_1 = k_2 = 0$ and Neumann boundary condition on spatial domain $\Omega = (0, l \pi)$, $l > 0$, the parameters a_{11}, a_{23}, a_{111}, a_{123}, b_{112}, b_{223} in (3.4) are given by

$$a_{11} = \frac{1}{2} \psi_1(0)Q_{\phi_1\phi_1}, \quad a_{23} = \psi_1(0)Q_{\phi_2\phi_2}, \quad b_{12} = \psi_2(0)Q_{\phi_1\phi_2},$$

$$a_{111} = \frac{1}{6} \psi_1(0)C_{\phi_1\phi_1\phi_1} + \frac{1}{12} \psi_1(0) \text{Re}(iQ_{\phi_1\phi_2} \psi_2(0))Q_{\phi_1\phi_1} + \psi_1(0)Q_{\phi_1} h_{200}^0,$$

$$a_{123} = \psi_1(0)C_{\phi_1\phi_2\phi_2} + \frac{1}{2} \psi_1(0) \text{Re}(iQ_{\phi_1\phi_2} \psi_2(0))Q_{\phi_2\phi_2} + \frac{1}{12} \psi_1(0) \text{Re}(Q_{\phi_1\phi_2} \psi_2(0))Q_{\phi_2\phi_2},$$

$$b_{112} = \frac{1}{2} \psi_2(0)C_{\phi_1\phi_1\phi_2} + \frac{1}{2} \psi_2(0) \{2Q_{\phi_1\phi_1} \psi_1(0) + Q_{\phi_1\phi_2} \psi_2(0)\}Q_{\phi_2\phi_2} + [-Q_{\phi_2\phi_2} \psi_2(0) + Q_{\phi_2\phi_2} \bar{\psi}_2(0)]Q_{\phi_1\phi_1} + \psi_2(0)(Q_{\phi_1} h_{110}^0 + Q_{\phi_2} h_{200}^0),$$

$$b_{223} = \frac{1}{2} \psi_2(0)C_{\phi_2\phi_2\phi_2} + \frac{1}{2} \psi_2(0) \{Q_{\phi_2\phi_2} \psi_2(0) + Q_{\phi_2\phi_2} \bar{\psi}_2(0)\}Q_{\phi_2\phi_2} + [-2Q_{\phi_2\phi_2} \psi_2(0) + 4Q_{\phi_2\phi_2} \bar{\psi}_2(0)]Q_{\phi_2\phi_2} + \psi_2(0)(Q_{\phi_2} h_{011}^0 + Q_{\phi_2} h_{102}^0).$$

Case (2) $k_1 = k_2 \neq 0$.

Here we have

$$\langle \beta^2_{k_1}, \beta_{k_1} \rangle = \langle \beta^2_{k_2}, \beta_{k_1} \rangle = \langle \beta_{k_1}, \beta_{k_2}, \beta_{k_2} \rangle = 0,$$

$$\langle \beta^2_{k_2}, \beta_{k_2} \rangle = \langle \beta^2_{k_1}, \beta_{k_2} \rangle = \langle \beta_{k_1}, \beta_{k_2}, \beta_{k_1} \rangle = 0,$$

$$\langle \beta^3_{k_1}, \beta_{k_1} \rangle = \langle \beta^3_{k_1}, \beta_{k_2} \rangle = \langle \beta_{k_1}, \beta^2_{k_2}, \beta_{k_2} \rangle = \langle \beta_{k_1}, \beta_{k_2}, \beta_{k_2} \rangle = \frac{3}{2},$$

$$\langle Q_{\phi_{q_i} \beta_{k_1}}, \beta_{k_1} \rangle = Q_{\phi}(h_{q_i}^0 + \frac{1}{\sqrt{2}} h_{q_i}^{2k_1}), \quad \phi \in \{\phi_1, \phi_2, \phi_2\}, \quad i = 1, 2, \quad q \in \mathbb{N}_0^3, \quad |q| = 2.$$

It also follows from (6.32) and (6.34) that $h_{q_i}^i = h_{q_i}^0$ for $i = 1, 2$, $q \in \mathbb{N}_0^3$ with $|q| = 2$, are given by

$$h_{200}^0(\theta) = -\frac{1}{2} [\int_{-\tau}^{0} d\eta_1(\theta)]^{-1} Q_{\phi_1 \phi_1}, \quad h_{200}^{2k_1}(\theta) = -\frac{1}{2} [\int_{-\tau}^{0} d\eta_1(\theta)]^{-1} Q_{\phi_1 \phi_1},$$

$$h_{011}^0(\theta) = -[\int_{-\tau}^{0} d\eta_1(\theta)]^{-1} Q_{\phi_2 \phi_2}, \quad h_{011}^{2k_2}(\theta) = -[\int_{-\tau}^{0} d\eta_1(\theta)]^{-1} Q_{\phi_2 \phi_2},$$

$$h_{020}^{2k_2}(\theta) = \frac{1}{2} [2i\omega_1 I - \int_{-\tau}^{0} e^{2i\omega_1 \theta} d\eta_1(\theta)]^{-1} Q_{\phi_2 \phi_2} e^{2i\omega_1 \theta},$$

$$h_{010}^{2k_2}(\theta) = \frac{1}{2} [2i\omega_1 I - \int_{-\tau}^{0} e^{2i\omega_1 \theta} d\eta_1(\theta)]^{-1} Q_{\phi_2 \phi_2} e^{2i\omega_1 \theta},$$

$$h_{100}^{2k_1}(\theta) = [i\omega_1 I - \int_{-\tau}^{0} e^{i\omega_1 \theta} d\eta_1(\theta)]^{-1} Q_{\phi_1 \phi_2} e^{i\omega_1 \theta},$$

$$h_{002}^{2k_1}(\theta) = \bar{h}_{002}^{2k_1}(\theta), \quad h_{101}^0(\theta) = \bar{h}_{101}^0(\theta), \quad h_{101}^{2k_1}(\theta) = \bar{h}_{101}^{2k_1}(\theta),$$

where $\theta \in [-\tau, 0]$. Thus we have the following result.

Proposition 4.2. For $k_1 = k_2 \neq 0$ and Neumann boundary condition on spatial domain $\Omega =$
(0, l\pi), \ l > 0, the parameters \ a_{11}, \ a_{23}, \ a_{111}, \ a_{123}, \ b_{12}, \ b_{112}, \ b_{223} in [3.4] are

\[a_{11} = a_{23} = b_{12} = 0,\]
\[a_{111} = \frac{3}{4} \psi_1(0) C_{\phi_1 \phi_1 \phi_1} + \psi_1(0) Q_{\phi_1}(h_{200}^0 + \frac{1}{\sqrt{2}} h_{200}^{2k_1}),\]
\[a_{123} = \frac{3}{4} \psi_1(0) C_{\phi_1 \phi_1 \phi_2 \phi_2} + \psi_1(0)[Q_{\phi_1}(h_{011}^0 + \frac{1}{\sqrt{2}} h_{011}^{2k_1}) + Q_{\phi_2}(h_{101}^0 + \frac{1}{\sqrt{2}} h_{101}^{2k_1}) + Q_{\phi_3}(h_{110}^0 + \frac{1}{\sqrt{2}} h_{110}^{2k_1})],\]
\[b_{112} = \frac{3}{4} \psi_2(0) C_{\phi_1 \phi_1 \phi_2 \phi_2} + \psi_2(0)[Q_{\phi_1}(h_{110}^0 + \frac{1}{\sqrt{2}} h_{110}^{2k_1}) + Q_{\phi_2}(h_{200}^0 + \frac{1}{\sqrt{2}} h_{200}^{2k_1})],\]
\[b_{223} = \frac{3}{4} \psi_2(0) C_{\phi_2 \phi_2 \phi_2 \phi_2} + \psi_2(0)[Q_{\phi_2}(h_{011}^0 + \frac{1}{\sqrt{2}} h_{011}^{2k_1}) + Q_{\phi_2}(h_{020}^0 + \frac{1}{\sqrt{2}} h_{020}^{2k_1})].\]

(4.5)

Case (3) \ k_2 = 0, \ k_1 \neq 0.

Here we have

\[\langle \beta_1^2, \beta_1 \rangle = \langle \beta_2^2, \beta_1 \rangle = \langle \beta_3^2, \beta_1 \rangle = 0,\]
\[\langle \beta_1^2, \beta_2 \rangle = \langle \beta_2^2, \beta_2 \rangle = \langle \beta_3^2, \beta_2 \rangle = 1,\]
\[\langle \beta_1^3, \beta_1 \rangle = \langle \beta_2^3, \beta_2 \rangle = \langle \beta_3^3, \beta_2 \rangle = 1,\]
\[\langle Q_{\phi_1 h_{200}}, \beta_1 \rangle = Q_{\phi_1}(h_{200}^0 + \frac{1}{\sqrt{2}} h_{200}^{2k_1}), \ \langle Q_{\phi_1 h_{110}}, \beta_1 \rangle = Q_{\phi_1}(h_{110}^0 + \frac{1}{\sqrt{2}} h_{110}^{2k_1}),\]
\[\langle Q_{\phi_2 h_{011}}, \beta_2 \rangle = Q_{\phi_2}(h_{011}^0), \ \langle Q_{\phi_2 h_{110}}, \beta_2 \rangle = Q_{\phi_2}(h_{110}^0),\]
\[\langle Q_{\phi_3 h_{020}}, \beta_2 \rangle = Q_{\phi_3}(h_{020}^0), \ \langle Q_{\phi_3 h_{120}}, \beta_2 \rangle = Q_{\phi_3}(h_{120}^0),\]
\[\langle Q_{\phi_4 h_{002}}, \beta_2 \rangle = Q_{\phi_4}(h_{002}^0), \ \langle Q_{\phi_4 h_{001}}, \beta_2 \rangle = Q_{\phi_4}(h_{001}^0),\]

and

\[h_{200}(\theta) = -\frac{1}{2}[\int_{-r}^0 d\eta_0(\theta)]^{-1} Q_{\phi_1 \phi_1} + \frac{1}{2\omega_0}(\phi_2(\theta)\psi_2(0) - \bar{\phi}_2(\theta)\bar{\psi}_2(0))]Q_{\phi_1 \phi_1},\]
\[h_{200}^{2k_1}(\theta) = -\frac{1}{2\sqrt{2}}[\int_{-r}^0 d\eta_{2k_1}(\theta)]^{-1} Q_{\phi_1 \phi_1},\]
\[h_{011}(\theta) = -[\int_{-r}^0 d\eta_0(\theta)]^{-1} Q_{\phi_2 \phi_2} + \frac{1}{\omega_0}(\phi_2(\theta)\psi_2(0) - \bar{\phi}_2(\theta)\bar{\psi}_2(0))]Q_{\phi_2 \phi_2},\]
\[h_{211}(\theta) = 0,\]
\[h_{002}(\theta) = \frac{1}{2}[2i\omega_0 I - \int_{-r}^0 e^{2i\omega_0(\theta)d\eta_0}(\theta)]^{-1} Q_{\phi_2 \phi_2}e^{2i\omega_0(\theta)} - \frac{1}{\omega_0}[\phi_2(\theta)\psi_2(0) + \bar{\phi}_2(\theta)\bar{\psi}_2(0))]Q_{\phi_2 \phi_2},\]
\[h_{110}(\theta) = [i\omega_0 I - \int_{-r}^0 e^{i\omega_0(\theta)d\eta_0}(\theta)]^{-1} Q_{\phi_1 \phi_1 \phi_2}e^{i\omega_0(\theta)} - \frac{1}{\omega_0}[\phi_1(\theta)\psi_1(0) + \bar{\phi}_1(\theta)\bar{\psi}_1(0))]Q_{\phi_1 \phi_2},\]
\[h_{002}(\theta) = \frac{1}{2}[h_{020}(\theta), \ h_{101}(\theta) = h_{110}(\theta)].\]

(4.6)

where \ \theta \in [-r, 0]. Then we have the following result.

Proposition 4.3. For \ k_2 = 0, \ k_1 \neq 0 and Neumann boundary condition on spatial domain \ \Omega =
(0, l\pi), \ l > 0, the parameters \ a_{11}, \ a_{23}, \ a_{111}, \ a_{123}, \ b_{12}, \ b_{112}, \ b_{223} in \ (3.4) \ are

\[a_{11} = a_{23} = b_{12} = 0, \]
\[a_{111} = \frac{1}{4} \psi_1(0)C_{\phi_1\phi_1\phi_1} + \frac{1}{\omega_0} \psi_1(0) \text{Re}(iQ_{\phi_1\phi_2} \psi_2(0))Q_{\phi_1\phi_1} + \psi_1(0)Q_{\phi_1}(h_{200}^0 + \frac{1}{\sqrt{2}} h_{200}^{2k_1}), \]
\[a_{123} = \psi_1(0)C_{\phi_1\phi_2\phi_2} + \frac{2}{\omega_0} \psi_1(0) \text{Re}(iQ_{\phi_1\phi_2} \psi_2(0))Q_{\phi_2\phi_2} + \]
\[\psi_1(0)Q_{\phi_1}(h_{011}^0 + \frac{1}{\sqrt{2}} h_{011}^{2k_1}) + Q_{\phi_2} h_{101}^{k_1} + Q_{\phi_2} h_{110}^{k_1}, \]
\[b_{112} = \frac{1}{2} \psi_2(0)C_{\phi_1\phi_1\phi_2} + \frac{1}{\omega_0} \psi_2(0) \{2Q_{\phi_1\phi_1} \psi_1(0)Q_{\phi_1}\phi_2 + [-Q_{\phi_2\phi_2} \psi_2(0)
+ Q_{\phi_2\phi_2} \psi_2(0)]Q_{\phi_1}\phi_1 + \psi_2(0)(Q_{\phi_1} h_{101}^{k_1} + Q_{\phi_2} h_{200}^0), \]
\[b_{223} = \frac{1}{2} \psi_2(0)C_{\phi_2\phi_2\phi_2} + \frac{1}{\omega_0} \psi_2(0) \{2Q_{\phi_2\phi_2} \psi_2(0)Q_{\phi_2}\phi_2 + [-2Q_{\phi_2\phi_2} \psi_2(0)
+ 4Q_{\phi_2\phi_2} \psi_2(0)]Q_{\phi_2}\phi_2 + \psi_2(0)(Q_{\phi_2} h_{011}^0 + Q_{\phi_2} h_{020}^0). \]

Case (4) k_1 = 0, k_2 \neq 0.

Here we have

\[\langle \beta_{k_1}^2; \beta_{k_2}\rangle = \langle \beta_{k_2}^2; \beta_{k_1}\rangle = \langle \beta_{k_1}; \beta_{k_2}, \beta_{k_2}\rangle = 1, \]
\[\langle \beta_{k_1}^2; \beta_{k_2}\rangle = \langle \beta_{k_1}^2; \beta_{k_2}\rangle = \langle \beta_{k_1}; \beta_{k_2}, \beta_{k_2}\rangle = 0, \]
\[\langle \beta_{k_1}^3; \beta_{k_1}\rangle = 1, \langle \beta_{k_2}^3; \beta_{k_2}\rangle = \frac{3}{2}, \langle \beta_{k_1}; \beta_{k_2}^2, \beta_{k_2}\rangle = \langle \beta_{k_1}^2; \beta_{k_2}, \beta_{k_2}\rangle = 1, \]
\[\langle Q_{\phi_1} h_{200}^0 \beta_{k_1}, \beta_{k_1}\rangle = Q_{\phi_1} h_{200}^0, \langle Q_{\phi_1 h_{011}} \beta_{k_1}, \beta_{k_1}\rangle = Q_{\phi_1} h_{011}^0, \]
\[\langle Q_{\phi_2 h_{011}} \beta_{k_2}, \beta_{k_2}\rangle = Q_{\phi_2} h_{011}^k, \langle Q_{\phi_2 h_{101}} \beta_{k_2}, \beta_{k_2}\rangle = Q_{\phi_2} h_{101}^k, \]
\[\langle Q_{\phi_1 h_{011}} \beta_{k_1}, \beta_{k_2}\rangle = Q_{\phi_1} h_{011}^k, \langle Q_{\phi_1 h_{101}} \beta_{k_1}, \beta_{k_2}\rangle = Q_{\phi_1} h_{101}^k, \]
\[\langle Q_{\phi_2 h_{020}} \beta_{k_2}, \beta_{k_2}\rangle = Q_{\phi_2} h_{020}^k, \langle Q_{\phi_2 h_{020}} \beta_{k_2}, \beta_{k_2}\rangle = Q_{\phi_2} h_{020}^k, \]
\[h_{200}^0 = \frac{1}{2} \phi_1(0) \psi_1(0) Q_{\phi_1 \phi_1} + E_{200}, \ h_{200}^{2k_1} = 0, \]
\[h_{011}^0 (\theta) = \theta \phi_1(0) \psi_1(0) Q_{\phi_2 \phi_2} + E_{011}, \ h_{011}^{2k_1} (\theta) = -\frac{1}{\sqrt{2}} \int_0^\theta d\eta_{2k_2} (\theta)^{-1} Q_{\phi_2 \phi_2}, \]
\[h_{202}^k (\theta) = -\frac{1}{4 \omega_0} \phi_1(0) \psi_1(0) Q_{\phi_2 \phi_2} + E_{020} e^{2i \omega_0 \theta}, \]
\[h_{202}^{2k_2} (\theta) = \frac{1}{2 \sqrt{2}} \left[2 i \omega_0 I - \int_0^\theta e^{2i \omega_0 \theta} d\eta_{2k_2} (\theta)^{-1} Q_{\phi_2 \phi_2} e^{2i \omega_0 \theta}, \right] \]
\[h_{101}^k (\theta) = -\frac{i \omega_0}{4 \omega_0} [i \omega_0 \theta \phi_2(\theta) \psi_2(0) - \frac{1}{2} \phi_2(\theta) \psi_2(0)] Q_{\phi_1 \phi_2} + E_{110} e^{i \omega_0 \theta}, \]
\[h_{002}^k (\theta) = \frac{1}{h_{202}^k (\theta)} h_{002}^k (\theta) = h_{020}^k (\theta), \ h_{101}^k (\theta) = h_{110}^k (\theta), \]
where \(\theta \in [-r, 0] \) and the constant vectors \(E^0_q \) for \(q \in \mathbb{N}_0^3 \) with \(|q| = 2 \), satisfy the following equations

\[
\begin{align*}
[f^0_r \, d\eta_0(\theta)]E_{200} &= \frac{1}{2}[-I + (I - f^0_r \, \theta d\eta_0(\theta))\phi_1(0)\psi_1(0)]Q_{\phi_1 \phi_1}, \\
[f^0_r \, d\eta_0(\theta)]E_{011} &= [-I + (I - f^0_r \, \theta d\eta_0(\theta))\phi_1(0)\psi_1(0)]Q_{\phi_2 \phi_2}, \\
E_{020} &= \frac{1}{2}[2i\omega_0 I - f^0_r e^{2i\omega_0 \theta} d\eta_0(\theta)]^{-1}Q_{\phi_2 \phi_2}, \\
[i\omega_0 I - f^0_r e^{2i\omega_0 \theta} d\eta_0(\theta)]E_{110} &= [I - \phi_2(0)\psi_2(0) + \int_{-r}^{0} \theta d\eta_k(\theta)\phi_2(\theta)\psi_2(0)]Q_{\phi_1 \phi_2}.
\end{align*}
\]

Then we have the following result.

Proposition 4.4. For \(k_1 = 0 \), \(k_2 \neq 0 \) and Neumann boundary condition on spatial domain \(\Omega = (0, l\pi) \), \(l > 0 \), the parameters \(a_{11}, a_{23}, a_{111}, a_{123}, b_{12}, b_{112}, b_{223} \) in \((3.4)\) are

\[
\begin{align*}
a_{11} &= \frac{1}{2} \psi_1(0)Q_{\phi_1 \phi_1}, \quad a_{23} = \psi_1(0)Q_{\phi_2 \phi_2}, \quad b_{12} = \psi_2(0)Q_{\phi_1 \phi_2}, \\
a_{111} &= \frac{1}{6} \psi_1(0)C_{\phi_1 \phi_1 \phi_1} + \psi_1(0)Q_{\phi_1 h_{200}}, \\
a_{123} &= \psi_1(0)C_{\phi_1 \phi_2 \phi_2} + \frac{1}{\omega_0} \psi_1(0)\text{Re}(iQ_{\phi_2 \phi_2} \psi_2(0)Q_{\phi_1 \phi_2}) + \psi_1(0)(Q_{\phi_1 h_{011}} + Q_{\phi_2 h_{110}} + Q_{\phi_2 h_{110}}), \\
b_{112} &= \frac{1}{2} \psi_2(0)C_{\phi_1 \phi_1 \phi_2} + \frac{1}{2i\omega_0} \psi_2(0)Q_{\phi_1 \phi_2 \phi_2} Q_{\phi_1 \phi_2} + \psi_2(0)(Q_{\phi_1 h_{110}} + Q_{\phi_2 h_{002}} + \frac{1}{2} Q_{\phi_2 h_{200}}), \\
b_{223} &= \frac{3}{4} \psi_2(0)C_{\phi_2 \phi_2 \phi_2} + \frac{1}{4i\omega_0} \psi_2(0)Q_{\phi_1 \phi_2 \phi_2} Q_{\phi_1 \phi_2} + \psi_2(0)(Q_{\phi_2 h_{011}} + \frac{1}{\sqrt{2}} Q_{\phi_2 h_{200}}) \\
&\quad + Q_{\phi_2}(h_{020} + \frac{1}{2} h_{200}).
\end{align*}
\]

Case (5) \(k_1 \neq k_2, k_1, k_2 \neq 0 \).

Here we have

\[
\begin{align*}
\langle \beta^2_{k_1}, \beta_{k_1} \rangle &= 0, \quad \langle \beta^2_{k_2}, \beta_{k_1} \rangle = \langle \beta_{k_1} \beta_{k_2}, \beta_{k_2} \rangle = \frac{1}{\sqrt{2}} \delta(k_1 - 2k_2), \\
\langle \beta^2_{k_2}, \beta_{k_2} \rangle &= 0, \quad \langle \beta^2_{k_1}, \beta_{k_2} \rangle = \langle \beta_{k_1} \beta_{k_2}, \beta_{k_1} \rangle = \frac{1}{\sqrt{2}} \delta(k_2 - 2k_1), \\
\langle \beta^3_{k_1}, \beta_{k_1} \rangle &= \langle \beta^3_{k_2}, \beta_{k_2} \rangle = \frac{3}{2}, \quad \langle \beta_{k_1} \beta^2_{k_1}, \beta_{k_1} \rangle = \langle \beta^2_{k_1} \beta_{k_2}, \beta_{k_2} \rangle = 1, \\
\langle Q_{\phi_1 h_{200}} \beta_{k_1}, \beta_{k_1} \rangle &= \frac{1}{\sqrt{2}} Q_{\phi_1} h_{200}^2 + Q_{\phi_1 h_{011}} h_{101}^0, \quad \langle Q_{\phi_1 h_{011}} \beta_{k_1}, \beta_{k_1} \rangle = \frac{1}{\sqrt{2}} Q_{\phi_1} h_{011}^2 + Q_{\phi_1 h_{011}}, \\
\langle Q_{\phi_2 h_{101}} \beta_{k_2}, \beta_{k_2} \rangle &= Q_{\phi_2} (\frac{1}{\sqrt{2}} h_{101}^{|k_1-k_2|} + \frac{1}{\sqrt{2}} h_{101}^{|k_1+k_2|} + h_{101}^0), \\
\langle Q_{\phi_2 h_{110}} \beta_{k_2}, \beta_{k_2} \rangle &= Q_{\phi_2} (\frac{1}{\sqrt{2}} h_{110}^{|k_1-k_2|} + \frac{1}{\sqrt{2}} h_{110}^{|k_1+k_2|} + h_{110}^0), \\
\langle Q_{\phi_1 h_{101}} \beta_{k_1}, \beta_{k_2} \rangle &= Q_{\phi_1} (\frac{1}{\sqrt{2}} h_{101}^{|k_1-k_2|} + \frac{1}{\sqrt{2}} h_{101}^{|k_1+k_2|} + h_{101}^0), \\
\langle Q_{\phi_1 h_{110}} \beta_{k_1}, \beta_{k_2} \rangle &= Q_{\phi_1} (\frac{1}{\sqrt{2}} h_{110}^{|k_1-k_2|} + \frac{1}{\sqrt{2}} h_{110}^{|k_1+k_2|} + h_{110}^0), \\
\langle Q_{\phi_2 h_{002}} \beta_{k_2}, \beta_{k_2} \rangle &= \frac{1}{\sqrt{2}} Q_{\phi_2} h_{200}^2 + Q_{\phi_2} h_{002}^2, \quad \langle Q_{\phi_2 h_{002}} \beta_{k_2}, \beta_{k_2} \rangle = \frac{1}{\sqrt{2}} Q_{\phi_2} h_{002}^2 + Q_{\phi_2} h_{002},
\end{align*}
\]

where \(\delta(x) = 1 \), for \(x = 0 \) and \(\delta(x) = 0 \), for \(x \neq 0 \). And \(h_{200}^2, h_{200}, h_{011}, h_{011}, h_{101}, h_{101}^{|k_1-k_2|}, \)
The Berg chemical reaction system with gene expression time delay in the following form (see [11,47,67]):

\[h_{101}^{k_1+k_2}, h_{110}^0, h_{110}^{k_1-k_2}, h_{10}^{k_2}, h_{020}^0, h_{002}^{2k_2} \] are given by

\[
\begin{align*}
 h_{200}^0(\theta) &= -\frac{1}{2} \left[\int_{-r}^0 \text{d}\eta(\theta) \right]^{-1} Q_{\phi_1 \phi_1} + \frac{1}{2\omega_0} (\phi_2(\theta)\psi_2(0) - \bar{\phi}_2(\theta)\bar{\psi}_2(0)) Q_{\phi_1 \phi_1}, \\
 h_{201}^{2k_2}(\theta) &= -\frac{1}{2\sqrt{2}} \left[\int_{-r}^0 \text{d}\eta_2k_1(\theta) \right]^{-1} Q_{\phi_1 \phi_1}, \\
 h_{202}(\theta) &= 0, h_{201}^{2k_1}(\theta) = 0, \\
 h_{021}(\theta) &= -\frac{1}{\sqrt{2}} \left[\int_{-r}^0 \text{d}\eta_2k_2(\theta) \right]^{-1} Q_{\phi_2 \phi_2}, \\
 h_{020}^{2k_2}(\theta) &= \frac{1}{2\sqrt{2}} \left[2i\omega_0 I - \int_{-r}^0 e^{2i\omega_0 \theta} \text{d}\eta_2k_2(\theta) \right]^{-1} Q_{\phi_2 \phi_2} e^{2i\omega_0 \theta}, \\
 h_{110}^{k_1-k_2}(\theta) &= \frac{1}{\sqrt{2}} \left[i\omega_0 I - \int_{-r}^0 e^{i\omega_0 \theta} \text{d}\eta_{k_1-k_2}(\theta) \right]^{-1} Q_{\phi_1 \phi_1} e^{i\omega_0 \theta}, \\
 h_{110}^{k_1+k_2}(\theta) &= \frac{1}{\sqrt{2}} \left[i\omega_0 I - \int_{-r}^0 e^{i\omega_0 \theta} \text{d}\eta_{k_1+k_2}(\theta) \right]^{-1} Q_{\phi_1 \phi_1} e^{i\omega_0 \theta}, \\
 h_{110}^0(\theta) &\equiv 0, h_{110}^0(\theta) = 0, \\
 h_{110}^{2k_2}(\theta) &= h_{110}^{k_1-k_2}(\theta) = h_{110}^{k_1+k_2}(\theta) = h_{110}^{k_1+k_2}(\theta).
\end{align*}
\]

where \(\theta \in [-r, 0] \). Thus we have the following result.

Proposition 4.5. For \(k_1 \neq k_2, k_1, k_2 \neq 0 \) and Neumann boundary condition on spatial domain \(\Omega = (0, l\pi), l > 0 \), the parameters \(a_{11}, a_{23}, a_{123}, b_{12}, b_{112}, b_{223} \) in (3.4) are

\[
\begin{align*}
 a_{11} &= 0, a_{23} = \frac{1}{\sqrt{2}} \delta(k_1 - 2k_2)\psi_1(0)Q_{\phi_2 \phi_2}, b_{12} = \frac{1}{\sqrt{2}} \delta(k_1 - 2k_2)\psi_2(0)Q_{\phi_1 \phi_1}, \\
 a_{111} &= \frac{1}{\sqrt{2}} \psi_1(0)C_{\phi_1 \phi_1 \phi_1} + \frac{1}{4\omega_0} \delta(k_1 - 2k_2) \psi_1(0) \text{Re} (iQ_{\phi_1 \phi_2 \phi_2}(0)Q_{\phi_1 \phi_1} + \frac{1}{\sqrt{2}} \psi_1(0)Q_{\phi_1 \phi_1} h_{200}^{2k_2}), \\
 a_{123} &= \psi_1(0)C_{\phi_1 \phi_2 \phi_2} + \frac{1}{4\omega_0} \psi_1(0) \delta(k_1 - 2k_2) \text{Re} (iQ_{\phi_2 \phi_2 \phi_2}(0)Q_{\phi_1 \phi_1} + \psi_1(0)[\frac{1}{\sqrt{2}} Q_{\phi_1 \phi_1} h_{110}^{2k_1} + \\
 &\quad + Q_{\phi_2}(\frac{1}{\sqrt{2}} h_{110}^{k_1-k_2} + \frac{1}{\sqrt{2}} h_{110}^{k_1+k_2} + h_{110}^0) + Q_{\phi_2}(\frac{1}{\sqrt{2}} h_{110}^{k_1-k_2} + \frac{1}{\sqrt{2}} h_{110}^{k_1+k_2} + h_{110}^0)]]; \\
 b_{112} &= \frac{1}{\sqrt{2}} \psi_2(0)C_{\phi_1 \phi_1 \phi_1} + \frac{1}{4\omega_0} \delta(k_1 - 2k_2) \psi_2(0)[2\delta(k_2 - 2k_1)Q_{\phi_1 \phi_1 \phi_1}(0) + \delta(k_1 - 2k_2)Q_{\phi_1 \phi_1 \phi_1}(0)]Q_{\phi_1 \phi_1} + \\
 &\quad + \psi_2(0)[Q_{\phi_1}(\frac{1}{\sqrt{2}} h_{110}^{k_1-k_2} + \frac{1}{\sqrt{2}} h_{110}^{k_1+k_2} + h_{110}^0) + \frac{1}{\sqrt{2}} Q_{\phi_2} h_{200}^{2k_2}]]; \\
 b_{223} &= \frac{1}{\sqrt{2}} \psi_2(0)C_{\phi_2 \phi_2 \phi_2} + \frac{1}{4\omega_0} \delta(k_1 - 2k_2) \psi_2(0)Q_{\phi_1 \phi_1 \phi_1}(0)Q_{\phi_2 \phi_2} + \\
 &\quad + \psi_2(0)[Q_{\phi_2}(h_{110}^0 + \frac{1}{\sqrt{2}} h_{110}^{2k_1}) + Q_{\phi_2}(h_{110}^0 + \frac{1}{\sqrt{2}} h_{110}^{2k_2})];
\end{align*}
\]

(4.12)

5 Example

In this section we apply our results above to the Turing-Hopf bifurcation of a diffusive Schnakenberg chemical reaction system with gene expression time delay in the following form (see [11,47,67]):
\[
\begin{aligned}
 u_t(x,t) &= \varepsilon du_{xx}(x,t) + a - u(x,t) + u^2(x,t-\tau)v(x,t-\tau), \quad x \in (0,1), \ t > 0, \\
 v_t(x,t) &= dv_{xx}(x,t) + b - u^2(x,t-\tau)v(x,t-\tau), \quad x \in (0,1), \ t > 0, \\
 u_x(0,t) &= u_x(1,t) = v_x(0,t) = v_x(1,t) = 0, \quad t \geq 0, \\
 u(x,t) &= \phi(x,t) \geq 0, \quad v(x,t) = \varphi(x,t) \geq 0, \quad (x,t) \in [0,1] \times [-\tau,0],
\end{aligned}
\] (5.1)

System (5.1) has a unique positive constant steady state solution \(E^* = (u^*, v^*) \), where
\[
u^* = a + b, \quad v^* = \frac{b}{(a+b)^2},
\] (5.2)

Recalling that \(\mu_k = k^2 \pi^2 \) are the eigenvalues of the \(-\Delta \) in the one dimensional spatial domain \((0,1), k \in \mathbb{N}_0 \). Then, a straightforward analysis shows that the eigenvalues of the linearized operator are given by the roots of
\[
D_k(\lambda) := \lambda^2 + p_k \lambda + r_k + (s_k \lambda + q_k) e^{-\lambda \tau} = 0, \quad k \in \mathbb{N}_0,
\] (5.3)

where,
\[
\begin{aligned}
p_k &= (\varepsilon + 1)dk^2 \pi^2 + 1, \\
r_k &= \varepsilon d^2 k^4 \pi^4 + dk^2 \pi^2, \\
s_k &= u^2_* - 2u_* v_* , \\
q_k &= (\varepsilon u^2_* - 2u_* v_*) dk^2 \pi^2 + u^2_*.
\end{aligned}
\] (5.4)

By analyzing the characteristic equations (5.3) with \(a = 1, \ b = 2, \ d = 4 \) (see [29, Theorem 2.12 and 2.15] for details on general results), we have

Theorem 5.1. For system (5.1) with \(a = 1, \ b = 2, \ d = 4 \), there is a constant positive steady state \((u^*, v^*) = (3, 2/9)\), and there exists \(\tau_* \approx 0.2014, \ \varepsilon_* \approx 0.0022, \ \omega_* \approx 7.6907 \) such that

1. when \(\tau = \tau_*, \ \varepsilon = \varepsilon_* \), \(D_0(\lambda) \) has a pair of purely imaginary roots \(\pm i\omega_* \), \(D_1(\lambda) \) has a simple zero root, with all other roots of \(D_k(\lambda) \) having negative real parts \(k \in \mathbb{N}_0 \).

2. the system (5.1) undergoes \((1,0)-mode\) Turing-Hopf bifurcation near the constant steady state \((u_*, v_*)\) at \(\tau = \tau_*, \ \varepsilon = \varepsilon_* \).

3. the constant steady state \((u_*, v_*)\) is locally asymptotically stable for the system (5.1) with \(\tau \in [0,\tau_*) \) and \(\varepsilon > \varepsilon_* \), and unstable for \(0 < \varepsilon < \varepsilon_* \) or \(\tau > \tau_* \).

Hence we have \(k_1 = 1 \) and \(k_2 = 0 \) at \(\tau = \tau_* \) defined in Theorem 5.1 which corresponds to **Case (3)** in Section 4. We normalize the time delay \(\tau \) in system (5.1) by time-rescaling \(t \rightarrow t/\tau \),
and translate \((u_*, v_*)\) into the origin. We also introduce two bifurcation parameters \(\alpha = (\alpha_1, \alpha_2)\)
by setting
\[
\tau = \tau_* + \alpha_1, \quad \varepsilon = \varepsilon_* + \alpha_2. \tag{5.5}
\]
Then, system (5.1) is transformed into an abstract equation in \(C([-1,0], X)\):
\[
\frac{d}{dt}U(t) = L_0U(t) + D_0 \Delta U(t) + \frac{1}{2} L_1(\alpha)U(t) + \frac{1}{2} D_1(\alpha) \Delta U(t) + \frac{1}{2!} Q(U(t), U(t)) + \frac{1}{3!} C(U(t), U(t), U(t)) + \ldots, \tag{5.6}
\]
where
\[
D_0 = \frac{d\tau_*}{\partial t} \begin{pmatrix} \varepsilon_* & 0 \\ 0 & 1 \end{pmatrix}, \quad D_1(\alpha) = 2d \begin{pmatrix} \alpha_1 \varepsilon_* + \alpha_2 \tau_* & 0 \\ 0 & \alpha_1 \end{pmatrix},
\]
\[
L_0X = \tau_* \begin{pmatrix} -x_1(0) + 2u_*v_*x_1(-1) + u_*^2x_2(-1) \\ -2u_*v_*x_1(-1) + u_*^2x_2(-1) \end{pmatrix},
\]
\[
L_1(\alpha)X = 2\alpha_1 \begin{pmatrix} -x_1(0) + 2u_*v_*x_1(-1) + u_*^2x_2(-1) \\ -2u_*v_*x_1(-1) + u_*^2x_2(-1) \end{pmatrix},
\]
and
\[
Q_{XY} = 2\tau_*[v_*x_1(-1)y_1(-1) + u_*(x_1(-1)y_2(-1) + x_2(-1)y_1(-1))] \begin{pmatrix} 1 \\ -1 \end{pmatrix},
\]
\[
C_{XYZ} = 2\tau_*[x_1(-1)y_1(-1)z_2(-1) + x_1(-1)y_2(-1)z_1(-1) + x_2(-1)y_1(-1)z_1(-1)] \begin{pmatrix} 1 \\ -1 \end{pmatrix},
\]
with \(X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\), \(Y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}\), \(Z = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}\).

From routine calculation, we obtain the eigenfunctions (as defined in (2.8)):
\[
\phi_1(0) = \begin{pmatrix} 1 \\ -0.0274 \end{pmatrix}, \quad \phi_2(0) = \begin{pmatrix} 1 \\ -1 + 0.1298i \end{pmatrix},
\]
\[
\psi_1(0) = \frac{1}{1.1734} (1, 0.1849), \quad \psi_2(0) = \frac{1}{-8.1518 - 6.9779i} (1, 6.7502 - 0.8761i).
\]

By (4.6), we obtain that
\[
h_{000}^0(0) = \begin{pmatrix} -0.0062 \\ 0.0004 \end{pmatrix}, \quad h_{200}^0(-1) = \begin{pmatrix} -0.0055 \\ -0.0018 \end{pmatrix}, \quad h_{200}^2(0) = h_{200}^2(-1) = \begin{pmatrix} 0.4506 \\ -0.0038 \end{pmatrix}, \tag{5.8}
\]
\[
h_{011}^0(0) = \begin{pmatrix} 1.2336 \\ -0.0877 \end{pmatrix}, h_{011}^0(-1) = \begin{pmatrix} 1.0906 \\ 0.3504 \end{pmatrix}, \quad h_{011}^2(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad h_{011}^2(-1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix},
\]

20
Substituting the above calculated values into the expression (4.7), we obtain the coefficients of normal form (3.4) as follows
\[
\begin{align*}
 a_1(\alpha) &= -0.0009 \alpha_1 - 6.7762 \alpha_2, \\
 b_2(\alpha) &= (3.5818 + 2.2515i) \alpha_1, \\
 a_{11} &= a_{23} = b_{12} = 0, \\
 a_{111} &= -9.4377 \times 10^{-4}, \\
 b_{112} &= 0.0403 + 0.1213i, \\
 a_{123} &= -0.4782, \\
 b_{223} &= -0.2553 - 0.7712i.
\end{align*}
\]
(5.10)

Thus, in the corresponding planar system (3.10), we have that
\[
\varepsilon_1(\alpha) = 3.5818 \alpha_1, \quad \varepsilon_2(\alpha) = -0.0009 \alpha_1 - 6.7762 \alpha_2, \\
\quad b_0 = -42.7011, \quad c_0 = 1.8735, \quad d_0 = 1, \quad \text{sign}(\text{Re}(b_{223})) = -1.
\]
(5.11)

Therefore the Case III in Table 1 occurs, and we find that the bifurcation critical lines in Figure 1 are, respectively,
\[
\begin{align*}
 L_1 : \tau = \tau_s, \quad &\varepsilon > \varepsilon_s, \\
 L_2 : \varepsilon = \varepsilon_s - 0.00013(\tau - \tau_s), \quad &\tau > \tau_s, \\
 L_3 : \varepsilon = \varepsilon_s - 0.9916(\tau - \tau_s), \quad &\tau > \tau_s, \\
 L_4 : \tau = \tau_s, \quad &\varepsilon < \varepsilon_s, \\
 L_5 : \varepsilon = \varepsilon_s + 0.0111(\tau - \tau_s), \quad &\tau < \tau_s, \\
 L_6 : \varepsilon = \varepsilon_s - 0.00013(\tau - \tau_s), \quad &\tau < \tau_s.
\end{align*}
\]

Taking notice of sign(\text{Re}(b_{223})) = -1 in the coordinate transformation (3.9), and from phase portraits in Figure 1 and the analysis in [1, Section 4], we have the following result.

Theorem 5.2. Let \(a = 1\), \(b = 2\) and \(d = 4\). At the constant positive steady state \((u_s, v_s) = (3,2/9)\), near the \((1,0)\)-mode Turing-Hopf bifurcation point \((\tau_s, \varepsilon_s) \approx (0.2014, 0.0022)\), with frequency \(\omega_s = 7.6907\), the system (5.1) has the following dynamical behavior when the parameter pair \((\tau, \varepsilon)\) is sufficiently close to \((\tau_s, \varepsilon_s)\): (see Figure 1)

1. When \(\varepsilon > \varepsilon_s - 0.0013(\tau - \tau_s)\) and \(\tau < \tau_s\) (that is \((\tau, \varepsilon) \in D_1\)), the constant steady state \((u_s, v_s)\) is locally asymptotically stable; and a \(0\)-mode Hopf bifurcation occurs at \((u_s, v_s)\) when \((\tau, \varepsilon)\) crosses \(L_1\) transversally.
(2) When $\varepsilon > \varepsilon_* - 0.0013(\tau - \tau_*)$ and $\tau > \tau_*$ (that is $(\tau, \varepsilon) \in D_2$), the constant steady state (u_*, v_*) is unstable and there exists a locally asymptotically stable spatially homogeneous periodic orbit which bifurcates from (u_*, v_*); and a 1-mode Turing bifurcation occurs at (u_*, v_*) when (τ, ε) crosses L_2 transversally.

(3) When $\varepsilon_* - 0.0013(\tau - \tau_*) > \varepsilon > \varepsilon_* - 0.9916(\tau - \tau_*)$ and $\tau > \tau_*$ (that is $(\tau, \varepsilon) \in D_3$), the constant steady state (u_*, v_*) is unstable, there are two unstable spatially non-homogeneous steady states which bifurcate from (u_*, v_*), and the spatially homogeneous periodic orbit is locally asymptotically stable; and a 1-mode Turing bifurcation occurs at the spatially homogeneous periodic orbit when (τ, ε) crosses L_3 transversally.

(4) When $\varepsilon < \varepsilon_* - 0.9916(\tau - \tau_*)$ and $\tau > \tau_*$ (that is $(\tau, \varepsilon) \in D_4$), the constant steady state (u_*, v_*) and the two spatially non-homogeneous steady state solutions are all unstable, the spatially homogeneous periodic orbit is also unstable, and there are two locally asymptotically stable spatially non-homogeneous periodic orbits which bifurcate from the spatially homogeneous periodic orbit, whose linear main parts are approximately

$$E_* + \rho \phi_2(0)e^{i\tau \omega^* t} + \bar{\rho} \phi_2(0)e^{-i\tau \omega^* t} \pm h \phi_1(0) \cos(\pi x),$$

(5.12)

where ρ and h are some constants; and a 0-mode Hopf bifurcation occurs at (u_*, v_*) when (τ, ε) crosses L_4 transversally.

(5) When $\varepsilon < \varepsilon_* + 0.0111(\tau - \tau_*)$ and $\tau < \tau_*$ (that is $(\tau, \varepsilon) \in D_5$), the constant steady state (u_*, v_*) and the two spatially non-homogeneous steady state solutions are all unstable, there is no spatially homogeneous periodic orbit (disappearing through the Hopf bifurcation on L_4), and two spatially non-homogeneous periodic orbits are locally asymptotically stable; and a 0-mode Hopf bifurcation occurs at each of two spatially non-homogeneous steady state solutions when (τ, ε) crosses L_5 transversally.

(6) When $\varepsilon_* - 0.0013(\tau - \tau_*) > \varepsilon > \varepsilon_* + 0.0111(\tau - \tau_*)$ and $\tau < \tau_*$ (that is $(\tau, \varepsilon) \in D_6$), the constant steady state (u_*, v_*) is unstable, the two spatially non-homogeneous steady state solutions are locally asymptotically stable, and there is no spatially non-homogeneous periodic orbits (disappearing through the Hopf bifurcations on L_5); and a 1-mode Turing bifurcation occurs at (u_*, v_*) when (τ, ε) crosses L_6 transversally.

We summarize the numbers of spatial-temporal patterned solutions (steady states or periodic orbits) in each parameter region D_i ($1 \leq i \leq 6$) in Table 2. The Morse index of a steady state solution is defined to be the number of positive eigenvalues of associated linearized equation, and the Morse index of a periodic orbit is defined to be the number of Floquet multipliers which are
Table 2: The number of patterned solutions of (5.1) in each parameter regions D_i ($1 \leq i \leq 6$).

Here $j(k)$ means the number of specific patterned solutions is j, and the Morse index of each such patterned solution is k.

greater than 1. A steady state or a periodic orbit is locally asymptotically stable if its Morse index is 0. Hence the stable pattern for D_1 is the constant steady state (u_*, v_*); the stable pattern for D_2 and D_3 is the spatially homogeneous periodic orbit; a pair of spatially non-homogeneous periodic orbits are the stable patterns for D_4 and D_5; and a pair of spatially non-homogeneous steady state solutions are the stable patterns for D_6.

6 Proof of Theorem 3.1

In this section we give the proof of the main result Theorem 3.1. From (3.1) and (3.2), we denote that, for $v \in C$,

$$F_2(v, \alpha) = L_1(\alpha)v + D_1(\alpha)\Delta v(0) + Q(v, v),$$

$$F_3(v, 0) = C(v, v, v).$$

(6.1)

By doing Taylor expansion for the nonlinear terms in (2.16) at $(z, y, \alpha) = (0, 0, 0)$, we have

$$\dot{z} = Bz + \frac{1}{2!} f_{2j}^1(z, y, \alpha) + \frac{1}{3!} f_{3j}^1(z, y, \alpha) + \cdots,$$

$$\frac{d}{dt} y = A_1 y + \frac{1}{2!} f_{2j}^2(z, y, \alpha) + \frac{1}{3!} f_{3j}^2(z, y, \alpha) + \cdots,$$

(6.2)

where $B = \text{diag}(0, i\omega, -i\omega)$, $f_{ij}^l(z, y, \alpha)$ ($i = 1, 2$) are the homogeneous polynomials of degree j in variables (z, y, α), $z = (z_1, z_2, \bar{z}_2) \in \mathbb{C}^3$, $y \in \mathbb{Q}^1$, $\alpha \in V$. For the purposes of this article, we are interested in the three terms:

$$f_{2j}^l(z, y, \alpha) \triangleq \begin{pmatrix} f_{21j}^l(z, y, \alpha) \\ f_{22j}^l(z, y, \alpha) \\ f_{23j}^l(z, y, \alpha) \end{pmatrix}, \quad f_{3j}^l(z, 0, 0) \triangleq \begin{pmatrix} f_{31j}^l(z, 0, 0) \\ f_{32j}^l(z, 0, 0) \\ f_{33j}^l(z, 0, 0) \end{pmatrix},$$

(6.3)
where

\[f_2(z, 0, 0) = (X_0 - \Phi \Psi(0)) F_2(\phi_1 z_1 \beta_k + (\phi_2 z_2 + \bar{\phi}_2 \bar{z}_2) \beta_{k2}, 0). \] (6.4)

Noticing that \(L_1(\alpha), D_1(\alpha) \) are linear, \(Q, C \) are symmetric multilinear, and together with \(\Delta \beta_k = -\mu_k / \beta_k \), for \(i = 1, 2 \), we obtain that

\[
f_2^{11}(z, y, \alpha) = \psi_i(0) [L_1(\alpha) \phi_1 z_1 - \mu_k D_1(\alpha) \phi_1 (0) z_1 + Q \phi_1 \phi_1 z_1^2 (\beta_k, \beta_k) + 2(Q \phi_1 \phi_2 z_1 z_2 + Q \phi_1 \phi_1 \phi_1 z_1 z_2) (\beta_k, \beta_k)] + (Q \phi_1 \phi_2 z_2 \phi_2 z_2) (\beta_k, \beta_k) + (Q \phi_2 \phi_2 z_2 \phi_2 z_2) (\beta_k, \beta_k) + (Q \phi_2 \phi_2 z_2 \phi_2 z_2) (\beta_k, \beta_k) + (L_1(\alpha) y, \beta_k) + (2L(\alpha) (0), \beta_k)] + \langle D(\alpha) \Delta y(0), \beta_k \rangle,
\]

\[
f_2^{12}(z, y, \alpha) = \psi_2(0) [L_1(\alpha) \phi_2 z_2 + L_1(\alpha) \phi_2 \bar{z} \bar{z} - \mu_k D_1(\alpha) \phi_2 (0) \bar{z} \bar{z} + Q \phi_1 \phi_1 \phi_1 z_1 z_2 + Q \phi_1 \phi_1 \phi_1 z_1 z_2) (\beta_k, \beta_k) + (Q \phi_1 \phi_2 z_2 \phi_2 z_2) (\beta_k, \beta_k) + (Q \phi_2 \phi_2 z_2 \phi_2 z_2) (\beta_k, \beta_k) + (Q \phi_2 \phi_2 z_2 \phi_2 z_2) (\beta_k, \beta_k) + (L_1(\alpha) y, \beta_k) + (2Q \phi_1 \phi_1 z_1 \beta_k + (\phi_2 z_2 + \bar{\phi}_2 \bar{z}_2) \beta_{k2}, y) + Q(y, y, \beta_k) + \langle D(\alpha) \Delta y(0), \beta_k \rangle,
\]

\[
f_3^{11}(z, 0, 0) = \psi_i(0) [C \phi_1 \phi_1 \phi_1 z_1^2 (\beta_k, \beta_k) + (C \phi_2 \phi_2 \phi_2 z_1^2 + C \phi_2 \phi_2 \phi_2 z_1^2) (\beta_k, \beta_k) + (C \phi_2 \phi_2 \phi_2 z_1^2) (\beta_k, \beta_k) + (L_1(\alpha) z_1, \beta_k) + (2L(\alpha) (0), \beta_k)] + \langle D(\alpha) \Delta y(0), \beta_k \rangle,
\]

\[
f_3^{21}(z, 0, 0) = \delta(\theta) [Q \phi_1 \phi_1 \phi_1 z_1^2 (\beta_k, \beta_k) + 2(Q \phi_1 \phi_2 z_1 z_2 + Q \phi_1 \phi_2 z_1 z_2) (\beta_k, \beta_k) + (Q \phi_2 \phi_2 z_2 \phi_2 z_2) (\beta_k, \beta_k) + (Q \phi_2 \phi_2 z_2 \phi_2 z_2) (\beta_k, \beta_k) + (Q \phi_2 \phi_2 z_2 \phi_2 z_2) (\beta_k, \beta_k) + (L_1(\alpha) z_1, \beta_k) + (2L(\alpha) (0), \beta_k)] + \langle D(\alpha) \Delta y(0), \beta_k \rangle,
\]

where \(\delta(\theta) = 0 \), for \(\theta \in [-r, 0) \), \(\delta(0) = 1 \).

Now we first obtain the normal form of \([2, 1]\) up to the quadratic terms.

Lemma 6.1. Assume that (H1)-(H4) are satisfied. Ignore the effect of the higher order terms \((\geq 2)\) of the perturbation parameter, then the normal form of \([2, 1]\) up to the quadratic terms on the center manifold at \(\alpha = 0 \) has the form

\[
\dot{z} = Bz + \frac{1}{2} \bar{a}_2^1(z, 0, \alpha) + h.o.t.. \] (6.11)
Here

\[g_2^1(z, 0, \alpha) = 2a_1(\alpha)z_1 + \psi_1(0)[Q_{\phi_1, \phi_1}^2(z_1^2(\beta^2_{k_1}, \beta_{k_1}) + 2Q_{\phi_2, \phi_2}z_2^2(\beta^2_{k_2}, \beta_{k_1})]e_1 \]
\[+ 2b_2(\alpha)z_2 + \psi_2(0)[2Q_{\phi_1, \phi_2}z_1z_2(\beta_{k_1} \beta_{k_2}, \beta_{k_2})]e_2 \]
\[+ b_2(\alpha)z_2 + \psi_2(0)[2Q_{\phi_1, \phi_2}z_1z_2(\beta_{k_1} \beta_{k_2}, \beta_{k_2})]e_3, \] (6.12)

with

\[a_1(\alpha) = \frac{1}{2} \psi_1(0)(L_1(\alpha) \phi_1 - \mu_{k_1} D_1(\alpha) \phi_1(0)), \]
\[b_2(\alpha) = \frac{1}{2} \psi_2(0)(L_1(\alpha) \phi_2 - \mu_{k_2} D_1(\alpha) \phi_2(0)), \] (6.13)

and h.o.t. stands for higher order terms.

Proof. Let \(M^1_2 \) denote the operator

\[M^1_2 : V^5_2(\mathbb{C}^3) \rightarrow V^5_2(\mathbb{C}^3), \text{ and } (M^1_2 p)(z, \alpha) = D_z p(z, \alpha) B z - B p(z, \alpha), \] (6.14)

where \(V^5_2(\mathbb{C}^3) \) is the linear space of the second order homogeneous polynomials in five variables \((z_1, z_2, \bar{z}_2, \alpha_1, \alpha_2)\) with coefficients in \(\mathbb{C}^3, z = (z_1, z_2, \bar{z}_2), \alpha = (\alpha_1, \alpha_2) \) and \(B = \text{diag}(0, i \omega_0, -i \omega_0) \).

One may choose the decomposition

\[V^5_2(\mathbb{C}^3) = \text{Im}(M^1_2) \oplus \text{Im}(M^1_2)^c \]

with complementary space \(\text{Im}(M^1_2)^c \) spanned by the elements

\[z_1^2 e_1, z_2 \bar{z}_2 e_1, z_1 \alpha_1 e_1, z_1 z_2 e_2, z_2 \alpha_1 e_2, z_1 \bar{z}_2 e_3, \bar{z}_2 \alpha_1 e_3, \quad i = 1, 2, \] (6.15)

where \(e_1, e_2, e_3 \) denote the natural basis of \(\mathbb{R}^3 \). By the projection mapping which was presented in [15],

\[g^1_2(z, 0, \alpha) = \text{Proj}_{\text{Im}(M^1_2)^c} g^1_2(z, 0, \alpha), \] (6.16)

we get (6.12), (6.13) and that completes the proof. \(\square \)

Let \(V^3_2(\mathbb{C}^3 \times \text{Ker} \pi) \) be the space of homogeneous polynomials of degree 2 in the variables \(z = (z_1, z_2, \bar{z}_2) \) with coefficients in \(\mathbb{C}^3 \times \text{Ker} \pi \). Let the operator \(M^1_2 \) defined in (6.14) be restricted in \(V^3_2(\mathbb{C}^3) \), as

\[M^1_2 : V^3_2(\mathbb{C}^3) \hookrightarrow V^3_2(\mathbb{C}^3), \text{ and } (M^1_2 p)(z) = D_z p(z) B z - B p(z), \]

(6.17)

and define the operator \(M^2_2 \) by

\[M^2_2 : V^3_2(\mathbb{Q}^1) \subset V^3_2(\text{Ker} \pi) \hookrightarrow V^3_2(\text{Ker} \pi), \text{ and } (M^2_2 h)(z) = D_z h(z) B z - A_1(h(z)), \]

(6.18)
Proof. Since we have the following decompositions:

\[V^3_2(\mathbb{C}^3) = \text{Im}(M_1^2) \oplus \text{Im}(M_1^1)^c, \quad V^3_2(\mathbb{C}^3) = \text{Ker}(M_2^1) \oplus \text{Ker}(M_1^1)^c, \]

\[V^3_2(\text{Ker}\pi) = \text{Im}(M_2^2) \oplus \text{Im}(M_2^1)^c, \quad V^3_2(Q^1) = \text{Ker}(M_2^3) \oplus \text{Ker}(M_2^2)^c. \]

(6.19)

The projection associated with the preceding decomposition of \(V^3_2(\mathbb{C}^3) \times V^3_2(\text{Ker}\pi) \) over \(\text{Im}(M_2^1) \times \text{Im}(M_2^2) \) is denoted by \(P_{1,2} = (P_{1,2}^1, P_{1,2}^2) \).

Following [15], we set

\[U_2(z) = \begin{pmatrix} U_2^1 \\ U_2^2 \end{pmatrix} = M_2^{-1}P_{1,2}f_2(z, 0, 0), \]

(6.20)

and by a transformation of variables

\[(z, y) = (\hat{z}, \hat{y}) + \frac{1}{2!}U_2(\hat{z}), \]

(6.21)

the first equation of (6.2) becomes, after dropping the hats,

\[\hat{z} = Bz + \frac{1}{2!}g_2^1(z, 0, \mu) + \frac{1}{3!}\bar{f}_3^1(z, 0, 0) + \cdots, \]

(6.22)

where

\[\bar{f}_3^1(z, 0, 0) = f_3^1(z, 0, 0) + \frac{3}{2}[(Df_2^1(z, y, 0))_{y=0}U_2(z) - DU_2^1(z)g_2^1(z, 0, 0)]. \]

(6.23)

To complete the proof of Theorem 3.1, we only need to calculate the third order term \(g_3^1(z, 0, 0) \) in the normal form (3.3). It is divided into three steps.

Step 1. Computation of \(U_2^1 \).

Lemma 6.2. Assume that (H1)-(H4) are satisfied. Then the formula of \(U_2^1 \) in (6.20) is

\[i\omega_0U_2^1(z) = \psi_1(0)[2(Q_{\phi_1\phi_2 z_1 z_2} - Q_{\phi_1\phi_2 z_1 \bar{z}_2})(\beta_{k_1}, \beta_{k_2}, \beta_{k_1}) + \frac{1}{2}(Q_{\phi_2\phi_2 z_2^2} - Q_{\phi_2\phi_2 z_2^2})(\beta_{k_2}^2, \beta_{k_1})]e_1
+ \psi_2(0)[-Q_{\phi_1\phi_2 z_1^2}(\beta_{k_1}^2, \beta_{k_2}) - Q_{\phi_1\phi_2 z_1 \bar{z}_2}(\beta_{k_1}, \beta_{k_2}) + (Q_{\phi_2\phi_2 z_2^2} - 2Q_{\phi_2\phi_2 z_2 \bar{z}_2} - \frac{1}{3}Q_{\phi_2\phi_2 z_2 \bar{z}_2})(\beta_{k_1}^2, \beta_{k_2})]e_2
- \bar{\psi}_2(0)[-Q_{\phi_1\phi_2 z_1^2}(\beta_{k_1}^2, \beta_{k_2}) - Q_{\phi_1\phi_2 z_1 \bar{z}_2}(\beta_{k_1}, \beta_{k_2}) + (Q_{\phi_2\phi_2 z_2^2} - 2Q_{\phi_2\phi_2 z_2 \bar{z}_2} - \frac{1}{3}Q_{\phi_2\phi_2 z_2 \bar{z}_2})(\beta_{k_1}^2, \beta_{k_2})]e_3. \]

(6.24)

Proof. Since \(U_2^1 \in \text{Ker}(M_2^1)^c \), and \(\text{Ker}(M_2^1)^c \) is spanned by

\[\frac{z_2^2 e_1, \ z_2^2 e_1, \ z_1 z_2 e_1, \ z_1 \bar{z}_2 e_1, \ z_1^2 e_2, \ z_2^2 e_2, \ z_2^2 e_2, \ z_1 \bar{z}_2 e_2, \ z_2^2 e_2, \ z_1 \bar{z}_2 e_2, \ z_2^2 e_2, \ z_1 \bar{z}_2 e_2, \ z_2^2 e_2, \ z_2^2 e_2}, \]

(6.25)
The above elements are mapped by M^j_2 to, respectively,

$$2i\omega_0 z_1^2 e_1, \quad -2i\omega_0 z_2^2 e_1, \quad i\omega_0 z_1 z_2 e_1, \quad -i\omega_0 z_1 z_2 e_1, \quad i\omega_0 z_1^2 e_2, \quad -3i\omega_0 z_2^2 e_2, \quad -2i\omega_0 z_1 z_2 e_2, \quad -i\omega_0 z_2 z_2 e_2, \quad i\omega_0 z_1^2 e_3, \quad 3i\omega_0 z_2^2 e_3, \quad -i\omega_0 z_2^2 e_3, \quad 2i\omega_0 z_1 z_2 e_3, \quad i\omega_0 z_2 z_2 e_3.$$

Then, by (6.20) and (6.7), the expression (6.24) of U_2^2 is obtained and the proof is completed.

Step 2. Computation of U_2^2.

We know that

$$\frac{1}{2!} U_2^2 \triangleq h(z) = (h^{(1)}(z), h^{(2)}(z), \ldots, h^{(m)}(z))^T \in V_3^2(Q^1)$$

is the unique solution of the equation

$$(M^j_2 h)(z) = \frac{1}{2!} f_2^j(z, 0, 0).$$

Thus, by (6.18) and the definition of A_1, we have

$$D_\theta h(z)Bz - \dot{h}(z) + X_0[h(z)(0) - L_0h(z) - D_0\Delta h(z)(0)] = \frac{1}{2!} f_2^j(z, 0, 0).$$

where \dot{h} denotes the derivative of $h(z)(\theta)$ respective to θ. Expressing $h(z)$ in the general monomial form, we have

$$h(z)(\theta) = h_{200}(\theta)z_1^2 + h_{020}(\theta)z_2^2 + h_{002}(\theta)z_2^2 + h_{110}(\theta)z_1z_2$$

$$+ h_{101}(\theta)z_1z_2 + h_{011}(\theta)z_2z_2, \quad \theta \in [-r, 0].$$

Hence (6.28) is equivalent to, for $\theta \in [-r, 0]$,

$$- \dot{h}_{200}(\theta)z_1^2 - \dot{h}_{020}(\theta)z_2^2 + [2i\omega_0 h_{020}(\theta) - \dot{h}_{020}(\theta)]z_2^2 + [-2i\omega_0 h_{002}(\theta) - \dot{h}_{002}(\theta)]z_2^2$$

$$+ [i\omega_0 h_{110}(\theta) - \dot{h}_{110}(\theta)]z_1z_2 + [-i\omega_0 h_{101}(\theta) - \dot{h}_{101}(\theta)]z_1z_2 = \frac{1}{2!} f_2^j(z, 0, 0)(\theta).$$

For $\theta \in [-r, 0)$, comparing the coefficients of z^q for $|q| = 2$, $q \in \mathbb{N}_0^3$ in (6.10) and (6.30), we obtain that

$$\dot{h}_{200}(\theta) = \frac{1}{2} \{\phi_1(\theta)\psi_1(0)Q_{\phi_1\phi_1}(\beta_{k_1}^2, \beta_{k_2}),$$

$$+ (\phi_2(\theta)\psi_1(0) + \bar{\phi}_2(\theta)\bar{\psi}_2(0))Q_{\phi_1\phi_1}(\beta_{k_1}^2, \beta_{k_2}),$$

$$\dot{h}_{011}(\theta) = \phi_1(\theta)\psi_1(0)Q_{\phi_2\bar{\phi}_2}(\beta_{k_1}^2, \beta_{k_2}),$$

$$+ (\phi_2(\theta)\psi_1(0) + \bar{\phi}_2(\theta)\bar{\psi}_2(0))Q_{\phi_2\phi_2}(\beta_{k_1}^2, \beta_{k_2}),$$

$$-2i\omega_0 h_{020}(\theta) + \dot{h}_{020}(\theta) = \frac{1}{2} \{\phi_1(\theta)\psi_1(0)Q_{\phi_2\phi_2}(\beta_{k_1}^2, \beta_{k_2}),$$

$$+ (\phi_2(\theta)\psi_1(0) + \bar{\phi}_2(\theta)\bar{\psi}_2(0))Q_{\phi_2\phi_2}(\beta_{k_1}^2, \beta_{k_2}),$$

$$-i\omega_0 h_{110}(\theta) + \dot{h}_{110}(\theta) = \phi_1(\theta)\psi_1(0)Q_{\phi_1\phi_1}(\beta_{k_1}^2, \beta_{k_2}),$$

$$+ (\phi_2(\theta)\psi_1(0) + \bar{\phi}_2(\theta)\bar{\psi}_2(0))Q_{\phi_1\phi_1}(\beta_{k_1}^2, \beta_{k_2}),$$

$$+ \phi_2(\theta)\psi_2(0) + \bar{\phi}_2(\theta)\bar{\psi}_2(0)Q_{\phi_1\phi_1}(\beta_{k_1}^2, \beta_{k_2}),$$

$$2i\omega_0 h_{101}(\theta) + \dot{h}_{101}(\theta) = \phi_1(\theta)\psi_1(0)Q_{\phi_2\phi_2}(\beta_{k_1}^2, \beta_{k_2}),$$

$$+ (\phi_2(\theta)\psi_1(0) + \bar{\phi}_2(\theta)\bar{\psi}_2(0))Q_{\phi_2\phi_2}(\beta_{k_1}^2, \beta_{k_2}),$$

$$+ \phi_2(\theta)\psi_2(0) + \bar{\phi}_2(\theta)\bar{\psi}_2(0)Q_{\phi_2\phi_2}(\beta_{k_1}^2, \beta_{k_2}).$$
Solving these equations, we obtain that

\[
h_{200}(\theta) = h_{200}(0) + \frac{1}{2} \left\{ \theta \phi_1(0) \psi_1(0) Q_{\phi_1 \phi_1} \langle \beta_{k_1}^2, \beta_{k_1} \rangle \beta_{k_1} + \frac{1}{i \omega_0} \left[(e^{i \omega_0 \theta} - 1) \phi_2(0) \bar{\psi}_2(0) - (e^{-i \omega_0 \theta} - 1) \bar{\phi}_2(0) \bar{\psi}_2(0) \right] Q_{\phi_2 \bar{\phi}_2} \langle \beta_{k_2}^2, \beta_{k_2} \rangle \beta_{k_2} \right\},
\]

\[
h_{011}(\theta) = h_{011}(0) + \theta \phi_1(0) \psi_1(0) Q_{\phi_2 \bar{\phi}_2} \langle \beta_{k_2}^2, \beta_{k_1} \rangle \beta_{k_1} + \frac{1}{i \omega_0} \left[(e^{i \omega_0 \theta} - 1) \phi_2(0) \bar{\psi}_2(0) - (e^{-i \omega_0 \theta} - 1) \bar{\phi}_2(0) \bar{\psi}_2(0) \right] Q_{\phi_2 \bar{\phi}_2} \langle \beta_{k_2}^2, \beta_{k_2} \rangle \beta_{k_2},
\]

\[
h_{020}(\theta) = h_{020}(0) e^{2i \omega_0 \theta} + \frac{1}{2i \omega_0} \left\{ \frac{1}{2} (e^{2i \omega_0 \theta} - 1) \phi_1(0) \psi_1(0) Q_{\phi_2 \bar{\phi}_2} \langle \beta_{k_2}^2, \beta_{k_1} \rangle \beta_{k_1} + \left[(e^{2i \omega_0 \theta} - e^{-i \omega_0 \theta}) \phi_2(0) \bar{\psi}_2(0) + \frac{1}{3} (e^{2i \omega_0 \theta} - e^{-i \omega_0 \theta}) \bar{\phi}_2(0) \bar{\psi}_2(0) \right] Q_{\phi_2 \bar{\phi}_2} \langle \beta_{k_2}^2, \beta_{k_2} \rangle \beta_{k_2} \right\},
\]

\[
h_{110}(\theta) = h_{110}(0) e^{i \omega_0 \theta} + \frac{1}{i \omega_0} (e^{i \omega_0 \theta} - 1) \phi_1(0) \psi_1(0) Q_{\phi_2 \bar{\phi}_2} \langle \beta_{k_1}, \beta_{k_2}, \beta_{k_1} \rangle \beta_{k_1} + \left[\theta e^{i \omega_0 \theta} \phi_2(0) \bar{\psi}_2(0) + \frac{1}{2} (e^{i \omega_0 \theta} - e^{-i \omega_0 \theta}) \bar{\phi}_2(0) \bar{\psi}_2(0) \right] Q_{\phi_2 \bar{\phi}_2} \langle \beta_{k_1}, \beta_{k_2}, \beta_{k_2} \rangle \beta_{k_2},
\]

\[
h_{002}(\theta) = h_{020}(\theta), \quad h_{101}(\theta) = h_{110}(\theta), \quad \theta \in [-r, 0].
\]

And at \(\theta = 0 \), by \((6.32) \) we have

\[
-(L_0(h_{200}) + D_0 \Delta h_{200}(0)) z_1^2 + [2i \omega_0 h_{020}(0) - (L_0(h_{020}) + D_0 \Delta h_{020}(0))] z_2^2 + [-2i \omega_0 h_{002}(0) - (L_0(h_{002}) + D_0 \Delta h_{002}(0))] z_1 z_2 + [-i \omega_0 h_{101}(0) - (L_0(h_{101}) + D_0 \Delta h_{101}(0))] z_1 \bar{z}_2 - (L_0(h_{011}) + D_0 \Delta h_{011}(0)) z_2 \bar{z}_2 = \frac{1}{2\pi} f_2^1(z, 0, 0)(0),
\]

(6.33)

Again expanding the above sum and comparing the coefficients, we obtain that

\[
L_0(h_{200}) + D_0 \Delta h_{200}(0) = \frac{1}{2} \left[-Q_{\phi_1 \phi_1} \beta_{k_1}^2 + \phi_1(0) \psi_1(0) Q_{\phi_1 \phi_1} \langle \beta_{k_1}^2, \beta_{k_1} \rangle \beta_{k_1} + (\phi_2(0) \bar{\psi}_2(0) + \bar{\phi}_2(0) \bar{\psi}_2(0)) Q_{\phi_2 \bar{\phi}_2} \langle \beta_{k_2}^2, \beta_{k_2} \rangle \beta_{k_2} \right],
\]

\[
L_0(h_{011}) + D_0 \Delta h_{011}(0) = -Q_{\phi_2 \bar{\phi}_2} \beta_{k_2}^2 + \phi_1(0) \psi_1(0) Q_{\phi_2 \bar{\phi}_2} \langle \beta_{k_2}^2, \beta_{k_2} \rangle \beta_{k_1} + (\phi_2(0) \bar{\psi}_2(0) + \bar{\phi}_2(0) \bar{\psi}_2(0)) Q_{\phi_2 \bar{\phi}_2} \langle \beta_{k_2}^2, \beta_{k_2} \rangle \beta_{k_2},
\]

\[
-2i \omega_0 h_{020}(0) + L_0(h_{020}) + D_0 \Delta h_{020}(0) = \frac{1}{2} \left[-Q_{\phi_2 \phi_2} \beta_{k_2}^2 + \phi_1(0) \psi_1(0) Q_{\phi_2 \phi_2} \langle \beta_{k_2}^2, \beta_{k_1} \rangle \beta_{k_1} + (\phi_2(0) \bar{\psi}_2(0) + \bar{\phi}_2(0) \bar{\psi}_2(0)) Q_{\phi_2 \phi_2} \langle \beta_{k_2}^2, \beta_{k_k} \rangle \beta_{k_2} \right],
\]

\[
-i \omega_0 h_{110}(0) + L_0(h_{110}) + D_0 \Delta h_{110}(0) = -Q_{\phi_1 \phi_2} \beta_{k_1} \beta_{k_2} + \phi_1(0) \psi_1(0) Q_{\phi_1 \phi_2} \langle \beta_{k_1} \beta_{k_2}, \beta_{k_1} \rangle \beta_{k_1} + (\phi_2(0) \bar{\psi}_2(0) + \bar{\phi}_2(0) \bar{\psi}_2(0)) Q_{\phi_1 \phi_2} \langle \beta_{k_1} \beta_{k_2}, \beta_{k_2} \rangle \beta_{k_2}.
\]

(6.34)

Therefore \(U_2^2 \) are determined by \((6.32) \) and \((6.34) \). For later computation of the third order normal form, note that for any \(q \in \mathbb{N}_0^3, \ |q| = 2 \), we have

\[
h_q(\theta) = \langle h_q(\theta), \beta_{k_1} \rangle \beta_{k_1} + \langle h_q(\theta), \beta_{k_2} \rangle \beta_{k_2} + \sum_{k \geq 0, k \neq k_1, k_2} \langle h_q(\theta), \beta_k \rangle \beta_k.
\]

(6.35)

Then \(\langle h_q(0), \beta_k \rangle \ (k \in \mathbb{N}_0) \) can be obtained from \((6.34) \), and \(\langle h_q(\theta), \beta_k \rangle \) for \(\theta \in [-r, 0] \) is determined.
by (6.32). In fact, we do not need to find \(h_q(0), \beta_k \) for all \(q \in \mathbb{N}_0^3, |q| = 2 \) and \(k \in \mathbb{N}_0 \), but only need to find the ones appearing in \(g_3^1(z, 0, 0) \).

Step 3. Computation of \(g_3^1 \).

Now we have all the components for computing the third order normal form. Let \(M_3 \) be the operator defined in \(V_3^3(\mathbb{C}^3 \times \text{Ker}\pi) \), with

\[
M_3^1 : V_3^3(\mathbb{C}^3) \to V_3^3(\mathbb{C}^3) \quad \text{and} \quad (M_3^1 p)(z) = D_z p(z) Bz - Bp(z),
\]

where \(V_3^3(\mathbb{C}^3) \) denotes the linear space of homogeneous polynomials of degree 3 in the variables \(z = (z_1, z_2, \bar{z}_2) \) with coefficients in \(\mathbb{C}^3 \). Then one may choose the decomposition

\[
V_3^3(\mathbb{C}^3) = \text{Im}(M_3^1) \oplus \text{Im}(M_3^1)^c
\]

with the complementary space \(\text{Im}(M_3^1)^c \) spanned by the elements

\[
z_1^3 e_1, \, z_1 z_2 \bar{z}_2 e_1, \, z_1^2 \bar{z}_2 e_2, \, z_2^2 \bar{z}_2 e_2, \, z_1^2 \bar{z}_2 e_3, \, z_2 \bar{z}_2^2 e_3,
\]

(6.36)

where \(e_1, e_2, e_3 \) denote the natural basis of \(\mathbb{R}^3 \). Now we have the normal form up to the third order

\[
\dot{z} = Bz + \frac{1}{2!} g_2^1(z, 0, \alpha) + \frac{1}{3!} g_3^1(z, 0, 0) + h.o.t., \quad (6.37)
\]

where

\[
\frac{1}{3!} g_3^1(z, 0, 0) = \frac{1}{3!} \text{Proj} \text{Im}(M_3^1)^c \tilde{f}_3^1(z, 0, 0).
\]

(6.38)

From (6.23) denoting

\[
g_{31}(z) = \frac{1}{6} \text{Proj} \text{Im}(M_3^1)^c \tilde{f}_3^1(z, 0, 0),
\]

\[
g_{32}(z) = -\frac{1}{4} \text{Proj} \text{Im}(M_3^1)^c D_z U_2^1(z) g_2^1(z, 0, 0),
\]

\[
g_{33}(z) = \frac{1}{4} \text{Proj} \text{Im}(M_3^1)^c (D_y f_2^1(z, y, 0))_{y=0} U_2^1(z),
\]

\[
g_{34}(z) = -\frac{1}{4} \text{Proj} \text{Im}(M_3^1)^c (D_y f_2^1(z, y, 0))_{y=0} U_2^1(z),
\]

(6.39)

then

\[
\frac{1}{3!} g_3^1(z, 0, 0) = g_{31}(z) + g_{32}(z) + g_{33}(z) + g_{34}(z).
\]

(6.40)

From (6.9) and (6.39), we obtain

\[
g_{31}(z) = \frac{1}{6} \psi_1(0) [C_{\phi_1 \phi_1 \phi_1} z_1^3 (\beta_3 \beta_3 \beta_3)],
\]

\[
+ 6 C_{\phi_1 \phi_2 \bar{\phi}_2} z_1 z_2 \bar{z}_2 (\beta_3 \beta_2 \gamma_3) e_1
\]

\[
+ \frac{1}{2} \psi_2(0) [C_{\phi_2 \phi_3 \bar{\phi}_3} z_1^2 z_2 \bar{z}_2 (\beta_3 \beta_3 \beta_3)],
\]

\[
+ C_{\phi_1 \phi_1 \phi_2} z_1^3 \bar{z}_2 (\beta_3 \beta_2 \beta_3) e_2
\]

\[
+ \frac{1}{2} \psi_2(0) [C_{\phi_2 \phi_3 \bar{\phi}_3} z_1^2 z_2 \bar{z}_2 (\beta_3 \beta_3 \beta_3)],
\]

\[
+ C_{\phi_1 \phi_1 \phi_2} z_1^3 \bar{z}_2 (\beta_3 \beta_2 \beta_3) e_3.
\]

(6.41)
For g_{32}, since $U^1_2(z) \in \text{Ker}(M^1_2)^c$ and $g^1_2(z, 0, 0) \in \text{Im}(M^1_2)^c$, by (6.25) and (6.15) we set

$$U^1_2(z) = (a^{(1)}_0 z^2 + a^{(1)}_0 z^2 + a^{(1)}_{110} z_2 + a^{(1)}_{101} z_1 \bar{z}_2) e_1 + (a^{(2)}_{020} z^2 + a^{(2)}_{020} z^2 + a^{(2)}_{101} z_1 \bar{z}_2 + a^{(2)}_{011} z_2 \bar{z}_2) e_2 + (a^{(3)}_{002} z^2 + a^{(3)}_{002} z^2 + a^{(3)}_{110} z_2 + a^{(3)}_{011} z_2 \bar{z}_2) e_3,$$

then

$$D_2 U^1_2(z) g^1_2(z, 0, 0) = [(a^{(1)}_{110} z_2 + a^{(1)}_{110} \bar{z}_2)(b^{(1)}_{200} z^2 + b^{(1)}_{011} z_2 \bar{z}_2) + (2a^{(1)}_{020} z_2 + a^{(1)}_{110} \bar{z}_2) b^{(2)}_{110} z_1 \bar{z}_2 + (2a^{(2)}_{020} z_2 + a^{(2)}_{110} \bar{z}_2) b^{(2)}_{020} z_1 \bar{z}_2 + (2a^{(2)}_{002} z_2 + a^{(2)}_{110} \bar{z}_2) b^{(2)}_{002} z_1 \bar{z}_2 + (2a^{(3)}_{002} z_2 + a^{(3)}_{110} \bar{z}_2) b^{(3)}_{011} z_1 \bar{z}_2 + (2a^{(3)}_{002} z_2 + a^{(3)}_{110} \bar{z}_2) b^{(3)}_{011} z_1 \bar{z}_2) e_1 + (2a^{(2)}_{020} z_2 + a^{(2)}_{110} \bar{z}_2) b^{(1)}_{002} z_1 \bar{z}_2 + (2a^{(2)}_{002} z_2 + a^{(2)}_{110} \bar{z}_2) b^{(1)}_{002} z_1 \bar{z}_2 + (2a^{(3)}_{002} z_2 + a^{(3)}_{110} \bar{z}_2) b^{(3)}_{011} z_1 \bar{z}_2 + (2a^{(3)}_{002} z_2 + a^{(3)}_{110} \bar{z}_2) b^{(3)}_{011} z_1 \bar{z}_2) e_2 + (2a^{(3)}_{002} z_2 + a^{(3)}_{110} \bar{z}_2) b^{(3)}_{011} z_1 \bar{z}_2 + (2a^{(3)}_{002} z_2 + a^{(3)}_{110} \bar{z}_2) b^{(3)}_{011} z_1 \bar{z}_2) e_3 + \text{Im}(M^1_3).$$

This implies that

$$g_{32}(z) = -\frac{1}{4} \text{Proj}_{I_n((M^1_3)^c)} D_2 U^1_2(z) g^1_2(z, 0, 0) = 0. \quad (6.42)$$

By using (6.39), (6.5), (6.24) and (6.36), we obtain

$$g_{33}(z) = g^{(1)}_{33}(z) e_1 + g^{(2)}_{33}(z) e_2 + g^{(3)}_{33}(z) e_3, \quad (6.43)$$

with

$$g^{(1)}_{33}(z) = \frac{1}{2\pi i} \psi_1(0)[-Q_{\phi_{1} \phi_2} \psi_2(0) + Q_{\phi_{1} \phi_2} \bar{\psi}_2(0)] Q_{\phi_{1} \phi_1} \langle \beta_{k_1} \beta_{k_2}, \beta_{k_1} \rangle \langle \beta_{k_2}, \beta_{k_2} \rangle z^2 + \frac{1}{2\pi i} \psi_1(0) \{[-Q_{\phi_{1} \phi_2} \psi_2(0) + Q_{\phi_{1} \phi_2} \bar{\psi}_2(0)] Q_{\phi_{1} \phi_2} \langle \beta_{k_1} \beta_{k_2}, \beta_{k_1} \rangle \langle \beta_{k_2}, \beta_{k_2} \rangle \} z_1 \bar{z}_2 + \frac{1}{2} [-Q_{\phi_2 \phi_2} \psi_2(0) Q_{\phi_1 \phi_1} \bar{\psi}_2(0) Q_{\phi_2 \phi_2} \langle \beta_{k_1} \beta_{k_2}, \beta_{k_1} \rangle \langle \beta_{k_2}, \beta_{k_2} \rangle \} z_1 \bar{z}_2, \quad (6.44)$$

$$g^{(2)}_{33}(z) = \frac{1}{2\pi i} \psi_2(0) \{[2Q_{\phi_{1} \phi_1} \psi_1(0) \langle \beta_{k_1} \beta_{k_2}, \beta_{k_1} \rangle \langle \beta_{k_2}, \beta_{k_2} \rangle + Q_{\phi_{1} \phi_2} \bar{\psi}_2(0) \langle \beta_{k_1} \beta_{k_2}, \beta_{k_2} \rangle] Q_{\phi_{1} \phi_2} + [-Q_{\phi_{1} \phi_2} \psi_2(0) + Q_{\phi_2 \phi_2} \bar{\psi}_2(0)] Q_{\phi_{1} \phi_1} \langle \beta_{k_1} \beta_{k_2}, \beta_{k_1} \rangle \langle \beta_{k_2}, \beta_{k_2} \rangle \} z_1^2 \bar{z}_2 + \frac{1}{2\pi i} \psi_2(0) \{Q_{\phi_2 \phi_2} \psi_1(0) Q_{\phi_1 \phi_1} \langle \beta_{k_1} \beta_{k_2}, \beta_{k_2} \rangle \langle \beta_{k_2}, \beta_{k_2} \rangle + \frac{2}{3} [Q_{\phi_2 \phi_2} \bar{\psi}_2(0) Q_{\phi_2 \phi_2} \langle \beta_{k_2}, \beta_{k_2} \rangle \} \beta_k^2 + + [-2 Q_{\phi_2 \phi_2} \psi_2(0) + 4 Q_{\phi_2 \phi_2} \bar{\psi}_2(0)] Q_{\phi_2 \phi_2} \langle \beta_{k_2}, \beta_{k_2} \rangle \} z_1 \bar{z}_2. \quad (6.45)$$

Finally from (6.29) and the symmetric multilinearity of Q, we obtain

$$Q_{\phi_1} Q_{\phi_{200}} z_1^2 + Q_{\phi_{020}} z_1^2 + Q_{\phi_{002}} z_1^2 + Q_{\phi_{110}} z_1 \bar{z}_2 + Q_{\phi_{101}} z_1 \bar{z}_2 + Q_{\phi_{011}} z_2 \bar{z}_2, \quad (6.46)$$

30
with \(\phi \in \{ \phi_1, \phi_2, \bar{\phi}_2 \} \). From (6.39), (6.7), (6.26) and (6.36), we obtain

\[
g_{34}(z) = \frac{1}{2} \psi_1(0)[(Q \phi_1 h_{200} \beta_{k_1}, \beta_{k_1}) z_1^2 + (Q \phi_1 h_{011} \beta_{k_1}, \beta_{k_1}) + (Q \phi_2 h_{101} \beta_{k_2}, \beta_{k_2}) + (Q \phi_2 h_{200} \beta_{k_2}, \beta_{k_2}) z_2^2 + (Q \phi_2 h_{200} \beta_{k_2}, \beta_{k_2}) z_2^2 + (Q \phi_2 h_{011} \beta_{k_2}, \beta_{k_2}) + (Q \phi_2 h_{200} \beta_{k_2}, \beta_{k_2}) z_2^2 + (Q \phi_2 h_{011} \beta_{k_2}, \beta_{k_2}) + (Q \phi_2 h_{002} \beta_{k_2}, \beta_{k_2}) z_2^2] e_3.
\]

(6.47)

Now we can complete the proof of Theorem 3.1.

Proof of Theorem 3.1. The conclusion of Theorem 3.1 follows from Lemma 6.1, (6.41), (6.42), (6.43) and (6.47).

\[\square \]

7 Conclusion

In this paper the normal forms up to the third order for a Hopf-steady state bifurcation of a general system of partial functional differential equations (PFDEs) is derived based on the center manifold and normal form theory of PFDEs. This is a codimension-two degenerate bifurcation with the characteristic equation having a pair of simple purely imaginary roots and a simple zero root, and the corresponding eigenfunctions may be spatially inhomogeneous. The PFDEs are reduced to a three-dimensional system of ordinary differential equations and precise dynamics near bifurcation point can be revealed by two unfolding parameters which can be expressed by those original perturbation parameters. Usually, the third order normal form is sufficient for analyzing bifurcation phenomena in most of the applications.

The normal forms for the Hopf-steady state bifurcation in a general PFDE has been investigated within the framework of Faria [15, 17]. In [15] an important conclusion is that the normal forms up to a certain finite order for both the PFDEs and its associated FDEs are the same under the assumption \((H5)\). And when \((H5)\) is not satisfied, the associated FDEs may not provide complete information, and further general results on the normal forms are not given in [15]. In fact, the assumption \((H5)\) is not satisfied when a Hopf-steady state bifurcation occurs. Our results on computing the normal forms on center manifolds, that is (3.4)-(3.7), (6.32) and (6.34), do not require \((H5)\), which makes the approach applicable to a wider class of systems.

For more concrete expressions, we provide explicit formulas of the coefficients in the third order normal forms in the Hopf-steady state bifurcation for delayed reaction-diffusion equations with Neumann boundary condition, that is (4.1)-(4.11), and this includes the important case of Turing-Hopf bifurcation (with \(k_1 \neq 0 \)). The formulas are user-friendly as they are expressed directly
by the Fréchet derivatives of the functions up to third orders and the characteristic functions of
the original systems, and they are shown in concise matrix form which is convenient for computer
implementation. These results can also be applied to reaction diffusion equations without delay,
for example, see [8], and delayed functional differential equations without diffusion, see [28].

Our general results are applied to the diffusive Schnakenberg system of biochemical reactions
with gene expression time delay to demonstrate how our formulas can be applied in practical
examples. In particular we provide specific conditions on the parameters for the existence and
stability of spatially nonhomogeneous steady state solutions and time-periodic solutions near the
Turing-Hopf bifurcation point. Our specific examples are for one-dimensional spatial domain with
Neumann boundary conditions, but our general framework is broad enough for high-dimensional
spatial domains and Dirichlet boundary conditions. More specific computations for these cases will
be done in the future.

References

[1] Q. An and W.H. Jiang. Spatiotemporal attractors generated by the Turing-Hopf bifurcation
in a time-delayed reaction-diffusion systems. preprint, 2017.

[2] P.W. Bates and C.K.R.T. Jones. Invariant manifolds for semilinear partial differential equa-
tions. In Dynamics reported, Vol. 2, volume 2 of Dynam. Report. Ser. Dynam. Systems Appl.,
pages 1–38. Wiley, Chichester, 1989.

[3] P.W. Bates, K.N. Lu, and C.C. Zeng. Existence and persistence of invariant manifolds for
semiflows in Banach space. Mem. Amer. Math. Soc., 135(645):viii+129, 1998.

[4] M. Baurmann, T. Gross, and U. Feudel. Instabilities in spatially extended predator-prey sys-
tems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations. J. Theoret.
Biol., 245(2):220–229, 2007.

[5] A.D. Brjuno. Analytic form of differential equations. I, II. Trudy Moskov. Mat. Obšč., 25:119–
262; ibid. 26 (1972), 199–239, 1971.

[6] S. Busenberg and W.Z. Huang. Stability and Hopf bifurcation for a population delay model
with diffusion effects. J. Differential Equations, 124(1):80–107, 1996.

[7] S.A. Campbell and Y. Yuan. Zero singularities of codimension two and three in delay differ-
etial equations. Nonlinearity, 21(11):2671–2691, 2008.
[8] X. Cao and W.H. Jiang. Turing-hopf bifurcation and spatiotemporal patterns in a diffusive predator-prey system with crowley-martin functional response. *It has been accepted for publication in Nonlinear Anal. Real World Appl.*, 2018.

[9] J. Carr. *Applications of centre manifold theory*, volume 35 of *Applied Mathematical Sciences*. Springer-Verlag, New York-Berlin, 1981.

[10] S.S. Chen and J.P. Shi. Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect. *J. Differential Equations*, 253(12):3440–3470, 2012.

[11] S.S. Chen, J.P. Shi, and J.J. Wei. Time delay-induced instabilities and Hopf bifurcations in general reaction-diffusion systems. *J. Nonlinear Sci.*, 23(1):1–38, 2013.

[12] S.N. Chow and J.K. Hale. *Methods of Bifurcation Theory*, volume 251 of *Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science]*. Springer-Verlag, New York-Berlin, 1982.

[13] S.N. Chow, C.Z. Li, and D. Wang. *Normal forms and bifurcation of planar vector fields*. Cambridge University Press, Cambridge, 1994.

[14] S.N. Chow and K.N. Lu. Invariant manifolds for flows in Banach spaces. *J. Differential Equations*, 74(2):285–317, 1988.

[15] T. Faria. Normal forms and Hopf bifurcation for partial differential equations with delays. *Trans. Amer. Math. Soc.*, 352(5):2217–2238, 2000.

[16] T. Faria. Normal forms for semilinear functional differential equations in Banach spaces and applications. II. *Discrete Contin. Dynam. Systems*, 7(1):155–176, 2001.

[17] T. Faria, W.Z. Huang, and J.H. Wu. Smoothness of center manifolds for maps and formal adjoints for semilinear FDEs in general Banach spaces. *SIAM J. Math. Anal.*, 34(1):173–203, 2002.

[18] T. Faria and L.T. Magalhaes. Normal forms for retarded functional differential equations and applications to Bogdanov-Takens singularity. *J. Differential Equations*, 122(2):201–224, 1995.

[19] T. Faria and L.T. Magalhaes. Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation. *J. Differential Equations*, 122(2):181–200, 1995.

[20] M. Golubitsky and D.G. Schaeffer. *Singularities and groups in bifurcation theory. Vol. I*, volume 51 of *Applied Mathematical Sciences*. Springer-Verlag, New York, 1985.
[21] J. Guckenheimer and P. Holmes. *Nonlinear oscillations, dynamical systems, and bifurcations of vector fields*, volume 42 of *Applied Mathematical Sciences*. Springer-Verlag, New York, 1983.

[22] S. J. Guo and L. Ma. Stability and bifurcation in a delayed reaction-diffusion equation with Dirichlet boundary condition. *J. Nonlinear Sci.*, 26(2):545–580, 2016.

[23] S. J. Guo. Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect. *J. Differential Equations*, 259(4):1409–1448, 2015.

[24] K. P. Hadeler and S. G. Ruan. Interaction of diffusion and delay. *Discrete Contin. Dyn. Syst. Ser. B*, 8(1):95–105, 2007.

[25] J. K. Hale and S. M. Verduyn Lunel. *Introduction to functional-differential equations*, volume 99 of *Applied Mathematical Sciences*. Springer-Verlag, New York, 1993.

[26] B. D. Hassard, N. D. Kazarinoff, and Y. H. Wan. *Theory and applications of Hopf bifurcation*, volume 41 of *London Mathematical Society Lecture Note Series*. Cambridge University Press, Cambridge-New York, 1981.

[27] D. Henry. *Geometric theory of semilinear parabolic equations*, volume 840 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin-New York, 1981.

[28] W. H. Jiang and H. B. Wang. Hopf-transcritical bifurcation in retarded functional differential equations. *Nonlinear Anal.*, 73(11):3626–3640, 2010.

[29] W. H. Jiang, H. B. Wang, and X. Cao. Turing instability and Turing-Hopf bifurcation in delayed reaction-diffusion Schnakenberg systems. *preprint*, 2017.

[30] W. H. Jiang and Y. Yuan. Bogdanov-Takens singularity in Van der Pol’s oscillator with delayed feedback. *Phys. D*, 227(2):149–161, 2007.

[31] S. Kondo and R. Asai. A reaction-diffusion wave on the skin of the marine angelfish pomacanthus. *Nature*, 376(6543):765–768, 1995.

[32] S. Kondo and T. Miura. Reaction-diffusion model as a framework for understanding biological pattern formation. *Science*, 329(5999):1616–1620, 2010.

[33] I. Lengyel and I. R. Epstein. Modeling of Turing structures in the chlorite-iodide-malonic acid-starch reaction system. *Science*, 251(4994):650–652, 1991.

[34] X. Lin, J. W. H. So, and J. H. Wu. Centre manifolds for partial differential equations with delays. *Proc. Roy. Soc. Edinburgh*, 122(3-4):237–254, 1992.
[35] Z.H. Liu, P. Magal, and S.G. Ruan. Hopf bifurcation for non-densely defined Cauchy problems. *Z. Angew. Math. Phys.*, 62(2):191–222, 2011.

[36] Z.H. Liu, P. Magal, and S.G. Ruan. Normal forms for semilinear equations with non-dense domain with applications to age structured models. *J. Differential Equations*, 257(4):921–1011, 2014.

[37] Z.H. Liu, P. Magal, and D.M. Xiao. Bogdanov-Takens bifurcation in a predator-prey model. *Z. Angew. Math. Phys.*, 67(6):Art. 137, 29, 2016.

[38] P. Magal and S.G. Ruan. Center manifolds for semilinear equations with non-dense domain and applications to Hopf bifurcation in age structured models. *Mem. Amer. Math. Soc.*, 202(951):vi+71, 2009.

[39] P.K. Maini, K.J. Painter, and H.N.P. Chau. Spatial pattern formation in chemical and biological systems. *J. Chem. Soc. Faraday Trans.*, 93(20):3601–3610, 1997.

[40] J. E. Marsden and M. McCracken. *The Hopf bifurcation and its applications*. Springer-Verlag, New York, 1976. With contributions by P. Chernoff, G. Childs, S. Chow, J. R. Dorroh, J. Guckenheimer, L. Howard, N. Kopell, O. Lanford, J. Mallet-Paret, G. Oster, O. Ruiz, S. Schecter, D. Schmidt and S. Smale, Applied Mathematical Sciences, Vol. 19.

[41] M. Meixner, A. De Wit, S. Bose, and E. Schöll. Generic spatiotemporal dynamics near codimension-two Turing-Hopf bifurcations. *Phys. Rev. E (3)*, 55(6, part A):6690–6697, 1997.

[42] Patrick Müller et al. Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system. *Science*, 336(6082):721–724, 2012.

[43] B. Niu and W.H. Jiang. Multiple bifurcation analysis in a NDDE arising from van der Pol's equation with extended delay feedback. *Nonlinear Anal. Real World Appl.*, 14(1):699–717, 2013.

[44] R. Peng, F.Q. Yi, and X.Q. Zhao. Spatiotemporal patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme. *J. Differential Equations*, 254(6):2465–2498, 2013.

[45] M. R. Ricard and S. Mischler. Turing instabilities at Hopf bifurcation. *J. Nonlinear Sci.*, 19(5):467–496, 2009.

[46] A. Rovinsky and M. Menzinger. Interaction of Turing and Hopf bifurcations in chemical systems. *Phys. Rev. A (3)*, 46(10):6315–6322, 1992.
[47] S. Seirin Lee, E. A. Gaffney, and R. E. Baker. The dynamics of Turing patterns for morphogen-regulated growing domains with cellular response delays. *Bull. Math. Biol.*, 73(11):2527–2551, 2011.

[48] R. Sheth et al. Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. *Science*, 338(6113):1476–1480, 2012.

[49] H.B. Shi and S.G. Ruan. Spatial, temporal and spatiotemporal patterns of diffusive predator-prey models with mutual interference. *IMA J. Appl. Math.*, 80(5):1534–1568, 2015.

[50] J.P. Shi. Bifurcation in infinite dimensional spaces and applications in spatiotemporal biological and chemical models. *Front. Math. China*, 4(3):407–424, 2009.

[51] Y.L. Song, T.H. Zhang, and Y.H. Peng. Turing-Hopf bifurcation in the reaction-diffusion equations and its applications. *Commun. Nonlinear Sci. Numer. Simul.*, 33:229–258, 2016.

[52] Y.L. Song and X.F. Zou. Spatiotemporal dynamics in a diffusive ratio-dependent predator-prey model near a Hopf–Turing bifurcation point. *Comput. Math. Appl.*, 67(10):1978–1997, 2014.

[53] Y. Su, J.J. Wei, and J.P. Shi. Hopf bifurcations in a reaction-diffusion population model with delay effect. *J. Differential Equations*, 247(4):1156–1184, 2009.

[54] Y. Su, J.J. Wei, and J.P. Shi. Bifurcation analysis in a delayed diffusive Nicholson’s blowflies equation. *Nonlinear Anal. Real World Appl.*, 11(3):1692–1703, 2010.

[55] A.M. Turing. The chemical basis of morphogenesis. *Philos. Trans. Roy. Soc. London Ser. B*, 237(641):37–72, 1952.

[56] N. Van Minh and J.H. Wu. Invariant manifolds of partial functional differential equations. *J. Differential Equations*, 198(2):381–421, 2004.

[57] A. Vanderbauwhede. Centre manifolds, normal forms and elementary bifurcations. In *Dynamics reported, Vol. 2*, volume 2 of *Dynam. Report. Ser. Dynam. Systems Appl.*, pages 89–169. Wiley, Chichester, 1989.

[58] C.C. Wang and J.J. Wei. Normal forms for NFDEs with parameters and application to the lossless transmission line. *Nonlinear Dynamics*, 52(52):199–206, 2008.

[59] H.B. Wang and W.H. Jiang. Hopf-pitchfork bifurcation in van der Pol’s oscillator with nonlinear delayed feedback. *J. Math. Anal. Appl.*, 368(1):9–18, 2010.
[60] S. Wiggins. *Introduction to applied nonlinear dynamical systems and chaos*, volume 2 of *Texts in Applied Mathematics*. Springer-Verlag, New York, second edition, 2003.

[61] R.W. Wittenberg and P. Holmes. The limited effectiveness of normal forms: A critical review and extension of local bifurcation studies of the Brusselator PDE. *Phys. D*, 100(1-2):1–40, 1997.

[62] T.E. Woolley, R.E. Baker, and P.K. Maini. Turing’s theory of morphogenesis: where we started, where we are and where we want to go. In *The incomputable*, Theory Appl. Comput., pages 219–235. Springer, Cham, 2017.

[63] J.H. Wu. *Theory and applications of partial functional-differential equations*, volume 119 of *Applied Mathematical Sciences*. Springer-Verlag, New York, 1996.

[64] J.H. Wu. Symmetric functional-differential equations and neural networks with memory. *Trans. Amer. Math. Soc.*, 350(12):4799–4838, 1998.

[65] D.M. Xiao and S.G. Ruan. Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response. *J. Differential Equations*, 176(2):494–510, 2001.

[66] X.P. Yan and W.T. Li. Stability of bifurcating periodic solutions in a delayed reaction-diffusion population model. *Nonlinearity*, 23(6):1413–1431, 2010.

[67] F.Q. Yi, E.A. Gaffney, and S. Seirin-Lee. The bifurcation analysis of Turing pattern formation induced by delay and diffusion in the Schnakenberg system. *Discrete Contin. Dyn. Syst. Ser. B*, 22(2):647–668, 2017.

[68] F.Q. Yi, J.X. Liu, and J.J. Wei. Spatiotemporal pattern formation and multiple bifurcations in a diffusive bimolecular model. *Nonlinear Anal. Real World Appl.*, 11(5):3770–3781, 2010.

[69] F.Q. Yi, J.J. Wei, and J.P. Shi. Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system. *J. Differential Equations*, 246(5):1944–1977, 2009.

[70] R. Yuan, W.H. Jiang, and Y. Wang. Saddle-node-Hopf bifurcation in a modified Leslie-Gower predator-prey model with time-delay and prey harvesting. *J. Math. Anal. Appl.*, 422(2):1072–1090, 2015.

[71] W.J. Zuo and J.J. Wei. Stability and Hopf bifurcation in a diffusive predator-prey system with delay effect. *Nonlinear Anal. Real World Appl.*, 12(4):1998–2011, 2011.