Carbon stock potential of Indonesian local fruit trees, some collections of Purwodadi Botanic Garden

T Yulistyarini* and J T Hadiah

Research Centre for Plant Conservation and Botanic Gardens, National Research and Innovation Agency, Jl. Ir. Juanda 13 Bogor, West Java Indonesia

*Corresponding author e-mail: tyulistyarini@yahoo.com

Abstract. Restoration programs improve the quality of degraded ecosystem and play a role in mitigating climate change. Selection of plant species based on carbon sinks has been widely used in such programs, including using fruit trees. The purpose of this study was to estimate the carbon stock of several local fruit species collections at Purwodadi Botanic Garden in order to determine their potential as carbon storage. Above ground C stock estimation was conducted using a non-destructive method by measuring stem diameter at breast height (DBH) and tree height. The age of sampled fruit trees ranged between 20–60 years. Biomass was obtained by calculating using allometric equation. The results showed that sixty years old Diospyros malabarica (Desr.) Kostel. stored the highest carbon (163 Mg C.ha⁻¹). Whereas, the lowest carbon stock was stored by forty years old Stelechocarpus burahol (Blume) Hook.f. & Thomson (1.4 C tonnes.ha⁻¹). Findings of this study suggested that most observed local fruit trees are potential carbon sinks and must be promoted in restoration programs to help mitigate climate change. Diospyros malabarica (Desr.) Kostel, Flacourtia rukam Zoll. & Moritzi, Garcinia dulcis (Roxb.) Kurz., Protium javanicum Burm.f, Sandoricum koetjape (Burm.f.) Merr., and Syzygium cumini (L.) Skeels were recommended as priority species for restoration.

Keywords: carbon stock, biomass, fruit trees, restoration.

1. Introduction
Restoration is an effort to renew, recover and improve degraded and damaged ecosystems and habitats. Vegetation restoration significantly influences soil characteristics in croplands and restored areas [1]. It also has an effect on understory species composition by modifying understory environments [2]. In South China, restoration of a monoculture Eucalyptus plantation using enriched planting of native tree species significantly lower surface water flow and soil erosion [3]. Ecosystem restoration also plays a role in mitigating climate change, which is to significantly increase carbon uptake. [4] reported that second-growth forests in the Amazon were able to accumulate a total aboveground carbon stock of 8.48 Pg C ha⁻¹ year⁻¹ through low-cost natural regeneration.

The Indonesian government has made efforts to reforest degraded lands. The 2020-2024 Strategic Plan of the Ministry of Environment and Forestry stated that the direction of forest management has been changed from initially focusing on timber management towards forest resource ecosystem and community-based management. Restoration programs can be developed in the form of sustainable agroforestry systems with various types of multi-stratified plants based on local knowledge to increase the chances of success due to acceptance by the local community [5]. Such programs have widely used selected plants based on carbon sinks including fruit trees.
Fruit plant species are multipurpose trees, often planted in home gardens and agroforestry systems. The two systems have great potentiality for carbon sequestration. [6] reported that mango (Mangifera spp.) and jackfruit (Artocarpus heterophyllus) were dominant species planted at home gardens in Bangladesh, and contributed to the carbon stock of this cropping system. [7] quantified C stock of fruit-based rubber agroforestry in Central Kalimantan with >100 years of age, and stated that this agroforestry system stored carbon up to 415 Mg ha\(^{-1}\). Several fruit tree species with high importance values, such as Baccaurea spp., durian (Durio zibethinus L.), rambutan (Nephelium lappaceum L.) and Syzygium lineatum (DC.) Merr. & L.M.Perry, were potential carbon sinks. [8] reported that Durio zibethinus L., Lansium domesticum Corrêa, Mangifera indica L., and Nephelium lappaceum L. were planted as shade trees at cacao agroforestry in South Sulawesi because of their long-term economic values.

Indonesia is one of the centers for tropical fruit diversity. However, many Indonesian species of fruit trees have low commercial values such as rukam (Flacourtia rukam), jamblang (Syzygium cumini) and buni (Antidesma bunius). Such low commercially valued fruit trees are categorized as underutilized fruit trees (UFTs). UFTs are less known particularly to people aged 21-40 years old and started to disappear from local and regional markets [9]. The development of such fruit plants is required to conserve the species, such as revealing the ecological potential. Restoration programs require many local trees because plant diversity affects ecosystem function [10]. Therefore, it is necessary to explore the potential of plant species in providing ecosystem services such as carbon sequestration capabilities. The purpose of this study was to estimate the carbon stock of several local fruit species collections at Purwodadi Botanic Garden to determine their carbon storage potential.

2. Study Site and Methods
This study was conducted in February–March 2021 at Purwodadi Botanic Garden (PBG) in Pasuruan East Java. The study site is located at an altitude of 300 meter above sea level, with an average annual rainfall of 2283 mm, average humidity 78%, and temperature 19–34°C [Registration Unit PBG, unpublished]. PBG collections of local fruit trees observed in this study comprised 18 species (Table 1), all of which are from the Indo-Malesia geographic range. The age of sampled fruit trees ranged between 20–60 years, with 2–5 replications for each species. The estimation of individual tree aboveground biomass (AGB\(_{\text{est}}\)) was conducted using a non-destructive method by measuring stem diameter at breast height (DBH) and tree height. The tree biomass was estimated by calculating using allometric equation biomass in humid habitat as follows:

\[
(\text{AGB})_{\text{est}} = 0.0509 \times \rho D^2H \quad [11]
\]

Where \(\rho\) is wood density (g.cm\(^{-3}\)) [12], \(D\) is DBH (cm), \(H\) is tree height (m)

Carbon stock was estimated by multiplying the biomass with allometric values for carbon stock i.e. 0.46 [11]. Carbon stock per hectare is the total C stock of each species when planted in spacing for fruit trees in general, i.e. 8 m x 8 m.
Table 1. List of fruit tree species observed in this study.

No	Species	Family	Local name	Age (years)	Natural habitat	Type	Other uses
1	*Aegle marmelos* (L.) Correa	Rutaceae	Maja, Bel fruit	50	up to 500 m asl, on swampy land and dry soils	deciduous, small-medium tree	medicine, dye
2	*Antidesma bunius* (L.) Spreng.	Phyllanthaceae	Buni	40	up to 1800 m asl, lowland to to montane rain forest, part. shade up to 500 m asl	evergreen, medium tree	timber
3	*Artocarpus integer* (Thunb.) Merr.	Moraceae	Chempedak	60	up to 500 m asl, often on wet hillsides, evergreen, medium tree	timber, bark to make rope,	
4	*Averrhoa bilimbi* L.	Oxalidaceae	Belimbing asam	20	up to 500 m asl	evergreen, small tree	medicine
5	*Baccaurea dulcis* (Jack) Müll.Arg	Phyllanthaceae	Cupa	40	at 90–700 m asl, at 90–700 m asl, tropical lowland forest	evergreen, dense medium-large tree	timber, medicine, ornamental and shade trees
6	*Bouea macrophylla* Griff.	Anacardiaceae	Gandaria, Plum mango	40	up to 300 m asl, lowland forest	evergreen, dense, medium-large tree	timber, shade trees
7	*Cynometra cauliflora* L.	Fabaceae	Nam nam, kopi anjing	20	wet tropical lowland	evergreen, small tree	ornamental plant
8	*Diospyros discolor* Willd.	Ebenaceae	Buah mentega, Bisbul	30	0–800 m asl, almost any soil	evergreen, large tree	the wood for making handicrafts
9	*Diospyros macrophylla* Blume	Ebenaceae		30	up to 800 m asl, clay, sandy and rocky soil	evergreen, medium to large tree	timber
10	*Diospyros malabarica* (Desr.) Kostel	Ebenaceae	River eboni	60	up to 500 m asl, the moist lowland forest	evergreen, large tree	medicine, timber
11	*Flacourtia rukam* Zoll. & Moritzi	Salicaceae	Rukem	40	up to 1500 m asl	evergreen, small tree	bark for dye mats; seed to cure swelling
12	*Garcinia dulcis* (Roxb.) Kurz	Clusiaceae	Mundu	60	humid tropic in SE Asia	evergreen, medium tree	medicine, timber, rootstock
13	*Limonia acidissima* L.	Rutaceae	Kawista	50	up to 450 m asl, moonsoon to dry climate	deciduous, small tree	bark and spines for medicine; timber
14	*Manilkara kauki* (L.) Dubard	Sapotaceae	Sawo kecik	40	< 500 m asl, coastal regions, dry climates	evergreen, medium tree	medicine, rootstock
15	*Protium javanicum* Burm.f.	Burseraceae	Tenggulun	30	up to 800 m asl	evergreen, medium to large tree	a cover crop in teak plantations
Table 1. List of fruit tree species observed in this study (continued).

No	Species	Family	Local name	Age (years)	Natural habitat	Type	Other uses
16.	*Sandoricum koetjape* (Burm.f.) Merr. [15]	Meliaceae	Kecapi, Santol	30	0–800 m asl, lowland dipterocarp forest	deciduous, small to large tree	timber, erosion control, bark for tanning, shelter, medicine
17.	*Stelechocarpus barahol* (Blume) Hook.f. & Thomson [13,18]	Annonaceae	Kepel	40	up to 600 m asl., deep moist clay soil	evergreen, large tree	anti-oxidant
18.	*Syzygium cumini* (L.) Skeels. [15]	Myrtaceae	Juwet, Jamblang	60	up to 600 m asl, with over 1000 mm annual rainfall	evergreen, large tree	shelter coffee tree

3. Results and Discussion

3.1. Carbon stock in local fruit tree species

Table 2 showed the estimated C stock of fruit tree species collections of PBG at various ages. The eighteen local fruit tree species indicated significant contributions to carbon sequestration based on age and growth size. The sixty years old *Diospyros malabarica* stored the highest biomass (2267.8 kg) and contributed total C stock of 1043.2 kg C plants\(^{-1}\) or 163 Mg C ha\(^{-1}\). The carbon storage of the plant showed the highest among other species observed particularly those of the same age. The fifty years old *Aegle marmelos* had larger C stock than the fifty years old *Limonia acidissima* (both Rutaceae). Whereas *Flacourtia rukam* stored the highest C stock amongst the forty years old trees, and *Stelechocarpus barahol* stored the lowest. The thirty years old group comprised four species namely *Diospyros discolor*, *Diospyros macrophylla*, *Protium javanicum* and *Sandoricum koetjape*. *Protium javanicum* stored the highest C stock of 86 Mg C ha\(^{-1}\) in the group, while *Diospyros macrophylla* stored the lowest C stock of 5 Mg C ha\(^{-1}\). Within the twenty years old group, *Cynometra cauliflora* had larger C stock than *Averrhoa bilimbi* (45.1 Mg C ha\(^{-1}\) and 6.1 Mg C ha\(^{-1}\), respectively). This study also showed that species within the same age group may have different DBH and carbon stock. The amount of carbon stock in tree biomass is correlated to tree growth and development that are influenced by abiotic factors such as nutrients, light, water, and stress tolerance [19].

Carbon stock value relates to the species growth characteristics i.e. fast- or slow-growing which is evolutionary controlled by gene [20]. In the 60 years old group, *Diospyros malabarica* which is categorized as a large tree (Table 1) possessed the highest DBH among all plants observed (Table 2). *Syzygium cumini* is also a large tree, but this species produced less biomass than *Diospyros malabarica*. The former has a higher wood density (WD=0.76 g cm\(^{-3}\)) than the latter (WD=0.72 g cm\(^{-3}\)) so that the growth of the former is slower than that of the latter. Species with high wood density is categorized as a slow-growing species. On this type of plant, carbon accumulation occurs more slowly in the long-term. Whereas fast-growing species usually has low wood density such as *Artocarpus integer* (WD=0.56 g cm\(^{-3}\)) which accumulates large amounts of carbon in the first stage of their lifespan [10]. However, further research on the growth properties is needed to confirm this hypothesis by studying the growth rate of each species.

In the 50 years old group, *Aegle marmelos* and *Limonia acidissima* are small-medium tree with high wood density (0.771 g cm\(^{-3}\) and 0.84 g cm\(^{-3}\), respectively). Tree biomass is strongly influenced by wood density. The value of wood density is very influential in calculating the estimated dry weight of tree biomass. The higher the wood density value, the greater the dry weight value of tree biomass and the higher the carbon stored in the tree [21]. Most of the species in the 40 years old group are medium-sized trees, except *Stelechocarpus barahol* which is a large tree. Nevertheless, this species showed the lowest biomass in the group. The plant had stunted growth due to unfavorable environmental factors such as too shaded habitat.
Table 2. Biomass and C stock estimation of eighteen fruit tree species in PBG at various ages.

No.	Species	Age (years)	Wood density (g.cm⁻¹)	DBH (cm)	Biomass (kg.plant⁻¹)	C stock (kg.plant⁻¹)	C stock (Mg.ha⁻¹)
1	Cynometra cauliflora L.	20	0.72	29.44	288.5	132.7	43.1
2	Averrhoa bilimbi L.	20	0.52	21.34	84.4	38.8	6.1
3	Protium javanicum Burn.f.	30	0.75	41.72	1196.0	550.2	86.0
4	Sandoricum koetjape (Burm.f.) Merr.	30	0.56	47.45	1091.1	501.9	78.4
5	Diospyros discolor Willd.	30	0.88	24.84	593.2	272.9	42.6
6	Diospyros macrophylla Blume	30	0.48	14.61	70.0	32.2	5.0
7	Flacourtia rukam Zoll. & Moritzi	40	0.75	30.94	744.2	342.3	53.5
8	Antidesma bunius (L.) Spreng	40	0.51	39.64	527.7	242.7	37.9
9	Manilkara kauki (L.) Dubard	40	0.83	22.74	263.6	121.3	18.9
10	Bouea macrophylla Griff.	40	0.69	22.71	181.1	83.3	13.0
11	Baccaurea dulcis(Jack) Müll.Arg	40	0.49	21.97	118.5	54.5	8.5
12	Stielechocarpus burahol (Blume) Hook.f. & Thomson	40	0.55	10.83	19.7	9.1	1.4
13	Aegle marmelos (L.) Correa	50	0.771	24.76	374.8	172.4	26.9
14	Limonia acidissima L.	50	0.84	21.84	1864.4	85.7	13.4
15	Diospyros malabarica (Desr.)Kostel	60	0.72	62.74	2267.8	1043.2	163.0
16	Garcinia dulcis(Roxb.) Kurz	60	0.73	51.75	784.1	360.7	56.4
17	Syzygium cumini (L.) Skeels.	60	0.76	40.87	672.7	309.5	48.4
18	Artocarpus integer (Thunb.) Merr.	60	0.56	22.29	99.2	45.6	7.1

Four tree species in the 30 years old group were all categorized as large trees. The plants in this group still have the ability to increase biomass and carbon, because they have not reached their maximum growth yet. Similarly, [20] mentioned that some Dillenia species indicated increasing biomass and carbon storage in the 20–30 years of age. She stated that the plants maximized the leaf and root growth in the first 10 years and the stem growth in the second to third 10 years by storing more carbon. In addition, [22] mentioned that carbon sequestration rates of ecological trees achieve their peaks 25–30 years after planting, and are steady after 50 years of age as the trees reached their maximum growth. [23] stated that old trees (50 years and above) have accumulated carbon for a long time and maintained high rates of carbon storage at later stages of their lifetimes.

The carbon stock of individual local fruit trees species observed in this study ranged from 1.4–163 Mg C.ha⁻¹. These values were lower than that of Dipterocarpaceae in Central Kalimantan (C stock of 928.86 Mg C.ha⁻¹) [24]. The 30 years old Sandoricum koetjape at PBG stored carbon of 78.4 Mg C.ha⁻¹. This values is similar to that of the 32 years old santol (Sandoricum koetjape) plantation in the Philippine i.e. 75.02 Mg C.ha⁻¹. Carbon storage of some local UFTsuch as Diospyros malabarica (163 Mg C.ha⁻¹), Flacourtia rukam (53.5 Mg C.ha⁻¹), Protium javanicum (86 Mg C.ha⁻¹), and Syzygium cumini (48.4 Mg C.ha⁻¹) was higher than that of high economic valued fruit trees such as mango and rambutan. The 15 year old mango plantation in the Philippine stored 45.29 Mg C.ha⁻¹, and the 12 year old rambutan plantation reserved 11.12 Mg C.ha⁻¹ [25]

3.2. Implications to restoration programs
Restoration proposes a potential solution for reversing biodiversity loss and promotes carbon sequestration in such degraded forests [26]. The purposes of restoration programs are not only to fulfill the daily necessities but also to restore ecosystem functions, such as wildlife habitat, water and nutrient cycling, temperature and humidity regulation, mitigations of flood and landslide. Some of the observed local fruit trees showed potential as high and long carbon stocks. From the result of C stock
estimation, species with the highest C stock in each age group are recommended as priority species for restoration programs namely *Diospyros malabarica*, *Flacourtia rukam*, *Garcinia dulcis*, *Protium javanicum*, *Sandoricum koetjape*, and *Syzygium cumini*.

Some other species can be added to the list of priority species for restoration programs particularly regarding their carbon sequestration potential, namely *Diospyros discolor*, *Sandoricum koetjape*, and *Syzygium cumini*. *Sandoricum koetjape* has a low WD of < 0.6 g cm\(^{-3}\), thus this species is a fast-growing plant that produces biomass faster. Meanwhile [27] reported that *Diospyros discolor* and *Syzygium cumini* are categorized as slow-growing plants and have high carbon stock in their seedling phase.

Planting local fruit species with high carbon stock potential as shade trees in agroforestry systems seems to be a starting point towards achieving ecosystem restoration. [8] stated that the higher tree density in cacao-based systems resulted in higher carbon stocks. They reported some fruit trees such as *Durio zibethinus*, *Lansium domesticum*, and *Nephelium lappaceum* which have medium to high WD (> 0.6 g cm\(^{-3}\)) in cacao agroforestry contributed to 30–40% of aboveground C stock. In terms of restoration, after C stocks enhancement is achieved, it is usually followed by an increase in diversity. High diversity is achieved as a result of natural seed dispersal [28]. Agroforestry systems intend to take an intermediate position between the degradation and restoration leg because this system supports a higher diversity [8].

The challenge faced today is that people preferred shade trees with long-term economic benefits such as timber and fruit trees of high economic value. Whereas the observed local fruit tree species which are under-utilized fruit trees, usually produce fruits that are sour or tasteless (Table 1), so they require processing prior to consumption. The fruits of these species are processed into pickles or jams. Therefore, better processing efforts are needed for the post-harvest of these species. In addition, other uses of these local fruit trees such as medicine, ornamental plant, erosion control, need to be developed.

Based on their natural habitat, most of the studied local fruit trees can be planted to restore degraded ecosystems in dry lowland habitats (<600 m asl). Some species such as *Antidesma bunius*, *Baccaurea dulcis*, *Diospyros discolor*, *Diospyros malabarica*, and *Flacourtia rukam* show a wider distribution from 0–1500 m asl (Table 1). Therefore these five species can be planted for restoration programs both in lowland and highland areas. Most of the observed local fruit trees are large, evergreen species, thus they are also suitable as shade trees in agroforestry such as cacao or coffee agroforestry. *Aegle marmelos* and *Limonia acidissima* are small, deciduous trees. Both belong to the citrus family (Rutaceae) and produce fruits that can be processed into syrup or jams.

The amount of carbon accumulation in woody biomass is very dependent on plantation age, stem density, site condition, climatic condition, and management practice [29]. In the field, tree planting in restoration programs does not always apply correct silviculture practices, with little or no soil preparations, nutrient applications, and weed controls. [30] proved that intensive silviculture in restoration increased growth and carbon sequestration. Intensive silviculture, especially during the early stages of plantation, supplies nutrients, controls weed competition, and enhances physical and biological site conditions.

4. Conclusion
Most of the observed local fruit trees are high carbon stock potential. *Diospyros malabarica* (Desr.) Kostel, *Flacourtia rukam* Zoll. & Moritzi, *Garcinia dulcis* (Roxb.) Kurz., *Protium javanicum* Burm.f. *Sandoricum koetjape* (Burm.f.) Merr., and *Syzygium cumini* (L.) Skeels were recommended as priority species for restoration programs.

Acknowledgments
Both authors contributed equally in the writing process, discussed and commented on the results and implications and at all stages. The authors would like to send their gratitude to Matrani and Deva Rahmadani for their assistance in collecting field data.
References

[1] Zhang Y, Xu X, Li Z, Liu M, Xu C, Zhang R, Luo W 2019 Science of the Total Environment 650 2657–2665

[2] Ou Z, Pang S, He Q, Peng Y, Huang X & Shen W 2020 Scientific Reports 10 12011

[3] Chu S, Ouyang J, Liao D, Zhou Y, Liu S, Shen D, Wei X, Zeng S 2019 Science of the Total Environment 675 224-234

[4] Chazdon RL, Broadbent EN, Rozendaal DMA 2016 Sci Adv 2(5) 1–10

[5] Budiharta S, Meijaard E, Wells JA, Abram NK, Wilson KA 2016 Environmental Science & Policy 64 83–92

[6] Jaman DI, Hossain MF, Islam MS, Helal MGJ, Jamil M 2016 International Journal of Agriculture and Forestry 6(5) 169-180

[7] Natalia D, Arisoesilaningsih E, Hairiah K 2017 AGRIVITA Journal of Agricultural Science 39(1) 74-82

[8] Sari RR, Saputra DD, Hairiah K, Rozendaal DMA, Roshetko JM and van Noordwijk M 2020 Indonesia Land 9 108

[9] Pratama MF, Dwiartama A, Rosleinde D, Abdulharis R, Irsyam ASD 2019 Biodiversitas 20(9) 2603-2611

[10] Brenes AR 2007 New Forests 34 253–268

[11] Hairiah K, Ekadinata A, Sari RR, and Rahayu S 2011 Pengukuran cadangan karbon: dari tingkat lahan ke bentang lahan Petunjuk praktis Edisi kedua. (Indonesia : World Agroforestry Centre, ICRAF SEA Regional Office Bogor and University of Brawijaya Malang p88)

[12] Zanne AE, Gonzalez LG, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, and Chase J 2009 Global wood density database Dryad.

[13] Verheij EWM, Coronel RE 1992 Plant Resources of South-East Asia 2 Edible Fruit and Nuts (Indonesia: Prosea Foundation Bogor) p431

[14] Sosef MSM, Hong LT, Prawirohatmodjo S 1998 Plant Resources of South-East Asia 5(3): Timber trees: Less-known timbers (Leiden (NL): Backhuys Publisher) p859

[15] Orwa C, A Mutua, Kindt R, Jamnadass R, Anthony S 2009 Agroforestry database: a tree reference and selection guide version 4.0 http://www.worldagroforestry.org/sites/treedbs/treedatabases.asp

[16] Lestari R 2014 Indonesia International Journal of Biology 6(1) 17-28

[17] Ken Fern 2014 Useful Tropical Plants Database

[18] Tismadjaya D, Saliman E, Silvia, Simanjuntak P 2006 Biodiversitas 7 (2) 199-202

[19] Hairiah K and Rahayu S 2007 Pengukuran karbon tersimpan di berbagai macam penggunaan lahan (Indonesia :World Agroforestry Centre, Bogor)

[20] Rindyastuti R 2017 Journal of Biological Researches 22(2) 74–80

[21] Zhang L, Deng X, Dong X L, Xiang , Peng C, Lei P and Yan W 2012 Forestry 85 601–609

[22] Hou G, Delang CO, Lu, X Gao L 2019 Ann For Res 62(1) 3-20

[23] Kohl M, Neupane PR, Lottifomran N 2017 Plos One 12(8) e018118

[24] Siregar CA dan Dharmawan IWS 2011 Jurnal Penelitian Hutan dan Konservasi Alam 8(4) 337-348

[25] Janiola MDC and Marin RA 2016 J. Bio. Env. Sci 8(5) 164-174

[26] Edwards DP, Fisher B, and Boyd E 2010 Conservation Letters 3 313–316

[27] Rindyastuti R, Rachmawati D, Sancayaningsih RP, Yulistyarini T 2018 Biodiversitas 19 660-669.

[28] Martin PA, Newton AC, Bullock JM 2013 Proc. Biol. Sci. 280 20132236

[29] Fischer G, Merchán PJA, Raamírez F 2012 Revista Colombiana De Ciencias Hortícolas 6(2) 238-253

[30] Ferez APC, Campoe OC, Mendes JCT, Stape JL 2015 Forest Ecology and Management 350 40-45