Supporting information for

Anodic SnO$_2$ Porous Nanostructures with Rich Grain Boundaries for Efficient CO$_2$ Electroreduction to Formate

Ruizhen Ma, b Yan-Li Chen, a Yongli Shen, b Heng Wang, a Wei Zhang, a, * Su-Seng Pang, c Jianfeng Huang, d, * Yu Han, e Yunfeng Zhao, b, *

a State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.

b Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 391 West Binshui Road, Xiqing District, Tianjin 300384, China

c Faculty of Information, Macau University of Science and Technology, Taipa, Macau, China.

d Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China

e Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia

Correspondence

E-mail: wzhang@must.edu.mo, jianfeng.huang@cqu.edu.cn, yfzhao@tjut.edu.cn;
Fig. S1 (a, b) SEM images taken from the surface of SnO$_2$-AO$_8$ and SnO$_2$-AO$_{12}$, and (c, d) their corresponding pore size distribution graphs.
Fig. S2 SEM image taken from the cross-section of SnO$_2$-AO$_{10}$.
Fig. S3 High-resolution TEM image of SnO$_2$-AO$_{10}$ nanostructures.
Fig. S4 XRD patterns of Sn foil, SnO$_2$-A0$_8$ and SnO$_2$-A0$_{12}$ nanostructures.
Fig. S5 Polarization curves obtained on (a) Sn plate, (b) SnO\textsubscript{2}-AO\textsubscript{8}, and (c) SnO\textsubscript{2}-AO\textsubscript{12} in N\textsubscript{2} and CO\textsubscript{2} saturated 0.5 M KHCO\textsubscript{3} solution with a scan rate of 50 mV s-1.
Fig. S6 Current density curves of samples recorded at -0.8 V vs. RHE in 0.5 M KHCO$_3$ with the CO$_2$ flow rate of 2 mL min$^{-1}$.
Fig. S7 Electrochemical Impedance Spectroscopy (EIS) analysis SnO$_2$-AO$_8$, SnO$_2$-AO$_{10}$ and SnO$_2$-AO$_{12}$ electrode in CO$_2$ saturated 0.5 M KHCO$_3$ solution. The inset is an equivalent circuit diagram for fitting the Nyquist plot. Note: the diameter of the semicircle for SnO$_2$-AO$_{10}$ is smaller than that of both SnO$_2$-AO$_8$ and SnO$_2$-AO$_{12}$, signifying that SnO$_2$-AO$_{10}$ exhibits the smallest charge-transfer resistance (R_{ct}). It is well accepted that the crystallinity of an electroactive material governs its electrical conductivity, which in turn affects significantly its electrocatalytic performance. Consequently, the lower activity of the other two SnO$_2$ nanostructures (i.e., SnO$_2$-AO$_8$ and SnO$_2$-AO$_{12}$) might be due to their poorer crystallinity (cf. **Fig.3d** & **Fig. S4**) which limits the electrical conductivity.
Fig. S8 H₂, CO, and HCOOH FE as a function of electrolysis time on Sn plate electrode at the potential from -0.7 to -1.2 V vs. RHE.
Fig. S9 GC Spectra of products detected on Sn plate at different potentials.
Fig. S10 H_2, CO, and HCOOH FE as a function of electrolysis time on SnO$_2$-AO$_8$ electrode at the potential from -0.7 to -1.2 V vs. RHE.
Fig. S11 H_2, CO, and HCOOH FE as a function of electrolysis time on SnO$_2$-AO$_{10}$ electrode at the potential from -0.7 to -1.2 V vs. RHE.
Fig. S12 H$_2$, CO, and HCOOH FE as a function of electrolysis time on SnO$_2$-AO$_{12}$ electrode at the potential from -0.7 to -1.2 V vs. RHE.
Fig. S13 SEM image of SnO$_2$-AO$_{10}$ after CO$_2$RR at -0.8 V vs. RHE for 180 min. The yellow ellipses indicate the presence of macropores.
Fig. S14 XRD patterns of SnO$_2$-AO$_{10}$ after CO$_2$RR under -0.8 V (vs RHE) for 180 min. Signals of both metallic Sn and SnO$_2$ were detected. The weak intensity is due to the scarcity of the sample that was collected after reaction. The strong peak at 22$^\circ$ arises from the carbon black.
Fig. S15 Depth XPS analysis (sputtering rate: 0.72 nm/s, sputtering time: 300 s) of SnO$_2$-A0$_{10}$ after CO$_2$RR at -0.8 V vs. RHE for 180 min.
Table S1. Comparison of working potentials and FEs for CO, HCOOH and C1 of Sn-based CO₂RR from the literature and this work.

Sn-based Catalysts	Electrolyte	Potential * (V vs. RHE)	FE max (%)	Reference		
			CO	HCOOH	CO+HCOOH	
SnO₂@Carbon	0.1M NaHCO₃	-1.19	NA	96.3	NA	1
SnO₂‐50	0.5M KHCO₃	-0.56V vs.SHE	NA	56	NA	2
Graphene confined Sn quantum sheets	0.1M NaHCO₃	-1.16	NA	89	NA	3
Sn-pNW	0.1M KHCO₃	-0.8	14	78	92	4
Core/Shell Cu/SnO₂ Structure	0.5M KHCO₃	-0.7	93	NA	NA	5
Urchin-like SnO₂	0.5M KHCO₃	-1.4	NA	62	NA	6
Mesoporous SnO₂	0.1M KHCO₃	-0.8	38	~40	~80	7
SnO/C	0.5M KHCO₃	-0.66	37	NA	NA	8
Tin oxide NP	0.5 mol dm⁻³	-0.4	NA	70	NA	9
porous Sn₀₂₉In₀₇₁	0.1M NaHCO₃	-1.0	~13	59.2	~72	10
Sn/SnO₂ porous hollow fiber	0.1M KHCO₃	-0.95	~10	82.1	93	11
SnO₂/AgO₃	0.1 M KHCO3	-0.8	~60	21.1	95	12
CuSn-NW Air	0.5M KHCO₃	-1.0	NA	90.2	NA	13
CuSn-NW Air	0.5M KHCO₃	-0.9	NA	81.2	NA	13
SnO₂-AO₈	0.5MKHCO₃	-0.8	15.7	55.8	71.5	This work
SnO₂-AO₈	0.5MKHCO₃	-1.0	6	78	84	This work
SnO₂-AO₁₀	0.5MKHCO₃	-0.8	22	72.9	~95	This work
SnO₂-AO₁₀	0.5MKHCO₃	-0.9	15	76.4	91.4	This work
SnO₂-AO₁₂	0.5MKHCO₃	-0.8	15.6	68.1	83.7	This work
SnO₂-AO₁₂	0.5MKHCO₃	-1.0	5	81.7	87	This work

Note: The potentials were converted to RHE scale based on the equation, \(E(\text{RHE}) = E(\text{Ag/AgCl}) + 0.0591 \times \text{pH} + 0.210 \text{V}\) or \(E(\text{RHE}) = E(\text{SCE}) + 0.0591 \times \text{pH} + 0.242 \text{V}\) by assuming the pH of CO₂-saturated 0.5 M and 0.1 M NaHCO₃ or KHCO₃ is 7.2 and 6.8, respectively. * the best value reported.

Reference in Table S1:
1. Zhang, S.; Kang, P.; Meyer, T.J. Nanostructured Tin Catalysts for Selective Electrochemical Reduction of Carbon Dioxide to Formate. *J. Am. Chem. Soc.* 2014, 136, 1734-1737.
2. Fu, Y.; Li, Y.; Zhang, X.; Liu, Y.; Zhou, X.; Qiao, J. Electrochemical coreduction to formic acid on crystalline snonanosphere catalyst with high selectivity and stability. *Chinese J. Catal.* 2016,
3. Lei, F.; Liu, W.; Sun, Y.; Xu, J.; Liu, K.; Liang, L. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat. Commun. 2016, 7, 12697.

4. Kumar, B.; Atla, V.; Brian, J. P.; Kumari, S.; Nguyen, T. Q. Reduced SnO\textsubscript{2} porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO\textsubscript{2}-into-HCOOH conversion. Angew. Chem. Int. Ed. 2017, 56, 3645-3649.

5. Li, Q.; Fu, J.; Zhu, W.; Chen, Z. Tuning Sn-Catalysis for Electrochemical Reduction of CO\textsubscript{2} to CO via the Core/Shell Cu/SnO\textsubscript{2} Structure. J. Am. Chem. Soc. 2017, 139, 4290-4293.

6. Liu, Y.; Fan, M.; Zhang, X.; Zhang, Q.; Guay, D.; Qiao, J. Design and engineering of urchin-like nanostructured SnO\textsubscript{2} catalysts via controlled facial hydrothermal synthesis for efficient electro-reduction of CO\textsubscript{2}. Electrochim. Acta. 2017, 248, 123-132.

7. Ge, H.; Gu, Z.; Han, P.; Shen, H. Mesoporous tin oxide for electrocatalytic CO\textsubscript{2} reduction. J. Colloid. Interf. Sci. 2018, 531, 564-569.

8. Gu, J.; Héroguel, F.; Luterbacher, J.; Hu, X. Densely packed, ultra-small SnO nanoparticles for enhanced activity and selectivity in electrochemical CO\textsubscript{2} reduction. Angew. Chem. Int. Ed. 2018, 57, 2943-2947.

9. Dutta, A.; Kuzume, A.; Kaliginedi, V. Probing the chemical state of tin oxide NP catalysts during CO\textsubscript{2} electroreduction: A complementary operando approach. Nano Energy 2018, 53, 828-840.

10. Hyenki, K.; Hyunju, L.; Taeho, L. Facile fabrication of porous Sn-based catalysts for electrochemical CO\textsubscript{2}, reduction to HCOOH and syngas. J. Ind. Eng. Chem. 2018, 66, 248-253.

11. Hu, H.; Gui, L.; Zhou, W.; Sun, J. Partially reduced Sn/SnO\textsubscript{2} porous hollow fiber: A highly selective, efficient and robust electrocatalyst towards carbon dioxide reduction. Electrochim. Acta. 2018, 285, 70-77.

12. Choi, Y.W.; Scholten, F.; Sinev I.; Cuenya, B.R. Enhanced Stability and CO/Formate Selectivity of Plasma-Treated SnO\textsubscript{x}/AgO\textsubscript{x} Catalysts during CO\textsubscript{2} Electroreduction. J. Am. Chem. Soc. 2019, 141, 5261-5266.

13. Wang, J.; Ji, Y.; Shao, Q.; Yin, R.; Guo, J.; Li, Y.; Huang, X. Phase and structure modulating of bimetallic CuSn nanowires boosts electrocatalytic conversion of CO\textsubscript{2}. Nano Energy 2019, 59, 138-145.