Title
Tumor-Targeting Salmonella typhimurium A1-R in Combination with Trastuzumab Eradicates HER-2-Positive Cervical Cancer Cells in Patient-Derived Mouse Models.

Permalink
https://escholarship.org/uc/item/4kb4c697

Journal
PloS one, 10(6)

ISSN
1932-6203

Authors
Hiroshima, Yukihiho
Zhang, Yong
Zhao, Ming
et al.

Publication Date
2015

DOI
10.1371/journal.pone.0120358

Peer reviewed
RESEARCH ARTICLE

Tumor-Targeting <i>Salmonella typhimurium</i> A1-R in Combination with Trastuzumab Eradicates HER-2-Positive Cervical Cancer Cells in Patient-Derived Mouse Models

Yukihiko Hiroshima¹,²,³, Yong Zhang¹, Ming Zhao¹, Nan Zhang¹, Takashi Murakami³, Ali Maawy², Sumiyuki Mii¹,², Fuminari Uehara¹,², Mako Yamamoto¹,², Shinji Miwa¹,², Shuya Yano¹,², Masashi Momiyama³, Ryutaro Mori³, Ryusei Matsuyama³, Takashi Chishima³, Kuniya Tanaka¹, Yasushi Ichikawa², Michael Bouvet², Itaru Endo³, Robert M. Hoffman¹,² *

¹ AntiCancer, Inc., San Diego, California, United States of America, ² Department of Surgery, University of California San Diego, San Diego, California, United States of America, ³ Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan

* all@anticancer.com

Abstract

We have previously developed mouse models of HER-2-positive cervical cancer. Tumors in nude mice had histological structures similar to the original tumor and were stained by anti-HER-2 antibody in the same pattern as the patient’s cancer. We have also previously developed tumor-targeting <i>Salmonella typhimurium</i> A1-R and have demonstrated its efficacy against patient-derived tumor mouse models, both alone and in combination. In the current study, we determined the efficacy of <i>S. typhimurium</i> A1-R in combination with trastuzumab on a patient-cancer nude-mouse model of HER-2 positive cervical cancer. Mice were randomized to 5 groups and treated as follows: (1) no treatment; (2) carboplatinum (30 mg/kg, ip, weekly, 5 weeks); (3) trastuzumab (20 mg/kg, ip, weekly, 5 weeks); (4) <i>S. typhimurium</i> A1-R (5 × 10⁷ CFU/body, ip, weekly, 5 weeks); (5) <i>S. typhimurium</i> A1-R (5 × 10⁷ CFU/body, ip, weekly, 5 weeks) + trastuzumab (20 mg/kg, ip, weekly, 5 weeks). All regimens had significant efficacy compared to the untreated mice. The relative tumor volume of <i>S. typhimurium</i> A1-R + trastuzumab-treated mice was smaller compared to trastuzumab alone (p = 0.007) and <i>S. typhimurium</i> A1-R alone (p = 0.039). No significant body weight loss was found compared to the no treatment group except for carboplatinum-treated mice (p = 0.021). Upon histological examination, viable tumor cells were not detected, and replaced by stromal cells in the tumors treated with <i>S. typhimurium</i> A1-R + trastuzumab. The results of the present study suggest that <i>S. typhimurium</i> A1-R and trastuzumab in combination are highly effective against HER-2-expressing cervical cancer.
Introduction

Cervical cancer is the second most common cancer in women [1]. There were 454,000 cases and 200,000 deaths in 2010 worldwide and 11,000 new cases and 3,870 deaths from cervical carcinoma in the U.S. [2, 3]. Paclitaxel, carboplatin, cisplatinum, bleomycin, mitomycin-C, vin-cristine and irinotecan are used for cervical cancer [4]. However, there is no standard treatment for cervical cancer.

The incidence of HER-2 positivity in cervical cancer was reported from 1% to 21% [5], and overexpression of HER-2 has been associated with more advanced stages and a worse prognosis [6, 7].

We previously developed mouse models of HER-2-positive patient cervical cancer [8]. Our laboratory has also previously developed a genetically-modified bacteria strain, Salmonella typhimurium A1-R, selected for tumor-targeting in vivo. S. typhimurium A1-R is auxotrophic for leu and arg [9]. The strain targets and grows in tumors. In contrast, normal tissue is cleared of these bacteria even in immunodeficient athymic mice.

S. typhimurium A1-R is effective against prostate cancer [10], breast cancer [11, 12], pancreatic cancer [13–16], glioma [17, 18], lung cancer [19], fibrosarcoma [20, 21], osteosarcoma [22] and ovarian cancer [23].

In the present study, we demonstrate the efficacy of S. typhimurium A1-R in combination with trastuzumab on mouse models of patient cervical cancer expressing HER-2.

Materials and Methods

Ethics Statement

All animal studies were conducted with an AntiCancer Institutional Animal Care and Use Committee (IACUC)-protocol specifically approved for this study and in accordance with the principals and procedures outlined in the National Institute of Health Guide for the Care and Use of Animals under Assurance Number A3873-1. In order to minimize any suffering of the animals the use of anesthesia and analgesics were used for all surgical experiments. Animals were anesthetized by intramuscular injection of a 0.02 ml solution of 20 mg/kg ketamine, 15.2 mg/kg xylazine, and 0.48 mg/kg acepromazine maleate. The response of animals during surgery was monitored to ensure adequate depth of anesthesia. Ibuprofen (7.5 mg/kg orally in drinking water every 24 hours for 7 days post-surgery) was used in order to provide analgesia post-operatively in the surgically-treated animals. The animals were observed on a daily basis and humanely sacrificed by CO2 inhalation when they met the following humane endpoint criteria: prostration, skin lesions, significant body weight loss, difficulty breathing, epistaxis, rotational motion and body temperature drop. The use of animals was necessary to understand the in vivo efficacy, in particular, anti-metastatic efficacy of the agents tested. Animals were housed with no more than 5 per cage. Animals were housed in a barrier facility on a high efficiency particulate air (HEPA)-filtered rack under standard conditions of 12-hour light/dark cycles. The animals were fed an autoclaved laboratory rodent diet (Supp. Information S1).

Animals

Female athymic (nu/nu) nude mice (AntiCancer, Inc., San Diego, CA), 4–6 weeks old, were used in this study. Mice were kept in a barrier facility under HEPA filtration. Mice were fed with autoclaved laboratory rodent diet. All mouse surgical procedures and imaging were performed with the animals anesthetized by intramuscular injection of a 0.02 ml solution of 20 mg/kg ketamine, 15.2 mg/kg xylazine, and 0.48 mg/kg acepromazine maleate. All animal studies were conducted with an AntiCancer Institutional Animal Care and Use Committee.
(IACUC)-protocol specifically approved for this study and in accordance with the principals and procedures outlined in the National Institute of Health Guide for the Care and Use of Animals under Assurance Number A3873-1.

Specimen collection

The patient provided written informed consent and the tumor specimen was procured under the approval of the Institutional Review Board of the University of California San Diego.

Subcutaneous implantation of patient cervical cancer

Tumor tissues were obtained from the HER-2-positive cervical cancer patient at surgery and cut into fragments (3-mm³) and transplanted subcutaneously in nude mice [8].

Tissue histology

Tumor tissue was removed along with surrounding normal tissues at the time of resection. The tissues were fixed in 10% formalin and embedded in paraffin before sectioning and staining. Tissue sections (3 μm) were deparaffinized in xylene and rehydrated in an ethanol series. Hematoxylin and eosin (H&E) staining was performed according to standard protocols. For immunohistochemistry, sections (5 μm) were then treated for 30 min with hydrogen peroxide (0.3%) to block endogenous peroxidase activity. The sections were subsequently washed with PBS and unmasked in citrate antigen-unmasking solution (Mitsubishi Kagaku Iatron, Inc., Tokyo, Japan) in a water bath for 40 min at 98°C. After incubation with 10% normal goat serum, the sections were incubated with anti-HER-2/ErbB2 (1:100; Cell Signaling Technology, Inc., Danvers, MA, USA) at 4°C overnight. The binding of primary antibodies was detected using anti-rabbit secondary antibodies and an avidin/biotin/horseradish peroxidase complex (DAKO Cytomation, Kyoto, Japan) for 30 min at room temperature. The labeled antigens were visualized with the DAB kit (DAKO Cytomation). Finally, the sections were counterstained with hematoxylin and examined with a BH-2 microscope (Olympus, Tokyo, Japan) equipped with an INFINITY1 2.0 megapixel CMOS digital camera (Lumenera Corporation, Ottawa, Canada). All images were acquired using INFINITY ANALYZE software (Lumenera Corporation) without post-acquisition processing.

Treatment of patient cervical cancer growing in nude mice

Six weeks after implantation, the mice were randomized to 5 groups and treated as follows: (1) no treatment; (2) carboplatinum (Selleck Chemicals, Houston, TX, USA, 30 mg/kg, ip, weekly, 5 weeks); (3) trastuzumab (Genentech, Inc., South San Francisco, CA, USA, 20 mg/kg, ip, weekly, 5 weeks); (4) S. typhimurium A1-R (5 × 10⁷ CFU/body, ip, weekly, 5 weeks); and (5) S. typhimurium A1-R (5 × 10⁷ CFU/body, ip, weekly, 5 weeks) + trastuzumab (20 mg/kg, ip, weekly, 5 weeks) were co-administered. Each treatment arm comprised 6 tumor-bearing mice. Tumor size was evaluated every 3 or 4 days by caliper measurements and the approximate volume of the tumor was calculated using the formula $4/3\pi (d/2)^2 D/2$; where d is the minor tumor axis and D is the major tumor axis. Body weight of the mice was measured on a balance every 3 or 4 days. Relative tumor volume and body weight were calculated by comparison to day-1 values. Tumors were imaged with a Canon EOS 60D digital camera with an EF–S18–55 IS lens (Canon, Tokyo, Japan) and harvested for analysis.
Evaluation of histopathological response

Histopathological response to chemotherapy was defined according to Evans’s grading scheme: Grade I, little (<10%) or no tumor cell destruction is evident; Grade IIa, destruction of 10%-50% of tumor cells; Grade IIb, destruction of 51%-90% of tumor cells; Grade III, few (<10%) viable-appearing tumor cells are present; Grade IV, no viable tumor cells are present [24, 25].

Statistical analysis

PASW Statistics 18.0 (SPSS, Inc) was used for all statistical analyses. Final tumor volumes (at day-36) in each treatment group were compared to the untreated control using a 2-tailed Student’s t-test. A p-value of ≤0.05 was considered statistically significant for all comparisons.

Results and Discussion

Histology of the original tumor is preserved in the mouse

Sheet-like growth without gland formation and stromal tissue with fibroblastic proliferation, which penetrated into nests of cancer cells was observed in the H&E stained sections of the original tumor (Fig 1A). Oval- to spindle-shaped cancer cells with high nuclear/cytoplasmic ratio were found in high magnification images (Fig 1B). In the immunostained sections with anti-HER-2 antibody, the membrane and the cytoplasm of cancer cells were strongly stained, but no staining was found in the stromal tissue (Fig 1C and 1D). All mouse-grown cervical patient-derived tumor had histological structures similar to the original tumor and were stained by anti-human HER-2 antibody (Fig 1E–1H), suggesting that the model recapitulates the biological behavior of the original tumor [8].

S. typhimurium A1-R + trastuzumab combination is effective against patient-derived cervical cancer growing in nude mice

The relative tumor volumes at day-36, compared to day-1, of each group were as follows: (1) no treatment: 10.23 ± 2.91; (2) carboplatinum: 1.02 ± 0.43; (3) trastuzumab: 1.23 ± 0.50; (4) *S. typhimurium* A1-R: 0.54 ± 0.40; (5) *S. typhimurium* A1-R + trastuzumab: 0.08 ± 0.04 (Fig 2A). All regimens had significant efficacy compared to the untreated mice. The relative tumor

Fig 1. Tumor histology and immunohistochemistry. (A) H & E-stained section of the original patient tumor. (B) High magnification image of (A). (C) Immunostained section of the original patient tumor using anti-HER-2 antibody. (D) High magnification image of (C). (E) H & E-stained section of the mouse-grown tumor. (B) High magnification image of (F). (G) Immunostained section of the mouse-grown tumor using an anti-HER-2 antibody. (H) High magnification image of (G). Scale bars: 200 μm (A, C, E and G) and 25 μm (B, D, F and H).

doi:10.1371/journal.pone.0120358.g001
The relative body weight at day-36, compared to day-1, of each group was as follows: (1) no treatment: 1.13 ± 0.14; (2) carboplatinum: 0.93 ± 0.06; (3) trastuzumab: 1.04 ± 0.22; (4) S. typhimurium A1-R: 1.09 ± 0.06; (5) S. typhimurium A1-R + trastuzumab: 1.00 ± 0.08. No significant body weight loss was found compared to the untreated mice, except for carboplatinum-treated mice (p = 0.021) (Fig 2B).

volume of S. typhimurium A1-R + trastuzumab-treated mice was smaller than with trastuzumab treatment alone (p = 0.007) or S. typhimurium A1-R treatment alone (p = 0.039) (Fig 2A).
S. typhimurium A1-R + trastuzumab combination eradicates HER-2-positive cervical cancer in mice as observed in histological sections

Histopathological response to treatment was defined according to Evans’s grading scheme. In tissue sections from untreated mice, numerous cancer cells were observed (Fig 3F). Approximately 30% of the cancer cells were destroyed and replaced by stromal cells in tissue sections from mice treated with carboplatinum (Fig 3G). Seventy percent of the cancer cells were destroyed in the tissue sections from mice treated with trastuzumab (Fig 3H). Sixty percent of the cancer cells were destroyed in the tissue sections from mice treated with S. typhimurium A1-R (Fig 3I). In the tissue sections from mice treated with S. typhimurium A1-R + trastuzumab, viable cancer cells were not detected and were replaced by stromal cells (Fig 3J). The untreated control was judged as grade I; carboplatinum treatment as IIa; trastuzumab treatment as IIb; S. typhimurium A1-R treatment as IIb; and S. typhimurium A1-R + trastuzumab treatment as III—IV. These results suggest the S. typhimurium A1-R + trastuzumab combination can eradicate HER-2-positive cervical cancer in mice.

The mechanisms of the strong efficacy of the combination of S. typhimurium A1-R and trastuzumab remains to be elucidated. One contributing factor could be the ability of S. typhimurium A1-R to stimulate (decoy) the cell cycle of quiescent, resistant cells, which then begin to
cycle and become sensitive to trastuzumab [26]. Having found the strong efficacy of the combination of S. typhimurium A1-R and trastuzumab in subcutaneous models, future experiments will utilize orthotopic models, using the surgical orthotopic implantation (SOI) method our laboratory has developed for patient tumors [27–32]. Access of S. typhimurium A1-R to orthotopic tumors has been previously demonstrated by us [8–24]. Access to trastuzumab therapy in orthotopic models has already been demonstrated by us as well [33]. The orthotopic models of a series of HER-2 positive and mixed HER-2 expressing cervical cancer will allow efficacy testing of the combination of S. typhimurium A1-R and trastuzumab against primary and metastatic disease and further characterization of stromal and cancer cells before and after treatment, as well as the effects of leukocyte-depleting regimens following or before the treatment. SOI requires surgery and since ketamine may affect the immune system, different anesthetics will be compared for any effect on treatment response in future experiments.

Acknowledgments
This paper is dedicated to the memory of A. R. Moossa, M.D.

Author Contributions
Conceived and designed the experiments: YH RMH. Performed the experiments: YH YZ MZ NZ AM. Analyzed the data: YH YZ MZ NZ AM S. Mi YF U. Miwa SY TM MM TC KT YI MB IE RMH. Contributed reagents/materials/analysis tools: RMH. Wrote the paper: YH RMH.

References
1. Wang CW, Wu TI, Yu CT, Wu YC, Teng YH, Chin SY, et al. Usefulness of p16 for differentiating primary pulmonary squamous cell carcinoma from cervical squamous cell carcinoma metastatic to the lung. Am J Clin Pathol 2009; 131:715–722. doi: 10.1309/AJCPTPBCH65KUJT
PMID: 19369633
2. Sabatier R, Roussin C, Riviere JP, Jalaguier A, Jacquemier J, Bertucci F. Breast metastasis of a squamous cell carcinoma of the uterine cervix mimicking inflammatory breast cancer. Case Rep Oncol 2012; 5:464–470. doi: 10.1159/000342255 PMID: 23109923
3. Gamez RG, Jessurun J, Berger MJ, Pambuccian SE. Cytology of metastatic cervical squamous cell carcinoma in pleural fluid: report of a case confirmed by human papillomavirus typing. Diagn Cytopathol 2009; 37:381–387. doi: 10.1002/dc.21027 PMID: 19217045
4. Hashimoto K, Yonemori K, Katsumata N, Hirakawa A, Hirata T, Yamamoto H, et al. Use of squamous cell carcinoma antigen as a biomarker of chemotherapy response in patients with metastatic cervical carcinoma. Eur J Obstet Gynecol Reprod Biol 2011; 159:394–398. doi: 10.1016/j.ejogrb.2011.07.001 PMID: 21831511
5. Yan M, Parker BA, Schwab R, Kurzrock R. HER-2 aberrations in cancer: Implications for therapy. Cancer Treat Rev 2014; 40:770–780. doi: 10.1016/j.ctrv.2014.02.008 PMID: 24656976
6. Costa MJ, Walls J, Treford JD. c-erbB-2 oncoprotein overexpression in uterine cervix carcinoma with glandular differentiation. A frequent event but not an independent prognostic marker because it occurs late in the disease. Am J Clin Pathol 1995; 104:634–642. PMID: 8526205
7. Kihana T, Tsuda H, Teshima S, Nomoto K, Tsugane S, Sonoda T, et al. Prognostic significance of the overexpression of c-erbB-2 protein in adenocarcinoma of the uterine cervix. Cancer 1994; 73:148–153. PMID: 7506116
8. Hiroshima Y, Zhang Y, Zhang M, Maawy AA, Mii S, Yamamoto M, et al. Establishment of a patient-derived orthotopic xenograft (PDX) model of HER-2-positive cervical cancer expressing the clinical metastatic pattern. PLOS ONE, in press.
9. Zhao M, Yang M, Li XM, Jiang P, Baranov E, Li S, et al. Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci USA 2005; 102:755–760. PMID: 15644448
10. Zhao M, Geller J, Ma H, Yang M, Penman S, Hoffman RM. Monotherapy with a tumor-targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer. Proc Natl Acad Sci USA 2007; 104:10170–10174. PMID: 17548809
11. Zhao M, Yang M, Ma H, Li X, Tan X, Li S, et al. Targeted therapy with a *Salmonella typhimurium* leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res 2006; 66:7647–7652. PMID: 16885365

12. Zhang Y, Tome Y, Suetsugu A, Zhang L, Zhang N, Hoffman RM, et al. Determination of the optimal route of administration of *Salmonella typhimurium* A1-R to target breast cancer in nude mice. Anticancer Res 2012; 32:2501–2508. PMID: 22753708

13. Nagakura C, Hayashi K, Zhao M, Yamauchi K, Yamamoto N, et al. Efficacy of a genetically-modified *Salmonella typhimurium* in an orthotopic human pancreatic cancer in nude mice. Anticancer Res 2009; 29:1873–1878. PMID: 19528442

14. Yam C, Zhao M, Hayashi K, Maawy A, Hassanin MK, Uehara F, et al. Monotherapy with a tumor-targeting mutant of *S. typhimurium* inhibits liver metastasis in a mouse model of pancreatic cancer. J Surg Res 2010; 164:248–255. doi: 10.1016/j.jss.2009.02.023 PMID: 19766249

15. Hiroshima Y, Zhao M, Zhang Y, Maawy A, Hassanein MK, Uehara F, et al. Comparison of efficacy of *Salmonella typhimurium* A1-R and chemotherapy on stem-like and non-stem human pancreatic cancer cells. Cell Cycle 2013; 12:2774–2780. doi: 10.4161/cc.25872 PMID: 23966167

16. Hiroshima Y, Zhao M, Maawy A, Zhang Y, Katz MH, Fleming JB, et al. Efficacy of *Salmonella typhimurium* A1-R versus chemotherapy on a pancreatic cancer patient-derived orthotopic xenograft (PDOX). J Cell Biochem 2014; 115:1254–1261. doi: 10.1002/jcb.24769 PMID: 24435915

17. Kimura H, Zhang L, Zhao M, Hayashi K, Tsuchiya H, Tomita K, et al. Targeted therapy of spinal cord glioma with a genetically-modified *Salmonella typhimurium*. Cell Prolif 2010; 43:41–48. doi: 10.1111/j.1365-2184.2009.00652.x PMID: 19922490

18. Momiyama M, Zhao M, Kimura H, Tran B, Chishima T, Bouvet M, et al. Inhibition and eradication of human glioma with tumor-targeting *Salmonella typhimurium* in an orthotopic nude-mouse model. Cell Cycle 2012; 11:628–632. doi: 10.4161/cc.11.3.19116 PMID: 22274398

19. Zhao M, Suetsugu A, Ma H, Zhang L, Liu F, Zhang Y, et al. Efficacy against lung metastasis of *Salmonella typhimurium* in immunocompetent mice. Cell Cycle 2012; 11:187–193. doi: 10.4161/cc.11.1.18667 PMID: 22187888

20. Hayashi K, Zhao M, Yamauchi K, Yamamoto N, Tsuchiya H, Tomita K, et al. Cancer metastasis directly eradicated by targeted therapy with a modified *Salmonella typhimurium* A1-R. Oncotarget 2014; 5:12849–12861. PMID: 25528763

21. Miwa S, Zhang Y, Baek K-E, Uehara F, Yano S, Yamamoto M, et al. Inhibition of spontaneous and experimental lung metastasis of soft-tissue sarcoma by tumor-targeting *Salmonella typhimurium* A1-R. J Cell Biochem 2009; 110:992–998. doi: 10.1002/jcb.22078 PMID: 19199339

22. Hayashi K, Zhao M, Yamauchi K, Yamamoto N, Tsuchiya H, Tomita K, et al. Systemic targeting of primary bone tumor and lung metastasis of high-grade osteosarcoma in nude mice with a tumor-selective strain of *Salmonella typhimurium*. Cell Cycle 2009; 8:870–875. PMID: 19215011

23. Matsumoto Y, Miwa S, Zhang Y, Hiroshima Y, Yano S, Uehara F, et al. Efficacy of tumor-targeting *Salmonella typhimurium* A1-R on nude mouse models of metastatic and disseminated human ovarian cancer. J Cell Biochem 2014; 115:1996–2003. doi: 10.1002/jcb.24871 PMID: 24924355

24. Hiroshima Y, Zhao M, Maawy A, Zhang Y, Katz MH, Fleming JB, et al. Efficacy of *Salmonella typhimurium* A1-R versus chemotherapy on a pancreatic cancer patient-derived orthotopic xenograft (PDOX). J Cell Biochem 2014; 115:1254–1261. doi: 10.1002/jcb.24769 PMID: 24435915

25. Evans DB, Rich TA, Byrd DR, Cleary KR, Connolly JH, Levin B, et al. Preoperative chemoradiation and pancreaticoduodenectomy for adenocarcinoma of the pancreas. Arch Surg 1992; 127:1335–1339. PMID: 13598511

26. Yano S, Zhang Y, Zhao M, Hiroshima Y, Miwa S, Uehara F, et al. Tumor-targeting *Salmonella typhimurium* A1-R decoys quiescent cancer cells to cycle as visualized by Fucci imaging and become sensitive to chemotherapy. Cell Cycle 2014; 13:3958–3963. doi: 10.4161/15384101.2014.964115 PMID: 25483077

27. Fu X, Besterman JM, Monosov A, Hoffman RM. Models of human metastatic colon cancer in nude mice orthotopically constructed by using histologically intact patient specimens. Proc Natl Acad Sci USA 1991; 88:9345–9349. PMID: 19243988

28. Fu X, Guadagni F, Hoffman RM. A metastatic nude-mouse model of human pancreatic cancer constructed orthotopically from histologically intact patient specimens. Proc Natl Acad Sci USA 1992; 89:5645–5649. PMID: 16089751

29. Wang X, Fu X, Hoffman RM. A new patient-like metastatic model of human lung cancer constructed orthotopically with intact tissue via thoracotomy in immunodeficient mice. Int. J. Cancer 1992; 51:992–995. PMID: 16395451
30. Fu X, Hoffman RM. Human ovarian carcinoma metastatic models constructed in nude mice by orthotopic transplantation of histologically-intact patient specimens. Anticancer Res 1993; 13:283–286. PMID: 8517640

31. Fu X, Le P, Hoffman RM. A metastatic-orthotopic transplant nude-mouse model of human patient breast cancer. Anticancer Res 1993; 13:901–904. PMID: 8352558

32. Furukawa T, Kubota T, Watanabe M, Kitajima M, Hoffman RM. Orthotopic transplantation of histologically intact clinical specimens of stomach cancer to nude mice: correlation of metastatic sites in mouse and individual patient donors. Int J Cancer 1993; 53:608–612. PMID: 8436434

33. Gros S, Kurschat N, Dohrmann T, Reichelt U, Dancau A-M, Peldschus K, et al. Effective therapeutic targeting of the overexpressed HER-2 receptor in a highly metastatic orthotopic model of esophageal carcinoma. Mol Cancer Ther 2010; 9:2037–2045. doi: 10.1158/1535-7163.MCT-10-0209 PMID: 20606043