Assessment of ecotoxicological effects of agrochemicals on bees using the PRIMET model, in the Tiko plain (South-West Cameroon)

Daniel Brice Nkontcheu Kenkoa, b, *, Norbert Tchamadeu Ngamenib

a Zoology Laboratory, Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63 Buea, South-West Region, Cameroon
b Biology and Applied Ecology Research Unit, Dschang School of Science and Technology, University of Dschang, P.O. Box 67 Dschang, West Region, Cameroon

ARTICLE INFO

Keywords:
Agrochemical
Ecotoxicological
PRIMET
Bees
Risk assessment
ETR

ABSTRACT

Pesticide utilization in agriculture has many harmful effects of non-target organisms. This study assessed pesticide risk to bees using PRIMET (Pesticide Risks in the Tropics to Man, Environment and Trade), a pesticide risk model. Data was collected on pesticide application scheme (active ingredient, crop, dose, number of applications, application interval) and ecotoxicological properties (LD$_{50}$/Bee). These two groups of variables were introduced one after the other in PRIMET 2.0 to obtain the Predicted Exposure Concentration (PEC$_{bee}$). No Effect Concentration (NEC$_{bee}$) and Exposure Toxicity Ratio (ETR$_{bee}$ = PEC$_{bee}$/NEC$_{bee}$). Eight insecticides (out of 15 assessed) and 1 nematicide (out of 1) posed a Definite Risk to bees with imidacloprid (PEC = 4412 g/ha; ETR = 1.09E+07) at the top position. Six insecticides (out of 16), and 1 nematicide (out of 1) posed a Possible Risk to bees. The insecticide oxamyl (PEC = 2044g/ha; ETR = 87) had the highest ETR in this category, followed by the nematicide ethophos (PEC = 5.4E+04 g/ha; ETR = 69). The results of this study revealed that 27 compounds, including 1 insecticide (out of 15), 10 herbicides (out of 10) and 16 fungicides (out of 16) posed No Risk to bees. Herbicides and fungicides appeared “safer” for bees as compared to other pesticide families. The fungicides, mancozeb (PEC = 1 g/ha; ETR = 0.006) and maneb (PEC = 1 g/ha, ETR = 0.006) had the lowest ETR out of all the 43 compounds assessed in the study. Regulation on the importation, distribution and use should be reinforced for very hazardous compounds such as imidacloprid, carbofuran, thiamethoxam and metaldehyde. Substituting the most toxic pesticides with less toxic ones such as novaluron (insecticide), oxadiazon (herbicide), mancozeb (fungicide) and maneb (fungicide) may help to reduce pesticide pressure on the environment.

1. Introduction

The use of pesticides remains the most cost-effective means of controlling pests and weeds, allowing the maintenance of current yields and so, contributing to economic viability (Arias-Estévez et al., 2008). Unfortunately, a high percentage of pesticides applied affect non-target organisms with many acute lethal and chronic sublethal effects. Pesticide users often fail to follow safety measures and recommended doses, and suffer from post-application health disorders such as headache, impaired vision, irritation (Kenko & Kamta 2021; Kenko et al., 2017b; Tchamadeu et al., 2017). Pesticides have negative effects on male reproductive capacities (low sex hormone and sperm counts) as well as liver and kidney functions (Manfo et al. 2012, 2020). Pesticides are among the main chemicals involved in poisoning among patients referred to the Buea Regional Hospital, South-west Cameroon (Kenko Nkontcheu et al., 2020).

* Corresponding author.
E-mail address: konko.daniel@ubuea.cm (D.B. Nkontcheu Kenko).

https://doi.org/10.1016/j.heliyon.2022.e09154
Received 14 December 2021; Received in revised form 27 January 2022; Accepted 16 March 2022
2405-8440/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
As toxicology studies are very expensive, toxicity data in Africa are often sourced from the northern hemisphere (Van den Brink 2008). Moreover, models used in EcoRA are mostly complex and intricate with a large number of required input parameters and data are not quite available. Models often focus on only certain risk aspects, making their applicability limited (Malherbe et al., 2013). These limitations are amplified in developing countries by lack of resources, thus restricting use of the models. The development of PRIMET (Pesticide Risks in the Tropics to Man, Environment and Trade) that require less data input, relevant to more chemical class and technical know-how was a necessity. PRIMET is a simple risk assessment model that requires few inputs and is suitable for use in developing countries (Peeters et al., 2008); it is easy to use even by people without specialist training (Malherbe et al., 2013). PRIMET has been used in South Africa (Malherbe et al., 2013), Cameroon (Fai et al., 2019; Kenko et al., 2017a), Vietnam (Stadlinger et al., 2018), Ghana (Onwona-Kwakye et al., 2020) and Ethiopia (Teklu et al., 2021).

In Cameroon, pesticide importation, distribution and use are done under conditions that are very far from ideal (Manfo et al., 2012). There are many studies on pesticide ecotoxicology in Cameroon. These include surveys on pesticide use patterns (Abang et al., 2013; Abdulai et al., 2018; Amouh 2011; Dieudonné et al., 2015; Kenko & Kamta 2021; Kenko et al., 2017b; Matthews et al., 2003; Parrot et al., 2008; Tarla et al., 2013; Tchamadeu et al., 2017; Tetang and Foka 2008), laboratory bioassays (Kenko et al., 2017c; Manfo et al., 2012, 2020; Watching et al., 2020) and modelling (Fai et al., 2019; Kenko et al., 2017a). These studies gave evidence of human and environmental health implications of pesticide use. The Tiko plain has sandy alluvial and volcanic soil types with high agricultural potentials, making industrial agriculture one of the main activities of the municipality, among other activities such as trading, fishing and livestock (Tabi et al., 2018). The majority of the forest land (80%) of the Tiko municipality has been converted to oil palm, rubber and banana plantations by Cameroon Development Corporation (CDC) and only few patches of secondary forests exist. In addition to the CDC plantations, there are also small-scale farms producing cocoa and food crops (Neba et al., 2021). Because of pest attacks and in order to increase the yield, pesticide use in agriculture is inevitable. Therefore, many pesticides are used in the south-west region of Cameroon (Oyekale 2017; Tandi et al., 2014). However, pesticides have many harmful effects on non-target organisms (Ibekwe 2004; Sánchez-Bayo 2012; Stanley et al., 2016), including bees. Bees are among animal groups suffering from pesticide effects. Currently, there is a global concern about declining bee populations (Cresswell et al., 2012). Bees act as pollinators of many tropical crops (Hung et al., 2018); the western honeybee Apis mellifera is the most important crop pollinator species in the world (Gong & Diao 2017). Due to abundant agricultural activities, and the lack of environmental monitoring scheme by agro-industrial complexes of the municipality, this study aimed at assessing the risks posed by pesticides to bees using PRIMET, a pesticide risk model, in the Tiko plain, south-west Cameroon.

2. Material and methods

2.1. Study area

The field work was carried out in the Tiko plain south-west region of Cameroon. Located between 4.08° N (Latitude) and 9.37° E (Longitude), the study site has an elevation of 52m and an annual rainfall of 3198mm (Tingem et al., 2008). The coldest and the rainiest month is August while the warmest month is January. The dry season runs from November to February (Figure 1) and the rainy season from March to October (CDC 2016). Tiko is located at the base of Mount Cameroon, and it is close to the Atlantic coast of Cameroon, resulting in a humid climate. The main water courses in the Tiko municipality include the River Mungo, Ombe River, Ndongo and Benoe streams which empty into the Atlantic Ocean (Tabi et al., 2018).

2.2. Pesticide risk assessment

For pesticide risk assessment on bees, two sets of inputs parameters are required by the PRIMET model: pesticide application scheme in the study area and ecotoxicological properties of pesticides.

2.2.1. Survey on pesticide application scheme

Data on the pesticide application schemes were obtained from the survey using a structured questionnaire, and direct interviews of the CDC field assistants and local farmers. Informed consent was received from the participants in the questionnaire and interviews. Pesticide commercial name and active ingredients, applied dose (gram of active ingredient per hectare), number of applications per crop season, time between applications (days), crops on which pesticides are applied, were recorded (Tables 1, 2 and 3).

2.2.2. Ecotoxicological characteristics of pesticides used in the area

Pesticide ecotoxicological data (Table 4) for bees was obtained from the Pesticide Properties Data Base (http://sitem.herts.ac.uk/aeru/ppdb/en/) (Lewis et al., 2016).

2.3. Data processing and analysis

Parameters in Tables 1, 2, 3, and 4 were entered at one a time into the PRIMET Version 2.0 software. For each active ingredient, the PRIMET software calculated the Predicted Exposure Concentration (PECbee), the No Effect Concentration (NECbee) and the Exposure Toxicity Ratio (ETRbee) (Peeters et al., 2008).

2.3.1. Predicted Exposure Concentration (PECbee)

The exposure is established as the maximum single application rate expressed as gram active ingredient per hectare.

Figure 1. Ombrothermic graph of the Tiko plain; Source: (CDC 2016).
2.3.2. No effect concentration (NECbee)

For the effect assessment, a “safe” concentration was calculated from the toxicity values and an assessment correction factor (to convert from μg/bee to g/ha) (Eq. (1)).

\[
\text{NECbee} = \text{EFbee} \times \text{LD50bee}
\]

where,

\[
\text{NECbee} = \text{No effect concentration for bees (g/ha)}
\]

\[
\text{LD50bee} = \text{concentration (oral or contact) that kills 50% of bees (μg/bee)}, \text{the most sensitive endpoint of oral LD50 and contact LD50.}
\]

\[
\text{EFbee} = \text{extrapolation correction factor for effect assessment of bees, to convert from μg/bee to g/ha (default value = 50).}
\]

2.3.3. Risk assessment for bees

The risk, expressed in Exposure Toxicity Ratio (ETR) as a result of application is computed according to Eq. (2):

\[
\text{ETR}_{\text{bee}} = \frac{\text{PEC}_{\text{bee}}}{\text{NEC}_{\text{bee}}}
\]

where,

\[
\text{ETR}_{\text{bee}} = \text{Exposure Toxicity Ratio due to application}
\]

\[
\text{PEC}_{\text{bee}} = \text{Exposure concentration = individual dose applied (g/ha)}
\]

\[
\text{NEC}_{\text{bee}} = \text{No Effect Concentration for bees (g/ha)}
\]

ETR values were interpreted as seen in Table 5 following (Peeters et al., 2008):

\[
\begin{align*}
\text{ETR} < 1, & \text{ there is No Risk} \\
1 \leq \text{ETR} \leq 100, & \text{there is a Possible Risk} \\
\text{ETR} > 100, & \text{there is a Definite Risk}
\end{align*}
\]

2.3.4. Distribution of ETRs

The Kruskal-Wallis’s test (non-parametric) was used to check the distribution of ETRs and compare medians according to pesticides families. The spearman method was used to check the statistical correlation between LD50bee and ETRbee.

3. Results

3.1. Insecticides effects on bees

The present study revealed that almost all the insecticides (75%) used in the area posed a possible and a definite risk to bees. The insecticide imidacloprid (PEC = 4.412 μg/bee; ETR = 1.09E +07) posed the highest risk followed by carbofuran (PEC = 5.600 μg/bee; ETR = 3.111). Novaluron (PEC = 147 μg/bee, ETR = 0.03) is the only insecticide posing “No Risk” to bees (Table 6).

3.2. Effects of herbicides, molluscicides and nematicides on bees

All the herbicides evaluated in the study area posed “No Risk” (ETR<1). Metaldehyde (molluscicide) posed a definite risk (ETR = 2.124) to bees while ethoprophos (nematicide) posed a possible risk (ETR = 69) to bees (Table 7).
3.3. Effect of fungicides on bees

Analyses indicated that all the assessed 16 fungicides posed “No Risk” to bees with ETR below 1. This suggests that fungicides are less toxic to bees in the study area (Table 8).

3.4. ETRs according to pesticides families

The Kruskal-Wallis’s test revealed that the distribution of ETRs was significantly (p < 0.05) higher for insecticides, as compared to herbicides and fungicides (Figure 2).

Table 4. Ecotoxicological characteristics of pesticides.

Insecticides	Active Ingredient	LD50 (μg/bee)	Fungicides	Active Ingredient	LD50 (μg/bee)	Herbicides	Active Ingredient	LD50 (μg/bee)
Acetamiprid	1.72		Azoxystrobin	200		Nicosulfuron	2,4-D	100
Bifenthrin	0.02		Bitertanol	200		Oxadiazon		
Carbosulfan	0.036		Carbendazim	50		Glyphosate		
Chlorpyrifos	0.059		Chlorthalonil	40		Glyphosinate-NH₂	345	
Cypermethrin	0.023	CuOH₂	44.46	Mefenoxam	100	Nipymethoxam		
Deltamethrin	0.0015	Difenoconazole	100	Mepanipyrim	100	Molluscide		
Dimethoate	0.1	Eponiconazole	100	Neonicotinoid	76			
Fipronil	0.0059	Fenpropimorph	100	Neonicotinoid	76			
Imidacloprid	0.081	Imazalet	39	Paraquat	9.26			
λ-Cyhalothrin	0.038	Mancosub	85.3	Triclopyr	100			
Lindane	0.23	Maneb	100					
Malathion	0.16	Metalaxyl	200					
Novaluron	100	Propiconazole	100					
Oxamyl	0.47	Pyraclostrobin	100					
Thiamethoxam	0.024	Tebuconazole	200					

Table 5. ETR range, risk categories and corresponding colours.

ETR range	Risk category	Colour
ETR <1	No Risk	Green
1 ≤ ETR ≤ 100	Possible Risk	Orange
ETR > 100	Definite Risk	Red

Table 6. Risks posed by insecticides on Bees.

Pesticide active ingredients	PECbee (g/ha)	NECbee (g/ha)	ETRbee
Acetamiprid	1000	86	12
Bifenthrin	147	1	147
Carbosulfan	5600	1.8	3111
Chlorpyrifos	73.5	2.95	25
Cypermethrin	441	1.15	384
Deltamethrin	73.5	0.08	980
Dimethoate	147	5	3
Fipronil	88	0.3	298
Imidacloprid	4 412	0.4	1,09E+07
λ-Cyhalothrin	1 000	1.9	526
Lindane	735.3	11.5	64
Malathion	441	8	55
Novaluron	147	5 000	0.03
Oxamyl	2 044	23.5	87
Thiamethoxam	2 500	1.2	0.081

Table 7. Risks posed by herbicides, molluscicides and nematicides on Bees.

SN	Pesticide active ingredients	PECbee (g/ha)	NECbee (g/ha)	ETRbee
1	2,4-D	221	5 000	0.04
2	Clethodim	147	2 550	0.06
3	Diuron	295	5 385	0.05
4	Glyphosate	588	5 000	0.12
5	Glyphosinate-NH₂	735	1.73E+07	0.04
6	Glyphosinate-NH₂	588	20 000	0.03
7	Nicosulfuron	147	3 800	0.04
8	Oxadiazon	29.5	5 000	0.006
9	Paraquat	442	463	0.95
10	Triclopyr	551	5 000	0.11
11	Metaldehyde	1.2E+04	5 650	0.12
12	Ethoprophos	5.4E+04	780	0.69

1-10: Herbicides; 11: Molluscide; 12: Nematicide.

4. Discussion

4.1. Pesticides with no risk effects to bees

In the insecticide family, only novaluron (out of 15 insecticides) posed “No risk” to bees with ETR of 0.03. Novaluron (chitin synthesis inhibitor) is an insect growth regulator that is generally less toxic to bee (LD50_bee = 100μg/bee) (Lewis et al., 2016) as compared to other insecticides, hence its ability to pose “No Risk”; moreover, this compound was used at relatively low dosage (147 g/ha) by tomato farmers in the study area. In fact, a pesticide with relatively high LD50_bee is expected to have a low ETR. The spearman correlation revealed that LD50_bee had a very strong positive and significant (r² = 0.997; p < 0.0001) correlation with NEC_bee, and a strong negative and very significant (r² = -0.70; p < 0.0001) correlation with the ETR_bee. A previous study revealed that novaluron had not sublethal effects among bumblebees, Bombus terrestris (Malone et al., 2007). Nevertheless, novaluron, even at full field rate (147 g/ha) is very harmful to immature alfalfa leaf-cutting bees, Megachile rotundata (Hymenoptera: Megachilidae) (Hodgson et al., 2011).

Regardless of the dose, all the herbicides and fungicides in this study posed “No Risk” to bees. Bees have the ability to develop tolerance to some insecticides, acaricides and fungicides using P450 genes that produce detoxification enzymes (Gong & Diao 2017), but this capacity is
Table 8. Risks posed by fungicides to Bees.

Pesticide active ingredients	PEC bee (g/ha)	NEC bee (g/ha)	ETR bee
Azoxystrobin	100	10 000	0.01
Biteration	300	10 000	0.03
Carbendazim	40	2 500	0.02
Chlorothalonil	1000	2 000	0.5
Cu(OH)₂	50	2 223	0.02
Difenconazole	100	5 000	0.02
Epoxiconazole	100	5 000	0.02
Fenpropimorph	616	5 000	0.12
Imazalil	1	1 950	0.0005
Mancozeb	1	4 265	0.0002
Maneb	1	5 000	0.0002
Metalaxyl	50	10 000	0.005
Propiconazole	100	5 000	0.02
Pyraclostrobin	100	5 000	0.02
Tebuconazole	59	10 000	0.056
Thiabendazole	500	1 700	0.29

Figure 2. Distribution of ETRs in pesticide families.

often lowered when pesticides are combined. Joint toxicity of pesticides mixture may be more toxic than individual chemical compounds (Almasri et al., 2020).

4.2. Pesticides with possible risk effects to bees

Six insecticides (acetamiprid, dimethoate, lindane, chlorpyrifos, malathion and oxamyl) out of 15 (40%) and the only nematicide (ethoprophos), posed a possible risk to bees with oxamyl (PEC = 2044μg/bee, ETR = 86.98) indicating the highest risk. These findings may be related to the fact that oxamyl (AChE inhibitor), a soil-applied insecticide (Lewis et al., 2016), was used at relatively high dosage (2044μg/ha). Additionally, compounds such as acetamiprid (LD₅₀ = 1.72μg/bee), dimethoate (LD₅₀ = 0.1μg/bee), lindane (LD₅₀ = 0.23μg/bee), chlorpyrifos (LD₅₀ = 0.059μg/bee), malathion (LD₅₀ = 0.16μg/bee), and oxamyl (LD₅₀ = 0.47μg/bee) are very toxic to bees because their LD₅₀ < 2 μg/bee (Vázquez et al., 2015). This work gave evidence of negative correlation between pesticides LD₅₀ and ETR. Acetamiprid and dimethoate seem to be less toxic in the aquatic milieu as a previous study reported them to pose minor aquatic risk; oxamyl was predicted by PRIMET to pose a possible risk to the aquatic milieu while lindane, chlorpyrifos, malathion posed a definite aquatic risk (Kenko et al., 2017a). Lindane, chlorpyrifos, malathion seem to elicit higher toxicity in water than on land. However, they pose risk both for terrestrial and aquatic ecosystems. Lindane and dimethoate which posed a possible risk to bees are banned in Cameroon (MINADER 2013a, b, c). This is an indication that some agrochemicals may still enter the country through unorthodox routes as earlier reported (Manfo et al., 2012). This stresses the necessity to follow up and reinforce legislation on the importation, distribution and utilization of agrochemicals in Cameroon.

Ethoprophos (PEC = 5.4E+04; ETR = 69.23) has a moderate toxicity to bee (LD₅₀ = 15.6μg/bee) but it posed a possible risk probably because of its use at high dosage (54 000 g/ha), every 4 months by farmers. This broad spectrum nematicide has been predicted by PRIMET to pose a definite aquatic risk to the Benoe River, South-West Cameroon (Kenko et al., 2017a). As it posed a definite risk to bees, ethoprophos (nematicide) is risky both for aquatic and terrestrial ecosystems.

4.3. Pesticides with definite risk effects to bees

Eight insecticides (bifenthrin, carbofuran, cypermethrin, deltamethrin, fipronil, imidacloprid, λ-cyhalothrin and thiamethoxam) out of 15 (53%) posed a definite risk to bees. Imidacloprid (neonicotinoid) indicated the highest ETR. The sensitivity of bees to neonicotinoids such as imidacloprid and thiamethoxam is determined by cytochrome P450s of the CYP9Q subfamily (Manjon et al., 2018). In fact, neonicotinoids, organophosphates, triazoles, carbamates, dicroboximides and dinitroaniline pesticides have a huge bioaccumulation potential in honeybee bodies with concentrations ranging from 0.3 to 81.5 ng/g (Kasisotis et al., 2014). Additionally, some pesticides strongly inhibit honey bee cytochromes CYPQQ2 and CYPQQ3 (Haas & Nauken 2021) which are involved in xenobiotic detoxification in bees (Berenbaum & Johnson 2015).

Bifenthrin, a sodium channel modulator, posed a definite risk to bees because of their high toxicity (LD₅₀ = 0.02µg/bee) even though it was used at relatively low dosage (147 g/ha) twice a season on tomatoes. Bifenthrin is a serious aquatic contaminant (Ensinger et al., 2013) which has previously been predicted to pose a possible aquatic risk. Carbofuran’s capacity to pose risk may be related to its use at relative high dosage (5 600 g/ha). This insecticide is also risky to the aquatic ecosystem; it has been banned for use in Cameroon (MINADER 2013a), so its use in the study area is completely illegal. Cypermethrin is used by many farmers in the area; it is very toxic to bee (LD₅₀ = 0.023µg/bee) indicating its capacity to be risky even at low dosage (444 g/ha). Deltamethrin, a fast-acting pyrethroid insecticide, posed a definite risk. This may be because of its repeated application (6 times/season). In the same line of thought, deltamethrin posed a possible risk when used on maize (Ansara-Ross et al., 2008), and a definite risk when used on corn and cotton (Ansara-Ross et al., 2008; Kenko et al., 2017a).

Previously reported to pose minor aquatic risk (Kenko et al., 2017a), fipronil (broad spectrum insecticide) posed a definite risk to bees probably because it was applied six times a crop season on cocoa. Thiamethoxam, an insecticide with broad spectrum systemic action, was used at a relative higher dosage (2 500 g/ha) on cocoa, hence its ability to pose risk to bees. Nevertheless, thiamethoxam, has low aquatic toxicity because it posed no risk to the Benoe stream (Kenko et al., 2017a). Moreover, the potential acute risk of thiamethoxam to freshwater organisms was found to be minimal (Finnegan et al., 2017). λ-Cyhalothrin (pyrethroid insecticide) was used 4 times per crop season, monthly at 1 000 g/ha on cocoa; it is very toxic to bees (LD₅₀ = 0.038µg/bee). These may be the reason for its ability to pose a definite risk.

Metaldehyde, a systemic molluscicide for controlling terrestrial slugs and snails (Joyce et al., 2020) posed a definite risk to bees (PEC = 1.2E+04; ETR = 2124). Metaldehyde is practically non-toxic to the adult honey bee on both an acute oral and contact exposure (Bieri 2003; Joyce et al., 2020) but its application at high doses may explain why it posed risks to bees. The negative impact of pesticides on bees may affect crop yield and lower seed vigour as bees are the main agents of crop pollination (Gong & Diao 2017).
4.4. Toxicity according to pesticide families

Unlike insecticides with significantly higher ETRs, fungicides and herbicides had low ETRs. These findings give evidence of a very high risk associated with insecticides as compared to other pesticide families. Insecticides ingested from nectars and pollens of flowers of threatened crops have been identified as one potential threat to bees (Cresswell et al., 2012). This is a warning signal for other insects, arthropods, organisms, and the ecosystem as a whole. Honey bees are not more sensitive to pesticides than other insect species (Hardstone & Scott 2010).

5. Conclusion

From the results of the present study, there are indications that the present level of application of pesticides in the Tiko municipality, south-west Cameroon render bees vulnerable to pesticides. The regulation on the importation, distribution and utilization of pesticides should be reinforced in Cameroon, especially for chemicals whose high toxicity on non-target organisms has been proven in the study. Substituting the most toxic pesticides with less toxic ones may help to reduce pesticide pressure on the environment. Further studies should be done using PRIMET in other agroecological regions of the country and the world. Assessing the bioaccumulation capacity of agrochemicals will also give valuable information of their ecotoxicology.

Declarations

Author contribution statement

Daniel Brice Nkontcheu Kenko: Conceived and designed the experiments; Analyzed and interpreted the data; Wrote the paper.

Norbert Tchamadeu Ngameni: Performed the experiments; Contributed reagents, materials, analysis tools or data.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Data availability statement

Data will be made available on request.

Declaration of interests statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

Abang, A., Kouame, C., Abang, M., Hannah, R., Fouto, A., 2013. Vegetable growers perception of pesticide use practices, cost, and health effects in the tropical region of Cameroon. Int. J. Agron. Plant Prod. 4, 873–883.

Abdulai, A.N., Kone, J.C., Achir, T.D., Tarfa, D.N., Nobsimneyi, D., 2018. Pesticide use practices by market gardeners in the santa area of the north-west region of Cameroon. Int. J. Phys. Sci. Soc. Sci. 26, 1–11.

Adriaanse, P., 1996. Fate of Pesticides in Field Ditches: the TOXSWA Simulation Model. SC-DLO.

Almeida, H., Tavares, D.A., Piao, M., Sena, D., Tachmitchan, S., Coutin, M., Brunet, J.-L., Belzances, L.P., 2020. Mixtures of an insecticide, a fungicide and a herbicide induce high toxicities and systemic physiological disturbances in winter Apis mellifera honey bees. Ecotoxicol. Environ. Saf. 203, 111013.

Amuch, C.N., 2011. A case study of health risk estimate for pesticide-users of fruits and vegetable farmers in Cameroon. Master Biosci. Eng. Ghent Univ. Belg. 58.

Anasta-Ross, T., Wepener, V., Van den Brink, P., Ross, M., 2008. Probabilistic risk assessment of the environmental impacts of pesticides in the crocodile (west) Marico catchment, North-west province. WaterSA 34, 637–646.

Arias-Estévez, M., Lopez-Periago, E., Martínez-Cardaballo, E., Simal-Gándara, J., Mejuto, J.-C., García-Río, I., 2008. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric. Ecosyst. Environ. 129, 247–260.

Berenbaum, M.R., Johnson, R.M., 2015. Xenobiotic detoxification pathways in honey bees. Curr. Opin. Insect Sci. 10, 51–58.

Bieri, M., 2003. The environmental profile of metaldehyde. In: BCPC Symposium Proceedings. British Crop Protection Council, pp. 155–262.

CDC, 2016. Rainfall, temperature, daily sunshine hours of the Tiko plain. In: Plain CoTT (Hrsg.). Research Office, Group Banana Manager, Cameroon Development Corporation, Tiko.

Cresswell, J.E., Page, C.J., Uygun, M.B., Holmberg, M., Li, Y., Wheeler, J.G., Laycock, I., Pook, C.J., de Barra, N.H., Smithoff, N., 2012. Differential sensitivity of honey bees and bumble bees to a dietary insecticide (imidacloprid). Zooology 115, 365–371.

Dieudonné, N., Ngwa, N.E., Olivier, D.S., Bertrand, F.L., Barbara, A.T., 2015. Environmental and health impact associated with the dissemination of persistent organic pollutants (POPs) in yamoude. J. Health Environ. Sci. 2, 1–5.

Finnegan, M.C., Baxter, L.R., Paul, J.D., Hanson, M.L., Hoekstra, P.F., 2017. Comprehensive characterization of the acute and chronic toxicity of the neonicotinoid insecticide thiamethoxam to a suite of aquatic primary producers, invertebrates, and fish. Environ. Toxicol. Chem. 36, 2838–2848.

Gong, Y., Diao, Q., 2017. Current knowledge of detoxification mechanisms of xenobiotics in honey bees. Ecotoxicology 26,1–12.

Haas, J., Nauen, R., 2021. Pesticide risk assessment at the molecular level using honey bee cytochrome P450 enzymes: a complementary approach. Environ. Int. 147, 106572.

Hardstone, M.C., Scott, J.G., 2010. Is Apis mellifera more sensitive to insecticides than other insects? Pest Manag. Sci. 66, 1171–1180.

Hodgson, E.W., Pitts-Singer, T.L., Barbour, J.D., 2011. Effects of the insect growth regulator, novaluron on immature alfalfa leafcutting bees, Megachile rotundata. J. Insect Sci. 11.

Hung, K.-L.J., Kingston, J.M., Albrecht, M., Holwy, D.A., Kohn, J.B., 2013. The worldwide importance of honey bees as pollinators in natural habitats. Proc. Biol. Sci. 280, 20122140.

Belkheir, A., 2004. Effects of fumigants on non-target organisms in soils. Adv. Agron. 83, 1–37.

Joyce, J.L., Donovan, E., Spatz, D., Chief, B., Branch III, E.R., 2020. Draft Ecological Risk Assessment for the Registration Review of Metaldehyde.

Kasiotis, K.M., Anagnostopoulos, C., Anastasiadou, P., Machera, K., 2014. Pesticide effects of imidacloprid and lambda-cyhalothrin (insecticide) on tadpoles of the African common toad, Amietophrynus regalis. J. Environ. Sci. 21, 53–59.

Kenko, D.B.N., Kama, F.N., 2021. Human and environmental health implications of pesticide utilization by market gardeners in the western highlands of Cameroon. Asian J. Environ. Ecol. 14, 44–56.

Kenko, N.D.B., Fai, P.B.A., Taboue, C., Tchamadeu, N.N., Ngealekeleoh, F., Mbida, M., 2017a. Assessment of chemical pollution with routine pesticides using PRIMET, a pesticide risk model in the Benoe stream in the south-west region of Cameroon. Eur. Sci. J. 13, 153–172.

Kenko, N.D.B., Patricia, B.A.F., Ngameni, T.N., Mpoame, M., 2017b. Environmental and human health assessment in relation to pesticide use by local farmers in the Bamenda municipality, Cameroon development corporation (CDC), fake division, south-west Cameroon. Eur. Sci. J. 13, 454–473.

Kenko, N.D.B., Tchamadeu, N.N., Ngealekeleoh, F., Nchase, S., 2017c. Ecotoxicological effects of imidacloprid and lambda-cyhalothrin (insecticide) on tadpoles of the African common toad, Amietophrynus regalis (Reuss, 1833)(Amphibia: bufonidae). Emer. Sci. J. 1, 49–53.

Kenko Nkontcheu, D.B., Ngoue-Guev, M-U., Ngameni Tchamadeu, N., 2020. Five year (2013-2017) trends in poisoning among patients of the Buea regional hospital, south-west region of Cameroon. Braz. J. Biol. Sci. 70, 209–216.

Lewis, K.A., Tzilivakis, J., Warner, D.J., Green, A., 2016. An international database for pesticides ingested from nectars and pollens of associated with insecticides as compared to other pesticide families. In: BCPC Symposium Proceedings. British Crop Protection Council, pp. 155–262.

Manfo, F.T.P., Moundiap, P.F., Découd, H., Tchanà, A.N., Nantia, E.A., Zobet, M.T., Pognat, M., 2012. Effect of agropesticides use on male reproductive function: a study on farmers in Djutitsa (Cameroon). Environ. Toxicol. 27, 423–432.

Manfo, F.T.P., Mbo, S.A., Nantia, E.A., Ngoula, F., Telefo, P.B., Moundiap, P.F., Che-Ngwa, F., 2020. Evaluation of the effects of agro-pesticides use on liver and kidney health of farmers from Bamenda municipality, Cameroon. J. Food Drug Anal. 32, 143–151.

Manjon, C., Troczka, B.J., Zaworaa, M., Beadle, K., Randall, E., Hertlein, G., Singh, K.S., Zimmer, C.T., Homem, R.A., Lueke, B., 2018. Unravelling the molecular determinants of bee sensitivity to neonicotinoid insecticides. Curr. Biol. 28, 1137–1143.e5.

Matthes, G., Wales, T., Balejeg, P., 2003. A survey of pesticide application in Cameroon. Crop Protect. 22, 707–714.
MINADER, 2013a. Arrete N° 00699 A-MINADER-SG-CNHPCAT du 23 juillet 2013 Portant Interdiction D'utilisation Des Produits Phytosanitaires Contenant Le Carbofuran. In: MINADER (Hrg.). Ministry of Agriculture and Rural Development, Yaoundé, Cameroon.

MINADER, 2013b. Arrete No-00829 A-MINADER-SG-CNHPCAT du 30 Juillet 2013 Portant Interdiction D'utilisation Des Produits Phytosanitaires Contenant Le Dimethoate. In: MINADER (Hrg.). MINADER, Yaoundé, Cameroon.

MINADER, 2013c. Liste des pesticides homologues Au cameroun Au 31 juillet 2013. Liste réservee Au grand public. In: MINADER (Hrg.). National Registration Commission of PhytoSanitary Products and Certification of Sprayers, Yaoundé, Cameroon, p. 40.

Momen, P., Francq, J., Ferreira, W., Paz, A., Monteiro, I., Cillistio, M., 2009. Use of the BEAST model for biomonitring water quality in a neotropical basin. Hydrobiology 630, 231–242.

Neba, G.A., Anyinkeng, N., Mumbang, C., Fonge, A.B., 2021. Benthic algal community in relationship to perturbation in the Tiko mangrove estuary. Open J. Ecol. 11, 540–564.

Onwona-Kwakye, M., Hogarth, J.N., Van den Brink, P.J., 2020. Environmental risk assessment of pesticides currently applied in Ghana. Chemosphere 254, 126845.

Oyekale, A., 2017. Cocoa farmers’ safety perception and compliance with precautions in the use of pesticides in centre and western Cameroon. Appl. Ecol. Environ. Res. 15, 205–219.

Parrot, L., Dongmo, C., Ndoumbé, O., Poubom, C., 2008. Horticulture, livelihoods, and urban transition in Africa: evidence from South-West Cameroon. Agric. Econ. 39, 245–256.

Peeters, F.M., van den Brink, P.J., Vlaming, J., Groenwold, J.G., Beltman, W.H., Onwona-Kwakye, M., Hogarth, J.N., Van den Brink, P.J., 2020. Environmental risk assessment of pesticides used under different rice-farming strategies in the Mekong Delta, Vietnam. Environ. Sci. Pollut. Contr. Ser. 25, 13322–13334.

Stanley, J., Preetha, G., Stanley, 2016. Pesticide Toxicity to Non-target Organisms. Springer.

Tandi, T.E., Wook, C.J., Shende, T.T., Eko, E.A., Afob, C.O., 2014. Small-scale tomato cultivators’ perception on pesticides usage and practices in Buea Cameroon. Health 6, 2945.

Tarfa, D., Meutchieye, F., Asako, V., Fontem, D., Koné, J., 2013. Exposure of market gardeners during pesticide application in the western highlands of Cameroon. Sch. J. Agric. Sci. 3, 172–177.

Tchamadou, N.N., Nkontcheu, D., Nana, E.D., 2017. Évaluation des facteurs de risques environnementaux liés à la mauvaise utilisation des pesticides par les maraîchers au Cameroun: le cas de Balesssing à l’Ouest Cameroun. Afrique Sci. 13, 91–100.

Tetang, T., Foka, G., 2008. Utilisation des pesticides dans la zone agricole du Mounongué–évaluation de l’impact sur l’environnement, la santé des populations et solutions envisageables: cas de la localité de Njombe dans l’arrondissement de Njombe-Penja. Afr. Front Prot. Nat. Man.

van den Brink, P.J., Roelima, J., Van Nes, E.H., Scheffer, M., Brock, T.C., 2002. Perpest model, a case-based reasoning approach to predict ecological risks of pesticides. Environ. Toxicol. Chem.: Int. J. 21, 2500–2506.

van der Linden, A., Van den Bergh, F., Boesten, J., Leistra, M., Van der Linden, A., Van Kralingem, D., 2000. Pesticide emission assessment at regional and local scales: user manual of pearl version 1.1. RIVM report 711401008 142.

van den Brink, P.J., Roelima, J., Van Nes, E.H., Scheffer, M., Brock, T.C., 2002. Perpest model, a case-based reasoning approach to predict ecological risks of pesticides. Environ. Toxicol. Chem.: Int. J. 21, 2500–2506.

van den Brink, P.J., Roelima, J., Van Nes, E.H., Scheffer, M., Brock, T.C., 2002. Perpest model, a case-based reasoning approach to predict ecological risks of pesticides. Environ. Toxicol. Chem.: Int. J. 21, 2500–2506.

van den Brink, P.J., Roelima, J., Van Nes, E.H., Scheffer, M., Brock, T.C., 2002. Perpest model, a case-based reasoning approach to predict ecological risks of pesticides. Environ. Toxicol. Chem.: Int. J. 21, 2500–2506.

van den Brink, P.J., Roelima, J., Van Nes, E.H., Scheffer, M., Brock, T.C., 2002. Perpest model, a case-based reasoning approach to predict ecological risks of pesticides. Environ. Toxicol. Chem.: Int. J. 21, 2500–2506.

van den Brink, P.J., Roelima, J., Van Nes, E.H., Scheffer, M., Brock, T.C., 2002. Perpest model, a case-based reasoning approach to predict ecological risks of pesticides. Environ. Toxicol. Chem.: Int. J. 21, 2500–2506.

van den Brink, P.J., Roelima, J., Van Nes, E.H., Scheffer, M., Brock, T.C., 2002. Perpest model, a case-based reasoning approach to predict ecological risks of pesticides. Environ. Toxicol. Chem.: Int. J. 21, 2500–2506.

van den Brink, P.J., Roelima, J., Van Nes, E.H., Scheffer, M., Brock, T.C., 2002. Perpest model, a case-based reasoning approach to predict ecological risks of pesticides. Environ. Toxicol. Chem.: Int. J. 21, 2500–2506.

van den Brink, P.J., Roelima, J., Van Nes, E.H., Scheffer, M., Brock, T.C., 2002. Perpest model, a case-based reasoning approach to predict ecological risks of pesticides. Environ. Toxicol. Chem.: Int. J. 21, 2500–2506.

van den Brink, P.J., Roelima, J., Van Nes, E.H., Scheffer, M., Brock, T.C., 2002. Perpest model, a case-based reasoning approach to predict ecological risks of pesticides. Environ. Toxicol. Chem.: Int. J. 21, 2500–2506.

van den Brink, P.J., Roelima, J., Van Nes, E.H., Scheffer, M., Brock, T.C., 2002. Perpest model, a case-based reasoning approach to predict ecological risks of pesticides. Environ. Toxicol. Chem.: Int. J. 21, 2500–2506.

van den Brink, P.J., Roelima, J., Van Nes, E.H., Scheffer, M., Brock, T.C., 2002. Perpest model, a case-based reasoning approach to predict ecological risks of pesticides. Environ. Toxicol. Chem.: Int. J. 21, 2500–2506.

van den Brink, P.J., Roelima, J., Van Nes, E.H., Scheffer, M., Brock, T.C., 2002. Perpest model, a case-based reasoning approach to predict ecological risks of pesticides. Environ. Toxicol. Chem.: Int. J. 21, 2500–2506.

van den Brink, P.J., Roelima, J., Van Nes, E.H., Scheffer, M., Brock, T.C., 2002. Perpest model, a case-based reasoning approach to predict ecological risks of pesticides. Environ. Toxicol. Chem.: Int. J. 21, 2500–2506.

van den Brink, P.J., Roelima, J., Van Nes, E.H., Scheffer, M., Brock, T.C., 2002. Perpest model, a case-based reasoning approach to predict ecological risks of pesticides. Environ. Toxicol. Chem.: Int. J. 21, 2500–2506.

van den Brink, P.J., Roelima, J., Van Nes, E.H., Scheffer, M., Brock, T.C., 2002. Perpest model, a case-based reasoning approach to predict ecological risks of pesticides. Environ. Toxicol. Chem.: Int. J. 21, 2500–2506.

van den Brink, P.J., Roelima, J., Van Nes, E.H., Scheffer, M., Brock, T.C., 2002. Perpest model, a case-based reasoning approach to predict ecological risks of pesticides. Environ. Toxicol. Chem.: Int. J. 21, 2500–2506.