Bacillus Calmette-Guérin (BCG) Treatment Failures in Non-Muscle Invasive Bladder Cancer: What Truly Constitutes Unresponsive Disease

Ryan L. Steinberg, Lewis J. Thomas and Michael A. O’Donnell

University of Iowa Department of Urology, Iowa City, IA, USA

Abstract. Bacillus Calmette-Guérin (BCG) remains the most effective intravesical therapy for non-muscle invasive bladder cancer but will fail in up to 40% of patients. The ability to identify patients who are least likely to respond to further BCG therapy allows urologists to pursue secondary treatments more likely to convey a recurrence or survival benefit to the patient. We examined the literature to determine what constitutes BCG unresponsive disease. After review, we believe that BCG unresponsive disease should be defined as (1) patients with recurrent high grade T1 disease within 6 months of their primary tumor after at least one course of BCG or patients who have failed at least 2 courses of BCG with either (2) persistent or recurrent pure papillary (Ta) disease within 6 months or (3) persistent or recurrent carcinoma in situ (CIS) within 12 months.

Keywords: Urinary bladder neoplasms, Mycobacterium bovis, BCG vaccine, administration, intravesical, treatment failure

INTRODUCTION

Bladder cancer is currently the fifth most common cancer in the United States and an estimated 74,000 new cases are expected in 2015 [10], with the vast majority (70%) being non-muscle invasive (NMIBC) disease [11]. For high grade NMIBC, a thorough transurethral resection of the bladder tumor (TURBT) followed by an induction course of intravesical Bacillus Calmette-Guerin (BCG) is considered the standard of care per the American Urological Association (AUA) [11] and European Association of Urology (EAU) [12] guidelines. The recommendation for BCG use as adjuvant therapy is based upon the results of numerous studies that have demonstrated clear superiority in preventing tumor recurrence and disease progression (to muscle-invasive) as compared to TURBT alone [13, 14] and intravesical chemotherapy [9, 15–21].

Unfortunately, BCG therapy still fails in 40% of patients followed for 2 years [22]. Many of these patients will go on to cystectomy but some will be either unfit for cystectomy or desire bladder-preserving therapies. In patients who proceed with bladder conservation, urologists must weigh the expected efficacy of repeat immunotherapy (BCG monotherapy or BCG-based regimen) with the use of other intravesical treatments (i.e., chemotherapy, device-assisted therapy, photodynamic therapy). The exact combination of variables that indicate the disease is unlikely to respond to further BCG therapy (what was previously denoted as “BCG refractory” disease, now termed...
“BCG unresponsive” disease remains a much-debated topic among urologic oncologists and is a critical distinction to make in a patient’s treatment course. As noted by Herr, appropriate and consistent nomenclature is crucial, not only to avoid unnecessary and ineffective treatments, but also to standardize the interpretation of results for salvage therapies [23]. In this review, we will revisit the origins of BCG therapy, as well as those studies examining repeat BCG-based intravesical therapy for failure patients in an attempt to identify what truly constitutes BCG unresponsive disease.

DEVELOPMENT OF THERAPEUTIC BCG FOR BLADDER CANCER

The anti-tumor potential of BCG was first noted in 1929 when an autopsy series by Pearl noted a lower rate of cancer in patients who had tuberculosis (TB) [24]. Around the same time, Holmgren [25] also published a description of the anti-neoplastic nature of BCG. Further studies of BCG revealed its ability to retard transplanted tumor growth, first in mice systemically infected with BCG [26] and later with direct injection of BCG into the tumor [27, 28]. This work also specifically found that close contact between BCG and the tumor was needed for efficacy. A later study by Bast determined that a lower tumor burden (i.e. maximal tumor was needed for efficacy. A later study by Bast determined that a lower tumor burden (i.e. maximal tumor burden) led to improved treatment efficacy [29]. With these studies in mind, Morales surmised that instilling BCG into the bladder via a catheter, the same route utilized for thiopeta, after TURBT, would allow for similar BCG-tumor direct contact. He began recruiting patients for his research in 1972. In 1976, Morales published his series of 10 patients (only 7 eligible for analysis) treated with intradural and intravesical (120 mg) BCG weekly for 6 weeks [30]. The decision to treat patients for 6 weeks was arbitrary, per his own report, and likely due to the fact that each package of BCG vaccines included 6 separate vials. The study found no tumors during the 47 patient-months of follow up. In light of these exciting results, a larger study by Lamm et al. randomized patients to TURBT alone vs. TURBT with intravesical and intradural BCG. They found a significant reduction in tumor recurrence (50% vs. 21%, \(p = 0.027 \)) and a prolonged median time to recurrence (29 vs. 16 months, \(p = 0.014 \)) in the cohort receiving BCG [13]. Intradural administration was later discontinued after a separate randomized controlled trial revealed that the local effect of intravesical therapy alone was responsible for the reduced recurrence rate [31]. Further, while an initial investigation found no benefit to maintenance BCG instillations in enhancing the durability of therapy [32], later trials have demonstrated clear improvement in recurrence and progression rates [33]. This difference is possibly due to the difference in BCG maintenance schedules, as the initial trial utilized one instillation monthly for 2 years while later trials administered 3-week “mini-courses” (weekly instillations for 3 weeks) at 3, 6, 12, 18, 24, 30, and 36 months.

The efficacy of BCG was clear but needed to be compared to the optimal therapy of the time, thiopeta. In 1982, Brosman reported the results of his randomized trial in which 49 patients received either BCG or thiopeta weekly for 6 weeks with subsequent maintenance and were followed for 2 years [15]. BCG showed superiority with no recurrences, while 9 patients treated with thiopeta had a recurrence (40%). Another larger, randomized study, performed by the Southwest Oncology Group (SWOG), compared the efficacy of BCG to doxorubicin and found superiority with BCG treatment (37% vs. 17% for papillary, 70% vs. 34% for carcinoma in situ (CIS) at 5 years) [17]. These results and pooled analysis of toxicities ultimately led to approval of BCG by the Federal Drug Administration (FDA) in 1990 for the treatment of non-muscle invasive bladder cancer. This ushered in a new era of intravesical therapy for NMIBC but also invariably created a new disease classification, BCG failure.

INITIAL EXPERIENCE IN TREATING BCG FAILURES WITH NON-MUSCLE INVASIVE DISEASE

Like today’s failure patient, patients who developed recurrent high-grade non-muscle invasive disease after BCG posed a big challenge to treating urologists, namely due to the large disparity in treatment options. Radical cystectomy could be pursued but risked the possibility of overtreatment given that the disease remained non-muscle invasive, as well as significant perioperative morbidity and mortality [3]. Conversely, repeat intravesical therapy risked poor efficacy and the development of metastatic disease, bypassing the ability for a potentially curative procedure (radical surgery). The first study of further intravesical instillations for failure patients was reported by Haaff et al. who found that repeat BCG induction was effective in eradicating disease in 56% of patients (5 of 9 patients with CIS, 3 of 7 patients with residual papillary
tumors and 6 of 9 patients treated adjuvantly) [34]. Two larger series of 60 and 57 patients found similar recurrence-free survival (RFS) rates of 53% and 59.6%, respectively, with repeat BCG therapy when followed for more than 3 years [4, 5].

Given the effectiveness of repeat BCG therapy for patients with one BCG failure, new studies examining patients with multiple failures were performed. Catalona et al. assessed the response of 100 patients who underwent multiple repeated BCG induction with any recurrence [6]. The authors found that patients treated with a second induction course of BCG had a RFS of 35% at 2 years, while further BCG induction courses rendered only a minority of patients disease free (<20%). A similar rate was later published in a pooled analysis of smaller studies [35]. By identifying the low rate of durable efficacy of BCG beyond 2 induction courses, these studies began to lay the foundation for defining BCG unresponsive disease.

EARLY DEFINITION OF REFRACTORY DISEASE

The first mention of bladder cancer “refractory” to intravesical therapy was in 1984 and described patients refractory to thiotepa who went on to receive doxorubicin for post-TURBT adjuvant therapy [36]. The term “BCG refractory” first appeared in 1989 in a study assessing the efficacy of BCG in patients with non-muscle invasive bladder cancer and concomitant prostatic CIS [37]. The term was quickly adopted, particularly by those studying photodynamic therapy for prostatic CIS [37]. The term was quickly adopted, particularly by those studying photodynamic therapy for non-muscle invasive disease [38–41]. In these studies, patients described as refractory had received from one to six prior BCG courses.

As investigation of alternative intravesical agents (both immunotherapy and chemotherapy) progressed during the 1990s and early 2000s, the use of the term BCG refractory expanded, but the definition continued to be variable and anecdotal. The differences between definitions were usually used to describe the number of prior BCG courses and the time to recurrence. The number of prior BCG courses ranged from 1 [2, 42–44] to 3 [45] with many studies including a combination (i.e. 1-2 courses). With regard to the time to recurrence, this ranged from 3 months (consistent with 1 prior BCG course) to greater than 24 months. For all intents and purposes, the term BCG refractory became synonymous with BCG failure.

It was not until 2003 that Herr and Dalbagni attempted to formally define BCG refractory disease [23]. Their retrospective study assessed a cohort of 93 BCG-naïve patients with NMIBC who were treated with induction BCG and then randomized to no further therapy or monthly BCG maintenance. Surveillance included repeat cystoscopy, bladder biopsies and cytologies at 3 and 6 months from initial BCG administration. Multivariate analysis revealed that the presence of tumor at the 6-month evaluation was the only variable predictive of further tumor recurrence. To date, this remains the only study that has attempted to formally define BCG refractory disease. Given the variable definition of BCG refractory disease and broad, generic nature of using the term BCG failure, an International Consensus Panel discussed and agreed upon more specific definitions to further stratify BCG failure patients [46]. The consensus definition for BCG refractory disease was “failure to achieve a disease-free state by 6 months after initial BCG therapy with either maintenance or retreatment at 3 months because of either persistent or rapidly recurrent disease,” as well as “progressive disease in stage, grade or extent at 3 months after first cycle of BCG.” Unfortunately, since publication in 2005, the utilization of this definition in the literature has been minimal. Expanding upon the review of BCG refractory definitions created by Herr and Dalbagni [23], Table 1 presents the major studies since 1990 which have assessed BCG refractory patients, including the definitions of BCG refractory, therapies used and outcomes of these studies. More recently, a panel of experts was convened at the 2015 Genitourinary Symposium of the American Society of Clinical Oncologists (GU-ASCO) annual meeting and decided that, given the variability of nomenclature regarding BCG refractory disease, future patients felt to no longer benefit from further BCG therapy should be referred to as BCG unresponsive [1]. This definition included “patients who did not respond to BCG treatment and have a new (if previously treated for a low-grade NMIBC) or persistent high-grade (HG) recurrence at our around 6 months after BCG was initiated, and those who despite an initial complete response to BCG, relapse with HG NMIBC within 6 months of their last intravesical treatment with BCG.” Further clarification detailing the criteria for these patients specified the number of prior BCG induction courses (at least 2, receiving 5/6 induction instillations of 2/3 maintenance instillations), timing of recurrence (within 6 months of last exposure), no maximum limit of BCG to be administered (though did recommend BCG maintenance), have Ta/T1 with or without CIS or CIS of the prostatic urethra, and persistent T1HG
Year Published	Study Author	Definition of Refractory	Study Population	Study Intervention	Efficacy of Salvage Therapy (%)
1990	Glashan	3 BCG courses	87 CIS IFN	Weekly × 12	43* 21* – –
1996	Steinberg	6 BCG courses	60 CIS Bropirimine	Weekly × 6	24 – – –
1992	Klein	41 BCG courses	BCG, Methotrexate, Interferon, Thiotepa, Orotrubicin	Weekly × 6	– – –
1995	Merz	115 BCG courses	BCG	Weekly × 6	42 – – –
1998	Neye	34 BCG courses	Photodynamic Therapy	Single Treatment	None
2001	Waidelich	24 BCG courses	Photodynamic Therapy	Single Treatment	79 – 36 (3 years)
2000	Steinberg	24 BCG courses	Valrubicin	Weekly × 6	21 17 8 (2.5 years)
2001	Luciant	24 BCG/IFN or Valrubicin	Weekly × 6-8	3 week mini cycles every 3 months	17 – – –
2001	O’Donnell	40 BCG/IFN	Weekly × 6-8	3 week mini cycles at 3, 9, 15 months	– 56 48
2006	Ojasti	467 BCG/IFN	Weekly × 6	3 week mini cycles at 3, 9, 15 months	– – 45
2009	Malmstrom	19 Mixed	MMC	Weekly × 6	– – 23
2002	Dalaharni	30 Mixed	Gemcitabine	Twice weekly × 6	50 21 – –
2013	Skinner	58 Mixed	Gemcitabine	Weekly × 6	47 28 21
2006	McKiernan	18 Mixed	Docetaxel	Weekly × 6	56 – – –
2013	Barlow	54 Mixed	Docetaxel	Weekly × 6	59 40 25 (3 years)
2014	Morales	129 Mixed	Gemcitabine	Weekly × 6	34 23 15
2014	McKiernan	28 Mixed	Nanoparticle Albumin	Weekly × 6	36 36 – –
2014	Lightfoot	47 Mixed	Gemcitabine/Mitomycin	Weekly × 6	68 48 38
2015	Steinberg	45 Mixed	Gemcitabine/Docetaxel	Weekly × 6	66 34 34

*High Dose Group Only (100 Million Units). NS = Not specified.
those with 1 prior BCG failure. This further supports significantly worse (HR = 1.56, that patients with 2 or more BCG failures performed BCG/IFN. Multivariate analysis from this study found initial BCG therapy will have a durable response to data suggests that nearly half of those patients who fail when considering all BCG failure patients [48]. This suggesting there may be up to a 10% improvement showed an absolute disease-free rate at 2 years of 45%, of BCG [6, 35]. In the National Phase 2 BCG/IFN years) in 35% of patients treated with a second course demonstrated durable eradication of disease (at 2 dishion with 11% at 1 year and >57% at 3 years). Patients recurrence at 6 months had higher rates of progression patients with persistent disease throughout all 6 months had similar progression rates to those with recurrent dis- ease at 6 months (28% at 1 year and 61% at 3 years), identifying 6 months as a key time point in the dis- ease process. However, as this study cohort was a BCG naïve population that only received 1 induction course of BCG, the effect of maintenance instillations, which have been shown to reduce recurrence and worsening disease [33], or a second course of BCG is unknown. Mez et al. also evaluated the effect of early BCG failure on the efficacy of repeat BCG administration in patients with pure or concomitant CIS. They evalu- ated 115 patients with a median follow-up time of 44 months. Early failure was defined as those with recur- rence within 9 months of BCG initiation [2]. Seven of 23 patients with an early recurrence had progressive disease, as compared to 1 of 92 in those with a late recurrence. Of those who progressed, four had failed a second course of BCG. While Herr found that 6 months was a critical time point in all patients, this finding inti- mates that a longer recurrence interval is needed for patients with CIS.

Prior BCG therapy
As previously discussed, two prior studies have demonstrated durable eradication of disease (at 2 years) in 35% of patients treated with a second course of BCG [6, 35]. In the National Phase 2 BCG/IFN study, the addition of interferon-α 2B (IFN) to BCG showed an absolute disease-free rate at 2 years of 45%, suggesting there may be up to a 10% improvement when considering all BCG failure patients [48]. This data suggests that nearly half of those patients who fail initial BCG therapy will have a durable response to BCG/IFN. Multivariate analysis from this study found that patients with 2 or more BCG failures performed significantly worse (HR = 1.56, P = 0.0002) than those with 1 prior BCG failure. This further supports Catalona’s original finding that repeat BCG adminis- tration beyond 2 courses is often ineffective [6]. Thus, in most cases, non-muscle invasive disease can be considered to respond to up to 2 induction courses of BCG prior to being considered BCG unresponsive. Specific caveats to this statement, namely recurrent T1 high grade disease, are discussed later in this review.

Disease timing
In the previously mentioned study by Herr and col- leagues [47], patients found to have persistent disease at 3 months but resolution at 6 months had a 0% 1-year and 16% 3-year risk of progression. Conversely, patients with no evidence of disease at 3 months and recurrence at 6 months had higher rates of progres- sion with 11% at 1 year and >57% at 3 years. Patients with persistent disease throughout all 6 months had similar progression rates to those with recurrent dis- ease at 6 months (28% at 1 year and 61% at 3 years), identifying 6 months as a key time point in the dis- ease process. However, as this study cohort was a BCG naïve population that only received 1 induction course of BCG, the effect of maintenance instillations, which have been shown to reduce recurrence and worsening disease [33], or a second course of BCG is unknown.

DEFINING BCG UNRESPONSIVE DISEASE
So what truly constitutes BCG unresponsive dis- ease? In defining this, we should first consider the reasoning for creating such a definition. The goal with any intravesical therapy is to prevent recurrence, progression, and metastatic disease, as these require dramatic changes in management and put the patient at high risk of poor long-term survival [3]. Identifying the point at which BCG is less likely to be effective at preventing these outcomes is crucial so as not to delay delivery of alternative agents or radical surgery that can confer an improved survival benefit. In formulating this definition, many different disease-specific ele- ments must be considered which affect the likelihood of disease recurrence and progression. In an attempt to identify these variables, Herr et al. examined 221 men with non-muscle invasive disease (both CIS and papil- lary) treated with BCG and followed for 2 years. The investigators considered both disease-independent and disease-dependent variables prior to intravesical ther- apy, at the 3-month surveillance cystoscopy and at the 6-month surveillance cystoscopy. Variables found to be predictive of progression included stage T1 disease at all time points (prior, 3 months, 6 months) and disease duration of less than 1 year [47]. This early study high- lighted two of the key elements of BCG unresponsive disease, disease stage and timing of recurrence. Other factors not considered in this study, but critical to con- sider, include patient age, the number of prior BCG courses and extent of disease (focality and size).
(53–66% 2-year disease-free rate, HR 0.98). Unfortunately, this study did not evaluate the stage of disease at the time of recurrence and thus only recurrence, and not progression, can be considered.

Given the above findings, it appears clear that patients who fail intravesical BCG within the first 6 months are at a higher likelihood of progression and less likely to respond to further BCG. However, the data also suggests that the 6-month time point is not equally applicable to all patients with non-muscle invasive disease. Recurrence within 1 year of initial BCG treatment, in conjunction with certain disease elements, appears to also predict a worse response to further BCG.

Disease stage

The risk of disease progression is closely linked to the stage and grade of disease present. Patients with low grade papillary disease have the lowest risk of progression at 1 year (<1%), while patients with high-grade disease have the highest risk (8%) [50]. Yet, even within the classification of high-grade disease, there is still significant variability in the rate of progression, median time to progression and expected efficacy of BCG in preventing progression of each disease state. In reviewing high-risk disease, as it pertains to BCG unresponsive disease, we will primarily focus on CIS and high grade TI (T1HG) disease, as these carry the highest risk of recurrence and progression.

CIS

CIS was first described by Melicow [51] in 1952. Early reports of patients diagnosed with CIS were quite variable, as the clinical course depended on the extent of disease. Prior to BCG, up to 80% of patients with CIS would ultimately progress to muscle-invasive disease [52, 53]. The high rate of progression in CIS patients later became more clear as genetic analysis revealed a common genetic alteration (loss of p53) in both CIS and T2 tumors [54]. This differs from cyclin D activation, which has been identified in analysis of papillary tumors. Further studies have also demonstrated spatial and temporal relationships between CIS and the later development of T2 disease [55].

To date, BCG remains the clearly superior therapeutic agent for the treatment of bladder CIS [9]. The reported short-term efficacy of a single course of BCG is variable, depending upon the length of cohort follow up. Studies with long-term follow-up have identified durable efficacy in 40–46.7% of patients [9, 56] at 3.6–7.6 years. Further improvement in efficacy has been demonstrated with additional BCG instillations, either via maintenance (6 + 3) or repeat induction (6 + 6) [33]. However, Gofrit et al. have reported that even in patients with a complete response (CR) to 1-2 BCG induction courses, as proven by post treatment biopsies, 40.4% will have a recurrence at a median of 18 months [7]. Unfortunately, the authors did not specifically report the RFS of those who required 1 vs. 2 BCG induction courses separately, though the majority of patients (88.5%) had only 1 prior BCG course. While the recurrence rate is high, meta-analyses have reported a progression rate of 13.9–15.4% [8, 9] in CIS patients. In addition to bladder recurrence, patients with CIS are also at high risk of developing extravesical disease, particularly after BCG failure. Upper tract disease is the most common site of extravesical disease, estimated to occur in 21–32% of cases, while prostatic disease will occur in 8–19% of patients [57, 58]. We will not expound further on these disease processes in this article but consideration of these alternative sites of disease is crucial as it can drastically change patient management independent of the BCG failure classification (i.e., prostatic invasion without bladder involvement requiring cystoprostatectomy).

In patients who develop a CIS recurrence after a single prior BCG failure, repeat BCG-based therapy should be administered. Repeat BCG monotherapy has demonstrated a 2-year disease-free rate of 30–42% in two small studies [2, 59]. BCG/IFN combination therapy with maintenance resulted in a 2-year disease-free rate of 57% [60], but sub-analysis revealed that those with 2 or more failed BCG courses attained a disease-free status in only 23% of cases at 2 years. The same study also evaluated the effect of recurrence timing from prior BCG. The authors found that patients with persistent disease retreated with BCG/IFN were disease-free in only 23% of cases at 2 years, as compared to 42% in patients with recurrence within 1 year and 59% in those with recurrence beyond 1 year. Further sub-analysis of this population has revealed that patients with recurrence at 6–12 months (disease-free 42% at 1 year, 29% at 2 years) respond similarly to patients with persistent or recurrent disease within 6 months (45% and 38%) (O’Donnell, unpublished data). Given these results, it appears that patients with a CIS recurrence have an improved response with the use of BCG/IFN but efficacy is still reduced relative to naïve patients when the recurrence occurs within 1 year of initial therapy. In considering the timing of recurrence, these results, combined with those previously published by Merz [2], continue to suggest that the
often used 6 month time point, used most recently by the GU-ASCO consensus panel to define “BCG unresponsive”, is too short of a time interval to capture patients with CIS who are unlikely to derive benefit from further treatment.

High grade T1 disease

In any patient with T1HG disease, re-resection must be performed. This identifies the 29–40% of patients that will be upstaged to muscle-invasive disease [61, 62], thus requiring more radical intervention, and ensures complete tumor resection to maximize the effect of adjuvant therapy. One study demonstrated that re-resection itself reduces the rate of recurrence but not progression [63], likely a result of a more complete resection. In those with confirmed T1HG disease after re-resection, pooled group analysis of multiple small studies identifies a progression rate of 27-2% in patients treated with BCG induction alone [64-72], while those treated with induction and maintenance had a 19.0% progression rate [73-79] (Table 2). Recently, a large multicenter retrospective individual patient data analysis of 2451 patients reported a progression rate of 19% at a median of 5.2 years follow-up [80].

In the case of recurrent T1HG disease after BCG, minimal data is available about the expected efficacy of repeat BCG therapy. One study by Raj et al. retrospectively compared a historical and contemporary cohort of patients with recurrent T1HG disease [81]. In the historical group, 85 patients with recurrent T1HG disease were treated with repeat TUR and BCG, of which 60 (71%) experienced progression to muscle-invasive disease at 5 years. Of note, 84 of these patients had concomitant CIS. Of the 129 patients with recurrent T1HG disease in the contemporary group, 65 underwent immediate cystectomy and only half (33) were upstaged to T2 disease. The remaining 64 patients underwent repeat TUR and BCG, and 33 (52%) had progression at 5 years. However, 13 patients (10%) in the contemporary group had T2 disease prior to initial BCG and thus should not be considered as having progressed. Cumulative incidence of diseasespecific death at 5 years for these groups (historical and contemporary) was 48% and 31%, respectively, suggesting a survival benefit in the contemporary group with immediate cystectomy. However, there was a substantial disparity in median follow-up times (13.3 vs. 2.7 years), which may account for some of this difference. Direct comparison of the historical group with the contemporary group undergoing TUR+BCG was not reported. Finally, all patients treated in this study were enrolled prior to the recommendation for re-resection of T1 disease. Thus, the number of patients found to have progressive disease, which was actually just initially understaged, is unclear.

In another study primarily populated with BCG failure patients (81% with at least 1 prior BCG treatment

Table 2
Pooled analysis of multiple small studies assessing rate of disease progression for patients with high grade T1 disease treated with (A) BCG induction alone or (B) BCG induction and maintenance
Author

(A) High Grade T1 disease Treated With BCG Induction But No Maintenance
Gohji [62]
Pfister [63]
Hara [64]
Herr [65]
Kulkarni [66]
Lebret [67]
Patard [68]
Shahin [69]
Brake [70]
Total/Weighted Average: 483
(B) High Grade T1 disease Treated With Induction BCG And Maintenance
Hurle [71]
Thanos [72]
Iori [73]
Margel [74]
Pansadoro [75]
Peyromaure [76]
Zhang [77]
Total/Weighted Average: 338
them BCG unresponsive without further data. Based therapy. As such, we feel it premature to consider a group who may potentially respond to repeat BCG.

T1HG patients with recurrence at 6–12 months remain to second-line intravesical therapies or cystectomy. Respond responsive after only a single course of BCG and proceed that these patients should be considered BCG unre- rapidly recurrent or locally worsening. Thus, we feel group with clearly aggressive disease, which is either with T1HG recurrence within 6 months represent a consider them BCG unresponsive. Conversely, patients similar applies to T1HG patients and would not con- sider recurrence timing as a factor for analysis. Given the small amount of published data, we feel that patients with T1HG recurrence first require a careful re-evaluation prior to any further therapy. As with naive patients, those with recurrent T1HG should undergo a repeat TURBT for the same reason. While a potentially curative response to further BCG or BCG/IFN is possible, as in the BCG/IFN results, there is an added risk of disease progression that could compromise survival.

After reviewing the above-noted studies, none con- sidered recurrence timing as a factor for analysis. Given that patients who recur beyond 12 months respond sim- ilarly to BCG naïve patients [49], we feel that this similarly applies to T1HG patients and would not con- sider them BCG unresponsive. Conversely, patients with T1HG recurrence within 6 months represent a group with clearly aggressive disease, which is either rapidly recurrent or locally worsening. Thus, we feel that these patients should be considered BCG unresponsive after only a single course of BCG and proceed to second-line intravesical therapies or cystectomy. T1HG patients with recurrence at 6–12 months remain a group who may potentially respond to repeat BCG-based therapy. As such, we feel it premature to consider them BCG unresponsive without further data.

Extent of disease (Focality and Size)

Multiples studies of naïve patients, failure patients, and mixed populations have clearly demonstrated that tumor multiplicity is predictive of both recurrence [48, 49, 83] and progression [84, 85]. The notion that multifocal disease puts a patient at higher risk for intravesical failure is not surprising since the more tumors present, the larger the surface area of diseased bladder mucosa. As BCG is only effective if in contact with tumor cells and a larger area of disease is present, the possibility that some bladder mucosa will go untreated during BCG therapy remains a real possibility. While identified as a risk factor for recurrence and progression, the true effect of multifocal disease requires evaluation of multi- ple other associated factors, including the specific-stage, grade and size of each tumor, presence of CIS, distribu- tion of tumors in relation to one another and distribution of tumors within the bladder. Only after these variables have all been assessed will we be able to fully understand the increased risk and complexity of multifocal disease. We are unaware of any studies that have performed such an analysis to date.

In addition, the effect of tumor size on the risk of recurrence and progression has been a heavily debated topic. Multiple studies have reported an increased risk of recurrence [48] or recurrence and progression [83, 84, 86] with larger tumors (specifically greater than 3 cm), while others have found no effect [87, 88]. As with any large high-grade tumor, re-resection should be consid- ered to rule out occult T2 disease, as well as to maximally debulk for optimal efficacy of adjuvant therapy. Both multifocal disease and large tumor size are variables used to estimate recurrence and progression rates in the European Organization of Research and Treatment of Cancer (EORTC) Bladder Cancer Risk calculator, which is based upon the risk tables pub- lished by Sylvester et al. [86]. However, these risk tables were constructed utilizing data from seven studies, none of which assessed the effect of BCG. Thus, the known reduction in recurrence and progression with BCG utilization is not accounted for in this calcula- tor. We acknowledge the importance of these factors with respect to recurrence and progression but do not feel, given the evidence currently available, that these factors should be included in any definition of BCG unresponsive disease at this time.

Age

Given that BCG efficacy is dependent upon the generation of a strong immune response, specific
populations with depressed immune function, including the elderly, are less likely to respond to therapy. The effect of age has been assessed in only a few studies, of which two have demonstrated no prognostic significance to this variable [89, 90]. However, these studies utilized 65 and 70 years of age as cutoffs and did not consider patients categorically. In the latter study, while age did not predict recurrence or progression, it did predict patient survival (HR 4.34, \(p = 0.0006 \)). Age was evaluated categorically (based on decade of age) as part of the National Phase 2 BCG/IFN trial [91]. Multivariate analysis identified age as an independent risk factor for treatment failure with patients over the age of 80 old less likely to respond to therapy. When considering prior BCG exposure, those who were BCG naïve patients over the age of 80 had a 2-year RFS of 47%, as compared to 65% in the 61- to 70-year age group (adjusted HR = 1.564, \(p = 0.02 \)). For those with prior BCG failures, patients over the age of 80 were disease-free in only 32% of cases at 2 years as compared to 55% in the 61- to 70-year age group. In light of these results, it would appear that BCG is less effective in this subset of patients, though further meta-analyses are warranted.

Review limitations

As with any review, inter-study variability in methods and reporting limits the interpretation and comparative value. In most reports discussed above, Table 3

Variable	\(p \) Value	HR	
Age (Categorical variable by decade; \(\geq 80 \) years old)	0.0225	1.564	
Gender	0.645	1.065	
Stage (T1 vs. Ta)	0.0165	1.424	
Grade (high vs. low)	0.706	1.036	
Tumor size (\(< 1 \) vs. \(\geq 5 \) cm)	0.0186	1.595	
Prior intravesical chemotherapy	0.529	1.098	
Prior BCG (\(\geq 2 \) vs. \(\leq 1 \) vs. none)	0.0002	1.556	
No. TURBTs	0.6403	1.088	
BCG failure pattern	0.1721	0.895	
BCG maintenance	0.0674	1.326	
BCG Strain (TICE vs. Connaught)	0.122	1.243	
Multifocality (\(> 5 \) vs. \(2-5 \) vs. solitary)	0.0002	1.336	
Primary vs recurrent disease	0.2326	1.153	

\(^a \)Adjusted hazard ratio (HR) for gender, stage, grade, tumor size, prior BCG and chemotherapy, BCG failure pattern, BCG maintenance, and primary vs recurrent disease. \(^b \)Analyzed as a continuous variable (naïve vs. refractory vs. \(< 6 \) months vs 6–12 months vs 12–24 months vs \(> 24 \) months). Adapted from Joudi et al. [46] and Joudi et al. [47].

There were few studies that reported on the presence of variant histology, particularly aggressive variants such as micropapillary disease. In addition, other reports, such as those assessing for CIS, combined patients with pure and concomitant disease for analysis without reporting sub-group outcomes. The most important limitation, though, involves the under-utilization of repeat TUR for patients with T1HG disease. Even in a large analysis, such as the >2000 patient multicenter database, only 38.2% of T1HG patients received restaging TUR, likely understaging a substantial number of patients with invasive disease [80]. These are just a few examples that highlight just how important critical interpretation of studies is for the practicing urologist.

CONCLUSIONS

Thus, what truly constitutes BCG unresponsive disease? A number of key variables have been identified with varying degrees of influence (Table 3). Based upon the above data, we believe that the following features represent patients unlikely to benefit from further BCG therapy: (1) patients with recurrent T1HG disease within 6 months after at least one course of BCG or patients who have failed 2 courses of BCG with either (2) persistent or recurrent pure papillary (Ta) disease within 6 months or (3) persistent or recurrent CIS within 12 months. Further investigation into the efficacy of repeat BCG administration in patients with T1HG, CIS, and other known variables (i.e., age, tumor multiplicity, tumor size) is warranted.

ACKNOWLEDGMENTS

None.

CONFLICT OF INTEREST

The authors have no conflicts of interest to report.

REFERENCES

[1] Lerner SP, Domney C, Kamat A, Bivalacqua TJ, Nielsen M, O’Donnell M, et al. Clarification of bladder cancer disease states following treatment of patients with intravesical BCG. Bladder Cancer 2015;1(1):29-39.
[2] Meier V, Marth D, Krahl R, Ackermann DK, Zingg E, Studer UE. Analysis of early failures after intravesical instillation therapy with bacille Calmette-Guerin for carcinoma in situ of the bladder. Br J Urol 1995;75(2):180-4.
[3] Stein JP, Laskowsky G, Cote R, Grossman S, Feng AC, Boyd S, et al. Radical cystectomy in the treatment of invasive bladder cancer: Long-term results in 1,084 patients. Journal of clinical...
carcinoma in situ transitional cell carcinoma of the bladder: A randomized Southwest Oncology Group Study. J Urol 2000;163(3):761-7.

22. Herr HW. Superficial bladder cancer treated with bacillus Calmette-Guerin. Urology 1984;131(1):43-6.

23. Gohji K, Nomi M, Okamoto M, Takenaka A, Hara I, Okada RA, et al. Intravesical bacillus Calmette-Guerin therapy for in situ transitional cell carcinoma of the bladder. Bladder Photofrin Study Group. J Urol 2000;163(3):761-7.

24. Millan-Rodriguez F, Chechile-Toniolo G, Salvador-Bayarri J, Millan J, Varona J, et al. Role of routine transurethral biopsy and isolated upper tract cytology after intravesical treatment of high-grade nonmuscle invasive bladder cancer. International Journal of Urology. Offical Journal of the Japanese Urological Association 2000;9(12):1334-9.

25. Roser H, Luy V, Locating T. Residual tumor discovered in routine transurethral resection of patients with stage T1 transitional cell carcinoma of the bladder. Journal of Urology 1997;158(1):62-7.

26. Dvorak RT, Vaitkus U, Zoda F, Oren H. The effect of repeat transurethral resection on recurrence and progression rates in patients with T1 tumors of the bladder who received intravesical mitomycin. A prospective, randomized clinical trial. The Journal of Urology 2000;164(5):1841-4.

27. Gotji K, Nomoto M, Okamoto M, Takenaka M, Arai H, Okada H, et al. Conservative therapy for stage T1b, grade 3 transitional cell carcinomas of the bladder. Urology 1999;53(2):308-13.

28. Pfeifer C, Langedijk A, Barre P, Barbryla M, Canney M, et al. (T1 G3 bladder tumors: the respective role of BCG and chemotherapy). Progr en urolgie. Journal de l’Association Francaise D’urologie et de la Societe Francaise D’urologie 1995;5(2):231-7.
Hara I, Miyake H, Takeda Y, En S, Gotoda A, Fujisawa M, et al. Clinical outcome of conservative therapy for stage T1, grade 1 transitional cell carcinoma of the bladder. *International Journal of Urology* 2003;10(1):19-24.

Herr HW. Tumor progression and survival in patients with T1G3 bladder tumors: 15-year outcome. *Br J Urol* 1997;80(5):762-5.

Kikutani J, Gupta R. Recurrence and progression in stage T1G3 bladder tumor with intravesical bacille Calmette-Guérin (Danish 1331 strain). *BJU International* 2002;90(4):554-7.

Lebert T, Gaudier F, etc. Herpe, J, Barre F, Lapinage P-M, et al. Low-dose BCG instillations in the treatment of stage T1 grade 3 bladder tumors: Recurrence, progression and survival. *European Urology* 1997;32(4):67-72.

Patard JJ, Mundinger S, Saint P, Roux-Leclerc N, Mammit A, Gay L, et al. Tumor progression and survival in patients with T1G3 bladder tumors: Multicentric retrospective study comparing 94 patients treated during 17 years. *Urology* 2001;58(4):53-6.

Shahin O, Thalhammer GN, Rentsch C, Mazzucchelli L, Studer U. A retrospective analysis of 153 patients treated with or without intravesical bacillus Calmette-Guérin for primary stage T1 grade 3 bladder cancer: Recurrence, progression and survival. *The Journal of Urology* 2003;169(1):96-100.

Brade M, Lotterez H, Horsch H, Keller H. Recurrence and progression of stage T1, grade 3 transitional cell carcinoma of the bladder following intravesical immunotherapy with bacillus Calmette-Guérin. *The Journal of Urology* 2000;164(6):1677-80.

Hufle R, Loss A, Manetti A, Lemo C. Intravesical bacille Calmette-Guérin in stage T1, grade 3 bladder cancer therapy: A 7-year follow-up. *Urology* 1999;54(2):258-63.

Thanas A, Karasanto T, Derruila E, Sionrine V, Davila S, Calmette Guérin therapy: Significance of concomitant high-risk bladder cancer. *Scand J Urol Nephrol* 1994;28(4):365-8.

Taktas F, D'Necle C, Leonardo C, Franco G, Spalletta B, et al. Long-term maintenance bacille Calmette-Guérin therapy in high-grade superficial bladder cancer. *Urology* 2002;60(1):78-82.

Margel D, Tal R, Golan S, Keidar D, Engelsken D, Baron J. Long-term follow-up of patients with Stage T1 high-grade transitional cell carcinoma managed by Bacille Calmette-Guérin immunotherapy. *Urology* 2007;69(4):78-82.

Pansadoro V, Emoliato D, Parola F, Scarpone P, Pansadoro A, Stemberg CN. Long-term follow-up of G3T1 transitional cell carcinoma of the bladder treated with intravesical bacille Calmette-Guérin: 18-year experience. *Urology* 2002;59(2):227-31.

Peyromaure M, Guerin F, Asseloin-Guazana D, Saigui D, Debré B, Zerhbi M. Intravesical bacillus Calmette-Guérin therapy for stage T1 grade 3 transitional cell carcinoma of the bladder: Recurrence, progression and survival in a study of 57 patients. *The Journal of Urology* 2003;169(6):2110-6.

Zhong G, Uke EC, Shere WC, Borken WB, Bernotin SM. An assessment of conservative management for stage T1NM0 transitional cell carcinoma of the bladder. *The Journal of Urology* 1996;155(6):1907-9.