Effects of dietary supplementation with cupreous N-carbamylglutamate (NCG) chelate and copper sulfate on growth performance, serum biochemical profile and immune response, tissue mineral levels and fecal excretion of mineral in weaning piglets

Peng Liao a,b, Meijun Li c, Yunhu Li c, Xiangwen Tan d, Furen Zhao e, Xugang Shu f and Yulong Yin a,b

a Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, People’s Republic of China; b Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, People’s Republic of China; c College of Animal Science and Technology, Hunan Biological and Electromechanical Polytechnic, Changsha, People’s Republic of China; d Department of Laboratory Animal Science, University of South China, Hengyang, People’s Republic of China; e The Third High School of Shaodong, Shaodong, People’s Republic of China; f College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, People’s Republic of China

ABSTRACT
This experiment was conducted to measure the effects of dietary supplementation with copper sulfate and cupreous N-carbamylglutamate chelate (NCG-Cu) on the growth performance, serum biochemical profile and immune response, tissue mineral levels and fecal excretion of minerals of weaning piglets. Eighteen 28-d-old healthy weaning piglets (initial body weight = 6.34 ± 0.10 kg) were individually housed and randomly assigned to receive one of three diets containing no copper in either form (Control), 650 g/t copper sulfate (650 g/t Cu group) or 640 g/t NCG-Cu (640 g/t NCG-Cu group) in the final feed for 14 days. These data indicate that 640 g/t NCG-Cu was as effective as 650 g/t Cu for stimulating growth, immune response, and improving F/G in weaning piglets. Fecal Cu excretion decreased in piglets from the 640 g/t NCG-Cu group, which received 160 mg/kg Cu compared with the fecal Cu excretion observed in the piglets from the 650 g/t Cu group, which also received 160 mg/kg Cu. Therefore, 640 g/t NCG-Cu of dietary Cu, may provide an effective environmental alternative to 650 g/t Cu in weaning piglets.

Abbreviations: ADFI: average daily feed intake; ADG: average daily gain; ALB: albumin; ALP: alkaline phosphatase; ALT: alanine aminotransferase; AST: aspartate amino transferase; CK: creatine kinase; CREA: creatinine; D-BIL: direct-acting-bilirubin; F/G: feed/gain ratio; GLB: globulin; GLU: blood glucose; IgA: immunoglobulin A; IgG: immunoglobulin G; LDH: lactate dehydrogenase; NCG: N-
1. Introduction

Micromineral supplementation to meet requirements in swine diets is crucial for animal growth, reproduction and immune system development. Feeding high concentrations of copper is well recognized to have growth-promoting effects in weaned pigs and to reduce problems with post-weaning diarrhea, and the response appears to be additive to that obtained from feeding antibiotics (Beames & Lloyd, 1965; Case & Carlson, 2002; Hasman et al., 2006; Hedemann, Jensen, & Poulsen, 2006; Hill et al., 2000; Hill et al., 1983; Pluske, Pethick, Hopwood, & Hampson, 2002; Xing, Hao, Liu, Xu, & Kuang, 2014; Yuan et al., 2015). Minimally, piglets require 5–6 mg/kg, whereas growing pigs and slaughter pigs require 3–5 mg/kg copper in feed for normal growth according to the National Research Council’s recommended levels. However, supplemented levels often exceed the requirements, resulting in an enhanced excretion of minerals to the environment and raising concerns regarding environmental pollution (Hill et al., 2000; Jondreville, Revy, & Dourmad, 2003).

Interest in using organic minerals has increased because of the reported potential of their higher bioavailability compared with inorganic mineral sources (Apgar, Kornegay, Lindemann, & Notter, 1995). Studies have shown that organic copper binds to peptides and amino acids during digestion, which can aid in copper absorption and improve growth performance (Apgar et al., 1995; Beames & Lloyd, 1965; Bunch, McCall, Speer, & Hays, 1965; Coffey, Cromwell, & Monegue, 1994; Hill et al., 1983; Van Heugten & Coffey, 1992; Zhou, Kornegay, Van Laar, et al., 1994). Two reviews report a number of studies that have shown that organic copper is not more effective than inorganic copper in improving pig performance (Acda & Chae, 2002; Pluske et al., 2002). Discrepancies between effective and ineffective supplementation with organic and inorganic copper in improving pig performance may require further research.

Therefore, this study was designed to evaluate the effectiveness of dietary supplementation with copper sulfate (Cu) and cupreous N-carbamylglutamate chelate (NCG-Cu) on the growth performance, serum biochemical profiles and immune response, tissue mineral levels and fecal excretion of minerals of weaning piglets.

2. Materials and methods

2.1. Ethics statement

This study was conducted according to the guidelines of the Declaration of Helsinki, and all procedures involving animal subjects were approved by the animal welfare committee of the Institute of Subtropical Agriculture, Chinese Academy of Sciences (Changsha, Hunan Province, China).

2.2. Pigs management and sample collection

Eighteen 28-day-old healthy weaning pigs (Landrace × Large × Yorkshire) (Hunan New Wellful Co., Ltd., Hunan Province, China) with a mean body weight of 6.34 ± 0.10 kg...
were randomly assigned to three dietary treatments: (1) a diet without added copper (Control), (2) a diet with 650 g/t copper sulfate (Cu\(^{2+}\) elemental concentration of 160 mg/kg) (650 g/t Cu) and (3) a diet with 640 g/t NCG-Cu diet (Cu\(^{2+}\) elemental concentration of 160 mg/kg) (640 g/t NCG-Cu). Each group contained six pigs (half barrows and half gilts). All diets were formulated to meet the NRC’s (2012) recommended nutrient requirements for weaning pigs. The ingredient and nutrient composition of the diets are shown in Table 1 (Wu, Liao, He, Feng, et al., 2015). Pigs had free access to drinking water and their respective diets throughout the experimental period. After 14 days of dietary exposure to the different copper sources and immediately after electrical stunning, six pigs/group (three barrows and three gilts) were killed for analysis. Body weight and feed consumption as well as the presence of diarrhea were recorded. The diarrhea rate was calculated as follows: \[\text{diarrhea rate} \times 100\% = \frac{\text{Diarrhea piglets}}{\text{Total experiment piglets} \times \text{Experiment time} \times d} \times 100\% \]

After 14 days of dietary exposure to the different copper sources, 5 mL of blood was collected aseptically in tubes from a jugular vein 2 h after feeding, centrifuged at 3000 \(\times g \) for 10 min at 4°C to obtain serum samples, and stored at \(-80^\circ C\) for further analysis. The liver, spleen, kidney and heart were removed and weighed. The weights were recorded both as the organ weight and as a percentage of the total body weight.

2.3. Analysis of serum biochemical, amino acid profile and immunoglobulin

Serum biochemical parameters, including albumin (ALB), blood glucose (GLU), creatinine (CREA), alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate amino transferase (AST), globulin (GLB), total cholesterol (TC), total protein (TP), Urea (urea), direct-acting-bilirubin (D-BIL), total bilirubin (T-BIL), urate (UA), lactate dehydrogenase (LDH) and creatine kinase (CK), were measured using spectrophotometric kits in accordance with the manufacturer’s instructions (Nanjing Jiangcheng Biotechnology Institute, Jiangsu Province, China) and identified using an Automatic Biochemistry Radiometer (Au640, Olympus) as described previously (Wu, Liao, He, Feng, et al., 2015; Wu, Liao, He, Ren, et al., 2015).

Ingredients	Contents (%)	Nutrient composition	Contents
Corn (43%CP)	63.70	Digestive energy, MJ/kg	14.60
Soybean meal	19.80	Crude protein, %	20.27
Whey powder	4.30	Lysine-HCl, %	1.48
Fish meal (64%CP)	9.00	Methionine, %	0.42
Soybean oil	0.80	Threonine, %	0.90
Lysine hydrochloride	0.38	Calcium, %	0.80
Hydroxy methionine	0.10	Available Phosphorus, %	0.45
L-threonine	0.09		
L-tryptophan	0.01		
CaHPO\(_3\)	0.00		
Rock-powder	0.52		
Salt	0.30		
1% Premix\(^a\)	1.00		
Total	100.00		

\(^a\)Premix provided the following per kilogram of the diet: Vitamin A 2000 IU; Vitamin D\(_3\) 200 IU; Vitamin E 12 IU; Vitamin K 0.5 mg; Vitamin B\(_1\) 0.016 mg; Vitamin B\(_2\) 3 mg; Vitamin B\(_3\) 12.5 mg; folic acid 0.3 mg; Vitamin B\(_5\) 10 mg; Choline chloride 0.5 mg; Vitamin B\(_1\) 1 mg; Vitamin B\(_6\) 1.6 mg; Vitamin B\(_7\) 0.05 mg; Fe 80 mg; Mn 3 mg; Zn 46.8 mg; I 0.1 mg; Se 0.3 mg.
Thirty-seven amino acids were identified in serum by LC–MS/MS (HPLC Ultimate 3000 and 3200 QTRAP LC–MS/MS) as described previously (Wu, Liao, He, Feng, et al., 2015; Wu, Liao, He, Ren, et al., 2015). The concentrations of immunoglobulin (Ig) G and IgA were measured using ELISA kits in accordance with the manufacturer’s instructions (Cusabio Biotech Co., Ltd., Hubei, China).

2.4. Analysis of mineral levels

The mineral values in the serum, fecal and liver, longissimus dorsi, spleen and kidney were analyzed according to previously described methods, with minor adjustments (Subramanian, 1996; Xing et al., 2014). All samples were obtained, placed in plastic bags, and immediately preserved on ice for an acceptable length of time prior to being analyzed for heavy metals. All samples were weighed before and after being cut into small pieces and ground thoroughly to achieve homogeneity. Then, 5 g of each sample was placed in a 125 mL Erlenmeyer flask, 10 mL of concentrated nitric acid was added, and the sample was warmed on a hot plate until solubilized. The temperature of the hot plate approached the boiling point until the solution turned brown. Then, the sample was allowed to cool, and an additional 5 mL of concentrated nitric acid was added for repeated heating and cooling. Another 2 mL of nitric acid was added before the flask was heated again on the hot plate until the volume of the sample was reduced to 10 mL. Once cooled, 2 mL of 30% hydrogen peroxide was added. Once again, the sample was heated until the volume of the sample was reduced to 5–10 mL. After being allowed to cool, another 2 mL of hydrogen peroxide was added. This step was repeated until a total of 10 mL of hydrogen peroxide had been added. Then, the sample was allowed to cool, and 2 mL of concentrated hydrochloric acid was added. The sample was then returned to the hot plate until the volume of the sample was reduced to 5–10 mL. The sample was allowed to cool and transferred into a 100 mL volumetric flask. The sample was then topped-up with deionized water to the mark for ICP-OES analysis.

2.5. Statistical analysis

Data were analyzed by analysis of variance (ANOVA) using the general linear model (GLM) procedure in the SPSS19.0 software program (Chicago, IL, USA) (Wu, Liao, He, Feng, et al., 2015; Wu, Liao, He, Ren, et al., 2015). Duncan’s multiple range test was applied to compare the differences among the treatments. Differences were considered significant at $P < .05$.

3. Results

3.1. Growth performance and rate of diarrhea

The growth performance results of weaning piglets are shown in Table 2. A significant difference in average daily gain (ADG) $(P < .05)$ was observed between the 640 g/t NCG-Cu group and the 650 g/t Cu group, but this value was not significantly different
between the control group and the 640 g/t NCG-Cu group (P > .05). The average daily feed intake (ADFI) was significantly different between the 640 g/t NCG-Cu group and the 650 g/t Cu group (P < .05), but in the control and 640 g/t NCG-Cu groups, this value was significantly higher than in the 650 g/t Cu (P > .05). The control group showed the lowest feed/gain ratio (F/G).

The rate of diarrhea of the weaning piglets is shown in Table 3. The diarrhea rate varied significantly (P < .05) between the 640 g/t NCG-Cu group and the 650 g/t Cu group, but this value was not significantly different (P > .05) between the control group and the 640 g/t NCG-Cu group.

3.2. Relative organ weights

Table 4 shows the effects of the two diets with different copper sources on relative organ weight. No significant differences were observed among the three groups with respect to heart, liver or spleen weight (P > .05). However, the relative kidney weights in the piglets of the 650 g/t Cu group and 640 g/t NCG-Cu groups were lower than those in the control group (P < .05). No differences were observed among the groups with respect to contamination resulting from the different copper sources.

3.3. Serum biochemical parameters and free amino acid concentrations

Table 5 shows the effects of the two doses of copper supplementation in the diet on the serum biochemical parameters of the weaning piglets. No difference was observed in

Table 2. Effect of dietary supplementation with cupreous N-carbamylglutamate (NCG) chelate and copper sulfate on growth performance in weanling pigs (n = 6).

Items	Dietary supplementation	SEM ±	P value		
	Control1	650 g/t Cu2	640 g/t NCG-Cu^3		
Initial BW, kg	6.36	6.35	6.31	0.106	0.243
Final BW, kg	9.81^1	8.56^b	9.56^b	0.232	.047
ADFI, g/d	195.83^b	134.40^b	198.81^b	8.793	.011
F/G	1.71	1.86	1.62	0.657	.065

Notes: Means within the same row with different superscript differ significantly (P < .05). The experiment lasted 14 days.

1 Control = basal diet (Cu^2+ elemental concentration of 16.58 mg/kg).

2 650 g/t Cu = basal diet + 650 g/t copper sulfate (Cu^2+ elemental concentration of 160 mg/kg).

3 640 g/t NCG-Cu = basal diet + 640 g/kg cupreous N-carbamylglutamate chelate diet (Cu^2+ elemental concentration of 160 mg/kg).

Table 3. The effects of dietary supplementation with cupreous N-carbamylglutamate (NCG) chelate and copper sulfate on diarrhea rate in weanling pigs (n = 6).

Items	Dietary supplementation	SEM ±	P value		
Diarrhea rate (%)	Control1	650 g/t Cu2	640 g/t NCG-Cu^3		
	5.30^a	7.50^b	5.20^a	0.247	.038

Notes: Means within the same row with different superscript differ significantly (P < .05). The experiment lasted 14 days.

1 Control = basal diet (Cu^2+ elemental concentration of 16.58 mg/kg).

2 650 g/t Cu = basal diet + 650 g/t copper sulfate (Cu^2+ elemental concentration of 160 mg/kg).

3 640 g/t NCG-Cu = basal diet + 640 g/kg cupreous N-carbamylglutamate chelate diet (Cu^2+ elemental concentration of 160 mg/kg). The diarrhea rate was calculated as follows: diarrhea rate (%) = (Diarrhea piglets [n]/(Total experiment piglets [n] × Experiment time [d])) × 100%.

The diarrhea rate of the weaning piglets is shown in Table 3. The diarrhea rate varied significantly (P < .05) between the 640 g/t NCG-Cu group and the 650 g/t Cu group, but this value was not significantly different (P > .05) between the control group and the 640 g/t NCG-Cu group.

Table 4. The dietary supplementation with cupreous N-carbamylglutamate (NCG) chelate and copper sulfate on relative organ weights (g/kg BW) in weanling pigs (n = 6).

Items	Dietary supplementation				
	Control¹	650 g/t Cu²	640 g/t NCG-Cu³	SEM ±	P value
Heart	4.77	4.85	5.15	0.129	.476
Liver	25.78a	22.97b	25.03b	0.561	.038
Spleen	2.21	2.27	2.42	0.137	.925
Kidney	6.50	6.21	6.46	0.199	.051

Notes: Means within the same row with different superscript differ significantly (P < .05). The experiment lasted 14 days.
¹Control = basal diet (Cu²⁺ elemental concentration of 16.58 mg/kg).
²650 g/t Cu = basal diet + 650 g/t copper sulfate (Cu²⁺ elemental concentration of 160 mg/kg).
³640 g/t NCG-Cu = basal diet + 640 g/kg cupreous N-carbamylglutamate chelate diet (Cu²⁺ elemental concentration of 160 mg/kg).

Table 5. Serum biochemical chemical parameters of weanling pigs fed with diets containing cupreous N-carbamylglutamate (NCG) chelate and copper sulfate (n = 6).

Items	Dietary supplementation				
	Control¹	650 g/t Cu²	640 g/t NCG-Cu³	SEM ±	P value
ALB (g/L)	41.85a	39.45a	38.43a	0.930	.324
GLU (mmol/L)	5.34a	6.27a	6.85a	0.285	.044
CREA (mmol/L)	130.47a	150.42b	133.20a	3.193	.048
ALP (U/L)	345.77a	559.42b	425.45b	32.668	.027
ALT (U/L)	60.45a	80.42b	64.93a	6.262	.002
AST (U/L)	122.38a	181.57b	126.96a	32.960	.038
GLB (g/L)	11.35a	17.67b	11.55a	0.750	.034
TC (mmol/L)	2.23a	3.67b	2.29a	0.079	.052
TP (g/L)	53.20a	78.32b	51.46a	1.279	.023
UREA (mmol/L)	3.88a	4.27b	3.78a	0.212	.042
D-BIL (μmol/L)	5.56a	7.25a	5.01a	0.518	.054
T-BIL (μmol/L)	5.38a	6.94b	4.62a	0.608	.027
UA (μmol/L)	0.45a	1.05a	0.65a	0.163	.045
LDH (U/L)	872.45a	896.78b	841.13b	96.786	.800
CK (U/L)	565.23a	2444.97b	1400.87ab	329.755	.056

Notes: Means within the same row with different superscript differ significantly (P < .05). The experiment lasted 14 days.
¹Control = basal diet (Cu²⁺ elemental concentration of 16.58 mg/kg).
²650 g/t Cu = basal diet + 650 g/t copper sulfate (Cu²⁺ elemental concentration of 160 mg/kg).
³640 g/t NCG-Cu = basal diet + 640 g/kg cupreous N-carbamylglutamate chelate diet (Cu²⁺ elemental concentration of 160 mg/kg).

the concentrations of the ALB, GLU, UA and LDH between the control and the two copper-treatment groups (P > .05). The CREA, ALT, AST, GLB, TC, TP, Urea, D-BIL, T-BIL, ALP, UA and CK values were not different between the control group and the 640 g/t NCG-Cu group, but these values were significantly different between the 650 g/t Cu group and the 640 g/t NCG-Cu group (P < .05). The ALP activity in the control group was significantly lower than that in the 650 g/t Cu group and that in the 640 g/t NCG-Cu group, but the value was significantly different between the 650 g/t Cu group and the 640 g/T NCG-Cu group (P > .05).

Table 6 shows the effects of the diets with 2 different sources of copper supplementation on the serum for 37 free amino acid concentrations in weaning piglets. The concentrations
of DL-α-amino-n-butyric acid, L-alanine, L-cystathionine, L-lysine, L-ornithine, L-phenylalanine and L-tyrosine in the 650 g/t Cu group and the 640 g/t NCG-Cu group varied significantly from those of the control group ($P < .01$), but these values did not differ significantly between the 650 g/t Cu group and the 640 g/t NCG-Cu group ($P > .05$).

The L-arginine and L-leucin concentrations in the control group were lower than those in the 650 g/t Cu group ($P < .05$), but these values were not differ significantly between the 650 g/t Cu group and 640 g/t NCG-Cu group ($P > .05$). The concentrations of L-cystine, L-threonine and L-valine varied significantly among the three groups ($P < .01$).

The levels of IgG and IgA in serum are also shown in Table 7. The concentration of IgA did not vary significantly among the treatments. The level of IgG in the 640 g/t NCG-Cu group was significantly ($P < .05$) higher than that in the control group, but did not vary significantly ($P > .05$) between the 650 g/t Cu and 640 g/t NCG-Cu groups.

Table 6. Serum free amino acid parameters of weanling pigs fed with diets containing cupreous N-carbamylglutamate (NCG) chelate and copper sulfate ($n = 6$).

Items	Control 1	650 g/t Cu2	640 g/t NCG-Cu3	SEM ±	P value
L-1-methylhistidine	0.00	0.00	0.00	0.000	.000
L-3-methylhistidine	1.10a	1.25a	0.93b	0.044	None
L-alpha-aminoadipic acid	4.80a	5.36b	3.81a	0.328	.003
DL-α-amino-n-butyric acid	2.30a	1.46b	1.49a	0.138	.152
L-alanine	68.80a	46.95b	43.53b	4.363	.013
L-anserine	0.25a	0.23a	0.27a	0.137	.026
L-arginine	16.37a	24.93b	20.28a,b	1.384	.995
L-aspartic acid	3.41a	3.34a	2.64a	0.202	.029
DL-β-aminoisobutyric acid	0.00	0.00	0.00	0.000	.237
β-Alanine	3.31b	3.17a	3.67a	0.225	None
L-carnosine	4.34a,b	5.40b	3.49a	0.362	.674
L-citrulline	14.80a	23.71b	18.56a,b	1.544	.028
L-cystathionine	3.28a	1.72b	1.69b	0.239	.050
L-cystine	0.76a	2.16b	3.28a	0.318	.002
Ethanolamine	0.48a	0.41a	0.67a	0.727	.001
γ-Aminobutyric acid	0.18a	0.22a	0.39a	0.068	.335
L-glutamic acid	46.70a	33.26b	32.21a	3.201	.434
Glycine	100.04a	74.36a	75.95a	5.647	.116
L-histidine	4.25a	5.64a	4.77a	0.352	.110
DL- plus allo-δ-hydroxylysine	0.54a	0.77a	2.05a	0.343	.277
Hydroxy-L-proline	16.07a	17.74b	16.61a	0.864	.155
L-isoleucine	15.55a	14.34a	12.19a	0.688	.749
L-leucin	12.16a	18.03b	15.51a,b	0.978	.128
L-lysine	20.60a	41.33b	38.64b	3.054	.037
L-methionine	9.46 ± 1.52a	9.58 ± 1.07a	10.11a	0.624	.003
L-ornithine	12.02a	17.26b	17.79b	1.003	.913
O-phosphoethanolamine	0.00	0.00	0.00	0.000	.237
L-phenylalanine	8.53a	12.67b	12.08b	0.587	None
L-proline	30.97a	27.31a	25.52a	1.201	.002
O-phospho-L-serine	2.73a	3.21a	3.87a	0.261	.171
Sarcosine	3.03a	3.01a	2.82a	0.149	.205
L-serine	18.74a	18.50a	20.13a	0.744	.840
Taurine	13.38a	12.34a	11.74a	0.954	.654
L-threonine	11.49a	23.21b	21.79c	2.442	.799
L-tyrosine	10.11a	20.10b	19.98b	1.509	<.0001
Urea	114.73a	92.13a	112.35a	7.678	.008
L-valine	10.07a	23.16b	20.78a	1.719	.444

Notes: Means within the same row with different superscript differ significantly ($P < .05$). The experiment lasted 14 days.

1Control = basal diet (Cu$^{2+}$ elemental concentration of 16.58 mg/kg).

2650 g/t Cu = basal diet + 650 g/t copper sulfate (Cu$^{2+}$ elemental concentration of 160 mg/kg) and

3640 g/t NCG-Cu = basal diet + 640 g/kg cupreous N-carbamylglutamate chelate diet (Cu$^{2+}$ elemental concentration of 160 mg/kg).
3.4. Feed, serum, tissue and fecal mineral values

The mineral values of the three feeds used for the weaning piglets are shown in Table 8. Ten types of minerals, namely P, Mg, Ca, Cd, Cu, Fe, Mn, Ni, Pb and Zn, were detected in the feeds. Among these minerals, the concentrations of Cu were 16.58, 654.82 and 443.78 mg/kg in the control group, 650 g/t Cu group and 640 g/t NCG-Cu group, respectively.

The serum mineral values obtained for the weaning pigs are shown in Table 9. Five types of minerals, namely Ca, P, Cu, Zn and Fe, were detected in the serum. The concentration of Cu in the control was significantly lower than the Cu concentration in the 650 g/t Cu and 640 g/t NCG-Cu groups (\(P < .05 \)), but the Cu concentrations in the 650 g/t Cu and 640 g/t NCG-Cu groups were not significantly different (\(P > .05 \)).

The fecal mineral values of the weaning piglets are shown in Table 9. Three types of minerals, namely Cu, Zn and Fe, were detected in the feces. The concentration of Cu in the control was significantly lower than that in the 650 g/t Cu group and the 640 g/t NCG-Cu group (\(P < .05 \)), but the Cu concentrations in the 650 g/t Cu and 640 g/t NCG-Cu groups were not significantly different (\(P > .05 \)).

Table 7. Serum immune parameters of weanling pigs fed with diets containing cupreous N-carbamylglutamate (NCG) chelate and copper sulfate (\(n = 6 \)).

Items	Dietary supplementation	SEM ±	\(P \) value		
	Control\(^1\)	650 g/t Cu\(^2\)	640 g/t NCG-Cu\(^3\)		
IgG (mg/mL)	7.03\(^a\)	8.26\(^b\)	8.63\(^b\)	0.307	.044
IgA (mg/mL)	7.14	7.22	7.31	0.218	.057

Notes: Means within the same row with different superscript differ significantly (\(P < .05 \)). The experiment lasted 14 days.

\(^1\)Control = basal diet (Cu\(^{2+}\) elemental concentration of 16.58 mg/kg).
\(^2\)650 g/t Cu = basal diet + 650 g/t copper sulfate (Cu\(^{2+}\) elemental concentration of 160 mg/kg).
\(^3\)640 g/t NCG-Cu = basal diet + 640 g/kg cupreous N-carbamylglutamate chelate diet (Cu\(^{2+}\) elemental concentration of 160 mg/kg). IgG: immunoglobulin G, IgA: immunoglobulin A.

Table 8. Analysis of the innate micromineral concentration of the basal diets, cupreous N-carbamylglutamate (NCG) chelate and copper sulfate.

Items	Dietary supplementation	SEM ±	\(P \) value
	Control\(^1\)	650 g/t Cu\(^2\)	640 g/t NCG-Cu\(^3\)
P (mg/kg)	617.60	2049.90	1225.60
Mg (mg/kg)	926.55	888.15	933.23
Ca (mg/kg)	8873	9536.40	9660.60
Cd (mg/kg)	0.40	0.38	0.41
Cu (mg/kg)	16.58	654.82	443.78
Fe (mg/kg)	438.88	536.77	520.94
Mn (mg/kg)	78.64	85.99	71.24
Ni (mg/kg)	2.07	2.14	2.12
Pb (mg/kg)	0.08	0.15	0.98
Zn (mg/kg)	1654.18	2002.83	1980.06

Note: The experiment lasted 14 days.

\(^1\)Control = basal diet (Cu\(^{2+}\) elemental concentration of 16.58 mg/kg).
\(^2\)650 g/t Cu = basal diet + 650 g/t copper sulfate (Cu\(^{2+}\) elemental concentration of 160 mg/kg).
\(^3\)640 g/t NCG-Cu = basal diet + 640 g/kg cupreous N-carbamylglutamate chelate diet (Cu\(^{2+}\) elemental concentration of 160 mg/kg). Each diet was analyzed in duplicate.
Table 9. Analyzed micromineral concentration of serum, feces and different organs in weanling pigs fed with diets containing cupreous N-carbamylglutamate (NCG) chelate and copper sulfate (n = 6).

Dietary supplementation	Control1	650 g/t Cu2	640 g/t NCG-Cu3	SEM ± P value
Serum				
Ca (mmol/L)	2.94a	2.89b	2.69a	0.100 .042
P (mmol/L)	2.54a	1.65b	2.97a	0.220 .000
Cu (μmol/L)	17.28b	25.75b	27.56b	3.050 .030
Zn (μmol/L)	106.28a	94.47a	98.54a	27.990 .323
Fe (μmol/L)	61.16a	78.96b	87.27b	0.100 .035
Fecal				
Cu (mg/kg)	1074.65a	2069.52b	1220.77c	0.100 .042
Zn (mg/kg)	2958.28a	3047.17a	2434.54a	0.100 .035
Fe (mg/kg)	1961.61a	2078.96b	1987.37b	0.100 .035
Liver				
Cr (mg/kg)	5.22a	8.04a	8.53a	0.100 .565
Mg (mg/kg)	98.04a	107.31a	105.22a	3.810 .121
Ca (mg/kg)	53.76a	57.47a	58.26a	9.600 .512
Cd (mg/kg)	4.01a	5.22a	5.82a	1.220 .034
Cu (mg/kg)	18.80a	123.55b	115.03b	0.220 .081
Fe (mg/kg)	257.34a	318.02a	301.76a	0.220 .235
Longissimus dorsi				
Cr (mg/kg)	13.23a	19.40a	10.34a	1.560 .318
Mg (mg/kg)	1160.12a	1147.89a	1249.48b	55.020 .062
Ca (mg/kg)	2478.61a	1748.97b	2400.96a	223.110 .028
Cd (mg/kg)	0.56a	0.11a	0.15a	0.140 .786
Cu (mg/kg)	37.20a	50.88b	37.83a	4.160 .040
Fe (mg/kg)	158.80a	192.81b	158.70a	0.100 .061
Spleen				
Cr (mg/kg)	7.21a	7.55a	7.78a	0.890 .413
Mg (mg/kg)	150.13a	152.04a	153.01a	31.430 .521
Ca (mg/kg)	2078.31a	2309.65a	2159.51a	67.450 .741
Cd (mg/kg)	0.15a	0.17a	0.18a	0.080 .579
Cu (mg/kg)	26.81a	33.14a	28.54a	2.050 .617
Fe (mg/kg)	178.04a	196.05a	185.21b	45.550 .034
Kidney				
Cr (mg/kg)	10.11a	9.94a	10.27a	0.691 .217
Mg (mg/kg)	1078.02a	1053.64a	1011.01b	24.180 .203
Ca (mg/kg)	2968.15a	3514.95b	3014.05b	145.250 .037
Cd (mg/kg)	0.51a	0.48a	0.49a	0.012 .963
Cu (mg/kg)	85.11a	154.62b	135.57b	3.173 .063
Fe (mg/kg)	305.13a	452.65a	402.65a	57.021 .214
Notes: Means within the same row with different superscript differ significantly (P < .05). The experiment lasted 14 days.				
1Control = basal diet (Cu2+ elemental concentration of 16.58 mg/kg).
2650 g/t Cu = basal diet + 650 g/t copper sulfate (Cu2+ elemental concentration of 160 mg/kg).
3640 g/t NCG-Cu = basal diet + 640 g/kg cupreous N-carbamylglutamate chelate diet (Cu2+ elemental concentration of 160 mg/kg). Each diet was analyzed three times.
The liver mineral values obtained for the weaning pigs are shown in Table 9. Ten types of minerals, namely P, Mg, Ca, Cd, Cu, Fe, Mn, Ni, Pb and Zn, were detected in the liver. The concentrations of Cu and Zn in the control were significantly lower than those in the 650 g/t Cu group and the 640 g/t NCG-Cu group (P < .05), but these values did not vary significantly between the 650 g/t Cu group and the 640 g/t NCG-Cu group (P > .05). The concentration of Fe in the control group was slightly lower than that in the 650 g/t Cu group and that in the 640 g/t NCG-Cu group (P > .05).

The values for minerals found in the longissimus dorsi of the weaning pigs are shown in Table 9. Ten types of minerals, namely P, Mg, Ca, Cd, Cu, Fe, Mn, Ni, Pb and Zn, were detected in the longissimus dorsi. The concentrations of Cu, Ni and Zn in the control group did not vary significantly from those of the two copper-treatment groups (P > .05), but these values were significantly different between the 650 g/t Cu group and the 640 g/t NCG-Cu group (P < .05). The concentration of Fe in the control group was slightly lower than that in the 650 g/t Cu and 640 g/t NCG-Cu groups (P > .05).

The mineral values obtained from the spleens of the weaning pigs are shown in Table 9. Ten types of minerals, namely P, Mg, Ca, Cd, Cu, Fe, Mn, Ni, Pb and Zn, were detected in the spleen. The concentration of Ni in the control was significantly different from the concentrations observed in the two copper-treatment groups (P < .05), but this value did not vary significantly between the 650 g/t Cu group and the 40 g/t NCG-Cu group (P > .05). No differences were observed in the concentration of Cu among the three groups (P > .05).

The mineral values measured in the kidneys of the weaning piglets are shown in Table 9. Ten types of minerals, namely P, Mg, Ca, Cd, Cu, Fe, Mn, Ni, Pb and Zn, were detected in the kidney. The concentrations of Ca and Cu in the control differed significantly from those measured in the two copper-treatment groups (P < .05), but these values were not significantly different between the 650 g/t CuSO4 group and the 640 g/t NCG-Cu group (P > .05).

4. Discussion
Copper plays an important role in the normal metabolism of piglets. Several studies have evaluated the performance of weaning piglets fed diets supplemented with Cu either as copper sulfate or as organic Cu. Compounds such as Cu-carbonate, Cu-lysine, tribasic Cu-chloride and organic Cu chelates have been studied, and these compounds, as observed for copper sulfate, appear to stimulate growth in piglets and reduce diarrhea (Apgar et al., 1995; Bunch et al., 1965; Coffey et al., 1994; Stansbury, Tribble, & Orr, 1990; Zoubek, Peo, Moser, Stahly, & Cunningham, 1975). In our study, the 640 g/t NCG-Cu group showed a significant advantage in measures of ADG, ADFI, F/G and diarrhea compared with the 650 g/t Cu group (Tables 2 and 3). These results are consistent with previous studies in which the growth of piglets was stimulated and the diarrhea rate was reduced.

In the present study, the relative kidney weights of pigs in the 650 g/t Cu and 640 g/t NCG-Cu groups were lower than those of pigs in the control group (P < .05), but no significant differences in the weight of other organs were observed (Table 4). This result is not consistent with previous studies in which heart weight increased significantly in both male and female rats exposed to copper-deficient diets, with the heart of the males being more severely enlarged, and in which no changes were observed in the weights of the liver, kidney or spleen (Allen, Hassel, & Lei, 1982; Koller, Mulhern, Frankel, Steven, & Williams,
A possible explanation for the discrepancies between these studies and our present study could be that the effects of relative organ weights depend on animal species, sexuality and copper dose.

The measured serum biochemical parameters reflected the metabolism and visceral organ status of the pigs (Table 5). The CREA, ALT, AST, GLB, TC, TP, Urea, D-BIL, T-BIL, UA and CK values in the 650 g/t Cu group and the 640 g/t NCG-Cu group were significantly different ($P < .05$). This finding is consistent with previous results showing that dietary supplementation with copper for quail and hen has a significant effect on ALT; however, it is not consistent with previous results indicating increased AST levels in pigs fed a copper-contaminated diet (Almansour, 2006; Berrin Kocaoğlu Güçlü et al., 2008). Serum AST and ALT levels have been reported to be sensitive indicators of liver injury because an increase in these values reflects leakage from injured hepatocytes (Nyblom, Berggren, Balldin, & Olsson, 2004). Changes in blood chemistry variables occur before the formation of physiological and morphological lesions. Although no changes were observed in the ratio of liver weight to body weight, the alterations observed in the serum enzyme activities, particularly in the animals fed diets supplemented with 160 mg/kg Cu, may suggest that when the animals are exposed to this concentration of copper or higher for prolonged periods, potentially hazardous effects may arise.

Amino acids play important roles as metabolic intermediates in nutrition, immune response and growth performance (Wu, Liao, He, Feng, et al., 2015; Wu, Liao, He, Ren, et al., 2015). In the present study, the concentrations of DL-α-amino-n-butyric acid, L-alanine, L-cystathionine, L-lysine, L-ornithine, L-phenylalanine and L-tyrosine in the 650 g/t Cu group and the 640 g/t NCG-Cu group were significantly different from those of the control group ($P < .01$) (Table 6). This finding is not consistent with previous results showing increased citrulline and arginine levels in pigs fed a single NCG-contaminated diet (Wu et al., 2010). One possible reason is that the degradation of dietary alanine, cystathionine, lysine, ornithine, phenylalanine and tyrosine by the small intestine is increased by the two doses of copper-supplemented feed, resulting in deficiencies of these amino acids in the animals.

Some reports have also indicated that a diet supplemented with Cu could stimulate immune capacity (Dorton, Engle, Hamar, Siciliano, & Yemm, 2003; Gonzales-Eguia, Fu, Lu, & Lien, 2009). In the present study, the level of serum IgA did not vary significantly among the treatments. The level of IgG in the 640 g/t NCG-Cu group was significantly ($P < .05$) higher than that in the control group (Table 7). Cu metabolism affects T and B cells, neutrophils and macrophages (Cao et al., 2015; Herich, 2017; Punyokun, Hongprayoon, Srisapoome, & Sirinarumitr, 2013; Qiao et al., 2017). An impaired humoral immune response was observed in mice with hypocuprosis (Prohaska, 1983). Previous studies have shown that NCG supplementation could increase intestinal mucosal immunity function in *Escherichia coli* challenged neonatal piglets (Zhang et al., 2013); however, some reports have also indicated that diet supplemented with Cu could stimulate immune capacity (Dorton et al., 2003; Gonzales-Eguia et al., 2009). The immune-stimulatory properties of NCG-Cu may be superior to those of Cu measured in the present study. These findings suggest that dietary supplementation with NCG-Cu at 640 g/t may induce an immune response in weaning piglets by modulating immunoglobulin levels.

In the present study, serum Cu concentrations were not affected by the dietary supplementation provided to the 650 g/t Cu and 640 g/t NCG-Cu groups, but the
concentration of copper in the control group (16.58 mg/kg) was significantly lower than that in the 650 g/t Cu group and that in the 640 g/t NCG-Cu group (Table 9). These data are consistent with previous results that demonstrate an increase in plasma Cu when 225 mg/kg Cu in the form of copper sulfate was supplemented in the diets of nursery piglets (Armstrong, Williams, Spears, & Schiffman, 2000). Additionally, plasma Cu increased with the supplementation of dietary Cu at concentrations of 100, 150 and 200 mg/kg (Apgar et al., 1995). However, a previous study showed an increase in plasma Cu concentrations only at supplemental dietary Cu concentrations of 375 and 500 mg/kg but not at or below 250 mg/kg (Roof & Mahan, 1982). A possible explanation for the discrepancies between that study and our present study could be that the different Cu serum concentrations depend on animal species and life stage, sex, different copper sources and doses, and experiment duration.

The liver and kidney are natural storage sites for copper (Luo & Dove, 1996). The Cu concentrations in these tissues might indicate the Cu status of pigs. In the present study, the concentration of Cu in the liver and kidney increased in the three groups, but no significant differences were observed in the spleen and longissimus dorsi (Table 9). Most previous studies have shown a large increase in liver Cu concentration and an increase in kidney concentration of Cu in piglets fed high-concentration Cu diets, which is consistent with the results of our present study (Cromwell, Stahly, & Monegue, 1989; Kline, Hays, & Cromwell, 1972; Luo & Dove, 1996; Zhou, Kornegay, Lindemann, et al., 1994). All data reported in these previous studies and our results indicated that when high-concentration Cu is supplemented in the diet, the distribution of Cu varies greatly in the different tissues, with more Cu being distributed to the liver and kidney within the physiological range according to the changes in the level of supplementation of Cu.

Previous research has indicated that pigs normally excrete 70–95% of the Cu consumed in diets (Bunch et al., 1965). This poor retention of copper by pigs fed high concentrations of copper presents an environmental concern because excess copper in swine feces results in copper pollution in the soil and water. In the present study, weaning piglets fed 160 mg/kg Cu in the 640 g/t NCG-Cu group showed decreased fecal excretion of Cu compared with weaning piglets fed 160 mg/kg Cu in the 650 g/t Cu group, which is consistent with the results of a previous study (Armstrong, Cook, Ward, Williams, & Spears, 2004) (Table 9). However, these data likely reflect the concentration of the supplemented dietary Cu rather than the source. Fecal Cu concentration did not vary significantly between the control group (Cu$^{2+}$ elemental concentration of 16.58 mg/kg) and the 640 g/t NCG-Cu group (Cu$^{2+}$ elemental concentration of 160 mg/kg), and the values for the ADG and ADFI did not differ significantly between the control group and the 640 g/t NCG-Cu group (Tables 2 and 9) ($P > .05$).

5. Conclusions

Data show that the growth- or immune-stimulatory properties of 160 mg/kg Cu from 640 g/t NCG-Cu are superior to those of 160 mg/kg Cu from 650 g/t Cu. Results suggest that, as a result of the reduction in fecal copper concentrations, 160 mg/kg NCG-Cu dietary copper may provide an effective environmental alternative to 160 mg/kg Cu for weaning piglets. Data also show that copper has limited effects on tissue mineral deposition, except for deposition in the spleen and liver. Thus, it appears that the tradition of
adding 250 mg/kg Cu in the form of copper sulfate to diets to stimulate growth or immune
should be reconsidered. From an environmental perspective, the implications of feces
excretion on copper pollution in the soil and water worldwide should be a concern.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
This research was supported by the National Natural Science Foundation of China (31402088), the
Youth Innovation Team Project of ISA, CAS (2017QNCXTD_TBE), and the Province Science and
Technology Major Project of the Department of Science & Technology of Hunan Province (2015
NK1002).

Notes on contributors
Peng Liao received his bachelor’s degree from Hunan Agricultural University (Changsha, China)
and his PhD from Jilin University (Changchun, China). His research interests are food nutrition
and animal nutrition.

Meijun Li received his bachelor’s degree from Hunan Agricultural University (Changsha, China).
His research interest is animal nutrition.

Yunhu Li received his bachelor’s degree from Hunan Agricultural University (Changsha, China).
His research interests are animal nutrition.

Xiangwen Tan received his bachelor’s degree from Hunan Agricultural University (Changsha, China).
His research interests are animal nutrition.

Furen Zhao received his bachelor’s degree from Hunan Agricultural University (Changsha, China).
His research interests are food nutrition and animal nutrition.

Xugang Shu received his bachelor’s degree and PhD from Guangdong University of Technology
(Guangzhou, China). His research interest is applied chemistry.

Yulong Yin received his bachelor’s degree from Hunan Normal University (Changsha, China) and
his PhD from Queen’s University Belfast (Belfast, England). His research interests are food nutri-
tion and animal nutrition.

ORCID
Peng Liao http://orcid.org/0000-0001-5740-7272

References
Acda, S., & Chae, B. (2002). A review on the applications of organic trace minerals in pig nutrition.
Pakistan Journal of Nutrition, 1(1), 25–30.
Allen, D., Hassel, C., & Lei, K. (1982). Function of pituitary–thyroid axis in copper-deficient rats.
Journal of Nutrition, 112(11), 2043–2046.
Almansour, M. I. (2006). Biochemical effects of copper sulfate, after chronic treatment in quail.
Journal of Biological Sciences, 6(6), 1077–1082.
Apgar, G. A., Kornegay, E. T., Lindemann, M. D., & Notter, D. R. (1995). Evaluation of copper
sulfate and a copper lysine complex as growth promoters for weanling swine. Journal of
Animal Science, 73(9), 2640–2646.
Armstrong, T., Cook, D., Ward, M., Williams, C., & Spears, J. (2004). Effect of dietary copper source (cupric citrate and cupric sulfate) and concentration on growth performance and fecal copper excretion in weanling pigs. *Journal of Animal Science, 82*(4), 1234–1240.

Armstrong, T. A., Williams, C. M., Spears, J. W., & Schiffman, S. S. (2000). High dietary copper improves odor characteristics of swine waste. *Journal of Animal Science, 78*(4), 859–864.

Beames, R., & Lloyd, L. (1965). Response of pigs and rats to rations supplemented with tylosin and high levels of copper. *Journal of Animal Science, 24*(4), 1020–1026.

Berrin Kocaoğlu Güçlü, B. K. L., Kara, K., Beyaz, L., Uyanik, F., Eren, M., & Atasever, A. (2008). Influence of dietary copper proteinate on performance, selected biochemical parameters, lipid peroxidation, liver, and egg copper content in laying hens. *Biological Trace Element Research, 125*(2), 160–169.

Bunch, R., McCall, J., Speer, V., & Hays, V. (1965). Copper supplementation for weanling pigs. *Journal of Animal Science, 24*(4), 995–1000.

Cao, S., Song, S., Liu, L., Kong, N., Kuang, H., & Xu, C. (2015). Comparison of an enzyme-linked immunosorbent assay with an immunochromatographic assay for detection of lincomycin in milk and honey. *Immunological Investigations, 44*(5), 438–450. doi:10.3109/08820139.2015.1021354

Case, C. L., & Carlson, M. S. (2002). Effect of feeding organic and inorganic sources of additional zinc on growth performance and zinc balance in nursery pigs. *Journal of Animal Science, 80*(7), 1917–1924.

Coffey, R. D., Cromwell, G. L., & Monegue, H. J. (1994). Efficacy of a copper-lysine complex as a growth promotant for weanling pigs. *Journal of Animal Science, 72*(11), 2880–2886.

Cromwell, G., Stahly, T., & Monegue, H. (1989). Effects of source and level of copper on performance and liver copper stores in weanling pigs. *Journal of Animal Science, 67*(11), 2996–3002.

Dorton, K. L., Engle, T., Hamar, D., Siciliano, P., & Yemm, R. (2003). Effects of copper source and concentration on copper status and immune function in growing and finishing steers. *Animal Feed Science and Technology, 110*(1), 31–44.

Gonzales-Eguia, A., Fu, C.-M., Lu, F.-Y., & Lien, T.-F. (2009). Effects of nanocopper on copper availability and nutrients digestibility, growth performance and serum traits of piglets. *Livestock Science, 126*(1), 122–129.

Hasman, H., Kempf, I., Chidaine, B., Cariolet, R., Ersboll, A. K., Houe, H., … Aarestrup, F. M. (2006). Copper resistance in enterococcus faecium, mediated by the tcrB gene, is selected by supplementation of pig feed with copper sulfate. *Applied and Environmental Microbiology, 72*(9), 5784–5789. doi:10.1128/AEM.02979-05

Hedemann, M. S., Jensen, B. B., & Poulsen, H. D. (2006). Influence of dietary zinc and copper on digestive enzyme activity and intestinal morphology in weaned pigs. *Journal of Animal Science, 84*(12), 3310–3320. doi:10.2527/jas.2005-701

Herich, R. (2017). Is the role of IgA in local immunity completely known? *Food and Agricultural Immunology, 28*(2), 223–237.

Hill, G. M., Cromwell, G. L., Crenshaw, T. D., Dove, C. R., Ewan, R. C., Knabe, D. A., … Veum, T. L. (2000). Growth promotion effects and plasma changes from feeding high dietary concentrations of zinc and copper to weanling pigs (regional study). *Journal of Animal Science, 78*(4), 1010–1016.

Hill, G. M., Ku, P. K., Miller, E. R., Ullrey, D. E., Losty, T. A., & O’Dell, B. L. (1983). A copper deficiency in neonatal pigs induced by a high zinc maternal diet. *Journal of Nutrition, 113*(4), 867–872.

Jondreville, C., Revy, P., & Dourmad, J. (2003). Dietary means to better control the environmental impact of copper and zinc by pigs from weaning to slaughter. *Livestock Production Science, 84*(2), 147–156.

Kline, R., Hays, V., & Cromwell, G. (1972). Related effects of copper, zinc and iron on performance, hematology and copper stores of pigs. *Journal of Animal Science, 34*(3), 393–396.

Koller, L., Mulhern, S., Frankel, N., Steven, M., & Williams, J. (1987). Immune dysfunction in rats fed a diet deficient in copper. *American Journal of Clinical Nutrition, 45*(5), 997–1006.
Luo, X. G., & Dove, C. R. (1996). Effect of dietary copper and fat on nutrient utilization, digestive enzyme activities, and tissue mineral levels in weanling pigs. *Journal of Animal Science*, 74(8), 1888–1896.

Nyblom, H., Berggren, U., Balldin, J., & Olsson, R. (2004). High AST/ALT ratio may indicate advanced alcoholic liver disease rather than heavy drinking. *Alcohol and Alcoholism*, 39(4), 336–339. doi:10.1093/alcalc/agh074

Pluske, J. R., Pethick, D. W., Hopwood, D. E., & Hampson, D. J. (2002). Nutritional influences on some major enteric bacterial diseases of pig. *Nutrition Research Reviews*, 15(02), 333–371.

Prohaska, J. R. (1983). Changes in tissue growth, concentrations of copper, iron, cytochrome oxidase and superoxide dismutase subsequent to dietary or genetic copper deficiency in mice. *Journal of Nutrition*, 113(10), 2048–2058.

Punyokun, K., Hongprayoon, R., Srisapoome, P., & Sirinarumitr, T. (2013). The production of antivibrio harveyi egg yolk immunoglobulin and evaluation of its stability and neutralisation efficacy. *Food and Agricultural Immunology*, 24(3), 279–294.

Qiao, D., Wei, C., Chen, N., Min, Y., Xu, H., & Chen, R. (2017). Influences of Hyriopsis cumingii polysaccharides on mice immunosignaling molecules and T lymphocyte differentiation. *Food and Agricultural Immunology*, 28(4), 1–13. doi:10.1080/09540105.2017.130649

Roof, M., & Mahan, D. (1982). Effect of carbadox and various dietary copper levels for weanling swine. *Journal of Animal Science*, 55(5), 1109–1117.

Stansbury, W. F., Tribble, L. F., & Orr, D. E., Jr. (1990). Effect of chelated copper sources on performance of nursery and growing pigs. *Journal of Animal Science*, 68(5), 1318–1322.

Subramanian, K. S. (1996). Determination of metals in biofluids and tissues: Sample preparation methods for atomic spectroscopic techniques. *Spectrochimica Acta Part B: Atomic Spectroscopy*, 51(3), 291–319. doi:10.1016/0584-8547(95)01425-X

Van Heugten, E., & Coffey, M. (1992). Efficacy of a copper-lysine chelate as growth promotant in weanling swine. *Journal of Animal Science*, 70(Suppl. 1), 18.

Wu, L., Liao, P., He, L., Ren, W., Yin, J., ..., Yin, Y. (2015). Dietary L-arginine supplementation protects weanling pigs from deoxynivalenol-induced toxicity. *Toxins*, 7(4), 1341–1354. doi:10.3390/toxins7041341

Wu, L., Liao, P., He, L., Ren, W., Yin, J., Duan, J., & Li, T. (2015). Growth performance, serum biochemical profile, jejunal morphology, and the expression of nutrients transporter genes in deoxynivalenol (DON)-challenged growing pigs. *BMC Veterinary Research*, 11, 663. doi:10.1186/s12917-015-0449-y

Xing, C., Hao, C., Liu, L., Xu, C., & Kuang, H. (2014). A highly sensitive enzyme-linked immunosorbent assay for copper (II) determination in drinking water. *Food and Agricultural Immunology*, 25(3), 432–442.

Yuan, W., Jin, H., Ren, Z., Deng, J., Zuo, Z., Wang, Y., ..., Deng, Y. (2015). Effects of antibacterial peptide on humoral immunity in weaned piglets. *Food and Agricultural Immunology*, 26(5), 682–689.

Zhang, F., Zeng, X., Yang, F., Huang, Z., Liu, H., Ma, X., & Qiao, S. (2013). Dietary N-carbamylglutamate supplementation boosts intestinal mucosal immunity in *Escherichia coli* challenged piglets. *PLoS One*, 8(6), e66280. doi:10.1371/journal.pone.0066280

Zhou, W., Kornegay, E., Lindemann, M., Swinkels, J., Welten, M., & Wong, E. (1994). Stimulation of growth by intravenous injection of copper in weanling pigs. *Journal of Animal Science*, 72(9), 2395–2403.

Zhou, W., Kornegay, E., Van Laar, H., Swinkels, J., Wong, E., & Lindemann, M. (1994). The role of feed consumption and feed efficiency in copper-stimulated growth. *Journal of Animal Science*, 72(9), 2385–2394.

Zoubek, G. L., Peo, E. R., Jr., Moser, B. D., Stahly, T., & Cunningham, P. J. (1975). Effects of source on copper uptake by swine. *Journal of Animal Science*, 40(5), 880–884.