OPTIMAL QUANTIZATION FOR DISCRETE DISTRIBUTIONS

Russel Cabasag
The University of Texas Rio Grande Valley

Samir Huq
The University of Texas Rio Grande Valley

Eric Mendoza
The University of Texas Rio Grande Valley

Mrinal Kanti Roychowdhury
The University of Texas Rio Grande Valley

Follow this and additional works at: https://scholarworks.utrgv.edu/mss_fac
OPTIMAL QUANTIZATION FOR DISCRETE DISTRIBUTIONS

1RUSSEL CABASAG, 2SAMIR HUQ, 3ERIC MENDOZA, AND 4MRINAL KANTI ROYCHOWDHURY

ABSTRACT. In this paper, we first determine the optimal sets of n-means and the nth quantization errors for all $1 \leq n \leq 6$ for two nonuniform discrete distributions with support the set \{1, 2, 3, 4, 5, 6\}. Then, for a probability distribution P with support \{\frac{1}{n} : n \in \mathbb{N}\} associated with a mass function f, given by $f(x) = \frac{1}{2^k}$ if $x = \frac{1}{k}$ for $k \in \mathbb{N}$, and zero otherwise, we determine the optimal sets of n-means and the nth quantization errors for all positive integers up to $n = 300$. Further, for a probability distribution P with support the set \mathbb{N} of natural number associated with a mass function f, given by $f(x) = \frac{1}{2^k}$ if $x = k$ for $k \in \mathbb{N}$, and zero otherwise, we determine the optimal sets of n-means and the nth quantization errors for all positive integers n. At last we discuss for a discrete distribution, if the optimal sets are given, how to obtain the probability distributions.

1. INTRODUCTION

Quantization is the process of converting a continuous analog signal into a digital signal of k discrete levels, or converting a digital signal of n levels into another digital signal of k levels, where $k < n$. It is essential when analog quantities are represented, processed, stored, or transmitted by a digital system, or when data compression is required. It is a classic and still very active research topic in source coding and information theory. It has broad applications in engineering and technology (see [GG, GN, Z]). For mathematical treatment of quantization one is referred to Graf-Luschgy’s book (see [GL]). Let \mathbb{R}^d denote the d-dimensional Euclidean space, $\| \cdot \|$ denote the Euclidean norm on \mathbb{R}^d for any $d \geq 1$, and $n \in \mathbb{N}$. Let P denote a Borel probability measure on \mathbb{R}^d. For a finite set $\alpha \subset \mathbb{R}^d$, the error $\int \min_{a \in \alpha} \| x - a \|^2 dP(x)$ is often referred to as the cost or distortion error for α, and is denoted by $V(P; \alpha)$. For any positive integer n, write $V_n := V_n(P) = \inf \{ V(P; \alpha) : \alpha \subset \mathbb{R}^d, 1 \leq \text{card}(\alpha) \leq n \}$. Then, V_n is called the nth quantization error for P. Recently, optimal quantization for different uniform distributions have been investigated by several authors, for example, see [DR, RR, RS].

In this paper, we investigate the optimal quantization for finite, and infinite discrete distributions. In Section 3 we calculate the optimal sets of n-means and the nth quantization errors for all $1 \leq n \leq 6$ for two nonuniform discrete distributions with support \{1, 2, 3, 4, 5, 6\} associated with two different probability vectors. In Section 4 first, for a probability distribution P with support \{\frac{1}{n} : n \in \mathbb{N}\} associated with a mass function f, given by $f(x) = \frac{1}{2^k}$ if $x = \frac{1}{k}$ for $k \in \mathbb{N}$, and zero otherwise, we determine the optimal sets of n-means and the nth quantization errors for all positive integers up to $n = 300$. Then, for a probability distribution P with support the set \mathbb{N} of natural number associated with a mass function f, given by $f(x) = \frac{1}{2^k}$ if $x = k$ for $k \in \mathbb{N}$, and zero otherwise, we determine the optimal sets of n-means and the nth quantization errors for all positive integers n. In Section 5 we discuss for a discrete distribution, if the optimal sets are given, how to obtain the probability distributions.

2. Basic Preliminaries

Given a finite set $\alpha \subset \mathbb{R}^d$, the Voronoi region generated by $a \in \alpha$ is defined by

$$M(a|\alpha) = \{ x \in \mathbb{R}^d : \| x - a \| = \min_{b \in \alpha} \| x - b \| \},$$

2010 Mathematics Subject Classification. 60Exx, 94A34.

Key words and phrases. Discrete distribution, optimal set of n-means, quantization error.
i.e., the Voronoi region generated by \(a \in \alpha \) is the set of all elements in \(\mathbb{R}^d \) which are nearest to \(a \), and the set \(\{ M(a|\alpha) : a \in \alpha \} \) is called the Voronoi diagram or Voronoi tessellation of \(\mathbb{R}^d \) with respect to \(\alpha \).

The following proposition is well-known (see [GG, GL]).

Proposition 2.1. Let \(\alpha \) be an optimal set of \(n \)-means for \(P \), and \(a \in \alpha \). Then,

(i) \(P(M(a|\alpha)) > 0 \), (ii) \(P(\partial M(a|\alpha)) = 0 \), (iii) \(a = E(X : X \in M(a|\alpha)) \),

where \(X \) is a random variable with distribution \(P \).

Due to the above proposition, we see that if \(\alpha \) is an optimal set and \(a \in \alpha \), then \(a \) is the conditional expectation of the random variable \(X \) given that \(X \) takes values in the Voronoi region of \(a \). In the sequel, we will denote the support of a probability distribution \(P \) by \(\text{supp}(P) \). Let \(P \) be the uniform distribution defined on the set \(\{1, 2, 3, 4, 5, 6\} \). Then, the random variable \(X \) associated with the probability distribution is a discrete random variable with probability mass function \(f \) given by

\[
f(x) = \frac{1}{6}, \text{ for all } x \in \{1, 2, 3, 4, 5, 6\}.
\]

It is not difficult to show that if \(\alpha_n \) is an optimal set of \(n \)-means for \(P \), then

\[
\alpha_1 = \{3.5\}, \quad \alpha_2 = \{2, 5\}, \quad \alpha_3 = \{1.5, 3.5, 5.5\}, \quad \alpha_4 = \{1.5, 3.5, 5, 6\},
\]

\[
\alpha_5 = \{1.5, 3, 4, 5, 6\}, \quad \text{and} \quad \alpha_6 = \text{supp}(P).
\]

Remark 2.2. Optimal sets are not unique. For example, in the above, the set \(\alpha_5 \) can be any one of the following sets:

\[
\{1.5, 3, 4, 5, 6\}, \quad \{1, 2.5, 4, 5, 6\}, \quad \{1, 2, 3.5, 5, 6\}, \quad \{1, 2, 3, 4.5, 6\}, \quad \{1, 2, 3, 4, 5.5\}.
\]

In the following sections we give our main results.

3. **Optimal quantization for nonuniform discrete distributions**

In this section, we determine the optimal sets of \(n \)-means for all \(1 \leq n \leq 6 \) for two nonuniform discrete distributions on the set \(\{1, 2, 3, 4, 5, 6\} \) associated with two different probability vectors. Let \(X \) be the random variable associated with such a distribution. For \(i, j \in \{1, 2, \ldots, 6\} \) with \(i \leq j \), write \(a[i, j] := E(X : X \in \{i, i + 1, \ldots, j\}) \). We give our results in two subsections.

3.1. **Nonuniform distribution associated with the probability vector** \((\frac{1}{2}, \frac{1}{27}, \frac{1}{27}, \frac{1}{27}, \frac{1}{27}, \frac{1}{27})\).

Let \(P \) be a nonuniform distribution defined on the set \(\{1, 2, 3, 4, 5, 6\} \) with probability mass function \(f \) given by

\[
f(j) = P(X : X = j) = \begin{cases}
\frac{1}{27} & \text{if } j \in \{1, 2, 3, 4, 5\}, \\
\frac{1}{2} & \text{if } j = 6, \\
0 & \text{otherwise.}
\end{cases}
\]

Notice that \(\text{supp}(P) = \{1, 2, 3, 4, 5, 6\} \). In this subsection, our goal is to calculate the optimal sets \(\alpha_n \) of \(n \)-means and the \(n \)th quantization errors \(V_n \) for all \(n = 1, 2, 3, 4, 5, 6 \). Since

\[
E(X) = \sum_{j=1}^{6} jf(j) = \frac{63}{32},
\]

the optimal set of one-mean is the set \(\{\frac{63}{32}\} \) with quantization error the variance \(V \) of the random variable \(X \), where

\[
V = V_1 = E\|X - E(X)\|^2 = \sum_{j=1}^{6} f(j)(j - \frac{63}{32})^2 = \frac{1695}{1024}.
\]

Moreover, the optimal set \(\alpha_6 \) of six-means is just the support of \(P \), i.e., \(\alpha_6 = \{1, 2, \ldots, 6\} \). In the following propositions, we determine the optimal sets of \(n \)-means for \(2 \leq n \leq 5 \).
Proposition 3.1.1. The optimal set of two-means is given by \(\{a[1, 2], a[3, 6]\} \) with quantization error \(V_2 = \frac{341}{768} \).

Proof. Notice that \(a[1, 2] = \frac{4}{3} \) and \(a[3, 6] = \frac{31}{8} \). Let us consider the set \(\beta := \{\frac{4}{3}, \frac{31}{8}\} \). Since \(2 < \frac{1}{2}(\frac{4}{3} + \frac{31}{8}) = 2.60417 < 3 \), the distortion error due to the set \(\beta \) is given by

\[
\sum_{j=1}^{6} f(j) \min_{a \in \beta} (j-a)^2 = \sum_{j=1}^{2} f(j) \left(j - \frac{4}{3} \right)^2 + \sum_{j=3}^{6} f(j) \left(j - \frac{31}{8} \right)^2 = \frac{341}{768}.
\]

Since \(V_2 \) is the quantization error for two-means, we have \(V_2 \leq \frac{341}{768} = 0.44401 \). Let \(\alpha := \{a_1, a_2\} \) be an optimal set of two-means. Without any loss of generality, we can assume that \(1 \leq a_1 < a_2 \leq 6 \). Notice that the Voronoi region of \(a_1 \) must contain 1. Suppose that the Voronoi region of \(a_1 \) contains only the point 1. Then, the Voronoi region of \(a_2 \) contains all the remaining points, and so

\[a_2 = a[2, 6] = \frac{47}{16}, \]

implying

\[V_2 = \sum_{j=2}^{6} f(j) \left(j - \frac{47}{16} \right)^2 = \frac{367}{512} = 0.716797 > V_2, \]

which gives a contradiction. Hence, we can assume that the Voronoi region of \(a_1 \) does not contain 3. Next, suppose that the Voronoi region of \(a_1 \) contains only the point 1. Then, the Voronoi region of \(a_2 \) contains all the remaining points, and so

\[a_2 = a[2, 6] = \frac{47}{16}, \]

implying

\[V_2 = \sum_{j=2}^{6} f(j) \left(j - \frac{47}{16} \right)^2 = \frac{367}{512} = 0.716797 > V_2, \]

which yields a contradiction. Hence, we can assume that the Voronoi region of \(a_1 \) contains only the points 1 and 2, and the remaining points are contained in the Voronoi region of \(a_2 \), implying

\[a_1 = a[1, 2] = \frac{4}{3}, \text{ and } a_2 = a[3, 6] = \frac{31}{8} \]

with quantization error \(V_2 = \frac{341}{768} \). Thus, the proof of the proposition is complete. \(\Box \)

Proposition 3.1.2. The optimal set of three-means is given by \(\{1, a[2, 3], a[4, 6]\} \) with quantization error \(V_3 = \frac{65}{384} \).

Proof. Notice that \(a[2, 3] = \frac{7}{3} \), and \(a[4, 6] = \frac{19}{4} \). The distortion error due to the set \(\beta := \{1, \frac{7}{3}, \frac{19}{4}\} \) is given by

\[
\sum_{j=1}^{6} f(j) \min_{a \in \beta} (j-a)^2 = \sum_{j=2}^{3} f(j) \left(j - \frac{7}{3} \right)^2 + \sum_{j=4}^{6} f(j) \left(j - \frac{19}{4} \right)^2 = \frac{65}{384}.
\]

Since \(V_3 \) is the quantization error for three-means, we have \(V_3 \leq \frac{65}{384} = 0.169271 \). Let \(\alpha := \{a_1, a_2, a_3\} \) be an optimal set of three-means such that \(1 \leq a_1 < a_2 < a_3 \leq 6 \). Notice that the Voronoi region of \(a_1 \) must contain 1. Suppose that the Voronoi region of \(a_1 \) also contains 3. Then,

\[V_3 \geq \sum_{j=1}^{3} f(j)(j-a[1, 3])^2 = \frac{13}{28} > V_3, \]

which yields a contradiction. Thus, we can assume that the Voronoi region of \(a_1 \) does not contain 3. Suppose that the Voronoi region of \(a_1 \) contains only the two points 1 and 2. Then, the Voronoi region of \(a_2 \) must contain 3. The following two case can arise:

Case 1. The Voronoi region of \(a_2 \) does not contain 4.
Proposition 3.1.3. The optimal set of four-means is

\[V_{a} \] two points 2 and 3, implying the fact that the Voronoi region of 6. Thus, we have

\[
\left\{ \text{point 1 only, i.e., } a \right\},
\]

which is a contradiction.

Case 2. The Voronoi region of \(a \) contains 4.

Then,

\[
V_{3} \geq \sum_{j=1}^{2} f(j)(j - a_{1,2})^{2} + \sum_{j=4}^{6} f(j)(j - a_{4,6})^{2} = \frac{97}{384} = 0.252604 > V_{3},
\]

which is a contradiction. Hence, we can assume that the Voronoi region of \(a \) does not contain 4. Suppose that the Voronoi region of \(a \) contains only the point 2, i.e., \(a_{1} = 1 \). Then, the Voronoi region of \(a \) must contain 2. Suppose that the Voronoi region of \(a \) also contains 4. Then,

\[
V_{3} \geq \sum_{j=2}^{4} f(j)(j - a_{2,4})^{2} = \frac{13}{56} = 0.232143 > V_{3},
\]

which leads to a contradiction. Hence, by Case 1 and Case 2, we can assume that the Voronoi region of \(a \) contains only the point 1, i.e., \(a_{1} = 1 \). Then, the Voronoi region of \(a \) contains only the point 2. Then, the Voronoi region of \(a \) must contain the remaining points, which yields

\[
V_{3} \geq \sum_{j=3}^{6} f(j)(j - a_{3,6})^{2} = \frac{71}{256} = 0.277344 > V_{3},
\]

which is a contradiction. Hence, we can assume that the Voronoi region of \(a \) contains only the two points 2 and 3, implying the fact that the Voronoi region of \(a \) contains the points 4, 5, and 6. Thus, we have

\[
a_{1} = 1, a_{2} = a_{2,3} = \frac{7}{3}, \text{ and } a_{3} = a_{4,6} = \frac{19}{4},
\]

which yields the proposition. □

Proposition 3.1.3. The optimal set of four-means is \(\{1, 2, a_{3,4}, a_{5,6} \} \) with quantization error \(V_{4} = \frac{11}{192} \).

Proof. The distortion error due to the set \(\beta := \{1, 2, a_{3,4}, a_{5,6} \} \) is given by

\[
\sum_{j=1}^{6} f(j) \min_{a \in \beta} (j - a)^{2} = \sum_{j=3}^{4} f(j)(j - a_{3,4})^{2} + \sum_{j=5}^{6} f(j)(j - a_{5,6})^{2} = \frac{11}{192}.
\]

Since \(V_{4} \) is the quantization error for four-means, we have \(V_{4} \leq \frac{11}{192} = 0.0572917 \). Let \(\alpha := \{a_{1}, a_{2}, a_{3}, a_{4} \} \) be an optimal set of four-means. Without any loss of generality, we can assume that \(1 \leq a_{1} < a_{2} < a_{3} < a_{4} \leq 6 \). The Voronoi region of \(a_{1} \) must contain 1. Suppose that the Voronoi region of \(a_{1} \) contains 2 as well. Then,

\[
V_{4} \geq \sum_{j=1}^{2} f(j)(j - a_{1,2})^{2} = \frac{1}{6} > V_{4},
\]

which gives a contradiction. Hence, we can assume that the Voronoi region of \(a_{1} \) contains the point 1 only, i.e., \(a_{1} = 1 \). Then, the Voronoi region of \(a_{2} \) must contain 2. Suppose that the Voronoi region of \(a_{2} \) also contains 3. Then,

\[
V_{4} \geq \sum_{j=2}^{3} f(j)(j - a_{2,3})^{2} = \frac{1}{12} = 0.0833333 > V_{4},
\]
which leads to a contradiction. Hence, the Voronoi region of \(a_2 \) does not contain 3, i.e., \(a_2 = 2 \). Then, the Voronoi region of \(a_3 \) must contain 3. Suppose that the Voronoi region of \(a_3 \) contains 5 as well. Then, we have

\[
V_4 \geq \sum_{j=3}^{5} f(j)(j - a[3, 5])^2 = \frac{13}{172} = 0.116071 > V_4,
\]

which yields a contradiction. Thus, we can assume that the Voronoi region of \(a_3 \) does not contain 5. Suppose that the Voronoi region of \(a_3 \) contains 3 only. Then, the Voronoi region of \(a_5 \) contains 4, 5, 6, which implies

\[
V_4 = \sum_{j=4}^{6} f(j)(j - a[4, 6])^2 = \frac{11}{128} = 0.0859375 > V_4,
\]

which gives a contradiction. Hence, the Voronoi region of \(a_3 \) contains 3 and 4, yielding \(a_3 = a[3, 4] \), and \(a_4 = a[5, 6] \). Thus, the optimal set of four-means is \(\{1, 2, a[3, 4], a[5, 6]\} \) with quantization error \(V_4 = \frac{11}{192} \). which is the proposition.

Using the similar technique as the previous proposition, the following proposition can be proved.

Proposition 3.1.4. The optimal set of five-means is \(\{1, 2, 3, 4, a[5, 6]\} \) with quantization error \(V_5 = \frac{1}{64} \).

3.2. Nonuniform distribution associated with a probability vector of the form \((x, (1-x)x, (1-x)^2x, (1-x)^3x, (1-x)^4x, (1-x)^5)\). Let \(P \) be a nonuniform distribution defined on the set \(\{1, 2, 3, 4, 5, 6\} \) with probability mass function \(f \) given by

\[
f(j) = P(X : X = j) = \begin{cases}
 x & \text{if } j = 1, \\
 (1-x)^{j-1}x & \text{if } j \in \{2, 3, 4, 5\}, \\
 (1-x)^5 & \text{if } j = 6, \\
 0 & \text{otherwise},
\end{cases}
\]

where \(0 < x < 1 \). Notice that \(\text{supp}(P) = \{1, 2, 3, 4, 5, 6\} \). Fix \(x = \frac{7}{10} \). In this subsection, our goal is to calculate the optimal sets \(\alpha_n \) of \(n \)-means and the \(n \)th quantization errors for all \(n = 1, 2, 3, 4, 5, 6 \) for the given mass function \(f \) with \(x = \frac{7}{10} \). Since

\[
E(X) = \sum_{j=1}^{6} jf(j) = \frac{142753}{100000},
\]

the optimal set of one-mean is the set \(\{\frac{142753}{100000}\} \) with quantization error the variance \(V \) of the random variable \(X \), where

\[
V = V_1 = E\|X - E(X)\|^2 = \sum_{j=1}^{6} f(j)\left(j - \frac{142753}{100000}\right)^2 = \frac{6007880991}{10000000000}.
\]

Moreover, the optimal set \(\alpha_6 \) of six-means is just the support of \(P \), i.e., \(\alpha_6 = \{1, 2, \cdots, 6\} \). In the following propositions, we determine the optimal sets of \(n \)-means for \(2 \leq n \leq 5 \).

Proposition 3.2.1. The optimal set of two-means is given by \(\{1, a[2, 6]\} \) with quantization error \(V_2 = \frac{174296997}{10000000000} \).

Proof. The distortion error due to the set \(\beta := \{1, a[2, 6]\} \) is given by

\[
\sum_{2=1}^{6} f(j)\min_{a \in \beta}(j - a)^2 = \sum_{j=2}^{6} f(j)(j - a[2, 6])^2 = \frac{174296997}{10000000000}.
\]
Since V_2 is the quantization error for two-means, we have $V_2 \leq \frac{174296997}{1000000000} = 0.174296997$. Let \(\alpha := \{a_1, a_2\} \) be an optimal set of two-means. Without any loss of generality, we can assume that $1 \leq a_1 < a_2 \leq 6$. Notice that the Voronoi region of a_1 must contain 1. Suppose that the Voronoi region of a_1 contains 3. Then, the point 1, i.e., $1 \leq a_2$ contains 3. Next, suppose that the Voronoi region of a_1 contains 2. Then, the Voronoi region of a_2 contains all the remaining points, and so

$$ V_2 = \sum_{j=1}^{2} f(j)(j - a[1, 2])^2 + \sum_{j=3}^{6} f(j)(j - a[3, 6])^2 = \frac{272139987}{1300000000} = 0.209338 > V_2, $$

which yields a contradiction. Hence, we can assume that the Voronoi region of a_1 does not contain 3. Next, suppose that the Voronoi region of a_1 contains 2. Then, the Voronoi region of a_2 contains all the remaining points, and so

$$ V_2 = \sum_{j=1}^{3} f(j)(j - a[1, 3])^2 = \frac{4809}{139000} = 0.345971 > V_2, $$

which gives a contradiction. Hence, we can assume that the Voronoi region of a_1 contains only the point 1, and the remaining points are contained in the Voronoi region of a_2, implying $a_1 = 1$, and $a_2 = a[2, 6]$ with quantization error $V_2 = \frac{174296997}{1000000000}$. Thus, the proof of the proposition is complete.

Proposition 3.2.2. The optimal set of three-means is given by $\{1, 2, a[3, 6]\}$ with quantization error $V_3 = \frac{4779999}{100000000}$.

Proof. The distortion error due to the set $\beta := \{1, 2, a[3, 6]\}$ is given by

$$ \sum_{j=3}^{6} f(j) \min_{a \in \beta} (j - a)^2 = \sum_{j=3}^{6} f(j)(j - a[3, 6])^2 = \frac{4779999}{100000000} = 0.04779999. $$

Since V_3 is the quantization error for three-means, we have $V_3 \leq 0.04779999$. Let $\alpha := \{a_1, a_2, a_3\}$ be an optimal set of three-means such that $1 \leq a_1 < a_2 < a_3 \leq 6$. Notice that the Voronoi region of a_1 must contain 1. Suppose that the Voronoi region of a_1 also contains 2. Then,

$$ V_3 = \sum_{j=1}^{2} f(j)(j - a[1, 2])^2 = \frac{21}{130} = 0.161538 > V_3, $$

which yields a contradiction. Thus, we can assume that the Voronoi region of a_1 contains only the point 1, i.e., $a_1 = 1$. The Voronoi region of a_2 contains 2. Suppose that the Voronoi region of a_2 also contains 3. Then,

$$ V_3 = \sum_{j=2}^{3} f(j)(j - a[2, 3])^2 = \frac{63}{1300} = 0.0484615 > V_3, $$

which is a contradiction. Hence, the Voronoi region of a_2 contains only the point 2, which yields $a_2 = 2$, and $a_3 = a[3, 6]$, with quantization error $V_3 = \frac{4779999}{100000000}$. Thus, the proof of the proposition is complete.

Following the similar techniques as given in Proposition 3.2.2, we can prove the following two propositions.

Proposition 3.2.3. The optimal set of four-means is given by $\{1, 2, 3, a[4, 6]\}$ with quantization error $V_4 = \frac{112833}{100000000}$.

Proposition 3.2.4. The optimal set of five-means is given by $\{1, 2, 3, 4, a[5, 6]\}$ with quantization error $V_5 = \frac{1701}{1000000}$.

4. Optimal quantization for infinite discrete distributions

In this section, for \(n \in \mathbb{N} \), we investigate the optimal sets of \(n \)-means for two different infinite discrete distributions. We give them in the following two subsections.

4.1. Optimal quantization for an infinite discrete distribution with support \(\{ \frac{1}{n} : n \in \mathbb{N} \} \). Let \(\mathbb{N} := \{1, 2, 3, \cdots \} \) be the set of natural numbers, and let \(P \) be a Borel probability measure on the set \(\{ \frac{1}{n} : n \in \mathbb{N} \} \) with probability mass function \(f \) given by

\[
 f(x) = \begin{cases} \frac{1}{n} & \text{if } x = \frac{1}{k} \text{ for } k \in \mathbb{N}, \\ 0 & \text{otherwise.} \end{cases}
\]

Then, \(P \) is a Borel probability measure on \(\mathbb{R} \), and the support of \(P \) is given by \(\text{supp}(P) = \{ \frac{1}{n} : n \in \mathbb{N} \} \). In this section, our goal is to determine the optimal sets of \(n \)-means and the \(n \)th quantization errors for all positive integers \(n \) for the probability measure \(P \). For \(k, \ell \in \mathbb{N} \), where \(k \leq \ell \), write

\[
 [k, \ell] := \left\{ \frac{1}{n} : n \in \mathbb{N} \text{ and } k \leq n \leq \ell \right\}, \quad \text{and } [k, \infty) := \left\{ \frac{1}{n} : n \in \mathbb{N} \text{ and } n \geq k \right\}.
\]

Further, write

\[
 \text{Av}[k, \ell] := E(\{ X : X \in [k, \ell] \}) = \sum_{n=k}^{\ell} \frac{1}{2n}, \quad \text{Av}[k, \infty) := E(\{ X : X \in [k, \infty) \}) = \sum_{n=k}^{\infty} \frac{1}{2n},
\]

\[
 \text{Er}[k, \ell] := \sum_{n=k}^{\ell} \frac{1}{2n} \left(\frac{1}{n} - \text{Av}[k, \ell] \right)^2, \quad \text{and } \text{Er}[k, \infty] := \sum_{n=k}^{\infty} \frac{1}{2n} \left(\frac{1}{n} - \text{Av}[k, \infty) \right)^2.
\]

Notice that \(E(X) := E(\{ X : X \in \text{supp}(P) \}) = \sum_{n=1}^{\infty} \frac{1}{2n} = \text{Av}[1, \infty) = \log(2), \) and so the optimal set of one-mean is the set \(\{ \log(2) \} \) with quantization error

\[
 V(P) = \sum_{n=1}^{\infty} \frac{1}{2n} \left(\frac{1}{n} - \log(2) \right)^2 = \text{Er}[1, \infty) = \frac{1}{12} \left(\pi^2 - 18 \log^2(2) \right) = 0.101788.
\]

Proposition 4.1.1. The set \(\{ \text{Av}[2, \infty), 1 \} \) forms the optimal set of two-means for the probability measure \(P \) with quantization error \(V_2(P) = \text{Er}[2, \infty) = \frac{1}{12} \left(\pi^2 - 12 - 30 \log^2(2) + 24 \log(2) \right) = 0.0076288597. \)

Proof. Consider the set \(\beta := \{ \text{Av}[2, \infty), 1 \} \). Since \(\frac{1}{3} < \frac{1}{2} (\text{Av}[2, \infty) + 1) < 1 \), the Voronoi region of 1 contains only the point 1, and the Voronoi region of \(\text{Av}[2, \infty) \) contains the set \(\{ \frac{1}{n} : n \geq 2 \} \). Hence, the distortion error due to the set \(\beta \) is given by

\[
 V(P; \beta) = \text{Er}[2, \infty) = \frac{1}{12} \left(\pi^2 - 12 - 30 \log^2(2) + 24 \log(2) \right) = 0.0076288597.
\]

Since \(V_2(P) \) is the quantization error for two-means, we have \(V_2(P) \leq 0.0076288597. \) Let \(\alpha := \{ a_2, a_1 \} \) be an optimal set of two-means. Due to Proposition 2.1, we can assume that \(0 \leq a_2 < a_1 \leq 1 \). The Voronoi region of \(a_1 \) must contain 1. Suppose that the Voronoi region of \(a_1 \) also contains \(\frac{1}{2} \). Then,

\[
 V_2(P) \geq \text{Er}[1, 2] = \frac{1}{24} = 0.0416667 > V_2(P),
\]

which leads to a contradiction. Hence, we can assume that the Voronoi region of \(a_1 \) does not contain \(\frac{1}{2} \). Again, by Proposition 2.1, the Voronoi region of \(a_2 \) cannot contain the point 1. Thus, we have \(a_2 = \text{Av}[2, \infty) \), and \(a_1 = 1 \), and the corresponding quantization error is \(V_2(P) = \text{Er}[2, \infty) = 0.0076288597. \) Thus, the proof of the proposition is complete. \(\Box \)

Proposition 4.1.2. The set \(\{ \text{Av}[3, \infty), \frac{3}{2}, 1 \} \) forms the optimal set of three-means for the probability measure \(P \) with quantization error \(V_3(P) = \text{Er}[3, \infty) = 0.00116437359. \)
Proceeding as Proposition 4.1.2, we can show that the distortion error due to the set \(\alpha := \{Av[3, \infty), \frac{1}{3}, 1\} \) is given by

\[
V(P; \beta) = Er[3, \infty) = \frac{1}{24} (2\pi^2 - 51 - 108 \log^2(2) + 120 \log(2)) = 0.00116437359.
\]

Since \(V_3(P) \) is the quantization error for three-means, we have \(V_3(P) \leq 0.00116437359 \). Let \(\alpha := \{a_3, a_2, a_1\} \) be an optimal set of three-means such that \(0 \leq a_3 < a_2 < a_1 \leq 1 \). Proceeding as Proposition 4.1.1, we can show that \(a_1 = 1 \). Suppose that the Voronoi region of \(a_2 \) contains \(\frac{1}{2} \) and \(\frac{1}{3} \). Then,

\[
V_3(P) \geq Er[2, 3] = 0.002314814815 > V_3(P),
\]

which is a contradiction. Hence, the Voronoi region of \(a_2 \) cannot contain \(\frac{1}{3} \). Thus, we have

\[
a_3 = Av[3, \infty), a_2 = \frac{1}{2}, \text{ and } a_1 = 1,
\]

with quantization error \(V_3(P) = Er[3, \infty) = 0.00116437359 \). Thus, the proof of the proposition is complete.

Proposition 4.1.3. The set \(\{Av[4, \infty), \frac{1}{3}, \frac{1}{2}, 1\} \) forms the optimal set of four-means for the probability measure \(P \) with quantization error \(V_4(P) = Er[4, \infty) = 0.000241896477 \).

Proof. The proof of this proposition is similar to the proof of Proposition 4.1.2.

Proposition 4.1.4. The set \(\{Av[5, \infty), \frac{1}{3}, \frac{1}{2}, \frac{1}{3}, 1\} \) forms the optimal set of five-means for the probability measure \(P \) with quantization error \(V_5(P) = Er[5, \infty) = 0.00005991266593 \).

Proof. The distortion error due to the set \(\beta := \{Av[5, \infty), \frac{1}{3}, \frac{1}{2}, \frac{1}{3}, 1\} \) is given by

\[
V(P; \beta) = Er[5, \infty) = Er[5, \infty) = 0.00005991266593.
\]

Since \(V_5(P) \) is the quantization error for five-means, we have \(V_5(P) \leq 0.00005991266593 \). Let \(\alpha := \{a_5, a_4, a_3, a_2, a_1\} \) be an optimal set of five-means such that \(0 \leq a_5 < a_4 < a_3 < a_2 < a_1 \leq 1 \). Proceeding as Proposition 4.1.2, we can show that \(a_1 = 1 \). Suppose that the Voronoi region of \(a_4 \) contains \(\frac{1}{3} \), \(\frac{1}{2} \), and \(\frac{1}{3} \). Then, \(V_5(P) \geq Er[4, 6] = 0.0001116071429 > V_5(P) \), which is a contradiction. Assume that the Voronoi region of \(a_4 \) contains only the points \(\frac{1}{3} \), and \(\frac{1}{2} \). Then, the Voronoi region of \(a_5 \) contains the set \([6, \infty) \), and so we have

\[
V_5(P) = Er[6, \infty) + Er[4, 5] = 0.00006872664638 > V_5(P),
\]

which leads to a contradiction. Hence, we can assume that the Voronoi region of \(a_4 \) contains only the point \(\frac{1}{3} \). Thus, we have \(a_5 = Av[5, \infty) \), \(a_4 = \frac{1}{3} \), \(a_3 = \frac{1}{3} \), \(a_2 = \frac{1}{2} \), and \(a_1 = 1 \) with quantization error \(V_5(P) = Er[5, \infty) = 0.00005991266593 \). Thus, the proof of the Proposition is complete.

Proposition 4.1.5. The set \(\{Av[7, \infty), Av[5, 6], \frac{1}{3}, \frac{1}{2}, \frac{1}{3}, 1\} \) forms the optimal set of six-means for the probability measure \(P \) with quantization error

\[
V_6(P) = Er[7, \infty) + Er[5, 6] = 0.00001658888625.
\]

Proof. Notice that \(\frac{1}{3} = 0.142857 < \frac{1}{2}(Av[7, \infty) + Av[5, 6]) = 0.158488 < 0.166667 = \frac{1}{6} \), and \(\frac{1}{6} < \frac{1}{2}(Av[5, 6] + \frac{1}{3}) < \frac{1}{2} \). Hence, the distortion error due to the set \(\beta := \{Av[7, \infty), Av[5, 6], \frac{1}{3}, \frac{1}{2}, \frac{1}{3}, 1\} \) is given by

\[
V(P; \beta) = Er[7, \infty) + Er[5, 6] = 0.00001658888625.
\]

Since \(V_6(P) \) is the distortion error for six-means, we have \(V_6(P) \leq 0.00001658888625 \). Let \(\alpha := \{a_6, a_5, a_4, a_3, a_2, a_1\} \) be an optimal set of six-means such that \(0 \leq a_6 < a_5 < \cdots < a_1 \leq 1 \). Proceeding in the similar way as in the proof of Proposition 4.1.2, we can show that \(a_3 = \frac{1}{3}, a_2 = \frac{1}{2}, \text{ and } a_1 = 1 \). Proceeding in the similar way as in the proof of Proposition 4.1.4, we can show
that \(a_4 = \frac{1}{4}\). We now show that \(a_5 = \text{Av}[5, 6]\). Notice that the Voronoi region of \(a_5\) must contain \(\frac{1}{5}\). Suppose that the Voronoi region of \(a_5\) contains \(\frac{1}{7}\) and \(\frac{1}{6}\) as well. Then,

\[
V_6(P) \geq Er[5, 7] = 0.00002576328150 > V_6(P),
\]

which leads to a contradiction. Suppose that the Voronoi region of \(a_5\) contains only the point \(\frac{1}{5}\), i.e., \(a_5 = \frac{1}{5}\). Then,

\[
V_6(P) = Er[6, \infty) = 0.00001664331305 > V_6(P),
\]

which yields a contradiction. Hence, we can assume that the Voronoi region of \(a_5\) contains only the two points \(\frac{1}{6}\) and \(\frac{5}{6}\). Thus, we have

\[
a_6 = \text{Av}[7, \infty), a_5 = \text{Av}[5, 6), a_4 = \frac{1}{4}, a_3 = \frac{1}{3}, a_2 = \frac{1}{2}, \text{ and } a_1 = 1,
\]

and the quantization error is \(V_6(P) = Er[7, \infty) + Er[5, 6] = 0.0000165888625\). Thus, the proof of the proposition is complete.

In the following proposition, we calculate the optimal set of \(n\)-means and the \(n\)th quantization error for \(n = 200\).

Proposition 4.1.6. The set \(\{\text{Av}[301, \infty), \text{Av}[299, 300], \frac{1}{298}, \frac{1}{297}, \ldots, \frac{1}{5}, \frac{1}{2}, 1\}\) forms the optimal set of 300-means for the probability measure \(P\) with quantization error \(V_{300}(P) = Er[301, \infty) + Er[299, 300] = 1.564317642582409606174128 \times 10^{-100}\).

Proof. Notice that \(\frac{1}{301} = 0.003332259136 < \frac{1}{2}(\text{Av}[301, \infty) + \text{Av}[299, 300]) = 0.003326047849 < 0.003333333333 = \frac{1}{300}\), and \(\frac{2}{299} = 0.003334481605 < \frac{1}{2}(\text{Av}[299, 300] + \frac{1}{299}) = 0.003348235106 < 0.003355704698 = \frac{1}{298}\). Hence, the distortion error due to the set

\[
\beta := \{\text{Av}[301, \infty), \text{Av}[299, 300], \frac{1}{198}, \frac{1}{197}, \ldots, \frac{1}{3}, \frac{1}{2}, 1\}
\]

is given by

\[
V(P; \beta) = Er[301, \infty) + Er[299, 300] = 1.564317642582409606174128 \times 10^{-100}.
\]

Since \(V_{300}(P)\) is the distortion error for 300-means, we have

\[
V_{300}(P) \leq 1.564317642582409606174128 \times 10^{-100}.
\]

Let \(\alpha := \{a_{300}, a_{299}, \ldots, a_3, a_2, a_1\}\) be an optimal set of 300-means such that \(0 \leq a_{300} < a_{299} < \cdots < a_1 \leq 1\). Proceeding in the similar way as in the proof of Proposition 4.1.2, we can show that \(a_{297} = \frac{1}{297}, a_{296} = \frac{1}{296}, \ldots, a_3 = \frac{3}{2}, a_2 = \frac{1}{2}, \) and \(a_1 = 1\). Proceeding in the similar way as in the proof of Proposition 4.1.4, we can show that \(a_{298} = \frac{1}{298}\). We now show that \(a_{298} = \text{Av}[299, 300]\). The Voronoi region of \(a_{299}\) must contain \(\frac{1}{299}\). Suppose that the Voronoi region of \(a_{299}\) contains \(\frac{1}{7}\) for \(i = 299, 300, 301, 302\). Then,

\[
V_{300}(P) \geq Er[299, 302] = 1.953916208081177222202350 \times 10^{-100} > V_{300}(P),
\]

which leads to a contradiction. Assume that the Voronoi region of \(a_{299}\) contains only the points \(\frac{1}{7}\) for \(i = 299, 300, 301\). Then,

\[
V_{300}(P) = Er[302, \infty) + Er[299, 301] = 1.69852119259119376459397 \times 10^{-100} > V_{300}(P),
\]

which yields a contradiction. Assume that the Voronoi region of \(a_{299}\) contains only the point \(\frac{1}{299}\). Then,

\[
V_{300}(P) = Er[300, \infty) = 2.345910694878821203973953 \times 10^{-100} > V_{300}(P),
\]

which gives a contradiction. Hence, we can assume that the Voronoi region of \(a_{299}\) contains only the two points \(\frac{1}{299}\) and \(\frac{1}{300}\). Thus, we have

\[
a_{300} = \text{Av}[301, \infty), a_{299} = \text{Av}[299, 300], a_{298} = \frac{1}{298}, \ldots, a_4 = \frac{1}{4}, a_3 = \frac{1}{3}, a_2 = \frac{1}{2}, \text{ and } a_1 = 1,
\]
and the quantization error is given by
\[V_{300}(P) = Er[301, \infty) + Er[299, 300] = 1.564317642582409606174128 \times 10^{-100}. \]

Thus, the proof of the proposition is complete. \(\square \)

We now give the following theorem.

Theorem 4.1.7. For any positive integer \(n \), the sets \{Av[n, \infty), \frac{1}{n-1}, \ldots, \frac{1}{3}, \frac{1}{2}, 1\}, where \(1 \leq n \leq 5 \), form the optimal sets of \(n \)-means for the probability measure \(P \) with quantization errors \(V_n(P) := Er[n, \infty) \). For the positive integers \(n \), where \(6 \leq n \leq 300 \), the sets \{Av[n+1, \infty), Av[n-1, n], \frac{1}{n-2}, \ldots, \frac{1}{3}, \frac{1}{2}, 1\} form the optimal sets of \(n \)-means for the probability measure \(P \) with quantization errors \(V_n(P) = Er[n+1, \infty) + Er[n-1, n] \).

Proof. Due to Proposition 4.1.1 through Proposition 4.1.6, it follows that for \(1 \leq n \leq 5 \), the sets \{Av[n, \infty), \frac{1}{n-1}, \ldots, \frac{1}{3}, \frac{1}{2}, 1\} form the optimal sets of \(n \)-means for the probability measure \(P \) with quantization errors \(V_n(P) = Er[n, \infty) \). Proceeding in the similar way as Proposition 4.1.5 and Proposition 4.1.6, we can show that for \(6 \leq n \leq 300 \), the sets \{Av[n+1, \infty), Av[n-1, n], \frac{1}{n-2}, \ldots, \frac{1}{3}, \frac{1}{2}, 1\} form the optimal sets of \(n \)-means for the probability measure \(P \) with quantization errors \(V_n(P) = Er[n+1, \infty) + Er[n-1, n] \).

Thus, we complete the proof of the theorem. \(\square \)

We now give the following remark.

Remark 4.1.8. Proceeding in the similar way, as given in the proof of Theorem 4.1.7, it can be shown that the set \{Av[n, \infty), \frac{1}{n-1}, \ldots, \frac{1}{3}, \frac{1}{2}, 1\} also gives an optimal set of \(n \)-means for \(n = 301 \). It is still not known whether the sets \{Av[n+1, \infty), Av[n-1, n], \frac{1}{n-2}, \ldots, \frac{1}{3}, \frac{1}{2}, 1\} give the optimal sets of \(n \)-means for all positive integers \(n \geq 6 \). If not, then the least upper bound of \(n \in \mathbb{N} \) for which such sets give the optimal sets of \(n \)-means for the probability measure \(P \) is not known yet.

4.2. Optimal quantization for an infinite discrete distribution with support \{\(n : n \in \mathbb{N} \}\}. Let \(\mathbb{N} := \{1, 2, 3, \ldots\} \) be the set of natural numbers, and let \(P \) be a Borel probability measure on the set \{\(n : n \in \mathbb{N} \}\) with probability density function \(f \) given by
\[f(x) = \begin{cases} \frac{1}{2^n} & \text{if } x = n \text{ for } n \in \mathbb{N}, \\ 0 & \text{otherwise}. \end{cases} \]

Then, \(P \) is a Borel probability measure on \(\mathbb{R} \), and the support of \(P \) is the set \(\mathbb{N} \) of natural numbers. In this section, our goal is to determine the optimal sets of \(n \)-means and the \(n \)th quantization errors for all positive integers \(n \) for the probability measure \(P \). For \(k, \ell \in \mathbb{N} \), where \(k \leq \ell \), write
\[\{k, \ell\} := \{n : n \in \mathbb{N} \text{ and } k \leq n \leq \ell\}, \quad \text{and } \{k, \infty\} := \{n : n \in \mathbb{N} \text{ and } n \geq k\}. \]

Further, write
\[Av[k, \ell] := E\left(X : X \in [k, \ell]\right) = \frac{\sum_{n=k}^{\ell} \frac{n}{2^n}}{\sum_{n=k}^{\ell} 1/2^n}, \quad Av[k, \infty) := E\left(X : X \in [k, \infty)\right) = \frac{\sum_{n=k}^{\infty} \frac{n}{2^n}}{\sum_{n=k}^{\infty} 1/2^n}, \]
\[Er[k, \ell] := \sum_{n=k}^{\ell} \frac{1}{2^n}(n - Av[k, \ell])^2, \quad \text{and } Er[k, \infty) := \sum_{n=k}^{\infty} \frac{1}{2^n}(n - Av[k, \infty])^2. \]
Notice that \(E(P) := E(X : X \in \text{supp}(P)) = \sum_{n=1}^{\infty} \frac{1}{2^n} = Av[1, \infty) = 2 \), and so the optimal set of one-mean is the set \{2\} with quantization error

\[
V(P) = \sum_{n=1}^{\infty} \frac{1}{2^n} (n - 2)^2 = Er[1, \infty) = 2.
\]

Proposition 4.2.1. The optimal set of two-means is given by \{Av[1,2], Av[3,\infty)\} with quantization error \(V_2 = \frac{2}{3} \).

Proof. We see that \(Av[1,2] = \frac{1}{3} \), and \(Av[3,\infty) = 4 \). Since \(\frac{1}{3} < \frac{1}{2}(\frac{4}{3} + 4) < 4 \), the distortion error due to the set \(\beta := \{\frac{1}{3}, 4\} \) is given by

\[
V(P; \beta) = Er[1,2] + Er[3,\infty) = \frac{2}{3}.
\]

Since \(V_2 \) is the quantization error for two-means, we have \(V_2 \leq \frac{2}{3} \). Notice that the Voronoi region of \(a_1 \) must contain 1. Suppose that the Voronoi region of \(a_1 \) contains only the set \{1,2,3,4\}. Then,

\[
V_2 \geq 4 \sum_{j=1}^{4} \frac{1}{2^2} (j - Av[1,4])^2 = Er[1,4] = \frac{97}{120} = 0.808333 > V_2,
\]

which yields a contradiction. Hence, we can assume that the Voronoi region of \(a_2 \) contains only the set \{1,2,3\}, and so the Voronoi region of \(a_2 \) contains the set \(\{n : n \geq 4\} \). Then, we have

\[
V_2 = Er[1,3] + Er[4,\infty) = \frac{5}{7} = 0.714286 > V_2,
\]

which is a contradiction. Next, suppose that the Voronoi region of \(a_1 \) contains only the element 1, and so the Voronoi region of \(a_2 \) contains the set \(\{n : n \geq 2\} \). Then, we have

\[
V_2 = Er[2,\infty) = 1 > V_2,
\]

which leads to a contradiction. Hence, we can assume that the Voronoi region of \(a_1 \) contains the set \{1,2\}, and so the Voronoi region of \(a_2 \) contains \{3,4,5,\ldots\}, yielding \(a_1 = Av[1,2] \), and \(a_2 = Av[3,\infty) \), and the corresponding quantization error is \(V_2 = \frac{2}{3} \). Thus, the proof of the proposition is complete. \(\Box \)

Proposition 4.2.2. The sets \{1, Av[2,3], Av[4,\infty)\}, and \{Av[1,2], Av[3,4], Av[5,\infty)\} form two optimal sets of three-means with quantization error \(V_3 = \frac{1}{3} \).

Proof. The distortion error due to set \(\beta := \{1, Av[2,3], Av[4,\infty)\} \) is given by

\[
V(P; \beta) = Er[2,3] + Er[4,\infty) = \frac{1}{3}.
\]

Notice that the distortion error due to the set \{Av[1,2], Av[3,4], Av[5,\infty)\} is also \(\frac{1}{3} \). Since \(V_3 \) is the quantization error for three-means, we have \(V_3 \leq \frac{1}{3} \). Let \(\alpha := \{a_1, a_2, a_3\} \) be an optimal set of three-means, where \(1 \leq a_1 < a_2 < a_3 < \infty \). Suppose that the Voronoi region of \(a_1 \) contains the set \{1,2,3\}. Then,

\[
V_3 \geq 3 \sum_{j=1}^{3} \frac{1}{2^3} (j - Av[1,3])^2 = \frac{13}{28} > \frac{1}{3} > V_3,
\]

which leads to a contradiction. Hence, we can assume that the Voronoi region of \(a_1 \) contains either the set \{1\}, or the set \{1,2\}. Consider the following two cases:

Case 1. The Voronoi region of \(a_1 \) contains only the set \{1\}.

In this case, the Voronoi region of \(a_2 \) must contain the element 2. Suppose that the Voronoi region of \(a_2 \) contains the set \{2,3,4,5\}. Then,

\[
V_3 \geq 5 \sum_{j=2}^{5} \frac{1}{2^5} (j - Av[2,5])^2 = \frac{97}{240} = 0.404167 > V_3,
\]
which yields a contradiction. Assume that the Voronoi region of \(a_2\) contains only the set \(\{2, 3, 4\}\), and so the Voronoi region of \(a_3\) contains the set \(\{n: n \geq 5\}\). Then, the distortion error is

\[
V_3 = Er[2, 4] + Er[5, \infty] = \frac{5}{14} = 0.357143 > V_3,
\]
which gives a contradiction. Next, assume that the Voronoi region of \(a_2\) contains only the element 2, and so the Voronoi region of \(a_3\) contains the set \(\{n: n \geq 3\}\). Then, the distortion error is

\[
V_3 = Er[3, \infty] = \frac{1}{2} > V_3,
\]
which is a contradiction. Hence, in this case, we can conclude that the Voronoi region of \(a_2\) contains only the set \(\{2, 3\}\), yielding \(a_1 = 1, a_2 = Av[2, 3]\), and \(a_3 = Av[4, \infty]\) with quantization error \(V_3 = \frac{1}{3}\).

Case 2. The Voronoi region of \(a_1\) contains only the set \(\{1, 2\}\).

In this case, the Voronoi region of \(a_2\) must contain the element 3. Suppose that the Voronoi region of \(a_2\) contains the set \(\{3, 4, 5, 6\}\). Then,

\[
V_3 \geq \sum_{j=1}^{2} \frac{1}{2^j} (j - Av[1, 2])^2 + \sum_{j=3}^{6} \frac{1}{2^j} (j - Av[3, 6])^2 = \frac{59}{160} = 0.36875 > V_3,
\]
which yields a contradiction. Assume that the Voronoi region of \(a_2\) contains only the set \(\{3, 4, 5\}\), and so the Voronoi region of \(a_3\) contains the set \(\{n: n \geq 6\}\). Then, the distortion error is

\[
V_3 = Er[1, 2] + Er[3, 5] + Er[6, \infty] = \frac{29}{84} = 0.345238 > V_3,
\]
which gives a contradiction. Next, assume that the Voronoi region of \(a_2\) contains only the element 3, and so the Voronoi region of \(a_3\) contains the set \(\{n: n \geq 4\}\). Then, the distortion error is

\[
V_3 = Er[1, 2] + Er[4, \infty] = \frac{5}{12} = 0.416667 > V_3,
\]
which yields a contradiction. Hence, in this case, we can conclude that the Voronoi region of \(a_2\) contains only the set \(\{3, 4\}\), yielding \(a_1 = Av[1, 2], a_2 = Av[3, 4]\), and \(a_3 = Av[5, \infty]\) with quantization error \(V_3 = \frac{1}{3}\).

By Case 1 and Case 2, the proof of the proposition is complete. \(\square\)

We need the following lemma.

Lemma 4.2.3. Let \(n \geq 4\), and let \(\alpha_n\) be an optimal set of \(n\)-means. Then, \(\alpha_n\) must contain the set \(\{1, 2, \ldots, (n-3)\}\).

Proof. The distortion error due to the set \(\beta := \{1, 2, \ldots, (n-3), (n-2), Av[n-1, n], Av[n+1, \infty]\}\) is given by

\[
V(P; \beta) = Er[n-1, n] + Er[n+1, \infty] = \frac{2^{3-n}}{3}.
\]

Since \(V_n\) is the quantization error for \(n\)-means, we have \(V_n \leq \frac{2^{3-n}}{3}\). Let \(\alpha_n := \{a_1, a_2, \ldots, a_n\}\) be an optimal set of \(n\)-means such that \(1 \leq a_1 < a_2 < \cdots < a_n < \infty\). We show that \(a_1 = 1, a_2 = 2, \ldots, a_{n-3} = n - 3\). Notice that the Voronoi region of \(a_1\) must contain the element 1. Suppose that the Voronoi region of \(a_1\) also contains the element 2. Then,

\[
V_n > \sum_{j=1}^{2} \frac{1}{2^j} (j - Av[1, 2])^2 = \frac{1}{6} \geq \frac{2^{3-n}}{3} \geq V_n,
\]
which is a contradiction. Hence, we can conclude that the Voronoi region of \(a_1\) contains only the element 1, yielding \(a_1 = 1\). Thus, we can deduce that there exists a positive integer \(k\), where \(1 \leq k < n - 3\), such that \(a_1 = 1, a_2 = 2, \cdots, a_k = k\). We now show that \(a_{k+1} = k + 1\). Notice
that the Voronoi region of a_{k+1} must contain $k + 1$. Suppose that the Voronoi region of a_{k+1} also contains the element $k + 2$. Then, as $k < n - 3$, we have

$$V_n > \sum_{j=k+1}^{k+2} \frac{1}{2^j} (j - \text{Av}[k+1, k+2])^2 = \frac{2^{-k-1}}{3} \geq \frac{2^{3-n}}{3} \geq V_n,$$

which is a contradiction. Hence, we can conclude that the Voronoi region of a_{k+1} contains only the element $k + 1$. Thus, by the Principle of Mathematical Induction, we deduce that $a_1 = 1, a_2 = 2, \cdots, a_{n-3} = n - 3$. Thus, the proof of the lemma is complete. \hfill \Box

Theorem 4.2.4. Let $n \geq 4$, and let α_n be an optimal set of n-means. Then, either $\alpha_n = \{1, 2, 3, \cdots, n-3, n-2, \text{Av}[n-1, n], \text{Av}[n+1, \infty]\}$, or $\alpha_n = \{1, 2, 3, \cdots, n-3, \text{Av}[n-2, n-1], \text{Av}[n, n+1], \text{Av}[n+2, \infty]\}$ with quantization error $V_n = \frac{2^{3-n}}{3}$.

Proof. As shown in the proof of Lemma 4.2.3, we have $V_n \leq \frac{2^{3-n}}{3}$. Let $\alpha_n := \{a_1, a_2, \cdots, a_n\}$ be an optimal set of n-means such that $1 \leq a_1 < a_2 < \cdots < a_n < \infty$. By Lemma 4.2.3, we have $a_1 = 1, a_2 = 2, \cdots, a_{n-3} = n - 3$. Recall that $n \geq 4$. Suppose that the Voronoi region of a_{n-2} contains the set $\{n-2, n-1, n\}$. Then,

$$V_n \geq \sum_{j=n-2}^{n} \frac{1}{2^j} (j - \text{Av}[n-2, n])^2 = \frac{13}{7} 2^{1-n} \geq \frac{2^{3-n}}{3} \geq V_n,$$

which leads to a contradiction. Hence, we can assume that the Voronoi region of a_{n-2} contains either the set $\{n-2\}$, or the set $\{n-2, n-1\}$. Consider the following two cases:

Case 1. The Voronoi region of a_{n-2} contains only the set $\{n-2\}$.

Proceeding along the similar lines as Case 1 in the proof of Proposition 4.2.2, we can show that the Voronoi region of a_{n-1} contains only the set $\{n-1, n\}$, yielding $a_{n-2} = n-2, a_{n-1} = \text{Av}[n-1, n]$, and $a_n = \text{Av}[n+1, \infty]$ with quantization error $V_n = \frac{2^{3-n}}{3}$.

Case 2. The Voronoi region of a_{n-2} contains only the set $\{n-2, n-1\}$.

Proceeding along the similar lines as Case 2 in the proof of Proposition 4.2.2, we can show that the Voronoi region of a_{n-1} contains only the set $\{n, n+1\}$, yielding $a_{n-2} = \text{Av}[n-2, n-1]$, $a_{n-1} = \text{Av}[n, n+1]$, and $a_n = \text{Av}[n+2, \infty]$ with quantization error $V_n = \frac{2^{3-n}}{3}$.

By Case 1 and Case 2, the proof of the theorem is complete. \hfill \Box

5. Probability distributions when the optimal sets are given

Let P be a discrete probability measure on \mathbb{R} with support a finite or an infinite set $\{1, 2, 3, \cdots\}$. Let (p_1, p_2, p_3, \cdots) be a probability vector associated with $\{1, 2, 3, \cdots\}$ such that the probability mass function f of P is given by $f(k) = p_k$ if $k \in \{1, 2, 3, \cdots\}$, and zero otherwise. For $k, \ell \in \{1, 2, 3, \cdots\}$ with $k \leq \ell$, write

$$[k, \ell] := \{n : k \leq n \leq \ell\}, \text{ and } [k, \infty) := \{k, k+1, \cdots\}.$$

For a random variable X with distribution P, let $\text{Av}[k, \ell]$ represent the conditional expectation of X given that X takes values on the set $\{k, k+1, k+2, \cdots, \ell\}$, i.e.,

$$\text{Av}[k, \ell] = E(X : X \in [k, \ell]),$$

where $k, \ell \in \{1, 2, 3, \cdots\}$ with $k \leq \ell$. On the other hand, by $\text{Av}[k, \infty)$ it is meant $\text{Av}[k, \infty) = E(X : X \in [k, \infty))$, where $k \in \{1, 2, 3, \cdots\}$. Let α_n be an optimal set of n-means for P, where $n \in \mathbb{N}$. In this section, our goal is to find a set of probability vectors (p_1, p_2, p_3, \cdots) such that for all $n \in \mathbb{N}$, the optimal sets of n-means are given by $\alpha_n = \{1, 2, 3, \cdots, n-1, \text{Av}[n, \infty)\}$.

Consider the following two cases:

Case 1. $\{1, 2, 3, \cdots\}$ is a finite set.

In this case, there exists a positive integer m, such that the support of P is given by $\{1, 2, 3, \cdots, m\}$. Notice that for any $k \in \{1, 2, \cdots, m\}$, in this case by $[k, \infty)$ it meant the set $[k, m]$. If $m = 1$, then $\alpha_1 = \{1\}$; and if $m = 2$, then $\alpha_1 = \{\text{Av}[1, \infty)\}$, and $\alpha_2 = \{1, \text{Av}[2, \infty)\}$,
i.e., there is nothing to prove. So, we can assume that \(m \geq 3 \). Define the probability vector \((p_1, p_2, \cdots, p_m)\) as follows:

\[
 p_j = \begin{cases}
 x & \text{if } j = 1, \\
 (1 - x)^{j-1}x & \text{if } 2 \leq j \leq m - 1, \\
 (1 - x)^{j-1} & \text{if } j = m.
\end{cases}
\]

(1)

For the sets \(\alpha_n \) to form the optimal sets of \(n \)-means for all \(1 \leq n \leq m \), we must have

\[
 (n - 1) \leq \frac{1}{2} (n - 1 + \text{Av}(n, \infty)) \leq n
\]

(2)

for \(2 \leq n \leq m \). The set of values of \(x \) obtained by solving the above inequalities does not guarantee that the sets \(\alpha_n \) for \(1 \leq n \leq m \) will form the optimal set of \(n \)-means. Thus, we need further investigation. Due to symmetry in the construction of the probability vectors, we can say that \(\alpha_n \) for \(1 \leq n \leq m \) will form the optimal sets of \(n \)-means if the following condition is also true:

\[
 V(P; \{1, \text{Av}[2, \infty]\}) \leq V(P; \{\text{Av}[1, 2], \text{Av}[3, \infty]\}).
\]

Thus, we conjecture that the values of \(x \), for which the inequalities given by (2) and (3) are true, form the set of probability vectors \((p_1, p_2, p_3, \cdots, p_m)\), given by (1), for which the sets \(\alpha_n \) for \(1 \leq n \leq m \) form the optimal sets of \(n \)-means. By several examples, we verified that the conjecture is true, also see Example 5.1 and Example 5.2.

Case 2. \(\{1, 2, 3, \cdots\} \) is an infinite set.

Define the probability vector \((p_1, p_2, p_3, \cdots)\) as follows:

\[
 p_j = \begin{cases}
 x & \text{if } j = 1, \\
 (1 - x)^{j-1}x & \text{if } 2 \leq j.
\end{cases}
\]

(4)

For the sets \(\alpha_n \) to form optimal sets of \(n \)-means for all \(1 \leq n \), we must have

\[
 (n - 1) \leq \frac{1}{2} (n - 1 + a(n)) \leq n
\]

(5)

for \(2 \leq n \). The set of values of \(x \) obtained by solving the above inequalities does not guarantee that \(\alpha_n \) for \(1 \leq n \) will form an optimal set of \(n \)-means. Thus, we need further investigation. Due to symmetry in the construction of the probability vectors, we can say that the sets \(\alpha_n \) for \(1 \leq n \) will form the optimal sets of \(n \)-means if the following inequality is also true:

\[
 V(P; \{1, \text{Av}[2, \infty]\}) \leq V(P; \{\text{Av}[1, 2], \text{Av}[3, \infty]\}).
\]

After some calculation, we see that there exists a real number \(y \), the ten-digit rational approximation of which is 0.6666666667, such that the inequalities given by (5) and (6) are satisfied if \(y \leq x < 1 \). Thus, we conjecture that the sets \(\alpha_n \) for \(1 \leq n \) will form the optimal sets of \(n \)-means if the probability vector \((p_1, p_2, p_3, \cdots)\) is given by (1) for 0.6666666667 \(\leq x < 1 \). By several examples, we verified that the conjecture is true.

Example 5.1. Let \(m = 6 \) in Case 1. Then, for \(0 < x < 1 \) we have

\[
 p_1 = x, \ p_2 = (1 - x)x, \ p_3 = (1 - x)^2x, \ p_4 = (1 - x)^3x, \ p_5 = (1 - x)^4x, \text{ and } p_6 = (1 - x)^5.
\]

After solving the inequalities given by (2), we have 0.4812099363 < \(x < 1 \). Again, solving the inequality (3), we have 0.6628057756 \(\leq x < 1 \). Notice that 0.4812099363 and 0.6628057756 are the ten-digit rational approximations of two real numbers. Thus, the inequalities given by (2) and (3) are true if 0.6628057756 \(\leq x < 1 \). Hence, a set of probability vectors \((p_1, p_2, \cdots, p_6)\) for which the given sets \(\alpha_n \) form the optimal sets of \(n \) means for \(1 \leq n \leq 6 \) is given by

\[
 \{(x, (1 - x)x, (1 - x)^2x, (1 - x)^3x, (1 - x)^4x, (1 - x)^5) : 0.6628057756 \leq x < 1\}.
\]
Example 5.2. Let $m = 7$ in Case 1. Then, proceeding as Example 5.1 we see that (2) and (3) are true if $0.6654212000 \leq x < 1$. Hence, a set of probability vectors (p_1, p_2, \ldots, p_7) for which the given sets α_n form the optimal sets of n means for $1 \leq n \leq 7$ is given by

$$\{x, (1-x)x, (1-x)^2x, (1-x)^3x, (1-x)^4x, (1-x)^5x, (1-x)^6\}$$

where $0.6654212000 \leq x < 1$.

References

[DR] C.P. Dettmann and M.K. Roychowdhury, *Quantization for uniform distributions on equilateral triangles*, Real Analysis Exchange, Vol. 42(1), 2017, pp. 149-166.

[GG] A. Gersho and R.M. Gray, *Vector quantization and signal compression*, Kluwer Academy publishers: Boston, 1992.

[GL] S. Graf and H. Luschgy, *Foundations of quantization for probability distributions*, Lecture Notes in Mathematics 1730, Springer, Berlin, 2000.

[GN] R. Gray and D. Neuhoff, *Quantization*, IEEE Trans. Inform. Theory, 44 (1998), pp. 2325-2383.

[R] M.K. Roychowdhury, *Optimal quantizers for some absolutely continuous probability measures*, Real Analysis Exchange, Vol. 43(1), 2017, pp. 105-136.

[RR] J. Rosenblatt and M.K. Roychowdhury, *Optimal quantization for piecewise uniform distributions*, Uniform Distribution Theory 13 (2018), no. 2, 23-55.

[RS] M.K. Roychowdhury, and Wasiela Salinas, *Quantization for a mixture of uniform distributions associated with probability vectors*, Uniform Distribution Theory 15 (2020), no. 1, 105-142.

[Z] R. Zam, *Lattice Coding for Signals and Networks: A Structured Coding Approach to Quantization, Modulation, and Multiuser Information Theory*, Cambridge University Press, 2014.

School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539-2999, USA.

E-mail address: \{1russellloyd.cabasag01, 2samir.huq01, 3eric.mendoza01, 4mrinal.roychowdhury\}@utrgv.edu