Inflammatory microenvironment contributes to epithelial-mesenchymal transition in gastric cancer

Hui-Ying Ma, Xin-Zhou Liu, Chun-Min Liang

Hui-Ying Ma, Xin-Zhou Liu, Chun-Min Liang, Lab of Tumor Immunology, Department of Anatomy and Histology and Embryology, Shanghai Medical College of Fudan University, Shanghai 200032, China

Author contributions: Ma HY and Liu XZ collected data and drafted the manuscript; Liang CM supervised and revised the manuscript.

Supported by National Science Foundation of China, No. 31471147.

Conflict-of-interest statement: The authors certify that there is no actual or potential conflict of interest and publication copyright in relation to this article.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Chun-Min Liang, MD, PhD, Lab of Tumor Immunology, Department of Anatomy and Histology and Embryology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai 200032, China. cmliang@fudan.edu.cn

Telephone: +86-21-54237027
Fax: +86-21-54237027

Received: March 28, 2016
Peer-review started: March 28, 2016
First decision: May 30, 2016
Revised: June 12, 2016
Accepted: July 6, 2016
Article in press: July 6, 2016
Published online: August 7, 2016

Abstract

Gastric cancer (GC) is the fifth most common malignancy in the world. The major cause of GC is chronic infection with *Helicobacter pylori* (*H. pylori*). Infection with *H. pylori* leads to an active inflammatory microenvironment that is maintained by immune cells such as T cells, macrophages, natural killer cells, among other cells. Immune cell dysfunction allows the initiation and accumulation of mutations in GC cells, inducing aberrant proliferation and protection from apoptosis. Meanwhile, immune cells can secrete certain signals, including cytokines, and chemokines, to alter intracellular signaling pathways in GC cells. Thus, GC cells obtain the ability to metastasize to lymph nodes by undergoing the epithelial-mesenchymal transition (EMT), whereby epithelial cells lose their epithelial attributes and acquire a mesenchymal cell phenotype. Metastasis is a leading cause of death for GC patients, and the involved mechanisms are still under investigation. In this review, we summarize the current research on how the inflammatory environment affects GC initiation and metastasis via EMT.

Key words: Gastric cancer; Inflammation; Epithelial-mesenchymal transition; Microenvironment; Immune cells

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: The major cause of gastric cancer (GC) is *Helicobacter pylori* infection, resulting in an inflammatory microenvironment in GC. Meanwhile, the leading cause of death for GC patients is metastasis. The major pathway for metastasis is the epithelial-mesenchymal transition (EMT). Therefore, a thorough understanding of how the inflammatory microenvironment contributes to the promotion of the EMT is indispensable for developing new treatments. In this review, we summarize the
mechanisms of inflammatory mediators, divided among immune cells and molecules, on the prognosis of GC patients and EMT, which suggests that a combination of immunotherapy and anti-EMT treatments may be encouraging for the treatment of GC.

Ma HY, Liu XZ, Liang CM. Inflammatory microenvironment contributes to epithelial-mesenchymal transition in gastric cancer. World J Gastroenterol 2016; 22(29): 6619-6628 Available from: URL: http://www.wjgnet.com/1007-9327/full/v22/i29/6619.htm DOI: http://dx.doi.org/10.3748/wjg.v22.i29.6619

INTRODUCTION

Gastric cancer (GC) was the fifth most common malignancy and the third leading cause of cancer worldwide in 2012. Almost one million new cases were estimated to have occurred annually. More than 70% of these occurred in developing countries, and approximately half of all cases worldwide (405000 cases) were diagnosed in China[1]. Two histologically distinct types of GC have described: diffuse-type, in which infiltrating neoplastic cells exists individually, and intestinal-type, which initiates from normal mucosa, transiting to chronic superficial gastritis, atrophic gastritis, intestinal metaplasia, and finally to dysplasia and adenocarcinoma[2]. In recent years, improvements in endoscopic detection and treatment strategies such as surgical resection and chemotherapy have contributed to 5-year survival rates of approximately 60% in Japan[3]. However, despite multimodal therapy, the average overall 5-year survival worldwide still remain at 40%-50%, while in the United States, the 5-year survival rate is only 26%-30%, and more than 60% of patients will develop local relapse or metastatic disease[4]. Therefore, investigating the mechanisms underlying the initiation and progression of GC will help improve early detection and treatment efficiency.

GC is the result of the accumulation of genomic damage that affects cellular functions essential for cancer development[7]. The major cause of GC is chronic infection with the Gram-negative bacterium Helicobacter pylori (H. pylori), which contributes to more than 75% of GC cases[8]. Although in the past, H. pylori infection has been regarded as a risk factor for GC and is categorized as a Group 1 carcinogen for humans[9-11], only a small number of infected individuals develop GC (approximately 2%-3% of the total infected individuals)[12], which makes H. pylori status an unclear predictor of GC prognosis. Some studies have yielded contrasting findings, showing that GC patients with positive H. pylori infection have better disease-free survival and overall survival, whereas negative H. pylori infection indicates poor prognosis in GC patients[13,14]. Recent meta-analyses further showed that instead of serving as a risk factor, H. pylori status could act as a protective factor in predicting GC progression[15], leading to further confusion. Another key factor leading to approximately 10% of GC cases is Epstein-Barr virus (EBV) infection[16]. A meta-analysis of 13 studies showed that EBV-positive patients have decreased survival, which indicates that EBV might serve as a predictive factor[17]. However, studies on the role of EBV are still in their infancy. Although the relationship between H. pylori or EBV and the prognosis of GC patients is unclear, the fact remains that these infections can induce physiological and morphological changes within the gastric epithelium, resulting in an increased risk of neoplastic transformations such as hypochlorhydria and gastric atrophy, which are precursors of GC. The induced inflammatory microenvironment recruits more immune cells that secrete aberrant factors such TGF-β, which may further lead to tumor cell metastasis, which is a major factor in the poor survival of GC patients[18].

METASTASIS AND EPITHELIAL-MESENCHYMAL TRANSITION

A key process in promoting tumor cells metastasis is the epithelial-mesenchymal transition (EMT), which is a process by which epithelial cells lose their epithelial attributes and acquire a mesenchymal cell phenotype[19,20]. During this process, epithelial tumor cells are endowed with three main changes. First, cell morphology changes from a cobblestone-like monolayer of epithelial cells with apical-basal polarity to spindle-shaped mesenchymal cells with migratory pseudopodalia or filopodia structures. Second, the cytoskeleton and intercellular junctions are reorganized with changes in differentiation markers such as the loss of E-cadherin and increased expression of Vimentin and Fibronectin. Third, functional changes are shown to potentiate angiogenesis and intratumor enhanced protease expression, allowing invasion through the extracellular matrix (ECM)[21,22]. EMT also increases resistance to apoptosis and contributes to the survival of circulating tumor cells[23]. Not all of these changes are invariably observed during EMT; however, the ability to migrate and invade the ECM as a single cell is regarded as marking the functional completion of the EMT program.

The development of EMT involves many different signaling pathways. Transforming growth factor-β (TGF-β) is recognized as a potent inducer of the EMT, acting at translational, post-translational, transcriptional and post-transcriptional levels[24]. After signal binds to TGF-β receptors, the EMT is initiated by either the phosphorylation of Smad2/3/4, which induces the transcription of Snail or Slug[25,26], or through non-Smad signaling pathways, including the PI3K/Akt-mTOR pathway[27,28], the RHO-GTPase pathway[29,30], and the ERK, p38 and JUN N-terminal kinase (JNK) MAPK pathways[31-33]. Aside from TGF-β receptors, receptor tyrosine kinases also contribute to
the initiation of the EMT through the activation of the PI3K/Akt and ERK signaling pathways, which promotes cell mobility and invasive behavior\(^\text{[34-36]}\). Some studies have also found that the frizzled receptor, Notch receptor, and patched (PTC) receptors as well as the IL-6 receptor can participate in EMT progression by activating the Wnt and STAT signaling, among other pathways\(^\text{[37-40]}\). To activate these pathways, ligands must first bind to membrane receptors, for example, cytokines found in the GC microenvironment, such as TGF-β1 and IL-1β. These inflammatory cytokines are thought to be released from recruited immune cells, endothelial cells and fibroblasts\(^\text{[41]}\), indicating that members of the microenvironment regulate EMT progression.

INFLAMMATION AND EMT IN GC

The connection between inflammation and cancer has been studied for years, and chronic inflammation is thought to be a key contributor to tumor development\(^\text{[42]}\). Chronic inflammation is a protective response to damage to tissue homeostasis, inducing a prolonged, aberrant form called a “wound”\(^\text{[43]}\). The so-called “wound” continuously recruits immune cells and other protective cells and induces their secretion of inflammatory mediators. During this state, despite the excessive mediators, the damaged cells will amplify and divide frequently, leading the microenvironment to become oxidative and thus increasing the likelihood of DNA damage and mutations. Once the key damage or mutation occurs, the damaged cells start to secret pro-inflammatory cytokines to keep them active and revert themselves to tumor cells. Meanwhile, these cells manage to escape from immune surveillance and modify infiltrating immune cells into tumor-associated immune cells, which assists tumor progression rather than immune inhibition. These changes result in a “wound” that never heals and promote tumor initiation, progression and metastasis\(^\text{[44-47]}\). Given that more than 85% of GC is caused by infection, which induces inflammation, inflammation is accepted as a major driver of gastric carcinogenesis\(^\text{[48,49]}\).

The tumor-associated microenvironment is characterized by tumor infiltrating lymphocytes (TILs), the secretion of inflammatory mediators and angiogenesis. TILs interact with tumor cells via inflammatory molecules such as cytokines (TGF-β, TNF-α, IL-6, IL-1β), chemokines (CC- and CXC- receptors) and matrix metalloproteinases (MMPs), which form an inflammatory network\(^\text{[50]}\). Unfortunately, these molecules are also inducers of the EMT (Table 1), which may explain how inflammation contributes to GC cells metastasis. Upon infection by _H. pylori_, the level of soluble HB-EGF shedding is up-regulated, which further induces GC cells to undergo the EMT. This process partially relies on the expression of gastrin and MMP7\(^\text{[50,51]}\). GC EMT could also be induced by _H. pylori_ cytotoxin-associated gene A (CagA), which downregulates E-cadherin expression and increases the expression of vimentin and twist\(^\text{[52]}\). Eradication of _H. pylori_ reduces the expression of TGF-β1 while increasing E-cadherin expression, indicating that _H. pylori_ may trigger TGF-β1-induced EMT\(^\text{[53]}\). The development and metastasis of tumor cells may occur because GC cells escape immune surveillance or because immune cells become helpers for GC cells. Therefore, the tumor-related inflammatory microenvironment has an important role in regulating GC EMT, mainly through interactions with infiltrating immune cells.

Immune cells and EMT

The major infiltrating functional immune cells in GC are T cells, macrophages, NK cells, DCs and MDSCs\(^\text{[54]}\). T cells are mainly divided into CD8\(^{+}\) cytotoxic T cells and CD4\(^{+}\) T helper cells\(^\text{[55]}\). CD8\(^{+}\) cytotoxic T cells (CTLs) exert active antitumor effects, and previous work has shown that GC patients with high CD8\(^{+}\) CTL infiltration display better prognoses\(^\text{[56]}\). However, other work has shown that higher CD8\(^{+}\)CTLs do not indicate good outcomes with metastasis due to the occurrence of adaptive immune resistance, such as the ratio of CD8\(^{+}\) CTLs with programmed death-ligand 1 (PD-L1)\(^\text{[57]}\). Meanwhile, CTLs can also produce IL-17 to promote inflammation and result in a poor prognosis\(^\text{[58]}\). EBV-specific CD8\(^{+}\) CTL injection significantly reduced tumor growth and metastasis in mouse models of GC\(^\text{[59]}\). Thus, treatment with autologous CD8\(^{+}\) CTL injection

Table 1 Important inflammatory mediators involved in the EMT in GC

Categories	Factors	Ref
Cytokines	TGF-β1	[103,104]
	TNF-α	[99,100]
	TGF-α	[108]
	IL-6	[109,110]
	IL-8	[102]
Chemokines and receptors	CCL5	[84,131]
Immune cells	CCL18	[132,133]
	CCR2	[134]
	CCR7	[135]
	CCL20-CCR6	[136,137]
	CXCR1	[138,139]
	CXCR3	[140]
	CXCL12-CXCR4	[108,117]
MMPs	Foxp3\(^{+}\)Tregs	[68,70]
	Foxp3\(^{+}\)/CD8\(^{+}\) ratio	[71]
	NK cells	[87,89]
	TAMs	[78,79]
	DCs	[93,95]
	TAM/Foxp3\(^{+}\) ratio	[141]
	MMP-2	[125]
	MMP-9	[124-126,142]
	MMP-7	[51,127,128]
for GC patients and patients with metastatic GC seems promising[60].

Naïve CD4+ T helper cells can differentiate into several subsets, including Th1, Th2, Treg, and Th17, by secreting various cytokines such as TGF-β, IL-10, and IFN-γ, which are also inducers of the EMT[55,61]. CD4+ T cell subsets are found at significantly lower levels in metastatic tumor draining lymph nodes (TDLNs) than in metastasis-free TDLNs, which indicates that metastasis is a consequence of the loss of CD4+ T cells[62]. Th1 (IFN-γ producing) and Th2 (IL-4 producing) cells play key roles in anti-tumor immunity. The balance between these two cell types can alter antitumor activity, as shown in human peripheral blood: a high Th1/Th2 ratio correlates with a better prognosis and less metastasis[63]. An expansion of Th17 cells is found in GC patients’ tissues and peripheral blood, especially in patients with metastasis. High levels of IL-1β, IL-21, IL-17 and TGF-β expression are also observed, which will induce macrophages to produce more IL-6 and IL-8 to activate the NF-κB pathway and might be a reason why metastasis occurs through the induction of the EMT[64-67]. Another important CD4+ T cell subset related to GC progression at CD4+ suppressor T lymphocytes, or Tregs, that express Foxp3. Higher Foxp3+ Treg infiltration is correlated with GC metastasis and poor prognosis[68-70]. Similar to Th1 and Th2, the ratio of Foxp3+/CD4+ and Foxp3-/CD8+ cells is very important for the suppression of metastasis[68,71].

Macrophages are among the most important immune cells that infiltrate the tumor microenvironment and include the following two phenotypes: M1 macrophages, which facilitate anti-tumor activity, and M2 macrophages, or tumor-associated macrophages (TAMs), which promote tumor progression[72]. Although macrophages can secrete cytokines such as IL-25 to hamper tumor growth and metastasis, large amounts of infiltration by TAMs disrupt this process[73]. TAM infiltration in GC can promote angiogenesis and lymphangiogenesis and predict poor overall survival[74-76], hence, TAMs are regarded as a promising therapeutic target[77]. When TAMs are cocultured with GC cells, the metastatic ability of GC increases, which might be the result of TGF-β1 secretion activating the TGF-β and NF-κB signaling pathways[78,79]. IL-8, which is secreted by surrounding TAMs, could also be an inducer of GC cell metastasis, especially under hypoxic conditions[80-82]. Meanwhile, chemokine factors can affect the relation between TAMs and GC cells. High CXCL12 expression on GC cells can recruit TAMs[83]. Recruited TAMs then secret CCL5, which activates the STAT3 signaling pathway, leading to tumor growth and invasion[84]. Activation of the NF-κB or STAT3 signaling pathway can elevate the expression of certain proteins related to mesenchymal phenotypes, such as Vimentin. In this way, GC cells start to undergo the EMT, which ultimately assists in metastasis[85,86].

NK cells play an important role in regulating GC development and metastasis by directly clearing tumor cells. Previous studies found that in GC patients, the expression of NKG2D, an activating receptor specifically expressed on NK cells, is higher compared with healthy controls, with the same trend observed when comparing GC patients with and without lymph node metastasis[87,88]. This NK cell dysfunction may be related to TGF-β1 levels[89]. These groups of immune cells are unable to inhibit GC progression mainly due to their loss or dysfunction.

DCs are the cells that process and present antigens to T cells[90]. However, their numbers still make a difference in controlling GC progression. Patients with lower DC infiltration have less lymph node metastasis and show a favorable prognosis[91-93]. This effect might due to the elevated IL-10 expression and decreased IL-10 expression produced by DCs through the activation of the NF-κB signaling pathway[94,95], which further affects the metastatic ability of GC cells. MDSCs are a relatively heterogeneous population of cells. Their expansion during cancer is associated with advanced GC stages and indicates poor prognosis[96,97]. However, studies of MDSC function in GC are still very limited.

Inflammatory molecules and EMT

Inflammatory mediators are factors that act directly on tumor cells and are secreted by both GC cells and infiltrating cells in the surrounding microenvironment. These mediators can be divided into three groups: cytokines, chemokines and MMPs.

Cytokines can be secreted by all constituents of the tumor microenvironment and appears to modify the EMT of GC cells, including TNF-α, IL-8, TGF-β, TGF-α, and IL-6[98]. TNF-α levels are increased by TNF-α-inducing protein (Tipα), which is released by H. pylori. The binding of Tipα to its membrane receptor activates the NF-κB signaling pathway, resulting in the transcription of TNF-α, which further increases the expression of N-cadherin and vimentin to enable GC cell migration and metastasis[99-101]. Increased of IL-8 levels promote the EMT in GC cells at early stages of GC progression through the activation of the NF-κB pathway[102]. TGFβ is the most potent and common inducer of the EMT. High TGF-β1 expression indicates poor prognosis in GC patients and is related to lymph node metastasis through the activation of the TGF-β signaling pathway[100,104]. Inhibition of this pathway can inhibit EMT-mediated migration and invasion[105-107]. TGF-α is involved in the EMT and is associated with poor OS in GC patients[108]. IL-6 can rescue GC cell resistance to anti-tumor drugs and EMT by activating the STAT3 pathway[109,110].

Chemokines are a group of secreted proteins that are produced in response to pro-inflammatory stimuli and most commonly participate in the chemotaxis...
of leukocyte trafficking and positioning. Current studies show that chemokines are also involved in tumor growth, angiogenesis, EMT, metastasis and immune evasion\[111-113\]. The two most important chemokine receptors in GC are CXCR4 and CCR7. CXCR4 expression is associated with aggressive tumor behaviors such as invasion and metastasis\[114\]. After binding its ligand CXCL12, actin polymerization is activated to induce cell motility and the EMT\[108,115,116\]. The CXCL12-CXCR4 axis alters the migratory and invasive ability of GC cells by upregulating the expression of MMP-2 and MMP-7 to assist EMT progression\[108,117\]. Meanwhile, CXCL12 can recruit myeloid-derived suppressor cells (MDSCs) into the tumor microenvironment to promote the progression of gastric cancer\[58\]. CCR7 is another important chemokine receptor in the progression of GC. CCR7 is associated with lymph node metastasis in GC patients\[70,118\]. Through the activation of CCR7 signaling or the TGF-β1 signaling pathway, GC cells initiate the EMT by altering the expression of E-cadherin, MMP-9, and Snail, which enable them to metastasize, and led by CCR7, they metastasize toward lymph vessels, which is why GC cells metastasize to lymph nodes\[119,120\].

After infection by pathogens such as H. pylori, the expression of matrix metalloproteinase (MMP) family is upregulated because the pathogens need to secrete proteins to assist their adherence to epithelial gastric cells\[121,122\]. The MMP family is among the most important inducers of the EMT through the degradation of the extracellular matrix (ECM) and basement membrane barriers\[123\]. Increased expression of MMP-2 and MMP-9 is reported to enhance the invasiveness of GC cells and correlates with metastatic GC\[124-126\]. Elevated MMP-7 levels can be used as a biomarker for H. pylori-related GC and potentially regulate the progression of GC through the EMT\[121,127,128\]. MMP7-infected mice infected with H. pylori show increased levels of M1 macrophages, which enhance the inflammatory response\[129,130\]. However, the precise mechanism of how MMPs regulate the EMT of GC needs to be clarified in the future.

CONCLUSION
The progression of GC is mainly caused by microbial pathogens and is closely related to host inflammatory factors. The inflammatory microenvironment enables the host immune system to not only combat pathogens but also to secrete cytokines to stimulate normal gastric epithelial cells to protect themselves. During this process, the altered microenvironment may cause random mutations to occur in gastric cells. Once these mutations accumulate to a certain level, the process will continue without restoring normal homeostasis. Thus, the infection starts to become an adenoma followed by a carcinoma. Meanwhile, in the gastric cancer microenvironment, the aberrant secretion by immune cells might lead to dysfunction and also stimulate GC cells to become resistant. In this way, GC cells are likely to gain the ability to continuously proliferate, become protected from apoptosis and escape immune surveillance. Through alterations in their signaling pathways, GC cells begin to translate more mesenchymal proteins such as MMP and vimentin, allowing them to migrate and invade into the blood and lymph vessels to metastasize, otherwise known as the EMT. Current studies mainly focus on the immune cells and GC prognosis and the effects on metastasis. However, studies on the mechanisms by which immune cells alter GC cells undergoing the EMT in the inflammatory microenvironment are still very limited. As long as GC metastasis is a major cause of death, targeting the EMT combined with immunotherapy shows promising results for the treatment of GC in the future.

ACKNOWLEDGMENTS
The authors thank Jessie Yang for assistance in recording the audio core tip.

REFERENCES
1 Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65: 87-108 [PMID: 25651787 DOI: 10.3322/caac.21262]
2 Correa P. Human gastric carcinogenesis: a multistep and multifactorial process—First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res 1992; 52: 6735-6740 [PMID: 1458460]
3 Kim HS, Lee H, Jeung HC, Noh SH, Chung HC, Roh JK, Nam CM, Rha SY. Advanced detection of recent changing trends in gastric cancer survival: up-to-date comparison by period analysis. Jpn J Clin Oncol 2011; 41: 1344-1350 [PMID: 22128361 DOI: 10.1093/jjco/hyr153]
4 Cunningham D, Allum WH, Stening SP, Thompson JN, van de Velde CJ, Nicolson M, Scarffe JH, Lofts FJ, Falk SJ, Iveson TJ, Smith DB, Langley RE, Verma M, Weeden S, Chua YJ. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 2006; 355: 11-20 [PMID: 16822992 DOI: 10.1056/NEJMoa055531]
5 Macdonald JS, Smalley SR, Benedetti J, Hundahl SA, Estes NC, Steemermann GN, Haller DG, Ajani JA, Gunderson LL, Jessup JM, Martinson JA. Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction. N Engl J Med 2001; 345: 725-730 [PMID: 11547741 DOI: 10.1056/NEJMoa010187]
6 Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin 2013; 63: 11-30 [PMID: 23335087 DOI: 10.3322/ caac.21166]
7 Guggenheim DE, Shah MA. Gastric cancer epidemiology and risk factors. J Surg Oncol 2013; 107: 230-236 [PMID: 23129495 DOI: 10.1002/jso.22362]
8 Herrera V, Parsonnet J. Helicobacter pylori and gastric adenocarcinoma. Clin Microbiol Infect 2009; 15: 971-976 [PMID: 19874380 DOI: 10.1111/j.1469-0691.2009.03031.x]
9 Forman D, Newell DG, Fullerton F, Yarnell JW, Stacey AR, Wald N, Sitars F. Association between infection with Helicobacter pylori and risk of gastric cancer: evidence from a prospective investigation. BMJ 1991; 302: 1302-1305 [PMID: 2059685]
10 Helicobacter and Cancer Collaborative Group. Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts. Gut 2001; 49: 347-353
Ma Hy et al. Inflammation and EMT in gastric cancer

11 Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N, Sibley RK. Helicobacter pylori infection and the risk of gastric carcinoma. *N Engl J Med* 1991; 325: 1127-1131

12 Conteddu V, Sansonno D, Lauletta G, Rossi S, Ingravallo G, Dammacco F. H. pylori infection and gastric cancer: state of the art (review). *Int J Oncol* 2013; 42: 5-18 [PMID: 23165522 DOI: 10.3892/ijo.2012.1701]

13 Meimingak G, Winter H, Assmann I, Kopp R, Lehnh N, Kist M, Sloite M, Jauch KW, Hatz RA. Helicobacter pylori as a prognostic indicator after curative resection of gastric carcinoma: a prospective study. *Lancet Oncol* 2006; 7: 211-222 [PMID: 16510330 DOI: 10.1016/S1470-2045(06)07586-1]

14 Marrelli D, Pedrazzani C, Berardi A, Corso G, Neri A, Garosi L, Vindicigni C, Santucci A, Figura N, Rovsilo F. Negative Helicobacter pylori status is associated with poor prognosis in patients with gastric cancer. *Cancer* 2009; 115: 2071-2080 [PMID: 19280589 DOI: 10.1002/cncr.24253]

15 Wang F, Sun G, Zou Y, Zhong F, Ma T, Li X. Protective role of Helicobacter pylori infection in prognosis of gastric cancer: evidence from 2,454 patients with gastric cancer. *PloS One* 2013; 8 e62440 [PMID: 23667477 DOI: 10.1371/journal.pone.0062440]

16 Iizasa H, Nakano A, Nishikawa J, Jinushi M, Yoshiami H. Epstein-Barr Virus (EBV)-associated gastric carcinoma. *Viroles* 2012; 4: 3420-3439 [PMID: 23342366]

17 Camargo MC, Kim WH, Chiavaralli AM, Kim KM, Corvalan AH, Matsuou K, Yu J, Sung JJ, Herrera-Goeppert R, Meneses-Gonzalez F, Kijima Y, Natsugoe S, Liao LM, Lisowski J, Kim S, Hu N, Gonzalez CA, Yatabe Y, Koriyama C, Hewitt SM, Akiba S, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transitions in tumour progression. *Nat Rev Mol Cell Biol* 2012; 13: 27-36 [PMID: 11160820]

18 Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL. Activation of the Erk pathway is required for TGF-beta-induced EMT in vitro. *Neoplasia* 2004; 6: 603-610 [PMID: 15548370 DOI: 10.1093/neo.04241]

19 Marchetti A, Colletti M, Cozzolino AM, Steindler C, Lunadei M, Mancone C, Tripodi M. ERK5/MAPK is activated by TGFbeta in hepatocytes and required for the GSK-3beta-mediated Smad protein stabilization. *Cell Signal* 2008; 20: 2113-2118 [PMID: 18760348 DOI: 10.1016/j.cellsig.2008.08.002]

20 Doehn U, Hauge C, Frank SR, Jensen CJ, Duda K, Nielsen JV, Cohens MS, Johansen JV, Winther BR, Lund LR, Winther O, Tauntion J, Hansen SH, Fedim M. RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate promote/malignant gene program and phenotype in epithelial cells. *Mol Cell 2009; 35: 511-522 [PMID: 19716794 DOI: 10.1016/j.molcel.2009.08.002]

21 Graham TR, Zhou HE, Odero-Marah VA, Osumkaya AO, Kimbro KS, Tighiouarti M, Liu T, Simons JW, O'Regan RM. Insulin-like growth factor signaling in regulating the expression of p70S6K and p90RSK in vascular smooth muscle cells. *Arterioscler Thromb Vasc Biol* 2009; 29: 216-219 [PMID: 19247595 DOI: 10.1161/ATVBAHA.108.182658]

22 Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. *Cancer Res* 2012; 72: 309-322 [PMID: 22439296 DOI: 10.1158/0008-5472.CAN-12.0222]

23 Eilam E, Nowarski R, Thiass CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. *Nat Rev Cancer* 2013; 13: 759-771
Tumors: wounds that do not heal. Similarities

Origin and physiological roles of inflammation. Nature 2008; 454: 428-435 [PMID: 18650913 DOI: 10.1038/nature07201]

De Sablet T, Chaturvedi R, Wilson KT. Origin and physiological roles of inflammation. Nature 2008; 454: 428-435 [PMID: 18650913 DOI: 10.1038/nature07201]

Choi BK, Lee SC, Lee MJ, Kim YH, Kim YW, Ryu KW, Lee JH, Shim SH, Suzuki O, Oh HS, Kim CH, Lee DG, Hwang SH, Yu EM, Lee IO, Kwon BS. 4-1BB-based stimulation and expansion of CD8+ T cells specific for self-tumor and non-self-tumor antigens for adoptive T-cell therapy. J Immunother 2014; 37: 225-236 [PMID: 24714536 DOI: 10.1097/CIM.0000000000000277]

Turcotte S, Gros A, Tran E, Lee C, Wunderlich JR, Robbins PF, Rosenberg SA. Tumor-reactive CD8+ T cells in metastatic gastrointestinal cancer refractory to chemotherapy. Clin Cancer Res 2014; 20: 331-343 [PMID: 24218154 DOI: 10.1158/1078-0432.CCR-13-1736]

Lee K, Hwang H, Nam KT. Immune response and the tumor microenvironment: how they communicate to regulate gastric cancer. Gut Liver 2014; 8: 131-139 [PMID: 24676253 DOI: 10.5009/gnl.2014.8.2.131]

Okita Y, Ohtera M, Tanaka H, Tokumoto M, Go Y, Sakurai K, Toyokawa K, Nubo M, Muguruma K, Sawada T, Maeda K, Hirakawa K. Alteration of CD4 T cell subsets in metastatic lymph nodes of human gastric cancer. Oncol Rep 2015; 34: 639-647 [PMID: 26081040 DOI: 10.3892/or.2015.4064]

Ubukata H, Motohashi G, Tabuchi T, Nagata H, Konishi S, Tabuchi T. Evaluations of interferon-γ-interleukin-4 ratio and neutrophil/lymphocyte ratio as prognostic indicators in gastric cancer patients. J Surg Oncol 2010; 102: 742-747 [PMID: 20872813 DOI: 10.1002/jso.21725]

Liu T, Peng L, Yu P, Zhao Y, Shi Y, Mao X, Chen W, Cheng P, Wang T, Chen N, Zhang J, Liu X, Li N, Guo G, Tong W, Zhuang Y, Zou Q. Increased circulating Th22 and Th17 cells are associated with tumor progression and patient survival in human gastric cancer. J Clin Immunol 2012; 32: 1332-1339 [PMID: 22760549 DOI: 10.1007/s10875-012-9718-8]

Su Z, Sun Y, Zhu H, Liu Y, Lin X, Shen H, Chen J, Xu W, Xu H. Th17 cell expansion in gastric cancer may contribute to cancer development and metastasis. Immunol Res 2014; 58: 118-124 [PMID: 24402773 DOI: 10.1007/s12026-013-8483-y]

Fossiez F, Djoussou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, Pin J, Garene P, Garcia E, Saeland S, Blanchard D, Gaillard C, Das Mahapatra B, Rouvier E, Golstein P, Banchereau J, Lebecque S. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 2016; 189: 253-2603 [PMID: 8676080]

Bizama C, Benavente F, Salvatierra E, Gutiérrez-Moraga A, Espinoza JA, Fernández EA, Roa I, Mazzolini G, Sagredo EA, Gidekel M, Podhajcer OL. The low-abundance transcriptome reveals novel biomarkers, specific intracellular pathways and targetable genes associated with advanced gastric cancer. Int J Cancer 2014; 134: 755-764 [PMID: 23907728 DOI: 10.1002/ijc.28405]

Shen Z, Zhou S, Wang Y, Li RL, Zhong C, Liang C, Sun Y. Higher intratumoral infiltrated FoxP3+ Treg numbers and FoxP3+/CD8+ ratio are associated with adverse prognosis in resectable gastric cancer. J R Soc Interface 2010; 136: 1585-1595 [PMID: 20221835 DOI: 10.1007/s10342-010-1816-9]

Lee HE, Park DJ, Kim WH, Kim HH, Lee HS. High FoxP3+ regulatory T-cell density in the sentinel lymph node is associated with downstream non-sentinel lymph-node metastasis in gastric cancer. Br J Cancer 2011; 105: 413-419 [PMID: 21730981 DOI: 10.1038/bjc.2011.248]

Zhou S, Shen Z, Wang Y, Ma H, Xu S, Qin J, Chen L, Tao H, Zhen Z, Chen G, Zhang Z, Li R, Xiao H, Zhong C, Yang Y, Liang C. CCR7 expression and intratumoral FOXP3+ regulatory T cells are correlated with overall survival and lymph node metastasis in gastric cancer. PLoS One 2013; 8: e74430 [PMID: 24040244 DOI: 10.1371/journal.pone.0074430]

Kim HK, Kim HI, Cho HW, Kim SY, Song KJ, Hyung WJ, Park CG, Kim CB. The ratio of intra-tumor regulatory T cells (FoxP3+) to helper T cells (CD4+) is a prognostic factor and associated with recurrence pattern in gastric cardiac cancer. J Surg Oncol 2011; 104: 728-733 [PMID: 21792941 DOI: 10.1002/jso.22038]

Rojas A, Delgado-López F, González I. Tumor-associated macrophages in gastric cancer: more than bystanders in tumor microenvironment. Gastric Cancer 2016; 19: 153-160 [PMID: 25194717 DOI: 10.1007/s10120-015-0437-8]
β2012; Kitadai Y, Tanaka S, Yoshihara M, Yasui W, Mukaida N, Haruma K, Chayama K. Monocyte chemotactic protein-1 expression correlates with macrophage infiltration and tumor vascularity in human gastric carcinomas. Int J Oncol 2003; 22: 773-778 [PMID: 12632067]

Wu H, Xu JB, He YL, Peng JJ, Zhang XH, Chen CQ, Li W, Cai SR. Tumor-associated macrophages promote angiogenesis and lymphangiogenesis of gastric cancer. J Surg Oncol 2012; 106: 462-468 [PMID: 22488237 DOI: 10.1002/jso.23110]

Zhang H, Wang X, Shen Z, Xu J, Qin J, Sun Y. Infiltration of diametrically polarized macrophages predicts overall survival of patients with gastric cancer after surgical resection. Gastric Cancer 2015; 18: 740-750 [PMID: 25231913 DOI: 10.1007/s10120-014-0422-7]

Yamaguchi T, Fushida S, Yamamoto Y, Tsukada T, Kinoshita J, Oyama K, Miyashita T, Tajima H, Ninomiya I, Muneseu S, Harashima A, Harada S, Yamamoto H, Ohta T. Tumor-associated macrophages of the M2 phenotype contribute to progression in gastric cancer with peritoneal dissemination. Gastric Cancer 2015; Epub ahead of print [PMID: 26621525 DOI: 10.1007/j.13107-015-0579-8]

Luo H, Hao Y, Tang B, Zeng D, Shi Y, Yu P. Mouse forestomach carcinoma cells immunosuppress macrophages through TGFB-β1. Turk J Gastroenterol 2013; 23: 658-665 [PMID: 23794301]

Shen Z, Kattut T, Cao J, Seppänen H, Vainionpää S, Ye Y, Wang S, Mustonen H, Puolakkainen P. Macrophage coculture enhanced carcinoma cell immunosuppression and BMP pathways. Scand J Gastroenterol 2013; 48: 466-472 [PMID: 23517925 DOI: 10.1111/j.1356-5254.2013.032226]

Shen Z, Seppänen H, Vainionpää S, Ye Y, Wang S, Mustonen H, Puolakkainen P. The novel focal adhesion gene kindlin-2 promotes the invasion of gastric cancer cells mediated by tumor-associated macrophages. Oncol Rep 2013; 29: 791-797 [PMID: 23215199 DOI: 10.3892/or.2012.2137]

Shen Z, Kattut T, Seppänen H, Vainionpää S, Ye Y, Wang S, Mustonen H, Puolakkainen P. Both macrophages and hypoxia play critical role in regulating invasion of gastric cancer in vitro. Acta Oncol 2013; 52: 532-557 [PMID: 22595646 DOI: 10.1016/j.acto.2012.04.033]

Shen Z, Ye Y, Kattut T, Seppänen H, Vainionpää S, Wang S, Mustonen H, Puolakkainen P. The novel focal adhesion gene kindlin-2 promotes the invasion of gastric cancer cells mediated by tumor-associated macrophages. Oncol Rep 2013; 29: 791-797 [PMID: 23215199 DOI: 10.3892/or.2012.2137]

Shen Z, Kattut T, Seppänen H, Vainionpää S, Ye Y, Wang S, Mustonen H, Puolakkainen P. Both macrophages and hypoxia play critical role in regulating invasion of gastric cancer in vitro. Acta Oncol 2013; 52: 532-557 [PMID: 22595646 DOI: 10.1016/j.acto.2012.04.033]

Park JY, Sung JY, Lee J, Park YK, Kim YW, Kim GY, Won KY, Kim BK, Park JH. Withaferin A Inhibits Helicobacter pylori-induced Production of IL-1β in Dendritic Cells by Regulating NF-κB and NLRP3 Inflammasome Activation. Immune Netw 2015; 15: 269-277 [PMID: 26770189 DOI: 10.4110/in.2015.15.6.269]

Chang LL, Wang SW, Wu IC, Yu FJ, Su YC, Chen YP, Wu DC, Kuo CH, Hung CH. Impaired dendritic cell maturation and IL-10 production following H. pylori stimulation in gastric cancer patients. Appl Microbiol Biotechnol 2012; 96: 211-220 [PMID: 22526791 DOI: 10.1007/s00253-012-4034-z]

Wang L, Chang EW, Song SC, Ong SM, Chong DQ, Ling KL. Increased myeloid-derived suppressor cells in gastric cancer correlate with cancer stage and plasma S100A8/A9 proinflammatory proteins. J Immunol 2013; 190: 794-804 [PMID: 23423368 DOI: 10.4049/jimmunol.1202888]

Ueno S, Nishio T, Nakao A. Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 2011; 60: 1419-1430 [PMID: 21644036 DOI: 10.1007/s00262-011-0128-0]

Sansone P, Bromberg J. Environment, inflammation, and cancer. Curr Opin Genet Dev 2011; 21: 80-85 [PMID: 21144738 DOI: 10.1016/j.gde.2010.11.001]

Suganuma M, Kurosawa T, Nakajima A, Stringari M, Fujioka T, Fujii K, Hori M. New tumor necrosis factor-alpha-inducing protein released from Helicobacter pylori for gastric cancer progression. J Cancer Res Clin Oncol 2005; 131: 305-313 [PMID: 15616827 DOI: 10.1007/s00432-004-0652-x]

Watanabe T, Takahashi A, Suzuki K, Kurosu-Kanno M, Yamaguchi K, Fujii H, Hori M. Epithelial-mesenchymal transition in human gastric cancer cell lines induced by TGF-α- inducing protein of Helicobacter pylori. Int J Cancer 2013; 134: 2373-2382 [PMID: 24249671 DOI: 10.1002/ijc.28582]

Watanabe T, Tuge H, Imagawa T, Kise D, Hirano K, Beppu M, Takahashi A, Yamaguchi K, Fujii H, Suganuma M. Nuclearin as cell surface receptor for tumor necrosis factor-alpha-inducing protein: a carcinogenic factor of Helicobacter pylori. J Cancer Res Clin Oncol 2010; 136: 911-921 [PMID: 20049476 DOI: 10.1007/
Chemokine receptors in gastric cancer: from basic findings towards development of hepatocellular carcinoma. Chemokines and their receptors play important roles in the microenvironment.

Elevated serum matrix metalloproteinase-3 and -7 in H. pylori-infected mice. Atmaca A, Altmannsberger HM, Jäger E. The validation of matrix metalloproteinase-7, MMP-9 and CXCR4 proteins involved in epithelial-mesenchymal transition during tumor development. Mol Med Rep 2014; 10: 1999-2003 [PMID: 25109410 DOI: 10.3892/mmr.2014.2452]

Epigenetic silencing of microRNA-149 in cancer-associated fibroblasts mediates prostatostatin E2/interleukin-6 signaling in the tumor microenvironment. Cell Res 2015; 25: 588-603 [PMID: 25916650 DOI: 10.1038/cr.2015.51]

Chemokines and their receptors play important roles in the development of hepatocellular carcinoma. World J Hepatol 2015; 7: 1390-1402 [PMID: 26052384 DOI: 10.4245/wjh.v7.i10.1390]

Lee HJ, Song IC, Yun HJ, Jo DY, Kim S. CXCL chemokines and chemokine receptors in gastric cancer: from basic findings towards therapeutic targeting. World J Gastroenterol 2014; 20: 1681-1693 [PMID: 24587647 DOI: 10.3748/wjg.v20.i17.1681]

Lee HJ, Kim SW, Kim HY, Li S, Yun HJ, Song KS, Kim S, Jo DY. Chemokine receptor CXCR4 expression, function, and clinical implications in gastric cancer. Int J Oncol 2009; 34: 473-480 [PMID: 19148483]

Chem G, Chen SM, Wang X, Ding XF, Ding J, Meng LH. Inhibition of chemokine (CXCR motif) ligand 12/chemokine (CXCL motif) receptor 4 axis (CXCL12/CXCR4)-mediated cell migration by targeting mammalian target of rapamycin (mTOR) pathway in human gastric carcinoma cells. J Biol Chem 2012; 287: 12132-12141 [PMID: 22337890 DOI: 10.1074/jbc.M111.302299]

Oh YS, Kim HY, Song IC, Yun HJ, Jo DY, Kim S, Lee HJ. Hypoxia induces CXCR4 expression and biological activity in gastric cancer cells through activation of hypoxia-inducible factor-1α. Oncol Rep 2012; 28: 2239-2246 [PMID: 23023480 DOI: 10.3892/or.2012.1943]

Hashimoto I, Koizumi K, Tatematsu M, Minami T, Cho S, Takeno N, Nakashima A, Sakurni H, Saito S, Tsukada K, Saki I. Blocking on the CXCR4/mTOR signalling pathway induces the anti-metastatic properties and autophagic cell death in peritoneal disseminated gastric cancer cells. Eur J Cancer 2008; 44: 1022-1029 [PMID: 18375114 DOI: 10.1016/j.ejca.2008.02.043]

Mashino K, Sadanaga N, Yamaguchi H, Tanaka F, Ohta M, Shibuta K, Inoue H, Morii M. Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res 2002; 62: 2937-2941 [PMID: 12019175]

Zhang J, Zhou Y, Yang C. CCR7 pathway induces epithelial-mesenchymal transition through up-regulation of Snail signaling in gastric cancer. Med Oncol 2015; 32: 467 [PMID: 25572817 DOI: 10.1007/s12032-014-0467-9]

Ma H, Gao L, Li S, Qin J, Chen L, Liu X, Xu P, Wang F, Xiao H, Zhou S, Gao Q, Liu B, Sun Y, Liang C. CCR7 enhances TGF-β1-induced epithelial-mesenchymal transition and is associated with lymph node metastasis and poor overall survival in gastric cancer. Oncotarget 2015; 6: 24348-24360 [PMID: 26176983 DOI: 10.18632/oncotarget.4484]

Wroblewski LE, Noble PJ, Pagliocca A, Pritchard DM, Hart MA, Campbell F, Dodson AR, Dockray GJ, Varro A. Stimulation of MMP-7 (matrilysin) by Helicobacter pylori in human gastric epithelial cells: role in epithelial cell migration. J Cell Sci 2003; 116: 3017-3026 [PMID: 12808021 DOI: 10.1242/jcs.00518]

Bebb JR, Letley DP, Thomas RJ, Aviles F, Collins HM, Watson SA, Hand NM, Zaitoun A, Atherton JC. Helicobacter pylori upregulates matrilysin (MMP-7) in epithelial cells in vivo and in vitro in a Cag dependent manner. Gut 2003; 52: 1408-1413 [PMID: 12970131]

Orlichenko LS, Radisky DC. Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development. Clin Exp Metastasis 2008; 25: 593-600 [PMID: 18286375 DOI: 10.1007/s10585-008-9143-9]

Shan YQ, Ying RC, Zhou CH, Zhu AK, Ye J, Zha W, Ju TF, Jin HC. MMP-9 is increased in the pathogenesis of gastric cancer by the mediation of HER2. Cancer Gene Ther 2015; 22: 101-107 [PMID: 25634844 DOI: 10.1038/cgt.2014.61]

Hwang TL, Changchien TT, Wang CC, Wu CM. Claudinin-4 expression in gastric cancer cells enhances the invasion and is associated with the increased level of matrix metalloproteinase-2 and -9 expression. Oncol Lett 2014; 8: 1367-1371 [PMID: 25120725 DOI: 10.18632/oncotarget.4484]

Al-Batran SE, Pauligk C, Wirtz R, Werner D, Steinmetz K, Nomann H, Schmalingberg H, Hofheinz RD, Hartmann JT, Atmaca A, Holmamnberger HM, Jäger E. The validation of matrix metalloproteinase-9 mRNA gene expression as a predictor of outcome in patients with metastatic gastric cancer. Ann Oncol 2012; 23: 1699-1705 [PMID: 22112973 DOI: 10.1093/annonc/mdr552]

Yeh YC, Sheu BS, Cheng HC, Wang YL, Yang HB, Wu JJ. Elevated serum matrix metalloproteinase-3 and -7 in H. pylori-related gastric cancer can be biomarkers correlating with a poor survival. Dig Dis Sci 2010; 55: 1649-1657 [PMID: 19690958 DOI: 10.1007/s10620-009-0926-x]

Sakamoto N, Naito Y, Oue N, Sentani K, Uraoka N, Zami Oo H, Yanagihara K, Ayagi K, Sasaki H, Yasaki W. MicroRNA-148a is downregulated in gastric cancer, targets MMP7, and indicates tumor invasiveness and poor prognosis. Cancer Sci 2014; 105: 236-243 [PMID: 24283384 DOI: 10.1111/cas.12330]

Ogdin SR, Noto JM, Allen SS, Patel DA, Romero-Gallo J, Washington MK, Fingleton B, Israel DA, Lewis ND, Wilson KT, Chaturvedi R, Zhao Z, Shyr Y, Peak RM. Matrix metalloproteinase-7 and premalignant host responses in Helicobacter pylori-infected mice. Cancer Res 2010; 70: 36-35 [PMID: 20015621]
Ma HY et al. Inflammation and EMT in gastric cancer

Ma HY et al. Inflammation and EMT in gastric cancer.

20048070 DOI: 10.1158/0008-5472.CAN-09-2899

Krakowiak MS, Noto JM, Piazuelo MB, Hardbower DM, Romero-Gallo J, Delgado A, Chaturvedi R, Correa P, Wilson KT, Peek RM. Matrix metalloproteinase 7 restrains Helicobacter pylori-induced gastric inflammation and premalignant lesions in the stomach by altering macrophage polarization. *Oncogene* 2015; 34: 1865-1871 [PMID: 24837365 DOI: 10.1038/onc.2014.135]

Kuo CH, Liu CJ, Lu CY, Hu HM, Kuo FC, Liou YS, Yang YC, Hsieh MC, Lee OK, Wu DC, Wang SS, Chen YL. 17β-estradiol inhibits mesenchymal stem cells-induced human AGS gastric cancer cell mobility via suppression of CCL5- Src/Cas/Paxillin signaling pathway. *Int J Med Sci* 2014; 11: 7-16 [PMID: 24396281 DOI: 10.7150/ijms.6851]

Hou X, Zhang Y, Qiao H. CCL18 promotes the invasion and migration of gastric cancer cells via ERK1/2/NF-κB signaling pathway. *Tumour Biol* 2016; 37: 641-651 [PMID: 26242263 DOI: 10.1007/s13277-015-3825-0]

Leung SY, Yuen ST, Chu KM, Mathy JA, Li R, Chan AS, Law S, Wong J, Chen X, So S. Expression profiling identifies chemokine (C-C motif) ligand 18 as an independent prognostic indicator in gastric cancer. *Gastroenterology* 2004; 127: 457-469 [PMID: 15300578]

Li R, Zhang H, Liu H, Lin C, Cao Y, Zhang W, Shen Z, Xu J. High expression of C-C chemokine receptor 2 associates with poor overall survival in gastric cancer patients after surgical resection. *Oncotarget* 2016; Epub ahead of print [PMID: 26992207 DOI: 10.18632/oncotarget.8069]

Du P, Liu Y, Ren H, Zhao J, Zhang X, Patel R, Hu C, Gan J, Huang G. Expression of chemokine receptor CCR7 is a negative prognostic factor for patients with gastric cancer: a meta-analysis. *Gastric Cancer* 2016; Epub ahead of print [PMID: 26984468 DOI: 10.1007/s10120-016-0602-8]

Han G, Wu D, Yang Y, Li Z, Zhang J, Li C. CrkL mediates CCL20/CCR6-induced EMT in gastric cancer. *Cytokine* 2015; 76: 163-169 [PMID: 26044596 DOI: 10.1016/j.cyto.2015.05.009]

Ohtani H, Nakayama T, Yoshie O. In situ expression of the CCL20-CCR6 axis in lymphocyte-rich gastric cancer and its potential role in the formation of lymphoid stroma. *Pathol Int* 2011; 61: 645-651 [PMID: 22029675 DOI: 10.1111/j.1440-1827.2011.02717.x]

Wang J, Hu W, Wu X, Wang K, Yu J, Luo B, Luo G, Wang W, Wang H, Li J, Wen J. CXCR1 promotes malignant behavior of gastric cancer cells in vitro and in vivo in AKT and ERK1/2 phosphorylation. *Int J Oncol* 2016; 48: 2184-2196 [PMID: 26983663 DOI: 10.3892/ijo.2016.3428]

Li Z, Wang Y, Dong S, Ge C, Xiao Y, Li R, Ma X, Xue Y, Zhang Q, Lv J, Tan Q, Zhu Z, Song X, Tan J. Association of CXCR1 and 2 expressions with gastric cancer metastasis in ex vivo and tumor cell invasion in vitro. *Cytokine* 2014; 69: 6-13 [PMID: 25022956 DOI: 10.1016/j.cyto.2014.05.004]

Li K, Zhu Z, Luo J, Fang J, Zhou H, Hu M, Maskey N, Yang G. Impact of chemokine receptor CXCR3 on tumor-infiltrating lymphocyte recruitment associated with favorable prognosis in advanced gastric cancer. *Int J Clin Exp Pathol* 2015; 8: 14725-14732 [PMID: 26823797]

Haas M, Dimmler A, Hohenberger W, Grabenbauer GG, Niedobitek G, Distel LV. Stromal regulatory T-cells are associated with a favourable prognosis in gastric cancer of the cardia. *BMC Gastroenterol* 2009; 9: 65 [PMID: 19732435 DOI: 10.1186/1471-230X-9-65]

Yoo YA, Kang MH, Lee HJ, Kim BH, Park JK, Kim HK, Kim JS, Oh SC. Sonic hedgehog pathway promotes metastasis and lymphangiogenesis via activation of Akt, EMT, and MMP-9 pathway in gastric cancer. *Cancer Res* 2011; 71: 7061-7070 [PMID: 21975935 DOI: 10.1158/0008-5472.CAN-11-1338]

P- Reviewer: Bi J, Cao XC, Wang WH S- Editor: Yu J L- Editor: A E- Editor: Ma S
