The SHAI property for the operators on L^p *

W. B. Johnson,† N. C. Phillips,‡ and G. Schechtman§

22 January 2021

Abstract

A Banach space X has the SHAI (surjective homomorphisms are injective) property provided that for every Banach space Y, every continuous surjective algebra homomorphism from the bounded linear operators on X onto the bounded linear operators on Y is injective. The main result gives a sufficient condition for X to have the SHAI property. The condition is satisfied for $L^p(0,1)$ for $1 < p < \infty$, spaces with symmetric bases that have finite cotype, and the Schatten p-spaces for $1 < p < \infty$.

1 The main results

Following Horvath [9], we say that a Banach space X has the SHAI (surjective homomorphisms are injective) property provided that for every Banach space Y, every surjective continuous algebra homomorphism from the space $L(X)$ of bounded linear operators on X onto $L(Y)$ is injective, and hence by Eidelheit’s [6] classical theorem, X is isomorphic as a Banach space to Y. The continuity assumption is redundant by an automatic continuity theorem of B. E. Johnson [5, Theorem 5.1.5]. The spaces ℓ^p for $1 \leq p \leq \infty$ are known to have the SHAI property [9, Proposition 1.2], as do some other classical spaces [9], [10], but there are many spaces that do not have the SHAI property [9]. Our research on the SHAI

*AMS subject classification: 47L20, 46E30. Key words: Ideals of operators, L^p spaces, SHAI property
†Supported in part by NSF DMS-1900612
‡Supported in part by NSF DMS-1501144 and by Simons Foundation Collaboration Grant for Mathematicians #587103
§Supported in part by the Israel Science Foundation
It is easy to see that the decomposition \((\ell^a)\) where \(a=0,1,2,\ldots\) is a Banach space that verifies the statement about the ranges of the strong limits of the nets. Finally, observe that the space \(L^\infty\) has the SHAI property because \(L^\infty\) is isomorphic as a Banach space to \(\ell^\infty\) [2, Theorem 4.3.10].

Before stating our theorems, we need to review the notion of an unconditional Schauder decomposition of a Banach space \(X\). A family \((E_\alpha)_{\alpha \in A}\) of closed subspaces of \(X\) is called an unconditional Schauder decomposition for \(X\) provided every vector \(x\) in \(X\) has a unique representation \(x = \sum_{\alpha \in A} x_\alpha\), where the convergence is unconditional and, for each \(\alpha \in A\), the vector \(x_\alpha\) is in \(E_\alpha\). Notice that by uniqueness of the representation, \(E_\alpha \cap E_\beta = \{0\}\) when \(\alpha \neq \beta\), and there are idempotents \(P_\alpha\) on \(X\) such that \(P_\alpha x = E_\alpha\) and \(P_\alpha P_\beta = 0\) for \(\alpha \neq \beta\). It is known that the \(P_\alpha\) are in \(L(X)\). Moreover, for any subset \(B\) of \(A\), the net \(\{\sum_{\alpha \in F} P_\alpha : F \subset B\) finite\} is bounded in \(L(X)\) and converges strongly to an idempotent \(P_B\) that has range \(\overline{\text{span}}_{\alpha \in B} E_\alpha\). The suppression constant of the decomposition is then defined to be \(\sup\{\|\sum_{\alpha \in F} P_\alpha\| : F \subset A\) finite\}. Note that \(\|P_B\|\) is bounded by this suppression constant for all subsets \(B\) of \(A\). In practice, this theorem is rarely used, since typically one constructs the idempotents \(P_\alpha\) and checks the uniform boundedness of the aforementioned nets and verifies the statement about the ranges of the strong limits of the nets. Finally, observe that a collection \((e_\alpha)_{\alpha \in A}\) forms an unconditional Schauder basis for \(X\) if and only if \((E_\alpha)_{\alpha \in A}\) is an unconditional Schauder decomposition of \(X\), where \(E_\alpha = \mathbb{K} e_\alpha\) (\(\mathbb{K}\) is the scalar field). In the sequel, we will most often use an unconditional Schauder decomposition \(E_\alpha\) where each \(E_\alpha\) is finite dimensional. Such a decomposition is called an unconditional FDD. FDD stands for finite dimensional decomposition. Schauder decompositions and FDDs are discussed in the monograph [13, Section 1.g]. Schauder bases, type/cotype theory, and other concepts from Banach space theory that are used in this paper are treated in the textbook [2].

A concept that is particularly relevant for us is that of bounded completeness. An unconditional Schauder decomposition \((E_\alpha)_{\alpha \in A}\) for \(X\) is said to be boundedly complete provided that whenever \(x_\alpha \in E_\alpha\) and \(\{\|\sum_{\alpha \in F} x_\alpha\| : F \subset A\) finite\} is bounded, then the formal sum \(\sum_{\alpha \in A} x_\alpha\) converges in \(X\), which is the same as saying that the net \(\{\sum_{\alpha \in F} x_\alpha : F \subset A\) finite\} converges. A convenient condition that obviously guarantees bounded completeness is that the decomposition has a disjoint lower \(p\) estimate for some \(p < \infty\). The decomposition \((E_\alpha)_{\alpha \in A}\) is said to have a disjoint lower; respectively, upper; \(p\) estimate provided that there is \(C < \infty\) so that whenever \(x_1, \ldots, x_n\) are finitely many vectors in \(X\) such that for every \(\alpha \in A\) there is at most one \(i\) with \(1 \leq i \leq n\) for which \(P_\alpha x_i \neq 0\), we have for \(x = \sum_{i=1}^n x_i\) the inequality

\[
\left\| \sum_{i=1}^n x_i \right\| \geq \frac{1}{C} \left(\sum_{i=1}^n \|x_i\|^p \right)^{1/p} \quad \text{respectively,} \quad \left\| \sum_{i=1}^n x_i \right\| \leq C \left(\sum_{i=1}^n \|x_i\|^p \right)^{1/p} .
\]

It is easy to see that the decomposition \((E_\alpha)_{\alpha \in A}\) has a disjoint lower \(p\) estimate with constant
Lemma 1.1 Suppose that \((E_\alpha)_{\alpha \in A}\) is an unconditional decomposition for \(X\) that has a disjoint lower \(p\) estimate with \(1 \leq p < \infty\), and let \(Y \supseteq X\). Then there is a constant \(C < \infty\) such that if \(A_1, \ldots, A_n\) are disjoint subsets of \(A\) and \(P_{A_j}\) is the basis projection onto \(E_{A_j} = \text{span} \{E_\alpha : \alpha \in A_j\}\) and \(T_1, \ldots, T_n\) are operators in \(L(Y)\), then

\[
\left\| \sum_{i=1}^{n} T_i P_1 \right\| \leq C \left(\sum_{i=1}^{n} \|T_i\|^q \right)^{1/q},
\]

where \(1/p + 1/q = 1\).
Proof: Suppose $x \in X$. Then
\[
\left\| \sum_{i=1}^{n} T_i P_i x \right\| \leq \sum_{i=1}^{n} \|T_i\| \|P_i x\| \leq \left(\sum_{i=1}^{n} \|T_i\|^q \right)^{1/q} \left(\sum_{i=1}^{n} \|P_i x\|^p \right)^{1/p}
\leq C \left(\sum_{i=1}^{n} \|T_i\|^q \right)^{1/q} \|x\|,
\]
where the constant C is the disjoint lower p constant of $(E_\alpha)_{\alpha \in A}$. ■

A family of sets is said to be almost disjoint provided the intersection of any two of them is finite.

Definition 1.2 Suppose that $(E_n)_{n=1}^\infty$ is an unconditional FDD for a Banach space X. We say that (E_n) has property (#) provided there is an almost disjoint continuum $\{N_\alpha: \alpha < c\}$ of infinite sets of natural numbers such that for each $\alpha < c$, X is isomorphic to the closed linear span of the subspaces E_n for $n \in N_\alpha$.

Subsymmetric bases are obvious examples of FDDs that have property (#). (A basis is subsymmetric if it is unconditional and every subsequence of the basis is equivalent to the basis. Symmetric bases are subsymmetric.) A second almost obvious example is the direct sum of two Banach spaces with subsymmetric bases. Such a space has an FDD with property (#) such that each space in the decomposition is two dimensional. In Corollary 1.6 we point out that the Haar basis for L^p has property (#) when $1 < p < \infty$.

Proposition 1.3 Let $(E_n)_{n=1}^\infty$ be an FDD for a Banach space X. Assume that (E_n) has property (#), witnessed by an almost disjoint family $\{N_\alpha: \alpha < c\}$ of infinite subsets of the natural numbers. For $F \subseteq \mathbb{N}$, let P_F be the basis projection from X onto the closed linear span E_F of the subspaces E_n for $n \in F$. Suppose that Φ is a non zero, non injective continuous homomorphism from $L(X)$ onto a Banach algebra \mathcal{A}. Then for each $\alpha < c$, $\Phi(P_{N_\alpha})$ is a non zero idempotent in \mathcal{A}. Moreover, there is a constant $C < \infty$ such that if F is any finite subset of $[\alpha < c]$, then $\left\| \sum_{\alpha \in F} \Phi(P_{N_\alpha}) \right\|_{\mathcal{A}} \leq C$. If \mathcal{A} is a subalgebra of $L(Y)$ for some Banach space Y, then $(\Phi(P_{N_\alpha}))_{\alpha < c}$ is a family of commuting extensions to Y of the projections associated with an unconditional Schauder decomposition for a subspace Y_0 of Y.

Proof: Since, for each α, the range of P_{N_α} is isomorphic to X, and Φ is not zero, $\Phi(P_{N_\alpha})$ is a non zero idempotent in \mathcal{A}. Suppose that F is a finite subset of $[\alpha < c]$. Take a finite set S of natural numbers so that $N_\alpha \cap N_\beta \subseteq S$ for all distinct α, β in F. For $\alpha \in F$, let $Q_\alpha = P_{N_\alpha \setminus S}$ be the basis projection from X onto $\overline{\text{span}} \{E_n: n \in N_\alpha \setminus S\}$. The kernel of Φ is
a non trivial ideal in $L(X)$ and hence contains the finite rank operators. Since $P_{N_\alpha} - Q_\alpha$ is a finite rank operator, $\Phi(P_{N_\alpha}) = \Phi(Q_\alpha)$ for each $\alpha \in F$. But the projections Q_α, for $\alpha \in F$, are projections onto the closed spans of disjoint subsets of the FDD $(E_n)_{n=1}^\infty$, so

$$\left\| \sum_{\alpha \in F} \Phi(Q_\alpha) \right\|_A \leq \left\| \sum_{\alpha \in F} Q_\alpha \right\| \|\Phi\| \leq C \|\Phi\|,$$

where C is the suppression constant of (E_n). The last statement is now obvious.

With the preliminaries out of the way, we state the main theorem in this article.

Theorem 1.4 Let $(E_n)_{n=1}^\infty$ be an unconditional FDD for a Banach space X. Assume that $(E_n)_{n=1}^\infty$ has property $(\#)$ (Definition 1.2) and $(E_n)_{n=1}^\infty$ has a disjoint lower p estimate for some $p < \infty$. Then X has the SHAI property.

Proof: Suppose, for contradiction, that Φ is a non injective continuous homomorphism from $L(X)$ onto $L(Y)$ for some non zero Banach space Y. We continue with the set up in Proposition 1.3, where property $(\#)$ for (E_n) is witnessed by an almost disjoint family $\{N_\alpha : \alpha < c\}$ of infinite subsets of the natural numbers, and for $F \subset \mathbb{N}$, the basis projection from X onto the closed linear span E_F of $\{E_n : n \in F\}$ is denoted by P_F.

We claim that to get a contradiction it is enough to prove that the subspace Y_0 is complemented in Y. Indeed, if Y_0 is complemented in Y, then $L(Y_0)$ is isomorphic as a Banach algebra to a subalgebra of $L(Y)$. However, defining $Y_\alpha = \Phi(P_{N_\alpha})Y$ for $\alpha < c$, we know that $(Y_\alpha)_{\alpha < c}$ is an unconditional Schauder decomposition for Y_0. But then for every subset S of $\{\alpha : \alpha < c\}$ there is an idempotent Q_S from Y_0 onto $\text{span}\{Y_\alpha : \alpha \in S\}$ with Q_S zero on all Y_β for which $\beta \notin S$. Thus if S_1 and S_2 are different subsets of $\{\alpha : \alpha < c\}$, then $\|Q_{S_1} - Q_{S_2}\| \geq 1$, and hence the density character of $L(Y_0)$, whence also of $L(Y)$, is at least 2^c. However, since X is separable, the density character of $L(X)$ is at most c (actually, equal to c since X has an unconditional FDD), so $L(Y)$ cannot be a continuous image of $L(X)$. This completes the proof of the claim.

To show that Y_0 must be complemented in Y, we use the fact proved in Proposition 1.3 that there is a constant C such that for every finite subset F of $\{\alpha : \alpha < c\}$ we have $\|\sum_{\alpha \in F} \Phi(P_{N_\alpha})\|_{L(Y)} \leq C$. It was remarked in the introduction to this section that this condition guarantees that Y_0 is complemented in Y when $(Y_\alpha)_{\alpha < c}$ is a boundedly complete decomposition. To see that $(Y_\alpha)_{\alpha < c}$ is boundedly complete, we use Lemma 1.1. We guarantee bounded completeness by proving that $(Y_\alpha)_{\alpha < c}$ has a disjoint lower p estimate. That is, we just need to find a constant C so that if F_1, \ldots, F_m are disjoint finite subsets of $\{\alpha : \alpha < c\}$
and \(y \) is in \(Y \) (or even just in \(Y_0 \)), then
\[
\|y\| \geq \frac{1}{C} \left(\sum_{j=1}^{m} \left\| \sum_{\alpha \in F_j} \Phi(P_{N_\alpha})y \right\|^p \right)^{1/p}.
\] (1)

Just as in the proof Proposition 1.3, we can write \(\sum_{\alpha \in F_j} \Phi(P_{N_\alpha}) = \Phi(Q_j) \) with \(Q_j \), for \(1 \leq j \leq m \), being the basis projections onto the closed spans of disjoint sets of FDD basis spaces \((E_n) \). So (1) can be rewritten as
\[
\|y\| \geq \frac{1}{C} \left(\sum_{j=1}^{m} \|\Phi(Q_j)y\|^p \right)^{1/p}.
\] (2)

From Lemma 1.1 and the surjectivity of \(\Phi \), for any \(T_1, \ldots, T_m \) in \(L(Y) \) we have
\[
\left\| \sum_{j=1}^{m} T_j \Phi(Q_j) \right\| \leq C \left(\sum_{j=1}^{m} \|T_j\|^q \right)^{1/q},
\] (3)

where \(C \) depends only on \(p \) and on \(\|\Phi\| \cdot \|\Phi^*\|^{-1} \), and \(1/p + 1/q = 1 \). Take any \(y \in Y \) and take \(\beta_j \geq 0 \) with
\[
\sum_{j=1}^{m} \beta_j = 1 \quad \text{and} \quad \sum_{j=1}^{m} \beta_j \|\Phi(Q_j)y\| = \left(\sum_{j=1}^{m} \|\Phi(Q_j)^* y\|^p \right)^{1/p}.
\]

Let \(y_0 \) be any unit vector in \(Y \) and let \(T_j \) be \(\Phi(Q_j) \) followed by a norm (at most) one projection onto the (at most) one dimensional space \(\mathbb{K} \Phi(Q_j)y \) followed by \(\Phi(Q_j)y \mapsto \beta_j \|\Phi(Q_j)y\|y_0 \). Then by (3),
\[
\left(\sum_{j=1}^{m} \|\Phi(Q_j)y\|^p \right)^{1/p} = \sum_{j=1}^{m} \beta_j \|\Phi(Q_j)y\| = \left\| \sum_{j=1}^{m} T_j \Phi(Q_j)y \right\| \leq C \left(\sum_{j=1}^{m} \|T_j\|^q \right)^{1/q} \|y\| = C\|y\|,
\]
which is (2).

Our first corollary of Theorem 1.4 is immediate. Its hypothesis are satisfied by many spaces that are used in analysis, including most Orlicz and Lorentz sequence spaces.

Corollary 1.5 If \(X \) has a subsymmetric basis and has finite cotype, then \(X \) has SHAI.
The next corollary solves the problem that motivated our research into the SHAI property.

Corollary 1.6 For $1 < p < \infty$, the space L^p has the SHAI property.

Proof: In view of Theorem 1.4, it is enough to prove that the Haar basis for L^p has property (♯). Let $\{N_\alpha : \alpha < c\}$ be a continuum of almost disjoint infinite subsets of the natural numbers \mathbb{N}. Define for $\alpha < c$

$$X_\alpha = \text{span}\{h_{n,i} : n \in N_\alpha \text{ and } 1 \leq i \leq 2^n\},$$

where $\{h_{n,i} : n = 0, 1, \ldots \text{ and } 1 \leq i \leq 2^n\}$ is the usual (unconditional) Haar basis for $L^p(0, 1)$, indexed in its usual way, so that $\{|h_{n,i}| : 1 \leq i \leq 2^n\}$ is the set of indicator functions of the dyadic subintervals of $(0, 1)$ that have length 2^{-n}. By the Gamlen–Gaudet theorem [7], X_α is isomorphic to L^p with the isomorphism constant depending only on p. \hfill \blacksquare

Remark 1.7 Although our proof that L^p has the SHAI property is simple enough, it is strange. The “natural” way of proving that a space X has the SHAI property is to verify that for any non trivial closed ideal \mathcal{I} in $L(X)$, the quotient algebra $L(X)/\mathcal{I}$ contains no minimal idempotents. (An idempotent P is called minimal provided $P \neq 0$ and the only idempotents Q for which $PQ = QP = Q$ are P and 0. Rank one idempotents in $L(X)$ are minimal.) This suggests the following problem, which is related to the known problem whether every infinite dimensional complemented subspace of L^p is isomorphic to its square.

Problem 1.8 Is there a non trivial closed ideal \mathcal{I} in $L(L^p)$ for which $L(L^p)/\mathcal{I}$ has a minimal idempotent?

If there is a positive answer to Problem 1.8, the witnessing ideal \mathcal{I} cannot be contained in the ideal of strictly singular operators. This is because every infinite dimensional complemented subspace of L^p contains a complemented subspace that is isomorphic either to ℓ^p or to ℓ^2 [11], and the fact that idempotents in $L(X)/\mathcal{I}$ lift to idempotents in $L(X)$ when \mathcal{I} is an ideal that is contained in $L(X)$ [4].

Problem 1.9 Does L^1 have the SHAI property?

2 Examples and permanence properties

Here we present some more examples of spaces with property (♯) and with the SHAI property. We do not know whether every complemented subspace of L^p has the SHAI property,
but we show that at least some of the known examples of such spaces do. Along the way we state and prove some permanence properties of (#).

The classical complemented subspaces of L^p have the SHAI property when $1 < p < \infty$. This was known for ℓ^2 and ℓ^p and proved above for L^p. The case of $\ell^p \oplus \ell^2$, the ℓ^p sum of ℓ^2, has (#) and the SHAI property follows from Proposition 2.2 below. Before stating Proposition 2.2 we introduce a quantitative version of property (#).

Definition 2.1 Suppose that $(E_n)_{n=1}^\infty$ is an unconditional FDD for a Banach space X and K is a positive constant. We say that $(E_n)_{n=1}^\infty$ has property (#) with constant K provided there is an almost disjoint continuum $\{N_\alpha : \alpha < c\}$ of infinite sets of natural numbers such that for each $\alpha < c$, X is K-isomorphic to the closed linear span of $\{E_n : n \in N_\alpha\}$.

Note that if $(E_n)_{n=1}^\infty$ has property (#) then it has property (#) for some positive constant K. Nevertheless, we need this quantitative notion for the full generality of Proposition 2.2.

Recall that if (e_i) is an unconditional basis for some Banach space Y and X_i, for $i = 1, 2, \ldots$, is a Banach space, $(\bigoplus_{i=1}^\infty X_i)_Y$ is the space of sequences $\bar{x} = (x_1, x_2, \ldots)$ whose norm, $\|\bar{x}\| = \left\| \sum_{i=1}^\infty \|x_i\| \cdot e_i \right\|_Y$, is finite. We denote the subspace of $(\bigoplus_{i=1}^\infty X_i)_Y$ of all sequences of the form $(0, \ldots, 0, x_i, 0, \ldots)$ by $X_i \otimes e_i$.

Proposition 2.2 For $i = 1, 2, \ldots$ let $(E_n^i)_{n=1}^\infty$ be an unconditional FDD for a Banach space X_i, all satisfying property (#) with a common K. Then for each subsymmetric basis (e_i) of some Banach space Y, the unconditional FDD $(E_n^i \otimes e_i)_{n=1}^\infty$ of $(\bigoplus_{i=1}^\infty X_i)_Y$ satisfies (#). If, in addition, the decompositions $(E_n^i)_{n=1}^\infty$ have disjoint lower p estimates with uniform constant and (e_i) also has such an estimate, then $(\bigoplus_{i=1}^\infty X_i)_Y$ has the SHAI property.

Proof: For each i, let $\{N^i_\alpha : \alpha < c\}$ be an almost disjoint continuum of infinite sets of natural numbers such that for every $\alpha < c$, X_α is K-isomorphic to the closed linear span of the subspaces E_n^i for $n \in N_\alpha$. Also, let $\{N_\alpha : \alpha < c\}$ be an almost disjoint continuum of infinite sets of natural numbers. Then

$$\{ (i, n) : i \in N_\alpha \text{ and } n \in N^i_\alpha \}$$

is a continuum of almost disjoint subsets of $\mathbb{N} \times \mathbb{N}$. It is easy to see that this continuum satisfies what is required of the unconditional FDD $(E_n^i \otimes e_i)_{i,n=1}^\infty$ to satisfy (#). If the decompositions $(E_n^i)_{n=1}^\infty$ have disjoint lower p estimates with uniform constant and (e_i) also has such an estimate, then the FDD $(E_n^i \otimes e_i)_{i,n=1}^\infty$ clearly has a disjoint lower p estimate as well, so the SHAI property follows from Theorem 1.4.

\[\blacksquare \]
Remark 2.3 Note that the proof above works with only notational differences if we deal with only finitely many \(X_i \) (and here we do not need to assume the uniformity of the (\(\# \)) property). In particular, if each of \(X \) and \(Y \) has an unconditional FDD with (\(\# \)), then so does \(X \oplus Y \).

As we said above, this takes care of the space \(\ell^p(\ell^2) \). The first non classical complemented subspace of \(L^p \) is the space \(X_p \) of Rosenthal [15]. We recall its definition. Let \(p > 2 \) and let \(\bar{w} = (w_i)_{i=1}^\infty \) be a bounded sequence of positive real numbers. Let \((e_i)_{i=1}^\infty \) and \((f_i)_{i=1}^\infty \) be the unit vector bases of \(\ell^p \) and \(\ell^2 \). Let \(X_{p,\bar{w}} \) be the closed span of \((e_i \oplus w_i f_i)_{i=1}^\infty \) in \(\ell^p \oplus \ell^2 \). If the \(w_i \) are bounded away from zero, then \(X_{p,\bar{w}} \) is isomorphic to \(\ell^2 \). If \(\sum_{i=1}^\infty w_i^{2p/(p-2)} < \infty \), then \(X_{p,\bar{w}} \) is isomorphic to \(\ell^p \). If one can split the sequence \(\bar{w} \) into two subsequences, one bounded away from zero and the other such that the sum of the \(2p/(p-2) \) powers of its elements converges, then \(X_{p,\bar{w}} \) is isomorphic to \(\ell^p \oplus \ell^2 \). Rosenthal proved that in all other situations one gets a new space, isomorphically unique (i.e., any, two spaces corresponding to two choices of \(\bar{w} \) with this condition are isomorphic). Moreover, \(X_{p,\bar{w}} \) is isomorphic to a complemented subspace of \(L^p \). The constants involved (isomorphisms and complementations) are bounded by a constant depending only on \(p \). This common (class of) space(s) is denoted by \(X_p \). For \(1 < p < 2 \), \(X_p \) is defined to be \(X_{p/(p-1)}^* \).

Proposition 2.4 Let \(p \in (1,\infty) \setminus \{2\} \). Then \(X_p \) has (\(\# \)) and has the SHAI property.

Proof: Let \(p > 2 \). Write \(\mathbb{N} \) as a disjoint union of finite subsets \(\sigma_j \) for \(j = 1,2,\ldots \), with \(|\sigma_j| \to \infty \). For \(i \in \sigma_j \) put \(w_i = |\sigma_j|^{1/(2p)} \), so \(w_i \to 0 \) and for each \(j \), \(\sum_{i \in \sigma_j} w_i^{2p/(p-2)} = 1 \). Set \(E_j = \text{span} (e_i \oplus w_i f_i)_{i \in \sigma_j} \). It follows that for any infinite subsequence of the unconditional FDD \((E_j) \), the closed span of this subsequence is isomorphic to \(X_p \). The FDD is unconditional and, as it lives in \(L^p \), has a lower \(p \) estimate. So the result in this case follows from Theorem 1.4. The case \(1 < p < 2 \) follows by looking at the dual FDD.

Building on \(X_p \) and the classical complemented subspaces of \(L^p \), Rosenthal [15] lists a few more isomorphically distinct spaces that are isomorphic to complemented subspaces of \(L^p \) when \(p \in (1,\infty) \setminus \{2\} \). Using the discussion above one can easily show that they all have (\(\# \)) and the SHAI property. Here we just comment on one of them for which the full power of Proposition 2.2 is needed. This is the space denoted in [15] by \(B_p \). It is the \(\ell^p \) sum of spaces \(X_i \) each having a 1-symmetric basis, and thus having (\(\# \)) with uniform constant. Each \(X_i \) is isomorphic to \(\ell^2 \), but the isomorphism constant tends to infinity as \(i \to \infty \). By Proposition 2.2, \(B_p \) has (\(\# \)) and the SHAI property.

The first infinite collection of mutually non isomorphic complemented subspaces of \(L^p \) for \(p \in (1,\infty) \setminus \{2\} \) was constructed in [16]. We recall the simple construction. Given two
subspaces X and Y of $L^p(\Omega)$ with $1 \leq p \leq \infty$, $X \otimes_p Y$ denotes the subspace of $L^p(\Omega^2)$ that is the closed span of all functions of the form $h(s,t) = f(s)g(t)$ with $f \in X$ and $g \in Y$. It is easy to see (and was done in [16]) that the isomorphism class of $X \otimes_p Y$ depends only on the isomorphism classes of X and Y and that, if X and Y are complemented in $L^p(\Omega)$, then $X \otimes_p Y$ is complemented in $L^p(\Omega^2)$. More generally, if X_1, X_2, Y_1, Y_2 are subspaces of $L^p(\Omega)$ and $T_i \in L(X_i, Y_i)$, then $T_1 \otimes_p T_2 \in L(X_1 \otimes_p X_2, Y_1 \otimes_p Y_2)$. Note also that if $(E_n^i)_{n=1}^\infty$ is an unconditional FDD for X_i for $i = 1, 2$, then $(E_n^1 \otimes_p E_m^2)_{n,m=1}^\infty$ is an unconditional FDD for $X_1 \otimes_p X_2$. This follows from iterating Khinchine’s inequality.

With a little abuse of notation we denote by X_p some isomorph of X_p that is complemented in $L^p[0,1]$. Set $Y_1 = X_p$, and for $n = 2, 3, \ldots$, let $Y_n = Y_{n-1} \otimes_p X_p$. From the above it is clear that the spaces Y_n are complemented (alas, with norm of projection depending on n) in some L^p space isometric to $L^p[0,1]$. The main point in [16] was to prove that the spaces Y_n are isomorphically different. That all the spaces Y_n have (#) follows now from the following general proposition, because it is clear that \otimes_p satisfies Conditions (1) and (2) in Proposition 2.5 for the class of all m tuples of subspaces of $L^p(\mu)$ spaces.

Proposition 2.5 Assume that X_1, \ldots, X_m are Banach spaces, each of which has an unconditional FDD satisfying (#). Let $Y_1 \otimes \cdots \otimes Y_m$ denote an m fold tensor product endowed with norm defined on some class of m tuples of Banach spaces with the following two properties:

1. If $T_i \in L(Y_i, Z_i)$ for $i = 1, \ldots, m$, then
 $$T_1 \otimes \cdots \otimes T_m : Y_1 \otimes \cdots \otimes Y_m \to Z_1 \otimes \cdots \otimes Z_m$$
 is bounded.

2. If Y_i has an unconditional FDD $(F^i_n)_{n=1}^\infty$ for each i, then $(F^1_{n_1} \otimes \cdots \otimes F^m_{n_m})_{n_1,\ldots,n_m=1}^\infty$ is an unconditional FDD for the completion of $Y_1 \otimes \cdots \otimes Y_m$.

Then, if we assume in addition that (X_1, \ldots, X_m) is in this class, the completion of $X_1 \otimes \cdots \otimes X_m$ has an unconditional FDD with (#).

Proof: For each $i = 1, \ldots, m$, let $(E_n^i)_{n=1}^\infty$ be an unconditional FDD for a Banach space X_i such that there is an almost disjoint continuum $\{N^i_\alpha : \alpha < c\}$ of infinite sets of \mathbb{N} such that for each $\alpha < c$, X_i is isomorphic to the closed linear span of the spaces E_n^i for $n \in N^i_\alpha$.

Consider the continuum
$$\{N^1_\alpha \times \cdots \times N^m_\alpha : \alpha < c\}$$

10
of subsets of \(\mathbb{N}^m \). This is an almost disjoint family whose cardinality is the continuum. Property (2) of the tensor norms we consider guarantees that \((E^1_{n_1} \otimes \cdots \otimes E^m_{n_m})_{n_1,\ldots,n_m=1}^\infty \) is an unconditional FDD for the completion of \(X_1 \otimes \cdots \otimes X_m \). Property (1) implies that for each \(\alpha < c \), the closed linear span of \((E^1_{n_1} \otimes \cdots \otimes E^m_{n_m})_{n_1,\ldots,n_m} \in N_1^\alpha \times \cdots \times N_m^\alpha \) is isomorphic to the completion of \(X_1 \otimes \cdots \otimes X_m \).

Remark 2.6 Note that in general Property (1) does not imply Property (2). The Schatten classes \(C_p \) for \(p \neq 2 \) are examples of tensor norms that satisfy (1) but not (2).

We note that it is clear from Proposition 2.5 that if \(X_1,\ldots,X_m \) are subspaces of \(L^p \) for \(1 \leq p < 2 \) that have (sub)symmetric bases, then \(X_1 \otimes \cdots \otimes \otimes p X_m \) has (#) and the SHAI property. The class of subspaces of \(L^p \) for \(1 \leq p < 2 \) that have a symmetric basis (i.e., the norm of a vector is invariant, up to a constant, under all permutations and changes of signs of its coefficients) is a rich family. (For \(p > 2 \), up to isomorphism it includes only \(\ell^1 \) and \(\ell^2 \).) Thus the class of tensor products above includes, for example, \(\ell^p_1 (\ell^p_2 (\cdots (\ell^p_m) \cdots)) \) whenever \(p \leq p_1 < p_2 < \cdots < p_m \leq 2 \).

Problem 2.7 Suppose \(p \in (1, \infty) \setminus \{2\} \) and let \(X \) be a complemented subspace of \(L^p \). Does \(X \) have the SHAI property? What if, in addition, \(X \) has an unconditional basis? What if, in addition, \(X \) is one of the \(\aleph_1 \) spaces constructed in [1]?
norm one complemented in T_p and, similarly, T_p is isometric to a norm one complemented subspace of $T_p(M)$. The space T_p is isomorphic to $\ell^p(T_p)$ [3, p. 85], so the decomposition method [2, Theorem 2.2.3] shows that T_p is isomorphic to $T_p(M)$. Thus every almost disjoint family of infinite subsets of \mathbb{N} witnesses that T_p has property (♯). Now for $1 < p < \infty$, T_p is complemented in C_p via the projection that zeroes out the entries that lie above the diagonal [14], [8], from which it follows easily [3] that T_p is isomorphic to C_p. We record these observations in Proposition 2.8.

Proposition 2.8 For $1 \leq p \leq \infty$, the space T_p has property (♯). Moreover, for $1 < p < \infty$, the space C_p has property (♯).

As we mentioned above, it can be proved that C_1 and C_∞ have the SHAI property even though neither has an unconditional FDD. However, the C_p norms for $1 \leq p \leq \infty$ are what Kwapień and Pełczyński [12] call unconditional matrix norms; i.e., the norm $\left\| \sum_{i,j} a_{i,j} e_{i,j} \right\|$ of a linear combination $\sum_{i,j} a_{i,j} e_{i,j}$ of the natural basis elements $(e_{i,j})_{i,j=1}^\infty$, is equivalent (in our case even equal) to the norm of $\sum_{i,j} \varepsilon_i \delta_j a_{i,j} e_{i,j}$ for all sequences of signs $(\varepsilon_i)_{i=1}^\infty$ and $(\delta_j)_{j=1}^\infty$.

One can define a variation of property (♯) for bases with this unconditionality property, check that the natural bases for C_p, for $1 \leq p \leq \infty$, satisfy this property, and prove a version of Theorem 1.4. This shows that C_1 has the SHAI property (and gives an alternative proof also for C_p for $1 < p < \infty$). This variation of Theorem 1.4 does not apply to C_∞, which does not have finite cotype, and we do not know whether C_∞ has the SHAI property. Since our focus in this paper is on spaces that are more closely related to L^p than are the C_p spaces, we do not go into more detail. Our main reason for bringing up C_p is to point out why the definition of property (♯) is made for unconditional FDDs rather than just for unconditional bases.

References

[1] J. Bourgain, H. P. Rosenthal, and G. Schechtman, *An ordinal L_p-index for Banach spaces, with application to complemented subspaces of L_p*, Ann. of Math. (2) 114 no. 2 (1981), 193–228.

[2] F. Albiac and N. J. Kalton, *Topics in Banach space theory*, Graduate Texts in Mathematics, 233 (2nd edition). Springer, New York, 2016.

[3] J. Arazy and J. Lindenstrauss, *Some linear topological properties of the spaces C_p of operators on Hilbert space*, Compositio Math. 30 (1975), 81–111.

[4] B. A. Barnes, *Algebraic elements of a Banach algebra modulo an ideal*, Pacific J. Math. 117, No. 2 (1985), 219–231.
[5] H. G. Dales, *Banach Algebras and Automatic Continuity*, Oxford University Press Inc., New York, 2000.

[6] M. Eidelheit, *On isomorphisms of rings of linear operators*, Studia Math. 9 (1940), 97–105.

[7] J. L. B. Gamlen and R. J. Gaudet, *On subsequences of the Haar system in \(L^p[-1,1] \), (1 \(\leq \) p \(\leq \) \(\infty \)), Israel J. Math. 15 (1973), 404–413.

[8] I. C. Gohberg, A. S. Markus, and I. A. Feldman, *Normally solvable operators and ideals associated with them*, American Math. Soc. Translat. 61 (1967), 63–84.

[9] B. Horvath, *When are full representations of algebras of operators on Banach spaces automatically faithful?*, Studia Math. 253 no. 3 (2020), 259–282.

[10] B. Horvath and T. Kania, *Surjective operators from algebras of operators on long sequence spaces are automatically injective*, arXiv:2007.14112v1 (2020).

[11] M. I. Kadec and A. Pelczyński, *Bases, lacunary sequences and complemented subspaces in the spaces \(L_p \), Studia Math. 21 (1961/1962), 161–176.

[12] S. Kwapień and A. Pelczyński, *The main triangle projection in matrix spaces and its applications*, Studia Math. 34 (1970), 43–68.

[13] J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces, Vol I*, Ergebn. Math. Grenzgeb. 92, Springer, (1977).

[14] V. I. Macaev, *Volterra operators obtained from self-adjoint operators by perturbation*, (Russian) Dokl. Akad. Nauk SSSR 139 (1961), 810–813.

[15] H. P. Rosenthal, *On the subspaces of \(L^p \) (p > 2) spanned by sequences of independent random variables*, Israel J. Math. 8 (1970), 273–303.

[16] G. Schechtman, *Examples of \(L_p \) spaces (1 < p \(\neq \) 2 < \(\infty \)), Israel J. Math. 22 (1975), no. 2, 138–147.

W. B. Johnson
Department Mathematics
Texas A&M University
College Station TX 77843–3368, USA
E-mail: johnson@math.tamu.edu

N. C. Phillips
Department of Mathematics
University of Oregon
Eugene OR 97403-1222, USA
