CHANDRA DETECTS A RAPID FLARE IN THE GRAVITATIONALLY LENSED MINI-BROAD ABSORPTION LINE QSO RX J0911.4+0551

G. CHARTAS,¹ X. DAI,¹ S. C. GALLAGHER,¹ G. P. GARMIRE,¹ M. W. BAUTZ,² P. L. SCHECTER,² AND N. D. MORGAN²

Received 2001 March 5; accepted 2001 May 2

ABSTRACT

The mini–broad absorption line (BAL) quasar RX J0911.4+0551 was observed with the Advanced CCD Imaging Spectrometer of the Chandra X-Ray Observatory for ~29 ks as part of a gravitational lens (GL) survey aimed at measuring time delays. Timing analysis of the light curve of the lensed image A2 shows a rapid flux variation with a duration of about 2000 s. A Kolmogorov-Smirnov test shows that the probability that a constant intensity source would produce the observed variability is less than ~0.2%. We discuss possible origins for the observed short-term X-ray variability. Our gravitational lens models for the RX J0911.4+0551 GL system predict a time delay of less than a day between images A1 and A2. The rapid variability combined with the predicted short time delay make RX J0911.4+0551 an ideal system to apply the GL method for estimating the Hubble constant. We describe the prospects of measuring H_0 within single X-ray observations of GL systems with relatively short time delays. Modeling of the spectrum of the mini-BAL quasar RX J0911.4+0551 suggests the presence of an intrinsic absorber. Partial covering models are slightly preferred over models that contain absorption due to intrinsic ionized or neutral gas.

Subject headings: gravitational lensing — quasars: absorption lines — quasars: individual (RX J0911.4+0551) — X-rays: general — X-rays: individual (RX J0911.4+0551)

1. INTRODUCTION

Even before the discovery of the first gravitational lens system by Walsh, Carswell, & Weymann (1979), it was realized byRefsdal (1964) that measurements of the light travel time difference between lensed images may provide an estimate of the Hubble constant. More recently, it was shown that measurements of the time delay can provide the absolute distance to the intervening deflector independent of cosmological parameters such as H_0, Ω_m, and Ω_Λ (Narayan 1991). Significant observational and modeling efforts made since then have revealed that the application ofRefsdal’s method and the uncertainties involved are more complex than originally anticipated.

The main difficulty in measuring time delays is that the brightness of each image has to be carefully monitored continually over several periods of the time delay. In addition, the quasar has to show sufficient variability over timescales smaller than the time delay. Most attempts to measure time delays until now have been made in the optical and radio bands. The modest variability of quasars in these wave bands, however, has made it extremely difficult to place accurate constraints on time delays. To add to this complexity, microlensing by stars in the lensing galaxy may produce variability on timescales of the order of weeks to years. Microlensing variability of this kind does not lead to a time-delayed signal between the lensed images, thus complicating timing analysis.

It has also become apparent from the extensive modeling of several well-studied gravitational lens (GL) systems, such as Q0957+561 (Bernstein & Fisher 1999), that a large range of potential models for lenses can satisfy the available observable constraints, thus contributing to the large uncertainty in present estimates of the Hubble constant based onRefsdal’s (1964) method. X-ray observations of gravitationally lensed quasars may alleviate some of the complexities associated with obtaining accurate time delays, while achieving this goal in a fraction of the time and monitoring effort. However, X-ray observations of lensed quasars have been very limited until recently as a result of the relatively low spatial resolution and collecting area of X-ray telescopes (Chartas 2000). Since the launch of the Chandra X-Ray Observatory on 1999 July 23, however, the X-ray sky can now be imaged at 0.4 resolution, and the field of gravitational lensing has suddenly become available to the high-energy astrophysics community.

The first realization of the possibility of measuring short time delays came with the Chandra observation of the distant $z = 2.8$ quasar RX J0911.4+0551. The main lens of this system is a galaxy at a redshift of 0.769 (E. E. Falco & 1999, private communication). A cluster of galaxies has been detected at about 38° SW from RX J0911.4+0551 at the same mean redshift of 0.7692 ± 0.004 (Kneib, Cohen, & Hjorth 2000) and is thought to contribute to the lensing of the quasar. The X-ray image and a deconvolved image of RX J0911.4+0551 are presented in a companion paper by Morgan et al. (2001).

Optical spectra of RX J0911.4+0551 obtained by Bade et al. (1997) show an absorption trough blueward of the C iv associated resonance line that spans a velocity range of about 3200 km s$^{-1}$. Absorption features of similar nature have been observed in approximately 10% of optically selected quasars and are attributed to highly ionized gas flowing away from the central source. Quasars observed to contain such absorption systems are commonly referred to as broad absorption line (BAL) quasars (Turnshek et al. 1988; Weymann et al. 1991). The relatively small velocity spread observed in RX J0911.4+0551 compared with the

¹ Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802; chartas@astro.psu.edu.
² Center for Space Research, Massachusetts Institute of Technology, 70 Vassar Street, Cambridge, MA 02139.
FIG. 1.—Composite of the deconvolved X-ray image of the gravitational lens RX J0911.4+0551 (top) and the light curves of the lensed images A2 (left) and A1 (right). Chandra clearly resolves the four lensed images of the distant quasar. A rapid flare that lasted for about 2000 s was recorded in image A2, whereas image A1 does not show any variability.

The typical range of $5000 \, \text{km s}^{-1} < v < 25,000 \, \text{km s}^{-1}$ observed in BAL quasars suggests that RX J0911.4+0551 should be classified as a mini-BAL quasar (Turnshek 1988; Barlow, Hamann, & Sargent 1997).

The analysis presented in the following sections focuses on the variability of the light curves and spectra of the lensed images of RX 0911.4+0551. The paper is structured as follows: In § 2 we describe the timing analysis of the Chandra observation of RX J0911.4+551, and in § 3 we present estimates for short time delays in GL systems with small image separations. The spectral analysis of the lensed images is presented in § 4. We conclude in § 5 with a summary of our results and a discussion of the prospects of constraining cosmological parameters by applying the short time delay method.

2. TIMING ANALYSIS

A description of the Chandra observation of RX J0911.4+0551 is presented in a companion paper by Morgan et al. (2001). An elementary study of the combined light curve of images A1 and A2 indicates a significant
variation of the X-ray flux within a period of about 2 ks.
Resolving the closest imaged pairs A1 and A2 (0.48 separation) of the GL system RX J0911.4+0551 is just within the capabilities of the Chandra and Advanced CCD Imaging Spectrometer combination. Observations of the source PG 1634−706 during the orbital calibration phase of the mission demonstrated that on-axis observations, corrected for aspect and spacecraft dither, can produce 50% encircled energy radii of about 0.′42. The observed 50% encircled energy radius for image B of RX J0911.4+0551 is ∼0.′38. To search for variability in the individual images A1 and A2, we extracted light curves from rectangular regions with sides of length ΔR.A. = 2″ and ΔDec = 0.″8 centered on the centroids of the images, as determined from the deconvolution analysis described in Morgan et al. (2001). The light curves of images A1 and A2 are shown in Figure 1. The time resolution for this observation is 3.241 s. The light curves in Figure 1 are binned in 1166.76 s intervals and are corrected for background events. Background is estimated by extracting events from a neighboring source-free region. The binned light curves show a flare occurring in image A2 and not image A1. Two consecutive data points in the light curve of image A2 lie at ∼3 σ above the mean value. The duration of the X-ray flare is ∼2000 s, and the count rate changed from ∼5 counts per bin to ∼15 counts per bin. The background flares that occur at several intervals during the observation do not coincide with the 2000 s interval at which we detect variability in A2.

The background rate during the X-ray flare is ∼6 × 10^{-6} events s^{-1} pixel^{-1} (including only events with ASCA grades 0, 2, 3, 4, and 6 and with energies within 0.5−8 keV). For the A2 source region, the number of background counts expected during the 2000 s X-ray flare in A2 is ∼0.007 counts.

More appropriate and unbiased tests for unbinned data of this nature are the Kolmogorov-Smirnov (K-S) and Kuiper tests. In Figure 2 we show the cumulative probability distribution versus exposure time for the light curves of A1 and A2. We find a significant deviation in A2, with a chance probability of about 1.8 × 10^{-3} for the K-S test applied to the entire duration of the observation. Results for the Kuiper test are similar and are presented in Table 1. Since the X-ray flare in image A2 occurs over a brief period of ∼2000 s, we expect that the K-S probability applied over the entire observation of A2 may be a conservative value; however, we expect it to be unbiased with respect to time filtering. We also applied the K-S test over several narrower time intervals containing the flare. The results are shown in Table 1. The K-S probabilities for these time intervals range from 3.2 × 10^{-4} to 2.3 × 10^{-5} and indicate a high significance for the presence of a flare in image A2, but not in image A1.

An aspect error could mimic a sudden increase in the observed count rate in a small extraction region. We rule this possibility out since an increase in X-ray flux is still present for extraction regions that include all lensed images. In addition, such an aspect error would produce a variability in the light curve of image A1 that is not observed. Remaining plausible causes of variability are the quasar, its environment, and microlensing. We discuss these cases in §4.

3. SHORT TIME DELAYS

The time delay between two images with an angular separation of Δθ scales roughly as ∼Δθ^2. Extrapolating from optical and radio measurements of time delays, we expect time delays in several systems with Δθ < 0.5′ to range between hours to days.

To obtain more accurate estimates of the short time delays for individual systems with small angular separations, we modeled these using the \(\chi^2 \) minimization method of Kayser et al. (1990) and Kochanek (1991).

We chose a variety of lens potentials to investigate the sensitivity of estimated short time delays to the mass dis-
tribution of the lens and to evaluate the feasibility of observing these delays with *Chandra* and *XMM-Newton*. To account for the presence of a cluster of galaxies centered ~38" southwest of RX J0911.4+0551, we have included a shear component in our models. Shear measures the anisotropic stretching of the image and is a result of mass residing outside the beam (Weyl focusing).

The adopted two-dimensional projected potentials are

\[
\psi_{\text{PMXS}}(\theta) = b^2 \ln (r + (\gamma/2)r^2) \cos (2(\theta - \theta_L)),
\]

\[
\psi_{\text{ISXS}}(\theta) = b r + (\gamma/2)r^2 \cos (2(\theta - \theta_L)),
\]

\[
\psi_{\text{ISEP}}(\theta) = b r + \gamma b r^2 \cos (2(\theta - \theta_L)),
\]

where PMXS represents a point mass with external shear model, ISXS describes an isothermal sphere with external shear model, and ISEP considers an isothermal, elliptical potential model. In the equations above, \(r \) and \(\theta \) are polar coordinates of the image with respect to the galaxy, \(\gamma \) is the shear, \(\theta_L \) is the orientation of the shear (measured from north to west), and \(b \) is the strength of the lens:

\[
b = 4\pi \frac{D_{ls}}{c^2 D_{ds}} \nu_G^2,
\]

where \(\nu_G \) is the velocity dispersion of the galaxy, \(D \) is the angular diameter distance, and the subscripts \(l, s, \) and \(o \) refer to the deflector, source, and observer (see Schecter et al. 1997 and references therein for more details on these lens models). The time delay between an image at a position \(\theta \) and an unlensed light path is

\[
\tau(\theta) = \frac{(1 + z_s)}{c} \frac{D_A D_s}{D_{ds}} \left[\frac{1}{2} (\theta - \theta_L)^2 - \psi(\theta) \right],
\]

where \(\beta \) is the source position. The observable constraints are the positions of the lensed images and deflector galaxies taken from the Center for Astrophysics—Arizona Space Telescope Lens (CASTLE) survey of gravitational lenses. The best-fit parameters obtained by minimizing the \(\chi^2 \) statistic formed between observables and their modeled values are listed in Table 2. We find that in many GL systems with small image separations, the time delays are less than a day, making them suitable for short time delay measurements with *Chandra* and *XMM-Newton*. Specifically, for RX J0911.4+0551, we find that the best-fit model (model ISXS; see Table 3) yields a time-delay value of 0.65 h⁻¹ days between images A1 and A2 and 0.46 h⁻¹ days between images A1 and A3. The detection of a flare in A2 though not in A1 constrains the time delay between these images to a value greater than 23 ks, consistent with our model results.

The best-fit value for the position angle of the external shear for the ISXS model is P.A. = 187°. This is close to the observed position angle of P.A. ~ 197° of X-ray emission from the lensing cluster (see Morgan et al. 2001). When one considers the additional complexity introduced by the presence of a cluster of galaxies in the lens plane, it is clear further detailed modeling of this system is needed.

4. SPECTRAL ANALYSIS

The spectra for images A1, A2, and A3 were extracted from circular regions centered on images with radii of 0.25'. The spectrum of image B was extracted from events within a 1" circular region centered on B. The background was determined by extracting events within an annulus centered on A1 with inner and outer radii of 10" and 15", respectively. We also created a spectrum combining all lensed images extracting events within a circular region centered on A1 with a radius of 10". The data from nodes 0 and 1 are extracted and analyzed separately in order to account for gain differences between the amplifiers. The parameters for each data set were linked together for the model fitting, with the exception of the absolute normalization.

A simple power-law model with neutral cold absorbers at \(z = 0 \) was used to estimate a photon spectral index \(\Gamma \) for the combined spectrum. Throughout the X-ray spectral analysis, the Galactic absorption is fixed at \(N_H = 3.6 \times 10^{20} \text{ cm}^{-2} \). We initially restricted the fit to include only events with energies above 1.32 keV (5 keV rest frame). By restricting the fit to these energies, we can infer the under-

Table 2

Object	Image Separation (arcsec)	Time Delay (h⁻¹ days)
RX J0911.4+0551	0.47 (A1-A2)	0.65 (ISXS)
PG 1115+080	0.48 (A1-A2)	0.065 (ISXS), 0.16 (SIE)
MG 0414+0534	0.42 (A1-A2)	0.35 (ISXS)
APM 08279+5255	0.15 (A-C)	0.19 (ISXS)
B1422+231	0.51 (A-B)	0.09 (ISXS), 0.37 (SIE)
2237+0305	1.00 (A-D)	0.14 (SIE)
B0712+472	0.16 (A-B)	0.05 (SIE)
B0218+357	0.00137 (A1-A2)	<0.01 (SIE)
1608+656	0.88 (A-C)	0.85 (ISXS), 1.9 (SIE)

Note: Time delays are estimates based on fitting gravitational lens models to the observable image positions. We have considered isothermal sphere plus external shear (ISXS) and singular isothermal ellipse (SIE) potentials. The time delays determined using SIE models are taken from the CASTLE survey of gravitational lenses.

Table 3

Model	\(x \) (arcsec)	\(b \) (arcsec)	\(\gamma \)	\(\theta \) (deg)	\(\tau_{A1-A2} \) (h⁻¹ days)	\(\tau_{A1-A3} \) (h⁻¹ days)	\(\tau_{A1-B} \) (h⁻¹ days)	\(M_{A1} \)	\(M_{A2} \)	\(M_{A3} \)	\(M_{A4} \)	\(\chi^2/v \)
PMXS	-0.649	0.064	1.028	0.5	172.64	-0.92	-147.92	-2.42	1.60	-0.72	1.09	5.11/3
ISXS	-0.433	0.047	1.108	0.31	173.00	-0.65	-105.86	-6.51	8.41	-2.78	1.78	0.50/3
ISEP	-0.666	0.069	1.368	0.15	172.23	-0.53	-149.19	-5.85	4.43	-1.88	1.50	7.88/3

Note: PMXS represents a point mass with external shear model, ISXS describes an isothermal sphere with external shear model, and ISEP considers an isothermal elliptical potential model. The parameter \(\gamma \) is the shear, \(\theta \) is the orientation of the shear (measured from north to west), and \(b \) is the strength of the lens. \(M \) represents the best-fit values for the magnifications of the lensed images A1, A2, A3, and B. Parameters \(x \) and \(\gamma \) are the best-fit positions of the source with respect to the lensing galaxy. The positions of the lensed images and deflector galaxies used to derive the lens parameters are taken from CASTLES.
lying power-law continuum component and avoid possible biasing toward harder spectra in the event that additional absorption by neutral or partially ionized gas is present. We find a best-fit value for $\Gamma = 1.91^{+0.39}_{-0.34}$ typical of radio-quiet quasars at high redshifts (e.g., Brandt, Mathur, & Elvis 1997; Reeves & Turner 2000), and $\chi^2 = 11.6$ for 9 dof. Extrapolating this best-fit model to lower energies reveals a significant residual, suggesting the presence of intrinsic absorption. The resulting plot, shown in Figure 3, is suggestive of the possible nature of the intrinsic absorber. The spectra appear to recover toward the power-law continuum in the lowest energy bins, hinting at either partially ionized absorbing gas or partial covering of the continuum. In contrast, a neutral, cold absorber would depress almost all flux below ≈ 5 keV, the energy where the continuum recovers.

We fitted several models to try to characterize the absorbing gas. The details of each fit are listed in Table 4. Briefly, intrinsic absorption by neutral gas at $z = 2.8$ with column density 3.4×10^{22} cm$^{-2}$ was preferable at the 95% confidence level to a straight power law with only absorption fixed to the Galactic value of 3.6×10^{20} cm$^{-2}$, according to the F-test ($\Delta\chi^2 = -5.6$). In addition, adding neutral intrinsic absorption resulted in a photon index of $\Gamma = 1.57^{+0.36}_{-0.29}$, which is much closer to the value of $\Gamma = 1.91$ for the fit to the data above 5 keV in the rest frame than the value of $\Gamma = 1.25$ for the fit that did not include intrinsic absorption. However, the residuals still showed some systematic effects: in particular, a positive excess in the 5–11 keV (1.3–3.0 keV observed frame) range.

We also considered models with absorption placed at the redshift of the lensing galaxy (see Table 4). We find no significant change in χ^2 compared with fits that include intrinsic absorption. We conclude that our spectral analysis cannot constrain the redshift of the absorber. In a latter part of this section, based on the observed properties of intrinsic absorbers in RX J0911.4+0551 (Bade et al. 1997), we present physical arguments that imply that the most likely origin of absorption in excess of the Galactic value is the immediate quasar environment. We therefore restrict the following spectral analysis to models that consider intrinsic absorption.

Fitting the data with a warm absorber or a partial covering model also yielded acceptable fits to the data and gave reasonable photon indices (see Table 4); the partial covering model was slightly preferred at the 63% confidence level over the neutral absorber model (see Fig. 4). Absorption of some kind is certainly required; however, the low signal-to-noise ratio (S/N) of the data (the combined spectrum of all images contains a total of 425 X-ray events) precludes a determination of the specific nature of the absorber. Recent X-ray grating analyses of the warm absorber in the Seyfert galaxy NGC 3783 (Kaspi et al. 2000) and the absorption in the QSO IRAS 13349+2438 (Sako et al. 2001) indicate that those absorbers are more complex than the simple one-zone photoionization models typically used to model CCD resolution data. Given that RX J0911.4 is a luminous mini-BAL QSO, complex X-ray absorption is not unreasonable.

We searched for differential extinction in the spectra of the lensed images. Because of the low S/N, we kept the spectral photon index fixed to the value of 2.0 and assumed Galactic and intrinsic absorption due to cold gas at the systemic redshift of the lensing galaxy (see Table 4). We find no significant change in χ^2 compared with fits that include intrinsic absorption. We conclude that our spectral analysis cannot constrain the redshift of the absorber. In a latter part of this section, based on the observed properties of intrinsic absorbers in RX J0911.4+0551 (Bade et al. 1997), we present physical arguments that imply that the most likely origin of absorption in excess of the Galactic value is the immediate quasar environment. We therefore restrict the following spectral analysis to models that consider intrinsic absorption.

![Figure 3](image-url)

FIG. 3.—Chandra observed-frame spectra of the combined A1, A2, A3, and B images fitted with Galactic absorption and a power-law model above 1.3 keV (5 keV rest frame) that is then extrapolated back to lower energies. Filled circles are the data points from node 0; plain crosses represent the data points from node 1. The ordinate for the lower panel, labeled χ, shows the fit residuals in terms of σ with error bars of size 1. Note that the flux in the lowest energy bins is not completely extinguished. This suggests the absorber is ionized or partially covering the continuum, or both.

TABLE 4

Model	Γ	Parameter Name	Valueb	χ^2/dof	$P(\chi^2/d)$
Power law (PL)	1.25$^{+0.14}_{-0.15}$	28.7/20	0.095
PL, $E > 5$ keV rest frame	$1.91^{+0.39}_{-0.34}$...	11.6/9	0.24	
(1.32 keV observed frame)	$1.57^{+0.36}_{-0.28}$	$N_N (10^{22}$ cm$^{-2}$)	$3.4^{+1.1}_{-1.0}$	22.1/19	0.23
PL with intrinsic, neutral absorption	$1.87^{+0.98}_{-0.66}$	$N_N (10^{22}$ cm$^{-2}$)	$0.55^{+0.46}_{-0.36}$	22.6/19	0.25
PL with neutral absorption at lens	$1.61^{+0.36}_{-0.28}$	$N_N (10^{22}$ cm$^{-2}$)	$19.0^{+7.9}_{-7.7}$	21.5/18	0.26
PL with intrinsic, partial covering absorptionc	$1.6^{+0.5}_{-0.4}$	Coverage fraction	$0.7^{+0.2}_{-0.1}$	23.2/18	0.23
PL with intrinsic, ionized absorptionc	$1.78^{+0.4}_{-0.3}$	$N_N (10^{22}$ cm$^{-2}$)	$2^{+4}_{-1.0}$	21.8/18	0.24

a All model fits include fixed Galactic absorption of $N_G = 3.72 \times 10^{20}$ cm$^{-2}$ (Schlegel, Finkbeiner, & Davis 1998).

b The errors are for 90% confidence with all parameters taken to be of interest except absolute normalization.

c The parameters for this model are poorly constrained, and so all parameters other than Γ have 68% confidence errors.
A1, A2, and B is similar and of the order of \(\sim 5 \times 10^{22} \) cm\(^{-2}\). Because of the low S/N of A3, it is not possible to constrain the column density toward the line of site to this image within a useful bound.

The quantity \(\alpha_{\text{ox}} = -\log (f_{\text{X}}/f_{\text{opt}})/\log (v_{\text{X}}/v_{\text{opt}}) \), the spectral index of a power law defined by the flux densities at rest-frame 3000 Å and 2 keV, is a useful parameter for measuring the X-ray power of a QSO relative to its ultraviolet continuum emission. A large, negative \(\alpha_{\text{ox}} \) indicates relatively weak soft X-ray emission; the mean value of \(\alpha_{\text{ox}} \) for radio-quiet AGNs is approximately \(-1.48\) (e.g., Laor et al. 1997) with a typical range from \(-1.7\) to \(-1.3\) (e.g., Brandt, Laor, & Wills 2000). Weakness in soft X-rays is plausibly explained by intrinsic X-ray absorption, which strongly decreases the observed flux at the lowest energies. A strong correlation of large, negative values of \(\alpha_{\text{ox}} \) with the absorption-line equivalent width of C IV supports this hypothesis (Brandt et al. 2000). As expected, BAL QSOs populate the extreme end of this correlation: they are the weakest soft X-ray sources as well as the QSOs with the most extreme ultraviolet absorption. Recent spectroscopic observations of two AGNs with strong C IV absorption, PG 1535+547 and the BAL QSO PG 2112+059, found direct evidence of intrinsic X-ray absorption causing strongly negative values of \(\alpha_{\text{ox}} \) (Gallagher et al. 2001).

Given the observed C IV absorption-line equivalent width of RX J0911.4+0551, \(EW_{\text{abs}} = 4.4 \) Å (Bade et al. 1997) and our calculated \(\alpha_{\text{ox}} \), we compare this mini-BAL QSO with QSOs in the Brandt et al. (2000) correlation. Specifically, we extrapolate the observed rest-frame ultraviolet continuum from Bade et al. (1997) to 3000 Å (rest frame) and apply the best-fitting X-ray model from our spectral analysis to obtain the 2 keV (rest frame) flux density. We find an observed \(\alpha_{\text{ox}} = -1.72 \) and, corrected for absorption, \(\alpha_{\text{ox}} = -1.52 \), consistent with the value for normal, unabsorbed AGNs. RX J0911.4+0551 thus fits coherently within the correlation of Brandt et al. (2000). Given that the C IV absorption is undoubtedly intrinsic from the velocity spread, \(\delta V \approx 3200 \) km s\(^{-1}\), and redshift of the absorbers (Bade et al. 1997), identifying the X-ray absorption as intrinsic rather than at the redshift of the lens provides the most reasonable physical explanation for the X-ray spectral modeling.

To obtain additional clues about the origin of the X-ray flare, we estimated the hardness ratio of image A2 during the X-ray flare and quiescent states. For the purpose of this analysis we define the X-ray flare state as the time interval between 7.2 and 9.2 ks from the beginning of the observation, and the quiescent state as the remaining period of the observation. The hardness ratio is defined as the counts in the 1.3–8.0 keV band divided by the counts in the 0.5–1.3 keV band. We find that the hardness ratio changed from \(1.45 \pm 0.34 \) in the quiescent state to \(0.67 \pm 0.27 \) in the flare state. If the flare resulted from a decrease in the intrinsic absorbing column density, then the hardness ratio would decrease as the number of counts in the soft band increased. The estimated hardness ratio for a \(\Gamma = 1.9 \) power law with only Galactic absorption (and no intrinsic absorption) is \(\sim 0.6 \). Correlations of spectral slope with X-ray flux have been observed in Seyfert galaxies. In particular, a strong correlation of spectral slope with UV flux and broadband X-ray flux have been observed in the Seyfert 1 galaxies NGC 7469, NGC 5548, and IC 4329a (Nandra et al. 2000; Chiang et al. 2000; Done, Madejski, & 2000). In the Comptonization model (Haardt, Maraschi, & Ghisellini 1997; Zdziarski, Lubinski, & Smith 1999) an increase of the seed UV photons leads to an increase of the Compton upscattered X-ray photons and a cooling of the disk corona, resulting in a softened X-ray spectrum. Another plausible explanation for the change in hardness ratio could arise with partial covering of the quasar by an intrinsic absorber. Partial covering could result from lines of sight through the

![Figure 4](image_url)

Figure 4. Chandra observed-frame spectra of the combined A1, A2, A3, and B images fitted with a power-law model, partially covering intrinsic absorption, and Galactic absorption. Filled circles are the data points from node 0; plain crosses represent the data points from node 1. The ordinate for the lower panel, labeled \(\chi \), shows the fit residuals in terms of \(\sigma \) with error bars of size 1. This model provides an acceptable fit to the data that is hard-band (\(E > 5 \) keV) power law (Fig. 3) and the range for radio-quiet QSOs.

Fit\(^a\)	Image	\(\Gamma \)	\(N_{\text{H}}(z = 0) \) \(10^{22} \) cm\(^{-2}\)	\(N_{\text{H}}(z = 2.8) \) \(10^{22} \) cm\(^{-2}\)	Flux\(^b\)	\(\chi^2/\nu \)
1 (0.3–6 keV) \ldots	A1 + A2 + A3 + B	2.0 (fixed)	0.037 (fixed)	5.1 \(^{+1.94}_{-1.46} \)	5.2 \(^{+0.3}_{-0.2} \)	1.71/21
1 (0.3–2.9 keV) \ldots	A1	2.0 (fixed)	0.037 (fixed)	4.4 \(^{+0.95}_{-0.89} \)	2.2	1.41/14
2 (0.3–2.9 keV) \ldots	A2	2.0 (fixed)	0.037 (fixed)	5.1 \(^{+1.02}_{-0.98} \)	1.20/8	
3 (0.5–2.9 keV) \ldots	A3	2.0 (fixed)	0.037 (fixed)	1.2 \(^{+0.8}_{-0.6} \)	1.6/3	
4 (0.2–2.9 keV) \ldots	A3	2.0 (fixed)	0.037 (fixed)	0.2 \(^{+0.2}_{-0.1} \)	1.54/4	
5 (0.3–2.9 keV) \ldots	B	2.0 (fixed)	0.037 (fixed)	3.6 \(^{+1.9}_{-1.0} \)	0.2/2	

\(^a\) The spectral fits were performed within the energy ranges listed in the parentheses.
\(^b\) Flux is estimated in the 2–10 keV band in units of \(10^{-14} \) ergs s\(^{-1}\) cm\(^{-2}\).
absorber combined with unobscured lines of sight off a scatterer (e.g., Gallagher et al. 2001). The spectrum of the unobscured emission will be softer than that of the absorbed emission. If the unobscured emission is scattered into the line of sight, then the path lengths between the X-ray source and us will be different for the unobscured and absorbed components. We therefore expect a delay between the arrival of these components. A sudden flare of the quasar could thus result in a variation of the hardness ratio. Specifically, the hard absorbed component of the flare will reach us first, followed by the scattered softer component. It is the sudden increase in the scattered component that we propose as the origin of the softening of the spectrum of RX J0911.4+0551 during the flare.

5. DISCUSSION AND CONCLUSIONS

Microlensing, a phenomenon induced by the random motion of stars in the lensing galaxies of GL systems, has been proposed as the cause of observed wavelength-dependent variability in lensed images of QSO 2237+0305 (Woźniak et al. 2000). The short duration and shape of the X-ray flare in image A2 of RX J0911.4+0551 rule against a microlensing event. Observed microlensing events have typical timescales of weeks to years. Microlensing can produce variations in the observed flux of a lensed object on timescales typical of weeks to years. Microlensing can produce variations in the observed flux of a lensed object on timescales typical of weeks to years.

5. DISCUSSION AND CONCLUSIONS

The expected duration of a microlensing event is approximately equal to the time required for the source to cross an Einstein-ring radius. Assuming that the transverse velocity of the source with respect to the caustic network is \(v_t \approx 1000 \text{ km s}^{-1} \), the timescale of the microlensing event is \(t_{\text{E}} = \frac{v_t}{v_c} \sim 11 \text{ yr} \). A more rapid variation, occasionally referred to as a high-magnification event, is expected to occur during a caustic crossing. Witt, Mao, & Schechter (1994) estimate the rise time of such an event as \(t_{\text{HME}} \sim 3.3(r_s/v_t) \), where \(r_s \) is the characteristic length scale for the source emission region. For a time delay of \(t_{\text{delay}} = 75 \text{ ks} \), the count rate in the nonflare regions of the light curves was set to the observed value of \(\sim 4 \times 10^{-3} \text{ counts s}^{-1} \). The cross-correlation function of the light curves in images A1 and A2 is shown in Figure 5. A time delay of 75 ks is clearly recovered in the cross-correlation function. A Monte Carlo realization of this simulation indicates that the percentage fractional error in the recovered time delay is \(\sim 1.5\% \) (95\% confidence). We estimated the significance of the cross-correlation peak value of 0.3 by performing a Monte Carlo simulation for a constant source model, assuming a count rate value of \(\sim 4 \times 10^{-3} \text{ counts s}^{-1} \). We find the probability of obtaining a cross-correlation peak value of 0.3 or greater for a constant source model to be less than \(\sim 1 \times 10^{-6} \). Our simple simulations, based on the observed rapid flare and the predicted short time delay, suggest that measurement of a time delay in the GL system RX J0911.4+0551 with an accuracy of about 1\% is possible within a single observation with Chandra or XMM-Newton. Time delays can also be extracted from light curves of unresolved images via autocorrelation techniques, as long as the fluxes of the two images are similar. Measurements of accurate short time delays may be possible in eight additional X-ray bright GL systems based on the predictions of our lensing models for these systems (see Table 2). The potential usefulness of X-ray observations of GL systems can be best appreciated if one considers that it has taken almost 20 years of optical and radio monitoring to obtain a universally accepted time delay for GL quasar Q0957+561 to an accuracy of \(\sim 1\% \). X-ray observations of short time delay systems offer the prospect of providing the same accuracy within 1–2 days of observing time. In quadruple systems with measured long time delays, obtained from monitoring in the optical and/or radio bands (see Fassnacht et al. 1999), the addition of accurate short time delays can provide additional constraints on the gravitational potential of the lens, thus providing tighter constraints on the Hubble constant.

Our spectral analysis of the mini-BAL quasar RX J0911.4+0551 suggests softening of the X-ray spectrum during the flare state. A plausible explanation based on Compton upscattering models is that the softening of the X-ray spectral slope during the flare is produced by cooling of the disk corona as a result of an increase in UV seed photons in the accretion disk. A different explanation, which is consistent with our spectral analysis, is the scattering of an unabsorbed soft component in addition to the
direct absorbed one. A delay in arrival between the absorbed and scattered components may explain the observable variation in the hardness ratio. Spectral fits that include intrinsic absorption due to cold gas are preferred at the (>95%) confidence level over ones that only include Galactic absorption. A highly ionized absorber at the redshift of RX J0911.4+0551 is also acceptable in a statistical sense, with best-fit values of the ionization parameter and column density of 300 ergs cm s$^{-1}$ and 1×10^{23} atoms cm$^{-2}$, respectively. Partial covering models are slightly preferred over neutral and ionized absorber models with a best-fit covering fraction of $0.7^{+0.39}_{-0.2}$.

The individual images A1, A2, and B suggests no evidence for significant differential extinction. As a result of the low S/N in image A3, it is not possible to constrain the intrinsic column density within a useful bound.

We would like to thank E. Feigelson for helpful discussions related to unbiased tests of variability. We acknowledge financial support from NASA grant NAS 8-38252. S. G. C. gratefully acknowledges the support of NASA Graduate Student Research Program grant NGT 5-50277.

REFERENCES

Bade, N., Siebert, J., Lopez, S., Voges, W., & Reimers, D. 1997, A&A, 317, L13
Barlow, T. A., Hamann, F., & Sargent, W. L. W. 1977, in ASP Conf. Ser. 28, Mass Ejection from AGN, ed. N. Arav, I. Shlosman, & R. J. Weymann (San Francisco: ASP), 13
Bernstein, G., & Fischer, P. 1999, AJ, 118, 14
Brandt, W. N., Laor, A., & Will, B. J. 2000, ApJ, 528, 637
Brandt, W. N., Mathur, S., & Elvis, M. 1997, MNRAS, 285, L25
Chartas, G. 2000, ApJ, 531, 81
Chiang, J., Reynolds, C. S., Blaes, O. M., Nowak, M. A., Murray, N., Madejski, G., Marshall, H. L., & Magdziarz, P. 2000, ApJ, 528, 292
Done, C., Madejski, G. M., & Życki, P. T. 2000, ApJ, 536, 213
Fassnacht, C. D., Pearson, T. J., Readhead, A. C. S., Browne, I. W. A., Koopmans, L. V. E., Myers, S. T., & Wilkinson, P. N. 1999, ApJ, 527, 498
Gallagher, S. C., Brandt, W. N., Laor, A., Elvis, M., Mathur, S., Will, B. J., & Iyomoto, N. 2001, ApJ, 546, 795
Haardt, F., Maraschi, L., & Ghisellini, G. 1997, ApJ, 476, 620
Kaspi, S., Brandt, W. N., Netzer, H., Sambruna, R., Chartas, G., Garmire, G. P., & Nousek, J. A. 2000, ApJ, 535, L17
Kayser, R., Surdej, J., Condor, J. J., Keller, K. I., Magain, P., Remy, M., & Smette, A. 1990, ApJ, 364, 15
Kneib, J., Cohen, J. G., & Hjorth, J. 2000, ApJ, 544, L35
Kochanek, C. S. 1991, ApJ, 373, 354
Laor, A., Fiore, F., Elvis, M., Wilkes, B. J., & McDowell, J. C. 1997, ApJ, 477, 93
Morgan, N. D., Chartas, G., Malm, M., Bautz, M. W., Burud, I., Hjorth, J., Jones, S. E., & Schechter, P. L. 2001, ApJ, in press
Nandra, K., Le, T., George, I. M., Edelson, R. A., Mushotzky, R. F., Peterson, B. M., & Turner, T. J. 2000, ApJ, 544, 734
Narayan, R. 1991, ApJ, 378, L5
Reeves, J., & Turner, M. 2000, MNRAS, 316, 234
Rees, S. 1964, MNRAS, 128, 293
Sako, M., et al. 2001, A&A, 365, L168
Schechter, P. L., et al. 1997, ApJ, 475, L85
Schechter, P. L., et al. 1999, ApJ, 527, 498
Walsh, D., Carswell, R. F., & Weymann, R. J. 1979, Nature, 279, 381
Witt, H. J., Mao, S., & Schechter, P. L. 1995, ApJ, 443, 18
Wozniak, P. R., Alard, C., Udalski, A., Szymański, M., Kubíak, M., Pietrzyński, G., & Zebrun, K. 2000, ApJ, 529, 88
Zdziarski, A. A., Lubinski, P., & Smith, D. A. 1999, MNRAS, 303, L11

Fig. 5.—Simulated light curves for images A1 and A2 of RX J0911.4+0551 (left) with cross-correlation function (right). The simulated light curves of the flare and nonflare regions are based on the Chandra observations of RX J0911.4+0551. The input delay was set at the predicted value of 75 ks. The cross-correlation of light curves A1 and A2 clearly resolves the 75 ks time delay.