A Conjecture on Zero-sum 3-magic Labeling of 5-regular Graphs

Guanghua Dong and Ning Wang

1.Department of Mathematics, Tianjin Polytechnic University, Tianjin, 300387, China
2.Department of Information Science and Technology, Tianjin University of Finance and Economics, Tianjin, 300222, China

Abstract

In this paper, we obtained that every 5-regular graph admits a zero-sum 3-magic labeling, which give an affirmative answer to a conjecture proposed by Saieed Akbari, Farhad Rahmati and Sanaz Zare in Electron. J. Combin..

Key Words: zero-sum magic labeling; degree sequence; 1-factor
MSC(2000): 05C78

1. Introduction

Graph considered here are all finite and undirected with vertex set \(V(G) \) and edge set \(E(G) \). A multigraph is a graph with multiple edges. If every vertex in a graph has the same degree \(r \) then this graph is referred to as a \(r \)-regular graph. A matching \(M \) in \(G \) is a set of independent edges, and \(|M| \) denotes the number of edges in \(M \). A factor of a graph \(G \) is a spanning subgraph of \(G \). A \(k \)-factor of \(G \) is a factor of \(G \) that is \(k \)-regular. Thus a 1-factor of \(G \) is a matching that saturates all vertices of \(G \), and is called a perfect matching of \(G \). A mapping \(l : E(G) \to A \), where \(A \) is an abelian group which written additively, is called a labeling of the graph \(G \). Given a labeling \(l \) of the graph \(G \), the symbol \(s(v) \), which represents the sum of the labels of edges incident with \(v \), is defined to be \(s(v) = \sum_{uv \in E(G)} l(uv) \), where \(v \in V(G) \). For every positive integer \(h \geq 2 \), a graph \(G \) is said to be zero-sum \(h \)-magic if there is an edge labeling from \(E(G) \) into \(\mathbb{Z}_h \setminus \{0\} \) such that \(s(v) = 0 \) for every vertex \(v \in V(G) \). The null set of a graph \(G \), denoted by \(N(G) \), is the set of all natural numbers \(h \in \mathbb{N} \) such that \(G \) admits a zero-sum \(h \)-magic labeling.

Recently, Saieed Akbari, Farhad Rahmati and Sanaz Zare obtained the following interesting results about magic labeling of regular graphs.

\(^1\)E-mail: gh.dong@163.com(G. Dong); ninglw@163.com(N. Wang).

\(^2\)This work was partially Supported by the China Postdoctoral Science Foundation funded project (Grant No: 20110491248) and the National Natural Science Foundation of China (Grant No: 11301381).
Theorem 1.1 [1] Let G be an r-regular graph ($r \geq 3$, $r \neq 5$). If r is even, then $N(G) = N$, otherwise $N \setminus \{2, 4\} \subseteq N(G)$. Furthermore, if r ($r \neq 5$) is odd and G is a 2-edge connected r-regular graph, then $N(G) = N \setminus \{2\}$.

They also proposed the following conjecture in [1].

Conjecture Every 5-regular graph admits a zero-sum 3-magic labeling.

In this paper, we give an affirmative answer to this conjecture. The following lemma is essential in the proof of the conjecture.

Lemma 1.1 [2] Let G be a graph of even order with degree sequence $d=(d_1, d_2, \ldots, d_n)$. If $\tilde{d}=(d_1-1, d_2-1, \ldots, d_n-1)$ is also a degree sequence of some graph, then G has a 1-factor.

More information and related references concerning magic labeling of graphs can be seen in [1].

2. Main Results

In this section, we will give a proof of the Conjecture.

If a graph G has vertices v_1, v_2, \ldots, v_n, the sequence $d=(d_1, d_2, \ldots, d_n)$ is called the degree sequence of G, where $d_i = d(v_i)$ for $i = 1, 2, \ldots, n$. A nonincreasing and nonnegative integer sequence $d=(d_1, d_2, \ldots, d_n)$ is graphical if there is a simple graph with degree sequence d. It is obvious that the conditions $d_i \leq n-1$ for all i, and $\sum_{i=1}^{n} d_i$ being even are necessary for a sequence to be graphical. Firstly, the following lemma will be obtained.

Lemma 2.1 Let n be a positive even number, and $d=(d_1, d_2, \ldots, d_n)$ be a sequence of nonnegative integers. If $d_1 = d_2 = \ldots = d_n = 5$ and $n \geq 6$, or $d_1 = d_2 = \ldots = d_n = 4$ and $n \geq 6$, then d is graphical.

Proof For convenience, we let G_n denote the corresponding graph related to the sequence $d=(d_1, d_2, \ldots, d_n)$.

Firstly, we prove that if $d_1 = d_2 = \ldots = d_n = 5$ and $n \geq 6$ then d is graphical. The proof is by induction on n. If $n = 6$, then it is a obvious result since the complete graph K_6 being the graph G_6 with degree sequence $(5, 5, 5, 5, 5, 5)$. When $n = 8$, the corresponding graph G_8 is obtained from G_6 through the following construction. Let $V(G_6) = \{v_1, v_2, \ldots, v_6\}$. Firstly, we add two new vertices v_7 and v_8 to G_6, and add an edge connecting v_7 and v_8. Secondly, we select, in G_6, two different matchings M_1 and M_2 with $M_1 \cap M_2 = \emptyset$ and $|M_1|=|M_2|=2$. Deleting the four edges in $M_1 \cup M_2$ from G_6, and connecting the four vertices in M_1 to v_7, the other four vertices in M_2 to v_8, we get the graph G_8 with
degree sequence \((5, 5, 5, 5, 5, 5, 5, 5)\). Now, suppose that \(n = 2(k + 1) \geq 10\). By induction hypothesis the \(2k\)-elements sequence \((5, 5, \ldots, 5)\) is graphical and the corresponding graph is \(G_{2k}\). So the graph \(G_{2(k+1)}\) can be obtained from \(G_{2k}\) through the same procedure as that of \(G_6\) to \(G_8\), and the proof is complete.

As for the case \(d_1 = d_2 = \ldots = d_n = 4\) and \(n \geq 6\), we also through the induction on \(n\). If \(n = 6\), then it is an easy work to find a 4-regular graph \(G_6\) with degree sequence \((4, 4, 4, 4, 4, 4)\). When \(n = 8\), the corresponding graph \(G_8\) is obtained from \(G_6\) through the following operation. Let \(V(G_6) = \{v_1, v_2, \ldots, v_6\}\). Firstly, we add two new vertices \(v_7\) and \(v_8\) to \(G_6\), and select, in \(G_6\), two different matchings \(M_1\) and \(M_2\) with \(M_1 \cap M_2 = \emptyset\) and \(|M_1| = |M_2| = 2\). Deleting the four edges in \(M_1 \cup M_2\), and connecting the four vertices in \(M_1\) to \(v_7\), the other four vertices in \(M_2\) to \(v_8\), we get the graph \(G_8\) with degree sequence \((4, 4, 4, 4, 4, 4, 4, 4)\). Now, suppose that \(n = 2(k + 1) \geq 10\). By induction hypothesis the \(2k\)-elements sequence \((4, 4, \ldots, 4)\) is graphical and the corresponding graph is \(G_{2k}\). So the graph \(G_{2(k+1)}\) can be obtained from \(G_{2k}\) through the same procedure as that of \(G_6\) to \(G_8\), and the proof is complete. \(\square\)

Theorem 2.1 Every 5-regular graph admits a zero-sum 3-magic labeling.

Proof It is obvious that every 5-regular graph \(G\) is of even order since \(2 \cdot E(G) = 5 \cdot V(G)\). For \(|V(G)| < 6\), the correctness of the theorem is easily to verify. When \(|V(G)| \geq 6\), according to the Lemma 1.1 and Lemma 2.1 we can get that every 5-regular graph \(G\) contains a 1-factor. So, labeling the edges in the 1-factor with \(2 \in \mathbb{Z}_3 \setminus \{0\}\) and the remaining edges with \(1 \in \mathbb{Z}_3 \setminus \{0\}\), we will get a zero-sum 3-magic labeling of the 5-regular graph. \(\square\)

The following theorem can be easily deduced from the Theorem 1.1 and Theorem 2.1.

Theorem 2.2 Let \(G\) be an \(r\)-regular graph with \(r \geq 3\). If \(r\) is even, then \(N(G) = \mathbb{N}\), otherwise \(N \setminus \{2, 4\} \subseteq N(G)\). Furthermore, if \(r\) is odd and \(G\) is a 2-edge connected \(r\)-regular graph, then \(N(G) = \mathbb{N} \setminus \{2\}\).

Acknowledgements The authors thank the referees for their careful reading of the paper, and for their valuable comments.

References

[1] S. Akbari, F. Ralhmati, S. Zare, Zero-sum magic labelings and null sets of regular graphs, Electron. J. Combin. 21(2), 2014, P2.17.

[2] Q. R. Yu and G. Liu, Graph factors and matching extensions, Higher Education Press, Beijng and Springer-Verlag Berlin Heidelberg, 2009: 21-22.