INVARIANCE OF A LENGTH ASSOCIATED TO A REDUCTION

TONY J. PUTHENPURAKAL

Abstract. Let (A, m) be a d-dimensional Cohen-Macaulay local ring with infinite residue field and let J be a minimal reduction of m. We show that $\lambda(m^3/Jm^2)$ is independent of J.

The notion of minimal reduction of an ideal in a local Noetherian ring (A, m) was introduced by Northcott and Rees [5]. It has significant applications in the theory of Hilbert function of m-primary ideals in A, particularly in the case when A is Cohen-Macaulay. Minimal reductions of an ideal I are highly non-unique. In fact if the residue field of A is infinite and I is m-primary then any d general linear combinations of generators of I, (here $d = \dim A$), gives a minimal reduction of I.

However when A is Cohen-Macaulay with infinite residue field there are some invariants of the ring and the ideal I which are independent of minimal reductions of I. To state it let us fix some notation. Let I be an m-primary ideal of A and let J be a minimal reduction of I. We let $\lambda(N)$ denote the length of an A-module N and $\mu(N)$ number of its minimal generators. Let $G_I(A) = \oplus_{n \geq 0} I^n/I^{n+1}$ be the associated graded ring of A with respect to I. We let $e_0^0(A)$ denote the multiplicity of A with respect to I.

It is well known that

1. $\lambda(I/J) = e_0^0(A) - \lambda(A/I)$ due to Serre, cf. [1, Theorem 4.7.6].
2. $\lambda(I^2/JI) = e_0^0(A) + (d - 1)\lambda(A/I) - \lambda(I/I^2)$ [6, Lemma 1].

Furthermore if depth $G_I(A) \geq d - 1$ then $\lambda(I^{n+1}/JI^n)$ is independent of J [4, Corollary 3.9]. Furthermore in this case the coefficients of the Hilbert polynomial of A with respect to I can also be expressed in terms of $\lambda(I^{n+1}/JI^n)$, with $n \geq 0$ [3, Corollary 2.1]. So it is of some interest to see how these length behaves when we do not have any assumptions on depth $G_I(A)$. In general $\lambda(I^3/JI^2)$ is not independent of minimal reduction (see Example 2).

Our result shows that $\lambda(m^3/Jm^2)$ is invariant of minimal reduction J of m.

The fact essentially used in our proof is the following result: let I be an m-primary ideal of A and let J be a reduction of I, and suppose that J is minimally generated by x_1, \ldots, x_n. Then J is a minimal reduction of I if and only if the elements x_1, \ldots, x_n are analytically independent in I and $n = \dim A$. Recall that x_1, \ldots, x_n are analytically independent in I if whenever $f(X_1, \ldots, X_n)$ is a homogeneous polynomial of degree m in...
such that \(f(x_1, \ldots, x_n) \in I^m m \) then all coefficients of \(f \) are in \(m \).

Theorem 1. Let \((A, m)\) be a Cohen-Macaulay local ring of dimension \(d \geq 1 \) with infinite residue field. If \(J \) is a minimal reduction of \(m \) then we have an equality

\[
\lambda(m^3/Jm^2) = e + (d - 1)\mu(m) - \mu(m^2) - \binom{d - 1}{2}.
\]

Proof. When \(d = 1 \) we have to show that \(\mu(m^2) + \lambda(m^3/Jm^2) = e \). This is well known cf. [11, Theorem 6.18]. So we assume that \(\dim A \geq 2 \). We assert that it suffices to construct an exact sequence

\[
(1) \quad 0 \to \left(\frac{A}{m} \right)_{m^d} \xrightarrow{\psi_d} \left(\frac{m}{m^2} \right)^d \xrightarrow{\phi_d} \frac{Jm}{Jm^2} \to 0
\]

Suppose we have the exact sequence as claimed. Then we prove the result as follows: The exact sequence \((1)\) gives that

\[
(2) \quad \lambda \left(\frac{Jm}{Jm^2} \right) = d\mu(m) - \binom{d}{2}
\]

We also have

\[
\lambda(Jm/Jm^2) = \lambda(A/Jm^2) - \lambda(A/Jm) = \lambda(A/m^3) + \lambda(m^3/Jm^2) - \lambda(A/m^2) - \lambda(m^2/Jm) = \lambda(m^2/m^3) + \lambda(m^3/Jm^2) - \lambda(m^2/Jm)
\]

\[
= \mu(m^2) + \lambda(m^3/Jm^2) - (e - (1 + \mu(m) - d))
\]

So by \((2)\) we get

\[
\mu(m^2) + \lambda(m^3/Jm^2) = e - (1 + \mu(m) - d) + d\mu(m) - \binom{d}{2} = (d - 1)\mu(m) + e + d - 1 - \binom{d}{2} = (d - 1)\mu(m) + e - \binom{d - 1}{2}
\]

So it remains to construct the exact sequence \((1)\).

The author thanks the referee for indicating a simpler proof than the original.

Denote the Koszul complex on \(x_1, \ldots, x_d \) by \(K_A(x) \). Consider part of \(K_A(x) \)

\[
A_{m^d} \xrightarrow{\psi_d} A^d \xrightarrow{\phi_d} A.
\]

Then Image \(\Psi_d \subseteq m^{\oplus d} \) and \(\Phi_d(m^{\oplus d}) \subseteq Jm \), which gives a right exact sequence

\[
A_{m^d} \to m^{\oplus d} \to Jm \to 0.
\]
Now tensoring this by A/\mathfrak{m} we get the sequence (1) which is right exact.

Hence we only need to prove that ψ_d is injective. Let $\{e_i \mid 1 \leq i \leq d\}$ and $\{e_i \wedge e_j \mid i < j\}$ be the canonical bases of $(A/\mathfrak{m})^d$ and $(A/\mathfrak{m})^\binom{d}{2}$ respectively. Let $\sum_{i<j} m_{ij} e_i \wedge e_j \in \ker \psi_d$ then $\psi_d(\sum m_{ij} e_i \wedge e_j) = \sum \lambda_i (m_{i+1, i+1} x_{i+1} + \cdots + m_{d, i} x_d)$.

By analyticity we get $m_{ij} \in \mathfrak{m}$ for all j and i. Therefore we have constructed an exact sequence (1) as claimed and as noted before this completes the proof. □

Next we give an example to show that if $I \neq \mathfrak{m}$ then the assertion of Theorem 1. does not hold. This example was constructed by Huckaba [2, 3.1] to show that reduction number of I with respect to to minimal reduction J of I, depends on J.

Example 2. Let $A = k[[x, y]]$ and $I = (x^7, x^6 y, x^2 y^5, y^7)A$. The ideals $J_1 = (x^7, y^7)A$ and $J_2 = (x^7, x^6 y + y^7)$ are minimal reductions of I. Note that all the ideals involved are homogeneous. So to compute lengths $\lambda(I^3/J_1 I^2)$ and $\lambda(I^3/J_2 I^2)$ we may work in the polynomial ring $k[x, y]$ and use some computer algebra package (we used ‘Singular’) to get $\lambda(I^3/J_1 I^2) = 3$, and $\lambda(I^3/J_2 I^2) = 2$.

Our theorem also prompts the following:

Question 3. Let (A, \mathfrak{m}) be a Cohen-Macaulay local ring of dimension $d \geq 1$ with infinite residue field. If J is a minimal reduction of \mathfrak{m} then is $\lambda(\mathfrak{m}^4/J \mathfrak{m}^3)$ independent of J?

Even though I personally think that this question does not have a positive answer, I have not been able to get a counter-example.

References

[1] W. Bruns and J. Herzog, *Cohen-Macaulay rings*, vol. 39, Cambridge studies in advanced mathematics, Cambridge, 1993.

[2] S. Huckaba, Reduction numbers for ideals of higher analytic spread, Math. Proc. Camb. Phil. Soc **102** (1987), 49–57.

[3] ________, A d-dimensional extension of a lemma of Huneke’s and formulas for the Hilbert coefficients, Proc. Amer. Math. Soc **124** (1996), no. 5, 1393–1400.

[4] T. Marley, Hilbert functions of ideals in Coen-Macaulay rings, Ph.D. thesis, Purdue University, 1989.

[5] D. G. Northcott and D. Rees, Reduction of ideals in local rings, Proc. Cambridge. Philos. Soc **50** (1954), 145–158.

[6] G. Valla, On Form rings which are Cohen-Macaulay, J. Algebra **58** (1979), 247–250.

[7] ________, Problems and results on Hilbert functions of graded algebras, Six Lectures in Commutative Algebra, Progress in Mathematics, vol. 166, BIR, Basel, 1998; pp.293-344.

Department of Mathematics, IIT Bombay, Powai, Mumbai 400 076

E-mail address: tputhen@math.iitb.ac.in