Artemisinin-based antimalarial research: application of biotechnology to the production of artemisinin, its mode of action, and the mechanism of resistance of Plasmodium parasites

Paskorn Muangphrom¹ · Hikaru Seki¹ · Ery Odette Fukushima¹,² · Toshiya Muranaka¹

Received: 14 March 2016 / Accepted: 3 May 2016 / Published online: 1 June 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Malaria is a worldwide disease caused by Plasmodium parasites. A sesquiterpene endoperoxide artemisinin isolated from Artemisia annua was discovered and has been accepted for its use in artemisinin-based combinational therapies, as the most effective current antimalarial treatment. However, the quantity of this compound produced from the A. annua plant is very low, and the availability of artemisinin is insufficient to treat all infected patients. In addition, the quantity of this compound produced from the A. annua plant is very low, and the availability of artemisinin is insufficient to treat all infected patients. In addition, the emergence of artemisinin-resistant Plasmodium has been reported recently. Several techniques have been applied to enhance artemisinin availability, and studies related to its mode of action and the mechanism of resistance of malaria-causing parasites are ongoing. In this review, we summarize the application of modern technologies to improve the production of artemisinin, including our ongoing research on artemisinin biosynthetic genes in other Artemisia species. The current understanding of the mode of action of artemisinin as well as the mechanism of resistance against this compound in Plasmodium parasites is also presented. Finally, the current situation of malaria infection and the future direction of antimalarial drug development are discussed.

Keywords Artemisia annua · Artemisinin · Resistant parasites · Malaria · Metabolic engineering · Mode of action

Introduction

As a worldwide disease, malaria has been one of the main cause of illness and death in humans for over a century, especially in sub-Saharan Africa and Southeast Asia. More than 200 million cases of malaria are reported every year; in 2015, there were 214 million cases and 438,000 related deaths [1]. This disease is caused by five species of Plasmodium parasites: P. falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi. Among these, P. falciparum is the major cause of malaria infection in Africa, and P. vivax is the most widely distributed malaria-causing parasite globally [1]. Several antimalarial drugs have been developed since the seventeenth century. However, malaria-causing parasites have developed resistance to these conventional drugs, leading to treatment failure.

In response to the urgent need for new antimalarial drugs, Chinese scientists Professor Youyou Tu and her research group discovered artemisinin, the most effective antimalarial drug derived from Artemisia annua in 1971 [2]. Artemisinin is a sesquiterpene lactone with an endoperoxide bridge, which is necessary for antimalarial activity during multiple stages of parasite development [3–7]. Owing to its rapid action and high effectiveness against malaria, the combination of artemisinin derivatives and other antimalarial drugs, so-called artemisinin-based combination therapies (ACTs), has been recommended as the first-line treatments against malaria since 2006 [8]. ACTs have become the most powerful strategy to prevent malaria and related deaths. Professor Tu was then awarded...
the Nobel Prize in Physiology or Medicine in 2015 for the
discovery of this effective antimalarial compound.

The demand for ACTs increases dramatically each year;
yet, the production yield of artemisinin from A. annua is very
low and varies widely from 0.01 to 2 % dry weight [9].
Alternative approaches, including plant breeding technolo-
gies, synthetic biology, and total and semi-syntheses of
artemisinin, have been investigated to enhance the produc-
tion and reduce the cost of this compound. In addition,
the recent emergence of artemisinin-resistant Plasmodium para-
sites has also become a new challenge to scientists in the
elucidation of the mechanism of resistance and identification
of the new strategies for malaria treatment.

In this review, we summarize recent studies on the
enhancement of artemisinin production and on artemisinin
biosynthetic genes in other Artemisia species, conducted in
our laboratory. In addition, the current understanding of the
mode of action of artemisinin against malaria-causing
parasites and, in turn, the mechanism of resistance of the
parasites to this compound are also presented. Finally, the
current situation of malaria infection and future directions,
including ongoing studies on antimalarial drug develop-
ment, are discussed.

Discovery of artemisinin

Before the discovery of artemisinin, powder derived from
chinchona tree bark had been used to treat malaria since the
seventeenth century. The active compound from this plant,
quinine, was first isolated in 1820 and was used as the only
effective antimalarial drug until the 1920s. The quini-
ne derivative chloroquine was developed as a new
effective antimalarial drug once quinine-resistant Plas-
modium strains appeared. During that time, the insecticide
DDT was widely used to control the spread of infected
mosquitoes as well. However, in the 1960s, increasing of
chloroquine-resistant Plasmodium strains and DDT-resis-
tant mosquitoes became a critical sign of the failure of
malaria prevention and treatment [10].

In response to the urgent need for new antimalarial
drugs, the Chinese government launched a national project
against malaria called Project 523 in 1967 [2]. The group,
led by Professor Youyou Tu, investigated more than 2000
Chinese herbs used as traditional Chinese medicines to
treat fever. Among these herbs, an extract from A. annua
showed highly effective inhibition against growth of
malaria-causing parasites. The active antimalarial compo-
nents were then extracted from the leaves of mature plants
in 1971 [2, 10–12]. After purification, the active anti-
malarial compound, named qinghaosu or artemisinin, was
obtained as colorless needle-like crystals. Its stereochem-
istry and chemical and X-ray crystal structures were
determined and reported several years later [2, 10, 11, 13].
Clinical trials involving either a non-toxic A. annua extract
or pure artemisinin have been conducted since 1972 by
several groups, and all patients in these trials quickly
recovered from the disease [11, 12]. These results clearly
indicated that artemisinin is an effective antimalarial
compound with rapid action and low toxicity.

Despite showing effective antimalarial activity, the low
solubility of artemisinin in both oil and water becomes a
therapeutic limitation of this compound. To address this
problem, many scientists have developed semi-synthetic
drugs and synthesized artemisinin derivatives with higher
solubility. Some of these artemisinin derivatives, which
have been used until the present, include dihy-
droartemisinin, artemether, and artesunate [14]. In addition,
the combination of artemisinin or its derivatives with
other conventional antimalarial drugs greatly increased the
parasite clearance rate in patients and was first recom-
mended as a new strategy for malaria treatment in 1984
[15]. This strategy, known as ACT, has been recommended
by the World Health Organization (WHO) as a first-line
strategy for malaria to prevent recurrence and develop-
ment of resistance in malaria-causing parasites, whereas
the monotherapy is considered as an inappropriate treat-
ment [2, 8, 13, 14, 16].

Biosynthesis of artemisinin and expression pattern
of artemisinin biosynthetic genes in A. annua

A precursor of artemisinin, farnesyl pyrophosphate (FPP,
C_{15}), is synthesized from two C-5 isoprenoid units derived
from the cytosolic mevalonate (MVA) pathway and one
isoprenoid unit derived from the non-mevalonate (MEP or
DXP) pathway [17, 18]. FPP is cyclized to amorpha-4,11-
diene by amorpha-4,11-diene synthase (ADS) [19–21] via
the generation of bisabolyl and 4-amorphenyl cation inter-
mediates [22, 23] (Fig. 1). The following step is the oxida-
tion of amorpha-4,11-diene to artemisinic alcohol by
amorpha-4,11-diene 12-monooxygenase (CYP71AV1)
[24]. This enzyme also catalyzes the oxidation of artemisinic
alcohol to artemisinic aldehyde and artemisinic acid.
In addition, alcohol dehydrogenase 1 (ADH1) and aldehyde
dehydrogenase 1 (ALDH1) also show specific oxidation
activity on artemisinic alcohol into artemisinic aldehyde and
on artemisinic aldehyde into artemisinic acid, respectively
[25, 26]. Artemisinic acid was thought to be the last precursor
of artemisinin. However, it has been revealed that this
compound is converted non-enzymatically into arteann-
uin B and related compounds, rather than artemisinin [27].
The next step of artemisinin biosynthesis is the reduction
of artemisinic aldehyde into dihydroartemisinic aldehyde by
artemisinic aldehyde Δ11(13) reductase (DBR2) [28]. Then,
ALDH1 oxidizes dihydroartemisinic aldehyde into dihydroadamisinic acid, which is converted non-enzymatically into artemisinic [26, 29], as shown in Fig. 1. Rydén et al. [30] discovered dihydroartemisinic aldehyde reductase 1 (RED1), which reduces dihydroartemisinic aldehyde into dihydroadamisinic alcohol. Although the role of RED1 in artemisinin biosynthesis is still unclear, it has been suggested that the silencing of RED1 might increase the production of artemisinin in *A. annua*.

Artemisinin is produced mainly in glandular secretory trichomes (GSTs) and its accumulation level declines as plants mature. Olofsen et al. [31] showed that GSTs of *A. annua* are found in all aerial tissues of plants, but not in roots or hairy roots. The density of GSTs is highest in flower buds and young leaves and decreases as leaves age.

The expression pattern of genes involved in the artemisinin biosynthetic pathway has been investigated extensively for over a decade. The expression of genes in the upstream pathway shows no correlation with the density of GSTs or the accumulation levels of artemisinic intermediates [32]. In contrast, the expression of genes in the downstream pathway is consistent with the density of GSTs in each tissue. The expression of *ADS* is highest in GSTs, high in flower buds and young leaves, low in stems, negligible in old leaves and hairy roots, and not detected in roots [31, 33–37]. *CYP71AV1*, *DBR2*, and *ALDH1* showed similar expression patterns: highest in GSTs and very low in stems and roots. In hairy roots, the expression levels of *CYP71AV1* and *DBR2* are relatively low, but the expression of *ALDH1* is negligible [24, 26, 28, 31]. The expression levels of *CYP71AV1* and *DBR2* in leaves and flowers show similar patterns, as they are high in leaf primordia and flower buds but decrease as leaves and flowers develop [38–40]. The expression pattern of *ALDH1* in leaves at different stages is similar to those of *CYP71AV1* and *DBR2* [31]. Although there is no report on the expression level of *ALDH1* during different stages of flowering, this gene shows higher expression in flowers than in leaves [26, 31]. The expression of *RED1* is relatively low in flower buds, young leaves, and stems. In contrast, the expression of this gene is much higher in old leaves and roots than in young leaves [30, 31]. Interestingly, the expression of *RED1* is approximately 50-fold higher in hairy roots compared with old leaves. Nevertheless, the function of *RED1* in hairy roots has not been established [31].

The expression levels of *ADS* and *ALDH1*, as well as their enzymatic activities in high-artemisinin-producing and low-artemisinin-producing *A. annua* cultivars, show no differences. Even though the expression levels of *CYP71AV1* in these two cultivars are similar, *CYP71AV1* in a high-artemisinin-producing cultivar shows lower enzyme activity, which is suitable for the change in metabolic flux to dihydro-analogues and artemisinin production [41]. In contrast, the activity of *DBR2* in both cultivars shows no significant difference, but the gene encoding this enzyme shows considerably higher expression levels in high-artemisinin-producing cultivars than in low-artemisinin-producing cultivars [42].

Mode of action of artemisinin

Before artemisinin can exert its action, the endoperoxide bridge has to be activated to generate the free radical species. Two activation pathways of artemisinin have been suggested, namely the mitochondrial and heme-mediated degradation pathways [43]. Mitochondria-activated artemisinin is involved in lipid peroxidation inducing cytotoxicity via the generation of reactive oxygen species (ROS) and depolarization of the parasite mitochondrial and plasma membranes [43–47]. In the heme-mediated pathway, two activation models (i.e., a reductive scission model and an open peroxide model) have been proposed, both of which lead to the generation of an active carbon-centered radical [48]. Even though the non-heme Fe(II) ion was suggested to bind and activate artemisinin [7], recent studies showed that heme plays a predominant role in artemisinin activation rather than the Fe(II) ion [5]. In *Plasmodium* spp., heme is produced via endogenous heme biosynthesis at the early ring stage and via hemoglobin digestion at the trophozoite stage. However, the level of
Ca**2+** P/ATP6, an orthologous sarco/endoplasmic reticulum that artemisinin specifically mediated the inhibition of malfunction \[52, 53\]. Eckstein-Ludwig et al. \[54\] showed that artemisinin covalently bonds with this protein, resulting in protein malfunction. However, the formation of the artemisinin-free heme complex shows an inhibitory effect on this conversion \[51\]. A translationally controlled tumor protein (PtTCTP) was also reported as a potential target of artemisinin, as it could form a covalent bond with this protein, resulting in protein malfunction \[52, 53\]. Eckstein-Ludwig et al. \[54\] showed that artemisinin specifically mediated the inhibition of PfATP6, an orthologous sarco/endoplasmic reticulum Ca**2+**-ATPase (SERCA), outside the food vacuole. Recently, five enzymes involved in the key metabolic pathways of the parasite were also reported as potential targets of artemisinin, as it could form a covalent bond with this protein, resulting in protein malfunction \[52, 53\].

Enhancement of artemisinin production

The demand for artemisinin increases every year. Even though total synthesis of artemisinin from commercially available chemicals or semi-synthesis from its intermediates have been reported, all of those methods are costly and require several synthesis steps \[55, 56\]. In this review, we summarize recent studies regarding four approaches to enhance the production of artemisinin: (1) plant breeding technologies, (2) overexpression of genes involved in the artemisinin biosynthesis pathway, (3) direct or indirect upregulation of artemisinin biosynthesis, and (4) heterologous production.

Plant breeding technologies

Conventional plant breeding techniques to select high-artemisinin-producing cultivars have been used for decades. These techniques include cultivation of *A. annua* and collection of cultivars with the desired properties. At present, a robust hybrid *A. annua* is generated from the combination of high-artemisinin-producing and vigorous cultivars to increase the production yield of artemisinin to more than 2% dry weight \[57–59\]. Recently, an alternative approach to increase the production of artemisinin from the cultivation of high-artemisinic acid or dihydroartemisinic acid-producing cultivars was proposed, since a method for the semi-synthesis of artemisinin from these two precursors has been developed \[56, 60\]. Scientists at the University of York used advanced breeding techniques to evaluate the distribution of traits that contribute to artemisinin yield \[61\]. From the screening of 23,000 strains, they succeeded in identifying genes and molecular markers for fast-track breeding, enabling the construction of a detailed genetic map of *A. annua* with nine linkage groups. The established quantitative trait loci (QTL) map is also applicable for rapid identification of *A. annua* parental lines with useful traits for plant breeding. Two hybrids, called Hybrid 1209r *Shennong* and Hybrid 8001r *Zenith*, were developed with high artemisinin productivity of up to 36.3 and 54.5 kg/ha, respectively. The diatel cross approach to determine the combining ability of the robust parental lines for the production of artemisinin high-yielding *A. annua* hybrids was also developed by the same group and showed consistent results with the QTL-based molecular breeding approach \[62\].

Hairy root culture is another method to enhance the production of secondary (specialized) metabolites, owing to its rapid growth capabilities \[63\]. Transformation protocols to obtain hairy roots containing artemisinin from this plant have been reported \[64, 65\]. In our laboratory, we also attempted to establish the conditions for *A. annua* hairy root cultivation. However, we still could not detect even trace amounts of artemisinin or its intermediates from the extract of hairy root cultures by GC–MS (unpublished data). Artemisinin biosynthetic genes are highly expressed in trichomes but almost negligible in root tissue \[31, 33–40\], suggesting that the production of this compound by hairy root cultures could be somewhat difficult. Therefore, the most suitable conditions for hairy root cultures to enhance production of artemisinin must be investigated. In addition, the identification of artemisinin production from root extracts requires extreme care, and NMR spectroscopic and mass spectrometric analyses are required.

Overexpression of genes involved in artemisinin biosynthetic pathway

Metabolic engineering of *A. annua* by overexpressing genes involved in artemisinin biosynthesis has been given more attention during the last 20 years. To obtain successful transformants, several parameters for *Agrobacterium tumefaciens*-mediated transformation, such as the concentration of antibiotics, method and duration of cocultivation, and phytohormones supplied for plant regeneration, have been optimized \[66–71\]. Among various
explants available for transformation, stem internodes and young inflorescence seem to be the most appropriate [70–72]. Phytohormones α-naphthaleneacetic acid and 6-benzylaminopurine are crucial for GST development in young leaves, and root generation also affects GST size [73]. Recently, Kiani et al. [72] developed miniprep methods using A. tunefaciens- and Agrobacterium rhizogenes-mediated transformation. This method exhibits higher transformation rates with faster development of transformants within 3–4 weeks compared with other methods.

The overexpression of several genes involved in artemisinin biosynthesis in A. annua has been evaluated. Overexpression of farnesyl pyrophosphate synthase (FPS) increased artemisinin production up to 2- to 3.6-fold higher than that in the control [74, 75]. Overexpressing CYP71AV1 and its redox partner cytochrome P450 reductase (CPR) in artemisinin biosynthesis could increase artemisinin content in planta by 38 % [76]. Xiang et al. [77] generated dxr- and CYP71AV1/CPR-overexpressing A. annua and found that both transformants increased the production of artemisinin. The overexpression of DBR2 increased the production of artemisinin as well as its precursor dihydroartemisinic acid, up to twofold, compared with non-transgenic plants. It also increased production of artemisinic acid up to 5.48- to 9.06-fold and arteannuin B up to twofold [78]. The reason why overexpression of DBR2 enhanced biosynthesis of artemisinic acid and arteannuin B has not been revealed. However, Yuan et al. [78] hypothesized that excess dihydroartemisinic acid might be converted into artemisinic acid in planta.

Overexpression of multiple genes involved in artemisinin biosynthesis could greatly increase the production of artemisinin in planta. Chen et al. [79] showed that the co-overexpression of FPS, CYP71AV1, and CPR increased artemisinin levels in A. annua up to 3.6-fold. The co-overexpression of HMGR and FPS increased production of artemisinin up to 1.8-fold higher than that in the control [80]. Alam et al. [81, 82] co-overexpressed HMGR and ADS in A. annua and found greatly increased artemisinin levels, up to 7.65-fold, in this transgenic line.

Suppressing the expression of genes involved in the pathways competing with artemisinin biosynthesis is another approach to enhance artemisinin content in planta. Zhang et al. [83] used RNAi techniques to suppress the expression of SQS, the first committed gene in sterol biosynthesis. The suppression of this gene enhanced the production of artemisinin up to 3.14-fold.

Direct or indirect upregulation of artemisinin biosynthesis

The effect of several stresses on production of artemisinin in A. annua has been analyzed since the 1990s. These stresses usually lead to the generation of ROS (required for the last non-enzymatic step in artemisinin biosynthesis) or upregulate the expression of artemisinin biosynthetic genes [84–87]. Details of the stresses placed on artemisinin production have been summarized previously [88, 89], and the appropriate cultivation conditions of A. annua were suggested [9].

Some transcription factors upregulated the expression of artemisinin biosynthetic genes and promoted production of artemisinin in A. annua. The WRKY1 transcription factor is thought to bind to the W-box cis-acting elements of promoters to promote gene expression. It is also involved in the regulation of plant defense responses and developmental and physiological processes. Ma et al. [33] showed that the transcript levels of HMGR, ADS, CYP71AV1, and DBR2 were induced in transient AaWRKY1-overexpressing leaves. Furthermore, the specific overexpression of this transcription factor in GSTs increased transcript levels of CYP71AV1 up to 33-fold, compared with the wild type [90]. AaORA, one of the APETALA2/ethylene response factor (AP2/ERF) transcription factor involved in plant responses to biotic and abiotic stresses, showed a similar expression pattern to those of ADS, CYP71AV1, and DBR2. The overexpression of this transcription factor led to the upregulation of the expression levels of ADS, CYP71AV1, and DBR2 in planta and promoted artemisinin production [91]. Yu et al. [92] also reported the enhancement of artemisinin production via overexpression of two transcription factors from the same family, AaERF1 and AaERF2, which bind to the promoter regions of ADS and CYP71AV1. Another transcription factor that positively regulates the biosynthesis of artemisinin is a basic helix-loop-helix (bHLH) transcription factor, involved in metabolic regulation of various hormones, developmental processes, and regulation of light signaling, iron and phosphate homeostasis, and various abiotic stresses [93]. Recently, Zhang et al. [94] reported that a basic leucine zipper transcription factor (AabZIP1) binds to the ABA-responsive elements (ABRE) of ADS and CYP71AV1 promoters and upregulates the expression of ADS, CYP71AV1, DBR2, and ALDH1.

Several phytohormones upregulating artemisinin biosynthesis have been reported. Treatment with salicylic acid upregulates the expression of HMGR and ADS, as well as induces ROS generation, driving the conversion of dihydroartemisinic acid into artemisinin [95]. Methyl jasmonate (MeJA) promotes the formation of GSTs and enhances the expression of several genes involved in the artemisinin biosynthetic pathway and related transcription factors (ORA and ERF1), leading to the enhancement of artemisinin production [96–98]. This phythohormone also regulates trichome-specific fatty acyl-CoA reductase 1 (TFARI), ABCG transporter unigenes (AaABCG6 and
AaABCG7), and allene oxide cyclase (AaAOC) [96, 99, 100]. TFAR1 is involved in the formation of cuticular wax during GST expansion in A. annua. AaABCG6 and AaABCG7 are ATP-binding cassette transporter G, involved in the development of trichome cuticle and may share a common regulatory system with ADS and CYP71AV1. AaAOC is involved in JA biosynthesis. The expression of this gene may be upregulated by treatment with not only MeJA but also ABA and ethylene [100]. The overexpression of the ABA receptor, AaPYL9, also improves the sensitivity of ABA and promotes artemisinin biosynthesis after ABA treatment [99, 101].

The enhancement of artemisinin production can be achieved by increased GST density. Singh et al. [102] reported that the expression of bgl1, encoding β-glucosidase from Trichoderma reesei, in A. annua improved the density of GSTs in flowers up to 66% and increased the production of artemisinin up to five-fold compared with the control. The expression of rolB and rolC of A. rhizogenes also increases GST density and upregulates the expression of ADS, CYP71AV1, ALDH1, and TFAR1. Artemisinin content is then increased 2- to 9-fold and 4-fold in rolB- and rolC-expressing plants, respectively [103].

Co-cultivation of an endophytic fungus Piriformospora indica and a nitrogen-fixing bacterium Azotobacter chroococcum with A. annua increases artemisinin content up to 70% [104]. This dual symbiosis also shows a positive effect on plant height, dry weight, and leaf yield. Another example of using symbiosis to increase the production of artemisinin was reported using Glomus mosseae and indica, and a nitrogen-fixing bacterium Azotobacter chroococcum [105]. Although clear evidence for the effect of this symbiosis on the enhancement of artemisinin production is still unknown, Arora et al. [104] suggested that it might be due to improved growth and nutrient status of the plant.

Heterologous production

Metabolic engineering of several platforms, such as Nicotiana benthamiana or chloroplasts, has been conducted. Although ADS and CYP71AV1 were introduced into N. benthamiana, the production of artemisinic acid 12-β-diglucoside, instead of artemisinic acid, was detected at 39.5 mg/kg fresh weight (FW) [106]. The production yield of artemisinic acid in tobacco chloroplasts was also very low (0.1 mg/g FW) [107].

The production of plant natural compounds in microorganisms is an alternative approach with several advantages. The metabolic pathways in microorganisms could be modified to produce various types of natural compounds, including isoprenoids, alkaloids, and phenylpropanoids. Microorganisms can grow rapidly, allowing shorter production time compared with the biosynthesis of desired natural compounds in plants. Scaling up production to industrial scale is also possible [108].

The production of artemisinin precursors in microorganisms was first reported in 2003. Martin et al. [109] expressed entire genes encoding the MVA pathway from yeast Saccharomyces cerevisiae in Escherichia coli to increase the intracellular concentration of FPP. To prevent the rapid loss of highly volatile amorph-4,11-diene during culturing, the culture media was overlaid with dodecane to trap amorph-4,11-diene, referred to as a two-phase partitioning bioreactor. As a result, they recovered the volatilized amorph-4,11-diene, improving production titers from 24 mg/L to approximately 500 mg/L in a fed-batch bioreactor [110].

The coexpression of MevT operon with extra copies of HMGR reduced the accumulation of toxic HMG-CoA and increased production of mevalonate by threefold [111]. The replacement of lac by lacUV5 promoter with a codon-optimized MevT and an additional copy of MK also led to the increase in artemisinin production [112]. Tsuruta et al. [113] succeeded in enhancing amorph-4,11-diene production in E. coli up to 27.4 g/L by replacing yeast HMGS and HMGR with the equivalent enzymes from gram-positive bacteria Staphylococcus aureus.

Engineering of the MEP pathway and membrane efflux transporters to improve the production of amorph-4,11-diene in E. coli has been reported as well [114–117]. However, there are many issues regarding the expression of membrane-bound cytochrome P450s in this bacterium posing a limitation on the production of the subsequent oxidized compounds. To overcome these problems, Chang et al. [118] engineered the N-terminal transmembrane domain of the codon-optimized CYP71AV1 and coexpressed it with CPR from A. annua. As a result, production of artemisinic acid (105 mg/L) in this E. coli strain was obtained. Two years later, the same group replaced CYP71AV1 by engineered P450 from gram-positive bacteria Bacillus megaterium (P450bhm3) and could produce artemisinic-11S,12-epoxide at higher than 250 mg/L successfully [119]. From this finding, a novel semi-biosynthetic route for the production of artemisinin stemming from the cleavage of this epoxide followed by several oxidation steps was proposed.

Yeast is another attractive host for the production of artemisinin precursors as it produces FPP for sterol biosynthesis via the MVA pathway. Since the MVA pathway in S. cerevisiae has been characterized, ADS was introduced into this yeast, and an amorph-4,11-diene-producing yeast strain was generated successfully [120]. While there are many issues concerning the expression of cytochrome P450s in E. coli, the expression of this gene in yeast is much more feasible. Therefore, CYP71AV1 and CPR were coexpressed, and all genes involved in the MVA
pathway were upregulated either directly or indirectly. The competing pathway (sterol biosynthetic pathway) was also downregulated using a methionine-repressible promoter to improve the production of artemisinic acid in the yeast expression system. As a result, this transgenic yeast strain produced artemisinic acid at up to 100 mg/L [121, 122]. Several factors were further optimized for the production of artemisinic acid in an industrial fermenter. For example, the carbon source for growing yeast in a fermenter was switched from glucose to galactose, and the oxygen transfer rate was controlled. With this development, called the galactose fed-batch process controlled by the DO-stat algorithm, the artemisinic acid titer increased to 2.5 g/L [123].

Despite conferring a higher production yield of artemisinic acid, the use of galactose is costly and not applicable, especially in developing countries. Thus, lower-cost chemicals are needed as carbon sources. Yeast with \textit{GAL1, GAL7, GAL10, and GAL80} deletions was generated to exclude the use of galactose, and ethanol was alternatively used as a carbon source. Two additional copies of truncated \textit{HMGR (hHMG1)} were integrated into this yeast strain. As a result, the production of amorpha-4,11-diene was increased up to more than 40 g/L [124]. Further development was performed by the introduction of artemisinin biosynthetic genes, \textit{CYP71AV1, CPR, ADH1, and ALDH1}, to oxidize amorpha-4,11-diene into artemisinic acid. Cytochrome \textit{b5 (CYB5)} was also introduced into this strain as it can accelerate cytochrome P450 reactions [125]. High-level production of artemisinic acid, at 25 g/L, was thereby achieved. The semi-synthesis of artemisinin from artemisinic acid was also optimized, and the overall yield after purification increased to 40–45 % [126, 127]. A potent coupled chromatography–crystallization method to purify artemisinin was then developed, and the recovery yield of this antimalarial compound from the reaction mixture increased to 61.5 %, with 99 % purity [128]. All of the transgenes and modifications to several heterologous hosts mentioned here are summarized in Table 1.

Artemisinin biosynthetic genes in non-artemisinin-producing \textit{Artemisia} species

Some studies reported that artemisinin is produced in other \textit{Artemisia} species [129–134]. However, we attempted to isolate artemisinin from other \textit{Artemisia} species but failed to detect any trace amounts of artemisinin or its intermediates (unpublished data). Thus, we analyzed the expression of genes highly homologous to artemisinin biosynthetic genes in these species. Firstly, we selected \textit{A. afra} and \textit{A. absinthium} as they are widely cultivated in Africa and exhibit anti-plasmodial activity [135–138].

Putative \textit{ADS} orthologs were not expressed in either \textit{A. afra} or \textit{A. absinthium} [139]. However, we detected the expression of putative \textit{CYP71AV1} orthologs in both species. Functional analysis revealed that these orthologous enzymes show similar catalytic activities to their correspondent in \textit{A. annua} on the oxidation of amorpha-4,11-diene into artemisinic acid [139]. We also detected the expression of \textit{DBR2} ortholog in \textit{A. absinthium}, and the encoded enzyme showed comparable activity to that of \textit{A. annua DBR2} [140]. In addition, we showed that this plant can convert the fed artemisinin intermediates into the following products along the biosynthetic pathway of artemisinin [140]. Our findings suggest that \textit{ADS} might be a limiting factor for the production of artemisinin in planta, and \textit{A. absinthium} could be an alternative host for artemisinin production. The introduction of \textit{ADS} into \textit{A. absinthium} might lead to the generation of artemisinin-producing \textit{A. absinthium}, which could be used as an alternative approach to produce artemisinin in other \textit{Artemisia} species. To prove this hypothesis, this research is now ongoing in our laboratory.

Next challenge: artemisinin-resistant \textit{Plasmodium} parasites

Artemisinin is the most effective antimalarial drug and has been used as an ACT to treat malaria for over a decade. However, the emergence of artemisinin-resistant \textit{Plasmodium} parasites in Southeast Asia, prolonging the parasite clearance rate in patients, has been reported recently and has become a critical issue [141–144]. No correlation between resistance and other previously proposed candidate targets of artemisinin (\textit{PfATP6} and \textit{PfTCTP}) was detected [145]. However, it has been suggested that the resistance occurs predominantly during the early ring stage of parasite development as a result of the multiple forms of mutations in the \textit{PF3D7_1343700} kelch propeller domain (K13-propeller) on chromosome 13 [146–155]. K13-propeller mutations lead to the increase of phosphatidylinositol-3-kinase (PI3K), which is required for the mediation of cell signaling and survival [156, 157], and prolong parasite development at the ring stage when the activation level of artemisinin is rather low [5, 7, 158]. The B subfamily of ABC transporters, known as multidrug resistance proteins (MDR), also promotes artemisinin resistance. In artemether–lumefantrine post-treatment infections, alleles of \textit{Pfmdr1} tended to have 86N, 184F, and 1246D, rather than the common YYY haplotype, and increased the number of treatment failures [159]. The deletion of \textit{Pfmdr5} induced greater sensitivity to artemisinin treatment, suggesting that this gene might contribute to artemisinin resistance as well [160].
Host	No.	Transgenes or modifications	Product	Yield	References
N. benthamiana	1	P_{ASS}^{+}HMGFR-FPS-ADS, P_{ASS}^{+}CYP71AV1	Artemisinic acid 12-β-diglucoside	39.5 mg/kg FW	[106]
Tobacco chloroplasts	2	P_{mib5}-atoB-HMGMS-HMG-MK-PMK-MVD1, P_{pshB}-E. coli IDI-FPS-ADS-CYP71AV1-AacCPR	Artemisinic acid	0.1 mg/g FW	[107]
E. coli	3	P_{lac}-MevT*, P_{lac}-MBIS*, P_{lac}-ADS	Amorpha-4,11-diene	24 mg/L	[109]
	4	Same as 3 but overlaid with dodecane	Amorpha-4,11-diene	500 mg/L	[110]
	5	P_{BAD}-MevT, P_{BAD}-HMGRI1	Mevalonate	Threefold from CT*	[111]
	6	P_{lac}-PG3-MevT (codon opt.)-MBIS, P_{lac}-ERG12 (codon opt.)-ADS	Amorpha-4,11-diene	293 mg/L	[112]
	7	P_{lac}-PG3-MevT (codon opt.) with HMGs and HMGs from *S. aureus,* P_{lac}-MBIS, P_{lac}-ADS	Amorpha-4,11-diene	27.4 g/L	[113]
	8	P_{BAD}-dxx-IDI-ispDF, ADS with Δpts and optimized medium	Amorpha-4,11-diene	182 mg/L	[114]
	9	P_{TM2}-galP-glk, P_{Tr}-dxx-IDI-ispA-ADS	Amorpha-4,11-diene	201.2 mg/L	[115]
	10	AcrB, TolC (x2), ADS (codon opt.)	Amorpha-4,11-diene	404.83 mg/L	[116]
	11	P_{BAD}-dxx-IDI-ispDF, P_{mmBAD}-ADS, P_{TM1}-macAB-TolC	Amorpha-4,11-diene	~30 mg/L/Od	[117]
	12	Same as 3 with CYP71AV1 (codon opt., engineered N-terminal transmembrane)-AacCPR	Artemisinic acid 11S,12-epoxide	105 mg/L	[118]
	13	Same as 12 but replaced CYP71AV1 with P_{450BM3}	Artemisinic acid	250 mg/L	[119]
S. cerevisiae	14	P_{GAL1}-ADS	Amorpha-4,11-diene	600 μg/L	[120]
	15	P_{GAL1}-HMG R P_{GAL1}-4pc2-1 erg9::P_{MetP}-ERG9 P_{GAL1}-HMG R P_{GAL1}-ERG20, P_{GAL1}-ADS P_{GAL10}-CYP71AV1 P_{GAL1}-AacCPR	Artemisinic acid	100 mg/L	[121, 122]
	16	Same as 15 with optimized culture condition	Artemisinic acid	2.5 g/L	[123]
	17	gal80Δ::nat' MAT a erg9Δ::kan' P_{METP}-ERG9, leu2-3,112::His P_{GAL1}-MVD1 P_{GAL10}-ERG8 hist3Δ1::His P_{GAL1}-ERG12 P_{GAL10}-ERG10ade1Δ::P_{GAL1}-HMG1 P_{GAL10}-ID1 ADE1 ura3-52::P_{GAL1}-HMG1 P_{GAL10}-ERG13 URA3trp1-289::P_{GAL1}-HMG1 P_{GAL10}-ERG20 TRP1 [pAM322]	Artemisinic acid	41 g/L	[124]
	18	Same as 17, but replaced gal80Δ::nat' with gal1Δ gal7A gal10A::hphA	Amorpha-4,11-diene	37 g/L	[124]
	19	gal1Δ,gal10Δ,gal7A::P_{GALF}-CPR1natA, erg9Δ::dsdAP365-CPR1-ERG9, leu2-3,112::kanA P_{GAL7}-AaCYB5 P_{GAL7}-ERG19 P_{GAL7}-ERG8, ade1Δ::P_{GAL1}-HMG1 P_{GAL10}-ID1 ADE1, his3Δ1::hphA P_{GAL7}-AaALDH1 P_{GAL1}-ERG12 P_{GAL10}-ERG10, ura3-52:: P_{GAL7}-HMG1 P_{GAL10}-ERG13hisG, trp1-289:: P_{GAL7}-HMG1 P_{GAL10}-ERG20TRP1, nds80Δ::pT7his6-HEM1His3PPGK1-CTT1, gal80Δ::URA3 P_{GAL7}-AaADH1, [pAM552: 2µ-LEU2d P_{GAL7}-ADS P_{GAL10}-CYP71AV1]	Artemisinic acid	25 g/L	[126, 127]

*a MevT operon consists of atoB-HMGs-HMG

*b MBIS operon consists of ERG12-ERG8-MVD1-IDI-ispA

*c Production yield as compared to control (CT)
Current situation of malaria infection and ongoing studies on antimalarial drug development

Since ACTs have become the major treatment for malaria and strict preventive measures against parasite-infected mosquitoes have been implemented, the malaria-related mortality rate and case incidence have decreased gradually during the past 10 years [1]. Although artemisinin-resistant *Plasmodium* parasites have emerged and show a significant delay in clearance rate, the response of dihydroartemisinin against either wild-type parasites or mutants exhibits similar Km values suggesting that dihydroartemisinin does not lose its activity against the mutants [161]. Extending the treatment courses could be an effective strategy to clear resistant parasite infection. However, the parasites can still develop complete resistance against artemisinin-based treatment at any point in the future. In addition, the proportion of malaria-infected patients is concentrated in countries with low national income levels. Among these, more than 68 million infected children do not receive any ACTs [1]. Therefore, large amounts of low-cost artemisinin for ACTs, by either increasing the cultivation of high-artemisinin-producing *A. annua* plants or developing cheaper synthetic biological processes in the long term, are required to prevent any further development of parasites and meet the demand of ACTs worldwide. Moreover, novel effective antimalarial treatments must be developed continually. Recently, low-cost plant-based artemisinin combination therapy (pACT) has driven attention on the production of no semi-synthetic artemisinin in planta as this treatment showed higher antimalarial activity, and the synergistic effect of artemisinin and the plant matrix overcame resistance to artemisinin [162–169]. Several scientists have also focused on the investigation of novel potential drug targets [170–180] and on the synthesis of novel antimalarial compounds including artemisinin hybrids [181–186]. Still, further studies on these avenues are required.

Conclusion

Several approaches to enhance the production of artemisinin have been investigated for over a decade. As a result, the availability of artemisinin for ACTs is increasing, and the number of malaria-related deaths is decreasing gradually. Although artemisinin is still effective against malaria-causing parasites, the emergence of artemisinin-resistant strains has posed a new challenge to scientists worldwide. Therefore, elucidating the mode of action of artemisinin and the mechanism of resistance against this compound in *Plasmodium* parasites is important for further development of antimalarial drugs. We hope that the current understanding of artemisinin as summarized in this review will provide clues for further investigation and development of antimalarial treatments to overcome artemisinin resistance in *Plasmodium* parasites in the future.

Acknowledgments This work was supported by a Grant-in-Aid for Scientific Research (23780104) and a research grant from the Shorai Foundation for Science and Technology to H.S.; Frontier Research Base for Global Young Researcher, Osaka University from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT) to E.O.F.; and the Monbukagakusho Scholarship to P.M.

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. World Health Organization (2015) World malaria report 2015. World Health Organization, Geneva
2. Tu Y (2011) The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med 17:1217–1220
3. de Ridder S, van der Kooy F, Verpoorte R (2008) *Artemisia annua* as a self-reliant treatment for malaria in developing countries. J Ethnopharmacol 120:302–314
4. van Agtmael MA, Eggetle TA, van Boxtel CJ (1999) Artemisinin drugs in the treatment of malaria: from medicinal herb to registered medication. Trends Pharmacol Sci 20:199–205
5. Wang J, Zhang CJ, Chia WN, Loh CCY, Li Z, Lee YM, He Y, Yuan LX, Lim TK, Liu M, Liew CX, Lee YQ, Zhang J, Lu N, Lim CT, Hua ZC, Liu B, Shen HM, Tan KS, Lin Q (2015) Haem-activated promiscuous targeting of artemisinin in *Plasmodium falciparum*. Nat Commun 6:10111
6. Wilcox M (2009) *Artemisia* species: from traditional medicines to modern antimalaria—and back again. J Altern Complement Med 15:101–109
7. Klonis N, Creek DJ, Tilley L (2013) Iron and heme metabolism in *Plasmodium falciparum* and the mechanism of action of artemisinins. Curr Opin Microbiol 16:722–727
8. World Health Organization (2006) Guidelines for the treatment of malaria, 1st edn. World Health Organization, Geneva
9. Ferreira JFS, Laughlin JC, Delabays N, de Magalhães PM (2005) Cultivation and genetics of *Artemisia annua* L. for increased production of the antimalarial artemisinin. Plant Genet Resour 3:206–229
10. Chang Z (2015) The discovery of qinghaosu (artemisinin) as an effective anti-malaria drug: a unique China story. Sci China Life Sci 59:1–8
11. Miller LH, Su X (2011) Artemisinin: discovery from the Chinese herbal garden. Cell 146:855–858
12. Su XZ, Miller LH (2015) The discovery of artemisinin and the Nobel Prize in Physiology or Medicine. Sci China Life Sci 58:1175–1179
13. Liao F (2009) Discovery of artemisinin (qinghaosu). Molecules 14:5362–5366
14. World Health Organization (2015) Guidelines for the treatment of malaria, 3rd edn. World Health Organization, Geneva
15. Li G, Arnold K, Guo X, Jian H, Fu L (1984) Randomised comparative study of mefloquine, qinghaosu, and pyrimethamine–sulfadoxine in patients with falciparum malaria. Lancet 2:1360–1361
16. Brown GD (2010) The biosynthesis of artemisinin (qinghaosu) and the phytochemistry of Artemisia annua L. (qinghao). Molecules 15:7603–7698
17. Towler MJ, Weathers PJ (2007) Evidence of artemisinin production from IPP stemming from both the mevalonate and the nonmevalonate pathways. Plant Cell Rep 26:2129–2136
18. Schramek N, Wang H, Römisch-Margl W, Keil B, Radykewicz T, Winzenhörlin B, Beerheus L, Bacher A, Rohdich F, Gershenzon J, Liu B, Eisenreich W (2010) Artemisinin biosynthesis in growing plants of Artemisia annua. A 13CO2 study. Phytochemistry 71:179–187
19. Bouwmeester HJ, Wallaart TE, Janssen MHA, van Loo B, Jansen BMJ, Posthumus MA, Schmidt CO, De Kraker JW, König WA, Franssen MCR (1999) Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis. Phytochemistry 52:843–854
20. Chang YJ, Song SH, Park SH, Kim SU (2000) Amorpha-4,11-diene synthase of Artemisia annua: cDNA isolation and bacterial expression of a terpen synthase involved in artemisinin biosynthesis. Arch Biochem Biophys 383:178–184
21. Mercke P, Bengtsson M, Bouwmeester HJ, Posthumus MA, Brodelius PE (2000) Molecular cloning, expression and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua. Arch Biochem Biophys 381:173–180
22. Kim SH, Heo K, Chang YJ, Park SH, Rhee SK, Kim SU (2006) Cyclization mechanism of amorpha-4,11-diene synthase, a key enzyme in artemisinin biosynthesis. J Nat Prod 69:758–762
23. Picaud S, Mercke P, He X, Sterner O, Brodelius M, Cane DE, Brodelius PE (2006) Amorpha-4,11-diene synthase: mechanism and stereochemistry of the enzymatic cyclization of farnesyldiphosphate. Arch Biochem Biophys 448:150–155
24. Teoh KH, Polichuk DR, Reed DW, Nowak G, Covello PS (2006) Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the sesquiterpene lactone artemisinin. FEBS Lett 580:1411–1416
25. Polichuk D, Teoh KH, Zhang Y, Ellens KW, Reed DW, Covello PS (2010) Nucleotide sequence encoding an alcohol dehydrogenase from Artemisia annua and uses thereof. Patent No. WO2010/012074
26. Teoh KH, Polichuk DR, Reed DW, Covello PS (2009) Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua. Botany 87:635–642
27. Brown GD, Sy LK (2007) In vivo transformations of artemisinic acid in Artemisia annua plants. Tetrahedron 63:9548–9566
28. Zhang Y, Teoh KH, Reed DW, Maes L, Goossens A, Olson DH, Ross ARS, Covello PS (2008) The molecular cloning of artemisinic aldehyde Δ11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua. J Biol Chem 283:21501–21508
29. Brown GD, Sy LK (2004) In vivo transformations of dihydroartemisinic acid in Artemisia annua plants. Tetrahedron 60:1139–1159
30. Rydén AM, Ruyter-Spira C, Quax WJ, Osada H, Muranaka T, Kayser O, Bouwmeester H (2010) The molecular cloning of dihydroartemisinic aldehyde reductase and its implication in artemisinin biosynthesis in Artemisia annua. Planta Med 76:1778–1783
31. Olofsson L, Engström A, Lundgren A, Brodelius PE (2011) Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L. BMC Plant Biol 11:45
32. Arsenault PR, Vail D, Wobbe KK, Erickson K, Weathers PJ (2010) Reproductive development modulates gene expression and metabolite levels with possible feedback inhibition of artemisinin in Artemisia annua. Plant Physiol 154:958–968
33. Ma D, Pu G, Lei C, Ma L, Wang H, Guo Y, Chen J, Du Z, Wang H, Li G, Ye H, Liu B (2009) Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4,11-diene synthase gene, a key gene of artemisinin biosynthesis. Plant Cell Physiol 50:2146–2161
34. Li QZ, Liu Y, Liu BY, Wang H, Ye HC, Li GF (2006) Cloning, E. coli expression and molecular analysis of amorpha-4,11-diene synthase from a high-yield strain of Artemisia annua L. J Integr Plant Biol 48:1486–1492
35. Pu GB, Ma DM, Wang H, Ye HC, Liu BY (2013) Expression and localization of amorpha-4,11-diene synthase in Artemisia annua L. Plant Mol Biol Rep 31:32–37
36. Kim SH, Chang YJ, Kim SU (2008) Tissue specificity and development pattern of amorpha-4,11-diene synthase (ADS) proved by ADS promoter-driven GUS expression in the heterologous plant, Arabidopsis thaliana. Planta Med 74:188–193
37. Wang H, Olofsson L, Lundgren A, Brodelius PE (2011) Trihrome-specific expression of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua, as reported by a promoter-GUS fusion. Am J Plant Sci 2:619–628
38. Wang Y, Yang K, Jing F, Li M, Deng T, Huang R, Wang B, Wang G, Sun X, Tang KX (2011) Cloning and characterization of trichome-specific promoter of cp71av1 gene involved in artemisinin biosynthesis in Artemisia annua. Mol Biol Rep 38:751–758
39. Wang H, Han J, Kanagarajan S, Lundgren A, Brodelius PE (2013) Trichrome-specific expression of the amorpha-4,11-diene 12-hydroxydihydroartemisinin (cyp71av1) gene, encoding a key enzyme of artemisinin biosynthesis in Artemisia annua, as reported by a promoter-GUS fusion. Plant Mol Biol 81:119–138
40. Jiang W, Lu X, Qiu B, Zhang F, Shen Q, Lv Z, Fu X, Yan T, Guo E, Zhu M, Chen L, Zhang L, Wang G, Sun X, Tang Y (2014) Molecular cloning and characterization of a trichrome-specific promoter of artemisinic aldehyde Δ11(13) reductase (DBR2) in Artemisia annua. Plant Mol Biol Rep 32:82–91
41. Ting HM, Wang B, Rydén AM, Woitiez L, van Herpen T, Verstappen FWA, Ruyter-Spira C, Beekwilder J, Bouwmeester HJ, van der Krol A (2013) The metabolite chemotype of Nicotiana benthamiana transiently expressing artemisinin biosynthetic pathway genes is a function of CYP71AV1 type and relative gene dosage. New Phytol 199:352–366
42. Yang K, Monafared RS, Wang H, Lundgren A, Brodelius PE (2015) The activity of the artemisinic aldehyde Δ11(13) reductase promoter is important for artemisinin yield in different chemotypes of Artemisia annua L. Plant Mol Biol 88:325–340
43. Sun C, Li J, Cao Y, Long G, Zhou B (2015) Two distinct and competitive pathways confer the cellcidal actions of artemisinins. Microb Cell 2:14–25
44. Wang J, Huang L, Li J, Fan Q, Long Y, Li Y, Zhou B (2010) Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation. PLoS One 5:e9582
45. Mercer AE, Copple IM, Maggs JL, O’Neill PM, Park BK (2011) The role of heme and the mitochondrion in the chemical and...
molecular mechanisms of mammalian cell death induced by the artemisinin antimalarials. J Biol Chem 286:987–996

46. Hartwig CL, Rosenthal AS, Angelo JD, Griffin CE, Posner GH, Cooper RA (2009) Accumulation of artemisinin trioxane derivatives within neutral lipids of Plasmodium falciparum malaria parasites is endoperoxide-dependent. Biochem Pharmacol 77:322–336

47. Antoine T, Fisher N, Amewu R, O'Neill PM, Ward SA, Biagini U, Eckstein-Ludwig U, Webb RJ, van Goethem IDA, East JM, Lee GA (2014) Advances in the reaction with the antimalarial drug artemisinin. J Biol Chem 289:32818–32828

48. Delabays N, Simonnet X, Gaudin M (2001) The genetics of its reaction with the antimalarial drug artemisinin. J Biol Chem 276:16192–16198

49. Klonis N, Crespo-Ortiz MP, Bottova I, Abu-Bakar N, Kenny S, O'Neill PM, Ward SA, Biagini U, Eckstein-Ludwig U, Webb RJ, van Goethem IDA, East JM, Lee GA (2014) Artemisinin target the SERCA of Plasmodium falciparum. In Vitro Cell Dev Biol Plant 50:322–336

50. Xie SC, Dogovtsi S, Hanssen E, Chia F, Yang X, Zhang X (2014) Advances in the translationally controlled tumor protein homolog and its reaction with the antimalarial drug artemisinin. J Cell Sci 127:406–416

51. Chugh M, Sundararaman V, Kumar S, Reddy VS, Siddiqui WA, Stuart KD, Malhotra P (2013) Protein complex directs hemozoin formation in Plasmodium falciparum. Proc Natl Acad Sci USA 110:5392–5397

52. Bhasuthirthan J, Pan XQ, Hossler PA, Walker DJ, Yowell CA, Carlton J, Dame JB, Meshnick SR (1998) The Plasmodium falciparum translationally controlled tumor protein homolog and its reaction with the antimalarial drug artemisinin. J Biol Chem 273:16192–16198

53. Eichhorn T, Winter D, Büchele B, Dirdjaja N, Frank M, Lehmann WD, Mertens R, Krauth-Siegel RL, Simmet T, Granzin J, Effert T (2013) Molecular interaction of artemisinin with translationally controlled tumor protein (TCTP) of Plasmodium falciparum. Biochem Pharmacol 85:38–45

54. Eckstein-Ludwig U, Webb RJ, van Goethem IDA, East JM, Lee AG, Kimura M, O'Neill PM, Bray PG, Ward SA, Krishna S (2003) Artemisinin target the SERCA of Plasmodium falciparum. Nature 424:957–961

55. Lovelock PS (2006) Making artemisinin. Phytochemistry 69:2881–2885

56. Wang Z, Yang L, Yang X, Zhang X (2014) Advances in the chemical synthesis of artemisinin. Synth Commun 44:1987–2003

57. Jain DC, Mathur AK, Gupta MM, Singh AK, Verma RK, Gupta AP, Kumar S (1996) Isolation of high artemisinin-yielding clones of Artemisia annua. Phytochemistry 43:993–1001

58. Delabays N, Simonnet X, Gaudin M (2001) The genetics of artemisinin content in Artemisia annua L. and the breeding of high yielding cultivars. Curr Med Chem 8:1795–1801

59. Cockram J, Hill C, Burns C, Arro RR, Woolley JG, Flockart I, Robinson T, Atkinson CJ, Davies MJ, Dungey N, Greenland AJ, Smith LLMJ, Bentley S (2012) Screening a diverse collection of Artemisia annua germplasm accessions for the antimalarial compound, artemisinin. Plant Cell Tissue Organ Cult 103:255–265

60. Larson TR, Branigan C, Harvey D, Penfield T, Bowles D, Graham IA (2015) A survey of artemisinic and dihydroartemisinic acid contents in glasshouse and global field-grown populations of the artemisinin-producing plant Artemisia annua L. Ind Crops Prod 45:1–6

61. Graham IA, Besser K, Blumer S, Branigan CA, Czechowski T, Elias L, Guterman I, Harvey D, Isaac PG, Khan AM, Larson TR, Li Y, Pawson T, Penfield T, Rae AM, Rathbone DA, Reid S, Ross J, Smallwood MF, Segura V, Townsend T, Vyas D, Winzer T, Bowles D (2010) The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science 327:328–331

62. Townsend T, Segura V, Chigeza G, Penfield T, RAE A, Harvey D, Bowles D, Graham IA (2013) The use of combining ability analysis to identify elite parents for Artemisia annua F1 hybrid production. PLoS One 8:e61989

63. Muranaka T, Saito K (2010) Production of pharmaceuticals by plant tissue cultures. In: Mander L, Lu HW (eds) Comprehensive natural products II: chemistry and biology. Development and modification of bioactivity, vol 3. Elsevier, Oxford, pp 615–628

64. Weathers PJ, Elkholy S, Wobbe KK (2006) Artemisinin: the biosynthetic pathway and its regulation in Artemisia annua, a terpenoid-rich species. In Vitro Cell Dev Biol Plant 42:309–317

65. Liu C, Zhao Y, Wang Y (2006) Artemisinin: current state and perspectives for biotechnological production of an antimalarial drug. Appl Microbiol Biotechnol 74:11–20

66. Vergauwe A, Cammaert R, Vandenberghe D, Genetelo C, Inze D, Van Montagu M, Van den Eeckhout E (1996) Agrobacterium tumefaciens-mediated transformation of Artemisia annua L. and regeneration of transgenic plants. Plant Cell Rep 15:929–933

67. Vergauwe A, Van Gelder E, Inze D, Van Montagu M, Van den Eeckhout E (1998) Factors influencing Agrobacterium tumefaciens-mediated transformation of Artemisia annua L. Plant Cell Rep 18:105–110

68. Han JL, Wang H, Ye HC, Liu Y, Li QZ, Zhang Y, Zhang YS, Yan F, Li GF (2005) High efficiency of genetic transformation and regeneration of Artemisia annua L. via Agrobacterium tumefaciens-mediated procedure. Plant Sci 168:73–80

69. Lualon W, De-Eknamkul W, Tanaka H, Shoyama Y, Patalun W (2008) Artemisinin production by shoot regeneration of Artemisia annua L. using thidiazuron. Z Naturforsch 63:96–100

70. Tian N, Liu S, Ting H, Huang J, van der Krol S, Bouwmeester H, Liu Z (2013) An improved Agrobacterium tumefaciens mediated transformation of Artemisia annua L. by using stem internodes as explants. Czech J Genet Plant Breed 49:123–129

71. Wang J, Nie J, Pattanaik S, Yuan L (2016) Efficient Agrobacterium tumefaciens-mediated transformation of Artemisia annua L. using young inflorescence. In Vitro Cell Dev Biol 52:204–211

72. Kiani BH, Suberu J, Barker GC, Mirza B (2014) Development of efficient mini prep transformation methods for Artemisia annua using Agrobacterium tumefaciens and Agrobacterium rhizogenes. In Vitro Cell Dev Biol 50:590–600

73. Nguyen KT, Towler MJ, Weathers PJ (2013) The effect of roots and media constituents on trichomes and artemisinin production in Artemisia annua L. Plant Cell Rep 32:207–218

74. Chen DH, Ye HC, Li GF (2000) Expression of a chimeric farnesyl diphosphate synthase gene in Artemisia annua L. via Agrobacterium tumefaciens transformation of Artemisia annua L. using Agrobacterium tumefaciens-mediated transformation. Plant Sci 155:179–185

75. Banyai W, Kirdmanee C, Mii M, Supaibulwatana K (2010) Factors affecting artemisinin content and growth of Artemisia annua L. transgenic plants via Agrobacterium tumefaciens-mediated procedure. Plant Sci 168:73–80

76. Shen Q, Chen YF, Wang T, Wu SY, Lu X, Zhang L, Zhang FY, Jiang WM, Wang GF, Tang KX (2012) Overexpression of farnesyl pyrophosphate synthase (FPS) gene increased artemisinin content in the plants of Artemisia annua L. and media constituents on trichomes and artemisinin production. J Plant Physiol 169:251–256
78. Yuan Y, Liu W, Zhang Q, Xiang L, Liu X, Chen M, Lin Z, Wang Q, Liao Z (2015) Overexpression of artemisinic aldehyde Δ11(13) reductase gene-enhanced artemisinin and its relative metabolite biosynthesis in transgenic Artemisia annua L. Biotechnol Appl Biochem 62:17–23

79. Chen Y, Shen Q, Wang Y, Wang T, Wu S, Zhang L, Lu X, Zhang F, Jiang W, Qiu B, Gao E, Sun X, Tang K (2013) The stacked over-expression of FPS, CYP71AV1 and CPR genes leads to the increase of artemisinin level in Artemisia annua L. Plant Biotechnol Rep 7:287–295

80. Wang Y, Jing F, Yu S, Chen Y, Wang T, Liu P, Wang G, Sun X, Tang K (2011) Co-overexpression of the HMGR and FPS genes enhances artemisinin content in Artemisia annua L. J Med Plant Res 51:3396–3403

81. Alam P, Abdin MZ (2011) Over-expression of HMG-CoA reductase and amorphoa-4,11-diene synthase genes in Artemisia annua L. and its influence on artemisinin content. Plant Cell Rep 30:1919–1928

82. Alam P, Kamaludding Sharaf-Eldin MA, Elkholy SF, Abdin MZ (2015) The effect of over-expression of rate limiting enzymes on the yield of artemisinin in Artemisia annua. Rend Fis Acc Lincei 27:311–319

83. Zhang L, Jin F, Li F, Li M, Wang Y, Wang G, Sun X, Tang K (2009) Development of transgenic Artemisia annua (Chinese wormwood) plants with an enhanced content of artemisinin, an effective anti-malarial drug, by hairpin-RNA-mediated gene silencing. Biotechnol Appl Biochem 52:199–207

84. Ferreira JFS (2007) Nutrient deficiency in the production of artemisinin, dihydroartemisinic acid, and artemisinic acid in Artemisia annua L. J Agric Food Chem 55:1686–1694

85. Wang ML, Jiang YS, Wei JQ, Wei X, Qi XX, Jiang SY, Wang ZM (2007) Effects of irradiance on growth, photosynthetic characteristics, and artemisinin content of Artemisia annua L. Photosynthetica 46:17–20

86. Pan WS, Zheng LP, Tian H, Li WY, Wan JW (2014) Transcriptome responses involved in artemisinin production in Artemisia annua L. under UV-B radiation. J Photochem Photobiol B 140:292–300

87. Marchese JA, Ferreira JFS, Rehder VLG, Rodrigues O (2010) Water deficit effect on the accumulation of biomass and artemisinin in annual wormwood (Artemisia annua L., Asteraceae). Braz J Plant Physiol 22:1–9

88. Nguyen KT, Artenault PR, Weathers PJ (2011) Trichomes + roots + ROS = artemisinin: regulating artemisinin biosynthesis in Artemisia annua L. In Vitro Cell Dev Biol Plant 47:329–338

89. Pandey N, Pandey-Rai S (2016) Updates on artemisinin: an insight to mode of actions and strategies for enhanced global production. Protoplasma 253:15–30

90. Han J, Wang H, Lundgren A, Brodelius PE (2014) Effects of overexpression of AaWRKY1 on artemisinin biosynthesis in transgenic Artemisia annua plants. Phytochemistry 102:89–96

91. Lu X, Zhang L, Zhang F, Jiang W, Shen Q, Zhang L, Lv Z, Wang G, Tang K (2013) AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol 198:1191–1202

92. Yu ZX, Li JX, Yang CQ, Hu WL, Wang LJ, Chen XY (2012) The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Mol Plant 5:353–365

93. Ji Y, Xiao J, Shen Y, Ma D, Li Z, Pu G, Li X, Huang L, Liu B, Ye H, Wang H (2014) Cloning and characterization of AabHLH1, a BHLH transcription factor that positively regulates artemisinin biosynthesis in Artemisia annua. Plant Cell Physiol 55:1592–1604

94. Zhang F, Fu X, Lv Z, Lu X, Shen Q, Zhang L, Zhu M, Wang G, Sun X, Liao Z, Tang K (2015) A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua. Mol Plant 8:163–175

95. Pu GB, Ma DM, Chen JL, Ma LQ, Wang H, Li GF, Ye HC, Liu BY (2009) Salicylic acid activates artemisinin biosynthesis in Artemisia annua L. Plant Cell Rep 25:1127–1135

96. Maes L, Van Nieuwerburgh FCW, Zhang Y, Reed DW, Pollier J, Vande Casteele SRF, Inzé D, Covello PS, Deforce DLD, Goossens A (2011) Dissection of the phytohormonal regulation of trichome formation and biosynthesis of the antimalarial compound artemisinin in Artemisia annua plants. New Phytol 189:176–189

97. Caretto S, Quarta A, Durante M, Nisi R, De Paolis A, Blundo F, Mita G (2011) Methyl jasmonate and miconazole differently affect artemisinin production and gene expression in Artemisia annua suspension cultures. Plant Biol 13:51–58

98. Xiang L, Zhu S, Zhao T, Zhang M, Liu W, Chen M, Lan X, Liao Z (2015) Enhancement of artemisinin content and relative expression of genes of artemisinin biosynthesis in Artemisia annua by exogenous MeJA treatment. Plant Growth Regul 75:435–441

99. Zhang L, Lu X, Shen Q, Chen Y, Wang T, Zhang F, Wu S, Jiang W, Liu P, Zhang L, Wang Y, Tang K (2012) Identification of putative Artemisia annua ABCG transporter unigenes related to artemisinin yield following expression analysis in different plant tissues and in response to methyl jasmonate and abscisic acid treatments. Plant Mol Biol Rep 30:838–847

100. Lu X, Lin X, Shen Q, Zhang F, Wang Y, Chen Y, Wang T, Wu S, Tang K (2011) Characterization of the jasmonate biosynthetic gene allene oxide cyclase in Artemisia annua, source of the antimalarial drug artemisinin. Plant Mol Biol Rep 29:489–497

101. Zhang F, Lu X, Lv Z, Zhang L, Zhu M, Jiang W, Wang G, Sun X, Tang K (2013) Overexpression of the Artemisia orthologue of ABA receptor, AaPYL9, enhances ABA sensitivity and improves artemisinin content in Artemisia annua L. PLoS One 8:e56697

102. Singh ND, Kumar S, Daniell H (2016) Expression of β-glucosidase increases trichome density and artemisinin content in transgenic Artemisia annua plants. Plant Biotechnol J 14:1034–1045

103. Dilshad E, Casido RM, Palazon J, Estrada KR, Bonfill M, Mirza B (2015) Enhanced artemisinin yield by expression of rol genes in Artemisia annua. Malar J 14:424

104. Arora M, Saxena P, Choudhary DK, Abdin MZ, Varma A (2016) Dual symbiosis between Piriformospora indica and Azotobacter chroococcum enhances the artemisinin content in Artemisia annua L. World J Microbiol Biotechnol 32:19

105. Awasthi A, Bhatti N, Nair P, Singh R, Shukla AK, Gupta MM, Darokar MP, Kalra A (2011) Synergetic effect of Glomus mosseae and nitrogen fixing Bacillus subtilis strain Daz26 on artemisinin content in Artemisia annua L. Appl Soil Ecol 49:125–130

106. van Herpen TWJM, Cankar K, Nogueira M, Bosch D, Bouwmeester HJ, Beekwilder J (2010) Nicotiana benthamiana as a production platform for artemisinin precursors. PLoS One 5:e14222

107. Saxena B, Subramanayan M, Malhotra K, Bhavesh NS, Potlakayala SD, Kumar S (2014) Metabolic engineering of chloroplasts for artemisinic acid biosynthesis and impact on plant growth. J Biosci 39:33–41

108. Marienhagen J, Bott M (2013) Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 163:166–178
109. Martin VJI, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in *Escherichia coli* for production of terpenoids. Nat Biotechnol 21:796−802
110. Newman JD, Marshall J, Chang M, Nowroozi F, Paradise E, Pitera D, Newman KL, Keasling JD (2006) High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered *Escherichia coli*. Biotechnol Bioeng 95:684−691
111. Pitera DJ, Paddon CJ, Newman JD, Keasling JD (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in *Escherichia coli*. Metab Eng 9:193−207
112. Anthony JR, Anthony LC, Nowroozi F, Kwon G, Newman JD, Keasling JD (2009) Optimization of the mevalonate-based isoprenoid biosynthetic pathway in *Escherichia coli* for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab Eng 11:13−19
113. Tsuru TA, Pitter DJ, Eng D, Lenihan JR, Horning T, Anthony LC, Regentin R, Keasling JD, Renninger NS, Newman JD (2009) High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in *Escherichia coli*. PLoS One 4:e4489
114. Zhang C, Chen X, Zou R, Zhou K, Stephanopoulos G, Too HP (2013) Combining genotype improvement and statistical media optimization for isoprenoid production in *E. coli*. PLoS One 8:e75164
115. Zhang C, Zou R, Chen X, Stephanopoulos G, Too HP (2015) Experimental design-aided systematic pathway optimization of glucose uptake and deoxyxylulose phosphate pathway for improved amorpha-4,11-diene production. Appl Microbiol Biotechnol 99:3825−3837
116. Wang XF, Xiong ZQ, Li SY, Wang Y (2013) Enhancing isoprenoid production through systematically assembling and modulating efflux pumps in *Escherichia coli*. Appl Microbiol Biotechnol 97:8057−8067
117. Zhang C, Chen X, Stephanopoulos G, Too HP (2016) Efflux transporter engineering markedly improves amorphadiene production in *Escherichia coli*. Biotechnol Bioeng. doi:10.1002/bit.25943
118. Chang MCY, Eaux RA, Trieu W, Ro DK, Keasling JD (2007) Engineering *Escherichia coli* for production of functionalized terpenoids using plant P450s. Nat Chem Biol 3:274−277
119. Dietrich JA, Yoshikuni Y, Fisher KJ, Woolard FX, Ockey D, McPhee DJ, Renninger NS, Chang MCY, Baker D, Keasling JD (2009) A novel semi-biosynthetic route for artemisinin production using engineered substrate-promiscuous P450 BM3. ACS Chem Biol 4:261−267
120. Lindahl AL, Olsson ME, Mercke P, Tollbom O, Schelin J, Brodelius M, Brodelius PE (2006) Production of the artemisinin precursor amorpha-4,11-diene by engineered *Saccharomycyes cerevisiae*. Biotechnol Lett 28:571−580
121. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eaux RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940−943
122. Ro DK, Ouellet M, Paradise EM, Burd H, Eng D, Paddon CJ, Newman JD, Keasling JD (2008) Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid. BMC Biotechnol 8:83
123. Lenihan JR, Tsuru T, Diola D, Renninger NS, Regentin R (2008) Developing an industrial artemisinic acid fermentation process to support the cost-effective production of antimalarial artemisinin-based combination therapies. Biotechnol Prog 24:1026−1032
124. Westfall PJ, Pitera DJ, Lenihan JR, EngD Woolard FX, Regentin R, Horning T, Tsuru T, Melis DJ, Owens A, Fickes S, Diola D, Benjamin KR, Keasling JD, Leavell MD, McPhee DJ, Renninger NS, Newman JD, Paddon CJ (2012) Production of amorpha-4,11-diene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci USA 109:E111−E118
125. Schenkman JB, Janson I (2003) The many roles of cytochrome b5. Pharmacol Ther 97:139−152
126. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Iqbal H, Kizer L, Lieu B, Melis D, Moses N, Regentin R, Secret S, Tsuruta T, Vazquez R, Westblad LF, Xu L, Yu M, Zhang Y, Zhao L, Lievens J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528−532
127. Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev 12:355−367
128. Horvath Z, Horosanskaia E, Lee JW, Lorenz H, Gilmore K, Seeberger PH, Seidel-Morgenstern A (2015) Recovery of artemisinin from a complex reaction mixture using continuous chromatography and crystallization. Org Process Res Dev 19:624−634
129. Mannan A, Shaheen N, Arshad W, Qureshi RA, Zia M, Mirza B (2008) Hairy roots induction and artemisinin analysis in *Artemisia dubia* and *Artemisia indica*. Afr J Biotechnol 7:3288−3292
130. Mannan A, Ahmed I, Arshad W, Asim MF, Qureshi RA, Hussain I, Mirza B (2010) Survey of artemisinin production by diverse *Artemisia* species in northern Pakistan. Malar J 9:310
131. Mannan A, Ahmed I, Arshad W, Hussain I, Mirza B (2011) Effects of vegetative and flowering stages on the biosynthesis of artemisinin in *Artemisia* species. Arch Pharm Res 34:1657−1661
132. Arab HA, Rahbari S, Rassouli A, Moslemi MH, Khosravirad F (2006) Determination of artemisinin in *Artemisia sieberi* and anticcocoidal effects of the plant extract in broiler chickens. Trop Anim Health Prod 38:497−503
133. Zia M, Mannan A, Chaudhary MF (2007) Effect of growth regulators and amino acids on artemisinin production in the callus of *Artemisia absinthium*. Pak J Bot 39:799−805
134. Dilshad E, Casido RM, Estrada KR, Bonfill M, Mirza B (2015) Genetic transformation of *Artemisia carvifolia* Buch with rol genes enhances artemisinin accumulation. PLoS One 10:e0140266
135. Nibret E, Wink M (2009) Volatile components of four Ethiopian *Artemisia* species extracts and their in vitro antitrypanosominal and cytotoxic activities. Phytomedicine 17:369−374
136. Kraft C, Jenett-I-Siemens K, Siemons K, Jakupovic J, Mavi S, Bienzle KK, Renninger NS, Newman JD, Paddon CJ (2013) Production of amorpha-4,11-diene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci USA 109:E111−E118
functional analysis of CYP71AV1 natural variants reveals an important residue for the successive oxidation of amorpha-4,11-diene. FEBS Lett 587:278–284

140. Muangphrom P, Suzuki M, Seki H, Fukushima EO, Muranaka T (2014) Functional analysis of orthologous artemisinic aldehyde Δ11(13)-reductase reveals potential artemisinin-producing activity in non-artemisinin-producing _Artemisia absinthium_. Plant Biotechnol 31:483–491

141. Dondorp AM, Nosten F, Yi P, Das D, Phylo AP, Tarning J, Lwing KM, Arsey F, Hanpithakpong W, Lee SJ, Ringwald P, Silamut K, Imwong M, Kotivchanik P, Lim P, Herdman T, An SS, Yeung S, Singhasivanon P, Day NPJ, Lindegarth N, Socheat D, White NJ (2009) Artemisinin resistance in _Plasmodium falciparum_ malaria. N Engl J Med 361:455–467

142. Witkowski B, Khim N, Chim P, Kim S, Kloeung N, Chy S, Duong S, Leang R, Ringwald P, Dondorp AM, Triprua R, Benoit-Vical F, Berry A, Gorgette O, Arsey F, Barale JC, Mercereau-Pujol O, Menard D (2013) Reduced artemisinin susceptibility of _Plasmodium falciparum_ ring stages in western Cambodia. Antimicrob Agents Chemother 57:914–923

143. Ashley EA, Dhorda M, Fairhurst RM, Amarutunga C, Lim P, Suon S, Streng S, Anderson JM, Moe A, Sam B, Sophia C, Chuor CM, Nguon C, Sovannaroth S, Pukrittayakamee S, Jittamala P, Chotivanich K, Chatsumanit K, Chatsoonthorn C, Runcharoen R, Hien TT, Thuy-Nhien NT, Thanh NV, Nu Hu T, Han KT, Aye KH, Sekou O, Laoosebikan RR, Folarannmi OO, Mayxay M, Khanthavong M, Hlaing T, Newton PN, Onyamboko MA, Fanelli C, Tshefu AK, Mira N, Velecha N, Phylo AP, Nosten F, Yi P, Triprua R, Bormman S, Bashrarehi M, Pesu J, Faiz MA, Ghose A, Hussain MA, Samad R, Rahman M, Hasen MM, Islam A, Miotto O, Amato R, MacNlins B, Stalker J, Kwiatkowski DP, Gnaik NF, Witkowski B, Arsema C, Beghin J, Langlois AC, Khim N, Kim S, Duru V, Bouchier C, Ma L, Lim P, Leang R, Duong S, Streng S, Suon S, Chuor CM, Bouc DM, Nemer S, Rogers WO, Gonet B, Fanueil T, Miotto O, Ringwald P, Le Bras J, Berry A, Barale JC, Fairhurst RM, Benoit-Vical F, Mercereau-Pujaloi O, Ménard D (2014) A molecular marker of artemisinin-resistant _Plasmodium falciparum_ malaria. Nature 540:50–55

144. Isozumi R, Uemura H, Kimata I, Ichinoshe Y, Logedi J, Omar AH, Kaneko A (2015) Novel mutations in K13 propeller gene in _Plasmodium falciparum_. Infect Dis 60:1208–1215

145. Stрайmer J, Gnädig NF, Witkowski B, Amarutunga C, Duru V, Ramadani AP, Dacheux M, Kim H, Zhang L, Lam S, Gregory PD, Urnov FD, Mercereau-Pujaloi O, Benoit-Vical F, Fairhurst RM, Ménard D, Fidock DA (2015) K13-propeller mutations confer artemisinin resistance in _Plasmodium falciparum_ clinical isolates. Science 347:428–431

146. Nyunt MH, Hlaing T, Ou HW, Tin-Oo LLK, Phway HP, Wang B, Zaw NN, Han SS, Tun T, San KK, Kyaw MP, Han ET (2015) Molecular assessment of artemisinin resistance markers, polymorphisms in the K13 propeller, and a multidrug-resistance gene in the eastern and western border areas of Myanmar. Clin Infect Dis 60:1208–1215

147. Bayih AG, Getnet G, Alemu A, Getie S, Mohon AN, Pillai DR (2016) A unique _Plasmodium falciparum_ K13 gene mutation in northwest Ethiopia. Am J Trop Med Hyg 94:132–135

148. Mok S, Ashley EA, Ferreira PE, Zhu L, Lin Z, Yeo T, Chotivanich K, Imwong M, Pukrittayakamee S, Dhorda M, Nguon C, Lim P, Pamarutunga C, Suon S, Hien TT, Htut Y, Faiz MA, Onyamboko MA, Mayxay M, Newton PN, Triprua R, Woodrow CJ, Miotto O, Kwiatkowski DP, Nosten F, Day NPJ, Preiser PR, White NJ, Dondorp AM, Fairhurst RM, Bozdech Z (2015) Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science 347:431–435
158. Wang Z, Wang Y, Cabrera M, Zhang Y, Gupta B, Wu Y, Kemirembe K, Hu Y, Liang X, Brashear A, Shreshtha S, Li X, Miao J, Sun X, Yang Z, Cui L (2015) Artemisinin resistance at the China–Myanmar border and association with mutations in the K13 propeller gene. Antimicrob Agents Chemother 59:6952–6959

159. Humphreys GS, Merinopoulos I, Ahmed J, Whitty CJM, Mutabingwa TK, Sutherland CJ, Hallett RL (2007) Amodiolucine and artemether–lumefantrine select distinct alleles of the Plasmodium falciparum mdr1 gene in Tanzanian children treated for uncomplicated malaria. Antimicrob Agents Chemother 51:991–997

160. van der Velden M, Rijpma SR, Russel FGM, Sauerwein RW, Weathers PJ, Towler MJ (2014) Changes in key constituents of Artemisia annua to overcome artemisinin resistance. J Nat Med 70:3177–3186

161. Elfawal MA, Towler MJ, Reich NG, Golenbock D, Weathers PJ, van der Velden M, Rijpma SR, Russel FGM, Sauerwein RW, Weathers PJ, Towler MJ (2014) Variations in key artemisinic acids. J Nat Med 70:318–334

162. Elfawal MA, Towler MJ, Reich NG, Weathers PJ, Rich SM (2012) Dried whole plant Artemisia annua as an antimalarial therapy. PLoS Biol 13:e1002132

163. Wright MH, Clough B, Rackham MD, Rangachari K, Brannigan JA, Grainger M, Moss DK, Bottrell AR, Heal WP, Broncel M, Serwa RA, Brady D, Mann DJ, Leatherbarrow RJ, Tewari R, Wilkinson AJ, Holder AA, Tate EW (2013) Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach. Nat Chem 6:112–121

164. Allen SM, Lim EE, Jortzik E, Preuss J, Chua HH, MacRae JI, Rahilis S, Haessler K, Downton MT, McConville MJ, Becker K, Ralph SA (2015) Plasmodium falciparum glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase is a potential drug target. FEBS J 282:3808–3823

165. Li H, van der Linden WA, Verdoes M, Florea BI, McAllister FE, Govindaswamy K, Elias JE, Bhanot P, Overkleeft HS, Bogyo M (2014) Assessing subunit dependency of the Plasmodium proteasome using small molecule inhibitors and active site probes. ACS Chem Biol 9:1869–1876

166. Yuthavong Y, Tarnchompoon B, Viluivan T, Chitnumsub P, Kamchonwongpaisan S, Charman SA, McLennan D, White KL, Vivas L, Bongard E, Thongphanchang C, Taweechai S, Vanichthanankul J, Rattanajak R, Arwon U, Fantauzi P, Yuvaniyama J, Charwan WN, Matthews D (2012) Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target. Proc Natl Acad Sci USA 109:16823–16828

167. Mokmak W, Chunsrivirot S, Hannongbua S, Yuthavong Y, Tongsimsa, Kamchonwongpaisan S (2014) Molecular dynamics of interactions between rigid and flexible antifolates and dihydrofolate reductase from pyrimethamine-sensitive and pyrimethamine-resistant Plasmodium falciparum. Chem Biol Drug Des 84:450–461

168. Chitnumsub P, Jaruwat A, Riangrungrjoj P, Ittарат L, Noytanom K, Oonanant W, Vanichthanankul J, Chanhkayhan P, Maenpuen S, Chen CJ, Chaiyen P, Yuthavong Y, Leartsakulpanich U (2014) Structures of Plasmodium vivax serine hydroxymethyltransferase: implications for ligand-binding specificity and functional control. Acta Crystallogr D Biol Crystallogr 70:3177–3186

169. Pinthong C, Maenpuen S, Amornwatcharapong W, Yuthavong Y, Leartsakulpanich U, Chaiyen P (2014) Distinct biochemical properties of human serine hydroxymethyltransferase compared with the Plasmodium enzyme: implications for selective inhibition. FEBS J 281:2570–2583

170. Chitnumsub P, Ittарат W, Jaruwat A, Noytanom K, Amornwatcharapong W, Pothanakasem W, Chaiyen P, Yuthavong Y, Leartsakulpanich U (2014) The structure of Plasmodium falciparum serine hydroxymethyltransferase reveals a novel redox switch that regulates its activities. Acta Crystallogr D Biol Crystallogr 70:1517–1527

171. Maenpuen S, Amornwatcharapong W, Krasatong P, Sucharitakul J, Palley BA, Yuthavong Y, Chitnumsub P, Leartsakulpanich U, Chaiyen P (2015) Kinetic mechanism and the rate-limiting step of Plasmodium vivax serine hydroxymethyltransferase. J Biol Chem 290:8656–8665

172. Henrich PP, O’Brien C, Sáenz FE, Cremers S, Kyle DE, Fidock DA (2014) Evidence for pyronaridine as a highly effective partner drug for treatment of artemisinin-resistant malaria in a rodent model. Antimicrob Agents Chemother 58:183–195

173. Sun W, Tanaka TQ, Magle CT, Huang W, Southall N, Huang R, Dehdashih SJ, McKew JC, Williamson KC, Zheng W (2014) Chemical signatures and new drug targets for gametocytocidal drug development. Sci Rep 4:3743

174. Singh C, Verma VP, Hassam M, Singh AS, Naikade NK, Puri SR, Srivastava A, Gut J, Rosenthal PJ, O’Neill PM, Ward SA, Lopes F, Moreira R (2013) An endoperoxide-based hybrid approach to tackling artemisinin-resistant malaria parasites. Expert Rev Anti-Infect Ther 14:125–135

175. Allen SM, Lim EE, Jortzik E, Preuss J, Chua HH, MacRae JI, Rahilis S, Haessler K, Downton MT, McConville MJ, Becker K, Ralph SA (2015) Plasmodium falciparum glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase is a potential drug target. FEBS J 282:3808–3823

176. Li H, van der Linden WA, Verdoes M, Florea BI, McAllister FE, Govindaswamy K, Elias JE, Bhanot P, Overkleeft HS, Bogyo M (2014) Assessing subunit dependency of the Plasmodium proteasome using small molecule inhibitors and active site probes. ACS Chem Biol 9:1869–1876

177. Yuthavong Y, Tarnchompoon B, Viluivan T, Chitnumsub P, Kamchonwongpaisan S, Charman SA, McLennan D, White KL, Vivas L, Bongard E, Thongphanchang C, Taweechai S, Vanichthanankul J, Rattanajak R, Arwon U, Fantauzi P, Yuvaniyama J, Charwan WN, Matthews D (2012) Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target. Proc Natl Acad Sci USA 109:16823–16828

178. Mokmak W, Chunsrivirot S, Hannongbua S, Yuthavong Y, Tongsimsa, Kamchonwongpaisan S (2014) Molecular dynamics of interactions between rigid and flexible antifolates and dihydrofolate reductase from pyrimethamine-sensitive and pyrimethamine-resistant Plasmodium falciparum. Chem Biol Drug Des 84:450–461

179. Chitnumsub P, Jaruwat A, Riangrungrjoj P, Ittarat L, Noytanom K, Oonanant W, Vanichthanankul J, Chanhkayhan P, Maenpuen S, Chen CJ, Chaiyen P, Yuthavong Y, Leartsakulpanich U (2014) Structures of Plasmodium vivax serine hydroxymethyltransferase: implications for ligand-binding specificity and functional control. Acta Crystallogr D Biol Crystallogr 70:3177–3186

180. Pinthong C, Maenpuen S, Amornwatcharapong W, Yuthavong Y, Leartsakulpanich U, Chaiyen P (2014) Distinct biochemical properties of human serine hydroxymethyltransferase compared with the Plasmodium enzyme: implications for selective inhibition. FEBS J 281:2570–2583

181. Chitnumsub P, Ittарат W, Jaruwat A, Noytanom K, Amornwatcharapong W, Pothanakasem W, Chaiyen P, Yuthavong Y, Leartsakulpanich U (2014) The structure of Plasmodium falciparum serine hydroxymethyltransferase reveals a novel redox switch that regulates its activities. Acta Crystallogr D Biol Crystallogr 70:1517–1527

182. Maenpuen S, Amornwatcharapong W, Krasatong P, Sucharitakul J, Palley BA, Yuthavong Y, Chitnumsub P, Leartsakulpanich U, Chaiyen P (2015) Kinetic mechanism and the rate-limiting step of Plasmodium vivax serine hydroxymethyltransferase. J Biol Chem 290:8656–8665

183. Henrich PP, O’Brien C, Sáenz FE, Cremers S, Kyle DE, Fidock DA (2014) Evidence for pyronaridine as a highly effective partner drug for treatment of artemisinin-resistant malaria in a rodent model. Antimicrob Agents Chemother 58:183–195

184. Sun W, Tanaka TQ, Magle CT, Huang W, Southall N, Huang R, Dehdashih SJ, McKew JC, Williamson KC, Zheng W (2014) Chemical signatures and new drug targets for gametocytocidal drug development. Sci Rep 4:3743

185. Singh C, Verma VP, Hassam M, Singh AS, Naikade NK, Puri SR, Srivastava A, Gut J, Rosenthal PJ, O’Neill PM, Ward SA, Lopes F, Moreira R (2013) An endoperoxide-based hybrid approach to
deliver falcipain inhibitors inside malaria parasites. ChemMedChem 8:1528–1536
185. Oliveira R, Miranda D, Magalhães J, Capela R, Perry MJ, O’Neill PM, Moreira R, Lopes F (2015) From hybrid compounds to targeted drug delivery in antimalarial therapy. Bioorg Med Chem 23:5120–5130
186. Witschel MC, Rottmann M, Schwab A, Leartsakulpanich U, Chitnumsub P, Seet M, Tonazzi S, Schwertz G, Stelzer Mietzner T, McNamara C, Thater F, Freymond C, Jaruwat A, Pnthong C, Rianglungroj P, Oufir M, Hamburger M, Mäser P, Sanz-Alonso LM, Charman S, Wittlin S, Yuthavong Y, Chaiyen P, Diederich F (2015) Inhibitors of plasmodial serine hydroxymethyltransferase (SHMT): cocrystal structures of pyrazolopyrans with potent blood- and liver-stage activities. J Med Chem 58:3117–3130