Inhibitors of lipogenic enzymes as a potential therapy against cancer

Nicolás Montesdeoca1 | Marta López1 | Xavier Ariza2,3,4 | Laura Herrero3,4,5 | Kamil Makowski1

1School of Chemical Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
2Department of Inorganic and Organic Chemistry, School of Chemistry, Universitat de Barcelona, Barcelona, Spain
3Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
4Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
5Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain

Correspondence
Laura Herrero, Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona E-08028, Spain.
Email: lherrero@ub.edu
Kamil Makowski, School of Chemical Sciences and Engineering, Yachay Tech University, Hacienda San José s/n Proyecto Yachay, San Miguel de Urcuquí, Ecuador.
Email: kamil.makowski@hotmail.com

Funding information
Ministry of Spain (MINECO), Grant/Award Number: SAF2017-83813-C3-1-R; European Regional Development

Abstract
Cancer cells rely on several metabolic pathways such as lipid metabolism to meet the increase in energy demand, cell division, and growth and successfully adapt to challenging environments. Fatty acid synthesis is therefore commonly enhanced in many cancer cell lines. Thus, relevant efforts are being made by the scientific community to inhibit the enzymes involved in lipid metabolism to disrupt cancer cell proliferation. We review the rapidly expanding body of inhibitors that target lipid metabolism, their side effects, and current status in clinical trials as potential therapeutic approaches against cancer. We focus on their molecular, biochemical and structural properties, selectivity and effectiveness and discuss their potential role as antitumor drugs.
1 | INTRODUCTION

Many types of cancers are detected every year worldwide. According to the World Health Organization, cancer is the second cause of death globally. It was responsible for the disturbing number of 9.6 million deaths in 2018.\(^1\) Cancer is a disorder of cell growth and proliferation that requires high amounts of energy and cellular building blocks, including nucleic acids, proteins, and lipids.\(^2\) Lipids comprise a wide group of biomolecules made up of fatty acids (FAs) of different chain lengths, number and location of double bonds, and backbone structure.\(^3\) Lipid metabolism is of special interest in cancer therapy because lipids are involved in multiple biochemical processes during cancer initiation and development.\(^2\) Lipids participate in the growth, energy, and redox homeostasis of cancer cells. Moreover, they have structural roles as passive components of cell membranes, like cholesterol and sphingolipids that are important components of membrane rafts.\(^2,4\) Furthermore, they initiate some signal transduction cascade processes and can be broken down into bioactive lipid mediators that regulate cancer cell growth, migration, and metastasis formation.\(^4-6\)

The high rate of cancer cell proliferation requires accelerated lipid synthesis to generate biological membranes.\(^2,5,6\)

KEYWORDS
cancer drugs, lipid metabolism, lipogenic enzyme inhibitors

FIGURE 1 Overview of lipogenesis in cancer and four target enzymes responsible for fatty acid synthesis. Cancer cells obtain free fatty acids (FFA) primarily from de novo biosynthesis. Glucose is converted to pyruvate via aerobic glycolysis. Pyruvate is metabolized to citrate within the mitochondria in the Krebs cycle to produce ATP. The citrate excess is expelled to the cytosol where it enters the lipogenic pathway. ATP-citrate lyase (ACLY) catalyzes the production of acetyl-CoA, which is then carboxylated to malonyl-CoA by acetyl-CoA carboxylase (ACC). The FAS then catalyzes palmitate biosynthesis from acetyl-CoA and malonyl-CoA. In addition, lipid stores can be used to obtain FFA due to high activity of monoacylglycerol lipase (MAGL). Cancer cells with a high proliferation rate need free fatty acids for phospholipid formation of new membranes, for signaling molecules such as ceramides or sphingolipids or to obtain energy via β-oxidation. All the indicated enzymes have been studied as potential therapeutic targets against cancer.
The metabolic cycles of cancer cells are altered, through a series of oncogenic events and the tumor microenvironment, to meet energy and lipid requirements.6,7 The best known perturbation in the metabolic cycle of cancer cells is the Warburg effect, which involves an increase in glucose uptake and subsequent lactate production by glycolysis (Figure 1).8 Other important perturbations that are enhanced as part of cancer-associated metabolic reprogramming are the biosynthesis of proteins, nucleic acids, and lipids.3,6 Specifically, lipid biosynthesis is induced as part of the anabolic metabolism of cancer cells. It is the process of converting nutrient-derived carbons (that are normally an energy source) into FAs (Figure 1) and cholesterol.3,4,6

2 | LIPIIDS’ ROLE IN CANCER

The main building blocks of cell membranes are phospholipids (PLs), sterols, sphingolipids, and lysophospholipids (LPL) (Figure 1). All of them are derived from acetyl-CoA and many contain FAs.3 The FA structure consists of a terminal carboxyl group and a hydrocarbon chain (usually with an even number of carbons) that can be saturated or unsaturated.3 FAs can be used to generate many types of lipids including diacylglycerides (DAGs) and triacylglycerides (TGs). The latter are mainly used for energy storage in the form of lipid droplets (LDs).2,4,6 Moreover, DAGs and TAGs are synthesized via the glycerol phosphate pathway, which uses the glycolytic intermediate glycerol-3-phosphate to form the glycerol backbone of the lipids. The intermediates in this process can be converted into different phosphoglycerides that are the major structural components of biological membranes.3,6

Cancer cells can obtain FAs either from exogenous sources or from de novo lipogenesis (DNL).2,3 In the presence of oxygen and abundant extracellular nutrients, most cancer cells synthesize FAs from citrate by DNL (Figure 1).9 During this process, glucose is converted into pyruvate and subsequently transported to the mitochondria, where it is converted to acetyl-CoA. Acetyl-CoA enters the tricarboxylic acid (TCA) cycle and finally the citrate is obtained. However, under hypoxic conditions, cancer cells can use glutamine to produce citrate by its reductive metabolism 6,10 and synthesize acetyl-CoA directly from acetate by the action of the cytoplasmic acetyl-CoA synthetase (ACSS2).11 Moreover, under conditions of metabolic stress, cancer cells collect extracellular lipids as an adaptation to survive.12 This adaptation involves a reduction of the carbon supply and power for the FA synthetic pathway.7 Finally, FAs can be used as an energy source when mitochondrial oxidation (β-oxidation) occurs (Figure 1). They produce more than twice as much ATP per gram as glucose or amino acid oxidation.2,4,6,7 Consequently, some cancer cells prefer to use FAs as an energy source even under nutrient-replete conditions.7

Another important biosynthetic process within lipid metabolism is the mevalonate pathway, which facilitates the synthesis of cholesterol.2,4,6 Cholesterol is one of the main components of biological membranes, as it modulates the fluidity of the lipid bilayer and forms detergent-resistant microdomains called lipid rafts that coordinate the activation of some signal transduction pathways.2,4,6 In cancer cells, many signaling proteins, such as protein kinase B (Akt), and receptors regulating prooncogenic and apoptotic pathways reside in lipid rafts.2 Moreover, the activation of oncogenic signaling pathways only depends on the lipid rafts’ integrity. Therefore, by disrupting them, the activation of the anchored-lipid raft Akt protein is inhibited and tumor cell proliferation is reduced.13

Some of the aforementioned characteristics of cancer cells improve their proliferation and resistance to chemotherapy. TGs and cholesteryl esters are stored in LDs, which are highly ordered intracellular structures formed in the endoplasmic reticulum.4 LDs are typically found in some aggressive cancers, and high levels of saturated FAs are found in some aggressive breast cancers.14 Cancer cells have higher amounts of LDs than normal tissue, which enhances their resistance to chemotherapy.15 Moreover, the high levels of saturated FAs increase the levels of saturated PLs in cancer cells, which reduces membrane fluidity and protects cancer cells from oxidative damage.6

Lipids are also important signaling molecules. For example, phosphoinositides are a family of second messengers that transmit signals from activated growth factor receptors to the cellular machinery.6,16 In addition, phosphoinositides act as specific binding sites for the coupling of effector proteins into specific membrane sites.6 Other lipids that act as second messengers are lysophosphatidic acid (LPA), phosphatidic acid (PA), and DAG.6 Moreover, sphingolipids are important signaling molecules (Figure 1). The simplest of the sphingolipids is ceramide.6 In cancer cells, ceramides mediate growth inhibitory signals and is involved in initiation of the apoptotic process and growth arrest.6 Furthermore, the enzymes involved in the sphingolipid metabolism pathway are normally deregulated in cancer cells, which produces low ceramide levels and consequently increased resistance to chemotherapy.17

Besides the aforementioned lipid use in cancer cells, lipids play an important role in post-translational modification of proteins.8 Palmitate and myristate are saturated acyl chains that are normally (covalently) coupled to proteins and improve the protein interaction with membrane rafts.18 Lipid metabolism is also involved in the autophagic process, which is a self-degradation mechanism that is required to remove defective proteins and organelles. Moreover, the autophagic process is favored under
conditions of nutrient scarcity and enhances the survival of cancer cells by contributing to the maintenance of energy supply during tumorigenesis. Apart from the importance of lipids in cancer cell proliferation and survival, they are also implicated in more complex processes such as cell migration, invasion, tumor angiogenesis, and metastasis formation. Many proteins are involved in the supply of fatty acids. We could divide them into the (a) proteins involved in de novo synthesis of palmitate, (b) palmitate modification proteins such as elongase or proteins that introduce unsaturation in the aliphatic chain, (c) lipases that liberate FAs from energy storage as adipose tissue, and (d) proteins that transport FAs or lipids from outside the cell. As previously mentioned, the preferred source of FAs in many cancer cells is de novo synthesis. Nevertheless, new studies have shown that cancer cells can switch to another FA source in specific metabolic conditions such as hypoxia or nutrient shortage that are present in solid tumors. Consequently, those proteins are important and could be targeted pharmacologically against cancer disease. The overexpression of lipogenic enzymes (Figure 1), such as ATP citrate lyase (ACLY), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS) and the enzyme responsible for liberating fatty acid from energy storage as monoacylglycerol lipase (MAGL) represent a nearly universal phenotypic alteration in most tumors and cancer cells (Figure 1). A lot of effort was made in the discovery of new inhibitors of these enzymes. In this review, we focus on the aforementioned enzymes and on some inhibitors of each of them as potential therapeutic targets against cancer (Table 1). We focus on de novo fatty acid synthesis enzymes (ACLY, ACC and FAS) and one of the most studied lipases (MAGL), as their inhibition directly interrupts the supply of fatty acid, have a high pharmacological potential and a proven cytotoxic response. The positive perspective of this strategy is reinforced by a promising FAS inhibitor reaching clinical trials recently (see Section 3.3). Other proteins involved in fatty acid metabolism will be briefly presented in an anticancer context at the end of this review.

3 LIPOGENIC ENZYMES’ INHIBITORS

3.1 ACLY

3.1.1 Function and description

ACLY is the key enzyme in the conversion of citrate derived from glycolytic metabolism into acetyl-CoA (Figure 1), which is the starting material of two highly important processes in DNL: FA synthesis and the mevalonate pathway. Human ACLY is a homotetramer of about 0.5 MDa, in which each polypeptide chain is formed by 1,101 amino-acid residues. It consists of an N-terminal citrly-CoA synthetase module and a C-terminal citrly-CoA lyase domain. It has five functional domains divided into two subunits. The α-subunit has two domains: domain 1 binds CoA, and domain 2 contains the phosphorylated histidine residue. In the β-subunit, domains 3 and 4 adopt an ATP-grasp fold and bind ATP, and domain 5 stimulates domain 2 to form helix dipoles called “power helices” that stabilize the phosphorylated histidine residue at the N-terminal domain and arrange the binding site of citrate.

In more detail, ACLY is a cytosolic enzyme that catalyzes the conversion of citrate (transported from the mitochondria) and CoA into acetyl-CoA and oxaloacetate (OAA) in the presence of magnesium complex Mg-ATP. Initially, the catalysis starts by autophosphorylation of a histidine residue, resulting in a citrly-phosphate within the active site. Subsequently, a covalent citrly-enzyme complex is produced and is attacked by the CoA to form the citrly-CoA. Finally, the enzyme catalyzes the cleavage of citrly-CoA to acetyl-CoA and OAA.

ACLY is overexpressed in many cancer cell lines, stimulated by insulin, growth factors, and high levels of glucose. Moreover, the stimulation mechanism occurs through the phosphoinositide 3-kinase (PI3K)/Akt pathways. The Akt pathway upregulates ACLY by activating the sterol regulatory element-binding protein 1 (SREBP-1), which is a transcription factor for genes involved in FA and cholesterol synthesis. PI3K/Akt pathways stimulate ACLY through its phosphorylation (which contributes to protein stabilization) rather than transcriptional upregulation. In addition, ACLY is regulated by other pathways, depending on the cell line. When ACLY is deregulated, the expression of the acyl-CoA synthetase short-chain family member 2 (ACSS2) increases, which catalyzes the conversion of exogenous acetate to acetyl-CoA using ATP.

3.1.2 Inhibitors and cytotoxic effects

The inhibition of ACLY produces cytotoxic effects by disrupting FA synthesis, similar to FAS and ACC inhibition (mentioned in the next sections). Moreover, ACLY inhibition affects the mevalonate pathway, which disrupts cholesterol and isoprenoid synthesis and thus enhances its cytotoxic effect. Furthermore, ACLY inhibition produces stronger cytotoxic effects in cells with elevated glucose metabolism than in others with low aerobic glycolysis. This shows that some cancer cells do not need ACLY to produce acetyl-CoA, like those that use ACSS2. Another important effect of ACLY inhibition is the increase in intracellular amounts of reactive oxygen species. This enhances the phosphorylation of an important regulator of lipid metabolism: AMP-activated protein kinase (AMPK).
Several studies have shown that many ACLY inhibitors have cytotoxic effects against some cancer cell lines, and can be enhanced in combination with other agents that block oncogenic receptor signaling. The human ACLY has been widely studied and many potent inhibitors have been developed (Figure 2). First, (–)-Hydroxycitric acid (1, Figure 2) is a naturally occurring compound that was extracted for the first time from *Garcinia* fruits. It is a competitive inhibitor of ACLY with a Ki value of 300 μM. Some preclinical studies for cancer therapy were performed with this compound, in co-treatment with lipoic acid (a pyruvate dehydrogenase kinase inhibitor) and cisplatin (a classical chemotherapeutic agent that binds DNA). In vivo studies showed that the combination of these three drugs attacks the altered metabolism and DNA of cancer cells and thus brings some improvement compared to cisplatin treatment (monotherapy).

Another natural product, 2-chloro-1,3,8-trihydroxy-6-methylanthrone (2, Figure 2), was found to be a strong inhibitor of hACLY with an IC50 of 283 nM. Compound 2 was extracted from active microbial metabolite derived from a soil fungus (*Penicillium* sp). Despite promising results, no cytotoxic study was carried out using this compound against cancer cells.

Another compound of natural origin is Cucurbitacin B (3, Figure 2), found in cucumber, among other members of the *Cucurbitaceae* family, with a tetracyclic triterpenoid structure. In vitro studies showed that Cucurbitacin B is cytotoxic against various cancer cell lines, including breast SK-BR-3 (IC50 = 4.6 µg/mL), MCF7 (IC50 = 88.7 µg/mL), and MDA-MB-231 (IC50 = 38.9 µg/mL), lung NCI-H460 (about 87% inhibition after 48 hours with 0.1 µM of drug), central system SF-268 (about 92% inhibition after 48 hours with 0.05 µM of drug), colon HCT-116 (about 80% inhibition after 48 hours with 0.4 µM of drug), prostate PC-3 and LNCaP (IC50 ~0.3 µM), and hepatocellular BEL-7402 (IC50 = 0.32 µM). The mechanism of action of Cucurbitacin B was linked to several targets and it is not fully elucidated.

However, Xiao et al demonstrated an in vitro and in vivo

FIGURE 2 Structure and half-maximal inhibitory concentration (IC50) of selected ACLY inhibitors. The organism from which ACLY was extracted and the cell line of the cytotoxicity studies are indicated in parentheses.
dose depending on ACLY inhibition by this compound.35 Additionally, several in vivo studies in xenograft rat models showed tumor reduction after treatment with Cucurbitacin B.21,35 Recently, the pharmacokinetics of Cucurbitacin B was studied. Limited 10% low oral bioavailability was found, along with a large volume of distribution in internal organs (Table 1).37

Synthetic inhibitors of ACLY have been extensively reviewed.21 However, it is worth mentioning the most potent, promising compounds (Figure 2). **ETC-1002** or Bempedoic acid (4, Figure 2) was developed by Esperion Therapeutics Inc and is currently in phase III of clinical trials to reduce low-density lipoprotein cholesterol (LDL-C), and prevent cardiovascular-related diseases.38 In the liver, it is converted to its active form (ETC-1002-CoA) by acyl-CoA synthase. ETC-1002-CoA inhibits ACLY completely, reducing the OAA and acetyl-CoA levels to finally disrupt DNL. Moreover, it increases AMPK activity, which inhibits the phosphorylation of ACC and HMG-CoA reductase, and thus reduces glucose and lipid biosynthesis.21

In 2007, a series of 2-hydroxy-N-arylbenzenesulfonylamide compounds were reported as strong inhibitors of ACLY.39 The most potent was compound 5 (Figure 2) with an IC\textsubscript{50} of 130 nM. Although it showed high enzymatic inhibition activity, compound 5 has weak cytotoxicity (>50 mM) against human liver carcinoma HepG2 cell line. The biological activity study of this compound was focused once again on decreasing cholesterol and TGs, and not on FAs.39

Very recently, a novel series of compounds were synthesized with similar structure to compound 5. Specifically, Wey et al developed the compound NDI-091143 (6, Figure 2), which maintains the benzenesulfonylamide connected to the biphenyl moiety but substitutes one of the chlorides with a methoxycarbonyl group on the phenolic part, and incorporates two fluorine atoms on the biphenyl moiety.40 These changes greatly improve the inhibitory effect of NDI-091143. This compound has become the strongest inhibitor of ACLY known to date, with a Ki of 7.0 nM and an IC\textsubscript{50} between 2.1 and 4.8 nM. Interestingly, the authors were able to obtain the ACLY-NDI-091143 co-crystal structure using a cryo-electron technique. They observed that NDI-091143 occupies the polar citrate domain of ACLY, which is surprising because of the lack of carboxylic moieties in the drug. The conformational changes in amino acid residues allowed the binding of the drug, which led the authors to conclude that NDI-091143 is the first allosteric inhibitor of ACLY.40,41 These recent discoveries will probably permit the finding of novel ACLY inhibitors with similar or even better inhibition activity, which is very exciting in terms of anticancer drug discovery targeting lipogenic enzymes.

A natural compound found in the bark of pine trees is a diterpene amine called **Leelamine** (7, Figure 2). It demonstrated cytotoxic activity against many cell lines including melanoma, prostate, and breast cancer.42 Leelamine targets key oncogenic pathways including the receptor tyrosine kinase (RTK)-Akt/signal transducer and activator of transcription 3 (STAT3)/mitogen-activated protein kinase (MAPK), and the Akt/mammalian target of rapamycin (mTOR) pathways.42 Recently, it was found that when prostate cancer is treated in vitro and in vivo with Leelamine, FA synthesis is disrupted by the downregulation of protein and/or mRNA expression of ACLY.43

Compound 8 (Figure 2), also known as **DCV** (10,11-dehydrocurvularin), is a macrolide and fungus-derived natural-product recently connected with the ACLY target. It shows cytotoxic activity against leukemia cancer cells.44 This recent study performed a proteome-wide analysis using classical chemo-proteomic profiling in living cell models treated with DCV.44 Deng et al have found that DCV is a strong, irreversible ACLY inhibitor with an IC\textsubscript{50} of 0.93 µM. Moreover, some SAR studies have been performed with a few derivatives of DCV. The reduction in the conjugated double bond in the lactone moiety causes the loss of cytotoxic activity. This suggests that the macrolide binds with its target by the Michael addition mechanism, probably with the protein cysteine-thiol nucleophile.

The inhibitors of ACLY enzyme that have been presented are promising in terms of cancer treatment. However, many studies with ACLY-targeting drugs focus exclusively on the treatment of cardiovascular diseases. For this reason, less information is available on cytotoxicity and effectiveness for cancer treatment.

3.2 | ACC

3.2.1 | Function and description

ACC is the rate-limiting enzyme in FA synthesis as it catalyzes the formation of malonyl-CoA (Figure 1), which is one of the necessary substrates for the next step (catalyzed by FAS).45 In more detail, ACC is a biotin-dependent multienzyme located in the endoplasmic reticulum. It contains biotin carboxylase (BC) and carboxyltransferase (CT) active sites. The full crystal structure of human ACC has not been elucidated yet, but it is believed to be similar to ACC from yeast, in which the BC and CT domains are the active sites. Biotin is covalently linked to the biotin carboxyl carrier protein (BCCP) domain, which is translocated during catalysis.46 In the first step of the reaction, the BC catalyzes the ATP-dependent carboxylation of biotin with bicarbonate serving as the CO\textsubscript{2} source. In the second step, the CT promotes carboxyl transfer from biotin to acetyl-CoA, and malonyl-CoA is formed.45,47

There are two known isoforms of ACC in mammals: ACC1 and ACC2.45 ACC1 is mainly found in the cytosol
#	Compound	Target enzyme	Outcome	Development stage	Cancer type	References
1	(–)-Hydroxycitric acid	ACLY	In combination with cisplatin, it improves tumor reduction in vivo when compared to cisplatin monotherapy against cancer	Pre-clinical	In vivo: lung (LL/2) and bladder (MBT-2)	(31)
2	2-Chloro-1,3,8-trihydroxy-6-methylanthrone	ACLY	Strong inhibitor. Not studied in the context of cancer	Pre-clinical	–	(32)
3	Cucurbitacin B	ACLY	Cytotoxic for many cancer cell lines, it produces tumor reduction in xenograft models, and has low oral bioavailability in pharmacokinetics studies	Pre-clinical	In vitro: breast (BRCA-1, SK-BR-3, MCF-7, MDA-MB-231), lung (NCI-H460), brain (SF-268), colon (HCT-116), prostate (PC-3, LNCaP), and liver (BEL-7402) In vivo: prostate (PC-3 xenograft) and liver (BEL-7402 xenograft)	(33,35-38,171)
4	ETC-1002	ACLY	A prodrug of active metabolite ETC-1002-CoA. AMPK activator. In Phase III of clinical trials, it decreases levels of low-density lipoprotein-cholesterol. Not studied in the context of cancer	Clinical—phase III (for treatment of hypercholesterolemia)	–	(21)
5	Unnamed	ACLY	Nanomolar range inhibitor designed and studied for the treatment of cardiovascular disease. Studies in HepG2 cell line show low cytotoxic activity in the micromolar range	Pre-clinical	In vitro: liver (HepG2)	(40)
6	NDI-091143	ACLY	Similar structure to compound 5 but with structural changes to improve the inhibitory activity to a low nanomolar range. Not studied in the context of cancer	Pre-clinical	–	(41)
7	Leelamine	ACLY	Natural product, micromolar cytotoxic activity in several cancer cell lines, it reduces tumor growth in xenograft models. Recently reviewed in the context of antitumoral activity	Pre-clinical	In vitro: prostate (LNCaP, 22Rv1, PC-3) In vivo: prostate (22Rv1 xenograft)	(43,44)
8	DCV	ACLY	Fungus-derived macrolide, low micromolar range inhibitor. Cytotoxic activity against leukemia cancer cells showing low micromolar activity. Targets other than ACLY may be involved in its cytotoxic activity	Pre-clinical	In vitro: leukemia (Jurkat)	(45)
9	Soraphen A	ACC	Natural myxobacterial metabolite product, active against several cancer cell lines. Antifungal, inhibits human immunodeficiency virus and hepatitis C virus at nanomolar concentration	Pre-clinical	In vitro: liver (HepG2) and prostate (LNCaP, PC-3M)	(61,64-67,71)
10	CP-640186	ACC	Inhibition of isoenzyme ACC1 and ACC2 at nanomolar concentration, triglyceride synthesis inhibitor, reduction of body fat content in vivo. It reduces lung cancer cell proliferation at micromolar concentration	Pre-clinical	In vitro: liver (HepG2) and lung (H460)	(72-74)

(Continues)
#	Compound	Target enzyme	Outcome	Development stage	Cancer type	References
11	unnamed	ACC	CP-640186-based inhibitor with improved activity. Not studied in the context of cancer	Pre-clinical	–	(75)
12	MK-4074	ACC	Low nanomolar inhibitory activity. it reduces DNL but increases plasma TGs, producing hypertriglyceridemia. Not studied in the context of cancer	Clinical - phase I (for treatment of nonalcoholic fat liver disease)	–	(76)
13	Unnamed	ACC2	Strong selective ACC2 inhibitor, 3 orders of magnitude higher than ACC1. Good bioavailability and safety profile in vivo after oral administration. Not studied in the context of cancer	Pre-clinical	–	(77)
14	Unnamed	ACC1	Strong nanomolar range selective inhibitor. Inhibition of Malonyl-CoA in xenograft models of cancer. Good pro-drug properties. Not studied in xenograft tumor inhibition	Pre-clinical	In vivo: colorectal (HCT-116 xenograft)	(78)
15	Unnamed	ACC1	Strong nanomolar range selective ACC1 inhibitor, 2 orders of magnitude higher than ACC2. Strong tumor growth inhibition in xenograft studies after oral administration with moderate body weight reduction side effect	Pre-clinical	In vivo: colorectal (HCT-116 xenograft) and renal cell (786-O xenograft)	(79)
16	ND-630	ACC	Strong ACC1/2 dimerization inhibition; liver specific. Reduces fatty acid synthesis, stimulates fatty acid oxidation, reduces weight gain without affecting food intake and improves insulin response in diabetic fatty rat model. Weak cytotoxic effect against lung tumors	Clinical - phase II (for treatment of nonalcoholic fat liver disease)	In vitro: liver (HepG2) and non-small-cell lung (A549)	(80,81)
17	ND-646	ACC	Potent inhibition of ACC and FA synthesis, lung tumor growth suppression, only moderate body weight loss in high-dose treatment and in vivo	Pre-clinical	In vitro: non-small-cell lung (A549, H157, H1355, H460) In vivo: non-small-cell lung (A549 xenograft)	(81,82)
18	Unnamed	ACC1	Similar structure to ND-646, it inhibits ACC1 and presents cytotoxic activity against lung cancer cell line at low nanomolar concentration. Leads to apoptosis of non-small-cell lung carcinoma cells	Pre-clinical	In vitro: non-small-cell lung (A549)	(81)
19	(–)-C75	FAS	It is often used as a racemic mixture. (+)-C75 is a carnitine palmitoyltransferase inhibitor and has an anorexic effect. (–)-C75 is a weak FAS inhibitor at micromolar range, nevertheless it has shown cytotoxic activity against several cell lines in vitro. The racemic mixture inhibits tumor growth in many xenograft models	Pre-clinical	In vitro: breast (MCF-7, SKBr-3, MDA-MB-231), ovarian (OVCAr-3), pancreas (MIAPaCa-2), prostate (PC-3), and colorectal (HCT-116)	(101,104-107,172)
20	(–)-UB006	FAS	Based on (–)-C75 with improved inhibition and cytotoxic properties, especially in an ovarian cancer cell line. No body change or food intake change after intraperitoneal administration in mice. Not studied in xenograft tumor inhibition	Pre-clinical	In vitro: breast (MCF-7, SKBr-3, MDA-MB-231), ovarian (OVCAr-3), pancreas (MIAPaCa-2), prostate (PC-3), and colorectal (HCT-116)	(101)

(Continues)
#	Compound	Target enzyme	Outcome	Development stage	Cancer type	References
21	Orlistat	FAS	It inhibits tumor growth in *xenograft* models of prostate, colon and melanoma cancer, reduces proliferation and enhances apoptosis of breast cancer. Lipase inhibitor that is commercialized to treat obesity by preventing fat absorption and calorie intake	FDA-approved (as an anti-obesity drug)	In vitro: breast, prostate, ovarian, endometrium, colon, retina, oral cavity, head & neck, gastric and brain using many different cell lines In vivo: prostate (PC-3 and LNCaP *xenografts*), colon (HT29 *xenograft*), and other models of breast, oral, lung and murine melanoma	(98,173)
22	GSK2194069	FAS	Nanomolar range inhibitor, inhibits tumor growth of *xenograft* model without significant loss of weight	Pre-clinical	In vitro: gastric (KATO-III, MKN45), and non-small-cell lung (A549) In vivo: prostate (C42b *xenograft*)	(113,114)
23	TVB-3166	FAS	Nanomolar range inhibitor that stops FA synthesis, disrupts the lipid raft structure, and in vivo inhibits tumor growth in lung, ovarian and pancreatic tumors	Pre-clinical	In vitro: lung (CALU-6, A-549), breast (MDA-MB-231, MDA-MB-453, MDA-MB-468), colorectal (COLO-205, HT-29), prostate (22RV1), and ovarian (OVCAR-5, OVCAR-8) In vivo: pancreas (PANC-1 *xenograft*), ovarian (OVCAR-8 *xenograft*), and non-small-cell lung (CTG-0165, CTG-0160, CTG-0743 *xenografts*)	(116)
24	TVB-2640	FAS	In phase I clinical trials, antitumor activity in monotherapy and co-treatment with paclitaxel, and in phase II trials, it was well-tolerated in humans in co-treatment with bevacizumab	Clinical - phase II (ongoing)	In vivo: lung, colon, breast, and astrocytoma	(118,119)
25	Fasnall	FAS	Micromolar concentration inhibitor, produces a significant change in the global cellular lipid profiles, induces apoptosis, and critically affects the lipid raft structure and functioning, in vivo study shows improved effect in co-treatment with carboplatin regarding tumor reduction and survival	Pre-clinical	In vitro: liver (HepG2), and breast (MCF7, MDA-MB-468, BT474, SKBR-3) In vivo: breast (MMTV-Neu model)	(120)
26	JNJ-54302833	FAS	Nanomolar range inhibitor with cytotoxic activity among many cell lines from different tissues, fatty acid synthesis inhibition in vivo, no reported tumor reduction in vivo	Pre-clinical	In vitro: ovarian (A2780), prostate (PC-3M, LNCaP), lymphoma (OCI-LY1), leukemia/lymphoma/myeloma (MV4-11), lung (H460, A549), and breast (MDA-MB-468) In vivo: lung (H460 *xenograft*)	(121)
27	IPI-9119	FAS	Nanomolar concentration FAS irreversible inhibitor binding to TE domain that reduces tumor growth in *xenograft* models	Pre-clinical	In vivo: prostate (22Rv1, LNCaP-95 *xenografts*)	(122)
#	Compound	Target enzyme	Outcome	Development stage	Cancer type	References
----	------------	---------------	---	-------------------	--	-----------------------
28	FT113	FAS	Low micromolar FAS inhibitor and nanomolar cytotoxic activity in cancer cells that inhibits tumor growth in vivo	Pre-clinical	In vitro: prostate (PC-3), breast (BT474), and leukemia (MV-411)	(123)
			In vivo: leukemia (MV-411 xenograft)			
29	CAY10499	MAGL	Nanomolar range reversible inhibitor with micromolar cytotoxic properties in several cancer cell lines	Pre-clinical	In vitro: ovarian (OVSAHO, OVCAR3, COV318, CAOV3, SKOV3), breast (MDA-MB-231), and colorectal (HCT116)	(141-143)
30	JZL184	MAGL	Irreversible inhibitor. Shows anticancer effects in vivo against several cancer cell lines, also has analgesic, antinoceptive, anti-inflammatory, gastroprotective, antidepressant and anxiolytic effects	Pre-clinical	In vitro: colorectal (HCT116, SW480, LoVo), melanoma (C8161, MUM2B, MUM2C), ovarian (SKOV3, OVCAR3), breast (231MFP, MCF7), and liver (HepG2, SMMC-7721, L02)	(125,134,145-147)
31	KML29	MAGL	Developed based on JZL184. In vitro, selective inhibition at nanomolar range concentration	Pre-clinical	–	(148)
32	PF-0679071	MAGL	Potent inhibitor at low nanomolar concentration that was studied in vitro and in vivo against neuroinflammatory disease. Not studied in the context of cancer	Pre-clinical	–	(150)
33	JKK-048	MAGL	Ultra-potent irreversible selective inhibitor. Not studied in the context of cancer.	Pre-clinical	In vitro: melanoma (C8161)	(151)
34	Unnamed	MAGL	Low nanomolar reversible inhibitor. In in vivo studies it showed a dramatic reduction of arachidonic acid and an increase of 2-AG. Studied against neurodegenerative diseases and not cancer.	Pre-clinical	–	(153)
35	Unnamed	MAGL	Micromolar reversible inhibitor with antiproliferative activity against ovarian cancer cell lines	Pre-clinical	In vitro: ovarian (OVCAR3, CAOV3)	(143)
36	Unnamed	MAGL	Nanomolar reversible inhibitor with antiproliferative activity at micromolar concentration against human breast, colorectal and ovarian cancer cells. In vivo tumor growth inhibition study has not been carried out	Pre-clinical	In vitro: breast (MDA-MB-231), colorectal (HCT116), and ovarian (CAOV3, OVCAR3, and SKOV3)	(142)

TABLE 1 (Continued)
of lipogenic tissues such as liver, adipose tissue, and lactating mammary gland and catalyzes malonyl-CoA formation in FA synthesis.45,48 It has been reported as upregulated in some types of human cancer, including breast, prostate, lung, ovary, and colon.49 ACC2 is commonly found in the mitochondrial outer membrane of more oxidative tissues such as skeletal muscle and heart and in the metabolically active liver. In these tissues, ACC2 functions as a regulator of FA β-oxidation (Figure 1) by inhibition of carnitine palmitoyltransferase 1 (CPT1) via malonyl-CoA.50 Human ACC1 contains 2,346 amino acid residues with a molecular weight of 265 kDa and ACC2 contains 2,483 amino acid residues with a molecular weight of 280 kDa.50 The difference of about 140 amino acids in the N-terminus of ACC2 explains the difference in location and function when compared to ACC1.50,51

Both ACCs isofoms are mainly regulated by AMPK, which inactivates the enzyme by phosphorylation, and protein phosphatase 2A, which dephosphorylates the enzyme and activates it.45,51 In addition, AMPK is activated by AMP and deactivated by ATP. When AMP levels are low, AMPK is inactive and ACC is active.45 Other molecules that regulate ACC are citrate (activation), palmitoyl-CoA (inactivation) and CoA.45,48,50,51 At transcriptional level, ACC is regulated by some transcription factors such as the carbohydrate response element-binding protein (ChREBP) and SREBP-1c by some transcription factors such as the carbohydrate receptor complex 56 and the PPARγ co-activator (PGC).57 During the catalytic reaction of ACC (Figure 1), bicarbonate plays an important role as it is the CO\textsubscript{2} source for biotin carboxylation. This bicarbonate molecule is synthesized from CO\textsubscript{2} and water by α-carboxylases (CAs), which shows that CAs are also important regulators of ACC.45 One CA, CA9/CA12, has been identified as overexpressed in many tumors and is associated with cancer progression.51 There are also other novel regulators of ACC activity, such as BRCA1 and AKR1B10 that are overexpressed in human carcinomas and are associated with an increase in FA synthesis.45

The ACC1 isoform, in particular, is regulated by a series of transcription factors controlled by glucose, insulin, thyroid hormones, and catabolic hormones.51,54 These transcription factors are SREBP-1,55 the liver X receptor/retinoid X receptor complex56 and the PPARγ co-activator (PGC).57 Specifically, SREBP-1 is a key regulator of ACC1 (and of other lipogenic enzymes) at transcriptional level as it is an effector of MAPK and PI3K.50,51 At translational level, ACC1 is activated by the human epidermal growth factor receptor-2 (HER2) mediated by the PI3K/Akt/mTOR signaling pathway, as observed in breast cancer.58

3.2.2 Inhibitors and cytotoxic effects

The overexpression of ACC, mainly the ACC1 isoform, plays an important role in cancer treatment because it contributes to the survival of cancer cells when therapies targeting the Warburg effect are applied.59 The mechanism of action is not fully understood yet, but it is associated with the response of cancer cells to AMPK activation-induced inhibition of ACC.60 In addition, it has been observed that the exogenous uptake of palmitic acid completely saves cancer cells from death. The addition of palmitic acid to culture media where LNCaP and PC-3M cells were incubated with Soraphen A (ACC inhibitor, see below) rescues cells from drug-induced cell death. An exogenous source of fatty acid could affect the treatments that target ACC or in general treatment targeting de novo synthesis enzymes. For effective treatment, a combination of membrane proteins that transport FAs and lipids together with pharmacological agents that interrupt de novo synthesis may be needed.

Although ACC1 overexpression has been observed in many tumors, both isoforms of ACC seem to contribute almost equally to lipid synthesis, as studies have shown.61 Moreover, the pharmacological inhibition of ACC leads to cancer cell cycle arrest and/or apoptosis in several cell lines.35

ACC inhibitors have been reviewed in a previous study,52 but it is worth mentioning the most important ones (Figure 3). First, Soraphen A (9, Figure 3) is a natural product isolated from the soil bacterium \textit{Sorangium cellulosum}, with a structure that contains a lactone formed by 17 carbon atoms, where the C3 and C7 of the ring are connected as a hemiketal.63 It was initially recognized as a potent antifungal drug. Further studies showed that it is also a potent inhibitor of eukaryotic ACC that binds specifically to the BC domain.64 However, it has no effect on the BC domain of prokaryotic ACC (bacterial).65 By analyzing the co-crystal structure of Soraphen A and the BC domain of ACC (yeast), it was evidenced that the entire macrocyclic portion binds to the BC domain, the methoxy groups at C11 and C12 positions act as H-bond acceptors, and the hydroxyl groups at C3 and C5 positions act as H-bond donors. Moreover, it was established that the binding of Soraphen A to the BC domain interferes with the oligomerization of the domain, which inhibits ACC.64 Further studies evidenced that Soraphen A inhibits DNL in human hepatoma (HepG2 cell line) and prostatic cancer (LnCaP cell line),66 and antitumor activity has been observed in other cancer cells.67-69 In particular, Soraphen A inhibits FA synthesis, which promotes FA β-oxidation and reduces the PLs level in prostate cancer cells (LnCaP and PC-3M cell lines), which inhibits their proliferation.60 Additionally, it shows antiviral activity.70 However, Soraphen A has not been clinically used due to its poor drug-like properties.

Pfizer researchers developed a metabolically stable piperidinyl derived analog, CP-640186 (10, Figure 3).71 It is a nonselective, reversible, ATP noncompetitive inhibitor of ACC1/2. It has been found to inhibit the synthesis of FAs and TGs in HepG2 cells71 and shows cytotoxic properties in...
The authors reported an IC$_{50}$ of 53 nM for rACC1 (rat) and 61 nM for rACC2. A study of the co-crystal structure of CP-640186 and the CT domain of ACC (yeast) revealed that the anthracene flat ring, the carbonyl group next to it, and the piperidine rings interact with the CT domain to produce the inhibitory effect.

Another piperidinyl-derived compound that interacts similarly with the CT domain is compound 11 (Figure 3), which has higher activity against ACC1/2 than compound 10. The metabolically stable compound 11 developed by Taisho has an IC$_{50}$ of 101 nM for rACC1, 23 nM for rACC2, and 76 nM for hACC1/2 (human). The authors reported that compound

FIGURE 3 Structure and half-maximal inhibitory concentration (IC$_{50}$) of selected ACC inhibitors. The organism from which ACC was extracted, the isoform, and the cell line of the cytotoxicity studies are indicated in parentheses.

Compound	ACC IC$_{50}$	Cytotoxicity IC$_{50}$	
9, Sorafen A	5 nM (hACC1/2)	-	
10, CP-640186	53 nM (rACC1)	61 nM (rAA2)	
11	76 nM (hACC1/2)	-	
12, MK-4074	3 nM (hACC1/2)	-	
13	1.9 nM (hACC2)	1.95 µM (hACC1)	
14	0.58 nM (hACC1)	>10 µM (hACC2)	
15	1.5 nM (hACC1)	140 nM (hACC2)	
16, ND-630	2.1 nM (hACC1)	6.1 nM (hACC2)	>20 µM (A549)
17, ND-646	3.5 nM (hACC1)	4.1 nM (hACC2)	16.2 nM (A549)
18	6.87 nM (hACC1)	9.4 nM (A549)	
In 2016, Nimbus therapeutics developed an efficient, reversible, specific ACC1/2 non-selective inhibitor: \textit{ND-630} (16, Figure 3). It inhibits ACC by interacting with its phosphopeptide-acceptor and dimerization site, which interferes with dimerization.79 In the same way as \textit{Soraphen A}, ND-630 interacts within the dimerization site of the enzyme with the same residues as the AMPK-phosphorylated ACC peptide tail to disrupt subunit dimerization and inhibit ACC activity. However, ND-630 is more potent because it fills a narrow, deep pocket in the BC domain.79 Despite its potent ACC inhibitory effect, further studies showed that ND-630 has weak cytotoxicity against lung tumors.80 In contrast, its primary amide, \textit{ND-646} (17, Figure 3), showed both properties: potent ACC inhibition and FA synthesis,81 and a strong cytotoxic effect against lung tumors.80 By the same inhibition mechanism of ND-630, ND-646 binds the BC domain of ACC and generates its consecutive dephosphorylation. This prevents the action of AMPK, and then ACC cannot dimerize.81

In 2019, Li et al performed small structural changes in ND-646, which led to the discovery of several compounds that have a better cytotoxic effect.80 One is compound 18 (Figure 3), which acts by the same mechanism of \textit{ND-646} and has an \(I_{50}\) of 6.87 nM for hACC1. In non-small-cell lung cancer (NSCLC), the ACC1 mRNA is overexpressed (as in many other types of cancer mentioned above). By using compound 18, the growth of A549 cells was inhibited (\(I_{50} = 16.2\) nM), leading to apoptosis.80

To sum up, ACC inhibition is not only a target for cancer but also for other metabolic diseases like diabetes, obesity, and fatty liver, with positive results. Therefore, targeting ACC in cancer therapy could have some non-desired side effects.

3.3 | FAS

3.3.1 | Function and description

Human fatty acid synthase (hFAS) is a complex homodimeric cytosolic enzyme of 552 kDa that catalyzes the formation of palmitate (C\textsubscript{16}) from acetyl-CoA and malonyl-CoA in the presence of NADPH (Figure 1).82 FAS has seven catalytic domains, which are (in linear order from the carboxyl terminus): thioesterase (TE), acyl-carrier protein (ACP), \(\beta\)-ketoacyl reductase (KR), enoyl reductase (ER), \(\beta\)-hydroxyacyl dehydratase (DH), malonyl/acyetyl transferase (MAT), and \(\beta\)-ketoacyl synthase (KS). Moreover, there are two additional nonenzymatic domains, pseudoketoreductase (\(\PsiKR\)), and the peripheral pseudomethyltransferase (\(\PsiME\)).83

As mentioned above, FAS catalyzes the final step of FA biosynthesis. Starting with a load of acetyl (from acetyl-CoA) onto the terminal thiol of the phosphopantetheine cofactor of the ACP, this process is performed by the MAT.84 The ACP passes the acetyl moiety over the active site cysteine of the KS. Subsequently, MAT transfers the malonyl group of malonyl-CoA to the ACP, and the KS catalyzes decarboxylative condensation of the acetyl and malonyl
moieties to an ACP-bound β-ketoacyl intermediate. Then, the β-carbon position is modified by the NADPH-dependent KR, DH, and NADPH-dependent ER domains to finally generate a saturated acyl group product with two extra carbon units. This molecule is the starting substrate for the next reactions of elongation until a fatty acid of 16 to 18 carbon atoms of length is obtained. Finally, the products are released from ACP as free FAs by the TE domain.84

FAS overexpression is one of the most frequent phenotypic alterations in cancer cells. Moreover, it is related to a higher risk of cancer recurrence and death.85 FAS overexpression has been evidenced in many human cancer cell lines including breast, colorectum, prostate, bladder, ovary, esophagus, stomach, lung, oral tongue, oral cavity, head and neck, thyroid and endometrium, among others.85,86 Normally, FAS is mainly regulated by nutritional signals and is expressed in hormone-sensitive cells and cells with high lipid metabolism.87 In contrast, FAS regulation in cancer cells implicates the activity of several transcriptional and post-translational factors (growth factors, hormones, and their receptors), in parallel with microenvironmental effects.83 Two well-studied pathways involved in FAS regulation are the MAPK and the PI3K/Akt pathways.88 HER2 and epidermal growth factor (EGF) receptors are involved in the downstream PI3K/Akt and MAPK signaling pathways, which subsequently activate FAS expression transcriptionally.89 Moreover, FAS expression can be amplified by crosstalk between sex hormones, growth factors and their receptors.28 Both Akt and MAPK transduction pathways regulate FAS by the same mechanism. They regulate the expression of SREBP-1c, which interacts with regulatory elements in the FAS promoter.83 In addition, SREBP-1c is directly regulated by the proto-oncogene FBI-1 (Pokemon) through its DNA-binding domain, and thus synergistically activates FAS transcription.90 Another transcription factor that is regulated as SREBP-1c and is highly implicated in FAS expression is ChReBP.91 There are other factors such as NAC1, acetyltransferase P300 and some microRNAs that regulate FAS expression in tumor cells.92

In breast cancer, FAS mediates the overexpression of S14, a lipogenesis-related nuclear protein that is regulated by SREBP-1c and supports cell growth and survival.93 Moreover, in SK-BR-3 and BT-474 breast cancer cell lines, FAS might be regulated by another mechanism via mTOR-mediated translational induction.58 By this mechanism, HER2 is overexpressed and with it higher levels of FAS are observed.83 In prostate cancer, the ubiquitin-specific protease 2a (USP2a) is overexpressed and plays a critical role in cell survival. It may interact with FAS to stabilize it through the removal of ubiquitin.94 USP2a is regulated by androgen and its inactivation results in FAS protein decrease and enhanced apoptosis.83

Microenvironmental effects such as hypoxia and acidity have important roles in the regulation of FAS.83 It has been evidenced that under hypoxic conditions in human breast cancer cell lines, FAS is upregulated.95 Moreover, Furuta et al found that SREBP-1c is also upregulated as an effect of phosphorylation of Akt with subsequent activation of the hypoxia-inducible factor HIF1. Finally, excessive extracellular acid conditions could result in changes in transcriptional activation of the FAS gene in breast cancer cells.96

3.3.2 Inhibitors and cytotoxic effect

Since the discovery of FAS as an oncogenic target, many inhibitors have been developed and tested against several cancer cell lines. It has been evidenced that FAS inhibition stops proliferation and induces the apoptosis of cancer cells, with minimal effects on normal cells.92 Most of the FAS inhibitors have been previously reviewed,83,97,98 but it is worth mentioning the most important, promising, potent inhibitors that are found in the literature (Figure 4). The first is the synthetic compound C75, a weak irreversible FAS inhibitor with an IC\(_{50}\) between 200-500 µM (racemic mixture).96-100 C75 interacts with FAS in different domains, specifically with KS, TE, and ER domains,101 and shows anticancer activity in many cancer cell lines and xenograft models.102,103 However, in vivo studies showed that C75 has a negative side effect: it reduces food intake and induces body weight loss.104,105 Further studies showed that the (−)-C75 enantiomer (19, (Figure 4) can inhibit FAS in vitro, which has a cytotoxic effect in several cancer cell lines without affecting food consumption.106 It was also evidenced that the (+)-C75 enantiomer inhibits CPT1 and produces anorexic effects. With these results, Makowski et al developed a series of C75-based inhibitors, taking into account the enantiomeric selectivity of FAS.100,107 They found that elongation of the aliphatic chain or the introduction of larger groups in the β-position of the lactone cause a decrease in inhibitory activity of FAS.107 This reduced structure-activity relationship study led to the development of a better FAS inhibitor, the (−)-UB006 (20, Figure 4) with an IC\(_{50}\) of 220 µM for FAS from rat.108 In vitro studies showed that (−)-UB006 is more cytotoxic than C75 against several cancer cells. Specifically, against the OVCAR3 cell line, it was found to be 40 times more cytotoxic than C75. Furthermore, in vivo administration of (−)-UB006 evidenced that it does not affect food intake and body weight. There are other C75-based inhibitors with no apparent negative side effects, like C93 and C247.108

Orlistat (21, Figure 4) is a potent FAS inhibitor that was initially designed for obesity treatment. Moreover, it is an FDA-approved pancreatic lipase inhibitor.97 Orlistat forms a covalent adduct with the serine of the TE domain and has an IC\(_{50}\) of 0.9 µM.98,109 It has shown tumor growth inhibition in xenograft models of prostate cancer and melanoma, and reduced proliferation and enhanced apoptosis in breast cancer that overexpresses HER2. However, Orlistat has poor oral
bioavailability and metabolic stability, and thus it is difficult to use for cancer treatment. The use of a drug-delivery system based on nanoparticles for Orlistat can improve its bioavailability, water-solubility and even its cytotoxic effect on aggressive breast cancer models.

In 2014, the pharmaceutical company GlaxoSmithKline developed a highly potent, reversible, specific inhibitor of the KR domain of hFAS. The compound GSK2194069 (22, Figure 4) has an IC$_{50}$ of 7.7 nM for hFAS and showed acceptable solubility and permeability. The authors demonstrated that GSK2194069 decreases the DNL, which produces potent inhibition in cancer cell growth and proliferation in gastric and non-small-cell lung cancer cell lines. Moreover, they determined that GSK2194069 interacts specifically with the KR domain and works as a competitive inhibitor. Further studies evidenced that treatment with GSK2194069 in prostate cancer C42b cell xenografts inhibited tumor growth with no apparent side effects.

FIGURE 4 Structure and half-maximal inhibitory concentration (IC$_{50}$) of selected FAS inhibitors. The organism from which FAS was extracted and the cell line of the cytotoxicity studies are indicated in parentheses.
Sagimet Biosciences (previously 3-V Biosciences) developed a new generation of highly potent, reversible, FAS inhibitors. One of them is TVB-3166 (Figure 4), that has an IC\textsubscript{50} of 0.042 \mu M for FAS (from rabbit). It can stop FA synthesis and disrupt the lipid raft structure, which affects all the membrane-associated molecules and signaling pathways, such as Ras, Akt-mTOR, and Wnt-\beta-catenin. In vivo studies showed that a single daily dose can inhibit FAS for 10-12 hours every day, which induces xenograft tumor growth inhibition in lung, ovarian, and pancreatic tumor models. These results showed that an irreversible inhibitor is not necessary to stop tumor growth in vivo. Moreover, TVB-3166 does not have any apparent negative side effects.

Another compound developed by Sagimet Biosciences is TVB-2640 (24, Figure 4), which is the first and only FAS inhibitor that has reached clinical trials to date. TVB-2640 is described as a highly potent, selective, reversible FAS inhibitor that acts in the KR domain and has an IC\textsubscript{50} of 0.05 \mu M. In 2017, the phase 1 clinical trial of TVB-2640 in patients with solid tumors was completed. Its antitumor activity was demonstrated in monotherapy and co-treatment with paclitaxel. Some common negative side effects were observed including alopecia, palmar-plantar erythrodysesthesia, and decreased appetite, among others. Now, phase 2 of clinical trials of TVB-2640 (monotherapy and/or co-treatment) is underway, and includes the treatment of lung, colon, breast, and astrocytoma cancer (NCT03808558, NCT02980029, NCT03179904, and NCT03032484). Moreover, partial results of the phase 2 trial of TVB-2640 in combination with Bevacizumab in patients with the first relapse of high-grade astrocytoma showed that co-treatment is well-tolerated in humans.

In 2016, Alwarawrah et al discovered a potent thiophenopyrimidine-based FAS inhibitor with broad antitumor activity against various non-tumorigenic and aggressive tumor-forming breast cancer cell lines. Fasnall (25, Figure 4) with an IC\textsubscript{50} of 3.71 \mu M for hFAS, can produce a significant change in the global cellular lipid profile. Its mechanism of action includes an increase of intracellular levels of ceramide (also in DAGs and unsaturated FA), which increases the apoptosis of cancer cells. Moreover, Fasnall inhibits the formation of PLs with saturated acyl chains and promotes the uptake of unsaturated FAs, which critically affects the lipid raft structure and functioning. Fasnall treatment has no apparent negative side effects and its combination with other chemotherapeutic agents such as carboplatin augments the tumor volume reduction and survival in vivo studies. All these characteristics and the ease of adaptability of the Fasnall synthetic route suggest that it can be further optimized to develop new derivatives with better pharmacological properties.

In 2018, Lu et al developed a series of spirocyclic imidazolinone FAS inhibitors. One of them showed high FAS inhibitory activity with good cellular activity and oral bioavailability. The compound JNJ-54302833 (26, Figure 4) has an IC\textsubscript{50} of 28 nM for hFAS and effectively inhibits the proliferation of several cancer cell lines including ovarian, prostate, lymphoma, leukemia, lung, and breast. The authors found that one compound of the series of spirocyclic imidazolinone FAS inhibitors (not exactly JNJ-54302833) binds to the KR domain by H-bonds. Furthermore, hydrophobic interactions occurred with the KR and non-catalytic domains of FAS. In 2019, Infinity Pharmaceuticals published the discovery of a potent, irreversible inhibitor of hFAS: IPI-9119 (27, Figure 4). It has an IC\textsubscript{50} of 0.3 nM for hFAS and inhibits the TE domain by promoting acylation of the catalytic serine. The authors evidenced that IPI-9119 significantly reduced prostate cancer cell growth and induced cell cycle arrest and apoptosis in PCA cells. Moreover, FAS inhibition generated an entire lipid homeostasis change, including the accumulation of polyunsaturated FAs produced by the uptake and use of exogenous FAs. In addition, cholesterol synthesis was increased as a type of redirection of the unused acetyl-CoA. Therefore, PCA cells tried to compensate for the DNL deficiency by upregulating genes encoding enzymes and transcription factors involved in lipid synthesis. Further investigations are necessary to understand these anomalies caused by IPI-9119 treatment.

FORMA Therapeutics developed a series of novel piperazine derivative FAS inhibitors. One of them is the compound FT113 (28, Figure 4) with an IC\textsubscript{50} of 0.213 \mu M for hFAS. The authors reported that several H-bond interactions occurred between the hydroxyl and carbonyl of the hydroxy-cyclopropyl amide and the active site residues of the KR domain. These observations were determined by the X-ray co-crystal structure of FT113 bound to a \Psi ME-\Psi KR-KR tridomain FAS construct. FT113 was the compound with the best balance between physicochemical and pharmacokinetic properties and potency. Moreover, FT113 showed anti-proliferative activity against prostate (PC3 cell line), breast (BT-474 cell line), and leukemia (MV-411 cell line) cancer cells. After 16 days of treatment with FT113, an increase in malonyl-CoA levels was evidenced in tumors, as well as tumor growth inhibition of 32% and 50% by treatment with 25 and 50 mg/kg, respectively, compared to the vehicle.

It has been evidenced that FAS is a viable target for the inhibition of FA biosynthesis, as many compounds showed high FAS inhibitory activity and cytotoxic effects against several cell lines, with no apparent side effects. Moreover, one compound (TVB-2640) is currently being tested in humans, which suggests that FAS targeting has great potential for anticancer therapy. We now have new tools for discovering FAS inhibitors, such as computational screening. With tools of this kind, it is easier to discover and optimize new compounds, with lower costs and less time in the process.
3.4 | MAGL

3.4.1 | Function and description

In DNL, MAGL liberates the stored fatty acids for metabolic and signaling purposes, which supports and promotes the migration, invasion, survival, and growth of tumors in aggressive human cancers.124 This enzyme has been found at elevated levels, together with free fatty acids (FFAs), in several aggressive human cancer cell lines.124 MAGL controls the FFAs level in cancer cells through the hydrolysis of monoacylglycerols (MAGs) (Figure 1).124 In normal cells, MAGL controls the levels of MAGs and not the FFAs level, which shows that in cancer cells this pathway is altered (as others have already mentioned) to satisfy pathogenic requirements.124,125 The mechanism of MAGL-stimulation for cancer aggressiveness is through the action of FFA-derived products.124 Some secondary lipid metabolites such as LPL (including lysosphatidylcholine [LPC], LPA, lysosphatidylethanolamine [LPE] and PA), prostaglandin E2 (PGE2), and ether lipids (monoalkylglycerol [MAGE] and alkyl LPE) are regulated by MAGL. All of them support cancer malignancy but LPA and PGE2 to a greater extent.124,126 Moreover, MAGL is the primary enzyme that degrades endogenous cannabinoid 2-arachidonoylglycerol (2-AG) in vivo.127 Moreover, 2-AG is the principal signaling molecule of MAGs and activates the CB1 and CB2 receptors.124,128 In particular, the CB1 receptor has been highly implicated in the aggressiveness of prostate cancer.127 Besides, it has been observed that CB2 receptor activation promotes colon cancer. Recently, it was evidenced that the attenuation of CB2 signaling suppress tumor growth.130 In addition, these endocannabinoid (CB1 and CB2) receptors have other functions related to pain, inflammation, neurodegeneration, and anxiety.131

MAGL is part of the α/β hydrolase superfamily of enzymes.132 It is found as a dimer of 33 kDa with 313 residues. It has two protein molecules per asymmetric unit with the catalytic site facing the PL membrane.133 MAGL is located in the cytosol and cell membranes (amphipathic behavior), so it is soluble in the cytosol. At the same time, it can interact with the PL membrane to recruit its substrate.134 Moreover, it has been observed that MAGL exist in two distinct conformations: closed and open. These correspond to the inaccessible or solvent-exposed active site.134 This special characteristic evidenced that MAGL regulates the entering of 2-AG to the catalytic site through CPE flexible control of the lid domain opening.134 It was hypothesized that the hydrophobic character of the lid domain serves to locate MAGL close to the PL membrane, which facilitates 2-AG recruitment.134 When the substrate enters the active site, MAGL takes its closed form and dissociates from the membrane in parallel to cleaving 2-AG. Then, MAGL again takes the open conformation and reassociates with the membrane.134 The mechanism of action of MAGL has not been fully elucidated yet. However, as mentioned before, an important part of this is now understood and might lead to the development of better inhibitors for this enzyme.

Regarding the regulation of MAGL, very little is known about post-transcriptional and post-translational modifications. There is no evidence of phosphorylation or other modifications to date.135 However, slight variations have been found between the MAGL enzymes from adipose tissues, liver, heart, lung, stomach, kidney, spleen, kidney, and adrenal gland, and the MAGL enzymes from brain, testis, and skeletal muscle.135,136 Therefore, post-transcriptional and/or post-translational modifications may occur depending on the particular need of the cell in a distinct tissue or physiological state.135 In general terms, the regulation of MAGL is unknown. Therefore, more studies are required to understand it (especially human MAGL) and thus design better and more selective inhibitors.

3.4.2 | Inhibition and cytotoxic effect

It has been evidenced that by inhibiting MAGL, tumorigenesis and cancer progression are suppressed in several cancer cell lines.41,137 However, its inhibition can have other implications in neurodegeneration, inflammation and metabolic disorders.138 Moreover, there are other serine hydrolases such as fatty acid amide hydrolase (FAAH), α/β hydrolase domain 6 (ABHD6) and α/β hydrolase domain 12 (ABHD12) that have similar binding site properties (to MAGL), although they exert different functions and have different endogenous substrates in human.139,140 Therefore, the analysis of the selectivity profile of MAGL inhibitors is very important for the development of new and better compounds.

Some MAGL inhibitors have been reviewed previously,138,139 but it is important to mention the most promising new ones (Figure 5). In 2008, Muccillo et al developed a good inhibitor of MAGL: CAY10499 (29, Figure 5).140 The carbamate derivative CAY10499 is a covalent irreversible inhibitor of MAGL, with an IC₅₀ of 134 nM for hMAGL.141 However, CAY10499 is not a selective inhibitor of MAGL, as it is also active against FAAH.140 The authors suggested that the active moiety of CAY10499 is the 5-methoxy-1,3,4-oxadiazol-2(3H)-one moiety and not the carbamate. Further studies showed that CAY10499 is active against five tumor cell lines: human breast (MDA-MB-231), colorectal (HCT116), and ovarian (OVSAHO, COV3, COV318, OVCAR3, and SKOV3) cancer cell lines.141,142

The first selective and in vivo active, irreversible inhibitor of MAGL was synthesized in 2009 by Long et al.143 The JZL184 (30, Figure 5) is a piperidine carbamate compound that binds covalently and irreversibly by carbamylating a
serine residue in the active site of MAGL. It has an IC$_{50}$ of 6 nM for hMAGL. In vivo studies showed several beneficial effects of its administration, including analgesic, antinociceptive, anti-inflammatory, gastroprotective, antidepressant, and anxiolytic effects. JZL184 has shown anticancer effects against colorectal cancer and hepatocellular carcinoma (HCC). In colorectal cell lines, it reduced tumor cell progression and increased apoptosis (correlated with MAGL inhibition). In HCC cell lines, it significantly increased apoptosis and reduced tumor growth, and even decreased the invasion ability of the HCC cell line SMMC-772. Moreover, in C8161 and SKOV3 aggressive

Compound	MAGL IC$_{50}$	Cytotoxicity IC$_{50}$
29, CAY10499	0.134 µM	34 µM (SKOV3)
30, JZTL184	6 nM	-
31, KML29	5.9 nM	-
32, PF-06795071	3 nM	-
33, JJKK-048	0.36 nM	-
34	3.6 nM	-
35	0.51 µM	11 µM (CAOV3)
36	80 nM	15 µM (SKOV3)

FIGURE 5 Structure and half-maximal inhibitory concentration (IC$_{50}$) of selected hMAGL inhibitors. The cell line of the cytotoxicity studies is indicated in parentheses in each case.
cancer cells, the tumor growth and migration rate were reduced by the administration of JZL184 once per day (40 mg/kg). Nomura et al evidenced that JZL184 blocks the conversion of LPA and PGE2 from MAGs in aggressive cancer cells, which correlates with the tumor growth and migration reductions. Further investigations generated a more selective JZL184 derivative with O-hexafluoroisopropyl as a leaving group: KML29 (31, Figure 5). This compound has an IC50 value of 5.9 nM for hMAGL and has shown complete selectivity for MAGL over FAAH. KML29, like other carbamate derivatives, binds covalently and irreversibly to MAGL by the formation of a carbamylated enzyme-inhibitor adduct. However, there have been no studies of the anticancer activity of this compound to date.

After a series of optimizations of carbamate derivatives, Pfizer’s research group developed the irreversible inhibitor PF-06795071 (32, Figure 5) with an IC50 of 3 nM for hMAGL. This compound has great drug-like properties due to its novel stereo-defined trifluoromethyl glycol leaving group. PF-06795071 was studied against neuroinflammatory disease and showed high in vivo efficacy, but there are no studies about its use against cancer. In 2013, a series of urea-based MAGL inhibitors were developed by Aaltonen et al. The most potent of them was JJKK-048 (33, Figure 5) with an IC50 value of 0.36 nM against hMAGL. This compound irreversible inhibitor was proved to be selective for MAGL against other serine hydrolases such as FAAH and ABHD6. The proposed mechanism of action is very similar to that of the carbamate-derived inhibitors. JJKK-048 also forms a carbamate adduct with a serine in the active site of MAGL, and the triazole (1,2,4-triazolateanion) acts as the leaving group. In vitro studies of JJKK-048 in C8161 melanoma cells show that it is highly selective for MAGL, but further information about its impact on cell proliferation, migration, and invasiveness has not been reported.

The irreversible inhibition of MAGL has many negative effects in vivo, such as loss of analgesic effects and cross-tolerance to CB1 agonists. In addition, it generates physical effects in vivo, such as loss of analgesic effects and cross-tolerance to any of the CB1 and CB2 cannabinoid receptors. Recently, Granchi et al developed a benzoylpiperidine-based potent reversible inhibitor of MAGL: compound 36 (Figure 5). Compound 36 has a value of 80 nM for hMAGL and showed high selectivity over FAAH, ABHD6, ABHD12, CB1, and CB2 (IC50 > 10 μM in all cases). In addition, in vitro studies showed antiproliferative activities in human breast MDA-MB-231, colorectal HCT116 and ovarian CAOV3, OVCAR3 and SKOV3 cancer cells at micromolar concentrations. In vivo studies proved that compound 36 inhibits MAGL, as it significantly increased the 2-AG levels in brain and plasma after intraperitoneal injection into C57BL6 mice.

Targeting MAGL for cancer treatment could result in the disruption of cancer cell proliferation but could also lead to neurodegeneration, inflammation, and metabolic disorders. The development of future MAGL inhibitors must focus on the selectivity and reversibility of the inhibition to avoid possible side effects.

4.1 | SREBP-1: Blocking overexpression of lipogenic enzymes

Sterol regulatory element binding proteins (SREBPs) are transcription factors that are responsible for cholesterol and fatty acid biosynthesis gene activation. Pharmacological inhibition of this protein could block the expression of lipogenic enzymes in cancer cells. Indeed, some small molecules such as fatostatin were found to block fatty acid synthesis by inhibiting the activation of SREBP-1 and they reduced the malignant phenotype of esophageal cancer.

4.2 | IDH and SLC25A1: Blocking citrate supply for FA synthesis

Citrate is a key building block for de novo fatty acid synthesis. In normal oxygen supply conditions, it is obtained from
glucose. Under hypoxic conditions, such as in cells from the solid tumor, another nutrient like glutamine might become a citrate precursor. In this case, de novo synthesis can be interrupted by inhibition of the key enzyme in that pathway: isocitrate dehydrogenase (IDH), which in reductive metabolism conditions catalyzes the conversion of α-ketoglutarate into citrate (Figure 6), the precursor of acetyl-CoA. Nevertheless, IDH has become a target for myeloid leukemia rather than solid tumor treatment because of other mechanisms. The neomorphic mutants of IDH present in blood cancer produce abnormal accumulation of R-2-hydroxyglutarate, which promotes leukemogenesis. The FDA approved Enasidenib and Ivosidenib for treatment of relapsed or refractory acute myeloid leukemia. These are mutant IDH2 and IDH1 isoforms inhibitors. Another protein that can interrupt the citrate supply for fatty acid synthesis is SLC25A1. The pyruvate obtained from glucose can be converted into lactate. In mitochondria, lactate can be transformed into citrate. SLC25A1 transports lactate from mitochondria into the cytosol, where it becomes a starting material for acetyl-CoA, a fatty acid precursor. Overexpression of SLC25A1 was found in some ovarian and most lung cancer cell lines and is associated with chemotherapy resistance. Pharmacological inhibition of SLC25A1 inhibits tumor growth alone and increases sensitivity for chemotherapeutic agents such as cis-platin.

4.3 ELOVL6, SCD1, FASD: FA modification proteins

The aliphatic chain of de novo synthesized palmitate can be elongated by ELOVL enzyme and/or unsaturations can be introduced by SCD or FASD enzymes (Figure 6). Recent findings show that one of the members of the ELOVL protein family (ELOVL1-7) ELOVL6 could be a promising target for lung squamous carcinoma. Pharmacological inhibition in vitro with an indole core derivative called compound A did not produce changes in cell proliferation, but did decrease colony formation. Oral and local intra-tumor administration of ELOVL6 inhibitor produces tumor growth inhibition.

FIGURE 6 Proteins involved in lipid metabolism and proposed as pharmacological targets for cancer therapy. Citrate is a starting material for palmitate de novo synthesis and could be biosynthesized in normal oxygen conditions from glucose. In the glycolytic pathway, pyruvate is obtained and could be converted into lactate, which in mitochondria is transformed into citrate. Inhibition of SLC25A1 protein that transports citrate from mitochondria into cytosol can block de novo fatty acid synthesis. In hypoxic conditions, cancer cells can switch from glucose to glutamine as a source for citrate synthesis. An intermediate protein in that catabolic pathway is isocitrate dehydrogenase, whose inhibition leads to a reduction of the citrate pool. Synthesis of complex lipids requires modification of de novo synthesized palmitate. Proteins involved in FA modification are chain elongation ELOVL and proteins that introduce unsaturations: SCD and FASD. Inhibition of SCD and FASD may also induce a lipotoxicity effect. Cancer cells might obtain FAs from lipid stores such as triglycerides from lipid droplets. The most important lipase that catalyzes FA liberation from glycerides is MAGL. Recently, new evidence has shown the importance of ATGL and DAGL lipases in cancer cells. The key function of lipid droplets is energy storage and they are very important in tumor growth and cell survival, especially in hypoxic conditions. Rather than targeting catabolism of LD, the biogenesis of LD is a more attractive approach in cancer studies. This includes the study of LPCAT2 protein, which is involved in LD formation. Extracellular lipids could be transported through the cellular membrane by the actions of several proteins such as CD36, which is the most studied from the perspective of a pharmacological target in cancer.
Accumulation of saturated fatty acids and a disequilibrium with unsaturated fatty acids can produce an increased concentration of reactive oxygen species and endoplasmic reticulum stress. The appropriate ratio of saturated and unsaturated FAs is maintained with the action of stearoyl-CoA desaturases (SCDs) and fatty acid desaturases (FADS). The inhibition of SCD1 in vivo responds very well. It stops tumor growth in many cancer cell lines including metastatic cell lines, and leads to a better prognosis in animals. Recently, the SCD1 inhibitors were reviewed. Nevertheless, some cancer cells resist SCD1 inhibition. A new study showed that some cancer cells show plasticity in adapting mechanisms in the synthesis of unsaturated fatty acids. Resistance to SCD1 inhibition in lung and liver carcinomas is developed by an alternative pathway using fatty acid desaturase 2 (FASD2) enzyme, which catalyzes sapienate formation from palmitate. This finding reveals new details of cancer lipid metabolism and the possibility of treatments for SCD1-inhibition-resistant carcinoma with drug combinations.

4.4 CD36, LDLR, FATPs, FABPs: Blocking exogenous fatty acid sources

In addition to de novo synthesis, cancer cells can meet FA requirements from the exogenous microenvironment. However, this requires transportation through cell membranes using proteins such as CD36, LDLR, FATPs, and FABPs (Figure 6). The importance of interrupting this pathway in cancer was recently proved, as an exogenous source of oleic acid reversed the effect of SCD1 inhibitor and this effect was restored in CD36 knockdown breast cancer cells. This suggests that combinatorial treatment targeting lipogenesis together with FA transport would be more effective in cancer treatment. Probably the best characterized protein is CD36. Pharmacological CD36 targeting is a very promising approach since its two ligands reached clinical trials. Although ABT-510 failed in phase 2 and CVX-045 in phase 1, both molecules gave very important input and expectations for new molecules with improved activity targeting CD36 and other membrane FA transport proteins.

4.5 LPCAT2: Lipid droplet formation

One of the established hallmarks of cancer is lipid droplet (LD) accumulation, which is associated with chemotherapy resistance in colon cancer cells. The excess of cholesterol esters is stored as LDs that cancer cells can use in a situation of nutrient depletion or hypoxia, when synthesis of de novo FA is compromised. Proteins responsible for the formation of LDs are attractive targets, since increased concentration of non-stored cholesterol can cause lipotoxic effects and lipid supply would be compromised. Some inhibitors of lysophosphatidylcholine acyltransferase 2 (LPCAT2) have been developed such as TSI-01, which has been found to prevent LD accumulation in the treatment of HT29 colon cancer cells.165

4.6 ATGL, DAGL, and HSL: Tri and diglycerol catabolism

In this review, we mainly focused on one lipase, MAGL, which catalyzes the breakdown of FA from triglyceride, since it is the most extensively studied enzyme in cancer. Adipose triglyceride lipase (ATGL), diacylglycerol lipase (DAGL), and hormone-sensitive lipase (HSL) are other important lipases in adipose tissue that are responsible for FA mobilization (Figure 6). HSL and DAGL have not been widely studied in the context of cancer. However, DAGL was recognized recently as a participant in tumorigenesis in oral squamous cell carcinomas and may be a therapeutic target in this kind of diseases. Targeting ATGL for cancer treatment must be tissue specific. A recent study showed that this enzyme can have a tumor-suppressive function. Low levels of mRNA of this enzyme were associated with low survival in patients suffering from different cancers. In a study by Gerald Hoefler et al, the authors found pulmonary neoplasia in mice lacking ATGL. However, others studies demonstrated that, similar to MAGL, inhibition of ATGL may have a cytotoxic effect. Altogether, these contradictory effects may be a big obstacle in drug development targeting ATGL in specific tissues.

4.7 CPT1: Blocking fatty acid oxidation

Carnitine palmitoyltransferase 1 (CPT1) is a mitochondrial membrane enzyme (Figure 6) that catalyzes the transport of long-chain fatty acids (previously activated with Coenzyme A) from the cytosol into the mitochondria, where FA could be β-oxidized to produce ATP, acetyl-CoA, NADH, and FADH2. Inhibition of CPT1 may produce lipotoxic effects and depletion of the required energy source that cancer cells need for growth and survival. The in vivo study of CPT1 inhibition by ST1326 in Eµ-myc transgenic mice prevented tumor formation. However, pharmacological targeting of CPT1 in cancer therapy may have some side effects, since the inhibition of this enzyme is associated with an anorexic effect.

5 CONCLUSIONS

Lipid metabolism is a key player in cancer cell survival. Enzymes that regulate the synthesis of FAs are often
overexpressed in many cancer cell lines and their inhibition can result in the disruption of cancer cell proliferation. In this review, inhibitors of the three enzymes involved in the anabolism of FFAs from citrate (ACLY, ACC, and FAS) and one involved in the catabolism of FFAs from MAG (MAGL) have been analyzed as potential antitumor drugs. Among them, inhibitors of FAS are very promising, since they showed cytotoxicity against several cancer cell lines and one of them (TVB-2640) is currently being evaluated in clinical trials. Inhibitors that target ACC and MAGL should focus on selectivity to avoid possible side effects, because inhibition of these enzymes affects other metabolic diseases. However, inhibitors focused on ACLY need to be studied more exhaustively to assess their effectiveness for cancer. In addition to the de novo pathway, the simultaneous inhibition of proteins responsible for exogenous FAs transportation should be considered, as new evidence suggests that cancer cells can recover using that pathway, reversing drug effects.

Tumor microenvironment plays a critical role in drug delivery and efficiency. Tumor microenvironment might be different in solid vs hematological cancers such as CML, AML, or CLL (chronic myeloid leukemia, acute myeloid leukemia, and chronic lymphocytic leukemia respectively). In fact, different solid tumors such as prostate or colon cancer might also have distinct microenvironments and thus, distinct metabolic profile. Tridimensional heterogeneity and cellular complexity and interaction could be higher in solid tumors. This might directly affect drug delivery, diffusion, sensitivity, uptake, and metabolism. Hematological cancers could potentially be more sensitive than solid tumors to different pharmacological drugs since in hematological tumor cells are directly exposed in the circulation. A tumor that highly relies on lipogenesis for biomass production would potentially present higher efficiency to lipogenic inhibitors. The reliance would be lower in a tumor with high availability to circulating lipids in its microenvironment as in the liver. In addition, it must be taken into account the different mutations and enzyme expression levels present in distinct tumors that might directly affect the metabolic fluxes and drug efficiency. Therefore, it would be interesting to study the metabolic reprogramming of each tumor according to its own microenvironment.

ACKNOWLEDGMENTS
This study was supported by the Ministry of Spain (MINECO) (SAF2017-83813-C3-1-R to Dolors Serra [DS] and LH), cofunded by the European Regional Development Fund (ERDF), the Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN) (Grant CB06/03/0001 to DS), the Government of Catalonia (2017SGR278 to DS and 2017SGR474 to Jordi Garcia), and the Fundació La Marató de TV3 (201627-30 to DS).

CONFLICT OF INTEREST
The authors declare no conflicts of interest.

AUTHOR CONTRIBUTIONS
K. Makowski conceived the idea; N. Montesdeoca, M. López, X. Ariza, L. Herrero, K. Makowski wrote the manuscript; K. Makowski designed the illustrations.

REFERENCES
1. World Health Organization. Cancer, 2018. https://www.who.int/health-topics/cancer#tab=tab_1
2. Beloribi-Djefaflia S, Vasseur S, Guillaumond F. Lipid metabolic reprogramming in cancer cells. Oncogenesis. 2016;5:e189.
3. Currie E, Schulze A, Zechner R, Walther TC, Farese RV. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18:153-161.
4. Santos CR, Schulze A. Lipid metabolism in cancer. FEBS J. 2012;279:2610-2623.
5. Staubach S, Hanisch F-G. Lipid rafts: signaling and sorting platforms of cells and their roles in cancer. Expert Rev Proteomics. 2011;8:263-277.
6. Baenke F, Peck B, Miess H, Schulze A. Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech. 2013;6:1353-1363.
7. Boroughs LK, Deberardinis RJ. Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol. 2015;17:351-359.
8. Warburg O. On the origin of cancer cells. Science. 1956;123:309-314.
9. Röhrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 2016;16:732-749.
10. Metallo CM, Gameiro PA, Bell EL, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2012;481(7381):380-384. https://doi.org/10.1038/natur10602
11. Kamphorst JJ, Chung MK, Fan J, Rabinowitz JD. Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer Metab. 2014;2:23.
12. Young RM, Ackerman D, Quinn ZL, et al. Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress. Genes Dev. 2013;27:1115-1131.
13. Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. J Clin Oncol. 2010;28:1075-1083.
14. de Gonzalo-Calvo D, Lopez-Vilaro L, Nasarre L, et al. Intratumor cholesteryl ester accumulation is associated with human breast cancer aggressiveness. BMC Cancer. 2015;15:460.
15. Yue S, Li J, Lee S-Y, et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 2014;19:393-406.
16. Wymann MP, Schneiter R. Lipid signalling in disease. Nat Rev Mol Cell Biol. 2008;9:162-176.
17. Morad SAF, Cabot MC. Ceramide-orchestrated signalling in cancer cells. Nat Rev Cancer. 2013;13:51-65.
18. Resh MD. Covalent lipid modifications of proteins. Curr Biol. 2013;23:R341-R435.
19. Dall’Armi C, Devereaux K, Di Paolo G. The role of lipids in the control of autophagy. Curr Biol. 2013;23:R33-45.
20. Zaidi N, Swinnen JV, Smans K. ATP-citrate lyase: a key player in cancer metabolism. Cancer Res. 2012;72:3709-3714.
21. Granchi C. ATP citrate lyase (ACLY) inhibitors: an anti-cancer strategy at the crossroads of glucose and lipid metabolism. Eur J Med Chem. 2018;157:1276-1291.
22. Verschuuren KHG, Blanchet C, Felix J, et al. Structure of ATP citrate lyase and the origin of citrate synthase in the Krebs cycle. Nature. 2019;568:571-575.
23. Sun T, Hayakawa K, Bateman KS, Fraser ME. Identification of the citrate-binding site of human ATP-citrate lyase using X-ray crystallography. J Biol Chem. 2010;285:27418-27428.
24. Chypre M, Zaidi N, Smans K. ATP-citrate lyase: a mini-review. Biochimie Phys Res Commun. 2012;422:1-4.
25. Buzzai M, Bauer DE, Jones RG, et al. The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene. 2005;24:4165-4173.
26. Zaidi N, Royaux I, Swinnen JV, Smans K. ATP citrate lyase knockdown induces growth arrest and apoptosis through different cell- and environment-dependent mechanisms. Mol Cancer Ther. 2012;11:1925-1935.
27. Migita T, Narita T, Nomura K, et al. ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer. Cancer Res. 2008;68:8547-8554.
28. Mashima T, Seimiya H, Tsuruo T. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br J Cancer. 2009;100:1369-1372.
29. Hatzivassiliou G, Zhao F, Bauer DE, et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell. 2005;3:311-321.
30. Guais A, Baronzio G, Sanders E, et al. Adding a combination of hydroxycitrate and lipoic acid (METABLOC) to chemotherapy improves effectiveness against tumor development: experimental results and case report. Invest New Drugs. 2012;30:200-211.
31. Oleynek JJ, Barrow CJ, Burns MP, et al. Anthrones, naturally occurring competitive inhibitors of adenosine-triphosphate-citrate lyase. Drug Dev Res. 1995;36:35-42.
32. Promkan M, Dakeng S, Chakrharthy S, Bogler O, Patmasiriwat P. The effectiveness of cucurbitacin B in BRCA1 defective breast cancer cells. Plos One. 2013;8:e55732.
33. Dakeng S, Duangmano S, Jiratchariyakul W, U-Pratya Y, Bogler O, Patmasiriwat P. Inhibition of Wnt signaling by cucurbitacin B in breast cancer cells: reduction of Wnt-associated proteins and related pathways as molecular targets for cancer therapy. Endocr J. 2008;55:617-624.
34. Jayaprakasam B, Seeram NP, Nair MG. Anticancer and anti-inflammatory activities of cucurbitacins from Cucurbita andreana. Cancer Lett. 2003;189:11-16.
35. Gao Y, Islam MS, Tian J, Lui VWY, Xiao D. Inactivation of ATP citrate lyase by cucurbitacin B: A bioactive compound from cucumber, inhibits prostate cancer growth. Cancer Lett. 2014;349:15-25.
36. Chan KT, Meng FY, Li Q, et al. Cucurbitacin B induces apoptosis and S phase cell cycle arrest in BEL-7402 human hepatocellular carcinoma cells and is effective via oral administration. Cancer Lett. 2010;294:118-124.
37. Hunsakunachai N, Nuengchamnong N, Jiratchariyakul W, Kummalue T, Khemawoot P. Pharmacokinetics of cucurbitacin B from Trichosanthes cucumerina L. in rats. BMC Complement Altern Med. 2019;19:1-12.
24. Barber MC, Price NT, Travers MT. Structure and regulation of acetyl-CoA carboxylase genes of metazoa. *Biochim Biophys Acta*. 2005;1733:1-28.

25. Yoon S, Lee M-Y, Park SW, et al. Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. *J Biol Chem*. 2007;282:26122-26131.

26. Luo J, Hong Y, Lu Y, et al. Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab. *Cancer Lett*. 2017;384:39-49.

27. Beckers A, Organe S, Timmermans L, et al. Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. *Cancer Res*. 2007;67:8180-8187.

28. Fullerton MD, Galic S, Marcinko K, et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. *Nat Med*. 2013;19:1649-1654.

29. Barber MC, Price NT, Travers MT. Structure and regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. *J Biol Chem*. 2007;282:26122-26131.

30. Luo J, Hong Y, Lu Y, et al. Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab. *Cancer Lett*. 2017;384:39-49.

31. Bechsteiner ME, Timmermanns S, S reviewed the structure and regulation of acetyl-CoA carboxylase. *Biochim Biophys Acta*. 2007;1733:1-28.

32. Yoon S, Lee M-Y, Park SW, et al. Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. *J Biol Chem*. 2007;282:26122-26131.

33. Luo J, Hong Y, Lu Y, et al. Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab. *Cancer Lett*. 2017;384:39-49.

34. Bechsteiner ME, Timmermanns S, S reviewed the structure and regulation of acetyl-CoA carboxylase. *Biochim Biophys Acta*. 2007;1733:1-28.

35. Yoon S, Lee M-Y, Park SW, et al. Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. *J Biol Chem*. 2007;282:26122-26131.

36. Luo J, Hong Y, Lu Y, et al. Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab. *Cancer Lett*. 2017;384:39-49.

37. Bechsteiner ME, Timmermanns S, S reviewed the structure and regulation of acetyl-CoA carboxylase. *Biochim Biophys Acta*. 2007;1733:1-28.

38. Yoon S, Lee M-Y, Park SW, et al. Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. *J Biol Chem*. 2007;282:26122-26131.

39. Luo J, Hong Y, Lu Y, et al. Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab. *Cancer Lett*. 2017;384:39-49.

40. Bechsteiner ME, Timmermanns S, S reviewed the structure and regulation of acetyl-CoA carboxylase. *Biochim Biophys Acta*. 2007;1733:1-28.

41. Yoon S, Lee M-Y, Park SW, et al. Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. *J Biol Chem*. 2007;282:26122-26131.

42. Luo J, Hong Y, Lu Y, et al. Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab. *Cancer Lett*. 2017;384:39-49.

43. Bechsteiner ME, Timmermanns S, S reviewed the structure and regulation of acetyl-CoA carboxylase. *Biochim Biophys Acta*. 2007;1733:1-28.

44. Yoon S, Lee M-Y, Park SW, et al. Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. *J Biol Chem*. 2007;282:26122-26131.

45. Luo J, Hong Y, Lu Y, et al. Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab. *Cancer Lett*. 2017;384:39-49.

46. Bechsteiner ME, Timmermanns S, S reviewed the structure and regulation of acetyl-CoA carboxylase. *Biochim Biophys Acta*. 2007;1733:1-28.

47. Yoon S, Lee M-Y, Park SW, et al. Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. *J Biol Chem*. 2007;282:26122-26131.

48. Luo J, Hong Y, Lu Y, et al. Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab. *Cancer Lett*. 2017;384:39-49.

49. Bechsteiner ME, Timmermanns S, S reviewed the structure and regulation of acetyl-CoA carboxylase. *Biochim Biophys Acta*. 2007;1733:1-28.

50. Yoon S, Lee M-Y, Park SW, et al. Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. *J Biol Chem*. 2007;282:26122-26131.

51. Luo J, Hong Y, Lu Y, et al. Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab. *Cancer Lett*. 2017;384:39-49.

52. Bechsteiner ME, Timmermanns S, S reviewed the structure and regulation of acetyl-CoA carboxylase. *Biochim Biophys Acta*. 2007;1733:1-28.

53. Yoon S, Lee M-Y, Park SW, et al. Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. *J Biol Chem*. 2007;282:26122-26131.

54. Luo J, Hong Y, Lu Y, et al. Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab. *Cancer Lett*. 2017;384:39-49.

55. Bechsteiner ME, Timmermanns S, S reviewed the structure and regulation of acetyl-CoA carboxylase. *Biochim Biophys Acta*. 2007;1733:1-28.

56. Yoon S, Lee M-Y, Park SW, et al. Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. *J Biol Chem*. 2007;282:26122-26131.

57. Luo J, Hong Y, Lu Y, et al. Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab. *Cancer Lett*. 2017;384:39-49.

58. Bechsteiner ME, Timmermanns S, S reviewed the structure and regulation of acetyl-CoA carboxylase. *Biochim Biophys Acta*. 2007;1733:1-28.

59. Yoon S, Lee M-Y, Park SW, et al. Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. *J Biol Chem*. 2007;282:26122-26131.

60. Luo J, Hong Y, Lu Y, et al. Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab. *Cancer Lett*. 2017;384:39-49.
92. Buckley D, Duke G, Heuer TS, et al. Fatty acid synthase—modern tumor cell biology insights into a classical oncology target. *Pharmacol Ther*. 2017;177:23-31.

93. Martel PM, Bingham CM, McGraw CJ, et al. S14 protein in breast cancer cells: direct evidence of regulation by SREBP-1c, superinduction with progesterin, and effects on cell growth. *Exp Cell Res*. 2006;312:278-288.

94. Graner E, Tang D, Rossi S, et al. The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. *Cancer Cell*. 2004;5:253-261.

95. Furuta E, Pai SK, Zhan R, et al. Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. *Cancer Res*. 2008;68:1003-1011.

96. Menendez JA, Decker JP, Lupu R. In support of fatty acid synthase (FAS) as a metabolic oncogene: extracellular acidosis acts in an epigenetic fashion activating FAS gene expression in cancer cells. *J Cell Biochem*. 2005;94:1-4.

97. Menendez JA, Lupu R. Fatty acid synthase (FASN) as a therapeutic target in breast cancer. *Expert Opin Ther Targets*. 2017;21:1001-1016.

98. Zhang JS, Lei JP, Wei GQ, Chen H, Ma CY, Jiang HZ. Natural fatty acid synthase inhibitors as potent therapeutic agents for cancers: A review. *Pharm Biol*. 2016;54:1919-1925.

99. Kuhajda FP, Pizer ES, Li JN, Mani NS, Frehywot GL, Townsend CA. Synthesis and antitumor activity of an inhibitor of fatty acid synthase. *Proc Natl Acad Sci USA*. 2000;97:3450-3454.

100. Makowski K, Mir JF, Mera P, et al. (−)-UB006: a new fatty acid synthase inhibitor and cytotoxic agent without anorexic side effects. *Eur J Med Chem*. 2017;131:207-221.

101. Rendina AR, Cheng D. Characterization of the inactivation of rat fatty acid synthase by C75: inhibition of partial reactions and protection by substrates. *Biochem J*. 2005;388:895-903.

102. Qu B, Ming J, Kang SC, et al. The decreasing albedo of the Zhadang glacier on western Nyainqentanglha and the role of light-absorbing impurities. *Atmos Chem Phys*. 2014;14(20):11117-11128. https://doi.org/10.5194/acp-14-11117-2014

103. Sadowski MC, Pouwer RH, Gunter JH, Lubik AA, Quinn RJ, Nelson CC. The fatty acid synthase inhibitor triclosan: repurposing an anti-microbial agent for targeting prostate cancer. *Oncotarget*. 2014;5:9362-9381.

104. Thupari JN, Landree LE, Ronnett GV, Kuhajda FP. C75 increases peripheral energy utilization and fatty acid oxidation in diet-induced obesity. *Proc Natl Acad Sci*. 2002;99(14):9498-9502. https://doi.org/10.1073/pnas.13218899

105. Loftus TM, Jaworsky DE, Frehywot GL, et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitor TVB-2640. *Cancer Res*. 2017;77:CT153.

106. Bhargava-Shah A, Foguel K, Devulapally R, Paulmurugan R. Ocilistat and antisen-siRNA-loaded PLGA-PEG nanoparticles for enhanced triple negative breast cancer therapy. *Nanomedicine (Lond)*. 2016;11:235-247.

107. Hill TK, Davis AL, Wheeler FB, et al. Development of a self-assembled nanoparticle formulation of olistat, nano-ORL, with increased cytotoxicity against human tumor cell lines. *Mol Pharm*. 2016;13:720-728.

108. McFadden JM, Medghalchi SM, Thupari JN, et al. Application of a flexible synthesis of (5R)-thiolactomycin to develop new inhibitors of type I fatty acid synthase. *J Med Chem*. 2005;48:946-961.

109. Pembel CW 4th, Johnson LC, Kriel SJ, Lowther WT. Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by Orlistat. *Nat Struct Mol Biol*. 2007;14:704-709.

110. Qu B, Ming J, Kang SC, et al. The decreasing albedo of the Zhadang glacier on western Nyainqentanglha and the role of light-absorbing impurities. *Atmos Chem Phys*. 2014;14(20):11117-11128. https://doi.org/10.5194/acp-14-11117-2014

111. Hill TK, Davis AL, Wheeler FB, et al. Development of a self-assembled nanoparticle formulation of olistat, nano-ORL, with increased cytotoxicity against human tumor cell lines. *Mol Pharm*. 2016;13:720-728.

112. Hardwicke MA, Rendina AR, Williams SP, et al. A human fatty acid synthase inhibitor binds β-ketoacyl reductase in the keto-substrate site. *Nat Chem Biol*. 2014;10:774-779.

113. Shaw G, Lewis D, Boren J, et al. 3–4507 therapeutic fatty acid synthase inhibition in prostate cancer and the use of 11C-acetate to monitor therapeutic effects. *J Urol*. 2013;189:300–312.

114. Oslob JD, Johnson RJ, Cai H, et al. Imidazopyridine-based fatty acid synthase inhibitors that show anti-HCV activity and in vivo target modulation. *ACS Med Chem Lett*. 2013;4:113-117.

115. Rendina AR, Cheng D. Characterization of the inactivation of rat fatty acid synthase by C75: inhibition of partial reactions and protection by substrates. *Biochem J*. 2005;388:895-903.

116. Qu B, Ming J, Kang SC, et al. The decreasing albedo of the Zhadang glacier on western Nyainqentanglha and the role of light-absorbing impurities. *Atmos Chem Phys*. 2014;14(20):11117-11128. https://doi.org/10.5194/acp-14-11117-2014

117. Sadowski MC, Pouwer RH, Gunter JH, Lubik AA, Quinn RJ, Nelson CC. The fatty acid synthase inhibitor triclosan: repurposing an anti-microbial agent for targeting prostate cancer. *Oncotarget*. 2014;5:9362-9381.

118. Thupari JN, Landree LE, Ronnett GV, Kuhajda FP. C75 increases peripheral energy utilization and fatty acid oxidation in diet-induced obesity. *Proc Natl Acad Sci*. 2002;99(14):9498-9502. https://doi.org/10.1073/pnas.13218899

119. Loftus TM, Jaworsky DE, Frehywot GL, et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitor TVB-2640. *Cancer Res*. 2017;77:CT153.

120. Konkel B, Caflisch LD, Diaz Duque AE, Michalek J, Liu Q, Brenner AJ. Prospective phase II trial in patients with first relapse of high-grade astrocytoma using TVB-2640 in combination with bevacizumab versus bevacizumab alone. *J Clin Oncol*. 2019;37:2064.

121. Alwarawrah Y, Hughes P, Loiselle D, et al. Fasnall, a selective FASN inhibitor, shows potent anti-tumor activity in the MMTV-neu model of HER2(+) breast cancer. *Cell Chem Biol*. 2016;23:678-688.

122. Lu T, Schubert C, Cummings MD, et al. Design and synthesis of a series of bioavailable fatty acid synthase (FASN) KR domain inhibitors for cancer therapy. *Bioorganic Med Chem Lett*. 2019;28:2159-2164.

123. Zadra G, Ribeiro CF, Chetta P, et al. Inhibition of de novo lipogenesis targets androgen receptor signaling in castration-resistant prostate cancer. *Proc Natl Acad Sci*. 2019;116:631-640.

124. Martin MW, Lancia DR, Li H, et al. Discovery and optimization of novel piperazines as potent inhibitors of fatty acid synthase (FASN) KR domain inhibitors for cancer therapy. *Bioorganic Med Chem Lett*. 2019;29:1001-1006.

125. Panman W, Nutho B, Channi S, Dokmaiirijan S, Kungwan N, Rungrotmongkol T. Computational screening of fatty acid synthase inhibitors against thioesterase domain. *J Biomol Struct Dyn*. 2018;36:4114-4125.

126. Nomura DK, Long JZ, Niessen S, Hoover HS, Ng SW, Cravatt BF. Monocacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. *Cell*. 2010;140:49-61.

127. Long JZ, Nomura DK, Cravatt BF. Characterization of monocacylglycerol lipase inhibition reveals differences in central and peripheral endocannabinoid metabolism. *Chem Biol*. 2009;16:744-753.
126. Qin H, Ruan ZH. The role of monoacylglycerol lipase (MAGL) in the cancer progress. Cell Biochem. Biophys. 2014;70:33-36.

127. Nomura DK, Lombardi DP, Chang JW, et al. Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer. Chem Biol. 2011;18:846-856.

128. Ahn K, McKinney MK, Cravatt BF. Enzymatic pathways that regulate endocannabinoid signaling in the nervous system. Chem Rev. 2008;108:1687-1707.

129. Bifulco M, Malfitano AM, Pisanti S, Laezza C. Endocannabinoids in endocrine and related tumours. Endocr Relat Cancer. 2008;15:391-408.

130. Xiang W, Shi R, Kang X, et al. Monoacylglycerol lipase regulates cannabinoid receptor 2-dependent macrophage activation and cancer progression. Nat Commun. 2018;9(1):1–13. https://doi.org/10.1038/s41467-018-04999-8

131. Mulvihill MM, Nomura DK. Therapeutic potential of monoacylglycerol lipase inhibitors. Life Sci. 2013;92:492-497.

132. Karlsson M, Contreras JA, Hellman U, Tornqvist H, Holm C. Monoacylglycerol lipase inhibition and tumor progression. Nat Chem Biol. 2009;5:37-44.

133. Bertrand T, Augé F, Houtmann J, et al. Structural basis for human monoglyceride lipase inhibition. J Biol Chem. 2016;291:3739-390.

134. Zhang J, Liu Z, Lian Z, et al. Monoacylglycerol lipase: a novel target for the treatment of lung squamous cell carcinoma. Acta Pharm Sin B. 2019;9:7.

135. Liu X, Gong Y. Isocitrate dehydrogenase inhibitors in acute myeloid leukemia. Biomark Res. 2019;7:22.

136. Granchi C, Caligiuri I, Minutolo F, Rizzolio F, Tuccinardi T. A reversible, and selective monoacylglycerol lipase inhibitors. ChemBioChem. 2008;9:2704-2710.

137. Fernandez HR, Gadre SM, Tan M, et al. The mitochondrial citrate carrier, SLC25A1, drives stemness and therapy resistance in non-small cell lung cancer. Cell Death Differ. 2018;25:1239-1258.

138. Marien E, Meister M, Muley T, et al. Phospholipid profiling identifies acyl chain elongation as a ubiquitous trait and potential target for the treatment of lung squamous cell carcinoma. Oncotarget. 2016;7:12582-12597.

139. Chen M, Huang J. The expanded role of fatty acid metabolism in cancer: new aspects and targets. Precis Clin Med. 2019;2(3):183-191. https://doi.org/10.1093/pcmedi/pbz017

140. Shimamura K, Kitazawa H, Miyamoto Y, et al. 5,5-dimethyl-3-(5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-1-phenyl-3-(trifluoromethyl) 3,5,6,7-tetrahydro-1H-indole-2,4-dione, a potent inhibitor for mammalian elongase of long-chain fatty acids family 6: examination of its potential utility as a new drug candidate. J Med Chem. 2008;51:37-44.

141. Kinsey SG, Wise LE, Ramesh D, et al. Repeated low-dose administration of the monoacylglycerol lipase inhibitor JZL184 retains cannabinoid receptor type 1–mediated antinociceptive and gastroprotective effects. J Pharmacol Exp Ther. 2009;330:249-256.
161. Tracz-Gaszewska Z, Dobrzyn P. Stearoyl-CoA desaturase 1 as a therapeutic target for the treatment of cancer. *Cancers (Basel)*. 2019;11:948.

162. Vriens K, Christen S, Parik S, et al. Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity. *Nature*. 2019;566:403-406.

163. Zhao J, Zhi Z, Wang C, et al. Exogenous lipids promote the growth of breast cancer cells via CD36. *Oncol Rep*. 2017;38:2105-2115.

164. Wang J, Li Y. CD36 tango in cancer: signaling pathways and functions. *Theranostics*. 2019;9:4893-4908.

165. Cotte AK, Aires V, Fredon M, et al. Lysophosphatidylcholine acyltransferase 2-mediated lipid droplet production supports colorectal cancer chemoresistance. *Nat Commun*. 2018;9(1):1–16. https://doi.org/10.1038/s41467-017-02732-5

166. Tarui M, Shindou H, Kumagai K, et al. Selective inhibitors of a PAF biosynthetic enzyme lysophosphatidylcholine acyltransferase 2. *J Lipid Res*. 2014;55(7):1386-1396. https://doi.org/10.1194/jlr.M049205

167. Al-Zoughbi W, Pichler M, Gorkiewicz G, et al. Loss of adipose triglyceride lipase is associated with human cancer and induces mouse pulmonary neoplasia. *Oncotarget*. 2016;7:33832-33840.

168. Pacilli A, Calienni M, Margarucci S, et al. Carnitine-acyltransferase system inhibition, cancer cell death, and prevention of myc-induced lymphomagenesis. *J Natl Cancer Inst*. 2013;105:489-498.

169. Serra D, Mera P, Malandrino MI, Mir JF, Herrero L. Mitochondrial fatty acid oxidation in obesity. *Antioxid Redox Signal*. 2013;19:269-284.

170. Dakeng S, Duangmano S, Jiratchariyakul W, U-Pratya Y, Bögler O, Patmasiriwat P. Inhibition of Wnt signaling by cucurbitacin B in breast cancer cells: Reduction of Wnt-associated proteins and reduced translocation of galectin-3-mediated β-catenin to the nucleus. *J Cell Biochem*. 2012;113:49-60.

171. Zhou W, Simpson PJ, McFadden JM, et al. Fatty acid synthase inhibition triggers apoptosis during S phase in human cancer cells. *Cancer Res*. 2003;63:7330-7337.

172. Scholnik-Cabrera A, Chávez-Blanco A, Domínguez-Gómez G, et al. Orlistat as a FASN inhibitor and multitargeted agent for cancer therapy. *Expert Opin Investig Drugs*. 2018;27:475-489.

How to cite this article: Montesdeoca N, López M, Ariza X, Herrero L, Makowski K. Inhibitors of lipogenic enzymes as a potential therapy against cancer. *The FASEB Journal*. 2020;00:1–27. https://doi.org/10.1096/fj.202000705R