On finite $P\sigma T$-groups

Alexander N. Skiba
Department of Mathematics, Francisk Skorina Gomel State University,
Gomel 246019, Belarus
E-mail: alexander.skiba49@gmail.com

Abstract

Let $\sigma = \{\sigma_i | i \in I\}$ be some partition of the set of all primes \mathbb{P} and G a finite group. G is said to be σ-soluble if every chief factor H/K of G is a σ_i-group for some $i = i(H/K)$.

A set \mathcal{H} of subgroups of G is said to be a complete σ-Hall set of G if every member $\neq 1$ of \mathcal{H} is a Hall σ_i-subgroup of G for some $\sigma_i \in \sigma$ and \mathcal{H} contains exactly one Hall σ_i-subgroup of G for every $i \in I$ such that $\sigma_i \cap \pi(G) \neq \emptyset$. A subgroup A of G is said to be σ-permutable or σ-quasinormal in G if G has a complete σ-Hall set \mathcal{H} such that $AH^x = H^xA$ for all $x \in G$ and all $H \in \mathcal{H}$.

We obtain a characterization of finite σ-soluble groups G in which σ-quasinormality is a transitive relation in G.

1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. Moreover, \mathbb{P} is the set of all primes, $\pi \subseteq \mathbb{P}$ and $\pi' = \mathbb{P} \setminus \pi$. If n is an integer, the symbol $\pi(n)$ denotes the set of all primes dividing n; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G. G is said to be a D_π-group if G possesses a Hall π-subgroup E and every π-subgroup of G is contained in some conjugate of E.

In what follows, σ is some partition of \mathbb{P}, that is, $\sigma = \{\sigma_i | i \in I\}$, where $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$; Π is always supposed to be a subset of the set σ and $\Pi' = \sigma \setminus \Pi$.

By the analogy with the notation $\pi(n)$, we write $\sigma(n)$ to denote the set $\{\sigma_i | \sigma_i \cap \pi(n) \neq \emptyset\}$; $\sigma(G) = \sigma(|G|)$. G is said to be: σ-primary [1] if $|\sigma(G)| \leq 1$; σ-decomposable (Shemetkov [2]) or σ-nilpotent (Guo and Skiba [3]) if $G = G_1 \times \cdots \times G_n$ for some σ-primary groups G_1, \ldots, G_n; σ-soluble [1] if every chief factor of G is σ-primary; a σ-full group of Sylow type [1] if every subgroup E of G is a D_{σ_i}-group for every $\sigma_i \in \sigma(E)$.

A natural number n is said to be a Π-number if $\sigma(n) \subseteq \Pi$. A subgroup A of G is said to be: a Hall Π-subgroup of G [1] if $|A|$ is a Π-number and $|G : A|$ is a Π'-number; a σ-Hall subgroup of G if A is a Hall Π-subgroup of G for some $\Pi \subseteq \sigma$.

Keywords: finite group, σ-quasinormal subgroup, $P\sigma T$-group, σ-soluble group, σ-nilpotent group.

Mathematics Subject Classification (2010): 20D10, 20D15, 20D30
A set \(\mathcal{H} \) of subgroups of \(G \) is a **complete Hall \(\sigma \)-set** of \(G \) [1, 5] if every member \(\neq 1 \) of \(\mathcal{H} \) is a Hall \(\sigma_i \)-subgroup of \(G \) for some \(\sigma_i \in \sigma \) and \(\mathcal{H} \) contains exact one Hall \(\sigma_i \)-subgroup of \(G \) for every \(\sigma_i \in \sigma(G) \).

Recall that a subgroup \(A \) of \(G \) is said to be: **\(\sigma \)-permutable** or **\(\sigma \)-quasinormal** in \(G \) [1] if \(G \) possesses a complete Hall \(\sigma \)-set \(\mathcal{H} \) such that \(AH^x = H^x A \) for all \(H \in \mathcal{H} \) and all \(x \in G \); **\(\sigma \)-subnormal** in \(G \) [1] if there is a subgroup chain \(A = A_0 \leq A_1 \leq \cdots \leq A_t = G \) such that either \(A_{i-1} \leq A_i \) or \(A_i/(A_{i-1})_{A_i} \) is \(\sigma \)-primary for all \(i = 1, \ldots, t \).

In the classical case, when \(\sigma = \sigma^0 = \{\{2\}, \{3\}, \ldots\} \), \(\sigma \)-quasinormal subgroups are also called **\(S \)-quasinormal** or **\(S \)-permutable** [6, 7], and a subgroup \(A \) of \(G \) is subnormal in \(G \) if and only if it is \(\sigma^0 \)-subnormal in \(G \).

We say that \(G \) is a **\(P \sigma T \)-group** [1] if \(\sigma \)-quasinormality is a transitive relation in \(G \), that is, if \(K \) is a \(\sigma \)-quasinormal subgroup of \(H \) and \(H \) is a \(\sigma \)-quasinormal subgroup of \(G \), then \(K \) is a \(\sigma \)-quasinormal subgroup of \(G \). In the case, when \(\sigma = \{\{2\}, \{3\}, \ldots\} \), \(P \sigma T \)-groups are called **\(P ST \)-groups** [6].

In view of Theorem B in [1], \(P \sigma T \)-groups can be characterized as the groups in which every \(\sigma \)-subnormal subgroup is \(\sigma \)-quasinormal in \(G \).

Our first observation is the following fact, which generalizes the sufficiency condition in Theorem A of the paper [1].

Theorem A. Let \(G \) have a normal \(\sigma \)-Hall subgroup \(D \) such that:

(i) \(G/D \) is a \(P \sigma T \)-group, and

(ii) every \(\sigma \)-subnormal subgroup of \(D \) is normal in \(G \).

If \(G \) is a \(\sigma \)-full group of Sylow type, then \(G \) is a \(P \sigma T \)-group.

Corollary 1.1 (See Theorem A in [1]). Let \(G \) have a normal \(\sigma \)-Hall subgroup \(D \) such that:

(i) \(G/D \) is \(\sigma \)-nilpotent, and

(ii) every subgroup of \(D \) is normal in \(G \).

Then \(G \) is a \(P \sigma T \)-group.

In the case when \(\sigma = \{\{2\}, \{3\}, \ldots\} \), we get from Theorem A the following

Corollary 1.2 (See Theorem 2.4 in [5]). Let \(G \) have a normal Hall subgroup \(D \) such that:

(i) \(G/D \) is a \(PST \)-group, and

(ii) every subnormal subgroup of \(D \) is normal in \(G \).

Then \(G \) is a \(PST \)-group.

Recall that \(G^{\sigma_{nil}} \) denotes the **\(\sigma \)-nilpotent residual** of \(G \), that is, the intersection of all normal subgroups \(N \) of \(G \) with \(\sigma \)-nilpotent quotient \(G/N \); \(G^{\mathfrak{n}} \) denotes the **nilpotent residual** of \(G \) [9].
Definition 1.3. We say that G is a special $P\sigma T$-group provided the σ-nilpotent residual $D = G^{\sigma_1}$ of G is contained in a Hall σ_i-subgroup E of G for some i and the following conditions hold:

(i) D is a Hall subgroup of G and every element of G induces a power automorphism in D;
(ii) D has a normal complement S in E.

Note that if $G = C_5 \times (C_3 \rtimes C_2)$, where $C_3 \rtimes C_2 \simeq S_3$ and $\sigma = \{\{3, 5\}, \{3, 5\}'\}$, then G is a special $P\sigma T$-group with $C_3 = G^{\sigma_1}$.

The following theorem shows that every special $P\sigma T$-group is a $P\sigma T$-group.

Theorem B. Suppose that G has a σ-nilpotent normal Hall subgroup D with σ-nilpotent quotient G/D such that $G/O^{\sigma_i}(D)$ is a special $P\sigma T$-group for each $\sigma_i \in \sigma(D)$. Then G is a $P\sigma T$-group.

Generalizing the concept of complete Wielandt σ-set of a group in [3], we say that a complete Hall σ-set H of G is a generalized Wielandt σ-set of G if every member H of H is $\pi(G^{\sigma_1})$-supersoluble.

Using Theorem B, we prove also the following revised version of Theorem A in [1].

Theorem C. Let G be σ-soluble and $D = G^{\sigma_1}$. Suppose that G has a generalized Wielandt σ-set. Then G is a $P\sigma T$-group if and only if the following conditions hold:

(i) D is an abelian Hall subgroup of G of odd order and every element of G induces a power automorphism in D;
(ii) $G/O^{\sigma_i}(D)$ is a special $P\sigma T$-group for each $\sigma_i \in \sigma(D)$.

Corollary 1.4 (See Theorem 2.3 in [3]). Let G be a soluble and $D = G^{\sigma_1}$. If G is a PST-group, then D is an abelian Hall subgroup of G of odd order and every element of G induces a power automorphism in D.

2 Some preliminary results

In view of Theorems A and B in [4], the following fact is true.

Lemma 2.1. If G is σ-soluble, then G is a σ-full group of Sylow type.

We use \mathfrak{N}_σ to denote the class of all σ-nilpotent groups.

Lemma 2.2 (See Corollary 2.4 and Lemma 2.5 in [1]). The class \mathfrak{N}_σ is closed under taking products of normal subgroups, homomorphic images and subgroups. Moreover, if E is a normal subgroup of G and $E/E \cap \Phi(G)$ is σ-nilpotent, then E is σ-nilpotent.

In view of Proposition 2.2.8 in [9], we get from Lemma 2.2 the following

Lemma 2.3. If N is a normal subgroup of G, then

$$(G/N)^{\mathfrak{N}_\sigma} = G^{\mathfrak{N}_\sigma} N/N.$$
Lemma 2.4 (See Knyagina and Monakhov [10]). Let H, K and N be pairwise permutable subgroups of G and H be a Hall subgroup of G. Then

\[N \cap HK = (N \cap H)(N \cap K). \]

Lemma 2.5. The following statements hold:

(i) G is a $P\sigma T$-group if and only if every σ-subnormal subgroup of G is σ-quasinormal in G.

(ii) If G is a $P\sigma T$-group, then every quotient G/N of G is also a $P\sigma T$-group.

(iii) If G is a special $P\sigma T$-group, then every quotient G/N of G is also a special $P\sigma T$-group.

Proof. (i) This follows from the fact (see Theorem B in [1]) that every σ-quasinormal subgroup of G is σ-subnormal in G.

(ii) Let H/N be a σ-subnormal subgroup of G/N. Then H is a σ-subnormal subgroup of G by Lemma 2.6(5) in [1], so H is σ-quasinormal in G by hypothesis and Part (i). Hence H/N is σ-quasinormal in G/N by Lemma 2.8(2) in [1]. Hence G/N is a $P\sigma T$-group by Part (i).

(iii) Suppose that $D = G^{\sigma_{T}}$ is a Hall subgroup of G and $D \leq E$, where $E = D \times S$ is a Hall σ_{T}-subgroup E of G, and every element of G induces a power automorphism in D. Then EN/N is a Hall σ_{T}-subgroup of G/N and $DN/N = (G/N)^{\sigma_{T}}$ is a Hall subgroup of G/N by Lemma 2.3. Moreover, $EN/N = (DN/N)(SN/N)$ and, by Lemma 2.4,

\[DN \cap SN = N(D \cap SN) = N(D \cap S)(D \cap N) = N(D \cap N) = N, \]

which implies that $(DN/N) \cap (SN/N) = 1$. Hence $EN/N = (DN/N) \times (SN/N)$.

Finally, let $H/N \leq DN/N$. Then $H = N(H \cap D)$, where $H \cap D$ is normal in G by hypothesis. But then $H/N = N(H \cap D)/N$ is normal in G/N, so every element of G/N induces a power automorphism on DN/D. Hence G/N is a special $P\sigma T$-group.

The lemma is proved.

3 Proofs of the results

Proof of Theorem A. Since G is a σ-full group of Sylow type by hypothesis, it possesses a complete Hall σ-set $\mathcal{H} = \{H_1, \ldots, H_t\}$, and a subgroup H of G is σ-quasinormal in G if and only if $HH_i^x = H_i^x H$ for all $H_i \in \mathcal{H}$ and $x \in G$. We can assume without loss of generality that H_i is a σ_i-group for all $i = 1, \ldots, t$.

Assume that this theorem is false and let G be a counterexample of minimal order. Then $D \neq 1$ and for some σ-subnormal subgroup H of G and for some $x \in G$ and $k \in I$ we have $HH_k^x \neq H_k^x H$ by Lemma 2.5(i). Let $E = H_k^x$.

4
(1) The hypothesis holds for every quotient G/N of G.

It is clear that G/N is a σ-full group of Sylow type and DN/N is a normal σ-Hall subgroup of G/N. On the other hand,

$$(G/N)/(DN/N) \simeq G/DN \simeq (G/D)/(DN/D),$$

so $(G/N)/(DN/N)$ is a $P\sigma T$-group by Lemma 2.5(ii). Finally, let H/N be a σ-subnormal subgroup of DN/N. Then $H = N(H \cap D)$ and, by Lemma 2.6(5) in [1], H is σ-subnormal in G. Hence $H \cap D$ is σ-subnormal in D by Lemma 2.6(1) in [1], so $H \cap D$ is normal in G by hypothesis. Thus $H/N = N(H \cap D)/N$ is normal in G/N. Therefore the hypothesis holds on G/N.

(2) $H_G = 1$.

Assume that $H_G \neq 1$. Clearly, H/H_G is σ-subnormal in G/H_G. Claim (1) implies that the hypothesis holds for G/H_G, so the choice of G implies that G/H_G is a $P\sigma T$-group. Hence

$$(H/H_G)(EH_G/H_G) = (EH_G/H_G)(H/H_G).$$

by Lemma 2.5(i). Therefore $EH = EH_HG$ is a subgroup of G and so $HE = EH$, a contradiction. Hence $H_G = 1$.

(3) $DH = D \times H$.

By Lemma 2.6(1) in [1], $H \cap D$ is σ-subnormal in D. Hence $H \cap D$ is normal in G by hypothesis, which implies that $H \cap D = 1$ by Claim (2). Lemma 2.6(1) in [1] implies also that H is σ-subnormal in DH. But H is a σ-Hall subgroup of DH since D is a σ-Hall subgroup of G and $H \cap D = 1$. Therefore H is normal in DH by Lemma 2.6(10) in [1], so $DH = D \times H$.

Final contradiction. Since D is a σ-Hall subgroup of G, then either $E \leq D$ or $E \cap D = 1$. But the former case is impossible by Claim (3) since $HE \neq EH$, so $E \cap D = 1$. Therefore E is a Π'-subgroup of G, where $\Pi = \sigma(D)$. By the Schur-Zassenhaus theorem, D has a complement M in G. Then M is a Hall Π'-subgroup of G and so for some $x \in G$ we have $E \leq M^x$ since G is a σ-full group of Sylow type. On the other hand, $H \cap M^x$ is a Hall Π'-subgroup of H by Lemma 2.6(7) in [1] and hence $H \cap M^x = H \leq M^x$ since $H \cap D = 1$ by Claim (3). Lemma 2.6(1) in [1] implies that H is σ-subnormal in M^x. But $M^x \simeq G/D$ is a $P\sigma T$-group by hypothesis, so $HE = EH$ by Lemma 2.5(i). This contradiction completes the proof of the theorem.

Lemma 3.1. If G is a special $P\sigma T$-group, then it is a $P\sigma T$-group.

Proof. Let $D = G^{\sigma_\mathcal{H}}$ and E be a normal Hall σ_i-subgroup of G such that $E = D \times S$. Since G/D is σ-nilpotent, G is σ-soluble. Hence G is a σ-full group of Sylow type by Lemma 2.1. Therefore G possesses a complete Hall σ-set $\mathcal{H} = \{H_1, \ldots, H_t\}$, and a subgroup H of G is σ-quasinormal in G if and only if $HH_j = H_j H$ for all $H_j \in \mathcal{H}$ and $x \in G$. We can assume without loss of generality that H_j is a σ_j-group for all $j = 1, \ldots, t$.

Assume that this lemma is false and let G be a counterexample of minimal order. Then G is not σ-nilpotent, and for some σ-subnormal subgroup H of G and for some $x \in G$ and $k \in I$ we
have $HH_k^x \neq H_k^x H$ by Lemma 2.5(i). Let $E = H_k^x$. The subgroup S is normal in G since it is characteristic in E. Since G is not σ-nilpotent, $D \neq 1$. On the other hand, Theorem A and the choice of G imply that $S \neq 1$ since every subgroup of D is normal in G by hypothesis. Let R and N be minimal normal subgroups of G such that $R \leq D$ and $N \leq S$. Then R is a group of order p for some prime p. Hence $R \cap HN \leq O_p(HN) \leq P$, where P is a Sylow p-subgroup of H since $\pi(D) \cap \pi(S) = \emptyset$, so $R \cap HN = R \cap H$.

The hypothesis holds for G/R and G/N by Lemma 2.5(iii). Hence the choice of G and Lemma 2.5(i) imply that

$$EHR/R = (ER/R)(HR/R) = (HR/R)(EHR/R)$$

and so EHR is a subgroup of G. Similarly we get that EHN is a subgroup of G. Since $|R| = p$ and EH is not a subgroup of G, $R \cap E = 1$. Therefore from Lemma 2.4 we get that $R \cap EHN = R \cap E(HN) = (R \cap E)(R \cap HN) = R \cap HN$. Hence

$$EHR \cap EHN = E(ER \cap EHN) = EH(R \cap EHN) = EHR \cap HN = EHR \cap H = EH$$

is a subgroup of G. Hence $HE = EH$, a contradiction. The lemma is proved.

Lemma 3.2. If $\mathcal{H} = \{H_1, \ldots, H_t\}$ is a generalized Wielandt σ-set of G, then

$$\mathcal{H}_0 = \{H_1N/N, \ldots, H_tN/N\}$$

is a generalized Wielandt σ-set of G/N.

Proof. It is clear that \mathcal{H}_0 is a complete Hall σ-set of G/N. Now let $D = G^{\sigma_0}$ and $\pi = \pi(G^{\sigma_0})$. Then $(G/N)^{\sigma_0} = DN/N$ by Lemma 2.3, so

$$\pi_0 = \pi((G/N)^{\sigma_0}) = \pi(DN/N) \subseteq \pi(D) = \pi.$$

Hence every member H_i of \mathcal{H} is π_0-supersoluble, so H_iN/N is π_0-supersoluble. Hence \mathcal{H}_0 is a generalized Wielandt σ-set of G/N. The lemma is proved.

Proof of Theorem B. Clearly, G is σ-soluble, so G is a σ-full group of Sylow type by Lemma 2.1. Therefore G possesses a complete Hall σ-set $\mathcal{H} = \{H_1, \ldots, H_t\}$, and a subgroup H of G is σ-quasinormal in G if and only if $HH_i^x = H_i^x H$ for all $H_i \in \mathcal{H}$ and $x \in G$. We can assume without loss of generality that H_i is a σ_x-group for all $i = 1, \ldots, t$.

Assume that this theorem is false and let G be a counterexample of minimal order. Then $D \neq 1$ and for some σ-subnormal subgroup H of G and for some $x \in G$ and $k \in I$ we have $HH_k^x \neq H_k^x H$ by Lemma 2.5(i). Let $E = H_k^x$.

(1) G is not a special $P\sigma T$-group (This follows from Lemma 3.1 and the choice of G).

(2) $|\sigma(D)| > 1$.

6
Indeed, suppose that \(\sigma(D) = \{\sigma_i\} \). Then \(O^{\sigma_i}(D) = 1 \), so \(G \simeq G/O^{\sigma_i}(D) \) is a special \(P\sigma T \)-group by hypothesis, contrary to Claim (1).

(3) The hypothesis holds for every quotient \(G/N \) of \(G \), where \(N \leq D \).

First we show that \((G/N)/O^{\sigma_i}(D/N) \) is a special \(P\sigma T \)-group for each \(\sigma_i \in \sigma(D/N) \). Note that \(\sigma_i \in \sigma(D/N) = \sigma(D/(D \cap N)) \subseteq \sigma(D) \), so \(G/O^{\sigma_i}(D) \) is a special \(P\sigma T \)-group by hypothesis. It is not difficult to show that

\[
O^{\sigma_i}(D)N/N = O^{\sigma_i}(D/N).
\]

Hence

\[
(G/N)/(O^{\sigma_i}(D/N)) = (G/N)/(O^{\sigma_i}(D)N/N) \simeq G/NO^{\sigma_i}(D) \simeq (G/O^{\sigma_i}(D))/O^{\sigma_i}(D)N/O^{\sigma_i}(D)
\]

is a special \(P\sigma T \)-group by Lemma 2.5(iii).

It is clear also that \(DN/N \simeq D/D \cap N \) is a \(\sigma \)-nilpotent normal Hall subgroup of \(G/N \) with \(\sigma \)-nilpotent quotient

\[
(G/N)/(DN/N) \simeq G/DN \simeq (G/D)/(DN/D)
\]

by Lemma 2.2. Hence we have (3).

(4) If \(N \) is a minimal normal subgroup of \(G \) contained in \(D \), then \(EHN \) is a subgroup of \(G \).

Claim (3) and the choice of \(G \) implies that the conclusion of the theorem holds for \(G/N \). On the other hand, \(EN/E \) is a Hall \(\sigma_k \)-subgroup of \(G/N \) and, by Lemma 2.6(4) in [1], \(HN/N \) is a \(\sigma \)-subnormal subgroup of \(G \). Note also that \(G/N \) is \(\sigma \)-soluble, so every two Hall \(\sigma_k \)-subgroups of \(G/N \) are conjugate by Lemma 2.1. Thus,

\[
(HN/N)(EN/N) = (EN/N)(HN/N) = EHN/N
\]

by Lemma 2.5(i). Hence \(EHN \) is a subgroup of \(G \).

Final contradiction. Since \(|\sigma(D)| > 1 \) by Claim (2) and \(D \) is \(\sigma \)-nilpotent, \(G \) has at least two \(\sigma \)-primary minimal normal subgroups \(R \) and \(N \) such that \(R, N \leq D \) and \(\sigma(R) \neq \sigma(N) \). Then at least one of the subgroups \(R \) or \(N \), \(R \) say, is a \(\sigma_i \)-group for some \(i \neq k \). Then \(R \cap HN \leq O_{\sigma_i}(HN) \leq V \), where \(V \) is a Hall \(\sigma_i \)-subgroup of \(H \), since \(N \) is a \(\sigma_i \)-group and \(G \) is a \(\sigma \)-full group of Sylow type. Hence \(R \cap HN = R \cap H \). Claim (4) implies that \(EHR \) and \(EHN \) are subgroups of \(G \). Now, arguing similarly as in the proof of Lemma 3.1, one can show that \(EHR \cap EHN = EH \) is a subgroup of \(G \), so \(HE = EH \). This contradiction completes the proof of the result.

Proof of Theorem C. Let \(\pi = \pi(D) \) and \(\mathfrak{H} = \{H_1, \ldots, H_t\} \) be a generalized Wielandt \(\sigma \)-set of \(G \). We can assume without loss of generality that \(H_i \) is a \(\sigma_i \)-group for all \(i = 1, \ldots, t \). Since \(G \) is \(\sigma \)-soluble by hypothesis, \(G \) is a \(\sigma \)-full group of Sylow type by Lemma 2.1.

Necessity. Assume that this is false and let \(G \) be a counterexample of minimal order. Then \(D \neq 1 \).
(1) If R is a non-identity normal subgroup of G, then the hypothesis holds for G/R. Hence the
necessity condition of the theorem holds for G/R (Since the hypothesis holds for G/R by Lemmas
2.5(ii) and 3.2, this follows from the choice of G).

(2) If E is a proper σ-subnormal subgroup of G, then $E^{\Omega_\sigma} \leq D$ and the necessity condition
of the theorem holds for E.

Every σ-subnormal subgroup H of E is σ-subnormal in G by Lemma 2.6(2) in [1] and hence H
is σ-quasinormal in G by hypothesis and Lemma 2.5(i). Thus H is σ-quasinormal in E by Lemma
2.8(1) in [1] since G is a σ-full group of Sylow type. Thus, E is a σ-soluble $P\sigma T$-group. It is clear
that E possesses a complete Hall σ-set $H_0 = \{E_1, \ldots, E_n\}$ such that $E_i \leq H_i^{x_i}$ for some $x_i \in G$
for all $i = 1, \ldots, n$. Hence every member of H_0 is π-supersoluble. Moreover, since

$$E/E \cap D \simeq ED/D \in \mathfrak{R}_\sigma$$

and \mathfrak{R}_σ is a hereditary class by Lemma 2.2, we have $E/E \cap D \in \mathfrak{R}_\sigma$. Hence $E^{\Omega_\sigma} \leq E \cap D$. Therefore,

$$\pi_0 = \pi(E^{\Omega_\sigma}) \subseteq \pi.$$ Hence every member of H_0 is π_0-supersoluble. Hence H_0 is a generalized Wielandt
σ-set of E.

Therefore the hypothesis holds for E, so the necessity condition of the theorem holds for E by
the choice of G.

(3) D is nilpotent.

Assume that this is false and let R be a minimal normal subgroup of G. Then $RD/R = (G/R)^{\Omega_\sigma}$
is abelian by Lemma 2.3 and Claim (1). Therefore $R \leq D$, R is the unique minimal normal subgroup
of G and $R \not\leq \Phi(G)$ by Lemma 2.2. Let V be a maximal subgroup of R. Since G is σ-soluble by
hypothesis, R is a σ_i-group for some i. Hence V is σ-subnormal in G by Lemma 2.6(6) in [1], so V
is σ-quasinormal in G by hypothesis and Lemma 2.5(i). Then $R \leq D \leq O^{\sigma_i}(G) \leq N_G(V)$ by Lemma
3.1 in [1]. Hence R is abelian, so $R = C_G(R)$ is a p-group for some prime p by [11] A, 15.2]

It is clear that $R \leq H_i \cap D$ for some i. Then H_i is p-supersoluble by hypothesis, so some subgroup
L of R of order p is normal in H_i. On the other hand, L is clearly σ-quasinormal in G and hence
$G = H_i O^{\sigma_i}(G) \leq N_G(L)$ by Lemma 3.1 in [1], so $R = L$. Therefore $G/C_G(R) = G/R$ is a cyclic
group. Hence G is supersoluble and therefore D is nilpotent.

(4) D is a Hall subgroup of G.

Suppose that this is false and let P be a Sylow p-subgroup of D such that $1 < P < G_p$, where
$G_p \in \text{Syl}_p(G)$. We can assume without loss of generality that $G_p \leq H_1$.

(a) $D = P$ is a minimal normal subgroup of G.

Let R be a minimal normal subgroup of G contained in D. Since D is nilpotent by Claim (3), R
is a q-group for some prime q. Moreover, $D/R = (G/R)^{\Omega_\sigma}$ is a Hall subgroup of G/R by Claim (1)
and Lemma 2.3. Suppose that $PR/R \neq 1$. Then $PR/R \in \text{Syl}_p(G/R)$. If $q \neq p$, then $P \in \text{Syl}_p(G)$.
This contradicts the fact that $P < G_p$. Hence $q = p$, so $R \leq P$ and therefore $P/R \in \text{Syl}_p(G/R)$ and
we again get that \(P \in \text{Syl}_p(G) \). This contradiction shows that \(PR/R = 1 \), which implies that \(R = P \) is the unique minimal normal subgroup of \(G \) contained in \(D \). Since \(D \) is nilpotent, a \(p' \)-complement \(E \) of \(D \) is characteristic in \(D \) and so it is normal in \(G \). Hence \(E = 1 \), which implies that \(R = D = P \).

(b) \(D \not\leq \Phi(G) \). Hence for some maximal subgroup \(M \) of \(G \) we have \(G = D \times M \) (This follows from Lemma 2.2 since \(G \) is not \(\sigma \)-nilpotent).

(c) If \(G \) has a minimal normal subgroup \(L \neq D \), then \(G_p = D \times (L \cap G_p) \). Hence \(O_{p'}(G) = 1 \).

Indeed, \(DL/L \simeq D \) is a Hall subgroup of \(G/L \) by Claim (1). Hence \(G_pL/L = RL/L \), so \(G_p = D \times (L \cap G_p) \). Thus \(O_{p'}(G) = 1 \) since \(D < G_p \) by Claim (a).

(d) \(V = C_G(D) \cap M \) is a normal subgroup of \(G \) and \(C_G(D) = D \times V \leq H_1 \).

In view of Claim (b), \(C_G(D) = D \times V \), where \(V = C_G(D) \cap M \) is a normal subgroup of \(G \). By Claim (a), \(V \cap D = 1 \) and hence \(V \simeq DV/D \) is \(\sigma \)-nilpotent by Lemma 2.2. Let \(W \) be a \(\sigma_1 \)-complement of \(V \). Then \(W \) is characteristic in \(V \) and so it is normal in \(G \). Therefore we have (d) by Claim (c).

(e) \(G_p \neq H_1 \).

Assume that \(G_p = H_1 \). Let \(Z \) be a subgroup of order \(p \) in \(Z(G_p) \cap D \). Then, since \(D \leq O^{\sigma_1}(G) = O^p(G) \), \(Z \) is normal in \(G \) by Lemma 3.1 in [1]. Hence \(D = Z < G_p \) and so \(D < C_G(D) \). Then \(V = C_G(D) \cap M \neq 1 \) is a normal subgroup of \(G \) and \(V \leq H_1 = G_p \) by Claim (d). Let \(L \) be a minimal normal subgroup of \(G \) contained in \(V \). Then \(G_p = D \times L \) is a normal elementary abelian subgroup of \(G \). Therefore every subgroup of \(G_p \) is normal in \(G \) by Lemma 3.1 in [1]. Hence \(|D| = |L| = p \). Let \(D = \langle a \rangle \), \(L = \langle b \rangle \) and \(N = \langle ab \rangle \). Then \(N \not\leq D \), so in view of the \(G \)-isomorphisms

\[
DN/D \simeq N \simeq NL/L = G_p/L = DL/L \simeq D
\]

we get that \(G/C_G(D) = G/C_G(N) \) is a \(p \)-group since \(G/D \) is \(\sigma \)-nilpotent by Lemma 2.2. But then Claim (d) implies that \(G \) is a \(p \)-group. This contradiction shows that we have (e).

Final contradiction for (4). In view of Theorem A in [1], \(G \) has a \(\sigma_1 \)-complement \(E \) such that \(EG_p = G_pE \). Let \(V = (EG_p)^{G_p} \). By Claim (e), \(EG_p \neq G \). On the other hand, since \(D \leq EG_p \) by Claim (a), \(EG_p \) is \(\sigma \)-subnormal in \(G \) by Lemma 2.6(5) in [1]. Therefore the necessity condition of the theorem holds for \(EG_p \) by Claim (2). Hence \(V \) is a Hall subgroup of \(EG_p \). Moreover, by Claim (2) we have \(V \leq D \), so for a Sylow \(p \)-subgroup \(V_p \) of \(V \) we have \(|V_p| \leq |P| < |G_p| \). Hence \(V \) is a \(p' \)-group and so \(V \leq C_G(D) \leq H_1 = G_p \). Thus \(V = 1 \). Therefore \(EG_p = E \times G_p \) is \(\sigma \)-nilpotent and so \(E \leq C_G(D) \leq H_1 \) by Claim (d). Hence \(E = 1 \) and so \(D = 1 \), a contradiction. Thus, \(D \) is a Hall subgroup of \(G \).

(5) \(G/O^{\sigma_i}(D) \) is a special \(P\sigma T \)-group for each \(\sigma_i \in \sigma(D) \).

First assume that \(O^{\sigma_i}(D) \neq 1 \) and let \(N \) be a minimal normal subgroup of \(G \) contained in \(O^{\sigma_i}(D) \). Then \(G/N \) is a \(P\sigma T \)-group by Lemma 2.5(ii), so the choice of \(G \) implies that

\[
(G/N)/O^{\sigma_i}(D)/N = (G/N)/(O^{\sigma_i}(D)/N) \simeq G/O^{\sigma_i}(D)
\]
is a special $P\sigma T$-group. Now assume that $O^\sigma_i(D) = 1$, that is, D is a σ_i-group. Since G/D is
σ-nilpotent by Lemma 2.2, H_i/D is normal in G/D and hence H_i is normal in G. Therefore all
subgroups of D are σ-permutable in G by Lemma 2.3(2)(3) and hypothesis. Since D is a normal
Hall subgroup of H_i, it has a complement S in H_i by the Schur-Zassenhaus theorem. Lemma 3.1 in
[1] implies that $D \leq O^\sigma_i(G) \leq N_G(S)$. Hence $H_i = D \times S$. Therefore
$$G = H_i O^\sigma_i(G) = SO^\sigma_i(G) \leq N_G(L)$$
for every subgroup L of D. Hence every element of G induces a power automorphism in D. Hence
G is a special $P\sigma T$-group.

(6) Every subgroup H of D is normal in G. Hence every element of G induces a power automor-
phism in D.

Since D is nilpotent by Claim (3), it is enough to consider the case when H is a subgroup of the
Sylow p-subgroup P of D for some prime p. For some i we have $P \leq O_{\sigma_i}(D) = H_i \cap D$. On the
other hand, we have
$$D = O_{\sigma_i}(D) \times O^\sigma_i(D)$$
since D is nilpotent. Then
$$H O^\sigma_i(D)/O^\sigma_i(D) \leq D/O^\sigma_i(D) = (G/O^\sigma_i(D))^{\mathfrak{m}_p},$$
so $H O^\sigma_i(D)/O^\sigma_i(D)$ is normal in $G/O^\sigma_i(D)$ by Claim (5). Hence $H O^\sigma_i(D)$ is normal in G, which
implies that
$$H = H(O^\sigma_i(D) \cap O_{\sigma_i}(D)) = H O^\sigma_i(D) \cap O_{\sigma_i}(D)$$
is normal in G.

(7) If p is a prime such that $(p - 1, |G|) = 1$, then p does not divide $|D|$. In particular, $|D|$ is
odd.

Assume that this is false. Then, by Claim (6), D has a maximal subgroup E such that $|D : E| = p$
and E is normal in G. It follows that $C_G(D/E) = G$ since $(p - 1, |G|) = 1$. Since D is a Hall subgroup
of G, it has a complement M in G. Hence $G/E = (D/E) \times (ME/E)$, where $ME/E \cong M \cong G/D$ is
σ-nilpotent. Therefore G/E is σ-nilpotent by Lemma 2.2. But then $D \leq E$, a contradiction. Hence
p does not divide $|D|$. In particular, $|D|$ is odd.

(8) D is abelian.

In view of Claim (6), D is a Dedekind group. Hence D is abelian since $|D|$ is odd by Claim (7).

From Claims (4)–(8) we get that the necessity condition of the theorem holds for G.

Sufficiency. This directly follows from Theorem B.

The theorem is proved.
References

[1] A.N. Skiba, On σ-subnormal and σ-permutable subgroups of finite groups, *J. Algebra*, **436** (2015), 1–16.

[2] L.A. Shemetkov, *Formations of finite groups*, Nauka, Main Editorial Board for Physical and Mathematical Literature, Moscow, 1978.

[3] W. Guo, A.N. Skiba, Finite groups with permutable complete Wielandt sets of subgroups, *J. Group Theory*, **18** (2015), 191–200.

[4] A.N. Skiba, A generalization of a Hall theorem, *J. Algebra and its Application*, **15**(5) (2016), DOI: 10.1142/S0219498816500857.

[5] A.N. Skiba, On some results in the theory of finite partially soluble groups, *Commun. Math. Stat.*, **4**(3) (2016), 281–309.

[6] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, *Products of Finite Groups*, Walter de Gruyter, Berlin-New York, 2010.

[7] W. Guo, *Structure Theory for Canonical Classes of Finite Groups*, Springer, Heidelberg-New York-Dordrecht-London, 2015.

[8] R.K. Agrawal, Finite groups whose subnormal subgroups permute with all Sylow subgroups, *Proc. Amer. Math. Soc.*, **47** (1975), 77–83.

[9] A. Ballester-Bolinches, L.M. Ezquerro, *Classes of Finite groups*, Springer, Dordrecht, 2006.

[10] B.N. Knyagina, V.S. Monakhov, On π'-properties of finite groups having a Hall π-subgroup, *Siberian Math. J.*, **522** (2011), 398–309.

[11] K. Doerk, T. Hawkes, *Finite Soluble Groups*, Walter de Gruyter, Berlin-New York, 1992.