Compactness of certain class of singular minimal hypersurfaces

Akashdeep Dey *

Abstract

Given a closed Riemannian manifold \((N^{n+1}, g)\), \(n + 1 \geq 3\) we prove the compactness of the space of singular, minimal hypersurfaces in \(N\) whose volumes are uniformly bounded from above and the \(p\)-th Jacobi eigenvalue \(\lambda_p\)'s are uniformly bounded from below. This generalizes the results of Sharp [Sha17] and Ambrozio-Carlotto-Sharp [ACS16] in higher dimensions.

1 Introduction

A hypersurface of a Riemannian manifold \((N^{n+1}, g)\) is called minimal if it is a critical point of the \(n\)-dimensional area functional. By the combined works of Almgren [Alm65], Pitts [Pit81] and Schoen-Simon [SS81] one gets the following Theorem.

Theorem 1.1 ([Alm65], [Pit81], [SS81]). Let \((N^{n+1}, g)\) be an arbitrary closed Riemannian manifold with \(n + 1 \geq 3\). Then \(N\) contains a singular, minimal hypersurface which is smooth and embedded outside a singular set of Hausdorff dimension at most \(n-7\). In particular, when \(3 \leq n+1 \leq 7\) there exists a smooth, closed, embedded, minimal hypersurface in \(N\).

Recently, Almgren-Pitts min-max theory has been further developed to show that minimal hypersurfaces exist in abundance when the ambient dimension \(3 \leq n + 1 \leq 7\). By the results of Marques-Neves [MN17] and Song [Son18] every closed Riemannian manifold \(N\) of dimension \(3 \leq n + 1 \leq 7\) contains infinitely many minimal hypersurfaces. Moreover, Irie, Marques and Neves have shown that [MNS17] for a generic metric the union of all closed, minimal hypersurfaces is dense in \(N\); this theorem was later improved by Marques, Neves and Song in [MNS17] where they proved that for a generic metric there exists an equidistributed sequence of closed, minimal hypersurfaces in \(N\). The Weyl law for the volume spectrum proved by Liokumovich, Marques and Neves [LMN18] played a major role in the arguments of [LMN18] and [MNS17]. There is yet another proof of the existence of infinitely many closed, minimal hypersurfaces for a generic metric on \(N\) which follows from the papers by Marques-Neves [MN17] and Zhou [Zho19]. The reason of the upper bound of the dimension \(n + 1 \leq 7\)

*Email: adey@math.princeton.edu, dey.akash01@gmail.com
in [Son18, IMN18, MNS17, Zho19] is that the space of singular, minimal hypersurfaces is not well understood unlike the smooth case ([Whi91, Whi17]).

Using the Allen-Cahn equation Chodosh and Mantoulidis [CM18] have proved the existence of infinitely many minimal surfaces for generic metrics in dimension 3; Gaspar and Guaraco [GG18] have given alternative proofs of the above mentioned density and equidistribution theorems.

In higher dimensions, Li [Li19] has proved that a closed manifold $M_{n+1}, n + 1 \geq 8$ equipped with a generic Riemannian metric contains infinitely many singular, minimal hypersurfaces with optimal regularity (i.e. the singular set has Hausdorff dimension at most $n - 7$).

One of the key ingredients of the papers [Son18, IMN18, MNS17, Zho19] is Sharp’s compactness theorem [Sha17] which asserts certain compactness properties of the set of smooth, closed, minimal hypersurfaces in a Riemannian manifold $(M^{n+1}, g), 3 \leq n + 1 \leq 7$ with bounded volume and index. This result was generalized by Ambrozio, Carlotto and Sharp [ACS16] where instead of bounded volume and index, an upper bound of the volume and a lower bound of the p-th Jacobi eigenvalue λ_p (for some $p \in \mathbb{N}$) was assumed. (We note that for a smooth, closed minimal hypersurface Σ, $\text{Ind}(\Sigma) \leq I$ is equivalent to $\lambda_{I+1}(\Sigma) \geq 0$.)

In the present article we will suitably generalize the results of [Sha17] and [ACS16] in higher dimensions; for that, we need to consider the minimal hypersurfaces which may have singularities. We will state the notion of the index and the p-th Jacobi eigenvalue for a stationary n-varifold and prove the following Theorem.

Theorem 1.2. Let $\{M_k\}_{k=1}^{\infty}$ be a sequence of closed, connected, singular, minimal hypersurfaces in a closed Riemannian manifold $(N^{n+1}, g), n + 1 \geq 3$. Let $V_k = |M_k|$, the varifold associated to M_k. Suppose, there exist $\Lambda > 0, \alpha \geq 0, p \in \mathbb{N}$ such that for all k

- $\mathcal{H}^{n-2}(\text{sing}(M_k)) = 0$
- $\mathcal{H}^{n}(M_k) = \|V_k\|(N) \leq \Lambda$
- $\lambda_p(V_k) \geq -\alpha$

Then there is a stationary, integral varifold V such that possibly after passing to a subsequence, $V_k \rightharpoonup V$ in the \mathbf{F} metric. Moreover, denoting $M = \text{spt}(V)$ we have

- $\|V\|(N) \leq \Lambda$
- $\lambda_p(V) \geq -\alpha$
- $\mathcal{H}^{s}(\text{sing}(M)) = 0 \quad \forall s > n - 7$
- **The convergence is smooth and graphical over the compact subsets of $\text{reg}(M) \setminus \mathcal{Y}$ where \mathcal{Y} is a finite subset of $\text{reg}(M)$ with $|\mathcal{Y}| \leq p - 1$.**

From the definitions of the index and the Jacobi eigenvalue, it will be clear that
$\text{Ind}(V) \leq I$ if and only if $\lambda_{l+1}(V) \geq 0$. Therefore, Theorem 1.2 has the following Theorem as a corollary which generalizes Sharp’s compactness theorem [Sha17] in higher dimensions.

Theorem 1.3. Let $\{M_k\}_{k=1}^{\infty}$ be a sequence of closed, connected, singular, minimal hypersurfaces in a closed Riemannian manifold (N^{n+1}, g), $n + 1 \geq 3$. Suppose for all k, $H^{n-2}(\text{sing}(M_k)) = 0$, $H^n(M_k) \leq \Lambda$ and $\text{Ind}(|M_k|) \leq I$. Then there is a stationary, integral varifold V such that possibly after passing to a subsequence, $|M_k| \rightarrow V$ in the F metric, $\|V\|(N) \leq \Lambda$ and $\text{Ind}(V) \leq I$. Further, if $M = \text{spt}(V)$ then $H^s(\text{sing}(M)) = 0$ $\forall s > n-7$ and the convergence is smooth and graphical over the compact subsets of $\text{reg}(M) \setminus \mathcal{Y}$, where \mathcal{Y} is a finite subset of $\text{reg}(M)$ with $|\mathcal{Y}| \leq I$.

The space of minimal hypersurfaces with bounded volume and index is particularly interesting; due to the work of Marques and Neves [MN16], the minimal hypersurfaces constructed by the min-max procedure have bounded volume and index. More precisely, they have proved the following Theorem.

Theorem 1.4 ([MN16]). Suppose (N^{n+1}, g) is a closed Riemannian manifold, $n+1 \geq 3$. Let X be an m dimensional simplicial complex and Π be a F-homotopy class of continuous maps from X to $\mathbb{Z}_n(N; F; \mathbb{Z}_2)$. We define

$$L(\Pi) = \inf_{\Phi \in \Pi} \sup_{x \in X} \{M(\Phi(x))\}$$

Then there is a stationary, integral varifold V with $\text{spt}(V) = \Sigma$ such that

- $\|V\|(N) = L(\Pi)$
- $\text{Ind}(V) \leq m$
- $H^s(\text{sing}(\Sigma)) = 0$ $\forall s > n-7$.

The index upper bound of the minimal hypersurfaces in the Allen-Cahn settings has been proved by Gaspar [Gas17] and Hiesmayr [Hie17].

If we take M_k to be M for all k in Theorem 1.2, we get the following regularity result.

Proposition 1.5. Let M^n be a singular, minimal hypersurface in (N^{n+1}, g), $n + 1 \geq 3$. Suppose, $H^{n-2}(\text{sing}(M)) = 0$ and $\lambda_p(|M|) > -\infty$ for some p. Then $H^s(\text{sing}(M)) = 0$ $\forall s > n-7$.

The proof of Theorem 1.2 is very similar to that of [Sha17] and [ACS16]. However, for the sake of completeness we will give a self-contained proof of it.

Acknowledgements. I am very grateful to my advisor Prof. Fernando Codá Marques for many helpful discussions and for his support and guidance. I also thank Yangyang Li and Antoine Song for answering some of my questions. The author is partially supported by NSF grant DMS-1811840.
2 Notations and Preliminaries

2.1 Notations

Here we summarize the notations which will be frequently used later.

\[V_n(U) \] the set of \(n \)-varifolds in \(U \)
\[IV_n(U) \] the set of integral \(n \)-varifolds in \(U \)
\(\mathcal{H}^s \) the Hausdorff measure of dimension \(s \)
\(\| V \| \) the Radon measure associated to the varifold \(V \)
\(| \Sigma | \) the varifold associated to a singular hypersurface \(\Sigma \)
\(\delta^2 V \) 2-nd variaration of the stationary varifold \(V \)
\(\text{Ind}(\cdot) \) index (of a stationary hypersurface or varifold)
\(\lambda_k(\cdot) \) \(k \)-th Jacobi eigenvalue (of a stationary hypersurface or varifold)
\(\text{sing}(\Sigma) \) the singular part of \(\Sigma \)
\(\text{reg}(\Sigma) \) the regular part of \(\Sigma \)
\(B(p, r) \) open ball of radius \(r \) centered at \(p \)

2.2 Preliminaries from geometric measure theory

Here we will briefly discuss the notion of varifold and various related concepts; further details can be found in Simon’s book [Sim].

Given a Riemannian manifold \((U^{n+1}, g) \) let \(G_k(U) \) denote the Grassmanian bundle of \(k \)-dimensional hyperplanes over \(U \). A \(k \)-varifold in \(U \) is a positive Radon measure on \(G_k(U) \). The topology on the space of \(k \)-varifolds \(V_k(U) \) is given by the weak* topology i.e. a net \(\{ V_i \}_{i \in I} \subset V_k(U) \) converges to \(V \) iff

\[\int_{G_k(U)} f(x, \omega) dV_i(x, \omega) \longrightarrow \int_{G_k(U)} f(x, \omega) dV(x, \omega) \]

for all \(f \in C_c(G_k(U)) \). This topology is metrizable and the metric is denoted by \(F \). If \(V \in V_k(U) \) and \(\pi : G_k(U) \longrightarrow U \) denotes the canonical projection then \(\| V \| = \pi_! V \) is a Radon measure on \(U \); \(\| V \|(A) = V(\pi^{-1}(A)) \).

If \(\varphi : U \longrightarrow U' \) is a diffeomorphism and \(V \in V_k(U) \), we define \(\varphi_* V \in V_k(U') \) by the following formula

\[(\varphi_* V)(g) = \int_{G_k(U)} g(\varphi(x), dx_\varphi) J_\varphi(x, \omega) dV(x, \omega) \]

where

\[J_\varphi(x, \omega) = \left(\det \left(\left(d_{x\varphi} \varphi \right)^t \circ \left(d_x \varphi \right) \right) \right)^{1/2} \]

is the Jacobian factor and \(g \in C_c(G_k(U')) \). Given a compactly supported, smooth vector-field \(X \) on \(U \) let \(\varphi_t \) denote the flow of \(X \); the first variation and second variation of \(V \) are given by
\[\delta V(X) = \frac{d}{dt} \bigg|_0 \| (\varphi_t)_* V \| (U) \quad ; \quad \delta^2 V(X, X) = \frac{d^2}{dt^2} \bigg|_0 \| (\varphi_t)_* V \| (U) \]

We say that \(V \) is stationary if \(\delta V(X) = 0 \) for all \(X \) and a stationary varifold \(V \) is called stable if \(\delta^2 V(X, X) \geq 0 \) for all \(X \).

Given a \(k \)-rectifiable set \(S \subset U \) and a non-negative function \(\theta \in L^1_{\text{loc}}(S, \mathcal{H}^k S) \) we define the \(k \)-varifold \(v(S, \theta) \) by

\[v(S, \theta)(f) = \int_S f(x, T_x S) \theta(x) d\mathcal{H}^k(x) \]

where \(T_x S \) denotes the tangent space of \(S \) at \(x \) which exists \(\mathcal{H}^k S \)-a.e. \(V \) is called an integral \(k \)-varifold if \(V = v(S, \theta) \) for some \(S \) and \(\theta \) with \(\theta \) taking non-negative integer values \(\mathcal{H}^k S \)-a.e.

In the present article we will only deal with \(n \)-varifolds and from now on we will simply write ‘varifold’ instead of ‘\(n \)-varifold’. Given \(A \subset U \) we define the regular and singular part of \(A \)

\[\text{reg}(A) = \{ x \in A : \exists \text{ open } P \subset U \text{ containing } x \text{ such that } P \cap A \text{ is a smooth, embedded hypersurface} \} \]

and

\[\text{sing}(A) = A \setminus \text{reg}(A). \]

Further, by a singular, minimal hypersurface \(\Sigma \) in \(U \) we will mean that \(\Sigma \subset U \) is a closed, \(n \)-rectifiable set with \(\mathcal{H}^{n-1}(\text{sing}(\Sigma)) = 0 \) and \(|\Sigma| = v(\Sigma, 1_\Sigma) \) (where \(1_\Sigma \) is the constant function 1) is stationary. By [Ilm96] (Equation (4)), \(|\Sigma| \) is stationary in \(U \) if and only if \(\text{reg}(\Sigma) \) is a smooth, minimal hypersurface and \(\mathcal{H}^n(\Sigma \cap B(x, r)) \leq C(U') r^n \) for all \(B(x, r) \subset U' \subset U \).

3 Index and Jacobi eigenvalues of a stationary varifold

We will now state the notion of the index and the Jacobi eigenvalues of a stationary varifold following the paper by Marques and Neves [MN16]. The definition is motivated by the following min-max characterization of \(\lambda_k(\Sigma) \) when \(\Sigma^n \subset (U^{n+1}, g) \) is a smooth, minimal hypersurface.

\[\lambda_k(\Sigma) = \inf_{\dim(V) = k} \sup_{X \in V \setminus \{0\}} \left(\frac{\delta^2 \Sigma(X, X)}{\int_{\Sigma} |X|^2 d\mathcal{H}^n} \right) \]

The infimum is over all the \(k \)-dimensional linear subspaces \(V \subset \Gamma_c(N\Sigma) = \) compactly supported smooth sections of \(N\Sigma \). Therefore, \(\lambda_k(\Sigma) < a \) if there is a \(k \)-dimensional subspace \(V \subset \Gamma_c(N\Sigma) \) such that for all \(X \in V \setminus \{0\} \),

\[\delta^2 \Sigma(X, X) < a \int_{\Sigma} |X|^2 d\mathcal{H}^n \]
Given a Riemannian manifold \((U^{n+1}, g)\) and \(k \in \mathbb{N} \ (0 \not\in \mathbb{N})\), a \(k\)-parameter family of diffeomorphisms is a smooth map \(F : \overline{B}^k(0,1) \subset \mathbb{R}^k \rightarrow \text{Diff}(U)\) such that

- \(F_v(= F(v)) = (F_{-v})^{-1} \ \forall v \in \overline{B}^k(0,1)\) and \(F_0 = \text{Id}\)
- there exists open \(U' \subset U\) such that \(F_v|_{U \setminus U'} = \text{Id} \ \forall v \in \overline{B}^k(0,1)\)

If \(F\) is a \(k\)-parameter family of diffeomorphisms, we define the vector-fields \(Y_i, i = 1, ..., k\) by

\[
Y_i|_p = \frac{d}{dt} \bigg|_0 F_{\varepsilon_i}(p)
\]

Suppose further, we have a stationary varifold \(V\) in \(U\). Then we define a smooth function \(A^V\) and a quadratic form \(K^V\) as follows.

\[
A^V : \overline{B}^k(0,1) \rightarrow [0, \infty), \quad A^V(v) = \| (F_v)_\# V \|(U)
\]

\[
K^V : \mathbb{R}^k \times \mathbb{R}^k \rightarrow \mathbb{R}, \quad K^V(u, u) = \sum_i u_i Y_i^2_{L^2(U, \|V\|)}
\]

Remark 3.1. If \(V_i \rightarrow V\) in the \(F\) metric then \(A^V_i \rightarrow A^V\) ([Pit81], Section 2.3) in the smooth topology and also \(K^{V_i} \rightarrow K^V\) smoothly on compact subsets.

Definition 3.2. Given a stationary varifold \(V\) in \(U\), \(k \in \mathbb{N}\) and \(\alpha \geq 0\) we say that \(\lambda_k(V) < -\alpha\) if there exists a \(k\)-parameter family of diffeomorphisms \(F\) such that

\[
D^2A^V|_0 (u, u) < -\alpha K^V(u, u)
\]

for all \(u \in \mathbb{R}^k \setminus \{0\}\) or equivalently for all \(u \in \mathbb{R}^k\) with \(\|u\| = 1\). Further, by \(\lambda_k(V) \geq -\alpha\) we will mean that \(\lambda_k(V) < -\alpha\) does not hold. If \(\lambda_k(V) < -\alpha\) then restricting \(F\) to \(\overline{B}^{k-1}(0,1) \subset \overline{B}^k(0,1)\) we get that \(\lambda_{k-1}(V) < -\alpha\) as well. Therefore, it will be natural to define

\[
\text{Ind}(V) = \begin{cases}
0 & \text{if } \{I \in \mathbb{N} : \lambda_I(V) < 0\} = \emptyset, \\
\sup\{I \in \mathbb{N} : \lambda_I(V) < 0\} & \text{otherwise}.
\end{cases}
\]

Hence, \(\text{Ind}(V) \leq I\) is equivalent to \(\lambda_{I+1}(V) \geq 0\). Further, \(\text{Ind}(V) = 0\) iff \(\lambda_1(V) \geq 0\) iff \(V\) is stable.

Remark 3.3. By Remark 3.1 and from the above definition it is clear that whenever \(\lambda_k(V) < -\alpha\) and \(F(V, V')\) is sufficiently small, we have \(\lambda_k(V') < -\alpha\) as well.

Proposition 3.4. Given \(\Lambda > 0\), \(k \in \mathbb{N}\) and \(\alpha \geq 0\), the following sets are compact with respect to the \(F\) metric topology.

\[
\mathcal{M}_U(\Lambda, k, \alpha) = \{V \in \mathcal{V}_n(U) : V \text{ is stationary, } \|V\| \leq \Lambda \text{ and } \lambda_k(V) \geq -\alpha\} \subset \mathcal{V}_n(U)
\]

\[
\mathcal{M}'_U(\Lambda, k, \alpha) = \{V \in IV_n(U) : V \text{ is stationary, } \|V\| \leq \Lambda \text{ and } \lambda_k(V) \geq -\alpha\} \subset IV_n(U)
\]
Proof. By the standard compactness theorems, if \(\{V_i\}_{i=1}^{\infty} \) is a sequence of stationary varifolds with \(\|V_i\| \leq \Lambda \) then up to a subsequence \(V_i \) converges to a stationary varifold \(V \) in the \(F \) metric with \(\|V\| \leq \Lambda \). Further, by Allard’s theorem \([A172] \) if \(V_i \)’s are integral varifolds, \(V \) is also an integral varifold. Moreover, by Remark 3.3 if \(\lambda_k(V) < -\alpha \) then for \(i \) large \(\lambda_k(V_i) < -\alpha \) as well. Hence, \(\lambda_k(V) \geq -\alpha \).

\[\square \]

Theorem 3.5. Let \(\Sigma \) be a singular, minimal hypersurface in \(U, V = |\Sigma| \) and \(H^{n-2}(\text{sing}(\Sigma)) = 0 \). Then, \(\lambda_k(V) < -\alpha \leq 0 \iff \lambda_k(\text{reg}(\Sigma)) < -\alpha \). Hence, \(\text{Ind}(V) = \text{Ind}(\text{reg}(\Sigma)) \); therefore, \(V \) is stable iff \(\text{reg}(\Sigma) \) is stable.

Proof. We note that

\[
D^2A^V\bigg|_0 (u, u) = \frac{d^2}{dt^2} \bigg|_0 A^V(tu, tu) = \frac{d^2}{dt^2} \| (F tu) \# V \|(U) = \delta^2 V\left(\sum_i u_i X_i, \sum_i u_i X_i \right)
\]

(3.1)

Let \(\lambda_k(\text{reg}(\Sigma)) < -\alpha \). Then there are \(k \) linearly independent, compactly supported normal vector-fields on \(\text{reg}(\Sigma) \) say \(X_1, X_2, ..., X_k \) such that

\[\delta^2 V(X, X) < -\alpha \| X \|^2_{L^2(\Sigma)} \]

for any non-zero vector-field \(X \) in the span of \(\{X_i\}_{i=1}^k \). We extend each \(X_i \) to a compactly supported, globally defined vector-field on \(U \) and continue to call it by \(X_i \); we define \(F_v = \Phi \Sigma_i u_i X_i \), where \(\Phi X \) denotes the time 1 flow of the vector-field \(X \). Let us check that this choice of \(F \) indeed works. Clearly, \(F_{-v} = F_v^{-1} \).

By (3.1)

\[
D^2A^V\bigg|_0 (u, u) = \delta^2 V\left(\sum_i u_i X_i, \sum_i u_i X_i \right) < -\alpha \| \sum_i u_i X_i \|^2_{L^2(\Sigma)}
\]

For the converse, we consider the following.

\[\delta^2 V(X, X) = \int_{\Sigma} \left((\text{div}_\Sigma X)^2 + \sum_{i=1}^n |(\nabla \tau_i X)^{-1}|^2 - \sum_{i,j=1}^n \langle \tau_i, \nabla \tau_j X \rangle \langle \tau_j, \nabla \tau_i X \rangle \right) dH^n \]

where \(\{\tau_i\}_{i=1}^n \) is an orthonormal basis of \(T_2 \Sigma \). Since \(H^{n-2}(\text{sing}(\Sigma)) = 0 \), given any \(\delta > 0 \) and \(0 < \kappa < 1 \) we can choose balls \(\{B(x_i, r_i)\}_{i=1}^K \) such that each \(r_i < \kappa \), \(\text{sing}(\Sigma) \subset \cup_i B(x_i, r_i) \) and \(\sum_i r_i^{n-2} < \delta \). Therefore, \(\sum_i r_i^{n-2} < \delta \) and \(\sum_i r_i^\kappa < \delta \) as well. We choose smooth cut-off functions \(0 \leq \zeta_i \leq 1 \) on \(U \) such that

\[\zeta_i = \begin{cases}
0 & \text{on } B(x_i, r_i) \\
1 & \text{outside } B(x_i, 2r_i)
\end{cases} \]
and $|\nabla \zeta| \leq 2/r_i$ (this can be ensured by choosing κ sufficiently small). Let $\zeta_\delta = \min_i \zeta_i$. From the second variation formula, we see that

$$\left| \delta^2 V(X, X) - \delta^2 V(\zeta_\delta X, \zeta_\delta X) \right| \leq \int_{\Sigma} \left((1 - \zeta_\delta^2) + |\nabla \zeta_\delta| + |\nabla \zeta_\delta|^2 \right) f(X, \nabla X) \, dH^n$$

(3.2)

where f is an expression involving X and ∇X. By the monotonicity formula, the R.H.S. of this equation is bounded by $C\delta$ for some constant C depending only on (U, g), n, $\|V\|(U)$ and $\|X\|_{C^1}$.

Therefore, for $u \in \mathbb{R}^k$ with $\|u\| = 1$

$$\delta^2 V \left(\zeta_\delta \sum_i u_i Y_i^+, \zeta_\delta \sum_i u_i Y_i^+ \right) = \delta^2 V \left(\zeta_\delta \sum_i u_i Y_i, \zeta_\delta \sum_i u_i Y_i \right)$$

(3.3)

$$\leq \delta^2 V \left(\sum_i u_i Y_i, \sum_i u_i Y_i \right) + C\delta$$

(3.4)

Here C depends only on (U, g), n, $\|V\|(U)$ and $\|Y_i\|_{C^1}$ and not on u.

We assume $\lambda_k(V) < -\alpha$. By Definition 3.2 and equation 3.1 for all $u \in \mathbb{R}^k$ with $\|u\| = 1$,

$$\delta^2 V \left(\sum_i u_i Y_i, \sum_i u_i Y_i \right) < -\alpha \|\sum_i u_i Y_i\|_{L^2(\Sigma)}^2 \implies \sum_i u_i Y_i \neq 0$$

(3.5)

Therefore,

$$\sup_{\|u\| = 1} \frac{\delta^2 V \left(\sum_i u_i Y_i, \sum_i u_i Y_i \right)}{\|\sum_i u_i Y_i\|_{L^2}^2} \leq -\alpha - 2\varepsilon$$

(3.6)

for some $\varepsilon > 0$. Hence, using 3.4 for all $\|u\| = 1$ and δ sufficiently small

$$\delta^2 V \left(\zeta_\delta \sum_i u_i Y_i^+, \zeta_\delta \sum_i u_i Y_i^+ \right)$$

$$\leq \delta^2 V \left(\sum_i u_i Y_i^+, \sum_i u_i Y_i \right) + C\delta$$

$$\leq (-\alpha - 2\varepsilon) \int_{\Sigma} \left| \sum_i u_i Y_i \right|^2 \, dH^n + C\delta$$

$$\leq (-\alpha - 2\varepsilon) \int_{\Sigma} \left| \sum_i u_i Y_i \zeta_\delta \right|^2 \, dH^n + C\delta$$

$$< (-\alpha - \varepsilon) \int_{\Sigma} \left| \sum_i u_i Y_i \zeta_\delta \right|^2 \, dH^n$$

(3.7)

$$\leq (-\alpha - \varepsilon) \left\| \sum_i u_i Y_i^+ \zeta_\delta \right\|_{L^2(\Sigma)}^2$$

(3.8)

\footnote{Though ζ_δ is only a Lipschitz continuous function, its use in the subsequent calculations can be justified by an approximation argument.}
To justify 3.7, we observe:

\[
\int_\Sigma \left| \sum_i u_i Y_i \right|^2 dH^n = \int_\Sigma \left| \sum_i u_i Y_i \right|^2 dH^n + \int_\Sigma (\sum_i Y_i^2 - 1) \sum_i u_i Y_i dH^n \\
\geq \inf_{\|u\|=1} \int_\Sigma \left| \sum_i u_i Y_i \right|^2 dH^n - C \sum_i r_n^2 \quad \text{(using monotonicity formula)} \\
\geq \theta - C\delta \quad \text{(for some } \theta > 0 \text{ by 3.5 and } C \text{ is independent of } u)
\]

Clearly 3.8 implies that \(\{\xi_i^i\}_{i=1}^k \) are linearly independent normal vector fields on \(reg(\Sigma) \) and \(\lambda_k(reg(\Sigma)) < -\alpha \).

In view of the above Theorem 3.5, we will use the terms \(\lambda_k(V) \) and \(\lambda_k(reg(\Sigma)) \) interchangeably.

4 Modifications of the results of Schoen-Simon [SS81]

Suppose the unit ball \(B^{n+1}(0,1) \subset \mathbb{R}^{n+1} \) is equipped with a Riemannian metric \(g; \mu_1 \) is a constant such that if \(g = g_{ij} dx^i dx^j \)

\[
\sup_{B^{n+1}(0,1)} \left| \frac{\partial g_{ij}}{\partial x_k} \right| \leq \mu_1 \quad \sup_{B^{n+1}(0,1)} \left| \frac{\partial^2 g_{ij}}{\partial x_k \partial x_l} \right| \leq \mu_1^2
\]

(4.1)

Theorem 4.1 (Modification of Schoen-Simon [SS81], Theorem 1 ; page 747).

Suppose \(\Sigma \) is a singular, minimal hypersurface in \((B^{n+1}(0,1), g) \) satisfying \(H^{n-2}(sing(\Sigma)) = 0, H^n(\Sigma) \leq \mu \) and \(\lambda_1(\Sigma) \geq -\alpha \) for some \(\alpha \geq 0 \). Then there exist \(\delta_0 \in (0,1), r_0 \in (0,1/4) \) and \(c > 0 \) depending only on \(n, \mu, \mu_1, \alpha \) such that the following holds. If \(x = (x', x_{n+1}) \in \Sigma \cap B^{n+1}(0,1/4), p \leq r_0, \Sigma' \) is the connected component of \(\Sigma \cap C(x, \rho) \) (\(C(x, \rho) \) is the cylinder on \(B^n(x, \rho) \)) containing \(x \) and

\[
\sup_{y = (y', y_{n+1}) \in \Sigma'} |y_{n+1} - x_{n+1}| \leq \delta_0 \rho \quad (*)
\]

then, \(\Sigma' \cap C(x, \rho/2) \) consists of disjoint union of graphs of functions \(u_1 < u_2 < \ldots < u_k \) defined on \(B^n(x, \rho/2) \) satisfying the following estimate.

\[
\sup_{B^n(x, \rho/2)} (|Du_i| + \rho |DDu_i|) \leq c\delta_0
\]

for \(i = 1, 2, \ldots, k \). In particular, \(\Sigma \) is smooth near \(x \) and the second fundamental form \(|A_2(x)| \leq c/\rho \) (for possibly a different constant \(c \)).
 Remark 4.2. The difference between the above Theorem 4.1 and Theorem 1 of Schoen-Simon [SS81] is that instead of assuming $|\Sigma|$ is stable we have assumed that $\lambda_1(|\Sigma|) \geq -\alpha$. Indeed under this weaker assumption, the stability inequality (1.17) of Schoen-Simon [SS81] (page 746) continues to hold with the constant c_5 replaced by $c_5 + \frac{\alpha}{\rho l}$; therefore all the successive calculations in the paper [SS81] go through.

Theorem 4.3 (Modification of Schoen-Simon [SS81], Theorem 2; page 784). Let $\{\Sigma_q\}$ be a sequence of singular, minimal hypersurfaces in $(\mathbb{R}^{n+1}, 0, y)$ such that $\mathcal{H}^{n-2}(\text{sing}(\Sigma_q)) = 0$, $\lambda_1(\Sigma_q) \geq -\alpha$ and $|\Sigma_q|$ converges to a varifold W; $0 \in \text{spt}(W) = \Sigma$. Then $\mathcal{H}^*(\text{sing}(\Sigma) \cap B^{n+1}(0, \frac{1}{2})) = 0$ for all $s > n - 7$.

Proof. As before, The difference between the above Theorem 4.3 and Theorem 2 of Schoen-Simon [SS81] is that instead of assuming $|\Sigma|$ is stable we have assumed that $\lambda_1(|\Sigma|) \geq -\alpha$.

The proof of Theorem 2 of Schoen-Simon [SS81] goes as follows. By the successive blow-up argument, one arrives at a varifold W_1 which is a stationary, integral, codimension 1 cone in \mathbb{R}^{n-l+1} such that $\text{sing}(W_1) = \{0\}$ and

$$\mathbb{R}^l \times W_1 = \lim_{m \to \infty} J_{\#} \circ \tau_{y_m, \#} \circ \mu_{r_m, \#} |\Sigma_{q_m}|$$ \hspace{1cm} (4.2)

for some sequence of points $y_m \in \mathbb{R}^{n+1}$ and positive real numbers r_m and some subsequence $\{\Sigma_{q_m}\} \subset \{\Sigma_q\}$; $|y_m|, r_m \to \infty$. Here J is some orthogonal transformation of \mathbb{R}^{n+1}, τ_y denotes the translation of \mathbb{R}^{n+1} which brings y to the origin, μ_r is the multiplication (scaling) by r. It is shown that (equation (5.22) of Schoen-Simon) $l \geq s$ for every s such that $\mathcal{H}^*(\text{sing}(\Sigma) \cap B^{n+1}(0, \frac{1}{2})) > 0$ (hence, one only needs to show that $l \leq n - 7$) and $l \leq n - 3$. Upto this point, the only facts about Σ_q which are used: Σ_q satisfies the stability inequality (1.17) and Theorem 1 of Schoen-Simon [SS81]. After this, stability of $|\Sigma_q|$ is used to conclude that $\mathbb{R}^l \times W_1$ is stable. Hence, W_1 is smooth, stable codimension 1 cone in \mathbb{R}^{n-l+1} with a singularity at origin. Therefore, $n-l \geq 7$ i.e. $l \leq n - 7$.

In our context of Theorem 4.3 the above mentioned proof can be modified as follows. As noted above, stability inequality (1.17) and Theorem 1 of Schoen-Simon [SS81] continue to hold under the weaker assumption $\lambda_1(|\Sigma_q|) \geq -\alpha$. Moreover

$$\lambda_1(|\Sigma_q|) \geq -\alpha \implies \lambda_1(J_{\#} \circ \tau_{y, \#} \circ \mu_{r, \#} |\Sigma_{q_m}|) \geq \frac{-\alpha}{r_m}$$ \hspace{1cm} (4.3)

can be justified, for example, using Theorem 3.5. If $\lambda_1(\mathbb{R}^l \times W_1) < -\varepsilon$ for some $\varepsilon > 0$. (This can be seen from the proof of Theorem 3.5). Since $\mathbb{R}^l \times W_1$ is the varifold limit of $J_{\#} \circ \tau_{y, \#} \circ \mu_{r, \#} |\Sigma_{q_m}|$, in view of Remark 3.3 for all large m,

$$\lambda_1(J_{\#} \circ \tau_{y, \#} \circ \mu_{r, \#} |\Sigma_{q_m}|) < -\varepsilon$$

This contradicts (4.3) as $\lim_{m \to \infty} r_m = \infty$. Hence, $\lambda_1(\mathbb{R}^l \times W_1) \geq 0$ i.e. $\mathbb{R}^l \times W_1$ is stable. \(\square\}
To prove the graphical convergence part of Theorem 1.2 we will need the following Lemma which is a consequence of Theorem 4.1.

Lemma 4.4. Let (N^{n+1}, g) be a closed Riemannian manifold. Let $\{\Sigma_q\}$ be a sequence of singular, minimal hypersurfaces in N with $H^{n-2}(\text{sing}(\Sigma_q)) = 0$ for all q. We also assume that $W_q = |\Sigma_q|$ varifold converges to a stationary, integral varifold W, $\Sigma = \text{spt}(W)$ and Σ_q converges to Σ in the Hausdorff topology. Then, for every N sequence of singular, minimal hypersurfaces in Σ_q we can choose $R > q$ all μ_0 such that

$\lim_{t \to 0} \frac{W((B^N(x_0,t)))}{t^n} \leq \Theta + 1/2 \quad \forall t \leq \rho_0$ \hspace{1cm} (4.4)

Let δ_0 and r_0 be the constants which are provided by Theorem 4.1 when we set $\mu = \Theta + 1$ and $\mu_1 = 1$. Let $s_0 = 1/\delta_0$. For $0 < a < 1/\delta_0$ identifying \mathbb{R}^{n+1} with $T_{x_0}N$ and $\mathbb{R}^n \times \{0\} \subset \mathbb{R}^{n+1}$ is identified with $T_{x_0}M$ we define

$\Phi_a : B^{n+1}(0,2) \to B^N(x_0,2a), \quad \Phi_a(v) = \exp_{x_0}(av), \quad g_a = \Phi_a^* g$

We can choose $R > 0$ so that

- $R < \min \left\{ \frac{1}{\delta_0} \text{inj}_N, \frac{1}{2} d^N(x_0, \text{sing}(\Sigma)), 1, \rho_0 \right\}$

and whenever $r \leq R$

- $(B^{n+1}(0,1), g_0)$ satisfies 4.1 with $\mu_1 = 1$
- $\Sigma = \Phi_a^{-1}(\Sigma \cap B^N(x_0, 2r)) \subset B^{n+1}(0,2) \cap \{x : |x_{n+1}| < s_0\}$

We will show that the above choice of $R = R(x_0)$ works. Let us fix an $r \leq R$. We define

$C = B^n(0,1) \times [-1,1] \subset B^{n+1}(0,2), \quad C' = C \setminus \{x : |x_{n+1}| < s_0\}$.

Then

$C' \cap \left(\tilde{\Sigma} \cup \partial B^{n+1}(0,2) \right) = \emptyset; \quad d := \text{dist}_{g_0} \left(C', \left(\tilde{\Sigma} \cup \partial B^{n+1}(0,2) \right) \right)$

We choose q_0 (depending on r) so that for all $q \geq q_0$

- $0 < \frac{\|W_q\|(B^N(x_0,r))}{r^{n+1}} \leq \Theta + 1$ \hspace{1cm} \[\text{This is possible since } \Sigma \text{ is smooth near } x_0\]
- $\lambda_1(W_q, B^N(x_0,r)) \geq -\alpha$ \hspace{1cm} \[\text{This is possible because of 4.3 and varifold convergence of } W_q \text{ to } W\]
- The Hausdorff distance $d_H(\Sigma_q, \Sigma) < dr$
Hence, denoting $\bar{\Sigma}_q = \Phi^{-1}(\Sigma_q \cap B^N(x_0, 2r))$, for all $q \geq q_0$ we have $\bar{\Sigma}_q \cap B^{n+1}(0, 1) \neq \emptyset$,

$$\mathcal{H}^n(\bar{\Sigma}_q \cap B^{n+1}(0, 1)) = \mathcal{H}^n(\Sigma_q \cap B^N(x_0, r)) \leq \Theta + 1,$$

$$\lambda_1(|\bar{\Sigma}_q \cap B^{n+1}(0, 1)|) \geq -\alpha r \geq -\alpha$$

and

$$\bar{\Sigma}_q \cap C' = \emptyset \quad \text{i.e.} \quad (\bar{\Sigma}_q \cap C) \subset C \cap \{x : |x_{n+1}| < s_0\} \quad (4.5)$$

We can now apply Theorem 4.1 to the singular, minimal hypersurface $(\bar{\Sigma}_q \cap B^{n+1}(0, 1)) \subset (B^{n+1}(0, 1), g_r)$ for $q \geq q_0$. Since, $B^{n+1}(0, 1) \subset C$, equation 4.5 implies that for all $q \geq q_0$, $x \in \bar{\Sigma}_q \cap B^{n+1}(0, 1/4)$ and for $\rho = r_0$ the oscillation bound (*) of Theorem 4.1 is satisfied in the cylinder $C(x, r_0)$. The counterpart of the Arzela-Ascoli theorem for smooth, minimal hypersurface gives that in a smaller ball $B^{n+1}(0, 1/5)$, $\bar{\Sigma}_q$ converges to $\bar{\Sigma}$ smoothly and graphically. (Here we do not have to pass to a further subsequence since we already know that $\bar{\Sigma}_q$ Hausdorff converges to $\bar{\Sigma}$). When we rescale back to go back to N, we get that in the ball $B^N(x_0, r/5)$, Σ_q converges to Σ smoothly and graphically.

\[\square\]

5 Proof of the main theorem

In this section we will give a proof of Theorem 1.2.

By Allard’s compactness theorem [All72], possibly after passing to a subsequence, $V_k \rightarrow V$ in the F metric with V is a stationary, integral varifold and $\|V\|(N) \leq \Lambda$. If $\lambda_p(V) < -\alpha$ then $\lambda_p(V_k) < -\alpha$ for k sufficiently large by Remark 3.3. Hence, $\lambda_p(V) \geq -\alpha$. We also know that $\text{spt}(V_k) = M_k$ converges to $\text{spt}(V) = M$ in the Hausdorff topology.

Lemma 5.1. Let W be a stationary varifold in U^{n+1} with $\lambda_p(W) \geq -\alpha$, $\alpha \geq 0$. Let U_1, \ldots, U_p be mutually disjoint open subsets of U such that $\|W\|(U_j) \neq 0$ for each $j = 1, \ldots, p$. Then there exists $i \in \{1, \ldots, p\}$ such that $\lambda_1(W \nabla U_i) \geq -\alpha$.

Proof. Let us assume that for all $i = 1, \ldots, p$ we have $\lambda_1(W \nabla U_i) < -\alpha$. Hence, from Definition 3.2 and equation 3.1 we have maps

$$F^i : T^i \rightarrow \text{Diff}(U_i)$$

This follows from $d_H(\Sigma_q, \Sigma) < dr$
and vector-fields Y^i compactly supported in U_i

$$Y^i|_x = \frac{d}{dt}|_0 F^i_t(x)$$

such that

$$\delta^2 W(Y^i, Y^i) < -\alpha \|Y^i\|^2_{L^2}$$

We define

$$F : \mathcal{B}^p \rightarrow \text{Diff}(U), \quad F_v = \Phi^{\sum_i v_i Y^i}$$

where Φ^X denotes the time 1 flow of the vector field X. For this choice of F we have

$$D^2A^W|_0(u, u) = \delta^2 W \left(\sum_i u_i Y^i, \sum_i u_i Y^i \right)$$

$$= \sum_i u_i^2 \delta^2 W(Y^i, Y^i) \quad \text{(since spt}(Y^i)\text{'s are mutually disjoint)}$$

$$< -\alpha \sum_i u_i^2 \|Y^i\|^2_{L^2}$$

$$= -\alpha \sum_i u_i Y^i \|Y^i\|^2_{L^2} \quad \text{(since spt}(Y^i)\text{'s are mutually disjoint)}$$

$$= -\alpha K^W(u, u)$$

This contradicts $\lambda_p(W) \geq -\alpha$. \hfill \Box

Returning back to the proof of the main Theorem 1.2, let $G \subset M$ be the set of points $x \in M$ for which there exists $r = r(x) > 0$ and some subsequence $\{V_{k'}\} \subset \{V_k\}$ such that for each k', $\lambda_1(V_{k'}, B^N(x, 2r)) \geq -\alpha$. Therefore, using Theorem 4.3, $H^s(\text{sing}(M) \cap B^N(x, r(x))) = 0$ for all $x \in G$ and $s > n - 7$.

Lemma 5.2. The set $M \setminus G$ has atmost $p - 1$ points.

Proof. Suppose there exists p points $\{x_i\}_{i=1}^p \subset M \setminus G$. Let t be small enough so that the normal geodesic balls $\{B^N(x_i, t)\}_{i=1}^p$ are mutually disjoint. By the definition of G, there exists k_0 such that for all $k \geq k_0$, $\lambda_1(B^N(x_i, t)) < -\alpha$ for each i. By Lemma 5.1, this implies $\lambda_p(V_k) < -\alpha$ for all $k \geq k_0$, a contradiction. \hfill \Box

We note that

$$\text{sing}(M) \cap G = \bigcup_{x \in \text{sing}(M) \cap G} (\text{sing}(M) \cap B^N(x, r(x))) \quad (5.1)$$

We can extract a countable subcover of the R.H.S. of (5.1) and write

$$\text{sing}(M) \cap G = \bigcup_{i=1}^\infty (\text{sing}(M) \cap B^N(x_i, r(x_i))) \quad (5.2)$$

\[\text{This is possible because } \mathcal{N}, \text{ being a manifold, is second-countable and a subspace of a second-countable space is second-countable.}\]
where each x_i is in $\text{sing}(M) \cap G$. By the definition of G, for $s > n - 7$, $\mathcal{H}^s(\text{sing}(M) \cap B^N(x_l, r(x_l))) = 0$ for each i. Therefore, Lemma 5.2 and Lemma 5.2 imply that $\mathcal{H}^s(\text{sing}(M)) = 0$. (Here we are implicitly assuming that $n \geq 7$ so that for $s > n - 7 \geq 0$, $\mathcal{H}^s(M \setminus G) = 0$; when $n < 7$ further arguments are required to show that M is smooth at the points of $M \setminus G$ as explained in [ACS16].)

We can now complete the proof of graphical convergence. We will produce a set $\mathcal{Y} \subset \text{reg}(M)$ and a subsequence $\{M_l\} \subset \{M_k\}$ such that M_l converges smoothly and graphically on compact subsets of $\text{reg}(M) \setminus \mathcal{Y}$. Let X be a countable, dense subset of $\text{reg}(M)$ and

$$\mathcal{B} = \{B^N(x, r) : x \in X, r \in \mathbb{Q}^+, r < d^N(x, \text{sing}(M)), r < \text{inj}_N\}$$

Then \mathcal{B} is a countable collection of balls, say, $\mathcal{B} = \{B_i\}_{i=1}^\infty$. We will mark each B_1 as good or bad and to each B_i we will assign an infinite index set $I_i \subset \mathbb{N}$ as follows. At the first step we examine whether there exists an infinite set $J \subset \mathbb{N}$ such that $\{M_j\}_{j \in J}$ converges to M smoothly in B_1. If it exists we mark B_1 as good and define I_1 to be that J. Otherwise we mark B_1 as bad and define I_1 to be \mathbb{N}. Suppose we have marked B_{i-1} as good or bad and defined I_{i-1}. Then we examine whether there exists an infinite set $J \subset I_{i-1}$ such that $\{M_j\}_{j \in J}$ converges to M smoothly in B_{i-1}. If it exists we mark B_i as good and define I_i to be that J. Otherwise we mark B_i as bad and define I_i to be I_{i-1}.

Let \mathcal{G} be the union of good balls. Denoting $\mathcal{Y} = \text{reg}(M) \setminus \mathcal{G}$, we claim that $|\mathcal{Y}| \leq p - 1$. Otherwise, there exists p distinct points $x_1, ..., x_p$ in \mathcal{Y}. To arrive at a contradiction we will apply Lemma 4.4 to the sequence of singular, minimal hypersurfaces $\{M_k\}$: $\{M_k\}$ converges in the varifold sense to V which is supported on M; Lemma 4.4 provides a function $R : \text{reg}(M) \rightarrow \mathbb{R}^+$. Let τ be a positive number such that $5\tau \leq R(x_l)$ for each l and the balls $\{B^N(x_l, 5\tau)\}_{l=1}^\infty$ are mutually disjoint. There exists $B_{i_1} \in \mathcal{B}$ such that $x_l \in B_{i_1} \subset B^N(x_l, \tau)$. As $x_l \in \mathcal{Y}$, B_{i_1} is a bad ball. Hence $\{M_j\}_{j \in I_{i_1}}$ does not have a subsequence which smoothly converges to M in $B^N(x_l, \tau)$. Therefore, by Lemma 4.4, $\lambda_1(V_j \mathcal{L} B^N(x_l, 5\tau)) < -\alpha$ for all large $j \in I_{i_1}$. Without loss of generality, we can assume that $i_1 < ... < i_p$ so that $I_{i_1} \supset ... \supset I_{i_p}$. Hence $\lambda_1(V_j \mathcal{L} B^N(x_l, 5\tau)) < -\alpha$ for each $l = 1, ..., p$ and for all large $j \in I_{i_p}$. By Lemma 5.1 this gives $\lambda_p(V_j) < -\alpha$ for all large $j \in I_{i_p}$, a contradiction. Hence, $|\mathcal{Y}| \leq p - 1$.

By a diagonal argument, we can choose an infinite set $I \subset \mathbb{N}$ such that $|I \setminus I_i|$ is finite for all i. Then, by the definition of good ball, $\{M_i\}_{i \in I}$ is a sequence which converges smoothly and graphically on the compact subsets of $\text{reg}(M) \cap \mathcal{G} = \text{reg}(M) \setminus \mathcal{Y}$.

6 Some further remarks

Besides the main compactness Theorems of [Sha17] and [ACS16], some additional results proved in these two papers can be suitably generalized in higher
dimensions. In this last section, we will state them as a sequence of remarks. Below we will assume that M_k’s and M are as in Theorem 1.2 (and Theorem 1.3).

Remark 6.1. We have assumed that each M_k is connected. Since $\{M_k\}$ converges to M in the Hausdorff distance, this implies that M is connected as well. From [Ilm96] (Theorem A (ii)) it follows that $reg(M)$ and hence $reg(M) \setminus \mathcal{Y}$ is also connected. Therefore, the number of sheets in the graphical convergence is constant over $reg(M) \setminus \mathcal{Y}$. In particular, $V = m|M|$ for some $m \in \mathbb{N}$.

Remark 6.2. If the number of sheets in the graphical convergence is 1, then $\mathcal{Y} = \emptyset$. This is Claim 4 in [Sha17] and the proof presented there works in our case as well.

Remark 6.3. Suppose $reg(M)$ is two sided. If the number of sheets in the graphical convergence is at least 2 or if the number of sheets is 1 and $M_k \cap M = \emptyset$ for large k, we can construct a positive Jacobi field on $reg(M)$. In this case, $reg(M)$ and hence M is stable. The proof is same as presented in [Sha17].

Remark 6.4. Continuing with Remark 6.3, suppose $\text{Ric}(N, g) > 0$. Then the convergence of M_k to M is always single sheeted. This can be thought of as a higher dimensional analogue of Choi-Schoen [CS85] which asserts that in a three manifold with positive Ricci curvature, the space of closed, embedded minimal surfaces with bounded genus is compact in the smooth topology. Indeed, in our case, if $H_n(N, \mathbb{Z}_2) = 0$ then $reg(M)$ is two sided: hence, if the number of sheets is ≥ 2, M is stable by the above Remark 6.3. However, as proved in [Zho17] (Lemma 2.8) positive Ricci curvature of (N, g) implies that M can not be stable. The general case can be obtained by lifting M_k’s and M to the universal cover \tilde{N} of N (by [Fra66] and Lemma 2.10 of [Zho17] the lifts \tilde{M}_k, \tilde{M} are connected).

Remark 6.5. Theorems 1.2 and 1.3 hold in the varying metric set-up. More precisely, instead of assuming $|M_k|$ is stationary with respect to the fixed metric g if we assume that $|M_k|$ is stationary with respect to the metric g_k and g_k converges to g in C^3, Theorems 1.2 and 1.3 continue to hold.

References

[ACS16] L. Ambrozio, A. Carlotto, and B. Sharp, *Compactness of the space of minimal hypersurfaces with bounded volume and p-th jacobi eigenvalue*, J. Geom. Anal. 4 (2016), 2591–2601.

[All72] W. K. Allard, *On the first variation of a varifold*, Ann. of Math. 95(3) (1972), 417–491.

[Alm65] F. Almgren, *The theory of varifolds*, Mimeographed notes, Princeton, 1965.

[CM18] O. Chodosh and C. Mantoulidis, *Minimal surfaces and the allen-cahn equation on 3-manifolds: index, multiplicity, and curvature estimates*, arXiv:1803.02716 [math.DG] (2018).

[CS85] H. I. Choi and R. Schoen, *The space of minimal embeddings of a surface into a threedimensional manifold of positive ricci curvature*, Invent. Math. 81 (1985), 387–394.
[Fra66] T. Frankel, *On the fundamental group of a compact minimal submanifold*, Ann. of Math. 83 (1) (1966), 68–73.

[Gas17] Pedro Gaspar, *The second inner variation of energy and the morse index of limit interfaces*, arXiv:1710.04719 [math.DG] (2017).

[GG18] P. Gaspar and M. A. M. Guaraco, *The weyl law for the phase transition spectrum and the density of minimal hypersurfaces*, arXiv:1804.04243 [math.DG] (2018).

[Hie17] F. Hiesmayr, *Spectrum and index of two-sided allen-cahn minimal hypersurfaces*, arXiv:1704.07738 [math.DG] (2017).

[Ilm96] T. Ilmanen, *A strong maximum principle for singular minimal hypersurfaces*, Calc. Var. 4 (1996), 443–467.

[IMN18] K. Irie, F. C. Marques, and A. Neves, *Density of minimal hypersurfaces for generic metrics*, Ann. of Math. 187 (2018), 963–972.

[Li19] Y. Li, *Existence of infinitely many minimal hypersurfaces in higher-dimensional closed manifolds with generic metrics*, arXiv:1901.08440 [math.DG] (2019).

[LMN18] Y. Liokumovich, F. C. Marques, and A. Neves, *Weyl law for the volume spectrum*, Ann. of Math. 187 (2018), 933–961.

[MN17] F. C. Marques and A. Neves, *Existence of infinitely many minimal hypersurfaces in positive ricci curvature*, Invent. Math. 209 (2017), no. 2, 577–616.

[MN16] ---, *Morse index and multiplicity of min-max minimal hypersurfaces*, Cambridge J. Math. 4 (2016), no. 4, 463–511.

[MNS17] F. C. Marques, A. Neves, and A. Song, *Equidistribution of minimal hypersurfaces in generic metrics*, arXiv:1712.06238 [math.DG] (2017).

[Pit81] J. Pitts, *Existence and regularity of minimal hypersurfaces on riemannian manifolds*, Mathematical Notes 27, Princeton University Press, Princeton, 1981.

[Sha17] B. Sharp, *Compactness of minimal hypersurfaces with bounded index*, J. Differential Geom. 106 (2017), 317–339.

[Sim] L. Simon, *Lectures on geometric measure theory*, Proceedings of the Centre for Mathematical Analysis, Australian National University, Canberra, (1983).

[Son18] A. Song, *Existence of infinitely many minimal hypersurfaces in closed manifolds*, arXiv:1806.08816 [math.DG] (2018).

[SS81] R. Schoen and L. Simon, *Regularity of stable minimal hypersurfaces*, Comm. Pure Appl. Math. 34 (1981), 741–797.

[Whi17] B. White, *On the bumpy metrics theorem for minimal submanifolds*, Amer. J. Math. 139(4) (2017), 1149–1155.

[Whi91] ---, *The space of minimal submanifolds for varying riemannian metrics*, Indiana Univ. Math. J. 40 (1991), 161–200.

[Zho17] X. Zhou, *Min-max hypersurface in manifold of positive ricci curvature*, J. Differential Geom. 105 (2017), no. 2, 291–343.

[Zho19] ---, *On the multiplicity one conjecture in min-max theory*, arXiv:1901.01173 [math.DG] (2019).