Clinicopathological characteristics and survival outcomes in Paget disease: a SEER population-based study

Yang Zhao1,2,*, He-Fen Sun1,2,*, Meng-Ting Chen1,2, Shui-Ping Gao1,2, Liang-Dong Li1,2, Hong-Lin Jiang3 & Wei Jin1,2

1Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai 200030, China
2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200030, China
3Division of Molecular Medicine & Genetic, Department of Internal Medicine and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109

Abstract

The objective of this study was to investigate the clinicopathological characteristics and survival outcomes of Paget disease (PD), Paget disease concomitant infiltrating duct carcinoma (PD-IDC), and Paget disease concomitant intraductal carcinoma (PD-DCIS). We identified 501,631 female patients from 2000 to 2013 in the Surveillance, Epidemiology, and End Results (SEER) database. These identified patients included patients with PD (n = 469), patients with PD-IDC (n = 1832), and patients with PD-DCIS (n = 1130) and infiltrating ductal carcinoma (IDC) (n = 498,076). Then, we compared the clinical characteristics of these patients with those who were diagnosed with IDC during the same period. The outcomes of these subtypes of breast carcinoma were different. Based on the overall survival, the patients with PD-IDC had the worst prognosis (5-year survival rate = 84.1%). The PD-DCIS had the best prognosis (5-year survival rate = 97.5%). Besides, among patients with Paget disease, the one who was married had a better prognosis than who were not. And, according to our research, the marital status was associated with the hormone receptor status in patients with PD-IDC. Among three subtypes of Paget disease, patients with PD-IDC had the worst prognosis. Besides, patients who were unmarried had worse outcomes. And the marital status of patients with PD-IDC is associated with hormone status. The observation underscores the importance of individualized treatment.

Introduction

Breast cancer is the most common cancer in women across the world. According to the WHO experts in the world each year, there are revealed from 800,000 up to 1 million new cases of breast cancer [1]. Paget disease is a rare form of breast cancer that occurs in the mouth of the excretory ducts of the nipple. This rare abnormality occurs in 0.5–5% of all cases of breast cancer [2]. PD is characterized by an ulcerated, ulcerated, crusted, or scaling lesion on the nipple that can extend to the areola [3]. Paget’s disease of the nipple is characterized by histopathological infiltration of neoplastic cells with glandular features in the epidermal layer of the nipple–areolar complex. The pathologic mechanism of PD is still unclear. However, there are two kinds of explanation of the pathologic origin of the Paget disease epidermotropic and transformation theory [4, 5]. The former one considered that the cells came from the underlying...
Paget Disease

Y. Zhao et al.

Materials and Methods

Ethics statement

We obtained permission to access the SEER research data. The data downloaded from the SEER do not require informed patient consent. Besides, our research was approved by the Ethical Committee and Institutional Review of Fudan University Shanghai Cancer Center (FDUSCC). The methods were performed in accordance with the approved guidelines.

Data source

We examined the data from the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) program, which contains the population-based central cancer registries of 18 geographically defined regions. For this study, we use the November 2014–18 submission.

Patient selection

We use the histopathology codes from the International Classification of Disease for Oncology third edition (ICD-O-3) to select female patients. In the ICD-O-3, the codes are defined as follows: code 8500 (ductal carcinoma), code 8540 (mammary Paget disease), code 8541 (Paget disease with infiltrating ductal carcinoma), and code 8543 (Paget disease with intraductal carcinoma). According to the ICD-O-3, we defined and choose the patients who had the PD (ICD-O-3 code 8540/3), PD-IDC (ICD-O-3 code 85413), PD-DCIS (ICD-O-3 code 8543/3), and IDC (ICD-O-3 code 8500/3). In this study, women who were diagnosed as all three kinds of PD and ICD between 2000 and 2013 were included (n = 501,631). And these identified patients included patients with PD (n = 469), patients with PD-IDC (n = 1832), and patients with PD-DCIS (n = 1130) and infiltrating ductal carcinoma (IDC) (n = 498,076).

Statistical analysis

Overall survival (OS) was measured from the date on which the first-time definite diagnosis was made until the date of death, the date last known to be alive, or September 2013. Disease-specific survival (DSS) was measured from the date of diagnosis to the date of death which is associated with breast carcinoma. The National Cancer Institute's SEER*Stat software package (version 6.1.4; built on April 13, 2005) was used to calculate incidence rates. Baseline patient demographic characteristics and tumor information were compared using the Pearson’s chi-square test for categorical variables. Survival curves were plotted according to the Kaplan–Meier method and compared using the log-rank test in a univariate analysis. Cox regression analysis was performed to compute hazard ratios and 95% confidence intervals (95% CIs) and to evaluate the effects of confounding factors. All the tests were two sided, and P values less than 0.05 were considered statistically significant. All the statistical analyses were performed using SPSS statistical software, version 22.0 (IBM Corp, Armonk, NY).

Results

Clinicopathological characteristics of PD

Overall 447,401 patients who were diagnosed with breast carcinoma were evaluated. We evaluated 447,401 patients with breast cancer. Among these patients, 443,970 were with infiltrating ductal breast carcinoma, 469 were with mammary Paget disease, 1832 were with Paget disease with infiltrating ductal carcinoma, and 1130 were with Paget disease with intraductal carcinoma. The
demographics and clinicopathological characteristics of PD, PD-IDC, and PD-DCIS were compared with IDC. And the results are summarized in Table 1. Using the Pearson’s chi-square test, for PD and IDC, the significant variables were age \((P < 0.001)\), marital status \((P < 0.001)\), laterality \((P < 0.001)\), tumor size \((P < 0.001)\), lymph node status \((P < 0.001)\), Grade \((P < 0.001)\), AJCC stage \((P < 0.001)\), ER (estrogen receptor) status \((P < 0.001)\), PR (progesterone receptor) status \((P < 0.001)\), HER2 (human epidermal growth factor receptor 2) status \((P < 0.001)\), and whether had radiation treatment \((P < 0.001)\). For PD-IDC and IDC, the significant characteristics were race \((P = 0.011)\), marital status \((P < 0.001)\), tumor size \((P < 0.001)\), lymph node status \((P < 0.001)\), Grade

Clinical characteristics	PD N	IDC N	P-value	PD-IDC N	IDC N	P-value	PD-DCIS N	IDC N	P-value	
Age at diagnosis (years)	18–49	114	158,076	<0.001	665	158,076	0.536	292	159,076	<0.001
	50–79	355	285,894	1.167	838	285,894	8.38	360,769	8.369	
Race	White	393	360,769	0.111	1466	360,769	0.011	948	360,769	0.069
	Black	45	41,277	0.206	41,277	87	41,277	95	41,277	
	Other	31	41,924	0.180	41,924	95	41,924			
Marital status	Married	216	243,680	<0.001	903	243,680	0.536	561	243,680	<0.001
	Not married	204	181,155	0.856	181,155	529	181,155	40	19,134	
	Unknown	49	19,134	0.493	19,134	40	19,134			
Laterality	Left	237	224,866	<0.001	959	224,866	0.446	614	224,866	0.066
	Right	226	218,611	872	218,611	516	218,611			
	Paired site	6	409	1	409	0	409			
	Unknown	0	84	0	84					
Tumor size (cm)	≤2	54	25,463	<0.001	41	25,463	0.001	20	25,463	<0.001
	2.1–5	249	280,120	1098	280,120	672	280,120			
	>5	9	7136	28	7136	6	7136			
	Unknown	157	131,251	665	131,251	432	131,251			
Lymph node status	Negative	158	257,428	<0.001	807	257,428	0.539	645	257,428	
	Positive	311	186,542	1025	186,542	485	186,542			
	I	11	84,295	<0.001	113	84,295	0.001	17	84,295	
	II	23	176,027	526	176,027	108	176,027			
	III	41	160,309	1003	160,309	396	160,309			
	IV	3	5015	44	5015	237	5015			
	Unknown	391	18,324	146	18,324	372	18,324			
AJCC stage	0	83	5	<0.001	4	5	<0.001	160	5	
	I	11	70,594	153	70,594	19	70,594			
	II	2	42,900	106	42,900	11	42,900			
	III	4	13,995	95	13,995	3	13,995			
	IV	3	6346	21	6346	1	6346			
	Unknown	366	310,130	1453	310,130	936	310,130			
ER status	Negative	74	92,846	<0.001	769	92,846	0.001	408	92,846	
	Positive	67	318,298	849	318,298	237	318,298			
	Borderline	0	701	11	701	1	701			
	Unknown	328	32,125	203	32,125	484	32,125			
PR status	Negative	95	136,827	<0.001	983	136,827	0.001	467	136,827	
	Positive	37	268,719	613	268,719	138	268,719			
	Borderline	0	2063	11	2063	2	2063			
	Unknown	337	36,361	225	36,361	523	36,361			
HER2 status	Negative	7	106,696	<0.001	123	106,696	0.001	7	106,696	
	Positive	17	21,261	210	21,261	33	21,261			
	Borderline	0	3124	8	3124	3	3124			
	Unknown	445	312,889	1491	312,889	1087	312,889			
Radiation	No	384	215,199	<0.001	1348	215,199	0.001	918	215,199	
	Yes	67	213,217	435	213,217	191	213,217			
	Unknown	18	15,554	49	15,554	21	15,554			

AJCC, American Joint Committee on Cancer; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; IDC, infiltrating duct carcinoma; PD-IDC, Paget disease concomitant infiltrating duct carcinoma; PD-DCIS, Paget disease concomitant intraductal carcinoma, unmarried group included divorced, separated, single (never married), and widowed.
Table 2. The association between clinical characteristics of Paget disease and marital status.

Categories	Married (n)	Unmarried (n)	Unknown (n)	P-value
Age at diagnosis (years)				
18–49	69	36	9	0.002
50–79	147	168	40	
Race				
White	187	170	36	0.027
Black	16	24	5	
Other	13	10	8	
Laterality				
Left	109	113	15	0.004
Right	107	86	33	
Paired site	0	5	1	
Unknown	0	0	0	
Tumor size (cm)				
<2	16	25	13	<0.001
2.1–5	134	101	14	
>5	0	5	4	
Unknown	66	73	18	
Lymph node status				
Negative	84	69	5	0.001
Positive	132	135	44	
Grade				
I	6	5	0	0.523
II	10	13	0	
III	22	14	5	
IV	2	1	0	
Unknown	176	171	44	
AJCC stage				
0	49	28	6	0.177
I	7	3	1	
II	0	1	1	
III	2	2	0	
IV	2	1	0	
Unknown	156	169	41	
ER status				
Negative	33	34	7	0.249
Positive	38	26	3	
Borderline	145	144	39	
Unknown	216	204	49	
PR status				
Negative	48	39	8	0.641
Positive	18	17	2	
Borderline	0	0	0	
Unknown	150	148	39	
HER2 status				
Negative	4	3	0	0.695
Positive	10	6	1	
Borderline	0	0	0	
Unknown	202	195	48	
Radiation				
No	174	173	37	<0.001
Yes	36	27	4	
Unknown	6	4	8	

(Continued)
Table 2. (Continued)

Categories	Married (n)	Unmarried (n)	Unknown (n)	P-value	
Lymph node status	Negative	407	366	34	0.562
	Positive	496	490	39	
Grade	I	43	67	3	0.169
	II	266	236	24	
	III	498	469	36	
	IV	25	18	1	
	Unknown	71	66	9	
AJCC stage	0	1	3	0	0.411
	I	86	60	7	
	II	45	58	3	
	III	49	41	5	
	IV	13	8	0	
	Unknown	709	686	58	
ER status	Negative	397	347	25	0.01
	Positive	424	391	34	
	Borderline	3	8	0	
	Unknown	79	110	14	
PR status	Negative	492	456	35	0.006
	Positive	314	279	20	
	Borderline	5	4	2	
	Unknown	92	117	16	
HER2 status	Negative	56	63	4	0.025
	Positive	114	88	8	
	Borderline	5	1	2	
	Unknown	728	704	59	
Radiation	No	634	660	45	<0.001
	Yes	244	174	17	
	Unknown	16	22	11	
Age at diagnosis (years)	18–49	407	240	18	<0.001
	50–79	496	616	55	
Race	White	740	653	53	<0.001
	Black	58	137	11	
	Other	105	66	9	
Laterality	Left	481	443	35	0.715
	Right	422	412	38	
	Paired site	0	1	0	
	Unknown	0	0	0	
Tumor size (cm)	<2	14	23	4	0.189
	2.1–5	553	506	39	
	>5	14	14	0	
	Unknown	322	313	30	
Lymph node status	Negative	407	366	34	0.562
	Positive	496	490	39	
Grade	I	43	67	3	0.169
	II	266	236	24	
	III	498	469	36	
	IV	25	18	1	
	Unknown	71	66	9	
AJCC stage	0	1	3	0	0.411
	I	86	60	7	
	II	45	58	3	
	III	49	41	5	
	IV	13	8	0	
	Unknown	709	686	58	
ER status	Negative	397	347	25	0.01
	Positive	424	391	34	
	Borderline	3	8	0	
	Unknown	79	110	14	

(Continued)
For patients with PD, the clinicopathologic characteristics were age at diagnosis \((P = 0.002)\), race \((P = 0.027)\), laterality \((P = 0.004)\), tumor size \((P < 0.001)\), lymph node status \((P = 0.001)\) and radiation situation \((P < 0.001)\). The hormone status did not have statistical significance. However, according to the analyses, patients who were diagnosed with PD-IDC had different statistical factors. The hormone status had statistical significance—ER status \((P = 0.01)\), PR status \((P = 0.006)\), and HER2 status \((P = 0.025)\). Meanwhile, for patients with PD-DCIS, the associations were different again. Among the three

Table 2. (Continued)

Categories	Married (n)	Unmarried (n)	Unknown (n)	P-value	
PR status	Negative	492	456	35	0.006
	Positive	314	279	20	
	Borderline	5	4	2	
	Unknown	92	117	16	
HER2 status	Negative	56	63	4	0.025
	Positive	114	88	8	
	Borderline	5	1	2	
	Unknown	728	704	59	
Radiation	No	634	660	45	<0.001
	Yes	244	174	17	
	Unknown	16	22	11	

AJCC, American Joint Committee on Cancer; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; IDC, infiltrating duct carcinoma; PD-IDC, Paget disease concomitant infiltrating duct carcinoma; PD-DCIS, Paget disease concomitant intraductal carcinoma, unmarried group included divorced, separated, single (never married), and widowed.
hormones, only HER2 had statistical significance ($P = 0.01$). Other characteristics were age ($P < 0.001$), race ($P = 0.012$), and AJCC stage ($P < 0.001$). Be differ from the other two subtypes, the marital status of patients with PD-DCIS had no significant correction with the radiation status.

Table 3. Survival analyses—univariate analyses of Paget disease.

PD	PD-IDC	PD-DCIS						
Variables	Category	P-value	Variables	Category	P-value	Variables	Category	P-value
Age at diagnosis (years)	18–49	<0.001	18–49	<0.001	18–49	<0.001		
	50–79		50–79		50–79			
Race	White	0.052	White	0.296	White	0.253		
	Black		Black		Black			
	Other		Other		Other			
Marital status	Married	<0.001	Married	<0.001	Married	<0.001		
	Not married		Not married		Not married			
	Unknown		Unknown		Unknown			
Laterality	Left	0.112	Left	0.561	Left	0.162		
	Right		Right		Right			
	Paired site		Paired site		Paired site			
	Unknown		Unknown		Unknown			
Tumor size (cm)	<2	<0.001	<2	<0.001	<2	<0.001		
	2.1–5		2.1–5		2.1–5			
	>5		>5		>5			
	Unknown		Unknown		Unknown			
Lymph node status	Negative	<0.001	Negative	<0.001	Negative	<0.001		
	Positive		Positive		Positive			
	Unknown		Unknown		Unknown			
Grade	I	0.069	I	0.016	I	0.313		
	II		II		II			
	III		III		III			
	IV		IV		IV			
	Unknown		Unknown		Unknown			
AJCC stage	0	<0.001	0	<0.001	0	<0.001		
	I		I		I			
	II		II		II			
	III		III		III			
	IV		IV		IV			
	Unknown		Unknown		Unknown			
ER status	Negative	0.954	Negative	0.004	Negative	0.363		
	Positive		Positive		Positive			
	Borderline		Borderline		Borderline			
	Unknown		Unknown		Unknown			
PR status	Negative	0.758	Negative	0.055	Negative	0.565		
	Positive		Positive		Positive			
	Borderline		Borderline		Borderline			
	Unknown		Unknown		Unknown			
HER2 status	Negative	0.161	Negative	0.348	Negative	<0.001		
	Positive		Positive		Positive			
	Borderline		Borderline		Borderline			
	Unknown		Unknown		Unknown			
Radiation	No	0.085	No	0.077	No	0.007		
	Yes		Yes		Yes			
	Unknown		Unknown		Unknown			

AJCC, American Joint Committee on Cancer; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; IDC, infiltrating duct carcinoma; PD-IDC, Paget disease concomitant infiltrating duct carcinoma; PD-DCIS, Paget disease concomitant intraductal carcinoma; unmarried group included divorced, separated, single (never married), and widowed.

Comparison of survival between three subtypes of Paget disease and IDC

Utilizing the Kaplan–Meier method, we analyzed all these four subtypes (PD, PD-IDC, PD-DCIS, and IDC) of mammary carcinoma. On the basis of the OS, the
Table 4. Survival analyses—multivariate analyses of Paget disease.

Variables	Category	Hazard ratio	95% Confidence interval	P-value
PD				
Age at diagnosis (years)	18–49	1 Referent		0.005
	50–79	0.449	0.257–0.787	
Race	White	1 Referent		0.014
	Black	3.772	1.366–10.413	
	Other	5.495	1.756–17.2	
Marital status	Married	1 Referent		<0.001
	Not married	0.379	0.214–0.672	
	Unknown	0.887	0.528–1.491	
Tumor size (cm)	<2	1 Referent		0.033
	2.1–5	1.417	0.806–2.494	
	>5	0.651	0.429–0.988	
	Unknown	1.506	0.509–4.454	
Lymph node status	Negative	1 Referent		<0.001
	Positive	0.417	0.264–0.658	
Grade	I	1 Referent		0.042
	II	1.065	0.3–2.86	
	III	2.537	1.239–5.139	
	IV	0.714	0.313–1.628	
	Unknown	1.404	0.189–10.436	
AJCC stage	0	1 Referent		0.203
	I	0.795	0.353–1.793	
	II	0		
	III	0		
	IV	1.613	0.204–12.763	
	Unknown	5.224	1.449–18.837	
PD-IDC				
Age at diagnosis (years)	18–49	1 Referent		<0.001
	50–79	0.347	0.283–0.425	
Race	White	1 Referent		0.77
	Black	0.556	0.813–1.47	
	Other	0.472	0.795–1.643	
Marital status	Married	1 Referent		<0.001
	Not married	0.625	0.427–0.914	
	Unknown	1.053	0.728–1.523	
Tumor size (cm)	<2	1 Referent		<0.001
	2.1–5	2.537	1.662–3.873	
	>5	0.915	0.769–1.088	
	Unknown	1.255	0.685–2.302	
Lymph node status	Negative	1 Referent		<0.001
	Positive	0.437	0.366–0.522	
Grade	I	1 Referent		0.049
	II	0.696	0.439–1.103	
	III	0.946	0.683–1.311	
	IV	1.155	0.855–1.561	
	Unknown	0.855	0.705–2.256	
AJCC stage	0	1 Referent		<0.001
	I	0		
	II	0.548	0.256–1.172	
	III	0.67	0.329–1.364	
	IV	1.055	0.632–1.764	
	Unknown	4.754	2.48–9.112	
ER status	Negative	1 Referent		0.034
	Positive	0.453	0.195–1.052	
	Borderline	0.438	0.19–1.007	
	Unknown	1.329	0.373–4.732	
PR status	Negative	1 Referent		0.212
	Positive	2.12	0.931–4.827	
	Borderline	1.818	0.799–4.138	
	Unknown	2.477	0.66–9.29	

(Continued)
different outcomes of four subtypes of breast carcinoma are shown distinctly in Figure 1. Patients with PD-DCIS had the best prognosis with a 5-year OS 83.6%. The one worse than the PD-DCIS was IDC. The 5-year OS of patients with IDC was 81.1%. Then, the next one was PD. The 5-year OS of patients with PD was 72.9%. The one with worst outcomes was PD-IDC, whose 5-year OS was 71.4%. Then, we analyzed the cases utilizing the DSS, and the comparison of different kinds of mammary cancer is shown in Figure 2. The patients with PD-DCIS had the best prognosis with a 5-year survival rate of 98.2%. The worse one was patients with PD. Its 5-year survival rate was 92.4%. The survival rate of patients with IDC was 91%. And patients who were diagnosed with PD-IDC had the worst outcomes. Its 5-year survival rate was 84.1%. Apparently, the results of the analyses based on the OS and DSS had a little difference. Based on the OS, the results showed that the prognosis of PD was worse than IDC. However, based on the DSS, the outcome of the IDC was worse than PD. Meanwhile, the prognostic indicators can be found during the univariate analysis.

Table 4. (Continued)

Variables	Category	Hazard ratio	95% Confidence interval	P-value
PD-DCIS				
Age at diagnosis (years)	18–49	1 Referent		<0.001
	50–79	0.309	0.203–0.469	
Race	White	1 Referent		0.63
	Black	1.058	0.619–1.808	
	Other	1.288	0.67–2.475	
Marital status	Married	1 Referent		<0.001
	Not married	0.504	0.269–0.945	
	Unknown	1.237	0.675–2.266	
Tumor size (cm)	<2	1 Referent		<0.001
	2.1–5	4.82	2.351–9.88	
	>5	1.035	0.772–1.388	
	Unknown	1.617	0.218–11.983	
Lymph node status	Negative	1 Referent		<0.001
	Positive	0.546	0.424–0.704	
Grade	I	1 Referent		0.332
	II	0.35	0.085–1.447	
	III	0.74	0.457–1.198	
	IV	0.891	0.663–1.198	
ER status	Negative	1 Referent		0.898
	Positive	1.424	0.759–2.672	
	Borderline	0.922	0.486–1.749	
PR status	Unknown	0.868	0.23–14.54	
HER2 status	Negative	1 Referent		0.004
	Positive	0.857	0.467–1.574	
	Borderline	1.047	0.513–2.134	
Radiation	No	1 Referent		0.001
	Yes	2.183	0.688–6.922	
	Unknown	1.096	0.33–3.638	

AJCC, American Joint Committee on Cancer; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; IDC, infiltrating duct carcinoma; PD-IDC, Paget disease concomitant infiltrating duct carcinoma; PD-DCIS, Paget disease concomitant intraductal carcinoma; unmarried group included divorced, separated, single (never married), and widowed.

The survival analyses in subtypes of Paget disease

According to the Kaplan–Meier method and compared utilizing the log-rank test, we analyzed the Paget disease and its indicator which were associated with the prognosis. The results of the analyses are shown in Table 3. For PD,
indicators which had significance were age at diagnosis ($P < 0.001$), marital status ($P < 0.001$), tumor size ($P < 0.001$), lymph node status ($P < 0.001$), and AJCC stage ($P < 0.001$). For PD-IDC, the significant indicators were age at diagnosis, marital status, tumor size, lymph node status, Grade, AJCC stage, and ER status. Meanwhile, the significant indicators of PD-DCIS were age at diagnosis ($P < 0.001$), marital status ($P < 0.001$), tumor size ($P < 0.001$), lymph node status ($P < 0.001$), AJCC stage ($P < 0.001$), HER2 status ($P < 0.001$), and radiation or not ($P = 0.007$).

Using Cox regression analysis was performed to compute hazard ratios and 95% confidence intervals. Choosing the variates which were significant in the univariate analyses, the multivariate analysis was performed. And the results are shown in Table 4. For PD, significant indicators of prognosis were age at diagnosis ($P = 0.005$, HR = 0.449, 95% CI, 0.257–0.787), race ($P = 0.014$), marital status ($P < 0.001$), tumor size ($P = 0.033$), lymph node status ($P < 0.001$, positive, HR = 0.417, 95% CI, 0.264–0.658), and Grade ($P = 0.042$). The P-value of AJCC stage was larger than 0.05 ($P = 0.203$). For PD-IDC, variates which had prognostic significance were age at diagnosis ($P < 0.001$, HR = 0.347, 95% CI, 0.283–0.425), marital status ($P < 0.001$), tumor size ($P < 0.001$), AJCC stage ($P < 0.001$), and ER status ($P = 0.049$, positive, HR = 0.437, 95% CI, 0.366–0.522), Grade ($P = 0.049$, AJCC stage ($P < 0.001$), and ER status ($P = 0.034$, positive, HR = 0.453, 95% CI, 0.195–1.052). The statistic significant indicators of the patients with PD-DCIS were age at diagnosis ($P < 0.001$, HR = 0.309, 95% CI, 0.203–0.469), marital status ($P < 0.001$, not married, HR = 0.504, 95% CI, 0.269–0.945), tumor size ($P < 0.001$), lymph node status ($P < 0.001$, positive, HR = 0.546, 95% CI, 0.424–0.704), HER2 status ($P = 0.004$, positive, HR = 9.502, 95% CI, 2.758–32.734), and radiation or not ($P = 0.001$, yes, HR = 2.183, 95% CI, 0.688–6.922).

The association between Paget disease and patient’s marital status

According to the Kaplan–Meier method and compared using the log-rank test, we analyzed the Paget disease and the marital status. And Figure 3 presents the correlation. For patients with PD (Fig. 3A), the married patients had the best prognosis with a 5-year OS of 85.6%. The unmarried patients (included single patients who never married, widowed, divorced, and separated patients) had worse outcomes with a 5-year OS of 65.2%. Patients whose marital status was unknown had the worst diagnosis with a 5-year OS of 48.7%. And the difference between them had statistical significance ($P < 0.001$). For patients who were diagnosed with PD-IDC (Fig. 3B), the married patients had the best prognosis with a 5-year OS of 78.7%. The next was patients who were unmarried with a 5-year OS of 64.1%. For this subtype, the patients whose marital status was unknown had the almost similar 5-year OS of 64.9%. And the difference was statistically significant as well ($P < 0.001$). For patients with PD-DCIS (Fig. 3C), the 5-year OS was 90.8% (married), 76.3% (unmarried), and 76.2% (unknown).

Discussion

Previous study had reported that patients who were diagnosed of Paget disease with underlying invasive cancer had poor tumor characteristics [15]. A previous research showed that the Paget disease with underlying invasive cancer had tumors with Grade 3 histology [8]. In 1881, Thin observed that the nipple lesion contained malignant cells which were correlated to the underlying cancer [16]. And this observation suggested the process of intraductal extension of cancer through the major lactiferous sinuses. We call it “pagetoid spread” nowadays. Histologically,
Paget cells are large cells with pale, clear cytoplasm. It has enlarged nucleoli located within the epidermis and along the basal layer. The most widely accepted hypothesis to explain the origin of Paget cells is the epidermotropic theory. And this theory considered that Paget cells are derived from an underlying mammary adenocarcinoma [17]. Evidence supporting the epidermotropic theory is based on studies showing that Paget disease is associated with an underlying breast carcinoma in most patients [5, 18–20]. Binding of heregulin to its receptor on Paget cells can induce chemotaxis of these breast cancer cells, and the cells eventually migrate into the overlying nipple epidermis [21]. It is noteworthy that Paget cells and the underlying associated ductal carcinoma share the same immunohistochemical profile [22] and the same patterns of gene expression.

In allusion to different subtype of Paget disease, we found that the significantly associated indicators were different. Unmarried patients of PD, including those who were widowed, divorced, and never married, were at significantly great risk of existing lymph node metastasis. Meanwhile, for patients of PD-IDC, we found that the hormone status was related to the human epidermal growth factor receptor II. However, for the patients with PD-DCIS, only human epidermal growth factor receptor II had statistical significance. The association between marital status and these indicators was significant for every malignancy evaluated. Previous studies have linked marriage to improvements in cardiovascular, endocrine, and immune function, and marriage may be a determinant of the magnitude and presence of this effect [23, 24]. Cortisol levels seem to be lower in patients with cancer who have adequate support networks, and diurnal cortisol patterns have been linked with natural killer cell count and survival in patients with cancer[25, 26], potentially providing a physiologic basis for the psychologically based data described previously [27]. Further investigations on this subject are warranted.

However, the study also had some limitations. The SEER database did not give us enough information about the lymphovascular invasion which can be regarded as the prediction of lymph node metastasis. Besides, the follow-up of many patients was limited. And the information of systemic therapy of the patients was lack according to the SEER system. Based on the SEER database, the HER2 status was tested from 2010; however, the cases were from 2000 to 2013. Apparently, analyses of the HER2 were limited. And it made us unable to explore the clinical significance of HER2 status. Therefore, our study was limited by lack of some information. Besides, there is potential for misclassification of marital status. We did not take into account changes of marital status which may have occurred during the follow-up period. And this phenomenon may have influenced our results. Thus, our findings may underestimate the protective effect that marriage has on breast cancer outcome. We defined that the single category contained divorcees, widows, and never married women. However, previous studies had found that there may be some difference among groups of unmarried women. Although the difference existed, the unmarried women fare worse than the married counterparts.

In conclusion, our study showed patients with PD-IDC have the worst prognosis. Among all these three kinds of Paget disease, unmarried patients had worse outcomes. And the marital status of patients with PD-IDC is associated with hormone status and HER2 status. The observation underscores the importance of individualized treatment.

Acknowledgments

This work was supported by the grant from National Natural Science Foundation of China (81773093, 81472669) and a Municipal Human Resources Development Program for Outstanding Leaders in Medical Disciplines in Shanghai (2017BR028).

Conflict of Interests

The authors declare no conflict of interests.

References

1. Delaloge, S., T. Bachelot, F. C. Bidard, M. Espie, E. Brain, H. Bonnefoi, et al. 2016. Breast cancer screening: on our way to the future. Bull. Cancer 103:753–763.
2. Karakas, C. 2011. Paget’s disease of the breast. J. Carcinogenesis 10:31.
3. Lohsiriwat, V., S. Martella, M. Rietjens, E. Botteri, N. Rotmensz, M. G. Mastropasqua, et al. 2012. Paget’s disease as a local recurrence after nipple-sparing mastectomy: clinical presentation, treatment, outcome, and risk factor analysis. Ann. Surg. Oncol. 19:1850–1855.
4. Inglis, K. 1946. Paget’s disease of the nipple; with special reference to the changes in the ducts. Am. J. Pathol. 22:1–33.
5. Yim, J. H., M. R. Wick, G. W. Philpott, J. A. Norton, and G. M. Doherty. 1997. Underlying pathology in mammary Paget’s disease. Ann. Surg. Oncol. 4:287–292.
6. Chen, C. Y., L. M. Sun, and B. O. Anderson. 2006. Paget disease of the breast: changing patterns of incidence, clinical presentation, and treatment in the U.S. Cancer 107:1448–1458.
7. Wong, S. M., R. A. Freedman, Y. Sagara, E. F. Stamell, S. D. Desantis, W. T. Barry, et al. 2015. The effect of Paget disease on axillary lymph node metastases and
survival in invasive ductal carcinoma. Cancer 121:4333–4340.
8. Kothari, A., H. Hamed, N. Beechey-Newman, C. D’Arrigo, A. Hanby, K. Ryder, et al. 2002. Paget disease of the nipple: a multifocal manifestation of higher-risk disease. Cancer 95:1–7.
9. Bennett, T. 1992. Marital status and infant health outcomes. Soc. Sci. Med. 35:1179–1187.
10. Johnson, N. J., E. Backlund, P. D. Sorlie, and C. A. Loveless. 2000. Marital status and mortality: the national longitudinal mortality study. Ann. Epidemiol. 10:224–238.
11. Eskander, M. F., E. F. Schapira, L. A. Bliss, N. M. Burish, A. Tadikonda, S. C. Ng, et al. 2016. Keeping it in the family: the impact of marital status and next of kin on cancer treatment and survival. Am. J. Surg. 212:691–699.
12. Goodwin, J. S., W. C. Hunt, C. R. Key, and J. M. Samet. 1987. The effect of marital status on stage, treatment, and survival of cancer patients. JAMA 258:3125–3130.
13. Lillard, L. A., and C. W. Panis. 1996. Marital status and mortality: the role of health. Demography 33:313–327.
14. Kravdal, O. 2001. The impact of marital status on cancer survival. Soc. Sci. Med. 52:357–368.
15. Wolber, R. A., B. A. Dupuis, and M. R. Wick. 1991. Expression of c-erbB-2 oncoprotein in mammary and extramammary Paget’s disease. Am. J. Clin. Pathol. 96:243–247.
16. Rzaca, M., and R. Tarkowski. 2013. Paget’s disease of the nipple treated successfully with cryosurgery: a series of cases report. Cryobiology 67:30–33.
17. Jahn, H., P. J. Osther, E. H. Nielsen, G. Rasmussen, and J. Andersen. 1995. An electron microscopic study of clinical Paget’s disease of the nipple. APMIS 103:628–634.
18. Paone, J. F., and R. R. Baker. 1981. Pathogenesis and treatment of Paget’s disease of the breast. Cancer 48:825–829.
19. Ashikari, R., K. Park, A. G. Huvos, and J. A. Urban. 1970. Paget’s disease of the breast. Cancer 26:680–685.
20. Dixon, A. R., M. H. Galea, I. O. Ellis, C. W. Elston, and R. W. Blamey. 1991. Paget’s disease of the nipple. Br. J. Surg. 78:722–723.
21. Schelfhout, V. R., E. D. Coene, B. Delaey, S. Thys, D. L. Page, and C. R. De Potter. 2000. Pathogenesis of Paget’s disease: epidermal heregulin-alpha, motility factor, and the HER receptor family. J. Natl Cancer Inst. 92:622–628.
22. Anderson, J. M., R. Ariga, H. Govil, K. J. Bloom, D. Francescatti, V. B. Reddy, et al. 2003. Assessment of Her-2/Neu status by immunohistochemistry and fluorescence in situ hybridization in mammary Paget disease and underlying carcinoma. Appl. Immunohistochem. Mol. Morphol. 11:120–124.
23. Gallo, L. C., W. M. Troxel, K. A. Matthews, and L. H. Kuller. 2003. Marital status and quality in middle-aged women: Associations with levels and trajectories of cardiovascular risk factors. Health Psychol. 22:453–463.
24. Herberman, R. B., and J. R. Ortaldo. 1981. Natural killer cells: their roles in defenses against disease. Science 214:24–30.
25. Sephton, S. E., E. Lush, E. A. Dedert, A. R. Floyd, W. N. Rebholz, F. S. Dhabhar, et al. 2013. Diurnal cortisol rhythm as a predictor of lung cancer survival. Brain Behav. Immun. 30(Suppl):S163–S170.
26. Sephton, S. E., R. M. Sapolsky, H. C. Kraemer, and D. Spiegel. 2000. Diurnal cortisol rhythm as a predictor of breast cancer survival. J. Natl Cancer Inst. 92:994–1000.
27. Turner-Cobb, J. M., S. E. Sephton, C. Koopman, J. Blake-Mortimer, and D. Spiegel. 2000. Social support and salivary cortisol in women with metastatic breast cancer. Psychosom. Med. 62:337–345.