Availability Equivalence Analysis for the Simulation of Repairable Bridge Network System

Jaafar M. Alghazo 1, Abdelfattah Mustafa, 2,3 and Adel A. El-Faheem 4

1 College of Computer Engineering and Sciences, Prince Mohammad Bin Fahd University, Alkhobar, Saudi Arabia
2 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
3 Department of Mathematics, Faculty of Science, Islamic University of Madinah, Saudi Arabia
4 Department of Mathematics, Faculty of Science, Aswan University, Aswan 81528, Egypt

Correspondence should be addressed to Jaafar M. Alghazo; jghazo@pmu.edu.sa

Received 26 October 2019; Revised 17 December 2019; Accepted 4 January 2020; Published 20 February 2020

Guest Editor: Baltazar Aguirre-Hernandez

The performance of a repairable bridge network system is improved by using the availability equivalence factors. All components for the bridge system have constant failure and repair rates. The system is improved through the use of five methods: reduction, increase, hot duplication, warm duplication, and cold duplication methods. The availability of the original and improved systems is derived. Two types of availability equivalence factors of the system are obtained to compare different system designs. Numerical example to interpret how to utilize the obtained results is provided.

1. Introduction

In reliability analysis, there are two main methods to improve a nonrepairable system design. These two methods are (i) the reduction method which assumes that the system can be improved by reducing the failure rates of a set of components by a factor ρ, $0 < \rho < 1$, and (ii) the redundancy method which in actuality is divided into more than one redundancy method such as hot, warm, cold, and cold with imperfect switch redundancy [1]. The redundancy and reduction methods can be used to improve the repairable systems as well. In addition, the repairable system can be improved by increasing the rate of repair of some system components by a factor σ, $\sigma > 1$ [2].

The use of the redundancy method may not be a practical solution for a system in which the minimum size and weight are excessive [3]. Therefore, the concept of reliability/availability equivalence takes place. In such a concept, the design of the improved system according to the reduction or increase method must be equivalent to the design of the improved system in accordance with one of the redundancy methods specified. That is, using this concept, one can say that system performance can be improved through an alternative design [4]. In this case, different system designs must be compared based on performance characteristics such as (i) the reliability function or mean time to failure for nonrepairable systems [5–21] or (ii) the availability in the case of repairable systems [2, 22–24].

The reliability systems in life can be divided into the following types:

1. The failed component is not repaired or replaced, and the operation of the complete system once one or more of its components fail depends on its structure.
2. The failed component can be replaced by a new component, and the failure rate for the new component may be different from the failed item.
3. The failed component can be repaired and restored to the system after repair in order for the system to operate again.

The nonrepairable systems can sometimes be considered a special case of repairable systems.

In this paper, the main objective is to derive the availability equivalence factors of a repairable bridge system with independent and identical components. Recent research has been done on the reliability equivalence of nonrepairable bridge systems. Sarhan [14], Mustafa et al. [17], and Mustafa
2. Materials and Methods

The following notations and abbreviations are used throughout this paper:

- \(\lambda \), failure rate
- \(\mu \), repair rate
- \(A_i \), availability for the component \(i \)
- \(A_{sys} \), availability for the system
- \(A_{sys}^\rho \), availability for the improving system by using the reduction method
- \(A_{sys}^\eta \), availability for the improving system by using the increasing method
- \(A_{sys}^\eta_3 \), availability for the improving system by using the hot method
- \(A_{sys}^\eta_2 \), availability for the improving system by using the warm method
- \(A_{sys}^\eta_1 \), availability for the improving system by using the cold method
- \(N \), natural numbers
- \(\rho \), reduction factor
- \(\sigma \), increasing factor
- AEF, availability equivalence factors
- RAEF, reducing availability equivalence factor
- IAEF, increasing availability equivalence factor
- \(D, W, H, C \), duplication, hot, warm, cold

2.1. Repairable Bridge System

The bridge system has five components connected as shown in Figure 1.

The component \(i, i = 1, 2, \ldots, 5 \), has exponential lifetime distribution with failure rate \(\lambda \). Also, the repair time is exponential with repair rate \(\mu \). The system components are independent and identical with availability \(A_i, i = 1, 2, \ldots, 5 \).

The reliability function was computed to obtain the reliability equivalence factors. Four methods are used to improve the reliability of the system, namely, reduction, hot duplication, perfect switch, and imperfect switch methods. However, this paper assumes that the system components are repairable and could be repaired to function again in the system. Therefore, the goal is to calculate the availability function in order to obtain the availability equivalence factors. In this paper, five different methods were used to improve the system availability, namely, reduction, increase, hot duplication, warm duplication, and cold duplication methods.

This paper is organized as follows. In Section 2, we introduce the original system and present its availability function. The system availability is improved by five different methods, which are introduced in Section 3. The availability equivalence factors of the system are derived in Section 4. Numerical results and conclusions are discussed in Section 5.

The system availability can be improved by using one of the following methods:

1. **Reduction method**
2. **Increase method**
3. **Hot duplication method**
4. **Warm duplication method**
5. **Cold duplication method**

3. The Improving Methods

3.1. The Reduction Method

Assume that the system will improve by reducing the failure rates of the elements in the set \(R \) using a factor \(\rho, 0 < \rho < 1 \) and \(|R| = r, 0 \leq r \leq |N| \). Let \(A_{sys}^\rho \) be the availability function of the improved system in accordance with the reduction method. For a component \(i \in R \), the availability \(A^\rho_i \) is given by

\[
A^\rho_i = \frac{\mu}{\mu + \rho \cdot \lambda} = \frac{1}{1 + \rho \cdot \eta}
\]

where \(\eta = \lambda/\mu \). The availability \(A_{sys}^\rho \) can be obtained for some different values of \(r \leq 2 \) as follows:

1. \(R \in S_1 = \{3\} \):

\[
A_{sys}^\rho = 2\eta^3\rho + 4\eta^2(1 + \rho) + \eta(4 + \rho) + 1
\]

2. \(R \in S_2 = \{1, 2, 4, 5\} \):

\[
A_{sys}^\rho = 2\eta^3\rho + 4\eta^2(1 + \rho) + \eta(4 + \rho) + 1
\]

\[
= \frac{(1 + \eta)^3}{(1 + \eta)^3}
\]
3.2. The Increase Method. Suppose that $A_{i,\sigma}$ refers to the availability function of the improved system through increasing the repair rates of some system components belonging to the set I by a factor σ, $\sigma > 1$ and $|I| = \ell, 0 \leq \ell \leq N$. For component $i \in I$, the availability after increasing its repair rate can be given as follows:

\[
A_{i,\sigma} = \frac{\sigma \mu}{\sigma \mu + \lambda} = \frac{\sigma}{\sigma + \eta}
\]

where $\eta = \lambda/\mu$. The function $A_{i,\sigma}$ for some different I, $\ell \leq 2$, is obtained as

(1) $I \in S_1 = \{1\}$:
\[
A_{1,\sigma} = \frac{2\eta + 4\eta^2 (1 + \sigma) + \eta (4\sigma + 1) + \sigma}{(1 + \eta)^2 (\sigma + \eta)}
\]

(2) $I \in S_2 = \{1, 2\}$:
\[
A_{1,\sigma} = \frac{\eta^2 (1 + \sigma) + \eta^3 (3 + 5\sigma) + \eta (1 + 4\sigma) + \sigma}{(1 + \eta)^2 (\sigma + \eta)}
\]

(3) $I \in S_3 = \{1, 2, 3\}$:
\[
A_{1,\sigma} = \frac{\eta^2 (1 + \sigma) + \eta^2 (1 + 5\sigma + 2\sigma^2) + 3\eta(2 + 3\sigma) + \sigma^2}{(1 + \eta)^2 (\sigma + \eta)^2}
\]

(4) $I \in S_4 = \{1, 2, 3, 4\}$:
\[
A_{1,\sigma} = \frac{\eta (1 + \sigma^2) + \eta^2 (1 + 4\sigma + 3\sigma^2) + 3\eta(2 + 3\sigma) + \sigma^2}{(1 + \eta)^2 (\sigma + \eta)^2}
\]

3.3. The Hot Duplication Method. Suppose that A_B^{HR} denotes to the availability of the improved system by hot duplication for the components belonging to the set B and $|B| = m, 0 \leq m \leq N$. The component $i \in B$ has the availability, say A_B^{HR}, as follows:

\[
A_B^{\text{HR}} = 1 - (1 - A_i)^2 = 1 - \left(\frac{\eta}{1 + \eta}\right)^2.
\]

Thus, the system availability A_B^{HR} can be derived as

(1) $B = S_1 = \{1\}$:
\[
A_B^{\text{HR}} = \frac{2\eta^4 + 12\eta^3 + 13\eta^2 + 6\eta + 1}{(1 + \eta)^5}
\]

(2) $B = S_2 = \{1, 2\}$:
\[
A_B^{\text{HR}} = \frac{3\eta^5 + 20\eta^4 + 29\eta^3 + 20\eta^2 + 7\eta + 1}{(1 + \eta)^5}
\]

(3) $B = S_3 = \{1, 2, 3\}$:
\[
A_B^{\text{HR}} = \frac{5\eta^5 + 25\eta^4 + 33\eta^3 + 21\eta^2 + 7\eta + 1}{(1 + \eta)^5}
\]
3.4. The Warm Duplication Method. Suppose that, in this method, each component belonging to the set B is connected with a warm standby component (with constant failure rate v) via a perfect switch. Let \mathcal{A}_i^w be the availability of the component $i \in B$, then \mathcal{A}_i^w can be obtained as follows [26]:

\[
\mathcal{A}_i^w = \frac{\mu^2 + \lambda \mu + v \mu}{\mu^2 + \lambda \mu + v \mu + (1/2)\lambda^2 + (1/2)v} = \frac{1 + \eta + \xi}{1 + \eta + \xi + (1/2)\eta^2 + (1/2)v^2}
\]

where $\eta = \lambda/\mu$ and $\xi = v/\mu$. Thus, the availability of the improved system by warm duplication method, \mathcal{A}_B^w, is given by

1. $B \in S_1 = \{3\}$:

\[
\mathcal{A}_B^w = \frac{2\eta^2 + 2\eta^3 (6 + \xi) + \eta^2 (17 + 12\xi) + \eta (10 + 9\xi) + 2(1 + \xi)}{(1 + \eta)^2 [\eta^2 + \eta (2 + \xi) + 2 (1 + \xi)]}
\]

2. $B \in S_2 = \{1, 2, 4, 5\}$:

\[
\mathcal{A}_B^w = \frac{3\eta^2 + 3\eta^3 (5 + \xi) + \eta^2 (19 + 13\xi) + \eta (10 + 9\xi) + 2 (1 + \xi)}{(1 + \eta^2) [\eta^2 + \eta (2 + \xi) + 2 (1 + \xi)]}
\]

3. $B \in S_3 = \{1, 3, 1, 5, 2, 3, 2, 4, 3, 4, 3, 5\}$:

\[
\mathcal{A}_B^w = \frac{1}{(1 + \eta^2)[\eta^2 + \eta (2 + \xi) + 2 (1 + \xi)]} - \frac{3\eta^2 + 3\eta^3 (7 + 2\xi) + \eta^2 (42 + 40\xi + 5\xi^2)}{(1 + \eta^2)[\eta^2 + \eta (2 + \xi) + 2 (1 + \xi)]}
\]

4. $B \in S_4 = \{1, 2, 4, 5\}$:

\[
\mathcal{A}_B^w = \frac{4 (1 + \eta + \xi)[\eta^4 + \eta^3 (5 + \xi) + \eta^2 (16 + 6\xi) + \eta (1 + \xi) + \xi + 1]}{(1 + \eta^2)[\eta^2 + \eta (2 + \xi) + 2 (1 + \xi)]^2}
\]

5. $B \in S_5 = \{1, 4, 2, 5\}$:

\[
\mathcal{A}_B^w = \frac{1}{(1 + \eta^2)[\eta^2 + \eta (2 + \xi) + 2 (1 + \xi)]^2} - \frac{5\eta^2 + \eta^3 (29 + 10\xi) + \eta^2 (52 + 50\xi + 5\xi^2)}{(1 + \eta^2)[\eta^2 + \eta (2 + \xi) + 2 (1 + \xi)]^2}
\]

3.5. The Cold Duplication Method. The cold duplication method assumes that each component belonging to the set B is connected with an identical component via a perfect switch. The availability of the component $i \in B$, \mathcal{A}_i^c, can be calculated by [27]

\[
\mathcal{A}_i^c = \frac{\mu^2 + \lambda \mu}{\mu^2 + \lambda \mu + (1/2)\lambda^2 + (1/2)v} = \frac{1 + \eta}{1 + \eta + (1/2)v^2}
\]

where $\eta = \lambda/\mu$. In what follows, we present the availability, \mathcal{A}_B^c, of the improved system in accordance with the cold duplication method for the components belonging to B for some different values of B as

1. $B \in S_1 = \{3\}$:

\[
\mathcal{A}_B^c = \frac{2\eta^4 + 12\eta^3 + 17\eta^2 + 10\eta + 2}{(1 + \eta)^2 (\eta^2 + 2\eta + 2)}
\]

2. $B \in S_2 = \{1, 2, 4, 5\}$:

\[
\mathcal{A}_B^c = \frac{3\eta^4 + 15\eta^3 + 19\eta^2 + 10\eta + 2}{(1 + \eta^3) (\eta^2 + 2\eta + 2)}
\]

3. $B \in S_3 = \{1, 3, 1, 5, 2, 3, 2, 4, 3, 4, 3, 5\}$:

\[
\mathcal{A}_B^c = \frac{3\eta^4 + 18\eta^3 + 24\eta^2 + 16\eta + 4}{(1 + \eta^2) (\eta^2 + 2\eta + 2)}
\]

4. $B \in S_4 = \{1, 2, 4, 5\}$:

\[
\mathcal{A}_B^c = \frac{4 (\eta^4 + 5\eta^3 + 6\eta^2 + 4\eta + 1)}{(1 + \eta^2) (\eta^2 + 2\eta + 2)^2}
\]

5. $B \in S_5 = \{1, 4, 2, 5\}$:

\[
\mathcal{A}_B^c = \frac{5\eta^4 + 24\eta^3 + 28\eta^2 + 16\eta + 4}{(1 + \eta^2) (\eta^2 + 2\eta + 2)^2}
\]

4. Availability Equivalence Factors

In this section, we will derive two different types of availability equivalence factors (AEF), reducing availability equivalence factor (RAEF) and increasing availability equivalence factor (IAEF).

Definition 1. Availability equivalence factor (AEF) is defined as the factor by which the failure rates (repair rates) of some of the system’s components should be reduced (increased) in order to reach equality of the availability of a better system.

4.1. The RAEF. The reducing availability equivalence factor can be obtained by solving the following equation with respect to $\rho = \mathcal{A}_{R,B}^c$:

\[
\mathcal{A}_{R,B}^c = \mathcal{A}_{B}^c, \quad \mathcal{D} = \mathcal{H}, \mathcal{W}, \mathcal{C}.
\]

For a specific set R of the system components, we present the different forms of the RAEF of the bridge system that can be derived from equation (34) as follows:
Complexity

(1) When $R \in S_1$:
\[
\rho_{R,B} = \frac{(1 + \eta)^4 \mathcal{A}^2_B - (2\eta + 1)^2}{\eta[2\eta^2 + 4\eta + 1 - (1 + \eta)^3 \mathcal{A}^2_B]} \tag{35}
\]

(2) When $R \in S_2$:
\[
\rho_{R,B} = \frac{(1 + \eta)^4 \mathcal{A}^2_B - (\eta^2 + 3\eta + 1)}{\eta[2\eta^2 + 4\eta + 1 - (1 + \eta)^3 \mathcal{A}^2_B]} \tag{36}
\]

(3) When $R \in S_3$:
\[
\rho_{R,B} = -b_1 \pm \sqrt{b_1^2 - 4a_1c_1}, \tag{37}
\]
where
\[
a_1 = \eta^2(1 + \eta)(1 - (1 + \eta)^2 \mathcal{A}^2_B), \quad b_1 = \eta(2\eta^2 + 5\eta + 2 - (1 + \eta)^2 \mathcal{A}^2_B), \quad c_1 = (1 + \eta)(2\eta^2 + 1 - (1 + \eta)\mathcal{A}^2_B). \]

(4) When $R \in S_4$:
\[
\rho_{R,B} = -b_2 \pm \sqrt{b_2^2 - 4a_2c_2}, \tag{38}
\]
where
\[
a_2 = (1 + \eta)^3 \mathcal{A}^2_B, \quad b_2 = 2\eta(1 + \eta)^3 \mathcal{A}^2_B - (\eta^2 + 3\eta + 1), \quad c_2 = (1 + \eta)^2 \mathcal{A}^2_B - (2\eta + 1). \]

(5) When $R \in S_5$:
\[
\rho_{R,B} = -b_3 \pm \sqrt{b_3^2 - 4a_3c_3}, \tag{39}
\]
where
\[
a_3 = \eta^2(1 + \eta)(1 - (1 + \eta)^2 \mathcal{A}^2_B), \quad b_3 = 2\eta[(2\eta + 1) - (1 + \eta)^2 \mathcal{A}^2_B], \quad c_3 = (1 + \eta)^2 \mathcal{A}^2_B - (2\eta + 1). \]

For the values of η, ξ and \mathcal{A}^2_B for different B, \mathcal{D}, the values for RAEPs, $\rho_{R,B}$, can be calculated from (35)–(39).

4.2. The IAEF. The increasing availability equivalence factor, $\sigma = \sigma_{I,B}$, can be calculated by solving the following equation:
\[
\mathcal{A}_{I,\sigma} = \mathcal{A}_{B,\sigma}, \quad \mathcal{D} = \mathcal{H}(\mathcal{W}, \mathcal{C}), \tag{40}
\]
with respect to σ.

Different forms for IAEF can be calculated from equation (40) for a specific set I as follows:

(1) When $I \in S_1$:
\[
\sigma_{I,B} = \frac{\eta^2[(1 + \eta)^4 \mathcal{A}^2_B - (2\eta^2 + 4\eta + 1)]}{(2\eta + 1)^2 - (1 + \eta)^4 \mathcal{A}^2_B}. \tag{41}
\]

(2) When $I \in S_2$:
\[
\sigma_{I,B} = \frac{\eta^2[(1 + \eta)^4 \mathcal{A}^2_B - (\eta^2 + 3\eta + 1)]}{\eta^3 + 5\eta^2 + 4\eta + 1 - (1 + \eta)^3 \mathcal{A}^2_B} \tag{42}
\]

(3) When $I \in S_3$:
\[
\sigma_{I,B} = -c_1 \pm \sqrt{c_1^2 - 4d_1f_1}, \tag{43}
\]
where $d_1 = (\eta + 1)(2\eta + 1) - (1 + \eta)^2 \mathcal{A}^2_B$, $c_1 = \eta[(\eta^2 + 5\eta + 2) - 2(1 + \eta)^2 \mathcal{A}^2_B]$, and $f_1 = \eta(1 - (1 + \eta)^3 \mathcal{A}^2_B)$.

(4) When $I \in S_4$:
\[
\sigma_{I,B} = \frac{-c_2 \pm \sqrt{c_2^2 - 4d_2f_2}}{2d_2}, \tag{44}
\]
where $d_2 = (\eta + 1)(2\eta + 1) - (1 + \eta)^3 \mathcal{A}^2_B$, $c_2 = 2\eta[(\eta^2 + 3\eta + 1) - (1 + \eta)^3 \mathcal{A}^2_B]$, and $f_2 = -\eta(1 + \eta)^3 \mathcal{A}^2_B$.

(5) When $I \in S_5$:
\[
\sigma_{I,B} = \frac{-c_3 \pm \sqrt{c_3^2 - 4d_3f_3}}{2d_3}, \tag{45}
\]
where $d_3 = (\eta + 1)(2\eta + 1) - (1 + \eta)^3 \mathcal{A}^2_B$, $c_3 = 2\eta[(\eta^2 + 1) - (1 + \eta)^3 \mathcal{A}^2_B]$, and $f_3 = \eta^4(\eta + 1)[1 - (1 + \eta)^3 \mathcal{A}^2_B]$.

From (41)–(45), the values for IAEFs, $\sigma_{I,B}$, can be calculated through specified values of η, ξ and \mathcal{A}^2_B for different B and $\mathcal{D} = \mathcal{H}(\mathcal{W}, \mathcal{C})$.

5. Numerical Results and Conclusions

In this section, a numerical example is given to illustrate the theoretical results obtained in the previous sections. We assume $\lambda = 0.24, \mu = 1.2$, and $\nu = 0.12$. In this case, we have $\eta = \lambda/\mu = 0.2$ and $\xi = \nu/\mu = 0.1$.

Figures 3 and 4 show the availability of an improved system through improving different sets of the components in accordance with the reduction (increase) method by the factor ρ, $0 < \rho < 1$, and $(\sigma, \sigma > 1)$, respectively.

According to Figures 3 and 4, we can conclude that

(1) $\mathcal{A}_{B,\rho}$ decreases with increasing ρ for all possible sets B.

(2) when σ increases, the $\mathcal{A}_{I,\sigma}$ increases as well for all possible sets I.

(3) $\mathcal{A}_{I,\sigma}$ increases as well for all possible sets I.

(4) $\mathcal{A}_{I,\sigma}$ increases for all $\sigma > 1$.

The availability of the original system is $\mathcal{A}_{sys} = 0.951342$ and $\mathcal{A}_{B,\sigma}$ for the improved system for all possible sets B are presented in Table 1.

From the numerical results in Table 1, the following can be concluded:

(1) $\mathcal{A}_{sys} < \mathcal{A}_{B} < \mathcal{A}^\mathcal{H} < \mathcal{A}^\mathcal{C}$ for all $B \in S_5$.

(2) $\mathcal{A}_{sys} < \mathcal{A}^\mathcal{H} < \mathcal{A}^\mathcal{C} < \mathcal{A}^\mathcal{S} < \mathcal{A}^\mathcal{S}$ for all $\mathcal{D} = \mathcal{H}(\mathcal{W}, \mathcal{C})$.
6. Discussion

According to the numerical results in Tables 1–6, the following can be observed:

1. Improving the system by hot duplication method for the components belonging to the set $B \in S_1$ improves the system availability from 0.951342 to 0.955415

Table 1: The $\alpha_{R,B}^{\Phi}, \omega = (\Phi, \mathcal{B})$ and $B \in S_i, i = 1, 2, \ldots, 5.$

$B \in S_i$	$\alpha_{R,B}^{\Phi}$	$\omega_{R,B}^{\Phi}$	$\omega_{R,B}^{\sigma}$
S_1	0.955415	0.955492	0.955715
S_2	0.971482	0.971862	0.972962
S_3	0.974125	0.974527	0.975687
S_4	0.976518	0.976702	0.977177
S_5	0.992585	0.99338	0.995692

Finally, the AEFs, $\rho_{R,B}^{\Phi}$, and $x\rho_{R,B}^{\Phi}$ for a different $\Phi, R, I,$ and B are calculated according to the previous theoretical formulas. Tables 2–6 contain the values of AEFs.

Table 2: The AEFs for a different B and $R, I \in S_1.$

$B \in S_i$	$\rho_{R,B}^{\Phi}$	$\rho_{R,B}^{\sigma}$	$\sigma_{R,B}^{\Phi}$	$\sigma_{R,B}^{\sigma}$
S_1	0.12963	0.115385	7.71429	8.66667
S_2	—	—	—	—
S_3	—	—	—	—
S_4	—	—	—	—
S_5	—	—	—	—

(see Table 1). The system with $\omega_{B}^{\Phi} = 0.955415$ can be obtained by using one of the following:

(a) The failure rate of the components belonging to the set (i) $R \in S_1$ is reduced by the factor $\rho_{R}^{\Phi} = 0.12963$; (ii) $R \in S_2$ is reduced by the factor $\rho_{R}^{\Phi} = 0.803674$; (iii) $R \in S_3$ is reduced by the factor $\rho_{R}^{\Phi} = 0.834270$; (iv) $R \in S_4$ is reduced by the factor $\rho_{R}^{\Phi} = 0.896350$; (v) $R \in S_5$ is reduced by the factor $\rho_{R}^{\Phi} = 0.900617$ (see Tables 2–6).

(b) Increasing the repair rate for the components in the set (i) $I \in S_1$ by the factor $\sigma_{I}^{\Phi} = 7.71429$; (ii) $I \in S_2$ by the factor $\sigma_{I}^{\Phi} = 1.244429$; (iii) $I \in S_3$ by the factor $\sigma_{I}^{\Phi} = 1.19865$; (iv) $I \in S_4$ by the factor $\sigma_{I}^{\Phi} = 1.11564$; (v) $I \in S_5$ by the factor $\sigma_{I}^{\Phi} = 1.11035$ (see Tables 2–6).

(2) The system availability increases from 0.951342 to 0.955492 (see Table 1), by improving the components belonging to the set $B \in S_1$, using the warm duplication method. Through one of the following, we can obtain the system with availability, $\omega_{B}^{\Phi} = 0.955492$:

(a) Reducing the failure rate of the components in the set (i) $R \in S_1$ by the factor $\rho_{R}^{\Phi} = 0.115385$; (ii) $R \in S_2$ by the factor $\rho_{R}^{\Phi} = 0.800084$; (iii) $R \in S_3$ by the factor $\rho_{R}^{\Phi} = 0.831193$; (iv) $R \in S_4$ by the factor $\rho_{R}^{\Phi} = 0.894343$; (v) $R \in S_5$ by the factor $\rho_{R}^{\Phi} = 0.898776$ (see Tables 2–6).

(b) Increasing the repair rate for the components belonging to the set (i) $I \in S_1$ by the factor $\sigma_{I}^{\Phi} = 8.66667$; (ii) $I \in S_2$ by the factor $\sigma_{I}^{\Phi} = 1.24987$; (iii) $I \in S_3$ by the factor $\sigma_{I}^{\Phi} = 1.20309$; (iv) $I \in S_4$ by the factor $\sigma_{I}^{\Phi} = 1.111814$; (v) $I \in S_5$ by the factor $\sigma_{I}^{\Phi} = 1.11262$ (see Tables 2–6).

(3) Cold duplication of the system components belonging to the set $B \in S_1$ increases the availability from 0.951342 to 0.955715 (see Table 1). The design with $\omega_{B}^{\Phi} = 0.955715$ can be obtained through one of the following:

(a) Reducing the failure rate of the system components in (i) $R \in S_1$ by the factor $\rho_{R}^{\Phi} = 0.0744681$; (ii) $R \in S_2$ by the factor $\rho_{R}^{\Phi} = 0.789690$; (iii) $R \in S_3$ by the factor $\rho_{R}^{\Phi} = 0.822279$; (iv) $R \in S_4$ by the factor $\rho_{R}^{\Phi} = 0.888510$; (v) $R \in S_5$ by the factor $\rho_{R}^{\Phi} = 0.8934460$ (see Tables 2–6).

(a) Increasing the repair rate of the components in (i) $I \in S_1$ by the factor $\sigma_{I}^{\Phi} = 13.4286$; (ii) $I \in S_2$ by...
the factor $\sigma = 1.26631$; (iii) $I \in S_1$ by the factor $\sigma = 1.21613$; (iv) $I \in S_4$ by the factor $\sigma = 1.12548$; (v) $I \in S_5$ by the factor $\sigma = 1.11926$ (see Tables 2–6).

7. Conclusions

In this paper, the equivalence of different designs of a repairable bridge system based on the system availability was derived. The failure rates and repair rates of the system’s components were assumed constant. The system availability was improved using five different methods. The availability of the original and the improved systems and the availability equivalence factors of the systems were derived. Numerical results were presented to illustrate how one can utilize the theoretical results obtained in this work and to compare the different availability factors of the system. Future work includes extending the current paper to include other cases such as systems with nonidentical components, limited repair teams which are available for each component in the system, and failure (repair) rates of the components which are not constant.

Data Availability

No data was used in the study.

Conflicts of Interest

The authors declare no conflicts of interest.
Acknowledgments

The authors would like to thank Dr. Runna Alghazo for proofreading the manuscript and editing to eliminate language issues and enhance readability wherever warranted. This research was partially funded by Prince Mohammad Bin Fahd University.

References

[1] A. Sarhan, “Reliability equivalence of independent and non-identical components series systems,” Reliability Engineering & System Safety, vol. 67, no. 3, pp. 293–300, 2000.
[2] L. Hu, D. Yue, and D. Zhao, “Availability equivalence analysis of a repairable series-parallel system,” Mathematical Problems in Engineering, vol. 2012, Article ID 957537, 15 pages, 2012.
[3] E. E. Lewis and E. E. Lewis, Introduction to Reliability Engineering, Vol. 2, Wiley, New York, NY, USA, 1987.
[4] L. M. Leemis, Reliability: Probabilistic Models and Statistical Methods, p. 319, Prentice-Hall, Upper Saddle River, NJ, USA, 1995.
[5] S. Kumar, G. Chattopadhyay, and U. Kumar, “Reliability improvement through alternative designs-A case study,” Reliability Engineering & System Safety, vol. 92, no. 7, pp. 983–991, 2007.
[6] A. K. Babar, R. K. Saraf, and V. V. S. S. Rao, “Reliability improvement in electric motor operated valves,” Reliability Engineering & System Safety, vol. 23, no. 2, pp. 159–161, 1988.
[7] R. Billinton and P. Wang, “Deregulated power system planning using a reliability network equivalent technique,” IEE Proceedings-Generation, Transmission and Distribution, vol. 146, no. 1, pp. 25–30, 1999.
[8] A. M. Sarhan, “Reliability equivalence factors of a general series-parallel system,” Reliability Engineering & System Safety, vol. 94, no. 2, pp. 229–236, 2009.
[9] A. Abdelfattah and A. Mustafa, “Reliability equivalence factors for some systems with mixture weibull failure rates,” African Journal of Mathematics and Computer Science Research, vol. 2, no. 1, pp. 6–12, 2009.
[10] L. Råde, Reliability Equivalence, Studies in Statistical Quality Control and Reliability, Mathematical Statistics, Chalmers University of Technology, Gothenburg, Sweden, 1989.
[11] L. Råde, “Reliability equivalence,” Microelectronics Reliability, vol. 33, no. 3, pp. 323–325, 1993.
[12] L. Råde, “Reliability survival equivalence,” Microelectronics Reliability, vol. 33, no. 6, pp. 881–894, 1993.
[13] A. M. Sarhan, “Reliability equivalence factors of a parallel system,” Reliability Engineering & System Safety, vol. 87, no. 3, pp. 405–411, 2005.
[14] A. M. Sarhan, “Reliability equivalence factors of a bridge network system,” International Journal of Reliability and Applications, vol. 5, no. 2, pp. 81–103, 2004.
[15] A. M. Sarhan, L. Tadj, A. Al-Khedhairi, and A. Mustafa, “Equivalence factors of a parallel-series system. APPS,” Applied Sciences, vol. 10, pp. 219–230, 2008.
[16] Y. Xia and G. Zhang, “Reliability equivalence factors in gamma distribution,” Applied Mathematics and Computation, vol. 187, no. 2, pp. 567–573, 2007.
[17] A. Mustafa, B. S. El-Desouky, and A. Taha, “Evaluating and improving system reliability of bridge structure using gamma distribution,” International Journal of Reliability and Applications, vol. 17, no. 2, pp. 121–135, 2016.
[18] A. Mustafa, “Improving the bridge structure by using linear failure rate distribution,” Journal of Applied Statistics, p. 47, 2019.
[19] Z. Tian, G. Levitin, and M. J. Zuo, “A joint reliability-redundancy optimization approach for multi-state series-parallel systems,” Reliability Engineering & System Safety, vol. 94, no. 10, pp. 1568–1576, 2009.
[20] M. A. El-Damcese, “Two types of failure rates in the reliability equivalence factors of a series-parallel system,” International Journal of Advanced Scientific and Technical Research, vol. 2, no. 5, 2015.
[21] S. M. Alghamdi and D. F. Percy, “Reliability equivalence factors for a series-parallel system of components with exponentiated weibull lifetimes,” IMA Journal of Management Mathematics, vol. 28, no. 3, pp. 339–358, 2017.
[22] A. M. Sarhan and A. Mustafa, “Availability equivalence factors of a general repairable series-parallel system,” International Journal of Reliability and Applications, vol. 14, no. 1, pp. 11–26, 2013.
[23] A. Mustafa and A. M. Sarhan, “Availability equivalence factors of a general repairable parallel-series system,” Applied Mathematics, vol. 5, no. 11, pp. 1713–1723, 2014.
[24] L. Hu, D. Yue, and R. Tian, “Availability equivalence analysis of a repairable multi-state series-parallel system with different performance rates,” Discrete Dynamics in Nature and Society, vol. 2016, Article ID 3175269, 9 pages, 2016.
[25] R. Billinton and R. N. Allan, Reliability Evaluation of Engineering Systems, Plenum Press, New York, NY, USA, 1992.
[26] Y. Liu and H. Zheng, “Study on reliability of warm standby’s repairable system with n identity units and k repair facilities,” Journal of Wenzhou University (Natural Sciences), vol. 31, no. 3, pp. 24–29, 2010, in Chinese.
[27] J. X. Gu and Y. Y. Wei, “Reliability quantities of a n-unit cold standby repairable system with two repair facility,” Journal of Gansu Lianhe University (Natural Science Edition), vol. 20, no. 2, pp. 17–20, 2006, in Chinese.