Abstract

Mobile ad-hoc networks (MANETs) are demanding considerable improvement in energy efficiency, as their applications are being developed continuously and consistently which also includes high level performance oriented application. In MANET the mobile nodes are dynamic in nature. It also suffers from other two constraints which are Limited Processing capability and Limited Power Supply. Energy Consumption in the nodes takes place mainly during the communication process between the nodes. One of the approaches to improve the efficiency in energy is by applying Transmission Power Control (TPC) technique to adjust the transmission power in communication between nodes. Another approach is, distributing the loads within the network and also maintaining clusters in this uncertain network. Therefore, we investigate different effects of TPC on two load distribution approaches like Localized Energy Aware Routing (LEAR) and Conditional Max-Min Battery Capacity Routing (CMMBCR) protocols for MANETs, in a restricted customized environment by forming clusters within the nodes. This improves the network scalability and also decreases the probability of the network failure. This topology control focuses on the clustering of the nodes in a particular formation and
An Effectual Load Distribution Approach based on Transmission Power and Topology Controlled Clustered Environment in Mobile Ad Hoc Network communicates with the nodes according to the status of them in the clusters. The experimental results show a noticeable effect of TPC implementation technique on MANETs in respect to transmission energy consumption and packet received ratio at low node mobility.

References

1. I. F. Akyildiz, Y. Sankarasubramaniam and E. Cayirci. 2002. Wireless sensor networks: a survey. Computer Networks, vol. 38, no. 4, pp. 393–422.
2. Hoebeke, J., Moerman, I., Dhoedt, B. & Demeester, P. 2004. An overview of mobile ad hoc networks: applications and challenges. Journal-Communications Network, 3(3), 60-66.
3. J. N. Al-karaki and A. E. Kamal. 2004. Routing techniques in wireless sensor networks: A survey. IEEE Wireless Communications, vol. 11, pp. 6–28.
4. Carlos, F Garca-Hernndez., Pablo, H Ibargengoytia-Gonzlez. 2007. Wireless sensor networks and applications: a survey, International Journal of Computer Science and Network Security (IJCSNS), vol. 7, no. 3, pp. 264–273.
5. D. T. Ahmed and S. Shirmo hammadi. 2007. Architectural Analysis of Multicast Routing Protocols for Wireless Ad Hoc Networks. Proceedings of the 6th International Conference on Networking.
6. Mohammaed Tarique and kemal E. Tepe. 2009. Minimum energy hierachical dynamic source routing for Mobile Adhic Networks” Elsevier- Ad Hoc Networks, Vol.7, pp.1125-1135.
7. Muthuramalingam, S. & Rajaram R. 2010. A transmission range based clustering algorithm for topology control Manet. International journal on applications of graph theory in wireless ad hoc networks and sensor networks (GRAPH-HOC) Vol, 2.
8. Majumder, A. & Sarma, N. 2010. DEMAC: A cluster-based topology control for ad hoc networks. IJCSI International Journal of Computer Science Issues, 7(5).
9. Linyang Sheng, Jingbo Shao, Jinfeng Ding. 2010. A Novel Energy-Efficient Approach to DSR Based Routing Protocol for Ad Hoc Network”, IEEE International conference on electrical and control engineering (ICECE), pp.2618-2620.
10. Pradhan N. L. & Saadawi T. 2011. Power control algorithms for mobile ad hoc networks. Journal of Advanced Research, 2(3), 199-206.
11. Bhanumathi V, & Dhanasekaran, R. 2012. Energy Efficient Routing with Transmission Power Control based Biobjective Path Selection Model for Mobile Ad-hoc Network. WSEAS Transactions on Computers, 11(11).
12. Chen, T Ho., M. Chiang S. H. Low, and J. C. Doyle. 2012. Congestion control for multicast flows with network coding," IEEE Transactions on Information Theory, vol. 58, no. 9, pp. 5908–5921.
13. Shirali, M., Shirali, N. & Meybodi, M, R. 2012. Sleep-based topology control in the Ad Hoc networks by using fitness aware learning automata”. Computers & Mathematics with Applications, 64(2), 137-146.
14. G. Li and Y. Xu. 2013. A TCP-friendly congestion control scheme for multicast with network coding," Journal of Computational Information Systems, vol. 9, no. 21, pp. 8541–8548.
15. Raja Mr L. and Capt Dr S. Santhosh Baboo. 2014. An Overview of MANET: Applications, Attacks and Challenges." International Journal of Computer Science and Mobile Computing (IJCSCMC) 3 pp. 408-417.
16. Femila, L., & Vijayarangan V. 2014. Transmission power control in mobile ad hoc network using network coding and Co-Operative Communication". In Communication and
Network Technologies (ICCNT), International Conference (pp. 129-133).

17. Li X. H., Xiao L., & Wang D. 2014. Dynamic cooperative clustering based power assignment: network capacity and lifetime efficient topology control in cooperative ad hoc networks”. The Scientific World Journal.

18. Harsha Tembekar. 2017. Power control in mobile adhoc network using NS-2 Simulator. IRJET. Vol.4, Issue, 3.

Index Terms

Computer Science
Networks

Keywords

MANET, Transmission Power Control, load distribution, Localized Energy Aware Routing (LEAR), Conditional Max-Min Battery Capacity Routing (CMMBCR), clustering.