Prevalence of Orthodontic Malocclusions in Healthy Children and Adolescents: A Systematic Review

Lutgart De Ridder 1,*, Antonia Aleksieva 1, Guy Willems 1, Dominique Declerck 2, Marla Cadenas de Llanó-Pérula 1

1 Department of Oral Health Sciences, Orthodontics KU Leuven & Dentistry, University Hospitals Leuven, 3000 Leuven, Belgium; antonia.aleksieva92@gmail.com (A.A.); guy.willems@kuleuven.be (G.W.); maria.cadenasdellanoperula@kuleuven.be (M.C.d.L.-P.)
2 Department of Oral Health Sciences, Research Group Population Studies in Oral Health and Pediatric Dentistry & Special Care, University Hospitals Leuven, 3000 Leuven, Belgium; dominique.declerck@kuleuven.be

* Correspondence: lut.deridder@kuleuven.be

Abstract: The purpose of this study was to systematically review the literature regarding the prevalence of malocclusion and different orthodontic features in children and adolescents. Methods: The digital databases PubMed, Cochrane, Embase, Open Grey, and Web of Science were searched from inception to November 2021. Epidemiological studies, randomized controlled trials, clinical trials, and comparative studies involving subjects ≤ 18 years old and focusing on the prevalence of malocclusion and different orthodontic features were selected. Articles written in English, Dutch, French, German, Spanish, and Portuguese were included. Three authors independently assessed the eligibility, extracted the data from, and ascertained the quality of the studies. Since all of the included articles were non-randomized, the MINORS tool was used to score the risk of bias. Results: The initial electronic database search identified a total of 6775 articles. After the removal of duplicates, 4646 articles were screened using the title and abstract. A total of 415 full-text articles were assessed, and 123 articles were finally included for qualitative analysis. The range of prevalence of Angle Class I, Class II, and Class III malocclusion was very large, with a mean prevalence of 51.9% (SD 20.7), 23.8% (SD 14.6), and 6.5% (SD 6.5), respectively. As for the prevalence of overjet, reversed overjet, overbite, and open bite, no means were calculated due to the large variation in the definitions, measurements, methodologies, and cut-off points among the studies. The prevalence of anterior crossbite, posterior crossbite, and crossbite with functional shift were 7.8% (SD 6.5), 9.0% (SD 7.34), and 12.2% (SD 7.8), respectively. The prevalence of hypodontia and hyperdontia were reported to be 6.8% (SD 4.2) and 1.8% (SD 1.3), respectively. For impacted teeth, ectopic eruption, and transposition, means of 4.9% (SD 3.7), 5.4% (SD 3.8), and 0.5% (SD 0.5) were found, respectively. Conclusions: There is an urgent need to clearly define orthodontic features and malocclusion traits as well as to reach consensus on the protocols used to quantify them. The large variety in methodological approaches found in the literature makes the data regarding prevalence of malocclusion unreliable.

Keywords: prevalence; malocclusion; orthodontic features; children; adolescents

1. Background

In the 1890s, E. Angle defined normal dental occlusion as follows “the upper and lower molars should be related so that the mesio-buccal cusp of the upper molars occludes in the buccal groove of the lower molars and with the teeth arranged in a smoothly curving line of occlusion” and classified malocclusion in four classes (normal occlusion, Class I, Class II and Class III malocclusion) based on the relationship between the upper and lower first molars.

Furthermore, the World Dental Federation (FDI) states that “malocclusion may affect oral health by increasing the prevalence of dental caries, periodontitis, risk of trauma and...
difficulties in masticating, swallowing, breathing and speaking” and that “orthodontic care has evolved to become an integral part of dentistry helping to prevent oral disease and improve quality of life” [1].

In this context, information regarding the prevalence of malocclusion and the overall need for orthodontic treatment is essential to provide objective information to healthcare stakeholders, to allow for the allocation of healthcare resources based on objective epidemiological data. This information is also crucial for the training of dental and orthodontic healthcare professionals and for the rational planning of all aspects of orthodontic care [2,3].

Despite these facts, large and representative epidemiological studies regarding orthodontic features are hard to find. Proffit et al. argued that the lack of consensus among researchers regarding how much deviation from the ideal should be accepted as normal to be a possible explanation for this [4].

The Third National Health and Nutrition Examination Survey (NHANES III), which was performed in the United States from 1989 to 1994, collected data on the prevalence of malocclusion. A 30% prevalence of Angle “normal occlusion” and a 50–55%, 15%, and <1% prevalence of Angle Class I, II, and III malocclusion were reported, respectively. However, the molar relationship was not examined directly, but rather derived from the overjet measurements, which were claimed to be evaluated more precisely [4,5]. A systematic review on the prevalence of malocclusion in Chinese schoolchildren found 30.1%, 9.9% and 4.8% Angle Class I, II, and III malocclusion, respectively. They also reported deep bite to be the most common malocclusion trait, observed in 16.7% of the sample [6]. Another systematic review reported the prevalence of malocclusion in Iranian children to be 54.6%, 24.7%, and 6.0% for Angle Class I, II, and III, respectively [7]. Knowledge of the prevalence of extensive orthodontic features such as oral clefts, craniofacial syndromes, oligodontia and others is also important in terms of burden of care. According to the World Health Organization (1998), lip, alveolus, and/or palate clefts affect between 1 out of 500 (0.2%) and 1 out of 700 (0.1%) live births in Europe [8].

The aims of this article are firstly to systematically review the existing literature regarding the prevalence of malocclusion and different orthodontic features in children and adolescents and secondly to identify possible inconsistencies in definitions and measurement protocols.

2. Materials and Methods
2.1. Protocol and Registration

The protocol of this systematic review was drafted prior to data collection, and the results are reported according to the PRISMA guidelines (Preferred Reporting Items of Systematic Reviews and Meta-analysis) [9]. The protocol was registered in the international prospective register of systematic reviews (PROSPERO) under protocol registration number CRD42018086464.

2.2. Search Strategy

The digital databases PubMed, Cochrane, Embase, Open Grey, and Web of Science were searched from inception to the 18th of November 2021 by two authors (L.D.R. and M.C.d.L.-P). Specific search strings were developed per database, which were validated by an expert librarian from the Biomedical Library of KU Leuven, Belgium, and are available as supplementary material. Although the search terms ‘cleft lip and/or palate’ and ‘craniofacial syndromes’ were initially included in the search, articles focusing on these patients were kept separately since they are out of the scope of the present review.

2.3. Eligibility Criteria

The inclusion criteria were defined following the PIO format as follows:
Patients: Healthy Subjects ≤ 18 years of age.
Intervention: Assessment of malocclusion and/or dental characteristics.
Outcome: Prevalence and/or incidence of dental malocclusion and dental anomalies,
Epidemiological surveys, randomized controlled trials, clinical trials, and comparative studies were considered. Papers in English, Dutch, French, German, Spanish, and Portuguese were included.

Case reports, conference proceedings, letters to the editors, and unpublished studies as well as studies in other languages than the ones mentioned above and studies involving subjects who had undergone orthodontic treatment were excluded.

2.4. Study Selection

Publications retrieved from the different databases were imported into a reference manager (Mendeley Ltd., London, UK), and duplicates were removed. In a first phase, the titles and abstracts of all of the retrieved articles were screened by two reviewers (L.D.R. and M.C.d.L.-P.). Afterwards, the full texts of the remaining articles were read by three observers (L.D.R., M.C.d.L.-P. and A.A.), who also performed data extraction and scored the risk of bias. Any disagreements that occurred during the first and second selection phase were discussed until consensus was reached.

2.5. Data Collection and Analysis

The following information was extracted from the included studies: the study characteristics (author, publication year, study design, country in which the study was performed, and number of participants), the sample characteristics (type of participant, age, and gender), the type of examination, and a description and assessment of the studied parameters (Angle Class I, Angle Class II,1, Angle Class II,2, Angle Class III, overjet, reversed overjet, open bite, crowding, spacing, crossbite, scissor bite, forced bite (crossbite with lateral or frontal shift), hypodontia, supernumerary teeth, dental anomalies, impacted/retained teeth, ectopic teeth eruption, tooth transposition, and oral habits).

These data were compiled into datasets in Excel files, and—if possible—the weighted means and weighted standard deviations were calculated to consider the prevalence and its standard deviation relative to the number of subjects in the respective studies. Results were afterwards reported in the sagittal, vertical, and transversal dimension in order to offer a more comprehensive explanation.

2.6. Risk of Bias Assessment

The Methodological Index for Non-Randomized Studies (MINORS) from Slim et al., 2003, was used to assess the risk of bias of the included studies [10]. This tool contains 12 items related to comparative studies, the first 8 of which are also applied to non-comparative studies. Each item on the MINORS tool is scored as 0 (not reported), 1 (reported but inadequate), or 2 (reported and adequate), resulting in an ideal total score of 16 for non-comparative studies and 24 for comparative studies.

3. Results

The initial electronic database search identified a total of 6775 articles. After the removal of 2129 duplicates, further title and abstract screening as well as an eligibility assessment resulted in the final inclusion of 123 papers for qualitative analysis. Figure 1 shows the PRISMA flow diagram. The characteristics of the studies population and the methods used in the included studies can be found in Table 1 and will be discussed in the following paragraphs. The exact definitions of all orthodontic terms are available at Proffit et al. [4].
Figure 1. PRISMA flow diagram of the study selection process.
Table 1. Characteristics of and methods used in the included studies.

Author Year of Publication	Type Study	Population	Subjects	Registration						
Aasheim, 1993 [11]	ES	Norway	Europe	1953, 9	X	X	X	X	X	NM
Abu Alhaija, 2005 [12]	ES	Jordan	Saudi	1003, 13–15	X	X	X	X	ANGLE, BJÖRK	
Abumelha, 2018 [13]	CS	Arabia	Asia	526, 6–12	X	X	X	ANGLE		
Alajlan, 2019 [14]	CS	Arabia	Asia	520, 7–12	X	X	X	ANGLE IOTN		
Al-Amiri, 2013 [15]	CS	USA	America	496, 16 y 3 m *	X	X	X	X	NM	
Alberto, 2006 [16]	CS	Italy	Europe	1577, 6–10	X	X	X	NM		
al-Emran, 1990 [17]	ES	Saudi	Arabia	500, 13.5–14.5	X	X	X	BJÖRK		
Alkilzy, 2007 [18]	ES	Syria	Asia	234, 2–16	X	X	X	X	NM	
Alsooleihat, 2014 [19]	CS	Jordan	Asia	85, 14–18	X	X	X	NM		
Allug-Atac, 2007 [20]	ES	Turkey	Asia	3043, 8.5–14.75	X	X	X	NM		
Arabiun, 2014 [21]	CS	Iran	Asia	1338, 14–18	X	X	X	ANGLE IOTN		
Araki, 2017 [22]	CS	Mongolia	Asia	420, 10–16	X	X	X	NM		
Baccetti, 1998 [23]	CS	Italy	Europe	5450, 7–14	X	X	X	NM		
Badrov, 2017 [24]	CS	Croatia	Europe	4430, 6–15	X	X	X	NM		
Baral, 2014 [25]	CS	Nepal	Asia	506, 3–5	X	X	X	ANGLE, FOSTER & HAMILTON: DAI		
Baron, 2018 [26]	CS	France	Europe	551, 15.23 *	X	X	X	DAI		
Baskaradoss, 2013 [27]	CS	India	Asia	300, 11–15	X	X	X	ANGLE		
Behbehani, 2005 [28]	ES	Kuwait	Asia	1299, 13–14	X	X	X	ANGLE		
Berneburg, 2010 [29]	CS	Germany	Europe	2015, 4–6	X	X	X	DAI		
Bhardwaj, 2011 [30]	CS	India	Asia	622, 16–17	X	X	X	ANGLE		
Bhayya, 2011 [31]	CS	India	Asia	1000, 4–6	X	X	X	DAI		
Bilgic, 2015 [32]	CS	Turkey	Asia	2329, 12–16	X	X	X	ANGLE		
Bourzgui, 2012 [33]	ES	Morocco	Africa	1000, 8–12	X	X	X	ANGLE, BJÖRK		
Calzada Bandomo, 2014 [34]	ES	Cuba	America	210, 5–11	X	X	X	ANGLE		
Campos-Arias, 2013 [35]	ES	Costa Rica	America	88, 7.0 *	X	X	X	ANGLE		
Carvalho, 2011 [36]	CS	Brazil	America	1069, 5–5 y 11 m	X	X	X	ANGLE, DAI		
Chauhan, 2013 [37]	CS	India	Asia	1188, 9–12	X	X	X	BJÖRK		
Ciuffolo, 2005 [38]	ES	Italy	Europe	810, 11–14	X	X	X	ANGLE		
Coetzee, 2000 [39]	ES	South Africa	Africa	214, 3–8	X	X	X	BJÖRK, FOSTER & HAMILTON: ANGLE		
Cosma, 2017 [40]	ES	Romania	Europe	172, 3–6	X	X	X	ANGLE		
Dacosta, 1999 [41]	CS	Nigeria	Africa	1028, 11–18	X	X	X	ANGLE		
Table 1. Cont.

Author Year of Publication	Type Study	Country	Continent	Nr.	Age in Y	Sch. Ch./Ch.	Pat.	Pat. Rec.	Clin. Exam	X-rays	OPT	Study Casts	Photographs	Interv./Quest.	Method
Daou, 2019 [42]	CS	Lebanon	Asia	334	7.31 ± 2.17	X	X	X	X	X					NM
de Almeida, 2008 [43]	ES	Brazil	America	344	3.94 *	X	X		X	X			FOSTER & HAMILTON		
de Araújo Guimarães, 2018 [44]	CS	Brazil	America	390	8–10	X	X		X	X			DAI		
de Muniz, 1986 [45]	ES	Argentina	America	1554	12–13	X	X		X	X			NM		
Dimberg, 2015 [46]	LS	Sweden	Europe	277	3, 7 and 11.5	X	X		X	X			ANGLE		
Endo, 2006 [47]	ES	Japan	Asia	3358	5–15	X	X		X	X			NM		
Esa, 2001 [48]	ES	Malaysia	Asia	1519	12–13	X	X		X	X			DAI		
Eserlik, 2009 [49]	ES	Turkey	Asia	2599	6–16	X	X		X	X			NM		
Fernandes, 2008 [50]	ES	Brazil	America	148	3–6	X	X		X	X			ANGLE		
Ferro, 2016 [51]	CS	Italy	Europe	380	14	X	X		X	X			IOTN		
Ferro, 2016 [52]	CS	Italy	Europe	1960	3–5	X	X		X	X			ANGLE		
Frazao, 2006 [53]	ES	Brazil	America	13,801	12 and 18	X	X		X	X			DAI		
Gábbris, 2006 [54]	ES	Hungary	Europe	483	16–18	X	X		X	X			ANGLE, DAI		
Gois, 2012 [55]	LS	Brazil	America	212	8–11	X	X		X	X			ANGLE, DAI		
Grabowski, 2007 [56]	CS	Germany	Europe	3041	4.5 * and 8.2 *	X	X		X	X			ANGLE		
Gracco, 2017 [57]	CS	Italy	Europe	4006	9–16	X	X		X	X			NM		
Gudipaneni, 2018 [58]	ES	Saudi	Arabia	500	7–12	X	X		X	X			ANGLE, IOTN		
Gutierrez Marin, 2019 [59]	ES	Costa Rica	America	157	6–12	X	X		X	X			NM		
Harris, 2008 [60]	RS	USA	America	1700	12–18	X	X		X	X			NM		
Harris, 2008 [61]	RS	USA	America	1700	12–18	X	X		X	X			NM		
Hassanali, 1993 [62]	ES	Kenya	Africa	412	3–16	X	X		X	X			ANGLE		
Howell, 1993 [63]	ES	Australia	Oceania	154	13–17	X	X		X	X			IOTN	FOSTER & HAMILTON	
Ingervall, 1975 [64]	ES	Finland	Europe	200	8–16	X	X		X	X			ANGLE		
Jamilian, 2010 [65]	ES	Iran	Asia	350	14–17	X	X		X	X			ANGLE		
Jerez 2014 [66]	CS	Venezuela	America	120	3–6	X	X		X	X			BJÖRK		
Johanssdottir, 1997 [67]	ES	Iceland	Europe	396	6	X	X		X	X			DAI		
Johnson, 2000 [68]	ES	New Zealand	Oceania	294	9.9–11.3	X	X		X	X			FOSTER & BJÖRK		
Kabue, 1995 [69]	ES	Kenya	Africa	221	3–6	X	X		X	X			ANGLE, IOTN	ANGLE, FOSTER & HAMILTON	
Kalbassi, 2019 [70]	RS	Iran	Asia	1208	7–15	X	X		X	X			ANGLE		
Kasparviciene, 2014 [71]	CS	Lithuania	Europe	709	5–7	X	X		X	X			ANGLE		
Author Year of Publication	Type Study	Population	Subjects	Registration											
-----------------------------	------------	------------	----------	--------------											
Kielan-Grabowska, 2019 [72]	CS, Poland	Europe	674	6–15	X	X	X								
Kolawole, 2019 [73]	CS, Nigeria	Africa	992	1–12	X	X	DAI								
Komazaki, 2012 [74]	CS, Japan	Asia	963	12–15	X	X	ANGLE, IOTN								
Lagana, 2013 [75]	CS, Albania	Europe	2617	7–15	X	X	ANGLE, IOTN								
Lagana, 2017 [76]	CS, Italy	Europe	4706	8–12	X	X	NM								
Lara, 2013 [77]	CS, Brazil	America	1995	4–13	X	X	NM								
Lux, 2009 [78]	ES, Germany	Europe	494	8–9.6	X	X	ANGLE, BJÖRK								
Madiraju, 2021 [79]	CS, Saudi Arabia	Asia	282	8–9	X	X	ANGLE, IOTN								
Mail, 2015 [80]	CS, Brazil	America	50	12	X	X	DAI								
Martins, 2009 [81]	CS, Brazil	America	264	10–12	X	X	ANGLE								
Martins, 2019 [82]	ES, Brazil	America	1612	11–14	X	X	DAI								
Medina, 2012 [83]	ES, Venezuela	America	607	5–11	X	X	X	ANGLE							
Mohamed, 2014 [84]	CS, Malaysia	Asia	106	8–10	X	X	ANGLE, IOTN								
Muya, 2009 [85]	ES, Tanzania	Africa	1601	12–14	X	X	ANGLE, BJÖRK								
Muya, 2017 [86]	CS, Tanzania	Africa	253	3–5	X	X	ANGLE, BJÖRK								
Murshid, 2010 [87]	CS, Saudi Arabia	Asia	1024	13–15	X	X	ANGLE, BJÖRK								
Muyasa, 2012 [88]	CS, Kenya	Africa	1382	12–15	X	X	DAI								
Ng’ang’a, 1991 [89]	ES, Kenya	Africa	251	13–15	X	X	ANGLE, BJÖRK								
Ng’ang’a, 1996 [90]	ES, Kenya	Africa	919	13–15	X	X	ANGLE, BJÖRK								
Ng’ang’a, 2001 [91]	ES, Kenya	Africa	615	8–15	X	X	ANGLE, BJÖRK								
Nguyen, 2014 [92]	CS, Vietnam	Asia	200	12 and 18	X	X	ANGLE, IOTN								
O’Dowling, 1989 [93]	ES, Ireland	Europe	3056	7–17	X	X	ANGLE, IOTN								
O’Dowling, 1990 [94]	ES, Ireland	Europe	3056	7–17	X	X	ANGLE, IOTN								
Onyeso, 2004 [95]	ES, Nigeria	Africa	636	12–17	X	X	ANGLE								
Oshagh, 2010 [96]	CS, Iran	Asia	700	0–14	X	X	ANGLE								
Pagan-Collazo, 2014 [97]	CS, Puerto Rico	America	1911	10–14	X	X	ANGLE								
Perillo, 2010 [98]	ES, Italy	Europe	703	12.2	X	X	ANGLE								
Perinetti, 2008 [99]	ES, Italy	Europe	1198	7–11	X	X	ANGLE								
Pineda, 2011 [100]	CS, Chili	America	307	6–11	X	X	ANGLE								
Rapeepattana, 2019 [101]	CS, Thailand	Asia	202	8–9	X	X	ANGLE, IOTN								
Rauten, 2016 [102]	ES, Romania	Europe	147	6 and 9	X	X	ANGLE, IOTN								
Robke, 2007 [103]	ES, Germany	Europe	434	2–6	X	X	ANGLE, IOTN								
Reiling, 1980 [104]	ES, Denmark	Europe	3325	9–10	X	X	ANGLE								
Rozsa, 2009 [105]	ES, Hungary	Europe	4417	6–18	X	X	ANGLE								
Rwakatema, 2007 [106]	CS, Tanzania	Africa	289	12–15	X	X	ANGLE								
Sanadhy, 2014 [107]	CS, India	Asia	947	12–15	X	X	ANGLE								
Table 1. Cont.

Author Year of Publication	Type Study	Population	Subjects	Registration				
Sánchez-Pérez, 2013 [108]	CS	Mexico	249	X	X	X	X	DAI
Seemann, 2011 [109]	CS	Germany	2975	4 and 7.8 *	X	X	X	NM
Sejdini, 2018 [110]	CS	Macedonia	520	7–14	X	X	X	NM
Sepp, 2017 [111]	CS	Estonia	392	7.1–10.4	X	X	X	ANGLE, ICON
Sepp, 2019 [112]	CS	Estonia	390	4–5	X	X	X	ANGLE, FOSTER & HAMILTON
Shalish, 2013 [113]	ES	Israel	432	7–11	X	X	X	NM
Singh, 2011 [114]	ES	India	927	12	X	X	X	DAI
Sola, 2018 [115]	CS	Spain	2500	7–11	X	X	X	NM
Sonnesen, 1998 [116]	CS	Denmark	104	7–13	X	X	X	ANGLE
Stahl, 2003 [117]	CS	Germany	8864	2–10	X	X	X	ANGLE
Stahl, 2003 [118]	ES	Germany	4208	6.7–13.4	X	X	X	NM
Steinmassl, 2017 [119]	ES	Austria	157	8–10	X	X	X	ANGLE, IOTN
Sundareswaran, 2019 [120]	CS	India	1554	13–15	X	X	X	ANGLE, BJORK
Sunil, 2019 [121]	ES	Malaysia	100	13–17	X	X	X	ANGLE
Swarnalatha, 2020 [122]	CS	India	1000	12–18	X	X	X	ANGLE, IOTN
Tausche, 2004 [123]	CS	Germany	1975	6–8	X	X	X	ANGLE, BJORK
Thilander, 2001 [124]	ES	Colombia	4724	5–17	X	X	X	ANGLE
Thomaz, 2013 [125]	CS	Brazil	2060	12–15	X	X	X	ANGLE
Todor, 2019 [126]	CS	Romania	960	7–14	X	X	X	ANGLEBJORK
Uematsu, 2012 [127]	ES	Japan	2378	12–13 & 15–16	X	X	X	NM
Varela, 2009 [128]	ES	Spain	2108	7–16	X	X	X	NM
Vithanaarachchi, 2017 [129]	CS	Sri Lanka	721	8–15	X	X	X	NM
Wagner, 2015 [130]	CS	Germany	377	3	X	X	X	NM
Yassin, 2016 [131]	CS	Saudi Arabia	1252	5–12	X	X	X	NM
Yu, 2019 [132]	CS	China	2810	7–9	X	X	X	ANGLE
Zhou, 2017 [133]	CS	China	2335	3–5	X	X	X	ANGLE

Legend: Characteristics of the included articles are provided in Table 1. Age: Age range, but if no age range was found, the mean age was noted; * Mean, if standard deviation (SD) is not mentioned in article. Abbreviations: ES: epidemiological survey; CS: cross-sectional study; LS: longitudinal study; Nr.: number of subjects; Age in Y: age range in years; Sch. Ch./Ch.: schoolchildren/children; Pat.: patients; Pat. rec.: patient records; Clin. Exam.: clinical examination; OPT: orthopantomogram; Interv.: interviews; Quest.: questionnaires; Method reg.: method of registration; NM: Not mentioned; IOTN: Index of Orthodontic Treatment Need; DAI: Dental Aesthetic Index; ICON: Index of Complexity, Outcome and Need; ANGLE: Angle classification; BJORK: Björk's method; FOSTER AND HAMILTON: method for occlusion in primary dentition.
3.1. Characteristics of the Studied Population

The characteristics of the 123 included articles can be found in Table 1. Most of the studies were performed in a sample of children or schoolchildren (89/123): 9 involved patients and 23 patient records, 1 article included both patients and patient records, and 1 included schoolchildren and patient records. Most of the studies were performed in Europe (42/123), followed by Asia (41/123), America (24/123), Africa (14/123), and Oceania (2/123). X articles did not mention sex distribution. A total of 58 articles found no statistically significant differences in prevalence of malocclusion types between females and males [11–13,15,18,21,22,28,29,31,33,35,37,42,44,46,47,49–52,55–57,59,61,67,69,70,72,73, 77,79,81,83,85,86,88,94–96,98–100,106,110,111,113,115,119,122,125,128–133].

3.2. Methods Used in the Included Studies

The methods used in the included articles can also be found in Table 1. Clinical examinations (94/123), X-rays (39/123), study casts (20/123), intra- and extra-oral photographs (6/123), and interviews or questionnaires (12/123) were the most frequently used diagnostic methods. To assess malocclusion and orthodontic features, the method of Björk (15/123) or the Angle Classification (15/123), the Index of Orthodontic Treatment Need (16/123), or the Dental Aesthetic index (18/123) were explicitly used. However, the vast majority of the included studies used a non-validated method that was specific to the study.

3.3. Prevalence of Malocclusion

3.3.1. Sagittal Occlusion

The terminal plane of the deciduous molar was assessed in 10 of the included studies. A flush terminal plane was found in 41.7 ± 15.2% of the included studies (range 18.2–84.3%); a distal step was found in 12.4 ± 8.1% (range 0.0–33.6%), and a mesial step in 38.5 ± 10.7% (range 6.0–65.9%).

Regarding the permanent molar, 52 studies reported Angle class occlusion. The mean prevalence for Angle Class I “normal occlusion” was 46.3 ± 27.3% (range 1.7–93.6%); for Class I malocclusion, it was 46.5 ± 17.0% (range 7.4–84.0%); for Class II malocclusion, it was 25.0 ± 13.2% (range 0.8–72.1%); for Class II,1 malocclusion, it was 16.7 ± 12.7% (range 1.7–40.0%); for Class II,2 malocclusion, it was 4.7 ± 2.4% (range 1.4–13.2%); and for Class III malocclusion, it was 7.0 ± 7.9% (range 0.5–39.1%). Large variation was observed in the definitions, measurements, and prevalence of overjet and reverse overjet, which can be found in Table 2.

3.3.2. Vertical Occlusion

The prevalence of overbite and open bite varied considerably, as seen in Table 2.
Table 2. Prevalence of overjet, reversed overjet, overbite, and open bite.

First Author, Year	Subjects	Age Range (Total Sample)	Overjet	Reversed Overjet (Mandibular Overjet)	Overbite	Open Bite	Anterior Open Bite	Posterior Open Bite
Abu Alhaija, 2005 [12]	1003	13–15	4–6 mm: 21.7% >6 mm: 3%	1.9%	4–6 mm: 15.9% >6 mm: 1%	4–6 mm: 1.9% >6 mm: 1.0%		
Alajlan, 2019 [14]	520	7–12	<2 mm: 5% 2–4 mm: 71.2% >4 mm: 14.4% edge-edge: 4.2%	5.2%	2–4 mm: 83.8% >4–7 mm: 11% >8 mm: 5.2%	7.7%	0.6%	
al-Emran, 1990 [17]	500	13.5–14.5	0–1.9 mm: 2.6% >2 mm: 0.6%	5.2%	2–4 mm: 91.7% >4–7 mm: 7% >8 mm: 1.5%	0–1.9 mm: 3.6% >2 mm: 3%		
Arabiun, 2014 [21]	1338	14–18	0–2 mm: 73.0% >2 mm: 27.0%	1.1%	0–2 mm: 73.0% >2 mm: 27.0%	1.0%		
Bilgic, 2015 [32]	2329	12–16	0–4 mm: 73.5% >4 mm: 23.1%	1.0%	0–4 mm: 73.5% >4 mm: 23.1%	1.0%	8.2%	
Table 2. Cont.

First Author, Year	Subjects	Age Range (Total Sample)	Overjet	Reversed Overjet (Mandibular Overjet)	Overbite	Open Bite	Anterior Open Bite	Posterior Open Bite						
Total Number and Groups if Available	**Age Range, and If no Range, Mean Age ± SD**													
Bourzgui, 2012 [33]	1000	8–12	0 mm: 5.9%	1–4 mm: 63.9%	4–6 mm: 17.2%	>6 mm: 10%	0 mm: 7.1%	1–4 mm: 65.4%	4–6 mm: 16.6%	>6 mm: 7%	Indefinite 3.9%	0 mm: 97.1%	<3 mm: 1.7%	>3 mm: 1.2%
Calzada Bandomo, 2014 [34]	210	5–11	>9 mm: M: 29.1%–F: 27%	increased (no mm): M: 22.7%–F: 15%	M: 6.4%–F: 13%									
Carvalho, 2011 [36]	1069	5–5 Y11M	>2 mm: 10.5%	>2 mm: 19.7%	7.9%									
Chauhan, 2013 [37]	1188	9–12	0–2 mm: 63.7%	>2 mm: 36.3%	≥1 mm: 1.3%	≥1 mm: 0.8%								
Ciuffolo, 2005 [38]	810	11–14	>3 mm: 19.1%	>5 mm: 6.5%	negative OJ: 1.1%	>3 mm: 41%	>5 mm: 9.6%							
Coetzee, 2000 [39]	214	3–8	mean overjet 2.71 mm	1.9%	deep-3/10 overlap: 18.7%	edge to edge: 18.7%	10.3%							
Cosma, 2017 [40]	172	3–6	OJ > 4 mm: 14%	Abnormal OB: 9% (not defined)	11.0%									
Dacosta, 1999 [41]	1028	11–18	<2 mm: F: 20.4%–M: 17.1%	2–4 mm: F: 69.7%–M: 72.1%	5–8 mm: F: 7.5%–M: 7.6%	8–12 mm: F: 0.4%–M: 0.8%	12 mm: F: 0%–M: 0.2%	F: 2%–M: 2.1%	F: 1/3 overlap: F: 72.4%–M: 66.1%	>1/3 overlap but does not exceed middle 1/3 of crown: F: 18.9%–M: 26.0%	>overlap middle 1/3 of crown: F: 1.8%–M: 1.5%	F: 4.8%–M: 4.3%		
de Almeida, 2008 [43]	344	3.94 *	>3 mm: 16%	>3 mm: 7%	27.9%									
de Araújo Guimarães, 2018 [44]	390	8–10	≥4 mm: 15.6%	≥2 mm: 3.1%										
Table 2. Cont.

First Author, Year	Subjects	Age Range (Total Sample)	Overjet	Reversed Overjet (Mandibular Overjet)	Overbite	Open Bite	Anterior Open Bite	Posterior Open Bite
	Total Number and Groups if Available	Age Range, and If no Range, Mean Age ± SD		2/3 overlap:		A: 2.1%, B: 1.9%		
de Muniz, 1986 [45]	1554	12–13	≥6 mm	A: 9.9%, B: 2.9%	≥9 mm A:4.2% B: 2.4%	≥2/3 overlap: A: 8.1% B: 3.8%	3/3 overlap: A-3.5%, B-2%	
Dimberg, 2015 [46]	3 Y: 457 7 Y: 386 11.5 Y: 277	3 to 7 to 11.5	4–6 mm: 3 Y: 21.1%, 7 Y: 12.3%, 11.5 Y: 14.8%	>6 mm: 3 Y: 2.9%, 7 Y: 3.7%, 11.5 Y: 6.5%	>2/3: 3 Y: 5.8%, 7 Y: 2.6%, 11.5 Y: 18.4%	complete with gingival trauma: 2.2% (only 11.5 Y)	3 Y: 54.9%, 7 Y: 9.6%, 11.5 Y: 0.4%	
Esa, 2001 [48]	1519	12–13	>4 mm: 41.5%	<0 mm: 3.1%	≥3 mm: 34.1%	2.0%		
Fernandes, 2008 [50]	148	3–6	≥4 mm: 33.1%	35.1%				
Ferro, 2016 [51]	380	14	>3 mm: 48%	>5 mm: 15%	>3 mm: 39%	>5 mm: 9%	1.4%	
Frazao, 2006 [53]	13,801	12 and 18	≥4 mm: A-28.9%–B-21.1%	<0 mm: A-2%–B-2.2%	A-9.2%–B-8.6%			
Gabris, 2006 [54]	483	16–18	Ant. max. OJ: 60.8%	Ant. mand. OJ: 1.8%	deep bite: 26.1%	10.8%		
Gois, 2012 [55]	212	8–11	1–3 mm: 63.7%	1–3 mm: 19.3%	1–3 mm: 52.4%	>3 mm: 28.3%		
Grabowski, 2007 [56]	3041	4.5 and 8.3	>4–6 mm: A: 9.6%–B: 12%	>6 mm: A: 3.2%–B: 4.2%	>2 mm: A: 33.2%–B: 46.8%	A: 11.4%–B: 9.5%		
Gudipaneni, 2018 [58]	500	7–12	>2 mm: 22.2%	<1 mm: 11.4%	>2 mm: 23.4%	<1 mm: 12.2%	4.6%	
Hassanali, 1993 [62]	412 A: Maasai 235 B: Kikuyu 116 C: Kalejin 61	3–16	0.5–11.5 mm: A: 84.3% B: 99.1% C: 85.2%	0.5–9.9 mm: A: 78.6% B: 9.3% C: 59.0%	0.5–8.5 mm: A: 18.3% B: 9.3% C: 24.6%			
Table 2. Cont.

First Author, Year	Subjects	Age Range (Total Sample)	Overjet	Reversed Overjet (Mandibular Overjet)	Overbite	Open Bite	Anterior Open Bite	Posterior Open Bite				
Howell, 1993 [63]	154	13–17		10–50%: 61%								
Ingervall, 1975 [64]	200	8–16	6–9 mm: 7%	0–(-2) mm: 1.5%	5 < 7 mm: 15%	≥7 mm: 2%						
Jamilian, 2010 [65]	350	14–17	>9 mm: 3.1%	>–3.5 mm: 2.3%	7.7%							
Jerez, 2014 [66]	120	3–6	>9 mm: 47.1%	3.9%	39.2%							
Johnson, 2000 [68]	294	9.9–11.3	>6 mm: 17%	≥1 mm: 3.4%								
Kabue, 1995 [69]	221	3–6	13%		deep: 13%							
Kalbassi, 2019 [70]	1208	7–15	increased: 20.1%	9.8%	>4 mm: 17.8%							
Kasparviciene, 2014 [71]	709	5–7	edge–edge: 9.3%	0–2 mm: 40.8%	<0 mm: 3.8%	edge–edge: 9%	1–3 mm: 57.4%	>3 mm: 31.0%	2.6%	3.0%		
Komazaki, 2012 [74]	963	12–15	>6 mm: 9.8%	<-1 mm: 1.2%	>5 mm: 8.9%	<-4 mm: 0.5%						
Lux, 2009 [78]	494 M: 237 F: 257	8.6–9.6	2–3 mm: 3–4 mm: 6–9 mm: M: 23.4–F: 22.8%	6–9 mm: M: 6%–F: 4.7%	3–4 mm: M: 24.7–F: 29.1%	4–5 mm: M: 20.9–F: 16.5%	5–6 mm: M: 10.6–F: 3.1%	6–7 mm: M: 0.9–F: 0.8%	>7 mm: M: 2.1–F: 1.2%	3.0%–F: 4.3%		
Madiraju, 2021 [79]	>3.5 mm: 28.4%	>2/3 overlap: 16.3%	>2 mm: 98%	6.0%	4.0%	6.0%						
Mail, 2015 [80]	50	12	>2 mm: 98%	6.0%								
Martins, 2009 [81]	264	10–12	0.1–2 mm: 3.4%	2–3 mm: 33.7%	>3 mm: 50%	edge–edge: 3.8%	0.1–2 mm: 19.7%	2–3 mm: 30.3%	>3 mm: 36.7%	edge–edge: 4.2%	9.1%	0.6%
First Author, Year	Subjects	Age Range (Total Sample)	Overjet	Overbite	Open Bite	Anterior Open Bite	Posterior Open Bite					
--------------------	----------	--------------------------	---------	----------	-----------	------------------	---------------------					
Total Number and Groups if Available	**Age Range, and If no Range, Mean Age ± SD**											
Martins, 2019 [82]	1612	11–14	≤4 mm: 94.8% >4 mm: 5.2%	4.9%			≤2 mm: 99.2% >2 mm: 0.7%					
Mohamed, 2014 [84]	106	8–10	>6 mm: 17.8% total increased: 42.5%	4.7%	increased: 55.7% palatal trauma: 0.9%		0.9%					
Mtaya, 2009 [85]	1601	12–14	1–4.9 mm: 73.3% 5–8.9 mm: 11.1% ≥9 mm: 0.4%	0–1.9 mm: 8.2% ≥2 mm: 0.2%	0.1–2.9 mm: 65.9% 3–4.9 mm: 17.9% ≥5 mm: 0.9%		0–1.9 mm: 8.9% ≥2 mm: 6.1%;					
Mtaya, 2017 [86]	253	3–5	1–4.9 mm: 65.6% 5–8.9 mm: 1.2% <0–1.9 mm: 5.5%	0.1–2.9 mm: 60.9% 3–4.9 mm: 6.3% 0–1.9 mm: 15.8% ≥2 mm: 2.8%								
Murshid, 2010 [87]	1024	13–15	4–6 mm: 24% >6 mm: 5%	4–6 mm: 27% >6 mm: 13%								
Muyasa, 2012 [88]	1382	12–15	≥4 mm: 36.4%			14.0%						
Ng’ang’a, 1991 [89]	251	13–15	>4 mm: 23.1%	>2/3 overlap: 7.6%			9.6%					
Ng’ang’a, 1996 [90]	919	13–15	≥6 mm: 10%	0.0%	≥5 mm: 7%			8.0%				
Nguyen, 2014 [91]	200	12 and 18	>3.5 mm: 36.3%			>3.5 mm: 26.3%						
Onyeaso, 2004 [94]	636	12–17	>3 mm: 15.7%		>middle third: 14.1%		7.1%					
Oshagh, 2010 [96]	700	0–14	large: 30%	18.0%	deep bite: 53%			11.0%				
Perillo, 2010 [98]	703	12.2 ± 0.6	>4 mm: 16.2% 0–4 mm: 83.2% <0 mm: 0.6%	>4 mm: 20.2% 0–4 mm: 79.2%			0.7%					
Perinetti, 2008 [99]	1198	7–11	>3 mm: 45%		>middle third: 38.1%							
Pineda, 2011 [100]	307	6–11	>6 mm: 18.9%		with gingival/palatal trauma: 11.6%			1.7%				
Table 2. Cont.

First Author, Year	Subjects	Age Range (Total Sample)	Overjet	Reversed Overjet (Mandibular Overjet)	Overbite	Open Bite	Anterior Open Bite	Posterior Open Bite
Rapeepattana, 2019 [101]	202	8–9	0–3.5 mm: 46.7% 3.5–6 mm with comp lips: 40.5% 3.5–6 mm with incomp.lips: 2.6% 6.0–9.0 mm: 3.1% >9 mm: 1.5%	5.6%	0–3.5 mm: 50.3% >3.5 mm without gingival contact: 20.5% >3.5 mm with gingival contact: 21.0% >3.5 mm with gingival trauma: 6.7%	1.5%		
Rauten, 2016 [102]	147 A (6 Y): 69 B: (9 Y): 78	6 and 9	>3 mm: A: 10.1%–B: 55.1%	>1/3 overlap: A: 7.2%–B: 47.4%	A: 17.39%–B: 11.53%			
Rokke, 2007 [103]	434	2–6	>3 mm: 30.6%	2.3%	>3 mm: 16.1%	14.7%		
Rwakatema, 2007 [106]	289	12–15	>4 mm: 12.1%	>0 mm: 0.3%	6.2%			
Sanadhya, 2014 [107]	947	12–15	0 mm: 1.4% 1 mm: 36.1% 2–3 mm: 49% ≥4 mm: 12.7%	0 mm: 97.9% ≥1 mm: 2.1%	0 mm: 97.7% ≥1 mm: 2.3%			
Sánchez-Pérez, 2013 [108]	249	15	>2 mm: 39%	0.3%	4.5%			
Sepp, 2017 [111]	392	7.1–10.4	≥3.5 mm: 37.5%	1.0%	≥3.5 mm: 51.8%			
Sepp, 2019 [112]	390	4–5	≥3.5 mm: 15.6%	2.3%	≥3.5 mm: 38.7%	3.1%		
Shalish, 2013 [113]	432	7–11	≥7 mm: 3.7%	5.2% (impinging)	6.5%			
Singh, 2011 [114]	927	12	0–2 mm: 88.3% >2 mm: 11.7%	0–2 mm: 97.8% >2 mm: 2.1%	0 mm: 98.2% ≥1 mm: 1.8%			
Sonnesen, 1998 [116]	104	7–13	≥6 mm: 36.5%	1.9%	≥5 mm: 30.8%	3.8%		
Stahl, 2003 [117]	8864 A: Deciduous dentition B: Mixed dentition	2 > 10	A ≥3 mm: 16.8% B >4 mm: 13.8% A: 1.1% B: 1.2% ≥middle third A: 1.1% B: 1.2% A: 6.7% B: 2.8%					
Table 2. Cont.

First Author, Year	Subjects	Age Range (Total Sample)	Overjet	Reversed Overjet (Mandibular Overjet)	Overbite	Open Bite	Anterior Open Bite	Posterior Open Bite
Total Number and Groups if Available	Age Range, and If no Range, Mean Age ± SD							
Steinmassl, 2017 [119]	157	8–10	1 mm: 7.0% 2 mm: 15.9% 3 mm: 27.4% 4 mm: 19.1% 5 mm: 15.9% 6 mm: 9.6% 7 mm: 1.9% 10 mm: 0.6%	0 mm: 0.6% -0.6%	0 mm: 1.9% 1 mm: 4.5% 2 mm: 15.3% 3 mm: 27.4% 4 mm: 22.3% 5 mm: 17.8% 6 mm: 8.3% 7 mm: 2.6%			
Sundareswaran, 2019 [120]	1554	13–15	>3 mm: 11.8% edge-edge: 5.5%	1.6%	>1/2 overlap: 27.5%	1.6%		
Sunil, 2019 [121]	100	13–17	>3 mm: 26%		>2 mm: 17%			
Tausche, 2004 [123]	1975	6–8	>0 ≤ 3.5 mm: 60.2% >3.5 ≤ 6 mm: 25.3% >6 ≤ 9 mm: 5.0% >9 mm: 1.1%	<0 ≥ -1 mm: 0.5%	<3.5 mm: 53.8% ≥3.5 mm without gingival contact: 15.8% complete without trauma: 15.9% complete with trauma: 14.5%	NONE: 82.3% 1–3 mm: 14.9% 4–6 mm: 2.4% >6 mm: 0.4%		
Thilander, 2001 [124]	4724	5–17	>4 mm: 25.8%	5.8%	>4 mm: 21.6%	9.0%		
Todor, 2019 [126]	960	7–14	>1/3 overlap/28.7%			7.9%		
Uematsu, 2012 [127]	2378 A: 12–13 B: 15–16 12–13 15–16	>6 mm: A: 9.4%–B: 7.8%		deep: A: 8.4%–B: 5.8%		A: 0.6%–B: 1.2%		
Wagner, 2015 [130]	377	3	≥3 mm: 41.2%				10.9%	
Yu, 2019 [132]	2810	7–9	>3 ≤ 5 mm: 23.5% >5 ≤ 8 mm: 12.1% >8 mm: 5.2%	>2/3 overlap: 6.2%			4.3%	
Zhou, 2017 [133]	2335	3–5	>3 ≤ 5 mm: 26% >5 ≤ 8 mm: 6.9% >8 mm: 0.9%	>1/2 ≤ 3/4: 22.3% >3/4 < 1: 26.2%				

Legend: Prevalence of overjet, reversed overjet, overbite, and open bite are noted as in the included article. Y: age range is noted, but if not available, the mean ± SD are noted and * if SD not mentioned in article. Only mandatory if the groups mentioned are under subjects. Abbreviations: Y: years, SD: standard deviation, Yyears, M: months, ant.: anterior, max.: maxillary, mand.: mandibular, incomp.: incompetent.
3.3.3. Transversal Occlusion

The type of crossbite was not specified in 12 studies, and 58 investigated at least one type of crossbite. The mean prevalence of a non-specified crossbite in the studied populations was $6.2 \pm 7.8\%$ (range 1.0–36.0%). Additionally, $7.6 \pm 6.0\%$ presented a posterior crossbite (range 0.3–32.0%), $8.3 \pm 2.9\%$ (range 4.0–13.5%) presented a unilateral crossbite, and $2.5 \pm 1.8\%$ (range 0.0–6.5%) presented a bilateral crossbite. Nine studies dealt with the prevalence of scissor bite, reporting a weighted mean prevalence of $2.2 \pm 3.4\%$ (range 0.0–14.3%). The presence of a forced bite (crossbite with lateral or frontal shift) was assessed in nine studies and was found in $13.7 \pm 7.7\%$ of the included population (range 1.1–22.5%).

3.3.4. Tooth Anomalies

Hypodontia (wisdom teeth excluded) was reported in 44 articles, with a mean reported prevalence of $6.5 \pm 4.2\%$ (range: 0.0–18.6%). Hyperdontia was reported with a mean prevalence of $2.1 \pm 1.2\%$ (range: 0.2–4.5%) in 19 studies, and mesiodens showed a weighted mean prevalence of $1.3 \pm 0.5\%$ (range: 0.3–4.6%). In all of these studies, X-rays were taken. The prevalence of hypo-hyperdontia—the simultaneous occurrence of both abnormalities in the same person—was $0.4 \pm 0.1\%$ (range: 0.3–0.5%).

Only a few studies included other dental anomalies, such as impacted teeth (12 studies), ectopic eruption (8 studies), and transposition of teeth (6 studies). The mean prevalence of impacted teeth, ectopic eruption, and transposition was found in $4.0 \pm 2.4\%$ (range: 0.5–12.9%), $5.3 \pm 3.5\%$ (range: 0.9–11.1%), and $0.9 \pm 0.6\%$ (range: 0.1–1.4%), respectively.

3.3.5. Space Anomalies

Crowding was not defined in the vast majority if the studies assessing this parameter [1, 21, 22, 25, 27, 28, 32, 33, 35, 37, 40, 44–47, 53–55, 63, 65–70, 79, 80, 82, 83, 88, 96, 98, 101, 107–109, 112–114, 116, 117, 119–121, 124, 125, 132, 133]. The remaining studies used the Irregularity Index (Little, 1975) [51], the method of Björk [87, 90, 106], overlapping of erupted teeth due to insufficient space or lack of space for teeth to erupt in the dental arch [41, 58, 81, 127] and others.

In general, crowding represented a mean prevalence of $33.8 \pm 18.1\%$ (range: 0.8–93.4%). When assessed separately for the maxillary and mandibular arch, a weighted mean prevalence for crowding of $20.8 \pm 14.5\%$ (range: 1.7–77.9%) and $19.7 \pm 15.8\%$ (range: 0.3–83.3%) was found, respectively. The mean prevalence of spacing was reported in $18.7 \pm 13.7\%$ of the samples (range: 1.2–59.5%) and demonstrated $23.4 \pm 20.1\%$ (range: 1.8–62.2%) and $12.8 \pm 10.6\%$ (range: 1.3–30.0%) prevalence in the upper and lower jaw, respectively. The weighted mean prevalence of a midline diastema was reported in $13.8 \pm 14.2\%$ (range: 1.0–73.0%).

3.3.6. Oral Habits

A total of 11 articles reported oral habits, with some of them focusing on changes over time, while others just mentioned oral habits in correlation with malocclusion. The prevalence of oral habits ranged from 10.9% to 40.2%. Further details can be found in Table 3.

3.3.7. Geographic Differences

The prevalence of malocclusion and of the studied occlusal traits on the different continents is presented in Tables 4–7. For this, the studies were clustered per continent as follows: Africa, America, Asia, Europe, and Oceania.
Table 3. Prevalence of oral habits.

First Author, Year	Participants	Age Range in Y (Total Sample)	Location	Oral Habit in General	Non-Nutritive Sucking	Non-Nutritive Biting	Abnormal Tongue Position	Atypical Swallowing	Bruxism				
	Total Number	Country		In General Pacifier	Finger-/Thumb-Sucking	Bottle	Lip-Sucking	Lip-Inter-Position	Nail Biting	Object Biting	Cheek-/Lip-Biting	In General Tongue Threat	In General Incompetent Lip-Closure
Campos-Arias, 2013 [35]	88	Costa Rica	7–11	10.0%	19.0%	66.0%	7.9%	3.7%	7.0%	21.5%	10.2%		
Coetzee, 2000 [39]	214	South Africa	3–8	12.1%	6.5%	10.0%	7.5%	1.7%	3.7%	14.1%	6.5%	21.5%	14.1%
Howell, 1993 [63]	154	Australia	13–17	5.0%	14.0%	30.0%	7.0%	1.4%	14.0%	7.0%	2.0%	4.0%	14.0%
Kasparviciene, 2014 [71]	709	Lithuania	3–8	1.4%	8.7%	30.0%	7.0%	1.4%	1.4%	21.5%	14.1%	6.5%	21.5%
Kolawole, 2019 [72]	992	Nigeria	1–12	13.1%	6.5%	40.0%	13.0%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%
Lagana, 2013 [70]	251	Tanzania	7–15	81.0%	28.0%	28.0%	20.0%	13.0%	1.4%	21.5%	14.1%	6.5%	21.5%
Mtaya, 2017 [64]	432	Israel	7–11	10.0%	40.0%	30.0%	10.0%	4.0%	9.0%	16.2%	1.4%	1.4%	1.4%
Nahali, 2013 [113]	800	Brazil	12–15	63.3%	1.1%	14.4%	3.5%	60.3%	55.2%	40.3%	20.3%	40.3%	20.3%
Shalish, 2013 [113]	300	Germany	2 > 10	40.2%	28.1%	28.1%	20.0%	27.3%	28.1%	20.2%	28.1%	28.1%	20.2%
Stahl, 2001 [117]	8000	Germany	2 > 10	40.2%	28.1%	28.1%	20.0%	27.3%	28.1%	20.2%	28.1%	28.1%	20.2%
Thomas, 2013 [120]	200	Brazil	12–15	63.3%	1.1%	14.4%	3.5%	60.3%	55.2%	40.3%	20.3%	40.3%	20.3%
Wagner, 2015 [130]	357	Germany	3	60.1%	4.3%	60.1%	4.3%	60.1%	4.3%	60.1%	4.3%	60.1%	4.3%

Legend: The prevalence of different oral habits is noted as provided in the included articles. Age: age range in years (Y) is noted. Abbreviations: Y: years.
Table 4. Prevalence of angle classification and deciduous molar occlusion according to geographical location.

Continent	Class I	Class I Malocclusion	Class II	Class II, 1	Class II, 2	Class III	FTP	DS	MS
Africa	58.1 ± 33.9%	71 ± 16.5%	9.7 ± 8.6%	58 ± 52%	1.4 ± 0.0%	4.8 ± 4.2%	35.9 ± 17.4%	0.9 ± 1.0%	54.8 ± 11.0%
America	13.9 ± 4.8%	50.6 ± 3.2%	28.4 ± 11.7%	17 ± 0.0% *	5.3 ± 0.0%	13.9 ± 15.8%	73.9 ± 17.6%	7.9 ± 3.0%	15.9 ± 16.7%
Asia	50.6 ± 26.9%	41.5 ± 18.5%	27.4 ± 14.9%	19.5 ± 15.2%	4.2 ± 1.9%	7.8 ± 4.2%	41.6 ± 6.7%	10.2 ± 1.4%	36.4 ± 15.5%
Europe	47.4 ± 17.2%	46.6 ± 6.9%	25.1 ± 8.6%	16.1 ± 5.7%	4.9 ± 2.6%	3.4 ± 2.6%	28.1 ± 14.7%	24.9 ± 8.8%	47.6 ± 4.7%
Oceania	65.0 ± 0.0% *	NA	5.0 ± 15.0%	12.0 ± 0.0% *	7.0 ± 0.0% *	NA	NA	NA	NA

Legend: The weighted mean and standard deviation of the prevalence of the class I angle classification and deciduous molar occlusion in noted in %. * If only one study is available. NA (not available): if no data available for the given continent. Abbreviations: Class I: Angle Class I normal molar occlusion (well-aligned dental arches without any anomalies); Class I malocclusion: Angle Class I molar occlusion but with an anomaly; Class II: Angle Class II malocclusion; Crossbite (not specified, posterior crossbite, unilateral- and bilateral crossbite, anterior crossbite, scissor bite, and crossbite with functional shift) according to geographical location given in %. * If only one study is available. NA (not available): if no data available for the given continent.

Table 5. Prevalence of different transversal malocclusions and anterior crossbite according to geographical location.

Continent	Crossbite (Not Specified)	Posterior Crossbite (Not Specified)	Posterior Crossbite Unilateral	Posterior Crossbite Bilateral	Anterior Crossbite	Scissor Bite	Forced Bite/Crossbite with Frontal/Lateral Shift
Africa	1.2 ± 0.0% *	5.5 ± 2.8%	5.5 ± 0.0% *	1.6 ± 0.0% *	5.5 ± 1.9%	10.3 ± 4.8%	14.7 ± 10.3%
America	NA	9.3 ± 6.3%	13.0 ± 12.2%	3.8 ± 1.4%	4.9 ± 3.9%	1.0 ± 0.6%	NA
Asia	8.9 ± 14.0%	6.6 ± 7.0%	5.0 ± 2.1%	5.0 ± 1.0%	10.3 ± 6.5%	1.8 ± 1.6%	11.9 ± 4.8%
Europe	5.1 ± 2.9%	8.9 ± 4.3%	8.6 ± 1.8%	1.6 ± 1.1%	5.6 ± 4.0%	1.0 ± 1.5%	13.7 ± 5.5%
Oceania	NA	13.0 ± 0.0% *	6.5 ± 0.0% *	12 ± 0.0%	NA	NA	NA

Legend: The weighted mean and standard deviation of the prevalence of different transversal malocclusions: crossbite (not specified, posterior crossbite, unilateral- and bilateral crossbite, anterior crossbite, scissor bite, and crossbite with functional shift) according to geographical location are noted in %. * If only one study is available. NA (not available): if no data available for the given continent.

Table 6. Prevalence of tooth anomalies according to geographical location.

Continent	Agenesis/Hypodontia	Mesiodens	Supernumerary Teeth/Hypodontia	Hypo-Hypodontia	Impacted/Retained Teeth (Impeded Eruption)	Ectopic Eruption	Transposition
Africa	3.4 ± 2.2%	NA	0.3 ± 0.2%	NA	3.0 ± 0.0% *	9.7 ± 0.0% *	0.2 ± 0.1%
America	5.0 ± 3.3%	15 ± 0.0% *	1.9 ± 0.4%	NA	3.9 ± 2.9%	1.5 ± 0.0% *	NA
Asia	8.1 ± 63%	NA	2.7 ± 1.6%	NA	4.8 ± 4.1%	6.0 ± 4.0%	0.5 ± 0.4%
Europe	6.9 ± 3.2%	1.3 ± 0.9%	2.3 ± 1.3%	0.4 ± 0.1%	3.8 ± 0.8%	7.5 ± 0.0% *	1.3 ± 0.7%
Oceania	7.0 ± 0.0% *	NA	1.0 ± 0.0% *	NA	5.0 ± 0.0% *	NA	NA

Legend: The weighted mean and standard deviation of the prevalence of different tooth anomalies: hypodontia, hypodontia, impacted/retained teeth, ectopic eruption, and transposition, according to geographical location are provided in percentages. * If only one study is available. NA (not available): if no data available for the given continent.

Table 7. Prevalence of space anomalies according to geographical location.

Continent	Crowding Maxillary Arch	Crowding Mandibular Arch	Crowding	Spacing Maxillary Arch	Spacing Mandibular Arch	Spacing	Midline Diastema
Africa	23.8 ± 11.8%	24.8 ± 10.6%	24.5 ± 15.9%	32.2 ± 14.4%	22.0 ± 8.5%	32.6 ± 10.7%	36.8 ± 0.0% *
America	17.3 ± 4.3%	12.3 ± 2.7%	42.1 ± 7.3%	1.8 ± 0.0% *	13.0 ± 0.0% *	23.5 ± 4.7%	11.1 ± 7.3%
Asia	35.3 ± 21.3%	35.4 ± 22.2%	24.9 ± 17.2%	10.7 ± 5.9%	16.7 ± 14.3%	8.3 ± 4.8%	
Europe	15.6 ± 19.0%	23.3 ± 19.4%	28.1 ± 11.2%	44.0 ± 15.7%	14.4 ± 2.5%	7.2 ± 13.5%	30.9 ± 20.9%
Oceania	6.0 ± 0.0% *	NA	77.4 ± 3.9%	NA	NA	45.1 ± 20.0%	NA

Legend: The weighted mean and standard deviation of the prevalence of space anomalies: crowding, spacing, and midline diastema, according to geographical location given in %. * If only one study is available. NA (not available): if no data available for the given continent.
3.4. Risk of Bias

The risk of bias of the included articles determined according to the MINORS tool is shown in Table 8. The scores of each article are plotted in Figures 2 and 3 for non-comparative and comparative studies, respectively, and are sorted by publication year, from oldest to newest. The lowest score for non-comparative studies was 2, and the highest was 10, with a possible maximum score of 16. For comparative studies, the lowest score was 5, and the highest was 13, with a possible maximum of 24. A very discrete tendency to better article quality over time can be found in both comparative and non-comparative studies.

Table 8. Risk of bias assessment according to the MINORS tool.

Author, Year	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	T
1 Rolling, 1980 [104]	1	0	0	1	1	0	0	0	NC	NC	NC	NC	3
2 O'Dowling, 1989 [93]	1	0	0	1	1	0	0	0	NC	NC	NC	NC	2
3 Al-Emran, 1990 [17]	2	0	0	2	1	0	0	0	NC	NC	NC	NC	5
4 O'Dowling, 1990 [94]	1	0	0	1	1	0	0	0	NC	NC	NC	NC	2
5 Ng'ang’a, 1991 [89]	2	0	2	1	1	0	0	0	NC	NC	NC	NC	4
6 Aasheim, 1993 [11]	2	0	1	2	1	0	0	0	NC	NC	NC	NC	5
7 Howell, 1993 [63]	1	0	1	1	1	0	0	0	NC	NC	NC	NC	4
8 Kabue, 1995 [69]	2	0	1	1	1	0	0	0	NC	NC	NC	NC	5
9 Ng’ang’a, 1996 [90]	2	0	2	2	1	0	0	0	NC	NC	NC	NC	7
10 Johannsdottir, 1997 [67]	2	0	1	1	1	0	0	0	NC	NC	NC	NC	5
11 Sonnesen, 1998 [116]	2	0	0	2	1	0	0	0	NC	NC	NC	NC	5
12 Coetzee, 2000 [39]	2	0	2	2	1	0	0	0	NC	NC	NC	NC	7
13 Johnson, 2000 [68]	2	0	2	1	1	0	0	0	NC	NC	NC	NC	7
14 Ng’ang’a, 2001 [91]	2	0	0	1	1	0	0	0	NC	NC	NC	NC	4
15 Stahl, 2003 [118]	1	0	0	1	1	0	0	0	NC	NC	NC	NC	3
16 Onyeaso, 2004 [95]	2	0	2	2	1	0	0	0	NC	NC	NC	NC	7
17 Abu Alhaija, 2005 [12]	2	0	1	2	1	1	0	0	NC	NC	NC	NC	8
18 Behbehani, 2005 [28]	1	0	2	1	2	0	0	1	NC	NC	NC	NC	7
19 Alberti, 2006 [16]	2	0	2	2	1	0	0	0	NC	NC	NC	NC	7
20 Frazao, 2006 [53]	1	0	2	2	1	0	0	0	NC	NC	NC	NC	6
21 Gabris, 2006 [54]	2	0	2	2	1	0	0	0	NC	NC	NC	NC	6
22 Alkilzy, 2007 [18]	2	0	2	2	2	0	0	0	NC	NC	NC	NC	8
23 Altug-Atac, 2007 [20]	2	0	0	2	1	0	0	0	NC	NC	NC	NC	5
24 Graboswki, 2007 [56]	2	0	1	1	1	0	0	0	NC	NC	NC	NC	5
25 Rwakatema, 2007 [106]	2	0	2	2	1	0	0	0	NC	NC	NC	NC	7
26 de Almeida, 2008 [43]	2	0	2	1	1	0	0	0	NC	NC	NC	NC	8
27 Fernandes, 2008 [30]	2	0	1	1	1	0	0	0	NC	NC	NC	NC	6
28 Perinetti, 2008 [99]	2	0	2	2	1	0	0	0	NC	NC	NC	NC	7
29 Robke, 2008 [103]	1	0	0	1	1	0	0	0	NC	NC	NC	NC	3
30 Martins, 2009 [81]	2	0	2	2	2	0	0	0	NC	NC	NC	NC	10
31 Lux, 2009 [78]	2	0	2	2	2	0	0	0	NC	NC	NC	NC	8
32 Rozsa, 2009 [105]	2	0	0	2	1	0	0	0	NC	NC	NC	NC	5
33 Varela, 2009 [128]	2	0	0	1	1	0	0	0	NC	NC	NC	NC	4
34 Jamal, 2010 [65]	2	0	1	1	1	0	0	0	NC	NC	NC	NC	4
35 Murshid, 2010 [87]	2	0	2	2	1	0	0	0	NC	NC	NC	NC	7
36 Oshagh, 2010 [96]	2	0	0	1	1	0	0	0	NC	NC	NC	NC	4
37 Perillo, 2010 [98]	2	0	2	2	1	0	0	0	NC	NC	NC	NC	9
38 Bhardwaj, 2011 [30]	2	0	0	2	1	0	0	0	NC	NC	NC	NC	5
39 Campos-Arias, 2013 [35]	2	1	1	1	1	0	0	0	NC	NC	NC	NC	6
40 Carvalho, 2011 [36]	2	0	2	2	1	0	0	0	NC	NC	NC	NC	9
41 Pineda, 2011 [100]	2	0	0	1	1	0	0	0	NC	NC	NC	NC	4
42 Singh, 2011 [114]	2	0	2	1	1	0	0	0	NC	NC	NC	NC	7
43 Bourzgui, 2012 [33]	2	0	2	2	1	0	0	0	NC	NC	NC	NC	7
44 Medina, 2012 [83]	2	0	0	1	1	0	0	0	NC	NC	NC	NC	3
45 Muyasa, 2012 [127]	2	0	1	1	1	0	0	0	NC	NC	NC	NC	6
46 Thomaz, 2013 [125]	1	0	1	1	0	0	1	1	NC	NC	NC	NC	5
Table 8. Cont.

Author, Year	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	T
48 Al-Amiri, 2013 [15]	2 0 0 2 1 0 0 0 NC NC NC 5												
49 Baskaradoss, 2013 [27]	2 0 2 1 1 0 0 1 NC NC NC 7												
50 Chauhan, 2013 [37]	2 0 2 2 1 0 0 0 NC NC NC 7												
51 Lagana, 2013 [75]	2 0 1 1 1 0 0 1 NC NC NC 6												
52 Lara, 2013 [57]	2 0 0 1 1 0 0 0 NC NC NC 4												
53 Sánchez-Pérez, 2013 [108]	2 0 1 1 1 0 0 1 NC NC NC 6												
54 Shalish, 2013 [115]	2 0 1 1 1 0 0 1 NC NC NC 6												
55 Alsoleihat, 2014 [19]	2 0 1 1 1 0 0 0 NC NC NC 6												
56 Baral, 2014 [25]	2 0 1 2 1 0 0 0 NC NC NC 6												
57 Calzada Bandomo, 2014 [34]	2 0 1 2 1 0 0 0 NC NC NC 6												
58 Jerez, 2014 [66]	1 0 1 1 0 0 0 0 NC NC NC 3												
59 Kasparviciene, 2014 [71]	2 0 1 2 1 0 0 1 NC NC NC 7												
60 Mohamed, 2014 [84]	1 0 1 1 1 0 0 0 NC NC NC 4												
61 Nguyen, 2014 [92]	2 0 1 1 1 0 0 1 NC NC NC 7												
62 Sanadhy, 2014 [107]	2 0 1 1 1 0 0 1 NC NC NC 7												
63 Mail, 2015 [80]	1 0 1 1 0 0 0 0 NC NC NC 3												
64 Wagner, 2015 [130]	2 0 2 1 1 0 0 0 NC NC NC 6												
65 Ferro, 2016 [51]	2 0 1 2 0 0 0 0 NC NC NC 7												
66 Rauten, 2016 [102]	2 0 0 1 0 0 0 0 NC NC NC 3												
67 Araki, 2017 [22]	2 0 2 1 1 0 0 0 NC NC NC 6												
68 Badrov, 2017 [24]	1 0 0 1 1 0 0 0 NC NC NC 3												
69 Cosma, 2017 [40]	2 0 0 2 1 0 0 0 NC NC NC 5												
70 Gracco, 2017 [57]	2 0 0 2 0 0 0 0 NC NC NC 4												
71 Sepp, 2017 [111]	2 0 1 1 1 0 0 1 NC NC NC 7												
72 Steinmassl, 2017 [119]	2 0 2 2 1 0 0 2 NC NC NC 9												
73 Vitanaarchchi, 2017 [129]	2 0 1 1 1 0 0 0 NC NC NC 5												
74 Zhou, 2017 [133]	2 0 1 1 1 0 1 1 NC NC NC 7												
75 Abumelha, 2018 [13]	2 0 0 2 1 0 0 0 NC NC NC 5												
76 Baron, 2018 [26]	2 0 0 2 1 1 0 0 NC NC NC 5												
77 de Araújo Guimarães, 2018 [44]	2 0 2 1 1 0 0 2 NC NC NC 8												
78 Gutierrez Marin, 2019 [59]	2 0 0 2 1 0 0 0 NC NC NC 5												
79 Mtaya, 2017 [86]	2 0 2 2 1 0 0 0 NC NC NC 7												
80 Sejini, 2018 [110]	2 0 1 1 1 0 0 0 NC NC NC 6												
81 Sola, 2018 [115]	2 0 0 2 1 0 0 0 NC NC NC 5												
82 Alajlan, 2019 [14]	2 0 1 1 1 0 0 0 NC NC NC 5												
83 Daou, 2019 [42]	2 0 2 2 1 0 0 0 NC NC NC 5												
84 Kalbassi, 2019 [70]	2 0 0 2 1 0 0 0 NC NC NC 5												
85 de Araújo Guimarães, 2018 [44]	2 0 2 1 1 0 0 2 NC NC NC 8												
86 Rapeepattana, 2019 [101]	2 0 2 1 1 0 0 2 NC NC NC 8												
87 Sepp, 2019 [112]	2 0 1 1 1 0 0 1 NC NC NC 7												
88 Todor, 2019 [126]	2 0 2 2 1 0 0 0 NC NC NC 7												
89 Yu, 2019 [132]	2 0 1 1 1 0 0 0 NC NC NC 5												
90 Madiruja, 2021 [79]	2 0 1 1 1 0 1 2 NC NC NC 8												
91 Engervall, 1975 [64]	2 0 1 2 1 0 0 0 0 0 0 1 7												
92 de Muniz, 1986 [45]	2 0 2 1 1 0 0 0 0 1 0 1 8												
93 Hassanalil, 1993 [62]	2 0 2 2 1 0 0 0 0 0 0 0 7												
94 Bacetti, 1998 [23]	2 0 0 2 1 0 0 0 1 0 0 1 7												
95 Dacosta, 1999 [41]	2 0 0 1 1 0 0 0 0 1 0 1 6												
96 Esa, 2001 [46]	2 0 2 1 1 0 0 2 1 1 0 2 12												
97 Thlander, 2001 [124]	2 0 2 2 1 0 0 0 0 0 0 0 7												
98 Stahl, 2003 [117]	1 0 1 1 1 0 0 0 0 0 0 2 6												
99 Tausche, 2004 [123]	2 1 0 1 1 0 0 2 0 0 0 2 9												
100 Ciuffolo, 2005 [38]	2 0 0 2 1 0 0 0 0 0 0 2 7												
Table 8. Cont.

Author, Year	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	T
Endo, 2006 [47]	2 0 0 2 1 0 0 0 0 0 0 2 7												
Esenlik, 2007 [49]	2 0 1 2 1 0 0 0 0 0 0 1 7												
Harris, 2008 [60]	2 0 0 1 1 0 0 0 1 0 0 2 7												
Harris, 2008 [61]	2 0 0 1 1 0 0 0 1 0 0 2 7												
Mtaya, 2009 [85]	2 0 2 2 1 0 0 0 0 0 0 2 9												
Berneburg, 2010 [29]	2 0 2 2 2 0 0 1 0 0 0 2 11												
Bhayya, 2011 [31]	2 0 2 2 1 0 0 0 0 0 0 0 7												
Seemann, 2011 [109]	2 0 2 2 1 1 0 0 0 0 0 0 7												
Gois, 2012 [55]	2 0 2 2 1 1 0 0 0 0 0 0 7												
Komazaki, 2012 [74]	2 1 2 2 1 0 0 1 0 1 1 2 13												
Arabiun, 2014 [21]	2 0 2 2 1 0 0 0 0 0 0 0 7												
Pagan-Collazo, 2014 [97]	2 0 2 2 1 0 0 2 0 0 0 0 2 11												
Bilgic, 2015 [32]	2 0 0 2 1 0 0 0 0 0 0 2 7												
Dimberg, 2015 [46]	2 0 1 1 1 0 0 0 0 1 0 2 8												
Ferro, 2016 [51]	2 0 1 2 1 0 0 2 0 1 0 0 9												
Yassin, 2016 [131]	2 0 1 1 1 0 0 0 0 1 0 2 8												
Lagana, 2017 [76]	2 0 0 1 1 0 0 0 0 1 1 1 7												
Gudipaneni, 2018 [58]	2 0 2 2 1 0 0 2 0 1 0 0 12												
Kolawole, 2019 [73]	2 0 2 2 1 0 0 2 0 1 1 2 13												
Martins, 2019 [82]	2 0 2 2 1 0 0 2 0 1 0 2 12												
Sundareswaran, 2019 [119]	2 0 1 1 1 0 0 1 0 1 1 1 9												
Sunil, 2019 [120]	2 0 1 1 1 0 0 0 0 1 1 0 7												
Swarnalatha, 2020 [121]	2 0 0 1 1 0 0 0 0 0 0 1 5												

Legend: 1–87: the included non-comparative studies sorted by ascending year of publication; 88–123: the included comparative studies sorted by ascending year of publication. Abbreviations: M: MINORS item; M1: clearly stated aim; M2: inclusion of consecutive sample; M3: prospective collection of data; M4: end point appropriate to aim; M5: unbiased assessment of endpoints; M6: follow up period appropriate to aim; M7: loss to follow up less than 5%; M8: prospective calculation of study size; M9: adequate control group; M10: contemporary groups; M11: baseline equivalence; M12: adequate statistical analysis; T: total; NC: non-comparative; C: comparative studies.

Figure 2. Risk of bias assessment for non-comparative studies.
4. Discussion

This systematic review was performed to identify, synthesize, and assess the available evidence on the prevalence of malocclusion and other orthodontic features in subjects younger than 18 years old.

According to the WHO, before an epidemiological survey can be carried out, the investigators need to decide the following: whether to perform it at a local, regional, or national level; what variables to examine; which age groups to include [134]. Prior to the start, clear definitions should be provided to the study variables and measurement protocols and how to record the results should be defined. Ethnicity and geographical data are also indispensable [134], and performing a prospective calculation of the sample size and eventual subsamples is advised [10], since diagnostic criteria need to be based on comparable data in a representative sample. When reporting the results, all of the materials and methods should be described in detail to be able to evaluate possible selection and/or design bias.

Sample size is an important factor. Only 32 of the 123 studies included in this systematic review reported sample size estimation prior to the start. Size differences ranging from 50 to 13,801 individuals can be found in the included studies, which can partially explain the large ranges found in the prevalence of some of the studied malocclusion traits. The use of patient samples can also introduce additional bias over random samples since patients seek dental or orthodontic treatment for a reason. In this sense, it is preferable to conduct an epidemiological study on a population-based sample rather than on patient populations.

It is hard to draw solid conclusions regarding different orthodontic parameters due to the large variety of methods used to assess the different orthodontic features. Some examples of this inconsistency can be found in the description of overjet. The included studies defined increased overjet as >2.5 mm [29], >3 mm [81], >4 mm [14], and >6 mm [22], which makes it impossible to compare the data. Due to this heterogeneity in reporting,
it was impossible to distinguish prevalence of occlusion according to age or dental stage, since most articles report groups with a large age range and do not provide this distinction.

The Dental Aesthetic Index (DAI) was used to report the findings of several studies, which is in accordance with the methods recommended by the WHO to standardize epidemiological data on malocclusion and treatment need [134]. However, the DAI is not a complete measure of malocclusion, but rather an aesthetic treatment need index since it does not measure occlusal parameters such as crossbite, asymmetry, midline deviation, missing molars, or impacted teeth [114].

Other studies used the Dental Health Component of the Index ofOrthodontic Treatment Need to assess different orthodontic features (Table 1). Araki et al. stated that only the IOTN can diagnose the type of malocclusion, such as increased or reverse overjet, overjet, deep bite, open bite, and crowding [22]. Although they score some orthodontic features, neither the IOTN nor DAI were developed to perform epidemiological surveys on the prevalence of orthodontic features, but rather to assess orthodontic treatment need [135,136]. Thirty-nine of the studies included in this Systematic Review used X-rays, ten of which were performed in schoolchildren. The British Orthodontic Society states that each radiograph must be clinically justified because the prescription of a radiograph is a procedure with a low but nevertheless inferred risk [137]. In this context, the assessment of some orthodontic features such as the presence of hypodontia, impacted, or retained teeth, etc., remains a problem since taking radiographs for epidemiological studies is not initially indicated.

Oral habits can influence the development of malocclusion [71]. Thumb and finger sucking can cause an open bite in preadolescent children, and when such oral habits are persistent, increased overjet, decreased overbite, and crossbite can be observed [138]. The use of pacifiers has been linked to an increased prevalence of an anterior open bite and posterior crossbite [139]. Furthermore, tongue thrust at swallowing or rest can cause malocclusions such as open bite [4]. Stahl et al. found a decrease in oral habits from 40.2% in deciduous dentition to 26.1% in mixed dentition [118]. The protocols to diagnose infantile swallowing, sucking habits, and tongue position are rarely mentioned in the studies and are mostly based on subjective data. Often, the assessment of a child’s current and previous oral habits is based on information obtained from the parents, either informally or through non-validated questionnaires [71]. Therefore, there is an urgent need to develop methods that allow for the objective quantification of oral habits. The geographical differences in the prevalence of malocclusion traits are also worth mentioning. For instance, the prevalence of Angle Class II malocclusion was reported to be around 25% in America, Asia, and Europe, while the mean prevalence in Africa was 8.80 ± 10.36%. The weighted mean prevalence for Class III malocclusions for Europe, America, Africa, and Asia is 3.4 ± 1.4%, 4.1 ± 1.4%, 4.8 ± 4.2%, and 7.8 ± 4.2%, respectively, which is in accordance with the conclusions of Proffit that Class III malocclusions are more prevalent in Asian populations [4]. The mean prevalence of anterior crossbite was the highest in Asia (10.3 ± 6.5%) and the lowest in America (1.0 ± 0.6%).

Regarding transversal discrepancies, while posterior crossbites were more prevalent in America (13.0 ± 1.2%) than in Africa (5.5 ± 2.8%), a forced bite was the most prevalent in Africa (14.7 ± 10.3%) followed by Europe (13.7 ± 5.5%), and a scissor bite was the most prevalent in Africa (10.3 ± 4.8%). The prevalence of tooth anomalies ranged from 3.4 ± 2.2% in Africa to 8.1 ± 6.3% in Europe for hypodontia and from 0.3 ± 0.2% in Africa to 2.7 ± 1.6% in Asia for hyperdontia.

The geographical differences found in this systematic review are in accordance with the findings reported by Cenzato et al., which suggest that genetic and environmental factors that typically influence malocclusion traits in each population [140]. However, these differences could also be accounted for by the large heterogeneity in study designs, classifications for tooth anomalies, and a lack of clear international terminology, as previously reported by Anthonappa et al. [141]. Specifically, for the articles included in this review, the large ranges reported and the disparity in the number of studies per continent could have also played a role in the observed geographical differences.
5. Conclusions

A plethora of methods to determine the prevalence of malocclusion and orthodontic features was found across the included studies, which makes the data regarding prevalence of malocclusion unreliable. The mean prevalence of Angle Class I, Class II and Class III malocclusion was 51.9% (SD 20.7), 23.8% (SD 14.6) and 6.5% (SD 6.5), respectively. The prevalence of anterior crossbite, posterior crossbite and crossbite with functional shift was 7.8% (SD 6.5), 9.0% (SD 7.34) and 12.2% (SD 7.8), respectively. The prevalence of hypodontia and hyperdontia were reported to be 6.8% (SD 4.2) and 1.8% (SD 1.3), respectively. For impacted teeth, ectopic eruption and transposition, a mean of 4.9% (SD 3.7), 5.4% (SD 3.8) and 0.5% (SD 0.5) was found, respectively. There is an urgent need to establish methodological protocols for epidemiological studies in orthodontics, which should be reached in consensus with academia and professional societies. Only this will allow objective data to be obtained on which recommendations to the healthcare sector and involved stakeholders can be based.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/ijerph19127446/s1.

Author Contributions: Conceptualization, L.D.R., D.D., G.W. and M.C.d.L.-P.; methodology, L.D.R., D.D., G.W. and M.C.d.L.-P.; validation, L.D.R., D.D., G.W. and M.C.d.L.-P.; formal analysis, L.D.R., A.A. and M.C.d.L.-P.; investigation, not applicable; resources, not applicable; data curation, L.D.R. and M.C.d.L.-P.; writing—original draft preparation, L.D.R., A.A. and M.C.d.L.-P.; writing—review and editing, L.D.R., A.A., D.D., G.W. and M.C.d.L.-P.; visualization, L.D.R. supervision, D.D., G.W. and M.C.d.L.-P.; project administration, L.D.R.; funding acquisition, not applicable. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article or Supplementary Material.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Abbreviation	Description
SD	Standard deviation
ES	Epidemiological survey
CS	Cross-Sectional study
LS	Longitudinal study
Nr.	Number of subjects
Sch.Ch.	Schoolchildren
Ch.	Children
Pat.	Patients
Pat. rec.	Patient records
Clin. Exam.	Clinical examination
OPT	Orthopantomogram
Interv.	Interviews
Quest.	Questionnaires
IOTN	Index of Orthodontic Treatment Need
DAI	Dental Aesthetic Index
ICON	Index of Complexity, Outcome and Need
ANGLE	Angle classification
BJÖRK	Björk’s method
Y	Years
Class I “normal occlusion” Angle Class I normal molar occlusion with well aligned dental arches without any anomalies.
Class I malocclusion Angle Class I molar occlusion but with an anomaly
Class II Angle Class II malocclusion
Class II, 1 Angle Class II,1 malocclusion
Class II, 2 Angle Class II,2 malocclusion
Class III Angle Class III malocclusion
FTP Flush distal plane second deciduous molars
DS Distal step second deciduous molars
MS Mesial step second deciduous molars
M MINORS item
T Total
NC Noncomparative study
C Comparative study
%
Percentage, noted as noted in the article; in most of the cases, two decimals are reported, and if not possible, one or no decimals are reported

References
1. World Dental Federation. From Strictly Aesthetics to an Integral Part of Oral Health: A Brief History of Orthodontics through the Ages. Available online: https://www.fdiworlddental.org/strictly-aesthetics-integral-part-oral-health-brief-history-orthodontics-through-ages (accessed on 2 June 2022).
2. Carels, C.; De Ridder, J.; Van Loock, N.; Bogaerts, K.; Eyssen, M.; Obyn, C. Orthodontics for Children and Adolescents. KCE Reports 77, Federaal Kenniscentrum Voor de Gezondheidszorg, 2008. Available online: https://kce.fgov.be/en/publication/report/orthodontics-for-children-and-adolescents (accessed on 16 October 2021).
3. Hassan, R.; Ak, R. Occlusion, malocclusion and method of measurements—An overview. Arch. Orfac. Sci. 2007, 2, 3–9.
4. Proffit, W.R.; Fields, H.W.; Larson, B.; Sarver, D.M. Contemporary Orthodontics-e-Book; Mosby: London, UK, 2018; p. 746.
5. Brunelle, J.; Bhat, M.; Lipton, J. Prevalence and distribution of selected occlusal characteristics in the US population, 1988–1991. J. Dent. Res. 1996, 75, 706–713. [CrossRef] [PubMed]
6. Lin, M.; Xie, C.; Yang, H.; Wu, C.; Ren, A. Prevalence of malocclusion in Chinese schoolchildren from 1991 to 2018: A systematic review and meta-analysis. Int. J. Paediatr. Dent. 2020, 30, 144–155. [CrossRef] [PubMed]
7. Akbari, M.; Lankarani, K.; Honarvar, B.; Tabrizi, R.; Mirhadi, H.; Moosazadeh, M. Prevalence of malocclusion among Iranian children: A systematic review and meta-analysis. Dent. Res. J. 2016, 13, 387–395.
8. International Clearinghouse for Birth Defects Monitoring Systems. International Centre for Birth Defects WHGP, European Registration of Congenital Anomalies. World Atlas of Birth Defects 2nd Edition. World Health Organization. 2003. Available online: https://apps.who.int/iris/handle/10665/42630 (accessed on 16 October 2021).
9. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PloS Med. 2009, 6, e1000097. [CrossRef] [PubMed]
10. Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index for non-randomized studies (MINORS): Development and validation of a new instrument. ANZ J. Surg. 2003, 73, 712–716. [CrossRef]
19. Alsoleihat, F.; Khraisat, A. Hypodontia: Prevalence and pattern amongst the living Druze population-a Near Eastern genetic isolate. *HOMO 2014*, 65, 201–213. [CrossRef]

20. Altug-Atac, A.T.; Erdem, D. Prevalence and distribution of dental anomalies in orthodontic patients. *Am. J. Orthod. Dentofac. Orthop. 2007*, 131, 510–514. [CrossRef]

21. Arabiuni, H.; Mirzaye, M.; Dehghani-Nazhvani, A.; Ajami, S.; Faridi, S.; Bahrpeima, F. The prevalence of malocclusion among 14–18 years old students in Shiraz. *J. Oral Health Oral Epidemiol. 2014*, 3, 8–11.

22. Araki, M.; Yasuda, Y.; Ogawa, T.; Tumurkhuu, T.; Ganburged, G.; Bazar, A.; Fujiwara, T.; Moriyama, K. Associations between Malocclusion and Oral Health-Related Quality of Life among Mongolian Adolescents. *Int. J. Environ. Res. Public Health 2017*, 14, 902. [CrossRef]

23. Baccetti, T. A controlled study of associated dental anomalies. *Angle Orthod. 1998*, 68, 267–274.

24. Badrov, J.; Gaspar, G.; Tadin, A.; Galic, T.; Govorko, D.K.; Gavic, L.; Badrov, R.; Galic, I. Prevalence and Characteristics of Congenitally Missing Permanent Teeth among Orthodontic Patients in Southern Croatia. *Acta Stomatol. Croat. 2017*, 51, 290–299. [CrossRef]

25. Baral, P.; Budhathoki, P.; Bhuju, K.G.; Koirala, B. Prevalence of Occlusal Traits in the Deciduous Dentition of Children of Kaski District, Nepal. *J. Nepal Med. Assoc. 2014*, 30, 862–865. [CrossRef]

26. Baron, C.; Houchmand-Cuny, M.; Enkel, B.; Lopez-Cazaux, S. Prevalence of dental anomalies in French orthodontic patients: A retrospective study. *Arch. Pediatric 2018*, 25, 426–430. [CrossRef] [PubMed]

27. Baskaradoss, J.K.; Geevarghese, A.; Roger, C.; Thaliath, A. Prevalence of malocclusion and its relationship with caries among school children aged 11–15 years in southern India. *Korean J. Orthod. 2013*, 43, 35–41. [CrossRef] [PubMed]

28. Behbehani, F.; Artun, J.; Al-Jame, B.; Kerosuo, H. Prevalence and severity of malocclusion in adolescent Kuwaitis. *Med. Princ. Pract. 2005*, 14, 390–395. [CrossRef] [PubMed]

29. Berneburg, M.; Zeyher, C.; Merkle, T.; Möller, M.; Schaupp, E.; Göz, G. Orthodontic findings in 4- to 6-year-old kindergarten children from southwest Germany. *J. Orofac. Orthop. 2010*, 71, 174–186. [CrossRef] [PubMed]

30. Bhayya, D.; Shyagali, T. Gender influence on occlusal characteristics of primary dentition in 4- to 6-year-old children of Bagalkot City, India. *Oral Health Prev. Dent. 2011*, 9, 17–27.

31. Bilgic, F.; Gelgor, I.E.; Celebi, A.A. Malocclusion prevalence and orthodontic treatment need in central Anatolian adolescents compared to European and other nations’ adolescents. *Dent. Press J. Orthod. 2015*, 20, 75–81. [CrossRef]

32. Bourzgui, F.; Sebbar, M.; Hamza, M.; Larzak, L.; Abidine, Z.; el Quars, F. Prevalence of malocclusions and orthodontic treatment need in 8- to 12-year-old schoolchildren in Casablanca, Morocco. *Prog. Orthod. 2012*, 13, 164–172. [CrossRef]

33. Bhardwaj, V.K.; Veeresha, K.L.; Sharma, K.R. Prevalence of malocclusion and orthodontic treatment needs among 16 and 17 year-old school-going children in Shimla city, Himachal Pradesh. *Indian J. Dent. Res. 2011*, 22, 556–560. [CrossRef]

34. Bluaya, D.; Shyagali, T. Gender influence on occlusal characteristics of primary dentition in 4- to 6-year-old children of Bagalkot City, India. *Oral Health Prev. Dent. 2011*, 9, 17–27.

35. Campos Arias, F.d.M. Prevalence of malocclusion in the schools of the District of Tacares, Grecia. *Odontos Int. J. Dent. Sci. 2013*, 15, 31–38.

36. Carvalho, A.C.; Paiva, S.M.; Scarpelli, A.C.; Viegas, C.M.; Ferreira, F.M.; Pordeus, I.A. Prevalence of malocclusion in primary dentition in a population-based sample of Brazilian preschool children. *Eur. J. Paediatr. Dent. 2011*, 12, 107–111. [PubMed]

37. Chauhan, D.; Sachdev, V.; Chauhan, T.; Gupta, K.K. A study of malocclusion and orthodontic treatment needs according to dental aesthetic index among school children of a hilly state of India. *J. Int. Soc. Prev. Community Dentist. 2013*, 3, 32–37. [CrossRef] [PubMed]

38. Ciuffolo, F.; Manzoli, L.; D’attilio, M.; Tecco, S.; Muratore, F.; Festa, F.; Romano, F. Prevalence and distribution by gender of occlusal characteristics in a sample of Italian secondary school students: A cross-sectional study. *Eur. J. Orthod. 2005*, 27, 601–606. [CrossRef]

39. Coetzee, C.E.; Wiltshire, W.A. Occlusal and oral health status of a group of 3–8-year-old South African black children. *S. Afr. Dent. J. 2000*, 55, 252–258.

40. Cosma, C.; Esian, D.; Bica, C. Assessment of the occlusal characteristics in primary dentition. *Rom. J. Oral Rehabil. 2017*, 9, 78–81.

41. Dacosta, O.O. The prevalence of malocclusion among a population of northern Nigeria school children. *West Afr. J. Med. 1999*, 18, 91–96.

42. Daou, M.H.; Bteiche, P.H.; Fakhouri, J.; Osta, N.E. Prevalence of Hypodontia and Supernumerary Teeth in Patients Attending Private Pediatric Dental Clinic in Lebanon. *J. Clin. Pediatric Dent. 2019*, 43, 345–349. [CrossRef]

43. De Almeida, E.R.; Narvai, P.C.; Frazão, P.; Guedes-Pinto, A.C. Revised criteria for the assessment and interpretation of occlusal deviations in the deciduous dentition: A public health perspective. *Cad. Saúde Pública 2008*, 24, 897–904. [CrossRef]

44. De Araújo Guimarães, S.P.; Jorge, K.O.; Fontes, M.J.F.; Ramos-Jorge, M.L.; Araújo, C.T.P.; Ferreira, E.F.; Melgaço, C.A.; Zarzar, P.M. Impact of malocclusion on oral health-related quality of life among schoolchildren. *Braz. Oral Res. 2018*, 32, e95. [CrossRef] [PubMed]

45. De Muñiz, B.R. Epidemiology of malocclusion in Argentine children. *Community Dent. Oral Epidemiol. 1986*, 14, 221–224. [CrossRef] [PubMed]

46. Dimberg, L.; Lennartsson, B.; Anrup, K.; Bondemark, L. Prevalence and change of malocclusions from primary to early permanent dentition: A longitudinal study. *Angle Orthod. 2015*, 85, 728–734. [CrossRef] [PubMed]
76. Laganà, G.; Venza, N.; Borzabadi-Farahani, A.; Fabi, E.; Danesi, C.; Cozza, P. Dental anomalies: Prevalence and associations between them in a large sample of non-orthodontic subjects, a cross-sectional study. BMC Oral Health 2017, 17, 62. [CrossRef] [PubMed]

77. Lara, T.S.; Lancia, M.; da Silva Filho, O.G.; Garib, D.G.; Ozawa, T.O. Prevalence of mesiodens in orthodontic patients with deciduous and mixed dentition and its association with other dental anomalies. Dent. Press J. Orthod. 2013, 18, 93–99. [CrossRef] [PubMed]

78. Lux, C.J.; Däcker, B.; Pritsch, M.; Kompusch, G.; Niekuusch, U. Occlusal status and prevalence of occlusal malocclusion traits among 9-year-old schoolchildren. Eur. J. Orthod. 2009, 31, 294–299. [CrossRef]

79. Madiraju, G.S.; Alnabi, S.; Almarzoq, A.S. Orthodontic treatment need and occlusal traits in the early mixed dentition among 8–9-year-old Saudi children. Eur. Oral Res. 2021, 55, 6. [CrossRef]

80. Mail, L.R.; Donnassolo, S.H.; Donnassolo, T.A. Malocclusion diagnosis: Normative criteria and self-perception of adolescents. Pesq. Bras. Odontopediatr. Clin. Integr. 2015, 15, 197–203. [CrossRef]

81. Martins Mda, G.; Lima, K.C. Prevalence of malocclusions in 10–to 12-year-old schoolchildren in Ceará, Brazil. Oral Health Prev. Dent. 2009, 7, 217–223.

82. Martins, I.P.; Bittencourt, J.M.; Bendo, C.B.; Vale, M.P.; Paiva, S.M. Malocclusion and social vulnerability: A representative study with adolescents from Belo Horizonte, Brazil. Ciência Saúde Colet. 2019, 24, 393–400. [CrossRef]

83. Medina, A.C. Radiographic study of prevalence and distribution of hypodontia in a pediatric orthodontic population in Venezuela. Pediatr. Dent. 2012, 34, 113–116.

84. Mohamed, A.M.; Fariza, W.; Rosli, T.; Mahyuddin, A. The feasibility of Index of Orthodontic Treatment Need (IOTN) in labial segment malocclusion among 8–10 years old. Arch. Oral Res. 2014, 9, 76–84.

85. Mtaya, M.; Brudvik, P.; Aström, A.N. Prevalence of malocclusion and its relationship with socio-demographic factors, dental caries, and oral hygiene in 12–to 14-year-old Tanzanian schoolchildren. Eur. J. Orthod. 2009, 31, 467–476. [CrossRef] [PubMed]

86. Mtaya, M.; Brudvik, P.; Aström, A.N. Prevalence of malocclusion and its associated factors among pre-schoolchildren in Kinondoni and Temeke Districts, Tanzania. Tanzan. J. Health Res. 2017, 19, 1–9. [CrossRef]

87. Murshid, Z.; Amin, H.E.; Al-Nowaiser, A. Distribution of certain types of occlusal anomalies among Saudi Arabian adolescents in Jeddah city. Community Dent. Health 2010, 27, 238–241. [PubMed]

88. Muyasa, M.K.; Ng’Ang’A, P.M.; Opinya, G.N.; Macigo, F.G. Malocclusion and orthodontic treatment need among 12–15-year-old children in Nairobi. East Afr. Med. J. 2012, 89, 39–44.

89. Ng’ang’a, P.M. A study of occlusal anomalies and tooth loss in children aged 13–15 years in Nairobi. East Afr. Med. J. 1991, 68, 980–988.

90. Ng’ang’a, P.M.; Ohito, F.; Ogaard, B.; Valderhaug, J. The prevalence of malocclusion in 13–to 15-year-old children in Nairobi. Acta Odontol. Scand. 1996, 54, 126–130. [CrossRef]

91. Ng’ang’a, R.N.; Ng’ang’a, P.M. Hypodontia of permanent teeth in a Kenyan population. East Afr. Med. J. 2001, 78, 200–203. [CrossRef]

92. Nguyen, S.M.; Nguyen, M.K.; Saag, M.; Jagomagi, T. The Need for Orthodontic Treatment among Vietnamese School Children and Young Adults. Int. J. Dent. 2014, 2014, 132301. [CrossRef]

93. O’Dowling, I.B. Hypo-hyperdontia in an Irish population. J. Ir. Dent. Assoc. 1989, 35, 114–117.

94. O’Dowling, I.B.; McNamara, T.G. Congenital absence of permanent teeth among Irish school-children. J. Ir. Dent. Assoc. 1990, 36, 136–138.

95. Onyeaso, C.O. Prevalence of malocclusion among adolescents in Ibadan, Nigeria. Am. J. Orthod. Dentofac. Orthop. 2004, 126, 604–607. [CrossRef] [PubMed]

96. Oshagh, M.; Ghaderi, F.; Pakshir, H.R.; Baghnmollai, A.M. Prevalence of malocclusions in school-age children attending the orthodontics department of Shiraz University of Medical Sciences. East Mediterr. Health J. 2010, 16, 1245–1250. [CrossRef] [PubMed]

97. Pagán-Collazo, G.J.; Oliva, J.; Cuadrado, L.; Rivas-Tumanyan, S.; Elías-Boneta, A. Prevalence of hypodontia in 10- to 14-year-olds seeking orthodontic treatment at a group of clinics in Puerto Rico. Puerto Rico Health Sci. J. 2014, 13, 9–13.

98. Perillo, L.; Masucci, C.; Ferro, F.; Apicella, D.; Baccetti, T. Prevalence of orthodontic treatment need in southern Italian schoolchildren. Eur. J. Orthod. 2010, 32, 49–53. [CrossRef] [PubMed]

99. Perinetti, G.; Cordella, C.; Pellegrini, F.; Esposito, P. The prevalence of malocclusal traits and their correlations in mixed dentition children: Results from the Italian OHESAR Survey. Oral Health Prev. Dent. 2008, 6, 119–129. [PubMed]

100. Pineda, P.; Fuentes, R.; Sanhueza, A. Prevalence of Dental Agenesia in Children with Mixed Dentition of Teaching Assistant Dental Clinics at the Universidad de La Frontera. Int. J. Morphol. 2011, 29, 1087–1092. [CrossRef]

101. Rapeepattana, S.; Thearmontree, A.; Suntornlohanakul, S.; Rapeepattana, S.; Thearmontree, A.; Suntornlohanakul, S. The prevalence of orthodontic treatment need and malocclusion problems in 8–9-year-old schoolchildren: A study in the south of Thailand. APOS Trends Orthod. 2019, 29, 99–104. [CrossRef]

102. Rauten, A.-M.; Georgescu, C.; Popescu, M.R.; Fiera Maglaveiceanu, C.; Popescu, D.; Gheorghe, D.; Camen, A.; Munteanu, C.; Olteanu, M. Orthodontic treatment needs in mixed dentition—for children of 6 and 9 years old. Rom. J. Oral Rehabil. 2016, 8, 28–39.

103. Robke, F.J. Effects of nursing bottle misuse on oral Health Prevalence of caries, tooth malalignments and malocclusions in North-German preschool children. J. Orofac. Orthop. 2008, 69, 5–19. [CrossRef]
104. Rølling, S. Hypodontia of permanent teeth in Danish schoolchildren. Scand. J. Dent. Res. 1980, 88, 365–369. [CrossRef]
105. Rössa, N.; Nagy, K.; Vajó, Z.; Gábris, K.; Soós, A.; Alberth, M.; Tarján, I. Prevalence and distribution of permanent canine agenesis in dental paediatric and orthodontic patients in Hungary. Eur. J. Orthod. 2009, 31, 374–379. [CrossRef] [PubMed]
106. Rwakatema, D.S.; Ng’ang’a, P.M.; Kemoli, A.M. Orthodontic treatment needs among 12–15 year-olds in Moshi, Tanzania. East Afr. Med. J. 2007, 84, 226–232. [PubMed]
107. Sanadhyya, S.; Chadha, M.; Chaturvedi, M.K.; Chaudhary, M.; Lerra, S.; Meena, M.K.; Bakutra, G.; Acharya, S.; Pandey, A.; Tak, M.; et al. Prevalence of malocclusion and orthodontic treatment needs among 12–15-year-old schoolchildren of fishermen of Kutch coast, Gujarat, India. Int. Marit. Health 2014, 65, 106–113. [CrossRef] [PubMed]
108. Rølling, S. Hypodontia of permanent teeth in Danish schoolchildren. Scand. J. Dent. Res. 1980, 88, 365–369. [CrossRef]
109. Steinmassl, O.; Steinmassl, P.A.; Schwarz, A.; Crismani, A. Orthodontic Treatment Need of Austrian Schoolchildren in the Mixed Dentition. J. Clin. Pediatr. Dent. 2012, 36, 297–302. [CrossRef]
110. Sejdini, M.; Çerkezi, S. Dental Number Anomalies and Their Prevalence According To Gender and Jaw in School Children 7 To 14 Years. Open Access Maced. J. Med. Sci. 2016, 8, 873. [CrossRef]
111. Sepp, H.; Saag, M.; Svedström-Oristo, A.L.; Peltomäki, T.; Vinkka-Puhakka, H. Occlusal traits and orthodontic treatment need in 7–10-year-olds in Estonia. Clin. Exp. Dent. Res. 2017, 3, 93–99. [CrossRef]
112. Sepp, H.; Saag, M.; Vinkka-Puhakka, H.; Svedström-Oristo, A.L.; Peltomäki, T. Occlusal traits of 4–5-year-old Estonians. Parents’ perception of orthodontic treatment need and satisfaction with dental appearance. Clin. Exp. Dent. Res. 2019, 5, 199–204. [CrossRef]
113. Sha’lah, M.; Gal, A.; Brin, I.; Zini, A.; Ben-Bassat, Y. Prevalence of dental features that indicate a need for early orthodontic treatment. Eur. J. Orthod. 2013, 35, 454–459. [CrossRef]
114. Singh, A.; Purohit, B.; Sequeira, P.; Acharya, S.; Bhat, M. Malocclusion and orthodontic treatment need measured by the Dental Aesthetic Index and its association with dental caries in Indian schoolchildren. Community Dent. Health 2011, 28, 313–316.
115. Solà, R.A.; Solà, P.A.; Pèrez, J.D.L.C.; Nieto-Sánchez, I. Prevalence of Malocclusion and Orthodontic Treatment Need in a Sample of Spanish Dental Patients. Acta Stomatol. Croat. 2018, 52, 18–23. [CrossRef] [PubMed]
116. Sonnesen, L.; Bakke, M.; Solow, B. Malocclusion traits and symptoms and signs of temporomandibular disorders in children with severe malocclusion. Eur. J. Orthod. 1998, 20, 543–559. [CrossRef] [PubMed]
117. Stahl, F.; Grabowski, R. Orthodontic findings in the deciduous and early mixed dentition—Inferences for a preventive strategy. J. Orofac. Orthop. 2003, 64, 401–416. [CrossRef] [PubMed]
118. Stahl, F.; Grabowski, R.; Wigger, K. Epidemiological significance of Hoffmeister’s “Genetically determined predisposition to disturbed development of the dentition”. J. Orofac. Orthop. 2003, 64, 243–253. [CrossRef] [PubMed]
119. Steinmassl, O.; Steinmassl, P.A.; Schwarz, A.; Crismani, A. Orthodontic Treatment Need of Austrian Schoolchildren in the Mixed Dentition Stage. Swiss Dent. J. 2017, 127, 122–128.
120. Sundareswaran, S.; Kizhakool, P. Prevalence and gender distribution of malocclusion among 13–15-year-old adolescents of Kerala, South India. Indian J. Dent. Res. 2019, 30, 455–461. [CrossRef]
121. Sunil, N.; Ganapathy, D.; Visalakshi, R. Prevalence of malocclusion among adolescent schoolchildren in Malaysia. Drug Invent. Today 2019, 11, 2571–2577.
122. Swarnalatha, C.; Paruchuri, U.; Babu, J.S.; Alquaraishi, M.A.; Alnasrallah, F.A.; Naygar, A.S. Prevalence of congenitally missing upper lateral incisors in an orthodontic adolescent population. J. Orthod. Sci. 2020, 9, 15.
123. Tausche, E.; Luck, O.; Harzer, W. Prevalence of malocclusions in the early mixed dentition and orthodontic treatment need. Eur. J. Orthod. 2004, 26, 37–44. [CrossRef]
124. Thilander, B.; Pena, L.; Infante, C.; Parada, S.S.; de Mayorga, C. Prevalence of malocclusion and orthodontic treatment need in children and adolescents in Bogota, Colombia. An epidemiological study related to stages of dental development. Eur. J. Orthod. 2001, 23, 153–167. [CrossRef]
125. Thomaz, E.B.; Cangussu, M.C.; Assis, A.M. Malocclusion and deleterious oral habits among adolescents in a developing area in northeastern Brazil. Braz. Oral Res. 2013, 27, 62–69. [CrossRef] [PubMed]
126. Todor, B.I.; Scroboita, I.; Todor, L.; Lucan, A.I.; Vaida, L.L. Environmental Factors Associated with Malocclusion in Children Population from Mining Areas, Western Romania. Int. J. Environ. Res. Public Health 2019, 16, 3383. [CrossRef] [PubMed]
127. Uematsu, S.; Yoshida, C.; Takada, K. Proportions of malocclusions in Japanese female adolescents over the last 40 years. Oral Health Prev. Dent. 2012, 10, 373–377. [PubMed]
128. Varela, M.; Arrieta, P.; Ventureira, C. Non-syndromic concomitant hypodontia and supernumerary teeth in an orthodontic population. Eur. J. Orthod. 2009, 31, 632–637. [CrossRef]
129. Vithanaarachchi, S.N.; Nawarathna, L.S. Prevalence of anterior cross bite in preadolescent orthodontic patients attending an orthodontic clinic. Ceylon Med. J. 2017, 62, 192. [CrossRef]
130. Wagner, Y.R.; Heinrich-Weltzien, R. Occlusal characteristics in 3-year-old children—Results of a birth cohort study. BMC Oral Health 2015, 15, 94. [CrossRef]
131. Yassin, S.M. Prevalence and distribution of selected dental anomalies among Saudi children in Abha, Saudi Arabia. *J. Clin. Exp. Dent.* 2016, 8, 485–490. [CrossRef]

132. Yu, X.; Zhang, H.; Sun, L.; Pan, J.; Liu, Y.; Chen, L. Prevalence of malocclusion and occlusal traits in the early mixed dentition in Shanghai, China. *PeerJ* 2019, 7, e6630. [CrossRef]

133. Zhou, X.; Zhang, Y.; Wang, Y.; Zhang, H.; Chen, L.; Liu, Y. Prevalence of Malocclusion in 3- to 5-Year-Old Children in Shanghai, China. *Int. J. Environ. Res. Public Health* 2017, 14, 328. [CrossRef]

134. World Health Organization. *Oral Health Surveys: Basic Methods*, 4th ed.; ORH/EPID: Geneva, Switzerland, 1997; Available online: https://apps.who.int/iris/handle/10665/41905 (accessed on 17 October 2021).

135. Jenny, J.; Cons, N.C. Comparing and contrasting two orthodontic indices, the Index of Orthodontic Treatment need and the Dental Aesthetic Index. *Am. J. Orthod. Dentofac. Orthop.* 1996, 110, 410–416. [CrossRef]

136. Brook, P.H.; Shaw, W.C. The development of an index of orthodontic treatment priority. *Eur. J. Orthod.* 1989, 11, 309–320. [CrossRef] [PubMed]

137. Isaacson, K.G.; Thom, A.R.; Atack, N.E.; Horner, K.; Whaites, E. *Guidelines for the Use of Radiographs in Clinical Orthodontics*, 4th ed.; British Orthodontic Society: London, UK, 2015; pp. 1–28.

138. Silva, M.; Manton, D. Oral habits—Part 1: The dental effects and management of nutritive and non-nutritive sucking. *J. Dent. Child* 2014, 81, 133–139.

139. Schmid, K.M.; Kugler, R.; Nalabothu, P.; Bosch, C.; Verna, C. The effect of pacifier sucking on orofacial structures: A systematic literature review. *Prog. Orthod.* 2018, 19, 8. [CrossRef] [PubMed]

140. Cenzato, N.; Nobili, A.; Maspero, C. Prevalence of dental malocclusions in different geographical areas: Scoping review. *Dent. J.* 2021, 9, 117. [CrossRef]

141. Anthonappa, R.P.; King, N.M.; Rabie, A. Systematic review: Diagnostic tools used to predict the prevalence of supernumerary teeth: A meta-analysis. *Dentomaxillofac. Radiol.* 2012, 41, 444–449. [CrossRef]