Searching for a Companion Star of Tycho’s Type Ia Supernova with Optical Spectroscopic Observations*

Yutaka IHARA,1,2 Jin OZAKI,2,3 Mamoru DOI,1 Toshikazu SHIGEYAMA,3 Nobunari KASHIKAWA,4 Yutaka KOMIYAMA,4 and Takashi HATTORI5

1Institute of Astronomy, The University of Tokyo, 2-21-1 Osawa, Mitaka-shi, Tokyo 181-8588
2Department of Astronomy, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033
3Research Center for the Early Universe, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033
4National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka-shi, Tokyo 181-8588
5Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720, USA
iharayt@ioa.s.u-tokyo.ac.jp

(Received 2006 July 19; accepted 2007 April 23)

Abstract

We report on our first results of photometric and spectroscopic observations for Tycho’s supernova remnant (SNR Tycho) to search for the companion star of a type Ia supernova. From photometric observations using Suprime-Cam on the Subaru Telescope, we have picked up stars brighter than 22 mag (in V-band) for spectroscopy, which are located within a circular region with a radius of 30' around the center of SNR Tycho. If the ejecta of young supernova remnants, such as SNR Tycho, have a sufficient amount of Fe i, we should be able to detect absorption lines at 3720 Å and 3860 Å associated with transitions from the ground state of Fe i in the spectrum of the companion star. To identify the companion star of a SN Ia using these characteristic absorption lines of Fe i, we performed optical low-resolution spectroscopy of their targets using FOCAS on the Subaru Telescope. In our spectroscopic observations, we obtained spectra of 17 stars in the SNR Tycho region and compared them with template stellar spectra. We detect significant absorption lines from two stars at 3720 Å. In addition, spectra of four stars also have possible absorption lines. Since the widths of their absorption lines are broad, it is likely that the detected absorptions are due to Fe i in the expanding ejecta of SNR Tycho. However, none of stars exhibit a clear red wing in the observed profiles of the absorption, though a star in the background of the SNR should show it. Hence, we suggest another interpretation, that the detected absorption lines might be caused by the peculiarity of stars. Though Tycho(G) was raised as a candidate of the companion star of Tycho’s supernova in a previous study, we did not obtain evidence supporting the previous research. On the contrary, a star named Tycho(E) has an absorption line at 3720 Å, and its projected position is close to the center of SNR Tycho. Based on our observations, Tycho(E) is a new candidate as the companion star of Tycho’s supernova.

Key words: supernovae: general — supernovae: individual (Tycho’s Star) — supernova remnants

1. Introduction

Type Ia supernovae (SNe Ia) have been used as standard distance indicators, and have become a powerful tool for studying the expansion of the universe, since they exhibit similar maximum brightness and uniform light curves. They are used to constrain the cosmological parameters and provide evidence for the existence of dark energy (Schmidt et al. 1998; Perlmutter et al. 1999; Knop et al. 2003; Astier et al. 2006; Riess & Livio 2006). Despite their importance in cosmological studies, the progenitor system of SNe Ia has not yet been fully understood, and is still being debated (Branch et al. 1995). There are two models for the progenitor system, which are the double degenerate model (DD) and the single degenerate model (SD). The DD scenario assumes that merging of double CO white dwarfs with the combined mass exceeding the Chandrasekhar mass limit, which is about $1.4 M_\odot$, results in an SN Ia explosion (e.g., Iben & Tutukov 1984; Webbink 1984). However, the DD has been suggested to lead to an accretion-induced collapse rather than a SN Ia (e.g., Nomoto & Iben 1985; Saio & Nomoto 1985). On the other hand, in the SD scenario, a white dwarf accretes gas from the companion non-degenerate star in a binary system and increases its mass up to the Chandrasekhar limit to explode as a SN (e.g., Nomoto et al. 1997; Han & Podsiadlowsky 2004). Hachisu, Kato, and Nomoto (1996) proposed a new plausible progenitor system based on an optically thick wind theory of mass-accreting white dwarfs. In this model, the accretion to the white dwarf at a rate exceeding the rate of hydrogen burning near the surface is inhibited by blowing a strong wind. In this way, the wind avoids the formation of a common envelope, and the white dwarf can increase its mass up to the Chandrasekhar limit. They suggested two main evolutionary paths to SNe Ia, depending on the evolutionary stage of the companion star: a helium-rich supersoft X-ray source channel (Hachisu et al. 1996) or a helium-rich Star that passes through the helium flash just before core collapse (Saio & Nomoto 1985).

* Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
1999a) with the companion of a main sequence star and a wide symbiotic channel (Hachisu et al. 1999b) with a red giant. The above evolutionary scenarios for SNe Ia can be tested by observations. For example, a companion star should remain in the vicinity of the explosion site after the explosion of a SN Ia in the SD scenario. If the companion star is identified by observations, the SD scenario will be supported.

Ruiz-Lapuente et al. (2004) (hereafter Ruiz04) reported results of their survey of the central region of SNR Tycho to search for the companion star. They measured the velocities and distances of stars in the vicinity of the center of the SNR, and found a G2 IV star moving at a velocity of more than three-times greater than the velocity dispersion of disk stars in that region. As a result, they claimed that this star was the companion star. [They called this star “Tycho(G)”.] This type of companion stars contradicts the evolutionary paths proposed by Hachisu et al. (1999a, b), and seems to suggest an alternative evolutionary path to a SN Ia. Fuhrmann (2005) has argued that Tycho(G) might be a thick-disc star that is coincidentally passing the vicinity of the supernova remnant, though the probability is extremely low. Therefore, the physical association of Tycho(G) with the SNR needs to be confirmed by other methods. To this end, we performed photometric and spectroscopic observations of stars, including Tycho(G), with the SUBARU telescope and presented our results in this paper.

Ozaki and Shigeyama (2006) (hereafter OS06) proposed an alternative method to investigate the association of a star with the SN ejecta. When a star is in the vicinity of the center of the expanding ejecta, photons emitted from the star toward the observer are absorbed only by the ejecta moving toward the observer. Hence, the absorption lines exhibit broad wings present only in the blue-shifted side, while a background star happens to be inside the ejecta of SNR Tycho is only 0.1%, as estimated from the density of stars there. Therefore a star that is coincidentally passing the vicinity of the supernova remnant, though the probability is extremely low. Therefore, the physical association of Tycho(G) with the SNR needs to be confirmed by other methods. To this end, we performed photometric and spectroscopic observations of stars, including Tycho(G), with the SUBARU telescope and presented our results in this paper.

In section 4, we summarize the results of our observations. Finally, we discuss the detected absorption lines and the possibility of identifying the companion star of Tycho’s SN in section 5.

2. Observations

2.1. Photometric Observations

2.1.1. Observations

Stars in the region of SNR Tycho were observed with Suprime-Cam (Miyazaki et al. 2002) at the prime focus of the 8.2 m Subaru telescope on 2002 November 4. Suprime-Cam is equipped with ten MIT/LL 2048 × 4096 CCDs arranged in a 5 × 2 pattern to provide a 34′ × 27′ FOV with a pixel size on the sky of 0′.201 × 0′.201. We used V and R_c filters of Johnson–Cousins systems and an i′ filter of SDSS (Fukugita et al. 1996). Three 10 s and three 100 s exposures were taken using each filter. We divided the exposure into three and dithered to remove cosmic rays and to avoid bad pixels. The individual dithered images were coadded. The seeing size was about 0′.8.

2.1.2. Reduction and photometry

We analyzed a 6′ × 6′ region around the center of SNR Tycho in images taken with Suprime-Cam. The size of the field was slightly larger than the field of view of FOCAS. The standard data reduction, including overscan subtraction and flatfielding, was performed with reduction software nekosoft for Suprime-Cam (Yagi et al. 2002). We smoothed images with Gaussian kernel and searched peaks to identify stellar positions. If the signal-to-noise ratio of a peak was higher than 5, we identified the peak as an object. Photometry was then performed with a 2″φ aperture. Since we did not observe standard stars, flux calibrations of the V and R_c bands were performed with the published photometry in the SNR Tycho field (Ruiz04). For the i′-band, we transformed i′ mag into I_c mag of Johnson–Cousins systems by using the prescription in Fukugita et al. (1996). To calculate the zero point of I_c mag, we used B mag and V mag of Ruiz04 and the colors of B − V and V − I_c of Soderblom et al. (1998). To avoid saturations and to increase the signal-to-noise ratio as much as possible, the total exposure times were chosen to be 30 s for bright objects with magnitudes of 16.0–18.5 mag (V), and 300 s for faint objects with magnitudes of 18.5–24.0 mag. The limiting magnitudes (5 σ) were 24.0 mag (V), 23.5 mag (R_c), and 23.5 mag (I_c) for 300 s. We made a star catalog from these images.

2.1.3. Results of photometry

The final catalog contains 904 stars with photometry in the V, R_c, and I_c bands. This catalog is limited by the V-magnitudes. A color–apparent magnitude diagram of V − I_c versus V is shown in figure 1 and a color–color diagram of V − R_c versus V − I_c is shown in figure 2. We show a V-band image taken with Suprime-Cam around the center of SNR Tycho in figure 3 and a V-band image that corresponds to the field of view of our spectroscopic observations in figure 4. These observations are described in detail in subsection 2.2.

2.1.4. Candidate region for the companion star

We selected candidates for the companion star of Tycho’s SN using the projected distances from the center of SNR Tycho.
We estimated the velocity of the companion star from the equation of motion of two bodies. In the SD model, there should have been a stellar binary system in which a white dwarf and the companion star revolve around their center of mass before on SN Ia explosion. We calculated the orbital velocity of the companion star using the final mass and the period presented in Hachisu and Kato (2001). We obtained a velocity of $\sim 200 \text{ km s}^{-1}$ or less. After the explosion, only the companion star remained and was supposed to move with the same velocity. Four hundred and thirty years have passed since the explosion of Tycho SN 1572. The distance from the Earth to SNR Tycho is ~ 3 kpc (section 1). As a result, the companion star may have moved by at most $\sim 10''$ from the center of SNR Tycho. Taking account of the uncertainties in determining the center of SNR Tycho, we regard a circular region with a radius of 30'' as the candidate region. A V-band image of this region taken with Suprime-Cam is shown in figure 3. We designate the stars in the candidate region with capital alphabets, the same as Ruiz04, except Tycho(Y), which has no data in Ruiz04 (see figure 3). The stars outside of the region are designated with lower case alphabets (see figure 4). We selected 8 stars brighter than 22 mag (V) in this region for spectroscopic observations.
2.2. Spectroscopic Observations

2.2.1. Observations

We carried out optical spectroscopy of stars in the region of SNR Tycho using the multi-object-spectroscopy (MOS) mode of the Faint Object Camera and Spectrograph (FOCAS) (Kashikawa et al. 2002) attached to the Subaru Telescope. One mask of FOCAS/MOS covers a 6′ aperture diameter field of view. The MOS slit lengths were 8″/0 and the slit widths were 1″/0. We used the 2nd order of a grism of 150 lines mm⁻¹ and an L550 order-sorting filter. This setting gave wavelength coverage from 3600Å to 5200Å and the spectral resolution was R ≈ 400 at 3800Å. The pixel scale of the CCDs is 0′′/1/pixel. We binned 3 pixels in the spatial direction. In order to obtain a higher throughput in short wavelengths, observations were made without an atmospheric dispersion corrector (ADC).

Observations were carried out on 2006 September 14 and September 15. We observed 8 stars in the candidate regions within 30″ radius and another 25 stars located outside of the candidate region. The reason why we observed the outside stars was to confirm whether sufficient Fe I remained in SNR Tycho. The two brightest stars, (A) and (B) in the candidate region, are not regarded as candidates because these stars are so bright that they are very likely to be in the foreground of SNR Tycho. The seeing size during observations was ≈ 0′′6–0′′8.

The exposure time of each frame was 0.5 hours and the total effective exposure time was 12.5 hours. We dithered ±0′′2 for each exposure to avoid bad pixels. We made two MOS masks to observe all of the candidate stars. The 5 bright targets, including Tycho(G), were observed using Mask1. The exposure time of Mask1 was 2.5 hours (0.5 hours × 5). Mask1 was used at low elevation because the targets of Mask1 were relatively bright. The other 4 targets including Tycho(V), were observed using Mask2. The exposure time of Mask2 was 10.0 hours (0.5 hours × 20). The other 24 targets were observed using both masks.

2.2.2. Data and reduction

We analyze the obtained spectra using IRAF software. Subtracting the bias level and flatfielding were carried out. Then, each spectrum was extracted from multislit images. Each spectrum of 0.5 hour exposure time was combined with imcombine of the IRAF task. At the same time, this task rejected cosmic rays and bad pixels above 3σ. We carried out sky-subtraction to use a 2nd order of the spline3 function. We calibrated wavelengths using a Th–Ar lamp. The one-dimensional spectra were made by apall of IRAF task and were flux-calibrated using spectra of a standard star, BD +28 4211, obtained with the long-slit spectroscopy mode of FOCAS with a 2″ slit width. We then correct these spectra for galactic extinction and slit loss. This correction is described in the next section in detail. We analyzed 4 spectra [Tycho(C), (E), (F), and (G)] in the candidate region, and the spectra of 13 stars outside the candidate region. The other spectra did not have good signal-to-noise ratios.

The spectra of 21 stars before a correction of the galactic extinction and slit loss are available from the web page. Out of 21 stars, 8 stars are in the candidate region and 13 stars are outside the region. The above 21 spectra include 4 spectra of Tycho(D), (I), (V), and (Y) that do not have good signal-to-noise ratios (<3.0 at 3800Å), so we did not use them in this work. We analyzed the other 17 spectra with good signal-to-noise ratios (>3.0 at 3800Å). They are shown after a flux correction in figure 6 and the following.

3. Method to Detect Fe I Absorption Lines

3.1. Calibration of Observed Spectra

We need to take into account two causes of flux loss at blue wavelengths. One of them is reddening due to galactic extinction. It is difficult to accurately estimate the galactic extinction because of unknown distances to observed stars. The other is slit loss, which is expected to be a function of the wavelength because we did not use ADC. We set the central wavelength of slit acquisition at 3900Å–4100Å. The flux out of this wavelength range was gradually lost from the slit due to atmospheric dispersions. Atmospheric dispersion becomes larger at short wavelengths compared with that at long wavelengths. We had to handle these two complex flux losses at the same time. Therefore, we made flux corrections by multiplying the following linear function so that a template stellar spectrum would trace the observed spectrum:

\[f(\lambda) = 1 - a \times (c - \lambda), \]

where \(a \) is a variable, and we corrected the flux at shorter wavelengths than \(c \). The values of \(a \) are listed up in table 1. The value of \(c \) was fixed to 3840Å, because we could avoid the wavelength range of 3840Å–3880Å, where we expect Fe I absorption.

Further details of spectral fitting and measuring possible absorption lines are also described in subsections 3.2 and 3.3.

1. IRAF is distributed by the US National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

2. (http://www.ioa.s.u-tokyo.ac.jp/~iharayt/SNRTycho/).
3.2. Spectral Types of Observed Spectra

We compare the observed spectra with the template spectra by Jacoby, Hunter, and Christian (1984) (hereafter Ja84). They incorporated spectra for many stars having spectral classes O–M and luminosity classes V, III, and I into their library. Their wavelength coverage was 3510 Å–7400 Å and the resolution was ~4 Å. Ja84 is the most suitable catalog compared with other spectral libraries, for example, Gunn and Stryker (1983), Silva and Cornell (1992), Soubiran, Katz, and Cayrel (1998), and Pickles (1998), in terms of the number of spectra, spectral resolution, and wavelength coverages.

We determined spectral types by finding a template spectrum that most closely matched the observed spectrum of each star in the wavelength range of 3900 Å–4400 Å. We chose this wavelength range because Fe I absorption lines due to SNR are expected at wavelengths shorter than 3900 Å, and also because the slit loss becomes large at around 4400 Å and increases at longer wavelengths. The resolution of our observing mode was not good enough to distinguish whether the star was a dwarf or a giant. In other words, the spectra of a dwarf and a giant are similar at low resolution. Thus, we used only dwarf spectra for spectral fitting. This is sufficient for our aim to find possible absorption features of the SNR in observed spectra.

We first compared the observed spectra with some templates to see global line shapes at 3900 Å–4400 Å. We then chose several template spectra by referring to the shapes of the characteristic absorption lines, such as the Ca H and K lines at 3968 Å and 3933 Å, the Hδ line at 4101 Å, the CH lines at 4300 Å, and the Hy line at 4340 Å. Finally, we calculated χ^2 residuals of several candidate template spectra to determine the spectral types and the flux levels. To minimize possible errors in 3700 Å–3900 Å for the detection of Fe I absorptions, we determined the spectral type by choosing the template spectrum with the minimum χ^2 residuals in the wavelength ranges of 3740 Å–3840 Å and 3900 Å–4100 Å. In this χ^2 fitting, the template spectra were binned to match the resolution to that of the observed spectra. The thus-determined spectral types are listed in table 1. In this fitting, we did not consider radial velocities of stars because they are negligible compared with our spectral resolution.

3.3. Measurement of Absorption Lines due to Fe I in the Ejecta

According to OS06, the spectrum of the companion star of Tycho’s SN should show broad absorption lines of Fe I in the blue sides of 3720 Å and 3860 Å. In addition, the same Fe I in the ejecta should imprint broad absorption lines on both the blue and red sides of 3720 Å and 3860 Å in the spectra of background stars of SNR Tycho. Figure 5 shows the predicted profiles of these absorption lines of the companion star based on the W7 model (Nomoto et al. 1984) for several densities, n_a, of the ambient medium. The profile is sensitive to n_a of SNR Tycho.

In this calculation, the hydrodynamical code was revised from OS06. We adopted the original distribution of elements in W7 instead of the simplified distribution used in OS06. As a result, elements such as Ca, Ar, and S were added. Thus, we added new emission-line data for the additional elements and revised line data of the rest elements. Moreover, the data set of collisional ionization cross section was updated. As we relaxed the assumption in OS06 that shock heated atoms are automatically ionized to some extent, more ionizing photons are emitted from atoms in lower ionization stages. As a result, for n_a = 1.5–2.0, which is higher than that calculated in OS06, the expected absorption line profiles become shallower and weaker than those in OS06.

We measured the equivalent widths of possible absorption lines. This equivalent width is different from the usually used equivalent width in the sense that the template spectrum is used for the reference instead of the continuous spectrum of the same star. Therefore, we introduced the term “Excess Absorption Measure” (EAM). The EAM here is defined as

\[
EAM = \int \left(1 - \frac{F_{\text{obs}}(\lambda)}{F_{\text{template}}(\lambda)} \right) d\lambda,
\]

where the observed flux is denoted by \(F_{\text{obs}} \) and the template flux \(F_{\text{template}} \). We binned the spectra in order to reduce the photon noise and the readout noise. The binning size is 4 pixels (5.6 Å per bin).

We consider two error sources. One is an error from the template fitting, and the other is a statistical error from photons and readout noise. The fitting error was estimated by the root mean square values (r.m.s.) (= \(E_{\text{fit}} \)) of the residuals in the wavelength ranges where we expected no absorption lines, i.e., in 3650 Å–3680 Å, 3740 Å–3840 Å, and 3880 Å–3920 Å. The photon noise was estimated by the number of electrons originated from the stellar photons and the background photons at each wavelength, and the signal-to-noise ratio (S/N) is given by the following formula:

\[
S/N = \frac{S}{\sqrt{S + 3N + 3\sigma_e^2}},
\]

\[
E_{\text{sta}} = \frac{1}{S/N},
\]

where \(S \) is the number of photons of an object per 3 pixels, \(N \) is the number of photons of the sky background per pixel averaged over adjacent 18 pixels, of which 9 pixels are on the right side of the signal and 9 pixels are on the left. \(\sigma_e \) is the readout noise, which is 4 e^- r.m.s/pixel for FOCAS. The gain is 2.1 e^-/ADU.

We combined these two error sources, and the total error, \(E_{\text{all}} \), was estimated by the following formula:

\[
E_{\text{all}} = \sqrt{E_{\text{fit}}^2 + E_{\text{sta}}^2},
\]

assuming that the residuals of the fitting follow the Gaussian distribution. We plotted the ratios of \(E_{\text{all}} \) to \(F_{\text{obs}} \) per bin in figures 6–22.

We calculated EAMs in five wavelength ranges, which are the blue and red sides of 3720 Å and 3860 Å and around 3800 Å. The EAMs were calculated by integrating 4 bins (22 Å), which correspond to the absorption widths predicted for the blue wing of the companion star by OS06. The errors were also accumulated in the same bins. We summarize the results with errors in table 1.
Table 1. Summary of observations.

Star name	Type	V mag	Distance\(^a\)	Mask\(^b\)	\(S/N^c\)	\(x^2\)	\(a^d\)	EAM(3720B)	EAM(3720R)	EAM(3800)	EAM(3800B)	EAM(3860B)
Tycho(C)	M1 V	18.9	4.75	I&2	7.5	6.33	0.0004	0.52±0.96	−1.08±0.92	0.37±0.83	0.37±0.78	0.75±0.77
Tycho(D)		20.6	5.62	I&2	2.8	2.8						
Tycho(E)	F8 V	19.7	10.1	I&2	13.3	7.45	0.0006	3.00±0.55	0.56±0.12	0.54±0.44	0.10±0.42	0.30±0.41
Tycho(F)	F4 V	17.7	26.22	1	27.1	26	0.023	0.78±0.42	0.13±0.04	0.27±0.13	0.13±0.09	0.27±0.13
Tycho(G)	F8 V	18.7	26.22	1	14.9	11.9	0.012	0.59±0.53	−0.25±0.51	−0.36±0.45	−0.06±0.43	−0.58±0.42
Tycho(I)		21.8	22.7	I&2	2.3	2.3						
Tycho(V)		21.4	24.8	2	2	2						
Tycho(Y)		22.1	24.2	I&2	2	2						

\(^a\) The distance is the projected distance from the center of SNR Tycho which is \((x, y) = (00^\circ25'19''40, 64^\circ08'13''98') (J2000.00).\)

\(^b\) We made two MOS masks according to stellar positions (see subsection 2.2.1).

\(^c\) \(S/N\) are measured at 3800 Å per 1 pixel (1.4 Å).

\(^d\) They are fitting parameters. Details are written in subsections 3.1 and 3.2.

4. Results

4.1. Spectral Types

The results are summarized in figures 6–22 and table 1. In table 1, we list the names of stars, fitted spectral types, the number of masks used in the spectroscopy, magnitudes in the V-band, projected distances from the center of the SNR, signal-to-noise ratios, fitting parameters \(\chi^2\) and \(a\), and EAM's (of the blue and red wings of lines at 3720 Å, at 3800 Å and 3790–3810 Å). The EAM of 3790–3810 Å (labeled as 3800 in table 1) was used to see how the template spectra match the observed spectra. Although we took account of only main-sequence stars in the spectral fitting, spectral types from this method are different from the results of Ruiz04. For example, we classify Tycho(G) as an F8 V star, while Ruiz04 classified it as a G2 IV star. Furthermore, we classify Tycho(E) as an F8 V star, while Ruiz04 classified it as a K2–3 III star, and we classify Tycho(G) as an F8 V star, while Ruiz04 classified it as an F9 III star. Ruiz04 classified stellar types using the spectra at around 6500 Å. On the other hand, we obtained spectra with lower resolutions in the range of 3900 Å–4400 Å (see subsection 3.2).

4.2. Absorption Feature

4.2.1. Tycho(G)

Since Tycho(G) was raised as the companion star of Tycho's SN by Ruiz04, we discuss this star first. As shown in figure 9 and table 1, the observed spectrum of Tycho(G) does not exhibit any significant broad absorption lines \([EAM(3720B) = 0.59 \pm 0.53 \text{ Å}]\), expected due to Fe I in the ejecta, and is consistent with the template spectrum of an F8 V star. Therefore, we did not obtain supporting evidence for Tycho(G) as the companion star of Tycho's SN. Nevertheless, this result does not refute the association of this star with SNR Tycho. There might remain only a fraction of Fe I in the ejecta, insufficient to make broad absorption lines in the spectrum of the companion star.

4.2.2. Tycho(E)

Significant broad absorption lines with positive EAMs were detected from stars Tycho(E), (aa), (ad), (ah), (ai), and (ak). Since only Tycho(E) is a candidate star for the companion of Tycho's SN in terms of its position, we take this star as an example, and discuss the absorption profile of the spectrum. First, we discuss the spectrum around 3720 Å. There is significant absorption with the EAM of 3.0 Å (5.5 σ) in the blue side of 3720 Å. The profile of the absorption resembles the theoretical prediction with \(n_a = 1.8 \text{ cm}^{-2}\) in figure 5. The absorption line appears to extend to 3685 Å. On the other hand, no significant absorption is detected around 3860 Å. If the absorption at 3720 Å is due to Fe I, the absorption with about a half of the EAM at 3720 Å is expected at 3860 Å. Since the accuracy of the fitting around 3860 Å is rather poor, we also fit the observed spectrum with spectra of F7 V and F9 V stars in addition to F8 V (figure 23) to examine the influence of the adopted spectral type upon detections of broad absorption lines. As shown in figure 23, the shapes of the three spectra at around 3860 Å differ from each other, while the shapes at around 3720 Å are similar. If Tycho(E) had the spectrum of an F7 V star as its original spectrum, the EAM in the blue side of 3860 Å would become large (~2.5 Å). However, the observed spectrum was fitted with F8 V better than F7 V. If we fitted with the middle type between F7 V and F8 V, we may detect some absorption at 3860 Å. Because of a large variation of stellar spectra at around 3860 Å it is difficult to quantitatively discuss the relatively weak absorption line at 3860 Å.

Ruiz04 classified this star as K2–3 III, and estimated the distance to be greater than 20 kpc. This apparently contradicts our classification based on the spectrum observed...
Fig. 6. Comparisons of the observed spectrum with template stellar spectrum (Jacoby et al. 1984). The left panel are our observed spectrum for Tycho(c) (solid lines) and the fitted template spectrum (dashed lines). The right panel show the ratio of the observed spectrum to the fitted template spectrum. The dashed lines show the 1σ error per bin estimated by (5). According to Ozaki and Shigeyama (2006), the absorption lines of Fe I are expected at ~3720 Å and ~3860 Å if stars are within or behind SNR Tycho, and those wavelengths are shown by two dotted vertical lines.

Fig. 7. Same as figure 6, but for Tycho(E).

Fig. 8. Same as figure 6, but for Tycho(F).
Fig. 9. Same as figure 6, but for Tycho(G).

Fig. 10. Same as figure 6, but for Tycho(aa).

Fig. 11. Same as figure 6, but for Tycho(ab).
Fig. 12. Same as figure 6, but for Tycho(ac).

Fig. 13. Same as figure 6, but for Tycho(ad).

Fig. 14. Same as figure 6, but for Tycho(ae).
Fig. 15. Same as figure 6, but for Tycho(af).

Fig. 16. Same as figure 6, but for Tycho(ag).

Fig. 17. Same as figure 6, but for Tycho(ah).
Fig. 18. Same as figure 6, but for Tycho(ai).

Fig. 19. Same as figure 6, but for Tycho(aj).

Fig. 20. Same as figure 6, but for Tycho(ak).
in 3900 Å–4400 Å. The spectrum of a catalogued star of K2 III (or K3 III) is quite different from that of F8 V, not only in this wavelength range, but also at around 6500 Å that Ruiz04 used to deduce the spectral type. As shown in the color–color diagram of the observed stars (figure 2), the colors of Tycho(E) are $V - R_c = 0.9$ and $V - I_c = 1.9$, similar to that of Tycho(G). Both of the stars are classified as F8 V. The colors of Tycho(C), which is classified as M1 V, are $V - R_c = 1.2$ and $V - I_c = 2.4$. If a K2–3 III star is located at a distance of 20 kpc, the colors of K2–3 III should be $V - R_c > 1.2$ and $V - I_c > 2.5$ because this star is more affected by galactic extinction than other stars, which are located at a distance of 3 kpc or less. As shown in the color–color diagram, stars are located on a sequence that has some scatter in the region with $V - I_c > 3$. Tycho(E) and Tycho(G) are located left on the sequence, while the K2–3 III star should be located right on the sequence because an M1 V star Tycho(C) is located just on the sequence. Therefore, the classification of Tycho(E) by Ruiz04 contradicts the colors of Tycho(E). It is not at all impossible that Tycho(E) might have a quite peculiar spectrum if taking these results at face value. Further spectroscopic observations covering all of the above wavelengths are needed to decide the spectral type of this star.

4.2.3. Tycho(ah)

The absorption lines are seen at 3720 Å from the spectra of other stars, but most of their profiles are different from that of Tycho(E). Tycho(ah) has a broad absorption line with a profile very similar to that of Tycho(E). In fact, the overall spectra of these two stars are quite similar. The projected distance of Tycho(ah) from the geometrical center of SNR Tycho is $\sim 2'$. Thus, if Tycho(E) is close to the SN site, then Tycho(ah) should have no physical interaction with the SN, and vice versa. If Tycho(ah) is one of the background stars of the SNR, the spectrum should have a broad absorption line in the red side of ~ 3720 Å in addition to the blue side. Our observations indicate that this would not be the case. Hence, the observed spectra of Tycho(E) and (ah) may indicate that they belong to a peculiar stellar type of F8 V that has some deficit at around ~ 3720 Å compared with the F8 V of Ja84. This deficit might be caused by metal richness of the star as the spectra of F8 V stars with different metallicities in the catalogue of Pickles (1998) shown in figure 24. We also compare with the F8 V stars in the catalogue of Bagnulo et al. (2003) shown in figure 25. A lot of metal absorption lines from 3720 Å to 3900 Å changing the shape of the spectrum in this region make
Fig. 23. Comparisons of the observed spectrum of Tycho(E) (red solid curve) with the template spectra of F7 V (green dashed curve), F8 V (blue dashed curve), and F9 V (purple dashed curve) stars of Ja84. The upper panel shows spectra in the whole observed range of wavelength. The bottom panel is a close-up of the spectra in a limited wavelength range of 3650–3900 Å. The three template stars show similar behavior at around 3720 Å, while they are significantly different at around 3860 Å. Besides, a large difference is not seen at the other wavelengths.

Fig. 24. Comparison of the template spectra of F8 V stars with different metallicities from Pickles (1998). The red line shows the spectrum of a metal-weak F8 V star, the green line shows an F8 V star with the solar metallicity, and the blue line shows a metal-rich F8 V star. The green line almost follows the spectrum of the F8 V star of Ja84. The difference between the metal-rich and the normal star does not affect the amount of the absorption at ~3720 Å. If we use the metal-weak star, the amount of the absorption is overestimated.

Fig. 25. Comparison of the template spectra of F8 V stars in Bagnulo et al. (2003). These spectra were obtained by members of the ESO Paranal Science Operations Team in order to make a library of high-resolution spectra of stars across the Hertzsprung–Russell diagram. The spectra by Bagnulo et al. (2003) are converted into lower resolution spectra suitable for Ja84. We plot the four F8 V stars in the catalog and one F8 V star in Ja84 (red line). None of their spectra can exhibit an absorption feature like Tycho(E) and (ah).
it difficult to deduce accurate EAMs of the blue wing of 3720 Å and 3860 Å absorption. To do this, we need to observe various nearby stars with the spectral type of F8 V toward the direction of SNR Tycho and out of the region of SNR Tycho.

5. Discussion

We present a statistical study of the broad absorption lines at around 3720 Å. The EAM distribution of the observed stars is plotted in figure 26 and the EAMs in the wavelength ranges of 3700 Å–3720 Å (left) and 3790 Å–3810 Å (right) are plotted with their magnitudes in the V-band in figure 27.

In 3700 Å–3720 Å, a broad absorption line due to Fe I is expected not only in the spectrum of the companion star, but also in the spectra of the background stars, while in 3790 Å–3810 Å no absorption is expected. In 3790 Å–3810 Å, the obtained EAM distribution is consistent with a scatter due to measurement errors around EAM ~ 0 Å (figures 26 right and 27 right). On the other hand, there seem to be several stars that show positive EAMs of around 3 Å in addition to stars without showing finite EAMs (figures 26 left and 27 left).

Next, we discuss the profiles of absorption lines. The profile in the spectrum of Tycho(E) was discussed in section 4. If Tycho(E) is the companion star, then the other stars with broad absorption lines should be located in the background of SNR Tycho. These stars are expected to show broad absorption lines due to Fe I in the ejecta both in the blue and red sides of the original wavelength 3720 Å. However, they exhibit very weak absorptions in the red side compared with that in the blue. In figure 28, we show the EAM distribution in the range 3720 Å–3740 Å, similar to figures 26 and 27. There seem to be 4 stars having weak absorptions, but they are faint and the EAMs have large errors. In contrast, the other stars are distributed around 0 Å.

There are 5 stars outside of the candidate region from which broad absorption lines are detected. Tycho(ah) has the best signal-to-noise ratio, and is already discussed in subsection 4.2.3. Tycho(aa) exhibits a similar spectrum, but with smaller signal-to-noise ratios. Tycho(ad), (ai), and (ak) seem to have broad absorption lines with larger EAMs in the red side of 3720 Å than Tycho(ah). These EAMs of Tycho(ad), (ai), and (ak) are about a half of the EAMs of the corresponding blue side absorption lines. However, large errors involved in these EAMs prevent us from deducing a clear conclusion.

If positive EAMs are not caused by spectral features of peculiar stars, the absorptions of Fe I are the most probable interpretation. However, the observed absorptions are not exactly the same as predicted by the model of OS06. No red wings are significantly detected, while a significant blue wing is found for Tycho(ah), although its projected location is far from the center of SNR. Hence, if the origin of this absorption is Fe I, refining OS06 would be necessary. Their model assumes a spherical symmetry distribution of the ejected iron. However, if the distribution of neutral iron is clumpy, the Fe I absorption might not be able to be detected according to the location of a star because of a lack of iron in the line of sight. Also, absorption profiles would be complicated.

Finally, we discuss Tycho(E) as candidates of the companion star of Tycho’s SN. Although there is no clear example that shows significant broad absorption lines both in blue and red sides of 3720 Å, which are expected for the background of the SNR, we confirm the blue-shifted broad absorption line at 3720 Å only for Tycho(E) in the candidate region. An absorption line with this unique shape can be formed by Fe I in the SN ejecta when the star is inside SNR Tycho. If the supernova explosion occurred at the center of SNR Tycho defined by Warren et al. (2005), the projected distance of Tycho(E) is considerably short from the center of SNR Tycho (~10”), while Tycho(G) is located away from the center of SNR Tycho (~25”). Ruiz04 suggested that the SN site was about 25” off the geometrical center of the SNR. It is not clear whether this SN site is consistent with the observed shape of the SNR in the context of hydrodynamical evolution of the blast wave in the ambient inhomogeneous medium. Therefore, it is likely that Tycho(E) is another candidate for the companion star, considering the position from the center of SNR Tycho.

6. Summary

We performed photometric and spectroscopic observations to search for the companion star remaining in the remnant of a SN Ia (SNR Tycho). First, we selected candidate stars for the spectroscopic observations from photometric observations for the SNR Tycho region. We then obtained optical spectra of 4 stars in the candidate region and 13 other stars outside of the candidate region. To identify the companion star of Tycho’s SN, we compared the observed spectra in SNR Tycho with spectra of Ja84 at 3720 Å, 3800 Å, and 3860 Å. If the position of a star is inside the ejecta of SNe Ia or in the background of the ejecta, absorption lines due to Fe I in the expanding ejecta may be seen.

We are able to detect significant broad absorption lines at 3720 Å for Tycho(E) and (ah). As the distribution of EAMs at 3720 Å shows, spectra of Tycho(aa), (ad), (ai), and (ak) have possible absorption lines. Tycho(E) is located at the candidate region, while Tycho(aa), (ad) (ah), (ai), and (ak) are located out of the region. However, we cannot detect the absorption at 3860 Å at a sufficient significance level. It is difficult to detect them at 3860 Å because of uncertainty of the template stellar spectra at 3860 Å.

The detected absorption lines in the blue side at 3720 Å are consistent with Fe I absorption of SNR Tycho. On the other hand, we did not obtain a clear broad absorption line in the red side of the original wavelength from a star in the background of the SNR. We cannot conclude if the detected broad absorption lines are due to Fe I in the SN ejecta. Another interpretation is that their absorption lines might be caused by the peculiarity of stars.

We do not detect any broad absorption lines in the spectrum of Tycho(G). Thus, we did not obtain supporting evidence for the result of Ruiz04 from our observations. In the candidate region, Tycho(E) is the only star within the candidate region that shows a significant broad absorption line. The spectral type of Tycho(E) determined by our observations and by Ruiz04 are apparently inconsistent. Our observations indicate that Tycho(E) is a new candidate as a companion star in the sense that this star is located close to the projected center of the SNR, and shows a broad absorption line.
No. 4] Searching for a companion of SNIa

Fig. 26. EAMs versus the number of stars. (left) There are two peaks at ~0.5 Å and ~3.0 Å at 3700 Å–3720 Å. (right) On the other hand, there is only one peak at 0 Å for 3790 Å–3810 Å.

Fig. 27. EAMs versus the magnitude in the V-band. The dashed vertical lines indicate the mean value given by figure 26. The stars of about 21 mag have large errors. The left panel is for 3700–3720 Å, the right panel for 3790–3810 Å.

Fig. 28. Distribution of EAMs at 3720 Å–3740 Å, same as figures 26 and 27. We expect to detect the absorption lines from the background stars, but we cannot detect them clearly like the EAMs at 3700 Å–3720 Å.
We would like to thank the Subaru Telescope staff for their invaluable assistance. We thank M. Iye and N. Ebizuka for practical advice to use FOCAS in the short wavelength region. We are also grateful to W. Aoki for useful discussions about stellar profiles. We thank David Branch and an anonymous referee for constructive criticism, which helped us to improve the paper. This work was supported in part with scientific research grants (15204012, 16540213, and 17104002) from the Ministry of Education, Culture, Sports, Science and Technology.

References

Astier, P., et al. 2006, A&A, 447, 31
Bagnulo, S., Jehin, E., Ledoux, C., Cabanac, R., Melo, C., Gilmozzi, R., & The ESO PARANAL Science Operation Team 2003, Messenger, 114, 10
Branch, D., Livio, M., Yungelson, L. R., Buffi, F. R., & Baron, E. 1995, PASP, 107, 1019
Fink, H. H., Asaoka, I., Brinkmann, W., Kawai, N., & Koyama, K. 1994, A&A, 283, 635
Fuhrmann, K. 2005, MNRAS, 359, L35
Fukugita, M., Ichikawa, T., Gunn, J. E., Doi, M., Shimasaku, K., & Schneider, D. P. 1996, AJ, 111, 1748
Gunn, J. E., & Stryker, L. L. 1983, ApJS, 52, 121
Hachisu, I., & Kato, M. 2001, ApJ, 558, 323
Hachisu, I., Kato, M., & Nomoto, K. 1996, ApJ, 470, L97
Hachisu, I., Kato, M., & Nomoto, K. 1999b, ApJ, 522, 487
Hachisu, I., Kato, M., Nomoto, K., & Umeda, H. 1999a, ApJ, 519, 314
Han, Z., & Podsiadlowski, Ph. 2004, MNRAS, 350, 1301
Iben, I., Jr & Tutukov, A. V. 1984, ApJS, 54, 335
Jacoby, G. H., Hunter, D. A., & Christian, C. A. 1984, ApJS, 56, 257 (Ja84)
Kashikawa, N., et al. 2002, PASJ, 54, 819
Knop, R. A., et al. 2003, ApJ, 598, 102
Miyazaki, S., et al. 2002, PASJ, 54, 833
Nomoto, K., & Iben, I., Jr. 1985, ApJ, 297, 531
Nomoto, K., Iwamoto, K., & Kisimoto, N. 1997, Science, 276, 1378
Nomoto, K., Thielemann, F.-K., & Yokoi, K. 1984, ApJ, 286, 644
Ozaki, J. & Shigeyama, T. 2006, ApJ, 644, 954 (OS06)
Perlmutter, S., et al. 1999, ApJ, 517, 565
Pickles, A. J. 1998, PASP, 110, 863
Riess, A. G., & Livio, M. 2006, ApJ, 648, 884
Ruiz-Lapuente, P., et al. 2004, Nature, 431, 1069 (Ruiz04)
Saio, H., & Nomoto, K. 1985, A&A, 150, L21
Schmidt, B. P., et al. 1998, ApJ, 507, 46
Silva, D. R., & Cornell, M. E. 1992, ApJS, 81, 865
Soderblom, D. R., King, J. R., Hanson, R. B., Fischer, D., Stauffer, J. R., & Pinsonneault, M. H. 1998, ApJ, 504, 192
Soubiran, C., Karz, D., & Cayrel, R. 1998, A&AS, 133, 221
Warren, J. S., et al. 2005, ApJ, 634, 376
Webbink, R. F. 1984, ApJ, 277, 355
Yagi, M., Kashikawa, N., Sekiguchi, M., Doi, M., Yasuda, N., Shimasaku, K., & Okamura, S. 2002, AJ, 123, 66