LINGO1 is a regulatory subunit of large conductance, Ca2+-activated potassium channels

Citation for published version:
Dudem, S, Large, RJ, Kulkarni, S, McClafferty, H, Tikhonova, IG, Sergeant, GP, Thornbury, KD, Shipston, M, Perrino, BA & Hollywood, MA 2020, 'LINGO1 is a regulatory subunit of large conductance, Ca2+-activated potassium channels', Proceedings of the National Academy of Sciences, vol. 117, no. 4, pp. 2194-2200. https://doi.org/10.1073/pnas.1916715117

Digital Object Identifier (DOI):
10.1073/pnas.1916715117

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published in:
Proceedings of the National Academy of Sciences

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
LINGO1 is a regulatory subunit of large conductance, Ca\(^{2+}\)-activated potassium channels

Srikanth Dudema, Roddy J. Large, Shruti Kulkarni, Heather McClafferty, Irina G. Tikhonova, Gerard P. Sergeant, Keith D. Thornbury, Michael J. Shipston, Brian A. Perrino, and Mark A. Hollywood

Edited by Richard W. Aldrich, The University of Texas at Austin, Austin, TX, and approved December 17, 2019 (received for review September 26, 2019)

LINGO1 is a transmembrane protein that is up-regulated in the cerebellum of patients with Parkinson’s disease (PD) and Essential Tremor (ET). Patients with additional copies of the LINGO1 gene also present with tremor. Pharmacological or genetic ablation of large conductance Ca\(^{2+}\)-activated K\(^{+}\) (BK) channels also result in tremor and motor disorders. We hypothesized that LINGO1 is a regulatory BK channel subunit. We show that 1) LINGO1 coimmunoprecipitated with BK channels in human brain, 2) coexpression of LINGO1 and BK channels resulted in rapidly inactivating BK currents, and 3) LINGO1 reduced the membrane surface expression of BK channels. These results suggest that LINGO1 is a regulator of BK channels, which causes a "functional knockdown" of these currents and may contribute to the tremor associated with increased LINGO1 levels.

Coexpression of LINGO1 Induces Inactivation

In our first series of experiments, we compared BK currents in excised patches from HEK cells transfected with BKα cDNA only, with those cotransfected with BKα and LINGO1 cDNA. As shown in Fig. L4, large, noisy, sustained outward currents were recorded from BK only inside-out patches, in response to depolarizing steps of up to +200 mV (Ca\(^{2+}\) concentration on the cytosolic side, [Ca\(^{2+}\)]\(_i\) = 100 nM). When conductance/voltage (G/V) curves were constructed (Fig. 1C, filled squares) and fitted with a Boltzmann function (solid line, Fig. 1C), it was apparent that these currents were half maximally activated (V\(_{1/2}\)) at +161 ± 1 mV (n = 6), in agreement with previous studies (20). However, when recordings were made from cells cotransfected with cDNA for BKα and LINGO1 (BKα:LINGO1, Fig. 1B), the currents differed markedly in several respects: 1) The sustained BK currents were absent and, instead, rapidly and completely inactivating currents were recorded (Fig. 1B, [Ca\(^{2+}\)]\(_i\) = 100 nM). Inactivation of BKα:LINGO1 currents was faster at more positive potentials (Fig. 1 B, Inset). These currents are reminiscent of the transient BK currents recorded in murine Purkinje neurons (21, 22), which may be due to LINGO1 or other regulatory BK subunits. 2) The BKα:LINGO1 tail currents deactivated more slowly than BK controls. 3) Their activation V\(_{1/2}\) was shifted by ~ −50 mV (open symbols, Fig. 1C) compared to BKα alone, which was similar to the effect of γ subunits on BK channels (18, 19). 4) BKα:LINGO1

Significance

Large conductance calcium-activated potassium (BK) channels are ubiquitously expressed and alter cellular excitability. These channels are formed by four pore-forming α subunits whose biophysical and pharmacological properties are modulated by regulatory β and γ subunits. LINGO1 is a protein, previously shown to be upregulated in both Parkinson’s disease and Essential Tremor. Consequently, we investigated its effects on BK channels and demonstrate that LINGO1 associates with these channels in human cerebellum. LINGO1 causes BK channels to inactivate and to open at more negative potentials. Furthermore, coexpression of BK with LINGO1 also led to a reduction in BK channels in the membrane. Our data support the idea that LINGO1 is a regulatory subunit of BK channels.
Fig. 1. Coexpression of BKα and LINGO1 cDNA produces inactivating currents that activate at negative potentials. A shows a typical record of an inside-out patch from a HEK cell transiently expressing BKα channels and exposed to 100 nM Ca2+LINGO1 currents activated at significantly more negative potentials (n = 6) compared to BKα channels (P < 0.001). D shows the main structural features of the LINGO1 protein including the extracellular domains (black), the transmembrane domain (green), and the intracellular tail (purple, yellow, blue, and red). E Application of trypsin (0.3 mg·mL⁻¹) gradually removed inactivation of BKα:LINGO1 currents and increased current amplitude evoked by a step to +160 mV. The green line represents a control current, prior to application of trypsin. F shows a summary of four similar experiments in which the time course of the effects of trypsin were recorded. Currents remained significantly increased above control after trypsin treatment (P < 0.05). The red dotted lines represent zero current.

cotransfection reduced the amplitude of BK currents, since ~5% of patches had currents >1 nA at +160 mV (peak current 451 ± 135 pA, mean ± SEM, n = 71), compared to ~75% of BK controls (peak current 4,988 ± 632 pA mean ± SEM, n = 43, P < 0.001, ANOVA Tukey's multiple comparison). The inactivation V₁/₂ of BKα:LINGO1 currents shifted ~ −80 mV when [Ca2+]i was increased from 100 nM to 1 μM (SI Appendix, Fig. S1 A–C).

To confirm that the inactivating currents were carried through BK channels, we assessed the effects of external iberiotoxin (IBTx) on whole-cell recordings of cells transfected with either BKα or BKα:LINGO1 cDNA (SI Appendix, Fig. S2). Cumulative addition of increasing concentrations of IBTx blocked both sustained and inactivating whole-cell currents in a concentration-dependent manner, confirming that both currents were due to activation of BK channels.

To assess if LINGO1 could cause inactivation when both BKα and β subunits were cotransfected with cDNA for LINGO1, BKα, and either BKβ1 or BKβ2. Currents from these patches also showed inactivation (SI Appendix, Fig. S3), although the rate of inactivation was slower than those recorded in BKα:LINGO1 patches. When evoked by a step to +200 mV in 100 nM Ca2+, BKαβ1:LINGO1 currents inactivated with a τ₁ of 17 ± 5 ms (n = 5) compared to 1.9 ± 0.2 ms in LINGO1:BKα (n = 7, unpaired t test, P < 0.05). Even when the ratio of BKβ1 cDNA and LINGO1 cDNA was increased to 5:5:1 (250 ng·mL⁻¹ BKβ1, 250 ng·mL⁻¹ LINGO1, 50 ng·mL⁻¹ BKα), there was no further change in the rate of inactivation at +200 mV (τ₁ = 18 ± 3 ms, n = 11, unpaired t test). Similarly, coexpression of BKαβ4:LINGO1 resulted in currents which inactivated in 100 nM Ca2+ at +200 mV with τ₁ = 18 ± 3 ms (n = 8).

Inactivation Was Abolished When the Distal C Terminus of LINGO1 Was Absent

Although the crystal structure of the extracellular domain of LINGO1 has been solved (23), little is known about the structure of the transmembrane domain or the proposed intracellular tail. Therefore, we created a homology model of LINGO1, in which residues 551–583 formed a single transmembrane helix (green helix, Fig. 1D). In contrast, residues 584–620 (shown in purple, yellow, blue, and red, Fig. 1D) were intracellular, adopting a disordered loop structure that could possibly behave as an inactivating particle, as has been shown in some BKβ subunits (24–26) and Shaker channels (27). To test this, we enzymatically digested the tail by applying trypsin (0.3 mg·mL⁻¹) to the cytosolic surface of patches coexpressing BK and LINGO1. Steps to +160 mV (Fig. 1E, green trace) evoked rapidly inactivating currents and small, slowly deactivating tail currents were apparent upon repolarization to −80 mV. However, after ~60 s in the continued presence of trypsin, the BKα:LINGO1 current amplitude increased, inactivation was practically abolished, and deactivation was faster (τ = 0.4 ± 0.3 ms compared to 3.0 ± 0.3 ms before trypsin, P < 0.05, paired t test). Fig. 1F summarizes four experiments in which peak BK current amplitude was plotted before, during, and after trypsin digestion. Current amplitude was irreversibly increased ~fourfold by trypsinization.

Since trypsin is likely to cleave the cytosolic tail at arginine or lysine residues, as marked by the asterisks in Fig. 2D, we made a
series of LINGO1 C terminus deletion constructs at these sites (Δ600:620, Δ613:620, Δ618:620) and found that inactivation was practically abolished in constructs with at least the last eight amino acids removed. Fig. 2C shows a typical family of currents, recorded in 100 nM Ca\(^{2+}\), from BKα:LINGO1Δ613:620 in response to a series of voltage steps from −100 mV to 200 mV. When compared to the full-length BKα:LINGO1 construct (Fig. 2B), inactivation was abolished, but as shown in the summary GV curve (green symbols, Fig. 2D), the negative shift in \(V_{1/2}\) was retained (compare BKα, green dashed line). As shown in SI Appendix, Figs. S4 and S5B, all three deletion constructs retained the negative shift in activation \(V_{1/2}\), supporting the idea that truncated LINGO1 proteins still trafficked to the membrane and associated with BK channels.

To test if the last eight amino acids in the C terminus of LINGO1 were sufficient to cause inactivation, we made a synthetic peptide (peptide acid with a free N terminus and the C terminus terminated by a free carboxyl group) consisting of these eight residues (RKFNMKMI) and applied it to the cytosolic surface of patches expressing BKα-only channels. This peptide mimicked the inactivation observed when the full-length LINGO1 protein was coexpressed with BKα channels. Fig. 2E shows a family of BK currents recorded in 100 nM Ca\(^{2+}\) and evoked by a series of depolarizing steps from −100 mV to +200 mV, prior to the application of the synthetic peptide. In the presence of 30 μM of the peptide, the current amplitude was reduced approximately fivefold and the resultant currents inactivated (Fig. 2F). Fig. 2G shows a summary of six similar experiments in which the current amplitude (measured in the last 5 ms of each voltage step) was plotted in the absence (open symbols) and presence (closed symbols) of 30 μM RKFNMKMI. Under these conditions, BK current amplitude was significantly reduced at voltages >100 mV (\(P < 0.05\), paired t test).

LINGO1 Reduces the Cell Surface Expression of BK Channels

We next used immunocytochemistry experiments to further confirm that LINGO1 and BKα expressed in the membranes of
HEK cells, transiently transfected with BKα and LINGO1 cDNA. As shown in Fig. 3, Upper, only BKα channels were detected in the membranes of HEK cells transfected with BKα cDNA. In contrast, when LINGO1 was cotransfected with BKα, both proteins were present. However, it appeared that BKα channel expression in the membrane was lower when cotransfected with LINGO1 cDNA (Fig. 3, Lower), which may contribute to the reduced amplitude of the BK currents recorded in the BKα:LINGO1 cotransfected cells. An on-cell Western (OCW) assay, using HEK cells transfected with BKα channel cDNA encoding an intracellular HA tag and an extracellular FLAG tag, was used to compare BKα expression in the absence and presence of LINGO1. It is clear from Fig. 3B that both surface and total BKα expression were reduced by LINGO1. BK channel surface expression (Fig. 3B, green symbols), as a function of total BKα expression, was also significantly reduced in a concentration-dependent manner when cotransfected with LINGO1. However, total BKα expression was only reduced in cells cotransfected with 1 μg of LINGO1 cDNA (Fig. 3B, red symbols). To verify that the reduction of BK channel plasmalemmal and total expression with increasing concentrations of LINGO1 cDNA was not a consequence of nonspecific saturation of synthesis/trafficking, we assayed cell surface expression of the BK channel in the presence of the transmembrane BKβ1 subunit. Over the same concentration range as used for LINGO1 (60–1,000 ng), in OCW assays coexpression of BKβ1 resulted in a significant increase in BK channel surface expression (~2.5-fold above that of BK alone using 1,000 ng of BKβ1), with no significant effect on total BK expression (SI Appendix, Fig. S7). Thus, LINGO1 and BKβ1 have opposite effects on BKα cell surface expression.

To further quantify plasmalemmal BK expression, we performed an additional series of electrophysiology experiments on cells in which BKα cDNA was cotransfected alone, or with equimolar concentrations (100 ng·mL⁻¹) of WT LINGO1 cDNA, or each of the three LINGO1 tail deletion constructs (SI Appendix, Fig. S6A–F). Pipettes with resistances of 4–5 MΩ were used for all of these experiments. All currents were evoked by steps to +160 mV, in the presence of 100 nM Ca²⁺. The amplitude of currents in patches from cells expressing BKα:LINGO1 (SI Appendix, Fig. S6B) were 90% smaller than BKα alone (SI Appendix, Fig. S6D), and the mean current amplitude (SI Appendix, Fig. S6G) was 451 ± 135 pA (n = 71) and 4,988 ± 632 pA (n = 43),
respectively ($P < 0.001$, ANOVA, Tukey’s multiple comparison test). An important point to note is that of the 71 patches recorded from cells transfected with BKn:LINGO1, no currents were detected in 26 patches (~37%). Furthermore, trypsin (0.3 mg·mL$^{-1}$) was applied to six of these “blank” patches and failed to unmask any currents. In contrast, zero “blank” patches were detected in the 43 patches taken from cells transfected with just BKn cDNA. However, application of trypsin to 12 other patches containing inactivating BKn:LINGO1 channels (SI Appendix, Fig. S6C) increased mean current amplitude ~fourfold (from 503 ± 128 pA to 1,762 ± 380 pA, $P < 0.001$, paired t test, SI Appendix, Fig. S6G).

Thus, in the absence of inactivation, the BKn:LINGO1 current amplitude was still reduced by ~65% compared to patches taken from cells transfected with just BKn cDNA ($P < 0.001$, ANOVA, Tukey’s multiple comparisons test). These data are in agreement with the effects of equimolar BKn:LINGO1 cDNA cotransfection on surface BK expression, shown in our OCW experiments (65.7 ± 5%, Fig. 3B). The amplitude of currents recorded (under exactly the same conditions as BKn currents) from the LINGO1 tail deletion constructs BKn:LINGO1$_{A613:620}$, BKn:LINGO1$_{A613:620}$ and BKn:LINGO1$_{A600:620}$ (SI Appendix, Fig. S6 D–F, respectively) were similar in amplitude to trypsinized BKn:LINGO1 currents and, thus, were also ~65–70% smaller than BKδ (SI Appendix, Fig. S6G). These were all significantly smaller than BKn currents ($P < 0.001$, ANOVA, Tukey’s multiple comparisons test) but were not significantly different to each other, or to the trypsin-treated patches.

LINGO1 Coimmunoprecipitates with BK in Human Cerebellar Tissues

Having established that LINGO1 behaved as a modulator of BK channels in HEK cells, we next examined if it interacted with BK channels in the membranes of human cerebellum. Since LINGO1 has previously been shown to be up-regulated in the cerebellum of PD patients (5), we obtained postmortem cerebellar samples from both PD patients and age-matched controls. As shown in Fig. 4A, LINGO1 and BKδ proteins coimmunoprecipitated in both control and PD samples, providing support that both of these proteins closely associate in the membranes of native human tissues. We also confirmed that LINGO1 was significantly elevated in PD samples compared to control (Fig. 4B and C), in agreement with previous studies (4, 5). However, when BK protein in the membrane was quantified, there was no significant difference between controls and PD cerebellar samples (Fig. 4 D and E).

Discussion

In the present study, we found that 1) LINGO1 coexpression with BK channels resulted in rapidly inactivating, slowly deactivating and negatively activating BK currents; 2) LINGO1 reduced plasmalemmal expression of BK channels in HEK cells; and 3) LINGO1 and BK coimmunoprecipitated in cerebellar tissues from both PD patients and age-matched controls. These data suggest that LINGO1 is a regulatory subunit of BK channels.

LINGO proteins and γ subunits are both LRRC proteins, but they differ in several respects. First, the LINGO1 protein has <20% sequence identity to the γ subunits. Second, the LINGO proteins have 12 extracellular LRRC domains, compared to 6 in the γ subunits. Third, the LINGO proteins have an IgI1 domain, which is absent in the γ subunits. Finally, in contrast to the γ subunits, the LINGO1–3 proteins share a KMI sequence at the distal end of the tail and all three proteins have a net positive charge in this region, as illustrated in the sequence alignment shown in SI Appendix, Fig. S8A. Interestingly, LINGO4 lacks this KMI motif and only has one positive charge in this region, compared to three in LINGO1–3, leading us to speculate that its effects on BK channel inactivation are likely to differ from the other LINGO family members.

Although the extracellular domains of LINGO1 differ significantly from the γ subunits, the phylogenetic tree (SI Appendix, Fig. S8B) based on the sequence alignment of the LRRCs transmembrane region and part of the intracellular tail (SI Appendix, Fig. S9) suggests that each of the four LINGO proteins are evolutionarily close to the BKγ subunits.

The presence of net positive charge and a hydrophobic region in the C terminus of LINGO1 suggests that this protein shares some similarities with the N terminus of inactivating BKδ subunits (25, 28, 29). These subunits are thought to induce N terminus inactivation via a mechanism, which shares some similarities to that observed in voltage-dependent K$^+$ channels (27, 30), whereby the open channel becomes blocked by a tethered peptide. Our results with LINGO1 are consistent with such a mechanism of action, since 1) LINGO1 slowed down deactivation of the BK channels, suggesting that it prevents channel closure following inactivation; 2) application of trypsin to the cytosolic surface of BKn:LINGO1 patches, irreversibly abolished inactivation; 3) deletion of the charged and hydrophobic regions (BKn:LINGO1$_{A613:620}$) from the C terminus practically abolished inactivation (Fig. 2C); and 4) application of a peptide identical to the last eight residues of LINGO1 mimicked inactivation (Fig. 2F). However, caution is called for in the interpretation of the last point, since basic peptides can have promiscuous blocking effects. Although we have not studied the
mechanism of block/unblock in any detail, it is interesting to note that the BKα:LINGO1 tail currents were inwardly rectifying (SI Appendix, Fig. S1 D and E), suggesting that LINGO1 unblocks much more rapidly at very negative potentials. However, the precise blocking mechanism clearly warrants further investigation.

Deletion of the terminal three residues of the LINGO1 C terminus (Δ618–620) greatly reduced inactivation of BK channels (SI Appendix, Fig. S4A), suggesting that the KMI sequence, common to LINGO1–3 (SI Appendix, Fig. S8A), contributes to inactivation. The involvement of a triplet of residues was also shown in BKβ subunits, where an N terminus FIW deletion mutant abolished the inactivation of BKβ channels (25).

However, in LINGO1, other residues are also clearly involved since inactivation was observed with the LINGO1Δ616–620 mutant at potentials positive to +160 mV and in higher [Ca2+]i (SI Appendix, Fig. S4A).

For example, the τi at +200 mV, in 1 μM Ca2+, was 2.6 ± 0.5 ms (n = 6) in this mutant, compared to 1.2 ± 0.3 ms in WT LINGO1 (t = 5, P < 0.05, unpaired t test). However, the deletion of the terminal 8 residues (Δ613–620, SI Appendix, Fig. S4C) and 21 residues (Δ600–620, SI Appendix, Fig. S4E) of LINGO1 completely abolished LINGO1-mediated inactivation of BK channels. These results support the idea that the inactivation domain resides in the distal C terminus of LINGO1.

LINGO1 currents shared some features of inactivating BKβ subunits, but there were a number of obvious differences. Thus, the time dependence of inactivation (τi) of BKα:LINGO1 currents was faster (τi ~ 5 ms in 100 nM Ca2+ at +100 mV) than BKβ2 currents (~200 ms and ~50 ms at +100 mV in 100mM Ca2+ and 10 μM Ca2+; respectively; ref. 31). However, it is important to note that the experiments presented here were carried out at 37 °C, compared to room temperature in the Wallner et al. study. Although τi measured in BKα:LINGO1 channels was more similar to that observed with BKαβ3b channels (τi ~ 1 ms at +100 mV in 100 nM Ca2+; ref. 32), it has been established that BKαβ3b currents fail to completely inactivate, in contrast to that observed with BKα:LINGO1 currents.

A feature of BKα:LINGO1 currents was a ~50 mV negative shift in the activation V1/2 in 100 nM Ca2+ compared to BKα alone (20). This is similar to the shift observed previously in BKγ1 channels (18, 19) in the absence of Ca2+. Interestingly, the negative shift in V1/2 was retained in the C terminus deletion mutants as illustrated in Fig. S4, suggesting that this region does not contribute to the shift in activation V1/2 observed in LINGO1: BK channels. Thus, the extracellular domain or the transmembrane and intracellular membrane-flanking residues of LINGO1 might contribute to the observed shift in V1/2. In BKγ subunits, the F273 residue of the TM domain and a cluster of positively charged membrane-flanking residues contribute significantly to the negative shift in activation of γ1 subunits (33, 34), so it is tempting to speculate that similar residues could play a role in the LINGO1-mediated negative shift of BK channel activation, but this will require confirmation.

Although previous studies on BKγ subunits have demonstrated that they augment BK current at physiological potentials, it is likely that the functional effects of LINGO1 will be complicated by its ability to inactivate the channel, as shown in SI Appendix, Fig. S1. Consequently, as illustrated in SI Appendix, Fig. S10H, the availability of BKα:LINGO1 current will not only depend on the [Ca2+]i, the presence and stoichiometry of other regulatory subunits, but also the resting potential. Future experiments will be directed at examining how LINGO1 changes the “available” BK current at physiological potentials in BK channels, in the absence and presence of regulatory subunits.

It is clear from the data obtained from postmortem cerebellar tissue that LINGO1 and BK coimmunoprecipitated, suggesting that in human brain, these two proteins are also intimately associated. It is also important to note that LINGO1 protein levels were significantly elevated in all four PD patient samples compared to age-matched controls, in agreement with previous studies (4–6). However, in contrast to the reduction in BK channel expression observed with LINGO1 in HEK cells, we found no evidence that BK channel protein expression was altered in the cerebellar samples from the four PD patient samples used in this study. Unfortunately, we were unable to ascertain if tremor was present in these deceased PD patients, and it therefore remains a possibility that the LINGO1 levels recorded in these patients were insufficient to down-regulate BK expression. Nevertheless, the results of a recent study from a family with an extra copy of the LINGO1 gene (7) suggests that elevated LINGO1 expression can result in tremor and this may, at least in part, be due to its effects on neuronal BK channels.

In summary, we have demonstrated that LINGO1 is a regulatory BK channel subunit that could be involved with the tremor involved in patients with increased LINGO1 levels.

Methods

Electrophysiology. Experiments were performed on BKα subunits and LINGO1 transiently expressed in HEK cells and studied with either the inside out or whole-cell configurations of the patch clamp technique. The concentrations of Ca2+ in each experiment applied to the cytosolic face of the channel are shown in each figure. See SI Appendix, SI Materials and Methods for details. All data were expressed as the mean ± SEM.

Molecular Biology and Cell Culture. Cell surface expression of BKα subunits in the presence and absence of LINGO1 was determined using OWC assay with epitope tagged BKα subunits expressed in HEK293 cells.

Human Samples and Westerns. BKα and LINGO1 protein expression and coimmunoprecipitation experiments were carried out on postmortem human cerebellar homogenates from PD patients and age-matched unaffected controls and determined by Wes analysis.

Data Availability Statement. All data discussed in the paper will be made available to readers upon request.

ACKNOWLEDGMENTS. We thank Dr. Tim Webb for cloning the rabbit β1 subunits. This study was funded as part of the Borders and Regions Airway Training Hub project by the European Union (EU), under the Interreg VA Programme, managed by the Special EU Programmes Body (to K.D.T., G.P.S., and M.A.H.). Human cerebellar tissue samples were obtained from the NIH Neurobiobank at the University of Maryland, Baltimore, MD, and the Human Brain and Spinal Fluid Resource Centre, Los Angeles, CA.

1. B. Barrette, N. Vallières, M. Dubé, S. Lacroix, Expression profile of receptors for myelin-associated inhibitors of axonal regeneration in the intact and injured mouse central nervous system. Mol. Cell. Neurosci. 34, 519–538 (2007).
2. H. Inoue et al., Inhibition of the leucine-rich repeat protein LINGO-1 enhances survival, structure, and function of dopaminergic neurons in Parkinson’s disease models. Proc. Natl. Acad. Sci. U.S.A. 104, 14430–14435 (2007).
3. F. Llorens et al., Developmental analysis of Lingo-1/Lem1 protein expression in the mouse brain: Interaction of its intracellular domain with Myt11. Dev. Neurobiol. 68, 521–541 (2008).
4. S. H. Kuo et al., Lingo-1 expression is increased in essential tremor cerebellum and is present in the basket cell pinceau. Acta Neuropathol. 125, 879–889 (2013).
5. C. Delay et al., Increased LINGO1 in the cerebellum of essential tremor patients. Mov. Disord. 29, 1637–1647 (2014).
6. E. K. Tan, LINGO1 and essential tremor: Linking the shakes. Linking LINGO1 to essential tremor. Eur. J. Hum. Genet. 18, 739–740 (2010).
7. V. Alakbarzade et al., Copy number variation of LINGO1 in familial dystonic tremor. Disord. Hered. 29, 185–188 (2010).
8. J. E. Brayden, M. T. Nelson, Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 256, 532–535 (1992).
9. P. R. Adams, A. Constanti, D. A. Brown, R. B. Clark, Intracellular Ca2+ activates a fast-voltage-sensitive K+ current in vertebrate sympathetic neurones. Nature 296, 746–749 (1982).
10. W. L. Imlach et al., The molecular mechanism of “ryegrass staghers,” a neurological disorder of K+ channels. J. Pharmacol. Exp. Ther. 327, 657–664 (2008).
11. L. R. Fletcher, I. C. Harvey, An association of a Lolium endophyte with ryegrass staggers. N. Z. Vet. J. 28, 185–186 (1980).
12. R. T. Gallagher, A. D. Hawkies, The potent tremorgenic neurotoxins lolitrem B and aflatoxin: A comparison of the tremor response in mice. Experientia 42, 823–825 (1986).
13. A. L. Meredith, K. S. Thorneloe, M. E. Werner, M. T. Nelson, R. W. Aldrich, Overactive bladder and incontinence in the absence of the BK large conductance Ca2+-activated K+ channel. J. Biol. Chem. 279, 36746–36752 (2004).

14. G. Cheron et al., Purkinje cell BK channel ablation induces abnormal rhythm in deep cerebellar nuclei and prevents LTD. Nat. Sci. Rep. 8, 4220 (2018).

15. H. G. Knaus et al., Tremorgenic indole alkaloids potently inhibit smooth muscle high-conductance calcium-activated potassium channels. Biochemistry 33, 5819–5828 (1994).

16. V. N. Uebele et al., Cloning and functional expression of two families of beta-subunits of the large conductance calcium-activated K+ channel. J. Biol. Chem. 275, 23211–23218 (2000).

17. R. Brenner et al., Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature 407, 870–876 (2000).

18. J. Yan, R. W. Aldrich, LRRC26 auxiliary protein allows BK channel activation at resting voltage without calcium. Nature 466, 513–516 (2010).

19. J. Yan, R. W. Aldrich, BK potassium channel modulation by leucine-rich repeat-containing proteins. Proc. Natl. Acad. Sci. U.S.A. 109, 7917–7922 (2012).

20. T. I. Webb et al., Molecular mechanisms underlying the effect of the novel BK channel opener GoSlo: Involvement of the S4/S5 linker and the S6 segment. Proc. Natl. Acad. Sci. U.S.A. 112, 2064–2069 (2015).

21. Z. M. Khaliq, N. W. Gouwens, I. M. Raman, The contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: An experimental and modeling study. J. Neurosci. 23, 4899–4912 (2003).

22. M. D. Benton, A. H. Lewis, J. S. Bant, I. M. Raman, Iberiotoxin-sensitive and -insensitive BK currents in Purkinje neuron somata. J. Neurophysiol. 109, 2528–2541 (2013).

23. L. Mosyak et al., The structure of the Lingo-1 ectodomain, a module implicated in Shaker potassium channel inactivation. Science 250, 533–538 (1990).

24. C. J. Lingle, X. H. Zeng, J. P. Ding, X. M. Xia, Inactivation of BK channels mediated by the NH2 terminus of the beta2 auxiliary subunit involves a two-step mechanism: Possible separation of binding and blockade. J. Gen. Physiol. 117, 583–606 (2001).

25. X. M. Xia, J. P. Ding, C. J. Lingle, Inactivation of BK channels by the NH2 terminus of the beta2 auxiliary subunit: An essential role of a terminal peptide segment of three hydrophobic residues. J. Gen. Physiol. 121, 125–148 (2003).

26. J. P. Ding, Z. W. Li, C. J. Lingle, Inactivating BK channels in rat chromaffin cells may arise from heteromultimeric assembly of distinct inactivation-competent and non-inactivating subunits. Biophys. J. 74, 268–289 (1998).

27. T. Hashi, W. N. Zagotta, R. W. Aldrich, Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250, 533–538 (1990).

28. C. J. Lingle, X. H. Zeng, J. P. Ding, X. M. Xia, Inactivation of BK channels mediated by the NH2(2) terminus of the j3b auxiliary subunit involves a two-step mechanism: Possible separation of binding and blockade. J. Gen. Physiol. 117, 583–606 (2001).

29. G. R. Benzinger, X.-M. Xia, C. J. Lingle, Direct observation of a preinactivated, open state in BK channels with j2 subunits. J. Gen. Physiol. 127, 119–131 (2006).

30. J. Rettig et al., Inactivation properties of voltage-gated K+ channels altered by presence of j-subunit. Nature 369, 289–294 (1994).

31. M. Wallner, P. Meera, L. Toro, Molecular basis of fast inactivation in voltage and Ca2+-activated K+ channels: A transmembrane beta-subunit homolog. Proc. Natl. Acad. Sci. U.S.A. 96, 4137–4142 (1999).

32. X. M. Xia, J. P. Ding, X. H. Zeng, K. L. Duan, C. J. Lingle, Rectification and rapid activation at low Ca2+ of Ca2+-activated, voltage-dependent BK currents: Consequences of rapid inactivation by a novel beta subunit. J. Neurosci. 20, 4890–4903 (2000).

33. Q. Li, F. Fan, H. R. Kwak, J. Yan, Molecular basis for differential modulation of BK channel voltage-dependent gating by auxiliary gamma subunits. J. Gen. Physiol. 145, 543–554 (2015).

34. Q. Li, X. Guan, K. Yen, J. Zhang, J. Yan, The single transmembrane segment determines the modulatory function of the BK channel auxiliary gamma subunit. J. Gen. Physiol. 147, 337–351 (2016).