Observation of orbital ordering and origin of the nematic order in FeSe

R X Cao1,2, Jian Hu1, Jun Dong1, J B Zhang1, J S Ye1, Y F Xu1, D A Chareev1,4,5, A N Vasiliev4,7,8, Bing Wu9, X H Zeng1,11, Q L Wang10,11 and Guoqing Wu1,11

1 College of Physics Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225002, People’s Republic of China
2 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China
3 Institute of Experimental Mineralogy, Russian Academy of Sciences, 142432, Chernogolovka, Moscow District, Russia
4 Institute of Physics and Technology, Ural Federal University, Mira st. 19, Ekaterinburg, 620002, Russia
5 Kazan Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russia
6 Low Temperature Physics and Superconductivity Department, Lomonosov Moscow State University, Moscow 119991, Russia
7 National University of Science and Technology ‘MISiS’, Moscow 119049, Russia
8 National Research South Ural State University, Chelyabinsk 454080, Russia
9 Department of Math and Computer Science, Fayetteville State University, Fayetteville, NC 28301, United States of America
10 Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
11 Authors to whom any correspondence should be addressed.

E-mail: xhzeng@yzu.edu.cn, qiuliang@mail.iee.ac.cn and wugq@yzu.edu.cn

Keywords: nuclear magnetic resonance (NMR), NMR spin-lattice relaxation, nematic order, orbital ordering, Fe-based superconductor

Abstract

In iron-based superconductors the interactions driving the nematic order that breaks the lattice four-fold rotational symmetry in the iron plane may also facilitate the Cooper pairing, but experimental determination of these interactions is challenging because the temperatures of the nematic order and the order of other electronic phases appear to match each other or to be close to each other. Here we performed field-dependent 77Se-nuclear magnetic resonance (NMR) measurements on single crystals of iron-based superconductor FeSe, with magnetic field B_0 up to 16 T. The 77Se-NMR spectra and Knight shift split when the direction of B_0 is away from the direction perpendicular to the iron planes (i.e. $B_0 \parallel c$) upon cooling in temperature, with a significant change in the distribution and magnitude of the internal magnetic field at the 77Se nucleus, but these do not happen when B_0 is perpendicular to the iron planes, thus demonstrating that there is an orbital ordering. Moreover, stripe-type antiferromagnetism is absent, while giant antiferromagnetic spin fluctuations measured by the NMR spin-lattice relaxation gradually developed starting at ~40 K, which is far below the nematic order temperature $T_{nem} = 89$ K. These results provide direct evidence of orbital-driven nematic order in FeSe.

1. Introduction

The interactions between structure, magnetism and superconductivity in Fe-based superconductors have been of wide interests [1–3]. The experimental determination of these interactions is challenging due to the occurrence of nematic order often at or near the temperature of a stripe-type long-range antiferromagnetic (AFM) order [4–8]. Similar to the stripe-type AFM order, the nematic order also breaks the lattice four-fold (C_4) rotational symmetry of a high-temperature phase, as evidenced by a tetragonal-to-orthorhombic structural phase transition at T_c [7–11]. On the other hand, the nematic order is directly linked to the superconducting state because nematic instability is a characteristic feature of the normal state upon which at lower temperatures the superconductivity emerges [1, 8, 12, 13], and thus nematicity is deemed a precursor of superconductivity in unconventional superconductors including the cuprates. It is generally believed that the nematic order is electronic and the structural phase transition is the consequence of the nematic order, since the lattice distortion is much smaller than the observed anisotropy of the in-plane resistivity in the nematic phase [9, 14]. However, it
remains highly controversial regarding the origin of the nematic order whether it is driven by spin order [15, 16], AFM spin fluctuations [15–17], and/or orbital order [18–24].

In Fe-based superconductors, FeSe has the simplest crystal structure, while it has representative properties as other Fe-based superconductors, thus it has been intensively studied [25–27]. FeSe undergoes a tetragonal-to-orthorhombic structural phase transition at $T_s \approx 90$ K with an electronic nematic order simultaneously ($T_{\text{nem}} = T_s$) [3, 28–30]. The orbital ordering was also found at T_{nem} via angle-resolved photoemission spectroscopy [29, 31, 32], whereas AFM order was absent at ambient pressure [28, 33, 34], and thus possible orbital order driven nematicity was proposed [3, 29, 31, 32].

However, recent findings show that stripe-type AFM order emerges under high pressure, and the AFM ordering temperature increases with high pressure [17, 33, 35–37]. These findings make the origin of the electronic nematic order more elusive. Even though various experimental techniques have been used for the study, most research work reported was focused on the doping and high pressure effects on the properties of FeSe. A systematical investigation of the effect of applied magnetic field on the properties of FeSe is still lacking.

Here we present for the first time field-dependent 77Se-nuclear magnetic resonance (NMR) measurements systematically on high-quality single crystals of FeSe with applied magnetic field B_0 up to 16 T and temperature down to 1.5 K. We observed orbital ordering which is demonstrated by the splitting of the NMR spectrum and Knight shift. As measured by the 77Se-NMR spin-lattice relaxation giant AFM spin fluctuations gradually develop starting at ~40 K, which is far below the nematic order temperature $T_{\text{nem}} = T_s = 89$ K. These discoveries provide direct evidence of orbital-driven nematic order in FeSe. They also shed light on the important role of the nematic order on the superconductivity of Fe-based superconductors.

2. Experimental section

Single crystals of FeSe were grown in evacuated quartz ampoules using the AlCl$_3$/KCl flux technique with a temperature gradient of 5 °C cm^{-1} along the ampoule length. The temperatures of the hot and cold ends used for the growth were 427 °C and 380 °C, respectively. X-ray diffraction verified that the crystals have a high-purity single phase with a tetragonal crystal structure at room temperature, where the lattice c-axis is perpendicular to the Fe-planes (ab-plane). A SQUID magnetometer was used to measure the DC magnetic susceptibility $\chi(T)$. The sample used for our NMR measurements has a typical size of $3.3 \times 2.7 \times 0.1 \text{ mm}^3$.

The NMR coil used for the measurements was made from 50 µm diameter silver wire wound with ~18 turns and attached to a goniometer on an NMR probe by epoxy. A single-crystal FeSe sample was put inside the coil so that the sample rotation axis is in the lattice ab-plane and perpendicular to the applied field B_0. A commercial network analyzer was used for the observation of the tuning and matching of the resonant circuit located at the bottom of the NMR probe. The NMR spectra and spin-lattice relaxation time T_1 were measured with an inversion-recovery method, where a π pulse is first applied to invert the nuclear magnetization M_0 to the $-z$ axis, and then after a delay time t, a $\pi/2$ pulse is applied to measure the recovering magnetization $M(t)$ component along the z axis, which gives T_1 as a function of time t as $M(t)/M_0 = 1 - 2\exp(-t/T_1)$ [38].

3. Results and discussion

Figure 1(a) shows the typical 77Se-NMR spectra at $B_0 = 12$ T and temperature $T = 40$ K (below T_{nem}), by the variation of the angle θ between B_0 and the lattice c-axis of FeSe. The spectrum splits into two peaks (P_1 and P_2) which is observed when B_0 is applied ~25° from the c-axis. The splits reach the maximum when $B_0||a&b$, indicating the largest anisotropy of the internal field at the Se-sites in the a&b-plane.

Figure 1(b) exhibits the temperature (T) dependence of the 77Se-NMR spectrum linewidth (Δf) at $B_0||c$ and $||a&b$, from the measurements of the temperature-dependent 77Se-NMR spectra at $B_0 = 12$ T for both field directions. It shows a significant change at $B_0||a&b$, but not at $B_0||c$.

Noticeably, the 77Se-NMR spectra are fully magnetic with no electron charge or quadrupolar contributions because 77Se is a spin $I = 1/2$ nucleus (which has no quadrupole moment). The spectral splitting was only observed when temperature T is less than $T_{\text{nem}} = T_s = 89$ K, but not for $B_0||c$ (the reason to be revealed later).

Thus, undoubtedly the spectrum split is the result of a structure symmetry break in the ab-plane due to the tetragonal-to-orthorhombic structure phase transition (structurally a and b are not equal any more), which is known as the consequence of the electronic nematic order in the Fe-planes [23, 24].

Moreover, with the nematic order the spectrum splits also reflect a significant change in spacial field distribution (ΔB_{FWHM}) and also a change in the value of the internal field (B') at the Se-sites. Here $\Delta B_{\text{FWHM}} = \Delta f/\gamma_1$, where $\gamma_1 = 8.131$ MHz/T is the gyromagnetic ratio of the 77Se nucleus, and $B' = (\nu - \nu_L)/\gamma_1$, where ν is the NMR frequency and ν_L is the Larmor frequency ($\nu_L = \gamma_1 B_0$).
For example, above \(T_{\text{nem}} \), the linewidth \(\Delta f = 3.5 \text{ kHz} \) at \(T = 200 \text{ K} \). Upon cooling in temperature, it goes up and it reaches a maximum of 4.2 \text{ kHz} \) at \(T = T_{\text{nem}} \) (figure 1(b)), followed by a complete separation of the two NMR spectrum peaks, and \(\Delta f = 3.5 \text{ kHz} \) at \(T \sim 60 \text{ K} \) again. Then \(\Delta f \) increases upon further cooling. While the spectrum linewidth \(\Delta f/(\text{FWHM}) \) at \(B_0 \parallel c \) keeps no change down to low \(T \) (figure 1(b)).

At the meantime, the value of the internal field \(B' \) at the Se-sites has a change \(\Delta B' = \pm 12.0 \text{ G} \) (a Knight shift change of \(\pm 0.010\% \) from the average value \((B)\) of the internal field \(B = 160 \text{ G} \)) (or an average Knight shift \(0.133\% \)) (not shown here), i.e. the change of the value of internal field \(\Delta B' \) reaches \(\pm 7.5\% \) from the average value of the internal field \(B \) in the Fe-planes.

The Knight shift \(K \) is defined by \(K = (\nu - \nu_b)/\nu_c \) as a tradition, and it should be field independent. That the values of \(K(T) \) at \(B_0 \parallel a\&b \) are apparently larger than those at \(B_0 \parallel c \) at \(T < T_{\text{nem}} \) indicates an anisotropic hyperfine coupling.

In general, the Knight shift \(K \) is given by \([39, 40]\):

\[
K = K_{\text{spin}} + K_{\text{orb}},
\]

where spin Knight shift \(K_{\text{spin}} = [A_{\text{spin}}/N_\text{A}\mu_B]\chi_{\text{spin}} \) and orbital Knight shift \(K_{\text{orb}} = [A_{\text{orb}}/N_\text{A}\mu_B]\chi_{\text{orb}} \). Here \(\chi_{\text{spin}} \) and \(\chi_{\text{orb}} \) are the electron spin and orbital susceptibility, respectively. \(A_{\text{spin}} \) and \(A_{\text{orb}} \) are the hyperfine coupling constants between the studied nucleus and the electron spins and the electron orbitals, respectively. \(N_\text{A} \) is the Avogadro’s number and \(\mu_B \) is the Bohr magneton. Likewise, the magnetic susceptibility \(\chi \) is the sum of the contributions from core diamagnetic susceptibility (\(\chi_{\text{dia}} \)), orbital (van Vleck) paramagnetic susceptibility (\(\chi_{\text{orb}} \)) and Pauli spin paramagnetic susceptibility (\(\chi_{\text{spin}} \)) \([41, 42]\), i.e. \(\chi = \chi_{\text{dia}} + \chi_{\text{orb}} + \chi_{\text{spin}} \). Here, for FeSe, \(\chi_{\text{dia}} = -6.1 \times 10^{-5} \text{ cm}^3/\text{mol} \) from the diamagnetism of the atomic ions, and \(\chi_{\text{orb}} \) is \(T \)-independent unless there is an orbital change such as an orbital ordering.

Figure 2(a) exhibits the relation of the Knight shift \(K(T) \) with the sample susceptibility \(\chi(T) \), plotted as \(K(T) \) versus \(\chi(T) \). At \(T > T_{\text{nem}} \), \(K(T) \) is linear with \(\chi(T) \) as expected from above, from which we obtain the value of the constant of the hyperfine coupling to the electron spins at \(B_0 \parallel a\&b \): \(A_{\text{spin},a\&b} = 30.4 \text{ kOe}/\mu_B \), and similarly the corresponding hyperfine coupling constant at \(B_0 \parallel c \): \(A_{\text{spin},c} = 32.8 \text{ kOe}/\mu_B \). As discussed later, the constants \(A_{\text{orb}} \) of the hyperfine coupling to the electron orbitals are also obtained, the values of the spin Knight shift \(K_{\text{spin}} \) and orbital shift \(K_{\text{orb}} \) are separated, and \(\chi_{\text{orb}} \) and \(\chi_{\text{spin}}(T) \) are distinguishable, both at \(B_0 \parallel a\&b \) and at \(B_0 \parallel c \).

Interestingly, at \(T < T_{\text{nem}} \), \(K(T) \) versus \(\chi(T) \) gradually deviates from the high temperature linear relation, as seen in figure 2(a) for both \(B_0 \parallel a\&b \) and \(B_0 \parallel c \). Because \(K(T) \) and \(\chi(T) \) are fully magnetic in nature, as described by equation (1), this deviation can only be explained by a change in the electron spin susceptibility \(\chi_{\text{spin}}(T) \) such as that as a result of an AFM order of the electron spins or AFM spin fluctuations, and/or by a change in the electron orbital susceptibility \(\chi_{\text{orb}} \) such as that as a result of an ordering of the electron orbitals, as well as associated changes in the hyperfine couplings to the electron spins \(A_{\text{spin}} \) and/or to the electron orbitals \(A_{\text{orb}} \), any of which could lead to a change in \(K(T) \) simultaneously. This is also seen by the expression \([39, 40, 42]\).
In other words, these data verify that there is an electron orbital ordering occurring in (specially at the superconductivity, i.e. T \text{~} T_{\text{nem}}. That is to say that below T_{\text{nem}}, the spin Knight shift K_{\text{spin}}(T) becomes negligible at all directions, i.e. K \approx 0.

In other words, the Knight shift K(T) at low temperatures predominantly comes from the contribution of the orbital Knight shift K_{\text{orb}} (figure 2(b)).

The reason that K_{\text{spin}}(T) \approx 0 in all directions can be understood by enormous AFM spin fluctuations developed in the same temperature regime, whereas there is no evidence of electron spin order, as directly evidenced by our 77Se-NMR spin-lattice relaxation data (see next), with the consideration of a more general expression of the spin Knight shift as [39, 42]: K_{\text{spin}} = \sum_{\text{dias}} \frac{N_\text{dias} \chi_\text{spin}}{N_\text{dias} \mu_\text{B}} \chi_\text{spin} (T). This is the summation of the terms of hyperfine coupling interaction to the individual electron spins (the degree of electron spin polarization is \chi_\text{spin}, where each term could be very different from each other due to the AFM spin fluctuations, resulting in a cancellation of them.

On the other hand, the dramatic increase of the orbital Knight shift K_{\text{orb}} (figure 2(b)) below T_{\text{nem}} means the result of an orbital ordering. To confirm this, we studied the internal field difference (\Delta B_{\text{int}}) in the ab-plane by the measurement of the frequency difference (\Delta \nu_{\text{ab}}) of the NMR spectrum peaks (P_1 and P_2), as shown in figure 2(c). \Delta \nu_{\text{ab}} reaches ~12.5 kHz and 25.0 kHz, or a value of internal field difference \Delta B_{\text{int}} \approx 15.6 G and 31.2 G at T_{\text{nem}} = 8 T and 16 T, respectively, at low temperatures. These values are scalable with B_{int}, which is understandable as they are magnetic in nature. Here we have $\Delta B_{\text{ab}} = \Delta \nu_{\text{ab}} / 77Se$. Since there is no appearance of AFM spin order and the in-plane anisotropy of the paramagnetic spin Knight shift is expected to be negligible (i.e. $K_{\text{spin},\parallel a} \approx K_{\text{spin},\parallel b}$), from the Knight shift we have

$$\Delta B_{\text{ab}} = B_0 [(K_{\text{spin},\parallel a} - K_{\text{spin},\parallel b}) + (K_{\text{orb},\parallel a} - K_{\text{orb},\parallel b})] \approx B_0 (K_{\text{orb},\parallel a} - K_{\text{orb},\parallel b}).$$

Therefore, this indicates that all the data values of $\Delta \nu_{\text{ab}}$ shown in figure 2(c), are essentially completely from the orbital contributions (for convenience, we say all orbital), i.e. the internal field difference in the ab-plane is fully determined by the difference of the hyperfine coupling to the Fe-electron orbitals among the a- and b-axes. In other words, these data verify that there is an electron orbital ordering occurring at T < T_{\text{nem}}.

Now we can define a characteristic orbital ordering temperature T' by the intersection of two lines that fit to the data in the transition area as shown in figure 2(c), and we find that T' is linear to B_{int} as: $T' = T_{\text{nem}} - kB_{\text{int}}$, where $k = 2.4 \pm 0.1$ (K/T) (figure 4). We noted that T' indicates the temperature where orbital ordering is
fully developed while the orbital ordering starts at T_{nem} upon cooling. Here $\Delta \nu_{\alpha, b}$ or $\Delta B'_{\alpha, b}$ can be treated as the orbital ordering parameter [23], $\Delta \nu_{\alpha, b} \propto \sqrt{T_{\text{nem}} - T}$ near $T = T_{\text{nem}}$ and as $B_0 \rightarrow 0$, $T^* = T_{\text{nem}}$.

Furthermore, in order to investigate the electron spin dynamics and to support the observations in the NMR spectrum and Knight shift, we performed the ^{77}Se-NMR spin-lattice relaxation measurements as a function of temperature and applied field, as exhibited in figure 3.

Generally, $1/T_1 T$ probes the imaginary part of the low-frequency ($\omega \rightarrow 0$) dynamical susceptibility $\chi(q, \omega)$ averaged over the momentum (q) space as [39, 43]:

$$1/T_1 = \left(\frac{\pi}{\hbar}\right) A_{hy}^2 N(E_F)\beta_0 = \left(4\pi\hbar^2/\gamma_e\right)^2 K_{\text{spin}}^2,$$

where γ_e is the gyromagnetic ratio of the electron, $N(E_F)$ is the density of states of electrons at the Fermi energy E_F, and $f(E)$ is the energy distribution function. For AFM-correlated electrons, $\chi(q)$ can have a peak at the AFM wave vector $Q = (\pi, \pi)$, and then $1/T_1 \propto \chi(Q)$ with a Curie–Weiss type relation as: $1/T_1 \propto C/(T - \theta)$, as often seen in cuprate and other Fe-based superconductors [6, 44–46]. For AFM fluctuations, the fit parameter $\theta < 0$, and for large spin fluctuations C is large.

Thus, important information can be obtained from the NMR spin-lattice relaxation. First, figures 3(a) and (b) show the nematic order/structure phase transition at $T_{\text{nem}} = T_c$, which is independent of B_0. Second, enormous AFM spin fluctuations are developed (a significant deviation from the Korringa law) as seen in the plot of $\sqrt{1/T_1 T}$ versus T but they start at ~ 40 K and below only (inset of figures 3(a) and (b)), which is far below $T_{\text{nem}} = 89$ K. With the fit to the Curie–Weiss relation for $10 K < T < 40 K$, we have the values of $\theta = -4.6$ (~ 21.5 K), and $C' = 10.0 (7.2)$ s$^{-1}$ for $B_0 || a\bar{b}$ ($B_0 || c$). Here θ is comparable while C' is much larger than those of other Fe-based superconductors [47–50]. Third, the AFM spin fluctuations drop significantly at $T < T_c$ due to diamagnetism associated with the pairing symmetry of the electron spins, and $1/T_1$ \propto T^n, where α \approx 3 in low fields, consistent with a line-node gap behavior of a d-wave superconductor, agreeing with reports on various Fe-based superconductors [35, 40, 47, 51].

Figure 3(c) exhibits the plot of $\sqrt{1/(T_1 T)}$ versus $K(T)$ with T as an implicit parameter, with the consideration that the Korringa law (equation (4)) can also be expressed as $\sqrt{1/(T_1 T)}$ $= \sqrt{C K_{\text{spin}}}$ $= \sqrt{C |K(T) - K_{\text{orb}}|}$ for a Fermi liquid. Here $C = (4\pi k_b^2/\gamma_e)^2$ for free electrons [39, 43]. Apparently, figure 3(c) shows a linear relation above T_{nem}, and thus it gives values of $K_{ab} \approx 0.06%$ (0.08%) for $B_0 || c$ ($B_0 || a\bar{b}$) by the intercepts along the $K(T)$ axis, which have been used to separate K_{spin} and K_{orb} in the tetragonal phase (shown in figure 2(b)) and to extrapolate the values of K_{ab}, K_{spin}, χ_{orb}, and χ_{orb} combining with the $K(T)$ \sim $\chi(T)$ relation (figure 3(c)). Similarly, the slope also gives an experimental value of C \approx $1.5 \times 10^9 (1.8 \times 10^9)$ K$^{-1}$ s$^{-1}$ for $B_0 || c$ ($B_0 || a\bar{b}$), which matches well with the theoretical value of C $= 1.46 \times 10^9$ K$^{-1}$ s$^{-1}$ for non-interacting/free electrons in FeSe. Thus, these data verify that the electrons at $T > T_{\text{nem}}$ in FeSe are not strongly correlated.

Figure 3. Field-dependence of the ^{77}Se-NMR spin-lattice relaxation in FeSe upon cooling in temperature (T). ^{77}Se $1/T_1 T$ versus T at (a) $B_0 || c$ and (b) $B_0 || a\bar{b}$, respectively. The insets are enlargements in the low T regime. (c) Plot of $\sqrt{1/(T_1 T)}$ versus Knight shift $K(T)$, where the straight dashed lines are the fits to the Korringa law (equation (4)).
Moreover, below T_{nem} in the range $40 \text{ K} < T \leq T_{\text{nem}}$, $1/T_1 T$ continues to show a free-electron behavior (Korringa law), where $1/T_1 T$ is a constant as exhibited in figures 3(a), (b) insets, i.e. there is essentially no AFM spin fluctuations at the T_{nem} regime over a wide range of temperature. Therefore, AFM spin fluctuations can be excluded from the driving mechanism of the nematic order.

Figure 4 shows temperature—field phase diagram we obtained. First, as described in detail above, the applied magnetic field decreases the characteristic orbital ordering temperature T^* rather sensitively. Second, the structural phase transition temperature T_s and the nematic ordering temperature T_{nem} are not affected by the applied field ($T_{\text{nem}} = T_s = 89 \text{ K}$). Third, stripe-type AFM order is absent at all the applied fields. Here the values of T_s were determined by our resonance frequency method [52].

We would like to point out that, among the two groups of the $3d$ Fe $t_{2g}(d_{xy}, d_{yz}, d_{zx})$ and $e_g(d_{x^2−y^2}, d_{3z^2−r^2})$ orbitals (totally five orbitals), d_{xy}, $d_{x^2−y^2}$, and $d_{3z^2−r^2}$ are rotationally symmetric in the xy-plane. Thus, the only two candidates related to the tetragonal-orthorhombic degeneracy (lattice symmetry breaking) are the d_{xy} and d_{xz} orbitals. And, what an NMR spectrum directly measures is the local field distribution and local field values parallel to the externally applied magnetic field at the nucleus at the atomic scale. Therefore, because of the unique symmetry of the d_{xy} and d_{xz} orbitals in the lattice axis c-direction the ordering of these d_{xy} and d_{xz} orbitals is not able to cause any splitting of the ^{77}Se-NMR spectra at $B_0 ∥ c$ in FeSe.

Finally, we discuss the field effect on the characteristic temperatures. That the values of $T_s (T_{\text{nem}})$ are not affected by the directions or magnitude of the applied field could be explained by the weak anisotropy character of the paramagnetic Fe-spins in the high symmetry tetragonal lattice. That T^* is linearly proportional to B_0 could be understood due to its full magnetic character that involves electron orbital moments, while the reason for the decrease of the value of T^* with B_0 is not clear.

Whereas there is no appearance of long-range AFM order of the electron spins, we note that there were reports about short-range stripe magnetic order and possible spin–orbital coupling [53–55] developing in the nematic phase. From our data of the temperature- and field-dependence of ^{77}Se-NMR spin-lattice relaxation, $1/T_1 T$ versus T, we clearly see that giant AFM fluctuations gradually develop starting at $\sim 40 \text{ K}$ and below, which is far below the nematic order temperature T_{nem}. And above T_{nem} the data of $1/T_1 T$ well follows the Korringa law, which is a direct evidence of trivial electron correlations. These results leave the orbital ordering unequivocally as the dominant driving force of the nematic order.

4. Conclusions

In summary, we report direct observation of orbital ordering which is demonstrated by the splitting of the ^{77}Se-NMR spectrum and Knight shift in single crystals of iron-based superconductor FeSe. As illustrated by the field-dependence of the ^{77}Se-NMR spin-lattice relaxation, stripe-type AFM order is absent, whereas giant AFM spin fluctuations developed starting at temperatures far below the electronic nematic order temperature T_{nem}, thus both of which can be unambiguously excluded from the origin of the nematic order. These discoveries provide direct evidence of orbital-driven nematic order in FeSe. Our results also help to the understanding of the
strong interplay between structure, magnetism and superconductivity in Fe-based superconductors as well as other unconventional superconductors.

Acknowledgments

Work at YZU was supported by National Science Foundation of China (NSFC) (Grants # 61474096 and 1804291) and NSF of Jiangsu (Grants # BK20180889 and BK20180890), and at CAS by NSFC (Grants # 51477167 and 41527802). DAC thanks supports by the program 211 of the Russian Federation Government (RFG), agreement 02.A03.21.0006 and by the RFG Program of Competitive Growth of KFU. ANV thanks supports by Russian Foundation for Basic Research Grant # 17-29-10007, by the Ministry of Education and Science of the RFG in the framework of ICP of NUST MISiS (Grant # K2-2017-084), and by Act 211 of RFG, agreements 02.A03.21.0004, 02.A03.21.0006, and 02.A03.21.0011.

ORCID iDs

X H Zeng https://orcid.org/0000-0003-4775-6764
Guoqing Wu https://orcid.org/0000-0003-1180-7208

References

[1] Paglione J and Greene R I. 2010 High-temperature superconductivity in iron-based materials Nat. Phys. 6 645
[2] Fernandes R M, VanBebber L H, Bhattacharya S, Chandra P, Keppens V, Mandrus D, McGuire M A, Sales B C, Sefat A S and Schmalian J 2010 Effects of nematic fluctuations on the elastic properties of iron arsenide superconductors Phys. Rev. Lett. 105 157003
[3] Tanatar M A et al 2016 Origin of the resistivity anisotropy in the nematic phase of FeSe Phys. Rev. Lett. 117 127001
[4] Kontani H, Saito T and Onari S 2011 Origin of orthorhombic transition, magnetic transition, and shear-modulus softening in iron pnictide superconductors: analysis based on the orbital fluctuations theory Phys. Rev. B 84 024528
[5] Fernandes R M, Böhmer A E, Meingast C and Schmalian J 2013 Scaling between magnetic and lattice fluctuations in iron pnictide superconductors Phys. Rev. Lett. 111 137001
[6] Nakay T, Iye T, Kitagawa S, Ishida K, Kasahara S, Shibatachi T, Matsuda Y, Ikeda H and Terashima T 2013 Normal-state spin dynamics in the iron-pnictide superconductors Ba Fe2(As,–)2 and Ba(Fe1– ,Co,)2 As2 probed with NMR measurements Phys. Rev. B 87 174507
[7] Böhmer A E, Hardy F, Eilers F, Ernst D, Adelmann P, Schweiss P, Wolf T and Meingast C 2013 Lack of coupling between superconductivity and orthorhombic distortion in stoichiometric single-crystalline FeSe Phys. Rev. B 87 180506(R)
[8] Fernandes R M, Chubukov A V and Schmalian J 2014 What drives nematic order in iron-based superconductors? Nat. Phys. 10 97
[9] Chu H, Analytis J G, DeGreve K, McMahon P L, Islam Z, Yamamoto Y and Fisher I R 2010 In-plane resistivity anisotropy in an underdoped iron arsenide superconductor Science 329 824–6
[10] Konstantinova T et al 2019 Photodinduced dynamics of nematic order parameter in FeSe Phys. Rev. B 99 180102(R)
[11] Chen G Y, Wang E, Zhu X and Wen H H 2019 Synergy and competition between superconductivity and antiferromagnetism in FeSe under pressure Phys. Rev. B 99 054517
[12] Kang J, Fernandes R M and Chubukov A 2018 Superconductivity in FeSe: the role of nematic order Phys. Rev. Lett. 120 267001
[13] Liu D et al 2018 Orbital origin of extremely anisotropic superconducting gap in nematic phase of FeSe superconductor Phys. Rev. X 8 031033
[14] Tanatar M A et al 2010 Uniaxial-strain mechanical detwining of CaFe2As2 and BaFe2As2 crystals: optical and transport study Phys. Rev. B 81 184508
[15] Fang C, Yao H, Tsai W F, Hu J and Kivelson S A 2008 Theory of electron nematic order in LaFeAsO Phys. Rev. B 77 224509
[16] Hu J and Xu C 2012 Nematic orders in iron-based superconductors Physica C 481 215–22
[17] Wang P S, Sun S S, Cui Y, Song W H, Li T R, Yu R, Lei H and Yu W 2016 Pressure induced stripe-order antiferromagnetism and first-order phase transition in FeSe Phys. Rev. Lett. 117 237001
[18] Li W, Wu J and Phillips P 2009 Orbital ordering induces structural phase transition and the resistivity anomaly in iron pnictides Phys. Rev. B 80 224506
[19] Lee C C, Yin W G and Ku W 2009 Ferro-orbital order and strong magnetic anisotropy in the parent compounds of iron-pnictide superconductors Phys. Rev. Lett. 103 267001
[20] Krüger F, Kumar S, Zaanen J and van den Brink J 2009 Spin–orbital frustrations and anomalous metallic state in iron-pnictide superconductors Phys. Rev. B 79 054504
[21] Daghofer M, Luo Q L, Yu R, Yao D X, Moreo A and Dagotto E 2010 Orbital-weight redistribution triggered by spin order in the pnictides Phys. Rev. B 81 180514
[22] Chen C C, Maciejko J, Sorini A P, Moritz B, Singh R R P and Devereaux T P 2010 Orbital order and spontaneous orthorhombicity in iron pnictides Phys. Rev. B 82 100504
[23] Baek S H, Efremov D V, Ok M J, Kim J S, van den Brink J and Büchner B 2015 Orbital-driven nematicity in FeSe Nat. Mater. 14 210
[24] Böhmer A E, Arai T, Hardy F,hattori T, Iye T, Wolf T, v Löhneysen H, Ishida K and Meingast C 2015 Origin of the tetragonal-to-orthorhombic phase transition in FeSe: a combined thermodynamic and NMR study of nematicity Phys. Rev. Lett. 114 027001
[25] Hsu F C et al 2008 Superconductivity in the PbO-type structure α-FeSe Proc. Natl Acad. Sci. U.S.A. 105 14262–4
[26] Büchner B and Hess C 2009 Iron-based superconductors: vital clues from a basic compound Nat. Mater. 8 615
[27] Stewart R G 2011 Superconductivity in iron compounds Rev. Mod. Phys. 83 1589–652
[28] McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C and Cava R J 2009 Tetragonal-to-orthorhombic structural phase transition at 90 K in the superconductor Fe10Se8 Phys. Rev. Lett. 103 057002
[29] Nakayama K, Miyata Y, Phan G N, Sato T, Tanabe Y, Urata T, Tanigaki K and Takahashi T 2014 Reconstruction of band structure induced by electronic nematicity in an FeSe superconductor Phys. Rev. Lett. 113 237001
[30] Shimojima T et al 2014 Lifting of $xz\!/yz$ orbital degeneracy at the structural transition in detwinned FeSe Phys. Rev. B 90 121111
[31] Watson M D et al 2015 Emergence of the nematic electronic state in FeSe Phys. Rev. B 91 155106
[32] Zhang P et al 2015 Observation of two distinct $d_{x^2-y^2}$ band splittings in FeSe Phys. Rev. B 91 214503
[33] Bendele M, Amato A, Conder K, Ender M, Keller H, Klaus H L, Luetkens H, Pomjakushina E, Rasselli A and Khasanov R 2010 Pressure induced static magnetic order in superconducting FeSe$_{1-x}$ Phys. Rev. Lett. 104 087005
[34] Mizuguchi Y, Furubayashi T, Deguchi K, Tsuda S, Yamaguchi T and Takano Y 2010 Mössbauer studies on FeSe and FeTe Physica C 470 S338–9
[35] Imai T, Ahilan K, Ning F L, McQueen T M and Cava R J 2009 Why does undoped FeSe become a high-T_c superconductor under pressure? Phys. Rev. Lett. 102 177005
[36] Sun J P et al 2016 Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe Nat. Commun. 7 12146
[37] Kothapalli K et al 2016 Strong cooperative coupling of pressure-induced magnetic order and nematicity in FeSe Nat. Commun. 7 12728
[38] Fukushima E and Roeder S B W 1981 Experimental Pulse NMR: a Nuts and Bolts Approach (Reading, MA: Addison-Wesley)
[39] Slichter C P 1989 Principles of Magnetic Resonance 3rd edn (Berlin: Springer)
[40] Kato H, Masaki S, Awai Y, Tzu H, Mizuguchi Y and Takano Y 2008 Evidence for unconventional superconductivity in arsenic-free iron-based superconductor FeSe: a 77Se-NMR study J. Phys. Soc. Jpn. 77 113703
[41] Kittel C 2005 Introduction to Solid State Physics 8th edn (New York: Wiley)
[42] Imai T, Ahilan K, Ning F, McGuire M A, Sefat A S, Jin R, Sales B C and Mandrus D 2008 NMR measurements of intrinsic spin susceptibility in LaFeAsO$_{0.8}$F$_{0.2}$ J. Phys. Soc. Jpn. 77 47–53
[43] Moriya T 1963 The effect of electron-electron interaction on the nuclear spin relaxation in metals J. Phys. Soc. Jpn. 18 516–20
[44] Natori Y, Imai T, Monien H and Pines D 1990 Phenomenological model of nuclear relaxation in the normal state of YBa$_2$Cu$_3$O$_7$ Phys. Rev. B 42 167–78
[45] Åharen T et al 2010 Magnetic properties of the geometrically frustrated $s = \frac{1}{2}$ antiferromagnets, La$_2$LiMoO$_4$ and Ba$_2$YMoO$_6$, with the B-site ordered double perovskite structure: evidence for a collective spin-singlet ground state Phys. Rev. B 81 224409
[46] Dai P 2015 Antiferromagnetic order and spin dynamics in iron-based superconductors Rev. Mod. Phys. 87 855–96
[47] Nakai Y, Ishida K, Kamihara Y, Hirano M and Hosono H 2008 Evolution from itinerant antiferromagnet to unconventional superconductor with fluorine doping in LaFeAs(O$_{1-x}$F$_x$) revealed by 75As and 139La nuclear magnetic resonance J. Phys. Soc. Jpn. 77 073701
[48] Ning F L, Ahilan K, Imai T, Sefat A S, McGuire M A, Sales B C, Mandrus D, Cheng P, Shen B and Wen H H 2010 Contrasting spin dynamics between underdoped and overdoped Ba(Fe$_{1-y}$Co$_y$)$_2$As$_2$ Phys. Rev. Lett. 104 037001
[49] Kitagawa S, Nakai Y, Iye T, Ishida K, Kamihara Y, Hirano M and Hosono H 2010 Stripe antiferromagnetic correlations in LaFeAsO$_{1-y}$F$_y$ probed by 75As NMR Phys. Rev. B 81 212502
[50] Ma L, Chen G, Yao D X, Zhang J, Zhang S, Xia T L and Yu W 2011 23Na and 75As NMR study of antiferromagnetism and spin fluctuations in NaFeAs single crystals Phys. Rev. B 83 132501
[51] Ning F, Ahilan K, Imai T, Sefat A S, Jin R, McGuire M A, Sales B C and Mandrus D 2008 59Co and 75As NMR investigation of electron-doped high T_c superconductor BaFe$_{1.2}$Co$_{0.8}$As$_2$ ($T_c = 22$ K) J. Phys. Soc. Jpn. 77 103705
[52] Cao R X, Dong J, Wang Q L, Yang Y J, Zhao C, Chareev D A, Vasiliev A N, Wu B, Wu G and Zeng X H 2019 Measurements of the superconducting anisotropy in FeSe with a resonance frequency technique AIP Adv. 9 045220
[53] Ma M, Bourges P, Sidis Y, Xu Y, Li S, Hu B, Li J, Wang F and Li Y 2017 Prominent role of spin–orbit coupling in fese revealed by inelastic neutron scattering Phys. Rev. X 7 021025
[54] Day R P et al 2018 Influence of spin–orbit coupling in iron-based superconductors Phys. Rev. Lett. 121 076401
[55] He M, Wang L, Hardy F, Xu L, Wolf T, Adelmann P and Meingast C 2018 Evidence for short-range magnetic order in the nematic phase of FeSe from anisotropic in-plane magnetostriction and susceptibility measurement Phys. Rev. B 97 104107