NETWORK CODING IN UNDIRECTED GRAPHS IS EITHER VERY HELPFUL OR NOT HELPFUL AT ALL

Sumegha Garg

Joint work with Mark Braverman and Ariel Schwartzman

Princeton University
MULTICOMMODITY FLOW

- Graph $G = (V, E)$
- Capacity function $c: E \rightarrow R^+$
- Set I of k commodities: $\{(s_i, t_i), i \in [k]\}$
- Rate is r:
 - Flow between source-sink pair is at least r
 - Total flow through an edge is upper bounded by its capacity
- $MCF(G)$ denotes the multicommodity flow rate
FLOWS OF PACKETS

- No re-encodings at intermediate nodes
- The Question: Can we get better information rate if the commodities are bits and we use bit tricks on them?
NETWORK CODING

• First introduced in [ACLY ’00]
• $M = \{M_i\}_{i \in [k]}$ is the messages by sources
• Each edge has $f: M \rightarrow \Delta(e)$ (alphabet for e)
 • Function of alphabets on incoming edges
 • Entropy(e) is upper bounded by capacity
• Each sink edge t_i carries M_i
\(NC(G) \) denotes the network coding rate

\(r = \lim_{b \to \infty} \left(\frac{\max r_b}{b} \right) \) (All capacities are multiplied by \(b \))
• $NC(G)$ denotes the network coding rate

• $r = \lim_{b \to \infty} \left(\frac{\max r_b}{b} \right)$ (All capacities are multiplied by b)

\[r_2 = 1, \ NC = \frac{1}{2} \]
• $NC(G)$ denotes the network coding rate

• $r = \lim_{b \to \infty} \left(\frac{\max r_b}{b} \right)$ (All capacities are multiplied by b)

• Decidable?

• $\text{Gap}(G) = \frac{NC(G)}{MCF(G)}$

• Is there a G with $\text{Gap}(G) > 1$?

$\begin{align*}
r_2 &= 1, \quad NC = \frac{1}{2} \\
\end{align*}$
DIRECTED GRAPHS

• Yes! [HKL ‘04] [LL ‘04]
• NC/MCF gap can be as large as $O(|G|)$
SPARSITY BOUND FOR UNDIRECTED

• $U \subseteq V, \text{Sparsity}(U, V \setminus U) = \frac{\text{Capacity}(U, V \setminus U)}{\text{Demand}(U, V \setminus U)}$
SPARSITY BOUND FOR UNDIRECTED

- \(U \subseteq V, \text{Sparsity}(U, V \setminus U) = \frac{\text{Capacity}(U, V \setminus U)}{\text{Demand}(U, V \setminus U)} \)
SPARSITY BOUND FOR UNDIRECTED

- \(U \subseteq V, \text{Sparsity}(U, V \setminus U) = \frac{\text{Capacity}(U, V \setminus U)}{\text{Demand}(U, V \setminus U)} \)
- \(\text{Sparsity}(G) = \min_{U \subseteq V} \text{Sparsity}(U, V \setminus U) \)
SPARSITY BOUND FOR UNDIRECTED

- $U \subseteq V, \text{Sparsity}(U, V \setminus U) = \frac{\text{Capacity}(U, V \setminus U)}{\text{Demand}(U, V \setminus U)}$

- $\text{Sparsity}(G) = \min_{U \subseteq V} \text{Sparsity}(U, V \setminus U)$

- $\text{MCF}(G) \leq \text{NC}(G) \leq \text{Sparsity}(G)$

- $\frac{\text{Sparsity}(G)}{O(\log |G|)} \leq \text{MCF}(G) \leq \text{Sparsity}(G)$ [LR ‘99]

- Expander

- Information Upper Bound
MAXIMUM GAP IN UNDIRECTED GRAPHS

\[
\frac{NC(G)}{O(\log |G|)} \leq \frac{Sparsity(G)}{O(\log |G|)} \leq MCF(G) \leq NC(G)
\]

- Maximum gap can be \(O(\log |G|)\)
MAXIMUM GAP IN UNDIRECTED GRAPHS

- Maximum gap can be $O(\log |G|)$
- Li and Li conjectured that $MCF(G) = NC(G) \forall G$ [LL '04]
 - Coding gives no advantage
• [SYC ‘03] [KS ‘03] [K ‘03] [JFY ‘05] [KS ‘06] [HKL ‘06] produced techniques for lower and upper bounding NC
Either the conjecture is true or it must be nearly ‘completely false’

Theorem 1. Given a graph G that achieves a gap of $1 + \epsilon$ between the multicommodity flow rate and the network coding rate, we can construct an infinite family of graphs \tilde{G} that achieve a gap of $O\left(\log |\tilde{G}|\right)^c$ for some constant $c < 1$ that depends on the original graph G.
Given two graphs G_1 and G_2 with gaps $(1 + \epsilon_1)$ and $(1 + \epsilon_2)$ respectively, we construct a new graph G with gap $(1 + \epsilon_1)(1 + \epsilon_2)$ while keeping a check on size of G.

Apply this construction repeatedly on the starting graph with the gap
• Replace each edge of G_1 by a source-sink pair of G_2
• Replace each edge of G_1 by a source-sink pair of G_2
• Keep the source/sink pairs of G_1 and edges of G_2
• Keep the source/sink pairs of G_1 and edges of G_2
Idea: Effective capacity seen by G_1 under network coding is greater than that seen under flows.

- Information transferred grows linearly with capacity.
 - Gaps should multiply.
• For G_2, there is a gap only when all source-sink pairs send flows simultaneously.
• We have multiple copies of G_1 and each source-sink pair in a copy of G_2 replaces an edge in a different copy of G_1.
UPDATED GRAPH TENSOR

First copy of G_1
Second copy of G_1
Not the final tensor: Final Construction based on high girth bipartite graphs
Main Theorem

- Start with a graph $G_0 = G$ with gap $(1 + \epsilon)$

Theorem 2. Given a graph G of size n with a gap of $1 + \epsilon$ between the multicommodity flow rate and the network coding rate, we can create another graph G' of size n^{c^2} and a gap of $(1 + \epsilon)^2$, where c depends on the diameter of the graph G.
ITERATIVE TENSORING

• For iteration j, $G_j = G_{j-1} \otimes G_{j-1}$ (Applying theorem 2 to G_{j-1} to get G_j)
• Gap = $(1 + \epsilon)^{2^j}$
• Size grows like n^{c^2j}
• Gap grows as $O(\log |G_j|)^{c_1}$ where c_1 is a constant < 1!
OPEN PROBLEMS

• Proving/ Disproving the Li and Li conjecture
 • Even for linear codes?
• Computing optimal network coding for directed graphs
• \(n \) Random variables \(X_1, X_2, \ldots, X_n \) (joint distribution)

• Entropic vector is \(2^n - 1 \) dimensional vector with \(S^{th} \) coordinate holding \(H(X_{i_1}, X_{i_2}, \ldots, X_{i_k}) \) where \(S = \{i_1, i_2, \ldots, i_k\} \subseteq [n] \)

• \(n = 2, \ [H(X_1), H(X_2), H(X_1X_2)] \)
• n Random variables $X_1, X_2, ..., X_n$ (joint distribution)

• Entropic vector is $2^n - 1$ dimensional vector with S^{th} coordinate holding $H(X_{i_1}, X_{i_2}, ..., X_{i_k})$ where $S = \{i_1, i_2, ..., i_k\} \subseteq [n]$

• $n = 2$, $[H(X_1), H(X_2), H(X_1X_2)]$

• Entropic region is the set of all such vectors
 • $H(X_1) \leq H(X_1X_2) \leq H(X_1) + H(X_2)$
• n Random variables X_1, X_2, \ldots, X_n (joint distribution)

• Entropic vector is $2^n - 1$ dimensional vector with S^{th} coordinate holding $H(X_{i_1}, X_{i_2}, \ldots, X_{i_k})$ where $S = \{i_1, i_2, \ldots, i_k\} \subseteq [n]$

• $n = 2, \ [H(X_1), H(X_2), H(X_1X_2)]$

• Entropic region is the set of all such vectors

 • $H(X_1) \leq H(X_1X_2) \leq H(X_1) + H(X_2)$

• Given a $2^n - 1$ dimensional vector, is it ϵ-close to a vector in entropic region? (Even decidability)
THANKS