Supplemental information

Diet during the COVID-19 pandemic: An analysis of Twitter data

Mark A. Hernandez, Shagun Modi, Kanisha Mittal, Pallavi Dwivedi, Quynh C. Nguyen, Nina L. Cesare, and Elaine O. Nsoesie
Table S1: List of 52 Terms Indicating References to Alcohol

Alcohol Terms	beer	rum	pinot grigio	petite sirah
wine	mimosa	sauvignon blanc	gewurztraminer	
alcohol	martini	cabernet sauvignon	lychee martini	
liquor	brews	zinfandel	cocktail mix	
tequila	blood mary	syrah	rice wine	
ipa	daiquiri	tequila sunrise	pinot blanc	
beers	chardonnay	sangiovese	malt beverage	
whiskey	eggnog	muscat	malt beverages	
vodka	merlot	claret	maraschino	
champagne	pinot	cabernet franc	fume blanc	
mimosas	pinot noir	gamay	rice sake	
gin	pina colada	pinot gris	tavern	
booze	riesling	chenin blanc	taverns	

Three annotators identified 52 alcohol terms from the full list of unique food terms in the initial dataset of 11,445,868 food tweets collected in the United States from May 15, 2019 to January 31, 2020 and from May 15, 2020 to January 31, 2021.
Geotagged food tweets were extracted from 1% of random tweets collected during the pre-pandemic period (May 15, 2019, to January 31, 2020) and the pandemic period (May 15, 2020, and January 31, 2021) using the Twitter streaming application programming interface. The analytic sample consisted of 458,419 geotagged food tweets collected from 1,258 counties in the United States.
Table S2: Odds of Geotagged Food Tweet Referencing Healthy Food, Fast Food, or Alcohol by County-level Factors

County-level Factor	Healthy Food		Fast Food		Alcohol	
	Odds Ratio (95% CI)	P-value	Odds Ratio (95% CI)	P-value	Odds Ratio (95% CI)	P-value
Population Mobility						
% Change in Time Spent in Places of Residence	1.019 (1.011, 1.027)	< 0.001	0.967 (0.956, 0.977)	< 0.001	0.999 (0.993, 1.006)	0.849
Built Environment						
Grocery Stores per 10,000	1.019 (1.007, 1.032)	0.002	0.967 (0.949, 0.986)	0.001	-	-
Restaurants per 10,000	0.999 (0.997, 1.000)	0.055	0.993 (0.991, 0.995)	< 0.001	-	-
Bars per 10,000	-	-	-	-	0.989 (0.978, 1.000)	0.047
Liquor Stores per 10,000	-	-	-	-	1.066 (1.046, 1.087)	< 0.001
Population Characteristics						
% Age 10-24 years	1.000 (0.995, 1.004)	0.906	0.980 (0.974, 0.986)	< 0.001	1.004 (1.001, 1.008)	0.020
% Age 65+ years	1.006 (1.001, 1.010)	0.012	0.979 (0.973, 0.985)	< 0.001	0.986 (0.982, 0.989)	< 0.001
% Low Income	1.005 (1.001, 1.010)	0.022	0.984 (0.978, 0.990)	< 0.001	0.991 (0.987, 0.994)	< 0.001
% High Income	0.998 (0.995, 1.001)	0.210	1.002 (0.998, 1.006)	0.254	0.996 (0.993, 0.998)	< 0.001
% Non-Hispanic Black	1.003 (1.001, 1.006)	0.015	0.991 (0.988, 0.995)	< 0.001	0.998 (0.996, 1.001)	0.152
% Hispanic	1.002 (0.999, 1.004)	0.125	0.990 (0.987, 0.993)	< 0.001	0.998 (0.996, 1.000)	0.096
% Non-Hispanic White	1.002 (0.999, 1.005)	0.137	0.986 (0.982, 0.989)	< 0.001	1.004 (1.002, 1.007)	< 0.001
Baseline Food Category References						
% Food Tweets Referencing Healthy Food Pre-Pandemic	1.041 (1.038, 1.043)	< 0.001	-	-	-	-
% Food Tweets Referencing Fast Food Pre-Pandemic	-	-	1.077 (1.075, 1.080)	< 0.001	-	-
% Food Tweets Referencing Alcohol Pre-Pandemic	-	-	-	-	1.039 (1.038, 1.040)	< 0.001

Geotagged food tweets were extracted from 1% of random tweets collected during the pre-pandemic period (May 15, 2019, to January 31, 2020) and the pandemic period (May 15, 2020, and January 31, 2021) using the Twitter streaming application programming interface. The sample used for the regression model consisted of 458,419 geotagged food tweets collected from 1,258 counties during the pandemic period in the US. Data on population mobility were imported from the Google Covid-19 Community Mobility Reports. Built environment variables were derived from two data sources: the 2017-2018 Community Business Patterns database and the 2015-2019 American Community Survey. Population characteristics data were imported from 2015-2019 American Community Survey. Covariates for baseline food category references were derived from the pre-pandemic sample of tweets.