Bacterial Mannitol-1-Phosphate Dehydrogenase (mtlD) Transgene, Confers Salt Tolerance in the Fourth Generation Transgenic Maize (Zea Mays. L) Plants

Mariam Sticklen*, Thang Nguyen, Hussien Alameldin and Benjamin Goheen

Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA

Abstract

About 15% of global agricultural lands are exposed to high salinity, resulting in low crop yields and reduced food supplies. Attempts to develop salinity tolerant crops via selection and breeding have not been sufficient. Bacterial mannitol-1-phosphate Dehydrogenase (mtlD) has been known for its tolerance to salinity. Maize is the third cereal crop (after wheat and rice) that is severely affected by soil salinity. We have genetically engineered maize plants with the bacterial mtlD gene, confirmed the integration and expression of this transgene in up to forth progenies, and have confirmed that transgenic plants transcribing the mtlD gene have higher rate of photosynthesis and are more tolerant to different concentrations of NaCl (especially at 200 mM level) as compared with their wild-type non-transgenic control plants.

Keywords: mtlD; Corn; maize; transgenic plant; Zea mays; Salinity

Introduction

Salinity occurs due to low rain and high soil water evaporation when water brings up the soluble salts to the top soil at a level that it causes a damaging impact on crops and on economic welfare of the farmers [1]. It is believed [2] that about 15% of the global agricultural lands have high salinity, resulting in drastic effects on crop losses and on reduced global food supplies. Such effects occur when the level of soil salinity reaches above the crops salt tolerance threshold.

Methods of germplasm selection and breeding for development of salinity tolerant varieties have been used for many years [3]. However, screening of crops for salinity tolerance in the field is encountered with spatial heterogeneity of soil Physico-chemical properties and the seasonal rainfall fluctuations [4]. Therefore modern methods, including crop genetic engineering are needed to supplement the crop screening and breeding for salinity tolerance. Maize is considered to be the third major cereal crop (after wheat and rice) that is severely affected by soil salinity [4], and therefore it should be a priority to develop salinity tolerant maize via genetic engineering.

Mannitol-1-phosphate dehydrogenase encoded by the mtlD gene is encoded by an enzyme that can improve morphological and physiological characteristics that are associated with salinity tolerance in crops. For example, Abebe et al. [5] demonstrated that the expression of the E. Coli mtlD gene in third generation transgenic (T2) wheat (Triticum aestivum L. cv Bobwhite) resulted in an improved tolerance to salinity, enhanced fresh weight, dry weight and plant height as compared with the wild-type non-transgenic wheat plants. Another report, [6], indicates that salinity reduced the growth of non-transgenic tobacco plants by 40%, whereas it had no negative effect on growth of the mtlD transgenic tobacco plants.

Another group of researchers reported that mtlD transgenic poplar trees (Populus tomentosa) survived up to 40 days in a hydroponic culture containing 75 mM NaCl solution, while their non-transgenic plant counterparts only survived 25 mM NaCl [7]. In this experiment, the stomatal conductance and photosynthesis of transgenic poplar were also higher than those of the wild-type control plants under the same salinity condition [7].

Prabhavathi et al. [8] reported that the expression of mtlD transgene in the first generation transgenic (T0) eggplant (Solanum melongena L.) seedlings grown in vitro less than 200 mM NaCl resulted in good growth, whereas the wild-type control seeds did not germinate to produce seedlings under the same NaCl condition. Also, canola (Brassica napus L.) transgenic seeds, expressing the mtlD gene, germinated and their seedlings survived up to 24 days under in vitro conditions on Murashige and Skoog medium [9] containing 350 mM of NaCl, whereas their wild-type control seeds failed to germinate under the same NaCl concentration [10].

The expression of the bacterial mtlD gene in transgenic potato plants resulted in an increased salt tolerance under both in vitro and hydroponic stress conditions. The effect of 100 mM NaCl on potato shoot fresh weight under hydroponic condition was reduced by only 17.3% as compared to 76.5% reduced fresh weight of control non-transgenic plants [11]. Maheswari et al. [12] also reported 1.7 to 2.8-fold shoot and root growth enhancement in the sorghum plants that were expressing the mtlD gene. A summary of mtlD transgenic crops with enhanced salinity tolerance is shown on Table 1[13-17].

To our knowledge, there has been no report on genetic transformation of maize with the bacterial mtlD gene. In the research

Abbreviations

Act1: Actin Rice Promoter; BAP: Benzyaminopurine; CaMV35S: Cauliflower Mosaic Virus (CaMV) 35S Promoter; IBA: Indole-3-butyric Acid; IS101: plasmid containing bar and mtlD gene; MS: Murashige and Skoog; Nos: nopaline synthase terminator; PCR: Polymerase Chain Reaction; PinII: potato proteinase inhibitor terminator

*Corresponding author: Mariam Sticklen, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA, E-mail: sticklen1@msu.edu

Received February 14, 2013; Accepted September 16, 2013; Published September 18, 2013

Citation: Sticklen M, Nguyen T, Alameldin H, Goheen B (2013) Bacterial Mannitol-1-Phosphate Dehydrogenase (mtlD) Transgene, Confers Salt Tolerance in the Fourth Generation Transgenic Maize (Zea Mays. L) Plants. Adv Crop Sci Tech 1: 112. doi:10.4172/2329-8863.1000112

Copyright: © 2013 Sticklen M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
presented here, we have explored the possibility of developing salinity (NaCl) tolerant maize plants via transfer of the bacterial mtlD gene into the maize genome, testing of transgenic plants for the integration and expression of this heterologous gene, and testing of the T3 plants for photosynthesis rate, stomatal conductance and NaCl tolerance at greenhouse level.

Materials and Methods

Transgene construct

The JS101 plasmid (Figure 1) construct was used in this research. This construct has a cassette containing the bacterial mtlD gene regulated by rice actin promoter (Act 5') and the potato protease inhibitor II terminator. This cassette is linked to a second cassette containing the bar herbicide resistance selectable marker gene regulated by the cauliflower mosaic virus (35S) promoter and nopaline synthase (Nos) terminator.

 Genetic transformation of maize immature embryo-derived cell lines

Highly proliferating, immature-embryo-derived maize calli were co-bombarded via the Biolistic™ gun with the pJS101 construct containing the mtlD and the herbicide resistance selectable marker genes. The bombarded calli were kept on the same conditioning medium for 24 h, transferred to callus proliferation medium [18] for 5 d, and then placed on a selection medium containing 2.0 mg/L bialaphos, and maintained for 6–8 wk, with 2-wk subcultures into fresh medium. All cultures were maintained in the dark up to this point.

The bialaphos-resistant surviving callus clones were placed on our maize regeneration medium [18] and exposed to 60 µmol quanta/m2/s light for 4–6 wk. Plantlets were transferred to a rooting medium containing the MS salts and vitamins and 1 mg/L Indole butyric acid (IBA). In vitro cultured bialaphos resistant callus lines were selected and regenerated as per our previous report [18]. Eight to ten centimeters long plantlets were transferred to pots containing soil mix, and pots were covered with plastic bags and kept under light to mimic their former in vitro culture conditions. Small holes were made daily in each plastic bag to acclimate the plants to the greenhouse conditions before they were transplanted into 7.6 L pots, and transferred and grown in a long-day (16 h/d) greenhouse until maturity.

Leaves of fertile transgenic plants were tested for the integration and expression of the mtlD, and mature transgenic plants were self-pollinated towards homozygosity. Seeds were harvested 35–45 days after pollination, when they were dry.

Conformation of the bacterial mtlD integration and expression in plants

Polymerase chain reaction (PCR) analyses were performed on the leaves of different putatively transgenic plant progenies to confirm the presence of the mtlD transgene in plants. The sequences of primers used for each PCR analysis to confirm the mtlD transgene integration included the 5' ATC GGT GGT GCC TTT ATC GG 3' (forward primer) and the 5' TCG ACA AAG CCA ACG TGT TC 3' (reverse primer). The PCR program was set at 94°C for 3 min for one cycle; the following 35 cycles of 30 s at 94°C, 30 s at 55.5°C, 45 s at 72°C, one cycle at 72°C for 10 min; and the final cycle at 4°C. The amplified 431bp segment of the mtlD gene was also used as DNA probes for Northern blot hybridizations. The PCR products were analyzed by electrophoresis in 0.8% agarose gels containing ethidium bromide, and visualized under ultraviolet light.

Northern blotting was performed to confirm the transcription of the mtlD transgene in transgenic plants. Total RNA was isolated from the PCR-positive and from the wild-type control untransformed plants using Trizol reagent following the manufacturer instructions (Invitrogen, CA). RNA gel blot analysis was carried out following modifications of our previous procedure [18]. The Northern blots were exposed to X-ray film and developed in an X-OMAT Processor (Hyblot CL, Denville, Scientific INC, E3018).

Net photosynthesis and stomatal conductance test

The net photosynthetic rate (µmol CO2/m2 leaf area s-1) and stomatal conductance (mmol H2O/m2 leaf area s-1) of the plants were determined using the portable photosynthesis LI-6400XT device as recommended by the manufacturer (LICOR, Lincoln NB).

Salinity tolerance test

A total of 40 seeds of one of the T3 generation lines and a non-transgenic line were sown in small square plastic pots containing BACCTO High Porosity Professional Planting Mix (Michigan Peat Company, Houston, TX). The seedlings were watered daily with normal tap water for two weeks before being salt treated. Salt treatments were performed for 10 days on the seedlings that were at their four-leaf stage of growth. Plant height and the distance from ground level to the tip of the longest leaf were measured in cm for the absolute growth rate (AGR). The formula: AGR = (h2 -h1)/ (t2 -t1) was used, where h2 and h1 represented the final and the initial height of plant; and t2 and t1 represented the final and the initial days [19]. This experiment was
replicated in two locations of the same greenhouse for accuracy.

Seedlings were daily treated with equal volume of four different concentrations (0, 100, 200 and 300 mM) of NaCl, while gradually increasing 50 mM per day NaCl to reach their final concentrations within the ultimate 10 days. The commercial 20-20-20 fertilizer (Peter, Salem, OR) was weekly supplemented into the salinity solution for nutritional needs. After 10 days of salt water applications, observations were made on shoot fresh weight, and shoot and root dry weight. Plants were then watered daily for one week in order to allow them to recover from salinity stress injuries.

Results and Discussions

Integration of mtlD transgene was confirmed by PCR, and confirmation of the mtlD transgene was confirmed via Northern blotting.

PCR analyses of different transgenic progenies confirmed the integration of the bacterial mtlD transgene in maize plants (Figures 2A-2C). The PCR amplification products showed the expected band size of 431 bp in all transformants and in the positive control (JS101 plasmid) as expected. No band was observed in the wild-type control plants.

Northern blot hybridization confirmed the transcription of the mtlD transgene in plant progenies (Figure 2D and 2E). The specific PCR amplification product of mtlD transgene in plant progenies (Figure 2D and 2E). The specific PCR amplification product of mtlD sequence was used as a probe for Northern blotting.

Salinity tolerance test of fourth generation transgenic plants

The fourth progeny of transgenic (T3) plants were tested for salinity tolerance. Under salinity stress conditions, there was a significant reduction in plant height growth rate (cm growth per day) as salinity levels were increased in both T3 and in the wild-type control plants. However, the wild-type control plants were more retarded due to salinity stress than transgenic plants under the same salinity treatments. The average plant growth rate of the wild-type control plant under 200 mM and under 300 mM NaCl were respectively 1.5 cm per day and 1.1 cm per day, whereas the corresponding data for transgenic plants under the same NaCl concentrations were 1.6 and 1.4 cm per day respectively (Table 2).

Note: in Turkey test, the mean values with the same letter (such as, a and a / b and b, etc) are not significantly different from each other, but mean values with different letters (such as, a and b / b and c) are significantly different (P<0.05). WT: Wild-type control plant.

Figures 3 represent the shoot fresh and dry weight and the root dry weight 10 days after being treated with different concentration of NaCl.

Table 3 confirms that the NaCl treatment had affected the wild-type control seedling growth, resulting in reduced shoot fresh weight, and shoots and root dry weights. However, the mtlD transgenic plants were less affected by the NaCl treatments as compared to the wild-type control plants. At 100 mM NaCl treatment, the shoot fresh weight of transgenic plants was reduced by 27%, shoot dry weight by 17%, and root dry weight by 6% as compared to the no salt treated control plants. However, the reduction of shoot fresh weight, shoot and root dry weights in wild-type control plants were 45%, 40% and 19% respectively.

When plants were exposed to 300 mM NaCl, the effect of salinity stress was more severe on wild-type control plants, reducing up to 74% of shoot fresh weight, 62% of shoot dry weight, and 44% of root dry weight. Table 3 also shows that T3 plants exhibited greater salt tolerance at the same salt stress condition than the wild-type plants, as they reduced shoot fresh weight, shoot dry weight and root dry weight by 52%, 40%, and 24% respectively. The effect of salinity stress also reduced the absolute plant height rate of both transgenic and wild-type plants. The plant height rates of transgenic and wild-type plants were
not significantly different under no-salt stress condition. Overall, the increase in salt concentration had more negative effects on the wild-type control plants as compared to the T3 plants.

Figure 4 represents samples of the T3 mtlD versus the wild-type control plants after 10 days of 200 mM NaCl treatment followed by seven days of water treatment.

The work presented here agrees with the work of other scientists indicating that the expression of mtlD gene conferred salinity tolerance, and enhanced fresh and dry biomass of transgenic plants in sorghum [12] and potato [11].

In our studies, we did not find any abnormal phenotypes such as dwarfed or stunted growth of transgenic plants that expressed the bacterial mtlD transgene as compared to their wild-type control plants under no-salt condition. The same result was reported for the mtlD transgenic eggplant [8].

In the research presented here, salt stress experiments demonstrated significant differences in shoot fresh and dry weight, and root dry weight of transgenic as well as the wild-type control plants under high salinity concentrations. Also the mtlD transgenic plants showed greater plant height growth rate and less shoot and root reduced growth under salt stress than the wild-type control plants. Similar results were reported in mtlD transgenic wheat [5], eggplant [8] and tobacco [19].

The effects of salinity stress on photosynthesis and stomatal conductance of T3 mtlD and wild-type control plants are shown in Table 4 and Figure 5. Table 4 shows that the photosynthesis rate and stomatal conductance declined with increased salinity concentrations in the wild-type non-transgenic plants, and were significantly lower as compared to transgenic plants at 100 mM NaCl. However, the photosynthesis rate and stomatal conductance were not significantly different in transgenic plants that were treated with 100 mM and 200 mM of NaCl followed by seven days of water treatment recovery.

Figure 5 shows that the effect of salinity on photosynthesis in the wild-type control plants was more severe than on those of transgenic plants that were treated with 100 mM of NaCl for 10 days, followed by seven days of water treatment recovery. All wild-type control plants were dead with shrunken and dried leaves after 7 days of water treatment, not being able to recover from 10 days of 200 mM of NaCl treatment. The data presented in table 4 confirm that the mtlD transgenic plants exhibited higher photosynthesis and stomatal conductance than the wild-type control plants that were treated with 100 mM NaCl for 10 days followed by seven days of watering.
days, agreeing with the report from Hu et al. [7] indicating that there were higher stomatal conduction and photosynthetic rates in poplar transgenic plants as compared with their wild-type control plants treated with 50 mM of NaCl for 21 days.

The authors hope that the research presented here will be one step closer to developing a maize genotype that can tolerate the salinity in parts of the world that farmers suffer from losses of this abiotic stress factor.

Acknowledgements

The pJ5101 was obtained from the late Professor Ray Wu of Cornell University and the maize immature embryos were purchased from the Transformation Center of the Department of Agronomy at Iowa State University. The authors wish to thank Professor Wayne Loeschler of the Department of Horticulture at Michigan State University for his advice on the photosynthesis and stomatal conductance studies of this research.

References

1. Rengasamy P (2006) World Salinization with emphasis on Australia. J Exp Bot 57: 1017-1023.
2. Wild A (2003) Soil, Land and Food: Managing the Land during the Twenty first Century. University of Reading, Cambridge University Press Cambridge, UK ISBN:9780521820653.
3. Ashraf MY, Akhtar K, Hussain F, Iqbal J (2006) Screening of different accession of three potential grass species from Cholistan desert for salt tolerance. Pak J Bot 38: 1589-1597.
4. Akram M, Sharif M, Ahmad R, Waeaeh I, Iqbal J, Mohsan M (2010) Screening for salt tolerance in maize hybrids at an early seedling stage. Pak J Bot 42: 141-154.
5. Abebe T, Guenzl A, Martin B, and Cushman J (2003) Tolerance of mannanot- accumulating transgenic wheat to water stress and salinity. Plant Physiology 131: 1743-1755.
6. Karakas B, Ozias-Akins P, Stushnoff C, Suerfferheld M, Rieger M (1997) Salinity and drought tolerance in mannanot-accumulating transgenic tobacco. Plant Cell Environ 20: 609–616.
7. Hu L, Lu H, Liu QL, Chen XM, Jiang XN (2005) Over expression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannanot. Tree Physiology 25:1273-1281.
8. Prabhavathi V, Yadav JS, Kumar PA, Rajam MV (2002) Abiotic stress tolerance in transgenic eggplant (Solanum melongena L.) by introduction of bacterial mannanot phosphodehydrogenase gene. Mol Breeding 9: 137-147.
9. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15: 473-497.
10. Motalebi R, Rahnama H (2011) Investigation of seed germination in the transgenic canola (Brassica napus L.) under salt stress. International Research Journal of Appl. Basic Sciences 2: 339-346.
11. Rahnama H, Vakilian H, Fahimi H, Ghoreyazie B (2011) Enhanced salt stress tolerance in transgenic potato plants (Solanum tuberosum L.) expressing a bacterial mtlD gene. Acta Physiol Plant 33:1521–1532.
12. Maheshwari M, Varalaxmi Y, Vijayalakshmi A, Yadav S, Sharmila P, et al.(2010) Metabolic engineering using mtlD gene enhances tolerance to water deficit and salinity in sorghum. Biologia Plantararam 54: 647-652.
13. Tarczynski M, Jensen RG, Bohnet HJ (1993) Stress protection of transgenic tobacco by the osmolyte mannanot. Sci 259: 508-510.
14. Thomas JC, Sepahi M, Arendall B, Bohnet HJ (1995) Enhancement of seed germination in high salinity by engineering mannanot expression in Arabidopsis thaliana. Plant Cell Environ 18: 801-806
15. Huizhong W, Danian H, Rulfang L, Junjun L, Qian G, Xuexian P (2000) Salt tolerance of transgenic rice (Oryza sativa L.) with mtlD gene and gutD gene. Chin Sci Bullet 45:1685-1690.
16. Tang W, Peng X, Newton RJ (2005) Enhanced tolerance to salt stress in transgenic loblolly pine simultaneously expressing two genes encoding mannanot-1-phosphate dehydrogenase and glucitol-6-phosphate dehydrogenase. Plant Physiol Biochem 43: 139-146.
17. Montaz OA, Ashraf HF, Ayman AD, AHH Ahmed (2007) Comparative analysis of amino acid between transgenic and non transgenic Egyptian cotton (Gossypium barbadens) lines under different salt stress conditions. American-Eurasian J Agric. & Environ. Sci 2: 06-15.
18. Biswas G, Ransom C, Sticklen M (2006) Expression of biologically active Acidothermus cellulolyticus endoglucanase in transgenic maize plants. Plant Physiology 140: 1241-1253.
19. Prabhavathi V, Yadav JS, Karakas B, Ozias-Akins P, Stushnoff C, Suerfferheld M, Rieger M, et al. (2003) Salinity and drought tolerance in transgenic potato plants (Solanum tuberosum L.) expressing a bacterial mtlD gene. Mol Breeding 9: 137–147.
20. Tang W, Peng X, Newton RJ (2005) Enhanced tolerance to salt stress in transgenic loblolly pine simultaneously expressing two genes encoding mannanot-1-phosphate dehydrogenase and glucitol-6-phosphate dehydrogenase. Plant Physiol Biochem 43: 139-146.
21. Hsu K, Yang H, Liu C, Huang Y, Lin J (2006) Evaluation of salt tolerance in transgenic potato plants expressing a bacterial mtlD gene. Acta Physiol Plant 33:1521–1532.
22. Rengasamy P (2006) World Salinization with emphasis on Australia. J Exp Bot 57: 1017-1023.
23. Wild A (2003) Soil, Land and Food: Managing the Land during the Twenty first Century. University of Reading, Cambridge University Press Cambridge, UK ISBN:9780521820653.
24. Ashraf MY, Akhtar K, Hussain F, Iqbal J (2006) Screening of different accession of three potential grass species from Cholistan desert for salt tolerance. Pak J Bot 38: 1589-1597.
25. Akram M, Sharif M, Ahmad R, Waeaeh I, Iqbal J, Mohsan M (2010) Screening for salt tolerance in maize hybrids at an early seedling stage. Pak J Bot 42: 141-154.
26. Abebe T, Guenzl A, Martin B, and Cushman J (2003) Tolerance of mannanot- accumulating transgenic wheat to water stress and salinity. Plant Physiology 131: 1743-1755.
27. Karakas B, Ozias-Akins P, Stushnoff C, Suerfferheld M, Rieger M (1997) Salinity and drought tolerance in mannanot-accumulating transgenic tobacco. Plant Cell Environ 20: 609–616.
28. Hu L, Lu H, Liu QL, Chen XM, Jiang XN (2005) Over expression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannanot. Tree Physiology 25:1273-1281.
29. Prabhavathi V, Yadav JS, Kumar PA, Rajam MV (2002) Abiotic stress tolerance in transgenic eggplant (Solanum melongena L.) by introduction of bacterial mannanot phosphodehydrogenase gene. Mol Breeding 9: 137–147.
30. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15: 473-497.
31. Motalebi R, Rahnama H (2011) Investigation of seed germination in the transgenic canola (Brassica napus L.) under salt stress. International Research Journal of Appl. Basic Sciences 2: 339-346.
32. Rahnama H, Vakilian H, Fahimi H, Ghoreyazie B (2011) Enhanced salt stress tolerance in transgenic potato plants (Solanum tuberosum L.) expressing a bacterial mtlD gene. Acta Physiol Plant 33:1521–1532.
33. Maheshwari M, Varalaxmi Y, Vijayalakshmi A, Yadav S, Sharmila P, et al.(2010) Metabolic engineering using mtlD gene enhances tolerance to water deficit and salinity in sorghum. Biologia Plantararam 54: 647-652.
34. Tarczynski M, Jensen RG, Bohnet HJ (1993) Stress protection of transgenic tobacco by the osmolyte mannanot. Sci 259: 508-510.
35. Thomas JC, Sepahi M, Arendall B, Bohnet HJ (1995) Enhancement of seed germination in high salinity by engineering mannanot expression in Arabidopsis thaliana. Plant Cell Environ 18: 801-806
36. Huizhong W, Danian H, Rulfang L, Junjun L, Qian G, Xuexian P (2000) Salt tolerance of transgenic rice (Oryza sativa L.) with mtlD gene and gutD gene. Chin Sci Bullet 45:1685-1690.
37. Tang W, Peng X, Newton RJ (2005) Enhanced tolerance to salt stress in transgenic loblolly pine simultaneously expressing two genes encoding mannanot-1-phosphate dehydrogenase and glucitol-6-phosphate dehydrogenase. Plant Physiol Biochem 43: 139-146.
38. Montaz OA, Ashraf HF, Ayman AD, AHH Ahmed (2007) Comparative analysis of amino acid between transgenic and non transgenic Egyptian cotton (Gossypium barbadens) lines under different salt stress conditions. American-Eurasian J Agric. & Environ. Sci 2: 06-15.
39. Biswas G, Ransom C, Sticklen M (2006) Expression of biologically active Acidothermus cellulolyticus endoglucanase in transgenic maize plants. Plant Physiology 140: 1241-1253.