On the Hamilton-Waterloo Problem with cycle lengths of distinct parities

A. C. Burgess * P. Danziger † T. Traetta ‡

October 5, 2018

Abstract

Let K^*_v denote the complete graph K_v if v is odd and $K_v - I$, the complete graph with the edges of a 1-factor removed, if v is even. Given non-negative integers v, M, N, α, β, the Hamilton-Waterloo problem asks for a 2-factorization of K^*_v into αC_M-factors and βC_N-factors. Clearly, $M, N \geq 3$, $M \mid v$, $N \mid v$ and $\alpha + \beta = \left\lfloor \frac{v-1}{2} \right\rfloor$ are necessary conditions.

Very little is known on the case where M and N have different parities. In this paper, we make some progress on this case by showing, among other things, that the above necessary conditions are sufficient whenever $M \mid N$, $v > 6N > 36M$, and $\beta \geq 3$.

Keywords: 2-Factorizations, Resolvable Cycle Decompositions, Cycle Systems, Generalized Oberwolfach Problem, Hamilton-Waterloo Problem.

1 Introduction

As usual, we denote by $V(G)$ and $E(G)$ the vertex set and the edge set of a simple graph G, respectively. Also, we denote by tG the vertex-disjoint union of $t > 0$ copies of G.

*Department of Mathematics and Statistics, University of New Brunswick, 100 Tucker Park Rd., Saint John, NB E2L 4L5, Canada. Email: andrea.burgess@unb.ca.
†Department of Mathematics, Ryerson University, 350 Victoria St., Toronto, ON M5B 2K3, Canada. Email: danziger@ryerson.ca.
‡Department of Mathematics, Ryerson University, 350 Victoria St., Toronto, ON M5B 2K3, Canada. Email: tommaso.traetta@ryerson.ca, traetta.tommaso@gmail.com.
A factor of G is a spanning subgraph of G; in particular, a 1-factor is a factor which is 1-regular and a 2-factor is a factor which is 2-regular and hence consists of a collection of cycles. A 2-factor of G containing only one cycle is a Hamiltonian cycle. We denote by C_ℓ a cycle of length ℓ (briefly, an ℓ-cycle), by $(x_0, x_1, \ldots, x_{\ell-1})$ the ℓ-cycle with edges $x_0x_1, x_1x_2, \ldots, x_{\ell-1}x_0$, and by K_v the complete graph on v vertices. By K^*_v we mean the graph K_v when v is odd and $K_v - I$, where I is a single 1-factor, when v is even.

A 2-factorization of a simple graph G is a set of 2-factors of G whose edge sets partition $E(G)$. It is well known that a regular graph has a 2-factorization if and only if every vertex has even degree. However, if we specify a particular 2-factor, F say, and ask for all the factors to be isomorphic to F the problem becomes much harder. Indeed, if $G \cong K^*_v$, we have the Oberwolfach Problem, which is well known to be hard. A survey of the well-known results on this problem, updated to 2006, can be found in [13, Section VI.12]. For more recent results we refer the reader to [10, 8, 9, 23, 24].

Given a simple graph G and a collection of graphs \mathcal{H}, an \mathcal{H}-factor of G is a set of vertex-disjoint subgraphs of G, each isomorphic to a member of \mathcal{H}, which between them cover every point in G. An \mathcal{H}-factorization of G is a set of edge-disjoint \mathcal{H}-factors of G whose edges partition the edge set of G. When \mathcal{H} consists of a single graph H, we speak of H-factors and H-factorizations of G respectively. If H is a Hamiltonian cycle of G and there exists an H-factorization of G (briefly, a Hamiltonian factorization), then G is called Hamiltonian factorable.

We call a factor whose components are pairwise isomorphic a uniform factor. The problem of factoring K^*_v into pairwise isomorphic uniform 2-factors has been solved [1, 2, 16].

Theorem 1.1 ([1, 2, 16]). Let $v, \ell \geq 3$ be integers. There is a C_ℓ-factorization of K^*_v if and only if $\ell \mid v$, except that there is no C_3-factorization of K^*_6 or K^*_12.

Given a graph G, we denote by $G[n]$ the lexicographic product of G with the empty graph on n points. Specifically, the vertex set of $G[n]$ is $V(G) \times \mathbb{Z}_n$ (where \mathbb{Z}_n denotes the cyclic group of order n) and $(x, i)(y, j) \in E(G[n])$ if and only if $xy \in E(G)$, $i, j \in \mathbb{Z}_n$. Note that $G[n_1][n_2] \cong G[n_1n_2]$.

The existence problem for a C_ℓ-factorization of the complete equipartite graph has been completely solved by Liu [20, 21].
Theorem 1.2 (20, 21). Let \(\ell, t \) and \(z \) be positive integers with \(\ell \geq 3 \). There exists a \(C_\ell \)-factorization of \(K_t[z] \) if and only if \(\ell \mid tz, (t-1)z \) is even, further \(\ell \) is even when \(t = 2 \), and \((\ell, t, z) \notin \{(3, 3, 2), (3, 6, 2), (3, 3, 6), (6, 2, 6)\}\).

We provide a straightforward generalization of Theorem 1.2 to \(C_\ell[n] \)-factorizations of \(K_t[z^n] \).

Corollary 1.3. Given four positive integers \(\ell, n, t \) and \(z \) with \(\ell \geq 3 \), there exists a \(C_\ell[n] \)-factorization of \(K_t[z^n] \) whenever \(\ell \mid tz, (t-1)z \) is even, \(\ell \) is even when \(t = 2 \), and \((\ell, t, z) \notin \{(3, 3, 2), (3, 6, 2), (3, 3, 6), (6, 2, 6)\}\).

Proof. Theorem 1.2 guarantees the existence of a \(C_\ell \)-factorization of \(K_t[z] \). By expanding each point of this factorization by \(N \), we obtain a \(C_\ell[n] \)-factorization of \(K_t[z^n] \).

A well-known variant of the Oberwolfach Problem is the Hamilton-Waterloo Problem \(\text{HWP}(G; F, F'; \alpha, \beta) \), which asks for a factorization of a specified graph \(G \) into \(\alpha \) copies of \(F \) and \(\beta \) copies of \(F' \), where \(F \) and \(F' \) are distinct 2-factors of \(G \). We denote by \(\text{HWP}(G; F, F') \) the set of \((\alpha, \beta)\) for which there is a solution to \(\text{HWP}(G; F, F'; \alpha, \beta) \). In the case where \(F \) and \(F' \) are uniform with cycle lengths \(M \) and \(N \), respectively, we refer to \(\text{HWP}(G; M, N; \alpha, \beta) \) and \(\text{HWP}(G; M, N) \) as appropriate. Further, if \(G = K_v^* \), we refer to \(\text{HWP}(v; M, N; \alpha, \beta) \) and \(\text{HWP}(v; M, N) \) respectively. We note the following necessary conditions for the case of uniform factors.

Theorem 1.4. Let \(G \) be a graph of order \(v \), and let \(M, N, \alpha \) and \(\beta \) be non-negative integers. In order for a solution of \(\text{HWP}(G; M, N; \alpha, \beta) \) to exist, \(M \) and \(N \) must be divisors of \(v \) greater than 2, and \(G \) must be regular of degree \(2(\alpha + \beta) \).

This problem has received much interest recently. For more details and some history on the problem, we refer the reader to [11, 12]. These two papers deal with the case where both \(M \) and \(N \) are odd positive integers and provide an almost complete solution to the Hamilton-Waterloo Problem \(\text{HWP}(v; M, N; \alpha, \beta) \) for odd \(v \). If \(M \) and \(N \) are both even, then \(\text{HWP}(v; M, N; \alpha, \beta) \) has a solution except possibly when \(\alpha = 1 \) or \(\beta = 1 \) [7], whereas this problem is completely solved when \(M \) and \(N \) are even and \(M \) is a divisor of \(N \) [8].

In this paper, we deal with the challenging case where \(M \) and \(N \) have different parities. In fact, the only known results on \(\text{HWP}(v; M, N; \alpha, \beta) \)
when \(M \neq N \pmod{2} \) concern the case \((M, N) = (3, 4)\) which is completely solved in \([6, 14, 22, 25]\), and the cases where \((M, N) = (3, v)\) \([3]\), \((M, N) = (3, 6n)\) \([3]\) or \((M, N) = (4, N)\) \([17, 22]\) which are all still open.

In this paper, we make further progress by showing the following.

Theorem 1.5. Let \(M, N, v, \alpha, \beta \) be positive integers such that \(N > M \geq 3 \) and \(M \) is an odd divisor of \(N \). Then, \((\alpha, \beta) \in \text{HWP}(v; M, N)\) if and only if \(N \mid v \) and \(\alpha + \beta = \left\lfloor \frac{v - 1}{2} \right\rfloor \) except possibly when at least one of the following conditions holds:

1. \(\beta = 1 \);
2. \(\beta = 2, N \equiv 2M \pmod{4M} \);
3. \(N \in \{2M, 6M\} \);
4. \(v \in \{N, 2N, 4N\} \);
5. \((M, v) = (3, 6N)\).

In the next section we introduce some tools and provide some powerful methods which we use in Section 3 where we prove a result (Theorem 3.5) on factorizations of \(C_M[n] \), the lexicographic product of an \(M \)-cycle and the empty graph on \(n \) vertices. In Section 4 we prove the main result of this paper, Theorem 1.5.

2 Preliminaries

In this section we state some known results and develop the tools we will need for the 2-factorizations. We use \([a, b]\) to denote the set of integers from \(a \) to \(b \) inclusive; clearly, \([a, b]\) is empty when \(a > b \).

2.1 Cayley graphs

We will make use of the notion of a Cayley graph on an additive group \(\Gamma \). Given \(S \subseteq \Gamma \setminus \{0\} \), the *Cayley Graph* \(\text{cay}(\Gamma, S) \) is a graph with vertex set \(\Gamma \) and edge set \(\{a(d + a) \mid a \in \Gamma, d \in S\} \). When \(\Gamma = \mathbb{Z}_N \) this graph is known as a *circulant graph*. We note that the edges generated by \(d \in S \) are the same as those generated by \(-d \in -S \), so that \(\text{cay}(\Gamma, S) = \text{cay}(\Gamma, \pm S) \), and that the degree of each point is \(|S \cup (-S)| \).
Given a set \(S \subseteq \Gamma \), we denote by \(C_m[S] \ (m \geq 3) \) the graph with point set \(\mathbb{Z}_m \times \Gamma \) and edges \((i, x)(i+1, d+x), i \in \mathbb{Z}_m, x \in \Gamma \) and \(d \in S \). In other words, \(C_m[S] = \text{cay}(\mathbb{Z}_m \times \Gamma, \{1\} \times S) \); hence, it is \(2|S| \)-regular. It is straightforward to see that if \(\Gamma \) has order \(n \), then \(C_m[n] \cong C_m[\Gamma] \); hence, \(C_m[S] \) is a subgraph of \(C_m[n] \). We will sometimes denote the vertex \((i, x)\) of \(C_m[S] \) by \(i_x \).

We will make use of the following two results due to Bermond, Favaron and Mahéo \([5]\) and Westlund \([26]\), which provide sufficient conditions for the existence of a Hamiltonian factorization of a connected Cayley graph of degree 4 and 6.

Theorem 2.1 \([5]\). Any connected 4-regular Cayley graph on a finite Abelian group has a Hamiltonian factorization.

Theorem 2.2 \([26]\). If \(X = \text{cay}(A, \{e_1, e_2, e_3\}) \) is a 6-regular Cayley graph, \(A \) is an abelian group of even order generated by both \(\{e_1, e_2\} \) and \(\{e_2, e_3\} \), and \(e_2 \) has index at least four in \(A \), then \(X \) has a Hamiltonian factorization.

We use these two results to show the existence of a hamiltonian factorization of a special connected 6-regular subgraph of \(C_M[n] \).

Lemma 2.3. Let \(n \geq 4 \) be even and let \(M \geq 3 \) be such that \(Mn \equiv 0 \ (\text{mod} \ 4) \). Then, \(C_M[\{\frac{n}{2} - 1, \frac{n}{2}, \frac{n}{2} + 1\}] \) factorizes into three \(C_M[n] \)-factors.

Proof. We recall that \(C_M[\{\frac{n}{2} - 1, \frac{n}{2}, \frac{n}{2} + 1\}] = \text{cay}(\mathbb{Z}_M \times \mathbb{Z}_n, \{e_1, e_2, e_3\}) \) where \((e_1, e_2, e_3) = ((1, \frac{n}{2} - 1), (1, \frac{n}{2}), (1, \frac{n}{2} + 1)) \).

We first note that for any \(x \in \mathbb{Z}_n \) the set \{(1, x), (1, x+1)\} is a system of generators of \(\mathbb{Z}_M \times \mathbb{Z}_n \). In fact, \((0, 1) = (1, x +1) - (1, x)\) and \((1, 0) = (x +1)(1, x) - x(1, x +1)\); therefore, any element of \(\mathbb{Z}_M \times \mathbb{Z}_n \) is a linear combination of \{(1, x), (1, x +1)\}. It then follows that both \(\{e_1, e_2\} \) and \(\{e_2, e_3\} \) generate \(\mathbb{Z}_M \times \mathbb{Z}_n \), hence \(C_M[\{\frac{n}{2} - 1, \frac{n}{2}, \frac{n}{2} + 1\}] \) is a connected 6-regular graph.

We denote by \(\langle e_2 \rangle \) the subgroup of \(\mathbb{Z}_M \times \mathbb{Z}_n \) generated by \(e_2 \), and by \(|\mathbb{Z}_M \times \mathbb{Z}_n : \langle e_2 \rangle| \) the index of \(\langle e_2 \rangle \) in \(\mathbb{Z}_M \times \mathbb{Z}_n \). It is not difficult to check that \(|\mathbb{Z}_M \times \mathbb{Z}_n : \langle e_2 \rangle| = n \) or \(\frac{n}{2} \) according to whether \(M \) is even or odd. Since by assumption \(Mn \equiv 0 \ (\text{mod} \ 4) \) and \(n \geq 4 \), we have that \(|\mathbb{Z}_M \times \mathbb{Z}_n : \langle e_2 \rangle| \geq 4 \) when either \(M \) is even or \(M \) is odd and \(n \neq 4 \); in these cases, the assertion follows from Theorem 2.2. If \(M \) is odd and \(n = 4 \), then \(C_M[\{1, 2, 3\}] \) can be decomposed into \(C_M[\{1\}] \), which is a Hamiltonian cycle, and \(C_M[\{2, 3\}] \) which is a connected 4-regular Cayley graph and, by Theorem 2.1, it has a Hamiltonian factorization, and this completes the proof.\[\Box\]
2.2 Constructing factors of $C_M[n]$

In Section 3 we will make use of the following result which provide sufficient conditions for the existence of a solution to $HWP(C_\ell[T]; g\ell, h\ell; \alpha, |T| - \alpha)$, where T is a subset of $\Gamma = \mathbb{Z}_n$ and g, h are positive divisors of n. This result is proven in [12] for an arbitrary group Γ.

Theorem 2.4 (Theorem 2.9, [12]). Let n be a positive integer, and let g and g' be positive divisors of n. Also, let T be a subset of \mathbb{Z}_n and $\ell \geq 3$. Suppose there exists a $|T| \times \ell$ matrix $A = [a_{ij}]$ with entries from T satisfying the following properties:

1. α rows of A have sum an element of order g in \mathbb{Z}_n, and the remaining $|T| - \alpha$ rows have sum an element of order g' in \mathbb{Z}_n;
2. each column of A is a permutation of T.

Then $(\alpha, |T| - \alpha) \in HWP(C_\ell[T]; g\ell, g'\ell)$. Moreover, if we also have that:

3. T is closed under taking negatives,

then $(\alpha, |T| - \alpha) \in HWP(C_m[T]; gm, g'm)$ for any $m \geq \ell$ with $m \equiv \ell \pmod{2}$.

Note that Theorem 2.4 gives a $C_g\ell$-factorization of $C_\ell[T]$ when $\alpha = |T|$.

We finally state the following well-known result which has been proven in [15] in a much more general form.

Lemma 2.5. $C_M[2]$ has a Hamiltonian factorization for every $M \geq 3$.

2.3 Skolem sequences

In some of our constructions in Section 3 we will make use of Skolem sequences, which we now define in a slightly more general form.

Definition 2.6 (Skolem sequences). A Skolem sequence of order $\nu \geq 0$ is a sequence of $\nu + 1$ pairs $(a_0, b_0), (a_1, b_1), \ldots, (a_\nu, b_\nu)$ such that

1. $b_i - a_i = i$ for every $i \in [0, \nu]$;
2. $\bigcup_{i=1}^{\nu} \{a_i, b_i\} = [x, x + 2\nu]$ for some integer x.
In this case, we say that the Skolem sequence covers the interval $[x, x + 2\nu]$.

We point out that in the literature, the term Skolem sequence is only used when $(x, a_0) = (1, 2\nu + 1)$. When $(x, a_0) = (1, 2\nu)$, such a sequence is usually referred to as a hooked Skolem sequence. In all other cases in which $x = 1$, one speaks of an a_0-extended Skolem sequence.

We recall the following existence results for Skolem sequences.

Theorem 2.7 ([1]). There exists a Skolem sequence of order ν for every $\nu \geq 0$

Note that given a Skolem sequence $(a_0, b_0), (a_1, b_1), \ldots, (a_\nu, b_\nu)$ covering the interval $[x, x + 2\nu]$ and an integer t, it is clear that $(a_0 + t, b_0 + t), (a_1 + t, b_1 + t), \ldots, (a_\nu + t, b_\nu + t)$ is still a Skolem sequence which covers the interval $[x + t, x + 2\nu + t]$. Therefore, the above theorem implies what follows.

Corollary 2.8. Every interval of length $2\nu + 1$ can be covered by a Skolem sequence.

3 Determining HWP($C_M[n]; M, Mn$)

In this section, we provide sufficient conditions for a solution of HWP($C_M[n]; M, Mn$) to exists. We will make use of Theorem 2.4 to factorize large subgraphs of $C_M[n]$ by constructing suitable matrices with entries in \mathbb{Z}_n, and use Theorems 2.1 and 2.2 to factorize what is possibly left over. For this reason, given any integers x and y such that $0 < \ell = y - x < n$, we define two $(\ell + 1) \times 2$ matrices below, denoted by $A(x, y)$ and $B(x, y)$, with entries in \mathbb{Z}_n:

$A(x, y)$	$B(x, y)$ if ℓ is odd	$B(x, y)$ if ℓ is even
$\begin{bmatrix} x & -x \\ x + 1 & -(x + 1) \\ \vdots & \vdots \\ x + \ell & -(x + \ell) \end{bmatrix}$	$\begin{bmatrix} x & -(x + 1) \\ x + 1 & -x \\ \vdots & \vdots \\ x + \ell & -(x + \ell + 1) \\ x + \ell - 1 & -(x + \ell) \\ x + \ell & -(x + \ell - 1) \end{bmatrix}$	$\begin{bmatrix} x & -(x + 1) \\ x + 1 & -x \\ \vdots & \vdots \\ x + 2i & -(x + 2i + 1) \\ x + 2i + 1 & -(x + 2i) \\ \vdots & \vdots \\ x + \ell - 4 & -(x + \ell - 3) \\ x + \ell - 3 & -(x + \ell - 4) \\ x + \ell - 2 & -(x + \ell - 1) \\ x + \ell - 1 & -(x + \ell) \\ x + \ell & -(x + \ell - 2) \end{bmatrix}$
Further, if \(y < x \), we set \(A(x, y) = \emptyset = B(x, y) \). Finally, \(A(x, x) = [x - x] \). Note that \(B(x, y) \) is not defined when \(y = x \).

We note that when \(x \leq y \) each of the rows in \(A(x, y) \) sums to 0. Similarly, when \(x < y \) each of the rows in \(B(x, y) \) sums to \(\pm 1 \), unless \(y - x \) is even, in which case the last row of \(B(x, y) \) sums to 2.

We first consider the problem in which \(n \) is odd.

Lemma 3.1. Let \(M, n \geq 3 \) with \(n \) odd, and let \(0 \leq \beta \leq n \). Then \((\alpha, \beta) \in \text{HWP}(C_M[n]; M, Mn)\) except possibly when \(\beta = 1 \).

Proof. Let \(T \) be the \(n \times 2 \) matrix defined as
\[
T = \begin{bmatrix}
A(1, \alpha) \\
B(\alpha + 1, n)
\end{bmatrix}.
\]
Also, let \(T' \) be the \(n \times 3 \) matrix obtained from \(T \) by replacing each row \([m_1, m_2]\) with \([m_1, m_2, m_2]\). Here \(m_2 \) is well defined as an element of \(\mathbb{Z}_n \), since \(n \) is odd.

Clearly, each of the first \(\alpha \) rows of \(T \) sums to 0, whereas each of the remaining \(\beta \) rows sums to \(\pm 1 \) or \(\pm 2 \) (which are elements of order \(n \) in \(\mathbb{Z}_n \) since \(n \) is odd). Further, each column of \(T \) and \(T' \) is a permutation of \(\mathbb{Z}_n \). Therefore, by applying Theorem 2.4 to \(T \) and \(T' \), it follows that \((\alpha, \beta) \in \text{HWP}(C_M[n]; M, Mn)\) for any \(M \geq 3 \). \(\Box \)

Note that the above Lemma has been independently proven in [18] with different techniques. An alternative proof in the case where \(M \) is odd can be found in [12].

The following three lemmas deal with the case where \(n \) is even.

Lemma 3.2. If \(n \geq 2 \) is even and \(M \geq 3 \), then \((n, 0) \in \text{HWP}(C_M[n]; M, Mn)\) except when \(M \) is odd and \(n = 2 \) and possibly when \(M \) is odd and \(n = 6 \).

Proof. We first consider the case where \(M \geq 3 \) is odd. It is not difficult to check that there is no \(C_M \)-factorization of \(C_M[2] \). Therefore, let \(n \geq 4 \) be even with \(n \neq 6 \). By Theorem 1.2 there exists a \(C_3 \)-factorization \(\mathcal{F} = \{F_1, F_2, \ldots, F_n\} \) of \(C_3[n] \), where \(F_i = \{C_{ij} \mid j \in [1, n]\} \) and \(C_{ij} = (c_{ij}^0, c_{ij}^1, c_{ij}^2) \). Without loss of generality we can assume \(c_{ij}^2 = (2, j) \) for any \(j \in [1, n] \).

Now, for each \(i, j \in [1, n] \) we define the \(M \)-cycle \(\overline{C_{ij}} = (\overline{c}_{ij}^0, \overline{c}_{ij}^1, \ldots, \overline{c}_{ij}^{M-1}) \) as follows:
\[
\overline{c}_{ij}^h = \begin{cases}
 c_{ij}^h & \text{if } h = 0, 1, 2, \\
 (h, j + i) & \text{if } h \text{ is odd and } 3 \leq h < M, \\
 (h, j) & \text{if } h \text{ is even and } 4 \leq h < M.
\end{cases}
\]
Finally, set $F_i = \{C_{ij} | j \in [1, n]\}$ and $\overline{F} = \{F_i | i \in [1, n]\}$. It is not difficult to check that each F_i is a C_M-factor of $C_M[n]$ and \overline{F} is a C_M-factorization of $C_M[n]$.

If $M \geq 4$ is even, it is enough to apply Theorem 2.4 to the $n \times M$ block matrix $T = [A(1, n) \ A(1, n) \ \cdots \ A(1, n)]$.

Note that a result similar to Lemma 3.2 has been proven in [18] in the case where $M \geq 3$ is odd and $n > 1$.

Lemma 3.3. Let $n \geq 2$ be even, $M \geq 3$, and $0 < \beta \leq n$. Then $(n - \beta, \beta) \in \text{HWP}(C_M[n]; M, Mn)$ whenever the following conditions simultaneously hold:

1. $\beta \equiv \frac{Mn}{2} \pmod{2}$;

2. if $Mn \equiv 2 \pmod{4}$ and $n > 2$, then $\beta \neq 1$.

Proof. We consider four cases depending on whether $n \equiv 0, 2 \pmod{4}$ and $M \equiv 0, 1 \pmod{4}$. In each of these cases, we will construct an $(n \times c)$ matrix T, where $\{2, 3\} \ni c \equiv M \pmod{2}$, satisfying the following conditions:

1. each column of T is a permutation of \mathbb{Z}_n;

2. T has $\alpha = n - \beta$ rows each of which sums to 0;

3. T has β rows each of which sums to ± 1, or $\left\{ \frac{n}{2} \pm 1 \text{ if } n \equiv 0 \pmod{4}, \frac{n}{2} \pm 2 \text{ if } n \equiv 2 \pmod{4} \right\}$.

Note that $\frac{n}{2} \pm 1$ is coprime to n if and only if $n \equiv 0 \pmod{4}$; therefore, $\frac{n}{2} \pm 1$ has order n in \mathbb{Z}_n. Similarly, $\frac{n}{2} \pm 2$ has order n in \mathbb{Z}_n if and only if $n \equiv 2 \pmod{4}$. The assertion then follows by applying Theorem 2.4 to T.

We first consider the case where $n \equiv 2 \pmod{4}$ and M is even; thus, by assumption, we have that β is even. If $n = 2$, then $\beta = 2$ (since, by assumption, $\beta > 0$) and we set $T = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. We now assume that $n \geq 6$.

For $i \in \{2, 4, 6\}$ we first define the 6×2 matrix C_i as follows:

$$C_2 = \begin{bmatrix} -1 & 1 \\ 0 & 0 \\ 1 & -1 \\ \frac{n}{2} & 2 \\ 2 & -2 \\ -2 & \frac{n}{2} \end{bmatrix}, \quad C_4 = \begin{bmatrix} 0 & 1 \\ 1 & -1 \\ -1 & 0 \\ \frac{n}{2} & 2 \\ 2 & -2 \\ -2 & \frac{n}{2} \end{bmatrix}, \quad C_6 = \begin{bmatrix} 0 & 1 \\ 2 & -1 \\ -1 & 0 \\ \frac{n}{2} & 2 \\ 1 & -2 \\ -2 & \frac{n}{2} \end{bmatrix}.$$
Clearly, each column of C_i uses up all integers in $[-2, 2] \cup \{\frac{n}{2}\}$. Also, i rows of C_i sum to ± 1 or $\frac{n}{2} \pm 2$, which are all elements of order n in \mathbb{Z}_n. Each of the remaining $6 - i$ rows sums to 0. Now, for each value of β, we define an $n \times 2$ matrix T satisfying conditions 1-3 as follows:

$\beta = 2$	$4 \leq \beta \equiv i \pmod{4}$ with $i \in \{4, 6\}$
$T = \begin{bmatrix} A(3, \frac{n}{2} - 1) \\ -A(3, \frac{n}{2} - 1) \\ C_\beta \end{bmatrix}$	$T = \begin{bmatrix} A(\frac{\beta - i}{2} + 3, \frac{n}{2} - 1) \\ -A(\frac{\beta - i}{2} + 3, \frac{n}{2} - 1) \\ B(3, \frac{\beta - i}{2} + 2) \\ -B(3, \frac{\beta - i}{2} + 2) \\ C_i \end{bmatrix}$

We now let $n \equiv 2 \pmod{4}$ and M be odd. Note that, by assumption, we have that $\beta > 0$ is odd. If $n = 2$, we set $T = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$. We now assume that $n \geq 6$ and we note that by condition 2 we have that $\beta \geq 3$. For $i \in \{3, 5\}$ we define the 6×2 matrix C_i as follows:

$C_3 = \begin{bmatrix} -1 & 2 \\ -2 & \frac{n}{2} \\ 0 & 0 \\ 1 & -1 \\ 2 & -2 \\ \frac{n}{2} & 1 \end{bmatrix}$

$C_5 = \begin{bmatrix} -1 & 2 \\ 0 & -1 \\ 1 & 0 \\ -2 & \frac{n}{2} \\ 2 & -2 \\ \frac{n}{2} & 1 \end{bmatrix}$

Clearly, both columns of C_i use up all integers in $[-2, 2] \cup \{\frac{n}{2}\}$. Also, each of the first $i - 1$ rows of C_i sums to ± 1 or $\frac{n}{2} - 2$, the last row of C_i sums to $\frac{n}{2} + 1$, and the remaining $6 - i$ rows sum to 0. We now define an $n \times 2$ matrix R according to the possible values of β:

$$R = \begin{bmatrix} A(\frac{\beta - i}{2} + 3, \frac{n}{2} - 1) \\ -A(\frac{\beta - i}{2} + 3, \frac{n}{2} - 1) \\ B(3, \frac{\beta - i}{2} + 2) \\ -B(3, \frac{\beta - i}{2} + 2) \\ C_i \end{bmatrix}$$ where $3 \leq \beta \equiv i \pmod{4}$ with $i \in \{3, 5\}$.

Clearly, each column of R is a permutation of \mathbb{Z}_n. Further, R has α rows whose sum is 0, and $\beta - 1$ rows each of which sums to ± 1 or $\frac{n}{2} \pm 2$, whereas the
last row sums to $\frac{n}{2} + 1$. To construct the requisite $(n \times 3)$ matrix T satisfying conditions $1 - 3$, we consider a Skolem sequence $\{(a_i, b_i) \mid i \in [0, n/2 - 1]\}$ covering $[1, n-1]$ (which exists by Corollary 2.8) and replace each element $i \in \left[-\frac{n}{2} + 1, \frac{n}{2}\right]$ in the first column of R with the pair (x_i, y_i) defined below:

$$
(x_i, y_i) = \begin{cases}
(b_i, -a_i) & \text{if } i \in [0, \frac{n}{2} - 1], \\
(a_{i-n}, b_{i-n}) & \text{if } i \in [-1, \frac{n}{2} - 1], \\
(0, 0) & \text{if } i = \frac{n}{2}.
\end{cases}
$$

(1)

It is not difficult to check that the new matrix T satisfies conditions $1 - 3$. In fact, the first column (resp., second column) of T uses up all integers in $[1, n]$ (resp., $[-1, n]$), therefore they are both permutations of \mathbb{Z}_n. We also point out that the above substitution preserves the sum of each row, except for the last row of T, which is $[0 \ 0 \ 1]$, and thus sums to 1, and therefore yields a C_{Mn}-factor.

Now, let $n \equiv 0 \pmod{4}$; thus, by assumption, $\beta > 0$ is even. For $i \in \{0, 2, 4\}$ we define the 4×2 matrix C_i as follows:

$$
C_0 = \begin{bmatrix} 0 & 0 \\ 1 & -1 \\ -1 & 1 \\ \frac{n}{2} & \frac{n}{2} \end{bmatrix}, \quad C_2 = \begin{bmatrix} 0 & 0 \\ 1 & -1 \\ \frac{n}{2} & 1 \\ -1 & \frac{n}{2} \end{bmatrix}, \quad C_4 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ \frac{n}{2} & -1 \\ -1 & \frac{n}{2} \end{bmatrix}.
$$

Clearly, both columns of C_i use up all integers in $[-1, 1] \cup \{\frac{n}{2}\}$. Also, i rows of C_i sum to 1 or $\frac{n}{2} \pm 1$, whereas the remaining $4 - i$ row sums to 0. If M is even, we define an $n \times 2$ matrix T satisfying conditions $1 - 3$ as follows:

$$
2 \leq \beta \equiv i \pmod{4} \text{ with } i \in \{2, 4\}
$$

$$
T = \begin{bmatrix} A\left(\frac{\beta - i}{2} + 2, \frac{n}{2} - 1\right) \\
-A\left(\frac{\beta - i}{2} + 2, \frac{n}{2} - 1\right) \\
B(2, \frac{\beta - i}{2} + 1) \\
-B(2, \frac{\beta - i}{2} + 1) \\
C_i
\end{bmatrix}
$$

If M is odd, to construct the required $(n \times 3)$ matrix satisfying conditions $1 - 3$, we consider a Skolem sequence $\{(a_i, b_i) \mid i \in [0, n/2 - 1]\}$ of $[1, n-1]$ (which exists by Corollary 2.8) and replace each element i in the first column of T with the pair (x_i, y_i) defined in equation (1). It is not difficult to check that the new matrix satisfies conditions $1 - 3$ and this completes the proof. □
Lemma 3.4. Let \(n \geq 2 \) be even, \(M \geq 3 \), and \(0 < \beta \leq n \). Then \((n - \beta, \beta)\) is in HWP\((C_M[n]; M, Mn)\) whenever the following conditions simultaneously hold:

1. \(\beta \equiv \frac{Mn}{2} + 1 \pmod{2}; \)
2. if \(Mn \equiv 0 \pmod{4} \), then \(\beta \neq 1; \)
3. if \(Mn \equiv 2 \pmod{4} \) and \(n > 2 \), then \(\beta \neq 2. \)

Proof. We first consider the case where \(Mn \equiv 0 \pmod{4} \); hence, by assumption, we have that \(\beta \) is odd and \(\beta \geq 3 \), thus \(n \geq 4 \). Let \(T \) be the \((n - 3) \times 2\) matrix with entries in \(\mathbb{Z} \) defined as follows:

\[
T = \begin{bmatrix}
A(-\frac{n}{2} + 2, -\frac{n}{2} + 1 + \alpha) \\
B(-\frac{n}{2} + 2 + \alpha, \frac{n}{2} - 2)
\end{bmatrix}.
\]

Clearly, each column of \(T \) is a permutation of \(\mathbb{Z} \setminus \{\frac{n}{2} \pm 1, \frac{n}{2}\} \), each of the first \(\alpha \) rows of \(T \) sums to 0, whereas each of the remaining \(\beta - 3 \) sums to \(\pm 1 \).

We now construct an \((n - 3) \times 3\) matrix \(T' \) by modifying \(T \) as follows. By Corollary 2.8, there is a Skolem sequence \(\{(a_i, b_i) \mid i \in [0, \frac{n}{2} - 1]\} \) covering \([-\frac{n}{2} + 2, \frac{n}{2} - 2]\). To construct \(T \) we replace each element \(i \) in the first column of \(T' \) with the pair \((x_i, y_i)\) defined below:

\[
(x_i, y_i) = \begin{cases}
(b_i, -a_i) & \text{if } i \in [0, \frac{n}{2} - 2], \\
(a_{-i}, -b_{-i}) & \text{if } i \in [-1, \frac{n}{2} - 2].
\end{cases}
\]

(2)

It is not difficult to check that each of the first two columns of \(T' \) uses up all integers in \([-\frac{n}{2} + 2, \frac{n}{2} - 2]\), therefore they are both permutations of \(\mathbb{Z} \setminus \{\frac{n}{2} \pm 1, \frac{n}{2}\} \). We also point out to the reader that the above substitution preserves the sum of each row. Therefore, by applying Theorem 2.4 to \(T \) and \(T' \), it follows that \((n - \beta, \beta - 3)\) is in HWP\((C_M[\mathbb{Z_n} \setminus \{\frac{n}{2} \pm 1, \frac{n}{2}\}], M, Mn)\).

In view of Lemma 2.3, \((0, 3)\) is in HWP\((C_M[\{\frac{n}{2} \pm 1, \frac{n}{2}\}], M, Mn)\), therefore \((n - \beta, \beta)\) is in HWP\((C_M[n]; M, Mn)\).

We finally assume that \(Mn \equiv 2 \pmod{4} \); hence, by assumption, \(M \) is odd, \(n \equiv 2 \pmod{4} \), and \(\beta > 0 \) is even. If \(n = 2 \) then \((0, 2) \) is in HWP\((C_M[2]; M, 2M)\) by Lemma 2.5. Therefore, we can assume that \(n > 2 \), hence \(\beta \geq 4 \) (condition 3). First, let \(T = \begin{bmatrix} T_1 \\ T_2 \end{bmatrix} \) be an \((n - 2) \times 2\) matrix with entries in \(\mathbb{Z}_n \setminus \{\frac{n}{2} - 1, \frac{n}{2}\} \) where:

\[
T_1 = \begin{bmatrix}
A(-\frac{n}{2} + 3, -\frac{n}{2} + \alpha + 2) \\
B(-\frac{n}{2} + \alpha + 3, \frac{n}{2} - 2)
\end{bmatrix}
\text{ and } \ T_2 = \begin{bmatrix}
-\frac{n}{2} + 1 & -\frac{n}{2} - 2 \\
-\frac{n}{2} + 2 & -\frac{n}{2} + 1
\end{bmatrix}.
\]
Note that each column of T is a permutation of $\mathbb{Z}_n \setminus \{\frac{n}{2} - 1, \frac{n}{2}\}$; also, each of the first α rows of T_1 sums to 0, whereas each of the following $\beta - 4$ rows sums to ± 1.

We now construct an $(n-2) \times 3$ matrix T' as follows. By Corollary 2.8 there is a Skolem sequence $\{(a_i, b_i) \mid i \in [0, \frac{n}{2} - 2]\}$ covering $[-\frac{n}{2} + 2, \frac{n}{2} - 2]$. As before, to construct T' we replace each element of the second column of T, say $i \in [-\frac{n}{2} + 1, \frac{n}{2} - 2]$, with the pair (x_i, y_i) defined below:

$$
(x_i, y_i) = \begin{cases}
(b_i, -a_i) & \text{if } i \in [0, \frac{n}{2} - 2], \\
(a_i, -b_i) & \text{if } i \in [-1, \frac{n}{2} - 2], \\
(-\frac{n}{2} + 1, -\frac{n}{2} + 1) & \text{if } i = -\frac{n}{2} + 1.
\end{cases}
$$

(3)

It is not difficult to check that each of the columns of T' uses up all integers in $[-\frac{n}{2} + 1, \frac{n}{2} - 2]$, that is, each of them is a permutation of $\mathbb{Z}_n \setminus \{\frac{n}{2} - 1, \frac{n}{2}\}$. We also point out that the substitution $i \mapsto (x_i, y_i)$ preserves the sum of each row, except that the last row of T' sums to $\frac{n}{2} + 4$ which is coprime to n. Therefore, by applying Theorem 2.4 to T, it follows that $(n-\beta, \beta - 2) \in \text{HWP}(C_M[\mathbb{Z}_n \setminus \{\frac{n}{2} - 1, \frac{n}{2}\}; M, Mn])$. By Lemma 2.1, $(0, 2) \in \text{HWP}(C_M[\{\frac{n}{2} - 1, \frac{n}{2}\}; M, Mn])$, therefore $(n-\beta, \beta) \in \text{HWP}(C_M[n]; M, Mn)$. \hfill \Box

Lemmas 3.1 – 3.4 clearly yield the following result.

Theorem 3.5. Let $n \geq 2$, $M \geq 3$, and $0 \leq y \leq n$. Then $(n-y, y) \in \text{HWP}(C_M[n]; M, Mn)$ except possibly when at least one of the following conditions holds:

1. $y = 1$ and $(n, (-1)^M) \neq (2, -1)$;
2. $y = 2 < n \equiv 2 \pmod{4}$ and M is odd;
3. $(y, n) \in \{(0, 2), (0, 6)\}$ and M is odd.

4 Determining $\text{HWP}(v; M, Mn)$

In this section we prove the main result of this paper which concerns the existence of a solution to $\text{HWP}(K^n_v; M, N; \alpha, \beta)$ when M is a divisor of N. Note that when $\alpha = 0$ or $\beta = 0$, this problem is equivalent to determining a C_ℓ-factorization of K^n_v and in this case a complete solution is provided by Theorem 1.1.
We denote by $\text{HW}(G; M, N; \alpha, \beta)$ any solution to $\text{HWP}(G; M, N; \alpha, \beta)$, that is, any factorization of G into α C_M-factors and β C_N-factors. We first prove the following lemma which provides sufficient conditions for the existence of an $\text{HW}(G; M, N; \alpha, \beta)$ for a given graph G.

Lemma 4.1. Let M, N, α, β be positive integers with M being a divisor of N and $N > M \geq 3$. Also, assume that G has a factorization into $r \geq 2$ $C_M[n]$-factors where $n = N/M$. Then, $(\alpha, \beta) \in \text{HWP}(G; M, N)$ if and only if $\alpha + \beta = rn$, except possibly when at least one of the following conditions holds:

(i) $\beta = 1$;
(ii) $\beta = 2 < n \equiv 2 \pmod{4}$ and M is odd;
(iii) $n = 2$, M is even, and β is odd;
(iv) $n = 2$, M is odd, and $\beta < r$;
(v) $n = 6$, M is odd, and $\beta < 3r$.

Proof. Set $n = N/M$ and note that $n \geq 2$ since $N > M$. By assumption, G has a $C_M[n]$-factorization $G = \{G_1, G_2, \ldots, G_r\}$ with $r \geq 2$. It follows that G is a regular graph of degree $2rn$. Now note that if $(\alpha, \beta) \in \text{HWP}(G; M, N)$, then G has degree $2(\alpha + \beta)$, therefore $\alpha + \beta = rn$.

We now show sufficiency; hence, we assume that $\alpha + \beta = rn$. We will proceed by applying Theorem 3.5 to factorize each of the $r C_M[n]$-factors G_i into an $\text{HW}(C_M[n]; M, Mn; \alpha_i, \beta_i)$ where $\alpha = \sum_i \alpha_i$ and $\beta = \sum_i \beta_i$ for $i \in [1, r]$. Clearly, this will result in an $\text{HW}(G; M, N; \alpha, \beta)$.

Set $\beta = xn + y$, with $0 \leq x < r$ and $0 \leq y < n$; note that by assumption $\beta > 0$, and by exception (i) we have that $\beta \neq 1$, hence $(x, y) \not\in \{(0, 0), (0, 1)\}$. We first assume that $n \not\in \{2, 6\}$. By taking into account exceptions (ii), the following condition holds:

(a) if $(x, y) = (0, 2)$ (i.e., $\beta = 2$) and M is odd, then $n \not\equiv 2 \pmod{4}$.

We start with the case where $y \not\in \{1, 2\}$ and apply Theorem 3.5 to fill $x C_M[n]$-factors with an $\text{HW}(C_M[n]; M, Mn; 0, n)$, one $C_M[n]$-factor with an $\text{HW}(C_M[n]; M, Mn; n - y, y)$, and the rest with an $\text{HW}(C_M[n]; M, Mn; n, 0)$. If $(x, y) = (0, 2)$, then in view of condition (a) we can apply Theorem 3.5 to fill 1 $C_M[n]$-factor with an $\text{HW}(C_M[n]; M, Mn; n - y, y)$ and the rest with
an HW($C_M[n]; M, Mn; n, 0$). We finally consider the case where $y \in \{1, 2\}$ and $x > 0$. We again apply Theorem 3.5 to fill $x - 1$ $C_M[n]$-factors with an HW($C_M[n]; M, Mn; 0, n$). If $n \geq 4$, we proceed by filling one $C_M[n]$-factor with an HW($C_M[n]; M, Mn; 2, n - 2$) and one $C_M[n]$-factor with an HW($C_M[n]; M, Mn; n - y - 2, y + 2$). If $n = 3$ and $y = 1$, then we proceed by filling two $C_M[n]$-factors with an HW($C_M[n]; M, Mn; 1, 2$). If $n = 3$ and $y = 2$, then we fill one $C_M[n]$-factor with an HW($C_M[n]; M, Mn; 0, 3$) and one $C_M[n]$-factor with an HW($C_M[n]; M, Mn; 3 - y, y$). We fill the remaining $r - x - 1$ $C_M[n]$-factors with an HW($C_M[n]; M, Mn; n, 0$).

Now, we consider the case where $n \in \{2, 6\}$ and M is even. Note that when $n = 2$, then β is even (exception (iii)), that is, $y = 0$. If $y \neq 1$, then we apply Theorem 3.5 to fill x $C_M[n]$-factors with an HW($C_M[n]; M, Mn; 0, n$), one $C_M[n]$-factor with an HW($C_M[n]; M, Mn; n - y, y$), and the rest with an HW($C_M[n]; M, Mn; n, 0$). If $y = 1$, then $n = 6$ and $x > 0$ (since $(x, y) \neq (0, 1)$). We apply again Theorem 3.5 to fill $x - 1$ $C_M[n]$-factors with an HW($C_M[n]; M, Mn; 0, n$), one $C_M[n]$-factor with an HW($C_M[n]; M, Mn; 1, n - 1$), one $C_M[n]$-factor with an HW($C_M[n]; M, Mn; n - 2, 2$), and the rest with an HW($C_M[n]; M, Mn; n, 0$).

We finally assume that $n \in \{2, 6\}$ and M is odd, and set $\beta = x'r + y'$, with $0 \leq x' < n$ and $0 \leq y' < r$. In view of exceptions (iv)–(v) we have that $x' \geq 1$ when $n = 2$, and $x' \geq 3$ when $n = 6$. We can then apply Theorem 3.5 to fill y' $C_M[n]$-factors with an HW($C_M[n]; M, Mn; n - x' - 1, x' + 1$) and the remaining $(r - y')$ $C_M[n]$-factors with an HW($C_M[n]; M, Mn; n - x', x'$), and this completes the proof.

We are now ready to prove the main result of this paper.

Theorem 1.5. Let M, N, v, α, β be positive integers such that $N > M \geq 3$ and M is an odd divisor of N. Then, $(\alpha, \beta) \in \text{HWP}(v; M, N)$ if and only if $N \mid v$ and $\alpha + \beta = \left\lfloor \frac{v - 1}{2} \right\rfloor$ except possibly when at least one of the following conditions holds:

(i) $\beta = 1$;

(ii) $\beta = 2$, $N \equiv 2M \pmod{4M}$;

(iii) $N \in \{2M, 6M\}$;

(iv) $v \in \{N, 2N, 4N\}$;
(v) $(M, v) = (3, 6N)$.

Proof. We first note that by Theorem 1.4 if $(\alpha, \beta) \in HWP(v; M, N)$, then necessarily $\alpha + \beta = \lfloor \frac{v-1}{2} \rfloor$, and both M and N are divisors of v.

We now show sufficiency; therefore, let (v, M, N, α, β) a quintuple which satisfies the assumptions of this theorem. Therefore, $v = Mns$ where $n = N/M$ and s is a suitable positive integer. Also, in view of the possible exceptions $(i) - (v)$, we can assume that the following conditions simultaneously hold:

$$
\begin{align*}
\beta &\neq 1, \beta \neq 2 \text{ when } n \equiv 2 \pmod{4}, \\
&s \notin \{1, 2, 4\}, \text{ and } (M, s) \neq (3, 6).
\end{align*}
$$

We now set $w = Mn^t$ where $t = s$ if s is odd, otherwise $t = s/2$. Note that in both cases we have $t \geq 3$, since $s \notin \{1, 2, 4\}$.

We factorize K_v^* into $G_0 = tK_w^*$ and $G_1 = K_t[w]$. We start by applying Theorem 1.1 which guarantees the existence of either a C_M- or a C_N-factorization of G_0 as we choose. Therefore, this step will yield either γC_M-factors or γC_N-factors decomposing G_0, where $\gamma = \lfloor \frac{w-1}{2} \rfloor$. More precisely, let (α_0, β_0) be the pair defined as follows:

$$
(\alpha_0, \beta_0) = \begin{cases}
(\gamma, 0) & \text{if } \beta < \gamma + 3, \\
(0, \gamma) & \text{if } \beta \geq \gamma + 3,
\end{cases}
$$

and apply Theorem 1.1 to fill G_0 with an $HW(G_0; M, N; \alpha_0, \beta_0)$. Since $(M, s) \neq (3, 6)$, by applying Corollary 1.3 with $z = Mn^t$ we obtain a $C_M[n]$-factorization of $K_t[w]$ containing at least three factors. By taking into account Lemma 1.1 and conditions (4), it follows that there exists an $HW(G_1; M, N; \alpha - \alpha_0, \beta - \beta_0)$ which we use to fill G_1 and this completes the proof. \qed

We point out that the above result has been proven in [12] in the case in which both M and N are odd, but gives new results when M is odd and N is even.

The following corollary easily follows.

Corollary 4.2. Let $M \geq 3$ be an odd divisor of N. The necessary conditions for the solvability of $HWP(v; M, N; \alpha, \beta)$ are sufficient whenever $v > 6N > 36M$ and $\beta \geq 3$.

16
Acknowledgements

The authors gratefully acknowledge support from the following sources. A.C. Burgess and P. Danziger have received support from NSERC Discovery Grants RGPIN-435898-2013 and RGPIN-2016-04178, respectively. T. Traetta is a Marie Curie fellow of the Istituto Nazionale di Alta Matematica and gratefully acknowledges their support.

References

[1] B. Alspach and R. Häggkvist. Some observations on the Oberwolfach Problem. *J. Graph Theory* 9 (1985), 177–187.

[2] B. Alspach, P.J. Schellenberg, D.R. Stinson and D. Wagner. The Oberwolfach problem and factors of uniform odd length cycles. *J. Combin. Theory Ser. A* 52 (1989), 20–43.

[3] J. Asplund, D. Kamin, M. Keranen, A. Pastine and S. Özkan. On the Hamilton-Waterloo problem with triangle factors and C_{3k}-factors. *Australas. J. Combin.* 64 (2016), 458–474.

[4] C. Baker. Extended Skolem sequences. *J. Combin. Des.* 3 (1995), 363–379.

[5] J.-C. Bermond, O. Favaron and M. Mahéo. Hamiltonian decomposition of Cayley graphs of degree 4. *J. Combin. Theory Ser. B* 46 (1989), 142–153.

[6] S. Bonvicini and M. Buratti. Octahedral, dicyclic and special linear solutions of some unsolved Hamilton-Waterloo problems. *Ars Math. Contemp.* 14 (2018), 1–14.

[7] D. Bryant and P. Danziger. On bipartite 2-factorizations of $K_n - I$ and the Oberwolfach problem. *J. Graph Theory* 68 (2011), 22–37.

[8] D. Bryant, P. Danziger, and M. Dean. On the Hamilton-Waterloo problem for bipartite 2-factors. *J. Combin. Des.* 21 (2013), 60–80.

[9] D. Bryant, P. Danziger, and W. Pettersson. Bipartite 2-factorizations of complete multipartite graphs. *J. Graph Theory* 78 (2015), 287–294.
[10] D. Bryant and V. Scharaschkin. Complete solutions to the Oberwolfach problem for an infinite set of orders. *J. Combin. Theory Ser. B* **99** (2009), 904–918.

[11] A. Burgess, P. Danziger, and T. Traetta. On the Hamilton-Waterloo Problem with Odd Orders. *J. Combin. Des.* **25** (2017), 258–287.

[12] A. Burgess, P. Danziger, and T. Traetta. On the Hamilton-Waterloo Problem with odd cycle lengths. DOI: 10.1002/jcd.21586.

[13] C.J. Colbourn and J.H. Dinitz, editors. *The CRC Handbook of Combinatorial Designs*. 2nd ed. CRC Press Series on Discrete Mathematics, Boca Raton, 2007.

[14] P. Danziger, G. Quattrocchi and B. Stevens. The Hamilton-Waterloo problem for cycle sizes 3 and 4. *J. Combin. Des.* **17** (2009), 342–352.

[15] R. Häggkvist. A Lemma on Cycle Decompositions. *North-Holland Math. Stud.* **115** (1985), 227–232.

[16] D.G. Hoffman and P.J. Schellenberg. The existence of C_k-factorizations of $K_{2n} - F$. *Discrete Math.* **97** (1991), 243–250.

[17] M.S. Keranen and S. Özkam. The Hamilton-Waterloo problem with 4-cycles and a single factor of n-cycles. *Graphs Combin.* **29** (2013), 1827–1837.

[18] M. Keranen and A. Pastine. A generalization of the Hamilton-Waterloo Problem on complete equipartite graphs. *J. Combin. Des.* **25** (2017), 431–468.

[19] H. Lei and H. Shen. The Hamilton-Waterloo problem for Hamilton cycles and triangle-factors. *J. Combin. Des.* **20** (2012), 305–316.

[20] J. Liu. A generalization of the Oberwolfach problem and C_t-factorizations of complete equipartite graphs. *J. Combin. Des.* **8** (2000), 42–49.

[21] J. Liu. The equipartite Oberwolfach problem with uniform tables. *J. Combin. Theory, Ser. A*, **101** (2003), 20–34.
[22] U. Odabaşı and S. Özkan. The Hamilton-Waterloo problem with C_4 and C_m factors. *Discrete Math.* **339** (2016), 263–269.

[23] G. Rinaldi and T. Traetta. Graph products and new solutions to Oberwolfach problems. *Electron. J. Combin.* **18** (2011), P52.

[24] T. Traetta. A complete solution to the two-table Oberwolfach problems. *J. Combin. Theory Ser. A* **120** (2013), 984–997.

[25] L. Wang, F. Chen and H. Cao. The Hamilton-Waterloo problem for C_3-factors and C_n-factors. *J. Combin. Des.* **25** (2017), 385–418.

[26] E.E. Westlund. Hamilton decompositions of 6-regular Cayley graphs on even Abelian groups with involution-free connections sets. *Discrete Math.* **331** (2014), 117–132.