Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Synthesis, crystal structure, potential drug properties for Coronavirus of Co(II) and Zn(II) 2-chlorobenzoate with 3-cyanopyridine complexes

Füreya Elif Öztürkkan a,∗, Mücahit Özdemir b, Giray Buğra Akbaba c, Mustafa Sertçelik a, Bahattin Yalçın b, Hacali Necefoğlu d, Tuncer Hökelek e

a Department of Chemical Engineering, Kafkas University, Kars, Turkey
b Department of Chemistry, Marmara University, Istanbul, Turkey
c Department of Bioengineering, Kafkas University, Kars, Turkey
d Department of Chemistry, Kafkas University, Kars, Turkey
e Department of Physics, Hacettepe University, Ankara, Turkey

A R T I C L E I N F O

Article history:
Received 8 September 2021
Revised 24 October 2021
Accepted 26 October 2021
Available online 30 October 2021

Keywords:
Transition metal complex
Arylcarboxylates
SARS-CoV-2
Molecular docking
DFT
ADMET

A B S T R A C T

Two new complexes of Co(II) and Zn(II) 2-chlorobenzoate (2CIBA) with 3-cyanopyridine (CNP) of the general formula [Co(2-CIBA)₂(CNP)₃(H₂O)₂] and [Zn(2-CIBA)₂(CNP)₃(H₂O)₂] were synthesized. The structures of the complexes were characterized by single crystal XRD and FT-IR and NMR spectroscopy and Mass Spectrometry (MALDI-TOF MS) methods. Mononuclear complexes exhibit octahedral coordination. In addition, Hirshfeld surface analysis was performed to determine non-covalent interactions in crystal packing. The geometry optimization of the molecules was carried out using the LANL2DZ level of theory of the DFT method and the obtained findings were confirmed by comparing with the data obtained from the single crystal X-ray diffraction method. The theoretical and experimental bond angles and lengths are very close to each other. The effectiveness of the complexes against SARS-CoV-2 enzymes was investigated in silico using the molecular docking method, and a binding score of -8.0 kcal/mol on NSP16 of complex 1 as an inhibitor was obtained. To investigate the drug potential of the complexes, their pharmacokinetic and toxicokinetic properties were estimated by ADMET calculations.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Metal(II) aryl carboxylate complexes have been widely studied for many years because of their many potential applications in fields such as biology, pharmacology, catalysis, sensors, and magnetism. Most of these carboxylate-containing ligands coordinate with metal ions in many different types such as monodentate, bidentate, bridging, chelating-bidentate, bridging bidentate. Different coordination types ensure the diversification of their properties in application areas [1–4]. The auxiliary ligand in the structure has a great role in the exhibit of all these different coordination modes of benzoic acid and its derivatives [5]. Arylcarboxylic acids and N-donor ligands are widely used in the synthesis of supramolecular structures [6]. Supramolecular structures are formed through different components interacting with non-covalent interactions such as hydrogen bonding [7–10], dipole-dipole interactions, steric repulsions, van der Waals interactions, and London dispersion forces. These non-covalent interactions are important for biological systems as well as contribute to the stability of the crystal structure [11–15].

Cobalt is a bio-metal found in plants, human and animal metabolisms. In humans, cobalt is at the center of cobalamin (vitamin B12), which is necessary for many physiological processes such as DNA synthesis and the proper functioning of the nervous system. Cobalt complexes are known for their anticancer and antimicrobial properties. Recent research has focused on the synthesis and evaluation of complexes with biologically interesting ligands to increase complex activity [16–18]. Zinc is the second most abundant trace element in the human body. Approximately 95% of the zinc in the human body is in the cell. It is essential for growth and development in all forms of life. In case of both deficiency and excess, it causes some health problems. It has been suggested to have beneficial therapeutic and preventive effects on infectious diseases, including shortening the duration of the common cold for humans [17,19–21]. Besides its essential role in living systems, the zinc (II) ion is a component of compounds used medicinally in the treatment of skin diseases and as a nutritional supplement. Zinc(II) complexes are known to be used as antimicrobial [22], antifungal [23], anticancer [24], anti-inflammatory [25], antioxidant [26] and antidiabetic [27] agents.

https://doi.org/10.1016/j.molstruc.2021.131825
0022-2860/© 2021 Elsevier B.V. All rights reserved.
The disease COVID19, which emerged with the spread of a new Coronavirus called SARS-CoV-2 in late 2019, caused a worldwide pandemic and brought most activities in the world to a standstill. With the pandemic, people had to take some disposable precautions, such as masks, visors, overalls, with the guidance of some authorities. Many researchers continue to work for both treatment and permanent prevention [28–30]. Today, drug materials synthesized for use in drug therapy for many viral diseases such as Herpes and HIV are limited. This is also true for SARS-CoV-2 [31–33]. While some of the known drugs used in the treatment of SARS-CoV-2 since the beginning of the pandemic are still in use, the use of some of them has been stopped [34]. We wanted to support with an in silico study whether two compounds synthesized for the first time in this study can be antiviral agent candidates for use in the treatment of SARS-CoV-2.

2. Materials and method

2.1. Chemicals

All chemicals and solvents were purchased commercially and used without further purification.

Sodium bicarbonate, 2-chlorobenzoic acid, 3-cyanopyridine, ethanol, and the metal salts CoSO₄·6H₂O and ZnSO₄·7H₂O were obtained from Sigma Aldrich, Germany.

2.2. Measurements

FT-IR spectra were recorded in the range of 600–4000 cm⁻¹ with a Perkin Elmer Frontier™ spectrometer with an ATR detector using solid samples. ¹H NMR spectrum of the complex 2 was recorded on Bruker Avance III 500 spectrometer in deuterated DMSO (d₆-DMSO). Mass spectra of the complexes were obtained by Bruker Micro flex LT MALDI-TOF MS spectrometer using dithranol (DIT) as MALDI matrix.

2.3. Preparation of the complex 1

Sodium bicarbonate (0.84 g, 10 mmol) and 2-chlorobenzoic acid (1.56 g, 10 mmol) were mixed in 100 mL of distilled water and heated and stirred at 60 °C until the CO₂ gas was completely removed. 3-cyanopyridine (1.04 g, 10 mmol) in 20 mL of ethanol was added to a 50 mL aqueous solution of CoSO₄·7H₂O (1.40 g, 5 mmol), followed by the addition of a previously prepared solution of sodium 2-chlorobenzoate (1.78 g, 10 mmol) in 100 mL of distilled water. The synthesis is given in Scheme 1. The pink and colorless solutions obtained were slowly evaporated at room temperature and pink and colorless single crystals suitable for X-ray structure determination were obtained in two weeks. The crystals obtained were filtered, washed with distilled water, and left to dry at room temperature. The purity of the complex was checked by the thin-layer chromatography (TLC) technique. Yield 2.30 g (74.92%). Selected IR bands (cm⁻¹): ν(CH₃) 3275, ν(C–H)as 2973, ν(C–N) 2237, ν(C=O)as 1596, ν(COO⁻)s 1408, ν(C–C)phen 1438, δ(C–C) 810. m/z: [M+CNP]⁺ = 510.82; [M+2CN+5H]⁺ = 568.15; [M+DIT-2H₂O-CN–Na]⁺ = 793.72; [M+DIT-2H₂O–Na]⁺ = 851.24 (Fig. S1).

2.4. Preparation of the complex 2

Unlike the synthesis of Complex 1, ZnSO₄·7H₂O (1.43 g, 5 mmol) was used as the metal salt. Colorless crystals were obtained from the colorless clear solution after four weeks, filtered and washed with distilled water. The purity of the complex was checked by thin layer chromatography (TLC) technique. The synthesis is given in Scheme 1. Yield 2.51 g (81.29%). Selected IR bands (cm⁻¹): ν(CH₃) 3272, ν(C–H)as 2980, ν(C–N) 2237, ν(C=O)as 1596, ν(COO⁻)s 1407, ν(C–C)phen 1438, δ(C–C) 810. ¹H NMR (400 MHz, DMSO–d₆) δ 7.33–7.44 (m, 6H, ArH), 7.64–7.69 (m, 4H, ArH), 8.33 (d, 2H, ArH; J = 8.00 Hz), 8.87 (m, 2H, ArH), 9.04 (s, 2H, ArH), 3.33 (s, 4H, 2H₂O). m/z: [M+CNP–H₂O]⁺ = 371.95; [M+2CN–Na]⁺ = 590.87; [M + 2Na]⁺ = 665.52; [M+DIT-CN–H₂O+4H]⁺ = 806.92 (Fig. S2).

2.5. X-ray crystallography

Single-crystal X-ray diffraction analyses of compounds (1 and 2) were performed on a Bruker APEX-II CCD diffractometer using Mo Kα (λ = 0.71073 Å) radiation at a temperature of 296(2) K. Structures were solved by direct methods [35] and refined by full-matrix least-squares against F² using all data [35]. All non-H atoms were refined anisotropically. The water H atoms were located in different Fourier maps and refined freely, while the C-bound H atoms were positioned geometrically at distances of 0.93 Å (for...
the density Alamos gle. The surface Hirshfeld ρ (β (a)) of number (number/Δ1ρ θ) ˚A was ˚A (β (a)) was chosen optimization, as retrieved from the active site of NSP-12 and NSP-12 with RNA were determined using the BIOVA Discovery Studio Visualizer 2021 [54]. Pre-calculated grid maps were required for running the program, which was calculated using the AutoGrid program. The energy scoring grid box was set to 32 × 32 × 32 dimension (x, y, and z) centered at X = 91.692; Y = 92.471; and Z = 103.743 with 0.325 Å Angstom grid points spacing assigned with default atomic salvation parameters. As a docking engine, the Lamarckian Genetic Algorithm was used, with all docking parameters set to default. The visualization processes were carried out using the BIOVA Discovery Studio Visualizer 2021.

2.9. ADMET predictions

In drug design, determining the pharmacokinetic and toxicokinetic properties of drug candidate molecules prevents multiple experiments, saving both time and cost and making the success rate higher. Absorption, distribution, metabolism, excretion, and toxicity parameters (ADMET) describe the properties that a drug molecule must carry. The SwissADME online database [55] was used to estimate the absorption, distribution, metabolism, and excretion values of the synthesized complexes. The ProFox-II online database [56] was used to estimate toxicity values.

3. Results and discussion

3.1. Description of the structure

The single crystal X-ray analysis results and spectroscopic data of complexes 1 and 2 are compatible with each other. Selected bond lengths and angles are given in Table 2. Hydrogen bond geometries are given in Table 3. Fig. 1a and 1b show the molecular structures and atom-numbering schemes, whereas Fig. 2a and 2b show the partial packing diagrams.

The asymmetric units of the mononuclear complexes (1 and 2) include metal (Co for 1 and Zn1 for 2) cations, positioned on symmetry centers, one 3-cyanopyridine (CNP) ligand, one 2-chlorobenzoate (2-CIBA) anion, and one water molecule. All ligands are monodentately coordinated to Metal cations (Fig. 1a and 1b). (Fig. 1a and 1b).

The MII cations (CoII and ZnII) are coordinated monodentately through the two symmetry-related 2-CIBA anions’ the two carboxylate oxygen atoms (O1 and O1’) and two oxygen atoms (O3 and O3’) of the two symmetry-related water at distances of [2.0749 (9) and 2.0976 (11) Å (for 1) and 2.0832 (10) and 2.1118 (12) Å (for 2)], respectively, to form slightly distorted square-planar environments. The slightly distorted octahedral coordination geometry has been completed via the two symmetry-related N atoms (N1 and N1’) of the two symmetry-related CNP ligands in the axial positions. M–N1 and M–N1’ distances were found as 2.1815 (12) Å (for 1) and 2.1906 (12) Å (for 2), respectively [symmetry codes: (i) –x, –y, –z for 1 and (i) –x, –y + 1, –z for 2] (Fig. 1a and 1b). The close bond lengths of the C1–O1 [1.2569 (16) Å (for 1) and 1.2536 (17) Å (for 2)] and C1–O2 [1.2526 (17) Å (for 1) and 1.2509 (18) Å (for 2)] in the carboxylate groups are more suitable for delocalized bonding arrangements, rather than localized single and double bonds. The M–O bond lengths [2.0976 (11) Å (for 1) and 2.1118 (12) Å (for 2)] for water O atoms are about 0.023 Å (for 1) and 0.029 Å (for 2) longer than those the 2-chlorobenzoate
Table 2
Selected bond lengths (Å) and angles (°) for complexes (1 and 2).

Complex 1	X-Ray	DFT
Co1–O1	2.0749(9)	2.0165
Co1–O3	2.0876(11)	2.1868
Co1–N1	2.1815(12)	1.9762
O1–C1	1.2569(16)	1.3029
O2–C1	1.2526(17)	1.2876
C11–C13	1.444(2)	1.4381
N2–C13	1.134(2)	1.1820

Complex 2	X-Ray	DFT
Zn1–O1	2.0832(10)	2.1112
Zn1–O3	2.1118(12)	2.0903
Zn1–N1	2.1906(12)	2.2430
O1–C1	1.2536(17)	1.2999
O2–C1	1.2509(18)	1.2925
C9–C13	1.442(2)	1.4377
N2–C13	1.134(2)	1.1822

Symmetry codes: (i) −x, −y, −z; (ii) x, −y, −z; (iii) x, y + 1, −z; (iv) x, −y + 1, z; (v) x, −y + 1, −z.

Table 3
Hydrogen-bond geometry (Å, °) for complexes (1 and 2).

Complex	D–H–A	D–H–A	D–A	D–H–A	
1	O3–H31–O2i	0.76(2)	2.07(2)	2.7600(17)	153(2)
	O3–H32–O2m	0.81(2)	1.85(2)	2.6494(17)	166(2)
	C4–H4–O2m	0.93	2.48	3.393(2)	167
2	O3–H31–O2m	0.79(2)	1.88(2)	2.6483(19)	164(3)
	O3–H32–O2v	0.75(2)	2.08(2)	2.7640(18)	151(2)

Symmetry codes: (i) x + 1, y, z; (ii) −x, −y, −z; (iii) x, y + 1, −z; (iv) −x, y + 1, −z; (v) x, −y, z.

The water ligands to the 2-CIBA anions are connected by the intermolecular O–Hw–Oc (w = water, c = non-coordinating carboxylate oxygen atom) hydrogen bonds (Table 1).
through the $R_4^4(8)$ ring motifs [57], leading to the formations of layers along the a-axis direction. These layers are further connected by the weak intermolecular $C\cdash H_{\text{benz}}\cdash O_c$ ($\text{benz} = \text{benzene}$) hydrogen bonds (Table 1), resulting in the construction of a three-dimensional network structure (Fig. 2a). In complex 2, the water ligands to the 2-CIBA anions are connected by the intermolecular $O\cdash H_{\text{w}}\cdash O_c$ ($\text{w} = \text{water}, c = \text{non-coordinating carboxylate O atom}$) hydrogen bonds (Table 1), through the $R_4^4(8)$ ring motifs [57], resulting to the formations of layers along the a-axis direction (Fig. 2b). The $\pi\cdash \pi$ interactions between the benzene A (C2–C7) and pyridine B (N1/C8–C12) rings, Cg1–Cg2i (for 1) and Cg1–Cg2ii (for 2) [Symmetry codes: (i) $1 + x, \frac{1}{2} - y, \frac{1}{2} + z$, (ii) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$, where Cg1 and Cg2 are the centroids of rings A and B, respectively] may help to stabilize the crystal structures with the centroid-centroid distances of 3.7940(9) Å (for 1) and 3.7857(10) Å (for 2).

3.2. Hirshfeld surface analysis

Intermolecular interactions can be represented with varied colors and color intensities on Hirshfeld surfaces, indicating short or long contacts and the strength of interactions [59]. Fig. 3a and 3c
show the complexes’ d_{norm} maps. On the d_{norm} maps, Contacts with distances equal to the total of van der Waals radii are indicated by the white surface. The colors red and blue show distances that are shorter (in close contact) or longer (distinct touch) than the van der Waals radii. In the d_{norm} maps of the complexes, dark red spots are seen near the hydrogen bond donor and acceptor atoms that form hydrogen bonds. Other intermolecular interactions are seen as faint red [60–62]. Convex blue regions and concave red regions on the shape-index for complexes 1 and 2 indicate donor and acceptor groups, respectively (Fig. 3b and 3d). The existence of adjacent red and blue triangles in the crystal structures of complexes 1 and 2 confirms $\pi-\pi$ stacking interactions.

The contribution percentage values for each interaction in 2D fingerprint plots are given in Fig. 4. The contribution values for each interaction of the two isostructure complexes are almost the same. The fingerprint graphs of important intermolecular contacts are given in Figs. S3 and S4 in the Supporting Material file. On the Hirshfeld surfaces of complexes 1 and 2, the H^\cdotsH interactions were shown in the largest region of the fingerprint plot at $d_e + d_i = 2.46 \text{ \AA}$ (27.3% contribution for complex 1 and 27.4% contribution for complex 2). Because of the abundance of hydrogen in the structure, H^\cdotsH interactions make the most significant contribution to the structure. For complexes 1 and 2, $\text{H}^\cdots\text{N}/\text{N}^\cdots\text{H}$ interactions, which are the second significant contribution, contributed 19.7% to the fingerprint plot to the total Hirshfeld surface with the tips at $d_e + d_i = 2.64 \text{ \AA}$. C^\cdotsC interactions which have bullet shape cover 14.9% contributions in Hirshfeld surface of complexes 1 and 2. $\text{C}^\cdots\text{H}^\cdots\pi$ and $\pi-\pi$ stacking interactions are responsible for these interactions. These weak interactions greatly contribute to the crystal packing of the complexes. For complexes 1 and 2, the contribution of $\text{H}^\cdots\text{F}/\text{F}^\cdots\text{H}$ contacts in the fingerprint plot to the total Hirshfeld surface is 8.7%, 10.3%, and 12.2%, respectively. $\text{H}^\cdots\text{Cl}/\text{Cl}^\cdots\text{H}$ contacts have been observed the symmetrical two wings in the fingerprint plot delineated and they have been contributed with 12.0% to Hirshfeld surface with the tips at $d_e + d_i = 2.94 \text{ \AA}$. $\text{H}^\cdots\text{O}/\text{O}^\cdots\text{H}$ interactions 12.5% to the overall crystal packing were identified as the complex 1 and 2’s fifth significant intermolecular interactions with tips at $d_e + d_i = 1.1 + 0.78 \text{ \AA} = 1.88 \text{ \AA}$. These interactions are also represented by two spike wings. These interactions are due to $\text{O}^\cdots\text{H}^\cdots\text{O}$ hydrogen bonds in the crystal structure. The contribution of $\text{H}^\cdots\text{C}/\text{C}^\cdots\text{H}$ interactions to the Hirshfeld surface of complexes 1 and 2 are 9.2%. These interactions occurred symmetrically and over a wide area, with a high concentration at the fingerprint plot’s edges with the tips at $d_e + d_i = 2.02 \text{ \AA}$. $\text{C}^\cdots\text{H}^\cdots\pi$ and $\pi-\pi$ stacking interactions are responsible for these interactions. These weak interactions greatly contribute to the crystal packing of the complexes. In addition, $\text{C}^\cdots\text{Cl}/\text{Cl}^\cdots\text{C}$ (1.4%), $\text{C}^\cdots\text{N}/\text{N}^\cdots\text{C}$ (0.8%), N^\cdotsN (0.7%) and $\text{N}^\cdots\text{Cl}/\text{Cl}^\cdots\text{N}$ (0.3%) interactions were also observed, these interactions made a negligible contribution to the Hirshfeld surface.

3.3. FT-IR spectroscopy

Experimental and theoretical FT-IR spectra of the complexes are given in Figs S5 and S6 in the Supporting Material file. The FT-IR spectra of [Co(2-CIBA)$_2$(CNP)$_2$(H$_2$O)$_2$] and [Zn(2-CIBA)$_2$(CNP)$_2$(H$_2$O)$_2$] show bands with wavenumbers close to those reported in the literature for similar structures. When the FT-IR spectra of the complexes are examined, the absorption bands observed in the range of 3550–3300 cm$^{-1}$ are due to stretching vibrations of water molecules. These vibrations were found in the different regions in FT-IR spectra calculated using the B3LYP/LANL2DZ level of theory. In the theoretical study, O–H bands
Fig. 3. The Hirshfeld surface mapped for complexes 1 and 2 over (a and c) dnorm in the range −0.5655 to 1,2178 a.u., and −0.5612 to 1,2270 a.u., respectively. A view of the Hirshfeld surface mapped for complexes 1 and 2 over (b and d) the shape-index.

Fig. 4. The percentages of the intermolecular interactions from obtained Hirshfeld surface analysis of complexes 1 and 2.

Table 4
Some calculated chemical parameters of complexes 1 and 2 by the DFT method.

Parameter	Unit	Complex 1	Complex 2
Polarizability (α)	cm⁻³	9890.59	9307.57
Total Energy (E_{Total})	eV	−50,287.29	−48,124.90
LUMO +1 Energy (E_LUMO+1)	eV	−2.31	−2.28
LUMO Energy (E_{LUMO})	eV	−2.35	−2.29
HOMO Energy (E_{HOMO})	eV	−5.95	−7.01
HOMO −1 Energy (E_{HOMO-1})	eV	−6.69	−7.04
Energy Gap (E_{GAP})	eV	3.60	4.72
Dipole Moment (D)	eV	0.00	0.00
Ionization Potential (IP)	eV	5.95	7.01
Electron Affinity (EA)	eV	2.35	2.29
Electronegativity (χ)	eV	4.15	4.65
Chemical Hardness (η)	eV	1.80	2.36
Global Softness (σ)	eV⁻¹	0.28	0.21
Electrophilicity index (ω)	eV	4.78	4.58
E_{GAP} = E_{HOMO} − E_{LUMO}			
IP = −E_{HOMO}			
EA = −E_{LUMO}			
γ = (IP + EA)/2			
η = (IP − EA)/2			
σ = 1/2η			
ω = χ²/2σ			
Enzyme / Compound	Amino Acid Interactions	ΔG (kcal/mol)	Ligand Efficiency
-------------------	-------------------------	---------------	------------------
Spike S1	TYR453; GLN498; ASN501; GLY496; GLN498; TYR505; ARG403	-7.70	-0.20
Complex 2	ARG403; GLN498; GLY496; ARG403; ASN501; TYR505; TYR449	-7.70	-0.20
ACE2	TYR453; GLN498; ASN501; GLY496; TYR505; ARG403	-7.90	-0.20
Complex 2	ARG403; GLN498; GLY496; ARG403; ASN501; TYR505; TYR449	-7.40	-0.19
NSP12	ARG555; ARG553; ASN691; ASP760; CYS813	-6.10	-0.16
Complex 2	ARG555, ASP760, ARG553, ASN691, ASP760, CYS813	-6.10	-0.16
NSP12-RNA	ARG553; ARG555; ARG555; SER682; ASP623; ASP760; U20; ASP623	-6.80	-0.17
Complex 2	ARG555, ARG555, SER682; ASP623; ASP760; U20; ASP623; THR680; ASP623; U20; CYS622; ASP623	-6.80	-0.17
NSP15	ARG553; ARG555; ARG555; SER682; ASP623; ASP760; U20; ASP623; THR680; ASP623; U20; CYS622; ASP623	-6.80	-0.17
Complex 2	HIS250; LYS290; GLN245; HIS250; LYS290; VAL292; HIS235; LYS345; TYR343; VAL292	-7.00	-0.18
TMPRSS2	ARG150; TRP168; VAL479; PRO369	-6.20	-0.16
Complex 2	ARG150; TRP168; VAL479; PRO369	-6.30	-0.16

The meaning of colors: ■ = Conventional Hydrogen Bond; □ = Carbon Hydrogen Bond; □ = Electrostatic Salt Bridge-Attractive Charge; □ = Hydrophobic π-π Stacked or T-shaped; □ = Hydrophobic π-Alkyl; □ = π-Sigma; □ = π-Sulfur; □ = Halogen
of both complexes were observed around 2850 cm\(^{-1}\). Reviewing previous studies, this large chemical shift is attributed to anharmonic contributions. Due to the anharmonic effects, the vibrations of hydrogen bond formation affected by the H-bond are observed in a different region [63–65]. The stretching vibrations related to the aromatic C-H stretching vibrations were observed around 3000 cm\(^{-1}\) in the FT-IR Spectra of complexes 1 and 2. The mentioned vibrations for FT-IR Spectra were computed around 3200–3100 cm\(^{-1}\). The \(\nu(C-N)\) stretching vibration of 3-cyanopyridine is reported at 2230 cm\(^{-1}\) in the FT-IR spectra. In the FT-IR spectra, while the experimentally and theoretically calculated values for complex 1 are 2237 cm\(^{-1}\) and 2272 cm\(^{-1}\), respectively and for complex 2, these values are 2237 cm\(^{-1}\) and 2272 cm\(^{-1}\), respectively. The fact that these vibrations occur in the same region without chemical shifts also shows that the metal atom is not coordinated with the cyano group. The FT-IR spectroscopy gives also important information regarding the carboxylate ion’s coordination type [66]. This information is determined by the \(\Delta\nu\) value calculated from the difference between asymmetric and symmetric carboxylate vibrations. If this value is greater than the \(\Delta\nu\) value of the sodium salt of the acid, it is suggested that the coordination type of the carboxylate group be monodentate. Asymmetric and symmetrical vibrations of the COO\(^{-}\) moiety for complexes 1 and 2 were observed at 1596 cm\(^{-1}\) and 1375 cm\(^{-1}\) and, respectively. The \(\Delta\nu(COO^-)\) values for complexes 1 and 2 were calculated as 210 and 220 cm\(^{-1}\), respectively. Theoretically asymmetric and symmetrical vibrations of the COO\(^{-}\) moiety were calculated at 1514 cm\(^{-1}\) and 1376 cm\(^{-1}\) for complex 1 and 1511 and 1367 cm\(^{-1}\) for complex 2, respectively. When the synthesized complexes’ (COO\(^{-}\)) values are compared to the sodium salt of 2-chlorobenzoic acids, it is evident that the 2-chlorobenzoate anions coordinate monodentate. The \(\nu(C-N)\) stretching vibration of the pyridine ring was observed at 1048 cm\(^{-1}\) for complex 1 and 1047 cm\(^{-1}\) for complex 2. For complexes 1 and 2, these vibrations were calculated theoretically at 1061 cm\(^{-1}\) and 1081 cm\(^{-1}\), respectively. The complexes’ and 2-chlorobenzoate’s \(\nu(C-Cl)\) vibrations were recorded at

![Fig. 5. The calculated molecular orbital diagram of complexes 1 and 2 by the DFT method.](image)
the same frequency (about 810 cm\(^{-1}\)). This result supports that the 2-chlorobenzoate anion of the metal atom is not coordinated with the chloro groups [67,68].

3.4. \(^1\)H NMR spectra

Because Co(II) is paramagnetic, no signal was observed in \(^1\)H NMR for complex 1. Resonances of the aromatic protons of benzene rings of 2-chlorobenzoic acid and pyridine ring of 3-cyanopyridine showed at 7.33–9.04 ppm for complex 2. The signal related to the proton of coordinated water molecules for complex 2 was observed at \(\delta\) 3.33 ppm (Fig. S7) [60].

3.4. DFT results

Density functional theory was used to study the chemical properties of complexes 1–2 and calculated using the LANL2DZ level of theory of the B3LYP basis set. The geometries of the crystal structures were optimized in the gas phase and some computational parameters were evaluated. The Koopmans theorem shows the relationship between ionization potential and electron affinity with HOMO and LUMO orbital energies: electron affinity is the inverse of LUMO energy value, while ionization potential is the inverse of HOMO value. From these energy data, ionization potential (I.P.), electron affinity (E.A.), electronegativity (\(\chi\)), electrophilicity index (\(\omega\)), global softness (\(\sigma\)) and chemical hardness (\(\eta\)) values of complexes 1–2 were calculated according to the formulas specified in Table 4 [69–74].

The calculated bond lengths and angles of complexes 1 and 2 optimized with DFT indicate that the X-ray values for complex 1 bond lengths are numerically close to each other compared to experimental values. The computational bond lengths for Co1–O1 and Co1–O3 are 2.0165 and 2.1868 Å, respectively. For Co1–N1, the calculated bond length was 1.9762 Å and lower than the experimental value (2.1815 Å). The computational bond lengths for Zn1–O1 and Zn1–O3 are 2.1112 and 2.0903 Å, respectively. For Zn1–N1, the computational bond length was 2.2430 Å and greater than the experimental value (2.1906 Å). The bond angles for both Co and Zn complexes are the same as experimental values (Table 2).

Fig. 6. The Molecular docking results of complexes 1 and 2 on the NSP12 protein of Coronavirus. (a) Docking result of complex 1 and the spike protein of the Coronavirus. (b) 3D interactions of the complex 1 with amino acids in the active site of the spike protein. (c) Docking result of complex 1 and the NSP16 protein of the Coronavirus. (d) 2D interactions of the complex 1 with amino acids in the active site of the NSP16 protein.
Electron migration is easier in molecules with a high polarizability. The cobalt complex can be more polarized than the zinc complex. The electronic energy of the cobalt complex is lower, i.e., more stable, than the energy of the zinc complex. This situation is in correlation with the band gap and the band gap of complex \(1\) (3.60 eV) is narrower than the band gap of complex \(2\) (4.72 eV) as seen in Fig. 5. There is a positive correlation between molecular docking results and band gap values. Reactive complex \(1\), which has a narrower bandgap and easier electron transitions, is more effective compared to complex \(2\), which has fewer values.

3.5. Molecular docking results

The Coronavirus consists of Envelope (E), Membrane (M), Spike (S), Nucleocapsid (N), and genomic RNA and nonstructural proteins (NSP1–16). Inhibition of one or more of these proteins will stop or slow the effects of the Coronavirus. There are some model inhibitors for enzyme inhibition, but their efficacy is also insufficient. N3 [K], Remdesivir nucleoside monophosphate (K), Tipiracil [K], Sinefungin [K] and N-Acetyl-beta-D-glucosamine [K] are model inhibitors. Despite being a small molecule, favipiravir is a highly effective antiviral because it exhibits covalent interactions with Coronavirus proteins. By taking all these model inhibitors as a reference, it is possible to discover new inhibitors that are more effective and have lower toxicity.

Complexes \(1\) and \(2\) were inserted by molecular docking study on five important proteins of SARS-CoV-2 (Spike, Main protease, NSP12, NSP15, and NSP16) and ACE2 and Transmembrane protease, serine 2 on the cell membrane, and their binding affinities and ligand efficiencies were computed (Table 5). Complex \(1\) has the most effective binding score for NSP16 (−8.00 kcal/mol). NSP16 plays an important role in viral transcription by stimulating \(2\)-O-methyltransferase activities [75]. Thus, complex \(1\) being a specific inhibitor candidate for NSP16 may inhibit viral transcription. In addition, the binding score for the spike protein of complex \(1\), Coronavirus is −7.90 kcal/mol. The spike protein enters the cell by interacting with ACE2 in the cell membrane. Complex \(1\) has a high docking score for both spike protein and ACE2. Therefore, complex \(1\) placed in the catalytic region between spike + ACE2 can act as an antagonist and prevent it from penetrating the cell. Complex \(1\) has a binding value of −7.70 kcal/mol for the main protease, which is essential for viral replication and feeds non-structural proteins [76]. For the docked NSP12, NSP15, and TMPRSS2 proteins, the complex \(1\) model inhibitor had slightly lower scores and ligand efficiencies (Fig. 6 and Table 5).

The binding scores of complex \(2\) correlate with those of complex \(1\), the main protease and ACE2 docking scores are the same. The docking score of zinc complex for main protease and ACE2 is −7.70 kcal/mol. In other proteins, the zinc complex has relatively lower scores and ligand efficiencies than the cobalt complex. This shows that ligands rather than the central metal atom are effective on the enzyme. It was determined that there are conventional hydrogen, carbon-hydrogen, electrostatic salt bridge-attractive charge, hydrophobic \(\pi-\pi\) stacked or T-shaped, hydrophobic \(\pi\)-alkyl, \(\pi\)-sigma, \(\pi\)-sulfur, and halogen bonds non-covalent interactions between candidate inhibitors and amino acids. Non-covalent interactions of candidate inhibitors with amino acids are given in Table 5. Considering all these results, it is predicted that the complexes are very suitable for non-covalent interaction due to their structure and will exhibit a positive inhibitory effect when interacting with Coronavirus enzymes.

3.6. Estimated pharmacokinetic and toxicokinetic properties

Predicting the pharmacokinetic and toxicokinetic properties of drug candidate compounds increases the success of reaching the target in drug discovery. Lipinski et al. proposed five rules for a compound to be a drug [77]. Complexes \(1\) and \(2\) conform to Lipinski’s rules, except for one (both compounds have a molecular weight above 500 g/mol). There is no difference between the predicted values of cobalt and zinc complexes. Due to the bulky nature of the compounds, their gastrointestinal absorption is low, they cannot cross the blood-brain barrier (BBB), and they cannot be used as substrates of P-glycoprotein. The complexes’ solubility in water/octanol is low due to their rigid structure. The complexes can induce or inhibit cytochrome P450 enzymes (CYPs) CYP2C19 and CYP2C9. In addition, it does not interact with CYP1A2, CYP2D6, and CYP3A4. The lack of lipophilic groups in the structures of the complexes also reduces skin permeation or lipid permeability. The estimated toxicity values were examined and the compounds were determined to be in the nontoxic class. The similarity rate to the compounds used in toxicity estimation is 38%. The estimated lethal dose amounts are similar for complexes \(1\) and \(2\), being 2190 mg/kg. Complexes \(1\) and \(2\) are inactive, ie nontoxic, as hepatotoxicity, carcinogenicity, immunotoxicity, mutagenicity, cytotoxicity, and mitochondrial membrane potential (MMP). Considering all these advantages and disadvantages, it is predicted that our compounds can be candidate drugs, drug formulation studies can be conducted and they will be a guide for those who study similar molecules. The estimated pharmacokinetic properties for complexes \(1\)–\(2\) are given in Table 6.

4. Conclusion

The new cobalt(III) and zinc(II) 2-chlorobenzoate with 3-cyanopyridine complexes were synthesized and determined the crystal structure. The \(M^{2+}\) cations have octahedrally coordinated by two 2-chlorobenzoate anions, two 3-cyanopyridine ligands, and two water molecules leading to an overall MN2O4 coordination en-
virement. It was determined by Hirshfeld surface analysis that the functional groups in the crystal structure of the complexes formed non-covalent interactions. We optimized the crystal structures of complexes 1–2 and calculated their physiological properties to understand their activities. The compounds were evaluated in terms of the structure-activity relationship and there were no major differences between the results. The substrate effect of our complexes was investigated as in silico against the proteins of SARS-CoV-2, which caused the global pandemic, and satisfactory results were found. Based on the data obtained, it is believed that in vitro vivo experiments of complexes can be conducted and will be promising for further research.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The numerical calculations reported in this paper were fully performed at TUBITAK ULAKBIM, High Performance, and Grid Computing Center (TRUBA resources). The authors thank Murat Beytur for his supports.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.molstruc.2021.131825.

References

[1] J. Hao, B. Yu, K. Van Hecke, G. Cui, A series of d^11 metal coordination polymers based on a flexible bis(2-methylbenzimidazole) ligand and different carboxylates: synthesis, structure, photoluminescence and catalytic properties, CrystEngComm 17 (2015) 2279–2293, doi:10.1039/C4CE02009A.

[2] N. Palanisami, R. Murugavel, Synthesis, spectral characterization, and single crystal X-ray structures of a series of manganese-2,2'-bipyridine complexes derived from substituted aromatic carboxylic acids, Inorg. Chim. Acta 365 (2011) 430–438, doi:10.1016/j.ica.2010.09.040.

[3] J.-M. Rueff, N. Masisco, P. Rabu, A. Sironi, A. Skoulios, Structure and magnetism of a polycrysaline transition metal soap-OOC(CH2)10OOC]H2O, Eur. J. Inorg. Chem. 2001 (2001) 2843–2848, doi:10.1002/1099-082X(200111)2001:13<2843::AID-EJIC2843>3.0.CO;2-T.

[4] Q. Wang, Z. Yu, Q. Wang, W. Li, F. Gao, S. Li, Synthesis, crystal structure and DNA-binding properties of a mononuclear copper complex with pyridine-2-carboxylate ligand, Inorg. Chim. Acta 383 (2012) 230–234, doi:10.1016/j.ica.2011.11.013.

[5] A. Ozarowski, C.J. Calzado, R.P. Sharma, S. Kumar, J. Jezierska, C. Angeli, F. Spizzio, V. Ferretti, Metal–metal interactions in trinuclear copper(II) complexes [Cu2 (RCOO)2(H2 TEA)] and binuclear [Cu2 (RCOO)2 (H2 TEA)]4+ (R = CO2Mg, Fe, pyridine) and mixed structural, magnetic, high-field electron paramagnetic resonance, and theoretical studies, Inorg. Chim. Acta 54 (2015) 1196–11934, doi:10.1016/j.ica.2015.02.015.

[6] V. Gómez, M. Corbella, Versatility in the coordination modes of n - chlorobenzonitrile ligands: synthesis, structure and magnetic properties of three types of polynuclear Mn II complexes, Eur. J. Inorg. Chem. 2009 (2009) 4471–4482, doi:10.1002/ejic.200900553.

[7] V. Siva, A. Murugan, A. samad Shameem, S. Athimoolam, S.A. Bahadur, A new metal-organic hybrid material: synthesis, structural, electro-optical properties and quantum chemical investigation, Opt. Mater. 121 (2021) 111616 (Amst), doi:10.1016/j.optmat.2021.111616.

[8] V. Siva, A. Shandma, A. Murugan, S. Athimoolam, G. Vinitha, S.A. Bahadur, Structural, thermal and electro-optical properties of guanidine based metal-organic framework (MOF), Chin. J. Phys. 68 (2020) 764–777, doi:10.1016/j.cjph.2020.09.036.

[9] A. Shandma, A. Shandma, A. Murugan, S. Athimoolam, M. Suresh, S. Asath Bahadur, A promising guanidium based metal-organic single crystal for optical power limiting applications, Chin. J. Phys. 64 (2020) 103–114, doi:10.1016/j.cjph.2019.10.001.

[10] S.A. Bahadur, A. Shandma, S. Athimoolam, K.J. Lakshmi, G. Vinitha, Synthesis, structural, vibrational, thermal, dielectric and optical properties of third order nonlinear optical single crystal for optical power limiting applications, J. Mol. Struct. 1191 (2019) 110–117, doi:10.1016/j.molstruc.2019.04.091.
F.E. Öztürkcan, M. Özdemir, G.B. Akkaba et al.

Journal of Molecular Structure 1250 (2022) 113825

[39] J.J. McKinnon, D. Jayatilaka, M.A.邵ackman, Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces, Chem. Commun. (2007) 3814–3816, doi:10.1039/b704900k.

[40] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. Hratchian, A. Izmaylov, J. Bloino, G. Zheng, J. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. Peralta, F. Ogliaro, M. Bearpark, J. Heyd, E. Brothers, K. Kudin, V. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. Burant, S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. Millam, M. Klene, J. Knox, J. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. Stratmann, O. Yazyev, A. Austin, R. Cammi, C. Pomelli, J. Ochterski, R. Martin, K. Morokuma, V. Zakrzewski, G. Voth, P. Salvador, J. Dannenberg, S. Dapprich, A.Daniels, J. Farkas, J. Foresman, J. Ortiz, D. FoxCioslowski, Gauss-09. Revision B01, Gauss-09, Revision B01, Gaussian, Inc., Wallingford CT, 2009.

[41] R. Dennington, T. Keith, J. Millam, Semichem Inc., GaussView, Version 5, Shawnee Mission KS, 2009.

[42] M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, C.R. Hutchison, Avogadro: an advanced semantic chemical editor, visualization, and analysis platform, J. Cheminform. (2012) 4, doi:10.1186/1758-2946-4-17.

[43] A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988) 2938–3000, doi:10.1103/PhysRevA.38.2938.

[44] A.D. Becke, Density-functional thermochemistry. III. The role of the exact exchange, J. Chem. Phys. 93 (1990) 5384–5392, doi:10.1063/1.464913.

[45] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988) 785–789, doi:10.1103/PhysRevB.37.785.

[46] Y. Yang, M.N. Weaver, K.M. Merz, Assessment of the “6-31+g*” + LANL2DZ mixed basis set coupled with density functional theory methods and the effective core potential: prediction of heats of formation and ionization potentials for first-row-transition-metal complexes, J. Phys. Chem. A 113 (2009) 9843–9851, doi:10.1021/jp807643p.

[47] O. Trotz, A.J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multi-threading, J. Comput. Chem. (2009) NA-NA, doi:10.1002/jcc.21314.

[48] J. Lan, J. Ge, J. Yu, S. Shan, H. Zhou, S. Fan, Q. Zhang, X. Shi, Q. Wang, L. Zhang, X. Wang, Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature 580 (2021) 215–220, doi:10.1038/s41586-021-2800-5.

[49] W. Yin, C. Mao, X. Luan, D.-D. Shen, Q. Shen, H. Su, X. Wang, F. Zhou, W. Zhao, M. Gao, S. Chang, Y.C. Xie, G. Tian, H.W. Jiang, S.C. Tan, J. Shen, Y. Jiang, H. Yang, Y. Xu, S. Zhang, Y. Zhang, H.E. Xu, Structural basis for inhibition of the RNA-binding domain polymerase from SARS-CoV-2 by remdesivir, Science 368 (2020) 1499–1504, doi:10.1126/science.abc1660.

[50] Y. Kim, J. Wower, N. Malteva, C. Chang, R. Jedrzejczak, M. Wilamowski, S. Kang, V. Nicolaescu, G. Randall, K. Michalska, A. Joachimiak, Tipiracib acids to uridine site and inhibits Nsp15 endonuclease NendoU from SARS-CoV-2, Commun. Biol. 4 (2021) 193, doi:10.1038/s42003-021-01735-9.

[51] Z. Jin, X. Du, V. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, Y. Duan, J. Yu, L. Wang, K. Yang, F. Liu, R. Jiang, Y. Yang, T. You, X. Liu, X. Yang, F. Bai, H. Liu, X. Liu, L.W. Guddat, W. Xu, G. Xiao, C. Qin, Z. Shi, H. Jiang, Z. Rao, H. Yang, Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors, Nature 582 (2020) 289–293, doi:10.1038/s41586-020-2223-9.

[52] M. Rosas-Lemus, M.G. Minasov, L. Shovalova, N.L. Innis, O. Kyrkychina, J. Brunzel, K.J.F. Satchell, High-resolution structures of the SARS-CoV-2 2–O–methyltransferase reveal strategies for structure-based inhibitor design, Sci. Signal. 13 (2020) eabf2120, doi:10.1126/scisignal.abe1202.

[53] B. Fraser, S. Beldar, A. Hutchinson, Y. Li, A. Seitova, A.M. Edwards, F. Benard, C.H. Arrowsmith, L. Halbelian, Crystal structure of human TMPRSS2 in complex with Faknavostar: protein, data bank (2021).

[54] BIVDADaOutSystems, BIVDA Discovery Studio Visualizer 2021, DaOutSystems, San Diego, 2021, v21.10.20298.

[55] A. Daina, O. Michelin, V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep. 7 (2017) 42717, doi:10.1038/srep42717.