Supporting Information for
“Linear and Nonlinear Optical Properties from TDOMP2 Theory”

Håkon Emil Kristiansen,*,† Benedicte Sverdrup Ofstad,† Eirill Hauge,†,‡ Einar Aurbakken,† Øyvind Sigmundson Schøyen,† Simen Kvaal,§,† and Thomas Bondo Pedersen*,§,†

†Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
‡Simula Research Laboratory, Kristian Augusts gate 23, 0164 Oslo, Norway
¶Department of Physics, University of Oslo, N-0316 Oslo, Norway
§Centre for Advanced Study at the Norwegian Academy of Science and Letters, Drammensveien 78, N-0271 Oslo, Norway

E-mail: h.e.kristiansen@kjemi.uio.no; t.b.pedersen@kjemi.uio.no

Abstract

The Supporting Information gives algebraic expressions for the closed-shell spin-restricted OMP2 method, molecular geometries, electronic ground-state energies and dipole moments, and a comparison of TDCC2 absorption spectra with those from LRCC2 theory from 0–930 eV.
1 Closed-shell spin-restricted OMP2 expressions

We now assume closed-shell systems where each orbital is doubly occupied. Then the expression for the fock matrix is given by

\[f_{pq}^p = h_{pq}^p + 2u_{pq}^j - u_{jq}^p. \]

(1)

Using the following biorthogonal parameterization of \(\hat{\Lambda}, \hat{T}, \)

\[
\hat{T}_2 = \frac{1}{2} \sum_{abij} \tau_{ij}^{ab} \hat{E}_i^a \hat{E}_j^b, \\
\hat{\Lambda}_2 = \frac{1}{2} \sum_{abij} \lambda_{ij}^{ab} \left(\frac{1}{3} \hat{E}_j^b \hat{E}_i^a + \frac{1}{6} \hat{E}_i^b \hat{E}_j^a \right),
\]

the derivatives of the OMP2 Hamilton function w.r.t \((\lambda_{ij}^{ab}, \kappa_i^a) \) are given by

\[
\frac{\partial H}{\partial \lambda_{ij}^{ab}} = u_{ij}^{ab} + P_{ij}^{ab} \left(f_{cij}^{ac} - f_{kij}^{kab} \right), \\
\frac{\partial H}{\partial \kappa_i^a} = h_{i}^{b} \gamma_{b}^{a} - h_{j}^{a} \gamma_{i}^{j} + u_{pq}^{ir} \Gamma_{pq}^{ar} - u_{rs}^{aq} \Gamma_{iq}^{rs},
\]

(2)

(3)

Furthermore, one can show that

\[
\lambda_{ij}^{ab} = 2(2\tau_{ij}^{ab} - \tau_{ji}^{ab})^*.
\]

(4)

The expressions for the one- and two-body density matrices are given by

\[
\gamma_{i}^{j} = 2\delta_{i}^{j} + (\gamma_{c})_{i}^{j}, \quad (\gamma_{c})_{i}^{j} = -\lambda_{ab}^{kj} \tau_{ki}^{ab}, \\
\gamma_{a}^{b} = \lambda_{ac}^{ij} \tau_{ij}^{bc}
\]

(5)

(6)
\[\Gamma_{ij}^{kl} = 4\delta_i^k \delta_j^l - 2\delta_i^l \delta_j^k + \hat{P}_{ij}^{kl} \left(-2\delta_i^k (\gamma_c)_j^l + \delta_i^l (\gamma_c)_j^k \right), \] (7)

\[\Gamma_{ij}^{ab} = 2(2\tau_{ij}^{ab} - \tau_{ji}^{ab}), \] (8)

\[\Gamma_{ij}^{ab} = \lambda_{ij}^{ab} = 2(2\tau_{ij}^{ab} - \tau_{ji}^{ab})^* = (\Gamma_{ij}^{ab})^*, \] (9)

\[\Gamma_{ia}^{jb} = 2\delta_i^j \gamma_a^b = \Gamma_{ia}^{jb}, \] (10)

\[\Gamma_{ia}^{jb} = -\delta_i^j \gamma_a^b = \Gamma_{ai}^{jb}. \] (11)

2 Molecular geometries

Table 1 lists the molecular geometries used in the main article.

Table 1: Molecular geometries (Cartesian coordinates, in Bohr).

Molecule	Atom	X	Y	Z
HF	H	0.0	0.0	0.0
	F	0.0	0.0	1.7328795
H₂O	O	0.0	0.0	-0.1239093563
	H	0.0	1.4299372840	0.9832657567
	H	0.0	-1.4299372840	0.9832657567
NH₃	N	0.0	0.0	0.2010
	H	0.0	1.7641	-0.4690
	H	1.5277	-0.8820	-0.4690
	H	-1.5277	-0.8820	-0.4690
CH₄	C	0.0	0.0	0.0
	H	1.2005	1.2005	1.2005
	H	-1.2005	-1.2005	1.2005
	H	-1.2005	1.2005	-1.2005
	H	1.2005	-1.2005	-1.2005
3 Ground-state energies and electric dipole moments

Table 2 lists ground-state energies and the z-component of the electric dipole moments computed with the d-aug-cc-pVDZ basis set for Ne and the aug-cc-pVDZ basis set for the remaining molecules.

Table 2: Ground-state energies (a.u.) and electric dipole moments (a.u.) for Ne, HF, H_2O, NH_3, CH_4.

	E_0	μ_z
Ne	CCSD $-128.708\,821\,187\,1$	0.0
Ne	OMP2 $-128.707\,014\,780\,2$	0.0
Ne	CC2 $-128.707\,468\,246\,7$	0.0
HF	CCSD $-100.261\,508\,470\,8$	$-0.703\,237\,143\,6$
HF	OMP2 $-100.260\,190\,513\,7$	$-0.700\,524\,169\,9$
HF	CC2 $-100.260\,558\,712\,4$	$-0.689\,047\,761\,5$
H_2O	CCSD $-76.270\,767\,643\,3$	0.729\,092\,066\,3
H_2O	OMP2 $-76.265\,470\,576\,8$	0.724\,729\,427\,6
H_2O	CC2 $-76.265\,519\,413\,7$	0.716\,397\,141\,7
NH_3	CCSD $-56.421\,326\,271\,4$	$-0.575\,380\,861\,1$
NH_3	OMP2 $-56.408\,134\,740\,5$	$-0.570\,946\,397\,5$
NH_3	CC2 $-56.408\,016\,476\,4$	$-0.568\,898\,057\,1$
CH_4	CCSD $-40.394\,143\,335\,9$	0.0
CH_4	OMP2 $-40.371\,768\,987\,0$	0.0
CH_4	CC2 $-40.371\,657\,899\,0$	0.0

4 Comparison of absorption spectra from TDCC2 and LRCC2 theory

Figure 1 shows the agreement between spectra from TDCC2 simulations and from LRCC2 calculations using the Lanczos-chain-driven algorithm described by Coriani et al.1,2 as implemented in the Dalton quantum chemistry program.3,4 The same geometries and basis sets as above were used.
Figure 1: Absorption spectra from TDCC2 simulations and LRCC2 calculations for Ne, HF, H$_2$O, NH$_3$ and CH$_4$.

References

(1) Coriani, S.; Christiansen, O.; Fransson, T.; Norman, P. Coupled-cluster response theory for near-edge x-ray-absorption fine structure of atoms and molecules. Phys. Rev. A 2012, 85, 022507.

(2) Coriani, S.; Fransson, T.; Christiansen, O.; Norman, P. Asymmetric-Lanczos-Chain-Driven Implementation of Electronic Resonance Convergent Coupled-Cluster Linear Response Theory. J. Chem. Theory Comput. 2012, 8, 1616–1628.

(3) Aidas, K.; Angeli, C.; Bak, K. L.; Bakken, V.; Bast, R.; Boman, L.; Christiansen, O.; Cimiraglia, R.; Coriani, S.; Dahle, P.; Dalskov, E. K.; Ekström, U.; Enevoldsen, T.; Eriksson, J. J.; Ettenhuber, P.; Fernández, B.; Ferrighi, L.; Fliegl, H.; Frediani, L.; Hald, K.; Halkier, A.; Hättig, C.; Heiberg, H.; Helgaker, T.; Hennum, A. C.; Hettema, H.; Hjertenaes, E.; Høst, S.; Høyvik, I.-M.; Iozzi, M. F.; Jansík, B.; Jensen, H. J. A.; Jonsson, D.; Jørgensen, P.; Kauczor, J.; Kirpekar, S.; Kjaergaard, T.; Klopper, W.; Knecht, S.; Kobayashi, R.; Koch, H.; Kongsted, J.; Krapp, A.; Kristensen, K.; Ligabue, A.; Luttonaes, O. B.; Melo, J. I.; Mikkelsen, K. V.; Myhre, R. H.; Neiss, C.; Nielsen, C. B.; Norman, P.; Olsen, J.; Olsen, J. M. H.; Osted, A.; Packer, M. J.; Pawlowski, F.; Pedersen, T. B.; Provasi, P. F.; Reine, S.; Rinkevicius, Z.; Ruden, T. A.; Ruud, K.; Rybkin, V. V.; Salek, P.; Samson, C. C. M.; Sánchez de Merás, A.; Saue, T.; Sauer, S. P. A.; Schimmelpfennig, B.; Sneskov, K.; Steindal, A. H.; Sylvester-Hvid, K. O.; Taylor, P. R.; Teale, A. M.; Tellgren, E. I.; Tew, D. P.; Thorvaldsen, A. J.; Thøgersen, L.; Vahtras, O.; Watson, M. A.; Wilson, D. J. D.; Zolokowski, M.; Ågren, H. The Dalton quantum chemistry program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014, 4, 269–284.

(4) Olsen, J. M. H.; Reine, S.; Vahtras, O.; Kjellgren, E.; Reinholdt, P.; Hjorth Dundas, K. O.; Li, X.; Cukras, J.; Ringholm, M.; Hedegård, E. D.; Di Remigio, R.; List, N. H.; Faber, R.; Cabral Tenorio, B. N.; Bast, R.; Pedersen, T. B.; Rinkevicius, Z.; Sauer, S.
P. A.; Mikkelsen, K. V.; Kongsted, J.; Coriani, S.; Ruud, K.; Helgaker, T.; Jensen, H. J. A.; Norman, P. Dalton Project: A Python platform for molecular- and electronic-structure simulations of complex systems. *J. Chem. Phys.* **2020**, *152*, 214115.