Ab initio Hadron Structure from Lattice QCD

LHP Collaboration: J. D. Bratt\textsuperscript{1}, R. G. Edwards\textsuperscript{2}, M. Engelhardt\textsuperscript{3}, G. T. Fleming (presenter)\textsuperscript{4,\dagger}, Ph. H"agler\textsuperscript{5}, B. Musch\textsuperscript{5}, J. W. Negele\textsuperscript{1}, K. Orginos\textsuperscript{2,6}, A. V. Pochinsky\textsuperscript{1}, D. B. Renner\textsuperscript{7}, D. G. Richards\textsuperscript{2}, W. Schroers\textsuperscript{8}

\textsuperscript{1} Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
\textsuperscript{2} Jefferson Laboratory MS 12H2, 12000 Jefferson Avenue, Newport News, VA 23606, USA
\textsuperscript{3} Department of Physics, New Mexico State University, Las Cruces, NM 88003, USA
\textsuperscript{4} Sloane Physics Laboratory, Yale University, New Haven, CT 06520, USA
\textsuperscript{5} Institut f"ur Theoretische Physik T39, Physik-Department der TU M"unchen, James-Franck-Straße, D-85747 Garching, Germany
\textsuperscript{6} Department of Physics, College of William and Mary, Williamsburg, VA 23187, USA
\textsuperscript{7} Department of Physics, University of Arizona, Tucson, AZ 85721, USA
\textsuperscript{8} John von Neumann-Institut f"ur Computing NIC/DESY, D-15738 Zeuthen, Germany

E-mail: \textsuperscript{\dagger}George.Fleming@Yale.edu

Abstract. Early scattering experiments revealed that the proton was not a point particle but a bound state of many quarks and gluons. Deep inelastic scattering (DIS) experiments have accurately determined the probability of struck quarks carrying a fraction of the proton’s momentum. The current generation of experiments and Lattice QCD calculations will provide detailed multi-dimensional pictures of the distributions of quarks and gluons inside the proton.

1. A Brief History of Hadron Structure

In 1904, J. J. Thomson proposed the plum pudding model [1] of atomic structure where electron “plums” were surrounded by a diffuse positively charged “pudding”. In 1909, Geiger and Marsden [2], working under E. Rutherford, observed hard scattering of α particles on very thin gold films. In 1911, Rutherford’s analysis [3] of the Geiger-Marsden experiment showed the hadronic nucleus was orders of magnitude smaller than the atom, possibly even point-like.

In 1931, Stern and collaborators measured the anomalous magnetic moment of the proton [4, 5], providing the first evidence that nucleons were more than mere point-like Dirac particles. In 1950, Rosenbluth proposed a formalism [6] for extracting the spatial distributions (called form factors) of the proton’s charge and the magnetic moment in proton-electron elastic scattering experiments. In 1955, Hofstadter and McAllister made the first measurements of the rms radius for the charge and magnetic moment of the proton and neutron [7, 8, 9, 10].

In 1967, a deep inelastic scattering (DIS) experiment led by Friedman, Kendall and Taylor [11] revealed point-like constituents (called “partons”) inside. The effect was analogous to the Geiger-Marsden experiment but at much higher energies. Bjorken soon realized that the probability of finding a parton depended primarily on the fraction of the proton’s momentum carried by the struck parton, $x$. These 1-D functions are called parton distribution functions (PDF’s).
1974, it was widely understood that the quarks and gluons of quantum chromodynamics (QCD) were the DIS partons.

In the mid-1990’s, PDF’s were generalized [12, 13, 14, 15] for processes where a removed parton with initial momentum fraction $x_i$ is reinserted into the hadron with final momentum fraction $x_f$ after receiving a momentum kick $\xi = x_f - x_i$. Generalized PDF’s (GPD’s) unify and extend the previously successful concepts of inelastic PDF’s and elastic form factors and reveal a new dimension (2-D) to hadron structure. GPD’s can be parameterized by their Mellin moments, called generalized form factors (GFF’s). GPD’s measured in different physical processes give different 2-D slices, tomography can be used to produce a fully 3-D picture of hadron structure. GPD’s extend the previously successful concepts of inelastic PDF’s and elastic form factors and reveal a new dimension (2-D) to hadron structure.

2. Momentum fraction

The $O(p^2)$ covariant baryon chiral perturbation theory (CBChPT) result [16] for the isovector GFF $A_{20}^{u-d}(t)$ is

$$A_{20}^{u-d}(t, m_\pi) = A_{20}^{0,u-d}(m_\pi) + A_{20}^{t,u-d}(m_\pi) + A_{20}^{m_\pi,u-d}(m_\pi t) + A_{20}^{0,u-d} t,$$  

(1)

where $J_{A}^{u-d}(m_\pi)$, $h_{A}(t, m_\pi)$ and $J_{A}^{u-d}(m_\pi)$ contain the non-analytic dependence on the pion mass and momentum transfer squared and $A_{20}^{0,u-d} \equiv A_{20}^{u-d}(t = 0, m_\pi = 0)$. The lattice results are shown in Fig. 1 with additional curves that show the predicted pion mass dependence in the limit that the nucleon mass becomes very heavy.

The (total) isosinglet momentum fraction of quarks, $A_{20}^{u+d}(t = 0) = \langle x \rangle_{u+d}$ is not only an important hadron structure observable on its own but is in addition an essential ingredient for the computation of the total angular momentum contribution of quarks to the nucleon spin, $J^{u+d} = 1/2(A_{20}^{u+d}(0) + B_{20}^{u+d}(0))$. The combined $(t, m_\pi)$-dependence in CBChPT is given by [16]:

$$A_{20}^{u+d}(t, m_\pi) = A_{20}^{0,u+d}(m_\pi) - \frac{g_A^2}{64 \pi^2 f_\pi^2} h_{A}(t, m_\pi) + A_{20}^{m_\pi,u+d}(m_\pi) + A_{20}^{t,u+d}(m_\pi t) + \Delta A_{20}^{u+d}(t, m_\pi) + O(p^3),$$  

where $A_{20}^{0,u+d} \equiv A_{20}^{u+d}(t = 0, m_\pi = 0)$, and $f_{A}^{u+d}(m_\pi)$ and $h_{A}(t, m_\pi)$ contain the non-analytic dependence on the pion mass and momentum transfer squared. The lattice results are shown in Fig. 2 with additional curves that show the predicted pion mass dependence in the limit that the nucleon mass becomes very heavy.

3. Nucleon Isovector Ratio $G_A/F_1$

The axial charge of the nucleon can be measured quite accurately in neutron beta decay and can be accurately computed in Lattice QCD as well [17]. The elastic axial form factor is much more difficult to determine experimentally. In fact, the current empirical parameterization to which all experimental data is fitted

$$G_A(Q^2) = \frac{g_A}{(1 + Q^2/M_A^2)^2}$$  

is the same that was used by Hofstadter and McAllister [7, 8, 9, 10] to model electromagnetic elastic scattering in the 1950’s. With more precise measurements in the 1960’s and beyond of the electromagnetic form factors, more complicated empirical parameterizations are used to fit the
available electromagnetic data [18, 19]. With the advent of current and next generation neutrino scattering experiments (MiniBooNE, K2K, NuMi, . . . ), the validity of dipole parameterization in Eq. (3) will finally be tested.

Figure 1. Lattice results for $A_{20}^{u-d}$ at $t = 0$ GeV$^2$ versus $m_{\pi}^2$ together with a global chiral fit using Eq. (1), denoted by the error band and the phenomenological result from CTEQ6, indicated by the star. The heavy-baryon-limit of the CBChPT fit is shown by the dotted line.

Figure 2. Lattice results for $A_{20}^{u+d}$ at $t = 0$ GeV$^2$ versus $m_{\pi}^2$ together with the result of a global chiral fit using Eq. (2), denoted by the error band, and the phenomenological value from CTEQ6, denoted by a star. The heavy-baryon-limit of the CBChPT fit is shown by the dotted line.

In Fig. 3, Lattice QCD data is presented alongside bands representing the experimental situation last year. The lattice results favor higher values for the axial mass. A few weeks ago at the Fifth International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region [21], two experiments announced new measurements of the axial mass: MiniBooNE finds $M_A = 1.23 \pm 0.20$ [22] and K2K finds $M_A = 1.144 \pm 0.077 \pm 0.078$ [23] with substantially more data that earlier experiments. Lattice QCD also favors this larger value for $M_A$.

Figure 3. Ratio of the isovector part of the ratio of the nucleon axial form factor to the Dirac form factor for various pion masses in Lattice QCD. Experimental bands correspond to $M_A = 1.069(16)$ for electroproduction and $M_A = 1.026(21)$ for $\nu$CCQE [20]. The experimental Dirac form factor is derived from the empirical parameterization of J. J. Kelly [18].
4. Transverse quark distributions
As the momentum fraction increases, \( x \to 1 \), the average transverse position approaches the center of mass of the nucleon, \( \langle b^2 \rangle_q \to 0 \). GFF’s are moments of the distribution of transverse quark positions.

\[
A^q_{n0}(-\Delta^2) = \int d^2b_\perp e^{i\Delta \cdot b_\perp} \int_{-1}^{1} x^{n-1} q(x, b_\perp)
\]  
(4)

Moments of the rms transverse position are related to the slope of the GFF’s

\[
\langle b^2 \rangle_q^{(n)} = -\frac{4 A^q_{n0}(0)}{A^q_{n0}(0)}
\]
(5)

Higher moments \( A^q_{n0} \) are weighted towards \( x \sim 1 \). Fig. 4 shows the slope of \( A^q_{n0} \) decreases as \( n \) increases, confirming the current model picture of transverse quark distributions in Fig. 5.

![Figure 4. Two dimensional rms radii of the vector GFFs versus \( m^2_\pi \) for the flavor combination \( u - d \). The results for \( m_\pi = 354 \) MeV, \( L^3 = 20^3 \) are displayed in gray.](image)

**Figure 4.** Two dimensional rms radii of the vector GFFs versus \( m^2_\pi \) for the flavor combination \( u - d \). The results for \( m_\pi = 354 \) MeV, \( L^3 = 20^3 \) are displayed in gray.

![Figure 5. The model of M. Burkardt [24] for the distribution of transverse positions of quarks in the nucleon vs. their momentum fraction, \( q(x, b_\perp) \).](image)

**Figure 5.** The model of M. Burkardt [24] for the distribution of transverse positions of quarks in the nucleon vs. their momentum fraction, \( q(x, b_\perp) \).

5. Quark contributions to nucleon spin
The Ji sum rule [25]

\[
J^q = \frac{1}{2} (A^q_{20}(0) + B^q_{20}(0)), \quad \frac{1}{2} \Delta \Sigma^q = \tilde{A}^q_{10}(0), \quad L^q = J^q - \frac{1}{2} \Delta \Sigma^q
\]
(6)

allows for a gauge invariant decomposition of the quark angular momentum contributions to the nucleon spin. Fig 6 shows the combined intrinsic spin and orbital angular momentum contributions of the light up and down quarks. Taken together, the light quark orbital motion does not contribute to the spin of the nucleon.

Fig 7 shows separately the up and down quark contributions. The orbital angular momentum of up and down quarks, \( L^u \) and \( L_d \), separately are relatively large but cancel in combination. Surprisingly, the orbital and spin contributions of the down quarks, \( L^d \) and \( \frac{1}{2} \Delta \Sigma^d \) are consistent with equal magnitude and opposite sign. The physical origin of these surprising features is not well understood.
Figure 6. Total quark spin and orbital angular momentum contributions to the spin of the nucleon. The filled and open stars represent values given in HERMES 2007 [26] and 1999 [27] respectively and open symbols represent earlier LHPC/SESAM calculations. The error bands are explained in the text. Disconnected contributions are not included.

Figure 7. Quark spin and orbital angular momentum contributions to the spin of the nucleon for up and down quarks. The filled and open stars represent values given in HERMES 2007 [26] and 1999 [27] respectively and open symbols represent earlier LHPC/SESAM calculations. The error bands are explained in the text. Disconnected contributions are not included.

References

1. Thomson J J 1904 Phil. Mag. 7 237–265
2. Geiger H and Marsden E 1909 Proc. Roy. Soc. Lond. A Math. Phys. Eng. Sci. 82 495–500
3. Rutherford E 1911 Phil. Mag. 21 669–688
4. Estermann I, Frisch R and Stern O 1932 Z. Phys. 73 348–365
5. Estermann I, Frisch R and Stern O 1933 Nature 132 169
6. Rosenbluth M N 1950 Phys. Rev. 79 615–619
7. Hofstadter R and McAllister R W 1955 Phys. Rev. 98 217–218
8. McAllister R W and Hofstadter R 1956 Phys. Rev. 102 851–856
9. Hofstadter R 1956 Rev. Mod. Phys. 28 214–254
10. Hofstadter R 1957 Ann. Rev. Nucl. Part. Sci. 7 231–316
11. Coward D H et al. 1968 Phys. Rev. Lett. 20 292–295
12. Müller D, Robaschik D, Geyer B, Dittes F M and Horejsi J 1994 Fortschr. Phys. 42 101 (Preprint hep-ph/9412448)
13. Ji X D 1997 Phys. Rev. D55 7114–7125 (Preprint hep-ph/9609381)
14. Radyushkin A V 1997 Phys. Rev. D56 5524–5557 (Preprint hep-ph/9704207)
15. Diehl M 2003 Phys. Rept. 388 41–277 (Preprint hep-ph/0307382)
16. Dorati M, Gail T A and Hemmert T R 2007 (Preprint nucl-th/0703073)
17. Edwards R G et al. (LHPC) 2006 Phys. Rev. Lett. 96 052001 (Preprint hep-lat/0510062)
18. Kelly J J 2004 Phys. Rev. C70 068202
19. Bradford R, Bodek A, Budd H and Arrington J 2006 Nucl. Phys. Proc. Suppl. 159 127–132 (Preprint hep-ex/0602017)
20. Bernard V, Eloudhriri L and Meissner U G 2002 J. Phys. G28 R1–R35 (Preprint hep-ph/0107088)
21. Cavanna F and Morfin J 2007 Fifth international workshop on neutrino-nucleus interactions in the few-GeV region http://conferences.fnal.gov/nuint07/
22. Aguilar-Arevalo A A et al. (MiniBooNE) 2007 (Preprint arXiv:0706.0926[hep-ex])
23. Espinal X and Sánchez F 2007 Measurement of the CCQE axial mass with the SciBar detector of K2K https://indico.fnal.gov/materialDisplay.py?contribId=36&amp;sessionId=9&amp;materialId=slides&amp;confId=804
24. Burkardt M 2003 Int. J. Mod. Phys. A18 173–208 (Preprint hep-ph/0207047)
25. Ji X D 1997 Phys. Rev. Lett. 78 610–613 (Preprint hep-ph/9603249)
26. Airapetian A et al. (HERMES) 2007 Phys. Rev. D75 012007
27. Ackerstaff K et al. (HERMES) 1999 Phys. Lett. B464 123–134 (Preprint hep-ex/9906035)