Optimal Design of a Molecular Recognizer: Molecular Recognition as a Bayesian Signal Detection Problem

Yonatan Savir and Tsvi Tlusty

Abstract—Numerous biological functions—such as enzymatic catalysis, the immune response system, and the DNA-protein regulatory network—rely on the ability of molecules to specifically recognize target molecules within a large pool of similar competitors in a noisy biochemical environment. Using the basic framework of signal detection theory, we treat the molecular recognition process as a signal detection problem and examine its overall performance. Thus, we evaluate the optimal properties of a molecular recognizer in the presence of competition and noise. Our analysis reveals that the optimal design undergoes a “phase transition” as the structural properties of the molecules and interaction energies between them vary. In one phase, the recognizer should be complementary in structure to its target (like a lock and a key), while in the other, conformational changes upon binding, which often accompany molecular recognition, enhance recognition quality. Using this framework, the abundance of conformational changes may be explained as a result of increasing the fitness of the recognizer. Furthermore, this analysis may be used in future design of artificial signal processing devices based on biomolecules.

Index Terms—Bayesian detection, conformational changes, molecular recognition, specificity.

I. INTRODUCTION

Signal processing in biological systems relies on the ability of bio-molecules to specifically recognize each other. Examples are antibodies targeting antigens, regulatory proteins binding to DNA and enzymes catalyzing their substrates. The molecular recognizers must locate and preferentially interact with their specific targets among a vast variety of molecules that are often structurally similar. This task is further complicated by the inherent noise in the biochemical environment, whose magnitude is comparable to that of the noncovalent binding interactions [1]–[3]. Optimization with respect to noise proves to be crucial in the design of biological information channels and especially of molecular codes [4], [5]. The task of the molecular recognizer is analogous to the task of a decision unit, which has to discern a specific signal within a collection of various noisy signals. This analogy motivates us to regard in the present work molecular recognition as a signal detection problem. Specifically, the framework of signal detection allows us to evaluate the properties of the optimal bio-recognizer, which must meet the severe requirements of recognition in a competitive noisy environment.

Many studies attempted to understand the remarkable specificity and efficiency of molecular recognition. It was realized early that recognizing molecules should be complementary in shape and, thus, discriminate against a competitor target that does not fit precisely to the recognizer binding sites, akin to matching lock and key. Later, however, it was found that the “native” forms of many recognizers and targets do not match exactly, and, therefore, they must deform in order to bind each other. Conformational changes upon binding have been observed in many bimolecular systems. For example in enzyme-substrate [6], antibody-antigen [7], [8] and other protein-protein complexes [9], [10], protein-DNA recognition [11], [12] and protein-RNA recognition [13]. The abundance of conformational changes raises the question of whether they occur due to biochemical constraints or whether they are perhaps the outcome of an evolutionary optimization of recognition processes. We address this question using signal detection theory, which provides a comprehensive framework for evaluating the optimality of recognition processes.

Let us consider a biological system that has to discriminate between two molecules, A and B. The decision is made by binding to a recognizer molecule a. For example, a may be an antigen and A is a harmful pathogen that should be identified by a while B is a molecule normally found in the body and is similar to A. The typical recognition reaction, described by the Michaelis–Menten kinetics, consists of two basic steps [Fig. 1(a)]. In the first, reversible step, the recognizer a binds A or B and produces the complexes QA and QB. The formation of these complexes depends on the dissociation constants, K_A = [a][A]/[aA], K_B = [a][B]/[aB] ([] denotes concentrations), which relate the equilibrium concentrations of the complexes to the equilibrium concentrations of their components in the unbound form. In the second, irreversible step, these complexes initiate formation of a correct product at rate RA = ν_A[aA] and formation of an incorrect product at rate RB = ν_B[aB]. The reaction rates ν_A,B have units of 1/time and are often referred to as the turnover numbers.

Previous studies focused mainly on the specificity of recognition, that is ratio between the correct and incorrect production
On the production rates, which is constrained by the physical molecules. This includes the consequences of a decision that is carried out through binding of the recognizer a to the "input" molecules, A or B. The molecular binding, which is governed by the physical properties of the interacting molecules, dictates the decision quality.

Fig. 1. Molecular binding as a detection problem. (a) Typical molecular recognition reaction. A recognizer a can bind to two competing molecules A and B and, thus, initiate correct and incorrect actions. The reaction depends on the dissociation constants $K_{A,a}$ and the production rates $v_{A,a}$ (see text). (b) Biological recognition system can be regarded as a detection problem where both the input-output signals and the decision unit are molecules. On the molecular level, the decision is carried out through binding of the recognizer a to the "input" molecules, A or B. The molecular binding, which is governed by the physical properties of the interacting molecules, dictates the decision quality.

Describing molecular recognition as a signal detection process allows us to employ detection theory to evaluate the optimality of molecular recognition processes. A standard Bayesian decision rule is derived by minimizing the average Bayesian cost function, C_b, using posteriori probabilities [19]:

$$C_b = \sum_{i,j} C_{ij} \cdot p_{h,j} \cdot p_d(\lambda_i)$$

where $p_{h,j}$ is the probability for true hypothesis j to occur, $p_d(\lambda_i)$ is the probability for a decision or an outcome i given true hypothesis j, and C_{ij} is a cost assigned to a decision i while the true hypothesis is j, which measures the consequences of each decision. This measure is often used in cases of simple hypotheses when the a priori probabilities for each hypothesis are known and obey $\sum_{j} p_{h,j} = 1$.

On the molecular level, the recognizer a, at an initial concentration $[a]_0$, is diffusing in an environment where both A and B may be present, at an initial concentrations $[A]_0$ and $[B]_0$, and may collide with each one of the targets. However, the probability that the recognizer collides with both of them simultaneously is practically zero; some fraction of the recognizers encounters A molecules while the rest encounter B molecules.
possible outcomes are to trigger or not to trigger an immune response. Binding of \(a \) to \(A \) triggers correct immune response while binding of \(a \) to \(B \) leads to misidentification of \(B \) as \(A \) and the initiation of an incorrect immune response (Table I).

In another example, \(A \) and \(B \) may be regulatory proteins, that is proteins that upon binding to an appropriate DNA sequence promote protein production, and \(q \) is the DNA sequence corresponding to \(A \). In this scenario, the possible outcomes are to produce or not to produce the protein coded by \(a \). In a similar way to the immune system scenario, binding of \(a \) to \(B \) may induce an incorrect response.

The decision to trigger a function, that is identification of \(A \), is denoted by the sub-index \(t \), while the decision not to trigger a function is denoted by the sub-index \(nt \). The possible hypotheses, interaction with \([A]_0 \) or interaction with \([B]_0 \), are denoted by sub-indexes \(A \) and \(B \), respectively. A cost \(C_{t/nt,A/B} \) is assigned for each possible scenario (Table I). It follows from (1) that the cost function is

\[C_b = c_A \cdot p_{h_A} \cdot p_{d_A} + c_B \cdot p_{h_B} \cdot p_{d_B} + \alpha \]

where \(c_A = C_{t,A} - C_{nt,A} \), \(c_B = C_{t,B} - C_{nt,B} \) and \(\alpha = p_{h_A} \cdot C_{t,A} + p_{h_B} \cdot C_{nt,B} \). Clearly, \(\alpha \) does not depend on the binding probabilities or, in signal detection terminology, it is independent of how we assign points in the observation space. The goal of the optimization in the present case is to determine the structural properties that are optimal for detection. Formally, this means that one looks for the minima of \(C_b \) as a function of these structural properties, which enter the problem only through the binding probabilities. Obviously, since \(\alpha \) does not depend on the structural properties, it is irrelevant for the optimization problem and can be omitted hereafter.

In scenarios relevant to biological systems, the decision is usually facilitated by biochemical agents, which are produced by the complexes \(aA \) or \(aB \). Therefore, it is more natural to discuss the rate \(\rho \) at which an existing complex induces product formation rather than the probability that this complex is functional, \(p_f \). The rate \(\rho \) is equal to the functionality probability times some reaction-rate, \(\rho = \nu \cdot p_f \). Therefore, using rates instead of probabilities does not change the nature of the solution.

For clarity, we assume that the recognizer concentration is in excess relative to the target concentrations, \([a]_0 \gg [A]_0, [B]_0 \), and, therefore [15]

\[p_{d,A} \cdot \nu_A = \bar{R}_A = \nu_A \frac{[a]_0 [A]_0}{[a]_0 + K_A} \]

and

\[p_{d,B} \cdot \nu_B = \bar{R}_B = \nu_B \frac{[a]_0 [B]_0}{[a]_0 + K_B} \]

where \(K_{A,B} \) are the dissociation constants and \(\nu_{A,B} \) are the turnover numbers discussed above. Using (3) and (4), the average cost analogous to (2) becomes

\[C = c_A \cdot p_{h_A} \cdot \frac{1}{1 + K_A/[a]_0} \cdot \nu_A + c_B \cdot p_{h_B} \cdot [B]_0 \frac{1}{1 + K_B/[a]_0} \cdot \nu_B \]

1Although both targets are present together, this is a simple hypothesis scenario rather than a simultaneous hypotheses scenario, since the recognizer cannot interact with both targets simultaneously.
This form of the cost will be used to examine the optimization of biological recognition systems. In its current form, (5) has a simple biochemical meaning, it is a linear sum of the correct production rate and the incorrect production rate. We show below that the nature of physical interaction, including the flexibility of the recognizer and its mismatch relative to the correct target, affects the dissociation constants and, thus, the average cost.

III. DEPENDENCE OF THE COST ON STRUCTURAL PARAMETERS OF THE MOLECULES

The average cost function C (5) that was derived in the last section provides a measure for the quality of a molecular recognition system. This cost function depends on the structural parameters of the participating molecules such as their flexibility and structural match. Next, in order to evaluate the optimal design of molecules, we calculate the dependence of the cost on these parameters.

Molecular recognition is a complex process, which involves searching for the molecular target and recognizing it via specific binding interaction. Binding requires the alignment of the active sites and conformational changes of the participating molecules. This complicated dynamics can be simplified into energetic considerations by using the reasonable assumption that recognition takes place close to thermodynamic equilibrium. In essence, molecular recognition is governed by the interplay between the interaction energy gained from the alignment of the binding sites and the elastic energy required to deform the molecules to align. Since the participants molecules interconvert within ensembles of conformations, various complexes may be formed. In some of these complexes the recognizer and the target may have a complementary structure and, therefore, may be functional. Accounting for all possible complexes and functionalities determines the overall cost.

Motivated by deformation spectra measurements and various numerical studies [22], we treat the molecules as elastic networks and take into account only the lowest elastic mode. Modeling proteins as elastic networks was previously applied to study large amplitude [20] and thermal fluctuations [21] of proteins, and to predict deformations and domain motion upon binding [22], [23]. Taking into account only the lowest elastic mode is a vast simplification of the many degrees of freedom that are required to describe the details of a conformational change. Nevertheless, this simplified model still captures the essence of the energy tradeoff.

To study the binding-deformation tradeoff, consider a flexible recognizer with a binding domain on which N binding sites are distributed. This recognizer interacts with an elastic target with a binding domain on which m sites are distributed (Fig. 3). This recognizer interacts with an elastic target with a binding domain on which N complementary binding sites are distributed. Binding is specific, i.e., each binding site on the recognizer site can interact only with its

Table I

Decision Table of Molecular Recognition Processes

During molecular recognition, the decision is made by binding interactions between the recognizer a and the competing targets, A and B, which lead to the formation of the complexes aA and aB. These complexes may be functional and promote some action. The recognizer a is diffusing in an environment where both A and B may be present. Since the probability that the recognizer collides with both of them simultaneously is practically zero, the scenario is as if the system (ensemble of recognizers) is exposed to $[A]_0$ with some probability $P_{h,A}$ and to $[B]_0$ with probability $P_{h,B} = 1 - P_{h,A}$. The encounters may be followed by binding that initiates some action. $P_{a,A,B}$ is the probability to form a functional complex, aA or aB, given the initial concentrations $[A]_0$ or $[B]_0$, respectively. The Table describes a molecular recognition decision table using a possible immune system scenario as an example. Binding of an antigen a should indicate the presence of a pathogen A. Therefore, binding of a to a harmless molecule B will result in a “false alarm.” Unbinding after an encounter between a and A is a “miss.” Similar decisions describe a possible DNA-protein regulation scenario. In this case, A and B are regulatory proteins while a represents a specific DNA sequence corresponding to A. Binding of a to A will result in formation of a correct protein while binding to B causes misidentification of A and results in undesired protein production.

Hypothesis	Interaction with a pathogen A at initial concentration $[A]_0$	Interaction with a harmless molecule B at initial concentration $[B]_0$
Trigger immune response; (t)	$P_{h,A}$	$P_{h,B} = 1 - P_{h,A}$
Incorrect Decision (‘False alarm’)	a binds A and a correct functional complex aA is formed. Correct immune response is triggered. $P_{d,AA} = \text{prob(functional } aA \mid [A]_0)$	$P_{d,BB} = \text{prob(functional } aB \mid [B]_0)$
Incorrect Decision (‘Miss’)	a interacts with A but no functional complex is formed. $1 - P_{d,AA}$	$1 - P_{d,BB}$
Correct Decision	a interacts with B but no functional complex is formed. No misidentification of B as A. $C_{m,AA}$	$C_{m,BB}$
counterpart binding site on the target. This interaction occurs when the corresponding binding sites are close. Therefore, binding energy $E_b = N \varepsilon$ is gained if the binding domains are aligned and the binding sites can interact. However, to gain this binding energy the molecules must deform and deformation of the molecules from their native state costs elastic energy. We consider here only the elastic deformations in which the binding domain of the ligand is deformed uniformly, which raises the cost of incorrect decision relative to the correct one by assuming that the competing target B has only $N - m$ interacting binding sites while the main one has N, and, therefore, the binding energies, $E_{bA} = N \varepsilon$, $E_{bB} = (N - m) \varepsilon$, are different. The average cost (5) can now be expressed in terms of the structural mismatch d and the spring constants of the molecules, k_A, k_B, as

$$C = \frac{-1}{1 + \frac{\varepsilon}{\sqrt{k_A}} e^{-\beta E_{bA} - \frac{\beta}{2} k_A d^2}} + \frac{\chi}{1 + \frac{\varepsilon}{\sqrt{k_B}} e^{-\beta E_{bB} - \frac{\beta}{2} k_B (d + \Delta)^2}}$$

where $\Delta = x_{A,0} - x_{B,0}$ is the structural difference between the native A and B, and $x_{A,0}$, $x_{B,0}$ are the structural identifiers of the native structures.

The optimal flexibility of the molecules and the optimal mismatch of the recognize relative to its main targets can be obtained by minimizing the average cost function (7). This optimal design depends on the properties of the competing targets, which may differ in structure and flexibility. Within the signal detection analogy, this means that the input signals may vary, for example they may have different frequency or amplitude, and that the noise affecting them may also vary. Optimizing the recognizer flexibility is equivalent to optimizing the amount of noise or stochasticity in the detection unit.

IV. OPTIMAL DESIGN OF MOLECULAR RECOGNIZERS

Optimizing the flexibility of the molecules and the optimal mismatch of the recognize relative to its main targets can be obtained by minimizing the average cost function (7). This optimal design depends on the properties of the competing targets, which may differ in structure and flexibility. Within the signal detection analogy, this means that the input signals may vary, for example they may have different frequency or amplitude, and that the noise affecting them may also vary. Optimizing the recognizer flexibility is equivalent to optimizing the amount of noise or stochasticity in the detection unit.
Our analysis exhibits two optimal design “phases.” In one phase, the optimal recognizer and the target have complementary structures (a lock and a key), while in the other phase the optimal recognizer differs from its main target, and, thus, conformational changes are beneficial. The system undergoes a “phase transition” as the flexibility of the molecules and interaction energies between them vary. In the following section, we first analyze the case in which the competing targets have similar shape and flexibility, that is the targets are prone to similar noise. Then, we consider the case in which the targets are different both in structure and flexibility and analyze the effect of these differences on the optimal design. Finally, we estimate the typical biological parameters to evaluate the optimal design for biomolecules.

A. Competing Targets With Similar Structural Properties

Consider the case in which the targets have a similar structure, \(\Delta = x_{t,A} - x_{t,B} = 0 \), and similar flexibility i.e their spring constants are equal, \(k_A = k_B = k_r \). The targets differ in their chemical affinities, more binding energy is gained from binding of the recognizer to the correct target than from binding to the incorrect one, \([E_{k,A}] > [E_{k,B}] \).

First, we consider the symmetric case in which the tolerance parameter is \(\chi = 1 \). In this case, 1) the costs assigned to the correct and incorrect decisions are equal in magnitude and of opposite sign \(c_A = -c_B \), 2) the initial concentrations of the correct target and the incorrect one are equal, \([A]_0 = [B]_0 \), and 3) the functionalities of the competing complexes are the same, \(\nu_{k,A} = \nu_{k,B} \).

As shown in Fig. 4, for a very flexible recognizer (low \(k_r \)), the cost \(C \) exhibits a minimum at zero mismatch, \(d = 0 \), which means that the recognizer and targets should have complementary structures. However, above a certain critical spring constant, \(k_{r,c} \), new minima emerge and the system undergoes a second-order phase transition as the mismatch which minimizes the average cost changes smoothly from zero to a nonzero value. Thus, \(\text{conformational changes become beneficial} \). The optimal recognizer should differ from its main target, i.e the “key” should not be complementary to its “lock” but slightly different.

The critical spring constant of the recognizer at this transition is

\[
 k_{r,c} = \frac{k_c k_t}{k_r - k_c}
\]

where

\[
 k_c = s^2 e^{-\beta(E_{r,A} + E_{r,B})}.
\]

Above \(k_{r,c} \), the optimal mismatch, \(d_{opt} \), is

\[
 d_{opt} = \sqrt{\frac{\log(\bar{k}/k_c)}{\beta k_r}}
\]

where \(\bar{k} = k_r k_t/(k_r + k_t) \). For a very flexible recognizer, \(k_r < k_{r,c} \), the distortion energy is much smaller than the binding energy of both targets and, thus, introducing a mismatch does not provide any advantage. This is also the case if \(k_t < k_{r,c} \), that is very flexible targets. However, above some critical flexibility, \(k_t > k_{r,c} \), the deformation energy is higher and, thus, deformation can occur upon binding to the correct target, while upon binding to the incorrect it is not likely to occur. Therefore, it is beneficial to introduce a slightly deformed recognizer and the optimal mismatch has a nonzero value.

Above the transition point, the optimal mismatch increases and reaches a maximal value of \(d_{max} = 1/\sqrt{\beta k_r} \) at \(k_r = e k_{r,c} \). At this point, the deformation energy is equal to \(k_B T \), the typical thermal energy [Fig. 4(b)]. Above this maximum point, the optimal mismatch decreases as the recognizer spring constant increases. As the recognizer becomes more rigid, more energy is required for its deformation. If the deformation energy exceeds \(k_B T \), the thermal energy, even the binding energy of the correct target may not be sufficient for deforming the recognizer,
and, thus, the optimal mismatch slightly decreases. Yet, the optimal mismatch for a rigid recognizer, $k_r \to \infty$, is still nonzero. As the recognizer becomes more rigid, the optimal mismatch tends to $d_{\text{rigid}} = (1/\sqrt{3k_r}) \sqrt{\log(k_r/k_C)}$ as $k_r \to \infty$. The average cost function decreases as k_r increases and becomes constant above $k_{r,c}$ [Fig. 4(c)]. Therefore, this super-critical regime, in which the optimal mismatch is nonzero, is also the optimal design regime.

When the tolerance is asymmetric, $\chi \neq 1$, the system still undergoes a phase transition but the values of the critical parameters depend on χ (Fig. 5). When $\chi > 1$ the tolerance of the systems to errors is reduced (relative to $\chi = 1$) and avoiding a wrong decision is of higher priority than making the correct one. As a result, the critical spring constant is lower and mismatch should be introduced even for relatively flexible recognizers. For $\chi < 1$ the tolerance of the system is higher and the priority is the formation of correct product. Therefore, mismatch is introduced only at higher flexibilities.

B. Competing Targets With Different Structural Properties

So far we have discussed targets with similar structural properties. However, differences in the flexibilities of the competing targets, that is, input signals that are prone to different noise levels, and structures also affect the optimal design.

1) Targets With Different Flexibilities, $k_A \neq k_B$: Molecules with different spring constants fluctuate differently. Due to thermal fluctuations, both targets are interconverting within ensembles of conformations. These conformations have a different mismatch d relative to the recognizer and are distributed according to Boltzmann distribution, $P(d) \sim e^{-\beta d^2}$, where k is the effective spring constant of the molecule. Hence, the distribution of the conformations is a Gaussian centered at $d = 0$ with a variance $\sigma \sim 1/\sqrt{k}$. Rigid molecules fluctuate less than flexible ones and, therefore, are less noisy.

When the incorrect target is more flexible, that is noisier, than the correct one, $k_{t,A} > k_{t,B}$, the critical flexibility is higher than in the case where $k_{t,A} = k_{t,B}$ [Fig. 6(a)]. Moreover, the average cost is minimal at one specific value of flexibility, $k_r \approx k_c$ [Fig. 6(b)]. Since the incorrect target fluctuates more, the ensemble of incorrect target conformations is more “smeared” than the correct ensemble. A flexible recognizer with zero mismatch can “sample” many correct conformations while sampling only few incorrect ones. Therefore, in this case, the optimal design is a noisy recognizer. In other words, a decision unit which is subject to noise will perform better than a deterministic decision unit.

In the case where the correct target is noisier, $k_{t,A} < k_{t,B}$, the critical flexibility is lower than in the case where $k_{t,A} = k_{t,B}$. Above the critical flexibility, the cost C continues to decrease as a function of recognizer flexibility. In this case, the ensemble of correct target conformations is more spread than the incorrect ensemble. Thus, the optimal design is a rigid recognizer with a nonzero mismatch relative to the main target.

2) Targets With Different Structure, $\Delta = x_{t,A} - x_{t,B} \neq 0$: The nature of optimal design also depends on the structural differences between the targets. If the targets differ slightly, $\Delta \approx d_k$, as in the scenario of two similar targets, there is a phase transition at $k_r \approx k_{r,c}$ and new minima emerge (Fig. 7). However, the optimal mismatch is nonzero for any value of k_r. In the symmetric case [Fig. 4(c)], the minimal average cost value drops sharply after the transition point and remains constant, indicating that the super-critical regime is the optimal design regime. In the nonsymmetric case, the minimal average cost value also decreases sharply at the transition point but continues to decrease slowly. Therefore, the super-critical regime is again better than the subcritical regime but the global optimal design is of a rigid recognizer with nonzero mismatch. Unlike the symmetric case, the minima of the average cost are
not symmetric [Figs. 4(a) and 7(a)], and, therefore, the optimal recognizer should slightly differ from its correct target but differ even more from the incorrect one. Targets which differ much, \(\Delta \gg d_\star \), are not actual competitors and therefore, in this case, the optimal design is a rigid recognizer with perfect complementarity as expected.

C. Design Phases of Molecular Recognizer

In the previous section we discussed the optimal design phases, which depend on the structural parameters of the recognizers. Using the relation between the dissociation constant (6) and the critical spring constant (9), the typical realistic flexibility regime of optimal molecular recognizers can be evaluated. To find these flexibilities, we examine the ratio between the recognizer spring constant \(k_r \) and the critical recognizer spring constant \(k_{r,c} \) which is given by

\[
\frac{k_r}{k_{r,c}} = (r + 1) \frac{[a]^2}{K_A K_B e^{-2\beta E_d}} - r
\]
(11)
where \(r \) is the ratio between the recognizer and target spring constants, \(r = k_r / k_t \) and \(E_d = (k_t/2)\delta^2 \) is the distortion energy. \(K_{A,B} \) are the dissociation constants of the correct and incorrect targets, respectively. \([a]_0\) is the recognizer initial concentration.

Recognizing with mismatch is beneficial if \(k_r > k_{r\text{crit}} \). Substituting typical biological parameters: \(K_{A,B} \sim 10^{-14} - 10^{-16} \text{ M} \), \(E_d \sim 10k_BT \), \([a]_0 \sim 10^{-6} - 10^{-3} \text{ M} \), [24], [25], yields that \(k_r \geq k_{r\text{crit}} \). It follows from (11) that a mismatch is introduced if the dissociation constants of the targets satisfy \(K_A K_B < \left([a]_0^2 / e^{-2\beta E_d} \right) \sim 10^{-3} - 10^{-9} \text{ M}^2 \). Therefore, since \(k_r \geq k_{r\text{crit}} \), the biomolecules are in regime where both designs, with or without mismatch, may be advantageous.

V. CONCLUSION

By treating molecular recognition processes as a signal detection problem, we evaluated the optimal design of a molecular recognizer in a noisy biochemical environment. The “phases” of optimal design are presented in Fig. 8. The optimal mismatch between the recognizer and the target depends on whether the recognizer flexibility is above or below the critical one. Typical structural parameters and interactions of biomolecules indicate that the recognizer spring constant is of the same magnitude or larger than the critical spring constant. Thus, both design strategies, with or without mismatch, are relevant for molecular recognition scenarios.

We also evaluated the flexibility of optimal recognizers. If the competitor is noisier than the correct target, the optimal design is a recognizer with critical flexibility and a zero mismatch. Such a flexible recognizer corresponds to stochastic detection unit. This implies that, in this case, a noisy recognizer samples the target more efficiently than a deterministic, rigid, recognizer. If the correct target is noisier, the optimal design is a rigid recognizer with a nonzero mismatch. In all cases, the significant decline in the average cost is at the transition between a zero mismatch design and a nonzero mismatch design. Hence, the regime in which the optimal mismatch is nonzero is the optimal design regime.

Although our model for distortion upon binding simplifies the real situation by considering only the lowest elastic modes, the approach of analyzing molecular recognition as a decision system may shed light on the nature of biological recognition systems. More realistic and empirical energy functions may be introduced into this framework to evaluate the optimal design. The result that, in most cases, conformational changes provide optimal recognition, may explain their abundance in nature as a mechanism that increases the fitness of the recognizer [26]. Besides explaining observed processes, this kind of formalism may be used in the design of future synthetic biological recognition systems.

APPENDIX A

DISSOCIATION CONSTANT EVALUATION

Both the recognizer and the target are interconverting within ensembles of conformations due to thermal fluctuations. Thus, the structure of those molecules is fluctuating around some native state structure according to Boltzmann distribution. The native state can be characterized by the length of the binding domain, angle, area or any other geometrical coordinate (Fig. 3).

Since we consider only elastic deformations, the distortion energy is \((k_t/2)(x - x_0)^2\) where \(k_t\) is an effective spring constant and \(x_0\) is the native state configuration. Since all reactions besides product formations are assumed to be in equilibrium, we may apply the law of mass action

\[
K_A = \frac{Z_k}{V} = \frac{Z_k}{Z_{A,A}} \quad \text{(12)}
\]

where \(V\) is the system volume and \(Z_{a}, Z_{A}, \text{ and } Z_{A,A}\) are the recognizer, target, and complex partition functions, respectively.

The partition function calculation is straightforward

\[
K_A = \frac{Z_k}{V} \times \int_{0}^{\infty} e^{-\beta E_b(x_t - x)} dx_t \int_{0}^{\infty} e^{-\beta E_b(x_t - x_r)} dx_r
\]

\[
= \int_{0}^{\infty} e^{-\beta E_b(x_t - x)} dx_t \int_{0}^{\infty} e^{-\beta E_b(x_t - x_r)} dx_r
\]

\[
\times \int_{0}^{\infty} \int_{0}^{\infty} e^{-\beta E_b(x_t - x_r)} dx_t dx_r
\]

\[
\text{(13)}
\]

\(Z_k\) is the kinetic partition function, \(E_b\) is the energy gain due to binding, subscript \(r\) indicates recognizer, and subscript \(t\) indicates target. The delta function in the denominator ensures that the complex is assembled out of complementary molecules. Under the reasonable assumption that \(k_r^{1/2} x_t \gg 1\), (assumption made mainly for clarity) performing integration yields

\[
K_A = \frac{Z_k}{V} \times \frac{2\pi}{\beta k_t} e^{-\beta (E_b + \frac{\pi^2}{4})}
\]

\[
\text{(14)}
\]

where \(k_r = k_{r}/(k_{r}+k_{t})\) and the normalization factor \(g\) reflects the fact that the ensemble is continuous. \(g\) is proportional to the typical interaction length of the binding sites.
ACKNOWLEDGMENT

The authors would like to thank U. Alon and D. Tawfik for valuable discussions.

REFERENCES

[1] L. Pauling, *Science*, vol. 92, pp. 77–79, 1940.
[2] W. Kauzmann, “Some factors in the interpretation of protein denaturation,” *Adv. Protein Chem.*, vol. 14, pp. 1–63, 1959.
[3] C. Tanford, “Interfacial free energy and the hydrophobic effect,” *Proc. Nat. Acad. Sci. USA*, vol. 76, pp. 4175–4176, 1979.
[4] T. Tlusty, “A simple model for the evolution of molecular codes driven by the interplay of accuracy, diversity and cost,” *Phys. Biol.*, vol. 5, p. 016001, 2008.
[5] T. Tlusty, “Rate-distortion scenario for the emergence and evolution of noisy molecular codes,” *Phys. Rev. Lett.*, vol. 100, pp. 048101–048104, 2008.
[6] G. G. Hammes, “Multiple conformational changes in enzyme catalysis,” *Biochemistry*, vol. 41, pp. 8221–8228, 2002.
[7] R. Jimenez, G. Salazar, K. K. Baldridge, and F. E. Romesberg, “Flexibility and molecular recognition in the immune system,” *Proc. Nat. Acad. USA*, vol. 100, pp. 92–97, 2003.
[8] L. C. James and D. S. Tawfik, “Structure and kinetics of a transient antibody binding intermediate reveal a kinetic discrimination mechanism in antigen recognition,” *Proc. Nat. Acad. USA*, vol. 102, pp. 12730–12735, 2005.
[9] S. Jones and J. M. Thornton, “Principles of protein-protein interactions,” *Proc. Nat. Acad. USA*, vol. 93, pp. 13–20, 1996.
[10] C. S. Goh, D. Milburn, and M. Gerstein, “Conformational changes associated with protein-protein interactions,” *Curr. Opin. Struct. Biol.*, vol. 14, pp. 104–109, 2004.
[11] C. O. Pabo and R. T. Sauer, “Protein-DNA recognition,” *Annu. Rev. Biochem.*, vol. 53, pp. 293–321, 1984.
[12] K. A. Johnson, “Conformational coupling in DNA polymerase fidelity,” *Annu. Rev. Biochem.*, vol. 62, pp. 685–713, 1993, [15].
[13] J. R. Williamson, “Induced fit in RNA-protein recognition,” *Nat. Struct. Biol.*, vol. 7, pp. 834–837, 2000.
[14] A. R. Fersht, “Catalysis, binding and enzyme-substrate complementarity,” *Proc. Roy. Soc. Lond. B, Biol. Sci.*, vol. 187, pp. 397–407, 1974.
[15] A. R. Fersht, *Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding*. New York: Freeman, 1998.
[16] C. B. Post and W. J. Ray, Jr., “Reexamination of induced fit as a determinant of substrate specificity in enzymatic reactions,” *Biochemistry*, vol. 34, pp. 15881–15885, 1995.
[17] Y. Savir and T. Tlusty, “Conformational proofreading: The impact of conformational changes on the specificity of molecular recognition,” *PLoS ONE*, vol. 2, p. e468, 2007.
[18] D. Herschlag, “The role of induced fit and conformational changes of enzymes in specificity and catalysis,” *Bioorg. Chem.*, vol. 16, pp. 62–96, 1988.
[19] C. W. Helstrom, *Elements of Signal Detection and Estimation*. Englewood Cliffs, NJ: Prentice-Hall, 1995.
[20] M. M. Tirion, “Large amplitude elastic motions in proteins from a single-parameter, atomic analysis,” *Phys. Rev. Lett.*, vol. 77, pp. 1905–1908, 1996.
[21] I. Bahar, A. R. Attilan, and B. Erman, “Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential,” *Fold Des.*, vol. 2, pp. 173–181, 1997.
[22] F. Tama and Y. H. Sanejouad, “Conformational change of proteins arising from normal mode calculations,” *Protein Eng.*, vol. 14, pp. 1–6, 2001.
[23] D. Tobi and I. Bahar, “Structural changes involved in protein binding correlate with intrinsic motions of proteins in the unbound state,” *Proc. Nat. Acad. USA*, vol. 102, pp. 18908–18913, 2005.
[24] C. Kleanthous, *Protein-Protein Recognition*. Oxford, U.K.: Oxford Univ. Press, 2000.
[25] L. Stryer, *Biochemistry*, 3rd ed. New York: Freeman, 1988.
[26] Y. Savir and T. Tlusty, “DNA extension induced by RecA during homologous recombination as a possible conformational proofreading mechanism,” to be published.

Yonatan Savir received the B.Sc. degree in electrical engineering and the B.A. degree in physics, both *summa cum laude*, from The Technion—Israel Institute of Technology, Haifa, Israel, and the M.Sc. degree in physics from the Weizmann Institute of Science, Rehovot, Israel, in 2004 and 2006, respectively. He is currently pursuing the Ph.D. degree in physics at the Department of Physics of Complex Systems, Weizmann Institute of Science.

His research interests include design principles and evolution of biological system and molecular information processing.

Tsvi Tlusty is a Senior Researcher with the Department of Physics of Complex Systems at the Weizmann Institute of Science, Rehovot, Israel. His research interests include molecular information-processing systems and their evolution.