Comparative Remineralization Efficacy of Topical NovaMin and Fluoride on Incipient Enamel Lesions in Primary Teeth: Scanning Electron Microscope and Vickers Microhardness Evaluation

Safaa Shihabi1 Salma AlNesser1 John C. Comisi2

1Department of Pediatric Dentistry, Faculty of Dentistry, Damascus University, Damascus, Syria
2Department of Oral Rehabilitation, Restorative Dentistry, Medical University of South Carolina, James B. Edwards College of Dental Medicine, Charleston, United States

Objective Evaluating the potential remineralization effect of NovaMin prophylaxis paste on artificial enamel lesions in primary teeth using Vickers microhardness and scanning electron microscope.

Materials and Methods Forty sound buccal and lingual surfaces of human primary canine teeth were randomly divided into two groups after creating artificially demineralized lesions (G1: NovaMin and G2: fluoride; 20 per group) and then treated with the respective remineralization agents. The remineralization cycle repeated twice daily for 10 days. The groups were evaluated with Vickers microhardness and scanning electron microscope before and after de/remineralization.

Results Statistically significant difference of microhardness was observed between demineralized enamel and remineralized enamel with group 1 and group 2 (p = 0.000 and p = 0.000, respectively). No statistically significant difference of microhardness was observed between two remineralized agents (p = 0.368).

Conclusion Within the limitation of this in vitro study, NovaMin enhances the remineralization process equally to fluoride.

Abstract

Keywords ► fluoride
► NovaMin
► vickers surface microhardness
► scanning electron microscope
► white spot lesions
► hydroxyapatite crystals
► hydroxyapatite

DOI https://doi.org/10.1055/s-0040-1721311
ISSN 1305-7456.

© 2020. European Journal of Dentistry. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd., A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

Introduction

Initial carious lesions are represented clinically as white spot lesions (WSLs), which are softer than intact enamel and whiter when dried.1 Treating WSLs of primary teeth by traditional methods is considered a challenge, especially for uncooperative patients with early childhood caries (ECC).2 Applying remineralization agents to WSLs may prevent cavity formation and therefore preserve enamel integrity.3

In the remineralization of tooth structure, fluoride is considered the gold standard. Fluoride inhibits demineralization by forming fluorapatite crystals (FAP). These crystals are more resistant to acid attack compared with hydroxyapatite crystals.4 Furthermore, fluoride enhances the growth of new FAP, and it inhibits the activity of acid production by carious bacteria.5 High concentrations of fluoride are toxic, and levels even slightly above therapeutic levels can lead to fluorosis and therefore can limit its use.6 Recently, researchers are trying to find an alternative material that can provide beneficial remineralization effects without the potential dangers associated with fluoride.

NovaMin (calcium sodium phosphosilicate) is a synthetic and highly biocompatible material developed as bone regenerative and sensitivity reducing material.7 Recently, NovaMin has been introduced as a remineralization agent in
toothpaste and prophylactic pastes. When exposed to the aqueous environment of the oral cavity, the sodium ions from NovaMin particles rapidly exchange with hydrogen in the tooth structure to release calcium and phosphate ions. This ion release causes a rapid increase in pH and the subsequent creation of a hydroxyapatite apatite layer (HCA) on the tooth structure. HCA is chemically and structurally similar to natural biological apatite, which makes the use of NovaMin a potential substitute for fluoride in toothpaste.

To the best of our knowledge, this is the first study to compare the remineralization effect of NovaMin and fluoride application to primary teeth using Vickers surface microhardness testing and scanning electron microscope (SEM). The null hypothesis is that there is no significant difference between fluoride and NovaMin.

Materials and Methods

Twenty deidentified primary canines were selected, in accordance with the ethical treatment of human tissue ethical committee IRB approval 1818, from freshly extracted for orthodontic reasons without any visible caries, WSLs, cracks, or fractures under a stereoscopic microscope (Meiji, Japan) at ×2 magnification. All teeth were then examined with laser fluorescence DIAGNODent (Kavo, Germany) “wavelength 655 nm.” Samples with DIAGNODent values between 0 and 13, which referred to intact enamel, were selected for this study according to the manufacturer’s instructions.

Specimens’ Preparation

The teeth were cleaned from residual soft tissue using a hand scaler (ck-6 [Zeffiro, Italy]) and then stored in 0.5% chlormine T in a plastic container for 1 week for disinfection.

The apical third of the teeth were removed, and the teeth then sectioned mesiodistally with a diamond disk. A 4 × 4 mm square was created in the middle third of the labial and lingual surfaces using nail varnish and then fixed firmly into an acrylic block for secure handling. The baseline Vickers surface microhardness was measured for all specimens after numbering them from 1 to 40.

Baseline Vickers Surface Microhardness Testing

A Vickers microhardness tester machine (Galilio, Italy) was used to determine the hardness values for each specimen before de/remineralization cycling.

A load of 100 g at an angle of 136 degrees was applied on the teeth surface (Fig. 1) for 10 seconds at a distance of 100 microns, creating a prism above the surface (Fig. 2). Therefore, SMH was measured according to the equation:

\[
\text{SMH} = \frac{1,854 \times p}{D^2}
\]

P (power): the applying load.
D (diameter): the diameter of the prism.

Demineralization Cycle

Teeth were immersed for 1 hour in numbered plastic vials containing 20 mL of demineralization solution (2 mM CaCl\(_2\), 2 mM Na\(_2\)HPO\(_4\), 50 mM CH\(_3\)COOH, with the addition
of 0.1M NaOH to pH 4.55). Specimens were then rinsed
with 10 mL deionized water and immersed for 22 hours
in 20 mL of remineralization solution (2 mM CaCl,
2 mM NaH₂PO₄, with the addition of 0.1M NaOH to pH 6.8) at room
temperature. The teeth were then subjected to the de/re-
mineralization solutions three times to create artificial
carious lesions. Then SMH was measured to all specimens
under the same conditions. Samples were then stored in
deionized water, which was replaced daily until remineral-
ization agents were applied.

Specimens were then randomly divided into two groups
as follows:

Group 1: Novamin containing paste NUPRO (Prophylaxis
Paste with Novamin; Dentsply International, United
States; – Table 1).
Group 2: Fluoride 1.23% (DEFEND Prophylaxis Paste; Mydent
International, United States; – Table 1).

Remineralization Cycle
Group 1: 0.5 g of NUPRO paste was applied with a rubber
cup to each tooth for 2 minutes in a clockwise direction.
Then the teeth were immersed in deionized water for
2 minutes and then gently rinsed with deionized water.
Group 2: The fluoride-containing DEFEND paste (1.23%) was
applied in the same manner as in group 1.

The remineralization cycle was repeated twice daily
for 10 days. All teeth were then soaked in deionized water
until SMH was measured to determine the acquired
microhardness.

Statistical Analysis
Kolmogorov–Simonov was used to determine if the data were
normally distributed. Mann–Whitney U test was used to
identify statistically significant differences in enamel micro-
hardness between intact and demineralized specimens, and
between demineralized and remineralized samples treated
with NUPRO paste and DEFEND paste; and the difference
between NUPRO paste and DEFEND fluoride paste as a rem-
ineralization agent.

Data were analyzed using SPSS version 23 (IBM Corp.;
Armonk, New York, United States), where the p-value was set
at 0.05, and the level of confidence was set at 95%.

Table 1 The ingredients of the prophylaxis paste used in this
study.

Ingredients	1.23% fluoride ion, glycerin, sodium silicate, titanium dioxide, methyl salicylate, water, sodium carboxymethylcellulose, sodium saccharin, flavor

| NUPRO (prophylaxis paste with Novamin; Dentsply International, United States). | Calcium sodium phosphosilicate (Novamin), glycerin, sodium silicate, titanium dioxide, methyl salicylate, water, sodium carboxymethylcellulose, sodium saccharin, flavor |

Results

Descriptive results of testing—minimum, maximum, mean,
standard deviation of microhardness including intact, deminer-
alized, and remineralized enamel with NUPRO paste (Group 1)
and DEFEND Fluoride paste (Group 2)—are shown in (– Table 2).

The Mann–Whitney U test showed (1) a statistically sig-
ificant difference in the microhardness of intact enamel
specimen when compared with demineralized enamel
specimen (p = 0.000); (2) a statistically significant differ-
ence in microhardness between demineralized enamel and
both remineralized enamel with either Group 1 or Group 2
(p = 0.000 and p = 0.000, respectively); and (3) no statistically
significant difference in microhardness values of remineral-
ization observed with NUPRO paste (Group 1) and fluoride
paste (Group 2) (– Table 3).

Scanning Electron Microscope Images

The samples were analyzed under SEM (VEGA II; TESCAN,
Czech Republic) at ×70 magnification:

- SEM evaluation of the intact enamel before demineral-
ization showed regular deposition of enamel rods and
prisms (– Fig. 3).
- The enamel surface after demineralization presented
a honeycomb-like appearance, created by collapsing
enamel rods, prism irregularity, and the disorientation of
hydroxyapatite crystals (– Fig. 4).
- The enamel treated with the NUPRO NovaMin containing
paste lead to deposition of the material over enamel as a
dark, smooth, and uniform thickness area (– Fig. 5).
- Enamel treatment with DEFEND fluoride formed an irreg-
ular layer of FAP (– Fig. 6).

Discussion

Re/demineralization is a dynamic process that occurs in
the oral cavity over time. When the delicate balance between
them breaks down, a lesion will be formed on tooth surfaces
as a WSL. Supplying these WSLs with calcium and phosphate
ions will help reverse cavity formation. This study aimed to
determine the effect of calcium sodium phospho-
silicate (Novamin) in the remineralization of tooth structure.

The organic content of the primary tooth enamel is
higher than that of permanent tooth enamel so that it may
be more susceptible to caries. There are no studies that
have evaluated NovaMin versus fluoride efficacy in primary
teeth; therefore, we selected the anterior primary teeth in
this experimental study.

Vickers surface microhardness testing was used to evalu-
ate the remineralization effect. It is a nondestructive, reliable,
rapid, and economical method of testing.

The results of this study showed that the SMH values
after demineralization were less than initial SMH, which is
a statistically significant difference. Therefore, the demin-
eralization cycle created WSLs, which is similar to Haghgoo
et al and Creanor et al results. Moreover, the SMH values
after remineralization increased compared with SMH values after demineralization. This result is a statistically significant difference and demonstrates that fluoride and NovaMin both trigger the remineralization process, as illustrated in the individual testing of these agents in prior studies with both permeant and primary teeth.

NovaMin is an inorganic and synthetic compound, which releases sodium, calcium, phosphate, and silica when it is exposed to an aqueous media, increases pH and forms Hydroxycarbonateapatite crystals, and thus initiates the remineralization process.

The pairwise comparisons showed of this study illustrate that there are no statistically significant differences between NovaMin and fluoride in SMH values. Although NovaMin did not offer further remineralization effect than did fluoride, this study shows it equally beneficial. The elimination of potential fluoride toxicity, and fluorosis of young children’s teeth from overingestion of fluoride toothpaste during daily tooth brushing, could be one of the benefits in use NovaMin containing paste instead of fluoride.

Conclusion

The use of NovaMin containing paste in remineralization of incipient enamel lesions is a promising treatment due to its safety, but further studies on primary teeth should be taken to confirm its efficacy.
Fig. 5 Enamel surface after fluoride application.

Fig. 6 Enamel surface after NovaMin treatment.

Authors’ Contributions
S.S. and S.A. supported in research concept and design, collection of data, and writing of the manuscript. J.C.C. was involved in manuscript revision and editing.

Funding
This study received its financial support from Faculty of Dentistry, Damascus University.

Conflict of Interest
None declared.

References
1 Sarkis H, Ghaleb M, Dabbagh S, Harouny. White spot lesions: Resin infiltration technique. Int Arab J Dent 2017;10(1):10–14
2 Townsend JA, Wells MH, Behavior guidance of the pediatric dental patient. In: Pediatric Dentistry. 2019; Elsevier: –352–357
3 Roopa KB, Pathak S, Poornima P, Neena I. White spot lesions: a literature review. J Paediatr Dent 2015;31:1–7
4 Arifa MK, Ephraim R, Rajamani T. Recent advances in dental hard tissue remineralization: a review of literature. Int J Clin Pediatr Dent 2019;12(2):139–144
5 Soi S, Vinayak V, Singhal A, Roy S. Fluorides and their role in demineralisation and remineralisation. J Dent Sci Oral Rehabil 2013;14:19–21
6 Ullah R, Zafar MS, Shahani N. Potential fluoride toxicity from oral medicaments: a review. Iran J Basic Med Sci 2017;20(8):841–848
7 Layer TM. Development of a fluoridated, daily-use toothpaste containing NovaMin technology for the treatment of dentin hypersensitivity. J Clin Dent 2011;22(3):59–61
8 Haghgoo R, Ahmadvand M, Moshaervinia S. Remineralizing effect of topical NovaMin and nano-hydroxyapatite on caries-like lesions in primary teeth. J Contemp Dent Pract 2016;17(8):645–649
9 Gangwar A, Jha KK, Thakur J, Nath M. In Vitro evaluation of remineralization potential of novamin on artificially induced carious lesions in primary teeth using scanning electron microscope and vickers hardness. Indian J Dent Res 2019;30(4):590–594
10 Walsh LJ. Contemporary technologies for remineralization therapies: a review. Int Dent SA 2009;116:6–16
11 Jeffries SR. Advances in remineralization for early carious lesions: a comprehensive review. Compend Contin Educ Dent 2014;35(4):237–243, quiz 244
12 Cochrane NJ, Cai F, Huq NL, Burrow MF, Reynolds EC. New approaches to enhanced remineralization of tooth enamel. J Dent Res 2010;89(11):1187–1197
13 De Menezes Oliveira MAH, Torres CP, Gomes-Silva JM, et al. Microstructure and mineral composition of dental enamel of permanent and deciduous teeth. Microsc Res Tech 2010;73(5):572–577
14 Şakar-Deliormanli A, Güden M. Microhardness and fracture toughness of dental materials by indentation method. J Biomed Mater Res B Appl Biomater 2006;76(2):257–264
15 Creanor SL, Awawdeh LA, Saunders WP, Foye RH, Gilmour WH. The effect of a resin-modified glass ionomer restorative material on artificially demineralised dentine caries in vitro. J Dent 1998;26(5-6):527–531
16 Wang Y, Mei L, Gong L, et al. Remineralization of early enamel caries lesions using different bioactive elements containing toothpastes: an in vitro study. Technol Health Care 2016;24(5):701–711
17 Manoharan V, Kumar RK, Sivanraj AK, Arumugam SB. Comparative evaluation of remineralization potential of casein phosphopeptide-amorphous calcium fluoride phosphate and novamin on artificially demineralized human enamel: an in vitro study. Contemp Clin Dent 2018;9(Suppl 1):S58–S63
18 Krishnan G, George S, Anandaraj S, John SA, Mathew V, Shanavas NM. Efficacy of four remineralizing agents on primary teeth: in vitro evaluation using microhardness testing and quantitative light-induced fluorescence. Pediatr Dent 2017;39(3):233–237
19 Aras A, Celenk S, Dogan MS, Bardakci E. Comparative evaluation of combined remineralization agents on demineralized tooth surface. Niger J Clin Pract 2019;22(11):1546–1552
20 Gjorgievska E, Nicholson JW. Prevention of enamel demineralization after tooth bleaching by bioactive glass incorporated into toothpaste. Aust Dent J 2011;56(2):193–200
21 Khujmatgar S, Reddy U, John S, Badanavannar AN, D Souza T. Is there evidence for Novamin application in remineralization?: a systematic review. J Oral Biol Craniofac Res 2020;10(2):87–92
22 Hench LL, Andersson Ö. Bioactive Glasses: An Introduction to Bioceramics 1993; World Scientific:41–62