Influence of Pb addition on the superconducting properties of polycrystalline Sr$_{0.6}$K$_{0.4}$Fe$_2$As$_2$

Lei Wang, Yanpeng Qi, Zhiyu Zhang, Dongliang Wang, Xianping Zhang, Zhaoshun Gao, Chao Yao and Yanwei Ma

Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, PO Box 2703, Beijing 100190, People’s Republic of China

E-mail: ywma@mail.iee.ac.cn

Received 30 November 2009, in final form 5 February 2010
Published 23 April 2010
Online at stacks.iop.org/SUST/23/054010

Abstract
Polycrystalline Sr$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ samples with various Pb additions (0–20 wt%) were prepared using a one-step solid state reaction. X-ray diffraction analysis shows no evidence for a chemical reaction between the Pb and the FeAs-based superconductor. However, the presence of Pb can affect the microstructure and superconducting properties of the final products. The critical transition temperature T_c indicates no degradation up to 20 wt% Pb addition, and dramatic improvements of magnetic J_c and irreversibility field H_{irr} were observed for appropriate Pb concentrations. The transport critical current property of pure and Pb added Sr$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ tapes was also measured by a four-probe technique, and a remarkable enhancement of J_c at low fields was detected for the Pb-added tapes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The recent discovery of superconductivity at 26 K in the LaFeAsO$_{1-x}$F$_x$ compound [1] has generated tremendous interest among physicists and material scientists [2–4]. Further research has led to the discovery of superconductivity at 38 K in Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ [5]. The parent compounds, REFeAsO (1111 type, RE=rare earth) and AFe$_2$As$_2$ (122 type, A=Ba, Sr), have a quasi-two-dimensional tetragonal structure, which consist of charged $(LaO)^{4+}$ layers or A^{2+} alternating with $(FeAs)^{2-}$ layers. Superconductivity was produced by doping the parent compounds with electrons or holes, and the highest T_c that has been found in this FeAs-based system is around 55 K [6]. It has been accepted that these materials represent the second class of high-T_c superconductors after the discovery of cuprates in 1986 [7].

The K-doped AFe$_2$As$_2$ (122 type, A=Ba, Sr) exhibits a high critical transition temperature of ~38 K, together with high critical current density J_c, low anisotropy and high critical fields [8–10]. On the other hand, the synthesizing temperature is relatively low (~850°C) and no oxygen is involved, compared with that of the RE-1111 series. All these would be advantages for potential applications [8–10]. Recently, a transport critical current density J_c of 1.2×10^5 A cm$^{-2}$ at 4.2 K in self-field has been observed in Sn$_{0.6}$K$_{0.4}$Fe$_2$As$_2$/Ag tapes [11]. This result would give further encouragement to the development of the newly discovered FeAs-based superconductors for potential high current applications.

Generally, chemical addition usually plays an important role in enhancing superconducting properties by promoting the crystallization of the superconducting phase, catalyzing the intergranular coupling of the superconducting grains or introducing pinning centers. For example, the irreversibility field H_{irr} can be largely increased by C addition in MgB$_2$ and a J_c enhancement was observed in Ag-added YBCO [12–14]. Recently, we have reported that the H_{irr} and superconducting properties of the 122 phase iron-based superconductor can be significantly increased by Ag addition [11, 15]. On the other hand, Pb addition effectively improved superconducting properties of BSCCO, because of a rearrangement of the band structure, as well as facilitating grain growth [16, 17]. In this paper, we studied the effect of Pb on the microstructure and superconducting properties of polycrystalline Sr$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ and found that an
enhancement of J_c in pnictide bulks and tapes can be achieved by Pb addition.

2. Experimental details

The polycrystalline Sr$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ investigated were prepared by a one-step solid state reaction method developed by our group [18], together with a ball milling process. Sr fillings, Fe powder, As and K pieces, with a ratio Sr:K:Fe:As = 0.6:0.4:2:2, were thoroughly ground in Ar atmosphere for more than 10 h using the ball milling method. After the ball milling, Pb was added to the raw powder and then the mixture was ground in a mortar for half an hour. The final powders were filled and sealed into Nb tubes (OD: 8 mm, ID: 5 mm) and the Nb tube was subsequently rotary swaged. The samples were sintered at 500°C for 15 h and then at 850–900°C for 35 h in Ar atmosphere. Four kinds of samples with various Pb additions (0, 5, 10 and 20 wt%) were made for this study. The density of the sintered Sr$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ sample is about 70% of the theoretical value of 5.89 g cm$^{-3}$. The fabrication of Sr$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ tapes was described in previous papers [11, 18].

Phase identification was characterized by powder x-ray diffraction (XRD) analysis with Cu Kα radiation from 10° to 80°. Resistivity measurements were carried out by the standard four-probe method using a PPMS system. DC susceptibility of the Sr$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ samples was measured using a Quantum Design SQUID. The samples were first cooled down to 5 K in zero magnetic field and then a magnetic field of 20 Oe was applied. The diamagnetic susceptibility due to the shielding current was measured during the warming process up to temperatures well above T_c (ZFC: zero-field-cooled). In a field of 20 Oe, the Meissner effect was measured during the cooling process. Rectangular specimens with dimensions of about 5 \times 2.5 \times 1.5 mm3 were cut from the samples and magnetization measurements were performed in a PPMS system in fields up to 7 T. Magnetic critical current densities were calculated using the Bean model $J_c = 20\Delta m / \alpha (1 - a/3b)$, taking the full sample dimensions. Microstructural observations were performed using scanning electron microscopy (SEM). The transport critical currents of the pure and doped Sr$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ tapes at 4.2 K and its magnetic dependence were evaluated at the High Field Laboratory for Superconducting Materials (HFLSM) in Sendai, Japan, by a standard four-probe resistive method, with a criterion of 1 μV cm$^{-1}$.

3. Results and discussion

The powder x-ray diffraction patterns of the pure and Pb-added Sr$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ bulk samples are shown in figure 1. The pattern of the pure sample is well indexed to Sr$_{0.6}$K$_{0.4}$Fe$_2$As$_2$. No obvious foreign phase was detected, ensuring that the proposed treatment was successful in obtaining a single-phase Sr$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ sample. The Pb-added samples consist of Sr$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ as the major phase. However, Pb peaks were clearly detected in the Pb-added samples and a small amount of FeAs phase was also identified, particularly in the nominal 10% and 20% Pb-added samples.

Figure 2 presents normalized resistivity versus temperature curves for Sr$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ bulk samples with various Pb concentrations. All samples exhibit a sharp resistive superconducting transition at T_c (onset) \approx 35 K with ΔT_c \leq 2.5 K. In particular, the 5% Pb-added samples show a zero transition at \sim34 K. There is a general tendency for normalized resistivity above T_c to decrease with Pb addition, and the residual resistivity ratio RRR $= \rho(300 K) / \rho(40 K)$ for the pure and Pb-added samples is 3.8 and 4.4, respectively. The resistive data suggest that the T_c was hardly affected by Pb addition.

DC susceptibilities of pure and Pb-added Sr$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ bulk samples were measured and all the results are shown in figure 3. The ZFC curve for pure samples indicates that the significant shielding currents appear at about 30 K and increases as temperature decreases. However, the shielding currents for the Pb-added samples occur at 35 K (point A), which may suggest a crystallization improvement caused by...
Pb addition. The shielding currents for Pb were also seen at 9 K (point B), which increase steadily with increasing nominal Pb content. It is also found that the Meissner response for the Pb-added samples is stronger than that of the pure samples, indicative of a larger Meissner fraction in Pb-added samples.

Shown in figure 4 are the magnetic J_c (at 5 K) versus magnetic field curves for the Pb-added and pure bulks. As is evident from the figure, magnetic J_c in the entire field region can be increased by Pb addition. A substantial improvement is obtained by increasing the Pb content up to 10%, while upon further increasing the Pb content, the magnetic J_c decreases, because of too much non-superconducting phase existing (see figure 1). The J_c of 5% Pb-added samples at 5 K in self-field is about 1.5×10^3 A cm$^{-2}$ and still remains above 1×10^3 A cm$^{-2}$ beyond 6.5 T, twice as high as for the pure samples. Most importantly, a large J_c of about 2×10^4 A cm$^{-2}$ at 5 K in self-field was achieved in the 10% Pb-added samples.

The J_c of pure and 5% Pb-added samples, as a function of magnetic fields at various temperatures, is given in the inset of figure 4. As expected, a significant improvement of J_c at 10, 20 and 30 K induced by Pb addition can be achieved. To our surprise, the J_c of the 5% Pb-added sample maintains $\sim 10^2$ A cm$^{-2}$ even at 30 K and high magnetic fields. Although a remarkably enhanced magnetic J_c was observed in Pb-added samples, it is known that two kinds of loops, intra-grain current loops and inter-grain current loops, contribute to the magnetization of the bulk sample. Thus, the improvement in magnetic J_c may originate from intra-grain current loops or inter-grain current loops, or both of them.

Figure 5 depicts the variation of resistive transitions under various magnetic fields ($H = 0, 1, 3, 5, 7$ and 9 T) for the pure and 5% Pb-added samples. The resistive transition regions clearly broaden as the magnetic field increases, with only a small effect in the region near the onset of transitions. One striking feature here is that the zero transition of Pb-added samples is much less sensitive to magnetic field than that of the pure samples. The upper critical field H_{c2} and irreversibility field H_{irr} were estimated, using criteria of 90% and 10% of normal state resistivity respectively, as shown in the inset of figure 5. Note that H_{c2} was not significantly changed by Pb addition. The upper critical field was extrapolated to 0 K using the Werthamer–Helfand–Hohenberg (WHH) formula, $H_{c2}(0) = -0.693T_c (dH_{c2}/dT)$. The slope dH_{c2}/dT estimated from the H–T phase diagram is about 8 for both samples. Taking $T_c = 34$ K, the upper critical field is $H_{c2}(0) = 188$ T. In contrast, the addition of Pb produces a large enhancement of the irreversibility field in Sr$_{0.6}$K$_{0.4}$Fe$_2$As$_2$. For instance, the H_{irr} for the pure samples is 3 T at 30 K. However, the extrapolated H_{irr} for the 5% Pb-added sample at 30 K is about 18 T, 15 T higher than that of the pure samples.

To further understand the Pb effects, the microstructure of pure and Pb-added samples was studied as shown in figure 6. As we can see, a dense structure with a grain size of about 5 μm in average diameter is observed in Pb-added samples (figure 6(b)), much larger than the size of grains (~ 1 μm) in the pure samples (figure 6(a)), indicating a substantial grain enlargement, which was supposed to occur during the sintering process.
process by Pb vapor or liquid. EDX analysis on a large area in the Pb-added samples clearly demonstrates that the product is composed of Sr, K, Fe, As and Pb elements and no other impurity element was found (figure 6(c)). In addition, SEM investigation using a quadrant backscattering detector (figure 6(d)) shows small Pb particles dispersed in the parent compound, with some residing between grains.

Therefore, it can be concluded that Pb addition inherently modifies the grain dimension as well as accelerates growth, which may be responsible for some positive effects, such as the sharp resistive transition in 5% Pb-added samples and enhanced irreversibility field and magnetic J_c. However, large Pb addition results in a J_c degradation, because of more non-superconducting phases existing, which is supported by XRD analysis in the 10% and 20% Pb-added samples (see figure 1).

In order to reveal the effect of Pb addition on the transport property, some pure and Pb-added Sr$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ tapes were made through the in situ powder-in-tube method, and transport critical currents of the tapes were measured by using a standard DC four-probe method, as shown in figure 7. Clearly, the Pb-added tapes show a higher J_c than the pure samples in the low field region and a highest J_c of 1100 A cm$^{-2}$ in self-field was obtained by 5 wt% Pb addition. However, the J_c in the high field region was not significantly increased. The preparation and details of superconducting properties of the Pb-added wires and tapes will be reported elsewhere.

Figure 6. Scanning electron micrographs of pure (a) and 10% Pb-added (b) Sr$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ samples; EDX spectrum (c) and QBSD image (d) for the 10% Pb-added samples.

Figure 7. Transport J_c at 4.2 K as a function of applied field for pure and Pb-added Sr$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ tapes. The measurements were performed in magnetic fields parallel to the tape surface.
Although a remarkably enhanced magnetic J_c was observed in Pb-added samples, it is known that two kinds of loops, intra-grain current loops and inter-grain current loops, contribute to the magnetization of granular superconductors. Thus, the improvement in magnetic J_c (figure 4) may originate from intra-grain current loops or inter-grain current loops, or both of them. As the SEM study on microstructures (figure 6) reveals that Pb addition promotes crystal growth, these large grains, meaning large dimensions of intra-grain loops, were supposed to contribute to the enhancement of magnetic J_c in the entire field region. In addition, the transport result (figure 7) clearly shows that another contribution from inter-grain J_c improvement also exists.

Therefore, the improved magnetic J_c originates from both intra-grain and inter-grain currents. Then the enlarged intra-grain current loops, maybe due to the grain size enlargement by Pb addition, are responsible for enhanced magnetic J_c at high fields. While for the improvement of transport J_c at low fields, further study on the grain boundary is needed.

4. Conclusions

We have demonstrated the effects of Pb addition on critical transition temperature T_c, magnetic hysteresis, upper critical field H_{c2}, irreversibility field H_{irr}, and transport J_c of polycrystalline Sr$_{0.6}$K$_{0.4}$FeAs. The critical transition temperature T_c showed no degradation up to 20 wt% Pb addition, and dramatic enhancements of magnetic J_c and irreversibility field H_{irr} were observed for appropriate Pb concentrations. We notice that even the transport J_c is not affected much at high fields, while a substantial improvement is obtained at low fields by 5 wt% Pb addition.

Acknowledgments

The authors thank Professors K Watanabe, S Awaji, G Nishijima, Haihu Wen and Liye Xiao for their help and useful discussions. This work is partially supported by the Beijing Municipal Science and Technology Commission under grant no. Z09010300820907, the National ‘973’ Program (grant no. 2006CB601004) and the Natural Science Foundation of China (grant nos. 50777062 and 50802093).

References

[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[2] Yamamoto A et al 2008 Supercond. Sci. Technol. 21 095008
[3] Wen H H, Mu G, Fang L, Yang H and Zhu X Y 2008 Europhys. Lett. 82 17009
[4] Senatore C, Flükiger R, Cantoni M, Wu G, Liu R H and Chen X H 2008 Phys. Rev. B 78 054514
[5] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[6] Ren Z A et al 2008 Chin. Phys. Lett. 25 2215
[7] Bednorz J G and Muller K A 1986 Z. Phys. B 64 189
[8] Qi Y P, Zhang X P, Gao Z S, Zhang Z Y, Wang L, Wang D L and Ma Y W 2009 Physica C 469 717
[9] Ni N, Bud’ko S L, Kreyssig A, Nandi S, Rustan G E, Goldman A I, Gupta S, Corbett J D, Kracher A and Canfield P C 2008 Phys. Rev. B 78 014507
[10] Yuan H Q, Singleton J, Balakirev F F, Baily S A, Chen G F, Luo J L and Wang N L 2009 Nature 457 565
[11] Wang L, Qi Y P, Wang D L, Zhang X P, Gao Z S, Zhang Z Y, Ma Y W, Awaji S, Nishijima G and Watanabe K 2010 Physica C 470 183
[12] Ma Y W, Zhang X P, Nishijima G, Watanabe K, Awaji S and Bai X D 2006 Appl. Phys. Lett. 88 072502
[13] Salamati H, Babaei-Brojeny A A and Saha M 2001 Supercond. Sci. Technol. 14 816
[14] Zhao Y, Cheng C H and Wang J S 2005 Supercond. Sci. Technol. 18 S34
[15] Wang L, Qi Y P, Gao Z S, Wang D L, Zhang X P and Ma Y W 2010 Supercond. Sci. Technol. 23 025027
[16] Hudakova N, Plechacek V, Dordor P, Flachbart K, Knizek K, Kovac J and Reiffers M 1995 Supercond. Sci. Technol. 8 324
[17] Padam G K, Ekbote S N, Suri D K, Gogia B, Ravat K B and Das B K 1997 Physica C 277 43
[18] Ma Y, Gao Z, Qi Y, Zhang X, Wang L, Zhang Z and Wang D 2009 Physica C 469 651