The maximum number of rational points for a genus 4 curve over \mathbb{F}_7 is 24

Alessandra Rigato

Abstract

In this paper we show that the maximum number of rational points possible for a smooth, projective, absolutely irreducible genus 4 curve over a finite field \mathbb{F}_7 is 24. It is known that a genus 4 curve over \mathbb{F}_7 can have at most 25 points. In this paper we prove that such a curve can have at most 24. On the other hand we provide an explicit example of a genus 4 curve over \mathbb{F}_7 having 24 points.

1 Introduction

Given a prime power q and a positive integer g it has become an interesting challenge to determine the largest number $N_q(g)$ of rational points possible for a smooth, projective, absolutely irreducible genus g curve over a finite field \mathbb{F}_q. Tables are constantly updated at [M]. The main result of this note is the following Theorem.

Theorem 1.1. The maximum number of points $N_7(4)$ for a genus 4 curve defined over \mathbb{F}_7 is 24. Indeed:

1. Every genus 4 curve defined over \mathbb{F}_7 has at most 24 rational points.
2. The projective, smooth, absolutely irreducible curve C defined over \mathbb{F}_7 by the set of affine equations

$$
C: \begin{cases}
y^2 = x^3 + 3 \\
z^2 = -x^3 + 3
\end{cases}
$$

is a genus 4 curve having 24 rational points. Its Zeta function is

$$
Z(t) = \frac{(7t^2 + t + 1)(7t^2 + 5t + 1)^3}{(1-7t)(1-t)}.
$$

It is well known that an upper bound for $N_7(4)$ is 25. This follows by Oesterlé’s optimization of Serre’s explicit formula bound [Sch, Theorem 7.3]. The bound of 25 points was also obtained by Ihara [I] and Stöhr-Voloch [S-V, Proposition 3.2]. We show in Section 5 that a genus 4 curve over \mathbb{F}_7 with 25 rational points can not exist. This proves the first part of the Theorem. The second part is proved in Section 3.

In Section 2 we present some properties and results on the Zeta function and the real Weil polynomial of a curve, while in Section 4 we introduce some notations and number theoretical results that will be useful for the study of non-Galois function fields extensions arising in Section 5.
2 Zeta function and real Weil polynomial of a curve

Many authors have recently focused on properties of the Zeta function and the real Weil polynomial of a curve in order to improve the bounds for the number of rational points of a curve over a finite field. The Zeta function of a curve X defined over \mathbb{F}_q is given by

$$Z(t) = \prod_{d \geq 1} \frac{1}{(1 - t^d)^{a_d}},$$

where a_d denotes the number of places of degree d of the function field of X. In particular $a_1 = \#X(\mathbb{F}_q)$ is the number of rational places. If X has genus g, its Zeta function $Z(t)$ is a rational function of the form

$$Z(t) = \frac{L(t)}{(1-t)(1-qt)},$$

where $L(t) = \prod_{i=1}^{g}(1 - \alpha_i t)(1 - \overline{\alpha_i} t)$

for certain $\alpha_i \in \mathbb{C}$ of absolute value \sqrt{q}. Therefore the Weil polynomial $L(t) = qg t^{2g} + b_{2g-1} t^{2g-1} + \ldots + b_1 t + 1 \in \mathbb{Z}[t]$ is determined by the coefficients b_1, \ldots, b_g which are in turn determined by the numbers a_1, \ldots, a_g \cite[Section 5.1]{Sti}. To a genus g curve X having $L(t)$ as numerator of its Zeta function, we associate the real Weil polynomial of X defined by

$$h(t) = \prod_{i=1}^{g}(t - \mu_i) \in \mathbb{Z}[t],$$

where $\mu_i = \alpha_i + \overline{\alpha_i}$ is a real number in the interval $[-2\sqrt{q}, 2\sqrt{q}]$, for all $i = 1, \ldots, g$. We have $L(t) = t^g h/qt + 1/t)$. Moreover we denote by $a(X) = [a_1, a_2, \ldots, a_d, \ldots]$ the vector whose d-th entry displays the number $a_d = a_d(X)$ of places of degree d of the function field of X. Not every polynomial $h(t)$ with all zeros in the interval $[-2\sqrt{q}, 2\sqrt{q}]$ and with the property that

$$\frac{L(t)}{(1-t)(1-qt)} = \prod_{d \geq 1} \frac{1}{(1 - t^d)^{a_d}}$$

for certain integers $a_d \geq 0$ is necessarily the real Weil polynomial of a curve. The following result is due to Serre \cite[page 11]{Ser}, \cite[Lemma 1]{L}.

Proposition 2.1. Let $h(t)$ be the real Weil polynomial of a curve X over \mathbb{F}_q. Then $h(t)$ cannot be factored as $h(t) = h_1(t)h_2(t)$, with $h_1(t)$ and $h_2(t)$ non-constant polynomials in $\mathbb{Z}[t]$ such that the resultant of $h_1(t)$ and $h_2(t)$ is ± 1.

Generalizations of this result are due to E. Howe and K. Lauter, for example \cite[Theorem 1, Proposition 13]{HL}.

Proposition 2.2. Let $h(t) = (t - \mu)h_2(t)$ be the real Weil polynomial of a curve X over \mathbb{F}_q, where $t - \mu$ is the real Weil polynomial of an elliptic curve E and $h_2(t)$ a non-constant polynomial in $\mathbb{Z}[t]$ coprime with $t - \mu$. If $r \neq \pm 1$ is the resultant of $t - \mu$ and the radical of $h_2(t)$, then there is a map from X to an elliptic curve isogenous to E, of degree dividing r.
3 An explicit example of a genus 4 curve having 24 points over \mathbb{F}_7

In this section we prove that the curve C defined by the set of affine equations (1) is a genus 4 curve having 24 rational points over \mathbb{F}_7.

Proof of Theorem 1.1 part 2. The function field of the smooth projective curve C is $\mathbb{F}_7(x, y, z)$, where x, y and z are defined by the set of equations (1). This is a Galois extension of the rational function field $\mathbb{F}_7(x)$ of Galois group G isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

The three quadratic subfields are:

1. $\mathbb{F}_7(x, y)$ the function field of the curve of affine equation
 \[
 \tilde{E} : y^2 = x^3 + 3. \quad (2)
 \]
 This is a genus 1 curve with 13 rational points over \mathbb{F}_7. The Weil polynomial is $7t^2 + 5t + 1$.

2. $\mathbb{F}_7(x, z)$ the function field of the curve of affine equation $z^2 = -x^3 + 3$, which is isomorphic to \tilde{E} and has hence the same Weil polynomial.

3. $\mathbb{F}_7(x, w)$, where $w = xy$ and hence $w^2 = (x^3 + 3)(-x^3 + 3) = -x^6 + 2$. This is an affine equation of a smooth projective curve of genus 2. One checks that for each $x \in \mathbb{F}_7$ there are two rational points. Thus in total 14 rational points, since the place at infinity has degree 2. A small computation gives that there are 19 places of degree 2, thus the Weil polynomial is $(7t^2 + t + 1)(7t^2 + 5t + 1)$.

Since G is abelian we can compute the Zeta function $Z_C(t)$ of C by means of the following [Ro, Proposition 14.9]

\[
Z_C(t) = \prod_{\chi \in \hat{G}} L(t, \chi),
\]

where \hat{G} denotes the group of characters $\chi : G \to \{\pm 1\}$. For the non-trivial characters χ, the L-function $L(t, \chi) = \prod_P (1 - \chi(P)t^{deg P})^{-1}$ is precisely the Weil polynomial $L(t)$ of the curve corresponding to the quadratic function field fixed by $\ker(\chi)$. The L-function of the trivial character is the Zeta function of \mathbb{P}^1. Thus the Weil polynomial of C equals the product

\[
(7t^2 + t + 1)(7t^2 + 5t + 1)^3 = 7^4t^8 + \ldots + 118t^2 + 16t + 1, \quad a(C) = [24, 3, 120, 558, \ldots]
\]

of the Weil polynomials of the quadratic function fields described above. From this it follows that the genus of C is 4 and that the number of rational points equals 24.

Remark 3.1. The elliptic curve \tilde{E} defined by (2) is the unique genus 1 optimal curve over \mathbb{F}_7. Indeed, an optimal elliptic curve over \mathbb{F}_7 has Frobenius polynomial $t^2 + 5t + 7$. Hence, the discriminant is -3 and the curve admits an automorphism of order 3. Therefore its Weierstrass equation is $y^2 = x^3 + b$ for some $b \in \mathbb{F}_7^\times$ [Sil, Theorem 10.1]. Only for $b = 3$ one has a projective curve attaining the Hasse-Weil bound $q + 1 + g\sqrt{2q}$ of 13 rational points.
4 Non-Galois extensions of degree 3

In this section we introduce some notation and adapt some results of [Ri] to the examples in this paper. Let E be an elliptic curve defined over \mathbb{F}_q and let X be a genus g curve over \mathbb{F}_q. Let $X \rightarrow E$ be a morphism of degree 3 such that the induced function field extension $\mathbb{F}_q(X)/\mathbb{F}_q(E)$ is non-Galois.

Definition 4.1. We denote by X the curve whose function field is the normal closure of $\mathbb{F}_q(X)$ with respect to $\mathbb{F}_q(E)$: it is a Galois extension of $\mathbb{F}_q(E)$ having Galois group isomorphic to the symmetric group S_3. We denote by X' the curve having as function field the quadratic extension of $\mathbb{F}_q(E)$ corresponding to the group $A_3 \cong \mathbb{Z}_3$, the unique (normal) subgroup of S_3 of index 2. The situation is described in the following picture:

\begin{center}
\begin{tikzpicture}
 \node (X) at (0,0) {X};
 \node (Y) at (-1,-1) {Y};
 \node (Z) at (1,-1) {Z};
 \node (Xp) at (2,0) {X'};
 \node (E) at (0,-2) {E};
 \node (Z2) at (1,-3) {Z_2};
 \node (Z3) at (3,-2) {Z_3};
 \node (G) at (3,-4) {G};
 \draw[->] (X) to (Y);
 \draw[->] (X) to (Z);
 \draw[->] (X) to (E);
 \draw[->] (X) to (Xp);
 \draw[->] (Y) to (E);
 \draw[->] (Z) to (E);
 \draw[->] (E) to (Z2);
 \draw[->] (E) to (Z3);
 \draw[->] (Xp) to (Z2);
 \draw[->] (Xp) to (Z3);
 \draw[->] (Xp) to (G);
 \draw[->] (G) to (Z2);
 \draw[->] (G) to (Z3);
 \node at (0,-1.5) {2};
 \node at (-1,-2.5) {2};
 \node at (1,-2.5) {2};
 \node at (2,-1.5) {3};
 \node at (-2,-1.5) {3};
 \node at (-1,-3.5) {3};
 \node at (1,-3.5) {3};
 \node at (2,-3.5) {3};
 \node at (3,-2.5) {2};
 \node at (0,-4.5) {$\{1\}$};
\end{tikzpicture}
\end{center}

In the rest of the note we will make often use of the following notation:

Definition 4.2. Consider a rational place P of $\mathbb{F}_q(E)$. We say that P is
a) an A-point of E, if P splits completely in $\mathbb{F}_q(X)$;
b) a B-point of E, if P splits into two rational places of $\mathbb{F}_q(X)$, one unramified and the other one with ramification index 2;
c) a B'-point of E, if P splits into two places of $\mathbb{F}_q(X)$, one rational and the other one of degree 2;
d) a C-point of E, if P is totally ramified in $\mathbb{F}_q(X)$ with ramification index 3;
e) a C'-point of E, if P is inert in $\mathbb{F}_q(X)$ of degree 3;

Moreover we denote by a, b, b', c, c' the number of A-points, B-points, B'-points, C-points and C'-points of E respectively.

Here’s an auxiliary lemma.

Lemma 4.3. Let $q \equiv 1 \mod 3$ be a power of a prime $p \neq 2$. Then the local field $\mathbb{F}_q((t))$ does not admit an extension K of Galois group $G = \text{Gal}(K/\mathbb{F}_q((t)))$ isomorphic to the symmetric group S_3.

Proof. We refer the reader to [S2] Chapter 4 §1 for notations and results on local fields and their ramification groups. Suppose such an extension K exists. Let G_0 be the inertia subgroup of G. Since G_0 is normal in G, one identifies the quotient
G/G_0 with $\text{Gal}(K'/\mathbb{F}_q((t)))$, where K' is the largest unramified subextension of K over $\mathbb{F}_q((t))$. We have thus the following exact sequence

$$1 \to \text{Gal}(K/K') \to \text{Gal}(K/\mathbb{F}_q((t))) \to \text{Gal}(K'/\mathbb{F}_q((t))) \to 1.$$

The quotient group G/G_0 is isomorphic to the Galois group of the residue field extensions. So it is cyclic. Therefore the field K is ramified over $\mathbb{F}_q((t))$. Moreover K cannot be totally ramified, because being tamely ramified, such an extension would be cyclic. Hence the inertia group is isomorphic to \mathbb{Z}_3 the unique normal subgroup of S_3. Thus G is a semidirect product of \mathbb{Z}_3 and \mathbb{Z}_2:

$$G = \langle \sigma, \tau : \sigma^2 = 1, \tau^3 = 1, \sigma\tau\sigma^{-1} = \tau^q \rangle,$$

where τ is a generator of $\text{Gal}(K/K')$ and σ a lift of Frobenius of order 2 generating $\text{Gal}(K'/\mathbb{F}_q((t)))$. Now the order of τ is 3 and $q \equiv 1 \mod 3$, hence G is abelian. But this is a contradiction.

Assume that the field of definition of the curve \overline{X} is \mathbb{F}_q, then the following holds:

Lemma 4.4.

a) The A-points of E split completely in $\mathbb{F}_q(\overline{X})$ and in $\mathbb{F}_q(X')$.

b) The B-points of E split in $\mathbb{F}_q(\overline{X})$ into three rational places having ramification index 2, while they are ramified in $\mathbb{F}_q(X')$.

c) The B'-points of E split in $\mathbb{F}_q(\overline{X})$ into three rational places having relative degree 2, while they are inert of degree 2 in $\mathbb{F}_q(X')$.

d) The C-points of E are not totally ramified in $\mathbb{F}_q(\overline{X})$. Moreover, if $q \equiv 1 \mod 3$, they split in $\mathbb{F}_q(\overline{X})$ into two rational places having ramification index 3, while they split in $\mathbb{F}_q(X')$ into two unramified rational places.

e) The C'-points of E split in $\mathbb{F}_q(\overline{X})$ into two places having relative degree 3, while they split into two rational places in $\mathbb{F}_q(X')$.

Proof.

a) The rational places of $\mathbb{F}_q(E)$ splitting completely in $\mathbb{F}_q(X)$ split completely in the isomorphic function field $\mathbb{F}_q(Y)$ as well. Hence they split completely in the compositum $\mathbb{F}_q(\overline{X})$ and thus in the function field of X' too.

b) Let P be a B-point of E. Then the number of places of $\mathbb{F}_q(\overline{X})$ lying over the place P of $\mathbb{F}_q(E)$ must be greater than or equal to 2 and divide 6. Moreover each of them must have (the same) ramification index $e \geq 2$ and dividing 6 since the extension is Galois.

c) The reasoning is analogous to the one above for the B-points.

5
d) The rational places of $\mathbb{F}_q(E)$ that are totally ramified in $\mathbb{F}_q(X)$ are also totally ramified in the isomorphic function field $\mathbb{F}_q(Y)$. Since $\text{char} \mathbb{F}_q \neq 3$ the ramification is tame, thus they are ramified in the compositum $\mathbb{F}_q(X)$ with the same ramification index. Hence a place Q of $\mathbb{F}_q(X)$, lying over P has ramification index 3. Moreover, suppose $q \equiv 1 \mod 3$. The degree of Q can be either 2 or 1. Lemma 4.3 shows that the first case is impossible. In the latter case, there exists another rational place Q' lying over P and having ramification index 3.

This concludes the proof.

e) Let P be a rational place of $\mathbb{F}_q(E)$ inert of relative degree 3 in $\mathbb{F}_q(X)$. Since P is not ramified neither in $\mathbb{F}_q(X)$ nor in the isomorphic function field $\mathbb{F}_q(Y)$, the place P is not ramified in the compositum $\mathbb{F}_q(X)$. Since P unramified, its decomposition group must be cyclic. Hence it must have order 3. So there are two places of relative degree 3 of $\mathbb{F}_q(X)$ over P and hence two rational places of $\mathbb{F}_q(X')$ over P.

Remark 4.5. In the case of the B'-points and the C-points the arguments used do not depend on the fact that these ramifying places are rational. Hence the same results hold for higher degree places.

5 Non-existence of a genus 4 curve with 25 points over \mathbb{F}_7

Let X be a genus 4 curve having 25 rational points over \mathbb{F}_7. In this section we prove that such a curve X can not exist.

Proposition 5.1. The function field $\mathbb{F}_7(X)$ of X is a degree 3 extension of the function field $\mathbb{F}_7(E)$ of an elliptic curve E having 10 rational points over \mathbb{F}_7.

Proof. We can compute a list of monic degree 4 polynomials $h(t) \in \mathbb{Z}[t]$ for which $a_1 = 25$, $a_d \geq 0$ for $d \geq 2$ in the relation described in Section 2. Moreover we require that $h(t)$ has all zeros in the interval $[-2\sqrt{7}, 2\sqrt{7}]$ and that the conditions of Proposition 2.1 are satisfied. A short computer calculation gives that if a genus 4 curve X having 25 rational points over \mathbb{F}_7 exists there is a unique possibility for its real Weil polynomial, namely

$$h(t) = (t + 2)(t + 5)^3 \quad \text{with} \quad a(X) = [25, 1, 115, 576, \ldots].$$

Since the resultant of $t + 2$ and $t + 5$ is 3, Proposition 2.2 applies. Notice that $t + 2$ is the real Weil polynomial of a genus 1 curve with 10 rational points over \mathbb{F}_7.

Let $\mathbb{F}_7(X)/\mathbb{F}_7(E)$ be as in Proposition 5.1.

Lemma 5.2. The degree 3 function field extension $\mathbb{F}_7(X)/\mathbb{F}_7(E)$ is not Galois.

Proof. Suppose that $\mathbb{F}_7(X)/\mathbb{F}_7(E)$ is Galois. Since E has 10 rational points and X has 25, the only possibility for the splitting behavior of the rational places of $\mathbb{F}_7(E)$ is that eight places split completely in $\mathbb{F}_7(X)$, one place P is (tamely) totally ramified.
and one place T is inert, i.e. it gives rise to a place of degree 3 in $\mathbb{F}_7(X)$. Moreover, by the Hurwitz genus formula the degree of the different D of $\mathbb{F}_7(X)/\mathbb{F}_7(E)$ is $2 \cdot 4 - 2 = 6$. Hence we can only have that $D = 2P + 2Q$, where Q is a place of $\mathbb{F}_7(E)$ of degree 2. The function field of X is hence a subfield of the ray class field of $\mathbb{F}_7(E)$ of conductor $P + Q$, where all rational places in $E(\mathbb{F}_7) \setminus \{P, T\}$ split completely. By translation we can always assume that P equals the point at infinity of E and using the elliptic involution we can let T vary among only half of $E(\mathbb{F}_7) \setminus \{P\}$. Up to isomorphism there are two elliptic curves over \mathbb{F}_7 with 10 rational points. They have affine equations $y^2 = x^3 + x + 4$ and $y^2 = x^3 + 3x + 4$. A short MAGMA computation allows to conclude that this ray class field is trivial for both curves E. See the appendix for the MAGMA code.

Since the extension $\mathbb{F}_7(X)/\mathbb{F}_7(E)$ is non-Galois, we may apply Lemma 4.4. In the following Lemma we present the possibilities for the numbers a, b, . . . of A-points, B-points, . . . of E. Moreover we consider the curve X whose function field is the Galois closure of $\mathbb{F}_7(X)$ with respect to $\mathbb{F}_7(E)$. We compute its number N of rational points and its genus g in each case.

Lemma 5.3. There are five possibilities for the splitting behavior of the rational places of $\mathbb{F}_7(E)$ in $\mathbb{F}_7(X)$. The curve X is defined over \mathbb{F}_7 in any of these cases. Its genus γ and its number N of rational points are displayed in Table 1.

case	a	b	b'	c	c'	N	g
I	8	0	1	0	1	48	10
II	8	0	0	1	1	50	7 or 9
III	7	2	0	0	1	48	8 or 10
IV	7	1	1	1	0	47	9
V	6	3	1	0	0	45	10

Table 1: Splitting behavior of the rational places of $\mathbb{F}_7(E)$ in $\mathbb{F}_7(X)$

Proof. The curve X has 25 rational points over \mathbb{F}_7, while the curve E has 10. Hence by Lemma 4.4 we have that the numbers a, b, . . . of A-points, B-points, . . . of E must satisfy:

\[
\begin{align*}
3a + 2b + b' + c &= 25 \\
a + b + b' + c + c' &= 10
\end{align*}
\]

(4)

The different D of the function field extension $\mathbb{F}_7(X)/\mathbb{F}_7(E)$ has degree 6 by the Hurwitz formula. Moreover the contribution of all ramifying rational points can not be exactly 5. Hence we also have that

\[
\begin{align*}
b + 2c &\leq 6 \\
b + 2c &\neq 5
\end{align*}
\]

(5)

The values of a, b, . . . that satisfy both (4) and (5) are those displayed in Table 1 plus the values $(a, b, b', c, c') = (7, 1, 2, 0, 0)$. But this case can never occur: $b' = 2$.
implies that $F_7(X)$ has at least two places of degree 2. Which contradicts the fact that $a_2(X) = 1$ as in [4]. We remark that X is indeed defined over F_7 since in any case the number a of A-points of E in non-zero (the full constant field of the function field of X is always contained in the residue fields of its places). The number N of F_7-rational points of X is 6 $a + 3b + 2c$ by Lemma 4.4. The genus \overline{g} of X is computed by means of the Hurwitz formula $2\overline{g} - 2 = \deg \overline{D}$, where \overline{D} is the different of the function field extension $F_7(X)/F_7(E)$. We determine the degree of the divisor \overline{D} as follows.

The ramifying rational places of $F_7(E)$ give a contribution of $b + 2c$ to the degree of the different \overline{D}. Since $a_2(X) = 1$, there can be at most one degree 2 place of $F_7(E)$ that (totally) ramifies in $F_7(X)$. If there is such a ramified place, than $b' = 0$: by Lemma 4.4 and Remark 4.5, the degree of \overline{D} is 12 in case II and 14 in case III. Thus we have $\overline{g} = 7$ and $\overline{g} = 8$ respectively. In case there is no such a ramifying place, there always exists a unique place of $F_7(E)$ of degree $6 - (b + 2c)$ splitting in $F_7(X)$ into two places of the same degree, one having ramification index 2 and one unramified. In case I there is moreover the possibility that two places of $F_7(E)$ of degree $(6 - (b + 2c))/2 = 3$ appear in the support of \overline{D}, each of them splitting in $F_7(X)$ into two places of the same degree, one having ramification index 2 and one unramified. By Lemma 4.4 and Remark 4.5, the degree of \overline{D} is 18 for both possibilities in case I and thus $\overline{g} = 10$. The degree of \overline{D} is 16 in cases II and IV and it is 18 in cases III and V, giving $\overline{g} = 9$ and $\overline{g} = 10$ respectively.

Lemma 5.4. The does not exist a curve \overline{X} with genus \overline{g} and number \overline{N} of F_7-rational points as displayed in Table 1.

Proof. By the Oesterlé bound [Sch, Theorem 7.3] a curve having 48 (resp. 45) rational points over F_7 must have genus at least 11 (resp. 10). Hence in the first four cases the curve \overline{X} can not exist because it has too many points for its genus. In case V the curve \overline{X} has exactly 45 rational points. Moreover, since $b' = 1$, the curve \overline{X} has at least three places of degree 2 by Lemma 4.4. We search for the real Weil polynomial $h(t)$ of such a curve. See Section 4.4 for the relation between $h(t)$ and the coefficients a_d of the Zeta function of \overline{X}. We compute a list of monic degree 4 polynomials $h(t)$ with integer coefficients for which $a_1 = 25$, $a_2 \geq 3$ and $a_d \geq 0$ for $d \geq 3$. Moreover we require that $h(t)$ has all zeros in the interval $[−2\sqrt{7}, 2\sqrt{7}]$. A short computer calculation gives that there is only one such a polynomial, namely

$$h(t) = (t + 3)^3(t + 4)^7 \quad \text{with} \quad a(\overline{X}) = [45, 3, 17, 807, \ldots].$$

But since the resultant of $t + 3$ and $t + 4$ is 1, we have a contradiction by Proposition 2.1 and hence also in this case the curve \overline{X} does not exist.

Summing up these results we prove the first part of the Theorem.

Proof of Theorem 1.1 part 1. Let X denote a genus 4 curve over F_7. We pointed out in the Introduction that an upper bound for the number of rational points of X is 25. If a curve X with 25 rational points exists, then Proposition 5.4 implies that it is a degree 3 covering of an elliptic curve E with 10 rational points. On the other hand,
Lemmas 5.2, 5.3, and 5.4 show that the curve \overline{X} and hence the curve X cannot exist. This proves that every genus 4 curve over \mathbb{F}_7 has at most 24 rational points.

6 Appendix

We list here the MAGMA code used for the ray class field computation in Lemma 5.2.

```magma
kx<x> := FunctionField(GF(7));
kxy<y> := PolynomialRing(kx);
E:=FunctionField(y^2-x^3-x-4);
// alternatively E:=FunctionField(y^2-x^3-3*x-4);
Genus(E);
P:=Places(E,1);
print "Rational places of E: ",P;
Q:=Places(E,2); #Q;
for i in {2, 4, 5, 8, 9} do
  // this sets the rational place T to be (x,y+2), (x+5,y),
  // (x+3,y+x), (x+2,y+1)
  for j:=1 to #Q do
    D:=1*P[1]+1*Q[j];
    // P[1] is the place at infinity
    S:=[2,3,4,5,6,7,8,9,10] diff {i};
    // set of splitting places
    R, mR := RayClassGroup(D);
    U := sub<R | [P[1]@@mR : x in S]>;
    if not (#quo<R|U> eq 1) then
      print "********************************************************
      quo<R|U>;
      C := FunctionField(AbelianExtension(D, U)); C;
      print "Genus", Genus(C);
      print "Number of places a(C)=[",#Places(C, 1),",",#Places(C, 2),
      ",",#Places(C, 3),",",#Places(C, 4),"]";
      print "Degree 2 place of E ramifying is Q=", Q[j];
      print "Inert place of E is T=", P[i];
    end if; end for; end for;
```

References

[H-L] E. Howe and K. Lauter, Improved upper bounds for the number of points on curves over finite fields, Ann. Inst. Fourier 53 (2003), 1677–1737.

[I] Y. Ihara Some remarks on the number of rational points of algebraic curves, J. Fac. Sci. Univ. Tokyo, IA 28 (1982), 721–724.
[L] K. Lauter, *Ray class field constructions of curves over finite fields with many rational points*, Algorithmic Number Theory, H. Cohen (ed.), Lecture Notes in Comput. Sci. **1122**, Springer, (1996), 187–195.

[M] manyPoints – *Table of Curves with Many Points*, continuously updated at http://www.manypoints.org/.

[Ri] A. Rigato, *Uniqueness of low genus optimal curves over \(\mathbb{F}_2 \)*, to appear in Proceedings of AGTC and Geocrypt 2009, Contemporary Mathematics book series of the American Mathematical Society.

[Ro] M. Rosen, *Number Theory in Function Fields*, Springer-Verlag, New York, 2002.

[Sch] R. Schoof, *Algebraic curves and coding theory*, UTM 336, Univ. of Trento, 1990.

[S1] J.-P. Serre, *Rational points on curves over finite fields*, unpublished notes by Fernando Q. Gouvêa of lectures at Harvard University, 1985.

[S2] J.-P. Serre, *Local fields*, Springer-Verlag, New York, 1979.

[Sil] J.H. Silverman, *The Arithmetic of Elliptic Curves*, Springer-Verlag, New York, 1986.

[Sti] H. Stichtenoth, *Algebraic Function Fields and Codes*, Springer-Verlag, Berlin, 2008.

[S-V] K.-O. Stöhr and J.F. Voloch *Weierstrass points and curves over finite fields*, Proc. London. Math. Soc. **52** (1986), 1–19.

Alessandra Rigato
K.U. Leuven, Department of Mathematics, Celestijnenlaan 200 B, B-3001 Leuven (Heverlee), Belgium
Alessandra.Rigato@wis.kuleuven.be