Apoptosis of human seminoma cells upon disruption of their microenvironment

RA Olie1,*, AWM Boersma2, MC Dekker1, K Nooter2, LHJ Looijenga1 and JW Oosterhuis1

1Laboratory of Experimental Patho-Oncology, 2Department of Medical Oncology, Dr Daniel den Hoed Cancer Center (Academic Hospital), Rotterdam, The Netherlands.

Summary One of the main obstacles encountered when trying to culture human seminoma (SE) cells in vitro is massive degeneration of the tumour cells. We investigated whether dissociation of tumour tissue, to obtain single-cell suspensions for in vitro culture, results in the onset of apoptosis. Using morphological analysis and in situ end labelling, less than 4% of apoptotic tumour cells were detected in intact tissue from 11 out of 14 SEs. In these 11 tumours, apoptosis-specific DNA ladders, indicative of internucleosomal double-strand DNA cleavage, were not detected on electrophoresis gels. In contrast, three SEs with over 12% of apoptotic tumour cells in the intact tissue and all analysed (pure) SE cell suspensions, obtained after mechanical dissociation of intact tumour tissue, showed DNA ladders. Flow cytometric analysis of end labelled SE suspensions showed DNA breaks in up to 85% of the tumour cells. As indicated by cell morphology and DNA degradation, SE cells appear to rapidly enter the apoptotic pathway upon mechanical disruption of their microenvironment. No expression of p53 and of the apoptosis-inhibitor bcl-2 was detectable in intact SE tissue or cell suspensions. Our data suggest that abrogation of apoptosis might be crucial to succeed in culturing human SE cells in vitro.

Keywords: human seminoma; apoptosis; microenvironment; bcl-2; p53

Besides proliferation and differentiation, apoptosis (programmed cell death) is one of the main mechanisms controlling cell fate during embryogenesis, morphogenesis and tissue homeostasis (Hinchcliffe, 1981; Waring et al., 1991; Williams, 1991; Collins et al., 1994; Vaux et al., 1994). Recently, Frisch and Francis (1994) reported that epithelial cells undergo apoptosis upon disruption of their interactions with the extracellular matrix, in a process they named anoikis. Apparently, interactions between cells and their matrix, mediated by integrins (the matrix receptors), provide the cells with a survival and/or proliferation signal, which blocks anoikis. Besides specific cell–matrix interactions, growth factor–receptor interactions are also involved in prevention of apoptosis. Many cell types are known to depend upon growth factor or hormonal stimulation to survive (and proliferate): among others, prostate and breast cells on steroids (Kerr and Searle, 1973; Bardon et al., 1987), vascular endothelial cells on fibroblast growth factor (Araki et al., 1990), mouse embryo cells on epidermal growth factor (Rawson et al., 1991) and glial cells on platelet-derived growth factor (Barres et al., 1992). Pesce et al. (1993, 1994) reported that murine primordial germ cells (PGCs) die apoptotically at extragonadal sites during embryogenesis and during in vitro handling upon isolation from the embryo. This in vitro apoptosis could be blocked by the presence of specific growth factors, i.e. stem cell factor (SCF) or leukaemia inhibitory factor (LIF) (Pesce et al., 1993). In addition to extracellular factors, several intracellularly acting agents have been implicated in the control of apoptosis. Bcl-2 protein (located in the membrane of mitochondria, nucleus and endoplasmatic reticulum; Jacobson et al., 1993), was the first oncogene product reported to interfere with apoptosis, sustaining cell survival without increasing proliferation rates in non-Hodgkin’s lymphoma (Tsujimoto et al., 1984; Bakshi et al., 1985; Cleary and Skarl, 1985; Vaux et al., 1988; Hockenberry et al., 1990). Bcl-2 has been reported to block apoptosis upon growth factor withdrawal or disruption of cell–matrix interactions (Hockenberry et al., 1990; Garcia et al., 1992). In certain cell types, apoptosis cannot be blocked by bcl-2 (over)expression and the death pathway in these cells appears to be bcl-2 independent (Sentman et al., 1991). The nuclear protein p53, which constitutes a checkpoint for DNA integrity during the cell cycle (Oren, 1992), has recently been implicated in the induction of apoptosis (Donehower et al., 1992; Oren, 1992; Lane, 1993). Upon DNA damage, p53 expression is enhanced and the damaged cell enters a p53-dependent apoptotic pathway. Removal of certain growth factors can also result in the onset of p53-dependent apoptosis (Yonish-Rouach et al., 1991; Eizenberg et al., 1995). In several cell types and upon induction by various stimuli, apoptosis can also proceed in a p53-independent way (Clarke et al., 1993; Lowe et al., 1993).

Primary seminomas (SEs), tumours considered to be the malignant counterparts of PGCs (Holstein et al., 1987; Skakkebak et al., 1987; Gondos, 1993; Holstein, 1993), occur at specific locations, i.e. in the gonads (Ulbright and Roth, 1987; Young et al., 1994), mediastinum (Dehner, 1990) and midline of the brain (Dehner, 1986). Like murine PGCs, which can become reprogrammed to give rise to pluripotent embryonic germ cells when cultured in the presence of SCF, LIF and basic fibroblast growth factor (Matsui et al., 1992; Resnick et al., 1992), SE cells express the SCF receptor c-Kit (Strohmeyer et al., 1991; Murty et al., 1992; Olie et al., 1995a). SE cell survival and proliferation appear to depend upon a very specific microenvironment and growth factor supply. These findings suggest that a lack of apoptosis and a differentiation block could have contributed to tumour formation.

Recently we reported that attempts to culture human SE cells in vitro were hampered by massive degeneration of the tumour cells within the first 3 days of culture (Olie et al., 1995a). We have now investigated whether SE cells die apoptotically upon disruption of their microenvironment, before in vitro culturing. Furthermore, we immunohistochemically analysed whether SE cells express bcl-2, and whether death of the SE cells coincides with enhanced p53 expression.

Correspondence: LHJ Looijenga, Laboratory of Experimental Patho-Oncology, Dr Daniel den Hoed Cancer Center (Academic Hospital), Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands.

*Present address: Centre d’Immunologie ISERM-CNRS de Marseille-Luminy, Case 906, 13288 Marseille Cedex 9, France

Received 9 August 1995; revised 30 October 1995; accepted 22 November 1995

Materials and methods

Tumour handling and characterisation

Fourteen fresh orchidectomy specimens, macroscopically identified as SEs, were collected in the operating theatre or
breaks in tissue sections can be visualised using in situ end labelling (ISEL). According to Wijisman et al. (1993), 2 μm paraffin sections were deparaffinised, rehydrated and incubated at 80°C, in 2 × SSC (0.3 M sodium chloride, 30 μM sodium citrate) for 20 min. After a triple aqueous bidest wash, the slides were treated with 20 μg ml⁻¹ pronase E (Sigma, Saint Louis, MO, USA) in PBS at room temperature for 30 min, rinsed with running tapwater, incubated in buffer B (50 mM Tris, 5 mM magnesium chloride, 10 mM β-mercaptoethanol, 0.005% BSA, pH 7.2), dehydrated using 50, 70 and 100% ethanol, and air-dried. Positive controls were incubated with 200 μg ml⁻¹ DNAase I (Boehringer, Mannheim, Germany) in buffer C (10 mM Tris pH 7.4, 10 mM sodium chloride, 5 mM magnesium chloride, 0.1 mM calcium chloride and 25 mM potassium chloride) at 37°C for 15 min, and washed with buffer B. Subsequently, all slides were incubated at 15°C for 1 h in buffer B containing dATP, dCTP, dGTP, biotin–16-dUTP (0.01 mM each) (Boehringer) and 20 kU ml⁻¹ DNA polymerase I (Promega, Madison, USA). Polymerase was not added to negative controls. After PBS washes, endogenous peroxidase activity was blocked using 0.1% hydrogen peroxide/PBS and, after PBS washes, slides were incubated with avidin labelled horseradish peroxidase (1:1000) (Sigma) in 1% BSA/0.5% Tween 20/PBS. Subsequently, slides were PBS washed and the immunoreaction was visualised using 3,3'-diaminobenzidine tetrahydrochloride (Fluka Chemie, Buchs, Switzerland)/hydrogen peroxide. After rinsing with tapwater, slides were counterstained for 5 s with 1% methyl green (Merck, Darmstadt, Germany). Slides were rinsed with aqua bidest and, after removal of excess bidest using filterpaper, with acetone. These washes were repeated once. Slides were dipped in two batches of acetone–xylol (1:1), for 2 s/batch, cleared in xylene and embedded in Pertex (Histolab Products, Västra Frölunda, Sweden). The percentage of apoptotic cells was scored by counting a total of 150–580 viable, or labelled and morphologically apoptotic SE cells [i.e. (fragmented) cells with condensed chromatin and cytoplasm (Wyllie et al., 1980; Kerr et al., 1987; Arends and Wyllie, 1991)] in five representative low-power microscopic fields at a 400 × magnification.

Flow cytometry End labelling in combination with flow cytometry (FCM) can be applied to analyse cell suspensions for the presence of single- or double-strand DNA cleavage. For FCM according to Darzinskiewicz et al. (1992), the fixed cells were washed in PBS and resuspended in buffer D (50 mM Tris pH 7.8, 5 mM magnesium chloride, 10 mM β-mercaptoethanol, 1 kU ml⁻¹ DNA polymerase I, 0.2 mM dATP, dCTP, dGTP and biotin–11-dUTP). After incubation at 15°C for 90 min, 5 μl Triton-X-100/PBS, and resuspended in staining buffer containing 2.5 mg ml⁻¹ avidin–fluorescein isothiocyanate (FITC) (Vector Laboratories, Burlingame, USA) in 4 × SSC (0.6 mM sodium chloride, 60 mM sodium citrate), 0.1% Triton-X-100 and 5% (w/v) non-fat dried milk. Staining was performed at 37°C for 30 min. Subsequently, the cells were washed in PBS. DNA was counterstained with 5 μg ml⁻¹ propidium iodide (PI) (Calbiochem, La Jolla, CA, USA) or 1 mg ml⁻¹ 4',6-diamidino-2-phenylindole (DAPI) (Calbiochem) in PBS at 4°C for 30 min. FCM was performed on a Facsscan (PI-stained samples) or Vantage (DAPI stained samples) flow cytometer (Becton Dickinson) with excitation at 488 nm or 351/364 nm respectively. The following parameters were measured: forward light scatter, perpendicular light scatter, FITC (554 nm), and fluorescence signals of DAPI–DNA–PI complex (563–607 nm) or DNA–DAPI complex (488 nm). Cell debris was excluded from analysis by appropriate forward light scatter threshold setting.

Detection of DNA ladders The occurrence of characteristic internucleosomal double-strand breaks is confirmed by the detection in cell lysates of DNA–protein complexes or multimers of that, on electrophoresis gels (Wyllie, 1980). According to Maniatis et al. (1982), DNA was isolated from:
(1) three 10 μm slides from snap-frozen SE blocks; (2) snap-frozen pellets from fresh SE cell suspensions; (3) snap-frozen pellets from either lymphocyte-containing or lymphocyte-depleted SE cell suspensions, that had previously been cryopreserved. Cells were lysed in 400 μl of buffer [10 mM Tris, 400 mM sodium chloride, 2 mM EDTA, 100 μg ml⁻¹ proteinase K (Boehringer)], overnight at 37°C. The lysate was extracted with 500 μl of phenol–chloroform (1:1) and subsequently with chloroform–isoamyl alcohol (24:1). DNA was precipitated by addition of 50 μl of 3 M sodium acetate and 800 μl of 100% ethanol, and overnight incubation at −20°C. The pellet was spun down, washed with 70% ethanol, vacuum dried, dissolved in 100 μl of TE (10 mM Tris, 1 mM EDTA) with 50 mg l⁻¹ RNAase A (Sigma) and incubated at 37°C for 30 min. Subsequently, a 20 μl solution was subjected to electrophoresis in a 1.8% agarose gel at 60 V for 2−3 h.

Methodological control Before analysis of the tumour samples, it was ensured that results obtained with ISEL and FCM were comparable. Therefore, apoptosis was induced in CHO cell cultures by cisplatin (Sorensen et al., 1990; Boersma et al., 1995). In T75 flask containing Dulbecco’s modified Eagle medium (DMEM)+10% FCS (Gibco), 2 × 10⁶ CHO cells were seeded. Upon attachment, cells were incubated with 21 μM cisplatin (Bristol-Myers Squibb, Woerden, The Netherlands) for 2 h. After washes with medium, the cells were incubated for 48 h. Floating cells were harvested by centrifugation of the culture medium at 1000 r.p.m. for 5 min. After addition of 10 ml of fresh culture medium, attached cells were harvested from the flasks using cell scrapers and spun down. Cells from untreated cultures, harvested by scraping, were used as a negative control. All samples were split into two fractions; one was fixed in 4% formalin at room temperature for 1 h and paraffin embedded (for ISEL), the other was fixed in 1% formalin and stored under ethanol (for FCM). Before ISEL or FCM, performed in duplicate, the samples were treated with pronase E for 0 or 30 min at room temperature. Upon ISEL, the percentage of morphologically apoptotic and labelled cells was determined by counting a total of at least 100 cells. In the negative controls a low percentage of labelled cells was detected (not shown). Without pronase treatment ISEL and FCM detected <1% labelled cells. This percentage increased up to 2% when pronase was used before labelling. In the samples of floating cells from treated cultures, application of pronase did not markedly affect the percentage of labelled cells detected with FCM (about 60% either with or without pronase). However, pronase treatment of paraffin sections of these cells was necessary to avoid underestimation of the number of apoptotic cells. With pronase treatment, about 60% of the CHO cells was found to be apoptotic, i.e. similar to the FCM results, while this number was about 40% without pronase. Probably, pronase treatment is necessary to provide full access of DNA polymerase to paraffin-embedded cells. The ISEL and FCM results were confirmed by the presence of DNA ladders only in the cisplatin-treated cultures (not shown).

Results

In Table I the results on all SE tissue blocks and cell suspensions are summarised. In paraffin-embedded intact tissue from 11 out of 14 SEs less than 4% of the tumour cells had morphological characteristics of apoptosis and DNA strand breaks (Figure 1a). In three SEs this number was higher, i.e. 20%, 13% and 15% respectively (Figure 1b). Apoptosis-specific DNA ladders, indicating internucleosomal double-strand DNA cleavage, were not detected in intact tissue of the SEs with less than 4% apoptotic cells (Figure 2a). In contrast, these ladders were present in the three SEs with up to 20% apoptotic cells (not shown). All lymphocyte-depleted SE cell suspensions (n = 11) obtained after mechan-
ical dissociation showed ladder patterns; for some tumours the ladders were (nearly) absent in the non-lymphocyte-depleted suspensions and well visible in the SE cell-enriched suspensions (shown in Figure 2b for TL602, TL614 and TL1187). In non-lymphocyte-depleted cell suspensions up to 85% of the SE cells contained nicked DNA, as detected with FCM (Figure 3). In the intact tissues of tumours TL614 and TL4942a a relatively high amount of lymphocytes was present. The cell suspensions of these tumours contained very few SE cells, either viable or apoptotic.

Two tumours (TL6209 and TL6329) underwent additional analysis. From each tumour, three pairs of tissue blocks of approximately 0.125 cm³ were incubated at 4°C and three pairs at 34°C in medium A. At both temperatures, the pairs were incubated for 1, 4, or 16 h respectively. From each pair, one block was fixed in 4% formalin for paraffin embedding, while the other was snap frozen in liquid nitrogen for DNA analysis. Table II and Figure 4 show that in both tumours the apoptotic process was slowed down by keeping the microenvironment intact, while incubation of the cells at 4°C resulted in a further delay in the onset of apoptosis. Staining intensity of labelled SE cells was higher and the cells had a more pronounced apoptotic morphology at 34°C than at 4°C. In addition, on electrophoresis gels, DNA ladders were only detected after incubation at 34°C for 4 and 16 h, indicative of the occurrence of double-stranded DNA cleavage only at this temperature.

Expression of bcl-2 could be immunohistochemically detected in infiltrating lymphocytes but was absent from the SE cells in all of the analysed tumours (not shown). None of the intact tissue samples (either directly fixed or upon

![Figure 2](image1)

Figure 2 In intact tissue from 11 out of 14 seminomas no DNA ladders were detectable upon electrophoresis, as shown here for eight tumours (2 μg per lane) (a). In single cell suspensions, obtained upon mechanical dissociation of tumour tissue, DNA ladders were detectable, as shown here for three tumours. Note that for some tumours the ladders were (nearly) absent in non-lymphocyte-depleted suspensions and well visible in SE cell-enriched suspensions (5 μg per lane) (b). –L, depleted of lymphocytes/SE cell enriched. +L, Not depleted of lymphocytes; M, marker 8 (Boehringer).

![Figure 3](image2)

Figure 3 Representative example of the flow cytometric analysis of end-labelled seminoma cell suspensions without lymphocyte depletion, obtained upon mechanical dissociation of tumour tissue (TL3544). SE+, apoptotic seminoma cells; SE–, intact seminoma cells; L–, intact lymphocytes; FITC, fluorescence signal indicating labelling of DNA strand breaks; DAPI, fluorescence signal indicating cellular DNA content.

Incubation time (h)	TL 6209 4°C	TL 6209 34°C	TL 6209 4°C	TL 6209 34°C
0	1	1	2	2
1	23	10	8	8
4	16	18	5	30
16	17	41	5	100

Intact seminoma tissue blocks (0.125 cm³) were incubated in vitro for 1, 4 or 16 h at 4°C or 34°C in medium A. The percentage of apoptotic cells was determined by counting a total of at least 250 viable or labelled and morphologically apoptotic seminoma cells. Staining intensity of labelled seminoma cells was higher and the cells had a more pronounced apoptotic morphology at 34°C than 4°C.

![Figure 4](image3)

Figure 4 DNA ladders from in vitro cultured intact tissue of seminoma TL6209. Tissue was incubated for 1, 4 or 16 h at 4 or 34°C (3 μg per lane). M, marker 8 (Boehringer).
incubation in medium for 1, 4 or 16 h at 4 or 34°C), nor any of the single cell suspensions were found to detectably express p53 (not shown) in the SE cells.

Discussion

Apoptosis can be induced by various agents, including disruption of cell–matrix interactions (Frisch and Francis, 1994), growth factor withdrawal (Collins et al., 1994), oxidative stress (Buttte and Sandstrom, 1994) and cytotoxic drugs (Nooter et al., 1995). We have now shown that SE cell suspensions contain up to 85% apoptotic cells immediately after disruption of the cellular microenvironment, while very few (<3%) apoptotic cells are present in intact SE tissue. The immediate DNA fragmentation appears unique and indicative of the high propensity of SE cells to undergo apoptosis, a characteristic which might be used to eliminate SE in vivo. Induction of apoptosis is probably the basis of the successful treatment of SE patients with radiation and chemotherapy (Klein and Wolff, 1988; Hanks et al., 1992; Fossé et al., 1995).

Several lines of evidence suggest that the ras oncogene can inhibit the process of apoptosis (Frisch and Francis, 1994; Nooter et al., 1995; Olie et al., 1995b). Frisch and Francis (1994) reported that cells are (partially) protected against anoikis (apoptosis upon disruption of cell–matrix interactions) by activated ras or overexpression of bcl-2. Schlaepfer et al. (1995) suggested that the integrity mediated by ras in suppressing activity of the extracellular matrix is most likely signalled by the ras pathway. Using another approach, we recently found that oncogenic ras can inhibit drug-induced apoptosis, in cells transfected with the c-Ha-ras oncogene (Nooter et al., 1995). Our observation that SEs bearing a mutant ras showed enhanced survival and proliferation in cocultures with embryonal fibroblast feeder layers, as compared with SEs with wild-type ras (Olie et al., 1995a, b), could be based on the apoptosis/anoikis-abrogating activity of mutant ras. However, the four ras mutant tumours among the SEs analysed here (TL614, TL1049, TL3544, TL8837) (Olie et al., 1995a, b), were indistinguishable from the non-mutant tumours in the assays performed. The exact relation between the onset of apoptosis upon tumour dissociation, the presence of a mutant ras gene and in vitro behaviour is a subject for further study.

Apoptosis of cultured murine PGCs, which appear to need a specific microenvironment for both in vivo and in vitro survival and proliferation, can be suppressed by SCF (Pese et al., 1993). We previously reported that the addition of SCF to cultures of SE cells (with an activated ras gene) resulted in colony formation (Olie et al., 1995a). By analogy with the findings on murine PGCs (Dolci et al., 1991; Godin et al., 1991) this was probably due to abrogation of apoptosis (i.e. extension of cell survival) and prolonged proliferation, without an increase in proliferation rate.

We suggest that in our experiments the SE cells rapidly entered the apoptotic pathway upon mechanical disruption of their microenvironment and/or deprivation of cell–matrix interactions and growth factors. Preliminary tissue culture results indicate that in an environment with intact cell–matrix interactions apoptosis of SE cells is delayed. The occurrence of apoptosis upon disruption of tumour tissue appears not to be unique to SEs. We detected DNA ladders in three out of seven cell suspensions of testicular non-seminomatous germ cell tumours (unpublished observation), a tumour type that generally performs better than SE during in vitro culture and for which cell lines exist. Upon trypsinisation of the non-seminomatous cell line NT2 (Andrews, 1984), we were able to detect ISEL-positive cells without DNA ladder formation. This ISEL positivity disappeared in time during renewed culturing (unpublished observation), suggesting that DNA strand breaks can be repaired in this cell type. Whether DNA breaks can also be repaired in primary non-seminomatous cell suspensions needs further investigation. We presume that repair does not occur in SE cells.

The apoptotic process analysed in SE cells appears to be independent of (enhanced) p53 expression, which could not be detected immunohistochemically. In addition, the absence of bcl-2 expression is in concordance with the (high) susceptibility of SE cells to apoptosis. Future analysis of the expression of bcl-2 family members in SE cells should yield more information on the control of apoptosis in these cells.

Blocking the onset of apoptosis appears crucial for successful in vitro culture of SE cells. Once apoptosis can be abrogated, the pathobiological relation between the two histological types of human primary testicular germ cell tumours of adults, namely SEs and non-seminomatous testicular germ cell tumours (for which in vitro culture conditions and cell lines available) might be studied in vitro.

References

ANDREWS PW. (1984). Pluripotent embryonal carcinoma clones derived from the human teratoma cell line Tera-2: differentiation in vivo and in vitro. Lab. Invest., 50, 147–167.

ARA KI S, SHIMADA Y, KAJI K AND HAYASHI H. (1990). Apoptosis of vascular endothelial cells by fibroblast growth factor deprivation. Biochem. Biophys. Res. Commun., 168, 1194–1200.

ARENDS MJ AND WYLIE AH. (1991). Apoptosis: mechanisms and roles on pathology. Int. Rev. Exp. Pathol., 32, 223–254.

BAKSHI A, JENSEN JP, GOLDMAN P, WRIGHT JJ, MCBRIDE OW, EPSCHER AL AND KORSMEYER SJ. (1985). Cloning the chromosomal breakpoint of t(14;18) human lymphomas: Clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell, 41, 889–906.

BARDON S, VIGNON F, MONTICOURRIER P AND ROCHEFORT H. (1987). Steroid receptor-mediated cytotoxicity of an antiestrogen and an antiestrogen in breast cancer cells. Cancer Res., 47, 1441–1448.

BARRS BA, HART IK, COLES SR, BURNE JF, VOYVODIC JT, RICHARDSON WD AND RAFF MC. (1992). Cell death and control of cell survival in the oviductoductal lineage. Cell, 70, 31–46.

BOERSMA AWM, NOOTER K, OOSTRUM R AND STOTER G. (1995). Quantification of apoptotic cells with FITC-labelled annexin v in CHO cell cultures treated with Cis-Pt. Cytometry (In press).

BUTTKE TM AND SANDSTROM PA. (1994). Oxidative stress as a mediator of apoptosis. Immunol. Today, 15, 7–10.

CLARKE AR, PURDIE CA, HARRISON DJ, MORRIS RG, BIRD CC, HOOPER ML AND WYLIE AH. (1993). Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature, 362, 849.

CLEARY ML AND SKLAR J. (1985). Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc. Natl Acad. Sci. USA, 82, 7439–7443.

COLLINS MLK, PERKINS GR, RODRIGUEZ-TARDUCHY G, NIETO MA AND LOPEZ-RIVAS A. (1994). Growth factors as survival factors: Regulation of apoptosis. BioEssays, 16, 133–138.

DARZYNKIEWICZ Z, BRUNO S, DEL BINO G, GORCZYCA W, HOTZ MA, LASOTTA P AND TRAGANOS F. (1992). Features of apoptotic cells measured by flow cytometry. Cytometry, 13, 795–808.

DEHNER LP. (1986). Gonadal and extragonadal germ cell neoplasms–teratomas in childhood. In Pathology of Neoplasia in Children and Adolescents, Boyd S (ed.), pp. 282–312, WB Saunders: Philadelphia.

DEHNER LP. (1990). Germ cell tumors of the mediastinum. Semin. Diag. Pathol., 7, 266–284.

DOLCI S, WILLIAMS DE, ERNST MK, RESNICK JL, BRANNAN CI, LOCK LF, LYMAN SD, BOSWELL HS AND DONOVAN PI. (1991). Requirement for mast cell growth factor for primordial germ cell survival in culture. Nature, 352, 809–811.
Apopiotos of human seminoma cells
RA Ols et al

DONOHOWER LA, HARVEY M, SLAPLE BL, MCARTHUR MJ, MONTGOMERY CA AND BUTEL JS. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature, 356, 215–221.

EISENBERG O, FABER-ELMAN A, GOTTLIEB E, OREN M, ROTTET V AND SCHWARTZ M. (1995). Direct involvement of p53 in programmed cell death of oligodendrocytes. EMBIO J., 14, 1136 – 1144.

FOSSÁ SD, DROZ JP, STOTER G, KAYE SB, VERMEYLEN K AND SYLVESTER R. (1995). Cisplatin, vincristine and ifosfamide combination chemotherapy of metastatic seminoma: results of a prospective study. Br. J. Cancer, 71, 619 – 624.

FRISCH SM AND FRANCIS H. (1994). Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell. Biol., 124, 619 – 626.

GARCÍA I, MARTINOU J, TSUJIMOTO Y AND MARTINOU J-C. (1992). Prevention of programmed cell death of sympathetic neurons by the bcl-2 proto-oncogene. Science, 258, 302 – 304.

GIANNONE L AND WOLFF SN. (1988). Recent progress in the treatment of seminoma. Oncology, 2, 21 – 27.

GODIN I, DEED R, COOKE J, ZSEBO K, DEXTER M AND WYLIE CC. (1991). Effect of the steel gene product on mouse primordial germ cells in culture. Nature, 352, 807 – 809.

GONDOS B. (1993). Ultrastructure of developing and malignant germ cells. Eur. Urol., 23, 68 – 75.

HART AND OWEN J. (1992). Seminoma of the testis: Long-term beneficial and deleterious results of radiation. Int. J. Radiat. Oncol. Biol. Phys., 24, 9 – 19.

HINCHLIFFE JR. (1981). Cell death in embryogenesis. In Cell Death and Biology of Pathology. Ashkin RA and Bowen ID (eds.), pp. 35 – 78, Chapman and Hall: New York.

HOCKENBERRY D, NÚNEZ G, MILLIMAN C, SCHREBER RD AND KORSMEYER SJ. (1990). Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature, 349, 334 – 336.

HOLSTEIN AF. (1993). Cellular components of early testicular cancer. Eur. Urol., 23, 9 – 18.

HOLSTEIN AF, SCHUTTE B, BECKER H AND HARTMANN M. (1987). Morphology of normal and malignant germ cells. Int. J. Androl., 10, 13 – 18.

JACOBSON MD, BURNE JF, KING MP, MIYASHITA T, REED JD AND RAFF MC. (1993). Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA. Nature, 361, 365 – 369.

KERR JFR AND SEARLE J. (1972). Deletion of cells by apoptosis during castration-induced involution of the rat prostate. Virchows Arch. B, 13, 87 – 92.

KERR JFR, SEARLE J, HARMON BV AND BISHOP CJ. (1987). Apoptosis. In Perspectives on Mamalian Cell Death, Potten CS (ed.), pp. 83 – 104. Oxford University Press: Oxford.

LANE DP. (1993). A death in the life of p53. Nature, 362, 786 – 787.

LOWE SW, SCHMITT EM, SMITH SW, OSBORNE BA AND JACKS T. (1993). p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature, 362, 474 – 476.

MACLEAN T, FRITSCH EF AND SAMMBOCK J. (1982). Isolation of high molecular-weight, eukaryotic DNA from cells grown in tissue culture. In Molecular Cloning, p. 280, Cold Spring Harbor Laboratory Press: New York.

MATSUI Y, ZSEBO K AND HOGAN BL. (1992). Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell, 70, 841 – 847.

MOSTOFI FK. (1984). Tumour markers and pathology of testicular tumours. In Progress and Controversies in Oncological Urology, pp. 69 – 87, Liss AR: New York.

MOSTOFI FK, SESTERHENN IA AND DAVIS CJ. (1987). Immuno- pathological examination of germ cell tumors of the testis. Semin. Diagn. Pathol., 4, 320 – 341.

MURTY VVVS, HOULouisWORTH J, BALDWIN S, REUTER V, HUNZIKER W, BESMER P, BOSL G AND CHAGANTI RSK. (1992). Allelic deletions in the long arm of chromosome 12 identify sites of candidate tumor suppressor genes in male germ cell tumors. Proc. Natl Acad. Sci. USA, 89, 11006 – 11010.

NOOTER K, BOERSMA AWM, OOSTRUM RG, BURGER H, HOCHMEN AG AND STOTER G. (1995). Constitutive expression of the c-FOS oncogene inhibits doxorubicin-induced apoptosis and promotes cell survival in a rhabdomyosarcoma cell line. Br. J. Cancer, 71, 556 – 561.

OLIE RA, LOOIJENGA LJJ, DEKKER MC, DE JONG FH, DE ROYD DG AND OOSTERHUIS JW. (1995a). Heterogeneity in the in vitro survival and proliferation of human seminoma cells. Br. J. Cancer, 71, 13 – 17.