Spillover of Canine Parvovirus Type 2 to Pigs, South Dakota, USA, 2020

Gun Temeeyasen, Tamer A. Sharafeldin, Chun-Ming Lin, Ben M. Hause
Author affiliation: South Dakota State University, Brookings, South Dakota, USA

DOI: https://doi.org/10.3201/eid2802.211681

Canine parvovirus type 2 (CPV-2) is a variant of the species *Carnivore protoparvovirus 1*, which can cause severe disease in carnivores of many species (1–3). Besides CPV-2, which causes enteritis in dogs of all ages and myocarditis in puppies, the virus species includes feline panleukopenia virus, which causes severe enteritis and leukopenia in cats of all ages (4). In 1978, CPV-2 emerged and caused a worldwide pandemic of enteritis and myocarditis among canids. In 2020, the virus was identified in pigs in South Dakota, USA, by PCR, sequencing, in situ hybridization, and serology. Genetic analysis suggests spillover from wildlife.

In October 2020, a dead pig was submitted to South Dakota State University (Brookings, SD, USA) for diagnostic testing. Histopathologic examination revealed mild to moderate enteritis, hepatitis, and visceral edema. Hemolytic *Escherichia coli* was isolated. No significant lung lesions were noted. Approximately 8 months later, we performed viral metagenomic sequencing on archived lung tissue for an unrelated research project and unexpectedly identified CPV-2. Using a 5′-nuclease PCR (Integrated DNA Technologies, https://www.idtdna.com), we confirmed that the sample was CPV-2 positive; cycle threshold (Ct) was 24.4. Sanger sequencing of overlapping amplicons confirmed the CPV-2 genome sequence determined by metagenomic sequencing. We submitted the strain SDS21601 sequence to GenBank (accession no. MZ666397).

We used a 5′-nuclease PCR to test 90 archived porcine lung samples submitted for respiratory disease diagnostic testing for CPV-2. Of the 90 samples, 9 (10%) were positive for CPV-2, including those with strain SDS21601, and Ct values were 22.4–36.3. The samples were collected September–November 2020 from swine farms within 150 miles of Brookings. We sequenced the genome from a second strongly positive sample (Ct 22.4) and submitted strain SDS21608 to GenBank (accession no. MZ666398). An amplicon from 4 of the remaining 7 samples positive by PCR was generated by PCR and confirmed as CPV-2 by Sanger sequencing. The 3 samples that failed to yield a CPV-2–specific amplicon had Ct values >32. Sequence comparison showed 99.9% nt identity between SDS21601 and SDS21608. blastp (https://blast.ncbi.nlm.nih.gov) analysis of SDS21601 virus capsid protein (VP) 2 found 100% identity to CPV-2 from a coyote sampled in Montana in 2012. Analysis of the VP2 amino acid sequences identified an F212I mutation previously identified only from US wildlife, mainly coyotes.

We performed in situ hybridization on archived formalin-fixed paraffin-embedded tissues from SDS21608 by using a commercially available CPV-2 probe. CPV-2 nucleic acids were hybridized sporadically as intracytoplasmic punctate signals in few monocyte–macrophage lineage cells in the medullary and subcapsular sinuses of a bronchial lymph node (Figure). However, the primary anatomic site of CPV-2 infection and replication was not determined. In other examined tissues, we observed neither typical...
of different species (7). Glycine 300 and tyrosine 305, observed in the VP2 of both swine CPV-2 strains (SDS21601 and SDS21608), are diagnostic of CPV-2 isolates from canids (7). The F212I mutation present in both swine CPV-2 strains, which was previously found only in wildlife, suggests a sylvatic origin. Of the species in which F212I has been identified, only coyotes are common in the agricultural areas of the upper US Midwest and are peridomestic. We hypothesize that the source of swine CPV-2 infection is CPV-2–positive coyote feces.

Our results demonstrate spillover of CPV-2 to swine. CPV-2 has been associated with severe enteritis in insectivorous Taiwanese pangolin (Manis pentadactyla pentadactyla), further demonstrating the propensity of CPV-2 to overcome host barriers (8). The ability of CPV-2 to cause disease in swine remains unknown; further surveillance is warranted because this spillover may threaten the health of swine herds.

Acknowledgments

We thank Martha Ohnstad and Craig Long for assistance with metagenomic sequencing.

This project was in part funded by start-up funds provided to B.H. by the South Dakota State University Agricultural Experiment Station Hatch and Animal Health funds in addition to the South Dakota State University Center for Biologics Research and Commercialization.

About the Author

Dr. Temeeyasen is a research associate at the Animal Disease Research and Diagnostic Laboratory, South Dakota State University, in Brookings. His primary research interest is pathogenic porcine and bovine viruses.

References

1. Cotmore SF, Aghandje-McKenna M, Chiorini JA, Mukha DV, Pintel DJ, Qiu J, et al. The family Paroviridae. Arch Virol. 2014;159:1239–47. https://doi.org/10.1007/s00705-014-1914-1
2. Allison AB, Kohler DJ, Fox KA, Brown JD, Gerhold RW, Shearn-Bochsler VI, et al. Frequent cross-species transmission of paroviruses among diverse carnivore hosts. J Virol. 2013;87:2342–7. https://doi.org/10.1128/JVI.02428-12
3. Steinel A, Parrish CR, Bloom ME, Truyen U. Parovirus infections in wild carnivores. J Wildl Dis. 2003;37:594–607. https://doi.org/10.7589/0090-3558-37.3.594
4. Parrish CR. Pathogenesis of feline panleukopenia virus and canine parvovirus. Baillieres Clin Haematol. 1995;8:57–71. https://doi.org/10.1016/S0950-3536(05)80232-X
5. Wasik BR, de Wit E, Munster V, Lloyd-Smith JO, Martinez-Sobrilo L, Parrish CR. Onward transmission of viruses: how do viruses emerge to cause epidemics after spillover? Philos Trans R Soc Lond B Biol Sci. 2019;374:20190017.

Table

Antibody titers for CPV-2 and PPV-1 in serum collected from multiparous sows at origin farm of CPV-2 strain SDS21601 ≥8 months after collection of CPV-2–positive lungs, South Dakota, USA, 2020.

Sow no.	CPV-2 titer	PPV-1 titer
3818	20	16
8985	10	256
3407	20	1024
4344	0	256
4345	10	512
3406	0	2048
3410	0	4096
37681	10	4096
38679	20	4096
39692	0	1024
4347	20	64
37683	20	2048
37673	40	2048
8980	0	256
445	10	512
8952	10	512
8953	0	2048
8981	20	1024
3817	20	0
10040	0	128

* Determined by hemagglutination inhibition. CPV-2, canine parovirus type 2; PPV-1, porcine parovirus type 1.
Antenatal Seroprevalence of Zika and Chikungunya Viruses, Kingston Metropolitan Area, Jamaica, 2017–2019

Joshua J. Anzinger, Chadwic D. Mears, A.E. Ades, Keisha Francis, Yakima Phillips, Ynolde E. Leys, Moira J. Spyer, David Brown, Ana M. Bispo de Filippis, Eleni Nastouli, Thomas Byrne, Heather Bailey, Paulette Palmer, Lenroy Bryan, Karen Webster-Kerr, Carlo Giaquinto, Claire Thorne, Celia D.C. Christie, on behalf of the ZIKAction Consortium1,2

Author affiliations: The Global Virus Network Jamaica Affiliate, Kingston, Jamaica (J.J. Anzinger); The University of the West Indies, Kingston (J.J. Anzinger, C.D. Mears, K. Francis, Y. Phillips, Y.E. Leys, P. Palmer, L. Bryan, C.D.C. Christie); University of Bristol, Bristol, UK (A.E. Ades); University College London, London, UK (M.J. Spyer, E. Nastouli, T. Byrne, H. Bailey, C. Thorne); Instituto Oswaldo Cruz, Rio De Janeiro, Brazil (D. Brown, A.M.B. de Filippis); University College London Hospitals NHS Trust, London (E. Nastouli); Ministry of Health, Kingston (K. Webster-Kerr); University of Padova, Padua, Italy (C. Giaquinto)

To determine the extent of exposure to Zika virus (ZIKV) and chikungunya virus (CHIKV) in Jamaica, we collected serum from 584 pregnant women during 2017–2019. We found that 15.6% had antibodies against ZIKV and 83.6% against CHIKV. These results indicate potential recirculation of ZIKV but not CHIKV in the near future.

To determine the extent of exposure to Zika virus (ZIKV) and chikungunya virus (CHIKV) in Jamaica, we collected serum from 584 pregnant women during 2017–2019. We found that 15.6% had antibodies against ZIKV and 83.6% against CHIKV. These results indicate potential recirculation of ZIKV but not CHIKV in the near future.

1Preliminary results from this study were presented at the 2nd International Conference on Zika Virus and Aedes Related Infections; June 14–17, 2018; Tallinn, Estonia.

2Members of the ZIKAction Consortium are listed at the end of this article.

DOI: https://doi.org/10.3201/eid2802.211849