Case report

Massive orbital myiasis arising from nasal myiasis in an Indonesian patient with diabetes

Rodiah Rahmawaty Lubis⁎,⁎, Marina Yusnita Albara, Dewi Masyithah Darlanb

⁎ Department of Ophthalmology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
b Department of Parasitology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia

ARTICLE INFO

Keywords:
Ophthalmomyiasis profunda
Nasal myiasis
Chrysomya bezziana
Diabetes mellitus

ABSTRACT

Purpose: Orbital myiasis is a rare condition. We report a case of massive orbital myiasis (ophthalmomyiasis profunda) arising from nasal myiasis and caused by Chrysomya bezziana in a patient with diabetes.

Observations: A 55-year-old woman presented with massive orbital myiasis from larvae invading the entire orbit, with only a small part of sclera and bulbar conjunctiva left of the ocular structures left unaffected. The patient complained of breathing difficulty and drooping of the left eyelid with no other significant complaints. Computed tomography of paranasal sinuses was performed to determine the extent of intraocular invasion of larvae and the surrounding area that might be involved. The larvae filled the nasal and orbital cavity with bony destruction. The patient had a history of diabetes mellitus with uncontrolled blood sugar.

Conclusions and importance: Orbital myiasis is an infestation of any anatomical structure of the orbit with larvae from the order Diptera. To our knowledge, this is the first reported case of massive orbital myiasis arising from nasal myiasis caused by C. bezziana in a patient with diabetes. Eliminating the causative larvae and topical treatment with antibiotics eye ointment therapy improved the patient's symptoms. Epidemiological data are required to improve documentation of the incidence rate of myiasis.

1. Introduction

The term “myiasis” derived from Greek (mya, or fly) was first mentioned by Hope in 1840 to describe human diseases caused by dipterous larvae. 1 In 1990, Keyt reported human ophthalmomyiasis, and 10 years later, Elliot reported the same case. 2 Human myiasis was mostly reported in poor socioeconomic regions and tropical and subtropical countries with poor hygiene, and less than 5% of cases involved the eye. 3 Myiasis was classified into 2 categories: anatomical and ecological. Francesconi and Lupi classified the anatomical classification that is based on Bishopp's, James's, and Zumpt's classifications: sanguinivorous or bloodsucking, cutaneous myiasis, furuncular and migratory, wound myiasis, and cutaneous myiasis. Cutaneous myiasis included cerebral myiasis, aural myiasis, nasal myiasis, and ophthalmomyiasis; ophthalmomyiasis is classified into ophthalmomyiasis externa (superficial, larvae attack the conjunctiva) and ophthalmomyiasis interna (invade the globe, and anterior and posterior segments of the eyeball). Orbital myiasis (ophthalmomyiasis profunda) is a severe clinical variant of ophthalmomyiasis and causes serious damage (pericocular, eyelid, and intraocular) and bone destruction. 4 Here, we report a rare case of massive orbital myiasis arising from nasal myiasis in an Indonesian patient with diabetes. (see Fig. 6)

2. Case report

A 55-year-old woman was admitted to the emergency unit of Royal Prima General Hospital, Indonesia, with complaints of breathing difficulties and drooping of the left eyelid since 2 weeks. The patient did not have any significant history of eye pain, itch, or red eyes and had no complaints with respect to her left eye until she realized that her left upper eyelid was drooping. She often experienced breathing difficulties and, therefore, used a nasal inhaler. The patient had a history of uncontrolled diabetes mellitus for 15 years, and she reported that her previous blood sugar level was 700 mg/dl.

Examination of the left eye revealed ulcers and necrotic tissue involving the upper and lower eyelid, erythema, slight periorbital edema, and induration. The thickness of the left upper eyelid near the medial canthus was completely lost. The only visible part of the left eye was a small part of the sclera and bulbar conjunctiva. The orbital wall could not be identified because of numerous live white and shiny larvae crawling over the fleshy mass (Fig. 1). We manually removed 50 larvae from the left eye and nostril with forceps. Furthermore, debridement of
the necrotic tissue was performed in an emergency room under topical anesthesia (pantocaine 2% eye drops). We diagnosed the patient as having massive orbital myiasis. The larvae were stored in a saline solution for further investigation (Fig. 2). All the larvae could not be removed in a single sitting as they kept invading the remaining ocular tissue and nasal cavity. Computed tomography of the sinus paranasal of the coronal section showed pansinusitis, visible cloaking, shadow abscess, and presumed insects filling the left maxillary and ethmoidal sinuses and nasal cavity and reaching the left orbital cavity accompanied with bone destruction (left maxillary and ethmoidal sinuses wall) and nasal septum destruction (Fig. 3). Chest X-ray revealed right pleuroneumonia. The patient was hospitalized for further treatment and co-treated by the Ear, Nose, and Throat and Internal Medicine Department. The larvae were identified as *Chrysomya bezziana* (Fig. 4). Complete larvae removal from nasal and orbital cavities was done through nasal endoscopy. Intravenous antibiotic (ceftriaxone 1 gr/12 h), chloramphenicol eye ointment, and nasal decongestant drops improved the patient symptoms, and insulin glulisine 12-12-12 helped the patient control the blood sugar level. The patient was discharged from the inpatient ward after a successful removal of the larvae (see Fig. 5).

3. Discussion

Myiasis epidemiological data are difficult to obtain; however, in this case, we were able to identify the invading parasite. This patient was highly suspected to have experienced an initial nasal myiasis that proceeded toward the orbit, because most cases of myiasis occur first in the nasal region. Nasal myiasis arises from either oviposition in the nasal cavity or the surrounding surface; patients are usually unaware of this development as it mostly occurs while they are asleep. Our patient experienced no symptoms, encouraging the massive breeding of maggots until she experienced breathing difficulties and sought medical treatment. Dipterous flies are parasites that cause myiasis in humans. Diptera is a large order of insects commonly known as true flies, and
this order is divided into two suborders: Nematocera and Brachycera. Brachycera comprises infraorders; the infraorder Muscomorpha or Cyclorrhapha contains all species that cause specific myiasis and are responsible for facultative myiasis, particularly the species within the taxon Calyptratae.4

Ophthalmomyiasis is a very rare and uncommon ocular disease that accounts for only 5–14% of all cases of human myiasis.6,7 The most common form of ophthalmomyiasis is external ophthalmomyiasis. Orbital myiasis is a rare form of ophthalmomyiasis and has rarely been reported worldwide. Ophthalmomyiasis is most common in rural areas of developing countries, particularly countries in tropical and subtropical regions with a hot climate. The risk factors for myiasis are open wounds, supplicative lesions, scabs, traumatic wounds, and ulcers contaminated with discharges and blood remnants, and the risk

Fig. 4. Paranasal CT-Scan showed insects in the left maxillary and ethmoidal sinuses, nasal cavity and left orbital cavity. Bone destruction (left maxillary and ethmoidal sinuses wall) and nasal septum destruction were also identified.
increases with debilitation, mental or physical disability, and presence of poverty.8 \textit{C. bezziana} of the family Calliphoridae is an obligatory parasite and has the ability to penetrate deep tissue, even when the tissue is normal and healthy. Complete destruction of the globe can occur rapidly, often within a few days.9

Although humans are not a definite host of this parasite, \textit{C. bezziana} is known to occasionally inhabit human living tissue.10 This case illustrates the destruction of orbital tissues by \textit{C. bezziana} in an elderly woman with diabetes. Poor control of longstanding diabetes is suspected to have predisposed this patient to larval habitation owing to diabetic neuropathy. We hypothesize that the larvae first infested the patient’s nasal cavity while the patient was asleep and then infested the nasal lining. The massive larval breeding of spread into the maxillary sinus, destroying the ethmoidal sinus and invading the orbital region. The patient never felt any discomfort owing to severe neuropathy. Meticulous complete manual removal of infesting larvae with proper subsequent management will prevent further tissue damage.8

4. Conclusion

Orbital myiasis is a very rare condition, but a very scant number of cases can still be observed. Indonesia has a relatively high poverty rate, poor health control, and poor hygiene, and \textit{C. bezziana} is widely found in this country. Ophthalmologists must be cautious of cases of myiasis having these risk factors. A complete epidemiological survey of myiasis in a country with multiple risk factors will help in better management and prevention of such cases of myiasis.

Patient consent

The patient provided written consent to publish the case.

Acknowledgements and disclosures

Funding

No funding or grant support was obtained.

Conflicts of interest

All authors have no financial disclosures.

Disclosure

No authors have a conflict of interest related to this work.

Authorship

All authors attest that they meet the current ICMJE criteria for authorship.

Acknowledgements

None.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ajoc.2019.01.006.

References

1. Hope FW. 1840. On insects and their larvae occasionally found in the human body. Trans R Entomol Soc Lond 1840;256-271.
2. Sivaramasubramanyam P, Sadanand AV. Ophthalmomyiasis. Br J Ophthalmol. 1968;52(1):64.
3. Burns DA. Disease Caused by Arthropods and Other Noxious Animals. eleventh ed.Rook’s Textbook of Dermatology. vol. 2. Oxford, UK: Blackwell Science; 2012 pp.33.1-33.11.63.
4. Fabio F, Myiasis Omar L. Clinical microbiology reviews. Am Soc Microbiol. 2012;79–105.
5. Aydin E, Uysal S, Akkuzu B, Can F. Nasal myiasis by fruit fly larvae: a case report. Eur Arch Oto-Rhino-Laryngol. 2006;263:1142–1143.
6. Baliga MJ, Davis P, Rai P, Rajasekhar V. Orbital myiasis: a case report. Int J Oral Maxillofac Surg. 2001;30:83–84.
7. Jain A, Desai RY, Ehrlich J. Fulminant orbital myiasis in the developed world. Br J Ophthalmol. 2007;91:1565–1566.
8. Santosh KY, Surakshana S, Aijit KS. Extensive myiasis infestation over a malignant lesion in maxillofacial region. Int J pharmaceutica and biological archives. 2012;3:530–533.
9. Sachdev MS, Kumar HJ, Roop, Jain AK, Arora R, Dada VK. Destructive ocular myiasis in a noncompromised host. Indian J Ophthalmol. 1990;38:184–186.
10. Goddard J. Physician’s Guide to Arthropods of Medical Importance. Florida: CRC Press LLC; 2003 7. Goddard J. (2003) Physician’s guide to arthropods of medical importance. CRC Press LLC, Florida.

Fig. 5. Gross appearance of the larva extracted from the left orbit. (B) Parasitologic examination revealed the larvae to be Chrysomya bezziana (marker points toward posterior spiracle of the larva).

Fig. 6. Post-treatment of the myiasis.
Brief report

Clinical findings of end-stage retinitis pigmentosa with a homozygous PDE6A variant (p.R653X)
Kei Mizobuchi, Satoshi Katagiri, Takaaki Hayashi, Kazutoshi Yoshitake, ... Tadashi Nakano
Pages 110-115

Case report

Case report ● Open access
Combined flanged intrascleral intraocular lens fixation with corneal transplant
Karolinne Maia Rocha, Larissa Gouvea, Cole M. Milliken
Pages 1-5

Case report Open access
Adult conjunctivitis secondary to dual infection with *Chlamydia trachomatis* and *Neisseria gonorrhoeae* - A case report
Emma Linton, Lisa Hardman, Lynn Welburn, Imran Rahman, Jaya Devi Chidambaram
Pages 6-8

Case report Open access
An unusual orbital tumor in an adult: Granuloma annulare
Sabrina Bergeron, Debra-Meghan Sanft, Pablo Zoroquiain, Evangelina Esposito, ... Miguel N. Burnier
Pages 9-12

Case report Open access
Exposure, entropion, and bilateral corneal ulceration in a newborn as a manifestation of chromosome 22 q11.2 duplication syndrome
Hamid-Reza Moein, Hajirah N. Saeed, Deborah S. Jacobs, Yuna Rapoport, ... Ula V. Jurkunas
Pages 16-19

Case report Open access
Hypertensive crisis with massive retinal and choroidal infarction: A case update
Sarah A. Avila, Cyrus Golshani, Alan H. Friedman
Pages 22-24

Case report Open access
Epithelial ingrowth through venting incision into laser-assisted in situ keratomileusis flap interface after descemet stripping automated endothelial keratoplasty
Lindsay Ciocco, Shahzeb Hassan, Fasika Woreta, Divya Srikumaran
Pages 25-27
Case report Open access
Profound bilateral post-partum retinal circulation ischemia in two diabetic mothers with pre-eclampsia
Bilal A. Khan, Chinwenwa Okeagu, Alexandros Pappas
Pages 28-31

Case report Open access
Pigmented lesion in the anterior chamber angle following multiple trans-scleral diode laser photocoagulation for congenital glaucoma
Mamdouh Al-Tamimi, Rizwan Malik, Deepak P. Edward
Pages 32-33

Case report Open access
Absence of the foveal avascular zone in a nanophthalmic child revealed by optical coherence tomography angiography
Shunsuke Funakoshi, Tomoko Yoshikawa, Yosuke Harada, Taiichiro Chikama, Yoshiaki Kiuchi
Pages 34-37

Case report Open access
A complex choristoma presenting as a salmon patch lesion in the bulbar conjunctiva
Daniel J. Oh, Alexander L. Pleet, Judy L. Chen, Julie B. Goldman, ... Maria S. Cortina
Pages 38-40

Case report Open access
Secondary hyperhomocysteinemia-related occlusive retinal vasculopathy: A case report
Irving Enrique Carral-Santander, Abril Santos-Palacios, Blanca Elizabeth Martínez-Baez, Linda Cernichiaro-Espinosa, ... Raul Velez-Montoya
Pages 41-45

Case report Open access
Bilateral trifocal IOL implantation in a pediatric case of cataract following steroid-therapy for acute lymphoblastic leukemia
Timur M. Yildirim, Gerd U. Auffarth, Hyeck-Soo Son, Christian Huber, ... Ramin Khoramnia
Case report • Open access

Nd:YAG capsulotomy for the management of posterior capsular amyloidosis
Sasha A. Mansukhani, Jose S. Pulido, Sunil S. Khanna
Pages 50-52

Case report • Open access

Tofacitinib for refractory uveitis and scleritis
Michael A. Paley, Humeyra Karacal, P. Kumar Rao, Todd P. Margolis, Jonathan J. Miner
Pages 53-55

Case report • Open access

Case report of eyelid schwannoma: A rare presentation in a child
Mantapond Ittarat, Pakamat Srihachai, Sunee Chansangpetch
Pages 56-58

Case report • Open access

Spontaneous closure of a chronic full thickness macular hole after failed surgery
Jennifer Lee, Vincent Q. Nguyen, Mallika K. Doss, Andrew W. Eller
Pages 59-61

Case report • Open access

Three cases of acute sterile corneal melt after cataract surgery
Kohei Harada, Yasser Helmy Mohamed, Masafumi Uematsu, Daisuke Inoue, ... Takashi Kitaoka
Pages 62-65

Case report • Open access

Optical coherence tomography and video recording of a case of bilateral contractile peripapillary staphyloma
Tomoyo Yoshida, Satoshi Katagiri, Tadashi Yokoi, Sachiko Nishina, Noriyuki Azuma
Coenzyme Q10 treatment improved visual field after homonymous quadrantanopia caused by occipital lobe infarction
Beatriz Fernández-Vega, Héctor González-Iglesias, José Antonio Vega, Javier Nicieza, Álvaro Fernández-Vega
Pages 70-75

Homonymous quadrantanopic macular ganglion cell complex loss as a sign of trans-synaptic degeneration from occipital lobe lesion
Kenzo Hokazono, Mário Luiz Ribeiro Monteiro
Pages 76-79

Manifestation of a solitary retinal astrocytic hamartoma in a patient with Best macular dystrophy
Stanford C. Taylor, Huber M. Vasconcelos, Paul Yang
Pages 80-82

Characterization of corneal deposition keratopathy in the setting of blood cell dyscrasia and a minimally invasive technique to clear the cornea in a single case
Hillary C. Stiefel, Rasanamar K. Sandhu, Audra K. Miller, David J. Wilson, Winston D. Chamberlain
Pages 83-88

Iris melanoma relapsing sixteen years after proton-beam therapy: The importance of lifelong follow-up
Laetitia-Claire Msika, Laurence Desjardins, Vincent Cockerpot, Rémi Dendale, ... Alexandre Matet
Pages 89-92
Topical steroids: A non-surgical approach for recurrent macular holes
Gerardo Gonzalez-Saldivar, Verena Juncal, David Chow
Pages 93-95

Urrets-Zavalia syndrome with interface fluid syndrome following laser in situ keratomileusis
Alfonso Vasquez-Perez, Francesco Aiello, Kirithika Muthusamy, Stephen Tuft
Pages 96-98

Erotic asphyxiation: May have you seeing double
Caroline S. Halbach, Andrew R. Harrison, Talmage J. Broadbent, Ali Mokhtarzadeh
Pages 99-101

Glaucomatous optic disc changes despite normal baseline intraocular pressure in a child
Brent B. Hoffman, Eldar Rosenfeld, Alana L. Grajewski, Ta C. Chang
Pages 104-109

Daratumumab-induced transient myopic shift
Maria A. Mavrommatis, Hoon Jung, Ajai Chari, Bart Barlogie, James G. Chelnis
Pages 116-118

Nodular fasciitis: A rapidly enlarging destructive periorbital mass in an infant
R. Tom Liu, Erika Henkelman, Oana Popescu, Vivian T. Yin
Pages 119-121
Bilateral papillitis and vitritis as the initial ophthalmologic finding in a patient with complex medical history, leading to diagnosis of multisystem sarcoidosis
Caiyun You, Lina Ma, Stephen D. Anesi
Pages 122-126

Endophthalmitis following cataract surgery and intracameral antibiotic: Moxifloxacin resistant *Staphylococcus epidermidis*
Victoria S. Chang, Stephen G. Schwartz, Janet L. Davis, Harry W. Flynn
Pages 127-130

Hypertensive choroidopathy: Multimodal imaging and the contribution of wide-field swept-source oct-angiography
Amina Rezkallah, Laurent Kodjikian, Amro Abukhashabah, Philippe Denis, Thibaud Mathis
Pages 131-135

Mixed cranial neuropathies due to occult perineural invasion of basal cell carcinoma
Davin C. Ashraf, Evan Kalin-Hajdu, Marc H. Levin, Robert C. Kersten
Pages 136-139

Diffuse lamellar keratitis after epi-off corneal crosslinking: An under-recognized complication?
Diana B. Mannschreck, Roy S. Rubinfeld, Uri S. Soiberman, Albert S. Jun
Pages 140-142

Spontaneous resolution of myopic foveoschisis and a macular hole with retinal detachment
Takashi Ono, Yukiko Terada, Yosai Mori, Yasushi Kataoka, ... Kazunori Miyata
Pages 143-146
Case report • Open access
Massive orbital myiasis arising from nasal myiasis in an Indonesian patient with diabetes
Rodiah Rahmawaty Lubis, Marina Yusnita Albar, Dewi Masyithah Darlan
Pages 147-150

Case report • Open access
Late detachment of Descemet's membrane after penetrating keratoplasty for pellucid marginal degeneration
Jonathan Lin, Salima Hassanaly, Robert A. Hyde, Jennifer Brown, ... Charles Q. Yu
Pages 151-153

Case report • Open access
Delayed spontaneous closure of blue laser-induced full thickness macular hole
Wael A. Alsakran, Sulaiman M. Alsulaiman, Nicola G. Ghazi
Pages 154-156

Images

Short communication • Open access
Leber's hereditary optic neuropathy: Shifting our attention to the macula
Samuel Asanad, Elana Meer, Michele Fantini, Enrico Borrelli, Alfredo A. Sadun
Pages 13-15

Short communication • Open access
Ocular structures in a mature ovarian teratoma
R. Allan Sharpe, Cynthia T. Welsh, Lynn J.P. Perry
Pages 20-21

Short communication • Open access
Ocular pigmentary changes associated with chronic minocycline use
Ijeoma Chinwuba, Kevin Wu, Yasha Modi, Eleanore Kim

American Journal of Ophthalmology

Case Reports - Editorial Board

Editor-in-Chief
Quan Dong Nguyen, MD, MSc
Byers Eye Institute, Stanford University, Stanford, California, USA

Managing Editor
Nancy Nicklas
Stellar Medical Publications, Plymouth, Massachusetts, USA

Associate Managing Editors
Dr. M. Muhammad Hassan
Stanford University, Stanford, California, USA
Dr. Arash Maleki
Stanford University, Stanford, California, USA
Dr. Mohammad Ali Sadiq
Stanford University, Stanford, California, USA

Editorial Board Members
Anita Agarwal, MD
Vanderbilt University Medical Center, Vanderbilt Eye Institute, Nashville, Tennessee and San Francisco, California, USA
Robert Bhaskar, MD, PhD
University of California at San Francisco (UCSF), San Francisco, California, USA
Emmett Cunningham Jr., MD, PhD, MPH
Stanford University School of Medicine, Palo Alto, California, USA
Emmett Cunningham Jr., MD, PhD, MPH
Stanford University School of Medicine, Palo Alto, California, USA
Diana V. Do, MD
Byers Eye Institute, Stanford University, Palo Alto, California, USA
James Philip Dunn, MD
Dean Elliott, MD
Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
Benjamin Erickson, MD
Byers Eye Institute of Stanford University, Palo Alto, California, USA
Vikas Gauri, MD
TuftsEye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
Andrew Harrison, MD
Dept. of Ophthalmology & Visual Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota, USA
