s-homogeneous algebras via s-homogeneous triples

E. Marcos, Y. Volkov

Abstract

To study s-homogeneous algebras, we introduce the category of quivers with s-homogeneous corelations and the category of s-homogeneous triples. We show that both of these categories are equivalent to the category of s-homogeneous algebras. We prove some properties of the elements of s-homogeneous triples and give some consequences for s-Koszul algebras. Then we discuss the relations between the s-Koszulity and the Hilbert series of s-homogeneous triples. We give some application of the obtained results to s-homogeneous algebras with simple zero component. We describe all s-Koszul algebras with one relation recovering the result of Berger and all s-Koszul algebras with one dimensional s-th component. We show that if the s-th Veronese ring of an s-homogeneous algebra has two generators, then it has at least two relations. Finally, we classify all s-homogeneous algebras with s-th Veronese rings $k\langle x, y \rangle/(xy, yx)$ and $k\langle x, y \rangle/(x^2, y^2)$. In particular, we show that all of these algebras are not s-Koszul while their s-homogeneous duals are s-Koszul.

1 Introduction

All the algebras under consideration are graded algebras of the form $\Lambda = kQ/I$, where the grading is induced by the path length and, in particular, I is a homogeneous ideal. The Ext-algebra of the algebra Λ is the graded algebra $\bigoplus_{i \geq 0} \text{Ext}_\Lambda^i(\Lambda_0, \Lambda_0)$, where Λ_0, as usually, denotes the right Λ-module $\Lambda/\Lambda_{>0}$.

The notion of a Koszul algebra was introduced by S. Priddy in [8]. All Koszul algebras are quadratic and they appear in pairs. The Ext-algebra of a Koszul algebra Λ, is another time a Koszul algebra and its Ext-algebra is the original one. There is a duality between the category of Koszul modules over a Koszul algebra and the category of Koszul modules over its Ext-algebra. If we know that an algebra Γ is the Ext-algebra of a Koszul algebra Λ then one may recuperate Λ from Γ by taking its quadratic dual. An interesting result states that an algebra is Koszul if and only if its Ext-algebra is generated by its components of degrees zero and one. Note that even if a quadratic algebra is not Koszul, then it can be recovered from its quadratic dual algebra that in the non Koszul case is not anymore isomorphic to the Ext-algebra. Note also that if we have a quadratic algebra, then it is an Ext-algebra of some quadratic algebra if and only if it is Koszul.

Suppose now that the algebra $\Lambda = kQ/I$ is s-homogeneous, i.e. I is generated by elements of degree s. The notion of s-Koszul algebra was the first generalization of the notion of a Koszul algebra, and it was given for the first time in [2] for a quiver with one vertex. Later the definition was rewritten for the case of an arbitrary quiver in [6]. It was shown in the last mentioned work that if an algebra is s-homogeneous, then it is s-Koszul if and only if its
Ext-algebra is generated by its components of degree less than or equal to two. The notion of s-Koszul algebra is important. For example, it was shown in [3] that an Artin-Shelter regular algebra of global dimension 3 is 3-Calabi-Yau if and only if it is s-Koszul.

The idea of the current paper appeared from the following question. Can we recover the algebra Λ from its Ext-algebra if Λ is s-Koszul? Note that, by the results of [3], the Ext-algebra of Λ is isomorphic in the s-Koszul case to the semidirect product of $(\Lambda^i)_0$ and $(\Lambda^i)_1$ after some regrading, where Λ^i is the s-homogeneous dual of the algebra Λ. In other words, Ext-algebra of Λ consists of the quadratic algebra $(\Lambda^i)_0$ and $(\Lambda^i)_0$-bimodule $(\Lambda^i)_1$. At this moment new interesting questions appear. Assume that we have a quadratic algebra A and an A-bimodule M. Is any s-homogeneous algebra Λ such that the pair (A,M) coincides with the pair $((\Lambda^i)_0,(\Lambda^i)_1)$? Can Λ or Λ^1 be s-Koszul in this case? Should Λ or Λ^1 be s-Koszul in this case?

Essentially, these questions appear, because the algebra structure of the Ext algebra does not contain all the A_∞-structure in the s-Koszul case for $s > 2$. Indeed, there is a missing map from $(\Lambda^i)^\otimes (\Lambda^i)_0$ to $(\Lambda^i)_0$ that is included in the algebra structure in the quadratic case. The notion of s-homogeneous triple comes from this argument and becomes a good alternative to the s-homogeneous dual in the s-homogeneous case. While an s-homogeneous algebra can be presented by a quiver with s-homogeneous relations, we will show that an s-homogeneous triple can be naturally presented by a quiver with s-homogeneous corelations. We will show that the pair (A,M) has to satisfy some restrictive conditions to have a complement to an s-homogeneous triple. Moreover, we will show that in many cases the pair $((\Lambda^i)_0,(\Lambda^i)_1)$ determines the algebras Λ and Λ^1.

The connections between the s-Koszulity and Hilbert series of an algebra was discussed in [4]. In particular, it was shown that Hilbert series of s-Koszul algebra and its Koszul dual satisfy some condition. In this paper we give a further discussion of this. We rewrite the condition on Hilbert series of algebras in terms of Hilbert series of s-homogeneous triples and show that some part of this condition is equivalent to the extra condition introduced in [2].

In the last part of our work we show some applications of our technique. In our examples we consider only quivers with one vertex, i.e. algebras of the form $\Lambda = k\langle x_1, \ldots, x_n \rangle/I$, where I is an ideal generated by elements of degree s. Firstly, we consider the case where $\dim_k I_s = 1$. We discuss the s-Koszulity of Λ in this case recovering and clarifying the results of [3] and show that Λ^i is s-Koszul only in the case $n = 1$ (i.e. in the case $\Lambda = k[x]/(x^s)$). Next we consider the case $\dim_k I_s = 2$. We show that in this case the s-th Veronese ring of Λ^1 is a quadratic algebra with two generators and at least two relations and classify all the algebras Λ, for which this ring is isomorphic to $k\langle x, y \rangle/(xy, yx)$ or $k\langle x, y \rangle/(x^2, y^2)$. It occurs that all such Λ are s-Koszul, while Λ^1 is not s-Koszul in all cases.

2 s-homogeneous relations and corelations

We fix some notation during the paper. First of all, we fix some ground field k. Secondly, we fix some semisimple k-algebra O. Moreover, we assume that O is isomorphic to a direct sum of copies of k as an algebra and fix some basis e_1, \ldots, e_D of O such that $e_ie_j = \delta_{i,j}e_j$. Everything in this paper is over O. So we write simply \otimes instead of \otimes_O. All modules in this paper are right modules if the opposite is not stated. If U is an O-bimodule, then
$T(U) = \oplus_{i\geq 0} U^{\otimes i}$ denotes the tensor algebra of U over O. For convenience we set everywhere $U^{\otimes i} = 0$ for $i < 0$. If A is an algebra, M is a right A-module, and X is a subset of M, then $\langle X \rangle_A$ denotes the right A-submodule of M generated by the set X.

Definition 2.1. An O-quiver with relations is a triple (U, V, ι), where U and V are O-bimodules and $\iota : V \hookrightarrow \oplus_{i\geq 2} U^{\otimes i}$ is an A-bimodule monomorphism. In this situation U is called an O-quiver and $\text{Im} \iota$ is called a set of relations. The O-quiver U is called finite if U is a finitely generated O-bimodule. The set of relations $\text{Im} \iota$ is called s-homogeneous if $\text{Im} \iota \subset U^{\otimes s}$. If (U', V', ι') is another O-quiver with relations, then a morphism from (U, V, ι) to (U', V', ι') is a pair (f, g), where $f : U \to U'$ and $g : V \to V'$ are such O-bimodule homomorphisms that $\iota'g = (\oplus_{i\geq 2} f^{\otimes i})\iota$. We denote by $\text{RQuiv}(O, s)$ the category of finite O-quivers with s-homogeneous sets of relations.

Since O is fixed, we will write simply quiver instead of O-quiver. Now we are going to define a quiver with corelations. Since the present paper is devoted to s-homogeneous case, we define only s-homogeneous corelations.

Definition 2.2. A quiver with s-homogeneous corelations is a triple (U, W, π), where U and W are O-bimodules and $\pi : U^{\otimes s} \to W$ is an A-bimodule epimorphism. In this situation U is called a quiver as before and W is called a set of corelations. If (U', W', π') is another quiver with s-homogeneous corelations, then a morphism from (U, W, π) to (U', W', π') is a pair (f, g), where $f : U \to U'$ and $g : W \to W'$ are such O-bimodule homomorphisms that $g\pi = \pi'f^{\otimes s}$. We denote by $\text{coRQuiv}(O, s)$ the category of finite quivers with s-homogeneous sets of corelations.

Note that $D = \text{Hom}_k(-, k)$ is a contravariant endofunctor of the category of finitely generated O-bimodules. Moreover, D^2 is isomorphic to the identity functor, i.e. D is a duality. We will write $(-)^*$ instead of $D(-)$. Note that, for finitely generated O-bimodules M and L, $(M \otimes L)^*$ can be identified with $M^* \otimes L^*$ via the canonical embedding $M^* \otimes L^* \hookrightarrow (M \otimes L)^*$. Thus, we obtain also the contravariant functor $D_R : \text{RQuiv}(O, s) \to \text{coRQuiv}(O, s)$ defined by the equalities $D_R(U, V, \iota) = (U^*, V^*, \iota^*)$ and $D_R(f, g) = (f^*, g^*)$ for an object (U, V, ι) and a morphism (f, g) of the category $\text{RQuiv}(O, s)$. Analogously one can construct $D_{\text{coR}} : \text{coRQuiv}(O, s) \to \text{RQuiv}(O, s)$. We will write $(-)^*$ instead of $D_R(-)$ and $D_{\text{coR}}(-)$.

Now we define also the functors $\text{Coker} : \text{RQuiv}(O, s) \to \text{coRQuiv}(O, s)$ and $\text{Ker} : \text{coRQuiv}(O, s) \to \text{RQuiv}(O, s)$ in the following way. We simply define $\text{Coker}(U, V, \iota) = (U, \text{Coker} \iota, \pi)$, where $\pi : U^{\otimes s} \to \text{Coker} \iota$ is the canonical projection and $\text{Ker}(U, W, \pi) = (U, \text{Ker} \pi, \iota)$, where $\iota : \text{Ker} \pi \hookrightarrow U^{\otimes s}$ is the canonical inclusion. The definition on morphisms is the natural one, we simply define $\text{Coker}(f, g) = (f, \text{Coker}(g, f^{\otimes s}))$ and $\text{Ker}(f, g) = (f, \text{Ker}(f^{\otimes s}, g))$ for a morphism (f, g) in the corresponding category. We have the following lemma.

Lemma 2.3. (D_R, D_{coR}) is a pair of quasi inverse dualities and $(\text{Coker}, \text{Ker})$ is a pair of quasi inverse equivalences. Moreover, there is an isomorphism of contravariant functors $\text{Ker} \circ D_R \cong D_{\text{coR}} \circ \text{Coker}$.

We will write $(-)^!$ instead of $\text{Ker} \circ D_R(-)$ and $\text{Coker} \circ D_{\text{coR}}(-)$.
3 s-homogeneous algebras

In this section we introduce the notion of s-homogeneous algebra. Usually, it is defined as an algebra corresponding to an element of $\text{RQuiv}(\mathcal{O}, s)$ as will be explained, but we prefer to give an intrinsic definition that does not use any presentation of an algebra.

Definition 3.1. An \mathcal{O}-algebra is a graded algebra $\Lambda = \bigoplus_{i \geq 0} \Lambda_i$ such that $\Lambda_0 = \mathcal{O}$. Given an \mathcal{O}-algebra Λ, we denote by $\Lambda^{(r)}$ the r-Veronese ring of Λ, i.e. a graded algebra $\Lambda^{(r)} = \bigoplus_{i \geq 0} \Lambda_i^{(r)}$, where $\Lambda_i^{(r)} = \Lambda_{ri}$ and the multiplication of $\Lambda^{(r)}$ is induced by the multiplication of Λ.

Also we define the (r, t)-Veronese bimodule $\Lambda^{(r, t)}$ as a graded $\Lambda^{(r)}$-bimodule $\Lambda^{(r, t)} = \bigoplus_{i \geq 0} \Lambda_i^{(r, t)}$, where $\Lambda_i^{(r, t)} = \Lambda_{ri+t}$ and the $\Lambda^{(r)}$-bimodule structure on $\Lambda^{(r, t)}$ is induced by the multiplication of Λ.

Note that the multiplication of Λ induces a $\Lambda^{(r)}$-bimodule homomorphism from $(\Lambda^{(r, 1)})^{\otimes \Lambda^{(r)}}$ to $\Lambda^{(r)}$. We denote this homomorphism by $\phi_A^{(r)}$. Also we denote by ϕ_A^r the zero component of $\phi_A^{(r)}$, that is a map from $\Lambda_1^{(r)}$ to Λ_r. A morphism of \mathcal{O}-algebras is by definition a graded homomorphism of algebras identical on the zero component \mathcal{O}. Any such a morphism induces isomorphisms between all Veronese rings and all Veronese bimodules of the algebras under consideration. Moreover, the induced morphisms are compatible with the maps $\phi_A^{(r)}$.

Definition 3.2. Given an \mathcal{O}-algebra Λ, we call it s-homogeneous if ϕ_A^r is surjective and

$$\text{Ker} \phi_A^r = \sum_{i=0}^{r-s} \Lambda_1^{(r, i)} \otimes \text{Ker} \phi_A^s \otimes \Lambda_1^{(r-s-i)}$$

for any integer $r \geq 1$. In particular, if Λ is s-homogeneous, then ϕ_A^r is bijective for $r < s$. We denote by $\text{HAlg}(\mathcal{O}, s)$ the category of s-homogeneous \mathcal{O}-algebras. We will write sometimes quadratic algebras instead of 2-homogeneous algebras.

There is another definition of an s-homogeneous algebra in terms of its Veronese modules. We give it in our next statement.

Proposition 3.3. Let Λ be an \mathcal{O}-algebra, and, for $n, r, t \geq 1$,

$$\phi_n^{r, t}: \Lambda^{(n, r)} \otimes \Lambda^{(n, t)} \rightarrow \Lambda^{(n, r+t)}$$

be the $\Lambda^{(n)}$-bimodule homomorphism induced by the multiplication of Λ. Then the following conditions are equivalent:

1. $\Lambda \in \text{HAlg}(\mathcal{O}, s)$.

2. $\phi_n^{r, t}$ is surjective for all $n, r, t \geq 1$; $\phi_n^{r, t}$ is bijective if $n \geq s - 1$ and $r + t < s$; $\phi_n^{r, t}$ splits and $\text{Ker} \phi_n^{r, t}$ is concentrated in degree 0 if $n \geq s - 1$ and $r + t \geq s$.

3. $(\phi_s^{1, 1})_0$ is surjective for any $r \geq 1$ and is bijective for $r < s - 1$; $(\phi_n^{1, 1})_1$ is bijective for $n \geq s - 1$.

4
Proof. For any integer $i, j, k \geq 0$ such that $j + k = i$ and $n, r, t \geq 1$, we have a map

$$
\mu_{n,j,k}^{r,t} : \Lambda_{n+j+r} \otimes \Lambda_{n+k+t} \to (\Lambda^{(n,r)} \otimes_{\Lambda(n)} \Lambda^{(n,t)})_i.
$$

Then we have the commutative diagram

$$
\begin{array}{ccc}
\Lambda_1^{\otimes (n+i+r+t)} & \xrightarrow{\phi^{n+i+r+t}_\Lambda} & \Lambda_{n+i+r+t} \\
\phi^{n+i+r}_\Lambda \otimes \phi^t_\Lambda & \downarrow & \Lambda_{n+i+r} \otimes \Lambda_t \\
\Lambda_{n+i+r} \otimes \Lambda_t & \xrightarrow{\mu_{n,j,k}^{r,t}} & (\Lambda^{(n,r)} \otimes_{\Lambda(n)} \Lambda^{(n,t)})_i
\end{array}
$$

“1 \implies 2” The surjectivity of $(\phi^{r,t}_n)_i$ follows from the surjectivity of $\phi^{n+i+r+t}_\Lambda$ and the just mentioned commutative diagram.

Suppose that $j > 0$, $k \geq 0$. It is clear that $\Lambda_1^{\otimes (n+i+r+t)}$ is generated as a k-linear space by the elements of the form $a \otimes b \otimes c$, where $a \in \Lambda_1^{\otimes (n+j-1+r)}$, $b \in \Lambda_1^{\otimes m}$ and $c \in \Lambda_1^{\otimes (n+k+t)}$. But for such an element we have

$$
\mu_{n,j,k}^{r,t}(\phi^{n+j+r}_\Lambda(a \otimes b) \otimes \phi^{n+k+t}_\Lambda(c)) = \mu_{n,j,k}^{r,t}(\phi^{n+j-1+r}_\Lambda(a) \otimes \phi^{n+k+t}_\Lambda(c)) = \mu_{n,j-1,k+1}^{r,t}(\phi^{n+j-1+r}_\Lambda(a) \otimes \phi^{n(k+1)+t}_\Lambda(b \otimes c)).
$$

Thus, we have $\mu_{n,j,k}^{r,t}(\phi^{n+j+r}_\Lambda \otimes \phi^{n+k+t}_\Lambda) = \mu_{n,j,k}^{n,i,0}$. Since $\phi^{n+j+r}_\Lambda \otimes \phi^{n+k+t}_\Lambda$ is surjective, this means, in particular, that $\mathrm{Im} \mu_{n,j,k}^{r,t}$ depends only on the sum of j and k, but does not depend on j and k. Thus, we have $(\Lambda^{(n,r)} \otimes_{\Lambda(n)} \Lambda^{(n,t)})_i = \sum_{j+k=i} \mathrm{Im} \mu_{n,j,k}^{r,t} = \mathrm{Im} \mu_{n,j,k}^{n,i,0}$. In particular, $\mu_{n,j,k}^{r,t}$ is surjective for any values of indices.

From now we assume that $n \geq s - 1$. Suppose that $(\phi^{r,t}_n)_i(u) = 0$ for some $u \in (\Lambda^{(n,r)} \otimes_{\Lambda(n)} \Lambda^{(n,t)})_i$. Since $\phi^{n+i+r}_\Lambda \otimes \phi^t_\Lambda$ and $\mu_{n,i,0}^{r,t}$ are surjective, we have $u = \mu_{n,i,0}^{r,t}(\phi^{n+i+r}_\Lambda \otimes \phi^t_\Lambda)(v)$ for some $v \in \Lambda_1^{\otimes (n+i+r+t)}$. It follows from the commutative diagram above that $\phi^{n+i+r+t}_\Lambda(v) = 0$. Thus,

$$
v \in \ker \phi^{n+i+r+t}_\Lambda = \sum_{l=0}^{n-i-s-r+t} \Lambda_1^{\otimes l} \otimes \ker \phi^s_\Lambda \otimes \Lambda_1^{\otimes (n-i-s-r+t-l)}.
$$

Let us prove that $\mu_{n,i,0}^{r,t}(\phi^{n+i+r}_\Lambda \otimes \phi^t_\Lambda)(\Lambda_1^{\otimes l} \otimes \ker \phi^s_\Lambda \otimes \Lambda_1^{\otimes (n-i-s-r+t-l)}) = 0$ if $i > 0$. Let m denote $ni - s + r$. If $l \leq m$, then we have

$$
(\phi^{m+s}_\Lambda \otimes \phi^t_\Lambda)(\Lambda_1^{\otimes l} \otimes \ker \phi^s_\Lambda \otimes \Lambda_1^{\otimes (m+s-r+t-l)}) = \phi^l_\Lambda(\Lambda_1^{\otimes l}) \phi^s_\Lambda(Ker \phi^s_\Lambda)(\Lambda_1^{\otimes (m-l)}) \otimes \phi^t_\Lambda(\Lambda_1^{\otimes t}) = 0.
$$

If $l \geq m + 1$, then we have $\mu_{n,i,0}^{r,t}(\phi^{m+s}_\Lambda \otimes \phi^t_\Lambda) = \mu_{n,i-1,1}^{r,t}(\phi^{m+s-n}_\Lambda \otimes \phi^{n+t}_\Lambda)$ and

$$
(\phi^{m+s-n}_\Lambda \otimes \phi^{n+t}_\Lambda)(\Lambda_1^{\otimes l} \otimes \ker \phi^s_\Lambda \otimes \Lambda_1^{\otimes (m+t-l)}) = \phi^{l-m-s+n}_\Lambda(\Lambda_1^{\otimes l-m-s+n}) \otimes \phi^s_\Lambda(Ker \phi^s_\Lambda)(\Lambda_1^{\otimes (m+t-l)}) = 0.
$$

Thus, $u = \mu_{n,i,0}^{r,t}(\phi^{n+i+r}_\Lambda \otimes \phi^t_\Lambda)(v) = 0$ and $(\phi^{r,t}_n)_i$ is bijective if $i > 0$.

If $r + t < s$, then $\ker \phi^{r+t}_\Lambda = 0$, i.e. $(\phi^{r,t}_n)_0$ is also bijective.
It remains to prove that ϕ_n^r splits if $r + t \geq s$. Let us denote $\Lambda^{(n,r)} \otimes_{\Lambda^{(s)}} \Lambda^{(n,t)}$ by M. It is clear that M a graded $\Lambda^{(s)}$-bimodule concentrated in nonnegative degrees. Let $\pi : M \to M/M_{>0}$ be the canonical projection and $\iota : \text{Ker} \phi_n^r \hookrightarrow M$ be the canonical inclusion. It is enough to show that ι splits. Since Ker ϕ_n^r is concentrated in degree 0, the map $\pi \iota$ is a monomorphism. Since $M/M_{>0}$ is semisimple, $\pi \iota$ splits. Consequently, ι splits too.

"2 \implies 3" is clear.

"3 \implies 1" Note that $\mu_{r, t}^{n, 0, 0} : \Lambda_r \otimes \Lambda_t \to (\Lambda^{(n, r)} \otimes_{\Lambda^{(s)}} \Lambda^{(n, t)})_0$ is an isomorphism for any $n, r, t \geq 1$.

Using the commutative diagram above and the fact that $(\phi_s^{r, 1})_0$ is surjective for any $r \geq 1$, we get surjectivity of ϕ_n^r for any $n \geq 1$ by induction on n. Using the commutative diagram above and the fact that $(\phi_s^{r, 1})_0$ is bijective for any $r < s - 1$, we get bijectivity of ϕ_n^r for any $n < s$ by induction on n.

Now it is enough to show that Ker $\phi_n^r = \text{Ker} \phi_n^{n-1} \otimes \Lambda_1 + \Lambda_1 \otimes \text{Ker} \phi_n^{n-1}$ for $n > s$. Let us take some $n > s$ and $u \in \text{Ker} \phi_n^r$. We have $(\phi_n^{r, 1})_1 \mu_{n-2, 1}^{n-2, 1, 0}(\phi_n^{n-1} \otimes \phi_1^n)(u) = 0$. Since $(\phi_n^{r, 1})_1$ is bijective, we have $\mu_{n-2}^{n-2, 1, 0}(\phi_n^{n-1} \otimes \phi_1^n)(u) = 0$. It is easy to see that the kernel of the canonical map from $(\Lambda^{n-1} \otimes \Lambda_1) \oplus (\Lambda_1 \otimes \Lambda^{n-1})$ to $(\Lambda^{n-1} \otimes \Lambda^{n-1})$ is $(\phi_n^{n-1} \otimes \phi_1^n - \phi_1^n \otimes \phi_n^{n-1})(\Lambda_1^{\otimes s})$. Thus, $(\phi_n^{r, 1} - \phi_1^n)(u) = (\phi_n^{r, 1} - \phi_1^n)(u')$ for some $u' \in \Lambda_1 \otimes \text{Ker} \phi_n^{n-1}$ and we have $u = (u - u') + u' \in \text{Ker} \phi_n^{n-1} \otimes \Lambda_1 + \Lambda_1 \otimes \text{Ker} \phi_n^{n-1}$.

□

Let us define the representing functor $\mathcal{ARK} : \text{HAlg}(\mathcal{O}, s) \to \text{RQuiv}(\mathcal{O}, s)$ and the algebraizing functor $\mathcal{A} : \text{RQuiv}(\mathcal{O}, s) \to \text{HAlg}(\mathcal{O}, s)$ in the following way. Given $\Lambda \in \text{HAlg}(\mathcal{O}, s)$, we define $\mathcal{ARK}(\Lambda) = (\Lambda_1, \text{Ker} \phi_1^n, \iota)$, where $\iota : \text{Ker} \phi_1^n \hookrightarrow \Lambda_1^{\otimes s}$ is the canonical inclusion. If Λ' is another s-homogeneous \mathcal{O}-algebra and $f : \Lambda \to \Lambda'$ is a morphism of \mathcal{O}-algebras, then we define $\mathcal{ARK}(f) = (f|_{\Lambda_1}, (f|_{\Lambda_1})^{\otimes s}|_{\text{Ker} \phi_1^n})$.

Let us now consider $(U, V, \iota) \in \text{RQuiv}(\mathcal{O}, s)$. We define $\mathcal{A}(U, V, \iota) = T(U)/I_\iota$, where I_ι is the ideal of $T(U)$ generated by $\text{Im} \iota \subset U^{\otimes s}$. It is clear that $T(U)/I_\iota \in \text{HAlg}(\mathcal{O}, s)$. If $(f, g) : (U, V, \iota) \to (U', V', \iota')$ is a morphism of quivers with relations, then it induces the morphism $T(f) : T(U) \to T(U')$ such that $T(f)|_{U^{\otimes s}} = f^{\otimes i}$ for all $i \geq 0$. It is easy to see that $T(f)|_{I_\iota} \subset I_{\iota'}$, i.e. $T(f)$ induces a well defined morphism of \mathcal{O}-algebras

$$\mathcal{A}(f, g) : \mathcal{A}(U, V, \iota) = T(U)/I_\iota \to T(U')/I_{\iota'} = \mathcal{A}(U', V', \iota').$$

The proof of the next proposition is standard.

Proposition 3.4. $(\mathcal{ARK}, \mathcal{A})$ is a pair of quasi inverse equivalences.

Thus, we have a duality $(-)^! : \mathcal{A} \circ (-)^! \circ \mathcal{ARK} : \text{HAlg}(\mathcal{O}, s) \to \text{HAlg}(\mathcal{O}, s)$. Given $\Lambda \in \text{HAlg}(\mathcal{O}, s)$, we will call the algebra Λ' the s-homogeneous dual algebra for Λ or s-dual algebra for Λ for short. Note that the definition depends on s, i.e. if $\Lambda \in \text{HAlg}(\mathcal{O}, s)$ and $\Lambda' \in \text{HAlg}(\mathcal{O}, s')$, then the s-dual and s'-dual algebras of Λ are not isomorphic. This will not cause any confusion, because we always fix s.

6
4 \textit{s-homogeneous triples}

Another object that we are going to study in this paper is the s-homogeneous triples. In this section we introduce their definition and show that they can be naturally represented by quivers with corelations.

Given an O-algebra A, the category of graded A-modules is the category whose objects are graded A-modules and whose morphisms are degree preserving homomorphisms of A-modules. A graded A-module M is called \textit{linear until the n-th degree} if there exists a projective resolution of M in the category of graded A-modules

$$M \leftarrow P_0 \leftarrow P_1 \leftarrow \cdots \leftarrow P_n \leftarrow \cdots$$

such that P_i is generated in degree i, i.e. $P_i = (P_i)_i A$, for $0 \leq i \leq n$.

\textbf{Definition 4.1.} An s-\textit{homogeneous triple} is a triple (A, M, φ), where A is a quadratic O-algebra, M is a graded A-bimodule which is linear until the first degree as left and as right A-module, and $\varphi : M \otimes_A A \to A(1)$ is a homomorphism of graded A-bimodules such that

1. $\text{Im} \, \varphi = A_{\geq 0}(1)$;
2. $1_M \otimes_A \varphi = \varphi \otimes_A 1_M : M^{\otimes_A 1} \to M(1)$;
3. $\text{Ker}(1_M \otimes_A \varphi) = \text{Ker} \, \varphi \otimes_A M + M \otimes_A \text{Ker} \, \varphi$;
4. $\text{Ker}(\varphi \otimes_A \varphi) = \sum_{i=0}^s M^{\otimes_A i} \otimes_A \text{Ker} \, \varphi \otimes_A M^{\otimes_A i}$.

Let (A, M, φ) and (B, L, ψ) be s-homogeneous triples. A \textit{morphism} from (A, M, φ) to (B, L, ψ) is a pair (f, g), where $f : A \to B$ is a morphism of graded O-algebras and $g : M \to L$ is a morphism of graded A-bimodules such that $f \varphi = \psi g^{\otimes_A}$. Here the A-bimodule structure on L is induced by the map f. Let $\text{HTrip}(s, \mathcal{O})$ denote the category of s-homogeneous triples.

Note that if (A, M, φ) is an s-homogeneous triple and $n \geq s$ is an integer, then the map $1_{M^{\otimes_A i} \otimes_A \varphi} \otimes_A 1_M : M^{\otimes_A n} \to M^{\otimes_A n}(1)$ does not depend on $0 \leq i \leq n - s$ due to the second point of Definition 4.1. For simplicity we denote this map by φ too. So, if $n \geq ks$, then we have a graded A-bimodule homomorphism $\varphi^k : M^{\otimes_A A} \to M^{\otimes_A s}(s)$. As usually, $M^{\otimes_A} = A$ everywhere.

Let us define the \textit{representing functor} $\text{TRep} : \text{HTrip}(O, s) \to \text{coRQuiv}(O, s)$ and the \textit{tripling functor} $\text{Trip} : \text{coRQuiv}(O, s) \to \text{HTrip}(O, s)$ in the following way. Given $(A, M, \varphi) \in \text{HTrip}(O, s)$, we define $\text{TRep}(A, M, \varphi) = (M_0, A_1, \varphi_0)$. If (A', M', φ') is another s-homogeneous triple and $(f, g) : (A, M, \varphi) \to (A', M', \varphi')$ is a morphism in $\text{HTrip}(O, s)$, then we define $\text{TRep}(f, g) = (g_0, f_1)$.

Let us now consider the quiver with corelations $Q = (U, W, \pi)$. Let us define $A_Q = T(W)/I_\pi$, where I_π is the ideal of $T(W)$ generated by

$$\pi \otimes \pi) \left(\sum_{i=0}^s U^{\otimes i} \otimes \text{Ker} \, \pi \otimes U^{\otimes(s-i)} \right) \subset W \otimes W.$$

Let us equip all the elements of U with degree 0 grading and consider the graded projective A_Q-bimodule $P_Q = A_Q \otimes U \otimes A_Q$. Since $(A_Q)_1 = W$, the sets $W \otimes U$ and $U \otimes W$ can be
naturally identified with subspaces $(A_Q)_1 \otimes U \otimes O$ and $O \otimes U \otimes (A_Q)_1$ of P_Q. Let us define $M_Q = P_Q/N_Q$, where \(N_Q = ((\pi \otimes 1_U - 1_U \otimes \pi)(U^{\otimes(s+1)}))_{A^m Q A} \subset P_Q \). For any \(m \geq 1 \) let us consider the projective right A_Q-module $P^R_m = U^{\otimes m} \otimes A_Q$. There is a right A_Q-module homomorphism $\beta_m : P^R_m \to M^\text{opp}_Q \otimes Q$ that sends $u_1 \otimes \cdots \otimes u_m \otimes a \in P^R_m$ to the class of the element

\[
(1_Q \otimes u_1 \otimes 1_Q) \otimes A_Q \cdots \otimes A_Q \left(1_Q \otimes u_{m-1} \otimes 1_Q \right) \otimes A_Q \left(1_Q \otimes u_m \otimes a \right).
\]

It easily follows from the definition of N_Q that β_m is surjective for any $m \geq 1$. Let us denote by $\rho_i : U^{\otimes(is)} \to (A_Q)_i$, the composition of $\pi^{\otimes i}$ and the natural projection $W^{\otimes i} \to (A_Q)_i$.

Lemma 4.2. The kernel of the map β_1 is $((1_U \otimes \pi)(\ker \pi \otimes U))_1$. In particular, M_Q is linear until the first degree as a right A_Q-module.

Proof. Let M denote the right A_Q-module $(U \otimes A_Q)/((1_U \otimes \pi)(\ker \pi \otimes U))_1$. Direct verification shows that β_1 induces an epimorphism $\beta : M \to M_Q$. We define $\alpha : M_Q \to M$ in the following way. Let us consider the map from P_Q to M that sends the element of the form $a \otimes u \otimes b \in (A_Q)_i \otimes U \otimes A_Q$, to the class of the element $(1_U \otimes \rho_i)(v \otimes u)a$, where $v \in U^{\otimes(is)}$ is some element such that $\rho_i(v) = b$. Since two elements $v, v' \in U^{\otimes(is)}$ such that $\rho_i(v) = \rho_i(v') = b$ differ by an element from $\sum_{j=0}^{s+i} U^{\otimes i} \otimes \ker \pi \otimes U^{\otimes(is-s-j)}$, it is easy to see that $(1_U \otimes \rho_i)(v \otimes u - v' \otimes u)$ belongs to $(1_U \otimes \pi)(\ker \pi \otimes U)A_Q$. Thus, the map just defined is a well-defined homomorphism of right A_Q-modules. It is not difficult to see also that this map vanishes on $(\pi \otimes 1_U - 1_U \otimes \pi)(U^{\otimes(s+1)})$, and hence induces the required homomorphism α. It is not difficult also to see that $\alpha \beta = \text{Id}_M$, and hence β is an isomorphism.

The dual argument shows that M_Q is linear until the first degree as a left A_Q-module.

Let us define the homomorphism of graded bimodules $\varphi_Q : M^\text{opp}_Q \to A(1)$ in the following way. For a homogeneous element

\[
(a_1 \otimes u_1 \otimes b_1) \otimes_A \cdots \otimes_A (a_s \otimes u_s \otimes b_s) \in (A_Q)_i \otimes U \otimes (A_Q)_j \otimes_A \cdots \otimes_A (A_Q)_k \otimes U \otimes (A_Q)_l,
\]

we choose elements v_1, \ldots, v_{s-1} in such a way that $\rho_{j_k+i_{k+1}}(v_k) = b_k a_{k+1}$ for $1 \leq k \leq s - 1$ and set

\[
\varphi_Q((a_1 \otimes u_1 \otimes b_1) \otimes_A \cdots \otimes_A (a_s \otimes u_s \otimes b_s)) = a_1 \rho_{j_1+i_{2}}(v_1) \cdots \rho_{j_{k}+i_{k+1}}(v_k) b_s.
\]

Analogously to the proof of Lemma 4.2, one can show that $\varphi_Q : P^\text{opp}_Q \to A(1)$ is a well-defined homomorphism of graded A_Q-bimodules. Moreover, it is clear that $\operatorname{Im} \varphi_Q = A_{>0}(1)$. Let $\iota_Q : N_Q \hookrightarrow P_Q$ be the canonical inclusion. Since the kernel of the projection $P^\text{opp}_Q \to M^\text{opp}_Q$ belongs to the image of

\[
\sum_{i=1}^{s} 1_{P^\text{opp}_Q}^{i-1} \otimes_A \iota_Q \otimes_A 1_{P^\text{opp}_Q}^{i-1} : \sum_{i=1}^{s} P^\text{opp}_Q^{i-1} \otimes_A N_Q \otimes_A P^\text{opp}_Q^{i-1} \to P^\text{opp}_Q
\]

and it is easy to check that $\varphi_Q \left(\sum_{i=1}^{s} 1_{P^\text{opp}_Q}^{i-1} \otimes_A \iota_Q \otimes_A 1_{P^\text{opp}_Q}^{i-1} \right) = 0$, we get the homomorphism φ_Q.

8
Lemma 4.3. \((A_Q, M_Q, \varphi_Q)\) is an \(s\)-homogeneous triple.

Proof. It remains to prove Conditions 2-4 from the definition of an \(s\)-homogeneous triple. It is not difficult to verify Condition 2. In particular, we have

\[
\ker \varphi_Q \otimes_{A_Q} M_Q + M_Q \otimes_{A_Q} \ker \varphi_Q \subset \ker (1_{M_Q} \otimes_{A_Q} \varphi_Q) \quad \text{and} \quad \sum_{i=0}^{s+1} M_Q^{s+1-i} \otimes_{A_Q} \ker \varphi_Q \subset \ker (\varphi_Q \otimes_{A_Q} \varphi_Q).
\]

Let us prove the reverse inclusions. Suppose that \(x \in M_Q^{s+1} \otimes_{A_Q} \varphi_Q\) is such that \((1_{M_Q} \otimes_{A_Q} \varphi_Q)(x) = 0\). We may assume that \(x\) is a homogeneous element of degree \(k\). Let us represent \(x\) in the form \(x = \beta_{s+1}(1_U^{s+1} \otimes \rho_k)(y)\) for \(y \in U^{(s+1+ks)}\). We have

\[
y \in \sum_{i=0}^{ks+1} U^{s+i} \otimes \ker \pi \otimes U^{(ks+1-i)}
\]

by Lemma 4.2. Now it is not difficult to show that

\[
\beta_{s+1}(1_U^{s+1} \otimes \rho_k) \left(\sum_{i=1}^{ks+1} U^{s+i} \otimes \ker \pi \otimes U^{(ks+1-i)} \right) \subset M_Q \otimes_{A_Q} \ker \varphi_Q
\]

and \(\beta_{s+1}(1_U^{s+1} \otimes \rho_k) (\ker \pi \otimes U^{(ks+1)}) \subset \ker \varphi_Q \otimes_{A_Q} M_Q\). Thus, Condition 3 holds. Analogously, using the surjectivity of the map \(\beta_{2s}\), one can prove Condition 4.

We define \(\mathfrak{Trip}(U, W, \pi) = (A_Q, M_Q, \varphi_Q)\). If \((f, g) : Q = (U, W, \pi) \rightarrow (U', W', \pi') = Q'\) is a morphism of quivers with corelations, then it induces the morphism \(T(g) : T(W) \rightarrow T(W')\) such that \(T(g)|_{W^{s+i}} = g^{s+i}\) for all \(i \geq 0\). It is easy to see that \(T(g)(I_\pi) \subset I_{\pi'}\), i.e. \(T(g)\) induces a well defined morphism of \(O\)-algebras \(T(g) : A_Q \rightarrow A_{Q'}\). Now, it is easy to see that the map \(f : (M_Q)_0 = U \rightarrow U' = (M_{Q'})_0\) can be proceeded to an \(A_Q\)-bimodule homomorphism \(T(f) : M_Q \rightarrow M_{Q'}\) in a unique way. Thus, we can define \(\mathfrak{Trip}(f, g) = (T(g), T(f))\). One can check that \(\mathfrak{Trip}(f, g)\) is really a morphism of \(s\)-homogeneous triples. The proof of the next proposition is standard.

Proposition 4.4. \((\mathfrak{Rep}, \mathfrak{Trip})\) is a pair of quasi inverse equivalences.

As in the case of algebras, we have a duality \((-)^! = \mathfrak{Trip} \circ (-)^! \circ \mathfrak{Rep} : H\text{Trip}(O, s) \rightarrow H\text{Trip}(O, s)\). Given \(T \in H\text{Alg}(O, s)\), we will call the \(s\)-homogeneous triple \(T^!\) the \(s\)-dual triple for \(T\).

5 \(s\)-homogeneous algebras and \(s\)-homogeneous triples

In this section we study the relations between \(s\)-homogeneous algebras and \(s\)-homogeneous triples. Our main theorem follows easily from the discussion of the previous sections.
Theorem 5.1. The categories $\text{HAlg}(s, \mathcal{O})$ and $\text{HTrip}(s, \mathcal{O})$ are equivalent.

Proof. The assertion of the theorem follows from Lemma 2.3 and Propositions 3.4 and 4.4.

Really, $\text{Trip} \circ \text{Coker} \circ \text{TRep} : \text{HAlg}(s, \mathcal{O}) \rightarrow \text{HTrip}(s, \mathcal{O})$ and $\mathcal{A} \circ \text{Alg} \circ \text{Rep} : \text{HTrip}(s, \mathcal{O}) \rightarrow \text{HAlg}(s, \mathcal{O})$

are quasi inverse equivalences.

Now, it is not difficult to describe $\mathcal{F} = \text{Trip} \circ \text{Coker} \circ \text{TRep}$ and $\mathcal{G} = \text{Alg} \circ \text{Alg} \circ \text{Rep}$.

We describe them using the notation introduced in Section 3.

If Λ is an object of $\text{HAlg}(s, \mathcal{O})$, then $\mathcal{F}(\Lambda) = (\Lambda^{(s)}, \Lambda^{(s,1)}, \phi^{(s)}_{\Lambda})$. If $\Gamma \in \text{HAlg}(s, \mathcal{O})$ and $\theta : \Lambda \rightarrow \Gamma$ is a morphism of graded \mathcal{O}-algebras, then $\mathcal{F}(\theta) := (\theta|_{\Lambda^{(s)}}, \theta|_{\Lambda^{(s,1)}}) : \mathcal{F}(\Lambda) \rightarrow \mathcal{F}(\Gamma)$.

Given $(A, M, \varphi) \in \text{HTrip}(s, \mathcal{O})$, one has $\mathcal{G}(A, M, \varphi) = T(M_0) / (\ker \varphi)_0$. If (B, L, ψ) is another s-homogeneous triple and $(f, g) : (A, M, \varphi) \rightarrow (B, L, \psi)$ is a morphism of s-homogeneous triples, then $\mathcal{G}(f, g) : \mathcal{G}(A, M, \varphi) \rightarrow \mathcal{G}(B, L, \psi)$ is the map induced by $g|M_0 : M_0 \rightarrow L_0$.

Now we have several corollaries of Theorem 5.1 and the description of \mathcal{F} and \mathcal{G}.

Corollary 5.2. If $\Lambda \in \text{HAlg}(s, \mathcal{O})$, then $(\Lambda^{(s)}, \Lambda^{(s,1)}, \phi^{(s)}_{\Lambda}) \in \text{HTrip}(s, \mathcal{O})$.

Corollary 5.3. If (A, M, φ) is an s-homogeneous triple, then there exists a graded A-bimodule S concentrated in degree 0 and an isomorphism of graded A-bimodules $\theta : M^{\otimes s} \cong S \oplus A_{>0}(1)$ such that φ equals to the composition

$$M^{\otimes s} \theta \rightarrow S \oplus A_{>0}(1) \rightarrow A_{>0}(1) \rightarrow A(1),$$

where the second map is the canonical projection on the second summand and the third arrow is the canonical inclusion.

Proof. There exists $\Lambda \in \text{HAlg}(s, \mathcal{O})$ such that $(A, M, \varphi) \cong \mathcal{F}(\Lambda) = (\Lambda^{(s)}, \Lambda^{(s,1)}, \phi^{(s)}_{\Lambda})$. In the notation of Proposition 3.3 we have $\phi^{(s)}_{\Lambda} = t_{s,\Lambda} \phi_{\varphi - 2,1} \phi_{\varphi - 1,1} \cdots \phi_{\varphi - 1,1} \otimes 1_{\Lambda^{(s,1)}}$, where $t_{s,\Lambda} : A_{>0} \cong \Lambda^{(s)} \hookrightarrow A^{(s)} \cong A$ is the canonical inclusion. Now the assertion of the corollary follows from the second item of Proposition 3.3.

Corollary 5.4. Let (A, M, φ) and (A, M, φ') be s-homogeneous triples. If the A-bimodule $A_{>0}(1)$ does not contain nonzero direct summands concentrated in degree 0, then $(A, M, \varphi) \cong (A, M, \varphi')$.

Proof. By Corollary 5.3 there are graded A-bimodules S and S' concentrated in degree 0 and isomorphisms of graded A-bimodules $\theta : M^{\otimes s} \rightarrow S \oplus A_{>0}(1)$ and $\theta' : M^{\otimes s} \rightarrow S' \oplus A_{>0}(1)$ such that $\ker \varphi = \theta^{-1}(S)$ and $\ker \varphi' = (\theta')^{-1}(S')$. Suppose that $(\theta')^{-1}(S') \not\subseteq \theta^{-1}(S)$. Then $\theta(\theta')^{-1}(S')$ is a graded A-subbimodule of $S \oplus A_{>0}(1)$ that does not lie in S, i.e., $T = (\theta(\theta')^{-1}(S') + S) \cap A_{>0}(1) \neq \{0\}$. Now it is clear that the monomorphism $T \hookrightarrow A_{>0}(1)$ splits and, hence, $A_{>0}(1)$ contains nonzero direct summand concentrated in degree 0. The obtained contradiction proves that $\ker \varphi' \subset \ker \varphi$. The inverse inclusion can be proved in the same way, i.e., $\ker \varphi' = \ker \varphi$. Thus, $\mathcal{G}(A, M, \varphi) = \mathcal{G}(A, M, \varphi')$. Since \mathcal{G} is an equivalence, we have $(A, M, \varphi) \cong (A, M, \varphi')$.

□
The next corollary follows directly from Corollary 5.5.

Corollary 5.5. Suppose that $\Lambda, \Gamma \in \text{HAlg}(O, s)$ are such that $\Lambda^{(s,1)} \cong \Gamma^{(s,1)}$ as $\Lambda^{(s)}$-bimodules, where $\Lambda^{(s)}$-bimodule structure on $\Gamma^{(s,1)}$ is induced by some isomorphism $\Lambda^{(s)} \cong \Gamma^{(s)}$. If $\Lambda_{>0}$ does not contain direct $\Lambda^{(s)}$-bimodule summand concentrated in degree 0, then $\Lambda \cong \Gamma$.

Example 1. Suppose that $\Lambda \in \text{HAlg}(O, s)$ and $\Lambda^{(s)} \cong S(W)$ is the symmetric algebra of the space W. Then, due to Corollary 5.5, Λ can be uniquely recovered from the $S(W)$-bimodule $\Lambda^{(s,1)}$.

Example 2. Suppose that $\Lambda \in \text{HAlg}(O, s)$ and $\Lambda^{(s)} \cong \Lambda(W)$ is the exterior algebra of the space W with $\dim_k W \geq 2$. Then, due to Corollary 5.5, Λ can be uniquely recovered from the $\Lambda(W)$-bimodule $\Lambda^{(s,1)}$. On the other hand, we will show later that it is not true in the case $\dim_k W = 1$.

Note that the functors \mathcal{F} and \mathcal{G} respect the duality $(-)^!$, i.e., for $\Lambda \in \text{HAlg}(O, s)$ and $T \in \text{HTrip}(O, s)$, one has $\mathcal{F}(\Lambda^!) \cong \mathcal{F}(\Lambda)^!$ and $\mathcal{G}(T^!) \cong \mathcal{G}(T)^!$.

6 s-Koszulity

In this section we discuss the notion of an s-Koszul algebra.

Definition 6.1. The s-homogeneous algebra Λ is called s-Koszul if $\text{Ext}_\Lambda^i(O, O)$ is concentrated in degree $-\chi_s(i)$, where

$$\chi_s(i) = \begin{cases} \frac{i}{2}, & \text{if } 2 \mid i, \\ \frac{i-1}{2} + 1, & \text{if } 2 \nmid i. \end{cases} \quad (6.1)$$

The 2-Koszul algebras are called simply *Koszul algebras*.

Let Λ be an s-homogeneous algebra and $(V, U, \iota) = \mathfrak{ARep}(\Lambda)$. Let us define the components of the graded vector space R by the equality $R_n = \cap_{i+j=n} U^\otimes i \otimes \text{Im} \iota \otimes U^\otimes j$. The inclusion $R_{n+m} \hookrightarrow R_n \otimes R_m$ induces a map $R_n^* \otimes R_m^* \rightarrow R_{n+m}^*$ that gives a graded O-algebra structure on $R^* = \oplus_{n \geq 0} R_n^*$. In fact, it is well known that $R^* \cong \Lambda^!$. We also introduce the graded space I with n-th component $I_n = \sum_{i+j=n} U^\otimes i \otimes \text{Im} \iota \otimes U^\otimes j$. Note that, in fact, I is an ideal in $T(U)$ such that $\mathcal{G}(V, U, \iota) = T(U)/I$.

For $n > m$, the inclusion $R_m \hookrightarrow R_m \otimes U^\otimes (n-m)$ induces a Λ-module homomorphism $d_m^n : R_n \otimes \Lambda \rightarrow R_m \otimes \Lambda$. Then we can define the *generalized Koszul complex* K of Λ in the following way. Its n-th member is $K_n = R_{\chi_s(n)} \otimes \Lambda$. The differential is defined by the equality $d(K)_n = d_{\chi_s(n+1)} : K_{n+1} \rightarrow K_n$. Note that there is a surjective homomorphism $\mu_K : K_0 \rightarrow O$ induced by the composition of the isomorphism $O \otimes \Lambda \cong \Lambda$ and the canonical projection $\Lambda \rightarrow \Lambda_0 = O$. It is proved in [2] that Λ is s-Koszul if and only if K is exact in
positive degrees (though \(\mathcal{O} = k \) there, it is not difficult to transfer the arguments of Berger to our case). Direct calculations (which are fulfilled in [2] for \(\mathcal{O} = k \)) show that \(K \) is exact in positive degrees if and only if the following conditions are satisfied for all \(k, n \geq 0 \):

\[
R_{ns+1} \otimes U^{\otimes k} \cap U^{\otimes (ns)} \otimes I_{k+1} = R_{(n+1)s} \otimes U^{\otimes (k-s+1)} + R_{ns+1} \otimes I_k, \\
R_{(n+1)s} \otimes U^{\otimes k} \cap U^{\otimes (ns+1)} \otimes I_{k+s-1} = R_{(n+1)s+1} \otimes U^{\otimes (k-1)} + R_{(n+1)s} \otimes I_k.
\] (6.2)

It is shown in [2] that (6.2) is satisfied if and only if

\[
I_s \otimes U^{\otimes (s-1)} \cap U \otimes I_{2s-2} = R_{s+1} \otimes U^{\otimes (s-2)}
\] (6.3)

and for all \(k, n \geq 0 \) we have

\[
R_{ns+1} \otimes U^{\otimes k} \cap U^{\otimes (ns)} \otimes I_{k+1} = R_{ns+1} \otimes U^{\otimes k} \cap U^{\otimes (ns)} \otimes I_s \otimes U^{\otimes (k-s+1)} + R_{ns+1} \otimes I_k, \\
R_{(n+1)s} \otimes U^{\otimes k} \cap U^{\otimes (ns+1)} \otimes I_{k+s-1} = R_{(n+1)s} \otimes U^{\otimes k} \cap U^{\otimes (ns+1)} \otimes I_{2s-2} \otimes U^{\otimes (k-1)} + R_{(n+1)s} \otimes I_k.
\] (6.4)

We call the condition (6.3) the **extra condition** and call the conditions (6.4) the **distributivity conditions**.

If \(s = 2 \), then it is well known that \(\Lambda \) is Koszul if and only if \(\Lambda' \) is. For \(s > 2 \) there are examples where it is not so. One can show that the conditions for the \(s \)-Koszulity of the algebra \(\Lambda' \) are conditions (6.3) and (6.4) with \(R \) and \(I \) interchanged.

If \(s = 2 \) and \(\Lambda \) is Koszul, then \(\text{Ext}^*_\Lambda(\mathcal{O}, \mathcal{O}) \cong (\Lambda')^{\text{op}} \) as a graded algebra. For \(s > 2 \) the situation changes a little. Let \(\mathcal{F}(\Lambda') = (A, M, \varphi) \). It is proved in [3] that if \(\Lambda \) is \(s \)-Koszul, then \(A \) is a Koszul algebra and \(M \) is linear as left and right \(A \)-module. If \(\Lambda \) is \(s \)-Koszul and \(s > 2 \), then \(\text{Ext}^*_\Lambda(\mathcal{O}, \mathcal{O}) \cong A \rtimes M \) as an algebra, where \(A \rtimes M \) is the trivial extension of \(A \) by \(M \), i.e. its underlying space is \(A \oplus M \) and the multiplication is given by the equality \((a, x)(b, y) = (ab, ay + xb)\) for \(a, b \in A \) and \(x, y \in M \). If we define the grading on \(A \rtimes M \) by the equalities \((A \rtimes M)_{2n} = A_n \) and \((A \rtimes M)_{2n+1} = M_n \) for \(n \geq 0 \), then the isomorphism above will become degree preserving. From our previous results we get the following easy corollary.

Corollary 6.2. Suppose that \(\Lambda \) and \(\Gamma \) are \(s \)-Koszul algebras such that \(\text{Ext}^*_\Lambda(\mathcal{O}, \mathcal{O}) \cong \text{Ext}^*_\Gamma(\mathcal{O}, \mathcal{O}) \). If \(\Lambda \not\equiv \Gamma \), then there exists nonzero \(\theta \in \text{Ext}^2_\Lambda(\mathcal{O}, \mathcal{O}) \) such that \(\theta \text{Ext}^2_\Lambda(\mathcal{O}, \mathcal{O}) = \text{Ext}^2_\Lambda(\mathcal{O}, \mathcal{O}) \theta = 0 \).

Proof. Let us set \((A, M, \varphi) = F(\Lambda')\) and \((B, L, \psi) = F(\Gamma')\). Then \(\text{Ext}^*_\Lambda(\mathcal{O}, \mathcal{O}) \cong A \rtimes M \) and \(\text{Ext}^*_\Gamma(\mathcal{O}, \mathcal{O}) \cong B \rtimes L \) with the gradings defined above. By the degree argument this means that there is an isomorphism of graded algebras \(A \cong B \) and an isomorphism of graded \(A \)-bimodules \(M \cong L \), where the \(A \)-bimodule structure on \(L \) is induced by the just mentioned isomorphism of algebras. Then \((B, L, \psi) \cong (A, M, \varphi')\) for some \(\varphi' : M^{\otimes A} \to A(1) \). If \(\Lambda \not\equiv \Gamma \), then we have \((A, M, \varphi) \not\equiv (A, M, \varphi')\), and hence \(A_{>0}(1) \) contains nonzero \(A \)-bimodule summand concentrated in degree zero by Corollary 5.3. i.e. there is a nonzero element \(a \in A_1 \) such that \(aA_1 = A_1a = 0 \). Since \(A_1 \) can be identified with \(\text{Ext}^2_\Lambda(\mathcal{O}, \mathcal{O}) \), this is exactly the required assertion.

\(\square\)
7 Hilbert series

Let us now discuss the notion of Hilbert series and its relations with the notion of s-Koszulity. For an \(\mathcal{O} \)-bimodule \(W \) we will denote by \(\text{dim}_W \) the endomorphism of \(\mathcal{O} \) defined by the equality

\[
\text{dim}_W(e_j) = \sum_{i=1}^D (\text{dim}_W e_i) e_i \quad \text{for } 1 \leq j \leq D.
\]

Definition 7.1. Let \(W = \bigoplus_{k \geq 0} W_k \) be a nonnegatively graded \(\mathcal{O} \)-bimodule. The Hilbert series of \(W \) is the map \(\mathcal{H}_W(t) : \mathcal{O} \to \mathcal{O}[[t]] \) defined by the equality

\[
\mathcal{H}_W(t) = \sum_{k=0}^{\infty} t^k \text{dim}_W k.
\]

If \(\Lambda \in \text{HAlg}(\mathcal{O}, s) \) is \(s \)-Koszul, then, by the results of [4], one has

\[
\left(\mathcal{H}_A(t^s) - t \mathcal{H}_M(t^s) \right) \mathcal{H}_\Lambda(t) = \text{Id}_\mathcal{O},
\]

where \((A, M, \varphi) = \mathcal{F}(\Lambda) \). To prove this it is enough to note that the left part of the equality is \(\sum_{k=0}^{\infty} (-1)^k \mathcal{H}_K(t) \), where \(K \) is the generalized Koszul complex of \(\Lambda \). We will denote by \(O(t^n) \) the set \(t^n \text{Hom}_k(\mathcal{O}, \mathcal{O}[[t]]) \subset \text{Hom}_k(\mathcal{O}, \mathcal{O}[[t]]) \). In what follows, \(f = g + O(t^n) \) means \(f - g \in O(t^n) \). Then we have the following result

Lemma 7.2. \(\Lambda \in \text{HAlg}(\mathcal{O}, s) \) satisfies the extra condition if and only if

\[
\left(\mathcal{H}_A(t^s) - t \mathcal{H}_M(t^s) \right) \mathcal{H}_\Lambda(t) = \text{Id}_\mathcal{O} + O(t^{2s}).
\]

Proof. Let us set \((V, U, \iota) = \mathcal{ARep}(\Lambda) \),

\[
I_n = \sum_{i+s+j=n} U^{\otimes i} \otimes \text{Im} \iota \otimes U^{\otimes j}, \quad \text{and } R_n = \cap_{i+s+j=n} U^{\otimes i} \otimes \text{Im} \iota \otimes U^{\otimes j}.
\]

Note that \(\mathcal{H}_A(t^s) = \text{Id}_\mathcal{O} + t^s \text{dim}_I + O(t^n) \), \(\mathcal{H}_M(t^s) = t \text{dim}_U + t^{s+1} \text{dim}_{R_{s+1}} + O(t^n) \), and

\[
\mathcal{H}_\Lambda(t) = \sum_{n=0}^{s-1} t^n \text{dim}_{I^\otimes n} + \sum_{n=s}^{2s-1} t^n (\text{dim}_{U^\otimes n} - \text{dim}_{I^\otimes n}) + O(t^{2s}).
\]

Thus, we have

\[
\left(\mathcal{H}_A(t^s) - t \mathcal{H}_M(t^s) \right) \mathcal{H}_\Lambda(t)
\]

\[
= (\text{Id}_\mathcal{O} - t \text{dim}_U + t^s \text{dim}_I - t^{s+1} \text{dim}_{R_{s+1}}) \left(\sum_{n=0}^{2s-1} t^n \text{dim}_{U^\otimes n} - \sum_{n=s}^{2s-1} t^n \text{dim}_{I^\otimes n} \right) + O(t^{2s})
\]

\[
= \text{Id}_\mathcal{O} + \sum_{n=s}^{2s-1} t^n (\text{dim}_I \otimes U^\otimes (n-s) - \text{dim}_I) + \sum_{n=s+1}^{2s-1} t^n (\text{dim}_I \otimes U^\otimes (n-s-1) - \text{dim}_I) + O(t^{2s})
\]

\[
= \text{Id}_\mathcal{O} + \sum_{n=s+1}^{2s-1} t^n (\text{dim}_I \otimes U^\otimes (n-s) \cap U^\otimes I_{n-1} - \text{dim}_{R_{s+1}} + O(t^{2s})).
\]

13
Since \(R_{s+1} \otimes U \otimes (n-s-1) \subseteq I_s \otimes U \otimes (n-s) \cap U \otimes I_{n-1} \), the equality from the assertion of the lemma is satisfied if and only if \(R_{s+1} \otimes U \otimes (n-s-1) = I_s \otimes U \otimes (n-s) \cap U \otimes I_{n-1} \) for any \(s+1 \leq n \leq 2s-1 \). It is clear that the last mentioned equality holds for \(s+1 \leq n \leq 2s-1 \) if and only if it holds for \(n = 2s-1 \), i.e. if and only if the condition (6.3) is satisfied.

\[\square \]

Note now that the Hilbert series of \(\Lambda \) are fully determined by the first two components of \(\mathcal{F}(\Lambda) \).

Lemma 7.3. Let \(\Lambda \in \text{HAlg}(O, s) \) and \(\mathcal{F}(\Lambda) = (B, L, \psi) \). Then \(\mathcal{H}_A(t) = \sum_{k=0}^{s-1} t^k \mathcal{H}_{L \otimes k}(t^s) \).

Proof. Follows from the fact that the map \((\Lambda^{(s,1)}) \otimes^{k} \Lambda^{(s)} \rightarrow \Lambda^{(s,k)}\) is bijective for \(0 \leq k \leq s-1 \) by the second item of Proposition 3.3.

\[\square \]

Corollary 7.4. Let \(\Lambda \in \text{HAlg}(O, s) \) and \(\mathcal{F}(\Lambda) = (B, L, \psi) \). Then \(\Lambda \) satisfies the extra condition if and only if

\[
\left(\text{Id}_O - t \dim_{L_0} + t^s (\dim_{L_0} - \dim_{B_1}) \right) \\
- t^{s+1} \left(\dim_{L_0^{(s+1)} \omega L_1} - \dim_{L_0 \otimes B_1} \right) \sum_{k=0}^{s-1} t^k \mathcal{H}_{L \otimes k}(t^s) - \text{Id}_O \in O(t^{2s}),
\]

In particular, if the algebra \(\Lambda^{(s)} \) and the \(\Lambda^{(s)} \)-bimodule \(\Lambda^{(s,1)} \) are known, then it is known if \(\Lambda \) satisfies the extra condition or not.

Proof. We will be free to use the notation of the proof of Lemma 7.2. Since

\[
\dim_{L_0} = \dim_{\Lambda^{(s)}} - \dim_{\Lambda_1} = \dim_{L_0^{(s)}} - \dim_{B_1},
\]

we have \(\mathcal{H}_A(t^s) = \text{Id}_O + t^s (\dim_{L_0^{(s)}} - \dim_{B_1}) + O(t^{2s}) \).

The exact sequence \(R_{s+1} \rightarrow U \otimes I_s \oplus I_s \otimes U \rightarrow I_{s+1} \) gives the equality

\[
\dim_{R_{s+1}} = \dim_{U \otimes I_s \oplus I_s \otimes U} - \dim_{I_{s+1}} = 2 \dim_{L_0^{(s+1)}} - \dim_{L_0 \otimes B_1} \otimes B_1 \otimes L_0 - (\dim_{L_0^{(s+1)}} - \dim_{L_1}) = \dim_{L_0^{(s+1)} \omega L_1} - \dim_{L_0 \otimes B_1} \otimes B_1 \otimes L_0.
\]

Since \(L_0 = U \), we have \(t \mathcal{H}_M(t^s) = t \dim_{L_0} + t^{s+1} (\dim_{L_0^{(s+1)} \omega L_1} - \dim_{L_0 \otimes B_1} \otimes B_1 \otimes L_0) + O(t^{2s}) \).

Now the assertion of the corollary follows from Lemmas 7.2 and 7.3.

\[\square \]

8 Examples and applications

In this section we give some examples showing how the technique of \(s \)-homogeneous triples works. In particular, we will discuss some of the results of [3].

In this section we set \(O = k \). Moreover, we assume for simplicity that \(k \) is algebraically closed. Let, as before, \(\Lambda \) be an \(s \)-homogeneous algebra and \((A, M, \varphi) = \mathcal{F}(\Lambda') \).
Example 1, $A = k[x]$. As it was mentioned before, in this case Λ^l and Λ are determined by the bimodule M. By Corollary 5.3 we have $M^{\otimes \alpha} \cong k(l \oplus A_{>0}) = k(l \oplus k[x])$ for some $l \geq 0$. From this condition and the fact that M has to have linear presentation, it is not difficult to deduce that $M \cong k^m \oplus k[x]_\alpha$, where $m \geq 0$ and α is an automorphism of $k[x]$ sending x to ϵx for some s-th root of unit ϵ. Thus, $l = (m+1)^s - 1$ and φ is the canonical projection $M^{\otimes \alpha} \cong k(l \oplus (k[x]_\alpha)^{\otimes s}) \twoheadrightarrow (k[x]_\alpha)^{\otimes s} \cong k[x]$. It is easy to verify that the third condition from the definition of an s-homogeneous triple holds if and only if $\epsilon = 1$. In this case $\Lambda = k\langle x_1, \ldots, x_m, y \rangle/(y^s)$ is s-Koszul and it is not difficult to see that Λ^l is s-Koszul if and only if either $s = 2$ or $m = 0$.

Example 2, $A = k[x]/(x^2)$. It is not difficult to show that in this case $M \cong k^m$ for some $m \geq 2$. Then $(\Lambda^l)_n = 0$ for $n > s$ and Λ is s-Koszul if and only if Λ has global dimension 2, i.e. the generalized Koszul complex of Λ is exact in the second term. It follows from the results of [5] that Λ is s-Koszul if and only if it satisfies the extra condition, i.e. if and only if $(1 - mt + t^2)H_\Lambda(t) - 1 \in O(t^{2s})$. It is easy to see that the situation under consideration occurs if and only if $\Lambda = k\langle x_1, \ldots, x_m \rangle/(f)$, where f is some homogeneous polynomial in x_1, \ldots, x_m of degree s such that $f \neq g^s$ for any linear polynomial g. For example, Λ is s-Koszul for $f = x_1x_2 - 1$ and Λ is not s-Koszul for $f = x_1x_2 - x_1$. More detailed description of the situation is given in the next proposition.

Proposition 8.1. Suppose that $\Lambda = k\langle x_1, \ldots, x_m \rangle/(f)$, where f is some homogeneous polynomial in x_1, \ldots, x_m of degree s. Then Λ is s-Koszul if and only if one of the following two conditions holds:

1. $f = g^s$ for some linear polynomial g;
2. if $f = gh_1 = h_2g$ for some polynomials g, h_1 and h_2, then $\deg g \in \{0, \deg f\}$.

Proof. If the first condition holds, then the s-Koszulity follows from the argument above.

If the first condition does not hold, then it is easy to see that the generalized Koszul complex of Λ has the form

$$\mathbf{k}f \otimes \Lambda \xrightarrow{d_1} \bigoplus_{i=1}^m \mathbf{k}x_i \otimes \Lambda \xrightarrow{d_0} \Lambda \to \mathbf{k},$$

where $d_0(x_i \otimes 1) = x_i$ ($1 \leq i \leq m$) and $d_1(f \otimes 1) = (x_1 \otimes f_1, \ldots, x_m \otimes f_m)$ for such f_1, \ldots, f_m that $f = \sum_{i=1}^m x_i f_i$. Then Λ is s-Koszul if and only if d_1 is injective. If $gh_1 = h_2g$ for some g, h_1 and h_2 such that $0 < \deg g < \deg f$, then it is easy to see that $f \otimes h_1 \neq 0$ and $d_1(f \otimes h_1) = 0$,

i.e. d_1 is not injective.

Suppose that the second condition holds and $d_1(f \otimes h) = 0$ for some polynomial h. This means that $fh = \sum_{j=1}^k u_{1,j} u_{2,j} f$ in $\mathbf{k}\langle x_1, \ldots, x_m \rangle$ for some $u_{1,j}, u_{2,j} \in \mathbf{k}\langle x_1, \ldots, x_m \rangle$ such that $\deg u_{1,j} > 0$. Let us consider the map $T : \mathbf{k}\langle x_1, \ldots, x_m \rangle \to \mathbf{k}\langle x_1, \ldots, x_m \rangle$ defined by the equality $T(y) = \sum_{j=1}^k u_{1,j} y u_{2,j} - y h$. Since $T(f) = 0$ we have

$$T(y) = \sum_{j=1}^r (v_{1,j} v_{2,j} y v_{3,j} - v_{1,j} y v_{2,j} f v_{3,j})$$

for some $v_{i,j} \in \mathbf{k}$.
for some \(v_{1,j}, v_{2,j}, v_{3,j} \in k\langle x_1, \ldots, x_m \rangle\) by [3, Corollary 1.6]. Now it is easy to see that \(h\) has the form \(h = \sum_{j=1}^{m} h_{1,j} f h_{2,j}\) for some \(h_{1,j}, h_{2,j} \in k\langle x_1, \ldots, x_m \rangle\). Thus, \(f \otimes h = 0\) in \(k f \otimes \Lambda\), and hence \(d_1\) is injective.

\[\square\]

On the other hand, we have

\[
\left(1 - t \dim_{M_0} + t^s (\dim_{M_0^\otimes s} - \dim_{A_1})
\right.
\]

\[
- t^{s+1} (\dim_{M_0^\otimes (s+1)} + \dim_{M_0 \otimes A_1} - \dim_{M_0 \otimes A_1 \oplus M_1})
\]

\[\sum_{k=0}^{s-1} t^k \mathcal{H}_{M_0^\otimes A_1} (t^s)
\]

\[
= (1 - mt + (m^s - 1)t^s - (m^{s+1} - 2m)t^{s+1}) \left(\sum_{i=0}^{s-1} (mt)^i + t^s\right) = 1 + t^s \sum_{i=2}^{s-1} (mt)^i + O(t^2s),
\]

i.e. \(\Lambda'\) does not satisfy the extra condition by Corollary [7,4] if \(s > 2\).

Corollary 8.2. Let \(\Lambda \in H\text{Alg}(k, s)\) \((s \geq 3)\) be such that \(\dim_k \Lambda_s = 1\). Then \(\Lambda\) is \(s\)-Koszul if and only if \(\Lambda \cong k[x]\).

Now we give an example where the algebra \(A\) has two generators. As a first step in this direction, we will get a restriction on the number of relations for such an algebra.

Theorem 8.3. Let \((A, M, \varphi)\) be an \(s\)-homogeneous triple over \(k\). If \(A = k\langle x, y \rangle/I\) for some quadratic ideal \(I\), then \(\dim_k A_2 \leq 2\).

Proof. Let \((U, W, \pi) = \mathfrak{S}\text{Rep}(A, M, \varphi)\), i.e. \(U = M_0\), \(W = A_1\), and \(\pi = \varphi_0\). By our assumption, we have \(\dim_k \text{Im } \pi = \dim_k W = 2\). Suppose that \(\dim_k A_2 > 2\). This means that

\[
\dim_k (\pi \otimes \pi) \left(\sum_{i=0}^{s} U^\otimes i \otimes \text{Ker } \pi \otimes U^\otimes (s-i)\right) \leq 1.
\]

Since \(\text{Ker } (\pi \otimes \pi) = \text{Ker } \pi \otimes U^\otimes s + U^\otimes s \otimes \text{Ker } \pi\), we have

\[
\sum_{i=0}^{s} U^\otimes i \otimes \text{Ker } \pi \otimes U^\otimes (s-i) \subseteq \text{Ker } \pi \otimes U^\otimes s + U^\otimes s \otimes \text{Ker } \pi + V
\]

for some \(V \subseteq U^\otimes (2s)\) of dimension not more than 1. For \(S \subseteq U^\otimes l\) we as usually introduce \(S^\perp = \{\alpha \in (U^*)^\otimes l | \alpha(u) = 0 \ \forall u \in S\}\). Then we have

\[
\left(\text{Ker } \pi\right)^\perp \otimes (U^*)^\otimes s \cap (U^*)^\otimes s \otimes (\text{Ker } \pi)^\perp \cap V^\perp = (\text{Ker } \pi \otimes U^\otimes s + U^\otimes s \otimes \text{Ker } \pi + V)^\perp
\]

\[
\subseteq \left(\sum_{i=0}^{s} U^\otimes i \otimes \text{Ker } \pi \otimes U^\otimes (s-i)\right)^\perp = \bigcap_{i=0}^{s} (U^*)^\otimes i \otimes (\text{Ker } \pi)^\perp \otimes (U^*)^\otimes (s-i).
\]

Let us fix some basis \(x_1, \ldots, x_n\) of \(U^*\). Note that any element of \((U^*)^\otimes s\) can be written as a linear combination of words of length \(l\) in letters \(x_1, \ldots, x_n\), i.e. as an element of \(T_n\), where
\[T = \mathbb{k}\langle x_1, \ldots, x_n \rangle. \] Since \(\dim_\mathbb{k}(\ker \pi)^\perp = 2 \), there are two element \(f_1, f_2 \in T_s \) that form a basis of \((\ker \pi)^\perp\). The condition above can be rewritten in the form

\[
(\mathbb{k}f_1 + \mathbb{k}f_2)T_s \cap T_s(\mathbb{k}f_1 + \mathbb{k}f_2) \cap L \subset \bigcap_{i=0}^{s} T_i(\mathbb{k}f_1 + \mathbb{k}f_2)T_{s-i},
\]

where \(L \subset T_{2s} \) is some subspace of dimension not less than \(n^{2s} - 1 \). Let us introduce the order \(x_1 > x_2 > \cdots > x_n \) on variables and the lexicographic order on the set of monomials of the same length, i.e. \(w_1 > w_2 \) for monomials \(w_1, w_2 \) of the same length if and only if there are monomials \(w, w_1, w_2 \) and integers \(1 \leq i < j \leq n \) such that \(w_1 = wx_iw_i' \) and \(w_2 = wx_jw_j' \). As usually, for \(f \in T_i \) we denote by \(tip(f) \) the biggest monomial that has a nonzero coefficient in the decomposition of \(f \). Clearly, we may assume that \(tip(f_1) \neq tip(f_2) \). Then it is easy to see that \(tip(w) \in T_i(\mathbb{k}tip(f_1) + \mathbb{k}tip(f_2))T_{s-i} \) for any \(w \in T_i(\mathbb{k}f_1 + \mathbb{k}f_2)T_{s-i} \).

Since \(\dim_\mathbb{k} L \geq n^{2s} - 1 \) and the monomials \(tip(f_1)tip(f_1), tip(f_1)tip(f_2), tip(f_2)tip(f_1), \) and \(tip(f_2)tip(f_2) \) are pairwise not equal, it is easy to see that at least three of the four listed monomials belong to \(T_i(\mathbb{k}tip(f_1) + \mathbb{k}tip(f_2))T_{s-i} \) for any \(0 \leq i \leq s \). It is clear from our argument that we may assume that \(f_1 \) and \(f_2 \) are monomials.

Since one of the monomials \(f_1f_1 \) and \(f_1f_2 \) belongs to \(T_i(\mathbb{k}tip(f_1) + \mathbb{k}tip(f_2))T_{s-i} \) for any \(0 \leq i \leq s \), it is clear that, for some letter \(x \), there are maximum two different words of the form \(x\bar{x} \) that occur in \(f_1x \). Analogous assertion can be proved for some word of the form \(y\bar{y} \), where \(y \) is a letter. Then we may assume that either \(f_1 = x_1^s \) or \(f_1 = (x_1x_2)^t \), where \(t = \lceil \frac{s-1}{2} \rceil \). Analogous arguments show that we may set \(f_2 = x_2^s \) in the first case and \(f_2 = (x_2x_1)^tx_2^{s-2t} \) in the second case. Direct verifications show that all the obtained pairs \((f_1, f_2)\) do not satisfy the required conditions.

Thus, it makes sense to consider \(A = \mathbb{k}\langle x, y \rangle/I \), where \(I \) is generated by two, three or four quadratic relations.

It is clear that the only case of four relations is \(A = \mathbb{k}\langle x, y \rangle/(x, y)^2 \). Note that \(s \)-Koszul algebras \(\Lambda \) with \(\mathcal{F}(\Lambda^1) \) of the form \((\mathbb{k}\langle x_1, \ldots, x_n \rangle)/(x_1, \ldots, x_n)^2, M, \sigma \) correspond exactly to local \(s \)-Koszul algebras with \(n \) relations of global dimensions 2 and 3.

It is not difficult to show that in the case of three relations \(A \) is isomorphic to one of the following algebras:

\[
\mathbb{k}\langle x, y \rangle/(x^2, xy, yx), \mathbb{k}\langle x, y \rangle/(x^2, y^2, xy + qyx) \quad (q \in \mathbb{k}), \quad \text{and} \quad \mathbb{k}\langle x, y \rangle/(x^2, xy + yx, xy + y^2).
\]

Note that \(\mathbb{k}\langle x, y \rangle/(x^2, y^2, xy + qyx) \cong \mathbb{k}\langle x, y \rangle/(x^2, y^2, xy + q'yx) \) for \(q \neq q' \) if and only if \(qq' = 1 \). It is not difficult to show, using the results of [1], that in the case of two relations \(A \) is Koszul if and only if it is isomorphic to one of the following algebras:

\[
\mathbb{k}\langle x, y \rangle/(xy, yx), \mathbb{k}\langle x, y \rangle/(x^2, y^2), \mathbb{k}\langle x, y \rangle/(x^2, yx), \quad \text{and} \quad \mathbb{k}\langle x, y \rangle/(x^2, xy + qyx) \quad (q \in \mathbb{k}).
\]

Note that all the listed algebras except \(\mathbb{k}\langle x, y \rangle/(x^2, xy, yx) \) and \(\mathbb{k}\langle x, y \rangle/(x^2, y^2) \) satisfy the condition of Corollary [5.4]. Thus, if \(\dim_\mathbb{k} A_1 = 2 \), then \(A \) can be recovered from the pair \((A, M)\) except the cases \(A = \mathbb{k}\langle x, y \rangle/(x^2, xy, yx) \) and \(A = \mathbb{k}\langle x, y \rangle/(x^2, y^2) \).

As an example of an application of our technique, we consider in this paper the algebras \(\mathbb{k}\langle x, y \rangle/(xy, yx) \) and \(\mathbb{k}\langle x, y \rangle/(x^2, y^2) \). We believe that our technique can be applied to other
cases to obtain a classification of s-Koszul algebras with two homogeneous relations and of s-Koszul algebras with two dimensional s-th component.

Note that, for any quadratic algebra $A = k\langle x, y \rangle/I$, any finitely generated right A-module M linear until the first degree is isomorphic to a direct sum of indecomposable modules linear until the first degree. At the same time, any indecomposable A-module linear until the first degree is isomorphic to either a module of the form

$$A^n/\langle \{ f_1 x - f_{i+1} y \} \rangle_{1 \leq i \leq n-1}, a f_1 y, b f_n x \rangle_A \quad (n \geq 1, a, b \in \{0, 1\})$$

or a module of the form

$$A^n/\langle \{ f_1 x - f_{i+1} y \} \rangle_{1 \leq i \leq n-1}, f_n x - q f_1 y \rangle_A \quad (n \geq 1, q \in k^*)$$

Here and further f_1, \ldots, f_n denote standard generators of the free module A^n.

Example 3. $A = k\langle x, y \rangle/(xy, yx), k\langle x, y \rangle/(x^2, y^2)$. As usually, for $a \in A$, we will denote by aA, Aa, and AaA respectively the right submodule, left submodule and subbimodule of A generated by a. In all cases we have an isomorphism $A_{>0} \cong xA \oplus yA$ of graded right modules and an isomorphism $A_{\geq 0} \cong Ax \oplus Ay$ of graded left modules.

Suppose (A, M, φ) is an s-homogeneous triple. In particular, M is linear until the first degree as left and right A-module and satisfies the condition $M^{\otimes \lambda} \cong A_{>0}(1) \oplus S$ for some A-bimodule S concentrated in zero degree by Corollary 5.3.

We start by proving that $M \cong S_r \oplus xA(1) \oplus yA(1)$ as a graded right A-module for some module S_r concentrated in zero degree. Let J denote the ideal $A_{>0}$ of A. For a subset $I \subset A$ and a right A-module X let us introduce $l\text{Ann}_J X = \{ u \in X \mid uI = 0 \}$. Note that $l\text{Ann}_JM^{\otimes \lambda} = l\text{Ann}_J M^{\otimes \lambda} = S$. Suppose that $1 \leq k < s$ and $u \in l\text{Ann}_JM^{\otimes \lambda} \setminus l\text{Ann}_J M^{\otimes \lambda}$. We have

$$\left(u \otimes_A M^{\otimes \lambda-I} \right) J^2 = \left(u \otimes_A M^{\otimes \lambda-I} \right) \varphi(M^{\otimes \lambda}) \varphi(M^{\otimes \lambda}) = u \varphi(M^{\otimes \lambda}) \varphi(M^{\otimes \lambda}) \otimes_A M^{\otimes \lambda-I} = u J^2 \otimes_A M^{\otimes \lambda-I} = 0.$$

Hence, $u \otimes_A M^{\otimes \lambda-I} \subset S$, i.e. $\varphi(u \otimes_A M^{\otimes \lambda-I}) = 0$. On the other hand, we have $0 \neq uJ = u \varphi(M^{\otimes \lambda}) = u \otimes_A M^{\otimes \lambda-I}M^{\otimes \lambda}$. The obtained contradiction shows that $l\text{Ann}_JM^{\otimes \lambda} = l\text{Ann}_J M^{\otimes \lambda}$ for any $1 \leq k < s$.

According to the classification of indecomposable A-module linear until the first degree given above, direct right A-module summands of $M^{\otimes \lambda}$ ($1 \leq k \leq s$) can have the following forms:

$$k, A, xA(1), yA(1), N = (A \oplus A)/\langle(x, -y)\rangle_A.$$

It is easy to show by induction that if M has a direct right A-module summand isomorphic to A, then $M^{\otimes \lambda}$ has such a summand for any $k \geq 1$. On the other hand, $M^{\otimes \lambda}$ does not have direct summand isomorphic to A. Note that $M^{\otimes \lambda}$ has a direct summand isomorphic to N if and only if $l\text{Ann}_JM^{\otimes \lambda}$ does not. Suppose that M has a direct summand isomorphic to N. Since $J(l\text{Ann}_JM^{\otimes \lambda}) \subset MJ^2$, $(J(l\text{Ann}_JM^{\otimes \lambda}))J = 0$ and $l\text{Ann}_JM^{\otimes \lambda} = 0$, we have $J(l\text{Ann}_JM^{\otimes \lambda}) = 0$. The argument contained in the previous part of the proof shows that M has a direct left A-module summand isomorphic to $N' = (A \oplus A)/\langle(x, -y)\rangle_{A_{\varphi}}$. Direct
calculations show that $\text{Tor}_A(xA(1), N') = \text{Tor}_A(yA(1), N') = 0$. Applying the functor $- \otimes_A M$ to the short exact sequence $k(-1) \hookrightarrow N \twoheadrightarrow xA(1) \oplus yA(1)$ we get the long exact sequence
\[
\cdots \to \text{Tor}(xA(1) \oplus yA(1), M) \xrightarrow{\beta} (M/JM)(-1) \xrightarrow{\alpha} N \otimes_A M \twoheadrightarrow (xA(1) \oplus yA(1)) \otimes_A M.
\]

The argument above shows that $(M/JM)(-1)$ has a direct summand isomorphic to $(N'/JN')(1)$ that does not belong to the image of β. Thus, β is not surjective and $\text{Im} \alpha \subset (\text{Ann}_J N \otimes_A M)_1$ is nonzero. Since $N \otimes_A M$ is a direct summand of $M \otimes_A M$, the argument above shows that $N \otimes_A M$ has a direct summand isomorphic to N. Then it is easy to show by induction that $M \otimes_A M$ has a summand isomorphic to N for any $k \geq 1$. The obtained contradiction shows that $M \cong S_r \oplus (xA(1))^{k_1} \oplus (yA(1))^{k_2}$ as a graded right A-module for some module S_r concentrated in zero degree and integers $k_1, k_2 \geq 0$.

Since $Mx \neq 0$ and $My \neq 0$, it is easy to see that $k_1, k_2 \geq 1$. Suppose that $k_1 > 1$. Then $(xA(1) \otimes_A M^{s \otimes A})^{k_1}$ is a direct summand of $M^{s \otimes A}$, and hence $xA(1) \otimes_A M^{s \otimes A}$ is concentrated in zero degree. Then $k_2 = 1$ and there exists a subspace $U' \subset M_0$ of codimension 1 such that $J(U' \otimes_A M^{s \otimes A}) = 0$. Applying the dual argument we get a subspace $U \subset M_0$ of codimension 1 such that $(M^{s \otimes A} \otimes_A U)J = 0$. Now it follows from the direct sum right A-module decomposition of M that either $M^{s \otimes A}x = 0$ or $M^{s \otimes A}y = 0$. The obtained contradiction shows that $M \cong S_r \oplus xA(1) \oplus yA(1)$ as a graded right A-module and finishes our first step.

Since $JS_r \subset M_1$, $(JS_r)J = 0$, and $(\text{Ann}_J(MJ)) = 0$, we have $JS_r = 0$, i.e. $S_r = k^m$ is a direct A-bimodule summand of M concentrated in degree 0. It remains to describe left A-module structure on $xA(1) \oplus yA(1)$. This step will be fulfilled separately for the two different algebras under consideration. Let us denote by f_x and f_y the degree 0 right A-module generators of $xA(1)$ and $yA(1)$ correspondingly.

Suppose that $A = k(\bar{x}, \bar{y})/(\bar{x}, \bar{y})$. Since $(xf_x)y = (yf_x)y = 0$, we have $xf_x = q_x f_x x$ and $yf_x = q_y f_x x$ for some $q_x, q_y \in k$. We have shown before that $xM \cap yM = 0$, i.e. $q_x = 0$ or $q_y = 0$. Analogously, $xf_y = p_x f_y y$ and $yf_y = p_y f_y y$, where one of the elements $p_x, p_y \in k$ is zero and another is nonzero. Moreover, it is clear that either $q_y = p_x = 0$, $q_y \neq 0$, or $q_y = 0$, $q_y \neq 0$, $p_x \neq 0$. Then $M = k^m \oplus \gamma(AxA \oplus AyA)$, where γ is an automorphism of A that sends x to $q_x x + q_y y$ and y to $p_x x + p_y y$.

If $q_x = p_x = 0$, then $\gamma(AxA) \otimes_A \gamma(AyA) \cong \gamma(AyA) \otimes_A \gamma(AxA) \cong k$ and the definition of an s-homogeneous triple gives us isomorphisms $\alpha : (\gamma(AxA))^{s \otimes A} \to (AxA)$ and $\beta : (\gamma(AyA))^{s \otimes A} \to (AyA)$ that satisfy the equalities $\alpha(x^{s \otimes A}) \ast x = x \ast \alpha(x^{s \otimes A})$ and $\beta(y^{s \otimes A}) \ast y = y \ast \beta(y^{s \otimes A})$, where \ast is the multiplication arising from the A-bimodule structure on $\gamma(AxA \oplus AyA)$. Now it is clear that $\gamma = \text{Id}_A$, $M = k^m \oplus AxA \oplus AyA$, and $A \cong k(x_1, \ldots, x_m, y_1, y_2)/(y_1^t, y_2^t)$. This algebra is s-Koszul, for example, by the results of [7], or [6].

If $q_x = p_y = 0$, then analogous argument shows that $2 \mid s$ and $q_y = \frac{1}{2} = q$ for some $q \in k^*$. It is not difficult to see that the graded algebra isomorphism from \tilde{A} to A that sends x to qx and y to y induces isomorphism of s-homogeneous triples
\[
(A, M, \phi) \cong (A, k^m \oplus \gamma_0(AxA \oplus AyA), \phi_0),
\]
where γ_0 is the automorphism of A interchanging x and y and ϕ_0 is the corresponding homomorphism from the definition of an s-homogeneous triple. Thus, $A \cong k(x_1, \ldots, x_m, y_1, y_2)/(y_1^t, y_2^t)$ for $t = \frac{s}{2}$ is again s-Koszul.

19
Suppose now that $A = k\langle x, y \rangle / (x^2, y^2)$. Since $(xf_x)x = (yf_x)x = 0$, we have $xf_x = q_xf_yx$ and $yf_x = q_yf_yx$ for some $q_x, q_y \in k$. Analogously to the previous case we have either $yf_x = xf_y = 0$, $xf_x = q_xf_yx$, and $yf_y = p_yf_xy$ for some $q_x, p_y \in k^*$ or $xf_x = yf_y = 0$, $yf_x = q_yf_yx$, and $xf_y = p_xf_yx$ for some $q_y, p_x \in k^*$. Then it is not difficult to show that $M = k^m \oplus \gamma(A_{>0})$, where γ is an automorphism of A that sends x to $q_xx + q_yy$ and y to $p_xx + p_yy$.

If $q_y = p_x = 0$, then $(\gamma(A_{>0}))^\otimes_A \cong k^{2s-2} \oplus L$, where L is the A-bimodule generated by the elements $f_x^\otimes_A$ and $f_y^\otimes_A$. It is easy to see that $x(l\text{Ann}_yL) = 0$, and hence $L \not\cong A_{>0}$.

If $q_x = p_y = 0$, then $(\gamma(A_{>0}))^\otimes_A \cong k^{2s-2} \oplus L$, where L is the A-bimodule generated by the elements

$$f_x^{s-2} \left[\frac{\delta_{y}}{\delta_{x}} \right] \otimes \gamma (f_y \otimes_A f_x)^{\otimes_A} \text{ and } f_y^{s-2} \left[\frac{\delta_{x}}{\delta_{y}} \right] \otimes \gamma (f_x \otimes_A f_y)^{\otimes_A}.$$

If $2 \mid s$, then $L \not\cong A_{>0}$, because $x(l\text{Ann}_yL) = 0$. If $2 \nmid s$, then as before we get $q_y = \frac{1}{p_x} = q$ for some $q \in k^*$ and $(A, M, \varphi) \cong (A, k^m \oplus \gamma_0(A_{>0}), \varphi_0)$, where γ_0 is the automorphism of A interchanging x and y and φ_0 is the corresponding homomorphism from the definition of an s-homogeneous triple. Thus, $\Lambda \cong k\langle x_1, \ldots, x_m, y_1, y_2 \rangle / ((y_1y_2)^t y_1, y_2(y_1y_2)^t)$ for $t = \frac{s-1}{2}$ is s-Koszul.

It is clear that if $s \geq 3$, then Λ^1 is not s-Koszul in all cases. Thus, we obtain the following result.

Theorem 8.4. Suppose that $\Lambda \in \mathbb{HAlg}(k, s)$.

1. If $(\Lambda^1)^{(s)} \cong k\langle x, y \rangle / (xy, yx)$, then either

$$\Lambda \cong k\langle x_1, \ldots, x_m, y_1, y_2 \rangle / (y_1^t, y_2)$$

for some $m \geq 0$ or $s = 2t + 1$ and

$$\Lambda \cong k\langle x_1, \ldots, x_m, y_1, y_2 \rangle / ((y_1y_2)^t, (y_2y_1)^t)$$

for some $t \geq 1$ and $m \geq 0$.

2. If $(\Lambda^1)^{(s)} \cong k\langle x, y \rangle / (x^2, y^2)$, then $s = 2t + 1$ and

$$\Lambda \cong k\langle x_1, \ldots, x_m, y_1, y_2 \rangle / ((y_1y_2)^t y_1, y_2(y_1y_2)^t)$$

for some $t \geq 1$ and $m \geq 0$.

In particular, if $(\Lambda^1)^{(s)} \in \{ k\langle x, y \rangle / (xy, yx), k\langle x, y \rangle / (x^2, y^2) \}$, then Λ is s-Koszul and Λ^1 is s-Koszul only in the case $s = 2$.

References

[1] R. Berger, *Weakly confluent quadratic algebras*, Alg. Rep. Theory, 1, 1998, 189–213.

[2] R. Berger, *Koszulity for nonquadratic algebras*, J. Algebra, 239 (2), 2001, 705–734.

[3] R. Berger, *Gerasimov’s theorem and N-Koszul algebras*, J. Lond. Math. Soc. (2), 79 (3), 2009, 631–648.
[4] R. Berger, A. Solotar, A criterion for homogeneous potentials to be 3-Calabi-Yau, arXiv:1203.3029.

[5] V. N. Gerasimov, Free associative algebras and inverting homomorphisms of rings, Amer. Math. Soc. Transl., 156, 1993, 1–77.

[6] E. Green, E. N. Marcos, R. Martínez-Villa, P. Zhang, d-Koszul algebras, J. Pure Appl. Algebra, 193, 2004, 141–162.

[7] E. Marcos, A. Solotar, Y. Volkov, Generating degrees for graded projective resolutions, J. Alg. Appl., 2017, doi: 10.1142/S0219498818501918.

[8] S. Priddy, Koszul Resolutions, Trans. Amer. Math. Soc., 152, 1970, 39–60.