Epigallocatechin-3-Gallate (EGCG) Attenuates Traumatic Brain Injury by Inhibition of Edema Formation and Oxidative Stress

Bo Zhang12, Bing Wang2, Shuhua Cao2, and Yongqiang Wang2

1Intensive Care Unit, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin 300060, PR China, 2Intensive Care Unit, Tianjin First Center Hospital, Tianjin Institute of Emergency Medicine, Tianjin 300192, PR China

INTRODUCTION

Traumatic brain injury (TBI) is a major cause of mortality and long-term disability, which can decrease quality of life. In spite of numerous studies suggesting that Epigallocatechin-3-gallate (EGCG) has been used as a therapeutic agent for a broad range of disorders, the effect of EGCG on TBI remains unknown. In this study, a weight drop model was established to evaluate the therapeutic potential of EGCG on TBI. Rats were administered with 100 mg/kg EGCG or PBS intraperitoneally. At different times following trauma, rats were sacrificed for analysis. It was found that EGCG (100 mg/kg, i.p.) treatment significantly reduced brain water content and vascular permeability at 12, 24, 48, 72 hour after TBI. Real-time PCR results revealed that EGCG inhibited TBI-induced IL-1β and TNF-α mRNA expression. Importantly, CD68 mRNA expression decreasing in the brain suggested that EGCG inhibited microglia activation. Western blotting and immunohistochemistry results showed that EGCG inhibited NADPH oxidase activation through inhibition of p47phox translocation from cytoplasm to plasma membrane. These data demonstrate that EGCG treatment may be an effective therapeutic strategy for TBI and the underlying mechanism involves inhibition of oxidative stress.

Key Words: Anti-oxidant, Edema, EGCG, NADPH, Traumatic brain injury

However, the increasing clinical analyses and experiments of biomechanical injury have expanded the knowledge of pathophysiological events and represented a window of opportunity in which pharmaceutical compounds with neuroprotective properties could be administered [1,5].

Numerous evidences have shown that oxidative stress plays a key role in the development of TBI [6]. The consecutive Ca2+ and Na+ influx, which lead to catabolic intracellular processes, is an early event that occurs within minutes of mechanical impact. Ca2+ activates lipid peroxidases, proteases and phospholipases which in turn increase the intracellular concentration of free fatty acids and free radicals including superoxide and hydroxyl radicals [1,2]. It has been reported that the inhibition of NADPH oxidase activation, which contribute to cellular ROS production and cause oxidative damage of DNA, proteins and lipid to reduce traumatic brain injury-induced neuronal death [7]. Free radical scavenging may have a high therapeutic potential for traumatic brain injury.

ABBREVIATIONS: AQP4, aquaporin-4; DW, dry weight; EGCG, epigallocatechin-3-gallate; HRP, horseradish peroxidase; GFAP, glial fibrillary acidic protein; GSH-PX, glutathione peroxidase; GTPase, guanosine triphosphatase; NOX2, NADPH oxidase 2; iNOS, nitric oxide synthase; MDA, malondialdehyde; PBS, phosphate-buffered saline; Q-PCR, quantitative real-time polymerase chain reaction; SOD, superoxide dismutase; TBI, traumatic brain injury; WW, wet weight.
Epigallocatechin-3-gallate (EGCG) is the main polyphenol extracted from green tea, which is thought to be responsible for the majority of biological activity of green tea [8]. Numerous studies have identified multiple functions for EGCG including anti-inflammation [9,10], anti-mutagenic [11], anti-infective [12] and anti-cancer properties [13,14]. Moreover, EGCG has been demonstrated to regulate signal transduction pathways including JAK/STAT, MAPK, PI3K/AKT, Wnt, Notch, NF-κB and AP-1 [15]. As an antioxidant, EGCG displays a selective anti-apoptotic effect against inducers of mitochondrial oxidative stress in neurons [16]. EGCG also attenuates oxidative stress-induced human neuroblastoma SH-SY5Y cell death through up-regulation of PKC phosphorylation and modulation of cell survival/cell cycle genes [17].

Recent studies indicated that EGCG had neuroprotective effects against neuronal damage and brain edema [18,19]. However, the effect of EGCG on traumatic brain injury remains unknown. In this study, a weight drop model was established to evaluate the therapeutic potential of EGCG on TBI and its underlying mechanism.

METHODS

Animals

Male Sprague-Dawley rats (6 ~ 8 weeks old, 220 ~ 250 g) were purchased from Beijing HFK Bio-Technology Co., Ltd (Beijing, China). They were maintained with free access to pellet food and water in plastic cages at 21±2°C and kept on a 12 h light/dark cycle. Animal welfare and experimental procedures were carried out in accordance with the Guide for the Care and Use of Laboratory Animals (Ministry of Science and Technology of China, 2006) and the related ethical regulations of Tianjin Medical University. All the animal experiments were approved by Tianjin Medical University Animal Care and Use Committee.

Establishment of TBI model

Feeney's weigh-dropping model was established to assess the effect of EGCG on TBI as previously described [20]. Briefly, after anesthesia with pentobarbital sodium (50 mg/kg), rats were fixed in a stereotaxic frame and the scalp was shaved. A midline incision was made to expose the skull for the bregma to the lambda sutures. The left lateral aspect of the skull was exposed by retracting the skin and surrounding soft tissue. Focal brain trauma was induced by dropping a 20 g steel weight with a flat end from a height of 30 cm onto the left lateral skull. Then the scalp was sutured. After impact, the rats were monitored during recovery of spontaneous respiration. Sham-injured control animals underwent anesthesia and scalp incision, but did not undergo trauma.

Experimental groups

EGCG (Sigma-Aldrich Co, St Louis, MO) was dissolved in phosphate-buffered saline (PBS) to a final concentration of 20 mg/ml. All rats were randomly assigned to the following groups: sham + vehicle (PBS), TBI + vehicle (PBS) and TBI + EGCG. After TBI, rats were administered immediately with PBS or 100 mg/kg EGCG intraperitoneally according to previous study [18]. At 12, 24, 48 and 72 h following trauma, rats were sacrificed for analysis.

Evaluation of brain edema

To evaluate brain water content, a sensitive measure of cerebral edema was determined using the wet weight (WW) to dry weight (DW) ratio method, as previously described [18]. In brief, after TBI, rats were sacrificed at indicated time, and their left brain hemispheres were rapidly removed and weighed to obtain WW. The tissue was dried in 70°C oven for 72 h and weighed again to obtain DW. The percentage of tissue water content was calculated as (WW-DW)/WW×100%.

Measurement of SOD, GSH-PX and MDA activity

The levels of oxidative stress-superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) and malondialdehyde (MDA) were measured using a commercially available kit (Nanjing Jiancheng bioengineering institute, Nanjing, China). Briefly, after TBI, the left brain hemispheres of mice were removed and homogenized in ice-PBS. The samples were centrifuged at 2000 g for 10 minutes at 4°C. The supernatant was used for the measurement of SOD, GSH-PX and MDA activities according to the manufacturers’ instructions.

Evans blue dye analysis

Extravasations of Evans blue dye (Sigma Chemical, USA) into the interstitium was used as a quantitative measure of changes of microvascular permeability in traumatic brain injury [21]. Evans blue dye (0.2 ml/100 g) was injected through the femoral vein. After 2 hours following Evan blue dye injection, rats were sacrificed and the brains perfused with 0.9% saline via the left ventricle. The brain tissue was weighed and homogenized in formamide and incubated at 60°C overnight. The supernatant was collected by centrifugation at 4,000 g for 30 minutes. Evans blue dye in the brain tissue was quantitated by spectrophotometric analysis at 620 nm. Sample values were compared with those of Evans blue dye standards mixed with the solvent (100 ~ 1000 ng/ml). Results were expressed in micrograms of Evans blue dye per gram of tissue.

Quantitative real-time polymerase chain reaction (Q-PCR)

Real-time PCR was performed as described previously [22]. Briefly, the brain tissues were homogenized in Trizol reagent (Life Technologies, Carlsbad, CA) and total RNA was extracted following the manufacturer’s instructions. 1 μg total RNA from each sample was reverse transcribed into cDNA using a RETROscript® reverse transcription kit (Life Technologies, Carlsbad, CA). Quantitative PCR was performed with ABI Prism 7000 sequence detection system (Applied Biosystems, Foster City, CA) using SYBR® Green PCR Master Mix (Life Technologies, Carlsbad, CA). Conditions for amplification were 1 cycle of 94°C for 5 min followed by 40 cycles of 94°C for 30 s, 58°C for 30 s, and 72°C for 30 s. The primer sequences used in this study were as follows: CD68 F: 5'-CTGTTTGCGAAAAATA CAAGCA-3', R: 5'-GGCAGAAGAGATTGTCTC-3'; IL-1β F: 5'-GACCTGTTCTTTGG AGCTGACA-3', R: 5'-CACATCGACCCAAAGTC-3'; TNF-α F: 5'-CATCTTCT CA AACTGAGTAGA-3', R: 5'-TGGAGTAGATAGCTACACCC-3'; GAPDH F: 5'-ATGACTCCTACCCAGCGCAAG-3', R: 5'-CTGGAAAG-
EGCG Attenuates Traumatic Brain Injury

Fig. 1. EGCG reduced TBI-induced brain tissue water content and vascular permeability. After TBI, rats were administered with PBS or 100 mg/kg EGCG intraperitoneally and sacrificed at indicated time. (A) Brain tissue water content was analyzed and the percentage of tissue water content was calculated as (WW-DW)/WW×100%. (B) Evans blue dye (0.2 ml/100 g) was injected through the femoral vein. The brain tissue was homogenized in formamide and the supernatant was quantitated by spectrophotometric analysis at 620 nm. Data are shown as means±S.E.M. #p < 0.05 for sham group versus TBI group, *p < 0.05 for TBI group versus EGCG treatment group (n=5).

Western blot analysis

Briefly, the left brain hemispheres of mice were removed and homogenized in RIPA buffer (Cell Signaling Technology, Danvers, MA). After 12,000 g centrifugation for 10 min, the protein content of the supernatant was determined by a BCA™ protein assay Kit (Pierce, Rochford, IL). The protein lysates were separated by 10% SDS-PAGE and subsequently electro-transferred onto a polyvinylidene fluoride membrane (Millipore Corp., Bedford, MA). The membrane was blocked with 5% nonfat milk for 1 hour at room temperature. The blocked membrane was incubated with AQP4, GFAP and GAPDH antibodies (1:1000; Abcam, Cambridge, MA) overnight at 4°C. The next day, the membranes were blotted with horseradish peroxidase (HRP)-conjugated secondary antibody (1:1000; Santa Cruz biotechnology, Santa Cruz, CA) for 1 h. Protein bands were visualized using Western blotting detection system according to the manufacturer’s instructions. The densities of protein bands were determined by Image J software.

Immunohistochemistry

After TBI, the left brain hemispheres of mice were kept in 10% formalin solution and paraffin-embedded sections (thickness: 5 μM) were prepared subsequently. After deparaffinization, antigen unmasking was performed in sub-boiling sodium citrate buffer for 10 minutes. Then sections were quenched for 10 minutes in 0.3% hydrogen peroxide and incubated with anti-AQP4 or anti-GFAP antibody (1:100; Abcam, Cambridge, MA) overnight at 4°C. After washing with PBS, the sections were incubated with biotinylated secondary antibodies at room temperature for 1 hour and immunostained by using an avidin-biotin complex staining kit (Santa cruz biotechnology) according to the manufacturer’s instructions. The DAB-positive areas in 5 regions were measured using microscope (OLYMPUS, Japan) and the immuno-histochemical score was calculated by combining an estimate of the percentage of immunoreactive cells (quantity score) with an estimate of the staining intensity (staining intensity score) as previously described [23], as follows: no staining is scored as 0, 1∼10% of cells stained scored as 1, 11∼50% as 2, 51∼80% as 3, and 81∼100% as 4. Staining intensity is rated on a scale of 0 to 3, with 0=negative; 1=weak; 2=moderate, and 3=strong.

Results

EGCG reduced TBI-induced brain tissue water content and vascular permeability

Edema formation, measured as an increase in brain tissue water content, was analyzed in the peri-contusion area at 12, 24, 48 and 72 h after TBI. As shown in Fig. 1A, the brain tissue water content was significantly increased in TBI group compared with sham group after injury. However, the brain tissue water content after injury was significantly reduced in 100 mg/kg EGCG treatment group compared with TBI group at 12, 24, 48 and 72 h.

The brain tissue was homogenized in formamide and the supernatant was quantitated by spectrophotometric analysis at 620 nm. Data are shown as means±S.E.M. *p<0.05 for sham group versus TBI group, **p<0.05 for TBI group versus EGCG treatment group (n=5).
tissue was quantified. As shown in Fig. 1B, vascular permeability was significantly increased in TBI group compared with sham group at 12, 24, 48 and 72 h after injury. In EGCG group, the extents of vascular permeability were significantly down-regulated in 12, 24, 48 and 72 h after injury compared with TBI group.

EGCG ameliorated TBI-induced inflammation

Inflammation is a stereotypical response to tissue damage and has been extensively documented in experimental and clinical TBI. Microglia orchestrates many aspects of this response [25]. We further examined the effect of EGCG on TBI-induced inflammation. As shown in Fig. 2, the level of CD68 mRNA expression, as a marker of microglia, was increasing after TBI. EGCG significantly reduced CD68 mRNA expression in the brain. EGCG also reduced TNF-α and IL-1β mRNA expression, suggesting that EGCG inhibited TBI-induced microglia activation.

EGCG inhibited AQP4 and GFAP expression

Aquaporin 4, also known as AQP4, plays a significant role in maintaining brain water homeostasis [26]. Western blot result showed that AQP4 expression was at low level in sham group and significantly increased after TBI for 12, 24, 48 and 72 h. Administering of EGCG significantly decreased the level of AQP4 compared with TBI group after injury. Glial fibrillary acidic protein (GFAP) as a biomarker has been used to assess brain damage following TBI [27]. As shown in Fig. 3, EGCG significantly decreased the level of GFAP expression after TBI. Immunohistochemistry results showed that clinical scores were significantly increasing in TBI group compared with sham group at 24 and 72 h. EGCG treatment significantly down-regulated clinical scores after TBI at 24 and 72 h (Fig. 4).

EGCG inhibited oxidative stress after TBI

To assess the effects of EGCG on TBI-induced oxidative...
Fig. 4. Immunohistochemistry analysis for AQP4 and GFAP positive cells at 24 and 72 hour after TBI. The DAB-positive areas in 5 regions were measured using microscope and quantitative analysis of the immunoreactivity was performed. Data are shown as means±S.E.M. *p<0.05 for sham group versus TBI group, *p<0.05 for TBI group versus EGCG treatment group.

Fig. 5. EGCG increased SOD and GSH-PX activities and decreased MDA activity. After TBI, the left brain hemispheres of mice were homogenized and the supernatant was used for the measurement of SOD (A), GSH-PX (B) and MDA activity (C). Data are shown as means±S.E.M. *p<0.05 for sham group versus TBI group, *p<0.05 for TBI group versus EGCG treatment group (n=5).

Fig. 6. EGCG inhibited TBI-induced p47phox translocation from cytoplasm to plasma membrane. Translocation of the subunits of NADPH oxidase was analyzed by Western blot at 24 h after TBI. Expressions of GAPDH were shown as loading controls for cytoplasm. Expressions of gp91phox were shown as loading controls for membrane. Bands were analyzed by densitometry. Quantitative data were shown. Data are shown as means±S.E.M. *p<0.05 for sham group versus TBI group, *p<0.05 for TBI group versus EGCG treatment group (n=5).
stress, the levels of SOD, GSH-PX and MDA were detected after TBI. As shown in Fig. 5, TBI significantly decreased the tissue SOD and GSH-PX activities compared with the sham group. The EGCG administration showed a protective effect against TBI by markedly increasing the antioxidant enzyme SOD and GSH-PX activities and decreasing MDA activity compared with the TBI group.

EGCG inhibited TBI-induced p47phox translocation from cytoplasm to plasma membrane

NADPH oxidases are the main enzymes that produce ROS. gp91phox and p47phox are the key constructive components of NADPH oxidase 2 (NOX2), which is an NADPH oxidase that is primarily expressed in microglia and the spinal cord [28]. Western blot analysis showed that p47phox subunit translocated to the neuronal plasma membrane at 24 hour after TBI, which was reduced by EGCG. However, EGCG did not affect translocation of rac1 and the level of gp91phox expression. The data indicated that EGCG decreased NADPH oxidase activation through inhibition of p47phox translocation.

DISCUSSION

In this study, we investigated the effect of EGCG, the most biologically active compound in green tea, on traumatic brain injury and its underlying mechanism. Our results showed that EGCG significantly inhibited TBI-induced edema formation and decreased vascular permeability. TBI-induced inflammation was reduced by EGCG treatment. Moreover, EGCG treatment significantly inhibited AQP4 and GFAP expression in injured brain tissue. As an anti-oxidant, EGCG ameliorated oxidative stress after TBI via inhibition of p47phox translocation from cytoplasm to plasma membrane. Therefore, our data revealed that EGCG could be therapeutically effective in modulating the pathological process after TBI.

The specific pathophysiology of traumatic brain injury involves cerebral metabolic dysfunction, excitotoxicity, oxidative stress, edema formation, inflammation and cell death (necrosis and apoptosis) [4]. Although a number of factors contribute to the high mortality and morbidity associated with TBI, the development of cerebral edema and associated swelling remains the most significant predictor of outcome. Edema formation lead to an expansion of brain volume as brain swelling remains the most significant predictor of outcome. Edema formation lead to an expansion of brain volume as functional impairments following TBI [7]. Some enzymes such as NADPH oxidases and inducible nitric oxide synthase (iNOS) are up-regulated in brain tissues and produce free radicals which cause oxidative damage of DNA, proteins and lipid [36]. EGCG, as an anti-oxidant, increased free radicals which cause oxidative damage of DNA, proteins and lipid [36]. EGCG, as an anti-oxidant, increased SOD activity and decreased MDA activity following TBI (Fig. 5).

As a major source of superoxide, NADPH oxidase is a membrane protein composed of several subunits including a Rho guanosine triphosphatase (GTPase) and five "phox" units. Following TBI, NADPH oxidase activation is dependent upon forming an active complex with several phox subunits (p47phox, p67phox, p40phox) and activated Rac1, which translocate to the membrane [37]. Our data showed that rac1 and p47phox were translocated to plasma membrane following TBI, and subsequently the EGCG inhibited p47phox translocation but not rac1. NADPH oxidase activity contributed significantly to the pathology of TBI via mediation of oxidative stress damage, microglial activation and AD protein induction in the brain following TBI [38]. A previous study indicated that inhibition of NADPH oxidase prevents TBI-induced ROS production and decrease BBB disruption, neuronal death and microglial activation [7]. Our data suggested that EGCG inhibited NADPH oxidase activation through inhibition of p47phox translocation. Taking the above findings together, it may be proposed that EGCG augments the cellular anti-oxidative system via inactivation of NADPH oxidase, resulting in decreased oxidative stress.

In conclusion, our results indicated that administration of EGCG immediately after TBI suppressed edema formation and exhibited neuroprotection against TBI-induced oxidative stress characterized by the severe disturbance of redox balance, at least in part, through the inhibition of NADPH oxidase activation. Our findings further suggested that EGCG could be incorporated into novel therapeutic and preventive strategies for traumatic brain injury.

ACKNOWLEDGEMENTS

This work was supported by National Clinical Key...
REFERENCES

1. Gajjar J. Traumatic brain injury. Lancet. 2000;356:923-929.
2. Greve MW, Zink B. Pathophysiology of traumatic brain injury. Mt Sinai J Med. 2009;76:97-104.
3. Ziebell JM, Morganti-Kossmann MC. Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics. 2010; 7:22-30.
4. Sharp DJ, Scott G, Leech R. Network dysfunction after traumatic brain injury. Nat Rev Neurol. 2014;10:156-166.
5. Marklund N, Bakshi A, Castelbuono DJ, Conte V, McIntosh TK. Evaluation of pharmacological treatment strategies in traumatic brain injury. Curr Pharm Des. 2006;12:1645-1680.
6. Tyurin VA, Tyurina YM, Borsisen GG, Sokolova TV, Ritoz VY, Quintin PD, Rose M, Kochanek P, Graham SH, Kagan VE. Oxidative stress following traumatic brain injury in rats: quantification of biomarkers and detection of free radical intermediates. J Neurochem. 2000;75:2178-2189.
7. Chiu BY, Jiang BG, Kim JH, Lee BE, Sohn M, Song HK, Suh SW. Prevention of traumatic brain injury-induced neuronal death by inhibition of NADPH oxidase activation. Brain Res. 2012;1481:49-58.
8. Reznik-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton MA, Friel JJ, Townend K, Zeng J, Morgan D, Hardy J, Town T, Tan J. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci. 2005;25:8987-8996.
9. Ahn HY, Kim CH, Ha TS. Epigallocatechin-3-gallate regulates NADPH oxidase expression in human umbilical vein endothelial cells. Korean J Physiol Pharmacol. 2010;14:325-329.
10. Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res. 2001;480:481-243-268.
11. Tobi SE, Gilbert M, Paul N, McMillan TJ. The green tea polyphenol, epigallocatechin-3-gallate, protects against the oxidative cellular and genotoxic damage of UVB radiation. Int J Cancer. 2002;102:439-444.
12. Steinmann J, Bue J, Petschmann T, Steinmann E. Anti-oxidative properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br J Pharmacol. 2013;168:1059-1073.
13. Kim KC, Lee C. Reversal of Cisplatin resistance by epigallocatechin-3-gallate is mediated by downregulation of axo and tyro 3 expression in human lung cancer cells. Korean J Physiol Pharmacol. 2014;18:61-66.
14. Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, Welsh W, Yang CS. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes of green tea. J Pharmacol. 2003;1:293-303.
15. Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol. 2011;82:1807-1821.
16. Schroeder EK, Kelsey NA, Doyle J, Breed E, Bouchard BD, Loucks FA, Harbison RA, Linsenmayer DA. Green tea epigallocatechin-3-gallate ameliorates mitochondrial and displays a selective antiapoptotic effect against inducers of mitochondrial oxidative stress in neurons. Antioxid Redox Signal. 2009;11:469-480.
17. Levites Y, Amit T, Youlum MB, Mandel S. Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem. 2002;277:30574-30580.
18. Ge R, Zhu Y, Diao Y, Tao L, Yuan W, Xiong XC. Anti-edema effect of epigallocatechin gallate on spinal cord injury in rats. Brain Res. 2013;1527:40-46.
19. Lee H, Bae JH, Lee SR. Protective effect of green tea polyphenol EGCG against neuronal damage and brain edema after unilateral cerebral ischemia in gerbils. J Neurosci Res. 2004;77:892-900.
20. Feeney DM, Boyeson MG, Lim RT, Murray HM, Dail WG. Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res. 1981;211:67-77.
21. Smithel SS, Carlson TJ, Welsh WJ, Kyrkanides S, Matoose SB, O’Banion MK. Chronic interleukin-1beta expression in mouse brain leads to leukocyte infiltration and neutrophil-independent blood brain barrier permeability without overt neurodegeneration. J Neurosci. 2007;27:9001-9009.
22. Li GJ, Wang XM, Jiang T, Gong JF, Niu LY, Li N. Berberine prevents intestinal mucosal barrier damage during early phase of sepsis in rat through the toll-like receptors signaling pathway. Korean J Physiol Pharmacol. 2015;19:1-7.
23. Somboon R, Damzenberg AJ, Rush D, Woerner BM, Khan KN, Masferrer J, Koki AT. COX-2 is expressed in human colorectal, mammary and colon cancers. Cancer. 2000;89:2637-2645.
24. Donkin J, Nimmo AJ, Cernak I, Blumbergs PC, Vink R. Substance P is associated with the development of brain edema and functional deficits after traumatic brain injury. J Cereb Blood Flow Metab. 2009;29:1398-1398.
25. Koo Z, VandeVord PJ. Traumatic white matter injury and glial activation: from basic science to clinics. Glia. 2014;62:1831-1855.
26. Huang J, Sun SQ, Lu WT, Xu J, Gan SW, Chen Z, Qu GP, Huang SQ, Zhao F, Liu Q, Xu SY. The internalization and lysosomal degradation of brain AQP4 after ischemic injury. Brain Res. 2013;1539:61-72.
27. Metting Z, Wilczak N, Rodiger LA, Schaaf JM, van der Naalt J, GFAP and S100B in the acute phase of mild traumatic brain injury. J Neurosurg. 2012;116:433-438.
28. Lambeth JD. NOX enzymes and the biology of reactive oxygen. Rev Immunol. 2004;4:181-189.
29. Adachi N, Tomonaga S, Tachibana T, Denbow DM, Furuse M. (-)-Epigallocatechin gallate attenuates acute stress responses through GABAergic system in the brain. Eur J Pharmacol. 2006;531:171-175.
30. Liu X, Wang Z, Wang P, Yu B, Liu Y, Xue Y. Green tea polyphenols alleviate early BBB damage during experimental focal cerebral ischemia through regulating tight junctions and P-gp/Calpain signaling. BMC Complement Altern Med. 2013;13:187.
31. Suganuma M, Okabe S, Onyama M, Tada Y, Ito H, Fujiki H. Wide distribution of [3H](-)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis. 1998;19:1771-1776.
32. Yu J, Jia Y, Guo Y, Chang G, Duan W, Sun M, Li B, Li C. Epigallocatechin-3-gallate protects motor neurons and regulates glutamate level. FEBS Lett. 2010;584:2921-2925.
33. Lehmann GI, Gradilone SA, Marinelli RA. Aquaporin water channels in central nervous system. Curr Neurovasc Res. 2004;1:293-303.
34. Manley GT, Fujimura M, Ma T, Noshiita N, Filiz F, Bollen AW, Chan P, Verkman AS. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med. 2000;6:159-163.
35. Csuka E, Hans VH, Ammund E, Trenz O, Kossmann T, Morganti-Kossmann MC. Cell activation and inflammatory response following traumatic axonal injury in the rat. Neuroreport. 2000;11:2587-2590.
36. Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab. 2001;21:2-14.
37. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245-313.
38. Zhang QG, Laird MD, Han D, Nguyen K, Scott E, Dong Y, Dhandapani KM, Brann DW. Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury. PLoS One. 2012;7:e43504.