Cloud Classification Based on Images Texture Features

I Nurtanio¹*, Z Zainuddin¹ and B H Setiadi²

¹Department of Informatics, Engineering Faculty, Hasanuddin University, Indonesia
²Department of Electrical Engineering, Engineering Faculty, Hasanuddin University, Indonesia

*Email: ingrid@unhas.ac.id

Abstract. An identification of cloud imagery is part of the cloud observation process which is very important to know the potential for weather changes, especially in the Sultan Hasanuddin airport area. The purpose of this research is to build an artificial intelligence model to identify and classify texture patterns of cloud images. The research used 80 clouds images data contained in the Sultan Hasanuddin Airport area. The data consist of four types of clouds, Altocumulus, Cirrus, Cumulonimbus and Cumulus. In this research, a feature extraction process using Gray Level Co-occurrence Matrix (GLCM) algorithm and Support Vector Machine (SVM) is used for the classification process. We used a set of 4 GLCM features. The 4 selected features are contrast, correlation, energy and homogeneity. Training and testing data using cross validation method with three stages validation. The highest level of accuracy is found in the third stage validation with an accuracy value of 85%.

1. Introduction

In aviation, the cloud is one of the things that determines flight fluency and safety, especially the type of Cumulonimbus (CB) cloud. This cloud is much feared in flight because it can cause updraft, downdraft and wind shear (unexpected wind speed changes). If the plane is in or under this cloud at the time after takeoff, before landing, or during flight will cause dangerous aircraft position instability [1].

Cloud identification model is one of the things needed in the field of Meteorology and in the field of Air Traffic Regulators. This research creates a model to determine the shape and type of clouds using artificial intelligence which is expected to help Observer in the field of Meteorology or Air Traffic Regulator.

Previous research has discussed identifying cloud patterns and textures. and the effect of cloud cover on solar cell voltage (photovoltaic) [2]. The study calculated the effect of cloud cover on sunlight which is the input of solar cell voltage which is divided into four parts of the cloud conditions, clear skies, thin clouds, thick clouds and dark clouds. Zhao Zhen used the Gray Level Co-occurrence Matrix (GLCM) for extracting cloud features and SVM for the classification process. The success rate of accuracy using this method is 96.44%. Other research discussed using the GLCM and SVM methods for classification of acne based on texture [3]. In this research, texture analysis uses values from feature extraction in the GLCM method. Feature extraction is obtained by calculating the neighboring relationship between two pixels at an orientation of 0º, 45º, 90º and 135º. The five statistical characteristics used in the GLCM method are contrast, correlation, dissimilarity, energy, entropy. Accuracy generated in the study reached 72%.

Based on previous research, the GLCM and SVM method can analyze texture patterns well. In this research, identification of cloud images has some fundamental problems. That is the extraction of
cloud image features and building cloud image classification models. There are 4 types of clouds in the area of Sultan Hasanuddin Airport which are the basis of this research, i.e. Altocumulus, Cirrus, Cumulus and Cumulonimbus. The extraction process of cloud image features uses the GLCM method and the cloud classification process uses the SVM method.

2. Materials and Method

2.1. Materials
This research uses primary image data taken using a Canon EOS 750D DSLR camera with 24 MP sharpness and Canon Power Shoot SX600 HS with 16 MP sharpness and a resolution of 6000 x 4000 pixels. In this research only took four types of cloud images found around the area of Sultan Hasanuddin Airport in Makassar. The types of cloud are Altocumulus, Cirrus, Cumulonimbus and Cumulus. Each type of cloud has 20 images, consisting of 15 training images and 5 test images. The total data is 80 cloud images. We used Matlab as software for processing the data.

2.2. Method
In this research, the steps of the identification method of the cloud images are as follows:
1. Preprocessing: Preprocessing stages are data preparation before entering the feature extraction process. At this stage the original cloud image is 6000 x 4000 pixels (Figure 1) has gone through the process of setting parameters so that the original size changes to 200 x 200 pixels (Figure 2). Furthermore, the cloud image is changed to grayscale (Figure 3).

![Figure 1. Real 6000 x 4000 pixel cloud image](image1)

![Figure 2. Cloud image 200 x 200 pixel](image2)

![Figure 3. Grayscale cloud image](image3)

2. Feature Extraction: this step is to find a feature set of cloud images using GLCM and that can accurately be identified.
3. Classification: this section discusses about training and testing data using the SVM method for cloud images identification.
4. Validation: using cross validation method to look for accuracy values.

2.3. Gray level co-occurrence matrix (GLCM)
The feature extraction based on gray level co-occurrence matrix (GLCM) is the second order statistics that can be used to analyze images as a texture [4]. In addition to the horizontal direction (0°), GLCM can also be formed for the direction of 45°, 90° and 135° as shown in Figure 4 below.
Haralick and his colleagues [5] extracted 14 features from the co-occurrence matrix, but in this research we used only 4 features, i.e. contrast, correlation, energy, and homogeneity with 4 direction and distance d = 1. The following below is the equation of the GLCM feature used in this research.

Contrast = \sum_{i,j=0}^{N-1} (i-j)^2 p(i,j)

This statistic measures the spatial frequency of an image and is difference moment of GLCM. It is the difference between the highest and the lowest values of a contiguous set of pixels. It measures the number of local variations present in the image. A low contrast image presents GLCM concentration around the principal diagonal and features low spatial frequencies [6].

Correlation = \sum_{i,j=0}^{N-1} \frac{(i-\mu_i)(j-\mu_j)p(i,j)}{\sigma_i\sigma_j}

The correlation feature is a measure of gray tone linear dependencies in the image [6].

Energy = \sum_{i,j=0}^{N-1} p(i,j)^2

It measures the textural uniformity that is pixel pair repetitions. It detects disorders in textures. Energy reaches a maximum value equal to one. High energy values occur when the gray level distribution has a constant or periodic form [6].

Homogeneity = \sum_{i,j=0}^{N-1} \frac{p(i,j)}{1+(i-j)^2}

This statistic is also called as Inverse Difference Moment. It measures image homogeneity as it assumes larger values for smaller gray tone differences in pair elements. It is more sensitive to the presence of near diagonal elements in the GLCM. It has maximum value when all elements in the image are same [6].

2.4. Support Vector Machine (SVM)

Support vector machine, is a supervised learning technique that seeks an optimal hyperplane to separate two classes of samples. Kernel functions are used to map the input data into a higher dimensional space where the data are supposed to have a better distribution, and then an optimal separating hyperplane in the high-dimensional feature space is chosen. The idea behind SVMs is to map the original data points from the input space to a high dimensional, or even infinite-dimensional, feature space such that the classification problem becomes simpler in the feature space. The mapping is done by a suitable choice of a kernel function (Figure 5).
Clouds data that have trained and achieved the desired results need to be tested to determine the ability when studying the training data given. Testing is conducted to observe the performance of the system that has been created by looking at the value of the minimum error. Training and testing results can be analyzed by observing the accuracy of output target. The training and testing process of clouds classification is shown in Figure 6.

2.5. Cross validation
In this research, process validation using cross validation method with three stages of validation. Clouds data used consist of 60 training data and 20 testing data for four types of clouds. Cross validation method for each cloud is shown in Table 1.

Table 1. Cross validation method

Clouds Data	First Validation	Second Validation	Third Validation
1	Training Data	Training Data	Training Data
2			Training Data
3			
4		Training Data	Test Data
5			
6	Training Data		
7		Test Data	
8			
9			
10		Training Data	
11			
12			
Clouds Data First Validation Second Validation Third Validation

13					
14					
15					
16					
17					
18	Test Data	Test Data	Training Data		
19					
20					

3. Result and Discussion

All the experiments were conducted in Matlab version 9.0 running on a PC Intel-Pentium Core i5 with 4 GB of RAM. A total of 80 clouds data measuring 200x200 pixel are processed using the GLCM-SVM method. Table 2 below shows the results of GLCM feature extraction on all four types of clouds.

Table 2. The result of GLCM feature extraction

No	Real Clouds Data	Grayscale	GLCM Output					
			0	45	90	135	average	
1	![Image1](image1)	![Image2](image2)	Contrast	0.16515	0.23645	0.22256	0.27025	0.2236
			Correlation	0.90333	0.86126	0.86945	0.84138	0.86885
			Energy	0.22221	0.19656	0.20051	0.18533	0.20115
			Homogeneity	0.91814	0.88601	0.89205	0.87116	0.89184
2	![Image3](image3)	![Image4](image4)	Contrast	0.077206	0.15437	0.11991	0.10855	0.11501
			Correlation	0.9657	0.93143	0.94674	0.95177	0.94891
			Energy	0.24072	0.21487	0.22582	0.22768	0.22727
			Homogeneity	0.96143	0.92444	0.9405	0.94581	0.94305
3	![Image5](image5)	![Image6](image6)	Contrast	0.041867	0.064118	0.048455	0.0634	0.05446
			Correlation	0.97381	0.95989	0.96969	0.96029	0.96592
			Energy	0.2787	0.26797	0.27494	0.26801	0.27241
			Homogeneity	0.97928	0.96881	0.97604	0.96885	0.97325
4	![Image7](image7)	![Image8](image8)	Contrast	0.04995	0.10361	0.09495	0.10431	0.088205
			Correlation	0.9785	0.95548	0.95918	0.95519	0.96209
			Energy	0.26658	0.25118	0.25297	0.25074	0.25537
			Homogeneity	0.97572	0.95371	0.95695	0.95336	0.95993

The output extraction feature in this GLCM method is a matrix. This matrix is the characteristic of each cloud image. Table 2 showed that no specific value about the four types of clouds. That's why SVM as classification method was chosen to classify the type of clouds. To choose the best training data for high accuracy, we used cross validation method with three stages of validation. The results of validation shown in Figure 7.
Figure 7. The graphic result of cloud classification

Based on the graph in Figure 7, it could be seen that the validation of stage three Altocumulus cloud types reached 100% success rate. Cirrus, cumulonimbus, and cumulus cloud types reached 80% success rate. Likewise with the Cirrus cloud type on second stage of validation the success rate reached 100%, but altocumulus and cumulonimbus cloud types just reached 60% success rate. At the first stage, there is 60% success rate for cirrus cloud type. In Cumulonimbus clouds the success rate of testing reached 80% in the first and third stages of validations. While in Cumulus's cloud the test success rate reached 80% in all validations. Thus the third stage of validation was chosen, because in the four types of clouds, the lowest success rate reached 80% while in the first and second stage of validations, there was still a success rate of 60%. From the average of three stage validation, the third stage also occupied the highest value, which is 85% success rate. The results of the average value of three stages validation shown in Figure 8.

Figure 8. The average values for three stages of validation

Now we can see in Figure 8, in the first stage of validation had accuracy level of 75%, while in the second stage of validation had accuracy level of 65%, then in the third stage of validation had accuracy level of 85%.
4. Conclusion

Based on experimental results, it concludes that Gray Level Co-occurrence Matrix (GLCM) with Support Vector Machine (SVM) method, can be used for cloud identification. Clouds data used consist of 60 training data and 20 testing data for four types of clouds. Process validation using cross validation method with three stages of validation the highest accuracy value in this research achieved in third stages of validation and reach 85% accuracy.

References

[1] Anonymous, Meteorological, Climatological, and Geophysical Agency: *Cumulonimbus cloud alert until January 2017: Okezone News,”* https://news.okezone.com/. [Online]. Available: https://news.okezone.com/read/2016/12/05/340/1559035/ [Accessed: 03-Sep-2018].

[2] Z. Zhen et al. 2015 SVM Based Cloud Classification Model Using Total Sky Images for PV Power Forecasting in *IEEE Power & Energy Society Innovative Smart Grid Technologies Conf. (ISGT)*, Washington, DC, USA, pp. 1–5.

[3] M. Ramadhani and D. Suprayogi 2018 Acne Classification Based on Texture Using GLCM Method in *e-Proc. of Engineering*: vol 5 No. 1 pp. 870-876.

[4] I. Nurtanio et al 2013 Classifying Cyst and Tumor Lesion Using Support Vector Machine Based on Dental Panoramic Images Texture Features in *IAENG Int. Journal of Computer Science* vol 40 (1) pp 29-37

[5] R. M. Haralick et al 1973 Textural Features for Image Classification in *IEEE Transactions on Systems, Man, and Cybernetics* vol SMC-3 no 6 pp. 610–621.

[6] D. Gadkari 2000 *Image Quality Analysis Using GLCM* thesis in University of Pune, Florida.

[7] J. Luts et al 2010 A tutorial on support vector machine-based methods for classification problems in chemometrics in *Analytica Chimica Acta* vol 665 no 2 pp. 129–145.