A Subcutaneous Implant of Tenofovir Alafenamide Fumarate Causes Local Inflammation and Tissue Necrosis in Rabbits and Macaques

Jonathan T. Sua,b*, Solange M Simpsona*, Samuel Sunga, Ewa Bryndza Tfailyc, Ronald Veazeyd, Mark Marzinkea, Jiang Qiua, David Watrousa, Ewa Bryndza Tfailyc, Elizabeth Pearsona, M. Melissa Peetf, Dipu Karunakarana, Brooke Grasperged, Georgina Dobekg, Charlette M. Caini, Thomas Hopee, Patrick F. Kisera,#

aDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
bDepartment of Physics and Engineering, Elon University, Elon, NC, USA
cDepartment of Cell and Molecular Biology, Northwestern University, Chicago, Illinois, USA
dDivision of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
eDivision of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
fCONRAD, Contraceptive Research and Development, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Arlington, Virginia, USA
gTulane University School of Medicine, New Orleans, Louisiana, USA
hFeinberg School of Medicine, Northwestern University, Chicago, Illinois, USA

*J.T.S. and S.M.S. contributed equally to this work.

Running Head: Pharmacokinetics & response of a reservoir TAF implant

#Address correspondence: patrick.kiser@northwestern.edu

Submitted to Antimicrobial Agents and Chemotherapy as original research, full length text
ABSTRACT

We describe the *in vitro* and *in vivo* evaluation of a subcutaneous reservoir implant delivering tenofovir alafenamide hemifumarate (TAF) for the prevention of HIV infection. These long-acting reservoir implants were able to deliver antiretroviral drug for over 90 days *in vitro* and *in vivo*. We evaluated the implants for implantation site histopathology and pharmacokinetics in plasma and tissues for up to 12 weeks in New Zealand White rabbits and rhesus macaque models. A dose-ranging study in rabbits demonstrated dose-dependent pharmacokinetics and local inflammation up to severe necrosis around the active implants. The matched placebos showed normal wound healing and fibrous tissue encapsulation of the implant. We designed a second implant with a lower release rate and flux of TAF and achieved a median cellular level of tenofovir diphosphate of 42 fmol per 10^6 rhesus macaque peripheral blood mononuclear cells at a TAF dose of 10 µg/kg/day. This dose and flux of TAF also resulted in adverse local inflammation and necrosis near the implant in rhesus macaques. Inflammation in the primates was markedly lower in the placebo group than the active implant. The histological inflammatory response to the TAF implant at 4 and 12 weeks in primates was graded as a severe reaction. Thus, while we were able to achieve sustained target dose we observed unacceptable inflammatory response locally at the implant tissue interface.
Clinical availability of antiretroviral (ARV) delivery systems that provide durable protection from HIV transmission could revolutionize the way we fight the global HIV/AIDS pandemic. (1) Once-daily oral Truvada™ (emtricitabine (FTC) 200 mg/tenofovir disoproxil fumarate (TDF) 300 mg) prevents the sexual transmission of HIV when used before sexual exposure to HIV (2-6). However, not all pre-exposure prophylaxis (PrEP) trials with oral Truvada™ have been efficacious (2-6), likely because of poor adherence to the regimen (7, 8). Therefore, many groups in the HIV prevention field are striving to develop long-acting, acceptable, and effective methods of HIV prevention for use in high-risk populations. For example, a recent clinical study demonstrated the effective drug levels of a subdermal drug-eluting implant releasing islatravir (MK-8591) for the prevention of sexual transmission of HIV. (9)

Long-acting drug-delivery systems are fundamentally easier for individuals to use than once-daily oral pills. Studies on adherence to methods of contraception generally show that increased duration and subsequent reduced need for daily-repeated action by the user is correlated with increased contraceptive efficacy. (10-13) Subcutaneous contraceptive implants generate durable, sustained progestin exposure over several years and allow the recipient to undergo a minimally invasive procedure for implant placement without any further clinical follow up until removal; therefore, contraceptive implants are the most effective contraceptives. Similarly, long-acting delivery systems of ARVs have the potential to be highly effective.

Long-acting drug delivery systems require the most potent and slowly eliminated ARVs to enable durable ARV exposure and protection for durations on the order of months to a year. Tenofovir alafenamide hemifumarate (TAF, or GS-7340-03) is a caspase-activated prodrug of tenofovir (TFV). (14)

Based on in vitro analysis, the 50% effective concentration [EC_{50}] of TAF is in the low nanomolar range (5 – 11.2 nM) (15, 16). TAF is intracellularly converted by kinases into TFV diphosphate (TFV-DP); this is the active form of the drug that competitively inhibits HIV reverse transcriptase and the generation of viral transcripts. The diphosphate, due to its charge and pKa, is highly impermeable to cellular membranes.
and is therefore trapped in the intracellular volume versus the parent species. TFV-DP cellular half-lives in humans have been measured at ~150 hours (17). For several other molecular reasons that have been reviewed (18, 19), TAF is a more potent pro-drug than TDF, resulting in lower TFV drug exposures and reduced side effects as compared to TDF (14). Together, these characteristics make TAF one of the leading drug molecules for long-acting ARV delivery because TAF is so potent and cellularly long-acting that one can plausibly load many ARV daily doses inside a small controlled-release device to achieve durable protection from HIV infection.

Accordingly, four subcutaneous implants delivering TAF exist in the literature. The first implant using the free base of TAF, presented by Gunawardana and Baum, delivered 0.92 mg/day (~80 µg/kg/day) and was evaluated in beagle dogs for over 40 days. (20) This implant consisted of 1.9 mm diameter silicone tubing with 14 poly(vinyl alcohol) coated 1.0 mm diameter delivery channels punched into the walls and filled with pure TAF powder. (20) The second implant was presented by Schlesinger and Desai, and consisted of a heat-sealed poly(caprolactone) film cylinder containing TAF and polyethylene glycol 300 at 1:2, 1:1, or 2:1 w/w ratios. (21) Release ranging from 0.5 – 4.4 mg/day was demonstrated in vitro (21). A third implant was presented by Johnson et al., and was a reservoir formed from extruded poly(caprolactone) filled with TAF and castor oil excipient; release rates of 0.15 – 0.91 mg/day were demonstrated in vitro. (22) The fourth implant, presented by Chua and Gratoni, consisted of a refillable titanium device that delivered TAF and FTC through silicon nanochannels. (23) This refillable implant demonstrated the sustained release of TAF of ~ 0.2 mg/day (~20 µg/kg/day) for 83 days in rhesus macaques. (23) They rapidly achieved TFV-DP benchmark levels in macaque peripheral blood mononuclear cells (PBMCs) with means of 72 fmol/10^6 PBMCs early in the pharmacokinetic (PK) study to 533 fmol/10^6 PBMCs to day 70. None of the studies have reported placebo-controlled histopathology, but all authors have suggested that the implants are safe. (20, 23, 24)

When a subcutaneous implant is placed under the skin, the cells and tissues surrounding the implant respond to the presence of the foreign-body implant and potentially to the drug near the
implantation site. In the normal foreign body response, the implant is walled off at its site of implantation by a fibrin-containing capsule. (25) Focal toxicity can result in inflammation and necrosis, potentially leading to skin disruption and potential infection. (26) Ultimately, any process that disrupts the multistage wound healing response can result in a non-biocompatible drug delivery implant. It is also possible that these toxic effects are dependent on the route of administration, thus driving the need for careful evaluation of the biological and cellular response at the implant-tissue interface.

We evaluated the potential viability of TAF for systemic, long-term drug delivery, using a subcutaneous implant made of a heat-sealed polyurethane rate-controlling membrane. Our objective was to develop a subcutaneous TAF reservoir implant that, after implantation, would show no signs of pathology at the implant site, yet provide levels of TFV-DP that could prevent sexual transmission of HIV. (26) In this work, we evaluated a TAF implant in both New Zealand White (NZW) rabbit and rhesus macaque models. We describe conducted studies below to assess the local biological reaction to active TAF implants versus matched placebo implants, TFV-DP pharmacokinetics and in vivo release rates in both NZW rabbits and rhesus macaques for up to 12 weeks.

RESULTS

Implant design and in vitro performance

TAF reservoir implants were formed by compressing the TAF drug substance, and small amounts of NaCl and magnesium stearate into a pellet that was impulse-sealed into a 150 to 170 µm thin, medical-grade polyurethane tube (Figure 1). The tube wall acts as a mechanical capsule and rate controlling membrane whose composition or thickness can be changed to tune the drug release rate. Accordingly, we were able to successfully control the release of TAF by changing the geometry of the implant, as well as the composition of the polyurethane membrane. Drug release from implants was evaluated in vitro (Figure S1) using the shake flask method. We observed slow rates of TAF degradation (27) in phosphate-buffered saline (PBS) in in vitro release testing media (half-life of 2.8 days at pH 7.4 at
37 °C in PBS), as well as in the implant (see Suppl. 1 and 2). Although until the end of the release curve we observed that greater than 90% of the internal contents was the parent form. Molar amounts of TAF and its main TAF related substances (PMPA monoamidate and tenofovir) were calculated and converted to a mass of TAF depleted from the core. Two generations of implants are described in this study: Generation A and Generation B.

Two types of Generation A implants were created: one with a 0.8 cm lumen length, and one with a 1.6 cm lumen length. The average TAF equivalent in vitro release rate over days 7 to 91 from the Generation A implant was 0.13 mg/day for the 0.8 cm long implants, and 0.26 mg/day for the 1.6 cm long implants with a flux of 0.24 mg TAF/cm²/day and 0.23 mg TAF/cm²/day, respectively. We were able to obtain a sustained release of the drug in vitro (Figure S1a, S1b) for over one hundred days.

Guided by our pharmacokinetics and histopathology from studies on the Generation A implants, we developed a second-generation implant, called Generation B that was designed to release a lower amount and flux of drug, but also provide a steady release of TAF in vitro (Figure S1c). The mean TAF equivalent in vitro release rate over days 7 to 91 from the Generation B implants was 0.13 mg/day, with an average flux of 0.08 mg TAF/cm²/day.

Pharmacokinetic and local safety evaluation in rabbits

Both generations of TAF implants were evaluated in animals. Four studies were performed: (1) a PK and safety dose-ranging study using Generation A implants in NZW rabbits using four dose groups, (2) a PK study using Generation A implants in rhesus macaques, (3) a PK and local response study using Generation B implants in rhesus macaques and (4) an exploratory study in rhesus to assess the local reaction to Generation B implants when inserted by trocar.

Table 1 summarizes the results from the first three animal studies in this series of analogous implants delivering TAF. A series of four doses were evaluated in NZW rabbits (Table 1). TFV-DP was
found in blood heterophils for all active implant treated animals after week 1, and concentrations were quantifiable throughout the study (Figures 2 and 3). In general, increases in the in vitro dose were correlated with increasing median TFV-DP. Group 1, our lowest in vitro dose, 0.13 mg/day, corresponded to a median TFV-DP level of 68 fmol/10^6 cells (range from below the level of quantification (BLQ) to 218 fmol/10^6 cells); the median was calculated from weeks 1 – 12 cellular PK data. Group 4, our highest in vitro dose of 0.78 mg/day—6 times higher than the lowest dose—provided a median TFV-DP level of nearly 391 fmol/10^6 cells doses over weeks 1 – 12 of the study. This implant gave a median cellular TFV-DP level 5.75 times higher than the lower dose.

Plasma TFV concentrations remained low for all NZW rabbits, with TFV concentrations ranging from BLQ to 20 ng/mL (LLOQ = 0.31 ng/mL) (weeks 1 - 12; see Suppl. 3, Table S3). Similarly, drug and metabolite concentrations in vaginal and rectal tissue were generally low in NZW rabbits (see Suppl. 3, Table S2). Values of TFV-DP in vaginal tissues and rectal tissues ranged from BLQ to 169 fmol/mg and from BLQ to 50 fmol/mg (LLOQ = 50 fmol/sample; weeks 1 - 12), respectively. Samples were taken near the implant site at necropsy, and the TFV-DP levels were scattered; large concentrations of TFV-DP were found at week 12. Local tissue TFV-DP concentrations ranged from 0.86 to 69,941 fmol/mg of TFV-DP.

All NZW rabbits appeared healthy, with no superficial observations of poor tolerability at the implant site throughout the study. Figure 4 shows representative sections of histology from NZW rabbits with Generation A implants after 12 weeks. In the placebo implants (Figure 4a and 4b), the implant region was demarcated by a thin fibrous tissue capsule, two to five cells thick, but most of the sections showed no or mild inflammation in the area around the implant, with two implants showing mild to moderate inflammation. We saw that some rabbits appeared to have inflammation near the end of the implant adjacent to the sutures. The active implants are shown in figure 4c, and 4d displayed severe granulomatous and suppurative inflammation with necrosis and abundant necrotic cell debris and proteinaceous fluid in the implant space, which is lined by marked infiltrations of lymphocytes and
heterophils. Marked infiltrations of lymphocytes and macrophages into the adjacent muscle tissues were seen. There was also abundant eosinophilic fluid-like material with pockets of necrotic cellular debris with associated granulomatous inflammation and giant cells. Some slides showed scattered yet diffuse infiltrations of lymphocytes, heterophils, and macrophages in the dermis and muscle fibers. Additionally, in some NZW rabbits, chronic granulomatous inflammation and necrosis were observed around the implant.

Histopathological characteristics were scored semi-quantitatively on an animal and implant basis from multiple slides taken from the ends and center of fixed tissue containing implants. The scoring system (0-4) logged the presence of five cellular characteristics (polymorphonuclear cells, lymphocytes, plasma cells, macrophages, giant cells) and three tissue characteristics (necrosis, capsule thickness, and tissue infiltrate). High levels of inflammation were observed in the peri-implant space from all drug-loaded implants at all doses in NZW rabbits (ranging from an average total histological characteristic score of 17.5 ± 0.6 to 23.0 ± 5.1) (±SD, averaged over all time points weeks 1 - 12, Table 1). These total histological characteristic scores were far higher than those observed for the placebo implants, which had an average score of 1.5 ± 0.6 (±SD, averaged over all time points weeks 1 – 12, Table 1) (see scores tables and micrographs from all animals in Suppl. 4). There was no statistically significant difference (p > 0.05) in total histological characteristic score with TAF exposed NZW rabbit groups. The 0.8 and 1.6 cm Generation A implants obtained a reactivity grade of severe reaction (see Methods and Suppl. 6).

After our in vivo experiments, implants were placed on in vitro release to verify the implants were intact, not leaking, and were releasing drug at the moment of removal (Figure 6). Release after explantation from the 1.6 cm lumen length implants was roughly double that of the 0.8 cm lumen length implants, as expected. Additionally, we extracted these implants for the calculation of an average in vivo release rate (figure S6). Comparison of our in vivo release with our in vitro release...
demonstrated a correlation of close to 0.8 at four weeks and approximately 0.7 - 0.8 at 12 weeks (Figure S6). All returned implants remained intact, and the wall was not compromised. We investigated if any molecular weight changes had occurred in the polymers during their residence in vivo. No notable changes in molecular weight distributions were detected that would indicate in vivo polymer degradation (Suppl. 7, Table S16).

Pharmacokinetic and local safety evaluation in rhesus macaques

Following experiments with Generation A implants in NZW rabbits, we conducted a dose-finding pharmacokinetic experiment in rhesus macaques with the same implant system (See Table 1). In Generation A implanted macaques, there was no statistically significant difference found (p > 0.05) between TFV-DP levels for either our 0.39 mg/day in vitro dose or our 0.78 mg/day in vitro dose (Figure 2). This study allowed us to design a lower dose and flux Generation B implant to achieve lower levels of TFV-DP. In the low and high dose one animal each lost implants due to abscess formation. Comparison of our in vivo release with our in vitro release demonstrated a close correlation (Figure 5).

For Generation B implants releasing an average of 0.13 mg TAF/day in vitro, the median TFV-DP concentrations in rhesus macaque PBMCs were 42 fmol/10⁶ cells (range: BLQ-255), calculated from weeks 1 – 12 data (Figure 6, and Table 1). Plasma TFV and TAF concentrations remained low for all rhesus macaques, with TFV concentrations ranging from BLQ to 7 ng/mL (LLOQ = 0.35 ng/mL) and TAF concentrations ranging from BLQ to 4 ng/mL (TAF LLOQ = 0.03 ng/mL) (see Suppl. 8, Table S19). Similarly, TFV and TFV-DP levels in tissue were generally low for all macaques, with full data provided in Suppl. 8, Table S18. Samples were taken near the implant site, the vagina, and the rectum. All TFV concentrations near the implant site were BLQ (LLOQ = 0.05 ng/sample), and TFV-DP concentrations near the implant site were low, ranging over BLQ – 27 fmol/mg (LLOQ = 5 fmol/sample). Rectal concentrations were similarly low, with a TFV range from BLQ to 0.24 ng/mg; TFV-DP ranged from BLQ...
to 12 fmol/mg. In the vagina, concentrations were again low: TFV ranged from BLQ to 0.02 ng/mg, while TFV-DP ranged from BLQ to 6 fmol/mg.

Despite the lower flux of TAF release in the Generation B implants, inflammation remained high in all rhesus macaques exposed to the active implants. For the active Generation B implants in macaques, we observed gross redness around the implant and neovascularization indicative of inflammation. All placebos showed visually clear encapsulation with no neovascularization and redness around the placebo implant. Representative pathohistology for the Generation B implants in macaques are shown in Figure 7, with the full set of images in Suppl. 5 (Figures S27 – S32). Histologically we observed moderate to severe inflammation in the peri-implant space, with thick fibrous capsules filled with neutrophils, plasma cells, necrotic cellular debris, proteinaceous fluid, and occasional multinucleated giant cells. Multifocal aggregates of densely packed lymphocytes were observed in surrounding tissues. In two of the four macaques, we observed an abscess above the implant site where it appeared that the implant caused a topical wound. The two animals that were necropsied at four weeks also displayed markedly more inflammation than the placebo contralateral implants, but the necrosis scores in the active implant sites were mild at four weeks (Suppl. 5) and became moderately to severely necrotic by 12 weeks.

In contrast, two out of four placebo implants showed minimal fibrosis or inflammation, with a few neutrophils and plasma cells in the implant lumen, except in one case, where marked accumulations of macrophages and lymphocytes with moderate numbers of giant cells were observed around the placebo implant. In this animal (EC74, see Table S12), moderate inflammation was observed around the placebo implant adjacent to the sutures, the active paired implant demonstrated a purulent hemorrhagic abscess with fibrosis resulting in the loss of the drug-loaded implant before necropsy. Thus, while the score of the placebo implant (20) was relatively higher than the score of the other placebo implants, it was still lower than the score of the corresponding active implant (31). Overall, high
levels of inflammation were observed in the peri-implant space in rhesus (ranging from an average total histological characteristic score of \(24.7 \pm 9.7\) at week 12 (±SD, Table 1). These total histological characteristic scores were far higher than those observed for the placebo implants, which had an average score of \(11.3 \pm 8.2\) at 12 weeks (see scores tables and micrographs from all animals in these studies in the Suppl. 5). Finally, the computed reaction grade indicated a severe reaction to the reduced dose and flux Generation B implant (see Suppl. 6, Table S1).

We sought to determine if the use of a trocar instead of surgical-pocket formation would modify the local inflammation. Here, two male and two female rhesus macaques were implanted with contralateral matched placebos and single Generation B implants. We observed that subdermal wounds in several animals developed into abscesses and surface lesions (see Suppl. 9, Figure S33). The use of a trocar allowed more efficient implant insertion with lower trauma but did not reduce or eliminate the local reaction to the Generation B implants.

DISCUSSION

The dosing calculations for the design of the Generation A and B TAF subcutaneous implants were targeted to cellular benchmark concentrations of TFV-DP in PBMCs, established in humans (20, 28, 29). Median PBMC TFV-DP concentrations in the STRAND trial were TFV-DP 42 fmol/10^6 cells with once-daily oral dosing (28). Due to upwards of 66% TFV-DP losses during cryopreservation, using the iPrEX analysis, Gunawadarna et al. estimated a conservative EC_{90} of 24-48 fmol/10^6 cells for PBMC TFV-DP concentrations (20). This TFV metabolite level was the benchmark applied in this work below, which drug exposure is too low to likely protect from HIV transmission.

Both Generation A and Generation B implant formulations demonstrated the controlled release of TAF with sustained concentrations of intracellular TFV-DP throughout implant exposure (12 weeks). We hypothesized that this inflammatory reaction might be TAF dose (mg/day) and TAF flux (mg/cm^2/day) dependent. By reducing both, we hoped to attenuate the cellular inflammatory reactions.
shown above, while achieving protective levels of TFV-DP in PBMCs of primates. We also thought that there might be species-dependent toxicity in NZW rabbits that might not manifest itself in non-human primates. Thus, in our design of the Generation B subcutaneous TAF implants, we reduced our in vitro release rate from 0.39 mg/day to 0.13 mg/day, and reduced TAF flux from 0.24 to 0.08 mg TAF/cm²/day (Table 1). Assuming linear dose scaling from the Generation A implant in rhesus, we expected this implant to yield roughly 100 fmol/10⁶ cells of TFV-DP.

While we achieved our TFV-DP cellular benchmark PK levels in rhesus and the flux and dose were significantly reduced in Generation B, we continued to observe significant inflammation at 4 and 12 weeks in the peri-implant volume in rhesus macaques (Figure 7; for full histology reports, see Suppl. 5). Local inflammation and necrosis around the implant in all cases was much higher in the TAF implant arms than in the matched placebos, suggesting that inflammation is caused by TAF exposure to the local cells and tissue around the implant. This local inflammation occurred even at the lowest TAF dose and flux implant that achieves commonly used cellular TFV-DP benchmark levels. Furthermore, the lower inflammation surrounding the placebo implants strongly suggests that the local histopathology is neither due to the polymer nor due to the surgical procedure of blunt dissection or trocar administration.

Chua et al. are the only group to report data on TAF implants in rhesus macaques, and they exceeded benchmark levels of TFV-DP in PBMCs. With a dose in rhesus of 200 µg/day of TAF or approx. 20 µg/kg/day, they report a mean TFV-DP level of 533 fmol/10⁶ PBMCs. (23) Gundawarna et al. delivered controlled doses of 920 µg/day in beagle dogs with a corresponding dose of 85 µg/kg/day. (20) We delivered a lower dose of 130 µg/day in rhesus, or 10 µg/kg/day, and obtained lower median TFV-DP levels than Chua et al., yet we still observed severe histopathological reaction and inflammation around the active implants at a 10 µg/kg/day TAF dose and not the placebos (Table 1).
Although we are the first to report extensive histological data on TAF implants, we are not the first to report on implant safety or tissue pathology near an active TAF implant. When Chua et al. evaluated their system in rhesus macaques (23), they reported the presence of wound formation along the surgical incision or “dehiscence” over their TAF implant in two out of the three macaques, in addition to skin ulceration over the implant in two animals at day 70 (23). Ultimately, Chua et al. concluded that histopathological analysis of punch biopsy of skin sampled adjacent to the implant was normal in rhesus macaques, but no control implant data was collected. (23) It is not clear from Chua et al. if the whole implant was removed and fixed for the two published tissue sections. In a PCL implant similar to Schlesinger and Desai (21), Gatto and van der Straten reported on a “cutaneous response” to the devices in rabbits. (24) In Gundawarna et al., safety in beagle dogs was “evaluated by body weight and cage observations.” (20) No histopathological analysis data is provided, but from animal weight and cage observations, they concluded the implant was safe. However, in later unpublished pharmacokinetic studies in beagle dogs, this implant was associated with “erythema and/or edema at the implantation site” as well as “multiple instances of discharge” (30). They then argued that these reactions would not be observed at doses of less than 1 mg/day of TAF (30); our findings belie this expectation, as we observe inflammation at doses well below 1 mg/day (~100 µg/kg/day) in rhesus.

TAF is safe when administered orally (14), and TFV has been safely administered vaginally, both as a gel (31, 32) and as an intravaginal ring (33). It is well known that the route of administration can significantly modify the toxicological response to the drug delivery system. For example, entecavir is an approved oral antiviral used for the treatment of chronic hepatitis B (34). However, Henry et al. evaluated polymer-coated pellets of entecavir in rats and observed local swelling, scab formation, and necrosis in their drug-loaded implants, but not their placebos (35). Similarly, we have observed little inflammation around the placebo implants, but observe significant inflammation around the drug-containing implants. Much like Anderson et al. and Henry et al., we removed the entire implantation site for histopathological analysis after exposure to the drug delivery system.
TAF undergoes pH-dependent hydrolysis into two main related substances PMPA monoamidate and TFV (see Table S1). Over 70 days upwards of ~90% of the mass flux from the generation B implant is TAF with about half of PMPA amidate being generated over the 24 hours the compound is sitting in the IVRT media. Furthermore, both of these compounds have been observed in the portal and jugular veins of dogs orally exposed to TAF (36). Our work has not eliminated the possibility that differences in the interior microenvironment of other implant compositions could lead to other implants releasing a mixture of TAF related substances that differs from the implants described herein. These different mixtures of TAF related substances could result in modifications in the toxicokinetics of a TAF implant system. Because we have not studied this implant system side-by-side with the other published TAF implants, it remains a possibility that other differently constructed TAF implants will not suffer the same local toxicity issues we observed in our reservoirs.

CONCLUSION

We describe a reservoir implant capable of delivering TAF in the subcutaneous space for a period of several months, and we tested this implant system in NZW rabbits and rhesus macaques for up to 12 weeks. Our main finding in this work is that this TAF implant always induces local inflammation around the implant even at a low dose of the drug (~10 µg/kg/day). We felt we could not reasonably decrease the dose or flux further and still generate a viable TAF implant that would protect from HIV transmission and be a reasonable size in humans. More importantly, our results could not exclude the possibility that this reservoir TAF implant, loaded with hundreds of milligrams of the drug, could leak from a manufacturing or mechanical failure and cause tissue damage to the user because of exposure to a large acutely applied dose of TAF in the sub-cutaneous volume. Together, these factors caused us to conclude this implant is unsafe and to terminate pre-clinical development efforts towards this TAF implant for long-acting HIV prevention and treatment.
Our work was informed by guidance for studying local inflammation around an implanted device described in ISO 10993-6 for the biological evaluation of medical devices. (37) ISO 10993-6 directs us to “excise the implant site together with sufficient unaffected surrounding tissue to enable evaluation of the local histopathological response.” (37) Leaving the implant in the tissue allows histological evaluation of the pericapsular space around the implant without disturbing the fragile cellular and biopolymer structures that are used to measure histopathological response versus control. We followed this procedure, and our histological analysis clearly shows a local toxic response with the TAF loaded implant and a considerable reduction of such response in our matched placebos. Because of locally high drug concentrations and long drug exposures to the local tissues around the implant (36), we urge that the international standard (37) is followed for all future ARV implant local reaction studies. We also observed that the inflammation and necrosis around the implants became more severe at longer time points, suggesting that a one-month local safety study would be insufficient for these long-acting devices. Finally, we recommend extensive stress testing of TAF and other ARV eluting devices to exclude rupture, device failure, and dose dumping.

While the oral route of administration of TAF (14, 38) is clinically proven to be safe, the TAF implants described herein are unsafe. Alternatively, another potent, long-acting small molecule ARV like cabotegravir (39-41) or GS-6207 (42) could be progressed with studies like those shown in this work to achieve the goal of a long-acting subcutaneous implant for the treatment and prevention of HIV infection. 4'‐ethynyl-2-fluoro-2'-deoxyadenosine (EFdA, islatravir, MK-8591) (39-41) is a highly potent nucleoside reverse transcriptase translocation inhibitor: once-weekly oral dosing has demonstrated its ability to protect male rhesus macaques in challenge studies(43). Implantable islatravir implants have demonstrated prophylactic concentrations in a human trial (44, 45). We further suggest that long-acting ARV drug substances should be evaluated for biocompatibility at the site of administration earlier in the preclinical development process. For example, an Alzet® osmotic pump delivering a set dose would
permit the screening of local inflammation as a function of dose in an animal without requiring the full design of a drug delivery device capable of long-acting durations. Thus, similar reactions can be studied and avoided in future devices using other ARV drugs.

MATERIALS AND METHODS

Materials

TAF (CAS 1392275-56-7; GS-7340-03) and TFV (CAS 147127-20-6) were obtained from Gilead Sciences (Foster City, CA). Tecoflex® polyurethane was obtained from Lubrizol (Wickliffe, OH). Tips die, and the die head used for extrusion were sourced from Guill Tool (West Warwick, RI). The dies used to press pellets for TAF and placebo implants were purchased from Natoli (St Charles, MO). Sodium chloride and magnesium stearate (USP grade) used to manufacture implants were obtained from Spectrum Chemical (New Brunswick, NJ). Barium sulfate (USP grade) used in manufacturing radiopaque rods was obtained from Fisher Scientific (Fair Lawn, NJ). Sodium azide, ammonium acetate, phosphate buffered saline solution, and solvents used for high-performance liquid chromatography (HPLC) and mass spectrometry (32) work were obtained from Fisher Scientific (Fair Lawn, NJ). Isotopically-labeled [adenine-13C(U)] TFV (TFV*) was obtained from Moravek Biochemicals (Brea, CA). Syringe filter tips, weighing dishes, and centrifuge tubes were obtained from Fisher (New Hampton, NH). Scintillation vials for in vitro release were obtained from Wheaton (Rockford, TN).

Animal care and welfare

All animal studies were conducted in accordance with protocols approved by Northwestern University and Tulane National Primate Research Center Local Institutional Animal Care and Use Committees, Northwestern protocol IS00006125, Tulane protocol P0307R. This study was carried out in accordance with the Guide for the Care and Use of Laboratory Animals of the Institute of Laboratory Resources, National Resource Council. All procedures were performed under anesthesia using ketamine/xylazine, and all efforts were made to minimize stress, improve housing conditions, and provide enrichment opportunities. Animals were euthanized by sedation with ketamine/xylazine.
injection followed by intravenous barbiturate overdose in accordance with the recommendations of the panel on euthanasia of the American Veterinary Medical Association.

Description of implant manufacturing:

Implant manufacturing was completed in a non-sterile environment. However, all drug product-contacting surfaces including the benchtop surfaces, machines, and floors were cleaned with 3% hydrogen peroxide solution and ethanol. All materials used in manufacturing were depyrogenated by heating glass and stainless-steel materials to 250 °C or rinsing heat-incompatible materials with 3% hydrogen peroxide solution. During manufacturing, all staff wore face masks, hairnets, disposable gowns, gloves, and shoe covers to minimize contamination. Further description of implant manufacturing is provided in the supplemental material. The implants were shipped to Steri-tek Inc. (Fremont, CA) for electron beam sterilization with a radiation dose of 25 kGy. Implants received back after sterilization were tested for endotoxin levels.

Endotoxin testing

Endotoxin levels of all raw materials and pre/post-e-beam sterilized implants were quantified by chromogenic detection of LPS using the method provided by the Pierce Limulus Amebocyte Lysate Chromogenic Endotoxin Quantitation Kit. The FDA pre-defines endotoxin units (3) as 20.0 EU/device, which is approximately 0.5 EU/mL from a 40 mL rinse volume. All materials and implants used in the studies had levels below the assay LLOQ of 0.15 EU/mL. All materials used in this assay were purchased endotoxin or pyrogen-free. Samples were first fully submerged in 3 mL of Ficoll-Plaque Plus endotoxin-free water (GE Healthcare, Uppsala, Sweden) in either a 6-well culture plate or 3-mL test tube for 1 hour, at 37°C, and 800 RPM on a Multitherm benchmark (Benchmark, Edison, NJ). Samples were analyzed (n=3) alongside a positive control spiked sample to a concentration of 0.8 EU/mL on a 96-well, polystyrene bottom plate at 405-410 nm wavelength.
The initial selection of dose in NZW rabbits

To start our dose-ranging studies, we allometrically scaled the lowest dose in our rabbit PK study to roughly Gunawardana et al. maximum estimate (20) for an efficacious TAF exposure in humans; this turns out to be 0.1 mg/day in a 3.2 kg rabbit. The other rabbit doses we chose were scaled in multiples from this dose and are 0.2 mg/day, 0.4 mg/day, and 0.6 mg/day (Table 1). This would provide a range of doses starting at their maximum estimate of a TAF dose, twice that, and up to six times that in rabbits.

Allometrically in the rabbit, our highest dose exceeds the dose that Gunawardana et al. tested in Beagle dogs. This range should allow us to develop a PK dose response and toxicokinetic curves and ranges over the doses that should be required for TAF. We have manufactured implant systems that achieve the TAF doses shown in Table 2, and these are described below.

TAF implant formulation characteristics

We evaluated two generations of TAF implants: Generation A and Generation B. Generation A were evaluated in NZW rabbits for PK and safety and rhesus macaques for PK. Characteristics and dimensions of the Generation A implants are in Tables 2 and 3. Based on results from Generation A, Generation B implants with lower doses were manufactured and evaluated in rhesus macaques.

Dimensions and characteristics for Generation B are given in Table 4.

Animal study design, group sizes, and controls

Overall, as mentioned above, we conducted four animal PK studies. The first two sets of studies used the Generation A TAF implant in both NZW rabbits and rhesus macaques. The third study used the findings from the first studies to justify a dose reduction and evaluate a Generation B TAF implant in rhesus macaques. The fourth study used a trocar to implant the devices. The sampling schedule for all studies remained the same (Table 5).

The rabbit study had five groups of female NZW rabbits. In the placebo group, there were three animals. In Group 1, seven animals each received a 0.8 cm active implant and a contralateral placebo. In Groups 2 and 3, seven animals each received two 0.8 cm or two 1.6 cm active implants, respectively.
In Group 4, six animals received three 1.6 cm implants. Group 5 acted as the control group and consisted of three animals implanted with two placebos each. Two of seven animals in Groups 1, 2, and 3, and three of six in Group 4 were sacrificed during Week 4. Five of seven animals in Groups 1, 2, and 3, three of six in Group 4, and all three placebo controls were sacrificed during Week 12. The average body mass of the rabbits was 3.37 ± 0.21 kg, with a range of 2.84 to 3.81 kg.

The macaque Generation A exploratory PK study included two groups, each of which contained three females. The first group received one 0.8 cm implant and one 1.6 cm implant. The second group received three 1.6 cm implants. Animals were maintained on study for 12 weeks, and the mass of the animals had a mean of 6.5 ± 0.3 kg with a range of 6.2 to 7.0 kg. The macaque Generation B study had four groups of animals with two animals each. Each animal received two implants: one placebo and one active implant (both 2 cm) contralaterally. Group 1 (one male and one female) was necropsied at four weeks, and Group 2 (two females) at 12 weeks. Blood, tissue, and PBMCs were still sampled per the overall schedule. All animals had at least one active implant. The rhesus macaques had a mean body mass of 12.7 ± 4.4 kg and ranged from 7 to 19.6 kg.

The use of contralateral implantation of implants provided us several opportunities to simultaneously study in vivo drug release rates of the implants and local irritation. Contralateral implantation of an active implant and a placebo implant was used in the Generation A rabbit studies (Group 1) and the Generation B rhesus macaque studies (all macaques). In animals with two or more contralateral active implants, one implant was resected in a block of tissue with the intact implant, fixed, and sectioned to evaluate local inflammation around the implant histologically. The other implant was removed and tested for in vitro performance. These implants were subjected to in vitro release, leak testing, and the polymer molecular weight distribution was determined (see Suppl. 7). For each implant, we tracked its initial mass, the strength of the pellet, and the total pellet mass; this allowed us to determine total drug content after explantation and obtain the average daily release rate of the devices over the three-month study by subtraction.
Finally, we conducted a fourth exploratory PK and safety study in rhesus macaques to evaluate if the insertion of the Generation B device with a trocar would modify the biological response to the implant. Here there were two groups of two males and two females implanted contralaterally with an active and matched placebo using a 4.5 mm trocar kit. Other than the method of insertion and the number of animals, the study design was identical. The macaques had an average mass of 14.24 ± 3.6 kg and a mass range of 9.4 to 18.0 kg.

The surgical subcutaneous implantation procedure
Before the surgery, the animals were anesthetized with ketamine/xylazine, and both the blood as well as vaginal and rectal swabs were collected. For implants in the first three studies, two small incisions were made in the skin, and a blunt probe was gently inserted under the skin to ensure room for the implant. The implants were atraumatically and gently inserted between the shoulder blades, and the wound was sutured closed. In the case of the fourth study in rhesus, a 4.5 mm trocar kit (Elemis Corp., Carson City, NV) was used to insert the devices, and the wound was sutured closed.

Blood collection
Blood samples were collected before the surgical subcutaneous implantation procedure from the ear vein (rabbits) and femoral vein (macaques) and then weekly for up to 12 weeks. Approximately 8 mL of blood was taken from the ear or femoral vein, transferred into EDTA-coated tubes and immediately placed on ice. Additionally, 1 mL of blood was collected before the surgeries and every four weeks for complete blood count and chemistries.

Plasma isolation
Whole blood samples were taken from the ear (rabbits) or femoral vein (macaques) were collected into EDTA-coated tubes and immediately placed on ice. The tubes were centrifuged (2100 rpm, 20 min, 4°C) to separate plasma from the cells. Isolated plasma, present in the upper layer of the sample, was transferred to new tubes and stored at -80°C for further PK analysis.
Cell isolation and TFV-DP extraction

Rabbit heterophils and macaque mononuclear cells were isolated from peripheral blood obtained from the ear (rabbits) or femoral (macaques) vein. Briefly, following blood collection, the samples were placed immediately on ice and then centrifuged (2100 rpm, 20 min, 4°C). Next, plasma was removed, and PBS (~1 mL) was added to the remaining blood. Then, the samples were layered over lymphocyte separation media and centrifuged for 20 min at 2100 rpm to remove red blood cells. The layer containing the PBMCs was collected and transferred into 15 mL centrifuge tubes. Cells were pelleted by centrifugation (1500 rpm, 7 min) and re-suspended in 2 mL of PBS. Then, the cells were counted with 1:10 dilution using Turk’s solution in a counting chamber. The cells were pelleted again (1500 rpm, 7 min) and re-suspended in 2 mL of ice-cold 70% methanol. This solution was then split into two 1 mL vials and stored at -80°C for further PK analysis.

Histology

Tissue samples located near the implantation site as well as samples of liver, lung, spleen, kidney, vagina, and rectum were collected and fixed in z-fix, embedded in paraffin and cut into tissue sections. Paraffin-embedded specimens were stained with hematoxylin and eosin. Stained tissue sections were evaluated for the signs of the presence and severity of inflammation. Tissue samples from naïve animals were used as control. Samples were blinded and scored by a trained pathologist.

Histology and scoring algorithm

We used a semiquantitative histological scoring system to identify and characterize the presence of cellular and tissue responses in high powered fields of slides of the peri-implant space. Table 6 displays the semiquantitative scoring system derived from recommendations in ISO 10993-6:2016 Annex E (37). Blinded slides were provided to a pathologist for scoring. Cells were counted per high power field (HPF), and a table with scores was filled out as a summary from multiple slides along the length of each fixed implant (e.g., see Suppl. 4). Key characteristics that were evaluated are
polymorphonuclear cells (heterophils in rabbits and neutrophils in macaques), lymphocytes, plasma cells, macrophages, giant cells, necrosis, capsule thickness, and tissue infiltrate (see Table 6).

We report the scores of the characteristics in two ways. In Table 1 we simply sum the cellular and tissue characteristic scores and take the average across all the implants in a group to compute the total histological characteristic score. Secondly, we computed an implant reactivity grade for each implant type tested using equation 1.

\[S_{\text{pair}} = \frac{1}{N_a} \sum_{j=1}^{N_a} \sum_{i=1}^{8} S_{i,j,a} \cdot m_{j,r} - \frac{1}{N_p} \sum_{j=1}^{N_p} \sum_{i=1}^{8} S_{i,j,p} \cdot m_{j,r} \]
(Equation 1)

To compute the implant reactivity grade, we first summed the product of each histological characteristic score \(S_{j,a} \) for an active and \(S_{j,p} \) for a placebo implant’s characteristic scores with \(j = 1 \) to 8 for all 8 characteristics used in the histological analysis and each characteristic’s reactive inflammation multiplier \(m_{j,r} \) (see Table 6) for each implant. This sum was then averaged over all implants of that type \((N_p \) for the number of placebos and \(N_a \) for the number of active implants in each group). We call this score for each type the average implant reactivity score that varies from 0 to 48. Inflammatory cellular infiltrate characteristics and the tissue characteristic of necrosis receive an inflammatory reaction multiplier of two to represent the greater importance of inflammation in the endpoints of these studies. Next, the average implant reactivity scores for the active and placebo treatments were subtracted to compute the average placebo adjusted implant reactivity score \(\bar{S}_{\text{pair}} \). Finally, the implant reactivity grade was determined by lookup as follows: minimal to no reaction \(\bar{S}_{\text{pair}} \) from 0.0 up to 2.9, slight reaction \(\bar{S}_{\text{pair}} \) from 3.0 up to 8.9, moderate reaction \(\bar{S}_{\text{pair}} \) from 9.0 up to 15.0, and severe reaction \(\bar{S}_{\text{pair}} > 15.1 \) as per the published standard (37). See Suppl. 6, Table S15.

Extracting and analyzing TFV in rabbit plasma

TFV was separated from rabbit plasma through liquid/liquid extraction and analyzed by ultra-performance liquid chromatography – tandem mass spectrometry (UPLC-MS/MS) analysis. All.
calibration standards and quality controls (QCs) were prepared using 100 μL of sterile rabbit plasma obtained from GeneTex (Irvine, CA), 50 μL of a 100.8 nM solution of in (TFV*) water TFV*, 250 μL of MS grade acetonitrile, and 50 μL of TFV dissolved in MS grade water. This solution was used to generate a standard curve from 0.2 nM to 2000 nM with low, middle, and high QCs at 111 nM, 222 nM, 1111 nM.

Samples were similarly prepared by spiking 100 μL of collected rabbit plasma with 50 μL of TFV*, 50 μL of MS grade water, and 250 μL of MS grade acetonitrile. Spiked solutions were mixed at 400 rpm for 10 min, centrifuged at 10,000 rpm for 10 min, and passed through a 0.2 μm nylon syringe filter tip into a centrifuge tube. Finally, 200 μL of each extract was transferred to a 2 mL, 96-well Nunc DeepWell plate (ThermoSci, Waltham, MA) and vacu-fixed at 50°C for 2 hrs in a Savant SPD111V SpeedVac concentrator (ThermoSci, Waltham, MA). The final plate was reconstituted in 200 μL of MS-grade water, capped with a silicone mat (Axygen, Corning, NY), and mixed at 400 rpm for 30 min at 37°C.

Samples were analyzed by UPLC-MS/MS at 5 μL injection volumes on a Zorbax RRHD Eclipse Plus C18 column (2.1x50mm, 1.8 μm; Agilent, Santa Clara, CA) using a Shimadzu Nexera X2 UHPLC (Shimadzu, Columbia, MD) with a SciEx QTRAP 6500+ mass spectrometer (SciEx, Redwood City, CA).

Analytes were separated by gradient at a flow rate of 0.75 mL/min using 0.5% acetic acid in water (mobile phase A) and 0.5% acetic acid in methanol (mobile phase B) over 3.55 minutes (gradient - t=0 min: 0 %B; t=0.5 min: 0 %B; t=2.0 min: 100 %B; t=2.1 min: 0% B). The column thermostat was held at 40°C, while the sample chamber in the autosampler was cooled to 15 °C.

The SciEx detector was set to positive ion mode. A multiple reactions monitoring scan was used to detect transitions for TFV from m/z 288.1 to 176.1, TFV* from m/z 293.1 to 181.2, TAF from m/z 477.1 to 346.1, monophenyl PMPA from m/z 364.1 to 176.2, and PMPA monoamidate from 401.2 to 270.1. Dwell time was set to 100 msec for all analytes except TFV*, which was set for 50 msec. The collision energy was set to 30 eV for TAF, 25 eV for PMPA monoamidate, and 34 eV for TFV, TFV*, and monophenyl PMPA. Curtain gas, nebulizer gas, and auxiliary gas were set to 25 psi, 50 psi, and 55 psi.
respectively. Ion spray voltage and source temperature were set to 5500 V and 400 °C. Declustering potential was set to 55 V. Entrance potential, and collision cell exit potential were both set to 10 V. Data was acquired, processed, and quantified using Analyst software (SciEx, Redwood City, CA). TFV in samples was quantified by using linear regression of area under curve ratios of TFV and TFV* from standard preparations.

Pharmacokinetic measurements

Quantification of TAF, TFV, and TFV-DP in all matrices except TFV rabbit plasma (see above) was conducted by the Johns Hopkins University School of Medicine Clinical Pharmacology Analytical Laboratory and measurements were conducted using previously described liquid chromatographic-mass spectrometric (LC-MS/MS) approaches (46). TFV-DP quantification in PBMCs and tissue was conducted using a previously described, indirect enzymatic approach (47). All assays were validated in accordance with FDA, Guidance for Industry: Bioanalytical Method Validation and assay calibrators and QCs were prepared using human material (48). Assay lower limits of quantification were as follows: plasma TFV, 0.31 ng/mL; plasma TAF: 0.03 ng/mL; tissue TFV, 0.05 ng/sample; PBMC and tissue TFV-DP: 50 fmol or 5 fmol/sample. TFV-DP concentrations were normalized to several cells tested, for final reporting as fmol/10⁶ cells.

CONFLICT OF INTEREST

P. F. Kiser discloses that he is an inventor of issued patents related to tenofovir and TDF intravaginal rings that are mentioned in the manuscript.

ACKNOWLEDGMENT

Jonathan Su and Solange Simpson contributed equally to this work. Authorship order was decided in order of theoretical and conceptual contribution to the work.

We thank Gilead Sciences, Inc., for generously supplying the drug substance. We give special thanks to James Anderson, M.D., Ph.D. of Case Western University for his help in guiding our animal.
implant study designs. We also thank Prof. Craig Hendrix Ph.D. of Johns Hopkins University, Prof. Peter Anton, M.D. of UCLA, Jim Rooney, Ph.D. of Gilead Sciences Inc., and Meredith Clark, Ph.D. of CONRAD, for helpful discussions, and Meagan Watkins of Tulane University, for her assistance with the project.

This work was funded by The National Institute of Allergy and Infectious Diseases of the National Institutes of Health under award number UM1 AI120184. This work made use of the IMSERC at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (ShyNE) Resource (NSF ECCS-1542205); the State of Illinois and International Institute for Nanotechnology (IIN).

REFERENCES

1. McGowan I. 2015. Injectable and implantable antiretroviral strategies for HIV prevention. Future Virology 10:1163-1176.

2. Baeten JM, Donnell D, Ndase P, Mugo NR, Campbell JD, Wangisi J, Tappero JW, Bukusi EA, Cohen CR, Katabira E, Ronald A, Tumwesigye E, Were K, Fife KH, Kiarie J, Farquhar C, John-Stewart G, Kakia A, Odoyo J, Mucunguzi A, Nakku-Joloba E, Twesigye R, Ngure K, Apaka C, Tamooh H, Gabona F, Muyunge A, Panteleeff D, Thomas KK, Krows M, Revall J, Morrison S, Haugen H, Emmanuel-Ogier M, Ondrejcek L, Coombs RW, Frenkel L, Hendrix C, Bumpus NN, Bangsberg D, Haberer JE, Stevens WS, Lingappa JR, Celum C, Partners Pr EPST. 2012. Antiretroviral prophylaxis for HIV prevention in heterosexual men and women. N Engl J Med 367:399-410.

3. Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY, Vargas L, Goicochea P, Casapia M, Guanira-Carranza JV, Ramirez-Cardich ME, Montoya-Herrera O, Fernandez T, Veloso VG, Buchbinder SP, Charalambous S, Schechter M, Bekker LG, Mayer KH, Kallas EG, Amico KR, Mulligan K, Bushman LR, Hance RJ, Ganoza C, Defechereux P, Postle B, Wang F, McConnell JJ, Zheng JH, Lee J, Rooney JF, Jaffe HS, Martinez AI, Burns DN, Glidden DV, iPrEx Study T. 2010. Pre-exposure chemoprophylaxis for HIV prevention in men who have sex with men. N Engl J Med 363:2587-99.

4. Choopanya K, Martin M, Suntharasami P, Sangkum U, Mock PA, Leethochawalit M, Chiamwongpaet S, Kitisin P, Natrujriote P, Kittimunkong S, Chuachoowong R, Gvetadze RJ, McNicholl JM, Paxton LA, Curlin ME, Hendrix CW, Vanichseni S, Bangkok Tenofovir Study G. 2013. Antiretroviral prophylaxis for HIV infection in injecting drug users in Bangkok, Thailand (the Bangkok Tenofovir Study): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 381:2083-90.

5. Thigpen MC, Keabaetswe PM, Paxton LA, Smith DK, Rose CE, Segolodi TM, Henderson FL, Pathak SR, Soue FA, Chilag KL, Mutanhuwa R, Chirwa LI, Kasonde M, Abebe D, Buliva E, Gvetadze RJ, Johnson S, Sukalac T, Thomas VT, Hart C, Johnson JA, Malotte CK, Hendrix CW, Brooks JT, Group TDFS. 2012. Antiretroviral preexposure prophylaxis for heterosexual HIV transmission in Botswana. N Engl J Med 367:423-34.
6. Marrazzo JM, Ramjee G, Richardson BA, Gomez K, Mgodi N, Nair G, Palanee T, Nakabiito C, van der Straten A, Noguchi L, Hendrix CW, Dai JY, Ganesh S, Mkhiize B, Taljaard M, Parikh UM, Piper J, Masse B, Grossman C, Rooney J, Schwartz JL, Watts H, Marzinke MA, Hillier SL, McGowan IM, Chirenje ZM, Team VS. 2015. Tenofovir-based preexposure prophylaxis for HIV infection among African women. N Engl J Med 372:509-18.

7. Haberer JE. 2016. Current concepts for PrEP adherence in the PrEP revolution: from clinical trials to routine practice. Curr Opin HIV AIDS 11:10-7.

8. van der Straten A, Brown ER, Marrazzo JM, Chirenje MZ, Liu K, Gomez K, Marzinke MA, Piper JM, Hendrix CW, Network M-VTPfMT. 2016. Divergent adherence estimates with pharmacokinetic and behavioural measures in the MTN-003 (VOICE) study. J Int AIDS Soc 19:20642.

9. Matthews R. 2019. First-in-Human Trial of MK-8591-Eluting Implants Demonstrates Concentrations Suitable for HIV Propylaxis for at Least One Year, abstr 10th IAS Conference on HIV Science, Mexico City, 2019.

10. Sundaram A, Vaughan B, Kost K, Bankole A, Finer L, Singh S, Trussell J. 2017. Contraceptive Failure in the United States: Estimates from the 2006-2010 National Survey of Family Growth. Perspect Sex Reprod Health 49:7-16.

11. Trussell J. 2011. Contraceptive failure in the United States. Contraception 83:397-404.

12. Trussell J, Kost K. 1987. Contraceptive failure in the United States: a critical review of the literature. Stud Fam Plann 18:237-83.

13. Trussell J, Henry N, Hassan F, Prezioso A, Law A, Filonenko A. 2013. Burden of unintended pregnancy in the United States: potential savings with increased use of long-acting reversible contraception. Contraception 87:154-61.

14. Ray AS, Fordyce MW, Hitchcock MJ. 2016. Tenofovir alafenamide: A novel prodrug of tenofovir for the treatment of Human Immunodeficiency Virus. Antiviral Res 125:63-73.

15. Bam RA, Birkus G, Babusis D, Cihlar T, Yant SR. 2014. Metabolism and antiretroviral activity of tenofovir alafenamide in CD4+ T-cells and macrophages from demographically diverse donors. Antivir Ther 19:669-77.

16. Lee WA, He GX, Eisenberg E, Cihlar T, Swaminathan S, Mulato A, Cundy KC. 2005. Selective intracellular activation of a novel prodrug of the human immunodeficiency virus reverse transcriptase inhibitor tenofovir leads to preferential distribution and accumulation in lymphatic tissue. Antimicrob Agents Chemother 49:1898-906.

17. Hawkins T, Veikley W, St Claire RL, Gayer B, Clark N, Kearney BP. 2005. Intracellular pharmacokinetics of tenofovir diphosphate, carbovir triphosphate, and lamivudine triphosphate in patients receiving triple-nucleoside regimens. J AIDS-Journal of Acquired Immune Deficiency Syndromes 39:406-411.

18. Massud J, Mitchell J, Babusis D, Deyounks F, Ray AS, Rooney JF, Heneine W, Miller MD, Garcia-Lerma JG. 2016. Chemoprophylaxis With Oral Emtricitabine and Tenofovir Alafenamide Combining Protections Macaques From Rectal Simian/Human Immunodeficiency Virus Infection. J Infect Dis 214:1058-62.

19. Hare CB, Coll J, Ruane P, Molina J-M, Mayer KH, Jessen H, Grant RM, Wet JJD, Thompson M, DeJesus E, Ebrahimi R, Giler RM, Das M, Brainard D, McCallister S. THE PHASE 3 DISCOVER STUDY: DAILY F/TAF OR F/TDF FOR HIV PREEXPOSURE PROPHYLAXIS, p. In (ed),

20. Gunawardana M, Remedios-Chan M, Miller CS, Fanter R, Yang F, Marzinke MA, Hendrix CW, Beliveau M, Moss JA, Smith TJ, Baum MM. 2015. Pharmacokinetics of long-acting tenofovir alafenamide (GS-7340) subdermal implant for HIV prophylaxis. Antimicrob Agents Chemother 59:3913-9.

21. Schlesinger E, Johengen D, Luecke E, Rothrock G, McGowan I, van der Straten A, Desai T. 2016. A Tunable, Biodegradable, Thin-Film Polymer Device as a Long-Acting Implant Delivering Tenofovir Alafenamide Fumarate for HIV Pre-exposure Prophylaxis. Pharm Res 33:1649-56.
22. Johnson LM, Krovi SA, Li L, Girouard N, Demkovich ZR, Myers D, Creelman B, van der Straten A. 2019. Characterization of a Reservoir-Style Implant for Sustained Release of Tenofovir Alafenamide (TAF) for HIV Pre-Exposure Prophylaxis (PrEP). Pharmaceuticals 11.

23. Chua CYX, Jain P, Ballerini A, Bruno G, Hood RL, Gupta M, Gao S, Di Trani N, Susnjara A, Shelton K, Bushman LR, Folci M, Filgueira CS, Marzinke MA, Anderson PL, Hu M, Nehete P, Arduino RC, Sastry JK, Grattoni A. 2018. Transcutaneously refillable nanofluidic implant achieved sustained level of tenofovir diphosphate for HIV pre-exposure prophylaxis. J Control Release 286:315-325.

24. Gatto G, Girouard N, Brand RM, Johnson L, Marzinke M, Rowshan S, Engstrom JC, McGowan I, Demkovich Z, Lueke E, van der Straten A. 2019. Pharmacokinetics of tenofovir alafenamide by subcutaneous implant for HIV PREP., abst Conference on Retroviruses and Opportunistic Infections, Seattle, WA, March 4–7.

25. Anderson JM, Rodriguez A, Chang DT. 2008. Foreign body reaction to biomaterials. Semin Immunol 20:86-100.

26. Greco RS. 1994. Implantation biology: the host response and biomedical devices. CRC Press, Boca Raton.

27. Golla VM, Kurmi M, Shaik K, Singh S. 2016. Stability behaviour of antiretroviral drugs and their combinations. 4: Characterization of degradation products of tenofovir alafenamide fumarate and comparison of its degradation and stability behaviour with tenofovir disoproxil fumarate. J Pharm Biomed Anal 131:146-155.

28. Anderson PL, Gliddon DV, Liu A, Buchbinder S, Lama JR, Guanira JV, McMahan V, Bushman LR, Casapa M, Montoya-Herrera O, Veloso VG, Mayer KH, Charrialertaks S, Schechter M, Bekker LG, Kallas EG, Grant RM, iPrEx Study T. 2012. Emtricitabine-tenofovir concentrations and pre-exposure prophylaxis efficacy in men who have sex with men. Sci Transl Med 4:151ra125.

29. Hendrix CW, Andrade A, Bumpus NN, Kashuba AD, Marzinke MA, Moore A, Anderson PL, Bushman LR, Fuchs EJ, Wiggins I, Radebaugh C, Prince HA, Bakshi RP, Wang R, Richardson P, Shieh E, McKinstry L, Li X, Donnell D, Elharrar V, Mayer KH, Patterson KB. 2016. Dose Frequency Ranging Pharmacokinetic Study of Tenofovir-Emtricitabine After Directly Observed Dosing in Healthy Volunteers to Establish Adherence Benchmarks (HPTN 066). AIDS Res Hum Retroviruses 32:32-43.

30. Karim SSA, Gengiah TN, Karim QA. 2018. CAPRISA 018: A Phase I/II trial to assess the safety, acceptability, tolerability and pharmacokinetics of a sustained-release tenofovir alafenamide sub-dermal implant for HIV prevention in women. Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.

31. Abdool Karim Q, Abdool Karim SS, Frohlich JA, Grobler AC, Baxter C, Mansoor LE, Kharsany AB, Sibeko S, Misana KP, Omar Z, Gengiah TN, Maarschalk S, Arulappan N, Mlotshwa M, Morris L, Taylor D, Group CT. 2010. Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science 329:1168-74.

32. Delany-Morettwe S, Lombard C, Baron D, Bekker LG, Nkala B, Ahmed K, Sebe M, Brumskine W, Nchabeleng M, Palaneel-Philips T, Ntshangase J, Sibiya S, Smith E, Panchia R, Myer L, Schwartz JL, Marzinke M, Morris L, Brown ER, Doncel GF, Gray G, Rees H. 2018. Tenofovir 1% vaginal gel for prevention of HIV-1 infection in women in South Africa (FACTS-001): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Infect Dis 18:1241-1250.

33. Clark JT, Clark MR, Shelke NB, Johnson TJ, Smith EM, Andreasen AK, Nebeker JS, Fabian J, Friend DR, Kiser PF. 2014. Engineering a segmented dual-reservoir polyurethane intravaginal ring for simultaneous prevention of HIV transmission and unwanted pregnancy. PloS One 9:e88509.

34. Lai CL, Shouval D, Lok AS, Chang TT, Cheinquer H, Goodman Z, DeHertogh D, Wilber R, Zink RC, Cross A, Colonno R, Fernandes L, Group BEAS. 2006. Entecavir versus lamivudine for patients with HBeAg-negative chronic hepatitis B. N Engl J Med 354:1011-20.
28. Henry SJ, Barrett SE, Forster SP, Teller RS, Yang Z, Li L, Mackey MA, Doto GJ, Ruth MP, Tsuchiya T, Klein LJ, Gindy ME. 2019. Exploration of long-acting implant formulations of hepatitis B drug entecavir. Eur J Pharm Sci 136:104958.

35. Babusis D, Phan TK, Lee WA, Watkins WJ, Ray AS. 2013. Mechanism for effective lymphoid cell and tissue loading following oral administration of nucleotide prodrug GS-7340. Mol Pharm 10:459-66.

36. Babusis D, Phan TK, Lee WA, Watkins WJ, Ray AS. 2013. Mechanism for effective lymphoid cell and tissue loading following oral administration of nucleotide prodrug GS-7340. Mol Pharm 10:459-66.

37. International Organization for Standardization. 2016. Biological Evaluation of Medical Devices 3rd Edition. International Organization for Standardization.

38. Methellou Y. 2016. The ProTides Boom. ChemMedChem 11:1114-6.

39. International Organization for Standardization. 2016. Biological Evaluation of Medical Devices 3rd Edition. International Organization for Standardization.

40. Methellou Y. 2016. The ProTides Boom. ChemMedChem 11:1114-6.

41. Methellou Y. 2016. The ProTides Boom. ChemMedChem 11:1114-6.

42. Sager JE, Begley R, Rhee M, West SK, Ling J, Schroeder SD, Tse WC, Mathias A. 2019. Safety and PK of Subcutaneous GS-6207, A Novel HIV-1 Capsid Inhibitor, abstr Conference on Retroviruses and Opportunistic Infections, Seattle, Washington, March 4-7.

43. Markowitz M, Gettie A, St Bernard L, Andrews C, Mohri H, Horowitz A, Grasperge BF, Blanchard JL, Niu T, Sun L, Fillgrove K, Hazuda DJ, Grobler JA. 2019. Title: Once-weekly Oral Dosing of MK-8591 Protects Male Rhesus Macaques from Intrarectal SHIV109CP3 Challenge. J Infect Dis doi:10.1093/infdis/jiz271.

44. Matthews R. First-in-Human Trial of MK-8591-Eluting Implants Demonstrates Concentrations Suitable for HIV Propylaxis for at Least One Year, p. In (ed),

45. King T, Bushman L, Kiser J, Anderson PL, Ray M, Delahunt T, Fletcher CV. 2006. Liquid chromatography-tandem mass spectrometric determination of tenofovir-diphosphate in human peripheral blood mononuclear cells. J Chromatogr B Analyt Technol Biomed Life Sci 843:147-56.

46. Hummert P, Parsons TL, Ensign LM, Hoang T, Marzinke MA. 2018. Validation and implementation of liquid chromatographic-mass spectrometric (LC-MS) methods for the quantification of tenofovir prodrugs. J Pharm Biomed Anal 152:248-256.

47. Hummert P, Parsons TL, Ensign LM, Hoang T, Marzinke MA. 2018. Validation and implementation of liquid chromatographic-mass spectrometric (LC-MS) methods for the quantification of tenofovir prodrugs. J Pharm Biomed Anal 152:248-256.
Figure 1. Photos of representative Generation A TAF long-acting reservoir implants with lumen lengths of (a) 0.8 cm and (b) 1.6 cm and (c) a placebo implant that is empty except for a pellet of NaCl and magnesium stearate.
Figure 2. TFV-DP concentrations were determined in NZW rabbits and macaques for Generation A TAF implants. The median was determined from data points from weeks 1 – 12.

Figure 3. Dose-dependent PK was observed in our NZW rabbit experiments, with higher average TFV-DP levels leading to higher plasma levels of TFV-DP in circulating heterophils. TFV-DP levels increased within a week of implantation. BLQ values are plotted as 1/10th of the calculated LOQ value. Drug levels for all placebo implants were BLQ. The horizontal bar is mean TFV-DP. As per Table 1, in vitro release from Group 1: 0.13 mg/day; Group 2: 0.26 mg/day; Group 3: 0.52 mg/day, Group 4: 0.78 mg/day.
Figure 4. Contralateral sections from NZW rabbits after 12 weeks with Generation A implant. Sections from two animals (a, c: M29051; b, d: M29049) are shown. Minimal inflammation was observed for our placebo implants (a, b); however, extensive inflammation with some necrosis was observed for implants containing active drug (c, d).
Figure 5. In vitro and in vivo comparison average daily release from TAF Generation A implants in rhesus macaques after 12 weeks. The in vitro release is the average over days 7 to 91 from representative implants in the same batch as the in vivo implants.

Figure 6. TFV-DP levels in macaque PBMCs from the Generation B implants.
Figure 7. Representative histology slides from rhesus macaque FC48 after 12 weeks with a Generation B implant. Minimal inflammation and a distinct fibrous tissue capsule was observed for the placebo implant (c,d), however extensive inflammation was observed for implant containing active drug (a,b) despite a lower \textit{in vitro} release rate of Generation B implants (0.13 mg/day \textit{in vitro} release rate) versus the Generation A implants.
Table 1: Summary of PK and pathohistological scores in NZW rabbits and rhesus macaques.

Implant	Group ID	Average in vitro TAF Fluxa	In vitro average release rateb	Average in vivo dosec	Mean Cellular TFV-DP Concentrationd [TFV-DP]	Median Cellular TFV-DP Concentrationd [TFV-DP]	Total Histological Characteristic Score
		(mg/cm²/day)	(mg/day)	(µg/kg/day)	(fmol/10⁶ cells) Mean ± SD	(fmol/10⁶ cells) Median (Range)	(0 – 32) Mean ± SD
Gen. A NZW Rabbit	1	0.24	0.13	18.5	66 ± 45	68 (BLQ - 218)	17.5 ± 0.6 a
	2	0.24	0.26	35.4	100 ± 75	84 (BLQ - 326)	21.4 ± 4.8 a
	3	0.23	0.52	69.4	277 ± 191	220 (BLQ - 1060)	23.0 ± 5.1 a
	4	0.23	0.78	106.2	412 ± 271	391 (56 - 1268)	21.3 ± 5.5 a
Gen A Rhesus Macaque	0.24		0.39	28.6	377 ± 289	394 (62 - 1912)	NPb
	0.23		0.78	56.3	431 ± 155	643 (38 - 4769)	NPb
Gen A Rhesus Macaque Placebo	NRa		NR	NR	NR	6.5 h	11.3 ± 8.2 a
	0.08		0.13	10i	60 ± 54	42 (BLQ - 255)	19.5 h

- a. Calculated from geometry and in vitro release rate
- b. Calculated from average release rate Fig. S1a-c from day 7 to 91
- c. Calculated from depleted TAF from implant over the study duration and group average body mass
- d. Cellular TFV-DP concentrations were averaged over all time points after time zero. NZW rabbits have heterophils, and rhesus macaques have PBMC.
- e. Slides and score obtained at 12 weeks
- f. Not performed (NP) in this exploratory PK study
- g. Not relevant (NR)
- h. Slides and score obtained at four weeks; n = 2, no SD was calculated
- i. Estimated value from in vitro release data Fig. S1c from day 7 to 91

Table Notes: Average body mass (group average), TFV-DP flux in vitro.

TABLES

Accepted Manuscript Posted Online

Antimicrobial Agents and Chemotherapy
Table 2. Description of Generation A implant systems used in the NZW PK and safety study.

Animal Group ID	In vitro Release Rate^a (mg/day)	Material	Pellet Diameter (mm)	Implant Diameter (mm)	Implant Lumen Length (cm)	Membrane Thickness (cm)	Implant Strength of TAF (mg ±SD)	Number of Active Implants per Animal
1	0.13	Tecoflex EG-85A	1.8	2.2	0.8	0.015	16.8±0.3	1
2	0.26	Tecoflex EG-85A	1.8	2.2	0.8	0.015	16.8±0.3	2
3	0.52	Tecoflex EG-85A	1.8	2.2	1.6	0.015	34.0±0.3	2
4	0.78	Tecoflex EG-85A	1.8	2.2	1.6	0.015	34.0±0.3	3
5	Placebo	Tecoflex EG-85A	1.8	2.2	1.6	0.015	NR	1 or 2

^a Calculated from average release rate Fig. S1 once the implants reach steady-state over days 7 to 783.
Table 3. Generation A formulation characteristics and description of manufacturing used in macaques:

Animal Group ID	In vitro Release Rate\(^a\) (mg/day)	Material	Pellet Diameter (mm)	Implant Diameter (mm)	Membrane Thickness (cm)	Implant Lumen Length (cm)	Implant Strength of TAF (mg ±SD)	Number of Active Implants per Animal
1	0.39	Tecoflex EG-85A	1.8	2.2	0.015	0.8	16.8±0.3	1 – 0.8 cm
2	0.78	Tecoflex EG-85A	1.8	2.2	0.015	1.6	34.0±0.3	1 – 1.6 cm

\(\text{a. Calculated from average release rate Fig. S1 once the implants reach pseudo-steady state over days 7 to 91}\)

Table 4. Generation B formulation characteristics and description of manufacturing used in macaques:

In vitro Release Rate\(^a\) (mg/day)	Material	Pellet Diameter (mm)	Implant Diameter (mm)	Membrane Thickness (mm)	Implant Lumen Length (cm)	Implant Strength of TAF (mg ±SD)
0.13	Tecoflex EG-85A:EG-93A 50:50	2.0	2.6	0.17	2.0	44.4±1.7
Placebo	Tecoflex EG-85A:EG-93A 50:50	2.0	2.6	0.17	2.0	NR

\(\text{a. Calculated from average release rate Fig. S1 once the implants reach steady-state over days 7 to 91}\)
Table 5. Design of PK and safety studies. PK and Safety studies followed the same schedule for TAF Generation A in NZW rabbits and TAF Generation B in macaques. Necropsy of the animals was performed at weeks 4 and 12. All necropsy was accompanied by histology and staining. In Generation A implant studies with rhesus macaques only a PK study was performed with no necropsy at the end of the study.

Procedure	Time (Weeks)												
	0	1	2	3	4	5	6	7	8	9	10	11	12
Implant	x												
Plasma TFV, TAF	x	x	x	x	x	x	x	x	x	x	x	x	x
PBMC TFV-DP	x	x	x	x	x	x	x	x	x	x	x	x	x
Vaginal Swab	x	x	x	x	x	x	x						
Rectal Swab	x	x	x	x	x	x		x	x				
Vaginal Biopsy	x		x					x					
Rectal Biopsy	x	x				x			x				
Necropsy\(^a\)		x	x	x	x								

\(^a\) Necropsy of the rhesus macaques were not performed in the Generation A NHP implant study and therefore was a PK study only.
Table 6. Histological characteristics scoring scheme used to evaluate the cellular and tissue characteristics observed near the implants.

Cell characteristic	Score	Reactive inflammation multiplier (m_{ijr})		
Polymorphonuclear cells	0 / HPF Rare, 1-5/HPF	5-10/HPF Heavy infiltrate	Packed	2
Lymphocytes	0 / HPF Rare, 1-5/HPF	5-10/HPF Heavy infiltrate	Packed	2
Plasma cells	0 / HPF Rare, 1-5/HPF	5-10/HPF Heavy infiltrate	Packed	2
Macrophages	0 / HPF Rare, 1-5/HPF	5-10/HPF Heavy infiltrate	Packed	2
Giant cells	0 / HPF Rare, 1-2/HPF	3-5/HPF Heavy infiltrate	Sheets	2

Tissue characteristic	Score	Moderate	Severe	1	
Capsule thickness	0 Narrow band (<5 cells)	Moderate (5-10 cells)	Thick band (10-20 cells)	Extensive thick band	1
Tissue infiltrate	0 Minimal focal invasion of local tissue	Mild to multifocal inflammation in adjacent tissues	Moderate inflammation in adjacent tissues	Marked inflammation in adjacent tissues	1