BMJ Open
Study protocol for the ETMED-L project: longitudinal study of mental health and interpersonal competence of medical students in a Swiss university using a comprehensive framework of empathy

Alexandre Berney,1,2 Valerie Carrard,1,2 Sylvie Berney,2,3 Katja Schlegel,4 Jacques Gaume,2,5 Mehdi Gholam,6 Pierre-Alexandre Bart,2,7 Martin Preisig,2,8 Katarzyna Wac,9 Marianne Schmid Mast,10 Céline Bourquin1,2

To cite: Berney A, Carrard V, Berney S, et al. Study protocol for the ETMED-L project: longitudinal study of mental health and interpersonal competence of medical students in a Swiss university using a comprehensive framework of empathy. BMJ Open 2021;11:e053070. doi:10.1136/bmjopen-2021-053070

ABSTRACT

Introduction Physician interpersonal competence is crucial for patient care. How interpersonal competence develops during undergraduate medical education is thus a key issue. Literature on the topic consists predominantly of studies on empathy showing a trend of decline over the course of medical school. However, most existing studies have focused on narrow measures of empathy. The first aim of this project is to study medical students’ interpersonal competence with a comprehensive framework of empathy that includes self-reported cognitive and affective empathy, performance-based assessments of emotion recognition accuracy, and a behavioural dimension of empathy. The second aim of the present project is to investigate the evolution of mental health during medical school and its putative link to the studied components of interpersonal competence. Indeed, studies documented a high prevalence of mental health issues among medical students that could potentially impact their interpersonal competence. Finally, this project will enable to test the impact of mental health and interpersonal competence on clinical skills as evaluated by experts and simulated patients.

Methods and analysis This project consists of an observational longitudinal study with an open cohort design. Each year during the four consecutive years of the project, every medical student (curriculum years 1–6) of the University of Lausanne in Switzerland will be asked to complete an online questionnaire including several interpersonal competence and mental health measures. Clinical skills assessments from examinations and training courses with simulated patients will also be included. Linear mixed models will be used to explore the longitudinal evolutions of the studied components of interpersonal competence and mental health as well as their reciprocal relationship and their link to clinical skills.

Ethics and dissemination The project has received ethical approval from the competent authorities. Findings will be disseminated through internal, regional, national and international conferences, news and peer-reviewed journals.

Strengths and limitations of this study

To tackle past research gaps, the present project investigates medical students’ interpersonal competence with a comprehensive framework of empathy (cognitive and affective empathy, emotion recognition ability and behavioural adaptability) and different assessment techniques (self-reported questionnaire, performance-based test and behavioural task).

This project is one of the first investigating the relationship between interpersonal competence, mental health and clinical skills of medical students in an open cohort design allowing both cross-sectional and longitudinal analyses.

Data on medical students’ mental health and interpersonal competence are lacking in the Swiss context and this project will compile a dataset available for comparison at the national and international level.

Non-response and drop-out biases will be inevitable even though the financial compensation for participation should reduce them.

INTRODUCTION

Physicians’ interpersonal competence includes core elements of patient care such as being able to develop common therapeutic goals, sharing power and responsibility, considering the patient as a whole person, and being aware of the influence of the subjectivity and personal qualities of the physician on the practice of medicine.1–3 The literature on the topic consists predominantly of studies on empathy and the present project thus focuses primarily on this specific component of physicians’ interpersonal competence. Empathy has been shown to have a beneficial effect for both the
Empathy is a multidimensional concept encompassing different dimensions. Two widely recognised dimensions are cognitive and affective empathy (for a review see 26). Cognitive empathy refers to the correct understanding of another person’s feelings (emotion recognition) and perspective (perspective taking). Affective or emotional empathy refers to the experience of prosocial and sympathetic feelings towards another person in distress (empathic concern) 30 or feeling the same emotion as another person (emotion contagion) 31.

As acknowledged by several authors, a comprehensive understanding of empathy should include the ability to understand others (cognitive empathy) and to share others’ feelings (affective empathy), but also the provision of a communicative response that conveys this understanding and sharing of another’s perspective and emotions. 32 This empathic communicative response can be provided through behavioural adaptability, which is the ability to adjust one’s interaction style to the individual needs, desires and preferences of an interactional partner. 33 34 In the clinical context, this implies that there is not one physician interaction style that is the best, but that physicians should adapt to each specific situation based on an empathic understanding of the patient. 33 35 36 and studies confirmed that this physician’s behavioural adaptability is indeed related to higher patient satisfaction and trust in the physician. 36 37

Towards a comprehensive framework of empathy

Empathy is a multidimensional concept encompassing different dimensions. Two widely recognised dimensions are cognitive and affective empathy (for a review see 26). Empathy is a multidimensional concept encompassing different dimensions. Two widely recognised dimensions are cognitive and affective empathy (for a review see 26).
a lack of research on the potential impact of students’ interpersonal competence on their mental health and clinical skills.

Mental health of medical students

A 2016 meta-analysis estimated a prevalence of 27.2% for depression and 11.1% for suicidal ideation among medical students. Furthermore, the prevalence of burn-out and other forms of distress in medical students, residents/fellows and early career physicians was shown to be much higher compared with similarly aged college graduates pursuing other careers. A few longitudinal studies explored mental health problems, burn-out and suicidal ideation, depression, or life satisfaction in medical students, but none has concurrently investigated the longitudinal evolution of both interpersonal competence and mental health of medical students. Cross-sectional studies provide evidence that more empathic physicians have greater professional satisfaction, higher well-being, and lower burn-out incidence. The link between empathy and mental health might even be bidirectional as studies showed that medical students’ mental health and well-being impact their empathy with stress being related to burn-out and, in turn, to a deterioration of empathy towards patients. Thus, longitudinal exploration of the relationship between medical students’ interpersonal competence and mental health is needed to understand how and when one influences the other.

Aims

This project aims to explore the longitudinal evolution of interpersonal competence and mental health during medical school. To tackle past research gaps, interpersonal competence will be investigated with a comprehensive framework of empathy (cognitive and affective empathy, ERA and behavioural adaptability) and different assessment techniques (self-reported questionnaire, performance-based test and behavioural task). We will also investigate several indicators of mental health, which may be related to the medical students’ empathy. Additionally, we will explore how the studied components of interpersonal competence and mental health can predict clinical skills evaluated during examinations or training courses with simulated patients. Four primary research questions will thus be addressed:

- RQ1. How differently do cognitive and affective empathy, ERA and behavioural adaptability evolve over the course of medical school?
- RQ2. How does mental health evolve over the course of medical school?
- RQ3. How do the studied components of interpersonal competence (see RQ1) and mental health relate to each other?
- RQ4. How do the studied components of interpersonal competence (see RQ1) and mental health relate to clinical skills?

METHODS AND ANALYSIS

Design and population

This project consist of a 4-year observational study with an open cohort design, which will allow for both cross-sectional and longitudinal analyses. Each year, every medical student in the curriculum years 1–6 at the University of Lausanne (Switzerland) will be eligible for participation, except foreign students who are in the university as part of an academic exchange for one or two semesters. The eligible population size is estimated to be 1500 each year.

Procedure

During the 4 years of the project (2020–2024), four waves of online questionnaires will be administered during an exam-free month. At each wave, in the beginning of the data collection month, eligible students will be invited by email to fill in an online questionnaire. Data collection will be open for 30 days and two electronic reminders will be sent during this period. Participants will receive a financial compensation of CHF50 (= US$50) for each online questionnaire completion. Financial compensation likely increases the overall response rate and was deemed fair for the effort and time students take for the study. However, individuals could then participate solely for monetary benefits and be less attentive when filling in the questionnaire. To tackle this issue, two attention questions will be introduced in the questionnaire (eg, ‘In order to check your attention, please answer ‘Slightly agree’ to this question.’) and participants giving wrong answers to any of these attention questions will be excluded from the analysis.

On top of the online questionnaire, clinical skills ratings will be included. The ratings collected for each student providing specific informed consent for this in the online questionnaire will be the Objective Structured Clinical Examination (OSCE) scores and coding by simulated patients when students practice their clinical skills during specific training courses.

Data will be coded to protect confidentiality. All participants will be assigned an identification code, which will be used throughout the project. A secured correspondence table between participant’s codes and participant’s personal data will be kept separately from the datasets.

Measures

Besides sociodemographic, medical studies and health related information, three categories of measures will be collected: interpersonal competence, mental health and clinical skills (see table 1 for a complete list of instruments, sample items and scales). The choice of instruments was based on previous research in the field, psychometric qualities and comparability to existing cross-sectional or cohort studies.

Sociodemographic, medical studies and health related information

The participants’ sociodemographic, medical studies and health related information collected through the
Table 1 Measures

Variables	Instruments	No of items	Sample item (scale)
Interpersonal competence	Cognitive empathy	20	‘Patients feel better when their physicians understand their feelings.’ (1=strongly disagree; 7=strongly agree)
Cognitive and affective empathy	Questionnaire of Cognitive and Affective Empathy	31	‘I am good at predicting how someone will feel.’ (1=strongly disagree; 2=slightly disagree; 3=slightly agree; 4=strongly agree)
Emotion recognition accuracy	Geneva Emotion Recognition Test short version	42	‘Among these 14 emotions*, indicate which one had been expressed by the actor in the video clip.’ (0=emotion not accurately recognised; 1=emotion correctly recognised)
Behavioural adaptability	The Ability to Modify Self-Presentation Scale	7	‘When I feel that the image I am portraying isn’t working, I can readily change it to something that does.’ (0=strongly disagree; 1=disagree; 2=slightly disagree; 3=slightly agree; 4=agree; 5=strongly agree)
Mental health	Depressive symptoms	20	‘I felt sad.’ (0=rarely or none of the time (less than 1 day); 1=some or little of the time (1–2 days); 2=occasionally or a moderate amount of time (3–4 days); 3=all of the time (5–7 days))
	Suicidal ideation	2	‘How did you feel during the past 2 weeks?’ (0=I don’t have any thoughts of killing myself; 1=I have thoughts of killing myself, but I would not carry them out; 2=I would like to kill myself; 3=I would kill myself if I had the chance)
	Anxiety	20	‘I feel nervous and restless.’ (1=no; 2=rather no; 3=rather yes; 4=yes)
	Anxiety during COVID-19	20	‘I feel nervous and restless.’ (1=no; 2=rather no; 3=rather yes; 4=yes)
	Stress	1	‘Globally, how would you evaluate your current stress level on a scale from 1 “none” to 10 “extreme”?’
	Stress sources	6	‘Indicate to which extent each of the following† was a source of stress in your life during the last 12 months on a scale from 1 “none” to 10 “extreme”?’
	Burn-out	15	‘I feel emotionally drained by my studies.’ (1=never; 2=rarely; 3=sometimes, 4=often, 5=very often, 6=always)
	Coping strategies	17	‘I try to calm down.’ (0=not at all common for me; 1=not very common for me; 2=quite common for me; 3=very common for me)
	Psychoactive substance use	10–64‡	‘In your life, which of the following substances have you ever used? (non-medical use only)’ (0=no; 3=yes)
	Neuroenhancement drugs use	20	‘How often did you use Neuroenhancement drugs over the past 12 months?’ (0=never; 1=once; 2=2 to 3 times a year; 3=4–9 times a year; 4=1–2 times a month; 5=3–4 times a month; 6=2–3 times a week, 7=4 times a week or more)

Continued
yearly online questionnaire will include age, gender, native language, level of education of parents, relationship status, living arrangements, hours spent in paid job, financial resources, education before medical studies, hours spent on medical studies per week, drop-out thoughts, medical specialisation targeted, professional identity, experience of sexism or sexual harassment, health satisfaction, hours of physical activity per week, weight, height, hours of sleep, satisfaction with sleep and psychiatric/psychotherapeutic past consultation.

Interpersonal competence

Regarding interpersonal competence, medical students’ empathy in terms of cognitive and affective empathy, ERA, and behavioural adaptability will be measured through the yearly questionnaire.

Cognitive and affective empathy will be measured with two often used self-reported instruments: the JSPE-S and the QCAE. The JSPE-S was developed to assess medical students’ orientations or attitudes towards empathic relationships in the context of patient care and was thus meant to measure the cognitive dimension of empathy. It is maybe the most researched and widely used empathy instrument in medical education and it benefits from solid psychometric foundations. A 4-year licence will be purchased for the use of the JSPE-S.

The QCAE was validated in a large sample of university students and both the English and the French version have been shown to reliably assess the two main dimensions of empathy (cognitive and affective) and five correlated subdimensions (perspective taking, online simulation, emotion contagion, peripheral responsivity and proximal responsivity). The Geneva Emotion Recognition Test short version (GERTS-S). The test consists of 42 short videos (about 3s each) of actors portraying one out of 14 different emotions (eg, fear, despair, surprise, disgust, anger). The ERA score is then computed as the percent of correctly recognised portrayals. The GERT-S is a multimodal and dynamic ERA test as the actors express emotions through their face, body, and voice. A recent meta-analysis showed that the GERT-S has the highest average reliability among interpersonal accuracy tests and yields the highest average correlation with other ERA tests. Several studies also support the construct and predictive validity of this test.

Behavioural adaptability will be assessed with the Ability to Modify Self-Presentation Scale (AMSP). The AMSP is a dimension of self-monitoring (ie, the extent to which people regulate and control their self-presentation) measured in the Lennox and Wolfe revised self-monitoring scale. This scale shows better psychometric and construct validity than the original version proposed by Snyder and several factorial analyses confirmed the general structure of the scale including two dimensions: the Sensitivity to Expressive Behaviour of Other and the AMSP. The AMSP assesses one’s ability to adapt expressive behaviours in different social situations and was thus chosen as a self-reported measure of behavioural adaptability. The validated French version of the AMSP, which showed good internal consistency and test–retest reliability in a sample of French students, will be used in the present project.

In addition to the self-reported AMSP, we will develop a behavioural adaptability task-based assessment that will be proposed to a subsample of volunteer medical students. The goal will be to measure actual displays of behavioural adaptability by coding the extent to which participants adapt their interaction styles to different interactional partners or situations. This has been done in a past study conducted by one of the present project’s coinvestigators in which participants performed a task with two interactive partners having different needs and preferences.

Mental health

Depressive symptoms, suicidal ideation, anxiety, stress, burn-out, coping strategies and psychoactive substance use will be investigated in the yearly online questionnaire. Importantly, the choice of instruments will allow a comparison with data of a previous cross-sectional study of Lausanne medical students’ mental health (2018 unpublished Master thesis by Mayor, B: Mental health of the Lausanne medical students) as well as with the general

Table 1 Continued

Variables	Instruments	No of items	Sample item (scale)
Clinical skills	OSCE scores	5	‘Responded to patient feelings and needs’
	Simulated patient coding	10	‘Responded to patient feelings and needs.’
			‘Understands my emotions, feelings and concerns.’

*Pride, joy, amusement, pleasure, relief, interest, surprise, anxiety, fear, despair, sadness, disgust, irritation and anger.
†Family, financial situation, paid activity, sentimental life, studies and work/life balance.
‡Across nine substances: tobacco, alcohol, cannabis, cocaine, amphetamine, inhalants, sedatives, hallucinogens and opioids; with follow-up questions for the substances reported to be used.

OSCE, Objective Structured Clinical Examination.
population, taking advantage from a large population-based study ongoing in the city of Lausanne over the past 15 years (CoLaus|PsyCoLaus).69 The cohort of offspring of the CoLaus|PsyCoLaus participants is indeed in the same age range as the students of the present project.

Depressive symptoms will be assessed with the Centre for Epidemiological Studies-Depression (CES-D). Participants rate how often over the past week they experienced symptoms associated with depression.70 The validated French version of the CES-D showed good internal consistency as well as adequate structural and construct validity.71 It also provides cut-off scores with good sensitivity and specificity.71

Suicidal ideation will be evaluated using 2 questions of the Beck Depression Inventory (BDI).72 73 The BDI is well validated and has been shown to accurately distinguish individuals at risk of suicidal attempts (based on past and present suicidal behaviour) from other individuals.74 In the present project, the validated French version of two items belonging to the same higher construct of ‘Negative attitude’ will be used.75

Anxiety will be assessed with the trait subscale of the State-Trait Anxiety Inventory (STAI), which measures the level of anxiety participants ‘generally feel’.76 Considerable evidence attests to the construct and concurrent validity of the scale.77 Studies also have shown that it is a sensitive predictor of caregiver distress over time, and that it can vary with changes in support systems, health and other individual characteristics.78 79

Furthermore, we created an adaptation of the STAI measuring the level of anxiety ‘during this COVID-19 pandemic’ that will be added to the questionnaire because the first data collection wave will take place during the pandemic (March 2021).

Stress will be measured with one item assessing the general level of stress and six items assessing stress sources (family life, financial situation, paid activity, sentimental life, studies and work/life balance). These items were used in a previous cross-sectional study of Lausanne medical students (2018 unpublished Master thesis by Mayor, B: Mental health of the Lausanne medical students) and integrated to the questionnaire for comparability purpose.

Burn-out will be assessed with the Maslach Burn-out Inventory Student-Survey (MBI-SS). This scale designed to measure the burn-out level of students evaluates the dimensions of Emotional Exhaustion (five items), Cynicism (four items) and Academic Efficacy (six items, reversed dimension). A French version of the MBI-SS was validated and indicated good internal consistency and adequate structural validity.80

Psychoactive substance use will be measured using the WHO’s Alcohol, Smoking and Substance Involvement Screening Test82 and the Cohort Study on Substance Use Risk Factors questionnaire of neuroenhancement drugs use.83

Clinical skills
At the University of Lausanne, OSCE are carried out to assess medical students’ clinical skills at the end of the third, fifth and sixth curriculum year. OSCE stations represent clinical situations in which students interact with simulated patients. In some stations, experts systematically assess communication skills using a five-item checklist (see table 1 for sample items). These scores will be retrieved for the students giving formal consent to share this data.

Moreover, communication training courses with simulated patients are conducted from the second to the fifth curriculum year on different topics (eg, history taking, breaking bad news84–86 and motivational interview87). As part of this project, simulated patients will be asked to fill in a grid at the end of the interviews with students that includes the OSCE communication five-item checklist as well as the Jefferson Scale of Patient Perceptions of Physician Empathy88 (see table 1 for sample items).

Data analysis
Due to the longitudinal nature of the project, linear mixed models (LMMs) will be used to describe the evolution of continuous variables during the course of medical school, adjusting for sociodemographic variables and potential covariates.89 LMMs combine fixed-effects and random effects in the same model simultaneously. The fixed effects part combines the effect of fixed variables (in this case age, gender, etc) on the response. The random part, on the other hand, allows adjusting the model for interdependence among observations (eg, repeated measures from the same individuals are likely to be correlated; measures from students of the same curriculum year are likely to be correlated). To model the longitudinal evolution of dichotomous variables, generalised LMMs (GLMMs) which are generalised counterparts of LMMs will be used. In the GLMMs, predictors are related to the outcome using a link function (usually the logit link function, as in the logistic regression) with a random part allowing the analysis of inter-correlated observations. There are several approaches available to fit GLMMs; penalised quasi-likelihood will be used to approximate and maximise the likelihood for GLMMs, which provides certain optimality characteristics for estimated parameters.90

Apart from adjusting the models for potential covariates, current and lagged observations of mental health variables (from previous time points) can also be included to study the effect of current and previous mental health status on the studied components of interpersonal competence and vice-versa. The same will be done to assess the potential influence of interpersonal
dimensions and mental health on clinical skills. Ordinary dimension-reduction techniques such as model selection (based on Akaike information criterion, etc) will be used to ensure that models present an acceptable goodness of fit and avoid overadjustment in the models.

Every student who gave consent for participation will be considered for analysis. Students who respond at least on two waves of questionnaires will be included in the longitudinal analyses. The advantage of using LMMs and GLMMs is that cases with missing data will still contribute to the models with all their other observed data (eg, a participant having missed one wave of annual assessment will contribute all the other measured waves). Multivariate imputation by chained equations will also be used to remedy the presence of potential missing values, in order to reduce the potential bias.

Sample size calculation

Apart from the curriculum year 1, which brings together more than 750 medical students, there is an average of 240 medical students per curriculum year in the University of Lausanne Medical School, which means more than 1500 eligible participants each year. Past studies with medical students report yearly response rates varying from 32% to 91% and response rates across several years from 20% to 74%. Given the participation compensation, we expect to achieve a response rate of 35%. We used the Monte Carlo method to estimate the potential statistical power of the LMMs to detect a small change in individuals’ response from 1 year to the other (as small as 1% change per year, which is a very conservative projection). Even in a pessimistic situation where participation rate is just 25% and large error variance in responses, we can still expect a 77% power in detecting the effect size as small as 1% change per year. We have even higher power in detecting the effect of a potential covariate (over 93%) on the response.

Patient and public involvement

This project and its research questions are very much driven by a growing interest and worry regarding young adults’ mental health. The online questionnaire was pretested by medical students to evaluate the burden of the participation and medical students’ delegates were involved in the advertisement of the project. Moreover, an online newsfeed will be available to inform on the project’s progress.

The representative of the medical school of the University of Lausanne and the contact person for issues related to mental health among students at Lausanne medical school are both coinvestigators of the present project. Exchanges regarding medical students’ needs and medical education strategies are thus ongoing since the beginning of the project drafting and will continue even after the completion of the project. Indeed, this collaboration will enable to translate the clinical implications of the project into educational strategies to implement in our university.

RELEVANCE AND IMPACT

The data collected through the ETMED-L project will be key to a better understanding of the longitudinal development of interpersonal competence and mental health as well as their reciprocal influence over the course of medical studies. By adopting a more comprehensive framework of empathy including different dimensions (cognitive and affective empathy, ability to recognise emotions and a behavioural counterpart of empathy) and using different measurement methods (self-report and performance-based tests) this project will contribute to fill an important gap in the literature. It will allow a better understanding of the differential evolution of specific dimensions of empathy and will help to improve the curriculum of medical studies, particularly in relation to potential critical periods.

There are preliminary data indicating that medical students are at risk of mental health problems and that it may impact their ability to interact with patients, which ultimately may impair their ability to practice medicine. On top of mental health problems, tendency to distancing and loss of empathy have consistently been reported in residents and physicians, highlighting the importance of addressing these issues already during medical studies. This project will contribute to current efforts to understand and promote mental health of students in medical schools. Moreover, dimensions that are usually approached separately—interpersonal competence and mental health—will be analysed concurrently, which makes this project unique. Having a better understanding of the longitudinal course of mental health in relation to interpersonal competence will help to develop prevention strategies and to provide better support and supervision.

Ethics and dissemination

The project was approved by the Human Research Ethics Committee of the Canton de Vaud (protocol number 2020-02474). The participation poses little to no risk to the participants. However, as the questionnaire includes mental health questions, we will clearly indicate that students experiencing distress can refer to the psychiatric emergency ward of Lausanne University Hospital or contact the psychotherapeutic consultation for students of the University of Lausanne, which offers prompt on-site consultations.

Findings will be disseminated through internal, regional, national, and international conferences, news and peer-reviewed journals.

Author affiliations

1Psychiatric Liaison Service, Lausanne University Hospital, Lausanne, Switzerland
2Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
3Service of General Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
4Institute of Psychology, University of Bern, Bern, Switzerland
5Alcohol Treatment Centre, Lausanne University Hospital, Lausanne, Switzerland
6Institute of Mathematics, EPFL, Lausanne, Switzerland
7Department of Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
REFERENCES

1. Duffy FD, Gordon GH, Whelan G, et al. Assessing competence in communication and interpersonal skills: the Kalamazoo II report. Acad Med 2004;79:495–507.

2. Dohrenwend AM. Defining empathy to better teach, measure, and understand its impact. Acad Med 2018;93:1754–63.

3. Mead N, Bower P. Patient-centredness: a conceptual framework and review of the empirical literature. Soc Sci Med 2000;51:1087–110.

4. Quince TA, Parker RA, Wood DF, et al. Stability of empathy among undergraduate medical students: a longitudinal study at one UK medical school. BMC Med Educ 2011;11:90–8.

5. Crandall SJ, Marion GS. Commentary: identifying attitudes towards empathy: an essential feature of professionalism. Acad Med 2009;84:1174–6.

6. Kim SS, Kaplowitz S, Johnston MV. The effects of physician empathy on patient satisfaction and compliance. Psychiatr Danub 2015;27(Suppl 1):548–52.

7. Quince T, Thieman P, Jensen AB, et al. Undergraduate medical students’ empathy: current perspectives. Adv Med Educ Pract 2016;7:443–55.

8. Wolff S. Reconsidering the “decline” of medical student empathy as reported in studies using the Jefferson Scale of Physician Empathy-Student version (JSPE-S). Med Teach 2015;37:783–6.

9. Smith KE, Norman GJ, Peck J. The complexity of empathy during face-to-face interaction. J Gen Intern Med 2002;18:670–4.

10. Davis MH. Measuring individual differences in empathy: evidence for a multidimensional approach. J Pers Soc Psychol 1983;44:115–26.

11. Hatfield E, Cacioppo JT, Rapson RL. Emotional contagion. New York, NY: Cambridge University Press, 1994.

12. Brazeau CML, Schroeder R, Rovi S, et al. Relationships between medical student burnout, empathy, and professionalism climate. Acad Med 2010;85:533–6.

13. Edon LD. The effect of medical education on attitudes: a follow-up study. J Med Educ 1958;33:25–33.

14. Hojat M, Vergare MJ, Maxwell K, et al. The devil is in the third year: a longitudinal study of erosion of empathy in medical school. Acad Med 2009;84:1182–91.

15. Paro HBMS, Silveira PSP, Perotta B, et al. Empathy among medical students: is there a relation with quality of life and burnout? PLoS One 2014;9:e94133.

16. Chen D, Lew R, Hershman W, et al. A cross-sectional measurement of medical student empathy. J Gen Intern Med 2007;22:1434–8.

17. Youseef FF, Nunes P, Ba S, et al. An exploration of changes in cognitive and emotional empathy among medical students in the Caribbean. Int J Med Educ 2014;5:185–92.

18. Tavakol S, Dennick R, Tavakol M. Empathy in UK medical students: differences by gender, medical year and specialty interest. Educ Prim Care 2011;22:297–303.

19. Bensing J, Lagro-Janssen A, et al. Communication, patient satisfaction and control over the disease. Br J Cancer 2003;88:659–65.

20. Nuss J, Van Royen P, et al. Patient adherence to treatment: three decades of research. A comprehensive review. J Clin Pharm Ther 2001;26:331–42.
Hall JA, Ship AN, Ruben MA, et al. Clinically relevant correlates of accurate perception of patients' thoughts and feelings. *Health Commun* 2015;30:423–9.

Hall JA, Roter DL, Blanch DC, et al. Nonverbal sensitivity in medical students: implications for clinical interactions. *J Gen Intern Med* 2009;24:1217–22.

Robbins JM, Kirkmyer LJ, Cathébrats P, et al. Physician characteristics and the recognition of depression and anxiety in primary care. *Med Care* 1994;32:795–812.

DiMatteo MR, Taranta A, Friedman HS, et al. Predicting patient satisfaction from physicians' nonverbal communication skills. *Med Care* 1980;18:376–87.

DiMatteo MR, Hays RD, Prince LM. Relationship of physicians' nonverbal communication skill to patient satisfaction, appointment noncompliance, and physician workload. *Health Psychol* 1991;10:368–75.

Rotenstein LS, Ramos MA, Torre M, et al. Prevalence of depression, depressive symptoms, and suicidal ideation among medical students: a systematic review and meta-analysis. *JAMA* 2016;316:2214–36.

Dyrybe LN, West CP, Satile D, et al. Burnout among U.S. medical students, residents, and early career physicians relative to the general U.S. population. *Acad Med* 2014;89:443–51.

Borst JM, Frings-Dresen MHW, Sluiter JK. Prevalence and incidence of mental health problems among Dutch medical students and the study-related and personal risk factors: a longitudinal study. *Int J Adolesc Med Health* 2015;28:349–55.

Dyrybe LN, Thomas MR, Massie FS, et al. Burnout and suicidal ideation among U.S. medical students. *Ann Intern Med* 2008;149:334–41.

Guthrie E, Black D, Bagalkote H, et al. Psychological stress and burnout in medical students: a five-year prospective longitudinal study. *J R Soc Med* 1998;91:237–43.

Quince TA, Wood DF, Parker RA, et al. Prevalence and persistence of depression among undergraduate medical students: a longitudinal study at one UK medical school. *BMJ Open* 2012;2:e001519.

Silva V, Costa P, Pereira I, et al. Depression in medical students: insights from a longitudinal study. *BMC Med Educ* 2017;17:184–92.

Kjeldstadli K, Tyssen R, Finset A, et al. Life satisfaction and resilience in medical school— a six-year longitudinal, nationwide and comparative study. *BMC Med Educ* 2008;8:46–55.

Sandover S, Jonas-Dwyer D, Marr T. Graduate entry and undergraduate medical students’ study approaches, stress levels and ways of coping: a five year longitudinal study. *BMC Med Educ* 2015;15:9–15.

Thomas MR, Dyrybe LN, Huntington JL, et al. How do distress and well-being relate to medical student empathy? A multicenter study. *J Gen Intern Med* 2007;22:177–83.

Passalacqua SA, Segrin C. The effect of resident physician stress, burnout, and empathy on patient-centered communication during the long-call shift. *Health Commun* 2016;31:449–56.

Adams K, Hean S, Stur C, et al. The long-term effects of undergraduate medical education on clinical communication during inpatient rounds: a pre- and post-intervention field trial. *Qual Health Res* 2016;26:2232–7.

Cramer KM, Gruman JA. The Lenovo and Wolfe revised self-monitoring scale: latent structure and gender invariance. *Pers Individ Diff* 2002;32:627–37.

Myzsowski N, Storme M, Zenasni F, et al. Appraising the duality of self-monitoring: psychometric qualities of the revised self-monitoring scale and the concern for appropriateness scale in French. *Can J Behav Sci* 2014;46:387–96.

Palese T, Schmid Mast M. The role of social categorization and social dominance orientation in behavioral adaptability. *J Pers Soc Psychol* 2020. doi:10.1037/pspi0000351. [Epub ahead of print: 30 Nov 2020].

Marques-Vidal P, Bochud M, Bastardot F. Assessing the associations between metabolic disorders, cardiovascular risk factors, and cardiovascular disease: the CoLaus/PsyCoLaus study. *Raisons Santé* 2011;182:1–28.

Radoiff LS. The CES-D scale: a self-report depression scale for research in the general population. *Appl Psychol Meas* 1977;1:385–401.

Lewinsohn PM, Seeley JR, Roberts RE, et al. Center for epidemiologic studies depression scale (CES-D) as a screening instrument for depression among community-residing older adults. *Psychol Aging* 1997;12:277–87.

Beck AT, Ward CH, Mendelson M, et al. An inventory for measuring depression. *Arch Gen Psychiatry* 1961;4:561–71.

Beck AT, Steer RA, Carbin MG. Psychometric properties of the Beck depression inventory: twenty-five years of evaluation. *Clin Psychol Rev* 1988;8:77–100.

Trostler T, D’Agata MT, Holdren RR. Suicide risk screening: comparing the Beck depression Inventory-II, Beck Hopelessness scale, and Psychache scale in undergraduates. *Psychol Assess* 2015;27:1500–6.

Bourque P, Beaudette D. Étude psychométrique du questionnaire de dépression de Beck auprès d’un échantillon d’étudiants universitaires francophones. *Can J Behav Sci* 1982;14:211–8.

Spieberger CD. Manual for the State-trait anxiety inventory. Palo Alto, CA: Consulting Psychologists Press, 1989.

Spieberger CD. State-trait anxiety inventory: a comprehensive bibliography. 2nd ed. Palo Alto, CA: Consulting Psychologists Press, 1989.

Elliot TR, Shewchuk RM, Richards JS. Family caregiver social problem-solving abilities and adjustment during the intial year of the caregiving role. *J Couns Psychol* 2001;48:223–32.

Shewchuk RM, Richards JS, Elliot TR. Dynamic processes in health outcomes among caregivers of patients with spinal cord injuries. *Health Psychol* 1998;17:125–9.

Faye-Dumangnet C, Carré J, Le Borgne M, et al. French validation of the Maslach burnout Inventory-Student survey (MBI-SS). *J Eval Clin Pract* 2017;23:1247–51.

Perrin M, Vandevelde CL, Castelao E, et al. Determinants of the development of post-traumatic stress disorder in the general population. *Soc Psychiatry Psychiatr Epidemiol* 2014;49:447–57.

Humeniuk R, Ali R, Babor TF, et al. Validation of the alcohol, smoking and substance involvement screening test (assist). *Addiction* 2008;103:1029–47.

Deline S, Baggio S, Studer J, et al. Use of neuroenhancement drugs: prevalence, frequency and use expectations in Switzerland. *Int J Environ Res Public Health* 2014;11:3032–45.

Berney A, Carrard V, Schmid Mast M, et al. Individual training at the undergraduate level to promote competence in breaking bad news in oncology. *Psychooncology* 2017;26:2232–7.

Carrard V, Bourquin C, Stiefel F, et al. Undergraduate training in breaking bad news: a continuation study exploring the patient perspective. *Psychooncology* 2020;29:398–405.

Berney A, Bourquin C. Individual supervision to enhance reflexivity and the practice of patient-centered care: experience at the undergraduate level. *J Cancer Educ* 2019;34:363–5.

Deapen J-B, Fortini C, Bertholet N, et al. Training medical students to conduct motivational interviewing: a randomized controlled trial. *Patient Educ Couns* 2012;87:313–8.

Kane GC, Gotto JL, Mangione S, et al. Jefferson scale of patient’s perceptions of physician empathy: preliminary psychometric data. *Croat Med J* 2007;48:81–6.

Laird NM, Ware JH. Random-effects models for longitudinal data. *Biometrics* 1982;38:363–74.

Schall R. Estimation in generalized linear models with random effects. *Biometrika* 1991;78:719–27.

van BS, Groothuis-Oudshoorn K. Mice: multivariate imputation by chained equations in R. *Ann Intern Med* 2012;103:302-9.

Bosch X, Summerfield A, Khoury JC, et al. Health status and lifestyle habits of US medical students: a longitudinal study. *Ann Med Health Sci Res* 2016;6:341–7.
93 Steen Grotmol K, Gude T, Moum T, et al. Risk factors at medical school for later severe depression: a 15-year longitudinal, nationwide study (NORDOC). *J Affect Disord* 2013;146:106–11.
94 Woloschuk W, Harasym PH, Temple W. Attitude change during medical school: a cohort study. *Med Educ* 2004;38:522–34.
95 Oser TK, Haidet P, Lewis PR, et al. Frequency and negative impact of medical student mistreatment based on specialty choice: a longitudinal study. *Acad Med* 2014;89:755–61.
96 Bexelius T, Lachmann H, Järnbert-Pettersson H, et al. Stress among medical students during clinical courses: a longitudinal study using contextual activity sampling system. *Int J Med Educ* 2019;10:68–74.