Correlation of Serum Ferritin with Hepatic Iron Overload among Non-transfusion Dependent Beta Thalassaemia with Haemoglobin E Disease Patients from Eastern India

Prosanto Chowdhury1*, Manash Saha2 and Dhritidipa Chowdhury3
1Visiting Consultant-Thalassaemia and Haemoglobinopathy, Peerless Hospitex and Hospital and B. K Roy Research Institute, India
2Clinical Director and HDI Radiology, Peerless Hospitex and Hospital and B. K Roy Research Institute, India
3Senior Divisional Medical Officer, South Eastern Railways, India

Corresponding author: Prosanto Kumar Chowdhury, MBBS, PGDMCH, MSc Haemoglobinopathy (UCL), FAIIMT, FRMTS (Kol), Consultant in Haemoglobinopathy (Thalassaemiology), India, Tel: +919830055287/+919433081997; E-mail: drprosanto.chowdhury@gmail.com

Abstract

Introduction: Iron over load estimation was attempted by MRI R2* and serum ferritin, in non-transfusion dependent HbE Beta Thalassaemia patients.

Methods: Seventy three patients selected on definite criteria were scanned and tested. Average age of the patients was 20.8 ± 11.14 years, 33 females and 40 male. Average hepatic iron concentration was determined to be 11.09 ± 11.74 mg/g of dry liver tissue and average serum ferritin was 972.44 ± 1121.51 ng/ml.

Results: 81% of the patients had hepatic iron concentration more than 2 mg/g of dry liver tissue, whereas only 41% had serum ferritin level >500 ng/ml, irrespective of age. The hepatic iron overload pattern was heterogenous, where age and sex were not well determined variable predictors of such iron overload. Though, higher hepatic iron load was seen more predictably in patients above the age of 10 years and LIC of 5 mg/g of dry tissue correlated with serum ferritin level of approximately 400 ng/ml.

Conclusion: It can be concluded that non transfusion dependence does not ensure non iron overload status and such patients should be scanned by using MRI R2* sequence to determine their hepatic iron status and start on excess iron chelation therapy if felt required.

Keywords: Thalassaemia; Haemoglobin; Anaemia

Introduction

Beta Thalassaemia with haemoglobin E disease is the commonest double heterozygous coexistence of quantitative and qualitative globin chain defect, causing haemolytic anaemia in the population of south-east Asia [1]. Over 700 structural haemoglobin variants have been identified, but only three, sickle haemoglobin, HbC and HbE, occur in high frequency in different population. This hereditary form of haemolytic anaemia seems to have differing presentation in most of the countries where it exists. It may be so mild, as never to present to the health care set up due to lack of physical problems, or present around 6 months of age with anaemia severe enough to require regular transfusion of blood for survival. This extremely heterogenous presentation exerts immense stress on the successful management, paving way to the various complications, adding to the morbidity and mortality of these patients. From the Thalassaemia model it is clear that the hallmark of phenotype is due to globin chain dysbalance arising of excess alfa chains and/or easy precipitability of the non-normal, qualitatively defective beta globin chain – leading to intravascular haemolysis or ineffective erythropoiesis. It is very clear that the most important complications, like osteopathy, endocrinopathy, cardiomyopathy, neuropathy and splenomegaly, can all be related not only to the degree of anaemia but also the magnitude of iron loading of the tissues. This iron over load related morbidity is due not primarily to blood transfusion, because most patients of this group are non-transfusion dependent, but increased absorption of iron from the gut.

Most, if not all patients, who suffer from even the mildest degree of anaemia, release supra physiological quota of erythropoietin due to relative tissue hypoxia, however clinically silent might the disease expression be. This leads to iron craving of the tissue hypoxic body, and excess absorption of the element from the gut. The ineffective erythropoiesis leads to inappropriately low hepcidin levels leading to up-regulation of ferroportin, hence augmenting intestinal iron absorption [2-4].

Non-transfusion dependent thalassaemic subjects have predominant ineffective erythropoiesis, this results in increased levels of growth differentiation factor 15, which also alters the expression of hypoxia inducible transcription factors. So a combination of Hepcidin suppression, increased iron absorption from the gut and increased release of recycled iron from the reticulo-endothelial system, the macrophage iron gets depleted, so the serum ferritin levels are relatively low and there is preferential portal and hepatocyte iron loading, which leads to an increase in liver iron concentration, which leads to discordance of iron overload as measured by serum ferritin and hepatic iron estimation.
The clinical course of beta thalassaemia with haemoglobin E disease is punctuated by serious morbidity and mortality. Studies indicated that hypercoagulation to pulmonary hypertension, non-healing ulcers to paravertebral haematopoietic islands are complications, very commonly detected in non-transfusion dependent haemoglobinopathy patients, but until recently the iron overload part was overlooked.

It was discovered and concluded, that though non-transfusion dependent beta thalassaemia with haemoglobin E disease do not get regularly transfused for survival, they still develop significant iron overload. Spurred by various factors to which the end result – suppression of hepcidin levels, increased absorption of iron from the intestine and increased release of recycled iron from the reticuloendothelial system [3]. This in turn leads to depletion of macrophage iron and relatively lower levels of serum ferritin, than what would be expected in transfusion dependent and non-transfusion dependent beta thalassaemia intermedia patients [5], which leads to preferential portal and hepatocyte iron loading with subsequent release into the circulation of free iron species that are capable of causing target organ damage and dysfunction. Other than this, such patients will eventually accumulate a minor fraction of this iron overload from occasional or infrequent transfusions [6]. Iron overload in such patients is a cumulative process and there is ample evidence of correlation between iron overload indices and advancing age. A considerable proportion of such patients would accumulate enough iron to precipitate organ dysfunction, which is more evidenced and followed in non-transfusion dependent thalassaemia patients by estimation of hepatic iron load, rather than the already underestimating serum ferritin levels [7]. These observations have clearly demonstrated that iron overload in non-transfusion dependent subjects, which should be promptly diagnosed and managed to prevent the occurrence of serious clinical complications [8].

Aims and Objectives

- To estimate the iron overload in non-transfusion dependent patients suffering from beta thalassaemia with haemoglobin E disease by serum ferritin.
- To estimate the iron overload in non-transfusion dependent patients suffering from beta thalassaemia with haemoglobin E disease by estimation of hepatic iron by MRI.
- To correlate increase in iron overload (both parameters) with increasing age.
- To correlate iron overload estimation by serum ferritin and LIC estimated by MRI.

Materials and Methodology

Non-transfusion dependent Beta Thalassaemia with Haemoglobin E disease patients, above the age of 3 years were selected. They were included in the study if they were being followed up for at least five years irrespective of disease or co-morbidity status, which might or might not be related to the primary disease.

MRI scanning by R2* sequence was standardized on Siemens 1.5 T instrument by using the Phantom protocol from Resonance Healthcare – “Ferriscan”, Australia, which is an FDA approved method for hepatic iron estimation.
males and females was the same - 22.9 years with a range of 26 to 28 years, average age among males was 6.2 years with a range of 3 to 9 years and in females, the average age was 7.5 years with a range of 5 to 9 years.

In Group V, there were 10 subjects, 7 males and 3 females, average age being 27.3 years with a range of 26 to 30 years, average age among males was 26.7 years with a range of 26 to 28 years and in females, the average age was 28.67 years with a range of 27 to 30 years.

In Group VI, there were 10 subjects, 5 males and 5 females, average age being 38.6 years with a range of 32 to 54 years, average age among males was 39.8 years with a range of 36 to 46 years and in females, the average age was 37.5 years with a range of 32 to 54 years.

In Group I, the mean serum ferritin being 648.71 ± 872.43 ng/ml, mean serum ferritin level among males was 479.36 ± 326.76 ng/ml and in females – 789.83 ± 220.8 ng/ml.

In Group II, the mean serum ferritin being 1434.51 ± 2109.1 ng/ml, mean serum ferritin level among males was 1501.9 ± 2326.76 ng/ml and in females – 1165 ± 1398.66 ng/ml.

In Group III, the mean serum ferritin being 509.7 ± 346.2 ng/ml, mean serum ferritin level among males was 388.78 ± 420.77 ng/ml and in females – 630.61 ± 220.18 ng/ml.

In Group IV, the mean serum ferritin being 1085.22 ± 782.98 ng/ml, mean serum ferritin level among males was 949.56 ± 776.76 ng/ml and in females – 1220.89 ± 809.31 ng/ml.

In Group V, the mean serum ferritin being 1525.98 ± 1207.88 ng/ml, mean serum ferritin level among males was 1681.69 ± 1271.39 ng/ml and in females – 1162.67 ± 1197.16 ng/ml.

In Group VI, the mean serum ferritin being 1065.5 ± 1146.48 ng/ml, mean serum ferritin level among males was 1634.4 ± 1392.84 ng/ml and in females – 496.6 ± 456.44 ng/ml.

In Group I, the mean hepatic iron overload as measured by Hepatic MRI-R2* sequence was 7.05 ± 8.9 mg/g of dry liver tissue, level among males was 5.8 ± 8.76 mg/g of dry liver tissue and in females – 8.1 ± 2.81 mg/g of dry liver tissue.

In Group II, the mean hepatic iron overload as measured by Hepatic MRI-R2* sequence was 15.47 ± 14.3 mg/g of dry liver tissue, level among males was 15.43 ± 15.4 mg/g of dry liver tissue and in females – 15.6 ± 13.43 mg/g of dry liver tissue.

In Group III, the mean hepatic iron overload as measured by Hepatic MRI-R2* sequence was 5.02 ± 4.53 mg/g of dry liver tissue, level among males was 3.5 ± 3.37 mg/g of dry liver tissue and in females – 6.54 ± 5.27 mg/g of dry liver tissue.

In Group IV, the mean hepatic iron overload as measured by Hepatic MRI-R2* sequence was 12.37 ± 11.45 mg/g of dry liver tissue, level among males was 12.88 ± 12.64 mg/g of dry liver tissue and in females – 11.87 ± 10.86 mg/g of dry liver tissue.

In Group V, the mean hepatic iron overload as measured by Hepatic MRI-R2* sequence was 19 ± 16.28 mg/g of dry liver tissue, level among males was 21.34 ± 16.95 mg/g of dry liver tissue and in females – 13.53 ± 16.34 mg/g of dry liver tissue.

In Group VI, the mean hepatic iron overload as measured by Hepatic MRI-R2* sequence was 14.02 ± 13.02 mg/g of dry liver tissue, level among males was 19.62 ± 16.32 mg/g of dry liver tissue and in females – 8.42 ± 6.04 mg/g of dry liver tissue.

Discussion and Conclusion

One of the initial publications which recognized iron overload to be frequently present in thalassaemia intermedia patients was by Fiorelli et al in 1990, commenting that it becomes evident mainly after the second and third decades of life, which was heterogeneous in nature. 38 patients were evaluated as regards levels of transferrin saturation, serum ferritin and desferrioxamine induced urinary iron excretion, and deduced that they were spread over a wide range and did not correlate with other parameters, though hepatic iron over load as a parameter was not considered as it was unavailable. Iron overload in un-transfused beta thalassaemia intermedia patients had been estimated to be 1-3.5 g/year compared with 2 to 12 g/year in regularly transfused ones. In the current study, iron overload by MRI as evidenced by LIC of >2 mg/g dry weight was documented in 59 out of 73, i.e., 81% of subjects of age between 3 to 53 years.

In the article published by Taher et al in 2011, the mean iron overload in 168 beta thalassaemia intermedia patients, the mean age was 35.2 ± 12.6 years, of whom 42.6 were males, the average liver iron concentration was 8.4 ± 6.7 mg Fe/g dry weight [9]. Whereas, Mazza et al in 1995, reported iron overload in 33 thalassaemia patients by serum ferritin, which ranged between 276 and 8013 ng/ml and liver iron content was measured by MRI which ranged between 1.6 to 31.0 mg/g dry weight. They also recorded linear correlation of serum ferritin with liver iron content [10]. In another comparative study by Papakonstantinou et al. in 1995, where 40 transfusion dependent thalassaemia patients’ iron overload status was estimated by LIC, serum ferritin and histologic grading of siderosis and was compared, LIC ranged from 2.32 to 18 mg/g dry weight and this value correlated well serum ferritin levels [11]. In the current study of 73 non transfusion dependent HbE/Beta thalassaemia patients, the mean age was 20.8 ± 11.13 years, of whom 43.8% were females. The average LIC was 11.27 ± 11.7 mg/g dry weight and serum ferritin was 972.45 ± 1121.5 ng/ml (Figure 1).
In our study, correlation coefficient of 0.99 was obtained in the age group of 3 to 10 years of age among females between serum ferritin and hepatic iron concentration, where the mean serum ferritin level was 220.8 ng/ml and the LIC was 2.8 mg Fe/g of dry liver tissue, whereas among both sexes of this age group the correlation coefficient was 0.64, where the mean serum ferritin level was 648.7 ng/ml and the LIC was 7.05 mg Fe/g of dry liver tissue. Similar correlation was obtained in the age group 11 to 15 years in both sexes, which was 0.887, where serum ferritin level was 1434.5 ng/ml and LIC of 15.47 mg Fe/g of dry liver tissue, but the data is not statistically valid because the SD is more than the mean (Figure 3).

It is evident from the results of the current study, that there is definite evidence of iron overload among non-transfusion dependent HbE/Beta thalassaemia patients. The conventional method of estimation of the trend of iron overload by serum ferritin level is static measurement or a trend is misleading, when compared to LIC by MRI. Serum ferritin level of >500 ng/ml. In the >11 to 15 year age group 80% had evidence of iron overload as evidenced by LIC>5 but 60% had serum ferritin >500 ng/ml. In the >16 to 20 years age group 37% had LIC of >5 but 47% had serum ferritin >500 ng/ml in the age group >20 to 25 years, 84% had LIC >5 and 74% had serum ferritin >500 ng/ml, 36.8% had LIC >10 and serum ferritin >1500 ng/ml.

So it is recommended that serum ferritin can be regarded as a parameter of iron overload in otherwise uncomplicated patients as long as it is below 300 ng/ml, but is suspicion of iron overload is high, as may be thought of from presenting complicating symptoms, it should always be correlated with LIC estimation by MRI. Age should not be a criteria for estimation of iron overload in this group of patients because higher age do not correlate with higher iron overload neither did lower age correspond with less iron overloaded state. It can...
also be proposed that due to the erratic nature of the iron load as regards the liver, the lower age limit of MRI in this group of patients may be brought down to 3 years for effective screening and prevention of end organ damage (Figure 5).

References
1. Weatherall DJ (2001) Phenotype-genotype relationships in monogenic disease: lessons from the thalassaemias. Nat Rev Genet 2: 245-255.
2. Ginzburg Y, Rivella S (2011) β-thalassemia: a model for elucidating the dynamic regulation of ineffective erythropoiesis and iron metabolism. Blood 118: 4321-4330.
3. Rivella S (2012) The role of ineffective erythropoiesis in non-transfusion-dependent thalassemia. Blood Rev 26 Suppl 1: S12-15.
4. Gardenghi S, Marongiu MF, Ramos P, Guy E, Breda L, et al. (2007) Ineffective erythropoiesis in beta-thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin. Blood 109: 3027-3035.
5. Origa R, Galanello R, Ganz T, Giagu N, Maccioni L, et al. (2007) Liver iron concentrations and urinary hepcidin in beta-thalassemia. Haematologica 92: 583-588.
6. Taher A, Musallam KM, El Rassi F, Duca L, Inati A, et al. (2009) Levels of non-transferrin-bound iron as an index of iron overload in patients with thalassaemia intermedia. Br J Haematol 146: 569-572.
7. Musallam KM, Cappellini MD, Taher AT (2013) Iron overload in P-thalassaemia intermedia: an emerging concern. Curr Opin Hematol 20: 187-192.
8. Musallam KM, Cappellini MD, Wood JC, Taher AT (2012) Iron overload in non-transfusion-dependent thalassemia: a clinical perspective. Blood Rev 26 Suppl 1: S16-19.
9. Musallam KM, Cappellini MD, Wood JC, Motta I, Graziadei G, et al. (2011) Elevated liver iron concentration is a marker of increased morbidity in patients with β thalassemia intermedia. Haematologica 96:1605-1612.
10. Mazza P, Giua R, De Marco S, Bonetti MG, Amurri B, et al. (1995) Iron overload in thalassemia: comparative analysis of magnetic resonance imaging, serum ferritin and iron content of the liver. Haematologica 80: 398-404.
11. Papakonstantinou OG, Maris TG, Kostaridou V, Gouliamos AD, Koutoulas GK, et al. (1995) Assessment of liver iron overload by T2-quantitative magnetic resonance imaging: correlation of T2-QMRI measurements with serum ferritin concentration and histologic grading of siderosis. Magn Reson Imaging 13: 967-977.
12. Fiorelli G, Fargion S, Piperno A, Battafarano N, Cappellini MD (1990) Iron metabolism in thalassemia intermedia. Haematologica 75 Suppl 5: 89-95.
13. Taher AT, Viprakasit V, Musallam KM, Cappellini MD (2013) Treating iron overload in patients with non-transfusion-dependent thalassemia. Am J Hematol 88: 409-415.