Optimal regularity for degenerate Kolmogorov equations with rough coefficients

Giacomo Lucertini∗ Stefano Pagliarani † Andrea Pascucci ‡

This version: May 4, 2023

Abstract

We consider a class of degenerate equations satisfying a parabolic Hörmander condition, with coefficients that are measurable in time and Hölder continuous in the space variables. By utilizing a generalized notion of strong solution, we establish the existence of a fundamental solution and its optimal Hölder regularity, as well as Gaussian estimates. These results are key to study the backward Kolmogorov equations associated to a class of Langevin-type diffusions.

Keywords: Kolmogorov equations, fundamental solution, Hörmander condition, Hölder estimates, measurable coefficients, parametrix technique, anisotropic diffusion.

MSC: 35D99, 35B65, 60J60, 35K65.

1 Introduction

We study existence and optimal regularity properties of the fundamental solution to a Kolmogorov operator that satisfies a parabolic Hörmander-type condition. The coefficients of the operator are Hölder continuous in the space variables but only measurable in time.

Precisely, for fixed $d \leq N$ and $T_0 > 0$, we consider the second order operator in non-divergence form $A + Y$ with

$$A = \frac{1}{2} \sum_{i,j=1}^{d} a_{ij}(t,x) \partial_{x_i x_j} + \sum_{i=1}^{d} a_i(t,x) \partial_{x_i} + a(t,x), \quad (t,x) \in S_{T_0} := [0,T_0] \times \mathbb{R}^N,$$

$$Y = \partial_t + \langle Bx, \nabla \rangle = \partial_t + \sum_{i,j=1}^{N} b_{ij} x_j \partial_{x_i}, \quad x \in \mathbb{R}^N,$$

where B is a constant matrix of dimension $N \times N$. Here, A is an elliptic operator on \mathbb{R}^d and Y is a first order differential operator on $\mathbb{R} \times \mathbb{R}^N$, also called transport or drift term. The focus of this paper is mainly on the case $d < N$, that is when $A + Y$ is fully degenerate, namely no coercivity condition on \mathbb{R}^N is satisfied.

Motivations for the study of $A + Y$ come from physics and finance. In its most basic form, with $N = 2$ and $d = 1$,

$$\frac{1}{2} \partial^2_{x_1 x_1} + x_1 \partial_{x_2} + \partial_t$$

* Dipartimento di Matematica, Università di Bologna, Bologna, Italy. e-mail: giacomo.lucertini3@unibo.it.
† Dipartimento di Matematica, Università di Bologna, Bologna, Italy. e-mail: stefano.pagliarani9@unibo.it
‡ Dipartimento di Matematica, Università di Bologna, Bologna, Italy. e-mail: andrea.pascucci@unibo.it
is the backward Kolmogorov operator of the system of stochastic equations

\[
\begin{aligned}
 dV_t &= dW_t \\
 dX_t &= V_t dt
\end{aligned}
\] \hspace{1cm} (1.3)

where \(W \) is a real Brownian motion. In the classical Langevin model, \((V, X)\) describes the velocity and position of a particle in the phase space and is the prototype of more general kinetic models (cf. [14], [10], [11]). In mathematical finance, \((V, X)\) represents the log-price and average processes used in modeling path-dependent financial derivatives, such as Asian options (cf. [2], [23]). The study of the fundamental solution and its regularity properties is a crucial step in tackling the martingale problem for the corresponding stochastic equations, particularly for well-posedness and pathwise uniqueness problems. These issues will be addressed in a future work.

1.1 Main assumptions

Throughout the paper, \(A + Y \) verifies the following two structural

Assumption 1.1 (Coercivity on \(\mathbb{R}^d \)). For \(1 \leq i, j \leq d \), the coefficients \(a_{ij}, a_i, a \) are in \(L^\infty([0, T_0]; C_b(\mathbb{R}^N)) \), where \(C_b(\mathbb{R}^N) \) denotes the space of bounded continuous functions on \(\mathbb{R}^N \). The diffusion matrix \((a_{ij})_{i,j=1,...,d}\) is symmetric and there exists a positive constant \(\mu \) such that

\[
\mu^{-1}|\xi|^2 \leq \sum_{i,j=1}^{d} a_{ij}(t,x)\xi_i\xi_j \leq \mu|\xi|^2, \quad x \in \mathbb{R}^N, \xi \in \mathbb{R}^d,
\]

for almost every \(t \in [0, T_0] \).

Assumption 1.2 (Hörmander condition). The vector fields \(\partial_{x_1}, \ldots, \partial_{x_d} \) and \(Y \) satisfy

\[
\text{rank Lie}(\partial_{x_1}, \ldots, \partial_{x_d}, Y) = N + 1. \tag{1.4}
\]

We refer to (1.4) as a parabolic Hörmander condition since the drift term \(Y \) plays a key role in the generation of the Lie algebra. Under Assumption (1.2), the prototype Kolmogorov operator

\[
\frac{\delta}{2} \sum_{i=1}^{d} \partial_{x_i}^2 + Y \tag{1.5}
\]

is hypoelliptic for any \(\delta > 0 \). Kolmogorov [12] (see also [8]) constructed the explicit Gaussian fundamental solution for (1.5), which is the transition density of a linear stochastic differential equation.

Condition (1.4) is equivalent to the well-known Kalman rank condition for controllability in linear systems theory (cf., for instance, [25]). Also, it was shown in [15] that (1.4) is equivalent to \(B \) having the block-form

\[
B = \begin{pmatrix}
 * & * & \cdots & * & * \\
 B_1 & * & \cdots & * & * \\
 0 & B_2 & \cdots & * & * \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \cdots & B_q & *
\end{pmatrix} \tag{1.6}
\]
where the *-blocks are arbitrary and \(B_j \) is a \((d_{j-1} \times d_j)\)-matrix of rank \(d_j \) with
\[
d \equiv d_0 \geq d_1 \geq \cdots \geq d_q \geq 1, \quad \sum_{i=0}^q d_i = N.
\]
This allows to introduce natural definitions of anisotropic norm and Hölder continuity on \(\mathbb{R}^N \).

Definition 1.3 (Anisotropic norm and Hölder spaces). For any \(x \in \mathbb{R}^N \) let
\[
|x|_B := \sum_{j=0}^q \frac{\sum_{i=d_{j-1}+1}^{d_j} |x_i|}{d_j}, \quad \bar{d}_j := \sum_{k=0}^j d_k. \tag{1.7}
\]
For \(\alpha \in]0,1[\) we denote by \(C_B^\alpha(\mathbb{R}^N) \) the set of functions \(g \in C_b(\mathbb{R}^N) \) such that
\[
\|g\|_{C_B^\alpha(\mathbb{R}^N)} := \sup_{x \in \mathbb{R}^N} |g(x)| + \sup_{x,y \in \mathbb{R}^N} \frac{|g(x) - g(y)|}{|x - y|_B^\alpha} < \infty,
\]
and by \(L^\infty([0,T_0]; C_B^\alpha(\mathbb{R}^N)) \) the set of measurable functions \(f : [0,T_0] \rightarrow C_B^\alpha(\mathbb{R}^N) \) such that
\[
\|f\|_{L^\infty([0,T_0]; C_B^\alpha(\mathbb{R}^N))} := \operatorname{ess sup}_{t \in [0,T_0]} \|f(t)\|_{C_B^\alpha(\mathbb{R}^N)} < \infty.
\]

The quasi-norm \(\| \cdot \|_{C_B^\alpha(\mathbb{R}^N)} \), hereafter referred to as to **intrinsic norm** for \(A + Y \), can be directly related to the scaling properties of the underlying diffusion process (cf. [4], [13]). For example, the intrinsic norm for the Langevin operator \(\alpha \) reads as \(|(v, x)|_B = |v| + |x|^{\frac{1}{2}}\) for \((v, x) \in \mathbb{R}^2\) and reflects the time-scaling properties of the stochastic system \(\alpha \), i.e. \((\Delta V)^2 \approx \Delta t\) and \((\Delta X)^2 \approx (\Delta t)^3\). The regularity of the coefficients of \(A \) is stated in our last standing

Assumption 1.4. The coefficients \(a_{ij}, a_i, a \) of \(A \) belong to \(L^\infty([0,T_0]; C_B^\alpha(\mathbb{R}^N)) \) for some \(\alpha \in]0,1[\).

Throughout paper we suppose that Assumptions [1.1] [1.2] and [1.4] are fulfilled.

1.2 Main results

According to Assumption [1.4], the coefficients of \(A \) are intrinsically Hölder continuous in the space variables and merely measurable in the time component. For Kolmogorov operators with coefficients that are Hölder continuous in both space and time, the study of the existence of a fundamental solution goes back to the early papers [31], [9], [30] and [19]. A modern and more natural approach based on the Lie group theory was developed by [28], [5], [1] and [24]. Applications to the martingale problem for some degenerate diffusion processes are given in [20] and [21].

Major questions in the study of Kolmogorov equations are the very definition of solution and its optimal regularity properties. It is well-known that, in general, the fundamental solution is not regular enough to support the derivatives \(\partial_{x_i} \), for \(d < i \leq N \), appearing in the transport term \(Y \). Indeed, under the Hörmander condition \(\alpha \), these derivatives are of order three and higher in the intrinsic sense. For this reason, even for equations with Hölder coefficients, weak notions of solution have been introduced. In this regard we may identify two main streams of research. In the semigroup approach initiated by [17], solutions are defined in the **distributional sense**; in this framework, solutions do not benefit from the time-smoothing effect that is typical of parabolic equations (see, for instance, Theorem 4.3 in [20]). On the other hand, in the stream of
research started by [28], solutions in the Lie sense are defined by regarding \(Y \) as a directional derivative. In this approach regularity properties in space and time are strictly intertwined: this allows to fully exploit the smoothing effect of the equation but makes the analysis less suitable for applications to stochastic equations.

Recently, a third notion of solution, which is a cross between the two previous ones, has been proposed in [27] with the aim of studying Langevin stochastic PDEs with rough coefficients. Since we are specifically interested in operators whose coefficients are only measurable in time, it seems natural to adopt this latter approach for our analysis. We introduce the following definition that is a particular case of (1.3) in [27] when \(N = 2 \).

Definition 1.5 (Strong Lie solution). Let \(0 < T \leq T_0 \) and \(f \in L^1_{\text{loc}}([0, T]; C_b(\mathbb{R}^N)) \). A solution to equation

\[
\mathcal{A}u + Y u = f \quad \text{on } \mathcal{S}_T
\]

is a continuous function \(u \) such that there exist \(\partial_{x_i} u, \partial_{x_j} u \in L^1_{\text{loc}}([0, T]; C_b(\mathbb{R}^N)) \), for \(i, j = 1, \ldots, d \), and

\[
u(s, e^{(s-t)B}x) = u(t, x) - \int_t^s \left(\mathcal{A}u(\tau, e^{(\tau-t)B}x) - f(\tau, e^{(\tau-t)B}x) \right) d\tau, \quad (t, x) \in \mathcal{S}_T, \ s < T. \quad (1.9)
\]

Remark 1.6. Notice that \(s \mapsto (s, e^{(s-t)B}x) \) is the integral curve of \(Y \) starting from \((t, x) \): for any suitably regular function \(u \) the limit

\[
Y u(t, x) := \lim_{s \to t} \frac{u(s, e^{(s-t)B}x) - u(t, x)}{s - t} \quad (1.10)
\]

is the directional (or Lie) derivative along \(Y \) of \(u \) at \((t, x) \). Thus, if the integrand in (1.9) is continuous then \(u \) is a classical (pointwise) solution of (1.8). However, as noticed in Remark 2.9 in general a solution \(u \) in the sense of Definition 1.5 is only a.e. differentiable along \(Y \) and equation (1.8) is satisfied for almost every \((t, x) \in \mathcal{S}_T \).

In order to state our first main result, we give the following

Definition 1.7 (Fundamental solution). A fundamental solution of \(\mathcal{A} + Y \) is a function \(p = p(t, x; T, y) \) defined for \(t < T \) and \(x, y \in \mathbb{R}^N \) such that, for any fixed \((T, y) \in \mathcal{S}_T \), we have:

i) \(p(\cdot, \cdot; T, y) \) is a solution of equation \(\mathcal{A}u + Y u = 0 \) on \(\mathcal{S}_T \) in the sense of Definition 1.5

ii) for any \(g \in C_b(\mathbb{R}^N) \) we have

\[
\lim_{t \to T} \int_{\mathbb{R}^N} p(t, x; T, \eta) g(\eta) \, d\eta = g(y).
\]

The following result states the existence of the fundamental solution \(p \) of \(\mathcal{A} + Y \), as well as uniform Gaussian bounds for \(p \) and its derivatives with respect to the non-degenerate variables \(x_1, \ldots, x_d \).

Theorem 1.8 (Existence and Gaussian bounds). Under Assumptions [1.3] [1.3] and [1.4] \(\mathcal{A} + Y \) has a fundamental solution \(p = p(t, x; T, y) \) in the sense of Definition 1.7. For every \(\varepsilon > 0 \) there exists a positive constant \(C \), only dependent on \(T_0, \mu, B, \varepsilon, \alpha \) and the \(\alpha \)-Hölder norms of the coefficients, such that

\[
p(t, x; T, y) \leq C \Gamma^{\mu+\varepsilon}(t, x; T, y), \quad (1.11)
\]

\[
|\partial_{x_i} p(t, x; T, y)| \leq \frac{C}{\sqrt{T - t}} \Gamma^{\mu+\varepsilon}(t, x; T, y), \quad (1.12)
\]
\[|\partial_{x,y}p(t,x,y)| \leq \frac{C}{T-t} |\partial^\mu+e(t,x,y)|, \quad (1.13) \]

for any \((T,y) \in \mathcal{S}_{T_0}, (t,x) \in \mathcal{S}_T\) and \(i,j = 1, \ldots, d\), where \(1^\delta\) is the Gaussian fundamental solution of \((1.10)\), whose explicitly expression is given in \((2.3)\). Moreover, there exist two positive constants \(\bar{\mu}, \bar{c}\) such that
\[\bar{c} \Gamma^\beta(t,x,y) \leq p(t,x,y), \quad (1.14) \]

for any \((T,y) \in \mathcal{S}_{T_0}\) and \((t,x) \in \mathcal{S}_T\).

In Section 4 we present several results for the Cauchy problem that are straightforward consequences of Theorem 1.8. The proof of Theorem 1.8 is based on a modification of Levi’s parametrix technique, which allows to deal with the lack of regularity of the coefficients along the drift term \(Y\). The main tool is the fundamental solution of a Kolmogorov operator with time-dependent measurable coefficients, also recently studied in \([3]\). This approach allows for a careful analysis of the optimal regularity properties of the fundamental solution \(p\): Theorem 1.9 below states that \(p\) belongs to the intrinsic Hölder space \(C^2_\alpha\) as given by Definition 1.14. As the notation could be misleading, we explicitly remark that for \(u \in C^2_\alpha\) not even the first order derivatives \(\partial_x u\), for \(i > d\), necessarily exist. However, in general we cannot expect higher regularity properties for solutions to \((1.8)\) and \(C^2_\alpha\)-regularity is indeed optimal.

Theorem 1.9 (Regularity of the fundamental solution). Under the assumptions of Theorem 1.8, \(p(\cdot, T,y) \in C^2_\alpha(\mathcal{S}_\tau)\) for every \((T,y) \in \mathcal{S}_{T_0}\), \(0 < \tau < T\) and \(\beta < \alpha\). Precisely, there exists a positive constant \(C\) only dependent on \(T_0, \mu, B, \beta, \alpha\) and the \(\alpha\)-Hölder norms of the coefficients, such that
\[\|p(\cdot; T,y)\|_{C^2_\alpha(\mathcal{S}_\tau)} \leq \frac{C}{(T-\tau)^{2\beta+2+\alpha}}, \]

where \(Q\) is the so-called homogeneous dimension of \(\mathbb{R}^N\) with respect to the quasi-norm \(|\cdot|_B\) defined by
\[Q = \sum_{i=0}^q (2i+1)d_i. \quad (1.15) \]

Theorem 1.9 refines the known results about the smoothness of the fundamental solution (cf. \([17], [18], [6]\)) and exhibits its maximal regularity properties. To give the precise definition of the Hölder space \(C^2_\alpha\) we first introduce the intrinsic Hölder regularity along the vector fields appearing in the Hörmander condition \((1.4)\). As it is standard in the framework of functional analysis on homogeneous groups (cf. \([7]\)), the idea is to weight the Hölder exponent in terms of the formal degree of the vector fields, which is equal to 1 for \(\partial_{x_1}, \ldots, \partial_{x_d}\) and equal to 2 for \(Y\).

Definition 1.10. Let \(\alpha \in [0,1], \beta \in [0,2]\) and \(T > 0\). We denote respectively by \(C^\alpha(\mathcal{S}_T)\) and \(C^\beta(\mathcal{S}_T)\) the set of the functions \(f : \mathcal{S}_T \to \mathbb{R}\) such that the following semi-norms are finite
\[\|f\|_{C^\alpha(\mathcal{S}_T)} := \sum_{i=1}^d \sup_{(s,e) \in \mathcal{S}} \frac{|f(t, x + h e_i) - f(t, x)|}{|h|^\alpha}, \]
\[\|f\|_{C^\beta(\mathcal{S}_T)} := \sup_{s \in [0,T]} \frac{|f(s, e^{(s-t)B} x) - f(t, x)|}{|t-s|^\beta}. \]

Here \(e_i\) denotes the \(i\)-th element of the canonical basis of \(\mathbb{R}^N\).
Next we recall the intrinsic H"older spaces of order 0 and 1 introduced in [22] and [23].

Definition 1.11. For $\alpha \in [0, 1]$, $C_B^{0, \alpha}(S_T)$ and $C_B^{1, \alpha}(S_T)$ denote, respectively, the set of the functions $f : S_T \to \mathbb{R}$ such that the following semi-norms are finite

$$\|f\|_{C_B^{0, \alpha}(S_T)} := \|f\|_{C^0_T(S_T)} + \|f\|_{C_B^{0, \alpha}(S_T)},$$

$$\|f\|_{C_B^{1, \alpha}(S_T)} := \|f\|_{C^1_T(S_T)} + \sum_{i=1}^d \|\partial_{x_i} f\|_{C_B^{0, \alpha}(S_T)}$$

$$= \|f\|_{C^1_T(S_T)} + \sum_{i=1}^d \left(\|\partial_{x_i} f\|_{C^0_T(S_T)} + \|\partial_{x_i} f\|_{C_B^{0, \alpha}(S_T)}\right).$$

Remark 1.12. It was shown in [22] that if $f \in C_B^{0, \alpha}(S_T)$ then f is α-H"older continuous w.r.t. the intrinsic norm $|t, x| = |t|^\frac{\alpha}{2} + |x|_B$. In particular, f enjoys some H"older regularity also in the degenerate variables x_i for $i > d$, namely

$$\sup_{x, y \in \mathbb{R}^N} \left|\frac{f(t, x) - f(t, y)}{|x - y|_B^{\alpha}}\right| \leq C\|f\|_{C_B^{0, \alpha}(S_T)}, \quad t \in [0, T],$$

where C is a positive constant that depends only on the matrix B.

Remark 1.13. In [22] it was also shown that if $f \in C_B^{1, \alpha}(S_T)$ then the following *intrinsic Taylor formula* holds:

$$\left|f(s, y) - f(t, x) - \sum_{i=1}^d \partial_{x_i} f(t, x)(y - e^{(s-t)B} x)\right| \leq C\left(|s - t|^{\frac{\alpha}{2}} + |y - e^{(s-t)B} x|_B\right)^{1+\alpha}, \quad (t, x), (s, y) \in S_T.$$

where C is a positive constant that depends only on the matrix B. We stress that the Taylor “polynomial” above only contains the first derivatives of f w.r.t. the first d components of x.

To cope with the lack of regularity of the coefficients in the time-direction, the definition of $C_B^{2, \alpha}(S_T)$ differs from the one given in [22], specifically with regards to the regularity along Y.

Definition 1.14. For $\alpha \in [0, 1]$, $C_B^{2, \alpha}(S_T)$ is the set of functions $f : S_T \to \mathbb{R}$ such that there exist

i) $\partial_{x_i} f \in C_B^{1, \alpha}(S_T)$ for $i = 1, \ldots, d$;

ii) a function $f_Y \in L^\infty([0, T]; C_B^{0}(\mathbb{R}^N))$, called *a.e.-Lie derivative of f*, such that

$$f(s, e^{(s-t)B} x) = f(t, x) + \int_t^s f_Y(\tau, e^{(\tau-t)B} x) d\tau, \quad t, s \in [0, T]. \quad (1.16)$$

Equivalently, $C_B^{2, \alpha}(S_T)$ denotes the set of functions $f : S_T \to \mathbb{R}$ such that the following semi-norm is finite

$$\|f\|_{C_B^{2, \alpha}(S_T)} = \sum_{i=1}^d \|\partial_{x_i} f\|_{C_B^{1, \alpha}(S_T)} + \|f_Y\|_{L^\infty([0, T]; C_B^{0}(\mathbb{R}^N))}$$

$$= \sum_{i=1}^d \|\partial_{x_i} f\|_{C_B^{1, \alpha}(S_T)} + \sum_{i,j=1}^d \left(\|\partial_{x_i x_j} f\|_{C_B^{0}(S_T)} + \|\partial_{x_i x_j} f\|_{C_B^{0}(S_T)}\right) + \|f_Y\|_{L^\infty([0, T]; C_B^{0}(\mathbb{R}^N))}. \quad (1.17)$$

Remark 1.15. To have a quick comparison with the literature on the regularity for Kolmogorov operators in (1.1), we recall that:
i) the Hölder space $C^{2+\alpha}$ introduced in \cite{17} (and adopted in \cite{16}, \cite{29} to prove Schauder estimates), consists of functions f that, together with their second order derivatives $\partial_{x_ix_j}f$ in the non-degenerate directions $i,j = 1, \ldots, d$, are Hölder continuous w.r.t. the anisotropic norm (1.7). This notion is weaker than Definition 1.14 both in terms of the regularity of $\partial_x f$ and, more importantly, in terms of the Lipschitz continuity of f along Y (cf. (1.10)) which reveals the regularizing effect of the associated evolution semigroup;

ii) Definition 1.14 is similar in spirit to that proposed in \cite{18}, \cite{6} and \cite{22} for the study of Kolmogorov operators with Hölder coefficients: according to their definition if $f \in C^{2,\alpha}$ then Yf exists and belongs $C^{0,\alpha}_{B}$. This is the regularity that the fundamental solution enjoys in case the coefficients of A are Hölder continuous in both space and time. By contrast, if $f \in C^{2,\alpha}_B$ in the sense of Definition 1.14 then f is generally at most Lipschitz continuous along Y: this is the optimal result one can prove without assuming further regularity of the coefficients in the time variable other than measurability.

The rest of the paper is structured as follows. Section 2 contains the construction of the fundamental solution by means of the parametrix method: in particular, Section 2.2 includes the proof of Theorem 1.8. In Section 3 we prove the regularity estimates of the fundamental solution, in particular Theorem 1.9. In Section 4 we state some results for the Cauchy problem for $A + Y$. The appendices contain the Gaussian and potential estimates that are employed in the proofs.

For reader’s convenience, we recall that we shall always denote by S_T the strip $]0, T[\times \mathbb{R}^N$; also, in the following table we collect the notations used for the main functional spaces:

Notation	Functional space	Reference
C^α_B	Anisotropic Hölder spaces on \mathbb{R}^N	Def. 1.3
C^α_d, C^α_Y	Lie Hölder spaces on S_T	Def. 1.10
$C^{k,\alpha}_B, k = 0, 1, 2$	Intrinsic Hölder spaces on S_T	Def. 1.11, 1.14

2 Parametrix construction

Let Assumptions 1.1, 1.2 and 1.4 be satisfied. The first step of the parametrix method is to set a kernel $P = P(t, x; T, y)$ that serves as proxy for the fundamental solution, called parametrix. We denote by $A^{(s,v)}$ the operator obtained by freezing the second-order coefficients of A along the integral curve of the vector field Y passing through $(s, v) \in S_{T_0}$ and neglecting the lower order terms. Namely we consider the operator

$$A^{(s,v)} := \frac{1}{2} \sum_{i,j=1}^d a_{ij}(t, e^{(t-s)B}v)\partial_{x_ix_j}, \quad (t, x) \in S_{T_0}.$$ \hspace{1cm} (2.1)

One can directly prove that the fundamental solution of

$$A^{(s,v)} + Y,$$

in the sense of Definition 1.7, is given by

$$\Gamma^{(s,v)}(t, x; T, y) = G(C^{(s,v)}(t,T), y - e^{(T-t)B}x), \quad (T, y) \in S_{T_0}, \quad (t, x) \in S_T,$$

where

$$G(C, z) := \frac{1}{\sqrt{(2\pi)^N \det C}} e^{-\frac{1}{2} \langle C^{-1}z, z \rangle}$$
is the Gaussian kernel on \mathbb{R}^{N} and
\begin{align*}
C^{(s,v)}(t,T) &:= \int_{t}^{T} e^{(T-\tau)B} A^{(s,v)}(\tau) e^{(T-\tau)B^*} d\tau, \\
A^{(s,v)}(\tau) &:= \begin{pmatrix} A_0(\tau, e^{(\tau-s)B}v) & 0 \\
0 & 0 \end{pmatrix}, \quad A_0 = (a_{ij})_{i,j=1,...,d}.
\end{align*}
(2.2)

Remark 2.1. Clearly $\Gamma^{(s,v)}(t,x;T,y)$ is of class C^∞ as a function of x and only absolutely continuous along the integral curves of Y as a function of (t,x).

Remark 2.2. In the particular case of $A_0 \equiv \delta I_d$ for some $\delta > 0$, where I_d is the $(d \times d)$-identity matrix, the Kolmogorov operator $A^{(s,v)} + Y$ reads as in [25] and its fundamental solution reduces to
\begin{align*}
\Gamma^{\delta}(t,x;T,y) &:= G(\delta C(T-t), y - e^{(T-t)B}x), \\
C(t) &:= \int_{0}^{t} e^{(t-\tau)B} \begin{pmatrix} I_d & 0 \\
0 & 0 \end{pmatrix} e^{(t-\tau)B^*} d\tau.
\end{align*}
(2.4)

Proceeding as in [20] and [27], we define the parametrix function $P(t,x;T,y)$ as
\begin{equation}
P(t,x;T,y) := \Gamma^{(T,y)}(t,x;T,y), \quad (T,y) \in S_{T_0}, (t,x) \in S_T,
\end{equation}
(2.6)
and we refer to it as to the time-dependent parametrix in order to emphasize the fact that it is obtained by freezing only the space variable of the coefficients of A.

Remark 2.3. Since $\Gamma^{(s,v)}$ is the fundamental solution of $A^{(s,v)} + Y$, we have
\begin{equation}
(A^{(T,y)} + Y)P(\cdot, \cdot; T,y) = 0 \quad \text{on } S_T,
\end{equation}
(2.7)
in the sense of Definition 1.5 for any $(T,y) \in S_{T_0}$.

Remark 2.4. In [3], where the variable coefficients of A are assumed intrinsically Hölder continuous in space and time, the parametrix is defined as the fundamental solution of the operator obtained by freezing the second order coefficients of A in both time and space variables, i.e.
\begin{equation}
\frac{1}{2} \sum_{i,j=1}^{d} a_{ij}(s,v) \partial_{x_i x_j} + Y.
\end{equation}
As we shall see below, the choice of freezing the coefficients only in the space variable, along the integral curve of Y as in (2.1), is necessary in order to deal with the lack of regularity in the time variable.

Once the parametrix function is defined, the parametrix construction prescribes that a fundamental solution of $A + Y$ is sought in the form
\begin{equation}
p(t,x;T,y) = P(t,x;T,y) + \int_{t}^{T} \int_{\mathbb{R}^{N}} P(t,x;\tau,\eta)\varphi(\tau,\eta;T,y) dyd\tau,
\end{equation}
(2.8)
where φ is an unknown function. We now perform some heuristic computations that will lead to a fixed-point equation for φ. Assuming that $p(t,x;T,y)$ in (2.8) is a fundamental solution of $A + Y$, we obtain
\begin{equation}
0 = (A + Y)p(t,x;T,y) = (A + Y)P(t,x;T,y) + (A + Y) \int_{t}^{T} \int_{\mathbb{R}^{N}} P(t,x;\tau,\eta)\varphi(\tau,\eta;T,y) dyd\tau.
\end{equation}
Furthermore, by formally differentiating and employing \(p(t, x; t, \cdot) = \delta_x \) we also have

\[
(A + Y) \int_t^T \int_{\mathbb{R}^N} P(t,x;\tau,\eta)\varphi(\tau,\eta;T,y)d\eta d\tau = \int_t^T \int_{\mathbb{R}^N} (A + Y)P(t,x;\tau,\eta)\varphi(\tau,\eta;T,y)d\eta d\tau - \varphi(t,x;T,y).
\]

Therefore, \(\varphi(t,x;T,y) \) must solve the Volterra integral equation

\[
\varphi(t,x;T,y) = (A + Y)P(t,x;T,y) + \int_t^T \int_{\mathbb{R}^N} (A + Y)P(t,x;\tau,\eta)\varphi(\tau,\eta;T,y)d\eta d\tau.
\]

Now, owing to Remark 2.3, equation (2.9) can be written as

\[
\varphi(t,x;T,y) = (A - A^{(T,y)})P(t,x;T,y) + \int_t^T \int_{\mathbb{R}^N} (A - A^{(\cdot,\cdot)})P(t,x;\tau,\eta)\varphi(\tau,\eta;T,y)d\eta d\tau,
\]

whose solution can be determined by an iterative procedure, which leads to the series representation

\[
\varphi(t,x;T,y) = \sum_{k \geq 1} \varphi_k(t,x;T,y)
\]

where

\[
\left\{
\begin{array}{l}
\varphi_1(t,x;T,y) := (A - A^{(T,y)})P(t,x;T,y), \\
\varphi_{k+1}(t,x;T,y) := \int_t^T \int_{\mathbb{R}^N} (A - A^{(\cdot,\cdot)})P(t,x;\tau,\eta)\varphi_k(\tau,\eta;T,y)d\eta d\tau, \quad k \in \mathbb{N}.
\end{array}
\right.
\]

In order to make the previous arguments rigorous one has to prove that:

- the series defined by (2.11)-(2.12) is uniformly convergent on \(S_T \). At this stage one also obtains a uniform upper bound and a Hölder estimate for \(\varphi \);
- \(p \) defined by (2.8) is actually a fundamental solution of \(A + Y \). In this step one also establishes the Gaussian estimates on \(p \) and its derivatives that appear in Theorem 1.8.

2.1 Convergence of the series and estimates on \(\varphi \)

Proposition 2.5. For every \((T,y) \in S_{T_0}\) the series in (2.11) converges uniformly in \((t,x) \in S_T\) and the function \(\varphi = \varphi(t,x;T,y) \) solves the integral equation (2.10) on \(S_T \). Furthermore, for every \(\varepsilon > 0 \) and \(0 < \delta < \alpha \), there exists a positive constant \(C \), only dependent on \(T_0, \mu, B, \delta, \alpha, \varepsilon \) and the \(\alpha \)-Hölder norms of the coefficients, such that

\[
|\varphi(t,x;T,y)| \leq \frac{C}{(T-t)^{1-\frac{\alpha}{2}}} \Gamma^{\mu+\varepsilon}(t,x;T,y), \quad (T,y) \in S_{T_0}, (t,x) \in S_T.
\]

\[
|\varphi(t,x;T,y) - \varphi(t,v;T,y)| \leq \frac{C|x-v|^\alpha \delta}{(T-t)^{1-\frac{\alpha}{2}}} \left(\Gamma^{\mu+\varepsilon}(t,x;T,y) + \Gamma^{\mu+\varepsilon}(t,v;T,y) \right),
\]

for any \((T,y) \in S_{T_0}\) and \((t,x),(t,v) \in S_T\).

To avoid repeating the arguments already used in [5], we limit ourself to highlighting the parts of the proof that differ significantly from the classical case.

Proof. We first prove that there exists a positive \(\kappa \) such that

\[
|(A - A^{(T,y)})P(t,x;T,y)| \leq \frac{\kappa}{(T-t)^{1-\alpha/2}} \Gamma^{\mu+\varepsilon}(t,x;T,y), \quad (T,y) \in S_{T_0}, (t,x) \in S_T.
\]
Assume for simplicity that $a_i, a \equiv 0$, the general case being a straightforward extension. By definition (2.1) we have
\[
|(A - A^{(T,y)})P(t, x; T, y)| \leq \frac{1}{2} \sum_{i,j=1}^{d} |a_{ij}(t, x) - a_{ij}(t, e^{-(T-t)}B y)| \times |\partial_{x, \alpha} P(t, x; T, y)| \leq (2.16)
\]
(by the Hölder regularity of a_{ij} and the Gaussian estimate (A.11))
\[
\leq \kappa \frac{|x - e^{-(T-t)}B y|}{T-t} \Gamma^{\mu+\varepsilon/2}(t, x; T, y).
\]
(2.17)
The estimate (A.9) then yields (2.16).

For any $(T, y) \in S_{T_0}$ and $(t, x) \in S_T$, (2.12) and (2.15) imply
\[
|\varphi_1(t, x; T, y)| \leq \frac{\kappa}{(T-t)^{1-\alpha/2}} \Gamma^{\mu+\varepsilon}(t, x; T, y)
\]
and
\[
|\varphi_2(t, x; T, y)| \leq \kappa^2 \int_t^T \int_{\mathbb{R}^N} \left| (A - A^{(T,y)})P(t, x; \tau, \eta) \right| \times |\varphi_1(\tau, \eta; T, y)|d\tau d\eta
\]
\[
\leq \kappa^2 \int_t^T \frac{1}{(\tau-t)^{1-\alpha/2}} \frac{1}{(T-\tau)^{1-\alpha/2}} \int_{\mathbb{R}^N} \Gamma^{\mu+\varepsilon}(t, \tau; \eta) \Gamma^{\mu+\varepsilon}(\tau, \eta; T, y)d\tau d\eta =
\]
(by the Chapman-Kolmogorov identity and solving the integral in $d\tau$)
\[
= \kappa^2 \frac{\Gamma_{\text{Euler}}^2 (\frac{\alpha}{2})}{(T-t)^{1-\alpha} \Gamma_{\text{Euler}}(\alpha)} \Gamma^{\mu+\varepsilon}(t, x; T, y).
\]

Proceeding by induction, it is straightforward to verify that
\[
|\varphi_n(t, x; T, y)| \leq \kappa^n \frac{\Gamma_{\text{Euler}}^n (\frac{\alpha}{2})}{(T-t)^{n-1} \Gamma_{\text{Euler}}(\frac{n\alpha}{2})} \Gamma^{\mu+\varepsilon}(t, x; T, y), \quad n \in \mathbb{N}.
\]
This proves the uniform convergence of the series on S_T, which in turn implies that φ satisfies (2.10), as well as the estimate (2.13).

The proof of (2.14) is a technical modification of the arguments in [5 Lemma 6.1], which is necessary to account for the different parametrix function. For sake of brevity, we leave the details to the reader.

\textbf{Remark 2.6.} The proof above is particularly informative to understand the choice of the parametrix function in relation to the lack of regularity of the coefficients with respect to the time variable. In particular, in passing from (2.17) to (2.15), we take advantage of the increment $|x - e^{-(T-t)}B y|_B^\alpha$ in order to recover the integrability of the singularity in time. In the classical case, namely when the coefficient a_{ij} is also Hölder continuous in time, the parametrix function is obtained by freezing the variable coefficients in both space and time (see Remark 2.4). In (2.16), this choice leads to increments of type
\[
|a_{ij}(t, x) - a_{ij}(T, y)|,
\]
which is clearly not helpful if a_{ij} does not exhibit any regularity in time.

Furthermore, note that the coefficients have to be frozen in the space variable along the integral curve of Y: freezing the coefficients at a fixed point y would yield an increment of type $|x - y|_B^\alpha$ in (2.17), which does not allow to employ the Gaussian estimates in (A.9) to control the singularity.
2.2 Proof that \(p \) is a fundamental solution and Gaussian bounds

We now prove the first part of Theorem 1.8, concerning the existence of the fundamental solution of \(A+Y \).

This is achieved by proving that the candidate solution \(p = p(t, x; T, y) \) defined through (2.8) satisfies points i) and ii) of Definition 1.7. The innovative part of the proof consists in showing point i), which is \(p(\cdot, \cdot; T, y) \) solves the equation

\[
Au + Y u = 0 \quad \text{on } \mathcal{S}_T
\]

in the integral sense of Definition 1.5. Once more, we provide the details of the parts that significantly depart from the classical case.

For any \((T, y) \in \mathcal{S}_{T_0}\), let us rewrite \(p(t, x; T, y) \) as

\[
p(t, x; T, y) = \Phi(t, x; T, y) + \Phi(t, x; T, y), \quad (t, x) \in \mathcal{S}_T,
\]

where we set

\[
\Phi(t, x; T, y) := \int_t^T \int_{\mathbb{R}^N} \partial_x \Phi(t, x; \tau, \eta) \varphi(\tau, \eta; T, y) d\tau d\eta.
\]

The strategy of the proof is to first show that \(p \) possesses the regularity required in order to qualify as a fundamental solution, and then to check that it actually solves equation (2.18). As pointed out in Remark 2.7, the parametrix \(P = P(t, x; T, y) \) is an integral solution to (2.7). In particular, it is smooth in the variable \(x \) and absolutely continuous along \(Y \). As for \(\Phi = \Phi(t, x; T, y) \), the next result shows that it is twice differentiable w.r.t. \(x_1, \ldots, x_d \) and states some Gaussian bounds on the derivatives.

Proposition 2.7. For any \((T, y) \in \mathcal{S}_{T_0}, (t, x) \in \mathcal{S}_T\) and \(i, j = 1, \ldots, d \), there exist

\[
\begin{align*}
\partial_{x_i} \Phi(t, x; T, y) & = \int_t^T \int_{\mathbb{R}^N} \partial_{x_i} P(t, x; \tau, \eta) \varphi(\tau, \eta; T, y) d\eta d\tau, \\
\partial_{x_i x_j} \Phi(t, x; T, y) & = \int_t^T \int_{\mathbb{R}^N} \partial_{x_i x_j} P(t, x; \tau, \eta) \varphi(\tau, \eta; T, y) d\eta d\tau,
\end{align*}
\]

and, for any \(\varepsilon > 0 \) we have

\[
\begin{align*}
|\Phi(t, x; T, y)| & \leq C(T - t)^{\frac{\mu}{2}} \Gamma^{\mu + \varepsilon}(t, x; T, y), \\
|\partial_{x_i} \Phi(t, x; T, y)| & \leq \frac{C}{(T - t)^{\frac{\alpha}{2}}} \Gamma^{\mu + \varepsilon}(t, x; T, y), \\
|\partial_{x_i x_j} \Phi(t, x; T, y)| & \leq \frac{C}{(T - t)^{\frac{\alpha}{2}}} \Gamma^{\mu + \varepsilon}(t, x; T, y),
\end{align*}
\]

where \(C \) denotes a positive constant, only dependent on \(T_0, \mu, B, \alpha, \varepsilon \) and the \(\alpha \)-Hölder norms of the coefficients.

Proof. By the definition of \(\Phi \) in (2.19) we have

\[
\Phi(t, x; T, y) = \int_t^T J(t, x; \tau; T, y) d\tau,
\]

with \(J \) defined as in (3.1). The potential estimates of Proposition 3.1 upon integrating in \(\tau \), yield the result.

The following result shows that \(\Phi(\cdot, \cdot; T, y) \) is also Lipschitz continuous along the integral curves of \(Y \).
Lemma 2.8. For every \((T, y) \in S_{T_0}\) and \((t, x) \in S_T\), we have

\[
\Phi(s, e^{(s-t)B_x}; T, y) - \Phi(t, x; T, y) = - \int_t^s F(\tau, x; T, y) \, d\tau, \quad s \in [t, T],
\]

where

\[
F(\tau, x; T, y) := \int_\tau^T \int_{\mathbb{R}^N} A^{(r, \eta)} P(\tau, e^{(\tau-t)B_x}; r, \eta) \varphi(r, \eta; T, y) \, d\eta \, dr + \varphi(\tau, e^{(\tau-t)B_x}; T, y). \tag{2.20}
\]

Proof. For any \(s \in [t, T]\) one can write

\[
\Phi(s, e^{(s-t)B_x}; T, y) - \Phi(t, x; T, y) = \int_t^s \int_{\mathbb{R}^N} \left(P(s, e^{(s-t)B_x}; r, \eta) - P(t, x; r, \eta) \right) \varphi(r, \eta; T, y) \, d\eta \, dr
\]

\[
- \int_t^s \int_{\mathbb{R}^N} P(t, x; r, \eta) \varphi(r, \eta; T, y) \, d\eta \, dr.
\]

First, we study the term \(G(t, x)\). Remark \(2.8\) yields

\[
G(t, x) = \int_t^T \int_{\mathbb{R}^N} \left(\int_t^s - A^{(r, \eta)} P(\tau, e^{(\tau-t)B_x}; r, \eta) \, d\tau \right) \varphi(r, \eta; T, y) \, d\eta \, dr.
\]

By (A.11) and Assumption 1.4, for every \(\varepsilon > 0\) we have

\[
\left| A^{(r, \eta)} P(\tau, e^{(\tau-t)B_x}; r, \eta) \right| \leq \frac{C}{r - \tau} \Gamma^{\mu + \varepsilon} (\tau, e^{(\tau-t)B_x}; r, \eta), \quad t < \tau < s < r < T.
\]

Therefore, considering also (2.13), for any \(r \in [s, T]\), the function

\[
(\tau, \eta) \mapsto \left| A^{(r, \eta)} P(\tau, e^{(\tau-t)B_x}; r, \eta) \varphi(r, \eta; T, y) \right|
\]

is integrable on \([t, s] \times \mathbb{R}^N\). Thus Fubini’s theorem yields

\[
\int_{\mathbb{R}^N} \left(\int_t^s A^{(r, \eta)} P(\tau, e^{(\tau-t)B_x}; r, \eta) \, d\tau \right) \varphi(r, \eta; T, y) \, d\eta
\]

\[
= \int_t^s \int_{\mathbb{R}^N} A^{(r, \eta)} P(\tau, e^{(\tau-t)B_x}; r, \eta) \varphi(r, \eta; T, y) \, d\eta \, dr.
\]

Moreover, by the potential estimate (2.3) with \(\delta = \frac{\alpha}{2}\), for every \(\varepsilon > 0\) we have

\[
\left| \int_{\mathbb{R}^N} A^{(r, \eta)} P(\tau, e^{(\tau-t)B_x}; r, \eta) \varphi(r, \eta; T, y) \, d\eta \right| \leq \frac{C}{(T - r)^{1 - \frac{\alpha}{2}} (r - \tau)^{1 - \frac{\alpha}{2}}} \Gamma^{\mu + \varepsilon} (\tau, e^{(\tau-t)B_x}; T, y). \tag{2.21}
\]

As the right-hand side term is integrable over \([t, s] \times [s, T]\) as a function of \((\tau, r)\), we can apply once more Fubini’s theorem to conclude that

\[
G(t, x) = - \int_t^s \int_{\mathbb{R}^N} A^{(r, \eta)} P(\tau, e^{(\tau-t)B_x}; r, \eta) \varphi(r, \eta; T, y) \, d\eta \, dr.
\]

Let us consider \(H(t, x)\). For every \(n \in \mathbb{N}\), we define \(\varepsilon_n(r) := \frac{1}{n} (r - t)\). Note that, for every \(r \in [t, s]\) we have \(r - \varepsilon_n(r) \geq t\). Hence

\[
H(t, x) = \int_t^s \int_{\mathbb{R}^N} P(r - \varepsilon_n(r), e^{(r-\varepsilon_n(r)-t)B_x}; r, \eta) \varphi(r, \eta; T, y) \, d\eta \, dr
\]

\[
- \int_t^s \int_{\mathbb{R}^N} \left(P(r - \varepsilon_n(r), e^{(r-\varepsilon_n(r)-t)B_x}; r, \eta) - P(t, x; r, \eta) \right) \varphi(r, \eta; T, y) \, d\eta \, dr.
\]
On the other hand, by the potential estimate (B.2), for any $n \in \mathbb{N}$

$$H_n(t, x) = \int_t^s \int_{\mathbb{R}^N} \left(\int_t^{r-\varepsilon_n(r)} A^{(r, \eta)}(\tau, e^{(\tau-t)B}x; \tau, \eta) d\tau \right) \varphi(r, \eta; T, y) d\eta dr$$

(applying Fubini’s theorem as above)

$$= \int_t^s \int_{\mathbb{R}^N} \left(\int_t^{r-\varepsilon_n(r)} A^{(r, \eta)}(\tau, e^{(\tau-t)B}x; \tau, \eta) \varphi(r, \eta; T, y) d\eta dr \right)$$

(setting $\delta_n(\tau) = \frac{\varepsilon_n(\tau)}{n-1}$ and applying Fubini’s theorem again)

$$= \int_t^s \int_{\mathbb{R}^N} A^{(r, \eta)}(\tau, e^{(\tau-t)B}x; \tau, \eta) \varphi(r, \eta; T, y) d\eta dr d\tau$$

(by (2.21) and applying Lebesgue’s dominated convergence theorem)

$$\longrightarrow_{n \to \infty} \int_t^s \int_{\mathbb{R}^N} A^{(r, \eta)}(\tau, e^{(\tau-t)B}x; \tau, \eta) \varphi(r, \eta; T, y) d\eta dr d\tau.$$}

On the other hand, by the potential estimate (B.2), for any $n \in \mathbb{N}$ we have

$$\left| \int_{\mathbb{R}^N} P(r - \varepsilon_n(r), e^{(r-\varepsilon_n(r)-t)B}x; r, \eta) \varphi(r, \eta; T, y) d\eta \right| \leq C \frac{\Gamma^{\mu+\varepsilon}(r, e^{(\tau-t)B}x; T, y)}{(T-r)^{1-\frac{\varepsilon}{2}}(T-r)^{\frac{\varepsilon}{2}}}, \quad r \in [t, s].$$

Thus Lebesgue’s dominated convergence theorem yields

$$\lim_{n \to \infty} \widetilde{H}_n(t, x) = \int_t^s \lim_{n \to \infty} \int_{\mathbb{R}^N} P(r - \varepsilon_n(r), e^{(r-\varepsilon_n(r)-t)B}x; r, \eta) \varphi(r, \eta; T, y) d\eta dr$$

(by (2.24), since $\eta \mapsto \varphi(r, \eta; T, y)$ is a bounded and continuous function for every $r \in [t, s]$)

$$= \int_t^s \varphi(r, e^{(r-t)B}x; T, y) dr.$$}

We have proved that

$$H(t, x) = \int_t^s \int_{\mathbb{R}^N} A^{(r, \eta)}(\tau, e^{(\tau-t)B}x; r, \eta) \varphi(r, \eta; T, y) d\eta dr d\tau + \int_t^s \varphi(\tau, e^{(\tau-t)B}x; T, y) d\tau.$$}

This and (2.22) prove the statement. \(\square\)

We are now in the position to prove Theorem 1.8, namely that $p = p(t, x; T, y)$ defined by (2.5) is a fundamental solution of $A + Y$ in the sense of definition Definition 1.7 and that the Gaussian bounds from (1.11) to (1.14) are satisfied.

Proof of Theorem 1.8. Let $p = p(t, x; T, y)$ be defined by (2.5).

Step 1. We show that $p = p(t, x; T, y)$ satisfies point i) of Definition 1.7, namely that $p(\cdot, \cdot; T, y)$ is an integral solution to (2.18) on \mathcal{S}_T in the sense of Definition 1.5. By Lemma 2.8, we have

$$p(s, e^{(s-t)B}x; T, y) - p(t, x; T, y) = \int_t^s \left(A^{(r, \eta)}(\tau, e^{(\tau-t)B}x; r, \eta) + F(\tau, x; T, y) \right) d\tau.$$}

Furthermore, by (2.20) and since $\varphi(t, x; T, y)$ solves the integral equation (2.20), we obtain

$$A^{(r, \eta)}(\tau, e^{(\tau-t)B}x; r, \eta) + F(\tau, x; T, y) = AP(\tau, e^{(\tau-t)B}x; T, y)$$
\[+ \int_{\tau}^{T} \int_{\mathbb{R}^N} \mathcal{A}p(\tau, e^{(\tau-t)B}x; r, \eta)\varphi(r, \eta; T, y)d\eta dr \]

(by Proposition 2.7)

\[= \mathcal{A}p(\tau, e^{(\tau-t)B}x; T, y), \]

which, together with (2.23), concludes the proof.

Step 2. We show that \(p = p(t, x; T, y) \) satisfies point ii) of Definition 1.7. In light of the estimate (2.13), it is straightforward to see that

\[|\Phi(t, x; T, y)| \leq C(T-t)^{\frac{\alpha}{2}} B \Gamma(t, x; T, y), \quad (T, y) \in S_{T_0}, \quad (t, x) \in S_T. \]

Therefore, it is enough to prove that, for any fixed \((T, y) \in \mathbb{R}^N\), we have

\[\lim_{(t, x) \to (T, y)} \int_{\mathbb{R}^N} P(t, x; T, \eta)f(\eta)d\eta = f(y), \quad f \in C_b(\mathbb{R}^N). \quad (2.24) \]

Recalling the definition of the parametrix \(P \), we add and subtract to obtain

\[\int_{\mathbb{R}^N} P(t, x; T, \eta)f(\eta)d\eta = \int_{\mathbb{R}^N} \Gamma(t, \eta)(t, x; T, \eta)f(\eta)d\eta \]
\[= \int_{\mathbb{R}^N} \Gamma(t, \eta)(t, x; T, \eta)f(\eta)d\eta + \int_{\mathbb{R}^N} \left(\Gamma(t, \eta)(t, x; T, \eta) - \Gamma(t, y)(t, x; T, \eta) \right) f(\eta)d\eta. \]

Furthermore, by estimate (A.12), for every \(\varepsilon > 0 \) one has

\[|J(t, x)| \leq C \int_{\mathbb{R}^N} |y - \eta|^\alpha \Gamma(t, x; T, \eta)d\eta. \]

Eventually, (2.24) follows from classical arguments.

Step 3. We show the upper Gaussian bounds (1.11)-(1.12)-(1.13) for \(p \) and its derivatives. The proof of the lower Gaussian bound (1.14) is similar to that of Theor. 4.7 in [26] and Section 5.1.4. in [27], thus we omit it for sake of brevity.

The Gaussian bounds of Proposition A.8 and the definition of parametrix (2.6) yield the estimates (1.11)-(1.12)-(1.13) for \(P = P(t, x; T, y) \). The estimates of Proposition 2.7 and the fact that \(p = P + \Phi \) conclude the proof.

Remark 2.9. Any integral solution \(u \) to equation (1.9) on \(S_T \) in the sense of Definition 1.5 is Lie-differentiable along \(Y \) almost everywhere on \(S_T \). Indeed, the set \(H_T \) of \((t, x)\) such that \(Y u(\tau, e^{(\tau-t)B}x) - u(t, x) \) in (1.10) exists finite, is measurable as the limit

\[\limsup_{\tau \to t^+} \frac{u(\tau, e^{(\tau-t)B}x) - u(t, x)}{\tau - t} \]

is a measurable function of \((t, x)\) and the same holds for \(\liminf \). This is a straightforward consequence of the continuity of \(u \) along the integral curves of \(Y \). The fact that \(H_T \) has null Lebesgue measure stems from Fubini's theorem, as \(u \) is absolutely continuous along the integral curves of \(Y \) and the map

\[(\tau, y) \mapsto (\tau, e^{\tau B}y) \]

is a diffeomorphism on \(S_T \).

14
3 Regularity of the fundamental solution

In this section we prove Theorem 1.9. Since \(p(\cdot, \cdot; T, y) \) can be represented as in (2.8), we need to study the regularity of \(P(\cdot, \cdot; T, y) \) and \(\Phi(\cdot, \cdot; T, y) \). While the former term can be easily dealt with by means of the Gaussian estimates of Appendix A, the latter has to be treated more carefully. We start with the proof of Theorem 1.9 which is based on the regularity estimates for \(\Phi(\cdot, \cdot; T, y) \) and \(P(\cdot, \cdot; T, y) \) proved in Section 3.1 and Section 3.2, respectively.

Proof of Theorem 1.9. Let \(\beta < \alpha \). For fixed \((T, y) \in \mathcal{S}_{T_0} \), we set

\[
f(t, x) := p(t, x; T, y), \quad (t, x) \in \mathcal{S}_T.
\]

We first note that, by definition of fundamental solution, (1.16) is satisfied with \(f_Y = -Af \). Furthermore, for any \(t \in [0, T] \), by (1.17) and the representation (2.8) we have

\[
\| f \|_{C^2_\beta(S_1)} = N_{P, 1} + N_{P, 2} + N_{\Phi, 1} + N_{\Phi, 2},
\]

where

\[
N_{P, 1} := \sum_{i=1}^{d} \| \partial_{x_i} P(\cdot, \cdot; T, y) \|_{C^{1+\beta}_\beta(S_1)} + \sum_{i,j=1}^{d} (\| \partial_{x_i, x_j} P(\cdot, \cdot; T, y) \|_{C^{0}_\beta(S_1)} + \| \partial_{x_i, x_j} P(\cdot, \cdot; T, y) \|_{C^{2}_\beta(S_1)})
\]

\[
N_{P, 2} := \| A\Phi(\cdot, \cdot; T, y) \|_{L^\infty([0, t]; C^0_\beta(\mathbb{R}^N))},
\]

\[
N_{\Phi, 1} := \sum_{i=1}^{d} \| \partial_{x_i} \Phi(\cdot, \cdot; T, y) \|_{C^{1+\beta}_\beta(S_1)} + \sum_{i,j=1}^{d} (\| \partial_{x_i, x_j} \Phi(\cdot, \cdot; T, y) \|_{C^{0}_\beta(S_1)} + \| \partial_{x_i, x_j} \Phi(\cdot, \cdot; T, y) \|_{C^{2}_\beta(S_1)})
\]

\[
N_{\Phi, 2} := \| A\Phi(\cdot, \cdot; T, y) \|_{L^\infty([0, t]; C^0_\beta(\mathbb{R}^N))}.
\]

Now, the estimates of Lemma 3.4 yield

\[
N_{P, 1} \leq \frac{C}{(T-t)^{\frac{\alpha-\beta}{2}}}. \tag{3.1}
\]

To bound \(N_{P, 2} \), first fix \(i, j = 1, \ldots, d \) and note that, by estimate (A.11), we obtain

\[
\sup_{s \in \mathbb{R}^N} \left| \partial_{x_i, x_j} P(s, x; T, y) \right| \leq \frac{C}{(T-t)^{\frac{\alpha-\beta}{2}}}, \quad s < t. \tag{3.2}
\]

Furthermore, (3.1) combined with Remark 1.12 yield

\[
\sup_{x, v \in \mathbb{R}^N} \frac{| \partial_{x_i, x_j} P(s, x; T, y) - \partial_{x_i, x_j} P(s, v; T, y) |}{|x - v|^\beta} \leq \frac{C}{(T-t)^{\frac{\alpha+2+\beta}{2}}}, \quad s < t. \tag{3.3}
\]

Thus, by (3.2)–(3.3) we obtain

\[
\| \partial_{x_i, x_j} P(\cdot, \cdot; T, y) \|_{C^{0}_\beta(\mathbb{R}^N)} \leq \frac{C}{(T-t)^{\frac{\alpha+2+\beta}{2}}}, \quad s < t,
\]

which in turn implies

\[
\| \partial_{x_i, x_j} P(\cdot, \cdot; T, y) \|_{L^\infty([0, t]; C^0_\beta(\mathbb{R}^N))} \leq \frac{C}{(T-t)^{\frac{\alpha+2+\beta}{2}}}.
\]

This, together with Assumption 1.4, prove

\[
N_{P, 2} \leq \frac{C}{(T-t)^{\frac{\alpha-\beta}{2}}}.
\]
The bound for $N_{\Phi,1}$ stems from the estimates of Proposition 3.2, which yield

$$N_{\Phi,1} \leq \frac{C}{(T-t)^{\frac{\alpha}{2}+2-(\alpha-\beta)}} \leq \frac{C}{(T-t)^{\frac{\alpha}{2}+2+\beta}}.$$

Eventually, the bound for $N_{\Phi,2}$ follows from the same arguments used to bound $N_{\Phi,2}$.

The rest of this section is devoted to the results utilized in the proof of Theorem 1.9. It is useful to introduce the following

Notation 3.1. Let $f = f(t, x; T, y)$ be a function defined for $(T, y) \in S_{T_0}$ and $(t, x) \in S_T$, suitably differentiable w.r.t. x. For any $i = 1, \ldots, N$, we set

$$\partial_i f(t, x; T, y) := \partial_{x_i} f(t, x; T, y),$$

and we adopt analogous notations for the higher-order derivatives.

This notation is useful in order to compose partial derivatives with other functions. For instance, if $g = g(t, x)$ is a given function, then

$$\partial_i f(t, g(t, x); T, y) = \partial_{z_i} f(t, z; T, y)|_{z=g(t, x)}.$$

3.1 Regularity estimates of Φ

Now prove the Hölder estimates for $\Phi(\cdot, ; T, y)$. We recall that Q denotes the homogeneous dimension of \mathbb{R}^N as in (1.15).

Proposition 3.2. For every $\varepsilon > 0$ and $0 < \beta < \alpha$ there exists a positive constant C, only dependent on $T_0, \mu, B, \varepsilon, \alpha, \beta$ and the α-Hölder norms of the coefficients, such that, for any $i, j, k = 1, \ldots, d$, we have

$$|\partial_i \Phi(s, e^{(s-t)B}x; T, y) - \partial_i \Phi(t, x; T, y)| \leq C(s-t)^{\frac{\beta}{2}} \frac{(T-t)^{Q/2}}{(s-t)^{Q^{2^*} - (\alpha-\beta)}} \Gamma^{\mu+\varepsilon}(t, x; T, y), \quad (3.4)$$

$$|\partial_{ij} \Phi(s, e^{(s-t)B}x; T, y) - \partial_{ij} \Phi(t, x; T, y)| \leq C(s-t)^{\frac{\beta}{2}} \frac{(T-t)^{Q/2}}{(s-t)^{Q^{2^*} - (\alpha-\beta)}} \Gamma^{\mu+\varepsilon}(t, x; T, y), \quad (3.5)$$

$$|\partial_{ijk} \Phi(t, x + he_k; T, y) - \partial_{ijk} \Phi(t, x; T, y)| \leq C|h|^\beta \frac{\Gamma^{\mu+\varepsilon}(t, x + he_k; T, y) + \Gamma^{\mu+\varepsilon}(t, x; T, y)}{(T-t)^{2^{*^2} - (\alpha-\beta)}} \quad (3.6)$$

for every $(T, y) \in S_{T_0}, (t, x) \in S_T, t < s < T$ and $h \in \mathbb{R}$.

The proof of estimates (3.4)-(3.5) relies on the following

Lemma 3.3. Let $(T, y) \in S_{T_0}$. Then, for any $i = 1, \ldots, d$, the function $u := \partial_i \mathbf{P}(\cdot, ; T, y)$ is a strong Lie solution to the equation

$$Au + Yu = - \sum_{j=1}^{d+d_1} b_{ij} \partial_j \mathbf{P}(\cdot, ; T, y) \quad \text{on } S_T,$$

in the sense of Definition 1.3.

Proof. We note that

$$[\partial_i, Y] \mathbf{P}(t, x; T, y) = [\partial_i, \langle Bx, \nabla \rangle] \mathbf{P}(t, x; T, y) + \partial_i \mathbf{P}(t, x; T, y) = \sum_{j=1}^{d+d_1} b_{ji} \partial_j \mathbf{P}(t, x; T, y),$$
for every \(x \in \mathbb{R}^N \) and for almost every \(t \in [0, T] \), where, in the last equality, we used that \(b_{ji} = 0 \) if \(j > d + d_1 \).

While it is obvious that the previous identity holds for smooth functions of \((t, x) \), one can directly check that \(\partial_t \partial_i \Phi(t, x; T, y) = \partial_t \partial_i \Phi(t, x; T, y) \) and thus the identity holds for the parametrix too. Therefore, we obtain

\[
\partial_1 P(s, e^{(s-t)B} x; \tau, \eta) - \partial_1 P(t, x; \tau, \eta) = \int_t^s \left(Y \partial_1 P \right)(r, e^{(r-t)B} x; \tau, \eta) dr
\]

(by Remark 2.3)

\[
= \int_t^s \left(\partial_1 Y P \right)(r, e^{(r-t)B} x; \tau, \eta) - \left[\partial_1 Y \right][r, e^{(r-t)B} x; \tau, \eta] dr
\]

\[
= -\int_t^s \left(\partial_1 A^{(r, \eta)} P \right)(r, e^{(r-t)B} x; \tau, \eta) + \sum_{j=1}^{d+d_1} b_{ji} \partial_j P(r, e^{(r-t)B} x; \tau, \eta) dr
\]

(since \(\partial_1 A^{(r, \eta)} = A^{(r, \eta)} \partial_1 \))

\[
= -\int_t^s \left(A^{(r, \eta)} \partial_1 P \right)(r, e^{(r-t)B} x; \tau, \eta) + \sum_{j=1}^{d+d_1} b_{ji} \partial_j P(r, e^{(r-t)B} x; \tau, \eta) dr.
\]

We are now in the position to prove Proposition 3.2.

Proof of Proposition 3.2. Let \((T, y) \in S_{T_0}, (t, x) \in S_T, t < s < T \) and \(h \in \mathbb{R} \) be fixed. Also fix \(i, j, k \in \{1, \ldots, d\} \). First we prove \(3.4\). By adding and subtracting, we have

\[
\partial_t \Phi(s, e^{(s-t)B} x; T, y) - \partial_t \Phi(t, x; T, y) = \int_t^T \int_{\mathbb{R}^N} \left(\partial_1 P \right)(s, e^{(s-t)B} x; \tau, \eta) - \partial_1 P(t, x; \tau, \eta) \varphi(\tau, \eta; T, y) d\eta d\tau - \int_t^s \int_{\mathbb{R}^N} \partial_1 P(t, x; \tau, \eta) \varphi(\tau, \eta; T, y) d\eta d\tau.
\]

We consider the first term. By Lemma 3.3 and swapping the integrals as in the proof of Proposition 2.8 we have

\[
\int_t^T \int_{\mathbb{R}^N} I(\tau, \eta) \varphi(\tau, \eta; T, y) d\eta d\tau = -\int_s^T \int_{\mathbb{R}^N} \left(A^{(r, \eta)} \partial_1 P \right)(r, e^{(r-t)B} x; \tau, \eta) + \sum_{j=1}^{d+d_1} b_{ji} \partial_j P(r, e^{(r-t)B} x; \tau, \eta) \varphi(\tau, \eta; T, y) d\eta d\tau.
\]

Therefore, the estimates of Proposition 3.1 with \(\delta = (\alpha - \beta)/2 \) yield

\[
\left| \int_t^T \int_{\mathbb{R}^N} I(\tau, \eta) \varphi(\tau, \eta; T, y) d\eta d\tau \right| \leq \int_t^T \int_{\mathbb{R}^N} C \left(T - \tau \right)^{-\frac{\alpha + \beta}{2} - \frac{\alpha + \beta}{4}} \Gamma^{\mu + \varepsilon}(r, e^{(r-t)B} x; T, y) dr d\tau
\]

(by a standard estimate on \(\Gamma^{\mu + \varepsilon}(r, e^{(r-t)B} x; T, y) \))

\[
\leq C \int_t^T \int_{\mathbb{R}^N} \frac{1}{(T - \tau)^{\frac{\alpha + \beta}{2} - \frac{\alpha + \beta}{4}}} dr d\tau \left(\frac{T - t}{T - s} \right)^{Q/2} \Gamma^{\mu + \varepsilon}(t, x; T, y).
\]

(3.7)
We now bound K:

$$K = \int_t^T \int_s^T \frac{1}{(T-\tau)^{1-\frac{\alpha}{2}}(\tau-r)^{2-\frac{\alpha}{2}}} \, d\tau \, dr \leq \int_t^T \int_s^T \frac{1}{(T-\tau)^{1-\frac{\alpha}{2}}(\tau-r)^{1-\frac{\alpha}{2}}} \, d\tau \, \frac{1}{(s-r)^{\frac{1}{2}+\frac{\beta}{2}}} \, dr$$

(solving the integral in $d\tau$)

$$\leq C \int_t^s \frac{1}{(T-r)^{1-\frac{\alpha}{2}}(s-r)^{2-\frac{\alpha}{2}}} \, dr \leq \frac{C}{(T-s)^{1-\frac{\alpha}{2}}} \int_t^s \frac{1}{(s-r)^{\frac{1}{2}+\frac{\beta}{2}}} \, dr \leq \frac{C}{(T-s)^{1-\frac{\alpha}{2}}} (s-t)^{\frac{1+\beta}{2}}.$$

(3.8)

On the other hand, estimate (3.3) with $\delta = \alpha - \beta$ yields

$$|L| \leq \int_t^s \frac{C}{(T-\tau)^{1-\frac{\alpha}{2}}(\tau-t)^{2-\frac{\alpha}{2}}} \, d\tau \Gamma^{\mu+\varepsilon}(t, x; T, y) \leq \frac{C}{(T-s)^{1-\frac{\alpha}{2}}} \int_t^s \frac{1}{(\tau-t)^{\frac{1}{2}+\frac{\beta}{2}}} \, d\tau \Gamma^{\mu+\varepsilon}(t, x; T, y)$$

$$\leq \frac{C}{(T-s)^{1-\frac{\alpha}{2}}} (s-t)^{\frac{1+\beta}{2}} \Gamma^{\mu+\varepsilon}(t, x; T, y).$$

This, together with (3.4)–(3.5), proves (3.4). Estimate (3.5) can be obtained following the same arguments.

We finally prove (3.6). By Proposition 3.2, we have

$$\partial_{ij} \Phi(t, x + \bar{h}e_k; T, y) - \partial_{ij} \Phi(t, x; T, y) = \int_t^T \int_{\mathbb{R}^N} (\partial_{ij} \mathbf{P}(t, x + \bar{h}e_k; \tau, \eta) - \partial_{ij} \mathbf{P}(t, x; \tau, \eta)) \varphi(\tau, \eta; T, y) \, d\eta \, d\tau.$$

We first prove that

$$|I(\tau)| \leq \frac{|h|^{\beta}}{(T-\tau)^{1-\frac{\alpha}{2}}(\tau-t)^{1-\frac{\alpha}{2}}} \left(\Gamma^{\mu+\varepsilon}(t, x + \bar{h}e_k; T, y) + \Gamma^{\mu+\varepsilon}(t, x; T, y) \right), \quad \tau \in [t, T].$$

We consider the case $\tau - t \geq h^2$. By the mean-value theorem, there exists a real \bar{h} such that

$$|\partial_{ij} \mathbf{P}(t, x + \bar{h}e_k; \tau, \eta) - \partial_{ij} \mathbf{P}(t, x; \tau, \eta)| = |h| \left| \partial_{ijk} \mathbf{P}(t, x + \bar{h}e_k; \tau, \eta) \right|.$$

Therefore, by the estimate (3.3) with $\delta = (\alpha - \beta)/2$, we have

$$|I(\tau)| \leq C \frac{|h|^{\beta}}{(T-\tau)^{1-\frac{\alpha}{2}}(\tau-t)^{1-\frac{\alpha}{2}}} \Gamma^{\mu+\varepsilon}(t, x + \bar{h}e_k; T, y)$$

(since $\tau - t \geq h^2$)

$$\leq C \frac{|h|^{\beta}}{(T-\tau)^{1-\frac{\alpha}{2}}(\tau-t)^{1-\frac{\alpha}{2}}} \Gamma^{\mu+\varepsilon}(t, x + \bar{h}e_k; T, y)$$

(by standard estimates on $\Gamma^{\mu+\varepsilon}(t, x + \bar{h}e_k; T, y)$ with $\tau - t \geq h^2$)

$$\leq C \frac{|h|^{\beta}}{(T-\tau)^{1-\frac{\alpha}{2}}(\tau-t)^{1-\frac{\alpha}{2}}} \left(\Gamma^{\mu+\varepsilon}(t, x + \bar{h}e_k; T, y) + \Gamma^{\mu+\varepsilon}(t, x; T, y) \right).$$

We now consider the case $\tau - t < h^2$. Employing triangular inequality and estimate (3.3) with $\delta = (\alpha - \beta)/2$, we get

$$|I(\tau)| \leq \frac{C}{(T-\tau)^{1-\frac{\alpha}{2}}(\tau-t)^{1-\frac{\alpha}{2}}} \left(\Gamma^{\mu+\varepsilon}(t, x + \bar{h}e_k; T, y) + \Gamma^{\mu+\varepsilon}(t, x; T, y) \right)$$
(since $\tau - t < h^2$)
\[
|h|^\beta \lesssim C \frac{|h|^\beta}{(T - \tau)^{3/2}} (\Gamma^{\mu + \varepsilon}(t, x + h\mathbf{e}_k; T, y) + \Gamma^{\mu + \varepsilon}(t, x; T, y)).
\]
Therefore, combining the previous estimates, we obtain
\[
\left| \int_t^T I(\tau) d\tau \right| \leq C|h|^\beta \int_t^T \frac{1}{(T - \tau)^{3/2}} (\Gamma^{\mu + \varepsilon}(t, x + h\mathbf{e}_k; T, y) + \Gamma^{\mu + \varepsilon}(t, x; T, y))
\]
\[
\leq C|h|^\beta \frac{1}{(T - t)^{3/2}} (\Gamma^{\mu + \varepsilon}(t, x + h\mathbf{e}_k; T, y) + \Gamma^{\mu + \varepsilon}(t, x; T, y)),
\]
which proves (3.9).

3.2 Regularity estimates for the parametrix

We have the following Hölder estimates for P.

Lemma 3.4. Let $0 \leq \beta \leq \alpha$. Then for every $\varepsilon > 0$ there exists a positive constant C, only dependent on $T_0, \mu, B, \varepsilon, \alpha, \beta$ and the α-Hölder norms of the coefficients, such that for any $i, j, k = 1, \ldots, d$ we have
\[
|\partial_i p(s, e^{(s-t)B}x; T, y) - \partial_i p(t, x; T, y)| \leq C(s-t)^{\frac{\beta}{2}} (T-t)^{\frac{Q/2}{2 + \beta}} \Gamma^{\mu + \varepsilon}(t, x; T, y),
\]
(3.9)
\[
|\partial_{ij} p(s, e^{(s-t)B}x; T, y) - \partial_{ij} p(t, x; T, y)| \leq C(s-t)^{\frac{\beta}{2}} (T-t)^{\frac{Q/2}{2 + \beta}} \Gamma^{\mu + \varepsilon}(t, x; T, y),
\]
(3.10)
\[
|\partial_{ij} p(t, x + h\mathbf{e}_k; T, y) - \partial_{ij} p(t, x; T, y)| \leq C|h|^\beta \frac{1}{(T - t)^{\frac{3}{2}} \frac{Q/2}{2 + \beta}} (\Gamma^{\mu + \varepsilon}(t, x + h\mathbf{e}_k; T, y) + \Gamma^{\mu + \varepsilon}(t, x; T, y)),
\]
(3.11)

for any $(T, y) \in S_{T_0}, (t, x) \in S_T, t < s < T$ and $h \in \mathbb{R}$.

Proof. We first consider (3.9). By Lemma 3.3 we have
\[
\partial_i p(s, e^{(s-t)B}x; T, y) - \partial_i p(t, x; T, y) = -\int_t^s \left(A^{(s, y)} \partial_i p(r, e^{(r-t)B}x; T, y) + \sum_{j=1}^{d+d_1} b_{ij} \partial_j p(r, e^{(r-t)B}x; T, y) \right) dr.
\]
Therefore, by boundedness of the coefficients of $A^{(T, y)}$ and the estimates of Proposition A.5, we obtain
\[
|\partial_i p(s, e^{(s-t)B}x; T, y) - \partial_i p(t, x; T, y)| \leq \int_t^s \frac{C}{(T-r)^{\frac{3}{2}}} \Gamma^{\mu + \varepsilon}(r, e^{(r-t)B}x; T, y) dr
\]
\[
\leq \int_t^s \frac{C}{(T-r)^{\frac{3}{2}}} dr \left(\frac{T-t}{T-s} \right)^{\frac{Q/2}{2 + \beta}} \Gamma^{\mu + \varepsilon}(t, x; T, y)
\]
(for any $\beta \leq 1$)
\[
\leq C(s-t)^{\frac{\beta}{2}} (T-t)^{\frac{Q/2}{2 + \beta}} \Gamma^{\mu + \varepsilon}(t, x; T, y).
\]
The proof of (3.10) is based on analogous arguments.

We finally prove (3.11). As for (3.9), we first consider the case $T-t \geq h^2$. By the mean-value theorem, there exists a real \tilde{h} with $|\tilde{h}| \leq |h|$ such that
\[
|\partial_{ij} p(t, x + h\mathbf{e}_k; T, y) - \partial_{ij} p(t, x; T, y)| = |h| |\partial_{ij} p(t, x + \tilde{h}\mathbf{e}_k; T, y)|
\]
(by estimate (A.11))

\[\leq C \frac{|h|}{(T-t)^{\frac{3}{2}}} \Gamma^{\mu+\varepsilon}(t, x + \overline{he}_k; T, y) \]

(since \(T - t \geq h^2 \) and by standard estimates on \(\Gamma^{\mu+\varepsilon}(t, x + \overline{he}_k; T, y) \))

\[\leq C \frac{|h|^{\beta}}{(T-t)^{1+\frac{2}{\beta}}} \left(\Gamma^{\mu+\varepsilon}(t, x + \overline{he}_k; T, y) + \Gamma^{\mu+\varepsilon}(t, x; T, y) \right). \]

We now consider \(T - t < h^2 \). Employing triangular inequality and estimate (A.11) yields

\[|\partial_{ij} P(t, x + h\epsilon_k; T, y) - \partial_{ij} P(t, x; T, y)| \leq C \frac{|h|^{\beta}}{(T-t)^{1+\frac{2}{\beta}}} \left(\Gamma^{\mu+\varepsilon}(t, x + h\epsilon_k; T, y) + \Gamma^{\mu+\varepsilon}(t, x; T, y) \right) \]

(since \(T - t < h^2 \))

\[\leq C \frac{|h|^{\beta}}{(T-t)^{1+\frac{2}{\beta}}} \left(\Gamma^{\mu+\varepsilon}(t, x + h\epsilon_k; T, y) + \Gamma^{\mu+\varepsilon}(t, x; T, y) \right). \]

This concludes the proof of (3.11). \(\square \)

4 Cauchy problem

We consider the Cauchy problem

\[
\begin{align*}
Au + Yu &= f \quad \text{on } S_T, \\
u(T, \cdot) &= g \quad \text{on } \mathbb{R}^N.
\end{align*}
\tag{4.1}
\]

In this section we collect a few results for (4.1) that follow from our main Theorems 1.8 and 1.9. For sake of brevity, we omit the proofs that are based on rather standard arguments.

Assumption 4.1. \(f \) is measurable function on \(S_T \), \(g \in C(\mathbb{R}^N) \) and there exists \(\beta > 0 \) such that, for a.e. \(t \in [0, T] \):

a) there exists a positive constant \(C \) such that

\[|f(t, x)| + |g(x)| \leq Ce^{C|x|^2}, \quad x \in \mathbb{R}^N; \tag{4.2} \]

b) for every compact subset \(K \) of \(\mathbb{R}^N \), there exists \(C_K > 0 \) such that

\[|f(t, x) - f(t, y)| \leq C_K |x - y|^{\beta}, \quad x, y \in K. \]

Proposition 4.2. Under Assumptions 1.1, 1.2, 1.4 and 4.1, there exists \(T > 0 \) such that the function

\[u(t, x) := \int_{\mathbb{R}^N} p(t, x; T, y)g(y)dy - \int_t^T \int_{\mathbb{R}^N} p(t, x; s, y)f(s, y)dyds \]

belongs to \(C_{B,loc}(S_T) \cap C([0, T] \times \mathbb{R}^N) \) and is the unique solution of the Cauchy problem (4.1), in the sense of Definition 1.5, satisfying the growth estimate (4.2) for some positive constant \(C \).

The following result contains further useful properties that allow to view the fundamental solution as the transition probability density of a Markovian process.
Proposition 4.3. Under the assumptions of Theorem 1.8 we have:

i) the Chapman-Kolmogorov identity

\[p(t, x; T, y) = \int_{\mathbb{R}^N} p(t, x; s, \eta)p(s, \eta; T, y) d\eta, \quad t < s < T, \ x, y \in \mathbb{R}^N; \]

ii) if the zeroth order coefficient \(a \) of \(A \) is constant, i.e. \(a(t, x) = \bar{a} \), then

\[\int_{\mathbb{R}^N} p(t, x; T, y) dy = e^{\bar{a}(T-t)}, \quad t < T, \ x \in \mathbb{R}^N. \]

A Gaussian estimates

We prove Gaussian estimates that are crucial in the analysis of Sections 2 and 3. Here we follow the ideas in [5, Section 3], but with some technical difference. Namely, in the aforementioned paper the Kolmogorov operator acts on the forward variables of \(\Gamma^{(s,v)}(t, x; T, y) \), whereas here we consider \(A + Y \) acting on the backward variables \((t, x)\). This has an impact on the spatial derivatives, which contain additional factors that require a careful analysis.

Throughout the appendix we suppose that Assumptions 1.1, 1.2 and 1.4 are satisfied and fix \((s, v)\in S_{T_0}\).

Denoting by \(B_0 \) the matrix \(B \) with null \(*\)-blocks, we define the \(N \times N \) matrices

\[C_0(t) := \int_0^t e^{(t-\tau)B_0} \begin{pmatrix} I_d & 0 \\ 0 & 0 \end{pmatrix} e^{(t-\tau)B_0^*} d\tau, \]

\[C_0^{(s,v)}(t, T) := \int_t^T e^{(T-\tau)B_0} A^{(s,v)}(\tau)e^{(T-\tau)B_0^*} d\tau, \]

with \(A^{(s,v)} \) as defined in (2.3). As an immediate consequence of Assumption 1.1 we can compare the quadratic forms associated to \(C^{(s,v)} \) (as in (2.2)), \(C_0^{(s,v)} \) with \(C(T-t) \) (as in (2.5)), \(C_0(T-t) \), respectively:

\[\frac{1}{\mu} C(T-t) \leq C^{(s,v)}(t, T) \leq \mu C(T-t), \]

\[\frac{1}{\mu} C_0(T-t) \leq C_0^{(s,v)}(t, T) \leq \mu C_0(T-t), \]

(A.1)

for any \(t \leq T \). Moreover, an asymptotic comparison near 0 of \(C^{(s,v)} \) and \(C_0^{(s,v)} \) holds:

Lemma A.1. There exist two positive constants \(C \) and \(\delta \), only dependent on \(\mu \) and \(B \), such that

\[\frac{1}{2\mu} C_0(T-t) \leq C^{(s,v)}(t, T) \leq 2\mu C_0(T-t), \]

\[\frac{1}{(2\mu)^N} \det C_0(T-t) \leq \det C^{(s,v)}(t, T) \leq (2\mu)^N \det C_0(T-t), \]

for any \(0 < T-t < \delta \). Analogous estimates hold for \((C^{(s,v)}(t, T))^{-1} \).

Proof. It follows from the same arguments of [13, Lemma 3.1]: the proof is only based on the properties of the matrices \(A \) and \(B \), and it is not relevant whether \(A \) has constant or time-dependent entries.

Remark A.2. We note that \(| \cdot |_B \) is homogeneous with respect to the family of dilations defined by the matrices

\[D(\lambda) := \text{diag}(\lambda I_d, \lambda^3 I_{d_1}, \ldots, \lambda^{2q+1} I_{d_q}), \quad \lambda \geq 0. \]
In [15] Proposition 2.3 it is proved that
\[C_0(t) = D(\sqrt{t})C_0(1)D(\sqrt{t}), \quad t \geq 0. \] (A.2)

Therefore, for \(0 < T - t < \delta \) with \(\delta \) as in Lemma A.1,
\[\frac{(T-t)^Q}{(2\mu)^N} \det C_0(1) \leq \det C^{(s,v)}(t, T) \leq (2\mu)^N (T-t)^Q \det C_0(1). \]

To compute the spatial derivatives of \(\Gamma^{(s,v)}(t, x; y) \) it is useful noticing that
\[\Gamma^{(s,v)}(t, x; y) = G(H^{(s,v)}(t, T), e^{-(T-t)B} y - x), \quad (T, y) \in S_{T_0}, \ (t, x) \in S_T, \]
where
\[H^{(s,v)}(t, T) := e^{-(T-t)B} C^{(s,v)}(t, T) e^{-(T-t)B^*}. \]

Since \(C^{(s,v)}(t, T) \) is symmetric positive definite and \(e^{-(T-t)B} \) is non-singular, then \(H^{(s,v)}(t, T) \) is symmetric and positive definite for every \(0 \leq t < T \).

In order to give estimates on the matrix \(H^{(s,v)} \) we need to study the elements of \(e^{tB} \). We recall the block partition (1.6) of the matrix \(B \); for \(h, k = 0, \ldots, q \), we denote the \(d_h \times d_k \) block of \(B \) by
\[Q_{hk} := (b_{ij})_{i=\hat{a}_{h-1}+1, \ldots, \hat{a}_h; j=\hat{d}_{k-1}+1, \ldots, \hat{d}_k}, \]
with \(\hat{d}_h \) as in (1.7). Note that by (1.6) we have
\[\begin{cases}
Q_{hk} = 0_{d_h \times d_k} & \text{if } h > k + 1, \\
Q_{hk} = B_h & \text{if } h = k + 1, \\
Q_{hk} = * & \text{if } h < k + 1.
\end{cases} \] (A.3)

Analogously, for \(n \in \mathbb{N} \), we can consider the same block decomposition for \(B^n \). We denote by \(Q_{hk}^{(n)} \) the \(d_h \times d_k \) block of \(B^n \).

Lemma A.3. Let \(h, k = 0, \ldots, q \) and \(n \in \mathbb{N} \). Then
\[Q_{hk}^{(n)} = 0_{d_h \times d_k}, \quad h > k + n, \] (A.4)
which is \((B^n)_{ij} = 0\) if \(i \in \{\hat{a}_{h-1}+1, \ldots, \hat{a}_h\} \) and \(j \in \{\hat{d}_{k-1}+1, \ldots, \hat{d}_k\} \).

Proof. We proceed by induction on \(n \). The case of \(n = 1 \) is obvious (see (A.3)). Now we assume that (A.4) holds for a certain \(n \in \mathbb{N} \). For \(h > k + n + 1 \) we have
\[Q_{hk}^{(n+1)} = \sum_{m=0}^{q} Q_{hm}^{(n)} Q_{mk}. \]
If \(m < h - n \), then \(Q_{hm}^{(n)} = 0_{d_h \times d_m} \) by inductive hypothesis; if \(m \geq h - n \), then \(m > k + 1 \) and \(Q_{mk} = 0_{d_m \times d_k} \). Therefore \(Q_{hk}^{(n+1)} = 0_{d_h \times d_k} \). \(\square \)

Lemma A.4. Let \(h, k = 1, \ldots, q \) such that \(h - k =: n \in \mathbb{N} \). For any \(i \in \{\hat{a}_{h-1}+1, \ldots, \hat{a}_h\} \) and \(j \in \{\hat{d}_{k-1}+1, \ldots, \hat{d}_k\} \) we have
\[(e^{tB})_{ij} = O(t^n), \quad \text{as } t \to 0. \]
Proof. From Lemma A.3 we have that \((B^m)_{ij} = 0\) for every \(m = 0, \ldots, n - 1\), since \(Q^{(m)}_{hk} = 0_{d_h \times d_k}\) for \(h - k = n > m\). Therefore

\[(e^tB)_{ij} = t^n(B^n)_{ij} + O(t^{n+1}), \quad \text{as } t \to 0. \]

\[\square \]

Lemma A.5. There exists a positive constant \(C\) that only depends on \(\mu\), \(B\) and \(T_0\) such that, for every \(i, j = 1, \ldots, d\) and \(k = d + 1, \ldots, d + d_1\),

\[|(H^{(s,v)}(t,T)^{-1}x)_i| \leq \frac{C}{\sqrt{T-t}} |D(\sqrt{T-t})^{-1} e^{(T-t)B}x|, \quad (A.5) \]

\[|(H^{(s,v)}(t,T)^{-1})_{ij}| \leq \frac{C}{T-t} \quad (A.6) \]

\[|(H^{(s,v)}(t,T)^{-1}x)_k| \leq \frac{C}{(T-t)^{1/2}} |D(\sqrt{T-t})^{-1} e^{(T-t)B}x|, \quad (A.7) \]

\[|(H^{(s,v)}(t,T)^{-1})_{ik}| \leq \frac{C}{(T-t)^{1/2}} \quad (A.8) \]

for any \(0 < T < T_0\) and \((t,x) \in S_T\).

Proof. We prove the first inequality. Setting \(\tau = T - t\), we have

\[\left| \left(H^{(s,v)}(t,T)^{-1}x \right)_i \right| = \frac{1}{\sqrt{T}} \left| \left(D(\sqrt{T}) e^{\tau B} C^{(s,v)}(t,T)^{-1} e^{\tau B} x \right)_i \right| \]

\[\leq \frac{1}{\sqrt{T}} \sum_{n=1}^{N} \left| D(\sqrt{T}) e^{\tau B} D(\sqrt{T})^{-1} \right| \left| D(\sqrt{T}) C^{(s,v)}(t,T)^{-1} D(\sqrt{T}) \right| \left| D(\sqrt{T})^{-1} e^{\tau B} x \right|. \]

By Lemma A.1 there exists a positive constant \(\delta\) such that, if \(0 < \tau < \delta\), we have

\[\left| D(\sqrt{T}) C^{(s,v)}(t,T)^{-1} D(\sqrt{T}) \right| \leq \sup_{|y|=1} (D(\sqrt{T}) C^{(s,v)}(t,T)^{-1} D(\sqrt{T}) y, y) \]

\[\leq 2\mu \sup_{|y|=1} (C_0(\tau)^{-1} D(\sqrt{T}) y, D(\sqrt{T}) y) = 2\mu \| C_0(1)^{-1} \|, \]

where the last equality follows from A.2. If \(\delta \leq \tau < T_0\), by equation A.1 we have

\[\left| D(\sqrt{T}) C^{(s,v)}(t,T)^{-1} D(\sqrt{T}) \right| \leq \mu \left| D(\sqrt{T}) C(\tau)^{-1} D(\sqrt{T}) \right|, \]

which is bounded by a constant that depends only on \(\mu\), \(T_0\) and \(B\).

In order to conclude the proof of A.5, we let \(h_n\) be the only \(h \in \{0, \ldots, q\}\) such that \(\tilde{a}_{h-1} + 1 \leq n \leq \tilde{d}_h\).

Then, by Lemma A.4 since \(i \in \{1, \ldots, d\}\), we obtain

\[\left(D(\sqrt{T}) e^{\tau B} D(\sqrt{T})^{-1} \right)_{im} = D(\sqrt{T})_{ii} e^{\tau B} D(\sqrt{T})^{-1} D(\sqrt{T})_{mn} = \tau^{\frac{1}{2}} (e^{\tau B})_{mi} \tau^{\frac{2h+i-1}{2}} = O(1) \quad \text{as } \tau \to 0. \]

Estimate (A.6) follows from A.5 choosing \(x = e_j\). Estimates (A.7) and (A.8) can be proved following the same arguments, noticing that for \(k = d + 1, \ldots, d + d_1\) we have \(D(\tau)_{kk} = \tau^3\). \[\square \]

Finally, we provide Gaussian estimates for \(G^{(s,v)}(t,x; T, y)\) and its derivatives up to the fourth order that will be used to study the Hölder regularity of the second order derivatives of the fundamental solution via the representation (2.18) - (2.12). The following result can be proved as [3, Proposition 3.5].

23
Lemma A.6. For every $\beta \geq 0$ and $\varepsilon > 0$ there exists a positive constant C, only dependent on T_0, μ, B, ε and β, such that
\[
|w|^\beta \Gamma^{(s,v)}(t,x;T,y) \leq C \Gamma^{\mu+\varepsilon}(t,x;T,y), \quad (T,y) \in S_{T_0}, \, (t,x) \in S_T, \, i = 1, \ldots, N, \tag{A.9}
\]
where
\[
w = D(\sqrt{T-t})^{-1} \left(y - e^{(T-t)B}x \right).
\]

Notation A.7. Let $\nu = (\nu_1, \ldots, \nu_N) \in \mathbb{N}_0^N$ be a multi-index. We define the B-length of ν as
\[
[\nu]_B := \sum_{j=0}^q (2j + 1) \sum_{i=d_j+1}^{d_j+\nu} \nu_i.
\]
Moreover, as usual $\partial_b \nu = \partial_{x_1}^{\nu_1} \cdots \partial_{x_N}^{\nu_N}$.

Combining Lemmas [A.5] and [A.6] with [5] Proposition 3.1, 3.6 and Lemma 5.2, some lengthy but straightforward computations show the following

Proposition A.8. We have
\[
\frac{1}{\mu^N} \Gamma^{(s,v)}_\phi(t,x;T,y) \leq \Gamma^{(s,v)}(t,x;T,y) \leq \mu^N \Gamma^{\mu}(t,x;T,y). \tag{A.10}
\]
for any $(T,y) \in S_{T_0}$ and $(t,x) \in S_T$. Moreover, for every $\varepsilon > 0$ and $\nu \in \mathbb{N}_0^N$ with $[\nu]_B \leq 4$, there exists a positive constant C, only dependent on T_0, μ, B and ε, such that
\[
|\partial_b \Gamma^{(s,v)}(t,x;T,y)| \leq \frac{C}{(T-t)^\frac{\nu}{2}} \Gamma^{\mu+\varepsilon}(t,x;T,y), \tag{A.11}
\]
\[
|\partial_b \Gamma^{(s,v)}(t,x;T,y) - \partial_b \Gamma^{(s,w)}(t,x;T,y)| \leq C \frac{|\nu - w|_B}{(T-t)^\frac{\mu}{2}} \Gamma^{\mu+\varepsilon}(t,x;T,y), \tag{A.12}
\]
for any $(T,y) \in S_{T_0}$, $(t,x) \in S_T$ and $w \in \mathbb{R}^N$.

B Potential estimates

We study $\Phi = \Phi(t,x;T,y)$ in [19] and its derivatives w.r.t. to the variables x_1, \ldots, x_d. To do so, we have to deal with some singular integrals. We follow the steps in [5] Section 5], but we remark that the estimates of Proposition [5.1] extend the ones in the aforementioned paper to higher order derivatives. This is needed to prove the optimal regularity of $\Phi(t,x;T,y)$ and thereafter of $p(t,x;T,y)$.

We set
\[
J(t,x;\tau;T,y) := \int_{\mathbb{R}^N} P(t,x,\tau,\eta)\varphi(\tau,\eta;T,y)d\eta, \quad (T,y) \in S_{T_0}, \, (t,x) \in S_T, \, \tau \in \lbrack t,T \rbrack. \tag{B.1}
\]

Proposition B.1. For every $\varepsilon > 0$, $\nu \in \mathbb{N}_0^N$ with $[\nu]_B \leq 4$ and $0 < \delta < \alpha$, there exists a positive constant C, only dependent on $N, T_0, \mu, B, \delta, \alpha$ and ε, such that
\[
|J(t,x;\tau;T,y)| \leq \frac{C}{(T-\tau)^{1-\frac{\nu}{2}}} \Gamma^{\mu+\varepsilon}(t,x;T,y) \tag{B.2}
\]
\[
|\partial_b J(t,x;\tau;T,y)| \leq \frac{C}{(T-\tau)^{1-\frac{\nu}{2}}} \frac{|\nu|_B}{(\tau-t)^{\frac{\mu}{2}}} \Gamma^{\mu+\varepsilon}(t,x;T,y), \tag{B.3}
\]
for every $(T,y) \in S_{T_0}$, $(t,x) \in S_T$ and $\tau \in \lbrack t,T \rbrack$.

24
We first consider Case C such that $C \leq \bar{C}$.

Proof. The proof relies on Proposition 2.5. (B.2) can be easily obtained by applying estimate (A.10) to $P(t, x; \tau, \eta)$ and the Chapman-Kolmogorov identity.

We provide a full proof of (B.3) in the case of $\partial_x^\nu \varphi(\tau; \eta; T, y)$ and consider two separate cases:

Case $\bar{t} < \tau < T$. By (A.11) and (2.13), we have that for every $\varepsilon > 0$ and $0 < \delta < \alpha$ there exists a positive constant C such that

$$ |\partial_x, j(t, x; \tau; T, y)| \leq \int_{\mathbb{R}^N} \frac{C}{(T - t)^{1 - \frac{d}{2}}(\tau - t)^{1 - \frac{d}{2}}} \Gamma^{\mu + \varepsilon}(t, x; \tau, \eta) \Gamma^{\mu + \varepsilon}(\tau, \eta; T, y) d\eta $$

(by the Chapman-Kolmogorov equation)

$$ \leq \frac{C}{(T - \tau)^{1 - \frac{d}{2}}(\tau - t)^{1 - \frac{d}{2}}} \Gamma^{\mu + \varepsilon}(t, x; T, y) $$

(since $T - \tau < \tau - t$)

$$ \leq \frac{C}{(T - \tau)^{1 - \frac{d}{2}}(\tau - t)^{1 - \frac{d}{2}}} \Gamma^{\mu + \varepsilon}(t, x; T, y). $$

Case $t < \tau \leq \bar{t}$. Here we need to handle with care the singularity of $\partial_x, j(t, x; \tau; T, y)$ for small $\tau - t$. Note that in this case the following inequalities hold true:

$$ \tau - t \leq \frac{T - t}{2} \leq T - \tau < T - t. \quad (B.4) $$

We have

$$ \partial_x, j(t, x; \tau; T, y) = K_1 + K_2 + K_3, $$

where, setting $\xi = e^{(\tau-t)B} x$,

$$ K_1 := \int_{\mathbb{R}^N} \partial_x, j \Gamma(\tau, \eta)(t, x; \tau, \eta)(\varphi(\tau, \eta; T, y) - \varphi(\tau, \xi; T, y)) d\eta, $$

$$ K_2 := \varphi(\tau, \xi; T, y) \int_{\mathbb{R}^N} \left(\partial_x, j \Gamma(\tau, \eta)(t, x; \tau, \eta) - \partial_x, j \Gamma(\tau, \eta)|_{\eta = \xi} \right) d\eta, $$

$$ K_3 := \varphi(\tau, \xi; T, y) \int_{\mathbb{R}^N} \partial_x, j \Gamma(\tau, \eta)(t, x; \tau, \eta)|_{\eta = \xi} d\eta. $$

We first consider K_1. By (2.14) and (A.11), for every $\varepsilon > 0$ and $0 < \delta < \alpha$ there exists a positive constant C such that

$$ |K_1| \leq \frac{C}{(T - \tau)^{1 - \frac{d}{2}}} \int_{\mathbb{R}^N} \frac{\eta - \xi_{B}}{\Gamma^{\mu + \varepsilon}(\tau, \eta; T, y)} \left(\Gamma^{\mu + \varepsilon}(\tau, \xi; T, y) + \Gamma^{\mu + \varepsilon}(\tau, \eta; T, y) \right) d\eta $$

(by (A.9))

$$ \leq \frac{C}{(T - \tau)^{1 - \frac{d}{2}}} \int_{\mathbb{R}^N} \frac{1}{\Gamma^{\mu + \varepsilon}(\tau, \eta; T, y)} \left(\Gamma^{\mu + \varepsilon}(\tau, \xi; T, y) + \Gamma^{\mu + \varepsilon}(\tau, \eta; T, y) \right) d\eta $$

$$ \leq \frac{C}{(T - \tau)^{1 - \frac{d}{2}}} \int_{\mathbb{R}^N} \frac{1}{\Gamma^{\mu + \varepsilon}(\tau, \eta; T, y)} \left(\Gamma^{\mu + \varepsilon}(\tau, \xi; T, y) + \Gamma^{\mu + \varepsilon}(\tau, \eta; T, y) \right) d\eta $$
(integrating in η and by the Chapman-Kolmogorov identity)
\[
\leq \frac{C}{(T - \tau)^{1 - \frac{\alpha}{2}}(\tau - t)^{1 - \frac{\alpha}{2}}} \left(\Gamma^{\mu + \varepsilon}(\tau, \xi; T, y) + \Gamma^{\mu + \varepsilon}(t, x; T, y) \right)
\]
(by \[B.4\])
\[
\leq \frac{C}{(T - \tau)^{1 - \frac{\alpha}{2}}(\tau - t)^{1 - \frac{\alpha}{2}}} \Gamma^{\mu + \varepsilon}(t, x; T, y).
\]

Consider now K_2. By \[2.13\] and \[A.12\], we obtain
\[
|K_2| \leq C \frac{\Gamma^{\mu + \varepsilon}(\tau, \xi; T, y)}{(T - \tau)^{1 - \frac{\alpha}{2}}} \int_{\mathbb{R}^N} \frac{||\eta - \xi||_2^\alpha}{\tau - t} \Gamma^{\mu + \varepsilon}(t, x; \tau, \eta) d\eta
\]
(by \[A.9\] and integrating in η)
\[
\leq \frac{C}{(T - \tau)^{1 - \frac{\alpha}{2}}(\tau - t)^{1 - \frac{\alpha}{2}}} \Gamma^{\mu + \varepsilon}(\tau, \xi; T, y)
\]
(again by \[B.4\])
\[
\leq \frac{C}{(T - \tau)^{1 - \frac{\alpha}{2}}(\tau - t)^{1 - \frac{\alpha}{2}}} \Gamma^{\mu + \varepsilon}(t, x; T, y).
\]

Finally, $K_3 = 0$ since
\[
\int_{\mathbb{R}^N} \partial_{x_i} \Gamma^{(\tau, v)}(t, x; \tau, \eta) d\eta = \partial_{x_i} \int_{\mathbb{R}^N} \Gamma^{(\tau, v)}(t, x; \tau, \eta) d\eta = 0
\]
for any $v \in \mathbb{R}^N$.

References

[1] F. Anceschi and A. Rebucci, *On the fundamental solution for degenerate kolmogorov equations with rough coefficients*, Journal of Elliptic and Parabolic Equations, (2022).

[2] E. Barucci, S. Polidoro, and V. Vespri, *Some results on partial differential equations and Asian options*, Math. Models Methods Appl. Sci., 11 (2001), pp. 475–497.

[3] M. Bramanti and S. Polidoro, *Fundamental solutions for Kolmogorov-Fokker-Planck operators with time-depending measurable coefficients*, Math. Eng., 2 (2020), pp. 734–771.

[4] F. Delarue and S. Menozzi, *Density estimates for a random noise propagating through a chain of differential equations*, J. Funct. Anal., 259 (2010), pp. 1577–1630.

[5] M. Di Francesco and A. Pascucci, *On a class of degenerate parabolic equations of Kolmogorov type*, AMRX Appl. Math. Res. Express, (2005), pp. 77–116.

[6] M. Di Francesco and S. Polidoro, *Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form*, Adv. Differential Equations, 11 (2006), pp. 1261–1320.

[7] G. B. Folland and E. M. Stein, *Hardy spaces on homogeneous groups*, vol. 28 of Mathematical Notes, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982.
[8] L. Hörmander, *Hypoelliptic second order differential equations*, Acta Math., 119 (1967), pp. 147–171.

[9] A. M. Il’in, *On a class of ultraparabolic equations*, Dokl. Akad. Nauk SSSR, 159 (1964), pp. 1214–1217.

[10] C. Imbert and C. Mouhot, *The Schauder estimate in kinetic theory with application to a toy nonlinear model*, Ann. H. Lebesgue, 4 (2021), pp. 369–405.

[11] C. Imbert and L. Silvestre, *The Schauder estimate for kinetic integral equations*, Anal. PDE, 14 (2021), pp. 171–204.

[12] A. Kolmogorov, *Zufällige Bewegungen (zur Theorie der Brownschen Bewegung)*, Ann. of Math. (2), 35 (1934), pp. 116–117.

[13] A. Lanconelli, S. Pagliarani, and A. Pascucci, *Local densities for a class of degenerate diffusions*, Ann. Inst. Henri Poincaré Probab. Stat., 56 (2020), pp. 1440–1464.

[14] E. Lanconelli, A. Pascucci, and S. Polidoro, *Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance*, in Nonlinear problems in mathematical physics and related topics, II, vol. 2 of Int. Math. Ser. (N. Y.), Kluwer/Plenum, New York, 2002, pp. 243–265.

[15] E. Lanconelli and S. Polidoro, *On a class of hypoelliptic evolution operators*, vol. 52, 1994, pp. 29–63. Partial differential equations, II (Turin, 1993).

[16] L. Lorenzi, *Schauder estimates for degenerate elliptic and parabolic problems with unbounded coefficients in \mathbb{R}^N*, Differential Integral Equations, 18 (2005), pp. 531–566.

[17] A. Lunardi, *Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in \mathbb{R}^n*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24 (1997), pp. 133–164.

[18] M. Manfredini, *The Dirichlet problem for a class of ultraparabolic equations*, Adv. Differential Equations, 2 (1997), pp. 831–866.

[19] H. P. McKean, Jr. and I. M. Singer, *Curvature and the eigenvalues of the Laplacian*, J. Differential Geometry, 1 (1967), pp. 43–69.

[20] S. Menozzi, *Parametrix techniques and martingale problems for some degenerate Kolmogorov equations*, Electron. Commun. Probab., 16 (2011), pp. 234–250.

[21] ——, *Martingale problems for some degenerate Kolmogorov equations*, Stochastic Process. Appl., 128 (2018), pp. 756–802.

[22] S. Pagliarani, A. Pascucci, and M. Pignotti, *Intrinsic Taylor formula for Kolmogorov-type homogeneous groups*, J. Math. Anal. Appl., 435 (2016), pp. 1054–1087.

[23] S. Pagliarani, A. Pascucci, and M. Pignotti, *Intrinsic expansions for averaged diffusion processes*, Stochastic Process. Appl., 127 (2017), pp. 2560–2585.

[24] S. Pagliarani and S. Polidoro, *A Yosida’s parametrix approach to Varadhan’s estimates for a degenerate diffusion under the weak Hörmander condition*, J. Math. Anal. Appl., 517 (2023), pp. Paper No. 126538, 42.
[25] A. Pascucci, *PDE and martingale methods in option pricing*, vol. 2 of Bocconi & Springer Series, Springer, Milan; Bocconi University Press, Milan, 2011.

[26] A. Pascucci and A. Pesce, *The parametrix method for parabolic SPDEs*, Stochastic Process. Appl., 130 (2020), pp. 6226–6245.

[27] ———, *On stochastic Langevin and Fokker-Planck equations: the two-dimensional case*, J. Differential Equations, 310 (2022), pp. 443–483.

[28] S. Polidoro, *On a class of ultraparabolic operators of Kolmogorov-Fokker-Planck type*, Matematiche (Catania), 49 (1994), pp. 53–105 (1995).

[29] E. Priola, *Global Schauder estimates for a class of degenerate Kolmogorov equations*, Studia Math., 194 (2009), pp. 117–153.

[30] I. M. Sonin, *A class of degenerate diffusion processes*, Teor. Verojatnost. i Primenen, 12 (1967), pp. 540–547.

[31] M. Weber, *The fundamental solution of a degenerate partial differential equation of parabolic type*, Trans. Amer. Math. Soc., 71 (1951), pp. 24–37.