Improving sampling and calibration of GRBs as distance indicators

Ariadna Montiel, J. I. Cabrera, and Juan Carlos Hidalgo

1 Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
2 Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
3 Colegio de Ciencias y Humanidades Plantel Sur, Universidad Nacional Autónoma de México, 04500, Ciudad de México, México

(Dated: March 10, 2020)

We present a sample of 81 Gamma-Ray Bursts (GRBs) observed by Fermi-GBM for which we compute the distance moduli and use them to constrain effective dark energy models. To overcome the circularity problem affecting the use of GRBs as distance indicators, we calibrate the Amati relation of our sample by employing a cosmology-independent technique. Specifically, the latest observational Hubble parameter data are used to approximate the cosmic expansion through a Bezier parametric curve. We subsequently obtain the distance moduli of the GRBs and include it in a suite of recent cosmological (Planck Compressed 2018 and 2012 BOSS release of BAO data) and local (Pantheon SNIa) observations of the expansion history to compute Bayesian posterior constraints for the standard cosmological model ΛCDM, ωCDM, and for the CPL parametrization.

We highlight the advantages that our dataset and method represent over other recent GRB data.

I. INTRODUCTION

In the endeavour of characterising the cosmological expansion, standard candles are a keystone for precise distance determinations. In practice, however, the search for high precision in many of the distance indicators exposes several sources of bias that prevent astrophysical objects from reaching the status of standard candles. The luminosity of Supernovae of Type Ia (SNe Ia), for example, seems to be subject to its environment [1] and such dependence could only be accounted for through precise observations. In this sense, any contribution from alternative distance indicators which preferably cover a wide range of redshifts is key to improve cosmological distance determinations, and ultimately, characterise the Dark Energy component.

An attractive prospect is the distance modulus of Gamma Ray Bursts (GRBs) (for pioneer works see, e.g. [2,4]). Despite the well known dispersion in the luminosity correlations and other sources of uncertainty, GRBs remain good candidates for distance indicators. GRBs represent the most powerful explosions in the Universe. They are bright enough to be detected up to high redshifts[1]. Therefore, they are often proposed as complementary tools to SNe Ia observations to probe the expansion history of the Universe. The prompt emission of GRBs lies mostly in the range from 0.001 to a few MeV, and lasting from 0.01 to 1000 seconds. This property classifies naturally the set of GRBs in two categories, those with $T_{90} > 2$ seconds are classified as long and are associated to the collapse of certain types of massive stars [8]; while the short kind is associated to the merger of compact objects [8]. Despite several efforts to model the explosion mechanism of the GRBs (e.g. [9,12]), there is no single satisfactory explanation and their nature is still not fully understood. In consequence, the distance calibration of GRBs presents more difficulties as that of SNe Ia.

[amontiel@icf.unam.mx]

[1] The highest redshifts recorded lie at $z = 8.2$ (GRB090423) [5,6] and $z = 9.4$ (GRB090429) [7].
So far, several methods have been proposed to calibrate GRBs \cite{2, 3, 4, 13, 14, 15, 16, 17, 18}. Most calibrating methods rely on empirical luminosity correlations found in long GRBs. Among the known correlations are those between spectrum lag and isotropic peak luminosity ($\tau_{\text{lag}} - L$ relation, \cite{19}), the correlation between time variability and isotropic peak luminosity ($\nu - L$ relation, \cite{20}), a tight correlation between the peak energy of νF_ν spectrum and isotropic equivalent energy ($E_p - E_{\text{iso}}$ relation, \cite{21}), a correlation between the peak energy and the collimation-corrected energy ($E_p - E_{\gamma}$ relation, \cite{22}), the correlation between peak energy and isotropic peak luminosity ($E_p - L$ relation, \cite{23}), and the correlation between minimum rise time of light curve and isotropic peak luminosity ($\tau_{\text{RT}} - L$ relation, \cite{4}). Recently, some other correlations have been reported in the literature \cite{24, 29} (See \cite{31} for a review and more details on these correlations).

In many of these correlations, the luminosity of GRBs appears correlated with the temporal and spectral properties. While, as already stated, these correlations are not yet fully understood from first principles, their existence naturally leads to the consideration that GRBs could be used as distance indicators, offering a possible route to probe the expansion history of the Universe up to $z \gtrsim 9$. Datasets of GRBs distance moduli are often used (either alone or in combination with other observational data such as SNe Ia), to constraint cosmological parameters \cite{2, 3, 13, 15, 32, 37}. In the calibration of the empirical correlations, two caveats stand out that prevent the improvement of GRBs distance moduli as distance indicators. First is a number of sources of uncertainty in the determination of luminosity parameters. It is known that combining databases from different telescopes may introduce an unknown selection bias due to the different thresholds and spectroscopic sensitivity \cite{38, 39}. Additionally, mixing methods for the redshift determination (photometric vs. spectral) is also a source for uncertainty \cite{40}.

On the other hand an inherent circularity problem arises in the calibrations of GRBs, since the determination of energy flux typically assumes an underlying cosmological model. Several works have attempted to tackle these circularity problems by adopting model-independent methods to estimate parameters in the calibration (see for instance \cite{3, 13, 16, 33, 35, 41, 42}).

In this paper we present a sample of 81 Fermi-GRBs, carefully selected to avoid speculation (and large errors) in the determination of luminosity parameters. After listing their spectral properties, we calibrate the set in a model-independent way by employing the Amati relation \cite{36, 43} which relates the rest frame peak energy of the spectra E_p to the isotropic energy emitted E_{iso}. The calibration is performed following the recent work of \cite{44} where a compilation of 31 measurements of the Hubble parameter were used to fit a Bezier parametric curve in order to obtain the Hubble’s rate at arbitrary redshifts without assuming an a priori cosmological model. In that paper, the values for the E_{iso} was determined for 193 GRBs taken from \cite{45} and references therein. In contrast, our sample originates from a single catalogue, thus avoiding selection biases and other instrument-associated systematics.

We show the usefulness of our dataset by comparing our results with previous samples, through the performance of a Bayesian parameter estimation for the ΛCDM, ωCDM and the CPL models employing GRB data and the latest compilation of Supernovae Ia data (SNe Ia) \cite{46}, Baryon Acoustic Oscillations (BAO) \cite{47, 49} and Cosmic Microwave Background (CMB) data \cite{50}.

The paper is organized as follows. In Sec. \ref{sec:sample} we present in detail our Fermi/GBM GRBs sample; in Sec. \ref{sec:calibration} we calibrate the observables of our sample and subsequently the Amati relation. In Sec. \ref{sec:fit} we include the calibrated sample in a suite of observations to fit parameters of the three dark energy (DE) models mentioned before. We carry this analysis including SNe Ia; BAO for clusters with redshifts up approximately 2, as well as CMB data from Planck-compressed 2018. We discuss our results in Sec. \ref{sec:discussion} and we present our conclusions in Sec. \ref{sec:conclusions}.

II. GAMMA-RAY BURSTS OBSERVATIONS

The GRBs spectrum is described in terms of an empirical spectral function, the Band function [51], which explicitly is

\[
f(E) = \begin{cases}
N_0 \left(\frac{E}{100\text{keV}} \right)^\alpha \exp \left(-\frac{E}{E_0} \right) & E \leq E_b \\
N_0 \left(\frac{E_0 (\alpha - \beta)}{100\text{keV}} \right)^{(\alpha - \beta)} \exp(\beta - \alpha) \left(\frac{E}{100\text{keV}} \right)^\beta & E > E_b
\end{cases}
\]

(1)

with \(E_b = (\alpha - \beta) E_0 \). This spectrum peaks at \((E_{p,\text{obs}}, \alpha, \beta) \), which is related to the spectral parameters as \(E_{p,\text{obs}} = E_0(2 + \alpha) \).

Due to the intense radiation emitted in GRBs, it is possible to detect such explosions at high redshift \(z \) [5]. The precise determination of \(z \) is crucial to infer the distance to the object (luminosity distance), which is necessary to determine the radiated energy \((E_{\text{iso}}) \) in gamma band. The redshift can be computed analysing spectral emission or absorption lines of the afterglow spectrum, or by its photometric analysis at lower energy bands (from X-rays to radio), from observations generally performed by auxiliary telescopes.

A. The sample

While the SWIFT satellite has provided the largest number of GRBs with redshift to the existing catalogues, the BAT instrument of this satellite is limited to energies up to 150 keV [52]. This value lies below the average \(E_{p,\text{obs}} \) of GRBs [53], which prevents the determination of most of the spectral parameters in the Band function or even the cut-off power-law. Consequently, it is impossible to obtain directly the flux and luminosity for many of the GRBs observed by the BAT-SWIFT satellite.

On the other hand, Fermi features two instruments GBM and LAT sensible to energy bands of 8 keV to 40 MeV [54], and 100 MeV to 300 GeV [55], respectively.

For our compilation, FERMI spectral data were taken from the FERMI-GBM catalogue [56, 57], and the redshifts were retrieved from the BAT-SWIFT database available at https://swift.gsfc.nasa.gov/archive/grb_table.html/ and the webpage of J. Greiner http://www.mpe.mpg.de/~jcg/grbgen.html.

It is important to mention that some of the GRBs in the GBM catalogue presented no value for the spectral parameters. Thus we reduced the raw data, employing the Gamma Ray Spectral Fitting Package (RMFIT V4.3.2). In particular, we did this for the cases of GRB120712571, GRB180728728, GRB181020792, GRB190114873, GRB190324947.

Since the determination of redshift from photometry is subject to learning-curve effect, that is, there is a drift in the mean redshift over time as a consequence of different instruments contributing to redshift acquisition (see for instance [40] for more details), we avoid further bias and discard the GRBs with redshift set through such method [58]. Thus, we limit our sample to those GRBs with redshift determined through spectroscopic methods either from the afterglow or from the host galaxy (recall that the short GRBs do not satisfy the Amati relation for long GRBs and they are also left out of our sample). Finally, we also discarded GRBs which present significant uncertainties in the spectral parameters, namely \(E_p \) and \(F_{\text{bolo}} \), because of their poor contribution during our fit procedure.

Thus, from an initial sample of 107 GRBs, we selected objects meeting the above criteria and we finally present in Table II a sample of 81 GRBs covering the redshift range \(0.117 \leq z \leq 5.283 \). The table presents the
spectral parameters of each GRB and their associated errors.

In the following section we show the process to derive the distance moduli for these objects.

III. CALIBRATION

We followed the model-independent calibration put forward by [44]. We thus apply the empirical relation $E_p - E_{\text{iso}}$ that connects $E_p = E_{p, \text{obs}}(1 + z)$ with the isotropic equivalent energy E_{iso} derived by [21, 43],

$$E_{\text{iso}}(z) = 4\pi d_L^2(z)S_{\text{bolo}}(1 + z)^{-1},$$

where S_{bolo} is the bolometric fluence of gamma rays in the GRB at redshift z, the factor $(1 + z)^{-1}$ transforms the observed GRB duration into the source cosmological rest-frame one and $d_L(z)$ is the luminosity distance of the GRB given by

$$d_L(z) = c(1 + z) \int_0^z \frac{dz'}{H(z')}.$$

Clearly, from the above equation it can be seen that the calibration of GRBs depends on the cosmological model through the expansion history $H(z)$. In fact a good fit can be obtained when a cosmological model is assumed a priori (see Fig. 1), although this is the cause of the circularity problem we want to tackle.

Making use of the cosmic chronometers approach [59, 60], which provides an independent technique to constrain $H(z)$ from the differential evolution of massive and passive early-type galaxies, [44] approximated these Hubble parameter data by employing a Bézier parametric curve of degree n given by

$$H_n(z) = \sum_{d=0}^n \beta_d h_n^d(z),$$

$$h_n^d = \frac{n!(z/z_m)^d}{d!(n-d)!} \left(1 - \frac{z}{z_m}\right)^{n-d},$$

where β_d are coefficients of the linear combination of Bernstein basis polynomials $h_n^d(z)$, positive in the range.
GRB	t0 [s]	t90 [s]	∆t [s]	t90/t0	∆t/t0	E_bolo [ergs]	F_bolo [ergs/cm²/s]	E_peak [keV]	E_0.01 [keV]	E_0.1 [keV]	α [eV]	n < 1	n > 1	n ≈ 1	E_0.1 [keV]	F_0.1 [ergs/cm²/s]	E_0.01 [keV]	F_0.01 [ergs/cm²/s]	E_0.1 [keV]	F_0.1 [ergs/cm²/s]
GRB121128212	2.7400	2.726E+01	1.706E-01	4.10E+00	2.80E-01	5.826E+00	5.490E-02	9.329E-02	-2.416E+00	9.637E-02	1.091E-06	2.308E-07								
GRB130518580	2.4900	4.858E+01	2.066E-02	1.90E+00	2.00E-01	1.457E+00	1.739E-01	1.561E-02	-2.181E+00	6.691E-02	1.746E-06	9.416E-08								
GRB121128212	2.2000	1.734E+01	6.334E-02	3.15E+00	3.73E-01	6.008E+01	3.849E+00	1.195E-01	-2.424E+00	9.205E-02	5.345E-07	1.644E-07								
GRB090926181	2.1062	1.376E+01	6.448E-02	7.427E-04	3.338E+02	5.839E+00	8.619E-03	-2.378E+00	4.558E-02	4.542E-06	1.285E-07									
GRB130612141	2.0060	7.424E+00	5.056E-01	2.085E+00	2.894E+01	8.235E+00	3.295E-01	5.639E-01	-2.254E+00	1.824E-01	1.837E-07	7.850E-07								
GRB131011741	1.8740	7.706E+01	8.097E-03	8.791E-04	2.176E+02	4.088E+01	7.417E-02	-2.085E+00	8.092E-02	5.037E-06	1.178E-07									
GRB120326056	1.7980	1.178E+01	6.022E-02	2.483E-02	4.431E+01	5.587E+00	2.344E-01	-2.335E+00	1.347E-01	3.562E-07	1.898E-07									
GRB100906576	1.7270	1.106E+02	2.684E-02	1.039E-02	7.491E+01	2.427E+01	9.263E-01	-1.861E+00	1.001E-01	7.480E-07	4.083E-07									
GRB091020900	1.7100	2.426E+01	8.973E-03	1.057E-03	2.283E+02	4.881E+01	1.245E-00	-2.454E+00	3.775E+01	5.035E-07	2.996E-06									
GRB110213220	1.4600	3.430E+01	8.441E-03	7.378E-04	1.126E+02	1.204E+01	4.812E-02	-4.870E+00	0.000E+00	4.099E-05	5.837E-08									
GRB100817929	1.3200	7.186E+05	5.106E+00	2.834E+05	4.842E+05	1.527E+05	3.846E+00	3.925E+01	1.138E+07	4.883E+06	2.323E+06									
GRB160804065	1.2900	2.650E+01	2.440E-02	2.832E-04	6.635E+02	1.537E+01	1.384E-00	-3.534E+00	1.245E+00	3.581E-06	7.504E-07									
GRB150314205	1.1700	3.607E+05	1.857E+01	1.476E+01	2.396E+02	1.063E+00	4.01E+00	-2.601E+00	1.021E-01	6.361E-07	2.866E-07									
GRB131231198	0.9150	5.632E+01	1.228E-02	2.387E-03	1.784E+02	1.928E+01	8.495E-01	-2.059E+00	1.662E-01	4.170E-07	1.482E-07									
GRB160804065	0.7360	1.316E+02	1.165E-02	1.888E-03	7.139E+01	4.175E+00	3.731E-00	-2.819E+00	9.034E-01	1.672E-07	4.966E-08									
GRB131231198	0.6420	3.123E+01	5.624E-02	9.278E-04	1.781E+02	3.018E+01	7.337E+00	7.285E-02	8.976E-01	2.285E-07	5.807E-08									
GRB130518580	0.5970	1.437E+02	6.217E-03	9.168E-04	2.099E+02	4.231E+01	9.329E-02	-1.408E+00	1.212E+00	5.096E-07	1.237E-07									

TABLE I: Spectral parameters for the employed GRBs taken from the GBM-FERMI catalog. The (α) represents the GRBs that we processed. Columns are: name, redshift, t0, spectral normalization, the standard deviation for the spectral normalization, peak energy, standard deviation for the peak energy, spectral index of low energy, standard deviation for the spectral index of low energy, spectral index of high energy, standard deviation for the spectral index of high energy, bolometric fluence and the standard deviation for the bolometric fluence.
0 \leq z/z_m \leq 1, with z_m the maximum z of the Hubble parameter dataset which consists of 31 measurements of Hubble parameter taken from [61]. In particular, [44] considered a Bézier curve of degree n = 2 in order to obtain a monotonic growing function in such way that with d = 0 and z = 0 it can be identify \(\beta_0 = H_0 \).

By employing the dataset of Hubble parameter reported in [61], we performed a non-linear least-squares minimization by using the Python software package lmfit [62]. The best-fit parameters we obtained for the Bézier curve with \(n = 2 \) are

\[
H_2(z) = \beta_0 h_0^2(z) + \beta_1 h_1^1(z) + \beta_3 h_2^1(z),
\]

with \(\beta_0 = H_0 = 67.7652 \pm 3.6864 \), \(\beta_1 = 102.9455 \pm 10.8574 \) and \(\beta_2 = 208.7820 \pm 14.1192 \) all in units of km s\(^{-1}\)Mpc\(^{-1}\). In addition, the correlations between these parameters were also obtained: \(C(\beta_0, \beta_1) = -0.839 \), \(C(\beta_1, \beta_2) = -0.702 \) and \(C(\beta_0, \beta_2) = 0.507 \). The best-fit with its 1\(\sigma \) confidence region are shown in Fig. 2. It is worth to mention these values are in agreement with the previous estimation made by [44].

The next step consists of extrapolating the function \(H_2(z) \) to redshift \(z > z_m \) and construct the luminosity distance \(d_L^{cal}(z) \), i.e.,

\[
d_L^{cal}(z) = c(1 + z) \int_0^z \frac{dz'}{H_2(z')},
\]

and therefore the isotropic energy \(E_{iso}^{cal} = 4\pi (d_L^{cal}(z))^2 S_{bolo}(1 + z)^{-1} \). In order to obtain the corresponding errors \(\sigma E_{iso}^{cal} \), the \(\sigma d_L \) is calculated by taking into account the correlations between the parameters \(\beta \)'s besides the GRBs systematics on the observables. The corresponding \(E_p - E_{iso}^{cal} \) distribution is shown in Fig. 3.

In order to calibrate the Amati relation for our sample of 81 Fermi-GRBs, we employed a Python module for performing robust linear regression on data points where both variables have measurement errors. The fitting method is the bivariate correlated errors and intrinsic scatter (BCES) that follows [63]. In particular, this method is useful when it is not clear which variable should be treated as the independent variable and
which is the dependent one. Following this method, it was obtained the best fit for the Amati relation

$$\log \left(\frac{E_{\text{iso}}^{\text{cal}}}{\text{erg}} \right) = A \log \left(\frac{E_p}{300\text{keV}} \right) + B,$$

where $A = 0.3537 \pm 0.3764$, $B = 53.2168 \pm 0.1420$ and the respective covariance matrix is given by

$$\text{cov} = \begin{bmatrix} 0.1417 & 0.0435 \\ 0.0435 & 0.0202 \end{bmatrix}.$$

Finally, the GRBs distance moduli, from the definition $\mu_{\text{GRB}} = 5 \log(d_{L}^{\text{cal}}/\text{Mpc}) + 25$, can be calculated by using all the fitting parameters obtained from the Amati relation for the sample of 81 GRBs with $0.117 \leq z \leq 5.283$. The variance of μ is computed by using error propagation method and is given by

$$\sigma_{\mu_{\text{GRB}}}^2 = \left(\frac{\partial \mu_{\text{GRB}}}{\partial A} \right)^2 \sigma_A^2 + \left(\frac{\partial \mu_{\text{GRB}}}{\partial B} \right)^2 \sigma_B^2 +$$

$$2 \left(\frac{\partial \mu_{\text{GRB}}}{\partial A} \right) \left(\frac{\partial \mu_{\text{GRB}}}{\partial B} \right) \sigma_{AB} + \left(\frac{\partial \mu_{\text{GRB}}}{\partial E_p} \right)^2 \sigma_{E_p}^2 +$$

$$+ \left(\frac{\partial \mu_{\text{GRB}}}{\partial S_{\text{bolo}}} \right)^2 \sigma_{S_{\text{bolo}}}^2,$$

where it is not included the covariances for E_p and S_{bolo} since they are not correlated.

The distance moduli of the 81 GRBs, μ_{GRB}, and their 1σ uncertainties calibrated through the Amati relation are listen in Table II. The corresponding distribution of μ_{GRB} versus z is shown in Fig. 4 together the most recent compilation of SNe Ia, the Pantheon dataset [46].

Before we proceed, we consider important to point out that although there is a debate as to whether the Amati relation is an intrinsic effect or the result of detection biases or even a combination of these two [38, 64–71]. There are also works that claimed the instrumental selection biases, even if they may affect the sample,
Name	z_{\text{GRB}}	\mu_{\text{GRB}}	\sigma_{\text{GRB}}
GRB180728728	0.117	42.8925	0.3202
GRB150727793	0.313	44.8198	0.2120
GRB171010792	0.3285	45.0890	0.2084
GRB130427324	0.34	40.7755	0.7320
GRB130925173	0.347	41.9251	0.6303
GRB140606133	0.384	45.8540	0.5696
GRB190114873	0.425	41.5673	0.7661
GRB091127976	0.493	44.5669	0.6197
GRB090618353	0.546	41.9673	0.2065
GRB101219686	0.5519	45.5073	0.4163
GRB170607971	0.557	45.2022	0.2349
GRB180720598	0.654	43.8625	0.6303
GRB080914060	0.689	44.3602	0.2588
GRB111228657	0.7163	43.7251	0.7325
GRB140512814	0.725	43.1577	0.6938
GRB130215063	0.736	44.0437	0.3068
GRB131223198	0.738	44.5001	0.5444
GRB140602660	1.1175	44.2628	0.2436
GRB160509374	1.17	41.7320	0.4133
GRB190324947	1.17	40.6119	0.2267
GRB140213807	1.24	45.3785	0.3163
GRB130420313	1.297	44.4991	0.4700
GRB140801792	1.32	46.3119	0.2246
GRB160509374	1.368	44.1446	0.6472
GRB160625945	1.406	41.3129	0.5167
GRB180205184	1.409	46.5709	0.6687
GRB180141610	1.44	44.2451	0.2165
GRB180314030	1.445	45.4831	0.2547
GRB190213220	1.46	45.5781	0.2381
GRB161117066	1.549	44.3270	0.3228
GRB190728095	1.567	43.3861	0.3023
GRB090120900	1.71	46.1073	0.3894
GRB100906576	1.727	43.6092	0.3680
GRB12019170	1.728	44.9427	0.2248
GRB150314205	1.758	44.4233	0.4052
GRB120326056	1.798	46.6725	0.5366
GRB131011741	1.874	45.0715	0.2895
GRB190612141	2.006	47.8070	0.9432
GRB170705115	2.01	45.7002	0.2684
GRB161017745	2.0127	45.7348	0.2917
GRB140620219	2.04	45.2549	0.3761
GRB150409313	2.06	44.8412	0.4816
GRB090926181	2.1062	44.6289	0.3914
GRB120624933	2.1974	43.0422	0.6318
GRB121128212	2.2	46.0748	0.4233
GRB081221681	2.26	44.9163	0.2998
GRB141028455	2.33	45.0981	0.3481
GRB080905705	2.374	45.3735	0.2518
GRB130518580	2.49	44.4747	0.4165
GRB081121858	2.512	44.8830	0.2120
GRB170214649	2.53	43.4524	0.5245
GRB120811649	2.671	46.9384	0.4537
GRB140206304	2.74	45.2477	0.2227
GRB081222204	2.77	46.0675	0.2076
GRB110731465	2.83	46.0880	0.3799
GRB181020792	2.938	45.1314	0.3299
GRB140703026	3.114	46.0270	0.2579
GRB140233556	3.26	45.2132	0.2346
GRB140808038	3.29	47.6998	0.2397
GRB110818860	3.36	45.9832	0.2544
GRB170405777	3.51	44.5288	0.3177
GRB090323002	3.57	44.3246	0.5026
GRB120909007	3.93	45.5415	0.2444
GRB090516353	4.109	45.5758	0.2189
GRB120712571	4.1745	47.3048	0.2222
GRB140304557	5.283	47.2699	0.2422

TABLE II: Distance moduli of 81 GRBs calibrated through the Amati relation.
FIG. 4: Distance moduli μ_{GRB} for our 81 GRB sample together with the SNe Ia distance moduli compared to the flat ΛCDM model with $\Omega_m = 0.299$, $\Omega_\Lambda = 0.701$ and $h = 0.6875$.

cannot be responsible for the existence of the spectral-energy correlations [65, 72]. See also [45, 73, 74] for more detail discussion supporting the reliability of Amati relation.

IV. PARAMETER ESTIMATION OF DARK ENERGY

We have used the public Boltzmann code CLASS [75] to run the background evolution for all the dark energy models studied here: the ΛCDM, ωCDM and CPL models. Then we use the cosmological parameter estimator MONTE PYTHON [76], which is linked to CLASS and adopts the Markov Chain Monte Carlo (MCMC) method to constrain the parameters of each DE model by fitting the cosmological data. The code employs the Metropolis-Hastings algorithm [77, 78] for sampling, and computes the Bayesian parameter inference of the posteriors with the convergence test given by the Gelman-Rubin criterion R [79], where we require $R - 1 < 10^{-3}$ for all our chains.

The suite of datasets considered for our analysis includes those related to the expansion history of the universe, i.e., the ones describing the distance-redshift relations. More precisely, we use Type Ia Supernovae, BAO data and CMB data in the condensed form of shift parameters (also known as distance priors) as well as the calibrated samples of Gamma Ray Bursts listed above.

A. Observational data

1. Type Ia Supernovae (SNe Ia)

One of the latest SNe Ia data compilation is the Pantheon sample [46] which consists of 1048 SNe with the redshift spanning $0.01 < z < 2.3$. This sample is a combination of 365 spectroscopically confirmed SNe Ia discovered by the Pan-STARRS1 (PS1) Medium Deep Survey together with the subset of 279 PS1 SNe Ia ($0.03 < z < 0.68$) with distance estimates from SDSS, SNLS and several low-z and Hubble Space Telescope
In order to perform our analysis, we choose this dataset and use it in the usual manner to define

$$\chi^2_{SN} = \Delta \mu \cdot C^{-1} \cdot \Delta \mu,$$

(10)

where C is the full systematic covariance matrix and $\Delta \mu = \mu_{\text{theo}} - \mu_{\text{obs}}$ is the vector of the differences between the observed and theoretical value of the observable quantity for SNe Ia, the distance modulus, μ. It is worth mentioning that in our analysis the absolute magnitude is taken as nuisance parameter.

2. Baryon Acoustic Oscillations (BAO)

We used the low redshift galaxy BAO data listed in Table III. The data provide measurements of three types of ratios of comoving distance: the angular scale of the BAO ($D_A(z)/r_s$), the redshift-space BAO scale ($D_H(z)/r_s$) [47], and the spherically-averaged BAO scale ($D_V(z)/r_s$) [48, 49] being r_s the comoving sound horizon at the end of the baryon drag epoch given by

$$r_s = \int_{z_d}^{\infty} \frac{c_s(z)}{H(z)} \, dz,$$

(11)

where c_s denotes the sound speed in the primordial photon-baryon plasma given by $c_s = 3^{-1/2}c[1 + \frac{3}{4}\rho_b(z)/\rho_\gamma(z)]^{-1/2}$. $D_H(z) = c/H(z)$, $D_A(z)$ is the comoving angular diameter distance

$$D_A(z) = c \int_0^z \frac{dz'}{H(z')},$$

(12)

and $D_V(z)$ is the spherically averaged combination of transverse and radial BAO modes,

$$D_V(z) = \left[zD_H(z)D_A^2(z) \right]^{1/3}.$$

(13)

Thus, the corresponding χ^2_{BAO} for BAO data is given by

$$\chi^2_{BAO} = \Delta F^{BAO} \cdot C_{BAO}^{-1} \cdot \Delta F^{BAO},$$

(14)

where $\Delta F^{BAO} = F_{\text{theo}} - F_{\text{obs}}$ is the difference between the observed and theoretical value of the observable quantity for BAO which can be different depending on the considered survey and C_{BAO}^{-1} is the respective inverse covariance matrix.
3. Cosmic Microwave Background (CMB)

Instead of the full data of the CMB anisotropies, we used CMB data in the condensed form of shift parameters reported in [50], which were derived from the last release of the Planck results [80]. Evidently, the analysis proceeds much faster in this way than by performing an analysis involving the full CMB likelihood.

The shift parameters, \((R, l_A, \Omega_b h^2, n_s)\) provide an efficient summary of CMB data as far as DE constraints are concerned (as it has been argued in several works [81–84]) which can be used to study models with either non-zero curvature or a smooth DE component, as in our case, but not for modifications of gravity [83, 84].

The first two quantities in the vector \((R, l_A, \Omega_b h^2, n_s)\) are defined as

\[
R \equiv \sqrt{\Omega_m H_0^2 r(z_*)/c},
\]

\[
l_A \equiv \pi r(z_*)/r_s(z_*),
\]

where \(r(z)\) is the comoving distance and \(r_s(z)\) is the comoving sound horizon, both evaluated at photon-decoupling epoch \(z_*\).

The corresponding \(\chi^2\) for the CMB is

\[
\chi^2_{CMB} = \Delta F_{CMB} \cdot C_{CMB}^{-1} \cdot \Delta F_{CMB},
\]

where \(F_{CMB} = (R, l_A, \Omega_b h^2, n_s)\) is the vector of the shift parameters and \(C_{CMB}^{-1}\) is the respective inverse covariance matrix. The mean values for these shift parameters as well as their standard deviations and normalized covariance matrix are taken from Table 1 of [50].

4. Gamma-Ray Bursts (GRBs)

We used two samples. The first one consists of 193 GRBs calibrated in [44] which cover the redshift range \(0.03351 \leq z \leq 8.1\). The second sample is our set of 81 Fermi-GRBs listed above, with a redshift range \(0.117 \leq z \leq 5.283\) calibrated in this work in a model-independent way.

The \(\chi^2\) function for the GRBs data is defined similarly to the SNe Ia data, Eq. 10 as

\[
\chi^2_{GRBs} = \Delta \mu \cdot C^{-1} \cdot \Delta \mu,
\]

where \(C\) is a diagonal matrix containing \(\sigma^2_\mu\) and \(\Delta \mu = \mu_{\text{theo}} - \mu_{\text{estimated}}\) is the vector of the differences between the theoretical and estimated value of the distance moduli for the GRBs.

V. RESULTS AND DISCUSSION

We have obtained the constraints for the \(\Lambda\)CDM, \(\omega\)CDM and CPL models from the latest observational data of SNe Ia, BAO, CMB distance priors inferred from the final Planck 2018 data, and including either the 193 GRBs calibrated by [44] or the 81 GRBs calibrated in this work. For comparison, SNe Ia + BAO + CMB without GRBs have been also analysed in order to highlight the contribution of GRBs to the joint
FIG. 5: Constraints at the 68% and 95% C.L. on the \((\Omega_m, \Omega_\Lambda)\) plane using different combinations of datasets. 1) The joint analysis of the SNe Ia, BAO and CMB distance priors, 2) SNe Ia + BAO + CMB + the sample of 193 GRBs calibrated by [44], labeled as GRBs(1) and 3) SNe Ia + BAO + CMB + the sample of 81 GRBs from Fermi-GBM catalog calibrated in this work, labeled as GRBs(2).

	SNIa+BAO+CMB	SNIa+BAO+CMB + GRBs(1)	SNIa+BAO+CMB + GRBs(2)
Best-fit	\(0.3179\)	\(0.3180\)	\(0.3181\)
\(\Omega_m\)	\(0.6820\)	\(0.6820\)	\(0.6819\)
Mean±\(\sigma\)	\(0.3179\pm0.00057\)	\(0.3180\pm0.00057\)	\(0.3181\pm0.00057\)
	\(0.6820\pm0.00058\)	\(0.6820\pm0.00058\)	\(0.6819\pm0.00058\)

TABLE IV: Constraints at 68% C.L. on the cosmological parameters \((\Omega_m, \Omega_\Lambda)\) in case of the \(\Lambda\)CDM model using different combinations of datasets. 1) The joint analysis of the SNe Ia, BAO and CMB distance priors, 2) SNe Ia + BAO + CMB + the sample of 193 GRBs calibrated by [44], labeled as GRBs(1), and 3) SNe Ia + BAO + CMB + the sample of 81 GRBs from Fermi-GBM catalog calibrated in this work, labeled as GRBs(2).

The results of a similar analysis for the \(\omega\)CDM model are displayed in Figure 6. In this case our calibrated sample yields a value for the \(\omega_\Lambda\) parameter lower than that obtained with the other two datasets. We find, however, consistency with the results of [44] at 2\(\sigma\) confidence level as is evident from the datasets SNe Ia...
FIG. 6: Constraints at the 68% and 95% C.L. on the \((\omega_0, \Omega_m)\) plane from the combinations of datasets mentioned in Fig. 5.

The datasets tested show most tension when analysing the CPL model. In Figure 7 we show 1σ (dark colours) and 2σ (light colours) error contours in the \((\omega_0, \omega_a)\) parameter space resulting from the combination SNe Ia + BAO + CMB + GRBs(1) and SNe Ia + BAO + CMB + GRBs(2) in that same figure. The respective best-fits of the analysis are listed in Table V. Note that the values for \(\sigma\) reported in that table indicate that our sample yields similar errors to those of [44].

The datasets tested show most tension when analysing the CPL model. In Figure 7 we show 1σ (dark colours) and 2σ (light colours) error contours in the \((\omega_0, \omega_a)\) parameter space resulting from the combination SNe Ia + BAO + CMB + GRBs(1) and SNe Ia + BAO + CMB + GRBs(2) in that same figure. The respective best-fits of the analysis are listed in Table V. Note that the values for \(\sigma\) reported in that table indicate that our sample yields similar errors to those of [44].

TABLE V: Constraints at 68% C.L. on the cosmological parameters of the \(wCDM\) model using the combinations of datasets mentioned in Table IV

	SNe Ia + BAO + CMB	SNe Ia + BAO + CMB + GRBs(1)	SNe Ia + BAO + CMB + GRBs(2)
\(\omega_0\)	-0.9776	-0.9782^{+0.01}_{-0.0096}	-0.9755
\(\Omega_m\)	0.3141	0.3142^{+0.0018}_{-0.0018}	0.3138
\(\Omega_{DE}\)	0.6858	0.6857^{+0.0018}_{-0.0018}	0.6861

TABLE VI: Constraints at 68% C.L. on the cosmological parameters of the CPL model using the combinations of datasets mentioned in Table IV

	SNe Ia + BAO + CMB	SNe Ia + BAO + CMB + GRBs(1)	SNe Ia + BAO + CMB + GRBs(2)
\(w_0\)	-0.9631	-0.9515^{+0.074}_{-0.078}	-0.8628
\(w_a\)	-0.05507	-0.1079^{+0.3}_{-0.27}	-0.4361
\(\Omega_m\)	0.3142	0.3144^{+0.0018}_{-0.0019}	0.3144
of samples indicated above. The best-fit values from our calibrated sample intersect only at 2σ with those from SNe Ia + BAO + CMB + 193 GRBs, whilst consistency lies at 1σ with the data excluding GRBs. We note that the values of the parameter ω₀ in the CPL model from the three datasets employed in this work, intersect the range of values resulting from the Planck 2018 data at 2σ [80], and the recent results of [86] where a sample of GRBs covering a redshift range of 0.033 ≤ z < 9 is employed, together with direct \(H(z) \) measurements [87] and the past compilation of SNe Ia Union 2.1 [88]. A list of the results of this analysis is provided in Table VI. Note again that our adequate handling of errors yields an even smaller confidence region for the parameters of this model than the posterior of [11].

VI. SUMMARY AND CONCLUSIONS

Through the criteria described in Sec. [11] we have carefully selected a sample of 81 GRBs. The Amati relation for these GRBs is calibrated in a model-independent way. Such calibration, described in Section III, relies on \(H(z) \) data as our calibration source at low redshifts. We have computed and incorporated our GRB distance moduli to a suite of observations complemented by the latest CMB, BAO and SNe Ia data in order to fit parameters of Dark Energy and test for the usefulness of our sample. We find consistency with previous works for \(\Lambda \)CDM and \(\omega \)CDM models at 2σ in the posterior contours of the relevant parameters. An evident difference with previous results lies on the values of the parameters of the CPL model. Our data prefers a dynamic dark energy which transits from a quintessence-like equation of state (\(\omega_{DE} > -1 \)) at early times to a phantom-like component (\(\omega_{DE} < -1 \)) today. The discrepancies with results of previous works employing GRB samples may be due to one or more of the following factors. Our debugging technique for the GRBs compilation discards objects with large uncertainty and those for which the spectral parameters are undetermined. This is partially the reason why we have not included GRBs from the Swift satellite, where some of the spectrum features lie outside the range of wavelengths detected (see discussion in Sec. [IIA]). Furthermore, we have taken special
care in handling the errors of our dataset. Additionally, in the estimation of DE parameters we employ the GRBs sample combined with the latest cosmological data (Planck 2018 for CMB and DR12 for BAO) and the latest compilation of SNe Ia (Pantheon) in contrast with previous works which avoid cosmological distance estimators and take supernovae only from the JLA compilation or Union 2.1 compilation. In any case, it is clear from Table VI that the errors associated are tighter for this model than those of the Amati sample. It is worth mentioning that the difference between our posterior values and those of previous works may also reflect the increasing tension between the local and cosmological estimations of the Hubble parameter. The apparent DE equation of state evolution may just represent a different interpretation of a known problem: the tension standing between the local and cosmological determination of the expansion parameter (see e.g. [89]). Our sample covers a range of redshift up to $z = 5.283$, yet the calibration of GRBs is carried through direct measurements of $H(z)$ thus relying purely on local measurements of the expansion. As a consequence the extra weight of the local measurements may serve as a lever arm for the phantom behaviour of the DE equation of state. The above issues may be elucidated with the arrival of new and more precise data. In the meantime we are confident to have obtained a robust sample of GRBs for cosmic distance estimation and with the associated errors adequately accounted for. Our estimation of DE parameters show that GRBs are competent as a complementary probe to the other well-established cosmological observations.

Acknowledgements

A.M. acknowledges support from postdoctoral grants from DGAPA-UNAM. The authors acknowledge sponsorship from CONACyT through grant CB-2016-282569. We also acknowledge the publicly available data from Fermi collaboration.

[1] Yijung Kang, Young-Woong Lee, Young-Lo Kim, Chul Chung, and Chang Hee Ree. Early-type Host Galaxies of Type Ia Supernovae. II. Evidence for Luminosity Evolution in Supernova Cosmology. 2019.
[2] En-Wei Liang and Bing Zhang. Model-independent multi-variable gamma-ray burst luminosity indicator and its possible cosmological implications. Astrophys. J., 633:611–623, 2005.
[3] Claudio Firmani, Gabriele Ghisellini, Giancarlo Ghirlanda, and Vladimir Avila-Reese. A New method optimized to use Gamma-Ray Bursts as cosmic rulers. Mon. Not. Roy. Astron. Soc., 360:L1, 2005.
[4] Bradley E. Schaefer. The Hubble Diagram to Redshift >6 from 69 Gamma-Ray Bursts. Astrophys. J., 660:16–46, 2007.
[5] R. Salvaterra, M. Della Valle, S. Campana, G. Chincarini, S. Covino, P. D’Avanzo, A. Fernández-Soto, C. Guidorzi, F. Mannucci, R. Margutti, C. C. Thöne, L. A. Antonelli, S. D. Barthelmy, M. de Pasquale, V. D’Elia, F. Fiore, D. Fugazza, L. K. Hunt, E. Maiorano, S. Marinoni, F. E. Marshall, E. Molinari, J. Nousek, E. Pian, J. L. Racusin, L. Stella, L. Amati, G. Andreuzzi, G. Cusumano, E. E. Fenimore, P. Ferrero, P. Giommi, D. Guetta, S. T. Holland, K. Hurley, G. L. Israel, J. Mao, C. B. Markwardt, N. Masetti, C. Pagani, E. Palazzi, D. M. Palmer, S. Piranomonte, G. Tagliaferri, and V. Testa. GRB090423 at a redshift of z ≈8.1. Nat, 461(7268):1258–1260, Oct 2009.
[6] N. R. Tanvir, D. B. Fox, A. J. Levan, E. Berger, K. Wiersema, J. P. U. Fynbo, A. Cucchiara, T. Krühler, N. Gehrels, J. S. Bloom, J. Greiner, P. A. Evans, E. Rol, F. Olivares, J. Hjorth, P. Jakobsson, J. Farihi, R. Willingale, R. L. C. Starling, S. B. Cenko, D. Perley, J. R. Maund, J. Duke, R. A. M. J. Wijers, A. J. Adamson, A. Allan, M. N. Bremer, D. N. Burrows, A. J. Castro-Tirado, B. Cavanagh, A. de Ugarte Postigo, M. A. Dopita, T. A. Fatkhullin, A. S. Fruchter, R. J. Foley, J. Gorosabel, J. Kennea, T. Kerr, S. Klose, H. A. Krimm, V. N. Komarova, S. R.
Kulkarni, A. S. Moskvitin, C. G. Mundell, T. Naylor, K. Page, B. E. Penprase, M. Perri, P. Podsiadlowski, K. Roth, R. E. Rutledge, T. Sakamoto, P. Schady, B. P. Schmidt, A. M. Soderberg, J. Sollerman, A. W. Stephens, G. Stratta, T. N. Ukwatta, D. Watson, E. Westra, T. Wold, and C. Wolf. A γ-ray burst at a redshift of z ˜8.2. Nat, 461(7268):1254–1257, Oct 2009.

[7] A. Cucchiara, A. J. Levan, D. B. Fox, N. R. Tanvir, T. N. Ukwatta, E. Berger, T. KrÄijhler, A. KÄijpcÄj Yolda¸s, X. F. Wu, K. Toma, J. Greiner, F. E. Olives, A. Rowlinson, L. Amati, T. Sakamoto, K. Roth, A. Stephens, Alexander Fritz, J. P. U. Fynbo, J. Hjorth, D. Malesani, P. Jakobsson, K. Wiersma, P. T. OBrien, A. M. Soderberg, R. J. Foley, A. S. Fruchter, J. Rhoads, R. E. Rutledge, B. P. Schmidt, M. A. Dopita, P. Podsiadlowski, R. Willingale, C. Wolf, S. R. Kulkarni, and P. D’Avanzo. A PHOTOMETRIC REDSHIFT OFz ³9.4 FOR GRB 090429b. The Astrophysical Journal, 736(1):7, jun 2011.

[8] Peter Meszaros. Gamma-Ray Bursts. Rept. Prog. Phys., 69:2259–2322, 2006.

[9] S. Mendoza, J. C. Hidalgo, and D. Olvera. Internal shocks in relativistic jets with time-dependent sources. Mon. Not. Roy. Astron. Soc., 395:1403, 2009.

[10] F. J. Rivera-Paleo and F. S. Guzman. Modelling long GRBs using a single shock with relativistic radiation hydrodynamics. Mon. Not. Roy. Astron. Soc., 459(3):2777–2786, 2016.

[11] Maria Dainotti, Roberta Del Vecchio, and Mariusz Tarnopolski. Gamma Ray Burst Prompt correlations. Adv. Astron., 2018:4969503, 2018.

[12] Giulia Stratta, Maria Giovanna Dainotti, Simone Dall’Osso, X. Hernandez, and Giovanni De Cesare. On the magnetar origin of the GRBs presenting X-ray afterglow plateaus. Astrophys. J., 869(2):155, 2018.

[13] N. Liang, W. K. Xiao, Y. Liu, and S. N. Zhang. A cosmology independent calibration of gamma-ray burst luminosity relations and the Hubble diagram. Astrophys. J., 685:354, 2008.

[14] Nan Liang and Shuang Nan Zhang. CosmologyvÅRindependent distance moduli of 42 gammaÅRray bursts between redshift of 1.44 and 6.60. AIP Conference Proceedings, 1065(1):367–372, 2008.

[15] Hao Wei and Shuang Nan Zhang. Reconstructing the cosmic expansion history up to redshift z=6.29 with the calibrated gamma-ray bursts. Eur. Phys. J., C63:139–147, 2009.

[16] Y. Kodama, D. Yonetoku, T. Nakamura, R. Tsutsui, and T. Nakamura. Gamma-ray bursts in 1.8 < z < 5.6 suggest that the time variation of the dark energy is small. Mon. Not. Roy. Astron. Soc., 391:L1–L4, 2008.

[17] Yun Wang. Model-Independent Distance Measurements from Gamma-Ray Bursts and Constraints on Dark Energy. Phys. Rev., D78:123532, 2008.

[18] Jing Liu and Hao Wei. Cosmological models and gamma-ray bursts calibrated by using PadÅE method. Gen. Rel. Grav., 47(11):141, 2015.

[19] J. P. Norris, G. F. Marani, and J. T. Bonnell. Connection between Energy-dependent Lags and Peak Luminosity in Gamma-Ray Bursts. Astrophys. J., 534(1):248–257, May 2000.

[20] Ed E. Fenimore and E. Ramirez-Ruiz. Redshifts for 220 BATSE gamma-ray bursts determined by variability and the cosmological consequences. Submitted to: Astrophys. J., 2000.

[21] L. Amati et al. Intrinsic spectra and energetics of BeppoSAX gamma-ray bursts with known redshifts. Astron. Astrophys., 390:81, 2002.

[22] G. Ghirlanda, G. Ghisellini, and D. Lazzati. The Collimation-corrected GRB energies correlate with the peak energy of their νfν spectrum. Astrophys. J., 616:331–338, 2004.

[23] D. Yonetoku, T. Murakami, T. Nakamura, R. Yamazaki, and K. Ioka. Gamma-Ray Burst Formation Rate Inferred from the Spectral Peak Energy-Peak Luminosity Relation. Astrophys. J., 609(2):935–951, Jul 2004.

[24] M. G. Dainotti, V. F. Cardone, and S. Capozziello. A time - luminosity correlation for Gamma Ray Bursts in the X - rays. Mon. Not. Roy. Astron. Soc., 391:79, 2008.

[25] En-Wei Liang, Shuang-Xi Yi, Jin Zhang, Hou-Jun Lü, Bin-Bin Zhang, and Bing Zhang. Constraining Gamma-ray Burst Initial Lorentz Factor with the Afterglow Onset Feature and Discovery of a Tight Γ0-E γ,iso Correlation. Astrophys. J., 725(2):2209–2224, Dec 2010.

[26] G. Ghirlanda, G. Ghisellini, L. Nava, and D. Burlon. Spectral evolution of Fermi/GBM short gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 410(1):L47–L51, Jan 2011.
[27] M. Xu and Y. F. Huang. New three-parameter correlation for gamma-ray bursts with a plateau phase in the afterglow. *AAP*, 538:A134, Feb 2012.

[28] Jing Lài, Yuan-Chuan Zou, Wei-Hua Lei, Bing Zhang, Qingwen Wu, Ding-Xiong Wang, En-Wei Liang, and Hou-Jun Lài. Lorentz-factorÅ isotropic-luminosity/energy correlations of gamma-ray bursts and their interpretation. *The Astrophysical Journal*, 751(1):49, May 2012.

[29] Shuang-Xi Yi, Xue-Feng Wu, Fa-Yin Wang, and ZI-Gao Dai. Constraints on the Bulk Lorentz Factors of GRB X-Ray Flares. *Astrophys. J.*, 807(1):92, 2015.

[30] En-Wei Liang, Ting-Ting Lin, Jing Lài, Rui-Jing Lu, Jin Zhang, and Bing Zhang. A Tight $L_{iso} - E_{p,a} - \Gamma_0$ Correlation of Gamma-Ray Bursts. *Astrophys. J.*, 813(2):116, 2015.

[31] B. Zhang. *The Physics of Gamma-Ray Bursts*. Cambridge University Press, 2018.

[32] Hao Wei. Observational constraints on cosmological models with the updated long gamma-ray bursts. *Journal of Cosmology and Astroparticle Physics*, 2010(08):020–020, aug 2010.

[33] A. Montiel and N. Breton. Probing bulk viscous-dominated models with Gamma-ray bursts. *JCAP*,1108:023, 2011.

[34] Hermano Velten, Ariadna Montiel, and Saulo Carneiro. GRB Hubble diagram and constraints on a $\Lambda(t)$CDM model. *Mon. Not. Roy. Astron. Soc.*, 431:3301–3306, 2013.

[35] Nora BretÅšn and Ariadna Montiel. Observational constraints from supernovae Ia and gamma-ray bursts on a clumpy universe. *Phys. Rev.*, D87(6):063527, 2013.

[36] Lorenzo Amati and Massimo Della Valle. Measuring cosmological parameters with Gamma-Ray Bursts. *Int. J. Mod. Phys.*, D22(14):1330028, 2013.

[37] F. Y. Wang, Z. G. Dai, and E. W. Liang. Gamma-ray Burst Cosmology. *New Astron. Rev.*, 67:1–17, 2015.

[38] Nathaniel R. Butler, Daniel Kocevski, Joshua S. Bloom, and Jason L. Curtis. A Complete Catalog of Swift Gamma-Ray Burst Spectra and Durations: Demise of a Physical Origin for Pre-Swift High-Energy Correlations. *Astrophys. J.*, 671(1):656–677, Dec 2007.

[39] Lara Nava, Giancarlo Ghirlanda, Gabriele Ghisellini, and Claudio Firmani. Peak energy of the prompt emission of long Gamma Ray Bursts vs their fluence and peak flux. *Mon. Not. Roy. Astron. Soc.*, 391:639, 2008.

[40] D. M. Coward. GRB optical afterglow and redshift selection effects: The learning curve effect at work. *Mon. Not. Roy. Astron. Soc.*, 393:L65, 2009.

[41] En-Wei Liang and Bing Zhang. Calibration of gamma-ray burst luminosity indicators. *Mon. Not. Roy. Astron. Soc.*, 369:L37–L41, 2006.

[42] Hong Li, Jun-Qing Xia, Jie Liu, Gong-Bo Zhao, Zu-Hui Fan, and Xinmin Zhang. Overcoming the Circulation Problem for gamma-ray Bursts in Cosmological Global Fitting Analysis. *Astrophys. J.*, 680:92–99, 2008.

[43] Lorenzo Amati, Cristiano Guidorzi, Filippo Frontera, Massimo Della Valle, Fabio Finelli, Raffaella Landi, and Enrico Montanari. Measuring the cosmological parameters with the $E_{p,i}-E_{iso}$ correlation of Gamma-Ray Bursts. *Mon. Not. Roy. Astron. Soc.*, 391:577–584, 2008.

[44] Lorenzo Amati, Rocco D’Agostino, Orlando Luongo, Marco Muccino, and Maria Tantalo. Addressing the circularity problem in the $E_{p} - E_{iso}$ correlation of gamma-ray bursts. *Mon. Not. Roy. Astron. Soc.*, 486(1):L46–L51, 2019.

[45] Marek Demianski, Ester Piedipalumbo, Disha Sawant, and Lorenzo Amati. Cosmology with gamma-ray bursts. I. The Hubble diagram through the calibrated $E_{p,i}-E_{iso}$ correlation. *AAP*, 598:A112, Feb 2017.

[46] D. M. Scolnic et al. The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. *Astrophys. J.*, 850(2):101, 2018.

[47] Shadab Alam et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample. *Mon. Not. Roy. Astron. Soc.*, 470(3):2617–2652, 2017.

[48] Florian Beutler, Chris Blake, Matthew Colless, D. Heath Jones, Lister Staveley-Smith, Lachlan Campbell, Quentin Parker, Will Saunders, and Fred Watson. The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant. *mnras*, 416:3017–3032, Oct 2011.

[49] Ashley J. Ross, Lado Samushia, Cullan Howlett, Will J. Percival, Angela Burden, and Marc Manera. The clustering
of the SDSS DR7 main Galaxy sample âŠ I. A 4 per cent distance measure at $z = 0.15$. Mon. Not. Roy. Astron. Soc., 449(1):835–847, 2015.

[50] Lu Chen, Qing-Guo Huang, and Ke Wang. Distance Priors from Planck Final Release. JCAP, 1902:028, 2019.

[51] D. Band, J. Matteson, L. Ford, B. Schaefer, D. Palmer, B. Teegarden, T. Cline, M. Briggs, W. Paciesas, G. Pendleton, G. Fishman, C. Kouveliotou, C. Meegan, R. Wilson, and P. Lestrade. BATSE Observations of Gamma-Ray Burst Spectra. I. Spectral Diversity. Astrophys. J., 413:281, Aug 1993.

[52] N. Gehrels, G. Chincarini, P. Giommi, K. O. Mason, J. A. Nousek, A. A. Wells, N. E. White, S. D. Barthelmy, D. N. Burrows, L. R. Cominsky, K. C. Hurley, F. E. Marshall, P. Mészáros, P. W. A. Roming, L. Angelini, L. M. Barbier, T. Belloni, S. Campana, P. A. Caraveo, M. M. Chester, O. Citterio, T. L. Cline, M. S. Cropper, J. R. Cummings, A. J. Dean, E. D. Feigelson, E. E. Fenimore, D. A. Frail, A. S. Fruchter, G. P. Garmire, K. Gendreau, G. Ghisellini, J. Greiner, J. E. Hill, S. D. Hunsberger, H. A. Krimm, S. R. Kulkarni, P. Kuma, F. Lebrun, N. M. Lloyd-Ronning, C. B. Markwardt, B. J. Mattson, R. F. Mushotzky, J. P. Norris, J. Osborne, B. Paczynski, D. M. Palmer, H. S. Park, A. M. Parsons, J. Paul, M. J. Rees, C. S. Reynolds, J. E. Rhoads, T. P. Sasseen, B. E. Schaefer, A. T. Short, A. P. Smale, I. A. Smith, L. Stella, G. Tagliaferri, T. Takahashi, M. Tashiro, L. K. Townsley, J. Tueller, A. M. J. Turner, M. Vietri, W. Voges, M. J. Ward, R. Willingale, F. M. Zerbi, and W. W. Zhang. The Swift Gamma-Ray Burst Mission. Astrophys. J., 611(2):1005–1020, Aug 2004.

[53] Yuki Kaneko, Robert D. Preece, Michael S. Briggs, William S. Paciesas, Charles A. Meegan, and David L. Band. The Complete Spectral Catalog of Bright BATSE Gamma-Ray Bursts. Astrophys. J. S, 166(1):298–340, Sep 2006.

[54] Charles Meegan, Giseler Lichti, P. N. Bhat, Elisabetta Bissaldi, Michael S. Briggs, Valerie Connaughton, Roland Diehl, Gerald Fishman, Jochen Greiner, Andrew S. Hoover, Alexander J. van der Horst, Andreas von Kienlin, R. Marc Kippen, Chryssa Kouveliotou, Sheila McBreen, W. S. Paciesas, Robert Preece, Helmut Steinle, Mark S. Wallace, Robert B. Wilson, and Colleen Wilson-Hodge. The Fermi Gamma-ray Burst Monitor. Astrophys. J., 702(1):791–804, Sep 2009.

[55] W. B. Atwood, A. A. Abdo, M. Ackermann, W. Althouse, B. Anderson, M. Axelsson, L. Baldini, J. Ballet, D. L. Band, G. Barbetti, J. Bartelt, D. Bastieri, B. M. Baughman, K. Bechtol, D. Bédère, F. Bellard, R. Bellazzini, B. Berenji, G. F. Bignami, D. Bisello, E. Bissaldi, R. D. Blandford, E. D. Bloom, J. R. Bogart, E. Bonamente, J. Bonnell, A. W. Borgland, A. Bouvier, J. Bregeon, A. Brez, M. Brigida, P. Bruel, T. H. Burnett, G. Busetto, G. A. Cailandro, R. A. Cameron, P. A. Caraveo, S. Carius, P. Carlson, J. M. Casandjian, E. Cavazzuti, M. Cecanti, C. Cecchi, E. Charles, A. Chekhhtman, C. C. Cheung, J. Chiang, R. Chiaoux, A. N. Cillis, S. Ciprini, R. Claus, J. Cohen-Tangui, S. Condamoor, J. Conrad, R. Corbet, L. Corucci, L. Costamante, S. Cutini, D. S. Davis, D. Decotigny, M. DeKlotz, C. D. Dermer, A. de Angelis, S. W. Digel, E. do Couto e Silva, P. S. Drell, R. Dubois, D. Dunora, Y. Edmonds, D. Fabiani, C. Farnier, C. Favuzzi, D. L. Flath, P. Fleury, W. B. Focke, S. Funk, P. Fusco, F. Gargano, D. Gasparri, N. Gehrels, F. X. Gentit, S. Germani, B. Giebels, N. Giglietto, P. Giommi, F. Giordano, T. Glanzman, G. Godfrey, I. A. Grenier, M. H. Grondin, J. E. Grove, L. Guilemout, S. Guiriec, G. Haller, A. K. Harding, P. A. Hart, E. Hays, S. E. Healey, M. Hirayama, L. Hjalmarsdotter, R. Horn, R. E. Hughes, G. Johannesson, G. Johansson, A. S. Johnson, R. P. Johnson, T. J. Johnson, W. N. Johnson, T. Kamae, H. Katagiri, J. Kataoka, A. Kavelaars, N. Kawai, H. Kelly, M. Kerr, W. Klamra, J. Knödlseder, M. L. Kocian, N. Komin, F. Kuester, F. Landriu, L. Latronico, B. Lee, S. H. Lee, M. Lemoine-Goumard, A. M. Lionetto, F. Longo, F. Loparco, B. Lott, M. N. Lovellette, P. Lubrano, G. M. Madejski, A. Makeev, B. Marangelli, M. M. Massai, M. N. Mazziotta, J. E. McEnery, N. Menon, C. Meurer, P. F. Michelson, M. Minuti, N. Mirzizzo, W. Mitthumsiri, T. Mizuno, A. A. Moiseev, C. Monte, M. E. Monzani, E. Moretti, A. Morselli, I. V. Moskalenko, S. Murgia, T. Nakamori, S. Nishino, P. L. Nolan, J. P. Norris, E. Nuss, M. Ohno, T. Ohsugi, N. Omodei, E. Orlando, J. F. Ormes, A. Paccagnella, D. Paneque, J. H. Panetta, D. Parent, M. Pearce, M. Pepe, A. Perazzo, M. Pesce-Rollins, P. Picozza, L. Pieri, M. Pinchera, F. Piron, T. A. Porter, L. Pouard, S. Rainò, R. Rando, E. Rapposelli, M. Razzano, A. Reimer, O. Reimer, T. Reposeur, L. C. Reyes, S. Ritz, L. S. Rochester, A. Y. Rodriguez, R. W. Romani, M. Roth, J. J. Russell, F. Ryde, S. Sabatini, H. F. W. Sadrozinski, D. Sanchez, A. Sandor, L. Sapozhnikov, P. M. Saz Parkinson, J. D. Scargle, T. L. Schalk, G. Scolieri, C. Sgrò, G. H. Share, M. Shaw, T. Shimokawabe, C. Shrader, A. Sierpowska-Bartosik, E. J. Siskind, D. A. Smith, P. D. Smith, G. Spandre, P. Spinelli, J. L.
Starck, T. E. Stephens, M. S. Strickman, A. W. Strong, D. J. Suson, H. Tajima, H. Takahashi, T. Takahashi, T. Tanaka, A. Tenze, S. Tether, J. B. Thayer, J. G. Thayer, D. J. Thompson, L. Tibaldo, O. Tibolla, D. F. Torres, G. Tosti, A. Tramacere, M. Turri, T. L. Usher, N. Vilchez, V. Vitale, P. Wang, K. Watters, B. L. Winer, K. S. Wood, T. Ylinen, and M. Ziegler. The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. *Astrophys. J.*, 697(2):1071–1102, Jun 2009.

[56] D. Gruber, A. Goldstein, V. Weller von Ahlefeld, P. Narayana Bhat, E. Bissaldi, M. S. Briggs, D. Byrne, W. H. Cleveland, V. Connaughton, R. Diehl, G. J. Fishman, G. Fitzpatrick, S. Foley, M. Gibby, M. M. Giles, J. Greiner, S. Guiriec, A. J. van der Horst, A. von Kienlin, C. Kouveliotou, E. Layden, L. Lin, C. A. Meegan, S. McGlynn, W. S. Paciesas, V. Pelassa, R. D. Preece, A. Rau, C. A. Wilson-Hodge, S. Xiong, G. Younes, and H.-F. Yu. The Fermi GBM Gamma-Ray Burst Spectral Catalog: Four Years of Data. *Astrophys. J. Ss*, 211:12, March 2014.

[57] A. von Kienlin, C. A. Meegan, W. S. Paciesas, P. N. Bhat, E. Bissaldi, M. S. Briggs, J. M. Burgess, D. Byrne, V. Chaplin, W. Cleveland, V. Connaughton, A. C. Collazzi, G. Fitzpatrick, S. Foley, M. Gibby, M. Giles, A. Goldstein, J. Greiner, D. Gruber, S. Guiriec, A. J. van der Horst, C. Kouveliotou, E. Layden, S. McBreen, S. McGlynn, V. Pelassa, R. D. Preece, A. Rau, D. Tierney, C. A. Wilson-Hodge, S. Xiong, G. Younes, and H.-F. Yu. The Second Fermi GBM Gamma-Ray Burst Catalog: The First Four Years. *Astrophys. J. S*, 211:13, March 2014.

[58] L. Nava, R. Salvaterra, G. Ghirlanda, G. Ghisellini, S. Campana, S. Covino, G. Cusumano, P. D’Avanzo, V. D’Elia, D. Fugazza, A. Melandri, B. Sbarufatti, S. D. Vergani, and G. Tagliaferri. A complete sample of bright Swift long gamma-ray bursts: testing the spectral-energy correlations. *Monthly Notices of the Royal Astronomical Society*, 421(2):1256–1264, Apr 2012.

[59] Raul Jimenez and Abraham Loeb. Constraining cosmological parameters based on relative galaxy ages. *The Astrophysical Journal*, 573(1):37–42, jul 2002.

[60] Michele Moresco. Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at $z \sim 2$. *Monthly Notices of the Royal Astronomical Society: Letters*, 450(1):L16–L20, 04 2015.

[61] Salvatore Capozziello, Rocco D’Agostino, and Orlando Luongo. Cosmographic analysis with Chebyshev polynomials. *Mon. Not. Roy. Astron. Soc.*, 476(3):3924–3938, 2018.

[62] Matthew Newville, Till Stensitzki, Daniel B. Allen, and Antonino Ingargiola. LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python, September 2014.

[63] Michael G. Akritas and Matthew A. Bershady. Linear regression for astronomical data with measurement errors and intrinsic scatter. *Astrophys. J.*, 470:706, 1996.

[64] Li-Xin Li. Variation of the Amati relation with cosmological redshift: a selection effect or an evolution effect? *Monthly Notices of the Royal Astronomical Society*, 379(1):L55–L59, Jul 2007.

[65] G. Ghirlanda, L. Nava, G. Ghisellini, C. Firmani, and J. I. Cabrera. The E_{peak}-E_{iso} plane of long gamma-ray bursts and selection effects. *Monthly Notices of the Royal Astronomical Society*, 387(1):319–330, Jun 2008.

[66] Nathaniel R. Butler, Daniel Kocevski, and Joshua S. Bloom. Generalized Tests for Selection Effects in Gamma-Ray Burst High-Energy Correlations. *Astrophys. J.*, 694(1):76–83, Mar 2009.

[67] Nathaniel R. Butler, Joshua S. Bloom, and Dovi Poznanski. The Cosmic Rate, Luminosity Function, and Intrinsic Correlations of Long Gamma-Ray Bursts. *Astrophys. J.*, 711(1):495–516, Mar 2010.

[68] Andrew C. Collazzi, Bradley E. Schaefer, Adam Goldstein, and Robert D. Preece. A Significant Problem with Using the Amati Relation for Cosmological Purposes. *Astrophys. J.*, 747(1):39, Mar 2012.

[69] Daniel Kocevski. On the Origin of High-energy Correlations in Gamma-Ray Bursts. *ApJ*, 747(2):146, Mar 2012.

[70] V. Heussaff, J-L. Atteia, and Y. Zolnierowski. The E_{peak}-E_{iso} relation revisited with Fermi GRBs: Resolving a long-standing debate? *Astron. Astrophys.*, 557:A100, 2013.

[71] Vahé Petrosian, Ellie Kitanidis, and Daniel Kocevski. Cosmological Evolution of Long Gamma-Ray Bursts and the Star Formation Rate. *Astrophys. J.*, 806(1):44, Jun 2015.

[72] L. Nava, R. Salvaterra, G. Ghirlanda, G. Ghisellini, S. Campana, S. Covino, G. Cusumano, P. D’Avanzo, V. D’Elia, D. Fugazza, A. Melandri, B. Sbarufatti, S. D. Vergani, and G. Tagliaferri. A complete sample of bright Swift long gamma-ray bursts: testing the spectral-energy correlations. *Monthly Notices of the Royal Astronomical Society*, 421(2):1256–1264, Apr 2012.
