ONLINE SUPPLEMENT

MATERIALS AND METHODS

Detection and Titration of FVIII-binding antibodies by ELISA

A detailed description of the FVIII-binding antibody platform and the validation procedure was provided by Whelan et al.1

In short, all anti-FVIII antibody analyses were performed using Ig isotype (IgG, IgA, IgM)- respectively IgG subclass (IgG1-4)-specific ELISAs established in compliance with current regulatory guidelines.2,3 PolySorp® microtiter plates (Nunc) were coated with 1µg/mL recombinant human full-length FVIII (rhFLFVIII; Baxalta Innovations GmbH, a Takeda company) diluted in Carbonate-bicarbonate buffer (Sigma-Aldrich) overnight at 4°C. Washing steps were performed with phosphate-buffered saline (PBS; pH 7.4, Thermo Scientific) containing Tween (Merck). To prevent unspecific binding, the assay plate was blocked for 1 hour at room temperature (RT) with bovine serum albumin (BSA, Cytiva). Specific experiments to investigate unspecific binding between anti-FVIII antibodies in plasma samples and BSA were conducted (data not shown). Afterwards, plasma samples and Ig isotype-/IgG subclass-specific positive and negative controls were incubated for 2 hours at RT.

In each Ig isotype- respectively IgG subclass-specific ELISA a FVIII-binding, human monoclonal antibody of the appropriate Ig isotype/IgG subclass was implemented as positive control. All of these control antibodies were raised against the same FVIII epitope (BioRad for Baxalta Innovations GmbH, a Takeda company). Positive control antibodies were spiked into negatively screened plasma pools from healthy donors and were used for the determination of assay sensitivities. The negative control was a plasma pool derived from negatively screened healthy donors.

After plasma sample and Ig isotype-/IgG subclass-specific control incubation, enzyme-conjugated secondary antibodies were added and assay plates were incubated for 1 hour at RT. All detection antibodies were preliminarily tested and their specificity to the appropriate human Ig isotype respectively IgG subclass was demonstrated (data not shown). Conjugate-matched substrates were added prior to incubating the assay plate at RT in the dark. The delta optical density (ΔOD) for each sample was determined by using a Microplate Reader (Synergy HR BioTek Instruments) in dual endpoint analysis.
mode at 405nm (for alkaline phosphatase [AP]), 450nm (for 3,3′,5,5′-Tetramethylbenzidine [TMB]) or 492nm (for o-Phenylenediamine [OPD]) measuring and 630nm reference wavelength. The ΔOD of each sample was blank corrected.

For each assay, predetermined cutoffs were established following a statistical approach based on the background signal of 160 healthy plasma donors according to Jaki T and colleagues.4 For IgM antibody investigation, a “floating cut point” approach was chosen in order to account for daily assay variation.5

In a first step, plasma samples were screened for total IgG, IgA and IgM antibodies binding to rhfFVIII at a minimum dilution of 1:20, in order to prevent unspecific matrix effects. Negative screening results below the assay cutoff were confirmed in a second screening run. Positive samples, for which the ΔOD was greater or equal to the cutoff, were independently titrated at least twice to semi-quantify titers of IgG1-4, IgA and IgM antibodies. The titer of a sample was defined as the highest dilution that still resulted in a positive signal (ΔOD ≥ cutoff). Assay-specific positive controls and samples were geometrically diluted by a factor of 2 starting at a 1:20 dilution. In case, two adjoining titration results (e.g. 1:20 and 1:40) were received for a sample, the higher titer was reported and referred to during FVIII-binding specificity and apparent affinity characterization. In case, two non-adjointing titer results (e.g. 1:80 and 1:320) were determined, the sample was titrated for a third time.

Confirmation of FVIII-specificity and determination of apparent affinity constants

An antigen competition-based ELISA approach, based on the aforementioned FVIII-binding ELISA platform, was used to evaluate IgG subclass (IgG1-4)- respectively IgA-specific apparent affinity constants (Kₘₐₓ) in equilibrium as outlined by Hofbauer et al.6

In short, apparent affinity evaluation of anti-FVIII antibodies in a plasma matrix was based on pre-incubating diluted plasma samples containing anti-FVIII antibodies with pre-defined molarities of rhfFVIII before analyzing the remaining free anti-FVIII antibodies by a direct-binding ELISA. During the preincubation step, FVIII-specific antibodies interact with free rhfFVIII molecules and form immune complexes. Antibodies forming immune complexes with competition antigen in solution are unavailable for binding to coated rhfFVIII in the direct-binding ELISA. Calculation of
the apparent affinity constants (K_As) for FVIII-specific antibodies is dependent on the competition behavior of the plasma sample. The curve fit for K_A determination is a non-linear regression model as described by Bobrovnik SA and colleagues and Stevens FJ and Bobrovnik SA. The underlying theoretical considerations for this model incorporate the law of mass action. For immune complex formation by free antibodies and free antigen molecules in solution, antibodies are assumed to target a single epitope per antigen. In equilibrium, the binding strength (affinity) between the interaction partners can be described by an average K_A.

In order to deduce information about apparent affinity, the following prerequisites have to be fulfilled by the experimental setting: (i) antigen has to be in excess during competition, which means that immune complex formation must not markedly decrease the availability of free antigen molecules, (ii) a linear correlation between antibody concentration and absorbance signal is considered and (iii) antibody bivalency has to be accounted for. Therefore, a standard binomial distribution is implemented to model the probabilities that either one or both paratopes are available for antigen binding.

Taking these assumptions as well as the assay design into account, antibody-antigen binding in solution is indirectly determined by measuring the ELISA signals from free antibodies at multiple competition antigen concentrations. These data points are subsequently fitted by non-linear regression. The used non-linear regression model is able to discriminate a homogenous apparent affinity population, containing one affinity population, from a bi-modal affinity population, containing two affinity populations with distinct apparent K_As.

For experimental standardization, plasma samples containing FVIII-binding antibodies were diluted in accordance with their pre-determined antibody titers (see “Detection and Titration of FVIII-binding antibodies by ELISA”). Therefore, the ELISA ΔOD had to be approximately two-fold higher than the respective assay ΔOD cutoff. While FVIII-binding IgG1, IgG3, and IgA-positive samples with titers higher or equal to 1:40 qualified for affinity and specificity analyses, samples positive for FVIII-binding IgG2 and IgG4 were included, if their titers were higher or equal to 1:80. Diluted plasma sample duplicates were pre-incubated with eight different concentrations of rhfFVIII in solution for 22 hours at RT. Afterwards, these plasma samples were incubated on PolySorp® microtiter plates (Nunc), which were coated with 1µg/mL rhfFVIII overnight at 4°C, for 45 min at room temperature and shaken at approximately 500 rotations per
minute. Then, enzyme-conjugated Ig isotype-/IgG subclass-specific secondary antibodies (see “Detection and Titration of FVIII-binding antibodies by ELISA”) were added and the assay plate was incubated for 1 hour at RT. Subsequently, conjugate-matched substrates were added prior to incubating the assay plate at RT in the dark. The delta optical density (ΔOD) for each sample was determined by using a Microplate Reader (Synergy HR BioTek Instruments) in dual endpoint analysis mode at 405nm (for alkaline phosphatase [AP]), 450nm (for 3,3′,5,5′-Tetramethylbenzidine [TMB]) or 492nm (for o-Phenylenediamine [OPD]) measuring and 630nm reference wavelength. The ΔODs of each sample were blank corrected and used to calculate non-linear regressions with GraphPad Prism 8.4.3 (GraphPad) according to Bobrovnik SA and colleagues and Stevens FJ and Bobrovnik SA.7,8
For each sample, two models were calculated: Model 1, which assumed homogenous apparent K_A distribution, and Model 2, which was specific for bi-modal apparent K_A distribution. In case both models delivered valid results according to predefined statistical acceptance criteria (R²≥0.7, lower limit of 95% CI > 0, 95% CI detached), an additional extra sum-of-squares F-test was applied supporting model selection. If Model 2 did not deliver highly significant (p<0.001) improvement of data description, Model 1 was chosen. In addition, the non-linear regression model enabled for the identification of the dominant antibody affinity population upon bi-modal apparent K_A distribution by considering for which of the two distinct antibody affinity populations the non-linear regression function fitted more accurately (≥50%).
In case curve fitting was not possible for a sample, the sample was re-analyzed. If nonlinear regression modelling failed twice due to insufficient competition, no K_A values were reported and FVIII specificity was re-evaluated with elevated FVIII competition concentrations (100µg/mL) as outlined in Whelan et al.1 FVIII specificity of IgM positive samples was directly investigated with elevated FVIII competition concentrations, as the non-linear regression model fitting is not possible for multivalent antibody types.
Validation experiments for the apparent affinity ELISA platform were described by Hofbauer et al.6
CLINICAL INFORMATION ON PATIENT NSHA 37, A NON-SEVERE HEMOPHILIA A PATIENT

Patient nsHA 37 was part of the nsHA cohort (patients with non-severe hemophilia A). In contrast to all other nsHA patients, Patient nsHA 37 presented with high titer, high affinity FVIII-specific IgG1 and IgG4 as well as low titer, low affinity IgA (see Figures 1A, 2A, 3A in the main manuscript [marked in red]):

Clinical data and FVIII-specific antibody characteristics of Patient nsHA 37 are summarized in Online supplement - Table 3. Patient nsHA 37 received his first FVIII replacement therapy by blood transfusion at 7 years of age after a tooth extraction procedure. Since then, he has been treated with plasma-derived or recombinant FVIII and/or 1-Desamino-8-D-Arginin-Vasopressin (DDAVP; Desmopressin) on demand. Particularly, prolonged coagulation events, gastrointestinal bleeds and operative dentistry procedures required hemostatic therapies. The patient presented once with a hematoma and underwent surgical procedures (leiomyoma resection and left knee arthroplasty), which demanded FVIII supplementation. Until study completion, Patient nsHA 37 had a negative history of FVIII inhibitors. In addition, the patient suffered from heart failure (atrial fibrillation and hypertonia) requiring medication. Associated periodic heart screening procedures could be carried out without the use of FVIII replacement therapies. In 2006, the patient’s HCV infection was successfully treated with Peginterferon alfa-2a (Pegasys®) and Ribavirin (Copegus®).
TABLES

Online Supplement - Table 1: Additional clinical information relating to patients within the non-severe hemophilia A without FVIII inhibitors- cohort

Patient ID	Race	Type of F8 mutation	Relatedness	Age [y]	FVIII treatment	FVIII product type	anti-HCV antibodies [Yes/No]	HCV qRT-PCR [Pos/Neg]
nsHA 1	Caucasian	Point mutation	none	53	On demand	n.a.	No	-
nsHA 2	Caucasian	Point mutation	none	41	On demand	n.a.	Yes	Neg
nsHA 3	Caucasian	No mutation identified	none	45	On demand	Plasma-derived	No	-
nsHA 4	Caucasian	Splice site mutation	none	35	On demand	n.a.	No	-
nsHA 5	Caucasian	Point mutation	none	73	On demand	n.a.	Yes	Neg
nsHA 6	Caucasian	Point mutation	none	76	On demand	Recombinant	Yes	Pos
nsHA 7	Caucasian	Point mutation	none	20	On demand	Plasma-derived	No	-
nsHA 8	Caucasian	Point mutation	none	76	On demand	Plasma-derived	No	-
nsHA 9	Caucasian	Point mutation	none	67	On demand	Recombinant	No	-
nsHA 10	Caucasian	Point mutation	none	63	On demand	n.a.	No	-
nsHA 11	Caucasian	Point mutation	none	54	On demand	n.a.	n.a.	-
nsHA 12	Caucasian	Point mutation	none	67	On demand	Recombinant	No	-
nsHA 13	Caucasian	Splice site mutation	none	62	On demand	n.a.	No	-
nsHA 14	Caucasian	Point mutation	none	45	On demand	Recombinant	No	-
nsHA 15	Caucasian	Point mutation	none	42	On demand	n.a.	No	-
nsHA 16	Caucasian	No mutation identified	none	37	On demand	Recombinant	No	-
nsHA 17	Caucasian	Point mutation	none	62	On demand	Recombinant	Yes	Neg
nsHA 18	Caucasian	Point mutation	none	50	On demand	Recombinant	n.a.	-
nsHA 19	Caucasian	Point mutation	none	44	On demand	Recombinant	n.a.	Pos
nsHA 20	Caucasian	Point mutation	Brother nsHA 21	27	On demand	Recombinant	No	-
nsHA 21	Caucasian	Point mutation	Brother nsHA 20	32	On demand	Recombinant	No	-
nsHA 22	Caucasian	Point mutation	none	51	On demand	Recombinant	No	-
nsHA 23	Caucasian	Point mutation	none	24	On demand	Recombinant	No	-
nsHA 24	Caucasian	Point mutation	none	50	On demand	n.a.	No	-
nsHA 25	Caucasian	Splice site mutation	none	69	On demand	Recombinant	Yes	Neg
nsHA 26	Caucasian	Splice site mutation	none	34	On demand	Recombinant	No	-
nsHA	Ethnicity	Phenotype	Mutation	Age	Administration	Source	Result	Status
-------	-----------	-----------	----------	-----	----------------	--------	---------	--------
27	Caucasian	Point mutation	none	55	On demand	n.a.	Yes	Neg
28	Caucasian	Point mutation	none	44	On demand	n.a.	Yes	Neg
29	Caucasian	Point mutation	none	19	On demand	Plasma-derived	No	-
30	Caucasian	Point mutation	none	69	On demand	Recombinant	Yes	Neg
31	Caucasian	Point mutation	none	59	On demand	Recombinant	Yes	Neg
32	Caucasian	Splice site mutation	none	49	On demand	n.a.	Yes	Neg
33	Caucasian	Splice site mutation	none	61	On demand	Plasma-derived	No	-
34	Caucasian	Point mutation	none	44	On demand	n.a.	Yes	Neg
35	Caucasian	Point mutation	none	30	On demand	Recombinant	No	-
36	Caucasian	Point mutation	none	36	On demand	Recombinant	No	-
37	Caucasian	Point mutation	none	64	On demand	Recombinant	Yes	Neg
38	Caucasian	Point mutation	none	54	On demand	n.a.	No	-
39	Caucasian	Splice site mutation	none	21	On demand	Recombinant	No	-
40	Caucasian	Point mutation	none	61	On demand	Recombinant	No	-
41	Caucasian	Point mutation	none	51	On demand	Recombinant	n.a.	-
42	Caucasian	Point mutation	Brother nsHA 43	51	On demand	Recombinant	Yes	Neg
43	Caucasian	Point mutation	Brother nsHA 42	49	On demand	Plasma-derived	Yes	Neg
44	Caucasian	Point mutation	none	55	On demand	Recombinant	No	-
45	Caucasian	Point mutation	none	52	On demand	Recombinant	n.a.	-
46	Caucasian	Point mutation	Brother nsHA 47, nsHA 48	52	On demand	Plasma-derived	No	-
47	Caucasian	Point mutation	Brother nsHA 46, nsHA 48	60	On demand	Recombinant	Yes	Neg
48	Caucasian	Point mutation	Brother nsHA 46, nsHA 47	55	On demand	n.a.	No	-
49	Caucasian	Point mutation	none	40	Prophylaxis	Recombinant	n.a.	-
50	Caucasian	Point mutation	none	78	On demand	Recombinant	No	-
51	Caucasian	Point mutation	none	72	On demand	n.a.	Yes	Neg
52	Caucasian	Point mutation	none	54	On demand	Recombinant	Yes	Neg
53	Caucasian	No mutation identified	none	71	On demand	n.a.	No	-
54	Caucasian	Point mutation	none	36	On demand	Recombinant	Yes	Neg
55	Caucasian	Point mutation	Grandfather nsHA56, nsHA57	77	On demand	Recombinant	No	-
56	Caucasian	Point mutation	Grandson nsHA55, Brother nsHA57	23	On demand	Recombinant	No	-
57	Caucasian	Point mutation	Grandson nsHA55, Brother nsHA56	21	On demand	Recombinant	No	-
58	Caucasian	Point mutation	none	55	Prophylaxis	Plasma-derived	Yes	Neg
59	Caucasian	Point mutation	none	59	On demand	Plasma-derived	Yes	Pos
60	Caucasian	Point mutation	none	62	On demand	Recombinant	Yes	Neg
61	Caucasian	Point mutation	none	61	On demand	n.a.	No	-
62	Caucasian	Point mutation	none	34	On demand	Recombinant	No	-
ID	Ethnicity	Point mutation	Treatment Type	Prophylaxis	Recombinant	Heritability	Treatment	Treatment Source
-----	-----------	----------------	----------------	-------------	-------------	--------------	-----------	------------------
nsHA 63	Caucasian	Point mutation	none	21	Prophylaxis	Recombinant	No	-
nsHA 64	Caucasian	Point mutation	none	55	On demand	n.a.	No	-
nsHA 65	Caucasian	Point mutation	none	43	On demand	Plasma-derived	Yes	Neg
nsHA 66	Caucasian	Point mutation	none	68	On demand	Recombinant	Yes	Neg
nsHA 67	Caucasian	Point mutation	none	24	On demand	Recombinant	No	-
nsHA 68	Caucasian	Point mutation	none	66	On demand	Recombinant	Yes	Neg
nsHA 69	Caucasian	Point mutation	none	62	On demand	Recombinant	Yes	Pos
nsHA 70	Caucasian	Point mutation	none	52	On demand	n.a.	Yes	Neg
nsHA 71	Caucasian	Point mutation	none	45	On demand	n.a.	No	-
nsHA 72	Caucasian	Point mutation	none	27	On demand	Recombinant	No	-
nsHA 73	Caucasian	Point mutation	none	80	On demand	n.a.	No	-
nsHA 74	Caucasian	Point mutation	none	40	On demand	Recombinant	Yes	Pos
nsHA 75	Caucasian	Point mutation	none	39	On demand	Plasma-derived	No	-
nsHA 76	Caucasian	Point mutation	none	39	On demand	n.a.	No	-
nsHA 77	Caucasian	n.a.	none	32	On demand	Recombinant	n.a.	-
nsHA 78	Caucasian	n.a.	none	41	On demand	Recombinant	n.a.	-
nsHA 79	Caucasian	n.a.	none	56	On demand	Recombinant	n.a.	-
nsHA 80	Caucasian	n.a.	none	42	On demand	Recombinant	n.a.	-
nsHA 81	Caucasian	n.a.	none	60	On demand	Recombinant	n.a.	-

ID: identification number; F8: factor VIII gene; FVIII: factor VIII (protein); HCV: hepatitis C virus; qRT-PCR: quantitative real-time polymerase chain reaction; nsHA: non-severe hemophilia A; n.a.: not available
Online Supplement - Table 2: Additional clinical information relating to patients within the severe hemophilia A without FVIII inhibitors- cohort

Patient ID	Race	Type of F8 mutation	Relatedness	Age [y]	FVIII treatment	FVIII product type	anti-HCV antibodies [Yes/No]	HCV qRT-PCR [Pos/Neg]
sHA 1	Caucasian	Nonsense mutation	Brother sHA 16	22	Prophylaxis	Plasma-derived	No	-
sHA 2	Caucasian	No mutation identified	none	33	Prophylaxis	Recombinant	Yes	Neg
sHA 3	Caucasian	Missense mutation	none	30	On demand	Recombinant	Yes	Neg
sHA 4	Caucasian	Deletion	Brother sHA 24	19	Prophylaxis	Recombinant	No	-
sHA 5	Caucasian	Nonsense mutation	none	47	On demand	Plasma-derived	Yes	Neg
sHA 6	Caucasian	Splice site mutation	none	29	Prophylaxis	Recombinant	No	-
sHA 7	Caucasian	Inversion	none	18	Prophylaxis	Plasma-derived	No	-
sHA 8	Caucasian	Inversion	none	44	Prophylaxis	Recombinant	n.a.	-
sHA 9	Caucasian	Inversion	none	21	Prophylaxis	Recombinant	No	-
sHA 10	Caucasian	Inversion	Brother sHA 11	23	On demand	Recombinant	Yes	Pos
sHA 11	Caucasian	Inversion	Brother sHA 10	18	On demand	Recombinant	No	-
sHA 12	Caucasian	Missense mutation	none	44	On demand	Recombinant	No	-
sHA 13	Caucasian	Deletion	none	46	Prophylaxis	Recombinant	n.a.	-
sHA 14	Caucasian	Inversion	none	41	Prophylaxis	Recombinant	n.a.	-
sHA 15	Caucasian	Inversion	Brother sHA 37	28	Prophylaxis	Plasma-derived	Yes	Neg
sHA 16	Caucasian	Nonsense mutation	Brother sHA 1	18	Prophylaxis	Plasma-derived	No	-
sHA 17	Caucasian	Missense mutation	none	30	On demand	Recombinant	Yes	Neg
sHA 18	Caucasian	Inversion	none	28	Prophylaxis	Recombinant	No	-
sHA 19	Caucasian	Inversion	none	29	On demand	Recombinant	Yes	Neg
sHA 20	Caucasian	Inversion	none	45	Prophylaxis	Plasma-derived	Yes	Neg
sHA 21	Caucasian	Missense mutation	none	34	On demand	Recombinant	Yes	Pos
sHA 22	Caucasian	Inversion	none	28	Prophylaxis	Recombinant	Yes	Neg
sHA 23	Caucasian	Deletion	none	31	On demand	Recombinant	Yes	Pos
sHA 24	Caucasian	Deletion	Brother sHA 4	24	Prophylaxis	Recombinant	No	-
sHA 25	Caucasian	Inversion	none	28	Prophylaxis	Plasma-derived	Yes	Pos
sHA 26	Caucasian	Inversion	none	44	On demand	Recombinant	Yes	Neg
sHA 27	Caucasian	Inversion	none	27	On demand	Recombinant	No	-
sHA 28	Caucasian	Inversion	none	33	On demand	Recombinant	No	-
sHA 29	Caucasian	Inversion	none	31	Prophylaxis	Recombinant	Yes	Neg
sHA 30	Caucasian	Inversion	none	33	Prophylaxis	Recombinant	Yes	Neg
--------	-----------	-----------	------	----	-------------	-------------	-----	-----
sHA 31	Caucasian	Inversion	none	40	On demand	Plasma-derived	Yes	Pos
sHA 32	Caucasian	Inversion	none	45	On demand	Recombinant	Yes	Pos
sHA 33	Caucasian	Missense mutation	none	53	On demand	Recombinant	Yes	Pos
sHA 34	Caucasian	Missense mutation	none	24	Prophylaxis	Recombinant	No	-
sHA 35	Caucasian	Inversion	none	31	Prophylaxis	Recombinant	Yes	Neg
sHA 36	Caucasian	Missense mutation	none	42	Prophylaxis	Recombinant	Yes	Neg
sHA 37	Caucasian	Inversion	Brother sHA 15	24	Prophylaxis	Plasma-derived	No	-
sHA 38	Caucasian	n.a.	Brother sHA 39	26	Prophylaxis	Recombinant	n.a.	-
sHA 39	Caucasian	n.a.	Brother sHA 38	26	Prophylaxis	Recombinant	n.a.	-

ID: identification number; F8: factor VIII gene; FVIII: factor VIII (protein); HCV: hepatitis C virus; qRT-PCR: quantitative real-time polymerase chain reaction; sHA: severe hemophilia A; n.a.: not available
Online Supplement - Table 3: Clinical data and FVIII-specific antibody characteristics of Patient nsHA 37

Age at sampling [y]	BMI at sampling [kg/m²]	Hemophilia A family history	F8 mutation status	lowest FVIII:C [%]	Characteristics of FVIII-binding antibodies with confirmed specificity†
64	38.61	positive	2 missense mutations: Glu132Asp (A1-domain) Arg612Cys (A2-domain)	10%	IgG1:
 Titer - 1:320
 Kₐ₁ - 1.75•10¹⁰ M⁻¹
 Kₐ₂ - 4.44•10⁷ M⁻¹
 IgG4:
 Titer - 1:480
 Kₐ₁ - 2.79•10¹⁰ M⁻¹
 IgA:
 Titer - 1:40
 Kₐ₁ - 1.69•10⁹ M⁻¹
 Kₐ₂ - 1.72•10⁷ M⁻¹ |

BMI: body mass index; F8: factor VIII gene; FVIII: blood coagulation factor VIII protein; FVIII:C: factor VIII clotting activity; AB: antibody; Glu: glutamic acid; Asp: aspartic acid; Arg: arginine; Cys: cysteine; Ig: Immunoglobulin; Kₐ: (apparent) affinity constant

† Apparent Kₐ of dominant antibody affinity population is highlighted in bold.
Online Supplement - Table 4: Prevalence comparisons of FVIII-binding antibodies with confirmed FVIII specificity in hemophilia A patients differentiated by their anti-HCV antibody status

FVIII-specific IgG subclass/Ig Isotype	Cohort comparison by anti-HCV AB status [number of patients]	Statistical test	p-value
pooled Igs			
nsHA	HCV AB pos [15] vs HCV AB neg [14]	X²	0.019*
sHA	HCV AB pos [7] vs HCV AB neg [3]	FET	0.467
nsHA	HCV AB pos [15] vs sHA [7]	X²	0.095
sHA	HCV AB neg [14] vs. sHA [3]	FET	0.737
IgG1			
nsHA	HCV AB pos [11] vs HCV AB neg [11]	X²	0.091
sHA	HCV AB pos [4] vs HCV AB neg [3]	FET	1.000
nsHA	HCV AB pos [11] vs. sHA [4]	X²	0.090
sHA	HCV AB neg [11] vs. sHA [3]	FET	1.000
IgA			
nsHA	HCV AB pos [7] vs HCV AB neg [9]	X²	0.445
sHA	HCV AB pos [4] vs HCV AB neg [0]	FET	0.126
nsHA	HCV AB pos [7] vs. sHA [4]	FET	0.729
sHA	HCV AB neg [9] vs. sHA [0]	FET	0.098

FVIII: factor VIII; Ig: Immunoglobulin; HCV: Hepatitis-C Virus; AB: antibody; nsHA: non-severe hemophilia A patients; sHA: severe hemophilia A patients; HCV AB pos: anti-Hepatitis-C Virus antibody positive; HCV AB neg: anti-Hepatitis-C Virus antibody negative; X²: Chi-squared test; FET: Fisher’s exact test; p-value: level of significance

Significant p-values are indicated in bold and marked with an asterisk:

* *p≤0.050*
REFERENCES

1. Whelan SF, Hofbauer CJ, Horling FM, et al. Distinct characteristics of antibody responses against factor VIII in healthy individuals and in different cohorts of hemophilia A patients. *Blood*. 2013;121(6):1039-1048.

2. Committee for Medicinal Products for Human Use. *Guideline on Immunogenicity assessment of therapeutic proteins*. Doc. Ref. EMEA/CHMP/BMWP/14327/2006 Rev 1. London, United Kingdom: European Medicines Agency; 2017.

3. *Guidance for Industry: Immunogenicity Testing of Therapeutic Protein Products — Developing and Validating Assays for Anti-Drug Antibody Detection*. Washington, DC: U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER); January 2019.

4. Jaki T, Lawo JP, Wofsegger MJ, Singer J, Allacher P, Horling F. A formal comparison of different methods for establishing cut points to distinguish positive and negative samples in immunoassays. *J Pharm Biomed Anal.* 2011;55(5):1148-1156.

5. Shankar G, Devanarayan V, Amaravadi L, et al. Recommendations for the validation of immunoassays used for detection of host antibodies against biotechnology products. *J Pharm Biomed Anal.* 2008;48(5):1267-1281.

6. Hofbauer CJ, Whelan SF, Hirschler M, et al. Affinity of FVIII-specific antibodies reveals major differences between neutralizing and nonneutralizing antibodies in humans. *Blood*. 2015;125(7):1180-1188.

7. Stevens FJ, Bobrovnik SA. Deconvolution of antibody affinities and concentrations by non-linear regression analysis of competitive ELISA data. *J Immunol Methods.* 2007;328(1-2):53-58.

8. Bobrovnik SA, Demchenko M, Komisarenko S, Stevens F. Traditional ELISA methods for antibody affinity determination fail to reveal the presence of low affinity antibodies in antisera: an alternative approach. *J Mol Recognit.* 2010;23(5):448-456.