

Brief Definitive Report

Chlamydia pneumoniae Infection of the Central Nervous System Worsens Experimental Allergic Encephalitis

Caigan Du, Song-Yi Yao, Åsa Ljunggren-Rose, and Subramaniam Sriram

Department of Neurology, Multiple Sclerosis Research Center, Vanderbilt University Medical Center, Nashville, TN 37212

Abstract

Experimental allergic encephalitis (EAE) is considered by many to be a model for human multiple sclerosis. Intraperitoneal inoculation of mice with *Chlamydia pneumoniae*, after immunization with neural antigens, increased the severity of EAE. Accentuation of EAE required live infectious *C. pneumoniae*, and the severity of the disease was attenuated with antiinfective therapy. After immunization with neural antigens, systemic infection with *C. pneumoniae* led to the dissemination of the organism into the central nervous system (CNS) in mice with accentuated EAE. Inoculation with *Chlamydia trachomatis* did not worsen EAE and infectious organisms were not seen in the CNS. These observations suggest that dissemination of *C. pneumoniae* results in localized infection in CNS tissues in animals with EAE. We propose that infection of the CNS by *C. pneumoniae* can amplify the autoreactive pool of lymphocytes and regulate the expression of an autoimmune disease.

Key words: Chlamydia • autoimmunity • multiple sclerosis • demyelination • bystander activation

Introduction

Chlamydia pneumoniae belongs to a family of intracellular organisms that typically causes a self-limiting respiratory infection (1). More recently, *C. pneumoniae* has been linked to a number of chronic human diseases including those that involve the central nervous system (CNS; reference 2). Infections are known to play a role in the development and progression of a number of autoimmune diseases, and we have suggested that multiple sclerosis (MS) may be linked to infections with *C. pneumoniae* (3–7).

Although the etiology of MS is not known, clinical and pathologic observations suggest a close interplay between an infectious agent(s) and an autoimmune response to myelin antigens in the development of the disease (8, 9). Epidemiologic studies have implicated environmental factors and most likely infectious agents as a necessary element in the development of MS (10). The autoimmune basis for MS stems from similarities between MS and the animal model, EAE (11). In view of the possible association between chlamydial infection and the development of MS, we examined the effect of systemic infection of *C. pneumoniae* on the development and progression of EAE.

Materials and Methods

Animals and Reagents. Female SJL/J and C57BL/6 mice were purchased from The Jackson Laboratory. Guinea pig myelin basic protein (MBP) and mouse spinal cord homogenate was prepared as described previously and myelin oligodendrocyte protein (MOG) peptide (p35–55: MEVGWYRSPFSRVVHLYRNGK) was synthesized by Genemed Synthesis, Inc. Fluorophenicol was a gift from Dr. F. DeGraves, University of Auburn, Auburn, AL. IFN-γ was measured by a commercial kit obtained from R&D Systems. Concentrated *C. pneumoniae* elementary bodies were obtained by growing *C. pneumoniae* (VR-1310; American Type Culture Collection) and *C. trachomatis* (HAR13; American Type Culture Collection) on a monolayer of HL cells. The number of infectious forming units of chlamydial bodies were estimated using the HL indicator cell line. The GD-11 strain of *S. flexneri*, a gift from J. Bright (Vanderbilt Medical Center, Nashville, TN), was grown in soft agar. Heat killed *C. pneumoniae* was prepared by boiling the organism in a water bath for 5 min.

Lymphocyte Proliferation Assay. Lymphocytes isolated from draining lymph node cells were cultured in RPMI 1640 complete medium in a 96-well microtiter plate under the atmosphere of 5% CO₂ and 95% air at 37°C, and the proliferation assay was done as described previously (12).

Induction and Evaluation of EAE. Active and adoptively transferred EAE and the clinical scoring of paralyzed mice was done as described previously (12, 13). To examine the effect of chlamydial infection on EAE, mice were injected with live *C. pneumoniae* or *C. trachomatis* organisms, 0.5 × 10⁶ infectious units (in 0.5 ml of PBS) intraperitoneally, 7 d after receiving the first immunization.
Immunohistochemical Localization of Chlamydial Antigens in CNS Tissue of Mice with EAE. The spinal cords were isolated from the mice after perfusion with 4% paraformaldehyde in PBS on day 18, fixed in 10% formalin, and embedded in paraffin. The presence with C. pneumoniae antigens in the sections was detected by immunohistochemistry using anti-chlamydial LPS antibody (mAB 807; Chemicon) following the protocol for the M.O.M. mouse blocking kit (Vector Laboratories). Using antigen retrieval techniques the spinal cord sections were incubated with mAB 807 (recognizes all chlamydial LPS), was added at a dilution of 1:750, and placed on a rocking platform overnight at 4°C. The slides were then washed and biotin conjugated goat anti–mouse antibody was added and the color developed using the Envision kit (DakoCytomation). Anti Escherichia coli LPS antibody (Fitzgerald Industries) and isotype matched IgG2a antibodies (Sigma-Aldrich) were used as control antibodies in all the staining procedures.

Isolation of Total RNA and Semiquantitative RT-PCR of Chlamydial Antigens. After perfusion with PBS, spinal cords from mice were collected, and total RNA extracted using TRI Reagent (Sigma-Aldrich) in accordance with manufacturer’s protocol. The following sense and antisense oligonucleotide PCR primers were used: C. trachomatis 16S RNA, 5′-ATT TGG GCA TCC GAG TAA CG (sense) and 5′-CCA CGC GTG ATT AAC CGT CT, C. pneumoniae 16S RNA, 5′-GCT AAT ACC GAA TGT AGT GTA A (sense) and 5′-ATC TAT CCT TTA GAA AGA TAG TT, and GAPDH, 5′-TGA AGG TCG GTG TGA ACG GAT TTG GC (sense) and 5′-CAT GTA GGC CAT GAG GTC CAC CAC. 4 μg of total RNA was reverse transcribed to cDNA using GeneAmp RNA PCR kit with oligo d(T)12 primers (Roche). PCR amplification of each cDNA target was performed along with GAPDH, which served as an internal control for RNA quantity. Each PCR reaction contained 5 μl of cDNA, 2 μl of 10× PCR buffer (Perkin Elmer), 1 μl of 25 mM MgCl2, 0.5 μl of each dNTP (10 mM), 0.5 μl of sense and antisense target gene-specific primers (50 pmole/μl), 0.25 μl AmpliTaq DNA polymerase (5 U/μl) (PerkinElmer), and 13.75 μl of nuclease-free H2O, and was performed in PTC-200 Peltier Thermal Cycler (MJ Research, Inc.). PCR products were resolved on 1.5% agarose in TAE containing 0.5 μg/ml of ethidium bromide and visualized under UV light.

Results

Worsening of EAE in Mice Infected with C. pneumoniae. C. pneumoniae infection in mice was induced by intraperitoneal inoculation of infectious elementary bodies after the second immunization with mouse spinal cord homogenate (MSCH). Control mice received equal numbers of infectious C. trachomatis or an equal number of colony forming units of S. flexneri (GD-11 strain). As shown in Fig. 1 A, mice immunized with MSCH and injected with live C. pneumoniae had a mean maximal disease severity score of 3.1, while those that received PBS, C. trachomatis or S. flexneri, had a mean maximal clinical score of 1.8, 2.1, and 1.2, respectively (P < 0.05). To determine if enhancement of EAE was specific to the immunogen, MSCH, we examined the effect of C. pneumoniae infection in MOGp35–55 induced EAE. The mean clinical score in mice that received live C. pneumoniae after immunization with MOG p35–55 was 2.3; in contrast, the mean clinical score in vehicle treated mice was 1.3, suggesting that the effect of C. pneumoniae infection on EAE was not specific to the immunizing antigen (Fig. 1 B). A comparison of viable (i.e., infectious) elementary bodies with heat-killed (i.e., noninfect-
Table I. Systemic Dissemination of C. pneumoniae and C. trachomatis after Intraperitoneal Injection of Naive Mice

	D3 spleen	D3 LN	D3 lung	D3 brain	D7 spleen	D7 LN	D7 lung	D7 brain	D11 spleen	D11 lung	D11 brain
C. trachomatis	2/2	2/2	ND	0/2	2/2	ND	0/2	1/2	ND	1/2	2/2
C. pneumoniae	2/2	ND	2/2	0/2	0/2	ND	2/2	0/2	ND	0/2	0/2

SJL/J mice were injected intraperitoneally (0.5 × 10^6) with either live C. trachomatis or C. pneumoniae organisms. Spleen, lung, mesenteric lymph nodes (LN), and brain were harvested on day 3, 7, and 11. RT-PCR for the presence of infectious organisms was performed using 16S primers for C. pneumoniae and C. trachomatis, respectively. ND, not done.
C. pneumoniae and CNS Demyelination

Treatment with Florfenicol reduced the severity of EAE. The mean maximal clinical score decreased from 2.3 in untreated mice to 1.4 in mice that received Florfenicol. The severity of EAE in antibiotic treated mice was similar to mice immunized with MSCH alone. Florfenicol did not affect the course of EAE in mice immunized with MSCH that did not receive intraperitoneal inoculation with infectious C. pneumoniae elementary bodies suggesting that the effect was unlikely to be due to any immunomodulatory effect of the antibiotic (Fig. 4).

Activation of MBP-reactive Lymphocytes after Infection with C. pneumoniae or C. trachomatis. We next examined if worsening of EAE in mice inoculated with C. pneumoniae was due to an increase in activation of MBP reactive Th1 cells. We determined the effect of in vivo infection with live chlamydia on lymphocyte proliferation and IFN-γ production to MBP in, in vitro cultures. Proliferation counts to MBP, obtained from mice immunized with MBP and infected with C. pneumoniae increased from background levels of 4,305 ± 120 to 28,854 ± 1,154 cpm to in the presence of 50 μg/ml of MBP. Background counts in C. trachomatis mice was 4,196 ± 1,492 cpm, which increased to 19,308 ± 932 cpm in the presence of MBP. In uninfected mice, proliferative response to MBP increased from 3,916 ± 186 to 15,068 ± 815, in the presence of MBP. The proliferative response to MBP was higher in both C. pneumoniae and C. trachomatis infected mice when compared with uninfected controls suggesting that concurrent infection with chlamydia can amplify an autoimmune response. A proliferative response to MBP was not seen in mice infected with C. pneumoniae alone, suggesting a lack of cross reactivity between C. pneumoniae antigens and MBP (Fig. 5). IFN-γ levels in lymphocyte culture supernatants were similarly higher in C. pneumoniae (1,020 pg/ml) and C. trachomatis infected mice (950 pg/ml) when compared with uninfected mice (612 pg/ml; P < 0.05, Fig. 5).

These observations suggest that unlike its different effects on paralytic EAE, both C. trachomatis and C. pneumoniae in-

![Figure 4. Effect of Florfenicol on severity of EAE in mice infected with C. pneumoniae. EAE was established as described in Fig. 1 A. Beginning on day 7, till day 18, C. pneumoniae-infected EAE mice were either treated with Florfenicol (subcutaneous 5 mg/kg daily) () or vehicle (□) (treated vs untreated, P < 0.01; n = 12). Uninfected mice immunized to induce EAE were treated with Florfenicol (●) or untreated (○).](image)

![Figure 5. Effect of infection C. pneumoniae and C. trachomatis on the development of an immune response to MBP. SJL/J female mice were immunized with MBP and infected with chlamydial organisms as described in Fig. 1 A. (Top) Proliferative response of splenocytes to MBP in infected and uninfected mice. The data represents the mean value and SD (standard deviation) of [3H]thymidine uptake (CPM) of triplicate determination at each point. (Bottom) IFN-γ production in culture supernatants in response to MBP. The levels of IFN-γ in supernatants were measured by ELISA at 48 and 72 h, respectively. The data represents the mean and standard value (SD) of triplicate determinations at each time point from a representative three experiments (CT, C. trachomatis; CP, C. pneumoniae).](image)
Infections are capable of enhancing T cell proliferation and IFN-γ production in response to MBP over that seen in uninfected controls.

Discussion

This study shows the effect of live C. pneumoniae infection on the amplification of the autoimmune disease after immunization with three different neural antigens (MSCH, MBP, and MOG). The accentuation of EAE was seen in the setting of direct infection of the CNS by C. pneumoniae. A causal association between C. pneumoniae infection and accentuated EAE can be inferred not only from the direct presence of replicating organism in the CNS, but also from the attenuation of EAE after therapy with Fluorophenicol. We believe that infection of the CNS is a requisite for worsening of EAE. Systemic infection with C. trachomatis enhanced the in vitro proliferative response to MBP that were higher than controls. Unlike C. pneumoniae, C. trachomatis did not infect the CNS in mice, which we believe is important to cause worsening of EAE.

One mechanism by which infections can potentially induce autoimmune disease is through molecular mimicry. After immunization with chlamydial peptides that show homology with MBP, rats developed severe EAE (14). In view of the link between chlamydial antigens and heart disease, sequence homology between heart myosin and C. pneumoniae antigens were screened and mice were immunized with antigens that showed homology with myocardial antigens (15). These two studies showed that cross-reactive epitopes between chlamydial and self antigens are capable of inducing different forms of autoimmune disease. Our study did not show evidence of molecular mimicry between C. pneumoniae and neural antigens in SJL mice. Mice infected with C. pneumoniae alone did not show a lymphocyte proliferative response to MBP. Although we cannot fully exclude the expansion of autoreactive T cells that cross-react with C. pneumoniae, we think this to be unlikely. Animals showed worsening of EAE induced by three different classes of encephalitogenic antigens, MBP, MOG, and MSCH. It is unlikely that molecular mimicry is present between chlamydial antigens and three different neural antigens.

Infectious agents are well known to rapidly expand the pool of immune cells that recognize the invading pathogen. An increase in population of T cells that recognize other antigens including those that react to self-proteins may occur consequent to the secretion of cytokines and may be sufficient to cause disease (16). In mouse keratitis model induced by HSV-1, both antigenic mimicry and bystander activation are thought to be responsible for tissue injury. In trying to reconcile the views of molecular mimicry and bystander activation in autoimmunity, it was proposed that these two processes may not necessarily be exclusive and may depend upon the circulating levels of autoreactive cells (18).

There has been considerable interest in the role of infectious agents in the development of MS. We have proposed that chlamydial infections should be considered as a potential candidate agent in MS (2). Our current studies suggest that C. pneumoniae can infect the CNS in mice. A number of case reports have suggested that C. pneumoniae cause acute CNS infections in humans (19, 20). Persistence of C. pneumoniae in the CNS is likely to provide an environment which can lead to the activation of autoreactive T cells and contribute to the pathogenesis of a chronic disease such as MS. The lack of worsening of EAE in mice receiving intraperitoneal inoculations of infectious C. trachomatis elementary bodies suggests that direct infection of CNS tissues is necessary to enhance EAE. C. pneumoniae and C. trachomatis disseminate to lymphoid organs and lung after parental administration of the pathogen (21–23). We did not observe dissemination of C. pneumoniae to the CNS in naive mice. We propose that infection of the CNS is a necessary for accentuation of EAE which may be facilitated in the presence of an ongoing CNS inflammation. We suggest that a similar scenario may occur in MS, in which a ubiquitous pathogen may amplify an autoimmune response. We predict that if an infectious agent can persist and amplify an immune response, it can modify the expression of a T cell-mediated autoimmune disease in an organ specific manner. A direct interplay between an infectious agent and autoimmunity is also likely to have immediate therapeutic implications.

We thank Dr. C. Stratton for a critical review of the manuscript.

This study was supported by the National Multiple Sclerosis Society, and the Dr. T. West and W. Weaver research funds.

Submitted: 11 March 2002
Revised: 28 October 2002
Accepted: 18 October 2002

References

1. Beatty, W.L., R.P. Morrison, and G.I. Byrne. 1994. Persistent Chlamydiae from cell culture to a paradigm for chlamydial pathogenesis. Microbiol. Rev. 58:686–699.
2. Yucesan, C., and S. Sriram. 2001. Chlamydia pneumoniae infection of the central nervous system. Curr. Opin. Neurol. 14:355–359.
3. Miller, S.D., C.L. Vanderlugt, W.S. Begolka, W. Pho, R.L. Yauch, Y. Katz-Levy, A. Carrizosa, and B.S. Kim. 1997. Persistent infection with Theiler's virus leads to CNS autoimmunity through epitope spreading. Nat. Med. 3:1133–1139.
4. Fairweather, D., Z. Kaya, G.R. Shellam, C.M. Lawson, and N.R. Rose. 2001. From infection to autoimmunity. J. Autoimmun. 16:175–186.
5. Sriram, S., C.W. Stratton, S. Yao, A. Tharp, L. Ding, J.D. Bannan, and W.M. Mitchell. 1999. C.pneumoniae infection of the CNS in MS. Ann. Neurol. 46:6–14.
6. Yao, S.Y., C.W. Stratton, W.M. Mitchell, and S. Sriram. 2001. CSF oligoclonal bands in MS include antibodies against Chlamyphila antigens. Neurology. 56:1168–1176.
7. Bulj-evac, D., H.Z. Flach, W.C. Hop, D. Hijdra, J.D. Laman, H.F. Savelkoul, F.G. van Der Meche, P.A. van Doorn, and R.Q. Hintzen. 2002. Prospective study on the relationship between infections and multiple sclerosis exacerbations. *Brain*. 125:952–960.

8. Noseworthy, J.H. 1999. Progress in determining the causes and treatment of multiple sclerosis. *Nature*. 399(Suppl. 6738): 40–47.

9. Martin, R., H.F. McFarland, and D.E. McFarlin. 1992. Immunology of demyelinating disease. *Annu. Rev. Immunol.* 10: 153–169.

10. Kurtzke, J.F. 1993. Epidemiologic evidence for MS as an infection. *Clin. Microbiol. Rev.* 6:382–427.

11. Steinman, L.S. 1999. Assessment of animal models of MS and demyelinating disease in the designs of rational therapy. *Neuron*. 24:511–514.

12. Du, C., M.W. Khalil, and S. Sriram. 2001. Administration of dehydroepiandrosterone suppresses experimental allergic encephalomyelitis in SJL/J mice. *J. Immunol.* 167:7094–7101.

13. Singh, A.K., M.T. Wilson, S. Hong, D. Olivares-Villagomez, C. Du, A.K. Stanic, S. Joyce, S. Sriram, Y. Koezuka, and L. Van Kaer. 2001. Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. *J. Exp. Med.* 194:1801–1811.

14. Lenz, D.C., L. Lu, S.B. Conant, N.A. Wolf, H.C. Gerard, J.A. Whittum-Hudson, A.P. Hudson, and R.H. Swanborg. 2001. A Chlamydia pneumoniae-specific peptide induces experimental autoimmune encephalomyelitis in rats. *J. Immunol.* 167:1803–1808.

15. Bachmaier, K., N. Neu, L.M. de la Maza, S. Pal, A. Hessel, and J.M. Penninger. 1999. Chlamydia infections and heart disease linked through antigenic mimicry. *Science*. 283:1335–1339.

16. Murali-Krishna, K. 1998. Counting antigen specific CD8 T cell: a reevaluation of bystander activation during viral infection. *Immunity*. 8:177–187.

17. Haring, J.S., L.L. Pewe, and S. Perlman. 2002. Bystander CD8 T cell-mediated demyelination after viral infection of the central nervous system. *J. Immunol.* 169:1550–1555.

18. Wucherpfennig, K.W. 2001. Mechanism for the induction of autoimmunity by infectious agents. *J. Clin. Invest.* 108:1097–1104.

19. Koski-niemi, M., M. Genacy, O. Salonen, M. Puolakkainen, M. Farkkila, P. Saikku, and A. Vaheri. 1996. *C. Pneumoniae* associated with CNS infections. *Eur. Neurol.* 36:160–163.

20. Korman, T.M., J.D. Turnidge, and M.L. Grayston. 1997. Neurologic complications of chlamydial infections: case report and review of the literature. *Clin. Inf. Dis* 25:847–851.

21. Perry, L.L., and S. Hughes. 1999. Chlamydial colonization of multiple mucosae following infection by any mucosal route. *Infect. Immun.* 67:3686–3689.

22. Cotter, T.W., K.H. Ramsey, G.S. Miranpuri, C.E. Poulsen, and G.I. Byrne. 1997. Dissemination of Chlamydia trachomatis chronic genital tract infection in gamma interferon gene knockout mice. *Infect. Immun.* 65:2145–2152.

23. Yang, Z., C. Kuo, and J.T. Grayston. 1995. Systemic dissemination of *Chlamydia pneumoniae* following intranasal inoculation in mice. *J. Infect. Dis.* 171:736–738.