Effects of Exercise Training on Cardiorespiratory Fitness and Biomarkers of Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

Xiaochen Lin, MS; Xi Zhang, PhD; Jianjun Guo, MD; Christian K. Roberts, PhD; Steve McKenzie, PhD; Wen-Chih Wu, MD; Simin Liu, MD, ScD; Yiqing Song, MD, ScD

Background—Guidelines recommend exercise for cardiovascular health, although evidence from trials linking exercise to cardiovascular health through intermediate biomarkers remains inconsistent. We performed a meta-analysis of randomized controlled trials to quantify the impact of exercise on cardiorespiratory fitness and a variety of conventional and novel cardiometabolic biomarkers in adults without cardiovascular disease.

Methods and Results—Two researchers selected 160 randomized controlled trials (7487 participants) based on literature searches of Medline, Embase, and Cochrane Central (January 1965 to March 2014). Data were extracted using a standardized protocol. A random-effects meta-analysis and systematic review was conducted to evaluate the effects of exercise interventions on cardiorespiratory fitness and circulating biomarkers. Exercise significantly raised absolute and relative cardiorespiratory fitness. Lipid profiles were improved in exercise groups, with lower levels of triglycerides and higher levels of high-density lipoprotein cholesterol and apolipoprotein A1. Lower levels of fasting insulin, homeostatic model assessment–insulin resistance, and glycosylated hemoglobin A1c were found in exercise groups. Compared with controls, exercise groups had higher levels of interleukin-18 and lower levels of leptin, fibrinogen, and angiotensin II. In addition, we found that the exercise effects were modified by age, sex, and health status such that people aged <50 years, men, and people with type 2 diabetes, hypertension, dyslipidemia, or metabolic syndrome appeared to benefit more.

Conclusions—This meta-analysis showed that exercise significantly improved cardiorespiratory fitness and some cardiometabolic biomarkers. The effects of exercise were modified by age, sex, and health status. Findings from this study have significant implications for future design of targeted lifestyle interventions. (J Am Heart Assoc. 2015;4:e002014 doi: 10.1161/JAHA.115.002014)

Key Words: biomarker • cardiometabolic health • cardiovascular disease prevention • exercise training

Cardiovascular disease (CVD) remains a leading cause of morbidity and mortality affecting ≈84 million people in the United States.1–3 Current guidelines recommend exercise for both primary and secondary prevention of CVD.4–6 Observational studies have associated exercise with lower CVD risk in populations free of preexisting CVD.7–9 Substantial evidence from secondary prevention studies also confirms better survival and reduced CVD recurrence after exercise interventions.10,11 Because of apparent ethical and feasibility issues, however, no long-term randomized controlled trials (RCTs) have directly investigated the benefits and risks of exercise training in relation to CVD incidence.12 Consequently, exercise

From the Department of Epidemiology, School of Public Health (X.L., W.-C.W., S.L.) and Division of Cardiology and Veterans Affairs Medical Center, Department of Medicine, Alpert Medical School (W.-C.W., S.L.), Brown University, Providence, RI; Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN (X.Z., Y.S.); Center for the Youth Sport Research and Development, China Institute of Sport Science, Beijing, China (J.G.); Geriatrics, Research, Education and Clinical Centers, VA Greater Los Angeles Healthcare System, Los Angeles, CA (C.K.R.); Department of Kinesiology, Center for Physical Activity in Wellness and Prevention, Indiana University-Purdue University at Indianapolis, IN (S.M.); Division of Endocrinology, Department of Medicine, Rhode Island Hospital, Providence, RI (S.L.).

Correspondence to: Simin Liu, MD, ScD, Department of Epidemiology and Medicine, Brown University, 121 South Main St, Providence, RI 02903. E-mail: Simin_liu@brown.edu and Yiqing Song, MD, ScD, Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, 714 North Senate Avenue, Indianapolis, IN 46202. E-mail: yiqsong@iu.edu

Received April 2, 2015; accepted April 30, 2015.

© 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

DOI: 10.1161/JAHA.115.002014
interventions among healthy populations have focused on
intermediate CVD biomarkers. Changes in circulating CVD
biomarkers and cardiorespiratory fitness (CRF) are reasonable
indicators for the favorable effects of exercise training on
cardiovascular health.

An important component of health-related fitness, CRF
refers to the capacity of respiratory and cardiovascular
systems to provide muscles with oxygen during sustained
and/or intense exercise. Available evidence has shown that
CRF can significantly improve the predictive ability of both
short- and long-term CVD risk when added to traditional risk
factors. In addition to serving as a diagnostic and prognostic
health indicator in clinical settings, CRF has been used as an
indicator of habitual exercise.

Traditional CVD biomarkers, such as non–high-density
lipoprotein cholesterol and high-sensitivity C-reactive protein,
may also have the potential to be used in CVD risk
prediction. Although most previous studies examining
the relationship between exercise and circulating biomarkers
focus on commonly measured CVD biomarkers, an increasing
number of studies are evaluating novel biomarkers. Evidence has implicated, for example, relevant biomarkers in insulin resistance and inflammation that contribute to CVD
development.

Nevertheless, much remains uncertain concerning the
effects of exercise on both traditional and novel CVD
biomarkers for targeted interventions and clinical evalua-
tions. The primary objective of this meta-analysis was
to assess the effects of exercise training on CRF and a variety
of both traditional and novel circulating CVD biomarkers.
Furthermore, we aimed to investigate the sources of heter-
ogeneity, especially by potential effect modifiers such as age,
sex, obesity, lifestyle, preexisting conditions (type 2 diabetes,
hypertension, hyperlipidemia, or metabolic syndrome), and
intervention duration and intensity.

Methods

Data Sources and Searches
We developed and followed a standardized protocol to do this
meta-analysis in accordance with the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) guide-
lines. Two investigators (X.L., X.Z.) independently conducted
literature searches of Medline, Embase, and the Cochrane
Central Register of Controlled Trials published from January
1965 (index date) to March 2014, using keywords and Medical
Subject Headings (Table 1). All relevant studies and review
articles (including meta-analysis) and the reference lists of the
identified articles were checked manually. Any disagreements
between 2 investigators were resolved by consensus. Institu-
tional review board approval is not applicable because the
current study is a systematic review and meta-analysis, which is
not considered research involving human subjects.

Study Selection
Articles were included (1) if the study was an RCT that
assigned at least 1 group of participants to exercise training
and 1 group to control and (2) if CRF (absolute and relative
maximal oxygen uptake) or circulating CVD biomarkers of lipid
and lipoprotein metabolism, glucose intolerance and insulin
resistance, systemic inflammation, or hemostasis were mea-
sured at baseline and at the end of the trial.

All abstracts about RCTs reporting the effect of exercise
training on CVD-related biomarkers or CRF were included for
screening. We excluded studies (1) if the study design was not
a RCT; (2) if the exercise intervention was acute (≤1 week),
because we are interested in the effects of exercise
interventions of moderate to long duration; (3) if interventions
were based on education or counseling rather than a
structured exercise training assignment; (4) if maximal oxygen
consumption, or VO2max, was indirectly calculated through
heart rate or fixed time testing and no other biomarkers of
interest to this study were reported; (5) if levels of circulating
biomarkers were not directly measured; (6) if values of
outcome measures at the end of trials were not reported; (7) if
participants had severe chronic diseases (preexisting CVD,

Table 1. Search Strategy for Medline

	exp Exercise/
1	exp Exercise/
2	physical activity.ab.
3	aerobic*.ab.
4	or/1 to 3
5	exp Biological Markers/
6	Exercise Tolerance/
7	Exercise Test/
8	exp Oxygen Consumption/
9	Physical Fitness/
10	or/5 to 9
11	randomized controlled trial.pt.
12	controlled clinical trial.pt.
13	Randomized Controlled Trials/
14	Random Allocation/
15	Intervention Studies/
16	or/11 to 15
17	4 and 10
18	17 and 16
19	limit 18 to English language
20	limit 19 to humans
Data Extraction and Quality Assessment
In total, 6135 articles were retrieved from the literature search. We excluded 5796 articles after abstract review and 170 after full-text examination. Data extraction was conducted independently by 2 investigators (X.L., X.Z.), and discrepancies were resolved through consensus. The following information was extracted from all eligible studies: general information (first author’s name, article title, and country of origin), study characteristics (study design, eligibility criteria, randomization, blinding, cointervention, dropout rate, and reason for dropping out), participant characteristics (age, sex, ethnicity, body mass index, life style, health status, and number of participants in each group), intervention and setting (exercise type, duration, intensity, and supervision), and outcome measures (definition of outcomes, statistical techniques, pre- and postintervention means, standard deviation, sample size of each arm, and adverse events). Maximal oxygen uptake VO2max was measured directly and determined based on the highest VO2 obtained prior to volitional fatigue. In this meta-analysis, we focused on biomarkers in blood samples, including plasma, serum, and whole blood. All samples for fasting glucose and insulin measurement in the studies were collected after >10 hours of fasting.

Data Synthesis and Analysis
Methodological quality was assessed by 2 investigators (X.L., X.Z.) using the Cochrane Collaboration’s tool for assessing risk of bias.29 This included random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting, and other sources of bias. For each trial, the risk of bias was reported as low risk, unclear risk, or high risk. Disagreement was resolved by discussion. All eligible comparisons from each trial were extracted separately according to exercise intensity. The criteria for classifying exercise interventions as moderate exercise or vigorous exercise are summarized in Table 2. If the intensity measures were not reported in individual studies, maximum heart rate, maximum heart rate percentage, speed of running, metabolic equivalent, oxygen uptake, or relative metabolic rate were used to classify exercise intensity. To maintain independence, the most vigorous intervention and the control group in each trial were included in the primary analysis if multiple training groups of different intensities were compared with a single control group. Sensitivity analyses were performed by conducting separate analyses of all eligible comparisons for moderate and vigorous exercise interventions, respectively.

Mean levels and standard deviations of CRF and CVD biomarkers after the exercise interventions from individual trials were used to calculate weighted mean differences (WMDs) and 95% CIs using DerSimonian and Laird random-effects models.30 Between-study heterogeneity was examined using Q statistics and I² statistics.31,32 I² ≤25%, 50%, and 75% is suggestive, respectively, of low, medium, and high heterogeneity. Egger’s tests were used to formally test publication bias.33 If there was any evidence of publication bias, the trim and fill method was used to evaluate the impact of publication bias.34

All eligible trials were analyzed in subgroup analyses conducted within the strata of the predetermined potential modifiers, including age (mean or median ≤50 versus >50 years), sex (women versus men), body mass index (obese versus nonobese), lifestyle (active versus sedentary), health status (having at least 1 of the following comorbidities: type 2 diabetes, hypertension, hyperlipidemia, and metabolic syndrome versus none), and trial duration (≥16 versus <16 weeks). Obesity was defined as body mass index ≥30 kg/m². Active lifestyle was defined according to the report of individual trials. Health status was confirmed by clinical diagnosis or reported medication use. Meta-regressions were performed to evaluate the overall impact of potential modifiers. Two-sided P≤0.05 was used as the significance level except for the Q statistic and the Egger’s tests (P=0.10).35 All statistical analyses were performed with Stata statistical software version 12 (Stata Corp).
Results

Figure 1 shows the number of trials included in the analysis for each outcome. A total of 7487 participants aged between 18 and 90 years, from 169 articles based on 160 RCTs, were included in the meta-analysis. Characteristics of eligible studies are summarized in Table 3. Among all participants, 4276 (57.1%) were women; 3211 (42.9%) were men; 5845 (78.1%) were free of type 2 diabetes, hypertension, hyperlipidemia, or metabolic syndrome; and 1640 (21.9%) had at least 1 of those conditions. The median duration of trials was 12 weeks (range: 2 weeks to 2 years).
Study	Age, y	Sex	BMI, kg/m²	Duration, wk	Activity/Medical Condition	Exercise Type, Intensity and Cointerventions	N_T/N_C	Marker
Abderrahman, 2013	Mean: 20.6	Male only	Mean: 22.8	7	NR/Health	Running/Vigorous/No	9/6	Absolute CRF, Relative CRF
Ahmaidi, 1998	53 to 74	NR	NR	12	Sedentary/Health	Walking/Jogging/Vigorous/No	11/11	Absolute CRF, Relative CRF
Aldred, 1995	41 to 55	Female only	T: 24.8±1.0 C: 26.8±0.8	12	Sedentary/Health	Walking/Moderate/No	11/11	TC, HDL-C2 LDL-C, FFA
Ashutosh, 1997	Mean: 26.2	Female only	Overweight or obesity	46	NR/Health	Aerobic exercise/NR/Dietary intervention	9/6	Absolute CRF, Relative CRF
Asikainen, 2002	48 to 63	Female only		24	Sedentary/Health	Walking/Vigorous/No	20/38	Relative CRF
Baker, 1986	Mean: 58.2	Male only	NR	20	Sedentary/Health	Aerobic training/Vigorous/No	20/14	Absolute CRF, Relative CRF, TC, HDL-C, LDL-C, VLDL-C
Balducci, 2010, 2012	C: 58.8±8.6 T: 58.8±8.5	NR	C: 31.9±4.6 T: 31.2±4.6	52	Sedentary/Diabetes mellitus	Aerobic and resistance training/Moderate/No	288/275	Relative CRF, TC, TG, HDL-C, LDL-C, CRP, Fasting glucose, Insulin, HOMA-IR HbA1c
Beavers, 2010	60 to 79	Female: 67%	>28.0	78	Active/Health	Walking and interactive, health education in control	97/93	Leptin
Bell, 2010	Male: 49±11 Female: 50±9	NR	Mean: 30	24	Sedentary/Health	Walking/Moderate/No	43/45	Absolute CRF, Relative CRF, TC, TG, HDL-C, LDL-C, Fasting glucose
Bermon, 1999	67 to 80	Male: 16	T: 24.9±0.5 C: 25.9±0.6	8	Sedentary/Health	Strength training/Vigorous/No	16/16	IGF-1, IGF-BP
Biddle, 2011	Mean: 34.8±12.6	Female 13	Mean: 36.3±6.7	4	Sedentary/Health	Small-sided games-based exercise/NR/No	9/7	Absolute CRF, Relative CRF, TC, TG, HDL-C, LDL-C, CRP, Fasting glucose, HbA1c
Blumenthal, 1991	Mean: 26.9	NR	60	60	Sedentary/Health	Aerobic exercise or yoga/Vigorous/No	15/15	Absolute CRF, Relative CRF
Blumenthal, 1999	29 to 59	Male: 62%	Mean: 26.9	16	NR/untested mild hypertension	Aerobic exercise training/Jogging	39/22	Absolute CRF, Relative CRF
Boardley, 2007	≥65	Male: 27%	NR	16	Sedentary/Health	Resistance training and aerobic walking/Moderate/No	33/35	TC, TG, HDL-C, LDL-C
Bofeuf, 2011	59 to 73	Female: 52.6%	Mean: 26.2±2.6	24	Sedentary/Health	Resistance training/Vigorous/Vitamins C/E supplementation	17/12	TC, TG, HDL-C, LDL-C
Boreham, 2000	18 to 22	Female only	NR	7	Sedentary/Health	Stair climbing/Moderate/No	12/10	TC, HDL-C
Study	Age, y	Sex	BMI, kg/m²	Duration, wk	Activity/Medical Condition	Exercise Type, Intensity and Co-interventions	N₁/N₀	Marker
-------------------------------	--------------	----------------------	------------	--------------	-----------------------------	---	-------	---
Boudou, 2005^2	Mean: 45.4±7.2	Male only	Mean: 29.6±4.6	8	NR/Diabetes mellitus	Endurance exercise/ Vigorous/No	8/8	Adiponectin, Leptin, Insulin
Bourque, 1997^3	23 to 43	Female only	Mean: 23.1±4.9	12	Sedentary/Health	Endurance exercise/ Vigorous/No	6/7	Relative CRF
Braith, 1994^4	60 to 79	Female: 54.5%	NR	24	Sedentary/Health	Walking/Vigorous/No	14/11	Relative CRF
Broeder, 1992^5	18 to 35	Male only	Mean: 25.3	12	NR/Health	Walk or jog/Vigorous/No	15/19	Relative CRF
Broman, 2006^6	69±4	Female only	NR	8	NR/Health	In deep water running/Walking/Vigorous/No	15/9	Absolute CRF, Relative CRF
Burr, 2011^7	Mean: 26	NR	NR	6	Sedentary/Health	Vehicle riding/Vigorous/No	34/12	Relative CRF, Fasting glucose
Camargo, 2005^6	Mean: 29	Male only	Mean: 27.3	12	Sedentary/Health	Aerobic training/Moderate/No	7/7	Relative CRF
Campbell, 2007^9	40 to 75	Female only	29.9 to 28.7	52	Sedentary/Health	Aerobic Exercise/Moderate/No	17/15	Absolute CRF, Relative CRF
Canuto, 2012^10	18 to 64	Female only	Mean: 34.8	12	NR/Health	Resistance training/Moderate/Education	29/30	TC, TG, HDL-C, LDL-C, CRP
Carroll, 2012^11	T: 39.3±7.8	Female only	T: 39.9±7.4	12	Sedentary/Health	Treadmill walking/Moderate/Lifestyle intervention	22/22	Absolute CRF, Relative CRF
Chan, 2013^12	Mean: 54±11	Female only	Mean: 31±7	10	Sedentary/ Hypertension	Treadmill walking/Vigorous/Education	10/13	Relative CRF
Chandler, 1996^13	60 to 79	Female: 38.6%	NR	24	NR/Health	Endurance training/Moderate/No	16/11	Relative CRF, PAI-1
Cho, 2011^14	34 to 60	Female only	Mean: 25.6	12	Sedentary/Health	Walking/Moderate/No	13/10	Relative CRF, TG, HDL-C, FFA, Fasting glucose, Insulin, HbA1c
Christiansen, 2010^15	18 to 45	Female: 38	30 to 40	12	Sedentary/Health	Aerobic exercise/Vigorous/Dietary intervention	21/19	Absolute CRF, TC, TG, HDL-C, FFA, IL-6, IL-18, Adiponectin, Fasting glucose, Insulin, HOMA-IR
Church, 2007^16	45 to 75	Female only	25 to 43	24	Sedentary/Health	Aerobic exercise/Moderate/No	103/102	Absolute CRF, relative CRF, TC, HDL-C, LDL-C, Fasting glucose
Cioc, 2011^17	20 to 30	Female only	Mean: 23.78	16	Sedentary/Health	Endurance exercise/Vigorous/No	11/12	Relative CRF, TC, TG, HDL-C, LDL-C, Fasting glucose, Insulin, HOMA-IR
Coker, 2009^18	65 to 90	Female: 50%	26 to 37	12	NR/Health	Cycle ergometer/Moderate/No	6/6	Absolute CRF

Continued
Table 3. Continued

Study	Age, y	Sex	BMI, kg/m²	Duration, wk	Activity/Medical Condition	Exercise Type, Intensity and Cointerventions	N₁/N₂	Marker
Cortez-Cooper, 2008⁶	40 to 80	Female: 73.8%	<30	13	Sedentary/Health	Aerobic exercise strength training vs stretching/ Moderate/No	12/12	Relative CRF, TC, TG, HDL-C, LDL-C, Endothelin-1, Fasting glucose
Cox, 1993⁷	20 to 45	Male only	Mean: 26.3 (25.7 to 26.9)	4	Sedentary/Health	Not report/Vigorous/Drink low-alcohol beer or continue their normal drinking habits	19/16	TC, TG, HDL-C, HDL-C₂, HDL-C₃, LDL-C, Apo AI, Apo All, Apo B
Cox, 2003⁸	Mean: 42.4±5.0	Male only	Overweight or obesity	16	Sedentary/ Hypertension	NR/Moderate & vigorous/ Dietary intervention and usual dietary	13/17	Absolute CRF
Dalleck, 2009⁹	45 to 75 year	Female only	Normal	12	Sedentary/Health	NR/Moderate/No	8/10	Absolute CRF, Relative CRF, TC, TG, HDL-C, LDL-C, Fasting glucose
De Vito, 1999¹⁰	60 to 70	Female only	NR	12	Sedentary/Health	Walking/Moderate/No	11/9	Absolute CRF, Relative CRF
Dimeo, 2012¹¹	42 to 78	Female: 58%	Mean: 29.4	12	NR/Hyperlipidemia	Walking on a treadmill/NR/ No	22/25	Relative CRF
Dipietro, 2006¹²	62 to 84	Female only	Mean: 27.3	36	Sedentary/Health	Aerobic training/Moderate/ No	9/7	Relative CRF, FFA, Fasting glucose, Insulin
Duncan, 1991¹³	20 to 40	Female only	NR	24	Sedentary/Health	Walk/Moderate/No	12/13	Relative CRF, TC, TG, HDL-C, LDL-C
Duscha, 2005¹⁴	40 to 65	NR	25 to 35	36	NR/Hyperlipidemia	Walking/Moderate/No	25/37	Absolute CRF, Relative CRF
Eguchi, 2012¹⁵	20 to 65	Female only	Mean: 25.1±3.9	12	NR/Health	Endurance training using bicycle ergometers/ Moderate/No	8/10	Absolute CRF, Relative CRF, TC, TG, HDL-C, LDL-C, Fasting glucose, HbA1c
Fatouros, 2005¹⁶	65 to 78	Male only	28.7 to 30.2	24	Sedentary/Health	Resistance exercises/ Moderate/No	12/10	Relative CRF, Adiponectin, Leptin, Fasting glucose, HOMA-R
Finucane, 2010¹⁷	67.4 to 76.3	Female: 44%	Mean: 27.2	12	NR/Health	Cycle ergometer/Moderate/ No	48/48	TC, TG, HDL-C, LDL-C, Fasting glucose, HbA1c
Friedenreich, 2011¹⁸	50 to 74	Female only	22 to 40	52	Sedentary/Health	Aerobic exercise/Vigorous/ No	154/154	Adiponectin, Leptin, Fasting glucose, Insulin, HOMA-R, IGF-1, IGF-BP
Garber, 1992¹⁹	24 to 50	Female: 75%	NR	8	Sedentary/Health	Walk-jog/Moderate/No	13/9	Relative CRF
Geogiades, 2000²⁰	≥29	Female: 44%	25 to 37	24	Sedentary/ Hypertension	Aerobic exercise/Vigorous/ No	36/19	Relative CRF
Gormley, 2008²¹	18 to 31	Female: 65.5%	Mean: 24.3	6	Sedentary/Health	Aerobic/Moderate/No	14/13	Relative CRF

Continued
Study	Age, y	Sex	BMI, kg/m²	Duration, wk	Activity/Medical Condition	Exercise Type, Intensity and Cointerventions	N₁/N₂	Marker	Marker
Gram, 2010³⁵	25 to 80	Female: 45.6%	NR	52	NR/DM	Strength training and aerobic exercise/Moderate/No	21/20	Absolute CRF, TC, HDL-C, LDL-C, HbA1c	Absolute CRF, TC, HDL-C, LDL-C, HbA1c
Grandjean, 1996³⁶	NR	Female only	NR	24	Sedentary/Health	Walking and jogging and cycling/Vigorous/No	20/17	Absolute CRF, TC, TG, HDL-C, LDL-C, VLDL-C	Absolute CRF, TC, TG, HDL-C, LDL-C, VLDL-C
Gray, 2009³⁷	18 to 65	Female: 77%	Mean: 28.6	12	Sedentary/Health	Pedometer-based walking/Moderate/No	24/24	CRP, IL-6, TNF-α, Fasting glucose, Insulin, HOMA-IR	CRP, IL-6, TNF-α, Fasting glucose, Insulin, HOMA-IR
Guadalupe-Grau,	Mean: 23.9±2.4 Female: 34.8%	C: 24.0±3.6 T: 22.8±2.0	9	Active/Health	Strength combined with plyometric jumps training/Vigorous/No	8/15	Leptin	Leptin	
2009³⁸									
Hagan, 1986³⁹	Mean: 36.6	Female: 50%	Normal	12	Sedentary/Health	Aerobic training/Moderate/Dietary training	12/12	Absolute CRF, Relative CRF, TC, TG, HDL-C, LDL-C, VLDL-C	Absolute CRF, Relative CRF, TC, TG, HDL-C, LDL-C, VLDL-C
Hass, 2001³⁰	35 to 55	Female: 50%	NR	12	Sedentary/Health	NR/Moderate/No	17/9	Absolute CRF, Relative CRF	Absolute CRF, Relative CRF
Hendrickson,	18 to 26	Female only	NR	12	Active/Health	Aerobic endurance and strength training/Vigorous/No	13/10	Relative CRF	Relative CRF
2010³¹									
Heydari, 2013³²	Mean: 24.9±4.3 Male only	Mean: 28.7±3.1	12	Sedentary/Health	High-intensity intermittent exercise/Vigorous/No	20/18	Absolute CRF, Relative CRF	Absolute CRF, Relative CRF	
Heydari, 2013³²	Mean: 24.9±4.3 Male only	Mean: 28.7	12	Active/Health	High-intensity intermittent exercise/Vigorous/No	25/21	Absolute CRF, Relative CRF	Absolute CRF, Relative CRF	
Hilberg, 2013³³	T: 49±6 C: 48±6 Male only		12	NR/Health	NR/Vigor/No	22/22	Relative CRF	Relative CRF	
Hiruntrakul,	18 to 25	Male only	C: 21.35±3.5 T: 20.99±3.35	12	Sedentary/Health	Aerobic exercise/Moderate/No	19/18	Relative CRF, HDL-C	Relative CRF, HDL-C
2010³⁴									
Ho, 2012³⁵	40 to 66	Female: 83.5%	25 to 40	12	Sedentary/Health	Aerobic resistance training/Moderate/No	15/16	Relative CRF, TC, TG, HDL-C, LDL-C, Fasting glucose, Insulin	Relative CRF, TC, TG, HDL-C, LDL-C, Fasting glucose, Insulin
Hu, 2009³⁶	20 to 45	Male only	NR	10	Sedentary/Health	Progressive strength training/Moderate/No	48/21	Absolute CRF, Relative CRF	Absolute CRF, Relative CRF
Huttunen, 1979³⁷	40 to 45	Male only	NR	16	Sedentary/Health	Walking, Jogging, Swimming, Skiing, or Cycling/Moderate/No	44/46	Relative CRF, HDL-C, Apo Al, Apo All	Relative CRF, HDL-C, Apo Al, Apo All
Tsuji, 2000³⁸	60 to 81	Female: 53%	NR	25	Active/Health	Endurance session with a bicycle ergometer, and a resistance exercise training session using rubber films/Moderate/Education	31/33	Relative CRF	Relative CRF
Study	Age, y	Sex	BMI, kg/m²	Duration, wk	Activity/Medical Condition	Exercise Type, Intensity and Co-interventions	N₁/N₂	Marker	
-----------------------	--------------	-------------------	------------	--------------	----------------------------	---	--------	-----------------------------	
Irwin, 2012⁹⁹	59 to 86	Female: 61%	NR	9	Sedentary/Health	Tai Chi Chih vs health education/Moderate/No	46/37	CRP, IL-6, IL-18	
Larose, 2011¹⁰⁰	39 to 70	Female 36.2%	Mean: 34.9	24	Sedentary/Diabetes mellitus	Aerobic or resistance training/Vigorous/No	60/63	Relative CRF, HbA1c	
Jessup, 1998¹⁰¹	61 to 77	Female: 52%	NR	16	Sedentary/Health	Treadmills and stair-climbers/Vigorous/No	11/10	Relative CRF	
Kadoglou, 2012¹⁰²	Mean: 61.3±2.1	Female: 67.6%	T: 32.74±4.05 C: 31.58±5.71	12	NR/Diabetes mellitus	Resistance Exercise/ Vigorous/No	23/24	Relative CRF, TC, TG, HDL-C, LDL-C, Fasting glucose, Insulin, HOMA-IR, HbA1c, Fibrinogen	
Karstoft, 2013¹⁰³	C: 57.1±3.0 T: 60.8±2.2	Female: 31%	NR	16	NR/Diabetes mellitus	Walking/Moderate/No	12/8	Absolute CRF, Relative CRF, TC, TG, HDL-C, LDL-C, Fasting glucose, Insulin, HbA1c	
King, 1989¹⁰⁴	Male 49±6 Female 47±5	Female: 50%	NR	24	Sedentary/Health	Aerobic/Exercise/Training/Vigorous/No	29/28	Relative CRF	
Kirk, 2003¹⁰⁵	19 to 30	Male only	27 to 32	36	Sedentary/Health	Aerobic exercise/Moderate/No	16/15	Absolute CRF, Relative CRF	
Kirk, 2003¹⁰⁵	19 to 30	Female only	27 to 32	36	Sedentary/Health	Aerobic Exercise/Moderate/No	25/18	Absolute CRF, Relative CRF	
Kiivniemi, 2007¹⁰⁶	T: 31±6 C 35±8	Male only	T: 24±2 C 25±1	4	Active/Health	Running/Vigorous/No	9/10	Absolute CRF, Relative CRF	
Kokkinos, 1996¹⁰⁷	35 to 76	Male only	T: 30±4 C 31±5	16	Sedentary/ Hypertension	Aerobic/Exercise/Moderate/No	15/19	TC, TG, HDL-C, HDL-C2, LDL-C, Fasting glucose, Insulin, Apo Al, Apo B	
Kraemer, 1997¹⁰⁸	Mean: 35.4±8.5	Female only	C: 28.2±4.0 T: 28.3±4.2	12	NR/Health	Aerobic endurance exercise/ Vigorous/Dietary intervention	9/8	Absolute CRF, Relative CRF, TG, Fasting glucose	
Krogh, 2012¹¹⁰	18 to 60	Female: 67%	NR	12	NR/Health	Aerobic exercise/Vigorous/No	56/59	Relative CRF, TC, TG, HDL-C, Fasting glucose, Insulin	
Krustup, 2009¹¹¹	20 to 43	Male only	Mean: 25.7	12	Sedentary/Health	Recreational soccer/Vigorous/No	12/10	Relative CRF, TC, HDL-C, LDL-C, Absolute CRF, CRP, Fasting glucose, Insulin	
Kukkonen-Harjula, 1998¹¹²	31 to 52	Female: 53%	18.5 to 32.7	15	Sedentary/Health	Walking/Training/Moderate/No	58/58	Absolute CRF, Relative CRF, Fibrinogen	
Kurban, 2011¹¹³	T: 53.77±8.2 C: 53.57±6.6	Female: 51.7%	T: 30.90±4.64 C: 30.23±4.74	12	Sedentary/Diabetes Mellitus	Walking/Moderate/No	30/30	Fasting glucose, HbA1c	
Table 3. Continued

Study	Age, y	Sex	BMI, kg/m²	Duration, wk	Activity/Medical Condition	Exercise Type, Intensity and Cointerventions	N₁/N₂	Marker
Laaksonen, 2000	20 to 40	Male only	Mean: 24.4	16	Active/Diabetes mellitus	Sustained running/Moderate/No	20/22	Relative CRF, TC, TG, HDL-C, LDL-C, Apo A1, Apo B, HbA1c
Labrunee, 2012	Mean: 52.7±8.2	Female: 82.6%	Mean: 38.5±7.6	12	NR/Diabetes mellitus	Cyclogrameter training/NR/No	11/12	Relative CRF, TC, TG, HDL-C, LDL-C, Fasting glucose, HOMA-IR, HbA1c
Lake, 1996	18 to 28	Male only	NR	6	Active/Health	Running/training/Moderate/No	8/7	Relative CRF
LaPerriere, 1994	18 to 40	Male only	NR	10	Sedentary/Health	Aerobic exercise/Vigorous/No	7/7	Relative CRF
Lee, 2003	18 to 30	Male only	NR	2	Sedentary/Health	Cycle ergometer/Vigorous/No	12/12	Relative CRF
Lee, 2012	30 to 50	Female only	≥25	14	NR/Health	NR/Moderate/No	8/7	Relative CRF, TC, TG, HDL-C, LDL-C, Fasting glucose, IL-6, TNF-α
LeMura, 2000	Mean: 20.4±1	Female only	T: 20.8±2.1 C: 21.8±2.3	16	Sedentary/Health	Resistance training and aerobic training/Vigorous/No	10/12	Relative CRF, TC, TG, HDL-C, LDL-C
Libardi, 2012	T 48.6±5.0 C 49.1±5.5	Male only	T: 27.5±4.1 C: 24.7±3.3	24	Sedentary/Health	Resistance training/Moderate/No	12/13	Relative CRF, TC, TG, HDL-C, LDL-C, CRP, IL-6, TNF-α, Fasting glucose
de Lima, 2012	20 to 35	Female only	C: 23.0±2.4 T: 22.8±3.6	12	Sedentary/Health	Muscular endurance/Moderate/No	10/8	Relative CRF
Lovell, 2011	70 to 80	Male only	NR	20	Active/Health	Cycle ergometer and stretching/Vigorous/No	12/12	Absolute CRF, Relative CRF
Martin, 1990	T: 58.6±4.6 C 60.6±7.4	Female only	NR	12	Sedentary/Health	Cycle ergometer training/Vigorous/No	14/14	Absolute CRF, Relative CRF
McAuley, 2002	25 to 70	Female: 67%	<27	16	NR/Health	NR/Moderate/Dietary intervention	29/23	TC, TG, HDL-C, LDL-C, Fasting glucose, Insulin
Meckling, 2007	20 to 62	Female only	25 to 30	12	NR/Health	Resistance training and endurance training/Moderate and vigorous/Dietary intervention or high protein	11/8	TC, TG, HDL-C, Fasting glucose, Insulin
Meyer, 2006	30 to 60	Female: 47%	NR	12	Sedentary/Health	Walking or running/Vigorous/No	12/13	Relative CRF
Miyaki, 2012	Mean: 60±6	Female only	NR	8	Sedentary/Health	Walking and cycling/Moderate/No	11/11	Relative CRF, TC, TG, HDL-C, LDL-C, Fasting glucose

DOI: 10.1161/JAHA.115.002014
Journal of the American Heart Association
Table 3. Continued

Study	Age, y	Sex	BMI, kg/m²	Duration, wk	Activity/Medical Condition	Exercise Type, Intensity and Co-interventions	N₁/N₂	Marker
Morey, 2012	60 to 89	Female: 3%	25 to 45 kg/m²	52	NR/Health	Enhanced fitness intervention/NR/No	180/122	TC, TG, HDL-C, LDL-C, Fasting glucose, Insulin, HOMA-IR HbA1c
Morgan, 2010	50 to 70	Females: 73.3%	NR	15	Sedentary/Health	Walk/Moderate/No	14/15	TC, HDL-C
Morton, 2010	T: 61+10 C: 63+9	Females: 22.2%	T: 32±7 C: 30.9±7.0	7	Sedentary/Diabetes mellitus	Walking/Vigorous/No	15/12	Absolute CRF, Relative CRF, Fasting glucose, HbA1c
Murphy, 2006	Mean: 41.5±9.3	Female: 64.9%	T: 26.8±5.6 C: 24.4±3.6	8	Sedentary/Health	Walking/Moderate/No	21/12	TC, TG, HDL-C, LDL-C, CRP
Murtagh, 2005	Mean: 45.7±9.4	Female: 64.6%	<30	12	Sedentary/Health	Walking/Vigorous/No	18/11	Relative CRF, TC, TG, HDL-C, LDL-C
Musa, 2009	21 to 36	Male only	Normal	8	Sedentary/Health	Interval running/Moderate/No	20/16	TC, HDL-C
Nemoto, 2009	Mean: 63±6	Female: 75.6%	C: 22.8	20	NR/Health	Walking/Moderate/No	43/37	Absolute CRF
Nicklas, 2005	50 to 70	Female only	25 to 40	20	Sedentary/Health	Calorie restriction and aerobic exercise/Moderate/dietary intervention	36/29	TG, HDL-C, LDL-C, Fasting glucose, Insulin
Niederseer, 2011	T: 66.6±2.1 C: 67.3±4.4	Female: 47.6%	T: 27.1±3.3 C: 25.4±2.8	12	Active/Health	Sking/Moderate/No	22/20	Relative CRF, TC, TG, HDL-C, LDL-C, CRP VCAM-1, ICAM-1, Endothelin-1, e_selectin
Nieman, 1993	67 to 85	Female only	Mean: 23.7	12	Sedentary/Health	Walk/Moderate/No	14/16	Relative CRF, TC, TG, HDL-C, LDL-C
Nieman, 1996	Mean: 45.6±1.1	Female only	Mean: 33.1±0.6	12	Active/Health	Walking/Moderate and vigorous/dietary intervention	22/26	Absolute CRF, TC, Fasting glucose
Nordby, 2012	20 to 40	Male only	25 to 30	12	Sedentary/Health	Endurance training (cycling, running, cross-training, or rowing)/Moderate/Dietary intervention	12/12	Absolute CRF, Relative CRF, Fasting glucose, Insulin, HbA1c
O’donovan, 2005	30 to 45	Male only	NR	24	Sedentary/Health	NR/Moderate/No	14/15	Absolute CRF, Relative CRF, TC, TG, HDL-C, LDL-C, Fibrinogen
Panton, 1999	70 to 79	Female: 53.1%	NR	24	Sedentary/Health	Aerobic and resistance training/NR/No	13/15	Relative CRF

Continued
Study	Age, y	Sex	BMI, kg/m²	Duration, wk	Activity/Medical Condition	Exercise Type, Intensity and Cointerventions	N₁/N₂	Marker
Phillips, 2012¹⁴⁴	62 to 67	Female only	Overweight or Obesity	12	Active/Health	Aerobic training/Vigorous/No	11/12	Leptin
Poehlman, 2000¹⁴⁵	18 to 35	Female only	C: 22±2	24	Sedentary/Health	Endurance training (N=14), resistance training/ Vigorous/No	14/20	Absolute CRF
Posner, 1992¹⁴⁶	60 to 86	Female: 61.9%	NR	16	Sedentary/Health	Cycle ergometer/Moderate/No	166/81	Absolute CRF, Relative CRF
Probst, 1991¹⁴⁷	≥70	Female only	Mean: 24.6	26	NR/Health	Walking on a treadmill/Vigorous/No	10/6	Absolute CRF, Relative CRF
Pyka, 1994¹⁴⁸	64 to 78	Female: 60%	NR	104	NR/Health	Resistance exercise (walking and stretching)/ Moderate/No	8/6	IGF-1
Chow, 1987¹⁴⁹	50 to 62	Female only	NR	52	NR/Health	Aerobic exercise or aerobic and strengthening exercises/Vigorous/No	17/15	Relative CRF
Raz, 1988¹⁵⁰	24 to 26	Male only	Mean: 22.8	9	Sedentary/Health	Aerobic exercise/Vigorous/No	28/27	Relative CRF, TC, TG, HDL-C, HDL-C2, LDL-C, HbA1c
Ready, 1996¹⁵¹	≥50	Female only	NR	24	Sedentary/Health	Walk/Moderate/No	17/18	Absolute CRF, Relative CRF, TC, TG, HDL-C, LDL-C
Romero-Arenas, 2013¹⁵²	55 to 75	NR	Mean: 29.9	12	Active/Health	Resistance training/Moderate/No	16/10	Relative CRF
Santa-Clara, 2003¹⁵³ 2006¹⁵⁴	45 to 70	Female only	Caucasian-American T: 25±3	24	Sedentary/Health	Treadmill walking/Jogging, stationary cycling, and rowing/Vigorous/No	17/16	Relative CRF, IGF I
Santiago, 1995¹⁵⁵	22 to 40	Female only	≥31	40	Sedentary/ Hyperlipidemia	Walking/Vigorous/No	16/11	Relative CRF, TC, TG, HDL-C, LDL-C
Scanga, 1998¹⁵⁶	Mean: 38±7	Female only	C: 35.2±3.9 T: 36.6±4.3	8	NR/Health	Aerobic and resistance training/Moderate/Dietary intervention	10/12	Absolute CRF, Relative CRF
Seifert, 2009¹⁵⁷	C: 30±5 T: 32±6	Male only	25 to 30	12	Sedentary/Health	Endurance training/Moderate/Endurance training	10/7	Fasting glucose

Continued
Study	Age, y	Sex	BMI, kg/m²	Duration, wk	Activity/Medical Condition	Exercise Type, Intensity and Cointerventions	N₁/N₂	Marker
Lamina, 2011¹⁵⁸	50 to 70	Male only	20 to 30	8	Sedentary/Hypertension	Bicycle ergometer/Vigorous/No	112/105	Relative CRF
Sillanpaa, 2009¹⁵⁹	39 to 64	Female only	Normal	21	NR/Health	NR/Vigorous/	15/12	TC, TG, HDL-C, LDL-C, Fasting glucose, Insulin
Sloan, 2013¹⁶¹	T: 54.1±5.8	Female only	T: 29.2±4.9	16	Sedentary/Health	Walking/Moderate/No	16/16	Relative CRF
Spence, 2013¹⁶²	NR	Male only	T: 73.0±16.9	24	Active/Health	Endurance vs resistance/Moderate/No	10/13	Absolute CRF, Relative CRF
Stachenfeld, 1998¹⁶³	> 65	Female only	NR	24	Active/Health	Aerobic training/Vigorous/No	9/8	Relative CRF
Stein, 1992¹⁶⁴	T: 46.2±6.1	Male only	C: 45.0±6.1	8	Sedentary/Health	Aerobic exercise training/Moderate/No	19/14	Absolute CRF
Stensel, 1993¹⁶⁵	42 to 59	Male only	Normal	52	Sedentary/Health	Brisk/Walking/Moderate/No	24/24	TC, TG, HDL-C, LDL-C, VLDL-C, Apo Al, Apo B, Lp-A
Stensvold, 2010¹⁶⁶	Mean: 50.2±9.5	Female: 39.5%	C: 31.9±4.1	12	Sedentary/Health	Strength training vs aerobic interval training/Vigorous/No	11/10	Relative CRF, TC, TG, HDL-C, Fasting glucose, C-peptide, HbA1c
Strasser, 2009¹⁶⁷	>70	Females: 55.6%	Mean: 26.9	24	Sedentary/Health	Endurance training or– and resistance training/Vigorous/No	13/14	Relative CRF
Sung, 2012¹⁶⁸	>70	Female: 65%	NR	24	NR/Diabetes mellitus	Walking/Moderate/No	22/18	TC, TG, HDL-C, LDL-C, Fasting glucose, HbA1c
Takeshima, 2002¹⁶⁹	60 to 75	Female only	NR	7	Sedentary/Health	Stretching, endurance-type exercise (walking and dancing, 30 min), Resistance exercise/Vigorous/No	15/15	TC, TG, HDL-C, LDL-C
Takeshima, 2004¹⁷⁰	60 to 83	8 Males and 10 Females	NR	12	Sedentary/Health	Progressive accommodating circuit exercise/Vigorous/No	18/17	Absolute CRF, TC, TG, HDL-C, LDL-C
Thomas, 1984¹⁷¹	18 to 32	Female only	NR	12	Active/Health	Running/Vigorous/No	9/6	Absolute CRF, Relative CRF, TC, TG, HDL-C
Thompson, 2010¹⁷²	45 to 64	Male only	C: 28.0±2.7	24	Sedentary/Health	NR/Moderate/Dietary intervention	20/21	Relative CRF, TC, TG, HDL-C, CRP, IL-6, Fasting glucose, Insulin, HOMA-IR
Table 3. Continued

Study	Age, y	Sex	BMI, kg/m²	Duration, wk	Activity/Medical Condition	Exercise Type, Intensity and Cointerventions	N₁/N₀	Marker
Tjonna, 2008¹⁷³	Mean: 52.3±3.7	Female: 53.6%	C: 32.1±3.3 T: 29.4±4.9	16	NR/Health	Aerobic interval training/ Vigorous/No	8/9	Relative CRF, TG, HDL-C, Adiponectin, Fasting glucose, Insulin, HOMA-B
Toledo, 2008¹⁷⁴	>30	Female: 62.5%	T: 34.8±1.1 C: 33.4±1.2	16	Sedentary/Health	Walking/Moderate/Dietary training	9/7	FFA, Fasting glucose, Insulin
Tseng, 2013¹⁷⁵	18 to 29	Male only		12	NR/Health	Aerobic, resistance or combined aerobic and resistance training/ Moderate/	10/10	TG, HDL-C, Fasting glucose
Tulppo, 2003¹⁷⁶	35±10	Male only	Moderate: 25±3 Vigorous: 25±2 C: 25±3	8	Sedentary/Health	Walking and Jogging/ Vigorous/No	16/11	Absolute CRF, Relative CRF
Utter, 1998¹⁷⁷	25 to 75	Female only		12	Sedentary/Health	Walk/Moderate and vigorous/Dietary intervention	21/22	Absolute CRF, Relative CRF
Van Aggel-Leijssen, 2001¹⁷⁸ 2001¹⁷⁹	C: 38.6±6.5 T: 39.3±7.7	Male only	C: 32.6±2.5 T: 32.0±2.1	12	Sedentary/Health	Cycling on an ergometer, walking, and aqua-jogging/Moderate/Energy restriction and dietary intervention	20/17	Absolute CRF, FFA, Fasting glucose, Insulin
Van Den Berg, 2010¹⁸⁰	18 to 30	Male only		7	Sedentary/Health	Motor-driven treadmill/ Moderate/No	9/13	Absolute CRF, Relative CRF
Vicente-Campos, 2012¹⁸¹	62 to 67	Female: 60%		28	Sedentary/Health	Aerobic training/Vigorous/ No	22/21	TC, TG, HDL-C, LDL-C
Vincent, 2002¹⁸²	60 to 83	Female and Male		24	Sedentary/Health	Resistance training/ Moderate/No	24/16	Relative CRF
Vissers, 2010¹⁸³	C: 44.8±11.4 T: 44.7±13.0	Female: 74.7%	C: 29.8±2.6 T: 33.1±3.4	52	Active/Health	Bicycle ergometer/ Vigorous/No	20/20	TG, HDL-C
Vitiello, 1997¹⁸⁴	Male: 66.9±1.0 Female: 67.1±1.7	Female: 40.3%		24	Sedentary/Health	Endurance or stretching/ Flexibility/Moderate/No	30/22	Relative CRF, IGF-1
Volpe, 2008¹⁸⁵	Mean: 44.2±7.2	Female only	Mean: 30.5±2.7	52	Sedentary/Health	Skiing/NR/Dietary intervention	14/14	TC, TG, HDL-C, LDL-C
Waib, 2011¹⁸⁶	47 to 56	Training: 60.8%	T: 30.0 (28.8 to 31.2) C: 29.6 (27.8 to 31.5)	15	Sedentary/ Hypertension	Aerobic training jogging on an electronic treadmill/ Moderate/No	55/24	Relative CRF, HOMA-IR, C-peptide

Continued
Study	Age, y	Sex	BMI, kg/m²	Duration, wk	Activity/Medical Condition	Exercise Type, Intensity and Cointerventions N	N₁/N₂	Marker
Wallman, 2009¹⁸⁷	18 to 64	Female: 75%	Mean: 30±1.2	8	Sedentary/Health	Aerobic Exercise/Vigorous/Dietary education	6/8	TC, TG, HDL-C, LDL-C
Wang, 2005¹⁸⁸	C: 24.7±2.3	Male only	T: 23.5±1.6	8	Sedentary/Health	Bicycle ergometer/Moderate/No	15/15	Relative CRF
Wang, 2011¹⁸⁹	T: 21.5±0.7	Male only	C: 22.9±0.4	4	Sedentary/Health	Bicycle ergometer/Moderate/No	10/10	Relative CRF
Warner, 1989¹⁹⁰	27 to 63	Female: 35.3%	NR	12	Sedentary/ Hyperlipidemia	Aerobic training/Vigorous/Fish oil intervention	7/7	Relative CRF, LDL-C, Apo B
Warren, 1993¹⁹¹	Mean: 73.6±0.7	Female only	Normal	12	Sedentary/Health	Walking or calisthenics control/Moderate/No	14/16	Relative CRF
Watkins, 2003¹⁹²	NR	NR	T: 33.4±4.5	24	Sedentary/Health	Aerobic training/Vigorous/Weight lost	14/9	Relative CRF, TC, TG, HDL-C, LDL-C, Fasting glucose, Insulin
Wong, 1990¹⁹³	Mean: 62.7±3.1	Male only	Normal	52	NR/Health	Treadmill walking/Moderate/No	69/69	Absolute CRF, Relative CRF
Woods, 1999¹⁹⁴	Mean: 65±0.8	NR	NR	24	Sedentary/Health	Aerobic exercise/Moderate/No	14/15	Absolute CRF, Relative CRF
Wu, 2011¹⁹⁵	45 to 64	Female: 71.9%	16.0 to 33.3	36	NR/Health	Aerobic exercise, stretching exercise/Vigorous/No	68/67	TG, Adiponectin, Fasting glucose, Insulin, HOME-IR
Yoshizawa, 2009¹⁹⁶	50 to 65	Female only	Mean: 23.7	8	Sedentary/Health	Resistance training/Moderate/No	12/13	Relative CRF, TC, TG, HDL-C, LDL-C
Yoshizawa, 2009¹⁹⁷	32 to 59	Female only	T: 24.6±1.1	12	Sedentary/Health	Aerobic exercise training/Moderate/No	12/12	Relative CRF, TC, HDL-C, LDL-C
You, 2006¹⁹⁸	50 to 70	Female only	25 to 40	20	Sedentary/Health	Treadmill/Moderate/Dietary intervention	13/14	Absolute CRF, Relative CRF
Ziemann, 2011¹⁹⁹	T: 21.6±1.1	Male only	C: 21.0±0.9	6	Active/Health	NR/Vigorous/Physical education	10/11	Absolute CRF, Relative CRF

Apo AI indicates apolipoprotein A1; Apo All, apolipoprotein A2; Apo B, apolipoprotein B; BMI, body mass index; C, control group; CRF, cardiorespiratory fitness; CRP, C-reactive protein; FFA, free fatty acid; HbA1c, glycosylated hemoglobin A1c; HDL-C, high-density lipoprotein cholesterol; HOMA-IR, homeostatic model assessment—insulin resistance; ICAM-1, intercellular adhesion molecule 1; IGF-1, insulin-like growth factor 1; IGF-BP, insulin-like growth factor binding protein; IL, interleukin; LDL-C, low-density lipoprotein cholesterol; NR, not reported; PAI-1, plasminogen activator inhibitor-1; T, training group; TC, total cholesterol; TNF, tumor necrosis factor; VLDL-C, very low-density lipoprotein cholesterol.
Description of Study Quality

The quality of studies included was heterogeneous (Figure 2). Random sequence generation was reported in 50 trials, and allocation concealment was reported in 20 trials; only 1 of these trials showed a high probability of selection bias because the random allocation was not concealed. The risk of potential performance bias was high in all trials because it was not possible to blind participants and trainers in exercise interventions. Among 26 trials reporting the blinding of outcome assessment, the risk of detection bias was high in only 1 trial. The risk of other bias was high in 46 trials because of poor compliance, the use of intention-to-treat analysis, limited sample sizes, or limitations discussed in individual articles.

Cardiorespiratory Fitness

A total of 67 and 123 independent comparisons were included in the primary analysis for absolute and relative CRF, respectively (Table 4). Both measures were significantly raised by exercise interventions (both \(P < 0.001 \)). The WMDs comparing exercise groups and control groups were 0.28 L/min (95% CI 0.23 to 0.33; \(I^2 = 93.7\% \); \(P < 0.001 \) for heterogeneity) for absolute CRF and 3.90 mL/kg per minute (95% CI 3.02 to 0.04; \(I^2 = 0.0\% \); \(P = 0.81 \) for heterogeneity) for relative CRF. The Egger’s tests showed evidence of publication bias in both instances (\(P < 0.05 \)). When applying the trim and fill method, the conclusion regarding the associations between exercise training and CRF did not change (filled analysis for absolute CRF: WMD 0.14 L/min, 95% CI 0.20 to 5.28, \(P < 0.001 \); filled analysis for relative CRF: WMD 2.56 mL/kg per minute, 95% CI 3.06 to 10.16, \(P < 0.001 \)).

Lipid and Lipoprotein Markers

The number of comparisons for each lipid and lipoprotein marker is shown in Table 4. Exercise training significantly lowered the levels of triglycerides (\(P = 0.02 \)) and increased the levels of high-density lipoprotein cholesterol (HDL-C; \(P < 0.001 \)) and apolipoprotein A1 (\(P < 0.001 \)). The WMDs were −5.31 mg/dL (95% CI −10.63 to −0.89; \(I^2 = 71.8\% \); \(P < 0.001 \) for heterogeneity) for triglycerides, 2.32 mg/dL (95% CI 1.16 to 3.87; \(I^2 = 87.5\% \); \(P < 0.001 \) for heterogeneity) for HDL-C, and 0.03 g/L (95% CI 0.02 to 0.04; \(I^2 = 0.0\% \); \(P = 0.81 \) for heterogeneity) for apolipoprotein A1. The \(P \) value of the Egger’s test for HDL-C was 0.03, suggesting possible publication bias; however, the results from the trim and fill analysis did not show substantial impact of publication bias on the estimates or the statistics (filled analysis: WMD 2.32 mg/dL, 95% CI 1.16 to 3.87, \(P < 0.001 \)).

Adipokine and Inflammatory Markers

Significant associations were found for interleukin-18 (WMD 18.3 pg/mL; 95% CI 0.10 to 36.6; \(I^2 = 0.0\% \); \(P = 0.95 \) for heterogeneity) but not for C-reactive protein, interleukin-6, or tumor necrosis factor \(\alpha \) in the primary analysis (Table 4). Although there was no effect on adiponectin, exercise training was significantly associated with reduced levels of leptin (WMD −2.72 ng/mL; 95% CI −4.03 to −1.42; \(I^2 = 82.10\% \); \(P < 0.001 \) for heterogeneity) (Table 4).

Markers of Glucose Intolerance and Insulin Resistance

Table 4 also shows the effects of exercise training on markers of glucose intolerance and insulin resistance. Fasting insulin
Table 4. WMDs in Cardiorespiratory Fitness and Circulating Concentrations of Biomarkers Between Exercise Groups and Control Groups

Outcome	Number of Participants	WMD	95% CI	\(P_{\text{WMD}} \)	
	Exercise	Control			
Cardiorespiratory fitness					
Absolute, L/min	67	1448	1272	0.28 0.23 to 0.33	-0.001
Relative, mL/kg per minute	122	2543	2249	3.94 3.48 to 4.39	-0.001
Lipid and lipoprotein markers					
TC, mg/dL	68	1754	1604	1.16 -9.28 to 11.99	0.82
TG, mg/dL	66	1851	1703	-5.31 -10.63 to -0.89	0.02
HDL-C, mg/dL	74	1967	1800	2.32 1.16 to 3.87	-0.001
HDL-C, mg/dL	5	91	92	0.39 -1.93 to 2.32	0.8
LDL-C, mg/dL	3	62	62	-0.08 -1.55 to 1.55	0.94
VLDL-C, mg/dL	7	130	102	-3.09 -8.51 to 2.32	0.29
Apo AI, g/L	5	63	62	0.03 0.02 to 0.04	-0.001
Apo AI, g/L	2	140	126	0.01 -0.01 to 0.03	0.2
Apo B, g/L	5	103	87	0.01 -0.01 to 0.03	0.4
FFA, mmol/L	6	70	62	-0.06 -0.14 to 0.03	0.21
Adipokine and inflammatory markers					
CRP, mg/L	13	598	554	-0.22 -0.78 to 0.34	0.44
IL-6, pg/mL	6	130	121	-0.05 -0.27 to 0.17	0.66
IL-18, pg/mL	2	67	56	18.3 0.10 to 36.6	0.05
TNF-\(\alpha \), pg/mL	3	43	44	0.21 -0.37 to 0.79	0.48
Adiponectin, \(\mu \)g/mL	6	273	267	0.52 -0.20 to 1.23	0.16
Leptin, ng/mL	7	312	315	-2.72 -4.03 to -1.42	-0.001
Glucose/insulin metabolism markers					
Glucose, mmol/L	49	1720	1569	-0.07 -0.13 to 0.004	0.06
Insulin, \(\mu \)U/mL	29	1272	1149	-1.03 -1.69 to -0.37	0.002
HOMA-IR	14	1033	912	-0.3 -0.49 to -0.11	0.002
HbA1c, %	19	972	878	-0.28 -0.42 to -0.14	-0.001
C-peptide, nmol/L	2	66	34	-0.08 -0.29 to 0.46	0.67
IGF-1, ng/mL	5	230	207	3.16 -2.98 to 9.31	0.31
IGF-BP3, \(\mu \)g/mL	2	170	164	-0.002 -0.23 to 0.23	0.99
Hemostatic factors					
Fibrinogen, g/L	2	36	39	-0.39 -0.75 to -0.03	0.04
Endothelin-1, pg/mL	2	34	32	-0.22 -0.62 to 0.19	0.29
Angiotensin II, pg/mL	2	24	25	-1.32 -2.11 to -0.54	0.001

Apo AI indicates apolipoprotein A1; Apo AII, apolipoprotein A2; Apo B, apolipoprotein B; CRP, C-reactive protein; FFA, free fatty acid; HbA1c, glycosylated hemoglobin A1c; HDL-C, high-density lipoprotein cholesterol; HOMA-IR, homeostatic model assessment–insulin resistance; IGF-1, insulin-like growth factor 1; IGF-BP3, insulin-like growth factor binding protein 3; IL, interleukin; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG, triglycerides; TNF-\(\alpha \), tumor necrosis factor \(\alpha \); VLDL-C, very low-density lipoprotein cholesterol; WMDs, weighted mean differences.

*Number of eligible independent comparisons.

levels; homeostatic model assessment–insulin resistance, or HOMA-IR; and glycosylated hemoglobin A1c were significantly lowered in exercise groups compared with control groups (\(P=0.002 \), \(P=0.002 \), and \(P<0.001 \)) (Table 4). The WMDs between exercise groups and control groups were \(-1.03 \mu \)U/mL (95% CI \(-1.69 \) to \(-0.37 \); \(I^2=79.8\% \); \(P<0.001 \)).
for heterogeneity) for fasting insulin. The WMD for HOMA-IR was -0.30 (95% CI -0.49 to -0.11; $I^2=77.5$%; $P<0.001$ for heterogeneity), whereas the WMD for hemoglobin A1c was -0.28% (95% CI -0.42 to -0.14; $I^2=80.1$%; $P<0.001$ for heterogeneity). The Egger’s tests for fasting glucose and insulin were not suggestive of substantial publication bias ($P=0.18$ and $P=0.24$, respectively). The results from the trim and fill analysis suggested that there was no substantial impact of publication bias on the results for HOMA-IR or hemoglobin A1c ($filled$ analysis for HOMA-IR: WMD -0.30, 95% CI -0.49 to -0.11, $P=0.002$; $filled$ analysis for hemoglobin A1c: WMD -0.28%, 95% CI -0.42 to -0.14, $P<0.001$).

Hemostatic Factors

The primary analysis examined 3 hemostatic factors: fibrinogen, endothelin-1, and angiotensin II (Table 4). On average, the levels of fibrinogen and angiotensin II were 0.39 g/L (95% CI 0.03 to 0.75; $I^2=45.0$% $P=0.18$ for heterogeneity) and 1.32 pg/mL (95% CI 0.54 to 2.11; $I^2=0.0$% $P=0.71$ for heterogeneity) lower in exercise groups than in control groups. No significant association was found for endothelin-1.

Subgroup Analyses

Our metaregression results suggest that the differences in CRF between exercise and control groups were modified by age and sex (absolute CRF: $P=0.008$ and $P<0.001$ for age and sex, respectively; relative CRF: $P=0.003$ and $P=0.001$ for age and sex, respectively) (Table 5, Figure 3). In addition, the effects of exercise on levels of total cholesterol ($P=0.04$), low-density lipoprotein cholesterol (LDL-C; $P=0.06$), and fasting insulin ($P=0.05$) were modified by the presence of at least 1 of the following comorbidities: type 2 diabetes, hypertension, hyperlipidemia, and metabolic syndrome (Tables 6 and 7, Figure 3). Sex differences in the effects of exercise were also found for fasting insulin ($P=0.04$).

After conducting metaregressions, analyses within subgroups were performed. Compared with older people, those aged <50 years appeared to have larger changes in CRF. Consistent with the metaregression results, men seemed to have greater exercise-related improvement in CRF, LDL-C, and fasting insulin than women did (Figure 3). Exercise interventions appreciably improved the levels of total cholesterol, LDL-C, and fasting insulin ($P=0.004$, $P=0.01$, and $P=0.01$).

Table 5. WMDs in Absolute and Relative Cardiorespiratory Fitness Comparing Exercise Intervention Groups to Control Groups by Specific Modifiers

Modifier	Absolute CRF (L/min)	Relative CRF (mL/kg per minute)								
	n	WMD	95% CI	I^2, %	$P_{interaction}$	n	WMD	95% CI	I^2, %	$P_{interaction}$
Age, y										
<50	16	0.47	0.34 to 0.60	93.4	0.008	28	5.60	4.56 to 6.65	85.1	0.003
\geq50	12	0.21	0.11 to 0.32	84.0		30	3.31	2.46 to 4.15	91.0	
Sex										
Women	25	0.19	0.13 to 0.24	92.3	<0.001	48	3.24	2.61 to 3.87	88.7	0.001
Men	27	0.42	0.32 to 0.53	90.4		37	5.43	4.32 to 6.53	90.2	
Lifestyle										
Active	9	0.33	0.15 to 0.51	97.0	0.89	14	3.62	1.39 to 5.85	96.5	0.83
Sedentary	43	0.31	0.25 to 0.37	88.4		88	3.85	3.36 to 4.33	90.5	
BMI										
Obese	19	0.28	0.20 to 0.36	93.3	0.65	19	3.85	2.83 to 4.87	94.9	0.96
Nonobese	20	0.26	0.17 to 0.36	89.1		46	4.01	3.22 to 4.79	85.7	
Health status										
Yes	8	0.33	0.07 to 0.60	88.2	0.84	16	3.34	2.63 to 4.04	74.8	0.46
None	53	0.27	0.22 to 0.33	94.6		94	4.10	3.51 to 4.71	92.7	
Duration, wk										
<16	39	0.33	0.25 to 0.40	91.3	0.09	69	3.83	3.12 to 4.54	90.7	0.72
\geq16	28	0.21	0.15 to 0.28	92.3		54	3.90	3.34 to 4.35	90.4	

BMI indicates body mass index; CRF, cardiorespiratory fitness; WMDs, weighted mean differences,

* P values for the impact of potential modifiers on the exercise effects.

†BMI in kg/m2; obese \geq30; nonobese <30.

‡Health status: participants having at least 1 of type 2 diabetes, hypertension, hyperlipidemia, or metabolic syndrome (yes) vs those with none of them (none).
respectively) in people having at least 1 of type 2 diabetes, hypertension, hyperlipidemia, and metabolic syndrome (Tables 6 and 7, Figure 3); no such improvements were observed among people without any of those health conditions ($P_{=0.44}$, $P_{=0.19}$, and $P_{=0.13}$, respectively) (Tables 6 and 7, Figure 3).

Sensitivity Analyses

In light of the potential impact of exercise intensity, we conducted separate analyses of all eligible comparisons for moderate and vigorous exercise interventions, respectively. The 95% CIs for moderate and vigorous interventions overlapped for both CRF measures and for all biomarkers (Table 8).

Discussion

This systematic review and meta-analysis of 160 RCTs involving 7487 participants indicates that exercise training may significantly improve CRF and CVD biomarkers of lipid and lipoprotein metabolism, glucose intolerance and insulin resistance, systemic inflammation, and hemostasis (Figure 4). In addition, we identified several important modifiers, including age, sex, and health status, that may partially modify the exercise effects on cardiovascular health.

The current meta-analysis shows that exercise, with relatively low risk of side effects compared with medications, may be an effective way to prevent CVD through impact on various biomarkers. Our results from the meta-analysis showed that exercise training significantly raised CRF, which has been demonstrated to be an independent predictor of CVD risk, CVD mortality, and total mortality. Lower levels of triglycerides and higher levels of HDL-C were observed in exercise groups. Aside from conventional CVD biomarkers, our meta-analysis also examined the effects on biomarkers that have not been well studied in previous studies, including biomarkers of insulin resistance and hemostasis, adipokines, and novel lipid and inflammatory biomarkers. We found evidence supporting the favorable effects of exercise on apolipoprotein A1, interleukin-18, fasting insulin, HOMA-IR, and hemoglobin A1c. Although the exact biological mechanisms are not clear, our findings indicate that exercise may exert cardioprotective effects by altering dyslipidemia, inflammation, insulin resistance, and hemostasis.19 As a major component of HDL, apolipoprotein A1 plays an important role in the cardioprotective effects of HDL-C.202-204 Our findings on apolipoprotein A1 strengthen the hypothesis that exercise may accelerate reverse cholesterol transport. Another plausible mechanism by which exercise improves the lipid profile is by regulation of lipoprotein lipase. Various studies have suggested that exercise may decrease the levels of triglycerides and increase the levels of HDL-C through its impact on lipoprotein lipase expression and activity, which were consistent with the results from our meta-analysis.205-207 In addition, our analysis also confirmed that the proportion of CVD risk that could have been reduced by exercise via effects on total cholesterol and LDL-C is much lower than what has been observed previously.208,209 Consequently, the results from our meta-analysis provide additional evidence in support of this hypothesis.
Modifier	Total Cholesterol (mg/dL)	Total Triglycerides (mg/dL)									
	n	WMD	95% CI	I², %	Pinteraction	n	WMD	95% CI	I², %	Pinteraction	
Age, y											
<50	12	−4.25	−10.1 to 1.55	0.0	0.43	12	−6.20	−14.2 to 2.66	34.3	0.21	
≥50	15	0.77	−5.41 to 7.35	72.5	13	1.77	−8.86 to 13.3	75.5			
Sex											
Women	28	1.16	−5.41 to 7.73	91.6	0.61	27	−1.77	−9.74 to 5.31	76.1	0.25	
Men	15	−0.39	−5.80 to 5.03	54.3	13	−8.86	−14.2 to −4.43	12.8			
Lifestyle											
Active	6	8.12	−7.73 to 24.0	92.5	0.71	5	−8.86	−30.1 to 12.4	61.2	0.64	
Sedentary	47	1.93	−13.9 to 17.4	99.1	43	−3.54	−9.74 to 2.66	75.1			
BMI†											
Obese	16	12.8	−22.4 to 47.6	99.7	0.20	19	−7.97	−14.2 to −1.77	53.0	0.70	
Nonobese	29	−1.55	−7.73 to 4.25	83.6	28	−5.31	−14.2 to 4.43	80.7			
Health status‡											
Yes	10	−11.2	−19.3 to −3.48	75.2	0.04	9	−9.74	−26.6 to 6.20	63.9	0.48	
None	47	−1.55	−5.41 to 2.32	81.6	44	−4.43	−11.5 to 2.66	75.2			
Duration, wk											
<16	39	3.87	−15.5 to 22.8	82.9	0.34	35	−6.20	−13.3 to 0.89	71.1	0.76	
≥16	29	3.09	−7.73 to 1.55	99.2	31	−5.31	−11.5 to 1.77	72.7			

BMI indicates body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; WMDs, weighted mean differences.

*P values for the impact of potential modifiers on the exercise effects.

†BMI in kg/m²: obese ≥30; nonobese <30.
‡Health status: participants having at least 1 of type 2 diabetes, hypertension, hyperlipidemia, or metabolic syndrome (yes) vs those with none of them (none).
of the notion that, in addition to modifying total cholesterol and LDL-C, exercise training may also affect cardiovascular health through other pathways. We found that people in exercise groups also had significantly lower levels of IL-18 and several adipokines, indicating that exercise may exert its effects via pathways of inflammation-characterized atherothrombosis and insulin resistance. A recent review suggested that exercise training may regulate white adipose tissue mass and the expression of adipokines.\(^{210}\) Obesity has become widely regarded as a chronic proinflammatory state, and substantial evidence indicates that chronic inflammation in adipose tissues, especially in white adipose tissue, could lead to insulin resistance.\(^ {211,212}\) Consequently, it is biologically plausible that by reducing the white adipose tissue mass and regulating the expression of adipokines, exercise could mitigate the chronic inflammation in adipose tissues, resulting in improved insulin sensitivity. Nevertheless, the exact mechanism remains to be elucidated.

The results from the subgroup analyses also may have important clinical implications. Consistent with previous evidence,\(^ {213}\) both moderate and vigorous exercise training appeared to have favorable effects on cardiorespiratory fitness and cardiometabolic health. We found that the differences in CVD risk between exercise groups and control groups were not significantly modified by lifestyle, body mass index, or intervention duration. These findings suggest that exercise interventions may have similar effects on cardiovascular health in populations regardless of these factors. Alternatively, the effectiveness of exercise training appeared to be different across strata of age, sex, and health status. The effects of exercise interventions on CRF measures were significantly modified by age, sex, and health status such that people aged <50 years, men, and people with type 2 diabetes, hypertension, hyperlipidemia, or metabolic syndrome appeared to benefit more from exercise interventions. We also observed significant modification of the effects on total cholesterol and LDL-C by preexisting medical conditions (type 2 diabetes, hypertension, hyperlipidemia, or metabolic syndrome), and that may explain why we did not find significant effects of exercise on total cholesterol and LDL-C. This finding also suggests that exercise interventions may provide significant benefits for people with those preexisting conditions by lowering total cholesterol and LDL-C.

Modifier	Fasting Glucose (mmol/L)				Fasting Insulin (\(\mu U/mL\))					
	n	WMD	95% CI	\(I^2\), %	\(P_{interaction}^*\)	n	WMD	95% CI	\(I^2\), %	\(P_{interaction}^*\)
Age, y										
<50	5	0.09	−0.11 to 0.29	91.3	0.57	4	−1.34	−3.44 to 0.76	76.9	0.22
≥50	7	0.01	−0.06 to 0.07	36.9	0.45	3	0.45	−1.23 to 2.13	75.6	
Sex										
Women	16	−0.06	−0.19 to 0.08	91.4	0.93	9	−0.27	−1.12 to 0.57	68.7	0.04
Men	9	−0.07	−0.25 to 0.12	84.3	0.64	6	−2.86	−3.55 to 2.17	0.0	
Lifestyle										
Active	2	−0.20	−0.74 to 0.34	99.0	0.63	0	NA	NA	NA	NA
Sedentary	29	−0.06	−0.16 to 0.03	80.2	0.83	17	−0.94	−1.75 to −0.13	78.5	
BMI\(^*\)										
Obese	20	−0.06	−0.20 to 0.07	90.7	0.90	13	−0.93	−2.18 to 0.32	82.0	0.88
Nonobese	18	−0.05	−0.17 to 0.07	80.5	0.86	10	−0.86	−1.52 to −0.19	32.8	
Health status\(^2\)										
Yes	9	−0.18	−0.40 to 0.05	0.0	0.40	6	−2.68	−4.67 to −0.70	75.2	0.05
None	27	−0.03	−0.11 to 0.06	87.2	0.70	14	−0.70	−1.60 to 0.21	77.5	
Duration, wk										
<16	30	−0.10	−0.22 to 0.03	90.0	0.70	13	−1.35	−2.50 to −0.20	79.3	0.58
≥16	19	−0.02	−0.09 to 0.06	47.5	0.83	16	−0.83	−1.83 to 0.17	78.7	

BMI indicates body mass index; NA, not available due to the lack of comparisons reported for active participants; WMDs, weighted mean differences.

\(^*P\) values for the impact of potential modifiers on the exercise effects.

\(^1\)BMI in kg/m\(^2\): obese ≥30; nonobese <30.

\(^2\)Health status: participants having at least 1 of type 2 diabetes, hypertension, hyperlipidemia, or metabolic syndrome (yes) vs those with none of them (none).
Table 8. WMDs in Cardiorespiratory Fitness and Circulating Concentrations of Biomarkers Comparing Moderate and Vigorous Exercise Intervention Groups to Control Groups

Outcome	Moderate		Vigorous			
	No.*	WMD	95% CI	No.*	WMD	95% CI
Cardiorespiratory fitness						
Absolute, L/min	39	0.22	0.16 to 0.29	33	0.31	0.22 to 0.40
Relative, mL/kg per minute	64	3.22	2.61 to 4.18	69	3.26	2.63 to 3.89
Lipids markers						
TC, mg/dL	41	4.25	−7.73 to 16.6	28	3.87	−31.7 to 39.8
TG, mg/dL	37	−5.31	−12.4 to 1.77	32	−5.31	−11.5 to 0.09
HDL-C, mg/dL	44	1.16	−0.39 to 2.71	34	2.17	0.39 to 5.03
HDL2-C, mg/dL	2	1.16	−0.77 to 3.48	2	1.55	−1.16 to 4.25
HDL3-C, mg/dL	1	−1.16	−5.80 to 3.87	2	0.04	−1.55 to 1.55
LDL-C, mg/dL	35	−3.09	−8.12 to 2.32	26	−4.64	−12.0 to 2.32
VLDL-C, mg/dL	5	−1.93	−5.41 to 1.93	2	−7.35	−22.9 to 6.19
Apo AI, g/L	4	0.03	0.02 to 0.04	1	0.00	−0.12 to 0.12
Apo AII, g/L	1	−0.001	−0.24 to 0.24	1	0.01	−0.01 to 0.03
Apo B, g/L	3	−0.01	−0.01 to 0.03	2	−0.02	−0.21 to 0.18
FFA, mmol/L	5	−0.06	−0.16 to 0.03	3	−0.04	−0.17 to 0.10
Inflammatory markers						
CRP, mg/L	9	−0.23	−1.01 to 0.55	4	0.04	−0.24 to 0.31
IL-6, pg/mL	5	0.02	−0.22 to 0.25	2	−0.39	−0.83 to 0.06
IL-18, pg/mL	1	14.0	−128 to 156	1	18.4	0.02 to 36.8
TNF-α, pg/mL	3	0.06	−0.48 to 0.60	1	−0.01	−0.93 to 0.91
Adiponectin, μg/mL	1	3.52	1.17 to 5.87	6	0.52	−0.20 to 1.23
Leptin, ng/mL	1	−0.70	−1.19 to −0.21	6	−2.56	−4.04 to −1.08
Insulin resistance markers						
Glucose, mmol/L	31	−0.04	−0.24 to 0.17	22	0.03	−0.08 to 0.12
Insulin, μU/mL	17	−0.91	−2.08 to 0.26	17	−1.32	−2.15 to −0.50
HOMA-IR	7	−0.30	−0.66 to 0.06	7	−0.47	−0.82 to −0.12
HbA1c, %	11	−0.28	−0.46 to −0.11	7	−2.71	−0.54 to −0.002
C-peptide, nmol/L	1	0.22	0.19 to 0.25	1	−0.18	−0.62 to 0.26
IGF-1, ng/mL	2	−4.64	−29.58 to 20.30	3	3.91	−2.87 to 10.69
IGF-BP3, μg/mL	0	NA	NA	2	−0.39	−0.75 to −0.03
Hemostatic factors						
Fibrinogen, g/L	0	NA	NA	2	−0.39	−0.75 to −0.03
Endothelin-1, pg/mL	2	−0.22	−0.62 to 0.19	0	NA	NA
Angiotensin II, pg/mL	0	−1.32	−2.11 to −0.54	0	NA	NA

Apo AI indicates apolipoprotein A1; Apo AII, apolipoprotein A2; Apo B, apolipoprotein B; CRP, C-reactive protein; FFA, free fatty acid; HbA1c, glycated hemoglobin A1c; HDL-C, high-density lipoprotein cholesterol; HOMA-IR, homeostatic model assessment–insulin resistance; IGF-1, insulin-like growth factor 1; IGF-BP3, insulin-like growth factor binding protein 3; IL, interleukin; LDL-C, low-density lipoprotein cholesterol; NA, not available due to the lack of comparisons reported; TC, total cholesterol; TG, triglycerides; TNF-α, tumor necrosis factor α; VLDL-C, very low-density lipoprotein cholesterol; WMDs, weighted mean differences.

*Number of eligible independent comparisons.

Strengths of this meta-analysis include the comprehensive and systematic review of both conventional and novel CVD biomarkers, detailed subgroup analyses for potential effect modifiers that have not been conducted previously, assessment of robustness with regard to exercise intensity, and evaluation of the risk of different bias. The 2008 Physical
Activity Guidelines Advisory Committee Report included a number of comprehensively systematic reviews and meta-analyses based mostly on observational studies. The evidence from RCTs has been relatively scarce, especially for novel cardiometabolic biomarkers. Our study is the first that synthesized evidence from the RCT setting and covered a comprehensive set of both traditional and novel biomarkers. Our findings are corroborated by several previous meta-analyses of RCTs, but the inclusion of both sexes, more studies, subgroup analyses, and sensitivity analyses allowed us to achieve higher precision in the estimates and to determine the effect modification in subgroups.

This meta-analysis had some limitations. First, the evidence for hemostatic factors is based on a limited number of available trials, and we were not able to synthesize evidence for some novel biomarkers, such as plasminogen activator inhibitor 1, lipoprotein(a), and homocysteine due to sparse available data. Second, subgroup analyses were restricted to outcomes with >20 studies included, and cutoff points used for categorizing modifiers were arbitrarily selected. Third, due to the heterogeneity of exercise training programs and the limited number of RCTs that provided separate data, this meta-analysis can neither perform a dose-response analysis nor distinguish exercise types. We maximized the utility of data regarding exercise duration and intensity available from original RCTs and found that exercise effects were not significantly different across subgroups defined by duration and intensity. Our findings are consistent with previous evidence showing that both moderate and vigorous exercise training has similarly favorable effects on cardiometabolic health. The duration threshold at which exercise exerts its effects needs further investigation. Fourth, to maintain independence, we selected 1 comparison from each trial with exercise groups of different intensities compared with 1 single control group. The results may potentially be subject to bias by excluding several eligible intervention groups with moderate intensity; however, we found that the direction and magnitude of the effects on most of the outcome measures were quite similar between moderate and vigorous interventions (Table 8). Finally, like any meta-analysis, our results may be prone to publication bias and inherent weaknesses of individual studies.

In conclusion, this large meta-analysis of RCTs clearly shows that exercise training significantly improved CRF and some traditional and novel CVD biomarkers in adults without CVD, indicating the causal role of exercise in the primary prevention of CVD morbidity and mortality.

Acknowledgments

Author contributions: Lin, Liu, and Song designed research; Lin and Zhang were involved in data collection; Lin analyzed data; Guo, Roberts, McKenzie, Wu, and Liu participated in interpretation of findings; Lin and Song wrote the first draft. All authors read, edited, and approved the final manuscript.

Sources of Funding

The study was supported by the Indiana University Health–Indiana University School of Medicine Strategic Research Initiative Grant (Zhang and Song), R01DK09406 (Roberts) and P50HL105188 (Roberts) from the National Institutes of Health (NIH), and Brown University. The NIH, Brown University, or Indiana University had no role in the design and conduct of the study; the collection, management, analysis, and interpretation of the data; or the preparation, review, or approval of the manuscript.

Disclosures

None.

References

1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hilpert SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER III, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129:e28–e292.

2. Jones DS, Greene JA. The decline and rise of coronary heart disease: understanding public health catastrophism. Am J Public Health. 2013;103:1207–1218.

3. Lackland DT, Roccella EJ, Deutsch AF, Fornage M, George MG, Howard G, Kissela BM, Kittner SJ, Lichtman JH, Lisabeth LD, Schwamm LH, Smith EE, Towfighi A. Factors influencing the decline in stroke mortality: a statement from the American Heart Association/American Stroke Association. Stroke. 2014;45:315–353.

4. McGuire S. U.S. Department of Agriculture and U.S. Department of Health and Human Services, Dietary Guidelines for Americans, 2010. 7th edition, Washington, DC: U.S. Government Printing Office, January 2011. Adv Nutr. 2011;2:293–294.

5. Pearson TA, Blair SN, Daniels SR, Eckel RH, Fair JM, Fortmann SP, Franklin BA, Goldstein LB, Greenland P, Grundy SM, Hong Y, Miller NH, Lauer RM, et al. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA. 2001;285:2486–2497.
17. Smith SC Jr, Anderson JL, Cannon RO III, Fadl YY, Koenig W, Libby P, Swardfager W, Herrmann N, Cornish S, Mazereeuw G, Marzolini S, Sham L, Vasan RS. Biomarkers of cardiovascular disease: molecular basis and application. Circulation. 2011;124:2458–2473.

18. Lee DC, Artero EG, Sui X, Blair SN. Mortality trends in the general adult population without coronary or other atherosclerotic vascular diseases. JAMA. 2012;125:68–76.

19. Alter DA, Oh PI, Chong A. Relationship between cardiac rehabilitation and survival after acute cardiac hospitalization within a universal health care system. Eur J Cardiovasc Prev Rehabil. 2009;16:102–113.

20. Diehm N, Clark AL, Webb-Peploe KM, Coats AJ. Exercise training in chronic heart failure: effects on post-exercise factors in non-atherosclerotic patients. Eur J Heart Fail. 2005;7:189–193.

21. Williams MA, Ades PA, Hamm LF, Kefyanei SJ, Lafontaine TP, Rotsman JL, Squires RW. Clinical evidence for a health benefit from cardiac rehabilitation: an update. Am Heart J. 2006;152:835–841.

22. Gupta S, Rohatgi A, Ayers CR, Willis BL, Haskell WL, Khera A, Drazner MH, Lindenauer PK, de Lemos JA, Berry JD. Cardiorespiratory fitness and health benefits in adults aged 42 to 63 years with and without cardiovascular disease. Am J Cardiol. 2009;103:1598–1604.

23. Lee DC, Artero EG, Sui X, Blair SN. Mortality trends in the general population: the importance of cardiopulmonary fitness. J Psychopharmacol. 2010;24:27–35.

24. Pischon T, Girman CJ, Sacks FM, Rifai N, Stampfer MJ, Rimm EB. Non-high-density lipoprotein cholesterol and apolipoprotein B in the prediction of coronary heart disease in men. Circulation. 2005;112:3375–3383.

25. Greenland P, LaBree L, Azen SP, Doherty TM, Detrano RC. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA. 2004;291:210–215.

26. Smith SC Jr, Anderson JL, Cannon RO III, Fadl YY, Koenig W, Libby P, Swardfager W, Herrmann N, Cornish S, Mazereeuw G, Marzolini S, Sham L, Vasan RS. Biomarkers of cardiovascular disease: molecular basis and application. Circulation. 2011;124:2458–2473.

27. Kelley GA, Kelley KS. Effects of aerobic exercise on C-reactive protein, body composition, and maximum oxygen consumption in adults: a meta-analysis of randomized controlled trials. Metabolism. 2006;55:1500–1507.

28. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: PRISMA statement. J Clin Epidemiol. 2009;62:1006–1012.

29. Higgins JP, Altman DG, Gotzsche PC, Juni P, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA. The cochrane collaboration’s tool for assessing risk of bias in randomized trials. BMJ. 2011;343:d5928.

30. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–188.

31. Cochran WG. The combination of estimates from different experiments. Biometrics. 1954;10:101–129.

32. Egger M, Davey Smith G, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–634.

33. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis: power of statistical tests and prevalence in the literature. J Clin Epidemiol. 2000;53:1119–1129.

34. Ahman S, Ema, Denton P, Fielding A, Ainsworth BE. Exercise intervention and in physical activity: report from the clinical practice discussion group. Circulation. 2006;113:2335–2342.

35. Sterne JA, Gavaghan D, Egger M. Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. J Clin Epidemiol. 2000;53:1119–1129.

36. Abidin A, Zouhal H, Chamiari K, Thevenot D, de Mullerheim P-Y, Gastering S, Tabbaa Z, Proux J. Effects of recovery mode (active vs. passive) on performance during a short high-intensity interval training program: a longitudinal study. J Appl Physiol. 2013;113:1373–1383.

37. Ahmadi S, Masse-Biron J, Adam B, Choquet D, Freville M, Libert M, Jofre GL, McMenamin J, McKee DC, Higginbotham MB, Cobb FR, Coleman RE. Long-term effects of interval training on performance during a short high-intensity interval training program: a longitudinal study. J Appl Physiol. 2011;31:1373–1383.

38. Aldred HE, Hardman AE, Taylor S. Influence of 12 weeks of training by brisk walking on postprandial lipemia and insulinemia in sedentary middle-aged women. Metabolism. 1995;44:390–397.

39. Ashutosh K, Methrota K, Fragale-Jackson J. Effects of sustained weight loss and exercise on aerobic fitness in obese women. J Sports Med Phys Fitness. 1998;37:252–257.

40. Asikainen TM, Milunopalo S, Oja P, Rinne M, Pasanen M, Uusi-Rasi K, Vuori I. Randomised, controlled walking trials in postmenopausal women: the minimum dose to improve aerobic fitness? Br J Sports Med. 2002;36:189–194.

41. Baker TT, Allen D, Leij KY, Willcox KC. Alterations in lipid and protein profiles of plasma lipoproteins in middle-aged men consequent to an aerobic exercise training program. Metabolism. 1988;37:1043–1044.

42. Balduccni S, Nucillo C, De Feo P, Cavallo S, Cardelli P, Fallucca S, Alessi E, Fallucca F, Pugliese G, Italian Diabetes Exercise Study I. Effect of an intensive exercise intervention strategy on modifiable cardiovascular risk factors in subjects with type 2 diabetes mellitus: a randomized controlled trial. The Italian Diabetes and Exercise Study (IDES). Arch Intern Med. 2010;170:1794–1803.

43. Beavers KM, Hsu F-C, Issom S, Krichevsky SB, Church T, Goodpaster B, Pahor M, Nicklas BJ. Long-term physical activity and inflammatory biomarkers in older adults. Med Sci Sports Exerc. 2010;42:2189–2196.

44. Biddle MG, Vincent G, McCambridge A, Britton G, Dewes O, Elley CR, Moyes DL, Mende-Bibom J, Adam B, Choquet D, Freville M, Libert M, Jofre GL, McMenamin J, McKee DC, Higginbotham MB, Cobb FR, Coleman RE. Long-term effects of interval training on performance during a short high-intensity interval training program: a longitudinal study. J Appl Physiol. 2013;113:1373–1383.

45. Bermon S, Ferrari P, Bernard P, Altare S, Dolisi C. Responses of total and HDL-cholesterol and apolipoprotein-A I to exercise training and diet in healthy and atherosclerotic subjects: a meta-analysis. Am J Cardiol. 2011;128:1383–1388.

46. Bell GJ, Harber V, Murray T, Courneya KS, Rodgers W. A comparison of interval training at the ventilatory threshold on clinical and exercise performance during a short high-intensity interval training program: a longitudinal study. J Appl Physiol. 2011;113:1373–1383.

47. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–634.

48. Blumenthal JA, Emery CF, Madden DJ, Schniebold S, Riddle MW, Cobb FR, Higginbotham MB, Coleman RE. Effects of exercise training on bone density in elderly men and women. J Am Geriatr Soc. 1999;47:634–642.

49. Blumenthal JA, Emery CF, Madden DJ, Schniebold S, Riddle MW, Cobb FR, Higginbotham MB, Coleman RE. Long-term effects of interval training on performance during a short high-intensity interval training program: a longitudinal study. J Appl Physiol. 2011;113:1373–1383.

50. Berman S, Ferrari P, Bernard P, Altare S, Dolisi C. Responses of total and free-insulin-like growth factor I and insulin-like growth factor binding protein-3 after resistance exercise and training in elderly subjects. Acta Physiol Scand. 1999;165:51–56.

51. Bell GJ, Harber V, Murray T, Courneya KS, Rodgers W. A comparison of interval training at the ventilatory threshold on clinical and exercise performance during a short high-intensity interval training program: a longitudinal study. J Appl Physiol. 2011;113:1373–1383.

52. Biddle MG, Vincent G, McCambridge A, Britton G, Dewes O, Elley CR, Moyes DL, Mende-Bibom J, Adam B, Choquet D, Freville M, Libert M, Jofre GL, McMenamin J, McKee DC, Higginbotham MB, Cobb FR, Coleman RE. Long-term effects of interval training on performance during a short high-intensity interval training program: a longitudinal study. J Appl Physiol. 2011;113:1373–1383.

53. Beavers KM, Hsu F-C, Issom S, Krichevsky SB, Church T, Goodpaster B, Pahor M, Nicklas BJ. Long-term physical activity and inflammatory biomarkers in older adults. Med Sci Sports Exerc. 2010;42:2189–2196.
of exercise on psychological functioning in older men and women. J Gerontol. 1991;46:P352–P361.

49. Boardley D, Fahimian M, Topp R, Morgan AL, McNevin N. The impact of exercise training on blood lipids in older adults. Am J Geriatr Cardiol. 2007;16:30–35.

50. Bobeuf F, Labonte M, Dionne IJ, Khalil A. Combined effect of antioxidant supplementation and resistance training on oxidative stress markers, muscle and body composition in an elderly population. J Nutr Health Aging. 2011;15:883–889.

51. Boreham CA, Wallace WF, Nevill A. Training effects of accumulated daily stair-climbing exercise in previously sedentary young women. Prev Med. 2000;30:277–281.

52. Boudou P, Sobngwi E, Mauvais-Jarvis F, Vexiau P, Gautier JF. Absence of exercise-induced variations in adiponectin levels despite decreased abdominal adiposity and improved insulin sensitivity in type 2 diabetic men. Eur J Endocrinol. 2003;149:421–424.

53. Bourque SP, Pate RR, Branch JD. Twelve weeks of endurance exercise training does not affect iron status measures in women. J Am Diet Assoc. 1997;97:1116–1121.

54. Braith RW, Pollock ML, Lowenthal DT, Graves JE, Limacher MC. Moderate- and high-intensity exercise lowers blood pressure in normotensive subjects 60 to 79 years of age. Am J Cardiol. 1994;73:1124–1128.

55. Broeder CE, Burhkus KA, Svanvik LS, Wilmore JH. The effects of either high-intensity resistance or endurance training on resting metabolic rate. Am J Clin Nutr. 1992;55:802–810.

56. Broma G, Quintana M, Lindberg T, Jansson E, Kaisjer L. High intensity deep water training can improve aerobic power in elderly women. Eur J Appl Physiol. 2006;98:117–122.

57. Burr JF, Jannik VK, Gledhill N. Physiological fitness and health adaptations from purposeful training using off-road vehicles. Eur J Appl Physiol. 2011;111:1841–1850.

58. Camargo MD, Stein R, Ribeiro JP, Schwartzman PR, Rizzatti MO, Schaan BD. Circuit weight training and cardiac morphology: a trial with magnetic resonance imaging. Br J Sports Med. 2008;42:141–145; discussion 145.

59. Campbell KL, Westerling HC, Harver BJ, Bell GJ, Mackey JR, Courneya KS. Effects of aerobic exercise training on estrogen metabolism in premeno- pausal women: a randomized controlled trial. Cancer Epidemiol Biomark Prev. 2007;16:731–739.

60. Canuto K, Cargo M, Li M, D’Onise K, Esterman A, McDermott R. Pragmatic randomised trial of a 12-week exercise and nutrition program for Aboriginal and Torres Strait Islander women: clinical results immediate post and 3 months follow-up. BMC Public Health. 2012;12:933.

61. Carroll S, Marshall P, Ingle L, Borkoles E. Cardiorespiratory fitness and heart rate recovery in obese premenopausal women. Scand J Med Sci Sports. 2012;22:e133–e139.

62. Chan L, Chin LMK, Kennedy M, Woolstenhulme JG, Nathan SD, Weinstein AA, Connors G, Weir NA, Drinkard B, Lamberti J, Keyser RE. Benefits of higher intensity training from purposeful training using off-road vehicles. Eur J Appl Physiol. 1994;68:475.

63. Chandler WL, Schwartz RS, Stratton JR, Vitiello MV. Effects of endurance training on the circadian rhythm of brinolysis in men and women. Chest. 2013;143:333–343.

64. Chandler WL, Schwartz RS, Stratton JR, Vitiello MV. Effects of endurance training on the circadian rhythm of fibrinolysis in men and women. Med Sci Sports Exerc. 2004;36:54.

65. Cho JK, Lee SH, Lee JY, Kang HS. Randomized controlled trial of training intensity in adiposity. Int J Sports Med. 2011;32:468–475.

66. Christiansen T, Pausen SK, Bruun JM, Ploug T, Pedersen SB, Richelsen B. Diet-induced weight loss and exercise alone and in combination enhance the expression of adiponectin receptors in adipose tissue and skeletal muscle, but only diet-induced weight loss enhanced circulating adiponectin. J Clin Endocrinol Metab. 2010;95:111–119.

67. Church TS, Earnest CP, Skinner JS, Blair SN. Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure: a randomized controlled trial. JAMA. 2007;297:2081–2091.

68. Ciocac EG, Bocchi EA, Greve JMD, Guimaraes GV. Heart rate response to exercise and cardiorespiratory fitness of young women at high familial risk for hypertension: effects of interval vs continuous training. Eur J Cardiovasc Prev Rehabil. 2011;18:824–830.

69. Coker RH, Williams RH, Kortebein PM, Sullivan DH, Evans WJ. Influence of exercise intensity on abdominal fat and adiponectin in elderly adults. Metab Syndr Relat Disord. 2009;7:363–368.

70. Cortez-Cooper MY, Anton MM, Devan AE, Neidre DB, Cook JN, Tanaka H. The effects of strength training on central arterial compliance in middle-aged and older adults. Eur J Cardiovasc Prev Rehabil. 2008;15:149–155.
Exercise and Biomarkers of Cardiometabolic Health Lin et al

90. Hass CJ, Garzarella L, de Hoyos DV, Connaughton DP, Pollock ML. Concurrent improvements in cardiorespiratory and muscle fitness in response to total body recumbent stepping in humans. *Eur J Appl Physiol*. 2001;85:157–163.

91. Hendrickson NR, Sharp MA, Alemayja LA, Walker LA, Harman EA, Spiering BA, Hatfield DL, Yamamoto LM, Maresh CM, Kraemer WJ, Nindl BC. Combined resistance and endurance training improves physical capacity and performance on tactical occupational tasks. *Eur J Appl Physiol*. 2010;109:1197–1208.

92. Heydari M, Boucher YN, Boucher SH. High-intensity intermittent exercise and cardiovascular and autonomic function. *Clin Auton Res*. 2013;23:57–65.

93. Hilberg T, Menzel K, Wehmeier UF. Endurance training modifies exercise-induced activation of blood coagulation: RCT. *Eur J Appl Physiol*. 2013;113:1423.

94. Hiruntrakul A, Nanagara R, Emasithi A, Borer KT. Effect of once a week endurance exercise on fitness status in sedentary subjects. *J Med Assoc Thai*. 2010;93:1070–1074.

95. Ho SS, Dhallawal SS, Hills AP, Pal S. The effect of 12 weeks of aerobic, resistance or combination exercise training on cardiovascular risk factors in the overweight and obese in a randomized trial. *BMC Public Health*. 2012;12:720.

96. Hu M, Finni T, Zou L, Perhonen M, Sediak M, Alen M, Cheng S. Effects of strength training on work capacity and parasympathetic heart rate modulation during exercise in physically inactive men. *Int J Sports Med*. 2009;30:719–724.

97. Huttonen JK, Lamsimies E, Voutilainen E, Hietanen C, Penttilä I, Huttunen JK, Lansimies E, Voutilainen E, Ehnholm C, Hietanen E, Penttilä I. Randomized controlled trial of exercise training for older people (Sendai Study). *J Med Assoc Japan*. 1999;31:1320–1324.

98. Karstoft K, Winding K, Knudsen SH, Nielsen JS, Thomsen C, Pedersen BK. Combined high-intensity interval training and low-intensity continuous training vs. low-intensity continuous training in counteracting the adverse effects of aging on aerobic capacity. *Scand J Med Sci Sports*. 2012;23:57–64.

99. Kraemer WJ, Volek JS, Clark KL, Gordon SE, Incledon T, Puhl SM, Koziris LP, McBride JM, Triplett-McBride NT, McBride JM, Putukian M, Sebastianelli WJ. Physiological adaptations to a weight-loss dietary regimen and exercise programs in women. *J Appl Physiol*. 1997;83:270–279.

100. Kraemer WJ, Volek JS, Clark KL, Gordon SE, Puhl SM, Koziris LP, McBride JM, Triplett-McBride NT, Putukian M, Newton RJ, Hakkinnen K, Bush JA, Sebastianelli WJ. Influence of exercise training on physiological and performance changes with weight loss in men. *Med Sci Sports Exerc*. 1999;31:1320–1329.

101. Krogh J, Videbech P, Thomsen C, Glud C, Nordentoft M. DEMO-II trial. Aerobic exercise versus stretching exercise in patients with major depression—a randomised clinical trial. *PLoS One*. 2012;7:e48316.

102. Krustup P, Nielsen JG, Krustrup BR, Christiansen FJ, Pedersen H, Randers MB, Aagaard P, Petersen AM, Nybo L, Bangsbo J. Recreational soccer is an effective health-promoting activity for untrained men. *Br J Sports Med*. 2009;43:825–831.

103. Kukkonen-Harjula K, Laukkanen R, Vuori I, Oja P, Pasanen M, Nenonen A, Usiu-Rasi K. Effects of walking training on health-related fitness in healthy middle-aged adults—a randomized controlled study. *Scand J Med Sci Sports*. 1998;8:236–242.

104. Kurban S, Mehmetyoglu I, Yerlikaya HF, Gonen S, Erdem S. Effect of chronic regular exercise on serum ischaemia-modified albumin levels and oxidative stress in type 2 diabetes mellitus. *Endocr Res*. 2011;36:116–123.

105. Laaksonen DE, Atalay M, Niskanen LM, Mustonen J, Sen GK, Lakka TA, Uusitupa ML. Aerobic exercise and the lipid profile in type 1 diabetic men: a randomized controlled trial. *Med Sci Sports Exerc*. 2000;32:1541–1548.

106. Labrunee M, Antoine D, Verges B, Robin I, Caillas JM, Gremeuex V. Effects of a home-based rehabilitation program in obese type 2 diabetics. *Ann Phys Rehabil Med*. 2012;55:415–429.

107. Lake MJ, Cavanagh PR. Six weeks of training does not change running mechanics or improve running economy. *Med Sci Sports Exerc*. 1996;28:860–869.

108. LaPerriere A, Antoni MH, Ironson G, Perry A, McCabe P, Klamas N, Helder L, Schneiderman N, Fletcher MA. Effects of aerobic exercise training on lymphocyte subpopulations. *Int J Sports Med*. 1994;15(suppl 3):S127–S130.

109. Lee CM, Wood RH, Welsch MA. Influence of short-term endurance exercise training on heart rate variability. *Med Sci Sports Exerc*. 2003;35:961–969.

110. Lee M-G, Park K-S, Kim D-U, Choi S-M, Kim H-J. Effects of high-intensity exercise training on body composition, abdominal fat loss, and cardiorespiratory fitness in middle-aged Korean females. *Appl Physiol Nutr Metab*. 2012;37:1019–1027.

111. LeMura LM, von Duivillard SP, Andreacci J, Klebe JM, Chelland SA, Russo J. Lipid and lipoprotein profiles, cardiovascular fitness, body composition, and diet during and after resistance, aerobic and daily and endurance training in young women. *Eur J Appl Physiol*. 2000;82:451–458.

112. Libardi CA, De Souza GV, Cavagliani CR, Madruga VA, Chacon-Mikahil MPT. Effect of resistance, endurance, and concurrent training on TFN-alpha, IL-6, and CRP. *Med Sci Sports Exerc*. 2012;44:50–56.

113. de Lima G, Boulos DA, Frollini AB, Donatto FF, Leite RD, Gorelli PRG, Montebello ML, Prestes J, Cesar MC. Linear and daily undulating resistance training periodizations have differential beneficial effects in young sedentary women. *Int J Sports Med*. 2012;33:723–727.

114. Lovell D, Cuneo R, Delphineus E, Gass G. Leg strength and the VO2 max of older men. *Int J Sports Med*. 2011;32:271–276.

115. Martin D, Kauwel GP. Continuous assistive-passive exercise and cycle ergometer training in sedentary women. *Med Sci Sports Exerc*. 1999;31:527–532.

116. McGualey KA, Williams SM, Mann JL, Goulding A, Chisholm AW, Wilson N, Story G, McKay RT, Harper MJ, Jones IE. Intensive lifestyle changes are necessary to improve insulin sensitivity: a randomized controlled trial. *Diabetes Care*. 2002;25:445–452.

117. Meckling RA, Sherfey R. A randomized trial of a hypocaloric high-protein diet, with and without exercise, on weight loss, fitness, and markers of the metabolic syndrome in overweight and obese women. *Appl Physiol Nutr Metab*. 2007;32:743–752.

118. Meyer T, Auracher M, Heeg K, Urhausen A, Kindermann W. Does cumulative endurance training at the weekends impair training effectiveness? *Eur J Cardiovasc Prev Rehabil*. 2006;13:579–584.

119. Miyaki A, Maeda S, Chui Y, Akazawa N, Tanabe Y, Ajisaka R. Habitual aerobic exercise increases plasma pentraxin 3 levels in middle-aged and elderly women. *Appl Physiol Nutr Metab*. 2012;37:907–911.

120. Morey MC, Pieper CF, Edelman DE, Yancy WS Jr, Green JB, Lum H, Peterson MJ, Sloane R, Cowper PA, Bosworth HB, Huffman KM, Cavanaugh JT, Hall KS, Pearson MP, Taylor GA. Enhanced fitness: a randomized controlled trial of the effects of home-based physical activity counseling on glycemic control in older adults with prediabetes mellitus. *J Am Geriatr Soc*. 2012;60:1655–1662.

121. Morgan AL, Tobar DA, Snyder L. Walking toward a new me: the impact of prescribed walking 10,000 steps/day on physical and psychological wellbeing. *J Phys Act Health*. 2010;7:299–307.

122. Morton RD, West DJ, Stephens JW, Bain SC, Bracken RM. Heart rate prescribed walking improves cardiorespiratory fitness but not...
Exercise and Biomarkers of Cardiometabolic Health

Lin et al

DOI: 10.1161/JAHA.115.002014

132. Murphy BH, Murphy EM, Boreham CA, Hare LG, Neville AM. The effect of a worksite based walking programme on cardiovascular risk in previously sedentary civil servants [NCT00284479]. BMC Public Health. 2006;6:136.

134. Nemoto K-I, Gen-no H, Masuki S, Okazaki K, Nose H. Effects of high-intensity interval walking training on high-density lipoprotein cholesterol in young men. J Strength Cond Res. 2009;23:587–592.

136. Nicklas BJ, Wang X, You T, Lyles MF, You T, Lyles MF, Demons J, Easter L, Berry MJ, Lenchik L. Comparative effect of interval and continuous training programs on serum uric acid in management of hypertension: a randomized controlled trial. J Strength Cond Res. 2011;25:719–726.

138. Nieman DC, Warren BJ, O’Neill MC, O’Neill MC, O’Neill MC, O’Neill MC, O’Neill MC. Endurance training per se increases metabolic health in young, moderately overweight males. Med Sci Sports Exerc. 2012;44:2099–2110.

140. Pyka G, Linderen E, Charette S, Marcus R. Muscle strength and fiber adaptations to a year-long resistance training program in elderly men and women. J Gerontol. 1994;49:M22–M27.

142. Chow R, Harrison JE, Notarius C. Effect of two randomised exercise programmes on bone mass of healthy postmenopausal women. Br Med J (Clin Res Ed). 1987;295:1441–1444.

144. Ready AE, Naimark B, Bates J, Sawatzky B, Boreksi S, Drinkwater DT, Oosterwein S. Influence of walking volume on health benefits in women post-menopause. Med Sci Sports Exerc. 1996;28:1097–1105.

146. Romero-Arenas S, Blazevich AJ, Martinez-Pascual M, Perez-Gomez J, Luque AJ, Lopez-Román FJ, Alcaraz PE. Effects of high-intensity circuit training in an elderly population. Exp Gerontol. 2013;48:334–340.

148. Pyka G, Lindenberger E, Charette S, Marcus R. Muscle strength and fiber adaptations to a year-long resistance training program in elderly men and women. J Gerontol. 1994;49:M22–M27.

150. Santa-Clara H, Szymanski L, Ordlle T, Fernhall B. Effects of exercise training on resting metabolic rate in postmenopausal African American and Caucasian women. Metabolism. 2006;55:1358–1364.

152. Seiffert T, Rasmussen P, Brassard P, Homann WH, Wissensberg M, Nordby P, Stallknecht B, Secher NH, Nielsen HB. Cerebral oxygenation and metabolism during exercise following three months of endurance training in healthy overweight men. Am J Physiol Regul Integr Comp Physiol. 2009;297:R867–R874.

154. Singhal A, Scheuerman C, Kooistra H, Keizer HA, Liedtke S, Fagard R. Endurance training in elderly: a randomized controlled trial. J Appl Physiol. 2011;108:769–779.

156. Scanga CB, Verde TJ, Paolone AM, Andersen RE, Wadden TA. Effects of weight loss and exercise training on natural killer cell activity in obese women. Med Sci Sports Exerc. 1999;30:1666–1671.

158. Scanga CB, Verde TJ, Paolone AM, Andersen RE, Wadden TA. Effects of weight loss and exercise training on natural killer cell activity in obese women. Med Sci Sports Exerc. 1999;30:1666–1671.

160. Shenk F, Hidaka H, Hattori K, Nakagawa K, Kadowaki T, Hori Y, Matsuda M, Takahashi A, Nishida M, Ueki K. Metabolic adaptation to exercise training in patients with metabolic syndrome. J Appl Physiol. 2010;108:804–810.

162. Shenk F, Hidaka H, Hattori K, Nakagawa K, Kadowaki T, Hori Y, Matsuda M, Takahashi A, Nishida M, Ueki K. Metabolic adaptation to exercise training in patients with metabolic syndrome. J Appl Physiol. 2010;108:804–810.

164. Stein PK, Boucher SH. The effect of participation in an exercise training program on cardiovascular reactivity in sedentary middle-aged men. Int J Psychophysiol. 1992;13:215–223.

166. Stensvold D, Tjonna AE, Skaug E-A, Aspenes S, Stolen T, Wisloff U, Slordahl LH. The effect of concurrent aerobic and resistance circuit exercise training on cardiorespiratory function in young women. Eur J Appl Physiol. 2012;112:1052–1060.

168. Sung K, Bae S. Effects of a regular walking exercise program on behavioral and biochemical aspects in elderly people with type II diabetes. Nurs Health Sci. 2012;14:438–445.

170. Takahisa N, Rogers ME, Watanabe E, Brecheuf WF, Okada A, Yamada T, Islam MM, Hayano J. Water-based exercise improves health-related aspects of fitness in older women. Med Sci Sports Exerc. 2002;34:544–551.

172. Takahisa N, Rogers ME, Islam MM, Yamachii T, Watanabe E, Okada A. Effect of concurrent aerobic and resistance circuit exercise training in fitness in older adults. Eur J Appl Physiol. 2004;93:173–182.

174. Thomas TR, Adeniran SB, Etheridge GL. Effects of different running intensities on performance and blood pressure in middle-aged and older people. Mayo Clin Proc. 2007;82:803–811.

176. Tseng M-L, Ho C-C, Chen S-C, Huang Y-C, Lai C-H, Liaw Y-P. A simple method for measuring knee joint laxity in subjects with knee osteoarthritis. J Orthop Sci. 2010;15:811–816.

178. Thompson D, Markovitch D, Betts JA, Mazzotti D, Turner J, Tyrrell RM. Time course of changes in inflammatory markers during a 6 mo exercise intervention in sedentary middle-aged men: a randomized-controlled trial. J Appl Physiol. 2010;108:769–779.

180. Tjonna AE, Lee SJ, Rognmo O, Stolten TO, Bye A, Haram PM, Loennechen JP, Al-Shafee OJ, Skogvoll E, Slordahl SA, Kemi OJ, Najar SM, Wilsöf O. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation. 2008;118:346–354.

182. Toledo FGS, Menshikova EV, Azuma K, Radikova Z, Kelley CA, Ritov VB, Kelley DE. Mitochondrial capacity in skeletal muscle is not stimulated by weight loss despite increases in insulin action and decreases in intramyocellular lipid content. Diabetes. 2008;57:987–994.

184. Tseng M-L, Ho C-C, Chen S-C, Huang Y-C, Lai C-H, Liaw Y-P. A simple method for measuring knee joint laxity in subjects with knee osteoarthritis. J Orthop Sci. 2010;15:811–816.

186. Tyrode R, Tishler A, D'Souza S, Lepore J, Zavala J, Ang K, Mital P, Sobel BE, White DH, Bristow MR. Exercise training and remodeling of the failing heart: a randomized controlled trial. Circulation. 2005;111:1307–1314.
study of combination aerobic- and resistance-exercise training. *Int J Sport Nutr Exerc Metab.* 2013;23:271–281.

176. Tulppo MP, Hadasz AJ, Makikallio TH, Laukkanen RT, Nissila S, Hughson RL, Hukuri HV. Effects of aerobic training on heart rate dynamics in sedentary subjects. *Appl Physiol. 2003;95:364–372.

177. Utter AC, Nieman DC, Shannonhouse EM, Butterworth DE, Nieman CN. Influence of diet and/or exercise on body composition and cardiorespiratory fitness in obese women. *Int J Sport Nutr. 1998;8:213–222.

178. van Aggel-Leijssen DP, Saris WH, Homan M, van Baak MA. The effect of exercise training on beta-adrenergic stimulation of fat metabolism in obese men. *Int J Obes Relat Metab Disord.* 2001;25:16–23.

179. van Aggel-Leijssen DP, Saris WH, Hul GB, van Baak MA. Short-term effects of weight loss with or without low-intensity exercise training on fat metabolism in obese men. *Am J Clin Nutr.* 2001;73:523–531.

180. van den Berg R, de Groot S, Swart KMA, van der Woude LH. Physical capacity after 7 weeks of low-intensity wheelchair training. *Disabil Rehabil.* 2010;32:2244–2252.

181. Vicente-Campos D, Mora J, Castro-Pineiro J, Gonzalez-Montesinos JL, Conde-Caveda J, Chicharo JL. Impact of a physical activity program on cerebral vasoreactivity in sedentary elderly people. *J Sports Med Phys Fitness.* 2012;52:537–544.

182. Vincent KR, Braith RW. Resistance exercise and bone turnover in elderly men and women. *Med Sci Sports Exerc.* 2002;34:17–23.

183. Vissers D, Verrijken A, Mertens I, Van Gils C, Van de Sompel A, Trajens S, Van Gaal L. Effect of long-term whole body vibration training on visceral adipose tissue: a preliminary report. *Obes Facts.* 2010;3:93–100.

184. Vitello MV, Wilkinson GW, Merriam GR, Moe KE, Prin PN, Ralph DD, Colasurdo EA, Schwartz RS. Successful 6-month endurance training does not alter insulin-like growth factor I in healthy older men and women. *J Gerontol A Biol Sci Med Sci.* 1997;52:M149–M154.

185. Volpe SL, Kobusingye H, Bailur S, Stanek E. Effect of diet and exercise on influenza: a meta-analysis of randomized controlled trials. *J Strength Cond Res.* 2015;29:2642–2651.

186. Waib PH, Goncalves MI, Barrile SR. Improvements in insulin sensitivity and muscle blood flow in aerobic-trained overweight-obese hypertensive patients are not associated with ambulatory blood pressure. *J Clin Hypertens.* 2011;13:89–96.

187. Wallman K, Plant LA, Rakimov B, Maiorana AJ. The effects of two modes of exercise on aerobic fitness and fat mass in an overweight population. *Res Sports Med.* 2009;17:156–170.

188. Wang J-S, Li Y-S, Chen J-C, Chen Y-W. Effects of exercise training and deconditioning on platelet aggregation induced by alternating shear stress in men. *Arterioscler Thromb Vasc Biol.* 2005;25:446–450.

189. Wang J-S, Chen W-L, Weng T-P. Hypoxic exercise training reduces senescent T-lymphocyte subsets in blood. *Brain Behav Immun.* 2011;25:270–278.

190. Warner JG Jr, Ulrich IH, Albrink MJ, Yeater RA. Combined effects of aerobic exercise and omega-3 fatty acids in hyperlipidemic persons. *Med Sci Sports Exerc.* 1989;21:498–505.

191. Warren BJ, Nieman DC, Dotson RG, Adkins CH, O'Sullivan HM, Hukuri HV. Effects of aerobic exercise on arterial stiffness: a randomised controlled trial in women aged 32–59 years. *Br J Sports Med.* 2009;43:615–618.

192. You T, Murphy KM, Lyles MF, Demons JL, Lenchik L, Nicklas BJ. Addition of aerobic exercise to dietary weight loss preferentially reduces abdominal adipocyte size. *J Obes.* 2006;30:1211–1216.

193. Ziemann E, Grzywacz T, Luszczczak Y, Laskowski R, Olek RA, Gibson AL. Aerobic and anaerobic changes with high-intensity interval training in active college-aged men. *J Strength Cond Res.* 2011;25:1104–1112.

194. Yoshizawa M, Maeda S, Miyaki A, Misono M, Choi Y, Shimojo N, Ajsiaka R, Tanaka H. Additive beneficial effects of lacto-octreotide and aerobic exercise on arterial compliance in postmenopausal women. *Am J Physiol Heart Circ Physiol.* 2009;297:H1899–H1903.

195. Yoshizawa M, Maeda S, Miyaki A, Misono M, Saito Y, Tanabe K, Kuno S, Ajsiaka R. Effect of 12 weeks of moderate-intensity resistance training on arterial stiffness: a randomised controlled trial in women aged 32–59 years. *Br J Sports Med.* 2009;43:615–618.

196. Yoshizawa M, Maeda S, Miyaki A, Misono M, Choi Y, Shimojo N, Ajsiaka R, Tanaka H. Additive beneficial effects of lacto-octreotide and aerobic exercise on arterial compliance in postmenopausal women. *Am J Physiol Heart Circ Physiol.* 2009;297:H1899–H1903.

197. Yoshizawa M, Maeda S, Miyaki A, Misono M, Saito Y, Tanabe K, Kuno S, Ajsiaka R. Effect of 12 weeks of moderate-intensity resistance training on arterial stiffness: a randomised controlled trial in women aged 32–59 years. *Br J Sports Med.* 2009;43:615–618.

198. Yoshizawa M, Maeda S, Miyaki A, Misono M, Saito Y, Tanabe K, Kuno S, Ajsiaka R. Effect of 12 weeks of moderate-intensity resistance training on arterial stiffness: a randomised controlled trial in women aged 32–59 years. *Br J Sports Med.* 2009;43:615–618.
Effects of Exercise Training on Cardiorespiratory Fitness and Biomarkers of Cardiometabolic Health: A Systematic Review and Meta–Analysis of Randomized Controlled Trials
Xiaochen Lin, Xi Zhang, Jianjun Guo, Christian K. Roberts, Steve McKenzie, Wen-Chih Wu, Simin Liu and Yiqing Song

J Am Heart Assoc. 2015;4:e002014; originally published June 26, 2015;
doi: 10.1161/JAHA.115.002014

The *Journal of the American Heart Association* is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Online ISSN: 2047-9980

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://jaha.ahajournals.org/content/4/7/e002014