Updating the Number of Crossings of Complete Geometric Graphs

Frank Duque∗† Ruy Fabila-Monroy∗‡

September 6, 2016

Abstract

Let \(S \) be a set of \(n \) points in general position in the plane. Let \(\text{cr}(S) \) be the number of pairs of edges that cross in a rectilinear drawing of the complete graph with \(S \) as its vertex set. Suppose that this number is known. In this paper we consider the problem computing \(\text{cr}(S') \), where \(S' \) comes from adding, removing or moving a point from \(S \).

1 Introduction

Let \(G \) be a graph on \(n \) vertices; let \(S \) be a set of \(n \) points in general position (no three of them collinear) in the plane. A rectilinear drawing of \(G \) is a drawing of \(G \) in the plane that satisfies the following. Its vertices are points in general position and its edges are drawn as straight line segments. The number of crossings of a rectilinear drawing is the number of pairs of its edges that cross. The rectilinear crossing number of \(G \) is the minimum number of crossings over all rectilinear drawings of \(G \); we denote it by \(\text{cr}(G) \). In the case that \(G \) is a complete graph, note that the number of crossings in a rectilinear drawing of \(G \), depends only on the position of its vertices. Let \(\text{cr}(S) \) be the number of crossings in a rectilinear drawing of the complete graph \(K_n \) with \(S \) as its vertex set. Therefore,

\[
\text{cr}(K_n) = \min\{\text{cr}(S) : S \text{ is a set of } n \text{ points in general position in the plane}\}.
\]

Since this value only depends on \(n \), for brevity we refer to \(\text{cr}(K_n) \) as \(\text{cr}(n) \). The current best lower and upper bounds on \(\text{cr}(n) \) are

\[
0.379972\binom{n}{4} < \text{cr}(n) < 0.380473\binom{n}{4} + \Theta(n^3).
\]
The lower bound was given by Ábrego Fernández-Merchant, Leaños and Salazar [AFMLS08]; the upper bound was given by Fabila-Monroy and López [FL14]. Historically, the upper bounds on $\text{cr}(n)$ have been given by finding arbitrarily large constructions with small rectilinear crossing number. These constructions start with a “small” set with few crossing and from this point set produce arbitrarily large point sets with few crossings. This approach has been refined over the years [Sin71, BDG03, AAK06, ´AFM07, ´ACFM +10]. With the current best such construction being that of Ábrego, Cetina, Fernández-Merchant, Leaños, and Salazar [ACFM+10].

In [FL14] a simple heuristic was used to improve many of the the best known sets of 27, . . . , 100 points with few crossings. In particular, they found a set of 75 points with 450492 crossings. This point set together with the construction of [ACFM+10] provide the current best upper bound on $\text{cr}(n)$.

The heuristic used in [FL14] is as follows. Choose a random point p of S and a random point q near p. Afterwards, compute $\text{cr}(S \setminus \{p\} \cup \{q\})$. If this number is less or equal to $\text{cr}(S)$ then replace p with q in S. The improvements obtained in [FL14] were done by many iterations of this procedure. Experimentally, it seems that heuristics of these type work well in practice; recently in [BK15], Balko and Kyncl used simulated annealing to improve the best upper bound on K_n of a parameter similar to the rectilinear crossing number called the pseudolinear crossing number.

The computation of $\text{cr}(S)$ can be done in $O(n^2)$ time. Since in the heuristic of [FL14] only one point of S changes at each step, it is reasonable to consider the following question.

Problem 1 Suppose that S' comes from S by moving a point. Can $\text{cr}(S')$ be computed in $o(n^2)$ time assuming that $\text{cr}(S)$ is already known?

We have also observed experimentally that removing or adding a point from a point set with few crossings tends to produce a point set with few crossings. Thus, we also consider the following two algorithmic questions.

Problem 2 What is the time complexity of computing all the values of $\text{cr}(S \setminus \{p\})$ for every point $p \in S$?

Problem 3 Let C be a set of points disjoint from S, such that $S \cup C$ is in general position. What is the time complexity of computing the values of $\text{cr}(S \cup \{p\})$ for every point $p \in C$?

In this paper we prove the following theorems related to these problems, respectively.

1These point sets were obtained from Oswin Aichholzer’s page [http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/crossing/)](http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/crossing/)
Theorem 1 Let S be a set of n points in the general position in the plane; let C be a set of $O(n)$ points in the plane disjoint from S, such that $S \cup C$ is in general position. Let p be a point in S. Then the set of values
\[\{ \cr(S') : S' = S \setminus \{ p \} \cup \{ q \}, q \in C \} \]
can be computed in $O(n^2)$ time.

Theorem 2 Let S be a set of n points set in general position. Then the set of values
\[\{ \cr(S \setminus \{ p \}) : p \in S \} \]
can be computed in $O(n^2)$ time.

Theorem 3 Let S be a set of n points in the general position in the plane; let C be a set of $O(n)$ points in the plane disjoint from S, such that $S \cup C$ is in general position. Then the set of values
\[\{ \cr(S \cup \{ q \}) : q \in C \} \]
can be computed in $O(n^2)$ time.

Note that in each of these theorems the amortized time per point is linear.

We implemented the algorithms implied by Theorems 1, 2 and 3. We used these implementations and the heuristic of [FL14] to improve many of the known sets for $n = 27, \ldots, 100$. Unfortunately, none of these sets is sufficient to improve the asymptotic value of $\cr(n)$. Our implementations are available at www.pydcg.org.

This paper organized as follows. In Section 2 we introduce some preliminaries. In Section 3 we prove Theorems 1, 2, and 3. In Section 4 we present a table with new upper bounds on $\cr(n)$ for some values of $n \leq 100$.

2 Preliminaries

In this section we prove a pair of lemmas that will be used to prove Theorems 1, 2, and 3. Afterwards, we recall the concept of the λ-matrix of a point set, and give a characterization the number of crossings of a point set in terms of its λ-matrix.

Lemma 4 Let p be a point not in S. For every point q in S, let $S(q)$ be the set of points in S to the left of the directed line from p to q. Suppose that each point r in S has a weight $w(r)$ assigned to it. If the counterclockwise order of the points in S around p is known. Then the following set of values can be computed in linear time.
\[\left\{ \sum_{r \in S(q)} w(r) : q \in S \right\} \]
Proof. Let \(q_1 \) be a point of \(S \). Let \(\ell \) be a directed line from \(p \) to \(q_1 \). Rotate \(\ell \) counterclockwise around \(p \), and let \((q_1, \ldots, q_n)\) be the points of \(S \) in the order that \(\ell \) encounters them during this rotation. This order can be computed from the counterclockwise order of the points in \(S \) around \(p \) in \(O(n) \) time. Compute \(\sum_{r \in S} w(r) \) in \(O(n) \) time. Since \(\sum_{r \in S} w(r) \) can be computed from \(\sum_{r \in S(q_i)} w(r) \) in constant time, the result follows. \(\square \)

Lemma 5 The set counterclockwise orders of \(S \setminus \{p\} \) around \(p \) for every \(p \) in \(S \) can be computed in \(O(n^2) \) time.

Proof. This is done by dualizing \(S \) to a set of \(n \) lines. The corresponding line arrangement can be constructed in time \(O(n^2) \) with standard algorithms. The clockwise orders of \(S \setminus \{p\} \) around each \(p \in S \) can then be extracted from the line arrangement in \(O(n^2) \) time. \(\square \)

The \(\lambda \)-Matrix

Let \(p \) and \(q \) be a pair of points not necessarily in \(S \). We denote by \(\lambda_S(p, q) \) the number of points of \(S \) that lie to the left of the directed line from \(p \) to \(q \); in the case that \(p = q \), we set \(\lambda_S(p, q) := 0 \). Let \(p_1, p_2, \ldots, p_n \) be the points in \(S \). The \(\lambda \)-matrix of \(S \) is the matrix whose \((i, j) \)-entry is equal to \(\lambda_S(p_i, p_j) \). The following lemma is well known; it can be proven from Lemma 4 by assigning a weight equal to one to every point in \(S \).

Lemma 6 The \(\lambda \)-matrix of \(S \) can be computed in \(O(n^2) \) time.

It is known that the \(\lambda \)-matrix of \(S \) determines \(\cr(S) \). This was shown independently by Lovász, Wagner, Welzl, and Wesztergombi [LL04], and by Ábrego and Fernández-Merchant [AFm03]. We now provide another characterization of \(\cr(S) \) in terms of the \(\lambda \)-matrix of \(S \). For two any finite sets of points \(P \) and \(Q \), define

\[
f_S(P, Q) := \sum_{p \in P} \sum_{q \in Q} \left(\frac{\lambda_S(p, q)}{2} \right).
\]

Lemma 7

\[
\cr(S) = f_S(S, S) - \frac{n(n-1)(n-2)(n-3)}{8}.
\]

Proof. Let \(p, q, r \) and \(s \) be four different points of \(S \). We call the tuple \((p, q, \{r, s\})\) a pattern. If the points \(r \) and \(s \) are both to the left of the directed line from \(p \) to \(q \), we say that \((p, q, \{r, s\})\) is a type A pattern, otherwise we call it a type B pattern. We denote by \(A(S) \) and \(B(S) \) the number of type A and type B patterns in \(S \), respectively.

Let \(P \) be a set of four points. If \(P \) is in convex position, then \(P \) determines 4 type A patterns and 8 type B patterns. If \(P \) is not in convex position, then \(P \) determines 3 type A patterns and 9 type B patterns. Let \(\square(S) \) denote the
number of subsets of S of four points in convex position, and let $\triangle(S)$ denote the number of subsets of S of four points not in convex position. Thus,

$$A(S) = 4\square(S) + 3\triangle(S) \text{ and } B(S) = 8\square(S) + 9\triangle(S).$$

Note that $A(S) + B(S) = n(n-1)(n-2)(n-3)/2$, $\mathfrak{cr}(S) = \square(S)$ and

$$A(S) = \sum_{p,q \in S} \binom{\lambda_S(p, q)}{2}.$$

Therefore,

$$\mathfrak{cr}(S) = A(S) - \frac{(A(S) + B(S))/4}{n(n-1)(n-2)(n-3)/8}.\tag{□}$$

3 Proof of Theorems 1, 2 and 3

Proof of Theorem 2

For every point $p \in S$, compute the clockwise order of $S \setminus \{p\}$ around p; afterwards, compute the λ-matrix of S. By Lemmas 5 and 6 this can be done in $O(n^2)$ time. Using the λ-matrix of S compute $f_S(S, S)$, $\{f_S(\{p\}, S) \colon p \in S\}$ and $\{f_S(S, \{p\}) : p \in S\}$ in $O(n^2)$ time.

Note that by Lemma 7 for every $p \in S$ we have that

$$\mathfrak{cr}(S \setminus \{p\}) = f_{S \setminus \{p\}}(S \setminus \{p\}, S \setminus \{p\}) - \frac{(n-1)(n-2)(n-3)(n-4)}{8}.$$

Thus, it is enough to compute $\{f_{S \setminus \{p\}}(S \setminus \{p\}, S \setminus \{p\}) : p \in S\}$ in $O(n^2)$ time, For every $p \in S$, let

$$\nabla_p := f_{S \setminus \{p\}}(S \setminus \{p\}, S \setminus \{p\}) - f_S(S, S) + f_S(\{p\}, S) + f_S(S, \{p\}).$$

To compute $\{f_{S \setminus \{p\}}(S \setminus \{p\}, S \setminus \{p\}) : p \in S\}$ in $O(n^2)$ time, we compute $\{\nabla_p : p \in S\}$ in $O(n^2)$ time. Note that

$$\nabla_p = \sum_{q \in S \setminus \{p\}} \sum_{r \in S \setminus \{p\}} \left(\binom{\lambda_{S \setminus \{p\}}(q, r)}{2} - \binom{\lambda_S(q, r)}{2} \right).$$

Let r be a point in $S \setminus \{p\}$. Note that

$$\binom{\lambda_{S \setminus \{p\}}(q, r)}{2} - \binom{\lambda_S(q, r)}{2} = 0.$$
if \(p \) is to the right of the directed line from \(q \) to \(r \), and
\[
\left(\frac{\lambda_{S\setminus\{p\}}(q,r)}{2} \right) - \left(\frac{\lambda_S(q,r)}{2} \right) = 1 - \lambda_S(q,r)
\]
if \(p \) is to the left of the directed line from \(q \) to \(r \). Moreover, \(p \) is to the left of the directed line from \(q \) to \(r \) if and only if \(r \) is to the left of the directed line from \(p \) to \(q \).

For every point \(q \in S \) do the following. To every point \(r \in S \setminus \{q\} \) assign the weight \(w_q(r) = 1 - \lambda_S(q,r) \). For every \(p \in S \setminus \{q\} \), let \(S_p(q) \) be the set of points of \(S \) to the left of the directed line from \(p \) to \(q \). Thus,
\[
\sum_{r \in S\setminus\{p\}} \left(\left(\frac{\lambda_{S\setminus\{p\}}(q,r)}{2} \right) - \left(\frac{\lambda_S(q,r)}{2} \right) \right) = \sum_{r \in S_p(q)} w_q(r).
\]
By Lemma \(4 \) for a fixed \(q \in S \), the set of values
\[
\left\{ \sum_{r \in S_p(q)} w_q(r) : p \in S \setminus \{q\} \right\}
\]
can be computed in linear time. This implies that the set
\[
\left\{ \left\{ \sum_{r \in S_p(q)} w_q(r) : p \in S \setminus \{q\} \right\} : q \in S \right\}
\]
can be computed in \(O(n^2) \) time. Therefore,
\[
\{ \nabla_p : p \in C \}
\]
can be computed in \(O(n^2) \) time; the result follows.

Proof of Theorem 3

For every point \(p \in S \cup C \), compute the clockwise order of \((S \cup C) \setminus \{p\}\) around \(p \); by Lemma \(5 \) this can be done in \(O(n^2) \) time. For every pair of points \(p, q \in S \cup C \), let \(H(p,q) \) be the subset of points of \(S \cup C \) to the left of the directed line from \(p \) to \(q \). To every point \(p \) in \(S \cup C \) assign a weight of \(w(p) = 1 \) if \(p \) is in \(S \), and a weight of \(w(p) = 0 \) if \(p \) is in \(C \). Use Lemma \(4 \) to compute the set of values
\[
\left\{ \sum_{r \in H(p,q)} w(r) : p, q \in S \cup C \right\}
\]
in \(O(n^2) \) time. Note that for every pair of points \(p, q \in S \cup C \) we have that
\[
\lambda_S(p,q) = \sum_{r \in H(p,q)} w(r).
\]
Therefore, $f_S(S, S), \{f_S(p, S \cup \{p\}) : p \in S\}$ and $\{f_S(S \cup \{p\}, \{p\}) : p \in S\}$ can be computed in $O(n^2)$ time.

Note that by Lemma[7] for every $p \in C$ we have that

$$\mathcal{O}(S \cup \{p\}) = f_{S \cup \{p\}}(S \cup \{p\}, S \cup \{p\}) - \frac{n(n + 1)(n - 1)(n - 2)}{8}.$$

Thus, it is enough to compute $\{f_{S \cup \{p\}}(S \cup \{p\}, S \cup \{p\}) : p \in C\}$ in $O(n^2)$ time. For every $p \in C$, let

$$\nabla_p := f_{S \cup \{p\}}(S \cup \{p\}, S \cup \{p\}) - f_S(S, S) - f_S(\{p\}, S) - f_S(S, \{p\}).$$

To compute $\{f_{S \cup \{p\}}(S \cup \{p\}, S \cup \{p\}) : p \in C\}$ in $O(n^2)$ time, we compute $\{\nabla_p : p \in S\}$ in $O(n^2)$ time. Note that

$$\nabla_p = f_{S \cup \{p\}}(S \cup \{p\}, S \cup \{p\}) - f_S(S, S) - f_S(\{p\}, S) - f_S(S, \{p\})$$

$$= f_{S \cup \{p\}}(S \cup \{p\}, S \cup \{p\}) - f_S(S, S) - f_{S \cup \{p\}}(\{p\}, S) - f_{S \cup \{p\}}(S, \{p\})$$

$$= \sum_{q \in S} \sum_{r \in S} \left(\frac{\lambda_{S \cup \{p\}}(q, r)}{2} - \frac{\lambda_S(q, r)}{2} \right).$$

Let r be a point in S. Note that

$$\left(\frac{\lambda_{S \cup \{p\}}(q, r)}{2} \right) - \left(\frac{\lambda_S(q, r)}{2} \right) = 0$$

if p is to the right of the directed line from q to r, and

$$\left(\frac{\lambda_{S \cup \{p\}}(q, r)}{2} \right) - \left(\frac{\lambda_S(q, r)}{2} \right) = \lambda_S(q, r)$$

if p is to the left of the directed line from q to r. Moreover, p is to the left of the directed line from q to r if and only if r is to the left of the directed line from p to q.

For every point $q \in S$ do the following. To every point $r \in S$ assign the weight $w_q(r) = \lambda_S(q, r)$. For every point $p \in C$, let $S_p(q)$ be the set of points of S to the left of the directed line from p to q. Thus,

$$\sum_{r \in S_p(q)} \left(\left(\frac{\lambda_{S \cup \{p\}}(q, r)}{2} \right) - \left(\frac{\lambda_S(q, r)}{2} \right) \right) = \sum_{r \in S_p(q)} w_q(r).$$

By Lemma[3] for a fixed q, the set of values

$$\left\{ \sum_{r \in S_p(q)} w_q(r) : p \in C \right\}$$
can be computed in linear time. This implies that the set
\[
\left\{ \sum_{r \in S_p(q)} w_q(r) : p \in C \right\} : q \in S
\]
can be computed in \(O(n^2)\) time. Therefore,
\[
\{ \nabla_p : p \in C \}
\]
can be computed in \(O(n^2)\) time; the result follows.

Proof of Theorem 1

For this it is enough to apply Theorem 3 with \(S \setminus \{p\}\) as the starting set of points, and \(C\) as the set of possible new points.

4 New small sets with few crossings

\(n\)	\(\overline{cr}(n) \leq\)						
70	339252	80	587284	88	867887	96	1238898
71	59645	81	617952	89	909846	97	1292664
72	380934	82	649861	90	951383	98	1348066
74	426411	83	682982	91	995484	99	1405050
76	477778	84	717278	92	1040952	100	1463967
77	502021	85	753011	93	1087919		
78	529284	86	789919	94	1136592		
79	557743	87	828129	95	1187161		

References

[AAK06] O. Aichholzer, F. Aurenhammer, and H. Krasser. On the crossing number of complete graphs. *Computing*, 76(1-2):165–176, 2006.

[ÁCFM+10] B. M. Ábrego, M. Cetina, S. Fernández-Merchant, J. Leaños, and G. Salazar. 3-symmetric and 3-decomposable geometric drawings of \(K_n\). *Discrete Applied Mathematics*, 158(12):1240–1258, 2010. Traces from LAGOS07 IV Latin American Algorithms, Graphs, and Optimization Symposium Puerto Varas - 2007.

[AFm03] Bernardo M. Ábrego and Silvia Fernández-merchant. A lower bound for the rectilinear crossing number. *Graphs and Combinatorics*, 21:293–300, 2003.

[ÁFM07] B. M. Ábrego and S. Fernández-Merchant. Geometric drawings of \(K_n\) with few crossings. *J. Combin. Theory Ser. A*, 114(2):373–379, 2007.
[ÁFMLS08] B. M. Ábrego, S. Fernández-Merchant, J. Leaños, and G. Salazar. A central approach to bound the number of crossings in a generalized configuration. *Electronic Notes in Discrete Mathematics*, 30(0):273–278, 2008. The IV Latin-American Algorithms, Graphs, and Optimization Symposium.

[BDG03] A. Brodsky, S. Durocher, and E. Gethner. Toward the rectilinear crossing number of K_n: new drawings, upper bounds, and asymptotics. *Discrete Math.*, 262(1-3):59–77, 2003.

[BK15] Martin Balko and Jan Kynčl. Bounding the pseudolinear crossing number of K_n via simulated annealing. In *Abstracts XVI Spanish Meeting on Computational Geometry*, pages 37–40, 2015.

[FL14] R. Fabila-Monroy and J. López. Computational search of small point sets with small rectilinear crossing number. *Journal of Graph Algorithms and Applications*, 18(3):393–399, 2014.

[LL04] U. Wagner E. Welzl L. Lovász, K. Vesztergombi. Convex quadrilaterals and k-sets. *Contemporary Mathematics*, pages 139–148, 2004.

[Sin71] D. Singer. Rectilinear crossing numbers. Manuscript, 1971.