Quasipolynomial Computation of Nested Fixpoints

Daniel Hausmann and Lutz Schröder, University Erlangen-Nuremberg

Gothenburg, Formal Methods Seminar – February 25 2021
Why Nested Fixpoints?

- Applications of parity games:
 - Model checking for the modal μ-calculus
 - Satisfiability checking for the modal μ-calculus
 - Synthesis for linear-time logics (e.g. LTL)

- Recent breakthrough result: solving parity games is in QP
Why Nested Fixpoints?

▶ Applications of parity games:
 ▶ Model checking for the modal μ-calculus
 ▶ Satisfiability checking for the modal μ-calculus
 ▶ Synthesis for linear-time logics (e.g. LTL)

▶ Recent breakthrough result: solving parity games is in QP

▶ Winning regions of parity games are specific nested fixpoints
Why Nested Fixpoints?

- Applications of parity games:
 - Model checking for the modal μ-calculus
 - Satisfiability checking for the modal μ-calculus
 - Synthesis for linear-time logics (e.g. LTL)

- Recent breakthrough result: solving parity games is in QP

- Winning regions of parity games are specific nested fixpoints

- Idea: Use QP parity game solving algorithm to compute general nested fixpoints, obtain same results for more general games / logics.
Why Nested Fixpoints?

- Applications of parity games:
 - Model checking for the modal μ-calculus
 - Satisfiability checking for the modal μ-calculus
 - Synthesis for linear-time logics (e.g. LTL)

- Recent breakthrough result: solving parity games is in QP

- Winning regions of parity games are specific nested fixpoints

- Idea: Use QP parity game solving algorithm to compute general nested fixpoints, obtain same results for more general games / logics.

We show:

- Nested fixpoints stabilize after quasipolynomially many iterations.
Motivation: Parity Games

Parity games: \((V = V\lozenge \cup V\Box, E \subseteq V \times V, \Omega : V \rightarrow [k]), [k] = \{0, \ldots, k\}\)

- \(\lozenge\)-strategy: \(s : V^* V\lozenge \rightarrow V\) such that \(s(\bar{v}v) \in E(v)\)
- \(\lozenge\) wins \(v \in V\) iff there is \(\lozenge\)-strategy with which all \(v\)-plays are even
Motivation: Parity Games

Parity games: \((V = V_\Diamond \cup V_\Box, E \subseteq V \times V, \Omega : V \rightarrow [k]), [k] = \{0, \ldots, k\}\)

- history-free \(\Diamond\)-strategy: \(s : V_\Diamond \rightarrow V\) such that \(s(v) \in E(v)\)
- \(\Diamond\) wins \(v \in V\) iff there is \(\Diamond\)-strategy with which all \(v\)-plays are even

Central result: parity games are history-free determined.

Observation: \(\text{win}_\Diamond\) (and \(\text{win}_\Box\)) can be specified by \(\mu\)-calculus formula.
Motivation: Reducing Parity Games to Safety Games

Idea: Use deterministic Büchi automaton \(A = (Q, [k], \delta, F) \) accepting exactly the even priority sequences in \(G = (V, E, \Omega : V \to [k]) \).

Parity game \(G \) is equivalent to safety game \(G \otimes A = (V \times Q, E \otimes \delta, F \circ \pi_2) \),

\[
(E \otimes \delta)(v, q) = \{ (w, \delta(q, \Omega(v))) \mid w \in E(v) \}
\]
Motivation: Reducing Parity Games to Safety Games

Idea: Use deterministic Büchi automaton $A = (Q, [k], \delta, F)$ accepting exactly the even priority sequences in $G = (V, E, \Omega : V \rightarrow [k])$.

Parity game G is equivalent to safety game $G \Join A = (V \times Q, E \Join \delta, F \circ \pi_2)$,

$$(E \Join \delta)(v, q) = \{(w, \delta(q, \Omega(v))) \mid w \in E(v)\}$$
Motivation: Reducing Parity Games to Safety Games

Idea: Use deterministic Büchi automaton $A = (Q, [k], \delta, F)$ accepting exactly the even priority sequences in $G = (V, E, \Omega : V \rightarrow [k])$.

Parity game G is equivalent to safety game $G \otimes A = (V \times Q, E \otimes \delta, F \circ \pi_2)$,

$$(E \otimes \delta)(v, q) = \{(w, \delta(q, \Omega(v)) | w \in E(v)\}$$

Size of suitable automaton A?

- Immediate: $|Q| \in \mathcal{O}(|V|^k)$
- Calude et al., 2017: $|Q| \in \mathcal{O}(|V|^{\log k})$, $|Q| \in \mathcal{O}(|V|^4)$ if $k \leq \log |V|$
Finite lattice: \((L, \subseteq), L \neq \emptyset\) finite set, \(\subseteq\) partial order on \(L\) s.t. join \(\bigcup X\) and meet \(\bigcap X\) exist for all \(X \subseteq L\).

Basis of \(L\): \(B_L \subseteq L\) s.t. \(l = \bigcup \{b \in B_L \mid b \subseteq l\}\) for all \(l \in L\).

Examples

- For finite set \(V\), powerset lattice \((\mathcal{P}(V), \subseteq)\) is finite lattice with join \(\bigcup U\), meet \(\bigcap U\) for \(U \in \mathcal{P}(V)\); \(V\) is a basis.
- For finite set \(V\) and number \(n\), \((n^V, \subseteq)\) is finite lattice, where \(n^V = \{f : V \to [n-1]\}\), \(f \subseteq g\) iff for all \(v \in V\), \(f(v) \leq g(v)\).

Fix a finite lattice \(L\) and basis \(B_L\).
Function $f : L^{k+1} \rightarrow L$ is monotone if for all $U_i \subseteq V_i$, $0 \leq i \leq k$,

$$f(U_0, \ldots, U_k) \subseteq f(V_0, \ldots, V_k)$$

Extremal fixpoints, systems of fixpoint equations

Let $f : L \rightarrow L$ and $f_i : L^{k+1} \rightarrow L$, $0 \leq i \leq k$ be monotone functions.

- **LFP** $f = \bigcap \{Z \subseteq U \mid f(Z) \subseteq Z\}$
- **GFP** $f = \bigcup \{Z \subseteq U \mid Z \subseteq f(Z)\}$

System of fixpoint equations:

$$X_i =_{\eta_i} f_i(X_0, \ldots, X_k) \quad 0 \leq i \leq k, \eta_i \in \{\text{LFP}, \text{GFP}\}$$
Fix equation system \mathbb{E} of $k + 1$ equations $X_i = \eta_i f_i(X_0, \ldots, X_k)$.

Semantics of fixpoint equation systems

For valuation $\sigma : [k] \rightarrow L$, put $\llbracket X_i \rrbracket^\sigma = \eta_i f_i^\sigma$ where, for $A \in L$,

$$f_i^\sigma(A) = f_i(\llbracket X_0 \rrbracket^{\sigma[A/i]}, \ldots, \llbracket X_{i-1} \rrbracket^{\sigma[A/i]}, A, \sigma(i + 1), \ldots, \sigma(k))$$

Solution for variable X_k in \mathbb{E}: $\llbracket X_k \rrbracket_\mathbb{E} = \llbracket X_k \rrbracket^\epsilon$, where $\text{dom}(\epsilon) = \emptyset$.
For parity game \((V, E, \Omega : V \rightarrow [k])\), use lattice \(L = \mathcal{P}(V)\) and define

\[
\text{force}(U) = \{v \in V^\Diamond \mid E(v) \cap U \neq \emptyset\} \cup \{v \in V^\square \mid E(v) \subseteq U\}
\]

\[
f_{\text{PG}}(X_0, \ldots, X_k) = \bigcup_{0 \leq i \leq k} (\{v \in V \mid \Omega(v) = i\} \cap \text{force}(X_i))
\]

Define equation system: \(\eta_i = \text{LFP}\) if \(i\) odd, \(\eta_i = \text{GFP}\) otherwise and

\[
X_0 = \text{GFP}\, f_{\text{PG}}(X_0, \ldots, X_k) \quad X_i = \eta_i X_{i-1} \text{ for } i > 0,
\]

Theorem (e.g. [Dawar, Grädel, 2008])

\[
\text{win}^\Diamond = \llbracket X_k \rrbracket_{f_{\text{PG}}}
\]
Even k-graph: \(G = (W, \delta \subseteq W \times [k] \times W) \) s.t. all \(\delta \)-paths are even

Definition: History-free witnesses

Even \(k \)-graph \((V, S) \) s.t. \(V = B_L \times [k] \) and for all \((u, j) \in V \),

\[
u \sqsubseteq f_j(S_0(u, j), \ldots, S_k(u, j))
\]

where \(S_i(u, j) = \bigsqcup \{(w, i) \mid ((u, j), i, (w, i)) \in S\} \)

Note: \(|V| \in \mathcal{O}(|B_L| \cdot (k + 1)) \)

Lemma

There is history-free witness s.t. \((u, j) \in V \) if and only if \(u \sqsubseteq [X_j]_E \).
Definition - Universal Graphs [Colcombet, Fijalkow, 2019]

Homomorphism from $G = (W, \delta)$ to $G' = (W', \delta')$: $h : W \rightarrow W'$ s.t.

for all $(v, p, w) \in \delta$, we have $(h(v), p, h(w)) \in \delta'$.

(n, k)-universal graph S: even k-graph s.t. for all even k-graphs G with $|G| \leq n$, there is homomorphism from G to S.

Theorem [Czerwiński et al., 2019]

- There is a deterministic (n, k)-universal graph of size $n^{\log k + O(1)}$, and of size $O(n^4)$ if $k \leq \log n$.
- Every (n, k)-universal graph has size at least $n^{\log \frac{k}{\log n} - 1}$.
Fix deterministic \(((|B_L|)(k + 1), k + 1)\)-universal graph \(S = (W, \delta)\).

Definition - Product fixpoint

Define \(\mathcal{E} \otimes S : \mathcal{P}(B_L \times [k] \times W) \rightarrow \mathcal{P}(B_L \times [k] \times W)\) by

\[
(\mathcal{E} \otimes S)(Z) = \{(v, p, q) \in B_L \times [k] \times W \mid v \sqsubseteq f_p(Z_0^q, \ldots, Z_k^q)\}
\]

where

\[
Z_i^q = \bigsqcup \{u \in B_L \mid (u, i, \delta(q, i)) \in Z\}.
\]

\(Y =_{\text{GFP}} (\mathcal{E} \otimes S)(Y)\) is **chained product fixpoint** of \(\mathcal{E}\) and \(S\).

Theorem

We have \(u \sqsubseteq [X_i]_{\mathcal{E}}\) if and only if there is \(q \in W\) s.t. \((u, i, q) \in [Y]_{\mathcal{E} \otimes S}\).
A Progress Measure Algorithm

Fix total simulation order \(\leq \) on \(W \), least node w.r.t. \(\leq : q_{\min} \)

Measure: \(\mu : B_L \times [k] \to W \cup \{ \star \} \); define function Lift on measures:

\[
(Lift(\mu))(v, p) = \min\{q \in W \mid v \sqsubseteq f_p(U_{0}^{\mu, q}, \ldots, U_{k}^{\mu, q})\}
\]

where \(\min(\emptyset) = \star \) and

\[
U_{i}^{\mu, q} = \bigsqcup\{u \in B_L \mid \mu(u, i) \leq \delta(q, i)\},
\]

Lifting algorithm

1. Initialize \(\mu(v, p) = q_{\min} \) for all \((v, p) \in B_L \times [k]\).
2. If \(\text{Lift}(\mu) \neq \mu \), then put \(\mu := \text{Lift}(\mu) \) and go to 2. Otherwise go to 3.
3. Return \(\mathcal{B} = \{(v, p) \in B_L \times [k] \mid \mu(v, p) \neq \star\} \).

Theorem

We have \((v, p) \in \mathcal{B}\) if and only if \(v \sqsubseteq \left[X_p \right]_E \).
Coalgebraic μ-calculus [Cirstea, Kupke, Pattinson 2011]: Generic fixpoint logic framework, subsuming e.g. graded, probabilistic and alternating-time μ-calculi
Coalgebraic μ-calculus [Cirstea, Kupke, Pattinson 2011]: Generic fixpoint logic framework, subsuming e.g. graded, probabilistic and alternating-time μ-calculi

- Reduction of model checking [H., Schröder, CONCUR 2019] for the coalgebraic μ-calculus to solving fixpoint equation systems.

Corollary
Model checking for coalgebraic μ-calculi is in QP.
Coalgebraic μ-calculus [Cirstea, Kupke, Pattinson 2011]:
Generic fixpoint logic framework, subsuming e.g. graded, probabilistic and alternating-time μ-calculi

- Reduction of model checking [H., Schröder, CONCUR 2019] for the coalgebraic μ-calculus to solving fixpoint equation systems.

Corollary
Model checking for coalgebraic μ-calculi is in QP.

- Reduction of satisfiability checking [H., Schröder, FoSSaCS 2019] for the coalgebraic μ-calculus to solving fixpoint equation systems.

Corollary
Satisfiability checking for coalgebraic μ-calculi can be done in time $O(2^{nk\log n})$ (down from $O(2^{n^2k^2\log n})$).
More Examples, Many-valued Games and Logics

- **Finite latticed μ-calculus** [Bruns, Godefroid, 2004], latticed parity games [Kupferman, Lustig, 2007]

- Games / logics with combined parity and quantitative objective:
 - **Energy** parity games [Chatterjee, Doyen, 2012], energy μ-calculus [Amram, Maoz, Pistiner, Ringert, 2020]
 - **Mean-payoff** parity games; recover [Daviaud, Jurdzinski, Lazic, 2018]
Energy parity game: \((V, E, \Omega, w), w : E \to \mathbb{Z}\); player \(\lozenge\) wins even plays with starting credit \(c\) if energy value always remains non-negative.
Energy parity game: (V, E, Ω, w), $w : E \to \mathbb{Z}$; player \diamond wins even plays with starting credit c if energy value always remains non-negative.

- **History-dependent** \diamond-strategies: $s(1) = 1$, $s(1, 1) = 2$
- [Chatterjee, Doyen, 2012]: bound on history $c = |V| \cdot k \cdot W$
Energy parity game: (V, E, Ω, w), $w : E \to \mathbb{Z}$; player \Diamond wins even plays with starting credit c if energy value always remains non-negative.

- **History-dependent** \Diamond-strategies: $s(1) = 1, \ s(1, 1) = 2$
- [Chatterjee, Doyen, 2012]: bound on history $c = |V| \cdot k \cdot W$

Equation system over lattice $L = c^V$ with elements $g : V \to \{0, \ldots, c\}$

Function $f_{\text{EPG}} : L^{k+1} \to L$ is formula of energy μ-calculus.

Theorem [Amram, Maoz, Pistiner, Ringert, 2020]

Player \Diamond wins ν with initial credit c if and only if $(X_k f_{\text{EPG}})(\nu) = c$.

Hausmann, Schröder – Quasipolynomial Computation of Nested Fixpoints
Unifying progress measure algorithm leads to novel complexity results:

setting	game solving	model checking	satisfiability checking
coalgebraic	QP	QP	$2^\mathcal{O}(nk \log n)$
latticed	QP	QP	?
energy	pseudo-QP	QP in c	?
mean pay-off	pseudo-QP	?	?
Conclusion

Results:

- Quasipolynomial solving of fixpoint equations by universal graphs
- Highly general quasipolynomial progress measure algorithm for
 - Energy parity games, model checking energy μ-calculus
 - Latticed parity games, model checking finite latticed μ-calculi
 - Coalgebraic parity games, model checking / satisfiability checking for coalgebraic μ-calculus

Future work:

- Cover more variants of games (e.g. stochastic setting)
- Does this work for all games with finite-history strategies?
G. Amram, S. Maoz, O. Pistiner, and J. O. Ringert.
Energy mu-calculus: Symbolic fixed-point algorithms for omega-regular energy games.
CoRR, abs/2005.00641, 2020.

G. Bruns and P. Godefroid.
Model checking with multi-valued logics.
In *Automata, Languages and Programming, ICALP 2004*, volume 3142 of *LNCS*, pages 281–293. Springer, 2004.

C. S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan.
Deciding parity games in quasipolynomial time.
In *Theory of Computing, STOC 2017*, pages 252–263. ACM, 2017.
K. Chatterjee and L. Doyen.

Energy parity games.

Theor. Comput. Sci., 458:49–60, 2012.

C. Cîrstea, C. Kupke, and D. Pattinson.

EXPTIME tableaux for the coalgebraic μ-calculus.

Log. Meth. Comput. Sci., 7, 2011.

T. Colcombet and N. Fijalkow.

Universal graphs and good for games automata: New tools for infinite duration games.

In *Foundations of Software Science and Computation Structures, FOSSACS 2019*, volume 11425 of *LNCS*, pages 1–26. Springer, 2019.
W. Czerwinski, L. Daviaud, N. Fijalkow, M. Jurdzinski, R. Lazic, and P. Parys.

Universal trees grow inside separating automata: Quasi-polynomial lower bounds for parity games.
In Symposium on Discrete Algorithms, SODA 2019, pages 2333–2349. SIAM, 2019.

A. Dawar and E. Grädel.

The descriptive complexity of parity games.
In Computer Science Logic, CSL 2008, volume 5213 of LNCS, pages 354–368. Springer, 2008.
D. Hausmann and L. Schröder.
Game-based local model checking for the coalgebraic \(\mu \)-calculus.
In *Concurrency Theory, CONCUR 2019*, volume 140 of *LIPIcs*, pages 35:1–35:16. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.

D. Hausmann and L. Schröder.
Optimal satisfiability checking for arithmetic \(\mu \)-calculi.
In *Foundations of Software Science and Computation Structures, FOSSACS 2019*, volume 11425 of *LNCS*, pages 277–294. Springer, 2019.
O. Kupferman and Y. Lustig.
Latticed simulation relations and games.
In *Automated Technology for Verification and Analysis, ATVA 2007*, volume 4762 of *LNCS*, pages 316–330. Springer, 2007.
Fixpoint parity game for equation system E

Parity game (V, E, Ω), nodes: $V = (B_L \times [k]) \cup L^{k+1}$

node	priority	owner	moves to
$(u, j) \in B_L \times [k]$	$\text{ad}(j)$	\Diamond	$\{ U \in L^k \mid u \sqsubseteq f_j(U) \}$
U	0	\Box	$\{(v, i) \mid v \in U_i \}$

where $U = (U_0, \ldots, U_k) \in L^{k+1}$

Theorem [König et al. 2019]

Eloise wins node (u, i) if and only if $u \in \lfloor X_i \rfloor_E$.

Problem: exponential size
- still useful, e.g. for showing history-freeness for equation systems.