How alien can alien worlds be?

V. Adibekyan, 1 P. Figueira, 1 N. C. Santos 1, 2

1 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal
2 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal

Abstract

In an attempt to select stars that can host planets with characteristics similar to our own, we selected seven solar-type stars known to host planets in the habitable zone and for which spectroscopic stellar parameters are available. For these stars we estimated 'empirical' abundances of O, C, Mg and Si, which in turn we used to derive the iron and water mass fraction of the planet building blocks with the use of the model presented in Santos et al. (2015). Our results show that if rocky planets orbit these stars they might have significantly different compositions between themselves and different from that of our Earth. However, for a meaningful comparison between the compositional properties of exoplanets in the habitable zone and our own planet, a far more sophisticated analysis (e.g. Dorn et al., 2017) of a large number of systems with precise mass and radius of planets, and accurate chemical abundances of the host stars. The work presented here is merely the first humble step in this direction.

1 Introduction

Observations revealed a now well-known dependence between exoplanet formation and metallicity. Giant planets tend to form more frequently around metallic stars (e.g. Gonzalez, 1997; Santos et al., 2001; Mortier et al., 2013). This dependence, however, is less clear for low-mass/small-size planets (e.g. Sousa et al., 2011; Buchhave & Latham, 2015; Zhu et al., 2016). Interestingly, there are no planets observed around very metal poor stars e.g. [Fe/H] < -1 dex (exoplanet.eu), which probably means that there is a critical metallicity below which no planet can be formed (e.g. Johnson & Li, 2012). This critical metallicity is much higher than the metallicity of population III stars in our Galaxy, leading to the inference that planet formation started only after the first stars were formed and died, enriching the the interstellar gas with metals. However, this process did not take very long (in astronomical timescale) since many planets are found around thick disk stars that are typically older than 8 Gyr (e.g. Haywood et al., 2013). Moreover, it was shown that planet formation was more efficient around thick disk stars when compared to the thin disk stars of the same (low) metallicity (Haywood, 2009; Adibekyan et al., 2012a,b). This stems from the thick disk stars being enhanced in α-elements such as O, Mg, Si (e.g. Bensby et al., 2003; Adibekyan et al., 2013a) which seems to compensate the lack of iron, typically used as a proxy of overall metallicity (Adibekyan et al., 2012a). Indeed a system of five sub-earth-size planets was detected around a 11.2 Gyr old star (Campane et al., 2015), setting the limit for the earliest exoplanet system formed and opening a possibility for the existence of ancient life in our Galaxy.

During (at least) the 11.2 billion year-long history of exoplanet formation in the Milky Way, the interstellar gas has chemically evolved significantly. Some recent works detail how abundances of different chemical elements changes with time (e.g. Nissen et al., 2017; Delgado Mena et al., 2017a) and place in the Galaxy (e.g. Recio-Blanco et al., 2014; Kordopatis et al., 2015). Abundances of these different individual heavy elements and specific elemental ratios (e.g. Mg/Si and Fe/Si) are, in turn, very important for the formation (Santos et al., 2001; Suárez-Andrés et al., 2017; Santos et al., 2017; Adibekyan et al., 2015, 2017), orbital architecture (Adibekyan et al., 2013b; Beaugé & Nesvorný, 2013; Mulders et al., 2016), structure and composition (Santos et al., 2015; Thiabaud et al., 2014; Dorn et al., 2015), and even maybe for 'habitability' of the exoplanets (Adibekyan et al., 2016). This discussion leads to a conclusion that the chemical environment i.e., time and place in the Milky Way, play a crucial role for the formation of planets and their main characteristics (Adibekyan, 2017).

In a recent work, Adibekyan et al. (2016) proposed that planets in the habitable zone of solar-like stars may have different compositions from that of our Earth. In this work, we try to estimate the composition of the planet building blocks around stars that are known to host planets in the habitable zone (HZ). 1

2 Planets in the habitable zone: sample selection

To select stars with HZ planets we used the the Habitable Exoplanet Catalog. From the list of “Conservative” and “Optimistic Sample of Potentially Habitable Exoplanets” we selected planets that are hosted by solar-type stars with effective temperature higher than 4500 K. We note that the derivation of stellar parameters, including stellar metallicity, is very challenging for cooler stars and are typically less precise. For six (Kepler-1540, Kepler-1544, Kepler-1552, Kepler-1090, Kepler-1606 and Kepler-1638) out of 13 selected systems, the stellar metallicity (the most important parameter for the current study) was derived by Morton et al. (2016)

1 Do not mix with the Habitable Zone defined in Turbo-King et al. (2017).
2 http://phl.upr.edu/projects/habitable-exoplanets-catalog
Table 1: Stellar parameters and abundances of the sample stars. The index emp refers to the ‘empirical’ derivation of the abundances. The references for stellar parameters are in the last column.

star	\(T_{\text{eff}} \)	\(\log g \)	[Fe/H]	[O/H]	[C/H]	[Mg/H]	[Si/H]	\([\text{[O/H]}]_{\text{emp}}\)	\([\text{[C/H]}]_{\text{emp}}\)	\([\text{[Mg/H]}]_{\text{emp}}\)	\([\text{[Si/H]}]_{\text{emp}}\)	References
Kepler-22	5518±54	4.44±0.06	-0.29±0.06	0.19±0.05	-0.24±0.05	-0.23±0.03	-0.24±0.03	-0.10±0.10	-0.28±0.06	-0.18±0.06	-0.21±0.05	Borucki et al. (2012)
HD40307	4774±27	4.47±0.05	-0.36±0.02	-0.36±0.10	-0.20±0.09	-0.19±0.08	-0.14±0.10	-0.40±0.05	-0.22±0.03	-0.27±0.05	Trantaki et al. (2013)	
HD10700	5310±17	4.36±0.06	-0.52±0.01	0.26±0.10	-0.52±0.10	-0.30±0.06	-0.36±0.03	-0.18±0.10	-0.32±0.10	-0.29±0.08	-0.35±0.07	Sousa et al. (2008)
Kepler-452	5757±58	4.32±0.09	0.21±0.09	0.21±0.10	0.17±0.08	0.22±0.08	0.21±0.08	0.14±0.10	-0.39±0.05	-0.21±0.05	-0.22±0.06	Jenkins et al. (2015)
Kepler-62	4925±70	4.68±0.04	-0.37±0.04	-0.18±0.10	-0.59±0.10	-0.41±0.01	-0.40±0.04	-0.22±0.06	-0.46±0.04	-0.21±0.05	-0.22±0.06	Burrows et al. (2015)
Kepler-174	4850±126	4.68±0.15	-0.43±0.10	0.02±0.10	-0.11±0.09	-0.07±0.10	0.06±0.07	0.09±0.07	0.02±0.06	0.12±0.06	0.06±0.07	Torres et al. (2015)
Kepler-443	4725±100	4.62±0.10	-0.01±0.10	0.09±0.17	0.10±0.20	0.09±0.23	0.10±0.20	0.06±0.17	0.07±0.17	0.08±0.17	0.06±0.17	Adibekyan et al. (2015)

The model presented in Santos et al. (2015) uses atomic abundances of O, C, Mg, Si and Fe, as input, and with simple stoichiometric equations calculates the mass fraction of \(\text{H}_2\text{O} \), \(\text{CH}_4 \), \(\text{Fe}_2\text{MgSiO}_3 \), \(\text{Mg}_2\text{SiO}_4 \), the total mass percentage of all heavy elements \(Z \), the iron mass fraction \(f_{\text{Fe}} = m_{\text{Fe}}/(m_{\text{Fe}} + m_{\text{MgSiO}_3} + m_{\text{Mg}_2\text{SiO}_4}) \) and the water mass fraction \(f_{\text{H}_2\text{O}} = m_{\text{H}_2\text{O}}/(m_{\text{H}_2\text{O}} + m_{\text{Fe}} + m_{\text{MgSiO}_3} + m_{\text{Mg}_2\text{SiO}_4}) \). These values are derived for each star using the original spectroscopic and ‘empirical’ abundances. The results are presented in Table 2. From the table we can see that for the three stars for which together with the ‘empirical’ abundances spectroscopic abundances are available (HD40307, HD10700, and Kepler-22), the derived values are similar and agree within the error bars. However, it should be mentioned the uncertainties of some of the parameters are large, especially if they are derived from the ‘empirical’ abundances.

should be considered only as rough estimates.

4 Composition of the planet building blocks

The model presented in Santos et al. (2015) uses atomic abundances of O, C, Mg, Si and Fe, as input, and with simple stoichiometric equations calculates the mass fraction of \(\text{H}_2\text{O} \), \(\text{CH}_4 \), \(\text{Fe}_2\text{MgSiO}_3 \), \(\text{Mg}_2\text{SiO}_4 \), the total mass percentage of all heavy elements \(Z \), the iron mass fraction \(f_{\text{Fe}} = m_{\text{Fe}}/(m_{\text{Fe}} + m_{\text{MgSiO}_3} + m_{\text{Mg}_2\text{SiO}_4}) \) and the water mass fraction \(f_{\text{H}_2\text{O}} = m_{\text{H}_2\text{O}}/(m_{\text{H}_2\text{O}} + m_{\text{Fe}} + m_{\text{MgSiO}_3} + m_{\text{Mg}_2\text{SiO}_4}) \). These values are derived for each star using the original spectroscopic and ‘empirical’ abundances. The results are presented in Table 2. From the table we can see that for the three stars for which together with the ‘empirical’ abundances spectroscopic abundances are available (HD40307, HD10700, and Kepler-22), the derived values are similar and agree within the error bars. However, it should be mentioned the uncertainties of some of the parameters are large, especially if they are derived from the ‘empirical’ abundances.

5 Results and Discussion

Our results summarized in Table 2 show that if small-size and low-mass planets are found in the HZ of the studied seven stars then they are expected to have significantly different iron-to-silicate and water mass fractions. In particular, the iron mass fraction in five out of seven cases is significantly lower (from \(\sim 24 \) to \(\sim 28\% \)) than what this model would predict for solar-system planet building blocks (i.e. \(f_{\text{Fe}} = 33\% \) Santos et al. 2017, submitted). Water content would also vary from system to system between \(\sim 56 \) to \(72\% \). Here we should stress again the large uncertainties for this parameter that mostly come from the larger errors on the C and O abundances.

Very recently, Santos et al. (2017, submitted) compiled chemical abundances for large sample of solar-type stars from the solar vicinity and derived the expected composition of the planet building blocks. The authors found that stars belonging to different galactic stellar populations (thin disk, thick disk, halo, and high-\(\alpha \) metal-rich - Adibekyan et al. (2011)) are expected to have rocky planets with significantly different iron mass and water mass fractions. Our results go well in line with the findings of Santos et al. (2017, submitted), since stars in our small sample having different metallicities and ages probably belong to different galactic populations. The results also somehow confirm the prediction of Adibekyan et al. (2016) that exoplanets in the HZ may have composition different from that of our Earth.

3https://github.com/timothydmorton/vespa
4We defined stellar analogs as stars with [Fe/H]±0.1 dex, \(T_{\text{eff}} \pm 500\text{K} \), and \(\log g \pm 0.3 \text{dex} \).
Table 2: Mass fractions and total fraction (Z) of heavy elements, iron mass fraction among refractory species (f_{iron}), and the water mass fraction (w_f). All values are in %.

star	H$_2$O	CH$_4$	Fe	MgSiO$_3$	Mg$_2$SiO$_4$	Z	f_{iron}	w_f
HD40307$_{emp}$	0.39±0.11	0.15±0.01	0.06±0.00	0.08±0.03	0.07±0.02	0.74±0.12	27.89±1.72	65.00±11.58
HD40307	0.38±0.11	0.15±0.03	0.06±0.00	0.10±0.06	0.07±0.07	0.76±0.12	25.10±2.82	62.30±14.35
HD10700$_{emp}$	0.37±0.11	0.11±0.03	0.04±0.00	0.06±0.05	0.07±0.05	0.65±0.11	23.80±2.51	68.52±13.08
HD10700	0.38±0.10	0.12±0.03	0.04±0.00	0.06±0.02	0.06±0.03	0.66±0.10	24.36±1.36	70.37±10.63
Kepler-22$_{emp}$	0.45±0.13	0.20±0.02	0.07±0.01	0.10±0.05	0.08±0.05	0.90±0.14	29.85±3.24	64.29±14.83
Kepler-22	0.33±0.04	0.20±0.02	0.08±0.01	0.10±0.02	0.07±0.02	0.78±0.05	30.64±2.90	59.60±5.00
Kepler-62$_{emp}$	0.40±0.10	0.15±0.02	0.06±0.01	0.11±0.04	0.06±0.03	0.76±0.10	25.88±2.53	63.49±11.22
Kepler-174$_{emp}$	0.39±0.11	0.10±0.02	0.04±0.01	0.08±0.01	0.03±0.01	0.63±0.11	26.86±4.68	72.22±11.14
Kepler-443$_{emp}$	0.56±0.14	0.29±0.05	0.13±0.03	0.23±0.04	0.02±0.05	1.25±0.16	32.70±6.00	59.57±15.68
Kepler-452$_{emp}$	0.82±0.21	0.55±0.10	0.21±0.05	0.28±0.15	0.15±0.15	2.02±0.25	32.73±5.84	56.16±30.27
Sun	0.50±0.07	0.37±0.04	0.13±0.01	0.18±0.06	0.08±0.06	1.26±0.08	33.14±3.11	56.08±5.12

6 A laconic conclusion

We estimated the water and iron-to-silicate mass fraction of planet building blocks for seven solar-type stars with precise spectroscopic metallicities that are known to have planets in the HZ. Our very simplified analysis show that if rocky planets are found orbiting around these stars they might have different composition compared to our own planet. To confidently answer to the question postulated in the title of this manuscript a far more sophisticated analysis for each individual object is needed with an important requirement of having very precise masses and radius of the planets and very accurate chemical abundances of the host star (e.g. Dorn et al., 2017).

Acknowledgments

V.A. thanks the organizers of EWASS Special Session 4 (2017), Emeline Bolmont & Sergi Blanco-Cuaresma, for a very interesting session and for selecting his oral contribution. This work was supported by Fundaçao para a Ciência e Tecnologia (FCT) through national funds (ref. PTDC/FIS-AST/7073/2014 and ref. PTDC/FIS-AST/1526/2014) through national funds and by FEDER through COMPETE2020 (ref. POCI-01-0145-FEDER-016880 and ref. POCI-01-0145-FEDER-016886). V.A., P.F., and N.C.S. also acknowledge the support from FCT through Investigador FCT contracts of reference IF/00650/2015/CP1273/CT0001, IF/01037/2013/CP1191/CT0001, and IF/00169/2012/CP0150/CT0002, respectively, and POPH/FSE (EC) by FEDER funding through the program “Programa Operacional de Factores de Competitividade - COMPETE”. PF further acknowledges support from FCT in the form of an exploratory project of reference IF/01037/2013CP1191/CT0001.

References

Adibekyan, V., Santos, N. C., Figueira, P., Dorn, C., Sousa, S. G., et al. 2015, A&A, 581, L2.
Adibekyan, V. Z., Delgado Mena, E., Sousa, S. G., Santos, N. C., Israeli, G., et al. 2012a, A&A, 547, A36.
Adibekyan, V. Z., Figueira, P., Santos, N. C., Hakobyan, A. A., Sousa, S. G., et al. 2013a, A&A, 554, A44.
Adibekyan, V. Z., Figueira, P., Santos, N. C., Mortier, A., Mordasini, C., et al. 2013b, A&A, 560, A51.
Adibekyan, V. Z., Santos, N. C., Sousa, S. G., & Israeli, G. 2011, A&A, 535, L11.
Adibekyan, V. Z., Santos, N. C., & Dorn, C., 2013, A&A, 551, A112.
Adibekyan, V. Z., Delgado Mena, E., et al. 2012b, A&A, 543, A89.
Bensby, T., & Lundström, I. 2003, A&A, 410, 527.
Bertran de Lis, S., Delgado Mena, E., Adibekyan, V. Z., Santos, N. C., & Sousa, S. G. 2015, A&A, 576, A89.
Buchhave, L. A. & Latham, D. W. 2015, ApJ, 808, 187.
Campante, T. L., Barclay, T., Swift, J. J., Huber, D., Adibekyan, V. Z., et al. 2015, ApJL, 799, 170.
Delgado Mena, E., Tsantaki, M., Adibekyan, V. Z., Sousa, S. G., Santos, N. C., et al. 2017a, arXiv:1707.05156.
Delgado Mena, E., Tsantaki, M., Adibekyan, V. Z., Sousa, S. G., Santos, N. C., et al. 2017b, arXiv:1705.04349.
Dorn, C., Hinkel, N. R., & Venturini, J. 2017, A&A, 597, A38.
Dorn, C., Khan, A., Heng, K., Connolly, J. A. D., Alibert, Y., et al. 2015, A&A, 577, A83.
González, G. 1997, Mon Not R Astron Soc, 285, 403.
Haywood, M. 2009, ApJL, 698, L1.
Haywood, M., Di Matteo, P., Lehner, M. D., Katz, D., & Gómez, A. 2013, A&A, 560, A109.
Jenkins, J. M., Twicken, J. D., Batalha, N. M., Caldwell, D. A., Cochran, W. D., et al. 2015, AJ, 150, 56.
Johnson, J. L. & Li, H. 2012, ApJ, 751, 81.
Kordopatis, G., Wyse, R. F. G., Gilmore, G., Recio-Blanco, A., de Laverny, P., et al. 2012, ApJ, 745, 120.
Kordopatis, G., Wyse, R. F. G., Gilmore, G., Recio-Blanco, A., de Laverny, P., et al. 2012, ApJ, 745, 120.
