Chemotherapy-induced pulmonary toxicity in lung cancer management

Jorge Roig Cutillas, Elvira Gea Rodríguez and Nuria Barral Viñals

Unitat de Pneumologia. Servei de Farmàcia. Hospital Nostra Senyora de Meritxell. Escaldes-Engordany (Principality of Andorra).

Chemotherapy is the cornerstone of therapy in many stages of lung cancer. Many diagnostic options have to be taken into account when a patient suffering from lung cancer presents with nonspecific, respiratory, clinical manifestations. A multidisciplinary diagnostic approach is then warranted. The top priority is to rule out those life-threatening causes, such as lung infection, that could be properly treated if a right diagnosis is early. To reach a definite diagnosis frequently requires that one or more diagnostic, pneumologic techniques are performed. Regarding to drug-induced pulmonary disease, prevention is mandatory. In this review we have tried to highlight the risk and characteristics of cytostatic-induced pulmonary toxicity caused by those agents that have been commonly employed to treat lung cancer for the last decades. When treating lung cancer patients, a high clinical suspicion of chemotherapy-induced lung toxicity should be kept in mind since an early withdrawal of the offending drug is the most efficacious therapy.

Key words: Lung cancer, chemotherapy, lung toxicity.

Rev Oncología 2001; 4: 183-195.

INTRODUCTION

Oncologists have often to face a broad differential diagnosis when lung cancer patients under cytotoxic treatment present with nonspecific respiratory symptoms and radiographic shadowing. Because of their own prognostic and therapeutic implications the following etiologies have to be firstly considered in the initial diagnostic approach: lung infection, either by conventional pathogens or atypical microorganisms, malignancy-related thromboembolic pulmonary disease, local tumor progression, iatrogenic intra-alveolar hemorrhage, radiotherapy-induced adverse effects, transfusion reactions, postoperative complications...
in those patients that have undergone thoracic surgery, oxygen toxicity, and eventually drug-induced pulmonary toxicity. In that last case, most patients are also receiving many drugs, other than cytostatics, that sometimes may cause lung toxicity. For most clinicians the diagnosis and treatment of pneumonia in an non-immunocompetent patient is often the top priority from a practical point of view. However, it is worthwhile to be aware of other entities that may overlap the clinical presentation of pulmonary infection, as it has been recently emphasized (table 1). Usually, a multidisciplinary approach is warranted to try to elucidate the cause of new clinical pulmonary findings in lung cancer patients that are treated with chemotherapy, especially when a multimodality therapeutic program is going on. An algorithmic approach to evaluation of pulmonary infiltrates and nonspecific respiratory symptoms and signs in lung cancer patients on chemotherapy is schematically shown in figure 1. The increasing use of combined chemotherapy and concurrent or alternating radiotherapy makes it even more difficult for clinicians a right diagnostic approach in these circumstances. The progressive trend of lung cancer to be diagnosed in people aged > 70 years has raised the subject of an alleged increase of drug toxicity in that population. Probably, the multiple underlying diseases which are often present in many elderly patients may afford a better explanation for this finding that age per se. Sometimes physicians have to confront with the dilemma of slowly resolving pulmonary infiltrates in lung cancer patients receiving antibiotics for a confirmed diagnosis of pneumonia. Clinicians have to kept in mind that a slower than usual radiologic resolution of pneumonia may be found in the elderly, in those cases of severe pneumonia with extensive pulmonary shadowing, and with some etiologies such as Legionella. The aim of this article is to review the subject of chemotherapy-induced lung toxicity with a more specific emphasis in those cytostatics that have recently been more commonly used in the therapeutic approach of lung cancer (table 2). Since a variety of mechanisms have been postulated in chemotherapy-induced-pulmonary toxicity but the actual pathogenesis remains speculative, we have focused only in clinically relevant data of the subject. The role of biological response modifiers, hormonal agents, and other non-cytostatic agents in causing adverse respiratory effects is then beyond the scope of this review. Related topics as the radiation sensitization action of different cytostatics, the interactions of radiotherapy with antineoplastic agents in producing lung damage, and the perioperative considerations of thoracic surgery following chemotherapy have been addressed in other in-depth reviews.

GENERAL CONSIDERATIONS

Clinical features

Although a certain clinical or radiographic presentation may occasionally be suggestive of pulmonary toxicity caused by a determined cytostatic, it can be in general stated that clinical and radiologic findings are usually not distinctive for any particular chemotherapeutic agent. Since clinical and radiographic manifestations are protean, it must be emphasized that a high index of clinical suspicion is needed to establish a right diagnosis and institute an appropriate therapy. Affected patients may present with dyspnea, cough, malaise, and sometimes fever. The onset of clinical symptoms is often progressive but a subacute or even abrupt clinical presentation is also possible. In those cases of insidious, progressive pulmonary injury, a relationship between dose and duration of chemotherapy and the onset of lung

TABLE 1. Noninfectious pulmonary diseases mimicking pneumonia

Noninfectious pulmonary disease	Mimicking pneumonia
Acute an chronic eosinophilic pneumonia	Acute chest syndrome associated with adult sickle cell disease
Acute chest syndrome associated with adult sickle cell disease	Allergic bronchopulmonary aspergillosis
Allergic bronchopulmonary aspergillosis	Alveolar proteinosis
Blood transfusions reactions	Bronchiolitis obliterans organizing pneumonia (BOOP)
Bronchiolitis obliterans organizing pneumonia (BOOP)	Bronchiolalveolar-cell carcinoma
Bronchiolitis obliterans organizing pneumonia (BOOP)	Diffuse alveolar hemorrhage syndromes
Diffuse alveolar hemorrhage syndromes	Drug-induced or toxic pneumonitis
Drug-induced or toxic pneumonitis	Exogenous lipid pneumonia
Exogenous lipid pneumonia	Inflammatory abdominal diseases
Inflammatory abdominal diseases	Inflammatory pseudotumor (plasma-cell granuloma)
Inflammatory pseudotumor (plasma-cell granuloma)	Hypersensitivity pneumonia (extrinsic allergic alveolitis)
Hypersensitivity pneumonia (extrinsic allergic alveolitis)	Kaposis’s sarcoma
Kaposis’s sarcoma	Lobar atelectasis
Lobar atelectasis	Malignant haemopathies: leukemia, lymphomas, fungoides mycosis
Malignant haemopathies: leukemia, lymphomas, fungoides mycosis	Noninfectious causes of adult respiratory distress syndrome (ARDS)
Noninfectious causes of adult respiratory distress syndrome (ARDS)	Oxygen toxicity
Oxygen toxicity	Postcardiac injury syndromes
Postcardiac injury syndromes	Postpartum antiphospholipid antibodies syndrome
Postpartum antiphospholipid antibodies syndrome	Pulmonary torsion
Pulmonary torsion	Pulmonary vasculitis (Wegener’s granulomatosis, Churg-Strauss syndrome, others)
Pulmonary vasculitis (Wegener’s granulomatosis, Churg-Strauss syndrome, others)	Radiotherapy-induced pneumonitis
Radiotherapy-induced pneumonitis	Systemic lupus erythematous
Systemic lupus erythematous	Sarcoidiosis
Sarcoidiosis	Thromboembolic pulmonary disease: lung infarcts, Dressler syndrome

From Roig J, et al. Arch Bronconeumol 1998".

184
toxicity is not always clear. Those chemotherapeutic agents that have been associated with acute pneumonitis, adult respiratory distress syndrome (ARDS), progressive pulmonary fibrosis, pleural disease, and an hypersensitivity reaction that may cause respiratory symptoms, are shown, respectively, in tables 3, 4, 5, 6 and 7. The terminology used in many chemotherapy-induced lung toxicity case reports may be sometimes confusing. Some authors prefer to emphasize the pathological findings, others the clinical picture in a general way, and others chose very specific pathophysiological terms such as non-cardiogenic pulmonary edema, acute respiratory failure or acute respiratory distress syndrome (ARDS). In order to clarify these concepts for those readers that are not skilled in pulmonary disease it is worthwhile to remember that neither non-cardiogenic pulmonary edema nor acute respiratory failure are equivalent to ARDS since the diagnosis of this

TABLE 2. Lung cancer: chemotherapeutic agents associated with pulmonary toxicity

Alkylating agents	Antimetabolites	Cytotoxic antibiotics	Antimicrotubule agents	Miscellaneous
Cyclophosphamide	Methotrexate	Mitomycin	Vinca alkaloids	Topotecan
Nitrosoureas	Gemcitabine	Doxorubicin*	Paclitaxel	Irinotecan
Ifosfamide			Docetaxel	Etoposide
Procarbazine				Teniposide

* Lung edema secondary to congestive heart failure.
last entity requires other additional criteria to be established. The microscopic diagnosis of diffuse alveolar damage usually corresponds to the early histopathological expression of any ARDS, whatever its cause is.

Imaging techniques

Many different types of radiographic abnormalities have been reported. In general, the chest radiograph findings lag behind the onset of clinical symptoms. Chest CT scan may help to define the extent and characteristics of the opacities. High-resolution CT scan may occasionally detect subtle parenchymal abnormalities when the chest radiograph is still normal. On the basis of the differences found in magnetic resonance characteristics, a possible role for magnetic resonance spectrometry could be suggested but further studies are clearly warranted to support this concept. The clinical utility of magnetic resonance spectroscopy to both improve sensitivity and to try to correlate the extent of disease with the inflammatory activity is well established. However, gallium scans, as any imaging technique, have inherent limitations in specificity. We think that, when considering a diagnosis of pulmonary drug toxicity, the most important role of any radiologic technique is to detect a new abnormality, whatever it is, either in clinically symptomatic patients or as a radiologic finding in a subclinical phase.

Pulmonary function tests

An early diagnosis of lung toxicity, even before radiographic shadowing appears, may also be suggested if pulmonary function testing shows an unexplained decrease in carbon monoxide diffusing capacity (DLCO) in patients that complain about dyspnea of unknown cause. In contrast to the decreased DLCO usually found in the more common pattern of interstitial lung involvement, an increased DLCO may be sometimes noticed in those rare cases of diffuse alveolar hemorrhage. In severe cases, hypoxemia and an increased alveolar-arterial (A-a) gradient are usually observed. Pulmonary function testing also may help to evaluate the degree of restrictive ventilatory alteration that is often found and to monitorize the functional outcome in a non-invasive way.

Other techniques

Fiberoptic bronchoscopy with bronchoalveolar lavage may be helpful in ruling out an infectious etiology and in supporting the diagnosis of chemotherapy-induced pneumonitis. A nonspecific lymphocytic predominance with imbalance of the CD4/CD8 ratio is often observed in certain drug-induced pneumonitis but it should be kept in mind that the clinical usefulness of this finding in diagnosing drug toxicity is clearly limited. In certain cytostatic-induced pulmonary toxicities, such as cyclophosphamide or busulfan, characteristic bizarre pneumocytes in sputum or lavage fluid can be identified. The clinical relevance of a few preliminary studies that suggested the usefulness of determining serum markers for cytostatic-induced lung toxicity has not been confirmed so far.

Pathology

Some attempts have been made to try to correlate

TABLE 3. Lung cancer: chemotherapeutic agents associated with acute pneumonitis
Cyclophosphamide

TABLE 5. Lung cancer: chemotherapeutic agents associated with progressive pulmonary fibrosis
Cyclophosphamide

TABLE 4. Lung cancer: chemotherapeutic agents associated with ADRS
Gemcitabine

TABLE 6. Lung cancer: chemotherapeutic agents associated with pleural disease
Cyclophosphamide

*Trasudative pleural effusion caused by fluid retention syndrome; **Trasudative pleural effusion caused by congestive heart failure.
te radiographic findings with the underlying histopathologic process. In those cases of chemotherapy-induced lung toxicity in which a biopsy procedure has been performed, many pathologic patterns, most of them showing a variable degree of an inflammatory component, have been reported. A variety of interstitial pneumonias, usually chronic or nonspecific interstitial pneumonia, and many other histologic patterns have been observed (Table 8). In cases with a protracted course, different degrees of non-reversible interstitial or alveolar duct fibrosis are found after acute abnormalities have evolved to a late proliferative phase.

Diagnosis

In summary, the diagnosis of lung toxicity caused by cytostatics in lung cancer patients should be based on clinical history, especially from a chronologic point of view, nonspecific clinic findings, and the reasonable exclusion of infection and other less common causes of infiltrative lung disease, either patchy or diffuse. As stated before, a multidisciplinary diagnostic approach is mandatory, and the possible need of invasive techniques, such as bronchoalveolar lavage, transbronchial, thoracoscopic or open pulmonary biopsy, has to be considered in some cases in an individualized way.

TREATMENT

More benign, early detected cases may resolve after cessation of the incriminated cytostatic agent. Therefore, the most appropriate treatment for many cases of cytostatic-induced lung toxicity is withdrawal of the offending drug. In the usually more severe cases a short course of corticosteroid therapy is warranted. However, the outcome is variable depending on the offending agent and the degree of established lung damage. After an improvement of symptoms is observed, tapering of the dosage has to be instituted on an individualized basis. Lung transplantation has exceptionally been considered in very selected cases for patients cured of a malignancy who had developed chemotherapy-induced fibrosis.

ALKYLATING AGENTS

Table 9 shows a summary of pulmonary toxicity caused by alkylating agents.

Cyclophosphamide

Two patterns of cyclophosphamide-induced pulmonary toxicity have been clearly identified. Early-onset acute pneumonitis is reversible and responds to discontinuation of the drug or, in more severe cases, to corticosteroid therapy. Clinical features of late-onset pneumonitis are those of progressive pulmonary fibrosis with associated pleural thickening on chest radiograph. These patients do not respond neither to cessation of cyclophosphamide nor to institution of corticosteroid therapy. The incidence of pulmonary injury associated with this cytotoxic agent is not exactly determined but it is thought to be lower than 1%.

A syndrome of water retention with marked hypervolemia and hyponatremia may be induced by high dose intravenous cyclophosphamide therapy. Secondary pleuropulmonary findings may then rarely be observed, especially in older patients that receive a fluid overload to prevent hemorrhagic cystitis. In an experimental study cyclophosphamide-induced lung toxicity was shown to be potentiated by hyperoxia. Radiation therapy and cyclophosphamide seem to be a particularly toxic combination for the lung.

Nitrosoureas

TABLE 7. Lung cancer: chemotherapeutic agents associated with an hypersensitivity reaction that may cause respiratory symptoms

- Docetaxel
- Etoposide
- Gemcitabine
- Ifosfamide + mesna
- Irinotecan
- Methotrexate
- Mitomycin
- Paclitaxel
- Procarbazine
- Topotecan
- Vinca alkaloids

TABLE 8. Lung cancer: tissue reactions in chemotherapy-induced pulmonary toxicity

- Chronic interstitial pneumonia
- Diffuse alveolar damage
- Bronchiolitis obliterans organizing pneumonia (BOOP)
- Obliterative bronchiolitis
- Hypersensitivity pneumonia*
- Lung fibrosis
- Pulmonary edema
- Pulmonary hemorrhage
- Pulmonary hypertension
- Pulmonary veno-occlusive disease

* Presence of poorly formed granulomas in methotrexate-induced lung toxicity.
Bischloroethylnitrosurea (BCNU) and cyclohexylcloroethylnitrosourea (CCNU) have been infrequently used in a few combination chemotheray regimens for small-cell lung cancer. Pulmonary toxicity, resulting in alveolitis and fibrosis, has been reported after BCNU and CCNU therapy, usually in cumulative doses greater than 1,000 mg/m². Interestingly, preexisting lung disease and abnormal pulmonary function tests, two relatively common findings in lung cancer, have been identified as risk factors for the development of BCNU-induced lung toxicity in a malignant glioma series. In that subset of population a 20%-30% incidence of lung toxicity has been reported. Although toxicity is usually dose-related, an acute form of pneumonitis can occur at any end of the dose schedule. However, most cases present with the clinical features of an insidious chronic pulmonary fibrosis. Enhanced oxygen toxicity has been reported after BCNU therapy.

Ifosfamide

Hypersensitivity reactions, that may imply respiratory manifestations, are possible when ifosfamide is administered, as usual, in conjunction with mesna. The risk of CNS depression following ifosfamide therapy (about 12%) has to be taken in consideration in those patients that suffer from advanced chronic obstructive lung disease, a common association in lung cancer, since somnolence may worsen hypercapnia and enhance encephalopathy. A word of caution is also needed in the case of underlying central or obstructive sleep apnea syndrome, since the prevalence of the last one in general population is relatively high. Direct pulmonary toxicity is very rare but possible.

Procarbazine

This nonclassic alkylating agent, sometimes used in small-cell lung carcinoma, may cause rarely an hypersensitivity reaction including lung infiltrates that may force discontinuation of the drug. Pleural effusion has been occasionally reported. Since procarbazine is used primarily in combination therapy, most reported cases of hypersensitivity have occurred in patients receiving other cytotoxic drugs. Procarbazine is one of the drugs that occasionally may cause neuropathies that could impair respiratory muscle function.

PLATIN COMPOUNDS

Platin-based regimens have been the gold standard of combined chemotherapy for the last decade. The lack of any direct pulmonary toxicity is a characteristic of both cisplatin and carboplatin therapies. Two cases of noncardiogenic pulmonary edema associated with hemolytic uremic syndrome had been allegedly attributed to cisplatin in a 1991 report. In our opinion, the absence of new references so far and the fact that

Agent	Clinical presentation	Respiratory features	Incidence	Outcome
Cyclophosphamide	Acute	AP	< 1%	AP: usually recovery
	Chronic	CPF		CPF: high mortality
Nitrosurea	Rarely acute	AP	< 20%-30%	Mortality may be high
	Usually chronic	CPF		if diagnosis is delayed
	dose-related (total			
	dose > 1,000 mg/m²)			
Procarnazine	Acute	HR	Very rare	Usually recovery
	Rarely AP or pleuritis			
	Very rarely involvement	of respiratory muscles		
	in cases of peripheral			
	neuropathy			
Ifofamide	Acute	HR (mesna related)	< 12%	Usually recovery
	Respiratory depression*			
	Rarely AP			

* Special concern in advanced COPD and SAS; AP: acute pneumonitis; CPF: chronic pulmonary fibrosis; HR: hypersensitiviy reaction; COPD: chronic obstructive pulmonary disease; SAS: sleep apnea syndrome; CNS: central nervous system.
both patients suffered from acute cisplatin nephropathy and that the noncardiogenic edema seemed to be triggered by a red blood cell transfusion make this association very doubtful. Adverse lung effects have not been reported so far with the new orally available platinum-containing anticancer drugs.

ANTIMETABOLITES

Table 10 shows a summary of pulmonary toxicity caused by antimetabolites.

Methotrexate

The role of this folate antagonist as a therapeutic agent seems to be nowadays more in the field of autoimmune disease than in that of lung cancer. Although a subacute clinical presentation is most common, acute and chronic forms also occur. Pulmonary toxicity may be diagnosed as early as a few days and as late as many years of treatment. The incidence of pulmonary toxicity has been a matter of controversy but present studies estimate a rate of 2% to 8%. Difficulties found in comparing the incidence and characteristics of methotrexate-induced lung toxicity among series promoted the scoring system published by Searles et al in 1987. In a large study on methotrexate induced lung injury following treatment for rheumatoid arthritis a few risk factors were identified: age greater than 60 years, hypalbuminemia, diabetes mellitus, and rheumatoid pleuropulmonary involvement.

The most frequent pulmonary manifestation is hypersensitivity pneumonitis, with peripheral blood eosinophilia that may be observed in up to 40%–50% of patients. Lymphocytic predominance with an increase in CD4+ T cells and CD4/CD8 ratio in bronchoalveolar lavage fluid, and a characteristic pathologic pattern of poorly defined granulomatous infiltration with interstitial monocellular infiltrates have also been consistently reported. A fulminant presentation of respiratory failure has been well described, even after intrathecal administration in non-pulmonary malignancies. The unusual radiographic finding of hilar adenopathy has been very occasionally reported. Acute chest pain caused by pleuritis without parenchymal involvement may rarely occur. While the drug has been used to control severe corticosteroid-dependent bronchial asthma, methotrexate-induced bronchial hyperreactivity has been paradoxically reported. A reversible pulmonary non-Hodgkin’s B-cell lymphoma may appear in patients under methotrexate therapy. Characteristically, it may regress after cessation of the drug. An interesting association with Epstein-Barr virus infection has been reported.

Acute encephalopathy that may present with confusion and even coma has been reported with high-dose therapy. Respiratory implications in severe COPD, in a manner similar to ifosfamide, must be remembered by clinicians. Piritrexim, a methotrexate analog that has been occasionally used in upper respiratory tract tumors, which are commonly associated with lung cancer, may also cause pulmonary toxicity.

Fluorouracil

The use of fluorinated pyrimidines in lung cancer has been mostly restricted to Japanese studies. To the best of our knowledge, significant pulmonary toxicity has not been reported so far. Fluoruracil administration could enhance the risk of mitomycin-induced thrombotic microangiopathy with acute respiratory distress syndrome.

Gemcitabine

This pyrimidine analog shows a good activity against...
a wide range of solid tumors, including lung cancer. Consequently, it has become one of the most widely used cytostatics in the therapeutic approach of lung tumors. One benign respiratory side effect of gemcitabine is dyspnea, which may start within a few hours of administration of the drug and is thought to be related to bronchospasm. A potentially more serious event is the appearance of parenchymal infiltrates that sometimes may be associated with acute respiratory distress syndrome. A few fatalities attributed to diffuse alveolar damage and ARDS have been reported. Since that drug shows an structure and metabolism quite similar to cytosine arabinoside (ara-C) a capillary leak phenomena has also been allegedly incriminated in gemcitabine-induced pulmonary toxicity. Rare instances of pulmonary veno-occlusive disease and hemolytic uremic syndrome have been reported. A recent German study reported a worrying 7.1% percentage of unexplained non-cardiogenic pulmonary distress «most likely related to gemcitabine» in a series of 56 patients. A more extensive retrospective study based on 4,448 trial patients shows a 0.45% incidence of serious pulmonary toxicity. Although high dose steroid pretreatment has allowed successful rechallenge with gemcitabine after initial severe pulmonary toxicity in a few instances, this approach does not seem to be prudent since a potential risk of repeated toxicity with reexposure can not be definitely avoided. Although many pulmonary toxicities caused by gemcitabine are mild, oncologists must be aware of possible life-threatening cases in order to administer corticosteroid therapy in a timely fashion.

Concern about an increased risk of severe pulmonary toxicity in patients treated with a combination of gemcitabine and docetaxel has been reported. Table 11 shows a summary of pulmonary toxicity caused by antibiotics.

Mitomycin

Although mitomycin-induced pulmonary toxicity is unpredictable the reported global range of significant pulmonary reactions from mitomycin is 3%-12% and more likely to occur at higher doses. Mitomycin lung toxicity can not be prevented with corticosteroid pre-medication. An acute or subacute pneumonitis, sometimes with bronchospasm and acute respiratory failure, and also a more chronic, progressive form, have both been described. Chronic pneumonitis seems to be related to the total dose of the drug administered and it is very uncommon when the cumulative dose is less than 30 mg/m². Most cases of mitomycin-induced lung damage occur when a vinca alkaloid is administered concomitantly. In that population life-threatening reactions, such as severe noncardiogenic edema and adult respiratory distress syndrome with diffuse alveolar damage, have been reported. When mitomycin is administered as part of a combination neoadjuvant chemotherapy, lung toxicity may be enhanced by high concentrations of oxygen during surgery. It has been suggested that the administered oxygen concentration should not exceed a FIO₂ of 0.5. Pleural involvement is an uncommon radiographic finding. Type I and type II cells atypia is also possible, a cytological finding similar to those that may be observed after busulfan or cyclophosphamide therapy. Once pulmonary toxicity has been diagnosed withdrawal of the drug and the institution of corticosteroid therapy may not avoid a progressive respiratory failure in up to 40% of cases. Pulmonary toxicity has also been reported with the new mitomycin analogs, such as KW-2149.

ANTIBIOTICS

Table 11 shows a summary of pulmonary toxicity caused by antibiotics.

Agent	Clinical presentation	Respiratory features	Incidence	Outcome
Mitomycin	Acute, dose-related (total dose > 30 mg/m²)	AP	3%-12%	Fatality rate of 40% even after corticosteroid treatment
	Chronic, dose-related (total dose > 30 mg/m²)	Rarely ARF		Increased risk of ARDS if combined therapy with vinca alkaloids
		Very rarely thrombotic microangiopathy with ARDS		Increased risk of microangiopathy if associated with fluorouracil
		Increased risk of ARDS if combined therapy with vinca alkaloids		(highest mortality)
		Increased risk of microangiopathy if associated with fluorouracil		Poor outcome if severe CHF is already present at diagnosis

ARF: acute respiratory failure; BHR: bronchial hyperreactivity; HR: hypersensitivity reaction; AP: acute pneumonitis; ARDS: adult respiratory distress syndrome; CHF: congestive heart failure.
The most severe form of pulmonary reaction from mitomycin is a thrombotic microangiopathy with renal failure, hemolytic anemia, and noncardiogenic pulmonary edema. This entity overlaps the «hemolytic uremic syndrome» and causes an adult respiratory distress syndrome in approximately 50% of cases. Blood transfusions and 5-fluorouracil have been allegedly incriminated in the appearance of this distinctive syndrome. The syndrome is unusual, especially if a low cumulative dose is administered, but the prognosis is poor since the overall case-fatality rate is about 70%.

Doxorubicin. Daunorubicin. Epirubicin
Abnormal pulmonary findings in patients receiving anthracycline antibiotics are usually secondary to primary cardiac toxicity, which has been reported in up to 10% of patients and seems to be related to cumulative dose. The risk of congestive heart failure seems to remain low until a total dose of 450 to 550 mg/m² has been reached. However, severe congestive myocardiopathy is possible even after a single dose and it has been suggested that the risk of congestive heart failure begins to increase at total doses of doxorubicin above 350 mg/m² or 700 mg/m² of daunorubicin. Doxorubicin may rarely produce pleural disease.

Vinorelbine
Vinorelbine is now probably the most widely used vinca alkaloid in the treatment of lung cancer. Dyspnea has been reported to occur in up to 5% of patients. An acute bronchospasm, similar to an hypersensitivity reaction, or an subacute clinical presentation with dyspnea and cough have both been observed. The last one usually occurs within one hour after treatment and the chest radiograph occasionally may show a patchy interstitial shadowing.

TAXANES
Paclitaxel
Paclitaxel has emerged as one of the most efficacious cytostatics in the therapeutic approach of lung cancer. Before premedication with corticosteroids up to 30% of patients in early trials suffered from dyspnea caused by bronchospasm and other symptoms, such as rash and hypotension, secondary to anaphylaxis. The mechanism seems to be a direct injury to basophils that causes an immediate histamine release. The routine administration of antihistaminics, corticosteroids, and H2 blockers, before paclitaxel intravenous infusion, has decreased the incidence of that hypersensitivity to about 1%. Interestingly, parenteral desensitization to paclitaxel has been reported with successful infusion.

TABLE 12. Lung cancer: antimicrotubule agent-induced lung toxicity

Agent	Clinical presentation	Respiratory features	Incidence	Outcome
Vinca alkaloids	Acute	HR	Dyspnea in < 5% of patients receiving vinorelbine	Usually recovery. Rarely ARDS with high mortality if associated with mitomycin
		AP		
Paclitaxel	Acute	HR	HR < 1% with pretreatment AP rare if dosage < 350 mg/m²	Usually recovery with mandatory pretreatment Risk of ARDS if high dose therapy or concomitant radiotherapy
		AP		
Docetaxel	Acute or chronic	AP	AP very rare Increased risk of water retention if dose > 400 mg/m²	Usually complete recovery
		Fluid retention syndrome		

HR: hypersensitivity reaction; AP: acute pneumonitis.
results.
A different type of pulmonary damage is that derived from direct pulmonary toxicity, which seems to be dose-related. With doses less than 350 mg/m² lung toxicity seems to be extremely rare. Transient pulmonary infiltrates have been occasionally reported. More serious pulmonary toxicities have been observed with high dose paclitaxel therapy, particularly when combined with other cytotoxics in the setting of patients that undergo bone marrow transplantation.
The use of concurrent lung irradiation and paclitaxel therapy deserves a few comments. Compared to other radiosensitizer cytotoxics, a higher than usual enhancement of radiation-induced lung damage has been reported. At least in one study, this combination modality therapy was associated, to some extent, with an increased risk of postoperative complications in stage III lung cancer patients. However, differences in drug combinations and radiation doses among studies suggest that larger, prospective studies are warranted before any definite conclusion is reached. A recall pneumonitis may be very uncommonly observed in patients previously treated with radiotherapy.

Docetaxel
A very unusual acute diffuse interstitial pneumonitis has been described. As stated before, a few cases of lung toxicity caused by combined therapy with docetaxel and gemcitabine have been reported. Hypersensitivity mechanisms are thought to be incriminated since recovery is rapid after steroid therapy. The appearance of a pleural effusion, often moderate, in patients that are being treated with docetaxel, should not be misdiagnosed as a pleuropulmonary side-effect of the drug. A fluid retention syndrome, sometimes causing weight gain as well as pleural effusion and ascites, is a characteristic and unexplained toxicity of that drug. The incidence and severity of this fluid-retention syndrome increases at cumulative doses of 400 mg/m² or greater.

CAMPTOTHECINS
Topotecan. Irinotecan
The topoisomerase I inhibitors, topotecan and irinotecan, have been used in the treatment of refractory or relapsed small-cell lung cancer. A very low rate of reversible pulmonary toxicity, basically mild to moderate dyspnea, has been observed with topotecan. In a phase II study of topotecan in malignant mesothelioma, one out of 22 patients had a grade 2 pulmonary toxicity. Transitory dyspnea in up to 22% of patients, coughing, and rhinitis are possible respiratory adverse effects when irinotecan (CPT-11) is administered. More serious events such as dyspnea with radiographic infiltrates and fever show an incidence range of 1% to 3%. However in a large phase II Japanese trial with a dose of 100 mg/m² weekly up to 8% of patients had pulmonary toxicity. In another Japanese trial of 16 patients that received the irinotecan as a second-line therapy with the same weekly schedule, 2 patients had extensive pulmonary shadowing (13%). In concurrent chemoradiotherapy for lung cancer, CPT-11 has been identified in multivariate analysis as a significant risk factor associated with eventual development of pneumonitis.

EPIPODOPHYLLOTOXINS
Etoposide. Teniposide
These topoisomerase II inhibitors keep a significant role in the treatment of small-cell lung cancer. Although etoposide (VP-16) shows a distinctive low risk profile of general toxicity a very few cases of biopsy-proven pulmonary toxicity have been reported. A fatality after following oral therapy has also been observed. A very rare hypersensitivity reaction including loss of consciousness, non-specific chest pain, and bronchoospasm is also possible after etoposide infusion. Teniposide (VM-26) was reported to have produced an acute lung injury in one case but the significance of that report is unclear since the patient had previously received BCNU.

CONCLUSION
Chemotherapy-induced lung toxicity may have a substantial impact on the prognosis of lung cancer patients that follow cytostatic therapy. Although the incidence is in general low, oncologists must be aware of this entity since if it remains unrecognized the likelihood of a fatal outcome is clearly increased. Several lines of evidence support the notion that
an early diagnosis of any drug-induced pulmonary toxicity is mandatory to improve survival. The clinical relevance of such an early diagnosis is supported by the need of an immediate withdrawal of the offending drug and the early institution of corticosteroid therapy in severe cases. The challenging setting of lung cancer patients that present with respiratory symptoms and clinical findings of unknown etiology should be approached from a multidisciplinary point of view.

References

1. Cooper JAD, White DA, Matthey RA. Drug-induced pulmonary disease. Part 1: cytotoxic drugs. Am Rev Respir Dis 1986; 133: 321-340.
2. Kreisman H, Wolkove N. Pulmonary toxicity of antimicrobial therapy. Semin Oncol. 1992; 19: 508-520.
3. De Castro J, Viches Y, González M. Toxicidad pulmonar en el tratamiento del cáncer. Med Clin (Barc) 1995; 105: 661-668.
4. Carrión F, Marín J. Toxicidad pulmonar por fármacos. Arch Bronconeumol 1999; 35: 550-559.
5. Roig J, Martínez J, Domingo C. Concepto y diagnóstico diferencial de la neumonía. Arch Bronconeumol 1998; 34 (Supl 2): 3-10.
6. Stephens RJ, Johnson DH. Treatment and outcomes for elderly patients with small cell lung cancer. Drugs Aging 2000; 17: 229-247.
7. Roig J, Domingo C, Morera J. Legionnaires’ disease. Chest 1994; 105: 1.817-1.825.
8. Thohig KJ, Matthey RA. Pulmonary effects of cytotoxic agents other than bleomycin. Clin Chest Med 1990; 11: 31-54.
9. Yamada M, Kudoh S, Hirata K, Nakajima T, Yoshikawa JR. A prospective study of pulmonary function in patients receiving mitomycin. Chest 1996; 109: 939-944.
10. Armstrong D. Bronchoalveolar lavage in the diagnosis of diffuse pulmonary infiltrates in the immunosuppressed host. Ann Intern Med 1984; 101: 1-7.
11. Natabu H, Stock MM, Shor S, et al. Magnetic resonance imaging of the thorax. Past, present, and future. Clin Chest Med 1999; 20: 775-803.
12. Moinuddin M. Radionuclide scanning in the detection of drug-induced lung disorders. J Thorac Imaging 1991; 6: 62-67.
13. De Castro J, Viches Y, González M. Toxicidad pulmonar en el tratamiento del cáncer. Med Clin (Barc) 1995; 105: 661-668.
14. Armstrong D. Bronchoalveolar lavage in the diagnosis of diffuse pulmonary infiltrates in the immunosuppressed host. Ann Intern Med 1984; 101: 1-7.
15. Moinuddin M. Radionuclide scanning in the detection of drug-induced lung disorders. J Thorac Imaging 1991; 6: 62-67.
16. Armstrong D. Bronchoalveolar lavage in the diagnosis of diffuse pulmonary infiltrates in the immunosuppressed host. Ann Intern Med 1984; 101: 1-7.
17. Moinuddin M. Radionuclide scanning in the detection of drug-induced lung disorders. J Thorac Imaging 1991; 6: 62-67.
18. Armstrong D. Bronchoalveolar lavage in the diagnosis of diffuse pulmonary infiltrates in the immunosuppressed host. Ann Intern Med 1984; 101: 1-7.
19. Anscher MS, Peters WJ, Reisenbichler H, et al. Transforming growth factor beta as a predictor of liver and lung fibrosis after autologous bone marrow transplantation for advanced breast cancer. N Engl J Med 1993; 328: 1.592-1.598.
20. Villani P, Bencella L, Balgherouni A, et al. Study of functional and biochemical indicators of subclinical lung damage in bleomycin-treated patients. Respir Med 1992; 86: 327-333.
21. Walker Smith GJ. The histopathology of pulmonary reactions to drugs. Clin Chest Med 1990; 11 (1): 95-117.
22. Grossman RF, Frost A, Zamel N, et al. Results of single-lung transplantation for bilateral pulmonary fibrosis. The Toronto Lung Transplantation Group. N Engl J Med 1990; 322: 727-733.
23. Santamaura JT, Stover DR, Jones RV. Pulmonary effects of cytotoxic agents other than bleomycin. Clin Chest Med 1990; 11 (1): 31-54.
24. Mailik SW, Myers JL, De Remee RA, Specks U. Lung toxicity associated with cyclophosphamide use. Two distinct patterns. Am J Respir Crit Care Med 1996; 154: 1.851-1.865.
25. Bressler RB, Huston DP. Water intoxication following moderate dose intravenous cyclophosphamide. Arch Intern Med 1985; 145: 548-549.
26. Hakkinen RJ, Whiteley JW, Nitschke HR. Hyperosmia, but not thoracic X-irradiation, potentiates bleomycin and cyclophosphamide-induced lung damage in mice. Am Rev Respir Dis 1982; 126: 281-285.
27. Crittenden D, Trumel BL, Hunt A. Pulmonary fibrosis after prolonged therapy with 1,3-bis(2-chloroethyl)-1-nitrosourea. Chest 1977; 72: 372-373.
28. Acronin RA, Mahaley MS, Rudnick SA, et al. Prediction of BCNU pulmonary toxicity in patients with malignant gliomas. An assessment of risk factors. N Engl J Med 1980; 303: 183-188.
29. Selker RG, Jacobs SA, Moore PB. BCNU (1,3-bis(2-chloroethyl)-1-nitrosourea) induced pulmonary fibrosis. Neurosurgery 1980; 7: 560-565.
30. Litman JP, Dail DH, Spitzer G, et al. Early pulmonary toxicity after administration of high-dose BCNU. Cancer Treat Rep 1981; 65: 39-44.
31. Kehrer JP, Paradisathathri T. Enhanced oxygen toxicity following treatment with 1,3-bis(2-chloroethyl)-1-nitrosoureas. Fundam Appl Toxicol 1984; 4: 760-767.
32. Cameron JC. Ifosfamide neurotoxicity. A challenge for nurses, a potential nightmare for patients. Cancer Nurs 1993; 16: 40-46.
33. Baker WF, Fistel SJ, Jones RV. Interstitial pneumonitis associated with ifosfamide therapy. Cancer 1990; 65: 2.217-2.221.
34. Loko J, Moloney WC. Allergic reaction to procarbazaine. Clin Pharmacol Ther 1972; 154: 1.851-1.865.
35. Ecker MD, Jay B, Keohane MF. Procarbazine lung. Am J Roentgenol 1978; 131: 527-528.
36. Garbesi ID, Henderson BS, Gómez GA, et al. Procarbazaine-induced interstitial nephropathy with a normal chest X-ray: a case report. Med Pediatr Oncol 1986; 14: 238-241.
37. Jones SE, Moore M, Blank N, et al. Hypersensitivity of procarbazaine (Matulane) manifested by fever and pleuralpulmonary reaction. Cancer 1972; 29: 498-
Sostman HD, Matthay RA, Putnam CE, Smith GJ. Me-
47. De Wit R, Verweij J, Slingerland R, Stoter G. Piritre-
46. Kamel OW, Van de Rijn M, Weiss LM, et al. Brief re-
45. Urban C, Nirenberg A, Caparros B, Anac S, Cacavio A,
44. White DA, Rankin JR, Stover DE, Gellene RA, Gupta S.
43. Alarcón GS, Kremer JM, Malacuso M, et al. Risk fac-
42. De Wit R, Van Zanten T, Souren T, Golding R, Pinedo
41. Sostman HD, Matthay RA, Putnam CE, Smith GJ. Me-
39. Khansur T, Kennedy A. Case report: cisplatin-indu-
38. Aldrich TK, Prezant D. Adverse effects of drugs on
37. Searles G, McDonrd RJR. Methotrexate pneumonitis in
36. Petrucci G, Pearlman SR. The case for the use of in-
35. Khansur T, Kennedy A. Severe non-haematological toxi-
34. De Wit R, Van Zanten T, Souren T, Golding R, Pinedo
33. Briasoulis E, Froudarakis M, Milionis HJ, Peponis I,
32. Klein DS, Wilds PR. Pulmonary toxicity of antineoplas-
31. Briasoulis E, Froudarakis M, Milionis HJ, Peponis I,
30. Sara S, King E, Unger M, Langer C. Retrospective
29. Roychowdhury DF, Smith CA, Peterson PP, et al. Infre-
28. Brose MS, Cheng JM, Haller DG. Incidence of pulmo-
27. Brose MS, Cheng JM, Haller DG. Incidence of pulmo-
26. Petrucci G, Pearlman SR. The case for the use of in-
25. Kelly K. Future directions for new cytotoxic agents in
24. De Wit R, Van Zanten T, Souren T, Golding R. Piritre-
23. Coddington CL, Higdon KD, Rosenthal DP. Pulmonary
22. Petrucci G, Pearlman SR. The case for the use of in-
21. Briasoulis E, Froudarakis M, Milionis HJ, Peponis I,
20. Klein DS, Wilds PR. Pulmonary toxicity of antineoplas-
19. Klein DS, Wilds PR. Pulmonary toxicity of antineoplas-
18. Klein DS, Wilds PR. Pulmonary toxicity of antineoplas-
17. Klein DS, Wilds PR. Pulmonary toxicity of antineoplas-
16. Klein DS, Wilds PR. Pulmonary toxicity of antineoplas-
15. Klein DS, Wilds PR. Pulmonary toxicity of antineoplas-
14. Klein DS, Wilds PR. Pulmonary toxicity of antineoplas-
13. Klein DS, Wilds PR. Pulmonary toxicity of antineoplas-
12. Klein DS, Wilds PR. Pulmonary toxicity of antineoplas-
11. Klein DS, Wilds PR. Pulmonary toxicity of antineoplas-
10. Klein DS, Wilds PR. Pulmonary toxicity of antineoplas-
9. Klein DS, Wilds PR. Pulmonary toxicity of antineoplas-
8. Klein DS, Wilds PR. Pulmonary toxicity of antineoplas-
7. Klein DS, Wilds PR. Pulmonary toxicity of antineoplas-
6. Klein DS, Wilds PR. Pulmonary toxicity of antineoplas-
5. Klein DS, Wilds PR. Pulmonary toxicity of antineoplas-
4. Klein DS, Wilds PR. Pulmonary toxicity of antineoplas-
3. Klein DS, Wilds PR. Pulmonary toxicity of antineoplas-
2. Klein DS, Wilds PR. Pulmonary toxicity of antineoplas-
1. Klein DS, Wilds PR. Pulmonary toxicity of antineoplas-
0. Klein DS, Wilds PR. Pulmonary toxicity of antineoplas-
75. Kourokis C, Hings I. Respiratory failure following vincristine tartrate infusion in a patient with non-small cell lung cancer. Chest 1997; 112: 846-848.

76. Israel RH, Olson JP. Pulmonary edema associated with intravenous vinblastine. JAMA 1978; 240: 1.585.

77. Kris MG, Pablo D, Gralla RJ, Burke MT, Prestifilippo J, Lesin D. Dyspnea following vinblastine or vindeor administration in patients receiving mitomycin plus vincsalkaloid combination therapy. Cancer Treat Rep 1984; 68: 1.029-1.031.

78. Essayan DM, Kagey-Sobotka A, Lichtenstein LM, et al. Paclitaxel hypersensitivity revisited. J Clin Oncol 1996; 14: 1.042.

79. Sekine I, Nishiwaki Y, Watanabe K, Yoneda S, Saha K. Phase II study of 3-hour infusion of paclitaxel in previously untreated non-small cell lung cancer. Clin Cancer Res 1996; 2: 941-945.

80. Bookman MA, Kloth DD, Kover PE, et al. Short-course intravenous prophylaxis for paclitaxel-related hypersensitivity reactions. Ann Oncol 1997; 8: 611-614.

81. Sarosy G, Reed E. Taxol dose intensification and its clinical implications. J Natl Med Assoc 1993; 85: 427-431.

82. Rowinsky EK, Donehower RC. Paclitaxel (taxol). N Engl J Med 1995; 332: 1.004-1.014.

83. Stemmer SM, Cagnoni RJ, Shpall EJ, et al. High-dose paclitaxel, cyclophosphamide, and cisplatin with autologous hematopoietic progenitor-cell support: a phase I trial. J Clin Oncol 1996; 14: 1.463-1.472.

84. Goldberg HL, Vannice SB. Pneumonitis related to treatment with paclitaxel. J Clin Oncol 1995; 13: 534-535.

85. Ramanathan RK, Belani CP. Transient pulmonary infiltrates: a hypersensitivity reaction to paclitaxel. Ann Intern Med 1996; 124: 278.

86. Reckzie B, Merte H, Pfluger KH, Pfab R, Wolf M, Havenan K. Severe lymphocytopenia and interstitial pneumonia in patients treated with paclitaxel and simultaneous radiotherapy for non-small cell lung cancer. J Clin Oncol 1996; 14: 1.071-1.076.

87. Lebeau B, Urban T, Brechot JM, et al. A randomized clinical trial comparing concurrent and alternating thoracic irradiation for patients with limited small cell lung carcinomas. «Petites cellules» Group. Cancer 1999; 86: 1.480-1.487.

88. Oral BN, Savbek S, Kizir A, et al. Preliminary analysis of a phase II study of paclitaxel and CMTK in locally advanced non-small cell lung cancer. Lung Cancer 1999; 25: 191-198.

89. Robert F, Childs RA, Spencer SA, Redden DT, Hawkins M. Phase I/II study of concurrent paclitaxel and cisplatin with radiation therapy in locally advanced non-small cell lung cancer: analysis of early and late pulmonary morbidity. Semin Radiat Oncol 1999; 9 (Suppl 1): 136-147.

90. Langer CJ, Mavas B, Hudes R, et al. Induction paclitaxel and carboplatin followed by concurrent chemoradiotherapy in patients with unresectable, locally advanced non-small cell lung carcinoma: report of Fox Chase Cancer Center study 94-001. Semin Oncol 1997; 24 (Suppl 12): 89-95.

91. Antonia SJ, Wagner H, Williams C, et al. Concurrent paclitaxel/cisplatin with thoracic radiation in patients with stage IIIA/B non-small cell carcinomas of the lung. Semin Oncol 1995; 22: 34-37.

92. Robert F, Childs RA, Spencer SA, Redden DT, Hawkins M. Phase I/II study of concurrent paclitaxel and cisplatin with radiation therapy in locally advanced non-small cell lung cancer: analysis of early and late pulmonary morbidity. Semin Radiat Oncol 1999; 9 (Suppl 1): 136-147.
cidad pulmonar inducida por la quimioterapia.

Palabras clave: cáncer de pulmón, quimioterapia, toxicidad pulmonar.
95. Etienne B, Perol M, Nempe P, Vuillermoz S, Robinet G, Guerin JC. Acute diffuse interstitial pneumopathy following docetaxel (Taxotere). A propos of 2 cases. Rev Mal Respir 1998; 15: 199-203.
96. Maksymiuk AW, Marschke RJ, Taxelaar ED, et al. Phase I trial of topotecan for the treatment of mesothelioma. Am J Clin Oncol 1998; 21: 610-613.
97. Rothenberg ML, Ruim JG, Burris HA lll, et al. Phase I and pharmacokinetic trial of weekly CPT-11. J Clin Oncol 1993; 11: 2.194-2.204.
98. Masuda N, Fukuzaka M, Kusunoki YJ, et al. CPT a new derivate of camptothecin for the treatment of refractory or relapsed small-cell lung cancer. J Clin Oncol 1992; 10: 1.225-1.229.
99. Fukuzaka M, Niltani H, Susuki A, et al. A phase II study of CPT-11, a new derivate of camptothecin, for previously untreated non-small-cell lung cancer. J Clin Oncol 1992; 10: 16-20.
100. Masuda N, Fukuzaka M, Kusunoki Y, et al. CPT-11: a new derivate of camptothecin for the treatment of refractory or relapsed small-cell lung cancer. J Clin Oncol 1992; 10: 1.225-1.229.
101. Talenda K, Negoro S, Kudoh S, et al. Phase I/II study of weekly irinotecan and concurrent radiation therapy for locally advanced non-small cell lung. Br J Cancer 1999; 79: 1.462-1.467.
102. Gurjal A, An T, Valdivieso M, Kalesberian GP. Etoposide-induced pulmonary toxicity. Lung Cancer 1999; 26: 109-112.
103. Dajczman E, Srolovitz H, Kreisman H, Frank H. Fatal pulmonary toxicity following oral etoposide therapy. Lung Cancer 1996; 12: 81-86.
104. O’Dwyer P, Weiss RB. Hypersensitivity reactions induced by etoposide. Cancer Treat Rep 1984; 68: 959-961.
105. Sleijfer S, Van der Mark TW, Schraffordt Kops H, et al. Decrease in pulmonary function during bleomycin-containing combination chemotherapy for testicular cancer: not only a bleomycin effect. Br J Cancer 1986; 51: 120-123.
106. Rastori WK, Dearing MP, Piscitelli SC, et al. Phase I study of a five-day dose schedule of 4-ipomeanol in patients with non-small cell lung cancer. Clin Cancer Res 1998; 4: 2.095-2.102.