A NOTE ON THE COEFFICIENTS OF RAWNSLEY’S EPSILON FUNCTION OF CARTAN–HARTOGS DOMAINS

MICHELA ZEDDA

ABSTRACT. We extend the result of Z. Feng and Z. Tu in [5] by showing that if one of the coefficients \(a_j \), \(2 \leq j \leq n \), of Rawnlsey’s epsilon function associated to a \(n \)-dimensional Cartan–Hartogs domain is constant, then the domain is biholomorphically equivalent to the complex hyperbolic space.

1. Introduction and statement of main result

Consider an \(n \)-dimensional complex manifold \((M, g)\) endowed with a Kähler metric \(g \) and assume that there exists a globally defined Kähler potential \(\varphi : M \to \mathbb{R} \) for \(g \), i.e. if \(\omega \) is the Kähler form associated to \(g \), we have \(\omega = \frac{i}{2} \partial \bar{\partial} \varphi \). Let \(\mathcal{H}_\alpha \) be the weighted Bergman space of square integrable holomorphic functions on \(M \) with respect to the measure \(e^{-\alpha \varphi} \omega^n/n! \), i.e.:

\[
\mathcal{H}_\alpha = \left\{ f \in \text{Hol}(M) \mid \int_M e^{-\alpha \varphi} |f|^2 \omega^n/n! < \infty \right\}.
\]

If \(\mathcal{H}_\alpha \neq \{0\} \), choose an orthonormal basis \(\{f_j\} \) with respect to the product:

\[
(f, h)_\alpha = \int_M e^{-\alpha \varphi} f \bar{h} \omega^n/n!,
\]

and denote by \(K_\alpha(x, y) \) the reproducing kernel of \(\mathcal{H}_\alpha \), namely:

\[
K_\alpha(x, y) = \sum_j f_j(x) \bar{f}_j(y), \quad x, y \in M.
\]

Define the \(\epsilon \)-function associated to \(g \) to be the function:

\[
\epsilon_{\alpha g}(x) = e^{-\alpha \varphi(x)} K_\alpha(x, x), \quad x \in M.
\]
In the literature the function $\epsilon_{\alpha g}$ was first introduced by J. Rawnsley under the name of η-function in [7] and later as θ-function in [2].

We say that $\epsilon_{\alpha g}$ admits the Engliš expansion:

$$
\epsilon_{\alpha g}(x) \sim \sum_{j=0}^{\infty} a_j(x)\alpha^{n-j}, \quad x \in M,
$$

for $\alpha \to +\infty$, if for every integers l, r and every compact $H \subseteq M$,

$$
\|\epsilon_{\alpha}(x) - \sum_{j=0}^{l} a_j(x)\alpha^{n-j}\|_{C^r} \leq \frac{C(l, r, H)}{\alpha^{l+1}},
$$

for some constant $C(l, r, H) > 0$. Such expansion is the counterpart for non-compact manifolds of the celebrated TYZ (Tian-Yau-Zelditch) expansion of Kempf’s distortion function for polarized compact Kähler manifolds (see [9] and also [1]). In [4] M. Engliš proved that each of the coefficients $a_j(x)$ in (1) is a polynomial of the curvature of the metric g and its covariant derivatives at x, which can be found by finitely many steps of algebraic operations, and gives an explicit expression of the coefficients a_j for $j \leq 3$.

In this paper we consider the case of Cartan-Hartogs domains, which are defined as follows. Consider a Cartan domain $\Omega \subset C^d$, i.e. an irreducible bounded symmetric domain, of rank r and numerical invariants a, b. Recall that the triple $\{r, a, b\}$ uniquely determines Ω and in particular it defines the dimension $d = \frac{r(r-1)}{2} a + rb + r$ and the genus $\gamma = (r-1) a + b + 2$ of Ω. Let $K(z, z)$ be the Bergman kernel of Ω and $N_\Omega(z, z)$ its generic norm, i.e.

$$
N_\Omega(z, z) = (V(\Omega)K(z, z))^{-\frac{1}{d}},
$$

where $V(\Omega)$ is the total volume of Ω with respect to the Euclidean measure of the ambient complex Euclidean space.

For all positive real numbers μ, a Cartan–Hartogs domains is given by $(M^d_\Omega(\mu), g(\mu))$ where:

$$
M^d_\Omega(\mu) = \left\{ (z, w) \in \Omega \times C^d, \quad ||w||^2 < N_\Omega(z, z)^{\mu} \right\},
$$

and $g(\mu)$ is the Kähler metric whose associated Kähler form $\omega(\mu)$ can be described by the (globally defined) Kähler potential centered at the origin:

$$
\Phi(z, w) = -\log(N_\Omega(z, z)^{\mu} - ||w||^2).
$$

The domain Ω is called the base of the Cartan–Hartogs domain $M^d_\Omega(\mu)$ (one also says that $M^d_\Omega(\mu)$ is based on Ω). These domains have been considered
by several authors (see e.g. [8] and references therein). In [8] it is shown that for \(\mu_0 = \gamma/(d + 1) \), \((M^1_\Omega(\mu_0), g(\mu_0))\) is a complete Kähler-Einstein manifold which is homogeneous if and only if \(\Omega \) is the complex hyperbolic space. In [6] the authors of the present paper proved that for \(\Omega \neq \mathbb{CH}^d \), the metric \(\alpha g(\mu) \) on \(M^1_\Omega(\mu) \) is projectively induced for all positive real number \(\alpha \geq \frac{(r-1)a}{2\mu} \), exhibiting the first example of complete, noncompact, nonhomogeneous and projectively induced Kähler-Einstein metric. In [10] the author of the present paper proved that for \(d_0 = 1 \), \(g(\mu) \) is extremal (in the sense of Calabi [3]) if and only if it is Kähler–Einstein and that the coefficient \(a_2 \) of Englisch expansion of the \(\epsilon \)-function associated to a Cartan–Hartogs domain \((M^1_\Omega(\mu), g(\mu))\) is constant, then \((M^1_\Omega(\mu), g(\mu))\) is Kähler–Einstein, conjecturing also that the converse was true. In [5], Z. Feng and Z. Tu generalize that theorem to generic \(d_0 \) and proved that conjecture. More precisely, they prove the following:

Theorem 1 (Z. Feng, Z. Tu [5, Th. 1.3]). The coefficient \(a_2 \) of the Rawnsley’s \(\epsilon \)-function expansion is a constant on \(M^1_\Omega(\mu) \) if and only if \((M^1_\Omega(\mu), g(\mu))\) is biholomorphically isometric to the complex hyperbolic space \((\mathbb{CH}^{d+d_0}, g_{\text{hyp}})\).

Notice that \(g_{\text{hyp}} \) denotes the hyperbolic metric on \(\mathbb{CH}^{d+d_0} \) and

\[
(\mathbb{CH}^{d+d_0}, g_{\text{hyp}}) = (M^1_{\mathbb{CH}^d}(1), g(1)).
\]

The prove of the previous theorem is based on the explicit formula for the \(\epsilon \)-function \(\epsilon_{\alpha g(\mu)} \) of Cartan–Hartogs domains:

\[
\epsilon_{\alpha g(\mu)}(z, w) = \frac{1}{\mu^d} \sum_{k=0}^{d} \frac{D^k \tilde{\chi}(d)}{k!} \left(1 - \frac{|w|^2}{N_\Omega(z, z)^{\mu}} \right)^{d-k} \frac{\Gamma(\alpha - d + k)}{\Gamma(\alpha - d - d_0)} \Gamma(\alpha - d + k)
\]

for

\[
D^k \tilde{\chi}(d) = \sum_{j=0}^{k} \binom{k}{j} (-1)^j \tilde{\chi}(d - j)
\]

and

\[
\tilde{\chi}(d - j) = \prod_{j=1}^{r} \frac{\Gamma(\mu(d - j) - \gamma - (j + 1)\frac{d}{2} + 2 + b + ra)}{\Gamma(\mu(d - j) - \gamma + 1 + (j - 1)\frac{d}{2})}
\]

where \(\Gamma \) is the usual Gamma-function. Observe that formula (1) shows that English expansion of the \(\epsilon \)-function of Cartan–Hartogs domains is finite. In [11] the author of this paper uses this formula to prove the existence of a Berezin-Englisch quantization for Cartan–Hartogs domains.

The aim of this paper is to generalize Theorem 1 above (see next section) by proving the following:
Theorem 2. For all \(j = 2, \ldots, d + d_0 \), any coefficient \(a_j \) of the Rawnsley’s \(\epsilon \)-function expansion is a constant on \(M^{d_0}_\Omega(\mu) \) if and only if \((M^{d_0}_\Omega(\mu), g(\mu)) \) is biholomorphically isometric to the complex hyperbolic space \((CH^{d + d_0}, g_{\text{hyp}}) \).

The author would like to thank prof. Andrea Loi for the interesting and encouraging conversations.

2. Proof of Theorem 2

Due to Theorem 1, we need only to prove that if \(a_j \) is constant for some \(j = 3, 4, \ldots, d + d_0 \), then \(a_2 \) is.

Consider first the polynomial \(P(\alpha) \) in the variable \(\alpha \):

\[
P(\alpha) = \frac{\Gamma(\alpha - d + k)}{\Gamma(\alpha - d - d_0)},
\]

and observe that for \(k = d \), \((d \geq 1) \):

\[
P(\alpha) = \prod_{j=1}^{d+d_0} (\alpha - j), \quad \deg(P(\alpha)) = d + d_0,
\]

for \(k = d - 1 \), \((d \geq 1) \):

\[
P(\alpha) = \prod_{j=2}^{d+d_0} (\alpha - j), \quad \deg(P(\alpha)) = d + d_0 - 1,
\]

for \(k = d - 2 \), \((d \geq 2) \):

\[
P(\alpha) = \prod_{j=3}^{d+d_0} (\alpha - j), \quad \deg(P(\alpha)) = d + d_0 - 2,
\]

and so on. Thus, from (1) we get that the factor with \(k = d \) contributes to all the coefficients \(a_0, a_1, \ldots, a_{d+d_0} \) \((d \geq 1) \), the factor with \(k = d - 1 \) to all from \(a_1 \) to \(a_{d+d_0} \) \((d \geq 1) \), the factor with \(k = d - 2 \) to all from \(a_2 \) \((d \geq 2) \), and so on. Obviously the \(j \)-th coefficient is constant iff each one of its factors (except the \(k = d \) one) vanishes, in fact the term \(\left(1 - \frac{||w||^2}{N_\Omega(z, \bar{z})^\mu} \right) \) in each factor has a different power.

In particular, the coefficient \(a_i \), \(i = 1, \ldots, d + d_0 \), contains the factor:

\[
\frac{1}{\mu^d (d-1)!} D^{d-1} \tilde{\chi}(d) \left(1 - \frac{||w||^2}{N_\Omega(z, \bar{z})^\mu} \right) A_i^2, \quad (d \geq 1),
\]

and the coefficient \(a_i \), \(i = 2, \ldots, d + d_0 \), contains the factor:

\[
\frac{1}{\mu^d (d-2)!} D^{d-2} \tilde{\chi}(d) \left(1 - \frac{||w||^2}{N_\Omega(z, \bar{z})^\mu} \right)^2 A_i^{d-1}, \quad (d \geq 2),
\]
where we denote by A_p^q the p-th coefficient of the polynomial in α:

$$
\prod_{j=q}^{d+d_0} (\alpha - j).
$$

Observe that A_2^2 and A_3^2 do not vanish. In fact we have:

$$
\prod_{j=2}^{d+d_0} = \alpha^{d+d_0} + e_1(2, \ldots, d + d_0)\alpha^{d+d_0-1} + \cdots + e_{d+d_0}(2, \ldots, d + d_0),
$$

$$
\prod_{j=3}^{d+d_0} = \alpha^{d+d_0-1} + e_1(3, \ldots, d + d_0)\alpha^{d+d_0-2} + \cdots + e_{d+d_0-1}(3, \ldots, d + d_0)
$$

where $e_j(x_1, \ldots, x_n)$ is the elementary symmetric polynomial in the variables (x_1, \ldots, x_n), i.e.:

$$
e_j(x_1, \ldots, x_n) = \sum_{1 \leq k_1 < k_2 < \cdots < k_j \leq n} x_{k_1} \cdots x_{k_j}.
$$

Since in our case x_j are positive integers, $A_2^2 = e_1(2, \ldots, d + d_0)$ and $A_3^2 = e_i(3, \ldots, d + d_0)$ do not vanish.

Thus we have that for $d \geq 2$ and for each $i = 3, \ldots, d$, if a_i is constant then $D^{d-2}\tilde{\chi}(d) = D^{d-1}\tilde{\chi}(d) = 0$, and conclusion follows by [5], where in the proof of Theorem 1.3 it is pointed out that when $d > 1$ we have

$$
D^{d-2}\tilde{\chi}(d) = D^{d-1}\tilde{\chi}(d) = 0,
$$

if and only if a_2 is constant.

If $d = 1$, then $r = 1$ and $\Omega = CH^1$, thus we need only to prove that if a_j is constant for some $j = 3, 4, \ldots, d_0 + 1$, then $\mu = 1$. By the discussion above, if a_j is constant for some $j = 3, 4, \ldots, d_0 + 1$ then $D^0\tilde{\chi}(1) = 0$, which by [5] Lemma 3.5] directly implies $\mu = 1$, concluding the proof.

References

[1] C. Arezzo, A. Loi, Quantization of Kähler manifolds and the asymptotic expansion of Tian–Yau–Zelditch, J. Geom. Phys. 47 (2003), 87-99.
[2] M. Cahen, S. Gutt, J. Rawnsley, Quantization of Kähler manifolds. I: Geometric interpretation of Berezin’s quantization, J. Geom. Physics 7 (1990), 45–62.
[3] E. Calabi, Extremal Kähler metrics, In Seminar on Differential Geometry vol. 16 of 102 (1982), Ann. of Math. Stud., Princeton University Press, 259-290.
[4] M. Englis, The asymptotics of a Laplace integral on a Kähler manifold, J. Reine Angew. Math. 528 (2000) 1–39.
[5] Z. Feng, Z. Tu, On canonical metrics on Cartan-Hartogs domains, Math. Zeit. 278 (2014), Issue 1-2, 301–320.
[6] A. Loi, M. Zedda, *Kähler–Einstein submanifolds of the infinite dimensional projective space*, Math. Ann. 350 (2011), 145–154.

[7] J. Rawnsley, *Coherent states and Kähler manifolds*, Quart. J. Math. Oxford (2), n. 28 (1977), 403–415.

[8] G. Roos, A. Wang, W. Yin, L. Zhang, *The Kähler-Einstein metric for some Hartogs domains over bounded symmetric domains*, Science in China 49 (September 2006).

[9] S. Zelditch, *Szegő Kernels and a Theorem of Tian*, Internat. Math. Res. Notices 6 (1998), 317–331.

[10] M. Zedda, *Canonical metrics on Cartan-Hartogs domains*, Int. J. Geom. Methods Mod. Phys. 9 (2012), no. 1, 1250011, 13 pp..

[11] M. Zedda, *Berezin–Engliš’ quantization of Cartan–Hartogs domains*, arXiv:1404.1749 [math.DG] (preprint 2014)

Dipartimento di Matematica “G. Peano”, Università di Torino

E-mail address: michela.zedda@gmail.com