A GENERALIZATION OF ESTEVES–HOMMA’S EXAMPLE OF TANGENTIALLY DEGENERATE CURVES

SATORU FUKASAWA

Abstract. This paper presents a method of a construction of tangentially degenerate curves with a birational Gauss map, focusing on the non-classicality of automorphisms. This method describes a generalization of Esteves–Homma’s example of this kind. In addition, this paper presents a smooth projective curve with a birational Gauss map such that a general tangent line contains three or more points of the curve, which answers a question raised by Kaji in the affirmative.

1. Introduction

An irreducible projective curve $C \subset \mathbb{P}^N$ with $N \geq 3$ not contained in any plane over an algebraically closed field k of characteristic $p \geq 0$ is said to be tangentially degenerate if $(T_P C \setminus \{P\}) \cap C \neq \emptyset$ for a general point $P \in C$, where $T_P C \subset \mathbb{P}^N$ is the projective tangent line at P. This terminology is due to Kaji [6]. In characteristic zero, the existence of tangentially degenerate curves was asked by Terracini in 1932 ([13, p.143], see also [2]). For the case where $p = 0$ and the morphism $X \to \mathbb{P}^N$ induced by the normalization $\varphi : X \to C$ is unramified, the nonexistence of such curves was proved by Kaji [6] in 1986. Generalizations of Kaji’s theorem were obtained in this century ([1, 8]).

In positive characteristic, there exist many examples of tangentially degenerate curves. In most of such known cases, the Gauss map $\gamma : C \dashrightarrow \mathbb{G}(1, \mathbb{P}^N)$, which sends a smooth point $P \in C$ to the tangent line $T_P C \subset \mathbb{G}(1, \mathbb{P}^N)$, is not separable. Very surprisingly, in 1994, Esteves and Homma [3] presented an embedding

$$\varphi : \mathbb{P}^1 \to \mathbb{P}^3; \; (1 : t) \mapsto (1 : t : t^2 - t^p : t^3 + 2t^p - 3t^{p+1})$$

of \mathbb{P}^1 such that $\varphi(\mathbb{P}^1)$ is tangentially degenerate and the Gauss map of $\varphi(\mathbb{P}^1)$ is birational onto its image. This is only known example of a tangentially degenerate
curve with a separable Gauss map. The existence of another example has been unknown for a long time. One reason is that the separability of the Gauss map is equivalent to the reflexivity with respect to projective dual (\cite{4, 5, 7, 14}), and that several pathological phenomena in positive characteristic do not occur under the assumption that the reflexivity holds (\cite{4}).

This paper proves the following:

Theorem 1. Let $p > 2$, let q be a power of p, and let $\mathbb{F}_q \subset k$ be a finite field of q^n elements containing the set $\{\alpha \in k \mid \alpha^{q-2} = 1\}$. We consider the morphism

$$\varphi : \mathbb{P}^1 \to \mathbb{P}^4; \; (1 : t) \mapsto (1 : t^2 - t^q : t^{q^n} - t^{q^{2n}} : t(t^{q^n} - t^{q^{2n}})).$$

Then the following hold.

(a) φ is an embedding.

(b) For any point $P \in \mathbb{P}^1 \setminus \{(0 : 1)\}$, the set $(T_{\varphi(P)}\varphi(\mathbb{P}^1) \setminus \{\varphi(P)\}) \cap \varphi(\mathbb{P}^1)$ consists of exactly $q - 2$ points.

(c) The Gauss map of $\varphi(\mathbb{P}^1)$ is birational onto its image.

Theorem \cite{1} answers the following question raised by Kaji \cite{9} in the affirmative.

Question 1. Does there exist a tangentially degenerate space curve $C \subset \mathbb{P}^N$ with a birational Gauss map such that a general tangent line $T_P C$ of C contains two points of C other than P?

In the proof of Theorem \cite{1} it is important to show that $q - 2$ automorphisms of \mathbb{P}^1 are non-classical, in the sense of Levcovitz \cite{10} p.136. In this paper, this term is used only in an extremal case.

Definition 1 (Levcovitz \cite{10}). Let X be a smooth projective curve, and let $\varphi : X \to \mathbb{P}^N$ with $N \geq 2$ be a morphism, which is birational onto its image. An automorphism $\sigma \in \text{Aut}(X) \setminus \{1\}$ is said to be non-classical with respect to φ if

$$\varphi \circ \sigma(P) \in \left\langle \varphi(P), \frac{d\varphi}{dx}(P) \right\rangle$$

for a general point P of X, where x is a local parameter at some point of X.

Remark 1. If $\sigma \in \text{Aut}(X) \setminus \{1\}$ is non-classical with respect to a birational morphism $\varphi : X \to \mathbb{P}^N$ with $N \geq 3$ onto its image, then $\varphi(X)$ is tangentially degenerate.
This paper presents a method of a construction of tangentially degenerate curves with a birational Gauss map, focusing on the non-classicality of automorphisms. In particular, this paper proves the following:

Theorem 2. Let $p > 2$ and $N \geq 3$. If a smooth projective curve X admits a local parameter $x \in k(X)$ at some point $P \in X$, a function $y \in k(X)$, and an automorphism $\sigma \in \text{Aut}(X)$ such that

(a) $y \notin \langle 1, x \rangle$,
(b) $k(X) = k(x, y)$,
(c) $\sigma^*x = x + \alpha$ for some $\alpha \in k \setminus \{0\}$, and
(d) $\sigma^*y - y = \alpha \frac{dy}{dx},$

then there exists a morphism $\varphi : X \to \mathbb{P}^N$, which is birational onto its image, such that

(1) $\varphi(X)$ is not contained in any hyperplane of \mathbb{P}^N,
(2) the automorphism σ is non-classical with respect to φ, and
(3) the Gauss map of $\varphi(X)$ is birational onto its image.

In the case where the order of σ is p, assumptions can be simplified.

Theorem 3. Let $p > 2$ and $N \geq 3$. If a smooth projective curve X admits a local parameter $x \in k(X)$ at some point $P \in X$ and an automorphism $\sigma \in \text{Aut}(X)$ such that

(a) $\sigma^*x - x \in k \setminus \{0\}$, and
(b) the order of σ is p,

then the same assertion as in Theorem 2 holds.

Remark 2. If we take $k(X) = k(t)$, $\alpha = 1$, $x = t$ and $y = t^2 - t^p$ (and $g_3 = t^3 + 2t^p - 3t^{p+1}$ in the proof of Theorem 2), then we can recover Esteves–Homma’s embedding.

Remark 3. Conditions (a) and (b) in Theorem 3 are satisfied for many examples of Artin–Schreier curves. A curve X with a function field $k(x, y)$ given by an irreducible polynomial $x^q - x - g(y) \in k[x, y]$ such that $g(y) \in k[y]$ and $g_y \neq 0$ is such an example.

2. Proofs of main theorems

This paper introduces a vector subspace $V_{\sigma, x} \subset k(X)$ and investigates it, inspired by Esteves–Homma’s functions $t^2 - t^p$ and $t^3 + 2t^p - 3t^{p+1}$. Let x be a local parameter
of a smooth projective curve X at a point $P \in X$, let $\sigma \in \text{Aut}(X) \setminus \{1\}$, and let $f := \sigma^* x - x \in k(X)$. We define the set

$$V_{\sigma,x} := \left\{ g \in k(X) \mid \sigma^* g - g = f \frac{dg}{dx} \right\}.$$

Proposition 1. Assume that $p > 0$ and $f \neq 0$. Then the following hold.

(a) The set $V_{\sigma,x}$ is a vector subspace of $k(X)$ over k with $x \in V_{\sigma,x}$.

(b) The field $(k(X)^\sigma)^p$ is a subspace of $V_{\sigma,x}$. Furthermore, if the order of σ is finite, then the dimensions of $(k(X)^\sigma)^p$ and $V_{\sigma,x}$ are infinite over k.

(c) If the order of σ is prime, then $k(X) = k(x, y)$ for some $y \in ((k(X)^\sigma)^p) \setminus k$. If $f = \alpha$, that is, $\sigma^* x = x + \alpha$, then $x^2 + \beta x^p \in V_{\sigma,x}$.

(d) Let $n \geq 1$ be an integer, let $\alpha \in k \setminus \{0\}$, and let $\beta \in k$ with $\beta \alpha^p + \alpha^2 = 0$. Then the order of σ is finite, and it is divisible by p.

(e) If $f \in k \setminus \{0\}$, then the order of σ is finite, and it is divisible by p.

Proof. Let $g, h \in V_{\sigma,x}$ and $a, b \in k$. Then

$$\sigma^*(ag + bh) - (ag + bh) = a\sigma^* g + b\sigma^* h - (ag + bh) = a(\sigma^* g - g) + b(\sigma^* h - h) = af \frac{dg}{dx} + bh \frac{dh}{dx} = f \frac{d}{dx}(ag + bh).$$

On the other hand,

$$\sigma^* x - x = f = \int \frac{dx}{dx}.$$

Assertion (a) follows.

For each $g \in (k(X)^\sigma)^p$,

$$\sigma^* g - g = 0, \quad \frac{dg}{dx} = 0.$$

This implies that $(k(X)^\sigma)^p \subset V_{\sigma,x}$. Assume that the order of σ is finite. Then $[k(X) : k(X)^\sigma]$ is finite. Since $[k(X)^\sigma : (k(X)^\sigma)^p]$ is finite, it follows that $[k(X) : (k(X)^\sigma)^p]$ is finite, and hence, the dimension of $(k(X)^\sigma)^p$ is infinite. Assertion (b) follows.

Assume that the order of σ is prime. Since $[k(X) : k(X)^\sigma]$ is prime and $x \notin k(X)^\sigma$, it follows that $k(X) = (k(X)^\sigma)(x)$. It is inferred that $k(X)^p \subset (k(X)^\sigma)^p(x)$. Since $k(X)/k(x)$ is finite and separable, there exists $z \in k(X)^p$ such that $k(X) = k(x, z)$ (see, for example, [11, Proposition 3.10.2]). Therefore, there exist $y_1, \ldots, y_n \in (k(X)^\sigma)^p$ such that $k(X) = k(x)(y_1, \ldots, y_n)$. Since $k(X)/k(x)$ is separable, there exists $y \in (k(X)^\sigma)^p$ such that $k(X) = k(x, y)$. If $y \in k$, then $k(X) = k(x)$, and we
can take another \(y \in (k(X)^p)^p \setminus k \) with \(k(x) = k(x, y) \). Since \((k(X)^p)^p \cap \langle 1, x \rangle = k\), it follows that \(y \notin \langle 1, x \rangle \). Assertion (c) follows.

Let \(g = x^2 + \beta x^{p^n} \). Then
\[
\sigma^* g - g = (x + \alpha)^2 + \beta(x + \alpha)^{p^n} - (x^2 + \beta x^{p^n})
= 2\alpha x + (\alpha^2 + \beta \alpha^{p^n}) = 2\alpha x = f \frac{dg}{dx},
\]
and hence, \(g \in V_{\sigma, x} \). Assertion (d) follows.

Let \(f = \alpha \in k \). Then \((\sigma^p)^* x = x + p\alpha = x\), and hence, \(x \in k(X)^{\sigma^p} \). Since \(x \in k(X) \) is transcendental over \(k \), it follows that \([k(X) : k(X)^{\sigma^p}] \) is finite. This implies that \((\sigma^p)^m = 1 \) for some positive integer \(m \). On the contrary, if \(\sigma^m = 1 \), then \(x = (\sigma^m)^* x = x + ma \). This implies that \(m \) is divisible by \(p \). Assertion (e) follows. \(\square \)

Remark 4. For any automorphism \(\sigma \in \text{Aut}(X) \setminus \{1\} \) and any point \(P \in X \), there exists a local parameter \(x \in k(X) \) at \(P \) such that \(\sigma^* x - x \neq 0 \).

We prove main theorems.

Proof of Theorem 1. Let \(P_\infty = (0 : 1) \in \mathbb{P}^1 \). By the expression, \(\mathbb{P}^1 \setminus \{P_\infty\} \cong \varphi(\mathbb{P}^1 \setminus \{P_\infty\}) \) as affine varieties. We consider a neighborhood of \(P_\infty \). The morphism \(\varphi \) is represented by
\[
\varphi(s : 1) = \left(s^{2^n+1} : s^{q^{2^n}} : s^{q^{2^n}-1} - s^{q^{2^n+1-q^n}} : s^{q^{2^n+1-q^n}} - s : s^{q^{2^n-q^n}} - 1 \right)
= \left(\frac{s^{q^{2^n}+1}}{s^{q^{2^n}-q^n} - 1} : \frac{s^{q^{2^n}}}{s^{q^{2^n}-q^n} - 1} : \frac{s^{q^{2^n}-1} - s^{q^{2^n+1-q^n}}}{s^{q^{2^n}-q^n} - 1} : s : 1 \right).
\]
Therefore, \(\varphi(P_\infty) = (0 : 0 : 0 : 1) \), and the order of the hyperplane defined by \(X_3 = 0 \) at \(P_\infty \) is equal to 1. This implies that \(\varphi(P_\infty) \) is a smooth point. Assertion (a) follows.

Let \(\sigma_\alpha : \mathbb{P}^1 \to \mathbb{P}^1 \) be an automorphism given by \(t \mapsto t + \alpha \) with \(\alpha^{q^2-2} = 1 \). Since \(\alpha \in \mathbb{F}_{q^n} \), it follows that \(\alpha^{q^n} - \alpha^{q^{2n}} = (\alpha - \alpha^{q^n})q^n = 0 \). Then
\[
\frac{d\varphi}{dt} = (0, 1, 2t, 0, t^{q^n} - t^{q^{2n}}),
\]
\[
\varphi \circ \sigma_\alpha = (1, t + \alpha, t^2 - t^q + 2\alpha t, t^{q^n} - t^{q^{2n}}, (t + \alpha)(t^{q^n} - t^{q^{2n}})).
\]
Let \(P = (1 : t) \in \mathbb{P}^1 \setminus \{P_\infty\} \). It follows that
\[
\varphi(\sigma_\alpha(P)) = \varphi(P) + \alpha \frac{d\varphi}{dt}(P) \in \left\langle \varphi(P), \frac{d\varphi}{dt}(P) \right\rangle.
\]
for any \(\alpha \in k \) with \(\alpha^{q-2} = 1 \). Therefore, there exist \(q-2 \) points of \((T_{\varphi(P)}\varphi(\mathbb{P}^1) \setminus \{\varphi(P)\}) \cap \varphi(\mathbb{P}^1)\). It is not difficult to check that \(\varphi(P_\infty) \notin T_{\varphi(P)}\varphi(\mathbb{P}^1) \). Assume that \(\varphi(P') \in T_{\varphi(P)}\varphi(\mathbb{P}^1) \) for a point \(P' = (1 : u) \in \mathbb{P}^1 \setminus \{P_\infty\} \). Then, for some \(\beta \in k \),

\[
 u = t + \beta \quad \text{and} \quad u^2 - u^q = t^2 - t^q + 2\beta t.
\]

These imply that \(u = t + \beta \) and \(\beta^2 - \beta^q = 0 \). Assertion (b) follows.

The tangent line is spanned by the row vectors of the matrix

\[
\left(\begin{array}{cccc}
\varphi \\
\frac{d\varphi}{dt}
\end{array} \right) \sim \left(\begin{array}{cccc}
1 & 0 & -t^2 - t^q & t^{q^n} - t^{q^{2n}} & 0 \\
0 & 1 & 2t & 0 & t^{q^n} - t^{q^{2n}}
\end{array} \right).
\]

The function field \(k(\gamma \circ \varphi(\mathbb{P}^1)) \) of the image of the Gauss map \(\gamma \) contains the function \(\frac{d(t^2-t^q)}{dt} = 2t \). Since \(p > 2 \), it follows that \(t \in k(\gamma \circ \varphi(\mathbb{P}^1)) \). This implies that the Gauss map \(\gamma \) is birational onto its image. \(\square \)

Proof of Theorem 2. Assume that condition (c) is satisfied for an automorphism \(\sigma \in \text{Aut}(X) \). Let \(V_{\sigma,x} \) be the vector space as in Proposition 1 with \(f = \alpha \), and let \(g_3, \ldots, g_N \in V_{\sigma,x} \). We consider the rational map

\[
\varphi : X \dashrightarrow \mathbb{P}^N; \quad (1 : x : y : g_3 : \cdots : g_N).
\]

By condition (b), \(\varphi \) is birational onto its image. By conditions (a) and (d), \(y \notin \langle 1, x \rangle \) and \(y \in V_{\sigma,x} \). According to Proposition 1(b) and (e), we can take \(g_3, \ldots, g_N \in V_{\sigma,x} \) such that \(\dim \langle 1, x, y, g_3, \ldots, g_N \rangle = N + 1 \). This implies assertion (1). Then

\[
\frac{d\varphi}{dx} = \left(0, 1, \frac{dy}{dx}, \ldots, \frac{dg_i}{dx}, \ldots \right),
\]

\[
\varphi \circ \sigma = (1, x + \alpha, \sigma^*y, \ldots, \sigma^*g_i, \ldots).
\]

Since \(1, x, y, g_3, \ldots, g_N \in V_{\sigma,x} \), it follows that

\[
\varphi(\sigma(P)) = \varphi(P) + \alpha \frac{d\varphi}{dx}(P) \in \left(\varphi(P), \frac{d\varphi}{dx}(P) \right)
\]

for a general point \(P \) of \(X \). Assertion (2) follows. The tangent line is spanned by the row vectors of the matrix

\[
\left(\begin{array}{cccc}
1 & 0 & y - x \frac{dy}{dx} & \cdots & g_i - x \frac{dg_i}{dx} & \cdots \\
0 & 1 & \frac{dy}{dx} & \cdots & \frac{dg_i}{dx} & \cdots
\end{array} \right).
\]

If we take \(g_i = x^2 + \beta x^{p^n} \) with \(\beta \alpha^{p^n} + \alpha^2 = 0 \) for some \(i \), as in Proposition 1(d), then the function field \(k(\gamma \circ \varphi(X)) \) of the image of the Gauss map \(\gamma \) contains the function \(\frac{dg_i}{dx} = 2x \). Since \(p > 2 \), it follows that \(x \in k(\gamma \circ \varphi(X)) \). In this case,
since \(dy/dx, y - x(dy/dx) \in k(\gamma \circ \varphi(X)) \), it is inferred that \(y \in k(\gamma \circ \varphi(X)) \) and the Gauss map \(\gamma \) is birational onto its image. Assertion (3) follows.

Proof of Theorem 3. Assume that conditions (a) and (b) are satisfied for an automorphism \(\sigma \). By Proposition 1 (b) and (c), there exists \(y \in V_{\sigma,x} \setminus \langle 1, x \rangle \) such that \(k(X) = k(x, y) \). Conditions (a), (b), (c) and (d) in Theorem 2 are satisfied.

\[\square \]

Remark 5.

(a) The automorphism \(\sigma \) is non-classical with respect to the plane model given by conditions (a), (b), (c) and (d) in Theorem 2.

(b) The same assertion as Theorem 2 without condition (3) holds, if \(p = 2 \).

(c) Assume that \(p > 0 \) and \(N \geq 3 \). By Proposition 1 and the same method as in the proof of Theorem 2, it can be proved that for any automorphism \(\sigma \in \text{Aut}(X) \setminus \{1\} \) of prime order, there exists a birational embedding \(\varphi : X \to \mathbb{P}^N \) with conditions (1) and (2) as in Theorem 2.

Finally, this paper raises the following:

Question 2. Assume that a smooth projective curve \(C \subset \mathbb{P}^N \) not in any plane is tangentially degenerate and the Gauss map of \(C \) is birational onto its image. Then is it true that \(C \) is rational?

Acknowledgements

The author is grateful to Professor Seiji Nishioka for helpful conversations, by which the author was able to improve Proposition 1. The author thanks Professor Hajime Kaji for telling Question 1 and useful comments.

References

[1] M. Bolognesi and G. Pirola, Osculating spaces and Diophantine equations (with an Appendix by P. Corvaja and U. Zannier), Math. Nachr. 284 (2011), 960–972.
[2] C. Ciliberto, Review of [6], Mathematical Reviews, MR0850959 (87i:14027).
[3] E. Esteves and M. Homma, Order sequences and rational curves, In: Projective geometry with applications, Lecture Notes in Pure and Appl. Math. 166, Dekker, New York, 1994, pp.27–42.
[4] A. Hefez and S. Kleiman, Notes on the duality of projective varieties, in: Geometry Today, Progress in Mathematics Vol. 60, Birkhäuser, Boston, 1985, pp.143–183.
[5] A. Hefez and J. Voloch, Frobenius non classical curves, Arch Math. 54 (1990), 263–273.
[6] H. Kaji, On the tangentially degenerate curves, J. London Math. Soc. (2) 33 (1986), 430–440.
[7] H. Kaji, On the inseparable degrees of the Gauss map and the projection of the conormal variety to the dual of higher order for space curves, Math. Ann. 292 (1992), 529–532.
[8] H. Kaji, On the tangentially degenerate curves, II, Bull. Braz. Math. Soc. (N.S.) 45 (2014), 745–752.
[9] H. Kaji, Private communications, November 2021.
[10] D. Levcovitz, Bounds for the number of fixed points of automorphisms of curves, Proc. London Math. Soc. (3) 62 (1991), 133–150.
[11] H. Stichtenoth, Algebraic Function Fields and Codes, Graduate Texts in Mathematics 254, Springer-Verlag, Berlin Heidelberg, 2009.
[12] K.-O. Stöhr and J. F. Voloch, Weierstrass points and curves over finite fields, Proc. London Math. Soc. (3) 52 (1986), 1–19.
[13] A. Terracini, Sulla riducibilità di alcune particolari corrispondenze algebriche, Rend. Circ. Mat. Palermo 56 (1932), 112–143.
[14] J. Voloch, On the geometry of space curves, in: Proceedings of the 10th School of Algebra, Vitoria, Brazil, 1989 (IMPA, Rio de Janeiro, 1990), pp.121–122.

DEPARTMENT OF MATHEMATICAL SCIENCES, FACULTY OF SCIENCE, YAMAGATA UNIVERSITY, KOJIRAKAWA-MACHI 1-4-12, YAMAGATA 990-8560, JAPAN

Email address: s.fukasawa@sci.kj.yamagata-u.ac.jp