COMPARISON OF ANTIBACTERIAL ACTIVITY OF HONEY AGAINST AEROBIC AND ANAEROBIC BACTERIA

S. DHANARAJ¹, S. S. M. UMAMAGESWARI², M. MALAVIK³, G. BHUVANESHWARI⁴

¹Saveetha Medical College and Hospital, Kuthambakam, Chennai 600124, Tamilnadu, ²³⁴Department of Microbiology, Saveetha Medical College and Hospital, Kuthambakam, Chennai 600124, Tamilnadu

Email: dhanarajselvakumar@gmail.com

Received: 15 Sep 2020, Revised and Accepted: 17 Nov 2020

INTRODUCTION

Honey is extracted from the honeycomb with proper guidance. The honey bees collect nectar from the flowers and stores it in their nest which gets converted into honey. It is used as a food product due to its sweetness. But it also has effective medicinal values which have been noticed earlier by our ancestors [1]. It's wide range of medicinal efficiency is still under research by many well-known researchers. The therapeutic usage of honey was also noticed in some areas due to its activity against gram positive and gram negative bacteria. The aim of this investigation is to compare the antibacterial activity of honey against the aerobic bacteria and anaerobic bacteria. For this investigation aerobic bacteria Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922 and Table 1 shows the antibacterial activity of honey against the test bacteria.

MATERIALS AND METHODS

Extract

Honey extract is obtained from the honeycomb by trained persons under proper guidance and stored it for the process.

Microorganisms

The bacterial test organisms Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922 and Clostridium perfringens ATCC 3624 are obtained from the microbiology department.

Antimicrobial susceptibility testing

Agar cup diffusion technique

Also called as Kirby-Bauer method is an antibiotic susceptibility testing method. It is used to find the susceptibility of a bacterium to an antibiotic. Mueller-Hinton Agar is usually used and gives satisfactory growth for a wide range of organisms [2].

Principle

The antibiotic impregnated disk when placed over an already inoculated agar medium with the test bacterium would pick up moisture and the antibiotic would diffuse radially outward on the medium. It produces a gradient of high concentration of antibiotic at the edges of the disk and slowly the concentration decreases as it diffuses radially outward. Thus creating a zone of inhibition around the disk, where the bacterium could not grow, if the antibiotic is effective against the test bacterium [2].

Preparation

Take 2 NA plates 1 and 2. Dry the plates. Take Staphylococcus aureus and E. coli specimens inoculate them in peptone water in separate test tubes and incubate them for 20 min under 37 °Celsius. After incubation, take these two organisms and undergo lawn culture in the two NA plates separately. i.e Staphylococcus aureus in NA plate 1 and E. coli in NA plate 2. Take the Clostridium perfringens specimen and perform lawn culture directly in blood plate.

Introduction of honey

Take 3 Capillary tubes and cut a well on the 3 culture plates respectively. Add 10 microliters of honey in each culture plate and
incubate them for 24 h under 37° Celsius. Assessment is based on the ability of bacteria to show sensitivity to honey.

RESULTS
After performing the technique, observation is made after 24 h. The gram positive cocci *Staphylococcus aureus* shows sensitivity to honey. It is an aerobe. The gram negative bacilli *Escherichia coli* doesn’t show any sensitivity to honey. It is anaerobe. The gram positive bacilli *Clostridium perfringens* doesn’t show any sensitivity to honey. It is an strict anaerobe.

The pictures of the culture plates of the 3 organisms are pinned below.

Fig. 1: Antibacterial activity of honey against *Staphylococcus aureus*

Fig. 2: Antibacterial activity of honey against *Escherichia coli*

Fig. 3: Antibacterial activity of honey against *Clostridium perfringens*
DISCUSSION

Honey has been used for its antibacterial activity since the ancient times. It is said that it has been used for topical treatment of wounds and burns due to its wound healing activity. Honey is a supersaturated solution of sugar which contains fructose (31%) and glucose (31%) has its main carbohydrate content. Other minor constituents tend to be responsible for antioxidant property of honey. It is also used as an antiseptic due to presence of hydrogen peroxide. It is also said to be used for sore throat and fungal infections. Due to its vast usage in traditional and conventional medicinal field, it is test for its antibacterial activity against aerobic and anaerobic bacteria in this experiment [3].

Aerobic bacteria are those which cannot survive in the absence of oxygen and even may die. They need the presence of oxygenated environment for its growth and development. Whereas anaerobic bacteria doesn’t require oxygen for its growth and development. Strict anaerobes may even die in the presence of oxygen. Facultative anaerobes are those which can survive in presence of oxygen as well as in the absence of oxygen. It is all based on the energy production of an organism for its survival. In the oxygenated environment, aerobes and facultative anaerobes produce ATP by aerobic respiration. In the absence of oxygen, anaerobes and facultative anaerobes produce energy by fermentation. In this experiment, the honey extract has been used against three important bacterial species and its activity is noted for its usage against it [4-6].

*Staphylococcus aureus* is an aerobic and an gram positive cocci. It contains various virulence factors such as cell wall associated factors (peptidoglycan, tetcho acid, cell surface adhesions, protein A), toxins (hemolysins-a,β,γ, leucokidins, exfoliate toxin, enterotoxin, toxic shock syndrome toxin) and extracellular enzymes (coagulase, heat stable thermonuclear, deoxyribonuclease, fibrinolysin). It causes a spectrum of infections such as skin and soft tissue infections (*E. coli*, *Klebsiella*, *Citrobacter*, *Enterobacter*, *Serratia*, *Proteus*, etc.), Musculoskeletal infections (*pyomositis*, *abcess*, *septic arthritis*, *osteomyelitis*), respiratory tract infections (septic pulmonary emboli, empyema, pneumothorax, post viral pneumonia), *bacteremia*, *UTI*, *toxin mediated* illnesses (*food poisoning*, *toxic shock syndrome*), etc. *Penicillin G* and *vancomycin* is used for their treatment. Also from this experiment it is found to be sensitive to honey extract. Hence can be used along with antibiotics which increases the activity of antibiotics.

Staphylococcus aureus is a strict anaerobe and an gram negative bacilli. It is an most important human pathogen to be found in the gut of humans. The virulence factors of *S. aureus* includes it’s surface antigens (O antigen, H antigen, capsular antigen, fimbrial antigen), toxins (enterotoxins, hemolysins, cytotoxic necrotizing factor 1) and siderophores. It causes *UTI*, *diarrhea*, *pneumonia*, *meningitis*, *bacterial* *prosthetic* *osteomyelitis*, *abdominal* *infections* (peritonitis, *visceral* *abcess*) and *endovascular* *infection*. *Clostridium perfringens* is a strict anaerobe and an gram positive bacilli. These are the commensals of large intestine of humans and animals. The virulence factors produced are grouped under major toxins (α, β, ε, ι), minor toxins (γ, δ, θ, κ, η, π, ϕ, χ), enterotoxin and soluble substances (neuraminidase, histamine, burning factor, circulating factor). They cause a series of infections includes wound infection (simple infection, anaerobic cellulitis, gas gangrene), food poisoning, enteritis necroticans, meningitis and brain abscess. Treatment for gas gangrene caused by *clostridium* *perfringens* includes the combination of drugs penicillin and clindamycin. But early surgical debridement is the most crucial step in the management of gas gangrene. In this experiment, honey extract has been tested against *clostridium perfringens*, but the organism doesn’t show any sensitivity to the extract. Hence, honey cannot be used for its treat [10, 11].

CONCLUSION

The honey exhibits the antibacterial activity for *staphylococcus aureus* but not against *E. coli* and *clostridium perfringens*. It’s medicinal value is still to be discussed at various levels. Several findings of other researchers show its efficiency and resistance towards several other bacteria. Hence, it is important to note it’s antibacterial activity even it is not an antibiotic agent. It is also used along with antibiotics which increases the activity of antibiotics.

This investigation deals only with limited number of organisms due to provided situation, the further antibacterial activity of honey and it’s resistance to different organisms will be dealt in future studies.

ACKNOWLEDGEMENT

Highly thankful to the mentors, the HOD of the microbiology department, the Dean and the management of the Saveetha Medical College and Hospital, Chennai, for the opportunity and the laboratory facility.

FUNDING

Nil

AUTHORS CONTRIBUTIONS

All the authors have contributed equally.

CONFLICT OF INTERESTS

Declared none

REFERENCES

1. JW White. Composition of Honey," In: E Crane. Ed. Honey: A Comprehensive Survey, Heinemann, London; 1975. p. 157-206.
2. Tendencia, Eleanor A. Disk diffusion method. SEAFDEC, Aquaculture Department Japan, Chapter 2; 2004. p. 14-29.
3. Jeffrey AE, Echezarreta CM. Medical uses of honey. Rev Biomed 1996;7:43–9.
4. Obi CL, Mazarura E. Aerobic bacteria isolated from blood cultures of patients and their antibiotic susceptibilities in Harare, Zimbabwe. Cent Afr J Med 1996;42(Suppl I 2):332–6.
5. Brook I. Enhancement of growth of aerobic and facultative bacteria in mixed infections with bacteriodes species. Infect Immun 1985;50:929–31.
6. Gorbach SL, JC Bartlett. Anaerobic infections. N Engl J Med 1974;290:1177–84, 1237–45, 1289–94.
7. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. *Staphylococcus aureus* infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015;28:603-61.
8. Alexander TJI, Gyles CL. *Escherichia coli* in domestic animals and humans. Wallingford, United Kingdom: CAB International; 1994. p. 151–70.
9. James P Nataro, James B Kaper. *Diarrheagenic escherichia coli*. Cln Microbiol Rev 1998;11:142–201.
10. Kiu R, Hall LJ. An update on the human and animal enteric pathogen *clostridium perfringens*. Emerg Microbes Infect 2018;7:141.
11. Stevens DL, Aldape MJ, Bryant AE. Life-threatening clostridial infections. *Anaerobe* 2012;18:254-9.