On arithmetic properties of solvable Baumslag-Solitar groups

Laurent Hayez∗
Université de Neuchâtel, Switzerland
laurent.hayez@unine.ch

Tom Kaiser
Université de Neuchâtel, Switzerland
tomkaiser456@gmail.com

Alain Valette
Université de Neuchâtel, Switzerland
alain.valette@unine.ch

For $0 < \alpha \leq 1$, we say that a sequence $(X_k)_{k>0}$ of d-regular graphs has property D_α if there exists a constant $C > 0$ such that $\text{diam}(X_k) \geq C \cdot |X_k|^{\alpha}$. We investigate property D_α for arithmetic box spaces of the solvable Baumslag-Solitar groups $BS(1,m)$ (with $m \geq 2$): those are box spaces obtained by embedding $BS(1,m)$ into the upper triangular matrices in $GL_2(\mathbb{Z}[1/m])$ and intersecting with a family M_{N_k} of congruence subgroups of $GL_2(\mathbb{Z}[1/m])$, where the levels N_k are coprime with m and $N_k | N_{k+1}$. We prove:

• if an arithmetic box space has D_α, then $\alpha \leq \frac{1}{2}$;
• if the family $(N_k)_k$ of levels is supported on finitely many primes, the corresponding arithmetic box space has $D_{1/2}$;
• if the family $(N_k)_k$ of levels is supported on a family of primes with positive analytic primitive density, then the corresponding arithmetic box space does not have D_α, for every $\alpha > 0$.

Moreover, we prove that if we embed $BS(1, m)$ in the group of invertible upper-triangular matrices $T_n(\mathbb{Z}[1/m])$, then every finite index subgroup of the embedding contains a congruence subgroup. This is a version of the congruence subgroup property (CSP).

1 INTRODUCTION

Let G be a finitely generated, residually finite group. If $(H_k)_{k>0}$ is a decreasing sequence of finite index normal subgroups of G, with trivial intersection, and S is a finite generating set of G, then the box space $\Box(H_k)G$ is the disjoint union of finite Cayley graphs

$$\Box(H_k)G = \bigsqcup_{k>0} \text{Cay}(G/H_k, S);$$

here by abuse of notation we identify S with its image in G/H_k. Changing the generating set S does not change the coarse geometry of the box space\footnote{In the sense that the two families of graphs are quasi-isometrically equivalent, by a family of quasi-isometries with uniform constants.} so we omit S from the notation.

In the dictionary between group-theoretical properties of G and metric properties of $\Box(H_k)G$ (see e.g. [7]), it is natural to look at the behaviour of the diameter of the Cayley graphs $\text{Cay}(G/H_k, S)$. Let $0 < \alpha \leq 1$. The box space $\Box(H_k)G$ satisfies property D_α if there is some constant $C > 0$ such that for every $k > 0$:

$$\text{diam}(\text{Cay}(G/H_k, S)) \geq C |G/H_k|^{\alpha}. \quad (1)$$

Note that property D_α is a coarse geometry invariant of the box space. The following is known.

Theorem 1.1. Let G be a finitely generated, residually finite group.

(1) (see Cor. 1.7 and Lemma 5.1 in [1]) If some box space of G has property D_α, for some $\alpha > 0$, then G virtually maps onto \mathbb{Z}.

∗Supported by grant 200021_188578 of the Swiss National Fund for Scientific Research
(2) (see Theorem 3 in [8]) If G maps onto \mathbb{Z}, then for every $0 < \alpha < 1$, there exists a box space of G with property D_α.

(3) (see Proposition 5 in [8]) The group G is virtually cyclic if and only if some (hence any) box space of G has property D_1.

This paper considers the Baumslag-Solitar groups $BS(n, m)$ $(m, n > 0)$ with presentation

$$BS(n, m) = \langle a, t | ta^n t^{-1} = t^m \rangle.$$

They all map onto \mathbb{Z}, by $a \mapsto 0, t \mapsto 1$. On the other hand they are known to be residually finite if and only if $n = 1$ or $n = m$: see Theorem C in [10]. It turns out that the solvable Baumslag-Solitar groups $BS(1, m)$, with $m \geq 2$, have interesting box spaces. Indeed it is well-known that $BS(1, m)$ may be viewed as a semi-direct product

$$BS(1, m) = \mathbb{Z}[1/m] \rtimes \mathbb{Z},$$

where the factor \mathbb{Z} corresponds to the subgroup $\langle t \rangle$ acting by powers of m. We may identify this semi-direct product with the following subgroup G_m of upper triangular matrices in $GL_2(\mathbb{Z}[1/m])$:

$$G_m = \left\{ \begin{pmatrix} m^k & r \\ 0 & 1 \end{pmatrix} : k \in \mathbb{Z}, r \in \mathbb{Z}[1/m] \right\}.$$

The isomorphism is obtained by mapping a to $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and t to $T = \begin{pmatrix} m & 0 \\ 0 & 1 \end{pmatrix}$. The associated embedding of $BS(1, m)$ into $GL_2(\mathbb{Z}[1/m])$ is called the standard embedding.

In $GL_n(\mathbb{Z}[1/m])$ we may define congruence subgroups. Let $N > 0$ be coprime with m. The principal congruence subgroup of level N is the kernel M_N of the reduction modulo N:

$$M_N = \ker [GL_n(\mathbb{Z}[1/m]) \rightarrow GL_n(\mathbb{Z}/N\mathbb{Z})].$$

Definition 1.2. If G is any subgroup of $GL_n(\mathbb{Z}[1/m])$, and $N > 0$ is coprime to m, then the congruence subgroup $G(N)$ in G is

$$G(N) := G \cap M_N.$$

For a sequence of integers such that each one divides the next one, one obtains a sequence of nested congruence subgroups, and thus a box space of $BS(1, m)$. Such box spaces deserve to be called arithmetic box spaces. We will study property D_α for the arithmetic box spaces of $BS(1, m)$ through the standard embedding. From Theorem 1.1, we know that for every $0 < \alpha < 1$, there exists a box space of $BS(1, m)$ with property D_α, but what about arithmetic box spaces? We will prove that box spaces with D_α, for $\alpha > \frac{1}{2}$, can be distinguished from arithmetic box spaces by coarse geometry. More precisely:

Theorem 1.3. For any $m \geq 2$, the following statements are true:

1. If an arithmetic box space $\Box(G_m(N_k))$, G_m has property D_α, then $\alpha \leq \frac{1}{2}$.
2. There exists an arithmetic box space with property $D_{1/2}$.
3. There exists an arithmetic box space of G_m without property D_α for any $\alpha \in]0, 1/2]$.

If $\Box(H_k), G$ are two box spaces of the same residually finite group G, we say that $\Box(H'_k)G$ covers $\Box(H_k)G$ if $H'_k \subset H_k$ for every $k > 0$. In this case $\text{Cay}(G/H'_k, S)$ is a Galois covering of $\text{Cay}(G/H_k, S)$.

The following proposition bridges Theorem 1.3 with part (2) of Theorem 1.1.

Proposition 1.4. Fix $\alpha < 1$. Any arithmetic box space of G_m is covered by some box space with D_α.

In addition, we study how property D_α for an arithmetic box space depends on the prime factors of the N’s in the sequence of congruence subgroups $(M_N)_N$. In fact, if we denote by $D'(P)$ the analytic density of the prime factors (see Section 3.2), we prove the following.

Theorem 1.5. Let $\square_{(G_m(N_k))_k} G_m$ be an arithmetic box space, and let P be the set of prime factors of the sequence $(N_k)_k$.

1. If $|P| < +\infty$, then $\square_{(G_m(N_k))_k} G_m$ has $D_{1/2}$;
2. If $D'(P) > 0$, then $\square_{(G_m(N_k))_k} G_m$ does not have D_α, for every $\alpha > 0$.

Of course the choice of the standard embedding raises a natural question: how do the congruence subgroups in $BS(1,m)$ depend on the choice of the embedding ρ? Since congruence subgroups have finite index, this is related to a form of the **congruence subgroup property** (CSP), which we now recall.

Definition 1.6. Let G be a subgroup of $GL_n(\mathbb{Z}[1/m])$. We say that G has the CSP if every finite index subgroup in G contains $G(N)$ for some $N > 0$.

Let $T_n(\mathbb{Z}[1/m])$ denote the group of upper triangular matrices in $GL_n(\mathbb{Z}[1/m])$. We shall prove:

Theorem 1.7. For every embedding $\rho : BS(1, m) \rightarrow T_n(\mathbb{Z}[1/m])$, the group $\rho(BS(1, m))$ has the CSP.

This result can be reformulated as follows. Taking the congruence subgroups $\rho(G_m)(N)$ as a neighbourhood basis for the identity gives a topology on $\rho(G_m)$ (namely the congruence topology relative to ρ) and the completion $\hat{\rho(G_m)}$ with respect to this topology is a profinite group called the congruence completion of $\rho(G_m)$. As G_m is residually finite, it also embeds in its profinite completion $\hat{G_m}$ which maps onto $\hat{\rho(G_m)}$. The CSP for $\rho(G_m)$ says that the map $\hat{G_m} \rightarrow \hat{\rho(G_m)}$ is an isomorphism.

Another immediate consequence of CSP is that, if $\rho : G_m \rightarrow T_n(\mathbb{Z}[1/m])$ is an embedding, then any box space of $G_m \approx \rho(G_m)$ is covered by some arithmetic box space of $\rho(G_m)$.

When $m = p^t$ is a prime power, we also propose another approach to CSP for $BS(1, m)$: we view $BS(1, p^t)$ as a subgroup of the affine group $\mathbb{G}(\mathbb{Q})$, and this subgroup is commensurable to the group $\mathbb{G}(O_S)$ of S-integer points, with $S = \{p, \infty\}$. We prove:

Proposition 1.8. Let H be a \mathbb{Q}-algebraic subgroup of GL_n, and let $\rho : \mathbb{G} \rightarrow H$ be a \mathbb{Q}-isomorphism. Then $\rho(BS(1, p^t))$ has CSP.

As for the structure of the paper, we will start in Section 2 by recalling some well-known facts about elementary number theory, especially concerning the multiplicative order of m in $\mathbb{Z}/N\mathbb{Z}$.

We then study property D_α for solvable Baumslag-Solitar groups in Section 3. We begin with some metric aspects, where we estimate the diameter of the arithmetic box spaces of $BS(1, m)$, which is what we use to prove Theorem 1.3 and Proposition 1 (see Theorem 3.6). To conclude Section 3, we investigate the role of prime numbers in property D_α and we prove Theorem 1.5 (see Theorem 3.8).

Finally, in Section 4, we prove Theorem 1.7.

We will use Landau’s notations O, o, Ω, Θ.

2 SOME ELEMENTARY NUMBER THEORY

We gather some technical lemmas. First we recall some facts about greatest common divisors and lowest common multiples, which will be respectively denoted by \gcd and \lcm.

Proposition 2.1. Let $\mu, a_1, \ldots, a_n \in \mathbb{N}^*$,
(1) \(\gcd(\mu \cdot a_1, \mu \cdot a_2) = \mu \cdot \gcd(a_1, a_2)\),
(2) \(\gcd(a_1, \ldots, a_n) = \gcd(\gcd(a_1, \ldots, a_{n-1}), a_n)\),
(3) \(\gcd(a_1, \gcd(a_2, a_3)) = \gcd(\gcd(a_1, a_2), a_3)\),
(4) \(\gcd(a_1, a_2) \cdot \lcm(a_1, a_2) = a_1 \cdot a_2\),
(5) \(\lcm(a_1, \ldots, a_n) = \lcm(\lcm(a_1, \ldots, a_{n-1}), a_n)\). \(\square\)

The following lemma generalises Proposition 2.1.(4).

Lemma 2.2. Let \(a_1, \ldots, a_n \in \mathbb{N}\), then

\[
\lcm(a_1, \ldots, a_n) = \frac{a_1 \cdots a_n}{\gcd(a_1 \cdots a_{n-1}, a_1 \cdots a_{n-2}a_n, \ldots, a_2 \cdots a_n)}.
\]

Proof. We use induction to show that Eq. (2) is valid. If \(n = 1\), the formula holds. Thus assume that the formula is true for \(n \in \mathbb{N}\), and denote by \(\Pi_n\) the set \(\{a_1 \cdots a_{n-1}, a_1 \cdots a_{n-2}a_n, \ldots, a_2 \cdots a_n\}\). Using that

\[
\gcd(\lcm(a_1, \ldots, a_n), a_{n+1}) = \gcd\left(\frac{a_1 \cdots a_n}{\gcd(\Pi_n)}, a_{n+1}\right),
\]

we obtain by a direct computation that

\[
\lcm(a_1, \ldots, a_{n+1}) = \lcm(\lcm(a_1, \ldots, a_n), a_{n+1})
= \frac{\lcm(a_1, \ldots, a_n \cdot a_{n+1})}{\gcd(\lcm(a_1, \ldots, a_n), a_{n+1})},
= \frac{a_1 \cdots a_n}{\gcd(\Pi_n) \gcd\left(\frac{a_1 \cdots a_n}{\gcd(\Pi_n)}, a_{n+1}\right)}
= \frac{a_1 \cdots a_{n+1}}{\gcd(a_1 \cdots a_n, \gcd(\Pi_n) \cdot a_{n+1})}
= \frac{a_1 \cdots a_{n+1}}{\gcd(a_1 \cdots a_n, \gcd(a_1a_3 \cdots a_{n+1}a_{n+1}, \ldots, a_2a_4 \cdots a_{n+1}) \cdot a_{n+1})}
= \frac{a_1 \cdots a_{n+1}}{\gcd(a_1 \cdots a_n, a_1a_3 \cdots a_{n+1}a_{n+1}, \ldots, a_2a_4 \cdots a_{n+1})}.
\(\square\)

We now recall the ideal structure of the ring \(\mathbb{Z}[1/m]\).

Lemma 2.3. Let \(I\) be a proper subgroup in \(\mathbb{Z}[1/m]\). TFAE:

1. \(I\) is an ideal in \(\mathbb{Z}[1/m]\);
2. There exists \(N > 1\) such that \(I = N\mathbb{Z}[1/m]\).

Moreover \(\mathbb{Z}[1/m]/N\mathbb{Z}[1/m] = \mathbb{Z}/N\mathbb{Z}\).

Proof. The non-trivial direction follows from general results about localisations of rings, viewing \(\mathbb{Z}[1/m]\) as the localisation of \(\mathbb{Z}\) with respect to powers of \(m\): the map \(I \rightarrow I \cap \mathbb{Z}\) provides a bijection between ideals of \(\mathbb{Z}[1/m]\) and ideals \(J\) in \(\mathbb{Z}\) such that \(m\) is not a zero-divisor in \(\mathbb{Z}/J\) (see Proposition 2 in section 11.3 of [4]). Finally observing that \(\mathbb{Z} + N\mathbb{Z}[1/m] = \mathbb{Z}[1/m]\), we have by a classical isomorphism theorem:

\[
\mathbb{Z}[1/m]/N\mathbb{Z}[1/m] = (\mathbb{Z} + N\mathbb{Z}[1/m])/N\mathbb{Z}[1/m] = \mathbb{Z}/(\mathbb{Z} \cap N\mathbb{Z}[1/m]) = \mathbb{Z}/N\mathbb{Z}.
\(\square\)

Lemma 2.3 allows us to work with \(\mathbb{Z}/N\mathbb{Z}\), which has a familiar ring structure. We will write \(\mathbb{Z}/N\mathbb{Z}^\times\) for the multiplicative group of \(\mathbb{Z}/N\mathbb{Z}\). We denote by \(\text{ord}_m(N)\) the multiplicative order of \(m\) in \(\mathbb{Z}/N\mathbb{Z}^\times\). We define the following function.
Definition 2.4. Let \(m, N \in \mathbb{N} \) be such that \(\gcd(m, N) = 1 \). Write \(m^{\ord_m(N)} = \mu N + 1 \) for some \(\mu \in \mathbb{N} \) and let the function \(\eta_N : \mathbb{N}^* \to \mathbb{N} \) be defined by

\[
\eta_N(k) = \begin{cases}
1 & \text{if } k = 1 \\
\frac{N^{k-1}}{\gcd(m, N)} & \text{if } k \geq 2.
\end{cases}
\]

Lemma 2.5. Let \(m, N \in \mathbb{N} \) be such that \(\gcd(m, N) = 1 \). Write \(m^{\ord_m(N)} = \mu N + 1 \) for some \(\mu \in \mathbb{N} \). Then \(\ord_m(N^2) = \ord_m(N) \cdot \frac{N}{\gcd(\mu, N)} \), and more generally

\[
\ord_m(N^k) = \ord_m(N) \cdot \eta_N(k), \quad \forall k \geq 1.
\]

Proof. The case \(k = 1 \) being obvious, let us consider \(k = 2 \), and set \(\beta = \ord_m(N) \). We show that the smallest positive integer \(\lambda \) that satisfies \(m^\lambda \equiv 1 \pmod{N^2} \) is \(\lambda = \frac{N}{\gcd(\mu, N)} \beta \). Note that \(\beta \mid \lambda \): indeed if \(m^\lambda \equiv 1 \pmod{N^2} \), then \(m^\lambda \equiv 1 \pmod{N} \) so that \(\beta \) must divide \(\lambda \) (see [6, Cor. 2 p. 79]). Thus \(\lambda = \beta \hat{\lambda} \) for some \(\hat{\lambda} \in \mathbb{N} \) and we only have to show that \(\hat{\lambda} = \frac{N}{\gcd(\mu, N)} \). We have that

\[
(m^\beta)^{\hat{\lambda}} = (\mu N + 1)^{\hat{\lambda}}
\]

\[
= \sum_{i=0}^{\hat{\lambda}} \binom{\hat{\lambda}}{i} (\mu N)^i
\]

\[
\equiv 1 + \frac{\hat{\lambda}}{\beta} \mu N \pmod{N^2}.
\]

The last line shows that the smallest \(\hat{\lambda} \) we can take to have \(m^\beta \hat{\lambda} \equiv 1 \pmod{N^2} \) must be \(\hat{\lambda} = \frac{N}{\gcd(\mu, N)} \), thus demonstrating that \(\ord_m(N^2) = \beta \cdot \frac{N^{k-1}}{\gcd(\mu, N)} \).

The same arguments can be applied to show that \(\ord_m(N^k) = \beta \cdot \frac{N^{k-1}}{\gcd(\mu, N)} \) for \(k \geq 2 \). \(\square \)

Lemma 2.6. Let \(k, N \in \mathbb{N}^* \). Then \(\eta_N(k) \geq N^{k-2} \).

Proof. If \(k = 1 \), then \(1 \geq N^{-1} \). If \(k \geq 2 \), observe that \(\gcd(\mu, N) \leq N \) implies

\[
\frac{N^{k-1}}{\gcd(\mu, N)} \geq N^{k-2}.
\]

Denote by \(\mathcal{P} \subset \mathbb{N} \) the set of prime numbers. The following lemma gives us a formula to compute the order of \(m \) in \(\mathbb{Z}/N\mathbb{Z} \) for any \(N \in \mathbb{N} \). It is an immediate consequence of the Chinese remainder theorem.

Lemma 2.7. For every \(N \in \mathbb{N} \), which we write \(N = p_1^{\beta_1} p_2^{\beta_2} \cdots p_n^{\beta_n} \) with \(p_i \in \mathcal{P} \) and \(\beta_i \in \mathbb{N} \) for every \(i \in \{1, \ldots, n\} \), we have

\[
\ord_m(N) = \ord_m \left(p_1^{\beta_1} p_2^{\beta_2} \cdots p_n^{\beta_n} \right) = \lcm \left(\ord_m \left(p_1^{\beta_1} \right), \ord_m \left(p_2^{\beta_2} \right), \ldots, \ord_m \left(p_n^{\beta_n} \right) \right).
\]

Lemma 2.8. Let \(P \) be a finite set of primes, not dividing \(m \). There exists a constant \(C(m, P) > 0 \) such that, for every integer \(N \) with all prime factors in \(P \), we have:

\[
\frac{\ord_m(N)}{N} \geq C(m, P).
\]
Proof. Write $N = p_1^{eta_1} \cdots p_k^{eta_k}$, with $p_i \in P$, all different, $\beta_i > 0$ and η_{p_i} defined as in Definition 2.4. In addition, we define the set

$$\Pi_k := \{ \text{ord}_m(p_1)\eta_{p_1}(\beta_1) \cdots \text{ord}_m(p_{k-1})\eta_{p_{k-1}}(\beta_{k-1}), \quad \text{ord}_m(p_1)\eta_{p_1}(\beta_1) \cdots \text{ord}_m(p_{k-2})\eta_{p_{k-2}}(\beta_{k-2}) \text{ord}_m(p_k)\eta_{p_k}(\beta_k), \quad \ldots \}
$$

which contains all possible products with $k - 1$ factors, each one of $\text{ord}_m(p_i)\eta_{p_i}(\beta_i)$, $i = 1, \ldots, k$. Using Lemmas 2.2, 2.5, and 2.7, we obtain

$$\text{ord}_m(N) = \frac{\text{ord}_m(p_1)\eta_{p_1}(\beta_1) \cdots \text{ord}_m(p_k)\eta_{p_k}(\beta_k)}{\gcd(\Pi_k)},$$

thus

$$\frac{\text{ord}_m(N)}{N} = \frac{\text{ord}_m(p_1)\eta_{p_1}(\beta_1) \cdots \text{ord}_m(p_k)\eta_{p_k}(\beta_k)}{N \cdot \gcd(\Pi_k)}. \quad (5)$$

Moreover, $\text{ord}_m(p_i) \geq 1$ for every i, and using Lemma 2.6 on each $\eta_{p_i}(\beta_i)$, we obtain from Eq. (5)

$$\frac{\text{ord}_m(N)}{N} \geq \frac{p_1^{\beta_1 - 2} \cdots p_k^{\beta_k - 2}}{p_1^{\beta_1} \cdots p_k^{\beta_k} \cdot \gcd(\Pi_k)} = \frac{1}{p_1^2 \cdots p_k^2 \cdot \gcd(\Pi_k)} > 0. \quad (6)$$

So we may take $C(m, P)$ as the minimum of the $\frac{1}{p_1^2 \cdots p_k^2 \cdot \gcd(\Pi_k)}$’s taken over all subsets $\{p_1, \ldots, p_k\}$ of P.

The following material will be used in the proof of Proposition 4.10.

Definition 2.9. Let $N \in \mathbb{N}$ and $N = \Pi'_{i=1} p_i^{\beta_i}$, its decomposition in prime factors. The dominant prime of N is the factor p_i in P such that $p_i^{\beta_i} \geq p_j^{\beta_j}$ for $\forall j$. The factor $p_i^{\beta_i}$ is called the dominating factor.

Lemma 2.10. Fix $s \in (\mathbb{Z}[1/m])^\times$, with $s > 0$. There exist infinitely many integers $N > 0$, coprime to m, such that s has odd order in the multiplicative group $(\mathbb{Z}[1/m]/N\mathbb{Z}[1/m])^\times = (\mathbb{Z}/N\mathbb{Z})^\times$.

Proof. If $s = 1$, take any N coprime with m. So we assume $s \neq 1$ and, replacing s by s^{-1} if necessary, we assume $s > 1$.

Let P be the set of primes dividing m, set $r = |P|$. Write $s = \frac{a_1}{a_2}$ with $a_1 > a_2 > 0$, coprime, and all their prime factors in P. For $k \in \mathbb{N}$, set $a_1^k - a_2^k = N_kq_k$, where N_k is the maximal factor coprime to m. Observe that if a prime in P divides q_k, it cannot simultaneously divide a_1 and a_2, since they are coprime.

It is clear that, for odd k, s will also have odd order in $(\mathbb{Z}[1/m]/(a_1^k - a_2^k)\mathbb{Z}[1/m])^\times$, hence also in $(\mathbb{Z}[1/m]/N_k\mathbb{Z}[1/m])^\times$. It is therefore enough to prove that the map $k \mapsto N_k$ takes infinitely many values on odd integers. This will follow immediately from the following.

Claim: There is an infinite family of odd integers k such that $q_k \leq (a_1^{2r} - a_2^{2r})^r$.

□
We study the diameter of arithmetic box spaces of \(BS \) with \(\gcd \) will always assume that \(i < j \) such that the dominant primes in \(q_{k-2i} \) and \(q_{k-2j} \) are the same. We have that

\[
(s^{k-2i} - 1) - (s^{k-2j} - 1) = s^{k-2i}(s^{2(j-i)} - 1)
\]

Write \(p_i^β \) for the dominating factor of \(q_{k-2i} \). Set \(β = \min\{β_i, β_j\} \) and \(p = p_i \); say that \(β = β_i \) (otherwise replace \(i \) by \(j \)). We see that \(p^β \) divides the numerator on the left, hence it divides the numerator on the right. We note that \(p \) does not divide \(a_1 \), nor \(a_2 \), hence it must divide \(a_1^{2(j-i)} - a_2^{2(j-i)} \), which is bounded by \((a_1^{2r} - a_2^{2r}) \). So we get \(p^β \leq (a_1^{2r} - a_2^{2r}) \) and it follows that \(q_{k-2i} \leq (a_1^{2r} - a_2^{2r})^r \). □

3 PROPERTY \(D_α \) FOR SOLVABLE BAUMSLAG-SOLITAR GROUPS

3.1 Metric aspects of solvable Baumslag-Solitar groups

We study the diameter of arithmetic box spaces of \(BS(1, m) \) according to Eq. (1). In this section, we will always assume that \(\gcd(m, N) = 1 \). We recall that every element of \(BS(1, m) \) \((m > 1)\) admits a unique normal form of the type \(t^{-1}at^j \) with \(i, j \geq 0, t \in \mathbb{Z} \) and \(t \) can be a multiple of \(m \) only if either \(i \) or \(j \) is zero. Indeed, one can rewrite \(ta \) as \(a^mt, ta^{-1} \) as \(a^{-m}t, at^{-1} \) as \(t^{-1}a^{-m} \), and \(a^{-1}t^{-1} \) as \(t^{-1}a^{-m} \) and the result follows.

The normal form of a word is usually not the geodesic form, and we want to estimate how well the normal form approximates the geodesic form.

Proposition 3.1 ([2, Prop. 2.1]). There exist constants \(C_1, C_2, D_1, D_2 > 0 \) such that for any \(ω = t^{-1}at^j \in BS(1, m) \) with \(t \neq 0 \), we have

\[
C_1(i + j + \log|t|) - D_1 \leq \|ω\| \leq C_2(i + j + \log|t|) + D_2
\]

where \(\| \cdot \| \) is the word metric with respect to \(\{a^{±1}, t^{±1}\} \). Moreover we may take \(C_2 = D_2 = m \).

Let \(A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \), \(T = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \) \(GL_2(\mathbb{Z}[1/m]) \), and denote by \(G_m \) the subgroup of \(GL_2(\mathbb{Z}[1/m]) \) generated by \(A \) and \(T \). In the previous section, we saw that \(BS(1, m) \cong G_m \leq GL_2(\mathbb{Z}[1/m]) \).

As mentioned before, \(BS(1, m) \cong G_m \) is a finitely generated, residually finite group that surjects onto \(\mathbb{Z} \) so that Theorem 1.1 applies and we know that for every \(0 < α < 1 \), there exists a box space of \(G_m \) with property \(D_α \). However, we are interested in specific box spaces of \(G_m \), namely the arithmetic box spaces, or in other words, box spaces of the form \(\mathbb{C}(G_m/N_d) \), \(G_m \). To this end, we start by studying the quotients \(G_m/G_m(N) \), and then explore how the diameters evolve.

Proposition 3.2. Let \(N \in \mathbb{N} \) be such that \(\gcd(m, N) = 1 \). Then

\[
G_m/G_m(N) \cong \mathbb{Z}/N\mathbb{Z} \rtimes_m \mathbb{Z}/\ord_m(N)\mathbb{Z}, \quad \text{and} \quad |G_m/G_m(N)| = N \cdot \ord_m(N), \quad (7)
\]

where \(\mathbb{Z}/\ord_m(N)\mathbb{Z} \) acts on \(\mathbb{Z}/N\mathbb{Z} \) by multiplication by \(m \).

Proof. Consider reduction modulo \(N \):

\[
\varphi: \quad G_m \quad \xrightarrow{w = \begin{pmatrix} m^k & x \\ 0 & 1 \end{pmatrix}} \quad GL_2(\mathbb{Z}/N\mathbb{Z})
\]

The image of \(\varphi \) is clearly isomorphic to \(\mathbb{Z}/N\mathbb{Z} \rtimes_m \mathbb{Z}/\ord_m(N)\mathbb{Z} \), and of order \(N \cdot \ord_m(N) \). Moreover we have

\[
w = \begin{pmatrix} m^k & x \\ 0 & 1 \end{pmatrix} \in G_m(N) \iff m^k \equiv 1 \pmod{N} \quad \text{and} \quad x \in N\mathbb{Z}\left[\frac{1}{m}\right] \iff \varphi(w) = 1.
\]
So \(\ker(\varphi) = G_m(N) \) and the result follows from the first isomorphism theorem. \(\square \)

Example 3.3. Consider \(BS(1, 2) \) and \(N = 5 \). Then \(\text{ord}_2(5) = 4 \), and \(G_2/G_2(5) \cong \mathbb{Z}/5\mathbb{Z} \rtimes_2 \mathbb{Z}/4\mathbb{Z} \). The Cayley graph of the quotient is the graph drawn below, using \(a = (1, 0) \) and \(t = (0, 1) \) as generators. Note that one still needs to identify the bottom line with the upper line, and the line to the left with the line to the right.

![Cayley graph](image)

Thanks to the familiar structure of the quotient \(G_m/G_m(N) \) and Proposition 2.1 from [2], we are able to estimate the diameter of arithmetic box spaces of \(BS(1, m) \).

Lemma 3.4. Let \(N \geq 2 \). Then

\[
\text{diam}(\text{Cay}(G_m/G_m(N))) = \Theta(\text{ord}_m(N)).
\]

More precisely, there exists a constant \(C_m > 0 \) such that

\[
\frac{1}{3} \cdot \text{ord}_m(N) \leq \text{diam}(\text{Cay}(G_m/G_m(N))) \leq C_m \cdot \text{ord}_m(N).
\]

Proof. Let \(m \geq 2 \) and consider \(BS(1, m) \cong G_m \subset GL_2(\mathbb{Z}[1/m]) \). Recall that \(G_m/G_m(N) \cong \mathbb{Z}/N\mathbb{Z} \rtimes_\varphi \mathbb{Z}/\text{ord}_m(N)\mathbb{Z} \) so that \(\text{diam}(G_m/G_m(N)) = \text{diam}(\mathbb{Z}/N\mathbb{Z} \rtimes_\varphi \mathbb{Z}/\text{ord}_m(N)\mathbb{Z}) \geq \text{diam}(\mathbb{Z}/\text{ord}_m(N)\mathbb{Z}) \). Since the Cayley graph of \(\mathbb{Z}/\text{ord}_m(N)\mathbb{Z} \) is a cycle, we can roughly estimate the diameter to obtain

\[
\text{diam}(G_m/G_m(N)) \geq \frac{1}{3} \cdot \text{ord}_m(N).
\]

For the second inequality, let \(([x], [k]) \in \mathbb{Z}/N\mathbb{Z} \rtimes_\varphi \mathbb{Z}/\text{ord}_m(N)\mathbb{Z} \) be an element realising the diameter. We rewrite \(([x], [k]) \) as \((m^k x) G_m(N) \). The induced metrics are always smaller in a quotient, thus

\[
\left\| \begin{pmatrix} m^k & x \\ 0 & 1 \end{pmatrix} G_m(N) \right\|_{G_m/G_m(N)} \leq \left\| \begin{pmatrix} m^k & x \\ 0 & 1 \end{pmatrix} \right\|_{G_m}.
\]

Recall that any word \(\omega \in BS(1, m) \) can be written in normal form as \(\omega = t^{-1}a^it^j \). In the quotient \(G_m/G_m(N) \), the situation is even simpler, as by the semi-direct product structure every word can be written as \(A^iT^j \) with \(0 \leq t < N \) and \(0 \leq j < \text{ord}_m(N) \). With \(t = x \) and \(j = k \), we identify \((m^k x) \) with the element \(A^kT^k \) in normal form in \(G_m \). If \(x = 0 \) we get \(T^k \) and

\[
\|T^k\|_{G_m} = k < \text{ord}_m(N).
\]
Assume that \(x \neq 0. \) From Proposition 3.1, we obtain
\[
\left\| \begin{pmatrix} m^k & x \\ 0 & 1 \end{pmatrix} \right\|_{G_m} = \|A^x T^k\|_{G_m} \leq 2m(k + \log x + 1). \tag{11}
\]
Note that since \(m^{\text{ord}_m(N)} \geq N \) (equivalently \(\log(N) \leq \text{ord}_m(N) \cdot \log(m) \)) and moreover \(\log x \leq \log(N) \), Eq. (11) becomes
\[
\left\| \begin{pmatrix} m^k & x \\ 0 & 1 \end{pmatrix} \right\|_{G_m} \leq 2m(2 + \log(m)) \text{ord}_m(N). \tag{12}
\]
Setting \(C_m := 2m(2 + \log(m)) \), we obtain
\[
\text{diam}(\text{Cay}(G_m/G_m(N))) \leq C_m \cdot \text{ord}_m(N). \tag{13}
\]

Proposition 3.5. An arithmetic box space \(\Box (G_m(N_k))_k G_m \) has property \(D_\alpha \) if and only if \(\text{ord}_m(N_k) = \Omega(N_k^{\frac{\alpha}{1-\alpha}}) \).

Proof. Using Lemma 3.4:
\[
\Box (G_m(N_k))_k G_m \text{ has } D_\alpha \iff \text{diam}(G_m/G_m(N_k)) = \Omega(|G_m/G_m(N_k)|^{\alpha})
\]
\[
\iff \text{ord}_m(N_k) = \Omega(N_k^{\alpha} \cdot \text{ord}_m(N_k)^{\alpha}) \iff \text{ord}_m(N_k) = \Omega(N_k^{\frac{\alpha}{1-\alpha}}).
\]

We present here the main structure theorem for the arithmetic box spaces of \(BS(1, m) \).

Theorem 3.6. For any \(m \geq 2 \), the following statements hold:
1. If an arithmetic box space \(\Box (G_m(N_k))_k G_m \) has property \(D_\alpha \), then \(\alpha \leq \frac{1}{2} \).
2. There exists an arithmetic box space with property \(D_{1/2} \).
3. There exists an arithmetic box space of \(G_m \) without property \(D_\alpha \) for any \(\alpha \in [0, 1/2] \).
4. Fix \(\alpha < 1 \). Every arithmetic box space of \(G_m \) is covered by some box space with \(D_\alpha \).

Proof.
1. If \(\Box (G_m(N_k))_k G_m \) has property \(D_\alpha \), using \(N_k \geq \text{ord}_m(N_k) \) and Proposition 3.5, we get \(N_k = \Omega(N_k^{\frac{\alpha}{1-\alpha}}) \), which forces \(\alpha \leq \frac{1}{2} \).
2. Let \((N_k)_k \subset \mathbb{N} \) be the sequence defined by \(N_k = (m^2 - 1)^k \). Clearly, \(N_k \mid N_{k+1} \) for every \(k \).
 We apply Lemma 2.5 with \(N = m^2 - 1 \), so that \(\text{ord}_m(m^2 - 1) = 2 \) and \(\mu = 1 \). We thus obtain:
 \[
 \text{ord}_m(N_k) = 2 \cdot (m^2 - 1)^{k-1}, \forall k \geq 1.
 \tag{14}
 \]
i.e. \(\text{ord}_m(N_k) = \Omega(N_k) \). By Proposition 3.5 the box space \(\Box (G_m(N_k))_k G_m \) has property \(D_{1/2} \).
3. We consider the sequence \((N_k)_k \) defined by \(N_k = m^{2^k} - 1 \) and prove that the arithmetic box space \(\Box (G_m(N_k))_k G_m \) does not have property \(D_\alpha \) for any \(\alpha \in [0, 1/2] \). It is straightforward that \(N_k \mid N_{k+1} \) for every \(k \), and \(\text{ord}_m(N_k) = 2^k \). We have
 \[
 \lim_{k \to \infty} \frac{\text{ord}_m(N_k)}{N_k^{\frac{\alpha}{1-\alpha}}} = \lim_{k \to \infty} \frac{2^k}{(m^{2^k} - 1)^{\frac{\alpha}{1-\alpha}}} = 0,
 \]
i.e. \(\text{ord}_m(N_k) = o(N_k^{\frac{\alpha}{1-\alpha}}) \). By Proposition 3.5 this shows that the arithmetic box space \(\Box (G_m(m^{2^k} - 1))_k G_m \) does not have property \(D_\alpha \) for any \(\alpha \in [0, 1/2] \).
We adapt the proof of Theorem 3 in [8]. Pick an integer \(D > 0 \) with \(\frac{D}{m+1} \geq \alpha \). Let \(\Box_{G_m(N_k)} G_m \) be any arithmetic box space of \(G_m \). Define
\[
n_k = \text{ord}_m(N_k) \cdot N_k^D
\]
and
\[
M_k = \left\{ \left(\begin{array}{cc} m^{\ell n_k} & r \\ 0 & 1 \end{array} \right) : \ell \in \mathbb{Z}, \ r \in N_k \mathbb{Z}[\frac{1}{m}] \right\}.
\]
It is readily checked that \(M_k \) is a subgroup and, because \(\text{ord}_m(N_k) | n_k \), that \(M_k \) is normal in \(G_m \) and is contained in \(G(N_k) \). As \(n_k | n_{k+1} \), we have that \(\Box_{(M_k)} G_m \) is a box space which covers \(\Box_{(G_m(N_k))} G_m \).

It remains to check that \(\Box_{(M_k)} G_m \) has property \(D_\alpha \). But \(G/M_k \) maps onto the cyclic group \(\mathbb{Z}/n_k \mathbb{Z} \) so we have
\[
\text{diam}(G/M_k) \geq \text{diam}(\mathbb{Z}/n_k \mathbb{Z}) \geq \frac{n_k}{3}.
\]
On the other hand
\[
|G/M_k|^\alpha = n_k^\alpha N_k^\alpha = \text{ord}_m(N_k)^\alpha N_k^{\alpha(D+1)} \leq \text{ord}_m(N_k)N_k^D = n_k.
\]
This concludes the proof.

3.2 Density results

A natural question after encountering the constructions of Theorem 3.6.2 and 3.6.3 is "how many arithmetic box spaces of \(BS(1, m) \) have \(D_{1/2} \)? In the following paragraphs, we give a partial answer to this question.

Let \((N_k)_k \subset \mathbb{N} \) be such that \(N_k | N_{k+1} \) for every \(k > 0 \), and denote by \(P_k \) the set of prime factors of \(N_k \). Moreover, we define the set of prime factors of the sequence \((N_k)_k \) by
\[
P := \bigcup_{k=1}^{+\infty} P_k.
\]

Before stating our main result from this section, we need to introduce some definitions about the density of prime numbers. We follow Powell [11] for the terminology.

Definition 3.7. Let \(P \subset \mathcal{P} \) be a subset of the prime numbers. The natural primitive density of \(P \) is (if the limit exists)
\[
d'(P) := \lim_{N \to +\infty} \frac{|\{ P \leq N \mid p \in P \}|}{|\{ P \leq N \mid p \in \mathcal{P} \}|}.
\]
The analytic primitive density of \(P \) is (if the limit exists)
\[
D'(P) = \lim_{s \to 1^+} \frac{\sum_{p \in P} \frac{1}{p^s}}{\sum_{p \in \mathcal{P}} \frac{1}{p^s}}.
\]

If \(P \) is finite then \(d'(P) = D'(P) = 0 \). Suppose now that \(D'(P) > 0 \). In this case, we see that \(\sum_{p \in P} \frac{1}{p} = +\infty \), otherwise \(D'(P) \) would be equal to 0. Observe that
\[
\prod_{\rho \in P} \left(1 - \frac{1}{\rho} \right) = 0 \iff \sum_{\rho \in P} \ln \left(1 - \frac{1}{\rho} \right) = -\infty.
\]

But using that \(\ln(1 + x) \leq x \) for \(x > -1 \)
\[
\sum_{\rho \in P} \ln \left(1 - \frac{1}{\rho} \right) \leq -\sum_{\rho \in P} \frac{1}{\rho} = -\infty.
\]
We recall Chernikov’s theorem (see Theorem 4.10 in [13]): if \(\mathcal{N} \) is a torsion-free nilpotent group, for every \(k \geq 1 \) the map \(N \to N : x \mapsto x^k \) is injective.

The first lemma discusses one-parameter subgroups in \(U_n(A) \).

Lemma 4.1. For every \(g \in U_n(A) \), there exists a unique homomorphism \(\alpha : A \to U_n(A) \) such that \(\alpha(1) = g \).

Therefore, we obtain

\[
\prod_{p \in \mathcal{P}} \left(1 - \frac{1}{p} \right) = 0
\]

if \(D'(P) > 0 \).

Theorem 3.8. Let \(\square(G_m(N_k))_k G_m \) be an arithmetic box space, and let \(P \) be the set of prime factors of the sequence \((N_k)_k \).

1. If \(|P| < +\infty \), then \(\square(G_m(N_k))_k G_m \) has \(D_{1/2} \).
2. If \(D'(P) > 0 \), then \(\square(G_m(N_k))_k G_m \) does not have \(D_\alpha \) for every \(\alpha > 0 \).

Proof. In view of Proposition 3.5, we must study the asymptotics of the quotient \(\frac{\text{ord}_m(N_k)}{N_k} \).

1. By Lemma 2.8, there exists a constant \(C(m, P) \) such that \(\frac{\text{ord}_m(N_k)}{N_k} \geq C(m, P) \), i.e. \(\text{ord}_m(N_k) = \Omega(N_k) \). Proposition 3.5 applies to show that \(\square(G_m(N_k))_k G_m \) has \(D_{1/2} \).
2. Assume now \(D'(P) > 0 \), pick \(N = p_1^{\beta_1} \cdots p_k^{\beta_k} \) with \(p_1, \ldots, p_k \in P \). We have \(\text{ord}_m(N) \leq \varphi(N) = |(\mathbb{Z}/N\mathbb{Z})^*| \), where \(\varphi \) denotes Euler’s totient function. Then

\[
\frac{\text{ord}_m(N)}{N} \leq \prod_{i=1}^{k} \frac{\varphi(p_i^{\beta_i})}{p_i^{\beta_i}} = \prod_{i=1}^{k} \left(1 - \frac{1}{p_i} \right).
\]

In view of Eq. (16) we then get \(\text{ord}_m(N_k) = o(N_k) \), which proves the second part of the theorem thanks to Proposition 3.5.

\[\square \]

We state here a few open questions related to the previous theorem.

- If we assume that \(d'(P) > 0 \), does the associated arithmetic box space have \(D_\alpha \) for some \(\alpha \in]0, 1/2[\) or not?
- What happens in the case \(|P| = +\infty \) and \(D'(P) = 0 \)?
- Given \(\alpha \in]0, 1/2[\), can we create an arithmetic box space with exactly \(D_\alpha \)?

4 CSP FOR \(BS(1, m) \)

For a subring \(A \) of \(\mathbb{Q} \), we define three subgroups of \(GL_n(A) \):

- \(T_n(A) \), the subgroup of upper triangular matrices;
- \(U_n(A) \), the unipotent subgroup, i.e. the subgroup of \(T_n(A) \) consisting of matrices with 1’s down the diagonal;
- \(D_n(A) \), the subgroup of diagonal matrices.

The map \(\Delta : T_n(A) \to D_n(A) \) taking a matrix to its diagonal, is a surjective group homomorphism with kernel \(U_n(A) \).

We will also need the set \(N_n(A) \) of upper triangular nilpotent matrices, i.e. upper triangular matrices with 0’s down the diagonal. Note that \(T_n(A) = 1_n + N_n(A) \).

4.1 Representations of \(A \) into \(U_n(A) \)

We recall Chernikov’s theorem (see Theorem 4.10 in [13]): if \(N \) is a torsion-free nilpotent group, for every \(k \geq 1 \) the map \(N \to N : x \mapsto x^k \) is injective.

The first lemma discusses one-parameter subgroups in \(U_n(A) \).

Lemma 4.1. For every \(g \in U_n(A) \), there exists a unique homomorphism \(\alpha : A \to U_n(A) \) such that \(\alpha(1) = g \).
Proof. The existence follows from Cor. 10.25 in [13]: if \(g = 1_n + X \), with \(X \in N_n(A) \), then for \(r \in A \):
\[
\alpha(r) = (1_n + X)^r = \sum_{k=0}^{\infty} \left(\begin{array}{c} r \\ k \end{array} \right) X^k = 1_n + rX + \frac{r(r-1)}{2}X^2 + ...
\]
(note that the sum is finite as \(X^n = 0 \)). For the uniqueness, let \(\beta \) be another homomorphism with \(\beta(1) = g \); for \(r \in A \), write \(r = \frac{a}{b} \) with \(a, b \in \mathbb{Z}, b > 0 \) and \(a, b \) coprime. Then
\[
\alpha(r)^b = \alpha^b = g^a = \beta(a) = \beta(r)^b,
\]
so \(\alpha(r) = \beta(r) \) by Chernikov’s theorem. □

Definition 4.2. For a subgroup \(H \) of \(U_n(A) \), the isolator of \(H \) is:
\[
I(H) = \{ g \in U_n(A) : g^k \in H \text{ for some } k \geq 1 \}.
\]

By Theorem 3.25 in [13], \(I(H) \) is a subgroup of \(U_n(A) \). Clearly \(H \subset I(H) \).

Lemma 4.3. For \(m \geq 2 \), let \(\alpha : \mathbb{Z}[1/m] \to U_n(\mathbb{Z}[1/m]) \) be an injective homomorphism. Then \(I(\alpha(\mathbb{Z}[1/m])) \) is abelian and the exponent of the group \(I(\alpha(\mathbb{Z}[1/m]))/\alpha(\mathbb{Z}[1/m]) \) is finite.

Proof. The proof is in three steps.

1. By Lemma 4.1, there exists a unique homomorphism \(\tilde{\alpha} : \mathbb{Q} \to U_n(\mathbb{Q}) \) that extends \(\alpha \). We show that \(I(\alpha(\mathbb{Z}[1/m])) \subset \tilde{\alpha}(\mathbb{Q}) \), from which the first statement will follow. For \(g \in I(\alpha(\mathbb{Z}[1/m])) \), there exists \(k \geq 1 \) and \(r \in \mathbb{Z}[1/m] \) such that \(g^k = \alpha(r) \). Then
\[
\tilde{\alpha}(\frac{r}{k})^k = \tilde{\alpha}(r) = \alpha(r) = g^k,
\]
hence \(g = \tilde{\alpha}(\frac{k}{r}) \) by Chernikov’s theorem.

2. Let us show that there exists some non-zero \(x_0 \in \mathbb{Z}[1/m] \) such that, for \(g \in I(\alpha(\mathbb{Z}[1/m])) \), \(k \geq 1 \), \(r \in \mathbb{Z}[1/m] \):
\[
g^k = \alpha(r) \implies \frac{r}{k}x_0 \in \mathbb{Z}[1/m].
\]
Write \(\alpha(1) = 1_n + X \), with \(X \in N_n(\mathbb{Z}[1/m]) \), as in Lemma 4.1. Note that \(X \neq 0 \) as \(\alpha \) is injective. Then
\[
g = \tilde{\alpha}(\frac{r}{k}) = (1_n + X)^{\frac{k}{r}} = 1_n + \frac{r}{k}X + ...
\]
For \(1 \leq i < n \) and an upper triangular matrix \(Y \) of size \(n \times n \), we denote by \(Y_{(i)} \) the \(i \)-th parallel to the diagonal (moving upwards from the diagonal). Let \(i \) be the smallest index such that \(X_{(i)} \neq 0 \). Since \((X^k)_{(i)} = 0 \) for \(k \geq 2 \), we have \(g_{(i)} = \frac{r}{k}X_{(i)} \). Let \(x_0 \) be any non-zero coefficient of \(X_{(i)} \). Since \(g \in U_n(\mathbb{Z}[1/m]) \), we have \(\frac{r}{k}x_0 \in \mathbb{Z}[1/m] \) as desired.

3. Let \(\pi(m) \) be the set of primes dividing \(m \). An integer is a \(\pi(m) \)-number if all its prime divisors are in \(\pi(m) \). Write \(x_0 = \frac{b}{t} \), with \(t \) a \(\pi(m) \)-number, and \(b \in \mathbb{Z} \) is coprime to \(t \). For \(g \in I(\alpha(\mathbb{Z}[1/m])) \), with \(g^k = \alpha(r) \) as above, write \(\frac{r}{k} = \frac{a}{st} \), where \(a, s, t \) are pairwise coprime, \(s \) is a \(\pi(m) \)-number and \(t \) is coprime with \(m \). By the previous step \(\frac{r}{k}x_0 = \frac{ab}{st} \in \mathbb{Z}[1/m] \). Since \(a \) and \(t \) are coprime, this may happen only if \(t \) divides \(b \). Finally
\[
g^b = \tilde{\alpha}(\frac{r}{k})^b = \tilde{\alpha}(\frac{br}{k}) = \tilde{\alpha}(\frac{ab}{st}).
\]
But \(\frac{ab}{st} \in \mathbb{Z}[1/m] \) as \(t \) divides \(b \). This implies that \(g^b \in \alpha(\mathbb{Z}[1/m]) \), hence the exponent of \(I(\alpha(\mathbb{Z}[1/m]))/\alpha(\mathbb{Z}[1/m]) \) divides \(b \). □
4.2 Special representations of BS(1, m)

For $m \geq 2$, set $G_m = BS(1, m) = \mathbb{Z}[1/m] \rtimes \mathbb{Z}$. We will write A_m for $\mathbb{Z}[1/m]$ when viewed as a normal subgroup of G_m.

Definition 4.4. A special representation of G_m is an injective homomorphism $\rho : G_m \rightarrow T_n(\mathbb{Z}[1/m])$ such that $\rho(A_m) \subset U_n(\mathbb{Z}[1/m])$.

We note that the standard embedding $G_m \rightarrow T_2(\mathbb{Z}[1/m])$, is a special representation.

Lemma 4.5. (1) If ρ is a special representation, then $\rho^{-1}(U_n(\mathbb{Z}[1/m])) = A_m$.

(2) If m is even, then any injective homomorphism $\rho : G_m \rightarrow T_n(\mathbb{Z}[1/m])$ is a special representation.

Proof. We work with the presentation $G_m = \langle a, t | tat^{-1} = a^m \rangle$, observing that the normal subgroup A_m coincides with the normal subgroup generated by a.

(1) Suppose by contradiction that A_m is strictly contained in $\rho^{-1}(U_n(\mathbb{Z}[1/m]))$. Then there exists $k > 0$ such that $\rho(t^k) \in U_n(\mathbb{Z}[1/m])$. Consider the subgroup H of G_m generated by $A_m \cup \{t^k\}$, so that $\rho(H) \subset U_n(\mathbb{Z}[1/m])$. Since ρ is injective, we see that H is nilpotent. As H also has finite index in G_m, we deduce that G_m is virtually nilpotent, which is a contradiction.

(2) Suppose that m is even and $\rho : G_m \rightarrow T_n(\mathbb{Z}[1/m])$ is an injective homomorphism. It is enough to see that $\rho(a)$ belongs to $U_n(\mathbb{Z}[1/m]) = \ker(\Delta)$. But we have $\rho(a^{-m}) = \rho([a, t]) \in [T_n(\mathbb{Z}[1/m]), T_n(\mathbb{Z}[1/m])] \subset \ker(\Delta)$.

Now the image of Δ, namely $D_n(\mathbb{Z}[1/m]) \equiv (\mathbb{Z}[1/m]^\times)^n$, contains only 2-torsion; since $\Delta(\rho(a)) m^{-1} = 1_n$ and $m - 1$ is odd, we have $\Delta(\rho(a)) = 1_n$ as desired.

\[\square \]

We now head towards CSP for special representations of $BS(1, m)$. The next lemma is proved exactly as Lemma 4 in Formanek [5], using the same ingredient, namely a number-theoretical result by Chevalley [3].

Lemma 4.6. Let R be a subring of a number field with R^\times finitely generated, let G be a subgroup of $D_n(R)$. There exists a function $\varphi : \mathbb{N} \rightarrow \mathbb{N}$ such that, if $g \in G$ satisfies $g \equiv 1_n \mod \varphi(r)$, then g is an r-th power in G.

\[\square \]

In Theorem 5 of [5], Formanek proved that, if R is the ring of integers of a number field and G is a subgroup of $T_n(R)$, then G has CSP. The proof of the next result is inspired by Formanek’s proof.

Proposition 4.7. Let $\rho : G_m \rightarrow T_n(\mathbb{Z}[1/m])$ be a special representation of $BS(1, m)$. Then $\rho(G_m)$ has CSP.

Proof. Let $N = G_m$ be a normal subgroup of finite index r. Denote by G_m^r the subgroup generated by r-th powers in G_m. Then $G_m^r \subset N$ by Lagrange’s theorem. Let b be the exponent of $I(\rho(A_m))/\rho(A_m)$ (which is finite by Lemma 4.3), and let e be the exponent of the finite group $T_n(\mathbb{Z}[1/m])/(br)^2\mathbb{Z}[1/m])$. Define then

$$M = (br)^2\varphi(re),$$

where φ comes from Lemma 4.6 applied to $\Delta(\rho(G_m))$. We will show that if $\rho(g) \equiv 1_n \mod M$, then $g \in G_m^r$ so that $\rho(N)$ contains the congruence subgroup $\rho(G_m)(M)$.

If $\rho(g) \equiv 1_n \mod M$, in particular $\Delta(\rho(g)) \equiv 1_n \mod \varphi(er)$. By Lemma 4.6, the matrix $\Delta(\rho(g))$ is an (er)-th power in $\Delta(\rho(G_m))$, i.e. there exists $z \in G_m$ such that

$$\Delta(\rho(g)) = \Delta(\rho(z^{er})) = \Delta(\rho((z^e)^r)).$$
But $\rho(z^r) \equiv 1_n \mod (br)^2$, by definition of e, so also $\rho(z^{er}) \equiv 1_n \mod (br)^2$. On the other hand by definition of M we have $\rho(g) \equiv 1_n \mod (br)^2$, so $\rho(g^{-1}z^{er}) \equiv 1_n \mod (br)^2$. Since $g^{-1}z^{er} \in \ker(\Delta) = U_n(\mathbb{Z}[1/m])$, Lemma 1 of [5] applies to guarantee that $g^{-1}z^{er}$ is a (br)-th power in $U_n(\mathbb{Z}[1/m])$, so we find $h \in U_n(\mathbb{Z}[1/m])$ such that

$$\rho(g^{-1}z^{er}) = h^{br}.$$

Hence $g^{-1}z^{er} \in \rho^{-1}(U_n(\mathbb{Z}[1/m])) = A_m$ (the equality follows from the first part of Lemma 4.5). This means that $h \in I(\rho(A_m))$, so by definition of b we have $h^{b} \in \rho(A_m)$, say $h^{b} = \rho(y)$ for $y \in A_m$. Then $h^{br} = \rho(y^r)$ and $\rho(g^{-1}z^{er}) = \rho(y^r)$. As ρ is injective $g^{-1}z^{er} = y^r$, i.e $g = (z^r)^{y^{-r}}$, so $g \in G_m^r$.

4.3 From special representations to all injective representations in $T_n(\mathbb{Z}[1/m])$

In this section we show that for any injective representation ρ of G_m into $T_n(\mathbb{Z}[1/m])$, the group $\rho(G_m)$ has CSP. The main idea is to pass to subrepresentations which are special and extract information about ρ.

LEMMA 4.8. Let G be a subgroup of $GL_n(\mathbb{Z}[1/m])$.

(1) Let H be a finite index subgroup of G, where H has CSP. If H contains a congruence subgroup of G, then G also has CSP.

(2) For $1 \leq i \leq k$, let H_i be a finite index subgroup of G. Suppose $G = \cup_{i=1}^{k} H_i$, then if all H_i have CSP, G also has CSP.

PROOF. (1) Let N be a finite index subgroup of G, then $N \cap H$ is a finite index subgroup of H and thus contains some congruence subgroup of the form $H(M)$. By assumption there is some M such that $G(M) \subset H$, hence we have that

$$G(M\bar{M}) \subset G(M) \cap G(\bar{M}) \subset H(M) \subset N \cap H \subset N.$$

(2) Suppose by contradiction that G does not have CSP, then there is some finite index subgroup N which does not contain any congruence subgroup. However each $N \cap H_i$ contains a congruence subgroup of the form $H(M_i)$. Set $\bar{M} = \Pi_i M_i$, then there is some $g \in G(\bar{M}) \setminus N$. Note that this g is necessarily in one of the H_i's. So it is necessarily in $H(M_i)$. However it is not in $N \cap H_i$: a contradiction. \qed

LEMMA 4.9. Let $\rho: G_m \to T_n(\mathbb{Z}[1/m])$ be a monomorphism. Suppose $\Delta(\rho(a)) \neq 1_n$ and the diagonal of $\rho(t)$ is strictly positive, then $\rho(G_m)$ has CSP.

PROOF. Note that the subgroup $B = \langle a^2, t \rangle$ is also a Baumslag-Solitar group isomorphic to $BS(1, m)$. The restriction $\rho|_{B}$ is a special representation of $BS(1, m)$; indeed by the proof of Lemma 4.5, we have $\Delta(\rho(a))^{m-1} = 1_n$, so $\Delta(\rho(a))$ has finite order in $D_m(\mathbb{Z}[1/m])$; but the torsion subgroup of $D_m(\mathbb{Z}[1/m])$ is $\{\pm 1\}^n$, so $\Delta(\rho(a^2)) = 1_n$. By Proposition 4.7, the group $\rho(B)$ has the CSP.

We show there is some congruence subgroup of $\rho(G_m)$ that is fully contained inside $\rho(B)$. Since $\Delta(\rho(a)) \neq 1_n$, there is some -1 on the diagonal, suppose it appears at the ith position. Let s be the element of $(\mathbb{Z}[1/m])^\chi$ in the ith position in t. By Lemma 2.10, we find $M > 1$, coprime with m, such that s has odd order in $(\mathbb{Z}[1/m]/\mathbb{M}[1/m])^\chi$.

We note that if ω is a word with letters in $\{a, t\}$ representing an element of $G_m \setminus B$, then it contains an odd number of a's. Hence, the element on the ith position on the diagonal of $\rho(\omega)$ is of the form $-s^r$ for some $r \in \mathbb{Z}$. If we suppose that $\rho(\omega) \in \rho(G_m)(M)$, then $s^r = -1 \mod M$. This is

\footnote{Formanek states this lemma for the ring of integers of a number field, but the proof only uses that the ring is commutative with characteristic 0.}
impossible since s has odd order in $(\mathbb{Z}[\frac{1}{m}]/M\mathbb{Z}[1/m])^\times$ and thus cannot have a power equal to -1. So $\rho(\omega)$ cannot be in the corresponding congruence subgroup, i.e. $\rho(G_m)(M) \subset \rho(B)$. By Lemma 4.8, the result follows. □

We are ready to complement Proposition 4.7.

Proposition 4.10. For any injective homomorphism $\rho : G_m \rightarrow T_n(\mathbb{Z}[1/m])$, the group $\rho(G_m)$ has CSP.

Proof. Since we already know the result for m even (by Proposition 4.7 and Lemma 4.5), we may and will assume that m is odd.

The group G_m has three subgroups $B_1 = \langle a^2, t \rangle$, $B_2 = \langle a^2, at \rangle$ and $B_3 = \langle a, t^2 \rangle$, which are all isomorphic to $BS(1, m)$ or $BS(1, m^2)$. We show that they cover G_m. Any element $\omega \in G_m$ can be described by a word of the form $t^{-k}a^{i}t^{ℓ}$, with $k, ℓ \in \mathbb{N}$ and $r \in \mathbb{Z}$. Replacing ω by ω^{-1} if necessary, we may assume $k \leq ℓ$.

- If r is even, then $\omega \in B_1$;
- If k and $ℓ$ are both even or odd, then $\omega \in B_3$; indeed $\omega = t^{-2k}(t^k a^i t^{-k})t^{k+ℓ} = t^{-2k}a^{m^k}t^{k+ℓ} \in B_3$ as $k + ℓ$ is even.
- If r is odd and $k, ℓ$ do not have the same parity, then $\omega \in B_2$. Indeed

$$t^{-k}a^{i}t^{ℓ} = (t^{-1}a^{-1})^k a^{-\sum_{0}^{k-1} m^i} r^a - \sum_{0}^{k-1} m^i (at)^l = (at)^{-k} a^{-\sum_{0}^{k-1} m^i} (at)^ℓ.$$

Since $r, ℓ - k$ and m are odd, the exponent of a in the latter expression is even, so $\omega \in B_2$.

Note that if $\Delta(\rho(\alpha)) = 1_n$, then it is a special representation and Proposition 4.7 applies. If it is not then the restrictions of ρ to B_1 and B_2 are special representations, and the restriction of ρ to B_3 satisfies the assumptions of Lemma 4.9. Hence the $\rho(B_i)$’s all have CSP. Now simply applying Lemma 4.8 finishes the argument. □

4.4 An alternative approach to CSP for $BS(1, p^λ)$ (p prime)

We use the language of \mathbb{Q}-algebraic groups. Denoting by \mathbb{G}_a (resp. \mathbb{G}_m) the additive group (resp. the multiplicative group), we set $\mathbb{G} = \mathbb{G}_a \rtimes \mathbb{G}_m$, the affine group viewed as a subgroup of GL_2 via the standard embedding.

Let $p_1, ..., p_r$ be distinct primes, and let $S = \{p_1, ..., p_r, \infty\}$ be viewed as a set of places of \mathbb{Q}. Then the ring O_S of S-integers in \mathbb{Q} is precisely

$$O_S = \mathbb{Z}[1/p_1, ..., 1/p_r],$$

so that $O_S^\times = \{ \pm p_1^{k_1} ... p_r^{k_r} : k_1, ..., k_r \in \mathbb{Z} \}$ and

$$\mathcal{G}(O_S) = \left\{ \left(\frac{\pm p_1^{k_1} ... p_r^{k_r}}{a} \right) : k_1, ..., k_r \in \mathbb{Z}, a \in \mathbb{Z}[1/p_1, ..., 1/p_r] \right\}.$$

It is known that $\mathcal{G}(O_S)$ satisfies CSP: see formula (**) on page 108 of [12].

Note that taking $r = 1$, i.e. $S = \{p, \infty\}$ and $O_S = \mathbb{Z}[\frac{1}{p}]$, makes $BS(1, p^λ)$ appear as a finite index subgroup in $\mathcal{G}(O_S)$, namely $[\mathcal{G}(O_S) : BS(1, p^λ)] = 2t$.

Proposition 4.11. Let $H \subset GL_n$ be a \mathbb{Q}-subgroup, and let $\rho : \mathcal{G} \rightarrow H$ be a \mathbb{Q}-isomorphism. Then $\rho(BS(1, p^λ))$ satisfies the CSP.

Proof. Let K be a finite index subgroup in $\rho(BS(1, p^λ))$. Since $\mathcal{G}(O_S)$ satisfies the CSP, we find $N > 0$ such that $\mathcal{G}(O_S)(N) \subset \rho^{-1}(K)$. By Lemma 3.1.1(ii) in Chapter I of [9], the subgroup $\rho(\mathcal{G}(O_S)(N))$ is an S-congruence subgroup in $\mathcal{H}(O_S)$, i.e. it contains $\mathcal{H}(O_S)(M)$ for some $M > 1$. Then $(\rho(BS(1, p^λ))(M) \subset \mathcal{H}(O_S)(M) \subset \rho(\mathcal{G}(O_S)(N)) \subset K$. □
REFERENCES

[1] Emmanuel Breuillard and Matthew Tointon. Nilprogressions and groups with moderate growth. *Adv. Math.*, 289:1008–1055, 2016.

[2] José Burillo and Murray Elder. Metric properties of Baumslag–Solitar groups. *International Journal of Algebra and Computation*, 25(05):799–811, 2015.

[3] Claude Chevalley. Deux théorèmes d’arithmétique. *J. Math. Soc. Japan*, 3:36–44, 1951.

[4] P.M. Cohn. *Algebra*. Wiley, 1977.

[5] Edward Formanek. Conjugate separability in polycyclic groups. *Journal of Algebra*, 42:1–10, 1976.

[6] Joseph Gallian. *Contemporary abstract algebra*. Nelson Education, 2012.

[7] Ana Khukhro. Espaces et groupes non exacts admettant un plongement grossier dans un espace de hilbert [d’apr`es arzhantseva, guentner, osajda, spakula]. *Séminaire BOURBAKI*, Exposé 1154, 71ème année, 2018.

[8] Ana Khukhro and Alain Valette. Expanders and box spaces. *Advances in Mathematics*, 314:806–834, 2017.

[9] G.A. Margulis. *Discrete subgroups of semisimple Lie groups*. Springer-Verlag, 1991.

[10] Stephen Meskin. Non-residually finite one-relator groups. *Trans. Amer. Math. Soc.*, 64:105–114, 1972.

[11] Barry J Powell. Primitive densities of certain sets of primes. *Journal of Number Theory*, 12(2):210–217, 1980.

[12] M.S. Raghunathan. On the congruence subgroup problem. *Publications mathématiques de l’I.H.E.S.*, 46:107–161, 1976.

[13] Robert B. Warfield. *Nilpotent groups*, volume 513. Springer Lecture Notes in Math., 1976.