A peer-reviewed version of this preprint was published in PeerJ on 15 August 2017.

View the peer-reviewed version (peerj.com/articles/3696), which is the preferred citable publication unless you specifically need to cite this preprint.

Chandler VK, Wares JP. 2017. RNA expression and disease tolerance are associated with a “keystone mutation” in the ochre sea star *Pisaster ochraceus*. PeerJ 5:e3696 https://doi.org/10.7717/peerj.3696
RNA expression and disease tolerance are associated with a “keystone mutation” in the ochre sea star *Pisaster ochraceus*

John Wares Correspond., 1, 2, **Virginia K Chandler** 1

1 Department of Genetics, University of Georgia, Athens, Georgia, United States
2 Odum School of Ecology, University of Georgia, Athens, Georgia, United States

Corresponding Author: John Wares
Email address: jpwares@uga.edu

An overdominant mutation in the elongation factor 1-alpha (EF1A) gene in the sea star *Pisaster ochraceus* has shown itself to mediate tolerance to "sea star wasting disease", a pandemic that has significantly reduced sea star populations on the Pacific coast of North America. Here we use RNA sequencing of healthy individuals to identify differences in constitutive expression of gene regions that may help explain this tolerance phenotype. Our results show that individuals carrying this single mutation have lower expression at a large contingent of gene regions, and it appears likely that the EF1A locus itself is similarly affected, with a 2-fold reduction in expression of some EF1A transcripts. Individuals without this mutation also appear to have a greater cellular response to temperature stress, which has been implicated in the outbreak of sea star wasting disease. Given the ecological significance of *P. ochraceus* and the key role of EF1A in cellular composition and maintenance, these results may be useful in predicting the evolutionary and demographic future for Pacific intertidal communities.
RNA expression and disease tolerance are associated with a "keystone mutation" in the ochre sea star *Pisaster ochraceus*

J.P. Wares & V.K. Chandler, University of Georgia
Abstract

An overdominant mutation in the elongation factor 1-α (EF1A) gene in the sea star *Pisaster ochraceus* has shown itself to mediate tolerance to "sea star wasting disease", a pandemic that has significantly reduced sea star populations on the Pacific coast of North America. Here we use RNA sequencing of healthy individuals to identify differences in constitutive expression of gene regions that may help explain this tolerance phenotype. Our results show that individuals carrying this single mutation have lower expression at a large contingent of gene regions, and it appears likely that the EF1A locus itself is similarly affected, with a 2-fold reduction in expression of some EF1A transcripts. Individuals without this mutation also appear to have a greater cellular response to temperature stress, which has been implicated in the outbreak of sea star wasting disease. Given the ecological significance of *P. ochraceus* and the key role of EF1A in cellular composition and maintenance, these results may be useful in predicting the evolutionary and demographic future for Pacific intertidal communities.
Introduction

The sea star *Pisaster ochraceus* --- best known as a "keystone predator" that modifies the diversity of its intertidal community (Paine, 1969) --- harbors a mutation in the elongation factor 1-α (EF1A, hereafter) gene that is characterized as 'overdominant' (Pankey & Wares, 2009); that is, where heterozygous individuals (carrying one copy of this mutation) have dramatically higher fitness than either homozygote. At the time, with no apparent mechanism for this heterozygote advantage, Pankey and Wares (2009) noted that overdominance has often been associated with disease tolerance. However, our understanding of disease in marine organisms remains quite limited, with a few notable cases that have guided much of the research being done today (Jolles et al., 2002; Mydlarz, Jones & Harvell, 2006; Sutherland et al., 2011). A recent and dramatic pandemic known as "sea star wasting disease" (SSWD) has led to very high mortality in a large number of sea star species on the Pacific coast of North America (Hewson et al., 2014; Eisenlord et al., 2016; Menge et al., 2016). Field surveys of apparently healthy and diseased individuals of *P. ochraceus* suggested that individuals carrying the insertion mutation (*ins*) described by Pankey and Wares (2009) have lower prevalence of (or mortality from) SSWD than individuals homozygous for the wild-type sequence (*wild*; Wares & Schiebelhut, 2016).

The EF1A gene produces a “housekeeping” protein that is involved in translational elongation – forming peptide bonds between amino acids. However, EF1A appears to be involved in diverse cellular functions (Ejiri, 2002), and diversity at this gene has been implicated in variation in fitness in other metazoans (Stearns, 1993; Stearns & Kaiser, 1993). Though some of these other functions include interactions with environmental stress or pathogen responses (Bukovnic et al., 2009; Li et al., 2013; Schulz et al., 2014; Wei...
et al., 2014), the mechanism by which the ins mutation, or something closely linked to it, affects the function of the EF1A gene or the cellular functions associated with SSWD (Hewson et al., 2014) remains unknown. Continued evaluation of this system has supported the results of Wares and Schiebelhut (2016), with indications that ins individuals are not resistant to the disease, but are more tolerant (M. Gravem, pers. comm.).

We can now query distinct genotypes for variation in RNA transcription to identify components of cellular and molecular networks that are associated with specific trait variation (Cohen et al., 2010). Here, a series of hypotheses are tested using RNA sequencing of a set of individuals of each genotype in P. ochraceus (the mutation is homozygous lethal, so there are only 2 genotypes (Pankey & Wares, 2009)). First, the ins mutation – which is within an intron between two coding subunits of the EF1A gene (Pankey & Wares, 2009) – could affect mRNA splicing and thus generate subfunctional or functionally distinct transcripts. If so, we may expect greater expression of EF1A in homozygotes or expression of distinct isoforms of EF1A in heterozygotes. Second, the mutation could influence the regulation of other genes, in which case we may detect significantly different expression of a set of loci between heterozygotes and homozygotes.

In addition, recent work has suggested that elevated sea surface temperatures could cross environmental thresholds that influence the appearance of SSWD (Bates, Hilton & Harley, 2009a; Eisenlord et al., 2016). In recent years, some regions in which SSWD has been prevalent have experienced temperature anomalies greater than 3°C (Eisenlord et al., 2016). Increased temperatures are also associated with changes in feeding (Sanford, 1999) and metabolism (Fly et al., 2012). Thus we coupled a temperature challenge trial with
behavioral observations and repeated RNA sequencing to understand how individuals respond to periods of elevated temperature or stress. In this case, we hypothesized that an interaction between environmental stress and cellular physiology could be indicated by distinct patterns of behavior or activity levels between the two EF1A genotypes (Dahlhoff, Buckley & Menge, 2001).

Our goal is to illuminate mechanisms by which EF1A ins heterozygotes in *P. ochraceus* may be protected from SSWD, as this information may guide exploration of why some sea stars are more susceptible than others to this disease. Additionally, this system provides an opportunity to explore how variation in expression of a gene or gene network that is of fundamental importance to organismal development, growth, and acclimation can affect the tolerance of an organism to disease.

Methods

Field and Lab

Individual *P. ochraceus* were collected from ~0m tidal depth within the Friday Harbor Laboratories marine reserve (Friday Harbor, WA, 48.54°N 123.01°W). Collections were made following written permission from the Associate Director of the Friday Harbor Laboratories. Individuals were placed in sea tables with ambient temperature, unfiltered, running sea water within 1 hour of collection and fed available bivalves *ad libitum*. After the experiment, all surviving individuals were returned to the field.
At the beginning of the experiment two samples (~25mg) of tube feet were removed from each individual; one sample was placed in 95% undenatured ethanol (for genotyping as in (Wares & Schiebelhut, 2016)), the other sample into RNALater (Thermo Fisher). Tissue sampling was repeated following the heat trial described below. Distal tube feet were used in part to minimize damage to individual *P. ochraceus*, and to standardize contrasts of regulatory change (Montgomery & Mank, 2016). Individuals were kept in flow-through sea tables in Vexar enclosures to ensure consistent individual identification. DNA samples were tested for presence of SSaDV (the putative pathogen causing SSWD) using qPCR as in Hewson et al. (2014).

Righting responses (Figure 1) were used to explore the physiological status of individuals subjected to periods of elevated temperature. Increasing the temperature by ~3° is known to influence the physiology of *P. ochraceus*. Flow-through temperature treatments were performed as in Eisenlord et al (2016); individuals were maintained at +3°C for 8 days. Sea table temperature was monitored 4x daily with digital thermometers and with Hobo Tidbit data loggers. Righting response trials were performed as in Held and Harley (2009). We recorded the time each individual required to flip from the aboral side to the point that the majority of arms contacted the surface on their oral side. Trials were performed three times in each condition: in ambient seawater, at the end of the temperature trial, and again when individuals returned to ambient temperature. Individuals that did not right themselves within 1 hour were considered unresponsive and were excluded from subsequent analyses. Minimum and mean righting response times were recorded; these
106 values are examined across EF1A genotypes using a linear mixed-effects model using the
107 \textit{lmerTest} package (Kuznetsova, Bruun Brockhoff & Haubo Bojesen Christensen, 2016) in R
108 version 3.3.2 (R Core Team, 2016).

109 **RNA Sequencing and Comparison**
110 Samples of tube feet stored in RNALater were thawed on ice and 25mg were removed for
111 RNA isolation using a Qiagen RNEasy Mini-prep kit. A Qiagen TissueRuptor with sterile
112 disposable pestles was used for homogenization of each sample. RNA samples were
113 submitted to the Georgia Genomics Facility (GGF; dna.uga.edu) for stranded RNA library
114 preparation (Illumina TruSeq LT) and subsequent quality checks using an Agilent 2100
115 BioAnalyzer. Libraries were sequenced in parallel (high output PE75) on an Illumina
116 NextSeq 500 at GGF and then informatically demultiplexed.

117 Our pipeline followed Kelly et al. (2017), minus the utilization of \textit{cd-hit} to reduce the
118 sequence complexity in the data. Our goal was to identify potential differential expression
119 of isoforms at EF1A and other loci, so all fragments were retained in the final assembly.
120 Illumina adapter sequences were removed during the demultiplex step. FASTQ data were
121 cleaned using Trimmomatic (Bolger, Lohse & Usadel, 2014) (default settings), and 2 whole
122 transcriptome assemblies were generated using \textit{in silico} read normalization in Trinity
123 (Grabherr et al., 2011). The first assembly utilized data from all 20 RNA libraries; the
124 second utilized only the data from 4 individuals, 2 of each genotype, chosen for high RIN
125 values and read numbers, as we had been advised that this could lead to a higher-quality
126 assembly. Trinity \textit{de novo} assembly was performed on a Georgia Advanced Computing
127 Resource Center 512GB node with 8 processors. Individual RNA libraries were then aligned
to the assemblies using Bowtie2 (Langmead & Salzberg, 2012) and the RSEM method (Li & Dewey, 2011) as in Haas et al. (2013).

All assembled Trinity clusters were used as blastn queries against the NCBI nr database, with the best hit for each (e-value < 10^{-6}) retained. A custom R script was used to collapse the expression count files by inferred gene and by BLAST homologies except where otherwise noted. Differential expression was quantified using edgeR (McCarthy, Chen & Smyth, 2012), filtering reads for a counts-per-million (CPM) >1 in at least 2 of the libraries. Other filtering combinations were attempted with similar results (V. K. Chandler, results not shown). Both negative binomial and empirical Bayes dispersion measures were estimated before testing for differences. To evaluate specific expression of EF1A, we considered all fragments that successfully BLAST to NCBI accession AB070232, a ~5kb sequence of the EF1A gene region from the confamilial Asterias amurensis (Wada et al., 2002), and also used sequence data (NCBI KY489762-KY489768) generated from cloning of P. ochraceus EF1A (Pankey & Wares, 2009) to evaluate expression of the focal intron region that harbors the ins mutation. These latter assemblies were performed using Geneious R10 (Biomatters).

Results

A total of 24 individuals were collected from the Friday Harbor Laboratories marine reserve, and 21 survived our lab trials (1 died of apparent SSWD; 2 from distinct external infections) and were returned to their original location. As in previous studies (Pankey & Wares, 2009), the ratio of heterozygotes (+/ins, or ins hereafter) to homozygotes (+/+ or wild hereafter) at the EF1A locus was ~1:1. In order of initial labeling, the first 5
individuals of each genotype that had complete behavioral data were selected for RNA sequencing (Supplemental Table 1). Each individual was genotyped 3 times from 3 separate tissue samples with no errors. These 10 individuals exhibited no visible signs of SSWD and tested negative for SSaDV.

Behavior

For the 10 individuals analyzed in full, righting response trials (Figure 1) suggested that *ins* heterozygotes righted themselves approximately 1.8 times faster than *wild* homozygotes (Supplemental Table 1; *p* = 0.02) at both temperatures. However, including all data on righting response (from all 17 individuals assayed for behavior) introduces higher variation in response by genotype; the effect is in the same direction but not significant.

Results are consistent for analysis of minimum and mean times. Unresponsive individuals (n=6) in the full sample were evenly distributed across genotypes.

Sequenced RNA Diversity

Supplemental Table S1 provides information for each library used in transcriptome assemblies. Of the two *de novo* assemblies, the reduced-input transcriptome had greater length and quality of contigs (*N* 50 of 1799 bp, median contig length 513, total assembled bases 179,034,265) and is the focus of subsequent analyses. Fragments that were differentially expressed (FDR < 0.01) between the two genotypes from the two Trinity assemblies were themselves *de novo* aligned in Geneious R10; 80.76% of contigs from one of the two assemblies aligned with one from the other.

To identify the statistical signal associated with EF1A genotype in these samples, we developed a permutational misassignment test to see what differential expression could be
identified if one individual from either group is misassigned; if one individual in each group is misassigned; or if two individuals from each group are misassigned to the other group.

This is distinct from random assignment in that "random" could include misassigning all individuals from each genotype to the other, and the assignment problem is symmetric. For each iteration, the number of Trinity assemblies that are significantly different (FDR < 0.01) was identified and contrasted with the true classification. The results suggest that differentiation of the two genotypes is robust relative to the most extreme misassignments (Figure 2), and greater than 0.96 of all permutations. All permutations with higher counts of differentially expressed transcripts involve re-assignment of individual Po5 (wild); though genotype was confirmed for this individual, it is similar to the ins heterozygotes for many expression traits (see below).

Comparison of EF1A expression across genotypes (Hypothesis 1)

Following BLAST analysis, a total of 28 fragments sufficiently matched NCBI accession AB070232 (Wada et al., 2002), a ~5kb sequence of EF1A from Asterias amurensis.

Individually, none of these fragments appear to be differentially expressed (FDR < 0.01) between wild and ins EF1A genotypes. Summing expression counts from these fragments suggests negligible difference in expression patterns (logFC 0). As noted above, individual Po5 (wild) exhibits an inconsistent expression pattern (Fig. 2, 3); if excluded, 6 fragments matching EF1A are differentially expressed (FDR < 0.01; Fig. 4C). These 6 fragments together have an average log₂ fold change in expression of 0.99 suggesting that homozygotes have expression approximately double that of heterozygotes when Po5 is excluded. Summing across all putative EF1A homologs (excluding Po5) indicates no
significant expression differences. Assembly of RNA sequence fragments from libraries of
the two genotypes to A. amurensis EF1A sequence showed no obvious distinctions in
coverage of coding regions.

Comparison of differential expression across genotypes (Hypothesis 2)

There are strong differences in the constitutive expression patterns of the 5 wild and 5 ins
individuals assayed. There are 200 fragments exhibiting differential expression with FDR <
0.01, and 19 with FDR < 0.0001 (Figure 3). Only 5 of the FDR < 0.01 fragments are
identifiable via BLAST (Supplemental Table 2); 2 are of unclear function, but the remaining
3 include a Na/K/Ca exchange protein, an ATP-binding protein, and an amino acid
transporter identified in the sea star Diplasterias. As before, if Po5 is excluded, a greater
number (n = 419) of fragments exhibit differential expression (FDR < 0.01), suggesting that
this individual represents an inconsistent expression phenotype for its EF1A genotype.

The effect of the ins genotype appears to be inhibitory; Figure 4A shows only those
fragments that are differentially expressed between the two genotypes, and only 30 of 200
fragments with FDR < 0.01 exhibit higher expression in heterozygotes. Many of the
significantly elevated transcripts in heterozygotes are modestly expressed compared to the
significantly elevated transcripts from wild homozygotes. The average log CPM for
fragments with FDR < 0.01 that are more highly expressed in ins heterozygotes is 0.876
(maximum 6.154), while the same average for fragments that are more highly expressed in
Comparison of differential expression following heat exposure

Following exposure (8 days) to water warmed by +3°C, wild homozygotes exhibited a larger number of potential loci (n=38) that changed in expression (FDR < 0.01) than ins heterozygotes (n=6). If individual Po5 is excluded, the remaining wild homozygotes then exhibit 52 fragments that change in expression (FDR < 0.01), suggesting that the expression phenotype of this individual adds considerable variance to the expression patterns of homozygotes. Of all fragments identified as responding to the temperature treatment, 3 of 6 identified in the heterozygotes are also found among those that are differentially expressed in the homozygotes (whether or not Po5 is included). These results are suggestive that homozygous individuals experienced a greater net change in expression phenotype following exposure to heat than ins heterozygotes. However, a multidimensional scaling plot of all libraries (using logFC values) showed low support of differentiation of temperature-treated RNA samples from the ambient treatments of the same individuals (results not shown).

Discussion

A difficult aspect of RNA sequencing in non-model organisms is the inference of true transcripts from de novo assembly, with a potential for alignment error and resultant chimeric sequences. As such, we consider these results provisional with respect to whether EF1A itself exhibits change in expression between the two EF1A genotypes in P. ochraceus.
Two uncertainties remain: whether there is a single copy of EF1A in the *P. ochraceus* genome (the PCR marker itself has one primer in an intron region, so is likely specific to only one copy (Pankey & Wares, 2009)), and whether the *ins* mutation itself is causal of the expression and tolerance changes, or if it is a linked site. Of the 10 individuals sequenced in this study, one (Po5) appears to have expression characteristics that are inconsistent with other samples of either genotype. Genetic analysis of individual crosses and sequence diversity have suggested that the *ins* marker is a single locus but that linked diversity may also be important in this system (Pankey & Wares, 2009).

Exclusion of this single RNA library (Po5) from analysis of fragments that positively BLAST to a confamilial sequence of EF1A suggests that a group of homologous transcripts are differentially expressed between genotypes (Figure 3C). Whether these are differentially expressed isoforms of a single locus, or a differentially expressed copy of EF1A among multiple copies in the genome, requires further evaluation. Nevertheless, our results show that the EF1A *ins* mutation has a likely effect on the generation of mature mRNA transcripts of EF1A, as well as apparent regulatory effects on a large number of other loci. Homozygous *wild* individuals express some EF1A-like elements approximately twice as much as *ins* heterozygotes, suggesting that *ins/ins* homozygotes may not express this isoform or copy at all, perhaps the cause of early mortality (Pankey & Wares, 2009).

The intron that contains the *ins* mutation does not appear to contain coding sequence (Pankey & Wares, 2009). Nevertheless, there is evidence in other systems for intronic promoters and/or noncoding transcripts of biological effect (Leh et al., 1998; Relle et al., 2014; Gaidatzis et al., 2015), which could generate a distinct isoform of the locus in
question (Galante et al., 2004). Intron sequence is typically rare in transcriptomic data, and has been interpreted as a sign of DNA contamination or the presence of pre-mRNA from the nucleus. We have no evidence for the ins allele being transcribed; some wild intron transcript is found at very low levels in 2 of the RNA libraries. The original work characterizing intron-exon boundaries in EF1A, including the sea star A. amurensis, noted the evolutionary lability of introns in this gene (Wada et al., 2002). Overall, the high expression and critical role of EF1A for metazoan development and function makes this evolutionary and functional lability of particular interest.

Moonlighting roles of EF1a
If true, lower expression of EF1A in ins heterozygotes of P. ochraceus is intriguing given the lower mortality of these individuals to SSWD. Viruses rely on host protein synthesis machinery for their own replication (Walsh & Mohr, 2011; Walsh, Mathews & Mohr, 2013; Abbas, Kumar & Herbein, 2015). Though there has been a focus of the role of EF1A in replication of RNA viruses (Li et al., 2013; Wei et al., 2014), this is likely also true for the SSaDV virion that has been associated with SSWD (Hewson et al., 2014). SSaDV is a densovirus with a single-stranded DNA genome, and requires host polymerase and other components of the replication machinery to multiply. To the extent we understand replication in densoviruses, ins heterozygotes appear to maintain cellular conditions that could limit viral replication.

Additionally, expression of EF1A is linked to interactions with cytoskeletal proteins like tubulin and actin (Lamberti et al., 2004), with altered expression leading to different cellular phenotypes. Similarly, there are associations between EF1A expression and
apoptosis during times of cellular stress (Lamberti et al., 2004). This is likely an indirect interaction, and some studies show that cell death is limited when EF1A is overexpressed (Blanch et al., 2013; Abbas, Kumar & Herbein, 2015); organismal lifespan is similarly affected in one manipulative experiment of EF1A levels (Stearns & Kaiser, 1993). As apoptosis is implicated in some of the degenerative effects of SSWD in the sea star *Pycnopodia helianthoides* (Fuess et al., 2015; Gudenkauf & Hewson, 2015), and actin and other cytoskeletal proteins have an important role in maintaining cellular morphology, this network of coexpression will likely be of use in understanding the cascade leading to SSWD and its symptoms.

Other implicated gene regions

There are a large number of differentially expressed loci (as many as 419 in the instance of excluding individual Po5) between EF1A marker genotypes, but little information on the identity or function of these loci. Though a small number of fragments have sufficient BLAST homology to identified proteins (Supplementary Information S1), we are currently limited by the tremendous evolutionary divergence between *Pisaster* and other characterized genomes (the only assembled Asteroidea genome to date is *Patiria miniata* (echinobase.org), a taxon with a Jurassic divergence from *Pisaster*; C. Mah, personal comm.). Generating a more extensive list of loci that are coregulated with EF1A (or the ins marker) is perhaps of modest utility without better experimental data in this non-model organism (Hudson, Dalrymple & Reverter, 2012). We do not know if the differentially expressed loci are relatively rapidly evolving, or if these transcripts represent noncoding RNA; currently, these hypotheses are difficult to test with available resources (Dinger et al., 2008). Nevertheless it is intriguing that a large number of genic regions do appear to have a
regulated response that is distinct between the two EF1A genotypes. It is also notable that
the regulatory effect of the *ins* mutation (or a linked polymorphism) has a consistent
response - there is a clear asymmetry (Figures 4A-C) in expression of transcripts
suggesting that the *ins* mutation affects a promoter region.

Our ability to understand the effects of differential genotype in *P. ochraceus* may also
require an understanding of tissue specificity. Here, tube feet were used as simple non-
invasive tissues for sampling because the health of the local population is of concern.
Future efforts could target tissues more specific to immune response function. For
example, EF1A is also thought to regulate interleukins (Schulz et al., 2014), one of the basic
components of the echinoderm immune response (Mydlarz, Jones & Harvell, 2006; Leclerc
& Otten, 2013); these are produced in the axial organ, stimulate coelomocytes and are
associated with antiviral activity (Ghiasi et al., 2002).

Temperature treatment and behavior

Though the effects of our temperature treatment were modest, it is tempting to note that
wild homozygotes differentially expressed nearly 10 times as many transcripts as *ins*
heterozygotes following treatment. As elevated temperatures may accelerate SSWD (Bates,
Hilton & Harley, 2009b; Eisenlord et al., 2016; but see Menge et al., 2016), the likelihood
that the *ins* mutation ameliorates multiple forms of stressors on the health of an individual
is worth further investigation. In comparison with previous studies on *P. ochraceus*, we
note the distinct time scales of stress: from daily tidal fluctuations, to the 96-hour exposure
in Bates et al. (2009b), to the months-long duration of temperature anomalies reported by
Eisenlord et al. (2016). The association of transcriptional regulation and temperature
stress important for interpreting our results, but there is little fine-scale temporal understanding of how stress influences physiological and regulatory acclimation responses in many organisms. Some studies have shown elevated expression of EF1A in heat trials (Bukovnic et al., 2009); others show that increased availability of EF1A was associated with greater heat tolerance and longevity (Stearns & Kaiser, 1993). We lack understanding of the rate of transcriptional acclimation in many species, with few studies that bridge physiological responses and longer-term acclimation. Bay and Palumbi (2015) sampled coral (Acropora) tissue following a range of short-duration experiments (2, 7, and 11 days) that suggested that early stages of acclimation to stress involved few changes in baseline expression, but could dampen later responses to heat shock following exposure.

Here, behavioral righting responses were used to understand the response to heat as an influence on activity levels (Held & Harley, 2009). Heterozygous individuals tend to right themselves more quickly in a limited sample. However, individual-level variation was high and the biological effect of genotype on this response may be low or absent. Individuals appeared to be consistent in their response, i.e. individuals with long response times tended to do so at all treatments; whether this is associated in any way with effects of this genotype requires further consideration. Overall, we conclude that righting response is a noisy response variable and perhaps ineffective for assaying physiological contrasts. We are not the first to recognize this difficulty:

from Jennings, 1907 (1907):

"It could probably be said, in a word, that the starfish may, and does, in different cases, right itself in any conceivable way, - and indeed, in many ways that would not readily be conceived before they were observed."
Thus, other approaches such as respirometry (Fly et al., 2012) are needed to more directly understand stress response in *P. ochraceus*.

Evolutionary Implications

A polymorphism like this should not be stable unless there is some balance of benefits to both genotypes (Subramaniam & Rausher, 2000). With typical genotype frequencies in the wild (Pankey & Wares, 2009, Wares & Schiebelhut (2016)), approximately 1/16th of all offspring (1/4 of the offspring from 1/4 of the random mating events) are lost each generation to this polymorphism. Similar levels of reduced fitness are involved in explorations of Dobzhansky-Muller interactions associated with outbreeding depression (Sweigart, Fishman & Willis, 2006). This is a considerable mutational load attributed to a single polymorphism yet the sudden appearance, or incidence in recent decades, of high mortality events like SSWD is unlikely to be a sufficient mechanism for maintaining this polymorphism. The two allelic classes each harbor considerable levels of flanking diversity and appear to be relatively divergent and ancient (Pankey & Wares, 2009), and the high frequency of the *ins* allele throughout the range of *P. ochraceus* (Pankey & Wares, 2009; Wares & Schiebelhut, 2016) suggests its origin is not recent (Slatkin & Rannala, 2000).

The question remains, what has maintained this polymorphism, and what can we learn from EF1A about disease in other echinoderms - or more broadly, other animals? One consideration is whether EF1A is simply mediating a very general stress response. In other major epidemics, it has been noted that mortality has been highest in individuals that are weak or that have the strongest inflammatory/immune response to a pathogen (Lai, Ng & Cheng, 2015). If this is true, perhaps individuals with higher levels of constitutive EF1A
expression are more prone to extreme stress responses. However, there is little support for this hypothesis; Wang et al (2011) note elevated expression of EF1A in response to pH and heavy metal stressors in the shrimp *Litopenaeus*, but many other studies identify no response to stress at this locus (Nicot et al., 2005), and in fact EF1A is often used as an endogenous control in RT-PCR studies. The reality is that stress tolerance is thought to be highly context-dependent (Berry et al., 2011; Bay & Palumbi, 2015) and may be difficult to assess in a wild population such as the *Pisaster* surveyed here.

Whether environmental stress is a component or not, there is nevertheless a net transcriptional difference between these EF1A genotypes that is associated with ins heterozygotes being more tolerant of SSWD (Wares & Schiebelhut, 2016), and this potential for increased survival against a huge diversity of likely marine pathogens merits further exploration. If *P. ochraceus* individuals with higher expression of EF1A - or some copy or isoform of it - have higher adult mortality during SSWD outbreaks, the only mechanism we currently know that makes sense is an influence on viral replication (Li et al., 2015). It remains to be seen whether the balance of fitness between wild individuals and ins heterozygotes involves other life history trade-offs.

Conclusions

We have explored the differential expression of all transcripts, and EF1A in particular, in samples of *P. ochraceus* from two EF1A genotypes in a natural population. Each individual bears high levels of additional variation that mediates their responses to environment, pathogens, and so on. The fact that this single 6-bp insertion mutation generates such strong biological effect amidst the noise of other natural genomic diversity is
extraordinary. Certainly there are other examples of single mutations that confer significant health and life history consequences on carriers (Aidoo et al., 2002; Drnevich et al., 2004; Gemmell & Slate, 2006). Additionally, distinct phenotype classes within a species often have distinct expression profiles (McDonald et al., 1977; Garg et al., 2016), including instances of disease or tolerance phenotypes (Emilsson et al., 2008; O’Connor et al., 2017).

If we are correct about changes in expression of a common housekeeping gene between these two phenotype classes, this is a novel report of how levels of EF1A expression throughout an organism - with no currently-known tissue specificity - can mediate health and survival. The fortuitous result of inconsistent expression changes in one individual additionally suggests a recombination event that further defines the influence of this genomic region. Our hopes are that further consideration of this system, in an ecologically important sea star (Paine, 1969; Menge et al., 2016), will be of relevance for a more general understanding of health and pathogen tolerance.

Acknowledgments

We thank M. Kelly, J. Griffiths, A. Del Rio, M. Bitter, K. Coombs, J. Wong, J. Wallace, M. Mintz, and R. Wares for field and lab efforts that contributed to this work at Friday Harbor Laboratories (FHL). Additionally, support from M. Eisenlord, B. Swalla, M. Dethier, S. George, J. Hodin, and the staff at FHL was invaluable. Technical input from J. Ross-Ibarra, D. Barshis, S. Caplins, K. Bockrath, M. MacManes, K. Thornton, and S. Pankey was greatly appreciated. Computational support, particularly D. Brown and Y. Huang, along with lab support by R. Nilsen, was greatly appreciated. Ideas generated in discussion with S. Gravem, L. Schiebelhut, and M. Dawson helped develop this project. S. Pankey, S. Heisel, J.
Hamlin, I. Hewson, K. Bockrath, E. Sotka, and C. Ewers-Saucedo evaluated early drafts of the manuscript. Thanks to A. Moore and the UGA Research Foundation for funding to support this work.
Literature Cited

Abbas W., Kumar A., Herbein G. 2015. The eEF1A proteins: At the crossroads of oncogenesis, apoptosis, and viral infections. *Front Oncol* 5:75. DOI: 10.3389/fonc.2015.00075.

Aidoo M., Terlouw DJ., Kolczak M., McElroy PD., Kuile FO ter., Kariuki S., Nahlen BL., Lal AA., Udhayakumar V. 2002. Protective effects of the sickle cell gene against malaria morbidity and mortality. *Lancet* 359:1311–1312. DOI: Doi 10.1016/S0140-6736(02)08273-9.

Bates AE., Hilton BJ., Harley CDG. 2009a. Effects of temperature, season and locality on wasting disease in the keystone predatory sea star Pisaster ochraceus. *Diseases of Aquatic Organisms* 86:245–251. DOI: 10.3354/dao02125.

Bates AE., Hilton BJ., Harley CD. 2009b. Effects of temperature, season and locality on wasting disease in the keystone predatory sea star Pisaster ochraceus. *Dis Aquat Organ* 86:245–51. DOI: 10.3354/dao02125.

Bay RA., Palumbi SR. 2015. Rapid acclimation ability mediated by transcriptome changes in reef-building corals. *Genome Biology and Evolution* 7:1602–1612. DOI: 10.1093/gbe/evv085.

Berry DB., Guan QN., Hose J., Haroon S., Gebbia M., Heisler LE., Nislow C., Giaever G., Gasch AP. 2011. Multiple means to the same end: The genetic basis of acquired stress resistance in yeast. *Plos Genetics* 7. DOI: ARTN e1002353 10.1371/journal.pgen.1002353.

Blanch A., Robinson F., Watson IR., Cheng LS., Irwin MS. 2013. Eukaryotic translation elongation factor 1-alpha 1 inhibits p53 and p73 dependent apoptosis and chemotherapy sensitivity. *PLoS One* 8:e66436. DOI: 10.1371/journal.pone.0066436.

Bolger AM., Lohse M., Usadel B. 2014. Trimmmomatic: A flexible trimmer for Illumina sequence data. *Bioinformatics* 30:2114–2120. DOI: 10.1093/bioinformatics/btu170.

Bukovnic U., Fu J., Bennett M., Prasad P., Ristic Z. 2009. Heat tolerance and expression of protein synthesis elongation factors, EF-Tu and EF-1α, in spring wheat. *Functional Plant Biology* 36:234–241.

Cohen D., Bogeat-Triboulot MB., Tisserant E., Balzergue S., Martin-Magniette ML., Lelandais G., Ningre N., Renou JP., Tamby JP., Le Thiec D., Hummel I. 2010. Comparative transcriptomics of drought responses in Populus: A meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes. *BMC Genomics* 11:630. DOI: 10.1186/1471-2164-11-630.

Dahlhoff EP., Buckley BA., Menge BA. 2001. Physiology of the rocky intertidal predator Nucella ostrina along an environmental stress gradient. *Ecology* 82:2816–2829. DOI: Doi 10.1890/0012-9658(2001)082[2816:Potrip]2.0.Co;2.
Dinger ME., Pang KC., Mercer TR., Mattick JS. 2008. Differentiating protein-coding and noncoding RNA: Challenges and ambiguities. Plos Computational Biology 4. DOI: ARTN e1000176 10.1371/journal.pcbi.1000176.

Drnevich JM., Reedy MM., Ruedi EA., Rodriguez-Zas S., Hughes KA. 2004. Quantitative evolutionary genomics: Differential gene expression and male reproductive success in Drosophila melanogaster. Proc Biol Sci 271:2267–73. DOI: 10.1098/rspb.2004.2880.

Eisenlord ME., Groner ML., Yoshioka RM., Elliott J., Maynard J., Fradkin S., Turner M., Pyne K., Rivlin N., Hooidonk R van., Harvell CD. 2016. Ochre star mortality during the 2014 wasting disease epizootic: Role of population size structure and temperature. Phil. Trans. B 371:20150212. DOI: 10.1098/rstb.2015.0212.

Ejiri S. 2002. Moonlighting functions of polypeptide elongation factor 1: From actin bundling to zinc finger protein r1-associated nuclear localization. Biosci. Biotechnol. Biochem. 66:1–21.

Emilsson V., Thorleifsson G., Zhang B., Leonardson AS., Zink F., Zhu J., Carlson S., Helgason A., Walters GB., Gunnarsdottir S., Mouy M., Steinthorsdottir V., Eiriksdottir GH., Bjornsdottir G., Reynisdottir I., Gudbjartsson D., Helgadottir A., Jonasdottir A., Jonasdottir A., Styrkarsdottir U., Gretarsdottir S., Magnusson KP., Stefansson H., Fosssdal R., Kristjansson K., Gislason HG., Stefansson T., Leifsson BG., Thorsteinsdottir U., Lamb JR., Gulcher JR., Reitman ML., Kong A., Schadt EE., Stefansson K. 2008. Genetics of gene expression and its effect on disease. Nature 452:423–U2. DOI: 10.1038/nature06758.

Fly EK., Monaco CJ., Pincebourde S., Tallis A. 2012. The influence of intertidal location and temperature on the metabolic cost of emersion in Pisaster ochraceus. Journal of Experimental Marine Biology and Ecology 422:20–28. DOI: 10.1016/j.jembe.2012.04.007.

Fuess LE., Eisenlord ME., Closek CJ., Tracy AM., Mauntz R., Gignoux-Wolfsohn S., Moritsch MM., Yoshioka R., Burge CA., Harvell CD., Friedman CS., Hewson I., Hershberger PK., Roberts SB. 2015. Up in arms: Immune and nervous system response to sea star wasting disease. PLoS One 10:e0133053. DOI: 10.1371/journal.pone.0133053.

Gaidatzis D., Burger L., Florescu M., Stadler MB. 2015. Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post-transcriptional regulation. Nat Biotechnol 33:722–9. DOI: 10.1038/nbt.3269.

Galante PA., Sakabe NJ., Kirschbaum-Slager N., Souza SJ de. 2004. Detection and evaluation of intron retention events in the human transcriptome. RNA 10:757–65.

Garg R., Shankar R., Thakkar B., Kudapa H., Krishnamurthy L., Mantri N., Varshney RK., Bhatia S., Jain M. 2016. Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Scientific Reports 6. DOI: Artn 19228 10.1038/Srep19228.

Gemell NJ., Slate J. 2006. Heterozygote advantage for fecundity. PLoS One 1:e125. DOI: 10.1371/journal.pone.0000125.
Ghiasi H., Osorio Y., Perng GC., Nesburn AB., Wechsler SL. 2002. Overexpression of interleukin-2 by a recombinant herpes simplex virus type 1 attenuates pathogenicity and enhances antiviral immunity. *Journal of Virology* 76:9069–9078. DOI: 10.1128/JVI.76.18.9069-9078.2002.

Grabherr MG., Haas BJ., Yassour M., Levin JZ., Thompson DA., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng QD., Chen ZH., Mauceli E., Hacohen N., Gnirke A., Rhind N., Palma F di., Birren BW., Nusbaum C., Lindblad-Toh K., Friedman N., Regev A. 2011. Full-length transcriptome assembly from RNA-seq data without a reference genome. *Nature Biotechnology* 29:644–U130. DOI: 10.1038/nbt.1883.

Gudenkauf BM., Hewson I. 2015. Metatranscriptomic analysis of Pycnopodia helianthoeides (Asteroidea) affected by sea star wasting disease. *PLoS One* 10:e0128150. DOI: 10.1371/journal.pone.0128150.

Haas BJ., Papanicolaou A., Yassour M., Grabherr M., Blood PD., Bowden J., Couger MB., Eccles D., Li B., Lieber M., MacManes MD., Ott M., Orvis J., Pochet N., Strozzi F., Weeks N., Westerman R., William T., Dewey CN., Henschel R., Leduc RD., Friedman N., Regev A. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. *Nature Protocols* 8:1494–1512. DOI: 10.1038/nprot.2013.084.

Held MBE., Harley CDG. 2009. Responses to low salinity by the sea star Pisaster ochraceus from high- and low-salinity populations. *Invertebrate Biology* 128:381–390. DOI: 10.1111/j.1744-7410.2009.00175.x.

Hewson I., Button JB., Gudenkauf BM., Miner B., Newton AL., Gaydos JK., Wynne J., Groves CL., Hendler G., Murray M., Fradkin S., Breitbart M., Fahsben D., Lafferty KD., Kilpatrick AM., Miner CM., Raimondi P., Lahner L., Friedman CS., Daniels S., Haulena M., Marliave J., Burge CA., Eisenlord ME., Harvell CD. 2014. Densovirus associated with sea-star wasting disease and mass mortality. *Proceedings of the National Academy of Sciences of the United States of America* 111:17278–17283. DOI: 10.1073/pnas.1416625111.

Hudson NJ., Dalrymple BP., Reverter A. 2012. Beyond differential expression: The quest for causal mutations and effector molecules. *BMC Genomics* 13:356. DOI: 10.1186/1471-2164-13-356.

Jennings HS. 1907. Behavior of the starfish Asterias forreri de Loriol. *University of California Publications in Zoology* 4:53–185.

Jolles AE., Sullivan P., Alker AP., Harvell CD. 2002. Disease transmission of aspergillosis in sea fans: Inferring process from spatial pattern. *Ecology* 83:2373–2378. DOI: 10.2307/3071798.

Kelly MW., Pankey MS., DeBiasse MB., Plachetzki DC. 2017. Adaptation to heat stress reduces phenotypic and transcriptional plasticity in a marine copepod. *Functional Ecology* 31:398–406. DOI: 10.1111/1365-2435.12725.
Kuznetsova A., Bruun Brockhoff P., Haubo Bojesen Christensen R. 2016. LmerTest: Tests in linear mixed effects models.

Lai KY., Ng WYG., Cheng FF. 2015. The w-shaped mortality-age distribution of novel H1N1 influenza virus helps reconstruct the second wave of pandemic 1918 Spanish flu. *J. Pulm. Respir. Med.* 5:2.

Lamberti A., Caraglia M., Longo O., Marra M., Abbruzzese A., Arcari P. 2004. The translation elongation factor 1A in tumorigenesis, signal transduction and apoptosis: Review article. *Amino Acids* 26:443–8. DOI: 10.1007/s00726-004-0088-2.

Langmead B., Salzberg SL. 2012. Fast gapped-read alignment with bowtie 2. *Nature Methods* 9:357–U54. DOI: 10.1038/NMETH.1923.

Leclerc M., Otten P. 2013. Evidence of interleukin genes in the sea-star: Asterias rubens (Echinodermata). *Am. J. Immunology* 9:65–67.

Leh H., Chikhi N., Ichino K., Guellaen G., Wellman M., Siest G., Visvikis A. 1998. An intronic promoter controls the expression of truncated human gamma-glutamyltransferase mRNAs. *FEBS Lett* 434:51–6.

Li B., Dewey CN. 2011. RSEM: Accurate transcript quantification from RNA-seq data with or without a reference genome. *Bmc Bioinformatics* 12. DOI: Artn 323 10.1186/1471-2105-12-323.

Li DS., Wei T., Abbott CM., Harrich D. 2013. The unexpected roles of eukaryotic translation elongation factors in RNA virus replication and pathogenesis. *Microbiology and Molecular Biology Reviews* 77:253–266. DOI: 10.1128/MMBR.00059-12.

Menge BA., Cerny-Chipman EB., Johnson A., Sullivan J., Gravem S., Chan F. 2016. Sea star wasting disease in the keystone predator Pisaster ochraceus in Oregon: Insights into differential population impacts, recovery, predation rate, and temperature effects from long-term research (vol 11, e0153994, 2016). *Plos One* 11. DOI: ARTN e0157302 10.1371/journal.pone.0157302.
Montgomery SH., Mank JE. 2016. Inferring regulatory change from gene expression: The confounding effects of tissue scaling. *Molecular Ecology* 25:5114–5128. DOI: 10.1111/mec.13824.

Mydlarz L., Jones L., Harvell C. 2006. Innate immunity, environmental drivers, and disease ecology of marine and freshwater invertebrates. *Annu. Rev. Ecol. Evol. Syst.* 37:251–288.

Nicot N., Hausman JF., Hoffmann L., Evers D. 2005. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. *Journal of Experimental Botany* 56:2907–2914. DOI: 10.1093/jxb/eri285.

O’Connor LJ., Gusev A., Liu XH., Loh P-R., Finucane HK., Price A. 2017. Estimating the proportion of disease heritability mediated by gene expression levels. *bioRxiv*. DOI: doi.org/10.1101/118018.

Paine RT. 1969. A note on trophic complexity and community stability. *American Naturalist* 103:91–93. DOI: Doi 10.1086/282586.

Pankey MS., Wares JP. 2009. Overdominant maintenance of diversity in seastar *Pisaster ochraceus*. *J. Evol. Biol.* 22:80–87.

R Core Team. 2016. *R: A language and environment for statistical computing*. Vienna, Austria: R Foundation for Statistical Computing.

Relle M., Becker M., Meyer RG., Stassen M., Schwarting A. 2014. Intronic promoters and their noncoding transcripts: A new source of cancer-associated genes. *Mol Carcinog* 53:117–24. DOI: 10.1002/mc.21955.

Sanford E. 1999. Regulation of keystone predation by small changes in ocean temperature. *Science* 283:2095–7.

Schulz I., Engel C., Niestroj AJ., Kehlen A., Rahfeld JU., Kleinschmidt M., Lehmann K., Rossner S., Demuth HU. 2014. A non-canonical function of eukaryotic elongation factor 1α1: Regulation of interleukin-6 expression. *Biochimica Et Biophysica Acta-Molecular Cell Research* 1843:965–975. DOI: 10.1016/j.bbamcr.2014.01.022.

Slatkin M., Rannala B. 2000. Estimating allele age. *Annu. Rev. Genomics Hum. Genet.* 1:225–249.

Steadman SC. 1993. Effects of fitness components of enhanced expression of elongation factor ef-1α in *Drosophila melanogaster*. i: The contrasting approaches of molecular and population biologists. *Am Nat* 142:961–993.

Stearns SC., Kaiser M. 1993. The effects of enhanced expression of elongation factor ef-1α on lifespan in *Drosophila melanogaster*. iv. a summary of three experiments. *Genetica* 91:167–182.

Subramaniam B., Rausher MD. 2000. Balancing selection on a floral polymorphism. *Evolution* 54:691–695.
Sutherland KP., Shaban S., Joyner JL., Porter JW., Lipp EK. 2011. Human pathogen shown to cause disease in the threatened elkhorn coral Acropora palmata. *Plos One* 6. DOI: [ARTN e23468 10.1371/journal.pone.0023468](https://doi.org/10.1371/journal.pone.0023468).

Sweigart AL., Fishman L., Willis JH. 2006. A simple genetic incompatibility causes hybrid male sterility in Mimulus. *Genetics* 172:2465–2479. DOI: [10.1534/genetics.105.053686](https://doi.org/10.1534/genetics.105.053686).

Wada H., Kobayashi M., Sato R., Satoh N., Miyasaka H., Shirayama Y. 2002. Dynamic insertion-deletion of introns in deuterostome EF-1 alpha genes. *Journal of Molecular Evolution* 54:118–128.

Walsh D., Mohr I. 2011. Viral subversion of the host protein synthesis machinery. *Nature Reviews Microbiology* 9:860–875. DOI: [10.1038/nrmicro2655](https://doi.org/10.1038/nrmicro2655).

Walsh D., Mathews MB., Mohr I. 2013. Tinkering with translation: Protein synthesis in virus-infected cells. *Cold Spring Harbor Perspectives in Biology* 5. DOI: [Artn A012351 10.1101/Cshperspect.A012351](https://doi.org/10.1101/Cshperspect.A012351).

Wang L., Liu YA., Wang WN., Mai WJ., Xin Y., Zhou J., He WY., Wang AL., Sun RY. 2011. Molecular characterization and expression analysis of elongation factors 1A and 2 from the Pacific white shrimp, Litopenaeus vannamei. *Molecular Biology Reports* 38:2167–2178. DOI: [10.1007/s11033-010-0345-2](https://doi.org/10.1007/s11033-010-0345-2).

Wares JP., Schiebelhut LM. 2016. What doesn’t kill them makes them stronger: An association between elongation factor 1-alpha overdominance in the sea star Pisaster ochraceus and “sea star wasting disease”. *PeerJ* 4:e1876. DOI: [10.7717/peerj.1876](https://doi.org/10.7717/peerj.1876).

Wei T., Li DS., Marcial D., Khan M., Lin MH., Snape N., Ghildyal R., Harrich D., Spann K. 2014. The eukaryotic elongation factor 1A is critical for genome replication of the Paramyxovirus respiratory syncytial virus. *Plos One* 9. DOI: [Artn E114447 10.1371/Journal.Pone.0114447](https://doi.org/10.1371/Journal.Pone.0114447).
Figure 1. Aboral view of *Pisaster* in righting response trial. Photo by JPW.

Figure 2. Permutational misassignment of individuals and comparison with actual genotypic groups. Misassignments were directed to maintain (nearly) equal sample sizes in the two groups. The true grouping of individuals by EF1A genotype suggests a stronger signal (vertical dotted line) than almost all permutations; ‘misassignments’ with more extreme results involve reassignment of individual Po5.

Figure 3. Differential expression heatmap for transcripts with FDR < 10^{-4}. Color scores indicate \(\ln \) counts for each transcript by library. Results are only shown for individuals at ambient sea water temperature; similar results are obtained with elevated water temperature.

Figure 4. Volcano plot of fragments that are differentially expressed (FDR < 0.01); other fragments not plotted. Contrast indicated with positive logFC values on the right for genes that have higher expression in *wild* homozygotes. Size of circle scaled by log CPM. Panel (A) includes all individuals in study; center panel (B) excludes *wild* individual Po5; right panel (C) includes only fragments with BLAST homology to EF1A, excluding individual Po5. Red dotted lines indicate FDR of 0.01; blue dotted line indicates two-fold change in expression in panel (C).
Figure 1

Image of Pisaster ochraceus

Figure 1. Aboral view of *Pisaster* in righting response trial. Photo by JPW.
Randomized expression differences among libraries

Figure 2. Permutational misassignment of individuals and comparison with actual genotypic groups. Misassignments were directed to maintain (nearly) equal sample sizes in the two groups. The true grouping of individuals by EF1A genotype suggests a stronger signal (vertical dotted line) than almost all permutations; 'misassignments' with more extreme results involve reassignment of individual Po5.
The chart shows the frequency distribution of the number of differentially expressed fragments across various permutations. The y-axis represents the frequency, and the x-axis shows the number of differentially expressed fragments.

The chart includes the following permutations:
- **swap 1 (10)**: Represented by a red bar.
- **swap 1 and 1 (25)**: Represented by a green bar.
- **swap 2 and 2 (100)**: Represented by a blue bar.

The chart visually compares the frequency distributions for each permutation, indicating how the number of differentially expressed fragments varies across different simulated scenarios.
Figure 3. Differential expression heatmap for transcripts with FDR $< 10^{-4}$. Color scores indicate ln counts for each transcript by library. Results are only shown for individuals at ambient sea water temperature; similar results are obtained with elevated water temperature.
Volcano plots of differential expression

Figure 4. Volcano plot of fragments that are differentially expressed (FDR < 0.01); other fragments not plotted. Contrast indicated with positive logFC values on the right for genes that have higher expression in wild homozygotes. Size of circle scaled by log CPM. Panel (A) includes all individuals in study; center panel (B) excludes wild individual Po5; right panel (C) includes only fragments with BLAST homology to EF1A, excluding individual Po5. Red dotted lines indicate FDR of 0.01; blue dotted line indicates two-fold change in expression in panel (C).
