Identification of whole-genome significant single nucleotide polymorphisms in candidate genes associated with body conformation traits in Chinese Holstein cattle

Zhengui Yan, Zhonghua Wang, Qin Zhang, Shujian Yue, Bin Yin, Yunliang Jiang and Kerong Shi

College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, Shandong Agricultural University, Taian, Shandong 271018, China

Accepted for publication 16 September 2019

GWAS has been proven to be a powerful tool for detecting genetic variants associated with economically important traits such as production, body conformation and reproduction traits, and diseases. The objective of this study was to identify SNPs with significant association effects on body conformation traits in Chinese Holstein through the GWAS approach.

The experimental population consisted of 445 Chinese Holstein cows, with parity no. 2, raised at four farms in Shandong province of China. Hair follicle samples were collected individually within four days in the same season. In total, 29 body conformation traits were analyzed by GWAS. There were 23 phenotypes measured individually on 1–9 scores, which were body height, height at front end, body depth, chest width, stature, angularity, rump angle (RA), pin width, loin strength, foot angle, heel depth, bone quality, rear legs – side view, rear legs – rear view, udder depth, udder texture, median suspensory, fore udder attachment, front teat placement, attachment height, attachment width (AW), rear teat placement and teat length. The remaining six functional body conformation traits, measured on 1–100 scores, were stature score, rump system score, feet and legs score, udder system score, mammary system score and conformation final score (FS). The definitions of these conformation traits for dairy cattle are available on the website of Canadian Dairy Network (https://www.cdn.ca/articles.php). The summary statistics of these phenotypes are listed in Table S1.

Each experimental animal was genotyped by the GGP BovineLD V3 SNP chip, containing 26 151 public SNPs. Because all of the animals in these study populations were female, the SNPs from the X chromosome were also counted. The data quality control procedure excluded individuals with more than 10% missing genotypes and SNPs with a call rate of less than 90%, MAF less than 3% or P-value of the Hardy–Weinberg Equilibrium test less than 1.0E – 6. Finally, 421 animals with 20 632 SNP genotypes were retained for the subsequent GWAS analysis. Physical map length, the number of SNPs and SNP density on each chromosome based on reference genome UMD3.1, before and after the data cleaning procedure, are shown in Table S2. Results of pair-wise LD analysis of the 421 animals from four different farms showed high similarity of LD patterns among the whole population, indicating that similar breeding histories were shared by the four subpopulations (data not provided).

A fixed-effects linear regression model was used to carry out the GWAS according to a previous method. Bonferroni correction for the genome-wide significance and suggestive thresholds were computed to be 2.42E – 06 (= 0.05/20 632) and 4.85E – 05 (= 1/20 632), respectively.

The GWAS based on the mixed-effect linear regression model identified 79 SNPs with genome-wide significant (P < 0.05) association effects on 14 body conformation traits (Table 1). Of these SNPs, 28 SNPs were found to be associated with RA, and 14 SNPs associated with FS (Table 1, Fig. S1). We also found six single SNPs that were associated with multiple body conformation traits of dairy cow. These SNPs were BovineHD0600000461, BovineHD1900007686, ARS-BFGL-NGS-41612, BovineHD1700010514, BovineHD3000037672 and ARS-BFGL-NGS-109467 (their detailed information is provided in Table S4). In this study, the DNA region from 44.6 to 65.4 Mb of chromosome 18 was identified to be associated with four different body conformation traits (AW, FS, mammary system score and RA) of dairy cows (Table 1, Table S3). This coincided with previously reported QTL or DNA regions associated with calving performance and udder traits of dairy cattle. Among these SNPs, Hapmap57004-rs29011610, located near MON1B (MON1 secretory trafficking family member B) gene, were also found to be associated with length of productive life in Holstein cows. ARS-BFGL-NGS-116541, which was located within the LIG1 (Ligase I) gene region, was reported to be associated with body weight at birth. Similarly, DNA regions on chromosomes 21, 25 and X were also identified to be significantly associated with multiple body conformation traits (Table 2, Table S3). In particular, six SNPs in the small region from 57.55 to 57.62 Mb on the chromosome 21 were found to be associated with AW and FS in the study, and these SNPs were all located within or near the gene region of SLC24A4 (Table S5). Interestingly, SLC24A5 and SLC19A2, members of solute carrier family proteins with SLC24A4, were also found to be associated with RA and FS, respectively (Table 1). Additionally, UA-IFASA-6670, located within the region of GABARAPL1 [GABA (A) receptor-associated protein like 1] gene, were found to be significantly associated with median suspensory in this study. It was reported previously to affect udder attachment and height.

Also, BovineHD2200013812 was identified to have genetic effects on RA. This SNP was located within the CACNA1D (calcium channel alpha 1D subunit) gene region. Coincidentally, this SNP was also reported to be
Category	Trait	Chromosome	Position	SNP name	P-Value	Nearest gene	Distance	Reference	Alteration	MAF
Dairy strength	Angularity	30	11022328	BTA-116883-no-rs	1.56E-06	LOC786124	D:27320	G	A	0.2404
		30	11627304	BovineHD3000032546	6.55E-07	LOC537655	Within	C	A	0.3061
		30	13270521	BovineHD3000037672	5.10E-08	LOC786725	U:54284	T	C	0.449
	Stature	10	90090600	Hapmap39512-BTA-79353	5.11E-07			T	G	0.2744
		19	26049717	BovineHD1900007686	2.15E-06			T	C	0.0362
		17	38504014	BovineHD1700010514	1.34E-07	LOC512119	D:176780	T	C	0.0954
		11	80730546	ARS-BFGL-NGS-41612	4.93E-07	KCNS3	U:112015	G	A	0.1485
		19	26049717	BovineHD1700010514	1.34E-07	LOC512119	D:176780	T	C	0.0954
		17	38504014	BovineHD1700010514	2.42E-08	LOC512119	D:176780	T	C	0.0954
Mammary system	Attachment width	9	20356212	BTA-85319-no-rs	7.16E-07	BCKDHB	D:21051	T	C	0.2614
		18	65402237	BovineHD1800009409	4.75E-07	LOC789374	Within	C	T	0.2143
		19	24263948	BovineHD1900006183	4.26E-07	LOC524240	Within	G	A	0.3515
		23	39248351	BovineHD2300011340	2.39E-06	NHLR1	D:7508	T	C	0.4341
		27	39335460	Hapmap38550-BTA-98603	1.66E-06	LRRC3B	D:101345	C	A	0.3497
		10	45053776	BovineHD1000013564	9.37E-07	NID2	D:57117	G	T	0.2324
		17	38504014	BovineHD1700010514	2.42E-08	LOC512119	D:176780	T	C	0.0954
	Median suspensory	5	10020614	UA-IFASA-6670	6.37E-07	GABARAPL1	Within	C	T	0.398
		9	93370896	BovineHD0900026424	5.03E-07	NOX3	U:2759	T	C	0.325
		17	73901259	BovineHD1700021616	9.77E-07	LOC531271	Within	A	G	0.2381
		30	13830453	BovineHD3000039710	5.31E-07	LOC782196	U:18403	T	C	0.213
	Mammary system score	13	28331553	ARS-BFGL-NGS-109467	5.49E-07	SEPHS1	D:16954	A	G	0.4388
		15	43538866	ARS-BFGL-NGS-115625	2.03E-06	SWAP70	Within	G	A	0.4467
		18	55956772	ARS-BFGL-NGS-60829	6.86E-07	NUCB1	D:1160	C	T	0.4172
		30	13270521	BovineHD3000037672	7.03E-08	LOC786725	U:54284	T	C	0.449
	Rear teat placement	9	25458692	BTA-83107-no-rs	1.10E-06	MIR2284O	U:14492	A	G	0.3307
	Udder depth	25	35623801	ARS-BFGL-NGS-28167	2.16E-06	CUX1	D:12155	A	G	0.4023
		25	36266951	BovineHD2500010029	1.27E-07	LOC100298352	Within	T	C	0.356
	Udder system score	6	1770665	BovineHD060000461	1.03E-07	1-Mar	Within	G	A	0.39
Table 1 (Continued)

Category	Trait	Chromosome	Position	SNP name	P-Value	Nearest gene	Distance	Reference	Alteration	MAF
Rump structure	Loin strength	5	61620118	BovineHD050001.7277	2.90E-07	NEDD1	D:121565	T	G	0.4853
		7	53932886	ARS-BFGL-NGS-20-197	5.71E-07	PCDH86	U:892	T	C	0.4966
		28	46248750	BovineHD280001.3502	4.71E-07	LOC1001411022	D:32551	T	C	0.2523
Rump angle		1	5519845	B7-0003652	1.76E-06	GRK1	Within	C	T	0.25
		1	68909418	BovineHD100001.9488	4.88E-07	CCDC14	Within	A	G	0.4182
		1	12385156	BovineHD100003.4972	1.97E-06		T	C	0.2011	
		1	14296716	BovineHD10004.1062	2.03E-06	BACE2	Within	G	A	0.4354
		2	12756675	BovineHD20003.7025	6.11E-07	PDK1L	Within	G	A	0.3417
		4	10148342	Hapmap35652	4.57E-07	LOC100295705	D:88944	C	T	0.2268
		6	83512619	BTA-107087-no-rs	2.18E-06	LOC100298985	U:19994	G	A	0.3243
		6	87715723	Hapmap38371-BTA-105598	1.58E-06	AMBN	D:9991	C	A	0.3356
		7	83260664	BovineHD700002.4393	4.32E-09	MS43	D:33418	G	A	0.1746
		7	83757564	BovineHD70002.4587	1.14E-07	SSBP2	Within	C	A	0.11
		7	91507089	ARS-BFGL-NGS-118534	2.83E-07		G	A	0.2761	
		8	10166481	BovineHD80003.0195	2.25E-06	SVEP1	Within	G	A	0.1236
		9	81329823	BTA-106078-no-rs	9.84E-07	HVEP2	D:62953	A	G	0.4592
		10	43438784	BovineHD100001.3067	8.09E-08	MAP4K5	Within	G	A	0.3246
		10	62563388	BovineHD100001.8043	7.73E-07	SLC24A5	D:73734	T	C	0.4376
		10	73979984	Hapmap49737-BTA-75278	6.00E-07	PRKCH	D:52860	A	G	0.04762
		18	55399510	ARS-BFGL-NGS-116541	2.37E-06	UG1	Within	C	A	0.4487
		18	55514759	BovineHD180001.6250	7.28E-08	SYNGM	Within	T	C	0.2494
		18	55621823	ARS-BFGL-NGS-31529	2.12E-06	LMTK2	Within	T	G	0.2426
		22	47989704	BovineHD20003.3812	1.72E-06	CACNA1D	Within	T	C	0.2727
		22	48408579	BovineHD20001.3926	5.34E-07	RFT1	Within	G	A	0.0839
		24	29554807	BovineHD200008.0307	2.70E-07	LOC782418	D:63567	G	A	0.2323
		25	31147780	Hapmap2474-BTC-028427	1.82E-08	LOC100301342	Within	T	C	0.3898
		25	42364359	ARS-BFGL-NGS-101981	1.32E-06	ADAP1	D:1441	T	C	0.2823
		26	16504170	BovineHD260004.1345	1.32E-06	LOC522146	Within	A	G	0.1927
		29	72164110	BovineHD29000002021	5.13E-07	LOC10033656	Within	G	A	0.1926
		30	2037499	BovineHD3000000680	2.28E-06	KLHL13	Within	C	A	0.03855
		30	141936249	BTA-21001-no-rs	2.16E-06	MSL3	U:105193	C	T	0.1939
Category	Trait	Chromosome	Position	SNP name	P-Value	Nearest gene	Distance	Reference	Alteration	MAF
------------------	----------------	------------	----------	---------------------------	---------	--------------	----------	-----------	------------	--------
Final conformation score	Final score	6	1770665	BovineHD0600000461	1.75E-06	1-Mar	Within	G	A	0.39
		11	80730546	ARS-BFGL-NGS-41612	4.61E-07	KCNS3		U:112015	G	0.1485
		13	28331553	ARS-BFGL-NGS-109467	1.80E-06	SEPHS1	D:16954	A	G	0.4388
		16	37787772	ARS-BFGL-NGS-34764	2.01E-06	NME7	Within	G	A	0.4887
		16	37904090	BTB-00637941	1.17E-06	SLC19A2	Within	C	T	0.4863
		16	41384258	BovineHD1600011634	2.18E-06	LOC614226	U:123143	T	C	0.4558
		18	4463083	Hapmap57004-rs29011610	1.17E-06	MONT1	D:5928	G	A	0.3129
		18	65405023	BovineHD1800019051	2.04E-06	LOC789374	Within	A	G	0.1179
		19	26049717	BovineHD1900007686	7.31E-07	AIPL1	D:7711	T	C	0.03628
		21	57552082	BovineHD2100016535	8.46E-07	SL2CA4A4	U:44433	A	G	0.234
		25	39558290	BovineHD2500011031	2.24E-06	WIP12	U:7420	T	G	0.09524
		25	40192570	BovineHD4100017518	1.07E-06	SDK1	Within	T	C	0.03061
		26	44324248	BovineHD2600012439	1.82E-06	OAT	U:53908	C	A	0.3379
		30	12103258	BovineHD3000003945	8.38E-07	ACTRT1	U:55118	G	A	0.1497

1Chromosome 30 refers to X chromosome.
2The distance from the SNP locus to the gene (unit: bp); D and U indicate that the SNP site is located downstream and upstream of the gene, respectively; ‘Within’ indicates that the SNP locus is located within the gene.
associated with the length of productive life and udder cleh.14

In summary, a GWAS using linear statistical model was conducted on 29 body conformation traits in a Chinese Holstein cattle population, and 79 SNPs were found to have genome-wide-significant ($P < 0.05$) association effects on 14 body conformation traits. Among these significant SNPs, 74 of them are newly detected in this study, five have been reported in previous literature and 26 are located in genes and are worth further investigation to potentially identify the causative mutations underlying the QTL.

Acknowledgements: The authors would like to thank the owners of the four farms who generously allowed us to sample hair follicles from their cattle. We are also thankful to Dr Chunsheng Ma, Dr Jizhen Wang, Dr Sihao Wu and Dr Enfa Wang at Alta-Agricorp Co. Ltd for their kind support and suggestions on the verification of phenotype data. We are grateful to Dr Changsong Qian at Neogen Bio-Scientific Technology (Shanghai) Co. Ltd for his technical support during the hair follicle collection. This work was financially supported by the Key Project of Agricultural Fine Breeding of Shandong Province (2016LZGC030, 2019LZGC011), the National Natural Science Foundation of China (31402054), the National Science Foundation of Shandong (ZR2013CM013), Funds of the Shandong ‘Double Tops’ Program (SYL2017YSTD08), the Modern Agricultural Industry Technology System (CARS-36) and the Tai Mountain Scholar Program.

Conflict of interest
The authors declare that there is no conflict of interest.

References
1 Roll M.M. \textit{et al.} (2012) \textit{Anim Genet}, 43, 367–74.
2 Yue S.J. \textit{et al.} (2017) \textit{Anim Genet} 48, 677–81.
3 González M.E. \textit{et al.} (2017) \textit{Genet Mol Res} 16, 1–9.
4 Song H. \textit{et al.} (2018) \textit{J Dairy Sci} 101, 5250–4.
5 Sahana G. \textit{et al.} (2011) \textit{J Dairy Sci} 94, 1–9.
6 Pant S.D. \textit{et al.} (2010) \textit{Genomics} 95, 176–82.
7 Purcell S. \textit{et al.} (2007) \textit{Am J Hum Genet} 81, 559–75.
Brief Notes

8 Abo-Ismail M.K. et al. (2017) Genet Sel Evol 49, 82.
9 Brand B. et al. (2010) J Dairy Sci 93, 1205–15.
10 Wu X.P. et al. (2013) BMC Genomics 14, 897.
11 Cochran S.D. et al. (2013) BMC Genet 14, 49.
12 Cole J.B. et al. (2014) J Dairy Sci 97, 3156–72.
13 Cole J.B. et al. (2011) BMC Genomics 12, 408.
14 Kolbehdari D. et al. (2008) J Dairy Sci 91, 2844–56.

Correspondence: K. R. Shi (krshi@sdau.edu.cn)

Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Figure S1 Genome-wide plots of \(-\log_{10}(P\text{-value})\) SNP association effects on body conformation traits of rump angle (RA, a) and final score (FS, b) obtained by mixed-effect linear regression model.

Table S1 Descriptive statistics of the 29 conformation traits used in the GWAS.
Table S2 Distribution of SNP markers by chromosomes before and after quality control.
Table S3 The chromosomal distribution of significant SNPs associated with body conformation traits.
Table S4 The SNPs identified associated with multiple body conformation traits of dairy cows.
Table S5 Multiple SNPs located in the SLC24A4 gene region were significantly associated with body conformation traits of dairy cows.

doi: 10.1111/age.12868

Processed pseudogene confounding the identification of a putative lethal recessive deletion in the bovine 60S ribosomal protein L11 gene (uL5)

Xuying Zhang, Christin Wacker, Ekkehard Schütz and Bertram Brenig

Institute of Veterinary Medicine, University of Goettingen, Burchhardtweg 2, 37077, Göttingen, Germany

Accepted for publication 19 September 2019

Background: In higher eukaryotes, impaired ribosome biogenesis and function can result in specific phenotypes, the so-called ribosomopathies.1 In humans at least six ribosomopathies have been described, i.e. Diamond-Blackfan anemia (DBA), 5q-syndrome, Shwachman-Diamond syndrome, X-linked dyskeratosis congenita, Treacher Collins syndrome and cartilage hair hypoplasia.1,2 DBA belongs to a rare group of disorders known as inherited bone marrow failure syndromes.3 DBA7 is caused by variants of the 60S ribosomal protein L11 gene (uL5, formerly RPL11).4–6 So far naturally occurring uL5 defects have only been described in humans. Owing to the role of uL5 in ribosome biogenesis and its association with fatal ribosomopathies, we addressed the question whether lethal uL5 variants exist in cattle. Several deleterious variants have been identified, including a 2 bp deletion resulting in a frameshift and premature stop (ENSBTAG00000020905; g.129,195,922_129,195,923del; ARS-UCD1.2: rs381576999). To monitor this variant a probe located on BTA2 between positions 129,195,924 and 129,195,973 (ARS-UCD1.2) has been included as an expert-selected marker in the custom add-on part of the BovineLD BeadChip (Fig. 1).

Variant detection: The presence of the deletion was tested in 370,527 cattle, including British Angus, Charolais, Brownvieh, Belted Galloway, Simmental, Dexter, German Black Pied cattle, Gelbvieh, Hereford, Limousin, Red Holstein, German Red, Holstein, Shorthorn, Uckermärker, Wagyu, Welsh Black and Belgian Blue. We found 299,218 homozygous wt and 71,249 apparently heterozygous cattle but no homozygous carriers.7 A complete cluster separation and high GC scores of the uL5 SNP excluded any technical bias by the chip-based genotyping method. However, we did not detect the putative deletion by Sanger sequencing of PCR-amplified uL5 gene segments in 10 randomly chosen heterozygous cattle (primer sequences are listed in Table S1). In addition, the BeadChip probe matches almost perfectly (49/50 nucleotides) to a processed uL5 pseudogene on BTA18 (LOC112442347; position 54,982,088–54,982,687). Sequencing of a PCR fragment of this pseudogene (primer sequences are listed in Table S1) from an individual scored as heterozygote revealed the 2 bp deletion of rs381576999 (Fig. 1). To verify the indel within uL5 and its processed pseudogene, 1323 (uL5) and 346 (pseudogene) random cattle samples were genotyped using FRET8 (primer sequences are listed in Table S1). None of the 1323 individuals analyzed carried the deletion in uL5, whereas all 346 cattle were homozygous carriers of the deletion in the pseudogene. In order to further prove the suspected genotyping error by the pseudogene, we interrogated the genomic region for the presence of a haplotype with correlation to the chip data. A total of 82,014 samples were used, where 54 SNPs around uL5 (+1.5 Mb up- and downstream) were phased using BEAGLE (version 3.32)9 omitting position rs381576999. No haplotype with a significant correlation to the rs381576999 chip-genotype nor any suspected lethal haplotype could be established (Fig. S1).

Comments: We conclude that there is currently no evidence for the existence of the rs381576999 indel in the functional uL5 gene or in its pseudogene on BTA18. Instead, our results suggest that the deletion has been fixed in the