Entomology, Ornithology & Herpetology: Current Research

Research Article

Culicoides (Diptera: Ceratopogonidae) Fauna in Central Tunisia

Slama D1,2, Chaker E1, Zrelli S3, Mathieu B4, Delecote JC5, Mezhoud H1, Babba H1,2
1Department of Clinical Biology B, Laboratory of Parasitology-Mycology Medical and Molecular, University of Monastir, Tunisia
2Laboratory of the Maternity and Neonatology center of Monastir, Tunisia
3Laboratoire de Biosurveillance de l’Environnement, Groupe d’Hydrobiologie Littorale et Limnique, Faculté des Sciences de Bizerte
4Institute of Parasitology and Tropical Pathology, University of Strasbourg, Strasbourg, France
5Corresponding author: Chaker E, Department of Clinical Biology B, Laboratory of Parasitology-Mycology Medical and Molecular, University of Monastir, Tunisia, Tel: +216 73 448 666; Fax: +216 73 461 830; E-mail: emnachaker@hotmail.com

Received date: July 21, 2016; Accepted date: August 04, 2016; Published date: August 09, 2016

Abstract

For a better understanding of the Culicoides spp biodiversity of the Center of Tunisia, an entomological survey was carried out between 2009 and 2012 in four districts. A total of 9275 biting midges were collected from different sites in the Center of Tunisia using CDC and OVI light traps as well as emergence in the laboratory from mud sampling.

Twenty two species were identified of which two were newly recorded for the Tunisian fauna. The most abundant Culicoides spp occurring on the Center of Tunisia were Culicoides imicola (6.9%) captured by light traps and Culicoides circumscriptus (70.93%) from mud. Other less abundant species were also identified including Culicoides paolae (15.04%); Culicoides sahariensis (12.45%); Culicoides jumineri (9.72%); Culicoides catanei (66.07%); Culicoides puncticollis (5.34%); Culicoides newsteadi (3%); Culicoides kingsi (1.36%); C. circumscriptus (0.71%); Culicoides spp near kibunensis (0.58%); Culicoides. pseudojumineri (0.31%); Culicoides heteroclitus (0.10%); Culicoides pseudopallidus (0.03%); Culicoides saevus (0.15%); Culicoides submaritimus (0.05%); Culicoides lanceroni (0.05%); Culicoides punctatus (0.05%); Culicoides pseudojumineri and C. jumineri var (0.03%). Culicoides kurensis and C. puncticollis (0.01%).

During this study two species of Culicoides were reported for the first time: Culicoides sergentii (3.1%) (Region of Kairouan) and Culicoides semimaculatus (0.04%) (Region of Sidi Bouzid). An updated checklist is provided for the 35 species of Culicoides now known to occur on Tunisia.

This study has the potential to significantly improve our understanding of the epidemiology of Bluetongue (BT) in Tunisia in recent years.

Keywords: Culicoides; Light traps; Emergence; Center of Tunisia; Species distribution

Abbreviations:

CDC: Centre of Disease Control; OVI: Onderstepoort Veterinary Institute; BT: Bluetongue; EHDV: Epizootic Haemorrhagic Disease; SBV: Schmallenberg Virus

Introduction

Culicoides biting midges (Diptera:Ceratopogonidae) are small, blood-sucking insects that feed on a wide range of hosts, and act as vectors for pathogens responsible for animal and human diseases worldwide. Of more than 1316 biting midges species which have been described to date, approximatively 50 arboviruses have been isolated from species of Culicoides [1,2]. Most recently, Culicoides have been acknowledged as a vector of the newly identified Schmallenberg bunyavirus (genus Orthobunyavirus Bunyaviridae) (SBV) in Europe [3,4].

An outbreak of BT (serotype 2) occurred in Tunisia between 1999 and 2002 [5]. The first such outbreak appeared during autumn 1999 in the eastern part of the country along the coast. The overall morbidity and mortality rates were 8.35% and 5.5% respectively [5]. In 2000, 72 outbreaks were reported between June and October affecting 6.120 sheep in the eastern and central parts of the country.

Entomological investigations have reported an increasing number of species during the last decades. Indeed, in the early eighties’ 19 species were identified [6] including 10 new ones in Tunisia. In 2005, the number of the recorded species was 22 with three new ones: C. paolae, C. imicola and C. newsteadi [5]. In 2008, Hammami et al. identified 14 species with one new for the fauna: C. punctatus. Finally, Sghaier et al. [7] identified 25 species of which 7 were identified for the first time: Culicoides obsoletus, Culicoides fascipennis, Culicoides subfuscipennis, Culicoides santonicus, C. submaritimus, Culicoides univittatus and Culicoides indistinctus.

Despite the reports of severe outbreaks of arboviral diseases in domestic animals in Center of Tunisia, the studies interested in vector potential of Culicoides are disparate and sparse. Thus updated information on species composition and distribution is required to assess the economic losses due to this serious hematophagous pest.
The present study aimed to improve the knowledge of the *Culicoides* fauna in Tunisia by studying the biodiversity using light trapping and breeding site sampling.

Materials and Methods

Study area

An entomological investigation was carried out in both Eastern and Western Centre of Tunisia including Monastir, Mahdia, Kairouan and Sidi Bouzid region (Table 1 and Figure 1).

Regions	Surface (Km²)	Estimated population	Climate	Animal fauna	
			Rain (mm)	Temperature °C	
Monastir	1024	548 828	280-400	7.5-32	
Mahdia	2966	410 812	200-300	23	
Kairouan	6712	570 559	250-400	5-42	
Sidi Bouzid	6994	429 912	234	13.1-27.5	

Table 1: Geographical information of the four regions study.

Figure 1: Location of the four sampling areas (Monastir, Mahdia, Kairouan and Sidi Bouzid) in Center of Tunisia.
Field capture of biting midges

Light traps: Biting midges were collected between 2009 and 2012 using two light traps models: home-made miniature CDC (Centre of Disease Control, Atlanta, USA) and OVI (Onderstepoort Veterinary Institute). All collections were done in human-inhabited biotopes where domestic animals (i.e., cattle, horses, dogs, goats, and chicken) are present (Table 2). The traps were installed no more than 1 m from the ground near to animals, either outside or inside shelters (Table 2). Traps were set before sunset and collected the next morning.

Period of Collections

Date	Locality	Type of trap	Trap localisations	GPS location
16-06-2009	Khniss (S1)	OVI	Outside	N: 35°43’34″/E: 10°49’3″
17-06-2009	Khniss (S2)	OVI	Outside	N: 35°44’42″/E: 10°48’49″
05-10-2009	Bir zira Khniss (S3)	OVI	Outside	N: 35°44’41″/E: 10°49’77″
12-10-2009	Khniss (S4)	OVI	Inside	N: 35°46’15″/E: 10°47’34″
14-10-2009	Skanes (S5)	OVI	Outside	N: 35°46’15″/E: 10°47’34″
19-10-2009	Châaba khniss (S6)	OVI	Outside	N: 35°45’51″/E: 10°47’32″
14-07-2010	Touza-jemmel (S7)	CDC	Outside	N: 35°37’61″/E: 10°49’65″
14-07-2010	Touza-jemmel (S8)	CDC	Outside	N: 35°37’61″/E: 10°49’65″
14-07-2010	Beni hassen (S9)	CDC	Inside	N: 35°34’11″/E: 10°48’87″
14-07-2010	Sayada (S10)	CDC	Inside	N: 35°40’12″/E: 10°53’99″
15-07-2010	Zaouiet kontech (S11)	CDC	Inside	N: 35°38’65″/E: 10°45’36″
15-07-2010	Zaouiet kontech (S12)	CDC	Inside	N: 35°38’65″/E: 10°45’36″
15-07-2010	Sahline (S13)	CDC	Outside	N: 35°34’0″/E: 10°43’12″
21-07-2010	Zéramdine (S14)	CDC	Outside	N: 35°34’28″/E: 10°43’12″
21-07-2010	Jemmel (S15)	CDC	Outside	N: 35°37’96″/E: 10°45’78″
03-10-2012	Bembla (S20)	CDC	Outside	N: 35°40’96″/E: 10°45’86″
20-09-2011				
07-10-2011				
25-10-2011				
28-10-2011				
28-01-2012	Mahdia	Elyana(19)	Outside / Inside	N: 35°3’06″/E: 11°2’95″
10-04-2011	Kairouan	Elmrazig (16)	Outside	N: 35°34’28″/E: 10°43’12″
15-04-2011		Elbraga (17)	Outside	N: 35°04′/E: 9.49°

Table 2: Geographical and ecological characteristics of regions where Culicoides spp were collected in Center of Tunisia.

Breeding sites: Mud samples were collected from different breeding sites (Figure 2). The dominant vegetation is Juncus and Salicornia. Mud samples of 750 cm³ and were scraped from the soil surface using a flat trowel in a line parallel to the water’s edge. Samples containing the Culicoides larvae at different instars were transported to the laboratory and placed in crystallizers closed by a glass plate to prevent the escape of adults.
Morphological identification: The head, wings and genitalia of individual biting midges were cut off within a drop of ethanol and slide-mounted in Canada balsam. *Culicoides* spp were morphologically identified and separated using their wing patterns according to the key of [8,6,9,10].

Statistical analysis: The analysis of the faunistic data was conducted according to the methods of standard community analysis described by [11] using “PRIMER 6” (Plymouth Routines in Multivariate Ecological Research) package. The multivariate analysis of the faunistic sites affinity was carried out by non-parametric multidimensional scaling (NMDS) ordination on the basis of Bray-Curtis similarity. For estimation of similarity and differences in the Ceratopogonidae community composition, cluster analysis was used. Similarity among sites was determined using the Bray-Curtis similarity index.

Sites	RS	J'	H'
Monastir	23	0.430	1.349
Kairouan	5	0.803	1.292
Sidi Bouzid	7	0.7332	1.427
Mahdia	10	0.71	1.635

Table 3: Degree of similarity between regions.

Several indexes were calculated for each site in order to assess the species assemblages: species richness (number of species: S), diversity (Shannon-Wiener index $H' = -\sum (P_i \times \log_2 P_i)$) and evenness (Pielou index $J' = H' / \log_2 S$), where H' is the diversity index and RS is the species richness (Table 3).

Results

Culicoides spp presence and abundance in Central Tunisia. Between 2009 and 2012 a total of 5325 specimens of biting midges (3589 females and 1736 males) were collected using light traps. Thus, 19 species of *Culicoides* were identified. Diversity of *Culicoides* varied depending on sites, reflecting the environmental differences in Center of Tunisia. A summary of the frequency of each of these species and their abundance in the study area is provided Table 4.

Subgenera	Culicoides spp	Jun-09	Oct-09	Jul-10	Apr-11	Sep-11	Oct-11	Jul-12	Oct-12	Total en %
Avaritia	*C. imicola*	10	1277	2383	0	0	0	0	0	68.92
Beltranmyia	*C. circumscriptus*	4	20	3	0	2	0	8	1	0.71
Culicoides	*C. punctatus*	0	0	3	0	0	0	0	0	0.05
	C. newsteadi	27	42	82	1	0	7	0	1	3
Monoculicoides	*C. puncticollis*	0	0	1	0	0	0	0	0	0.01
Oecacta	*C. jumineri*	54	283	104	0	23	54	0	0	9.72
	C. jumineri var	2	0	0	0	0	0	0	0	0.03
	C. pseudopallidus	0	0	9	0	0	0	0	0	0.16
Table 4: Total number of the Culicoides spp trapped in Tunisia.

Among these species, the principal vectors of BTV in Bassin Mediterranean, Culicoides imicola represented 68.92% of the total identified species which is consistent with the distribution of BTV in this region. In our collection, nine subgenera are represented: Avaritia, Beltranmyia, Culicoides, Monoculicoides, Oecacta, Pontoculicoides, Remmia, Synhelea and Miscellaneous.

A total of 62 mud samples were collected from different breeding sites. Of these samples, 3 950 specimens of Culicoides biting midges (2088 males and 1862 females) were collected. They belonged to 13 different species (Table 5).
Table 5: Total number of Culicoides spp obtained by emergence.

The most abundant species were Culicoides circumscriptus, Culicoides sahariensis, Culicoides cataneii, Culicoides puncticollis and Culicoides sergenti with proportion of 70.92% (2802), 12.45% (492), 5.94% (235), 5.33% (211) and 3.10% (123) respectively. Two Culicoides spp [C. sergenti (Kieffer), Culicoides semimaculatus (Clastrier)] were reported for the first time in the Center of Tunisia. C. sergenti emerged from mud with presence of vegetation (Typha) and was found in the district of Kairouan. For C. semimaculatus was emerged from watercourse in the district of Sidi Bouzid.

Table 6: Ecological data and characterization of the sampling place.

Table 5 shows the results of the environmental surveys for the investigated sites. The analysis of the faunistic data using according to table 6, Culicoides spp frequent biotope represented by vegetation, water, human housing and farms. An updated checklist of all 34 species of the genus Culicoides recorded from Tunisia is provided in Table 7 and including the references of the first report of each species.
Subgenus	Species	Reference of the record in Tunisia
Avaritia	Culicoides imicola kieffer, 1913	Chaker et al. [12]
	Culicoides obsoletus Meigen, 1818	Sghaier et al. [7]
Beltranmyia	Culicoides circumscriptus Kieffer, 1918	Chaker and Kremer [6]
Culicoides	Culicoides newsteadi Austen, 1921	Chaker et al. [12]
	Culicoides punctatus Meigen, 1804	Hammami et al. [13]
Monoculicoides	Culicoides parroti Kieffer, 1922	Chaker and Kremer [6]
	Culicoides puncticollis Becker, 1903	Chaker and Kremer [6]
	Culicoides riethi Kieffer, 1914	Chaker and Kremer [6]
Oecacta	Culicoides catanei Clastrier, 1957	Chaker and Kremer [6]
	Culicoides corsicus Kremer, 1971	Chaker and Kremer [6]
	Culicoides gejgelensis Dzhafarov, 1964	Chaker and Kremer [6]
	Culicoides griseldorum Kieffer, 1918	Chaker and Kremer [6]
	Culicoides heteroclitus Kremer and Callot, 1965	Chaker and Kremer [6]
	Culicoides jumineri Callot and Kremer, 1969	Chaker and Kremer [6]
	Culicoides longipennis Khalaf, 1957b	Sghaier et al. [7]
	Culicoides martimus Kieffer, 1924	This study
	Culicoides pseudopallidus Khalaf, 1961	This study
	Culicoides santonicus Callot, Kremer, Rault and Bach, 1966	Hammami et al. [13] Sghaier et al. [7]
	Culicoides semimaculatus Clastrier 1958a	Sghaier et al. [7]
	Culicoides sergentii Kieffer, 1921h	Chaker and Kremer [6]
	Culicoides submaritimus=C. martimus Borkent 2008	Chaker and Kremer [6]
	Culicoides univittatus Vimmer, 1932	Sghaier et al. [7]
Pontoculicoides	Culicoides saevus Kieffer, 1922g	Sghaier et al. [7]
Remmia	Culicoides kingi Austen, 1912	Chaker and Kremer [6]
Silvaticulicoides	Culicoides fascipennis Staeger, 1839	Hammami et al. [13]
	Culicoides subfuscipennis Kieffer, 1919a	Chaker and Kremer [6]
Synhelea	Culicoides sahariensis Kieffer, 1923a	Chaker and Kremer [6]
Miscellaneous	Culicoides kurensis Dzhaferov, 1960	Chaker and Kremer [6]
	Culicoides tangeroni Kieffer, 1921	Chaker and Kremer [6]
	Culicoides falae A	Sghaier et al. [7]
	Culicoides falae B=C. odiatus Borkent 2008	Chaker et al. [12]
	Culicoides marcelli Callot, Kremer and Basset, 1968	Chaker and Kremer [6]
	Culicoides odiatus Austen 1921	Chaker and Kremer [6]
	Culicoides indistinctus=C. odiatus Borkent, 2008	Chaker and Kremer [6]
	Culicoides paolae Boorman, 1996	Chaker and Kremer [6]
Table 7: Updated checklist of the 35 species of the genus *Culicoides*.

Moreover, the distribution of *Culicoides* spp based on geographic characteristics of the studied region is shown in Figure 3.

Figure 3: Abundance of *Culicoides* spp according to geographical characteristics in the studied region.

Based on this Figure 3, we observed that *Culicoides imicola* were the principal species present in the Central zones (region of Monastir). This observation was confirmed by trapping results. Moreover, in the Kairouan region, *Culicoides newsteadi* were the most prevalent species. About Sidi Bouzid the Figure 3 showed the presence of *Culicoides paolae*. Figure 4 present the degree of similarity between regions' and give slightly difference. Three different regions (Mahdia, Kairouan and Sidi Bouzid) were found in both clusters. This difference was also observed by the NMDS.
Discussion

The objective of this study was to update knowledge on the Culicoides fauna present in Central Tunisia. In fact, few data were found describing the Culicoides population composition in Tunisia [6,12,13,7]. Ceratopogonidae in Tunisia have received modest attention from collectors and their biology is poorly understood. Only restricted geographical areas have been intensively surveyed and
because of this the Ceratopogonidae fauna of many regions remains largely unknown.

In the present study, 22 Culicoides spp were identified in Central Tunisia including two newly described species: C. sergenti (district of Kairouan) and C. semimaculatus (region of Sidi Bouzid), which is less than the previously reported study. In fact, [6] identified 10 species newly introduced for the fauna. Evenly, Chaker and co-workers identified three new ones [12]. Moreover, [7] identified 7 for the first time. This may be due to the trap type, position and the period of study. Long-term trapping is recommended for a better assessment of the number of Culicoides spp present in the country.

C. sergenti was reported from Algeria and Morocco [5]. Therefore, it is important to assess the potential role and the host preference of C. sergenti.

C. semimaculatus has previously been reported to be geographically limited to southern Europe and detected in proximity to cattle, goats and sheep [14]. So it's important to capture this species and to analyze its potential role to transmit disease.

The most abundant species collected were C. imicola, C. paolae and C. jumineri. This finding agrees with those of previous surveys in Tunisia [12,15] in which these species were found to represent >90% of all biting midges captured. Even more interesting, C. imicola was trapped in high numbers in the governorate of Monastir. The high abundance of this species is can be ascribed to: (1) the use of the Ondersteoport blacklight (UV) suction traps [16]. In fact, [17] have demonstrated that Blacklight was more attractive to vector insects than white light and increases monitoring sensitivity in areas where vector abundances are low; (2) the biotic and abiotic factors linked to the availability of suitable breeding habitats which did not occur locally and equally for all species. Indeed, in Sardinia, C. imicola and C. newsteadi occur more frequently in coastal areas at lowers altitudes, whereas C. obsoletus and Culicoides pulicaris are restricted to more mountainous central areas [14]. Previous studies have suggested that the high abundance of C. imicola is most likely linked to its preference for breeding in areas where soil is moist and nutrient-rich and with full exposure to sunlight, characteristics which are more commonly found in the centre [18]. Statistical analysis of our data suggested that C. imicola was significantly more abundant in the region of Monastir than in other regions. We therefore assume that C. imicola populations is likely to be settled in Tunisia and seem to have a major role in BT outbreaks. It’s necessary to verify the presence of other potential vector than C. imicola in Center of Tunisia.

The second abundant species was C. paolae. This species was reported from Malta, Sardinia, Corsia, Tunisia, France, Algeria, Greece and Spain in chronological order [19]. In Tunisia, it was reported for the first time in the governate of Monastir from Central Tunisia [12]. Previous studies, have proposed that C. paolae from southern Italy feed on horses [20]. Although its antennal and palpal morphology have led some authors to speculate that it feeds preferentially on birds [2]. Even so, the establishment of the host preference and larval habitat of C. paolae is crucial, since this species is very widespread and abundant in the Center of Tunisia.

C. jumineri was caught in light traps. However, only low numbers were reared from mud near an irrigation channel. This finding corroborates earlier observations made by [21] who reported that C. jumineri emerged from mud near irrigation channel. Also, [22] suppose that C. jumineri was reared in the reach environment with vegetation like the gross-covered pool.

C. circumscriptus were the most abundant species obtained by emergence. As previously reported, this species prefers puddles of water contaminated with animal excreta [23] and in the absence of surface water occurs in wet soil rich in organic matter [24]. In our study, C. circumscriptus were reared in almost all collected mud samples and seems to be plastic in its tolerance for the range of environmental conditions that existed. Even more interesting is that C. circumscriptus sharing the same biotope with C. puncticollis, C. cataneii and C. sahariensis. The current result corroborates the findings of [22] who demonstrated the association of C. circumscriptus with C. cataneii and C. sahariensis.

Information on the species composition and distribution of Culicoides vectors is a necessary prerequisite to understand the epidemiology of Culicoides-borne pathogens.

The results of the survey described here therefore have the potential to significantly improve our understanding of the epidemiology of BT in Tunisia in recent years. Culicoides are important vectors for a range of pathogens causing diseases with veterinary and public health importance including BTV, AHSV, epizootic haemorrhagic disease (EHDV), filarial diseases and the recently discovered SBV. It is important to note that the high abundance of C. imicola in the Center Tunisia underlines the real risk of spreading new disease. Thus, it is important to improve our understanding of climatic factors in C. imicola activity influencing their distribution and seasonal pattern. Further study, are needed to continue the monitoring of other potential vectors in an attempt to limit the potential incursion and spread of the disease in other region of Tunisia like southern Tunisia.

Acknowledgement

We thank the heads of Hygienic Services of Public Health, all of whom facilitated the field work together, and the health agents who contributed to the achievement of this survey. This study was carried out with the financial support of the Research Unit "Laboratoire de Parasitologie-Mycologie Médicale et Moléculaire" Faculté de Pharmacie de Monastir, Université de Monastir, Tunisie.

References

1. Borkent A (2011) Numbers of extant and fossil species of Ceratopogonidae. Illinois Natural History Survey, University of Illinois.
2. Meiswinkel R, Labuschagne K, Golffredo M (2004) Christopher Columns and Culicoides: was C. jamaicans Edwards, 1922 introduced into the Mediterranean and 500 years later renamed C. paolae Boorman, 1996? 3rd International Symposium, Taormina.
3. Rasmussen LD, Kristensen B, Kirkeby C, Rasmussen, TB, Beldham GI, et al. (2012) Culicoids as vectors of Schnallegben virus. Emerg Infect Dis 18: 1204-1206.
4. Eagles D, Walker PJ, Zalucki MP, Durr PA (2013)Modelling spatio-temporal patterns of long-distance Culicoides dispersal into northern Australia. Prev Vet Med 110: 312-322.
5. Hammami S (2004) North Africa: a regional overview of bluetongue virus, vectors, surveillance and unique features. Vet Ital 40: 43-46.
6. Chaker E, Kremer M (1982) Culicoids of Tunisia: morphological characteristics. Chorology and ecology of species found. Arch Inst Past T 59: 511-540.
7. Sghaier S, Hammami S, Hammami H, Dkhil A, Delécolle JC (2009) Entomological surveillance of Culicoides (Diptera: Ceratopogonidae), vector of Bluetongue in Tunisia. Rev Elev Méd Vété Pays Trop 62.
8. Campbell JA, Pelham-Clinton EC (1960) A taxonomic review of the British species of Culicoides Latreille (Diptera: Ceratopogonidae). P Roy Soc Edinb 67: 181-302.
9. Delécolle JC (1985) Nouvelle contribution à l'étude systématique et iconographique des espèces du genre Culicoides (Diptera: Ceratopogonidae) du Nord-est de la France. Université Louis Pasteur de Strasbourg, France.

10. Mathieu B, Cêtre-Sossah C, Garros C, Chavernac D, Balenghien T, et al. (2012) Development and validation of IIKC: an interactive identification key for Culicoides (Diptera: Ceratopogonidae) females from the Western Palaearctic region. Parasites & Vectors 5: 1.

11. Clarke K, Gorley RN (2005) Primer v6: User manual/Tutorial.

12. Chaker E, Sfari M, Rabhi M, Rouis M, Babba H, et al. (2005) Faunistic note on Culicoides (Diptera, Ceratopogonidae) from the governate of Monastir (Tunisia). Parasite 12: 359-361.

13. Hammami S, Bouzid M, Hammou F, Fakhfakh E, Delécolle JC (2008) Occurrence of Culicoides spp. (Diptera: Ceratopogonidae) in Tunisia, with emphasis on the bluetongue vector Culicoides imicola. Parasite 15: 179-181.

14. Ramilo DW, Diaz S, da Fonseca IP, Delécolle JC, Wilson A, et al. (2012) First report of 13 species of Culicoides (Diptera: Ceratopogonidae) in mainland Portugal and Azores by morphological and molecular characterization. PLoS ONE 7: e34896.

15. Slama D, Chaker E, Mathieu B, Babha H, Depaquit J, et al. (2014) Biting midges monitoring (Diptera: Ceratopogonidae: Culicoides Latreille) in the governate of Monastir (Tunisia): species composition and molecular investigations. Parasitol Res 113: 2435-2443.

16. Venter GJ, Meiswinkel R (1994) The virtual absence of Culicoides imicola (Diptera: Ceratopogonidae) in a light trap survey of the colder, high-lying area of the eastern Orange Free State, South Africa, and implications for the transmission of arboviruses. Onderstepoort J Vet Res 61: 327-340.

17. Weser-Schimpf L, Foul LD, Holbrook FR (1990) Comparison of New Jersey light traps for collection of adult Culicoides variipennis (Diptera: Ceratopogonidae). J Am Mosq C Assoc 6: 537-538.

18. Panel on Animal Health and Welfare (2008) Scientific Opinion of the Panel on Animal Health and Welfare on a request from the European Commission (DG SANCO) on Bluetongue. European Food Safety Authority (EFSA).

19. Estrada R, Carmona VJ, Elbal PMA, Chueca MAM, Borrás D, et al. (2011) Primera cita de Culicoides paolae Boorman, 1996 (Diptera, Ceratopogonidae) para la Península Ibérica . B Soc Entomol A 49: 217-221.

20. Boorman J, Mellor PS, Scaramozzino P (1996) A new species of Culicoides (Diptera : Ceratopogonidae) from Southern Italy. Parasitol 38: 501-503.

21. Callot J, Kremer M (1969) Description of a new Culicoides, C. jumineri (Dipt. ceratopognonid) found in Tunisia. B Soc Pathol Exot Fil 62: 1112-1118.

22. Foxi C, Deltro G (2010) Larval habitats and seasonal abundance of Culicoides biting midges found in association with sheep in northern Sardinia, Italy. Med Vet Entomol 24: 199-209.

23. Mellor PS, Pitzolis G (1979) Observations on breeding sites and light trap collections of Culicoides during an outbreak of bluetongue in Cyprus. B Entomol Res 69: 229-234.

24. Braverman Y, Galin R, Ziv M (1974) Breeding sites of some Culicoides species (Diptera, Ceratopogonidae) in Israel. Mosq News 34: 303-308.