Atypical late-onset severe gastritis in immune dysregulation, polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome: 2 case reports

Youhong Fang, MD, Youyou Luo, MD, Jingan Lou, MD, Jie Chen, MD

Abstract

Rationale: The immune dysregulation, polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome is a rare disorder that most often manifests in the early stages of life. IPEX syndrome with a late onset, presenting with severe gastritis has rarely been reported.

Patient concerns: Two male adolescents presented with recurrent vomiting, severe malnutrition, and growth retardation due to severe gastritis.

Diagnoses: Esophagogastroduodenoscopy of the 2 patients revealed rare presentations of severe gastritis with multiple ulcers and stenosis of the pylorus. Next-generation sequencing revealed 2 novel variants in gene FOXP3 in the patients who were diagnosed with the IPEX syndrome.

Interventions: Both patients were treated with a high calorie formular enteral nutritional therapy. In addition, the pylorus of patient 1 was enlarged by balloon dilation, while patient 2 was treated with mercaptopurine and low dose prednisone.

Outcomes: Symptoms and nutritional status of the patients improved after treatment.

Lessons: Chronic severe gastritis with stenosis of the pylorus could be an atypical manifestation of the IPEX syndrome. The use of next-generation sequencing is highly suitable for the diagnosis of atypical IPEX syndromes.

Abbreviations: BMI = body mass index, EGD = esophagogastroduodenoscopy, FOXP3 = Forkhead box protein 3, HP = Helicobacter pylori, HSCT = hematopoietic stem cell transplantation, Ig = immunoglobulin, IPEX = immune dysregulation, polyendocrinopathy, enteropathy, and X-linked, IS = immunosuppressant, regulatory T cell = Treg cell, T1DM = type I diabetes mellitus, WES = whole exon sequencing.

Keywords: case report, FOXP3, gastritis, IPEX syndrome, pylorus stenosis

1. Introduction

The IPEX syndrome (immune dysregulation, polyendocrinopathy, enteropathy, and X-linked syndrome) is a rare immune disorder that most commonly presents in the early stages of life but can occur antenatally[1] or later in life.[2] The syndrome is characterized by severe enteropathy, chronic dermatitis, early-onset type I diabetes mellitus (T1DM), autoimmune thyroiditis, antibody-mediated cytopenia, and other autoimmune diseases.[3] IPEX syndrome is caused by mutations in the forhead box protein 3 (FOXP3) gene, which is located in the centromeric region of the X chromosome and encodes a key factor in human CD4+CD25+ regulatory T (Treg) cell development.[4,5]

Clinical features of the IPEX syndrome have previously been described, and most IPEX syndrome patients suffer from severe diarrhea during the first days of life. However, an increasing number of atypical cases have been diagnosed by FOXP3 gene sequencing, indicating various manifestations of IPEX syndrome.[6,7] IPEX syndrome patients who present with atypical symptoms have often been misdiagnosed before the correct diagnosis, or received the information late in life. An early diagnosis of IPEX syndrome could provide better treatment and improve patients’ quality of life. Here, we report 2 rare IPEX syndrome patients who presented with late-onset severe gastritis and pyloric stenosis, which has not been reported previously.

2. Ethics statement

This study was approved by the Children’s Hospital of Zhejiang University, School of Medicine. Informed written consents were obtained from the patients and their parents for publication.
The clinical characteristics of the 2 patients with IPEX syndrome.

| Patient | Sex | Onset age | Admission age | Initial symptoms | Family history | ZHFA | ZBMA/ZWFA | Other presentations |
|---------|-----|-----------|---------------|------------------|----------------|------|-----------|-------------------|
| P1      | M   | 9Y        | 14Y1M         | Vomiting          | Unremarkable   | -3.29 | -3.53     | Growth failure, anemia, hypo-immunoglobulin |
| P2      | M   | 12Y8M     | 13Y3M         | Vomiting, diarrhea| Unremarkable   | -2.69 | -2.90     | Autoimmune hepatitis, growth failure, hypothyroidism, anemia |

ZBMA = Z score of BMI for age, ZWFA = Z score of weight for age, ZHFA = Z score of height for age.

3. Case report

3.1. Case 1

Patient 1, a 14-year 1-month-old, was the second child in his family, born at term with a birth weight of 3350g after an uneventful pregnancy. The baseline information is shown in the Table 1. During hospitalization, the laboratory tests revealed normal level of white blood cell count and hemoglobin. His serum albumin level and his liver function were normal. The expression of antineutrophil cytoplasmic antibodies and other autoantibodies against glutamic acid decarboxylase, anti-insulin antibodies, anti-islet cells, and antibodies against tyrosine phosphatase were all negative. The lymphocyte subsets analysis was normal, while the levels of serum immunoglobulin (Ig) G, Ig A, and Ig M were significantly decreased (Table 2). The most remarkable finding of esophagogastroduodenoscopy (EGD) was a severe gastritis involving the entire stomach, especially its sinuous part (Fig. 1A). The appearance and histology findings of endoscopy are summarized in Table 2. Rapid urease testing and hematoxylin and eosin staining of the biopsy sample indicated a Helicobacter pylori (HP) infection.

He received anti-HP therapy, and a repeated HP test subsequently returned negative. However, the ulcers of the stomach did not recover. Because of the stenosis of pylorus, he received balloon dilation for four times in prior years. The patient’s vomiting decreased after this treatment, and he began to gain weight with enteral nutrition therapy; however, the gastritis and ulcers of the stomach did not show any significant improvement. The latest balloon dilation was performed approximately 2 years ago. Because of the persistent gastritis and low immunoglobulin levels, an immunodeficiency was suspected and he had whole exon sequencing (WES) examination. WES revealed a hemizygous mutation of the FOXP3 gene, chrX:49107810, exon11, c.1280dupC, insertion, p.P427fs (Fig. 1B). The mutation (a base shift) results in a change in the protein, which is thought to result in a loss of function. The locus of the mutation has so far not been reported. Treg/CD3+CD4+ expression was investigated and indicated low expression of antineutrophil cytoplasmic antibodies and other autoimmune diseases related antibodies, described in the first case, were all negative. His levels of serum total triiodothyronine and free triiodothyronine were decreased due to malnutrition. EGD showed severe chronic inflammation, multiple ulcers in the stomach, and pyloric stenosis, which resemble with the first case (Fig. 1A). The endoscopy and histological data of the biopsy are summarized in Table 2. The abdominal enhanced computed tomography scan indicated cirrhosis and fibrosis of the liver.

in expression of the FOXP3 protein on T cells. The patient was then diagnosed with the IPEX syndrome and prescribed mercaptopurine because of persistent gastritis. However, the patient experienced recurrent respiratory bacterial infections and therefore stopped the treatment of mercaptopurine. Due to the economic situation of the patient’s family, HSCT was not an option. Despite the discontinuation of the medication, during a period of more than 3 years, the patient did not experience any symptoms. The Z score of height for age and body mass index (BMI) for age were both between -3 SD and -2 SD.

3.2. Case 2

Patient 2, a 13-year 3-month-old boy, was born as the second child of his mother. He had a healthy 17-year-old sister. Patient 2 was diagnosed with an autoimmune liver disease 3.5 years before presentation to the authors and was treated with prednisone at a dose of 1.5 mg/kg per day, which was gradually decreased to 2 mg per day. The patient had taken prednisone 2 mg per day for more than 2 years with no detectable effect on liver function. However, the patient continued to suffer from watery diarrhea and vomiting for already 7 months and was diagnosed multiple ulcers of the stomach and chronic diarrhea in another hospital. In this facility, he was treated with omeprazole and supportive treatment; however, his condition did not improve.

Upon admission, he was extremely malnourished with a Z score of weight for age -3.61, and the Z score of BMI for age was -6.20. The cervical and inguinal lymph nodes were enlarged (with the largest being 1.5 cm x 1 cm in size), and he did not have hepatosplenomegaly or edema. The laboratory investigations showed a normal white blood count and mild anemia, as well as a slight reduction in albumin, while the liver function was normal. The lymphocyte subsets and serum immunoglobulin levels of the patient were all within normal range. The expression of autoimmune diseases related antibodies, described in the first case, were all negative. His levels of serum total triiodothyronine and free triiodothyronine were decreased due to malnutrition. EGD showed severe chronic inflammation, multiple ulcers in the stomach, and pyloric stenosis, which resemble with the first case (Fig. 1A). The endoscopy and histological data of the biopsy are summarized in Table 2. The abdominal enhanced computed tomography scan indicated cirrhosis and fibrosis of the liver.

| Table 1 |
The clinical characteristics of the 2 patients with IPEX syndrome.

| Patient | Sex | Onset age | Admission age | Initial symptoms | Family history | ZHFA | ZBMA/ZWFA | Other presentations |
|---------|-----|-----------|---------------|------------------|----------------|------|-----------|-------------------|
| P1      | M   | 9Y        | 14Y1M         | Vomiting          | Unremarkable   | -3.29 | -3.53     | Growth failure, anemia, hypo-immunoglobulin |
| P2      | M   | 12Y8M     | 13Y3M         | Vomiting, diarrhea| Unremarkable   | -2.69 | -2.90     | Autoimmune hepatitis, growth failure, hypothyroidism, anemia |

ZBMA = Z score of BMI for age, ZWFA = Z score of weight for age, ZHFA = Z score of height for age.

| Table 2 |
The clinical and laboratory characteristics of the 2 IPEX patients.

| Patient | EGD             | Histopathology          | Colonoscopy | Serum Ig E/Ig G levels | Treg/CD3+CD4+Treg/CD3+ |
|---------|-----------------|-------------------------|-------------|------------------------|------------------------|
| P1      | Severe gastritis, multiple ulcers, stenosis of the pylorus | Infiltration of lymphocytes, plasma cells, neutrophils, and eosiniphils (6–39/HP) | NA          | <18.9 IU/mL             | 3.90% (4.52–10.98%)   |
|         |                 |                         |             | 1.95 g/L                | 1.98% (2.49–6.16%)     |
|         |                 |                         |             | (5.00–10.00 g/L)        |                        |
| P2      | Severe gastritis, multiple ulcers and stenosis of the pylorus | Chronic inflammation, eosinophil infiltration (10–25/HP) | Normal   | <18.9 IU/mL             | 6.87%                  |
|         |                 |                         |             | 21.8 g/L                | 3.66%                  |
Liver biopsy indicated autoimmune hepatitis. Next-generation sequencing revealed a missense mutation located at leucine zipper domain, chrX-49111940, exon8, c.766A>G, missense, p.M256V (leucine zipper). This mutation was considered variant with an unknown effect on protein function according to American College of Medical Genetics and Genomics. The locus of the mutation had not been reported previously. His Treg/CD3+CD4+ and Treg/CD3+ expression was normal compared with age matched healthy children, Treg/CD3+CD4+ was 6.87%, and Treg/CD3+ was 3.66%. These data did not indicate a decrease in the expression level of the FOXP3 protein in the patient. Combined with the clinical presentation, he was diagnosed with IPEX syndrome.

This patient was treated with partial parenteral nutrition and oral mercaptopurine (1.5 mg/kg per day), while also continuing to take prednisone (2 mg per day). The patient’s vomiting drastically improved, while the gastritis did not get much better, as indicated by the EGD repeated 1 month later. Despite this, 8 months after the beginning of the above-described treatment, the patient could tolerate a normal diet, and his Z score of BMI for age increased from -6.20 SD to -3.97 SD. He was also advised to undergo HSCT therapy. However, he also had liver cirrhosis and his parents decided to continue the current medical therapy.

4. Discussion

IPEX is a primary immunodeficiency disease caused by mutations of the FOXP3 gene, which encodes a member of the forkhead transcription factor family[9] expressed primarily in CD4+CD25+ regulatory T cells, and leads to multiorgan autoimmunity in IPEX patients.[9] Furthermore, other mutations in genes such as IL2RA, LRBA, CTLA4, STAT1 GOF, STAT3 GOF, STAT5b, TTC7A, TTC37, and DOCK8 are related to IPEX-like syndrome.[10] The clinical presentations of IPEX syndrome are variable and typically involve severe enteropathy, T1DM, and eczema,[11] while the symptoms often overlap with other distinct clinical manifestations, including those of hematologic disease, renal disease, hepatic disease, lymphadenopathy, and severe infectious disease.[10] Diarrhea usually begins within the first few months of life in the majority of IPEX patients, and some patients have histories of food allergies.[12] Histologically, nearly half of the patients have villous atrophy on small bowel biopsy.[13] The immunoglobulin levels are generally normal, except for elevated IgE levels in most IPEX syndrome patients.[10] CD4+ and CD8+ lymphocyte subset counts are usually normal. More than 70 mutations have been revealed in IPEX syndrome.[11] However, the severity of symptoms is unpredictable and is not related to the mutation type. In addition, patients with the same mutations could have completely different phenotypes, which could reflect the complex intracellular interactions of FOXP3.[14]

With awareness of IPEX syndrome and recognition of FOXP3 gene mutations, an increasing number of atypical IPEX syndrome patients have been identified. Some patients with IPEX syndrome have mild and recurrent courses, which can delay the diagnosis.[11] Notably, some patients even have gastritis along with other immune diseases.[12,13] Here, we reported 2 patients with rare late-onset atypical IPEX syndrome who mainly presented similar symptoms of severe gastritis with pyloric stenosis. We previously reported an IPEX syndrome patient who had a similar presentation as these 2 patients.[12] Villus atrophy was observed.
in the descending part of the duodenum, and pathological eosinophil infiltration was reported.\cite{15} The 2 patients had disease onset during adolescence without the typical enteropathy observed in most IPEX patients, and their EGD had similar findings with multiple ulcers throughout the stomach, especially around the sinus and the body of the stomach, along with pylorus stenosis. Patient 1 had HP infection at the first biopsy; however, after anti-HP treatment, the inflammation and ulcers did not show improvement. Moreover, the appearance of the EGD did not show a chronic infection caused by HP. Histology revealed an infiltration of multiple inflammatory cells, which did not resemble a HP infection. The serum IgG, IgA, and IgM levels in patient 1 were lower than the normal range, indicating immunodeficiency, which is not commonly observed in IPEX patients. Recently, several patients with hypogammaglobulinemia were reported; here, a functional B cell class switching defect was suggested as a possible explanation.\cite{16} Patient 2 was first diagnosed with autoimmune hepatitis in another hospital and was treated with prednisone; however, the histological investigation showed rapid deterioration, severe fibrosis, and atrophy of the liver. According to this presentation, autoimmune hepatitis could be one of the symptoms of IPEX syndrome. The mutation of patient 2 was not previously reported and was not validated by a study addressing the protein function. The level of Treg cells of patient 2 was not previously reported and was not validated by a study addressing the protein function.

Regarding the treatment of the IPEX syndrome, there are no standard therapeutic strategies, but the main methods include immune suppression and HSCT.\cite{7,17} Normally, the effect of T cell-targeted immunosuppressant (IS) is better than that of other forms of IS. The only cure for the disease is HSCT, and it is better to perform HSCT before more organs are affected. According to the latest multicenter study, the survival rate after IS treatment was comparable to that after HSCT.\cite{15} Although most of the symptoms of the 2 patients were drastically reduced in the 2 cases described in this article, their gastritis did not recover. The previously reported patient by our team underwent HSCT, his symptoms got dramatically better, and his gastritis fully remitted. Therefore, we suggest that HSCT may be the best choice for patients with severe gastritis.

In summary, we have diagnosed 3 IPEX syndrome patients, 2 patients in the present report and 1 previously reported. The EGD of the 3 patients revealed similar extents of gastritis, which were not reported in the literature. In all 3 patients, next-generation sequencing was performed, which revealed 2 novel mutations of FOXP3. However, the impact of these novel mutations was not confirmed by a functional study. Moreover, the mechanism that causes the gastritis in these patients remains unclear and requires further research.

Altogether, according to our experience, chronic severe gastritis with stenosis of pylorus could be an atypical presentation of the IPEX syndrome, and they may be a late-onset of the disease. Next-generation sequencing could help in the diagnosis of such atypical patients.

### Table 3

The clinical features and gene mutations of FOXP3 of previously reported IPEX syndrome patients presenting with severe gastritis.

| Disease onset | Symptoms                  | Mutation       | Other presentations              | Serum IgE levels | Treatment                  | Outcome          | Reference        |
|---------------|---------------------------|----------------|---------------------------------|-----------------|---------------------------|-----------------|-----------------|
| <1 Y          | Recurrent ear infections  | R347H          | T1DM, mild xerostomia, pancreatic exocrine failure, growth failure | >230 IU/mL      | IS/gastrectomy            | Remission, followed up until 19 yrs old | Gambineri et al\cite{17} |
| 22M           | Bleeding gastritis        | R347H          | T1DM, hyperglobulinemia, respiratory infection, failure to thrive, pancreatic atrophy | Normal          | Omeprazole, total gastrectomy | Remission, followed up until 22 yrs old | Rodrigo et al\cite{17} |
| 3 Y           | Vomiting                  | Lys250del (leucine zipper) | TIMD, anemia, food allergy | IS, HSCT | Remission | | Luo et al\cite{12} |

Notes: HSCT = hematopoietic stem cell transplantation; IS = immunosuppressant; T1DM = type 1 diabetes mellitus.

### References

1. Allenspach EJ, Finn LS, Rendi MH, et al. Absence of functional fetal regulatory T cells in humans causes in utero organ-specific autoimmunity. J Allergy Clin Immunol 2017;140:616–9. e617.
[2] Ge T, Wang Y, Che Y, et al. Atypical late-onset immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome with intractable diarrhea: a case report. Front Pediatr 2017;5:267.

[3] Reichert SL, McKay EM, Moldenhauer JS. Identification of a novel nonsense mutation in the FOXP3 gene in a fetus with hydrops—expanding the phenotype of IPEX syndrome. Am J Med Genet A 2016;170A:226–32.

[4] Charila TA, Blaeser F, Ho N, et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest 2000;106:R73–81.

[5] Magg T, Mannert J, Ellwart JW, et al. Subcellular localization of FOXP3 in human regulatory and nonregulatory T cells. Eur J Immunol 2012;42:1627–38.

[6] De Benedetti F, Insalaco A, Diamanti A, et al. Mechanistic associations of a mild phenotype of immunodysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Clin Gastroenterol Hepatol 2006;4:653–9.

[7] Sheikine Y, Woda CB, Lee PY, et al. Renal involvement in the immunodysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) disorder. Pediatr Nephrol 2015;30:1197–202.

[8] Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001;27:20–1.

[9] Powell BR, Buist NR, Stenzel P. An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J Pediatr 1982;100:731–7.

[10] Gambineri E, Ciullini Mannurita S, Hagin D, et al. Clinical, immunological, and molecular heterogeneity of 173 patients with the phenotype of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. Front Immunol 2018;9:2411.

[11] Bacchetta R, Barzaghi F, Roncarolo MG. From IPEX syndrome to FOXP3 mutation: a lesson on immune dysregulation. Ann N Y Acad Sci 2018;1417:5–22.

[12] Luo Y, Chen J, Fang Y, et al. A case of metaplastic atrophic gastritis in immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. BMC Pediatr 2018;18:19.

[13] Gambineri E, Perroni L, Passerini L, et al. Clinical and molecular profile of a new series of patients with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome: inconsistent correlation between forkhead box protein 3 expression and disease severity. J Allergy Clin Immunol 2008;122:1103–12. e1101.

[14] Allan SE, Passerini L, Bacchetta R, et al. The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs. J Clin Invest 2005;115:3276–84.

[15] Barzaghi F, Amaya Hernandez LC, Neven B, et al. Long-term follow-up of IPEX syndrome patients after different therapeutic strategies: an international multicenter retrospective study. J Allergy Clin Immunol 2019;143:1036–49. e1035.

[16] Shamriz O, Patel K, Marsh RA, et al. Hypogammaglobulinemia with decreased class-switched B-cells and dysregulated T-follicular-helper cells in IPEX syndrome. Clin Immunol 2018;197:219–23.

[17] Rodrigo R, Atapattu N, de Silva KS. IPEX syndrome with membranoproliferative nephrotic syndrome. Ceylon Med J 2013;58:43–4.