Quasi-Coregular Modules

Rafid M. AL – Shaibani(1) and Nuhad S. AL – Mothafar(2)

Dept. of Mathematic/ "College of Science/ University of Baghdad, Iraq

E-mail: sadirafid937@gmail.com and "Nuhad_Math@yahoo.com

Abstract: In this paper, we introduce the concept of quasi – copure submodules which is a generalization of a copure submodules. We used this concept to define the class of quasi – coregular module, where an R-module M is called quasi – coregular module if every submodule of M is quasi-co-pure. Many results about this concept are proved.

1. Introduction
Throughout this note, R is commutative ring with identity and M be a unitary R-module. A submodule N of an R-module M is called pure in M if IN = N ∩ IM for every ideal I of R [1]. An R-module M is regular module if every submodule of M is pure [2]. Ansari and F. Darshadifar in [3] introduced the concept of copure submodules, where a submodule N of M is called copure if [N : I] = N + [0 ; M] for each ideal I of R. First recall that a submodule N of an R-module M is called a quasi – pure if for each x ∈ M and x /∈ N, there exists a pure submodule L of M such that N ⊆ L and x /∈ L. This paper is structured in two sections. In section one we give new results about quasi-copure submodules. In section two, we study the concept of quasi – coregular mmodules. We give some relationships between quasi – coregular modules (rings) and quasi – regular modules (rings).

2. Quasi -Copure Submodules:
In this section we introduce the concept of quasi -copure submodule. We investigate the basic properties of these type of submodules are analogous to the properties of copure submodules.

Definition (2.1): Let M be an R-module. A submodule N of M is called a quasi – copure submodule of M if for each x ∈ M and x /∈ N, there exists a copure submodule L of M such that N ⊆ L and x /∈ L.

Remarks and Examples (2.2):
(1) Every copure submodule is quasi – copure. But the converse is not true in general. We have no example.
(2) Let M = Z₁ ⊕ Z₂ as a Z-module, and N = Z (2, 1), then N = {(0, 0), (2, 1)} is quasi – pure submodule of M. Since N is pure [4]. But is not a quasi – copure submodule of M, since there exists no copure submodule contain N = Z (2, 1).
(3) {0, 2} in Z₄ as a Z-module is not quasi – copure, since there is no copure submodule contain {0, 2}. And not quasi – pure [4].
(4) If M is semisimple R-module, then every submodule of M is quasi-copure.
(5) If R is a principal ideal ring, then every submodule of a coregular R-module is quasi-copure.
(6) Let $M = Z_2 \bigoplus Z_2$ as a Z-module, and $\text{add} N = \{(0, 0), (2, 0)\} = 2Z_2 \bigoplus 0 \cong Z_2$. It is easy to check that N is quasi-copure submodule of M, since N is a submodule of M.

(7) In any R-module M, the submodules N and M are always quasi-copure submodules.

Recall that an RR-module M is called copure simple if M and $< 0 >$ are the only copure submodule of M.

(8) Every copure simple R-module M does not contain quasi-copure submodule except $< 0 >$ and M, because the copure simple module has non-zero proper copure submodule. For example, the Z-modules Q, Z_p.

Proposition (2.3): If A and B are quasi-copure submodules of an R-module M, then $A \cap B$ is quasi-copure submodule of M.

Proof: Let $x \in M$ and $x \notin A \cap B$, then either $x \notin A$ or $x \notin B$. Assume that $x \notin A$. Since A is quasi-copure in M, then there exists a copure submodule D of M such that $A \subseteq D$ and $x \notin D$. This implies that $A \cap B \subseteq D$ and $x \notin D$. That is $A \cap B$ is quasi-copure submodule of M.

Proposition (2.4): Let M and M' be two R-modules. If $f: M \longrightarrow M'$ be an epimorphism and N is a quasi-copure submodule of M such that $f(N)$ is a copure submodule in M'. If $y \in M$ and $y \notin f(N)$, then $y \notin f(N)$.

Proof: Let $y \in M'$ and $y \notin f(N)$, since f is epimorphism, then there exists $x \in M$ such that $y = f(x)$ and $x \notin N$. Since N is a quasi-copure submodule of M, then there exists a copure submodule L of M such that $N \subseteq L$ and $x \notin L$. Since L is a copure submodule of M, hence $f(L)$ is a copure submodule of M'.

Corollary (2.5): Let M be a R-module and N be a submodule of an R-module M. If N is quasi-copure in M, then $N \cap B$ is copure in B.

Proof: It follows directly by proposition (2.4), by taking the natural epimorphism $\pi: M \longrightarrow M/N$.

Proposition (2.6): Let N be a submodule of an R-module M. Then N is quasi-copure in M if and only if $N = \bigcap_{\alpha} L_{\alpha}$, where L_{α} are copure submodules of M containing N.

Proof: Assume that N is a quasi-copure submodule of M. It clear that $N \subseteq \bigcap_{\alpha} L_{\alpha}$. We have to show that $\bigcap_{\alpha} L_{\alpha} \subseteq N$. Let $y \in \bigcap_{\alpha} L_{\alpha}$, then $y \notin L_{\alpha}$, for some α. Suppose $y \notin N$. Since N is quasi-copure, hence y is not contained in any copure submodule that contains N, which is a contradiction, thus $y \in N$. Then $\bigcap_{\alpha} L_{\alpha} \subseteq N$ and $N = \bigcap_{\alpha} L_{\alpha}$.

Conversely, assume that $N = \bigcap_{\alpha} L_{\alpha}$, where L_{α} are copure submodules of M, for each α, and containing N. Let $x \in M$ and $x \notin N$. Since $N = \bigcap_{\alpha} L_{\alpha}$, then $x \notin L_{\alpha}$, for some α. Thus $N \subseteq L_{\alpha}$ and $x \notin L_{\alpha}$, for some α. Hence N is quasi-copure.

Proposition (2.7): Let $N_1 \subseteq N_2 \subseteq \ldots$ be a ascending chain of quasi-copure submodules of an R-module M. Then $\bigcup_{i=1}^{\infty} N_i$ is quasi-copure in M.

Proof: Let $x \in M$ and $x \notin \bigcup_{i=1}^{\infty} N_i$, then $x \notin N_i$, for each i. Since N_i is quasi-copure, for each i, then there exists copure submodule L_i, such that $N_i \subseteq L_i$ and $x \notin L_i$, for each i. Then $\bigcup_{i=1}^{\infty} N_i \subseteq \bigcup_{i=1}^{\infty} L_i$, and $\bigcup_{i=1}^{\infty} L_i$ is copure submodule in M.

Remark (2.8): Every direct summand of an R-module M is quasi-copure.

Proof: Since every direct summand of an R-module M is copure, and every copure is quasi-copure, hence is quasi-copure.

Proposition (2.9): Let $M = M_1 \bigoplus M_2$ be an R-module and N_1, N_2 be submodules of M_1, M_2 respectively. Then $N = N_1 \oplus N_2$ is quasi-copure submodule of M if and only if N_1 is quasi-copure submodule of M_1, for each $i = 1, 2$.
Submodule of H hence N is quasi-copure in M.

For the converse, let $x \in M$ and $x \notin N$ such that $x \notin N = N_1 \oplus N_2$, $x = (x_1, x_2)$ then neither $x_1 \notin N_1$ or $x_2 \notin N_2$. Assume that $x_1 \notin N_1$, since N_1 is quasi-copure in M_1, so there exists a copure submodule L_1 of M_1 such that L_1 containing N_1 and $x_1 \notin L_1$.

Similarly, if $x_2 \notin N_2$, then there exists a copure submodule L_2 of M_2 such that L_2 containing N_2 and $x_2 \notin L_2$. Since L_1 and L_2 are copure in M_1 and M_2 respectively. Then $L = L_1 \oplus L_2$ is a copure submodule of M.

Theorem (2.10): Let M be a direct sum of R-modules M_1, M_2, \ldots, M_n. If $N_i \subseteq M_i$ for each $i = 1, \ldots, n$. Then $N = \bigoplus N_i$ is a copure submodule if and only if N_i is quasi-copure in M_i, for each $i = 1, n$.

Proposition (2.11): Let N be a submodule of an R-module M. If N is quasi-copure in M, then $N_\mathfrak{p}$ is quasi-copure in $M_\mathfrak{p}$ as $R_\mathfrak{p}$-module for every maximal ideal \mathfrak{p} of R.

Theorem (2.12): Let M be a faithful finitely generated multiplication R-module, and N be a submodule of M. Then N is quasi-copure in M if and only if $[N : R]$ is a quasi-copure ideal of R.

Proposition (2.13): Let M be a faithful generated multiplication R-module, let N be a submodule of M. The following statements are equivalent:

1. N is quasi-copure submodule in M.
2. $[N : R]$ is a quasi-copure ideal of R.
3. $N = IM$ for some quasi-copure ideal I in R.

Proof: (1) \iff (2) follows by Theorem (2.12).

(2) \implies (3) It is clear.

(3) \implies (2) Suppose $N = IM$ and I is a quasi-copure ideal of R. Since M is multiplication, then $N = [N : R]$ is a quasi-copure ideal of R. Thus $[N : R]$ is a quasi-copure ideal of R.

Proposition (2.14): Let M be a multiplication R-module with $\text{ann}_R(M)$ is a pure ideal in R. If N is a multiplication quasi-copure submodule of M, then N is contained a pure submodule of M.

Proof: It is clear that $N = M[N : R]$ is a pure submodule of N. Since N is quasi-copure in M, then for each $x \in M$ and $x \notin N$ there exists a copure submodule L of M, such that $N \subseteq L$. $[L : R]$ is a copure ideal in R and $N \subseteq L$, $x \notin L$. Then $N = \bigoplus N_i$ is a copure submodule of M, for each $i = 1, n$. Hence N is quasi-copure in M.
and hence \(L = \{ L R M \} L \), since \(M \) is multiplication. Then by [9, Theorem 1.1 (1)⇒ (2)]. Therefor \(L \) is pure submodule in \(M \), but \(N \subseteq L \) and \(N \) quasi – co-pure in \(M \).

Proposition (2.15): Let \(M_1 \) and \(M_2 \) be \(R \)-module, and let \(A \) be submodule in \(M_1 \) and \(B \) be a submodule in \(M_2 \) such that \(\text{ann}_R(M_1) + \text{ann}_R(M_2) = R \). If \(A \oplus B \) is quasi – copure submodule in \(M = M_1 \oplus M_2 \), then \(A \) is quasi – copure in \(M_1 \) and \(B \) is quasi – copure submodule in \(M_2 \).

Proof: To show that \(A \) is quasi –copure in \(M_1 \). Let \(m \in M_1 \) and \(m \notin A \). Then \((m, 0) \notin A \oplus B \). Since \(A \oplus B \) is quasi – copure submodule in \(M \). So there exists a co-pure submodule \(D \) in \(M \) such that \(D \subseteq \text{ann}_R(M_1) \oplus \text{ann}_R(M_2) \). Let \((m, 0) \notin D \) since \(\text{ann}_R(M_1) + \text{ann}_R(M_2) = R \). Then by apart of the proof of [10, Proposition (4.2), CH.1], any submodule of \(M = M_1 \oplus M_2 \) can be written as direct sum of two submodule of \(M_1 \) and \(M_2 \). Thus \(D = N \oplus K \) for some submodules \(N \) and \(K \) of \(M_1 \) and \(M_2 \) respectively. It follows by [5] that \(N \) is copure submodule in \(M_1 \) and \(K \) is copure submodule in \(M_2 \). Since \(A \oplus B \subseteq N \oplus K \), so \(A \subseteq N \) and \(B \subseteq K \). But \((m, 0) \notin D = N \oplus K \), then \(m \notin N \). Therefore \(A \) is quasi – copure submodule in \(M_1 \). Similarly, \(B \) is quasi – copure submodule in \(M_2 \).

Remark (2.16): The condition \(\text{ann}_R(M_1) + \text{ann}_R(M_2) = R \) is necessary in proposition (2.15). For example, the module \(\mathbb{Z}_4 \oplus \mathbb{Z}_2 \) as \(\mathbb{Z} \)-module. Clearly that \(\text{ann}_R(\mathbb{Z}_4) + \text{ann}_R(\mathbb{Z}_2) = 2\mathbb{Z} \neq \mathbb{Z} \). As we have seen in Remark and Examples (2.1), the submodule \(< 2, 0 > = < 2 > \oplus < 0 > \) is quasi – copure submodule in \(\mathbb{Z}_4 \oplus \mathbb{Z}_2 \). But \(2\mathbb{Z}_4 \) is not quasi – copure submodule in \(\mathbb{Z}_4 \).

3. **Basic Results for Quasi –co-regular modules**

In this section, we introduce and study the class of quasi –co-regular modules. However, we give some basic results about this concept. Beside these we study the direct summand of quasi-co-regular modules and direct sum of quasi-co-regular modules.

Recall that an \(R \)-module \(M \) is called coregular if every submodule is co-pure and a ring \(R \) is co-regular if every ideal of \(R \) is co-pure [5]. An \(R \)-module \(M \) is quasi-regular if every submodule of \(M \) is quasi-pure [4].

Definition (3.1): An \(R \)-module \(M \) is called quasi – coregular if every submodule of \(M \) is quasi – copure.

Remark and Example (3.2):

1. Clearly that every coregular \(R \)-module is quasi – coregular. For example, the \(\mathbb{Z} \)-module \(\mathbb{Z}_6 \) is quasi-coregular. Since every semisimple module is coregular, hence \(\mathbb{Z}_6 \) is quasi – coregular. But the converse is not true in general. We have no example.

2. Every semisimple \(R \)-module is coregular, hence is quasi – coregular. But the converse is not true in general. We have no example.

3. If \(M \) is copure simple, then \(M \) is not quasi-coregular. For example each of the \(\mathbb{Z} \)-module \(\mathbb{Z}_4 \) and \(\mathbb{Z}_2 \) are not quasi – coregular.

4. \(\mathbb{Z}_4 \) as \(\mathbb{Z} \)-module is not quasi – coregular since not coregular [4].

Proposition (3.3): Let \(M \) be a quasi- co-regular \(R \)-module and \(N \) be submodule of \(M \), then \(\frac{M}{N} \) is quasi – coregular \(R \)-module.

Proof: Let \(\frac{K}{N} \) be submodule of \(\frac{M}{N} \), where \(K \) is a submodule of \(M \). To show that \(\frac{K}{N} \) is quasi – coregular in \(\frac{M}{N} \), let \(\bar{x} \in \frac{M}{N} \) and \(\bar{x} \notin \frac{K}{N} \), then \(x + N \notin \frac{K}{N} \), hence \(x \notin K \). Since \(K \) is quasi – co-pure in \(M \), then there exists a co-pure submodule \(L \) of \(M \) such that \(K \subseteq L \) and \(x \notin L \), hence \(x \notin \frac{L}{N} \), since \(L \) is copure, then by [5] \(\frac{L}{N} \) is copure. Also \(\frac{K}{N} \subseteq \frac{L}{N} \). So that \(\frac{M}{N} \) is quasi – coregular.

Corollary (3.4): If \(M_1, M_2 \) are isomorphic \(R \)-modules, then \(M_1 \) is quasi – coregular if and only if \(M_2 \) is quasi – coregular.
Proof: Since M_1 is isomorphic to M_2, then there exists $f: M_1 \longrightarrow M_2$ an isomorphism. If M_1 is quasi-co-regular, let K be submodule of M_2, then $K = f^{-1}(K)$, but $f^{-1}(K)$ is quasi - copure submodule in M_1, hence by proposition (2.4), K is quasi – co-pure in M_2.

Similarly if M_2 is quasi – coregular R-module, then M_1 is quasi – coregular.

Corollary (3.5): Let $f: M_1 \longrightarrow M_2$ be an epimorphism. If M_1 is quasi – coregular R-module, then M_2 is quasi – coregular.

Proof: By the first fundamental theorem. $M_1 \cong M_2$, but $M_1 \cong M_2$ is quasi – coregular by Proposition (3.3). Hence M_2 is quasi – coregular by Corollary (3.4).

Corollary (3.6): If $M = M_1 \oplus M_2$ and M is quasi – coregular R-module, then M_1 and M_2 are quasi – coregular.

Proof: Since $M_1 \cong M_2$ and $M_2 \cong M_2$ hence by Proposition (3.3), Corollary (3.4), M_1 and M_2 are quasi – coregular.

Corollary (3.7): A direct summand of quasi – coregular R-module M is quasi – coregular.

Proof: Let N be a directs sum and of M. Then $M = N \oplus K$ forsome K is submodule of M, hence $M = N \oplus K$. But $M = N \oplus K$ is quasi – coregular by Proposition (3.3). Hence N is quasi – coregular by Corollary (3.4).

Lemma (3.8): Let M be afinitely generated faithful multiplication R-module. If J is copure ideal in R, then M is copure submodule in M.

Proof: Let I be an ideal of R. To prove $[JM:M] = JM + [0:M]$, since J is copure ideal in R, then $[JR] = J + [0]$, and hence $[JR:M] = JM + [0:M]$, since M is multiplication, wehave $[JM:M] \subseteq [JR:M]$, Let $x \in [JM:M]$ and $x \in [JR:M]$, then $x = \sum a_i m_i$, $a_i \in [JM:M]$, $m_i \in M$. Since M is finitely generated faithful R-module, then $a_i M \subseteq JM$. The reverse inclusion isclear, Therefor $[JM:M] = JM + [0:M]$ that is JM is copure.

Definition (3.9): Let R be a ring, R is called a quasi – coregular ring if every ideal in R is quasi – copure.

Remark and Example (3.10):

(1) It is clear that every coregular ring is quasi-coregular and we have no example of quasi-coregular, which isnot coregular.

(2) Every coregular ring is quasi – regular.

(3) If R is Noetherian regular ring, then R is quasi – coregular.

Proof: Since every Noetherian regular ring is coregular by [5], hence is quasi – coregular by remark (1).

(4) Z_{10}, Z_{p^q}; p, q are prime numbers are quasi – coregular.

It is well – known thataan ideal I of a ring R is called an annihilator ideal if $I = ann_R ann_R I$, $(I, e) = [0_R: [0_R: I]], [3]$.

(5) Let R be a regular ring with every ideal is an annihilator ideal. Then R is quasi – coregular.

Proof: Let I be an ideal of a ring R, since R is regular ring and every ideal of R is annihilator ideal, then by [5], R is coregular and I is a copure ideal in R. Hence R is quasi – coregular.

Proposition (3.11): Every quasi – coregular ring R is quasi – regular.

Proof: Let I be an ideal of a ring R and $r \in R$. Let $r \notin I$ we have to show thereexists a pure ideal J of R such that $r \notin J$ and $I \subseteq J$. Since I is a quasi – coregular ideal of R, then thereexists a copure ideal J
of R such that $r \in J$ and $I \subseteq J$. Since J is a copure ideal of R, then $[J : R K] = J + [0 : R K]$, for each ideal K of R, hence $[J : R J] = J + [0 : R J]$, so $R = J + [0 : R J]$. This implies that $I = b + c$ where $b \in J$ and $c \in [0 : R J]$. To show that J is pure, we have to show that $J \cap K = K J$ for all ideal K of R, let $a \in J \cap K$. So $a = ab + ac$. But $ac = 0$. Hence $a = a, b \in K J$. This show that I is pure because the reverse inclusion is clear. Thus I is quasi – pure and R is quasi – regular.

Proposition (3.12): If R is a quasi – regular ring and $J(R) = \{0\}$, with every ideal is an annihilator ideal, then R is quasi – regular.

Proof: Since R is quasi – regular and $J(R) = \{0\}$, then by [4], R is regular. Since every ideal of R is an annihilator ideal, then R is coregular, hence by remark and examples (3.10) (1) R is quasi – coregular.

Remark (3.13): If R is a co-regular ring and M is a finitely generated faithful multiplication R-module. If J is an ideal in R, then $J M$ is copure in M.

Proof: By Lemma (3.8).

Proposition (3.14): Let R be a quasi – co-regular ring and M be a faithfully multiplication R-module. Then M is quasi – coregular.

Proof: Let N be a submodule of M. Since M is multiplication, then $N = IM$ for some ideal I of R. Since R is quasi – co-regular, then by [11], $I = \cap_{\alpha \in A} I_{\alpha}$, where I_{α} is copure ideal of R containing I for each $\alpha \in A$. Then $N = (\cap_{\alpha \in A} I_{\alpha}) M$. Since M is faithful multiplication, then $(\cap_{\alpha \in A} I_{\alpha}) M = \cap_{\alpha \in A} (J M)_{\alpha}$ [12]. By remark (3.13), IM is copure containing N. Hence M is quasi – coregular.

Proposition (3.15): Let R be a ring and M be a finitely generated faithful multiplication quasi – coregular R-module. Then R is quasi – coregular.

Proof: Let I be an ideal of R. We have to show that I is quasi – copure. IM is a submodule of M. Since M is multiplication, then $IM = \cap_{\alpha \in A} I_{\alpha} M$, where I_{α} is copure in M containing IM for each $\alpha \in A$. Put $L_{\alpha} = I_{\alpha} M$. Thus $IM = \cap_{\alpha \in A} L_{\alpha} = \cap_{\alpha \in A} I_{\alpha} M$, since M is finitely generated faithful, then by $\frac{1}{2}$ cancellation property [13]. $I = \cap_{\alpha \in A} I_{\alpha}$. Claim I_{α} is copure in R containing I. Also since $I_{\alpha} M = IM \subseteq L_{\alpha}$. Thus $I \subseteq L_{\alpha}$. So that R is quasi – coregular.

Theorem (3.16): Let M be a faithful finite I generated multiplication R-module. The following statements are equivalent:

1. M is quasi – coregular R-module.
2. R is quasi – coregular ring.

Proof:

1. \implies 2. By Proposition (3.15).

2. \implies 1. By Proposition (3.14).

Theorem (3.17): Let R be a ring with every ideal of R is an annihilator ideal, $J(R) = \{0\}$ and M be a finitely generated faithful multiplication. Consider the following statements:

1. M is a quasi – coregular R-module.
2. R is a quasi – coregular ring.
3. R is a quasi – regular ring and $J(R) = \{0\}$.

Then (1) \iff (2) and (3) \implies (2) if $J(R) = \{0\}$ and every ideal in R is an annihilator ideal (i.e.) the statements are equivalent.

Proof:

1. \implies 2. By Proposition (3.15).

2. \iff 1. By Proposition (3.14).

3. \implies (3) It is clear by Proposition (3.11).

3. \implies (2) Suppose R is quasi-regular ring. Since every ideal of R is annihilator ideal and then by proposition (3.2.12) R is a quasi-coregular ring.
References:

[1] Anderson, E.W., K.R. (1992). "Ring and categories of module", Spring - New York.

[2] Fieldhouse, D.J. (1969) "Pure Theories", h. Ann. 184, 1-18.

[3] Ansari H. Toroghy and Farshadifar. (2009)"Strongly Comultiplication Modules", CMUJ Nat. Sci. 8(1): 105-113.

[4] AL- Mothafar, N.S. (2002) "Sums and Intersection of Submodules", Ph.D. Thesis University of Baghdad, Baghdad, Iraq.

[5] Inaam M.A. H. (2013) "Coregular Modules", Iraqi Journal of Science. 54(3): 836-841.

[6] Shaibani, R. M. and AL-Mothafar, N. S. (2019) "Modules With The J-Pure Intersection (Sum) Property", There is appear.

[7] AL-Baharaany, B.H. (2000.) Module with the Pure Intersection Property, Ph.D. Thesis, University of Baghdad, Baghdad, Iraq.

[8] El-Bast Z.A. and Smith, P.F. (1988) Multiplication Modules, Comm. Algebra, 16(4): 775-779.

[9] Fieldhouse D.J. (1970) Pure Simple and Indecomposable Ring, Can. Math. Bull.13: 77-78.

[10] Abbas, M.S. (1991) "On fully stable module", Ph.D. Thesis, University of Baghdad, Baghdad, Iraq.

[11] Shaibani, R. M. and AL-Mothafar, N. S. 2019"Quasi J-Regular modules" Iraqi Journal of Science. Vol. 61, No(6).

[12] Smith, P.F and El-Best, Z.A . (1988). "Multiplication Modules", Comm. Algebra, Vol1, 16, No.4, pp. 775-779.

[13] Nauom, A.G. (1996) "1/2 cancellation module", Kyungpook Mathematica Journal, 97-106.