Heterogeneous target speech separation

Efthymios Tzinis1,2,*, Gordon Wichern1, Aswin Subramanian1, Paris Smaragdis2 and Jonathan Le Roux1

1Mitsubishi Electric Research Laboratories (MERL)
2University of Illinois at Urbana-Champaign

*Work done during an internship at MERL.
Introduction

Audio source separation
- Co-occurrence of multiple sounds
- Extract independent sound sources
 - All sources: Unconditional source separation
 - Specify sources: Conditional / Target source separation
Introduction

- Audio source separation
 - Co-occurrence of multiple sounds
 - Extract independent sound sources
 - All sources: Unconditional source separation
 - Specify sources: Conditional / Target source separation
- Target speech separation
 - Solves the disambiguation of the sources
 - Solves the alignment of the estimated sources
Introduction

- **Audio source separation**
 - Co-occurrence of multiple sounds
 - Extract independent sound sources
 - **All sources**: Unconditional source separation
 - **Specify sources**: Conditional / Target source separation

- **Target speech separation**
 - Solves the disambiguation of the sources
 - Solves the alignment of the estimated sources

- What kind of conditional targets can we use?
Heterogeneous target separation

- Slicing an acoustic scene has multiple solutions
 - Based on user’s intention
 - Multiple ways to describe the same target source
Heterogeneous target separation

- Slicing an acoustic scene has multiple solutions
 - Based on user’s intention
 - Multiple ways to describe the same target source
- Isolate a speaker based on different semantic concepts
 - Gender
 - Distance from the microphone
 - Far/Near microphone
 - Language spoken
 - French, English, etc.
 - Energy of the speaker
 - Loudest / Less energetic
Heterogeneous training

- Permutation invariant training (Oracle)
 - Backpropagate the minimum loss under all permutations of the estimated speakers
Heterogeneous training

- **Permutation invariant training (Oracle)**
 - Backpropagate the minimum loss under all permutations of the estimated speakers

- **Heterogeneous**
 - Generate a mixture from a set of sources
 - Sample a discriminative concept to create the target waveform
 - Could contain more than one sources
Heterogeneous training

- **Permutation invariant training (Oracle)**
 - Backpropagate the minimum loss under all permutations of the estimated speakers

- **Heterogeneous**
 - Generate a mixture from a set of sources
 - Sample a discriminative concept to create the target waveform
 - Could contain more than one sources
 - Train the model under a targeted L1 loss
 - Example conditions and their **discriminative concepts**:
 - Distance from the microphone: *(Far or Near)*
 - Language spoken: *(French, English, etc.)*
Introduced datasets

- Generated three different datasets
 - Wall Street Journal (WSJ - anechoic)
 - Energy (E), gender (G)
 - Spatial LibriSpeech (SLIB - reverberant)
 - E, G, spatial location (S)
 - Spatial VoxForge (SVOX - multi-lingual and reverberant):
 - E, S, language (L)

Metadata	WSJ	SLIB	SVOX
Conditions G	{E, G}	{E, G, S}	{E, L, S}
Room height (m)	-	U[2.6, 3.5]	U[2.75, 3.25]
Room length (m)	-	U[9.0, 11.0]	U[8.0, 10.0]
Room width (m)	-	U[9.0, 11.0]	U[8.0, 10.0]
RT 60 (sec)	-	U[0.3, 0.6]	U[0.4, 0.6]
Microphone location	-	Center	Center
Source height (m)	-	U[1.5, 2.0]	U[1.6, 1.9]
Far field distance (m)	-	U[1.7, 3.0]	U[1.5, 2.5]
Near field distance (m)	-	U[0.2, 0.6]	U[0.3, 0.5]
Number of test recordings	1,770	2,620	11,083
Number of test speakers	18	40	294
Number of train recordings	8,769	132,553	124,937
Number of train speakers	101	1,172	2,347
Number of val recordings	3,557	2,703	10,244
Number of val speakers	101	40	279

https://github.com/etzinis/heterogeneous_separation
Conditional separation network

- Conditional `sudo rm -rf`
- One-hot conditioning vector based on all semantic concepts

Condition	Discriminative concept values
Energy	Loudest / Most silent
Spatial Location	Far / Near field
Language	English / French / German / Spanish
Gender	Female / Male
Conditional separation network

- **Conditional sudo rm -rf**
 - One-hot conditioning vector based on all semantic concepts
 - FiLM modulation in the input of all $B=16$ U-ConvBlocks
 - Always estimate the target and the non-target estimate

Condition	Discriminative concept values
Energy	Loudest / Most silent
Spatial Location	Far / Near field
Language	English / French / German / Spanish
Gender	Female / Male

Diagram showing the interaction between the input mixture and the conditional vector, leading to FiLM modulation in the input of U-ConvBlocks.
Conditional separation network

- **Conditional sudo rm -rf**
 - One-hot conditioning vector based on all semantic concepts
 - FiLM modulation in the input of all $B=16$ U-ConvBlocks
 - Always estimate the target and the non-target estimate
- **Low overhead** conditioning mechanism

Condition	Discriminative concept values
Energy	Loudest / Most silent
Spatial Location	Far / Near field
Language	English / French / German / Spanish
Gender	Female / Male

Parameters: 9.66 millions -> 9.84 millions
Training and evaluation details

Training
- Sample a discriminative concept given a pre-defined prior
- L1 norm for both “target” and “other” estimated sources
 - We train for 120 epochs
 - 20,000 8kHz mixtures
 - Uniform [75-100]% overlap

Condition	WSJ	SVOX	SLIB
Input-SNR	Uniform [-5,5]	Uniform [-2.5, 2.5]	‍
Conditions	Energy, Gender	Energy, Gender, Spatial Loc.	Energy, Language, Spatial Loc.

\[L_\theta = |\hat{s}_T - s_T| + |\hat{s}_O - s_O| \quad \hat{s}_T, \hat{s}_O = f(x, c; \theta) \]
Training and evaluation details

- **Training**
 - Sample a discriminative concept given a pre-defined prior
 - L1 norm for both “target” and “other” estimated sources
 - We train for 120 epochs
 - 20,000 8kHz mixtures
 - Uniform [75-100]% overlap

- **Evaluation**
 - Scale-invariant signal to noise ratio on the target source
 - 3,000 validation mixtures
 - 5,000 test mixtures

Condition	WSJ	SVOX	SLIB
Input-SNR	Uniform [-5,5]	Uniform [-2.5, 2.5]	
Conditions	Energy, Gender	Energy, Gender, Spatial Loc.	Energy, Language, Spatial Loc.

\[
L_\theta = |\hat{s}_T - s_T| + |\hat{s}_O - s_O| \quad \hat{s}_T, \hat{s}_O = f(x, c; \theta)
\]

\[
\alpha = s_T^T \hat{s}_T / \| \hat{s} \|^2
\]

\[
\text{SI-SDR}(\hat{s}_T, s_T) = -20 \log_{10}(\| \alpha s_T \| / \| \alpha s_T - \hat{s}_T \|)
\]
In- and cross-domain results

- Single-conditioned models > PIT
 - Each model trained and evaluated on the corresponding condition

Training method	Train condition priors (%)	Test conditions		
	SLIB	SVOX	SLIB	SVOX
Conditioned*	100	100	100	100
PIT (Oracle)*	100	100	100	100
In-domain heterogeneous	50	50	50	50
PIT (Oracle)	50	50	50	50
Cross-domain heterogeneous	25	25	25	25
PIT (Oracle)	25	25	25	25
In- and cross-domain results

- Single-conditioned models > PIT
 - Each model trained and evaluated on the corresponding condition

- Heterogeneous training > PIT
 - For all conditions except language
 - For in-domain data

Training method	Train condition priors (%)	Test conditions							
	Training method	SLIB	SVOX	SLIB	SVOX				
Conditioned*		100	100	100	100	11.4	11.2	2.5	9.1
PIT (Oracle)*		100	100	100	100	11.0	10.7	4.6	7.5
In-domain		50	50	50	50	10.9	10.7	-0.5	8.6
heterogeneous		50	50	50	50	-0.6	6.2	3.2	6.8
PIT (Oracle)		50	50	50	50	9.5	8.9	5.6	6.8
		50	50	50	50	5.2	4.5	4.6	5.6
Cross-domain		25	25	25	25	-1.4	9.2	4.3	8.2
heterogeneous		50	50	50	50	9.9	9.9	-0.7	9.0
		50	50	50	50	10.1	8.9	-0.9	9.0
		50	50	50	50	-0.5	8.4	4.3	6.8
		25	25	25	25	8.9	8.7	4.4	7.8
PIT (Oracle)		25	25	25	25	8.0	7.3	5.5	6.5
In- and cross-domain results

- Single-conditioned models > PIT
 - Each model trained and evaluated on the corresponding condition

- Heterogeneous training > PIT
 - For all conditions except language
 - For in-domain data

Training method	Train condition priors (%)	Test conditions							
		SLIB	SVOX		SLIB	SVOX			
Conditioned*		100	100	100	100	11.4	11.2	2.5	9.1
PIT (Oracle)*		100	100	100	100	11.0	10.7	4.6	7.5
In-domain heterogeneous		50	50	50	50	10.9	10.7	-0.5	8.6
		9.5	8.9	5.2	4.5				
PIT (Oracle)		50	50	50	50	9.5	8.9	5.6	6.8
		5.2	4.5	4.6	5.6				
Cross-domain heterogeneous		25	25	50	50	-1.4	9.2	4.3	8.2
		9.9	9.9	10.1	8.9			4.3	6.8
		-0.5	8.4	-0.5	8.4				
		8.9	8.7	4.4	7.8				
PIT (Oracle)		25	25	25	25	8.0	7.3	5.5	6.5
In- and cross-domain results

- **Single-conditioned models > PIT**
 - Each model trained and evaluated on the corresponding condition

- **Heterogeneous training > PIT**
 - For all conditions except language
 - For **in-domain data**
 - For **cross-domain evaluation**

Training method	SLIB	SVOX	SLIB	SVOX
Conditioned*	1	1	100	100
PIT (Oracle)*	1	1	100	100
In-domain	1	2	50	50
heterogeneous	2	50	50	50
PIT (Oracle)	2	2	25	25
Cross-domain	2	2	25	50
heterogeneous	3	25	50	50
PIT (Oracle)	2	3	25	25
Robustness under degenerate conditions

- Trade-off between the percentage of:
 - Same gender conditioning
 - Cross-gender conditioning
Robustness under degenerate conditions

- Trade-off between the percentage of:
 - Same gender conditioning
 - Cross-gender

- Optimal point for both gender and energy conditions
 - Using only 0.2-0.4% of same-gender mixtures
 - Also learns the degenerate case
Bridge conditioning ablation

Training method	Train condition priors (%)	Test conditions		
	WSJ	SLIB	WSJ	SLIB
	g	ε	g	ε
Proposed	25	25	50	13.3
	12.4	7.1	8.8	

- Learn a harder discriminative concept (e.g. gender on SLIB)
 - No access to SLIB gender metadata about the speakers
 - Learn using the energy concept as a “bridge” condition
 - Possible available metadata for the WSJ anechoic dataset
Bridge conditioning ablation

Training method	Train condition priors (%)	Test conditions						
	WSJ	SLIB	WSJ	SLIB				
Proposed	G	ϵ	G	ϵ	13.3	12.4	7.1	8.8
(-) Bridge condition	50	\times	50	\times	14.5	7.4	5.5	9.2

- Learn a harder discriminative concept (e.g. gender on SLIB)
 - No access to SLIB gender metadata about the speakers
 - Learn using the energy concept as a “bridge” condition
 - Possible available metadata for the WSJ anechoic dataset
Bridge conditioning ablation

Training method	Train condition priors (%)	Test conditions					
	WSJ	SLIB	WSJ	SLIB			
	G	ε	G	ε	G	ε	
Proposed	25	25	50	13.3	12.4	7.1	8.8
(-) Bridge condition	50	25	50	14.5	7.4	5.5	9.2
(-) Exclude amb. ε cases	25	25	50	13.0	11.8	6.2	8.4

- Learn a harder discriminative concept (e.g. gender on SLIB)
 - No access to SLIB gender metadata about the speakers
 - Learn using the energy concept as a “bridge” condition
 - Possible available metadata for the WSJ anechoic dataset
Bridge conditioning ablation

Training method	Train condition priors (%)	Test conditions						
	WSJ	SLIB	WSJ	SLIB				
	\(G \)	\(\mathcal{E} \)						
Proposed	25	25	50	13.3	12.4	7.1	8.8	
(-) Bridge condition	50	\xmark	50	14.5	7.4	5.5	9.2	
(-) Exclude amb. \(\mathcal{E} \) cases	25	25	\xmark	50	13.0	11.8	6.2	8.4
(-) In-domain data	100	\xmark	\xmark	17.3	-2.4	5.8	-2.3	
	50	50	\xmark	15.2	14.3	4.2	3.0	

- Learn a harder discriminative concept (e.g. gender on SLIB)
 - No access to SLIB gender metadata about the speakers
 - Learn using the energy concept as a “bridge” condition
 - Possible available metadata for the WSJ anechoic dataset
Bridge conditioning ablation

Training method	Train condition priors (%)	Test conditions			
	WSJ	SLIB	WSJ	SLIB	
	G	ε	G	ε	
Proposed	25	25	×	50	13.3 12.4 7.1 8.8
(-) Bridge condition	50	×	50	14.5 7.4 5.5 9.2	
(-) Exclude amb. ε cases	25	25	×	50	13.0 11.8 6.2 8.4
(-) In-domain data	100	×		17.3 –2.4 5.8 –2.3	
	50	50		15.2 14.3 4.2 3.0	
PIT (Oracle)*	100	100	100	100	17.3 13.6 10.9 10.2
PIT (Oracle)	25	25	25	25	12.9 11.9 9.3 8.5

- Learn a harder discriminative concept (e.g. gender on SLIB)
 - No access to SLIB gender metadata about the speakers
 - Learn using the energy concept as a “bridge” condition
- Possible available metadata for the WSJ anechoic dataset
Using a bridge semantic condition

- Learn a hard condition using an easier one
 - Learn how to condition on a specific language using the spatial location
Using a bridge semantic condition

- Learn a hard condition using an easier one
 - Learn how to condition on a specific language using the spatial location
 - Best model for both conditions appears to be in between the two extremes
 - The training conditioning prior is key
Conclusions & Highlights

- Heterogeneous target source separation
 - A new paradigm in source separation
 - Slicing acoustic scenes based on deviant:
 - Non-mutually exclusive signal characteristic conditions
 - One can also consider using AND and OR conditions
Conclusions & Highlights

- Heterogeneous target source separation
 - A new paradigm in source separation
 - Slicing acoustic scenes based on deviant:
 - Non-mutually exclusive signal characteristic conditions
 - One can also consider using AND and OR conditions

- Heterogeneous condition training
 - Improves upon oracle permutation invariant training
 - Improves cross-domain generalization
 - Robust under degenerate cases
Conclusions & Highlights

- Heterogeneous target source separation
 - A new paradigm in source separation
 - Slicing acoustic scenes based on deviant:
 - Non-mutually exclusive signal characteristic conditions
 - One can also consider using AND and OR conditions

- Heterogeneous condition training
 - Improves upon oracle permutation invariant training
 - Improves cross-domain generalization
 - Robust under degenerate cases

- In the future
 - We want to apply our method towards a variable number of sources
 - Make our method require less supervision
 - Extend out method to work with natural language queries
Thank you!

Any questions?

https://github.com/etzinis/heterogeneous_separation