Prevalence of Suicide Attempts among College Students in China: A Meta-Analysis

Lin-Sheng Yang¹‡, Zhi-Hua Zhang¹‡, Liang Sun², Ye-Huan Sun¹*, Dong-Qing Ye¹*

1 Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China, 2 Department of Public Health, Fuyang Center for Disease Control and Prevention, Fuyang, China

‡ These authors contributed equally to this work.
* sun611007@163.com (YS); anhuiydq@126.com (DY)

Abstract

Background

Suicide is the leading cause of death among 15–34 year olds in China, but no national data are available on the suicide and suicide attempts rates of college students, a sub-group of youth with 23 million. Several studies have reported the prevalence of suicide attempts among college students, however, no meta-analysis pooling the prevalence of suicide attempts is found.

Objective and Methods

This study aims to estimate the pooled prevalence of suicide attempts among college students in China. The relevant studies up to August 2014 were systematically searched via electronic databases (PubMed-Medline, Embase, Chinese Wanfang database, Chinese National Knowledge Infrastructure and Chinese VIP database). We only selected original articles that either reported the prevalence of suicide attempts or sufficient data for calculating the prevalence.

Results

A total of 29 eligible studies, with 88,225 college students, were finally included. The maximum and minimum reported prevalences of suicide attempts among college students in China were 0.4% and 10.5%, respectively. The pooled prevalence of suicide attempts was 2.8% (95% CI: 2.3%–3.3%). Subgroup analyses showed that the pooled estimate of prevalence of life time suicide attempts was 2.7% (95% CI: 2.1%–3.3%), and 12-month suicide attempts was 2.9% (95% CI: 2.0%–3.8%). The prevalence for males was 2.4% (95% CI: 1.8%–3.0%), and for females was 2.7% (95% CI: 1.9%–3.7%). The prevalences among college students in grade 1 through 4 were 2.8% (95% CI: 1.7%–3.8%), 1.8% (95% CI: 1.2%–2.3%), 2.0% (95% CI: 0.8%–3.1%), and 2.9% (95% CI: 0.1%–6.7%), respectively. The prevalences among college students from rural and urban areas were 5.1% (95% CI: 2.8%–7.5%) and 3.7% (95% CI: 1.4%–5.9%), respectively.
Conclusions

2.8% prevalence of suicide attempts and more than 600,000 suicide attempters among college students indicate that suicide attempt among college students is an important public health problem in China. More attention should be paid to the current situation.

Introduction

Suicide is the leading cause of death among 15–34 year olds in China, accounting for 19% of all deaths [1]. Although the overall suicide rate in China decreases significantly over the past decade, rates in young people 15–24 years of age do not reduce [2–3]. It is suggested that more attention should be paid to this population. Nevertheless, the youth is a heterogeneous population at risk for suicide and little is known about rates of sub-groups of the youth except that by sex and age groups because of limits of the Chinese vital registration system [4], for example, no national data are available on the suicide rate of college students, although there are more than 23 million college students in China [3] and a considerable number of suicide cases among this population have been reported. As a result, more data on the prevalence of suicidal ideation and attempts among college students are needed, according to the assumption that such data would be useful for understanding completed suicides. Although suicide attempt need not result in death [6], it is a significant predictor of subsequent completed suicide, as well as important in its own right as an indicator of extreme psychological distress [7].

Current estimates of the prevalence of suicide attempts among college students in China are almost drawn from school-based cross-sectional investigations. These investigations provided valuable information, but they were limited because most of them focused on one or several universities in one province rather than nationally representative sample of this population. There has been no meta-analysis pooling the prevalence of suicide attempts across different provinces to date. The present study therefore aims to estimate the overall pooled prevalence of suicide attempts among college students in China. We also estimate the pooled prevalences of suicide attempts in different subgroups of college students.

Methods

Search strategy

The relevant studies were searched via six electronic databases: Medline, Embase, ISI Web of Science, Chinese WanFang Database, Chinese National Knowledge Infrastructure (CNKI) and Chinese VIP database. Data searches were carried out on 20 August 2014, without restrictions regarding publication year. Search terms were initially on the basis of words used in the article titles, abstracts, subheadings and keywords, then tested in a pilot and refined afterwards. The following search terms were used in the final search:

#1. TS = (suicide or suicide attempt or suicidal behavior or suicidal ideation)

#2. TS = ("college student" or "university student" or "undergraduate" or "medical student")

#3. TS = (China or Chinese or Hongkong or Macao or Taiwan)

#4. #1 and #2 and #3

To supplement the electronic searches, we also conducted searches for the reference lists of relevant articles.
Eligibility criterias
Studies were included in the review if they met the following criterias: (1) The study either reported the prevalence of suicide attempts or sufficient data for calculating the prevalence; (2) The study was conducted in China; (3) If the studies were based on the same sample, only the study with greatest epidemiological quality was selected; (4) Articles were written in English or Chinese.

Study selection and data abstraction
After initial evaluation, two reviewers independently and carefully reviewed the articles and filled out a standard quality assessment checklist with 11 questions concerning the methodological aspects of cross-sectional studies for each study [8].

The following data were extracted for each study: authors of study, years published, province, study design, total number of subjects recruited, and number of suicide attempters. We also extracted the number of suicide attempters according to gender, grade, and Urban/Rural, in order to estimate the prevalence of suicide attempts in sub-groups.

Quality assessment
Agency for Healthcare Research and Quality (AHRQ) was used to assess the quality of cross-sectional studies [8]. AHRQ was an 11-item instrument with a yes/no/unclear response option: the “Yes” would be scored “1”, “No” or “unclear” was scored “0”. Articles were scored as follows: 0–3 = low quality; 4–7 = moderate quality; 8–11 = high quality.

Statistical analysis
We first transformed prevalences via the Freeman-Tukey double arcsine method [9] then performed an inverse-variance weighted. The transformed prevalences are weighted very slightly towards 50% and studies with prevalences of zero can thus be included in the analysis. The pooled prevalences were calculated as the back-transform of the weighted mean of the transformed prevalences [10].

All statistical analyses were done using STATA 10 (Stata Corporation, College Station, Texas, USA). We used Cochran Q and the I² statistic [11] to explore the variation between studies and found significant heterogeneity between the study findings. So, random effect model was used to estimate the pooled prevalence and 95% CIs. In order to explore the potential heterogeneity between studies and the prevalences of suicide attempts with different characters such as gender, grade, et al., we also conducted subgroups analysis. A funnel plot (prevalence versus standard error) was used to explore the publication bias [12]. Funnel-plot asymmetry was further assessed by the method of Begg’s test and the modified Egger’s linear regression test.

Results
Search results
The electronic database searches initially yielded 161 papers (41 papers in English and 120 in Chinese). Of these, 129 were subsequently removed due to either duplication or a failure to meet the inclusion criteria. The remaining 47 papers were retrieved for full-text screening. In the end, 29 papers were entered into this meta-analysis. See Fig. 1.

Characteristics of included studies
Five of the studies were published in English and 24 in Chinese.16 studies reported the life time prevalence of suicide attempts and 13 studies reported the 12-month prevalence. Studies were
conducted in mainland China (Anhui [20, 22, 30, 35–36, 40–41], Guangdong [25, 37–38], Hunan [18, 28], Ningxia [23, 34], Shanghai [39], Heilongjiang [14], Hubei [13], Sichuan [17], Shanxi [19], Chongqing [24], Jilin [26], Yunnan [27], Henan [31], Shangdong [32], and sample of several provinces [15, 16, 33]), and Taiwan [21, 29]. 88,225 college students were finally included.
Quality assessment

Four studies were of high quality, other studies were of moderate quality (see Table 1).

Overall prevalence of suicidal attempt

Suicide attempts prevalences varied from 0.4% to 10.5% and were displayed as forest plots in Fig. 2. The heterogeneity of the studies was high ($Q = 957.71, P < 0.001; I^2 = 97.1\%$). The pooled prevalence estimate for suicide attempts via random effect model was 2.8% (95% CI: 2.3%–3.3%).

Publication bias

Both Begg’s test ($Z = 1.68, P = 0.094$) and Egger’s test ($t = 1.44, P = 0.161$) showed no potential risk of publication bias, although the funnel plot was slightly asymmetrical (see Fig. 3).

Subgroup analysis

The results of subgroup analysis are shown in Table 2. Of the 29 included studies, 16 studies reported the lifetime prevalence of suicide attempts and 13 studies reported the 12-month prevalence. The pooled prevalence of lifetime suicide attempts was 2.7% (95% CI: 2.1%–3.3%), and 12-month suicide attempts was 2.9% (95% CI: 2.0%–3.8%). The suicide attempts prevalence was reported separately for males and females in 14 studies. The pooled prevalence for males was 2.4% (95% CI: 1.8%–3.0%), and for the females was 2.7% (95% CI: 1.9%–3.7%). Nine studies independently reported the prevalence among college students in grade one, 6 studies in grade two, 4 studies in grade three, and 2 studies in grade four. The pooled prevalence in grade one was 2.8% (95% CI: 1.7%–3.8%), 1.8% (95% CI: 1.2%–2.3%) in grade two, 2.0% (95% CI: 0.8%–3.1%) in grade three, and 2.9% (95% CI: 0.1%–6.7%) in grade four. Additionally, three studies reported prevalences among students from urban and rural areas. The pooled prevalences were 3.7% (95% CI: 1.4%–5.9%) and 5.1% (95% CI: 2.8%–7.5%), respectively.

Discussion

To our knowledge, this study is the first meta-analysis pooling the prevalence of suicide attempts among college students in China. In the current meta-analysis, 29 eligible studies, with a total of 88,225 subjects, were included. We found that, among college students in China, the prevalence of suicide attempts ranged from 0.4% to 10.5%, and the pooled prevalence was 2.8% (95% CI: 2.3%–3.3%). This result suggests more than 600,000 college students have suicide attempts in China.

The 2.8% prevalence of suicide attempts is well above reports for the general population in China, such as the 1.0% prevalence reported by Ma X et al. [42], Lee S et al. [43], Wang Z et al. [44] and the WHO World Mental Health surveys [45], respectively. An earlier report for Chinese sub-sample (mean age = 43) by the WHO SUPRE-MISS study was 2.4%, slightly less than our estimate [46]. Although the variations in prevalences are probably due to sample selection (e.g., None of nationally representative study of the general population is found) and variability in the methods used to assess suicidal behaviors, such consistent results suggest that the risk for suicide attempts among college students is higher than the general population in China, which is different from reports in west. For example, the data from American College Health Association in 2008 and 2010 showed 1.3% [47] and 1.2% [48] prevalence among college students, respectively, both less than the report for US adults (1.9%–8.7%; IQR, 3.0%–5.1%) [49].

However, 2.8% lifetime prevalence of suicide attempts among college students is less than reports for adolescents in China. For instance, a school-based survey with 13,817 middle school
References	Citation	Location	Number of school	Period	Sample size	Prevalence (95% CI) (%)	Quality Score	
13	ZQ You et al. (2014)	Hubei	6	Life	6096	3203 2785	1.9(1.6–2.2)	8
14	L Wang et al. (2014)	Heilongjiang	6	Life	5240	2563 2682	1.0(0.7–1.3)	8
15	JB Zhao et al. (2013)	Six provinces	12	Life	8202	3094 5108	3.0(2.6–3.4)	8
16	JB Zhao et al. (2013)	Sampled from 1949 schools	10	Life	1168	542 626	1.9(1.1–2.7)	8
17	D Liu et al. (2013)	Sichuan	1	Life	1371	691 680	1.4(0.8–2.0)	5
18	YL Deng et al. (2012)	Hunan	6	Life	2166	859 1306	4.3(3.4–5.2)	5
19	RR Chen et al. (2011)	Shanxi	1	Life	1055	519 635	6.2(4.7–7.7)	4
20	X Xin et al. (2010)	Anhui	2	Life	800	390 410	5.5(3.9–7.1)	4
21	SS Gau et al. (2009)	Taiwan	1	Life	2918	1416 1503	1.2(0.8–1.6)	6
22	HY Cao et al. (2009)	Anhui	3	Life	10344	4780 5564	1.4(1.2–1.6)	7
23	YX Shang et al. (2008)	Ningxia	1	Life	1484	505 979	5.2(4.1–6.3)	5
24	L Kuang et al. (2008)	Chongqing	11	Life	9808	5381 4427	1.7(1.4–2.0)	7
25	SS Fen et al. (2008)	Guangdong	8	Life	1863	920 943	3.4(2.6–4.2)	6
26	YF Cheng et al. (2008)	Jilin	1	Life	1822	1223 599	0.4(0.1–0.7)	6
27	QQ Liu et al. (2007)	Yunnan	13	Life	3313	1671 1640	4.6(3.9–5.3)	6
28	HL XU et al. (2004)	Hunan	1	Life	610	- -	3.0(1.6–4.4)	5
29	CH Chou et al. (2013)	Taiwan	1	12 mth	2835	1263 1572	10.5(9.4–11.6)	6
30	YH Wan et al. (2012)	Anhui	1	12 mth	4063	1895 2168	0.6(5.2–6.6)	7
31	AH Ma et al. (2010)	Henan	5	12 mth	1285	544 741	1.2(0.6–1.8)	5
32	LH Li et al. (2010)	Shangdong	1	12 mth	592	279 313	4.7(3.0–6.4)	4
33	R Gao et al. (2010)	data from eight cities in China	8	12 mth	5152	- -	1.0(0.7–1.3)	7
34	YX Shan et al. (2008)	Ningxia	2	12 mth	2678	958 1720	5.5(4.6–6.4)	6
35	YG Fan et al. (2008)	Anhui	3	12 mth	3517	1882 1635	1.5(1.1–1.9)	6
36	YG Fan et al. (2008)	Anhui	1	12 mth	2160	1198 962	0.4(0.1–0.7)	6
37	WJ Shi et al. (2007)	Guangdong	8	12 mth	2564	1278 1286	6.0(5.1–6.9)	6
38	LN Zen et al. (2006)	Guangdong	2	12 mth	1245	792 453	2.5(1.6–3.4)	6
39	JP Zhu et al. (2006)	Shanghai	7	12 mth	1722	890 832	1.2(0.7–1.7)	5

(Continued)
Table 1. (Continued)

References	Citation	Location	Number of school	Period	Sample size	Prevalence (95%CI) (%)	Quality Score
40	R Zhang et al. (2002)	Anhui	5	12 mth	1267	2.0 (1.2–2.8)	5
					903		
					364		
41	FB Tao et al. (1999)	Anhui	4	12 mth	884	1.9 (1.0–2.8)	5
					636		
					248		

doi:10.1371/journal.pone.0116303.t001

Figure 2. Forest plot of the 29 studies included in the meta-analysis.
doi:10.1371/journal.pone.0116303.g002
students found 4.7% prevalence [50]. A sample consisted of 2,579 Grade 8 students from 28 secondary schools in Hong Kong also found nearly 4.0% of adolescents attempted suicide in the preceding 12 months [51]. Another survey with 2013 Chinese students (including about 400 college students) showed 3.5% prevalence of suicide attempts [52].

Compared with reports for college students from other countries, our estimate is above the reports from American College Health Association (1.2%–1.3%) [47–48], but less than the reports in India (4.0%) [53], Indonesian (7.9%) [54], and Turkish (7.1%) [55].

Life time/12 months

Contrary to our expectations, 2.7% life time prevalence of suicide attempts was less than 2.9% 12-month prevalence. This unexpected result is related to the highest 12-month prevalence (10.5%) [29]. If the highest prevalence is excluded, the pooled 12-month prevalence is 2.2% (95%CI: 1.5%–2.9%), less than life time prevalence. But even so, the difference between life time prevalence and 12-month prevalence may be underestimated because of recall bias.
Gender

Of 14 studies reporting prevalence on males and female, eight studies showed that the prevalence of suicide attempts was higher in females than males, other 6 studies exhibited opposite results. As expected, the pooled prevalence of suicide attempts was higher in females than in males (2.7% vs. 2.4%), however, the difference was not significant (Z = 0.95, P = 0.344). Clear, the 1:1 male-to-female prevalence ratio among college students is different from general population in China [42–43] and in western countries [49]. However, similar results can be also found among college students in other countries [48, 53, 55], In Turkey, prevalences in male and female students were 6.8% and 6.7%, respectively [55]. These results may represent a fact that there are no gender difference at risk for suicide attempts among college students, which is different from adolescents and adults. A recent longitudinal study [56] conducted among European American adolescents indirectly supports this speculation. The yearly prevalence of suicide attempts in female was higher than males across the ages, and both increased through mid-adolescence and then declined. But the prevalence for attempt peaked at age 16 in females, earlier than males (at age 17), and declined more rapidly in females than males. Such results indicate that the difference of suicide attempts prevalence between females and males should be gradually reduced, or even disappeared at a particular older age group, although this speculation has the risk of errors because only adolescents ages 11–19 were included in this study.

Grade

With respect to grade difference, we found the distribution of prevalences among students grade 1 through 4 is "U", with higher prevalences in grade 1 and 4 than in grade 2 and 3. This phenomenon could be explained that students in grade 1 and 4 faced more stress. Students in grade 1 may face significant and more stresses associated with adjusting to a new social environment, increased academic demands, physical separation from parents, and alterations in social support networks [57–58]. While great employment pressure will follow the students in grade 4 [59]. A survey among college students by Guo SF [60] showed that employment pressure was considered the biggest source of stress by 51.4% of participants.
Urban/Rural

The huge difference of suicidal behaviors between urban and rural areas was an important characteristic in China [1–2]. As expected, this study found a higher risk for suicide attempts in college students from rural areas than from urban areas. The relatively higher prevalence of college students from rural areas may be related to more exposure to risk factors for suicide, such as more possibility to witness peers’ or adults’ suicide, lower education of parents and family income, et al.

Limitations

Our estimates about prevalences of suicide attempts among Chinese college students should be interpreted with caution because of the great heterogeneity between studies. Although we performed subgroup analyses by life time/12 months, gender, grade, and urban/rural, and found that life time/12 months, grade, and urban/rural may be the sources of between-study heterogeneity, the factors affecting suicide attempt have so many, not being addressed in this meta-analysis. First, no unique method used to assess suicidal behaviors was found in studies, which may be a source of high heterogeneity between studies. However, we could not extract sufficient data to assess it. Second, the difference of students’ major may play a role in between-study heterogeneity [35, 37], but it was also not included in the current study because most studies either did not collect or report differences according to students’ major. Third, of 34 provinces in China, only 15 provinces reported the prevalence of suicide attempts among college students, which indicated the sample’s representation was not enough.

Conclusions

2.8% prevalence of suicide attempts and more than 600,000 suicide attempters among college students indicate that suicide attempt among college students is an important public health problem in China. Our results also suggest that college students may have their own suicidal behavior characters, different from that of general population.

More suicide prevention efforts should be done to prevent suicide attempt among college students, especially the students in grade 1, 4 and from rural areas given that they are at more risk for suicide attempts than others. For instance, university psychologists should pay more attention to this sub-group of students, including talking with them about the risk for suicide, providing interventions for those at imminent risk for suicidal behavior, and referring patients for expert assessment and treatment.

Ethical Standard

This review did not involve animal or human experimentation.

Supporting Information

S1 PRISMA Checklist. PRISMA 2009 Checklist. (DOCX)

Author Contributions

Conceived and designed the experiments: LY DY. Performed the experiments: LY ZZ LS. Analyzed the data: LY YS LS. Contributed reagents/materials/analysis tools: LY ZZ. Wrote the paper: LY ZZ.
References
1. Phillips MR, Li X, Zhang Y (2002) Suicide rates in China, 1995–99. Lancet 359: 835–840. doi: 10.1016/S0140-6736(02)09269-3 PMID: 11897283
2. Wang CW, Chan CL W, Yip PSF (2014) Suicide rates in China from 2002 to 2011: an update. Social psychiatry and psychiatric epidemiology 49:929–941. doi: 10.1007/s00127-013-0789-5 PMID: 24240566
3. Wang SY, Li YH, Chi GB, Xiao SY, Ozanne-Smith J, et al. (2008) Injury-related fatalities in China: an under-recognised public-health problem. Lancet 372: 1765–1773. doi: 10.1016/S0140-6736(08)61367-7 PMID: 15789298
4. Yang G, Hu J, Rao KQ, Ma J, Rao C, et al. (2005) Mortality registration and surveillance in China: History, current situation and challenges. Popul Health Metr 3: 3. doi: 10.1186/1478-7954-3-3 PMID: 15769298
5. The Ministry of Education of The People’s Republic of China. Available: http://www.moe.gov.cn/publicfiles/business/htmlfiles/moe/s7567/201309/156896. Accessed 2014 Dec 14.
6. Kuo WH, Gallo JJ (2005) Completed suicide after a suicide attempt. Am J Psychiatry 162: 633. doi: 10.1176/appi.ajp.162.3.633
7. Neeleman J, de Graaf R, Vollebergh W (2004) The suicidal process; prospective comparison between early and later stages. J Affect Disord 82: 43–52. doi: 10.1016/j.jad.2003.09.005 PMID: 15465575
8. Rostom A, Dubé C, Cranney A, et al. Celiac Disease. Rockville (MD): Agency for Healthcare Research and Quality (US). Available: http://www.ncbi.nlm.nih.gov/books/NBK35156/. Accessed 2014 Dec 14.
9. Freeman MF, Tukey JW (1950) Transformations related to the angular and the square root. Ann Math Stats 21: 607–611. doi:10.1214/aoms/1177729756
10. Miller JJ (1978) Inverse of the Freeman-Tukey Double Arcsine Transformation. The American Statistician 32:138. doi: 10.2307/2682942
11. Ades AE, Lu G, Higgins JP (2005) The interpretation of random-effects meta-analysis in decision models. Med Decis Making 25:646–654. doi: 10.1177/0742874505051597 PMID: 15282215
12. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088–1101. doi:10.2307/2533446 PMID: 7786990
13. You Z, Song J, Wu C, Qin P, Zhou Z (2014) Effects of life satisfaction and psychache on risk for suicidal behaviour: a cross-sectional study based on data from Chinese undergraduates. BMJ Open. 4: 3004096. doi: 10.1136/bmjopen-2013-004096 PMID: 24657883
14. Wang L, He CZ, Yu YM, Qiu XH, Yang XX, et al. (2014) Associations between impulsivity, aggression, and suicide in Chinese college students. BMC Public Health 14:551. doi: 10.1186/1471-2458-14-551 PMID: 24894449
15. Zhao J, Zhao J, Xiao R, Yang XL, Zhang XY (2013) Suicide exposure and its modulatory effects on relations between life events and suicide risk in Chinese college students Nan Fang Yi Ke Da Xue Xue Bao. 33:1111–1116. PMID: 23996747
16. Zhao J, Yang X, Xiao R, Zhang X, Aguilera D, et al. (2012) Belief system, meaningfulness, and psychopathology associated with suicidality among Chinese college students: a cross-sectional survey. BMC Public Health. 12:668. doi: 10.1186/1471-2458-12-668 PMID: 22890096
17. Liu D, Chen YH, Long SS, Liu T, Hu H, et al. (2013) An evaluation study on the risk of suicide in university students based Oil scale of Kessler 10. Chin J Behav Med & Brain Sci 22:656–658.
18. Deng Y, Xiong Y, Lin YF (2012) Revising the Reasons for Living Inventory for Chinese College Students. Chin J Clin Psychol 20:332–335.
19. Chen RR, Wang MX (2011) Study on the relationship between the exposure rate of the suicidal ideation and the self-control degree of the college students. Foreign Med Sci (Section of Medgeography) 32:192–195.
20. Xin X, He CS (2010) Suicidal ideation and related factors among medical students. Anhui Med J 31:521–523.
21. Gau SS, Lai MC, Chiu YN, Liu CT, Lee MB et al. (2009) Individual and family correlates for cigarette smoking among Taiwanese college students. Compr Psychiatry 50: 276–285. doi: 10.1016/j.comppsych.2008.08.009 PMID: 19374974
22. Cao HY, Sun YH, Yao YS, Zhou CX, Yang LS (2009) Suicide behavior and its risk factors among medical undergraduates in Anhui province. Chin J Sch Health 30:38–39. PMID: 18788521
23. Shang YX, Yan SZ, Zhu FP (2009) Study on the current status of suicidal ideation and depression and its influence factors among medical students. Mod Prev Med 36:3092–3094. PMID: 23311805
24. Kuang L, Ai M, Wang MJ, Shen Y, Li DQ, et al. (2008) A study on suicide attempts and related factors of college students in Chongqing. Chin J Nerv Ment Dis 34: 594–597. PMID: 24125605
25. Feng SS, Zhang XQ (2008) Suicidal Ideation and Its Influencing Factors of Undergraduates in Guangzhou. Chin J Sch Health 29:414–416.
26. Chen YF, Kou CG, Zhang D (2008) Analysis on suicide tendency and its risk factors of undergraduate students. Chin J Dis Control Prev 12:450–453.
27. Liu QQ, Li H, Fang XY (2007) An Investigation of Suicidal Ideation and Suicide Attempts of Undergraduates in Yunnan Province with Their Self-esteem and Mental Health Status. Chin J Health Psychol 15:57–58.
28. Xu HL, Xiao SY, Feng SS, Chen XX (2004) Risk factors for suicide attempt among college students at Central South University. Zhonghua Liu Xing Bing Xue Za Zhi 25:288–291. PMID: 15231193
29. Chou CH, KO HC, Wu JY, Cheng CP (2013) The prevalence of and psychosocial risks for suicide attempts in male and female college students in Taiwan. Suicide Life Threat Behav 43:185–197. doi: 10.1111/sltb.12007 PMID: 23294018
30. Wan YH, Gao R, Tao XY, Tao FB, Hu CL (2012) Relationship between deliberate self-harm and suicidal behaviors in college students. Zhonghua Liu Xing Bing Xue Za Zhi 33: 474–477. PMID: 22883172
31. Ma AH, Chang ZJ, Yang YC, Jia JG, Zhang L (2010) Mental health and its related factors among adolescents in Zhengzhou. Chin J Sch Health 31:603,605. PMID: 223557527
32. Li LH, Zhang LP, Liu ZL (2010) Prevalence and Risk factors of Suicide Attempt in College Students. J Chin Tradit Chin Med Inform 2:227–228.
33. Gao R, Tao FB, Hu CL, Su PY, Hao JH, et al. (2010) Impact of psychosocial factors on suicide attempts in high school and college students, data from eight cities of China. Zhonghua Liu Xing Bing Xue Za Zhi 31:9–13. PMID: 20302689
34. Shan YX, Dong GQ, Liu T (2008) Analysis on prevalence of suicidal ideation and depression and its influence factors among undergraduate students in Yinchuan. Chin J Public Health 24:934–936.
35. Fan YG, Xiao Q, Wang Q, Li WX, Dong MX, et al. (2008) Study on the influencing factors related to suicidal ideation among undergraduates in Anhui province. Zhonghua Liu Xing Bing Xue Za Zhi 29: 241–244. PMID: 18788521
36. Fan YG, Xiao Q, Li WX, Song YM, Ye QL, et al. (2008) Correlated Study between Soci-Psychological Factors and Suicide Ideation among Medical Students. Chin J Sch Health 29:328–330.
37. Shi WJ, Ma SB, Wang SY (2007) Prevalence and its influencing Factors of Attempted Suicide Among Students in Guangzhou. Chin J Sch Health 29:1083–1084.
38. Zen LN, Cheng ZY (2006) Suicide Ideation of College Students in Guangzhou. Chin J Sch Health 27:863–864.
39. Zhu JP, Peng NN, Zhou YF, Gao GT, Zhou W, et al. (2006) Prevalence of behaviors that contribute to unintentional and intentional injuries among college students in Shanghai. Chin J School Doctor 20:228–231.
40. Zhang R (2002) Mental disorder and health-risk behavior in college students in Anhui. Chin J Dis Control Prev 6:52–54.
41. Tao FB, Zhong HB, Xu SJ, Zeng GY (1999) An epidemiological study on health risk behaviors of college students. Chin J Sch Health 20:249–250.
42. Ma X, Xiang YT, Cai ZJ, Li SR, Xiang YQ, et al. (2009) Lifetime prevalence of suicidal ideation, suicide plans and attempts in rural and urban regions of Beijing, China. Aust N Z J Psychiatry 43:158–166. doi: 10.1080/00048670802607170 PMID: 19153924
43. Lee S, Fung SC, Tsang A, Liu ZR, Huang YQ, et al. (2007) Lifetime prevalence of suicide ideation, plan, and attempt in metropolitan China. Acta Psychiatr Scand 116:429–437. doi: 10.1111/j.1600-0447.2007.01064.x PMID: 17977722
44. Wang Z, Qin Y, Zhang Y, Zhang B, Li L, et al. (2013) Prevalence and correlated factors of lifetime suicidal ideation in adults in Ningxia, China. Shanghai Arch Psychiatry; 25:287–294. PMID: 24991168
45. Nock MK, Borges G, Bromet EJ, Alonso J, Angermeyer M, et al. (2008) Cross-National Prevalence and Risk Factors for Suicidal Ideation, Plans, and Attempts. Br J Psychiatry 192: 98–105. doi: 10.1192/bjp.bp.107.040113 PMID: 18245022
46. Bertolote JM, Fleischmann A, De Leo D, Bolhari J, Botega N, et al. (2005) Suicide attempts, plans, and ideation in culturally diverse sites: the WHO SUPRE-MISS community survey. Psychol Med. 35:1457–1465. doi: 10.1017/S0033291705005404 PMID: 16164769
47. American College Health Association (2009) American College Health Association-National College Health Assessment Spring 2008 Reference Group Data Report (abridged): the American College Health Association. J Am Coll Health 57:477–488. doi: 10.3200/JACH.57.5.477-488 PMID: 19254888
48. Taliaferro LA, Muehlenkamp JJ (2014) Risk Factors Associated with Self-injurious Behavior among a National Sample of Undergraduate College Students. J Am Coll Health 21:1–9. doi: 10.1080/07448481.2014.953166 PMID: 25144520

49. Nock MK, Borges G, Bromet EJ, Cha CB, Kessler RC, et al. (2008) Suicide and suicidal behavior. Epidemiol Rev 30: 133–154. doi: 10.1093/epirev/mxn002

50. Chen J, Wan Y, Sun Y, Tao F (2014) Relations between problems on sleeping and suicidal behaviors in middle school students. Zhonghua Liu Xing Bing Xue Za Zhi 35:129–133. PMID: 24739549

51. Law BM, Shek DT (2013) Self-harm and suicide attempts among young Chinese adolescents in Hong Kong: prevalence, correlates, and changes. J Pediatr Adolesc Gynecol 26:S26–32. doi: 10.1016/j.jpag.2013.03.012 PMID: 23683824

52. Tang J, Yu Y, Wu Y, Du Y, Ma Y, et al. (2011) Association between non-suicidal self-injuries and suicide attempts in Chinese adolescents and college students: a cross-section study. PLoS One 6: e17977. doi: 10.1371/journal.pone.0017977 PMID: 21494656

53. Nath Y1, Paris J, Thombs B, Kirmayer L (2012) Prevalence and social determinants of suicidal behaviours among college youth in India. Int J Soc Psychiatry 58:393–399. doi: 10.1177/0020764011401164 PMID: 21632571

54. Tresno F, Ito Y, Mearns J (2012) Self-injurious behavior and suicide attempts among Indonesian college students. Death Stud 36: 627–639. doi: 10.1080/07481187.2011.604464 PMID: 24564942

55. Toprak S1, Cetin I, Guven T, Can G, Demircan C (2011) Self-harm, suicidal ideation and suicide attempts among college students. Psychiatry Res 187:140–144. doi: 10.1016/j.psychres.2010.09.009 PMID: 21040980

56. Boeninger DK, Masyn KE, Feldman BJ, Conger RD (2010) Sex differences in developmental trends of suicide ideation, plans, and attempts among European American adolescents. Suicide Life Threat Behav 40:451–464. doi: 10.1521/suli.2010.40.5.451 PMID: 21034208

57. Arnett J (2000) Emerging adulthood: a theory of development from the late teens through the twenties. Am Psychol. 55:469–480. doi: 10.1037/0003-066X.55.5.469 PMID: 10842426

58. Arria AM, O’Grady KE, Caldeira KM, Vincent KB, Wilcox HC, et al. (2009) Suicide ideation among college students: a multivariate analysis. Arch Suicide Res 13:230–246. doi: 10.1080/13811110903044351 PMID: 19590997

59. Liu KR, Hu GF, Zhang MY, Yan YX, Nie J (2009) Psychological anxiety evaluation and analysis of graduates at a medical university under employment pressure. Nan Fang Yi Ke Da Xue Xue Bao 29:1071–1072. PMID: 19460743

60. Guo SF. The psychological problems of College Students can be caused by employment pressure. Available: http://edu.people.com.cn/GB/1055/3696888.html. Accessed 2014 Dec 14.