Thermal stresses and temperature distribution of granite under microwave treatment

Zhongjun Ma¹, Yanlong Zheng¹, Tingwen Sun², Jianchun Li¹
¹School of Civil Engineering, Southeast University, Nanjing, 211189, China
²Department of Civil Engineering, Monash University, VIC, 3168, Australia

Corresponding author: yanlong.zheng@seu.edu.cn (ORCID: 0000-0001-5308-5982)

Abstract. Efficient breakage of high strength rocks is a challenging task where conventional drilling and blasting methods are not preferred or allowed, for example, rock excavation in long tunnels at a great depth and urban environment sensitive to noise and vibration. Microwave treatment is an efficient and environmentally friendly method, which is considered to be one of the most promising ways to increase the performance of mechanical excavators, such as roadheaders and impact hammers. However, the mechanisms of microwave fracturing of granitic rocks have not been well investigated. In this study, Chinese granite was used as the research material. Its mineral composition and grain size were first characterized using petrographic thin section observation. Cubic granite samples were then heated in a single-mode industrial microwave. The temperature was captured using a high resolution infrared thermal camera. Then a realistic 3-D rock model with the same mineralogical properties was established using Voronoi tessellation. The multi-physics numerical model was calibrated using data from microwave heating tests. The effect of microwave power intensity, heating time, and mineral grain size on the temporal and spatial temperature distribution, and thermal stresses in the granite matrix was investigated in a comprehensive manner. The temperature gradients and thermal stresses were calculated. The maximum temperature gradient and the maximum tensile stress appeared at the interface between quartz and biotite. As either power level or heating time increased, the thermal gradient and the maximum tensile stress increased, and with same microwave energy output, greater temperature gradient and thermal stress could be generated during microwave heating at higher power levels for shorter durations. Moreover, the greater the grain size, the bigger the maximum tensile stress. The finding of the paper contributes the understanding of the mechanisms of microwave fracturing of rocks.

Keywords: Microwave treatment, Thermal stress, Temperature distribution, Grain size
1 Introduction

Rock fragmentation is a fundamental process in the fields of tunneling and mining engineering, slope engineering, and energy engineering (Flegner et al., 2014). The traditional approach of rock disintegration can be categorized in two groups: mechanical fracturing and blasting fracturing, which account for more than 90% of the task. Drilling and blasting method has unparalleled advantages in large-scale rock engineering but the shortcomings of low configuration precision and support difficulty limit the application of this method to some extent. Mechanical rock fracturing method, the most economical and the most commonly used one, has been developed rapidly in the last century due to several advantages over drilling and blasting method, including continuous operation, minimum ground disturbance, safer and more environmental-friendly operation, and higher excavation rate in favorable ground conditions (Hassani et al., 2016; Shepel et al., 2018). However, the excavation and performance of mechanical equipment, such as tunnel boring machines could be greatly compromised by the low penetration rate, low advance rate, and excessive cutter wear, when encountering hard rock, especially extremely hard rock (Wang et al., 2015; Zheng et al., 2016).

Rock fragmentation has become one of the bottlenecks restricting abrasive rock geotechnical engineering and many scientists have been seeking more economical and efficient methods for rock breaking, including abrasive water jet (Liu et al., 2019), laser breaking (Graves et al., 2000), infrared irradiation (Barreiro et al., 2019), and microwave heating method (Ma et al., 2021). Owing to several advantages, microwave heating technology has provided a new research direction and garnered immense interest for rock breaking and fracturing (Lu et al., 2019a; Lu et al., 2019b; Wei et al., 2019; Zheng et al., 2020; Zheng et al., 2017).

Microwave heating rock is driven by the absorption of microwaves by the rock, leading to the conversion of the electromagnetic energy into heat. Rock is composed of different minerals with different dielectric and thermodynamic properties, such as specific heat capacity, thermal expansion, and thermal conductivity (Fan et al., 2018), resulting in different responses to the microwave irradiation. Therefore, mineral particles produce variable volume expansions and heating reactions under microwave irradiation. The structural thermal stress induced by thermal mismatch and thermal gradient causes the expansion of existing cracks in the rocks and produces a large number of new micro- and macro-cracks, negatively affecting the physical and mechanical properties (Li et al., 2019; Nelson and Trabelsi, 2012; Toifl et al., 2017; Wang and Djordjevic, 2014; Whittles et al., 2003).

The microwave rock breakage technique was first introduced in the 1960s, and the previous study indicated that rock breaking has technical and economic feasibility (Zheng et al., 2021a). Since then,
various research methods, including laboratory tests and numerical simulations have been widely used to study the effect of microwave heating on physical and mechanical properties of rocks.

With the development of computer simulation technology, the numerical simulation of microwave heating of rock can provide the stress distribution, internal temperature, and other parameters that cannot be obtained via experiments. It can efficiently analyse the failure of crystal grain boundaries under microwave irradiation, helpful in identifying the mechanism of resulting rock damage and failure. Table 1 lists the summary of numerical studies on microwave treatment of rocks. The reactions of various rocks to microwave irradiation have been studied at different power levels, for different exposure times, and in different cavity modes (single-mode and multi-mode).

Table 1 Summary of the numerical studies on microwave treatment of rocks

Method	Software	Model	Influencing factors	Parameters studied	Findings	References
Finite difference Method	FLAC	2D model of a simplified pyrite/calcite system	Power density, Heating time	UCS	High power density is more economically viable for microwave fracturing rock	(Whittles et al., 2003)
Finite difference Method	FLAC	2D model of a simplified pyrite/calcite system	Microwave power density, Exposure time	UCS	High power density combined with a short heating interval is expected to offer the best energy efficiency	(Jones et al., 2005, 2007)
Finite difference time domain-Finite element	Meep-Abaqus	Three-component-granite model	Power density, Heating time	Temperature field, Thermal stress	The maximum temperature and the largest maximum stress increase linearly with the irradiation time.	(Toifl et al., 2017; Toifl et al., 2016)
Finite element Method	ANSYS	Thermal-based particle modelling of different calcite/pyrite ratios	Calcite/pyrite ratios, Power density, Exposure time	Temperature field, Fracture density	Increasing the power density and the mixture ratio of pyrite/calcite, a high grinding efficiency of ore can be reached	(Wang et al., 2008)
Finite element Method	ANSYS	A calcite matrix with one pyrite inclusion	Power density, Exposure time	Temperature profile, Maximum tensile stress, Principle stress	High power density combined with a short exposure time will get greater strength reduction	(Wang and Djordjevic, 2014)
Finite element Method	COMSOL Multiphysics	2D model a realistic microstructure pegmatite	Heating time	Temperature field, Thermal stress	Thermally-induced compressive and tensile stresses increase as the microwave irradiation duration increases.	(Li et al., 2019)
Finite element Method	COMSOL Multiphysics	Coal	Microwave frequency, Microwave power, sample position	Temperature profile, electric field distribution	Lower power microwave-treatments required more energy than microwave treatment with higher power when heating temperature greater than 200°C	(Hong et al., 2016)
Finite element Method	ABAQUS	Basalt	Power density, Heating time	Thermal stress, temperature gradient	The onset of damage and formation of cracks in rock samples with dimensions of the order of the temperature gradients developing under microwave irradiation	(Hartlieb et al., 2012)
Discrete element method	PFC	Two-phase conceptual ores	Power density, Grain size	The number of micro-cracks,	High power pulsed equipment would be more efficient than continuous wave equipment for treating fine-grained ores	(Ali and Bradshaw, 2009, 2010, 2011)

The numerical simulations listed above have promoted the research on the fundamental mechanism and characteristics of microwave-induced rock heating. Nevertheless, the existing research still lacks the understanding of the influence of mineral grain size on rock stress and temperature distribution.
Therefore, the objective of this study is to quantitatively investigate thermal stresses and temperature distribution of granite under microwave treatment. Firstly, the mineral composition and grain size of granite were characterized using petrographic thin section observation. Then, the cubic granite samples were heated in a single-mode industrial microwave. Then, a realistic 3-D rock model with the same mineralogical properties was established using Voronoi tessellation and calibrated using data from microwave heating tests. Finally, the effect of microwave power intensity, heating time, and mineral grain size on the temporal and spatial temperature distribution and thermal stresses in the granite matrix was investigated comprehensively.

2 Experimental study

2.1 Materials

The rock samples in the present study were collected from a quarry in Fujian province, China. Figure 1 shows the optical image and the cross-polarized light (XPL) micrograph of a petrographic thin section. It is seen from Figure 1 that the granite sample consisted mainly of 46% alkali feldspar, 7% biotite, 42% quartz, and 5% plagioclase. The average grain size was about 6.5 mm. Cubic specimens of 40 mm × 40 mm × 80 mm were prepared and used in the tests. The P-wave velocity and density of the specimens were measured, and the specimens with consistent P-wave velocities and no visible cracks were selected for the experimental tests.

Figure 1. Optical image and petrographic microscopy image of the rock under XPL (Bt-biotite; Afs-alkali feldspar; Pl-plagioclase; Qtz-quartz)

2.2 Experimental equipment

A 2.45 GHz single-mode industrial microwave system (Model: Sairem G4) with maximum power of 6 kW was used in the microwave heating tests (Figure 2). The components and functions of the microwave source are mentioned in previous studies Zheng et al. (2017) and Zheng et al. (2021b). After the heating test, the applicator was opened immediately, and the surface temperature of the
specimens placed in the WR340 waveguide were captured by an infrared camera (model: FLIR T420) with a measurement range of −20°C–650°C. The thermal camera had two measurement ranges (−20°C–120°C, 100°C–650°C) and the range was preset according to the trial tests to obtain more accurate results.

Figure 2. The experiment setup of the microwave treatment of rocks

2.3 Experimental results

The relationship between the maximum temperature and the power is shown in Figure 3. It can be seen from the figure that the maximum temperature increased as the power increased. At the beginning, the maximum temperature increased linearly with the power level from 1 kW to 4 kW at a steady rate. Then, the maximum temperature was slightly increased from 175°C to 205°C at 4–5 kW. After that, the maximum temperature increased sharply, reaching nearly 280°C at 6 kW.

Figure 3. The relationship between the maximum temperature and power
3 Numerical model

As shown in Figure 4, a realistic 3-D rock model composed of different mineral grains was established using the Voronoi tessellation method. Of these grains, the red grains were alkali feldspar, the white grains were quartz, the black grains were biotite, and the gray grains were plagioclase. The proportions of various minerals and average grain size in the numerical model were consistent with the results obtained from the thin section. The average grain size was about 6.5 mm. It should be noted that the preexisting cleavages and cracks in the rock were not considered in this study. The rock sample of 40 mm × 40 mm × 80 mm was placed in the WR340 waveguide. A water load at the end of the circuit was used to absorb the energy transmitted through the specimen, which simulated the field scenario and prevented the microwave leakage. The diameter of the water pipe was 25 mm and the water flow speed was 0.3 m/s. The parameters of the rock-forming minerals are shown in Table 2. The convection heat exchange coefficient between rock and air was 5 W/(m²•K).

Parameters	Alkali feldspar	Biotite	Plagioclase	Quartz	
Coefficient of thermal expansion	3.6e6	3e-6	3.7e-6	1.21e5	1/K

Figure 4. A realistic 3-D rock model with the same mineralogical properties (500 grains, the red grains are alkali feldspar, the white grains are quartz, the black grains are biotite, and the gray grains are plagioclase).

In the simulation, the microwave power levels at the port were 1, 3, and 6 kW, respectively; they operated in the TE10 mode with the exposure time of 1 min. The metallic waveguide and cavity walls were considered as the perfect electric conductors.
Property	Value 1	Value 2	Value 3	Value 4
Heat capacity	757	770	808	730
Density	2570	3020	2760	2650
Thermal conductivity	2	1.95	2	6.5
Young’s modulus	87e9	33.8e9	87e9	95e9
Poisson’s ratio	0.29	0.27	0.29	0.17
Relative permittivity	5.55	7.48	5.62	4.7
Loss tangent	4.7e-5	3e-2	3e-3	1.88e-4

4 Numerical results

The multi-physics numerical model was calibrated using data from the microwave heating tests. Figure 5 shows the simulated maximum temperature of granite treated by microwave. The results show that the numerical results are similar to the experimental results, verifying the accuracy of the numerical models and parameters of the rock-forming minerals in the numerical simulations.

5 Discussion

5.1 Stress distribution

Figure 6 shows the maximum principal stress distribution of rock sample treated at 6 kW for 1 min along the line. The results show that the maximum principal stress increased with the exposure time,
from 10 MPa in 10 s to 45 MPa in 60 s, and the largest first principal stress of 45 MPa appeared at the interface between biotite and quartz.

Figure 6. The stress distribution of the rock sample treated at 6 kW for 1 min along the center line (marked in red)

Figure 7 shows the maximum principal stress treated at 1 kW and 3 kW for 1 min. The results show that the higher the microwave power, the greater the maximum principal stress. The maximum principal stress increased from 5 MPa at 1 kW to 45 MPa at 6 kW. And it is obvious that the longer the exposure time, the greater the maximum principal stress.

Figure 7. The maximum principal stress treated at (a) 1 kW and (b) 3 kW for 1 min
5.2 Temperature gradient

Figure 8 shows the temperature gradients of the rock sample treated at 1 kW, 3 kW, and 6 kW for 1 min along the line. The results show that the maximum temperature gradient appeared at the interface between quartz and biotite. With the increase in the microwave power, the maximum temperature gradient increased. It should be noted that with same microwave energy output, greater temperature gradient and thermal stress could be generated during microwave heating at higher power levels for shorter durations.

Figure 8. The temperature gradients of the rock sample treated by (a) 1 kW, (b) 3 kW, and (c) 6 kW for 1 min along the line

5.3 The relationship between thermal stress and grain size

In this study, two different grain sizes of 100 and 500 grains were tested. The microwave power was 6 kW and the exposure time was 1 min. Figure 9 shows the maximum principal stress of two models with different grain sizes. The results show that the greater the grain size, the bigger the maximum tensile stress.
6 Conclusion

In this study, a realistic 3-D rock model composed of different rock-forming minerals was established using Voronoi tessellation and calibrated using data from microwave heating tests. The effect of microwave power intensity, heating time, and mineral grain size on the temporal and spatial temperature distribution and thermal stresses in the granite matrix was investigated in a comprehensive manner. The temperature gradient and thermal stresses were calculated. The simulation results show that the maximum temperature gradient and the maximum tensile stress appeared at the interface between quartz and biotite. With the increase in either power level or heating time increased, the thermal gradient and the maximum tensile stress increased, and with same microwave energy output, larger temperature gradient and larger thermal stress could be generated during microwave heating at higher power levels for shorter durations. The influence of grain size on the tension stress was also investigated. The results showed that the greater the grain size, the larger the maximum tensile stress.

Acknowledgement

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (No.41831281), the Innovative and Entrepreneurial Doctor Program of Jiangsu Province, China as well as the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX20_0114).

Conflict of interest statement

The authors declare no conflict of interest.
Reference
Ali, A.Y., Bradshaw, S.M., 2009. Quantifying damage around grain boundaries in microwave treated ores. Chemical Engineering and Processing: Process Intensification 48, 1566-1573.
Ali, A.Y., Bradshaw, S.M., 2010. Bonded-particle modelling of microwave-induced damage in ore particles. Minerals Engineering 23, 780-790.
Ali, A.Y., Bradshaw, S.M., 2011. Confined particle bed breakage of microwave treated and untreated ores. Minerals Engineering 24, 1625-1630.
Barreiro, P., Gonzalez, P., Pozo-Antonio, J.S., 2019. IR irradiation to remove a sub-aerial biofilm from granitic stones using two different laser systems: An Nd: YAG (1064nm) and an Er:YAG (2940nm). Sci Total Environ 688, 632-641.
Fan, L.F., Gao, J.W., Wu, Z.J., Yang, S.Q., Ma, G.W., 2018. An investigation of thermal effects on micro-properties of granite by X-ray CT technique. Applied Thermal Engineering 140, 505-519.
Flegner, P., Kačur, J., Durdán, M., Leššo, I., Laciak, M., 2014. Measurement and processing of vibro-acoustic signal from the process of rock disintegration by rotary drilling. Measurement 56, 178-193.
Graves, R.M., Ionin, A.A., Klimachev, Y.M., Mukhammedgalieva, A.F., O'Brien, D.G., Sinitsyn, D.V., Zvorykin, V.D., 2000. Interaction of pulsed CO and CO2 laser radiation with rocks typical of an oil field, High-Power Laser Ablation II. International Society for Optics and Photonics, pp. 159-170.
Hartlieb, P., Leindl, M., Kuchar, F., Antretter, T., Moser, P., 2012. Damage of basalt induced by microwave irradiation. Minerals Engineering 31, 82-89.
Hassani, F., Nekoovaght, P.M., Gharib, N., 2016. The influence of microwave irradiation on rocks for microwave-assisted underground excavation. Journal of Rock Mechanics and Geotechnical Engineering 8, 1-15.
Hong, Y., Lin, B., Li, H., Dai, H., Zhu, C., Yao, H., 2016. Three-dimensional simulation of microwave heating coal sample with varying parameters. Applied Thermal Engineering 93, 1145-1154.
Jones, D.A., Kingman, S.W., Whittles, D.N., Lowndes, I.S., 2005. Understanding microwave assisted breakage. Minerals Engineering 18, 659-669.
Jones, D.A., Kingman, S.W., Whittles, D.N., Lowndes, I.S., 2007. The influence of microwave energy delivery method on strength reduction in ore samples. Chemical Engineering and Processing: Process Intensification 46, 291-299.
Li, J., Kaunda, R.B., Arora, S., Hartlieb, P., Nelson, P.P., 2019. Fully-coupled simulations of thermally-induced cracking in pegmatite due to microwave irradiation. Journal of Rock Mechanics and Geotechnical Engineering 11, 242-250.
Liu, S., Cui, Y., Chen, Y., Guo, C., 2019. Numerical research on rock breaking by abrasive water jet-pick under confining pressure. International Journal of Rock Mechanics and Mining Sciences 120, 41-49.

Lu, G.M., Feng, X.T., Li, Y.H., Hassani, F., Zhang, X.W., 2019a. Experimental Investigation on the Effects of Microwave Treatment on Basalt Heating, Mechanical Strength, and Fragmentation. Rock Mechanics and Rock Engineering 52, 2535-2549.

Lu, G.M., Feng, X.T., Li, Y.H., Zhang, X.W., 2019b. The Microwave-Induced Fracturing of Hard Rock. Rock Mechanics and Rock Engineering 52, 3017-3032.

Ma, Z., Zheng, Y., Zhao, X., He, L., Zhao, Q., He, J., Li, J., 2021. Performance of an open-ended converging microwave antenna in fracturing biotite diorite at low microwave power levels. Geomechanics and Geophysics for Geo-Energy and Geo-Resources (Under review).

Nelson, S.O., Trabelsi, S., 2012. Factors Influencing the Dielectric Properties of Agricultural and Food Products. Journal of Microwave Power 46, 93-107.

Shepel, T., Grafe, B., Hartlieb, P., Drebenstedt, C., Malovyk, A., 2018. Evaluation of cutting forces in granite treated with microwaves on the basis of multiple linear regression analysis. International Journal of Rock Mechanics and Mining Sciences 107, 69-74.

Toifl, M., Hartlieb, P., Meisels, R., Antretter, T., Kuchar, F., 2017. Numerical study of the influence of irradiation parameters on the microwave-induced stresses in granite. Minerals Engineering 103-104, 78-92.

Toifl, M., Meisels, R., Hartlieb, P., Kuchar, F., Antretter, T., 2016. 3D numerical study on microwave induced stresses in inhomogeneous hard rocks. Minerals Engineering 90, 29-42.

Wang, G., Radziszewski, P., Ouellet, J., 2008. Particle modeling simulation of thermal effects on ore breakage. Computational Materials Science 43, 892-901.

Wang, L., Kang, Y., Zhao, X., Zhang, Q., 2015. Disc cutter wear prediction for a hard rock TBM cutterhead based on energy analysis. Tunnelling and Underground Space Technology 50, 324-333.

Wang, Y., Djordjevic, N., 2014. Thermal stress FEM analysis of rock with microwave energy. International Journal of Mineral Processing 130, 74-81.

Wei, W., Shao, Z., Zhang, Y., Qiao, R., Gao, J., 2019. Fundamentals and applications of microwave energy in rock and concrete processing – A review. Applied Thermal Engineering 157.

Whittles, D.N., Kingman, S.W., Reddish, D.J., 2003. Application of numerical modelling for prediction of the influence of power density on microwave-assisted breakage. International Journal of Mineral Processing 68, 71-91.
Zheng, Y., Ma, Z., Zhao, X., He, L., 2020. Experimental Investigation on the Thermal, Mechanical and Cracking Behaviours of Three Igneous Rocks Under Microwave Treatment. Rock Mechanics and Rock Engineering 53, 3657-3671.

Zheng, Y.L., Ma, Z.J., Yang, S.Q., Zhao, X.B., He, L., Li, J.C., 2021a. A microwave fracturability index (MFI) of hard igneous rocks. International Journal of Rock Mechanics and Mining Sciences 138.

Zheng, Y.L., Ma, Z.J., Yang, S.Q., Zhao, X.B., He, L., Li, J.C., 2021b. A microwave fracturability index (MFI) of hard igneous rocks. International Journal of Rock Mechanics and Mining Sciences 138, 104566.

Zheng, Y.L., Zhang, Q.B., Zhao, J., 2016. Challenges and opportunities of using tunnel boring machines in mining. Tunnelling and Underground Space Technology 57, 287-299.

Zheng, Y.L., Zhang, Q.B., Zhao, J., 2017. Effect of microwave treatment on thermal and ultrasonic properties of gabbro. Applied Thermal Engineering 127, 359-369.