A Massive Planet to the Young Disc Star HD 81040 *

A. Sozzetti¹,², S. Udry³, S. Zucker⁴,⁵, G. Torres¹, J. L. Beuzit⁶, D. W. Latham¹, M. Mayor³, T. Mazeh⁴, D. Naef⁷, C. Perrier⁶, D. Queloz³, and J.-P. Sivan⁸

¹ Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
² INAF - Osservatorio Astronomico di Torino, 10025 Pino Torinese, Italy
³ Observatoire de Genève, 51 Ch. de Mailliettes, 1290 Sauneny, Switzerland
⁴ School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
⁵ Department of Geophysics and Planetary Sciences, Beverly and Raymond Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69678, Israel
⁶ Laboratoire d’Astrophysique de Grenoble, Université J. Fourier, BP 53, 38041 Grenoble, France
⁷ European Southern Observatory, 3107 Alonso de Cordova, Casilla 19001, Santiago 19, Chile
⁸ Observatoire de Haute-Provence, 04870 St-Michel l’Observatoire, France

Received; accepted

Abstract. We report the discovery of a massive planetary companion orbiting the young disc star HD 81040. Based on five years of precise radial-velocity measurements with the HIRES and ELODIE spectrographs, we derive a spectroscopic orbit with a period \(P = 1001.0 \) days and eccentricity \(e = 0.53 \). The inferred minimum mass for the companion of \(m_2 \sin i = 6.86 \) \(M_{\text{Jup}} \) places it in the high-mass tail of the extrasolar planet mass distribution. The radial-velocity residuals exhibit a scatter significantly larger than the typical internal measurement precision of the instruments. Based on an analysis of the Ca II H and K line cores, this is interpreted as an activity-induced phenomenon. However, we find no evidence for the period and magnitude of the radial-velocity variations to be caused by stellar surface activity. The observed orbital motion of HD 81040 is thus best explained with the presence of a massive giant planet companion.

Keywords. planetary systems – stars: individual (HD 81040) – stars: activity – stars: abundances – techniques: radial velocities – techniques: spectroscopic

1. Introduction

Except for one experiment (Cochran et al. 2002), radial-velocity surveys for planets orbiting nearby, solar-type stars with a targeted precision of \(1 - 5 \) m s\(^{-1}\) (e.g., Mayor et al. 2004; Santos et al. 2004; Butler et al. 2004; Marcy et al. 2005a, 2005b) have systematically attempted to exclude from their samples chromospherically active stars. This is because changes in the visibility of active regions and variations of the stellar absorption line profiles can possibly cause significant deterioration in the achievable radial-velocity precision. However, for about a dozen planet hosts significant activity levels have not prevented radial-velocity surveys from detecting Keplerian signals due to orbiting giant planets. We report in this paper on radial-velocity measurements of the young disc star HD 81040 (HIP 46076, BD+20°2314). These observations reveal the presence of a massive planet candidate orbiting the star, with a minimum mass of \(7.61 \) \(M_{\text{Jup}} \) (where \(M_{\text{Jup}} \) is the mass of Jupiter).

The variable velocity of HD 81040 was first detected by the G-Dwarf Planet Search (Latham 2000), a program designed to conduct a first reconnaissance for giant planets orbiting a sample of nearly 1000 nearby G dwarfs. This survey employed the HIRES spectrograph (Vogt et al. 1994) on the 10-m Keck 1 telescope at the W. M. Keck Observatory (Hawaii). Follow-up observations were carried out within the context of the ELODIE Planet Search Survey (Mayor & Queloz 1995; Perrier et al. 2003), which uses the ELODIE fiber-fed echelle spectrograph (Baranne et al. 1996) on the 1.93-m telescope at the Observatoire de Haute-Provence (CNRS, France).

Radial velocities with ELODIE are obtained by cross-correlating the observed spectra with a numerical template. The “simultaneous thorium-argon technique” with dual fibers (Baranne et al. 1996) allows for the monitoring and correction of instrumental drifts. The precision achieved with this
instrument on bright, inactive stars is ~ 6.5 m s$^{-1}$ (Perrier et al. 2003). The HIRES instrumental profile and drifts are monitored using an iodine absorption cell (Marcy & Butler 1992). In order to derive radial velocities, the data reduction procedure involves the modelling of the temporal and spatial variations of the instrumental profile of the spectrograph (Valenti et al. 1995), and is conceptually similar to that described by Butler et al. (1996). Internal errors, computed from the scatter of the velocities from the echelle orders containing I$_2$ lines, are typically 8-10 m s$^{-1}$ for inactive, solar-type stars, for the relatively short exposures adopted for the G-dwarf Planet Search.

The collaboration between our two teams has so far resulted in three important discoveries: the determination of the spectroscopic orbit of the first extrasolar planet transiting the disc of its parent star (HD 209458b; Mazeh et al. 2000), the detection of HD 80606b, the planet with the largest eccentricity known to-date ($e = 0.927$; Naef et al. 2001a), and the identification of the first giant planet in a stellar triple system (HD 178911Bb; Zucker et al. 2002).

The Keck/HIRES observations of HD 81040 began in April 1999 and have a time baseline of ~ 8.5 months. The ELODIE follow-up observations span ~ 3.3 years, starting in February 2002. We present in Sect. 2 the radial-velocity data and the orbital solution derived utilizing the combined datasets. The stellar characteristics of HD 81040 are considered in Sect. 3. Finally, Sect. 4 is devoted to a summary and discussion of our findings.

2. Radial-Velocity Data and Orbital Solution

The 26 radial velocity measurements for HD 81040 are listed in Table 1. In order to bring the HIRES data to the ELODIE system, they have been initially shifted by an amount corresponding to the $γ$ velocity measured by ELODIE, $ΔRV = 49.24$ km s$^{-1}$. A residual velocity offset $ΔRV_{\text{E-H}}$ between the two is included as an additional free parameter in the best-fit orbital solution presented in Table 2. Formal uncertainties in the parameters are obtained by re-scaling by the reduced $χ^2$ of the solution. We show in the upper and lower panel of Fig. 1 the radial-velocity measurements as a function of time and orbital phase, respectively. Post-fit velocity residuals are shown in the two sub-panels. Using the value for the primary mass of $M_* = 0.96 \pm 0.04 M_\odot$ obtained as described in Sect. 3, we derive a minimum mass for the companion $M_1 \sin i = 6.86 \pm 0.71 M_{\text{Jup}}$. The radial-velocity variations measured in HD 81040 thus reveal the presence of a long-period ($P \geq 2.7$ years), eccentric ($e = 0.53$), massive planetary-mass object. Due to gaps in phase coverage and limited number and time baseline of the observations, further measurements will be required to improve on the determination of some of the orbital elements (such as the orbital period and the eccentricity).

Table 1. Radial velocity measurements of HD 81040. The HIRES (H) velocities are shifted to the ELODIE (E) zero point.

BJD - 2,400,000	Radial Velocity (km s$^{-1}$)	$σ_{RV}$ (km s$^{-1}$)	Instrument
51291.36542	49.319	0.012	H
51293.37367	49.312	0.014	H
51545.63921	49.088	0.009	H
52308.63310	49.399	0.012	E
52356.41490	49.412	0.021	E
52359.45970	49.363	0.012	E
52360.42310	49.391	0.011	E
52615.71400	49.119	0.011	E
52649.66360	49.126	0.011	E
52649.67630	49.129	0.013	E
52719.40970	49.100	0.008	E
52722.49520	49.118	0.012	E
52993.63610	49.204	0.012	E
53034.56760	49.293	0.015	E
53094.36570	49.308	0.010	E
53101.39950	49.285	0.010	E
53359.69070	49.389	0.016	E
53361.66000	49.412	0.021	E
53421.52680	49.459	0.019	E
53428.48940	49.462	0.026	E
53461.36050	49.414	0.016	E
53463.41260	49.458	0.020	E
53464.39850	49.408	0.011	E
53486.35380	49.359	0.011	E
53491.32410	49.348	0.010	E
53518.35250	49.234	0.013	E

Table 2. Best-fit orbital solution for HD 81040, derived minimum companion mass, and properties of the post-fit residuals.

Parameter	Value
P (days)	1001.7 $±$ 7.0
T (BJD)	24525040.0 $±$ 12.0
e	0.526 $±$ 0.042
$γ$ (km s$^{-1}$)	+49.2535 $±$ 0.0063
$ω$ ($°$)	81.3 $±$ 7.2
K_1 (m s$^{-1}$)	168 $±$ 9
$ΔRV_{\text{E-H}}$ (km s$^{-1}$)	+0.057 $±$ 0.019
$a_1 \sin i$ ($×10^6$ km)	1.96 $±$ 0.19
$f_i (m)$ ($×10^{-7}$ M_\odot)	3.0 $±$ 0.9
$m_2 \sin i$ (M_{Jup})	6.86 $±$ 0.71
a (AU)	1.94
N	23 (E) + 3 (H)
$< σ_{RV} >$ (m s$^{-1}$)	13.7
$σ_{\sigma_{RV}}$ (m s$^{-1}$)	26.0 (E: 25.0, H: 6.0)
$χ^2$	3.26
$Pr(χ^2)$	2×10^{-9}

Given the values of $m_2 \sin i$ and P, translating into an astrometric signature $α \approx 410$ μas at the distance of HD 81040, we have investigated the Hipparcos Intermediate Astrometric Data (IAD) in an attempt to further constrain the companion mass (for a review of the method see for example Sozzetti 2005, and references therein). The star is flagged as single in the Hipparcos database. The best-fit astrometric solution with the period of the spectroscopic orbit gives a statistically insignificant semi-major axis of 2.0 ± 1.0 mas. We have then used these values to derive an upper limit to the actual size of the astrometric orbit $α$ with a 2.5σ confidence, following the procedure described in Zucker & Mazeh (2001). The resulting upper limit on the companion mass of $\sim 75 M_{\text{Jup}}$ at the 99% confidence level, clearly indicates its sub-stellar nature.
Fig. 1. Top: Radial-velocity measurements as a function of time for HD 81040. Open circles identify Keck/HIRES velocities, while filled black circles correspond to the ELODIE dataset. Bottom: radial velocities as a function of orbital phase. The two sub-panels show the post-fit residuals in both cases.

The scatter σ_{O-C} of the post-fit residuals reported in Table 2 is abnormally large when compared to the average $<\sigma_{RV}>$ of the internal errors for both instruments. Inspection of the velocity residuals (top and bottom sub-panels of Fig. 1) by means of a periodogram search revealed no additional periodicity within the time-span of the observations. No significant velocity trend can also be found in the post-fit residuals (a linear fit to the residuals time series had an insignificant slope of 1.8 ± 2.2 m s$^{-1}$ yr$^{-1}$). Thus, another companion on a longer-period orbit superposing a second radial-velocity signal is an unlikely explanation (although further measurements will help to better address this question). Another possibility to explain the excess jitter in the residuals is to invoke effects due to chromospheric activity of the parent star (e.g., Baliunas et al. 1995; Saar et al. 1998; Santos et al. 2000a). We discuss this possibility in the next Section.

3. Properties of the Host Star

HD 81040 (HIP 46076, BD+20°2314) is a bright, nearby dwarf. *Hipparcos* astrometry places it at 32.56 pc from the Sun. The quoted visual magnitude and color index from *Hipparcos* are $m_V = 7.72$ and $B - V = 0.68$, respectively.

The corresponding absolute magnitude is $M_V = 5.17$, consistent with a G2/G3 spectral type (Cox 2000), and this classification is also favored by our effective temperature determination (see Sect. 3.1). A G0 spectral type is reported in SIMBAD and in several works in the literature, however the ultimate source is the Henry Draper catalog, in which the spectral classification is rather coarse. Using proper motions and parallax from *Hipparcos* and the γ velocity obtained from the orbital solution described in Sect. 2 (in good agreement with the Nordström et al. (2004) reported value of 48.9 ± 0.2 km s$^{-1}$), the Galactic velocity vector for HD 81040 (corrected for the Local Standard of Rest following Mihalas & Binney 1981) is then $(U, V, W) = (40.9,-1.5,25.1)$ km s$^{-1}$. These values are summarized in Table 3.

3.1. Abundance Analysis

We have utilized the Keck/HIRES high-signal-to-noise template spectrum of HD 81040 to carry out an LTE spectroscopic iron abundance analysis. In this study, we have followed the approach described in previous works (Sozzetti et al. 2004, 2005b, and references therein). Our final iron list consisted of 28 Fe I and 6 Fe II lines (taken from Sozzetti et al. 2005b). The final atmospheric parameters, summarized in Table 3 are: $T_{\text{eff}} = 5700 \pm 50$ K, $\log g = 4.5 \pm 0.1$ (cgs), $\xi_t = 0.95 \pm 0.05$ km s$^{-1}$, and [Fe/H] = -0.16 ± 0.06. All these numbers are in very good agreement with those reported by Allende Prieto & Lambert (1999) and Nordström et al. (2004).

Table 3. Observed and inferred stellar parameters for HD 81040.

Parameter	Value
$S p. Type$	G2/G3
m_V	7.72
$B - V$	0.68
π (mas)	30.71 ± 1.24
d (pc)	32.56 ± 1.31
μ_u (mas yr$^{-1}$)	-151.35 ± 1.08
μ_d (mas yr$^{-1}$)	35.91 ± 0.52
M_V	5.17
$B.C.$	0.10
(U, V, W) (km s$^{-1}$)	(40.9,-1.5,25.1)
T_{eff} (K)	5700 ± 50
$\log g$ (cgs)	4.5 ± 0.1
ξ_t (km s$^{-1}$)	0.95 ± 0.05
[Fe/H]	-0.16 ± 0.06
R_* (R$_\odot$)	0.86 ± 0.04
$< \log R'_{\text{HK}} >$	-4.48
$v\sin i$	2 ± 1
\log (Li)	$1.90/1.91 \pm 0.07$
$< t >$ (Gyr)	0.73 ± 0.1
The spectroscopically determined values of T_{eff} and $[\text{Fe/H}]$, and the absolute luminosity estimate, were then used as input to the Yale stellar evolution models (Yi et al. 2003) to derive estimates of the stellar mass and radius for HD 81040, as well as their uncertainties. The results, also reported in Table 3, are as follows: $M_\star = 0.96 \pm 0.04 \, M_\odot$, $R_\star = 0.86 \pm 0.04 \, R_\odot$. The predicted $\log g$ value is 4.52, in excellent agreement with the spectroscopic estimate.

3.2. Youth and Activity Indicators

Montes et al. (2001), on the basis of its galactic kinematics, classify HD 81040 as a young Galactic disc star, with no clear membership to any stellar kinematic group. The star had been selected in that study based on its chromospheric activity levels as measured by Strassmeier et al. (2000) in the Vienna-KPNO search for Doppler-imaging candidate stars. For HD 81040, Strassmeier et al. (2000) measured a value of the chromospheric emission ratio $\log \, R'_{\text{HK}} = -4.52$. All our Keck/HIRES spectra show significant core reversal of the Ca II H and K lines. In the top panel of Fig. 2 we show a region of the HIRES template spectrum centered on the Ca II H line. The emission feature is clearly visible. For comparison, in the bottom panel we show the spectrum of an old, inactive star (HIP 105888) with the same temperature from the Sozzetti et al. (2005a) sample of metal-poor stars, which has a metallicity of $[\text{Fe/H}] = -0.72$.

We have measured the Mount Wilson chromospheric activity index S (Duncan et al. 1991) from the Ca II H and K lines in the Keck/HIRES spectra, and converted it to R'_{HK} following the approach described in Sozzetti et al. (2004). Based on four data-points, the average activity level measured in HD 81040, $< \log R'_{\text{HK}} > = -4.48$, agrees very well with that reported by Strassmeier et al. (2000). Based on the Noyes et al. (1984) empirical calibrations, the mean inferred chromospheric age for HD 81040 is then $< t > = 0.73 \pm 0.1$ Gyr, and the average stellar rotation period $< P_{\text{rot}} > = 9.8$ days. On the other hand, the stellar projected rotational velocity appears low. Its measured value, using the mean ELODIE cross-correlation function (CCF) dip width, is $\nu \sin i = 2 \pm 1$ km s$^{-1}$, in excellent agreement with the one (2.0 km s$^{-1}$) reported by Nordström et al. (2004). Our estimate of $\nu \sin i$ is also compatible with the two values of 3.7 and 4.9 km s$^{-1}$ (with typical uncertainties of $2 - 4$ km s$^{-1}$) quoted by Strassmeier et al. (2000).

Another important piece of circumstantial evidence in favor of a young age for HD 81040 is the presence of a significant Lithium (Li) feature. In order to derive an estimate of the Li abundance, we summed all the ELODIE spectra in the region of the $\lambda = 6707.8$ Å line. We then utilized the resulting co-added ELODIE spectrum to carry out a spectral synthesis of the Li line, using the atmospheric parameters derived from the Fe-line analysis and the same line list of Reddy et al. (2002). In Fig. 3 we show the comparison of the spectrum of HD 81040 with three different models, differing only in the Li abundance. The best-fit model gives as a result $\log \, \epsilon$(Li) = 1.90. Following Naef et al. (2001b) and Perrier et al. (2003), we also directly measured the equivalent width $E\lambda(\lambda = 6707.8$ Å) Li I line, and used the Soderblom et al. (1993) curves of growth to obtain a second, independent assessment of the Li abundance. The resulting value is $\log \, \epsilon$(Li) = 1.91 ± 0.07, with the reported error having been estimated by changing $E\lambda(\lambda = 6707.8$ Å) by ±1σ. Thus, the two methods we applied for the determination of the Li abundance in HD 81040 are in very good agreement with each other, and our numbers are also compatible with the value
of \(\log e(\text{Li}) = 2.13 \pm 0.15 \) quoted by Strassmeier et al. (2000). The estimated Li abundance is consistent with the typical values for a star slightly older than the Hyades cluster (in good agreement with the chromospheric age estimate) and with the same temperature of HD 81040, both on an empirical as well as theoretical basis (see for example Sestito and Randich 2005).

3.3. Study of Radial-Velocity Jitter

With all the information gathered on the parent star pointing in the direction of a young age for HD 81040, the observed extra-scatter \(\sigma'_v = \sqrt{\sigma^2_{O-C} - \langle \sigma_{\text{RV}} \rangle^2} \approx 22 \, \text{m s}^{-1} \) in the velocity residuals can then be interpreted in terms of activity-related processes. It is well known (e.g., Saar et al. 1998; Santos et al. 2000a) that spectral line profile variations induced by surface activity (e.g., spots) can translate into excess radial-velocity jitter. For an early-G dwarf with the level of activity exhibited by HD 81040, empirical estimates (e.g., Saar et al. 1998; Santos et al. 2000a; Paulson et al. 2002; Wright 2005) indicate a typical value of the activity-induced radial-velocity jitter of \(\sigma'_v \approx 20 \, \text{m s}^{-1} \), in good agreement with the observed scatter in the post-fit velocity residuals for HD 81040.

However, the magnitude and period of the detected Doppler signature are such that its interpretation in terms of the presence of a massive planetary companion is convincing. In fact, the estimated rotation period is about two orders of magnitude shorter than the inferred orbital period, and the radial-velocity semi-amplitude is almost an order of magnitude larger than the presumed activity-induced level of jitter. Unlike the case, for example, of the short-period variable HD 166435 (Queloz et al. 2001), stellar surface activity alone is thus a very improbable cause for the observed radial-velocity curve. To put this conclusion on firmer grounds, we have carried out an analysis of the line bisectors from the ELODIE CCFs, searching for possible correlations between the bisector span and radial-velocity measurements, orbital phase, and velocity residuals. Rank-correlation tests gave probabilities of no correlation ranging between 0.41 and 0.92. As an example, in the two panels of Fig. 4 we show the bisector span values plotted against the velocities obtained from the ELODIE CCFs and the orbital phase, respectively. No trend is visible, further supporting the explanation of true stellar reflex motion induced by an orbiting companion as opposed to radial-velocity variations originating in the stellar atmosphere. Unfortunately, the \(R'_{\text{HK}} \) measurements are too few to undertake a similar analysis. Finally, *Hipparcos* lists HD 81040 as photometrically stable, with a scatter of 9 mmag. No significant signal at any frequency was found as a results of a periodogram analysis on the photometric data.

4. Summary and Discussion

We have presented in this work a combined Keck/HIRES + ELODIE dataset of radial-velocity measurements for the young disc star HD 81040. The measurements reveal the presence of a massive \(m_2 \sin i = 6.86 \, M_{\text{Jup}} \) planetary companion, on an eccentric \((e = 0.53) \), relatively long-period \((P = 1001 \, \text{days}) \) orbit. The host star is a G2/G3 dwarf with a metallicity \([\text{Fe/H}] = -0.16 \), very close to the average \(([\text{Fe/H}] \approx -0.1) \) of the solar neighbourhood (Nordström et al. 2004), but somewhat metal-deficient with respect to the average \(([\text{Fe/H}] \approx 0.14) \) of the metallicity distribution of planet-hosting stars (e.g., Fischer & Valenti 2005). Both the chromospheric activity level (measured using the Ca II H and K lines in the HIRES spectra) as well as
Table 4. Main properties of active planet-hosting stars and their orbiting planets. Only objects with a chromospheric age estimate \(t < 1.5 \) Gyr are included (corresponding to \(\log R'_{\text{HK}} > -4.65 \)). Columns 1 through 12 report: star name, spectral type, metallicity, projected rotational velocity, chromospheric emission ratio, lithium abundance or upper limit (where applicable), estimated rotation period, chromospheric age, radial velocity jitter estimate, orbital periods of the companions, minimum masses, and radial-velocity semi-amplitude. Unless otherwise noted, all parameter values are taken from the literature sources listed in column 12. The star HD 166435 does not have a planet, but is listed for comparison.

Star	\(S_p \)	[Fe/H]	\(\sin i \) (m s\(^{-1}\))	\(\log R'_{\text{HK}} \)	\(\log \epsilon(\text{Li})^a \)	\(P_{\text{rot}}^b \) (days)	Age\(^c\) (Gyr)	\(\sigma_{v_i}^d \) (m s\(^{-1}\))	\(P \) (days)	\(m_2 \sin i \) (\(M_{\odot} \))	\(K_1 \) (m s\(^{-1}\))	Refs.\(^e\)
HD 81040	G2/G3	-0.16	2.0	-4.48	1.90	10	0.7	7/19	1001	6.86	168	(1)
HD 1237	G6V	+0.10	5.5	-4.44\(^f\)	2.24	10	0.6	21/21	133	3.32	164	(2)
HD 17051	G0V	+0.03	6.1	-4.65	2.63	12	1.5	13/14	320	2.26	67	(3)
HD 22049	K2V	-0.10	2.5\(^g\)	-4.47\(^h\)	< 0.3	12	0.7	9/9	2502	0.86	18	(4)
HD 40979	F8	+0.19	7.4	-4.63	2.79	12	1.0	19/15	263	3.28	100	(5)
HD 73256	G8/K0	+0.29	3.2	-4.49	...	12	0.8	13/19	250	1.87	265	(6)
HD 121504	G2V	+0.16	2.6	-4.57	2.66	9	1.1	7/16	63	1.22	45	(7)
HD 128311	K0	+0.08	5.7	-4.44	< -0.4	10	0.5	11/9	458	2.18	67	(8)
HD 130322	K0	-0.02	1.9	-4.39	< 0.2	8	0.3	7/9	10	1.02	115	(9)
HD 141937	G2/G3V	+0.01	2.1	-4.65	2.48	13	1.5	6/14	653	9.70	247	(10)
HD 142415	G1V	+0.21	3.3	-4.55	...	10	1.1	8/16	386	1.62	51	(7)
HD 147513	G3/V	+0.06	1.5	-4.38	2.05	5	0.3	4/23	528	1.21	31	(7)
HD 192263	K2V	-0.14	1.8	-4.39	< -0.3	9\(^i\)	0.3	6/9	24	0.72	62	(11)
HD 196050	G3V	+0.22	3.1	-4.65\(^j\)	2.15	16	1.5	9/14	1321	3.02	49	(7)
HD 166435	G0	-0.07	7.6	-4.26	< 1.7	4\(^k\)	0.2	33/28	4	0.60	83	(12)

\(^a\) All abundances and upper limits are taken from Israelian et al. (2004), except for HD 81040 (this work), HD 40979 (Fischer et al. 2002) and HD 166435 (Queloz et al. 2001).

\(^b\) From the Noyes et al. (1984) calibrations.

\(^c\) From the Noyes et al. (1984) calibrations.

\(^d\) From the Hoyes et al. (1984) calibrations.

\(^e\) From the Hoyes et al. (1984) calibrations.

\(^f\) From the Hoyes et al. (1984) calibrations.

\(^g\) From the Hoyes et al. (1984) calibrations.

\(^h\) From the Hoyes et al. (1984) calibrations.

\(^i\) From Henry et al. (1996). Naef et al. (2001b) report a substantially higher value \(\log R'_{\text{HK}} = -4.27 \) (but with large scatter), corresponding to \(P_{\text{rot}} = 4 \) days and \(t = 0.02 \) Gyr.

\(^j\) From Tokovinin (1992). Uncertainties on the \(\sin i \) value for HD 22049 are rather large.

\(^k\) From Henry et al. (1996).

The Lithium abundance (estimated using the co-added ELODIE spectrum) speak in favor of a young age for HD 81040 (\(\approx 0.8 \) Gyr), and our results agree well with previous studies of this object (Strassmeier et al. 2000; Montes et al. 2001).

The excess scatter in the residuals from the best-fit orbit with respect to the nominal internal errors of the HIRES and ELODIE measurements, \(\sim 22 \) m s\(^{-1}\), is likely attributable to the high level of activity of HD 81040. Radial-velocity surveys of nearby F-G-K dwarfs tend to avoid chromospherically active stars, for which intrinsic velocity jitter caused by surface inhomogeneities (e.g., spots, convection) not only degrades the achievable measurement precision, but, when correlated with the stellar rotation period, can even mimic the signal produced by an orbiting companion (e.g., Queloz et al. 2001). However, HD 81040 is not the first young star to have been found harboring a planetary-mass companion, despite its significant activity levels. We summarize in Table 4 the properties of active (\(\log R'_{\text{HK}} > -4.65 \), corresponding to a chromospheric age estimate \(t < 1.5 \) Gyr) stars with known detected planets, and the main characteristics of the latter. From inspection of the Table, at least two important considerations can be made.

First, the two main youth indicators (\(\log R'_{\text{HK}} \) and, when measurable, \(\log \epsilon(\text{Li}) \)), and to a lesser extent \(\sin i \), are in fair agreement with each other to indicate relatively young ages for these stars. We show in the top and middle panels of Fig. 5 a comparison between the average values of \(\sin i \) and of the chromospheric flux of the Ca II K line core \(F'_{\text{K}} \) (expressed in erg cm\(^{-2}\) s\(^{-1}\)) for the ensemble of active planet hosts in Table 4 and the age-activity-rotation relationships for open clusters and average observed values from Pace & Pasquini (2004), and references therein. The agreement is broad, and a similar result holds for the comparison between average Li abundances in open clusters from Sestito & Randich (2005) and the average \(\log \epsilon(\text{Li}) \) for the ensemble of active stars with planets (lower
interpretation. Values of slightly older than the Hyades cluster, and indeed the average Fig. 5. Spheric activity values for the stars in Table 4 is panel of Fig. 5). The average age inferred from the chromospheric activity values for the stars in Table 4 is around the mean value. All error bars correspond to the dispersion (as is the case for HD 130322 and HD 192263), simultaneous radial-velocity, photometry, Ca II, and line bisector measurements must be carried out in order to ascertain that the planet is real and the observed signal is not intrinsic to the star (as in the case of HD 166435, also reported in Table 4 for comparison). If instead \(P \gg P_{\text{rot}} \), the situation becomes more complex, as long-term activity cycles may reproduce very low-amplitude pseudo-periodic signals, which vary from season to season (e.g., Cumming et al. 1999). For example, based on the absence of a periodicity in the \(R'_{\text{HK}} \) time-series similar to that of the Keplerian signal, Hatzes et al. (2000) claimed HD 22049 actually harbors a planet, but this evidence had not been universally accepted in the past as a strong argument in favor of the planet hypothesis (e.g., Butler et al. 2003). In this specific case, the planet existence has indeed been proved correct (G. F. Benedict 2005, private communication) by the recently completed HST astrometry campaign (Benedict et al. 2003, 2004) on this star.

Based on all the evidence presented here, however, the existence of a companion around HD 81040 appears to be the best explanation for the observed radial-velocity variations. The inferred minimum mass for the object places it in the high-mass tail of the extrasolar planet distribution, i.e. the 18% or so of detected planets around nearby F-G-K stars with \(m \sin i \lesssim 5 \) \(M_{\text{Jup}} \). This region of the planet mass distribution is populated by objects with minimum masses uncomfortably close to the widely used arbitrary dividing line between planets and brown dwarfs of 13 \(M_{\text{Jup}} \) (e.g., Oppenheimer et al. 2000). As a matter of fact, the vanishing high-mass tail of the planet mass distribution and the existence of a dearth of close-in \((a \lesssim 5 \) AU\) brown-dwarf \((M \lesssim 80 \) \(M_{\text{Jup}} \)) companions to solar-type stars (the so-called “brown dwarf desert”; e.g., Halbwachs et al. 2000) pose a number of puzzles to models of the formation and dynamical evolution of such low-mass objects, beginning with their actual nomenclature. Indeed, a comparatively small number of studies has specifically focused on explaining the existence of systems such as HD 168443 (the primary is orbited by two objects with \(m \sin i \approx 7.7 \) \(M_{\text{Jup}} \) and \(m \sin i \approx 17.2 \) \(M_{\text{Jup}} \); Marcy et al. 2001; Udry et al. 2002) or HD 202206 (the primary is orbited by two objects with \(m \sin i \approx 17.4 \) \(M_{\text{Jup}} \) and \(m \sin i \approx 2.4 \) \(M_{\text{Jup}} \); Correia et al. 2005), as opposed to the large body of work devoted to the study of increasingly lower-mass \((M < 5 \) \(M_{\text{Jup}} \)) objects, both single and in multi-component systems.

High-mass planets (or low-mass brown dwarfs) such as the one presented here found orbiting HD 81040, however, are very interesting in their own right, as their observed properties, as well as the characteristics of the host stars, can provide very important constraints to proposed formation models. As an intermediate-age clusters (diamonds), the Sun (asterisk), and photospheric-flux contribution) as a function of age for four different exponents (Pace & Pasquini 2004). Center: the same, \(\log \epsilon_{(\text{Li})} \) as a function of age for open clusters (diamonds) and active planet hosts (filled circle). For the cluster averages, only G-type stars are considered (Sestito and Randich 2005). For stars with planets, only actual \(\log \epsilon_{(\text{Li})} \) estimates (no upper limits) have been used. All error bars correspond to the dispersion around the mean value.

High-mass planets (or low-mass brown dwarfs) such as the one presented here found orbiting HD 81040, however, are very interesting in their own right, as their observed properties, as well as the characteristics of the host stars, can provide very important constraints to proposed formation models. As an interesting in their own right, as their observed properties, as well as the characteristics of the host stars, can provide very important constraints to proposed formation models. As an interesting in their own right, as their observed properties, as well as the characteristics of the host stars, can provide very important constraints to proposed formation models. As an
illustrious example, recent models of giant planet formation by accretion of a rocky core (e.g., Lissauer 1993; Pollack et al. 1996) can qualitatively reproduce the observed mass distribution of extrasolar planets (Alibert et al. 2005; Ida & Lin 2004, 2005), and particularly for $M \lesssim 5 M_{\text{Jup}}$, down to the Neptunian-mass (and lower) regime of some recently discovered objects (McArthur et al. 2004; Butler et al. 2004; Santos et al. 2004; Rivera et al. 2005). On the other hand, the alternative disc- instability model (e.g., Boss 2001, 2005; Mayer et al. 2004) predicts that objects formed by this mechanism should preferentially populate the high-mass tail ($M \gtrsim 5 M_{\text{Jup}}$) of the planet mass distribution (Rice et al. 2003; Rafikov 2005). With improved statistics of massive planetary companions and their properties, as a complement to more refined theoretical studies of the efficiency of high-mass giant planet formation (and of their relative frequency with respect to lower-mass planets), the actual roles of the two proposed formation modes could be better understood.

Finally, given the projected separation of 62 mas, and given the relatively large mass and presumably rather young age of the companion, HD 81040 could be an interesting candidate for observations with future, direct near- and far-infrared imaging surveys of wide-separation giant planets (e.g., Burrows 2005, and references therein). Also, the magnitude of the inferred astrometric signature might also make this system an attractive target for high-precision ground-based as well as space-borne astrometric surveys (e.g., Sozzetti 2005, and references therein) which will come online in the near future.

Acknowledgements. A.S. gratefully acknowledges financial support through the Keck PI Data Analysis Fund (JPL 1262605). S.Z. is grateful for partial support from the Jacob and Riva Damm Foundation. G.T. acknowledges partial support for this work from NASA Origins grant NNG04LQ98G. We wish to thank D. Yong for valuable discussion. The referee, William Cochran, provided very helpful comments and suggestions. We are grateful to the Observatoire de Haute-Provence for the generous time allocation. This research has made use of NASA’s Astrophysics Data System Abstract Service and of the SIMBAD database, operated at CDS, Strasbourg, France.

References

Alibert, Y., Mordasini, C., Benz, W., & Winisdoerff, C. 2005, A&A, 434, 343
Allende Prieto, C., & Lambert, D. L. 1999, A&A, 352, 555
Ballinas, S. L., et al. 1995, ApJ, 438, 269
Baranne, A., et al. 1996, A&AS, 119, 373
Benedict, G. F., et al. 2003, BAAS, 35, #67.05
Benedict, G. F., et al. 2004, BAAS, 36, #42.02
Boss, A. P. 2001, Nature, 409, 462
Boss, A. P. 2005, ApJ, 629, 535
Burrows, A. 2005, Nature, 433, 261
Butler, R. P., Marcy, G. W., Williams, E., McCarthy, C., Donahue, R. A., & Vogt, S. S. 1996, PASP, 108, 500
Butler, R. P., Marcy, G. W., Vogt, S. S., Fischer, D. A., Henry, G. W., Laughlin, G., & Wright, J. T. 2003, ApJ, 582, 455
Butler, R. P., Vogt, S. S., Marcy, G. W., Fischer, D. A., Wright, J. T., Henry, G. W., Laughlin, G., & Lissauer, J. J. 2004, ApJ, 617, 580
Cochran, W. D., Hatzes, A. P., & Paulson, D. B. 2002, AJ, 124, 565
Correia, A. C. M., Udry, S., Mayor, M., Laskar, J., Naef, D., Pepe, F., Queloz, D., & Santos, N. C. 2005, A&A, 440, 751
Cox, A. N. 2000, Allen’s Astrophysical Quantities - 4th ed., New York: Springer-Verlag
Cumming, A., Marcy, G. W., & Butler, R. P. 1999, ApJ, 526, 890
Duncan, D. K., et al. 1991, ApJS, 76, 383
Fischer, D. A., Marcy, G. W., Butler, R. P., Vogt, S. S., Henry, G. W., Pourbaix, D., Walp, B., Misch, A., & Wright, J. T. 2002, ApJ, 586, 1394
Fischer, D. A., & Valenti, J. 2005, ApJ, 622, 1102
Halbwachs, J. L., Arenou, F., Mayor, M., Udry, S., & Queloz, D. 2000, A&A, 355, 581
Hatze, A. P., et al. 2000, ApJ, 544, L145
Henry, T. J., Soderblom, D. R., Donahue, R. A., & Baliunas, S. L. 1996, AJ, 111, 439
Henry, G. W., Donahue, R. A., & Baliunas, S. L. 2002, ApJ, 577, L111
Kürster, M., Endl, M., Els, S., Hatze, A. P., Cochran, W. D., Döbereiner, S., & Denner, K. 2000, A&A, 353, L33
Ilna, S., & Lin, D. N. C. 2004, ApJ, 604, 388
Ilna, S., & Lin, D. N. C. 2005, ApJ, 626, 1045
Israelian, G., Santos, N. C., Mayor, M., & Rebolo, R. 2004, A&A, 414, 601
Latham, D. W. 2000, in Disks, Planetesimals, and Planets, F. Garzón, C. Eiroa, D. de Winter, and T. J. Mahoney eds, ASP Conf. Ser., 219, 596
Lissauer, J. J. 1993, ARA&A, 31, 129
Marcy, G. W., & Butler, R. P. 1992, PASP, 104, 270
Marcy, G. W., et al. 2001, ApJ, 555, 418
Marcy, G. W., Butler, R. P., Vogt, S. S., Fischer, D. A., Henry, G. W., Laughlin, G., Wright, J. T., & Johnson, J. A. 2005, ApJ, 619, 570
Marcy, G. W., Butler, R. P., Fischer, D. A., Vogt, S. S., Wright, J. T., Tinney, C. G., & Jones, H. R. A. 2005, Progress of Theoretical Physics Supplement, 158, 24
Mayer, L., Quinn, T., Wadsley, J., & Stadel, J. 2004, ApJ, 609, 1045
Mayor, M., & Queloz, D. 1995, Nature, 378, 355
Mayor, M., Udry, S., Naef, D., Pepe, F., Queloz, D., Santos, N. C., & Burnet, M. 2004, A&A, 415, 391
Mazeh, T., et al. 2000, ApJ, 532, L55
McArthur, B. E., et al. 2004, ApJ, 614, L81
Mihalas, D., & Binney, J. 1981, Galactic astronomy: Structure and kinematics - 2nd edition (San Francisco, CA, W. H. Freeman and Co.)
Montes, D., López-Santiago, J., Gálvez, M. C., Fernández-Figueroa, M. J., De Castro, E., & Cornide, M. 2001, MNRAS, 328, 45
Naef, D., et al. 2001a, A&A, 375, L27
Naef, D., Mayor, M., Pepe, F., Queloz, D., Santos, N. C., Udry, S., & Burnet, M. 2001b, A&A, 375, 205
Nordström, B., et al. 2004, A&A, 418, 989
Noyes, R. W., Hartmann, L. W., Baliunas, S. L., Duncan, D. K., & Vaughan, A. H. 1984, ApJ, 279, 763
Oppenheimer, B. R., Kulkarni, S. R., & Stauffer, J. R. 2000, in Protostars and Planets IV, ed V. Mannings, A. P. Boss & S. S. Russell (Tucson: University of Arizona Press), 1313
Pace, G., & Pasquini, L. 2004, A&A, 426, 1021
Paulson, D. B., Saar, S. H. Cochran, W. D., & Hatzes, A. P. 2002, AJ, 124, 572
Paulson, D. B., Sneden, C., & Cochran, W. D. 2003, AJ, 125, 3185
Perrier, C., Sivan, J.-P., Naef, D., Beuzit, J. L., Mayor, M., Queloz, D., & Udry, S. 2003, A&A, 410, 1039
Pollack, J. B., Hubickyj, O., Bodenheimer, P., Lissauer, J. J., Podolak, M., & Greenzweig, Y. 1996, Icarus, 124, 62
Queloz, D., et al. 2001, A&A, 379, 279
Rafikov, R. R. 2005, ApJ, 621, L69
Reddy, B. E., Lambert, D. L., Laws, C., Gonzalez, G., & Covey, K. 2002, MNRAS, 335, 1005
Rice, W. K. M., Armitage, P. J., Bonnell, I. A., Bate, M. R., Jeffers, S. V., & Vine, S. G. 2003, MNRAS, 346, L36
Rivera, E., Lissauer, J. J., Butler, R. P., Marcy, G. W., Vogt, S. S., Fischer, D. A., Brown, T., Laughlin, G., and Henry, G. W. 2005, ApJ, 634, 625
Saar, S. H., Butler, R. P., & Marcy, G. W. 1998, ApJ, 498, L153
Santos, N. C., Mayor, M., Naef, D., Pepe, F., Queloz, D., Udry, S., & Blecha, A. 2000a, A&A, 361, 265
Santos, N. C., Mayor, M., Naef, D., Pepe, F., Queloz, D., Udry, S., Burnet, M., & Revaz, Y. 2000b, A&A, 356, 599
Santos, N. C., et al. 2004, A&A, 426, L19
Sestito, P., & Randich, S. 2005, A&A, 442, 615
Soderblom, D. R., Jones, B. F., Balachandran, S., Stauffer, J. R., Duncan, D. K., Fedele, S. B., & Hudon, J. D. 1993, AJ, 106, 1059
Sozzetti, A., Yong, D., Torres, G., Charbonneau, D., Latham, D. W., Allende Prieto, C., Brown, T. M., Carney, B. W., & Laird, J. B. 2004, ApJ, 616, L167
Sozzetti, A., Latham, D. W., Torres, G., Stefanik, R. P., Boss, A. P., Carney, B. W., & Laird, J. B. 2005a, in Gaia: The Three-Dimensional Universe, ESA-SP, 576, 309
Sozzetti, A., Yong, D., Carney, B. W., Laird, J. B., Latham, D. W., & Torres, G. 2005b, AJ, submitted
Sozzetti, A. 2005, PASP, 117, 1021
Strassmeier, K., Washuettl, A., Granzer, Th., Scheck, M., & Weber, M. 2000, A&A, 142, 275
Tokovinin, A. A. 1992, A&A, 256, 121
Udry, S., Mayor, M., Naef, D., Pepe, F., Santos, N. C, Queloz, D., Burnet, M., Confino, B. & Melo, C. 2000, A&A, 356, 590
Udry, S., Mayor, M., Naef, D., Pepe, F., Queloz, D., Santos, N. C, & Burnet, M. 2002, A&A, 390, 267
Udry, S., et al. 2003, A&A, 407, 679
Valenti, J. A., Butler, R. P., & Marcy, G. W. 1995, PASP, 107, 966
Vogt, S. S., et al. 1994, in Instrumentation in Astronomy VIII, D. L. Crawford & E. R. Craine eds., Proc. SPIE, 2198, 362
Vogt, S. S., Butler, R. P., Marcy, G. W., Fischer, D. A., Henry, G. W., Laughlin, G., Wright, J. T., & Johnson, J. A. 2005, ApJ, 632, 638
Wright, J. T. 2005, PASP, 117, 657
Yi, S., Kim, Y.-C., & Demarque, P. 2003, ApJS, 144, 259
Zucker, S., & Mazeh, T. 2001, ApJ, 562, 549
Zucker, S., et al. 2002, ApJ, 568, 363