MAXIMAL MEASURE AND ENTROPIC CONTINUITY OF LYAPUNOV
EXPONENTS FOR C^r SURFACE DIFFEOMORPHISMS WITH LARGE
ENTROPY

DAVID BURGUET

Abstract. We prove a finite smooth version of the entropic continuity of Lyapunov
exponents proved recently by Buzzi, Crovisier and Sarig for C^∞ surface diffeomorphisms [10].
As a consequence we show that any C^r, $r > 1$, smooth surface diffeomorphism f with
$h_{top}(f) > \frac{1}{r} \lim\sup_n \frac{1}{n} \log^+ \|df^n\|_{\infty}$ admits a measure of maximal entropy. We also prove
the C^r continuity of the topological entropy at f.

1. Statements

We define now some notations to state our main results. Fix a compact Riemannian
surface $(M, \|\cdot\|)$. For $r > 1$ we let $\text{Diff}^r(M)$ be the set of C^r diffeomorphisms of M. For
$f \in \text{Diff}^r(M)$ we let $F : \mathbb{PTM} \circlearrowleft$ be the induced map on the projective tangent bundle
$\mathbb{PTM} = T^1M/\pm1$ and we denote by $\phi, \psi : \mathbb{PTM} \to \mathbb{R}$ the continuous observables on \mathbb{PTM}
given respectively by $\phi : (x, v) \mapsto \log \|df_x(v)\|$ and $\psi : (x, v) \mapsto \log \|df_x(v)\| - \frac{1}{r} \log^+ \|df_x\|$.

Date: September 2022.
2010 Mathematics Subject Classification. 37 A35, 37C40, 37 D25.
Theorem (Buzzi-Crovisier-Sarig, Theorem C \[10\]) is phisms with large enough entropy (see Corollary 1).

Let $\lambda^+(x)$ and $\lambda^-(x)$ be the pointwise Lyapunov exponents given by $\lambda^+(x) = \limsup_{n \to +\infty} \frac{1}{n} \log \|d_x f^n\|$ and $\lambda^-(x) = \liminf_{n \to -\infty} \frac{1}{n} \log \|d_x f^n\|$ for any $x \in M$ and $\lambda^+(\mu) = \int \lambda^+(x) \, d\mu(x)$, $\lambda^-(\mu) = \int \lambda^-(x) \, d\mu(x)$, for any f-invariant measure μ.

Also we put $\hat{\lambda}^+(f) := \lim_n \frac{1}{n} \log \|d^nf\|$ with $\|d^nf\| = \sup_{x \in M} \|d_x f^n\|$. The function $f \mapsto \hat{\lambda}^+(f)$ is upper semi-continuous in the C^1 topology on the set of C^1 diffeomorphisms on M. For an f-invariant measure μ with $\lambda^+(\mu) > 0 \geq \lambda^-(\mu)$ for μ a.e. x, there are by Oseledets\footnote{We refer to [17] for background on Lyapunov exponents and Pesin theory.} theorem one-dimensional invariant vector spaces $E_+(x)$ and $E_-(x)$, resp. called the unstable and stable Oseledets bundle, such that

$$\forall \mu \text{ a.e. } x \forall v \in E_\pm(x) \setminus \{0\}, \lim_{n \to \pm\infty} \frac{1}{n} \log \|d_x f^n(v)\| = \lambda^\pm(x).$$

Then we let $\hat{\mu}^+$ be the F-invariant measure given by the lift of μ on $\mathbb{P}TM$ with $\hat{\mu}^+(E_+) = 1$. When writing $\hat{\mu}^+$ we assume implicitly that the push-forward measure μ on M satisfies $\lambda^+(\mu) > 0 \geq \lambda^-(\mu)$ for μ a.e. x.

A sequence of C^r, with $r > 1$, surface diffeomorphisms $(f_k)_k$ on M is said to converge C^r weakly to a diffeomorphism f, when f_k goes to f in the C^1 topology and the sequence $(f_k)_k$ is C^r bounded. In particular f is C^{r-1}.

Theorem (Buzzi-Crovisier-Sarig, Theorem C \[10\]). Let $(f_k)_{k \in \mathbb{N}}$ be a sequence of C^r, with $r > 1$, surface diffeomorphisms converging C^r weakly to a diffeomorphism f. Let $(F_k)_{k \in \mathbb{N}}$ and F be the lifts of $(f_k)_{k \in \mathbb{N}}$ and f to $\mathbb{P}TM$. Assume there is a sequence $(\hat{\nu}_k^+)_k$ of ergodic F_k-invariant measures converging to $\hat{\mu}$.

Then there are $\beta \in [0, 1]$ and F-invariant measures $\hat{\mu}_0$ and $\hat{\mu}_1^+$ with $\hat{\mu} = (1 - \beta)\hat{\mu}_0 + \beta \hat{\mu}_1^+$, such that:

$$\limsup_{k \to +\infty} h(\nu_k) \leq \beta h(\mu_1) + \frac{\lambda^+(f) + \lambda^+(f^{-1})}{r - 1}.$$

In particular when $f (= f_k$ for all k) is C^∞ and $h(\nu_k)$ goes to the topological entropy of f, then β is equal to 1 and therefore $\lambda^+(\nu_k)$ goes to $\lambda^+(\mu)$:

Corollary (Entropic continuity of Lyapunov exponents \[10\]). Let f be a C^∞ surface diffeomorphism with $h_{\text{top}}(f) > 0$.

Then if $(\nu_k)_k$ is a sequence of ergodic measures converging to μ with $\lim_k h(\nu_k) = h_{\text{top}}(f)$, then

- $h(\mu) = h_{\text{top}}(f)$ \footnote{This follows from the upper semi-continuity of the entropy function h on the set of f-invariant probability measures for a C^∞ diffeomorphism f (in any dimension), which was first proved by Newhouse in [19].}
- $\lim_k \lambda^+(\nu_k) = \lambda^+(\mu)$.

We state an improved version of Buzzi-Crovisier-Sarig Theorem, which allows to prove the same entropy continuity of Lyapunov exponents for C^r, $1 < r < +\infty$, surface diffeomorphisms with large enough entropy (see Corollary \[1\]).
Main Theorem. Let \((f_k)_{k \in \mathbb{N}}\) be a sequence of \(C^r\) surface diffeomorphisms converging \(C^r\) weakly to a diffeomorphism \(f\). Let \((F_k)_{k \in \mathbb{N}}\) and \(F\) be the lifts of \((f_k)_{k \in \mathbb{N}}\) and \(f\) to \(\mathbb{PTM}\). Assume there is a sequence \((\tilde{\nu}_k^+)\) of \(\mathcal{F}_k\)-invariant measures converging to \(\tilde{\mu}\).

Then for any \(\alpha > \frac{\lambda^+(f)}{r}\), there are \(\beta = \beta_\alpha \in [0, 1]\) and \(F\)-invariant measures \(\tilde{\mu}_0 = \tilde{\mu}_0,\alpha\) and \(\tilde{\mu}_1^+ = \tilde{\mu}_1^+,\alpha\) with \(\tilde{\mu} = (1-\beta)\tilde{\mu}_0 + \beta\tilde{\mu}_1^+\), such that:

\[
\limsup_{k \to +\infty} h(\nu_k) \leq \beta h(\mu_1) + (1-\beta)\alpha.
\]

In the appendix we explain how the Main Theorem implies Buzzi-Crovisier-Sarig statement. We state now some consequences of the Main Theorem.

Corollary 1 (Existence of maximal measures and entropic continuity of Lyapunov exponents). Let \(f\) be a \(C^r\), with \(r > 1\), surface diffeomorphism satisfying \(h_{\text{top}}(f) > \frac{\lambda^+(f)}{r}\).

Then \(f\) admits a measure of maximal entropy. More precisely, if \((\nu_k)\) is a sequence of ergodic measures converging to \(\mu\) with \(\lim_k h(\nu_k) = h_{\text{top}}(f)\), then

- \(h(\mu) = h_{\text{top}}(f)\),
- \(\lim_k \lambda^+(\nu_k) = \lambda^+(\mu)\).

It was proved in [9] that any \(C^r\) surface diffeomorphism satisfying \(h_{\text{top}}(f) > \frac{\lambda^+(f)}{r}\) admits at most finitely many ergodic measures of maximal entropy. On the other hand, J. Buzzi has built examples of \(C^r\) surface diffeomorphisms for any \(+\infty > r > 1\) with \(h_{\text{top}}(f) > \frac{\lambda^+(f)}{r}\) arbitrarily close to \(1/r\) without a measure of maximal entropy [7]. It is expected that for any \(r > 1\) there are \(C^r\) surface diffeomorphisms satisfying \(h_{\text{top}}(f) = \frac{\lambda^+(f)}{r} > 0\) without measure of maximal entropy or with infinitely many such ergodic measures, but these questions are still open. Such results were already known for interval maps [3, 6, 8].

Proof. We consider the constant sequence of diffeomorphisms equal to \(f\). By taking a subsequence, we can assume that \((\tilde{\nu}_k^+)\) is converging to a lift \(\tilde{\mu}\) of \(\mu\). By using the notations of the Main Theorem with \(h_{\text{top}}(f) > \alpha > \frac{\lambda^+(f)}{r}\), we have

\[
h_{\text{top}}(f) = \lim_{k \to +\infty} h(\nu_k),
\]

\[
\leq \beta h(\mu_1) + (1-\beta)\alpha,
\]

\[
\leq \beta h_{\text{top}}(f) + (1-\beta)\alpha,
\]

\[
(1-\beta)h_{\text{top}}(f) \leq (1-\beta)\alpha.
\]

But \(h_{\text{top}}(f) > \alpha\), therefore \(\beta = 1\), i.e. \(\tilde{\mu}_1^+ = \tilde{\mu}\) and \(\lim_k \lambda^+(\nu_k) = \lambda^+(\mu)\). Moreover \(h_{\text{top}}(f) = \lim_{k \to +\infty} h(\nu_k) \leq \beta h(\mu_1) + (1-\beta)\alpha = h(\mu)\). Consequently \(\mu\) is a measure of maximal entropy of \(f\).

\[\square\]

Corollary 2 (Continuity of topological entropy and maximal measures). Let \((f_k)\) be a sequence of \(C^r\), with \(r > 1\), surface diffeomorphisms converging \(C^r\) weakly to a diffeomorphism \(f\) with \(h_{\text{top}}(f) \geq \frac{\lambda^+(f)}{r}\).

Then

\[
h_{\text{top}}(f) = \lim_k h_{\text{top}}(f_k).
\]
Moreover if \(h_{\text{top}}(f) > \frac{\lambda^+(f)}{r} \) and \(\nu_k \) is a maximal measure of \(f_k \) for large \(k \), then any limit measure of \((\nu_k)_k \) for the weak-* topology is a maximal measure of \(f \).

Proof. By Katok’s horseshoes theorem \([15]\), the topological entropy is lower semi-continuous for the \(C^1 \) topology on the set of \(C^r \) surface diffeomorphisms. Therefore it is enough to show the upper semi-continuity.

By the variational principle there is a sequence of probability measures \((\nu_k)_k \in K, K \subset \mathbb{N} \) with \(K = \infty \), such that:

- \(\nu_k \) is an ergodic \(f_{\beta} \)-invariant measure for each \(k \),
- \(\lim_{k \in K} h(\nu_k) = \limsup_{k \in \mathbb{N}} h_{\text{top}}(f_k) \).

By extracting a subsequence we can assume \((\hat{\nu}_k^+)_k \) is converging to a \(F \)-invariant measure \(\hat{\mu} \) in the weak-* topology. We can then apply the Main Theorem for any \(\alpha > \frac{\lambda^+(f)}{r} \) to get for some \(f \)-invariant measures \(\mu_1, \mu_0 \) and \(\beta \in [0, 1] \) (depending on \(\alpha \)) with \(\mu = (1 - \beta)\mu_0 + \beta \mu_1 \):

\[
\limsup_k h_{\text{top}}(f_k) = \lim_k h(\nu_k),
\]

\[
\leq \beta h(\mu_1) + (1 - \beta)\alpha,
\]

\[
\leq \beta h_{\text{top}}(f) + (1 - \beta)\alpha,
\]

\[
\leq \max(h_{\text{top}}(f), \alpha).
\]

By letting \(\alpha \) go to \(\frac{\lambda^+(f)}{r} \) we get

\[
\limsup_k h_{\text{top}}(f_k) \leq h_{\text{top}}(f).
\]

If \(h_{\text{top}}(f) > \frac{\lambda^+(f)}{r} \), we can fix \(\alpha \in \left] \frac{\lambda^+(f)}{r}, h_{\text{top}}(f) \right] \) and the inequalities (1.1) may be then rewritten as follows:

\[
\limsup_k h_{\text{top}}(f_k) \leq \beta h(\mu_1) + (1 - \beta)\alpha,
\]

\[
\leq h_{\text{top}}(f).
\]

By the lower semi-continuity of the topological entropy, we have \(h_{\text{top}}(f) \leq \limsup_k h_{\text{top}}(f_k) \) and therefore these inequalities are equalities, which implies \(\beta = 1 \), then \(\mu_1 = \mu \), and \(h(\mu) = h_{\text{top}}(f) \).

The corresponding result was proved for interval maps in \([5]\) by using a different method. We also refer to \([3]\) for counterexamples of the upper semi-continuity property for interval maps \(f \) with \(h_{\text{top}}(f) < \frac{\lambda^+(f)}{r} \). Finally, in \([7]\), the author built, for any \(r > 1 \), a \(C^r \) surface diffeomorphism \(f \) with \(\limsup_{g \to f} h_{\text{top}}(g) = \frac{\lambda^+(f)}{r} > h_{\text{top}}(f) = 0 \). We recall also that upper semi-continuity of the topological entropy in the \(C^\infty \) topology was established in any dimension by Y. Yomdin in \([19]\).

Newhouse proved that for a \(C^\infty \) system \((M, f)\), the entropy function \(h : \mathcal{M}(M, f) \to \mathbb{R}^+ \) is an upper semi-continuous function on the set \(\mathcal{M}(M, f) \) of \(f \)-invariant probability measure. It follows from our Main Theorem, that the entropy function is upper semi-continuous at ergodic measures with entropy larger than \(\frac{\lambda^+(f)}{r} \) for a \(C^r \), \(r > 1 \), surface diffeomorphism \(f \).

Corollary 3 (Upper semi-continuity of the entropy function at ergodic measures with large entropy). Let \(f : M \circlearrowleft \) be a \(C^r \), \(r > 1 \), surface diffeomorphism.
Then for any ergodic measure μ with $h(\mu) \geq \frac{\lambda^+(f)}{r}$, we have

$$\limsup_{\nu \to \mu} h(\nu) \leq h(\mu).$$

Proof. By continuity of the ergodic decomposition at ergodic measures and by harmonicity of the entropy function, we have for any ergodic measure μ (see e.g. Lemma 8.2.13 in [12]):

$$\limsup_{\nu \to \mu} h(\nu) \leq \limsup_{\nu \to \mu} h(\mu).$$

Let $(\nu_k)_{k \in \mathbb{N}}$ be a sequence of ergodic f-invariant measures with $\lim_k h(\nu_k) = h(\mu)$. By extracting a subsequence we can assume that the sequence (ν_k) is converging to some lift $\hat{\mu}$ of μ. Take α with $\alpha > \frac{\lambda^+(f)}{r}$. Then, in the decomposition $\hat{\mu} = (1 - \beta)\hat{\mu}_0 + \beta \hat{\mu}_1^+$ given by the Main Theorem, we have $\mu_1 = \mu_0 = \mu$ by ergodicity of μ. Therefore

$$\lim_k h(\nu_k) \leq \beta h(\mu) + (1 - \beta)\alpha,$$

and

$$\leq \max (h(\mu), \alpha).$$

By letting α go to $\frac{\lambda^+(f)}{r}$ we get

$$\lim_k h(\nu_k) \leq h(\mu).$$

□

2. Main steps of the proof

We follow the strategy of the proof of [10]. We point out below the main differences:

- **Geometric and neutral empirical component.** For $\lambda^+(\nu_k) > \frac{\lambda^+(f)}{r}$ we split the orbit of a ν_k-typical point x into two parts. We consider the empirical measures from x at times lying between to M-close consecutive times where the unstable manifold has a “bounded geometry”. We take their limit in k, then in M. In this way we get an invariant component of $\hat{\mu}$. In [10] the authors consider rather such empirical measures for α-hyperbolic times and then take the limit when α go to zero.

- **Entropy computations.** To compute the asymptotic entropy of the ν_k's, we use the static entropy w.r.t. partitions and its conditional version. Instead the authors in [10] used Katok's like formulas.

- **C^r Reparametrizations.** Finally we use here reparametrization methods from [4] and [2] respectively rather than Yomdin's reparametrizations of the projective action F as done in [10]. This is the principal difference with [10].

2.1. **Empirical measures.** Let (X, T) be an invertible topological system, i.e. $T : X \to X$ is a homeomorphism of a compact metric space. For a fixed Borel measurable subset G of X we let $E(x) = E_G(x)$ be the set of times of visits in G from $x \in X$:

$$E(x) = \{ n \in \mathbb{Z}, T^n x \in G \}.$$

When $a < b$ are two consecutive times in $E(x)$, then $[a, b]$ is called a neutral block (by following the terminology of [9]). For all $M \in \mathbb{N}^*$ we let then

$$E^M(x) = \bigcup_{a < b \in E(x), |a - b| \leq M} [a, b].$$
By convention we let $E^\infty(x) = \mathbb{Z}$. For $M \in \mathbb{N}^*$ the complement of $E^M(x)$ is made of disjoint neutral blocks of length larger than M. We consider the associated empirical measures:

$$\forall n, \mu_{x,n}^M = \frac{1}{n} \sum_{k \in E^M(x) \cap [0,n[} \delta_{T^k x}.$$

We denote by χ^M the indicator function of $\{x, 0 \in E^M(x)\}$. The following lemma follows straightforwardly from Birkhoff ergodic theorem:

Lemma 1. With the above notations, for any T-invariant ergodic measure ν, there is a set G of full ν-measure such that the empirical measures $(\mu_{x,n}^M)_{n}$ are converging for any $x \in G$ and any $M \in \mathbb{N}^* \cup \{\infty\}$ to $\chi^M \nu$ in the weak*-topology, when n goes to $+\infty$.

Fix some T-invariant ergodic measure ν. We let $\xi^M = \chi^M \nu$ and $\eta^M = \nu - \xi^M$. Moreover we put $\beta_M = \int \chi^M d\nu$, then $\xi^M = \beta_M \cdot \xi^M$ when $\beta_M \neq 0$ and $\eta^M = (1 - \beta_M) \cdot \eta^M$ when $\beta_M \neq 1$ with ξ^M, η^M being thus probability measures. Following partially [10], the measures ξ^M and η^M are respectively called here the geometric and neutral components of ν. In general these measures are not T-invariant, but $d(\xi^M, T_\ast \xi^M) \leq 1/M$ for some standard distance d on the set $\mathcal{M}(X)$ of Borel probability measures on X. From the definition one easily checks that $\xi^M \geq \chi^M$ for $M \geq N$. If $\nu(G) = 0$, then for ν-almost every x we have $\mu_{x,n}^M = 0$ for all n and M. Assume G has positive ν-measure. Then, when M goes to infinity, the function χ^M goes to $\chi^\infty = 1$ almost surely with respect to ν, therefore ξ^M goes to ν. However in general this convergence is not uniform in ν. In the following we consider a sequence $(\nu_k)_k$ of ergodic T-invariant measures converging to μ. Then, by a diagonal argument, we may assume by extracting a subsequence that $\xi_k^M := \chi^M \nu_k$ is converging for any M, when k goes to infinity, to some ν^M, which is a priori distinct from $\chi^M \mu$. We still have $\nu^M \geq \nu^N$ for $M \geq N$, but the limit $\mu_1 = \lim_M \nu^M$ is a T-invariant component of μ, which may differ from μ.

The next lemma follows from Lemma 1 and standard arguments of measure theory:

Lemma 2. There is a Borel subset H with $\nu(H) > \frac{1}{2}$ such that for any $M \in \mathbb{N}$ and for any continuous function $\varphi : X \to \mathbb{R}$:

$$(2.1) \quad \frac{1}{n} \sum_{k \in E^M(x) \cap [1,n[} \varphi(T^k x) \to \int \varphi \, d\xi^M \text{ uniformly in } x \in H.$$

Proof. We consider a dense countable family $\mathcal{F} = (\varphi_k)_{k \in \mathbb{N}}$ in the set $C^0(X, \mathbb{R})$ of real continuous functions on X endowed with the supremum norm $\| \cdot \|_\infty$. Let G be as in Lemma 1. Then for all k, M, by Egorov’s theorem applied to the pointwise converging sequence $(f_n : G \to \mathbb{R})_n = (x \mapsto \varphi_k \, d\mu_{x,n}^M)_n$, there is a subset F_k^M of F with $\nu(F_k^M) > 1 - \frac{1}{2^{k+M+3}}$ such that $\int \varphi_k \, d\mu_{x,n}^M$ converges to $\int \varphi_k \, d\xi^M$ uniformly in $x \in F_k^M$. Let $H = \bigcap_{k,M} F_k^M$. We have $\nu(H) > \frac{1}{2}$. Then, if $\varphi \in C^0(X, \mathbb{R})$, we may find for any $\epsilon > 0$ a function $\varphi_k \in \mathcal{F}$ with $\| \varphi - \varphi_k \|_\infty < \epsilon$. Let $M \in \mathbb{N}$. Take $N = N_{\epsilon,k}^M$ such that $| \int \varphi_k \, d\mu_{x,n}^M - \int \varphi_k \, d\xi^M | < \epsilon$ for
n > N and for all \(x \in F_k^M\). In particular for all \(x \in H\) we have for \(n > N\)

\[
\left| \int \varphi d\mu_{x,n}^M - \int \varphi d\xi^M \right| \leq \left| \int \varphi_k d\mu_{x,n}^M - \int \varphi d\mu_{x,n}^M \right| + \left| \int \varphi_k d\mu_{x,n}^M - \int \varphi d\xi^M \right| \\
+ \left| \int \varphi_k d\xi^M - \int \varphi d\xi^M \right|, \\
\leq 2 \|\varphi - \varphi_k\|_\infty + \left| \int \varphi_k d\mu_{x,n}^M - \int \varphi d\mu_{x,n}^M \right|, \\
< 3\epsilon.
\]

\[\square\]

2.2. Pesin unstable manifolds

We consider a smooth compact riemannian manifold \((M, \|\cdot\|)\). Let \(\exp_x\) be the exponential map at \(x\) and let \(R_{inj}\) be the radius of injectivity of \((M, \|\cdot\|)\). We consider the distance \(d\) on \(M\) induced by the Riemannian structure. Let \(f : M \circlearrowleft\) be a \(C^r, r > 1\), surface diffeomorphism. We denote by \(R\) the set of Lyapunov regular points with \(\lambda^+(x) > 0 > \lambda^-(x)\). For \(x \in M\) we let \(W^u(x)\) denote the unstable manifold at \(x\):

\[
W^u(x) := \left\{ y \in M, \lim_n \frac{1}{n} \log d(f^n x, f^n y) < 0 \right\}.
\]

By Pesin unstable manifold theorem, the set \(W^u(x)\) for \(x \in R\) is a \(C^r\) submanifold tangent to \(E_+(x)\) at \(x\).

For \(x \in R\), we let \(\hat{x}\) be the vector in \(\mathbb{P}TM\) associated to the unstable Oseledets bundle \(E_+(x)\). For \(\delta > 0\) the point \(x\) is called \(\delta\)-hyperbolic with respect to \(\phi\) (resp. \(\psi\)) when we have \(\phi_l(F^{-l}\hat{x}) \geq \delta l\) (resp. \(\psi_l(F^{-l}\hat{x}) \geq \delta l\)) for all \(l > 0\). Note that if \(x\) is \(\delta\)-hyperbolic with respect to \(\psi\) then it is \(\delta\)-hyperbolic with respect to \(\phi\). Let \(H_\delta := \{ \hat{x} \in \mathbb{P}TM, \forall l > 0 \psi_l(F^{-l}\hat{x}) \geq \delta l \}\) be the set of \(\delta\)-hyperbolic points w.r.t. \(\psi\).

Lemma 3. Let \(\nu\) be an ergodic measure with \(\lambda^+(\nu) - \frac{\log^+ \|df\|_\infty}{r} > \delta > 0 > \lambda^-(\nu)\). Then we have

\[
\hat{\nu}^+(H_\delta) > 0.
\]

Proof. By applying the Ergodic Maximal Inequality (see e.g. Theorem 1.1 in [1]) to the measure preserving system \((F^{-1}, \hat{\nu}^+)\) with the observable \(\psi^\delta = \delta - \psi \circ F^{-1}\), we get with \(A_\delta = \{ \hat{x} \in \mathbb{P}TM, \exists k \geq 0 \text{ s.t. } \sum_{l=0}^k \psi_l(F^{-l}\hat{x}) > 0\}:

\[
\int_{A_\delta} \psi^\delta \, d\hat{\nu}^+ \geq 0.
\]
Observe that $H_\delta = \mathbb{P} TM \setminus A_\delta$. Therefore

$$
\int_{H_\delta} \psi^\delta \, d\hat{\nu}^+ = \int \psi^\delta \, d\hat{\nu}^+ - \int_{A_\delta} \psi^\delta \, d\hat{\nu}^+, \\
\leq \int \psi^\delta \, d\hat{\nu}^+, \\
\leq \int (\delta - \psi \circ F^{-1}) \, d\hat{\nu}^+, \\
\leq \delta - \lambda^+(\nu) + \frac{1}{r} \int \frac{\log^+ \|d_x f\|}{r} \, d\nu(x), \\
< 0.
$$

In particular we have $\hat{\nu}^+(H_\delta) > 0$. \quad \Box

A point $x \in \mathcal{R}$ is said to have κ-bounded geometry for $\kappa > 0$ when $\exp^{-1} W^u(x)$ contains the graph of a κ-admissible map at x, which is defined as a 1-Lipschitz map $f : I \to \mathcal{E}_+(x)^\perp \subset T_x M$, with I being an interval of $\mathcal{E}_+(x)$ containing 0 with length κ. We let G_κ be the subset of points in \mathcal{R} with κ-bounded geometry.

Lemma 4. The set G_κ is Borel measurable.

Proof. For $x \in \mathcal{R}$ we have $W^u(x) = \bigcup_{n \in \mathbb{N}} f^n W^u_{loc}(f^{-n} x)$ with W^u_{loc} being the Pesin unstable local manifold at x. The sequence $(f^n W^u_{loc}(f^{-n} x))_n$ is increasing in n for the inclusion. Therefore, if we let G^n_κ be the subset of points x in G_κ, such that $\exp^{-1} f^n W^u_{loc}(f^{-n} x)$ contains the graph of a κ-admissible map, then we have

$$
G_\kappa = \bigcup_n G^n_\kappa.
$$

There are closed subsets, $(\mathcal{R}_l)_{l \in \mathbb{N}}$, called the Pesin blocks, such that $\mathcal{R} = \bigcup_l \mathcal{R}_l$ and $x \mapsto W^u_{loc}(x)$ is continuous on \mathcal{R}_l for each l (see e.g. [17]). Let $(x_p)_p$ be sequence in $G^n_\kappa \cap \mathcal{R}_l$ which converges to $x \in \mathcal{R}_l$. By extracting a subsequence we can assume that the associated sequence of κ-admissible maps f_p at x_p is convergent pointwise to a κ-admissible map at x, when p goes to infinity. In particular $G^n_\kappa \cap \mathcal{R}_l$ is a closed set and therefore $G_\kappa = \bigcup_{l,n} (G^n_\kappa \cap \mathcal{R}_l)$ is Borel measurable. \quad \Box

2.3. Entropy of conditional measures

We consider an ergodic hyperbolic measure ν, i.e an ergodic measure with $\nu(\mathcal{R}) = 1$. A measurable partition ζ is **subordinated** to the Pesin unstable local lamination W^u_{loc} of ν if the atom $\zeta(x)$ of ζ containing x is a neighborhood of x inside the curve $W^u_{loc}(x)$ and $f^{-1}\zeta > \zeta$. By Rokhlin’s disintegration theorem, there are a measurable set Z of full ν-measure and probability measures ν_x on $\zeta(x)$ for $x \in Z$, called the **conditional measures** on unstable manifolds, satisfying $\nu = \int \nu_x \, d\nu(x)$. Moreover $\nu_y = \nu_x$ for $x, y \in Z$ in the same atom of ζ. Ledrappier and Strelcyn [13] have proved the existence of such subordinated measurable partitions. We fix such a subordinated partition ζ with respect to ν. For $x \in M$, $n \in \mathbb{N}$ and $\rho > 0$, we let $B_n(x, \rho)$ be the Bowen ball $B_n(x, \rho) := \bigcap_{0 \leq k < n} f^{-k} B(f^k x, \rho)$ (where $B(f^k x, \rho)$ denotes the ball for d at $f^k x$ with radius ρ).
Lemma 5. [14] For all $\iota > 0$, there is $\rho > 0$ and a measurable set $E \subset Z \cap R$ with $\nu(E) > \frac{1}{2}$ such that

$$\forall x \in E, \ \liminf_n \frac{1}{n} \log \nu_x(B_n(x, \rho)) \geq h(\nu) - \iota. \quad (2.2)$$

The natural projection from $\mathbb{P}TM$ to M is denoted by π. We consider a distance \hat{d} on the projective tangent bundle $\mathbb{P}TM$, such that $\hat{d}(X, Y) \geq d(\pi X, \pi Y)$ for all $X, Y \in \mathbb{P}TM$. We let $\hat{\eta}^M$ and $\hat{\xi}^M$ be the neutral and geometric components of the ergodic F-invariant measure $\hat{\nu}^+$ associated to $G = H_\delta \cap \pi^{-1}G_\kappa \subset \mathbb{P}TM$, where the parameters δ and κ will be fixed later on independently of ν. The importance of this choice of G will appear in Proposition 4 to bound from above the entropy of the neutral component. We also consider the projections η^M and ξ^M on M of $\hat{\eta}^M$ and $\hat{\xi}^M$ respectively. By Lemma 2 applied to the system $(\mathbb{P}TM, F)$ and to the ergodic measure $\hat{\nu}^+$, there is a Borel subset \mathcal{H} of $\mathbb{P}TM$ with $\hat{\nu}^+(\mathcal{H}) > \frac{1}{2}$ such that for any $M \in N^* \cup \{\infty\}$ and for any continuous function $\varphi : \mathbb{P}TM \to \mathbb{R}$

$$\frac{1}{n} \sum_{k \in \mathcal{E}^M(\hat{x}) \cap [1, n]} \varphi(F^k \hat{x}) \xrightarrow{n} \int \varphi \, d\hat{\xi}^M \text{ uniformly in } \hat{x} \in \mathcal{H}. \quad (2.3)$$

Fix an error term $\iota > 0$ depending on ν and let ρ and E be as in Lemma 5. Let $F = E \cap \pi(\mathcal{H})$. Note that $\nu(F) > 0$. We fix also $x_\ast \in F$ with $\nu_{x_\ast}(F) > 0$ and we let $\zeta = \nu_{x_\ast}(\cdot)/\nu_{x_\ast}(F)$ be the probability measure induced by ν_{x_\ast} on F. Observe that $\nu_x = \nu_{x_\ast}$ for ζ a.e. x. We let D be the C^r curve given by the Pesin local unstable manifold $W^u_{loc}(x_\ast)$ at x_\ast. For a finite measurable partition P and a Borel probability measure μ we let $H_\mu(P)$ be the static entropy, $H_\mu(P) = -\sum_{A \in P} \mu(A) \log \mu(A)$. Moreover we let $P^n = \bigvee_{k=0}^{n-1} f^{-k} P$ be the n-iterated partition, $n \in N$. We also denote by P^n_x the atom of P^n containing the point $x \in M$.

Lemma 6. For any (finite measurable) partition P with diameter less than ρ, we have

$$\liminf_n \frac{1}{n} H_\zeta(P^n) \geq h(\nu) - \iota. \quad (2.4)$$

Proof.

$$\liminf_n \frac{1}{n} H_\zeta(P^n) = \liminf_n \frac{1}{n} \int -\frac{1}{n} \log \zeta(P^n_x) \, d\zeta(x), \text{ by the definition of } H_\zeta,$$

$$\geq \liminf_n \int -\frac{1}{n} \log \zeta(P^n_x) \, d\zeta(x), \text{ by Fatou’s Lemma},$$

$$\geq \liminf_n \int -\frac{1}{n} \log \nu_{x_\ast}(P^n_x) \, d\zeta(x), \text{ by the definition of } \zeta,$$

$$\geq \liminf_n \int -\frac{1}{n} \log \nu_x(P^n_x) \, d\zeta(x), \text{ as } \nu_x = \nu_{x_\ast} \text{ for } \zeta \text{ a.e. } x,$$

$$\geq \liminf_n \int -\frac{1}{n} \log \nu_x(B_n(x, \rho)) \, d\zeta(x), \text{ as } \text{diam}(P) < \rho,$$

$$\geq h(\nu) - \iota, \text{ by the choice of } F \subset E \text{ and } (2.2).$$

In the proof of the Main Theorem we will take $\iota = \iota(\nu_k) \to 0$ for the converging sequence of ergodic measures $(\nu_k)_k$.

\[\square\]
2.4. Entropy splitting of the neutral and the geometric component. In this section we split the entropy contribution of the neutral and geometric components \(\hat{\eta}^M \) and \(\hat{\xi}^M \) of the ergodic F-invariant measure \(\hat{\nu}^+ \) associated to a fixed Borel set \(G \) of \(\mathbb{PTM} \).

Recall that \(E(\hat{x}) \) denotes the set of integers \(k \) with \(F^k\hat{x} \in G \). Fix now \(M \). For each \(n \in \mathbb{N} \) and \(x \in F \) we let \(E_n(x) = E(\hat{x}) \cap [0, n] \) and \(E_n^M(x) = E^M(\hat{x}) \cap [0, n] \). We also let \(E_n^M \) be the partition of \(F \) with atoms \(A_E := \{ x \in D, E_n^M(x) = E \} \) for \(E \subset [0, n] \). Given a partition \(Q \) of \(\mathbb{PTM} \), we also let \(Q^{E_n^M} \) be the partition of \(F := \{ \hat{x}, x \in F \cap D \} \) finer than \(\pi^{-1}E_n^M \) with atoms \(\{ \hat{x} \in F, E_n^M(x) = E \} \) and \(\forall k \in E, F^k\hat{x} \in Q_k \) for \(E \subset [0, n] \) and \((Q_k)_{k \in E} \subset Q^E \). We let \(\partial Q \) be the boundary of the partition \(Q \), which is the union of the boundaries of its atoms. For a measure \(\eta \) and a subset \(A \) of \(\mathbb{M} \) with \(\eta(A) > 0 \) we denote by \(\eta_A = \frac{n(A\cap \partial Q)}{n(A)} \) the induced probability measure on \(A \). Moreover, for two sets \(A, B \) we let \(A \Delta B \) denote the symmetric difference of \(A \) and \(B \), i.e. \(A \Delta B = (A \setminus B) \cup (B \setminus A) \). Finally, let \(H : [0, 1] \rightarrow \mathbb{R}^+ \) be the map \(t \mapsto -t \log t - (1 - t) \log (1 - t) \). Recall that \(\hat{\zeta}^+ \) is the lift of \(\zeta \) on \(\mathbb{PTM} \) to the unstable Oseledets bundle (with \(\zeta \) as in Subsection 2.3).

Lemma 7. For any finite partition \(P \) with diameter less than \(\rho \) and for any finite partition \(Q \) and any \(m \in \mathbb{N}^* \) with \(\hat{\xi}^M(\partial Q)^m = 0 \) we have

\[
(2.5) \quad h(\nu) \leq \beta_M \frac{1}{m} H_E(M(Q^m)) + \limsup_n \frac{1}{n} H_{\hat{\xi}^+}(\pi^{-1}P^n|Q^{E_n^M}) + H(2/M) + \frac{12 \log \#Q}{M} + \iota.
\]

Before the proof of Lemma 7, we first recall a technical lemma from [2].

Lemma 8 (Lemma 6 in [2]). Let \((X, T) \) be a topological system. Let \(\mu \) be a Borel probability measure on \(X \) and let \(E \) be a finite subset of \(\mathbb{N} \). For any finite partition \(Q \) of \(X \), we have with \(\mu^E := \frac{1}{|E|} \sum_{k \in E} T^k \mu \) and \(Q^E := \bigvee_{k \in E} T^{-k}Q \):

\[
\frac{1}{|E|} H_{\mu}(Q^E) \leq \frac{1}{m} H_{\mu^E}(Q^m) + 6m \frac{\#(E + 1) \Delta E}{\#E} \log \#Q.
\]

Proof of Lemma 7. As the complement of \(E_n^M(x) \) is the disjoint union of neutral blocks with length larger than \(M \), there are at most \(A_n^M = \sum_{k=0}^{\lfloor 2n/M \rfloor + 1} \binom{n}{k} \) possible values for \(E_n^M(x) \) so that

\[
\frac{1}{n} H_{\hat{\zeta}}(P^n) = \frac{1}{n} H_{\hat{\zeta}}(P^n|E_n^M) + H_{\hat{\zeta}}(E_n^M),
\]

\[
\leq \frac{1}{n} H_{\hat{\zeta}}(P^n|E_n^M) + \log A_n^M,
\]

\[
\liminf_n \frac{1}{n} H_{\hat{\zeta}}(P^n) \leq \limsup_n \frac{1}{n} H_{\hat{\zeta}}(P^n|E_n^M) + H(2/M) \quad \text{by using Stirling's formula.}
\]

Moreover

\[
\frac{1}{n} H_{\hat{\zeta}}(P^n|E_n^M) = \frac{1}{n} H_{\hat{\zeta}^+}(\pi^{-1}P^n|\pi^{-1}E_n^M),
\]

\[
\leq \frac{1}{n} H_{\hat{\zeta}^+}(Q^{E_n^M}|\pi^{-1}E_n^M) + \frac{1}{n} H_{\hat{\zeta}^+}(\pi^{-1}P^n|Q^{E_n^M}).
\]

For \(E \subset [0, n] \) we let \(\hat{\zeta}_{E, n} = \frac{n}{|E|} \int \mu_{X, n}^E d\zeta_{A_E}(x) \), which may be also written as \(\left(\hat{\zeta}_{\pi^{-1}A_E} \right)^E \) by using the notations of Lemma 8. By Lemma 8 applied to the system \((\mathbb{PTM}, F) \) and the
measures $\mu := \hat{\xi}_{\pi^{-1}A_F}$ for $A_F \in E_n^M$ we have for all $n > m \in \mathbb{N}^*$:

$$H_{\hat{\xi}}^+ \left(Q_{n}^M |_{\pi^{-1} E_n^M} \right) = \sum_{E} \zeta(A_E) H_{\hat{\xi}}^+ (Q_E),$$

$$\leq \sum_{E} \zeta(A_E) \hat{\mu} \left(\frac{1}{m} H_{\hat{\xi}, n}^+ (Q^m) + 6m \hat{\mu} (E + 1) \Delta E \log \hat{\mu} Q \right).$$

Recall again that if $E = E_n^M(x)$ for some x then the complement set of E in $[1, n]$ is made of neutral blocks of length larger than M, therefore $\hat{\mu} (E + 1) \Delta E \leq \frac{2M}{n}$. Moreover it follows from $\hat{\xi}^M (\partial Q^m) = 0$ and (2.3), that $\mu^M_{x, n} (A^m)$ for $A^m \in Q^m$ and $\hat{\xi}^M_n (x) / n$ are converging to $\hat{\xi}^M (A^m)$ and β_M respectively uniformly in $x \in F$ when n goes to infinity. Then we get by taking the limit in n:

$$\limsup_n \frac{1}{n} H_{\hat{\xi}}^+ \left(Q_{n}^M |_{\pi^{-1} E_n^M} \right) \leq \beta_M \frac{1}{m} H_{\hat{\xi}}^M (Q^m) + \frac{12m \log \hat{\mu} Q}{M},$$

$$h(\nu) - \lambda \leq \liminf_n \frac{1}{n} H_{\hat{\xi}} (P^m) \leq \beta_M \frac{1}{m} H_{\hat{\xi}}^M (Q^m) + \limsup_n \frac{1}{n} H_{\hat{\xi}}^+ (\pi^{-1} P^n | Q_{n}^M) + H(2/M) + \frac{12m \log \hat{\mu} Q}{M}.$$

\[\square \]

2.5. Bounding the entropy of the neutral component

For a C^1 diffeomorphism f on M we put $C(f) := 2A_f H(A_f^{-1}) + \log^+ ||df||_{\infty} + B_r$ with $A_f = \log^+ ||df||_{\infty} + \log^+ ||d(f^{-1})||_{\infty} + 1$ and a universal constant B_r depending only r precised later on. Clearly $f \mapsto C(f)$ is continuous in the C^1 topology and $C(f) = \lim_{N \to +\infty} C(f)/p$ whenever $\lambda^+(f) > 0$ (indeed $A_f \overset{p}{\to} +\infty$, therefore $H(A_f^{-1}) \overset{p}{\to} 0$). In particular, if $\lambda^+(f) < \alpha$ and $f_k \overset{p}{\to} f$ in the C^1 topology, then there is p with $\lim_{k} C(f)/p < \alpha$.

In this section we consider the empirical measures associated to an ergodic hyperbolic measure ν with $\lambda^+(\nu) > \frac{1}{r} \log \frac{1}{r} + \delta$, $\delta > 0$. Without loss of generality we can assume $\delta < \frac{r-1}{r} \log 2$. Then by Lemma 3 we have $\hat{\nu}^+(H_{\delta}) > 0$. For $x \in \mathcal{R}$ we let $m_n(x) = \max \{k < n, F^k x \in H_{\delta} \}$. By a standard application of Birkhoff ergodic theorem we have

$$\frac{m_n(x)}{n} \overset{n}{\to} 1 \text{ for } \nu \text{ a.e. } x.$$

By taking a smaller subset F, we can assume the above convergence of m_n is uniform on F and that $\sup_{x \in F} \min \{ k \leq n, F^k x \in H_{\delta} \} \leq N$ for some positive integer N.

We bound the term $\limsup_n \frac{1}{n} H_{\hat{\xi}}^+ (\pi^{-1} P^n | Q_{n}^M)$ in the right hand side of (2.5) Lemma 4 which corresponds to the local entropy contribution plus the entropy in the neutral part.

Lemma 9. There is $\kappa > 0$ depending only on $\|d^k f\|_{\infty}$, $2 \leq k \leq r$, $\|\partial^j_g (\exp_{f^{-1}(x)} \circ \exp_{x}) (\cdot)\|_{\infty}$ such that the empirical measures associated to $G := \pi^{-1} G_{\kappa} \cap H_{\delta}$ satisfy the following properties. For all $q, M \in \mathbb{N}^*$,

Here

$$\|d^k f\|_{\infty} = \sup_{\alpha \in \mathbb{R}, |\alpha| = k} \sup_{x, y} \left\| \partial^j_g (\exp_{f^{-1}(x)} \circ \exp_{x}) (\cdot) \right\|_{\infty}$$
there are \(\epsilon_q > 0 \) depending only on \(\|d^k(f^q)\|_\infty, 2 \leq k \leq r \) and \(\gamma_{q,M}(f) > 0 \) such that for any partition \(Q \) of \(\mathbb{P}T \mathbb{M} \) with diameter less than \(\epsilon_q \), we have:

\[
\limsup_n \frac{1}{n} H_{\xi}(\pi^{-1}P^n|Q_{E_n}^M) \leq (1 - \beta_M)C(f) + \left(\log 2 + \frac{1}{r - 1} \right) \left(\int \frac{\log^+ \|df^q\|_q}{q} d\xi^M - \int \phi d\xi^M \right) + \gamma_{q,M}(f),
\]

where the error term \(\gamma_{q,M}(f) \) satisfies

\[
\forall K > 0 \limsup_n \sup_{q} \sup_{M} \left(\sup_{f \in \text{Diff}(\mathbb{M})} \left\{ \gamma_{q,M}(f) | \|df\|_\infty \vee \|df^{-1}\|_\infty < K \right\} \right) = 0.
\]

The proof of Lemma 9 appears after the statement of Proposition 4, which is a semi-local Reparametrization Lemma.

Proposition 4. There is \(\kappa > 0 \) depending only on \(\|d^k f\|_\infty, 2 \leq k \leq r \), such that the empirical measures associated to \(G := \pi^{-1}G_\kappa \cap H_\delta \) satisfy the following properties. For all \(q, M \in \mathbb{N}^\ast \) there are \(\epsilon_q > 0 \) depending only on \(\|d^k(f^q)\|_\infty, 2 \leq k \leq r \) and \(\gamma_{q,M}(f) > 0 \) satisfying (2.6) such that for any partition \(Q \) with diameter less than \(\epsilon < \epsilon_q \), we have for \(n \) large enough:

Any atom \(F_n \) of the partition \(Q_{E_n}^M \) may be covered by a family \(\Psi_{F_n} \) of \(C^r \) curves \(\psi : [-1, 1] \rightarrow \mathbb{M} \) satisfying \(\|d(f^k \circ \psi)\|_\infty \leq 1 \) for any \(k = 0, \ldots, n - 1 \), such that

\[
\frac{1}{n} \log \# \Psi_{F_n} \leq \left(1 - \frac{\# E_n^M}{n} \right) C(f) + \left(\log 2 + \frac{1}{r - 1} \right) \left(\int \frac{\log^+ \|d_x f^q\|_q}{q} \right) \left(\int \phi d\xi^M_t (x) \right) + \gamma_{q,M}(f) + \tau_n,
\]

where \(\lim_n \tau_n = 0, E_n^M = E_n^M(f) \) for \(x \in F_n \), \(\xi^M_{F_n} = \int \mu_{x,n}^M d\xi_{F_n}(x) \) and \(\xi^M_{F_n} = \pi_\ast \xi^M_{F_n} \) its push-forward on \(\mathbb{M} \).

The proof of Proposition 4 is given in the last section. Proposition 4 is very similar to the Reparametrization Lemma in [4]. Here we reparametrize an atom \(F_n \) of \(Q_{E_n}^M \) instead of \(Q^n \) in [4].

Proof of Lemma 9 assuming Proposition 4. We take \(\kappa > 0 \) and \(\epsilon_q > 0 \) as in Proposition 4. Observe that

\[
H_{\xi}(\pi^{-1}P^n|Q_{E_n}^M) \leq \sum_{F_n \in Q_{E_n}^M} \xi^+(F_n) \log \# \{A^n \in P^n, \pi^{-1}(A^n) \cap \tilde{F} \cap F_n \neq \emptyset\}.
\]

As \(\nu(\partial P) = 0 \), for all \(\gamma > 0 \), there is \(\chi > 0 \) and a continuous function \(\vartheta : \mathbb{M} \rightarrow \mathbb{R}^+ \) equal to 1 on the \(\chi \)-neighborhood \(\partial P \times \partial P \) of \(\partial P \) satisfying \(\int \vartheta d\nu < \gamma \). Then, by applying (2.3) with \(\varphi : \tilde{x} \mapsto \vartheta(x) \) and \(M = \infty \), we have uniformly in \(x \in \mathbb{F} \subset \pi(\mathbb{H}) \):

\[
\limsup_n \frac{1}{n} \# \{0 \leq k < n, f^k x \in \partial P \times \partial P \} \leq \lim_n \frac{1}{n} \sum_{k=0}^{n-1} \vartheta (f^k x) = \int \vartheta d\nu < \gamma.
\]
Assume that for arbitrarily large n there is $F_n \in Q^{BM}_n$ and $\psi \in \Psi_{F_n}$ with $\sharp \{ A^n \in P^n, \ A^n \cap \psi([-1,0]) \cap F \neq \emptyset \} > ([\chi^{-1}] + 1)P_F^n$. As $\|d(f^k \circ \psi)\|_\infty \leq 1$ for $0 \leq k < n$ we may reparametrize ψ on F by $[\chi^{-1}] + 1$ affine contractions θ so that the length of $f^k \circ \psi \circ \theta$ is less than χ for all $0 \leq k < n$ and $(\psi \circ \theta)([-1,0]) \cap F \neq \emptyset$. Then we have $\sharp \{0 \leq k < n, \partial P \cap (f^k \circ \psi \circ \theta)([-1,0]) \neq \emptyset\} > \gamma n$ for some θ. In particular we get $\sharp \{0 \leq k < n, f^k x \in \partial P \} > \gamma n$ for any $x \in \psi \circ \theta([-1,1])$, which contradicts (2.7). Therefore we have

$$\limsup_n \sup_{F_n, \psi \in \Psi_{F_n}} \frac{1}{n} \log \{ A^n \in P^n, \ A^n \cap \psi([-1,0]) \cap F \neq \emptyset \} = 0.$$

Together with Proposition 4 and Lemma 2 we get

$$\limsup_n \frac{1}{n} H_{\hat{\xi}}(\pi^{-1}_n P^n|Q^{BM}_n) \leq \limsup_n \sum_{F_n \in Q^{BM}_n} \hat{\xi}^+(F_n) \frac{1}{n} \log \#F_n,$$

$$\leq \limsup_n \sum_{F_n \in Q^{BM}_n} \hat{\xi}^+(F_n) \left(1 - \frac{2E_n}{n} \right) C(f) +$$

$$+ \limsup_n \sum_{F_n \in Q^{BM}_n} \hat{\xi}^+(F_n) \left(\log 2 + \frac{1}{r - 1} \right) \left(\int \frac{\log + \|df^q\|}{q} d\xi^F_n - \int \phi d\hat{\xi}^M_n \right),$$

$$\leq (1 - \beta M)C(f) + \left(\log 2 + \frac{1}{r - 1} \right) \left(\int \frac{\log + \|df^q\|}{q} d\xi^F_n - \int \phi d\hat{\xi}^M_n \right) + \gamma_{q,M}(f).$$

This concludes the proof of Lemma 9.

By combining Lemma 9 and Lemma 7 we get:

Proposition 5. Let κ, ϵ_q and $\gamma_{q,M}(f)$ as in Proposition 4. Then for any $q, M \in \mathbb{N}^*$ and for any finite partition Q with diameter less than ϵ_q and with $\hat{\xi}^M(\partial Q^m) = 0$ we have with $\gamma_{q,Q,M}(f) = \gamma_{q,M}(f) + H \left(\frac{2}{M} \right) + \frac{12 \log Q^m}{M}$:

$$h(\nu) \leq \beta M \frac{1}{m} H_{\hat{\xi}}(Q^m) + (1 - \beta M)C(f)$$

$$+ \left(\log 2 + \frac{1}{r - 1} \right) \left(\int \frac{\log + \|df^q\|}{q} d\xi^F_n - \int \phi d\hat{\xi}^M_n \right),$$

$$+ \gamma_{q,Q,M}(f) + \iota.$$

2.6. **Proof of the Main Theorem.** We first reduce the Main Theorem to the following statement.

Proposition 6. Let $(f_k)_{k \in \mathbb{N}}$ be a sequence of C^r, with $r > 1$, surface diffeomorphisms converging C^r weakly to a diffeomorphism f. Assume there is a sequence $(\hat{\nu}^+_k)_k$ of ergodic F_k-invariant measures converging to $\hat{\nu}$ with $\lim_k \lambda^+ (\nu_k) > \frac{\log + \|df\|_\infty}{r}$. Then, there are F-invariant measures $\hat{\mu}_0$ and $\hat{\mu}^+_1$ with $\hat{\mu} = (1 - \beta)\hat{\mu}_0 + \beta \hat{\mu}^+_1$, $\beta \in [0,1]$, such that:

$$\limsup_{k \to +\infty} h(\nu_k) \leq \beta h(\mu_1) + (1 - \beta) C(f).$$
Proof of the Main Theorem assuming Proposition 6. Let \((\hat{\nu}^+_k)_k\) be a sequence of ergodic \(F_k\)-invariant measures converging to \(\hat{\mu}\).

As previously mentioned, for any \(\alpha > \lambda^+(f)/r\) there is \(p \in \mathbb{N}^+\) with \(\alpha > C(f_p)/p\). We can also assume \(\frac{\log \|df^p\|_r}{p} = \log \|df^p\|_r < \alpha\). Let \(\hat{\nu}^+_k\) be an ergodic component of \(\hat{\nu}_k\) for \(F_k^p\) and let us denote by \(\nu_k^p\) its push forward on \(\mathcal{M}\). We have \(h_{f_k}^p(\nu_k^p) = ph_{f_k}(\nu_k)\) for all \(k\). By taking a subsequence we can assume that \((\hat{\nu}^+_k)_k\) is converging. Its limit \(\hat{\mu}\) satisfies \(\frac{1}{p} \sum_{0 \leq l < p} F_k^l \hat{\mu}^p = \hat{\mu}\). If \(\lim_k \lambda^+(\nu_k^p) \leq \frac{1}{p} \log \|df^p\|_r \leq \alpha\), then by Ruelle’s inequality we get
\[
\limsup_{k \to +\infty} h_{f_k}(\nu_k) = \limsup_{k \to +\infty} \frac{1}{p} h_{f_k}^p(\nu_k^p),
\]
\[
\leq \lim_{k \to +\infty} \frac{1}{p} \lambda^+(\nu_k^p),
\]
\[
< \alpha.
\]
This proves the Main Theorem with \(\beta = 1\).

We consider then the case \(\lim_k \lambda^+(\nu_k^p) > \frac{1}{p} \log \|df^p\|_r \). By applying Proposition 4 to the \(p\)-power system, we get \(F_k^p\)-invariant measure \(\hat{\mu}_0^p\) and \(\hat{\mu}_1^+\) with \(\hat{\mu} = (1 - \beta)\hat{\mu}_0^p + \beta \hat{\mu}_1^+, \beta \in [0, 1]\), such that we have with \(\mu_0^p = \pi_*\hat{\mu}_0^p\) :
\[
\limsup_{k \to +\infty} h_{f_k}^p(\nu_k^p) \leq \beta h_{f_p}(\mu_0^p) + (1 - \beta)C(f_p).
\]
But \(h_{f_p}(\mu_0^p) = ph_{f}(\mu_1)\) with \(\mu_1 = \frac{1}{p} \sum_{0 \leq l < p} f^k \mu_0^p\). One easily checks that \(\hat{\mu}_1^+ = \frac{1}{p} \sum_{0 \leq l < p} F_k^l \hat{\mu}_1^+\). Then we have :
\[
\limsup_{k \to +\infty} h_{f_k}(\nu_k) = \limsup_{k \to +\infty} \frac{1}{p} h_{f_k}^p(\nu_k^p),
\]
\[
\leq \beta \frac{1}{p} h_{f_p}(\mu_0^p) + (1 - \beta) \frac{C(f_p)}{p},
\]
\[
\leq h_{f}(\mu_1) + (1 - \beta)\alpha.
\]
This concludes the proof of the Main Theorem.

We show now Proposition 6 by using Lemma 9.

Proof of Proposition 6. Without loss of generality we can assume \(\liminf_k h(\nu_k) > 0\). For \(\mu\) a.e. \(x\), we have \(\lambda^-(x) \leq 0\). If not, some ergodic component \(\hat{\mu}\) of \(\mu\) would have two positive Lyapunov exponents and therefore should be the periodic measure at a source \(S\) (see e.g. Proposition 4.4 in [13]). But then for large \(k\) the probability \(\nu_k\) would give positive measure to the basin of attraction of the sink \(S\) for \(f^{-1}\) and therefore \(\nu_k\) would be equal to \(\hat{\mu}\) contradicting \(\liminf_k h(\nu_k) > 0\).

Let \(\delta > 0\) with \(\lim_k \lambda^+(\nu_k) > \frac{1}{p} \log \|df^p\|_r + \delta\). Then take \(\kappa\) as in Lemma 9. We consider the empirical measures associated to \(G = \pi^{-1}G_\kappa \cap H_\delta\). By a diagonal argument, there is a subsequence in \(k\) such that the geometric component \(\hat{\xi}_M^k\) of \(\hat{\nu}_k^+\) is converging to some \(\hat{\xi}_M\) for all \(M \in \mathbb{N}\). Let us also denote by \(\beta_M^\infty\) the limit in \(k\) of \(\beta_M^k\). Then consider a subsequence in \(M\) such that \(\hat{\xi}_M\) is converging to \(\beta\hat{\mu}_1\) with \(\beta = \lim_M \beta_M^\infty\). We also let \((1 - \beta)\hat{\mu}_0 = \hat{\mu} - \beta\hat{\mu}_1\).

In this way, \(\hat{\mu}_0\) and \(\hat{\mu}_1\) are both probability measures.

Lemma 10. The measures \(\hat{\mu}_0\) and \(\hat{\mu}_1\) satisfy the following properties:
• $\hat{\mu}_1$ and $\hat{\mu}_0$ are F-invariant,
• $\lambda^+(x) \geq \delta$ for μ_1-a.e. x and $\hat{\mu}_1 = \hat{\mu}_1^+$.

Proof. The neutral blocks in the complement set of $E^M(x)$ have length larger than M. Therefore for any continuous function $\varphi : \mathbb{PTM} \to \mathbb{R}$ and for any k, we have

$$\left| \int \varphi d\hat{\xi}_k^M - \int \varphi \circ F d\hat{\xi}_k^M \right| \leq \frac{2 \sup_x |\varphi(x)|}{M}.$$

Letting k, then M go to infinity, we get $\int \varphi d\hat{\mu}_1 = \int \varphi \circ F d\hat{\mu}_1$, i.e. $\hat{\mu}_1$ is F-invariant.

We let K_M be the compact subset of \mathbb{PTM} given by $K_M = \{\hat{x} \in \mathbb{PTM}, \exists 1 \leq m \leq M \phi_m(\hat{x}) \geq m\}$. Let $\hat{x} \in G_k$, where G_k is the set where the empirical measures are converging to ξ_k^M (see Lemma 1). Observe that

$$\lim_n \mu_{x,n}^M(K_M) = \hat{\xi}_k^M(K_M) = \hat{\xi}_k^M(\mathbb{PTM}).$$

Indeed for any $k \in E^M(\hat{x})$ there is $1 \leq m \leq M$ with $E^m(F^k\hat{x}) \in G \subset H_\delta$. Moreover, as already mentioned, δ-hyperbolic points w.r.t. ψ are δ-hyperbolic w.r.t. ϕ. Therefore $\phi_m(F^k\hat{x}) \geq m\delta$. Consequently we have $\lim_n \mu_{x,n}^M(K_M) = \lim_n \mu_{x,n}^M(\mathbb{PTM}) = \hat{\xi}_k^M(\mathbb{PTM})$. The set K_M being compact in \mathbb{PTM}, we get $\hat{\xi}_k^M(K_M) \geq \lim_n \mu_{x,n}^M(K_M)$ and (2.8) follows.

Also we have $\hat{\xi}_k^M(K_M) \geq \limsup_k \hat{\xi}_k^M(K_M) = \limsup_k \hat{\xi}_k^M(\mathbb{PTM}) = \beta_{\infty}^M$. Therefore we have $\hat{\mu}_1(\bigcup M K_M) = 1$ as $\hat{\xi}_k^M$ goes increasingly in M to $\beta\hat{\mu}_1$. The F-invariant set $\bigcap_{k \in \mathbb{Z}} E^{-k}(\bigcup M K_M)$ has also full $\hat{\mu}_1$-measure and for all $\hat{x} = (x,v)$ in this set we have $\limsup_n \frac{1}{n} \log \|d_x f^n(v)\| \geq \delta$. Consequently the measure $\hat{\mu}_1$ is supported on the unstable bundle $\mathcal{E}_+(x)$ and $\lambda^+(x) \geq \delta$ for μ_1-a.e. x. \hfill \Box

Remark 7. In Theorem C of [10], the measure $\beta\hat{\mu}_1^+$ is obtained as the limit when δ goes to zero of the component associated to the set $G^\delta := \{x, \forall l > 0 \phi_l(\hat{x}) \geq \delta l\} \supset \pi^{-1}G_\delta \cap H_\delta$. Therefore our measure $\beta_{\alpha\hat{\mu}_1^+,\alpha}$ is just a component of their measure $\beta\hat{\mu}_1^+$.

We pursue now the proof of Proposition 6. Let $q,M \in \mathbb{N}^\ast$. Fix a sequence $(t_k)_k$ of positive numbers with $t_k \overset{k}{\rightarrow} 0$. We consider a partition Q satisfying $\text{diam}(Q) < \varepsilon_q$ with ε_q as in Lemma 3. The sequence $(f_k)_k$ being C^r bounded, one can choose ε_q independently of f_k, $k \in \mathbb{N}$.

By a standard argument of countability we may assume that for all $m \in \mathbb{N}^\ast$ the boundary of Q^m has zero-measure for $\hat{\mu}_1^+$ and all the measures $\hat{\xi}_k^M$, $M \in \mathbb{N}^\ast$ and $k \in \mathbb{N} \cup \{\infty\}$. By applying Proposition 5 to f_k and ν_k we get:

$$h(\nu_k) \leq \beta_k^M \frac{1}{m} H_{\xi_k^M}(Q^m) + (1 - \beta_k^M)\mathcal{C}(f_k)$$

$$+ \left(\log 2 + \frac{1}{r-1} \right) \left(\int \log^+ \frac{\|df_k\|}{q} d\xi_k^M - \int \phi d\hat{\xi}_k^M \right)$$

$$\leq \gamma_q Q M (f_k) + t_k.$$
By letting k, then M go to infinity, we obtain for all m:

$$\limsup_k h(\nu_k) \leq \beta \frac{1}{m} H_{\mu_1} (Q^m) + (1 - \beta) C(f)$$

$$+ \left(\log 2 + \frac{1}{r - 1} \right) \left(\int \frac{\log^+ \|df^q\|}{q} d\mu_1 - \int \phi d\hat{\mu}_1^+ \right)$$

$$+ \limsup_k \sup_M H_{\gamma_q, Q, M, f_k}.$$

By letting m go to infinity, we get:

$$\limsup_k h(\nu_k) \leq \beta h(\hat{\mu}_1^+) + (1 - \beta) C(f)$$

$$+ \left(\log 2 + \frac{1}{r - 1} \right) \left(\int \frac{\log^+ \|df^q\|}{q} d\mu_1 - \int \phi d\hat{\mu}_1^+ \right)$$

$$+ \limsup_k \sup_M \gamma_q, Q, M, f_k.$$

But $h(\hat{\mu}_1^+) = h(\mu_1)$ as the measure preserving systems associated to μ_1 and $\hat{\mu}_1^+$ are isomorphic. Moreover we have $\int \phi d\hat{\mu}_1^+ = \lambda^+(\mu_1) = \lim_q \int \frac{\log^+ \|df^q\|}{q} d\mu_1$. Therefore by letting q go to infinity we finally obtain with the asymptotic property \eqref{eq:asymptotic} of γ_q, M:

$$\limsup_k h(\nu_k) \leq \beta h(\mu_1) + (1 - \beta) C(f).$$

This concludes the proof of Proposition 6. \hfill \Box

3. Semi-local Reparametrization Lemma

In this section we prove the semi-local Reparametrization Lemma stated above in Proposition 4.

3.1. Strongly bounded curves. To simplify the exposition (by avoiding irrelevant technical details involving the exponential map) we assume that M is the two-torus \mathbb{T}^2 with the usual Riemannian structure inherited from \mathbb{R}^2. Borrowing from [2] we first make the following definitions.

A C^r embedded curve $\sigma : [-1, 1] \to M$ is said \textit{bounded} when $\max_{k=2, \ldots, r} \|d^k \sigma\|_{\infty} \leq \|d\sigma\|_{\infty}$. \hfill \Box

\textbf{Lemma 11.} Assume σ is a bounded curve. Then for any $x \in \sigma([-1, 1])$, the curve σ contains the graph of a κ-admissible map at x with $\kappa = \frac{\|d\sigma\|_{\infty}}{6}$.

\textit{Proof.} Let $x = \sigma(s)$, $s \in [-1, 1]$. One checks easily (see Lemma 7 in [4] for further details) that for all $t \in [-1, 1]$ the angle $\angle \sigma'(s), \sigma'(t) < \frac{\pi}{6} \leq 1$ and therefore $\int_0^1 \sigma'(t) \cdot \frac{\sigma'(s)}{\|\sigma'(s)\|} dt \geq \frac{\|d\sigma\|_{\infty}}{6}$. Therefore, as $\sigma'(s) \in \mathcal{E}_+(x)$, the image of σ contains the graph of an $\frac{\|d\sigma\|_{\infty}}{6}$-admissible map at x. \hfill \Box

A C^r bounded curve $\sigma : [-1, 1] \to M$ is said \textit{strongly ϵ-bounded} for $\epsilon > 0$ if $\|d\sigma\|_{\infty} \leq \epsilon$. For $n \in \mathbb{N}^*$ and $\epsilon > 0$ a curve is said \textit{strongly (n, ϵ)-bounded} when $f^k \circ \sigma$ is strongly ϵ-bounded for all $k = 0, \ldots, n - 1$.

\hfill \Box
We consider a C^r smooth diffeomorphism $g : M \to \mathbb{R}$ with $\mathbb{R} \ni r \geq 2$. For $\hat{x} = (x, v) \in PTM$ with $\pi(\hat{x}) = x$, we let $k_g(x) \geq k'_g(\hat{x})$ be the following integers:

$$k_g(x) := [\log \|d_x g\|],$$

$$k'_g(\hat{x}) := [\log \|d_v g(v)\|] = [\phi_g(\hat{x})].$$

In the next lemma, we reparametrize the image by g of a bounded curve. The proof of this lemma is mostly contained in the proof of the Reparametrization Lemma [2], but we reproduce it for the sake of completeness.

Lemma 12. Let $\frac{R_{\epsilon}}{2} > \epsilon > \epsilon_g > 0$ satisfying $\|d^s g^{s}_{2k}\|_{\infty} \leq 3\epsilon \|d_{x} g\|$ for all $s = 1, \cdots, r$ and all $x \in M$, where $g^{s}_{2k} = g \circ \exp_{y}(2\epsilon \cdot 1) = g(x + 2\epsilon \cdot 1) : \{w_{x} \in T_{y} M, \|w_{x}\| \leq 1\} \to M$. We assume $\sigma : [-1, 1] \to M$ is a strongly ϵ-bounded C^r curve and we let $\hat{\sigma} : [-1, 1] \to \mathbb{P} TM$ be the associated induced map.

Then for some universal constant $C_{r} > 0$ depending only on r and for any pair of integers (k, k') there is a family Θ of affine maps from $[-1, 1]$ to itself satisfying:

- $\hat{\sigma}^{-1} \{ \hat{x} \in \mathbb{P} TM, k_{g}(x) = k$ and $k'_{g}(\hat{x}) = k' \} \subset \bigcup_{\theta \in \Theta} \theta([-1, 1]),$
- $\forall \theta \in \Theta, \text{ the curve } g \circ \sigma \circ \theta \text{ is bounded},$
- $\forall \theta \in \Theta, \| \theta' \| \leq e^{\frac{k'}{k - 1}} / 4,$
- $\sharp \Theta \leq C_{r} e^{\frac{k'}{k - 1}}.$

Proof. First step: **Taylor polynomial approximation.** One computes for an affine map $\theta : [-1, 1] \to \mathbb{P} TM$ with contraction rate b precised later and with $y = \sigma(t)$, $k_{g}(y) = k$, $k'_{g}(y) = k'$, $t \in \theta([-1, 1]):$

$$\|d'(g \circ \sigma \circ \theta)\|_{\infty} \leq b'^2 \|d''(g^{y}_{2k} \circ \sigma^{y}_{2k})\|_{\infty},$$

with $\sigma^{y}_{2k} := (2\epsilon)^{-1} \exp_{y} \circ \sigma = 2\epsilon^{-1} (\sigma(\cdot) - y),$

$$\leq b'^2 \|d'' \left(d_{\sigma^{y}_{2k}} g^{y}_{2k} \circ d \sigma^{y}_{2k} \right)\|_{\infty},$$

$$\leq b'^2 2^{r} \max_{s = 0, \cdots, r} \|d^{s} \left(d_{\sigma^{y}_{2k}} g^{y}_{2k} \right)\|_{\infty} \max_{k = 1, \cdots, r} \|d^{k} \sigma^{y}_{2k}\|_{\infty}.$$

By assumption on ϵ, we have $\|d^{s} g^{s}_{2k}\|_{\infty} \leq 3\epsilon \|d_{x} g\|$ for any $r \geq 1$. Moreover $\max_{k = 1, \cdots, r} \|d^{k} \sigma^{y}_{2k}\|_{\infty} \leq 1$ as σ is strongly ϵ-bounded. Therefore by Faà di Bruno’s formula, we get for some constants $C_{r} > 0$ depending only on r:

$$\max_{s = 0, \cdots, r - 1} \|d^{s} \left(d_{\sigma^{y}_{2k}} g^{y}_{2k} \right)\|_{\infty} \leq \epsilon C_{r} \|d_{y} g\|,$$

then

$$\|d'(g \circ \sigma \circ \theta)\|_{\infty} \leq \epsilon C_{r} b'^{2} \|d_{y} g\| \max_{k = 1, \cdots, r} \|d^{k} \sigma^{y}_{2k}\|_{\infty},$$

$$\leq C_{r} b'^{2} \|d_{y} g\| \|d \sigma\|_{\infty},$$

$$\leq (C_{r} b'^{2} \|d_{y} g\|) \|d(\sigma \circ \theta)\|_{\infty},$$

$$\leq (C_{r} b'^{2} \epsilon^k) \|d(\sigma \circ \theta)\|_{\infty},$$

because $k(y) = k$, $\leq \epsilon^{k' - 4} \|d(\sigma \circ \theta)\|_{\infty},$ by taking $b = \left(C_{r} \epsilon^{k' - k + 1} \right)^{- \frac{1}{k' - 1}}.$

\footnote{Although these constants may differ at each step, they are all denoted by $C_{r}.$}
Therefore the Taylor polynomial P at 0 of degree $r - 1$ of $d(g \circ \sigma \circ \theta)$ satisfies on $[-1, 1]$: $\|P - d(g \circ \sigma \circ \theta)\|_\infty \leq e^{k' - 4}\|d(\sigma \circ \theta)\|_\infty$.

We may cover $[-1, 1]$ by at most $b^{-1} + 1$ such affine maps θ.

Second step : Bezout theorem. Let $a = e^{k'}\|d(\sigma \circ \theta)\|_\infty$. Note that for $s \in [-1, 1]$ with $k(\sigma \circ \theta(s)) = k$ and $k'(\sigma \circ \theta(s)) = k'$ we have $\|d(g \circ \sigma \circ \theta)(s)\| \in [ae^{-2}, ae^{2}]$, therefore $\|P(s)\| \in [ae^{-3}, ae^{3}]$. Moreover if we have now $\|P(s)\| \in [ae^{-3}, ae^{3}]$ for some $s \in [-1, 1]$ we get also $\|d(g \circ \sigma \circ \theta)(s)\| \in [ae^{-4}, ae^{4}]$.

By Bezout theorem the semi-algebraic set $\{s \in [-1, 1], \|P(s)\| \in [e^{-3}a, ae^{3}]\}$ is the disjoint union of closed intervals $(J_i)_{i \in I}$ with I depending only on r. Let θ_i be the composition of θ with an affine reparametrization from $[-1, 1]$ onto J_i.

Third step : Landau-Kolmogorov inequality. By the Landau-Kolmogorov inequality on the interval (see Lemma 6 in [2]), we have for some constants $C_r \in \mathbb{N}^*$ and for all $1 \leq s \leq r$:

$$\|d^s(g \circ \sigma \circ \theta_i)\|_\infty \leq C_r \left(\|d^r(g \circ \sigma \circ \theta_i)\|_\infty + \|d(g \circ \sigma \circ \theta_i)\|_\infty\right),$$

$$\leq C_r \frac{|J_i|}{2} \left(\|d^r(g \circ \sigma \circ \theta)\|_\infty + \sup_{t \in J_i} \|d(g \circ \sigma \circ \theta)(t)\|\right),$$

$$\leq C_r a \frac{|J_i|}{2}.$$

We cut again each J_i into $1000C_r$ intervals \tilde{J}_i of the same length with

$$\theta(\tilde{J}_i) \cap \sigma^{-1}\{x, k_n(x) = k \text{ and } k'_n(x) = k'\} \neq \emptyset.$$

Let $\tilde{\theta}_i$ be the affine reparametrization from $[-1, 1]$ onto $\theta(\tilde{J}_i)$. We check that $g \circ \sigma \circ \tilde{\theta}_i$ is bounded:

$$\forall s = 2, \ldots, r, \|d^s(g \circ \sigma \circ \tilde{\theta}_i)\|_\infty \leq (1000C_r)^{-2}\|d^s(g \circ \sigma \circ \theta_i)\|_\infty,$$

$$\leq \frac{1}{6} (1000C_r)^{-1} \frac{|J_i|}{2} a_n e^{-4},$$

$$\leq \frac{1}{6} (1000C_r)^{-1} \frac{|J_i|}{2} \min_{s \in \tilde{J}_i} \|d(g \circ \sigma \circ \theta)(s)\|,$$

$$\leq \frac{1}{6} (1000C_r)^{-1} \frac{|J_i|}{2} \min_{s \in \tilde{J}_i} \|d(g \circ \sigma \circ \theta)(s)\|,$$

$$\leq \frac{1}{6} \|d(g \circ \sigma \circ \tilde{\theta}_i)\|_\infty.$$

This conclude the proof with Θ being the family of all $\tilde{\theta}_i$’s. \qed

We recall now a useful property of bounded curve (see Lemma 7 in [4] for a proof).

Lemma 13. Let $\sigma : [-1, 1] \to M$ be a C^∞ bounded curve and let B be a ball of radius less than ϵ. Then there exists an affine map $\theta : [-1, 1] \cap \sigma^{-1} B$.

- $\sigma \circ \theta$ is strongly 3ϵ-bounded,
- $\theta([-1, 1]) \supset \sigma^{-1} B$.
3.2. Choice of the parameters κ and ϵ_q. For a diffeomorphism $f : M \subset M$ the scale ϵ_f in Lemma 13 may be chosen such that $\epsilon_f \leq C \epsilon_f \leq \max(1, \|df\|_{\infty})^{-k}$ for any $q \geq k \geq l \geq 1$. We take $\kappa = \frac{\epsilon_f^2}{M}$ and we choose $\epsilon_q < \frac{\epsilon_f^2}{M}$ such that for any $\hat{x}, \hat{y} \in F_n$ which are ϵ_q-close and for any $0 \leq l \leq q$:
\begin{equation}
\begin{aligned}
|k_{f_i}(x) - k_{f_i}(y)| & \leq 1, \\
|k'_{f_i}(\hat{x}) - k'_{f_i}(\hat{y})| & \leq 1.
\end{aligned}
\end{equation}

Without loss of generality we can assume the local unstable curve D (defined in Subsection 2.3) is reparametrized by a C^r strongly ϵ_q-bounded map $\sigma : [-1, 1] \to D$.

Let F_n be an atom of the partition Q_n and let $E_n = E_n(\hat{x})$ for any $\hat{x} \in F_n$. Recall that the diameter of Q is less than ϵ_q. It follows from (3.1) that for any $\hat{x} \in F_n$ we have with $\hat{F}_n = \int f^M_n \, d\hat{F}_n(\hat{x})$:
\begin{equation}
\sum_{i \in E_{n}^{M}} \left| k_{f_i}(f^{l}x) - k'_{f_i}(f^{l}\hat{x}) \right| \leq 10 \epsilon_q E_n + \int \log^+ \|d_g f^q\| \, d\hat{F}_n(y) - \int \phi_q \, d\hat{F}_n.
\end{equation}

Therefore we may fix some $0 \leq c < q$, such that for any $x \in F_n$:
\begin{equation}
\sum_{i \in (c+qN) \cap E_{n}^{M}} \left| k_{f_i}(f^{l}x) - k'_{f_i}(F^{l}\hat{x}) \right| \leq 10 \frac{n}{q} + \frac{1}{q} \left(\int \log^+ \|d_g f^q\| \, d\hat{F}_n(y) - \int \phi_q \, d\hat{F}_n \right),
\end{equation}
\begin{equation}
\leq 10 \frac{n}{q} + 2A_f \frac{q}{M} + \frac{1}{q} \int \log^+ \|d_g f^q\| \, d\hat{F}_n(y) - \int \phi \, d\hat{F}_n.
\end{equation}

3.3. Combinatorial aspects. We put $\partial_l E_n^{M} := \{a \in E_n^{M} \text{ with } a - 1 \notin E_n^{M}\}$. Then we let $A_n := \{0 = a_1 < a_2 < \cdots a_m\}$ be the union of $\partial_l E_n^{M}$, $[0, n] \setminus E_n^{M}$ and $(c + qN) \cap [0, n]$. We also let $b_i = a_{i+1} - a_i$ for $i = 1, \cdots, m - 1$ and $b_m = n - a_m$.

For a sequence $k = (k_t, k'_t) \in A_n$ of integers, a positive integer m_n and a subset Σ of $[0, n]$, we let $F_n^k \Sigma_m$ be the subset of points $\hat{x} \in F_n$ satisfying:
\begin{itemize}
 \item $\Sigma = E_n(x) \setminus E_n^{M}(x)$,
 \item $k_{a_i} = k_{f_i}(f^{a_i}x)$ and $k'_{a_i} = k'_{f_i}(F^{a_i}\hat{x})$ for $i = 1, \cdots, m$,
 \item $m_n(x) = m_n$.
\end{itemize}

Lemma 14.
\begin{equation}
\sharp \left\{ (k, \Sigma, \Sigma_n) : F_n^k \Sigma_m \neq \emptyset \right\} \leq ne^{2n A_f H(A_f^{-1}) 3n(1/q + 1/M) \epsilon_n H(1/M)}.
\end{equation}

Proof. First we observe that if $a_i \notin E_n^{M}$ then $b_i = 1$. In particular $\sum_i a_i \notin E_n^{M} k_{a_i} \leq (n - \sharp E_n^{M}) \log^+ \|df\|_{\infty} \leq (n - \sharp E_n^{M})(A_f - 1)$. The number of such sequences $(k_{a_i})_{i, a_i \notin E_n^{M}}$ is therefore bounded above by $(\binom{n}{r_n A_f})$ with $r_n = n - \sharp E_n^{M}$ and its logarithm is dominated by $r_n A_f H(A_f^{-1}) + 1 \leq n A_f H(A_f^{-1}) + 1$. Similarly the number of sequence $(k'_{a_i})_{i, a_i \notin E_n^{M}}$ is less than $n A_f H(A_f^{-1}) + 1$.

Then from the choice of ϵ_q in (3.1) there are at most three possible values of $k_{a_i}(x)$ for $a_i \in E_n^{M}$ and $x \in F_n$.

Finally as $\sharp E_n \leq n/M$, the number of admissible sets Σ is less than $\binom{n}{\lfloor n/M \rfloor}$ and thus its logarithm is bounded above by $n H(1/M) + 1$. Clearly we can also fix the value of m_n up to a factor n.

Existence of maximal measure for \mathcal{C}^r surface diffeos 19
3.4. The induction. We fix k, m_n and \mathcal{E} and we reparametrize appropriately the set F^{k,e,m_n}_n.

Lemma 15. With the above notations there are families $(\Theta_i)_{i \leq m}$ of affine maps from $[-1,1]$ into itself such that :

- $\forall \theta \in \Theta_i \forall j \leq i$ the curve $f^{a_i} \circ \sigma \circ \theta$ is strongly $\epsilon_{f^{b_i}}$-bounded,
- $\delta^{-1}\left(F^{k,e,m_n}_n\right) \subseteq \bigcup_{\theta \in \Theta_i} \theta([-1,1])$,
- $\forall \theta \in \Theta_i \forall j < i , \exists \hat{\theta}_j \in \Theta_j$, $\frac{|\theta_j'|}{|\hat{\theta}_j'|} \leq \ell \leq \prod_{\ell \leq i} e^{\frac{k_{a_i} - k_{a_i} - 1}{\tau - 1}}/4$,
- $\exists \Theta \leq C \max(1,\|df\|_{\infty})^{2E[1,a]} \prod_{\ell < i} C_{\ell} e^{\frac{k_{a_i} - k_{a_i} - 1}{\tau - 1}}$.

Proof. We argue by induction on $i \leq m$. By changing the constant C, it is enough to consider i with $a_i > N$. Recall that the integer N was chosen in such a way that for any $x \in F$ there is $0 \leq k \leq N$ with $F^k \hat{x} \in H_k$. We assume the family Θ_i for $i < m$ already built and we will define Θ_{i+1}. Let $\theta_i \in \Theta_i$. We apply Lemma 12 to the strongly $\epsilon_{f^{b_i}}$-bounded curve $f^{a_i} \circ \sigma \circ \theta_i$ with $g = f^{b_i}$. Let Θ be the family of affine reparametrizations of $[-1,1]$ satisfying the conclusions of Lemma 12 in particular $f^{a_{i+1}} \circ \sigma \circ \theta_i \circ \theta$ is bounded, $|\theta'| \leq e^{\frac{k_{a_i} - k_{a_i} - 1}{\tau - 1}}/4$ for all $\theta \in \Theta$ and $\exists \Theta \leq C_{\ell} e^{\frac{k_{a_i} - k_{a_i} - 1}{\tau - 1}}$. We distinguish three cases:

- $a_{i+1} \in E^{M}_n$. The diameter of $F^{a_{i+1}}_n$ is less than $\epsilon_{\theta} \leq \frac{\epsilon_{f^{b_{i+1}}}}{3}$. By Lemma 13 there is an affine map $\psi : [-1,1] \to \Theta_i$ such that $f^{a_{i+1}} \circ \sigma \circ \theta_i \circ \psi$ is strongly $\epsilon_{f^{b_{i+1}}}$-bounded and its image contains the intersection of the bounded curve $f^{a_{i+1}} \circ \sigma \circ \theta_i \circ \psi$ with $F^{a_{i+1}}_n$. We let then $\theta_{i+1} = \theta_i \circ \theta_i \circ \psi \in \Theta_{i+1}$.

- $a_{i+1} \in E \setminus E^{M}_n$. Observe that $b_{i+1} = 1$, therefore $\epsilon_{\theta} \leq \epsilon_{f^{b_{i+1}}}$. Then the length of the curve $f^{a_{i+1}} \circ \sigma \circ \theta_i \circ \theta$ is less than $3\|df\|_{\infty} \epsilon_{f^{b_{i+1}}}$, thus may be covered by $3\|df\|_{\infty} + 1$ balls of radius less than $\epsilon_{f^{b_{i+1}}}$. We then use Lemma 13 as in the previous case to reparametrize the intersection of this curve with each ball by a strongly $\epsilon_{f^{b_{i+1}}}$-bounded curve. We define in this way the associated parametrizations of Θ_{i+1}.

- $a_{i+1} \notin E$ and $a_{i+1} \notin E^{M}_n$. We claim that $\|df^{a_{i+1}} \circ \sigma \circ \theta_i \circ \theta\| \leq \epsilon_{f}/3$. Take $\hat{x} \in F^{k,e,m_n}_n$ with $x = \pi(\hat{x}) = \sigma \circ \theta_i \circ \theta(s)$. Let $K_x = \max\{k < a_{i+1}, F^k \hat{x} \in H_k\} \geq N$. Observe that $[K_x,a_{i+1}] \cap E^{M}_n = \emptyset$, therefore for $K_x \leq a_i < a_{i+1}$, we have $b_i = 1$, then $a_i = a_{i+1} - 1 - 1 + l$. We argue by contradiction by assuming:

$$(3.2) \quad \|df^{a_{i+1}} \circ \sigma \circ \theta_i \circ \theta\| \geq \epsilon_{f}/6 = 6\kappa$$

By Lemma 13, the point $f^{a_{i+1}} \hat{x}$ belongs to G_{κ}. We will show $F^{a_{i+1}} \hat{x} \in H_\kappa$. Therefore we will get $F^{a_{i+1}} \hat{x} \in G = \pi^{-1}G_{\kappa} \cap H_\kappa$ contradicting $a_{i+1} \notin E$. To prove $F^{a_{i+1}} \hat{x} \in H_\kappa$ it is enough to show $\sum_{j \leq L < a_{i+1}} \psi(F^j \hat{x}) \geq (a_{i+1} - j)\delta$ for any $K_x \leq j < a_{i+1}$ because
\(F^K_x(\hat{x}) \) belongs to \(H_\delta \). For any \(K_x \leq j < a_{i+1} \) we have:

\[
\| d(f^{a_{i+1}} \circ \sigma \circ \theta) \|_\infty \leq 2 \| d_x(f^{a_{i+1}} \circ \sigma \circ \theta \circ \theta) \|, \quad \text{because } f^{a_{i+1}} \circ \sigma \circ \theta \circ \theta \text{ is bounded,}
\]

\[
\leq 2 \| d_x f^{a_{i+1} - j}(\hat{x}) \| \times \| d_x(f^{\sigma \circ \theta_2^j}) \| \times \frac{\| \theta_1^j \|}{\| \theta_2^j \|}, \quad \text{with } a_j = j,
\]

\[
\leq \frac{e_f}{3} \| d_x f^{a_{i+1} - j}(\hat{x}) \| \prod_{j \leq l \leq i} e^{k_{a_j} - k_{a_1} - 1} / r \text{ by induction hypothesis,}
\]

\[
(3.3) \quad \frac{1}{2} \leq \| d_x f^{a_{i+1} - j}(\hat{x}) \| \prod_{j \leq l \leq i} e^{k_{a_j} - k_{a_1} - 1} / r \text{ by assumption [3.2].}
\]

Recall again that for \(j \leq l \leq i \), we have \(b_l = 1 \), thus

\[
| k_{a_l} - \log \| d_x f \| | \leq 1
\]

and

\[
k_{a_l}^l \leq \phi(F^{a_l} \hat{x}).
\]

Therefore we get for any \(K_x \leq j < a_{i+1} \) from (3.3):

\[
2^{a_{i+1} - j} \leq e^{\frac{1}{r-1} \sum_{j \leq l < a_{i+1}} \phi(F^l \hat{x}) - \frac{1}{r-1} \sum_{j \leq l < a_{i+1}} \log^+ \| d_x f \|},
\]

\[
(a_{i+1} - j) \log 2 \leq \frac{r-1}{r} \sum_{j \leq l < a_{i+1}} \psi(F^l \hat{x}), \quad \text{by definition of } \psi,
\]

\[
(a_{i+1} - j) \delta \leq \sum_{j \leq l < a_{i+1}} \psi(F^l \hat{x}), \quad \text{as } \delta \text{ was chosen less than } \frac{r-1}{r} \log 2.
\]

\[\square \]

Lemma 16.

\[
\sum_{i, \ m_n > a_i \notin E^M_n} \frac{k_{a_i} - k_{a_i}^l}{r - 1} \leq \left(n - \#E^M_n \right) \left(\frac{\log^+ \| df \|_\infty}{r} + \frac{1}{r - 1} \right).
\]

Proof. The intersection of \([0, m_n]\) with the complement set of \(E^M_n \) is the disjoint union of integers of the form \([l, m_n]\). In any case \(F^l \hat{x} \) belongs to \(H_\delta \) for such an interval \([i, j]\) for any \(x \in F^k E^{m_n} \). In particular, we have

\[
\sum_{l, a_l \in [i, j[} k_{a_l}^l - k_{a_l} \geq (\delta - 1)(j - i)
\]

Therefore

\[
\sum_{i, \ m_n > a_i \notin E^M_n} \frac{k_{a_i} - k_{a_i}^l}{r - 1} \geq -(n - \#E^M_n),
\]

\[
\sum_{i, \ m_n > a_i \notin E^M_n} \frac{k_{a_i} - k_{a_i}^l}{r - 1} \leq \frac{n - \#E^M_n}{r - 1} + \sum_{i, \ m_n > a_i \notin E^M_n} k_{a_i},
\]

\[
\leq \left(n - \#E^M_n \right) \left(\frac{\log^+ \| df \|_\infty}{r} + \frac{1}{r - 1} \right).
\]
3.5. Conclusion. We let Ψ_n be the family of C^r curves $\sigma \circ \theta$ for $\theta \in \Theta_m = \Theta_m(k, E, m_n)$ with Θ_m as in Lemma [15] over all admissible parameters k, E, m_n. For $\theta \in \Theta_m$ the curve $f^{a_i} \circ \sigma \circ \theta$ is strongly $\epsilon_{f^{a_i}}$-bounded for any $i = 1, \ldots, m$, in particular
\[
\forall i = 1, \ldots, m, \|d(f^{a_i} \circ \sigma \circ \theta)\|_\infty \leq \epsilon_{f^{a_i}} \leq \max(1, \|df\|_\infty)^{-b},
\]
therefore
\[
\forall j = 0, \ldots, n, \|d(f^j \circ \sigma \circ \theta)\|_\infty \leq 1.
\]
By combining the previous estimates, we get moreover:
\[
\sharp \Psi_n \leq \sharp \{ (k, E, m_n), \mathbf{E}^{k, E, m_n} \neq \emptyset \} \times \sup_{k, E, m_n} \sharp \Theta_n(k, E, m_n),
\]
\[
\leq ne^{2(n-\sharp E_n^m)A_f H(A_f)3n(1/q+1/M)\epsilon_n H(1/M)} \sup_{k, E, m_n} \sharp \Theta_n(k, E, m_n), \text{ by Lemma [14]}
\]
\[
\leq ne^{2(n-\sharp E_n^m)A_f H(A_f)3n(1/q+1/M)\epsilon_n H(1/M)} \max(1, \|df\|_\infty)2^{\mathbf{E}} \prod_{j \leq m} C_r e^{\frac{k_{a_j} - k_{a_j}'}{r-1}}, \text{ by Lemma [15]}
\]
Then we decompose the product into four terms :

- $\sum_{i, m_n > a_i \notin E^M_n} \frac{k_{a_i} - k_{a_i}'}{r-1} \leq (n - \sharp E_n^m) \left(\frac{\log^+ \|df\|_\infty}{r} + \frac{1}{r-1} \right)$ by Lemma [16]
- $\sum_{i, m_n \leq a_i} \frac{k_{a_i} - k_{a_i}'}{r-1} \leq (n - m_n) \frac{A_f}{r-1}$
- $\sum_{i, a_i \in E^M_n \cap (c+qN)} \frac{k_{a_i} - k_{a_i}'}{r-1} \leq 102r + 2A_{q_M} + \frac{1}{r-1} \left(J \frac{\log^+ \|df\|_\infty}{q} d\zeta^M_n(y) - \int \phi d\zeta^M_n \right)$
- $\sum_{i, a_i \in E^M_n \setminus (c+qN)} \frac{k_{a_i} - k_{a_i}'}{r-1} \leq 2A_{q_M}$

By letting
\[
B_r = \frac{1}{r-1} + \log C_r,
\]
\[
\gamma_{q, M}(f) := 2 \left(\frac{1}{q} + \frac{1}{M} \right) \log C_r + H(1/M) + \frac{10 + \log 3}{q} + \frac{4qA_f + \log 3}{M},
\]
\[
\tau_n = \sup_{x \in \mathbf{F}} \left(1 - \frac{m_n(x)}{n} \right) \frac{A_f}{r-1} + \frac{\log(nC)}{n},
\]
we get with $C(f) := 2A_f H(A_f^{-1}) + \frac{\log^+ \|df\|_\infty}{r} + B_r$:
\[
\frac{1}{n} \log \sharp \Psi_n \leq \left(1 - \frac{\sharp E^M_n}{n} \right) C(f)
\]
\[
+ \left(\log 2 + \frac{1}{r-1} \right) \left(\int \frac{\log^+ \|df\|_\infty}{q} d\zeta^M_n(x) - \int \phi d\zeta^M_n \right)
\]
\[
+ \gamma_{q, M}(f) + \tau_n,
\]
This concludes the proof of Proposition [3]
Appendix

We explain in this appendix how our Main Theorem implies Buzzi-Crovisier-Sarig statement.

Let \((f_k)_k, (\nu^+_k)_k\) and \(\hat{\mu}\) be as in the setting of Theorem \(\bullet\). Then, either \(\lim_k \lambda^+ (\nu_k) = \int \phi \, d\hat{\mu} \leq \frac{\lambda^+(f)}{r}\) and we get by Ruelle inequality, \(\limsup_k h(\nu_k) \leq \frac{\lambda^+(f)}{r}\) or there exists \(\alpha \in \left[\frac{\lambda^+(f)}{r}, \min \left(\int \phi \, d\hat{\mu}, \frac{\lambda^+(f)}{r-1}\right)\right]\). By applying our Main Theorem with respect to \(\alpha\), there is a decomposition \(\hat{\mu} = (1-\beta_\alpha)\hat{\mu}_{0,\alpha} + \beta_\alpha \hat{\mu}^+_{1,\alpha}\) satisfying \(\limsup_k h(\nu_k) \leq \beta_\alpha h(\mu_{1,\alpha}) + (1-\beta_\alpha)\alpha\).

But it follows from the proofs that \(\beta_\alpha \mu_{1,\alpha}\) is a component of \(\beta \mu_1\) with \(\beta\) and \(\mu_1\) being as in Buzzi-Crovisier-Sarig’s statement as they consider empirical measure associated to a larger set \(G\) (see Remark \(7\)). In particular \(\beta_\alpha h(\mu_{1,\alpha}) = \beta h(\mu_1)\), therefore \(\limsup_{k \to +\infty} h(\nu_k) \leq \beta h(\mu_1) + \frac{\lambda^+(f)+\lambda^+(f^{-1})}{r-1}\).

In Theorem C \([10]\), the authors also proved \(\int \phi \, d\hat{\mu}_0 = 0\) whenever \(\beta \neq 1\). Therefore we get here \((1-\beta_\alpha) \int \phi \, d\hat{\mu}_{0,\alpha} \geq (1-\beta) \int \phi \, d\hat{\mu}_0 = 0\), then \(\int \phi \, d\hat{\mu}_{0,\alpha} \geq 0\). But maybe we could have \(\int \phi \, d\hat{\mu}_{0,\alpha} > 0\).

References

[1] J. Brown, Ergodic theory and topological dynamics, Pure and applied mathematics, 1976.
[2] Burguet, David, SRB measure for \(C^\infty\) surface diffeomorphisms, [arXiv:2111.06651]
[3] Burguet, David, Existence of measures of maximal entropy for \(C^r\) interval maps, Proc. Amer. Math. Soc. 142 (2014), p. 957-968
[4] Burguet, David, Symbolic extensions in intermediate smoothness on surfaces, Ann. Sci. Éc. Norm. Supér. (4), 45 (2012), no. 2, 337-362
[5] Burguet, David, Jumps of entropy for \(C^r\) interval maps, Fund. Math., 231, (2015), no.3, p.299-317.
[6] Buzzi, Jérôme and Ruette, Sylvie, Large entropy implies existence of a maximal entropy measure for interval maps, Discrete Contin. Dyn. Syst. A, 14, (2006), p.673-688,
[7] Buzzi, Jérôme, \(C^r\) surface diffeomorphisms with no maximal entropy measure, Ergodic Theory Dynam. Systems 34, 2014, p 1770-1793.
[8] Buzzi, Jérôme, Représentation markovienne des applications réelles de l’intervalle, PhD thesis, Université Paris-Sud, Orsay, 1995.
[9] J. Buzzi, S. Crovisier, and O. Sarig, Measures of maximal entropy for surface diffeomorphisms, Ann. of Math. (2) 195 (2022), no. 2, 421-508.
[10] J. Buzzi, S. Crovisier, and O. Sarig, Continuity properties of Lyapunov exponents for surface diffeomorphisms, Invent. Math. 230 (2022), no. 2, 767-849.
[11] J. Buzzi, S. Crovisier, and O. Sarig, In preparation.
[12] T. Downarowicz, Entropy in dynamical systems, New Mathematical Monographs, 18. Cambridge University Press, Cambridge, 2011.
[13] F. Ledrappier and J. M. Strelcyn, A proof of the estimation from below in Pesin’s entropy formula, Ergod. Th. Dynam. Sys. 2: 203-219, 1982.
[14] F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula, Ann. of Math., 122(1985), 505-539.
[15] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publications Mathématiques de l'IHÉS,51(1980),137-174.
[16] S. Newhouse. Continuity properties of entropy, Ann. of Math. (2), 129(2):215–235, 1989.
[17] Y. Pesin and L. Barreira, Lyapunov Exponents and Smooth Ergodic Theory, University Lecture Series, v. 23, AMS, Providence, 2001
[18] Pollicott, Mark, Lectures on ergodic theory and Pesin theory on compact manifolds, London Mathematical Society Lecture Note Series (180) Cambridge University Press (1993).
[19] Yosef Yomdin, *Volume growth and entropy*, Israel J. Math., 57(3), p. 285-300, 1987.

Sorbonne Université, LPSM, 75005 Paris, France

Email address: david.burguet@upmc.fr