Diabetic kidney disease and pregnancy outcomes: a systematic review

SARAH GLEESON,1,2 SHULI SVETITSKY,1 CHARLOTTE FRISE2,3

Abstract
Introduction: We systematically reviewed all relevant literature on diabetic kidney disease (DKD) and pregnancy published in the last 20 years to provide accurate and up-to-date information to inform family planning and maternal care.

Methods: A systematic review was completed in PubMed and Embase. Papers reporting maternal, fetal or renal outcomes of pregnant women with DKD published between 2001 and 2020 were included.

Results: 799 potentially relevant articles were identified, 731 of which were excluded on abstract alone. 68 full-text articles were reviewed and 15 papers were included as they met the selection criteria but were heterogeneous for size, study setting and years studied. The definition of DKD varied between papers and changed over time. 843 women with 873 pregnancies were included. There were high rates of pre-eclampsia and caesarean section, up to 64% and 100% respectively. Prematurity and neonatal intensive care admission were common, reported in up to 100% and 75%, respectively. Maternal and fetal complications were more common with more severe proteinuria and renal impairment. Pregnancy did not hasten progression of DKD.

Discussion: Adverse pregnancy outcomes are frequently encountered and correlate with degree of proteinuria and renal impairment. This information enables individualised risk stratification when a woman is considering pregnancy.

Br J Diabetes 2021;21:ONLINE AHEAD OF PUBLICATION

Key words: diabetes mellitus, pregnancy, diabetic nephropathy, diabetic kidney disease

Introduction
Pre-existing diabetes is common, affecting one in every 250 pregnancies,1 with diabetic kidney disease (DKD) affecting 2–8% of those.2 Women with diabetes have poorer pregnancy outcomes compared with healthy women;1,3 historically, those with DKD have had even worse outcomes, with fetal mortality rates up to 60%.4 More recently, with advances in diabetes management, obstetric and neonatal care, these outcomes have improved, with fetal survival of 95–99%.5,6

Given this relatively high incidence of DKD and the rising prevalence of diabetes,7 it is critical to have information on DKD in pregnancy. However, our knowledge of DKD and pregnancy is limited. Much of our information comes from case series and single-centre observational studies, often including small numbers of women, spanning many years. The definition of DKD has also evolved, with earlier studies only concerned with macroalbuminuria and more recent studies including microalbuminuria.5,8

We reviewed all relevant literature on DKD and pregnancy published in the last 20 years reporting on maternal, fetal and longer term renal outcomes. This systematic review in a modern timeframe aims to give women considering or entering pregnancy and their healthcare professionals the available information on renal, maternal and fetal risks, to allow them to make informed decisions when family planning and improve care during and after pregnancy.

Methods
This systematic review was completed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA).9

Search strategy
We conducted electronic literature searches in PubMed and Embase. The initial search was carried out in August 2020 and repeated in October 2020. The databases were searched for ‘diabetic nephropathy’, ‘diabetic kidney disease’, ‘microalbuminuria’ AND ‘pregnancy’. The search was deliberately broad to increase sensitivity. The reference lists of selected papers were searched for references missed by our search strategy.

Selection criteria
Papers reporting maternal, fetal and/or renal outcomes of pregnant women with DKD published between 2001 and 2020 were included. To reduce publication bias, case reports and series including ≤5 women were excluded. Other exclusion criteria included conference abstracts, papers in languages other than English and pregnancies in women with kidney transplants. If participants were included in more than one report, the larger study was included.

The search was completed in duplicate by SG and SS. They completed the searches independently and matched results. Titles and abstracts were screened by SG and SS. Full texts were assessed by SG. Discrepancies were resolved by discussion.

1 Renal Department, Imperial College Healthcare NHS Trust, London, UK
2 Obstetric Medicine Department, Imperial College Healthcare NHS Trust, London, UK
3 Obstetric Medicine Department, Oxford University Hospital, Oxford, UK

Address for correspondence: Dr Sarah Gleeson
Renal Department, Hammersmith Hospital, Imperial College Healthcare NHS trust, DuCane Road, London, W12 0HS, UK.
E-mail: sarah.gleeson7@nhs.net

https://doi.org/10.15277/bjd.2021.306
Data collection and analysis
The data were analysed according to PICOS criteria as follows. The patients (P) were women with DKD. The intervention (I) was considered to be pregnancy, in the absence of an actual therapeutic intervention. The control (C) groups included healthy or women without DKD who were pregnant or women with DKD without pregnancy. The outcomes (O) studied were maternal, fetal and renal outcomes. The studies (S) were all studies reporting on pregnancy outcomes in women with DKD. As the data were expected to be heterogeneous, a narrative review of the results was planned.

Due to the lack of randomised controlled trials and the limited number and variability of control groups, no formal analysis of bias was performed.

Results
Study selection and general information (Table 1)
A total of 799 potentially relevant articles were identified after excluding duplicates. Of these, 731 were excluded after reviewing the abstract and 68 full-text articles were reviewed. Fifteen papers met the selection criteria and were included (Figure 1), 10 of which were retrospective studies and five were prospective. The studies were heterogeneous for size, study setting and years studied, ranging from 1988 to 2014. The majority were single-centre studies. Six studies included more than 50 women. The papers were from a range of countries including Denmark, Italy, UK, USA, Brazil, Israel and New Zealand. European countries, in particular Denmark, were the main source of data. Baseline characteristics were often inadequately described and varied between papers. The definitions of DKD varied widely and changed over time, with more recent studies including microalbuminuria (most commonly a urinary albumin of 30–299 mg/24 hours) and earlier studies including only ‘overt’ diabetic nephropathy: macroalbuminuria or macroproteinuria (typically more than 300–500 mg/24 hours proteinuria). One study divided participants into subgroups based on their renal function and four divided them into subgroups based on micro- or macroalbuminuria. Seven studies included controls, either diabetic or non-diabetic pregnant women or women with DKD who did not have a pregnancy. Study heterogeneity was significant, precluding the pooling of data and meta-analysis.

Baseline characteristics (Table 2)
Overall, this systematic review collected data on 843 women
Table 1. General information on studies

Type	Years	Country	Aim	Definitions	Subgroups	Women	Pregnancies	Controls
Prospective	1990–1993	Israel	To examine whether treatment with ACE inhibitor pre-pregnancy improves pregnancy outcomes	>500 mg proteinuria/day NA	8 8 NA			
Prospective	1983–1985	Finland	To establish whether pregnancy affects long-term development and progression of retinopathy and nephropathy in diabetic women	White class F (CrCl <80 mL/min, creatinine <90 μmol/L)	6 9 4 women with DN without pregnancy			
Retrospective	1985–1993	UK	To examine the effect of pregnancy on maternal renal function in women with DN	>500 mg/24h proteinuria Moderate renal impairment (serum creatinine >125 mmol/L), Mild renal impairment (serum creatinine <125 mmol/L)	6 11 NA			
Prospective	1978–1991	USA	To examine whether pregnancy increases the risk of or accelerates the progression of DN	>500 mg/day proteinuria NA	56 56 Diabetic pregnant women without nephropathy			
Prospective	1990–1995	Israel	To examine the effect of pre-pregnancy captopril on renal function and on fetal-maternal outcome in ODN	Proteinuria >500 mg/day NA	24 24 NA			
Retrospective	1982–1996	Austria	To evaluate the impact of pregnancy on the course of renal function in women with overt DN	Macroproteinuria >0.5 g proteinuria/24h	5 7 12 NA			
Retrospective	1990–1997	UK	To examine fetal-maternal outcomes in women with DN	>300 mg/24h or 1x3 NA NA	18 21 NA			
Retrospective	1985–1993	Austria	To evaluate perinatal complications and follow-up of infants of mothers with DN stage IV	Proteinuria >500 mg/24h NA	10 10 NA			
Prospective	1996–2000	Denmark	Pregnancy outcome in T1 diabetic women with microalbuminuria	DKD >300 mg/24h, Microalbuminuria 30–300 mg/24h	26 11 26 11 Diabetic women with no microalbuminuria			
Table 1. General information on studies (continued)

Type	Years	Country	Aim	Definitions	Subgroups	Women	Pregnancies	Controls
Khoury, 2002	Retrospective	NR	USA To examine the association of renal function with maternal and fetal pregnancy outcome in women with DN	DN: proteinuria >100 mg/24h Cr <1 mg/dL Cr 1–1.5 mg/dL Cr >1.5 mg/dL	58 (total cohort) 72 (total pregnant cohort) 49 13 10	NA		
Rossing, 2002	Retrospective	1970–1989	Denmark To examine the long-term impact of pregnancy on the progression of DN	Albuminuria >300 mg/24h	NA	26	31	67 women without pregnancies
Bagg, 2003	Prospective	1985–2000	New Zealand To describe long-term maternal outcome after pregnancy in women with DN	>300 mg/24h albuminuria	NA	14	24	NA
Carr, 2006	Retrospective	1986–2002	USA To evaluate if hypertension in early pregnancy is associated with adverse perinatal outcome in women with DN	Proteinuria >0.3 g/24h Above target BP (MAP >100 mmHg) Below target (MAP <100 mmHg)	43 22	43 22	NA	
Nielsen, 2006	Retrospective	1995–2003	Denmark To describe the impact of aggressive antihypertensive treatment in the prevalence of preterm delivery in women with DN	Albuminuria 30–300 mg/24h 1995–1999 2000–2003	26	20	26 20	NA
Nielsen, 2009	Prospective	2004–2006	Denmark To describe outcomes in microalbuminuria or DN after intensified anti-hypertensive therapy	DN: >300 mg albumin/24h Microalbuminuria: 30–299 mg albumin/24h	DN Microalbuminuria	7 10	7 10	100 women with normoalbuminuria 25 healthy pregnant women
Yogev, 2009	Retrospective	2000–2007	Israel To examine the factors associated with pregnancy complications in women with type 1 diabetes and women with DN	Protein 300 mg/24h pre or early pregnancy or serum creatinine >1.5 Non-complicated pregnancy Complicated pregnancy	15	15	NA	
Jensen, 2010	Prospective	1993–1999	Denmark To describe microalbuminuria, pre-eclampsia, and preterm delivery in pregnant women with type 1 diabetes on a national level	Albuminuria 30–300 mg/24h	NA	84	84	Pregnant diabetic women without albuminuria
Bell, 2012	Population-based cohort	1996–2008	UK To quantify the risk of major congenital anomaly and to assess the influence of various risk factors including DN	Not reported	NA	60	60	Women with pregnancies complicated by congenital malformations without DN
Young, 2012	Prospective	2010–2011	Brazil To examine the effect of pregnancy on DN and the perinatal outcomes of diabetic pregnancies	Albuminuria >30 mg/24h	NA	11	11	32 pregnancies in diabetic women without DN
Damm, 2013	Retrospective	2007–2012	Denmark To evaluate the prevalence of DN and microalbuminuria in pregnant women with type 2 diabetes in comparison with type 1 diabetes and to describe pregnancy outcomes	Nephropathy: ACR >30 mg/g Microalbuminuria: ACR 30–299 mg/g T2 nephropathy T1 nephropathy T2 microalbuminuria T1 microalbuminuria	5 11 15	5 11 15	NA	
Piccoli, 2013	Retrospective	2000–2012	Italy To evaluate maternal and fetal outcomes in severe DN	Severe nephropathy: referred to nephrology clinic from diabes clinic in pregnancy clinic	NA	11	12	NA
Klemetti, 2015	Retrospective	1988–2011	Finland To analyse temporal changes in the glycaemic control, BP levels, markers of renal function as and perinatal outcomes of a population-based cohort of women with DN	Proteinuria >0.3 g/24h or dipstick 1+	1988–1999 2000–2011	65 43	65 43	NA
Seah, 2020	Retrospective	2004–2014	Australia Association between maternal renal function and pregnancy outcomes in type 1 and type 2 diabetes	Microalbuminuria: 3–300 mg/day or ACR of 3.4–35 Microalbuminuria: >300 mg/day or ACR >35	Microalbuminuria Macroalbuminuria	198 with diabetes Number with nephropathy NR	119 pregnancies in healthy women	

DN, diabetic nephropathy; Cr, creatinine
Table 2 Baseline characteristics

Ref.	Age	Ethnicity	Duration of diabetes (years)	Hypertension (%)	Renal failure (%)	Baseline serum creatinine (mg/dL)	Type of diabetes	Baseline HbA1c (%)	Baseline proteinuria (mg/24 h)	Baseline eGFR (ml/min) or GFR (ml/min)	Nulliparity (%)
Reece, 1990	30	NR	NR	91	NR	100	1.3 mg/dL	T1	2.5 g/24h	NR	NR
Combs, 1993	27.3	NR	NR	14.3	NR	39	0.91	T1	9.0 g/24h	NR	56
Hod, 1995	25.6	NR	NR	15.6	NR	37.5	0.8 mg/dL	T1	7.9 g/24h	114	NR
Kimeterle, 1994	29	NR	NR	20	61	65	NR	NR	2.1 g/24h	NR	NR
Gordon, 1996	25.5	76% white	NR	15	27	53	0.8	T1	NR	1.7 g/24h	120
Kajaa, 1996	35.5	NR	NR	21.7	11	NR	NR	NR	NR	NR	NR
Mackie, 1996	30.5	NR	NR	17	16	160	NR	NR	3.8 g/24h	NR	NR
Naidovnik, 1996	25.5	NR	14.7	40.8	NR	39.2	NR	NR	9.8%	NR	NR
Purdy, 1996	29	Mainly white	20	NR	159	15	NR	NR	2.4 g/24h	NR	NR
Zhu, 1997	27	NR	NR	16.4	77	89	NR	NR	NR	NR	NR
Reece, 1998	26	NR	NR	46	NR	37.5	0.82 mg/dL	T1	7.9 g/24h	202 g/24h	NR
Bar, 1999	28	NR	NR	18	17	20	NR	111	8.0	1.7	69
Nielsen, 1999	29	NR	NR	17	20	NR	96	NR	122	NR	NR
Dunne, 1999	26.5	NR	NR	19.5	11	NR	88.3	T1	9.7 g/24h	NR	NR
Biesensch, 2000	29	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Edison, 2001	29	NR	NR	19	16	NR	T1	8.1	69 g/24h	1120	NR
Khoury, 2002	26.3	14.3% black	15.4	12.2	24.5	NR	T1	9.9	800 g/24h	NR	51
Rossing, 2002	24	NR	NR	NR	NR	79 mmol/L	T1	NR	534 g/24h	NR	NR
Bagg, 2003	30	NR	NR	18.5	NR	0.07 mmol/L	T1 and T2	NR	NR	NR	NR
Carr, 2006	29.5	16	59.1	63.6	0.85 mg/dL	NR	T1	8.1	1.65 g/24h	135.9 mL/min	NR
Nielson, 2006	19	NR	NR	6.7	NR	6.8	NR	NR	69 g/24h	74	NR
Nielson, 2007	30	NR	NR	20	100	100	57	T1	6.5 g/24h	690 g/24h	NR
Yogey, 2009	31.8	18	80	53	1.08	T1	T1	7.1	53% none, 47% <20 g/24h, 74% none, 13% <10 g/24h, 6.5% 20–300 mg/24h, 6.5% >300 mg/24h	NR	NR
Jensen, 2010	27	NR	NR	15	13	11	NR	7.6	119 mg/24h	81 mL/min	27%
Bell, 2012	28.3	45% Caucasian	12	72.7	54.6	0.8 mg/dL	82.1% T1	8.5	119 mg/24h	81 mL/min	NR
Damm, 2013	31	NR	NR	2	0	75	52	T2	6.8 g/24h	474 mg/mmol	NR
Piccoli, 2013	34.3	NR	22.6	66%	100%	0.98 mg/dL	T1	8.01%	1.6 g/24h	67 mL/min	NR
Klemetti, 2015	29	NR	NR	19	34.4	50.8	82 mmol/L	T1	66 mmol/L 1.5 g/24h	1.12	46.2
Seah, 2020	31	NR	NR	24	65.1	65.1	68 mmol/L	T1	69 g/24h	60.5	NR

DN, diabetic nephropathy; Cr, creatinine; NR, not reported.
with DKD experiencing 873 pregnancies. The mean age ranged from 24 to 34 years and the mean duration of diabetes ranged from 2 years (in two subgroups with type 2 diabetes)11 to 22.6 years.15 Where reported, both pre-pregnancy hypertension and retinopathy ranged from 11% in a cohort with microalbuminuria to 100% in women with overt proteinuria. Across the studies, 27–67% of women were nulliparous. Values for baseline creatinine, estimated glomerular filtration rate (eGFR) or creatinine clearance, proteinuria or albuminuria and HBA\textsubscript{1c} were given either pre-pregnancy or in early pregnancy. One paper16 divided its study participants into subgroups based on whether they had a complicated or uncomplicated pregnancy. These results are included in Tables 1–5 but have been excluded from the analysis below.

Maternal outcomes (Table 3)

There were high rates of pre-eclampsia and caesarean section, especially in those with impaired renal function, more severe proteinuria or both. Pre-eclampsia was commonly reported, ranging from 0%12 in one subgroup of 10 women with microalbuminuria to 64% (IQR 33.3–42.5%);17 compared to healthy women, women with diabetic kidney disease were more likely to develop pre-eclampsia (OR 5.5 (2.5 to 11.8)).13 One study which included diabetic women without albuminuria, with microalbuminuria and macroalbuminuria reported pre-eclampsia in 6%, 42% and 64%, respectively.14 Caesarean section was the most common method of delivery, ranging from 20% to 100% (IQR 69.2–90.0). No papers reported maternal death. One paper reported requirement for renal replacement therapy in one of 108 pregnancies.18

Fetal outcomes (Table 4)

The mean gestational age ranged from 32.5 weeks in a cohort with heavy proteinuria and impaired renal function11 to 37.7 weeks in a subgroup with microalbuminuria (IQR 35.6–37.0).12 The majority of births reported were premature, ranging from 20% in a subgroup with microalbuminuria12 to 100% in a cohort with heavy proteinuria and impaired renal function (IQR 43.5–73.9).15 Compared with healthy women, DKD was associated with premature delivery (microalbuminuria OR 3.9 (1.5 to 9.9), macroalbuminuria OR 3.9 (1.5 to 9.9)).13 One study which included diabetic women with no albuminuria, with microalbuminuria and macroalbuminuria reported premature delivery in 35%, 62% and 91%, respectively.12 Very premature births, variably reported as before 32 or 34 weeks, occurred in 0–46% of births (IQR 9.4–38.6). Compared with healthy women, DKD was associated with very premature delivery (OR 4.2 (1.9 to 9.5)).13 The mean birth weight reported ranged from 1880 g to 3430 g. The 1880 g occurred in a subgroup with moderately impaired renal function and significant proteinuria1 and the 3430 g occurred in a subgroup with microalbuminuria only.11 The ranges for small for gestational age (SGA), where the neonate weighed less than the 10th centile for gestation, and large for gestational age (LGA), where the neonate weighed more than the 90th centile corrected for gestation, varied widely between the studies and were inconsistently reported. The IQR for SGA was 7.7–30.1% and for LGA was 9.1–33%. One study which included diabetic women with no albuminuria, with microalbuminuria and macroalbuminuria reported rates of SGA in 2%, 4% and 45%, respectively.12 Neonatal intensive care unit (NICU) admission was common, reported in 26.2–75% of births (IQR 41.3–66.8), increased compared with women without DKD (OR 2.4 (1.2 to 4.6)).13 Congenital abnormalities and perinatal deaths were uncommon, reported in 0–14% (IQR 0–9.2) and 0–14.2% (IQR 0–9.6), respectively. One study found that diabetic nephropathy (not further characterised) was associated with congenital abnormalities with an adjusted OR of 2.45 (1.14 to 5.25).19

Overall higher rates of prematurity, SGA and NICU admissions were noted in the groups with overt proteinuria and impaired renal function than in those with microalbuminuria or normal renal function. Rates were highest where both severe proteinuria and impaired renal function were present.

Blood pressure control

A number of studies designed to assess the impact of blood pressure on pregnancy outcomes were included. One observational study divided their cohort into two subgroups; one group had a mean arterial blood pressure (MAP) below a target of 100 mmHg and the other had a MAP of >100 mmHg.3 They reported better maternal outcomes (27.3% pre-eclampsia versus 42%) and fetal outcomes (mean gestation 35.1 weeks versus 32.1 weeks) in the target MAP group.5 Two further studies12,20 reported an improvement in maternal and fetal outcomes with more intensive control of hypertension.

Renal outcomes (Table 5)

Only two of the papers published in the last 20 years reported on longer term renal outcomes. One paper, which followed 14 women with albuminuria >300 mg at the time of pregnancy for a mean of 6 years, reported 36% reached end-stage renal failure in that time. There was no control group.21 The other paper followed 26 women with diabetic nephropathy who had pregnancies and 67 women with diabetic nephropathy without pregnancies for 10 years. The outcomes were similar in both groups, with a slightly higher incidence of end-stage renal failure in the group without pregnancy.22

Discussion

This systematic review of pregnancy outcomes and DKD showed that most women were relatively young, nulliparous and had a long duration of diabetes, usually type 1. There were high rates of maternal and fetal complications and these were more common in women with macroalbuminuria or impaired renal function. For comparison, in the general population pre-eclampsia affects 5% of women, 7.3% of babies arrive preterm (prior to 37 weeks),23 77% of birth weights are >3000 g4 and 10.9–14.5% of babies are admitted to the NICU.25 This review highlights high rates of Caesarean section in women with DKD. Women with diabetes already have higher rates of Caesarean
Table 3 Maternal outcomes

	Pre-eclampsia (%)	Caesarean section (%)	Maternal deaths (%)	Dialysis during pregnancy (%)	Miscarriage (%)	Abortion (%)	
Reece, 1990	NR	NR	NR	NR	Ex	Ex	
Combs, 1993	47	NR	NR	NR	Ex	Ex	
Hod, 1995	38	75	0	0	Ex	Ex	
Kimmerle, 1995	NR	80	NR	NR	0	10	
Gordon, 1996	53	80	NR	NR	7.8	3.9	
Kaaja, 1996	NR	NR	NR	NR	NR	NR	
Mackie, 1996	NR	100	NR	NR	NR	NR	
Miodovnik, 1996	76	76	NR	NR	Ex	Ex	
Purdy, 1996	NR	NR	NR	NR	NR	NR	
Zhu, 1997	40	90	NR	NR	NR	NR	
Reece, 1998	53	63	NR	NR	NR	NR	
Bar, 1999	46	62.5	NR	NR	27	0	
Biesenbach, 1999	57.1	50	NR	NR	Ex	Ex	
Dunne, 1999	50	90.5	NR	NR	Ex	Ex	
Biesenbach, 2000	60	60	NR	NR	NR	NR	
Ekborn, 2001	42	NR	NR	NR	NR	NR	
Khoury, 2002	Cr <1 mg/dL	76.9	0	0	49	Ex	
	Cr 1–1.5 mg/dL	91.7	0	0	13	Ex	
	Cr >1.5 mg/dL	88.9	0	0	10%		
Rossing, 2002	41	38.7	0	0	Ex	Ex	
Bagg, 2003	NR	83	NR	NR	NR	NR	
Carr, 2006	Above target BP (MAP >100 mmHg)	27.3	63.4	NR	NR	NR	NR
	Below target (MAP <100 mmHg)	42.9	76.2	0 0	Ex	Ex	
Nielsen, 2006	42	20	NR	NR	NR	Ex	
Nielsen, 2009	Diabetic nephropathy	43 0	NR	NR	NR	Ex	Ex
Yogeu, 2009	Non-complicated pregnancy	NR 67	NR	NR	NR	0 0	
	Complicated pregnancy	78 0	NR	NR	NR	0 0	
Jensen, 2010	41	NR	NR	NR	Ex	Ex	
Bell, 2012	NR	NR	NR	NR	x	NR	
Young, 2012	63.6	NR	0	NR	Ex	Ex	
Damm, 2013	Type 2 DN	40	NR	0	Ex	Ex	
	Type 1 DN	36	60	0	0	0	
	T2 microalbuminuria	10 80	91	0	0	0	
	T1 microalbuminuria	20 80	80	0	0	0	
Piccoli, 2013	NR	75%	0	0	Ex	Ex	
Klemetti, 2015	52.3	41.9	NR	1%	Excluded	Excluded	
	1988–1999 group	100	92.9	NR	Excluded	Excluded	
	2000–2011 group	52.3	41.9	NR	Excluded	Excluded	
Seah, 2020	Microalbuminuria	NR	NR	NR	Ex	Ex	
	Macroalbuminuria	OR 5.7 (1.8 to 17.8)	OR 5.5 (2.5 to 11.8)	NR	NR	Ex	

Cr, creatinine; DN, diabetic nephropathy; Ex, excluded; NR, not reported.
Table 4. Fetal outcomes

Study/Description	Mean gestation (weeks)	Preterm delivery (%)	Very preterm delivery <34 weeks (%)	Weight (g)	SGA (%)	LGA (%)	NICU admission (%)	RDS (%)	IUD/perinatal mortality (%)	Congenital abnormality (%)							
Reece, 1990¹⁰	36.3	NR	NR	2557	NR	NR	NR	NR	NR	0	0						
Combs, 1993²⁰	35.2	60	23	2788	NR												
Hod, 1995¹¹	37	13	NR	2998	21.5	25	NR	NR	NR	0	0						
Kimmerle, 1994⁴	NR																
Gordon, 1996⁸	35.8	NR	15.5	2623	11	NR	89	NR	0	4							
Kaja, 1996¹²	NR																
Mackie, 1996¹³	Moderate renal impairment	Mild renal impairment	31	69	20	3	1	14	2	4							
Miodovnik, 1996¹⁴	57%	<32 weeks	2745	9	22	NR	20	9	11								
Purdy, 1996¹⁵	NR																
Zhu, 1997¹⁶	35.3	60	NR	2247	NR	NR	NR	NR	NR	NR							
Reece, 1998¹⁷	26	NR	NR	2687	9	NR	NR	NR	5	9							
Bar, 1999¹⁸	NR	17	NR	2998	21	NR	4.2	NR	4.2								
Biesenbach, 1999¹	34	64.2	1893	64.2	0	NR	21.4	14.2	7.1								
Dunne, 1999¹⁹	NR	57.2	NR	2429	14	9.5	57.2	nr	9.5	4.7							
Biesenbach, 2000²⁰	36.3	NR	60	2250	50	0	NR	NR	10	NR							
Ekboim, 2001²¹	DN Microalbuminuria	NR	62	91	23	45	3124	4	2235	45	NR	NR	NR	4	4		
Khoury, 2002²²	Cr <1 mg/dl	Cr 1–1.5 mg/dl	Cr 1.5> mg/dl	35.7	34.3	33.3	NR	<32 weeks	7.7	16.7	44.4	NR	NR	NR	15.4	5.1	12.9
Biesenbach, 2000²⁰	Microalbuminuria	NR	9.7	9.7													
Rossing, 2002²³	NR	9.7	9.7														
Bagg, 2003²⁴	NR	9.7	9.7														
Carr, 2006²⁵	Above target BP (MAP >100 mmHg)	Below target (MAP <100 mmHg)	35.1	32.8	<32 weeks	4.6	38.1	2520	9.1	28.6	NR	NR	NR	9.1	9.5		
Nelson, 2006²⁶	2000–2003	250 days	259 days	62	40	23	0	3124	45	3279	NR	NR	NR	NR	4	4	
Nielsen, 2007²⁷	Diabetic nephropathy Microalbuminuria	258 days	264 days	71	20	14	0	2765	29	14	NR	NR	NR	NR	0	0	
Yoge, 2009²⁸	Non-complicated pregnancy Complicated pregnancy	37.8	32.4	0	32	NR	NR	2323	0	57	0	46	NR	NR	0	0	
Jensen, 2010²⁹	Non-complicated pregnancy	260 days	36	16	3335	NR	50	NR	19	5	NR						
Bell, 2012³⁰	NR	Unadjusted OR 2.78 (1.14 to 5.25) Adjusted OR 2.45 (1.15 to 5.25)															
Young, 2012³¹	NR																
Damm, 2013³²	Type 2 DN	Type 1 DN	T2 microalbuminuria	T1 microalbuminuria	250 days	249 days	260 days	259 days	50	40	2460	40	60	NR	NR	NR	
Piccoli, 2013³³	32.5	100	58	1919	7.6	NR	85	20	0	9.5% of total cohort							
Kleinetti, 2015³⁴	1988–1999 group	2000–2011 group	254 days	246 days	70.8	76.7	<32 weeks	17.8	20.9	2978	15.4	23.3	35.4	27.9	26.2	48.8	
Seah, 2020³⁵	Microalbuminuria group	Macraalbuminuria group	OR 3.9 (1.5 to 9.9)	OR 3.5 (1.6 to 7.7)	OR 4.2 (1.9 to 9.5)	OR 2.4 (1.2 to 4.6)											

Cr, creatinine; DN, diabetic nephropathy; LGA, large for gestational age; NICU, neonatal intensive care unit; NR, not reported; RDS, respiratory distress syndrome; SGA, small for gestational age.
Table 5 Long-term renal outcomes

Study	Follow-up post delivery	Worsening proteinuria	Worsening renal function	Doubling creatinine	Mean eGFR decline/year	ESRF
Reece, 1990	29 months	27%	27%	9%	0	0
Combs, 1993	NR	NR	NR	NR	NR	NR
Hod, 1995	NR	NR	NR	NR	NR	NR
Kimmerlie, 1995	NR	NR	NR	NR	NR	NR
Gordon, 1996	2.8 years	No difference between groups	NR	NR	15.6 mL/min decline/year 6.6 mL/min vs 18.9 for rest of cohort	8.5%
Subgroup <1 g proteinuria and CrCl >90 mL/min	29 months	27%	27%	9%	0	0
Kaaja, 1996	5–9 years	4/6	2/3	NR	NR	1/6
Mackie, 1996	6 months–8 years	NR	50% (3)	9% (1)	NR	50% (3) (9% (1)
Miodovnik, 1996	9.5 years	NR	NR	NR	8–10 mL/year	26% 0.7%
Purdy, 1996	35–138 months	82%	45%	NR	NR	6%
Zhu, 1997	NR	NR	NR	NR	NR	NR
Reece, 1998	NR	NR	NR	NR	NR	NR
Bar, 1999	2 years	NR	0	0	NR	Nil
Biesenbach, 1999	6 months	2.2 g/24 h to 2.8 g/24 h	No change	87%	61 mL/min to 38 mL/min	NR
Dunne, 1999	2	NR	No difference	No difference	NR	5%
Biesenbach, 2000	NR	NR	NR	NR	NR	NR
Ekbom, 2001	NR	NR	NR	NR	NR	NR
Khoury, 2002	NR	NR	NR	NR	NR	NR
Rossing, 2002	10 years	534 to 786 mg/24h	31%	33%	2.2 mL/min	19% 24%
Bagg, 2003	6 years	NR	NR	NR	NR	36%
Carr, 2006	NR	NR	NR	NR	NR	NR
Nielsen, 2006	NR	NR	NR	NR	NR	NR
Nielsen, 2009	NR	NR	NR	NR	NR	NR
Yogev, 2009	NR	NR	NR	NR	NR	NR
Jensen, 2010	NR	NR	NR	NR	NR	NR
Bell, 2012	NR	NR	NR	NR	NR	NR
Young, 2012	NR	NR	NR	NR	NR	NR
Damm, 2013	NR	NR	NR	NR	NR	NR
Piccoli, 2013	NR	NR	NR	NR	NR	NR
Klemetti, 2015	NR	NR	NR	NR	NR	NR
Seah, 2020	NR	NR	NR	NR	NR	NR

CrCl, creatinine clearance; DN, diabetic nephropathy; eGFR, estimated glomerular filtration rate; ESRF, end stage renal failure. NR, not reported.
Management of diabetic kidney disease in pregnancy

Pre-pregnancy	During pregnancy	Post-partum
• Women with diabetes should have an assessment of their renal function (including proteinuria) prior to stopping contraception.	• Women with a creatinine >120 mmol/L, albuminuria >30 mg/mmol or eGFR <45 ml/min should be referred to a nephrologist prior to pregnancy.	• Restart RAAS blockade post-partum as soon as renal function is stable. In breastfeeding, enalapril and captopril are the preferred ACE inhibitors, and angiotensin receptor blockade is not advised until breastfeeding cessation.
• Women with a creatinine >120 mmol/L, albuminuria >30 mg/mmol or PCR >50 mg/mmol should see a nephrologist during pregnancy. (Note: eGFR should not be used during pregnancy).	• They should have regular MDT visits throughout gestation (every 1–2 weeks).	• Ensure follow-up with nephrologist post-partum (and with the diabetes services if not already engaged).
• They should be offered low-dose aspirin (75–150 mg) before 16 weeks of gestation as pre-eclampsia prophylaxis.	• Women with nephrotic range proteinuria (PCR >300 mg/mmol or ACR >250 mg/mmol should be offered prophylactic low molecular weight heparin during pregnancy and the postpartum period.	• High dose folate acid 5 mg should be started 3 months prior to conception.
• Target blood pressure of 110–130 mmHg (systolic) and 70–90 mmHg (diastolic) should be used.	• Target blood pressure of 110–130 mmHg (systolic) and 70–90 mmHg (diastolic) should be used.	• The HbA1c should be below 48 mmol/mol prior to conception (if achievable without causing problematic hypoglycaemia).
• The creatinine and ACR/PCR should be checked at least 4-weekly and at least fortnightly from 32 weeks of gestation.	• The creatinine and ACR/PCR should be checked at least 4-weekly and at least fortnightly from 32 weeks of gestation.	• High dose folate acid 5 mg should be started 3 months prior to conception.

ACR, albumin:creatinine ratio; eGFR, estimated glomerular filtration rate; PCR, protein:creatinine ratio; RAAS, renin angiotensin aldosterone system.

Important aspects of management include pre-pregnancy counselling, close multidisciplinary antenatal monitoring with strict blood pressure control, preeclampsia prophylaxis and consideration of thromboprophylaxis and early reintroduction of ACE inhibitors and angiotensin receptor blockade is not advised until breastfeeding cessation. Key management points are summarised in Table 6.

This systematic review was limited by the quality of the studies included; they were most often retrospective, small and monocentric and may have been subject to selection or reporting biases. As a result of these very heterogeneous studies, the results reported varied widely between studies. The variations in the definition of DKD used, the evolving definition of pre-eclampsia and the notorious difficulty diagnosing pre-eclampsia in women with pre-existing hypertension and proteinuria are likely also to have affected the reported outcomes. As diabetes and DKD are common conditions, it is vital for women and their doctors from different disciplines, including obstetrics, endocrinology and nephrology, to be fully aware of the risks associated with pregnancy. This will empower women to make a fully informed decision when considering pregnancy and enable better obstetric and renal care, leading to a safer pregnancy with better outcomes.

Conflict of interest None.

Funding None.

References

1. Confidential Enquiry into Maternal and Child Health. Diabetes in pregnancy: are we providing the best care? Findings of a national enquiry.
England, Wales and Northern Ireland. London: Confidential Enquiry into Maternal and Child Health, 2007.
2. Ringholm L, Damm JA, Vestgaard M, Damm P, Mathiesen ER. Diabetic nephropathy in women with preexisting diabetes: from pregnancy planning to breastfeeding. Curr Diab Rep 2016;16(2):12. https://doi.org/10.1007/s11892-015-0705-3
3. Persson M, Norman M, Hanson U. Obstetric and perinatal outcomes in type 1 diabetic pregnancies: a large, population-based study. Diabetes Care 2009;32(11):2005–9. https://doi.org/10.2337/dc09-0656
4. White P. Pregnancy complicating diabetes. J Am Med Assoc 1945;128(3):181–2.
5. Carr D, Koontz G, Gardella C, et al. Diabetic nephropathy in pregnancy: suboptimal hypertensive control associated with preterm delivery. Am J Hypertens 2006;19(5):513–19. https://doi.org/10.1016/j.amjhyper.2005.12.010
6. Kimmerle R, Zass RP, Cupisti S, et al. Pregnancies in women with diabetic nephropathy: long-term outcome for mother and child. Diabetologia 1995;38(2):227–35.
7. Bramham K. Diabetic nephropathy and pregnancy. Semin Nephrol 2017;37(4):362–9. https://doi.org/10.1016/j.semnephrol.2017.05.008
8. Ekbom P. Pre-pregnancy microalbuminuria predicts pre-eclampsia in insulin-dependent diabetes mellitus. Lancet 1999;353(9150):377. https://doi.org/10.1016/s0140-6736(05)74949-7
9. Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 2015;4(1):1.
10. Khoury JC, Miodovnik M, LeMasters G, Sibai B. Pregnancy outcome and progression of diabetic nephropathy. What's next? J Matern Fetal Neonatal Med 2002;11:238–44. https://doi.org/10.1080/0969679021000010137
11. Damm JA, Asbjornsdottir B, Callesen NF, et al. Diabetic nephropathy and microalbuminuria in pregnant women with type 1 and type 2 diabetes: prevalence, antihypertensive strategy, and pregnancy outcome. Diabetes Care 2013;36(11):3489–94. https://doi.org/10.2337/dc13-1031.
12. Nielsen LR, Damm P, Mathiesen ER. Improved pregnancy outcome in type 1 diabetic women with microalbuminuria or diabetic nephropathy: effect of intensified antihypertensive therapy? Diabetes Care 2009;32(1):38–44. https://doi.org/10.2337/dc08-1526
13. Seah J, Kam NM, Wong L, et al. The association between maternal renal function and pregnancy outcomes in type 1 and type 2 diabetes. Diabetes Res Clin Pract 2020;165:108225. https://doi.org/10.1016/j.diabres.2020.108225
14. Ekbom P, Damm P, Feldt-Rasmussen B, Feldt-Rasmussen U, Mølvig J, Mathiesen ER. Pregnancy outcome in type 1 diabetic women with microalbuminuria. Diabetes Care 2001;24(10):1739–44. https://doi.org/10.2337/diacare.24.10.1739
15. Piccoli GB, Tavassoli E, Melluzzo C, et al. Severe diabetic nephropathy in type 1 diabetes and pregnancy - a case series. Rev Diabet Stud 2013;10(1):68–78. https://doi.org/10.1900/RDS.2013.10.68
16. Yoge Y, Chen R, Ben-Harouch A, Hod M, Bar J. Maternal overweight and pregnancy outcome in women with type-1 diabetes mellitus and different degrees of nephropathy. J Matern Fetal Neonatal Med 2010;23(9):999–1003. https://doi.org/10.3109/14767050903544744
17. Young EC, Pires MLE, Marques LP, de Oliveira JP, Zajdeverg L. Effects of pregnancy on the onset and progression of diabetic nephropathy and of diabetic nephropathy on pregnancy outcomes. Diabetes Metab Syndr 2011;5(3):137–42. https://doi.org/10.1016/j.dsx.2012.02.013
18. Klemetti MM, Laivuori H, Tikkanen M, Nuutila M, Hillemo V, Teramo K. Obstetric and perinatal outcome in type 1 diabetes patients with diabetic nephropathy during 1988–2011. Diabetologia 2015;58(4):678–86. https://doi.org/10.1007/s00125-014-3488-1
19. Bell R, Glinianaia SV, Tennant PWG, Bilou WS, Rankin J. Peri-conception hyperglycaemia and nephropathy are associated with risk of congenital anomaly in women with pre-existing diabetes: a population-based cohort study. Diabetologia 2012;55(4):936–47. https://doi.org/10.1007/s00125-012-2455-y
20. Niels H, Muller C, Damm P, Mathiesen ER. Reduced prevalence of early preterm delivery in women with type 1 diabetes and microalbuminuria-possible effect of early antihypertensive treatment during pregnancy. Diabetes Med 2006;23(4):426–31. https://doi.org/10.1111/j.1464-5491.2006.01831.x
21. Bagg W, Neale L, Henley P, MacPherson P, Cundy T. Long-term maternal outcome after pregnancy in women with diabetic nephropathy. N Z Med J 2003;116(1180):U566.
22. Rossing K, Jacobsen P, Hommel E, et al. Pregnancy and progression of diabetic nephropathy. Diabetologia 2002;45(1):36–41. https://doi.org/10.1007/s00125-002-8242-4.
23. National Institute for Health and Care Excellence (NICE). Preterm labour and birth. NICE Guideline [NG25]. 2015 (updated 2019). Available from: https://www.nice.org.uk/guidance/ng25/chapter/contex
24. NHS Digital. NHS maternity statistics, England 2019–20. Available from: https://digital.nhs.uk/data-and-information/publications/statistical/nhs-maternity-statistics/2019-20
25. Braun D, Braun E, Chiu V, et al. Trends in Neonatal intensive care unit utilization in a large integrated healthcare system. JAMA Netw Open [Internet]. 2020;3(6):e205239. https://doi.org/10.1001/jamanetworkopen.2020.5239
26. National Institute for Health and Care Excellence (NICE). Diabetes in pregnancy: management from preconception to the postnatal period. NICE Guideline [NG3]. 2015 (updated 2020). Available from: https://www.nice.org.uk/guidance/ng3
27. Wiles K, Chappell L, Clark K, et al. Clinical practice guideline on pregnancy and renal disease. BMC Nephrol 2019;20(1):401. https://doi.org/10.1186/s12882-019-1560-2
28. American Diabetes Association. 14. Management of Diabetes in Pregnancy: standards of medical care in diabetes – 2020. Diabetes Care 2020;43(Suppl 1):S183–92. https://doi.org/10.2337/dc20-5014

VOLUME 21 • ONLINE AHEAD OF PUBLICATION