ULTRAVIOLET IMAGING POLARIMETRY OF THE SEYFERT 2 GALAXY MARKARIAN 3

MAKOTO KISHIMOTO
Physics Department, University of California, Santa Barbara, CA 93106; makoto@physics.ucsb.edu

LAURA E. KAY
Department of Physics and Astronomy, Barnard College, Columbia University, New York, NY 10027

ROBERT ANTONUCCI AND TODD W. HURT
Physics Department, University of California, Santa Barbara, CA 93106

ROSS D. COHEN
Center for Astrophysics and Space Sciences, Code 0424, 9500 Gilman Drive, University of California at San Diego, La Jolla, CA 92093

AND

JULIAN H. KROLIK
Physics and Astronomy Department, Charles and 34th Street, Bloomberg Center, Johns Hopkins University, Baltimore, MD 21218

Received 2001 April 7; accepted 2001 September 13

ABSTRACT

We present ultraviolet (UV) imaging polarimetry data of the Seyfert 2 galaxy Mrk 3, taken by the Hubble Space Telescope. The polarized flux is found to be extended to \(\sim 1 \) kpc from the nucleus, and the position angles of polarization are centrosymmetric, confirming that the polarization is caused by scattering. We determine the location of the hidden nucleus as the center of this centrosymmetric pattern. From the polarization images taken in two broad bands, we have obtained the color distribution of the polarized flux. Some regions have blue polarized flux, consistent with optically thin dust scattering, but some bright knots have a color similar to that of a Seyfert 1 nucleus. Also, the recent Chandra X-ray observation suggests that the ratio of scattered UV flux to scattered X-ray flux is rather similar to the intrinsic UV/X-ray ratio in a Seyfert 1 nucleus, if the observed extended X-ray continuum is scattered light. While the scattered X-rays would essentially be from electron scattering, the similarity of both the UV slope and UV/X-ray ratio to those of a Seyfert 1 nucleus would lead to two possibilities as to the nature of the UV scatters. One is that the UV may also be scattered by electrons, in which case the scattering gas is somehow dust free. The other is that the UV is scattered by dust grains, but the wavelength-independent UV scattering with low efficiency, indicated by the UV slope and UV/X-ray ratio, would suggest that the grains reside in UV-opaque clouds, or that the dust might be mainly composed of large grains and lack small-grain population.

Subject headings: galaxies: active — galaxies: individual (Markarian 3) — galaxies: Seyfert — polarization — scattering — ultraviolet: galaxies

On-line material: color figures

1. INTRODUCTION

Mrk 3 is one of the Seyfert 2 galaxies that have been shown to harbor Seyfert 1 nuclei through the presence of polarized broad lines by optical spectropolarimetry (Antonucci & Miller 1985; Miller & Goodrich 1990; Tran, Miller, & Kay 1992; Tran 1995; Kay & Moran 1998; Moran et al. 2000). The polarized broad lines and featureless continuum observed are thought to be from a hidden broad-line region and continuum source scattered into the line of sight. Therefore, a scattering region should exist somewhere off-nucleus in these Seyfert 2 galaxies. High-resolution imaging polarimetry is a powerful tool for locating this scattering region by spatially resolving the polarized-flux distribution. Also, we can directly locate the position of the nucleus in Hubble Space Telescope (HST) images, which is otherwise unclear, since it is obscured. The nuclear position is obtained from the polarization position angle (P.A.) distribution, which is expected to be centrosymmetric if the nuclear source is small enough compared to the resolved scattering mirror (e.g., Capetti et al. 1995; Kishimoto 1999). The exploration of the nuclear vicinity is much easier in these type 2 objects than in type 1 objects, where the nucleus is too bright and hides the surrounding regions by the wing of its point spread function (PSF). However, this is true only if the hidden nucleus location is robustly determined. Imaging polarimetry provides the direct method for this determination.

Mrk 3 has an old stellar population (González Delgado, Heckman, & Leitherer 2001), and thus polarimetry is highly efficient in the ultraviolet (UV), since we can avoid much of the dilution by the unpolarized old stellar light from the host galaxy. Thus, we have implemented UV imaging polarimetry by the HST. We have also obtained data with two different filters for mapping the color distribution of the polarized flux. This can potentially tell us the nature of the scatters. We describe our observations in § 2 and the results in § 3. The implications of the results are discussed in § 4 and our conclusions are summarized in § 5. We adopt \(H_0 = 65 \text{ km s}^{-1} \text{ Mpc}^{-1} \) throughout this paper. Mrk 3 is at \(z = 0.0140 \), so the distance is 65 Mpc, and 1″ corresponds to \(\sim 310 \text{ pc} \).

2. OBSERVATION AND DATA REDUCTION

Mrk 3 was observed on 1998 December 10 by the Faint
Object Camera (FOC) on board the \textit{HST}. The filters F275W ($\lambda \sim 2800$ Å) and F342W ($\lambda \sim 3400$ Å) were used with three polarizers: POL0, POL60, and POL120. The F342W images were taken in the normal 512 \times 512 pixel mode, where the pixel size is 0.014 \times 0.014, giving a field of view of $\sim 7'' \times 7''$. The F275W images were taken in the zoomed mode, resulting in a larger field of view with 1024 \times 512 pixels, $\sim 14'' \times 7''$. The data are summarized in Table 1. All of these were taken after the installation of COSTAR, i.e., after the refurbishment of the \textit{HST}.

The FOC suffers from nonlinearity when count rates are large, and the nonlinearity depends on the distribution of the illumination over the detector. It exhibits nonlinearity at the 10\% level when the count rate is 0.08 and 0.15 counts s$^{-1}$ pixel$^{-1}$ for the 512 \times 512 and 512 \times 512 formats, respectively, for uniform illumination. For a point source, the 10\% nonlinearity occurs for a peak count rate of 0.5 and 1.0 counts s$^{-1}$ pixel$^{-1}$, respectively. The bright regions in the images of Mrk 3 are clumsy, so the detector behavior is expected to be somewhere between these two illumination cases. The maximum count rate in our images was 0.03 counts s$^{-1}$ pixel$^{-1}$ with the F275W filter (512 \times 1024 format) and 0.11 counts s$^{-1}$ pixel$^{-1}$ with the F342W filter (512 \times 512 format). Therefore, the nonlinearity in these images is expected to be very small. Its effect on the polarization (P) measurement should be concentrated only at the positions of the few brightest clumps. Even in these clumps, a conservative upper limit of the effect is found to be about 1/20 and 1/10 of the measured P in the F275W and F342W images, respectively, utilizing the nonlinearity relation for uniform illumination (Nota et al. 1996; Jedrzejewski 1992).

The data were processed in the standard manner to correct for geometric distortion and flat-field response. The reseau marks were removed using neighboring pixels. The three images with three polarizers are known to be slightly shifted relative to one another. In our FOC images of Mrk 3, there were no point sources we could use for the image registration. Therefore, we used the image shift calibration results from Hodge (1993, 1995), which are accurate to ± 0.3 pixel. The background was subtracted using the outer region of the images. Before combining the three images, each image was scaled in order to allow for the different transmittances of the three polarizers. We estimated the effective transmittances of each polarizer plus filter, using large-aperture spectra from \textit{HST} Faint Object Spectrograph (FOS) data (R. D. Cohen et al., in preparation) and ground-based data (Kay 1994). Then, the three images through the three polarizers were scaled accordingly and combined to produce the Stokes I, Q, and U images. The polarized flux and polarization were calculated as $(Q^2 + U^2)^{1/2}$ and $(Q^2 + U^2)^{1/2}/I$, respectively, and debiased following Simmons & Stewart (1985).

Using the same large-aperture spectra, we also estimate the narrow emission line contamination in these filters to be $\sim 30\%$ for both of the filters. The F275W filter is primarily affected by the Mg \textsc{ii} $\lambda 2800$ line and the F342W filter by [O \textsc{ii}] $\lambda 3727$, [Ne \textsc{v}] $\lambda 3426$, and [Ne \textsc{v}] $\lambda 3346$ lines. This affects the absolute flux measurement of the continuum accordingly. For small spatial bins, the line contamination could be different from this estimation. In terms of P measurement, the line contamination simply results in diluting P, since the narrow lines are not strongly polarized (essentially only containing the foreground interstellar polarization in our Galaxy [see below; Schmidt & Miller 1985; Goodrich 1992], although they could be slightly polarized intrinsically [Tran 1995]). The contamination by unpolarized lines essentially does not affect the Q and U measurements (although the small–spatial-scale variation of the effective transmittance would slightly affect the Q and U measurements: the resulting uncertainty in P is estimated to be less than \textasciitilde1\%).

However, our two filters are on the so-called 3000 Å bump, which consists of broad Fe \textsc{ii} lines and Balmer continuum plus high-order Balmer emission lines. The relative polarized-flux color measurement between different locations would not be affected by these contaminations, since the incident spectrum from the hidden nucleus would be the same, but the absolute color measurement would be slightly affected. We discuss this in § 4.

The optical interstellar polarization in our Galaxy toward Mrk 3 has been estimated to be \textasciitilde1.2\% at P.A. = 132°, from the polarization of the nearby foreground stars (Schmidt & Miller 1985). We have corrected our polarization maps for this foreground polarization, using the Serkowski curve (Serkowski, Mathewson, & Ford 1975), with the parameters adopted by Tran (1995), which are based on the measurement of Schmidt & Miller.

The images through the F275W and F342W filters are also shifted with respect to each other. We have registered them by taking a cross-correlation of the central \textasciitilde4'' region of the I images produced above, since both images are dominated by the same clumpy structure in the central region. The uncertainty in this registration is estimated be ± 0.5 pixels.

There are various error sources in the FOC imaging polarimetry. These are described in detail in Kishimoto (1999). Briefly, there are four major sources: (1) statistical error, (2) uncertainty in the image registrations of the three polarizer images, (3) uncertainty in the polarizer axes directions, and (4) uncertainty in the relative intensities through each polarizer, mainly from the differences in the shape of the PSF through each polarizer. Source 4 becomes a major error source when the synthetic aperture or binning size for measuring polarization is small. For many cases, error sources 1

\begin{table}[h]
\centering
\caption{Obtained Faint Object Camera Data}
\begin{tabular}{llll}
\hline
Data Set Name & Observation Date & Filter & Exposure Time (s) \\
\hline
x3md0101r & 1998 Dec 10 & F275W + POL0 & 5186.50 \\
x3md0102r & 1998 Dec 10 & F275W + POL60 & 5186.50 \\
x3md0103r & 1998 Dec 10 & F275W + POL120 & 5186.50 \\
x3md0104r & 1998 Dec 10 & F342W + POL120 & 1696.50 \\
x3md0105r & 1998 Dec 10 & F342W + POL60 & 1696.50 \\
x3md0106r & 1998 Dec 10 & F342W + POL0 & 1696.50 \\
\hline
\end{tabular}
\end{table}
Fig. 1.—Polarization map of Mrk 3 with F275W. The polarizations are calculated in 40 pixel (0.57) bins. The directions of the lines at each position represent θ_{PA} (direction of E-vector) and $\delta_{PA} \pm \sigma_{\delta}$. The regions with statistical S/N in P larger than 5 are shown, but the errors shown are the total sum of the various error sources in quadrature, including systematic errors (see § 2). The lengths of the lines are proportional to the polarization degree, where a 1.5 length corresponds to 100%. The underlying gray-scale image is the total intensity with the F275W filter in log scale. North is up, east is to the left. The origin of the coordinates is taken at the intensity peak of the cloud closest to the nucleus in this and all subsequent figures (see Fig. 4).

Fig. 2.—Central ~4" region of the polarization map of Mrk 3 in the F275W filter with 10 pixel (0.14) bins. The notations are the same as in Fig. 1. The gray-scale image is the total intensity with the F275W filter in linear scale.

Fig. 3.—Central ~4" region of the polarization map of Mrk 3 in the F342W filter with 10 pixel (0.14) bins. The notations are the same as in Fig. 2. The gray-scale image is the total intensity with the F342W filter in linear scale.

Fig. 4.—Central ~4" region of the polarization map of Mrk 3 in the F342W filter with 20 pixel (0.28) bins. The notations are the same as in Fig. 2. The gray-scale image is the total intensity with the F342W filter in linear scale.

3. RESULTS

3.1. Extended Scattering Region

Figure 1 shows the polarization map of Mrk 3 with the F275W filter. The polarizations are calculated in 40 pixel (0.57) bins, and the regions with statistical S/N in P larger than 5 are shown. The P.A. errors indicated in the figure are the total sum in quadrature of all the error sources described in the previous section. The P.A. distribution is centrosymmetric, supporting the idea that the polarization is caused by the scattering of the radiation from a compact nuclear source. The lengths of the lines at each position in the figure indicate the degrees of polarization. We note that in the outermost regions, where uncertainty from the background subtraction dominates, the polarization degree is highly uncertain, accordingly. However, the P.A. directions are at least consistent with the ones in the inner regions, suggesting that we have detected the polarization, even out to ~3" from the center.

We also show the polarization map on a smaller scale in Figures 2 and 3. The polarizations are calculated in 10 pixel bins (0.14), and only the regions with statistical S/N in P
larger than 5 are shown. The lengths of the lines in these figures are also proportional to the polarization degrees. The central $\sim 1''$ radius region is very clumpy, and the P.A. pattern is centrosymmetric down to this central region, where P is at the 10\%-20\% and 5\%-15\% level in the F275W and F342W filters, respectively (although note the dilution of P by the narrow-line contamination; see §2).

3.2. The Centrosymmetric Pattern and the Location of the Hidden Nucleus

From the observed centrosymmetric pattern, we can robustly determine the position of the hidden nucleus as a symmetric center of this pattern. Specifically, assuming a centrosymmetric model of the P.A. distribution, a least-squares fit is implemented using the P.A. measurements, with given errors at each point of the image. The only parameters are the position of the symmetric center. The most probable location of the nucleus is determined as the point of the minimum χ^2, with an error circle defined by a certain confidence level. The method is described in detail in Kishimoto (1999). We have implemented this fit to the data shown in Figures 2 and 3. The reduced χ^2 was found to be 66.3/56 = 1.18 and 48.3/45 = 1.07 for the F275W and F342W data, respectively. The minimum χ^2 point is shown as a plus sign in Figure 4, together with the error circle of 99% confidence level, for each of the filters. The two results are slightly different, although they are not inconsistent with each other.

The central $\sim 2''$ of the UV image of Mrk 3 consists of several resolved clouds. There is no unresolved, overwhelmingly bright point source in the image, as expected from the unified model. However, the error circle for the nuclear location includes (or marginally includes) a rather bright cloud. The nucleus is thought to be hidden from direct view in this wavelength region, so we would not expect the radiation of this cloud to be the direct nuclear light. The FOC data might indicate that the nucleus resides at the western side (southwest or northwest) of the cloud, but the data do not strongly constrain which side the nucleus is on, and do not even exclude the possibility that the nucleus is within the cloud. The size of this cloud is about 0.06 (\~ 20 pc) in FWHM in both the F275W and F342W image, where the diffraction limit of the HST at this wavelength is about 0.03.

The total-flux color of this cloud is very red: the synthetic photometry with a circular aperture of 0.15 diameter gives $F_\alpha(2800 \AA)/F_\alpha(3400 \AA) = 0.55 \pm 0.02$, which corresponds to $\alpha = -5.0 \pm 0.2$, where $F_\alpha \propto \nu^\alpha$. The measured flux is $F_\alpha(2800 \AA) = (3.6 \pm 0.1) \times 10^{-17}$ ergs cm$^{-2}$ s$^{-1}$ Å$^{-1}$ (but note the emission-line contamination; see previous section). These are after the correction for Galactic reddening, using the reddening curve of Cardelli, Clayton, & Mathis (1989) with $E_{B-V} = 0.188$ (NASA/IPAC Extragalactic Database [NED]; Schlegel, Finkbeiner, & Davis 1998).

The calculated polarization for this cloud is not much larger than the uncertainty of the FOC polarization measurement with small apertures. The synthetic circular aperture polarimetry with 0.15 diameter for this blob, after the interstellar polarization correction (see §2), gives $P = 3.6\% \pm 4.4\%$ (statistical error 1.4\%) and $\theta_p = 2^\circ \pm 37^\circ$ (statistical error 11\%) at F275W, and $P = 5.1\% \pm 4.3\%$ (statistical error 1.1\%) and $\theta_{p,\lambda} = 6^\circ \pm 25^\circ$ (statistical error 6\%) at F342W. Therefore, the polarization detection is marginal, but the blob could be polarized at the 4\%-5\% level, since our error estimation could be conservative, as discussed in Kishimoto (1999).

3.3. The Color Map of Polarized Flux

Figures 5 and 6 show the polarized-flux distribution through the F275W and F342W filters, respectively. The three polarizer images for each filter were smoothed by a Gaussian with a FWHM of 10 pixels (\~ 0.14), and polarized flux was calculated with a 5 pixel bin. The polarized flux was debiased following Simmons & Stewart (1985); namely, corrected by a factor of $[1 - (\sigma_P/F_{\text{obs}})^2]^{1/2} (\sigma_P$ is a statistical error, and F_{obs} is an observed polarization). The regions with $P_{\text{obs}}/\sigma_P < 1$ are masked out. The contours of the F image with the F342W filter are drawn in both of the figures, to make the comparison of the two polarized-flux distributions easier. The gray scale is linear in both images, with a peak at the same pixel (\~ 0.76, -0.71). The peak polarized flux in the F342W filter is lower by a factor of 0.75 than that in the F275W filter (after the Galactic reddening correction with $E_{B-V} = 0.188$). Most of the polarized flux (roughly $\sim 70\%$) is coming from the region within $\sim 1''$ (\~ 300 pc) of the nucleus, and the polarized flux is greater on the west side than on the east side.

The polarized-flux distribution is different in these two filters. From the images with these two filters, we can derive the color distributions of the polarized flux, which is shown in Figure 7. The ratio of the polarized flux in the F275W filter to that in the F342W filter has been converted to the spectral index $\alpha (F_\nu \propto \nu^\alpha)$. The spectral index has been corrected for Galactic reddening of $E_{B-V} = 0.188$ (NED; Schlegel et al. 1998). The resulting index range shown in the figure is from -3.1 to $+1.2$. This color map is a composite of three different bins with three different smoothings. We have convolved three polarizer images for each filter, with a
Fig. 5.—Polarized-flux distribution with the F275W filter. The three images through three polarizers were convolved with a Gaussian of FWHM 10 pixels (0.14), and polarized flux is calculated with a 5 pixel bin and shown in linear gray scale. The contours are the I image with the F342W filter (not the F275W filter), convolved with a Gaussian of FWHM 2 pixels.

Fig. 6.—Same as Fig. 5, but for the F342W filter. The gray scale is linear, with a peak at the same pixel as in Fig. 5.

Gaussian of FWHM 40, 20, and 10 pixels, and have generated color maps with 20, 10, and 5 pixel bins, respectively, and stacked them into one plot. For each bin case, the regions with a formal 1 σ uncertainty (calculated using the smoothed image counts) in the spectral index smaller than 2 are shown, but the actual uncertainty for the regions shown is estimated to be less than ~ 1 by binning the images with the smoothing FWHM size. For the error calculation, we have neglected error source 4 described in § 2 because of the rather heavy smoothing. The caveat is that the color at regions with a large intensity gradient should be taken with caution, since it would be influenced by the spatial blurring of the bright region. We also made the color map without any smoothing and obtained a consistent map, although the features are much clearer in the map from smoothed images. Therefore we only show the latter.

We also generated the total-flux color map, which is shown in Figure 8. The color has been corrected for Galactic reddening. The same procedure as for the polarized-flux color map was taken, except for the threshold for the formal 1 σ uncertainty in the index, which was set to 1. In the central 1$''$ radius region, the actual uncertainty is estimated to be less than 0.3. The spectral index range is found to be -5.0 to -2.2, significantly redder than the polarized flux. The color is very red around the location of the hidden nucleus (~ -5.0; see the previous subsection), and this red color is extended to the south. This is probably due to an enhanced extinction. The red color seems to also be extended along the north-south direction. On the other hand, the color tends to be bluer at the regions adjacent to some bright clouds, on the opposite side of the direction to the nucleus, especially the east side of the southeastern blob and the west side of the western bright blob. However, the interpretation of the total-flux color in general is uncertain: while the overall red color could be partly due to the contribution from the old stellar population in the host galaxy, the small-spatial-scale color variation could be caused by
the narrow-line contamination in our two filters (see §2). Therefore, we do not attempt to interpret the total-flux color map in this paper. We discuss the polarized-flux color map in §4.

4. DISCUSSION

4.1. The Nuclear Location and Extended Scattered Flux

Mrk 3 shows a linear jetlike structure in the radio at P.A. 84°, consisting of several knots. One central knot remains unresolved, even with a high spatial resolution of 0′035 at 5 GHz, and this is thought to be the nuclear location (Kukula et al. 1993). Therefore, for the radio map to register in an HST image, which typically has uncertainties of ~0′5, this radio core should fall within the error circle of the polarization center as determined above. The registration adopted by Capetti et al. (1996) is consistent with this (while the registration in Capetti et al. 1995 is slightly different).

The spatial distribution of the polarized flux provides a constraint on the opening angle of the nuclear anisotropic radiation. From Figures 2 and 3, the projected full opening angle is ~110°, from P.A. ~25° to 135°. Obviously, the region illuminated by the nucleus is not filled with bright narrow-line emitting gas. The morphology of the narrow-line emitting cloud distribution is not determined in detail by the anisotropic radiation pattern. Instead, it is suggested that it is closely related to the radio jet (Capetti et al. 1995, 1996, 1999). We note that the larger scale biconical radiation morphology (Pogge & De Robertis 1993), extended out to 5″ from the nucleus, is at P.A. 114°, with a full opening angle of ~74°, and thus slightly shifted from the small-scale radiation structure.

4.2. Polarized-Flux Color and a Seyfert 1 Nucleus Color

The color map of the polarized flux can potentially tell us the nature of the scatterers. The obtained color map (Fig. 7) seems to suggest that the scattering mechanism is rather nonuniform and complicated. As described in §2, our two filters are on the 3000 Å bump: the polarized flux through the F275W filter includes the broad Fe II and Mg II lines, and the F342W filter contains the Balmer continuum. The relative color measurement at different spatial locations is not affected by these contaminations, since the incident spectrum for the scattering region is the same—the one from the hidden nucleus. The interpretation of the absolute value, however, needs a reference value for a Seyfert 1 nucleus.

For this purpose, we have collected archival HST/FOS spectra of 14 Seyfert 1 galaxies ($M_B > -23$) in this wavelength range, taken with small apertures (0′′86 diameter, and 0′′3 for the nearest one). The color between the F275W and F342W filters was derived by synthetic photometry, and converted to the spectral index α ($F_l \propto \nu^\alpha$). For a few objects for which forbidden lines such as [O II] $\lambda\lambda3727$ and [Ne V] $\lambda3426$ seemed significant, we have removed these lines, but their effect was found to be only less than ~2%. The combined effect of Fe II and Mg II lines with F275W would be slightly larger than the effect of the Balmer continuum with F342W (contamination by Mg II alone is about 5%), so this color may be slightly bluer than the true continuum. We denote the obtained spectral index as α'.

The obtained α' values range from ~1.4 to +0.1, where the UV luminosity vL_v at 2800 Å is in the range 10^{43}–$3 	imes 10^{45}$ ergs s$^{-1}$, but there is a tendency for low-luminosity ones to have redder colors, similar to the correlation found in Mushotzky & Wandell (1989). The host-galaxy contamination would make the color redder, but in our case, this is perhaps avoided by the small apertures used. Mrk 3 is estimated to have, if unobscured, vL_v at 2800 Å around 1×10^{44} ergs s$^{-1}$ from the direct hard X-ray component, assuming a fiducial UV/X-ray ratio of 10 for a Seyfert 1 galaxy (see below). We also get a consistent approximate upper limit for this UV vL_v, of 3×10^{44} ergs s$^{-1}$ from the IRAS measurement at 25 μm, assuming the ratio of vF_v at 2800 Å to vF_ν, at 25 μm to be ~2 (Sanders et al. 1989). Therefore, as a reference value of α', we take the average for the five objects with $10^{43} < vL_v < 3 \times 10^{44}$ ergs s$^{-1}$, which is ~0.9.

4.3. Color Map Interpretation and Constraints from the Chandra Observation

One obvious feature in our polarized-flux color map is that the color is significantly redder than the Seyfert 1 nucleus color in the southern edge of the bright knotty regions. This red color is probably due to foreground extinction in this southern edge region, where a dust-lane feature is seen in the HST optical continuum image (Capetti et al. 1996). In contrast, the polarized-flux color seems to be bluer in some regions: the west region of the west bright knots ($\alpha' = +0.9$ at ~0′7 west of the nucleus), and the north region of the east bright knots ($\alpha' = +1.2$ at ~0′4 northeast of the nucleus). This blue color suggests that the polarized flux in these regions could be from optically thin dust scattering, although the spatial extent of the blue regions at the edges of the bright regions should be taken with caution, because of the spatial blurring by smoothing. The spectral index change expected for Galactic-type dust scattering is 1.0–1.5 (see, e.g., Kishimoto et al. 2001, and references therein), and this seems to be roughly consistent with the blue color seen in Figure 7, considering the typical Seyfert 1 nucleus color quoted above. However, scattered light in the whole nuclear region is not dominated by this
blue radiation. In the central brightest regions, the color of some bright knots, e.g., the brightest knots in the west ($\alpha' = -0.8$), is similar to the Seyfert 1 nucleus color, which would suggest gray scattering. Synthetic photometry with an 0.8×0.6 aperture on the brightest western knotty region gives $\alpha' = -0.7 \pm 0.5$, while the same photometry on the east knotty region yields a little bluer color, $\alpha' = -0.1 \pm 0.6$. The central 2.5×1.4 region, which includes the whole bright region, has $\alpha' = -0.5 \pm 1.0$ (the error is dominated by the background subtraction uncertainty).

One interpretation for this polarized-flux color range would be that the scatterers are dominated by dust grains and the color distribution is all from reddening. The reddening could be foreground or intermingled within the scattering region itself. While the red color found in the southern edge region would be from a foreground reddening, since the FOS UV polarized flux (taken with a 4.3×1.4 aperture, 2200–3200 Å; R. D. Cohen et al., in preparation) does not show an exponential decrease toward shorter wavelengths. On the other hand, scattering intermingled with reddening tends to make the scattering wavelength dependence rather gray, without an exponential decrease. Independent spatially resolved reddening maps, such as an Hα/Hβ ratio map, would be able to test this reddening explanation, although such a map is not yet available.

The recent Chandra X-ray observation of Mrk 3 (Sako et al. 2000) found a spatially extended soft X-ray continuum component. Its size is $\sim 2''$ (~ 600 pc), and its spatial extent seems to coincide with that of the dominant polarized flux in our UV image. Sako et al. (2000) find the flux of this extended continuum to be 4.3×10^{-13} ergs $cm^{-2} s^{-1}$ (converted from the quoted luminosity with their adopted H_0 value of 65 km s$^{-1}$ Mpc$^{-1}$), integrated between 1 and 10000 ryd, assuming a photon index of $\Gamma = 1.8$. This converts to $vF_\nu = 6.7 \times 10^{-15} (v/v_{1 keV})^{0.2}$ ergs $cm^{-2} s^{-1}$. If this is considered to be scattered light, as suggested by Sako et al., we can combine it with the UV scattered flux to see how this scattered flux shape between UV and X-ray matches that of a typical Seyfert 1 nucleus spectrum. Note that the scattered X-rays are considered to be from electron scattering, since X-ray scattering by dust is so far more concentrated (scattering angle is very small) that dust-scattered X-rays do not get into our line of sight in the case of type 2 objects, such as Seyfert 2 galaxies. From the F275W filter image, we deduce a total flux of $vF_\nu = 7.1 \times 10^{-12}$ ergs $cm^{-2} s^{-1}$, and a polarized flux $vF_\nu = 6.5 \times 10^{-13}$ ergs $cm^{-2} s^{-1}$ at 2800 Å (within the central 2.5×1.4 region). The UV scattered flux should be somewhere between these two. Therefore, the ratio of the UV to X-ray scattered flux in vF_ν is ~ 10–100, whereas the typical ratio seen in radio-quiet quasars with luminosity less than $10^{12} L_\odot$ is roughly ~ 10 (the ratio of vF_ν at ~ 3000 Å to ~ 1 keV; Sanders et al. 1989).

This ratio is apparently consistent with electron scattering, since the Thomson scattering cross section σ_T does not change with wavelength and the spectral shape does not get changed in this case, although the data do allow the possibility that the UV/X-ray scattered light ratio is a little larger than in most Seyfert 1 nuclei. On the other hand, in order to explain this ratio by having Galactic-type dust scattering in the UV, the UV scattered light needs to somehow have been considerably suppressed. This is because the UV-scattering cross section of Galactic dust grains per H atom is much larger than σ_T (roughly $\sim 500 \sigma_T$ in our UV range, although of course it depends on the sight lines), while in X-ray, the scattering cross section is essentially σ_T.

The suppression could come from the possible opaqueness of the scattering region. The X-ray observation suggests a rather high column density for the scattering region. In Mrk 3, the direct light from the nucleus dominates in the hard X-ray, which gives us the intrinsic nuclear X-ray luminosity. Comparing this direct flux ($vF_\nu \sim 2 \times 10^{-11}$ ergs $cm^{-2} s^{-1}$ at 1 keV, absorption corrected) with the scattered X-ray luminosity quoted above, Sako et al. (2000) estimate the scattering optical depth in X-rays to be ~ 0.01 (assuming a conical scattering region of half-opening angle 50°; this corresponds to an average column density of 1.5×10^{22} cm$^{-2}$ using σ_T; note the typographical error in Sako et al. 2000). This would mean that the average UV-extinction optical thickness is ~ 10 for Galactic-type dust of the normal dust-to-gas ratio (scattering optical thickness of ~ 5 with albedo ~ 0.5). In the HST images, the scattering region is not filled uniformly, but instead is clumpy, and the covering factor could be small, so the column density through each cloud would be even larger than this average column density.

Once the clouds become opaque in the UV, the amount of UV scattered light will not essentially depend on the column density of each cloud, but will approximately saturate at the amount for an extinction optical thickness around unity. Then, the scattered light amount will be essentially proportional to the covering factor. Therefore, given the same average column density, if we consider a case of smaller covering factor (e.g., a case in which the resolved clouds consist of smaller unresolved clouds) with each cloud having larger column density, the scattered light will be reduced in the UV, but not in the X-ray, as long as the clouds are not also opaque in the X-ray.

Thus, scattering by clumpy UV-opaque clouds, as well as electron scattering, would be consistent with the observed UV/X-ray scattered flux ratio. However, the extreme case of a very small covering factor, with the clouds being X-ray opaque, i.e., Compton-thick (covering factor of 1% makes the column density already of order $10^{24} cm^{-2}$), seems to be ruled out, since in this case the X-ray scattered continuum from such clumps would be flatter (photon index $\Gamma \sim 0$ or bluer at ~ 1–10 keV for matter that is not too highly ionized; e.g., Miller, Goodrich, & Mathews 1991; Ross & Fabian 1993) than observed (Γ for the extended scattered component is larger than 1.2; M. Sako 2001, private communication; the CCD spectrum from the zeroth-order X-ray image is also consistent with this). On the other hand, electron scattering might give a simple explanation for the UV to X-ray scattered flux ratio and the grey color in the bright knots. If this is the case, the gas in these regions should have lost its dust content almost completely. This could imply that this electron-scattering gas came as a wind from the nucleus, where the dust equilibrium temperature is above the sublimation temperature, although it might be odd that the gas from a wind apparently resides in knotty regions.

4.4. Other Explanations

A rather simple alternative explanation is that the low
UV scattering efficiency and gray scattering described above could be the intrinsic properties of the dust grain population in the circumnuclear region of active galactic nuclei (AGNs). Anomalous properties of dust grains in the AGN vicinity have been reported by several authors, and these properties have been summarized recently by Maiolino et al. (2001b). They have shown that the dust grains in the circumnuclear region of 16 AGNs have a lower reddening E_{B-V} than the standard Galactic dust for the column density N_H obtained from the X-ray photoelectric absorption. They also pointed out that in many cases, the optical absorption A_V is also lower than expected from N_H, compared with the Galactic case. The lower E_{B-V}/N_H leads to relatively gray scattering, and lower A_V/N_H leads to lower UV/optical scattering efficiency.

These low A_V/N_H and E_{B-V}/N_H can be explained by a dust size distribution dominated by large grains (Laor & Draine 1993; Maiolino et al. 2001a). This anomalous distribution could be caused by the formation of large grains through coagulation in a high-density environment (Maiolino et al. 2001a), and/or single-photon destruction of small grains in a strong high-energy radiation field (Laor & Draine 1993). In the extended scattering region seen in our images, the latter would be conceivable, although the former might not be the case. It is possible that X-ray charging and heating of dust grains by the AGN continuum is able to selectively destroy parts of the dust population (J. H. Krolik & J. E. Rhoads, in preparation).

5. CONCLUSIONS

We have presented HST imaging polarimetry data of the Seyfert 2 galaxy Mrk 3. The UV and near-UV radiation is highly polarized, and the polarization position angle distribution is centro symmetric, consistent with scattering of radiation from a compact source. We have determined the location of the hidden nucleus as the center of this centrosymmetric pattern. The polarized flux is extended out to over $3''$ (~ 1 kpc) from the nucleus, but most of it is from the region within $\sim 1''$ (~ 300 pc) of the nucleus.

The polarized-flux distributions in the two broadband filters are found to be different, and from these two images, we have obtained a color map of the polarized flux. In the southern-edge region, the color is significantly redder than a Seyfert 1 nucleus color, indicating reddening. In contrast, the color seems to be blued in some regions, suggesting optically thin dust scattering. However, some bright knots have a color similar to that of a Seyfert 1 nucleus, which would imply gray scattering. The recent Chandra observation suggests a rather large amount of extended X-ray scattered continuum. The ratio of the UV scattered flux to this X-ray scattered flux is similar to that of a Seyfert 1 nucleus. This indicates rather low scattering efficiency in the UV, much lower than the optically thin scattering by Galactic dust. These two properties, namely the gray scattering and low UV scattering efficiency, might be explained by clumpy opaque dust scattering, or alternatively, these could be intrinsic to nuclear dust grains that might have a size distribution dominated by large grains. However, a simple explanation by electron scattering is also viable.

Support for this work was provided by NASA through grant GO-6702 to L. Kay from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555. The authors appreciate Masao Sako, who kindly looked at the Chandra data upon our request. The authors also thank the referee for carefully reading the manuscript and providing helpful comments. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. M. K. was a Guest User, Canadian Astronomy Data Centre, which is operated by the Herzberg Institute of Astrophysics, National Research Council of Canada.

REFERENCES

Antonucci, R. J., & Miller, J. S. 1985, ApJ, 297, 621
Capetti, A., Axon, D. J., Macchetto, F. D., Marconi, A., & Winge, C. 1999, ApJ, 516, 187
Capetti, A., Axon, D. J., Macchetto, F. D., Sparks, W. B., & Boksenberg, A. 1996, ApJ, 469, 554
Capetti, A., Macchetto, F., Axon, D. J., Sparks, W. B., & Boksenberg, A. 1995, ApJ, 452, L87
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Gonzalez Delgado, R. M., Heckman, T., & Leitherer, C. 2001, ApJ, 546, 845
Goodrich, R. W. 1992, ApJ, 399, 50
Hodge, P. E. 1993, FOC Instrument Sci. Rep. 69 (Baltimore: STScI)
---. 1995, FOC Instrument Sci. Rep. 89 (Baltimore: STScI)
Jedrzejewski, R. I. 1992, FOC Instrument Sci. Rep. 62 (Baltimore: STScI)
Kay, L. E. 1994, ApJ, 430, 196
Kay, L. E., & Moran, E. C. 1998, PASP, 110, 1003
Kishimoto, M. 1999, ApJ, 518, 676
Kishimoto, M., Antonucci, R., Cimatti, A., Hurt, T., Dey, A., van Breugel, W., & Spinrad, H. 2001, ApJ, 547, 667
Kukula, M. J., Ghosh, T., Pedlar, A., Schilizzi, R. T., Miley, G. K., de Bruyn, A. G., & Saikia, D. J. 1993, MNRAS, 264, 893

Laor, A., & Draine, B. T. 1993, ApJ, 402, 441
Maiolino, R., Marconi, A., & Oliva, E. 2001a, A&A, 365, 37
Maiolino, R., et al. 2001b, A&A, 365, 28
Miller, J. S., & Goodrich, R. W. 1990, ApJ, 355, 456
Miller, J. S., Goodrich, R. W., & Mathews, W. G. 1991, ApJ, 378, 47
Moran, E. C., Barth, A. J., Kay, L. E., & Filippenko, A. V. 2000, ApJ, 540, L73
Mushotzky, R. F., & Wandel, A. 1989, ApJ, 339, 674
Nota, A., et al. 1996, FOC Instrument Handbook, Version 7.0 (Baltimore: STScI)
Pogge, P. W., & De Robertis, M. M. 1993, ApJ, 404, 563
Ross, R. R., & Fabian, A. C. 1993, MNRAS, 261, 74
Sako, M., Kahn, S. M., Paerels, F., & Liedahl, D. A. 2000, ApJ, 543, L115
Sanders, D. B., Phinney, E. S., Neugebauer, G., Soifer, B. T., & Matthews, K. 1989, ApJ, 347, 29
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Schmidt, G. D., & Miller, J. S. 1985, ApJ, 290, 517
Serkowski, K., Mathewson, D. E., & Ford, V. 1975, ApJ, 196, 261
Simmons, J. F. L., & Stewart, B. G. 1985, A&A, 142, 100
Tran, H. D. 1995, ApJ, 440, 565
Tran, H. D., Miller, J. S., & Kay, L. E. 1992, ApJ, 397, 452