Evaluation of in vitro Effect of Pyocyanine Pigment on Interleukin-2 Secretion from Peripheral Blood Mononuclear Cells in Cancer Patients

Anahita Mohseni, Afsoon Shariat

1. Department of Microbiology, School of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran

ABSTRACT

Background and Aim: The pyocyanine pigment in Pseudomonas aeruginosa stimulates blood cells to secrete IL-2. IL-2 cytokine is an activator of cytotoxic T cells and natural killer cells. These cells destroy the target cells of patients with cancer. This study aimed to evaluate the effects of pyocyanine on the IL-2 secretion from peripheral blood mononuclear cells (PBMCs) in patients with breast, prostate, and bladder cancers.

Materials and Methods: In this cross-sectional descriptive study, a total of 30 P. aeruginosa isolates were collected from different clinical specimens (urine, blood, burns, etc.) of patients admitted to Namazi Hospital in Shiraz, Iran, from October to December 2019. The pyocyanine was extracted from the isolates by chloroform. Also, twenty-eight peripheral blood samples were selected from 21 patients with breast, prostate, and bladder cancers and 7 healthy controls. Following the isolation of PBMCs from patients and the control group using Ficoll density gradient, samples were prepared for cell culture. Half of the PBMCs were treated with pyocyanine (0.5 μg/mL), and the rest of them remained without treatment. Then, the IL-2 secretion from the treated and untreated cells with pyocyanine was investigated by ELISA method. Statistical analysis was done using SPSS 22.

Results: Significant increases were seen in the IL-2 secretion from PBMCs in the patients with breast (P=0.032), prostate (P=0.002), bladder (P=0.009) cancers, and healthy controls (P=0.004) after treatment with pyocyanine in comparing with before treatment with this pigment in vitro.

Conclusion: Low concentrations of pyocyanine can stimulate the PBMC of cancer patients to secrete IL-2 cytokines. Further studies should be performed on the immunostimulatory effects of pyocyanine in laboratory animals.

Keywords: Cancer, Immunostimulant, Pyocyanine, Interleukin-2

Introduction

Cancer is a complex disease that affects cells and disrupts the rate of cell proliferation and differentiation (1, 2). Usually, a secondary tumor is formed at the time of diagnosis, which is a late diagnosis and is the cause of high cancer mortality (1). In the Middle East, breast cancer accounts for 32% of cases of women’s cancers and is the first cause of women’s death aging 40 to 45 years old (1, 3). At the same time, prostate cancer is the most common malignant tumor in men. Generally, one in six men will develop prostate cancer in their lifetime (4). Breast cancer and prostate cancer are the most common causes of death in...
Iranian women and men, respectively (5). Also, bladder cancer is a common disease. In men, its incidence is 2 to 2.5 times more than women; how-ever, it is also common in women who smoke (6). Conventional therapies, such as chemotherapy and radiation therapy, have low survival rates due to tumor progression, resistance to treatment, and non-specific treatment of tumors (7). Scientists are trying to use technology to introduce new treatments for cancer. Various applications of bacteria have been investigated so far (7). Natural compounds derived from them (including bacterial pigments) are reported to have anti-cancer and antioxidant activity, and have unique cancer treatment mechanisms (7).

The most important feature of Pseudomonas aeruginosa is the production of the blue-green pigment of pyocyanine (8).

This pigment has an immunostimulatory effect on cancer patients and is related to cell apoptosis having great potential to inhibit cell proliferation. Hence, due to the action of superoxide dismutase and catalase, it generates a large amount of reactive oxygen species (ROS) (7). These results support the cytotoxicity of pyocyanine in cancer cells. These mechanisms have led to better cancer treatment strategies (9). Also, the pyocyanine has stimulatory activities on IL-2 cytokine such that low concentrations of pyocyanine exacerbated the responses of T lymphocytes (production of IL-2) and B lymphocytes (differentiation to immunoglobulin-producing cells), whereas high concentrations of this pigment had inhibitory effects (10). IL-2 is a pro-inflammatory cytokine that is produced in T cells and participates in the stimulation of immune responses (11). Eventually, since the pyocyanine has immunostimulatory effects and considering that this pigment induces the transcription of inflammatory cytokines and stimulates the secretion of IL-2 from blood cells; the use of the immune system in cancer treatment is a promising approach and it is hoped that with the advancement of studies in this field, a new dimension will be added to cancer treatment (12, 13). This study aims to evaluate the ability of different clinical isolates of P. aeruginosa to produce pyocyanine and the in vitro immunostimulatory effects of pyocyanine on the IL-2 secretion from PBMCs in patients with breast, prostate, bladder cancers, and healthy control group.

Materials and Methods

Isolation and Identification of Pseudomonas aeruginosa from Clinical Samples

In this cross-sectional descriptive study, after approval in the committee for ethics in biomedical research of Kazerun Branch, Islamic Azad University, being presented with the code IR.IAU.KAU.REC-.1399.-031, a total of 30 P. aeruginosa isolates were collected from different clinical specimens such as urine, blood, burn, sputum, and wound infections of patients admitted to Namazi Hospital in Shiraz from October to December 2019. All isolates were identified as P. aeruginosa using gram stain and biochemical characterization (14). The isolates were randomly evaluated to determine the rate of pyocyanine production. To maintain the bacteria, the strain was inocula-ted in the broth medium of tryptic soy broth (Quelab, Canada) containing glycerol, and then stored at -70°C (15).

Extraction of Pyocyanine from Pseudomonas aeruginosa Isolates

All bacterial isolates were cultured on Pseudomonas agar culture media (Quelab, Canada), and incubated at 37°C for 48 hours. The positive isolates in the production of pyocyanine showed blue-green pigments. Then, chloroform (Merck, Germany) was poured on the culture medium (1:2 ratio), then vortex (Labinco, Netherlands) vigorously for 1 minute. The culture was centrifuged at 5000 rpm (Hettich, Germany) for 10 minutes, and formed two organic and aqueous phases. The supernatant was separated and pyocyanine was extracted. Then, added 1 mL of 0.1M HCl (Merck, Germany) to observe pink to deep red color. The pigment was purified by repeated addition of the chloroform solvent (16).

Extracted pyocyanine was poured into a watch glass (Schott Duran, Germany) and kept for 24 to 48 h under a hood (BioBase, Iran) to completely remove chloroform. Finally, the dried pigment was separated by a sterile lancet (Azmaplast, Iran) and stored in the refrigerator in powder form for later stages. The concentration (µg/mL) of the pigment was determined by measuring the optical density at a wavelength of 520 nm using a spectrophotometer (Unico, USA) (16, 17).

Patients and Study Population

Due to the rapidly increasing prevalence of breast, prostate, and bladder cancers, and the urgent need for their treatment, the samples were selected from among the patients diagnosed with these cancers. Twenty-one patients with breast (n=7), prostate (n=7), and bladder (n=7) cancers admitted to the Cancer Center of Shiraz Namazi Hospital were included in this study from August to December 2019. The reason for choosing 7 samples per group was that the number was statistically acceptable. Seven healthy volunteers were recruited as a control group. There was no history of cancer in this group. The age range (46-65 years old) and male to female ratio were similar in studied cancer patients and healthy controls. Patient and control groups were matched for age and gender. Five mL fresh blood was obtained from cancer patients and healthy individuals by venous puncture and collected in sterile tubes containing EDTA.
sample was sent to the laboratory for the isolation of peripheral blood mononuclear cells (PBMCs). The specifications of breast, prostate, and bladder cancer patients were shown in Table 1.

Table 1: Specifications of breast, prostate, and bladder cancer patients

No.	Sexuality	Age	Family history	Stage	Metastasis
Breast cancer patients (n=7)					
1	Woman	59	No	III	Yes
2	Woman	53	No	II	Unknown
3	Woman	46	Yes	I	No
4	Woman	55	No	II	Unknown
5	Woman	63	Yes	II	Unknown
6	Woman	57	No	II	Unknown
7	Woman	50	No	II	Unknown
Prostate cancer patients (n=7)					
1	Man	72	Yes	III	Unknown
2	Man	59	Yes	II	No
3	Man	56	Yes	II	No
4	Man	62	No	II	No
5	Man	70	No	III	Unknown
6	Man	57	Yes	I	No
7	Man	65	No	I	No
Bladder cancer patients (n=7)					
1	Man	49	No	I	No
2	Man	58	No	I	No
3	Woman	60	No	II	No
4	Man	39	Yes	I	No
5	Man	44	Yes	I	No
6	Man	50	No	I	No
7	Woman	45	Yes	I	No

Separation of PBMCs from Patients with Cancer and Healthy Controls

Separation of PBMCs from patients with cancer and healthy control samples was performed using the ficoll density gradient method (18). The blood sample was transferred to a 50 mL tube and diluted 1:1 ratio with PBS (Merck, Germany). Then, diluted blood samples were slowly added to the Ficoll (Inno-Train, Germany). The samples were centrifuged at 400 rpm for 20 minutes at 20°C (Hettich, Germany). The PBMCs (cloudy layer) were collected from the diluted plasma/ficoll interface using a serological pipette and the cells were placed into a sterile 50 mL tube. Again, the cells were washed by adding PBS and centrifuged at 330 rpm for 10 minutes (19).

Cultures of PBMCs Isolated from Patients with Cancer and Healthy Controls

After the separation was performed, 100 µL PBMCs isolated from the patients with cancer and the healthy control group was transferred to a 25 cm² flask (Jetbiofil, Canada) containing RPMI 1640 medium (Biosera, France) and 20% fetal bovine serum (FBS) (Biosera, France). The flask was placed in a 5% CO₂ incubator (Lab Tech, South Korea) at 37°C and 98% humidity. After 48 hours, the culture medium was replaced and the cells were passaged (20).

In order to harvest the cells attached to the bottom of the flask, the medium was washed thoroughly and slowly with PBS. Then, added the trypsin enzyme (Merck, Germany) to the flask and placed in the incubator at 37°C for 2 to 5 minutes. After pipetting, the cells isolated from the flask floor were transferred to a 15 mL sterile falcon tube. The tube containing the cells was centrifuged for about 5 minutes at 1200 rpm. The supernatant was evacuated to the cells and the new medium was added. The cell suspension was split into several new flasks. 20 µL cell suspension was mixed with 20 µL trypan blue (Sigma, USA). Then, live cells (cells that do not penetrate the color) were counted in the 25th hemocytometer (HBG, Germany) (20).
Effect of Pyocyanine on the Secretion of IL-2 from PBMCs of Patient and Control Groups

Half of the PBMCs of cancer patients and healthy controls were treated with pyocyanine (0.5 μg/mL), and the rest of them remained without treatment. Then, the supernatants were removed and the concentration of IL-2 was determined by ELISA using a commercial human IL-2 ELISA kit (Thermo Fisher Scientific, Australia), according to the manufacturer’s instructions.

Statistical Analysis

The secretion of IL-2 from the treated and untreated cells with pyocyanine was compared by paired sample’s T-test. Also, statistical analysis of the samples was done using SPSS version 22 (SPSS Inc., Chicago, IL, USA). All results were expressed as mean ± standard error (SE). A p-value of 0.05 or less was considered statistically significant.

Results

Selection of the Highest Pyocyanine Producer Isolate

Among clinical isolates, isolate 11 (from a wound source) was the highest pyocyanine-producing agent, and this isolate was used for testing in the same sample. Table 2 shows the concentrations of pyocyanine produced by Pseudomonas aeruginosa isolates.

Table 2. The concentrations of pyocyanine produced by P. aeruginosa isolates

No. Isolates	Source	OD	Concentration of pyocyanine (µg/mL)
1	Urine	0.20	3.41
2	Urine	0.19	3.24
3	Wound	0.08	1.36
4	Blood	0.42	7.17
5	Urine	0.10	1.70
6	Burn	0.17	2.90
7	Burn	0.21	3.58
8	Blood	0.27	4.60
9	Blood	0.34	5.80
10	Blood	0.19	3.24
11	Wound	0.58	9.90
12	Urine	0.06	1.02
13	Urine	0.20	3.41
14	Blood	0.46	7.85
15	Burn	0.55	9.38
16	Urine	0.30	5.12
17	Sputum	0.07	1.19
18	Wound	0.09	1.53
19	Blood	0.33	5.63
20	Urine	0.40	6.82
21	Urine	0.07	1.19
22	Blood	0.45	7.68
23	Blood	0.17	2.90
24	Urine	0.08	1.36
25	Sputum	0.09	1.53
26	Burn	0.46	7.85
27	Urine	0.39	6.65
28	Sputum	0.33	5.63
29	Blood	0.13	2.21
30	Urine	0.45	7.68
Comparison of IL-2 Secretion from PBMCs of Patients and Control Groups Before and After Treatment with Pyocyanine

The ELISA method was used to compare the secretion levels of IL-2 in PBMCs of cancer patients (n=21) and healthy control samples (n=7) before and after treatment with pyocyanine pigment (Figures 1-4). In all groups, after treatment with pyocyanine, the secretion level of IL-2 of PBMC was higher than that of pretreatment with this pigment.

Figure 1. IL-2 production from PBMCs of breast cancer patients (n=7) before and after treatment with pyocyanine

Figure 2. IL-2 production from PBMCs of prostate cancer patients (n=7) before and after treatment with pyocyanine
The secretion of IL-2 from PBMCs of breast cancer patients was significantly increased after treatment with pyocyanine in comparison with before treatment with this pigment with a mean of 1440 ± 252.2 pg/mL vs 1296 ± 246.56 pg/mL (P=0.032) (Figure 5).

The secretion of IL-2 from PBMCs of prostate cancer patients was significantly higher in the treated cells with pyocyanine than that in untreated cells with this pigment with a mean of 1288.71 ± 320.93 pg/mL vs 1068.86 ± 298.27 pg/mL (P=0.002) (Figure 5).

The IL-2 secretion level from PBMCs of bladder cancer patients was significantly increased after treatment with pyocyanine in comparison with before treatment with this pigment with a mean of 1598.57 ± 223.26 pg/mL vs 1268.29 ± 188.54 pg/mL (P=0.009) (Figure 5).

The secretion of IL-2 from PBMCs of healthy control individuals was significantly higher in the treated cells with pyocyanine than that in untreated cells with this pigment with a mean of 392.71 ± 52.17 pg/mL vs 311.29 ± 56.74 pg/mL (P=0.004) (Figure 5).
Therefore, in breast cancer, prostate cancer, bladder cancer, and healthy controls, the increase in IL-2 concentration after treatment with pyocyanine was 11.1%, 20.5%, 26%, and 26.1%, respectively (Figure 5).

![Figure 5. Comparison of IL-2 secretion from PBMCs of cancer samples and healthy control before and after treatment with pyocyanine. P<0.05 (*) and P<0.01 (**).](image)

Discussion

The bacterial pigments have immunostimulatory effects on the immune system by the release of cytokines in cancer patients (21). Despite the importance of the immune system in response to cancer treatment, there has been no report on how to stimulate the immune system with the pyocyanine pigment of *Pseudomonas aeruginosa*.

Based on the results of this study, a low concentration of pyocyanine stimulates the IL-2 secretion by PBMCs in cancer patients in vitro. Immunotherapy using IL-2 is the most effective anti-cancer treatment (12). The mechanism of the action of pyocyanine on IL-2 production is still unclear. Pigment probably stimulates the patient’s immune system (22). In 2011, research conducted by Rada and colleagues found that pyocyanine can induce the transcription of inflammatory cytokines and epidermal growth factor receptors, as well as IL-1, IL-6, IL-8 cytokines, and TNFα (alpha tumor necrosis factor) (22). Perhaps certain bacterial pigments (such as pyocyanine) activate signal transduction pathways through Toll-like receptors (TLR) in PBMC, thereby stimulating the secretion of cytokines including IL-2 (23). The immunostimulatory effect of pyocyanine depends on the concentration of pyocyanine tested (24).

In one study, the inhibitory and stimulating activity of pyocyanine on IL-2 secretion was tested (10). The results were different and the cellular response was related to the concentration of pyocyanine (10). Low concentrations (0.1, 0.2, 0.5 μg/mL) of pyocyanine will increase the response of T lymphocytes (IL-2 production) and B lymphocytes (differentiation of immunoglobulin-producing cells), while high concentrations of this pigment (1 μg/mL) has an inhibitory effect (10). Similarly, in this study, it was observed that after treatment with a low concentration of pyocyanine (0.5 μg/mL) in vitro, the IL-2 secreted by the PBMC of breast cancer, prostate cancer and bladder cancer patients increased.

IL-2 is an activator of cytotoxic T cells (CTL) and natural killer cells (NK cells) (10). NK cells destroy the target cell by secreting their granules (enzymes and proteins) and designing apoptosis (25). NK cells are transformed into lymphokine-activated killer cells (LAK cells) under the action of IL-2 (25). LAK cells have higher apoptotic activity and can destroy different tumor cells (25).

In studies on the role of IL-2 in cancer treatment, similar studies have been conducted on the positive effects of IL-2 in the recovery and treatment of patients with kidney, breast, prostate, and bladder cancer (26-30). Metastatic melanoma and renal cell carcinoma treated with high-dose Interleukin-2 (30). In advanced melanoma, high-dose IL-2 injection is effective in 15% to 20% of patients (30). The patients with metastatic breast cancer were treated with IL-2 and this cytokine increased the number of NK cells and...
cell lysis function in the body (29). Freytag and colleagues demonstrated the IL-2 gene therapy strategy for local and metastatic prostate cancer in 2007 (28). The result was a 50% reduction in tumors in patients after IL-2 treatment (28). Askel and colleagues in 2012, showed the function of IL-2 in increasing the NK cells in patients with bladder cancer, and the systemic result of IL-2 in reducing the size of the tumor, tumor growth, and survival time of cancer patients (27). These results indicate that IL-2 has an important role in reducing inflammation in the tumor environment and can have a very positive effect during regular periods, which can indicate a reduction in tumor volume growth. It is recommended in future research, increase the size of the statistical community as much as possible.

Conclusion

The results of this study indicate that treatment with pyocyanine pigment can increase the IL-2 concentration of PBMCs in patients with breast, prostate, bladder cancer, and healthy controls. Low concentrations of pyocyanine may activate the host’s immune response. This pigment stimulates the secretion of IL-2 by activating the TLR signal transduction pathway in PBMC and inducing the transcription of cytokines. With the unique properties of pyocyanine and the human desire for biology and low-risk treatments, we hope that it can broaden our understanding of immunobiology and recognize the immunostimulatory effects of various bacterial pigments on cancer patients. Although this study is the first step to identify the immunostimulatory effects of pigments in vitro, the anti-tumor effects of pyocyanine in experimental animals should be further studied. Also, more efforts are needed to determine the mode of action and the potential of using the pigment in the stimulation of PBMCs in cancer patients for the anti-cancer IL-2 secretion.

Acknowledgment

This article is the result of a part of the master's thesis of microbiology from the Islamic Azad University, Kazerun Branch. The project was approved by the committee for ethics in biomedical research of Islamic Azad University, Kazerun Branch (IR.IAU.KAU.REC.1399.031). The authors thank all those who helped them writing this article.

Conflict of Interest

The authors declared no conflict of interests.
ارزیابی اثر رنگدانه پیوپاسیان بر ترشح اینترلۆکین ۲ از سلول‌های تک هسته خون محيطي در بيماران سرطاني در شرایط آزمایشگاهي

آنه妮ا محسنی، افسن شریعت

اطلاعات مقاله

تاريخیه مقاله
دریافت: ۰۷/۰۱/۱۴۰۰
پذیرش: ۱۲/۰۲/۱۴۰۰
انتشار آنلاین: ۰۴/۰۴/۱۴۰۰

موضوع میکروب شناسی مولکولی

نویسنده مسئول: افسن شریعت.
گروه میکروبپژوهی، دانشکده علوم پایه، واحد کازرون، دانشگاه آزاد اسلامی، کازرون، ایران.
ایمیل: afsoonsh1980@yahoo.com

چکیده

زمینه و اهداف: رنگدانه پیوپاسیان در سوپرسوس آنتی‌ژن‌ها، ترشح اینترلۆکین ۲ از سلول‌های خونی را تحریک می‌کند.

اینترلۆکین ۲ با کمیت سلول‌های تی‌سیتاموکسیک و کشش‌های طبیعی، سلول‌های دیدار نارنجی در بیماران سرطانی را از بین میرد. هدف از این مطالعه، بررسی اثر پیوپاسیان بر ترشح اینترلۆکین ۲ از سلول‌های تک هسته خون محيطي در بیماران منابعی بر سرطان‌های نیمه بیروتی، پرویسیس و منابعی است.

مواد و روش کار: در تحقیق توصیفی، فضاهای جداری ۲۰ اپیزود سوپرسوس آنتی‌ژن‌ها از نمونه‌های مختلف بالینی (دارای خون سونکی‌گی) به‌کار گرفته شد. سلول‌های Peripheral blood mononuclear cells (PBMCs) در بیماران مبتلا به سرطان‌های نیمه بیروتی تهیه شدند. نتایج نشان‌دهنده گزارش شد که این مطالعه، دانشکده علوم پایه، واحد کازرون، دانشگاه آزاد اسلامی، کازرون، ایران.
به دلیل افزایش شیوع سرطان‌های سینه، پستان و مثانه و اهمیت بیماران ابتدا بهبود در شناسایی مبتلایان به این بیماری‌ها اهمیت دارد. در ابتدا بیماران به سرطان‌های سینه (نفر)، بیماران در ابتدا بیماری‌ها نمایندگی در بیماری‌های سرطان نداشتند. در ابتدا بیماری‌ها نمایندگی در بیماری‌های سرطان نقش بسزایی در برخی بیماری‌ها از جمله سرطان‌های درمان نداشتند. نام این بیماری‌ها بیماری‌های ابتدا بهبود در شناسایی مبتلایان به این بیماری‌ها اهمیت دارد. در ابتدا بیماری‌ها نمایندگی در بیماری‌های سرطان نقش بسزایی در برخی بیماری‌ها از جمله سرطان‌های درمان نداشتند. نام این بیماری‌ها بیماری‌های ابتدا بهبود در شناسایی مبتلایان به این بیماری‌ها اهمیت دارد.
تشکیل‌های خون محیطی (Peripheral blood mononuclear cells, PBMCs) به‌ازamanیگاه فرستاده شدند. مشخصات بیماران در جدول 1 نشان داده شده است.

بیماران سرطان سینه (7 نفر)	جنسیت	سن	مرحله بیماری	سلبه خلوت‌گی
خر	مرد	59	III	1
خر	مرد	53	II	2
خر	زن	46	I	3
خر	مرد	55	II	4
خر	زن	62	I	5
خر	مرد	57	II	6
خر	زن	50	I	7

بیماران سرطان پروستات (7 نفر)	جنسیت	سن	مرحله بیماری	سلبه خلوت‌گی
خر	مرد	72	III	1
خر	مرد	59	II	2
خر	مرد	56	I	3
خر	مرد	62	II	4
خر	مرد	70	I	5
خر	مرد	57	II	6
خر	مرد	65	I	7

نشان‌دهنده آزمایش‌های جدول 1 شود. اسامی سیت‌های سرطان شناسی و پروستات و شناسایی درجه‌بندی بیماران به‌دست آمده است.

بیماران سرطان مثانه (7 نفر)	جنسیت	سن	مرحله بیماری	سلبه خلوت‌گی
خر	مرد	49	I	1
خر	مرد	58	I	2
خر	زن	60	I	3
خر	مرد	39	I	4
خر	مرد	44	I	5
خر	مرد	50	I	6
خر	زن	45	I	7

جهانی شد سبب می‌شود تا هسته‌های خون محیطی توسط یک بیت سرولوژیکی جمع‌آوری و به یک لوله 50 میلی‌لیتری استریل شوند. در آزمایش‌های اولیه فاز 3 مورد، این سلول‌ها با نسبت 1:1 به PBS شسته شدند و در دور 300 درجه سانتی‌گرادیند (19) گردیدند.

کشت سلول‌های تک‌هسته‌ای خون محیطی بیماران سرطانی و غروه کنترل سالمند جداسازی سلول‌های تک‌هسته‌ای خون محیطی از بیماران سرطانی و غروه کنترل سالمند به‌وسیله شیب‌گیر تک‌هسته‌ای فیکول صورت گرفت (18). یاد بوده که هر یک از نمونه‌های خون به لوله (Phosphate-buffered saline, PBS) میلی‌لیتری متخلخل شوند و به نسبت 1:1 با فسفر-تیتر رمی‌گردیدند. غروه کنترل به‌وسیله شیب‌گیر (Inno-Train, Germany) و در نهایت، روش سنترپیوژ (Merk, Germany) به‌کار رفت.

کشف سلول‌های خون محیطی بیماران سرطانی و غروه کنترل سالمند

100 میکرولیتر از سلول‌های تک‌هسته‌ای خون محیطی جدایشده (Jetbiofil, Canada) 25 cm² حاوی محیط‌های (Biosera, France) RPMI 1640 با سرم 20% و 200/ سرم 50 سرم گاوی 200/ (Biosera, France) RPMI 1640 با سرم 20% و 200/ سرم 50 سرم گاوی
قاری گرفتند و مانیفی سلول‌ها بدن تیمار بایق مانند شد. سپس سوپراتورها برداشته شده و غلتات اینترلکین 2-اسناتیل-2 (Thermo Fisher ELISA Scientific, Australia) استفاده از کیت تجاری IL-2 مورد مطالعه قرار گرفت.

تجزیه و تحلیل داده‌ها

ترشح اینترلکین 2-اسناتیل-2 (IL-2) مبتنی بر پروتئین‌ها به استفاده از آزمون T تست نوعی مقایسه شد. همچنین، تجزیه و تحلیل (SPSS Inc., Chicago, SPSS نسخه 22) انجام گرفت. همه نتایج به صورت mean ± standard error انجام داده شدند.

انگیزه ایزوله تولید کننده پروتئین‌ها با بالاترین غلظت

ایزوله ۱۱ (۱۲۵ منبع زخم) بالاترین تولید کننده پروتئین‌ها در بین ایزوله‌های بالینی بود که از همان مکان برای آزمایش استفاده شد. جدول ۲ میزان غلظت‌های پروتئین‌های تولید شده توسط ایزوله‌های سوپراپنوماس اورژنیوزا را نشان می‌دهد.

ایزوله (µg/mL)	غلظت پروتئین (µg/mL)	جذب نوری	بخش	زن	مرد	سن	جنسیت	منبع	ادراک
341	341	0.0	داخی	35	51	80	علوفه	1/3	3
344	344	0.1	علوفه	62	51	80	جراحی	5/3	2
346	346	0.2	جراحی	73	58	80	علوفه	6/1	2
347	347	0.3	ICU	24	34	21	سوختگی	3/2	2
348	348	0.4	سوختگی	44	34	21	سوختگی	3/2	2
349	349	0.5	ICU	56	58	19	جراحی	3/2	2
350	350	0.6	جراحی	56	58	19	داخی	3/2	2
351	351	0.7	ICU	59	58	19	داخی	3/2	2
352	352	0.8	ICU	59	58	19	داخی	3/2	2
353	353	0.9	ICU	59	58	19	داخی	3/2	2
354	354	1.0	ICU	59	58	19	داخی	3/2	2

اثر پروتئین‌ها بر ترشح ۲-اسناتیل-2 (IL-2) از سلول‌های تکه‌سازی خون محبی در بیماران سرطانی و گروه کنترل

نیمی از سلول‌های تکه‌سازی خون محبی بیماران سرطانی و گروه کنترل سالم با پروتئین (۵۰ میکروگرم بر میلی‌لیتر) تحت تیمار قرار گرفت.
مقایسه ترشه اینترلوکین ۲ از سلول‌های تک‌هسته‌ای خون محيطی در گروه‌های بیمار و کنترل، قبل و بعد از تیمار با پیوسیانین با روش اندازه‌گیری میدان‌های سلول‌های سیفون‌دار پیوسته از سلول‌های تک‌هسته‌ای خون محيطی در بیماران مبتلا به سرطان (۲۱ نفر) و

ایزوئه	پنبوسیانین (µg/mL)	جد نوی	سن	جنس	وضع	ادراز	مرد	زن
16	5/12	عفنی	65	مرد	خون	ادراز	17	
17	1/19	عفنی	62	مرد	خون	ادراز	19	
18	1/53	عفنی	29	زن	رحم	مرد	21	
19	5/53	عفنی	30	مرد	خون	مرد	22	
20	1/82	عفنی	44	مرد	خون	مرد	23	
21	1/19	عفنی	32	مرد	خون	مرد	24	
22	7/68	عفنی	36	مرد	خون	مرد	26	
23	2/19	ICU	50	مرد	خون	مرد	27	
24	1/36	عفنی	35	مرد	خون	مرد	28	
25	1/53	عفنی	42	مرد	خون	مرد	29	
26	7/65	عفنی	46	مرد	خون	مرد	30	
27	1/19	عفنی	50	مرد	خون	مرد	31	
28	1/65	عفنی	52	مرد	خون	مرد	32	
29	2/36	عفنی	52	مرد	خون	مرد	33	
30	3/68	عفنی	36	مرد	داخل	مرد	34	

نمودهای کنترل سالم (۷ نفر) قبل و بعد از تیمار با رنگدایی پیوسیانین مقایسه شد (شکل ۱). در تمام گروه‌ها، سطح ترشه اینترلوکین ۲ از سلول‌های تک‌هسته‌ای خون محيطی، پس از تیمار با پیوسیانین در مقایسه با مرحله قبل از تیمار با این رنگدانه افزایش یافت و بود. شکل ۱. نمودهای پیوسیانین قبل و بعد از تیمار با قرمز و سبز رنگدانه در نموده‌های سرطان سیفون‌دار
آناتومی محسوس و افسون شریعت | اثر پیوپساینین روی اینترلوکین ۲ در بیماران سرطانی

شکل ۲. میزان غلظت اینترلوکین ۲ قبل و بعد از تیمار با پیپساین در نمونه‌های سرطان پروستات

شکل ۳. میزان غلظت اینترلوکین ۲ قبل و بعد از تیمار با پیپساین در نمونه‌های سرطان مثانه

شکل ۴. میزان غلظت اینترلوکین ۲ قبل و بعد از تیمار با پیپساین در نمونه‌های کنترل سالم
پژوهش که در این مقاله انجام شده، اثبات کرده است که ترکیب تریپلاستیکی از سلول های Tکه‌هسته‌ای باعث افزایش آنتی‌ژنتیک ترکیب پیوسته و کنترل سالم و بعد از تیمار با پیوستنی در مقایسه با سرطان مبتلا به سرطان سینه، بیشتر از تیمار غیرمانی با این رنگ‌دادن به پیوستنی با pH Mg/mL 26/52 ± 7/128 در مقایسه با pH Mg/mL 74/56 ± 29/311 بود (P<0/04) (شکل 5).

این اثبات بر اساس نتایج این مطالعه است که ترکیب تریپلاستیکی از سلول های تک‌هسته‌ای باعث افزایش آنتی‌ژنتیک ترکیب پیوسته و کنترل سالم و بعد از تیمار با پیوستنی در مقایسه با سرطان مبتلا به سرطان سینه، بیشتر از تیمار غیرمانی با این رنگ‌دادن به پیوستنی با pH Mg/mL 26/52 ± 7/128 در مقایسه با pH Mg/mL 74/56 ± 29/311 بود (P<0/04) (شکل 5).

نتایج در این مطالعه نشان داد که این رنگ‌دادن به پیوستنی با pH Mg/mL 26/52 ± 7/128 در مقایسه با pH Mg/mL 74/56 ± 29/311 بود (P<0/04) (شکل 5).
تحقیقات مشابهی در زمینه اثرات مثبت اینترلیوکین‌های درمان سرطان بر داده‌ها همچنین تلارایه زایایی به عنوان تئوری و تکنیک عملکرد این پیگمان در تحریک سلول‌های نکه‌ساز در خون حیاتی سبب تحریک ترش سیتوتیک است. این تحقیق‌گر کنکندگی این اکتیویتهای (Toll like receptors,TLRs) شیب تول در سلول‌های نکه‌ساز در سایر سیگنال‌های ده در گیره‌دهی‌های می‌باشد (۳۲) اکتیویتهای از طریق پرورش درمان سرطان‌گرایانه به سرطان‌داران و افزایش در نگهداری از اینترلیوکین‌های درمانی و مکانی‌های فیزیولوژیکی (NK) اینترلیوکین، انتکای خود در حمله به سرطان دارد. احتمال الکتریویتهای باکتریایی از جمله درمان سرطان یا اثرات ایمنی پیشنهادهای که درمان درمان GM2در سال ۲۰۰۷، استادی‌های زن درمانی اینترلیوکین ۲ از پایه گرفتن و این سیتوبی‌پاتی بعدها افزایش تعداد سلول‌های و NK ۴۴ درمان استادی‌ها، اینترلیوکین ۲ و فاکتور اکتیویتهای باعث انواع سرطان برای و نشان داده که اخرین به کاهش ۴۰ درصد تومور‌ها در بیماران Askeland (۲۸) در تحقیقی و همکاران در سال ۲۰۱۳ نشین اینترلیوکین ۲ در ازای سلول‌های کنکندگی طبیعی در بیماران مبتلا به سرطان سالم و ترجمه سیستم‌های اینترلیوکین ۲ در کاهش اندازه تومور، رشد تومور و تومور دما زنده مبتلا به سرطان سرطان‌ها را بررسی می‌نویسد (۲۷). این نتایج نشان می‌دهد که اینترلیوکین ۲ در کاهش بهبود در محیط تومور به وسیله داشته و در یک دوره منفی می‌تواند تأثیرات سیبیر مربوط به جمله کاهش رشد حجم تومور به هزاره داشته باشد. در تحقیقات آینده توصیه می‌شود تا حامد اندامه جامعه آماری افزایش یابد.

نتیجه‌گیری

نتایج این مطالعه نشان داد کنکندگی اینترلیوکین دوی سیتودیناژویک سلول‌های T سیتوکنیک (NK cells) و سلول‌های اکتیویتهای طبیعی (CTL) در سلول‌های سیتودیناژویک سپر اکتیویتهای هدف را با تحریک گرانولهای آنها (آنزیم‌ها، پروتئازها و همراه آن‌های سرطان) و اکتیوباریا، جهت درمان مبتلا به سرطان سرطان دارد. این کنکندگی در سلول‌های کنکندگی اینترلیوکین ۲ به سلول‌های تحریک ترش سیتودیناژویک (lymphokine-activating killer cells, LAK cells) تعلق گرفته است و در موارد خاص، کنکندگی در سلول‌های سرطانی افزایش یابد. کرک هرچه تحقیق اولین کام درمان سرطان سرطانی است و باید مطالعات پیشرفته در مورد اثرات اکتیوباریا در اینترلیوکین‌های سرطانی باشد. در سایر اثرات تحریک کنکندگی اینترلیوکین ۲ در شرایط ازایم‌گاهی سلول‌های اکتیویتهای اکتیویتهای و اکتیوباریا در درمان‌های است. (۱۰) اینتکای کنکندگی اینترلیوکین ۲ در شرایط ازایم‌گاهی سلول‌های اکتیویتهای و اکتیوباریا در درمان‌های است. (۱۰) اینتکای کنکندگی اینترلیوکین ۲ در شرایط ازایم‌گاهی سلول‌های اکتیویتهای و اکتیوباریا در درمان‌های است. (۱۰) اینتکای کنکندگی اینترلیوکین ۲ در شرایط ازایم‌گاهی سلول‌های اکتیویتهای و اکتیوباریا در درمان‌های است. (۱۰) اینتکای کنکندگی اینترلیوکین ۲ در شرایط ازایم‌گاهی سلول‌های اکتیویتهای و اکتیوباریا در درمان‌های است. (۱۰) اینتکای کنکندگی اینترلیوکین ۲ در شرایط ازایم‌گاهی سلول‌های اکتیویتهای و اکتیوباریا در درمان‌های است. (۱۰) اینتکای کنکندگی اینترلیوکین ۲ در شرایط ازایم‌گاهی سلول‌های اکتیویتهای و اکتیوباریا در درمان‌های است. (۱۰) اینتکای کنکندگی اینترلیوکین ۲ در شرایط ازایم‌گاهی سلول‌های اکتیویتهای و اکتیوباریا در درمان‌های است. (۱۰) اینتکای کنکندگی اینترلیوکین ۲ در شرایط ازایم‌گاهی سلول‌های اکتیویتهای و اکتیوباریا در درمان‌های است. (۱۰) اینتکای کنکندگی اینترلیوکین ۲ در شرایط ازایم‌گاهی سلول‌های اکتیویتهای و اکتیوباریا در درمان‌های است. (۱۰) اینتکای کنکندگی اینترلیوکین ۲ در شرایط ازایم‌گاهی سلول‌های اکتیویتهای و اکتیوباریا در درمان‌های است. (۱۰) اینتکای کنکندگی اینترلیوکین ۲ در شرایط ازایم‌گاهی سلول‌های اکتیویتهای و اکتیوباریا در درمان‌های است. (۱۰) اینتکای کنکندگی اینترلیوکین ۲ در شرایط ازایم‌گاهی سلول‌های اکتیویتهای و اکتیوباریا در درمان‌های است. (۱۰) اینتکای کنکندگی اینترلیوکین ۲ در شرایط ازایم‌گاهی سلول‌های اکتیویتهای و اکتیوباریا در درمان‌های است. (۱۰) اینتکای کنکندگی اینترلیوکین ۲ در شرایط ازایم‌گاهی سلول‌های اکتیویتهای و اکتیوباریا در درمان‌های است. (۱۰) اینتکای کنکندگی اینترلیوکین ۲ در شرایط ازایم‌گاهی سلول‌های اکتیویتهای و اکتیوباریا در درمان‌های است. (۱۰) اینتکای کنکندگی اینترلیوکین ۲ در شرایط ازایم‌گاهی سلول‌های اکتیویتهای و اکتیوباریا در درمان‌های است. (۱۰)
تبیین سرطانی چهت نرخ سایتوکین ضدسرطانی اینترلیکین ۲
موردنیاز است.

سیاستگذاری
این پژوهش برگرفته از یک‌پانه‌نامه دانشجویی کارشناسی ارشد میکروبیولوژی دانشگاه آزاد اسلامی واحد کارون است. از تمام کسانی که ما را در انجام این تحقیق یاری نمودند قدردانی می‌گردد.

Reference

1. Knox SS. From omics to complex disease: a systems biology approach to gene-environment interactions in cancer. Cancer Cell Int. 2010;10:11. [DOI:10.1186/1475-2867-10-11] [PMID] [PMCID]

2. Noori Daloii MR, Sadr Z. Cancer immunotherapy: Use the immune system to fight cancer. J Sabzevar Uni Med Sci. 2020;26(1):1-11.

3. Marrazzo E, Frusone F, Milana F, Sagona A, Gatzemeier W, Barbieri E, et al. Mucinous breast cancer: A narrative review of the literature and a retrospective tertiary single cancer analysis. Breast. 2020;47(3):309-16. [DOI:10.1016/j.breast.2019.11.002] [PMID] [PMCID]

4. Pakzad R, Rafiemanesh H, Ghoncheh M, Sarmad A, Salehiniya H, Hosseini S, et al. Prostate cancer in Iran: trends in incidence and morphological and epidemiological characteristics. Asian Pac J Cancer Prev. 2016;17(2):839-43. [DOI:10.7314/APJCP.2016.17.2.839] [PMID]

5. Farhood B, Geraily G, Alizadeh A. Incidence and mortality of various cancers in Iran and compare to other countries: a review article. Iran J Public Health. 2018;47(3):309-16.

6. Rezaianzadeh A, Mohammadbeigi A, Moballeghi J, Mohamadalehi N. Survival analysis of patients with bladder cancer, life table approach. J Midlife Health. 2012;3(2):88-92. [DOI:10.4103/0976-7800.104468] [PMID] [PMCID]

7. Song S, Vuai MS, Zhong M. The role of bacteria in cancer therapy - enemies in the past, but allies at present. Infect Agent Cancer. 2018;13:9. [DOI:10.1186/s13027-018-0180-z] [PMID] [PMCID]

8. El-Fouly MZ, Sharaf AM, Shahin AAM, El-Bialy HA, Omara AMA. Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa. J Radiat Res Appl Sci. 2015;8(1):36-48. [DOI:10.1016/j.jrras.2014.10.007]

9. Zhao J, Wu Y, Alfred AT, Wei P, Yang S. Anticancer effects of pyocyanin on HepG2 human hepatoma cells. Lett Appl Microbiol. 2014;65(6):541-8. [DOI:10.1111/lamm.12224] [PMID]

10. Ulmer AJ, Pryjma J, Tarnok Z, Ernst M, Flad HD. Inhibitory and stimulatory effects of Pseudomonas aeruginosa pyocyanin on human T and B lymphocytes and human monocytes. Infect Immun. 1990;58(3):808-15. [DOI:10.1128/iai.58.3.808-815.1990] [PMID] [PMCID]

11. Lissoni P. Therapy implications of the role of Interleukin-2 in cancer. Expert Rev Clin Immunol. 2017;13(5):491-8. [DOI:10.1080/1744666X.2017.1245146] [PMID]

12. Choudhry H, Helmi N, Abdulaal WH, Zeyadi M, Zamzami MA, Wu W, et al. Prospects of IL-2 in cancer immunotherapy. Biomed Res Int. 2018;2018:9056173. [DOI:10.1155/2018/9056173] [PMID] [PMCID]

13. Settarrahmane S, Xu H. Tumor-related interleukins: old validated targets for new anti-cancer drug development. Mol Cancer. 2017;16(1):153. [DOI:10.1186/s12843-017-0721-9] [PMID] [PMCID]

14. Holt JG, Krieg NG, Sneath PHA, Staley JT, Williams ST. Bergey's Manual of Determinative Bacteriology. 9th ed. Baltimore: Williams & Wilkins; 1994. 206-8.

15. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37(1):177-92. [DOI:10.1016/j.biotechadv.2018.11.013] [PMID]

16. Moayedi A, Nowroozi J, Akhavan Sepahi A. Cytotoxic effect of pyocyanin on human pancreatic cancer cell line. Iran J Basic Med Sci. 2018;21(8):794-9.
17. Priyaja P, Jayesh P, Philip R, Bright Singh IS. Pyocyanin induced in vitro oxidative damage and its toxicity level in human, fish and insect cell lines for its selective biological applications. Cytotechnology. 2016;68(1):143-55. [DOI:10.1007/s10616-014-9765-5] [PMID] [PMCID]

18. Dieter C, Dutra Lourenco E, Emerim Lemos N. Association of long non-coding RNA and leukemia: a systematic review. Gene. 2020;735:144405. [DOI:10.1016/j.gene.2020.144405] [PMID]

19. Weckle A, Aiello AE, Uddin M, Galea S, Coulborn RM, Soliven R, et al. Rapid fractionation and isolation of whole blood components in samples obtained from a community-based setting. J Vis Exp. 2015;(105):52227. [DOI:10.3791/52227] [PMID] [PMCID]

20. Piccinini F, Tesei A, Arienti C, Bevilacqua A. Cell counting and viability assessment of 2D and 3D cell cultures: expected reliability of the trypan blue assay. Biol Proced Online. 2017;19(1):8. [DOI:10.1186/s12575-017-0056-3] [PMID] [PMCID]

21. Shahbazi S, Abolhasani A. Immunostimulants: types and functions. J Med Microbiol Infec Dis. 2016;4(3-4):45-51. [URL:http://jommid.pasteur.ac.ir/article-1-131-en.htm]

22. Rada B, Gardina P, Myers TG, Leto TL. Reactive oxygen species mediate inflammatory cytokine release and EGFR-dependent mucin secretion in airway epithelial cells exposed to Pseudomonas pyocyanin. Mucosal Immunol. 2011;4(2):158-71. [DOI:10.1038/mi.2010.62] [PMID] [PMCID]

23. Venegas FA, Köllisch G, Mark K, Diederich WE, Kaufmann A, Bauer S, Chavarría M, Araya JJ, García-Piñeres AJ. The bacterial product violacein exerts an immunostimulatory effect via TLR8. Sci Rep. 2019; 9(1):13661. [DOI:10.1038/s41598-019-50038-x] [PMID] [PMCID]

24. Azman AS, Mawang CI, Abubakar S. Bacterial Pigments: The bioactivities and as an alternative for therapeutic applications. Nat Prod Commun. 2018;13(12):1747-54. [DOI:10.1177/1934578X1801301240]

25. Rosenberg SA. IL-2: The first effective immunotherapy for human cancer. J Immunol. 2014;192(12):5451-8. [DOI:10.4049/jimmunol.1490019] [PMID] [PMCID]

26. Antony GK, Dudek AZ. Interleukin 2 in cancer therapy. Curr Med Chem. 2010;17(29):3297-302. [DOI:10.2174/092986710793176410] [PMID]

27. Askeland EJ, Newton MR, O'Donnell MA, Luo Y. Bladder cancer immunotherapy: BCG and beyond. Adv Urol. 2012;2012:181987. [DOI:10.1155/2012/181987] [PMID] [PMCID]

28. Freytag SO, Stricker H, Movsas B, Kim JH. Prostate cancer gene therapy clinical trials. Mol Ther. 2007;15(6):1042-52. [DOI:10.1038/sj.mt.6300162] [PMID]

29. Repka T, Chiorean E, Gay J, Herwig K, Kohl K, Yee D, et al. Trastuzumab and Interleukin-2 in HER2-positive metastatic breast cancer: a pilot study. Clin Cancer Res. 2003;9(7):2440-6.

30. Ridolfi L, de Rosa F, Ridolfi R, Gentili G, Valmorri L, Scarpi E, et al. Radiotherapy as an immunological booster in patients with metastatic melanoma or renal cell carcinoma treated with high-dose Interleukin-2: evaluation of biomarkers of immunologic and therapeutic response. J Transl Med. 2014;12:262. [DOI:10.1186/s12967-014-0262-6] [PMID] [PMCID]