Retraction

Retraction: Sequestration of Potential Enzymes from Mushrooms compost waste (IOP Conf. Ser.: Mater. Sci. Eng. 1145 012116)

Published 23 February 2022

This article (and all articles in the proceedings volume relating to the same conference) has been retracted by IOP Publishing following an extensive investigation in line with the COPE guidelines. This investigation has uncovered evidence of systematic manipulation of the publication process and considerable citation manipulation.

IOP Publishing respectfully requests that readers consider all work within this volume potentially unreliable, as the volume has not been through a credible peer review process.

IOP Publishing regrets that our usual quality checks did not identify these issues before publication, and have since put additional measures in place to try to prevent these issues from reoccurring. IOP Publishing wishes to credit anonymous whistleblowers and the Problematic Paper Screener [1] for bringing some of the above issues to our attention, prompting us to investigate further.

[1] Cabanac G, Labbé C and Magazinov A 2021 arXiv:2107.06751v1

Retraction published: 23 February 2022
Sequestration of Potential Enzymes from Mushrooms compost waste

G Surendran1, S Karunakaran1, N Prabhu2, S Karthika Devi2 and T Gajendran3
1Department of Chemical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore-641 407, Tamilnadu, India.
2Department of Biotechnology, Vivekananda College of Engineering for Women, Elayampalayam, Tiruchengode-637 205, Tamilnadu, India.
3Department of Biotechnology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli-620 024, Tamilnadu, India.
karanakaran.s@kpriet.ac.in

Abstract. Mushrooms are type of white-rot fungi such as basidiomycetes, which degrades a lot of agro wastes by the secretion of precious bioconversion enzymes and produce the final enriched product. These enzymes take part in organic and inorganic waste remediation in the environment. This review analysed from the standpoint of scientists reserching in lignolytic enzyme production from various mushroom cultivation and also highlights the role of recent approaches within the production of giant volume of commercially important enzymes from biodegradable wastes. Then the proceeding work is to survey the novel lignolytic enzyme production aspects and their major characteristics, microbial sources such as basidiomycetes (white-rot fungi), downstream processing, relevant biochemical properties, diverse applications, enzyme mycotechnology and some recent research developments.

Keywords: Mushroom, Lignolytic enzymes, Agro wastes, Mycotechnology

1. Introduction

Mushroom basidiomycetes are capable of producing a wide variety of extracellular and intracellular enzymes that degrade agro-waste substances into low molecular weight compounds containing complex organic compounds. These compounds are water-soluble and have remarkable nutritive value. The enzymes secreted from these mushrooms are non-specific and it decompose variety of structurally different compounds. Most important agro wastes in cultivation of mushrooms are sugarcane bagasse, soybean husks, coffee husks and coffee pulp, wheat and rice bran, cassava bagasse, citric pulp, potato, sweet potato, sugar beet, and sweet sorghum, rice straw, wheat straw, Oil-processing mills wastes like coconut cake, etc. These help in the production of extracellular and intracellular enzymes from mushroom such as hydrolytic enzymes like cellulolytic enzymes (cellulases, xylanases, mannanases, laccases, beta-1,4 exoglucanase, beta-1,4 endoglucanase and beta-1,4 glucosidase), amylolytic enzymes (glucoamylases and α-amylases); pectinases, phytases or polygalacturonases, lignin peroxidase, manganese-dependent and independent peroxidases, proteolytic enzymes and other enzymes using different fermentation techniques. These enzyme productions are induced by some substance present in the specific agro waste substrates.
The mushroom produced ligninolytic enzyme has significant potential applications in various industries, including pesticides, pulp and paper, coal, wastewater treatment, solid waste treatment, and agriculture.

2. Major Substrates On Mushroom Based Enzyme Production

Production of biodegrading enzymes from mushrooms mainly depends on compounds and composition of various agro-wastes. It contains a lot of lignocellulosic compounds such as lignin, hemicellulose, and cellulose. These help to enhance the various enzyme productions from mushroom (Table 1).

Type of waste	Other supplements	Species of mushroom	Enzymes
Sugarcane bagasse,	Rice bran	Lentinula edodes	Lignocellulolytic enzymes
Sugarcane molasses			
Rice bran	-	Lentinus sp., L.	Ligninase
		strigellus and P.	
		sanguineus	
Rice bran	Wheat bran	Pleurotus sapidus	Lignocellulolytic enzymes
Paddy straw	-	Pleurotus djamor var.	Cellulases, Hemicellulases,
		roseus	Xylanases, Lipase, Manganese
			peroxidase and Laccase
Paddy straw	Coir pith (Cocos	Pleurotus djamor var.	Cellulases, Hemicellulases,
	nucifera)	roseus	Xylanases, Lipase, Manganese
Cotton waste	-	P. sajor-caju	Cellulytic enzymes
Cotton waste	Wheat straw	P. pulinonarius	Lignocellulolytic enzymes
Orange residue	-	P. pulmonarius	Pectinase, Laccase, Manganese peroxidase, β-glucosidase and β-xylosidase
Orange waste	-	P. ostreatus	Endo-1,4 glucanase ,Laccase and Manganese peroxidase
Barley residue	Cassava residue	Lentinus crinitus	Laccase, Manganese peroxidase and Lignin peroxidase
Landfill slurry	-	L. tigrinus	Manganese peroxidase
Malt extract	Glucose	L. tigrinus	Manganese peroxidase
Sawdust	Wheat bran	Pleurotus eryngii	Manganese peroxidase
Sweet sorghum bagasse	-	Coriolusversicolor	Lignolytic enzymes
Wheat bran	-	Trametesversicolo	Lignolytic enzymes
Mandarin peels	Mandarin tree leaves	Pleurotus dryinus	Cellulase, Xylanase, Laccase and Manganese peroxidase
---------------	---------------------	------------------	---
Coffee pulp	-	Pleurotus djamor, Pleurotus ostreatus and P. pulmonarius	Lignocellulolytic enzymes
Tomato, Potato and Red pepper residues	-	Pleurotus ostreatus	β-glucosidase, Xylanase, Laccase, Manganese independent and Manganese dependent peroxidase
Oak wood	Oatmeal	Lentinus edodes	Gluco-amylase, Pectinase, Acid protease, and Laccase
Oak sawdust	Coffee spent-ground	Grifola frondosa	Lignocellulolytic enzymes
Water hyacinth (Eichhornia crassipes)	-	Pleurotus djamor var. roseus	Cellulases, Hemicellulases, Xylanases, Lipase, Manganese peroxidase and Laccase
Leaves of Typha angustata	-	Pleurotus djamor var. roseus	Cellulases, Hemicellulases, Xylanases, Lipase, Manganese peroxidase and Laccase
Groundnut plant (Arachishypogaea)	-	Pleurotus djamor var. roseus	Cellulases, Hemicellulases, Xylanases, Lipase, Manganese peroxidase and Laccase
Coir pith (Cocos nucifera)	-	Pleurotus djamor var. roseus	Cellulases, Hemicellulases, Xylanases, Lipase, Manganese peroxidase and Laccase
Coffee pulp	-	Lentinula edodes	Cellulases, Laminarinases and Xylanases

Sugarcane waste

Researcher in [1] illustrates sugar cane waste increase the lignocellulolytic activity of mushrooms during their cultivation. Researcher in [2] reported that sugarcane bagasse as an enriched nutrient medium for various fungal cultures; it can replace expensive media in the market. Researcher in [3] showed that, 3:1 ratio of sugar cane with black gram husk was the most excellent solid substrate and support for enzyme production in mushroom cultivation. Researcher in [4] indicated mixtures of sugar cane with orange bagasse are enhancing the production of high-level extracellular enzyme production during mushroom cultivation.

Paddy waste

Rice is major carbohydrate food in the World. In India plentiful rice milling industry will be available, Rice husk, paddy straw, and rice bran are the major by-product of these rice milling industry, it will be widely disposed of by burning and land dumping. These cause many environmental troubles in the world. These contain the high amount of lignocellulosic content when compare to other agro-industrial waste. Researcher in [5] reported that all over the world there are 600,287 hectares of areas has been used to produce 2,050,306 tonnes of paddy, 60 % (v/w) moisture content of the rice husk helps to produce highest cellulase enzyme in solid state fermentation. Researcher in [6] reported that, the ratio of 5:3:2 mixture rice bran, rice husk, and the gram hull are suitable for protease enzyme production from mushroom cultivation. Researcher in [7] demonstrated that Combination of wheat bran with rice bran enhance the production of milk clotting enzyme throughout mushroom cultivation. Researcher in [8] reported that Rice husk contain higher cellulose content, it plays a major role in a
production of cellulase enzyme through solid state fermentation technique. Researcher in [9] viewed that, Presents of high nutrients of rice husk is favourable for mushroom-based enzyme production.

Other agro industrial waste
Other then paddy and sugarcane waste there several agro industrials wastes are used in the production agro waste degrading enzymes during mushroom cultivation. Researcher in [10] illustrates. Due to the high protein content of bean straw helps to increase the highest xylanase enzyme production in Pleurotus spp. Cultivation. Researcher in [11] showed that agro-waste from citrus juice production industry contain insoluble carbohydrates, it is an attractive substrate for biologic conversion to value-added products. Researcher in [12] viewed that, rather than banana waste, citrus fruit waste as suitable substrate for cultivation of P. ostreatus and P.sajor-caju in the production of β-glucosidase enzyme. Researcher in [13] reported that Activity of cellulase, lipase and laccase enzymes from Pleurotus djamor var. roseus mushroom was increased in their growth on paddy straw, paddy straw with coir pith and coir pith. Researcher in [14] demonstrate the cellulase activity was maximum in the cultivation of Volvariella diplasia mushroom on paddy straw. It is reported that Cltivation of L.edodes strain in barley straw enhances the enzyme production such as cellulase, laminaranases, and xylanases, respectively. It is revealed that Xylanase enzyme activity was higher than cellulase enzyme during P.sajor-caju mushroom cultivation on rice straw. Researcher in [15] illustrates cultivation of Pleurotus Eryngii on four different substrates such as ramie stalks, kenaf stalks, cottonseed hulls and bulrush stalks were the improved production of cellulases, hemicellulases and ligninases enzymes. Wheat straw is the best substrate for lignocellulosic enzyme production from edible mushroom Lentinus tigrinus edible mushroom.

3. Factors Influencing for Enzyme Production Through Mushroom Cultivation

There are various factors were influence the enzyme production during mushroom cultivation on agro-industrial waste. These factors are pH, temperature, Incubation time, carbon and nitrogen ratio of substrates, the moisture content of substrates etc (Table 2).

Factors	Substrate	Species of mushroom	Enzyme	
Stimulators	CuSO₄, Mn²⁺, Veratryl alcohol and Xylidine	Mandarin peels and Mandarin tree leaves	Pleurotus dryinus	Cellulase, Xylanase, Laccase and Manganese peroxidase
Substrate thickness	0.4-2.0 cm	Sugarcane Pressmud	P.sajor-caju	Cellulase
	0.8 cm	Sugarcane Pressmud	P.sajor-caju	β-glucosidase, Endo- β-1,4-glucanase and Exo- β-1,4-glucanase
Incubation period	8 days	Malt extract	Volvariella	Cellulase and Xylanase
	10th day	Sugarcane bagasse powder and it’s extract	P.ostreatus	Laccase
Day(s)	Material(s)	Fungi	Enzymes	
---------	--------------------------------------	----------------	-------------------------------------	
13th	Sugarcane bagasse powder and it’s extract	*P. ostreatus*	Manganese peroxidase	
28th	Barley residue and Cassava residue	*Lentinus crinitus*	Manganese peroxidase	
12 days	Mandarin peels and Mandarin tree leaves	*Pleurotus dryinus*	Cellulase, Xylanase, Laccase and Manganese peroxidase	
20 and 15 days	Banana plant Leaves portion	*Pleurotus ostreatus*	Laccase and Lignin peroxidase	
20 days	Banana plant Leaves portion	*Pleurotus ostreatus*	Xylanase	
10 days	Banana plant Pseudostem portion	*Pleurotus ostreatus*	Laccase	
20 days	Banana plant Pseudostem portion	*Pleurotus ostreatus*	Lignin peroxidase	
20 days	Banana plant Pseudostem portion	*Pleurotus ostreatus*	Xylanase	
10th	Banana plant Leaves portion	*P. sajor-caju*	Laccase	
10-20 days	Banana plant Leaves portion	*P. sajor-caju*	Lignin peroxidase	
10th	Banana plant Leaves portion	*P. sajor-caju*	Xylanase	
10-20 days	Banana plant Pseudostem portion	*P. sajor-caju*	Laccase	
20 days	Banana plant Pseudostem portion	*P. sajor-caju*	Lignin peroxidase	
40 days	Banana plant Pseudostem portion	*P. sajor-caju*	Xylanase	
31.5 days	Tomato, Potato and Red pepper residues	*Pleurotus ostreatus*	Xylanase, β-glucosidase, Laccase, Manganese dependent and Manganese independent peroxidase	

Optimum pH

pH 4.5 to 5.0	CzapekDox medium	*P. florida*	Endoglucanase, Exoglucanase and β-glucosidase
pH 2.6 to 4.5	Barley residue and Cassava residue	*Lentinus crinitus*	Manganese peroxidase
pH 3.0 to 5.0	Wheat straw	*L. tigrinus*	Ligninases
pH 5.0	Lupinhull and Sawdust	*Pleurotus ostreatus*, *Lentinus edodes and Flammulina velutipes*	Polygalacturonase
pH 8.6	Lupinhull and Sawdust	*Pleurotus ostreatus*, *Lentinus edodes and Flammulina velutipes*	Pectatelyase
Optimum Temperature	Substrate	Enzymes/Metabolites	
25°C	Sugarcane Pressmud	*P.sajor-caju*	Endo-β-1,4-glucanase, Exo-β-1,4-glucanase and β-glucosidase
35 to 40°C	CzapekDox medium	*P.florida*	Endoglucanase and Exoglucanase
35±2°C	-	*Volvariella*	Cellulolytic/Hemicellulolytic enzymes
40°C	Barley residue and Cassava residue	*Lentinus crinitus*	Manganese peroxidase
24±2°C	Paddy straw, Wheat bran, Sawdust and Rice bran	*Auriculariapolyt richa*	Exo β-1,4 glucanase, Endo β-1,4 glucanase, Polyphenol oxidase and Laccase
27°C	Guaiacol (2-methoxyphenol)	*P.ostreatus*	Manganese peroxidase
27°C	Veratryl alcohol to veratraldehyde (3,4-dimethoxybenzaldehyde)	*Agrocybe aegerita*	Lignin peroxidase
40°C	Wheat straw	*L.trigrinus*	Ligninases
C:N ratio	Synthetic medium	*Lentinula edodes*	Lipase
30:01:00	Ramie stalk	*Flammulina velutipes*	Cellulases, Hemicellulases, peroxidase and Laccase
102:01:00	Wheat straw	*P.sajor-caju and Pleurotus ostreatus*	Laccase and Carboxymethyl cellulase
Substrate concentration	Sugarcane molasses	*Lentinula edodes*	Lignocellulolytic enzymes
30g	Rice bran	*Lentinula edodes*	Lignocellulolytic enzymes
20 and 30%	Rice bran supplemented with Sawdust	*Lentinula edodes*	Lignocellulolytic enzymes
20%	Rice bran supplemented with *Andropogontectorum* straw	*Lentinussubnudus*	Lignocellulolytic enzymes
50%	Barley residue and Cassava residue	*Lentinus crinitus*	Laccase, Manganese peroxidase and Lignin peroxidase
50% and 50%	Mandarin peels and Mandarin tree leaves	*Pleurotus dryinus*	Laccase
6%	Mandarin peels and Mandarin tree leaves	*Pleurotus dryinus*	Cellulase and Xylanase
4%	Mandarin peels and Mandarin tree leaves	*Pleurotus dryinus*	Manganese peroxidase
2%	Mandarin peels and Mandarin tree leaves	*Pleurotus dryinus*	Laccase
1:1 ratio	Paddy straw with Rice bran	*Auriculariapolyt richa*	Laccase
Ratio	Substrate Description	Fungi/Enzyme	Enzymes
---------------	--	------------------------------------	--------------------------------
3:1 ratio	Paddy straw with Rice bran	Auriculariapolyt richa	Polyphenol oxidase
1:1 ratio	Paddy straw with Coir pith	Pleurotus djamor var. roseus	Lipase
50%	Ramie stalk	Flammulina velutipes	Cellulase, Hemicellulase and Laccase
40%	Banana pseudostem	P.ostreatus	Hemicellulolytic enzymes
17.50%	Banana pseudostem	P.ostreatus	Cellulytic enzymes
10%	Banana pseudostem	P.ostreatus	Ligninolytic enzymes
31%	Banana pseudostem	P.sajor-caju	Hemicellulolytic enzymes
12.40%	Banana pseudostem	P.sajor-caju	Cellulytic enzymes
6%	Banana pseudostem	P.sajor-caju	Ligninolytic enzymes
2:1 ratio	Wheat straw with Wheat bran, Paddy straw with Wheat bran and Viticulture waste with Wheat bran	P.ostreatus	Laccase
2:1 ratio	Wheat straw with Wheat bran	P.sajor-caju	Laccase

Effect of chemical substrate concentration

Concentration	Substrate	Fungi/Enzyme	Enzymes/Activities
3%	Carboxyl methyl cellulose (CMC)	P.florida	Cellulase
0.50%	Malt extract	P.florida	Endoglucanase and Exoglucanase
0.50%	Malt extract	P.ostreatus	Cellulase
0.50%	Malt extract	Volvariella	Cellulase and Xylanase
0.20%	Xylan and Xylose	Flammulina velutipes and Pleurotus eryngii	Xylanase

Moisture content

Moisture	Substrate	Fungi/Enzyme	Enzymes/Activities
85%	Orange residue	P.pulmonarius	Pectinase, Laccase, Manganese peroxidase, β-glucosidase and β-xylosidase
90%	Barley residue and Cassava residue	Lentinus crinitus	Laccase, Manganese peroxidase and Lignin peroxidase

pH

Enzyme activity will be affected by undesired pH value of growth substrates used for mushroom-based enzyme production. It is demonstrated, that pH 4.0 to be the best optimum pH for xylanase enzyme production during oyster mushroom (*Pleurotus* sp.) cultivation and their activity increased at pH 6.0. Optimum pH for beta-glucosidase enzyme production from *Agaricus bisporus* mushroom is 4.0. It is reported that Optimum pH for exo-beta-1, 3-glucanases production from *Flammulina velutipes* mushroom was 6.1. Activities of CMCases, xylanase, and β-glucosidase from *P.sajor-caju* grown on rice and wheat straw were increased at pH 4.8. It is revealed that the activity of laccase enzyme from the edible mushroom *Lentinula edodes* increased at pH 3.0 to 7.0. Laccase enzyme from
edible mushroom *Pleurotus Sajor-caju* were reach maximal activity at pH 2.1. It is reported that Activity of aflatoxin-degradation enzyme from *Pleurotus ostreatus* mushroom was increased at Optimum pH 4.0-5.0. It is revealed that Maximal activity of manganese peroxidase was obtained at pH 5.4-5.5 during initial growth stages of *Agaricus bisporus* mushroom.

Temperature
It is illustrated that the production of endoglucanase and exoglucanase enzyme from *Pleurotus florida* was found at an optimum temperature between 35 to 40°C. It is demonstrated that the optimum temperature for cellulolycytic/hemicellulolytic enzymes production by *Volvarilla* was 35 ± 2°C. The optimum range of temperature for cellulase enzyme from the cultivation of *P. sajor-caju* was most active at 45°C; xylanase had maximum activity at 45°C; for beta-glucosidase, the maximum was at 40°C.

It is showed that the optimum temperature for the lingo-cellulosic enzyme produced from *A. polytricha* mushroom was 24 ± 2°C. The optimum temperature of lignocellulosic enzymes produced during growth and fruiting of the edible fungus *Lentinus tigrinus* on wheat straw were activated at 40°C. It is illustrated, the optimum temperature for highest production lignocellulolytic enzyme from *Flammulina velutipes* mushroom were 18-24°C.

Concentration of substrate
It has been reported, Extracellular cellulase enzyme productions from *P. ostreatus* were increased at 1 to 6% concentrations of wheat straw. Several substrates containing up to 55% coffee spent ground were suitable for enzyme production from edible mushroom *P. ostreatus* . The combined substrates of paddy straw+wheat bran (3:1) were best for lingo-cellulolytic enzyme production from wood ear mushroom. Higher- titer of cellulase enzyme production from *P. ostreatus* were increased by adding different levels of the substrate such as carbon source of avocado ranging from 0 to 10%. It is revealed that Lignocellulosic enzymes from *Pleurotus djamor var. roseus* was active in 1:1 ratio of substrates such as paddy straw, water hyacinth, leaves of *Tachustica*, groundnut plant, coir pith and coir pith amended with paddy straw. The highest xylanase enzyme production by *Pleurotus eryngii* and *Flamulina velutipes* was obtained with 0.2% xylan and xylose as sole carbon sources for both species.

The highest lignocellulolytic enzyme production was obtained by *Flammulina velutipes* mushroom grown on the substrate containing 50% ramie stalk, 20% cottonseed hulls, 25% wheat bran, 4% cornstarch and 2% CaCO3. It is that analyzed, 1:1 ratio of substrate mixtures such as thatch grass, banana fronds, wheat straw, sage; banana+sage, banana+grass, banana+wheat straw, and sage+grass were suitable for highest lignocellulolytic enzyme production from basidiomycetes. Ravikumar et al., (2012) investigates, Protease enzyme production from medicinal mushroom *Pleurotus Sajor-caju* was to be maximal when 4.0% of wheat bran was used as a substrate.

Incubation period
The time required for enzymes production from *P. pulmonarius* was followed for up to 45 days. Higher enzyme production by the cultivation of *Pleurotus ostreatus* on agroindustrial wastes was occurred since 31.5 days. Highest activity of the lignocellulolytic enzyme produced by the edible mushroom *Grifola frondosa* (maitake) was achieved at days 20-30. Varieties of lingo-cellulolytic enzymes production was highest at 21.0 days during wood ear mushroom grown on paddy straw + wheat bran. It is reported that endo 1, 4-beta-glucanase, exo 1, 4-beta-glucanase, endo 1, 4-beta xylanase and beta-glucosidase increased during *Pleurotus eryngii* growing on its substrates at 30 days.

Laccase, manganese peroxidase and lignin peroxidase enzymes activity from edible mushroom were increased after 14 days of incubation. The Maximum activity of xylanase enzyme from *Pleurotus sp.* was observed on pre-treated paddy straw as well as wheat straw with plant extracts i.e neem oil and Ashoka leaves extracts on the 25th day in invivo condition.

Nitrogen and Carbon sources
pH of the fermentation medium for enzyme production from mushrooms was controlled by selected C/N ratio of its substrates. The optimum C/N ratio for lignocellulolytic enzyme production from *F. velutipes* mushroom was 30/1. The lignocellulolytic enzyme production from mushroom was increased at 50% ramie stalk containing C/N ratio of 30/1. It is reported that, various carbon sources like citric acid, sucrose, inositol and lactose supported enzyme production from ectomycorrhizal mushroom *Cantharellus tropicalis*.

Metal ions

The presence of Na2+ ion was inactivated the protease of *Pleurotus Sajor-caju* but Ca 2+, Cu2+, Mg2+ and Zn2+ enhanced the enzyme activity. The different Cu concentrations were inducing the laccase enzyme production from edible straw mushroom, *Volvariella volvacea* in 14-day culture.

Chemical reagents

The activity of fibrinolytic enzyme from *Schizophyllum commune* BL23 was strongly inhibited by EDTA, and 1, 10 phenanthroline but which was activated in the presence of protease inhibitors such as PMSF (phenylmethylsulfonyl fluoride) and SBTI (soybean trypsin inhibitor) . The presence of inducers such as ferulic acid, 2,5-xylidine, veratric acid and 4-hydroxybenzoic acid were increased laccase enzyme production from *V. volvacea* mushroom, then 4-hydroxybenzaldehyde were induced lower level of laccase enzyme production but the enzyme activity was inhibited by presence of p-coumaric acid, syringic acid, vanillic acid, homovanillin or catecho.

4. Conclusion

The production of lignocellulolytic enzymes through mushroom cultivation on various agricultural waste residues are related to the number of factors, which may act individually or have interactive effects on mycosynthesis of enzymes. The combination of the best air-temperature, pH, Concentration of substrates, Carbon and nitrogen content of different substrates, Incubation period, various metal ions and Chemical reagents were provided a synergistic effect for optimizing the lignocellulolytic enzyme production from mushroom cultivation. This review points out the various influencing factors for production of lignocellulolytic enzymes from mushroom cultivation on novel agro-industrial wastes residues.

References

[1] Evans CS, Dutton MV, Guillen F, Veness RG (1994) *Enzymes and small molecular mass agents with lignocelluloses degradation*. FEMS Microbiol. Rev 13, pp 235-240.

[2] Field JA, Jong E de, Feijoo-Costa G, Bont JAM de (1993) *Screening for lignolytic fungi applicable to the biodegradation of xenobiotics*. Trends Biotechnol 11, pp 44-49.

[3] Chang ST, Miles PG (eds) (2004) *Mushrooms cultivation, nutritional value, medicinal effect and environmental impact*. Boca Raton London New York Washington, D.C.

[4] Waksman SA, Allen M (1932) *Comparative rate of decomposition of composted manure and spent mushroom soil*. Soil Sci, 34, pp 189-195.

[5] Nigam P, Sing D (1994) *Solid-state (substrate) fermentation systems and their applications in biotechnology*. J Basic Microbiol 6, pp 404-23.

[6] Pandey A, Seccol CR, Mitchell D (2000) *New developments in solid state fermentation: I-bioprocesses and products*. Proc Biochem 35, pp 1153-69.

[7] A. Haldorai and A. Ramu, Security and channel noise management in cognitive radio networks, Computers & Electrical Engineering, vol. 87, p. 106784, Oct. 2020. doi:10.1016/j.compeleceng.2020.106784

[8] A. Haldorai and A. Ramu, Canonical Correlation Analysis Based Hyper Basis Feedforward Neural Network Classification for Urban Sustainability, Neural Processing Letters, Aug. 2020. doi:10.1007/s11063-020-10327-3.
[9] Salmones D, Mata G, Waliszewski KN (2005) Comparative culture of Pleurotus spp. On coffee pulp and wheat straw: biomass production and substrate biodegradation. Biores Technol, 96, pp 537-44.
[10] Albores S, Pianzzola MJ, Soubes M, Cerdeiras MP (2006) Biodegradation of agroindustrial wastes by Pleurotus spp. for its use as ruminal feed. Electronic J Biotechnol, 9, pp 215-220.
[11] Goyal M, Soni G (2011) Production and characterization of cellulolytic enzymes by Pleurotus florida. Afr J Microbiol Res, 10, pp 1131-36.
[12] Howard RL, Abotsi E, Jansen Van Rensburg EL, Howard S (2003) Lignocellulose biotechnology: Issues of bioconversion and enzyme production. Afr J Biotechnol, 2, pp 602-619.
[13] Wesenberg D, Kvriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv, 22, pp 161-187.
[14] Souza CGM, Zilly A, Peralta RM (2002) Production of laccase as the sole phenoloxidase by a Brazilian strain of Pleurotus pulmonarius in solid state fermentation. J Basic Microbiol, 42, pp 83-90.
[15] Kersten PJ, Tien M, Kalyanamaran M, Kirk TK (1985) The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. J Biol Chem, 260, pp 2609-12.