Hydroxychloroquine and the Prevention of Pregnancy Losses

Frishman M1#, Radin M2#, Cecchi I2, Sciascia S2 and Schreiber K3,4,5,*

1Department of Obstetrics and Gynecology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
2Center of Research of Immunopathology and Rare Diseases- Coordinating Center of Piemonte and Valle d’Aosta Network for Rare Diseases, Department of Clinical and Biological Sciences, and SCDU Nephrology and Dialysis, S. Giovanni Bosco Hospital, Turin, Italy
3Thrombosis and Haemophilia, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
4Copenhagen Lupus and Vasculitis Clinic, Copenhagen University Hospital, Copenhagen, Denmark
5King Christian X’s Hospital for Rheumatology, Soenderborg, Denmark

#These authors have equally contributed to the study

*Correspondence: Karen Schreiber, Thrombosis and Haemophilia, Guy’s and St Thomas’ NHS Foundation Trust, London, UK, E-mail: Karen.schreiber@gstt.nhs.uk

Received date: September 24, 2019; Accepted date: December 09, 2019; Published date: December 14, 2019

Abstract

Pregnancy loss is a common and devastating pregnancy complication. Recurrent early miscarriage (REM) is defined as two or more consecutive pregnancy losses during the first trimester of pregnancy. It is a distinct entity and in approximately 50% of these patients, the underlying cause is never established. REM can be idiopathic, i.e. of unknown cause, be related to infections, anatomical or chromosomal abnormalities and can also be related to the presence of autoimmune connective tissue diseases or antiphospholipid antibodies (aPL). Hydroxychloroquine (HCQ) is an antimalarial immunomodulator and is currently being investigated for its role in the prevention of idiopathic REM and REM related to antiphospholipid antibodies (aPL). In this article we review the evidence that exists to date regarding the use of HCQ in the setting of unexplained REM and REM in relation to connective tissue diseases and aPL and antiphospholipid syndrome (APS).

Keywords: Recurrent miscarriages, Mixed connective tissue disease, Antiphospholipid antibodies, Pregnancy, Pregnancy complications, Hydroxychloroquine, HCQ

Introduction

A sporadic 1st trimester miscarriage is clinically detected in approximately 10%-15% of pregnancies and is the most common complication in pregnancies. Recurrent early miscarriage (REM) is defined as two or three consecutive pregnancy losses during the first trimester of pregnancy. It is a distinct entity and has an estimated incidence of 1%-3%, and in approximately 50% of those, an etiology is never established. REM can be idiopathic, i.e., of unknown cause, be related to infections, anatomical or chromosomal abnormalities and can also be related to the presence of autoimmune connective tissue diseases or antiphospholipid antibodies (aPL).

One of the drugs currently investigated for its role in the prevention of idiopathic REM and REM related to antiphospholipid antibodies (aPL) and antiphospholipid syndrome (APS) is hydroxychloroquine (HCQ). HCQ is an antimalarial immunomodulator and is currently licensed for the treatment of rheumatoid arthritis (RA), discoid and systemic lupus erythematosus (SLE) and for the treatment of juvenile idiopathic arthritis [1]. Further,
HCQ has in 2018 gained orphan designation for the treatment of patients with antiphospholipid syndrome (APS) (EU/3/16/1820).

The aim of this article is to review evidence that exists to date regarding the use of HCQ in the setting of unexplained REM and REM in relation to connective tissue diseases and aPL and APS.

HCQ – its history and treatment indications

Antimalarial agents have been used medicinally for several decades. The isolation of quinine from the bark of the Cinchona genus was reported in 1820 by the French pharmacists Caventou and Pelletier, when it was already being used by indigenous groups in the Amazon for the treatment of fever [2]. It was at the end of the 19th Century that evidence-based reports arose for the first time on its use in cutaneous lupus. Chloroquine and HCQ were first synthesized in the middle of the 20th Century, from which point on their efficacy and role in the treatment of rheumatic disease has continued to be investigated [3]. In 1955 HCQ was FDA approved for the treatment of SLE.

Chloroquine and HCQ are weakly basic 4-aminoquinolone compounds, HCQ differing by a hydroxyl group attached to a side chain. They both possess good bioavailability after oral administration and are distributed extensively in tissues. Primary metabolism is hepatic, by cytochrome P450 enzymes, with the enantiomer of HCQ achieving lower blood levels than chloroquine. Excretion is predominantly renal, with the remainder lost through faeces, skin and breast milk, and they have a long elimination half-life of approximately 40 days, but can be detected in tissues for prolonged periods of up to several years [2].

HCQ's mechanism of action

HCQ displays pleiotropic activity within the body via multiple pathways, many of which are implicated in rheumatic disease. HCQ is a weak base, creating an affinity towards lysosomes and interfering with their acidification. This impairs protein degradation and antigen presentation which requires an acidic environment, and therefore diminishes the formation of MHC class II complexes with antigenic peptides which are responsible for stimulating CD4 T-cells. The overall effect of this is a down-regulation of the immune response to auto-antigenic peptides, and inhibition of cytokine production [4]. This was demonstrated by recording cytokine levels in SLE patients before and after 3 months treatment with chloroquine, finding that mean levels of IL-6, IL-18 and TNF-α decreased significantly [5].

Another aspect of the immune response targeted by HCQ, is the Toll-like receptor (TLR) mediated response (Figure 1). TLRs are transmembrane receptors expressed on antigen presenting cells, which serve to recognize molecules derived from foreign organisms, and ultimately trigger the cascade of events resulting in the release of proinflammatory cytokines. TLRs also require an acidic environment to function and are inhibited by HCQ in this way, as well as HCQ binding directly to nucleic acids, affecting their conformation and ability to bind TLRs, and therefore inhibiting the downstream effects of cytokine release [6].

Several mechanisms contribute to the antithrombotic effects of HCQ, which may be the most relevant to improving pregnancy morbidity, particularly in the presence of prothrombotic antiphospholipid antibodies (aPL). HCQ has been found to inhibit the increased expression of GPIIb/IIIa on platelets caused by aPL, which results in excess platelet aggregation [7]. HCQ also serves to restore Annexin A5, a natural anticoagulant shield which is disrupted by aPL, leading to exposure of procoagulant substances and increased risk of thrombosis [8]. This is not an inclusive list of all mechanisms of action of HCQ, and many more are known or being investigated in order to better understand the drug and its potential uses.

Side-effects of HCQ

HCQ has a desirable side-effect profile, and is considered relatively safe and non-toxic when compared with other disease-modifying drugs (DMARDs) such as azathioprine, mycophenolate mofetil or methotrexate. The most common side-effects of HCQ are of gastrointestinal nature and often subside after a few days of treatment. The most significant long-term concern with HCQ is retinal toxicity, as it has been associated with retinopathy in approximately 10% of patients receiving chloroquine and 1% of those receiving HCQ after 7 years [9].

The exact mechanism of retinal toxicity is not known, however it is thought that the changes are almost always reversible if monitoring is performed accordingly. The American Academy of Ophthalmology published revised guidelines in 2016 advising baseline examination when commencing HCQ or chloroquine, followed by annual screening beginning after 5 years [10]. In response to the American guidelines, the British Royal College of Ophthalmologists published their updated guidelines in February 2018 [11].
Thanks to the long-standing use of HCQ both as an antimalarial, and in the treatment of rheumatic disease such as SLE, its safety profile has been extensively reviewed and recorded. Autoimmune diseases have a high prevalence in women of child-bearing age, so it is unsurprising that the question of whether it is safe in the periods of preconception, pregnancy and lactation has been addressed in several studies [12,13]. Buchanan et al. looked at a cohort of 36 pregnancies in 33 women, and also found no signs of teratogenicity when compared to their 53 control patients [16]. Larger literature surveys in more recent years have also concluded that antimalarials can be regarded as safe for the fetus, with HCQ preferred over chloroquine as there have been a higher number of pregnancies in which its effects have been studied [17].

The current British Society of Rheumatology (BSR) guidelines published in 2016 and the European League Against Rheumatism (EULAR) recommendations for women’s health from 2017 both advise that, with the current available evidence, HCQ is compatible with all phases of pregnancy and breastfeeding, and that it is beneficial during pregnancy to reduce the risk of SLE flares and of poor obstetrical outcomes [19,20].

Use of HCQ in pregnancy

Early work done by Parke et al. looking at SLE patients receiving HCQ revealed no association of its use with abnormalities in their offspring. They also highlighted that disease activity may be a major contributing factor to fetal loss in patients with SLE, and the importance of continuing HCQ during pregnancy in order to minimize disease flares [14,15]. Buchanan et al. looked at a cohort of 36 pregnancies in 33 women, and also found no signs of teratogenicity when compared to their 53 control patients [16]. Larger literature surveys in more recent years have also concluded that antimalarials can be regarded as safe for the fetus, with HCQ preferred over chloroquine as there have been a higher number of pregnancies in which its effects have been studied [17].

An important safety consideration for drugs used during pregnancy, is whether they are safe in breast feeding. HCQ is present in breast milk of women who are treated with HCQ, however the level ingested by breastfed infants is less than 0.2mg/kg/day which is a small fraction of the adult therapeutic dose of 6.5mg/kg/day, and therefore unlikely to cause any toxic effects [18].

The blue cell illustrates a B cell with its nucleus (purple). Hydroxychloroquine is an immunomodulator with actions on B cell activation via several pathways including TLR-7, TLR-9 and BAFF. As a result hydroxychloroquine suppresses the TLR9-mediated human B cell functions which are required during inflammatory processes.

Key: BAFF - B cell activating factor of the TNF family; BCMA – B cell maturation antigen; BCR-RNA – B cell receptor RNA; HCQ – hydroxychloroquine; TACI - transmembrane activator and calcium-modulator; TLR – Toll like receptor
HCQ in recurrent early miscarriage and 'late pregnancy complications' in SLE

HCQ has been used in the treatment of SLE since 1955. HCQ has been found to have various disease-modifying effects, and be beneficial to specific outcomes, including pregnancy morbidity [21]. Several studies have noted the benefit of HCQ on SLE disease activity and flares [22,23]. This suppressive effect on lupus flares appears to hold true during pregnancy as well, as demonstrated by Clowse et al. [24] who failed to find statistically significant differences in pregnancy outcomes in women with SLE with either no HCQ exposure, continuous exposure, or cessation of HCQ, however they did find that the degree of lupus activity during pregnancy was significantly higher in those who stopped taking HCQ. This is a relevant finding, given that the incidence of SLE flare is increased during pregnancy and the postpartum period [25].

SLE has its highest incidence in women of reproductive age, and for some time has been associated with poor obstetric outcomes, including miscarriage, stillbirth, preterm labour, intrauterine growth restriction (IUGR) and pre-eclampsia [26]. HCQ, with its favourable safety profile in pregnancy and lactation, has served to significantly improve these outcomes. Retrospective cohort studies have looked at some of these outcomes, comparing groups taking HCQ throughout pregnancy to those who did not. Findings have shown that HCQ reduced the rate of late prematurity, between 34-37 weeks [27], as well as the rate of IUGR below the 10th percentile in children born to mothers with SLE [28]. A randomized controlled trial (RCT) including 17 patients by Levy et al. also supported the findings of improved gestational age with HCQ treatment, although did not reach statistical significance [29]. An important consideration when looking at pregnancy outcomes and treatments in women with SLE is whether these patients have concurrent aPL present (aPL themselves are related to pregnancy morbidity).

HCQ in recurrent early miscarriage and '2nd and 3rd trimester complications' in APS

APS is an acquired autoimmune disease defined as the association of thrombotic events and/or obstetric morbidity in patients persistently positive for aPL. Pregnancy morbidity related to aPL include recurrent early (<10 weeks gestation), late foetal loss (>10 weeks gestation) or delivery at less than 34 weeks of gestation due to ischemic placental insufficiency [30]. Placental insufficiency can also result in foetal growth restriction (FGR), pre-eclampsia, eclampsia, placental abruption, HELLP syndrome (haemolysis, elevated liver enzymes, low platelets) and foetal death. The prevalence of aPL among patients with SLE is 46% for anticardiolipin antibodies and 26% for lupus anticoagulant. aPL also occur at a low frequency in the general population [31], and have been found to be present in 15-20% of women with recurrent first trimester miscarriage [32] and in 11% of women following a stillbirth [33].

It has been highlighted that HCQ may be an important additional treatment in APS pregnancies, alongside current regimens [34]. Retrospective studies have found significant improvements in pregnancy outcomes with the additional use of HCQ in aPL positive pregnancies. In these studies HCQ has been added as an adjunct to aspirin and/or LMWH. In a retrospective study of 170 pregnancies it was found that those women treated with HCQ had a significantly higher live birth rate, and lower prevalence of aPL-related pregnancy morbidity than those who did not receive HCQ, specifically fewer fetal losses >10 weeks gestation and preterm deliveries at <37 weeks. Interestingly, no significant difference was observed between the two groups when comparing the rate of fetal losses at <10 weeks gestation [35]. This study did not separate women who had APS only from those with SLE and, therefore the prevalence of SLE was not uniform across the two groups. However a study isolating subjects with APS (without SLE) and a history of previous pregnancy complications resulted in similar findings of a higher live birth rate and fewer severe pregnancy complications in those treated with HCQ [36]. In a third retrospective study, Mekinian et al. showed that women with obstetric APS and refractory obstetric APS treated with HCQ had better pregnancy outcomes, i.e., fewer miscarriages, compared to those without HCQ [37].

Retrospective studies are revealing promising evidence for the addition of HCQ to established therapies in the management of pregnancy in aPL positive women. To date, RCTs and prospective data for the use of HCQ is lacking, and required in order to put evidence-based practices in place. There are trials on going such as HYPATIA which is looking at aPL positive women with randomization to a HCQ group or placebo for follow-up throughout preconception, pregnancy and delivery with an endpoint of the outcome of that pregnancy, including any complications encountered [38]. Further prospective trials, such as HYDROSAPL and HIBISCUS will inform on the use of HCQ in the treatment of both thrombotic and obstetric APS hopefully in the foreseeable future [39,40]. The evidence on the use of HCQ in this setting is urgently needed.
needed.

HCQ in undifferentiated connective tissue disease

Undifferentiated connective tissue disease (UCTD) is the manifestation of certain characteristics of systemic autoimmune diseases that fail to meet the diagnostic criteria of one of the defined connective tissue diseases [41]. In a small cohort study of 25 pregnancies in women diagnosed with UCTD, 22 of these resulted in a live birth, and 3 in first trimester losses which is not dissimilar to the rate in the general population. The number of patients was too low to determine whether UCTD may carry an increased risk of miscarriage. Only one of the subjects received HCQ for a disease flare, and treatments were not compared [42]. A slightly larger study where 55 pregnancies in 50 women with UCTD were compared to 53 non-pregnant women with UCTD. Twenty-nine of the UCTD pregnancies received HCQ, either alone or in combination with other treatments, and overall the pregnancy outcomes recorded were good, with two first trimester miscarriages and one third trimester loss which was one twin of a twin pregnancy. Again comparisons were not made between the treatment groups. It was also observed that women with UCTD suffered more flares of their disease during pregnancy, and in some cases the disease evolved into overt CTD [41]. It is difficult to draw clear conclusions from these retrospective studies. Currently there is a lack of prospective data informing on the use of HCQ in undifferentiated mixed connective disease [43].

A clinical trial is underway which will recruit women diagnosed with UCTD and a history of two or more failed pregnancies of unknown origin, and assign them to one of three arms; anticoagulation with prednisolone and HCQ, anticoagulation and HCQ, or anticoagulation alone. Outcomes will be looking at live birth rate and various pregnancy complications [44].

HCQ in unexplained recurrent early miscarriage

The majority of studies to date have focused on the use of HCQ to improve pregnancy outcomes in women with established autoimmune disorders, which are associated with pregnancy morbidity including REM. However there is little data on whether there may be a role for HCQ in those who experience recurrent early miscarriage with no apparent underlying cause. Recurrent miscarriage has an estimated incidence of 1%-3%, and in approximately 50% of those, an etiology is never established [45].

A literature review published by Mekinian et al. in 2016 found that there was currently no clinical data on the efficacy of HCQ in women with recurrent unexplained miscarriage [37]. There are two prospective clinical trials going on, both currently in phase 3, looking at HCQ treatment in women with unexplained consecutive recurrent pregnancy losses. The definition of recurrent being at least three consecutive losses in the trial by Pasquier et al. and at least four consecutive losses or three plus one second trimester loss in the Svarre Nielsen et al. trial. Exclusion criteria include features of autoimmune disease and other known causes of miscarriage such as uterine cavity abnormalities, abnormal parental karyotypes, or infections, which should isolate truly unexplained miscarriages as much as possible as the study subjects. Both trials are looking at the same two arms of HCQ treatment versus placebo [46,47]. These trials, if successful, should provide invaluable data regarding a potentially beneficial treatment to improve pregnancy outcomes in women with recurrent unexplained miscarriages.

We acknowledge some inconsistency in the retrieved studies when referring to the definitions of miscarriage rather than ‘pregnancy loss’; however, such heterogeneity reflects differences among the studies used in our analysis. When definitions were not unanimously detailed, we preferred to maintain the terminology used in each study.

Summary

REM is a devastating pregnancy complication. REM has been associated to the presence of some autoimmune connective tissue diseases, including SLE and UCTD, and is related to the persistent presence of aPL. In some patients however, no causes are found for REM. HCQ is an antimalarial compatible with pregnancy and lactation. Retrospective data suggest that the addition of HCQ to standard treatment regimens in women with SLE, aPL or APS and UCTD has been found to reduce both REM and late complications such as preterm delivery and IUGR. The role of HCQ in unexplained REM has not been investigated as extensively and there is currently a lack of clinical data to suggest any benefit of HCQ in women with REM of unknown cause. Ongoing RCTs on the use of HCQ in the setting of aPL, UCTD and REM of unknown aetiology will hopefully provide the evidence in the near future.

Financial support

There was no financial support.
Conflict of interests

None of the authors have any conflict of interest.

References

1. Hydroxychloroquine sulphate BP 200mg summary of product characteristics (SmPC). 2014 https://www.medicines.org.uk/emc/medicine/6977#CLINICAL_PRECAUTIONS
2. Cechinel-Filho V. Plant bioactives and drug discovery: Principles, practice, and perspectives. Hoboken, N.J: John Wiley & Sons; 2012.586. https://www.wiley.com/en-us/+Bioactives+%2C+Drug+Discovery%2C+and+Perspectives-p-9780470582268
3. Wallace DJ. The history of antimalarials. Lupus. 1996;5(1_suppl):2-3. Doi: https://doi.org/10.1177/0961203396005001021
4. Fox RI. Mechanism of action of hydroxychloroquine as an antirheumatic drug. Semin Arthritis Rheum. 1993;23(2):82-91. Doi: https://doi.org/10.1016/S0049-0172(10)80012-5
5. Wozniacka A, Lesiak A, Narbutt J, et al. Chloroquine treatment influences proinflammatory cytokine levels in systemic lupus erythematosus patients. Lupus. 2006;15(5):268-275. Doi: https://doi.org/10.1191/0961203306lu2299oa
6. Kuznik A, Bencina M, Svajger U, et al. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol. 2011;186(8):4794-4804. Doi: https://doi.org/10.4049/jimmunol.1000702
7. Pierangeli SS, Vega-Ostertag M, Nigel Harris E. Intracellular signaling triggered by antiphospholipid antibodies in platelets and endothelial cells: A pathway to targeted therapies. Thromb Res. 2004;114(5-6):467-476. Doi: https://doi.org/10.1016/j.thromres.2004.06.031
8. Rand JH, Wu XX, Quinn AS, et al. Hydroxychloroquine protects the annexin A5 anticoagulant shield from disruption by antiphospholipid antibodies: Evidence for a novel effect for an old antimalarial drug. Blood. 2010;115(11):2292-2299. Doi: https://doi.org/10.1182/blood-2009-04-213520
9. Wallace DJ. Dubois' lupus erythematosus. 7th Ed. Lippincott Williams & Wilkins, Philadelphia. 2007:1152-1176. https://www.ovid.com/product-details.3484.html
10. Marmor MF, Kellner U, Lai TYY, et al. Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 revision). Ophthalmology. 2016;123(6):1386-1394. Doi: https://doi.org/10.1016/j.ophtha.2016.01.058
11. Hydroxychloroquine and Chloroquine Retinopathy: Recommendations on Screening. Clinical Guidelines. 2018.https://www.rcophth.ac.uk/wp-content/uploads/2018/07/Hydroxychloroquine-and-Chloroquine-Retinopathy-Screening-Guideline-Recommendations.pdf
12. Flint J, Panchal S, Hurrell A, et al. BSR and BHPR guideline on prescribing drugs in pregnancy and breastfeeding—Part I: standard and biologic disease modifying anti-rheumatic drugs and corticosteroids. Rheumatology. 2016;55(9):1693-1697. Doi: https://doi.org/10.1093/rheumatology/kev404
13. Ostensen M, Ramsey-Goldman R. Treatment of inflammatory rheumatic disorders in pregnancy: What are the safest treatment options? Drug Saf. 1998;19(5):389-410. Doi: https://doi.org/10.2165/00002018-199819050-00006
14. Parke A. Antimalarial drugs and pregnancy. Am J Med. 1988;85(4):30-33. Doi: https://doi.org/10.1016/0002-9343(88)90359-2
15. Parke A. Antimalarial drugs, pregnancy and lactation. Lupus. 1993;Suppl 1:S21-23. https://www.ncbi.nlm.nih.gov/pubmed/8485567
16. Buchanan NM, Toubi E, Khamashta MA, et al. Hydroxychloroquine and lupus pregnancy: Review of a series of 36 cases. Ann Rheum Dis. 1996;55(7):486-488. Doi: https://doi.org/10.1136/ard.55.7.486
17. Ostensen M, Forger F. Management of RA medications in pregnant patients. Nat Rev Rheumatol. 2009;5(7):382-390. Doi: https://doi.org/10.1038/nrrheum.2009.103
18. Ccostedoat-Chalumeau N, Amoura Z, Huang DLT, et al. Safety of hydroxychloroquine in pregnant patients with connective tissue diseases. Review of the literature. Autoimmun Rev. 2005;4(2):111-115. Doi: https://doi.org/10.1016/j.autrev.2004.11.009
19. Flint J, Panchal S, Hurrell A, et al. BSR and BHPR guideline on prescribing drugs in pregnancy and breastfeeding—Part I: standard and biologic disease modifying anti-rheumatic drugs and corticosteroids. Rheumatology. 2016;55(9):1693-1697. Doi: https://doi.org/10.1093/rheumatology/kev404
20. Andreoli L, Bertsias GK, Agmon-Levin N, et al. EULAR recommendations for women’s health and the management of family planning, assisted
reproduction, pregnancy and menopause in patients with systemic lupus erythematosus and/or antiphospholipid syndrome. *Ann Rheum Dis*. 2017;76(3):476-485. Doi: https://doi.org/10.1136/annrheumdis-2016-209770

21. Wallace DJ, Gudsoorkar VS, Weisman MH, et al. New insights into mechanisms of therapeutic effects of antimalarial agents in SLE. *Nat Rev Rheumatol*. 2012;8(9):522-533. Doi: https://doi.org/10.1038/nrrheum.2012.106

22. The Canadian Hydroxychloroquine Study Group. A randomized study of the effect of withdrawing hydroxychloroquine sulfate in systemic lupus erythematosus. *N Engl J Med*. 1991;324(3):150-154. Doi: https://doi.org/10.1056/NEJM199101173240303

23. Shinjo SK, Bonfa E, Wojdyla D, et al. Antimalarial treatment may have a time-dependent effect on lupus survival: Data from a multinational Latin American inception cohort. *Arthritis Rheum*. 2010;62(3):855-862. Doi: https://doi.org/10.1002/art.27300

24. Clowse MEB, Magder L, Witter F, et al. Hydroxychloroquine in lupus pregnancy. *Arthritis Rheum*. 2006;54(11):3640-3647. Doi: https://doi.org/10.1002/art.22159

25. Eudy AM, Siega-Riz AM, Engel SM, et al. Effect of pregnancy on disease flares in patients with systemic lupus erythematosus. *Ann Rheum Dis*. 2018;77(6):855-860. Doi: https://doi.org/10.1136/annrheumdis-2017-212535

26. Baer AN, Witter FR, Petri M. Lupus and pregnancy. *Obstet Gynecol Surv*. 2011;66(10):639-653. Doi: https://doi.org/10.1097/OGX.0b013e318239e1ee

27. Kroese SJ, de Hair MJH, Limper M, et al. Hydroxychloroquine use in lupus patients during pregnancy is associated with longer pregnancy duration in preterm births. *J Immunol Res*. 2017;2017:1-5. Doi: https://doi.org/10.1155/2017/2810202

28. Leroux M, Desveaux C, Parcevaux M, et al. Impact of hydroxychloroquine on preterm delivery and intrauterine growth restriction in pregnant women with systemic lupus erythematosus: A descriptive cohort study. *Lupus*. 2015;24(13):1384-1391. Doi: https://doi.org/10.1177/0961203315591027

29. Levy RA, Vilela VS, Cataldo MJ, et al. Hydroxychloroquine (Hcq) in lupus pregnancy: Double-blind and placebo-controlled study. *Lupus*. 2001;10(6):401-404. Doi: https://doi.org/10.1097/096120301678646137

30. Miyakis S, Lockshin MD, Atsumi T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (Aps). *J Thromb Haemost*. 2006;4(2):295-306. Doi: https://doi.org/10.1111/j.1538-7836.2006.01753.x

31. Durcan L, Petri M. Epidemiology of the antiphospholipid syndrome. In: Handbook of Systemic Autoimmune Diseases. Vol 12. Elsevier; 2017:17-30. Doi: https://doi.org/10.1016/B978-0-444-63655-3.00002-8

32. Rai RS, Regan L, Clifford K, et al. Antiphospholipid antibodies and β2-glycoprotein-I in 500 women with recurrent miscarriage: results of a comprehensive screening approach. *Hum Reprod*. 1995;10(8):2001-2005. Doi: https://doi.org/10.1093/oxfordjournals.humrep.a136224

33. Page JM, Christiansen-Lindquist L, Thorsten V, et al. Diagnostic tests for evaluation of stillbirth: Results from the stillbirth collaborative research network. *Obstet Gynecol*. 2017;129(4):699-706. Doi: https://doi.org/10.1097/AOG.0000000000001937

34. De Carolis S, Rizzo F, Tabacco S. Hydroxychloroquine as additional treatment in pregnant patients with refractory APS. *Am J Obstet Gynecol*. 2017;217(6):711-712. Doi: https://doi.org/10.1016/j.ajog.2017.08.113

35. Sciascia S, Hunt BJ, Talaver-García E, et al. The impact of hydroxychloroquine treatment on pregnancy outcome in women with antiphospholipid antibodies. *Am J Obstet Gynecol*. 2016;214(2):273.e1-273.e8. Doi: https://doi.org/10.1016/j.ajog.2015.09.078

36. Ruffatti A, Tonello M, Hoxha A, et al. Effect of additional treatments combined with conventional therapies in pregnant patients with high-risk antiphospholipid syndrome: A multicentre study. *Thromb Haemost*. 2018;118(4):639-646. Doi: https://doi.org/10.1055/s-0038-1632388

37. Mekinian A, Cohen J, Alijotas-Reig J, et al. Unexplained recurrent miscarriage and recurrent implantation failure: Is there a place for immunomodulation? *Am J Reprod Immunol*. 2016;76(1):8-28. Doi: https://doi.org/10.1111/aji.12493

38. Schreiber K, Breen K, Cohen H, et al. Hydroxychloroquine to improve pregnancy outcome in women with antiphospholipid antibodies (Hypatia) protocol: A multinational randomized controlled trial of hydroxychloroquine versus placebo in addition to standard treatment in pregnant women with antiphospholipid syndrome or antibodies. *Semin Thromb Hemost*. 2017;43(06):562-571. Doi: https://doi.org/10.1055/s-0037-1603359

39. Belizna C, Pregnolato F, Abad S, et al. HIBISCUS: Hydroxychloroquine for the secondary prevention
of thrombotic and obstetrical events in primary antiphospholipid syndrome. *Autoimmun Rev.* 2018;17(12):1153-1168. Doi: https://doi.org/10.1016/j.autrev.2018.05.012

40. Mekinian A, Vicaut E, Cohen J, et al. Hydroxychloroquine to obtain pregnancy without adverse obstetrical events in primary antiphospholipid syndrome: French phase II multicenter randomized trial, HYDROSAPL. *Gynecol Obstet Fertil Senol.* 2018;46(7-8):598-604. Doi: https://doi.org/10.1016/j.gofs.2018.06.008

41. Castellino G, Capucci R, Bernardi S, et al. Pregnancy in patients with undifferentiated connective tissue disease: A prospective case-control study. *Lupus.* 2011;20(12):1305-1311. Doi: https://doi.org/10.1177/0961203311409610

42. Mosca M, Neri R, Strigini F, et al. Pregnancy outcome in patients with undifferentiated connective tissue disease: A preliminary study on 25 pregnancies. *Lupus.* 2002;11(5):304-307. Doi: https://doi.org/10.1191/0961203302lu187oa

43. Antunes M, Scire CA, Talarico R, et al. Undifferentiated connective tissue disease: State of the art on clinical practice guidelines. *RMD Open.* 2018;4(Suppl 1):e000786. Doi: https://doi.org/10.1136/rmdopen-2018-000786

44. Liangjing L, Renji Hospital. A three-arm, multicenter, open-label randomized controlled trial of hydroxychloroquine and low-dose prednisone on recurrent spontaneous abortion with undifferentiated connective tissue diseases: Protocol for the immunosuppressant regimens for Living Fetuses (ILIFE) Trial. *BMC.* 2019. Doi: https://doi.org/10.21203/rs.2.13361/v1

45. Alijotas-Reig J, Garrido-Gimenez C. Current concepts and new trends in the diagnosis and management of recurrent miscarriage. *Obstet Gynecol Surv.* 2013;68(6):445-466. Doi: https://doi.org/10.1097/OGX.0b013e31828aca19

46. Pasquier E, Saint-Martin L de, Marhic G, et al. Hydroxychloroquine for prevention of recurrent miscarriage: Study protocol for a multicentre randomized placebo-controlled trial BBQ study. *BMJ Open.* 2019;9(3). Doi: https://doi.org/10.1136/bmjopen-2018-025649

47. Nielsen HS. Hydroxychloroquin (Plaquinil) Behandling af Gentagne Graviditetstab (Abortus Habitualis) - et Randomiseret, Dobbeltblindet, Placebo Kontrolleret Studium. 2018. https://clinicaltrials.gov/ct2/show/NCT03305263.

Copyright: © Frishman et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.