Increased levels of YKL-40 in patients with diabetes mellitus: a systematic review and meta-analysis

Wanwan Luo (✉ 1014481336@qq.com)
Taizhou First People's Hospital
https://orcid.org/0000-0002-6424-021X

Lingmin Zhang
Taizhou First People's Hospital

Lingling Sheng
Taizhou First People's Hospital

Zhencheng Zhang
Taizhou First People's Hospital

Zaixing Yang
Taizhou First People's Hospital

Keywords: diabetes mellitus, YKL-40, diabetic nephropathy, meta-analysis

DOI: https://doi.org/10.21203/rs.3.rs-66065/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Diabetes mellitus (DM) could be classified as type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM), gestational diabetes mellitus (GDM) and others according to etiology and pathology. Diabetic nephropathy (DN) is one of the most serious complications of DM. YKL-40 is a marker of inflammation and some studies have indicated that DM was related with inflammation. The objective of our study is to perform a systematic review and meta-analysis to confirm the relationship between YKL-40 and DM as well as DN.

Methods: Pubmed, Embase, CNKI and Chinese wanfang databases were searched for eligible studies by two independent authors. Studies were included in this meta-analysis if they fulfilled the following inclusion criteria: (1) a study involving the role of YKL-40 in DM (or DN) designed as a case-control study or cohort study; (2) the data of serum YKL-40 levels were available; (3) studies were published in English or Chinese.

Results: Twenty-five studies involving 2498 DM patients and 1424 healthy controls were included. Compared with healthy controls, DM patients had significantly higher levels of YKL-40 (DM: SMD=1.62, 95%CI, 1.08 to 2.25, P=0.000; GDM: SMD=2.85, 95%CI, 1.01 to 4.70, P=0.002). Additionally, DM patients with different degree of albuminuria had significantly higher levels of YKL-40 compared with healthy controls (normoalbuminuria: SMD=1.58, 95%CI, 0.59 to 2.56, P=0.002; microalbuminuria: SMD=2.57, 95%CI, 0.92 to 4.22, P=0.002; macroalbuminuria: SMD=2.69, 95%CI, 1.40 to 3.98, P=0.000) and serum YKL-40 levels increased with increasing severity of albuminuria among DM patients (microalbuminuria vs normoalbuminuria: SMD=1.49, 95%CI, 0.28 to 2.71, P=0.016; macroalbuminuria vs microalbuminuria: SMD=0.93, 95%CI, 0.34 to 1.52, P=0.002).

Conclusions: DM patients have higher levels of YKL-40 compared with healthy controls. Additionally, levels of YKL-40 are significantly higher in DM patients with different degree of albuminuria than in the healthy controls and the levels of YKL-40 are positively related with the severe degree of albuminuria. Therefore, our current meta-analysis suggests that their sera should be detected for YKL-40, if DM, especially DN, is suspected in patients.

Background

Diabetes mellitus (DM) is a common disease in the modern society. According to etiology and pathology, DM could be classified as type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM), gestational diabetes mellitus (GDM) and others. T1DM is a genetic disease and usually occurs in adolescence. It is characterized by absolute insulin deficiency resulting from the destruction of the β cells of the pancreas. T2DM accounts for 90% to 95% of people with DM. T2MD is often to be found in adults, especially in those who are obese. Insulin resistance and relative insulin deficiency are main cause of T2DM [1, 2]. GDM is defined as glucose intolerance with onset or first recognition during pregnancy [3]. Women with GDM tend to develop T2DM after pregnancy. A meta-analysis conducted by Catherine Kim et al. showed that woman with GDM had a rapid increase in the cumulative incidence of T2DM in the first 5 years after delivery, ranging from 2.6% to 70% [4]. Diabetic nephropathy (DN), defined by low estimated glomerular filtration rate (<60 mL/min/1.73 m² for 3 months or more) or albuminuria (urinary albumin-to-creatinine ratio ≥30 mg/g) in the setting of DM [5], is one of the most serious complications of DM. Previous epidemiological studies have indicated that 25% to 40% of patients with T1DM and 5% to 40% of patients with T2DM ultimately develop DN [6, 7]. The pathology of DM is not totally understood. Some studies have indicated that DM was related with inflammation [8, 9].

YKL-40 is also called human cartilage glycoprotein-39 (HCgp-39), and its crystal structure has been represented [10, 11]. Recently, YKL-40 is a marker of inflammation. In vivo, CD 16+ monocytes are a source of YKL-40 and transcription factor Sp1 plays an important role in regulating of YKL-40 [12, 13]. In addition, YKL-40 is secreted by chondrocytes, synovial cells and neutrophils [14]. In vitro, YKL-40 is secreted by various cells, including vascular smooth muscle cells (VSMCs), activated macrophages and macrophages during late stages of differentiation [15].

We assume that there might be an association between DM and YKL-40 since YKL-40 is a new inflammatory marker. Recently, plenty of studies have explored the relationship of DM and YKL-40. But the conclusions of these studies were inconsistent. The objective of our study is to perform a systematic review and meta-analysis to confirm the relationship between YKL-40 and DM as well as DN.

Materials And Methods

Literature search

Pubmed, Embase, CNKI and Chinese wanfang databases were searched for eligible studies published before April 2020 using combinations of the following terms: diabetes; YKL-40; HC gp-39. All studies were retrieved by two independent reviewers and disagreements were solved by discussion.

Study selection

Studies were included in this meta-analysis if they fulfilled the following inclusion criteria: (1) a study involving the role of YKL-40 in DM (or DN) designed as a case-control study or cohort study; (2) the data of serum YKL-40 levels were available (mean/standard deviation or median/range or median/interquartile interval was provided); (3) studies were published in English or Chinese. In case of duplicated data, only the most recent and complete study was included.

Date extraction and statistical analysis

Some of the included studies provided YKL-40 concentration by median and range (or interquartile interval), which were converted to mean (SD) by estimation methods [16]. The statistical software R was used during the data estimation.

Standardized mean differences (SMD) with 95% confidence interval (CI) was calculated to compare the levels of serum YKL-40 in the DM (or DN) patients with the levels in healthy controls (P<0.05 was considered statistically significant). The between-study heterogeneity was assessed by chi-square statistic and
Discussion

Egger's tests were over 0.05, suggesting that publication bias was not evident in our meta-analysis. Funnel plot and Egger's test were conducted to evaluate the potential publication bias. There was no obvious funnel plot asymmetry and all the P values of the Publication bias not associated with GDM when the study by Xun Shengli et al. [36] was deleted. The results did not change in various subgroups, and the value of I^2 remained high in various subgroups, with the exception of one subgroup for studies based on population of Asia.

Association between serum YKL-40 levels and DM

Totally, 12 studies showed an association between the serum YKL-40 levels and DM. The meta-analysis results indicated that the serum YKL-40 levels were significantly higher in DM patients compared with healthy controls (SMD=1.62, 95%CI,1.08 to 2.25, P=0.000) (Figure 2). The Galbraith plot was used because of the notable heterogeneity. But the major source of heterogeneity could not be found since too many of the studies were outliers (Figure 3). Furthermore, subgroup analyses by type of DM, region and age showed that YKL-40 levels were still higher in DM patients than those in healthy controls. The value of I^2 remained high in various subgroups, with the exception of one subgroup for studies based on population of Asia.

Association between serum YKL-40 levels and GDM

Owing to significant heterogeneity, we used the random-effects model. The pooled SMD was 2.85 (95%CI, 1.01 to 4.70, P=0.002), which indicated that the serum YKL-40 concentrations were significantly higher in GDM patients compared with healthy pregnancies (Figure 4). The source of heterogeneity was hard to be found by the Galbraith plot because the studies were too dispersive. However, when performing sensitivity analysis by sequential omission of individual studies, YKL-40 was not associated with GDM when the article by Xun Shengli et al. [36] was removed. The pooled SMD was 0.64 (95%CI, -0.28 to 1.56) (P>0.05).

Association between serum YKL-40 levels and albuminuria in DM patients

There were 7,8 and 7 studies analyzing the relationship between serum YKL-40 levels and normoalbuminuria, microalbuminuria and macroalbuminuria, respectively. The forest plot with a random-effects model showed that DM patients with different degree of albuminuria had significantly higher levels of YKL-40 compared with healthy controls (normoalbuminuria: SMD=1.58, 95%CI, 0.59 to 2.56, P=0.002; microalbuminuria: SMD=2.57, 95%CI, 0.92 to 4.22, P=0.002; macroalbuminuria: SMD=2.69, 95%CI, 1.40 to 3.98, P=0.000). The Galbraith plot was used to detect the potential source of heterogeneity. However, we could not find the possible source of heterogeneity because it plotted too many studies as the outliers. In addition, we conducted subgroup analyses by region and type of DM. The results did not change in various subgroups, and the value of I^2 remained high in various subgroups, with the exception of one subgroup for studies based on population of Asia. What's more, serum YKL-40 levels increased with increasing severity of albuminuria among DM patients (macroalbuminuria vs normoalbuminuria: SMD=1.49, 95%CI, 0.28 to 2.71, P=0.016; macroalbuminuria vs microalbuminuria: SMD=0.93, 95%CI, 0.34 to 1.52, P=0.002).

Sensitivity analysis

We performed a sensitivity analysis by sequential omission of individual studies. When serum YKL-40 levels were compared between DM patients and healthy controls as well as DM patients with different degree of albuminuria and healthy controls, the pooled SMD were not materially altered. However, YKL-40 was not associated with GDM when the study by Xun Shengli et al. [36] was deleted.

Publication bias

Funnel plot and Egger's test were conducted to evaluate the potential publication bias. There was no obvious funnel plot asymmetry and all the P values of the Egger’s tests were over 0.05, suggesting that publication bias was not evident in our meta-analysis.
To our knowledge, this is the first systematic review and meta-analysis to assess the relationship between YKL-40 and DM. Our study indicate that DM patients have a significantly higher level of YKL-40 compared with healthy controls. In addition, YKL-40 concentrations are higher in DM patients with different degree of albuminuria than those in healthy controls and increase with increasing severity of albuminuria.

Diabetes mellitus is a complex group of metabolic diseases characterized by hyperglycemia and is a major public health problem throughout the world. Both of T1DM and T2DM are genetic diseases and influenced by environment. The genes responsible for T1DM are carried on chromosome 6p21 and take control of the immune system [46]. Many genes are relative to T2DM, but most of them have not been identified. Recently, inflammation is involved in the pathogenesis of DM. Previous study have found that long-term T1DM patients have a significantly higher level of CRP than healthy controls [47]. Besides, CRP is also higher in T2DM patients than in healthy controls [48]. But the role of inflammatory processes seems to be more important in the development of T2DM than T1DM. Some studies have indicated that inflammatory markers such as CRP and IL-6 are increased in healthy population who later developed T2DM [49, 50], suggesting that inflammation may occur ahead of the diagnosis of T2DM. Insulin resistance is common in T2DM and most patients with T2DM are obese, which itself can cause some degree of insulin resistance. Obesity, especially activation of adipose tissue, might enhance the release of inflammatory factors [51].

YKL-40, a new inflammatory marker, is related to both acute and chronic inflammation. Some studies have showed that levels of YKL-40 are increased in patients with purulent menigitis, rheumatoid arthritis, osteoarthritis, systemic lupus erythematous and inflammatory bowel disease [52, 53]. Obesity is related to increased macrophage infiltration of adipose tissue and plays an important role in the development of insulin resistance [54]. YKL-40 is possibly with relation to the insulin resistance based on the macrophage infiltration and adipose tissue [15]. All the evidences above indicate that YKL-40 might have a relationship with DM. And our study, with more strong power, confirm that patients with DM have significantly higher levels of YKL-40 compared with healthy controls. Some studies also show that YKL-40 levels are positively associated with diabetes duration [26,29] and glycated hemoglobin (HbA1c) [30-32,34,37]. It seems that YKL-40 might be a good metabolic indicator of DM. However, some find that there is no significant association between YKL-40 levels and HbA1c [26,28,29]. Therefore, studies with more DM patients need to be performed in the future.

The prevalence of GDM is increasing all over the world, of which the exact pathogenesis is not quietey understood. But many findings have showed that GDM patients have a trend of developing to T2MD. There are also some studies indicating that insulin resistance is an important pathophysiological contributor of GDM [55, 56]. Our present study find that the serum YKL-40 levels are higher in GDM patients than in healthy pregnancies. But when doing sensitivity analysis by sequential omission of individual studies, YKL-40 is not associated with GDM when the article by Xun Shengli et al. [36] is deleted. This might be related to the few studies included as well as the small sample sizes. Therefore, studies with more participants should be performed in the future.

There are three types of complications of DM, including macrovascular, microvascular and neurologic. Kidney is the most obviously involved organ in microvascular complications and urinary albumin is a sign of DN. Some studies have found a high prevalence of microalbuminuria in DM patients [57, 58]. The pathogenesis of DN is multiple, and inflammation seems to be a major mechanism. Interaction of metabolism and hemodynamics, which activates many inflammatory molecules and pathway, results in DN [59, 60]. In addition, vascular endothelial dysfunction is a major factor in the pathogenesis of diabetic micro-angiopathy [61]. And YKL-40 is expressed in the development of endothelial dysfunction, during the differentiation and maturation of CD14+ monocytes to CD14+, CD16+ macrophages [15]. YKL-40, as a marker of inflammation and endothelial dysfunction, is found associated with albuminuria in T2DM patients [62, 63]. Consistent with previous studies, we find that the levels of YKL-40 are higher in DM patients with different degree of albuminuria compared with healthy controls and the levels of YKL-40 are positively related with the severe degree of albuminuria.

Study limitations

Some limitations of this study should be mentioned. First, the heterogeneity is high and the major causes are not found by the Galbraith plot and subgroup analyses. Second, the criteria of normoalbuminuria, microalbuminuria and macroalbuminuria were different among the studies included in this meta-analysis. In some studies, urinary albumin excretion rate was used as classification criterion, but in others, albumin/creatinine was used. As thus, the results of our study are not stable enough.

Conclusion

In summary, our study demonstrates that DM patients have higher levels of YKL-40 compared with healthy controls. Additionally, levels of YKL-40 are significantly higher in DM patients with different degree of albuminuria than in the healthy controls and the levels of YKL-40 are positively related with the severe degree of albuminuria. Therefore, our current meta-analysis suggests that their sera should be detected for YKL-40, if DM, especially DN, is suspected in patients.

Declarations

Acknowledgements

Not applicable.

Authors' contributions

All authors have contributed equally. All authors read and approved the final manuscript.

Funding
The authors have received no funding support regarding this study.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

Not applicable.

Consent for publication

If the manuscript is accepted, we approve it for publication in Diabetology & Metabolic Syndrome.

Competing interests

None of the authors have any competing interests.

References

1. Guthrie RA, Guthrie DW. Pathophysiology of diabetes mellitus. Critical care nursing quarterly. 2004;27:113-25.
2. Diagnosis and classification of diabetes mellitus. Diabetes care. 2013;36 Suppl 1:S67-74.
3. Gestational diabetes mellitus. Diabetes care. 2004;27 Suppl 1:S88-90.
4. Kim C, Newton KM, Knopp RH. Gestational diabetes and the incidence of type 2 diabetes: a systematic review. Diabetes care. 2002;25:1862-8.
5. Osman WM, Jelinek HF, Tay GK, Khandoker AH, Khalaf K, Almahmeed W, et al. Clinical and genetic associations of renal function and diabetic kidney disease in the United Arab Emirates: a cross-sectional study. BMJ open. 2018;8:e020759.
6. Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C. Diabetic nephropathy in type 1 diabetes: a review of early natural history, pathogenesis, and diagnosis. Diabetes/metabolism research and reviews. 2017;33.
7. Papadopoulou-Marketou N, Paschou SA, Marketos N, Adamidi S, Adamidis S, Kanaka-Gantenbein C. Diabetic nephropathy in type 1 diabetes. Minerva medica. 2018;109:218-28.
8. Lonthi-Yimagou E, Sobngwi E, Matsha TE, Kenne AP. Diabetes mellitus and inflammation. Current diabetes reports. 2013;13:435-44.
9. Halim M, Halim A. The effects of inflammation, aging and oxidative stress on the pathogenesis of diabetes mellitus (type 2 diabetes). Diabetes & metabolic syndrome. 2019;13:1165-72.
10. Houston DR, Recklies AD, Krupa JC, van Aalten DM. Structure and ligand-induced conformational change of the 39-kDa glycoprotein from human articular chondrocytes. The Journal of biological chemistry. 2003;278:30206-12.
11. Fusetti F, Pijning T, Kalk KH, Bos E, Dijkstra BW. Crystal structure and carbohydrate-binding properties of the human cartilage glycoprotein-39. The Journal of biological chemistry. 2003;278:37753-60.
12. Rehl M, Niller HH, Ammon C, Langmann S, Schwarzscher L, Andruesen R, et al. Transcriptional regulation of CHI3L1, a marker gene for late stages of macrophage differentiation. The Journal of biological chemistry. 2003;278:44058-67.
13. Baeten D, Boots AM, Steenbakkers PG, Elewaut D, Bos E, Verheijden GF, et al. Human cartilage gp-39+CD16+ monocytes in peripheral blood and synovium: correlation with joint destruction in rheumatoid arthritis. Arthritis and rheumatism. 2000;43:1233-43.
14. Volck B, Price PA, Johansen JS, Sorensen O, Benfield TL, Nielsen HJ, et al. YKL-40, a mammalian member of the chitinase family, is a matrix protein of specific granules in human neutrophils. Proceedings of the Association of American Physicians. 1998;110:351-60.
15. Rathcke CN, Vestergaard H. YKL-40, a new inflammatory marker with relation to insulin resistance and with a role in endothelial dysfunction and atherosclerosis. Inflammation research. 2006;55:221-7.
16. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC medical research methodology. 2014;14:135.
17. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ (Clinical research ed). 2003;327:557-60.
18. Galbraith RF. A note on graphical presentation of estimated odds ratios from several clinical trials. Statistics in medicine. 1988;7:889-94.
19. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical research ed). 1997;315:629-34.
20. Han JY, Ma XY, Yu LJ, Shao Y, Wang QY. Correlation between serum YKL-40 levels and albuminuria in type 2 diabetes. Genetics and molecular research : GMR. 2015;14:18596-603.
21. Han JY, Shao Y, Wang QY. The correlation of serum YKL-40 and albuminuria in type 2 diabetes.Chinese journal of endocrinology and metabolism. 2014;30:225-7.
22. Li J, Niu G, Wang H, Wang K, Huang B, Li M. Serum YKL-40 levels in gestational diabetes mellitus. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology. 2016;32:412-5.
23. Rathcke CN, Johansen JS, Vestergaard H. YKL-40, a biomarker of inflammation, is elevated in patients with type 2 diabetes and is related to insulin resistance. Inflammation research : official journal of the European Histamine Research Society. 2006;55:53-9.
24. Thomsen SB, Rathcke CN, Zerahn B, Vestergaard H. Increased levels of the calcification marker matrix GlA Protein and the inflammatory markers YKL-40 and CRP in patients with type 2 diabetes and ischemic heart disease. Cardiovascular diabetology. 2010;9:86.

25. Schaller G, Brix JM, Plachier-Sorko G, Holler F, Schernthaner GH, Schernthaner G. YKL-40 concentrations are not elevated in gestational diabetes. European journal of clinical investigation. 2010;40:339-43.

26. Sakamoto F, Katakami N, Kaneto H, Yasuda T, Takahara M, Miyashita K, et al. Association of serum YKL-40 levels with urinary albumin excretion rate in young Japanese patients with type 1 diabetes mellitus. Endocrine. 2013;60:73-9.

27. Rinnov AR, Rathcke CN, Bonde L, Vilsboill T, Knop FK. Plasma YKL-40 during pregnancy and gestational diabetes mellitus. Journal of reproductive immunology. 2015;112:68-72.

28. Abd El Dayem SM, Battah AA, El Shehaby A, Abd Allah N. Assessment of human cartilage glycoprotein 39 (YKL-40), preptn, and nitric oxide in adolescent patients with type 1 diabetes and its relation to cardioireal affection. Journal of pediatric endocrinology & metabolism. 2015;28:309-14.

29. Shiasi K, Talebian F, Khomechi SP, Nikoueinejad H, Sehat M, Azarbad Z, et al. Evaluation of YKL-40 serum level in patients with type 1 diabetes and its correlation with their metabolic and renal conditions. Nephro-Urology Monthly. 2017;9:e12431.

30. Rekha Kumari D, Farid Babu M, Balu Mahendran K. Human cartilage glycoprotein 39 (YKL-40): A View in type 2 diabetes mellitus. International Journal of Pharmaceutical Sciences and Research. 2015;6:4852-6.

31. Song W, Zhang K, Dong LP, Lu W, Li CG, Luan J. Association between YKL-40 and type 2 diabetic microangiopathy. Chinese journal of clinicians. 2015;9:3214-8.

32. Ye KJ, Hao Q, Dai J, Ye XJ. Association between YKL-40 and gestational diabetes mellitus. China medical herald. 2016;13:75-8.

33. Chen QF, Yi ZG, Guo WA. Association between YKL-40 and type 2 diabetes as well as lower extremity atherosclerosis. Guide of China medicine. 2014;12:78-9.

34. Li P, Gao JD, Zhang HL, Ma SH, Du CG. Expression of YKL-40 and Chemerin in chronic complications of type 2 diabetes mellitus. Modern medicine and health. 2011;27:2300-2.

35. Lin LJ, Fan PY, Yao YL, Luo W, Jiang YP, Song K, et al. The relationship between serum YKL-40 and type 2 diabetic retinopathy and diabetic nephropathy. Chinese high altitude medicine and biology. 2019;40:118-21,129.

36. Xun SL, Hu JJ, Chen J, Zhang LL, Lu HM, Kong X. Expression and significance of YKL-40 in maternal blood and umbilical cord blood serum and placenta in patients with gestational diabetes mellitus. China and foreign medical treatment. 2017;36:52-5.

37. Yu YY, Shi X, Pan JQ, Shi WW, Tan LY, Yu XJ. Study on the correlation between serum A-FABP and YKL-40 levels and insulin resistance in newly diagnosed T2DM patients. Journal of Liaoning medical university. 2018;39:17-21.

38. Ren LY, Wang YZ, Wei CY, Liu Y, Zheng LM. Correlation between levels of lipoprotein-associated phospholipase A2 and chitinase 3-like protein 1 with diabetes retinopathy in type 2 diabetes mellitus. China health standard management. 2019;10:323-8.

39. Rathcke CN, Persson F, Tarnow L, Rossing P, Vestergaard H. YKL-40, a marker of inflammation and endothelial dysfunction, is elevated in patients with type 1 diabetes and increases with levels of albuminuria. Diabetes care. 2009;32:323-8.

40. Rondbjerg AK, Omerovic E, Vestergaard H. YKL-40 levels are independently associated with albuminuria in type 2 diabetes. Cardiovascular diabetology. 2011;10:54.

41. Lee JH, Kim SS, Kim LJ, Song SH, Kim YK, In Kim J, et al. Clinical implication of plasma and urine YKL-40, as a proinflammatory biomarker, on early stage of nephropathy in type 2 diabetic patients. Journal of diabetes and its complications. 2012;26:308-12.

42. Umapathy D, Domadula D, Krishnamoorthy E, Mariappanadar V, Viswanathan V, Ramkumar KM. YKL-40: A biomarker for early nephropathy in type 2 diabetic patients and its association with inflammatory cytokines. Immunobiology. 2018;223:718-27.

43. Zhu HJ, Yang MM, Cheng L, Zhu X, Cheng XB. The changes and clinical significance of serum YKL-40 level in type 2 diabetic patients with chronic kidney disease. Chinese journal of diabetes. 2015;23:720-2.

44. Wang H, Cui K, Xu K, Fang XX. Relationship between serum YKL-40 and atherosclerosis in patients with type 2 diabetic nephropathy. Chinese journal of integrated traditional and western nephrology. 2015;16:57-8.

45. Yu ZX, Wang YZ. YKL-40 and MPV in the clinical value of early diabetic nephropathy. Chinese journal of clinicians. 2017;11:1110-3.

46. Morwessel NJ. The genetic basis of diabetes mellitus. AACN clinical issues. 1998;9:539-54.

47. Treszl A, Szereday L, Doria A, King GL, Orban T. Elevated C-reactive protein levels do not correspond to autoimmunity in type 1 diabetes. Diabetes care. 2004;27:2769-70.

48. Temelkova-Kurktschiev T, Henkel E, Koehler C, Karrei K, Hanefeld M. Subclinical inflammation in newly detected Type II diabetes and impaired glucose tolerance. Diabetologia. 2002;45:151.

49. Vozarova B, Weyer C, Lindsay RS, Bogardus C, Tataranni PA. High white blood cell count is associated with a worsening of insulin sensitivity and predicts the development of type 2 diabetes. Diabetes. 2002;51:455-61.

50. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. Jama. 2001;286:327-34.

51. King GL. The role of inflammatory cytokines in diabetes and its complications. Journal of periodontology. 2008;79:1527-34.

52. Østergaard C, Johansen JS, Benfield T, Price PA, Lundgren JD. YKL-40 is elevated in cerebrospinal fluid from patients with purulent meningitis. Clinical and diagnostic laboratory immunology. 2002;9:598-604.
53. Vos K, Steenbakkers P, Miltenburg AM, Bos E, van Den Heuvel MW, van HogeXand RA, et al. Raised human cartilage glycoprotein-39 plasma levels in patients with rheumatoid arthritis and other inflammatory conditions. Annals of the rheumatic diseases. 2000;59:544-8.

54. Neels JG, Olefsky JM. Inflamed fat: what starts the fire? The Journal of clinical investigation. 2006;116:33-5.

55. Catalano PM, Tzybier ED, Wolfe RR, Calles J, Roman NM, Amini SB, et al. Carbohydrate metabolism during pregnancy in control subjects and women with gestational diabetes. The American journal of physiology. 1993;264:E60-7.

56. Catalano PM, Huston L, Amini SB, Kalhan SC. Longitudinal changes in glucose metabolism during pregnancy in obese women with normal glucose tolerance and gestational diabetes mellitus. American journal of obstetrics and gynecology. 1999;180:903-16.

57. Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney international. 2003;63:225-32.

58. Parving HH, Hommel E, Mathiesen E, Skott P, Edsberg B, Bahnsen M, et al. Prevalence of microalbuminuria, arterial hypertension, retinopathy and neuropathy in patients with insulin dependent diabetes. British medical journal (Clinical research ed). 1988;296:156-60.

59. Cooper ME. Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy. Diabetologia. 2001;44:1957-72.

60. Navarro-Gonzalez JF, Mora-Fernandez C, Muros de Fuentes M, Garcia-Perez J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nature reviews Nephrology. 2011;7:327-40.

61. Schalkwijk CG, Stehouwer CD. Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clinical science (London, England : 1979). 2005;109:143-59.

62. Brix JM, Hollerl F, Koppensteiner R, Scherthaner G, Scherthaner GH. YKL-40 in type 2 diabetic patients with different levels of albuminuria. European journal of clinical investigation. 2011;41:589-96.

63. Yasuda T, Kaneto H, Katakami N, Kuroda A, Matsuoka TA, Yamasaki Y, et al. YKL-40, a new biomarker of endothelial dysfunction, is independently associated with albuminuria in type 2 diabetic patients. Diabetes research and clinical practice. 2011;91:e50-2.

Tables

Table 1. Characteristics of the studies included in this meta-analysis
Study	Region	Year	Type of DM	NO. of DM patients	NO. of healthy controls	Mean age of DM patients	Mean age of healthy controls	Diagnosis criteria
Jian Li et al³¹	China	2015	GDM	35	43	29.3 ± 3.1	30.6 ± 3.8	ADA 2012
Rathcke CN et al²²	Denmark	2005	T2DM	87	158	54.2 (40–70)	NA	National Diabetes Data Group 1979
Thomsen SB et al²³	Denmark	2010	T2DM	45	20	54 (41-73)	50 (34-66)	NA
Schaller G et al²⁴	Austria	2010	GDM	28	30	33 ± 6	33 ± 4	ADA criteria for GDM 2004
Sakamoto F et al²⁵	Japan	2013	T1DM	131	97	24.7±5.9	25.5±2.7	NA
Rinnov AR et al²⁶	Denmark	2015	GDM	10	8	31.1 ± 5.6	28.1 ± 1.8	OGTT 2h GLU≥9.0mM
Abd El Dayem SM et al⁷	Egypt	2015	T1DM	62	30	16.32±1.52	16.13±2.63	NA
Shiasi K et al²⁸	Iran	2017	T1DM	49	43	12.20 ± 3.86	10.95 ± 3.83	ADA
Rekha Kumari D et al²⁹	India	2015	T2DM	30	30	44.4±2.7	45.95±3.4	NA
Song Wei et al³⁰	China	2015	T2DM	210	210	58.29±5.94	59.98±7.53	NA
Ye Kejun et al³¹	China	2016	GDM	50	50	27.2±3.4	28.6±3.8	ADA 2005
Chen Qingfu et al³²	China	2014	T2DM	48	45	NA	48.1±13.7	WHO 1999
Li Peng et al³³	China	2011	T2DM	41	40	54.61±12.37	42.8±13.52	NA
Lin Lijun et al³⁴	China	2019	T2DM	42	40	NA	NA	NA
Xun Shengli et al³⁵	China	2017	GDM	60	20	27.85±4.48	26.82±3.10	Obstetrics and gynecology [M]
Yu Yeye et al³⁶	China	2018	T2DM	60	60	46.48±11.54	47.83±9.68	ADA 2007
Ren Lijue et al³⁷	China	2019	T2DM	30	30	57.20±10.30	54.5±10.44	WHO 1999
Rathcke CN et al³⁸	Denmark	2009	T1DM	58A/46B/45C	55	55.6±10.8A/54±11.1B/49±9.6C	50.5±10.9	NA
Røndbjerg AK et al³⁹	Denmark	2011	T2DM	49A/35B/21C	20	61.3±12.0A/60.1±11.7B/64±13.1C	57.1±7.2	NA
Lee JH et al⁴⁰	South Korea	2012	T2DM	25A/25B/25C	22	55.6±11.1A/57.0±11.6B/56.0±9.8C	52.4±5.8	NA
Han JY et al⁴¹	China	2015	T2DM	260A/246B/232C	210	52.83±4.30A/53.93±4.56B/53.93±4.22C	53.40±4.28	ADA 2007
Umapathy D et al⁴²	India	2018	T2DM	81A/73B/69C	83	54.07±11.09A/55.1±10.9B/57.39±5.39C	52.59±12.9	NA
Zhu Huijing et al⁴³	China	2015	T2DM	23A/24B/23C	20	63.00±13.76A/65.33±9.13B/66.35±7.84C	62.0±11.16	ADA 2007
Authors	Country	Year	Type	Mean/Range	N	Median/Range	Units	
-----------------	---------	------	------	------------	---	--------------	-------	
Wang Huan et al	China	2015	T2DM	21\(^a\)/39\(^c\)	30	NA	68 ±8	
Yu Zhixuan et al	China	2017	T2DM	30\(^a\)/30\(^b\)	30	NA	55.45±7.36	

A: DM patients with normoalbuminuria
B: DM patients with microalbuminuria
C: DM patients with macroalbuminuria

a: mean/range
b: median/range

T1DM: type 1 diabetes mellitus
T2DM: type 2 diabetes mellitus
GDM: gestational diabetes mellitus
ADA: American Diabetes Association
WHO: World Health Organization
ELISA: enzyme linked immunosorbent assay
NA: not available