RMSMP: A Novel Deep Neural Network Quantization Framework with Row-wise Mixed Schemes and Multiple Precisions

Sung-En Chang∗1, Yanyu Li∗1, Mengshu Sun∗1, Weiwen Jiang2, Sijia Liu3, Yanzhi Wang1, Xue Lin1
1Northeastern University, 2George Mason University, 3Michigan State University
{chang.sun, li.yanyu, sun.meng, yanz.wang, xue.lin}@northeastern.edu, wjiang8@gmu.edu, liusiji5@msu.edu

Abstract

This work proposes a novel Deep Neural Network (DNN) quantization framework, namely RMSMP, with a Row-wise Mixed-Scheme and Multi-Precision approach. Specifically, this is the first effort to assign mixed quantization schemes and multiple precisions within layers – among rows of the DNN weight matrix, for simplified operations in hardware inference, while preserving accuracy. Furthermore, this paper makes a different observation from the prior work that the quantization error does not necessarily exhibit the layer-wise sensitivity, and actually can be mitigated as long as a certain portion of the weights in every layer are in higher precisions. This observation enables layer-wise uniformity in the hardware implementation towards guaranteed inference acceleration, while still enjoying row-wise flexibility of mixed schemes and multiple precisions to boost accuracy. The candidates of schemes and precisions are derived practically and effectively with a highly hardware-informative strategy to reduce the problem search space. With the offline determined ratio of different quantization schemes and precisions for all the layers, the RMSMP quantization algorithm uses Hessian and variance based method to effectively assign schemes and precisions for each row. The proposed RMSMP is tested for the image classification and natural language processing (BERT) applications, and achieves the best accuracy performance among the state-of-the-arts.

1. Introduction

With tremendous success of the deep learning or deep neural networks (DNNs), there exist urgent needs for deployments of inference models onto edge-computing platforms/devices. As a major type of model compression technique, the DNN quantization becomes an essential method to reduce the computation, memory, and storage requirements in on-device inference, especially for platforms with capability of customized architecture design, such as FPGA devices and ASIC chips. Generally speaking, DNN quantization learns DNN models in low bit-width representation with accuracy performance close to that of the full-precision models, while accelerating inference speed.

Various quantization schemes have been investigated including binary [5, 6, 26, 22], ternary[20, 15, 39], Fixed-point (Fixed) [38, 4, 12, 16, 3, 11], Power-of-Two (PoT) [24, 37, 19, 36], Additive Power-of-Two (APoT) [21], etc. Those schemes have diverse accuracy and hardware performance. Binary and ternary significantly reduce computation by eliminating multiplication operations, but experience relatively large accuracy loss (> 2% in general). Low bit-width Fixed quantization has better accuracy.

![Figure 1. The proposed DNN quantization framework with row-wise mixed schemes and multiple precisions, which assigns quantization scheme and precision to filters of the weight tensor (or rows of the weight matrix). It features (i) layer-wise uniformity to fulfill the requirement of practical hardware implementation, (ii) row-wise flexibility for mixed schemes and multiple precisions, (iii) hardware-informative selection of candidate schemes and precisions (bit-widths) for significantly reducing the algorithm search space, and (iv) superior accuracy performance among the state-of-the-arts.](image-url)
performance. For example, 4-bit Fixed can achieve negligible accuracy loss comparing with its 32-bit floating-point counterpart, although it still needs multiplication operations during inference computation. Different from binary, ternary, and Fixed, PoT is a non-linear quantization scheme, where with quantization levels as power-of-two numbers, multiplications can be replaced with bit shifting operations, thereby reducing computation to speedup inference. However, PoT still results in moderate accuracy loss ($1\% \sim 2\%$), which is due to the rigid resolution issue [21] that exhibits a high resolution around the mean and a low resolution at the tails of weight distribution and that cannot be resolved even with higher bit-width. Therefore, APoT was proposed by representing quantization levels as the sum of multiple power-of-two numbers, overcoming the rigid resolution issue of PoT, while enjoying non-multiplication operations.

While exploring various quantization schemes, people found that the first and the last layers are of importance for preserving accuracy, and therefore in the above-mentioned works, the first and the last layers are either unquantized (in 32-bit floating-point) or quantized with no fewer than 8 bits. Motivated by this, the layer-wise multi-precision quantization has been well investigated in [31, 33, 29, 10, 9, 34, 28], where various methods/algorithms have been used to deal with the large search space of the precision assignment for both weights and activations in each layer.

This work proposes a novel DNN quantization framework, namely RMSMP, with a Row-wise Mixed-Scheme and Multi-Precision approach. Figure 1 illustrates the proposed quantization framework on the DNN (a) weight tensor and (b) weight matrix. Specifically, each filter in the weight tensor or each row in the weight matrix is assigned a combination of quantization scheme and precision. The candidates of schemes and precisions are derived practically for facilitating hardware implementation, and effectively for speeding up inference with the given resources on the hardware platforms/devices, while with the capability to preserve the accuracy as the unquantized (32-bit floating-point) models. This highly hardware-informative quantization strategy significantly reduces the search space of the DNN quantization problem, making our framework distinctive from existing multi-precision quantization works.

This is the first effort to apply mixed quantization schemes and multiple precisions within layers, targeting for simplified operations in hardware inference, while preserving the accuracy. Specifically, two quantization schemes i.e., Power-of-Two (PoT) and Fixed-point (Fixed), and two precisions i.e., 4-bit and 8-bit are adopted and explored for quantization on weights and activations, to reduce inference computation and preserve accuracy. Furthermore, as demonstrated by the previous works that either implicitly use higher precisions for the first and the last layers, or explicitly assign multiple precisions to different layers, it is essential to use higher precisions at least for parts of the model, to boost the accuracy of quantized models close to that of the full-precision models. However, different from existing works, this paper makes the observation that this does not necessarily relate to layer-wise sensitivity, instead, as long as a certain portion of the weights in every layer use higher precisions, the quantization error can be mitigated. This observation enables layer-wise uniformity towards practical hardware implementation of quantized models, while still enjoying row-wise flexibility of mixed schemes and multiple precision. The contributions of our quantization framework are summarized as follows:

- A novel row-wise mixed-scheme and multiple-precision quantization approach.
- A highly hardware-informative solution strategy significantly reducing the problem search space.
- The best accuracy performance when under the same equivalent precision as the existing works.
- The significant inference speedup on real devices, comparing to the network-wise uniform low-bit quantization i.e., the speed upper bound of the popular layer-wise multi-precision approaches.

2. Related Work

2.1. Quantization Scheme

2.1.1 Linear Quantization Schemes

Linear quantization schemes with uniform quantization levels include binary, ternary, and fixed-point. Both binary and ternary quantization use extremely low precision for DNN models, i.e., binarized (with values of $-1, +1$) or ternarized (with values of $-1, 0, +1$) levels. Representative binary quantization methods include Binaryconnect [5], Binarized Neural Network (BNN) [6], XNOR-Net [26], and ABC-Net [22]. With weights constrained to $\{-1, +1\}$, multiplications can be replaced by additions/subtractions, which can even be eliminated by using XNOR and AND operations if activations are quantized to binary as well. Ternary quantization schemes are implemented in TWN [20], TTQ [39], and [15]. Ternary networks also benefit from non-multiplication operations. Although binary and ternary quantization can significantly reduce computation by simplifying operations, they introduce relatively large accuracy loss. From the above studies, accuracy typically degrades by $> 5\%$ under binary, and $2\% \sim 3\%$ for ternary.

Fixed-point (Fixed) quantization schemes use more bits than binary and ternary to preserve accuracy, and have been
implemented with different methods/algorithms. DoReFaNet [38] first explored it by introducing hyperbolic tangent transformation to weights and activations, with scaling factors to minimize quantization error. PACT [4] improved this method by adding a parameterized clipping threshold to activations. DSQ [12] developed differentiable soft quantization, which evolves training method to gradually approximate the uniform quantizer. QIL [16] parameterized the quantization interval and trained it with task loss, avoiding access to the original training data. µL2Q [3] introduced data distribution loss during training to minimize quantization error. LSQ [11] proposed a differentiable method to learn the quantizer for each layer jointly with parameters. Generally, 4-bit fixed-point quantized models have negligible accuracy loss comparing with 32-bit floating-point models, although cannot get rid of the expensive multiplications.

2.1.2 Non-Linear Quantization Schemes

Non-linear quantization schemes use non-uniform quantization levels, such as the Power-of-Two (PoT) scheme, where quantization levels are power-of-two numbers. The multiplication of a weight (in PoT) and an input (in Fixed) can be replaced with the bit shifting operation. And therefore PoT can have higher speedup than the Fixed scheme for the DNN inference. PoT quantization was adopted first in LogQuant [24], and then with model accuracy enhancement techniques in INQ [37], extremely low bit neural network with ADMM [19], and LQ-Nets [36]. However, PoT suffers from the rigid resolution phenomenon, and cannot attain higher model accuracy even with increased bit-width. Particularly, 4-bit PoT quantization will result in accuracy loss of 1% ~ 2%

To overcome the limitation, Additive Power-of-Two (APoT) [21] represents quantization levels as the sum of multiple power-of-two numbers to mitigate the accuracy loss. Then the multiplication of an APoT quantized weight and a Fixed input can be replaced with bit shifting operations and additions. Furthermore, MSQ [2] leverages a mixture of a variant APoT and Fixed to maximize the resource utilization on FPGA devices, while in this work, we use mixed schemes of PoT and Fixed, achieving even higher accuracy and further reducing inference computation. All of the above works use the single-precision quantization.

2.2. Single-Precision vs Multi-Precision

A common practice in the above-mentioned quantization works is to keep the first and last layers unquantized (in 32-bit floating-pointing for weights/activations i.e., W32A32) or quantized with no fewer than 8 bits, with the purpose of preserving accuracy, which was first proposed in [13]. Spurred by that, another line of works [31, 33, 29, 10, 9, 34, 28] explore the layer-wise multi-precision quantization approach to boost the accuracy of quantized models.

To deal with the large search space of layer-wise precision assignment for both weights and activations, different methods/algorithms have been leveraged. HAQ [31] uses the reinforcement learning to train an agent that decides the bit-width of each layer. DNAS [33] proposes a multi-precision quantization-aware training technique, where the bit-width search is converted into a network architecture search. Mixed Precision DNNs [29] shows that bit-widths can be determined by learnable parameters, whose gradients are estimated using Straight Through Estimator (STE). HAWQ [10], HAWQ-V2 [9], and PyHessian [34] solve Hessian matrix to determine bit-width for each layer. The general idea is to assign more bits to layers that are sensitive to quantization error. Q-BERT [28] also uses Hessian-based multi-precision quantization to the BERT [7] model for the natural language processing application.

There are two frameworks applying multi-precision within layers. RVQuant [25] quantizes a small percentage of weights with a higher precision irregularly within layers, and therefore could not achieve inference speedup comparing with a network-wise uniform low-bit quantization. AutoQ [23] trains a reinforcement learning agent to assign precisions down to the kernel level, which is computationally expensive. None of them considers mixed schemes.

3. Proposed RMSMP Quantization

This section discusses the proposed RMSMP quantization framework with a highly hardware-informative strategy, by introducing the scheme selection, precision exploration, and the algorithm solution.

3.1. Mixed Schemes for Simplified Operations

The Fixed-point (Fixed) quantization scheme has superior accuracy performance, and the Power-of-Two (PoT) is the most computationally efficient quantization scheme (with still acceptable accuracy performance) to speedup inference since multiplications can be replaced by bit shifting operations. Therefore, this work proposes a novel row-wise mixed-scheme quantization approach with Fixed for preserving accuracy and PoT for reducing computation of inference. Specifically, for each row in the weight matrix or each filter in the weight tensor, the weights are either quantized into the Fixed scheme or the PoT scheme. The row-wise scheme assignment instead of a layer-wise scheme assignment is used, because the hardware inference execution is conducted layer by layer on the same pieces of computing resource – GEMMFixed i.e., the GEMM (general matrix multiply) core for processing Fixed weights, and GEMMPEG i.e., the GEMM core for processing PoT weights. (Note that in PoT, activations are also quantized into Fixed to support the bit shifting operation in replacement of multiplication.)
The ratio of the two schemes is fixed based on the hardware characteristics, and is the same for different layers to keep the layer-wise uniformity in hardware design such that inference speedup can be obtained in the layer-by-layer inference execution. In ASIC chips, it is desirable to maximize the portion of the PoT quantized rows to the extent that it does not result in accuracy loss. In FPGA devices, there are heterogeneous computing resources i.e., DSPs to implement the \texttt{GEMM}_\texttt{fixed} core and LUTs to implement the \texttt{GEMM}_\texttt{pot} core. Therefore, the ratio of the two schemes could be \textit{off-line} determined, such that the LUT utilization is high (while with 100% DSP utilization) to speed up inference and also it should not hurt accuracy.

In the training algorithm of our RMSMP quantization, the row-wise scheme assignment is based on the weight distribution of the particular row. If the weight distribution has a smaller variance, the PoT scheme is preferred; otherwise, the Fixed scheme is preferred. The threshold on the variance can be used based on the offline determined ratio of the two schemes.

3.1.1 Fixed-Point (Fixed) Quantizer

The Fixed scheme uses uniform quantization levels, with the quantized weights mapped as a scaling factor times the quantization levels. With \(m \)-bit Fixed, the quantized weights should be from the following set:

\[
Q^{\text{Fixed}}(m, \alpha) = \pm \alpha \times \left\{ 0, \frac{1}{2^{m-1} - 1}, \frac{2}{2^{m-1} - 1}, \ldots, 1 \right\}. \tag{1}
\]

where \(\alpha \) denotes the scaling factor. Then the quantizer function from a 32-bit floating point weight \(w \) to a Fixed quantized weight \(\hat{w} \) is

\[
\hat{w} = \prod_{Q^{\text{Fixed}}(m, \alpha)} w = \alpha \cdot h^{-1}\left(\frac{1}{2^{m-1}} \cdot \text{round}\left((2^m - 1) \cdot h\left(\left\lfloor w, \alpha \right\rfloor \right) \right) \right), \tag{2}
\]

where \(h(\cdot) \) shifts a value within \([-1, +1]\) into the range of \([0, 1]\), e.g., \(h(x) = x/2 + 0.5 \), and \(\left\lfloor w, \alpha \right\rfloor \) clips \(w \) according to

\[
\left\lfloor w, \alpha \right\rfloor = \begin{cases}
-1, & w < -\alpha \\
-\alpha \leq w \leq \alpha, & w/\alpha \\
1, & w > \alpha
\end{cases} \tag{3}
\]

3.1.2 Power-of-Two (PoT) Quantizer

The PoT scheme uses power-of-two numbers as quantization levels. With \(m \)-bit PoT, the quantized weights should be from the following set:

\[
Q^{\text{Pot}}(m, \alpha) = \pm \alpha \times \left\{ 0, \frac{1}{2^{2m-1-2}}, \frac{1}{2^{2m-1-3}}, \ldots, 1 \right\}. \tag{4}
\]

Then the quantizer function from a 32-bit floating point weight \(w \) to a PoT quantized weight \(\hat{w} \) is

\[
\hat{w} = \prod_{Q^{\text{Pot}}(m, \alpha)} w = \alpha \cdot h^{-1}\left(2^{\text{round}(\log_2 h')} \right), \quad \begin{cases}
2^{-2^m+1}, & h' > 2^{-2^m+1} \\
0, & h' \leq 2^{-2^m+1}
\end{cases} \tag{5}
\]

where \(h' = h\left(\left\lfloor w, \alpha \right\rfloor \right) \).

3.2 Multiple Precisions for Boosting Accuracy

Motivated by the previous work that either implicitly use higher precisions for the first and the last layers, or explicitly assign multiple precisions to different layers, it is essential to use higher precisions for some parts of the model to boost the accuracy. However, the layer-wise multi-precision approach does not compatible with the layer-by-layer inference execution on the same pieces of hardware. In other words, the layer-wise multi-precision approach incurs large implementation overhead, which may neutralize the expected inference speedup.

Figure 2 demonstrates the proposed multi-precision approach aligned with the row-wise mixed schemes. The majority of the rows use the 4-bit precision for weights/activations i.e., PoT-W4A4 and Fixed-W4A4, because 2-bit has large accuracy loss and 3-bit is not suitable for hardware implementation, which prefers operands in 2-bit, 4-bit, 8-bit, etc. To boost accuracy, a higher precision with 8-bit weights and 4-bit activations is used on the Fixed scheme, i.e., Fixed-W8A4. The PoT scheme is not applied the higher precision because of its rigid resolution issue. The ratio of PoT-W4A4 : Fixed-W4A4 : Fixed-W8A4 can be determined offline, and is the same across different layers, in order to keep the layer-wise uniformity in the hardware implementation, such that little overhead is incurred during the layer-by-layer inference execution and inference speedup can be guaranteed. In general, a larger portion of the PoT-W4A4 can help with inference speedup, but will degrade accuracy. By using a small portion of Fixed-W8A4, the accuracy degradation due to the PoT scheme can be mit-
the Straight Through Estimator \([1, 35]\) \(W4A4,\) and Fixed-\(W8A4\) down to the filter level for each of quantization scheme and precision \((\text{PoT-}W4A4,\) Fixed-\(W8A4)\) vs Fixed-\(W4A4\) based on the variances of the higher precision. And for the rest filters, we determine assignments to the filters of each layer, we use the Hessian-based sue during the backpropagation of the quantization process and precisions while solving the unavailable gradient is-
can be used to quantize the model into the specified schemes and precisions while solving the unavailable gradient issue during the backpropagation of the quantization process from continuous values into discrete values.

In order to determine the filters with the higher precision (Fixed-W8A4), we extend from the Hessian based method in HAWQ \([10]\) that by computing the max eigenvalue of the Hessian matrix of each filter, the filters with top 5% eigenvalues get assigned the higher precision. Hessian matrix is
tigated, as shown in Figure 3. This work fixes the percentage of Fixed-W8A4 as 5%, as it is enough to mitigate the accuracy degradation and an even smaller percentage only results in marginal further speedup of inference.

3.3. RMSMP Quantization Algorithm

The RMSMP quantization algorithm can train a DNN model from scratch or quantize a pre-trained model into a quantized one, such that for each layer, the numbers of filters quantized into PoT-W4A4, Fixed-W4A4, and Fixed-W8A4 follow the predefined ratio of \(S_{\text{PoT-4}} : S_{\text{Fixed-4}} : S_{\text{Fixed-8}} = A : B : C,\) where \(A + B + C = 100.\)

For the assignment of quantization schemes and precisions to the filters of each layer, we use the Hessian-based method to determine which filters should use Fixed-W8A4 (higher precision). And for the rest filters, we determine PoT-W4A4 vs Fixed-W4A4 based on the variances of the weights in each filter. Once it is determined the assignment of quantization scheme and precision (PoT-W4A4, Fixed-W4A4, and Fixed-W8A4) down to the filter level for each layer, the Straight Through Estimator (STE) \([1, 35]\)

\[
\text{Forward} : y = \text{round}(x) \\
\text{Backward} : \frac{\partial y}{\partial x} = 1_{x \in \mathbb{R}} \tag{6}
\]
can be used to quantize the model into the specified schemes and precisions while solving the unavailable gradient issue during the backpropagation of the quantization process from continuous values into discrete values.

In the top row, only Fixed-W4A4 is mixed with PoT-W4A4. In the bottom row, 5% of Fixed-W8A4 is used, besides PoT-W4A4 and Fixed-W4A4.

Algorithm 1: RMSMP Quantization

```
input : 32-bit floating-point DNN model \(M\) with weights \(W\); Ratio \((\mathbb{R})\) of \(S_{\text{PoT-4}} : S_{\text{Fixed-4}} : S_{\text{Fixed-8}}\)
output: Quantized model \(\hat{M}\)
1  \(g \leftarrow \frac{\partial \text{Loss}}{\partial W};\)
2  foreach layer \(i\) do
3      foreach filter \(W_{ij}\) in \(i\) do
4          // power iteration
5          Initialize random vector \(v_0\):
6          foreach \(k \in \{1, \ldots, \text{max}_k\}\) do
7              Normalize \(v_{k-1} \leftarrow \frac{v_{k-1}}{||v_{k-1}||};\)
8              \(v_k \leftarrow \frac{\partial (g^T v_{k-1})}{\partial W_{ij}};\) // Eq. 8
9              \(\lambda_{W_{ij}} \leftarrow \max(v_{\text{max}_k});\)
10             if \(\lambda_{W_{ij}}\) in top 5% then
11                \(S_{W_{ij}} \leftarrow S_{\text{Fixed-4}};\)
12             else
13                Sort \(W_{ij}\) by variance, get threshold \(\theta\) by \(\mathbb{R};\)
14                \(S_{W_{ij}} \leftarrow S_{\text{PoT-4}}\) if variance lower than \(\theta;\)
15                \(S_{W_{ij}} \leftarrow S_{\text{Fixed-4}}\) if variance higher than \(\theta;\)
16  foreach epoch do
17      foreach batch do
18          // forward propagation
19          foreach layer \(i\) do
20              \(\text{out}_i \leftarrow \text{proj}_k(\text{input}) \cdot \text{proj}_k(W_i);\)
21          // back propagation
22          \(\frac{\partial \text{Loss}}{\partial W_i} \leftarrow \frac{\partial \text{Loss}}{\partial \text{proj}_k(W_i)};\) // STE Eq. 6
23  Return \(\hat{M} \leftarrow M\{\text{proj}_k(W)\};\)
```

the second order derivatives of weight parameters, as following

\[
H = \frac{\partial^2 \text{Loss}}{\partial W^2} = \frac{\partial g^T}{\partial W} \tag{7}
\]

where the first order gradient \(g\) can be calculated through normal backpropagation process.

To solve the eigenvalues of Hessian matrix \(H\) (i.e., \(\lambda_H\)) effectively, we employ the power iteration method as proposed in \([10, 28]\). By introducing an auxiliary variable \(v\), we loop \(v_{k+1} = H \cdot v_k\) as follows:

\[
v_{k+1} = H \cdot v_k = \frac{\partial g^T}{\partial W} \cdot v_k = \frac{\partial (g^T v_k)}{\partial W} \tag{8}
\]

so that \(\lim_{k \to \infty} v_{k+1} / v_k = \lambda_H \) and the last equality is proved in \([10]\). With Eq. 8, we can proceed to solve \(v_{k+1}\) given \(v_k\) by computing the right term through simple backpropagation, thus solving \(\lambda_H\).

Further, the scheme assignment is determined based on the variances of the filters. Finally, after the filters are assigned the quantization schemes and precisions, we can train our quantized model through STE. Please note that we update the assignments of filters for every 10 epochs. The detailed steps are shown in Algorithm 1.
Table 1. Results from different quantization methods for MobileNet-v2, ResNet-18, and ResNet-50 models on CIFAR-10, CIFAR-100, and ImageNet datasets. Baselines are unquantized models with 32-bit floating-point weights/activations i.e., W32A32. We explore different quantization schemes including Fixed-Point (Fixed), Power-of-Two (PoT), Additive Power-of-Two (APoT), and their combinations (PoT + Fixed with a ratio of 1:1, and APoT + Fixed with a ratio of 3:2). For these schemes, we report accuracy with 4-bit precision for weights/activations i.e., W4A4; and the accuracy in brackets is by relaxing the precision of the first and last layers to W8A8, while other layers are still in W4A4. In the last two methods, row-wise multi-precision is introduced by (i) incorporating 4-bit Fixed with 8-bit Fixed (Fixed-W4A4 + Fixed-W8A4) with a ratio of 95:5, and (ii) incorporating PoT-W4A4, Fixed-W4A4 and Fixed-W8A4 (RMSMP), with a ratio of 65:30:5. In all the quantization methods with mixed schemes and multiple precisions, the combination is row-wise within a layer.

Quantization Method	MobileNet-v2 Accuracy (%)	ResNet-18 Accuracy (%)	ResNet-50 Accuracy (%)				
	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	
CIFAR-10							
Baseline (W32A32)	92.51	-	93.62	-	93.91	-	
Fixed-W4A4	91.76 (92.34)	-	92.9 (93.43)	-	93.16 (93.73)	-	
PoT-W4A4	90.92 (91.34)	-	92.14 (92.97)	-	92.53 (93.15)	-	
APoT-W4A4	91.83 (92.72)	-	92.94 (93.47)	-	92.87 (93.68)	-	
PoT-W4A4 + Fixed-W4A4	91.38 (91.77)	-	92.66 (93.21)	-	93.14 (93.76)	-	
APoT-W4A4 + Fixed-W4A4 [2]	91.99 (92.55)	-	92.98 (93.65)	-	93.22 (93.77)	-	
Fixed-W4A4 + Fixed-W8A4	92.54	-	93.69	-	94.11	-	
RMSMP	**92.58**	-	**93.72**	-	**94.03**	-	
CIFAR-100							
Baseline (W32A32)	71.48	91.98	74.49	92.70	77.77	94.00	
Fixed-W4A4	70.22 (71.16)	90.88 (91.63)	73.88 (74.37)	91.72 (92.31)	76.67 (77.41)	93.22 (93.85)	
PoT-W4A4	67.11 (68.68)	89.21 (90.06)	72.97 (73.88)	91.65 (92.14)	74.58 (76.83)	92.22 (92.74)	
APoT-W4A4	70.21 (71.13)	90.85 (91.69)	73.97 (74.33)	92.03 (92.49)	76.58 (77.56)	92.94 (93.55)	
PoT-W4A4 + Fixed-W4A4	68.94 (70.37)	90.05 (90.89)	73.41 (74.12)	91.68 (92.25)	76.95 (77.28)	92.87 (93.66)	
APoT-W4A4 + Fixed-W4A4 [2]	70.25 (71.50)	90.92 (91.82)	74.03 (74.60)	92.05 (92.63)	76.97 (77.31)	92.99 (93.86)	
Fixed-W4A4 + Fixed-W8A4	71.52	-	91.99	74.54	92.61	77.92	94.18
RMSMP	**71.51**	**91.97**	**74.61**	**92.69**	**77.85**	**94.13**	
ImageNet							
Baseline (W32A32)	71.88	90.29	70.25	89.48	76.51	93.09	
Fixed-W4A4	67.23 (69.26)	86.03 (88.18)	68.66 (69.72)	87.54 (88.67)	75.58 (76.22)	92.01 (92.43)	
PoT-W4A4	65.88 (67.93)	84.83 (86.63)	67.11 (68.20)	85.93 (87.14)	74.77 (75.03)	91.66 (92.22)	
APoT-W4A4	67.76 (68.97)	86.42 (88.17)	68.48 (70.70)	87.92 (89.60)	75.49 (76.60)	92.93 (93.10)	
PoT-W4A4 + Fixed-W4A4	66.20 (68.54)	85.66 (87.65)	67.98 (68.94)	86.75 (88.66)	75.85 (76.19)	91.97 (92.77)	
APoT-W4A4 + Fixed-W4A4 [2]	67.31 (68.99)	86.11 (88.04)	69.22 (70.27)	88.33 (89.42)	76.11 (76.22)	92.58 (92.86)	
Fixed-W4A4 + Fixed-W8A4	68.98	89.04	70.48	89.52	76.68	93.44	
RMSMP	**69.02**	**89.07**	**70.73**	**89.62**	**76.62**	**93.36**	

4. Evaluation

4.1. Experiment Setup

Our RMSMP is evaluated on the image classification and natural language processing (NLP) applications. All the model training and quantization are conducted on NVIDIA TITAN RTX and GeForce RTX 2080 Ti GPUs, with CUDA 10.2 and PyTorch 1.5 frameworks on Ubuntu 18.04 operating system. The quantization algorithm utilizes the same data augmentation techniques as those used in training of baseline (32-bit floating-point) models. Training tricks such as step or cosine learning rate decay and weight regularization are also the same for training the baselines and in the quantization algorithm.

The evaluated models on image classification tasks include ResNet-18, ResNet-50 [14] and MobileNet-v2 [27] on CIFAR-10, CIFAR-100 [17] and ImageNet ILSVRC-2012 [18] datasets. Baseline models in 32-bit floating-point representation for CIFAR-10 and CIFAR-100 datasets are trained from scratch for 150 epochs, then quantized for 150 epochs. For ImageNet dataset, pre-trained 32-bit floating-point models are quantized for 90 epochs. The initial learning rates are 8×10^{-3} for CIFAR-10, 4×10^{-3} for CIFAR-100, and 1×10^{-2} for ImageNet. For NLP tasks with BERT [8] models, we evaluate on the Stanford Sentiment Treebank (SST-2) and Multi-Genre Natural Language Inference (MNLI) datasets from the General Language Understanding Evaluation (GLUE) [30] benchmark. The pre-trained BERT models are from HuggingFace Transformer [32]. Quantization and finetuning are simultaneously performed for 3 epochs with the initial learning rate of 2×10^{-5}. Besides, for all models, the maximum iteration...
The number of the power iteration method is set to 20.

In addition to the model accuracy, we demonstrate the hardware efficiency (in terms of resource utilization, throughput, and latency) of the proposed RMSMP compared with other quantization methods through implementing the architectures with heterogeneous GEMM cores on FPGA devices, i.e., Zynq XC7Z020 and XC7Z045. Different ratios of quantization schemes/precisions are realized by adjusting the ratio among the processing element (PE) array sizes in the GEMM cores. Our optimal RMSMP implementation utilizes three heterogeneous GEMM cores, i.e., GEMM\textsubscript{Fixed}, GEMM\textsubscript{PoT}, GEMM\textsubscript{APoT + Fixed} using 4-bit precision, and comparable accuracy to the Fixed-W4A4 + Fixed-W8A4 method.

The results in Tables 2, 3, and 4 demonstrate the effectiveness of the proposed RMSMP method for three models on three datasets. RMSMP generally achieves 0.5% ~ 1.5% higher top-1 accuracy than methods with Fixed, PoT, APoT, PoT + Fixed, and APoT + Fixed using 4-bit precision, and comparable accuracy to the Fixed-W4A4 + Fixed-W8A4 method.

The results in Tables 2, 3, and 4 demonstrate the effectiveness of the proposed RMSMP method for three models, i.e., ResNet-18, ResNet-50, and MobileNet-V2, respectively, on ImageNet using mainly 4-bit precision. For ResNet-18, RMSMP increases the top-1 accuracy by 0.48% compared with the baseline, and outperforms existing methods by up to 4.81%. For ResNet-50, RMSMP increases the baseline accuracy by 0.11%, and outperforms existing methods by up to 5.22%. As for MobileNet-V2, RMSMP achieves the least accuracy loss, with up to 7.62% increase.

Table 1. Comparisons with existing quantization works for ResNet-18 on ImageNet, using the (equivalent) 4-bit precision.

Method	Approach	Bit-Width	First/Last Layer	Top-1 (\%)	Top-5 (\%)	
Baseline	-	W32A32	× ×	70.25	89.48	
Dorefa [38]	Linear	W4A4	× ×	68.10	88.10	
PACT [4]	Linear	W4A4	× ×	69.20	89.00	
DSQ [12]	Linear	W4A4	× ×	69.56	N/A	
QIL [16]	Linear	W4A4	× ×	70.10	N/A	
µL2Q [3]	Linear	W4A4	× ×	65.92	86.72	
APoT [21]	Non-Lin.	W4A4	× ×	8bit 8bit	70.70	89.60
LQ-Nets [36]	Non-Lin.	W4A4	× ×	69.30	88.80	
DNAS [33]	MP-Lin.	Mixed	× ×	70.64	N/A	
MPDNN [29]	MP-Lin.	Mixed	✓ ✓	70.08	N/A	
MSQ [2]	MS	W4A4	× ×	70.27	89.42	
RMSMP (Ours)	MP-MS	W4A4*	✓ ✓	70.73	**89.62**	

Table 2. Comparisons with existing quantization works for ResNet-50 on ImageNet, using the (equivalent) 4-bit precision.

Method	Approach	Bit-Width	First/Last Layer	Top-1 (\%)	Top-5 (\%)
Baseline	-	W32A32	× ×	76.51	93.09
Dorefa [38]	Linear	W4A4	× ×	71.40	88.10
PACT [4]	Linear	W4A4	× ×	76.50	93.30
APoT [21]	Non-Lin.	W4A4	× ×	76.60	93.10
LQ-Nets [36]	Non-Lin.	W4A4	× ×	75.40	92.40
HAQ [31]	MP-Lin.	Mixed	8bit ✓	76.15	92.89
MSQ [2]	MS	W4A4	× ×	76.22	92.86
RMSMP (Ours)	MP-MS	W4A4*	✓ ✓	76.62	**93.36**

Table 3. Comparisons with existing quantization work for MobileNet-V2 on ImageNet, using the (equivalent) 4-bit precision.

Method	Approach	Bit-Width	First/Last Layer	Top-1 (\%)	Top-5 (\%)
Baseline	-	W32A32	× ×	71.88	90.29
PACT [4]	Linear	W4A4	× ×	61.40	N/A
DSQ [12]	Linear	W4A4	× ×	64.80	N/A
HAQ [31]	MP-Lin.	Mixed	8bit ✓	67.01	87.46
MSQ [2]	MS	W4A4	× ×	68.99	88.04
RMSMP (Ours)	MP-MS	W4A4*	✓ ✓	**69.02**	**89.07**

Table 4. Comparisons with existing work for MobileNet-V2 on ImageNet, using the (equivalent) 4-bit precision.

Method	Approach	Bit-Width	Evaluation Result	Metric (\%)
Baseline	-	W32A32	mm-Acc.	84.90
Fixed	Linear	W4A4	mm-Acc.	84.71
PoT	Non-Lin.	W4A4	mm-Acc.	84.79
PoT + Fixed	Mixed	W4A4	mm-Acc.	84.51
QBERT [28]	MP-Lin.	Mixed	mm-Acc.	84.17
RMSMP (ours)	MP-MS	W4A4*	✓ ✓	**84.83**

Table 5. Comparisons with existing work for the BERT model on SST-2 and MNLI datasets, using the (equivalent) 4-bit precision.

The evaluation metric of SST-2 is accuracy, while the evaluation metric of MNLI is mismatched accuracy (mm-Acc.). For both metrics, a higher value is better.
on top-1 accuracy than other methods. In addition, comparisons on a large language model BERT are provided in Table 5. The BERT is a large model with higher redundancy. And therefore it is easy to achieve negligible accuracy loss after quantization. All the quantization methods in Table 5 perform very well and RMSMP yields slightly better accuracy than other methods on SST-2 and MNLI datasets.

4.3. Hardware Efficiency

The proposed RMSMP method is compared with other quantization methods on two FPGA boards with the ResNet-18 model on the ImageNet dataset, as displayed in Table 6. The total amount of resources on a specific FPGA board determines the optimal ratio of PoT-W4A4 : Fixed-W4A4 : Fixed-W8A4 within each layer. The first and last layers are quantized into either 8-bit Fixed, or the same as other layers (denoted by ✓). The last two rows are by MSQ [2] with the ratios of APoT-W4A4 and Fixed-W4A4 as 60:40 and 67:33, respectively. Note that MSQ uses APoT instead of PoT, and does not use multi-precision within layers. The proposed RMSMP method is compared with other methods in terms of accuracy as well as resource utilization rate, throughput, and latency on two FPGAs. For each FPGA board, the utilization ratios of look-up tables (LUT) and digital signal processing blocks (DSP) under each quantization method are provided in percentage. The utilization of LUT demonstrates the effectiveness of quantization method on inference speedup. For XC7Z020, the total numbers of LUTs and DSPs are 53.2K and 220, respectively. For XC7Z045, the total numbers of LUTs and DSPs are 218.6K and 900.

Table 6. Implementations of different quantization methods on two FPGA boards for ResNet-18 on ImageNet, using the (equivalent) 4-bit precision. For methods (1)∼(8) and the two RMSMP, each quantization method corresponds to a ratio of PoT-W4A4 : Fixed-W4A4 : Fixed-W8A4 within each layer. The first and last layers are quantized into either 8-bit Fixed, or the same as other layers (denoted by ✓). The last two rows are by MSQ [2] with the ratios of APoT-W4A4 and Fixed-W4A4 as 60:40 and 67:33, respectively. Note that MSQ uses APoT instead of PoT, and does not use multi-precision within layers. The proposed RMSMP method is compared with other methods in terms of accuracy as well as resource utilization rate, throughput, and latency on two FPGAs. For each FPGA board, the utilization ratios of look-up tables (LUT) and digital signal processing blocks (DSP) under each quantization method are provided in percentage. The utilization of LUT demonstrates the effectiveness of quantization method on inference speedup. For XC7Z020, the total numbers of LUTs and DSPs are 53.2K and 220, respectively. For XC7Z045, the total numbers of LUTs and DSPs are 218.6K and 900.

5. Conclusion

This work proposes a novel DNN quantization framework, namely RMSMP, with a Row-wise Mixed-Scheme and Multi-Precision approach, featuring (i) layer-wise uniformity to fulfill the requirement of practical hardware implementation, (ii) row-wise flexibility for mixed schemes and multiple precisions, (iii) hardware-informative selection of candidate schemes and precisions (bit-widths) for significantly reducing the algorithm search space, and (iv) best accuracy performance among the state-of-the-arts. This paper adopts a highly hardware-informative solution strategy to reduce the problem search space. Evaluating with the image classification and natural language processing applications, our RMSMP achieves superior accuracy performance. And we also evaluate our RMSMP with FPGA devices.

Acknowledgment

This work is partly supported by the National Science Foundation CCF-1901378, and CCF-1937500. Any opinions, findings, and conclusions or recommendations in this material are those of the authors and do not necessarily reflect the views of NSF.
References

[1] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through stochastic neurons for conditional computation. *arXiv preprint arXiv:1308.3432*, 2013. 5

[2] Sung-En Chang, Yanyu Li, Mengshu Sun, Runbin Shi, Hua-fen K-H So, Xuehai Qian, Yanzhi Wang, and Xue Lin. Mix and match: A novel fpga-centric deep neural network quantization framework. In *Proceedings of the 2021 IEEE International Symposium on High Performance Computer Architecture*, 2021. 3, 6, 7, 8

[3] Gong Cheng, Lu Ye, Li Tao, Zhang Xiaofan, Hao Cong, Chen Deming, and Chen Yao. µl2q: An ultra-low loss quantization method for dnn. *The 2019 International Joint Conference on Neural Networks (IJCNN)*, 2019. 1, 3, 7

[4] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayakalshmi Srinivasan, and Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quantized neural networks. *arXiv preprint arXiv:1805.06085*, 2018. 1, 3, 7

[5] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural networks with binary weights during propagations. In *Advances in neural information processing systems (NeurIPS)*, pages 3123–3131, 2015. 1, 2

[6] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1. *arXiv preprint arXiv:1602.02830*, 2016. 1, 2

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018. 3

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pages 4171–4186, 2019. 6

[9] Zhen Dong, Zhewei Yao, Yaohui Cai, Daiyaan Arfeen, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Hawq-v2: Hessian aware trace-weighted quantization of neural networks. *arXiv preprint arXiv:1911.03852*, 2019. 2, 3

[10] Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Hawq: Hessian aware quantization of neural networks with mixed-precision. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, pages 293–302, 2019. 2, 3, 5

[11] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmendra S Modha. Learned step size quantization. *International Conference on Learning Representations (ICLR)*, 2019. 1, 3

[12] Ruihao Gong, Xionglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu, Jiazhen Lin, Fengwei Yu, and Junjie Yan. Differentiable soft quantization: Bridging full-precision and low-bit neural networks. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, pages 4852–4861, 2019. 1, 3, 7

[13] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient neural network. In *Advances in neural information processing systems (NeurIPS)*, pages 1135–1143, 2015. 3

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)*, pages 770–778, 2016. 6

[15] Zhezhi He and Deliang Fan. Simultaneously optimizing weight and quantizer of ternary neural network using truncated gaussian approximation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 11438–11446, 2019. 1, 2

[16] Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son, Jae-Joon Han, Youngjun Kwak, Sung Ju Hwang, and Changkyu Choi. Learning to quantize deep networks by optimizing quantization intervals with task loss. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 4350–4359, 2019. 1, 3, 7

[17] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. 6

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In *Advances in neural information processing systems*, pages 1097–1105, 2012. 6

[19] Cong Leng, Zesheng Dou, Hao Li, Shenghuo Zhu, and Rong Jin. Extremely low bit neural network: Squeeze the last bit out with admn. In *Thirty-Second AAAI Conference on Artificial Intelligence (AAA)*, 2018. 1, 3

[20] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. *arXiv preprint arXiv:1605.04711*, 2016. 1, 2

[21] Yuhang Li, Xin Dong, and Wei Wang. Additive powers-of-two quantization: An efficient non-uniform discretization for neural networks. In *International Conference on Learning Representations (ICLR)*, 2020. 1, 2, 3, 6, 7

[22] Xiaoan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional neural network. In *Advances in Neural Information Processing Systems (NeurIPS)*, pages 345–353, 2017. 1, 2

[23] Qian Lou, Feng Guo, Minjie Kim, Lantao Liu, and Lei Jiang. Autoq: Automated kernel-wise neural network quantization. In *International Conference on Learning Representations (ICLR)*, 2019. 3

[24] Daisuke Miyashita, Edward H Lee, and Boris Murmann. Learning to quantize convolutions in convolutional neural networks. *arXiv preprint arXiv:1603.01025*, 2016. 1, 3

[25] Eunhyeok Park, Sungjoo Yoo, and Peter Vajda. Value-aware quantization for training and inference of neural networks. In *Proceedings of the European Conference on Computer Vision (ECCV)*, pages 1097–1105, 2012. 6

[26] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet classification using binary convolutional neural networks. In *European conference on computer vision (ECCV)*, pages 525–542. Springer, 2016. 1, 2
[27] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pages 4510–4520, 2018.

[28] Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Q-bert: Hessian based ultra low precision quantization of bert. In Thirty-Second AAAI Conference on Artificial Intelligence (AAAI), pages 8815–8821, 2020.

[29] Stefan Uhlich, Lukas Mauch, Fabien Cardinaux, Kazuki Yoshiyama, Javier Alonso Garcia, Stephen Tiedemann, Thomas Kemp, and Akira Nakamura. Mixed precision dnns: All you need is a good parametrization. International Conference on Learning Representations (ICLR), 2020.

[30] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. Glue: A multi-task benchmark and analysis platform for natural language understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353–355, 2018.

[31] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated quantization with mixed precision. International Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[32] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-of-the-art natural language processing. ArXiv, abs/1910.03771, 2019.

[33] Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian, Peter Vajda, and Kurt Keutzer. Mixed precision quantization of convnets via differentiable neural architecture search. arXiv preprint arXiv:1812.00090, 2018.

[34] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael Mahoney. Pyhessian: Neural networks through the lens of the hessian. arXiv preprint arXiv:1912.07145, 2019.

[35] Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. Understanding straight-through estimator in training activation quantized neural nets. In International Conference on Learning Representations (ICLR), 2018.

[36] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lq-nets: Learned quantization for highly accurate and compact deep neural networks. In Proceedings of the European conference on computer vision (ECCV), pages 365–382, 2018.

[37] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quantization: Towards lossless cnns with low-precision weights. In International Conference on Learning Representations (ICLR), 2017.

[38] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160, 2016.

[39] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. In International Conference on Learning Representations (ICLR), 2017.