Anatomy, Physiology and Drugs Triangular Dynamics in Steven Johnson’s Syndrome

Abstract
The incidence of Steven-Johnson syndrome has been on the increase within the last two years in Nigeria. This renewed the interest on this disease to explore the dynamics for improved patient care. This review outlined the relationship between anatomic or structural changes, physiological variations, and the effect of drugs in Steven Johnson’s syndrome. Better understanding of the fundamental structural and physiological changes in affected patients is vital to improve the treatment and/or the initial management procedures in resource-limited environments. This article showed the relationship between structural features, functions, and treatment. Tailoring treatment to the anatomical, physiological changes, and the effect of drugs and causative agents suggests a triangular dynamic trend in the disease state management.

Keywords: Epidermal cells; Necrolysis; Drugs; Membranes; Steven Johnson Syndrome

Introduction
Stevens-Johnson syndrome, (SJS) is a life-threatening skin disorder characterized by toxic epidermal necrolysis, in which cell death causes the epidermis to detach from the dermis. The syndrome is a hypersensitivity complex that affects the skin and the mucous membranes. The syndrome is causes are certain medications (such as lamotrigine), but it can also be due to infections, or more rarely, cancers, or hypersensitivity reaction to some compounds [1,2]. The blisters and erosions in SJS cover between 3% and 10% of the entire body surface [3]. It is associated with factors ranging from immunoreactions, infections, genetic factors, and adverse drug reactions [4,5]. Immunocompromised patients who are slow acetylators and brain tumor patients on anticonvulsant drugs who are undergoing radiotherapy are usually more prone to SJS [6].

The incidence is estimated at 1.1 and 7.1 cases per million per year and higher in Africa due to high use of crude drugs and HIV prevalence [7]. Better understanding of the fundamental structural and physiological changes in affected patients is essential towards improving the treatment and/or the initial management procedures in resource-limited environments. This article simplified and brought to the fore the relationship between anatomic structure, physiology, and causes of SJS, which could be utilized in resource, limited settings in patients management. It showed the relationship between structural features, functions, and treatment [2,4,8,9]. This review outlined the relationship between anatomic or structural changes, physiological variations, and the effect of drugs in Steven Johnson’s syndrome.

Discussion
The manifestation of SJS is usually multifaceted affecting varying degree of body surfaces and structures. Treatments are usually merely supportive, symptomatic, and dependent on the percentage of body surface, the structures affected, and the degree of damage done to the affected structures [10]. Following generalized cellular deterioration accompanying the disease process damaging cellular effects can take place at the tissue levels precipitating depression of mitochondrial activities, reduction of sodium and potassium transport across cell membranes leading to accumulation of sodium and chlorides in the cells and loss of potassium and subsequent swelling of cells. Lysosomal activities ensue leading to intracellular deterioration [11]. Cells adjacent to venous end of capillaries with can suffer nutritive deficiency. This can lead to tissue necrosis in severe shock. Cardiac output and arterial pressure often decrease in anaphylactic conditions leading to the release of histamine and histamine like substances with a net effect of reduction in mean venous return and its catastrophic consequences [12]. Epithelial tissues cover body surfaces, line the cavities, and serve as interface tissue for protection, absorption, excretion, filtration, sensory perception, and secretion. These anatomical and physiological functions are altered to varying degrees in SJS.

Disruption of this structure and function lead to loss of body fluids containing proteins and electrolyte. Dehydration and electrolyte imbalance ensues leading to further alteration of homeostasis. This forms one of the bases of therapy: Microorganisms multiply rapidly in the nutrient-rich structures dead and protein rich body fluid bathed-tissues. Infection threats associated with loss of skin barrier. This forms the basis for antibiotic use in therapy [13]. Other signs and symptoms in SJS are associated with structural and physiological defects, which disrupt normal physiological mechanisms as shown in Table 1. Additional physiological and pathophysiological manifestations include fatigue, fever, and sore throat. The pathophysiological manifestations form the basis of management, employed in patient management in resource-limited settings. The management procedures will depend on the degree of manifestation, percentage of body surface affected, causes and other presenting signs and symptoms [5,14]. Other treatment
modalities based on prompt recognition of causative agents and organisms as shown in Table 2. Retrospective studies suggested that use of corticosteroids is controversial because of associated increase in hospital stay and resultant increase in complication rates. The use of cyclophosphamides and cyclosporins did not offer better therapeutic outcomes. Use of antiseptics and topical anesthetics is very common and essential in resource-limited settings. Ophthalmological team should be invited or consulted in corneal vascularization and other ophthalmic complications [15-18].

Table 1: Relationship between Anatomical basis and Physiological/pathophysiological manifestations of SJS.

Timing	Anatomical Basis	Physiological/Pathophysiological Manifestations
Early stage	Basket weave-like stratum corneum	Full-thickness epidermal necrosis
	Dermis and epidermis	Fever, sore throat, running nose, fatigue, general aches and pains, ulcers in
	Confluent epidermal necrosis	mouth, genitals, anal regions as well as conjunctivitis
	Death of keratinocytes, less than 10% external	Separation of the epidermis from the dermis
	epidermal detachment	
Advanced stage	DNA disorganization	Recruitment of more chemokines from dying cells
	Erythematous, flat and purpuric lesions	Pigmentation problems, skin scarring, scarred genitals, joint pains, lung
		diseases, obstructive disorders and eye complications, adhesions, ulcers,
		and blindness
	Epidermal necrosis	Inflammation of epidermal cells and death of affected cells
	Dehydration	Thromboembolism and disseminated intravascular coagulation
	Gastrointestinal ulceration, necrosis, strictures	Acute malnutrition
	and perforation	Shock and multi-organ failure

Table 2: Relationship between the likely causes of SJS, pathophysiological changes, and likely interventions.

Implicated Organisms	Implicated Infections	Implicated Drugs/Agents	Pathophysiological Changes	Likely Interventions
Viruses	-Herpes (herpes simplex or herpes zoster);	-Analgesics	-Corneal vascularization	-Cessation of suspected drugs
	-Pneumonia	-Allopurinol, Acetaminophen	-Mouth ulcer	-Hospital Admission:
	-HIV	-Antibiotics	-Mucosal involvement	Preferably in burns unit/
	-Hepatitis	-Penicillin, Antipsychotics	-erythema, oedema	intensive care
	-Influenza	-Radiation therapy	-lung diseases, obstructive disorders and eye complications, adhesions, ulcers, and	
	Coxackie virus	-Sulfonamides:	blindness	
	-Epstein-Barr virus	Trimethoprim, sulfamethoxazole	-Eye: conjunctivitis	
	-Enteroviruses	Sulfadiazine	-corneal ulcerizations	
		Sulfasalazine	-Genital: erosive vulvovaginitis or balanitis	
		Antiviral agents:	-General examination:	
		Nevirapine, Abacavir	fever, tachycardia, hypotension; altered level of consciousness, seizures, coma.	
		Anticonvulsants:	-Skin: Lesions may occur anywhere, non pruritic urticarial lesions	
		Phenobarbital, Valproic acid	-Lung: mucosal shedding	
		Lamotrigine	-Vaginal stenosis and penile scarring	
		Imidazole antifungal agents	-Renal tubular necrosis and acute kidney injury	
			may occur	
			-Gastrointestinal ulceration	
Bacteria	-Group A beta-hemolytic streptococci, diphtheria,			
	Mycoplasma pneumoniae, lymphogranuloma			
	venereum, mycobacteria, rickettsial infections,			
	tularemia, brucellosis, and typhoid			
Fungus	-Dermatophyton, and histoplasmosis have been			
	considered as possible causes of SJS			
Protozoa	Malaria and trichomoniass			

Citation: Brian OO (2017) Anatomy, Physiology and Drugs Triangular Dynamics in Steven Johnsons Syndrome. MOJ Anat & Physiol 4(3): 00134. DOI: 10.15406/mojap.2017.04.00134
Erythema multiforme major (EMM) is different from SJS despite their similarities. This was clearly delineated in 1993 [19,20]. Studies have shown that antibiotics, anticonvulsants, and NSAIDs trigger SJS very often [19,21]. However, drug-induced SJS has been poorly reported [22]. Report by Stevens Johnson Syndrome foundation (SJSF), has shown that commonly used over-the-counter medications like paracetamol, amoxicillin, and ibuprofen, and herbal products with Ginseng can trigger SJS and TEN [23,24]. SJS has been tailored to viral and Mycoplasma pneumonia without previous sensitization [19,25-30]. Studies in immunocompromized patients show that they are more susceptible to SJS [18,30-35]. This suggests genetic inclination to the varying manifestations of SJS [36]. Immunoglobulin preparations administered intravenously showed good outcomes in reduction of the duration of skin reactions and reduction of pathophysiological manifestations like symptoms [37-39]. Discontinuation of triggering substances and use of high dose corticosteroids has shown promising outcomes in therapy [40]. Adjuvant therapy like plasmapheresis has been beneficial in SJS cases [41-46].

Conclusion

Disruption of physiological functions in SJS is associated with resultant alteration in structural/anatomical functions leading to myriads of clinical manifestations associated with the disease state. These manifestations form the basis for management of SJS, utilized in resource-limited settings where specialist care and equipment are non-accessible. Simple understanding of the anatomical and pathophysiological basis, and subsequent selection of treatment options based on the underlying cause and degree of progression could be a vital means of averting its progression to critical states and subsequent loss of lives especially in developing countries. Tailoring treatment to the anatomical, physiological changes, and the effect of drugs and causative agents suggests a triangular dynamic trend in the disease state management. Disease process is a dynamic one. Saving lives should be paramount before accessing specialist care especially in places where immediate specialist care could not be imminent. Elimination of all suspected agents and drugs, fluid replacement where possible and microbial protection with antibiotics based on clinician’s discretion is vital to arresting further disease progression, restoring normal physiological functions and ultimately saving lives in remote and resource limited settings before referral for specialist care.

References

1. Ward KE, Archambault R, Mersfelder TL (2010) Severe adverse skin reactions to non-steroidal anti-inflammatory drugs: A review of the literature. Am J Health Syst Pharm 67(3): 206-213.
2. Mockenhaupt M (2011) The current understanding of Stevens-Johnson syndrome and toxic epidermal necrolysis. Expert Rev Clin Immunol 7(6): 803-815.
3. Tan SK, Tay YK (2012) Profile and pattern of Stevens-Johnson Syndrome and toxic epidermal necrolysis in a general hospital in Singapore: Treatment outcomes. Acta Derm Venereol 92(1): 62-66.
4. Sassoias B, Haddad C, Mockenhaupt M, Dunant A, Liss Y, et al. (2010) ALDEN, an algorithm for assessment of drug causality in Stevens-Johnson Syndrome and toxic epidermal necrolysis: Comparison with case-control analysis. Clin Pharmacol Ther 88(1): 60-68.
5. Surovik J, Riddel C, Chon SY (2010) A case of bupropion-induced Stevens-Johnson syndrome with acute psoriatic exacerbation. J Drugs Dermatol 9(8): 1010-1012.
6. Lonjou C, Borot N, Sekula P, Ledger N, Thomas L, et al. (2008) A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet Genomics 18(2): 99-107.
7. (2017) Pharmacists confirm Steven Johnson Syndrome in Nigeria.
8. Fritschi P (2008) European Dermatology Forum: skin diseases in Europe. Skin diseases with a high public health impact: toxic epidermal necrolysis and Stevens-Johnson syndrome. Eur J Dermatol 18(2): 216-217.
9. Phillips EL, Chung WH, Mockenhaupt M, Roujeau JC, Mallal SA (2011) Drug hypersensitivity: pharmacogenetics and clinical syndromes. J Allergy Clin Immunol 127(3 Suppl): S60-S66.
10. Grander DN, Stokes KV, Shigematsu T, Gerwinka WH, Tailor A, et al. (2001) Splanchnic ischaemia-reperfusion injury: Mechanistic insights provided by mutant mice. Acta Physiol Scand 173(1): 83-91.
11. Ledgerwood AM, Lucas CE (2003) A review of studies on the effects of hemorrhagic shock and resuscitation on the coagulation profile. J Trauma 54 (Suppl 5): S68-S74.
12. River E, Nguyen B, Hawst S, Ressler J, Muzzin A, et al. (2001) The early goal directed therapy collaborative group. Early goal directed therapy in treatment of severe sepsis and septic shock. N Engl J Med 345(19): 1368-1377.
13. Marieb ERN (1998) Tissue: the living fabric. Human anatomy and physiology. Benjamin/Cummings: Science Publishing, USA, pp. 109-138.
14. Kosak S, Girgisin SA, Gul M, Cander B, Kaya H, et al. (2007) Stevens-Johnson syndrome due to concomitant use of lamotrigine and valproic acid. Am J Clin Dermatol 8(2): 107-111.
15. Man CB, Kwan P, Baum L, Yu E, Lau KM, et al. (2007) Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese. Epilepsia 48(5): 1015-1018.
16. Grašky JB, Sippel KC, Gregory DG (2013) Current ophthalmologic treatment strategies for acute and chronic Stevens-Johnson Syndrome and toxic epidermal necrolysis. Curr Opin Ophthalmol 24 (4): 321-328.
17. Hinc Kasprzyk J, Polak Krzemińska A, Otógz Bobalska I (2015) Toxic epidermal necrolysis. Anaesthesiology Intensive Ther 47(3): 257-262.
18. Mittmann N, Knowles SR, Koo M, Shear NH, Rachlis A, et al. (2012) Incidence of toxic epidermal necrolysis and Stevens - Johnson syndrome in an HIV cohort: an observational, retrospective case series study. Am J Clin Dermatol 15(1): 49-54.
19. Waleed MS (2017) Bibliometric analysis of literature on toxic epidermal necrolysis and Stevens-Johnson syndrome: 1940-2015. Orphanet J Rare Dis 12(1): 14.
20. Tomasi C, Derlino F, Quaglino P, Caproni M, Borroni G (2014) From erythema multiforme to toxic epidermal necrolysis. Same spectrum or different diseases? G Ital Dermatol Venereol 149(2): 243-241.
21. Hur J, Zhao C, Bai JP (2015) Systems pharmacological analysis of drugs inducing stevens-johnson syndrome and toxic epidermal necrolysis. Chem Res Toxicol 28(5): 927-934.
22. Goldblatt C, Khumra S, Booth J, Urbancic K, Grayson ML, et al. (2017) Poor reporting and documentation in drug-associated Stevens Johnson syndrome and toxic epidermal necrolysis-lessons for medication safety. Br J Clin Pharmacol 83(2): 224-226.

Citation: Brian OO (2017) Anatomy, Physiology and Drugs Triangular Dynamics in Steven Johnson Syndrome. MOJ Anat & Physiol 4(3): 00134. DOI: 10.15406/mojap.2017.04.00134
23. Khawaja A, Shahab A, Hussain SA (2012) Acetaminophen induced Steven Johnson syndrome-toxic epidermal necrolysis overlap. JPMA J Pak Med Assoc 62(5): 524-527.

24. (2016) Foundation SJS. SJS Fact Sheet.

25. Aihara Y, Ito S, Kobayashi Y, Aihara M (2004) Stevens-Johnson syndrome associated with azithromycin followed by transient reactivation of herpes simplex virus infection. Allergy 59(1): 118.

26. Duarte AF, Cruz MJ, Moreira E, Baudrier T, Mota A, et al. (2010) Stevens Johnson syndrome/erythema multiforme major and Chlamydia pneumoniae infection in young patients. Dermatol Reports 2(1): e6.

27. Ahluwalia J, Wan J, Lee DH, Treat J, Yan AC (2014) Mycoplasma-associated Stevens-Johnson syndrome in children: retrospective review of patients managed with or without intravenous immunoglobulin, systemic corticosteroids, or a combination of therapies. Pediatr Dermatol 31(6): 664-669.

28. Wang L, Hong NC, Lin FC, Yang KD (2003) Mycoplasma pneumoniae-associated Stevens-Johnson syndrome exhibits lymphopenia and redistribution of CD4+ T cells. J Formos Med Assoc 102(5): 55-58.

29. Campagna C, Tassinari D, Neri I, Bernardi F (2013) Mycoplasma pneumoniae induced recurrent Stevens-Johnson syndrome in children: a case report. Pediatr Dermatol 30(5): 624-626.

30. Wanat KA, Castelo Socco L, Rubin AI, Treat JR, Shah KN (2014) Recurrent Stevens-Johnson syndrome secondary to Mycoplasma pneumoniae infection. Cutis 93(4): E7-E9.

31. Yunihastuti E, Widhani A, Karjadi TH (2014) Drug hypersensitivity in human immunodeficiency virus-infected patient: challenging diagnosis and management. Asia Pac Allergy 4(1): 54-67.

32. Dziuban BJ, Hughey AB, Stewart DA, Blank DA, Kochelani D, et al. (2013) Stevens-Johnson syndrome and HIV in children in Swaziland. Pediatr Infect Dis J 32(12): 1354-1358.

33. Yang C, Mosam A, Mankahla A, Dlova N, Sawedwa A (2014) HIV infection predisposes skin to toxic epidermal necrosis via depletion of skin-directed CD4+ T cells. J Am Acad Dermatol 70(6): 1096-1102.

34. Dube N, Adevusi E, Summers R (2013) Risk of nevirapine-associated Stevens-Johnson syndrome among HIV-infected pregnant women: the Medunas National Pharmacovigilance Centre, 2007-2012. S Afr Med J 103(5): 522-335.

35. Viswanath BK, Ranka P, Ramanjanayalu M (2012) Severe cutaneous adverse reactions due to isoniazid in a HIV positive patient. Indian J Lepr 84(3): 227-232.

36. Pirmohamed M, Arbuckle JB, Bowman CE, Brunner M, Burns DK, et al. (2007) Investigation into the multidimensional genetic basis of drug-induced Stevens-Johnson syndrome and toxic epidermal necrolysis. Pharmacogenomics 8(12): 1661-1691.

37. Aihara M, Kano Y, Fujita H, Kamban T, Matsukura S, et al. (2015) Efficacy of additional i.v. immunoglobulin to steroid therapy in Stevens-Johnson syndrome and toxic epidermal necrolysis. J Dermatol 42(8): 768-777.

38. Vazquez Sanabria IL, Mercado Seda R, Varel Rosario N, Vila LM (2015) Efficacy of intravenous immunoglobulins in a patient with systemic lupus erythematosus presenting with Stevens-Johnson syndrome. BMJ Case Rep.

39. Boroda K, Li L, Riina L, Ahmed S (2015) Cephalexin-Induced Toxic Epidermal Necrolysis Treated with Intravenous Immunoglobulin. Cureus 7(10): e359.

40. Gupta LK, Martin AM, Agarwal N, D’Souza P, Das S, et al. (2016) Guidelines for the management of Stevens-Johnson syndrome/toxic epidermal necrolysis: An Indian perspective. Indian J Dermatol Venereol Leprol 82(6): 603-625.

41. Mahade R, Chetan G, Sagar H, Aggarwal R (2011) Plasmapheresis as an adjuvant treatment modality in toxic epidermal necrolysis: A case report. J Clin Diagn Res 5(1): 107-108.

42. Yamada H, Takamori K (2008) Status of plasmapheresis for the treatment of toxic epidermal necrosis in Japan. Ther Apher Dial 12(5): 355-359.

43. Narita YM, Hirahara K, Mizukawa Y, Kano Y, Shiohara T (2011) Efficacy of plasmapheresis for the treatment of severe toxic epidermal necrosis: Is cytokine expression analysis useful in predicting its therapeutic efficacy? J Dermatol 38(3): 236-245.

44. Szczeklik W, Nowak L, Seczynska B, Sega A, Krolkowski W, et al. (2010) Beneficial therapeutic effect of plasmapheresis after unsuccessful treatment with corticosteroids in two patients with severe toxic epidermal necrosis. Ther Apher Dial 14(3): 354-357.

45. (2017) EMA. Orphan Drugs and Rare Diseases at a Glance.

46. (2017) Orpha data. Rare Diseases Epidemiological Data.