Pyrosequencing and Taxonomic Composition of the Fungal Community from Soil of *Tricholoma matsutake* in Gyeongju

Minji Jeong¹, Doo-Ho Choi¹, Woo-Jae Cheon², and Jong-Guk Kim¹*

¹Department of Life Sciences and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
²Department of Forest Environment, Gyeongsangbuk-do Forest Environment Research Institute, Gyeongju 38174, Republic of Korea

Tricholoma matsutake is an ectomycorrhizal fungus that has a symbiotic relationship with the root of *Pinus densiflora*. Soil microbial communities greatly affect the growth of *T. matsutake*, however, few studies have examined the characteristics of these communities. In the present study, we analyzed soil fungal communities from Gyeongju and Yeongdeok using metagenomic pyrosequencing to investigate differences in fungal species diversity, richness, and taxonomic composition between the soil under *T. matsutake* fruiting bodies (Sample 2) and soil where the fairy ring of *T. matsutake* was no longer present (Sample 1). The same spot was investigated three times at intervals of four months to observe changes in the community. In the samples from Yeongdeok, the number of valid reads was lower than that at Gyeongju. The operational taxonomic units of most Sample 2 groups were less than those of Sample 1 groups, indicating that fungal diversity was low in the *T. matsutake*-dominant soil. The soil under the *T. matsutake* fruiting bodies was dominated by more than 51% *T. matsutake*. From fall to the following spring, the ratio of *T. matsutake* decreased. Basidiomycota was the dominant phylum in most samples. G-F1-2, G-F2-2, and Y-F1-2 had the genera *Tricholoma*, *Umbelopsis*, *Oidiodendron*, *Sagenomella*, *Cladophialophora*, and *Phalocephala* in common. G-F1-1, G-F2-1, and Y-F1-1 had 10 genera including *Umbelopsis* and *Sagenomella* in common. From fall to the following spring, the amount of phyla Basidiomycota and Mucoromycota gradually decreased but that of phylum Ascomycota increased. We suggest that the genus *Umbelopsis* is positively related to *T. matsutake*.

Keywords: Fungal community, *Tricholoma matsutake*, metagenomics

Introduction

Tricholoma matsutake, known as the pine mushroom, is an ectomycorrhizal fungus that has a symbiotic relationship with the root of *Pinus densiflora* trees. *T. matsutake* is used medicinally and is also one of the most famous food items in Northeast Asia because of its unique flavor and taste [1-6]. In South Korea, the yield of *T. matsutake* is changeable because environmental factors such as temperature and precipitation greatly affect its growth [7]. For this reason, studies have examined the possibility of creating a stable supply of the pine mushroom, but currently, artificial cultivation is not feasible. The effect of environmental factors (climate, soil condition, microbial community, and others) on its growth and interactions between *T. matsutake* and *P. densiflora* requires further research [8-10]. Soil microbial communities, in particular, are important to the mycelial growth of *T. matsutake*, however, few studies on the characteristics of the communities have been conducted [11-14].

Mycorrhizal fungi are an important group of fungi in the soil ecosystem. They have a mutualistic relationship with living plants, exchanging nutrients and some important compounds [15-19]. The major group of mycorrhizal fungi is the ectomycorrhizae (ECM) fungi group. ECM fungi, including *T. matsutake*, considerably affect the growth of living plants by colonizing close by the rootlets of living plants. ECM fungi form ECM with roots of host plants and have advantageous symbiotic relationships with them. ECM are symbiotic organs between soil and roots and help the trees absorb water and nutrients, receiving carbohydrates from them in exchange to grow mycelium [20-22]. The fungus *Arthrinium phaeospermum* promotes mycorrhiza formation, similar to the effect of mycorrhization helper bacteria [23]. *T. matsutake* is an ectomycorrhizal symbiont that is important to the growth of host plant seedlings [24]. In addition, some bacteria and fungi have positive effects on *T. matsutake* [25]. The soil fungal community is positively influenced by plant species richness and diversity [26]. The interaction between plants and mycorrhizal fungi plays a key role in the circulation of nutrients and the balance of the ecosystem [27-30]. Therefore, the study of soil fungal communities near *T. matsutake* should be conducted constantly and persistently.
Next-generation sequencing (NGS) enables the rapid analysis of massive amounts of DNA sequences. It also permits the analysis of DNA sequences from microorganisms that are hard to cultivate [31-34]. Pyrosequencing is one of the sequencing approaches for NGS and has facilitated the study of mass and diverse microorganisms from soil samples. For this study, we used the Illumina MiSeq sequencing platform, which uses the sequences of ribosomal DNA as DNA barcodes to classify the soil fungi rapidly.

Here, we statistically analyzed the characteristics of soil fungal communities from two regions using metagenome pyrosequencing with barcode to investigate diversity, species richness, and relative abundance or taxonomic composition of the communities in areas where *T. matsutake* fruiting bodies are present [35].

Materials and Methods

Collection of Soil Samples

We collected two soil samples each in pine forests in October 2017 in Gyeongju and in November 2017 in Yeongdeok, South Korea. Two samples were also collected in October 2018 and in February and June 2019 at Gyeongju. Immediately after harvesting the fruiting body of *T. matsutake*, we took soil samples of 10–15 cm depth and 2 cm in diameter from right beneath the fruiting body using a sterilized soil sampler. These samples were named G-F1-1 (2017, Gyeongju), G-F2-1 (2018, Gyeongju), and Y-F1-1 (2017, Yeongdeok) (Table 1). About 25–30 cm from the fairy ring, we once again collected soil samples of 10–15 cm depth and 2 cm in diameter. These samples were called G-F1-2 (2017, Gyeongju), G-F2-2 (2018, Gyeongju), and Y-F1-2 (2017, Yeongdeok). The same spots sampled in the fall of 2018 were re-sampled four months later, in February 2019, and these samples were named G-W-2 and G-W-1. They were re-sampled again four months later, in June 2019, and these samples were named G-S-2 and G-S-1. So, ‘-1’ was attached to the end of the name for the samples expected to be *T. matsutake*-minor (Sample-1) and ‘-2’ was attached to the samples expected to be *T. matsutake*-dominant (Sample-2).

GPS coordinates of the sampling sites were as follows:

- G-F1: 35°47’22.1” N, 129°14’06.9” E
- Y-F1: 36°28’39.1” N, 129°22’12.0” E
- G-F2, G-W, G-S: 35°47’20.0” N, 129°14’09.0” E

DNA Extraction and Pyrosequencing

Each 10 g of soil samples was used for isolation of metagenomic DNA using the FastDNA SPIN Kit for Soil (MP Biomedicals, USA) to conduct the pyrosequencing. Polymerase Chain Reaction (PCR) targeting the ITS2 region of ribosomal DNA as DNA barcodes to classify the soil fungi rapidly.

To amplify the isolated chromosomal DNA, the sequences of the forward primer were 5’-AATGATACGGCGACGCACAGCTCACATGCTCAAC-XXXXXXX-TCTCGTCAGCGGTAGTGTATAAAAAGAGCAGAGCGCATCGATGAAGAACGCAGC-3’. The sequences of the reverse primer were 5’-CAAGCAGAAGACCGATATGC-3’. The sequences of the reverse primer were 5’-TCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGATGTTAAAGAGACAGCGAGACATC-3’. ‘X’ indicates that the barcode sequence differed between samples. A PTC-200 Peltier Thermal Cycler (MJ Research, USA) was used to conduct the PCR. For separation of PCR products, identical amounts of PCR products from each sample were used by agarose gel electrophoresis. The products of PCR were purified using the CleanPCR (CleanNA, Netherlands) and the quantification of the purified PCR products was performed with a Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen, USA). PCR products longer than 300 bp were purified, and an Agilent 2100 Bioanalyzer (Agilent Technologies, USA) was used to analyze the base sequence of the DNA fragments [36]. In addition, the Illumina MiSeq sequencing platform (Illumina, USA) was used for the pyrosequencing analysis conducted by Chunlab Inc. (Korea), following the instructions supplied by the manufacturer [37]. Pyrosequencing reads data were submitted to the EMBL-EMI database (www.ebi.ac.uk) under accession number PRJEB42318 (primary) and ERP126157 (secondary).

Statistical Data Analysis and Taxonomic Identification

The pyrosequencing raw reads were processed by using the barcode sequences. The fusion primers with barcode and low-quality reads were trimmed and removed using Trimmomatic 0.32 [38]. We used CLcommunity software (Chunlab Inc.) for statistical analysis. To identify operational taxonomic units (OTUs) at 97% sequence similarity [39], the CD-HIT program was used. The Mothur platform [40, 41] was used to calculate the rarefaction curves and diversity indices. For taxonomic composition and relative abundance, random sample subsets were generated with the lowest number of reads. Conditionally, *T. matsutake* was excluded for analysis of relative abundance and taxonomic composition.

| Table 1. Sampling information of ten samples of the soil fungal community related to *T. matsutake*. |
|---|---------------------|---------------------|---------------------|---------------------|---------------------|
| GPS coordinates of the sampling sites were as follows: |
| - G-F1: 35°47’22.1” N, 129°14’06.9” E |
| - Y-F1: 36°28’39.1” N, 129°22’12.0” E |
| - G-F2, G-W, G-S: 35°47’20.0” N, 129°14’09.0” E |
| **DNA Extraction and Pyrosequencing** |
| Each 10 g of soil samples was used for isolation of metagenomic DNA using the FastDNA SPIN Kit for Soil (MP Biomedicals, USA) to conduct the pyrosequencing. Polymerase Chain Reaction (PCR) targeting the ITS2 region of ribosomal DNA as DNA barcodes to classify the soil fungi rapidly. |
| **Statistical Data Analysis and Taxonomic Identification** |
| The pyrosequencing raw reads were processed by using the barcode sequences. The fusion primers with barcode and low-quality reads were trimmed and removed using Trimmomatic 0.32 [38]. We used CLcommunity software (Chunlab Inc.) for statistical analysis. To identify operational taxonomic units (OTUs) at 97% sequence similarity [39], the CD-HIT program was used. The Mothur platform [40, 41] was used to calculate the rarefaction curves and diversity indices. For taxonomic composition and relative abundance, random sample subsets were generated with the lowest number of reads. Conditionally, *T. matsutake* was excluded for analysis of relative abundance and taxonomic composition. |
Results and Discussion

Pyrosequencing Results and Statistical Data Analysis

For fungal communities, the total number of valid reads after preprocessing was 881,125 from all eight samples (Table 2). The number of valid reads of G-F2-2 was greatest, at 106,048, followed by G-S-2 at 102,565, G-F1-1 at 101,347, G-F1-2 at 94,695, G-S-1 at 94,346, G-F2-1 at 92,141, Y-F1-1 at 89,952, Y-F1-2 at 86,224, G-W-2 at 57,412, and G-W-1 at 56,395. Overall, there were a large enough number of reads to analyze the microbial communities.

Obviously, with fewer reads in the winter samples, the overall number of surviving fungi was reduced. However, the spring samples showed that the number of reads increased again and the ecosystem of soil microbes recovered. In the sample from Yeongdeok, the number of valid reads was slightly lower than that from Gyeongju. The OTUs of Y-F1-1 were the highest, at 664, and those of Y-F1-2 were the lowest, at 124. These two samples showed the biggest difference, at 540. On the other hand, the G-S-1 and G-S-2 samples were 439 and 469, respectively, showing 30 different results. The OTUs of most Sample 2 groups were lower than those of Sample 1 groups. Naturally, the Shannon index, which is one of the most important diversity indices, was similar to the number of OTUs. For the most part, the number for Sample 2’s was lower. In particular, G-F2-1 and G-F2-2 showed a significantly large difference. The Shannon index measures species richness and evenness, which means that the higher the number, the greater the diversity of the community. Therefore, fungal diversity was low in the soil samples in which T. matsutake was dominant. These results are also shown in the Simpson index results, which are presented together to produce more accurate results. Furthermore, the rarefaction curves supported the results above (Fig. 1). In the rarefaction curves, the number of OTUs increased with the number of reads, and the species richness was shown. This is consistent with previous studies [12, 13, 25] showing that fungal diversity is low in T. matsutake-dominant soil samples. This confirms that the mycelia of T. matsutake repress the growth of other fungi and are dominant in the soil fungal community.

Comparison of Fungal Communities: Composition of T. matsutake

First, for analysis of taxonomic composition and relative abundance, random sample subsets were generated with the lowest number of reads: 56395 (G-W-1).

The composition of T. matsutake was analyzed first, followed by the composition of the entire fungal community, and finally, a seasonal comparison was conducted (Table 3). As expected, the spot where T. matsutake

Table 2. Pyrosequencing results and statistical analysis of the soil fungal community related to T. matsutake.

Sample	Number of Valid reads	OTUsa	Chao1b	Shannonc	Simpsond	Goods Lib. Coveragee (%)
G-F1-1	101,347	347	348.68	2.90	0.11	99.98
G-F1-2	94,695	203	204.38	2.05	0.30	99.99
G-F2-1	92,141	578	596.83	3.69	0.06	99.92
G-F2-2	94,346	554	217.52	0.97	0.64	99.92
G-W-1	91,414	211	218.12	3.54	0.58	99.94
G-W-2	89,952	554	447.52	1.25	0.19	99.96
Y-F1-1	86,224	439	475.43	2.61	0.28	99.96
Y-F1-2	89,952	469	465.60	2.65	0.04	99.98

aOTUs: Operational Taxonomic Units
bChao1: Chao1 estimation for species richness
cShannon: Shannon index for species diversity, > 0, higher, more diverse
dSimpson: Simpson index for species diversity, 0 ~ 1, 1 = the simplest
eGoods Lib. Coverage: [1 - (number of singleton OTUs / number of total reads)] × 100
was present was clearly dominated by *T. matsutake* at more than 51%. The difference between where *T. matsutake* was present or not present was greater than 50%, except in the G-S samples. This indicates that when the fruiting body of *T. matsutake* is formed, *T. matsutake* is definitely a dominant species in that spot. From G-F2-2 to G-W-2 and to G-S-2, the ratio decreased. From G-F2-2 in fall to G-W-2 in winter, the difference was 3.94%, which was a slight drop. But from G-W-2 to G-S-2, the difference was 23.08%. The difference in G-S where *T. matsutake* was present or not was 13.19%, which was less than the difference in other samples. In addition, the somewhat low share in the G-S-2 sample, at 52.11%, seems to have naturally decreased as the growth of other fungi became more active with the rise in temperature.

Comparison of Fungal Communities by Region

First, we conducted an analysis at the phylum level of the taxonomic composition of soil samples from G-F1-1, G-F1-2, G-F2-1, G-F2-2, Y-F1-1, and Y-F1-2. A total of five phyla were identified (>1%): Basidiomycota, Ascomycota, Mucoromycota, Fungi_p (phylum name unknown), and Mortierellomycota (Fig. 2). Including *T. matsutake*, Basidiomycota was the dominant phylum in G-F1-1 (48.49%), G-F1-2 (66.97%), G-F2-2 (82.84%), Y-F1-1 (51.42%), and Y-F1-2 (93.59%). Ascomycota was dominant only in G-F2-1 (47.64%). The ratio of Mucoromycota was G-F1-1 (8.22%), G-F1-2 (14.82%), G-F2-1 (15.02%), G-F2-2 (10.65%), Y-F1-1 (11.63%), and Y-F1-2 (4.18%). The ratio of Fungi_p was 6.42% in G-F2-1 and 0.03% in G-F2-2. The percentage of Mortierellomycota was G-F1-1 (2.07%), G-F1-2 (2.04%), G-F2-1 (1.11%), G-F2-2 (0.03%), Y-F1-1 (1.85%), and Y-F1-2 (0.05%). Excluding *T. matsutake*, Basidiomycota was the dominant phylum in G-F1-1 (48.49%), Y-F1-1 (51.42%), and Y-F1-2 (86.57%), and Ascomycota was dominant in G-F2-1 (36.87%) and G-F2-2 (47.70%). To determine the taxonomic composition of fungi except *T. matsutake* and to analyze the effects of *T. matsutake* on the composition of other fungi, an additional comparative analysis was performed after excluding the reads of the above analyzed *T. matsutake*. Excluding *T. matsutake*, the ratio of Basidiomycota was lower in the regions where *T. matsutake* grew than in the regions where it did not grow (G-F1-1 > G-F1-2, G-F2-1 > G-F2-2). In the Yeongdeok samples, the ratio was Y-F1-1 < Y-F1-2 because of the unclassified genera *Ramaria* of Basidiomycota in Y-F1-2, which is mentioned again at the genus level.

At the class level, a total of nine fungal classes found to represent more than 1% of all the classes were identified: Agaricomycetes, Umbelopsidomycetes, Eurotiomycetes, Leotiomycetes, Dothideomycetes, Sordariomycetes, Mortierellomycetes, Fungi_c (class name was unknown), and GS25 (unnamed). We focused on the classes of the relatively abundant phyla Basidiomycota, Ascomycota, Mucoromycota, and Mortierellomycota. In phylum Basidiomycota, we found Agaricomycetes in G-F1-1 (47.99%), G-F1-2 (65.95%), G-F2-1 (26.23%), G-F2-2 (80.12%), Y-F1-1 (46.39%), and Y-F1-2 (93.17%). Phylum Mucoromycota was represented by Umbelopsidomycetes: G-F1-1 (8.22%), G-F1-2 (14.82%), G-F2-1 (14.33%), G-F2-2 (10.60%), Y-F1-1 (11.63%), and Y-F1-2 (4.18%). Class Umbelopsidomycetes was the second most dominant class in all Sample 2’s after class Agaricomycetes, including *T. matsutake*. For phylum Ascomycota, we found Eurotiomycetes: G-F1-1 (25.05%), G-F1-2 (2.31%), G-F2-1 (8.22%), G-F2-2 (14.82%), Y-F1-1 (46.39%), and Y-F1-2 (93.17%).
In our results, *Umelopsis* was the most dominant genus, following genus *Tricholoma*, in most *T. matsutake-*dominant samples. *Umelopsis* has been reported on frequently in other studies on the fungal community of *T. matsutake*. Ogawa and Kawai announced that metabolites produced by *Umelopsis* promoted *T. matsutake* growth [44]. Also, *Umelopsis* was isolated from the rootlet colonized by *T. matsutake* [45]. A previous study showed that genus *Umelopsis* was remarkably more abundant in *T. matsutake-*dominant soil than in *T. matsutake-*minor soil; in comparison, *Mortierella* was outstandingly more abundant in *T. matsutake-*minor soil [25]. Oh and his colleagues reported that some bacteria isolated from the fruiting body of *T. matsutake* increased

Name	G-F1-1	G-F1-2	G-F2-1	G-F2-2	Y-F1-1	Y-F1-2
Tricholoma	5.88	58.01	0.12	29.18	0.00	52.42
Umelopsis	6.77	14.50	14.29	10.60	11.47	1.68
Ramaria	0.00	0.00	0.00	0.00	0.00	38.59
Tylospora	22.24	0.00	0.00	0.00	10.27	0.00
Sagenomella	20.95	0.30	2.97	1.75	1.06	0.38
Cenococcum	10.49	4.86	5.55	1.83	2.09	0.04
Hydnophora	2.47	6.39	12.49	0.00	0.00	0.00
Oidiodendron	2.69	4.24	7.77	1.17	3.32	0.48
Russula	4.84	0.00	7.34	0.31	6.19	0.00
Sebacina	0.88	0.00	0.00	10.90	0.01	
Penicillium	1.65	0.70	2.84	0.11	2.96	0.03
Talaromyces	0.18	0.06	0.74	0.08	0.25	0.00
Cladophialophora	0.02	0.93	2.02	0.19	1.76	0.14
Phialocephala	0.23	0.32	1.26	0.10	0.16	0.49
Fungi_uc	0.34	0.05	0.37	0.01	0.51	0.01
Herpotrichiellaceae_uc	0.12	0.01	0.23	0.00	0.45	0.00

Table 4. Gradient heatmap of the taxonomic composition (%) at the genus level of each sample for comparison by region (including *T. matsutake_* uc: unclassified, g: the genus name was unknown).

F2-1 (11.49%), F2-2 (2.32%), Y-F1-1 (8.51%), Y-F1-2 (0.56%); Leotiomycetes: G-F1-1 (3.09%), G-F1-2 (5.15%), G-F2-1 (20.92%), G-F2-2 (2.01%), Y-F1-1 (14.11%), and Y-F1-2 (1.22%); and Dothideomycetes: G-F1-1 (10.70%), G-F1-2 (5.72%), G-F2-1 (6.88%), G-F2-2 (1.84%), Y-F1-1 (5.82%), and Y-F1-2 (0.13%). The classes in phylum Ascomycota had a tendency to show a smaller percentage in Sample 2’s than in Sample 1’s. For phylum Mortierellomycota, we found Mortierellomyces: G-F1-1 (2.07%), G-F1-2 (2.04%), G-F2-1 (1.11%), G-F2-2 (0.03%), Y-F1-1 (1.85%), and Y-F1-2 (0.05%). Mortierellomyces was present at a lower percentage in Sample 2’s than in Sample 1’s.
the growth of *Umbelopsis*, suggesting a strong link between *T. matsutake* and *Umbelopsis* [46]. *Umbelopsis* quickly grows into a nutrient-rich environment of fresh litters in the fall, when *T. matsutake* fruiting body is produced. *Umbelopsis* is also known as one of the common fungi associated with seedlings and healthy roots of pine tree [47, 48]. Tominaga discovered the relationship between *T. matsutake* and *Umbelopsis* by separating *Umbelopsis* from both mycorrhizae and the fruiting body of *T. matsutake* [49].

However, in the *T. matsutake*-minor G-F2-1 and Y-F1-1 samples, *Umbelopsis* was the most dominant genus at 14.29% and 11.47% each, respectively. Ogawa discovered that the zone of shiro at which fruiting body of *T. matsutake* forms Mortierella sp. (probably *Umbelopsis*) increased, and at the end of the shiro, Mortierella sp. and the other root fungi were commonly abundant [50]. Thus, we suggested that the sampling spots of G-F2-1 and Y-F1-1 could be near the end of the shiro and *Umbelopsis* was abundant in that spot. The interaction between *Umbelopsis* and *T. matsutake* remains uncertain and thus further study is needed to determine which mechanisms are interacting with them.

On the other hand, in our samples, there were several genera that were lower in Sample 2 than in Sample 1. The ratios of these genera were as follows: *Sagenomella* (G-F1-1, 20.95% and G-F1-2, 0.30%; G-F2-1, 2.97% and G-F2-2, 1.75%; Y-F1-1, 1.06% and Y-F1-2, 0.38%), *Cenococcum* (10.49% and 4.86%; 5.55% and 1.83%: 2.09% and 0.04%), *Russula* (4.84% and 0.00%; 7.34% and 0.31%; 6.19% and 0.00%), and *Penicillium* (1.65% and 0.70%; 2.84% and 0.11%; 2.96% and 0.03%).

For comparison of species comprising less than 1% of the community, only this number was compared with samples before normalization. Vaario and colleagues found that *Tomentellopsis sp.*, *Cortinarius biformis*, *Tylospora sp.*, *tomentellopsis submollis*, and *Trichoderma viride* were positively correlated with the presence of *T. matsutake* in soil above the fairy ring of *T. matsutake* [14]. Additionally, species *Piloderma* sp. 4, *Clavulinia cl. amethystine*, and *Piloderma* sp. 3 were positively correlated with the presence of *T. matsutake* in soil in the fairy ring of *T. matsutake*. However, in our analysis, each of these species were present at a significantly low level (< 0.1%), and they existed in both *T. matsutake*-dominant and -minor soil. Thus, it is hard to say that they had a positive relationship. Furthermore, *Tylospora uc* (unclassified into sublevel) comprised 22.24% of G-F1-1 and 10.27% of Y-F-1 but 0.00% in all T. matsutake-dominated samples, which suggests that they were not in a positive relationship. In comparison with the number of reads, there was only one species, *Aspergillus cervinus*, which was present in G-F1-2 (6 reads) and G-F2-2 (7 reads) but not in G-F1-1 and G-F2-1. *Aspergillus cervinus* was originally isolated from African soil [51] and generates the quinol terremutin and 3,6-dihydroxy-2,5-toluquinone [52, 53]. There were no species present in G-F1-2, G-F2-2, and Y-F1-2 that were not present in G-F1-1, G-F2-1, and Y-F2-1.

Table 5. The number of reads for the common species in G-F1-2, G-F2-2, and Y-F1-2 (_uc: unclassified, _s: the species name was unknown)._

Name	G-F1-2	G-F2-2	Y-F1-2
Umbelopsis dimorpha	13420	11133	1095
Oidiodendron chlamydosporicum	450	347	325
Oidiodendron uc	642	759	26
Sagenomella diversispora	54	151	2
Cenococcum uc	4500	52	6
Sistotrema uc	2	15	10
Cladophialophora uc	872	7	115
Petricula uc	128	7	85
Oidiodendron pilicola	657	160	8
Fungi uc_s	47	8	7
Umbelopsis uc	231	10	379
Sagenomella uc	6	10	24
Tricholoma uc	230	2	125
Basidiomycota uc_s	26	2	3

Comparison of Fungal Communities by Season

A total of seven distinct fungal phyla were found to represent more than 1% of the total phyla in the G-F2, G-W, and G-S samples (Fig. 3). From G-F2-2 to G-W-2 to G-S-2, the ratio of the phylum Ascomycota gradually dropped from 82.84% to 77.01% to 60.28%, respectively. Additionally, the phylum Mucoromycota was reduced from 10.65% to 7.29% to 5.17%. In contrast, the level of phylum Basidiomycota was increased at 6.37%, 14.70%, and 27.29%, respectively. Likewise, *Tylospora* showed a small difference in ratio, including *Fungi_p* (0.03%, 0.37%, and 4.30%), *Mortierellomycota* (0.03%, 0.14%, and 1.72%), *Rozellomycota* (0.02%, 0.21%, and 0.52%), and *Chytridiomycota* (0.01%, 0.09%, and 0.17%).

A total of 11 fungal classes representing more than 1% of all the classes in each sample were identified: Agaricomycetes, Leotiomycetes, Eurotiomycetes, Umbelisopdomyctes, Dothideomycetes, Sordariomycetes, Fungi_c, Gs25, Mortierellomycetes, Lecanoromycetes, and Rozellomycota ds incertae sedis (unknown). We focused on the classes of the relatively abundant phyla Basidiomycota, Ascomycota, Mucoromycota, and Mortierellomycota. For phylum Basidiomycota, Agaricomycetes were present as follows: G-F2-2, 80.12%; G-W-2, 76.18%; and G-S-2, 59.15%. From G-F2-2 to G-W-2 to G-S-2, the ratio of Agaricomycetes decreased. For phylum
Ascomycota, the ratios were as follows, respectively: Leotiomycetes: 2.01%, 3.57%, and 10.81%, Eurotiomycetes: 2.32%, 9.14%, and 11.31%; Dothideomycetes: 1.84%, 1.23%, and 1.12%; Sordariomycetes: 0.08%, 0.58%, and 3.45%; Lecanoromycetes: 0.01%, 0.02%, and 0.03%. From G-F2-2 to G-W-2 to G-S-2, Leotiomycetes, Eurotiomycetes, Sordariomycetes, and Lecanoromycetes increased; in contrast, Dothideomycetes decreased. For phylum Mucoromycota, we found Umbelopsidomycetes: 10.60%, 7.23%, and 4.88%. From G-F2-2 to G-W-2 to G-S-2, the proportion of this class decreased. For phylum Mortierellomycota, we found Mortierellomycetes at 0.03%, 0.14%, and 1.72%, and the percentages were increasing.

At the genus level, Oidiodendron of Leotiomycetes increased from 1.17% to 2.21% to 3.25% in G-F2-2, G-W-2, and G-S-2, respectively. Likewise, the genus Hyaloscyphaceae_g (genus name unknown) of Leotiomycetes increased from 0.42% to 0.58% to 5.61%. In contrast, in the case of genus Umbelopsis, the proportion was reduced in the order of 10.60% to 7.19% to 4.81%. It was also the second largest proportion of genus in each sample after T. matsutake, which may be associated with a gradual decrease of 79.01% to 75.22% to 51.98%. As mentioned above, Umbelopsis was not a significantly enriched genus in T. matsutake-dominant samples, but we suggest that it is positively related to T. matsutake. In addition, the genus Cenococcum decreased from 1.83% to 1.14% to 0.83% as the seasons changed.

Fig. 3. Taxonomic composition at the phylum level from the G-F2-1, G-F2-2, G-W-1, G-W-2, G-S-1, G-S-2 samples. Samples of only Gyeongju collected in autumn, winter, spring were compared. Fungal phyla with a relative abundance greater than 1% in at least one of the samples are shown and phyla less than 1% were shown as ETC. From G-F2-2 to G-W-2 to G-S-2, the ratio of the phylum Basidiomycota gradually dropped (G-F2: October 2018, G-W: February 2019, and G-S: June 2019, -1: far from the fairy ring, -2: under fruiting bodies of T. matsutake).
related to a specific soil chemistry [14]. On the other hand, pH around the area where *T. matsutake* grows was relatively acidic [14, 57, 58]. However, soil of more than pH 5.0 was also found [59]. Thus, the correlation between *T. matsutake*, the fungal community, and soil chemistry needs to be further studied. Also, soil chemistry and its seasonal changes related to *T. matsutake* need to be measured in further studies in Gyeongju and Yeongdeok soil.

In this study we analyzed the fungal community in the soil under fruiting bodies of *T. matsutake*, and also where the fairy ring of *T. matsutake* was no longer present. We compared it with the fungal community in soil from other regions. In addition, the same spot was investigated three times at intervals of four months at the same spot from fall to the following spring, to observe changes in the soil fungal community related to *T. matsutake*.

We got a high enough number of valid reads in each sample to analyze the fungal community. The valid reads of G-F2-2 were the highest, at 106,048, and those of G-W-1 were the fewest, at 56,395. The OTUs of most samples had only the following genera in common: *Sagenomella*, *Cladophialophora*, *Penicillium*, *Rhizopogon*, and *Phialocephala*. In both *T. matsutake*-minor G-F1-1 and G-F2-1, the genera *Sagenomella*, *Umbelopsis*, *Cenococcum*, *Hydnium*, *Russula*, *Oidiodendron*, *Tricholoma*, *Penicillium*, *Tricholomataceae*, *Sagenomella*, *Phialocephala*, *Talaromyces*, *Fungi_uc*, and *Botryosphaeriaceae_uc* were common. In *T. matsutake*-dominant samples, G-F1-2, G-F2-2, and Y-F1-2 had only the genera *Tricholoma*, *Umbelopsis*, *Oidiodendron*, *Sagenomella*, *Cladophialophora*, and *Phialocephala* in common. In *T. matsutake*-minor G-F1-1, G-F2-1, and Y-F1-1, the genera *Umbelopsis*, *Sagenomella*, *Russula*, *Cenococcum*, *Oidiodendron*, *Penicillium*, *Talaromyces*, *Phialocephala*, *Herpotrichiellaceae_uc* and *Fungi_uc* were present.

With fewer reads from winter samples, the overall number was reduced, but in the spring, the number of samples and reads increased again. From fall to the following spring, the ratio of phyla Basidiomycota and Mucoromycota gradually dropped. In contrast, the phylum Ascomycota increased. A total of 11 fungal classes were found to represent more than 1% of the total classes in each sample. The classes *Leotiomycetes*, *Mucoromycota* gradually dropped. In contrast, the phylum *Ascomycota* increased. A total of 11 fungal classes were found to represent more than 1% of the total classes in each sample. The classes *Leotiomycetes*, *Mucoromycota* gradually dropped. In contrast, the phylum *Ascomycota* increased. A total of 11 fungal classes accounted for the second-largest proportion of each sample after *T. matsutake*. We suggest that it is positively related to *T. matsutake*.

This study provides a foundation for understanding the ecological relationships between *T. matsutake* and other fungi in soil. However, further studies are necessary to analyze and investigate how *T. matsutake* interacts with other fungi, microorganisms, and roots of *P. densiflora*. Although several authors have published results from similar research on the *T. matsutake*-related microbial community, it was difficult to find commonality because of sampling methods and regional differences. Therefore, it is necessary to find a method that is accurate, uniform, and standardized to analyze the *T. matsutake*-related microbial community.

Acknowledgments

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), Ministry of Education (2016R1A6A1A05011910), and the Research Institute for Dok-do and Ulleung-do Island of Kyungpook National University.

Conflict of Interest

The authors have no financial conflicts of interest to declare.

References

1. Ahn JS, Lee KH. 1986. Studies on the volatile aroma components of edible mushroom (Tricholoma matsutake) of Korea. J. Kor. Soc. Food Nutr. 15: 253-257.
2. Hoshi H, Yagi Y, Iijima H, Matsuoka K, Ishihara Y, Yasuhara T. 2005. Isolation and characterization of a novel immunomodulatory alpha-glucan-protein complex from the mycelium of Tricholoma matsutake. J Agric. Food Chem. 53: 8948-8956.
3. Kim JY, Byeon SE, Lee YG, Lee JY, Park J, Hon, EK, et al. 2006. Immunostimulatory activities of polysaccharides from liquid culture of *Tricholoma matsutake*. J. Microbiol. Biotechnol. 16: 95-103.
4. Kim SY, Go KC, Song YS, Jeong YS, Kim EJ, Kim, BI. 2014. Extract of the mycelium of *T. matsutake* inhibits elastase activity and TPA-induced MMP-1 expression in human fibroblasts. Int. J. Mol. Med. 34: 1613-1621.
5. Hou Y, Ding X, Hou W, Zhong J, Zhu H, Ma R, et al. 2016. Anti-microorganism, anti-tumor, and immune activities of a novel polysaccharide isolated from Tricholoma matsutake. Pharmazie Mag. 8: 244-249.
6. Ohnuma N, Amemiya K, Kakouda R, Yanta Y, Machida K, Kiduchi M. 2000. Sterol constituents from the edible mushrooms, *Lentinula edodes* and *Tricholoma matsutake*. Chem. Pharm. Bull. 48: 749-751.
7. Park C. 2020. 2019 Production of Forest Products. Korea Forest Service.
8. Yamada A, Kanekawa S, Ohmasa M. 1999. Ectomycorrhiza formation of *Tricholoma matsutake* on *Pinus densiflora*. Mycosenoi 40: 193-198.
9. Yamada A, Maeda K, Ohmasa M. 1999. Ectomycorrhiza formation of *Tricholoma matsutake* isolates on seedlings of *Pinus densiflora* in vitro. Mycosenoi 40: 455-463.
23. Sabella E, Nutricati E, Aprile A, Miceli A, Sorce C, Lorenzi R, Lang C, Seven J, Polle A. 2011. Host preferences and differential contributions of deciduous tree species shape mycorrhizal species composition of the pine mushroom *Tricholoma matsutake*. *J. Microbiol. Biotechnol.* 50: 199-206.

24. Gottel NR, Castro HF, Kerley M, Yang Z, Pelletier DA. 2011. Distinct microbial communities within the endosphere and rhizosphere of *Tricholoma matsutake*. *Appl. Environ. Microbiol.* 77: 8523-8531.

25. Oh SY, Fong JJ, Park MS, Lim YW. 2016. Distinctive feature of microbial communities and bacterial functional profiles in the mycorrhizal zone of the pine mushroom *Tricholoma matsutake*. *Biotropica* 48: 10-14.

26. Poplin NJ, Yuen PK, Sakazume T, Fortina P, Kricka LJ. 2000. Evaluation of DNA fragment sizing and quantification by the agilent DNA 1000 chip. *Appl. Environ. Microbiol.* 66: 3571-3573.

27. Corrales A, Arnold AE, Ferrer A, Turner BL, Dalling JW. 2016. Variation in ectomycorrhizal fungal communities associated with contrasting diversity for various fungal ecological guilds in chestnut orchards. *Environ. Microbiol. Rep.* 8: e016857.

28. Kernaghan G. 2005. Mycorrhizal diversity: Cause and effect? *Mycorrhiza* 26: 1-17.

29. Peay KG, Baraloto C, Fine PV. 2013. Strong coupling of plant and fungal community structure across western Amazonian rainforests. *PLoS One* 8: e66829.

30. Baptista P, Reis F, Pereira E, Tavares RM, Santos PM, Richard F, Anderson R. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. *ISME J.* 6: 1794-1805.

31. Shokralla S, Spall JL, Gibson JF, Hajibabaei M. 2012. Next-generation sequencing technologies for environmental DNA research. *Appl. Environ. Microbiol.* 79: 3793-3802.

32. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartman M, Hollister E, Pierer E,.Tavares RM, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. *Appl. Environ. Microbiol.* 74: 1286-1288.

33. Vescovi AE, Zabala M, Alberti S, Valsecchi L, villa G, et al. 2015. Soil DNA pyrosequencing and fruitbody surveys reveal contrasting diversity for various fungal ecological guilds in chestnut orchards. *Environ. Microbiol. Rep.* 7: 946-954.

34. Latorre-Puertas M, De la Fuente J, Fernández-Lozano F, García-Fernández F, et al. 2016. Diversity and distribution of ectomycorrhizal fungi from Amazonian lowland white-sand forests in Brazil and French Guiana. *Biotropica* 48: 90-100.

35. Boyer LA, Rea TE, Flint J, et al. 2015. Diversity and distribution of ectomycorrhizal fungi from Amazonian lowland white-sand forests in Brazil and French Guiana. *Biotropica* 48: 90-100.

36. Prado JR, Scherer MA, Hettiarachchy S, et al. 2012. Effect of fruiting body bacteria on the growth of *Tricholoma matsutake* and its related molds. *PLoS One* 7: e5934-5944.

37. Niskanen T, Laimatainen K, Nuytinck J, Kirk P, Ibargren IO, et al. 2016. Identifying and naming the currently known diversity of the genus *Hydnurn*, with an emphasis on European and North American taxa. *Mycologia* 110: 890-918.

38. Ogawa M. 1977. Microbial ecology of mycorrhizal fungus *Tricholoma matsutake* in a Pinus densiflora forest. *Biotropica* 9: 129-139.

39. Roossinck MJ, de la Fin de la Montana C, van der Heijden MA. 1995. Arthrinium phaeospermum isolated from Tuber borchii ascomata: the first evidence for a "Mycorrhization Helper Fungus"? *Mycol. Res.* 109: 267-272.

40. Heck KL, Van Belle G, Simberloff D. 1975. Explicit calculation of the rarefaction diversity measurement and the determination of species richness of the genus *Hydnum*, with an emphasis on European and North American taxa. *Mycol. Prog.* 5: 129-139.

41. Corrales A, Arnold AE, Ferrer A, Turner BL, Dalling JW. 2016. Variation in ectomycorrhizal fungal communities associated with contrasting diversity for various fungal ecological guilds in chestnut orchards. *Environ. Microbiol. Rep.* 8: e016857.

42. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartman M, Hollister E, Pierer E, Tavares RM, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. *Appl. Environ. Microbiol.* 74: 1286-1288.

43. Vescovi AE, Zabala M, Alberti S, Valsecchi L, Villa G, et al. 2015. Soil DNA pyrosequencing and fruitbody surveys reveal contrasting diversity for various fungal ecological guilds in chestnut orchards. *Environ. Microbiol. Rep.* 7: 946-954.

44. Latorre-Puertas M, De la Fuente J, Fernández-Lozano F, García-Fernández F, et al. 2016. Diversity and distribution of ectomycorrhizal fungi from Amazonian lowland white-sand forests in Brazil and French Guiana. *Biotropica* 48: 90-100.

45. Boyer LA, Rea TE, Flint J, et al. 2015. Diversity and distribution of ectomycorrhizal fungi from Amazonian lowland white-sand forests in Brazil and French Guiana. *Biotropica* 48: 90-100.

46. Prado JR, Scherer MA, Hettiarachchy S, et al. 2012. Effect of fruiting body bacteria on the growth of *Tricholoma matsutake* and its related molds. *PLoS One* 7: e5934-5944.
53. Chen AJ, Varga I, Frisvad JC, Jiang XZ, Samson RA. 2016. Polyphasic taxonomy of *Aspergillus* section Cervini. *Stud. Mycol.* 85:65-89.
54. Park KH, Oh SY, Yoo S, Park MS, Fong JJ, Lim YW. 2020. Successional change of the fungal microbiome pine seedling roots inoculated with *Tricholoma matsutake*. *Front. Microbiol.* 11:2413.
55. Cho DH, Lee KJ. 1995. A relationship between climatic factors and matsutake productions in 29 sites during a 10-year period in Korea. *J. Korean Soc. For. Sci.* 84:277-285.
56. Korea Meteorological Administration. 2015. Climate statistical analysis. Available from https://data.kma.go.kr/cmmn/main.do. Accessed Mar. 22, 2021.
57. Chung DY, Lee KS, Lee JS, Youn YN. 2008. Characteristics of a forest soil on pine mushroom habitat located in Ponghwa, Kyungbuk and Gansung, Kangwon. 1. Physical and chemical properties of O horizon and surface soil. *Kor. J. Soil Sci. Fert.* 41:206-213.
58. Kim M, Yoon H, Kim YE, Kim YJ, Kong WS, Kim JG. 2014. Comparative analysis of bacterial diversity and communities inhabiting the fairy ring of *Tricholoma matsutake* by barcoded pyrosequencing. *J. Appl. Microbiol.* 117:699-710.
59. Li Q, Li X, Chen C, Li S, Huang W, Xiong C, et al. 2016. Analysis of bacterial diversity and communities associated with *Tricholoma matsutake* fruiting bodies by barcoded pyrosequencing in Sichuan province, southwest China. *J. Microbiol. Biotechnol.* 26:89-98.