Mesenchymal stem cell-derived extracellular vesicles as a new therapeutic strategy for ocular diseases

Bo Yu, Xiao-Rong Li, Xiao-Min Zhang

ORCID number: Bo Yu (0000-0003-1754-5798); Xiao-Rong Li (0000-0001-6855-7671); Xiao-Min Zhang (0000-0003-4898-4152).

Author contributions: All authors equally contributed to this manuscript.

Supported by: National Natural Science Foundation of China, No. 81800825, No. 81870651 and No. 81870675.

Conflict-of-interest statement: The authors have no conflicts to declare.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Received: December 27, 2019
Peer-review started: December 27, 2019
First decision: February 20, 2020
Revised: February 22, 2020
Accepted: March 22, 2020
Article in press: March 22, 2020
Published online: March 26, 2020

Abstract

Mesenchymal stem cells (MSCs) have attracted considerable attention for their activity in the treatment of refractory visual disorders. Since MSCs were found to possess the beneficial effects by secreting paracrine factors rather than direct differentiation, MSC-derived extracellular vesicles (EVs) were widely studied in various disease models. MSCs generate abundant EVs, which act as important mediators by exchanging protein and genetic information between MSCs and target cells. It has been confirmed that MSC-derived EVs possess unique anti-inflammatory, anti-apoptotic, tissue repairing, neuroprotective, and immunomodulatory properties, similar to their parent cells. Upon intravitreal injection, MSC-derived EVs rapidly diffuse through the retina to alleviate retinal injury or inflammation. Due to possible risks associated with MSC transplantation, such as vitreous opacity and pathological proliferation, EVs appear to be a better choice for intravitreal injection. Small size EVs can pass through biological barriers easily and their contents can be modified genetically for optimal therapeutic effect. Hence, currently, they are also explored for the possibility of serving as drug delivery vehicles. In the current review, we describe the characteristics of MSC-derived EVs briefly, comprehensively summarize their biological functions in ocular diseases, and discuss their potential applications in clinical settings.

Key words: Mesenchymal stem cells; Extracellular vesicles; Exosomes; Ocular diseases; Drug delivery

© The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: The therapeutic potential of Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) has been widely studied in various diseases. In the current
review, we summarize all the studies about the use of MSC-derived EVs in different ocular disorders, such as corneal injury, glaucoma, uveitis and retinal diseases. We also discuss the history and properties of MSC-derived EVs, the advantages of their use in treating eye diseases and their drug delivery potential. This review also provides future directions for enhancing the therapeutic effect of MSC-derived EVs in treating ocular diseases.

INTRODUCTION

Visual impairment and blindness are global issues, leading to a significant financial and medical burden. The number of visually impaired people in 2017 was estimated to be 285 million worldwide[1]. The leading causes of moderate or severe vision impairment among the global population in 2015 were uncorrected refractive error, cataract, age-related macular degeneration, glaucoma, and diabetic retinopathy, which will not change until 2020. Among them, vision loss caused by refractive error and cataract is avoidable. However, vision loss caused by age-related macular degeneration, glaucoma, and diabetic retinopathy is sometimes preventable, but incurable and irreversible[2]. The patient’s quality of life is affected considerably, imposing a serious burden on their families. At present, few effective methods are available for the treatment of retinal and neural damage caused by various ocular diseases. Hence, alternative solutions, such as regenerative cell-based therapy, are being explored[3-5].

MSCs can produce immunosuppressive, anti-inflammatory, and trophic factors, and are explored widely as therapeutic agents for regenerative cell-based therapy of ocular diseases[6]. Although MSC transplantation has shown beneficial effects in treating many refractory diseases, ethical and safety concerns after intravenous injection on undesired differentiation and their ability to promote tumor growth are still a matter of debate, while intravitreal injection could lead to severe vision loss due to proliferative vitreoretinopathy (PVR)[7,8]. Since the therapeutic effects of MSCs can be mediated primarily by the paracrine signaling of EVs[9], MSC-derived EVs, either as a therapeutic agent or as a drug delivery system, are explored widely for the treatment of ocular disorders[10]. The majority of live cells secrete EVs[11]. However, MSC is the only human cell type with a scalable ability for mass production of EVs[12]. In this review, we summarize recent studies on the role of MSC-derived sEVs in the treatment of eye diseases and discuss the possibility of future clinical application.

EVs were used to be referred to as exosomes or microvesicles (MVs) in many studies. In 2018, the International Society for Extracellular Vesicles published minimal information for studies of EVs (MISEV2018), in which the authors were urged to use operational terms for EV subtypes based on their size (“small EVs” (sEVs) [< 100 nm or < 200 nm] and “medium/large EVs” (m/lEVs) [> 200 nm]), density (low, middle, high, with each range defined) or biochemical composition (CD63+/CD81+ EVs, annexin A5-stained EVs, etc.) in place of terms such as exosomes and MVs[13]. All studies that described the effect of MSC-EVs on ocular disorders were using the term of exosomes. Based on the size of the EVs mentioned in these studies, we used sEVs instead of exosomes in this review.

Characteristics of MSC-derived sEVs

MSCs are a population of non-hematopoietic stem cells with self-renewal ability. In addition to fetal tissues, MSCs can also be isolated from adipose tissue, umbilical cord blood, peripheral blood, skeletal muscle, liver, gingival and dental tissue, skin, breast milk, cartilage, and corneal limbal stroma of the eye[14]. MSCs have the potential to differentiate into mesenchymal or non-mesenchymal cell lineages, such as osteoblasts, chondrocytes, and adipocytes[15]. MSCs possess the ability to migrate to the injury sites to promote wound healing and tissue regeneration and inhibit the immune response by modulating the proliferation and function of innate and acquired immune cells. The beneficial effect of MSCs can be attributed to sEVs, soluble factor secretion, and membrane protein CD73[16].
MSC-derived sEVs have a narrow diameter of < 200 nm and were supposed to be mostly exosomes in earlier studies with a major peak particle size of 65-75 nm[29]. The exosomes are composed of lipid bilayer membrane and cargo of proteins, nucleic acids (mRNA, miRNAs, DNA, and long noncoding RNAs), and raft-associated lipids[24]. Their biogenesis has two steps; the first step is the inward budding of late endosomes, and the second step involves the production of multivesicular body and extracellular release[21]. After being secreted into the extracellular space, the exosomes enter various biological fluids and can travel to remote organs while protecting the inside cargo from decomposing. Due to their small size, they can easily traverse through different biological barriers, and communicate with recipient cells by releasing and transporting cargos.

The contents released from sEVs, mostly being exosomes, derived from MSCs originating from different tissues are not identical and influence their potential bioactivity. For example, CD9, CD81, CD44, and CD90 are expressed commonly on the membrane of all MSC-derived sEVs. However, bone marrow MSC-derived sEVs express CD71 and CD166, human umbilical cord MSC-derived sEVs express CK8 and HLA-II, while HLA-I and HLA-ABC are present on the membrane of adipose tissue MSC-derived sEVs[23]. Hence, they exhibit differential effects on the same disease or cell model. For example, MSC-derived sEVs from the bone marrow and umbilical cord decreased cell proliferation and suppressed tumor growth, whereas adipose tissue MSC-derived sEVs enhanced tumor cell proliferation[21]. The sEVs content also varies based on the microenvironment to which MSCs are exposed to[24]. Over 4000 gene products, miRNAs, and nearly 2000 proteins have been detected and identified in the MSC-derived sEV cargo[24-26].

The role of MSC-derived sEVs was explored initially in a mouse model of myocardial ischemia/reperfusion injury[27]. In kidney injury models, MSC-derived sEVs showed improvement in renal function through the transport of miRNA[28]. In animal neurodegeneration disease models, MSC-derived sEVs promoted neurogenesis and angiogenesis, reduced neuroinflammation, and facilitated functional recovery (increasing memory improvement and spatial learning)[29]. MSC-derived sEVs were also effective in treating brain injury through suppression of early inflammatory responses or shift of microglial M1/M2 polarization[30,31]. In liver fibrosis models, MSC-derived sEVs protected hepatocytes by inhibiting epithelial-to-mesenchymal transition[32]. MSC-derived sEVs also showed beneficial effects in the treatment of many other disease models, such as graft-versus-host disease[33], type 2 diabetes mellitus[34], tumors[35], and cutaneous wounds[36].

APPLICATION OF MSC-DERIVED SEVS IN OCULAR DISEASES

Corneal diseases

The corneal epithelium covers the outermost part of the cornea, and its integrity forms the foundation of normal corneal function. Trauma, infection, and physical abrasion can cause persistent epithelial defects, a leading cause of vision loss in different ocular surface diseases. While corneal disease treatment and protection have achieved significant progress, wound healing after severe corneal disease or injury remains challenging[37,38]. In recent years, MSCs were shown to aid corneal surface healing[39]. Samaeeekia et al[39] evaluated the effect of MSC-derived sEVs on corneal wound healing and showed that human corneal MSC-derived sEVs significantly increased the proliferation of human corneal epithelial cells in vitro, and accelerated corneal wound closure in a murine epithelial mechanical injury model (Table 1).

Corneal stroma accounts for 90% of the corneal thickness and is important for the maintenance of corneal transparency. Severe corneal diseases affect the corneal stroma, causing a corneal scar and a significant decline in vision[40]. Currently, the conventional treatment modality is keratoplasty, and the disadvantages, especially immunological rejection, are challenging to avoid or overcome. MSC-based therapy is a promising method in promoting corneal stroma healing, which has been tested in several studies[41,42]. Recent reports showed that MSCs exert their therapeutic effect by secreting sEVs[43]. Shen et al[43] reported that the co-culture of corneal stromal cells (CSCs) with MSCs resulted in enhanced viability and proliferative ability along with increased plasticity. Treatment of CSCs with MSC-derived sEVs caused changes in the matrix metalloproteinases and collagen levels of CSCs and promoted extracellular matrix (ECM) synthesis and CSC proliferation. The protective effect might be exerted through promoting CSC transformation into fibroblasts or myofibroblasts. The ECM-promoting activity of MSC-derived sEVs was reported to be similar to that of MSCs, thus highlighting the potential clinical use of MSC-derived sEVs for the treatment of...
MSCs: Mesenchymal stem cells; EVs: Extracellular vesicles.

Table 1 Effects of mesenchymal stem cell derived extracellular vesicles in ocular disorders

Ref.	Origin	Delivery way	Biological function
[67] et al., 2018	Human umbilical cord derived MSCs	Intravitreal injection	Ameliorate retinal laser injury
[44] et al., 2017	Human bone marrow derived MSCs	Intravitreal injection	Promote RGC survival in optic nerve crush model
[57] Koizumi et al., 2017	Human bone marrow derived MSCs	Intravenous injection	Prevent EAU development
[58] Pugazhenthi et al., 2017	Human bone marrow derived MSCs	Intravitreal injection	Decrease the severity of retinal ischemia
[61] Bai et al., 2017	Human umbilical cord derived MSCs	Periocular injection	Inhibit inflammatory cell migration in EAU
[71] Mathew et al., 2018	Human corneal MSCs	Intravitreal injection	Contribute to the growth and plasticity of corneal stromal cells
[72] Zhang, 2018	Intravenous injection	Promote corneal epithelial wound healing	
[74] Shen et al., 2018	Intravitreal injection	Accelerate corneal epithelial wound healing	
[76] Mead et al., 2018	Human bone marrow derived MSCs	Topical application	Promote neuroprotection in glaucoma model
[77] Safranek et al., 2018	Rabbit adipose derived MSCs	Topical application	Attenuate retina degeneration in diabetic retinopathy
[63] Zhang et al., 2018	Intravitreal injection	Ameliorate hyperglycemia-induced retinal inflammation	
[64] Mathew et al., 2019	Human bone marrow derived MSCs	Intravitreal injection	Protect retinal cells from cell death in retinal ischemia

Corneal stromal damage

Corneal endothelium, regulating stromal hydration level and maintaining corneal deturgescence, covers the posterior corneal surface. The loss of endothelial cells will lead to stromal edema and severe vision loss. Recently, MSCs as a potential therapeutic cell source for corneal endothelial diseases were also reported. However, MSCs exerted the therapeutic effects on endothelial cell defect mainly through direct differentiation, and no application of MSC-derived EVs has been reported so far.

Our previous study demonstrated that MSC administration was effective in prolonging corneal allograft survival and exerted therapeutic effect against corneal allograft rejection. Recently, we found MSC-derived sEVs acted similarly as MSCs in corneal allograft rejection (unpublished data).

Autoimmune uveitis

Autoimmune uveitis is a type of autoimmune disease involving the uveal tract and retina. It is one of leading global causes of visual disability due to severe clinical complications, including cataract, glaucoma, and retinal damage. Systemic or local administration of corticosteroids combined with immunosuppressive drugs is the traditional treatment protocol for autoimmune uveitis. However, severe adverse effects limit their long-term use in the clinic. The experimental autoimmune uveitis (EAU) model is used widely to understand the mechanism and new treatment options for non-infectious uveitis. Our previous study showed MSCs strikingly ameliorate EAU both in mice and rats. Recently, we proved that periocular injection of sEVs derived from umbilical cord MSCs reduced EAU severity by reducing leukocyte infiltration in the eyes of EAU rats. The in vitro migration of inflammatory cells such as neutrophils, NK cells, and CD4+ T cells was inhibited by MSC-derived sEVs, indicating that the sEVs exert their therapeutic effect at least partially by the inhibition of leukocyte migration. The study showed the possible clinical utility of MSC-derived sEVs for the treatment of autoimmune uveitis. The other study also demonstrated that MSC-derived sEVs could prevent EAU development and suppress Th1 and Th17 development in mice.

Glucoma

Glucoma is a group of optic neuropathies characterized by the degeneration of retinal ganglion cells (RGCs) and the axons. Degeneration of RGCs results in altered optic disc appearance and visual field loss. Among vision disorders, glucoma is second to cataract and also a leading global cause of irreversible vision loss. It was estimated that in 2020 the number of people with open-angle glucoma and angle-closure glucoma would be nearly 79.6 million. Currently, ocular hypotensive
drops, laser treatment, and surgery are used to lower intraocular pressure; however, they are insufficient to rescue damaged RGCs\(^6\). Therefore, utilizing the neuroprotective effects of MSCs, they were shown to be effective in promoting RGCs survival in different animal models\(^6\). The MSC-derived sEVs were also tested in glaucoma models recently to avoid the potential side-effects of MSC administration. In the rodent optic-nerve crush model, the thickness of the retinal nerve fiber layer (RNFL) decreased significantly. Mead\(et\, al\)\(^6\) showed that intravitreal injection of MSC-derived sEVs preserved RNFL thickness as measured by OCT and positive scotopic threshold response (pSTR) measured by ERG. Greater than 50% of RGC function in MSC-derived sEVs treated retina was preserved, which indicated that sEVs could protect RGC from death along with retaining their function. The Ago2 knockdown reduced microRNA quantity within the sEVs and decreased sEVs neuroprotective and neuritogenesis abilities, thus indicating the dependence of the therapeutic effect on microRNA rather than protein. DBA/2 mouse is a rodent genetic model of glaucoma. In another study, MSC-derived sEVs were injected intravitreally into DBA/2 mice once a month, from 3 mo to 1 year of age. In the treated group, the number of RGCs was higher at 12-mo and had reduced axonal damage. Concerning the RGC function, pSTR amplitudes were measured by ERG, and the pSTR amplitudes in the treated group were higher at 6-mo, but not at 9- or 12-mo, which indicated that MSC-derived sEVs might prevent RGC functional decline at an early stage, but not at late stage\(^6\).
apoptosis and protection of visual function, a protective effect comparable to that of MSCs. In vitro experiments showed that MSC-derived sEVs could reduce heat injury-induced retinal cell loss by downregulating MCP-1[34]. We also demonstrated recently that subretinal injection of MSC-derived sEVs exhibited therapeutic effect in rat retinal detachment model by inhibiting inflammatory cytokine secretion, reducing apoptosis, and activating autophagy[39]. In a rodent ischemia-reperfusion model, intravitreal injection of MSC-derived sEVs increased retinal functional recovery after ischemic injury. After intravitreal injection, a large number of sEVs were observed in ischemic retina and were concentrated in RGCs and microglial cells. The injected sEVs could be detected in the vitreous humor up to four weeks after administration[34]. In another study of a murine oxygen-induced retinopathy model, Moisseiev et al[73] showed that intravitreal injection of MSC-derived sEVs decreased the severity of retinal ischemia. In vitro experiments showed that pretreatment of R28 cells with sEVs could protect cells against oxygen and glucose deprivation conditions.

REFERENCES

1 Elmannah W, Elleithy K. Sensor-Based Assistive Devices for Visually-Impaired People: Current Status, Challenges, and Future Directions. *Sensors (Basel)* 2017; 17: 565 [PMID: 28267451 DOI: 10.3390/s17030565]

2 Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, Das A, Jonas JB, Keeffe J, Kempen JH, Leasher J, Limburg H, Naidoo K, Pesudovs K, Silvester A, Stevens GA, Tahhan N, Wong TY, Taylor HR. Vision Loss Expert Group of the Global Burden of Disease Study. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. *Lancet Glob Health* 2017; 5: e1221-e1234 [PMID: 29032195 DOI: 10.1016/S2214-109X(17)30393-7]

3 Bertelli PM, Pedrini E, Guaduric-Fuchs J, Peixoto E, Pathak V, Stitt AW, Medina RJ. Vascular Regeneration for Ischemic Retinopathies: Hope from Cell Therapies. *Curr Eye Res* 2020; 45: 372-384 [PMID: 31609636 DOI: 10.1080/02713683.2019.1681004]

4 Kuss L, Peng J, Jiang Y, Zheng Z, Zhou X. Apolipoprotein E-Mimetic Peptide COG1410 Enhances Retinal Ganglion Cell Survival by Attenuating Inflammation and Apoptosis Following TONI. *Front Neurosci* 2019; 13: 980 [PMID: 31607842 DOI: 10.3389/fnins.2019.00980]

5 Kohen MC, Tatlipinar S, Cumbul A, Uslu Ü. The effects of bevacizumab treatment in a rat model of retinal ischemia and perfusion injury. *Mol Vis* 2018; 24: 239-250 [PMID: 29681725]

6 Joe AW, Gregory-Evans K. Mesenchymal stem cells and potential applications in treating ocular disease.

MSC-DERIVED SEVS AS DRUG DELIVERY SYSTEM IN OPHTHALMOLOGY

With lipid bilayer membrane to protect their cargo from degradation, sEVs can travel a long distance and even traverse through biological barriers to the target cells to transfer biological message. Therefore, they are natural carriers for the transport of proteins, lipids, or RNAs to recipient cells with high biocompatibility[30], and are utilized in basic research for drug or other bioactive substance delivery[39]. MSCs are a rich source of sEVs, and MSC-derived sEVs, which have many beneficial effects for many diseases, are ideal for drug delivery and were used in studies of many diseases[22-26].

The nanometer size of MSC-derived sEVs facilitates their transport after intravitreal injection across the retina and choroid. Our data showed that after both periorcular and intravenous injection, sEVs reach the retina rapidly (unpublished data). In contrast to the MSCs, the MSC-derived sEVs, do not cause vitreous opacity, immunologic rejection, or proliferative vitreous retinopathy[68,76]. Therefore, they could be an alternative drug delivery option for ocular disease treatment. The therapeutic substances could be loaded into sEVs by two methods: One by loading high doses of the selective therapeutic drug into MSCs and collecting the secreted sEVs, and the other is to load sEVs directly through co-culture or electroporation. Owing to the advantages of EV-based therapy, the use of MSC-derived sEVs as nanocarriers loaded with proteins, miRNAs, or other drugs hold promise for the treatment of refractory immunologic rejection, or proliferative vitreous retinopathy. In a rodent ischemia-reperfusion model, Kohen et al[73] showed that subretinal injection of MSC-derived sEVs decreased the severity of retinal ischemia. In vitro experiments showed that pretreatment of R28 cells with sEVs could protect cells against oxygen and glucose deprivation conditions.

CONCLUSION

Recently, several studies showed the critical role of MSC-derived sEVs in treating ophthalmic diseases. They are also ideal nanocarriers to deliver drugs because of their high biocompatibility, bi-lipid membrane structure, and small size. With increasing evidence of their therapeutic efficacy, it is promising to transform MSC-derived sEV based therapy into clinic for treating ocular diseases in the future.

1 Elmannah W, Elleithy K. Sensor-Based Assistive Devices for Visually-Impaired People: Current Status, Challenges, and Future Directions. *Sensors (Basel)* 2017; 17: 565 [PMID: 28267451 DOI: 10.3390/s17030565]

2 Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, Das A, Jonas JB, Keeffe J, Kempen JH, Leasher J, Limburg H, Naidoo K, Pesudovs K, Silvester A, Stevens GA, Tahhan N, Wong TY, Taylor HR. Vision Loss Expert Group of the Global Burden of Disease Study. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. *Lancet Glob Health* 2017; 5: e1221-e1234 [PMID: 29032195 DOI: 10.1016/S2214-109X(17)30393-7]

3 Bertelli PM, Pedrini E, Guaduric-Fuchs J, Peixoto E, Pathak V, Stitt AW, Medina RJ. Vascular Regeneration for Ischemic Retinopathies: Hope from Cell Therapies. *Curr Eye Res* 2020; 45: 372-384 [PMID: 31609636 DOI: 10.1080/02713683.2019.1681004]

4 Kuss L, Peng J, Jiang Y, Zheng Z, Zhou X. Apolipoprotein E-Mimetic Peptide COG1410 Enhances Retinal Ganglion Cell Survival by Attenuating Inflammation and Apoptosis Following TONI. *Front Neurosci* 2019; 13: 980 [PMID: 31607842 DOI: 10.3389/fnins.2019.00980]

5 Kohen MC, Tatlipinar S, Cumbul A, Uslu Ü. The effects of bevacizumab treatment in a rat model of retinal ischemia and perfusion injury. *Mol Vis* 2018; 24: 239-250 [PMID: 29681725]

6 Joe AW, Gregory-Evans K. Mesenchymal stem cells and potential applications in treating ocular disease.
MSC-derived EVs in ocular diseases

Yu B et al. WJSC 2020; 12: 25-33 [PMID: 29902862 DOI: 10.1016/j.wjst.2017.07.002]
Chen X, Shao H, Zhi Y, Xiao Q, Su C, Dong L, Liu X, Li X, Zhang X. CD73 Pathway Contributes to the Immunosuppressive Ability of Mesenchymal Stem Cells in Intracranial Autoimmune Responses. Stem Cells Dev 2016; 25: 337-346 [PMID: 26650818]

Nakamura Y, Miyaki S, Ishiihi H, Matsuoka S, Nakasa T, Kamei N, Aki moto T, Higashi Y, Ochi M. Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett 2015; 589: 1257-1265 [PMID: 25862500 DOI: 10.1016/j.febslet.2015.03.031]

Chaput N, Théry C. Exosomes: immune properties and potential clinical implementations. Semin Immunopathol 2011; 33: 419-440 [PMID: 21744994 DOI: 10.1007/s00292-010-0233-x]

Galland S, Stamenkovic I. Mesenchymal stromal cells in cancer: a review of their immunomodulatory functions and dual effects on tumor progression. J Pathol 2019 [PMID: 31680444 DOI: 10.1002/path.5357]

Mushahary D, Spiteller A, Kasper C, Weber V, Charwat V. Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A 2018; 93: 91-31 [PMID: 29072818 DOI: 10.1002/cyt.a.22322]

Del Fattore A, Luciano R, Saracino R, Battafarano G, Rizzo C, Pascucci L, Alessandri G, Pessina A, Perrotta A, Fierabracci A, Muraca M. Differential effects of extracellular vesicles secreted by mesenchymal stem cells from different sources on glioblastoma cells. Expert Opin Biol Ther 2015; 15: 495-504 [PMID: 25539575 DOI: 10.1517/14712598.2015.997706]

Lo Sico C, Reverberi D, Balbi C, Ulivi V, Principi E, Pascucci L, Becherini P, Bosco MC, Vareios L, Franzin C, Pozzobon M, Cancedda R, Tasso R. Mesenchymal Stem Cell-Derived Extracellular Vesicles as Mediators of Anti-Inflammatory Effects: Endorsement of Macrophage Polarization. Stem Cells Transl Med 2017; 6: 1018-1028 [PMID: 28186708 DOI: 10.1002/stem.1303]

Anderson JD, Johnson IH, Graham CS, Vesterlund LM, Pham MT, Bramlett CS, Montgomery EN, Mellema MS, Bardini RL, Contreras Z, Hoon M, Bauer G, Fink KD, Fury B, Hendrix KJ, Chedin F, El-Andaloussi S, Hwang B, Mulligan MS, Lehtiö J, Nolta JA. Comprehensive Proteomic Analysis of Mesenchymal Stem Cell Exosomes Reveals Modulation of Angiogenesis via Nuclear Factor-KappaB Signaling. Stem Cells 2016; 34: 601-613 [PMID: 26782178 DOI: 10.1002/stem.2298]

Chen TS, Lai RC, Lee MM, Choo A, Lee CN, Lim SK. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res 2010; 38: 215-224 [PMID: 19850715 DOI: 10.1093/nar/gkp857]

Lai RC, Tan SS, Teh HJ, Sze SK, Arslan F, de Kleijn DP, Choo A, Lim SK. Proteolytic Potential of the MSC Exosome Proteome: Implications for an Exosome-Mediated Delivery of Therapeutic Proteosomes. Int J Proteomics 2012; 2012: 971907 [PMID: 22525984 DOI: 10.1155/2012/971907]

Shojaaei G, Khandaker I, Funderburgh ML, Mann MM, Basu R, Stolz DB, Geary ML, Dos Santos A, Deng SX, Funderburgh JL. Mesenchymal Stem Cells Reduce Corneal Fibrosis and Inflammation via Extracellular Vesicle-Mediated Delivery of miRNA. Stem Cells Transl Med 2019; 8: 1192-1201 [PMID: 31299598 DOI: 10.1002/stem.180207]

Ding M, Shen Y, Wang P, Xie Z, Xu S, Zhu Z, Wang Y, Lyu Y, Wang D, Xu L, Bi J, Yang H. Exosomes Isolated From Human Umbilical Cord Mesenchymal Stem Cells Alleviate Neuroinflammation and Reduce Amyloid-Beta Deposition by Modulating Microglial Activation in Alzheimer's Disease. Neurochem Res 2018; 43: 2165-2177 [PMID: 30229237 DOI: 10.1007/s11064-018-2641-5]

Ni H, Yang S, Siaw-Debrah F, Hu J, Wu K, He Z, Yang J, Pan S, Lu X, Ye H, Xu Z, Wang F, Jin K, Zhage Q, Huang L. Exosomes Derived From Bone Mesenchymal Stem Cells Ameliorate Early Inflammatory Responses Following Traumatic Brain Injury. Front Neurosci 2019; 13: [PMID: 30733666 DOI: 10.3389/fnins.2019.00014]

Li Y, Yang YY, Ren JL, Xu F, Chen FM, Li A. Exosomes secreted by stem cells from human exfoliated deciduous teeth contribute to functional recovery after traumatic brain injury by shifting microglia M1/M2 polarization in rats. Stem Cell Res Ther 2017; 8: 198 [PMID: 28986258 DOI: 10.1186/s13287-017-0464-5]

Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L, Wang M, Zhou Y, Zhu W, Li W, Xu W, Li A. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 2013; 22: 845-854 [PMID: 23002959 DOI: 10.1089/scd.2012.0395]

Fujii S, Muray A, Fujishiro A, Shinoda T, Shimazu Y, Hiroi T, Tahara H, Takao-Kondo A, Ichinose T, Maekawa T. Graft- Versus-Host Disease Amelioration by Human Bone Marrow Mesenchymal Stromal/Cell-Derived Extracellular Vesicles Is Associated with Peripheral Preservation of naive T Cell Populations. Stem Cells 2018; 36: 434-443 [PMID: 29239062 DOI: 10.1002/stem.2739]

Sun Y, Shi H, Yin S, Ji C, Zhang X, Zhang B, Wu P, Li Y, Macdonald H. Human Mesenchymal Stem Cell Derived Exosomes Alleviate Type 2 Diabetes Mellitus by Reversing Peripheral Insulin Resistance and Reducing β-Cell Destruction. ACS Nano 2018; 12: 7613-7628 [PMID: 30052036 DOI: 10.1021/acsnano.7b07643]

Che Y, Shi X, Shi Y, Jiang X, Ai Q, Shi Y, Song F, Jiang W. Exosomes Derived from miR-143-Overexpressing MSCs Inhibit Cell Migration and Invasion in Human Prostate Cancer by Downregulating TFF3. Mol Ther Nucleic Acids 2019; 18: 232-244 [PMID: 31563120 DOI: 10.1016/NT.2019.08.010]

Ma T, Fu B, Yang X, Xiao Y, Pan M. Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/β-catenin signaling in cutaneous wound healing. J Cell Biochem 2019; 120: 10847-10854 [PMID: 30681184 DOI: 10.1002/jcb.28376]

Li P, Zhao SZ. Mesenchymal stem cells: Potential role in corneal wound repair and ocular surface reconstruction. Stem Cell Rev Rep 2013; 9: 609-619 [PMID: 23733704 DOI: 10.1007/s12015-013-9449-0]

Samaeejia R, Rabiee B, Putra I, Shen X, Park YJ, Hasmati P, Eslami M, Djallian AR. Effect of Human Corneal Mesenchymal Stromal Cell-Derived Exosomes on Corneal Epithelial Wound Healing. Invest Ophthalmoic Vis Sci 2018; 59: 5194-5200 [PMID: 30372747 DOI: 10.1167/iovs.18.24803]

Määttä M, Vaes E, Vääsen MR, Pihlajaniemi T, Tervo T. Altered expression of type XIII collagen in keratoconus and scarred human cornea: Increased expression in scarred cornea is associated with myofibrotic transformation. Cornea 2006; 25: 448-453 [PMID: 16670484 DOI: 10.1097/00126634-200604000-00010]

Aramliah-Montiel F, Pastor S, Blazquez-Martinez A, Fernandez-Delgado J, Nistal M, Aijo JL, De Miguel MP. Adipose-derived stem cells are a source for cell therapy of the corneal stroma. Stem Cells 2008; 26: 507-579 [PMID: 18065934 DOI: 10.1666/stemcells.2007-0653]

Ma X, Bao HJ, Cui L, Zou J. The graft of autologous adipose-derived stem cells in the corneal stroma after mechanical damage. PLoS One 2013; 8: e76103 [PMID: 24094428 DOI: 10.1371/journal.pone.0076103]
Diabetes: 489-499 [PMID: 25897358 DOI: 10.4239/wjd.v6.i3.489], Ulbig MW. Diabetic retinopathy - ocular complications of diabetes mellitus. Graefes Arch Clin Exp Ophthalmol 2018; heating of large and refractory macular holes. 2041-2052

Zhang X, X. 5473-5480 [PMID: 30452601 DOI: 10.1167/iovs.18-25310]. Neuroprotection in a Genetic DBA/2J Mouse Model of Glaucoma. Invest Ophthalmol Vis Sci 2018;

Libby RT, Anderson MG, Pang IH, Robinson ZH, Savinova OV, Cosma IM, Snow A, Wilson LA, Smith S, Clark AF, John SW. Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the survival of retinal ganglion cells through miRNA-dependent mechanisms. Stem Cells Transl Med 2017; 6: 1273-1285 [PMID: 28198592 DOI: 10.1002/sctm.16-0428].

Weinreb RN, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Lancet 2014; 384: 1087-1093 [PMID: 24825645 DOI: 10.1016/j.jama.2014.05.008].

Bansal S, Barathi VA, Iwata D, Agrawal R. Experimental autoimmune uveitis and other animal models of uveitis: An update. Indian J Ophthalmol 2015; 63: 211-218 [PMID: 25971165 DOI: 10.4103/0301-4738.159914].

Zhang X, Ren X, Li G, Jiao C, Zhang L, Zhao S, Wang J, Han ZC, Li X. Mesenchymal stem cells ameliorate experimental autoimmune uveoretinitis by comprehensive modulation of systemic autoimmunity. Invest Ophthalmol Vis Sci 2011; 52: 3143-3152 [PMID: 21296818 DOI: 10.1167/iovs.10-6334].

Zhao PT, Zhang LJ, Shao H, Bai LL, Yu B, Su C, Dong LJ, Liu X, Li XR, Zhang XM. Therapeutic effects of mesenchymal stem cells administered at later phase of recurrent experimental autoimmune uveitis. Int J Ophthalmol 2016; 9: 1381-1389 [PMID: 27038352 DOI: 10.18240/ijo.2016.10.03].

Zhang L, Zheng H, Shao H, Nian H, Zhang Y, Bai L, Su C, Liu X, Dong L, Li X, Zhang X. Long-term therapeutic effects of mesenchymal stem cells compared to dexamethasone on recurrent experimental autoimmune uveitis of rats. Invest Ophthalmol Vis Sci 2014; 55: 5561-5571 [PMID: 2512599 DOI: 10.1177/14171478].

Bai L, Shao H, Wang H, Zhang Z, Su C, Dong L, Yu B, Chen X, Li X, Zhang X. Effects of Mesenchymal Stem Cell-Derived Exosomes on Experimental Autoimmune Uveitis. Sci Rep 2017; 7: 4323 [PMID: 28659567 DOI: 10.1101/1566524015666150731095426].

Shigemoto-Kuroda T, Oh JY, Kim SK, Park SY, Lee HJ, Shin HM, An SY, Prockop DJ, Lee RH. MSC-derived Extracellular Vesicles Attenuate Immune Responses in Two Autoimmune Murine Models: Type 1 Diabetes and Uveoretinitis. Stem Cell Reports 2017; 8: 1214-1225 [PMID: 28494379 DOI: 10.1016/j.stemcr.2017.04.008].

Jonas JB, Aung T, Bourne RR, Bron AM, Ritz R, Panda-Jonas S. Glaucoma. Lancet 2017; 390: 2183-2193 [PMID: 28577860 DOI: 10.1016/S0140-6736(17)31469-1].

Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006; 90: 262-267 [PMID: 16488940 DOI: 10.1111/j.1532-2142.2005.tb12524].

Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma. A review. JAMA 2014; 311: 1901-1911 [PMID: 24826545 DOI: 10.1001/jama.2014.3192].

Su W, Li Z, Jia Y, Zhu Y, Cai W, Wan P, Zhang Y, Zheng SG, Zhuo Y. MicroRNA-21a-5p/PDCD4 axis regulates mesenchymal stem cell-induced neuroprotection in acute glaucoma. J Mol Cell Biol 2017; 9: 289-301 [PMID: 28651613 DOI: 10.1093/jmcb/mjx022].

Johnston TV, Bull ND, Hunt DP, Utama N, Tomarev SI, Martin KR. Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Invest Ophthalmol Vis Sci 2010; 51: 2051-2059 [PMID: 19933193 DOI: 10.1167/iovs.09-4509].

Mead B, Hill LJ, Blanch RJ, Ward K, Logan A, Berry M, Leadbeater W, Scheven BA. Mesenchymal stromal cell-mediated neuroprotection and functional preservation of retinal ganglion cells in a rodent model of glaucoma. Cytotechnology 2016; 18: 487-496 [PMID: 26289750 DOI: 10.1007/s10611-015-9720-7].

Mead B, Tomarev S. Bone Marrow-Derived Mesenchymal Stem Cells-Derived Exosomes Promote Survival of Retinal Ganglion Cells Through miRNA-Dependent Mechanisms. Stem Cells Transl Med 2017; 6: 1273-1285 [PMID: 28198592 DOI: 10.1002/sc tm.16.0428].

Libby RT, Anderson MG, Pang IH, Robinson ZH, Savinova OV, Cosma IM, Snow A, Wilson LA, Smith S, Clark AF, John SW. Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration. Vis Neurosci 2005; 22: 637-648 [PMID: 16332275 DOI: 10.1097/01.jn.0000170202].

Bansal S, Barathi VA, Iwata D, Agrawal R. Experimental autoimmune uveitis and other animal models of uveitis: An update. Indian J Ophthalmol 2015; 63: 211-218 [PMID: 25971165 DOI: 10.4103/0301-4738.159914].

Zhang X, Ren X, Li G, Jiao C, Zhang L, Zhao S, Wang J, Han ZC, Li X. Mesenchymal stem cells ameliorate experimental autoimmune uveoretinitis by comprehensive modulation of systemic autoimmunity. Invest Ophthalmol Vis Sci 2011; 52: 3143-3152 [PMID: 21296818 DOI: 10.1167/iovs.10-6334].

Zhao PT, Zhang LJ, Shao H, Bai LL, Yu B, Su C, Dong LJ, Liu X, Li XR, Zhang XM. Therapeutic effects of mesenchymal stem cells administered at later phase of recurrent experimental autoimmune uveitis. Int J Ophthalmol 2016; 9: 1381-1389 [PMID: 27038352 DOI: 10.18240/ijo.2016.10.03].

Zhang L, Zheng H, Shao H, Nian H, Zhang Y, Bai L, Su C, Liu X, Dong L, Li X, Zhang X. Long-term therapeutic effects of mesenchymal stem cells compared to dexamethasone on recurrent experimental autoimmune uveitis of rats. Invest Ophthalmol Vis Sci 2014; 55: 5561-5571 [PMID: 2512599 DOI: 10.1177/14171478].

Bai L, Shao H, Wang H, Zhang Z, Su C, Dong L, Yu B, Chen X, Li X, Zhang X. Effects of Mesenchymal Stem Cell-Derived Exosomes on Experimental Autoimmune Uveitis. Sci Rep 2017; 7: 4323 [PMID: 28659567 DOI: 10.1101/1566524015666150731095426].
Yu B et al. MSC-derived EVs in ocular diseases

70 Pezzullo L, Streitfeld J, Simkiss P, Shickle D. The economic impact of sight loss and blindness in the UK adult population. *BMC Health Serv Res* 2018; 18: 63 [PMID: 29382329 DOI: 10.1186/s12913-018-2836-0]

71 Zhang W, Wang Y, Kong Y. Exosomes Derived From Mesenchymal Stem Cells Modulate miR-126 to Ameliorate Hyperglycemia-Induced Retinal Inflammation Via Targeting HMGB1. *Invest Ophthalmol Vis Sci* 2019; 60: 294-303 [PMID: 30657854 DOI: 10.1167/iovs.18-25617]

72 Safwat A, Sabry D, Ragiae A, Amer E, Mahmoud RH, Shamardan RM. Adipose mesenchymal stem cells-derived exosomes attenuate retina degeneration of streptozotocin-induced diabetes in rabbits. *J Circ Biomark* 2018; 7: 1849454418807827 [PMID: 30397416 DOI: 10.1177/1849454418807827]

73 Jiang Y, Zhang Y, Zhang L, Wang M, Zhang X, Li X. Therapeutic effect of bone marrow mesenchymal stem cells on laser-induced retinal injury in mice. *Int J Mol Sci* 2014; 15: 9372-9385 [PMID: 24871366 DOI: 10.3390/ijms15063456]

74 Yu B, Shao H, Su C, Jiang Y, Chen X, Bai L, Zhang Y, Li Q, Zhang X, Li X. Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1. *Sci Rep* 2016; 6: 34562 [PMID: 2768625 DOI: 10.1038/srep34562]

75 Ma M, Li B, Zhang M, Zhou L, Yang F, Ma F, Shao H, Li Q, Li X, Zhang X. Therapeutic effects of mesenchymal stem cell-derived exosomes on retinal detachment. *Exp Eye Res* 2020; 191: 107899 [PMID: 31866431 DOI: 10.1016/j.exer.2019.107899]

76 Mathew B, Ravindran S, Liu X, Torres L, Chenmakesavalu M, Huang CC, Feng L, Zelka R, Lopez J, Sharma M, Roth S. Mesenchymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion. *Biomaterials* 2019; 197: 146-160 [PMID: 30654160 DOI: 10.1016/j.biomaterials.2019.01.016]

77 Moissessev E, Anderson JD, Ohlsen S, Goswami M, Zawadzki RJ, Nohta JA, Park SS. Protective Effect of Intravitreal Administration of Exosomes Derived from Mesenchymal Stem Cells on Retinal Ischemia. *Curr Eye Res* 2017; 42: 1358-1367 [PMID: 28636406 DOI: 10.1080/02713683.2017.1319491]

78 Antimisiaris SG, Mourtas S, Marazzi T. Exosomes and Exosome-Inspired Vesicles for Targeted Drug Delivery. *Pharmaceutics* 2018; 10 [PMID: 30404188 DOI: 10.3390/pharmaceutics10040218]

79 Pascucci L, Cocce V, Bonomi A, Ami D, Ceccarelli P, Ciussani E, Vigano L, Locatelli A, Sisto F, Doglia SM, Parati E, Bernardi ME, Muraca M, Alessandri G, Bondiolotti G, Pessina A. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. *J Control Release* 2014; 192: 262-270 [PMID: 25084218 DOI: 10.1016/j.jconrel.2014.07.042]

80 Zhang L, Song Y, Chen L, Li D, Feng H, Lu Z, Fan T, Chen Z, Livingston MJ, Gong Q. MiR-20a-containing exosomes from umbilical cord mesenchymal stem cells alleviates liver ischemia-reperfusion injury. *J Cell Physiol* 2020; 235: 3698-3710 [PMID: 31566731 DOI: 10.1002/jcp.29264]

81 Chen S, Tang Y, Liu Y, Zhang P, Lv L, Zhang X, Jia L, Zhou Y. Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. *Cell Prolif* 2019; 52: e12669 [PMID: 31380194 DOI: 10.1111/cpr.12669]
