Neutrino tri-bi-maximal mixing through sequential dominance

I. de Medeiros Varzielas *
CFTP, Departamento de Física
Instituto Superior Técnico
Av. Rovisco Pais, 1
1049-001 Lisboa, Portugal

April 1, 2008

Abstract
We consider an existing framework of models where the neutrino Dirac and Majorana mass terms are related, and clarify how the mass structures interact through the type I seesaw mechanism, producing exact tri-bi-maximal mixing for the effective neutrinos in the limit of strong Majorana mass hierarchy (sequential dominance). In order to better illustrate this, we draw the seesaw diagrams expanded to show the relevant details, discuss an underlying symmetry that must be preserved by the neutrino mass terms, and diagonalise the effective neutrino mass matrix corresponding to the sequential dominance limit.

1 Introduction
The observed neutrino oscillation parameters [1, 2] are well approximated by the tri-bi-maximal (TBM) mixing structure [3, 4, 5, 6, 7], in which the leptonic mixing matrix U_{PMNS} takes the form:

$$U_{PMNS} = \begin{pmatrix} -\frac{\sqrt{2}}{4} & \frac{\sqrt{1}}{4} & 0 \\ \frac{\sqrt{\frac{1}{2}}}{4} & \frac{\sqrt{\frac{3}{2}}}{4} & \frac{\sqrt{\frac{1}{2}}}{4} \\ \frac{\sqrt{\frac{1}{3}}}{4} & \frac{\sqrt{\frac{1}{3}}}{4} & \frac{\sqrt{\frac{1}{2}}}{4} \end{pmatrix} \quad (1)$$

In [8], an $SU(3)_f$ family symmetry commuting with an underlying $SO(10)$ supersymmetric (SUSY) grand unified theory (GUT) was used to explain the observed fermion masses and mixings. In [9], within the same SUSY GUT framework of [8], $SU(3)_f$ was replaced by its discrete subgroup, $\Delta(27)$ [10, 11, 12, 13]. The model of [9] is much simpler and achieves essentially the same results. Both models feature leptonic mixing close to eq. (1), obtained through a combination of small mixing angles in the charged lepton sector, and exact TBM mixing in the effective neutrinos.

In this short note we intend to explicitly show how neutrino Dirac and Majorana terms sharing the same key properties to the terms used in [8, 9] produce effective neutrino TBM mixing, when they interact through the type I seesaw mechanism [14, 15, 16, 17, 18, 19]. One of the necessary ingredients is a strong hierarchy in the Majorana masses, as the framework relies on sequential dominance [20, 21, 22, 23].

The family symmetry is broken by the vacuum expectation values (VEVs) of the flavon fields. The flavons are Standard Model (SM) singlet fields and are charged under the family symmetry. In the framework of [8, 9] the flavons are anti-triplets and generically denoted as $\bar{\phi}^i$ (the superscript i is the family symmetry index). The fermions are then assigned as triplets of the family symmetry and specifically denoted ν_i and ν^c_i (for the neutrinos) or generically denoted as ψ_i and ψ^c_i (respectively, left-handed fermions and the charge conjugate of the right-handed fermions, see [24]). H represents the usual Higgs fields of the SUSY SM. Typically terms of the form $\bar{\phi}^i \psi_i \bar{\phi}^j \psi^c_j H$ will give rise to (Dirac) mass terms through the Froggatt-Nielsen mechanism [25], when the flavons and H acquire their VEVs ($\langle \bar{\phi}^i \rangle$ and $\langle H \rangle$).

*ivo@cftp.ist.utl.pt
To obtain the required neutrino masses, at least three flavons are used: \(\tilde{\phi}_3 \), \(\tilde{\phi}_{23} \) and \(\tilde{\phi}_{123} \). The subscript is not an index, but rather a label that is helpful in identifying what VEV each flavon acquires:

\[
\langle \tilde{\phi}_3 \rangle = a \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \tag{2}
\]
\[
\langle \tilde{\phi}_{23} \rangle = b \begin{pmatrix} 0 & 1 & -1 \end{pmatrix} \tag{3}
\]
\[
\langle \tilde{\phi}_{123} \rangle = c \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \tag{4}
\]

The VEVs are in general complex and we omit the phases for simplicity, except the minus in eq.\(\text{(3)} \) that gives the necessary orthogonality between \(\langle \tilde{\phi}_{23} \rangle \) and \(\langle \tilde{\phi}_{123} \rangle \). These VEVs define a basis in family space, which we denote as the flavon VEV basis. In general, in this basis the charged lepton mass matrix is not diagonal.

In a full model there should be a justification for the non-trivial alignment of these VEVs, and for the absence (or suppression) of some undesirable superpotential terms, but here we simply highlight the role of the VEVs in the framework and outline the desired form of the superpotential. In order to demonstrate how the mixing is obtained it is convenient to focus on the flavon fields that contract with the family index of \(\nu_t \) and \(\nu_{ij} \) in the Yukawa and Majorana superpotential terms, respectively \(P_Y \) and \(P_M \). Additional fields are in general required to make the terms invariant under all the symmetries, but as they contribute solely to the overall magnitude of the term we need not mention them explicitly here, and to keep the discussion focused we will absorb into \(\lambda \) coefficients all contributions to a term’s magnitude (other than the explicit \(a, b, c \) of eq.\(\text{(2)} \), eq.\(\text{(3)} \) and eq.\(\text{(4)} \)). In absorbing magnitude contributions into the \(\lambda \), we are also glossing over the Foggatt-Nielsen messengers (for more details on the Foggatt-Nielsen messenger sector see [24]).

2 Neutrino Dirac and Majorana mass terms

We will now illustrate the properties that neutrino masses must possess to belong to the framework of [8; 9].

The Yukawa superpotential \(P_Y \) must have terms that mix \(\tilde{\phi}_{23} \) and \(\tilde{\phi}_{123} \):

\[
P_Y = \lambda_P \nu_t + \lambda_{\bar{P}} \bar{\nu}_t + \lambda_{\odot} \nu_{\odot} \tag{5}
\]

\[
P_t \equiv \tilde{\phi}_3^* \nu_t \tilde{\phi}_{23}^* \nu_{23}^c H \tag{6}
\]

\[
P_{\bar{P}} \equiv \tilde{\phi}_{23}^* \nu_t \tilde{\phi}_{123}^* \nu_{123}^c H \tag{7}
\]

\[
P_{\odot} \equiv \tilde{\phi}_{123}^* \nu_t \tilde{\phi}_{23}^* \nu_{23}^c H \tag{8}
\]

As discussed in the introduction, we highlight the structure of the family index contractions by absorbing everything else into the \(\lambda \).

In SUSY GUT models (such as [8; 9]) the term in eq.\(\text{(6)} \) also gives rise to the heaviest charged fermion of each family (top quark, tau lepton), so it needs to be greater in magnitude than the other terms:

\[
\lambda_t |a|^2 > \lambda_{\bar{P}} |bc| = \lambda_{\odot} |bc| \tag{9}
\]

The equality \(\lambda_{\bar{P}} = \lambda_{\odot} \) (used in [8; 9]) can be justified by the underlying SO(10) GUT, and plays an important role in getting the tri-maximal mixing.

It is important to note that terms including \(\tilde{\phi}_{23}^* \nu_t \tilde{\phi}_{23}^* \nu_{23}^c \) and \(\tilde{\phi}_{123}^* \nu_t \tilde{\phi}_{123}^* \nu_{123}^c \) are absent from \(P_Y \). In [8; 9] there are more terms than in eq.\(\text{(5)} \), but they decouple from the neutrino sector.

In contrast with \(P_Y \), the Majorana superpotential \(P_M \) needs terms that don’t mix \(\tilde{\phi}_{23} \) and \(\tilde{\phi}_{123} \):

\[
P_M = \lambda_P \tilde{\phi}_3 P_t + \lambda_P \tilde{\phi}_{23} P_{\bar{P}} + \lambda_P \tilde{\phi}_{123} P_{\odot} \tag{10}
\]

\[
+ \lambda_{23} \tilde{\phi}_{23}^* \nu_{23}^c \tilde{\phi}_{23}^* \nu_{23}^c \tag{11}
\]

\[
+ \lambda_{123} \tilde{\phi}_{123}^* \nu_{123}^c \tilde{\phi}_{123}^* \nu_{123}^c \tag{12}
\]

Again the \(\lambda \) allow us to focus on the family index contractions.
To make use of sequential dominance, the framework relies on the hierarchy of the neutrino Majorana masses:

$$\lambda_3 |a|^2 \gg \lambda_{23} |b|^2 > \lambda_{123} |c|^2$$ \hspace{1cm} (13)

The dominance of the term in eq.(10) is very relevant, as it enables the suppression of the dominant Dirac term, eq.(6) (through the type I seesaw mechanism). The framework requires the leading Majorana term to feature the contraction of ν_c^i with a field whose VEV aligns in the same direction as $\langle \bar{\phi}_3^i \rangle$ (for eq.(10) we chose $\bar{\phi}_3^i$ itself, for simplicity).

It is important to note that terms with family index contractions $\bar{\phi}_i^{23} \nu_c^i \bar{\phi}_{123} \nu_c^j$ are absent from P_M.

3 Effective neutrino masses

3.1 Expanded seesaw diagrams

In order to understand how exact TBM mixing is obtained after the type I seesaw, it is useful to analyse expanded seesaw diagrams. We will consider that only right-handed Froggatt-Nielsen messengers contribute (see [24] for details), so we draw diagrams with $\langle H \rangle$ next to ν and neglect all diagrams with $\langle H \rangle$ in intermediate positions.

In order to obtain the effective neutrino masses, we start with one of the P_Y terms, which converts a ν into a ν', then the ν' have Majorana masses from P_M, and ν' appears in the external line again through a term from P_Y. Starting with eq.(6), eq.(10) is the only Majorana term involving the necessary $\bar{\phi}_3^i \nu_c^i$ contraction\(^1\) and we conclude the diagram with the only Yukawa term involving $\bar{\phi}_3^i \nu_c^i$, again eq.(6). If we don’t label the Froggatt-Nielsen messengers in the internal lines, and omit other field insertions, we have figure 1. Starting with eq.(7), eq.(12) is the only choice, and we conclude with eq.(7) again, in figure 2. Starting with eq.(8),

\[\langle H \rangle \langle \phi_{23}^i \rangle \langle \phi_3^j \rangle \langle \bar{\phi}_{123} \rangle \langle \nu_c^i \rangle \langle \bar{\phi}_{123} \rangle \langle \nu_c^j \rangle \langle H \rangle \]

Figure 1: P_t decouples from the effective neutrinos.

with eq.(7), eq.(12) is the only choice, and we conclude with eq.(7) again, in figure 2. Starting with eq.(8),

\[\langle H \rangle \langle \phi_{23}^i \rangle \langle \phi_3^j \rangle \
\langle \phi_{123}^k \rangle \langle \phi_{23}^l \rangle \langle H \rangle \]

Figure 2: Diagram giving mass to effective neutrino eigenstate ν_α.

\(^1\)The requirement is that ν_c^i must contract with a field whose VEV is aligned along $\langle \bar{\phi}_3^i \rangle$, not necessarily $\bar{\phi}_3^i$ itself (as in [8, 9] where a different field contracts with ν_c^i).
As those unwanted terms out of P. The neutrino mass terms in Z for the effective neutrinos (in complete models the effective neutrinos are precisely the framework’s key properties that contrast, the Majorana terms are invariant if they include either two or zero $\bar{\nu}$, but we avoid the ν notation of these states due to our use of the family index subscript). The resulting leptonic mixing will be close to eq. (11) and thus within the current experimental bounds.

3.2 Effective symmetry

Another way to understand how the P_Y and P_M terms combine to give neutrino TBM mixing is to notice that the terms actually preserve an effective symmetry that, after type I seesaw, leads to the effective neutrino TBM Lagrangian L_ν:

$$L_\nu = \Lambda_\tilde{\Phi} \nu_\tilde{\Phi} + \Lambda_\odot \nu_\odot^2$$ \hspace{1cm} (14)

The Λ are related with the respective λ and to the appropriate Majorana masses.

L_ν gives TBM mixing as there is no mixing between $\nu_\tilde{\Phi}$ and ν_\odot. Consider a Z_2 symmetry under which $\phi_{23} \rightarrow -\phi_{23}$, which keeps the unwanted $\phi_{23}^i \nu_i^c \bar{\nu}_{123}^j$ term out of eq. (11). Under this Z_2 the P_Y terms in eq. (7) and eq. (8) are invariant, if we have also (for example) $\nu \rightarrow -\nu$ (still preserving L_ν). Eq. (6) is not invariant under these assignments, but that won’t matter as long as the largest Majorana mass decouples $\phi_{23}^j \nu_i$ from L_ν. With these charge assignments, P_Y can’t have terms with a ϕ_{23} pair or with a ϕ_{123} pair. In contrast, the Majorana terms are invariant if they include either two or zero ϕ_{23}, as in eq. (11) and eq. (12). These are precisely the framework’s key properties that P_Y and P_M must possess in order to produce TBM for the effective neutrinos (in complete models the effective Z_2 symmetry results from the symmetries keeping those unwanted terms out of P_Y and P_M).

3.3 Explicit diagonalisation

The neutrino mass terms in P_Y give rise to the Dirac neutrino mass matrix M_D:

$$M_D = \begin{pmatrix}
0 & \lambda_\odot bc & -\lambda_\odot bc \\
\lambda_\tilde{\Phi} bc & (\lambda_\tilde{\Phi} + \lambda_\odot) bc & (\lambda_\tilde{\Phi} - \lambda_\odot) bc \\
-\lambda_\tilde{\Phi} bc & (-\lambda_\tilde{\Phi} + \lambda_\odot) bc & aa\lambda_1 + (-\lambda_\tilde{\Phi} - \lambda_\odot) bc
\end{pmatrix}$$ \hspace{1cm} (15)

As $\lambda_\tilde{\Phi} = \lambda_\odot$, M_D is symmetric.

The mass terms in P_M give rise to the Majorana neutrino mass matrix M_M:

$$M_M = \begin{pmatrix}
\lambda_{123} cc & \lambda_{123} cc & \lambda_{123} cc \\
\lambda_{123} cc & \lambda_{233} bb + \lambda_{123} cc & -\lambda_{233} bb + \lambda_{123} cc \\
\lambda_{123} cc & -\lambda_{233} bb + \lambda_{123} cc & \lambda_3 aa + \lambda_{233} bb + \lambda_{123} cc
\end{pmatrix}$$ \hspace{1cm} (16)

2 This reasoning, suggested by Graham Ross, was already used in [21, 26].
The matrices are presented in the flavon VEV basis, where they are easy to write as the flavon VEVs are the (easy to remember) eq.(2), eq.(3) and eq.(4). We can input M_D and M_M into the type I seesaw formula:

$$m_\nu = -M_D M_M^{-1} M_D^T$$

(17)

m_ν can then be diagonalised, and the eigenvectors must correspond to neutrino TBM mixing when there is sufficient hierarchy in the Majorana masses. It is perhaps more pedagogical to take the large $\lambda_3|a|^2$ limit before diagonalisation, enabling an explicit analytical calculation of the eigenvectors. In this limit, the third column of M_D decouples from the effective neutrinos, so we can consider the simplified form M_D' (despite M_D^{33} being larger than the other entries):

$$M_D' = \begin{pmatrix}
0 & D & 0 \\
D & 2D & 0 \\
-D & 0 & 0
\end{pmatrix}$$

(18)

We defined $D \equiv \lambda_{ab}bc \equiv \lambda_{bc}bc$. In the same limit, we can use M_M', a block diagonal form of M_M, obtained by neglecting the small off-diagonal entries of the third row and column (compared to the very large M_M^{33}):

$$M_M' = \begin{pmatrix}
\lambda_{123\text{cc}} & \lambda_{123\text{cc}} & 0 \\
\lambda_{123\text{cc}} & \lambda_{23\text{bb}} + \lambda_{123\text{cc}} & 0 \\
0 & 0 & M_3
\end{pmatrix}$$

(19)

M_3 is the (very large) mass of the heaviest right-handed neutrino, originating from the term in eq.(10).

Within the approximation, we compute the effective neutrino mass matrix m'_ν:

$$m'_\nu = -M_D'M_M'^{-1} M_D'^T = -\frac{D^2}{\lambda_{123\text{cc}}} \begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{pmatrix} - \frac{D^2}{\lambda_{23\text{bb}}} \begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

(20)

Diagonalising m'_ν is trivial, and results in $m_\oplus = 2\left|\frac{D^2}{\lambda_{123\text{cc}}}\right| > m_\ominus = 3\left|\frac{D^2}{\lambda_{23\text{bb}}}\right|$ as the two non-zero eigenvalues, corresponding respectively to the TBM eigenstates ν_\oplus and ν_\ominus.

4 Summary

We highlighted the key properties of the framework of neutrino mass terms used in [8, 9], illustrating it with simple terms in P_Y and P_M. We then explained how those terms interact through the type I seesaw mechanism and, if there is enough hierarchy in the Majorana masses to result in sequential dominance, give rise to effective neutrino masses that correspond to exact neutrino TBM.

Acknowledgments

We are grateful to Graham Ross and Stefano Morisi for helpful discussions.

All diagrams were created with JaxoDraw [27].

The work of I. de Medeiros Varzielas was supported by FCT under the grant SFRH/BPD/35919/2007.

References

[1] W.-M. e. a. Yao, Review of Particle Physics, Journal of Physics G 33, 1+ (2006).

[2] M. Maltoni, T. Schwetz, M. A. Tortola and J. W. F. Valle, Status of global fits to neutrino oscillations, New J. Phys. 6, 122 (2004), hep-ph/0405172.

[3] L. Wolfenstein, Oscillations among three neutrino types and CP violation, Phys. Rev. D18, 958–960 (1978).

[4] P. F. Harrison, D. H. Perkins and W. G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B530, 167 (2002), hep-ph/0202074.
[5] P. F. Harrison and W. G. Scott, Symmetries and generalisations of tri-bimaximal neutrino mixing, Phys. Lett. B535, 163–169 (2002), hep-ph/0203209.

[6] P. F. Harrison and W. G. Scott, Permutation symmetry, tri-bimaximal neutrino mixing and the S3 group characters, Phys. Lett. B557, 76 (2003), hep-ph/0302025.

[7] C. I. Low and R. R. Volkas, Tri-bimaximal mixing, discrete family symmetries, and a conjecture connecting the quark and lepton mixing matrices, Phys. Rev. D68, 033007 (2003), hep-ph/0305243.

[8] I. de Medeiros Varzielas and G. G. Ross, SU(3) family symmetry and neutrino bi-tri-maximal mixing, Nucl. Phys. B733, 31–47 (2006), hep-ph/0507176.

[9] I. de Medeiros Varzielas, S. F. King and G. G. Ross, Neutrino tri-bi-maximal mixing from a non-Abelian discrete family symmetry, (2006), hep-ph/0607045.

[10] W. Fairbairn, T. Fulton and W. H. Klink, J. Math. Phys. 05, 1038 (1964).

[11] T. Muto, D-branes on three-dimensional nonabelian orbifolds, JHEP 02, 008 (1999), hep-th/9811258.

[12] E. Ma, Neutrino mass matrix from Delta(27) symmetry, Mod. Phys. Lett. A21, 1917 (2006), hep-ph/0607056.

[13] C. Luhn, S. Nasri and P. Ramond, The flavor group Delta(3n**2), (2007), hep-th/0701188.

[14] P. Minkowski, mu → e gamma at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett. B67, 421 (1977).

[15] T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, In Proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories, Tsukuba, Japan, 13-14 Feb 1979.

[16] S. L. Glashow, The future of elementary particle physics, NATO Adv. Study Inst. Ser. B Phys. 59, 687 (1979).

[17] R. N. Mohapatra and G. Senjanovic, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44, 912 (1980).

[18] M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Print-80-0576 (CERN).

[19] J. Schechter and J. W. F. Valle, Neutrino Masses in SU(2) x U(1) Theories, Phys. Rev. D22, 2227 (1980).

[20] S. F. King, Atmospheric and solar neutrinos with a heavy singlet, Phys. Lett. B439, 350–356 (1998), hep-ph/9806440.

[21] S. F. King, Atmospheric and solar neutrinos from single right-handed neutrino dominance and U(1) family symmetry, Nucl. Phys. B562, 57–77 (1999), hep-ph/9904210.

[22] S. F. King, Large mixing angle MSW and atmospheric neutrinos from single right-handed neutrino dominance and U(1) family symmetry, Nucl. Phys. B576, 85–105 (2000), hep-ph/9912492.

[23] S. F. King, Constructing the large mixing angle MNS matrix in see-saw models with right-handed neutrino dominance, JHEP 09, 011 (2002), hep-ph/0204360.

[24] I. de Medeiros Varzielas, Family symmetries and the origin of fermion masses and mixings, (2008), arXiv:0801.2775 [hep-ph].

[25] C. D. Froggatt and H. B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP Violation, Nucl. Phys. B147, 277 (1979).

[26] G. G. Ross, Neutrinos and the origin of fermion mass structure, AIP Conf. Proc. 957, 124–133 (2007).

[27] D. Binosi and L. Theussl, JaxoDraw: A graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun. 161, 76–86 (2004), hep-ph/0309015.