Embeddings of Representations

Kathrin Möllenhoff1 · Markus Reineke2

Received: 19 August 2014 / Accepted: 9 March 2015 / Published online: 25 March 2015
© Springer Science+Business Media Dordrecht 2015

Abstract We derive “numerical” criteria for the existence of embeddings of representations of finite dimensional algebras.

Keywords Representations · Finite dimensional algebras · Embeddings · Quiver Grassmannians · Semistability · Semiinvariants

Mathematics Subject Classification (2010) 16G10 · 16G2

1 Introduction

By a classical result of M. Auslander [1, 2], a finite dimensional representation M of a finitely generated algebra A is determined up to isomorphism by the dimensions of homomorphism spaces to it, that is, two such representations M and N of A are isomorphic if and only if $\dim \text{Hom}(U, M) = \dim \text{Hom}(U, N)$ for all (indecomposable) representations U of A.

Presented by Claus Michael Ringel.

Dedicated to Klaus Bongartz on the occasion of his 65th birthday

Kathrin Möllenhoff
kathrin.moellenhoff@ruhr-uni-bochum.de

Markus Reineke
mreineke@uni-wuppertal.de

1 Fakultät für Mathematik, Ruhr-Universität Bochum,
44780 Bochum, Germany

2 Fachbereich C - Mathematik, Bergische Universität Wuppertal,
42097 Wuppertal, Germany
In light of this fact, one can ask for “numerical” criteria for representation-theoretic properties. One example is the characterization of degenerations [3] \(M \leq_{\text{deg}} N \) of representations of algebras of finite representation type by the condition \(\dim \text{Hom}(U, M) \leq \dim \text{Hom}(U, N) \) for all \(U \) [13].

The aim of the present paper is to prove numerical criteria for situations related to embeddings of representations. This question is motivated by a study of quiver Grassmannians for representations of Dynkin quivers, for which specific geometric properties can be expected (in contrast to arbitrary quiver Grassmannians, see [11]). The first step in this direction is a criterion for nonemptyness of a quiver Grassmannian, which will be proven in the following form:

Theorem 1.1 A representation \(M \) of a Dynkin quiver \(Q \) with associated Euler form \(\langle \cdot, \cdot \rangle \) admits a subrepresentation of dimension vector \(e \) if and only if \(\dim \text{Hom}(U, M) \geq \langle \dim U, e \rangle \) for all (indecomposable) representations \(U \) of \(Q \).

Not directly related, but in the same spirit, we find a quite general sufficient criterion for irreducibility of a Dynkin quiver Grassmannian:

Theorem 1.2 Given a dimension vector \(e \) and a representation \(M \) as before such that the following inequalities hold:

(i) \(\dim \text{Hom}(M, U) \leq \langle e, \dim U \rangle \) for all non-injective indecomposable \(U \),

(ii) \(\dim \text{Hom}(U, M) \leq \langle \dim U, \dim M - e \rangle \) for all non-projective indecomposables \(U \),

the quiver Grassmannian \(Gr_e(M) \) is irreducible of dimension

\[\dim Gr_e(M) = \langle e, \dim M - e \rangle. \]

Both results were predicted by extensive numerical experiments for a type \(A_3 \) quiver in the first named author’s master thesis [7].

The other main topic of this paper concerns the much finer problem to numerically characterize embeddings between two given representations. In this direction, we prove

Theorem 1.3 Let \(A \) be an arbitrary finite dimensional algebra over an algebraically closed field \(k \), and let \(M \) and \(N \) be finite dimensional representations of \(A \). Then the following are equivalent:

(i) For all large enough \(r \geq 1 \), there exists an embedding \(N^r \to M^r \),

(ii) for all surjections \(U \to V \) of representations of \(A \), we have

\[\dim \text{Hom}(U, N) - \dim \text{Hom}(V, N) \leq \dim \text{Hom}(U, M) - \dim \text{Hom}(V, M), \quad (1.1) \]

(iii) the estimate (1.1) holds for all quotients \(U = N^k \to N^k/S = V \), where \(S \) is a simple subrepresentation of \(N^k \) and \(k \leq \dim \text{Hom}(S, N) \).

Note that the numerical condition (1.1) is insensitive to multiplicities, so that one cannot expect to characterize existence of an actual embedding \(N \subset M \) in general. In fact, in Section 3, we will exhibit a (low-dimensional) example of representations \(N \) and \(M \) over the three-arrow Kronecker quiver such that \(N^2 \) can be embedded into \(M^2 \), but \(N \) cannot be embedded into \(M \). It is rather natural to ask for which algebras the condition (1.1) already characterizes embeddings \(N \subset M \); at least this holds for an equioriented type \(A \) quiver, see Section 3.