Genome-Wide Gene-Environment Interaction Analysis Using Set-Based Association Tests

Wan-Yu Lin[^1,2*], Ching-Chieh Huang[^1], Yu-Li Liu[^3], Shih-Jen Tsai[^4,5] and Po-Hsiu Kuo[^1,2]

[^1]: Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan,
[^2]: Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan,
[^3]: Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan,
[^4]: Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan,
[^5]: Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan

The identification of gene-environment interactions (G × E) may eventually guide health-related choices and medical interventions for complex diseases. More powerful methods must be developed to identify G × E. The “adaptive combination of Bayes factors method” (ADABF) has been proposed as a powerful genome-wide polygenic approach to detect G × E. In this work, we evaluate its performance when serving as a gene-based G × E test. We compare ADABF with six tests including the “Set-Based gene-Environment InterAction test” (SBERIA), “gene-environment set association test” (GESAT), etc. With extensive simulations, SBERIA and ADABF are found to be more powerful than other G × E tests. However, SBERIA suffers from a power loss when 50% SNP main effects are in the same direction with the SNP × E interaction effects while 50% are in the opposite direction. We further applied these seven G × E methods to the Taiwan Biobank data to explore gene-alcohol interactions on blood pressure levels. The ADAMTS7P1 gene at chromosome 15q25.2 was detected to interact with alcohol consumption on diastolic blood pressure (p = 9.5 × 10⁻⁷, according to the GESAT test). At this gene, the P-values provided by other six tests all reached the suggestive significance level (p < 5 × 10⁻⁵). Regarding the computation time required for a genome-wide G × E analysis, SBERIA is the fastest method, followed by ADABF. Considering the validity, power performance, robustness, and computation time, ADABF is recommended for genome-wide G × E analyses.

Keywords: diastolic blood pressure, systolic blood pressure, hypertension, gene-alcohol interaction, Taiwan Biobank, multiple testing correction

INTRODUCTION

“Gene-environment interaction” (G × E) is defined as “a different effect of an environmental exposure on disease risk in subjects with different genotypes” or “a different effect of a genotype on disease risk in subjects with different environmental exposures” (Ottman, 1996). “Gene-treatment interactions” are specific examples of G × E in pharmacogenomics. Searching for genes that may modify drug responses will significantly improve drug delivery by identifying subjects that can benefit from therapy and those at an increased risk of harm (He and Allen, 2010; Chen et al., 2011; Ko et al., 2015). The identification of G × E and gene-treatment interactions may eventually guide health-related choices and medical interventions for complex diseases (Franks and Pare, 2016). Clearly, more powerful methods must be developed to detect G × E (Hunter, 2005; Zhang and Biswas, 2015).
Exploring G × E is important for disease prevention. However, compared with the success achieved in identifying genetic main effects, very few G × E findings have been replicated partially due to the lack of power (Jiao et al., 2013). Single-nucleotide polymorphism (SNP) analysis (one SNP at a time) is a commonly used approach. Nonetheless, this approach suffers from a power loss due to a harsh penalty of multiple testing. Even true positives may not stand out under the stringent genome-wide significance level (Lin and Lee, 2010), i.e., 5 × 10⁻⁸.

Several set-based (or gene-based) analysis methods have been developed to aggregate the G × E signals within a gene region and alleviate the multiple-testing penalty (Jiao et al., 2013; Lin et al., 2013, 2016; Chen et al., 2014). Jiao et al. proposed a two-stage “Set-Based gene-Environnement InterAction test” for case-control studies, called “SBERIA” (Jiao et al., 2013). During the first stage, the SNPs are filtered according to their associations with E (this is Step 1 in Murcay et al., 2009). The sign and significance of the filtering statistics are then used to weight SNP × E in the second stage (Jiao et al., 2013).

Lin et al. proposed the “gene-environment set association test” (GESAT), which is a variance component (VC) test that estimates the SNP main effects using a ridge regression (Lin et al., 2013). These authors later developed an “interaction sequence kernel association test” (iSKAT) that is regarded as the optimal in the class of VC tests (Lin et al., 2016). While GESAT assumes no correlation among the SNP × E interaction effects, iSKAT searches for the optimal correlation coefficient among them. Therefore, GESAT is a specific case of iSKAT, and both approaches can be implemented using the “iSKAT” R package.

Chen et al. proposed a G × E test that treats the SNP main effects as fixed (designated “INT_FIX”) or random (designated “INT_RAN”). They also developed a joint test for detecting the genetic associations while allowing for G × E (designated “JOINT”) (Chen et al., 2014). These three methods belong to the class of VC tests and can be performed using the “rareGE” R package.

The abovementioned methods have been proposed with user-friendly analysis tools that are popular choices for G × E analyses. Recently, the “adaptive combination of Bayes factors method” (ADABF) has been proposed as a powerful polygenic approach to detect G × E (Lin et al., 2018). This method can also serve as a gene-based G × E test. In this study, we evaluate the performance of ADABF when detecting gene-based G × E signals. We compare ADABF with the abovementioned six tests. Using a sample of 16,555 subjects from the Taiwan Biobank (TWB) data, we perform a genome-wide gene-alcohol interaction analysis on diastolic blood pressure (DBP) and systolic blood pressure (SBP). The validity, power, robustness, and computation time of the seven G × E set-based tests are investigated through simulations or real data analyses.

MATERIALS AND METHODS

Adaptive Combination of Bayes Factors Method

Suppose a gene or an analysis region contains L SNPs. Let Y be the phenotype, g [·] be the link function, G_l be the number of minor allele (0, 1, or 2) at the lth SNP (l = 1, · · · , L), E be the environmental factor, and X be the vector of potential confounder covariates. First, we assess each SNP × E interaction by considering the following generalized linear model (GLM):

\[g(E(Y)) = \beta_0 + \beta_G l + \beta_E l + \beta_{GE} l + \beta_X X, \ l = 1, \cdots, L. \]

For simplicity, we omit the subscript “l” that represents the data of the lth subject. The SNP × E interaction is of interest, and therefore \(H_0 : \beta_{GE} = 0 \) vs. \(H_1 : \beta_{GE} \neq 0 \). Let \(\hat{\beta}_{GE} \) be the maximum likelihood estimate (MLE) of \(\beta_{GE} \). According to the asymptotic normality of MLE, \(\hat{\beta}_{GE} \) follows a normal distribution with a mean of \(\beta_{GE} \) and a variance of \(V \), i.e., \(\hat{\beta}_{GE} \sim N(\beta_{GE}, V) \).

We assume that the true interaction effects follow a normal distribution with a mean of 0 and a variance of \(W \), i.e., \(\beta_{GE} \sim N(0, W) \). The Bayes factor (BF) (Wakefield, 2007, 2009) of the SNP × E interaction is

\[BF = \frac{Pr(Data|H_1)}{Pr(Data|H_0)} = \sqrt{\frac{\tilde{V}}{V + W}} \exp \left(\frac{-\hat{\beta}_{GE}^2 W}{2(\tilde{V} + W)} \right), \]

where \(\hat{\beta}_{GE} \) is the MLE of \(\beta_{GE} \), and \(\tilde{V} \) is the estimated variance of \(\hat{\beta}_{GE} \). To propose a prior that can be applicable to most situations, we first scale the environmental factor E to range from 0 to 1. A dichotomous E will be coded as 0 or 1 whereas a continuous E will be first scaled to be \(E' = (E - E_{min})/(E_{max} - E_{min}) \), in which \(E_{min} \) and \(E_{max} \) are the minimum and maximum of E, respectively. In this way, \(G_i E \) in Equation (1) will be between 0 and 2, in the same range as \(G_i \).

The Wellcome Trust Case Control Consortium GWAS (WTCCC, 2007) specified the prior for SNP main effects as \(\beta_G \sim N(0, W) \), where \(W = 0.2^2 = 0.04 \). This prior implies that we believe 95% of odds ratios (ORs) range from exp (−2 × 0.2) = 0.67 to exp (2 × 0.2) = 1.49. Now that \(G_i E \) is in the same range as \(G_i \), we consider using the same prior for SNP × E interaction, i.e., \(\beta_{GE} \sim N(0, W) \) where \(W = 0.2^2 = 0.04 \). Reported SNP × E interactions have been of modest effect sizes that can be positive or negative (Simino et al., 2013; Rudolph et al., 2016; Sung et al., 2018), and therefore \(N(0, W = 0.04) \) may be a reasonable prior for \(\beta_{GE} \) (Lin et al., 2018).

To apply ADABF to continuous traits, we should first standardize the traits to have a mean of 0 and a standard deviation of 1, as implemented in our ADABF R code that can be downloaded from http://homepage.ntu.edu.tw/~linwjl/ADABFGE.html. The prior of \(N(0, W = 0.04) \) implies that 95% of \(\beta_{GE} \)s range from (−2 × 0.2) = −0.4 to (2 × 0.2) = 0.4. This may also be a reasonable prior for \(\beta_{GE} \) when traits are continuous.

Because SNP × E interaction effects reported by empirical studies have been modest (Simino et al., 2013; Rudolph et al., 2016; Sung et al., 2018), this prior variance (\(W = 0.2^2 = 0.04 \)) may be slightly large for \(\beta_{GE} \)s. However, a larger prior variance can just reflect our uncertainty of the prior information (Wang et al., 2009).

After calculating the BFs of all the L SNP × E, we sort these L BFs from the largest to the smallest, and denote them as \(BF(1) \geq BF(2) \geq \cdots \geq BF(L) \). The leading k BFs are summarized by \(S_k = \sum_{i=1}^{k} \log(BF(i)) \), where \(k = 1, \cdots, L \). Let \(\hat{\beta}_{GE,H_l} \) be the
vector containing $L \hat{\beta}_{GE}$s under the null hypothesis H_0 (none of the L SNPs interact with E). We draw B sets of $\hat{\beta}_{GE,H_k}$ from the multivariate normal distribution with a mean vector of 0 and a variance-covariance matrix incorporating the pairwise linkage disequilibrium (LD) among the L SNPs, and then calculate $S_k^{(1)}, \ldots, S_k^{(B)}$ accordingly. The details can be found from Lin et al. (2018).

By comparing S_k with its counterparts from $H_0(S_k^{(1)}, \ldots, S_k^{(B)})$, we obtain the P-value regarding S_k, where $k = 1, \ldots, L$. We then find the minimum P-values (across $k = 1, \ldots, L$) for the observed sample and for each of the resampling replicates. By comparing these minimum P-values, we obtain the significance of $G \times E$ for the observed sample. The efficient sequential resampling procedure (Liu et al., 2016) is used to speed up ADABF, in which the minimum and maximum numbers of resampling were set at 10^3 and 10^5, respectively. The resampling procedure is repeated until the $P > 100/B$, where B is the number of resampling.

Because the same prior variance W is used for the observed sample and for each of the resampling replicates, the performance of ADABF is robust to the selection of W (Lin et al., 2018). The R code of the ADABF method can be downloaded from http://homepage.ntu.edu.tw/~linwy/ADABFGE.html. A Perl script is also provided to facilitate genome-wide analyses, http://homepage.ntu.edu.tw/~linwy/ADABFGEfromPLINK.html.

Set-Based Gene-Environmennt InterAction Test (SBERIA)

There are two steps in SBERIA (Jiao et al., 2013): the filtering stage and the $G \times E$ stage. For case-control studies, a commonly-used filtering stage is to regress E on each SNP and assess the association of each SNP with E, by fitting a logistic regression for binary E or a linear regression for continuous E (Muirray et al., 2009; Dai et al., 2012). Each element in \hat{w} represents the weight given to a SNP, which is 1 if the SNP is positively associated with Y, -1 if it is negatively associated with Y, and is a very small value (0.0001) if the SNP is not statistically associated with Y (i.e., P-value > a pre-specified significance level, say, 0.10 in Jiao et al., 2013).

Another commonly-used screening strategy is the “main-effect filtering.” Each SNP is first screened by testing $H_0: \gamma_G = 0$ vs. $H_1: \gamma_G \neq 0$ in the following GLM:

$$g[E(Y)] = \gamma_0 + \gamma_G G + \gamma_E E + \gamma_{GE} G E + \gamma_X X.$$ (4)

To preserve the type I error rates, the filtering statistic (stage 1) and the following interaction test statistic (stage 2) must be asymptotically independent under the null hypothesis. Dai et al. have proven the validity of using the “main-effect filtering” as the screening strategy (Dai et al., 2012). Each element in \hat{w} represents the weight given to a SNP, which is 1 if the SNP is positively associated with Y, -1 if it is negatively associated with Y, and is a very small value (0.0001) if the SNP is not statistically associated with Y (i.e., P-value > a pre-specified significance level, say, 0.10 in Jiao et al., 2013).

Variance Component (VC) Test

The class of VC tests include iSKAT (Lin et al., 2016), GESAT (Lin et al., 2013), INT_FIX, INT_RAN, and JOINT (Chen et al., 2014). VC tests are based on the following GLM:

$$g[E(Y)] = \delta_0 + \delta_G G + \delta_E E + \delta_{GE} G E + \delta_X X.$$ (5)

where G is the vector of the numbers of minor allele (0, 1, or 2) at the L SNPs, and \hat{w} is the vector of weights given to the L SNPs. The weight is determined by the sign and significance of the filtering statistic. The weight given to a SNP is 1 if it is positively associated with E, -1 if it is negatively associated with E, and is a very small value (e.g., 0.0001) if the SNP is not statistically associated with E (i.e., filtering test P-value > a pre-specified significance level, say, 0.10). The SBERIA approach uses this weighting scheme because the SNP-E association test has been shown to be asymptotically independent of the SNP $\times E$ interaction test (Muirray et al., 2009; Dai et al., 2012) and is powerful for filtering (Jiao et al., 2013).

First, they take different approaches to estimate the SNP main effects, whereas INT_RAN assumes δ_Gs follow a distribution with a mean of 0 and a variance of τ^2. The null hypothesis $H_0: \delta_{GE} = 0$ is then reduced to $H_0: \tau^2 = 0$. The score statistic to test $H_0: \tau^2 = 0$ vs. $H_1: \tau > 0$ can be referred to Equation (6) in Lin et al. (2016).

Similar among the five VC tests, $\delta_{G,E}$s ($l = 1, \ldots, L$) are assumed to be random effects that follow a distribution. Therefore, testing $H_0: \delta_{GE} = 0$ can be reduced to testing $H_0: \tau^2 = 0$. However, these five VC tests are dissimilar in two aspects.

First, they take different approaches to estimate the SNP main effects, δ_Gs ($l = 1, \ldots, L$). INT_FIX treats δ_Gs as fixed effects, whereas INT_RAN assumes δ_Gs follow a distribution with a mean of 0 and a variance of τ^2. GESAT and iSKAT use ridge regression to estimate $\hat{\delta}_G$s under the null hypothesis of $H_0: \delta_{GE} = 0$. JOINT simultaneously tests whether SNP main effects or $G \times E$ interaction effects exist, i.e., $H_0: \tau_1 = \tau_2 = 0$ vs. $H_1: \tau_1 > 0$ or $\tau_2 > 0$. Therefore, it is not a pure test for detecting $G \times E$.
Second, iSKAT allows an exchangeable correlation ρ among $\delta_{GE,s}$ ($l = 1, \ldots, L$) and searches for the optimal ρ. The other four VC tests all assume that $\delta_{GE,s}$ are independent to each other (i.e., $\rho = 0$).

RESULTS

To reflect the real LD structures of the human genome, we used GWAS data from the TWB as our simulation material. The TWB aims to build a research database that integrates the genomic profiles, lifestyle patterns, dietary habits, and environmental exposures of residents aged 30–70 years in Taiwan (Chen et al., 2016). Community-based volunteers donated blood, took a physical examination, and completed a questionnaire with a face-to-face interview.

Most of these community-based volunteers were unrelated subjects. To exclude subjects with cryptic relatedness, we first estimated the genome-wide identity by descent (IBD) sharing coefficients among seemingly unrelated individuals from the whole-genome data. Using PLINK-1.9 (Purcell et al., 2007), we obtained the IBD scores for all pairs of subjects, i.e., $\text{PI-HAT} = \Pr(\text{IBD} = 2) + 0.5 \times \Pr(\text{IBD} = 1)$. “PI-HAT” is a parameter used in PLINK to quantify pairwise IBD scores. Some GWAS excluded relatives within third-degree consanguinity, and therefore removed one person from a pair with PI-HAT ≥ 0.125 (Lowe et al., 2009; Mok et al., 2014). We here use a slightly more stringent threshold, 0.1. After removing subjects with cryptic relatedness (PI-HAT > 0.1), our analysis data included 16,555 unrelated subjects (8,213 males and 8,342 females).

The whole-genome genotyping of the TWB data revealed 631,941 autosomal SNPs. We excluded 22,212 SNPs with genotyping rates $<95\%$ and 5,988 SNPs with Hardy-Weinberg test $P < 5.7 \times 10^{-7}$ (WTCCC, 2007). The remaining 603,741 SNPs were used for the simulations and the following real data analysis. Because the SNP positions in the TWB data were based on the human genome GRCh37/hg19 assembly, we mapped the variants into genes according to the same assembly in the UCSC Genome Bioinformatics database (http://www.genome.ucsc.edu). In total, 24,769 autosomal genes were identified. Furthermore, following the conventional gene-based tests (Liu et al., 2010), we incorporated 50 kb in the 3′ and 5′ regions that might regulate a gene.

We assessed the type I error rates and power of the seven tests using simulations. Our ADABF was compared with rareGE (Chen et al., 2014), SBERIA (Jiao et al., 2013), GESAT (Lin et al., 2013), and iSKAT (Lin et al., 2016). These competitor methods have been developed with user-friendly analysis tools that are popular choices for G \times E studies. The “rareGE” function in the “rareGE” R package (version 0.1) provides P-values for the following three tests: (1) INT_FIX: a $G \times E$ test that treats the SNP main effects as fixed effects; (2) INT_RAN: a $G \times E$ test that treats the SNP main effects as random effects; and (3) JOINT: a joint test of the genetic main effects and $G \times E$ interactions. Both GESAT (Lin et al., 2013) and iSKAT (Lin et al., 2016) were implemented using the “iSKAT” R package (version 1.2).

Type I Error Rates

Given the genotypes of each subject from the TWB, his/her continuous trait was simulated according to

$$Y = \beta_G G + \beta_{GE} G E + \epsilon,$$

where G is the minor allele count (0, 1, or 2) at the lth SNP, E is the environmental factor, and ϵ is the random error term following the standard normal distribution. Moreover, we simulated binary traits according to

$$\log \frac{\Pr(Y = 1)}{1 - \Pr(Y = 1)} = -0.4 + \beta_G G + \beta_{GE} GE,$$

where the intercept was $\log \frac{0.4}{0.6} = -0.4$, corresponding to a disease prevalence of 0.4, which was the worldwide prevalence of hypertension among adults aged ≥ 25 years (Abebe et al., 2015).

In Equations (6) and (7), E was a binary environmental factor taking a value of 0 or 1 each with a probability of 0.5. Because E was randomly sampled, the “SNP-E association filtering” (Murcray et al., 2009; Jiao et al., 2013) that computes the association between E and each SNP was inefficient. Therefore, in our simulations, we used the above-mentioned “main-effect filtering” (Dai et al., 2012) in SBERIA.

To evaluate the validity of these $G \times E$ tests, we let $\beta_G = \beta_{GE} = 0$ and generated the phenotypes of 16,555 subjects according to Equations (6) or (7). We repeated 41 rounds of genome-wide $G \times E$ analysis for the 24,769 autosomal genes so that each $G \times E$ test was evaluated at least one million times (24,769 \times 41 = 1,015,529). Following the conventional gene-based tests (Liu et al., 2010), we incorporated 50 kb in the 3′ and 5′ regions that might regulate a gene. The number of SNPs involved in a gene depends on the length of the gene. Table 1 presents the empirical type I error rates under various nominal significance levels based on 1,015,529 replications of the continuous traits and binary traits separately. All the tests preserved the type I error rates. Tables S1–S3 in our Supplementary Materials further present the type I error rates stratified by the number of SNPs involved in a gene. The results are similar to Table 1, indicating that the type I error rates do not much depend on the number of SNPs in a gene.

We also evaluated the validity of these $G \times E$ tests in the presence of genetic main effects. If $\beta_{GE} = 0$ but $\beta_G \neq 0$, all tests, except for JOINT, were valid (results not shown). Thus, if we obtain a significant test result using the JOINT method, we cannot know whether this significance is contributed by $G \times E$ or not. Therefore, the JOINT test should not be used if $G \times E$ is of the main interest. It is suitable for detecting genetic main effects while allowing for $G \times E$.

Power

The true number of SNPs interacting with E may not be large in the genome (McCarthy et al., 2008; Liu et al., 2016). Therefore, we simulated one or four non-null $\beta_{GE,s}$ in a gene. To investigate the impact of the gene length on power, we randomly drew three genes (i.e., CHDS, TNNT3, and RFX3), respectively,
TABLE 1 | Empirical type I error rates in the simulation study.

Traits	Nominal significance levels	ADABF	INT_FIX	INT_RAN	JOINT	SBERIA	iSKAT	GESAT
Continuous, $R_G = R_{GE} = 0$ assigned to Equation (6)	0.05	0.049807	0.050379	0.050163	0.050147	0.050389	0.052703	0.052583
	0.01	0.009549	0.009944	0.009882	0.010036	0.010081	0.011688	0.011008
	0.001	0.000927	0.000962	0.000948	0.001168	0.001008	0.000768	0.000666
	5×10^{-5}	0.000040	0.000039	0.000042	0.000068	0.000057	0.000097	0.000066
	2.5×10^{-6}	0.000000	0.000001	0.000002	0.000001	0.000002	0.000001	0.000003
Binary, $R_G = R_{GE} = 0$ assigned to Equation (7)	0.05	0.050339	0.050739	0.050540	0.050385	0.049992	0.052701	0.053239
	0.01	0.008855	0.009989	0.009913	0.010193	0.010111	0.011655	0.011665
	0.001	0.000865	0.000972	0.000965	0.001200	0.001011	0.001333	0.001333
	5×10^{-5}	0.000054	0.000053	0.000058	0.000071	0.000054	0.000062	0.000076
	2.5×10^{-6}	0.000003	0.000003	0.000003	0.000003	0.000003	0.000003	0.000004

Each entry represents the proportion of P-values smaller than the corresponding nominal significance level based on 1,015,529 simulation replicates.

TABLE 2 | The 11 simulation scenarios for power comparison.

Scenario	SNP main effects	SNP x E interaction effects					
βG1	βG2	βG3	βG4				
(1-1)	0	0	0	+	0	0	0
		One positive SNP x E interaction effect without SNP main effect.					
(1-2)	+	0	0	+	0	0	0
		One positive SNP x E interaction effect, with SNP main effect in the same direction.					
(1-3)	−	0	0	+	0	0	0
		One positive SNP x E interaction effect, with SNP main effect in the opposite direction.					
(1-4)	0	0	0	+	+	+	+
		Four positive SNP x E interaction effects without SNP main effect.					
(1-5)	+	−	−	+	+	+	+
		Four positive SNP x E interaction effects, all with SNP main effects in the same direction.					
(1-6)	−	+	−	+	+	+	+
		Four positive SNP x E interaction effects, all with SNP main effects in the opposite direction.					
(1-7)	0	0	0	+	+	+	+
		Four positive SNP x E interaction effects, two with SNP main effects in the same direction and the other two in the opposite direction.					

Each entry represents the proportion of P-values smaller than the corresponding nominal significance level based on 1,015,529 simulation replicates.
medium, and large. For continuous traits, the effect sizes were uniformly drawn from \([0.08, 0.12]\) (small), \([0.13, 0.17]\) (medium), and \([0.18, 0.22]\) (large), respectively. For binary traits, the effect sizes were uniformly drawn from \([\log(1.05), \log(1.15)]\) (small), \([\log(1.25), \log(1.35)]\) (medium), and \([\log(1.45), \log(1.55)]\) (large), respectively.

Table 2 lists the 11 simulation scenarios for power comparison, including 3 for \(d = 1\) and 8 for \(d = 4\). Scenarios (1-1), (4-1), and (4-5) are pure interaction models without SNP main effect. Scenarios (1-2), (4-2), and (4-6) include SNP \(\times E\) interaction effects with SNP main effects in the same direction. Scenarios (1-3), (4-3), and (4-7) include SNP \(\times E\) interaction effects with SNP main effects in the opposite direction. Scenarios (4-4) and (4-8) include SNP \(\times E\) interaction effects with 50% SNP main effects in the same direction and 50% in the opposite direction.

Based on 1,000 replications for each scenario, Figures 1, 2 present the results of 1 SNP \(\times E\) (i.e., \(d = 1\)) for continuous and binary traits, respectively. The results of 4 SNP \(\times E\) (i.e., \(d = 4\)) are shown in Figures 3, 4 (for continuous traits) and Figures 5, 6 (for binary traits). Under the same scenario and the same level of effect sizes, the power of all tests decreased as the number of SNPs increased. This was because the proportion of non-null \(\beta_{GE}\) was decreasing as the number of SNPs increased. For example, when \(d = 4\), the proportions of non-null \(\beta_{GE}\)s were 4/20, 4/50, and 4/100, respectively.

FIGURE 1 | Power of the seven tests for continuous traits (1 SNP \(\times E\)). The x-axis represents the number of SNPs in the gene, whereas the y-axis depicts the power at the nominal significance level \(\alpha = 2.5 \times 10^{-6}\). From the top row to the bottom row, the magnitudes of SNP main effects and SNP \(\times E\) interaction effects were evaluated at three levels: small, medium, and large, respectively.
The JOINT test was generally the most powerful test. However, as mentioned above, it is not a pure G × E test. Among the 6 pure G × E tests, ADABF was more powerful under 1 SNP × E (i.e., $d = 1$, Figures 1, 2). Let m be the number of SNPs in a gene, where $m = 20, 50, \text{ or } 100$ in our power comparison. When $d = 1$, $m - 1$ SNPs exhibit no interactions with E. ADABF outperformed the other tests because it excluded SNP × E with smaller BF; thus, ADABF was more robust to the inclusion of many ($m - 1$) null β_{GES}.

Among the 6 pure G × E tests, SBERIA can be more powerful than ADABF under 4 SNP × E (i.e., $d = 4$, Figures 3–6). However, SBERIA suffered from a power loss in Scenarios (4-4) and (4-8), where 50% SNP main effects were in the same direction with the SNP × E interaction effects while 50% were in the opposite direction. This is because SBERIA builds a G × E term by incorporating the SNPs that pass the filtering stage (i.e., $E\hat{G}^{\prime}\hat{w}$ in Equation 3). The weight (elements in \hat{w}) given to a SNP is 1 if it is positively associated with Y, -1 if it is negatively associated with Y, and is a very small value (e.g., 0.0001) if the SNP is not statistically associated with Y. When 50% SNP main effects were in the same direction with the SNP × E interaction effects while 50% were in the opposite direction, the positive and negative SNP × E interactions in $E\hat{G}^{\prime}\hat{w}$ were canceled out. Therefore, SBERIA suffered from a power loss in Scenarios (4-4) and (4-8).
FIGURE 3 | Power of the seven tests for continuous traits (4 SNP \times E, from Scenario 4-1 to 4-4). The x-axis represents the number of SNPs in the gene, whereas the y-axis depicts the power at the nominal significance level $\alpha = 2.5 \times 10^{-6}$. From the top row to the bottom row, the magnitudes of SNP main effects and SNP \times E interaction effects were evaluated at three levels: small, medium, and large, respectively.

Application to the Taiwan Biobank Data

Subsequently, we applied these G \times E methods to the TWB data. Among the TWB subjects, $\sim 79.9\%$ were of the southern Han Chinese ancestry, $\sim 5\%$ were of the northern Han Chinese ancestry, and $\sim 14.5\%$ belonged to a third group (Chen et al., 2016). To adjust for the population substructure, the 603,741 SNPs that passed the quality-control stage were used to construct the principal components (PCs). We aim to explore the interaction effects between genes and alcohol consumption on blood pressure levels. Our study was approved by the Research Ethics Committee of National Taiwan University Hospital (NTUH-REC no. 201612188RINA).

In the TWB data, “alcohol drinking” is defined as a weekly alcohol intake >150 c.c. for at least 6 months. Among the 16,555 subjects, 14,779 subjects answered “no” to alcohol drinking, whereas 1,764 subjects answered “yes.” Totally 12 subjects did not respond to this question. Therefore, the environmental factor (“alcohol drinking”) was binary here. Both DBP and SBP were measured twice in a sitting position, with a 5-min interval between the two measurements. As suggested by Jamieson et al. (1990) and others (Husemoen et al., 2008), two measurements of blood pressure should routinely be taken, and the average recorded. Therefore, in the following analysis, we used the average of the two measurements of DBP (or SBP) as the phenotype.

Prior to the G \times E analysis, we first regressed DBP (the average of two measured DBPs) and SBP (the average of two measured SBPs) on gender, age, alcohol drinking, body mass index (BMI), and the first seven PCs. In Table 3, we list the regression coefficients regarding gender, age, alcohol drinking, and BMI. Males, elder subjects, subjects consuming alcohol, and subjects with larger BMI exhibit a significantly higher mean blood pressure than females, younger subjects, subjects without alcohol consumption, and subjects with smaller BMI. On average, alcohol drinking results in an increase of ~ 1.51 mmHg in DBP and ~ 2.10 mmHg in SBP. This finding that an increased alcohol intake elevates blood pressures is consistent with the conclusions of numerous studies (Xin et al., 2001; Puddey and Beilin, 2006; Tomson and Lip, 2006).

Single Marker Analysis

The first strategy to detect G \times E is single SNP analysis. Let Y be DBP or SBP, G_i be the number of minor allele (0, 1, or 2) at the i^{th} SNP, E be the environmental factor (“alcohol drinking”), and X be the vector of covariates, including age, gender, BMI, and
the first seven PCs. We fitted a linear regression for each of the 603,741 SNPs,

\[E(Y) = \beta_0 + \beta_G G_l + \beta_E E_l + \beta_{GE} G_l E_l + \beta'_X X, \quad l = 1, \ldots, 603741. \] (10)

This single marker analysis was performed using PLINK (version 1.9) (Purcell et al., 2007). PLINK reported low genomic inflation factors after adjusting the first seven PCs, i.e., \(\lambda_{GC} = 1.081 \) for DBP and 1.058 for SBP. As suggested by GWAS such as Li et al. (2015), these \(\lambda_{GC} \)s represented minimal effects of population stratification. We then tested \(H_0: \gamma_G = 0 \) vs. \(H_1: \gamma_G \neq 0 \), and compared the \(P \)-value with the commonly-used genome-wide significance level, \(5 \times 10^{-8} \). No significant SNP \(\times \) E were identified for DBP or SBP.

Gene-Based Analysis

Then, we performed the seven gene-based tests. According to the human genome GRCh37/hg19 assembly, there are 24,769 autosomal genes. We followed the conventional gene-based tests (Liu et al., 2010), and therefore incorporated 50 kb in the 3′ and 5′ regions that might regulate genes. The “main-effect filtering” and “SNP-E association filtering” were both used in the SBERIA approach, and they were referred to as “SBERIA1” and “SBERIA2,” respectively.

1. **SBERIA1 (main-effect filtering):** In the filtering stage, a linear regression was fitted for each SNP, i.e., \(E(Y) = \gamma_0 + \gamma_G G_l + \gamma'_X X \). The validity of using this filtering stage was justified by Corollary I proposed by Dai et al. (2012). Using this filtering strategy into Jiao et al.’s SBERIA approach, when the \(P \)-value of testing \(H_0: \gamma_G = 0 \) vs. \(H_1: \gamma_G \neq 0 \) was smaller than 0.1, the weight given to the \(l \)th SNP was 1 if \(\hat{\gamma}_G > 0 \) and was \(-1\) if \(\hat{\gamma}_G < 0 \) (\(\hat{\gamma}_G \) was the MLE of \(\gamma_G \)). When the \(P \)-value of testing \(H_0: \gamma_G = 0 \) vs. \(H_1: \gamma_G \neq 0 \) was larger than 0.1, the weight given to the \(l \)th SNP was 0.0001 (Jiao et al., 2013).

2. **SBERIA2 (SNP-E association filtering):** In the filtering stage, a logistic regression was fitted for each SNP, i.e., \(\logit(E) = \delta_0 + \delta_G G_l + \delta'_X X \), where \(E = \) “alcohol drinking” was binary. The validity of using this filtering stage was justified by Proposition 3 of Dai et al. (2012). According to Jiao et al.’s SBERIA approach, when the \(P \)-value of testing \(H_0: \delta_G = 0 \) vs. \(H_1: \delta_G \neq 0 \) was smaller than 0.1, the weight given to the \(l \)th SNP was 1 if \(\hat{\delta}_G > 0 \) and was \(-1\) if \(\hat{\delta}_G < 0 \) (\(\hat{\delta}_G \) was the MLE of \(\delta_G \)). When the \(P \)-value of testing \(H_0: \delta_G = 0 \) vs. \(H_1: \delta_G \neq 0 \) was larger than 0.1, the weight given to the \(l \)th SNP was 0.0001 (Jiao et al., 2013).
FIGURE 5 | Power of the seven tests for binary traits (4 SNP × E, from Scenario 4-1 to 4-4). The x-axis represents the number of SNPs in the gene, whereas the y-axis depicts the power at the nominal significance level $\alpha = 2.5 \times 10^{-6}$. From the top row to the bottom row, the magnitudes of SNP main effects and SNP × E interaction effects were evaluated at three levels: small, medium, and large, respectively.

Table 4 lists the genes that are significant according to at least one of the analysis methods, where the statistical significance is claimed if a $P < 2.5 \times 10^{-6}$, where $2.5 \times 10^{-6} = 0.05/20000$ is the commonly-used genome-wide significance level in gene-based analyses (Epstein et al., 2015). Regarding DBP, the $ADAMTS7P1$ gene was identified by the GESAT test ($P = 9.5 \times 10^{-7}$). At this gene, the P-values provided by other 6 tests all reached the suggestive significance level ($P < 5 \times 10^{-5} = 1/20000$). The other genes listed in Table 4 were presumably to have genetic main effects rather than G × E interactions, because they were only identified by the JOINT test.

Table 5 presents the information regarding the four SNPs in the analysis region of the $ADAMTS7P1$ gene. For DBP analysis, two BFs of SNP × alcohol interactions were >100 (representing decisive evidence against the null hypothesis Jeffreys, 1961; Kass and Raftery, 1995), including rs16973457 and rs4238534. Plots of the SNP × alcohol interaction effects on DBP and SBP are presented in Figure 7. Here, non-drinkers (black curves) exhibit similar blood pressure values across different genotypes. However, drinkers (red dashed curves) exhibit elevated blood pressure if they possess certain genotypes. Interestingly, if we ignore G×E from Equation (10), the main effects of these SNPs are not significant (shown in the final column of Table 5).

This finding highlights the importance of considering the SNP × alcohol interaction effect on blood pressure.

Computation Time
As shown in Table 4, we also provide the time spent for analyzing the 24,769 autosomal genes, using a Linux platform with a Dell Intel Xeon E5-2690 2.9 GHz processor and 8 GB memory. SBERIA (~10 h for a phenotype) is the fastest method, followed by ADABF (~80 h). iSKAT and GESAT both required more than 300 h. INT_FIX, INT_RAN, and JOINT were conducted using a function in the “rareGE” package, and these three tests totally required more than 400 h.

DISCUSSION
Environmental factors, such as diet, exercise, alcohol intake and tobacco use, can modify the associations of genetic variants with disease (Lee et al., 2011). G × E can shed light on biological processes leading to disease, identify high-risk subjects, and improve disease prediction (Hunter, 2005; Dudbridge and Fletcher, 2014).

Our ADABF method has been proposed as a powerful polygenic approach to detect G × E (Lin et al., 2018).
FIGURE 6 | Power of the seven tests for binary traits (4 SNP × E, from Scenario 4-5 to 4-8). The x-axis represents the number of SNPs in the gene, whereas the y-axis depicts the power at the nominal significance level $\alpha = 2.5 \times 10^{-6}$. From the top row to the bottom row, the magnitudes of SNP main effects and SNP × E interaction effects were evaluated at three levels: small, medium, and large, respectively.

TABLE 3 | The regression models for the DBP and SBP analyses (prior to the G × E analysis).

Important explanatory variables in the regression model	DBP	SBP
Genderb (1: female; 0: male)	-5.8385 ± 0.1613	-5.7753 ± 0.2440
Agec (in year, continuous variable)	0.1380 ± 0.0069	0.6018 ± 0.0105
Alcohol drinkind (1: yes; 0: no)	1.5107 ± 0.2552	2.0961 ± 0.3860
Body mass index (BMI) (in kg/m², continuous variable)	0.8884 ± 0.0215	1.2633 ± 0.0325

Regression coefficient ($\hat{\beta}$)	Standard error of $\hat{\beta}$	Wald statistic, $\hat{\beta}/\text{s.e.}(\hat{\beta})$	P-value	Regression coefficient ($\hat{\beta}$)	Standard error of $\hat{\beta}$	Wald statistic, $\hat{\beta}/\text{s.e.}(\hat{\beta})$	P-value
Genderb (1: female; 0: male)	-5.8385 ± 0.1613	-36.188	$< 2 \times 10^{-16}$	-5.7753 ± 0.2440	-23.669	$< 2 \times 10^{-16}$	
Agec (in year, continuous variable)	0.1380 ± 0.0069	19.961	$< 2 \times 10^{-16}$	0.6018 ± 0.0105	57.579	$< 2 \times 10^{-16}$	
Alcohol drinkind (1: yes; 0: no)	1.5107 ± 0.2552	5.920	3.29×10^{-9}	2.0961 ± 0.3860	5.431	5.69×10^{-8}	
Body mass index (BMI) (in kg/m², continuous variable)	0.8884 ± 0.0215	41.380	$< 2 \times 10^{-16}$	1.2633 ± 0.0325	38.907	$< 2 \times 10^{-16}$	

Note: The first seven PCs were also adjusted in the model.

bInterpretation of gender: Males have significantly higher mean blood pressure than females.

cInterpretation of age: Elder subjects have significantly higher mean blood pressure than younger subjects.
dInterpretation of alcohol drinking: Subjects consuming alcohol have significantly higher mean blood pressure than subjects without alcohol consumption.
eInterpretation of BMI: Subjects with larger BMI have significantly higher mean blood pressure than subjects with smaller BMI.
method can also serve as a gene-based G × E test. In this study, we compare our ADABF method with six existing gene-based tests, through extensive simulations and real data analyses. Our ADABF method is among the most powerful tests. Although the JOINT test is typically the most powerful method, it is not appropriate for assessing G × E in the presence of genetic main effects. As presented by Table 4, although seven genes were identified as significant by JOINT, none of them were replicated by any of the six pure G × E tests at the genome-wide significance level (2.5×10^{-6}) or at the suggestive significance level (5×10^{-3}). The JOINT test should not be used if G × E is of the main interest, but it is useful in detecting genetic main effects while allowing for G × E.

Notably, all gene-based tests can be performed using a pre-specified weighting scheme for SNPs. For example, if rare variants are believed to have stronger interactions with E, the beta distribution density function with parameters 1 and 25 evaluated at the sample MAF, i.e., Beta (MAF; 1, 25), is commonly used to weight the SNPs (Wu et al., 2011; Lin et al., 2016). However, to present a fair comparison, we do not impose any additional weighting on these seven tests.

The ADAMTS7P1 gene at 15q25.2 has not been reported to be associated with blood pressures or hypertension. Indeed, after removing the SNP x alcohol interaction (G × E) from Equation (10), the main effects of all the four SNPs within ADAMTS7P1 were not significant. Although the ADAMTS7P1-alcohol interaction effect on SBP did not achieve the suggestive significance level (5×10^{-3}), the P-values of the 6 pure G × E tests were all $<10^{-3}$ (Table 6). Moreover, as presented in the bottom part of Table 5, the BF of rs16973457 x alcohol interaction on SBP was >100 (representing decisive evidence against the null hypothesis Jeffreys, 1961; Kass and Raftery, 1995). Further gene x alcohol studies investigating this chromosome region will be warranted.

In this study, we extend our ADABF to G × E detection and compare it with six existing tests. Their validity, power, robustness, and computation time are investigated. SBERIA builds a G × E term by incorporating the SNPs that pass the filtering stage (i.e., EG in Equation 3); ADABF removes the SNP × E with smaller BFs. Both approaches take the advantage of screening out noises, and therefore they are usually more powerful than other pure G × E tests (Figures 1–6). However, it is worth noting that SBERIA suffers from a power loss when 50% SNP main effects are in the same direction with the SNP × E interaction effects while 50% are in the opposite direction. Considering the validity, power performance, robustness, and computation time, ADABF is recommended for genome-wide G × E analyses.

To detect G × E on a genome-wide scale, ADABF polygenic test (Lin et al., 2018) and ADABF gene-based test are two strategies with different aims. The ADABF polygenic test combines all SNPs that pass the pruning and filtering stages into a test, and therefore it does not suffer from a power loss due to the multiple-testing correction. A $P < 0.05$ or 0.01 is sufficient to reject H_0 of no polygenic G × E interactions (Pan et al., 2015). By contrast, the power of ADABF gene-based test is compromised by the penalty of multiple testing. A $P < 2.5 \times 10^{-6}$
TABLE 5 | The four SNPs in the analysis region of the ADAMTS7P1 gene.

Phenotype	SNP	Position (base pair)	Minor allele	Major allele	MAF	SNP x alcohol interaction testa	If SNP x alcohol interaction was not incorporated in the modelb				
						$\hat{\beta}_{GE}$	s.e. ($\hat{\beta}_{GE}$)	Wald statistic	P-value	P-value	
								($H_0: \beta_{GE} = 0$ vs. $H_1: \beta_{GE} \neq 0$)	($H_0: \beta_G = 0$ vs. $H_1: \beta_G \neq 0$)		
DBP	rs74249839	82537997	G	T	0.0544	-1.5477	0.7757	-1.996	0.0460	1.95	0.58
	rs7183805	82539431	A	G	0.1761	0.8042	0.4959	1.750	0.0801	0.88	0.82
	rs16973457	82563991	T	C	0.1924	-1.8607	0.4309	-4.318	1.59×10^{-5}	1519.09	0.65
	rs4238534	82564555	T	C	0.1627	-2.1048	0.4642	-4.535	5.81×10^{-6}	3883.43	0.76
SBP	rs74249839	82537997	G	T	0.0544	-1.6558	1.1731	-1.411	0.1581	0.78	0.99
	rs7183805	82539431	A	G	0.1761	0.9474	0.6949	1.363	0.1728	0.48	0.76
	rs16973457	82563991	T	C	0.1924	-2.4675	0.6518	-3.786	0.000154	186.85	0.19
	rs4238534	82564555	T	C	0.1627	-2.4688	0.7024	-3.512	0.000446	74.07	0.56

aThe DBP (or SBP) was regressed by Equation (10) and β_{GE} was of the main interest.

bIf we ignored GxE from Equation (10), the main effects of these four SNPs were not significant.

FIGURE 7 | Plots of SNP x alcohol interaction effects on DBP and SBP. These are the interaction plots of the four SNPs in Table 5. As shown in these plots, the SNP x alcohol interaction patterns in DBP are similar to those in SBP. The black curves depict the mean of DBP or SBP among the non-drinkers, whereas the red dashed curves depict that among the drinkers. The number shown on each point represents the sample size of that category.

TABLE 6 | Analysis of the ADAMTS7P1-alcohol interaction effect on SBP.

Gene	Chr.	Analysis region	#(SNPs)	P-values							
				ADABF	INT_FIX	INT_RAN	JOINT	SBERIA1	SBERIA2	iSKAT	GESAT
ADAMTS7P1	15	82535621–82676915	4	3.5×10^{-4}	2.2×10^{-4}	2.0×10^{-4}	1.3×10^{-3}	5.0×10^{-4}	1.7×10^{-4}	2.0×10^{-4}	8.2×10^{-5}
$10^{-6} = 0.05/2000$ is required to claim a significant gene-based test (Epstein et al., 2015). Despite a much more stringent significance threshold, the ADABF gene-based test can make statistical inference for specific chromosomal regions, whereas the ADABF polygenic test (Lin et al., 2018) make an inference for SNPs (passing the pruning and filtering stages) spread out the whole genome.

AUTHOR CONTRIBUTIONS

W-YL developed the ADABF method and the analysis tool, designed and performed the simulation study, analyzed the TWB data, and wrote the manuscript. C-CH contributed to the review and coding for the competitor methods. Y-LL, S-JT, and P-HK contributed to the writing of the manuscript, and provided the TWB data. All authors reviewed the manuscript.

REFERENCES

Abebe, S. M., Berhaney, Y., Worku, A., and Getachew, A. (2015). Prevalence and associated factors of hypertension: a cross-sectional community based study in Northwest Ethiopia. PLoS ONE 10:e0125210. doi: 10.1371/journal.pone.0125210

Chen, C. H., Yang, J. H., Chiang, C. W. K., Hsiung, C. N., Wu, P. E., Chang, L. C., et al. (2016). Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Hum. Mol. Genet. 25, 5321–5331. doi: 10.1038/hmg/ddw346

Chen, H., Meigs, J. B., and Dupuis, J. (2014). Incorporating gene-environment interaction in testing for association with rare genetic variants. Hum. Hered. 78, 81–90. doi: 10.1159/000356347

Chen, P., Lin, J. J., Lu, C. S., Ong, C. T., Hsieh, P. F., Yang, C. C., et al. (2011). Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N. Engl. J. Med. 364, 1126–1133. doi: 10.1056/NEJMoa1099717

Dai, J. Y., Kooperberg, C., Leblanc, M., and Prentice, R. L. (2012). Two-stage testing procedures with independent filtering for genome-wide gene-environment interaction. Biometrika 99, 929–944. doi: 10.1093/biomet/ass044

Dudbridge, F., and Fletcher, O. (2014). Gene-environment dependence creates spurious gene-environment interaction. Am. J. Hum. Genet. 95, 301–307. doi: 10.1016/j.ajhg.2014.07.014

Epstein, M. P., Duncan, R., Ware, E. B., Juhn, M. A., Bielak, L. F., Zhao, W., et al. (2015). A statistical approach for rare-variant association testing in affected sibships. Am. J. Hum. Genet. 96, 543–554. doi: 10.1016/j.ajhg.2015.01.020

Franks, P. W., and Pare, G. (2016). Putting the genome in context: gene-environment interactions in type 2 diabetes. Curr. Diab. Rep. 16:57. doi: 10.1007/s11892-016-0758-y

He, M., and Allen, A. (2010). Testing gene-treatment interactions in pharmacogenetic studies. J. Pharmacogenet. Genomic. 20, 301–314. doi: 10.1016/j.jspag.2010.05.007

Hunter, D. J. (2005). Gene-environment interactions in human diseases. Nat. Rev. Genet. 6, 287–298. doi: 10.1038/nrg1578

Huermoen, L. N. N., Fenger, M., Friedrich, N., Tolstrup, J. S., Fredriksen, S. B., and Linneberg, A. (2008). The association of ADH and ALDH gene variants with alcohol drinking habits and cardiovascular disease risk factors. Alcohol Clin. Exp. Res. 32, 1984–1991. doi: 10.1111/j.1530-0277.2008.00780.x

Jamieson, M. J., Webster, J., Philips, S., Jeffers, T. A., Scott, A. K., Robb, O. J., et al. (1990). The measurement of blood pressure: sitting or supine, once or twice? J. Hypertens. 8, 655–660. doi: 10.1007/BF00487199-199007000-00006

Jeffreys, H. (1961). Theory of Probability. 3rd Edn. Oxford: Oxford University Press.

Jiao, S., Hsu, L., Bezieau, S., Brenner, H., Chan, A. T., Chang-Claude, J., et al. (2013). SERBA: set-based gene-environment interaction test for rare and common variants in complex diseases. Genet. Epidemiol. 37, 452–464. doi: 10.1002/gepi.21735

Acknowledgments

We would like to thank the reviewers for their insightful and constructive comments, and Mr. Ya-Chin Lee for assisting with the acquisition of TWB data. This work was supported by the Ministry of Science and Technology of Taiwan (grant number MOST 107-2314-B-002-195-MY3 to W-YL). The acquisition of TWB data was supported by a MOST grant (grant number MOST 102-2314-B-002-117-MY3 to P-HK) and a collaboration grant (National Taiwan University Hospital: grant number UN106-050 to Shyr-Chyr Chen and P-HK).

SUPPLEMENTAL MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2018.00715/full#supplementary-material

Kass, R. E., and Raftery, A. E. (1995). Bayes factors. J. Am. Stat. Assoc. 90, 773–775. doi: 10.1080/01621459.1995.10476572

Ko, T. M., Tsai, C. Y., Chen, S. Y., Chen, K. S., Yu, K. H., Chu, C. S., et al. (2015). Use of HLA-B*5801 genotyping to prevent allopurinol induced severe cutaneous adverse reactions in Taiwan: national prospective cohort study. BMJ 351:h4848. doi: 10.1136/bmj.h4848

Lee, Y. C., Lai, C. Q., Ordovas, J. M., and Parnell, L. D. (2011). A database of gene-environment interactions pertaining to blood lipid traits, cardiovascular disease and type 2 diabetes. J. Data Mining Genomics Proteomics 2:106. doi: 10.4172/2153-0602.1001006

Li, M., Foo, J. N., Wang, J. Q., Low, H. Q., Tang, X. Q., Toh, K. Y., et al. (2015). Identification of new susceptibility loci for IgA nephropathy in Han Chinese. Nat. Commun. 6:7270. doi: 10.1038/ncomms8270

Lin, W. Y., Huang, C. C., Liu, Y. L., Tsai, S. J., and Kuo, P. H. (2018). Polygenic approaches to detect gene-environment interactions when external information is unavailable. Brief Bioinform. doi: 10.1093/bib/bby086. [Epub ahead of print]

Lin, W. Y., and Lee, C. C. (2010). Incorporating prior knowledge to facilitate discoveries in a genome-wide association study on age-related macular degeneration. BMC Res. Notes 3:26. doi: 10.1186/1756-0500-3-26

Lin, X. Y., Lee, S., Wu, M. C., Wang, C. L., Chen, H., Li, Z. L., et al. (2016). Test for rare variants by environment interactions in sequencing association studies. Biometrics 72, 156–164. doi: 10.1111/biom.12368

Liu, J. Z., Mcrae, A. F., Nyholt, D. R., Medland, S. E., Wray, N. R., Brown, K. M., et al. (2010). A versatile gene-based test for genome-wide association studies. Am. J. Hum. Genet. 87, 139–145. doi: 10.1016/j.ajhg.2010.06.009

Liu, Q., Chen, L. S., Nicolea, D. L., and Pierce, B. L. (2016). A unified set-based test with adaptive filtering for gene-environment interaction analyses. Biometrics 72, 629–638. doi: 10.1111/biom.12422

Lowe, J. K., Maller, J. B., Péter, I., Neale, B. M., Salt, J., Kenny, E. E., et al. (2009). Genome-wide association studies in an isolated founder population from the Pacific Island of Kosrae. PLoS Genet. 5:e1000365. doi: 10.1371/journal.pgen.1000365

McCarthy, M. I., Abecasis, G. R., Cardon, L. R., Goldstein, D. B., Little, J., Ioannidis, J. P., et al. (2008). Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet. 9, 356–369. doi: 10.1038/nrg2344

Mok, K. Y., Schneider, S. A., Trabzuni, D., Stamelou, M., Edwards, M., Kasparrzickite, D., et al. (2014). Genomewide association study in cervical dystonia demonstrates possible association with sodium leak channel. Mov. Disord. 29, 245–251. doi: 10.1002/mds.25732

Murray, C. E., Lewinger, J. P., Conti, D. V., Thomas, D. C., and Gauderman, W. J. (2011). Sample size requirements to detect gene-environment
interactions in genome-wide association studies. *Genet. Epidemiol.* 35, 201–210. doi: 10.1002/gepi.20569

Murcray, C. E., Lewinger, J. P., and Gauderman, W. J. (2009). Gene-environment interaction in genome-wide association studies. *Am. J. Epidemiol.* 169, 219–226. doi: 10.1093/aje/kwn353

Ottman, R. (1996). Gene-environment interaction: definitions and study designs. *Prevent. Med.* 25, 764–770. doi: 10.1006/pmed.1996.0117

Pan, W., Chen, Y. M., and Wei, P. (2015). Testing for polygenic effects in genome-wide association studies. *Genet. Epidemiol.* 39, 306–316. doi: 10.1002/gepi.21899

Puddey, I. B., and Beilin, L. J. (2006). Alcohol is bad for blood pressure. *Clin. Exp. Pharmacol. Physiol.* 33, 847–852. doi: 10.1111/j.1440-1681.2006.04452.x

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., et al. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. *Am. J. Hum. Genet.* 81, 559–575. doi: 10.1086/519795

Rudolph, A., Chang-Claude, J., and Schmidt, M. K. (2016). Gene-environment interaction and risk of breast cancer. *Br. J. Cancer* 114, 125–133. doi: 10.1038/bjc.2015.439

Simino, J., Sung, Y. J., Kume, R., Schwander, K., and Rao, D. C. (2013). Gene-alcohol interactions identify several novel blood pressure loci including a promising locus near SLC16A9. *Front. Genet.* 4:277. doi: 10.3389/fgene.2013.00277

Sung, Y. J., Winkler, T. W., de Las Fuentes, L., Bentley, A. R., Brown, M. R., Kraja, A. T., et al. (2018). A large-scale multi-ancestry genome-wide study accounting for smoking behavior identifies multiple significant loci for blood pressure. *Am. J. Hum. Genet.* 102, 375–400. doi: 10.1016/j.ajhg.2018.01.015

Tomson, J., and Lip, G. Y. (2006). Alcohol and hypertension: an old relationship revisited. *Alcohol Alcohol.* 41, 3–4. doi: 10.1093/alcalc/agh223

Wakefield, J. (2007). A Bayesian measure of the probability of false discovery in genetic epidemiology studies. *Am. J. Hum. Genet.* 81, 208–227. doi: 10.1086/519024

Wakefield, J. (2009). Bayes factors for genome-wide association studies: comparison with P-values. *Genetic Epidemiol.* 33, 79–86. doi: 10.1002/gepi.20359

Wang, Y., Shi, N., and Fang, Y. (2009). Analysis of genome-wide association data by large-scale Bayesian logistic regression. *BMC Proc.* 3(Suppl. 7):S16. doi: 10.1186/1753-6561-3-s7-s16

WTCCC (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. *Nature* 447, 661–678. doi: 10.1038/nature05911

Wu, M. C., Lee, S., Cai, T., Li, Y., Boehnke, M., and Lin, X. (2011). Rare-variant association testing for sequencing data with the sequence kernel association test. *Am. J. Hum. Genet.* 89, 82–93. doi: 10.1016/j.ajhg.2011.05.029

Xin, X., He, J., Frontini, M. G., Ogden, L. G., Motsamai, O. I., and Whelton, P. K. (2001). Effects of alcohol reduction on blood pressure: a meta-analysis of randomized controlled trials. *Hypertension* 38, 1112–1117. doi: 10.1161/01.HYP.101.093424

Zhang, Y., and Biswas, S. (2015). An improved version of logistic bayesian LASSO for detecting rare haplotype-environment interactions with application to lung cancer. *Cancer Inform.* 14, 11–16. doi: 10.4137/CIN.S17290

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Lin, Huang, Liu, Tsai and Kuo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.