Dynamic stability and vibrations of thin-walled structures considering heredity properties of the material

Bakhtiyar Khudayarov¹, Fozilzhon Turaev¹, Valizhon Vakhobov¹, Otabek Gulamov² and Sa’dulla Shodiyev²

¹Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, 100000 Uzbekistan, Tashkent, 39 Kary-Niyazova St.
²Karshi State University, Uzbekistan, Karshi region, 17 Kuchabag St.

Abstract. Dynamic stability and vibrations of thin-walled structures, taking into account the heredity properties of the material are considered in the paper. Mathematical models were constructed in a two-dimensional statement, using the Karman theory of plane plate strains and A.A. Ilyushin aerodynamic theory. When realizing the physico-mechanical properties of the material of the object, the systems of integro-differential equations (IDE) in partial derivatives with the corresponding initial and boundary conditions are taken as mathematical models of the problems under consideration. The obtained nonlinear partial IDEs using the Bubnov-Galerkin method under considered boundary conditions are reduced to solving systems of nonlinear ordinary IDEs with constant or variable coefficients with respect to the time function. The integration of equations obtained using the polynomial approximation of the deflections was carried out by a numerical method based on the use of quadrature formulas. Based on this method, an algorithm for the numerical solution of the problem was developed suitable for all viscoelastic and elastic elements of thin-walled structures of plate type.

1. Introduction

The use of new composite materials in engineering practice, the design and creation of stable, lightweight and reliable structures require the improvement and development of mathematical models of deformable bodies and their calculation, taking into account the real properties of composite materials. As shown by numerous experimental and fundamental studies, most of composite materials have pronounced heredity properties [1-5, 12-20] and must be inhomogeneous [6].

The development and application of composite materials is currently one of the priority areas of scientific and technological progress. The use of composite materials in engineering structures allows not only to significantly improve their operational characteristics, but also in some cases to create structures that are not feasible within the framework of traditional materials. At the same time, the procedure of calculating and designing the structures built of composite materials that require consideration of their real properties is quite complicated. Therefore, the development of effective methods and algorithms for solving nonlinear problems on the stability of thin-walled structures made of composite materials is by far the most urgent problem.

As is well known, an account for heredity effects of deformable materials is of great theoretical and applied value, it guarantees the approximation of the theory of heredity to actual conditions. Therefore, the problems of heredity theory attract a lot of attention of researchers. There is a significant number of publications devoted to solving the problems of calculating thin-walled structures taking into account the heredity properties [7-10, 15].
In [1-3] V.D. Potapov in his study of the stability of integro-differential equations in aerodynamics problems used the Lyapunov exponential method [11].

Nonlinear dynamics problems based on the Kirchhoff-Love hypothesis taking into account the aerodynamic load were studied in [14–16, 21, 22–27].

The present work is devoted to solving the oscillatory processes of viscoelastic thin-walled structures taking into account the aerodynamic load.

2. Statement of the problem

Consider the nonlinear problem of a flutter of viscoelastic plate. Let a plate with sides \(a \) and \(b \) and thickness \(h \) hinge-supported along the entire contour, be flowed around on one side with a supersonic gas flow. Under the assumption adopted in [14, 15], the equation of a viscoelastic plate vibration has the form:

\[
\frac{D}{h} \left(1 - R^2 \right) \dddot{W} = L(W, \Phi) - \rho \dddot{W} - B \frac{\partial W}{\partial t} + BV \frac{\partial W}{\partial x} - B_1V^2 \left(\frac{\partial W}{\partial x} \right)^2,
\]

\[
\frac{1}{E} \dddot{\Phi} = -\left(1 - R^2 \right)^{1/2} L(W, W).
\]

The expression approximating the deflection is chosen as follows

\[
W(x, y, t) = \sum_{n=1}^{N} \sum_{m=1}^{L} W_{nm} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}.
\]

Substituting (2) into the right-hand side of the second equation (1), we obtain a linear equation with respect to the force function \(\Phi(x, y, t) \) (time is considered as a parameter in this case). Its general solution, as usual, contains arbitrary functions, using which it is possible to satisfy the boundary conditions for the function \(\Phi(x, y, t) \). However, the operating conditions of the shell together with the reinforcing elements are usually so complex that the exact formulation of the boundary conditions for \(\Phi(x, y, t) \) is devoid of practical meaning. It is enough to formulate these conditions “on average”, characterizing the shell interaction with surrounding structure by some averaged parameters.

The force function is represented approximately in the form:

\[
\Phi(x, y, t) = E \sum_{i,j=1}^{N} \sum_{k=1}^{L} (1 - R^2) W_{ik} W_{jk} \ast
\]

\[
\ast \left[C_{ij} \ast \cos \frac{(i + j) \pi x}{a} \cos \frac{(r + s) \pi y}{b} + A_{ij} \cos \frac{(i + j) \pi x}{a} \cos \frac{(r - s) \pi y}{b} + D_{ij} \cos \frac{(i - j) \pi x}{a} \cos \frac{(r + s) \pi y}{b} + B_{ij} \cos \frac{(i - j) \pi x}{a} \cos \frac{(r - s) \pi y}{b} \right],
\]

where

\[
C_{ij} = \frac{\lambda^2 \pi r (ir - js)}{4((i + j)^2 + \lambda^2 (r - s)^2)} , \quad B_{ij} = \frac{\lambda^2 \pi r (ir - js)}{4((i - j)^2 + \lambda^2 (r - s)^2)},
\]

\[
A_{ij} = \frac{\lambda^2 \pi r (ir + js)}{4((i + j)^2 + \lambda^2 (r - s)^2)} , \quad D_{ij} = \frac{\lambda^2 \pi r (ir + js)}{4((i - j)^2 + \lambda^2 (r - s)^2)}, \quad \lambda = \frac{a}{b},
\]

Satisfying the conditions:

\[
\left. \frac{\partial^2 \Phi}{\partial y^2} \right|_{y=0} dy = \left. \frac{\partial^2 \Phi}{\partial y^2} \right|_{y=L} dy = 0.
\]
Expressions (2) and (3) are substituted into the first expression of equations (1) and, performing the Bubnov-Galerkin procedure for determining \(W_{kl} \), the following system of nonlinear IDEs is obtained:

\[
\frac{Eh^2\pi^2}{b^4}\left\{\frac{\pi^2}{12(1-\mu^2)}\left[k^2/\lambda^2+f^2\right]^{\frac{2}{3}}\right\}\left(1-R^2\right)W_{kl} = -\frac{Eh^2\pi^2}{b^4}\sum_{a,i,j,l}^N \sum_{m,r,s=1}^1 a_{kmnirj} W_{mn} \left(1-R^2\right)W_{ul}W_{pl} - \rho \frac{W_{kl}}{h} \frac{BV}{ha} - \frac{2BV}{ha} \sum_{n=1}^N \gamma_{kn} W_{el} - \frac{B_i V^2}{ha} \sum_{n=1}^N \sum_{m,r,s=1}^1 \Gamma_{kmnirj} W_{mn} W_{pl},
\]

where

\[
\gamma_{kn} = n\left(\gamma_{n+k} - \gamma_{n-k}\right) ; \quad \Gamma_{knm} = n_i \left(\gamma_{n+i+k} - \gamma_{n+i-k} + \gamma_{n-i+k} - \gamma_{n-i-k}\right).
\]

\[
\alpha_s = \begin{cases} 1, & \text{if } k\text{-odd;} \\ 0, & \text{if } k = 0 \text{ if } k\text{-even;} \end{cases} \quad \gamma_s = \begin{cases} \alpha_k, & \text{if } k\text{-odd;} \\ 0, & \text{if } k = 0 \text{ if } k\text{-even;} \end{cases}
\]

\[
a_{kmnirj} = -\frac{\pi^2}{4\lambda^2}\left[n^2\left[(r+s)^2 C_{irjs} \delta_{1nkj} \delta_{1mlrs} + (r-s)^2 A_{irjs} \delta_{1nkj} \delta_{2mlrs} + (r+s)^2 \delta_{1nkj} \delta_{1mlrs} + (r-s)^2 \delta_{2nkj} \delta_{1mlrs} + \right] + m^2\left[(i+j)^2 C_{irjs} \delta_{1nkj} \delta_{1mlrs} + (i+j)^2 A_{irjs} \delta_{1nkj} \delta_{2mlrs} + (i-j)^2 D_{irjs} \delta_{2nkj} \delta_{1mlrs} + (i-j)^2 B_{irjs} \delta_{2nkj} \delta_{2mlrs} + \right] - 2nm\left[(i+j)(r+s) C_{irjs} \delta_{3nkj} \delta_{2mlrs} + (i+j)(r-s) A_{irjs} \delta_{3nkj} \delta_{4mlrs} + \right] + (i-j)(r+s) D_{irjs} \delta_{3nkj} \delta_{3mlrs} + \right]\right];
\]

\[
\delta_{1nkj} = \delta_{n-k+i-j} + \delta_{n-k+i+j} - \delta_{n+k-i-j} - \delta_{n+k+i+j}; \quad \delta_{2nkj} = \delta_{n-k+i-j} + \delta_{n-k+i+j} - \delta_{n+k-i-j} - \delta_{n+k+i+j}; \quad \delta_{3nkj} = \delta_{n-k+i-j} + \delta_{n+k-i-j} - \delta_{n-k+i+j} - \delta_{n+k+i+j}; \quad \delta_{4nkj} = \delta_{n-k+i-j} - \delta_{n+k-i-j} + \delta_{n-k+i+j} - \delta_{n+k+i+j}.
\]

After applying the Bubnov-Galerkin method, the problem under consideration is reduced to solving a system of nonlinear IDEs (1.33). Introducing into IDE (5) the following dimensionless quantities

\[
\frac{W}{h}, \quad \frac{V_{a,t}}{a}, \quad \frac{a}{V_{\infty}} R(t),
\]

while maintaining the previous notation, we have
\[\ddot{W}_{kl} + \lambda^2 \Omega^2 \left[\left(\frac{k}{\lambda} \right)^2 + I^2 \right] (1 - R^*) W_{kl} + \frac{12 \lambda^4 (1 - \mu^2) \Omega^2}{\pi^2} \times \]
\[\times \sum_{n,l,j=1}^{\infty} \sum_{m,r,s=1}^{\infty} a_{klmnirs} W_{nm} (1 - R^*) W_{ir} W_{js} + M \dot{W}_{kl} -
- 2M M^* \sum_{n=1}^{\infty} \gamma_{kl} W_{nl} + M_1 M^2 \sum_{m,i}^{\infty} \sum_{m,r}^{\infty} \Gamma_{klmnir} W_{nm} W_{ir} = 0, \]

where \(\Omega^2 = \frac{\pi^4}{12(1 - \mu^2)} M_2^2 \left(\frac{h}{a} \right)^2 \), \(M = \infty M_p^2 \left(\frac{a}{h} \right) \), and \(M_1 = \infty \left(\alpha + 1 \right) \frac{M_2^2}{4} \);
\(M^* = \frac{V}{V_\infty} \) is the Mach number; \(M_E = \sqrt{\frac{E}{\rho V_\infty^2}} \); \(M_p = \sqrt{\frac{P_\infty}{\rho V_\infty^2}} \); \(\lambda = \frac{a}{b} \); \(\gamma_k \) and \(\gamma_{kl} \) are the dimensionless coefficients [25-27].

3. Solution method
Integration of system (6) was carried out by the numerical method proposed in [14 - 17]. To do this, it is written in integral form, then the formula for numerical integration with the Koltunov - Rzhanitsyn kernel \(R(t) = A \cdot \exp(-\beta t) \cdot t^{\alpha - 1} \) takes the form:

\[W_{kl}(0) = W_{0kl}, \quad W_{kl}(0) = W_{0kl}, \quad k = \overline{1,N}; \quad I = \overline{1,L}, \]

where
\[W_{kl}(0) = \frac{1}{1 + \alpha M} \left(W_{0kl} + \left(W_{0kl} + MW_{0ld} \right) I_i - \sum_{j=0}^{L-1} A_j \left(M W_{jkl} - \left(t_j - t_i \right) \right) \right) \]
\[- \left(t_i - t_j \right) \sum_{n=1}^{N} \gamma_{kn} W_{nml} - \lambda^4 \Omega^2 \left[\left(\frac{k}{\lambda} \right)^2 + I^2 \right] \left(W_{jkl} - \frac{A}{\alpha} \right) \times \]
\[\times \sum_{s=0}^{L} B_s e^{-\beta s} W_{jkl} - \frac{12 \lambda^4 (1 - \mu^2) \Omega^2}{\pi^2} \sum_{n,l,j=1}^{\infty} \sum_{m,r}^{\infty} a_{klmnirs} W_{nm} \times \]
\[\frac{1}{\alpha} \sum_{x=0}^{L} B_x e^{-\beta x} W_{jkl} - \frac{A}{\alpha} \sum_{x=0}^{L} B_x e^{-\beta x} W_{jkl} \right) \]
\[- M_1 M^2 \sum_{n,k,l=1}^{\infty} \sum_{i,j=1}^{\infty} \Gamma_{klmnir} W_{jkl} W_{jir} \]

\(i = 1, 2, \ldots; \quad n = \overline{1,N}; \quad m = \overline{1,L} \); where \(A_j, B_s \) are the numerical coefficients that are independent of the choice of integrands and take different values depending on the quadrature formulas used.

4. Discussion of results
The calculation results are presented in the table. Based on formula (7), the critical flutter velocity of viscoelastic plates was determined.
The table shows the critical values of flutter velocity depending on the physicomechanical and geometrical characteristics of a plate.

As a criterion that determines the critical velocity of flutter, a condition was accepted that at these velocities the vibration amplitude changes according to a harmonic law. At velocities higher than the critical ones, there occurs an oscillatory motion with rapidly increasing amplitudes, which can lead to structure destruction. In the case \(V < V_{cr} \), the oscillation amplitude damps.

As seen from the analysis of results given in the table, the values of the coefficient \(V_{cr} \) turn out to be 854.15 m/s in elastic case (A = 0) and 753 m/s in viscoelastic case (A = 0.1). Thus, the viscoelastic properties of the material lead to a decrease in flutter velocity.

Table 1. Dependence of critical flow rate on physico-mechanical and geometrical parameters of the plate

A	\(\alpha \)	\(\beta \)	\(a/h \)	\(M_E \)	\(M_p \)	\(M_{cr} \)	\(V_{cr} \) (m/s)
0.001	0.25	0.05	400	14.893	0.0106	2.512	854.15
0.04	0.25	0.01	400	14.893	0.0106	2.241	762
0.1	0.5	0.05	400	14.893	0.0106	2.157	753
0.1	0.25	0.1	400	14.893	0.0106	2.157	746.2
0.1	0.25	0.05	400	14.893	0.0106	2.157	740
0.05	0.25	0.05	350	14.893	0.0106	1.544	525
			450			1.279	
			480			1.279	
			753			3.224	1130

Note a significant increase in \(V_{cr} \) for the values of parameter \(\alpha \). For \(\alpha = 0.1; 0.75 \) the critical flutter velocity determined by formula (7) is 624 m/s and 863.5 m/s, respectively, and differs from each other by 38.4%. In calculations, the following constant values are accepted: \(\mu = 0.32; \ P_\infty =1.014 \text{ kg/cm}^2 \).

The influence of parameter \(a/h \) on plate behavior was investigated. At \(a/h = 350 \), \(a/h = 450 \), and \(a/h = 480 \) the critical flutter velocity is 1130 m/s; 525 m/s and 435 m/s, respectively. A slight decrease in the plate thickness \(h = a/450 \) leads to a sharp change in oscillation pattern: we have a flutter motion with rapidly increasing amplitudes at a velocity of \(V = 550 \text{ m/s} \).

Changes in dimensionless rigidity parameter and pressure parameter play an important role in behavior of a thin-walled structure with heredity material properties. Studies show that an increase in these parameters leads to an intensive increase in critical velocity.

5. Conclusion

In conclusion, note that the influence of the viscosity parameters \(A \) and the singularity parameter \(\alpha \) plays a dominant role not only on viscoelastic systems vibrations, but also on the values of critical flutter velocity, when compared to rheological parameters \(\beta \) of the heredity kernel. When studying nonlinear problems, a number of new effects were obtained: an account for heredity properties of the material of thin-walled structures leads to a decrease in critical flow rate; an account for geometrical nonlinearity leads to an increase in critical velocity.
References
[1] Potapov V D 2003 Stability of elastic and viscoelastic plates in a gas flow taking into account shear strains under stochastic excitation *Acta Mechanica* **166** 1-12
[2] Potapov V D 2004 Stability of elastic and viscoelastic plates in a gas flow taking into account shear strains *Journal of Sound and Vibration*; **276** 615-626
[3] Potapov V D 1995 Stability of viscoelastic plate in supersonic flow under random loading *AIAA Journal* **33**(4) 712–715
[4] Potapov V D and Bonde P A 1996 Stochastic flutter of elastic flutter of elastic and viscoelastic plates in a supersonic flow *European Journal of Mechanics A/Solids* **15**(5) 883-900
[5] Koltunov M A Koltunov A A 1966 On the choice of kernels in solving problems considering the creep and relaxation *Polymer Mechanics* **4** 483-488
[6] Ambardzumyan S A 1987 *Theory of anisotropic plates* (Moscow: Nauka) p 357
[7] Beldica C E, Hilton H H and Kubair D 2001 Viscoelastic panel flutter – Stability, probabilities of failure and survival times *Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference* 3423-3433
[8] Bismarck-Nasr M N, Bones C A 2000 Damping effects in nonlinear panel flutter *AIAA Journal* **38**(4) 711-713
[9] Matyash V I 1971 Flutter of an elastic-viscous plate *Polymer Mechanics* **6** 1077-1083
[10] Larionov G S 1974 Nonlinear flutter of an elastic viscous plate *Solid Mechanics* **4** 95-100
[11] Filatov A N 1971 Averaging methods in differential and integro-differential equations (Tashkent: Fan)
[12] Mirsaidov M 2012 Using linear heredity theory of viscoelasticity by dynamic calculation of earth structures *Bases, Foundations and Soil Mechanics* **6** 30-34
[13] Mirsaidov M, Sultanov T 2013 Use of linear heredity theory of viscoelasticity for dynamic analysis of earth structures *Soil Mechanics & Foundation Engineering* **49**(6) 250-256 DOI: 10.1007/s11204-013-9198-8
[14] Badalov F B, Khudayarov B A, Abdukarimov A 2007 Effect of the heredity kernel on the solution of linear and nonlinear dynamic problems of heredity deformable systems *Journal of Machinery Manufacture and Reliability* **36** 328-335 https://doi.org/10.3103/S1052618807040048
[15] Badalov F B 1987 *Methods for Solving Integral and Integro-Differential Equations of the Heredity Theory of Viscoelasticity* (Tashkent: Mechnat).
[16] Badalov F B, Eshmatov Kh, Yusupov M 1987 Some Methods of Solution of the Systems of Integro-Differential Equations in Problems of Viscoelasticity *Applied Mathematics and Mechanics* **51**(5) 867-871
[17] Khudayarov B A, Turaev F Zh 2019 Mathematical Simulation of Nonlinear Oscillations of Viscoelastic Pipelines Conveying Fluid *Applied Mathematical Modelling* **66** 662-679 https://doi.org/10.1016/j.apm.2018.10.008.
[18] Khudayarov B A, Komilova Kh M, Turaev F Zh 2020 Dynamic analysis of the suspended composite pipelines conveying pulsating fluid *Journal of Natural Gas Science and Engineering* **75** 103148 https://doi.org/10.1016/j.jngse.2020.103148
[19] Khudayarov B A, Turaev F Zh 2019 Nonlinear vibrations of fluid transporting pipelines on a viscoelastic foundation *Magazine of Civil Engineering* **86**(2) 30-45 DOI: 10.18720/MCE.86.4.
[20] Khudayarov B A, Komilova Kh M, Turaev F Zh 2019 The effect of two-parameter Pasternak foundations on the oscillations of composite pipelines conveying gas-containing fluids *International Journal of Pressure Vessels and Piping* **176** 103946 https://doi.org/10.1016/j.ijpvp.2019.103946
[21] Khudayarov B A, Turaev F Zh 2019 Nonlinear supersonic flutter for the viscoelastic orthotropic cylindrical shells in supersonic flow *Aerospace Science and Technology* **84** 120-130 doi: 10.1016/j.ast.2018.08.044
[22] Khudayarov B A 2019 Modeling of supersonic nonlinear flutter of plates on a visco-elastic foundation Advances in aircraft and spacecraft science 6(3) 257-272 https://doi.org/10.12989/aas.2019.6.3.257

[23] Khudayarov B, Turaev F and Kucharov O 2019 Computer simulation of oscillatory processes of viscoelastic elements of thin-walled structures in a gas flow E3S Web of Conferences 97 06008 https://doi.org/10.1051/e3sconf/20199706008

[24] Khudayarov B A, Ruzmetov K, Turaev F, Vakhobov V, Khidoyatova M, Mirzaev S S and Abdikarimov R 2020 Numerical modeling of nonlinear vibrations of viscoelastic shallow shells Engineering Solid Mechanics 8(3) 199-204

[25] Khudayarov B A 2005 Numerical Analysis of the Nonlinear Oscillation of Viscoelastic Plates International Applied Mechanics 41 538–542

[26] Khudayarov B A, Bandurin N G 2007 Numerical Investigation of Nonlinear Vibrations of Viscoelastic Plates and Cylindrical Panels in a Gas Flow Journal of Applied Mechanics and Technical Physics 48 279-284

[27] Khudayarov B A, Bandurin N G 2005 Nonlinear Oscillation of Viscoelastic Orthotropic Cylindrical Panels Mathematical Models and Computer Simulations 17 79-86