Targeting EZH2 Enhances Antigen Presentation, Antitumor Immunity, and Circumvents Anti-PD-1 Resistance in Head and Neck Cancer

Liye Zhou1, Tenny Mudianto1, Xiaojing Ma1,2, Rachel Riley1, and Ravindra Uppaluri1,3

ABSTRACT

Purpose: Anti–programmed death-1 (PD-1) receptor–based therapeutics improve survival in patients with recurrent head and neck squamous cell carcinoma (HNSCC), but many do not benefit due to a low response rate. Herein, we identified EZH2 as a therapeutic target that enhanced tumor cell antigen presentation and subsequently sensitized resistant tumors to anti–PD-1 therapy.

Experimental Design: EZH2 regulation of antigen presentation was defined using EZH2 inhibitors (GSK126 and EPZ6438) in human and mouse HNSCC cell lines. Mechanistic dissection of EZH2 in regulation of antigen presentation was investigated using flow cytometry, qRT-PCR, ELISA, and chromatin-immunoprecipitation assays. EZH2-deficient cell lines were generated using CRISPR-CAS9. GSK126 and anti–PD-1–blocking antibody were used in testing combinatorial therapy in vivo.

Introduction

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide (1). Patients with advanced human papillomavirus (HPV)-negative HNSCC have poor outcomes. Programmed cell death protein-1 (PD-1) checkpoint blockade with nivolumab or pembrolizumab has shown promising clinical outcomes in patients with poor prognosis recurrent/metastatic HNSCC (2–6). However, the majority do not benefit with responses limited to 15% to 20% of patients. This resistance to immunotherapy is unexpected given the high mutational burden of cisplatin-resistant tumors and the presence of immune in HNSCC, dysfunctional HLA class I antigen processing and presentation may improve the efficacy of anti–PD-1 therapy in HNSCC?

Clinical responses to mAbs blocking PD-1/PD-L1 signaling are limited to 15% to 20% of patients with poor prognosis recurrent/metastatic HNSCC (2–6). These findings lead to the question: can combination therapies directed at nonoverlapping pathways improve outcomes of anti–PD-1 therapy in HNSCC?

Results: EZH2 expression was negatively correlated with antigen-processing machinery pathway components in HNSCC data sets in The Cancer Genome Atlas. EZH2 inhibition resulted in significant upregulation of MHC class I expression in human and mouse human papillomavirus–negative HNSCC lines in vitro and in mouse models in vivo. Enhanced antigen presentation on the tumor cells by EZH2 inhibitors or CRISPR–mediated EZH2 deficiency increased antigen-specific CD8+ T-cell proliferation, IFNγ production, and tumor cell cytotoxicity. Mechanistically, EZH2 inhibition reduced the histone H3K27me3 modification on the β2-microglobulin promoter. Finally, in an anti–PD-1–resistant model of HNSCC, tumor growth was suppressed with combination therapy.

Conclusions: Our results demonstrated that targeting EZH2 enhanced antigen presentation and was able to circumvent anti–PD-1 resistance. Thus, combining EZH2 targeting with anti–PD-1 may increase therapeutic susceptibility in HNSCC.

1Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. 2School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China. 3Department of Surgery/Otolaryngology, Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts.

Note: Supplementary data for this article are available at Clinical Cancer Research Online (http://clincancerres.aacrjournals.org/).

Corresponding Author: Ravindra Uppaluri, Dana-Farber/Brigham and Women’s Cancer Center, 450 Brookline Avenue, Dana 2150, Boston, MA 02115. Phone: 617-632-3091; Fax: 617-632-5786; E-mail: ravindra_uppaluri@dfci.harvard.edu

Clin Cancer Res 2020;26:290–300
doi: 10.1158/1078-0432.CCR-19-1351
©2019 American Association for Cancer Research.

AACR Journals.org | 290
Translational Relevance

Anti-PD-1 checkpoint inhibitor–based immunotherapies have shown clinical benefit in patients with recurrent/metastatic head and neck squamous cell carcinoma (HNSCC). However, new therapeutic strategies are needed to improve the low response rate. Herein, we identified EZH2 as a druggable target to enhance antigen presentation in human papillomavirus–negative HNSCC. Targeting EZH2 sensitized tumor cells to T-cell–mediated killing, increased antigen–specific CD8+ T-cell proliferation, and IFNγ production in vitro. Mechanistic studies revealed that EZH2 modulated the histone H3K27me3 on the B2M promoter region. In an anti–PD-1–resistant model of HNSCC, combination EZH2 inhibition and anti–PD-1 suppressed tumor progression. Our results highlight a combinatorial therapeutic strategy of EZH2 inhibition and anti–PD-1 to enhance immunotherapeutic approaches in patients with HNSCC.

Sommer and colleagues reported the role of EZH2 in regulating a broad range of pathways impacting immunogenicity in melanoma (24). In addition, EZH2 is also involved in natural killer (NK) cell–mediated tumor eradication in hepatocellular carcinoma by silencing the expression of NK group 2D ligands (25). Very recently, diffuse large B-cell lymphoma showed a strong correlation between EZH2 mutation enrichment and MHC class I and class II expression deficiency. EZH2 inhibition relieved suppression of NLRC5 and CIITA expression, leading to increased expression but only in an EZH2-mutated background (26). However, in HNSCC, the specific role of EZH2 in modulating MHC class I antigen presentation and T-cell–mediated antitumor immunity has not been investigated.

In this study, we hypothesized that inhibiting EZH2 function may improve the outcome of anti–PD-1 therapy by enhancing antigen presentation in HPV-negative HNSCC. Using both pharmacologic inhibition and CRISPR-Cas9–mediated genome editing, we investigated the role of EZH2 in human HNSCC HLA class I expression and also its role in antigen presentation and T-cell–mediated killing in preclinical models. Extending these data to a novel anti–PD-1–therapy-resistant preclinical model, we found that combinatorial therapy of GSK126, an EZH2 inhibitor, and anti–PD-1 showed significant tumor growth suppression compared with single-agent therapy. Together, these data identify EZH2 as a potential therapeutic target in promoting antigen presentation and antitumor immunity in HNSCC.

Materials and Methods

Cell lines and mice

Human HNSCC lines CAL-33, CAL-27, SCC-9, and SCC-25 were obtained from ATCC and maintained in the DMEM/Nutrient Mixture F-12 (DMEM/F-12) + GlutaMAX media supplemented with 10% heat-inactivated FBS and 100 U/ml penicillin–streptomycin. Mouse oral squamous cell carcinoma models, MOC1-esc1 and MOC2, were maintained in IMDM/Hams-F12 (2:1) supplemented with 5% heat-inactivated FBS, 100 U/ml penicillin–streptomycin, 5 ng/ml EGF (Millipore), 400 ng/ml hydrocortisone (Sigma Aldrich), and 5 μg/ml insulin (Sigma Aldrich). Cell lines were routinely tested for Mycoplasma and underwent short tandem repeat cell line authentication at the DFCI within 6 months of use. MOC1-esc1, an anti–PD-1–resistant line, is isogenic to the previously described MOC1 model (27). Derivation and further characterization will be described elsewhere.

(E. Zhou and colleagues; in preparation). C57BL/6 mice (6-week-old, females) were from Taconic and OT-1 mice were purchased from Jackson Laboratory [C57BL/6-Tg (TcraTcrb)1100Mjb].

Reagents and antibodies

EPZ6438 and GSK126 were purchased from Selleckchem (S7128) and Chemietek (CT-GSK126), respectively. Recombinant human and mouse IFNγ were purchased from Peprotech (AF-300-02 and AF-315-05). OVA (257-264) SIINFEKL peptide (AS-6-193-) was purchased from AnaSpec. Primary antibodies against mouse EZH2 (4905; Cell Signaling Technology), β-actin (4967; Cell Signaling Technology), H3K27me3 (9733; Cell Signaling Technology), and Histone H3 (ab1791; Abcam) were used for Western blot analysis. Secondary antibody (IRDye 800CW Goat anti-Rabbit IgG (H + L)) was purchased from LI-COR. EZH2 antibody (39901; Active Motif), H3K27me3 antibody (39055; Active Motif), and Rabbit IgG (15006; Sigma Aldrich) were used in the chromatin immunoprecipitation (ChIP) assay. For in vivo mouse studies, we used a rat antimonoclonal anti–PD-1 (RMP1-14, BE0146) and a rat IgG2a isotype control (2A3, BE0089) from BioXCell.

Flow cytometry

Fluorophore conjugated antibodies specific for human HLA-A, B, C (W6/32, 311403), mouse CD45.2 (104, 109814), mouse H-2Kb (AF6-88.5, 116518), mouse CD-P1 (10F,9G2, 124312), mouse OVA-Kb (2b- D1.16, 141603), and 7-AAD Viability Staining Solution (420403) from BioLegend were used in flow cytometry. Rat antimonoclonal CD16/CD32 (2.4G2, 553142) was purchased from BD Biosciences. Mouse tumors were dissociated to single-cell suspension with Tumor Dissection Kit (130-096-730) and gentleMACS Dissociator (130-093-235) from Miltenyi Biotec. All flow cytometry analyses were performed on a MACSQuant Analyzer 10 (Miltenyi) and interpreted using FlowJo10 (TreeStar).

OT-1 T-cell isolation, expansion, and coculture killing assay

CD8+ T cells were isolated from OT-1 mouse splenocytes using CD8α+ T-cell Isolation Kit (130-104-075; Miltenyi Biotec). Isolated T cells were cultured in RPMI1640, supplemented with 10% heat-inactivated FBS, 20 mmol/L HEPES (15630080; Gibco), 1 mmol/L sodium pyruvate (11360070; Gibco), 0.05 mmol/L 2-mercaptoethanol, 2 mmol/L l-glutamine (G7513; Sigma), and 100 U/ml penicillin–streptomycin. For activation, Dynabeads Mouse T-Activator CD3/CD28 (11456D; Thermo Fisher Scientific) were added to isolated T cells at a bead-to-cell ratio of 1:2. Recombinant mouse IL2 (402-ML-020; R&D Systems) was added to a final concentration of 20 ng/mL on day 1 after isolation. Medium supplemented with 20 ng/mL IL2 was changed every 2 days. T cells were split every 2 days to keep an approximate cell density of 106 cells/mL. Activated OT-1 T cells were used for coculture killing assay on day 6 to 8 after isolation. For coculture killing assays, mouse IFNγ (20 ng/mL) prestimulated tumor cells were pulsed with 0.02 mmol/L of SIINFEKL peptide for 2 hours at 37°C. Activated OT-1 cells were counted and plated with washed tumor cells at indicated E:T ratios. After 24 hours of coculture, T cells were gently washed off using PBS. Surviving cells were harvested and stained with mouse CD45.2 antibodies to gate out residual T cells. Surviving tumor cells were counted using a MACSQuant Analyzer 10 (Miltenyi).

Immunoblotting

For the assessment of protein expression levels, RIPA buffer supplemented with protease inhibitor cocktail (11886153001; Sigma Aldrich) was used to homogenize cells. Fifty micrograms of total
protein was separated on 4% to 12% SDS-PAGE gels (WG1403A; Invitrogen). Antibodies specific for mouse EZH2 (1:1,000), β-actin (1:1,000), H3K27me3 (1:1,000), and total H3 (1:2,000) were used for probing specific proteins. Secondary antibodies were then used to visualize specific proteins in a Li-Cor Odyssey imaging system.

Cell viability assay
Human or mouse cells (1,500/well) were plated in 96-well plates (3903; Corning) 1 day before starting drug treatment. Cells were treated with increasing concentrations of GSK126, EPZ6438, or vehicle (DMSO) for 72 hours. Cell viability was analyzed using CellTitre Glo-Luminescent Cell Viability Assay (G7572; Promega). Luminescent signal was measured with an Infinite M200 Pro Multimode microplate reader (Tecan Life Science).

qRT-PCR
Total RNA was extracted from the cultured cells using RNaseasy Mini Kit (74106; Qiagen). One microgram of extracted RNA was used for cDNA synthesis using High-Capacity cDNA Reverse Transcription Kit (4368814; Thermo Fisher Scientific) according to the manufacturer’s instructions. TaqMan real-time PCR assays specific for mouse B2m (Mm00437762_m1), H2-K1 (Mm01612247_mH), Cxcl10 (Mm00445235_m1), Gapdh (Mm99999915_g1), human B2M (Hs00187842_m1), HLA-A (Hs01058806_g1), HLA-B (Hs00818803_g1), HLA-C (Hs00740298_g1), CXCL10 (Hs00171042_m1), and GAPDH (Hs02786624_g1) were purchased from Thermo Fisher Scientific and assays were performed on an ABI Step One Plus for quantifying gene expression levels. Data were analyzed using ΔΔCt method and normalized to GAPDH.

ChIP assay
ChIP assay was performed according to an Abcam protocol (https://www.abcam.com/protocols/cross-linking-chromatin-immuno-noprecipitation-x-chip-protocol). Briefly, tumor cells (10^7) were cross-linked with 1% formaldehyde and lysed with SDS lysis buffer. The chromatin extract was sonicated on a Covaris Ultrasonicator. For each precipitation, 5 μg of antibody was incubated with Dynabead Protein A/G (10001D and 10003D; Invitrogen) for 6 hours, and each precipitation, 5 μg of antibody was incubated with Dynabead Protein A/G (10001D and 10003D; Invitrogen) for 6 hours, and then subjected to Bacterialin (4 μg/mL) selection for 4 days. Pooled MOCI-escl1-cas9 cells were single-cell sorted in 96-well cell culture plate to generate single clones. Cas9 editing efficiency of each clone was tested by assessing the knockout efficiency of B2M single-guide RNA (sgRNA)-expressing lentivirus-transduced cells. H2-K^b class I cell surface expression levels were determined by flow cytometry as a readout of Cas9 efficiency (not shown). Clones #2 and #3 with high editing efficiency were transduced with lentivirus-expressing specific sgRNAs targeting EZH2 or ROSA26, respectively. The sequences of specific sgRNAs are listed below.

sgRNA sequence	Clones
EZH2-g1-oligo1: CACCGTATCGTATGAAAGTACATG	#2, #3
Analysis of 522 HNSCC HPV-negative tumors from TCGA (28) showed a significant inverse correlation between the EZH2 expression levels and major MHC class I antigen presentation molecules, including B2M, HLA-A, HLA-B, HLA-C, and HLA-E (Fig. 1), highlighting a potential regulatory function of EZH2 on antigen presentation in HNSCC. Interestingly, this negative correlation was also seen in 483 HPV-negative lung squamous cell carcinomas (Supplementary Fig. S1).

EZH2 inhibition promotes antigen presentation and Th1-type chemokine expression in cell line models of human HNSCC

To test the hypothesis that targeting EZH2 could promote antigen presentation in HNSCC, we used two highly selective EZH2 inhibitors, GSK126 and EPZ6438 (22, 29, 30). Human HNSCC cell lines (CAL27, CAL33, SCC25, and SCC9) were treated with increasing concentrations of GSK126 or EPZ6438 to test the impact of EZH2 inhibition on cell viability. On the basis of the various sensitivities of these cell lines to EZH2 inhibitors, we selected the 10 μmol/L concentration for both GSK126 and EPZ6438, at which neither inhibitor showed significant cell growth inhibition (Fig. 2A). Although GSK126 increased IFNγ-induced HLA expression in three of four lines tested, EPZ6438 increased both basal and IFNγ-induced HLA cell surface expression levels compared with DMSO control in all cell lines (Fig. 2B). Given the known function of EZH2 as a methyltransferase that silences target genes, we quantified the mRNA expression changes of MHC class I antigen presentation genes, including B2M, HLA-A, HLA-B, and HLA-C after treatment with EZH2 inhibitors. Despite different sensitivities to EZH2 inhibition, major class I antigen presentation genes were upregulated by at least one EZH2 inhibitor under either basal or exogenous IFNγ-stimulated conditions or both in all tested cell lines (Fig. 2C; Supplementary Fig. S2). Therefore, EZH2 regulated mRNA levels of antigen presentation genes. Consistent with findings in ovarian cancer (20), we also observed a significant induction of CXCL10 expression in EZH2 inhibitor-treated cells compared with DMSO control that was dramatically enhanced in combination with IFNγ (Fig. 2C). Therefore, EZH2 inhibition upregulated MHC class I expression and CXCL10 expression in human HNSCC lines.

EZH2 inhibition upregulated MHC class I antigen presentation in anti-PD-1-resistant mouse HNSCC cells

Aiming at reversing immunotherapy resistance in HNSCC, we tested the effect EZH2 inhibition in MOC1-esc1, a syngeneic anti-PD-1-resistant mouse model. When assayed for impact on cell viability assay, significant cytotoxicity in MOC1-esc1 was not seen with either EZH2 inhibitors at the 10 μmol/L dose (Fig. 3A). We then used GSK126 or EPZ6438 to determine the effect of EZH2 inhibition
with increasing concentrations of GSK126 or EPZ6438 (1 nmol/L)
EZH2 inhibition enhances antigen presentation and Th1-type chemokine expression levels in human HNSCC lines.

Zhou et al.

Data are shown as mean ± SD.

on antigen presentation in MOC1-esc1. Consistent with the data in human HNSCC, either treatment significantly upregulated MHC class I cell surface protein levels in combination with IFNγ (Fig. 3B and C). To confirm that the role of EZH2 in antigen presentation modulation was not model specific, we performed similar experiments using MOC2, another immunotherapy-resistant mouse HNSCC model. Consistent with the results in MOC1-esc1, EZH2 inhibitor–treated MOC2 cells showed enhanced MHC class I expression (Fig. 3C). To assess whether this increased expression also resulted in increased antigen presentation, we assessed levels of MHC class I bound SIINFEKL. EZH2 inhibition also increased the presentation of SIINFEKL peptide by H2-Kb on the MOC1-esc1 and MOC2 cell surface confirming the functional upregulation of antigen presentation (Fig. 3D). Together, these data showed that EZH2 inhibition increased antigen presentation in anti–PD-1–resistant HNSCC cells.

Pharmacologic inhibition and genetic ablation of EZH2 in tumor cells enhance T-cell–mediated killing

Next, we asked whether the EZH2 inhibition based enhanced MHC class I antigen presentation sensitized tumor cells to T-cell–mediated killing. Note that, in addition to pharmacologic targeting and to further study the role of EZH2 in T-cell/tumor cell interactions, we generated CRISPR-CAS9 genetically deleted EZH2 MOC1-esc1. We used two independent clones of CAS9-expressing MOC1-esc1 to knockout EZH2 with two different sgRNA to rule out clone-specific or off-target effects. Immunoblotting for EZH2 was performed and showed attenuated EZH2 expression relative to ROSA26 control targeted lines (Fig. 4A). We performed a 2D coculture assay using OT-1 CD8+ T cells that were in vitro activated and expanded with SIINFEKL peptide antigen pulsed tumor cells as targets. GSK126 or EPZ6438 treatment sensitized MOC1-esc1 cells to T-cell–mediated killing (Fig. 4B). Genetic ablation of EZH2 dramatically sensitized tumor cells to T-cell–mediated killing in both clones in comparison with their parental lines and ROSA26 targeting controls (Fig. 4B; Supplementary Fig. S6). Consistent with the inhibitor treatment experiment results, loss of EZH2 significantly increased MHC class I cell surface expression levels, which again were enhanced in combination with IFNγ without impacting PD-1 (Fig. 4C and D), indicating the specificity of this regulation on antigen presentation. Therefore, targeting of EZH2 sensitized tumor cells to T-cell–mediated killing.
EZH2 represses antigen presentation by regulating the enrichment of H3K27me3 on the B2M promoter

To start to define the mechanism of EZH2 regulation of antigen presentation, we tested H3K27me3 levels in GSK126- or EPZ6438-treated cells. As expected, inhibition of EZH2 resulted in dramatic decrease of global H3K27me3 levels, without affecting the protein expression levels of EZH2 (Fig. 5A). In addition, the mRNA levels of both B2M and H2-K1 were significantly upregulated by EZH2 inhibition (Fig. 5B), suggesting that the regulation of EZH2 on antigen presentation is conserved between human and mouse (Fig. 2B and C; Supplementary Fig. S2). Interestingly, CXCL10 expression was not induced by EZH2 inhibition in this mouse model (Fig. 5B).

To test the hypothesis that EZH2 regulates H3K27me3 occupancy on the promoter region of B2M, MOC1-esc1 cells were treated with EPZ6438 or DMSO and subjected to ChIP with antibodies against EZH2, H3K27me3, or IgG control. To test the occupancy of EZH2 and...
H3K27me3 modification on B2M promoter, DNA samples from ChIP were quantified using two independent primers specific for B2M promoter region. The results of ChIP assay followed by qPCR showed that EPZ6438 treatment did not affect the binding of EZH2 on B2M promoter region (Fig. 5C), which is in agreement with the mode of action of EPZ6438 as an S-adenosyl-l-methionine (SAM)-competitive inhibitor. Importantly, EPZ6438 treatment significantly reduced H3K27me3 enrichment on the B2M promoter region (Fig. 5D).

Combinatorial therapy of GSK126 and anti-PD-1 suppresses MOC1-esc1 tumor progression in vivo

Next, we asked whether the enhanced antigen presentation in EZH2-deficient tumor cells can promote the function of antigen-specific T cells. To answer this question, we analyzed CD8+ T-cell proliferation and IFNγ production after coculture of SIINFEKL peptide-pulsed tumor cells with naïve OT-1 T cells. These data show that both T-cell proliferation and IFNγ production were significantly higher in EZH2-deficient tumor cells compared with ROSA26 control (Fig. 6A–C). To investigate whether EZH2 inhibitor can improve the outcome of anti-PD-1 therapy, we used resistant MOC1-esc1 to assess the effect of combination therapy. MOC1-esc1 tumor growth in immunocompetent wild-type mice was significantly attenuated by the combination of GSK126 (50 mg/kg) and anti-PD-1 but not by either agent alone (Fig. 6E). To test the role of EZH2 inhibition in modulating antigen presentation of tumor cells in vivo, we analyzed the tumor samples with these treatment conditions (Fig. 6F and G). Tumor cell MHC class I cell surface expression levels were increased by GSK126 monotherapy compared with the control group (Fig. 6F). Interestingly, the combination of GSK126 and anti-PD-1 resulted in an additive increase of MHC class I (Fig. 6F). Total CD45+ immune infiltration in the tumors was not affected by either monotherapy or combinatorial therapy (Fig. 6G; Supplementary Fig. S8). In summary, enhanced antigen presentation induced by targeting of EZH2 promoted proliferation and IFNγ production of antigen-specific T cells and combination therapy of GSK126 and anti-PD-1 resulted in attenuation of tumor progression in an anti–PD-1–resistant mouse model of HNSCC.

In addition, as significant numbers of patients are resistant to immunotherapy due to poor immune infiltration, we asked whether the efficacy of GSK126 and anti-PD-1 combinatorial therapy requires preexisting immune infiltration in tumors. We next assessed for combination therapy impact in the MOC2 model that displays an immune “desert” phenotype with negligible T-cell infiltration and aggressive in vivo growth (31). Consistent with previous data (31), MOC2 tumors are resistant to anti–PD-1–treatment (Fig. 6H). Neither
GSK126 monotherapy nor the combination of GSK126 and anti–PD-1 suppressed tumor growth (Fig. 6H). Although the growth phenotype was not altered, we assayed for in vivo MOC2 tumor cell class I expression with different treatments. Neither the control nor the monotherapy groups displayed alteration in surface class I expression. However, consistent with our observation in MOC1esc1 tumors, the combination group induced a significant higher MHC class I on tumor cells in vivo. As for MOC1-esc1, there was minimal impact on CD45+ T-cell infiltration. Therefore, EZH2 inhibition and anti–PD-1 combinatorial therapy upregulates tumor cell MHC Class I expression in vivo, whereas the therapeutic efficacy may require preexisting immune infiltration.

Discussion

To define approaches to improve outcomes of anti–PD-1 therapy in HNSCCs, we identified that targeting the histone methyltransferase EZH2 enhanced antigen presentation in both human and mouse HNSCC lines. Mechanistic studies revealed that EZH2 inhibition decreased the enrichment of H3K27me3 on the promoter region
Combinatorial therapy of GSK126 and anti-PD-1 suppresses MOCI-escl tumor progression. **A**, Representative histogram plots showing T-cell proliferation in experimental and control conditions. IFNγ-pretreated EZH2-edited and control cells were pulsed with 1 μmol/L SIIINFEKL peptide at 37°C for 2 hours and cocultured with CFSE-labeled naive OT-1 cells at an E:T ratio of 10:1 for 72 hours. T-cell proliferation was analyzed by flow cytometry. No antigen condition represents CFSE-labeled T cells without tumor cells. The data are representative of two independent experiments and shown as mean ± SD. **B**, Quantitative analysis of proliferating T cells between indicated conditions. **C**, IFNγ concentration was measured in the coculture media by ELISA. **D**, Schematic of experimental design for in vivo combination therapy. **E**, C37BL/6 mice (n = 4) inoculated subcutaneously with MOCI-escl (10^6) cells. Anti-PD-1 antibody was intraperitoneally injected on days 3, 6, and 9 after inoculation. GSK126 was intraperitoneally injected 3 times a week starting from day 6 after inoculation, and tumor growth was monitored. The data are representative of two independent experiments and shown as mean ± SEM. **F** and **G**, Tumors were harvested on day 12 after inoculation. H2-Kb on tumor cell surface (CD45^+) and percentage of CD45^+ viable cells in each indicated condition were analyzed by flow cytometry. **H**, The effect of indicated treatment on MOC2 tumor progression (n = 10). **I** and **J**, MOC2 tumors were harvested on day 22 after inoculation (n = 5). H2-Kb on tumor cell surface (CD45^+) and percentage of CD45^+ cells in each indicated condition were analyzed by flow cytometry. *, P < 0.05; **, P < 0.01; ***, P < 0.001. Significance was calculated by one-way ANOVA and two-way ANOVA.

Zhou et al.
increasing antigen presentation is conserved in human and mouse HNSCC lines. Subsequently, a syngeneic mouse model was used to investigate the in vivo therapeutic potential of EZH2 inhibition independent from direct cytotoxicity of EZH2 on tumor cells. Thus, this study provides a new line of evidence in support of EZH2 inhibition as a new combination immunotherapy target in promoting HNSCC antitumor immunity to overcome checkpoint blockade resistance.

Consistent with other studies, inhibition of EZH2 significantly induced the expression of CXCL10 in human HNSCC lines (Fig. 2C, ref. 20). CXCL10 is a Th1–chemokine CXCL10 that is a key ligand regulating T-cell trafficking into the tumor microenvironment through CXCR3 (39, 40). However, CXCL10 expression was not increased by EZH2 inhibition in the HNSCC mouse model (Fig. 3B), suggesting the regulation of CXCL10 by EZH2 is not conserved in human and mouse models used in this study. Although speculative, this suggests that in human HNSCC, the effect of EZH2 inhibition on antitumor immunity might include enhanced antigen presentation and additionally, higher immune infiltration in tumors.

One limitation of this study is the lack of well-defined endogenous antigen and antigen-specific T cells in the MOIC1-esc1 HNSCC model. Therefore, we employed a commonly used model antigen SIINFEKL peptide from ovalbumin and OT-1 mouse-derived antigen-specific T cells for in vitro studies (41). Supporting the use of this approach, CRISPR-CAS9 knockout of B2M or PD-L1 in MOC1-esc1 resulted in resistance or sensitivity to T-cell–mediated killing, respectively (data not shown). Therefore, this 2D coculture system retained the relevant function of EZH2 in T-cell recognition to tumor cells. In addition, as EZH2 impacts a broad range of pathways in vivo, dissecting the specific immune contribution will require further studies. Our work supports that EZH2 has the capacity to directly regulate tumor cell Class I in vivo and that inhibition in vivo results in a similar end result of enhanced Class I expression. Further mechanistic dissection of in vivo antigen presentation is required.

Others have studied the contribution of EZH2 in augmenting tumor immunogenicity including antigen presentation regulation in melanoma and lymphoma, respectively (24, 26). Our study focused on HNSCCs and defined further details of antigen presentation regulation. Differences in HNSCC include that the frequency of EZH2 overexpression in HNSCC is relatively low compared with that in cutaneous melanoma, lymphoma, and ovarian cancers. In addition, there are no EZH2 gain-of-function mutations identified in HNSCC (19). Therefore, the sensitivity of HNSCC to EZH2 inhibition induced apoptosis may be relatively low. The function of EZH2 inhibition in promoting antigen presentation thus identifies a disease-specific contextual opportunity in which to consider EZH2 inhibitor as an immunotherapy agent in HNSCC.

Interestingly, the inverse correlation of EZH2 and MHC class I antigen presentation molecule expression levels in HNSCC TCGA dataset is also found in lung squamous cell carcinoma, suggesting the function of EZH2 in regulating antigen presentation may be conserved in squamous cell carcinomas from other tissues. On the basis of our results, we propose that combination EZH2 inhibition with anti-PD-1 therapy may be beneficial for patients with HNSCC. Studies using different EZH2 inhibitors and additional HNSCC preclinical models are needed to further confirm our findings. In addition, the effect of EZH2 in regulating antigen presentation in professional antigen-presenting cells, such as macrophages and dendritic cells, also requires further investigation.

Disclosure of Potential Conflicts of Interest

R. Uppaluri is a consultant for and has received research support from Merck. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions

Conception and design: L. Zhou, R. Uppaluri
Development of methodology: L. Zhou, T. Mudianto, R. Uppaluri
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): L. Zhou, X. Ma, R. Riley, R. Uppaluri
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): L. Zhou, R. Uppaluri
Writing, review, and/or revision of the manuscript: L. Zhou, R. Uppaluri
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): L. Zhou, X. Ma, R. Uppaluri
Study supervision: R. Uppaluri

Acknowledgments

This study was supported by the NIH (NIH/NCI (DE024403 and DE027736) to R. Uppaluri. The authors thank Drs. Zhong Wu and Deli Hong for technical assistance with ChIP.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received April 25, 2019; revised August 12, 2019; accepted September 23, 2019; published first September 27, 2019.

References

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011;61:69–90.
2. de Ruijter EJ, Ooft ML, Devriese LA, Willems SM. The prognostic role of tumor infiltrating T-lymphocytes in squamous cell carcinoma of the head and neck: a systematic review and meta-analysis. Oncoimmunology 2017;6:e1356148.
3. Feng Z, Bethmann D, Kappler M, Ballesteros-Merino C, Eckert A, Bell RB, et al. Multiparametric immune profiling in HPV–oral squamous cell cancer. JCI Insight 2017;2 pii: 93652.
4. Hanaa GJ, Liu H, Jones RE, Bacey AF, Lizotte PH, Ivanova EV, et al. Defining an inflamed tumor immunophenotype in recurrent, metastatic squamous cell carcinoma of the head and neck. Oral Oncol 2017;67:64–9.
5. Huang KK, Jang KW, Kim S, Kim HS, Kim SM, Kwon HJ, et al. Exome sequencing reveals recurrent REV3L mutations in cisplatin-resistant squamous cell carcinoma of head and neck. Sci Rep 2016;6:19552.
6. Mandal R, Senbabaoglu Y, Desrichard A, Havel JJ, Dalin MG, Riaz N, et al. The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight 2016;1:e98929.
7. Ribas A. Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov 2015;5:915–9.
8. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12:252–64.
9. Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti–CTLA-4 therapy. Cell 2016;167:397–404.e9.
10. Garcia-Lora A, Algarras I, Garrido F. MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol 2003;195:346–55.
11. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 2000;74:181–273.
Zhou et al.

12. Chowell D, Morris LGT, Grigg CM, Weber JK, Samstein RM, Makarov V, et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 2018;359:582–7.
13. Ferris RL, Whiteside TL, Ferrone S. Immune escape associated with functional defects in antigen-processing machinery in head and neck cancer. Clin Cancer Res 2006;12:3890–5.
14. Concha-Benavente F, Sivastava R, Ferrone S, Ferris RL. Immunological and clinical significance of HLA class I antigen processing machinery component defects in malignant cells. Oral Oncol 2016;58:52–8.
15. Forster MD, Devlin MJ. Immune checkpoint inhibition in head and neck cancer. Front Oncol 2018;8:310.
16. Ferris RL. Immunology and immunotherapy of head and neck cancer. J Clin Oncol 2015;33:3293–304.
17. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015;517:576–82.
18. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 2002;298:1039–43.
19. Kim KH, Roberts CW. Targeting EZH2 in cancer. Nat Med 2016;22:128–34.
20. Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W, et al. Epigenetic silencing of TH1 type chemokines shapes tumour immunity and immunotherapy. Nature 2015;527:249–53.
21. Kugelberg E. Tumour immunology: reducing silence to improve therapy. Nat Rev Immunol 2015;15:730.
22. Wang D, Quirós J, Mahuron K, Pat CC, Ranant V, Young A, et al. Targeting EZH2 reprograms intratumoral regulatory T cells to enhance cancer immunity. Cell Rep 2018;23:3262–74.
23. Goswami S, Apostolou I, Zhang J, Skepner J, Anandhan S, Zhang X, et al. Modulation of EZH2 expression in T cells improves efficacy of anti-CTLA-4 therapy. J Clin Invest 2018;2018:128:3813–8.
24. Zingg D, Debbache J, Schaerfer SM, Frommel SC, Cheng P, et al. The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors. Nat Commun 2015;6:6051.
25. Jones BA, Varambally S, Arend BC. Histone methyltransferase EZH2: a therapeutic target for ovarian cancer. Mol Cancer Ther 2018;17:591–602.
26. Lue IK, Amengual JE. Emerging EZH2 inhibitors and their application in lymphoma. Curr Hematol Malig Rep 2018;13:369–82.
27. Nienstedt JC, Schroeder C, Clauditz T, Simon R, Sauter G, Muenchscher A, et al. EZH2 overexpression in head and neck cancer is related to lymph node metastasis. J Oral Pathol Med 2018;47:240–5.
28. Mochizuki D, Misawa Y, Kawasaki H, Imai A, Endo S, Mima M, et al. Aberrant epigenetic regulation in head and neck cancer due to distinct EZH2 over-expression and DNA hypermethylation. Int J Mol Sci 2018;19:pi3: E3707.
29. Chang JW, Gwak SY, Shim GA, Liu L, Lim YC, Kim JM, et al. EZH2 is associated with poor prognosis in head-and-neck squamous cell carcinoma via regulating the epithelial-to-mesenchymal transition and chemosensitivity. Oral Oncol 2016;52:66–74.
30. Gannon OM, Merida de Long L, Endo-Manoz I, Hazer-Rethinam M, Saunders NA. Dysregulation of the repressive H3K27 trimethylation mark in head and neck squamous cell carcinoma contributes to dysregulated squamous differentiation. Clin Cancer Res 2013;19:428–41.
31. Pflach M, Siwicki M, Liao HW, Pittet MJ. Tumor microenvironment: no effector T cells without dendritic cells. Cancer Cell 2017;31:614–5.
32. Christensen JE, de Lemos C, Moos T, Christensen JP, Thomsen AR. CXCL10 is the key ligand for CXCOr on CD8+ effector T cells involved in immune surveillance of the lymphoctic chorimeningitis virus-infected central nervous system. J Immunol 2006;176:4235–43.
33. Pan D, Kobayashi A, Jiang P, Ferrari di Andrade L, Tay RE, Luoma AM, et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 2018;359:770–5.