From Adversarial Training to Generative Adversarial Networks

Xuanqing Liu
Department of Computer Science
UC Davis
Davis, CA 95616
xqliu@ucdavis.edu

Cho-Jui Hsieh
Department of Computer Science and Statistics
UC Davis
Davis, CA 95616
chohsieh@ucdavis.edu

Abstract

In this paper, we are interested in two seemingly different concepts: adversarial training and generative adversarial networks (GANs). Particularly, how these techniques help to improve each other. To this end, we analyze the limitation of adversarial training as the defense method, starting from questioning how well the robustness of a model can generalize. Then, we successfully improve the generalizability via data augmentation by the “fake” images sampled from generative adversarial network. After that, we are surprised to see that the resulting robust classifier leads to a better generator, for free. We intuitively explain this interesting phenomenon and leave the theoretical analysis for future work. Motivated by these observations, we propose a system that combines generator, discriminator, and adversarial attacker in a single network. After end-to-end training and fine tuning, our method can simultaneously improve the robustness of classifiers, measured by accuracy under strong adversarial attacks, and the quality of generators, evaluated both aesthetically and quantitatively. In terms of the classifier, we achieve better robustness than the state-of-the-art adversarial training algorithm proposed in (Madry et al., 2017), while our generator achieves competitive performance compared with SN-GAN (Miyato and Koyama, 2018). Source code is publicly available online at https://github.com/xuanqing94/AdvGAN.

1 Introduction

Deep neural networks have been very successful in modeling images, texts, and audios. Nonetheless, their characters have not yet been fully understood [1], leaving a big hole for malicious attack algorithms. In this paper, we start from adversarial attacks and defense but try to find the connection with Generative Adversarial Network (GAN) [2]. Superficially, the difference between them is that the adversarial attack is the algorithm that finds a highly resembled image to cheat the classifier, whereas the GAN algorithm at its core is a generative model where the generator learns to convert white noise to images that look like authentic to the discriminator. We show in this paper that they are indeed closely related and can be used to strengthen each other: to accelerate and stabilize the GAN training cycle, the discriminator is expected to stay robust to adversarial examples; at the same time, a well trained generator provides a continuous support in probability space and thus improves the generalization ability of discriminator, even under adversarial attacks. That is the starting point of our idea to associate generative networks with robust classifiers.

Contributions: We find a novel way to make a connection between GAN and adversarial training. More importantly, we develop a system called AdvGAN to combine generator, discriminator, and adversarial attacker in the same network. Through the proposed “co-training” and “fine-tuning” steps, we are able to simultaneously improve the quality of generated images and the accuracy
of discriminator under strong adversarial attacks. For example, when applying state-of-the-art adversarial training technique [3], the accuracy of ResNet18+(CIFAR10) drops from 81.5% to 29.6%; whereas the accuracy of our discriminator network drops from 81.1% to 36.4% (keeping all the hyperparameters and network structure unchanged). For the generator side, we are able to match or even beat the inception score of state-of-the-art method [4] on medium scale datasets (see Sec. 4 for details), with significantly fewer iterations. Lastly, we modify the loss of AC-GAN and our experiments confirm the superiority over the original one.

2 Related works

Generative adversarial network. This is a kind of algorithm that learns to model distribution either with or without supervision [2], which is often considered as a hard task especially for high dimensional data (images, texts, audios, etc.). In recent years, GANs keep to be intensively studied, together with other competitive generative models such as variational autoencoder or VAE, which learns the latent representation of data via prior knowledge [5], and auto-regressive model that models the conditional distribution given previous states (e.g. PixelCNN [6]). One advantage of GANs over other methods is that they are able to generate high quality images directly from certain distributions, whereas the other methods are either slow in generation, or yield blurry images.

A GAN has two competing networks with different objectives: in the training phase, the generator $G(z)$ and the discriminator $D(x)$ are evolved in a minimax game, which can be denoted as a unified loss:

$$\min_G \max_D \left\{ \mathbb{E}_{x \sim \mathcal{P}_\text{real}} \left[\log D(x) \right] + \mathbb{E}_{z \sim \mathcal{P}_\text{fake}} \left[\log(1 - D(G(z))) \right] \right\}.$$

Unlike traditional machine learning problems where we typically minimize the loss, (1) is hard to optimize and that is the focus of recent literature. Among them, a guideline for the architectures of G and D is summarized in [7]. Other training techniques, including feature matching (similar to MMD-GAN [8][9]) and mini-batch discrimination are proposed in [10] to improve the stability and quality of networks. For high resolution and photo-realistic image generation, currently the standard way is to first learn to generate low resolution images as the intermediate products, and then learn to refine them progressively [11][12], this turns out to be more stable than directly generate high resolution images through a gigantic network. To reach the equilibrium efficiently, alternative loss metrics [13][4][15][16][17] are applied and proven to be effective. Among them, [13] theoretically explains why training the DCGAN is highly unstable — since the image manifold is highly concentrated towards a low dimensional manifold, and if two distributions \mathcal{P}_real and \mathcal{P}_fake are supported on two low dimensional manifolds that do not perfectly align, then there exists an “optimal discriminator $D(x)$” that tells apart two distributions with probability one. Moreover, under that situation, the gradient of discriminator $\nabla D(x)$ closes to zero and thus the training process is halted.

Closely following that theorem, [14] proposes to use Wasserstein-1 distance to measure the distance between real and fake data distribution. The resulting network, namely “Wasserstein-GAN”, largely improves the stability of GAN training. Another noteworthy work inspired by WGAN/WGAN-GP is spectral normalization [19], the idea is to estimate the operator norm $\sigma_{\text{max}}(W)$ of weights W inside layers (convolution, linear, etc.,) and then normalize these weights to have 1-operator norm through dividing weight tensors by operator norm: $\tilde{W} = W/\sigma_{\text{max}}(W)$. Because ReLU non-linearity is already 1-Lipschitz, if we stack these layers together the network as a whole would still be 1-Lipschitz, that is exactly the prerequisite to apply Kantorovich-Rubinstein duality to estimate Wasserstein distance.

Despite the success of aforementioned works, we want to address one missing part of these models: to the best of our knowledge, none of them consider the robustness of discrimination network $D(x)$. This overlooked aspect can be problematic especially for high resolution images and large networks, this will be one of the central points of this paper.

Adversarial attacks and defenses: Apart from GAN, another key ingredient of our method is adversarial examples, originated in [1] and further studied in [19]. They found that machine learning models can be easily “fooled” by slightly modified images if we design a tiny perturbation according to some “attack” algorithms. In this paper we apply a simple yet efficient algorithm, namely PGD-attack [3], to generate adversarial examples. Given an example x with ground truth label y, PGD computes adversarial perturbation δ by solving the following optimization with Projected Gradient

\[\min_{\delta} \max_{D} \left\{ \mathbb{E}_{x \sim \mathcal{P}_\text{real}} \left[\log D(x) \right] + \mathbb{E}_{z \sim \mathcal{P}_\text{noise}} \left[\log(1 - D(G(z))) \right] \right\}. \]
We remark that the data distribution where F is the set of model class. Apart from that, to make our model robust to adversarial distortion, it is desirable to enforce a small local Lipschitz value (LLV) around data manifold $\mathcal{P}_{\text{real}}$. This idea includes many of the defense methods such as $[31]$. In essence, restricting the LLV can be formulated as a composite loss minimization problem:

$$\min_{w} \mathbb{E}_{(x,y) \sim \mathcal{P}_{\text{real}}} \left[\ell(f(x;w), y) + \lambda \cdot \left\| \frac{\partial}{\partial x} \ell(f(x;w), y) \right\|^2 \right].$$

(6)

Notice that (6) can be regarded as the “one-step approximation” of (3). In practice we need to change the expectation over $\mathcal{P}_{\text{real}}$ to empirical distribution of finite data,

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} \left[\ell(f(x_i;w), y_i) + \lambda \cdot \left\| \frac{\partial}{\partial x} \ell(f(x_i;w), y_i) \right\|^2 \right],$$

(6)

where $\{(x_i, y_i)\}_{i=1}^{n}$ are feature-label pairs constitute the training set. Ideally, if we have enough data and model size is moderate then the objective function in (6) still converges to (5). However in the expectation over $\mathcal{P}_{\text{real}}$ the objective function in (5) still converges to (5).

Opposite to the adversarial attacks, the adversarial defenses are techniques that make models resistant to adversarial examples. It is worth noting that defense is a much harder task compared with attacks, especially for high dimensional data combined with complex models. Despite that huge amount of defense methods are proposed $[22, 3, 23, 24, 25, 26, 27, 28, 29]$, many of them rely on gradient masking or obfuscation, which provide an “illusion” of safety $[20, 30]$. They claimed that the most effective defense algorithm is adversarial training $[3]$, formulated as

$$\min_{w} \rho(w), \quad \text{where } \rho(w) := \mathbb{E}_{(x,y) \sim \mathcal{P}_{\text{real}}} \left[\max_{\|\delta\| \leq \delta_{\text{max}}} \ell(f(x + \delta; w), y) \right],$$

(3)

where $(x, y) \sim \mathcal{P}_{\text{real}}$ is the (image, label) joint distribution of real data. $f(x;w)$ is the network parameterized by w, $\ell(f(x;w), y)$ is the loss function of network (such as the cross-entropy loss). We remark that the data distribution $\mathcal{P}_{\text{real}}$ is often not available in practice, which will be replaced by the empirical distribution.

3 Proposed Approach

3.1 Motivation 1: The generalization gap of adversarial training — how can GAN help?

In Sec. [2] we listed some of the published works on adversarial defense, and pointed out that adversarial training is the most effective method to date. However, until now this method has only been tested on small dataset like MNIST and CIFAR10 and it is an open problem as to whether it scales to large dataset such as ImageNet. To our knowledge, there are two significant drawbacks of this method that restrict its application. First and most obviously, the overhead to find adversarial examples in each iteration is about 10x of the normal process (this can be inferred by #Iterations in each PGD attack1). Moreover, we noticed that the trained model performs significantly worse on the test set (Fig. 1 (Left)). This indicates it is hard to find an adversarial example near the training data, yet much easier to find one close to testing data. We discuss the reason behind this huge generalization gap, and later we will alleviate this problem using GAN. From statistical learning theory, it is known that the generalization ability of model relies on the convergence of empirical risk to population risk, formally:

$$\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} f(X_i) - \mathbb{E}_{X}[f(X)] \right| \xrightarrow{\text{a.s.}} 0, \text{ when } n \to \infty,$$

(4)

where \mathcal{F} is the set of model class. Apart from that, to make our model robust to adversarial distortion, it is desirable to enforce a small local Lipschitz value (LLV) around data manifold $\mathcal{P}_{\text{real}}$. This idea includes many of the defense methods such as $[31]$. In essence, restricting the LLV can be formulated as a composite loss minimization problem:

$$\min_{w} \mathbb{E}_{(x,y) \sim \mathcal{P}_{\text{real}}} \left[\ell(f(x,w), y) + \lambda \cdot \left\| \frac{\partial}{\partial x} \ell(f(x,w), y) \right\|_{2} \right].$$

(5)

We refer readers to the source code in $\text{https://github.com/MadryLab/cifar10_challenge}$.
practice when taking adversarial examples into account, we have one more problem to worry about: Does small LLV in training set imply small LLV in test set? The enlarged accuracy gap shown in Fig. 1 (Left) tends to give a negative answer. To verify this phenomenon directly, we calculate the LLV on images sampled from training and testing set respectively (Fig. 1 (Right)), we observe that in parallel with accuracy gap, the LLV gap between training and testing set is equally significant. Thus we conclude that although adversarial training controls LLV around training set effectively, this property does not generalize to test set. Notice that our empirical finding does not contradict the certified robustness of adversarial training using generalization theory (e.g. [32]), which only explains weak attack situation.

The generalization gap can be potentially reduced if we have a better understanding of P_{real} instead of approximating it by training set. This leads to our first motivation: can we use GAN to learn P_{real} and plug it into adversarial training algorithm to improve robustness on test set? We will give a possible solution in Sec. 3.3.

3.2 Motivation II: More effective GAN training by robust discriminator

GANs are notoriously hard to train. To our knowledge, there are two major symptoms of a failure trial — gradient vanishing and mode collapse. The theoretical explanation of gradient vanishing problem is discussed in [13] by assuming the images lie in a low dimensional manifold. Following this idea, [14,10] propose to use 1-Wasserstein distance in place of the KL-divergence. The central character of WGAN and improved WGAN is that they require the set of discriminators $\{D(x;w)|\forall w \in \mathbb{R}^d\}$ equals to the set of all 1-Lipschitz functions w.r.t input x. Practically, we can either clip the weight of discriminator w [14], or add a gradient norm regularizer [10]. Recently, another regularization technique called “spectral normalization” [18,4] is proposed to enforce 1-Lipschitz discriminator and for the first time, GAN learns to generate high quality images from full ImageNet data with only one generator-discriminator pair. In contrast, AC-GAN [33] — the supervised version of DCGAN — divides 1000 classes into 100 groups so each network-pair only learns 10 classes.

Despite the success along this line of research, we wonder if a weaker assumption to the discriminator is possible. Concretely, instead of a strict one-Lipschitz function, we require a small local Lipschitz value on image manifold. Indeed, we find a connection between robustness of discriminator and the learning efficiency of generator, as illustrated in Fig. 2.

As one can see in Fig. 2 if a discriminator $D(x)$ has small LLV (or $|D'(x)|$), then we know $D(x + \delta) \approx D(x) + D'(x) \cdot \delta \approx D(x)$ for a “reasonably” large δ. In other words, for robust discriminator, the perturbed fake image $x_{\text{adv}} = x_0 + \delta$ is unlikely to be mistakenly classified as real image, unless δ is large. Compared with adversarial attacks [2], the attacker is now a generator $G(z;w)$ parameterized by $w \in \mathbb{R}^d$ instead of the gradient ascend algorithm. For making x_0 “looks like” a real image (x_{adv}), we must update generator $G(z;w)$ to $G(z;w')$ and by assuming the Lipschitz

Figure 1: Left: Accuracy under different levels of attack. The model (VGG16) is obtained by adversarial training on CIFAR-10, we set $\delta_{\text{max}} = 0.03125$ in (3). The horizontal axis is the attack strength δ which is equivalent to δ_{max} in (2). Note that δ_{max} in (2) and (3) have different meanings — one is for attack and the other is for defense. Notice the increasing accuracy gap when $\delta < 0.03125$. Right: The local Lipschitz value (LLV) measured by gradient norm $\|\frac{\partial}{\partial x_i} \ell(f(x_i;w),y_i)\|_2$, data pairs (x_i, y_i) are chosen from the training and testing set respectively. During the training process, LLV on the training set stabilizes at a low level, whereas LLV on the test set keeps growing.
continuity of \(G \),
\[
\| \delta \| = \| x_{adv} - x_0 \| = \| G(z; w') - G(z; w) \| \leq L_G \| w - w' \|.
\] (7)
This indicates the movement of generator weights \(\| w' - w \| \) is lower bounded by the distance of a fake image \(x_0 \) to the decision boundary, specifically we have \(\| w' - w \| \geq \| \delta \| / L_G \). Furthermore, recall that a robust discriminator \(D(x) \) implies a larger \(\| \delta \| \), putting them together we know that improving the robustness of discriminator will lead to larger updates of the generator. In Sec. 4 we experimentally show that adversarial training not only speeds up the convergence to the equilibrium, but also obtains an excellent generator. But we leave the rigorous analysis for future works.

3.3 AdvGAN: Adversarial training on learned image manifold

Motivated by Sec. 3.1 and 3.2, we propose a system that combines generator, discriminator, and adversarial attacker into a single network. Our system consists of two stages, the first stage is an end-to-end GAN training: the generator feeds fake images to the discriminator; meanwhile real images sampled from training set are processed by PGD attacking algorithm before sending to the discriminator. After that the discriminator is learned to minimize both discrimination loss and classification loss (introduced below). In the next stage, the discriminator is refined by combining the fake and real images. The network structure is illustrated in Fig. 3. In what follows, we give more details about each component:

![Diagram](image)

Figure 2: Comparing robust and non-robust discriminators, for simplicity, we put them together into one graph. Conceptually, the non-robust discriminator tends to make all images close to the decision boundary, so even a tiny distortion \(\delta \) can make a fake image \(x_0 \) to be classified as a real image \(x_{adv} = x_0 + \delta \). In contrast, such \(\delta \) is expected to be much larger for robust discriminators.

![Diagram](image)

Figure 3: Illustration of the training process. Step-1 is the standard GAN training, i.e. alternatively updating the \(G \) and \(D \) networks. The only difference is that whenever feeding the real images to the \(D \) network, we first run 5 steps of PGD attack, so the discriminator is trained with adversarial examples. Step-2 is a refining technique, aiming at improving prediction accuracy on the test set.
Discriminator: The discriminator could have the standard architecture like AC-GAN. In each iteration, it discriminates real and fake images. When the ground truth labels are available, it also predicts the classes. In this paper, we only consider the label-conditioning GANs [34, 33, 4], whose architectural differences are briefly overviewed in Fig. 4. Among them we simply choose AC-GAN, despite that SN-GAN (a combination of spectral normalization [13] and projection discriminator [4]) performs much better in their paper. The reason we choose the AC-GAN is that SN-GAN discriminator relies on the ground truth labels and their adversarial loss is not designed to encourage high classification accuracy. But surprisingly, even though AC-GAN is beaten by SN-GAN by a large margin, after inserting the adversarial training module, the performance of AC-GAN matches or even surpasses the SN-GAN, due to the reason discussed in Sec. 3.2. We also changed the loss objective of AC-GAN. Recall that the original loss in [33] defined by discrimination likelihood L_C and classification likelihood L_S:

\[
L_S = E[\log P(S = \text{real} | X_{\text{real}})] + E[\log P(S = \text{fake} | X_{\text{fake}})]
\]

\[
L_C = E[\log P(C = c | X_{\text{real}})] + E[\log P(C = c | X_{\text{fake}})],
\]

where $X_{\text{real/fake}}$ are any real/fake images, S is the discriminator output, C is the classifier output. Based on (8), the goal of discriminator is to maximize $L_S + L_C$ while generator aims at maximizing $L_C - L_S$. According to this definition, both G and D are optimized to increase L_C: even if $G(z)$ produces unrecognizable images, $D(x)$ has to struggle to classify them (with high loss), in such case the corresponding gradient term ∇L_C can contribute uninformative direction to the discriminator. To resolve this issue, we split L_C as follows,

\[
L_{C_1} = E[\log P(C = c | X_{\text{real}})], \quad L_{C_2} = E[\log P(C = c | X_{\text{fake}})],
\]

then discriminator maximizes $L_S + L_{C_1}$ and generator maximizes $L_{C_2} - L_S$. The new objective functions ensure that discriminator only focuses on classifying the real images and discriminating real/fake images.

Generator: Similar to the traditional GAN training, the generator is updated on a regular basis to mimic the distribution of real data. This is the key ingredient to improve the robustness of discriminators: as shown in Sec. 3.1 adversarial training performs well on training set but is vulnerable on test set. Intuitively, this is because during adversarial training, the network only “sees” adversarial examples residing in the δ_{max}-ball of all training samples, whereas the rest images in the data manifold are undefended. Data augmentation is a natural way to resolve this issue, but traditional techniques [35, 36, 37, 38, 39] rely largely on combinations of geometric transforms to the training images, in our case the support of the probability density function is still very small. Instead, our system uses images sampled from generator to provide a continuously supported p.d.f. for the adversarial training. Unlike traditional augmentation methods, if the equilibrium in (1) is reached, then we can show that one desirable solution of (1) would be $P_{\text{fake}}(z) \equiv P_{\text{real}}$, and therefore the robust classifier can be trained on the learned distribution.

Fine-tuning the classifier: This step aims at improving the classification accuracy, based on the auxiliary classifier in the pretrained discriminator. This is crucial because the discriminator is not trained to minimize the classification error, but a weighted loss of both discrimination and classification in the GAN training stage. Throughout the fine-tuning stage, we force the discriminator to focus on the classification part to boost the accuracy. Note that it is still trained by adversarial examples (adversarial attacker is omitted in Fig. 4).
4 Experiment

We experiment on both CIFAR10 and a subset of ImageNet data. Specifically, we extract classes y_i such that $y_i \in \text{np.arange}(151, 294, 1)$ from the original ImageNet data: recall in total there are 1000 classes in ImageNet data and we sampled $294 - 151 = 143$ classes from them. We choose these datasets because 1) the current state-of-the-art GAN, SN-GAN [4], also worked on these datasets, and 2) the current state-of-the-art adversarial training method [5] only scales to CIFAR dataset. For fair comparison, we copy all the network architectures for generators and discriminators from SN-GAN, other important factors, such as learning rate, optimization algorithms, discriminator updates in each cycle, etc. are also kept the same. The only modification is that we discarded the feature projection layer and applied the auxiliary classifier (see Fig. 4). Please refer to the appendix or source code for more implementation details.

Effect of fine-tuning In what follows, we check whether fine-tuning helps improving test set accuracy. To this end, we design a experiment that compares two set of models: in the first set, we directly extract the auxiliary classifiers from discriminators to classify images; in the next set, we apply fine-tuning strategy to the pretrained model as Fig. 3 illustrated. The results can be found in Fig. 5, which supports our argument that fine-tuning is indeed useful for better prediction accuracy.

Figure 5: The effect of fine-tuning on prediction accuracy (left: CIFAR10, right: ImageNet-64px)

Dataset	σ_{max} of ℓ_∞ attacks			
	0	0.02	0.04	0.08
CIFAR10	81.1% (−0.35%)	70.41% (+1.26%)	57.43% (+3.69%)	30.25% (+6.67%)
ImageNet† (64px)	32.4% (+6.35%)	25.2% (+6.9%)	19.1% (+6.58%)	13.7% (+5.38%)

†Denotes the 143-class subset of ImageNet.

Table 1: Accuracy of our model under ℓ_∞ PGD-attack. Inside the parenthesis is the improvement over standard adversarial training defense [3].

Robustness of discriminator: comparing robustness with/ without data augmentation In this experiment, we would like to compare the robustness of discriminator networks with or without data augmentation technique discussed in Sec. 3.3. The robustness is measured by the prediction accuracy under adversarial attack. For networks without data augmentation, that would be equal to the state-of-the-art Madry’s algorithm [3]. For attacking algorithm, we choose the widely used ℓ_∞ PGD attack [4], but other gradient based attacks are expected to yield the same results. We set the ℓ_∞ perturbation to $\sigma_{\text{max}} \in \text{np.arange}(0, 0.1, 0.01)$ as defined in [2]. Another minor detail is that we scale the images to $[-1, 1]$ rather than usual $[0, 1]$. This is because generators always have a $\tanh()$ output layer, so we need to do some adaptations accordingly. We exhibit the results in Tab. 1 showing our method can improve the robustness of state-of-the-art defensive algorithm.

Effect of split classification loss Here we show the effect of split classification loss described in [2], recall that if we apply the loss in [3] then the resulting model is AC-GAN. It is known that AC-GAN can easily lose modes in practice, i.e. the generator simply ignores the noise input z and produces fixed images according to the label y. This defect is observed in many previous works [40, 41, 42]. In this ablation experiment, we compare the generated images trained by two loss functions, the result is shown in Fig. 6.

Quality of generator and convergence speed In the last experiment, we compare the quality of generators trained in three datasets: CIFAR10, ImageNet subset (64px) and ImageNet subset (128px). Our baseline model is the SN-GAN, considering that, as far as we know, SN-GAN is the best GAN
Figure 6: Comparing the generated images trained by our modified loss (left) with the original AC-GAN loss (right). For fair comparison, both networks are trained with adversarial real images. We can see images from AC-GAN are more distorted and harder to distinguish.

Figure 7: Results on subset of ImageNet, left: 64px, right: 128px. We compare the inception scores between our model and the SN-GAN. Clearly our method learns a high quality generator in a short time, specifically, in both datasets, AC-GAN with adversarial training surpasses SN-GAN in just 25 epochs (64px) or 50 epochs (128px). Another observation is that with adversarial training, the convergence is greatly accelerated.

5 Discussion

In this paper, we draw a connection between adversarial training [3] and generative adversarial network [2]. Our primary goal is to improve the generalization ability of adversarial training and this is achieved by data augmentation by the unlimited fake images. Independently, we see an improvement of both robustness and convergence speed in GAN training. While the theoretical principle in behind is still unclear to us, we gave an intuitive explanation. Apart from that, a minor contribution of our paper is the improved loss function of AC-GAN, showing a better result in image quality.
References

[1] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*, 2013.

[2] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In *Advances in neural information processing systems*, pages 2672–2680, 2014.

[3] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. *arXiv preprint arXiv:1706.06083*, 2017.

[4] Takeru Miyato and Masanori Koyama. cGANs with projection discriminator. In *International Conference on Learning Representations*, 2018.

[5] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*, 2013.

[6] Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Conditional image generation with pixelcnn decoders. In *Advances in Neural Information Processing Systems*, pages 4790–4798, 2016.

[7] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. *arXiv preprint arXiv:1511.06434*, 2015.

[8] Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos. Mmd gan: Towards deeper understanding of moment matching network. In *Advances in Neural Information Processing Systems*, pages 2200–2210, 2017.

[9] Yujia Li, Kevin Swersky, and Rich Zemel. Generative moment matching networks. In *International Conference on Machine Learning*, pages 1718–1727, 2015.

[10] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Improved training of wasserstein gans. In *Advances in Neural Information Processing Systems*, pages 5769–5779, 2017.

[11] Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep generative image models using a laplacian pyramid of adversarial networks. In *Advances in neural information processing systems*, pages 1486–1494, 2015.

[12] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved quality, stability, and variation. *arXiv preprint arXiv:1710.10196*, 2017.

[13] Martin Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial networks. *arXiv preprint arXiv:1701.04862*, 2017.

[14] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. *arXiv preprint arXiv:1701.07875*, 2017.

[15] David Berthelot, Tom Schumm, and Luke Metz. Began: Boundary equilibrium generative adversarial networks. *arXiv preprint arXiv:1703.10717*, 2017.

[16] Thomas Unterthiner, Bernhard Nessler, Günter Klambauer, Martin Heusel, Hubert Ramsauer, and Sepp Hochreiter. Coulomb gans: Provably optimal nash equilibria via potential fields. *arXiv preprint arXiv:1708.08819*, 2017.

[17] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for generative adversarial networks. In *International Conference on Learning Representations*, 2018.

[18] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. *arXiv preprint arXiv:1412.6572*, 2014.

[19] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. *arXiv preprint arXiv:1802.00420*, 2018.

[20] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In *Security and Privacy (SP), 2017 IEEE Symposium on*, pages 39–57. IEEE, 2017.

[21] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as a defense to adversarial perturbations against deep neural networks. In *Security and Privacy (SP), 2016 IEEE Symposium on*, pages 582–597. IEEE, 2016.

[22] Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Thermometer encoding: One hot way to resist adversarial examples. In *International Conference on Learning Representations*, 2018.
[24] Xingjun Ma, Bo Li, Yisen Wang, Sarah M. Erfani, Sudanthi Wijewickrema, Grant Schoenebeck, Michael E. Houle, Dawn Song, and James Bailey. Characterizing adversarial subspaces using local intrinsic dimensionality. In International Conference on Learning Representations, 2018.

[25] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten. Countering adversarial images using input transformations. In International Conference on Learning Representations, 2018.

[26] Guneet S. Dhillon, Kamyar Azizzadenesheli, Jeremy D. Bernstein, Jean Kossaifi, Aran Khanna, Zachary C. Lipton, and Animashree Anandkumar. Stochastic activation pruning for robust adversarial defense. In International Conference on Learning Representations, 2018.

[27] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mitigating adversarial effects through randomization. In International Conference on Learning Representations, 2018.

[28] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pixeldefend: Leveraging generative models to understand and defend against adversarial examples. In International Conference on Learning Representations, 2018.

[29] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-GAN: Protecting classifiers against adversarial attacks using generative models. In International Conference on Learning Representations, 2018.

[30] Anish Athalye and Nicholas Carlini. On the robustness of the cvpr 2018 white-box adversarial example defenses. arXiv preprint arXiv:1804.03286, 2018.

[31] Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval networks: Improving robustness to adversarial examples. In International Conference on Machine Learning, pages 854–863, 2017.

[32] Aman Sinha, Hongseok Namkoong, and John Duchi. Certifiable distributional robustness with principled adversarial training. arXiv preprint arXiv:1710.10571, 2017.

[33] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxiliary classifier gans. In International Conference on Machine Learning, pages 2642–2651, 2017.

[34] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014.

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[36] Alon Halevy, Peter Norvig, and Fernando Pereira. The unreasonable effectiveness of data. IEEE Intelligent Systems, 24(2):8–12, 2009.

[37] Yuji Tokozume, Yoshitaka Ushiku, and Tatsuya Harada. Learning from between-class examples for deep sound recognition. arXiv preprint arXiv:1711.10282, 2017.

[38] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.

[39] Hiroshi Inoue. Data augmentation by pairing samples for images classification. arXiv preprint arXiv:1801.02929, 2018.

[40] Xun Huang, Yixuan Li, Omid Poursaeed, John Hopcroft, and Serge Belongie. Stacked generative adversarial networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume 2, page 4, 2017.

[41] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video prediction beyond mean square error. arXiv preprint arXiv:1511.05440, 2015.

[42] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional adversarial networks. arXiv preprint, 2017.