Analysis of risk K3 preservation of the reconstruction Gresik – Lamongan – Babat roads in East Java Province

Gebion Lysje Pagaray
Civil Engineering, Universitas Kristen Indonesia Paulus Makassar

*gebi_pagaray78@yahoo.co.id

Abstract. Preservation of Gresik – Lamongan – Babat is an activity carried out in East Java Province. Long Segment is the handling of road preservation within the boundaries of one continuous segment length (can be more than one segment) which is carried out with the aim of obtaining uniform road conditions, namely steady and standard roads. The purpose of this study is to 1) Identify the K3 risks that occur in the preservation of Gresik – Lamongan – Babat roads in East Java Province. 2) Provide risk control solutions from K3 risk identification. This research was conducted by collecting secondary data to obtain research data using direct survey method, literature study and interview. The sample for this study consists 30 respondents, including 12 supervising consultants, 2 supervising of PU, 16 workers and contractor’s management. This research uses the Fault Tree Analysis (FTA) method. The results of this study found 52 potential hazards, the work hazard potential category of 52 potential hazards are 5 Extreme Risk, 21 High Risk, 20 Moderate Risk, and 6 Low Risk, is the dominant High Risk.

1. Introduction

Road Preservation is asset management by carrying out maintenance, rehabilitation reconstruction activities. Reconstruction is the improvement of the structure is a handling activity to increase the ability of a section of road that is in a badly damaged condition so that the section of the road has a stable condition again by the determined plan age. (Minister of Public Works Regulation Number 13 / PRT / M / 2011). Long Segment is the handling of road preservation within the limits of one continuous segment length (can be more than one segment) which is carried out to obtain uniform road conditions, namely steady and standard roads (Minister of Public Works Regulation Number.19 / PRT / M / 2011).

Long Segment includes several scopes of activities (output), namely road widening, reconstruction, rehabilitation, and maintenance. Long segment realizes the handling of road preservation within the boundaries of one continuous segment length which is implemented with the aim of obtaining a steady and standard road condition. Preservation of Jalan Gresik - Lamongan - Babat is an activity carried out in East Java. Various risks can arise in each of these activities. Based on this background, research on K3 Risk Analysis for the Reconstruction of Gresik - Lamongan - Babat Roads in East Java Province was conducted, with the aim of identifying the types of accidents that might occur in the Gresik - Lamongan - Babat Road Reconstruction Preservation construction project in Java Province, Timur, to analyze the factors that cause work accidents in construction projects and to determine the
implementation of occupational health and safety in reducing the risk of work accidents in the Gresik - Lamongan - Babat Road Reconstruction Preservation construction project in East Java Province. The analysis used to determine the causes of work accidents in a systematic manner is to use the Fault Tree Analysis (FTA). The Fault Tree Analysis method is a technique used to identify risks that contribute to failure. With this method, it is expected to simulate and analyze construction problems and calculate probabilities for future safety management planning.

By using the Fault Tree Analysis method, it is expected to be able to identify the types of accidents and analyze the factors that cause accidents that may occur and to know the application of K3 used in the Preservation of Reconstruction for Gresik - Lamongan - Babat Roads in East Java Province. The following is the matrix used for risk assessment using the Fault Tree Analysis (FTA) method.

2. Methodology

Research Locations for the Preservation of Reconstruction for Gresik - Lamongan - Babat Roads In East Java Province it is located at KM 54 + 900 to KM 71 + 420 Lamongan - Babat Regency, the road that connects Surabaya City and Tuban City. To reach the research location, the distance covered is 55 km from Surabaya City, East Kalimantan Province.

The research design is based on research problems. In this study using qualitative research (mix method) with descriptive research type. The data obtained is based on field data, interviews with workers and consultants related to the Preservation and Reconstruction Work for Gresik - Lamongan - Babat Road in East Java Province. The method of collecting data using primary data is data obtained directly including by conducting direct research on the Preservation Work of the Gresik - Lamongan - Babat Road Reconstruction in East Java Province, namely by direct observation of the environment that is carefully examined to determine potential hazards, and interviews Responsible for related

![Research Methods Flowchart](image-url)
parties such as supervisory consultants, workers, and contractor management. Secondary data obtained from literature studies related to the problem under study.

Table 1. Risk Assessment Factors

Factor	Scope	Score
Hazards	- Not likely to cause injury	1
	- Can cause minor injury	2
	- Can cause injuries requiring first aid	3
	- Can cause injury requiring first aid kit	4
	- May cause serious injury	5
	- Life threatening, possibly fatalities	6
Probability	- Most likely not	1
	- The possibilities are still far away	2
	- The odds are reasonable	3
	- The possibilities are open	4
	- Very likely	5
	- Almost certain	6
Severity	- Injuries are negligible	1
	- Minor injury	2
	- Serious injury	3
	- Layered injury	4
	- Single death toll	5
	- The casualties are layered	6

Table 2. Qualitative Measures of "likelihood" According to AS/NZS 4360 Standard

Level	Descriptor	Description
5	Almost Certain	Can happen at any time
4	Likely	Often
3	Possible	It can happen once in a while
2	Unlikely	Rarely
1	Rare	Almost never, very rarely

Table 3. Risk Assessment Matrix

Level	Descriptor	Description
5	Catastrophic	Fatal> 1 person, the loss was very large and the impact was very wide, all activities were stopped
4	Major	Severe injury > 1 person
3	Moderate	Moderate injuries, need medical attention
2	Minor	Minor injury, moderate financial loss
1	Insignificant	No injuries, little financial loss

Table 4. Risk analysis matrix According to AS/NZS 4360 Standard

Frequency of Risk	1	2	3	4	5
5	H	H	E	E	E
4	M	H	H	E	E
3	L	M	H	E	E
2	L	L	M	H	E
1	L	L	M	H	H
3. Result and Discussion

3.1 Questionnaire Description

The questionnaire was filled in by 30 respondents, consisting of 12 supervisory consultants, 2 PU supervisors, 16 workers, and contractor management with the respondent's age, education level, status on the project that was being worked on, the length of experience the respondent had worked for the construction sector, and the respondent's educational background.

Table 5. Respondent Age
Number
1
2
3
4
5
Amount

From Table 5 Age of Respondents, it can be seen that workers in the age group ≤ 20 years are 0 people or 0%, for workers in the 20-30 year age group are 5 people or 17%. For workers in the age, 31 - 40 years is 10 people or 33%. For workers in the age group 41 - 50, there are 12 people or 40%. And for workers in the> 50 age group as many as 3 people or 10%.

Table 6. Respondents Education Level
Number
1
2
3
4
5
6
Amount

Table 6 Education Level of Respondents, workers who have an elementary education level of 0 people or 0%, workers who have a Junior high school education level of 2 people or 7%, workers who have a Senior High school education level of 10 people or 33%, Secondary Engineering School 2 people or 7%, Vocational Graduates 2 people or 7% and Bachelor Degree 14 people or 46%.

Table 7. Respondents Work Experience
Number
1
2
3
4
5
Amount
Table 7. Respondents Work Experience, there are as many as 7 people or 23% who have work experience ≤ 5 years, 10 people or 34% have work experience of 6 - 10 years, 9 people or 30% have work experience of 11-15 years, 3 people or 10% who have work experience of 16-20 years, and 1 person or 3% for work experience > 21.

Table 8. Personal Protective Equipment for Workers

Number	Personal Protective Equipment for Workers	Frequency	Percentage (%)
1	Never	2	7
2	Once a year	25	83
3	2 years	2	7
4	3 years	1	3
5	Only once during work	0	0
	Amount	30	100

From the questionnaire given to respondents, K3 equipment is in Table 8. PPE for Workers, in the form of Personal Protective Equipment (PPE) for supervisory consultants, and PU supervisors every 1 year is given at the time of mobilization, for contractor’s various results of the questionnaire obtained, some are 3 years, 2 years, and have not received Personal Protective Equipment (PPE).

3.2 Data Processing Using Fault Analysis Method

Based on the data processing that has been carried out regarding hazard identification using the FTA method, it is found that from the work area 52 potential hazards have been found. But in this case, each potential hazard that has been identified has a different classification category such as Extreme, High, Moderate and Low. To make it easier to determine the highest rating weight for potential hazards that has been carried out, it is described in the form of a recapitulation table using FTA. The following is the result of recapitulation using FTA:

Table 9. Results of the recapitulation using the Fault Analysis Method

Number	Activities	Potential Risks	Risk Category	Risk Control	
A	Earthworks				
1	Ordinary excavation work				
Measurement and Standing	Health problems due to general working conditions	H	Use work equipment/ Personal Protective Equipment for Workers		
Injured due to the wrong condition and use of the meter	M	- Use standard – compliant meter			
Accidents due to poor traffic regulation	E	- Traffic settings must be according to standards - Flagman			
Accidents due to the wrong type and way of using the equipment	M	- Tools, how to use must be correct and according to standards			
Accidents due to the stake –mounting methods	L	- Installation of stakes must be correct and in accordance with the provisions			
Excavation	An excavator accident happened due to the distance between diggers being too close	H	- Distance between diggers must be kept at a safe distance		
Accidents due to heavy equipment operations either	E	- If the excavation is carried out at night, use sufficient lighting			
Number	Activities and benchmarking	Potential Risks	Risk Category	Risk Control	
--------	----------------------------	-----------------	--------------	--------------	
1	Disposal of minerals	Accidents due to piles of excavated material to be used for stockpiling	H	- The pile of minerals to be used for stockpiling should not be too long.	
2	Measurement and benchmarking	Health problems due to general working conditions	L	- Use Personal Protective Equipment for Workers (helmets, masks, vests, gloves, safety shoes)	
		Injured due to conditions and use of the wrong meter	L	- Use an appropriate meter	
		Accidents due to poor traffic regulation	H	- Install traffic signs in the work zone	
		Accidents due to the type and way of using the equipment	M	- Equipment and how to use must be by the standard	
	Compression	Accidents due to poor traffic regulation	E	- Traffic settings must be by the standard, - Provide coverage in the work zone	
		Accidents due to heavy equipment operations at the compaction site	E	- Operation of the machine is carried out by experienced heavy equipment operators	
	Watering	Health problems due to dust that arise during watering	H	- Use Personal Protective Equipment for Workers (helmets, masks, vests, gloves, safety shoes)	
B	Grained Pavement	Injured due to improper use of steel meter and does not meet standards	L	- Measuring instruments used are by standards, measurements are made by skilled and experienced workers and wear standard work equipment	
	Measurement and benchmarking	Accident due to being hit by a passing vehicle	H	- Installation of traffic signs and assigning traffic control flags	
		Wounded when installing a stake and hammered	M	- The stake used is too long and the hammer used is disproportionate	
		Vehicle traffic disruption occurred	H	- Installation of temporary safety traffic signs and a traffic control officer	
2	Stripping	Accidental stripping fell into a dug hole	M	- Install safety and limit the excavation area with a safety fence.	
		There was traffic disruption to the surrounding population	H	- Preparing temporary roads for local residents	
		An accident occurred due to the remnants of stripping due to improper disposal or cleaning of the stripping site	M	- Trucks for transporting waste materials must be closed	
		Injured due to improper operation of machine	M	- Before using the heavy equipment, the suitability must be checked, the operator must...	
Number	Activities	Potential Risks	Risk Category	Risk Control	
--------	------------	-----------------	---------------	--------------	
				be skilled and experienced and the method of operating the tool must be in accordance with the regulations.	
Vehicle traffic disruption occurred	H	- Provided entry and exit for residents.			
Accidents due to dugouts filled with stagnant water	E	- Keeping the excavation in dry condition			
3 Overlay	There is irritation of the skin and lungs due to dry aggregate dust	M	- The aggregate that has been spread before closing is watered		
	There was an accident when the dump truck unloaded the aggregate	M	- The operation of a dump truck must be carried out by skilled and experienced personnel, and maintained so that no other interested person is near the dump truck that is unloading the aggregate		
	Injured by grader due to improper operation	M	- The spreader operator must be skilled and experienced and the grader operation must be carried out		
An accident occurred due to being hit by vehicle traffic	H	- Installation of signs and traffic control officers			
There was an accident due to temporary stockpiling of materials	M	- Material hoarding must be in a safe place or material to be spread immediately			
4 Compression	There is irritation of the skin and lungs by dust on dry compaction	M	- The spread must be watered before compacting		
Vehicle traffic disruption occurred	H	- Installation of traffic signs and assignment of traffic control flag officers			
There was traffic disruption to the surrounding population	H	- Construction of temporary roads for local residents			
Injured due to improper operation of the grader	M	- Check the suitability of the compactor, the operator must be skilled and experienced and the operation of the compactor must be correct			
5 Watering	Health problems occur because the water used for watering is not health	L	- Water used for watering must be by the provisions (not smell bad, etc)		
Installation of traffic signs and assignment of traffic control flag officers	M	- There was an accident in the operation of the sprinklers (Water Tanker)			
An accident hit by vehicle traffic	H	- Installation of traffic signs and assignment of traffic control flag officers			
C Asphalt Pavement, Laston Layer Wear Modification (AC-WC Mod)					
1 Measurement benchmarking and Accident or hit by a passing vehicle	H	- Measurements must be made using a meter that complies with the standard. The measuring staff must wear gloves that comply with the standard			
Accident or hit by a passing vehicle	H	- Installation of traffic signs and assigning traffic control flags			
Number	Activities	Potential Risks	Risk Category	Risk Control	
--------	------------	----------------	---------------	--------------	
	There was a disruption to vehicle traffic		H	- Must be installed temporary traffic signs and assigned by traffic control officers	
	Irritation of the skin, eyes and lungs due to dry dust		L	- Wounded by splashing hot asphalt	
	Wounded by Compressor long time sweeping the pavement		M	- Compressor workers or operators must be skilled and experienced in their field	
	There was a disruption to vehicle traffic		H	- Installing temporary signs and controlling traffic to keep going smoothly by doing the ½ part work first.	
	Spraying	Wounded by hot asphalt splash		H	- Burners must wear clothing and equipment (boots, gloves and masks) that comply with the standard
	There is irritation to the eyes, skin and lungs due to steam and heat from the asphalt		M	- Use goggles and a mask to prevent eye and lung irritation from smoke and heat from flames and asphalt	
	Vehicle traffic disruption		H	- Installing temporary signs and controlling traffic to keep going smoothly by doing a ½ part job first.	
	Overlay	Wounded by hot asphalt splash		M	- Burners must wear clothing and equipment (boots, gloves and masks) that comply with the standard
	There is irritation to the eyes, skin and lungs due to steam and heat from the asphalt		M	- Use goggles and a mask to prevent eye and lung irritation from smoke and heat from flames and asphalt	
	There was a traffic disrupt		H	- Installing temporary signs and controlling traffic to keep going smoothly by doing the ½ part work first.	
	Compression	Wounded by hot asphalt splash		M	- Burners must wear clothing and equipment (boots, gloves and masks) that comply with the standard
	Wounded by the asphalt compactor (Tandem Roller and Pneumatic Tire Roller)		M	- Keeping no outsiders or other workers in the compaction area when the asphalt compactor (Tandem) works to compact the Hotmix at the job site	
	There was a traffic disrupt		H	- Installing temporary signs and controlling traffic to keep going smoothly by doing the ½ part work first.	

In Table 9. The results of the recapitulation using the FTA method, describe each activity with the potential risk, risk value, risk category, risk control carried out.

4. **Conclusion**
Based on the research that has been done, it can be concluded as follows:
1. The dominant occupational hazard potential category value is H which means High Risk requiring parties to provide training by High Risk management, scheduling corrective actions as soon as possible.

2. The occupational hazard potential category values out of 52 potential hazards are 5 Extreme Risk, 21 High Risk, 20 Moderate Risk, and 6 Low Risk. The dominant occupational hazard potential category value is High Risk.

References

(1) A. Budilukito, and A. T. Mulyono. 2016. “Contractors' Readiness to National Road Preservation Policies in South Sumatra”. HPJI Journal Vol. 2 July 2016: 133-142

(2) Ministry of Public Works, Directorate of Road Preservation, January 2016 Implementation of Long Segment Road Preservation, Bandung

(3) Ministry of Public Works, 2011 "Procedures for Road Maintenance and Surveillance” Regulation of the Minister of Public Works Number 13 / PRT / M / 2011, Jakarta

(4) Ministry of Public Works, 2006 “Construction and Building Guidelines”, Guidelines for the Implementation of Occupational Safety and Health (K3) for Road and Bridge Construction. Jakarta

(5) Minister of Manpower Regulation Number 05 of 1996 concerning Occupational Safety and Health Management Systems (SMK3)

(6) AS/NZS 4360, 3rd Edition The Australian And New Zeland Standard on Risk Management, Broadleaf Capital International Pty Ltd, NSW Australia

(7) Australian Safety and Compensation Council. 2006. Work Related Fatigue Summary of Recent Indicative Research. Australia: Australian Government

(8) OSHAS 18001. 2007. Occupational Health and aSafety Management System – Requirement