Colorectal cancer surveillance in inflammatory bowel disease: A critical analysis

Devendra Desai, Nutan Desai

Abstract

Colonoscopic surveillance is advocated in patients with inflammatory bowel disease (IBD) for detection of dysplasia. There are many issues regarding surveillance in IBD: the risk of colorectal cancer seems to be decreasing in the majority of recently published studies, necessitating revisions of surveillance strategy; surveillance guidelines are not based on concrete evidence; commencement and frequency of surveillance, cost-effectiveness and adherence to surveillance have been issues that are only partly answered. The traditional technique of random biopsy is neither evidence-based nor easy to practice. Therefore, highlighting abnormal areas with newer technology and biopsy from these areas are the way forward. Of the newer technology, digital mucosal enhancement, such as autofluorescence imaging, endomicroscopy and endocytoscopy need further evidence. Surveillance with genetic markers (tissue, serum or stool) is at an early stage. This article discusses changing epidemiology of colorectal cancer development in IBD and critically evaluates issues regarding colonoscopic surveillance in IBD.

Key words: Advanced imaging; Chromoendoscopy; Colorectal cancer; Colorectal cancer surveillance; Inflammatory bowel disease

Core tip: There is an increase in the risk of colorectal cancer in patients suffering from inflammatory bowel disease. Recent studies have suggested that this risk may be decreasing. In view of the risk, colonoscopic surveillance is recommended in order to detect cancer early. Instead of using previous methods of colonoscopy and random biopsy, newer technology such as chromoendoscopy and biopsy from abnormal mucosa is preferable.

Desai D, Desai N. Colorectal cancer surveillance in inflammatory bowel disease: A critical analysis. World J Gastrointest Endosc 2014; 6(11): 541-548. Available from: URL: http://www.wjgnet.com/1948-5190/full/v6/i11/541.htm DOI: http://dx.doi.org/10.4253/wjge.v6.i11.541

CHANGING EPIDEMIOLOGY OF COLORECTAL CANCER IN INFLAMMATORY BOWEL DISEASE

The risk of colorectal cancer (CRC) in patients with inflammatory bowel disease (IBD) was recognized as far back as 1925 for ulcerative colitis (UC) and 1948 for...
Crohn’s disease (CD)\(^{[1,2]}\). In the second half of the last century, attempts were made to quantify the actual risk of CRC in this population. Earlier studies, mainly in UC patients, tended to overestimate the risk, with cumulative cancer rates reported ranging from 16% to 43%\(^{[3-7]}\). A widely cited meta-analysis of 116 studies with age stratified data by Eaden et al\(^{[8]}\) in 2001 estimated CRC risk as 2% at 10 years, 8% at 20 years and 18% at 30 years. In 2006, two landmark studies suggested a decreasing trend of CRC in IBD. Jess et al\(^{[9]}\) reported a population-based estimate of CRC in IBD from Olmsted County, Minnesota, US. They reported that the risk of CRC was not increased in UC as compared to the general population (standardized incidence rate (SIR) 1.1; 95%CI: 0.4-2.4), but the risk of CRC was increased in CD (SIR 1.9; 95%CI: 0.7-4.1); the cumulative cancer risk was 2% at 20 years. The other study by Rutter et al\(^{[10]}\) from St. Marks Hospital, United Kingdom, reported a CRC risk of 2.5% at 20 years, 7.6% at 30 years and 10.8% at 40 years, which was less than that reported by Eaden et al\(^{[8]}\). The lower risk of CRC was confined to a location proximal to the splenic flexure, but not at other locations. There were two subsequent meta-analyses. The study by Jess et al\(^{[11]}\) in 2012 shortlisted eight population-based studies from 1958 to 2004 and reported a risk of 1.6% in patients with UC over 14 years of follow-up; UC increased the risk of CRC 2.4-fold (pooled SIR 2.4, range: 1.05-3.1; 95%CI: 2.1-2.7). The meta-analysis by Lugens et al\(^{[12]}\) also shortlisted eight studies from 1988 to 2009 and reported that the risk of CRC was increased in IBD, but was not as high as reported in earlier studies; the pooled SIR was 1.7 (CI: 1.2-2.2). Two recent studies came to different conclusions. In a population-based study from Denmark, Jess et al\(^{[13]}\) suggested that the risk of colon cancer in UC is not as high as previously reported and in fact may not differ from the general population. To the contrary, Herrinton et al\(^{[14]}\) showed that the risk of CRC in UC is 60% higher than in age- and gender-matched cohorts of people without IBD from California, and the risk remained the same throughout the study period of 14.5 years. Studies from Asia on CRC in UC are few, and report that the likelihood ranges from 0.87% to 1.8% in general, and can be as high as 13.5% in patients with extensive colitis\(^{[15-21]}\).

The risk of CRC in CD was initially underestimated because of failure to evaluate cases of colitis as a separate risk group and to account for the effect of early colectomy. It is now established that patients with colonic or ileocolonic CD have an increased risk of CRC compared to the general population. A meta-analysis of 12 population- and hospital-based studies published in 2006 confirmed an overall relative risk (RR) of 2.5 (95%CI: 1.3-4.7) and an RR of 4.5 in those with colonic CD (95%CI: 1.3-14.7)\(^{[13]}\). The risk for those with ileal disease only was the same as the general population. Regardless of disease distribution, the cumulative risk of CRC was 2.9% after 10 years, 5.6% after 20 years, and 8.3% after 30 years of disease.

Thus, the risk of CRC is increased in IBD, though there is variation due to various factors such as referral center bias, population- or hospital-based data, and small numbers of patients. Prevalence rates of CRC in UC vary from 0.7% to 3.3%\(^{[22-26]}\) and the cumulative risk is 1%, 2% and 5% for 10, 20, and > 20 years of disease duration, respectively, and a pooled SIR of 1.7 in all patients with IBD in population-based studies\(^{[13]}\). Table 1 summarizes the risk of CRC in IBD in various population groups. The surveillance strategy needs to take into account this decreasing risk of CRC in IBD.

GUIDELINES FOR SURVEILLANCE OF CRC IN IBD

Guidelines by various societies suggest that surveillance for CRC should begin after 8-10 years of disease duration. The guidelines include those from the American Gastroenterological Association (AGA; 2004 and 2010), Association of Coloproctology for Great Britain and Ireland (2004 and 2010), British Society of Gastroenterology (BSG; 2002 and 2010), National Institute for Health and Clinical Excellence (2011), European Crohn’s and Colitis Organization (2013), and Australian (2011) and Austrian societies\(^{[29-34]}\). Table 2 summarizes the guidelines with changes over time. The salient features of the guidelines include that surveillance is advised 8-10 years after the onset of symptoms, irrespective of the extent (surveillance is not advised in patients with proctitis and proctosigmoiditis). The frequency of surveillance varies amongst the guidelines: AGA guidelines initially suggest surveillances every 1-2 years, and if two examinations are negative, then every 1-3 years up to the end of the second decade, after which the surveillance is again every 1-2 years. In the BSG guidelines, the frequency of surveillance depends upon the risk. Lower risk requires surveillance every 5 years, which includes extensive colitis with no endoscopic or histologic inflammation, left-sided colitis or crohn’s colitis (involving < 50% colon). Surveillance every three years is recommended for intermediate risk, which includes extensive colitis with mild active endoscopic, histologic inflammation, post inflammatory polyps, or family history of CRC in first-degree relatives over 50 years of age. Yearly surveillance is needed for those with higher risk, including extensive colitis with moderate or severe endoscopic or histologic inflammation, stricture or dysplasia in the past five years where patients have declined surgery, primary sclerosing cholangitis, or family history of CRC in a first-degree relative less than 50 years of age (surveillance yearly). The method of surveillance also varies, from random biopsy every 10 cm, which is still advocated, though the preferred method is to use chromoendoscopy and magnification and take biopsies from the abnormal areas.

Comparison of American and British guidelines

Mooiweert et al\(^{[35]}\) from the Netherlands compared the American and British guidelines in a retrospective study of 1018 patients. They concluded that BSG surveillance intervals offer the advantage of a lower colonoscopic
Table 1 Risk of colorectal cancer in inflammatory bowel disease

Ref.	Type of study	Risk in UC	Risk in CD	Odds ratio (95%CI)	Comments
Eaden et al[8] 2001	Meta-analysis 116 studies; 41 mentioned duration of UC	3.7%	NA	SIR UC: 1.1 (0.4-2.4) CD: 1.9 (0.7-4.1)	CRC risk in UC reduced over three decades and comparable to general population; CD no change
Jess et al[9] 2006	Population-based	6/378 (1.6%)	6/314 (1.9%)	NA	Cumulative cancer risk 2% at 20 yr, 7.6% at 30 yr, 10.8% at 40 yr
Rutter et al[10] 2006	Hospital-based retrospective	3/600 (0.5%)	NA	NA	Risk of in patients with UC over different from the general population during the period 1999-2008 (RR 0.8). There is no systematic surveillance.
Jess et al[11] 2012	Meta-analysis of 8 population-based (1958-2004)	1.6%	(14 yr follow-up)	NA	Pooled SIR: 2.4 (2.1-2.7)
Lutgens et al[12] 2013	Meta-analysis (1988-2009)				
Herrinton et al[13] 2012	Hospital-based	UC 53 /10895	CD 29/5603	UC: 1.6 (1.3-2.0) CD: 1.6 (1.2-2.0)	CRC risk in UC and CD 60% higher than population
Asian studies					
Gilat et al[14] 1988	Population-based (central Israel)			NA	CRC risk in UC: 0.2% at 10 yr, 5.5% at 20 yr, 13.5% at 30 yr
Kochhar et al[15] 1992	Hospital-based (India)	UC 1.8%	NA		
Venkataraman et al[16] 2005	Hospital-based (India)	UC 0.94%			
Kim et al[17] 2009	Population-based (South Korea)	UC 0.50%			
Kekilli et al[18] 2010	Hospital-based (Turkey)	UC 1.10%			
Gorg et al[19] 2012	Hospital-based (China)	UC 0.87%			

CD: Crohn’s disease; FH: Family history; IBD: Inflammatory bowel disease; NA: Not applicable; PSC: Primary sclerosing cholangitis; RR: Relative risk; SIR: Standardized incidence rate; UC: Ulcerative colitis.

ISSUES WITH SURVEILLANCE

Is surveillance really necessary?

Most of the above guidelines suggest that surveillance is recommended based on the high risk of CRC in IBD[8]. However, a recent study by Jess et al[11] suggested that the incidence of CRC in UC in a Danish population decreased over 30 years (1979-2008), and the risk was not different from the general population during the period of 1999-2008 (RR 0.8). There is no systematic surveillance in Denmark. In their population-based study from patients in the US, Jess et al[11] reported no overall increase in CRC in all UC patients but only in patients with extensive colitis. A Danish article commented that, based on Danish epidemiologic data, the American and British recommendations were dubious and surveillance may be recommended in patients with extensive, uncontrolled inflammation and patients with primary sclerosing cholangitis, and not on the disease duration[10]. Thus, although surveillance is recommended by all societies, routine surveillance may not be beneficial and surveillance strategies should be reviewed due to the reduction in risk of CRC in UC.

When should surveillance begin?

The guidelines suggest that surveillance for CRC should begin after 8-10 years of disease duration. However, if these recommendations are followed, CRC is likely to be missed. In the study by Gilat et al[15], 2/26 patients who developed CRC in UC had a disease duration less than ten years (six and nine years)[10]. The cumulative risk of CRC in the first decade was 1.15% in the study by Gong et al[11], and 1.6% in the meta-analysis by Eaden et al[8]. Lutgens et al[12] reported that 15% of their patients with UC developed CRC before the recommended surveillance period. Kocher et al[10] reported that 2/8 patients developed CRC at seven and eight years of disease duration. Thus, we are faced with a dilemma: on one hand, the incidence seems to be decreasing, whereas on the other hand, we are likely to miss about 15%-20% of patients who develop CRC before the recommended commencement of surveillance.

workload (421 colonoscopies as per BSG guidelines and 541 colonoscopies as per AGA guidelines). However, the risk stratification of the AGA appears superior in distinguishing patients at higher risk of colitis-associated neoplasia (AGA: 5.3 and 20.3% in low and high risk groups, respectively; BSG: 3.6, 6.9 and 10.8% in low, intermediate and high-risk groups, respectively).

CD: Crohn’s disease; FH: Family history; IBD: Inflammatory bowel disease; NA: Not applicable; PSC: Primary sclerosing cholangitis; RR: Relative risk; SIR: Standardized incidence rate; UC: Ulcerative colitis.
ROLE OF NEWER MODALITIES FOR SURVEILLANCE IN IBD

There are clear lapses in the present form of colonoscopic surveillance. The random biopsy technique is not very useful for detecting dysplasia. In a retrospective analysis of 11772 biopsies in 466 colonoscopies in 167 patients over ten years, this technique had a much lower yield of dysplasia as compared to targeted biopsies and did not significantly change the management. Two retrospective studies have shown that dysplasia in IBD is macroscopically visible in 72%-77% of patients. Based on a single retrospective study, high-definition endoscopy is three times more likely to detect dysplastic lesions as compared to standard-definition endoscopy.

Chromoendoscopy and magnification chromoendoscopy have been used for the detection of dysplastic lesions that are likely to be missed by white light endoscopy. A meta-analysis of six studies showed that the yield with chromoendoscopy was 7% greater than that of white light endoscopy, and the pooled increase in targeted dysplasia detection of chromoendoscopy over white light endoscopy was 44% (95% CI: 28.6-59.1). The difference in detection of flat dysplastic lesions was 27% (95% CI: 11.2-41.9). Chromoendoscopy has been incorporated in the recent guidelines.

Dyeless chromoendoscopy includes compound-band imaging and narrow-band imaging, which fails to detect dysplasia in patients with IBD and has not been recommended for surveillance in its present form. Digital chromoendoscopy includes i-Scan and Fuji intelligent chromoendoscopy, which have not been studied in clinical trials in IBD patients to detect dysplasias. They have been used to detect adenomas in surveillance programs in CRC in a non-IBD population, where only i-Scan demonstrated some positive results. Studies using autofluorescence imaging have shown that it is a sensitive modality to detect dysplastic lesions in IBD. Confocal laser endomicroscopy and endocytoscopy allow for magnification of up to 1390-fold. Confocal laser endomicroscopy detects more dysplasia than white light and chromoendoscopy, but requires special training and takes twice as much time. Table 3 summarizes the important features of these modalities.

Although the pathogenesis of CRC in IBD differs from sporadic CRC, polyposis syndromes and hereditary non-polyposis colon cancers, the pathways include chromosomal instability, microsatellite instability and CpG island methylation pathways. Tissue-based markers, such as aneuploidy, p53, and microsatellite instability, are associated with the development of dysplasia or CRC. They cannot be included in the guidelines for surveillance for CRC in IBD at present.

NON-COLONOSCOPIC APPROACHES FOR CANCER SURVEILLANCE IN IBD

Non-colonoscopic techniques that are noninvasive are...
Adherence of physicians and patients to surveillance colonoscopy

There is a wide variation in conducting colonoscopic surveillance by gastroenterologists. Eaden et al. reported that all British gastroenterologists perform colonoscopic surveillance in pancolitis, but only 24% practiced surveillance in left-sided colitis, and only 2% took more than 20 biopsies. In a survey from the Netherlands, 95% of gastroenterologists performed colonoscopic surveillance in UC and 65% in CD; a majority (73%) of gastroenterologists took fewer than 30 biopsies, and only 27% followed AGA guidelines. From this and similar data, it is clear that the concept of colonoscopic surveillance is accepted by gastroenterologists in general, but there are lapses in the frequency of surveillance and in taking the requisite number of biopsies. Targeted biopsies may reduce this problem. Friedman et al. studied patient-related factors in colonoscopic surveillance and reported that only one-fourth of their patients underwent surveillance colonoscopy at an interval of less than three years; the factors related to non-adherence were logistics, health perceptions, stress regarding procedure, job or personal life, and procedural problems. The most frequent patient-related reason was difficulty with bowel preparation.

Table 3 Endoscopic dysplasia-detection modalities in patients with inflammatory bowel disease and recommendations for use[59]

Demonstrated accuracy in IBD	Supporting evidence in IBD	Incorporated into guidelines	Practicability of use in practice	Should be used in 2013?
Random biopsy	-	+	±	±
HD WLE	+	±	+	+
Chromoendoscopy	+	+	+	+
NBI	-	-	±	-
FICE	NA	NA	±	-
i-Scan	NA	NA	±	-
AFI	+	+	-	-

AFI: Auto-fluorescence imaging; HD WLE: High-definition white light endoscopy; FICE: Fuji intelligent chromoendoscopy; IBD: Inflammatory bowel disease; NA: Not available; NBI: Narrow-band imaging. Reproduced with permission.

Conclusions

Should surveillance be continued in same way today or should we change it? It is clear that colonoscopic surveillance in the present form is neither an ideal nor practical approach. We feel that in the light of new data, the guidelines need to be re-examined. The surveillance should likely begin at six years after the onset of symptoms. It should consist of high-definition white light endoscopy with magnification chromendoscopy and with targeted, rather than random, biopsies. The frequency of surveillance is not clear. In view of the recent comparison of American and British guidelines, further studies are necessary to decide frequency of surveillance. At present, British guidelines are useful, considering the fact that the risk of CRC is decreasing in UC. But there are ambiguities in both guidelines. As the technology evolves, it should be incorporated in surveillance (after considering cost-effectiveness): digital chromoendoscopy seems to come close to this. Other new technologies seem many years away.

References

1. Crohn B, Rosenberg H. The sigmoidsopic picture of chronic ulcerative colitis (non-specific). Am J Med Sci 1925; 170: 220-227 [DOI: 10.1097/0000441-19250810-00006]
2. Warren S, Sommers SC. Cicatrizing enteritis as a pathologic entity; analysis of 120 cases. Am J Pathol 1948; 24: 475-501

More appealing to patients than the repeated invasive colonoscopic approach, with the potential to reduce the high cost associated with surveillance. Stool examination has been used for surveillance for sporadic CRC and stool DNA testing has recently been incorporated into clinical practice. Studies by Kisiel and others suggest that stool DNA testing is feasible to detect CRC in patients with IBD. Although this approach is not recommended for surveillance at present, it has the potential to radically change the approach to surveillance.

Is surveillance effective? Does surveillance save lives? Is it cost-effective?

Multiple case series and case control studies have suggested that surveillance leads to improvement in survival in UC, which was not supported by a Cochrane systematic review. The data from the Cochrane analysis suggest that there is no clear evidence that surveillance colonoscopy prolongs survival in patients with extensive colitis. In patients undergoing surveillance, CRC is detected at an earlier stage, which may lead to a better prognosis (which may actually be due to lead-time bias). Surveillance may be effective in reducing the risk of death and may be cost-effective. These findings have to be taken with the facts that these pivotal studies were in the 1990s, and the Cochrane analysis was in 2004. Studies showing a reduction in CRC have been published after these studies and this analysis may not hold true in the situation with CD. We feel that in the light of new data, the guidelines need to be re-examined. The surveillance should likely begin at six years after the onset of symptoms. It should consist of high-definition white light endoscopy with magnification chromendoscopy and with targeted, rather than random, biopsies. The frequency of surveillance is not clear. In view of the recent comparison of American and British guidelines, further studies are necessary to decide frequency of surveillance. At present, British guidelines are useful, considering the fact that the risk of CRC is decreasing in UC. But there are ambiguities in both guidelines. As the technology evolves, it should be incorporated in surveillance (after considering cost-effectiveness): digital chromoendoscopy seems to come close to this. Other new technologies seem many years away.
Desai D et al. Colorectal cancer surveillance in IBD

3 Devroede GJ, Taylor WF, Sauer WG, Jackman RJ, Stickler GB. Cancer risk and life expectancy of children with ulcerative colitis. N Engl J Med 1971; 285: 17-21 [PMID: 5098967 DOI: 10.1056/NEJM197107022850103]

4 de Dombal FT, Watts JM, Watkinson G, Goligher JC. Local complications of ulcerative colitis. Stricture, pseudopolyps and cancer of the colon and rectum. Am J Proctol 1967; 18: 201-201 [PMID: 6046369]

5 Stanley G, Brooke BN. Cancer in ulcerative colitis. Lancet 1959; 2: 694-698 [PMID: 13851608 DOI: 10.1016/S0140-6736(59)90830-4]

6 Lindberg B, Persson B, Veress B, Engelman-Sundberg H, Granqvist S. Twenty years’ colonoscopic surveillance of patients with ulcerative colitis. Detection of dysplastic and malignant transformation. Scand J Gastroenterol 1996; 31: 1195-1204 [PMID: 8976012 DOI: 10.3109/0036552960936910]

7 Broström O, Löfberg R, Nordenval B, Ost A, Hellers G. The risk of colorectal cancer in ulcerative colitis. An epidemiologic study. Scand J Gastroenterol 1987; 22: 1193-1199 [PMID: 3433007 DOI: 10.3109/0036552870989463]

8 Eaden JA, Abrams KR, Mayberry JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 2001; 48: 526-535 [PMID: 11247988 DOI: 10.1136/gut.48.4.526]

9 Jess T, Toussaint E, Peyrin-Biroulet L. Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clin Gastroenterol Hepatol 2012; 10: 639-645 [PMID: 22289873 DOI: 10.1016/j.cgh.2012.01.010]

10 Rutten MD, Saunders BP, Wilkinson KH, Rumbles S, Schofield G, Kamm MA, Williams CB, Price AB, Talbot IC, Forbes A. Thirty-year analysis of a colonoscopic surveillance program for neoplasia in ulcerative colitis. Gastroenterology 2006; 130: 1039-1046 [PMID: 16618397]

11 Jess T, Rungec C, Peyrin-Biroulet L, Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Gut 2006; 55: 1030-1038 [PMID: 16618396]

12 Rutten MD, Saunders BP, Wilkinson KH, Rumbles S, Schofield G, Kamm MA, Williams CB, Price AB, Talbot IC, Forbes A. Thirty-year analysis of a colonoscopic surveillance program for neoplasia in ulcerative colitis. Gastroenterology 2006; 130: 1030-1038 [PMID: 16618396]

13 Jess T, Rungec C, Peyrin-Biroulet L, Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Gut 2006; 55: 1030-1038 [PMID: 16618396]

14 Rutten MD, Saunders BP, Wilkinson KH, Rumbles S, Schofield G, Kamm MA, Williams CB, Price AB, Talbot IC, Forbes A. Thirty-year analysis of a colonoscopic surveillance program for neoplasia in ulcerative colitis. Gastroenterology 2006; 130: 1030-1038 [PMID: 16618396]

15 Jess T, Rungec C, Peyrin-Biroulet L, Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Gut 2006; 55: 1030-1038 [PMID: 16618396]

16 Rutten MD, Saunders BP, Wilkinson KH, Rumbles S, Schofield G, Kamm MA, Williams CB, Price AB, Talbot IC, Forbes A. Thirty-year analysis of a colonoscopic surveillance program for neoplasia in ulcerative colitis. Gastroenterology 2006; 130: 1030-1038 [PMID: 16618396]

17 Jess T, Rungec C, Peyrin-Biroulet L, Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Gut 2006; 55: 1030-1038 [PMID: 16618396]

18 Rutten MD, Saunders BP, Wilkinson KH, Rumbles S, Schofield G, Kamm MA, Williams CB, Price AB, Talbot IC, Forbes A. Thirty-year analysis of a colonoscopic surveillance program for neoplasia in ulcerative colitis. Gastroenterology 2006; 130: 1030-1038 [PMID: 16618396]

19 Jess T, Rungec C, Peyrin-Biroulet L, Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Gut 2006; 55: 1030-1038 [PMID: 16618396]

20 Rutten MD, Saunders BP, Wilkinson KH, Rumbles S, Schofield G, Kamm MA, Williams CB, Price AB, Talbot IC, Forbes A. Thirty-year analysis of a colonoscopic surveillance program for neoplasia in ulcerative colitis. Gastroenterology 2006; 130: 1030-1038 [PMID: 16618396]
Meta-analysis: the diagnostic yield of chromoendoscopy for detecting dysplasia in patients with colonic inflammatory bowel disease.

Subramanian V, van der Meulen AE, van Bodegraven AA, Jansen JM, Mahmood N, Nijsten J, van Oijen MG, Siersema P, van den Broek FJ, Stolte M, Österberg M, Rutter MD. Surveillance colonoscopy with targeted biopsies vs random biopsy vs targeted biopsy protocols. A 15-year follow-up study. *Gastroenterology* 2013; 144: 711-721 [PMID: 23735110 DOI: 10.1053/j.gastro.2013.03.008]

Kalsse J, Langholz E, Frisch M, Bjerrum JT, Nielsen OH. [Development of colorectal cancer in ulcerative colitis]. *Ugeskr Laeger* 2010; 172: 2960-2962 [PMID: 21040676]

Lutgens MW, Vleggaar FP, Schipper ME, Stokkers PC, van der Woude CJ, Hommes DW, de Jong DJ, Dijkstra G, van Bodegraven AA, Oldenburg B, Samsom M. High frequency of early colorectal cancer in inflammatory bowel disease. *Gut* 2008; 57: 1246-1251 [PMID: 18337222 DOI: 10.1136/gut.2007.143453]

van den Broek FJ, Stokkers PC, Reitsma JB, Boltjes RP, Ponsioen CY, Fockens P, Dekker E. Random biopsies taken during colonoscopic surveillance of patients with long-standing ulcerative colitis: low yield and absence of clinical consequences. *Am J Gastroenterol* 2014; 109: 715-722 [PMID: 24247710 DOI: 10.1038/ajg.2013.93]

Nayyarmon S, Marion JP. Surveillance in inflammatory bowel disease: chromoendoscopy and digital mucosal enhancement. *Gastrointest Endosc Clin N Am* 2013; 23: 679-694 [PMID: 23735110 DOI: 10.1016/j.giec.2013.03.008]

Rutter MD, Saunders BP, Wilkinson KH, Kamm MA, Williams CB, Forbes A. Most dysplasia in ulcerative colitis is visible at colonoscopy. *Gastrointest Endosc* 2004; 60: 334-339 [PMID: 15332019]

Rubin DT, Rotte JA, Hetzel JT, Cohen RD, Hanauer SB. Are dysplasia and colorectal cancer endoscopically visible in patients with ulcerative colitis? *Gastrointest Endosc* 2007; 65: 998-1004 [PMID: 17451704 DOI: 10.1016/j.gie.2006.09.025]

Subramanian V, Ramappa V, Telakis E, Mannath J, Hawkey CJ, Ruganath K, Hawkey CJ. Comparison of high definition with standard white light endoscopy for detection of dysplastic lesions during surveillance colonoscopy in patients with colonic inflammatory bowel disease. *Inflamm Bowel Dis* 2013; 19: 350-355 [PMID: 22529248 DOI: 10.1002/ibd.23000]

Subramanian V, Mannath J, Ruganath K, Hawkey CJ. Meta-analysis: the diagnostic yield of chromoendoscopy for detecting dysplasia in patients with colonic inflammatory bowel disease. *Aliment Pharmacol Ther* 2011; 33: 304-312 [PMID: 21128987 DOI: 10.1111/j.1365-2036.2010.04525.x]

Fusco V, Ebert B, Weber-Eibel J, Jost C, Fleige B, Stolte M, Oberhuber G, Rinneberg H, Lochs H, Ortner M. Cancer prevention in ulcerative colitis: long-term outcome following fluorescence-guided colonoscopy. *Inflamm Bowel Dis* 2012; 18: 489-495 [PMID: 21648021 DOI: 10.1002/ibd.21703]

Messmann H, Ender F, Freunck E, Rümmelke P, Schlümmer J, Knüchel R. Fluorescence endoscopy for the detection of low and high grade dysplasia in ulcerative colitis using systemic or local 5-aminolaevulinic acid sensitisation. *Gut* 2003; 52: 1003-1007 [PMID: 12801958 DOI: 10.1136/gut.52.7.1003]

Günther U, Kusch D, Heller F, Bürgel N, Leonhardt S, Daum S, Siegmund B, Loddenkemper C, Grünaubm B, Buhr HJ, Schulzke JD, Zeitz M, Bojarcki S. Colonoscopy surveillance in patients with inflammatory bowel disease: comparison of random biopsy vs targeted biopsy protocols. *Int J Colorectal Dis* 2011; 26: 667-672 [PMID: 21279369 DOI: 10.1007/s00384-011-1130-y]

Rex DK, Johnson DA, Anderson JC, Schoenfeld PS, Burke CA, Inadomi JM. American College of Gastroenterology guidelines for colorectal cancer screening 2009 [corrected]. *Am J Gastroenterol* 2009; 104: 759-790 [PMID: 19204069 DOI: 10.1038/ajg.2009]

Kisiel JB, Yab TC, Nazer Hussain FT, Taylor WR, Garrity-Park MM, Sandborn WJ, Lofts E, Wolf B, Smyrk TC, Itzkowitz SH, Rubin DT, Zou H, Mahoney DW, Ahlquist DA. Stool DNA testing for the detection of colorectal neoplasia in patients with inflammatory bowel disease. *Aliment Pharmacol Ther* 2013; 37: 546-554 [PMID: 23347191 DOI: 10.1111/apt.12218]

Kisiel JB, Ahlquist DA. Stool DNA testing for cancer surveillance in inflammatory bowel disease: an early view. *Therap Adv Gastroenterol* 2013; 6: 371-380 [PMID: 24003338 DOI: 10.1177/1756283X13487941]

Eaden J, Abrams K, Ekboom A, Jackson E, Mayberh J. Colorectal cancer prevention in ulcerative colitis: a case-control study. *Aliment Pharmacol Ther* 2000; 14: 145-153 [PMID: 10651654 DOI: 10.1046/j.1365-2036.2000.00698.x]

Löfberg R, Broström O, Karlen F, Tribukait B, Ost A. Colonscopic surveillance in long-standing total ulcerative colitis—a 15-year follow-up study. *Gastroenterology* 1990; 99: 1021-1031 [PMID: 2394325]

Rosenstock E, Farmer RG, Petras R, Sivak MV, Rankin GB, Sullivan BH. Surveillance for colonic carcinoma in ulcerative colitis. *Gastroenterology* 1985; 89: 1342-1346 [PMID: 4054527]

Nugent FW, Haggitt RC, Gilpin FA. Cancer surveillance in ulcerative colitis. *Gastroenterology* 1991; 100: 1241-1248 [PMID: 2103371]

Jonsson B, Ahsgren L, Andersson LO, Sterling R, Rutegård J. Colorectal cancer surveillance in patients with ulcerative colitis. *Br J Surg* 1994; 81: 689-691 [PMID: 8044548]

Karlen P, Kornfeld D, Broström O, Löfberg R, Persson PG, Ekboom A. Is colonscopic surveillance reducing colorectal cancer mortality in ulcerative colitis? A population based case control study. *Gut* 1998; 42: 711-714 [PMID: 9659169 DOI: 10.1136/gut.42.5.711]

Choi PM, Nugent FW, Schouten DJ, Silverman ML, Haggitt RC. Colonscopic surveillance reduces mortality from colorectal cancer in ulcerative colitis. *Gastroenterology* 1993; 105: 418-424 [PMID: 8335197]

Lashner BA, Turner BC, Bostwick DG, Frank PH, Hanauer SB. Dysplasia and cancer complicating strictures in ulcerative colitis. *Dig Dis Sci* 1990; 35: 349-352 [PMID: 2307080 DOI: 10.1007/BF01357413]

Mpofu C, Watson AJ, Rhodes JM. Strategies for detecting colon cancer and/or dysplasia in patients with inflammatory bowel disease. *Cochrane Database Syst Rev* 2004; (2): CD000279 [PMID: 15106148]

Eaden JA, Ward BA, Mayberry JF. How gastroenterologists screen for colorectal cancer in ulcerative colitis: an analysis of performance. *Gastrointest Endosc* 2000; 51: 123-128 [PMID: 11177718]
van Rijn AF, Fockens P, Siersema PD, Oldenburg B. Adherence to surveillance guidelines for dysplasia and colorectal carcinoma in ulcerative and Crohn’s colitis patients in the Netherlands. World J Gastroenterol 2009; 15: 226-230 [PMID: 19132774 DOI: 10.3748/wjg.15.226]

Friedman S, Cheifetz AS, Farraye FA, Banks PA, Makrauer FL, Burakoff R, Farmer B, Torgersen LN, Wahl KE. Factors that affect adherence to surveillance colonoscopy in patients with inflammatory bowel disease. Inflamm Bowel Dis 2013; 19: 534-539 [PMID: 23429444 DOI: 10.1097/MIB.0b013e3182802a3c]

P- Reviewer: Bau DT, Myrelid P, Pahlman LA S- Editor: Ji FF
L- Editor: AmEditor E- Editor: Zhang DN
