Aromatase deficiency rarely causes a 46,XX sexual differentiation disorder. The CYP19A1 gene encodes the aromatase enzyme which catalyses the conversion of androgens to oestrogens. In cases with 46,XX karyotype, mutations in the CYP19A1 gene can lead to disorders of sex development. Clinical findings in aromatase deficiency vary depending on the degree of deficiency. The effect of increased androgens, including acne, cliteromegaly and hirsutism, can be observed in mothers with placental aromatase deficiency. A decrease in maternal virilisation symptoms is observable in the postpartum period. It is rarely reported that there is no virilization in pregnancy. In this study, two 46,XX sibling having the p.R115X (c.343 C>T) novel pathogenic variant in the CYP19A1 gene and raised as different genders, with no maternal virilisation during pregnancy, are presented. In conclusion, 46,XX virilised females should be examined in terms of aromatase deficiency once congenital adrenal hyperplasia has been excluded, even if there is no history of maternal virilisation during pregnancy.

Keywords: 46,XX disorder of sex development, aromatase deficiency, CYP19A1 gene

Aromatase Deficiency in Two Siblings with 46,XX Karyotype Raised as Different Genders: A Novel Mutation (p.R115X) in the CYP19A1 Gene

Address for Correspondence: Tahir Atik MD, Ege University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Genetics, İzmir, Turkey
Phone: +90 232 390 12 30 E-mail: tahiratik@yahoo.com ORCID: orcid.org/0000-0002-1142-3872

Conflict of interest: None declared

Received: 20.09.2018
Accepted: 05.04.2019

Introduction

Aromatase deficiency is a rare autosomal recessive disorder caused by mutations in the CYP19A1 gene (1). The CYP19A1 gene encodes the aromatase enzyme which catalyses the conversion of androgens to oestrogens. In the affected 46,XX cases, clinical findings in the neonatal period vary between mild cliteromegaly and complete labioscrotal fusion due to differences in exposure to increased androgens in the intrauterine phase. An increase in virilisation at puberty or the non-appearance of secondary sex characteristics, are the main clinical features in the late period. Affected 46,XY cases have normal prepubertal growth. Delayed epiphyseal closure, eunuchoid body structure and a decrease in bone mineral density can be observed in both sexes (2). This study presents a novel pathogenic variant in the CYP19A1 gene in two 46,XX siblings raised as different genders.
Case Reports

Case 1

A 14-year-old patient who had been raised as a male was brought to the pediatric endocrinology clinic for undescended testis and hypospadias. Although parental consanguinity was not reported to be present, the family history revealed that they were living in a village of only 500 inhabitants. The patient’s mother, who was first pregnancy and primigravida, had no symptoms during pregnancy of excessive androgen production, such as hair loss, virilisation, or acne. On physical examination, height, weight, and phallus were measured to be 154.9 cm [standard deviation score (SDS): -2.5], 57 kg (SDS: -0.6), and 2 cm respectively. Breast tissue and palpable gonads were not detected. Prader stage 3, two urogenital openings and stage 2 pubic pilosity were also noted. On laboratory examination, bone age was 11 years. Gonadotropin concentrations were: follicle stimulating hormone (FSH) 70 mIU/mL (1.5-12.8 mIU/L); luteinizing hormone (LH) 30 mIU/mL (0.1-12 mIU/mL); free testosterone 0.9 pg/mL (0.8-1.4 pg/mL); and estradiol 22.9 pg/mL (7-60 pg/mL). Adrenocorticotropic hormone (ACTH), cortisol and 17-hydroxyprogesterone (17-OHP) were all found to be in the normal range. Pelvic ultrasonography (USG) revealed 19x14 mm right ovary and 15x12 mm left ovary and an absence of uterus. Karyotype was 46,XX and no variants were found in the SRY gene on fluorescence in situ hybridization (FISH) analysis. On laparoscopic examination normal-looking bilateral ovaries and a small uterus were observed. The biopsy findings of the right gonad were consistent with ovarian tissue and ovarian follicle cysts were observed. Sequence analysis of the SOX9 gene revealed no mutation. Clinical and laboratory findings of the patient suggested aromatase deficiency and a novel homozygous nonsense p.R115X (c.343 C>T) pathogenic variant was found on Sanger sequencing of the CYP19A1 gene (Figure 1A). Both parents were heterozygous for the same mutation (Figure 1C, 1D). There were no unusual clinical findings in the parents. The mutation found in the cases was predicted to be pathogenic by in silico analysis by Varsome program (https://varsome.com/).

The Institutional Council of Disorders of Sex Development decided that the case should be raised male on the ground of a more distinct male sexual identity. Salpingo-oophorectomy, hysterectomy and genitoplasty were performed. Intramuscular testosterone propionate and testosterone phenylpropionate treatments were administered with a 100 mg/month starting dose and gradually increased every six months. Oral estradiol hemihydrate treatment of 0.25 mg/day was initiated in the follow-up. At the age of 21, bilateral testicular prostheses were surgically implanted. During follow-up bone mineral densitometry showed early onset osteoporosis (L1-L4 bone mineral density Z score: -2,2) and oral calcium supplementation was given. Calcium, phosphorus, parathyroid hormone (PTH) and vitamin D concentrations were within normal limit. At the age of 22, weight, height, and phallus were measured to be 86.6 kg (SDS: 1.29), 173.5 cm (SDS: -0.43) and 7 cm respectively.

Case 2

The eight year-old sibling of Case 1, who had been raised as a female. On physical examination, height and weight were 125.5 cm (SDS: -0.3), 22.3 kg (SDS: -0.9) respectively. Phallus was measured to be 1 cm. There were no palpable gonads, two urogenital openings and stage 1 pubic pilosity were also noted. Pubertal development was found to be stage 2 according to Prader score. Similar to the other sibling, the bone age of Case 2 was found to be retarded (5 years 9 months). FSH concentration was 22 mIU/mL.
Clinical findings in aromatase deficiency vary depending on the retained proportion of enzyme function. Due to the effect of increased androgens caused by placental aromatase deficiency, acne, cliteromegaly and hirsutism can be observed in mothers carrying affected fetuses. A decrease in the symptoms of maternal virilisation is observed in the postpartum period (9). Placental aromatase activity of as little as 1-2% is reported to be protective against maternal virilisation during pregnancy (10). In the family presented here, the mother had no symptoms of excessive androgen production during pregnancy. Enzyme activity was not studied in the patients nor their mother. Marino et al (11) reported that maternal virilisation was also absent in their three cases with CYP19A1 mutations. During the follow-up period, phenotypic variability was determined among the affected patients. Two patients had a new mutation (c.574C>T). They found c.628G>A mutation in four of the six unrelated patients.

It has been reported that of 24 patients (12 males, 12 females) with proven CYP19A1 deficiency, 70% of the females had variable phenotype, such as cliteromegaly due to increased androgen levels in the intrauterine phase or complete labioscrotal fusion can be observed. It has been suggested that in aromatase-deficient prepubertal girls, an amplification of FSH signalling might occur in the presence of high intra-ovarian androgen production and be responsible for the development of ovarian follicular cysts (3). On the other hand, hypoplastic ovaries rather than enlarged ovaries in aromatase-deficient females have rarely been reported. Lin et al (13) and Akçurin et al (14) reported a few cases of aromatase deficiency with hypoplastic ovaries and uterus. Lin et al (13) suggested that the streak ovaries may be an inherent manifestation of CYP19A1 deficiency. Also, polycystic ovaries may appear in later periods depending on human chorionic gonadotropin stimulation. Cliteromegaly, hirsutism and acne can be seen in affected individuals with the non-appearance of secondary sex characteristics in the adolescence period (3). The studies have showed that loss of function mutations in the gene may result in various phenotypic changes, especially appearing in the pre-pubertal and pubertal period (11). In the study of Lin et al (13) it was demonstrated that human aromatase mutations may produce variable or “non-classic” phenotypes. They reported that low residual aromatase activity may be sufficient for the development of breast and uterus in adolescence, despite significant androgenization in the uterus. Such phenotypic variability can be further influenced by modifying factors such as
non-classical pathways of estrogen synthesis, variability in the core modifiers, or differences in androgen responses. The siblings presented in this study had been raised as different genders due to the appearance of their external genitalia and virilisation levels.

In aromatase deficiency, oestrogen replacement treatment regulates gonadotropin secretion, glucose metabolism and liver functions while reducing lipid and insulin levels (14,15). In our cases, lipid levels and glucose metabolism were found to be normal. However, decreased FSH and LH levels were observed with the oestrogen replacement treatment. Bone mineralisation and maturation are adversely affected in patients with aromatase deficiency. Oestrogen has positive effects on bone density by prolonging the life cycles of osteoblasts and osteocytes while reducing bone resorption (4). Osteoporosis was detected in both of our patients. Hormone replacement therapy was initiated and oral intake of calcium was increased as they were followed up.

In conclusion; 46,XX virilised cases should be examined in terms of aromatase deficiency after congenital adrenal hyperplasia has been excluded, even if there was no maternal history of virilisation during pregnancy. This should include CYP19A1 mutation analysis. Early diagnosis of this disorder is of vital importance for gender selection and hormone replacement therapy.

Ethics

Informed Consent: The parents of the patients were informed about the diagnosis and consent for laboratory analyses and publication were obtained.

Peer-review: Externally and internally peer-reviewed.

Authorship Contributions

Surgical and Medical Practices: Samim Özen, Tahir Atik, Özlem Korkmaz, Hüseyin Onay, Damla Gökşen, Ferda Özkınay, Özgür Çoşgulu, Şükran Darcan, Concept: Samim Özen, Tahir Atik, Özlem Korkmaz, Hüseyin Onay, Şükran Darcan, Design: Samim Özen, Tahir Atik, Hüseyin Onay, Damla Gökşen, Ferda Özkınay, Özgür Çoşgulu, Şükran Darcan, Data Collection or Processing: Samim Özen, Tahir Atik, Özlem Korkmaz, Hüseyin Onay, Ferda Özkınay, Literature Search: Samim Özen, Tahir Atik, Özlem Korkmaz, Writing: Samim Özen, Tahir Atik.

Financial Disclosure: The authors declared that this study received no financial support.

References

1. Baykan EK, Erdoğan M, Özen S, Darcan Ş, Sayglı LF. Aromatase deficiency, a rare syndrome: case report. J Clin Res Pediatr Endocrinol 2015;5:129-132.
2. Korach KS. Insights from the study of animals lacking functional estrogen receptor. Science 1994;266:1524-1547.
3. Belgorosky A, Guercio G, Pepe C, Saraco N, Rivarola MA. Genetic and clinical spectrum of aromatase deficiency in infancy, childhood and adolescence. Horm Res 2009;72:321-330. Epub 2009 Oct 21
4. Verma N, Jain V, Birla S, Jain R, Sharma A. Growth and hormonal profile from birth to adolescence of a girl with aromatase deficiency. J Pediatr Endocrinol Metab 2012;25:1185-1190.
5. Janner M, Flück CE, Mullis PE. Impact of estrogen replacement throughout childhood on growth, pituitary-gonadal axis and bone in a 46,XX patient with CYP19A1 deficiency. Horm Res Paediatr 2012;78:261-268. Epub 2012 Sep 6
6. Harada N, Ogawa H, Shozu M, Yamada K, Suhara K, Nishida E, Takagi Y. Biochemical and molecular genetic analyses on placental aromatase (P-450AROM) deficiency. J Biol Chem 1992;267:4781-4785.
7. Jones ME, Boon WC, Prioletto J, Simpson ER. Of mice and men: the evolving phenotype of aromatase deficiency. Trends Endocrinol Metab 2006;17:55-64. Epub 2006 Feb 9
8. Schwarz JM, Cooper DN, Schuelle M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 2014;11:561-562.
9. Zirilli L, Rochira V, D'iazzi C, Caffagni G, Carani C. Human models of aromatase deficiency. J Steroid Biochem Mol Biol 2008;109:212-218. Epub 2008 Mar 20
10. Deladoëy J, Flück C, Bex M, Yoshimura N, Harada N, Mullis PE. Aromatase deficiency caused by a novel P450arom gene mutation: impact of absent estrogen production on serum gonadotropin concentration in a boy. J Clin Endocrinol Metab 1999;84:4050-4054.
11. Marino R, Perez Garrido N, Costanzo M, Guercio G, Juandes M, Rocco C, Ramirez P, Warman DM, Ciaccio M, Pena G, Feyling JY, Miras M, Rivarola MA, Belgorosky A, Saraco N. Five new cases of 46,XX aromatase deficiency: clinical follow-up from birth to puberty, a novel mutation, and a founder effect. J Clin Endocrinol Metab 2015;100:301-307. Epub 2014 Nov 21
12. Rochira V, Carani C. Aromatase deficiency in men: a clinical perspective. Nat Rev Endocrinol 2009;5:559-568. Epub 2009 Aug 25
13. Lin L, Ercan O, Raza J, Burren CP, Creighton SM, Autsch RJ, Datnani MT, Acheramm J. Variable Phenotypes Associated with Aromatase (CYP19) Insufficiency in Humans. J Clin Endocrinol Metab 2007;92:982-990. Epub 2006 Dec 12
14. Akşurin S, Türcanahraman D, Kim WY, Durmaz E, Shin JG, Lee SJ. A Novel Null Mutation in P450 Aromatase Gene (CYP19A1) Associated with Development of Hypoplastic Ovaries in Humans. J Clin Res Pediatr Endocrinol 2016;8:205-210. Epub 2016 Apr 18
15. Belgorosky A, Pepe C, Marino R, Guercio G, Saraco N, Vaiani E, Rivarola MA. Hypothalamic-pituitary-ovarian axis during infancy, early and late prepuberty in an aromatase-deficient girl who is a compound heterozygote for two new point mutations of the CYP19 gene. J Clin Endocrinol Metab 2005;88:5127-5131.