Table 2. Frequencies of FC27 and 3D7-like *msp2* in *P. falciparum* isolates from 277 malaria patients in Thailand with mild (M), severe (S) or cerebral (C) disease.

Msp2 family	Mild (M) N=115 (%)	Severe (S) N=84 (%)	Cerebral (C) N=78 (%)	Total N=277 (%)	M vs S P-value	M vs C P-value	S vs C P-value			
FC27	54 (47.0)	28 (33.3)	32 (41.0)	114 (41.2)	*P* = 0.054	*P* = 0.416	*P* = 0.311			
3D7	61 (53.0)	56 (66.7)	46 (59.0)	163 (58.8)	*OR* = 0.56	*OR* = 0.79	*OR* = 1.39			
Region	Polymorphic position	Nucleotide	Codon (aa.)	Mild (%)	Severe (%)	Cerebral (%)	Total (%)	M vs Sa P-value, OR	M vs C P-value, OR	S vs C P-value, OR
--------	----------------------	------------	-------------	----------	------------	-------------	----------	--------------------------------	-------------------	------------------
Block 2	23 A/Cb	8 AAG (K)	· · T (N)	19 (35.2)	7 (25.0)	13 (40.6)	39 (34.2)	0.347, 0.61	0.614, 1.26	0.200, 2.05
	24 G/T	· CT (T)		13 (24.1)	8 (28.6)	12 (37.5)	42 (36.8)	0.039, 2.73	0.816, 0.88	0.044, 0.32
	27 T/G	9 AGT (S)	· · G (R)	45 (83.3)	18 (64.3)	26 (81.3)	89 (78.1)	0.053, 2.78	0.806, 1.15	0.138, 0.42
		32 G/A	·A · (D)	51 (94.4)	25 (89.3)	31 (96.9)	107 (93.9)	NA	NA	NA
	37 A/G	13 AAT (N)	· · A (K)	50 (92.6)	25 (89.3)	31 (96.9)	106 (93.0)	NA	NA	NA
	39 T/A	· G (D)		1 (1.9)	0 (0)	0 (0)	1 (0.9)	NA	NA	NA
	48 A/T	16 AAA (K)	· · T (N)	33 (61.1)	18 (64.3)	21 (65.6)	72 (63.2)	0.779, 0.87	0.676, 0.82	0.914, 0.94
	49_57indel	17.19 ins GCT CCA AAA	(APK)	53 (98.1)	26 (92.9)	32 (100.0)	111 (97.4)	NA	NA	NA
		17.19 ins GCT CCA AAT	(APN)	1 (1.9)	0 (0)	0 (0)	1 (0.9)	NA	NA	NA
Block 3c	(R1)(R2)\textsubscript{m}	(R1)(R2)(R2)		1 (1.9)	2 (7.1)	0 (0)	3 (2.6)	NA	NA	NA
	(R1)(R2)(R2)(R2)			39 (72.2)	22 (78.6)	21 (65.6)	82 (71.9)	0.532, 1.41	0.520, 0.73	0.267, 0.52
	(R1)(R2)(R2)(R2)(R2)			7 (13.0)	3 (10.7)	9 (28.1)	19 (16.7)	0.768, 0.81	0.081, 2.63	0.093, 3.26
	(R1)(R1)(R1)(R2)(R2)			5 (9.3)	1 (3.6)	1 (3.1)	7 (6.1)	NA	NA	NA
	(R1)(R1)(R1)(R1)			2 (3.7)	0 (0)	1 (3.1)	3 (2.6)	NA	NA	NA
	R1xR2	A 12		1 (1.9)	0 (0)	1 (0.9)	NA	0.151, 1.96	0.804, 0.89	0.134, 0.45
		A 122		20 (37.0)	15 (53.6)	11 (34.4)	46 (40.3)	NA	NA	NA
		A 1222		6 (11.1)	0 (0)	7 (21.9)	13 (11.4)	0.066	0.178, 2.24	0.009
		A 132		2 (3.7)	1 (3.6)	0 (0)	3 (2.6)	NA	NA	NA
		A 1333		3 (5.6)	0 (0)	0 (0)	1 (0.9)	NA	NA	NA
		A 222		14 (25.9)	9 (28.1)	20 (60.2)	63 (55.4)	0.653, 0.78	0.595, 1.30	0.391, 1.67
		A 3333		5 (9.3)	1 (3.6)	7 (21.9)	13 (11.4)	0.066	0.178, 2.24	0.009
		B 22		2 (3.7)	0 (0)	1 (3.1)	3 (2.6)	NA	NA	NA
		B 2222		0 (0)	1 (3.6)	0 (0)	1 (0.9)	NA	NA	NA
		C 2111		1 (1.9)	0 (0)	1 (0.9)	NA	NA	NA	NA
		ADD 2		2 (3.7)	0 (0)	1 (3.1)	3 (2.6)	NA	NA	NA
Block 4	58 G/A	20 GAA (E)	· · (K)	43 (79.6)	24 (85.7)	30 (93.8)	97 (85.1)	0.499, 0.65	0.077, 0.26	0.301, 0.4
		64 C/A	· · (Q)	44 (81.5)	24 (85.7)	30 (93.8)	98 (86.0)	0.629, 0.73	0.113, 0.29	0.301, 0.4

Table 3. Allele frequencies of polymorphisms in FC27-like msp2 of *P. falciparum* isolates from mild, severe and cerebral malaria patients in Thailand.

a Polymorphic positions include synonymous and non-synonymous polymorphisms.

b Nucleotide position in *P. falciparum*.

c Block 3 includes Repeat Regions 1 and 2.
a Position relative to the first nucleotide / aa. of each block (Fig 2).

b In case of SNPs, alleles found in the msp2 sequence of K1 (FC27-liked) (M59766.1) / another found in our data set was shown and amino acid (aa.) changes were indicated.

c Variation in number of repeat 1 and 2 [(R1)\textsubscript{n}(R2)\textsubscript{n}] generated 5 distinct alleles in block 3, while 13 alleles were detected when sequence variation in repeat units were considered [R1xR2].

d Allele frequencies were compared between mild (M) and severe (S), mild and cerebral (C), as well as severe and cerebral. For bi-allelic polymorphisms, the odds ratio (OR) of a minor-frequency allele for risk to severe and cerebral malaria by comparing to a major allele was analyzed. For polymorphisms with more than 2 alleles, the presence or absence of individual alleles were compared. OR and P-values are shown, with significant values in red bold. NA. (not applicable) indicates bi-allelic polymorphisms with minor allele frequency <10% and individual alleles having frequencies <10% or >90%, in which their associations with malaria severity were not analyzed. OR was undefined in cases of zero cell count.
Table 4. Haplotype frequencies of *P. falciparum* FC27-like msp2 of from mild, severe and cerebral malaria patients in Thailand, comprising polymorphisms in block 2, 3 and 4.

FC27 haplotype	Amino acid changesa	Mild (%)	Severe (%)	Cerebral (%)	Total (%)	M vs Sb P-value, OR	M vs C P-value, OR	S vs C P-value, OR	
Bl.2 - Bl.3 - Bl.4 Haplotype 1b	8 - 9 -11 -13 -16 -indel - R1R2 - 20 - 22	A3333 - - del - del - del - E Q	14 (25.9)	6 (21.4)	10 (31.3)	30 (26.3)	0.653, 0.78	0.595, 1.30	0.39, 1.67
2	K S G N K del A3333 - -	0 (0)	0 (0)	2 (6.3)	2 (1.8)	NA.	NA.	NA.	
3	- del - del A3333 - -	5 (9.3)	1 (3.6)	1 (3.1)	7 (6.1)	NA.	NA.	NA.	
4	T - - - del A122 - -	3 (5.6)	0 (0)	2 (6.3)	5 (4.4)	NA.	NA.	NA.	
5	T - - - N del A122 - -	1 (1.9)	3 (10.7)	1 (3.1)	5 (4.4)	NA.	NA.	NA.	
6b	T - - - N del A1222 - -	5 (8.3)	0 (0)	7 (21.9)	12 (10.5)	0.097	0.103, 2.75	0.009	
7	T - - - N del A132 - -	2 (3.7)	1 (3.6)	0 (0)	3 (2.6)	NA.	NA.	NA.	
8	T - - - N del A1222 K -	1 (1.9)	0 (0)	0 (0)	1 (0.9)	NA.	NA.	NA.	
9	T - - - N del A12 K K	1 (1.9)	0 (0)	0 (0)	1 (0.9)	NA.	NA.	NA.	
10b	T - - - N del A122 K K	8 (14.8)	4 (14.3)	2 (6.3)	14 (12.3)	0.949, 0.96	0.231, 0.38	0.301, 0.4	
11	T R - - N del A122 - -	1 (1.9)	0 (0)	0 (0)	1 (0.9)	NA.	NA.	NA.	
12	N - - - N APN A222 K K	1 (1.9)	0 (0)	0 (0)	1 (0.9)	NA.	NA.	NA.	
13	N - - - D del C2111 - -	1 (1.9)	0 (0)	0 (0)	1 (0.9)	NA.	NA.	NA.	
14	N - D K - del ADD2 - -	1 (1.9)	0 (0)	0 (0)	1 (0.9)	NA.	NA.	NA.	
15	N - D K - del B22 - -	0 (0)	2 (7.1)	0 (0)	2 (1.8)	NA.	NA.	NA.	
16	N - D K - del A222 - -	1 (1.9)	0 (0)	0 (0)	1 (0.9)	NA.	NA.	NA.	
17	N - D K - del B2222 - -	0 (0)	1 (3.6)	0 (0)	1 (0.9)	NA.	NA.	NA.	
18	N - D K N del ADD2 - -	1 (1.9)	0 (0)	1 (3.1)	2 (1.8)	NA.	NA.	NA.	
19b	N R - - - del A122 - -	7 (13.0)	8 (28.6)	6 (18.8)	21 (18.4)	0.083, 2.69	0.469, 1.55	0.370, 0.58	
20	N R - - - del A222 - -	1 (1.9)	0 (0)	0 (0)	1 (0.9)	NA.	NA.	NA.	
21	N R - - - N APN A1333 - -	0 (0)	2 (7.1)	0 (0)	2 (1.8)	NA.	NA.	NA.	

a Position relative to the first aa. of each block (Fig 2). Blocks are shaded using different colors.

b Major haplotypes (frequency ≥ 10%) observed in the parasite population that were analyzed for association with malaria severity.

c Haplotype frequencies were compared between mild (M) and severe (S), mild and cerebral (C), and severe and cerebral. *P*-value and Odds ratios (OR) are shown, with statistically significant differences in red bold. NA. (not applicable) indicates haplotypes with frequencies >10% whose association with malaria severity was not analyzed. OR was undefined in cases of zero cell count.
Table 5. Allele frequencies of polymorphisms in the 3D7-like *msp2* sequences of *P. falciparum* isolates from mild, severe and cerebral malaria patients in Thailand.

Region	Polymorphic position*	Mild (%)	Severe (%)	Cerebral (%)	Total (%)	M vs S	M vs C	S vs C	
	Nucleotide	Codon (aa.)							
Block 2	12 G/T	4 AAG (K)	26 (43.3)	24 (45.3)	16 (37.2)	66 (42.3)	0.835, 1.08	0.533, 0.77	0.425, 0.72
	A · · T	(N)	34 (56.7)	29 (54.7)	27 (62.8)	90 (57.7)			
	13 C/A	5 CCT (P)	48 (78.7)	47 (83.9)	36 (83.7)	131 (81.9)	0.469, 1.41	0.521, 1.39	0.978, 0.98
	14 C/T	A · · (T)	11 (18.0)	8 (14.3)	7 (16.3)	26 (16.3)	0.583, 0.76	0.816, 0.88	0.784, 1.17
	· · (L)		2 (3.3)	1 (1.8)	0 (0)	3 (1.9)	NA	NA	NA
	16 T/C	6 TCT (S)	7 (11.5)	7 (12.5)	7 (16.3)	21 (13.1)	0.865, 1.10	0.480, 1.50	0.593, 1.36
	C · · (P)		54 (88.5)	49 (87.5)	36 (83.7)	139 (86.9)			
R1 region c	162	: GAVAGS	14 (23.0)	11 (19.6)	11 (23.9)	36 (22.1)	0.663, 0.82	0.907, 1.06	0.602, 1.29
	185	: GASGSA	10 (16.4)	8 (14.3)	8 (14.3)	26 (16.0)	0.752, 0.85	0.891, 1.07	0.668, 1.26
	1852	: GASGSAGS	7 (11.5)	13 (23.2)	5 (10.9)	25 (15.3)	0.092, 2.33	0.922, 0.94	0.104, 0.40
	18585	: GASGASGSA	6 (9.8)	6 (10.7)	6 (13.0)	18 (11.0)	0.876, 1.11	0.603, 1.38	0.716, 1.25
	2165	: GSGA VASA	6 (9.8)	3 (5.4)	2 (4.3)	11 (6.7)	NA	NA	NA
	27165	: GSRDGA VASA	6 (9.8)	6 (10.7)	2 (4.3)	14 (8.6)	NA	NA	NA
	35	: GGSA	5 (8.2)	2 (3.6)	4 (8.7)	11 (6.7)	NA	NA	NA
	385	: GGSGSA	6 (9.8)	7 (12.5)	8 (17.4)	21 (12.9)	0.647, 1.31	0.251, 1.93	0.488, 1.47
	385_35: GGSGSA GGSA	1 (1.6)	0 (0)	0 (0)	1 (0.6)	NA	NA	NA	
NR region	1_30 indel	1_10 ins GNGANPGADA	18 (29.5)	12 (21.4)	13 (28.3)	43 (26.4)	0.317, 0.65	0.888, 0.94	0.425, 1.44
	1_10 ins R N G A N P G AD A	13 (21.3)	19 (33.9)	7 (15.2)	39 (23.9)	0.126, 1.90	0.423, 0.66	0.031, 0.35	
	3: 6 del GN - - - - G A D A	14 (23.0)	11 (19.6)	11 (23.9)	36 (22.1)	0.663, 0.82	0.907, 0.96	0.602, 1.29	
	1_8 del - - - - - - - - DA	9 (14.8)	6 (10.7)	9 (19.6)	24 (14.7)	0.514, 0.69	0.510, 1.41	0.209, 2.03	
	1_10 del - - - - - - - -	7 (11.5)	8 (14.3)	6 (13.0)	21 (12.9)	0.650, 1.29	0.806, 1.16	0.856, 0.90	
Block 3	31 G/A	11 GAG (E)	46 (75.4)	44 (78.6)	33 (71.7)	23 (75.5)	0.685, 0.84	0.669, 1.21	0.425, 1.44
	A · · (K)		15 (24.6)	12 (21.4)	13 (28.3)	40 (24.5)			
	34 A/G	12 AGA (R)	35 (57.4)	30 (53.6)	31 (67.4)	96 (58.9)	0.679, 1.17	0.292, 0.65	0.157, 0.56
	G · · (G)		26 (42.6)	26 (46.4)	15 (32.6)	67 (41.1)			
	40 C/T	14 CCA (P)	41 (67.2)	35 (62.5)	37 (80.4)	113 (69.3)	0.594, 1.23	0.128, 0.50	0.048, 0.41
	T · · (S)		20 (32.8)	21 (37.5)	9 (19.6)	50 (30.7)			
	50 G/C	17 CCC (P)	60 (98.4)	56 (100.0)	44 (95.7)	160 (98.2)	0.471, 1.4	0.859, 0.76	0.557, 1.85
	· · G (R)		1 (1.6)	0 (0)	2 (4.3)	3 (1.8)	NA	NA	NA
	52 G/A	18 GCT (A)	61 (100)	56 (100)	45 (97.8)	162 (99.4)	NA	NA	NA
	A · · (T)		0 (0)	0 (0)	1 (2.2)	0 (0.6)			
R2 region d	(ACT ACC ACA)₂	(T)₈	42 (68.9)	37 (66.1)	35 (76.1)	114 (69.9)	0.748, 0.88	0.410, 1.44	0.269, 1.63
	(ACT ACC ACA)₃	(T)₉	8 (13.1)	4 (7.1)	7 (15.2)	19 (11.7)	0.288, 0.51	0.757, 1.19	0.191, 1.33
	(ACT ACC ACA)₄	(T)₄	11 (18.0)	15 (26.8)	4 (8.7)	30 (18.7)	0.255, 1.66	0.168, 0.43	0.020, 0.26

* denotes the number of bases in the polymorphism.
Table 5. (continued)

Region	Polymorphic position^a	Nucleotide	Codon (aa.)	Mild (%)	Severe (%)	Cerebral (%)	Total (%)	M vs S^e P-value, OR	M vs C P-value, OR	S vs C P-value, OR
									NA.	NA.
40 C/T	14 CCA (P)	T · · (S)	55 (90.2)	6 (9.8)	50 (89.3)	6 (10.7)	44 (95.7)	2 (4.3)	149 (91.4)	14 (8.6)
									NA.	NA.
51 A/T	17 AAA (K)	· · T (N)	5 (8.2)	56 (91.8)	7 (12.5)	49 (87.5)	11 (23.9)	35 (76.1)	23 (14.1)	140 (85.9)
									0.443, 1.60	0.024, 3.52
									0.132, 2.20	
58 G/A	20 GAA (E)	A · · (K)	38 (62.3)	23 (37.7)	39 (69.6)	17 (30.4)	31 (67.4)	15 (32.6)	108 (66.3)	55 (33.7)
									0.403, 0.72	0.586, 0.80
									0.807, 1.11	
78 A/T	26 AAA (K)	· · T (N)	30 (53.6)	26 (46.4)	35 (64.8)	19 (35.2)	28 (68.3)	13 (31.7)	93 (61.6)	58 (38.4)
									0.231, 0.62	0.144, 0.54
									0.722, 0.86	
82 G/C/A	28 GAA (E)	· · T (N)	29 (51.8)	17 (30.4)	12 (22.2)	4 (7.4)	27 (65.9)	2 (4.9)	90 (59.6)	59 (40.4)
									0.236, 1.58	0.333, 0.66
									0.166, 1.80	0.517, 0.74
83 A/G	26 AAT (K)	· · T (N)	30 (53.6)	26 (46.4)	35 (64.8)	19 (35.2)	28 (68.3)	13 (31.7)	93 (61.6)	58 (38.4)
									0.231, 0.62	0.144, 0.54
									0.722, 0.86	
91_93 indel	31 ins GAA (E)	ins AAA (K)	26 (46.4)	24 (42.9)	24 (44.4)	3 (5.6)	15 (36.6)	4 (9.8)	68 (45.0)	10 (6.6)
		del	6 (10.7)	3 (5.6)	25 (61.0)	1 (2.4)	2 (4.9)	6 (10.7)	3 (5.6)	10 (6.6)
									0.867, 1.07	0.837, 1.08
									0.078, 2.08	0.332, 0.67
										0.110, 1.95
95 C/A	32 CCA (P)	· · A (Q)	51 (91.1)	5 (8.9)	43 (79.6)	11 (20.4)	37 (90.2)	4 (9.8)	131 (86.8)	20 (13.2)
		del	5 (8.2)	2 (3.6)	54 (96.4)	2 (3.6)	41 (89.1)	5 (10.9)	151 (92.6)	12 (7.4)
									NA.	NA.
67_99 indel	23_33 insert	23_33 deletion	56 (91.8)	5 (8.2)	54 (96.4)	2 (3.6)	41 (89.1)	5 (10.9)	151 (92.6)	12 (7.4)
									NA.	NA.
									NA.	NA.

^a Position relative to the first nucleotide / aa. of each block (Fig 3)

^b In case of SNPs, alleles found in the *msp2* sequence of 3D7 (PFB0300c) / another allele found in our data set was shown, and amino acid (aa.) changes are indicated.

^c For The R1 region in block 3, sequences can be grouped into nine types according to the presence of different types of numerically coded dipeptide motifs (Table S1).

^d For the R2 region, there were 8, 11, and 14 Threonine repeats encoded by 2-4 copies of nanomer (ACT ACC ACA) followed by ACT ACT.

^e Allele frequencies were compared between mild (M) and severe (S), mild and cerebral (C), and severe and cerebral. For bi-allelic polymorphisms, the odds ratios (OR) of minor-frequency alleles compared to major alleles associated with severe and cerebral malaria were analyzed. For
polymorphisms with more than 2 alleles, the presence/absence of individual alleles were compared. OR and \(P \)-values are shown, with significant differences in red bold. NA. (not applicable) indicates bi-allelic polymorphisms with a minor allele frequency <10\% and individual alleles with frequencies <10\% or >90\%, in which their association with malaria severity were not analyzed.
Table 6. Haplotype frequencies of 3D7 like msp2 of *P. falciparum* from mild, severe and cerebral malaria patients in Thailand, with each block analyzed separately.

3D7 haplotype	Amino acid changesa	Mild (%)	Severe (%)	Cerebral (%)	Total (%)	M vs Sb P-value, OR	M vs C P-value, OR	S vs C P-value, OR
Block 2								
Haplotype 1b								
4 – 5 – 6		27 (45.0)	22 (41.5)	20 (46.5)	69 (44.2)	0.709, 0.87	0.879, 1.06	0.623, 1.23
N P P								
2b		7 (11.7)	7 (13.2)	7 (16.3)	21 (13.5)	0.804, 1.15	0.501, 1.47	0.672, 1.28
3b		13 (21.7)	17 (32.1)	9 (20.9)	39 (25.0)	0.211, 1.71	0.928, 0.96	0.222, 0.56
4b		11 (18.3)	6 (11.3)	7 (16.3)	24 (15.4)	0.298, 0.57	0.787, 0.87	0.480, 1.52
5 K L		2 (3.3)	1 (1.9)	0 (0)	3 (1.9)	NA	NA	NA
Block 3 NR-R2								
Haplotype 1b								
1_10indel -11 - 12 - 14 - 17 - 18 - [T]		11 (18.0)	8 (14.3)	10 (21.7)	29 (17.8)	0.583, 0.76	0.633, 1.26	0.326, 1.67
2 Ins G · G S · · 14		4 (6.6)	3 (5.4)	0 (0)	7 (4.3)	NA	NA	NA
3 Ins G · G S · · 11		1 (1.6)	0 (0)	0 (0)	1 (0.6)	NA	NA	NA
4 Ins G · G S R · 11		1 (1.6)	0 (0)	2 (4.3)	3 (1.8)	NA	NA	NA
5 Ins G K · · · · 8		1 (1.6)	1 (1.8)	0 (0)	1 (0.6)	NA	NA	NA
6 Ins R · · · · 11		0 (0)	1 (1.8)	0 (0)	1 (0.6)	NA	NA	NA
7 Ins R · G S · · 8		6 (9.8)	6 (10.7)	2 (4.3)	14 (8.6)	NA	NA	NA
8b Ins R · G S · · 16		6 (9.8)	12 (21.4)	4 (8.7)	22 (13.5)	0.083, 2.50	0.841, 0.87	0.079, 0.35
9 Ins R · G S · · 11		1 (1.6)	0 (0)	7 (2.2)	2 (1.2)	NA	NA	NA
10b Del3_6 K · · · · 8		14 (23.0)	11 (19.6)	11 (23.9)	36 (22.1)	0.663, 0.82	0.907, 1.06	0.602, 1.29
11 Del1_8 · · · · 8		4 (6.6)	6 (10.7)	4 (8.7)	14 (8.6)	NA	NA	NA
12 Del1_8 · · · · 11		5 (8.2)	3 (5.4)	4 (8.7)	12 (7.4)	NA	NA	NA
13 Del1_8 · G S · · 14		1 (1.6)	0 (0)	0 (0)	1 (0.6)	NA	NA	NA
14 Del1_8 K · · · T 8		0 (0)	0 (0)	1 (2.2)	1 (0.6)	NA	NA	NA
15b Del1_10 · G · · · 8		6 (9.8)	5 (8.9)	5 (10.9)	16 (9.8)	NA	NA	NA
Block 4								
Haplotype 1b								
14 – 17 – 20 – 26 – 28 – 31 – 32		7 (11.5)	8 (14.3)	6 (13.0)	21 (12.9)	0.650, 1.29	0.806, 1.16	0.856, 0.90
P N E K E K P		5 (8.2)	11 (19.6)	4 (8.7)	20 (12.3)	0.072, 2.74	0.927, 1.07	0.120, 0.39
2a		7 (11.5)	4 (7.1)	2 (4.3)	13 (8.0)	NA	NA	NA
3 · · · · Q E ·		1 (1.6)	0 (0)	0 (0)	1 (0.6)	NA	NA	NA
4 · · · · N K · ·		2 (3.3)	1 (1.8)	0 (0)	2 (0.6)	NA	NA	NA
5 · · · · N K E ·		6 (9.8)	5 (8.9)	5 (10.9)	16 (9.8)	NA	NA	NA
6 · · · · K N G ·		5 (8.2)	4 (7.1)	3 (6.5)	12 (7.4)	NA	NA	NA
7 · · · · K N G E		12 (19.7)	8 (14.3)	7 (15.2)	27 (16.6)	0.439, 0.68	0.551, 0.73	0.895, 1.08
8b · · K N G E		5 (8.2)	7 (12.5)	11 (23.9)	23 (14.1)	0.443, 1.60	0.024, 3.52	0.132, 2.20
9b · · K N G E		6 (9.8)	3 (5.4)	1 (2.2)	10 (6.1)	NA	NA	NA
10 S · · N · del		0 (0)	3 (5.4)	1 (2.2)	4 (2.5)	NA	NA	NA
11 S · · N K ·		5 (8.2)	2 (3.6)	5 (10.9)	12 (7.4)	NA	NA	NA
12 · · · · 23_33 del · ·		6 (9.8)	3 (5.4)	1 (2.2)	4 (2.5)	NA	NA	NA
a Position relative to the first aa. of each block (Fig 3).

b Major haplotypes (frequency ≥ 10%) observed in the parasite population that were analyzed for association with malaria severity.

c Haplotype frequencies were compared between mild (M) and severe (S), mild and cerebral (C), as well as severe and cerebral. *P*-values and odds ratios (OR) are shown, with significant differences in red bold. NA. (not applicable) indicates haplotypes with frequencies >10% whose associations with malaria severity were not analyzed.