Effects of periodical application of bioactive peptides derived from cottonseed on performance, immunity, total antioxidant activity of serum and intestinal development of broilers

Nasir Landy, Farshid Kheiri*, Mostafa Faghani

Department of Animal Science, Shahrekord Branch, Islamic Azad University, Shahrekord, 881373395, Iran

Original Research Article

This experiment aimed to examine the effect of periodical application of bioactive peptides derived from cottonseed (BPC) in comparison with using sub-therapeutic doses of lincomycin and the excessive inclusion of vitamin E on performance, immunity, total antioxidant capacity of serum and intestinal morphology of broiler chickens. A total of 240 one-day-old male broiler chicks with similar initial weight (Ross strain) were randomly assigned to 6 groups (8 chicks/pen): non-treated group (basal diet), basal diet supplemented with 2 mg/kg lincomycin, basal diet supplemented with 50 IU vitamin E, basal diet supplemented with 6 g BPC/kg in starter period, basal diet supplemented with 6 g BPC/kg in starter and grower periods and basal diet supplemented with 6 g BPC/kg throughout the whole experiment. The highest final body weight was obtained in the group supplemented with BPC in starter and grower periods. In the finisher phase, broilers fed the diet containing BPC in the starter period and in the whole trial had significantly (P < 0.05) better feed conversion ratios (FCR). Jejunal villus height was significantly elevated in broilers supplemented with antibiotic (P < 0.001), furthermore it tended to be greater in broilers fed BPC in the starter period. The jejunal villus height-to-crypt depth ratio was significantly (P < 0.01) higher in broilers fed the diet containing antibiotic in comparison to other groups. Humoral immune response against Newcastle disease vaccine tended to be elevated in broilers fed the diet containing BPC in the whole trial (P > 0.05). Broilers supplemented with antibiotic in starter and grower, and in the whole trial had significantly (P < 0.05) higher antibody titers against sheep red blood cells (SRBC). The highest total antioxidant capacity was obtained in broilers supplemented with the excessive level of vitamin E, furthermore it tended to improve in broilers fed the diet containing BPC in the whole trial. In summary, the results of the study indicated that addition of BPC in broiler diets in the whole trial could improve FCR, immune responses and total antioxidant activity of serum, and BPC could be used in broiler diets as an alternative to in-feed antibiotics.

© 2021, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Sub-clinical levels of in-feed antibiotics (IFA) have been included into livestock feed for many years for their positive effects on performance and health status of farm animals (Feanti et al., 1971; Kheiri et al., 2018; Gheisari et al., 2017). IFA was purported to promote growth performance of broilers via reducing the proliferation of pathogenic microorganisms in the intestine, resulting in further digestion, absorption and metabolism of feed ingredients (Kheiri et al., 2018; Gheisari et al., 2017). However, widespread supplementation of IFA in broiler’s diets resulted in the appearance of resistant microorganisms (Sorum and Sunde, 2001), and antibiotic resisdium in poultry meat (Andremont, 2000). As a result of above mentioned problems, alternatives are being introduced to poultry feed such as probiotics (Landy and Kavyani et al., 2014; Foroutankhah et al., 2019). IFA was purported to promote growth performance of broilers via reducing the proliferation of pathogenic microorganisms in the intestine, resulting in further digestion, absorption and metabolism of feed ingredients (Kheiri et al., 2018; Gheisari et al., 2017). However, widespread supplementation of IFA in broiler’s diets resulted in the appearance of resistant microorganisms (Sorum and Sunde, 2001), and antibiotic resisdium in poultry meat (Andremont, 2000). As a result of above mentioned problems, alternatives are being introduced to poultry feed such as probiotics (Landy and Kavyani et al., 2014; Foroutankhah et al., 2019).
Bioactive peptides can be produced from different protein sources by acid, alkaline or enzymatic hydrolysis and microbial fermentation (Muir et al., 2013). Several experiments indicated that based on the molecular weight and amino acid profile (Hou et al., 2016; Landy et al., 2020) bioactive peptides have therapeutic benefits, including antimicrobial (Wald et al., 2016; Osman et al., 2016), antioxidant (Power et al., 2013; Ibrahim et al., 2018), and immunomodulatory benefits (Kotzamanis et al., 2007). Opioid peptides can affect the gut function due to binding to the opioid receptors in the brain; furthermore, they can be used in animal feed to alleviate stress, control pain and sleep, and modulate satiety (Fernstrom, 2013; San Gabriel and Uneyama, 2013). Abdollahi et al. (2017, 2018) reported that continuous supplementation of 6 g/kg of soybean bioactive peptide (SBP) improved production performance of broiler chickens through improving feed conversion ratio (FCR). In another trial, continuous supplementation of 6 g/kg of bioactive peptides derived from cottonseed (BPC) in broiler diets could result in desirable outcomes on growth performance, relative weight of the bursa of Fabricius, antibodies against sheep red blood cells (SRBC) and Newcastle disease virus (NDV) antigens and total antioxidant activity (N. Landy, F. Kheiri and M. Faghani Animal Nutrition 7 (2021) 134). Contrary to mentioned findings, there has been a shortcoming of knowledge regarding comparing the efficacy of continuous or periodical application of bioactive peptides in poultry. Apart from an insignificant clearance of peptides from plasma by erythrocytes, circulating peptides remain in plasma and may not be hydrolyzed (Lochs et al., 1990; Odoom et al., 1990); thus, this study was carried out to examine the possibility of periodical application of BPC in comparison to IFA and the excessive level of vitamin E on broiler growth performance, carcass characteristics, gut development, total antioxidant activity of serum and immune responses.

2. Materials and methods

2.1. Ethical matters

The present study was performed in Pishgam Damparvar Sepahan company research farm in Zyar city. All experimental procedures including sampling and killing broilers were conducted in accordance with University of Shahrekord ethical guidelines for animals (approval ref no. 2019 to 064).

2.2. Animals and dietary treatments

A total of 240 one-d-old male broiler chicks (Ross strain) with similar initial weight were randomly assigned to 6 groups (8 chicks/pen): non-treated group (basal diet), basal diet supplemented with 2 mg lincomycin/kg, basal diet supplemented with 50 IU vitamin E/kg, basal diet supplemented with 6 g BPC/kg of diet (Fortide, Chengdu Mytech Biotech Co. Ltd., Chengdu, Sichuan, China) in starter period, basal diet supplemented with 6 g BPC/kg in starter and grower periods and basal diet supplemented with 6 g BPC/kg entire the whole trial. The dietary treatments in 3 growth periods (Tables 1–3) were iso-caloric and iso-nitrogenic. Diets were composed of maize, corn gluten meal, and soybean meal to meet Ross 308 strain (Ross, 2019) nutrient requirements and were fed in mash form. The broiler house was completely controlled in respect of temperature, lighting and other recommended rearing parameters; furthermore, feed and fresh water were presented on an ad libitum basis for the whole trial. At d 1 the temperature of the broiler house was maintained at 33 °C, and was reduced step-by-step to 21 °C by 21 d of age and controlled by temperature sensors. The broiler house was windowless and broilers were raised on continuous lighting.

Table 1

Ingredients	Cottonseed bioactive peptide inclusion, g/kg
Item	Cottonseed bioactive peptide inclusion, g/kg
	0
	0.6

1. Provided the following per kilogram of diet: Mg, 120 mg; Fe, 20 mg; Cu, 16 mg; Zn, 110 mg; Se, 0.3 mg; I, 2.25 mg.
2. Provided the following per kilogram of diet: vitamin A, 12,000 IU; vitamin D₃, 5,000 IU; vitamin E, 80 IU; vitamin K, 3.2 mg; thiamin, 3.2 mg; riboflavin, 8.6 mg; nicotinic acid, 65 mg; pantothenic acid, 20 mg; pyridoxine, 4.3 mg; biotin, 0.22 mg; folic acid, 2.2 mg; vitamin B₁₂, 0.017 mg.

2.3. Analysis of bioactive peptides derived from cottonseed

Before formulating diets, maize, soybean meal, corn gluten meal, wheat bran and BPC were evaluated for the level of crude protein (Method 990.03; AOAC, 2006), and the amount of total amino acids (Methods 982.30 E a, b, and c; AOAC, 2006). Calcium and total P of BPC were measured by inductively coupled plasma - optical emission spectrometry (Method 2011.14; AOAC, 1965) at the Shahrekord University Laboratories (Table 4). The molecular weight distribution of the BPC was measured by a Superdex peptide HR 10/30 column as described by Jung et al. (2006).

2.4. Performance and carcass components

The body weight (BW) was measured on a pen basis at 10, 24 and 40 d of age, average daily weight gain (ADG) was calculated in starter, grower, and finisher periods, and throughout the experiment. Daily feed intake (DFI) was determined per pen and adjusted for dead broilers. FCR was also computed as the DFI: DWG.

At the end of the trial, 2 broilers per pen were selected, individually weighed and killed by cutting the jugular vein. Eviscerated weight, empty proventriculus, empty gizzard, liver, pancreas,
empty small intestine, heart, spleen and bursa of Fabricius were removed from carcasses, weighed and calculated as a percentage of live BW.

2.5. Jejunal histology

At 40 d of age, 2 broilers per cage were selected, killed and their gastrointestinal tracts were removed from the carcasses. The proximal parts of each jejunum were fixed in 10% neutral formalin and dehydrated in a graded ethanol series before being embedded in paraffin. Jejunum sections were stained using hematoxylin and eosin according to the method described by Iji et al. (2001). Stained segments were photographed by light microscopy (Olympus Co. Ltd., BX 50, F-3, Tokyo, Japan) to determine villus height (VH), crypt depth (CD) and villus width (VW).

2.6. Immunity

The current study was performed to examine serologic immune responses of broilers vaccinated with a commercially available live vaccine of NDV at 7 (B 1), 14 (B 1) and 21 (LaSota) d of age. At 25 d of

Table 2	Ingredients and composition of grower diets (as-fed, g/kg).	
Item	Cottonseed bioactive peptide inclusion, g/kg	
	0	0.6
Ingredients		
Corn (7.5% CP)	527.8	526.7
Soybean meal (44% CP)	341.7	334.8
Corn gluten meal (60% CP)	30.0	30.0
Cottonseed bioactive peptides (46% CP)	0.0	6.0
Wheat bran (14.8% CP)	17.9	20.4
Soybean oil	40.9	40.9
L-α-methionine	2.5	2.5
L-lysine	2.6	2.6
L-threonine	0.8	0.8
Choline chloride	1.1	1.1
Mono calcium phosphate (15% Ca, 22.5% P)	13.6	13.6
Calcium carbonate	14.9	14.4
Sodium chloride	1.5	1.5
Sodium bicarbonate	2.7	2.7
Trace mineral premix	1	1.0
Vitamin premix	1	1.0

Calculated composition

Metabolizable energy, kcal/kg	3,100	3,100
Crude protein	215	215
Lysine	12.9	12.9
Methionine	6.28	6.27
Methionine + cysteine	9.9	9.9
Threonine	8.8	8.8
Tryptophan	2.5	2.5
Arginine	14.4	14.5
Valine	11.3	11.3
Isoleucine	10.8	10.8
Leucine	19.8	19.8
Ca	8.7	8.7
Available P	4.3	4.3
Ether extract	61.9	62.0
Crude fibre	36.4	36.2

Analyzed content

| Crude protein | 218 | 217 |

Table 3

Ingredients and composition of finisher diets (as-fed, g/kg).
Item
Ingredients
Corn (7.5% CP)
Soybean meal (44% CP)
Corn gluten meal (60% CP)
Cottonseed bioactive peptides (46% CP)
Wheat bran (14.8% CP)
Soybean oil
L-α-methionine
L-lysine
L-threonine
Choline chloride
Mono calcium phosphate (15% Ca, 22.5% P)
Calcium carbonate
Sodium chloride
Sodium bicarbonate
Trace mineral premix
Vitamin premix

Calculated composition

Metabolizable energy, kcal/kg	3,200	3,200
Crude protein	200	200
Lysine	11.9	11.9
Methionine	5.96	5.95
Methionine + cysteine	9.4	9.4
Threonine	8.1	8.1
Tryptophan	2.2	2.2
Arginine	12.9	12.9
Valine	10.4	10.4
Isoleucine	9.8	9.7
Leucine	19.4	19.3
Ca	8.1	8.7
Available P	4.0	4.3
Ether extract	65.3	65.3
Crude fibre	33.1	32.8

Analyzed content

| Crude protein | 203 | 201 |

Table 4

Composition of the protein hydrolysates of cottonseed (g/kg).
Item
Total protein (N × 6.25)
Peptides with molecular weight < 1,000 Da
Arginine
Histidine
Isoleucine
Leucine
Lysine
Methionine
Cysteine
Phenylalanine
Threonine
Valine
Glycine
Alanine
Proline
Serine
Asparagine
Glutathione
Tyrosine
Tryptophan
Ca

1 Provided the following per kilogram of diet: Mg, 120 mg; Fe, 20 mg; Cu, 16 mg; Zn, 110 mg; Se, 0.3 mg; I, 1.25 mg.
2 Provided the following per kilogram of diet: vitamin A, 9,000 IU; vitamin D3, 4,000 IU; vitamin E, 55 IU; vitamin K, 2.2 mg; thiamin, 2.2 mg; riboflavin, 5.4 mg; nicotinic acid, 45 mg; pantothenic acid, 15 mg; pyridoxine, 2.2 mg; biotin, 0.15 mg; folic acid, 1.6 mg; vitamin B12, 0.011 mg.
age, 2 chicks per pen were intravenously injected with 1 mL of 1% suspension of SRBC antigen. Antibody responses to injected SRBC were measured at 6 d post-inoculation by the microtiter method as described by Landy et al. (2011a,b). Antibody titers were expressed as the Log of the reciprocal of the highest dilution. At 7 d after post vaccination (28 d) broilers were bled by puncture of brachial vein to determine the hemagglutination-inhibition (HI) antibody titers against NDV, and HI antibody responses were converted to log2 (Landy et al., 2011a,b).

At the termination of the experiment, 2 broilers per pen were bled via vena brachialis to obtain blood samples into syringes containing heparin. Blood smears were prepared using May–Greenwald–Giemsa stain (Lucas and Jamroz, 1961). One hundred leukocytes, per sample including nongranular and granular cells, were enumerated below an optical microscope (Nikon, Tokyo, Japan). The heterophil–lymphocyte (H:L) ratio was computed by dividing heterophils counts to lymphocytes counts (Gross and Siegel, 1983). The packed cell volume (PCV) was determined by micro-hematocrit method as described by Kececi et al. (1998). Furthermore, total counts of white blood cell (WBC) were measured via brilliant cresyl blue dye (Haddad and Mashaly, 1996).

2.7. Total antioxidant activity of serum

At 40 d of age, blood samples were collected via vena brachialis, and samples were centrifuged to obtain serum. Total antioxidant capacity (T-AOC) of serum was measured via BioAssay Systems Commercial kits.

2.8. Statistical analysis

The experiment was carried out as a completely randomized design, and combined variable data were analyzed using ANOVA (SAS Inst. Inc., Cary, NC). Significant differences between means were detected using a post-hoc Tukey test at 5%.

3. Results and discussion

3.1. Performance and carcass traits

No mortalities occurred during the trial. The BW that was obtained in the current trial was less than the breed standard (Table 5). The research was performed in Pishgam Damarvar Sepahan company research farm in Zyar city with an altitude of 1,590 m. Julian (2007) mentioned that pressure of oxygen drops nearly 2.5% per 1,000 m increase in altitude. Beker et al. (2003) reported that for broiler chickens reared under low pressure of oxygen, the BW reduced via a depression in DFI. Besides rearing in high altitude, feeding a mash diet could account for the reduced BW at various ages. At 10 d of age, the highest BW was obtained in the group supplemented with antibiotic (P < 0.01). The BW obtained in the group supplemented with BPC in the whole trial tended to be significantly higher in comparison to those fed the basal diet. At 24 d of age, treatments had no effect on BW, however, it tended to improve in broilers fed the diet supplemented with antibiotic (P > 0.05). At 40 d of age, the highest final BW was obtained in the group supplemented with BPC in the starter and grower periods; though it didn’t statistically differ from other groups except for broilers fed the basal diet supplemented with the excessive level of vitamin E. During starter phases (1 to 10 d of age), grower phases (11 to 24 d of age), and in the whole trial (1 to 40 d of age) treatments had no effects on the DFI (P > 0.05). During the finisher period, broiler chickens fed the diet containing the excessive level of vitamin E had a significantly (P < 0.05) greater DFI in comparison to those fed the diet containing BPC in the starter period. In the finisher period, broilers fed the diet containing BPC had a higher DFI in comparison to those fed the basal diet, though the differences were not statistically significant. During the starter period the best FCR was obtained in the group supplemented with antibiotic (P < 0.05). In the starter period, supplementation with BPC did not have any significant effect on the FCR value in comparison to those fed the basal diet; however, it tended to be better in broilers fed the diet containing BPC throughout the whole trial. In the grower phase, treatments had no significant effect on FCR (P > 0.05). In the finisher phase, broilers fed the diet containing BPC in the starter period and in the whole trial had significantly (P < 0.05) better FCR values in comparison to those fed the excessive level of vitamin E, but didn’t statistically differ from other groups. Abdollahi et al. (2017) reported that continuous application of 6 g SBP/kg of diet in broilers’ diet improved FCR via improvement in intestinal histology and consequently better digestion of nutrients. Similarly, results of experiment performed by Abdollahi et al. (2018) indicated that continuous supplementation of 5 and 6 g SBP/kg of diet improved feed efficiency of broilers. These are in agreement with the outcomes obtained by Wang et al. (2011) and Mateos et al. (2014), who reported that continuous application of bioactive peptides in broilers’ diet improved performance criteria. Abdollahi et al. and Feng et al. (2007) bioactive peptides in broilers’ diet significantly increased the intestinal enzyme activities; unfortunately, in the present experiment we didn’t measure intestinal enzyme activities. Since, in the present trial, continuous application of 6 g BPC/kg of diet improved FCR and final BW and in the mentioned treatment the absorptive capacity of the gut was not improved, it seems that the obtained FCR may have been improved by higher intestinal enzyme activities. In the current trial, the highest final BW was obtained in the group supplemented with BPC in the starter and grower periods, whereas the BW obtained in broilers fed the diet containing BPC throughout the whole trial tended to be significant. According to Webb (1990) di- and tri-peptides may remain intact in the circulatory system and act in their role. Similarly, Lochs et al. (1990) reported that apart from an insignificant elimination of peptides via erythrocytes, circulating peptides remain in the plasma and perform their physiological functions. In the current trial, the results indicated that circular peptides have the potential to use periodical treatments to enhance their benefits on performance parameters. In the present experiment, the final BW of broilers supplemented with antibiotic tended to be significant in that the addition of antibiotic to broilers’ diet significantly improved VH-to-CD (VH:CD) ratio. As reported by Bedford (2000) antibiotics can control and limit the formation of bacterial colonies in the gastrointestinal tract of the birds. This can lead to higher feed utilization, resulting in better performance and feed efficiency.

Table 6 shows the effects of dietary treatments on carcass yield and development of internal organs as a percentage of live BW. Treatments did not have any significant effect on carcass yield and development of organs (P > 0.05). The effect of supplementing BPC in the whole trial on carcass yield tended (P > 0.05) to be significant. The relative weight of the small intestine tended to be lower in broilers fed the diet containing the excessive level of vitamin E, antibiotic and BPC in the starter period (P > 0.05). Similar to our results, Abdollahi et al. (2017) reported that continuous supplementation of different levels of SBP in broiler diets did not have any significant effects on carcass characteristics. In several trials, researchers reported that the percentage of small intestine of broilers tended to decrease when IFA was included in the diet (Landy et al., 2011a, 2011b, 2012). This may be due to the restriction of growth and the colonization of pathogenic and non-pathogenic bacteria and consequently reduction in gastrointestinal infections. Similar to antibiotics, special bioactive peptides have antimicrobial effects, as mentioned for some endogenous peptides in the small intestine.
The effects of experimental treatments on the morphology of the jejunum are summarized in Table 7. Broilers fed the diet containing antibiotic had the highest VH (P < 0.001). The VH tended to be greater in broilers fed BPC in the starter period in comparison to those fed the basal diet, the basal diet supplemented with vitamin E, the basal diet supplemented with BPC in the starter and grower periods, and in the whole trial. Treatments had no significant effect on CD. VW tended to be significantly (P < 0.05) lower in broilers fed the diet containing antibiotic than in those fed the basal diet, the basal diet supplemented with BPC in the starter and grower phases and in the whole trial. In several trials, the affirmative influences of bioactive peptides on chickens’ gut has been documented (Liu et al., 2008; Bao et al., 2009; Wen and He, 2012). Adjustment with the obtained results in the present experiment Abdollahi et al. (2017) reported that supplementation of 3 or 6 g SBP/kg enhanced VH in broilers, whereas supplementation of SBP did not have any positive effects on CD, epithelial thickness, and goblet cell number in the duodenum. Osho et al. (2019) reported that inclusion of SBP in broilers’ diet could induce favorable influences on the histology of small intestine.

3.2. Morphometric analysis of the jejunum

The effects of experimental treatments on the morphology of the jejunum are summarized in Table 7. Broilers fed the diet containing antibiotic had the highest VH (P < 0.001). The VH tended to be greater in broilers fed BPC in the starter period in comparison to those fed the basal diet, the basal diet supplemented with vitamin E, the basal diet supplemented with BPC in the starter and grower periods, and in the whole trial. Treatments had no significant effect on CD. VW tended to be significantly (P < 0.05) lower in broilers fed the diet containing antibiotic than in those fed the basal diet, the basal diet supplemented with BPC in the starter and grower phases and in the whole trial. In several trials, the affirmative influences of bioactive peptides on chickens’ gut has been documented (Liu et al., 2008; Bao et al., 2009; Wen and He, 2012). Adjustment with the obtained results in the present experiment Abdollahi et al. (2017) reported that supplementation of 3 or 6 g SBP/kg enhanced VH in broilers, whereas supplementation of SBP did not have any positive effects on CD, epithelial thickness, and goblet cell number in the duodenum. Osho et al. (2019) reported that inclusion of SBP in broilers’ diet could induce favorable influences on the histology of small intestine.

3.3. Immune responses and hematology

The effects of experimental treatments on immune related parameters has been shown in Table 8. At 40 d of age no differences (P > 0.05) were observed for H:L ratio (P > 0.05). Treatments had no significant

Table 5

Influence of dietary treatments on performance indices of broiler chickens at different ages.

Item	Experimental treatments	SEM	P-value			
	Control	Vitamin E	Lincomycin	6 g BPC/kg in starter	6 g BPC/kg in starter and grower	6 g BPC/kg in the whole trial
Body weight, g						
10 d of age	218b	220b	633bc	633bc	633bc	633bc
24 d of age	931	866	276	276	276	276
40 d of age	2,120bc	2,069b	276	276	276	276
Daily feed intake, g/d						
1 to 10 d of age	22.6	22.9	22.6	22.6	22.6	22.6
11 to 24 d of age	72.4	71.4	72.4	72.4	72.4	72.4
25 to 40 d of age	121.2ab	125.8a	121.2ab	121.2ab	121.2ab	121.2ab
FCR						
1 to 10 d of age	1.25ab	1.25ab	1.25ab	1.25ab	1.25ab	1.25ab
11 to 24 d of age	1.42	1.54	1.42	1.42	1.42	1.42
25 to 40 d of age	1.63ab	1.67a	1.63ab	1.63ab	1.63ab	1.63ab
1 to 40 d of age	1.52ab	1.59a	1.52ab	1.52ab	1.52ab	1.52ab

Table 6

Influence of dietary treatments on carcass yield and internal relative organ weight of broilers at 40 d of age (%).

Item	Experimental treatments	SEM	P-value			
	Control	Vitamin E	Lincomycin	6 g BPC/kg in starter	6 g BPC/kg in starter and grower	6 g BPC/kg in the whole trial
Carcass	78.8	78.5	79.2	79.1	78.2	80.5
Proventriculus	0.47	0.45	0.41	0.39	0.38	0.38
Gizzard	1.47	1.69	1.54	1.39	1.36	1.22
Liver	2.8	2.4	2.5	2.5	2.6	2.8
Pancreas	0.27	0.27	0.26	0.27	0.27	0.27
Small intestine	8.1	7.3	7.1	7.4	7.9	8.1
Heart	0.44	0.42	0.43	0.37	0.41	0.41
Spleen	0.11	0.12	0.13	0.11	0.10	0.11
Bursa of Fabricius	0.20	0.19	0.20	0.20	0.20	0.21

Table 7

Influence of dietary treatments on villus height, villus width, crypt depth, villus height-to-crypt depth ratio and epithelial thickness in jejunum of broiler chickens at 40 d of age.

Item	Experimental treatments	SEM	P-value			
	Control	Vitamin E	Lincomycin	6 g BPC/kg in starter	6 g BPC/kg in starter and grower	6 g BPC/kg in the whole trial
Villus height, μm	633bc	666bc	1035a	950ab	633bc	470c
Crypt depth, μm	276	286	245	276	266	260
Villus width, μm	166	123	175	130	153	158
Villus height-to-crypt depth ratio	2.25c	2.30c	4.2c	3.4bc	2.4bc	1.79c

BPC = bioactive peptide derived from cottonseed; SEM = standard error of mean; FCR = feed conversion ratio.

a, b Values in the same row not sharing a common superscript differ (P < 0.05).
effect on antibody titers against NDV, whereas the effect tended to increase in broilers supplemented with BPC in the whole trial ($P > 0.05$). Broilers supplemented with BPC in the starter and grower periods, and in the whole trial had significantly ($P < 0.05$) higher antibody titers against SRBC in comparison to those fed the basal diet and the basal diet supplemented with BPC in the starter period. It seems that to improve immune responses in birds it is necessary to use BPC in the diet continuously; because there is a clearance of circulatory peptides by erythrocytes (Lochs et al., 1990; Odoom et al., 1990). Hou et al. (2017) reported that SBP contains antibodies which increase the immune responses of animals and consequently can improve the health status of animals. Similarly, Osho et al. (2019) reported that inclusion of SBP in broilers’ diets alleviated the coccidia challenge by expression of an immune-related gene. Cheng et al. (2017) reported that supplementation of vitamin E in broilers’ diet alleviated the immune damage of the bursa of Fabricius in cyclophosphamide immunosuppressed broilers by an increased T-AOC of serum; thus, in the present experiment antibody levels may be increased by an increment in T-AOC of serum. The results indicated that for improving immune responses and T-AOC of serum it is necessary to include BPC in the diet for the entire the experiment period.

4. Conclusion

In conclusion, in the present investigation periodical supplementation of BPC could maximize growth performance of broiler chickens; whereas its periodical application was not shown to improve immune responses and T-AOC of serum. The results indicated that for improving immune responses and T-AOC of serum it is necessary to include BPC in the diet for the entire the experimental period.

Author contributions

Farshid Kheiri, Mostafa Faghani, and Nasir Landy contributed to the conception and design of the study. Nasir Landy performed the experiment. Nasir Landy analyzed data and wrote the paper. All authors read the paper and revised accordingly.

Conflict of interest

We declare that we have no financial or personal relationships with other people or organizations that might inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service and/or

Table 8

Item	Experimental treatments	SEM	P-value					
	Control	Vitamin E	Lincomycine	6 g BPC/kg in starter	6 g BPC/kg in starter and grower	6 g BPC/kg in the whole trial		
Antibody titers against New castle, log$_2$	2.75	2.75	2.25	2.4	2.6	3.4	0.36	0.330
Antibody titers against SRBC, log$_2$	6.5b	7.5ab	7.6ab	6.5b	8.6a	8.2a	0.75	0.050
Heterophil-to-lymphocyte ratio	0.36	0.37	0.43	0.32	0.32	0.43	0.03	0.067
Total antioxidant activity of serum1	363a	498b	455ab	386b	353b	432ab	24	0.001

*BPC = bioactive peptide derived from cottonseed; SEM = standard error of mean; SRBC = sheep red blood cells.

1 Values in the same row not sharing a common superscript differ ($P < 0.05$).

a Expressed as μmol/L Trolox Equivalents.

Table 9

Item	Experimental treatments	SEM	P-value					
	Control	Vitamin E	Lincomycine	6 g BPC/kg in starter	6 g BPC/kg in starter and grower	6 g BPC/kg in the whole trial		
PCV, $\times 10^7$/μL	27.6	31.0	29.6	26.1	28.0	26.6	1.16	0.083
WBC, $\times 10^3$/μL	19.9	18.1	18.9	17.4	18.4	19.6	0.66	0.152
Heterophil	24.6	25.0	28.6	22.6	22.8	28.1	1.50	0.06
Lymphocyte	67.6	67.6	63.4	69.8	69.5	65.0	1.74	0.123
Monocytes	4.6	4.0	4.2	3.8	4.0	3.8	0.42	0.843
Eosinophils	1.8	2.2	2.2	2.3	2.1	1.8	0.28	0.748
Basophils	1.4	1.2	1.6	1.5	1.5	1.1	0.20	0.605

*BPC = bioactive peptide derived from cottonseed; SEM = standard error of mean; PCV = packed cell volume; WBC = white blood cell.
company that could be construed as influencing the content of this paper.

Acknowledgment

This project was supported by the Department of Animal Science of Islamic Azad University, Shahrekord Branch, Iran (Grant No. 2015/13).

References

Abdollahi MR, Zaeefarian F, Gu Y, Xiao W, Jia J, Ravidinavi V. Influence of soybean bioactive peptides on growth performance, nutrient utilization, digestive tract development and intestinal histology in broilers. J Appl Anim Res 2017;5(1–7).

Abdollahi MR, Zaeefarian F, Gu Y, Xiao W, Jia J, Ravidinavi V. Influence of soybean bioactive peptides on performance, foot pad lesions and carcass characteristics in broilers. J. Appl Anim Res 2018;7:1–7.

Abdollahi MR, Zaeefarian F, Gu Y, Xiao W, Jia J, Ravidinavi V. Influence of soybean bioactive peptides on performance, foot pad lesions and carcass characteristics in broilers. J. Appl Anim Res 2018;7:1–7.

Andremont A. Consequences of antibiotic therapy to the intestinal ecosystem. Ann Fr Anesth Reanim 2000;19:395–402.

AOAC. Official methods of analysis. 10th ed. 1965. Washington, D.C.

AOAC. Official methods of analysis. 18th ed. 2006. Washington, DC.

Bao H, She R, Liu T, Zhang Y, Luo D, et al. Effects of pig antibacterial peptides on growth performance and intestine mucosal immune of broiler chickens. Poultry Sci 2009;88:291–7.

Bedford M. Removal of antibiotic growth promoters from poultry diets: implications and strategies to minimize subsequent problems. World’s Poult Sci J 2000;56:347–65.

Beker A, Vanhooser SL, Swartzlander JH, Teeter RG. Graded atmospheric oxygen levels effects on performance and ascites incidence in broilers. Poult Sci 2003;82:1550–3.

Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 2011;9:356–68.

Ceylan N, Ciftci L. The effects of some alternative feed additives for antibiotic growth promoters on the performance and gut microflora of broiler chicks. Turk J Vet Anim Sci 2003;27:727–33.

Cheng K, Song ZH, Zheng XC, Zhang H, Zhang JF, Zhang LL, et al. Effects of dietary vitamin E type on the growth performance and antioxidant capacity in cypro- phosphamide immunosuppressed broilers. Poult Sci 2017;96:1159–66.

Davalos A, Miguel M, Bartolome B, Lopez-Fandiño R. Antioxidant activity of pep- tides derived from egg white proteins by enzymatic hydrolysis. J Food Protect 2004;67:1593–44.

Dhama K, Tiwari R, Ullah Khan R, Chakraborty S, Gopi M, Karthik K, et al. Growth promoters and novel feed additives improving poultry production and health, bioactive principles and beneficial applications: the trends and advances. Int J Pharmacol 2014;10:129–55.

Feanti CE, Adler HE, Julian LM. Effects of bacitracin and oxytetracycline on intestines of broiler chickens. Poult Sci 2006;85:2054–9.

Ferriero JD. Large neutral amino acids: dietary effects on brain neurochemistry and function. Amino Acids 2013;45:419–30.

Foroutankhah M, Toghyani M, Landy N. Evaluation of Tribulus terrestris L. as an antibiotic growth promoter substitute on perfor- mance and gut micro of broiler chickens. Asian Pac J Trop Dis 2014;4:S297–8.

Fouad A, Shalane AZ, Pourreza J, Haji-abadi SMAJ, Nikkhah M, Landy N. Ef- ficiency of different levels of mushroom (Agaricus bisporus) on intestinal morphology and microflora of broiler chickens. J. Farm Anim Nutr Physiol 2014;9:23–30.

Hou Y, Wu ZH, Dai ZH, Wang G, Wu G. Protein hydrolysates in animal nutrition: industrial production, bioactive peptides, and functional significance. J Anim Biotechnol 2017:8:22.

Ibrahim HR, Isono H, Miyata T. Potential antioxidant bioactive peptides from camel milk proteins. Anim Nutri 2018:4:273–80.

Iji PA, Hughes RJ, Chock M, Tivey DR. Intestinal structure and function of broiler chickens on wheat-based diets supplemented with a microbial enzyme. Asian-Australas J Anim Sci 2001;14:54–60.

Julian RJ. The response of heart and pulmonary arteries to hyposxia, pressure and volume: a short review. Poultry Sci 2007;86:1006–11.

Jung WK, Mends E, Je JY, Park PJ, Son BW, Kim HC, et al. Angelotins I-converting enzyme inhibitory peptide from yellowfin sole (Lindama aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Chem 2006;94:26–32.

Kavynai A, Shahne AZ, Pourreza J, Haji-abadi SMAJ, Nikkhah M, Landy N. Ef- ficiency of different levels of mushroom (Agaricus bisporus) on intestinal morphology and microflora of broiler chickens. J. Farm Anim Nutr Physiol 2014;9:23–30.

Kececi O, Oguz H, Kurtoglu V, Demet O. Effects of polyvinylpolypyrrolidone, synthetic zeolite and bentonite on serum biochemical and haematological characters of broiler chickens during aflatoxicosis. Br Poult Sci 1998;39:265–9.

Kheiri F, Faghani M, Landy N. Evaluation of thyme and ajwain as antibiotic growth promoter substitutions on growth performance, carcass characteristics and serum biochemistry in Japanese quails (Coturnix japonica). Anim Nutr 2018;4:205–11.

Korzanianis YP, Gisbert E, Gattouche FJ, Zambonino Infante J, Cahu C. Effects of different dietary levels of fish protein hydrolysates on growth, digestive en- zymes, gut microbiota, and resistance to Vibrio anguillarum in European sea bass (Dicentrarchus labrax) larvae. Comp Biochem Physiol A 2007;147:205–14.

Landy N, Kavynai A. Effect of using multi-strain probiotic on performance, immune responses, and cecal microflora composition in broiler chickens reared under heat stress condition. Iran J Appl Anim Sci 2014;3:703–8.

Landy N, Ghalamkari Gh, Toghyani M. Performance, carcass characteristics, and immunity in broiler chickens fed dietary neem (Azadirachta indica) as alternative for an antibiotic growth promoter. Livest Sci 2011a;142: 305–9.

Landy N, Ghalamkari Gh, Toghyani M, Moattar F. The effects of Echinacea purpurea L. (purple conflower) as an antibiotic growth promoter substitution on performance, carcass characteristics and humoral immune response in broiler chickens. J Med Plants Res 2011b;5:2322–8.

Landy N, Ghalamkari Gh, Toghyani M. Evaluation of St John’s Wort (Hypericum perforatum L.) as an antibiotic growth promoter substitution on performance, carcass characteristics, some of the immune responses, and serum biochemical parameters of broiler chickens. J Med Plants Res 2012;6:510–5.

Landy N, Kheiri F, Faghani M. Influence of cottonseed bioactive peptides on growth performance, carcass characteristics, immunity, total antioxidant capacity of serum and intestinal morphology in broilers. In: Proceeding of 7th international veterinary poultry congress. Tehran, Iran; 2020.

Liu T, She R, Wang K, Bao H, Zang Y, Luo D, et al. Effect of rabbit saccus rotundus rotundus bioactive peptides on the intestinal mucosal immunity in chicken. Poult Sci 2009;88:2750–4.

Luchs H, Morse EL, Adibi SA. Uptake and metabolism of dipeptides by human red blood cells. Biochem 1990;291:133–7.

Lucas AM, Jamroz C. Atlas of avian hematology. Agriculture monograph 25. Washington, DC: USDA; 1981.

Mateos G, Mohit-Auli M, Borda E, Mirzaie S, Friska M. Effect of inclusion of porcine mucosa hydrolysate in diets varying in lysine content on growth perfor- mance and ileal histomorphometry of broilers. Anim Feed Sci Technol 2014;187:53–60.

Muir WR, Lynch GW, Williamson P, Cowieson AJ. The oral administration of meat and bone meal-derived protein fractions improved the performance of young broiler chicks. Anim Prod Sci 2013;53:369–77.

Odooon JE, Campbell ID, Ellowy JC, King GF. Characterization of peptide fractions from influenza erythrocytes: a protein-n.m.r. study. Biochem J 1990;267:141–7.

Osho SO, Xiao WW, Adeola O. Response of broiler chickens to dietary soybean bioactive peptide and coccidia challenge. Poultry Sci 2019;1:1–10.

Ouneg A, Gota HA, Abel Hamid M, Batran SM, Orte J. Antibacterial peptides generated by Alcalase hydrolysis of goat whey. LWT - Food Sci Technol (Leb- ensmittel-Wissenschaft -Technol) 2016;65:480–6.

Power D, Jakeman P, FitzGerald RJ. Antioxidative peptides: enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidant peptides. Amino Acids 2013;44:797–820.

Ross Aviagen. Broiler management manual. Midlothian, UK: Aviagen Ltd; 2019.

Ryder K, Ael-D B, McConnell M, Carne A. Towards generation of bioactive peptides from meat industry waste proteins: generation of peptides using commercial microbial proteases. Food Chem 2016;208:42–50.

San Gabriel A, Uneyama H. Amino acid sensing in the gastrointestinal tract. Amino Acids 2013;45:451–61.

SAS Institute, SAS/STAT® user’s guide: Statistics, version 6.12. SAS Institute Inc, Cary, NC.

SAS Institute, SAS/STAT® user’s guide: Statistics, version 6.12. SAS Institute Inc, Cary, NC.
Sorum H, Sunde M. Resistance to antibiotics in the normal flora of animals. Vet Res 2001;32:227–41.
Toghyani M, Mosavi SK, Modaresi M, Landy N. Evaluation of kefir as a potential probiotic on growth performance, serum biochemistry and immune responses in broiler chicks. Anim Nutr 2015;1:305–9.
Wald M, Schwarz K, Rehbein H, Bußmann B, Beermann C. Detection of antibacterial activity of an enzymatic hydrolysate generated by processing rainbow trout by-products with trout pepsin. Food Chem 2016;205:221–8.
Wang JP, Liu N, Songa MY, Qin CL, Ma CS. Effect of enzymolytic soybean meal on growth performance, nutrient digestibility and immune function of growing broilers. Anim Feed Sci Technol 2011;169:224–9.

Webb KE. Intestinal absorption of protein hydrolysis products: a review. J Anim Sci 1990;68:3011–22.
Wen LF, He JG. Dose–response effects of an antimicrobial peptide, a cecropin hybrid, on growth performance, nutrient utilisation, bacterial counts in the digesta and intestinal morphology in broilers. Br J Nutr 2012;108:1756–63.
Whitehair CK, Thompson CM. Observations in raising “disease-free swine. J Am Vet Med Assoc 1956;128:94–8.
Zambrowicz A, Pokora M, Setter B, Dąbrowska A, Szottysik M, Babij K, et al. Multifunctional peptides derived from an egg yolk protein hydrolysate: isolation and characterization. Amino Acids 2015;47:369–80.