THE REDUCIBILITY OF AN AIRY OPERATOR

LOTFI SAIDANE

Abstract. We show that the determinant $\nabla(d, \alpha)$, which seems to be not considered in the past, is not zero. As an application of this result we prove that the Setoyanagi operator $S_{p,q} = \partial^2 - (ax^p + bx^q)$ is irreducible over $\mathbb{C}[x][\partial]$.

1. Introduction

It is well known (see [D, L-R]) that is the operator $\partial^2 - q$, $q \in \mathbb{C}[x]$ is reducible in $\mathbb{C}(x)[\partial]$ if and only if the Ricatti equation $u' + u^2 = q$ has a solution in $\mathbb{C}(x)$. We propose a more manageable criterion using the determining factors properties of the operator. We can easily prove that an Airy operator $L = \sum_{i=0}^{n} a_i \partial^i + Q_m(x)$, of bidegree (n, m), $n \leq m$, and $\{ \int R_i(x^{1/n}) dx, i = 1, \ldots, n \}$ as set of determining factor is reducible in \mathcal{D}_K with a right factor of order 1 if and only if, n divides m and there exist i in $\{1, \ldots, n\}$ such that the differential equation $L(\partial + R_i)(u) = 0$ has a polynomial solution. As an application, we prove that the Setoyanagi operator $S_{p,q} = \partial^2 - (ax^p + bx^q)$ (see [D, L-R], Example 4) is irreducible over $\mathbb{C}[x][\partial]$. For this purpose, we show that the determinant $\nabla(d, \alpha) = |c_{i,j}|_{1 \leq i,j \leq d+1}$, defined in section 4, which seems to be not considered in the past, is not zero.

2. Determining Factors

Let k be an algebraically closed field of characteristic zero, K is the quotient field of the ring of polynomials $R = k[x]$, $\partial = \frac{d}{dx}$ is the derivation of K, $\mathcal{D} = R[\partial] = k[x, \partial]$ is the Weyl algebra over k and $\mathcal{D}_K = K[\partial]$ is the set of differential operators with coefficients in K, so \mathcal{D}_K is an associative noncommutative k-algebra. We denote, also, by ∂ the extension of ∂ to the Picard-Vessio extensions of K, V an R-module of rank n, and ∇_∂ a contraction by ∂ of a connection on V, i.e. a k-linear map on V satisfying:

$$\nabla_\partial (av) = (\partial a) v + a \nabla_\partial (v), \quad a \in R, \quad v \in V.$$

We define a structure of left \mathcal{D}-module on V by setting:

$$\left(\sum_{i=0}^{n} a_i \partial^i \right) v = \sum_{i=0}^{n} a_i \nabla_\partial^i (v), \quad a_i \in R, \quad v \in V.$$

Inversely, if V is a left \mathcal{D}-module of finite rank as an R-module, than we can define a connection on it by putting $\nabla (x) = \partial (x)$.

An operator $L \in \mathcal{D}$ is said to be monic if its leading coefficient, with respect to ∂ is one. If L is monic operator than \mathcal{D}/DL is a free R-module of finite rank.

Date: February 2010.
1991 Mathematics Subject Classification. [2000] Primary 12 H 05, 33C 10, 11C20, 15B36.
Key words and phrases. Airy operator, Setoyanagi operator, Determining factor, Differential equation, Determinant.
We say that a D-module V is cyclic if there exist a monic operator L in D such that V is isomorphic, as a D-module to, D/LL. By scalar extension we can define $V_K = K \otimes_R V$, thus V_K is a K-vector space of dimension the rank of V as a free R-module. As above, we define a connection on V_K, denoted by ∇_K, or simply ∇, as follows:

$$\nabla (a \otimes v) = (\partial a) \otimes v + a \otimes \nabla (v), \quad a \in K, \; v \in V.$$

thereby ∇ define a structure of D_K-module on V_K.

Definition 1. Two operators of D (resp. D_K) are said equivalent if their corresponding D-modules are equivalent.

The following properties (which we can find a proof in [Sg], § 2) will be useful for the rest of this paper.

Proposition 1. Two monic operators L_1 and L_2 of D_K are equivalent if and only if there exists L_3 in D_K having no common factor on the right with L_1 and L_2 in D_K such that $L_2 \circ L_3 = L_4 \circ L_1$.

Let \bar{K} be a Picard-Vessiot extension of K, containing the Picard-Vessiot extension of L_1 and L_2. We denote by V_1, V_2 the respective solutions spaces of of $L_1(y) = 0$ and $L_2(y) = 0$. Let G be the differential Galois group of \bar{K}. Then, the operators L_1 and L_2 are equivalent if and only if their corresponding G-modules V_1 and V_2 are isomorphic (the isomorphism is given by the natural action on $V_1 \subset \bar{K}$. The operator L_3 can be chosen such that its order is strictly lower than that of L_1, see [Sg], Lemma 2.5.

Definition 2. An element of D_K is called reducible (resp. completely reducible) if it decomposes into a product of at least two factors of order ≥ 1 (resp. of order 1).

An operator of D may be reducible in D_K without being on D (see [Be] § 3.). Let $\bar{K} = k((1/x))$ be the field of meromorphic formal series, near the infinity, with coefficients in k (k is an algebraically closed field of characteristic zero), equipped with its usual derivation $\partial = \frac{d}{dx}$ and its valuation $1/x$-adic v. Let \bar{K} be the algebraic closure of K, then the valuation and the derivation of \bar{K} extends uniquely to \bar{K}. For example if $a \in k[x]$ is a polynomial of degree $\deg(a)$, $v(a) = -\deg(a)$.

More generally, we will put $\deg(a) = -v(a)$ for all $a \in \bar{K}$. Let

$$L = \partial^n + \sum_{i=0}^{n-1} a_i \partial^i, \quad a_i \in \bar{K}$$

be a differential operator with coefficients in \bar{K}. The theorem and Hukuhara Turrittin (see [I]) shows the existence of a basis $(u_1, ..., u_n)$ of solutions of the form:

$$u_i(x) = (\exp K_i(x))(1/x)^{\lambda_i} v_i(1/x), \quad i = 1, ..., n,$$

where $K_i(x)$ is a polynomial in $x^{1/q}$ (for some integer q) without constant term, λ_i is an element of k, $(1/x)^{\lambda_i}$ is a solution (in a Picard-Vessiot extension of \bar{K}) of the differential equation $y' = -(\lambda_i/x)y$ and

$$v_i(x) = \sum_{j=0}^{n_i} v_{i,j} (1/x)(\text{Log}x)^j,$$
where
\[v_{i,j}(x) = \sum_{k=0}^{\infty} v_{i,j,k} x^{-k/q} \in \bar{K}. \]

Definition 3. The polynomials \(K_i, i = 1, \ldots, n \) are called the determining factors of the operator \(L \). We say that \(L \) is of simple characteristics, if for every pair \((i, j)\) of distinct indices in \(\{1, 2, \ldots, n\} \), we have \(\deg(K_i - K_j) = \deg(K_i) \).

Definition 4. Let \(n, m \in \mathbb{N}, n \neq 0 \), \(P_n, Q_m \) two polynomials in \(k[x] \) of degree \(n \) and \(m \) and \(\partial = \frac{d}{dx} \). The operator \(L = P_n(\partial) + Q_m(x) \) is called an Airy operator of bidegree \((n, m) \).

Airy operator generalize the classical Airy equation \(y'' - xy = 0 \) (where \(n = 2 \) and \(m = 1 \)). Their study was initiated by N. Katz \[K\], in order to calculate the differential Galois group. Katz shows that this calculation is reduced precisely to questions of reducibility and self duality for the operator \(L \).

Lemma 1. The characteristics of an Airy operator \(L = P_n(\partial) + Q_m(x) \) of bidegree \((n, m) \) is simple and the determining factors \(K_i \) are polynomials in \(x^{1/n} \) without constant terms. Their derivatives \(K'_i = R_i \) are, in the case \(m \geq n \), solutions to the inequality
\[\deg(P_n(R) + Q_m(x)) \leq \frac{nm - m - n}{n}. \]
where \(R \in \bar{K} \) is a polynomial in \(x^{1/n} \). \[?] \n
Proof. See \[S\], Lemma 1.2.1 page 525. \(\square \)

Definition 5. The Fourier transform of an operator \(L = \sum_{i=0}^{N} a_i(x) \partial^i, a_i \in R \) of \(D \), relatively to \(\partial \), is the operator \(\mathcal{F}(L) = \sum_{i=0}^{N} a_i(\partial)(-x)^i \).

Remark 1. The Fourier transform \(\mathcal{F} \) is a \(k \)-linear bijection from \(D \) to itself. We have
\[\mathcal{F}^2(L) = [-1]^t L = \sum_{i=0}^{N} a_i(-x)(-\partial)^i. \]

Proposition 2. \(L \in D \) is reducible (in \(D \)) if and only if its Fourier transform \(\mathcal{F}(L) \) is reducible.

An operator \(L \in D \) is called biunitary if its leading coefficient relatively to \(\partial \) and \(x \) are unity of \(R \). The following result improve the previous.

Proposition 3. A biunitary operator \(L \in D \) is reducible (in \(\mathcal{D}K \) if and only if its Fourier transform \(\mathcal{F}(L) \) is reducible in \(\mathcal{D}K \).

Proof. See \[S\], Proposition 1.3.1. \(\square \)

3. Reducibility

Katz ([Ka], page 26), has proved that an Airy operator of bidegree \((n, m) \), where \(n \) and \(m \) are coprime, is irreducible in \(D_K \). The following result improve the preview.
Theorem 1. An Airy operator \(L = \sum_{i=0}^{n} a_i \partial^i + Q_m(x) \), of bidegree \((n, m)\), \(n \leq m \), and \(\{ \int R_i (x^{1/n}) \, dx, \, i = 1, \ldots, n \} \) as set of determining factor is reducible in \(D_K \) with a right factor of order 1 if and only if the following two two conditions are satisfied:

1) \(n \) divides \(m \),
2) there exist \(i \) in \(\{1, \ldots, n\} \) such that the differential equation \(L(\partial + R_i)(u) = 0 \) has a polynomial solution.

Proof. See [S] Proposition 2.1.1.

If \(L = \sum_{i=0}^{n} a_i \partial^i + Q_m(x) \), then the adjoint operator of \(L \), denoted \(L' \), is defined by

\[L' = \sum_{i=0}^{n} (-\partial)^i a_i + Q_m(x). \]

With the same hypothesis as the theorem, we can easily prove that \(L \) is reducible in \(D_K \) with a left factor of order 1 if and only if \(n \) divides \(m \) and there exist \(i \) in \(\{1, \ldots, n\} \) such that the differential equation \(L'(\partial - R_i)(u) = 0 \) has a polynomial solution.

It is well known (see [D, L-R]) that the operator \(\partial^2 - q, \, q \in \mathbb{C}[x] \) is reducible in \(\mathbb{C}(x)[\partial] \) if and only if the Ricatti equation \(u' + u^2 = q \) has a solution in \(\mathbb{C}(x) \). We propose a more manageable criterion using the determining factor properties of the operator.

4. Application

Let \(p, q \in \mathbb{Q}, \, q < p, \, a, b \in \mathbb{C}, \, ab \neq 0 \). Let \(S_{p,q} = \partial^2 - (ax^p + bx^q) \) the Setoyanagi operator. If we assume that the operator \(S_{p,q} \) is reducible in \(\mathbb{C}(x)[\partial] \), then Theorem 1 implies that \(p \) is an even integer. We assume \(p = 2m \). The determining factors \(\int R \) of \(S_{p,q} \), according to Lemma ??, are given by:

\[R = \varepsilon \sqrt{a} x^m \sum_{i=0}^{r} \left(\frac{1}{2} \right)_{i} (b/a)^i x^{i(q-2m)} \]

where \(r = E \left(\frac{m}{2m-q} \right) \) is the integral part of \(\frac{m}{2m-q} \) and \(\varepsilon = \pm 1 \). Using Theorem 1 we deduce that there exists \(d \in \mathbb{N} \) such that if \(d_{m-1} \) denote the coefficient of \(x^{m-1} \) in \(R^2 - [ax^{2m} + bx^q] \) so we obtain

\[\frac{d_{m-1}}{(2d + m) \sqrt{a}} = \varepsilon, \text{ with } \varepsilon = \pm 1. \]

We therefore find the conditions cited by [D, L-R], namely, \(\frac{m+1}{2m-q} \) is a natural number \(s \geq 1 \) (in fact \((r+1)(q-2m) + 2m \) is equal to \(m - 1 \)) and condition

\[d_{m+1} = 2a \left(\frac{1}{2} \right)_{s} (b/a)^s = \varepsilon (2d + m) \sqrt{a}, \]

we can write as follows: there exist \(d \in \mathbb{N} \) such that

\[\varepsilon \sqrt{a} \left(\frac{1}{2} \right)_{s} (b/a)^s - \frac{m}{2} = d. \]

Setoyanagi (cited by [D, L-R], Example 4) gave a necessary and sufficient conditions of reducibility in the case \(\frac{m+1}{2m-q} = s \leq 2 \). For \(s = 2 \), we can show that this case reduces to the case \(m = q = 1 \).
As an application, we will consider \(m = 2 \) and \(q = 3 \) (so \(s = 3 \)), we show the following result:

Proposition 4. The Setoyanagi operator \(S_{4,3} = \partial^2 - (ax^4 + bx^3) \), \(a, b \in \mathbb{C} \), \(a \) or \(b \neq 0 \), is irreducible in \(\mathbb{C}(x)[\partial] \).

Proof. If \(a \) or \(b = 0 \), it is easy to verify that \(S_{4,3} \) is irreducible. For the following, we assume that \(ab \neq 0 \). The change of variable \(x - \frac{b}{4a} \) preserves the reducibility properties of the operator \(S_{4,3} \). Let \(S \) be the operator obtained after the change of variable. We have

\[
S = \partial^2 - Q,
\]

where

\[
Q = ax^4 - \frac{3b^2}{8a}x^2 + \frac{b^3}{8a^2}x - \frac{3b^4}{4a^3}.
\]

The determining factors of \(S \) are \(\int R \) with

\[
R = \varepsilon \sqrt{a} \left[x^2 - \frac{3b^2}{16a^2} \right], \quad \varepsilon = \pm 1.
\]

The operator \(S^R = S (\partial + R) \) is equal to \(\partial^2 + 2R\partial + [R^2 + R' - Q] \). If \(S \) is reducible than the differential equation \(S^R (u) = 0 \) have a polynomial solution. However, there exist \(d \in \mathbb{N} \) such that

\[
\frac{b^3}{16a^{3/2}} = d + 1.
\]

As above we can suppose \(s = 1 \). If necessary, we change the argument of \(\sqrt{a} \). We put \(\alpha = \frac{2a}{b} \), consequently

\[
\sqrt{a} = 2 (d + 1) \alpha^3
\]

and

\[
S^R = \partial^2 + \left[4(d + 1) \alpha^3 x^2 - 3(d + 1) \alpha \right] \partial + \left[-4d(d + 1) \alpha^3 x + 3(d + 1)^2 \alpha^2 \right]
\]

The differential equation \(S^R (u) = 0 \) have a polynomial solution of degree \(d \) if and only if \(S^R \), considered as a linear operator on \(\mathbb{C}_d [x] \) is not an injection. This is equivalent to determinant \(\nabla (d, \alpha) = |c_{i,j}|_{1 \leq i, j \leq d+1} \), defined by

\[
c_{i,j} = \begin{cases}
3(d + 1)^2 \alpha^2, & \text{if } j = i \\
-4(d - i + 2) (d + 1) \alpha^3, & \text{if } j = i - 1 \\
-3i (d + 1) \alpha, & \text{if } j = i + 1 \\
i. (i + 1), & \text{if } j = i + 2 \\
0, & \text{else}
\end{cases}
\]

is zero. \(\square \)

Lemma 2. \(\nabla (d, \alpha) \neq 0 \).

Proof. \(\nabla (d, \alpha) \) is a polynomial in two variables \(d \) and \(\alpha \), homogeneous of degree \(2(d + 1) \) compared to \(\alpha \). Therefore

\[
\nabla (d, \alpha) = \mu (d) \alpha^{2(d+1)}.
\]

It suffices to show that \(\mu (d) \neq 0 \). For this purpose, we note that if \(d \) is an even integer then \(\mu (d) \) is congruent to 1 modulo 2 and \(\mu (d) \) is not zero. Assume, for
the rest that d is an odd integer. Let $(a_{i,j})$ the matrix obtained from $(c_{i,j})$ after putting $\alpha = 1$. Then

$$|a_{i,j}| = \mu(d).$$

We consider the order p determinants extracted from $(a_{i,j})$ as follows:

$$\nabla_p = |a_{i,j}|_{d-p+2 \leq i,j \leq d+1},$$

for example

$$\nabla_2 = \begin{vmatrix} 3(d+1)^2 & -3d(d+1) \\ -4(d+1) & 3(d+1)^2 \end{vmatrix} = 3(d+1)^2 (3d^2 + 2d + 3)$$

and

$$\nabla_0 = 1, \quad \nabla_{d+1} = \mu(d).$$

Consequently, after developing ∇_{d+1} with respect to its first colon, we obtain the recurrence relation

$$\nabla_{p+1} = (d+1)^2 [3\nabla_p - 12\lambda_{p-1}\nabla_{p-1} + 16\lambda_{p-1}\lambda_{p-2}\nabla_{p-2}],$$

for $p = 2, \ldots, d$, and

$$\lambda_k = (k+1)(d-k).$$

We propose to prove that, for $p \in \{1, \ldots, d-1\}$

$$\nabla_{p+1} > 4\lambda_p\nabla_p.$$

For the rest we put $y = 3(d+1)^2$, then

$$\nabla_{p+1} = (d+1)^2 \left[3\nabla_p - 12\lambda_{p-1}\nabla_{p-1} + 16\lambda_{p-1}\lambda_{p-2}\nabla_{p-2}\right].$$

We assume that there exists an integer $q \in \{1, \ldots, d-1\}$ such that

$$\nabla_{q+1} \leq 4\lambda_q\nabla_q.$$

Let $p = \inf \{q; \nabla_q \leq 4\lambda_q\nabla_q\}$. The system \ref{eq:4.2} leads that $p \geq 4$.

By writing

$$\nabla_p > 4\lambda_{p-1}\nabla_{p-1}$$

and

$$\nabla_{p+1} \leq 4\lambda_p\nabla_p,$$

we can deduce the following relation

$$(y - 4\lambda_p)\nabla_p \leq 4\lambda_{p-1}y \left(\nabla_{p-1} - \frac{4}{3}\lambda_{p-2}\nabla_{p-2}\right),$$

where

$$\nabla_p \leq \frac{4\lambda_{p-1}y}{y - 4\lambda_p} \left(\nabla_{p-1} - \frac{4}{3}\lambda_{p-2}\nabla_{p-2}\right).$$

The relations

$$\nabla_p = y \left[\nabla_{p-1} - 4\lambda_{p-2}\nabla_{p-2} + \frac{16}{3}\lambda_{p-2}\lambda_{p-3}\nabla_{p-3}\right].$$
Replacing the sign of \(h \)

\[(4.4) \quad y \left(1 - \frac{4\lambda_{p-1}}{y - 4\lambda_p}\right) \nabla_{p-1} \leq 4\lambda_{p-2}y \left[1 - \frac{4\lambda_{p-1}}{y - 4\lambda_p}\right] \nabla_{p-2} - \frac{16}{3} \lambda_{p-2} \lambda_{p-3} y \nabla_{p-3}. \]

Replacing \(\nabla_{p-1} \) by its expression in the inequality (4.4) we obtain

\[y^2 \left[1 - \frac{4\lambda_{p-1}}{y - 4\lambda_p} \right] \nabla_{p-2} - \frac{16}{3} y \lambda_{p-2} \lambda_{p-3} y \nabla_{p-3} \]

\[\nabla_{p-3} - \frac{16}{3} y^2 \left[1 - \frac{4\lambda_{p-1}}{y - 4\lambda_p}\right] \lambda_{p-3} \lambda_{p-4} y \nabla_{p-4}. \]

From the definition of \(p \), we deduce that \(\nabla_{p-3} > 4\lambda_{p-4} \nabla_{p-4} \), and the relationship (4.5) then leads

\[y \left(1 - \frac{4\lambda_{p-1}}{y - 4\lambda_p}\right) \nabla_{p-2} - \frac{16}{3} y \lambda_{p-2} \lambda_{p-3} y \nabla_{p-3} \]

\[< 4\lambda_{p-3} y \left[\frac{2}{3} y \left[1 - \frac{4\lambda_{p-1}}{y - 4\lambda_p}\right] - \frac{4}{3} \lambda_{p-2} \right] \nabla_{p-3}. \]

Similarly, the relationships

\[\nabla_{p-2} > 4\lambda_{p-3} \nabla_{p-3} \]

and (4.6) leads

\[y (y - 4\lambda_p + 4\lambda_{p-1} + 4\lambda_{p-2} (y - 4\lambda_p)) - 12\lambda_{p-2} \left(y - 4\lambda_p - \frac{4}{3} \lambda_{p-1}\right) < 0. \]

Thereby, we have

\[(4.7) \quad y^2 - y (4\lambda_p + 4\lambda_{p-1} + 8\lambda_{p-2}) + 32\lambda_p \lambda_{p-2} + 16\lambda_{p-1} \lambda_{p-2} < 0 \]

We put, for \(p \in \{2, \ldots, d-1\} \),

\[h(p) = y^2 - y (4\lambda_p + 4\lambda_{p-1} + 8\lambda_{p-2}) + 32\lambda_p \lambda_{p-2} + 16\lambda_{p-1} \lambda_{p-2} \]

we differentiate the function \(h \) and we replace replace \(\lambda_k \) by \((k+1)(d-k)\), thus

\[h'(p) = 8 \left(d - p + 3\right) (4\lambda_p + 2\lambda_{p-1} - y) + 4 \left(d - 2p + 1\right) (8\lambda_{p-2} - y) \]

\[+ 4 \left(d - 2p + 1\right) (4\lambda_{p-2} - y). \]

For \(k \in \{0, 1, \ldots, d-1\} \) the function \(\lambda_k \) varies between \(d \) and \(\frac{(d+1)^2}{2} \). As \(y = 3(d+1)^2 \), the sign of \(h' \) is strictly positive if \(p > \frac{d+1}{2} \) is strictly negative if \(p < \frac{d+1}{2} \) (as \(d \) is an odd integer \(d \), view the beginning of the prof, and \(p \) is an integer). We calculate \(h\left(\frac{d-1}{2}\right), h\left(\frac{d+1}{2}\right) \) and \(h\left(\frac{d+3}{2}\right) \). We find

\[h\left(\frac{d-1}{2}\right) = 56d^2 112d + 120, \]

\[h\left(\frac{d+1}{2}\right) = 16d^2 32d + 48, \]

\[h\left(\frac{d+3}{2}\right) = 24 \left(d + 1\right)^2. \]
For $p \in \{2, \ldots, d-1\}$, the least value of h is $h\left(\frac{d+1}{2}\right)$ which is strictly greater than zero, which contradicts inequality 4.7. Therefore,

$$\nabla_{p+1} > 4\lambda_p \nabla_p, \quad p \in \{1, \ldots, d-1\}.$$

By putting $p = d$ in (4.1) and $p = d - 1$ in (4.7), we obtain

$$\nabla_{d+1} = y \left[\nabla_d - 4 \lambda_{d-1} \nabla_{d-1} + \frac{16}{3} \lambda_{d-1} \lambda_{d-2} \nabla_{d-2} \right]$$

and

$$\nabla_d > 4 \lambda_{d-1} \nabla_{d-1},$$

which leads to $\nabla_{d+1} > \frac{16}{3} y \lambda_{d-1} \lambda_{d-2} \nabla_{d-2}$, and over p and ∇_{d+1} is strictly positive, which achieve the proof.

\[\Box\]

References

[1] D. Bertrand, Extensions de D-modules et groupes de Galois différentiels, Springer L.N, N° 1454, p. 125-141.

[2] A. Duval - M. Loday-Richaud, Kovacic’s algorithm and its application to some families of special functions, AAECC, 3. 1992, p. 211-246.

[3] E. L. Ince, Ordinary differential equations London 1927.

[4] N. Katz, On the calculation of some differential Galois groups, Invent. Math. 87 (1987) p 13 - 61.

[5] L. Saidane, Propriétés algébriques des opérateurs d’Airy de petit ordre; Ann. Fac. Sc. Toulouse, 6ème série, tome 9, n 3(2000), p. 519-550.

[6] M. Singer, Testing reducibility of linear differential operators : A group theoretic perspective. AAECC. (1995).

Département de Mathématiques, Faculté des Sciences de Tunis, Université de Tunis-El Manar, Campus universitaire, 2092, El-Manar, Tunis, TUNISIA

E-mail address: lotfi.saidane@fst.rnu.tn.